"The Theory of Everything": uniform algorithm design patterns

(backtracking, branch & bound, greedy algorithms, divide and conquer, and dynamic programming...)

Nikolay V. Shilov

Simulated Large Hadron Collider CMS particle detector data depicting a Higgs boson produced by colliding protons decaying into hadron jets and electrons

Part 1

Introduction

Standard Template Library

- Story (borrowed from <u>Standard Template Library Wikipedia</u>) that I didn't know till 2021 (and firstly learnt from Eugene Zouev lectures on *Software Systems Analysis and Design*):
 - In November 1993 Alexander Stepanov presented a library based on generic programming to the ANSI/ISO committee for C++ standardization.
 - The committee's response was overwhelmingly favorable and led to a request from Andrew Koenig for a formal proposal in time for the March 1994 meeting.

Standard Template Library

- The prospects for early widespread dissemination of the STL were considerably improved with Hewlett-Packard's decision to make its implementation freely available on the Internet in August 1994.
- This implementation, developed by Stepanov, Lee, and Musser during the standardization process, became the basis of many implementations offered by compiler and library vendors today.
- It provides four components called algorithms, containers, functions, and iterators.

A "Must"

- Design and Analysis of Computer Algorithms is a must of Computer Curricula.
- In particular, it covers algorithm design patterns like *greedy* method, divide-and-conquer, dynamic programming, backtracking and branch-and-bound.

Undergraduate vs. Graduate levels

- All listed design patterns are taught, learned and comprehended by examples.
- It is acceptable at *undergraduate* level. But is it a valid educating approach at *graduate* level?

Glory of the Past

- Greedy Method
 - Continues Knapsack problem
 - Kruskal's algorithm
 - Huffman coding
- Backtracking
 - N-Queen Problem
 - Discrete Knapsack problem
 - Davis–Putnam–Logemann–Loveland algorithm

More Glory ...

- Branch & Bound
 - Discrete Knapsack problem
 - Interval Methods for Global Optimization
 - Towards a Tractable Exact Test for Global Multiprocessor Fixed Priority Scheduling (Artem Burnyakov talks for STEP-2024)
- Dynamic Programming
 - Dijkstra (shortest path) algorithm
 - Floyd–Warshall (shortest paths) algorithm
 - Cocke Younger Kasami algorithm

Formalize!

- But these patterns can be formalized as design templates, rigorously specified, and mathematically verified.
- Greedy method is the only pattern that had been studied and formalized from rigor mathematical point of view in XX century.

Formalization (?) of Greedy Method

- Edmonds J. Matroids and the greedy algorithm. Mathematical Programming, 1971, v.1, p.127-113.
- Korte B., Lovasz L. Mathematical structures underlying greedy algorithms. Lecture Notes in Computer Science, 1981, v.117, p.205-209.
- Helman P., Moret B.M.E., Shapiro H.D. An exact characterization of greedy structures. SIAM Journal on Discrete Mathematics, 1993, v.6(2), p.274-283.

Formalize!

- The speaker (i.t., me;-) published (in years 2010-2016) formalization, specification and (manual) verification for the following individual design techniques – backtracking, branch & bound, dynamic programming.
- In the present talk: survey of these formalizations from programming theory perspective and then ... a move to a uniform/unified pattern in terms op map and reduce.

Talk outlines

- Introduction
- Levels of reasoning interpreted and uninterpreted
- Recursive and iterative Dynamic Programming (DP)
- Recall about Backtracking (BT) and Branch & Bound (B&B)
- Unifying patterns for BT and B&B
- Conclusion (greedy, divide and conquer?)

Part 2

LEVELS OF REASONING – INTERPRETED AND UNINTERPRETED

Let's start with recursion elimination

• A classic example of monadic recursion elimination (using reduction to the tail recursion) is function $M_{91}: \mathbb{N} \to \mathbb{N}$

$$M_{91}(n) = if \ n > 100 \ then (n-10) \ else \ M_{91}(M_{91}(n+11)).$$

• It was introduced by John McCarthy, studied by Zohar Manna, Amir Pnueli, Donald Knuth. It turns out that

$$M_{91}(n) = if \ n > 101 \ then (n-10) \ else \ 91.$$

Problem via recursion elimination

• A "key" idea elimination is a move from a monadic function $M_{91}: N \to N$ to a binary function $M2: N \times N \to N$ such that $M2(n,k) = (M_{91})^k(n)$ for all $n,k \in N$: $M2(n,k) = if \ k = 0 \ then \ n$ $else \ if \ n > 100 \ then \ M2\big((n-10),(k-1)\big)$ $else \ M2\big((n+11),(k+1)\big).$

Recursive factorial

• Recursive program to compute the factorial function $F: \mathbb{N} \to \mathbb{N}$

$$\circ F(n) = if \ n = 0 \ then \ 1 \ esle \ n \cdot F(n-1)$$
 (in the standard notation),

$$\circ F(n) = if \ p(n) \ then \ c \ else \ f\left(n, F(g(n))\right)$$
 (in a prefix notation),

where known functions are

$$\circ p \equiv (\lambda x \in \mathbb{N}. (x = 0)) : \mathbb{N} \to Boolean,$$

$$\circ c \equiv 1 :\rightarrow N$$
 (i.e., a constant)

$$\circ f \equiv (\lambda x, y \in \mathbf{N}.(x \cdot y)) : \mathbf{N} \times \mathbf{N} \to \mathbf{N},$$

$$\circ g \equiv \left(\lambda \, x \in \mathbf{N}. \left(if \, x = 0 \, then \, 0 \, else(x-1)\right)\right) : \mathbf{N} \to \mathbf{N}.$$

Imperative factorial

Program 1

- 1. VAR x, y: N;
- 2. y := 1;
- 3. while $x \neq 0$ do
- $4. \qquad y:=x\cdot y;$
- 5. x = x 1
- 6. od

Program 2

- 1. VAR x, y, z: N;
- 2. y := 1; z := 1;
- 3. while $z \leq x do$
- 4. $y \coloneqq z \cdot y$;
- 5. z = z + 1
- 6. od

What if *known* functions are *uninterpreted*?

Recursive schemata	with a s	single a	available (not specified) data tv	/pe <i>T</i> :
recarsive serieriata	With a		avanabic ₍	riocopedifica	, aata t	/ PC I .

$$F(x) = if \ p(x) \ then \ c \ else \ f\left(x, F(g(x))\right)$$

Herbrand models and structures

- To demonstrate that not any two of program schemata from the previous slide are equivalent, it is sufficient to consider *Herbrand models* (also called *free models*).
- The domain of a Herbrand model comprises all terms constructed from the available functional symbols and input variables (while the domain of the Herbrand structures comprise the ground terms exclusively).

Why the schemata aren't equivalent?

- Let us consider a Herbrand model such that
 - \circ q is always TRUE,
 - $\circ p\left(g(g(x))\right)$ is TRUE while p is FALSE for all other terms.
- Then

$$\circ F(x) = f\left(x, F(g(x))\right) = f\left(x, f\left(g(x), F\left(g(g(x))\right)\right)\right) = f\left(x, f\left(g(x), F\left(g(x$$

- o the output value of y computed by scheme 1 is f(g(x), f(x, c)),
- o while scheme 2 does not halt at all.

Translation of the recursive scheme to a standard scheme (with equality)

```
1. VARx, y, u, v : T; 7. while u \neq x do
             8. v := x;
2. u := x;
3. while \neg p(u) do 9. while g(v) \neq u do
4. u := g(u)
                               Inv. 1: \exists m < n \in \mathbb{N} : v = g^m(x) \& u = g^n(x)
5. od
                               v := g(v)
6. y := c;
                             od:
                             Inv. 2: g(v) = u \& y = F(u)
                      10. y := f(u, y); u := v
                       11. od;
                      12. y = if p(x) then c else f(x, y)
```

How to rid of the equality

• Finally, the equality used in lines 7 and 9 of the scheme is easy to eliminate because it may be implemented as call of the following *tail-recursive* function *EQ* (easy to implement by an iterative program:

```
 \begin{array}{lll} 1 & VAR\; x,y,u,v\;:\; D;\\ 2 & u:=x;\\ 3 & while\; \neg p(u)\; do\\ 4 & u:=g(u)\\ 5 & od\\ 6 & y:=c;\\ 7 & while\; u\neq x\; do\\ 8 & v:=x;\\ 9 & while\; g(v)\neq u\; do\\ & // \text{Invariant}\; 1:\; \exists m< n\in \mathbb{N}:\; v=g^m(x)\; \&\; u=g^n(x)\\ & v:=g(v)\\ & od;\\ & // \text{Invariant}\; 2:\; g(v)=u\; \&\; y=F(u)\\ 10 & y:=f(u,y);\; u:=v\\ 11 & od\\ \end{array}
```

 $EQ(a,b) = if p(a) \lor p(a) then p(a) \& p(b) else EQ(g(a), g(b)).$

Translation of the recursive factorial to an iterative form

```
1. VARx, y, u, v : N; 7. while u \neq x do
              8. v := x;
2. u := x;
3. while u \neq 0 do 9. while (v-1) \neq u do
4. u := u - 1
                               Inv. 1: \exists m < n \in N : v = x - m \& u = x - n
5. od
                               v := v - 1
6. y := 1;
                             od;
                             Inv. 2: (v-1) = u \& y = F(u)
                      10. y := u \cdot y; \ u := v
                       11. od;
                      12. y = if(x = 0) then 1 else (x \cdot y)
```

Extremely inefficient but semantic-independent

- Unfortunately, imperative factorial from the previous slide 10 is extremely inefficient it runs in $O(n^2)$ time in contrast to both programs (1 and 2) from slide 4 that run in linear time O(n).
- It worth to remark that Program 1 can be automatically constructed from the recursive factorial program using *co-recursion* and then *tail-recursion*.
- This use of the co-recursion is semantic-dependent (since it is safe assuming commutativity of the function f), while our approach to recursion elimination is semantic-independent.

Co-recursion and Tail-recursion by example

- Recursive factorial $F(n) = if \ n = 0 \ then \ 1 \ esle \ n \cdot F(n-1)$ is not in the tail-form (because has next call inside some function).
- But it is equivalent to the following recursive program in the tail-form:

$$\begin{cases} F(n) = P(n, 1) \\ P(n, m) = if \ n = 0 \ then \ m \ esle \ P((n - 1), (n \cdot m)) \end{cases}$$

- This program is in the tail-form because all calls are never inside other functions.
- Co-recursion is a "trick" that consists in converts result into another argument and use this argument in the recursion.

Teil-recursion elimination by example

```
• Tail-recursion \begin{cases} F(n) = P(n,1) \\ P(n,m) = if \ n = 0 \ then \ m \ esle \ P\big((n-1),(n\cdot m)\big) \end{cases}
```

is easy to eliminate (and compare with Program 1 from slide 4):

```
      start: VAR \ x, y: N \ goto \ 2
      1. VAR \ x, y: N;

      2: \ y: = 1 \ goto \ 3
      2. y: = 1;

      3: \ if \ x = 0 \ then \ goto \ stop \ else \ goto \ 4
      3. while \ x \neq 0 \ do

      4: \ y: = x \cdot y \ goto \ 5
      4. y: = x \cdot y;

      5: \ x: = x - 1 \ goto \ 3
      5. x: = x - 1

      5: \ x: = x - 1 \ goto \ 3
      6. od
```

Part 3

RECURSIVE AND ITERATIVE DYNAMIC PROGRAMMING

Warming-up Dropping Bricks Problem

- Define stability of "bricks" (cell phones) by dropping them from a tower of H meters. How many times do you need to drop bricks, if you have just 2 bricks?
- $G(n) = if \ n = 0 \ then \ 0 \ else$ $1 + \min_{1 \le k \le n} \max\{(k-1), G(n-k)\}.$

History of "Dynamic Programming"

- *Dynamic Programming* was introduced by Richard Bellman in the 1950s to tackle optimal planning problems.
- In 1950s the noun *programming* had nothing in common with more recent *computer programming* and meant *planning* (compare: *linear programming*).
- The adjective *dynamic* points out that *Dynamic Programming* is related to a *change of states* (compare *dynamic logic, dynamic system*).

Bellman equation and optimality principle

- Bellman equation is a functional equality for the objective function that expresses the optimal solution at the current state in terms of the optimal solution at next (changed) states.
- It is conceptualized a so-called *Bellman Principle of Optimality*: an optimal plan (or program) should be optimal at every stage.

Descending (top-down) Dynamic Programming

 General pattern of Bellman equation may be formalised by the following scheme of recursive descending Dynamic Programming:

$$G(x) = if p(x) then f(x) else$$

$$g\left(x,\left\{h_i\left(x,G(t_i(x))\right):i\in[1..n(x)]\right\}\right);$$

the term is *linear in each branch* w.r.t. the objective function G

Descending (top-down) Dynamic Programming – cont.

- In this scheme
 - $\circ G: X \to Y$ is a symbol for the objective function,
 - $\circ p: X \to Bool$ is a symbol for a known predicate,
 - $\circ f: X \to Y$ is a symbol for a known function,
 - is a symbol for a known function with a variable (but finite) number of arguments,
 - all $h_i: X \times Z \to Y$, $i \in [1...n(x)]$ are symbols for known functions,
 - all $h_i: X \to X$, $i \in [1...n(x)]$ are symbols for known functions too.

More Examples:

Factorial, Fibonacci Numbers and Words

- $F(n) = if \ n = 0 \ then \ 1 \ else \ n \cdot F(n-1);$
- $Fib(n) = if \ 0 \le n \le 1 \ then \ 1 \ else \ Fib(n-2) + Fib(n-1);$
- Wrd(n) = if n = 0 then a

```
else if n = 1 then b
else Wrd(n-2) \circ Wrd(n-1).
```

Observations

- Factorial, Fibonacci Numbers and Words need static memory of a fixed size.
- Surprisingly, but Dropping Bricks Problem also needs just static memory of fix-size, since $G(n) = \arg\min k \in \mathbb{N}$: $\left(\frac{k(k+1)}{2} \ge n\right)$.

Research questions about Descending Dynamic Programming

- It follows from Paterson M.S. and Hewitt C.T. paper *Comparative Schematology* (1970) that fix-size *static memory* is *not enough* for recursion elimination in Bellman equation.
- When one-time allocated
 - array (with integer indexes),
 - (fix-size) static memory

is sufficient to eliminate recursion in Bellman equation?

A need of dynamic (size) memory

The following program scheme

$$F(x) = if p(x) then x else f(F(g(x)), F(h(x)))$$

is not equivalent to any standard program scheme:

for every n > 0

there exists an Herbrand model T_n

where any standard program scheme needs n variables to compute F.

A need of dynamic (size) memory (proof idea)

Consider the following data type T_n :

• values are sub-terms of the term t_n depicted to the right;

• $p(g^k(h^m(x)))$ is true, if k + m = n.

 $g^{k}(x)$

A need of dynamic (size) memory (proof idea)

- Observe that if $F(x) = if \ p(x) \ then \ x \ else \ f\left(F(g(x)), F(h(x))\right)$ then $F(x) = t_n$.
- Prove by induction: any iterative algorithm that computes t_n needs n variables (memory cells) at least.

Support of the Objective Function

• If G(x) = if p(x) then f(x) else

$$g\left(x,\left\{h_i\left(x,G\left(t_i(x)\right)\right):i\in[1..n(x)]\right\}\right)$$

is defined for some value v, then it is possible to pre-compute the support spp(v), the set of all values that occur in the computation of G(v):

$$spp(x) = if \ p(x) \ then \{x\} \ else \{x\} \cup \Big(\bigcup_{i \in [1..n(x)]} spp(t_i(x)) \Big).$$

• Remark, that for every v, if G(v) is defined, then $\mathrm{spp}(v)$ is finite (but not vice versa).

When an array suffices

• One-time allocated array with integer indexes suffices for computing $G(x) = if \ p(x) \ then \ f(x) \ else$

$$g\left(x,\left\{h_i\left(x,G\left(t_i(x)\right)\right):i\in\left(1..n(x)\right)\right\}\right)$$

if n is a constant and all t_i , $i \in (1...n(x))$, are interpreted by commutative functions.

When static memory suffices

Fix-size static memory suffice for computing

$$G(x) = if p(x) then f(x) else$$

$$g\left(x,\left\{h_i\left(x,G\left(t_i(x)\right)\right):i\in\left(1..n(x)\right)\right\}\right)$$

if n(x) = n is a constant and there exists a known computable function t such that

- $ot_i = t^i$ for all $i \in [1..n]$,
- p(u) implies p(t(u)) for all $u \in \text{spp}(x)$.
- Examples: Factorial, Fibonacci Numbers and Words.
- Counter-example: Paterson-Hewitt scheme.

Design outlines and proof comments

Proof comments

- Proof idea Very same as for factorial function in Part 1.
- Scheme' design (with equality and invertible function t) is depicted to the right.

Design outlines

```
1 VAR x, x_1, \ldots x_n : X;
2 VAR y, y_1, \dots y_n : Y;
3 \ x := v;
4 if p(x) then y := f(x)
       else \{ do x := t_1(x) until p(x); \}
               x_1 := x; \ y_1 := f(x_1);
6
               x_2 := t(x_1); \ y_2 := f(x_2);
               x_n := t(x_{n-1}); \ y_n := f(x_n);
                   x := t^{-}(x);
   //Invariant: x = t^-(x_1) \& bas(x) = \{x_1, ... x_n\} \&
   //Invariant: & y_1 = G(x_1) \& ... \& y_n = G(x_n)
                   y := g(x, (h_1(x, y_1), \dots h_n(x, y_n)));
10
                   y_n := y_{n-1}; \dots y_3 := y_2; y_2 := y_1;
11
                   y_1 := y;
                   x_1 := t^-(x_1); \dots x_n := t^-(x_n)
13
               until x = v
```

Selected references

- 1. G. Berry. Bottom-up computation of recursive programs. RAIRO | Informatique Th´eorique et Applications (Theoretical Informatics and Applications, 10(3):47-82, 1976.
- 2. R. S. Bird. Zippy tabulations of recursive functions. In Proceedings of the 9th International Conference on Mathematics of Program Construction, MPC '08, pages 92-109. Springer-Verlag, 2008.
- 3. J. Cowles and R. Gamboa. Contributions to the theory of tail recursive functions, 2004. Available at http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf.
- 4. D.E. Knuth. Textbook examples of recursion. arXiv:cs/9301113[cs.CC], 1991.
- 5. Y. A. Liu. Systematic Program Design: From Clarity to Efficiency. Cambridge University Press, 2013.
- 6. M.S. Paterson and C.T. Hewitt. Comperative schematology. In Proc. of the ACM Conf. on Concurrent Systems and Parallel Computation, pages 119-127. Association for Computing Machinery, 1970.
- 7. N.V. Shilov, D. Danko Teaching Efficient Recursive Programming and Recursion Elimination Using Olympiads and Contests Problems. In Proc. of the workshop on Frontiers in Software Engineering Education (FISEE-2019), Lecture Notes in Computer Science, 2020, v.12271, p.246-264.

Part 3

RECALL ABOUT BACKTRACKING AND BRANCH & BOUND

Back to Dropping Bricks Problem

- Unfortunately, the techniques developed above lead to use of
 - a (one time allocated) array,
 - but not a fix-size static memory...

Dynamic Programming for knapsack with undividable goods

 Knapsack problem for undividable goods can be formulated in the form of descending dynamic programming,

but

• when gross capacity and/or individual weights are real values the computation of the support function spp has the same complexity as the problem itself!

Dynamic Programming for knapsack with undividable goods — cont.

• For example, the maximal price of $n \ge 0$ undividable goods (W_1, P_1) , ... (W_n, P_n) that may be accumulated in a knapsack with capacity W may be computed recursive algorithm (that match dynamic programming pattern):

```
MaxPrice(W,n) = if \ n = 0 \ then \ 0 \ else if \ W_n > W \ then \ MaxPrice(W,(n-1)) \ else \max\{MaxPrice(W,(n-1)), P_n + MaxPrice((W-W_n),(n-1))\}
```

Graph Traversals

- In cases like knapsack with undividable goods, it remains to travers the decision tree (i.e., the tree of recursive calls) of the problem using backtracking or branch-and-bound methodology.
- In general, graph traversal refers to the problem of visiting all the nodes in a (di)graph to compute some graph characteristics (in particular, to find any/all nodes/vertices that enjoy some property specified by some Boolean *criterion condition*).

Back to descending Dynamic Programming

Bellman equation is already a functioal program and

$$G(x) = if p(x) then f(x) else$$

$$g\left(x,\left\{h_i\left(x,G(t_i(x))\right):i\in[1..n(x)]\right\}\right)$$

and its computations may be considered as a traversal of the tree of recursive calls.

Depth- and Breadth-first Traversals

- A Depth-first search (DFS) is a technique for traversing a finite graph that visits the child nodes before visiting the sibling nodes.
- A Breadth-first search (BFS) is another technique for traversing a finite graph that visits the sibling nodes before visiting the child nodes.

Backtracking and Branch-and-Bound

• Sometimes it is not necessary to traverse all vertices of a graph to collect the set of nodes that meet the criterion function, since there exists some Boolean *boundary condition* which guarantees that child nodes do not meet the criterion function

Backtracking Branch-and-Bound and Backtracking

- Branch-and-bound (B&B) is DFS that uses boundary condition, the method was introduced in the paper
 - Land A. H. and Doig A. G. An automatic method of solving discrete programming problems. Econometrica, 28(3), 1960, p.497-520.
- Backtracking (BT) is DFS that uses boundary condition, the method was introduced in the paper
 - Golomb S.W. and Baumert L.D. Backtrack Programming. Journal of ACM, 12(4), 1965, p.516-524.

Example: Four Queens Puzzle

- Place 4 queens on simplified 4 × 4 chessboard so that non attacks another (*criterion condition*).
- Naïve Algorithm:
 - generate ALL possible placements proceeding row by row, and square by square in the row;
 - try criterion condition for each generated placement.

Four Queens Puzzle:

Naïve Algorithm

Four Queens Puzzle:

Backtracking and Branch-and-Bound

Some subtrees may be refuted on the fly due to boundary condition: some queens attack each other

Basic Terminology

Совещание МГТУ & ИПС

Interval Method for Global Optimization

- Most global optimization methods using interval techniques employ a branch-and-bound strategy:
 - Gray P., HartW., Painton L., Phillips C., Trahan M., Wagner J. A Survey of Global Optimization Methods. Sandia National Laboratories, 1997 (http://www.cs.sandia.gov/opt/survey/main.html).
- These algorithms decompose the search domain into a collection of boxes, arrange them into a tree-structure (according to inclusion), and compute the lower bound on the objective function by interval technique.

Part 4

UNIFYING TEMPLATES FOR BT AND B&B

Temporal ADT Teque

- *Theque* is a finite set of values (of some background data type) marked by disjoint *time-stamps*.
- The time stamps are readings of a *global clock* that counts time in numbers of *ticks*, they (time-stamps) never change and always are not greater than current reading of the clock.
- Let us represent an element x with a time-stamp t by the pair (x, t). Readings of the clock as well as time-stamps are not visible for any observer.

Temporal ADT Teque – cont.

- Theque inherits some set-theoretic operations: the empteq (i.e., *empty teque*) is simply the empty set (\emptyset) , set-theoretic equality (=) and inequality (\neq), subset relations (for example, \subseteq).
- ADT theque has its own specific operations, some of these operations are time-independent, some others are time-sensitive, and some are time-dependent.

Time-independent operations

- Operation Set: for every teque T let Set(T) be $\{x \mid \exists t : (x,t) \in T\}$.
- Operations In and Ni: for every teque T and any value x (of the background type)
 - let In(x,T) stay for $x \in Set(T)$,
 - o and Ni(x,T) stay for $x \notin Set(T)$.
- Operation Spec (specification): for every teque T and any predicate λx : Q(x) on values of the background type let teque Spec(T,Q) be the following sub-teque $\{(x,t) \in T : Q(x)\}$.

Time-dependent operation AddTo

• For every list of teques $T_1, \ldots T_n$ $(n \geq 1)$ and any finite set $\{x_1, \ldots x_m\}$ of elements of the background type $(m \geq 0)$, let execution $AddTo(\{x_1, \ldots x_m\}, T_1, \ldots T_n)$ at time t returns n teques $T'_1, \ldots T'_n$ such that for some moments of time $t = t_1 < \cdots < t_m = t'$ (where t' is the the moment of termination of the operation), $T'_i = T_i \cup \{(x_1, t_1), \ldots (x_m, t_m)\}$ for all $i \in [1 \ldots n]$.

Time-sensitive operations

- There are three pairs of time-sensitive operations:
 - Fir and RemFir ("head" and "tail"),
 - \circ Las and RemLas ("top" and "pop"),
 - \circ *Elm* and *RemElm* ("random" and "drop it").
- Let T be a teque.
 - \circ Let Fir(T) be the value of the background type that has the smallest (i.e., the first) time-stamp in T, and let RemFir(T) be the teque that results from T after removal of this element (with the smallest time-stamp).

Time-sensitive operations – cont.

- \circ Let Las(T) be the value of the background type that has the largest (i.e., the last) time-stamp in T, and let RemLas(T) be the teque that results from T after removal of this element (with the largest time-stamp).
- \circ Let Elm(T) be some element (somehow defined or specified, even randomly) of T (also without any time-stamp) and RemElm(T) is the teque that results from T after removal of this element (with its time-stamp).

Notational convention

- Let pair of FEL and REM stays simultaneously for
 - o either *Fir* and *RemFir*,
 - o or *Las* and *RemLas*,
 - \circ or Elm and RemElm.
- It means, for example, that if we instantiate Fir for FEL, then we must instantiate Fir for FEL and RemFir for REM throughout the template.

Teque Convention

- Instantiation of Fir and RemFir imposes queue discipline first-in first-out and specializes the unified template to B&B template.
- Instantiation of Las and RemLas imposes stack discipline first-in last-out and specializes the template to BT template.
- Instantiation of Elm and RemElm specializes the unified template to Deep Backtracking, Branch and Bounds with priorities, or even a random walk templates.

Virtual Graph Notation

- A virtual (di)graph *G* is defined by means of the following features:
 - \circ a type Node of vertices and the initial vertex ini of this type such that every vertex of G is reachable from ini;
 - o a computable function $Neighb: Node \rightarrow 2^{Node}$ that for any vertex in G returns the set of all its neighbors (children in a digraph).

Boundary and Decision Conditions

- Let us introduce easy to cheque
 - o a Boundary condition $B: 2^{Node} \times Node \rightarrow Boolean$
 - \circ and a *Decision* condition $D: 2^{Node} \times Node \rightarrow Boolean$

to be used for collecting all nodes that meet a hard to cheque Criterion condition $C: Node \rightarrow Boolean$.

Template

Specification: Postcondition

Teque Out consists (with timestamps) of all nodes of the graph G that meet the criterion condition C, and each of these nodes has single entry (occurrence) in Out.

Specification: Preconditions 1 and 2

- 1. A virtual (di)graph *G* is defined by the initial node *ini* and the neighborhood function *Neighb*.
- 2. For every node x of G the boundary condition λS : B(S,x) is a monotone function (i.e., if a node is ruled-out by a set, then it is ruled-out by any larger set).

Specification: Preconditions 3 and 4

- 3. For every set S of nodes of G the decision condition λx : D(S,x) is a monotone function in the following sense: if a node is ruled-out by the set then all its successors are ruled out by the set also.
- 4. For every node x of G the decision condition λS : D(S,x) is an antimonotone function in the following sense: a candidate node may be discarded later by a lager set.

Specification: Precondition 5

5. For every set of nodes *S*:

if
$$S \cup \{x \in G : B(S, x)\} =$$
all nodes of G ,

then $D(S, x) \Leftrightarrow C(x)$

(i.e., the decision condition D applied to a set with a complete extension is equivalent to the criterion condition C).

Loop Invariant

Conjunction of the following 4 clauses:

- 1. $Out = Spec(Visit, \lambda x: D(Set(Visit), x)).$
- 2. Live $\subseteq Visit$, and for every node $z \in G$, if Ni(z, Visit) and C(z), then z is reachable from Set(Live).

Loop Invariant – cont.

3. Each node $x \in G$ has (at most) single instance in *Visit*.

4. Set(Visit) U Neighb(Set(Visit))
equals to the set of all nodes that has
been generated by the algorithm up
to the current moment of time.

Correctness

- If the boundary, decision and criterion conditions B, D and C meet the precondition, and the virtual graph G for traversing is finite,
- then every algorithm instantiated from the template terminates after O(|G|) iterations of the loop,
- and upon termination the final value of Set(Out) is the set of all nodes of G that meet the criterion condition C.

Part 5

CONCLUDING REMARKS ON BT AND B&B DESIGN TEMPLATES

BT and B&B

- We have discussed and present a unified template for BT and B&B algorithm design patterns,
- specified the template by means of (semiformal) precondition and postcondition,
- validate it manually by Floyd method.

Directions for further research

- Formalization of the template and its specification, development of a computer-aided proof in some proof-assistant system.
- Study of the algorithm design templates from mixed computations perspective for automatic algorithm generation.
- Implementation as a template library in C++ to extend STL and try its efficiency (educational as well as practical).

Templates:

Mixed Computation Perspective

- The primary purpose of the specified and verified templates for algorithm design patterns is to use them for (semi-)automatic specialization of the patterns to generate correct by design algorithms to solve concrete problems.
- The purpose is closely related to Mixed Computations and/or Partial Evaluation:
 - Ershov A.P. Mixed computation: potential applications and problems for study. Theor. Comp. Sci., 1982, v18(1), p.41-67.
 - Jones J.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program Generation. Prentice Hall International, 1993.

Templates:

Mixed Computation Perspective

- The difference consists in level of consideration:
 - o in our case we use algorithm design templates and use pseudo-code,
 - while in Mixed Computations and Partial Evaluation program code and programming languages are in use.

Selected references

- 1. Shilov N.V. Algorithm Design Template base on Temporal ADT. Proceedings of 18th International Symposium on Temporal Representation and Reasoning, 2011. IEEE Computer Society. P.157-162.
- 2. Silov N.V. Verification of Backtracking and Branch and Bound Design Templates. Automatic Control and Computer Sciences, 2012, v.46(7), p.402-409.
- 3. Shilov N.V. Unifying Dynamic Programming Design Patterns. Bulletin of the Novosibirsk Computing Center (Series: Computer Science, IIS Special Issue), v.34, 2012, p.135-156.
- Shilov N.V. Algorithm Design Patterns: Program Theory Perspective. In Proceedings of Fifth International Valentin Turchin Workshop on Metacomputation, 2016, University of Pereslavl, p. 170-181.

Thank you! Questions?