## A FIVE-BOX MODEL OF EARTH HISTORY

KYLE M. SAMPERTON

## 1. Model Overview

The goal of this exercise is to quantify the mass, compositional and isotopic evolution of the Earth system from 4.5 Ga to the present using a box-modeling approach. We are particularly interested in constraining five global reservoirs throughout Earth History, namely: the mantle (reservoir #1), continental crust (#2), oceanic crust (#3), seawater-atmosphere (#4), and sediments (#5). The relationships of these reservoirs, in addition to characteristic fluxes and enrichment factors, are illustrated below in Figure 1.



FIGURE 1. Schematic diagram of the Earth system as a five-reservoir box model, including the mantle, continental crust, oceanic crust, seawater-atmosphere and sediments.

## 2. Conservation of reservoir masses

The following ordinary differential equations (ODEs) balance the mass evolution of the mantle (man), continental crust (cc), oceanic crust (oc), seawater-atmosphere (sw), and sediments (seds) in terms of the mass fluxes into/out of each reservoir. Masses of individual reservoirs are denoted as  $M_{res}$ .

$$\frac{\mathrm{d}M_{man}}{\mathrm{d}t} + \frac{\mathrm{d}M_{cc}}{\mathrm{d}t} + \frac{\mathrm{d}M_{oc}}{\mathrm{d}t} + \frac{\mathrm{d}M_{sw}}{\mathrm{d}t} + \frac{\mathrm{d}M_{seds}}{\mathrm{d}t} = 0$$

(2) 
$$\frac{\mathrm{d}M_{man}}{\mathrm{d}t} = -Prodc - Prodo + Delam + Subd$$

(3) 
$$\frac{\mathrm{d}M_{cc}}{\mathrm{d}t} = -Delam - SilW + Prodc + Anatx$$

$$\frac{\mathrm{d}M_{oc}}{\mathrm{d}t} = -Subd + Prodo + Serp$$

$$\frac{\mathrm{d}M_{sw}}{\mathrm{d}t} = -Sed - Serp + SilW$$

(6) 
$$\frac{\mathrm{d}M_{seds}}{\mathrm{d}t} = -Anatx + Sed$$

## 3. Conservation of radiogenic parent/stable daughter isotopic abundances

The following ODEs describe the evolution of parent (P) and daughter isotopes (D) of an arbitrary radiogenic decay system characterized by decay constant  $\lambda_P$ . Note that these equations can be adapted for non-radiogenic species by excluding the first term on the right hand side of each equation (i.e., in situ radiogenic decay/growth term,  $\pm \lambda_P P_{res}^*$ ):

$$(7) \qquad \frac{\mathrm{d}P_{man}}{\mathrm{d}t} = -\lambda_{P}P_{man}^{*} - \left(\frac{Prodc}{M_{man}}P_{man}E_{12}^{P}\right) - \left(\frac{Prodo}{M_{man}}P_{man}E_{13}^{P}\right) + \left(\frac{Delam}{M_{cc}}P_{cc}E_{21}^{P}\right) + \left(\frac{Subd}{M_{oc}}P_{oc}E_{31}^{P}\right) + \left(\frac{Subd}{M$$

$$(8) \qquad \frac{\mathrm{d}D_{man}}{\mathrm{d}t} = \lambda_{P}P_{man}^{*} - \left(\frac{Prodc}{M_{man}}D_{man}E_{12}^{D}\right) - \left(\frac{Prodo}{M_{man}}D_{man}E_{13}^{D}\right) + \left(\frac{Delam}{M_{cc}}D_{cc}E_{21}^{D}\right) + \left(\frac{Subd}{M_{oc}}D_{oc}E_{31}^{D}\right) + \left(\frac{Subd}{M_{oc}}D_{cc}E_{31}^{D}\right) + \left(\frac{Subd}{M_$$

$$(9) \qquad \frac{\mathrm{d}P_{cc}}{\mathrm{d}t} = -\lambda_P P_{cc}^* - \left(\frac{SilW}{M_{cc}} P_{cc} E_{24}^P\right) - \left(\frac{Delam}{M_{cc}} P_{cc} E_{21}^P\right) + \left(\frac{Prodc}{M_{man}} P_{man} E_{12}^P\right) + \left(\frac{Anatx}{M_{seds}} P_{seds} E_{52}^P\right)$$

$$(10) \qquad \frac{\mathrm{d}D_{cc}}{\mathrm{d}t} = \lambda_P P_{cc}^* - \left(\frac{SilW}{M_{cc}}D_{cc}E_{24}^D\right) - \left(\frac{Delam}{M_{cc}}D_{cc}E_{21}^D\right) + \left(\frac{Prodc}{M_{man}}D_{man}E_{12}^D\right) + \left(\frac{Anatx}{M_{seds}}D_{seds}E_{52}^D\right)$$

$$\frac{\mathrm{d}P_{oc}}{\mathrm{d}t} = -\lambda_P P_{oc}^* - \left(\frac{Subd}{M_{oc}} P_{oc} E_{31}^P\right) + \left(\frac{Prodo}{M_{man}} P_{man} E_{13}^P\right) + \left(\frac{Serp}{M_{sw}} P_{sw} E_{43}^P\right)$$

$$\frac{\mathrm{d}D_{oc}}{\mathrm{d}t} = \lambda_P P_{oc}^* - \left(\frac{Subd}{M_{oc}} D_{oc} E_{31}^D\right) + \left(\frac{Prodo}{M_{man}} D_{man} E_{13}^D\right) + \left(\frac{Serp}{M_{cw}} D_{sw} E_{43}^D\right)$$

$$\frac{\mathrm{d}P_{sw}}{\mathrm{d}t} = -\lambda_P P_{sw}^* - \left(\frac{Serp}{M_{sw}} P_{sw} E_{43}^P\right) - \left(\frac{Sed}{M_{sw}} P_{sw} E_{45}^P\right) + \left(\frac{SilW}{M_{cc}} P_{cc} E_{24}^P\right)$$

$$\frac{\mathrm{d}D_{sw}}{\mathrm{d}t} = \lambda_P P_{sw}^* - \left(\frac{Serp}{M_{sw}} D_{sw} E_{43}^D\right) - \left(\frac{Sed}{M_{sw}} D_{sw} E_{45}^D\right) + \left(\frac{SilW}{M_{cc}} D_{cc} E_{24}^D\right)$$

(15) 
$$\frac{\mathrm{d}P_{seds}}{\mathrm{d}t} = -\lambda_P P_{seds}^* - \left(\frac{Anatx}{M_{seds}} P_{seds} E_{52}^P\right) + \left(\frac{Sed}{M_{sw}} P_{sw} E_{45}^P\right)$$

$$\frac{\mathrm{d}D_{seds}}{\mathrm{d}t} = \lambda_P P_{seds}^* - \left(\frac{Anatx}{M_{seds}} D_{seds} E_{52}^D\right) + \left(\frac{Sed}{M_{sw}} D_{sw} E_{45}^D\right)$$