Exame nul național de bacalaure at 2022 Proba E. c) Mate matică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice solutie corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_3 = a_1 + 2r$	2p
	$a_3 = 7$, $S_3 = \frac{(a_1 + a_3) \cdot 3}{2} = 15$	3 p
2.	f(1) = 2 - 2a, $f(-1) = 2a$	2p
	$2 - 2a = 2a \implies 4a = 2 \implies a = \frac{1}{2}$	3 p
3.	$1 + \log_2(2x + 1) = 2$	2 p
	$\log_2(2x+1) = 1 \Rightarrow 2x+1 = 2 \Rightarrow x = \frac{1}{2}$, care convine	3 p
4.	Numerele naturale de o cifră, pătrate perfecte sunt: 0,1,4,9, deci sunt patru cazuri favorabile	2p
	Numerele naturale de o cifră sunt 0,1,2,,9, deci sunt zece cazuri posibile	2 p
	$P = \frac{\text{număr cazuri favorabile}}{\text{număr cazuri posibile}} = \frac{2}{5}$	1p
5.	AM mediană \Rightarrow M mijlocul laturii $BC \Rightarrow x_M = \frac{x_B + x_C}{2} = 1$, $y_M = \frac{y_B + y_C}{2} = 2$	2p
	$AM = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2} = \sqrt{4} = 2$	3p
6.	$\sin 30^\circ = \frac{1}{2}, \ \sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}, \ \sin 60^\circ = \frac{\sqrt{3}}{2}$	3p
	$\sqrt{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - 3 \cdot \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = 0$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$3*4 = -\frac{(3-1)\cdot(4-1)}{3} + 1 =$	2p
	$= -\frac{2 \cdot 3}{3} + 1 = -2 + 1 = -1$	3 p
2.	$x*(-2) = -\frac{(x-1)\cdot(-3)}{3} + 1 = x - 1 + 1 = x$, pentru orice număr real x	2 p
	$(-2)*x = -\frac{(-2-1)\cdot(x-1)}{3} + 1 = x - 1 + 1 = x$, pentru orice număr real x, deci $e = -2$ este	3 p
	elementul neutru al legii de compoziție "*"	
3.	$-\frac{(a-1)\cdot(7-1)}{3} + 1 = 5$	2p
	$-(a-1)\cdot 2+1=5$, de unde obţinem $a=-1$	3 p

4.	$x*(1+x) = -\frac{(x-1)\cdot(1+x-1)}{3} + 1 = -\frac{x(x-1)}{3} + 1$	2p
	$-\frac{x(x-1)}{3} + 1 \ge -3$, deci $x^2 - x - 12 \le 0$, de unde obţinem $x \in [-3, 4]$	3p
5.	$n*n = -\frac{(n-1)^2}{3} + 1, \ n*n*n = (n*n)*n = \left(-\frac{(n-1)^2}{3} + 1\right)*n = \frac{(n-1)^3}{9} + 1$	3p
	$\frac{(n-1)(n-4)(n+2)}{9} \le 0, n \text{ număr natural } \Rightarrow n=4 \text{ este cel mai mare număr natural căutat}$	2p
6.	$-\frac{(m-1)(n-1)}{3}+1=-1 \Rightarrow (m-1)(n-1)=6$	2p
	Perechile (m,n) de numere naturale sunt: $(2,7)$; $(3,4)$; $(4,3)$; $(7,2)$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.	$\det A = \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = 2 \cdot (-2) - 1 \cdot 3 =$	3p
	=-4-3=-7	2p
2.	$A + xI_2 = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix} + \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = \begin{pmatrix} 2+x & 3 \\ 1 & -2+x \end{pmatrix}$	2p
	$\det(A + xI_2) = x^2 - 7$, deci $x^2 - 7 \ge -7 \iff x^2 \ge 0$, pentru orice număr real x	3 p
3.	$A \cdot A = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}, \ aI_2 = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	3 p
	$ \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \Rightarrow a = 7 $	2p
4.	$\det(mA - I_2) = 1 - 7m^2$, $\det(A + I_2) = -6$	2p
	$7m^2 - 6m - 1 = 0$, de unde obținem $m = -\frac{1}{7}$ sau $m = 1$	3 p
5.	$A \cdot M = \begin{pmatrix} 2x + 3y & 3x + 2y \\ x - 2y & -2x + y \end{pmatrix}, \ M \cdot A = \begin{pmatrix} 2x + y & 3x - 2y \\ x + 2y & -2x + 3y \end{pmatrix}$	3p
	$2x + 3y = 2x + y \Rightarrow y = 0$ care verifică	2p
6.	$\det(aA) = -7a^2$	2p
	$-7a^2 \ge -28 \Rightarrow a^2 \le 4$, și cum $a \in \mathbb{Z}$, obținem $a = -2$, $a = -1$, $a = 0$, $a = 1$ sau $a = 2$ deci a poate avea 5 valori	3p