mcvis: multicollinearity visualisation

https://kevinwang09.github.io/pres/mcvis_talk

Kevin Y. X. Wang 5 December 2019, Adelaide

Acknowledgement

This is joint work with Chen Lin (Fudan Univeristy) and Prof Samuel Mueller (University of Sydney).

Cricketers' career batting statistics

- Cricket is a bat-and-ball game.
- The aim of a batsman is to score as many runs as possible before getting out.

```
glimpse(X)
```

Interesting feature in this data

There is a causal relationship:

batting ave =
$$\frac{\text{runs}}{\text{no. of outs}}$$
,

or equivalently,

 $log_runs = log_ave + log_outs.$

What is multi-collinearity (MC)?

MC occurs when columns of X are linear dependent (exactly or approximately).

```
M1 = lm(log_100 \sim ., data = X)
broom::tidv(M1)
## # A tibble: 8 x 5
##
   term estimate std.error statistic p.value
                <dbl>
                                  <dbl> <dbl>
##
    <chr>
                         <dbl>
## 1 (Intercept) -0.365
                        0.0902
                              -4.05 5.67e- 5
## 2 log_runs
              -1.92 1.95 -0.984 3.25e- 1
## 3 log_outs 1.61 1.96 0.826 4.09e- 1
## 4 log_ave 1.84 1.96 0.943 3.46e- 1
## 5 log fours
             0.647
                    0.0969 6.68 4.58e-11
## 6 log_sixes
             0.131
                        0.0264 4.96 8.57e- 7
## 7 log_ducks
             0.00357
                        0.0497 0.0718 9.43e- 1
## 8 log_hs
                        0.0753 -0.248 8.04e- 1
              -0.0187
```

Consequence of multi-collinearity

• We will proceed with rounding all variables to 3 significant figures.

	Ir	nclude all		Remove log_runs			Remove log_ave		
Predictors	Estimates	std. Error	p	Estimates	std. Error	p	Estimates	std. Error	p
(Intercept)	-0.37	0.09	<0.001	-0.37	0.09	<0.001	-0.36	0.09	<0.001
log_runs	-1.92	1.95	0.325				-0.08	0.12	0.491
log_outs	1.61	1.96	0.409	-0.31	0.11	0.004	-0.23	0.10	0.019
log_ave	1.84	1.96	0.346	-0.08	0.12	0.530			
log_fours	0.65	0.10	<0.001	0.64	0.10	<0.001	0.65	0.10	<0.001
log_sixes	0.13	0.03	<0.001	0.13	0.03	<0.001	0.13	0.03	<0.001
log_ducks	0.00	0.05	0.943	0.00	0.05	0.922	0.00	0.05	0.934
log_hs	-0.02	0.08	0.804	-0.02	0.08	0.811	-0.02	0.08	0.837

High correlation \neq multicollinearity

- By definition, it is the linear combination of variables that causes MC.
- The causal variables are not the most highly correlated.
- Thus, identifying high correlation does not always identify sources of MC.

Diagnosis of multicollinearity requires specialised statistics.

Existing methods

1. Variance inflation factors (VIFs)

Introduced in Marquaridt (1970) and elsewhere:

$$VIF_j = rac{1}{1-R_j^2}, \qquad j=1,\dots,p,$$

where R_j^2 is the coefficient of determination when the x_j independent variable is treated as a response variable against the remaining p-1 independent variables.

A **larger** value of VIF_j implies x_j can be highly predicted by other variables, and thus implies higher cause of MC by that variable.

```
M1 = lm(log_100 ~ ., data = X)
M1 %>% car::vif() %>% round(2)

## log_runs log_outs log_ave log_fours log_sixes log_ducks log_hs
## 23995.96 11410.15 4666.15 55.60 2.53 3.99 12.17
```

Using a threshold of 5 as suggested by Sheather (2009), 5 MC-causing variables are identified.

2. Eigenvalues of $X^{\top}X$

Eigenvalues of the "uncentered covariance matrix" $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p \geq 0$ offers a more linear algebra interpretation of MC.

A **smaller** value of λ_p produces a matrix determinant closer to 0, which implies linear dependence in X and thus MC (Stewart 1987).

```
Xmat = X %>% as.data.frame() %>% as.matrix() %>% scale()
eigen = svd(t(Xmat) %*% Xmat)
round(eigen$d, 3)
## [1] 4839.921 928.325 303.818 252.626 91.953 45.354 9.982 0.020
```

Note: this only implicates the existence of MC, not which variable causes MC.

Relationships between the two measures

[2,] -1.050852e+13 9.907388e+12 2.989748e+13 -1.982468e+12 4.418220e+12

Suppose that X is standardised to have mean 0 and variance 1, and we decompose $(X^\top X)^{-1}$ into $G \operatorname{diag}(1/\lambda_1,\ldots,1/\lambda_p)G^\top$, then:

$$egin{pmatrix} VIF_1 \ dots \ VIF_p \end{pmatrix} = egin{pmatrix} g_{11}^2 & \cdots & g_{1p}^2 \ dots & \ddots & dots \ g_{p1}^2 & \cdots & g_{pp}^2 \end{pmatrix} egin{pmatrix} au_1 \ dots \ au_p \end{pmatrix} = (G \circ G) oldsymbol{ au}$$
 ,

where $au_j=1/\lambda_j, \quad j=1,\ldots,p.$

Larger τ_p value indicates larger MC.

• It will be great if we have a formula of the form $\tau_p = f(VIF_1, \dots, VIF_p)$ to reveal the relationship between every variable x_j and the cause of MC, τ_p .

```
solve(eigen$u * eigen$u)[1:2,1:5]

## [,1] [,2] [,3] [,4] [,5]

## [1,] -3.549883e+14 3.346813e+14 1.009966e+15 -6.696969e+13 1.492518e+14
```

The mcvis method

mcvis

We perform linear regression between τ_p and every VIF.

- By quantifying the linearity between τ_p and VIFs, we can diagnose MC-causing variables.
- How can we generate multiple "observations" of both τ_p and VIFs?
- Sampling!

$$VIF_1, \dots, VIF_p$$

$$au_1,\ldots, au_p$$

 VIF_1, \ldots, VIF_p au_1,\ldots, au_p Bootstrap 1 VIF_1,\ldots,VIF_p au_1,\ldots, au_p Bootstrap 100 VIF_1,\ldots,VIF_p au_1,\ldots, au_p Bootstrap 200 VIF_1,\ldots,VIF_p au_1,\ldots, au_p Bootstrap 1000

Perform linear regression extract t-statistic

Perform linear regression extract t-statistic

Perform linear regression extract t-statistic

$$\overline{t_j^2} = \left(\sum_{k=1}^K t_{j,k}^2\right) / K$$

Bootstrap 1

Bootstrap 100

Bootstrap 200

Bootstrap 1000

$$\overline{t_j^2} = \left(\sum_{k=1}^K t_{j,k}^2\right) / K$$

$$\overline{t_1^2}, \ \overline{t_2^2}, \ldots, \ \overline{t_p^2}$$

$$MC_j = \frac{\overline{t_j^2}}{\sum_{j=1}^p \overline{t_j^2}}$$

The mcvis package

1. MC-index

```
library(mcvis)
set.seed(13)
 p = ncol(X)
mcvis_result = mcvis(X[,-p])
 round(mcvis_result$MC[p-1,], 2)
            log_outs log_ave log_fours log_sixes log_ducks
   log_runs
                                                                 log_hs
##
       0.69
                 0.16
                           0.14
                                     0.00
                                               0.00
                                                         0.00
                                                                   0.00
```

2. MC visualisation

ggplot_mcvis(mcvis_result)

3. Shiny app for interactive exploration of data

Extension work: Multiple au's

ggplot_mcvis(mcvis_result, eig_max = 7)

Simulated data from mplot

- The R package mplot (Tarr et. al. 2018) introduces a simulated data with correlated variables in context of variable selection.
- mcvis clearly identifies the correct cause of linearity (x8) whereas VIF identifies (x6).

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
MC index	0.00885	0.0113	0.282	0.002	0.023	0.276	0.015	0.362	0.020
VIF	23.84	23.36	109.76	7.82	41.52	167.07	31.37	145.89	41.12

Final remarks

- mcvis provides a new MC-index and a visualisation of multicollinearity in linear regression.
- mcvis builds on top of classical statistics under a resampling framework and uncovers new sources
 of collinearity with an understanding of variability.
- Learn more from:
- R leaffur/mcvis
 - kevinwang09/mcvispy
 - Samuel.mueller@sydney.edu.au
 - (a) (a) (b) (b) (c) (c) (d) (d)(b) (c) (d) (d)(c) (d) (d) (d)(d) (d) (d)(e) (d) (

Bibliography

Marquaridt, D. W. (1970). "Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation". In: Technometrics 12.3, pp. 591–612.

Belsley, D. A. (1984). "Demeaning Conditioning Diagnostics through Centering". In: The American Statistician 38.2, pp. 73–77.

Stewart, G. W. (1987). "Collinearity and Least Squares Regression". In: Statistical Science 2.1, pp. 68-84.

O'Brien, R. M. (2007). "A Caution Regarding Rules of Thumb for Variance Inflation Factors". In: Quality & Quantity 41.5, pp. 673–690.

Sheather, S. (2009). A Modern Approach to Regression with R. Springer Texts in Statistics. New York, NY: Springer New York.

Friendly, M. and E. Kwan (2009). "Statistical computing and graphics where's Waldo? Visualizing collinearity diagnostics". In: The American Statistician 63.1, pp. 56–65.

list()