German University in Cairo Department of Computer Science Dr. Haythem O. Ismail

Theory of Computation, Winter Term 2013 Assignment3

Discussion: 19.10.13 - 24.10.13

Exercise 3-1

Reading

• Read pages 44 through 47 of the text.

Exercise 3-2

Exercises from Textbook

Sipser (pp 83 - 84): Solve exercises 1.4(f, g), 1.5(c, g).

Solution:

1.4 f) $L = \{w | w \text{ has an odd number of a's and ends with a b} \}$

Let M_1 be the DFA that recognizes $L_1 = \{w | w \text{ has an odd number of a's}\}$, with the following representation: $M_1 = (\{r_0, r_1\}, \{a, b\}, \delta_1, r_0, \{r_1\})$, where δ_1 is given by the following table:

$$\begin{array}{c|cccc}
 & a & b \\
\hline
r_0 & r_1 & r_0 \\
r_1 & r_0 & r_1
\end{array}$$
start \rightarrow

$$\begin{array}{c|ccccc}
 & a & b \\
\hline
 & & & & \\
\end{array}$$

Let M_2 be the DFA that recognizes $L_2 = \{w | w \text{ ends with a b}\}$, with the following representation: $M_1 = (\{s_0, s_1\}, \{a, b\}, \delta_2, s_0, \{s_1\})$, where δ_1 is given by the following table:

Thus L can be represented as $L = L_1 \cap L_2$. Let M be the DFA that recognizes $L_1 \cap L_2$. Therefore $M = (\{(r_0, s_0), (r_0, s_1), (r_1, s_0), (r_1, s_1)\} \{a, b\}, \delta, (r_0, s_0), \{(r_1, s_1)\})$. δ is given by the following table:

g) $L = \{w | w \text{ has even length and an odd number of } \mathbf{a}'\mathbf{s}\}$

Let M_1 be the DFA that recognizes $L_1 = \{w | w \text{ has an odd number of a's}\}$, with the following representation: $M_1 = (\{r_0, r_1\}, \{a, b\}, \delta_1, r_0, \{r_1\})$, where δ_1 is given by the following table:

Let M_2 be the DFA that recognizes $L_1 = \{w | w \text{ has even length}\}$, with the following representation: $M_2 = (\{s_0, s_1\}, \{a, b\}, \delta_2, s_0, \{s_0\})$, where δ_1 is given by the following table:

$$\begin{array}{c|cccc}
 & a & b \\
\hline
s_0 & s_1 & s_1 \\
s_1 & s_0 & s_0 \\
\hline
& a,b \\
\end{array}$$
start \rightarrow

$$\begin{array}{c|cccc}
 & a & b \\
\hline
& s_1 & s_1 \\
\hline
& s_0 & s_0 \\
\hline
& a,b \\
\end{array}$$

Thus L can be represented as $L = L_1 \cap L_2$. Let M be the DFA that recognizes $L_1 \cap L_2$. Therefore $M = (\{(r_0, s_0), (r_0, s_1), (r_1, s_0), (r_1, s_1)\} \{a, b\}, \delta, (r_0, s_0), \{(r_1, s_0)\})$. δ is given by the following table:

1.5 c) $L = \{w|w \text{ contains neither the substring ab nor ba}\}\$ $\overline{L} = \{w|w \text{ contains either the substring ab or ba}\}\$ The DFA for \overline{L} :

By switching accept and reject states, the DFA for L is as follows:

g) $L = \{w|w \text{ is any string that doesn't contain exactly two as}\}\$ $\overline{L} = \{w|w \text{ is any string that contains exactly two as}\}\$ The DFA for \overline{L} :

By switching accept and reject states, the DFA for L is as follows:

Exercise 3-3

Extra Problem

Prove that any finite language is regular.

Solution:

When saying that a language is finite, this can be said as a language L as n strings. Thus:

$$L = \{w_1, w_2, w_3, \dots, w_n\} = \bigcup_{i=1}^n \{w_i\}$$

Let $L_i = \{w_i\}$, be the language containing only the string w_i . Therefore if there is a DFA M_i that recognizes w_i , then L_i is regular.

Since any string is a finite sequence of symbols elements of an alphabet

$$w_i = s_1 s_2 s_3 \dots s_m$$

Therefore, the DFA M_i recognizing M_i can be represented as:

$$M_i = (Q_i, \Sigma_i, \delta_i, q_i, F_i)$$

$$Q_i = \{q_j | 1 \le j \le m+1\} \cup \{q_r\}$$

$$\Sigma_i = \{s_k | 1 \le k \le m\}$$

$$\delta_i(q_j, s_k) = \begin{cases} q_{j+1} & \text{if } j = k \\ q_r & \text{otherwise} \end{cases}$$

$$q_i = q_1$$

$$F_i = \{q_{m+1}\}$$

Thus, the Language L_i is regular, as there is the DFA M_i that recognizes it. Since $L = \bigcup_{i=1}^n L_i$, and regular languages are closed under union, therefore the language L is also regular. Thus, any finite language is regular.

Exercise 3-4

Programming

Using your favorite programming language, write a method/function/clause that, given two DFA M_1 and M_2 , constructs the DFA M such that $L(M) = L(M_1) \cup L(M_2)$.