SRI KRISHNA COLLEGE OF TECHNOLOGY

An Autonomous College, Accredited by NAAC with "A" grade Coimbatore, Tamil Nadu Academic Year 2021-2022 (ODD SEM)

B.E COMPUTER SCIENCE ENGINEERING

Class **Course Code** III YEAR 19CS501/19IT501

Course Title FORMAL LANGUAGES AND **AUTOMATATHEORY**

Date 09.8.21

Duration: 90 min Max: 50 Marks

Course Outcomes:				
CO1	Write a formal notation for strings, languages and machines, and design finite automata to accept a set of strings of a language.	[AP]		
CO2	For a given language determine whether the given language is regular or not.	[AP]		

Part – A (09 x 02 = 18 Marks) Answer All Questions			СО	Marks
1	Construct a DFA to accept strings over Σ ={0,1} with three consecutive 1's	AP	CO1	2
2	Design a state transition table for the given NFA 1 0,1 0,1 0,1	AP	CO1	2
3	Indicate the language class hierarchy in automata theory.	U	CO1	2
4	Check whether the string babbaaa will get accepted by the given DFA.	AP	CO1	2
5	Mention the closure properties of finite automata.	U	CO1	2
6	Design a NFA to recognize the string " dab " over $\Sigma = \{a,b,c,d\}$	AP	CO1	2
7	Construct a DFA to accept strings over $\Sigma = \{p,q\}$ with three consecutive p's	AP	CO1	2
8	State Arden's theorem and mention its significance.	AP	CO2	2
9	Differentite NFA and DFA	U	CO1	2

		$Part - B (02 \times 16 = 32 Marks)$	RBT	СО	Marks
10	i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AP	CO2	10
10	ii)	Construct NFA for the regular expression (a+b)*aba.	AP	CO2	6
11	i)	Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA)	AP	CO1	6
11	ii)	Prove that the language $\{a^nb^nc^n n>=1\}$ is not regular using pumping lemma.	AP	CO2	4
11	iii)	 Give NFA to accept the following languages over {p,q}*: 1. The set of all strings such that containing either pqp or qqp as substring. 2. The set of all strings such that every q is followed immediately by pp. 	AP	CO1	6