Started on	Sunday, 26 November 2023, 5:30 PM
State	Finished
Completed on	Sunday, 26 November 2023, 6:24 PM
Time taken	53 mins 57 secs
Grade	9.00 out of 10.00 (90 %)

Correct

Mark 1.00 out of 1.00

Remove flag

The integral $\int_{-\infty}^{\infty} a^2 e^{-a^2} da$ evaluates to

Select one:

0

 $\frac{\sqrt{\pi}}{2\sqrt{2}}$

 $\sqrt{\frac{\pi}{2}}$

Your answer is correct.

The correct answer is: $\frac{\sqrt{\pi}}{2}$

Question **2**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

SER of M -ary QAM for $SNR = \rho$ is

Select one:

$$\bigcirc \quad 4\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{\rho}{(M-1)}}\right)$$

$$\bigcirc \quad \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\rho}{(M-1)}}\right)$$

$$\bigcirc 4\left(1-\frac{1}{M}\right)Q\left(\sqrt{\frac{3\rho}{\left(\sqrt{M}-1\right)}}\right)$$

Your answer is correct.

The correct answer is: $4\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\rho}{(M-1)}}\right)$

Question **3**

Incorrect

Mark 0.00 out of 1.00

▼ Remove flag

Let x_i denote i.i.d. zero-mean Gaussian random variables with $\sigma = 2$. Then, $\sum_{i=1}^{N} x_i^2$ equals the random variable

Select one:

 χ_N^2 ×

 $\frac{1}{2}\chi_N^2$

 $2\chi_N^2$

 $4\chi_N^2$

Your answer is incorrect.

The correct answer is: $4\chi_N^2$

Question **4**

Correct

Mark 1.00 out of 1.00

▼ Flag question

The PDF of χ^2_N -Central chi-squared RV with N degrees of freedom is

Select one:

$$\frac{1}{2^{\frac{N}{2}-1}\Gamma(\frac{N}{2})}x^{\frac{N}{2}}e^{-\frac{1}{2}x}, \ x \ge 0$$

$$\frac{1}{2^{\frac{1}{2}}\Gamma(\frac{1}{2})} x^{\frac{N}{2}-1} e^{-\frac{1}{2}x}, \ x \ge 0$$

Your answer is correct.

The correct answer is: $\frac{1}{2^{\frac{N}{2}}\Gamma(\frac{N}{2})}x^{\frac{N}{2}-1}e^{-\frac{1}{2}x}$, $x\geq 0$

Question **5**

Correct

Mark 1.00 out of 1.00

The P_D for the random signal detection problem is

Select one:

$$\qquad \frac{\Gamma\left(\frac{N}{2},\frac{\gamma}{\sigma^2+\sigma_S^2}\right)}{\Gamma\left(\frac{N}{2}\right)}$$

$$\bigcirc \quad Q\left(\frac{\gamma}{\sigma^2+\sigma_s^2}\right)$$

$$\frac{\Gamma\left(\frac{N}{2},\frac{\gamma}{\sigma^2}\right)}{\Gamma\left(\frac{N}{2}\right)}$$

Your answer is correct.

The correct answer is: $Q_{\chi_N^2} \left(\frac{\gamma}{\sigma^2 + \sigma_s^2} \right)$

Question **6**

Correct

Mark 1.00 out of 1.00

Let U denote a central χ^2_{50} RV. Then, variance of U equals

Select one:

- ◎ 100 ✔
- 2500
- **200**
- 400

Your answer is correct.

The correct answer is: 100

Question 7

Correct

Mark 1.00 out of 1.00

The GLRT problem described in lectures is

Select one:

- $\mathcal{H}_0: \bar{\mathbf{y}} = \bar{\mathbf{v}}, \mathcal{H}_1: \bar{\mathbf{y}} = A\bar{\mathbf{s}} + \bar{\mathbf{v}}, \text{ where } A, \bar{\mathbf{s}} \text{ are unknown}$
- $\bigcirc \quad \mathcal{H}_0 \colon \overline{\mathbf{y}} = \overline{\mathbf{v}}, \mathcal{H}_1 \colon \overline{\mathbf{y}} = A\overline{\mathbf{s}} + \overline{\mathbf{v}}, \text{ where } \overline{\mathbf{s}} \text{ is unknown and } A \text{ is unknown}$
- $\mathcal{H}_0: \bar{\mathbf{y}} = \bar{\mathbf{v}}, \mathcal{H}_1: \bar{\mathbf{y}} = A\bar{\mathbf{s}} + \bar{\mathbf{v}}, \text{ where } A \text{ is unknown and } \bar{\mathbf{s}} \text{ is known}$
- $\bigcirc \quad \mathcal{H}_0 \colon \overline{\mathbf{y}} = \overline{\mathbf{v}}, \mathcal{H}_1 \colon \overline{\mathbf{y}} = A\overline{\mathbf{s}} + \overline{\mathbf{v}}, \text{ where } A, \overline{\mathbf{s}} \text{ are known}$

Your answer is correct.

The correct answer is: $\mathcal{H}_0: \bar{\mathbf{y}} = \bar{\mathbf{v}}, \mathcal{H}_1: \bar{\mathbf{y}} = A\bar{\mathbf{s}} + \bar{\mathbf{v}}$, where A is unknown and $\bar{\mathbf{s}}$ is known

Question **8**

Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider $\gamma=4,\,\sigma^2=4,\,\bar{\mathbf{s}}=[1\quad -1\quad 1\quad -1]^T$. P_{FA} for the GLRT described in class is

Select one:

- $Q = 2Q\left(\frac{1}{\sqrt{2}}\right)$
- \bigcirc 2 $Q(\sqrt{2})$
- 2Q(1)

 ✓

Your answer is correct.	
The correct answer is: $2Q(1)$	
Question 9	
Correct	
Mark 1.00 out of 1.00	
Flag question	
Cognitive Radio allows	
Select one:	
 Secondary users to always ac 	cess licensed spectrum
O Primary users to access spec	trum only in limited slots
O Primary users to sense the s	pectrum before accessing
 Secondary users to access lic 	ensed spectrum when there is a spectral hole 🗸
Your answer is correct.	
The correct answer is. Secondary	users to access licensed spectrum when there is a spectral hole
Question 10	
Correct	
Mark 1.00 out of 1.00	
	spectrum sensing for $N=10$, $\sigma^2=2$, $\sigma_s^2=10$, is
Select one: $Q_{\chi_{20}^2}\left(\frac{\gamma}{12}\right)$	
$ Q_{\chi^2_{20}}\left(\frac{\gamma}{6}\right) \checkmark $	
$Q_{\chi^2_{10}}\left(\frac{\gamma}{12}\right)$	
$Q_{\chi_{10}^2}\left(\frac{\gamma}{6}\right)$	
Your answer is correct.	
Your answer is correct. The correct answer is: $Q_{\chi^2_{20}}\left(\frac{\gamma}{6}\right)$	