Felhívjuk szíves figyelmüket, hogy a jelen videófelvétel teljes tartalma szerzői jogvédelem alatt áll.

A videófelvétel a szerző kizárólag oktatási céllal bocsájtja a jogosultak rendelkezésére.

A videófelvétel egészének és/vagy bármely részének sokszorosítása, közzététele, bármely egyéb módon történő felhasználása kizárólag a szerző írásbeli engedélyével lehetséges.

Gépelemek mechatronikai mérnököknek

2. témakör

Kötések Csavarkötés

A kötések

FUNKCIÓJA: Erő vagy nyomaték vezetése relatív nyugalomban lévő szerkezeti elemek között.

DEFINÍCIÓJA: A kötések feladata az alkatrészek néhány - vagy valamennyi - szabadságfok szerinti relatív elmozdulásának megakadályozása, az alkatrészek közötti terhelés átadása alatt.

Osztályozásuk

Fizikai hatáselv szerint:

- erővel záró (súrlódási erő),
- alakkal záró,
- anyaggal záró.

Szerelés szerint:

- oldható,
- oldhatatlan.

Elemek szerint:

- közvetlen kapcsolatú,
- közvetítőelemes kapcsolatú.

Kötések elemzése

- 1.A terhelések és kényszerek meghatározása
- 2.Hatásfelületek meghatározása (terhelésátadó felületek: nyomott felület, veszélyes keresztmetszet) az **erőfolyam** alapján.
- 3. Egységnyi felületre eső terhelés meghatározása (átlagos nyomás, igénybevétel)
- 4.Összehasonlítás a határállapottal (megengedett igénybevétel) → n = ... (biztonsági tényező)
- 5. Különlegességek elemzése
- pl.: szállítókeresztmetszetben ébredő feszültség kiszámítása; gyűrűfeszültség meghatározása; rugalmas párna modell stb.

Csavarkötések

Sok fajtája létezik:

- Hatlapfejű csavar+hatlapú anya (átmenő furatban)
- Hatlapfejű csavar (zsákfuratban)
- Ászokcsavar
- Stb.

Csavarkötés anyagai

A csavaroknál a következő anyagjelölések használhatók:

3.6; 4.6; 4.8; 5.6; 5.8; 6.8; 8.8; 10.9; 12.9.

Az első szám 100-szorosa a minimális szakítószilárdságot adja meg MPa-ban, a második szám a névleges folyáshatár és a névleges szakítószilárdság hányadosának 10-szerese. (Például az 5.6 szilárdsági csoportba tartozó csavar minimális szakítószilárdsága 500 MPa, folyáshatára pedig 300 MPa.)

A csavaranya szilárdsági csoportjai a következők:

4; 5; 6; 8; 10; 12.

A csoportjelének 100-szorosa az un. vizsgálati feszültség MPaban kifejezve, ami annak az orsónak a minimális szakítószilárdsága amellyel az anya párosítható.

A csavarkötés hatásmechanizmusa

A csavarkötés egyszerre erővel és alakkal záró kötés!

Feladat: meghatározni az összefüggést a meghúzási nyomaték és az előfeszítő (orsóerő) között!

Erőhatások meghúzáskor

A mozgást akadályozó súrlódási erő: $F_S = \mu F_N$

Az ékhatás miatt:
$$F_N = \frac{F_N'}{\cos \frac{\beta}{2}}$$

A látszólagos súrlódási félkúpszög

$$\rho' = arctg\mu' = arctg \frac{\mu}{cos \frac{\beta}{2}}$$

Az anyameghúzásakor szükséges kerületi erő

$$F_K = F_v t g(\alpha + \rho')$$

Erőhatások lazításkor

Ha önzáró a csavarkötés:

$$F_K = F_{v} t g(\alpha - \rho')$$

Ha nem önzáró a csavarkötés:

A meghúzási nyomaték

A meneteken fellépő kerületi erőből a csavar meghúzási ill. lazítási nyomatéka:

$$M_v = F_K \cdot \frac{d_2}{2} = F_v \cdot tg(\alpha \pm \rho') \cdot \frac{d_2}{2}$$

Az anya meghúzásakor az anya homlokfelületén fellépő súrlódásból számítható nyomaték:

$$M_a = F_{\nu} \cdot \frac{d_a}{2} \cdot \mu_a$$

A teljes meghúzási nyomaték: $M_t = M_v + M_a$

A Klein-diagram

A kívánt meghúzási nyomaték csak bizonyos hibahatárral valósítható meg, így meghatározható a csavar szárában ébredő minimális és maximális előfeszítőerő.

$$M_v = F_K \cdot \frac{d_2}{2} = F_v \cdot tg(\alpha \pm \rho') \cdot \frac{d_2}{2}$$

Tehát: Mtmin és μmax -> Fvmin Mtmax és μmin ->Fvmax

Csavarkötések teherbírása (anya)

A csavarkötés mint alakkal záró kötés

Csavarkötések teherbírása (anya)

- 1) Terhelések meghatározása: F_v húzóerő
- 2) Hatásfelületek meghatározása A_p nyomott felület, A_{τ} nyírt felület
- 3) Egységnyi felületre eső terhelés meghatározása p=... τ=...
- 4) Összehasonlítás a határállapottal p_{meg} , τ_{meg}
- 5) Különlegességek elemzése

Különlegességek elemzése csavarmeneteken

Tehereloszlás a csavarmeneteken

Konstrukciós megoldások a felületi nyomás kiegyenlítésére

Csavarkötések teherbírása

Az anya magassága mellett az orsót is ellenőrizni kell!

- 1) Terhelések meghatározása: F_v húzóerő, M_t nyomaték
- 2) Hatásfelületek meghatározása A_N húzott felület, K_p csavart keresztmetszet
- 3) Egységnyi felületre eső terhelés meghatározása $\sigma_N = \dots \quad \tau_{cs} = \dots$
- 4) Összehasonlítás a határállapottal $\sigma = \sqrt{\sigma^2 + 3\tau^2} \le \sigma_{meg}$
- 5) Különlegességek elemzése

A csavarkötés erőjátéka

Adott egy tartály fedele. A tartály belső nyomása püzemi. A csavar szárában az előfeszítő erő Fv.

Kérdések:

- Mekkora lazítóerő (belső nyomás) hatására lazul le a kötés (kezd ereszteni a tartály)?
- A lazítóerő (belső nyomás) növelésével hogyan változik a csavar (és a közrefogott elemek) igénybevétele?
- Milyen legyen a konstrukciós kialakítás?

A csavarkötés modellje

A csavar és a közrefogott elemek a terhelés hatására *rugalmasan deformálódnak*: a csavar megnyúlik, a közrefogott elemek összenyomódnak.

Mivel a deformáció a rugalmas tartományban marad, ezért a csavarkötés összekapcsolt rugókkal modellezhető. A tökéletesen rugalmas elemekre érvényes a Hooketörvény.

Rugótani alapfogalmak

Az l hosszúságú rúd megnyúlása F erő hatására:

$$f = \frac{Fl}{AE}$$

Az F = f(f) függvénykapcsolatot rugókarakterisztikának nevezzük, amely lineárisan rugalmas testek esetén egyenes, jellemzője a rugómerevség (s).

$$tg \alpha = \frac{F}{f} = s \left[\frac{N}{mm} \right]$$

Rugók kapcsolása

$$s = s_1 + s_2$$

Soros

$$Fe=F1=F2$$

$$f=f_1+f_2$$

b.

Párhuzamos

$$Fe=F1+F2$$

$$f=f_1=f_2$$

Közrefogott elemek összenyomódása és a csavar megnyúlása

Előfeszítés előtt

Előfeszítve

(Alakváltozások eltúlozva!)

Előfeszítési háromszög

Ábrázoljuk az előfeszítő erőt és az elemek alakváltozását.

A csavar rugómerevsége

A csavar két különböző keresztmetszetű szakasszal rendelkezik:

- menet nélküli szakasz (l1): Ø d
- menetes szakasz (l2): \emptyset d2.

A csavar teljes megnyúlása:

$$\lambda_{cs} = \frac{F_{v} \cdot l_1}{A_1 \cdot E_1} + \frac{F_{v} \cdot l_2}{A_2 \cdot E_2}$$

A csavar rugómerevsége:

$$s_{cs} = \frac{F_v}{\lambda_{cs}} = \frac{E_1}{\sum \frac{l_i}{A_i}}$$

A közrefogott elemek rugómerevsége

A közrefogott elemekben a nyomófeszültség nem állandó, a csavar közelében nagyobb, tőle távolodva csökken. A valóságot jól közelíthetjük egy egyenértékű testtel, amelynek merevsége közel megegyezik a közrefogott elemek merevségével.

Az ábra a gyakorlatban elterjedt csonkakúpokkal határolt egyenértékű testet mutatja. Egyszerű számításokhoz jól használható a csonkakúpok térfogatával megegyező térfogatú cső.

$$s_k = \frac{F_v}{\lambda_k} = \frac{E_2}{h} \cdot \frac{(D^2 - d^2)\pi}{4}$$

Terhelési modellek

A terhelési modell az üzemi terheléstől függ:

- erő jellegű lazítás,
 - külső erő jellegű lazítás,
 - belső erő jellegű lazítás,
 - közbülső erő jellegű lazítás,
- energia jellegű lazítás,
- kitérés jellegű lazítás.

Külső erő jellegű lazítás

Külső lazítás esetén a lazítóerő a csavarfej alatt hat.

Grőb Péter 2020

A külső lazítás erőhatásábrája

Az F1 csavarerő növekmény az Fü üzemi erő hatására:

(hasonló háromszögek alapján)

$$F_1 = \frac{s_{cs}}{s_{cs} + s_k} F_{\ddot{\mathbf{u}}}$$

A közrefogott elem erőcsökkenése:

$$F_2 = \frac{s_k}{s_{cs} + s_k} F_{\ddot{\mathbf{u}}}$$

A csavar terhelése tehát üzem közben: F_v+F_1 A csavar megnyúlása pedig $\lambda_{cs}+\Delta\lambda$

A kritikus erő

A csavarkötés kritikus terhelése, amelynél a kötés teljesen lelazul (megszűnik az összeszorító erő), vagyis F2 = Fv

$$F_{v} = \frac{s_{k}}{s_{cs} + s_{k}} F_{krit}$$

átrendezve:

$$F_{krit} = \frac{s_{cs} + s_k}{s_k} F_{v}$$

Hogyan növelhető a kritikus erő?

Keményebb csavar rugómerevség

Lágyabb közrefogott elemek

Belső lazítás

Belső lazítás esetén a lazítóerő az összeszorított elemek között lép fel.

A rugók soros kapcsolásúak a modellben (erő azonos).

Belső lazítás erőhatásábrája

Belső lazítás esetén a csavarerő növekménye $F_{1b} = 0$ lesz, mert az $F_{\ddot{u}}$ kisebb, mint az F_{v} előfeszítő erő.

A lelazulást okozó kritikus erő:

$$F$$
krit = F v

Amíg a lazítóerő az F_v -t el nem éri, a kötésben nincs elmozdulás.

Közbülső lazítás

Közbülső lazítás esetén a lazítóerő az összeszorított elemek közbülső helyén lép fel.

Modell Konstrukciós példa

kapcsolásúak a modellben.

Konstrukciós következtetések erő jellegű lazítás esetén

- 1. Az elemelkedést okozó $F_{\rm krit}$ lazítóerő a tiszta belső lazítás esetén a legkisebb, itt a legnagyobb az elemelkedési veszély. A belső lazításnál az $F_{\rm krit}$ lazítóerő független az elemek rugómerevségétől.
- 2.Az $F_{\rm krit}$ lazítóerő növekszik nagyobb merevségű kötőrugó, és lágyabb közrefogott rugó alkalmazásával.
- 3. A kötőelemben a járulékos terhelés növekedése tiszta belső lazítás esetén legkisebb.
- 4. A kötőelemben a járulékos terhelésnövekedés csökkenthető lágy kötőrugó és kemény közrefogott rugó alkalmazásával.

Konstrukciós példák összehasonlítása

külső lazítás

belső lazítás

közbülső lazítás

Kitérés jellegű lazítás

Kitérés jellegű lazításról beszélünk, ha az előfeszítő erő

- a kötőelem és összeszorított elemek közötti hőtágulási különbség,
- ernyedés miatt csökken.

Konstrukciós következtetés: Kitérés jellegű lazítás esetén kedvezőbb, ha mindkét elem rugómerevsége kicsi.

Csavarbiztosítások – Alakkal zárás

Csavarbiztosítások – erővel záró

Kúpos anya

Biztosító elemes Szorítóelemes anya

anya

Csavarbiztosítás – anyaggal záró

A ragasztóanyag kikeményedését a szereléskor létrehozott szorítóerő, vagy kétkomponensű ragasztónál a másik komponens hozzáadása indítja be.

Menetkifutás

helytelen

helyes

Anyamenet lemezben

e)

f)

Menetes csatlakozás műanyag alkatrészben

a) b) c) Műanyag lemezek rögzítése helytelen helyes a) b) c) helytelen helyes

a)

Felfekvő felületek párhuzamossága

Köszönöm a figyelmet!

