$pLerp(t, p0, pM) := p0 \cdot (1-t) + pM \cdot t$	
$sqrLerp(t, p0, pM) := p0 \cdot (1 - \sqrt{t}) + pt$	$M\!\cdot\!\sqrt{t}$ basic lerp formulas
$ro(h) \coloneqq Adens0 - \frac{h}{Ha} \cdot Adens0$	density sampler
$vpoint(s) \coloneqq pLerp(s, Pv, Pve)$	Light end point lerped between two light endpoints at view
$Lendp(s) \coloneqq pLerp(s, endpPv, endpPv)$	
scanLightPt(t,s) := pLerp(t, vpoint)	(s), Lendp(s)) final sampling point in atmosphere.
RayAtmLen(s) := pLerp(s, endlPv), endlPv	adlPve) lerped length of atmosphere ray
$H(s) \coloneqq pLerp(s, 0, Ha) \rightarrow Ha \cdot s$	interpolated point of ray atmospheric exit
distance to exit for light at t-point $Hr(t,s) \coloneqq pLerp(t,H(s),Ha) \to Ha$ •	$s \cdot (-t+1) + Ha \cdot t$
$curVLen(p) \coloneqq pLerp(p, 0, LmaxV)$	Length to current view t-point on view ray
Sum density over line, defined by he	-7
	sk is 01 where 0.9 means

remaining direct ray power, after travelling Len from Hs to He. $RemPower(Hs, He, Len, Pow0) := Pow0 \cdot ProdDensAvgP(Hs, He, Len)$ $vpHitPow(pv) := \overline{RemPower}(H(pv), Ha, RayAtmLen(pv), LPower)$ Total Ray power that hits point on view line hf0- height at which it is 0, hfmax - height at which it is 1. $foc(hf) := \frac{hf + hf0}{hfmax}$ Ray power that is reflected towards eye as scattered light. focusP is percent of sk $remTop := LPower \cdot (1 + sk \cdot (prk - 1))^{endlPve \cdot roTop}$ $remBot := LPower \cdot (1 + sk \cdot (prk - 1))^{endlPv \cdot roBot}$ lerpHitPow(pv) := sqrLerp(pv, remBot, remTop) $reflectedBack(pr) := lerpHitPow(pr) \cdot focusP \cdot sk \cdot ro(H(pr)) \cdot ppxi$ power that reaches eye form view t-point thourgh atmos. $remToEye\left(TEpow, TElen, pr\right) \coloneqq TEpow \cdot \left(1 + sk\right) \cdot \left(prk - 1\right)\right)^{TElen \cdot roEye}$ indirectEye(pn) := remToEye(reflectedBack(pn), curVLen(pn), pn)

$TotalToEye \coloneqq \int reflectedBack(pp) \cdot LmaxV \mathrm{d} pp o rac{Adens0 \cdot Lh}{}$	$ ightarrow rac{Adens0 \cdot LPower \cdot LmaxV \cdot focusP \cdot ppxi \cdot sk \cdot ig(8 \cdot ig((prk-1) \cdot sk + 1 ig)^{endlPve \cdot roTop} - 30}{30}$	
$Adens0 \cdot LPower \cdot LmaxV \cdot focusP \cdot ppxi \cdot sk \cdot (8 \cdot ((prk-1) \cdot sk + 30))$	$+1)^{endlPve\cdot roTop}+7\boldsymbol{\cdot}((prk-1)\boldsymbol{\cdot} sk+1)^{endlPv\cdot roBot})$ solution to to above	
$FadedToEye \coloneqq $		
$\int\limits_{0}^{1}indirectEye\left(pp\right) oldsymbol{\cdot}LmaxV\operatorname{d}pp ightarrowrac{-\left(Adens0oldsymbol{\cdot}LPoweroldsymbol{\cdot}focusP ight) }{-\left(Adens0oldsymbol{\cdot}LPoweroldsymbol{\cdot}focusP ight) }$	$P \cdot ppxi \cdot sk \cdot \left(\left(\left(2 \cdot LmaxV \cdot roEye \cdot \sqrt{\pi} \cdot \ln\left(\left(prk - 1 \right) \cdot sk + 1 \right) + 3 \cdot \sqrt{\pi} \right) \cdot \left(\left(\left(2 \cdot LmaxV \cdot roEye \cdot \sqrt{\pi} \cdot \ln\left(\left(prk - 1 \right) \cdot sk + 1 \right) + 3 \cdot \sqrt{\pi} \right) \cdot \left(\left(\left(2 \cdot LmaxV \cdot roEye \cdot \sqrt{\pi} \cdot \ln\left(\left(prk - 1 \right) \cdot sk + 1 \right) + 3 \cdot \sqrt{\pi} \right) \cdot \left(\left(\left(2 \cdot LmaxV \cdot roEye \cdot \sqrt{\pi} \cdot \ln\left(\left(prk - 1 \right) \cdot sk + 1 \right) + 3 \cdot \sqrt{\pi} \right) \cdot \left(\left(\left(2 \cdot LmaxV \cdot roEye \cdot \sqrt{\pi} \cdot \ln\left(\left(prk - 1 \right) \cdot sk + 1 \right) + 3 \cdot \sqrt{\pi} \right) \cdot \left(\left(\left(2 \cdot LmaxV \cdot roEye \cdot \sqrt{\pi} \cdot \ln\left(\left(prk - 1 \right) \cdot sk + 1 \right) + 3 \cdot \sqrt{\pi} \right) \cdot \left(\left(\left(2 \cdot LmaxV \cdot roEye \cdot \sqrt{\pi} \cdot \ln\left(\left(prk - 1 \right) \cdot sk + 1 \right) + 3 \cdot \sqrt{\pi} \right) \cdot \left(\left(\left(2 \cdot LmaxV \cdot roEye \cdot \sqrt{\pi} \cdot \ln\left(\left(prk - 1 \right) \cdot sk + 1 \right) + 3 \cdot \sqrt{\pi} \right) \right) \right) \right) \right) \right)$	
$\frac{1}{Lmax} \cdot \int_{0}^{Lmax} ro\left(H\left(\frac{s}{Lmax}\right)\right) ds \to \frac{Adens0}{2}$		

