- **20.1.** Пусть e_n числовая последовательность с единицей на n-м месте и нулем на остальных. Исследуйте последовательность (e_n) на слабую сходимость в пространствах c_0 и ℓ^p ($1 \le p < \infty$).
- 20.2. Докажите, что последовательность непрерывных функций на отрезке слабо сходится тогда и только тогда, когда она равномерно ограничена и сходится поточечно.
- **20.3.** Пусть T_ℓ и T_r операторы левого и правого сдвига в ℓ^2 . Исследуйте последовательности (T_ℓ^n) и (T_r^n) на сходимость
- 1) по норме в $\mathscr{B}(\ell^2)$;
- 2) в сильной операторной топологии на $\mathscr{B}(\ell^2);$
- 3) в слабой операторной топологии на $\mathscr{B}(\ell^2)$.
- **20.4-b.** Пусть (X,μ) пространство с мерой. Для каждого $p \in (0,1)$ определим векторное пространство $L^p(X,\mu)$ так же, как и при $p \geqslant 1$. Для $f \in L^p(X,\mu)$ положим

$$|f|_p = \int_X |f(x)|^p d\mu(x).$$

- 1) Докажите, что $\rho(f,g) = |f-g|_p$ метрика на $L^p(X,\mu)$.
- **2)** Докажите, что $L^p(X,\mu)$ локально выпукло лишь в том случае, когда оно конечномерно.
- **3)** Докажите, что $L^p[0,1]^* = \{0\}.$
- **20.5-b.** Пусть (X,μ) пространство с конечной мерой. Обозначим через $L^0(X,\mu)$ пространство классов эквивалентности μ -измеримых функций на X (как обычно, функции эквивалентны, если они равны почти всюду). Для $f \in L^0(X,\mu)$ положим

$$|f|_0 = \int_X \frac{|f(x)|}{1 + |f(x)|} d\mu(x).$$

- 1) Докажите, что $\rho(f,g) = |f g|_0$ метрика на $L^0(X,\mu)$.
- **2)** Докажите, что сходимость по метрике из п. 1 это то же самое, что сходимость по мере.
- 3) Докажите, что $L^0(X,\mu)$ локально выпукло лишь в том случае, когда оно конечномерно.
- **4)** Докажите, что $L^0[0,1]^* = \{0\}.$
- **20.6.** Пусть $\langle X, Y \rangle$ дуальная пара векторных пространств. Докажите, что
- 1) $\dim X < \infty \iff \dim Y < \infty \iff$ слабая топология $\sigma(X,Y)$ нормируема;
- **2-b)** слабая топология $\sigma(X,Y)$ метризуема \iff размерность Y не более чем счетна;
- **3-b)** слабая топология на бесконечномерном нормированном пространстве и слабая* топология на пространстве, сопряженном к бесконечномерному банахову пространству, неметризуемы.
- **20.7.** Докажите, что слабая топология на пространстве \mathbb{K}^S (где S множество) совпадает с исходной.
- **20.8.** Пусть X и Y нормированные пространства. Обозначим через SOT, WOT и NT соответственно сильную операторную топологию, слабую операторную топологию и топологию, задаваемую операторной нормой на $\mathcal{B}(X,Y)$.
- 1) Докажите, что WOT \subset SOT \subset NT.
- 2) Докажите, что если Y бесконечномерно, то WOT \neq SOT.
- 3) Докажите, что если X бесконечномерно, то $SOT \neq NT$.
- **20.9.** Пусть X, Y нормированные пространства. Докажите, что подмножество $M \subset \mathcal{B}(X, Y)$ равностепенно непрерывно тогда и только тогда, когда оно ограничено по операторной норме.

- **20.10. 1)** Приведите пример линейного оператора между хаусдорфовыми ЛВП X и Y, непрерывного относительно слабых топологий на X и Y, но не непрерывного.
- **2)** Приведите пример линейного оператора между хаусдорфовыми ЛВП, переводящего ограниченные множества в ограниченные, но не непрерывного.
- 3) Приведите пример линейного оператора между хаусдорфовыми ЛВП, переводящего ограниченные множества в ограниченные, но не непрерывного относительно слабых топологий на X и Y.
- **20.11.** Докажите, что пространство c_0 секвенциально плотно в своем втором сопряженном относительно слабой* топологии.
- **20.12.** Приведите пример банахова пространства X и векторного подпространства $Y \subset X^*$, которое замкнуто по норме, но не замкнуто в слабой* топологии.
- **20.13-b.** Докажите, что в пространстве ℓ^1 всякая слабо сходящаяся последовательность сходится по норме.
- **20.14-b.** Приведите пример ограниченного линейного оператора между банаховыми пространствами, который переводит слабо сходящиеся последовательности в последовательности, сходящиеся по норме, но тем не менее не является компактным.
- **Определение 20.1.** Пусть X локально выпуклое пространство, топология которого порождена семейством полунорм P. Для каждого $p \in P$ положим $X_p^0 = X/p^{-1}(0)$ и будем рассматривать X_p^0 как нормированное пространство относительно факторнормы полунормы p. Пополнения X_p нормированных пространств X_p^0 называются accouuuposanhыми с X банаховыми пространствами.
- 20.15. Опишите банаховы пространства, ассоциированные со следующими ЛВП:
- 1) \mathbb{K}^{S} (S множество); 2) C(X) (X топологическое пространство); 3) $C^{\infty}[a,b]$;
- **4)** $C^{\infty}(\mathbb{R})$; **5)** $\mathscr{O}(U)$ (U- область в $\mathbb{C})$.
- **20.16.** Для каждой ограниченной области $U \subset \mathbb{C}$ обозначим через $\mathscr{A}(\overline{U})$ подпространство в $C(\overline{U})$, состоящее их тех функций, которые голоморфны в U.
- 1) Положим $\mathbb{D}_r = \{z \in \mathbb{C} : |z| < r\}$. Докажите, что при r < R оператор ограничения $\mathscr{A}(\overline{\mathbb{D}}_R) \to \mathscr{A}(\overline{\mathbb{D}}_r)$, сопоставляющий каждой функции из $\mathscr{A}(\overline{\mathbb{D}}_R)$ ее ограничение на $\overline{\mathbb{D}}_r$, разлагается в композицию $\mathscr{A}(\overline{\mathbb{D}}_R) \xrightarrow{\varphi} \ell^1 \xrightarrow{M_{\lambda}} \ell^1 \xrightarrow{\psi} \mathscr{A}(\overline{\mathbb{D}}_r)$, где φ, ψ непрерывные операторы, а M_{λ} компактный диагональный оператор. Выведите отсюда, что оператор ограничения компактен.
- **2)** Докажите, что всякое ограниченное подмножество в пространстве $\mathcal{O}(\mathbb{D}_r)$ относительно компактно.
- **3-b)** Пусть U, V ограниченные области в \mathbb{C} , причем $\overline{V} \subset U$. Интерпретируйте оператор ограничения $\mathscr{A}(\overline{U}) \to \mathscr{A}(\overline{V})$ как некоторый интегральный оператор, и выведите отсюда, что он компактен.
- **4-b)** (*теорема Монтеля*). Пусть U область в \mathbb{C} . Докажите, что всякое ограниченное подмножество в пространстве $\mathcal{O}(U)$ относительно компактно.
- **20.17.** Докажите, что всякое ограниченное подмножество в пространствах **1)** $C^{\infty}[a,b]$ и **2)** $C^{\infty}(\mathbb{R})$ относительно компактно.

Указание: используйте тот же прием, основанный на использовании ассоциированных банаховых пространств, что и в предыдущей задаче.