Data 100 Summer 2019

Principles and Techniques of Data Science

Summer 2019

INSTRUCTIONS

- You have 2 hours and 50 minutes to complete the exam.
- \bullet The exam is closed book, closed notes, closed computer, closed calculator, except for the provided midterm reference sheet and up to two 8.5" \times 11" sheets of notes of your own creation.
- There are 12 pages on this exam and a total of 110 points possible.
- Write your name at the top of each sheet of the exam.
- Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name	
First name	
Student ID number	
CalCentral email (_@berkeley.edu)	
Name of the person to your left	
Name of the person to your right	
All the work on this exam is my own.	
(please sign)	

Terminology and Notation Reference:

$\exp(x)$	e^x
$\log(x)$	$\log_e x$
Linear regression model	$f_{m{ heta}}(m{x}) = m{x} \cdot m{ heta} = m{ heta} \cdot m{x}$
Logistic (or sigmoid) function	$\sigma(t) = \frac{1}{1 + \exp(-t)}$
Logistic regression model	$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = P(Y = 1 X) = \sigma(\boldsymbol{\theta} \cdot \boldsymbol{x})$
Squared error loss function	$\ell(\boldsymbol{x}, y, \boldsymbol{\theta}) = (y - f_{\boldsymbol{\theta}}(\boldsymbol{x}))^2$
Absolute error loss function	$\ell(\boldsymbol{x}, y, \boldsymbol{\theta}) = y - f_{\boldsymbol{\theta}}(\boldsymbol{x}) $
Cross-entropy loss function	$\ell(\boldsymbol{x}, y, \boldsymbol{\theta}) = -y \log f_{\boldsymbol{\theta}}(\boldsymbol{x}) - (1 - y) \log(1 - f_{\boldsymbol{\theta}}(\boldsymbol{x}))$
Bias	$\operatorname{Bias}(\hat{\theta}, \theta^*) = E[\hat{\theta}] - \theta^*$
Variance	$Var(\hat{\theta}) = E[(\hat{\theta} - E[\hat{\theta}])^2]$

This page is intentionally left blank, but feel free to use it as scratch paper.

Nam	ne:											3
1.	Fill in b tables a each ta fly tabl per fligh	re stored bot able. The acc le contains or at booked by	non coo h as Pa c table ne row j a user—	ndas D contain per fligh its uid	ataFra s one re nt that and fi	mes and ow per the air id colur	d SQLit user acc line offe nns are	e tables. count reg rs. The foreign k	ch result below, Only the first gistered at an air fact table is a faceys to the corres have never been	t few row line compa act table co sponding co	s are shown ny's website. ontaining one olumns in acc	The row
	Note: 0	On this probl	em, sor	ne blan	ks shou	ıld be fi	illed in	using mo	ore than one key	word or exp	pression.	
	acc		fact		fly							
	uid	name	uid	fid	fid	orig	dest	price]			
	1	Sam	4	1	1	LA	SF	110				
	4	Leo	4	2	2	LA	SF	90				
	3	Steph	$\frac{3}{2}$	4	3	SF	MN	240				
	6	Manana	2	1	4	SD	NY	370	_			
	(a) (4	pt) Find the	names	of all u	isers th	at did	not boo	k anv flis	ghts.			
	, , ,	- ,										
Pyth	on: acc	.loc[~acc[].isin	(_),]
TOE	051 505								(05) 505	500		
SQL:	SELECT		FROM _		WHE	:RE		NOI IN	(SELECT	FRON	1);
	(b) (6	pt) Find the	averag	e flight	price f	or each	unique	pair of o	origin and destin	ation cities	3.	
Pyth	on: (fl	y[['orig', '	dest',	'price	e']]			()
		·	()	maaa+	indov	())						
		·	()	.reset	_index							
SQL:	SELECT	orig. dest	_					AS	price FROM fly	/		
oqu.	SELECT	orig, desc	,					//3	price ritori iii	,		
												;
												,
	flig the His 2 t His	thts. For example first column int: The suff of column lab	nple, L holds of ixes=(1 els in tal AS t1	$A \rightarrow M$ origin contains a principle of the contains and AS	N can ities (e rgumer ad tabl t2 en	be reaction.g. LA) at to pd e if the able ret	hed using and the merged trieving	ng fid 1 e second appends tables s a table?	an be reached in a and 3. The resu holds destinatio a 1 to column la hare column nans columns using by t1.	olt should he cities (e.gabels in the mes.	nave two colu g. MN). e first table a	mns:
Pytho	on: m =	pd.merge(,		, lef	`t_on=		, right_on=	,	suffixes=(1	, 2))
	m.1	oc[:,].dr	op_duplicate	es()
												**
SQL:	SELE	ECT DISTINCT										
	FRO)M	_ AS t	ı JOIN		A	S t2 01	ν				;

2. (15 points) Lost Labels

During a data analysis on car attributes, Sam created several plots. However, he has lost the axis labels for all of his plots except for the scatter plot shown on the left. Determine whether the plots below were generated from the same data. If so, mark the axis label that makes each plot consistent with the data in the scatter plot.

Assume that: The KDE plots use the same bandwidth, the histograms use the same number of bins, and point plots show the means of two columns and 95% confidence intervals. The axis limits for each plot were automatically chosen to display all plotted marks.

(a) (7 pt) Fill the missing axis labels of the 8 plots above using either age or mpg to make the plots consistent with the labeled scatter plot. For example, the first plot shows the distribution of age, so (a) should be filled in with age. If the plot cannot be generated from the data in either age or mpg, select Neither.

	(a)	(b)	(c)	(d)	(e.i)	(e.ii)	(f.i)	(f.ii)	(g.i)	(g.ii)	(h.i)	(h.ii)
age		0	0	0	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	0
mpg	0	0	0	0	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	0
Neither	0	0	0	0		$\overline{)}$		\supset	($\overline{)}$		

(b) (8 pt) After conducting PCA, Sam projected each point onto the two principal component axes. He stored the projections onto the first and second principal components in the columns pc1 and pc2, respectively. As in the previous part, fill in each of the missing axis labels using either pc1 or pc2 if the plots were generated using the points projected onto the first or second principal component, or select Neither.

	(a)	(b)	(c)	(d)	(e.i)	(e.ii)	(f.i)	(f.ii)	(g.i)	(g.ii)	(h.i)	(h.ii)
pc1	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
pc2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Neither	\bigcirc	\bigcirc	\bigcirc	\bigcirc			(\supset				

A th to Le	 3. (5 points) Parking Problems A parking lot on campus has a \$10 parking fee per day. You find out that every morning, a police officer flips three fair coins. If all three coins land heads, the officer will go to the parking lot and give a \$64 parking ticket to all cars that did not pay the parking fee. Let X be a random variable for the dollar amount you will pay on a particular day if you decide to never pay the parking fee. Note that all fractions shown in this problem are fully simplified. (a) (2 pt) What is E(X)? 								
				\bigcirc 5	O 8	\bigcirc 24	\bigcirc 32	Other	
(ŀ		What is Var							
	$\bigcirc 0$	$\bigcirc \frac{1}{8}$	$\bigcirc \frac{7}{64}$	○ 7	64	O 448	\bigcirc 512	Other	
•	\bigcirc Flip a fair coin and pay the parking fee only if the coin lands heads. \bigcirc Always pay the parking fee. 4. (5 points) Derive It To estimate a population parameter from a sample (x_1, \ldots, x_n) , we select the following empirical risk: $L(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log(\theta e^{-\theta x_i})$								
Fi an	nd the esti	$ \text{mator } \hat{\theta} \text{ that} \\ \text{box around} $	t minimizes the your final ans	ne empirical risk swer.	. Show all you	ır work within	the space pro	ovided below	
	$L(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log(\theta e^{-\theta x_i})$ Find the estimator $\hat{\theta}$ that minimizes the empirical risk. Show all your work within the space provided below and draw a box around your final answer.								

5

Name:

5. (2 points) Modeling

Shade in the box for all the models that are appropriate for the modeling problems described below.

	Linear Regression	Logistic Regression	Random Forest
Predict day of the week from the number of shoppers at a store.			
Predict total revenue today for a store from weather forecast of either sunny or rainy.			
Predict number of apples sold from number of chickens sold.			
Predict fastest checkout line $(1, 2,, 8)$ from number of people in each line.			

6. (23 points) Grocery Associations

Every week, Manana goes to her local grocery store and buys a varying amount of vegetables but always buys exactly one pound of meat. We use a linear regression model to predict her total grocery bill. We've collected a dataset containing the pounds of vegetables bought, the type of meat bought (either beef, chicken, or fish), and the total bill. Below we display the first few rows of the dataset and two plots generated using the entire dataset.

veg	meat	total
1	beef	13
3	fish	19
2	beef	16
0	chicken	9

(a) (8 pt) Suppose we fit the following linear regression models to predict total. Based on the data and visualizations shown above, determine whether the fitted model weights are positive (+), negative (-), or exactly 0. The notation meat=beef refers to the one-hot encoded meat column with value 1 if the original value in the meat column was beef and 0 otherwise.

Model	Weight	+	_	0	Not enough info
$f_{m{ heta}}(m{x}) = heta_0$	θ_0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$f_{m{ heta}}(m{x}) = heta_0 + heta_1 \cdot veg^2$	θ_0	\bigcirc	\bigcirc	\bigcirc	
	$ heta_1$	\bigcirc	\bigcirc	\bigcirc	
$f_{m{ heta}}(m{x}) = heta_0 + heta_1 \cdot (exttt{meat=beef}) + heta_2 \cdot (exttt{meat=chicken})$	θ_0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$ heta_1$	\bigcirc	\bigcirc	\bigcirc	
	$ heta_2$	\bigcirc	\bigcirc	\bigcirc	
$f_{m{ heta}}(m{x}) = heta_0 + heta_1 \cdot (exttt{meat=beef})$	θ_0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$+\theta_2 \cdot (\texttt{meat=chicken}) + \theta_3 \cdot (\texttt{meat=fish})$	$ heta_1$	\bigcirc	\bigcirc	\bigcirc	
	$ heta_2$	\bigcirc	\bigcirc	\bigcirc	
	θ_3	\bigcirc	\bigcirc	\bigcirc	

The data and plots from the previous page are reproduced here for convenience:

veg	meat	total
1	beef	13
3	fish	19
2	beef	16
0	chicken	9

Suppose we fit the model: $f_{\theta}(x) = \theta_0 + \theta_1 \cdot \text{veg} + \theta_2 \cdot (\text{meat=beef}) + \theta_3 \cdot (\text{meat=fish})$. After fitting, we find that $\hat{\boldsymbol{\theta}} = [-3, 5, 8, 12]$. Calculate:

(b) (1 pt) The prediction of this model on the first point in our dataset.

 \bigcirc -3

 $\bigcirc 2$

 \bigcirc 5

 \bigcirc 10

 \bigcirc 13

 \bigcirc 22

 \bigcirc 25

(c) (2 pt) The loss of this model on the **second** point in our dataset using squared error loss.

 \bigcirc 0

 $\bigcirc 1$

 \bigcirc 5

 \bigcirc 6

 \bigcirc 8

 \bigcirc 24 \bigcirc 25 \bigcirc 169

(d) (2 pt) The loss on the third point in our dataset using absolute loss with L_1 regularization and $\lambda = 1$.

 $\bigcirc 0$

 $\bigcirc 1$

 \bigcirc 15

 \bigcirc 24

 \bigcirc 26

 \bigcirc 27

 \bigcirc 28

 \bigcirc 29

(e) (4 pt) Determine how each change below affects model bias and variance compared to the model described at the top of this page. Shade in all the boxes that apply.

Decrease Increase Decrease Increase bias bias variance variance Add degree 3 polynomial features П Add a feature of random numbers between 0 and 1 П П Collect 100 more sample points Remove the veg column

(f) (4 pt) Suppose we predict total from veg using 8 models with different degree polynomial features (degrees 0 through 7). Which of the following plots display the training and validation errors of these models? Assume that we plot the degree of polynomial features on the x-axis, mean squared error loss on the y-axis, and the plots share y-axis limits.

(g) (2 pt) Suppose that we fit 8 degree-4 polynomial models using ridge regression and the x-axis for the plots in the previous part show λ instead of polynomial degree. Which plots show the training and validation errors of the models?

Training error: \bigcirc A

 \bigcirc B

 \bigcirc C

 \bigcirc D

Validation error: \bigcirc A

 \bigcirc B

 \bigcirc C

 \bigcirc D

7. (20 points) Logistic Regression

(a) (8 pt) Suppose we use the following regression model with a single model weight θ and loss function:

$$f_{\theta}(x) = \sigma(\theta - 2)$$

$$\ell(\theta, x, y) = -y \log f_{\theta}(x) - (1 - y) \log(1 - f_{\theta}(x)) + \frac{1}{2}\theta^{2}$$

Derive the **stochastic gradient descent update rule** for this model and loss function, assuming that the learning rate $\alpha = 1$. Your answer may only use the following variables: $\theta^{(t+1)}, \theta^{(t)}, y$, and the sigmoid function σ . Show all your work within the space provided and **draw a box around your final answer**.

Recall that in lecture we derived the following batch gradient descent (BGD) and stochastic gradient descent (SGD) update rules for logistic regression with L_2 regularization. This expression uses the same notation used in class where \boldsymbol{X} is the $(n \times p)$ design matrix, $\boldsymbol{X_i}$ is a vector containing the values in the i'th row of \boldsymbol{X} , \boldsymbol{y} is the length-n vector of outcomes, y_i is a single outcome (either 0 or 1), and $\boldsymbol{\theta}$ is a vector containing the model weights.

Batch Gradient Descent:
$$\boldsymbol{\theta}^{(t+1)} = (1-2\lambda)\boldsymbol{\theta}^{(t)} + \alpha \left[\frac{1}{n}\sum_{i=1}^{n}(y_i - \sigma(\boldsymbol{X_i} \cdot \boldsymbol{\theta}^{(t)}))\boldsymbol{X_i}\right]$$

Stochastic Gradient Descent: $\boldsymbol{\theta}^{(t+1)} = (1-2\lambda)\boldsymbol{\theta}^{(t)} + \alpha \left[(y_i - \sigma(\boldsymbol{X_i} \cdot \boldsymbol{\theta}^{(t)}))\boldsymbol{X_i}\right]$

(b) (4 pt) What are the dimensions of the expressions below?

	Scalar	Length- n vector	Length- p vector	$(n \times p)$ matrix
$oldsymbol{X_i} \cdot oldsymbol{ heta}^{(t)}$	\bigcirc	\bigcirc	\bigcirc	
$y_i - \sigma(\boldsymbol{X_i} \cdot \boldsymbol{\theta}^{(t)})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$(y_i - \sigma(\boldsymbol{X_i} \cdot \boldsymbol{\theta}^{(t)})) \boldsymbol{X_i}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\alpha \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\boldsymbol{X_i} \cdot \boldsymbol{\theta}^{(t)})) \boldsymbol{X_i} \right]$	\bigcirc		\bigcirc	\bigcirc

(c) (8 pt) Suppose we use SGD to fit a logistic regression model with L_2 regularization with one model weight and no intercept term. Combinations of $\theta^{(t)}, X_i, y_i, \lambda$ and α are listed below. Complete the combination such that $\theta^{(t+1)}$ will be the **most positive** after one iteration of SGD among the choices provided. The notation $\lambda \in \mathbb{R}$ means that λ is a fixed, unknown real number (which can be either positive, zero, or negative). If more than one choice produces the most positive value, select Tie. If you need more information on unknown variables to solve the problem, select Need Info.

(c.i)	$\theta^{(t)} = 1, \ X_i = 5, \ y$	$y_i = 0, \ \lambda = 1,$					
	$\alpha = \bigcirc -1$	\bigcirc 0	\bigcirc 1	○ Tie	○ Need Info		
(c.ii)	$\theta^{(t)} = -1, \ X_i = 5,$	$\lambda \in \mathbb{R}, \ \alpha = 1$					
	$y_i = \bigcirc 0$	\bigcirc 1		○ Tie	○ Need Info		
(c.iii)	$\theta^{(t)} \in \mathbb{R}, \ X_i = 0,$	$\lambda \in \mathbb{R}, \ \alpha = 1$					
	$y_i = \bigcirc 0$	\bigcirc 1		○ Tie	○ Need Info		
(c.iv)	$\theta^{(t)} = 0, \ X_i \in \mathbb{R},$	$\lambda \in \mathbb{R}, \ \alpha = 1$					
	$u_i = \bigcap 0$	\bigcirc 1		○ Tie	O Need Info		

8. (5 points) Classifiers

(a) (2 pt) Suppose we fit three classifiers which produce the following confusion matrices:

Which model has the highest precision?

Which model has the highest recall?

- Model A Model B

Model C

(b) (3 pt) Suppose we fit three more classifiers and plot the ROC curves for each classifier on the test set. The test set contains 100 points: the first 50 points are labeled 0 and the second 50 points are labeled 1. Determine which models produce each ROC curve.

Predicts P(Y = 1|X) using a random number between 0 and 1

Assigns P(Y = 1|X) = 0.3 to the first 50 points and P(Y = 1|X) = 0.4 to the second 50 points.

Assigns P(Y = 1|X) = 0.8 to the first 50 points and P(Y = 1|X) = 0.6 to the second 50 points.

ROC A	ROC B	ROC C
		\bigcirc

\bigcirc	\bigcirc	\bigcirc

0

0.5

2

9. (12 points) If a Forest Falls...

(a) (8 pt) Suppose we fit decision trees of varying depths to predict y using x1 and x2. For this question, a decision tree with depth 0 is a tree with no splitting (all points in a single node). What is the:

x1	x2	У
S	1	0
S	2	1
M	3	0
M	4	1
S	1	0
S	2	1
M	3	0
M	4	1

Lowest possible entropy of a node in a fitted tree with depth 0? Lowest possible entropy of a node in a fitted tree with depth 1?

Lowest possible entropy of a node in a fitted tree with depth 2?

Depth of a fitted decision tree with no depth limit?	()	()	()	(
Depth of a fitted decision tree with no depth films:				١,

Name:								11
,	, , _	ot) Select true	or false for ea	ch statement	about the b	ootstrap.		
T	F	I	l£ l-	4_4	1 :	41 1-1	l:£ £	·
				_	_		bias of a random f	
\bigcirc	\bigcirc		ncreasing the number of bootstrap resamples causes a confidence interval for the mean of a population o decrease in width.					
\bigcirc	\bigcirc	Increasing the	ncreasing the number of bootstrap resamples does not change the center of a sampling distribution.					
\bigcirc	\bigcirc	After fitting any regression model, we can bootstrap the test set to create a confidence interval for the population error of a model.						
10. (7	point	s) Thinking	g in Parallel					
$\cot ag{th}$	lumn i ese fun	n the DataFran	me df and fit	a decision tr	ee to a design	gn matrix. As	on to compute the sume that all othe actions that can be	r code outside
@	ray.re	emote		(eray.remote			
d		g(col): . # Takes 1 se	econd to run	C	def fit_tree	e(df): akes 2 second	s to run	
(a	, , ,	ot) If df contain f if we call avg		s, how many	seconds will	it take to com	npute the average f	or all columns
	\bigcirc 1	1		\bigcirc 2		\bigcirc 10		\bigcirc 20
(b) (2 p	ot) If df contai	ins 10 column	s, how many	seconds will	it take to run	the following code	?
	va	ls = []			\bigcirc 1			
		r col in df.c	olumns:		\bigcirc 2			
			(avg.remote(col))	\bigcirc 10			
	ra	y.get(vals)			\bigcirc 20			
(c	e) (2 j	ot) How many	seconds will i	t take to run	the following	g code?		
	fr	st = []			\bigcirc 1			
		r _ in range(10):		\bigcirc 2			
			(fit_tree.re	mote(df))	\bigcirc 10			
	ra	y.get(frst)			\bigcirc 20			
(d		pt) How many ctions in paralle		t take to run	the code in	part (c) if we	can only run a ma	ximum of four
	\bigcirc 1	1	\bigcirc 2	\bigcirc 3		\bigcirc 4	\bigcirc 5	\bigcirc 6

11. (0 points) Optional: Draw a Picture About Berkeley Data Science (or use this page for scratch work)