$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 2 \cdot \chi_{16} \end{vmatrix} \ 108 \quad 0 \quad -6$

 $1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \begin{vmatrix} 27 & 3 & 5 & -1 \end{vmatrix}$

 $\begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \end{vmatrix} \ 27 \quad 3 \quad -5 \quad -1$

 $\begin{vmatrix} 1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + \overline{0 \cdot \chi_{15} + 0 \cdot \chi_{16}} \end{vmatrix} \ \frac{12}{4} \quad 0 \quad 0$

 $0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \begin{vmatrix} 1 & 1 & -1 & 1 \end{vmatrix}$

 $\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} & 10 & -2 & 0 & 0 \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} & 10 & -2 & 0 & 0 \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} & 10 & -2 & 0 & 0 \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} & 10 & -2 & 0 & 0 \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} & 10 & -2 & 0 & 0 \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} & 10 & -2 & 0 & 0 \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} & 10 & -2 & 0 & 0 \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} +$

 $\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \end{vmatrix} \quad 9 \quad 1 \quad -1 \quad 1$

 $\left| \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \ \right| \ 36 \quad 0 \quad 0 \quad -2$

 $\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \end{vmatrix} \ 18 \ -2 \ 2 \ 0 \ -E(5)^2 4 \ E(8) - E(8)^3 \ -E(8) + E(8)^3 \ E(5) + E(5)^4 \ E(8) - E(8)^3 \ -E(8) + E(8)^3 \ -E(8)^3 + E(8)^3 \ -E(8)^3 + E(8)^3 \ -E(8)^3 + E(8)^3 \ -E(8)^$

 $\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \end{vmatrix} \begin{vmatrix} 18 & -2 & -2 & 0 \\ 18 & -2 & -2 & 0 \end{vmatrix}$

Ordinary character table of $G \cong (C3 . A6) : C2$:

												$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0 2 2 \neq F(5)$	$2 + F(5)^{2} = 2$	$2 * E(5)^2 2 - 2 * E(5)^3$	2 1 0	0	0	0	1 $F(5) + F(5)^{\wedge} A$	$E(5)^2 + E(5)^3$
												1		` '		, -	0	0	0 -		
												$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	` '	` /	-2*E(5) - 2*E(5) 4	1 0	0	U	U -	$E(5)^2 + E(5)^3$	
												$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-E(5) - E(5) - 4	0 0	0	$-E(5) - E(5)^{} 4$ -	-E(5) 2 - E(5) 3 0	$0 - E(5)^2 - E(5)^3$	
												$ \chi_6 8 0 2 8$		$-E(5)^4$	$-E(5)^2 - E(5)^3$	0 0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$0 -E(5) - E(5)^{} 4$	
												$ \chi_7 8 0 -2 8$		$-E(5)^4$	$-E(5)^2 - E(5)^3$	0 0	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$0 -E(5) - E(5)^{} 4$	$-E(5)^2 - E(5)^3$
												$ \chi_8 8 0 2 8$	-1 0 -E(5)	$(2 - E(5)^3)$	$-E(5) - E(5)^{} 4$	0 0	0	$E(5) + E(5)^{} 4$	$E(5)^2 + E(5)^3$	$0 - E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$
												$ \chi_9 9 1 -1 9$		-1	-1	1 1	1	-1	-1	$1 \qquad \qquad -1$	-1
												$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-1	-1	1 –1	-1	1	1	1 –1	-1
												$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 - 2	0	0	2 0	0	0	0 -	-2 0	0
												$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 0	0	0	-2 $E(8) - E(8)^{2}$	$-E(8) + E(8)^3$	0	0 (0 0	0
												$\begin{bmatrix} \chi_{12} & 10 & 2 & 0 & 10 \\ \chi_{13} & 10 & -2 & 0 & 10 \end{bmatrix}$	1 0	0	0		E(8) - E(8) - E(8) = 3	Ö	0 (0	0
												$\begin{bmatrix} \chi_{13} & 10 & 2 & 0 & 10 \\ \chi_{14} & 12 & 4 & 0 & -6 \end{bmatrix}$	0 0	9	2	$\frac{2}{2} = \frac{L(0) + L(0)}{0}$		0	0 (0 0	1
												$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0	2	2	-2 0 1 0	0	0	0	1 1	-1 1
												$\chi_{15} \begin{vmatrix} 18 & 2 & 0 & -9 \\ 20 & 2 & 0 & 15 \end{vmatrix}$	0 2	-2	-2	-1 0	0	0	0 =	-1 1	1
												$\chi_{16} \mid 30 -2 0 -15$	0 -2	0	<u> </u>	1 0	0	<u> </u>	<u> </u>	1 0	0
$\frac{1}{2}$																					
ial source character table of G \cong (C3 . A6) : C2 at p = 3 $rmalisers \ N_i$ $subgroups of G up to conjugacy in G$ $presentatives \ n_j \in N_i$ $1a$								77			27 27	27									
$rac{rmalisers N_i}{r}$		N_1						N_2			N_3 N_4	N_5									
subgroups of G up to conjugacy in G		P_1						P_2			$ P_3 P_4 $	P_5									
resentatives $n_j \in N_i$	2a $2b$ $4a$ $5a$ $5b$	8a $8b$	10a	10b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5b	8a	8b	10a	10b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4a $8b$ $8a$ $8a$	8b								
$\frac{1}{1} + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 2 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} $	9 5 -3 6 6	1 1	0	0	0 0 0 0 0	0	0	0	0	0	0 0 0 0 0 0 0	0 0 0 0	0								
$\chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 2 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} $ 81		-1 -1	0	0	0 0 0 0	0	0	0	0	0		0 0 0 0	0								
$\chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} $ 54		$E(5)^3 = E(8) - E(8)^3 = -E(8) + E(8)^3$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	0 0 0 0	0	0	0	0	0		0 0 0 0	0								
$\chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 1 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16}$		$(5)^4 - E(8) + E(8)^3 = E(8) - E(8)^3$		$-E(5)^{} 2 - E(5)^{} 3$	0 0 0 0	0	0	0	0	0		0 0 0 0	0								
$\frac{\chi_{1}}{\chi_{1}} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 1 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16}}{54}$		$E(5)^3 - E(8) + E(8)^3 - E(8) - E(8)^3$	* * * * * * * * * * * * * * * * * * * *	$E(5) + E(5)^4$	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Õ	Ö	Õ	o O	Õ			o l								
				$E(5)^2 + E(5)^3$		0	0	0	0	0			0								
$\chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} = 54$			E(5) + E(5) = 4 3 $E(5) - E(5)^2 - E(5)^3 + E(5)^4$			0	0	0	0	0			0								
$\chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 2 \cdot \chi_{16} \mid 108 \cdot \chi_{10} \mid 108 $	0 0 -0 3	$E(8) - E(8)^3 - E(8) + E(8)^3$	b = E(b) - E(b) / 2 - E(b) / 3 + E(b) / 3	$4 - E(5) + E(5)^2 + E(5)^3 - E(5)$	0 4 0 0 0 0	U	U	U	U	U		0 0 0	U								

 $|\chi_2|$ 1 1 -1 1 1 1 1

 $0 \quad 0 \quad 0$

 $E(5) + E(5)^4$ | 0 0 | 0 0 0 0 0 0 0 0 0 0

 $E(5)^2 + E(5)^3$ 0 0 0 0 0 0 0 0 0 0

 $-E(8) + E(8)^3 - E(8) - E(8)^3 - E(5) + E(5)^2 - E(5)^3 - E(5)^4 - E(5)^2 - E(5)^3 - E(5)^4 - E(5)^4$

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 3
 3
 0
 0
 0
 0
 0
 0
 0
 0
 0

 $\begin{vmatrix} 1 & -1 & 1 & -1 & 1 & -1 & E(4) & -E(4) & -E(8) & -E(8)^3 & E(8) & E(8)^3 \end{vmatrix}$

 $\begin{vmatrix} 1 & -1 & 1 & -1 & 1 & -1 & E(4) & -E(4) & E(8) & E(8)^3 & -E(8) & -E(8)^3 \end{vmatrix}$

 $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & -1 & -E(4) & E(4) & -E(4) & E(4) \end{vmatrix}$

 $\begin{vmatrix} 1 & -1 & 1 & -1 & 1 & -1 & -E(4) & E(4) & -E(8) & 3 & -E(8) & E(8) & 3 & E(8) \end{vmatrix}$

 $\begin{vmatrix} 1 & -1 & 1 & -1 & 1 & -1 & -E(4) & E(4) & E(8) & 3 & E(8) & -E(8) & 3 & -E(8)$

 $P_1 = Group([()]) \cong 1$

 $P_1 = Group([(1)]) \cong 1$ $P_2 = Group([(1, 49, 62)(2, 45, 57)(3, 50, 71)(4, 29, 44)(5, 95, 30)(6, 64, 60)(7, 63, 48)(8, 61, 26)(9, 67, 17)(10, 46, 70)(11, 15, 28)(12, 40, 94)(13, 91, 59)(14, 82, 84)(16, 34, 47)(18, 33, 80)(19, 36, 32)(24, 31, 27)(25, 93, 53)(37, 92, 90)(38, 55, 76)(39, 78, 99)(41, 65, 100)(42, 89, 75)(43, 52, 51)(56, 66, 77)(68, 73, 86)(69, 74, 83)(72, 79, 98)(85, 88, 97)]) \cong C3$

 $P_3 = Group([(1,85,6)(2,25,74)(3,8,44)(4,50,61)(5,19,39)(7,70,43)(9,11,33)(10,52,63)(12,37,82)(13,42,47)(14,94,90)(15,80,67)(60,62,97)$

 $-E(8) + E(8)^3$ $E(8) - E(8)^3$

 $E(8) - E(8)^3 - E(8) + E(8)^3$

 $-E(8) + E(8)^3$ $E(8) - E(8)^3$

 $E(8) - E(8)^3 - E(8) + E(8)^3$

 $P_4 = Group([(1,4,89)(2,25,69)(3,34,85)(5,33,37)(6,26,13)(7,98,76)(29,75,49)(31,79,55)(32,67,82)(41,66,68)(42,62,44)(43,51,52)(45,93,74)(47,88,50)(53,83,57)(54,87,58)(56,66,77)(68,73,86)(69,74,83)(72,79,98)(85,88,97)] \cong C3 \times C3 \\ P_5 = Group([(1,8,89)(2,25,69)(3,34,85)(24,31,27)(25,93,53)(37,92,90)(38,55,76)(39,78,99)(41,65,100)(42,89,75)(43,52,51)(56,66,77)(68,73,86)(69,74,83)(72,79,98)(85,88,97)] \cong C3 \times C3 \\ P_5 = Group([(1,8,89)(2,25,74)(3,84)(4,50,51)(43,94,14)(43,94)(43,94)(43,94,14)(43,94)(43,94,14)(43,94)(43,94,14)(43,94)(43,94,14)$

 $E(5) + E(5)^{4}$ | 18 2 -2 0 -E(5) - E(5)^4 -E(5)^3 -E(8) + E(8)^3 -E(8) - E(8)^3

 $E(5)^2 + E(5)^3$ $18 \quad 2 \quad -2 \quad 0 \quad -E(5)^2 - E(5)^3 \quad -E(5) - E(5)^4 \quad E(8) - E(8)^3 \quad -E(8) + E(8)^3 \quad E(5) + E(5)^4$

 $-E(8) + E(8)^3 = E(8) - E(8)^3 = -E(5) + E(5)^2 + E(5)^3 - E(5)^4 = E(5) - E(5)^2 - E(5)^3 + E(5)^4 = 0 = 0 = 0$

 $-E(8) + E(8)^3 = E(8) - E(8)^3 = -E(5) + E(5)^2 + E(5)^3 - E(5)^4 = E(5) - E(5)^2 - E(5)^3 + E(5)^4 = 36 = 0 = 0 = -2$

0 0 0 0

0 0 0 0 0

 $\begin{vmatrix} 10 & 0 & 2 & -2 \end{vmatrix}$

 $10 \quad 0 \quad 2 \quad -2$

 $\begin{vmatrix} 10 & 0 & -2 & 0 & 0 \end{vmatrix}$

 $\begin{vmatrix} 10 & 0 & -2 & 0 \end{vmatrix}$

 $\begin{vmatrix} 10 & 0 & -2 & 0 \end{vmatrix}$

 $\begin{vmatrix} 27 & -5 & 3 & -1 \end{vmatrix}$

| 9 -1 1 1 1 -1

 $N_1 = Group([(1,69,64,84)(2,100,53,91,94,7,92,29)(3,18,26,31,10,9,77,30)(4,45,65,25,13,12,48,90)(5,71,33,61,27,70,67,66)(6,14,62,74)(8,24,46,17,56,95,50,80)(11,73,36,52,55,42,78,34)(15,68,32,43,76,75,99,16)(19,51,38,89,39,47,28,86)(20,35,23,54,58,79,68)(11,73,36,52,55,42,78,34)(15,68,32,43,76,75,99,16)(19,51,38,89,39,47,28,86)(20,35,23,54,58,79,68)(11,73,36,52,55,42,78,34)(15,68,32,43,76,75,99,16)(19,51,38,89,39,47,28,86)(20,35,23,54,58,79,68)(11,73,36,52,55,42,78,34)(15,68,32,43,76,75,99,16)(19,51,38,89,39,47,28,86)(20,35,23,54,58,79,68)(11,73,36,52,55,42,78,34)(15,68,32,43,76,75,99,16)(19,51,38,89,39,47,28,86)(20,35,23,54,58,79,68)(11,73,36,52,55,42,78,34)(15,68,32,43,76,75,99,16)(19,51,38,89,39,47,28,86)(20,35,23,54,58,79,68)(11,73,36,52,55,42,78,34)(15,68,32,43,76,75,99,16)(19,51,38,49,57,73,80)(14,56,37,71,74,70,93,89)(20,35,23,54,58,79,68$

 $0 -E(8) + E(8)^3 E(8) - E(8)^3$

 $-E(8) + E(8)^3 = E(8) - E(8)^3$

 $E(8) - E(8)^3 - E(8) + E(8)^3$

 $E(8) - E(8)^3 - E(8) + E(8)^3$

1