Delaunay Triangulation

CS60064: Computational Geometry (2021-22 Spring)

March 2022

Partha Bhowmick (CSE, IIT Kharagpur)

• •

Input $P = \{5 \text{ sites}\}$

Task:

Output
$$\mathcal{T} = \{4 \text{ triangles}\}\$$

 $A = \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{12}$

Output
$$\mathcal{T}' = \{4 \text{ triangles}\}\$$

 $A' = \alpha'_1 \leq \alpha'_2 \leq \cdots \leq \alpha'_{12}$

Output
$$\mathcal{T} = \{4 \text{ triangles}\}\$$

 $A = \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{12}$

Output
$$\mathcal{T}' = \{4 \text{ triangles}\}\$$

 $A' = \alpha'_1 \leq \alpha'_2 \leq \cdots \leq \alpha'_{12}$

Output
$$\mathcal{T} = \{4 \text{ triangles}\}\$$

 $A = \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{12}$

Output
$$\mathcal{T}' = \{4 \text{ triangles}\}\$$

 $A' = \alpha'_1 \leq \alpha'_2 \leq \cdots \leq \alpha'_{12}$

- 1. Join the sites of P by non-intersecting straight line segments so as to get a triangulation of P.
- 2. Minimum angle is maximized.

Output
$$\mathcal{T} = \{4 \text{ triangles}\}\$$

 $A = \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{12}$

Output
$$\mathcal{T}' = \{4 \text{ triangles}\}\$$

 $A' = \alpha'_1 \leq \alpha'_2 \leq \cdots \leq \alpha'_{12}$

- 1. Join the sites of P by non-intersecting straight line segments so as to get a triangulation of P.
- 2. Minimum angle is maximized. \Longrightarrow (possibly) no sliver! (more precisely, all circumcircles are empty will see later) \Longrightarrow Delaunay

- 1. Join the sites of P by non-intersecting straight line segments so as to get a triangulation of P.
- 2. Minimum angle is maximized. \Longrightarrow No sliver!

1st circumcircle is empty

2nd circumcircle is empty

3rd circumcircle is empty

4th circumcircle is empty

So, all circumcircles are empty

1. Mark the centers of the empty circumcircles

- 1. Notice the centers of the empty circumcircles.
- 2. What are these centers?

- 1. Notice the centers of the empty circumcircles.
- 2. What are these centers? They are the vertices in VD(P)!

So, a reverse thinking gives DT(P):

1. Construct VD(P).

- 1. Imagine both VD(P) and DT(P) as planar graphs.
- 2. **for** every face $f \in VD(P)$ add a unique vertex v_f in DT(P)

- 1. Construct VD(P).
- 2. Construct the dual of VD(P) to get DT(P).

- 1. Imagine both $\mathrm{VD}(P)$ and $\mathrm{DT}(P)$ as planar graphs.
- 2. **for** every face $f \in VD(P)$ add a unique vertex v_f in DT(P)
- 3. **for** every face $f \in \mathrm{VD}(P)$ **for** every face f' adjacent to fadd the edge $(v_f, v_{f'})$ in $\mathrm{DT}(P)$

- 1. Construct VD(P).
- 2. Construct the dual of VD(P) to get DT(P).

- 1. Imagine both $\mathrm{VD}(P)$ and $\mathrm{DT}(P)$ as planar graphs.
- 2. **for** every face $f \in VD(P)$ add a unique vertex v_f in DT(P)
- 3. **for** every face $f \in VD(P)$ **for** every face f' adjacent to fadd the edge $(v_f, v_{f'})$ in DT(P)

- 1. Construct VD(P).
- 2. Construct the dual of VD(P) to get DT(P).

- 1. Imagine both $\mathrm{VD}(P)$ and $\mathrm{DT}(P)$ as planar graphs.
- 2. **for** every face $f \in VD(P)$ add a unique vertex v_f in DT(P)
- 3. **for** every face $f \in \mathrm{VD}(P)$ **for** every face f' adjacent to fadd the edge $(v_f, v_{f'})$ in $\mathrm{DT}(P)$

- 1. Construct VD(P).
- 2. Construct the dual of VD(P) to get DT(P).

- 1. Imagine both VD(P) and DT(P) as planar graphs.
- 2. **for** every face $f \in VD(P)$ add a unique vertex v_f in DT(P)
- 3. **for** every face $f \in VD(P)$ **for** every face f' adjacent to fadd the edge $(v_f, v_{f'})$ in DT(P)
- 4. Straighten the edges to get the triangulation

- 1. Construct VD(P).
- 2. Construct the dual of VD(P) to get DT(P).

Sites

Note 1: Its boundary = convex hull of P

Note 1: Its boundary = convex hull of P

Note 2: Slivers exist but their circumcircles are empty.

Note 1: Its boundary = convex hull of P

Note 2: Slivers exist but their circumcircles are empty.

Algorithms for DT

- 1. Using VT [last slide] $O(n \log n)$ time
- 2. Independent (simple) randomized algorithm using search tree and edge-flip operations $O(n \log n)$ expected time
- 3. Using only edge-flips iteratively (greedy) $O(n^2)$ time, convergence in question

2. Randomized algorithm using search tree

Take a huge triangle (with 3 extra sites as vertices), and label the sites randomly.

Triangulation for p_1

Triangulation for p_2 (after searching its containing triangle)

Edge-flip after triangulation for p_2

Triangulation for p_3 (after searching its containing triangle)

Triangulation for p_3 (after searching its containing triangle)

Edge-flip after triangulation for p_3

Triangulation for p_4 (after searching its containing triangle)

Edge-flips after triangulation for p_4

Triangulation for p_5

Edge-flips after triangulation for p_5

Edge-flips after triangulation for p_5

Triangulation for p_1, \ldots, p_5

Triangulation for p_6

Edge-flips after triangulation for p_6

Triangulation for p_1, \ldots, p_6

Triangulation for p_7

1st edge-flip after triangulation for p_7

2nd edge-flip after triangulation for p_7

2nd edge-flip after triangulation for p_7

3rd edge-flip after triangulation for p_7

3rd edge-flip after triangulation for p_7

Triangulation for p_1, \ldots, p_7

Circumcircles on triangulation for p_1, \ldots, p_7

Circumcircles on triangulation for p_1, \ldots, p_7 (All circumcircles are empty)

Circumcircles on triangulation for p_1, \ldots, p_7 (All circumcircles are empty)

Almost final triangulation (with extra edges & 3 extra sites)

After removing extra edges

After adding convex-hull edges

Final triangulation

Final triangulation

(All circumcircles are empty)

Algorithms for DT

3. Using only edge-flips iteratively (greedy)

Applications for DT

- 1. 3D map / 3D terrain modeling from discrete points
- 2. 3D surface reconstruction
- 3. Euclidean minimum spanning tree of P
- 4. And many such...

3D map modeling from discrete points

3D surface reconstruction

Given: n sites, $\binom{n}{2}$ pairwise distances

To find: MST connecting these sites

1. Compute DT

- 1. Compute DT
- 2. Find MST with edges of DT as edges of the graph O(n) time

- 1. Compute DT
- 2. Find MST with edges of DT as edges of the graph O(n) time