8. Übungsblatt

- 1. Aufgabe. Bestimmen Sie die allgemeinen Lösungen der Differentialgleichungen mit getrennten Variablen bzw. die Lösungen der Anfangswertprobleme:
- a) $y' = -t^2/y^3$, y(0) = 1,
- b) $yt^2y' = e^y$,
- c) $(1+t)y' = t^2y$, y(0) = 1,
- d) $y(1-t)y' = 1 y^2$.
- e) $ty'\cos y + \sin y = \sin^2 y$.
- f) $(y+2)y' = \sin(2t)$, y(0) = 1.
- 2. Aufgabe.

$$y' + 3y = e^t + 2\cos(2t)$$

Lösen Sie diese Dgl. durch "Variation der Konstanten".

3. Aufgabe.

$$y' - 4y = e^{4t} + \cos(2t)$$

Bestimmen Sie die allgemeine Lösung dieser Dgl. durch "Aufsuchen einer partikulären Lösung".

4. Aufgabe.

$$y' + y = 4e^t \cdot \sin(2t)$$

Lösen Sie diese Dgl.

- a) durch Variation der Konstanten,
- b) durch Aufsuchen einer partikulären Lösung.
- **5. Aufgabe**. Wie lauten die allgemeine Lösungen der folgenden homogenen linearen Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten?
 - a) y' + 4y = 0
 - b) 2y' + 4y = 0
 - c) -3y' = 8y
 - d) ay' by = 0
- 6. Aufgabe. Lösen Sie die inhomogene Differentialgleichung 1. Ordnung $y'-3y=t\cdot e^t$
 - a) durch Variation der Konstanten,

- b) durch Aufsuchen einer partikulären Lösung.
- **7. Aufgabe**. Lösen Sie die folgenden inhomogenen Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten nach der Methode "Aufsuchen einer partikulären Lösung":
 - a) y' = 2t y
 - b) $y' + 2y = 4e^{5t}$
 - c) $y' + y = e^{-t}$
 - d) $y' 4y = 5 \sin t$
 - e) $y' 5y = \cos t + 4\sin t$
 - f) $y' 6y = 3e^{6t}$
- 8. Aufgabe. Lösen Sie die folgenden Differentialgleichungen 1. Ordnung:
 - a) $y' = x(y^2 + 1)$
 - b) $y' = y \cdot \sin x$
 - c) y' = xy
 - d) $xy' + y = 2 \cdot \ln x$
 - e) $y' = 5x^4(y+1)$
 - $f) y' 5y = 2\cos x \sin(3x)$
- 9. Aufgabe. Lösen Sie die folgenden Anfangswertprobleme:
 - a) $y' + 4y = x^3 x$, y(1) = 2
 - b) $y' y = e^x$, y(0) = 1
 - c) $y' + 3y = -\cos x$, y(0) = 5
- 10. Aufgabe. Zeigen Sie, dass sich die nichtlineare Differentialgleichung 1. Ordnung

$$4yy' - y^2 = -(1+x^2)$$

mit Hilfe der Substitution $u=y^2$ in eine lineare Differentialgleichung 1. Ordnung überführen lässt und bestimmen Sie die allgemeine Lösung dieser Differentialgleichung.