数列知识点汇总

目录

1	数列	J基本概念	2		
	1.1	数列与函数	2		
	1.2	通项公式	2		
	1.3	数列的分类			
	1.4	数列通项求法	3		
2	等差	等差数列			
	2.1	基本性质	3		
	2.2	性质扩充	4		
3	等比	· ·数列	5		
	3.1	基本性质	5		
4	数列	J求和相关问题	6		
	4.1	求前 n 项和的方法	6		
	4.2	裂项相消法	7		
	4.3	错位相减法	7		
5	练习		g		

1 数列基本概念

按照一定的顺序排列的数叫做数列,数列中的每一个数叫做数列的项. 排在第一位的数称作数列的首项,排在第二位的称为数列的第 2 项 \dots 排在第 n 位的称为这个数列的第 n 项. 数列的一般形式为

$$a_1, a_2, a_3, \cdots a_n, \cdots,$$

简记为 $\{a_n\}$. 项数有限的数列叫做有穷数列, 项数无限的数列叫做无穷数列.

1.1 数列与函数

在函数的意义下,数列是定义域为正整数集 \mathbf{N}^* (或它的有限子集 $\{1,2,3,\cdots,n\}$) 的特殊函数,数列的通项公式就是相应的函数解析式,即 $a_n=f(n)$ $(n\in\mathbf{N}^*)$.

1.2 通项公式

1.2.1 通项公式

如果数列 $\{a_n\}$ 的第 n 项与序号 n 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.

1.2.2 递推公式

如果已知数列 $\{a_n\}$ 的第一项 (或前几项),且从第二项 (或某一项) 开始任何一项 a_n 与它的前一项 a_{n-1} (或前几项) 间的关系可以用一个式子来表示,那么这个式子叫做数列 $\{a_n\}$ 的递推公式.

1.3 数列的分类

类比函数的性质及其分类,对数列进行恰当的分类可以更深刻的理解和认识数列.

- 1) 根据项数是有限还是无限分类:
 - i) 有穷数列: 项数有限的数列;
 - ii) 无穷数列: 项数无限的数列;
- 2) 根据项的增减规律分类:
 - i) 递增数列: 从第二项起每一项都大于它的前一项;
 - ii) 递减数列: 从第二项起每一项都小于它的前一项;

递增数列和递减数列统称单调数列;

- 3) 根据任何一项的绝对值是否都小于某一个正数 (常数) 来分类:
 - i) 有界数列: $\forall x \in \mathbb{N}^*, |a_n| \leq M (M$ 为常数);
 - ii) 无界数列: $\forall M \in \mathbb{R}^+, \exists x \in \mathbb{N}^*,$ 使得 $|a_n| > M$.

1.4 数列通项求法

1.4.1 数列的前 n 项和与通项公式的关系

1)
$$S_n = a_1 + a_2 + a_3 + \cdots + a_n$$
;

2)
$$a_n = \begin{cases} S_1 & (n=1) \\ S_n - S_{n-1} & (n \ge 2) \end{cases}$$

注意:一定要验证 n=1 的情况.

1.4.2 利用递推关系通项

已知数列 $\{a_n\}$ 的递推关系求通项时,通常用累加法、累乘法和构造法求解.

- 1. 形如 $a_n = a_{n-1} + m$ $(n \ge 2, n \in \mathbb{N}^*)$ 时,构造等差数列求解,形如 $a_n = xa_{n-1} + y$ $(n \ge 2, n \in \mathbb{N}^*)$ 时,构造等比数列求解;
- 2. 形如 $a_n = a_{n-1} + f(n) \ (n \ge 2, n \in \mathbb{N}^*)$ 时,用累加法;
- 3. 形如 $\frac{a_n}{a_{n-1}}=f(n)\;(n\geqslant 2,n\in \mathbf{N}^*)$ 时,用累乘法求解.

2 等差数列

2.1 基本性质

2.1.1 定义

一般地,如果一个数列从第二项开始,每一项都与前一项的差为一个常数,那么这个数列就叫做等差数列,这个常数叫做这个数列的公差,通常用字母 *d* 表示.

注:目前大部分等差数列考题都可以通过转化为 a_1 和 d 求出.

2.1.2 通项公式

如果等差数列 $\{a_n\}$ 的首项为 a_1 ,公差为 d,那么使用累加法可得它的通项公式是 $a_n = a_1 + (n-1)d$, $n \in \mathbb{N}^*$ 证明. 由给定条件可得:

$$a_2 - a_1 = d$$

$$a_3 - a_2 = d$$

:

$$a_n - a_{n-1} = d.$$

等号两边累加可得: $a_n - a_1 = (n-1)d$. 即:

$$a_n = a_1 + (n-1)d$$

2.1.3 等差中项

- 1) 如果 $A = \frac{a+b}{2}$, 则称 A 为 a 和 b 的等差中项 (考试常用);
- 2) 等差数列中,等间隔的三项 $a_{n-p}, a_n, a_{n+p} (n, p \in \mathbb{N}^* \perp n < p)$ 满足: $2a_n = a_{n-p} + a_{n+p}$;
- 3) 在等差数列 $\{a_n\}$ 中, 若有 k+l=m+n $(k,l,m,n\in \mathbb{N}^*)$, 则有 $a_k+a_l=a_m+a_n$.

2.1.4 前 n 项和公式

设等差数列 $\{a_n\}$ 的公差为 d,则其前 n 项和 $S_n = \frac{n(a_1 + a_n)}{2}$ 或 $S_n = na_1 + \frac{n(n-1)}{2}d$.

证明. 在等差数列中,根据性质 $a_k + a_l = a_m + a_n (k + l = m + n)$ 可得

$$a_1 + a_n = a_2 + a_{n-1} = \dots = a_k + a_{n-k+1} \left(k \le \frac{n}{2} \right)$$

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

$$= (a_1 + a_n) + (a_2 + a_{n-1}) + \dots + (a_k + a_{n-k+1})$$

$$= \frac{n(a_1 + a_n)}{2}$$

$$= \frac{n(a_1 + a_1 + (n-1)d}{2} = na_1 + \frac{n(n-1)}{2}d.$$

2.2 性质扩充

2.2.1 等差数列的常用性质

- (1) 通项公式的推广: $a_n = a_m + (n-m) d(n, m \in \mathbb{N}^*);$
- (2) 若 $\{a_n\}$ 是等差数列,公差为 d,则 $\{a_{2n}\}$ 也是等差数列,公差为 2d;
- (3) 若 $\{a_n\}$, $\{b_n\}$ 是等差数列,则 $\{pa_n + qb_n\}$ (p, q是常数) 也是等差数列;
- (4) 若 $\{a_n\}$ 是等差数列,公差为 d,则 a_k , a_{k+m} , a_{k+2m} , a_{k+3m} , \cdots $(k, m \in \mathbb{N}^*)$ 组成公差为 md 的等差数列.

2.2.2 与和有关的性质

- (1) 若 $\{a_n\}$ 是等差数列,则 $\frac{S_n}{n}$ 也是等差数列,其首项与 $\{a_n\}$ 的首项相同,公差是 $\{a_n\}$ 的公差的 $\frac{1}{2}$;
- (2) 若 S_m , S_{2m} , S_{3m} 分别是 $\{a_n\}$ 的前 m 项,前 2m 项,前 3m 项的和,则 S_m , S_{2m} $-S_m$, S_{3m} $-S_{2m}$ 成等差数列;
- (3) 关于非零等差数列奇数项和与偶数项和的性质

i) 若项数为
$$2n$$
, 则 $S_{\text{\tiny (H)}} - S_{\frac{5}{5}} = nd$, $\frac{S_{\text{\tiny (H)}}}{S_{\frac{5}{5}}} = \frac{a_n}{a_{n+1}}$.

ii) 若项数为
$$2n-1$$
,则 $S_{\text{લ}} = (n-1)a_n$, $S_{\frac{5}{6}} - S_{\frac{6}{6}} = a_n$, $\frac{S_{\frac{5}{6}}}{S_{\frac{6}{6}}} = \frac{n}{n-1}$.

iii) 若两个等差数列
$$\{a_n\}$$
、 $\{b_n\}$ 的前 n 项和分别为 S_n 、 T_n ,则 $\frac{a_n}{b_n} = \frac{S_{2n-1}}{T_{2n-1}}$.

2.2.3 等差数列前 n 项和的最值问题

- 1) 二次函数法: 当公差 $d \neq 0$ 时,将 S_n 看作关于 n 的二次函数,运用配方法,借助函数的单调性及数形结合,使问题得解;
- 2) 通项公式法: 求使 $a_n \ge 0$ (或 $a_n \le 0$) 成立的最大 n 值即可得到 S_n 的最大 (或最小) 值;
- 3) 不等式法: 借助 S_n 最大时,有 $\begin{cases} S_n \geqslant S_{n-1}, \\ (n \geqslant 2, n \in \mathbb{N}^*), \text{ 解此不等式组确定 } n \text{ 的范围,进而确定 } n \text{ 的值} \end{cases}$ 值和对应 S_n 的值.

3 等比数列

3.1 基本性质

3.1.1 定义

一般地,如果一个数列从第二项起,每一项与它的前一项的比等于一个常数,那么这个数列就叫做等比数列. 这个常数叫做这个数列的公比,通常用字母 q 表示.

3.1.2 通项公式

如果等比数列 $\{a_n\}$ 的首项为 a_1 ,公比为 q,则它的通项公式为 $a_n=a_1q^{n-1}$ $(q\neq 0)$.

证明. 已知等比数列 $\{a_n\}$ 中,有 $\frac{a_n}{a_{n-1}}=q\ (q\neq 0)$.

则有

$$\frac{a_2}{a_1} = q$$

$$\frac{a_3}{a_2} = q$$

$$\vdots$$

$$\frac{a_n}{a_{n-1}} = q$$

左右两侧累乘即得到: $\frac{a_n}{a_1} = q^{n-1}$ 即:

$$a_n = a_1 q^{n-1}$$

3.1.3 等比中项

(1) 如果三个数 a,G,b 成等比数列,则 G 叫做 a 和 b 的等比中项,且 $\frac{G}{a} = \frac{b}{G}$,即 $G^2 = ab$;

(2) 等比数列 $\{a_n\}$ 中,等间隔的三项 a_{n-s} , a_n , a_{n+s} $(s \in \mathbb{N}^*, \exists s < n)$ 有 $a_{n-s}a_{n+s} = a_n^2$;

(3) 等比数列 $\{a_n\}$ 中,若 m+n=p+q,则 $a_m \cdot a_n = a_p \cdot a_q$.

3.1.4 前 n 项和

$$S_n = \begin{cases} na_1 & (q = 1) \\ \frac{a_1 (1 - q^n)}{1 - q} & (q \neq 1) \end{cases}$$

证明. 给定等比数列 $\{a_n\}$.

① $\stackrel{\text{def}}{=} q = 1$ iff, $\stackrel{\text{def}}{=} a_1 = a_2 = \dots = a_n$, $S_n = a_1 + a_2 + \dots + a_n = na_1$.

② 当 q ≠ 1 时,有:

$$S_n = a_1 + a_2 + \dots + a_n$$

$$= a_1 + a_1 q + a_1 q^2 + \dots + a_1 q^{n-1};$$
(1)

两边同时乘以公比q,有:

$$qS_n = a_1q + a_1q^2 + \dots + a_1q^{n-1} + a_1q^n$$
(2)

(1)-(2) 得到:

$$S_n - qS_n = (a_1 + a_1q + a_1q^2 + \dots + a_1q^{n-1}) - (a_1q + a_1q^2 + a_1q^3 + \dots + a_1q^{n-1} + a_1q^n)$$

$$= a_1 + (a_1q - a_1q) + (a_1q^2 - a_1q^2) + \dots + (a_1q^{n-1} - a_1q^{n-1}) - a_1q^n$$

$$= a_1 - a_1q^n$$

化简得:
$$S_n = \frac{a_1(1-q^n)}{1-q} \ (q \neq 1)$$

3.1.5 等比数列的性质

已知等比数列 $\{a_n\}$ 的前 n 项和为 S_n .

- (1) 数列 $\{c \cdot a_n\}$ $(c \neq 0)$, $\{|a_n|\}$, $\{a_n \cdot b_n\}$ $(\{b_n\}$ 是等比数列), $\{a_n^2\}$, $\{\frac{1}{a_n}\}$ 等也是等比数列;
- (2) 数列 $a_m, a_{m+k}, a_{m+2k}, a_{m+3k}, \cdots$ 仍是等比数列;
- (3) $a_1a_n = a_2a_{n-1} = \cdots = a_ma_{n-m+1}$;
- (4) 当数列 $\{a_n\}$ 的公比 $q \neq -1$ (或 q = -1且m为奇数) 时,数列 S_m , $S_{2m} S_m$, $S_{3m} S_{2m}$, · · · 是等比数列;
- (5) 当 n 是偶数时, $S_{\text{偶}} = S_{\hat{\sigma}} \cdot q$; 当 n 是奇数时, $S_{\hat{\sigma}} = S_{\text{偶}} \cdot q$.

4 数列求和相关问题

4.1 求前 n 项和的方法

1. 公式法

(a) 等差数列的前
$$n$$
 项和公式: $S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d$.

(b) 等比数列的前
$$n$$
 项和公式: $S_n = \begin{cases} na_1 & (q=1) \\ \frac{a_1(1-q^n)}{1-q} & (q \neq 1) \end{cases}$

- 2. 分组求和: 把一个数列分成几个可以直接求和的数列;
- 3. 拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和:
- 4. 错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和;
- 5. 倒序相加: 把数列正着写和倒着写再相加, 例如等差数列前 n 项和公式的推导方法.

4.2 裂项相消法

- 1. 对于裂项后明显有能够相消的项的一类数列,在求和时常用"裂项相消法",分式数列的求和多用此法;
- 2. 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也可能有前面两相和最后两项,有些情况下,裂项时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.
- 3. 常用的拆项公式:

(a)
$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
;

(b)
$$\frac{1}{n(n+d)} = \frac{1}{d} \left(\frac{1}{n} - \frac{1}{n+d} \right);$$

(c)
$$\frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{n+1} - \sqrt{n};$$

(d)
$$\frac{1}{n(n+1)(n+2)} = \frac{1}{2} \left[\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right]$$

(e) 若数列
$$\{a_n\}$$
 为等差数列,公差为 $d(d \neq 0)$,则 $\frac{1}{a_n \cdot a_{n+1}} = \frac{1}{d} \left(\frac{1}{a_n} - \frac{1}{a_{n+1}} \right)$.

证明. 对于分式数列,通常会考虑裂项相消法进行消项,对于 $\frac{1}{n(n+d)}$ 式数列,可以使用待定系数法得到展开式, 假设:

$$\frac{1}{n(n+d)} = \frac{k}{n} - \frac{k}{n+d} (k 为 待定系数)$$

右边通分有

$$\frac{1}{n(n+d)} = \frac{k}{n} - \frac{k}{n+d} = \frac{kd}{n(n+d)}$$

即有 kd = 1,算得 $k = \frac{1}{d}$. 即得证

4.3 错位相减法

- 1. 一般地,如果数列 $\{a_n\}$ 是等差数列,数列 $\{b_n\}$ 是等比数列,求数列 $\{a_n \cdot b_n\}$ 的前 n 项和时,可以采用错位相减法.
- 2. 应用等比数列求和公式时,必须注意公比 $q \neq 1$ 这一前提条件,如果不能确定公比 q 是否为 1 ,应分两种情况进行讨论.

证明. 设数列 $\{a_n\}$ 为等差数列, 公差为 d,数列 $\{b_n\}$ 为等比数列, 公比为 q $(q \neq 1)$,数列 $\{c_n\}$ 满足 $c_n = a_n \cdot b_n$,则数列 $\{c_n\}$ 有:

$$S_{n} = c_{1} + c_{2} + c_{3} + \dots + c_{n}$$

$$= a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} + \dots + a_{n}b_{n}$$

$$qS_{n} = a_{1}b_{1}q + a_{2}b_{2}q + \dots + a_{n}b_{n}q$$

$$= a_{1}b_{2} + a_{2}b_{3} + a_{3}b_{4} + \dots + a_{n}b_{n+1}$$

$$S_{n} - qS_{n} = a_{1}b_{1} + b_{2}(a_{2} - a_{1}) + b_{3}(a_{3} - a_{2}) + \dots + b_{n}(a_{n} - a_{n-1}) - a_{n}b_{n+1}$$

$$= a_{1}b_{1} + db_{2} + db_{3} + \dots + db_{n} - a_{n}b_{n+1}$$

$$= a_{1}b_{1} + d(b_{2} + b_{3} + \dots + b_{n}) - a_{n}b_{n+1}$$

$$= a_{1}b_{1} - a_{n}b_{n+1} + \frac{b_{2}(1 - q^{n-1})}{1 - q}d.$$

故而有:

$$S_n = \frac{a_1b_1 - a_nb_{n+1} + \frac{b_2(1 - q^{n-1})}{1 - q}d}{1 - q}$$

5 练习

1.	设等差数列 $\{a_n\}$ 的前 n 项	和为 S_n , $S_{m-1} = -2$, $S_m =$	$=0,S_{m+1}=3$,则 $m=$		()
	(A) 3	(B) 4	(C) 5	(D) 6		
2.	已知 {a _n } 是公差为 1 的等	差数列, S_n 为 $\{a_n\}$ 的前 n	项和,若 $S_8=4S_4$,则 a	$u_{10} =$	()
	(A) $\frac{17}{2}$	(B) $\frac{19}{2}$	(C) 10	(D) 12		
3.	设 S_n 是等差数列 $\{a_n\}$ 的前	$f n$ 项和,若 $a_1 + a_3 + a_5$	$=3$,则 $S_5=$		()
	(A) 5	(B) 7	(C) 9	(D) 11		
4.	等比数列 $\{a_n\}$ 满足 $a_1=3$	$a_1 + a_3 + a_5 = 21$, \emptyset	$a_3 + a_5 + a_7 =$		()
	(A) 21	(B) 42	(C) 63	(D) 84		
5.	已知等比数列 $\{a_n\}$ 满足 a_1	$=\frac{1}{4}$, $a_3a_5=4(a_4-1)$,	则 $a_2 =$		()
	(A) 2	(B) 1	(C) $\frac{1}{2}$	(D) $\frac{1}{8}$		
6.	若数列 $\{a_n\}$ 满足 $a_{n+1}=2a_n$	$a_n (a_n \neq 0, n \in \mathbf{N}^*)$, $\coprod a_2 \sqsubseteq$	a_4 的等差中项是 5 ,则 a_1	$+a_2+\cdots+a_n$	F()
	(A) 2^{n}	(B) $2^n - 1$	(C) 2^{n-1}	(D) $2^{n-1} - 1$		
7.	已知等差数列 {a _n } 的前 9	项和为 27, $a_{10}=8$,求 a	$x_{100} =$		()
	(A) 100	(B) 99	(C) 98	(D) 97		
8.	3. 已知数列 $\{a_n\}$ 满足 $a_1+a_2+\cdots+a_n=2a_2(n=1,2,3,\cdots)$,则					
	(A) $a_1 < 0$	(B) $a_1 > 0$	(C) $a_1 \neq a_2$	(D) $a_2 = 0$		
9.	设 $\{a_n\}$ 是公比为 q 的等比	数列,则 " $q > 1$ " 是 " $\{a_i\}$ "	"}为递增数列"的		()
	(A) 充分且不必要条件		(B) 必要且不充分条件			
	(C) 充分必要条件		(D) 既不充分也不必要条	件		
10.	下面是关于公差 $d > 0$ 的等 p_1 : 数列 $\{a_n\}$ 是递增数列; p_3 : 数列 $\left\{\frac{a_n}{n}\right\}$ 是递增数列	p ₂ : 数列 {na _n } 是递	增数列;			
	其中的真命题为				()
	(A) p_1, p_2	(B) p_3, p_4	(C) p_2, p_3	(D) p_1, p_4		
11.	已知各项都为正数的等比	数列 $\{a_n\}$, $a_1a_2a_3=5$, a_7a_5	$a_8 a_9 = 10, \text{M} \ a_4 a_5 a_6 =$		()
	(A) $5\sqrt{2}$	(B) 7	(C) 6	(D) $4\sqrt{2}$		
12.	已知数列 $\{a_n\}$ 的前 n 项和			4	()
	(A) 2^{n-1}	$(B)\left(\frac{3}{2}\right)^{n-1}$	$(C)\left(\frac{2}{3}\right)$	(D) $\frac{1}{2^{n-1}}$		
13.	在等比数列 $\{a_n\}$ 中, $a_1 =$	1, 公比 $ q \neq 1$. 若 $a_m = a_m$	$a_1a_2a_3a_4a_5$,则 $m=$		()
	(A) 9	(B) 10	(C) 11	(D) 12		

14.	设 $\{a_n\}$ 是等差数列,下列结论中正确的是)			
	(A) 若 $a_1 + a_2 > 0$, 则 a_2	$+a_3 > 0$	(B) 若 $a_2 + a_3 > 0$, 则 $a_1 + a_2 < 0$						
	(C) 若 $0 < a_1 < a_2$,则 a_2	$>\sqrt{a_1a_3}$	(D) 若 $a_1 < 0$, 则 $(a_2 - a_1)(a_2 - a_3) > 0$						
15.	数列 $\{a_n\}$ 满足 $a_{n+1}+(-1)^na_n=2n-1$,则 $\{a_n\}$ 的前 60 项和为								
	(A) 3690	(B) 3660	(C) 1845	(D) 1830					
16.	设 S_n 是等差数列 $\{a_n\}$ 的前		$\frac{S_9}{S_5}$ =		()			
	(A) 1	(B) -1	(C) 2	(D) $\frac{1}{2}$					
17.	已知某等差数列共有 10 项	页,其奇数项之和为 15,何	禺数项之和为30,则其公	差为	()			
	(A) 2	(B) 3	(C) 4	(D) 5					
18.	在各项均不为零的等差数列 $\{a_n\}$ 中,若 $a_{n+1}+a_n^2+a_{n-1}=0 (n\geqslant 2)$,则 $S_{2n-1}-4n=$								
	(A) -2	(B) 0	(C) 1	(D) 2					
19.	等差数列 $\{a_n\}$ 的前 n 项和	为 S_n , 已知 $a_{m-1} + a_{m+1}$	$-a_m^2 = 0$, $S_{2m-1} = 38$, 则	m =	()			
	(A) 38	(B) 20	(C) 10	(D) 9					
20.	已知数列 {a _n } 为等比数列	,下面结论中正确的是			()			
	$(A) a_1 + a_3 \geqslant 2a_2$		(B) $a_1^2 + a_3^2 \ge 2a_2^2$						
	(C) 若 $a_1 = a_3$,则 $a_1 = a_2$		(D) 若 $a_3 > a_1$,则 $a_4 > a_2$						
21.	若等比数列 $\{a_n\}$ 满足 a_na_{n-1}	$_{+1}=16^{n}$,则公比 $q=$			()			
	(A) 2	(B) 4	(C) 8	(D) 16					
22.	设等比数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 $S_2=3$, $S_4=15$,则 $S_6=$								
	(A) 31	(B) 32	(C) 63	(D) 64					
23.	已知数列 { <i>a_n</i> } 是首项为 1 为	的等比数列, S_n 是 $\{a_n\}$ 的	J前 n 项和,且 $9S_3 = S_6$,	则数列 $\left\{\frac{1}{-}\right\}$ 的官	前5项ラ	和			
	为			(a_n)	()			
		(B) $\frac{31}{16}$ 或 5		(D) $\frac{15}{8}$					
24.	若等差数列 {a _n } 满足 a ₇ +	$a_8 + a_9 > 0$, $a_7 + a_{10} < 0$),则当 n = 时 {a _n }	的前 n 项和最大.					
25.	5. 在等比数列 $\{a_n\}$ 中, $a_1=\frac{1}{2}$, $a_4=-4$,则公比 $q=$; $ a_1 + a_2 +\cdots+ a_n =$								
26.	设等比数列 $\{a_n\}$ 满足 a_1 +	$a_3 = 10$, $a_2 + a_4 = 5$, $$	$0 a_1 a_2 \cdots a_n$ 的最大值为_	·					
27.	. 若数列 $\{a_n\}$ 的前 n 项和 $S_n=rac{2}{3}a_n+rac{1}{3}$,则数列 $\{a_n\}$ 的通项公式是 $a_n=$								
28.	若等比数列 $\{a_n\}$ 满足 a_2 +	$a_4 = 20, \ a_3 + a_5 = 40, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	则公比 $q =;$ 前 n 项	和 $S_n = $					
29.	已知等比数列 {an} 为递增	曾数列,且 $a_5^2=a_{10},\ 2(a_5)$	$a_n + a_{n+2}) = 5a_{n+1}, \text{M}$	女列数列 {a _n } 的证	通项公式	式			

 $a_n = \underline{\hspace{1cm}}$.

- 30. 设等比数列 $\{a_n\}$ 的公比为 q,前 n 项和为 S_n ,若 S_{n+1} , S_n , S_{n+2} 成等差数列,则 q 的值为_____.
- 31. 设 S_n 是数列 $\{a_n\}$ 的前 n 项和,且 $a_1 = -1$, $a_{n+1} = S_n S_{n+1}$,则 $S_n =$ ______.
- 32. 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n, a_n \neq 0 (n \in \mathbb{N}^*)$, $a_n a_{n+1} = S_n$. 则 $a_3 a_1 = \underline{\hspace{1cm}}$.
- 33. 设数列 $\{a_n\}$, $\{b_n\}$ 都是等差数列,若 $a_1+b_1=7$, $a_3+b_3=21$,则 $a_5+b_5=$ _____.
- 34. 若数列 $\{a_n\}$ 满足 $a_1 = -2$,且对于任意的 $m, n \in \mathbb{N}^*$,都有 $a_{m+n} = a_m \cdot a_n$,则 $a_3 = ______$;数列 $\{a_n\}$ 的 前 10 项和 $S_{10} = ______$.
- 35. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,满足 $a_1=1, a_2=-2$,且 $a_{n+1}=a_n+a_{n+2}, n\in \mathbb{N}^*$,则 $a_5=$ ______;数 列 $\{a_n\}$ 的前 2016 项的和为______.

- 36. 己知数列 $\{a_n\}$ 满足 $a_1=1, a_{n+1}=3a_n+1$, 其中 $n \in \mathbb{N}^*$.
 - (1) 证明 $\{a_n + \frac{1}{2}\}$ 是等比数列,并求 $\{a_n\}$ 的通项公式;
 - (2) 证明 $\frac{1}{a_1} + \frac{1}{a_2} \cdots \frac{1}{a_n} < \frac{3}{2}$.

- 37. 数列 $\{a_n\}$ 是各项都为正数的等比数列, $a_{11}=8$,设 $b_n=\log_2 a_n$,且 $b_4=17$.
 - (1) 求证: 数列 $\{b_n\}$ 是以 -2 为公差的等差数列;
 - (2) 设数列 $\{b_n\}$ 的前 n 项和为 S_n , 求 S_n 的最大值.

- 38. 已知各项都为正数的数列 $\{a_n\}$ 满足 $a_1=1, a_n^2-(2a_{n+1}-1)a_n-2a_{n+1}=0.$
 - (1) 求 a_2, a_3 ;
 - (2) 求 $\{a_n\}$ 的通项公式.

- 39. 等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,已知 $a_1=10,\ a_2$ 为整数,且 $S_n\leqslant S_4$.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n = \frac{1}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n .

- 40. 己知数列 $\{a_n\}$ 是等差数列,且 $a_1=2,\ a_1+a_2+a_3=12.$
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 令 $b_n = a_n 3^n (x \in \mathbf{R})$, 求数列 $\{b_n\}$ 前 n 项和的公式.

41. 已知正项数列 $\{b_n\}$ 的前 n 项和 $B_n = \frac{1}{4}(b_n+1)^2$,求 $\{b_n\}$ 的通项公式.

- 42. 已知数列 $\{a_n\}$ 是公差为 3 的等差数列,数列 b_n 满足 $b_1=1$, $b_2=\frac{1}{3}$, $a_nb_{n+1}+b_{n+1}=nb_n$.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 求 $\{b_n\}$ 的前 n 项和.

- 43. 数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=2$, $a_{n+2}=2a_{n+1}-a_n+2$.
 - (1) 设 $b_n = a_{n+1} a_n$, 证明 $\{b_n\}$ 是等差数列;
 - (2) 求数列 {a_n} 的通项公式.

- 44. 已知等差数列 $\{a_n\}$ 的公差不为零, $a_1=25$,且 a_1,a_{11},a_{13} 成等比数列.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) $\Re a_1 + a_4 + a_7 + \cdots + a_{3n-2}$.

- 45. 已知等比数列 $\{a_n\}$ 的首项 $a_1=2$, 前 n 项和 S_n ,且 a_2 是 $3S_2-4$ 与 $2-\frac{5}{2}S_1$ 的等差中项.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n=(n+1)a_n$, T_n 是数列 b_n 的前 n 项和, $n\in \mathbb{N}^*$, 求 T_n .

- 46. 己知等差数列 $\{a_n\}$ 满足 $a_1+a_2=10, a_4-a_3=2.$
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 设等比数列 $\{b_n\}$ 满足 $b_2=a_3,\ b_3=a_7,\ 问:\ b_6$ 与数列 $\{a_n\}$ 的第几项相等?

- 47. 已知等差数列 $\{a_n\}$ 满足 $a_1=3,\ a_4=12,$ 数列 $\{b_n\}$ 满足 $b_1=4,\ b_4=20,\$ 且 $\{b_n-a_n\}$ 是等比数列.
 - (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
 - (2) 求数列 $\{b_n\}$ 的前 n 项和.

- 48. 等差数列 $\{a_n\}$ 中, $a_3 + a_4 = 4$, $a_5 + a_7 = 6$.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n = [a_n]$, 求数列 $\{b_n\}$ 的前 10 项和,其中 [x] 表示不超过 x 的最大整数,如 [0.9] = 0, [2.6] = 2.

- 49. 已知数列 $\{a_n\}$ 的前 n 项和 $S_n=1+\lambda a_n$,其中 $\lambda \neq 0$.
 - (1) 证明 $\{a_n\}$ 是等比数列,并求其通项公式;
 - (2) 若 $S_5 = \frac{31}{32}$,求 λ .

- 50. S_n 为数列 $\{a_n\}$ 的前 n 项和,已知 $a_n>0$, $a_n^2+2a_n=4S_n+3$,其中 $n\in {\bf N}^*$.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n = \frac{1}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前 n 项和.

- 51. 已知 $\{a_n\}$ 是递增的等差数列, a_2 , a_4 是方程 $x^2 5x + 6 = 0$ 的根.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 求数列 $\left\{\frac{a_n}{2^n}\right\}$ 的前 n 项和.

- 52. 已知等差数列 $\{a_n\}$ 的前 n 项和 S_n 满足 $S_3=0,\ S_5=-5.$
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 求数列 $\frac{1}{a_{2n-1}a_{2n+1}}$ 的前 n 项和

- 53. 等比数列 $\{a_n\}$ 的各项均为正数,且 $2a_1+3a_2=1,\ a_3^2=9a_2a_6.$
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n = \log_3 a_1 + \log_3 a_2 + \dots + \log_3 a_n$, 求数列 $\left\{\frac{1}{b_n}\right\}$ 的前 n 项和.

- 54. 已知等差数列 $\{a_n\}$ 和等比数列 $\{b_n\}$ 满足 $a_1=b_1=1,\ a_2+a_4=10,\ b_2b_4=a_5.$
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 求和: $b_1 + b_3 + b_5 + \cdots + b_{2n-1}$.