WORKSHOP
APRENDIZADO POR REFORÇO COM

PONG

INTRODUÇÃO

GRUPO TURING

O que é Machine Learning?

- Termo criado por Arthur Samuel em 1959:
- A área de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados

Tipos de Aprendizado

Como algo pode ser aprendido?

- Aprendizado Supervisionado
- Aprendizado Não Supervisionado
- Aprendizado por Reforço

Aprendizado Supervisionado

- Aprendizado a partir de dados **já classificados**
- Tarefas como **classificação** e **regressão**

Aprendizado não Supervisionado

- Inferência a partir de dados sem respostas
- Tarefas de segregação e associação

Aprendizado por Reforço

- Aprendizado por tentativa e erro (dados obtidos pela experiência)
- O modelo tenta aprender um comportamento para maximizar sua performance
- Exemplo: um cachorro que aprende um comportamento com base em se seu dono lhe dá uma bronca ou um petisco

Onde usamos Aprendizado por Reforço?

- Robótica
 - Controle de drones
 - Automação
- Jogos
- Mercado Financeiro
 - Previsão de ações
 - Transações

CONCEITOS

GRUPO TURING

Agente

É o nosso *software*.

É a parte responsável por **tomar decisões**. E aprender as **melhores ações**.

O Agente não é exatamente um "personagem", mas podemos pensar assim para entender alguns exemplos.

Agente

Podemos até entender o "Mario" como o agente do nosso jogo, mas o agente seria o software que comanda suas ações.

Analogamente, poderíamos pensar que o **jogador** é o **"agente"** no xadrez, e não o Peão.

Ambiente

Mundo com o qual o Agente interage.

É o **espaço** que representa nosso problema, transmitindo informações ao Agente.

Vai além do espaço "físico", também inclui personagens, sujeitos, seres...

Estado

É a descrição em um instante das condições do **Agente** e do **Ambiente**.

É a partir dele que o Agente deve tomar suas decisões.

A diferente distribuição das peças de xadrez configuram **estados** diferentes do jogo.

Ambientes Parcialmente Observáveis

Alguns ambientes não fornecem a informação completa do estado.

O agente pode deduzir o restante das informações com base na memória.

Ex: jogos de estratégia, carro autônomo.

Ação

Comando que o Agente **escolhe** para **interagir** com o ambiente.

No Xadrez, seria equivalente a um **movimento.**

Espaço de Ação

Conjunto de todas as ações possíveis.

No Xadrez, equivale ao conjunto de todos os **movimentos possíveis.**

Espaço de Ação

Discreto

Quantidade **finita** de ações Simples de lidar Ex: Controle (10 botões)

Contínuo

Intervalo com **infinitas** ações Mais complexo

Ex: Velocidade (Entre 0 e 180 km/h)

Recompensa

A cada ação tomada, o Ambiente devolve um **feedback** ao Agente relatando a **efetividade** daquela ação.

Pode ser **positiva**, **negativa**, ou **nula**.

Ex: pontuação de um jogo.

Em casos em que criamos nosso próprio ambiente, devemos **modelar** nós mesmos as recompensas.

Se quisermos um time **agressivo** de futebol, por exemplo, podemos dar uma recompensa de +2 para cada gol feito e -1 para cada gol tomado.

Se quisermos desincentivar faltas, podemos penalizá-las com uma recompensa negativa.

PLRYER 1 00000500 HIGH SCORE

PLGYER 2

GENERIC VIDEO GRME FONT Ø1

HIGH SCORES

130000 WILLM

120000 GENE1

110000 FHING

100000 DJNIP

90000 FRODT

80000 P2PNT

70000 APHOR

60000 FRTCL

50000 THLMC

40000 CMURH

Retorno

O objetivo do nosso Agente é maximizar a soma de todas as <mark>recompensas</mark>.

Essa soma de recompensas a partir de um instante é chamada <mark>Retorno</mark>.

Ou seja, se a <mark>Recompensa</mark> era equivalente aos <mark>Pontos</mark> de um jogo, o <mark>Retorno</mark> é análogo ao Score Total.

© 2006-2011 R.MEEH ELECTRONICS
INSERT COIN CREDIT 00

Retorno

O **Retorno** é obtido a partir da seguinte equação:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

No cálculo do Retorno, somamos todas as recompensas multiplicadas por um fator de desconto (y) entre 0 e 1.

Esse fator faz com que as recompensas mais para o futuro se tornem para vez menores, fazendo o Retorno convergir para um valor real.

- Um γ próximo de 1 significa que nosso Retorno leva muito em conta as recompensas futuras.
- Um y próximo de 0 significa que levamos mais em conta recompensas recentes.

Política (π)

A política é o que guia as escolhas do nosso agente, fornece qual a próxima ação a ser tomada com base no estado atual.

Em jokenpô, jogar aleatoriamente pedra, papel ou tesoura seria uma política, assim como escolher uma sequência dos três.

O objetivo do nosso agente é encontrar a política ótima que escolhe a melhor ação para cada estado.

A melhor ação é aquela que nos leva ao maior retorno.

Valor (V)

O **Valor de um Estado** específico consiste no retorno esperado a partir daquele determinado estado.

$$V(s) = E[G_t | S_t = s]$$

$$V(s) = E[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + ... | S_t = s]$$

Basicamente o valor que representa a recompensa total que costumamos receber após passar por aquele estado, ou seja, **quão bom é estar naquele estado**.

Valor (V)

Com o **Valor** de um **Estado**, podemos escolher **Ações** que nos levem a **Estados** que tenham maior **Valor**.

Se o valor de um estado **\$1** é maior que o valor de um estado **\$2**, devemos tentar chegar em **\$1**.

Valor-Ação (q)

O **Valor de uma Ação** consiste no retorno esperado a partir do momento em que se toma aquela ação.

$$\begin{aligned} q_{*}(s, a) &= E_{\pi^{*}} \Big[G_{t} \mid S_{t} = s, A_{t} = a \Big] \\ &= E_{\pi^{*}} \Big[R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \cdots \mid S_{t} = s, A_{t} = a \Big] \end{aligned}$$

Dessa forma, o valor **q** de uma ação representa sua **qualidade**, ou quão bom é tomar aquela ação em um determinado estado.

O objetivo de muitos algoritmos de Aprendizado por Reforço é *estimar* os valores **q** de cada ação, para então escolher quais ações tomar escolhendo aquela de maior **q**.

CURRENT Q-VALUES

Resumo

O **Agente** interage com o **Ambiente** por meio de uma **Ação** escolhida por uma **Política**, e recebe uma **Recompensa** e um novo **Estado** para escolher a próxima **Ação**.

Escolher a ação com maior $\mathbf Q$ estado S_t R_t Ambiente R_{t+1} Ambiente

Teste o seu aprendizado

Dado o jogo ao lado, controlado por RL, como você descreveria...

- O Agente
- O Ambiente
- Uma ação
- Espaço de ação
- O estado

Pronto para praticar?

