SOLOMON SYSTECH SEMICONDUCTOR TECHNICAL DATA

SSD1298

Product Preview

240 RGB x 320 TFT LCD Controller Driver integrated Power Circuit, Gate and Source Driver with built-in RAM

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.

CONTENTS

1	GENERAL DESCRIPTION	5
2	FEATURES	6
3	ORDERING INFORMATION	7
4	BLOCK DIAGRAM	8
5	DIE PAD FLOOR PLAN	9
6	PIN DESCRIPTION	19
7	BLOCK FUNCTION DESCRIPTION	24
8	COMMAND TABLE	28
9	COMMAND DESCRIPTION	30
10	GAMMA ADJUSTMENT FUNCTION	54
11	MAXIMUM RATINGS	61
12	DC CHARACTERISTICS	61
13	AC CHARACTERISTICS	63
14	GDDRAM ADDRESS	66
15	INTERFACE MAPPING	67
16	DISPLAY SETTING SEQUENCE	70
17	POWER SUPPLY BLOCK DIAGRAM	73
18	SSD1298 OUTPUT VOLTAGE RELATIONSHIP	74
19	PACKAGE INFORMATION	78

TABLES

Table 3-1 – Ordering Information.	7
Table 5-2 - SSD1298 Bump Pad Coordinate (Bump Center)	10
Table 6-1: Power Supply Pins	19
Table 6-2 - Interface Logic Pins	21
Table 6-3: Mode Selection Pins	22
Table 6-4: Driver Output Pins	23
Table 6-5: Miscellaneous Pins	23
Table 7-1 - Data bus selection modes	25
Table 8-1 - Command Table	28
Table 9-1 - 3-field interlace driving.	34
Table 13-1 – Parallel 6800 Timing Characteristics	63
Table 13-2 – Parallel 8080 Timing Characteristics	64
Table 13-3 - Serial Timing Characteristics	65
Table 15-1: Interface setting and data bus setting	67
Table 15-2 – The Function of 6800-series parallel interface	67
Table 15-3 – The Function of 8080-series parallel interface	68

SSD1298 Rev 0.31 P 379 Oct 2007 **Solomon Systech**

FIGURES

Figure 4-1 - SSD1298 Block Diagram Description	8
Figure 7-1 – Read Display Data	24
Figure 7-2: 3-wire SPI interface (9 bits)	25
Figure 7-3: 4-wire SPI interface (8 bits)	
Figure 9-1 - gate output timing in 3-field interlacing driving	
Figure 9-2 - Line Inversion AC Driver	35
Figure 9-3 – OTP circuitry	49
Figure 13-1 –Parallel 6800-series Interface Timing Characteristics	63
Figure 13-2 –Parallel 8080-series Interface Timing Characteristics	64
Figure 13-3 – 4 wire Serial Timing Characteristics	65
Figure 18-1: Booster Capacitors	75
Figure 18-2: Filtering and Charge Sharing Capacitors	75
Figure 18-3 – Panel Connection Example	

 Solomon Systech
 Oct 2007
 P 4/79
 Rev 0.31
 SSD1298

1 GENERAL DESCRIPTION

SSD1298 is an all in one TFT LCD Controller Driver that integrated the RAM, power circuits, gate driver and source driver into a single chip. It can drive up to 262k color amorsphous TFT panel with resolution of 240 RGB x 320.

It also integrated the controller function and consists of 172,800 bytes (240 x 320 x 18 / 8) Graphic Display Data RAM (GDDRAM) such that it interfaced with common MPU through 8-/9-/16-/18-bit 6800-series / 8080-series compatible parallel interface or serial peripheral interface and stored the data in the GDDRAM. Auxiliary 18-/16-/6- bit video interface (VSYNC, HSYNC, DOTCLK, OE) are integrated into SSD1298 for animation image display.

SSD1298 embeds DC-DC Converter and Voltage generator to provide all necessary voltage required by the driver with minimum external components. A Common Voltage Generation Circuit is included to drive the TFT-display counter electrode. An Integrated Gamma Control Circuit is also included that can be adjusted by software commands to provide maximum flexibility and optimal display quality.

SSD1298 can be operated down to 1.4V and provide different power save modes. It is suitable for any portable battery-driven applications requiring long operation period and compact size.

SSD1298 | Rev 0.31 | P 579 | Oct 2007 | **Solomon Systech**

2 FEATURES

- 240RGBx320 single chip controller driver IC for 262k color amorphous TFT LCD
- Power Supply
 - VDDEXT = 1.4V 3.6V (Internal Logic)
 - VDDIO = 1.4V 3.6V (I/O Interface)
 - VCI = 2.5V 3.6V (power supply for internal analog circuit)
- Output Voltages
 - Gate Driver:
 - $VGH-GND = 9V \sim 18V$
 - VGL-GND = -6 \sim -15V
 - VGH-VGL = 30Vp-p
 - Source Driver:
 - Maximum of VLCD63 = 6V
 - Typical Source Output Voltage variation: ±10 mV
 - VCOM drive:
 - VCOMH = $3.0V \sim 5.0V$
 - $VCOML = -1.0V \sim -3.0V$
 - Maximum of VCOMA = 6V
- System Interface
 - 16-/18-bit RGB interface (OE, DOTCLK, HSYNC, VSYNC, DB[17:0]
 - High-speed interface by 8-/9-/16-/18-bit 6800-series / 8080-series parallel ports
 - Serial Peripheral Interface (SPI)
 - VSYNC interface (system interface + VSYNC)
 - WSYNC interface (system interface + WSYNC)
- Support low power consumption:
 - Low voltage supply
 - Low current sleep mode
 - 8-color display mode for power saving
 - Charge sharing function for step-up circuits
- High-speed RAM addressing functions
 - RAM write synchronization function
 - Window address function
 - Vertical scrolling function
 - Partial display mode
- Internal power supply circuit
 - Voltage generator
 - DC-DC converter up to 6x/-5x
- Built-in internal oscillator
- Internal GDDRAM capacity: 172800Byte
- Support Frame and Line inversion AC drive
- TFT storage capacitance: Cs on common
- Support source and gate scan direction control
- Programmable gamma correction curve
- Built-in Non Volatile Memory for VCOM calibration Display Size: 240 RGB x 320
- Support flexible arrangement of gate circuits on both sides of the glass substrate

Solomon Systech Oct 2007 | P 6/79 | Rev 0.31 | SSD1298

3 ORDERING INFORMATION

Table 3-1 – Ordering Information

Ordering Part Number	Source	Gate	Package Form	Reference
SSD1298Z	240 x 3 (720)	320	Gold Bump Die	

SSD1298 Rev 0.31 P 779 Oct 2007 **Solomon Systech**

4 BLOCK DIAGRAM

Figure 4-1 - SSD1298 Block Diagram Description

 Solomon Systech
 Oct 2007 | P 8/79 | Rev 0.31 |
 SSD1298

DIE PAD FLOOR PLAN

SSD1298 | Rev 0.31 | P 979 | Oct 2007 | **Solomon Systech**

Table 4-2 - SSD1298 Bump Pad Coordinate (Bump Center)

Note: IC material temperature expansion factor is 2.6ppm, customer should take into account during panel design

2 DUMMY -10325.000 -305.620 52 D4 -6825.000 -305.620 10 3 DUMMY -10255.000 -305.620 53 D3 -6755.000 -305.620 10 4 DUMMY -10185.000 -305.620 54 D2 -6685.000 -305.620 10 5 CDUM0 -10115.000 -305.620 55 D1 -6615.000 -305.620 10 6 CDUM0 -10045.000 -305.620 56 D0 -6545.000 -305.620 10 7 CDUM0 -9975.000 -305.620 57 SDO -6475.000 -305.620 10 8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 62 CSB -6125.000 -305.620 11	Pad Name 1 VDDIO 2 VDDIO 3 VDDIO 4 VDDIO 5 VCIR 6 VCIR 7 VCIR 8 VCIR 9 VCIR	X-pos Y-pos -3395.000 -305.620 -3325.000 -305.620 -3255.000 -305.620 -3185.000 -305.620 -3115.000 -305.620 -3045.000 -305.620 -2975.000 -305.620
2 DUMMY -10325.000 -305.620 52 D4 -6825.000 -305.620 10 3 DUMMY -10255.000 -305.620 53 D3 -6755.000 -305.620 10 4 DUMMY -10185.000 -305.620 54 D2 -6685.000 -305.620 10 5 CDUM0 -10115.000 -305.620 55 D1 -6615.000 -305.620 10 6 CDUM0 -10045.000 -305.620 56 D0 -6545.000 -305.620 10 7 CDUM0 -9975.000 -305.620 57 SDO -6475.000 -305.620 10 8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 62 CSB -6125.000 -305.620 11	2 VDDIO 3 VDDIO 4 VDDIO 5 VCIR 6 VCIR 7 VCIR 8 VCIR	-3325.000 -305.620 -3255.000 -305.620 -3185.000 -305.620 -3115.000 -305.620 -3045.000 -305.620
3 DUMMY -10255.000 -305.620 53 D3 -6755.000 -305.620 10 4 DUMMY -10185.000 -305.620 54 D2 -6685.000 -305.620 10 5 CDUM0 -10115.000 -305.620 55 D1 -6615.000 -305.620 10 6 CDUM0 -10045.000 -305.620 56 D0 -6545.000 -305.620 10 7 CDUM0 -9975.000 -305.620 57 SDO -6475.000 -305.620 10 8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11	3 VDDIO 4 VDDIO 5 VCIR 6 VCIR 7 VCIR 8 VCIR	-3255.000 -305.620 -3185.000 -305.620 -3115.000 -305.620 -3045.000 -305.620
4 DUMMY -10185.000 -305.620 54 D2 -6685.000 -305.620 10 5 CDUM0 -10115.000 -305.620 55 D1 -6615.000 -305.620 10 6 CDUM0 -10045.000 -305.620 56 D0 -6545.000 -305.620 10 7 CDUM0 -9975.000 -305.620 57 SDO -6475.000 -305.620 10 8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11	4 VDDIO 5 VCIR 6 VCIR 7 VCIR 8 VCIR	-3185.000 -305.620 -3115.000 -305.620 -3045.000 -305.620
5 CDUM0 -10115.000 -305.620 55 D1 -6615.000 -305.620 10 6 CDUM0 -10045.000 -305.620 56 D0 -6545.000 -305.620 10 7 CDUM0 -9975.000 -305.620 57 SDO -6475.000 -305.620 10 8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11	5 VCIR 6 VCIR 7 VCIR 8 VCIR	-3115.000 -305.620 -3045.000 -305.620
6 CDUM0 -10045.000 -305.620 56 D0 -6545.000 -305.620 10 7 CDUM0 -9975.000 -305.620 57 SDO -6475.000 -305.620 10 8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11	6 VCIR 7 VCIR 8 VCIR	-3045.000 -305.620
7 CDUM0 -9975.000 -305.620 57 SDO -6475.000 -305.620 10 8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11	7 VCIR 8 VCIR	
8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11	8 VCIR	-2975.000 -305 620
8 VGH -9905.000 -305.620 58 SDI -6405.000 -305.620 10 9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11	8 VCIR	
9 VGH -9835.000 -305.620 59 RD -6335.000 -305.620 10 10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11		-2905.000 -305.620
10 VGH -9765.000 -305.620 60 WR -6265.000 -305.620 11 11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11		-2835.000 -305.620
11 VGH -9695.000 -305.620 61 DC -6195.000 -305.620 11 12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11	0 VCIR	-2765.000 -305.620
12 VGH -9625.000 -305.620 62 CSB -6125.000 -305.620 11:	1 VCIR	-2695.000 -305.620
	2 VCIR	-2625.000 -305.620
13 VSS -9555.000 -305.620 63 NC -6055.000 -305.620 11	3 VCORE	-2555.000 -305.620
	4 VCORE	-2485.000 -305.620
	5 VCORE	-2415.000 -305.620
	6 VCORE	-2345.000 -305.620
	7 VCORE	-2275.000 -305.620
	8 VCORE	-2205.000 -305.620
	9 VCORE	-2135.000 -305.620
	0 VCORE	-2065.000 -305.620
	1 VCORE	-1995.000 -305.620
	2 VREGC	-1925.000 -305.620
	3 VREGC	-1855.000 -305.620
	4 VREGC	-1785.000 -305.620
	5 VREGC	-1715.000 -305.620
	6 DUMMY	-1645.000 -305.620
	_	
	7 DUMMY	
	8 DUMMY	-1505.000 -305.620
	9 DUMMY	-1435.000 -305.620
	0 DUMMY	-1365.000 -305.620
	1 DUMMY	-1295.000 -305.620
	2 DUMMY	-1225.000 -305.620
	3 DUMMY	-1155.000 -305.620
	4 VCHS	-1085.000 -305.620
	5 VCHS	-1015.000 -305.620
	6 VCHS	-945.000 -305.620
	7 VCHS	-875.000 -305.620
	8 VCHS	-805.000 -305.620
	9 VCHS	-735.000 -305.620
40 D13 -7665.000 -305.620 90 NC -4165.000 -305.620 14	0 VCHS	-665.000 -305.620
41 D12 -7595.000 -305.620 91 IOGND -4095.000 -305.620 14	1 VCHS	-595.000 -305.620
42 D11 -7525.000 -305.620 92 IOGND -4025.000 -305.620 14	2 VCHS	-525.000 -305.620
43 D10 -7455.000 -305.620 93 IOGND -3955.000 -305.620 14	3 VCHS	-455.000 -305.620
44 D9 -7385.000 -305.620 94 IOGND -3885.000 -305.620 14	4 VCHS	-385.000 -305.620
45 D8 -7315.000 -305.620 95 IOGND -3815.000 -305.620 14	5 AVSS	-315.000 -305.620
	6 AVSS	-245.000 -305.620
	7 AVSS	-175.000 -305.620
	8 AVSS	-105.000 -305.620
	9 AVSS	-35.000 -305.620
	0 AVSS	35.000 -305.620

 Solomon Systech
 Oct 2007
 P 10/79
 Rev 0.31
 SSD1298

Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos
151	VSS	105.000	-305.620	201	VCIX2G	3605.000	-305.620	251	VGL	7105.000	-305.620
	VSS	175.000	-305.620	202	VCIX2G	3675.000	-305.620		VGL	7175.000	-305.620
153	VSS	245.000	-305.620	203	VCIX2	3745.000	-305.620		VGL	7245.000	-305.620
		315.000	-305.620		VCIX2	3815.000	-305.620		VGL	7315.000	-305.620
		385.000	-305.620		VCIX2	3885.000	-305.620		VGL	7385.000	-305.620
156	VSS	455.000	-305.620		VCIX2	3955.000	-305.620	256		7455.000	-305.620
157	VSS	525.000	-305.620	207	VCIX2	4025.000	-305.620	257		7525.000	-305.620
158	VSS	595.000	-305.620		VCIX2	4095.000	-305.620	258		7595.000	-305.620
	VSS	665.000	-305.620		VCIX2	4165.000	-305.620	259	VGL	7665.000	-305.620
160	VSS	735.000	-305.620		VCI	4235.000	-305.620		DUMMY	7735.000	-305.620
161	DUMMY	805.000	-305.620		VCI	4305.000	-305.620	261	DUMMY	7805.000	
162	DUMMY	875.000	-305.620	212	VCI	4375.000	-305.620		DUMMY	7875.000	-305.620
163	DUMMY	945.000	-305.620	213	VCI	4445.000	-305.620	263	VGH	7945.000	-305.620
164	EXVR	1015.000	-305.620	214	VCI	4515.000	-305.620		VGH	8015.000	-305.620
	DUMMY	1085.000	-305.620		VCI	4585.000	-305.620	265	VGH	8085.000	-305.620
166	DUMMY	1155.000	-305.620	216	VCI	4655.000	-305.620	266	VGH	8155.000	-305.620
167	DUMMY	1225.000	-305.620		VCI	4725.000	-305.620	267	VGH	8225.000	-305.620
168	DUMMY	1295.000	-305.620	218	VCIP	4795.000	-305.620	268	VGH	8295.000	-305.620
169	DUMMY	1365.000	-305.620	219	VCI	4865.000	-305.620	269	DUMMY	8365.000	-305.620
170	DUMMY	1435.000	-305.620	220	VCI	4935.000	-305.620	270	C3N	8435.000	-305.620
171	VCOM	1505.000	-305.620	221	VCI	5005.000	-305.620	271	C3N	8505.000	-305.620
172	VCOM	1575.000	-305.620	222	VCI	5075.000	-305.620	272	C3N	8575.000	-305.620
173	VCOM	1645.000	-305.620	223	VCI	5145.000	-305.620	273	DUMMY	8645.000	-305.620
174	VCOM	1715.000	-305.620	224	VCI	5215.000	-305.620	274	C3P	8715.000	-305.620
175	VCOM	1785.000	-305.620	225	VCI	5285.000	-305.620	275	C3P	8785.000	-305.620
176	VCOM	1855.000	-305.620	226	VCI	5355.000	-305.620	276	C3P	8855.000	-305.620
177	VCOMH	1925.000	-305.620	227	CYN	5425.000	-305.620	277	DUMMY	8925.000	-305.620
178	VCOMH	1995.000	-305.620	228	CYN	5495.000	-305.620	278	C1N	8995.000	-305.620
179	VCOMH	2065.000	-305.620	229	CYN	5565.000	-305.620	279	C1N	9065.000	-305.620
180	VCOMH	2135.000	-305.620	230	CYN	5635.000	-305.620	280	C1N	9135.000	-305.620
181	VCOMH	2205.000	-305.620		CYN	5705.000	-305.620	281	C1P	9205.000	-305.620
182	VCOMH	2275.000	-305.620	232	CYP	5775.000	-305.620	282	C1P	9275.000	-305.620
	VCOML	2345.000	-305.620		CYP	5845.000	-305.620	283	C1P	9345.000	-305.620
	VCOML	2415.000	-305.620		CYP	5915.000	-305.620		C2N	9415.000	
	VCOML	2485.000	-305.620		CYP	5985.000	-305.620		C2N	9485.000	-305.620
186	VCOML	2555.000	-305.620		CYP	6055.000	-305.620	286		9555.000	-305.620
187	VCOML	2625.000	-305.620		CXN	6125.000	-305.620	287	C2P	9625.000	-305.620
188	VCOML	2695.000	-305.620		CXN	6195.000	-305.620	288	C2P	9695.000	-305.620
	DUMMY	2765.000	-305.620		CXN	6265.000			C2P	9765.000	-305.620
	DUMMY	2835.000	-305.620		CXN	6335.000			CDUM1N	9835.000	
	VLCD63	2905.000	-305.620		CXN	6405.000			CDUM1N	9905.000	
	DUMMY	2975.000	-305.620		CXP	6475.000			CDUM1N	9975.000	
	DUMMY	3045.000	-305.620		CXP	6545.000			CDUM1P	10045.000	
	DUMMY	3115.000	-305.620		CXP	6615.000			CDUM1P	10115.000	
	VCOMR	3185.000	-305.620		CXP	6685.000			CDUM1P	10185.000	-305.620
	DUMMY	3255.000	-305.620		CXP	6755.000			DUMMY	10255.000	-305.620
	VCIM	3325.000	-305.620		DUMMY	6825.000			DUMMY	10325.000	
	VCIM	3395.000	-305.620		VGL	6895.000			DUMMY	10325.000	
	VCIM	3465.000	-305.620		VGL	6965.000			DUMMY	10670.000	
	VCIVI VCIX2G	3535.000	-305.620		VGL	7035.000			DUMMY	10670.000	

SSD1298 Rev 0.31 P 1179 Oct 2007 **Solomon Systech**

Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos
	DUMMY	10630.000	293.380	351	G95	9630.000	293.380		G195	8630.000	293.380
	DUMMY	10610.000	168.380		G97	9610.000	168.380		G197	8610.000	168.380
303	DUMMY	10590.000	293.380	353	G99	9590.000	293.380			8590.000	293.380
304	G1	10570.000	168.380		G101	9570.000	168.380	404	G201	8570.000	168.380
305		10550.000	293.380		G103	9550.000	293.380		G203	8550.000	293.380
306		10530.000	168.380		G105	9530.000	168.380		G205	8530.000	
307	G7	10510.000	293.380	357	G107	9510.000	293.380	407	G207	8510.000	293.380
308	G9	10490.000	168.380	358	G109	9490.000	168.380	408	G209	8490.000	168.380
309	G11	10470.000	293.380	359	G111	9470.000	293.380	409	G211	8470.000	293.380
310	G13	10450.000	168.380	360	G113	9450.000	168.380	410	G213	8450.000	168.380
311	G15	10430.000	293.380	361	G115	9430.000	293.380	411	G215	8430.000	293.380
312	G17	10410.000	168.380	362	G117	9410.000	168.380	412	G217	8410.000	168.380
313	G19	10390.000	293.380	363	G119	9390.000	293.380	413	G219	8390.000	293.380
314	G21	10370.000	168.380	364	G121	9370.000	168.380	414	G221	8370.000	168.380
315	G23	10350.000	293.380	365	G123	9350.000	293.380	415	G223	8350.000	293.380
316	G25	10330.000	168.380	366	G125	9330.000	168.380	416	G225	8330.000	168.380
317	G27	10310.000	293.380		G127	9310.000	293.380	417	G227	8310.000	293.380
	G29	10290.000	168.380	368	G129	9290.000	168.380	418	G229	8290.000	168.380
319	G31	10270.000	293.380	369	G131	9270.000	293.380	419	G231	8270.000	293.380
320	G33	10250.000	168.380		G133	9250.000	168.380	420	G233	8250.000	168.380
321	G35	10230.000	293.380		G135	9230.000	293.380	421	G235	8230.000	293.380
322	G37	10210.000	168.380	372	G137	9210.000	168.380	422	G237	8210.000	168.380
323	G39	10190.000	293.380		G139	9190.000	293.380	423	G239	8190.000	293.380
	G41	10170.000	168.380		G141	9170.000	168.380	424	G241	8170.000	168.380
325	G43	10150.000	293.380	375	G143	9150.000	293.380	425	G243	8150.000	293.380
	G45	10130.000	168.380		G145	9130.000	168.380	426	G245	8130.000	168.380
	G47	10110.000	293.380		G147	9110.000	293.380	427	G247	8110.000	293.380
	G49	10090.000	168.380		G149	9090.000	168.380		G249	8090.000	168.380
	G51	10070.000	293.380		G151	9070.000	293.380	429	G251	8070.000	293.380
	G53	10050.000	168.380		G153	9050.000	168.380		G253	8050.000	168.380
	G55	10030.000	293.380		G155	9030.000	293.380		G255	8030.000	293.380
	G57	10010.000	168.380		G157	9010.000	168.380			8010.000	168.380
	G59	9990.000	293.380		G159	8990.000	293.380		G259	7990.000	293.380
	G61	9970.000	168.380		G161	8970.000	168.380			7970.000	168.380
	G63	9950.000	293.380		G163	8950.000	293.380		G263	7950.000	293.380
	G65	9930.000	168.380		G165	8930.000	168.380		G265	7930.000	168.380
	G67	9910.000	293.380		G167	8910.000	293.380		G267	7910.000	293.380
	G69	9890.000	168.380		G169	8890.000	168.380			7890.000	168.380
	G71	9870.000	293.380		G171	8870.000	293.380		G271	7870.000	293.380
	G73	9850.000			G173	8850.000	168.380		G273	7850.000	168.380
	G75	9830.000			G175	8830.000	293.380		G275	7830.000	
342	G77	9810.000	168.380	392	G177	8810.000	168.380	442	G277	7810.000	168.380
	G79	9790.000	293.380		G179	8790.000	293.380		G279	7790.000	293.380
	G81	9770.000	168.380		G181	8770.000	168.380		G281	7770.000	168.380
345	G83	9750.000	293.380		G183	8750.000	293.380	445	G283	7750.000	293.380
	G85	9730.000	168.380	396	G185	8730.000	168.380		G285	7730.000	168.380
	G87	9710.000	293.380	397	G187	8710.000	293.380		G287	7710.000	293.380
	G89	9690.000	168.380		G189	8690.000	168.380		G289	7690.000	168.380
	G91	9670.000	293.380		G191	8670.000	293.380		G291	7670.000	
350	G93	9650.000	168.380	400	G193	8650.000	168.380	450	G293	7650.000	168.380

 Solomon Systech
 Oct 2007
 P 12/79
 Rev 0.31
 SSD1298

Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos
	G295	7630.000	293.380	501	S685	6430.000	168.380	551	S635	5430.000	
	G297	7610.000	168.380		S684	6410.000	293.380		S634	5410.000	293.380
	G299	7590.000	293.380		S683	6390.000	168.380		S633	5390.000	
454	G301	7570.000	168.380		S682	6370.000	293.380		S632	5370.000	
	G303	7550.000	293.380		S681	6350.000	168.380		S631	5350.000	168.380
	G305	7530.000	168.380		S680	6330.000	293.380		S630	5330.000	293.380
457	G307	7510.000	293.380	507	S679	6310.000	168.380		S629	5310.000	168.380
458	G309	7490.000	168.380	508	S678	6290.000	293.380	558	S628	5290.000	293.380
459	G311	7470.000	293.380	509	S677	6270.000	168.380		S627	5270.000	168.380
460	G313	7450.000	168.380	510	S676	6250.000	293.380	560	S626	5250.000	293.380
461	G315	7430.000	293.380	511	S675	6230.000	168.380	561	S625	5230.000	168.380
462	G317	7410.000	168.380	512	S674	6210.000	293.380		S624	5210.000	293.380
463	G319	7390.000	293.380	513	S673	6190.000	168.380	563	S623	5190.000	168.380
464	DUMMY	7370.000	168.380	514	S672	6170.000	293.380	564	S622	5170.000	293.380
465	DUMMY	7350.000	293.380	515	S671	6150.000	168.380	565	S621	5150.000	168.380
466	DUMMY	7130.000	293.380	516	S670	6130.000	293.380	566	S620	5130.000	293.380
467	S719	7110.000	168.380	517	S669	6110.000	168.380		S619	5110.000	168.380
468	S718	7090.000	293.380	518	S668	6090.000	293.380	568	S618	5090.000	293.380
469	S717	7070.000	168.380	519	S667	6070.000	168.380		S617	5070.000	168.380
	S716	7050.000	293.380		S666	6050.000	293.380		S616	5050.000	293.380
471	S715	7030.000	168.380			6030.000	168.380		S615	5030.000	168.380
472	S714	7010.000	293.380	522	S664	6010.000	293.380	572	S614	5010.000	293.380
	S713	6990.000	168.380		S663	5990.000	168.380		S613	4990.000	168.380
	S712	6970.000	293.380		S662	5970.000	293.380		S612	4970.000	293.380
	S711	6950.000	168.380		S661	5950.000	168.380		S611	4950.000	168.380
	S710	6930.000	293.380		S660	5930.000	293.380		S610	4930.000	293.380
	S709	6910.000	168.380			5910.000	168.380	577		4910.000	
	S708	6890.000	293.380		S658	5890.000	293.380		S608	4890.000	293.380
	S707	6870.000	168.380		S657	5870.000	168.380		S607	4870.000	168.380
	S706	6850.000	293.380		S656	5850.000	293.380		S606	4850.000	293.380
	S705	6830.000	168.380		S655	5830.000	168.380		S605	4830.000	
	S704	6810.000	293.380		S654	5810.000	293.380		S604	4810.000	
	S703	6790.000	168.380		S653	5790.000	168.380		S603	4790.000	
	S702	6770.000	293.380		S652	5770.000	293.380		S602	4770.000	293.380
	S701	6750.000	168.380		S651	5750.000	168.380		S601	4750.000	168.380
	S700	6730.000	293.380		S650	5730.000	293.380		S600	4730.000	293.380
	S699	6710.000	168.380		S649	5710.000	168.380		S599	4710.000	
488	S698	6690.000	293.380		S648	5690.000	293.380		S598	4690.000	293.380
	S697	6670.000	168.380		S647	5670.000	168.380		S597	4670.000	168.380
	S696	6650.000			S646	5650.000			S596	4650.000	
	S695	6630.000	168.380		S645	5630.000	168.380		S595	4630.000	
	S694	6610.000	293.380		S644	5610.000	293.380		S594	4610.000	
	S693	6590.000	168.380		S643	5590.000			S593	4590.000	
	S692	6570.000	293.380		S642	5570.000	293.380		S592	4570.000	
	S691	6550.000	168.380		S641	5550.000	168.380		S591	4550.000	
	S690	6530.000	293.380		S640	5530.000	293.380		S590	4530.000	
	S689	6510.000	168.380		S639	5510.000	168.380		S589	4510.000	
	S688	6490.000	293.380		S638	5490.000	293.380		S588	4490.000	293.380
	S687	6470.000	168.380		S637	5470.000			S587	4470.000	
500	S686	6450.000	293.380	550	S636	5450.000	293.380	600	S586	4450.000	293.380

SSD1298 Rev 0.31 P 1379 Oct 2007 **Solomon Systech**

Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos
601	S585	4430.000	168.380	651	S535	3430.000	168.380	701	S485	2430.000	168.380
602	S584	4410.000	293.380	652	S534	3410.000	293.380	702	S484	2410.000	293.380
603	S583	4390.000	168.380	653	S533	3390.000	168.380	703	S483	2390.000	168.380
604	S582	4370.000	293.380	654	S532	3370.000	293.380	704	S482	2370.000	293.380
605	S581	4350.000	168.380	655	S531	3350.000	168.380	705	S481	2350.000	168.380
606	S580	4330.000	293.380	656	S530	3330.000	293.380	706	S480	2330.000	293.380
	S579	4310.000	168.380		S529	3310.000			S479	2310.000	
608	S578	4290.000	293.380	658	S528	3290.000			S478	2290.000	293.380
	S577	4270.000			S527	3270.000			S477	2270.000	168.380
	S576	4250.000	293.380		S526	3250.000	293.380		S476	2250.000	293.380
	S575	4230.000	168.380		S525	3230.000	168.380		S475	2230.000	168.380
	S574	4210.000	293.380		S524	3210.000	293.380		S474	2210.000	293.380
	S573	4190.000	168.380		S523	3190.000			S473	2190.000	168.380
	S572	4170.000			S522	3170.000			S472	2170.000	
	S571	4150.000			S521	3150.000			S471	2150.000	
	S570	4130.000			S520	3130.000			S470	2130.000	
	S569	4110.000	168.380		S519	3110.000			S469	2110.000	
	S568	4090.000			S518	3090.000			S468	2090.000	
	S567	4070.000			S517	3070.000			S467	2070.000	
	S566	4050.000			S516	3050.000			S466	2050.000	
	S565	4030.000			S515	3030.000			S465	2030.000	
	S564	4010.000			S514	3010.000			S464	2010.000	
	S563	3990.000			S513	2990.000			S463	1990.000	168.380
	S562	3970.000	293.380		S512	2970.000	293.380		S462	1970.000	293.380
	S561	3950.000	168.380		S511	2950.000	168.380		S461	1950.000	168.380
	S560	3930.000			S510	2930.000			S460	1930.000	
	S559	3910.000			S509	2910.000			S459	1910.000	
	S558	3890.000			S508	2890.000			S458	1890.000	
	S557	3870.000			S507	2870.000			S457	1870.000	
	S556	3850.000			S506	2850.000			S456	1850.000	
	S555	3830.000			S505	2830.000			S455	1830.000	
	S554	3810.000			S504	2810.000			S454	1810.000	
	S553	3790.000			S503	2790.000			S453	1790.000	
	S552	3770.000			S502	2770.000			S452	1770.000	
	S551	3750.000			S501	2750.000			S451		168.380
	S550	3730.000			S500	2730.000			S450	1730.000	
	S549	3710.000			S499	2710.000			S449	1710.000	
	S548	3690.000			S498	2690.000			S448	1690.000	
	S547	3670.000			S497	2670.000			S447	1670.000	
	S546	3650.000			S496	2650.000			S446	1650.000	
	S545	3630.000	168.380		S495	2630.000			S445	1630.000	168.380
	S544	3610.000	293.380	692	S494	2610.000	293.380	742	S444	1610.000	293.380
	S543	3590.000			S493	2590.000	168.380		S443	1590.000	168.380
	S542	3570.000			S492	2570.000			S442	1570.000	
	S541	3550.000			S491	2550.000			S441	1550.000	
	S540	3530.000			S490	2530.000			S440	1530.000	
	S539	3510.000			S489	2510.000			S439	1510.000	
	S538	3490.000			S488	2490.000			S438	1490.000	
	S537	3470.000			S487	2470.000			S437	1470.000	
650	S536	3450.000	293.380	700	S486	2450.000	293.380	750	S436	1450.000	293.380

 Solomon Systech
 Oct 2007
 P 14/79
 Rev 0.31
 SSD1298

Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos
	S435	1430.000	168.380		S385	430.000	168.380		S335	-570.000	
752	S434	1410.000	293.380	802	S384	410.000	293.380		S334	-590.000	293.380
	S433	1390.000	168.380		S383		168.380		S333	-610.000	168.380
	S432	1370.000	293.380	804	S382	370.000	293.380		S332	-630.000	293.380
755	S431	1350.000	168.380	805	S381	350.000	168.380		S331	-650.000	168.380
756	S430	1330.000	293.380	806	S380	330.000	293.380		S330	-670.000	293.380
757	S429	1310.000	168.380	807	S379	310.000	168.380		S329	-690.000	168.380
758	S428	1290.000	293.380	808	S378	290.000	293.380		S328	-710.000	293.380
759	S427	1270.000	168.380	809	S377	270.000	168.380		S327	-730.000	168.380
760	S426	1250.000	293.380	810	S376	250.000	293.380		S326	-750.000	293.380
761	S425	1230.000	168.380	811	S375	230.000	168.380	861	S325	-770.000	168.380
762	S424	1210.000	293.380	812	S374	210.000	293.380	862	S324	-790.000	293.380
763	S423	1190.000	168.380	813	S373	190.000	168.380	863	S323	-810.000	168.380
764	S422	1170.000	293.380	814	S372	170.000	293.380	864	S322	-830.000	293.380
765	S421	1150.000	168.380	815	S371	150.000	168.380	865	S321	-850.000	168.380
766	S420	1130.000	293.380	816	S370	130.000	293.380	866	S320	-870.000	293.380
767	S419	1110.000	168.380	817	S369	110.000	168.380	867	S319	-890.000	168.380
768	S418	1090.000	293.380	818	S368	90.000	293.380	868	S318	-910.000	293.380
	S417	1070.000	168.380		S367	70.000	168.380		S317	-930.000	168.380
	S416	1050.000	293.380		S366	50.000	293.380		S316	-950.000	293.380
	S415	1030.000	168.380		S365		168.380		S315	-970.000	168.380
	S414	1010.000	293.380		S364	10.000			S314	-990.000	
	S413	990.000	168.380		S363		168.380		S313	-1010.000	
	S412	970.000	293.380		S362	-30.000			S312	-1030.000	293.380
	S411	950.000	168.380		S361	-50.000	168.380		S311	-1050.000	
	S410	930.000	293.380		S360	-70.000			S310	-1070.000	293.380
	S409	910.000	168.380		S359	-90.000	168.380		S309	-1090.000	
	S408	890.000	293.380		S358	-110.000			S308	-1110.000	293.380
	S407	870.000	168.380		S357	-130.000			S307	-1130.000	
	S406	850.000	293.380		S356	-150.000			S306	-1150.000	293.380
	S405	830.000	168.380		S355	-170.000			S305	-1170.000	168.380
	S404	810.000	293.380		S354	-190.000	293.380		S304	-1190.000	293.380
	S403	790.000	168.380		S353	-210.000			S303	-1210.000	168.380
	S402	770.000	293.380		S352	-230.000	293.380		S302	-1230.000	293.380
	S401	750.000	168.380		S351	-250.000			S301	-1250.000	
	S400		293.380		S350	-270.000			S300	-1270.000	
	S399		168.380		S349	-290.000			S299	-1290.000	
	S398		293.380		S348	-310.000			S298	-1310.000	
	S397		168.380		S347	-330.000			S297	-1330.000	
	S396		293.380		S346	-350.000			S296	-1350.000	
	S395		168.380		S345	-370.000			S295	-1370.000	
	S394		293.380		S344	-390.000			S294	-1390.000	
	S393		168.380		S343	-410.000			S293	-1410.000	
	S392		293.380		S342	-430.000			S292	-1430.000	
	S391		168.380		S341	-450.000			S291	-1450.000	
	S390		293.380		S340	-470.000			S290	-1470.000	
	S389		168.380		S339	-490.000			S289	-1490.000	
	S388		293.380		S338	-510.000			S288	-1510.000	
	S387		168.380		S337	-530.000			S287	-1510.000	
	S386		293.380		S336	-550.000			S286	-1550.000	
300	0300	T20.000	475.500	650	0000	-550.000	275.500	200	5200	-1330.000	475.500

SSD1298 Rev 0.31 P 1579 Oct 2007 **Solomon Systech**

902 \$284 -1590.000 \$293.380 903 \$283 -1610.000 \$168.380 904 \$282 -1630.000 \$293.380 905 \$281 -1650.000 \$168.380 906 \$280 -1670.000 \$293.380 907 \$279 -1690.000 \$168.380 908 \$278 -1710.000 \$293.380 909 \$277 -1730.000 \$168.380 910 \$276 -1750.000 \$293.380 911 \$275 -1770.000 \$168.380	953 954 955 956 957 958 959 960	\$234 \$233 \$232 \$231 \$230 \$229 \$228 \$227	-2570.000 -2590.000 -2610.000 -2630.000 -2650.000 -2670.000 -2710.000	293.380 168.380 293.380 168.380 293.380 168.380	1002 1003 1004 1005	S182 S181 S180	-3570.000 -3590.000 -3610.000 -3630.000 -3650.000 -3670.000	168.380 293.380 168.380 293.380 168.380 293.380
903 \$283 -1610.000 \$168.380 904 \$282 -1630.000 \$293.380 905 \$281 -1650.000 \$168.380 906 \$280 -1670.000 \$293.380 907 \$279 -1690.000 \$168.380 908 \$278 -1710.000 \$293.380 909 \$277 -1730.000 \$168.380 910 \$276 -1750.000 \$293.380 911 \$275 -1770.000 \$168.380	953 954 955 956 957 958 959 960	\$233 \$232 \$231 \$230 \$229 \$228 \$227	-2610.000 -2630.000 -2650.000 -2670.000 -2690.000 -2710.000	168.380 293.380 168.380 293.380 168.380	1003 1004 1005 1006	S183 S182 S181 S180	-3610.000 -3630.000 -3650.000 -3670.000	168.380 293.380 168.380
904 \$282 -1630.000 \$293.380 905 \$281 -1650.000 \$168.380 906 \$280 -1670.000 \$293.380 907 \$279 -1690.000 \$168.380 908 \$278 -1710.000 \$293.380 909 \$277 -1730.000 \$168.380 910 \$276 -1750.000 \$293.380 911 \$275 -1770.000 \$168.380	954 955 956 957 958 959 960 961	\$232 \$231 \$230 \$229 \$228 \$227	-2630.000 -2650.000 -2670.000 -2690.000 -2710.000	293.380 168.380 293.380 168.380	1004 1005 1006	S182 S181 S180	-3630.000 -3650.000 -3670.000	293.380 168.380
905 \$281 -1650.000 \$168.380 906 \$280 -1670.000 \$293.380 907 \$279 -1690.000 \$168.380 908 \$278 -1710.000 \$293.380 909 \$277 -1730.000 \$168.380 910 \$276 -1750.000 \$293.380 911 \$275 -1770.000 \$168.380	955 956 957 958 959 960 961	S231 S230 S229 S228 S227	-2650.000 -2670.000 -2690.000 -2710.000	168.380 293.380 168.380	1005 1006	S181 S180	-3650.000 -3670.000	168.380
906 \$280 -1670.000 \$293.380 907 \$279 -1690.000 \$168.380 908 \$278 -1710.000 \$293.380 909 \$277 -1730.000 \$168.380 910 \$276 -1750.000 \$293.380 911 \$275 -1770.000 \$168.380	956 957 958 959 960 961	S230 S229 S228 S227	-2670.000 -2690.000 -2710.000	293.380 168.380	1006	S180	-3670.000	
907 \$279 -1690.000 \$168.380 908 \$278 -1710.000 \$293.380 909 \$277 -1730.000 \$168.380 910 \$276 -1750.000 \$293.380 911 \$275 -1770.000 \$168.380	957 958 959 960 961	S229 S228 S227	-2690.000 -2710.000	168.380				293 380
908 S278 -1710.000 293.380 909 S277 -1730.000 168.380 910 S276 -1750.000 293.380 911 S275 -1770.000 168.380	958 959 960 961	S228 S227	-2710.000		1007			275.500
909 \$277 -1730.000 \$168.380 910 \$276 -1750.000 \$293.380 911 \$275 -1770.000 \$168.380	959 960 961	S227		202 200		S179	-3690.000	168.380
910 S276	960 961		2520 000	293.380	1008	S178	-3710.000	293.380
911 S275 -1770.000 168.380	961	0006	-2730.000	168.380	1009	S177	-3730.000	168.380
911 S275 -1770.000 168.380		S226	-2750.000	293.380	1010	S176	-3750.000	293.380
		S225	-2770.000	168.380	1011	S175	-3770.000	168.380
912 S274 -1790.000 293.380	962	S224	-2790.000	293.380	1012	S174	-3790.000	293.380
913 S273 -1810.000 168.380	963	S223	-2810.000	168.380	1013	S173	-3810.000	168.380
914 S272 -1830.000 293.380	964	S222	-2830.000	293.380	1014	S172	-3830.000	293.380
915 S271 -1850.000 168.380	965	S221	-2850.000	168.380	1015	S171	-3850.000	168.380
	966	S220	-2870.000	293.380	1016	S170	-3870.000	293.380
917 S269 -1890.000 168.380	967	S219	-2890.000	168.380	1017	S169	-3890.000	168.380
918 S268 -1910.000 293.380	968	S218	-2910.000	293.380	1018	S168	-3910.000	293.380
919 S267 -1930.000 168.380	969	S217	-2930.000	168.380	1019	S167	-3930.000	168.380
920 S266 -1950.000 293.380	970	S216	-2950.000	293.380	1020	S166	-3950.000	293.380
921 \$265 -1970.000 168.380	971	S215	-2970.000		1021	S165	-3970.000	168.380
922 \$264 -1990.000 293.380	972	S214	-2990.000	293.380	1022	S164	-3990.000	293.380
923 S263 -2010.000 168.380	973	S213	-3010.000	168.380	1023	S163	-4010.000	168.380
924 S262 -2030.000 293.380	974	S212	-3030.000	293.380	1024	S162	-4030.000	293.380
925 S261 -2050.000 168.380	975	S211	-3050.000	168.380	1025	S161	-4050.000	168.380
926 S260 -2070.000 293.380	976	S210	-3070.000	293.380	1026	S160	-4070.000	293.380
927 \$259 -2090.000 168.380	977	S209	-3090.000	168.380	1027	S159	-4090.000	168.380
928 \$258 -2110.000 293.380	978	S208	-3110.000	293.380	1028	S158	-4110.000	293.380
929 S257 -2130.000 168.380	979	S207	-3130.000	168.380	1029	S157	-4130.000	168.380
930 S256 -2150.000 293.380	980	S206	-3150.000	293.380	1030	S156	-4150.000	293.380
931 \$255 -2170.000 168.380	981	S205	-3170.000	168.380	1031	S155	-4170.000	168.380
932 \$254 -2190.000 293.380	982	S204	-3190.000	293.380	1032	S154	-4190.000	293.380
933 S253 -2210.000 168.380	983	S203	-3210.000	168.380	1033	S153	-4210.000	168.380
934 \$252 -2230.000 293.380	984	S202	-3230.000	293.380	1034	S152	-4230.000	293.380
935 S251 -2250.000 168.380	985	S201	-3250.000	168.380	1035	S151	-4250.000	168.380
936 S250 -2270.000 293.380	986	S200	-3270.000	293.380	1036	S150	-4270.000	293.380
937 \$249 -2290.000 168.380	987	S199	-3290.000	168.380	1037	S149	-4290.000	168.380
938 S248 -2310.000 293.380	988	S198	-3310.000	293.380	1038	S148	-4310.000	293.380
939 S247 -2330.000 168.380	989	S197	-3330.000	168.380	1039	S147	-4330.000	168.380
940 S246 -2350.000 293.380	990	S196	-3350.000	293.380	1040	S146	-4350.000	293.380
941 S245 -2370.000 168.380	991	S195	-3370.000	168.380	1041	S145	-4370.000	168.380
942 \$244 -2390.000 293.380	992	S194	-3390.000	293.380	1042	S144	-4390.000	293.380
		S193	-3410.000			S143	-4410.000	
		S192	-3430.000			S142	-4430.000	
		S191	-3450.000		1045		-4450.000	
		S190	-3470.000			S140	-4470.000	
		S189	-3490.000			S139	-4490.000	
		S188	-3510.000			S138	-4510.000	
		S187	-3530.000			S137	-4530.000	
		S186	-3550.000			S136	-4550.000	

 Solomon Systech
 Oct 2007
 P 16/79
 Rev 0.31
 SSD1298

Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos
	S135	-4570.000	168.380	1101		-5570.000		1151	S35	-6570.000	168.380
	S134	-4590.000	293.380	1102		-5590.000	293.380	1152		-6590.000	293.380
	S133	-4610.000	168.380	1103		-5610.000		1153		-6610.000	168.380
	S132	-4630.000	293.380	1104		-5630.000	293.380	1154		-6630.000	293.380
1055	S131	-4650.000	168.380	1105		-5650.000	168.380	1155	S31	-6650.000	168.380
1056	S130	-4670.000	293.380	1106		-5670.000	293.380	1156		-6670.000	293.380
	S129	-4690.000	168.380	1107		-5690.000		1157	S29	-6690.000	168.380
1058	S128	-4710.000	293.380	1108		-5710.000	293.380	1158		-6710.000	293.380
1059	S127	-4730.000	168.380	1109		-5730.000		1159		-6730.000	168.380
	S126	-4750.000	293.380	1110		-5750.000	293.380	1160		-6750.000	293.380
	S125	-4770.000	168.380	1111		-5770.000	168.380		S25	-6770.000	168.380
1062	S124	-4790.000	293.380	1112		-5790.000	293.380	1162		-6790.000	293.380
1063	S123	-4810.000	168.380	1113		-5810.000	168.380	1163		-6810.000	168.380
	S122	-4830.000	293.380	1114		-5830.000	293.380	1164		-6830.000	293.380
1065	S121	-4850.000	168.380	1115		-5850.000	168.380	1165		-6850.000	168.380
	S120	-4870.000	293.380	1116		-5870.000	293.380	1166		-6870.000	293.380
	S119	-4890.000	168.380	1117		-5890.000	168.380		S19	-6890.000	168.380
	S118	-4910.000	293.380	1118		-5910.000	293.380	1168		-6910.000	293.380
	S117	-4930.000	168.380	1119		-5930.000		1169		-6930.000	168.380
1070	S116	-4950.000	293.380	1120		-5950.000	293.380	1170	S16	-6950.000	293.380
	S115	-4970.000	168.380	1121		-5970.000	168.380		S15	-6970.000	168.380
	S114	-4990.000	293.380	1122		-5990.000	293.380		S14	-6990.000	293.380
	S113	-5010.000	168.380	1123		-6010.000	168.380	1173		-7010.000	168.380
	S112	-5030.000	293.380	1124		-6030.000	293.380	1174		-7030.000	293.380
1075		-5050.000	168.380	1125		-6050.000		1175		-7050.000	168.380
	S110	-5070.000	293.380	1126		-6070.000	293.380	1176		-7070.000	293.380
	S109	-5090.000	168.380	1127		-6090.000		1177		-7090.000	168.380
	S108	-5110.000	293.380	1128		-6110.000	293.380	1178		-7110.000	293.380
	S107	-5130.000	168.380	1129		-6130.000		1179		-7130.000	
	S106	-5150.000	293.380	1130		-6150.000	293.380	1180		-7150.000	293.380
	S105	-5170.000	168.380	1131		-6170.000			S5	-7170.000	168.380
	S104	-5190.000	293.380	1132		-6190.000	293.380	1182		-7190.000	293.380
	S103	-5210.000	168.380	1133		-6210.000	168.380	1183		-7210.000	168.380
	S102	-5230.000	293.380	1134		-6230.000	293.380	1184		-7230.000	293.380
1085		-5250.000	168.380	1135		-6250.000		1185		-7250.000	
	S100	-5270.000				-6270.000				-7270.000	
1087		-5290.000				-6290.000			DUMMY	-7290.000	
1088		-5310.000				-6310.000			DUMMY	-7350.000	
1089		-5330.000				-6330.000			DUMMY	-7370.000	
1090		-5350.000				-6350.000			G318	-7390.000	
1091		-5370.000				-6370.000			G316	-7410.000	
1092		-5390.000				-6390.000			G314	-7430.000	
1093		-5410.000				-6410.000			G312	-7450.000	
1094		-5430.000				-6430.000			G310	-7470.000	
1095		-5450.000				-6450.000			G308	-7490.000	
1096		-5470.000				-6470.000			G306	-7510.000	
1097		-5490.000				-6490.000			G304	-7530.000	
1098		-5510.000				-6510.000			G302	-7550.000	
1099		-5530.000				-6530.000			G300	-7570.000	
1100	S86	-5550.000	293.380	1150	S36	-6550.000	293.380	1200	G298	-7590.000	293.380

 SSD1298
 Rev 0.31
 P 1779
 Oct 2007
 Solomon Systech

Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos	Pad #	Pad Name	X-pos	Y-pos
1201	G296	-7610.000			G192	-8650.000	168.380	1305	G88	-9690.000	168.380
1202	G294	-7630.000	293.380	1254	G190	-8670.000	293.380	1306	G86	-9710.000	293.380
1203	G292	-7650.000	168.380	1255	G188	-8690.000	168.380		G84	-9730.000	168.380
1204	G290	-7670.000	293.380	1256	G186	-8710.000	293.380	1308	G82	-9750.000	293.380
1205	G288	-7690.000	168.380	1257	G184	-8730.000	168.380	1309	G80	-9770.000	168.380
1206	G286	-7710.000	293.380	1258	G182	-8750.000	293.380	1310	G78	-9790.000	293.380
1207	G284	-7730.000	168.380	1259	G180	-8770.000	168.380	1311	G76	-9810.000	168.380
1208	G282	-7750.000	293.380	1260	G178	-8790.000	293.380		G74	-9830.000	293.380
1209	G280	-7770.000	168.380	1261	G176	-8810.000	168.380	1313		-9850.000	168.380
1210	G278	-7790.000	293.380	1262	G174	-8830.000	293.380	1314		-9870.000	
1211	G276	-7810.000	168.380	1263	G172	-8850.000	168.380			-9890.000	168.380
1212	G274	-7830.000	293.380	1264	G170	-8870.000	293.380	1316	G66	-9910.000	
1213	G272	-7850.000	168.380	1265	G168	-8890.000	168.380	1317	G64	-9930.000	168.380
1214	G270	-7870.000	293.380		G166	-8910.000	293.380	1318		-9950.000	293.380
1215	G268	-7890.000	168.380	1267	G164	-8930.000	168.380	1319	G60	-9970.000	168.380
1216	G266	-7910.000	293.380	1268	G162	-8950.000	293.380			-9990.000	
	G264	-7930.000	168.380		G160	-8970.000	168.380		G56	-10010.000	168.380
1218	G262	-7950.000	293.380	1270	G158	-8990.000	293.380		G54	-10030.000	
1219	G260	-7970.000	168.380	1271	G156	-9010.000	168.380			-10050.000	168.380
1220	G258	-7990.000	293.380		G154	-9030.000	293.380	1324		-10070.000	
1221	G256	-8010.000	168.380		G152	-9050.000	168.380	1325		-10090.000	168.380
	G254	-8030.000	293.380		G150	-9070.000	293.380	1326		-10110.000	293.380
	G252	-8050.000	168.380		G148	-9090.000	168.380		G44	-10130.000	168.380
	G250	-8070.000	293.380		G146	-9110.000	293.380	1328		-10150.000	293.380
	G248	-8090.000	168.380		G144	-9130.000	168.380			-10170.000	168.380
	G246	-8110.000	293.380		G142	-9150.000	293.380	1330		-10190.000	
	G244	-8130.000			G140	-9170.000	168.380		G36	-10210.000	
	G242	-8150.000	293.380		G138	-9190.000	293.380	1332		-10230.000	
	G240	-8170.000			G136	-9210.000	168.380	1333		-10250.000	
	G238	-8190.000	293.380		G134	-9230.000	293.380	1334		-10270.000	
	G236	-8210.000			G132	-9250.000	168.380	1335		-10290.000	
	G234	-8230.000	293.380		G130	-9270.000	293.380	1336		-10310.000	
	G232	-8250.000			G128	-9290.000	168.380		G24	-10330.000	
	G230	-8270.000	293.380		G126	-9310.000	293.380	1338		-10350.000	
	G228	-8290.000			G124	-9330.000	168.380			-10370.000	
	G226	-8310.000			G122	-9350.000				-10390.000	
	G224	-8330.000			G120	-9370.000				-10410.000	
	G222	-8350.000			G118	-9390.000				-10430.000	
	G220	-8370.000			G116	-9410.000				-10450.000	
	G218	-8390.000			G114	-9430.000				-10470.000	
	G216	-8410.000			G112	-9450.000				-10490.000	
	G214	-8430.000			G110	-9470.000				-10510.000	
	G212	-8450.000			G108	-9490.000				-10530.000	
	G210	-8470.000			G106	-9510.000				-10550.000	
	G208	-8490.000			G104	-9530.000				-10570.000	
	G206	-8510.000			G102	-9550.000			DUMMY	-10590.000	
	G204	-8530.000			G100	-9570.000			DUMMY	-10610.000	
	G202	-8550.000				-9590.000			DUMMY	-10630.000	
	G200	-8570.000				-9610.000			DUMMY	-10650.000	
	G198	-8590.000				-9630.000			DUMMY	-10670.000	293.380
	G196	-8610.000				-9650.000					ļ
1252	G194	-8630.000	293.380	1304	G90	-9670.000	293.380				<u> </u>

 Solomon Systech
 Oct 2007
 P 18/79
 Rev 0.31
 SSD1298

PIN DESCRIPTION 5

Remark:

I = Input; O = Output; IO = Bi-directional; P = Power; VCC = System VDD; GND = System VSS;

Table 5-1: Power Supply Pins

SAVS PAVS PAVS GND GND GND GND GND GND GND GND GND AVSS VCI PAVS VCI PAVS VCI PAVS VCI PAVS VCI PAVS VCI PAVS Power Supply	Pin Name	Туре	Connect to	Function	Description	When not in use
AVSS Power Supply Power				Ground of		-
Content of Supply Cont		D			Grounding for analog circuit.	-
VCID Power Supply Power Supply for Supply fo		1				
VCIP P	VCHS			Suppry		-
VCIP VCI	VCI			Power		-
VCIX2 VCIX2 or Stabilizing capacitor VCIX2 or FPC VCIX2 or	VCIP	P		Analog	Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages.	-
VCIX2 VCIX2 or FPC VC	VCIM	0		Booster	Negative voltage of VCI.	-
VCIX2G P FPC Voltage for VCIX2 on FPC VCIX2G VCIX2G FPC Voltage for VCIX2 on FPC External voltage source or Open VCOMH VCOMH VCOML Stabilizing capacitor Stabilizin	VCIX2	U	Stabilizing capacitor	voltages	Equals to 2x VCI	-
VCIX2G FPC VCIX2 on FPC	VCIX2J	р	FPC	_		-
VCOMR I Voltage source or Open Reference Reference Stabilizing capacitor VCOML VCOML VCOML VCOML VCOM Stabilizing capacitor VCOM Stabilizing capacitor VCOM VCOM Signal VCOM alternation. This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. This pin is the maximum source driver voltage. A positive power output pin for gate driver and for MTP programming A negative power output pin for gate driver. - Connect to VSS CXP I Booster capacitor Booster capacitor Booster capacitor Booster capacitor Booster capacitor CAP COnnect a capacitor to CXP COnnect a capacitor to CYP CONN	VCIX2G	1	FPC	analog		-
VCOML Stabilizing capacitor Voltages for VCOM Stabilizing capacitor This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - VLCD63 Stabilizing capacitor Stabilizing capacitor This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. - VGH Stabilizing capacitor Stabilizing capacitor This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. - VGH Stabilizing capacitor This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. - VGH Stabilizing capacitor This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. - VGH Stabilizing capacitor This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. - VGH Stabilizing capacitor This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. - This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. - - This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. - - This pin indicates a LOW level of VCOM alternation. - - This pin indicates a LOW level of VCOM alternation.	VCOMR	I	voltage source or		regulator when register VDV[4:0] of Power Control 4 set to "01111".	Open
VCOMLStabilizing capacitorStabilizing capacitorThis pin indicates a LOW level of VCOM generated in driving the VCOM alternation.VLCD63Stabilizing capacitorLCD Driving CapacitorThis pin is the maximum source driver voltageVGHStabilizing capacitorA positive power output pin for gate driver and for MTP programming-EXVRIGNDExternal ReferenceExternal reference of internal gamma resistor-CXPIBooster capacitor- Connect to VSS-CXNBooster capacitor- Connect a capacitor to CXN-CYPBooster capacitor- Connect a capacitor to CYP-C1PBooster capacitor- Connect a capacitor to CYP-C2PBooster capacitor- Connect a capacitor to CIN-C2PBooster capacitor- Connect a capacitor to CIP-C2NBooster capacitor- Connect a capacitor to C2N-C2PBooster capacitor- Connect a capacitor to C2N-C2NBooster capacitor- Connect a capacitor to C2N-C2NBooster capacitor- Connect a capacitor to C2N-C2N- Connect a capacitor to C2N-C3PBooster- Connect a capacitor to C2N-C3P- Connect a capacitor to C3N-	VCOMH	0	Stabilizing		This pin indicates a HIGH level of VCOM generated in	-
VGH O Stabilizing capacitor Stabilization Capacitor Stabiliz	VCOML	U	Stabilizing capacitor		This pin indicates a LOW level of VCOM generated in	-
VGH VGL Stabilizing capacitor Voltages Voltages A positive power output pin for gate driver and for M1P programming A negative power output pin for gate driver.	VLCD63			I CD	This pin is the maximum source driver voltage.	-
VGLStabilizing capacitorA negative power output pin for gate driverEXVRIGNDExternal Reference of internal gamma resistor - Connect to VSS-CXPIBooster capacitor- Connect a capacitor to CXN-CYPBooster capacitor- Connect a capacitor to CXP-CYNC1PBooster capacitor- Connect a capacitor to CYN-C1PBooster capacitor- Connect a capacitor to CYP-C1NBooster capacitor- Connect a capacitor to C1N-C2PBooster capacitor- Connect a capacitor to C1N-C2NBooster- Connect a capacitor to C2N-C3PBooster- Connect a capacitor to C2P-C3PConnect a capacitor to C3N-	VGH	О	capacitor	Driving		-
CXP I Booster capacitor CYP Booster capacitor CYN CYN Booster capacitor CIP Booster capacitor C2P Booster capacitor C2P Booster capacitor C2P Booster capacitor C2P Booster capacitor C3P C3P Booster C3P Booster C3P C3P Booster C3P C3P C5	VGL			_		-
CXN capacitor Booster CYN capacitor Booster C1P Booster C1N capacitor C2P Booster C2N capacitor C2P Booster C2N capacitor C3P Booster C3P Booster C3P C3P C3P C5P C5P C5P C5P C5P C5P C5P C5P C5P C5		I			- Connect to VSS	-
CYP CYN Booster capacitor Booster C1P C1N C2P Booster C2N C3P Booster C3P C3P Booster C3P C3P Booster C4 C5P C5P C5P C5P C5P C6 C6 C6 C6 C7 C7 C7 C7 C7 C7		I			1	-
CYN capacitor Booster and Stabilization C2P - Connect a capacitor to C1N - Connect a capacitor to C1N - Connect a capacitor to C1N - Connect a capacitor to C1P - Connect a capacitor to C2N - Connect a capacitor to C3N						-
C1P Booster and Stabilization Capacitors C2P Booster capacitor C2N Booster capacitor C3P Booster capacitor C3P Booster capacitor C3P C3P C3P C3P C3P C4 C5 C5 C5 C5 C5 C6						-
C1P Booster capacitor Stabilization C2P Booster capacitor C2N C3P Booster capacitor Booster capacitor C3P C3P C3P C3P Stabilization Capacitors Stabilization Capacitors C4D C4D C4D C4D C5D C5D C5D C5D C5D C5D C5D C5D C5D C5				Booster and		
C2P Booster capacitors - Connect a capacitor to C2N - C3P Booster - Connect a capacitor to C2P - Connect a capacitor to C3N -						
C2P Booster - Connect a capacitor to C2N - C2N capacitor - Connect a capacitor to C2P - C3P Booster - Connect a capacitor to C3N -						
C3P Booster - Connect a capacitor to C3N -					*	
LAIN LEGINACHOE LEGINACIO LEGINACIO CONOCITOR TO L'AD	C3N		capacitor		- Connect a capacitor to C3P	<u>-</u> -

Rev 0.31 P 1979 Oct 2007 SSD1298 **Solomon Systech**

Pin Name	Type	Connect to	Function	Description	When not in use
CDUM0		Stabilizing capacitor		- Connect a capacitor to VSS	Open
CDUM1P		Stabilizing capacitor	Stabilization Capacitors	- Connect a capacitor to CDUM1N	Open
CDUM1N		Stabilizing capacitor		- Connect a capacitor to CDUM1P	Open
VCORE	CORE P	Stabilizing capacitor	Power for Core Logic	Vdd for core use. Connect a capacitor for stabilization	-
VREGC	P	VCORE	Regulator output for logic circuits	Regulator output for VCORE use.	1
VDDIO	P	Power Supply	Power for interface logic pins	Voltage input pin for logic I/O, connect to system VDD Connect to voltage source between 1.4V to 3.6V	-
VCIR	VCIR P	P Power i	Power for interface logic pins	Internal regular input for logic supply : VCIR=2.5V-3.3V	-

 Solomon Systech
 Oct 2007
 P 20/79
 Rev 0.31
 SSD1298

Table 5-2 - Interface Logic Pins

Name	Туре	Connect to	Function	Description	When not in use
DC		MPU		Data or command	V_{DDIO} or V_{ss}
CSB		MPU		Chip select pin for 6800/8080/SPI interface	-
RD	I	MPU	Logic Control	$\begin{array}{c} 6800\text{-system}: E \text{ (enable signal)} \\ 8080\text{-system}: RD \text{ (read strobe signal)} \\ \text{Serial mode}: Not \text{ used and should be connected to } V_{DDIO} \text{ or } V_{ss} \end{array}$	V _{DDIO} or V _{ss}
WR		MPU		68-system : RW (indicates read cycle when High, write cycle when Low) 80-system : WR (write strobe signal) Serial mode : SCL (serial clock input)	V _{DDIO} or V _{ss}
D0-D17	Ю	MPU	Data bus	For parallel mode, $8/9/16/18$ bit interface. Please refer to Section 14 Interface Mapping for definition. Unused pins should connect to $V_{\rm SS}$.	$ m V_{SS}$
WSYNC	О	MPU	Logic Control	Ram Write Synchronization output	Open
OE	I	MPU	Dignloss	Display enable pin from controller. Data will be treated as dummy regardless the OE status during front/back porch setting at registers R16 and R17.	Vss
DOTCLK	I	MPU	Display Timing Signals	Dot-clock signal and oscillator source. A non-stop external clock must be provided to that pin even at front or black porch non-display period.	Vss
HSYNC	I	MPU		Line Synchronization input	V_{SS}
VSYNC	I	MPU		Frame/Ram Write Synchronization input	V_{SS}
RESB	I	MPU	System Reset	System reset pin. - An active low pulse at this pin will reset the IC, Connect to $V_{\rm DDIO}$ in normal operation	-
SDI	I	MPU	Serial	Data input pin in serial interface	V_{SS}
SDO	О	MPU	interface	Data output pin in serial interface	Open

SSD1298 Rev 0.31 P 2179 Oct 2007 **Solomon Systech**

Table 5-3: Mode Selection Pins

Name	Туре	Connect to	Function				De	escription	When not in use			
				PS3	PS2	PS1	PS0	Interface Mode				
				0	0	0	0	16-bit 6800 parallel interface				
				0	0	0	1	8-bit 6800 parallel interface				
				0	0	1	0	16-bit 8080 parallel interface				
				0	0	1	1	8-bit 8080 parallel interface				
				0	1	0	0	9-bit generic D[8:0] (262k				
								colour) + 4-wire SPI If 65K				
			color, D3 shorts to D8 intern									
		V _{DDIO} or	Interface	0	1	0	1	16-bit generic (262k colour) +				
PS[3:0]	I	V _{SS}	Selection					4-wire SPI	-			
		* 55	Sciection	0	1	1	0	18-bit generic (262k colour) +				
								4-wire SPI				
				0	1	1	1	6-bit generic D[8:3] (262k				
								colour) + 4-wire SPI				
				1	0	0	0	18-bits 6800 parallel interface				
				1	0	0	1	9-bits 6800 parallel interface				
				1	0	1	0	18-bit 8080 parallel interface				
				1	0	1	1	9-bit 8080 parallel interface				
				1	1	1	0	4-wire SPI]			
				1	1	1	1	3-wire SPI				

 Solomon Systech
 Oct 2007
 P 22/79
 Rev 0.31
 SSD1298

Table 5-4: Driver Output Pins

Name	Type	Connect to	Function	Description	When not in use
VCOM		LCD		A power supply for the TFT-display common electrode.	Open
G0-G319		LCD	LCD	Gate driver output pins. These pins output V_{GH} , V_{GL} or V_{GOFFH} level.	Open
S0-S719	О	LCD	Driving Signals	Source driver output pins. S(3n): display Red if BGR = LOW, Blue if BGR = HIGH. S(3n+1): display Green. S(3n+2): display Blue if BGR = LOW, Red if BGR = HIGH.	Open

Table 5-5: Miscellaneous Pins

Name	Туре	Connect to	Function	Description	When not in use
NC	-	1	-	These pins must be left open and cannot be connected together	Open
DUMMY	-	ı	-	Floating pins and no connection inside the IC. These pins should be open.	Open
TESTA		FPC	IC	Test pin of the internal circuit Leave this pin open and insert test point in FPC	Open
TESTB	Ю	FPC	Testing Signal	Test pin of the internal circuit Leave this pin open and insert test point in FPC	Open
TESTC		FPC	Signai	Test pin of the internal circuit Leave this pin open and insert test point in FPC	Open

SSD1298 Rev 0.31 P 2379 Oct 2007 **Solomon Systech**

6 BLOCK FUNCTION DESCRIPTION

6.1 System Interface

The System Interface unit consists of three functional blocks for driving the 6800-series parallel interface, 8080-series high speed parallel interface, 3-lines serial peripheral interface and 4-lines serial peripheral interface. The selection of different interface is done by PS3, PS2, PS1 and PS0 pins. Please refer to the pin descriptions on page 19.

a) MPU Parallel 6800-series Interface

The parallel Interface consists of 18 bi-directional data pins D[17:0], R/\overline{W} , D/\overline{C} , E and \overline{CS} . R/\overline{W} input high indicates a read operation from the Graphical Display Data RAM (GDDRAM) or the status register. R/\overline{W} input low indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of D/\overline{C} input. The E input serves as data latch signal (clock) when high provided that \overline{CS} is low. Please refer to Parallel Interface Timing Diagram of 6800-series microprocessors. In order to match the operating frequency of the GDDRAM with that of the MCU, pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in the following diagram.

Figure 6-1 - Read Display Data

b) MPU Parallel 8080-series Interface

The parallel interface consists of 18 bi-directional data pins D[17:0], RD, WR, DC and CSB. RD input serves as data read latch signal (clock) when low provided that CSB is low. Whether reading the display data from GDDRAM or reading the status from the status register is controlled by DC. WR input serves as data write latch signal (clock) when low provided that CSB is low. Whether writing the display data to the GDDRAM or writing the command to the command register is controlled by DC. A dummy read is also required before the first actual display data read for 8080-series interface. Please refer Figure 7-1.

c) 3-lines Serial Peripheral Interface

Solomon Systech Oct 2007 | P 24/79 | Rev 0.31 | SSD1298

The operation is similar to 4-lines serial peripheral interface while DC is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: DC bit, D7 to D0 bit. The DC bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (DC bit = 1) or the command register (DC bit = 0).

	6800 – series Parallel Interface	8080 – series Parallel Interface	MCU Serial Interface
Data Read	18/16/9/8-bits	18/16/9/8-bits	Yes
Data Write	18/16/9/8-bits	18/16/9/8-bits	8-bits
Command Read	Status only	Status only	No
Command Write	Yes	Yes	8-bits

Table 6-1 - Data bus selection modes

Transfer starts

CSB

SCL

MSB

LSB

MSB

DC

DC

Register / data

Transfer

Transfer starts

Transfer

Transfer starts

Transfer

Trans

Figure 6-2: 3-wire SPI interface (9 bits)

d) 4-wire Serial Peripheral Interface (8 bits)

The clock synchronized serial peripheral interface (SPI) using the chip select line (CSB), serial transfer clock line (SCL), serial input data (SDI). The serial data transfer starts at the falling edge of CSB input and ends at the rising edge of CSB.SDC determinate the data of SDI which is register or data.

SSD1298 | Rev 0.31 | P 2579 | Oct 2007 | **Solomon Systech**

Figure 6-3: 4-wire SPI interface (8 bits)

6.2 RGB Interface

SSD1298 supports RGB interface. RGB interface unit consists of D[17:0], HSYNC, VSYNC, DOTCLK and OE signals for display moving pictures. When the RGB interface is selected, the display operation is synchronized with external control signals (HSYNC, VSYNC and DOTCLK). Data is written in synchronization with the control signals when DEN is enabled for write operation in order to avoid flicker or tearing effect while updating display data.

6.3 Address Counter (AC)

The address counter (AC) assigns address to the GDDRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing into the GRAM, the AC is automatically incremented by 1 (or decremented by 1). After reading the data, the AC is not updated. A window address function allows for data to be written only to a window area specified by GRAM.

6.4 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 240 RGB x $320 \times 18 / 8 = 172,800$ bytes. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Please refer to the command "Data Output/Scan direction" for detail description.

Four pages of display data forms a RAM address block and stored in the GDDRAM. Each block will form the fundamental units of scrolling addresses. Various types of area scrolling can be performed by software program according to the command "Set area Scroll" and "Set Scroll Start".

6.5 Gamma/Grayscale Voltage Generator

The grayscale voltage circuit generates a LCD driver circuit that corresponds to the grayscale levels as specified in the grayscale gamma adjustment resister. 262,144 possible colors can be displayed when 1 pixel = 18 bit. For details, see the gamma adjustment register.

Solomon Systech Oct 2007 | P 26/79 | Rev 0.31 | SSD1298

6.6 Booster and Regulator Circuit

These two functional blocks generate the voltage of VGH, VGL, VCOM levels and VLCD0~63 which are necessary for operating a TFT LCD.

6.7 Timing Generator

The timing generator generates a timing signal for the operation of internal circuit such as the internal RAM accessing, date output timing etc.

6.8 Oscillation Circuit (OSC)

This module is an on-chip low power RC oscillator circuitry. The oscillator generates the clock for the DC-DC voltage converter. This clock is also used in the display timing generator.

6.9 Data Latches

This block is a series of latches carrying the display signal information. These latches hold the data, which will be fed to the HV Buffer Cell and Level Selector to output the required voltage level.

6.10 Liquid Crystal Driver Circuit

SSD1298 consists of a 720-output source driver (S0-S719) and a 320-output gate driver (G0-G319). The display image data is latched when 720 bits of data are inputted. The latched data control the source driver and output drive waveforms. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the source driver can be changed by setting the RL bit and the shift direction of gate output from the gate driver can be changed by setting the TB bit. The scan mode by the gate driver can be changed by setting the SM bit. Sets the gate driver pin arrangement in combination with the TB bit to select the operimal scan mode for the module.

SSD1298 | Rev 0.31 | P 2779 | Oct 2007 | **Solomon Systech**

7 COMMAND TABLE

Table 7-1 - Command Table

Reg#	Register	R/W	D/C	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	Index	0	0	0	0	0	0	0	0	0	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
SR	Status Read	1	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0
R00h	Oscillation Start	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	OSCE N
IXOOII	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R01h	Driver output control	0	1	0	RL	REV	GD	BGR	SM	ТВ	MUX8	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
	(3B3Fh)			0	0	1	1	1	0	1	1	0	0	1	1	1	1	1	1
R02h	LCD drive AC control	0	1	0	0	0	FLD	ENWS	B/C	EOR	WSMD	NW7	NW6	NW5	NW4	NW3	NW2	NW1	NW0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R03h	Power control (1)	0	1	DCT3	DCT2	DCT1	DCT0	BT2	BT1	BT0	0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0
1.0511	All GAMAS[2:0] setting 8 color (6A64h)			0	1	1	0	1	0	1	0	0	1	1	0	0	1	0	0
R07h	Display control	0	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	CM	0	D1	D0
KOTII	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R0Bh	Frame cycle control	0	1	NO1	NO0	SDT1	SDT0	0	EQ2	EQ1	EQ0	DIV1	DIV0	SDIV	SRTN	RTN3	RTN2	RTN1	RTN0
KOBII	(5308h)			0	1	0	1	0	0	1	1	0	0	0	0	1	0	0	0
R0Ch	Power control (2)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VRC2	VRC1	VRC0
	(0004h)			0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
R0Dh	Power control (3)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	VRH3	VRH2	VRH1	VRH0
R0Eh	Power control (4)	0	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
R0Fh	Gate scan start position	0	1	0	0	0	0	0	0	0	SCN8	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R10h	Sleep mode	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SLP
	(0001h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R11h	Entry mode	0	1	VS mode	DFM1	DFM0	0	Denmode	WMode	Nosync	DMode	TY1	TY0	ID1	ID0	AM	0	0	0
	(6830h)			0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0
R15h	Entry mode	0	1	0	0	0	0	0	0	0	0	0	0	0	0	INVDOT	INVDEN	INVHS	INVVS
1311	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 Solomon Systech
 Oct 2007
 P 28/79
 Rev 0.31
 SSD1298

(continued)

_	ued)		- /-																
Reg#	Register	R/W	D/C	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R1Eh	Power control (5)	0	1	0	0	0	0	0	0	0	0	nOTP	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
R22h	RAM data write	0	1						Data[17:0)] mappii	ng deper	nds on th	e interfa	ce setting	1				
	RAM data read	1	1								•			·					
R23h	RAM write data mask (1)	0	1	WMR5	WMR4	WMR3	WMR2	WMR1	WMR0	0	0	WMG5	WMG4	WMG3	WMG2	WMG1	WMG0	0	0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R24h	RAM write data mask (2)	0	1	0	0	0	0	0	0	0	0	WMB5	WMB4	WMB3	WMB2	WMB1	WMB0	0	0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R25h	Frame Frequency	0	1	OSC3	OSC2	OSC1	OSC0	0	0	0	0	0	0	0	0	0	0	0	0
112311	(8000h)			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R28h	VCOM OTP (000Ah)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
R29h	VCOM OTP (80C0h)	0	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
R30h	γ control (1)	0	1	0	0	0	0	0	PKP12	PKP11	PKP10	0	0	0	0	0	PKP02	PKP01	PKP00
R31h	γ control (2)	0	1	0	0	0	0	0	PKP32	PKP31	PKP30	0	0	0	0	0	PKP22	PKP21	PKP20
R32h	γ control (3)	0	1	0	0	0	0	0	PKP52	PKP51	PKP50	0	0	0	0	0	PKP42	PKP41	PKP40
R33h	γ control (4)	0	1	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	0	PRP02	PRP01	PRP00
R34h	γ control (5)	0	1	0	0	0	0	0	PKN12	PKN11	PKN10	0	0	0	0	0	PKN02	PKN01	PKN00
R35h	γ control (6)	0	1	0	0	0	0	0	PKN32	PKN31	PKN30	0	0	0	0	0	PKN22	PKN21	PKN20
R36h	γ control (7)	0	1	0	0	0	0	0	PKN52	PKN51	PKN50	0	0	0	0	0	PKN42	PKN41	PKN40
R37h	γ control (8)	0	1	0	0	0	0	0	PRN12	PRN11	PRN10	0	0	0	0	0	PRN02	PRN01	PRN00
R3Ah	γ control (9)	0	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	VRP00
R3Bh	γ control (10)	0	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRN00
R41h	Vertical scroll control (1)	0	1	0	0	0	0	0	0	0	VL18	VL17	VL16	VL15	VL14	VL13	VL12	VL11	VL10
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R42h	Vertical scroll control (2)	0	1	0	0	0	0	0	0	0	VL28	VL27	VL26	VL25	VL24	VL23	VL22	VL21	VL20
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R44h	Horizontal RAM address position	0	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
	(EF00h)			1	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0
R45h	Vertical RAM address start position	0	1	0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R46h	Vertical RAM address end	0	1	0	0	0	0	0	0	0	VEA8	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
1.4011	position					_	_		_			_	_	_					
	(013Fh)	_		0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1
R48h	First window start	0	1	0	0	0	0	0	0	0	SS18	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
	(0000h)	•	_	Ū	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R49h	First window end	0	1	0	0	0	0	0	0	0	SE18	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10
	(013Fh)			0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1
R4Ah	Second window start	0	1	0	0	0	0	0	0	0	SS28	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R4Bh	Second window end	0	1	0	0	0	0	0	0	0	SE28	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20
	(013Fh)			0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1
R4Eh	Set GDDRAM X address counter	0	1	0	0	0	0	0	0	0	0	XAD7	XAD6	XAD5	XAD4	XAD3	XAD2	XAD1	XAD0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R4Fh	Set GDDRAM Y address counter	0	1	0	0	0	0	0	0	0	YAD8	YAD7	YAD6	YAD5	YAD4	YAD3	YAD2	YAD1	YAD0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: In R01h, bits REV, BGR, TB, RL, CM will override the corresponding hardware pins settings. Setting R28h as 0x0006 is required before setting R25h and R29h registers.

SSD1298 | Rev 0.31 | P 2979 | Oct 2007 | **Solomon Systech**

8 COMMAND DESCRIPTION

Index (IR)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	0	0	0	0	0	0	0	0	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

The index instruction specifies the RAM control indexes (R00h to RFFh). It sets the register number in the range of 000000000 to 111111111 in binary form. But do not access to Index register and instruction bits which do not have it's own index register.

Device Code Read (R00h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1

If this register is read forcibly, 9999h is read.

Oscillator (R00h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	OSCEN
PC	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OSCEN: The oscillator will be turned on when OSCEN = 1, off when OSCEN = 0.

Driver Output Control (R01h) (POR = 3B3Fh)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	RL	REV	GD	BGR	SM	ТВ	MUX8	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
PC)R	0	0	1	1	1	0	1	1	0	0	1	1	1	1	1	1

REV: Displays all character and graphics display sections with reversal when REV = "1". Since the grayscale level can be reversed, display of the same data is enabled on normally white and normally black panels. Source output level is indicated below.

REV	RGB data	Source Output level						
		Vcom = "L"	Vcom = "H"					
	00000H	V63	V0					
0	:	:	:					
	3FFFFH	V0	V63					
	00000H	V0	V63					
1	:	:	:					
	3FFFFH	V63	V0					

GD: Selects the 1st output Gate

GD = '0', G0 is 1st output Gate, Gate sequence G0, G1, G2, G3, ..., G318, G319 GD = '1', G1 is 1st output Gate, Gate sequence G1, G0, G3, G2, ..., G319, G318

BGR: Selects the order from RGB to BGR in writing 18-bit pixel data in the GDDRAM.

When BGR = "0" <R><G> color is assigned from S0.

When BGR = "1" <G><R> color is assigned from S0.

Solomon Systech Oct 2007 | P 30/79 | Rev 0.31 | SSD1298

SM: Change scanning order of gate driver.

SM	Gate scan squence (GD='0')
0	G0, G1, G2, G3G219 (left and right gate interlaced)
1	G0, G2,G318, G1, G3,G319

See "Scan mode setting" on next page.

TB: Selects the output shift direction of the gate driver.

When TB = 1, G0 shifts to G319.

When TB = 0, G319 shifts to G0.

RL: Selects the output shift direction of the source driver.

When RL = "1", S0 shifts to S719 and <R><G> color is assigned from S0.

When RL = "0", S719 shifts to S0 and <R><G> color is assigned from S719.

Set RL bit and BGR bit when changing the dot order of R, G and B. RL setting will be ignored when display with RAM (Dmode[1:0] = 00).

MUX[8:0]: Specify number of lines for the LCD driver. MUX[8:0] settings cannot exceed 319. Remark: When using the partial display, the output for non-display area will be minimum voltage.

SSD1298 | Rev 0.31 | P 3179 | Oct 2007 | **Solomon Systech**

GD='0', G0 is the 1st gate output channel, gate output sequence is G0, G1, G2, G3, ..., G318, G319.

 Solomon Systech
 Oct 2007 | P 32/79 | Rev 0.31 |
 SSD1298

SSD1298 | Rev 0.31 | P 3379 | Oct 2007 | **Solomon Systech**

LCD-Driving-Waveform Control (R02h) (POR = 0000h)

R/	w	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
٧	٧	1	0	0	0	FLD	ENWS	B/C	EOR	WSMD	NW7	NW6	NW5	NW4	NW3	NW2	NW1	NW0
	РО	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FLD: Set display in interlace drive mode to protect from flicker. It splits one frame into 3 fields and drive.

When FLD = 1, it is 3 field driving, which also limit VBP = 1.

When FLD = 0, it is normal driving.

The following figure shows the gate selection when the 3-field invension is enabled and the output waveform of the 3-field interlaced driving.

Table 8-1 - 3-field interlace driving

TB = 1			TB = 0		
Gate	FLD = 0	FLD = 1	Gate	FLD = 0	FLD = 1
G0	X		G319	X	
G1	X		G318 ¦	X	
G2	X	X	G317	X	X
G3	X		G316	X	
G4	X		G315 ¦	X	
	X	X		X	X
	X			X	
	X			X	
G317 ¦	X		G2 ¦	X	
G318	X		G1	X	
G319 🕹	X	X	G0 🗼	X	X

Figure 8-1 - gate output timing in 3-field interlacing driving

Solomon Systech Oct 2007 | P 34/79 | Rev 0.31 | **SSD1298**

B/C: Select the liquid crystal drive waveform VCOM.

When B/C = 0, frame inversion of the LCD driving signal is enabled.

When B/C = 1, a N-line inversion waveform is generated and alternates in a N-line equals to NW[7:0]+1.

EOR: When B/C = 1 and EOR = 1, the odd/even frame-select signals and the N-line inversion signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the lines of the LCD driven and the N-lines.

NW[7:0]: Specify the number of lines that will alternate at the N-line inversion setting (B/C = 1). N-line is equal to NW[7:0]+1.

Figure 8-2 - Line Inversion AC Driver

SSD1298 | Rev 0.31 | P 3579 | Oct 2007 | **Solomon Systech**

ENWS: When ENWS = 1, it enables WSYNC output pin. Mode1 or Mode2 is selected by WSMD. When ENWS = 0(POR), it disables WSYNC feature, the WSYNC output pin will be high-impedance.

WSMD = 0 is **mode1**, the waveform of WSYNC output will be:

tn is the time when there is No Update of LCD screen from on-chip ram content. **tu** is the time when the LCD screen is updating based on on-chip ram content. e.g. fosc = 510 KHz, for 320mux, for = 282 us (6 lines), for = 15.06 ms (320 lines)

WSMD = 1 is **mode2**, the waveform of WSYNC output will be:

For fast write MCU: MCU should start to write new frame of ram data just after rising edge of long WSYNC pulse and should be finished well before the rising edge of the next long WSYNC pulse.
e.g. 5MHz 8 bit parallel write cycle for 18 bit color depth, or 3MHz 8 bit parallel write cycle for 16 bit color depth.

For slow write MCU (Half the write speed of fast write): MCU should start to write new frame ram data after the rising edge of the first short WSYNC pulse and must be finished within 2 frames time. e.g. 2.5MHz 8 bit parallel write cycle for 18 bit color depth.

* Usually, mode2 is for slower MCU, while mode1 is for fast MCU.

Solomon Systech Oct 2007 | P 36/79 | Rev 0.31 | SSD1298

Power control 1 (R03h) (POR = 6864h)

F	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	DCT3	DCT2	DCT1	DCT0	BT2	BT1	BT0	0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0
	PC	R	0	1	1	0	1	0	0	0	0	1	1	0	0	1	0	0

DCT[3:0]: Set the step-up cycle of the step-up circuit for 8-color mode (CM = $V_{\rm DDIO}$). When the cycle is accelerated, the driving ability of the step-up circuit increases, but its current consumption increases too. Adjust the cycle taking into account the display quality and power consumption.

DCT3	DCT2	DCT1	DCT0	Step-up cycle
0	0	0	0	Fline × 24
0	0	0	1	Fline × 16
0	0	1	0	Fline × 12
0	0	1	1	Fline × 8
0	1	0	0	Fline × 6
0	1	0	1	Fline × 5
0	1	1	0	Fline × 4
0	1	1	1	Fline × 3
1	0	0	0	Fline × 2
1	0	0	1	Fline × 1
1	0	1	0	fosc / 4
1	0	1	1	fosc / 6
1	1	0	0	fosc / 8
1	1	0	1	fosc / 10
1	1	1	0	fosc / 12
1	1	1	1	fosc / 16

* Fline = Line frequency fosc = Internal oscillator frequency (~510KHz)

BT[2:0]: Control the step-up factor of the step-up circuit. Adjust the step-up factor according to the power-supply voltage to be used.

BT2	BT1	BT0	V _{GH} output	V _{GL} output	V _{GH} booster ratio	V _{GL} booster ratio
0	0	0	3 x V _{CIX2}	-(V _{GH}) + V _{CI}	+6	-5
0	0	1	$3 \times V_{CIX2}$	$-(V_{GH}) + V_{CIX2}$	+6	-4
0	1	0	3 x V _{CIX2}	-(V _{CIX2})	+6	-2
0	1	1	$2 \times V_{CIX2} + V_{CI}$	-(V _{GH})	+5	-5
1	0	0	$2 \times V_{CIX2} + V_{CI}$	-(V _{GH}) + V _{CI}	+5	-4
1	0	1	$2 \times V_{CIX2} + V_{CI}$	$-(V_{GH}) + V_{Cix2}$	+5	-3
1	1	0	2 x V _{CIX2}	-(V _{GH})	+4	-4
1	1	1	2 x V _{CIX2}	-(V _{GH}) + V _{CI}	+4	-3

Rev 0.31 P 3779 Oct 2007 SSD1298 **Solomon Systech** **DC[3:0]:** Set the step-up cycle of the step-up circuit for 262k-color mode (CM = V_{SS}). When the cycle is accelerated, the driving ability of the step-up circuit increases, but its current consumption increases too. Adjust the cycle taking into account the display quality and power consumption.

DC3	DC2	DC1	DC0	Step-up cycle
0	0	0	0	Fline × 24
0	0	0	1	Fline × 16
0	0	1	0	Fline × 12
0	0	1	1	Fline × 8
0	1	0	0	Fline × 6
0	1	0	1	Fline × 5
0	1	1	0	Fline × 4
0	1	1	1	Fline × 3
1	0	0	0	Fline × 2
1	0	0	1	Fline × 1
1	0	1	0	fosc / 4
1	0	1	1	fosc / 6
1	1	0	0	fosc / 8
1	1	0	1	fosc / 10
1	1	1	0	fosc / 12
1	1	1	1	fosc / 16

^{*} Fline = Line frequency

fosc = Internal oscillator frequency (~510KHz)

AP[2:0]: Adjust the amount of current from the stable-current source in the internal operational amplifier circuit. When the amount of current becomes large, the driving ability of the operational-amplifier circuits increase. Adjust the current taking into account the power consumption. During times when there is no display, such as when the system is in a sleep mode.

AP2	AP1	AP0	Op-amp power
0	0	0	Least
0	0	1	Small
0	1	0	Small to medium
0	1	1	Medium
1	0	0	Medium to large
1	0	1	Large
1	1	0	Large to Maximum
1	1	1	Maximum

Solomon Systech Oct 2007 | P 38/79 | Rev 0.31 | SSD1298

Display Control (R07h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	CM	0	D1	D0
PC	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PT[1:0]: Normalize the source outputs when non-displayed area of the partial display is driven.

VLE[2:1]: When VLE1 = 1 or VLE2 = 1, a vertical scroll is performed in the 1st screen by taking data VL17-0 in R41h register. When VLE1 = 1 and VLE2 = 1, a vertical scroll is performed in the 1^{st} and 2^{nd} screen by VL1[8:0] and VL2[8:0] respectively.

SPT: When SPT = "1", the 2-division LCD drive is performed.

CM: 8-color mode setting.

When CM = 1, 8-color mode is selected. When CM = 0, 8-color mode is disable.

GON: Gate off level becomes VGH when GON = "0".

DTE: When GON = "1" and DTE = "0", all gate outputs become VGL. When GON = "1" and DTE = "1", selected gate wire become VGH, and non-selected gate wires become VGL.

D[1:0]: Display is on when D1 = "1" and off when D1 = "0". When off, the display data remains in the GDDRAM, and can be displayed instantly by setting D1 = "1". When D1= "0", the display is off with all of the source outputs set to the GND level. Because of this, the driver can control the charging current for the LCD with AC driving. When D[1:0] = "01", the internal display is performed although the display is off. When D[1:0] = "00", the internal display operation halts and the display is off. Control the display on/off while control GON and DTE.

GON	DTE	D1	D0	Internal Display Operation	Source output	Gate output
0	0	0	0	Halt	GND	V_{GH}
0	0	0	1	Operation	GND	V_{GH}
1	0	0	1	Operation	GND	V_{GOFFL}
1	0	1	1	Operation	Grayscale level output	V_{GOFFL}
1	1	1	1	Operation	Grayscale level output	Selected gate line: V _{GH} Non-selected gate line: V _{GOFFL}

NO0

0

NO₁

Frame Cycle Control (R0Bh) (POR = 5308h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	NO1	NO0	SDT1	SDT0	0	EQ2	EQ1	EQ0	DIV1	DIV0	SDIV	SRTN	RTN3	RTN2	RTN1	RTN0
PC)R	0	1	0	1	0	0	1	1	0	0	0	0	1	0	0	0

Amount of non-overlap

reserved clock cycle (POR)

NO[1:0]: Sets amount of non-overlap of the gate output.

		1	U	2 CIOCK CYCIE
		1	1	3 clock cycle
		← 1 Lir	ne period	—▶ 1 Line period →
Gn				
		_		
Gn+1		Non-ove	rlap period	od
	:			1 1

SSD1298 | Rev 0.31 | P 3979 | Oct 2007 | **Solomon Systech**

SDT[1:0]: Set delay amount from the gate output signal falling edge of the source outputs.

SDT1	SDT0	Delay amount of the source output
0	0	0 clock cycle
0	1	1 clock cycle (POR)
1	0	2 clock cycle
1	1	3 clock cycle

EQ[2:0]: Sets the equalizing period.

EQ2	EQ1	EQ0	EQ period
0	0	0	No EQ
0	0	1	2 clock cycle
0	1	0	3 clock cycle
0	1	1	4 clock cycle
1	0	0	5 clock cycle
1	0	1	6 clock cycle
1	1	0	7 clock cycle
1	1	1	8 clock cycle

DIV[1:0]: Set the division ratio of clocks for internal operation. Internal operations are driven by clocks which frequency is divided according to the DIV1-0 setting.

DIV1	DIV0	Division Ratio
0	0	1
0	1	2
1	0	4
1	1	8

^{*} fosc = internal oscillator frequency, ~510kHz

SDIV: When SDIV = 1, DIV1-0 value will be count. When SDIV = 0, DIV1-0 value will be auto determined.

SRTN: When SRTN = 1, RTN3-0 value will be count. When SRTN = 0, RTN3-0 value will be auto determined.

RTN[3:0]: Set the no. of clocks in each line. The total number will be the decimal value of RTN3-0 plus 16. e.g. if RTN3-0 = "1010h", the total number of clocks in each line = 10 + 16 = 26 clocks.

Solomon Systech Oct 2007 | P 40/79 | Rev 0.31 | SSD1298

Frame frequency calculation

For DMode[1:0] = '00'

$$Frame_frequency = \frac{Fosc}{div \times (rtn + 16) \times (mux + vbp + vfp + 3)}$$

where Fosc = internal oscillator frequency

div = Division ratio determined by DIV[1:0]

rtn = RTN[3:0]

mux = MUX[8:0]

vbp = VBP[7:0]

vfp = VFT[7:0]

for default values of SSD1298

Fosc =
$$\sim$$
510KHz, DIV[1:0] = '00', RTN[3:0] = 8, MUX[8:0] = 319, VBP[7:0] = 3, VFP[7:0] = 1,

Frame frequency =
$$\frac{510K}{1 \times (8+16) \times (319+3+1+3)} = \frac{510K}{1 \times 24 \times 326} = 65Hz$$

Power Control 2 (R0Ch) (POR = 0004h)

R/	W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
٧	٧	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VRC2	VRC1	VRC0
	POR	٧	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

VRC[2:0]: Adjust VCIX2 output voltage. The adjusted level is indicated in the chart below VRC2-0 setting.

VRC2	VRC1	VRC0	VCIX2 voltage
0	0	0	5.1V
0	0	1	5.3V
0	1	0	5.5V
0	1	1	5.7V
1	0	0	5.9V
1	0	1	6.1V
1	1	0	Reserve
1	1	1	Reserve

Note: The above setting is valid when VCI has high enough voltage supply for boosting up the required voltage.

The above setting is assumed 100% booster efficiency. Please refer to DC Characteristics for detail.

SSD1298 | Rev 0.31 | P 4179 | Oct 2007 | Solomon Systech

Power Control 3 (R0Dh) (POR = 0009h)

R/	W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
V	٧	1	0	0	0	0	0	0	0	0	0	0	0	0	VRH3	VRH2	VRH1	VRH0
	POI	R*	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

VRH[3:0]: Set amplitude magnification of V_{LCD63} . These bits amplify the V_{LCD63} voltage 1.78 to 3.00. times the Vref voltage set by VRH[3:0].

VRH3	VRH2	VRH1	VRH0	V _{LCD63} Voltage
0	0	0	0	Vref x 2.810
0	0	0	1	Vref x 2.900
0	0	1	0	Vref x 3.000
0	0	1	1	Vref x 1.780
0	1	0	0	Vref x 1.850
0	1	0	1	Vref x 1.930
0	1	1	0	Vref x 2.020
0	1	1	1	Vref x 2.090
1	0	0	0	Vref x 2.165
1	0	0	1	Vref x 2.245
1	0	1	0	Vref x 2.335
1	0	1	1	Vref x 2.400
1	1	0	0	Vref x 2.500
1	1	0	1	Vref x 2.570
1	1	1	0	Vref x 2.645
1	1	1	1	Vref x 2.725

^{*}Vref is the internal reference voltage equals to 2.0V.

Power Control 4 (R0Eh) (POR = 3200h)

R/	W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
٧	٧	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
	РО	R*	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0

VcomG: When VcomG = "1", it is possible to set output voltage of VcomL to any level, and the instruction (VDV4-0) becomes available. When VcomG = "0", VcomL output is fixed to Hi-z level, VCIM output for VcomL power supply stops, and the instruction (VDV4-0) becomes unavailable. Set VcomG according to the sequence of power supply setting flow as it relates with power supply operating sequence.

VDV[4:0]: Set the alternating amplitudes of Vcom at the Vcom alternating drive. These bits amplify 0.6 to 1.23 times the VLCD63 voltage. When VcomG = "0", the settings become invalid. External voltage at VcomR is referenced when VDV = "01111".

VCOML = 0.9475*VCOMH - VCOMA

VDV4	VDV3	VDV2	VDV1	VDV0	Vcom Amplitude
0	0	0	0	0	VLCD63 x 0.60
0	0	0	0	1	VLCD63 x 0.63
0	0	0	1	0	VLCD63 x 0.66
		:			:
		:			Step = 0.03
		:			:
0	1	1	0	1	VLCD63 x 0.99
0	1	1	1	0	VLCD63 x 1.02
					Reference from
0	1	1	1	1	external variable
					resistor
1	0	0	0	0	VLCD63 x 1.05
1	0	0	0	1	VLCD63 x 1.08
		:			:
		:			Step = 0.03
		:			:
1	0	1	0	1	VLCD63 x 1.20
1	0	1	1	0	VLCD63 x 1.23
1	0	1	1	1	Reserved
1	1	*	*	*	Reserved

Note: Vcom amplitude < 6V

Solomon Systech Oct 2007 | P 42/79 | Rev 0.31 | SSD1298

Gate Scan Position (R0Fh) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	SCN8	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
PC	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SCN[8:0]: Set the scanning starting position of the gate driver. The valid range is from 0 to 319.

Sleep mode (R10h) (POR = 0001h)

R/V	V DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SLP
	POR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

SLP: Sleep mode enable bit. In the sleep mode, the internal display operations are halted except the R-C oscillator to reduce current consumption. No change in the GDDRAM data or instructions during the sleep mode is made, although it is retained.

When SLP = 1, the driver enters into the sleep mode.

When SLP = 0, the driver leaves the sleep mode.

Entry Mode (R11h) (POR = 6230h)

	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	VSMode	DFM1	DFM0	0	DenMode	Wmode	Nosync	Dmode	TY1	TY0	ID1	ID0	AM	0	0	0
Ī	PO	R	0	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0

VSMode: When VSMode = 1 at DMode[1:0] = "00", the frame frequency will be dependent on VSYNC.

In VSYNC interface operation, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM at faster than the calculated minimum speed (internal display oerpation speed + buffer), it becomes possible to rewrite the moving picture data without flickering the display and display a moving picture via system interface.

The display operation is performed in synchronization with the internal clock signal generated from the internal oscillator and the VSYNC signal. The display data is written in the internal RAM so that the SSD1298 rewrites the data only within the moving picture area and minimize the number of data transfer required for moving picture display. Therefore, the SSD1298 can write data via VSYNC interface in high speed with low power consumption.

SSD1298 | Rev 0.31 | P 4379 | Oct 2007 | **Solomon Systech**

The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which must be more than the values calculated from the following formulas, respectively.

$$Fosc[Hz] = Frame_frequency*(mux + vfp + vbp + 3)*(rtn + 16)*(div)$$

$$RAMWriteSpeed(min)[Hz] > \frac{240*mux}{(vbp + mux - m \, arg \, ins)*(rtn + 16)*\frac{1}{fosc}}$$

where Fosc = internal oscillator frequency

div = Division ratio determined by DIV[1:0]

rtn = RTN[3:0]

mux = MUX[8:0]

vbp = VBP[7:0]

vfp = VFT[7:0]

Note: When RAM write operation is not started right after the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account.

DFM[1:0]: Set the color display mode.

DFM1	DFM0	Color mode
1	1	65k color (POR)
1	0	262k color

DenMode:

DenMode=1 : RGB interface ignore HSYNC, VSYNC pin and HBP, VBP DenMode=0 : RGB interface control by HSYNC, VSYNC pin and HBP, VBP

When DenMode=1, Generic mode will write each input rgb pixel into RAM buffer, the window of ram buffer to be written defined by command R44h (define X of window)m R45h (define Y start),R46 (define Y end), whenever the input RGB dimension is larger than the defined ram window, it wont have any effect.

WMode:

WMode=1: Write RAM from Generic RGB data (POR, if PS:00xx)

WMode=0: Write RAM from SPI interface

Nosync:

Nosync=1: Dmode change immediately

Nosync=0: Dmode change Sync with on chip frame start

Dmode:

Dmode=1: Display engine will be clocked by on chip oscillator and ignore DOTCLK pin

Dmode=0: Display engine will be clocked by DOTCLK pin and onchip oscillator will be off (POR, if PS:00xx)

TY[1:0]: In 262k color mode, 16 bit parallel interface, there are three types of methods in writing data into the ram, Type A, B and C are described as below.

TY1	TY0	Writing mode
0	0	Type A
0	1	Type B

Solomon Systech Oct 2007 | P 44/79 | Rev 0.31 | **SSD1298**

1	0	Type C

										На	rdwa	are pi	ins							
Interface	Color mode	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	262k Type A	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	G4	B3	B2	B1	B0	Х	Х		R5	R4	R3	R2	R1	R0	Х	Х	
		3 rd	G5	G4	G3	G2	G1	G0	Х	Х		B5	G4	B3	B2	B1	B0	Х	Х	
16 bit	262k Type B	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	Х	Х	Х	Х	Х	Х	Х	Х		B5	G4	В3	B2	B1	B0	Х	Х	
	262k Type C	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	G4	B3	B2	B1	B0	Х	Х		Х	Х	Х	Х	X	Х	Х	Х	

Remark:

Х

Don't care bits Not connected pins

 SSD1298
 Rev 0.31
 P 4579
 Oct 2007
 Solomon Systech

ID[1:0]: The address counter is automatically incremented by 1, after data are written to the GDDRAM when ID[1:0] = "1". The address counter is automatically decremented by 1, after data are written to the GDDRAM when ID[1:0] = "0". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data are written to the GDDRAM is set with AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the GDDRAM. When AM = "0", the address counter is updated in the horizontal direction. When AM = "1", the address counter is updated in the vertical direction. When window addresses are selected, data are written to the GDDRAM area specified by the window addresses in the manner specified with ID1-0 and AM bits.

Generic Interface Control (R15h) (POR = 0000h)

R/W	DC DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	INVDOT	INVDEN	INVHS	INVVS
POF	₹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

INVDOT: sets the signal polarity of DOTCLK pin. When INVDOT = 0, data is latched at positive edge of DOTCLK. When INVDOT = 1, data is latched at negative edge of DOTCLK.

INVDEN: sets the signal polarity of DEN pin. When INVDEN = 0, DEN is active high. When INVDEN = 1, DEN is active low.

INVHS: sets the signal polarity of HSYNC pin. When INVHS = 0, HSYNC is active low. When INVHS = 1, HSYNC is active high.

INVVS: sets the signal polarity of VSYNC pin. When INVVS = 0, VSYNC is active low. When INVVS = 1, VSYNC is active high.

Solomon Systech Oct 2007 | P 46/79 | Rev 0.31 | SSD1298

Power Control 5 (R1Eh) (POR = 0029h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	nOTP	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
PO	R*	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1

nOTP: nOTP equals to "0" after power on reset and VcomH voltage equals to programmed OTP value. When nOTP set to "1", setting of VCM[5:0] becomes valid and voltage of VcomH can be adjusted.

VCM[5:0]: Set the VcomH voltage if nOTP = "1". These bits amplify the VcomH voltage 0.35 to 0.99 times the VLCD63 voltage. Default value is "101001" when power on reset.

VCM5	VCM4	VCM3	VCM2	VCM1	VCM0	VcomH
0	0	0	0	0	0	VLCD63 x 0.35
0	0	0	0	0	1	VLCD63 x 0.36
						: Step = 0.01 :
1	1	1	1	1	0	VLCD63 x 0.98
1	1	1	1	1	1	VLCD63 x 0.99

Write Data to GRAM (R22h)

R/W	DC	D[17:0]
W	1	WD[17:0] mapping depends on the interface setting

WD[17:0]: Transforms all the GDDRAM data into 18-bit, and writes the data. Format for transforming data into 18-bit depends on the interface used. SSD1298 selects the grayscale level according to the GDDRAM data. After writing data to GDDRAM, address is automatically updated according to AM bit and ID bit. Access to GDDRAM during stand-by mode is not available.

Read Data from GRAM (R22h)

R/W	DC	D[17:0]
R	1	RD[17:0] mapping depends on the interface setting

RD[17:0]: Read 18-bit data from the GDDRAM. When the data is read to the microcomputer, the first-word read immediately after the GDDRAM address setting is latched from the GDDRAM to the internal read-data latch. The data on the data bus (DB17–0) becomes invalid and the second-word read is normal. When bit processing, such as a logical operation, is performed, only one read can be processed since the latched data in the first word is used.

Frame Frequency Control (R25h) (POR = 8000h)

	R/W	DC	ÎB15	IB14	IB13	IB12	ÌB11	IB10	ľB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	OSC3	OSC2	OSC1	OSC0	0	0	0	0	0	0	0	0	0	0	0	0
Ī	PO	R*	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OSC[3:0]: Set the frame frequency by OSC[3:0]

OSC[3:0]	Internal Oscillator	Corresponding
	Frequency (Hz)	Frame Freq (Hz)
		(other registers are at
		POR value)
0000	390K	50
0010	430K	55
0101	470K	60
1000	510K	65
1010	548K	70
1100	587K	75
1110	626K	80

SSD1298 | Rev 0.31 | P 4779 | Oct 2007 | **Solomon Systech**

Vcom OTP (R28h - R29h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R28h	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
R29h	W	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0

When OTP is access, these registers must be set accordantly.

OTP programming sequence

Step	Operation													
1	Power up the module at VCI = 2.7V, VDDEXT = VDDIO = 1.8V. Turn on the display as normal to 65k/262k color mode (displaying a test pattern if any).													
2	Set nOTP to "1" (R1Eh) and optimizes VcomH by adjusting VCM[5:0] (R1Eh).													
3	Power down the whole module.													
4	Connect a supply to the module at VCI = 2.7V, VDDEXT = VDDIO = 1.8V													
5	Write below commands for OTP initialization and wait for 200ms for activate the OTP : Index Value R00h 0x0001 R28h 0x0006 R29h 0x80C0 Connect a 14.5V supply to VGH through a current limiting resistor, see figure below.													
6	Write the optimized value found in Step 2 to VCM[5:0] (R1Eh) and set nOTP to "1".													
7	Fire the OTP by write HEX code "000Ah" to register R28h.													
8	Wait 500ms.													
9	OTP complete. Power down the whole module and remove 14.5V supply.													

Note: nOTP must set to "0" to activate the OTP effect.

Precaution:

- 1. All capacitors on OTP machine should be discharged completely before placing the LCD module.
- 2. The OTP programming voltage should not be applied when placing and removing the LCD module.
- 3. The OTP programming voltage should not be applied before VDDIO/VDDEXT/VCI.
- 4. After OTP is finished, the capacitors at VGH and VCIX2 must be discharged completely before removing the LCD module.

 Solomon Systech
 Oct 2007 | P 48/79 | Rev 0.31 |
 SSD1298

Figure 8-3 – OTP circuitry

Gamma Control (R30h to R3Bh)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R30h	w	1	0	0	0	0	0	PKP 12	PKP 11	PKP 10	0	0	0	0	0	PKP 02	PKP 01	PKP 00
R31h	w	1	0	0	0	0	0	PKP 32	PKP 31	PKP 30	0	0	0	0	0	PKP 22	PKP 21	PKP 20
R32h	W	1	0	0	0	0	0	PKP 52	PKP 51	PKP 50	0	0	0	0	0	PKP 42	PKP 41	PKP 40
R33h	W	1	0	0	0	0	0	PRP 12	PRP 11	PRP 10	0	0	0	0	0	PRP 02	PRP 01	PRP 00
R34h	W	1	0	0	0	0	0	PKN 12	PKN 11	PKN 10	0	0	0	0	0	PKN 02	PKN 01	PKN 00
R35h	w	1	0	0	0	0	0	PKN 32	PKN 31	PKN 30	0	0	0	0	0	PKN 22	PKN 21	PKN 20
R36h	W	1	0	0	0	0	0	PKN 52	PKN 51	PKN 50	0	0	0	0	0	PKN 42	PKN 41	PKN 40
R37h	W	1	0	0	0	0	0	PRN 12	PRN 11	PRN 10	0	0	0	0	0	PRN 02	PRN 01	PRN 00
R3Ah	W	1	0	0	0	VRP 14	VRP 13	VRP 12	VRP 11	VRP 10	0	0	0	0	VRP 03	VRP 02	VRP 01	VRP 00
R3Bh	W	1	0	0	0	VRN 14	VRN 13	VRN 12	VRN 11	VRN 10	0	0	0	0	VRN 03	VRN 02	VRN 01	VRN 00

Note: please refer to table 5 for POR values.

PKP[52:00]: Gamma micro adjustment register for the positive polarity output

PRP[12:00]: Gradient adjustment register for the positive polarity output

VRP[14:00]: Adjustment register for amplification adjustment of the positive polarity output

PKN[52:00]: Gamma micro adjustment register for the negative polarity output

PRN[12:00]: Gradient adjustment register for the negative polarity output

VRN[14:00]: Adjustment register for the amplification adjustment of the negative polarity output. (For details, see the Section 11 Gamma Adjustment Function).

SSD1298 | Rev 0.31 | P 4979 | Oct 2007 | Solomon Systech

Vertical Scroll Control (R41h-R42h) (POR =0000h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
D/1h	W	1	0	0	0	0	0	0	0	VL18	VL17	VL16	VL15	VL14	VL13	VL12	VL11	VL10
R41h	P	OR .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D 42h	W	1	0	0	0	0	0	0	0	VL28	VL27	VL26	VL25	VL24	VL23	VL22	VL21	VL20
R42h	P	OR .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VL1[8:0]: Specify scroll length at the scroll display for vertical smooth scrolling. Any raster-row from the first to 320^{th} can be scrolled for the number of the raster-row. After 320^{th} raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL1[8:0]) is valid when VLE1 = "1" or VLE2 = "1". The raster-row display is fixed when VLE[2:1] = "00".

VL2[8:0]: Specify scroll length at the scroll display for vertical smooth scrolling at 2^{nd} screen. The display-start rasterrow (VL2[8:0]) is valid when VLE1 = "1" and VLE2 = "1".

Horizontal RAM address position (R44h) (POR = EF00h)

R	/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
١	W	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
	PC	R	1	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0

HSA[7:0]/HEA[7:0]: Specify the start/end positions of the window address in the horizontal direction by an address unit. Data are written to the GDDRAM within the area determined by the addresses specified by HEA[7:0] and HSA[7:0]. These addresses must be set before the RAM write. In setting these bits, make sure that "00" h \leq HSA[7:0] \leq "EF"h.

Vertical RAM address position (R45h-R46h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R45h	W	1	0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
N43II	PC)R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R46h	W	1	0	0	0	0	0	0	0	VEA8	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
K4011	PC)R	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1

VSA[8:0]/VEA[8:0]: Specify the start/end positions of the window address in the vertical direction by an address unit. Data are written to the GRAM within the area determined by the addresses specified by VEA[8:0] and VSA[8:0]. These addresses must be set before the RAM write. In setting these bits, make sure that "00" $h \le VSA[8:0] \le VEA[8:0] \le "13F$ "h.

1st Screen driving position (R48h-R49h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R48h	W	1	0	0	0	0	0	0	0	SS18	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
14011	PC)R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R49h	W	1	0	0	0	0	0	0	0	SE18	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10
K49II	PC)R	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1

SS1[8:0]: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the set gate driver, i.e. the first driving Gate is G_0 if SS1[8:0] = 00H

SE1[8:0]: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the set gate driver. For instance, when SS1[8:0] = "07"H and SE1[8:0] = "10"H are set, the LCD driving is performed from G7 to G16, and non-selection driving is performed for G1 to G6, G17, and others. Ensure that $SS1[8:0] \le SE1[8:0] \le 13FH$.

Solomon Systech Oct 2007 | P 50/79 | Rev 0.31 | **SSD1298**

2nd Screen driving position (R4Ah-R4Bh)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R4Ah	W	1	0	0	0	0	0	0	0	SS28	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20
K4AII	P	OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R4Bh	W	1	0	0	0	0	0	0	0	SE28	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20
K4DII	P	OR	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1

SS2[8:0]: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the set gate driver. The second screen is driven when SPT = "1".

SE2[8:0]: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the set gate driver. For instance, when SPT = "1", SS2[8:0] = "20"H, and SE2[8:0] = "2F"H are set, the LCD driving is performed from G32 to G47. Ensure that $SS1[8:0] \le SE1[8:0] \le SE2[8:0] \le SE2[8:0] \le 13FH$.

RAM address set (R4Eh-R4Fh)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R4Eh	W	1	0	0	0	0	0	0	0	0	XAD7	XAD6	XAD5	XAD4	XAD3	XAD2	XAD1	XAD0
K4EII	PC	DR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R4Fh	W	1	0	0	0	0	0	0	0	YAD8	YAD7	YAD6	YAD5	YAD4	YAD 3	YAD 2	YAD 1	YAD 0
K4FII	PC)R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

XAD[7:0]: Make initial settings for the GDDRAM X address in the address counter (AC). **YAD[8:0]:** Make initial settings for the GDDRAM Y address in the address counter (AC).

After GDDRAM data are written, the address counter is automatically updated according to the settings with AM, I/D bits and setting for a new GDDRAM address is not required in the address counter. Therefore, data are written consecutively without setting an address. The address counter is not automatically updated when data are read out from the GDDRAM. GDDRAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses.

SSD1298 | Rev 0.31 | P 5179 | Oct 2007 | **Solomon Systech**

Window Address Function

The window address function enables writing display data sequentially in a window address area made in the internal GDDRAM. The window address area is made by setting the horizontal address register (start: HSA7-0, end: HEA 7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0 bits). The AM and ID[1:0] bits set the transition direction of RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables the SSD1298 to write data including image data sequentially without taking the data wrap position into account. The window address area must be made within the GDDRAM address map area.

Condition:

 $00h \le HSA[7:0] \le HEA[7:0] \le EFh$ $00h \le VSA[8:0] \le VEA[8:0] \le 13Fh$ AM and ID[1:0] refer to R11h

Window address setting area: HSA[7:0] = 3Bh; HEA[7:0] = B3h VSA[8:0] = 8Bh; VEA[8:0] = B3h AM = "0" and ID[1;]] = "11"

Solomon Systech Oct 2007 | P 52/79 | Rev 0.31 | SSD1298

Partial Display Mode

The SSD1298 enables to selectively drive two screens at arbitrary positions with the screen-driving position registers (R48h to R4Bh). Only the lines required to display two screens at arbitrary positions are selectively driven to reduce the power consumption.

The first screen driving position registers (R48 and R49) specifies the start line (SS18-10) and the end line (SE18-10) for displaying the first screen. The second screen driving position register (R4A) specifies the start line (SS28-20) and the end line (SE28-20) for displaying the second screen. The second screen control is effective when the SPT bit is set to 1. The total number of lines driven for displaying the first and second screens must be less than the number of lines to drive the LCD.

Condition:

 $SS1[8:0] \leq SE1[8:0] \leq 13FH$

 $SS1[8:0] \le SE1[8:0]$

 $SS2[8:0] \le SE2[8:0] \le 13FH$

The number of driven display lines: MUX[8:0] = 13F (319+1 lines)

 1^{st} screen setting: SS[18:10] = 00h, SE[18:10] = 09h

 2^{nd} screen seeting: SS[28:10] = 96h, SE[28:10] = 9Fh

SSD1298 | Rev 0.31 | P 5379 | Oct 2007 | **Solomon Systech**

9 GAMMA ADJUSTMENT FUNCTION

The SSD1298 incorporates gamma adjustment function for the 262,144-color display. Gamma adjustment is implemented by deciding the 8-grayscale levels with angle adjustment and micro adjustment register. Also, angle adjustment and micro adjustment is fixed for each of the internal positive and negative polarity. Set up by the liquid crystal panel's specification.

Solomon Systech Oct 2007 | P 54/79 | Rev 0.31 | SSD1298

9.1 Structure of Grayscale Amplifier

Below figure indicates the structure of the grayscale amplifier. It determines 8 levels (VIN0-VIN7) by the gradient adjuster and the micro adjustment register. Also, dividing these levels with ladder resistors generates V0 to V63.

SSD1298 | Rev 0.31 | P 5579 | Oct 2007 | **Solomon Systech**

Solomon Systech Oct 2007 | P 56/79 | Rev 0.31 | **SSD1298**

9.2 Gamma Adjustment Register

This block is the register to set up the grayscale voltage adjusting to the gamma specification of the LCD panel. This register can independent set up to positive/negative polarities and there are three types of register groups to adjust gradient, amplitude, and micro-adjustment on number of the grayscale, characteristics of the grayscale voltage. (Using the same setting for Reference-value and R.G.B.) Following graphics indicates the operation of each adjusting register.

9.2.1 Gradient adjusting register

The gradient-adjusting resistor is to adjust around middle gradient, specification of the grayscale number and the grayscale voltage without changing the dynamic range. To accomplish the adjustment, it controls the variable resistors in the middle of the ladder resistor by registers (PRP(N)0 / PRP(N)1) for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities in order for corresponding to asymmetry drive.

9.2.2 Amplitude adjusting register

The amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it controls the variable resistors in the boundary of the ladder resistor by registers (VRP(N)0 / VRP(N)1) for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities as well as the gradient-adjusting resistor.

9.2.3 Micro adjusting register

The micro-adjusting register is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it controls each reference voltage level by the 8 to 1 selector towards the 8-level reference voltage generated from the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting resistors.

 SSD1298
 Rev 0.31
 P 5779
 Oct 2007
 Solomon Systech

9.3 Ladder Resistor / 8 to 1 selector

This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable resistor and the 8 to 1 selector selecting voltage generated by the ladder resistor. The gamma registers control the variable resistors and 8 to 1 selector resistors.

Variable Resistor

There are 3 types of the variable resistors that are for the gradient and amplitude adjustment. The resistance is set by the resistor (PRP(N)0 / PRP(N)1) and (VRP(N)0 / VRP(N)1) as below.

PRP(N)[0:1]	Resistance
000	0R
001	4R
010	8R
011	12R
100	16R
101	20R
110	24R
111	28R

Resistance
0R
2R
4R
: = 2R :
28R
30R

Resistance
0R
1R
2R
: = 1R :
30R
31R

8 to 1 selecter

In the 8 to 1 selector, a reference voltage VIN can be selected from the levels which are generated by the ladder resistors. There are six types of reference voltage (VIN1 to VIN6) and totally 48 divided voltages can be selected in one ladder resistor. Following figure explains the relationship between the micro-adjusting register and the selecting voltage.

		Post	tive pola	rity					Negat	ive pola	rity		
Registor			Selected	d voltage)		Registor			Selected	l voltage		
PKP[2:0]	VINP1	VINP2	VINP3	VINP4	VINP5	VINP6	PKN[2:0]	VINN1	VINN2	VINN3	VINN4	VINN5	VINN6
000	KVP1	KVP9	KVP17	KVP25	KVP33	KVP41	000	KVN1	KVN9	KVN17	KVN25	KVN33	KVN41
001	KVP2	KVP10	KVP18	KVP26	KVP34	KVP42	001	KVN2	KVN10	KVN18	KVN26	KVN34	KVN42
010	KVP3	KVP11	KVP19	KVP27	KVP35	KVP43	010	KVN3	KVN11	KVN19	KVN27	KVN35	KVN43
011	KVP4	KVP12	KVP20	KVP28	KVP36	KVP44	011	KVN4	KVN12	KVN20	KVN28	KVN36	KVN44
100	KVP5	KVP13	KVP21	KVP29	KVP37	KVP45	100	KVN5	KVN13	KVN21	KVN29	KVN37	KVN45
101	KVP6	KVP14	KVP22	KVP30	KVP38	KVP46	101	KVN6	KVN14	KVN22	KVN30	KVN38	KVN46
110	KVP7	KVP15	KVP23	KVP31	KVP39	KVP47	110	KVN7	KVN15	KVN23	KVN31	KVN39	KVN47
111	KVP8	KVP16	KVP24	KVP32	KVP40	KVP48	111	KVN8	KVN16	KVN24	KVN32	KVN40	KVN48

Grayscale voltage	Formula	Grayscale voltage	Formula	Grayscale voltage	Formula
V0	VINP(N)0	V22	V43+(V20-V43)*(21/23)	V44	V55+(V43-V55)*(22/24)
V1	VINP(N)1	V23	V43+(V20-V43)*(20/23)	V45	V55+(V43-V55)*(20/24)
V2	V8+(V1-V8)*(30/48)	V24	V43+(V20-V43)*(19/23)	V46	V55+(V43-V55)*(18/24)
V3	V8+(V1-V8)*(23/48)	V25	V43+(V20-V43)*(18/23)	V47	V55+(V43-V55)*(16/24)
V4	V8+(V1-V8)*(16/48)	V26	V43+(V20-V43)*(17/23)	V48	V55+(V43-V55)*(14/24)
V5	V8+(V1-V8)*(12/48)	V27	V43+(V20-V43)*(16/23)	V49	V55+(V43-V55)*(12/24)
V6	V8+(V1-V8)*(8/48)	V28	V43+(V20-V43)*(15/23)	V50	V55+(V43-V55)*(10/24)
V7	V8+(V1-V8)*(4/48)	V29	V43+(V20-V43)*(14/23)	V51	V55+(V43-V55)*(8/24)
V8	VINP(N)2	V30	V43+(V20-V43)*(13/23)	V52	V55+(V43-V55)*(6/24)
V9	V20+(V8-V20)*(22/24)	V31	V43+(V20-V43)*(12/23)	V53	V55+(V43-V55)*(4/24)
V10	V20+(V8-V20)*(20/24)	V32	V43+(V20-V43)*(11/23)	V54	V55+(V43-V55)*(2/24)
V11	V20+(V8-V20)*(18/24)	V33	V43+(V20-V43)*(10/23)	V55	VINP(N)5
V12	V20+(V8-V20)*(16/24)	V34	V43+(V20-V43)*(9/23)	V56	V62+(V55-V62)*(44/48)
V13	V20+(V8-V20)*(14/24)	V35	V43+(V20-V43)*(8/23)	V57	V62+(V55-V62)*(40/48)
V14	V20+(V8-V20)*(12/24)	V36	V43+(V20-V43)*(7/23)	V58	V62+(V55-V62)*(36/48)
V15	V20+(V8-V20)*(10/24)	V37	V43+(V20-V43)*(6/23)	V59	V62+(V55-V62)*(32/48)
V16	V20+(V8-V20)*(8/24)	V38	V43+(V20-V43)*(5/23)	V60	V62+(V55-V62)*(25/48)
V17	V20+(V8-V20)*(6/24)	V39	V43+(V20-V43)*(4/23)	V61	V62+(V55-V62)*(18/48)
V18	V20+(V8-V20)*(4/24)	V40	V43+(V20-V43)*(3/23)	V62	VINP(N)6
V19	V20+(V8-V20)*(2/24)	V41	V43+(V20-V43)*(2/23)	V63	VINP(N)7
V20	VINP(N)3	V42	V43+(V20-V43)*(1/23)		
V21	V43+(V20-V43)*(22/23)	V43	VINP(N)4		

Solomon Systech Oct 2007 | P 58/79 | Rev 0.31 | SSD1298

Reference voltage of positive polarity:

Reference	Formula	Micr0-adjusting rgister	Reference voltage
KVP0	VLCD63 - ΔV x VRP0 / SUMRP		VINP0
KVP1	VLCD63 - ΔV x (VRP0 + 5R) / SUMRP	PKP0[2:0] = "000"	
KVP2	VLCD63 - ΔV x (VRP0 + 9R) / SUMRP	PKP0[2:0] = "001"	
KVP3	VLCD63 - ΔV x (VRP0 + 13R) / SUMRP	PKP0[2:0] = "010"	
KVP4	VLCD63 - ΔV x (VRP0 + 17R) / SUMRP	PKP0[2:0] = "011"	
KVP5	VLCD63 - ΔV x (VRP0 + 21R) / SUMRP	PKP0[2:0] = "100"	VINP1
KVP6	VLCD63 - ΔV x (VRP0 + 25R) / SUMRP	PKP0[2:0] = "101"	
KVP7	VLCD63 - ΔV x (VRP0 + 29R) / SUMRP	PKP0[2:0] = "110"	
KVP8	VLCD63 - ΔV x (VRP0 + 33R) / SUMRP	PKP0[2:0] = "111"	
KVP9	VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP1[2:0] = "000"	
KVP10	VLCD63 - ΔV x (VRP0 + 34R + VRHP) / SUMRP	PKP1[2:0] = "001"	
KVP11	VLCD63 - ΔV x (VRP0 + 35R + VRHP) / SUMRP	PKP1[2:0] = "010"	
KVP12	VLCD63 - ΔV x (VRP0 + 36R + VRHP) / SUMRP	PKP1[2:0] = "011"	
KVP13	VLCD63 - ΔV x (VRP0 + 37R + VRHP) / SUMRP	PKP1[2:0] = "100"	VINP2
KVP14	VLCD63 - ΔV x (VRP0 + 38R + VRHP) / SUMRP	PKP1[2:0] = "101"	
KVP15	VLCD63 - ΔV x (VRP0 + 39R + VRHP) / SUMRP	PKP1[2:0] = "110"	
KVP16	VLCD63 - ΔV x (VRP0 + 40R + VRHP) / SUMRP	PKP1[2:0] = "111"	
KVP17	VLCD63 - ΔV x (VRP0 + 45R + VRHP) / SUMRP	PKP2[2:0] = "000"	
KVP18	VLCD63 - ΔV x (VRP0 + 46R + VRHP) / SUMRP	PKP2[2:0] = "001"	
KVP19	VLCD63 - ΔV x (VRP0 + 47R + VRHP) / SUMRP	PKP2[2:0] = "010"	
KVP20	VLCD63 - ΔV x (VRP0 + 48R + VRHP) / SUMRP	PKP2[2:0] = "011"	
KVP21	VLCD63 - ΔV x (VRP0 + 49R + VRHP) / SUMRP	PKP2[2:0] = "100"	VINP3
KVP22	VLCD63 - ΔV x (VRP0 + 50R + VRHP) / SUMRP	PKP2[2:0] = "101"	
KVP23	VLCD63 - ΔV x (VRP0 + 51R + VRHP) / SUMRP	PKP2[2:0] = "110"	
KVP24	VLCD63 - ΔV x (VRP0 + 52R + VRHP) / SUMRP	PKP2[2:0] = "111"	
KVP25	VLCD63 - ΔV x (VRP0 + 68R + VRHP) / SUMRP	PKP3[2:0] = "000"	
KVP26	VLCD63 - ΔV x (VRP0 + 69R + VRHP) / SUMRP	PKP3[2:0] = "001"	
KVP27	VLCD63 - ΔV x (VRP0 + 70R + VRHP) / SUMRP	PKP3[2:0] = "010"	
KVP28	VLCD63 - ΔV x (VRP0 + 71R + VRHP) / SUMRP	PKP3[2:0] = "011"	
KVP29	VLCD63 - ΔV x (VRP0 + 71R + VRHP) / SUMRP	PKP3[2:0] = "100"	VINP4
KVP30	VLCD63 - ΔV x (VRP0 + 73R + VRHP) / SUMRP	PKP3[2:0] = "101"	
KVP31	VLCD63 - ΔV x (VRP0 + 73R + VRHP) / SUMRP	PKP3[2:0] = "110"	
KVP32	VLCD63 - ΔV x (VRP0 + 75R + VRHP) / SUMRP	PKP3[2:0] = "111"	
KVP33	VLCD63 - ΔV x (VRP0 + 73K + VRHP) / SUMRP	PKP4[2:0] = "000"	
KVP34	VLCD63 - ΔV x (VRP0 + 81R + VRHP) / SUMRP	PKP4[2:0] = "001"	
KVP35	VLCD63 - ΔV x (VRP0 + 81R + VRHP) / SUMRP	PKP4[2:0] = "010"	
KVP36	VLCD63 - ΔV x (VRP0 + 82R + VRHP) / SUMRP	PKP4[2:0] = "011"	
KVP37	VLCD63 - ΔV x (VRP0 + 83R + VRHP) / SUMRP	PKP4[2:0] = "100"	VINP5
KVP38	VLCD63 - ΔV x (VRP0 + 84R + VRHP) / SUMRP	PKP4[2:0] = "101"	
KVP39	VLCD63 - ΔV x (VRP0 + 86R + VRHP) / SUMRP	PKP4[2:0] = "110"	
KVP40	VLCD63 - ΔV x (VRP0 + 80R + VRHP) / SUMRP	PKP4[2:0] = "111"	
KVP40 KVP41	VLCD63 - ΔV x (VRP0 + 87R + VRHP + VRLP) / SUMRP	PKP4[2.0] = 111 PKP5[2:0] = "000"	
KVP41 KVP42	VLCD63 - ΔV x (VRP0 + 87R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "001"	
KVP42 KVP43	VLCD63 - ΔV x (VRP0 + 91R + VRHP + VRLP) / SUMRP	PKP5[2:0] = '010"	
KVP43 KVP44		PKP5[2:0] = "011"	
	VLCD63 - ΔV x (VRP0 + 99R + VRHP + VRLP) / SUMRP		VINP6
KVP45	VLCD63 - ΔV x (VRP0 + 103R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "100"	
KVP46	VLCD63 - ΔV x (VRP0 + 107R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "101"	
KVP47	VLCD63-ΔV x (VRP0 + 111R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "110"	
KVP48	VLCD63 - ΔV x (VRP0 + 115R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "111"	\//\!D7
KVP49	VLCD63 - ΔV x (VRP0 + 120R + VRHP + VRLP) / SUMRP	 D + VD DO + VD D1	VINP7

SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP0 + VRP1 ΔV : Voltage difference between VLCD63 and of GND.

Rev 0.31 P 5979 Oct 2007 SSD1298 **Solomon Systech**

Reference voltage of negative polarity:

KVN1 VLC KVN2 VLC KVN3 VLC KVN4 VLC KVN5 VLC KVN6 VLC KVN7 VLC KVN8 VLC KVN9 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x VRN0 / SUMRN CD63 - ΔV x (VRN0 + 5R) / SUMRN CD63 - ΔV x (VRN0 + 9R) / SUMRN CD63 - ΔV x (VRN0 + 13R) / SUMRN CD63 - ΔV x (VRN0 + 17R) / SUMRN CD63 - ΔV x (VRN0 + 21R) / SUMRN CD63 - ΔV x (VRN0 + 25R) / SUMRN CD63 - ΔV x (VRN0 + 29R) / SUMRN CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	Micr0-adjusting rgister PKN0[2:0] = "000" PKN0[2:0] = "010" PKN0[2:0] = "011" PKN0[2:0] = "100" PKN0[2:0] = "110" PKN0[2:0] = "110" PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "001" PKN1[2:0] = "010" PKN1[2:0] = "011" PKN1[2:0] = "11" PKN1[2:0] = "11" PKN1[2:0] = "11" PKN1[2:0] = "11" PKN1[2:0] = "100" PKN1[2:0] = "110" PKN1[2:0] = "101" PKN1[2:0] = "101" PKN1[2:0] = "101" PKN2[2:0] = "001" PKN2[2:0] = "001" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "011"	VINN1 VINN2 VINN3
KVN1 VLC KVN2 VLC KVN3 VLC KVN4 VLC KVN5 VLC KVN6 VLC KVN7 VLC KVN8 VLC KVN9 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 5R) / SUMRN CD63 - ΔV x (VRN0 + 9R) / SUMRN CD63 - ΔV x (VRN0 + 13R) / SUMRN CD63 - ΔV x (VRN0 + 17R) / SUMRN CD63 - ΔV x (VRN0 + 21R) / SUMRN CD63 - ΔV x (VRN0 + 25R) / SUMRN CD63 - ΔV x (VRN0 + 29R) / SUMRN CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN0[2:0] = "001" PKN0[2:0] = "010" PKN0[2:0] = "011" PKN0[2:0] = "100" PKN0[2:0] = "101" PKN0[2:0] = "110" PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "001" PKN1[2:0] = "011" PKN1[2:0] = "010" PKN1[2:0] = "110" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN1[2:0] = "101" PKN1[2:0] = "101" PKN1[2:0] = "101" PKN1[2:0] = "001" PKN2[2:0] = "001" PKN2[2:0] = "001" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "011"	VINN1 VINN2
KVN2 VLC KVN3 VLC KVN4 VLC KVN5 VLC KVN6 VLC KVN7 VLC KVN8 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 9R) / SUMRN CD63 - ΔV x (VRN0 + 13R) / SUMRN CD63 - ΔV x (VRN0 + 17R) / SUMRN CD63 - ΔV x (VRN0 + 21R) / SUMRN CD63 - ΔV x (VRN0 + 25R) / SUMRN CD63 - ΔV x (VRN0 + 29R) / SUMRN CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN0[2:0] = "001" PKN0[2:0] = "010" PKN0[2:0] = "011" PKN0[2:0] = "100" PKN0[2:0] = "101" PKN0[2:0] = "110" PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "001" PKN1[2:0] = "011" PKN1[2:0] = "010" PKN1[2:0] = "110" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN1[2:0] = "101" PKN1[2:0] = "101" PKN1[2:0] = "101" PKN1[2:0] = "001" PKN2[2:0] = "001" PKN2[2:0] = "001" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "011"	VINN2
KVN3 VLC KVN4 VLC KVN5 VLC KVN6 VLC KVN7 VLC KVN8 VLC KVN9 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 13R) / SUMRN CD63 - ΔV x (VRN0 + 17R) / SUMRN CD63 - ΔV x (VRN0 + 21R) / SUMRN CD63 - ΔV x (VRN0 + 25R) / SUMRN CD63 - ΔV x (VRN0 + 29R) / SUMRN CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN0[2:0] = "010" PKN0[2:0] = "011" PKN0[2:0] = "100" PKN0[2:0] = "101" PKN0[2:0] = "110" PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "001" PKN1[2:0] = "010" PKN1[2:0] = "110" PKN1[2:0] = "110" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN1[2:0] = "101" PKN1[2:0] = "101" PKN1[2:0] = "101" PKN2[2:0] = "001" PKN2[2:0] = "001" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "011"	VINN2
KVN4 VLC KVN5 VLC KVN6 VLC KVN7 VLC KVN8 VLC KVN9 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 17R) / SUMRN CD63 - ΔV x (VRN0 + 21R) / SUMRN CD63 - ΔV x (VRN0 + 25R) / SUMRN CD63 - ΔV x (VRN0 + 29R) / SUMRN CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN0[2:0] = "011" PKN0[2:0] = "100" PKN0[2:0] = "101" PKN0[2:0] = "110" PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "010" PKN1[2:0] = "011" PKN1[2:0] = "110" PKN1[2:0] = "110" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "001" PKN2[2:0] = "011"	VINN2
KVN5 VLC KVN6 VLC KVN7 VLC KVN8 VLC KVN9 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 21R) / SUMRN CD63 - ΔV x (VRN0 + 25R) / SUMRN CD63 - ΔV x (VRN0 + 29R) / SUMRN CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN0[2:0] = "100" PKN0[2:0] = "101" PKN0[2:0] = "110" PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "010" PKN1[2:0] = "010" PKN1[2:0] = "100" PKN1[2:0] = "100" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "011"	VINN2
KVN6 VLC KVN7 VLC KVN8 VLC KVN9 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 25R) / SUMRN CD63 - ΔV x (VRN0 + 29R) / SUMRN CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN0[2:0] = "101" PKN0[2:0] = "110" PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "010" PKN1[2:0] = "011" PKN1[2:0] = "100" PKN1[2:0] = "101" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "011"	
KVN7 VLC KVN8 VLC KVN9 VLC KVN10 VLC KVN11 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN19 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN21 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN29 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN31 VLC KVN31 VLC	CD63 - ΔV x (VRN0 + 29R) / SUMRN CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN0[2:0] = "110" PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "010" PKN1[2:0] = "011" PKN1[2:0] = "100" PKN1[2:0] = "101" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "011"	
KVN8 VLC KVN9 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 33R) / SUMRN CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN0[2:0] = "111" PKN1[2:0] = "000" PKN1[2:0] = "001" PKN1[2:0] = "010" PKN1[2:0] = "011" PKN1[2:0] = "100" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "110"	
KVN9 VLC KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC	CD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN1[2:0] = "000" PKN1[2:0] = "001" PKN1[2:0] = "010" PKN1[2:0] = "011" PKN1[2:0] = "100" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "010" PKN2[2:0] = "011" PKN2[2:0] = "110"	
KVN10 VLC KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN1[2:0] = "001" PKN1[2:0] = "010" PKN1[2:0] = "011" PKN1[2:0] = "100" PKN1[2:0] = "101" PKN1[2:0] = "111" PKN1[2:0] = "000" PKN2[2:0] = "000" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "010" PKN2[2:0] = "110"	
KVN11 VLC KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN1[2:0] = "010" PKN1[2:0] = "011" PKN1[2:0] = "100" PKN1[2:0] = "101" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "011" PKN2[2:0] = "011" PKN2[2:0] = "110"	
KVN12 VLC KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN1[2:0] = "011" PKN1[2:0] = "100" PKN1[2:0] = "101" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "010" PKN2[2:0] = "011" PKN2[2:0] = "100"	
KVN13 VLC KVN14 VLC KVN15 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN1[2:0] = "100" PKN1[2:0] = "101" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "011" PKN2[2:0] = "111"	
KVN14 VLC KVN15 VLC KVN16 VLC KVN16 VLC KVN17 VLC KVN18 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN31 VLC KVN32 VLC	CD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN1[2:0] = "101" PKN1[2:0] = "110" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "010" PKN2[2:0] = "011" PKN2[2:0] = "100"	VININ
KVN15 VLC KVN16 VLC KVN17 VLC KVN17 VLC KVN18 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN31 VLC KVN32 VLC	CD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN1[2:0] = "110" PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "010" PKN2[2:0] = "011" PKN2[2:0] = "100"	VININ
KVN16 VLC KVN17 VLC KVN18 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN1[2:0] = "111" PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "010" PKN2[2:0] = "011" PKN2[2:0] = "100"	VININIO
KVN17 VLC KVN18 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN2[2:0] = "000" PKN2[2:0] = "001" PKN2[2:0] = "010" PKN2[2:0] = "011" PKN2[2:0] = "100"	VININIO
KVN18 VLC KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN2[2:0] = "001" PKN2[2:0] = "010" PKN2[2:0] = "011" PKN2[2:0] = "100"	MINING
KVN19 VLC KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN2[2:0] = "010" PKN2[2:0] = "011" PKN2[2:0] = "100"	VININIO
KVN20 VLC KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN2[2:0] = "011" PKN2[2:0] = "100"	VININI
KVN21 VLC KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC	CD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN2[2:0] = "100"	VININO
KVN22 VLC KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN		CAINIA
KVN23 VLC KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN32 VLC			
KVN24 VLC KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC		PKN2[2:0] = "101"	
KVN25 VLC KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ∆V x (VRN0 + 51R + VRHN) / SUMRN	PKN2[2:0] = "110"	
KVN26 VLC KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 52R + VRHN) / SUMRN	PKN2[2:0] = "111"	
KVN27 VLC KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ∆V x (VRN0 + 68R + VRHN) / SUMRN	PKN3[2:0] = "000"	
KVN28 VLC KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 69R + VRHN) / SUMRN	PKN3[2:0] = "001"	
KVN29 VLC KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ∆V x (VRN0 + 70R + VRHN) / SUMRN	PKN3[2:0] = "010"	
KVN30 VLC KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 71R + VRHN) / SUMRN	PKN3[2:0] = "011"	VINN4
KVN31 VLC KVN32 VLC KVN33 VLC	CD63 - ΔV x (VRN0 + 72R + VRHN) / SUMRN	PKN3[2:0] = "100"	VIININT
KVN32 VLC KVN33 VLC	CD63 - ∆V x (VRN0 + 73R + VRHN) / SUMRN	PKN3[2:0] = "101"	
KVN33 VLC	CD63 - ∆V x (VRN0 + 74R + VRHN) / SUMRN	PKN3[2:0] = "110"	
	CD63 - ∆V x (VRN0 + 75R + VRHN) / SUMRN	PKN3[2:0] = "111"	
	CD63 - ∆V x (VRN0 + 80R + VRHN) / SUMRN	PKN4[2:0] = "000"	
	CD63 - ΔV x (VRN0 + 81R + VRHN) / SUMRN	PKN4[2:0] = "001"	
KVN35 VLC	CD63 - ΔV x (VRN0 + 82R + VRHN) / SUMRN	PKN4[2:0] = "010"	
KVN36 VLC	CD63 - ΔV x (VRN0 + 83R + VRHN) / SUMRN	PKN4[2:0] = "011"	VANDAGE
	CD63 - ΔV x (VRN0 + 84R + VRHN) / SUMRN	PKN4[2:0] = "100"	VINN5
	CD63 - ΔV x (VRN0 + 85R + VRHN) / SUMRN	PKN4[2:0] = "101"	
	CD63 - ΔV x (VRN0 + 86R + VRHN) / SUMRN	PKN4[2:0] = "110"	
	CD63 - ΔV x (VRN0 + 87R + VRHN) / SUMRN	PKN4[2:0] = "111"	
	CD63 - ΔV x (VRN0 + 87R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "000"	
	CD63 - Δ V x (VRN0 + 91R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "001"	
	CD63 - ΔV x (VRN0 + 95R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "010"	
	CD63 - ΔV x (VRN0 + 99R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "011"	
	,	PKN5[2:0] = "100"	VINN6
	CD63 - AV x (VRN0 + 103R + VRHN + VRLN) / SLIMRN	PKN5[2:0] = "101"	
	CD63 - ΔV x (VRN0 + 103R + VRHN + VRLN) / SUMRN CD63 - ΔV x (VRN0 + 107R + VRHN + VRLN) / SUMRN		
	CD63 - ΔV x (VRN0 + 107R + VRHN + VRLN) / SUMRN	PKN512'(1) = "1111"	
KVN49 VLC	,	PKN5[2:0] = "110" PKN5[2:0] = "111"	

SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN0 + VRN1 ΔV : Voltage difference between VLCD63 and of GND.

Oct 2007 P 60/79 Rev 0.31 SSD1298 **Solomon Systech**

10 MAXIMUM RATINGS

Maximum Ratings (Voltage Referenced to V_{SS})

Symbol	Parameter	Value	Unit
VDDIO	Supply Voltage	-0.3 to +4.0	V
VDDEXT		-0.3 to +4.0	V
VCI	Input Voltage	VSS - 0.3 to 5.0	V
I	Current Drain Per Pin Excluding V _{DDIO} and V _{SS}	25	mA
T _A	Operating Temperature	-20 to +70	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, strong electric fields, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. It is advised that proper precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that VCI and Vout be constrained to the range VSS < VDDIO \leq VCI < V_{OUT}. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either VSS or VDDIO). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 DC CHARACTERISTICS

DC Characteristics (Unless otherwise specified, Voltage Referenced to V_{SS} , $V_{DDIO} = 1.65$ to 3.6V, $T_A = -20$ to $70^{\circ}C$)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
VDDIO	Power supply pin of IO pins	Recommend Operating Voltage Possible Operating Voltage	1.4	-	3.6	V
VDDEXT	Auxiliary power supply pin for VDD	Recommend Operating Voltage Possible Operating Voltage	1.4	-	3.6	V
VCI	Booster Reference Supply Voltage Range	Recommend Operating Voltage Possible Operating Voltage	2.5 or VDDIO whichever is higher	-	3.6	V
VGH	Gate driver High Output Voltage Booster efficiency	No panel loading; 4x or 5x booster; ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	88	90	-	%
	Voltage Booster efficiency	No panel loading; 6x booster; ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	82	84	-	%
VCIX2	VCIX2 primary booster efficiency	No panel loading, ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	83	85	-	%
VGH	Gate driver High Output Voltage		9	-	18	V
VGL	Gate driver Low Output Voltage		-15	-	-6	V
VcomH	Vcom High Output Voltage		V _{CI} + 0.5	-	5	V
VcomL	Vcom Low Output Voltage		-V _{CIM} +0.5	-	-1	V
VLCD63	Max. Source Voltage		-	-	6	V
∆VLCD63	Source voltage variation		-2		2	%
V_{OH1}	Logic High Output Voltage	lout=-100μA	0.9* VDDIO	-	VDDIO	V
V _{OL1}	Logic Low Output Voltage	Iout=100μA	0	-	0.1*VDDIO	V
V_{IH1}	Logic High Input voltage		0.8*VDDIO	-	VDDIO	V
V _{IL1}	Logic Low Input voltage		0	-	0.2*VDDIO	V
I _{OH}	Logic High Output Current Source	Vout = V _{DDIO} -0.4V	50	-	-	μΑ
I _{OL}	Logic Low Output Current Drain	Vout = 0.4V	-	-	-50	μΑ

SSD1298 | Rev 0.31 | P 6179 | Oct 2007 | **Solomon Systech**

l _{OZ}	Logic Output Tri-state Current Drain Source			-1	-	1	μΑ
I _{IL} /I _{IH}	Logic Input Current			-1	-	1	μA
C _{IN}	Logic Pins Input Capacitance			-	5	7.5	pF
R _{SON}	Source drivers output resistance			-	1	-	kΩ
R _{GON}	Gate drivers output resistance			-	500	-	Ω
R _{CON}	Vcom output resistance			-	200	-	Ω
		Vddio=Vddext = 1.8V, Vci = 2.8V. 5x/-5x	lvdd	-	150	300	uA
I _{dp} (262k)	Display current for 262k	booster ratio. Full color current consumption, without panel loading	Ivci	-	2.5	8	mA
. (2	Display current for 8 color	Current consumption for	lvdd	-	120	300	μΑ
I _{dp} (8 color)	mode	8 color partial display, without panel loading	Ivci	-	1	5	mA
l _{slp}	Sleep mode current	Oscillator off, no source/gate output, Ram read write halt. Send command R10-0001	lvdd	-	30	100	μΑ
		(sleep mode), R00-0000 (stop osc)	Ivci	-	40	200	μΑ

Remark: Ivdd = Ivddio + Ivddext

 Solomon Systech
 Oct 2007
 P 62/79
 Rev 0.31
 SSD1298

12 AC CHARACTERISTICS

Table 12-1 – Parallel 6800 Timing Characteristics

 $(T_A = -20 \text{ to } 70^{\circ}\text{C}, V_{DDIO} = 1.4\text{V to } 3.6\text{V}, V_{DDEXT} = 1.4\text{V} - 1.95\text{V})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	100	-	-	ns
t _{cycle}	Clock Cycle Time (read cycle)	1000	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Data Setup Time	5	-	-	ns
t_{DHW}	Data Hold Time	5	-	-	ns
t _{ACC}	Data Access Time	250	-	-	ns
t _{OH}	Output Hold time	100	-	-	ns
PWCS _L	Pulse width /CS low (write cycle)	50	-	-	ns
PWCS _H	Pulse width /CS high (write cycle)	50	-	-	ns
PWCS _L	Pulse width /CS low (read cycle)	500	-	-	ns
PWCS _H	Pulse width /CS high (read cycle)	500	-	-	ns
t_R	Rise time	-	-	4	ns
t _F	Fall time	-	-	4	ns

Figure 12-1 –Parallel 6800-series Interface Timing Characteristics

SSD1298 | Rev 0.31 | P 6379 | Oct 2007 | **Solomon Systech**

Table 12-2 – Parallel 8080 Timing Characteristics

 $(\underline{T_A} = -20 \text{ to } 70^{\circ}\text{C}, V_{DDIO} = 1.65\text{V to } 3.6\text{V}, V_{DDEXT} = 1.65\text{V to } 1.95\text{V})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	100	-	-	ns
t _{cycle}	Clock Cycle Time (read cycle)	1000	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Data Setup Time	5	-	-	ns
t_{DHW}	Data Hold Time	5	-	-	ns
t _{ACC}	Data Access Time	250	-	-	ns
t _{OH}	Output Hold time	100	-	-	ns
PWCS _L	Pulse Width /CS low (write cycle)	50	-	-	ns
PWCS _H	Pulse Width /CS high (write cycle)	50	-	-	ns
PWCS∟	Pulse Width /CS low (read cycle)	500	-	-	ns
PWCS _H	Pulse Width /CS high (read cycle)	500	-	-	ns
t_R	Rise time	-	-	4	ns
t _F	Fall time	-	-	4	ns

Read Cycle

Figure 12-2 – Parallel 8080-series Interface Timing Characteristics

 Solomon Systech
 Oct 2007 | P 64/79 | Rev 0.31 |
 SSD1298

Table 12-3 - Serial Timing Characteristics

 $(T_A = -20 \text{ to } 70^{\circ}\text{C}, V_{DDIO} = 1.65\text{V to } 3.6\text{V}, V_{DDEXT} = 1.65\text{V to } 1.95\text{V})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	77	-	-	ns
f _{CLK}	Serial Clock Cycle Time SPI Clock tolerance = +/- 2 ppm	-	-	13	MHz
t _{AS}	Register select Setup Time	4	-	-	ns
t _{AH}	Register select Hold Time	5	-	-	ns
t _{CSS}	Chip Select Setup Time	2	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	5	-	-	ns
t _{OHW}	Write Data Hold Time	10	-	-	ns
t _{CLKL}	Clock Low Time	38	-	-	ns
t _{CLKH}	Clock High Time	38	-	-	ns
t _R	Rise time	-	-	4	ns
t _F	Fall time	-	-	4	ns

Figure 12-3 – 4 wire Serial Timing Characteristics

SSD1298 | Rev 0.31 | P 6579 | Oct 2007 | **Solomon Systech**

13 GDDRAM ADDRESS

	RL=1	S0	S1	S2	S3	S4	S5	S6	S7	S8		S714	S715	S716	S717	S718	S719	
	RL=0	S719	S718	S717	S716	S715	S714	S713	S712	S711		S5	S4	S3	S2	S1	S0	
	BGR=0	R	G	В	R	G	В	R	G	В		R	G	В	R	G	В	Vertical
	BGR=1	В	G	R	В	G	R	В	G	R		В	G	R	В	G	R	address
TB=1	TB=0																	
G0	G319	000	00H,000	HOO	000	0H, 00	01H	000	0H, 00	10H		000	0H, 00I	EEH	000	0H, 00I	EFH	0
G1	G318	000	01H,000	HOC	000	1H, 00	01H	000	1H, 00	10H		000	1H, 00I	EEH	000	1H, 00I	EFH	1
G2	G317	001	10H,000	HOC	001	0H, 00	01H	001	0H, 00	10H		001	0H, 00I	EEH	001	0H, 00I	EFH	2
G3	G316	00	11H,000	HOC	001	1H, 00	01H	0011H, 0010H				001	1H, 00I	EEH	001	0011H, 00EFH		3
G4	G315	010	00H,000	HOO	010	0H, 00	01H	0100H, 0010H				010	0H, 00I	EEH	010	0H, 00I	EFH	4
																		-
																		-
						-												-
G316	G3	013	CH, 00	00H	013	CH, 00	01H	013	CH, 00	10H		013	CH, 00	EEH	013	CH, 00	EFH	316
G317	G2	013	DH, 00	00H	013	DH, 00	01H	013	DH, 00	10H		013	DH, 00	EEH	013	DH, 00	EFH	317
G318	G1	013	EH, 00	00H	013	EH, 00	01H	013	EH, 00	10H		013	EH, 00	EEH		EH, 00		318
G319	G0	013	8FH, 00	00H	013	FH, 00	01H	013	FH, 00	10H		013	FH, 001	EEH	013	FH, 00I	EFH	319
Horizontal	address		0			1			2				238			239		

Remark: The address is in 00xxH,0yyyH format, where yyy is the vertical address and xx is the horizontal address

 Solomon Systech
 Oct 2007
 P 66/79
 Rev 0.31
 SSD1298

14 INTERFACE MAPPING

14.1 Interface Setting

Table 14-1: Interface setting and data bus setting

PS3	PS2	PS1	PS0	Interface Mode	Data bus input	Data bus output
0	0	0	0	16-bit 6800 parallel interface	D[17:10], D[8:1]	D[17:10], D[8:1]
0	0	0	1	8-bit 6800 parallel interface	D[17:10]	D[8:1]
0	0	1	0	16-bit 8080 parallel interface	D[17:10], D[8:1]	D[17:10], D[8:1]
0	0	1	1	8-bit 8080 parallel interface	D[17:10]	D[8:1]
1	0	1	0	18-bits 8080 parallel interface	D[17:0]	D[17:0]
1	0	1	1	9-bits 8080 parallel interface	D[17:9]	D[8:0]
1	0	0	0	18-bits 6800 parallel interface	D[17:0]	D[17:0]
1	0	0	1	9-bits 6800 parallel interface	D[17:9]	D[8:0]

14.1.1 6800-series System Bus Interface

Table 14-2 – The Function of 6800-series parallel interface

PS3	PS2	PS1	PS0	Interface Mode	Data bus	R/W	Е	D/C	/CS	Operation
0	0	0	0			1	Ţ	0	0	Read 8-bit command
				16-bit 6800 parallel interface	D[17:10],	1	Ţ	1	0	Read 8-bit parameters or status*
				10-bit 0000 paraner interface	D[8:1]	0	Ţ	0	0	Write 8-bit command
						0	Ţ	1	0	Write 16-bit display data
0	0	0	1		D[8:1]	1	J	0	0	Read 8-bit command
				8-bit 6800 parallel interface	D[6.1]	1	J	1	0	Read 8-bit parameters or status*
				8-oft 0000 paratici interface	D[17:10]	0	J	0	0	Write 8-bit command
					D[17.10]	0	7	1	0	Write 8-bit display data
1	0	0	0		D[17:0]	1	J	0	0	Read 8-bit command
				18-bits 6800 parallel interface		1	J	1	0	Read 8-bit parameters or status*
				16-bits 6600 paraner interface	D[17.0]	0	J	0	0	Write 8-bit command
						0	Ţ	1	0	Write 18-bit display data
1	0	0	1		D.0.01	1	J	0	0	Read 8-bit command
				9-bits 6800 parallel interface	D[8:0]	1	Ţ	1	0	Read 8-bit parameters or status*
				y-one bood paramer interface	D[17:9]	0	Ţ	0	0	Write 8-bit command
					D[17.9]	0	Ţ	1	0	Write 9-bit display data

^{*} A dummy read is required before the first actual display data read

SSD1298 | Rev 0.31 | P 6779 | Oct 2007 | **Solomon Systech**

14.1.2 8080-series System Bus Interface

Table 14-3 $\,$ – The Function of 8080-series parallel interface

PS3	PS2	PS1	PS0	Interface Mode	Data bus	/WR	/RD	D/C	/CS	Operation
0	0	1	0			1	0	0	0	Read 8-bit command
				16-bit 8080 parallel interface	D[17:10],	1	0	1	0	Read 8-bit parameters or status*
				10-bit 8080 paramet interface	D[8:1]	0	1	0	0	Write 8-bit command
						0	1	1	0	Write 16-bit display data
0	0	1	1		D[0.1]	1	0	0	0	Read 8-bit command
				8-bit 8080 parallel interface	D[8:1]	1	0	1	0	Read 8-bit parameters or status*
				8-bit 8080 paraner interface	D[17:10]	0	1	0	0	Write 8-bit command
					D[17.10]	0	1	1	0	Write 8-bit display data
1	0	1	0			0	1	0	0	Read 8-bit command
				18-bit 8080 parallel interface	D[17:0]	1	0	1	0	Read 8-bit parameters or status*
				18-bit 8080 paramet interface	D[17.0]	0	1	0	0	Write 8-bit command
						0	1	1	0	Write 18-bit display data
1	0	1	1		D[8:0]	1	0	0	0	Read 8-bit command
				9-bit 8080 parallel interface	D[8.0]	1	0	1	0	Read 8-bit parameters or status*
				9-011 0000 paraner interface	D[17:0]	0	1	0	0	Write 8-bit command
					D[17:9]	0	1	1	0	Write 9-bit display data

^{*} A dummy read is required before the first actual display data read

 Solomon Systech
 Oct 2007
 P 68/79
 Rev 0.31
 SSD1298

14.2 Mapping for Writing an Instruction

									Н	ardwa	are pir	าร							
Interface	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
18 bits		IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	Χ	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	Χ
16 bits		IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8		IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
9 bits	1 st	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	Х									
3 Dits	2 nd	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	Х									
8 bits	1 st	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8										
ช มเเธ	2 nd	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0										

Remark:

Don't care bits Not connected pins

14.3 Mapping for Writing Pixel Data

										На	rdwa	are p	ins							
Interface	Color mode	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
18 bits	262k		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
		1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	B4	В3	B2	B1	B0	Х	Х		R5	R4	R3	R2	R1	R0	Х	Х	
		3 rd	G5	G4	G3	G2	G1	G0	Х	Х		B5	B4	В3	B2	B1	B0	Х	Х	
16 bits	262k	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
10 5113	202R	2 nd	Х	Х	Х	Х	Х	Х	Х	Х		B5	B4	В3	B2	B1	B0	Х	Х	
		1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	B4	ВЗ	B2	B1	B0	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	
	65k		R4	R3	R2	R1	R0	G5	G4	G3		G2	G1	G0	B4	B3	B2	B1	B0	
9 bits	1	1 st	R5	R4	R3	R2	R1	R0	G5	G4	G3									
9 Dits	262k	2 nd	G2	G1	GO	B5	B4	В3	B2	B1	B0									
		1 st	R5	R4	R3	R2	R1	R0	Х	Х										
	262k	2 nd	G5	G4	G3	G2	G1	G0	Х	Х										
8 bits		3 rd	B5	B4	B3	B2	B1	B0	Х	Х										
	65k	1 st	R4	R3	R2	R1	R0	G5	G4	G3										
	65k	2 nd	G2	G1	G0	B4	В3	B2	B1	B0										

Remark:

Don't care bits Not connected pins

14.4 Mapping for Writing Pixel Data in generic mode

Interface	Color mode	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
18-bit RGB	262k	-	RR5	RR4	RR3	RR2	RR1	RR0	GG5	GG4	GG3	GG2	GG1	GG0	BB5	BB4	BB3	BB2	BB1	BB0
16-bit RGB	65k	-	RR5	RR4	RR3	RR2	RR1	RR4	GG5	GG4	GG3	GG2	GG1	GG0	BB4	BB3	BB2	BB1	BB0	BB4
9-bit RGB	262k	1 st	-	1	-	-	-	-	-		-	RR5	RR4	RR3	RR2	RR1	RR0	GG5	GG4	GG3
		2 nd	-	-	1	-	-	-	-	-	-	BB5	BB4	BB3	BB2	BB1	BB0	GG2	GG1	GG0
6-bit RGB	262k	1 st	-	1	-	-	-	-	-	1	-	RR5	RR4	RR3	RR2	RR1	RR0			
		2 nd	-	-	-	-	-	-	-	-	-	GG5	GG4	GG3	GG2	GG1	GG0			
		3 rd										BB5	BB4	BB3	BB2	BB1	BB0			

SSD1298 | Rev 0.31 | P 6979 | Oct 2007 | **Solomon Systech**

15 DISPLAY SETTING SEQUENCE

15.1 Display ON Sequence

 Solomon Systech
 Oct 2007 | P 70/79 | Rev 0.31 |
 SSD1298

15.2 Display OFF Sequence

Note:
1. VDDIO should be the last to fall, or VCI/VDDIO could be power off at the same time
2. If OTP is active in the application, the MTP programming voltage should be turned off and capacitors at VGH and VCIX2 discharged before VCI/VDDIO are turned off.

Rev 0.31 P 7179 Oct 2007 SSD1298 Solomon Systech

15.3 Sleep Mode Display Sequence

 Solomon Systech
 Oct 2007
 P 72/79
 Rev 0.31
 SSD1298

16 POWER SUPPLY BLOCK DIAGRAM

SSD1298 | Rev 0.31 | P 7379 | Oct 2007 | **Solomon Systech**

SSD1298 OUTPUT VOLTAGE RELATIONSHIP

Note: VGH-VGL<30V_{p-p}

 Solomon Systech
 Oct 2007
 P 74/79
 Rev 0.31
 SSD1298

19Application Circuit

CYP CYN CXP CXN C1P C1N C2P C2N C2N C3P C3N C3P C3N

Figure 17-1: Booster Capacitors

All capacitors $0.1 \sim 0.22 uF$ (0.22uF for better stability)

Figure 17-2: Filtering and Charge Sharing Capacitors

Mandatory requirement on external components for SSD1298 is 10 capacitors.

VĈIX2, VCIM, VGH, VGL, VCI, VCORE, VCOMH, VCOML C1P/C1N, C2P/C2N, C3P/C3N, CYP/CYN, CXP/CXN

Remark:

Capacitor for VCIX2 = 2.2uF

VCI should be separated with VCIP at ITO layout to provide noise free path.

VSS should be separated with VCHS, AVSS and VSSRC at ITO layout to provide noise free path.

All other capacitors $1.0 uF \sim 2.2 uF$ (2.2 uF is preferred for better display quality and power consumption.)

(Optional capacitors)

VLCD63, capacitors are for stability

Capacitors on CDUM0 and CDUM1N/CDUM1P are for power saving.

SSD1298 | Rev 0.31 | P 7579 | Oct 2007 | **Solomon Systech**

Figure 17-3 – Panel Connection Example

 Solomon Systech
 Oct 2007 | P 76/79 | Rev 0.31 |
 SSD1298

Figure 17-4 - ITO and FPC connection example

Operating conditions:

- System 3.6V>System VDD>1.95V or1.65V>System VDD>1.4V

SSD1298 Rev 0.31 P 7779 Oct 2007 Solomon Systech

18 PACKAGE INFORMATION 18.1 DIE TRAY DIMENSIONS

TBD

 Solomon Systech
 Oct 2007
 P 78/79
 Rev 0.31
 SSD1298

Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) "Restriction of Hazardous Substance (RoHS) Directive (2002/95/EC)" and China standard "电子信息产品污染控制标识要求 (SJ/T11364-2006)" with control Marking Symbol . Hazardous Substances test report is available upon requested.

http://www.solomon-systech.com

SSD1298 | Rev 0.31 | P 7979 | Oct 2007 | **Solomon Systech**