Low Image Distortion Constrained Power Saving for OLED Displays

Reading Group ИППИ Пучков Кирилл, 777

План работы

В этой статье предложен метод малого искажения изображения, способствующий уменьшению энергопотребления дисплеем.

- Изучим вклад двух методов: гамма-коррекции и масштабировании насыщения — на энергопотребление дисплея. В результате увидим, что изменяя значение γ и насыщенность S можно добиться значительного снижения энергозатрат.
- Низкое γ-значение и высокая насыщенность могут исказить картинку до неузнаваемости, поэтому мы используем формулу цветового различия СІЕDE2000 и средний индекс структурного сходства MSSIM(Mean Structural Similarity Index) для определения эффективности нашего подхода.

OLED vs LED LCD

- ❖ В LCD-панелях используются жидкие кристаллы.
- За жидкими кристаллами находится фоновая подсветка.
- Каждый органический светодиод OLED-экрана светится сам по себе. Все это работает с помощью двух прозрачных электродов, между которыми находятся органические полупроводниковые слои.
- Яркость свечения регулируется силой тока.

Энергопотребления содержимого дисплея на пиксельном уровне

$$P_{content} = \sum_{i=1}^{n} P_{pixel}^{i} = \sum_{i=1}^{n} (w_0 + w_1 \cdot R_i^{\gamma} + w_2 \cdot G_i^{\gamma} + w_3 \cdot B_i^{\gamma})$$

- \bullet n количество пикселей на экране
- w_0 потребление мощности каждого пикселя в выключенном состоянии ($\sum_i w_0$ энергопотребление матрицы пикселей)
- $R_{ith}, G_{ith}, B_{ith} 3$ составляющие цвета *i*-ого пикселя
- ullet γ гамма-значение содержимого дисплея в стандартной RGB-модели
- $w_1: w_2: w_3 = 24: 35: 50$ константы эффективности красного, зеленого, синего цветов соответственно (обратно пропорциональны эффективности мощности). В процессе старения экрана они меняются, но мы будем считать их константами

Модель энергопотребления OLED дисплеями

Энергопотребление OLED дисплея определяется яркостью экрана и энергопотреблением его содержимого:

$$P_{display} = L \cdot P_{content} + P_{base}$$

- L яркость экрана ($\in [0, 255]$)
- P_{base} энергопотребление других элементов дисплея (например контроллера)

CIEDE2000

Формула CIEDE2000 сравнивает поочередно значения пикселей в модели HSV по заданной формуле и потом усредняет значение по всем пикселям.

$$\Delta E = \sqrt{\left(\frac{\Delta L}{K_L \cdot S_L}\right)^2 + \left(\frac{\Delta C}{K_C \cdot S_C}\right)^2 + \left(\frac{\Delta H}{K_H \cdot S_H}\right)^2 + R_T}$$

- \bullet \triangle E цветовая разница
- $\triangle L, \triangle C, \triangle H$ арифметическая разница яркостей, насыщенности и тона соответственно
- S_L, S_C, S_H компенсация для яркости, насыщенности и тона соответственно
- K_L, K_C, K_H параметрические константы
- R_T погрешность в синей области (очень мала)

MSSIM

Метод MSSIM делит картинку на окна для того, чтобы учесть, что пиксели имеют сильную взаимосвязь, когда они близки пространственно. В каждом пикселе выбирается окно 8x8, в котором происходит оценка качества для отдельной компоненты изображений.

$$MSSIM(x,y) = \frac{1}{n} \sum_{i=1}^{n} \frac{(2 \cdot \mu_x \cdot \mu_y + c_1) \cdot (2 \cdot \sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1) \cdot (\sigma_x^2 + \sigma_y^2 + c_2)}$$

- \bullet μ математическое ожидание
- σ^2 дисперсия
- \bullet σ ковариация

Mo

MSSIM возвращает значение в пределах [-1;1]. Значение близкое к 1 значит, что обработанные изображения почти идентичны.

Определим М₀ как порог восприятия MSSIM. Если значение MSSIM больше либо равно 0,99, то картинки нельзя различить. В наших опытах примем М₀ = 0.99.

Гамма-коррекция

Соотношение выходящего сигнала L_{out} и входящего L_{in} определяется формулой:

$$L_{out} = L_{max} \cdot L_{in}^{\gamma}$$

Где L_{max} — максимальная яркость пикселей.

Хорошего должно быть в меру

Низкое значение у может значительно уменьшить энергопотребление. Однако темные регионы могут стать неразличимы и, следовательно, из-за сильного искажения картинка перестанет быть удовлетворительной. Для сравнения двух рисунков в этой статье применяются методы измерения схожести CIEDE2000 и MSSIM.

Метод GC

На вход алгоритма подается изначальное изображение и порог восприятия Мо. Применим гаммакоррекцию последовательно ко всем пикселям исходного изображения. В конце каждой итерации внешнего цикла сравниваем исходное и измененное изображения. Будем увеличивать ү, пока m не станет ≧ М₀. Тогда вернемся на шаг назад и будем приближаться к требуемому значению уже сотыми.

```
Input: original image I.
Output: output image I'.
1: m \leftarrow -1; n \leftarrow 1; \gamma \leftarrow 0; oldm \leftarrow -1; old\gamma \leftarrow \gamma;
2: WHILE m < M_0 DO
      oldm \leftarrow m; oldy \leftarrow y;
      \gamma \leftarrow \gamma + (0.1)^n;
      pixel (x, y) \leftarrow get the first pixel of I;
      WHILE pixel (x, y) of I is exist DO
         read r, g, b of pixel (x, y);
         calculate r', g', b' using gamma function with γ;
         write r', g', b' to pixel (x, y) of I';
9:
10:
         pixel (x, y) \leftarrow get the next pixel of I;
       END WHILE
      m ← the MSSIM value between I and I':
13: END WHILE
14: IF n \le 1 THEN
15: m \leftarrow oldm; \gamma \leftarrow old\gamma;
16: n \leftarrow n + 1:
17: go to line 2;
18: END IF
```

Насыщенность цвета

Масштабирование насыщенности

Насыщенность S определим:

$$S = \begin{cases} 0, & \text{if } \max(R, G, B) = 0\\ \frac{\max(R, G, B) - \min(R, G, B)}{\max(R, G, B)} & \text{, otherwise} \end{cases}$$

В цветовой модели HSV насыщенность $S \in [0;1]$. Спектральный график насыщенности цвета от 0 до 1:

Масштабирование насыщенности

Для измерения вклада насыщенности в энергопотребление картинки, мы меняли значение насыщенности, оставляя неизменными тон и яркость. Как показано на графике, энергопотребление изображений спадает с повышением насыщенности. Это становится еще более наглядно с повышением V.

Этот факт является одним из важнейших в данной статье. Руководствуясь логикой, менее насыщенный цвет становится ближе в белому, а энергопотребление у белого - максимально.

Mетод SS

Определим "порог насыщения" S₀, при котором выходное изображение все еще приемлемо.

На вход алгоритма подается изначальное изображение и М₀. Увеличим насыщенность каждого пикселя исходного изображения. В конце каждой итерации внешнего цикла сравниваем исходное и измененное изображения.

Будем увеличивать насыщенность, пока m не станет ≧ M₀. Тогда вернемся на шаг назад и будем приближаться к требуемому значению уже сотыми.

```
Input: original image I.
Output: output image I'.
1: m \leftarrow -1; n \leftarrow 1; s' \leftarrow 1; oldm \leftarrow -1; olds' \leftarrow 1;
2: WHILE m < Mo DO
      oldm \leftarrow m; olds' \leftarrow s';
      s' \leftarrow s' - (0.1)^n;
      pixel (x, y) \leftarrow get the first pixel of I;
      WHILE pixel (x, y) of I is exist DO
         read r, g, b of pixel (x, y);
         convert r, g, b to h, s, v;
         IF s' >= 0 THEN
10:
            s' \leftarrow s + (1 - s) \times s';
        ELSE IF s' < 0 THEN
           s' \leftarrow s \times (1 + s');
        END IF
14:
        convert h, s', v to r', g', b';
15:
         write r', g', b' to pixel (x, y) of I';
         pixel (x, y) \leftarrow get the next pixel of I;
17: END WHILE
18: m ← the MSSIM value between I and I':
19: END WHILE
20: IF n \le 1 THEN
21: m ← oldm; s' ← olds';
22: n ← n + 1:
23: go to line 2:
24: END IF
```

GC+SS=GS

Мы нашли два способы снижения энергозатрат путем изменений структуры изображений. Оба метода независимы, так что мы можем применить их последовательно для любой картинки. Методы имеют временную сложность — O(N) операций умножений и сложения, где N — количество пикселей на экране телефона.

Для ускорения программы можно:

- Искать значения γ и S₀ двоичным поиском
- 2) Параллельно преобразовывать пиксели

Результаты на изображениях

Снижение энергозатрат картинкой

Images	MSSIM	ΔΕ	γ	Saturation	Power (µw)
Sea (Original)	1	0	-	-	1566
Sea (GC)	0.99	9.25	0.78	-	1242
Sea (SS)	0.99	1.86	-	0.13	1489
Sea (GS)	0.97	10.14	0.78	0.13	1188
Lion (Original)	1	0		-	1305
Lion (GC)	0.99	3.49	0.82	-	1042
Lion (SS)	0.99	2.98	-	0.14	1223
Lion (GS)	0.97	9.77	0.82	0.14	986
Bird (Original)	1	0	_	20	445
Bird (GC)	0.99	6.45	0.78	-	332
Bird (SS)	0.99	0.19	-	0.19	433
Bird (GS)	0.98	6.45	0.78	0.19	325

Энергопотребление до и после

