Answers to Numerical Questions

page 39

A2.1 Check and Reflect

- 10. a) phosphorus will gain 3 electrons
 - b) sodium will lose 1 electron
 - c) chlorine will gain 1 electron
 - d) magnesium will lose 2 electrons
 - e) iodine will gain 1 electron

11.

Element Name	Mass Number	Number of Protons	Number of Neutrons
calcium	41	20	21
uranium	238	92	146
aluminium	27	13	14
beryllium	9	4	5
neon	19	10	9
iron	53	26	27

page 46

Practice Problems

- **3.** a) Ba(OH) $_{2(s)}$
 - b) Fe₂(CO₃)_{3(s)}
 - c) CuMnO_{4(s)}
- 4. a) gold(III) nitrate
 - b) ammonium phosphate
 - c) potassium dichromate

page 49

Practice Problem

- 5. a) carbon dioxide
 - b) dinitrogen monoxide
 - c) phosphorus trichloride
 - d) OF_{2(g)}
 - e) N₂S_{4(s)}
 - f) SO_{3(g)}

12.

Atom or Ion Name	Overall Charge	Number of Protons	Number of Electrons	Symbol	Number of Electrons Lost or Gained
oxygen atom	0	8	8	0	0
oxide ion	2-	8	10	O ²⁻	gained 2
potassium ion	1+	19	18	K+	lost 1
magnesium ion	2+	12	10	Mg ²⁺	lost 2
fluoride ion	1-	9	10	F-	gained 1
calcium ion	2+	20	18	Ca ²⁺	lost 2
aluminium ion	3+	13	10	Al ³⁺	lost 3

page 43

Practice Problem

- 1. a) $MgCl_{2(s)}$
 - b) $Na_2S_{(s)}$
 - c) $Ca_3P_{2(s)}$
 - d) $K_3N_{(s)}$
 - e) CaF_{2(s)}

page 44

Practice Problem

- 2. a) iron(III) chloride
 - b) lead(IV) oxide
 - c) nickel(III) sulfide
 - d) copper(II) fluoride
 - e) chromium(III) sulfide

page 50

A2.2 Check and Reflect

- 3. a) Na+
- f) Cl-
- b) Ca²⁺
- g) ClO₃-
- c) Ag+
- h) ClO₂-
- d) Cu2+

- e) Pb4+
- i) CH₃COO-
- j) NH₄+
- 4. a) aluminium ion
 - b) potassium ion
 - c) zinc ion
 - d) nickel(III) ion
 - e) iron(II) ion
 - f) iron(III) ion
 - g) hydrogencarbonate ion
 - h) hydroxide ion
 - i) thiocyanate ion
 - j) sulfite ion

- 5. a) methane
- d) hydrogen sulfide
- b) ammonia
- e) hydrogen fluoride
- c) water
- 8. a) aluminium chloride
 - b) calcium sulfide
 - c) sodium nitride
 - d) potassium sulfate
 - e) lithium oxide
 - f) iron(III) iodide
 - g) lead(IV) nitrate
 - h) copper(I) phosphate
 - i) ammonium nitrite
 - j) sodium acetate (or sodium ethanoate)
- 9. a) NaOH_(s)
- d) CaHPO_{4(s)}
- b) $(NH_4)_2SO_{3(s)}$
- e) Al(CH₃COO)_{3(s)}
- c) $Mg(SCN)_{2(s)}$
- f) CrCl_{3(s)}
- **10.** a) $N_2O_{4(g)}$
- f) CS_{2(g)}
- b) PCl_{5(g)}
- g) SO_{3(g)}
- c) $NI_{3(s)}$
- h) CH_{4(g)}
- d) CO_(g)
- i) NH_{3(g)}
- e) $P_4O_{10(s)}$
- j) $C_6H_{12}O_{6(s)}$
- 11. a) carbon tetrabromide
 - b) nitrogen monoxide
 - c) oxygen difluoride
 - d) iodine monobromide
 - e) selenium dibromide
 - f) phosphorus trichloride
 - g) dinitrogen trioxide
 - h) sulfur dichloride
- 12. a) hydrogen peroxide
- d) $Na_2SiO_{3(s)}$
- b) iron(III) thiocyanate
- e) NH₄ClO_{4(s)}
- c) $C_2H_5OH_{(1)}$
- f) sulfur hexafluoride

A2.4 Check and Reflect

- **4.** a) HNO_{3(aq)}
- f) $H_3PO_{4(aq)}$
- b) CsOH_(s)
- g) potassium hydroxide
- c) CH₃COOH_(aa)
- h) hydrobromic acid
- d) Ca(OH)_{2(s)}
- i) sulfuric acid
- e) HCl_(aq)
- j) magnesium hydroxide

page 76-77

A2.0 Section Review

- 23. a) sodium will lose 1 electron
 - b) fluorine will gain 1 electron
 - c) calcium will lose 2 electrons
 - d) nitrogen will gain 3 electrons
 - e) oxygen will gain 2 electrons

- 24. a) cesium chloride
 - b) potassium nitride
 - c) sodium oxide
 - d) aluminium nitride
 - e) magnesium sulfide
 - f) lithium phosphide
 - g) aluminium oxide
 - h) silver fluoride
 - i) iron(II) bromide
 - i) lead(IV) chloride
 - k) nickel(III) oxide
 - l) gold(III) nitride
- 25. a) ammonium sulfide
 - b) ammonium sulfate
 - c) calcium nitrate
 - d) aluminium hydrogencarbonate
 - e) sodium silicate
 - f) chromium(II) chlorite
 - g) lead(IV) hydrogenphosphate
 - h) potassium permanganate
 - i) sodium dichromate
 - j) aluminium acetate or ethanoate
 - k) cobalt(II) benzoate
 - l) ammonium thiocyanate
- **26.** a) NaBr_(s)

 - b) $Ca_3N_{2(s)}$
- h) Cr₃N_{2(s)} i) Cu₂O_(s)

g) FeS_(s)

- c) $MgO_{(s)}$ d) $AlCl_{3(s)}$
- j) TiBr_{4(s)}
- e) RbI_(s)
- k) PbF_{2(s)}
- f) $\text{Li}_3 P_{(s)}$

- l) CoN_(s)
- **27**. a) Li₂CO_{3(s)} b) Be(NO_3)_{2(s)}
- g) $Mn(ClO_4)_{2(s)}$ h) $Fe(OH)_{3(s)}$
- c) Na₃PO_{4(s)}
- i) Cu(C₆H₅COO)_{2(s)}
- d) NH₄CN_(s)
- j) Au(SCN)_{3(s)}
- e) NaHCO_{3(s)}
- k) $Pb(CrO_4)_{2(s)}$
- f) AlBO_{3(s)}
- l) CrPO_{3(s)}
- 28. a) dinitrogen monoxide
 - b) sulfur trioxide
 - c) phosphorus pentachloride
 - d) CBr₄₍₁₎
 - e) SCl_{6(g)}
 - f) $OF_{2(g)}$
 - g) nitrogen triiodide
 - h) water
 - i) ammonia
 - j) CH_{4(g)}
 - k) $P_4O_{10(s)}$
 - l) XeF_{2(g)}

- 31. a) hydrofluoric acid
 - b) nitric acid
 - c) sodium hydroxide base
 - d) methanoic acid or formic acid
 - e) ammonium hydroxide base
 - f) ethanoic acid or acetic acid
 - g) phosphoric acid
 - h) calcium hydroxide base
- **36.** a) $Ca(NO_3)_{2(s)}$
- g) tin(II) chloride
- b) $Al(OH)_{3(s)}$
- h) strontium chloride
- c) CH₃OH₍₁₎
- i) NaCH₃COO_(s)
- d) PBr_{3(g)}
- j) Pb(CH₃COO)_{4(s)}
- e) ammonium carbonate k) H₂O₂₍₁₎
- f) sulfur dichloride
- l) $C_6H_{12}O_{6(s)}$

A3.1 Check and Reflect

- **10.** 14.5 g
- **11.** 6.7 g
- 12. a) 57.4 g
 - b) 42.6 g

page 89

Practice Problem

- 1. a) $N_{2(g)} + 3 H_{2(g)} \longrightarrow 2 NH_{3(g)}$
 - b) $CaC_{2(s)} + 2 H_2O_{(l)} \longrightarrow Ca(OH)_{2(s)} + C_2H_{2(g)}$
 - c) $SiCl_{4(s)} + 2 H_2O_{(l)} \longrightarrow SiO_{2(s)} + 4 HCl_{(aq)}$
 - d) $2 H_3 PO_{4(aa)} + 3 CaSO_{4(s)} \longrightarrow$

$$Ca_3(PO_4)_{2(s)} + 3 H_2SO_{4(aq)}$$

page 90

A3.2 Check and Reflect

- 7. a) 2 Al_(s) + 3 F_{2(g)} \longrightarrow 2 AlF_{3(s)}
 - b) $4 K_{(s)} + O_{2(g)} \longrightarrow 2 K_2 O_{(s)}$
 - c) $C_6H_{12}O_{6(s)} + 6 O_{2(g)} \longrightarrow 6 CO_{2(g)} + 6 H_2O_{(g)}$
 - d) $H_2SO_{4(aq)} + 2 \text{ NaOH}_{(s)} \longrightarrow Na_2SO_{4(aq)} + 2 H_2O_{(l)}$
 - e) $Mg(CH_3COO)_{2(aq)} + 2 AgNO_{3(aq)}$
 - $Mg(NO_3)_{2(aq)} + 2 AgCH_3COO_{(s)}$
 - f) $2 H_2O_{2(aq)} \longrightarrow O_{2(g)} + 2 H_2O_{(l)}$
- **8.** a) $CH_{4(g)} + 2 O_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2O_{(g)}$
 - b) 2 NaCl_(s) \longrightarrow 2 Na_(s) + Cl_{2(g)}
 - c) $Ca(NO_3)_{2(aq)} + Na_2SO_{4(aq)} \longrightarrow 2 NaNO_{3(aq)} + CaSO_{4(s)}$
 - d) $H_{2(g)} + CO_{(g)} \longrightarrow C_{(s)} + H_2O_{(g)}$ (balanced)
 - e) 2 Na_(s) + 2 H₂O_(l) \longrightarrow 2 NaOH_(aq) + H_{2(g)}
 - f) 2 CaCO_{3(s)} + 2 SO_{2(g)} + O_{2(g)} \longrightarrow 2 CaSO_{4(s)} + 2 CO_{2(g)}
 - g) $S_{8(s)} + 8 O_{2(g)} \longrightarrow 8 SO_{2(g)}$
 - h) $Ca_3(PO_4)_{2(s)} + 3 H_2SO_{4(aq)} \rightarrow 2 H_3PO_{4(aq)} + 3 CaSO_{4(s)}$
 - i) 2 KClO_{3(s)} \longrightarrow 2 KCl_(s) + 3 O_{2(g)}

- 9. a) $Ca_{(s)} + 2 HCl_{(aq)} \longrightarrow CaCl_{2(aq)} + H_{2(g)}$
 - b) $Mg_3N_{2(s)} + 6 H_2O_{(l)} \longrightarrow 3 Mg(OH)_{2(aq)} + 2 NH_{3(g)}$
 - c) $H_2SO_{4(qq)} + 2 NaOH_{(s)} \longrightarrow Na_2SO_{4(qq)} + 2 H_2O_{(l)}$
 - d) $2 \text{ NO}_{2(g)} \longrightarrow \text{N}_2\text{O}_{4(g)}$
 - e) $CuCl_{2(aa)} + 2 NaOH_{(aa)} \longrightarrow Cu(OH)_{2(s)} + 2 NaCl_{(aa)}$

page 92

Practice Problems

- 2. skeleton: $\operatorname{Li}_{(s)} + \operatorname{O}_{2(g)} \longrightarrow \operatorname{Li}_2 \operatorname{O}_{(s)}$
 - balanced: $4 \operatorname{Li}_{(s)} + \operatorname{O}_{2(g)} \longrightarrow \operatorname{Li}_2 \operatorname{O}_{(s)}$
- 3. skeleton: $Pb_{(s)} + Br_{2(l)} \longrightarrow PbBr_{4(s)}$
- balanced: $Pb_{(s)} + 2 Br_{2(l)} \longrightarrow PbBr_{4(s)}$

page 93

Practice Problem

- 4. a) calcium nitride, Ca₃N_{2(s)}
 - b) silver oxide, $Ag_2O_{(s)}$
 - c) aluminium fluoride, AlF_{3(s)}

page 93

Skill Practice: Formation Reactions

- 1. a) potassium iodide
 - b) magnesium phosphide
 - c) cesium chloride
 - d) calcium oxide
 - e) aluminium sulfide
- **2.** a) $Na_{(s)} + Br_{2(l)} \longrightarrow NaBr_{(s)}$
 - b) $Mg_{(s)} + F_{2(g)} \longrightarrow MgF_{2(s)}$
 - c) $Al_{(s)} + Cl_{2(g)} \longrightarrow AlCl_{3(s)}$

 - d) $K_{(s)} + N_{2(g)} \longrightarrow K_3 N_{(s)}$ e) $Ca_{(s)} + P_{4(s)} \longrightarrow Ca_3 P_{2(s)}$
- 3. a) 4 $\text{Li}_{(s)}$ + $\text{O}_{2(g)}$ \longrightarrow 2 $\text{Li}_2\text{O}_{(s)}$
- b) 2 Al_(s) + 3 Br_{2(l)} \longrightarrow 2 AlBr_{3(s)}
- c) $Hg_{(l)} + I_{2(s)} \longrightarrow HgI_{2(s)}$
- d) $2 \operatorname{Na}_{(s)} + \operatorname{Cl}_{2(g)} \longrightarrow 2 \operatorname{NaCl}_{(s)}$
- e) $3 \operatorname{Mg}_{(s)} + \operatorname{N}_{2(g)} \longrightarrow \operatorname{Mg}_{3} \operatorname{N}_{2(s)}$
- f) $Ni_{(s)} + F_{2(g)} \longrightarrow NiF_{2(s)}$

page 94

Practice Problem

- **5.** a) 8 MgS_(s) \longrightarrow 8 Mg_(s) + S_{8(s)}
 - b) $2 \text{ KI}_{(s)} \longrightarrow 2 \text{ K}_{(s)} + \text{I}_{2(s)}$
 - c) 2 $\text{Al}_2\text{O}_{3(s)}$ \longrightarrow 4 $\text{Al}_{(s)}$ + 3 $\text{O}_{2(g)}$
 - d) $NiCl_{2(s)} \longrightarrow Ni_{(s)} + Cl_{2(g)}$

Practice Problem

 $\begin{aligned} \textbf{6.} & \text{ a) } \text{CH}_{4(g)} + 2 \text{ O}_{2(g)} \longrightarrow \text{CO}_{2(g)} + 2 \text{ H}_2 \text{O}_{(g)} \\ & \text{b) } 2 \text{ C}_2 \text{H}_{6(g)} + 7 \text{ O}_{2(g)} \longrightarrow 4 \text{ CO}_{2(g)} + 6 \text{ H}_2 \text{O}_{(g)} \\ & \text{c) } \text{C}_3 \text{H}_{8(g)} + 5 \text{ O}_{2(g)} \longrightarrow 3 \text{ CO}_{2(g)} + 4 \text{ H}_2 \text{O}_{(g)} \\ & \text{d) } 2 \text{ C}_6 \text{H}_{6(l)} + 15 \text{ O}_{2(g)} \longrightarrow 12 \text{ CO}_{2(g)} + 6 \text{ H}_2 \text{O}_{(g)} \end{aligned}$

page 97

Practice Problems

- $\begin{array}{c} \textbf{7. Word equation: chlorine} + \text{nickel(III) bromide} \rightarrow \\ & \text{nickel(III) chloride} + \text{bromine} \\ \text{Skeleton equation: } \text{Cl}_{2(g)} + \text{NiBr}_{3(aq)} \longrightarrow \\ & \text{NiCl}_{3(aq)} + \text{Br}_{2(l)} \\ \text{Balanced equation: } 3 \text{ Cl}_{2(g)} + 2 \text{ NiBr}_{3(aq)} \longrightarrow \\ & 2 \text{ NiCl}_{3(aq)} + 3 \text{ Br}_{2(l)} \\ \end{array}$
- $2 \ \text{NiCl}_{3(aq)} + 3 \ \text{Br}_{2(l)}$ 8. Word equation: zinc + silver nitrate \longrightarrow zinc nitrate + silver Skeleton equation: $\text{Zn}_{(s)} + \text{AgNO}_{3(aq)} \longrightarrow$ $\text{Zn}(\text{NO}_3)_{2(aq)} + \text{Ag}_{(s)}$ Balanced equation: $\text{Zn}_{(s)} + 2 \ \text{AgNO}_{3(aq)} \longrightarrow$

page 97

Skill Practice: Decomposition and Single Replacement Reactions

Activity Notes

1. a) magnesium phosphide \longrightarrow

magnesium + phosphorus

 $Zn(NO_3)_{2(aq)} + 2 Ag_{(s)}$

- c) strontium oxide strontium + oxygen
- d) zinc + iron(II) chloride ----- iron + zinc chloride
- e) aluminium + copper(II) iodide ---->

copper + aluminium iodide

f) magnesium + gold(III) nitrate ---->

gold + magnesium nitrate

- **2.** a) $CaO_{(s)} \longrightarrow Ca_{(s)} + O_{2(\sigma)}$
 - b) $\operatorname{NaF}_{(s)} \longrightarrow \operatorname{Na}_{(s)} + \operatorname{F}_{2(g)}$
 - c) $Mg_3N_{2(s)} \longrightarrow Mg_{(s)} + N_{2(g)}$
 - d) $\operatorname{Fe}_{(s)} + \operatorname{Cu}(\operatorname{NO}_3)_{2(aq)} \longrightarrow \operatorname{Cu}_{(s)} + \operatorname{Fe}(\operatorname{NO}_3)_{3(aq)}$
 - e) $Cl_{2(g)} + NaI_{(aq)} \longrightarrow I_{2(s)} + NaCl_{(aq)}$
 - f) $Pb_{(s)} + AgNO_{3(aq)} \longrightarrow Ag_{(s)} + Pb(NO_3)_{2(aq)}$
- **3.** a) 2 FeCl_{3(s)} \longrightarrow 2 Fe_(s) + 3 Cl_{2(g)}
 - b) 2 $Cu_2O_{(s)} \longrightarrow 4 Cu_{(s)} + O_{2(g)}$
 - c) 2 LiBr_(s) \longrightarrow 2 Li_(s) + Br_{2(l)}
 - d) 3 Br_{2(l)} + 2 CrI_{3(aq)} \longrightarrow 2 CrBr_{3(aq)} + 3 I_{2(s)}
 - e) $2 \text{ AgNO}_{3(aa)} + \text{Cu}_{(s)} \longrightarrow 2 \text{ Ag}_{(s)} + \text{Cu}(\text{NO}_3)_{2(aa)}$

4. a) bromine + iron(III) iodide \longrightarrow

iron(III) bromide + iodine

$$\begin{array}{l} \operatorname{Br}_{2(l)} + \operatorname{FeI}_{3(aq)} {\longrightarrow} \operatorname{FeBr}_{3(aq)} + \operatorname{I}_{2(s)} \\ \operatorname{3} \operatorname{Br}_{2(l)} + \operatorname{2} \operatorname{FeI}_{3(aa)} {\longrightarrow} \operatorname{2} \operatorname{FeBr}_{3(aa)} + \operatorname{3} \operatorname{I}_{2(s)} \end{array}$$

b) magnesium + gold(III) fluoride --->

magnesium fluoride + gold

$$\begin{split} & \operatorname{Mg}_{(s)} + \operatorname{AuF}_{3(aq)} {\longrightarrow} \operatorname{MgF}_{2(aq)} + \operatorname{Au}_{(s)} \\ & \operatorname{3} \operatorname{Mg}_{(s)} + \operatorname{2} \operatorname{AuF}_{3(aq)} {\longrightarrow} \operatorname{3} \operatorname{MgF}_{2(aq)} + \operatorname{2} \operatorname{Au}_{(s)} \end{split}$$

page 98

Activity A10 Inquiry Lab

Analyzing and Interpreting

- **4.** 4 Fe_(s) + 3 $O_{2(g)} \longrightarrow 2 \text{ Fe}_2 O_{3(s)}$
- **8.** a) $Mg_{(s)} + 2 AgNO_{3(aq)} \longrightarrow 2 Ag_{(s)} + Mg(NO_3)_{2(aq)}$
 - b) $Cu(NO_3)_{2(aq)} + Mg_{(s)} \longrightarrow Mg(NO_3)_{2(aq)} + Cu_{(s)}$
 - c) 2 AgNO_{3(aa)} + Cu_(s) \longrightarrow 2 Ag_(s) + Cu(NO₃)_{2(aa)}

page 100

Practice Problem

- **9.** a) Word equation:
 - copper(I) nitrate + potassium bromide \longrightarrow

copper(I) bromide + potassium nitrate

Skeleton equation:
$$CuNO_{3(aq)} + KBr_{(aq)} \longrightarrow CuBr_{(s)} + KNO_{3(aq)}$$

Balanced equation: $CuNO_{3(aq)} + KBr_{(aq)} \longrightarrow$

 $CuBr_{(s)} + KNO_{3(aq)}$

- b) Word equation:
 - aluminium chloride + sodium hydroxide ---->

aluminium hydroxide + sodium chloride

Skeleton equation: $AlCl_{3(aq)} + NaOH_{(aq)} \longrightarrow$

$$Al(OH)_{3(s)} + NaCl_{(aq)}$$

Balanced equation: $AlCl_{3(aq)} + 3 NaOH_{(aq)} \longrightarrow$

 $Al(OH)_{3(s)} + 3 NaCl_{(gg)}$

page 101

Activity A11 Quicklab

1–3. a) sodium iodide + silver nitrate \longrightarrow

sodium nitrate + silver iodide

$$NaI_{(aq)} + AgNO_{3(aq)} \longrightarrow NaNO_{3(aq)} + AgI_{(s)}$$

b) iron(III) chloride + sodium hydroxide -----

sodium chloride + iron(III) hydroxide

 $\operatorname{FeCl}_{3(aq)} + 3 \operatorname{NaOH}_{(aq)} \longrightarrow 3 \operatorname{NaCl}_{(aq)} + \operatorname{Fe(OH)}_{3(s)}$

 $\mathrm{Na_{2}CO_{3(aq)} + CaCl}_{2(aq)} {\longrightarrow} 2 \ \mathrm{NaCl}_{4} + \mathrm{CaCO}_{3(s)}$

- d) no precipitate
- e) silver nitrate + sodium carbonate \longrightarrow

sodium nitrate + silver carbonate

$$2~\mathrm{AgNO}_{3(aq)} + \mathrm{Na}_2\mathrm{CO}_{3(aq)} {\longrightarrow} \\ 2~\mathrm{NaNO}_{3(aq)} + \mathrm{Ag}_2\mathrm{CO}_{3(s)}$$

Practice Problem

- **10.** a) $C_4H_{10(g)} + O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(g)}$
 - b) $Ca(NO_3)_{2(aq)} + Na_3PO_{4(aq)} \rightarrow Ca_3(PO_4)_{2(s)} + NaNO_{3(aq)}$
 - c) $Ca_{(s)} + AgNO_{3(aq)} \longrightarrow Ca(NO_3)_{2(aq)} + Ag_{(s)}$
 - d) $Mg_{(s)} + O_{2(g)} \longrightarrow MgO_{(s)}$
 - e) $AlCl_{3(s)} \longrightarrow Al_{(s)} + Cl_{2(g)}$

page 104

Activity A12 Quicklab

1. copper(II) chloride + aluminium -----

$$3 \text{ CuCl}_{2(aq)} + 2 \text{ Al}_{(s)} \longrightarrow 2 \text{ AlCl}_{3(aq)} + 3 \text{ Cu}_{(s)}$$

4. calcium chloride + sodium carbonate —

$$CaCl_{2(aa)} + Na_2CO_{3(aa)} \longrightarrow CaCO_{3(s)} + 2 NaCl_{(aa)}$$

page 105

Practice Problems

11. Word equation: lead(IV) nitrate + zinc \longrightarrow

Skeleton equation:
$$Pb(NO_3)_{4(aq)} + Zn_{(s)} \longrightarrow$$

$$\operatorname{Zn}(\operatorname{NO}_3)_{2(aq)} + \operatorname{Pb}_{(s)}$$

Balanced equation:
$$Pb(NO_3)_{4(aq)} + 2 Zn_{(s)} \longrightarrow$$

$$2 \operatorname{Zn(NO_3)}_{2(aq)} + \operatorname{Pb}_{(s)}$$

12. 3
$$Ag_{(s)} + Au(NO_3)_{3(aq)} \longrightarrow$$
 3 $AgNO_{3(aq)} + Au_{(s)}$

page 106

A3.3 Check and Reflect

- 1. a) $CaCl_{2(s)} \longrightarrow Ca_{(s)} + Cl_{2(g)}$ (balanced)
 - b) $Mg(ClO_4)_{2(s)} + 2 Na_{(s)} \longrightarrow 2 NaClO_{4(s)} + Mg_{(s)}$
 - c) 2 NaN_{3(s)} \longrightarrow 2 Na_(s) + 3 N_{2(g)}
 - d) $Ca(NO_3)_{2(aq)} + Cu_2SO_{4(aq)} \longrightarrow$

$$CaSO_{4(s)} + 2 CuNO_{3(aq)}$$

- e) $2 C_5 H_{10(l)} + 15 O_{2(g)} \longrightarrow 10 CO_{2(g)} + 10 H_2 O_{(g)}$
- f) $\text{Li}_4C_{(s)} + 2 \text{ Ca}_{(s)} \longrightarrow 4 \text{ Li}_{(s)} + \text{Ca}_2C_{(s)}$
- g) $PbO_{2(s)} \longrightarrow Pb_{(s)} + O_{2(g)}$ (balanced)
- h) $CH_{4(g)} + 2 O_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2O_{(g)}$
- i) $2 \operatorname{Li}_{(s)} + \operatorname{Cl}_{2(g)} \longrightarrow 2 \operatorname{LiCl}_{(s)}$
- j) 3 $NaI_{(aq)} + AlCl_{3(aq)} \longrightarrow$ 3 $NaCl_{(aq)} + AlI_{3(s)}$
- 2. a) $Na_2SO_{4(aq)} + CaCl_{2(aq)} \longrightarrow 2 NaCl_{(aq)} + CaSO_{4(s)}$
 - b) $3 \operatorname{Mg}_{(s)} + \operatorname{N}_{2(g)} \longrightarrow \operatorname{Mg}_{3} \operatorname{N}_{2(s)}$

 - c) $\operatorname{Sr}(\operatorname{OH})_{2(aq)} + \operatorname{PbBr}_{2(aq)} \longrightarrow \operatorname{SrBr}_{2(aq)} + \operatorname{Pb}(\operatorname{OH})_{2(s)}$ d) 2 $\operatorname{Ni}(\operatorname{NO}_3)_{3(aq)} + 3 \operatorname{Ca}_{(s)} \longrightarrow 3 \operatorname{Ca}(\operatorname{NO}_3)_{2(aq)} + 2 \operatorname{Ni}_{(s)}$
 - e) $CH_{4(g)} + 2 O_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2O_{(g)}$
 - f) 4 $Na_{(s)} + O_{2(g)} \longrightarrow$ 2 $Na_2O_{(s)}$
 - g) $N_{2(g)} + 3 H_{2(g)} \longrightarrow 2 NH_{3(g)}$
 - h) 2 $HCl_{(aq)} \longrightarrow H_{2(g)} + Cl_{2(g)}$
 - i) 2 AlI $_{3(aa)}$ + 3 Br $_{2(l)}$ \longrightarrow 2 AlBr $_{3(aq)}$ + 3 I $_{2(s)}$

- j) 2 $H_2O_{(I)}$ + 2 $Na_{(s)}$ \longrightarrow 2 $NaOH_{(aq)}$ + $H_{2(g)}$
- **3.** a) $\text{Li}_2\text{O}_{(s)}$
 - b) $Cu_{(s)}$ and $Cl_{2(\sigma)}$
 - c) $Al_2(SO_4)_{3(aq)}$ and $Cu_{(s)}$
 - d) $Ca(NO_3)_{2(aa)}$ and $PbBr_{2(s)}$
 - e) $CO_{2(\sigma)}$ and $H_2O_{(\sigma)}$
 - f) $AgCl_{(s)}$ and $KNO_{3(aa)}$
 - g) $N_{2(g)}$ and $I_{2(s)}$
 - h) $S_{8(s)}$ and $LiCl_{(aq)}$
 - i) $Al_2S_{3(s)}$
 - j) $CO_{2(g)}$ and $H_2O_{(g)}$
- **4.** $3 \operatorname{Zn}_{(s)} + \operatorname{N}_{2(g)} \longrightarrow \operatorname{Zn}_{3} \operatorname{N}_{2(s)}$
- 5. $2 \text{ HgO}_{(s)} \longrightarrow 2 \text{ Hg}_{(l)} + \text{O}_{2(g)}$
- **6.** $2 C_6 H_{6(l)} + 15 O_{2(g)} \longrightarrow 12 CO_{2(g)} + 6 H_2 O_{(g)}$
- 7. $\operatorname{Br}_{2(l)} + \operatorname{CaI}_{2(aq)} \longrightarrow \operatorname{CaBr}_{2(aq)} + \operatorname{I}_{2(s)}$ (balanced)
- 8. $Pb(NO_3)_{2(aa)} + 2 NaI_{(aa)} \longrightarrow 2 NaNO_{3(aa)} + PbI_{2(s)}$
- 9. $HCl_{(aq)} + NaOH_{(s)} \longrightarrow NaCl_{(aq)} + H_2O_{(l)}$
- **10.** $C_{12}H_{22}O_{11(s)} + 12 O_{2(g)} \longrightarrow 12 CO_{2(g)} + 11 H_2O_{(g)}$

page 108

Practice Problems

- **13.** 32.05 g/mol
- **15.** 44.01 g/mol
- 14. 142.05 g/mol
- **16.** 149.12 g/mol

page 109

Practice Problems

- 17. 2.0×10^2 g
- **19.** 85.2 mol
- 18. 2.00 mol
- 20. 0.135 mol

page 112

A3.4 Check and Reflect

- **5.** a) 6.0×10^{23} gold atoms
 - b) 1.5×10^{24} helium atoms
 - c) $6.02 \times 10^{24} \, \mathrm{H}_{\mathrm{2(g)}} \, \mathrm{molecules}$
 - d) $3.78 \times 10^{23} \, \mathrm{CO}_{2(g)} \, \mathrm{molecules}$
- **6.** a) 1.2 mol
- d) 1.711 mol
- b) 0.50 mol
- e) 0.928 mol
- c) 2.29 mol
- 7. a) 59 g
- d) 3.50 kg
- b) 44 g
- e) 0.191 g
- c) 90 g
- 8. a) 1 mol
 - b) 6 g
 - c) 1.20×10^{25} molecules
- **9.** 31.8 g
- 10. 3.34×10^{25} molecules of water
- **11.** 2.4×10^{24} atoms
- 13. $CH_{4(g)} + 2 O_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2O_{(g)}$ 30 moles of water

A3.0 Section Review

- 9. a) 3.00 mol
 - b) 55.49 mol
 - c) 0.500 mol
 - d) 0.2824 mol
 - e) 0.0102 mol
- **10.** a) 0.20 kg
 - b) 0.36 kg
 - c) 202 g
 - d) 36.7 g
 - e) 427 g
- **12.** a) $3 \operatorname{Br}_{2(l)} + 2 \operatorname{Al}_{(s)} \longrightarrow 2 \operatorname{AlBr}_{3(s)}$
 - b) $(NH_4)_2CO_{3(s)} + Ca(NO_3)_{2(aq)}$

$$2~\mathrm{NH_4NO}_{3(aq)} + \mathrm{CaCO}_{3(s)}$$

c)
$$NaOH_{(s)} + HCl_{(aq)} \longrightarrow NaCl_{(aq)} + H_2O_{(l)}$$
 (balanced)

- **13.** a) 2 KBrO_{3(s)} \longrightarrow 2 KBr_(s) + 3 O_{2(g)}
 - b) 2 C₂H_{2(g)} + 5 O_{2(g)} \longrightarrow 4 CO_{2(g)} + 2 H₂O_(g)
 - c) $4 \text{ AuCl}_{3(aa)} + 3 \text{ Pb}_{(s)} \longrightarrow 3 \text{ PbCl}_{4(aa)} + 4 \text{ Au}_{(s)}$
 - d) 6 $K_{(s)} + N_{2(g)} \longrightarrow 2 K_3 N_{(s)}$
 - e) $Sn(NO_3)_{4(aq)} + 2 Ca(OH)_{2(s)} \longrightarrow$

$$2 \text{ Ca(NO}_3)_{2(aq)} + \text{Sn(OH)}_{4(s)}$$

- **14.** a) $F_{2(g)} + Ca_{(s)} \longrightarrow CaF_{2(s)}$ (balanced)

 - b) 3 $\text{Cl}_{2(g)}$ + 2 $\text{NiBr}_{3(aq)}$ \longrightarrow 2 $\text{NiCl}_{3(aq)}$ + 3 $\text{Br}_{2(l)}$ c) 2 $\text{C}_5\text{H}_{10(g)}$ + 15 $\text{O}_{2(g)}$ \longrightarrow 10 $\text{CO}_{2(g)}$ + 10 $\text{H}_2\text{O}_{(g)}$
 - d) 2 KBr_(s) \longrightarrow 2 K_(s) + Br_(l)
 - e) $AlF_{3(aq)} + Na_3PO_{4(aq)} \longrightarrow AlPO_{4(s)} + 3 NaF_{(aq)}$
- **17.** $9.03 \times 10^{23} \, \text{CO}_{2(g)} \, \text{molecules}$

page 115

Unit A Project

- 1. magnesium + hydrochloric acid

$$Mg_{(s)} + 2 HCl_{(aq)} \longrightarrow MgCl_{2(s)} + H_{2(g)}$$

2. magnesium sulfate + sodium carbonate ---->

sodium sulfate + magnesium carbonate

$$\mathsf{MgSO}_{4(aq)} + \mathsf{Na}_2\mathsf{CO}_{3(aq)} {\longrightarrow} \mathsf{Na}_2\mathsf{SO}_{4(aq)} + \mathsf{MgCO}_{3(s)}$$

3. magnesium carbonate -

magnesium oxide + carbon dioxide

$$MgCO_{3(s)} \longrightarrow MgO_{(s)} + CO_{2(g)}$$

pages 117-121

Unit A Unit Review

14.

Element	Mass Number	Protons	Neutrons
carbon	13	6	7
bromine	79	35	44
bromine	81	35	46
chlorine	36	17	19
iron	57	26	31
sodium	33	11	22

15.

Atom or Ion	Overall Charge	Protons	Electrons	Symbol
sulfur atom	0	16	16	S
sulfide ion	2-	16	18	S ²⁻
lithium ion	1+	3	2	Li+
oxide ion	2-	8	10	02-
chloride ion	1–	17	18	CI-
iron(II) ion	2+	26	24	Fe ²⁺
nitride ion	3-	7	10	N ³⁻

22. a)
$$Cl_{2(g)} + 2 KBr_{(aq)} \longrightarrow 2 KCl_{(aq)} + Br_{2(l)}$$

- b) $4 \operatorname{Li}_{(s)} + \operatorname{O}_{2(g)} \longrightarrow 2 \operatorname{Li}_2 \operatorname{O}_{(g)}$
- c) $2 C_2 H_{6(g)} + 7 O_{2(g)} \longrightarrow 6 H_2 O_{(g)} + 4 CO_{2(g)}$
- d) 6 Na_(s) + N_{2(g)} \longrightarrow 2 Na₃N_(s)
- e) 2 $(NH_4)_3PO_{4(aq)} + 3 Ca(NO_3)_{2(aq)} \longrightarrow$

$$6 \text{ NH}_4 \text{NO}_{3(aq)} + \text{Ca}_3 (\text{PO}_4)_{2(s)}$$

- f) $CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$ (balanced)
- **33.** a) LiCl_(s)
- g) $\operatorname{Cd}_{3}(\operatorname{PO}_{4})_{2(s)}$
- b) $Ba_3N_{2(s)}$
- h) $Co(OH)_{3(s)}$
- c) $ZnO_{(s)}$
- i) $Cu(MnO_4)_{2(s)}$
- d) $Ag_2CO_{3(s)}$
- j) $CrO_{3(s)}$
- e) Ca(NO₂)_{2(s)}
- k) $Fe(ClO_3)_{3(s)}$
- f) RbHSO $_{4(s)}$
- **34.** a) sodium phosphide
 - b) magnesium sulfide
 - c) beryllium chloride
 - d) ammonium sulfide
 - e) cesium nitride

 - f) zinc iodide
 - g) iron(II) fluoride
 - h) iron(III) hydrogen sulfide
 - i) gold(I) nitrate
 - j) lead(IV) permanganate
 - k) sodium acetate or sodium ethanoate

- **35.** a) $N_2 S_{(\sigma)}$
- d) $H_2S_{(g)}$
- b) $SBr_{2(g)}$
- e) CH_{4(g)}
- c) $ClF_{(\sigma)}$
- f) $PCl_{5(g)}$
- 36. a) tetraphosphorus decaoxide
 - b) nitrogen dioxide
 - c) nitrogen trichloride
 - d) xenon hexafluoride
 - e) hydrogen peroxide
 - f) ammonia
- **46.** a) $I_{2(s)} + Hg_{(l)} \longrightarrow HgI_{2(s)}$
 - b) 2 $K_3PO_{4(aq)} + 3 Sr(OH)_{2(aq)} \longrightarrow$

$$6 \text{ KOH}_{(aq)} + \text{Sr}_3(\text{PO}_4)_{2(s)}$$

- c) $Mg_{(s)} + 2 HCl_{(aq)} \longrightarrow MgCl_{2(aq)} + H_{2(g)}$
- **47.** a) $CaI_{2(s)} + 2 AgNO_{3(aq)} \longrightarrow Ca(NO_3)_{2(aq)} + 2 AgI_{(s)}$
 - b) $2 C_6 H_{14(l)} + 19 O_{2(g)} \longrightarrow 12 CO_{2(g)} + 14 H_2 O_{(g)}$
 - c) $MgCO_{3(s)} \longrightarrow MgO_{(s)} + CO_{2(g)}$ (balanced)
 - d) $3 \text{ Li}_2 SO_{3(aq)} + 2 \text{ Au}(NO_3)_{3(aq)}$ —

$$6 \text{ LiNO}_{3(aq)} + \text{Au}_2(SO_3)_{3(s)}$$

- e) 16 $Cs_{(s)} + S_{8(s)} \longrightarrow 8 Cs_2S_{(s)}$
- f) $2 \text{ Al}_{(s)} + 3 \text{ CuSO}_{4(aq)} \longrightarrow \text{Al}_2(\text{SO}_4)_{3(aq)} + 3 \text{ Cu}_{(s)}$
- **48.** a) Skeleton equation: $CaF_{2(aq)} + I_{2(s)} \longrightarrow$

$$CaI_{2(aq)} + F_{2(g)}$$

Balanced equation: $CaF_{2(aq)} + I_{2(s)} \longrightarrow$

$$CaI_{2(aq)} + F_{2(g)}$$

- b) Skeleton equation: $RbI_{(s)} \longrightarrow Rb_{(s)} + I_{2(s)}$
 - Balanced equation: 2 $RbI_{(s)} \longrightarrow 2 Rb_{(s)} + I_{2(s)}$
- c) Skeleton equation: $C_3H_{8(g)} + O_{2(g)}$

$$CO_{2(g)} + H_2O_{(g)}$$

Balanced equation: $C_3H_{8(g)} + 5 O_{2(g)} \longrightarrow$

$$3 \text{ CO}_{2(\sigma)} + 4 \text{ H}_2 \text{O}_{(\sigma)}$$

- d) Skeleton equation: $Cu(ClO_4)_{2(aq)} + Li_3PO_{4(aq)} \longrightarrow$
 - $LiClO_{4(aa)} + Cu_3(PO_4)_{2(s)}$

Balanced equation:

 $3 \operatorname{Cu(ClO}_{4)_{2(aq)}} + 2 \operatorname{Li}_{3} \operatorname{PO}_{4(aq)} \longrightarrow$

$$6 \operatorname{LiClO}_{4(aq)} + \operatorname{Cu}_{3}(\operatorname{PO}_{4})_{2(s)}$$

e) Skeleton equation: $\operatorname{Zn}_{(s)} + \operatorname{FeBr}_{3(aq)} \longrightarrow$

$${\rm ZnBr}_{2(aq)} + {\rm Fe}_{(s)}$$

Balanced equation: 3
$$Zn_{(s)}$$
 + 2 $FeBr_{3(aq)} \longrightarrow$ 3 $ZnBr_{2(aq)}$ + 2 $Fe_{(s)}$

- 49. a) 2.00 moles
- d) 0.00177 moles
- b) 0.5002 moles
- e) 83 moles
- c) 4.000 moles
- **50.** a) 216 g
- d) 736 g
- b) 1.0×10^{2} g
- e) 83.3 g
- c) 3.2×10^2 g

- 54. a) sodium oxide
 - b) aluminium oxalate
 - c) methanol
 - d) NH₄HOOCCOO_(s)
 - e) $C_3H_{8(g)}$
 - f) $Ru(H_2PO_4)_{4(s)}$
 - g) dinitrogen tetroxide
 - h) tungsten(VI) dichromate
 - i) osmium(VIII) oxide
 - j) $C_6H_{12}O_{6(s)}$
 - k) $Pt(CN)_{4(s)}$
 - l) $Na_2S_2O_{3(s)}$
- **56.** a) 1.2×10^{24} Al atoms
 - b) $2.17 \times 10^{25} \, \mathrm{SO}_{3(g)}$ molecules
 - c) $1.4 \times 10^{22} \, \mathrm{He}_{(g)}$ atoms
- 57. a) 0.155 mol
 - b) 2.71 mol
 - c) 0.65 mol

page 128

Practice Problems

- 1. $1.1 \times 10^2 \text{ m/s}$
- **2.** $5.76 \times 10^4 \text{ s}$
- **3.** 28 m

page 130

Practice Problem

4. b) 5.0×10^2 m/s

page 132

Skill Practice: Using Significant Digits

1. a) 5

d) 2

b) 6

e) 2

- c) 5
- 2. a) 5.3 cm
- c) 3.55 km²
- b) 3.0 km
- d) 21 km/h
- 3. a) 6.83×10^{-4}
- c) 6.2×10^4
- b) 122
- d) 0.06

page 133

Practice Problem

- **5.** b) 0 m/s^2
 - c) 50 m

page 135-136

B1.1 Check and Reflect

- 8. 4.17 m/s
- **10.** $4.06 \times 10^3 \text{ km}$
- **9.** 1.50 s
- **11.** 5.00 h

- 12. a) 5 m/s
- **13.** a) 0
- **14.** c) 9.0 cm/s
- **15.** c) 6.3 cm
- **16.** 1.80 m/s
- **17.** 1.78 m/s

Practice Problem

page 140 **Practice Problem**

page 141

Practice Problems

- 8. a) 22.0 m [E]
- **9.** 112 m [N]
- b) 1.47 m/s [E]
- **10.** 0.444 h

page 143

Practice Problem

11. b) 25 m/s [E]

page 145

B1.2 Check and Reflect

- **3.** vector $1 = [60^{\circ}]$
 - vector $2 = [215^{\circ}]$
- **4.** vector $1 = [30^{\circ}]$ vector $2 = [245^{\circ}]$
- 5. a) 25.0 m
 - b) 5.0 m [N]
 - c) 1.56 m/s
 - d) 0.313 m/s [N]
- **6.** b) $slope_1 = 52 cm/s [E]$ $slope_2 = -52 \text{ cm/s [W]}$

page 147

Practice Problems

- **12.** 13 m/s² [up]
- **14.** 333 m/s²
- 13. 50 m/s^2
- **15.** -2.50 m/s² [E]

page 154

B1.3 Check and Reflect

- 5. $-5.0 \text{ m/s}^2 \text{ [N]}$
- **6.** $-3.75 \text{ m/s}^2 \text{ [W]}$
- 7. 0.250 m/s^2
- 8. 7.80 m/s [N]
- **9.** 5.01 s
- **10.** c) 2.00 cm/s²

page 160

Practice Problems

- **18.** 9.75×10^5 J
- **19.** $2.3 \times 10^3 \text{ N}$

page 160

Practice Problem

20. $2.2 \times 10^4 \text{ J}$

page 161

B1.4 Check and Reflect

- 6. a) 147 J
 - b) 50.0 J
 - c) 0.200 J
- **7.** 13.4 N
- 8. 16.7 m

15. a) 800 m

b) 200 m [N]

c) 3.20 m/s

16. b) 3.00 m/s [N]

18. –12.0 m/s [W]

17. 0.563 m/s²

d) 0.800 m/s [N]

- 9. 39.0 J
- **10.** a) 5.0×10^3 J

page 162-163

B1.0 Section Review

- 8. a) 15.0 J
- 9. 1.62 m/s
- **10.** 292 m
- 11. 5.25 h
- **12.** b) 0.00 m/s^2
 - c) about 100 m
- **13.** a) 7.0 m
 - b) -3.0 m [W]
- **14.** a) vector $A = 75^{\circ}$
 - vector $B = 140^{\circ}$
 - b) vector $A = 15^{\circ}$

 - vector $B = 310^{\circ}$
- **22.** 600 J
 - **23.** 1.1×10^2 J

21. 20 N [E]

24. 35.0 N

19. 3.00 s

27. 103 km/h [E]

page 174

Practice Problem

1. 981 J

page 175

Practice Problems

- **2.** 5.99 m
- **3.** 49.9 kg

B2.2 Check and Reflect

- **4.** a) 96.0 J
- 7. 375 J
- b) 96.0 J
- 8. $3.20 \times 10^3 \text{ N}$
- **5.** 129 N
- **9.** 2.06×10^3 J
- **6.** 1.48 m

page 179

Practice Problems

- 4. 1.82×10^{-20} J
- **5.** 7.4 kg

page 181

Practice Problems

- 6. 45.0 m/s
- 7. 2.2 m/s

page 182

B2.3 Check and Reflect

- **5.** a) 36.0 J b) $6.00 \times 10^4 \text{ J}$
- 7. a) 4.00 m/s
- c) 39.2 J
- b) 0.470 m/s

- **10.** a) 80.0 J
- **6.** 20.0 kg

b) 160 J

page 183

Practice Problems

- 8. 97.9 J
- **10.** 899 J
- **9.** 1.09×10^3 J

page 184

Practice Problems

- **11.** 15.3 m/s
- **12.** 0.130 m

page 185

Practice Problems

- **13.** 0.313 J
- **14.** 1.40 m/s

pages 186-187

Activity B9 Inquiry Lab

- **7.** 2.40 m/s
- **9.** 2.88 J
- **10.** 2.88 J
- **15.** 2.40 m/s
- **17.** 2.88 J **18.** 2.88 J
- page 189

B2.4 Check and Reflect

- **5.** a) 4.00 J

 - d) 4.00 J

 - e) 28.3 m/s
 - f) 4.00 J
- **6.** 4.23 m/s
- 7. 4.16 J
- 9. a) 29.4 J
 - b) 5.42 m/s
- g) 40.8 m

page 197

B2.0 Section Review

- **20.** 45.0 J
- **23.** 800 J
- **21**. 9.81 J
- **25.** 5.7 m/s

page 216

Practice Problem

1. 34.9%

page 217

Practice Problem

2. 13 J

page 217

Practice Problem

3. 3.13%

page 220

B3.3 Check and Reflect

- 5. a) 1000 J
 - b) 800 J

 - c) 800 J
 - d) 200 J
 - e) 80%

page 228

B3.0 Section Review

14. a) 3.5×10^2 J

pages 232-237

Unit B Unit Review

- 8. 26.0 J
- **31.** 2.00 h
- **32.** a) 20.0 m
 - b) 0 m
 - c) 5.0 m/s
 - d) 0.0 m/s
- 33. 8.33 m/s² [N]
- **34.** 2.0 J
- **36.** 500 J
- **39.** 7.19×10^{-3} J
- **40.** 20.0 m/s

- **41.** 1.96×10^3 J
- **42.** 988 m
- **43.** 17.2 m/s

7. 65.7%

8. 4.20×10^3 J

9. $2.80 \times 10^5 \text{ J}$

- **46.** 2.19×10^3 m
- **53.** 35.0%
- **54.** $9.33 \times 10^3 \text{ J}$
- **67.** 0.650 m
- **75.** d) 7.5×10^{-3} m/s
- **76.** e) 0
 - g) 5.3×10^{-2} m
- **77.** 25 J

page 244

Skill Practice

- a) 25×
- b) 1000×

C1.1 Check and Reflect

- **6.** 1500 μm
- **7.** 375 μm
- **8.** 50:1

page 265

C1.0 Section Review

- **14.** 400 μm
- **15.** 100×

page 289

Practice Problems

- 1. a) 1.7; b) 1.1
- 2. $\frac{2lw + 2lh + 2wh}{lwh}$; 3.8
- 3. $\frac{3}{r}$; a) 1.4 b) 0.70

page 293

C2.4 Check and Reflect

- 8. a) 96 cm²; b) 64 cm³; c) 64 cm²;
 - d) 128 cm²; e)32 cm³; 64 cm³
 - f) surface area increases from 96 cm² to 128 cm²; volume remains the same; surface area: volume increases from 1.5 to 2.0.

page 294

Cell #	Length (cm)	Width (cm)	Height (cm)	Surface Area <i>(A)</i> cm²	Volume (v) m³	Surface Area to Volume ratio (A/v)
1	5	3	2	62	30	2.1
2	12	5	1	154	60	2.6
3	40	27	20	4840	21 600	0.22

17. Cell #2

page 335

Unit C Unit Review

39. 300 μm

page 367

Activity D9 QuickLab

- **2.** 30%
- **3.** 100%
- **4.** 70%

page 379

Practice Problems

- **1.** 15.1 kJ
- 3. 1.26 kJ
- 2. 32.3 kJ
- 4. 30.2 kJ

page 380

Practice Problems

- **5.** 20°C
- 6. water 0.119°C, iron 1.11°C
- **7.** 0.897 J/g⋅°C
- **8.** 0.130 J/g⋅°C

page 386

Practice Problems

- **9.** 6.01 kJ/mol
- **11.** 2.50 mol
- **10.** 19.2 kJ
- 12. 0.385 kJ/mol

page 387

Practice Problems

- 13. 3.48 kJ/mol
- **15.** $1.13 \times 10^3 \text{ kJ}$
- 14. 40.7 kJ/mol

page 390

D2.3 Check and Reflect

- **14.** $1.6 \times 10^2 \text{ kJ}$
- **18.** 40.7 kJ/mol
- **15.** 168 kJ
- **20.** 15.0 kJ
- **16.** 36.0°C
- **21.** 12.0 mol
- **17.** 15.0 g

pages 408-409

D2.0 Section Review

- **32.** 37.3°C
- 36. 40.7 J/mol
- **33.** 14 J
- **37.** $1.02 \times 10^3 \text{ kJ}$
- **34.** 110 g
- **38.** 3.34 kJ
- **35.** $2.3 \times 10^2 \text{ kJ}$

pages 435-439

Unit D Unit Review

- **85.** 4.19×10^6 J or 4.19×10^3 kJ
- **86.** 25.7°C
- **87.** 15.0 g
- **88.** 0.13 J/g·°C
- **89.** 66.7 J
- **90.** 81.3 J
- **91.** 4.99 mol
- **92.** 63 g

Index

area of elongation, 326

Profile

A	Aristotle, 20, 243, 247 infoBIT	Black, Joseph, 169	Carnot, Sardi, 170
absorption of energy, 362	Aristotle's elements, 20	body tube, 478 Student	carrier protein, 278
acceleration, 146–153	arm of microscope, 478 Student	Reference	catalyst, 82, 89, 97
acceleration due to gravity (\vec{g})	Reference atmosphere, 343	Bohr, Neils, 24	catapults, 177
173–175	atmospheric dust, 343, 362	boiling point, 13 <i>table</i> boreal forest (<i>see</i> taiga biome)	cation, 34 cell, 243 <i>infoBIT</i> , 391
accuracy, 466 Student Reference	atmospheric dust, 343, 302 atmospheric pressure, 372	bouncing balls, 202	cell communication, 262
acetone, 47 <i>table</i> acid rain, 64 <i>infoBIT</i>	atom, 21	bovine spongiform	cell membrane (see also
acids, 62–65, 67, 68	atomic molar mass, 33, 34,	encephalopathy (BSE), 262	membrane technologies), 267
in common household	108	infoBIT	and disease, 284, 285
products, 67	atomic number, 33	Boyle, Robert, 21	role in cellular transport,
naming, 64, 65	atomic theory, 32, 33	Boysen-Jensen, Peter, 326	274–281
properties of, 63, 64	mass number, 33, 34	brightfield illumination, 256, 258	structure of, 272, 273
test for, 490 Student Reference	models of, 22–25	brightfield microscopy, 253	synthetic technology, 285
active transport, 278, 279	quantum mechanical model,	broad-leaved trees, 396, 398	technological uses of, 284–288
adaptation, 350	25	bromine, 31	cell shape and size, 292
addiction, 71	atomic force microscope, 261	bromothymol blue, 306	cell structures, 267–273
adenosine triphosphate (ATP),	Atomists, 169	bronze, 20	chemical composition of, 271,
190, 279	atomos, 20	Brown, Robert, 305	272
adhesion, 316	auxin, 327	buckminsterfullerene, 29	cell theory, 251, 252
agree/disagree chart, 485 Student	average daily temperature, 361	illustration	cell transport, 274–281, 284–288
Reference	illustration	buffer, 62	cell wall, 268, 270
air conditioner, 204	average speed, 128–133	butane, 95 illustration	cellular respiration, 269, 305,
air currents (see also convection	average velocity, 141–144		344
currents), 374	Avogadro, Amedeo, 108	C	cellulose, 300
airport runways, 137 infoBIT	Avogadro's number (N_A) , 107, 108, 468 Student Reference	caffeine, 59 <i>table</i>	centrioles, 270 chalk, 40
albedo, 363	108, 468 Зишет пејегенсе	calcium, 31, 40	Champsosaur, 341
Alberta,	В	reaction of, 13	"change in" notation, 138
climate of, 349, 350	baking soda, 41 <i>table</i>	calibration, 460 Student	channel protein, 278
impacts of climate change on, 427	balanced force, 156	Reference	chemical bonds, 383
Albertans & Climate Change	bar graphs, 472 Student	caloric theory, 169	chemical change (see also
Plan, 430	Reference	calorie, 169 <i>infoBIT</i> calorimeter, 378	chemical reactions), 18, 86, 87
alchemy, 21	base of microscope, 478 Student	Canada's Action Plan 2000 on	chemical energy, 165
alcohol, 47 table	Reference	climate change, 429 <i>table</i>	Chemical Engineer, 26 <i>Career</i>
alcohol abuse, 71, 72	base units, 465 Student	CANDU reactor, 193	and Profile
alcoholism, 71	Reference	canning, 18	chemical equations, writing,
alkali metals, 31	bases, 62–65, 67, 68	capillary action, 315	86–89
alkaline-earth metals, 31	in common household	carbohydrates, 271	chemical potential energy, 178,
altitude, 344	products, 67	carbon, 29, 32	190
and temperature, 348	properties of, 63, 64	and the mole, 107	chemical properties, 13
aluminium,	recognizing by formulas, 67	carbon dioxide, 413, 422, 489	chemical reactions (see also
specific heat capacity of, 377	test for, 490 Student Reference	Student Reference	chemical change), 15, 17,
thermodynamic properties of,	beam engine (see Newcomen	global changes in, 411	79–85
492 Student Reference	engine) Becquerel, Henri, 167	in cellular respiration, 306	characteristics of, 84 predicting products of,
Ambrose, Perry, 171 Career and	benzene, 73, 74, 489 Student	test for gas, 490 Student	102–105
Profile	Reference	Reference	types of, 91–105
ammonia, 489 Student Reference formation of, 91	biochemical reactions, 82	carbon dioxide sequestering, 424	chemicals,
anecdotal evidence, 352	biogas, 22 infoBIT	carbon sink, 413	societal issues related to,
angle of incidence, 359	bioindicators, 332	carbon source, 413	70–75
angle of inclination, 357, 358	biomass, 221	carbonic acid, formation of, 93	chlorine, 31, 47
animal cell, 270	biomes, 391–402	Career and Profile:	chlorofluorocarbons (CFCs), 70,
anion, 35	in Canada, 402	Biotechnology Research	71, 414, 421
annealing, 19	biosphere, 343	Scientist (Olga Kovalchuk),	chlorophyll, 272, 303
aqueous state, 41, 57, 58, 80	absorption and reflection by,	329	chloroplast, 268, 270, 303, 305
Archimedes screw, 206	362	Chemical Engineer (Pauline	cigarettes (see nicotine)
area, 465 Student Reference	energy relationships in, 357	Lee), 26	circle graphs, 472 Student
of a speed–time graph,	interaction of components in,	Climate Research Expert	Reference
131–133	346	(Andrew Weaver), 420	classification, 12
under a line graph, 477	Biotechnology Research	Power Engineer (Perry	of matter, 14 illustration
Student Reference	Scientist, 329 Career and	Ambrose), 171	

climate, 342, 349–354	conversion factors, 470, 471	design statement, 458 Student	Ellison, Michael, 261 infoBIT
			-
analyzing, 403	Student Reference	Reference	emission-reduction credits
and biomes, 400 illustration	conversions of energy, 188,	deuterium, 33	(ERCs), 422
effects in organisms, 350, 351	190–195	diabetes, 286 infoBIT	endocytosis, 281
effects on daily life, 349, 350	Coons, J.H., 257	diamond, 29 illustration	endoplasmic reticulum (ER), 26
of Alberta, 349, 350	copper, 19, 20	diaphragm of microscope, 478	rough ER, 268
climate change, 352	thermodynamic properties of,	Student Reference	smooth ER, 268
8 .			,
and greenhouse gases, 414,	492 Student Reference	diatomic molecule, 48	endothermic reaction, 81, 82
415	Coriolis effect, 372, 373	differential interference contrast	energy, 160, 465 Student
assessing impacts of, 426–430	and global wind patterns, 374	illumination, 256	Reference
Canada's Action Plan 2000,	and ocean current patterns,	diffusion, 275, 309	absorption by the biosphere,
429 table	376	in plants, 313	362
evidence of, 411–418	cosmetics formulator, 75	digital photography, 253 <i>infoBIT</i>	and heat, 169
	cost-benefit analysis, 229 <i>Case</i>		
examining from ice samples,		dimensional analysis (see unit	and motion, 167
340	Study	analysis)	applications, 221–227
international collaboration on,	cost/benefit chart, 485 Student	displacement, 138	conservation, 225–227
419–425	Reference	distance travelled, 137, 138	conservation law, 184, 185
climate data, 352, 354	Count Rumford (see Benjamin	distance–time graph, 129, 130	consumption, 215 infoBIT,
Climate Research Expert, 420	Thompson)	DNA, 51 <i>infoBIT</i> , 261, 272, 285	225–227
Career and Profile	covalent bonds, 47, 58	doldrums, 374 illustration, 375	conversion and conservation
climatograph, 403–405, 474	coverslip, 480 Student Reference	dormancy, 350, 351	in a pendulum, 188
Student Reference	cream of tartar, 41 <i>table</i>	double replacement reaction,	demand, 223
closed system, 199, 301	cryosphere, 346 infoBIT	100, 101, 102 <i>table</i>	efficiency statistics, 226
cloud cover, 362	crystal formation, 13 table	drawing scientific diagrams, 481	environmental effects of use,
coal,	crystal lattice, 40	Student Reference	224
combustion of, 81	crystal shape,	ductile, 29	forms of, 165–170, 173–179,
*	ž –		
coal-burning power station, 192	of ionic compounds, 54	ductility, 13 <i>table</i>	183
coarse adjustment knob, 478	Cugnot road locomotive, 207		in chemical bonds, 383
Student Reference	infoBIT	E	input, 215
cogeneration, 226	current (see also convection	Earth,	reflection by the biosphere,
cohesion, 316	current), 371	components of, 343	362
colloid, 14	cuticle, 299, 301	Earth's gravitation force, 156	sources, 222
		9	
colour, 13 table	Cybercell, 261 infoBIT	Earth's Radiation Budget	useful, 215
of molecular compounds, 59	cytoplasm, 267, 270, 273	Experiment (ERBE) project,	energy changes,
table	cytoplasmic streaming, 267, 305	368	in chemical reactions, 81
combustion reaction, 81, 344	cytoskeleton, 272	easterly winds (also easterlies),	energy conversions, 190-195
companion cells, 300	•	374, 376	evidence of, 190
compound light microscope, 253,	D	Edison, Thomas, 167	in natural systems, 190, 191
478–481 Student Reference	Daimler, Gottlieb, 211	efficiency, 216	in technological systems, 192
compounds, 14, 36	Dalton, John, 22	El Niño, 376 <i>infoBIT</i>	nuclear, 193
concentration gradient, 275, 277	darkfield illumination, 256	elastic potential energy, 175, 177,	solar, 193, 194
concept map (also web diagram),	Darwin, Charles and Francis, 326	183	energy flow,
484 Student Reference	data,	electric current, 166, 465 Student	analyzing, 403–406
concept-hierarchy diagram, 485	analysis and interpretation,	Reference	energy level (of electrons in an
		*	-
Student Reference	459 Student Reference	electrical energy, 165–167	atom), 32, 33
conclusion (of an experiment),	collecting and recording, 459	electricity, 167	enhanced greenhouse effect, 414
460 Student Reference	Student Reference	from solar cells, 194	environmental safety, 11
condensation point, 13 table	extrapolating, 412	generation, 222	epidermis (also dermal tissue),
conduction, 370	deciduous forest biome, 392–393	powered by electrokinetic	298
conductivity, 13 <i>table</i>	illustration, 396, 400	microchannel battery, 223	equator,
5			=
of acids and bases, 64 <i>table</i>	illustration, 402	infoBIT	latitude of, 359
of ionic compounds in	decision-making process, 463,	electrolysis, 94	temperature at, 372
solution, 55	464 Student Reference	electrolytes, 55	wind patterns at, 374
of molecular compounds, 59	decomposition reaction, 94, 102	electromagnet, 166	equilibrium, 272
table	table	radiation, 167	equinox, 358 illustration, 359
confocal microscope, 257, 258	Democritus, 20	spectrum, 357	Escherichia coli strain O157:H7
_		-	
confocal technology, 257, 258	density, 371	waves, 357	240
contrast, 253, 254	dependent variable, 458 S <i>tudent</i>	electron-dense materials, 258	ethanol, 71, 489 Student
control (experimental), 248	Reference	electron microscopy (EM),	Reference
control systems, 323	derived units, 465 Student	258-260	evaporation, 382
controlled experiment, 248	Reference	scanning EM, 259, 260	evergreen conifers, 395
controlled variable, 248, 458	dermal tissue (also	transmission EM, 258, 260	exhaust heat, 203
	-		
Student Reference	epidermis), 298, 309	electrons, 22, 25, 32, 33 table	exocytosis, 281
convection, 371	desalination, 288	energy levels, 24	exothermic reaction, 81, 82
convection currents (also air	desert biome, 392–393	valency, 38	experiments,
currents), 372, 374, 376, 377	illustration, 399, 400	element, 14, 29	controlled, 248
illustration	illustration		•

design of, 457 <i>Student</i>	G	H	hydrologic cycle (<i>also</i> water
Reference	gamma ray, 357	halocarbons, 414	cycle), 221
extrapolation, 412, 475 Student	Gander, NF, 377	halogens, 31, 48	energy transfer in, 382, 383
Reference	gas state, 41, 80, 275 infoBIT	hazard symbols, 8	hydrosphere, 343, 346
eyepiece (also ocular lens), 478	gases,	hazardous waste, 70 infoBIT	albedo in, 363
Student Reference	reaction forming, 79, 80	heat (see also thermal energy),	thermal energy transfer in,
	gene mapping, 261, 263	169, 170	376–389
F	general circulation model (GCM),	and kinetic energy, 170	hydroxide ion, 44 table, 45
facilitated diffusion, 278	419	and potential energy, 170	hypertonic, 278, 320
factor-label method, 108, 109	geothermal energy, 221	vs work, 199	hypothesis, 51, 457 Student
family (also group), 31	geotropism (see gravitropism)	heat engine, 203, 204, 207	Reference
Faraday, Michael, 166	glass, 13 illustration	heat of condensation, 383	hypotonic, 278, 320
fermentation, 19	global energy patterns,	heat of fusion (H_{fus}), 383–387,	
fetal alcohol spectrum disorder	and phase changes, 389	492 Student Reference	I
(FASD), 71 infoBIT	global warming, 415	heat of solidification, 383	ice,
field diameter, 479 Student	global wind patterns, 374	heat of vaporization (H_{vap}) ,	<i>'</i>
Reference	glucose, 59 table, 489 Student	383–387, 492 Student	formation of, 60, 61
field of view, 245, 478 Student	Reference	Reference	heat of fusion of, 386
Reference	production in cells, 332	heat pumps, 204, 205	thermodynamic properties of,
fine adjustment knob, 478	gold, 12 <i>infoBIT</i> , 19, 21, 29	heating curve of water, 385	492 Student Reference
Student Reference	thermodynamic properties of,	illustration	iguana,
first law of thermodynamics,	492 Student Reference		climate effects on, 351
and law of conservation of		heating food, 18	imaging technology, 253–260
energy, 199, 200	Goldberg, Rube, 198	helium, 31	incoming radiation, 367–369
	Golgi apparatus, 269, 270	hemodialysis, 286, 287	independent variable, 458
First Nations people, 169	Grand Prairie, AB, 403, 404	herbaceous plants, 299, 300	Student Reference
infoBIT, 190 infoBIT	graphite, 29 illustration, 32	Hero of Alexandria, 124	indicators, 63
fishbone diagram, 485 <i>Student</i>	graphs, 472–477 Student	Hero's steam engine, 124	Industrial Revolution, 413
Reference	Reference	illustration	inert, 29
fission, 221	analyzing accelerated motion,	heterogeneous mixture, 14	inertia, 173 <i>infoBIT</i>
flowchart (also sequence chart),	147	hexane, 102	inferences, 82
484 Student Reference	analyzing average speed, 128	combustion of, 80, 95	infrared radiation, 365
fluid-mosaic model, 272, 273	analyzing average velocity,	Hillier, James, 258	inquiry process, 457–460
fluids, 371	142–144	human immunodeficiency virus	Student Reference
fluorescence microscopy, 256,	distance–time, 129, 130	(HIV), 284, 285	insolation, 357–361
257	position-time, 142, 143, 148	Hoffman apparatus, 94	insulin, 286
fluoride ion, 35	speed–time, 131–133	homogeneous mixtures, 14	Intergovernmental Panel on
fluorine, 35, 38	velocity-time, 144, 152, 153	honey, 277 infoBIT	Climate Change (IPCC), 415,
food chemistry, 18, 19	grassland biome, 392–393	Hooke, Robert, 243, 244	416, 419
food technologist, 74	illustration, 397, 398, 400	hormone, 327	internal combustion engine, 203,
fool's gold (see pyrite)	illustration, 402	horsepower, 211 infoBIT	210, 211
force, 156, 157, 465 Student	gravitational potential energy,	Household Hazardous Product	International Union of Pure and
Reference	167, 173–175, 177, 183	Symbols (HHPS), 455 Student	Applied Chemistry (IUPAC),
formation reaction (also	gravitropism (also geotropism),	Reference	40, 42, 49, 64, 65
synthesis reaction), 91–93,	323, 327	Human Genome Project, 261	interpolation, 475 Student
102 table	Greek prefixes, 48	Huygens, Christian, 207	Reference
formula equations, 87–89	green fluorescent protein (GFP),	hydrocarbon combustion, 95,	inversion, 348
formula unit, 40	258, 264	102 table	iodine, 31
formulas,	greenhouse gases, 365, 421, 422	hydrochlorofluorocarbons	ion, 34, 35
analyzing accelerated motion,	and climate change, 414, 415	(HCFCs), 421	ionic bond, 41
147	changes in, 411, 412	hydro-electric power station, 192	ionic compounds,
analyzing average speed, 128	contribution by human	hydrogen,	formulas for, 42, 43
analyzing average velocity,	activity, 413–415	isotopes of, 33	in double replacement
141–144	stabilizing, 424, 425	naming molecular compounds	reactions, 100, 101
fossil fuels, 191, 221, 413	grizzlies,	with, 49	naming, 40–46
consumption, 225, 226	climate effects on, 351	naming molecular compounds	properties of, 53–58
four-stroke internal combustion	ground tissue, 298 illustration,	without, 48	1 1
engine (see Otto engine)	299, 311, 312	test for gas, 490 Student	solubility chart, 40 Student
freezing foods, 18	group (see family)	Reference	Reference
freezing point, 13 table	guard cells, 298, 302, 306	hydrogen chloride, 55	ionization, 34
of molecular compounds, 59	gunpowder engine, 207	hydrogen emission spectrum, 24	IPCC confidence ratings, 416
table	Sanpowder engine, 207	hydrogen fuel cell, 87, 91	iron,
friction, 156		infoBIT, 124, 195	thermodynamic properties of,
fusion, 221		hydrogen peroxide, 58	492 Student Reference
			Iron Age, 20
		hydrogen—hydrogen nuclear	Isaac Newton, 155
		fusion reaction, 167, 190, 221	isolated system, 199

isotonic, 278 isotopes, 33

lithium, 31 methane, 4, 46, 59 infoBIT, 414, nitrogen, 47, 343 table, 344 lithosphere, 343, 346 489 Student Reference nitrous oxide, 414 Janssen, Hans and Zacharias, 243 albedo in, 363 combustion, 88 global changes in, 412 jet engine, 204 litmus paper, 63, 64 global changes in, 412 jet steam, 374 noble gases, 31, 36 Lloyd, Vett, 269 infoBIT Joule, James Prescott, 170 methane hydrate, 4, 5 non-metals, 29 joules (J), 157, 160 lowest common multiple illustration, 46 non-renewable energy sources, methanol, 26 Career and Profile, derivation of, 179 method. 222 for determining ionic 46 illustration, 47, 489 non-solar energy sources, 221, K compound formulas, 43 Student Reference 222 luminous intensity, 465 Student thermodynamic properties of, nuclear energy, 167 kinetic energy, 167 Reference 492 Student Reference nuclear energy conversions, 193 and heat, 170 and motion, 179-181 lye, 41 table Micrographia, 243, 244 nuclear envelope, 270 microscope, 478 Student illustrationlysosomes, 269, 270 relation to mechanical energy, Reference nuclear fission and fusion, 167 183 Kovalchuk, Olga, 329 Career and \mathbf{M} milk of magnesia, 41 table nucleic acids, 271, 272 MAGLEV, 127 infoBIT mirror of microscope, 478 nucleons, 25 Profile magnesium, 31, 38 Student Reference nucleus (of a cell), 251, 267, 270 Kyoto Protocol, 422-424 ion, 35 mitochondria, 269, 270 nucleus (of an atom), 23 reaction with hydrochloric mitosis, 297 mixture, 14 acid, 86 La Niña, 376 infoBIT objective lens, 478 Student laboratory safety practices, 456 magnetism, 13 table, 166 molar mass, 108 magnification, 244 Skill Practice, mole, 107 Reference Student Reference 253, 478 Student Reference and law of conservation of observations, 459 Student lactic acid, 19 infoBIT lactobacilli, 19 malleability, 13 table, 29 mass, 111 Reference of molecular compounds, 59 molecular compounds, ocean currents, 376 lamp of microscope, 478 Student naming, 46-49 octet rule, 38 Reference Langen, Eugen, 210 manipulated variable, 65, 248, properties of, 58-60 ocular lens (also eyepiece), 478 458 Student Reference molecular elements, 48 Student Reference laparoscopy surgery, 242 Manokwari, Indonesia, 403, 404 molecules, 29, 47 Oersted, Hans, 166 lateral bud area, 298 mass (m), 173, 378, 465 Student monatomic element, 48 open system, 199, 262, 266, 297, latitude, 359, 377 Reference Montreal Protocol, 421 391 and net radiation budget, 368, and kinetic energy of an motion, 127-134, 167 organ, 297 object, 179 infoBIT and kinetic energy, 179-181 organelles, 266 Lavoisier, Antoine, 21, 84, 165 multicellular organisms, 292 osmosis, 277, 278, 309 mass number, 33 law of conservation of energy, Material Safety Data Sheet specialized structures in, 296 Otto, N.A., 210 184, 185, 188 multivalent elements, 44 (MSDS), 9, 455 Student Otto engine (also four-stroke and first law of Reference internal combustion engine), thermodynamics, N 210, 211 matter. 199, 200 early definitions of, 18-21 Nagaoke, H., 23 outgoing radiation, 367-369 law of conservation of mass, 21, properties and classification natural greenhouse effect, 365 oxygen, 343 table, 344 84.85 of, 12-17 navigator method, 140 anion, 35 and mole concept, 111 McMurdo Research Station, 287 Needham, John, 247 isotopes of, 33, 34 laws of thermodynamics, measurements, 133 Skill negative acceleration, 146, 152, test for, 490 Student Reference Practice, 465, 466 Student 153 ozone, 345, 421 and technology, 206-214 Reference negative gravitropism, 323 ozone laver, 70, 345, 421 lead, 31 mechanical energy, 167, 183-188 negative phototropism, 323 illustration lead-acid battery, 81 and heat, 169, 170 neon, 24 infoBIT, 38 leaf, 298, 303 cross section, 312 illustration converting total to useful net radiation budget, 367-369 deficit, 369 mechanical energy, 216 paint, 14 infoBIT Lebon, Philippe, 210 surplus, 369 palisade tissue cells, 311 converting total to useful Lee, Pauline, 26 Career and Papin, Denis, 207 thermal energy, 220 neutral substance, 64 Profile mechanical mixture, 14 neutralization, 68 particle model of matter, 274, Leibniz, Gottfried, 167 melting point, 13 table, 15 neutrons, 25, 32, 33 table 275 infoBIT length, 465 Student Reference lenticels, 313 of ionic compounds, 54 Newcomen, Thomas, 208 passive transport, 275 of molecular compounds, 59 Pasteur, Louis, 248 Newcomen engine (also beam Lerwick, UK, 404, 405 engine), 208 table pendulum, 188 Lethbridge, AB, 377 membrane technologies, 240, Newton, Isaac, 173 infoBIT pepsin, 62 life force, 247 241, 284 newton of force, 156 infoBIT percent efficiency, 216, 217, 220 light bulb, 215 mercury, 70 newtons (N), 173 percent error, 470 Student light microscopes, 244 line of best fit, 474 Student meristems, 299 Newton's cradle, 167 Reference mesophyll, 311 percents, 469 Student Reference nickel. Reference mesosphere, 345 perfect machines (also perpetual thermodynamic properties of, lipids, 271 metalloids, 29 492 Student Reference motion machines), 202 liposomes, 285 metallurgy, 19, 20 nicotine, 72, 73, 489 Student periodic table, 30 illustration, 31, liquid state, 41, 80, 275 infoBIT, metals, 29 Reference 488 Student Reference periods, 31

peritoneal dialysis, 286	Power Engineer, 171 Career and	research,	silver,
peritoneum, 286	Profile	conducting, 464 Student	thermodynamic properties of,
permafrost, 353, 394	power-generating stations, 222	Reference	492 Student Reference
perpetual motion machines (see	prairie, 397	researching information, 482,	single replacement reaction, 96,
perfect machines)	Prebus, Albert, 258	483 Student Reference	97, 102 table
Persian wheel, 206	precipitate (in chemical	resistive forces, 156	sink, 321
petroleum-fuelled internal	solutions), 15, 58	resolution (also resolving	skeleton equation, 87–89
combustion engine, 211	precipitation (in chemical	power), 255, 256	slope, 476, 477 Student
pH, 62	solutions), 58	responding variable, 65, 248, 458	Reference
pH scale, 64	precipitation, 382	Student Reference	of a distance–time graph, 129
phagocytosis, 281	precision, 466 Student Reference	reverse osmosis, 240, 287, 288	of a position–time graph, 142,
phase (see also state), 382	prefixes, 465 Student Reference	revolving nosepiece, 478 Student	143, 148
phase changes,	pressure, 465 Student Reference	Reference	of a speed–time graph,
and global energy transfer, 389	pressure difference, 321	ribosomes, 268, 269, 270	131–133
phase contrast illumination, 256	pressure-flow theory, 321	right-angle diagram, 485 Student	of a velocity–time graph, 152,
phenolphthalein, 290	prions, 262 infoBIT	Reference	153
phloem, 292, 298, 300, 313	problem-solving process, 461,	rise, 129	smelting, 20
sugar movement through, 321	462 Student Reference	roller coaster, 183 infoBIT	smoking food, 19
phospholipid bilayer, 272, 285	procedure (in experiments), 458	root apical meristem, 298	smooth endoplasmic reticulum,
photosynthesis, 82, 190, 221,	Student Reference	root hairs, 301	268, 270 sodium, 31
268, 303, 305, 344, 413, 422	products, 79	root pressure, 316, 317 root system, 297, 298	
phototropism, 323, 326	prokaryotes, 267 infoBIT		reactivity with water, 35 sodium azide, 80
physical change, 18 physical dependence (<i>see</i>	properties of substances, 13 protein, 271	rough endoplasmic reticulum, 268, 270	sodium azīde, 60 sodium chloride, 40–43, 54, 55
addiction)	protein, 271 protein synthesis, 269	run, 129	formation, of, 92
physical properties, 13	protons, 25, 32, 33 table	Rutherford, Ernest, 23	sodium hydrogencarbonate, 62
pinocytosis, 281	protozoans, 251 <i>infoBIT</i>	Rutherford, Efficat, 25	solar cells, 193, 194
pixels, 255	psychological dependence, 71	S	solar energy, 167, 356, 357
plant cell, 270	pure substance, 14	safety icons, 455 Student	sources of, 221
specialization in, 301, 302	pyrite (<i>also</i> fool's gold), 12	Reference	solar energy conversions, 193,
plant stem, 481 Student	infoBIT	safety in the laboratory, 7–10	194
Reference	,	safety rules, 7 table	solar radiation, 221
plant structure, 297–300	Q	salting, 18	solid, 41
plants,	quantity of thermal energy (Q) ,	salts, 31, 40	reactions forming, 80
climate effects on, 350, 351	378	savannas, 397	solid phase/state, 80, 382
control mechanism in, 328	quantum mechanical model of	Savery, Thomas, 208	solstice, 358 illustration, 359
gas production in, 305	atom, 25	Savery engine, 208	solubility, 13 <i>table</i>
PlantWatch, 328	quartz, 13 illustration	scalar quantity, 137, 173	of ionic compounds, 57, 58
plasma membrane, 272		scale, 481 Student Reference	of molecular compounds, 59
plasmolysis, 320	R	of a drawing, 246	table
plastics, 70	radiant energy (<i>see also</i> solar	scanning electron microscope,	solutes, 275
polar, 54, 60	energy), 167	259, 260	solutions, 14
poles,	radiation, 370	scanning tunnelling microscope,	solvent, 272
latitudes of, 359	radio wave, 357	261	source, 321
temperatures at, 372	rain forest biome, 392–393	scatterplots, 473 Student	source of error (in experiments),
wind patterns at, 374	illustration, 398, 399, 400	Reference	460 Student Reference
polyatomic element, 48	illustration	Schleiden, Matthias, 251	Spallanzani, Lazzaro, 247
polyatomic ions, 44–46, 491 Student Reference	ranking ladder, 484 Student	Schwann, Theodor, 251	specific heat capacity, 377, 378,
	Reference rate of diffusion, 275	scientific evidence, 352	492 Student Reference
position–time graph, 142, 143, 148	reactants, 79	scientific notation, 468, 469 Student Reference	speed, average, 128–133
positive acceleration, 146, 152,	reagent, 37 Problem-Solving	scurvy, 19	vs velocity, 141
153	Investigation	seasonal changes, 358	speed-time graph, 131–133
positive gravitropism, 323	receptor-mediated endocytosis,	illustration	spongy mesophyll tissue, 311
positive phototropism, 323	281	second law of thermodynamics,	spontaneous generation, 247–249
potassium, 31	receptor proteins, 284	202, 203	stage and stage clips of
potential energy, 173–178	reciprocating pump, 206	Seebeck, Thomas, 166	microscope, 478 Student
and heat, 170	recognition proteins, 284, 285	selectively permeable, 275	Reference
chemical potential energy, 178	Redi, Francesco, 247	semi-permeable membrane, 275	staining samples, 254, 480
elastic potential energy, 175,	reference point, 127	shoot apical meristem, 298	Student Reference
177	reflection of energy, 362, 363	shoot system, 297, 298	state (see also phase), 13 table,
gravitational potential energy,	refrigerator, 204	SI units, 465 Student Reference	41, 382
173–175, 177	renewable energy sources, 222	sieve tube cells, 300, 321	in chemical formulas, 80
relation to mechanical energy,	reports,	significant digits, 466–468	of molecular compounds at
183	writing, 486, 487, Student	Student Reference	25°C, 59 table

Reference

steel, 20 Steele, Robert, 210 stem, 298 stimuli, 323 stoma (pl. stomata), 298, 301, 302, 309, 311 stratosphere, 345 suffixes, for polyatomic ions, 45 sugar, 47 table, 55 transport in plants, 320, 321 sulfur dioxide, formation of, 91 sulfuric acid, 64, 65, 79 infoBITSun. energy from, 167, 190, 221 supernova, 32 infoBIT surface area to volume ratio, 289 surroundings, 199 suspension, 14 sustainable development, 227, sustainable process, 227 synthesis reaction (see formation reaction) systems, 199, 391 useful energy in, 215

steam engine, 204

table salt (see also sodium chloride). physical appearance, 242 taiga biome (also boreal forest), 392-393 illustration, 395, 400 illustration, 402 impact of climate change on, 428 Decision-Making Investigation target diagram, 485 Student Reference technology, 461 Student Reference and laws of thermodynamics, temperature, 378, 465 Student Reference and altitude, 348 temperature-difference boat, 203 terminal bud area, 298 thermal energy (also heat), 356 contribution of greenhouse gases, 365 converting total to useful mechanical energy, 220 quantity (Q) of, 378–380 transfer of total to useful, 217

thermal energy transfer, 370-375 in the hydrosphere, 376-389 thermal power stations, 193 thermodynamics, 169, 204 laws of, 199-205 thermo-electric converter, 166 illustration, 204 thermosphere, 345 Thompson, Benjamin (also Count Rumford), 169 Thomson, Joseph John, 22, 23 three-lens system, 243 tidal energy, 222 time, 465 Student Reference tin ores, 20 tissues, 297 tonicity, 319 Inquiry Lab, 320 trace elements, 272 trade winds, 374, 376 transition metals, 38 transmission electron microscope, 258, 260 transpiration, 309, 317, 318, 382 transpiration pull (also tension), 318 tree growth, 341 tree rings, 341 tritium, 33 troposphere, 345, 348 tubers, 297 tundra biome, 392–393 illustration, 394, 400 illustration, 402 turbines, 206 turgid, 268 turgidity, 320

turgor pressure, 268

two-lens system, 243

unbalanced force, 156 uniform motion, 127-134 unit analysis (also dimensional analysis), 471 Student Reference United Nations Environmental Program (UNEP), 415 United Nations Framework Convention on Climate Change (UNFCCC), 421, 422 universal indicator, 63 useful energy, 215 input, 215 output, 215

vacuole, 268, 270 valence, 36, 38 valence electrons, 36 valence number, 36 van Leeuwenhoek, Antoni, 244 Vancouver, BC, 377 variables (in experiments), 457 Student Reference relationships between, 476 Student Reference vascular bundle, 298, 313 vascular tissue, 300, 313 vector directions, 139, 140 vector quantity, 137, 173 velocity, 137-144 vs speed, 141 velocity–time graph, 144, 152, Venn diagram, 484 Student Reference vesicles, 268 Virchow, Rudolf, 251 visible light, 357 vitamin C, 19, 66 Volta, Alessandro, 165 Volta Pile, 165 volume, 465 Student Reference von Guericke, Otto, 207

Walkerton, ON, 240

water, 46, 54, 58, 59 table, 272, 489 Student Reference cycle (see hydrologic cycle) energy, 221 entry into plants, 309 formula of, 15 heat of fusion of, 386 heat of vaporization of, 387 heating curve of, 385 illustration in the atmosphere, 346 melting point of, 15 properties of, 14 purification systems, 240 solubility of ionic compounds in, 54 special properties of, 60 specific heat capacity of, 377, thermodynamic properties of, 492 Student Reference transport in plants, 316-318

water vapour (also steam), 343, 346, 365, 382, 411 thermodynamic properties of, 492 Student Reference Watt, James, 209 Watt engine, 209 wax, 59 table weather, 342 Weaver, Andrew, 420 Career and Profile weight (\overrightarrow{W}) , 173 Went, F.W., 326, 327 westerly winds (also westerlies), 374, 376 wet mount, 480 Student Reference Weyburn CO₂ Miscible Flood Project, 425 illustration Whitehorse, YT, 404, 405 wind 372 global patterns, 374 wind energy, 221 wind turbines, 222 Wong, Gane Ka-Shu, 263 word equations, 86 work, 157-159 and energy, 169 input vs output, 159, 160 vs heat, 199 Workplace Hazardous Materials Information System (WHMIS), 8, 455 Student Reference World Meteorological Organization (WMO), 415

\mathbf{X}

x-axis method, 139 xeon, 86 infoBIT X-ray crystallography, 264 xylem, 292, 298, 300, 313

Young, Thomas, 169

Z

thermodynamic properties of, 492 Student Reference

Photo Credits and Acknowledgements

The publisher wishes to thank the following sources for photographs, illustrations, and other materials used in this book. Care has been taken to determine and locate ownership of copyright material used in this text. We will gladly receive information enabling us to rectify any errors or omissions in credits.

Photography

Cover image: Miguel S. Salmeron/Getty Images/Taxi; Unit Opener pp.2-3 Colin Cuthbert/SPL/Photo Researchers, Inc.; p.4 (top) J. Pinkston and L Stern/USGS; p.6 CP Picture Archive (Leah Hennel); p.8 Richard Kellaway/PC Services; p.12 Cheryl A. Ertelt/Visuals Unlimited; p.13 (top) Harry Taylor/Dorling Kindersley; p.13 (bottom) Richard Megna/Fundamental Photographs, NYC; p.14 Billy Hustace/Stone/Getty Images; p.18 (top) Patrick J. Endres/Visuals Unlimited; p.18 (bottom) Wally Eberhart/Visuals Unlimited; p.19 Canadian Museum of Civilization, catalogue no. NaPi-2:50-3, photographer Merle Toole, image no. S95-24915; p.20 Glenbow Archives NA-1700-62; p.21 Edgar Fahs Smith Collection/University of Pennsylvania Library; p.24 Department of Physics, Imperial College/SPL/Publiphoto; p.26 Mike Wysocki; p.28 Peter Adams/Taxi/Getty Images; p.31 (top and bottom) Richard Megna/Fundamental Photographs, NYC; p.31 (middle) Tom Bochsler Photography Limited/Prentice Hall Inc., Ltd.; p.35 Richard Megna/Fundamental Photographs, NYC; p.40 Richard Kellaway/PC Services; p.45 Mark S. Skalny/Visuals Unlimited; p.54 Albert Copley/Visuals Unlimited; p.59 Dorling Kindersley; p.61 Nuridsany & Perennou/Photo Researchers, Inc.; p.62 Richard Megna/Fundamental Photographs, NYC; p.63 Tom Bochsler Photography Limited/Prentice Hall, Inc.; p.72 E.H. Gill/Custom Medical Stock Photo; p.74 Richard Kellaway/PC Services; p.78 NASA; p.79 (far left) EyeWire/Getty Images; p.79 (middle left) Dorling Kindersley; p.79 (middle right) Richard Megna/Fundamental Photographs, NYC; p.79 (far right) Richard Kellaway/PC Services; p.80 Benelux Press/Photo Researchers, Inc.; p.81 (top inset) Spike Mafford/PhotoDisc/Getty Images; p.81 (bottom) Tom Bochsler Photography Limited/Prentice Hall, Inc.; p.82 Lester V. Bergman/Corbis/Magma; p.84 Tom Bochsler Photography Limited/Prentice Hall, Inc.; p.86 (top) Donald Clegg & Roxie Wilson/Prentice Hall, Inc.; p.86 (bottom) Richard Megna/Fundamental Photographs, NYC; p.87 (top) Tom Bochsler Photography Limited/Prentice Hall, Inc.; p.87 (bottom) Ballard Power Systems; p.88 Richard Kellaway/PC Services; p.91 Richard Megna/Fundamental Photographs, NYC; p.92 Tom Bochsler Photography Limited/Prentice Hall, Inc.; p.93 Dorling Kindersley; p.95 Lucidio Studio, Inc./SuperStock; p.100 Richard Megna/Fundamental Photographs, NYC; p.102 Richard Kellaway/PC Services; p.103 Carey B. Van Loon; p.107 Tom Pantages; 122 PhotoDisc/Getty Images; 124 bottom © NASA; 126 Associated Press/Pascall Pavani; 127 © Michael S. Yamashita/CORBIS/MAGMA; 164 © David Samuel Robbins/CORBIS/MAGMA; 167 © DK Images; 171 Courtesy of Perry Ambrose.; 173 Photo by Mike Sturk. Courtesy of the

Calgary Stampede.; 175 © Kevin Fleming/CORBIS/MAGMA; 190 CP Picture Archive/Jacques Boissinot; 198 Rube Goldberg is the ® and © of Rube Goldberg Inc.; 204 left © Francis Lepine/VALAN PHOTOS; 204 right © J.A. Wilkinson/VALAN PHOTOS; 207 top © Bettmann/CORBIS/MAGMA; 208 middle © DK Images; 209 © Bettmann/CORBIS/MAGMA; 211 © Bettmann/CORBIS/MAGMA; 215 © John Fowler/VALAN PHOTOS; 216 © Guido Alberto Rossi/Getty Images; 221 © Phillip Norton/VALAN PHOTOS OR © Wayne Lankinen/VALAN PHOTOS; 222 © Lone Pine Photo; 224 top Associated Press, AP/Franck Prevel; 224 bottom © Phillip Norton/VALAN PHOTOS; 225 Associated Press, AP; 238-239 Photo by Wernher Krutein/photovault.com; 238 inset © Eye of Science/Photo Researchers, Inc.; 240 Courtesy of EPCOR.; 242 top © Photo Researchers, Inc.; 242 middle © Photo Researchers, Inc.; 242 bottom © Dr Ryder/Jason Burns/Phototake USA; 242 bottom © Science Photo Library/Publiphoto; 244 left © Science VU/Visuals Unlimited; 244 right © Bettmann/CORBIS/MAGMA; 248 right Courtesy of the Institute Pasteur, Paris.; 251 left Courtesy of Brian J. Ford, Research Biologist, email: bjford@science.demon.co.uk; 251 middle © Science Photo Library/Photo Researchers Inc.; 251 right © Science Photo Library/Photo Researchers Inc.; 254 left Visuals Unlimited/David M. Phillips; 254 right © ISM/J.C.Revy/Phototake USA; 255 top left © Carolina Biological/Visuals Unlimited; 255 top middle left © Carolina Biological/Visuals Unlimited; 255 top middle right © G.W. Willis MD/Visuals Unlimited; 255 top right © Cabisco/Visuals Unlimited; 255 bottom left Corel; 255 bottom right Corel; 256 bottom left © Science Photo Library/Publiphoto; 256 bottom right © M.I. Walker/Photo Researchers, Inc.; 257 © Science Photo Library/Publiphoto; 258 left © Science Photo Library/Publiphoto; 258 right © Science Photo Library/Publiphoto; 259 top © Science Photo Library/Publiphoto; 259 bottom left © Science Photo Library/Publiphoto; 259 bottom right © Pascal Geotgheluck/Science Photo Library/Publiphoto; 260 left © K.G. Murti/Visuals Unlimited; 260 middle left © Don W.Fawcett/Visuals Unlimited; 260 middle right © Don W.Fawcett/Visuals Unlimited; 260 right © RMF/Visuals Unlimited; 261 top © Science Photo Library/Publiphoto; 261 bottom © Science Photo Library/Publiphoto; 264 © Kenneth Eward/Biografx/Photo Researchers, Inc.; 266 © Victor Last/Geographical Visual Aids; 267 © Biophoto Associates/Photo Researchers, Inc.; 268 fig. C2.3 © R.Calentine/Visuals Unlimited; 268 fig. C2.4 © Martha Powell/Visuals Unlimited; 268 fig. C2.5 a © K.G.Murti/Visuals Unlimited; 268 fig. C2.5 b © D.M.Phillips/Visuals Unlimited; 269 fig. C2.6 © Don W. Fawcett/Visuals Unlimited; 269 fig. C2.7 © David M. Phillips/Visuals Unlimited; 269 fig. C2.8 © D.Fawcett/Visuals Unlimited; 269 fig. C2.9 © Don W.Fawcett/Visuals Unlimited; 272 Pearson Dorling-Kindersley; 273 © Harold N. Edwards/Visuals Unlimited; 281 right L.A.Hufnagel,"Ultrastructural Aspects of Chemoreception in Ciliated Protists ciliophoral." Journal of Electron Microscopy Technique, 1991. Photomicrograph by Jurgen Bohmer and Linda

Hufnagel, University of Rhode Island.; 281 left cRobert Brons/Biological Photo Service; 284 © Hans Golderbloom/Visuals Unlimited; 293 left © TH Foto-Werbung/Phototake USA; 293 right © Mark Gibson/Visuals Unlimited; 296 © Ken Wagner/Phototake USA; 297 top © M.Abbey/Visuals Unlimited; 297 bottom © Walt Anderson/Visuals Unlimited; 298 top left (c) Cabisco/Visuals Unlimited; 298 bottom left (c) John D. Cunningham/Visuals Unlimited; 298 top right (c) Biophoto Associates, Photo Researchers, Inc.; 298 middle right Biodisc/Visuals Unlimited; 298 bottom right (c) Andrew Syred/Photo Researchers, Inc.; 299 top © Adam Hart-Davis/Photo Researchers, Inc.; 299 bottom left © Biophoto Associates/Photo Researchers, Inc.; 299 bottom right © John D. Cunningham/Visuals Unlimited; 300 top left © Jack M.Bostrack/Visuals Unlimited; 300 middle left © George Wilder/Visuals Unlimited; 300 bottom © Cabisco/Visuals Unlimited; 301 top left © Biodisc/Visuals Unlimited; 301 top right © V.A.Wilmot/Visuals Unlimited; 301 bottom left © David M.Phillips/Visuals Unlimited; 301 bottom right © VU/Gustav Verderber/Visuals Unlimited; 303 © R.Calentine/Visuals Unlimited; 305 left Courtesy of Brian J. Ford, Research Biologist, email: bjford@science.demon.co.uk; 305 right © Science Photo Library/Publiphoto; 309 © Biodisc/Visuals Unlimited; 312 © John D. Cunningham/Visuals Unlimited; 313 Dr. Jeremy Burgess/Science Photo Library/Publiphoto; 314 left © John D. Cunningham/Visuals Unlimited; 314 right © Andrew Syred/Science Photo Library; 315 © Parks Canada, Banff National Park; 317 left © Valerie Price/Dorling Kindersley Media Library; 317 right © Clive Streeter/Dorling Kindersley Media Library; 320 left © Kevin & Betty Collins/Visuals Unlimited; 320 right © Jack Bostrack/Visuals Unlimited; 323 © Dr. Jeremy Burgess/Photo Researchers; 329 Courtesy of Dr. Olga Kovalchuk; Unit Opener pp.338-339 Corbis, Magma/ p.340 Galen Rowell, Corbis, Magma/ p.341 photo courtesy of Science Museum of Minnesota, painting by Jerome Connolly/p.342 Andries Blouw, Fisheries and Oceans Canada/ p.346 (top) Frans Brouwers, Take Stock Inc./ p.346 (bottom) PhotoDisc, Inc./ p.349 (top) Charles O. Cecil, Visuals Unlimited/p.349 (bottom) Dr. A. Farquhar, Take Stock Inc./ p.350 (left) F. Brouwers, Take Stock Inc./ p.350 (right) Richard Kellaway, PC Services/ p.351 (top and centre) PhotoDisc, Inc./ p.351 (bottom left) Erwin Nielsen, Visuals Unlimited/p.351 (bottom centre) Michael S. Quinton, Visuals Unlimited/p.351 (bottom right) Bill Beatty, Visuals Unlimited/p.353 courtesy of U.S. Geological Survey, Denver/ p.356 Craig Popoff, Take Stock Inc./ p.362 (top) Brian Stablyk, Take Stock Inc./p.362 (bottom) PhotoDisc, Inc./p.363 (top left and right) Lyle Korytar, Take Stock Inc./ p.363 (bottom map)NASA, http://earthobservatory.nasa.gov/ and Crystal Schaaf, http://modis.gsfc.nasa.gov/ / p.377 (bottom and inset) PhotoDisc, Inc./ p.383 (centre and bottom) PhotoDisc, Inc./ p.389 CP Picture Archives (Calgary Herald - Leah Hennel)/ p.394 James L. Amos, Corbis, Magma/ p.395 Jacob Taposchaner, Taxi, Getty Images/p.396 T. Kitchin, firstlight.ca/p.397 Lowell Georgia, Corbis, Magma/ p.398 Wolfgang Kaehler, Corbis, Magma/p.399 SuperStock, Inc./p.400 (top right) Wolfgang Kaehler, Corbis, Magma/p.400 (centre right) T. Kitchin,

firstlight.ca/ p.400 (bottom right) Jacob Taposchaner, Taxi, Getty Images/ p.400 (top left) SuperStock, Inc./ p.400 (bottom left) James L. Amos, Corbis, Magma/p.400 (centre) Lowell Georgia, Corbis, Magma/p.403 Joe McDonald, Visuals Unlimited/p.410 (top diagram) Dai, A., T.M.L. Wigley, G.A. Meehl, and W.M. Washington, 2001: Effects of stabilizing atmospheric CO2 on global climate in the next two centuries. Geophys. Res. Lett., vol.28, pp. 4511-4514/ p.411 Kim Stallknecht, Take Stock Inc./ p.413 Glenbow Archives NA-1873-1/ p.414 Richard Kellaway, PC Services/p.415 PhotoDisc, Inc./p.417 CP Photo Archives (The Calgary Sun - Carlos Amat)/ p.419 (top) Bill Beatty, Visuals Unlimited/p.419 (bottom) Richard Kellaway, PC Services and courtesy of Intergovernmental Panel on Climate Change/ p.420 University of Victoria Photographic Services/ p.421 (top) Joe Waters, Nasa Jet Propulsion Laboratory, NASA/ p.421 (bottom) UN-DPI Photo/ p.424 Reuters NewMedia Inc., Corbis, Magma/ p.425 (top diagram) PanCanadian Energy/ p.426 PhotoDisc, Inc./ p.427 (top) Dave Reede, Take Stock Inc./ p.427 (bottom) Natural Resources Canada, Canadian Forest Service/ p.428 PhotoDisc, Inc./ p.429 (top) Honda Canada Inc./ p.429 (second from top) courtesy of Vision Quest Windelectric Inc./ p.429 (third from top) Rick Rudnicki, Take Stock Inc./ p.429 (fourth from top) PhotoDisc, Inc/ p.429 (bottom) PanCanadian Energy.

The publisher wishes to thank the following sources for diagram reference or reproduction. Page 4 (bottom map) Reproduced from http://www.oilandgasinternational.com with permission, Oil and Gas International.

p.9 (MSDS sheet) Courtesy of Agrium Inc.

Illustrations

AMID Studios Kevin Cheng Crowle Art Group François Escamel Dave McKay Mike Opsahl Dave Mazierski NSV Productions Dusan Petricic Cynthia Watada **Lionel Sandner**

Donald Lacy

Hyacinth Schaeffer

Cliff Sosnowski

Mary McDougall

Josef Martha

www.pearsoned.ca

