MATH 2411 CHEAT SHEET

by Frank

R Code Basics

Basics

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Bayes' theorem:
$$P(B|A) = P(A|B) \frac{P(B)}{P(A)} = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$$

$$E(X) = \mu = \sum_{i} x_{i} p(x_{i}) = \int_{-\infty}^{+\infty} x p(x) dx \qquad E(X_{1} + X_{2}) = E(X_{1}) + E(X_{2}) \qquad (X, Y \text{ not necessarily independent})$$

$$E(aX + b) = aE(X) + b \qquad E(X_{1}X_{2}) = E(X_{1})E(X_{2}) \qquad (X, Y \text{ independent})$$

$$E(g(X)) = \sum_{i} g(x)p(x) = \int_{-\infty}^{+\infty} g(x)p(x) dx$$

$$Var(X) = \sigma_X^2 = E((X - \mu)^2) = \sum_i (x_i - \mu)^2 p(x_i) = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx \qquad Var(X) = E(X^2) - (E(X))^2$$

$$Var(X \pm Y) = Var(X) + Var(Y) \qquad (X, Y \text{ independent}) \qquad Var(aX + b) = a^2 Var(X)$$

F(x)f(x)c.d.f. Discrete p.m.f. Continuous c.d.f.

Calculate c.d.f. first, then derive p.d.f.

E(X) = np, Var(X) = np(1-p)

Joint distribution

$$p(x,y) = P(X = x, Y = y), \sum_{x,y} p(x,y) = 1$$

$$p(X \le a, Y \le b) = \int_{-\infty}^{a} \int_{-\infty}^{b} p(x,y) dx dy, \iint_{\mathbb{R}^{2}} p(x,y) dx dy = 1$$

$$p(x) = \sum_{y} p(x,y), p(y) = \sum_{x} p(x,y)$$

$$p(x) = \int_{-\infty}^{\infty} p(x,y) dy, p(y) = \int_{-\infty}^{\infty} p(x,y) dx$$

Binomial distribution (discrete)
$$X \sim B(n,p)$$
 $P(X=x) = C_n^x p^x (1-p)^{n-x}$ $E(X) = np, \ Var(X) = np(1-p)$ \Rightarrow $ext{returns } f(x), \ i.e. \ P(X = x)$ \Rightarrow $ext{returns } f(x), \ i.e. \ P(X = x)$ \Rightarrow \Rightarrow

Poisson distribution (discrete)

$$X \sim \text{Pois}(n, p)$$
 $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $E(X) = \lambda, \quad Var(X) = \lambda$

> ppois(q, lambda, lower.tail = TRUE)

Normal distribution (continuous)

$$N(0,1): f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad E(X)$$

$$N(\mu, \sigma^2): f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$X \sim N(\mu, \sigma^2) \iff \frac{X-\mu}{\sigma} \sim N(0,1)$$

$$P(|X-\mu| < \sigma) \approx 0.683$$

$$3\sigma\text{-rule}: P(|X-\mu| < 2\sigma) \approx 0.954, \quad X \sim N(\mu, \sigma^2)$$

$$P(|X-\mu| < 3\sigma) \approx 0.997$$

> qnorm(p, mean = 0, sd = 1, lower.tail = TRUE)

Estimation

Estimator: distribution parameter, given random samples

Bias Bias $(\hat{\theta}, \theta) = E(\hat{\theta}) - \theta$

Mean square error $MSE(\hat{\theta}, \theta) = E((\hat{\theta} - \theta)^2) = (Bias(\hat{\theta}, \theta))^2 + Var(\hat{\theta})$

Sample mean r.v.
$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$
 $Var(\overline{X}) = \frac{\sigma_{\overline{X}}^2}{n}$

Sample mean r.v.
$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$
 $Var(\overline{X}) = \frac{\sigma_X^2}{n}$
$$S_{n-1}^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1} \qquad E(S_{n-1}^2) = \sigma_X^2 \qquad Var(S_{n-1}^2) = \frac{1}{n} \left(\mu_4 - \frac{n-3}{n-2} (\sigma_X^2)^2 \right), \text{ where } \mu_4 = E((X - \mu)^4)$$

Maximum likelihood estimator $\hat{\theta}_{MLE}$: the $\hat{\theta}$ that maximizes $\prod_{i=1}^{n} p_{\theta}(x_i)$

Binomial
$$\hat{p} = \frac{\overline{X}}{m}$$
 Poisson $\hat{\lambda} = \overline{X}$ Normal $\hat{\mu} = \overline{X}$ $\hat{\sigma}_{MLE}^2 = \frac{\sum_i (X_i - \overline{X})^2}{n}$ (biased)

Normal:
$$X \sim N(\mu, \sigma^2)$$
, we have $X_1 + X_2 + \dots + X_n \sim N(n\mu, n\sigma^2)$, $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

Poisson: $X \sim \text{Pois}(\lambda)$, we have $X_1 + X_2 + \dots + X_n \sim \text{Pois}(n \lambda)$, $n \overline{X} \sim \text{Pois}(n \lambda)$ Binomial: $X \sim B(m, p)$, we have $X_1 + X_2 + \dots + X_n \sim B(n m, p)$, $n \overline{X} \sim B(n m, p)$

Central limit theorem: $\lim_{n\to\infty} \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0,1)$ for any distribution

Interval-valued estimation

Interval-valued estimation for \overline{X} (when σ^2 is known)

CI for
$$\mu$$
 with $C = 1 - 2\alpha$: $\left[\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}} \right], \quad z_{\alpha} = \Phi^{-1}(1 - \alpha)$ is called the critical value

Interval-valued estimation for
$$\overline{X}$$
 (when σ^2 is unknown When $X \sim N(\mu, \sigma^2)$), we have $\frac{\overline{X} - \mu}{S_{n-1}/\sqrt{n}} \sim t_{n-1}$

CI for
$$\mu$$
 with $C = 1 - 2\alpha$:
$$\left[\overline{X} - t_{n-1,\alpha} \frac{S_{n-1}}{\sqrt{n}}, \overline{X} + t_{n-1,\alpha} \frac{S_{n-1}}{\sqrt{n}} \right]$$

$$\Gamma\left(\frac{\nu+1}{2}\right) = \left(\frac{2}{\sqrt{n}}\right)^{\frac{\nu+1}{2}}$$

pdf of Student's t distribution:
$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{\frac{\nu+1}{2}}$$

$$\lim_{\nu \to \infty} t_{\nu} = N(0,1)$$
 ν : degree of freedom

When
$$X \sim N(\mu, \sigma^2)$$
, we have $\frac{(n-1)S_{n-1}^2}{\sigma^2} \sim \chi_{n-1}^2$

CI for
$$\sigma^2$$
 with $C = 1 - 2\alpha$:
$$\left[\frac{(n-1)S_{n-1}^2}{\chi_{n-1,\alpha}^2}, \frac{(n-1)S_{n-1}^2}{\chi_{n-1,1-\alpha}^2} \right]$$

pdf of chi-sq distribution: $f(x; k) = \frac{\frac{k}{x^2} + 1_e - \frac{x}{2}}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})}$

-2

 χ_k^2

Alternative

 $\nu = +\infty$

k=1

k=3

k=4

2

0.35 0.30

0.25

0.15 0.10 0.05

0.00

 $f_k(x)$

0.5

0.4

€ 0.20

Hypothesis testing

Null hypothesis H_0 , an uninteresting explanation of the data Alternative hypothesis H_1

Type I error $\alpha = P(H_0 \text{ true but wrongly rejected})$

Type II error $\beta = P(H_0 \text{ false but wrongly retained})$

smaller $\alpha \Rightarrow$ harder to reject H_0

"two.sided/one.sided")

power: $1 - \beta = P(H_0 \text{ indeed rejected when it's false})$

Null

```
# output:
               power, i.e. P(X > C) or P(X < C1) + P(X > C2) under H1
> power.t.test(delta, sd = 1, sig.level = 0.05, power, type = "two.sample", alternative =
 "two.sided/one.sided")
                                                                                            # delta = \mu 1 - \mu 0
                                                                                             # then one.sided = greater
          # output:
               the min n that reaches the given power
Testing of \mu when \sigma^2 is known
Idea: \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)
One-sided greater test
                                                                                            One-sided less test
 \int H_0: \mu = \mu_0
                                                                                             \int H_0 : \mu = \mu_0
 \Big\{ H_1 : \mu > \mu_0
                                                                                             \int H_1: \mu < \mu_0
Rejection region: \bar{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}
                                                                                            Rejection region: \bar{X} < \mu_0 - z_\alpha \frac{\sigma}{\sqrt{n}}
Two-sided test
                                                                                            Simple test
                                                                                            \begin{cases} H_0 : \mu = \mu_0 \\ H_1 : \mu = \mu_1 \end{cases}
 \int H_0 : \mu = \mu_0
 H_1: \mu \neq \mu_0
Rejection region: \bar{X} < \mu_0 - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} or \bar{X} > \mu_0 + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
CI for \mu when \sigma^2 is known with C = 1 - \alpha: \left| \bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right|, Reject H_0 if \mu_0 \notin CI (two-sided test)
Testing of \mu when \sigma^2 is unknown (t-test)
                                                                                           t-value: \frac{\bar{X} - \mu_0}{\frac{S_{n-1}}{\Gamma}}
Idea: \frac{\overline{X} - \mu}{S_{n-1}/\sqrt{n}} \sim t_{n-1}
Rejection region
One-sided greater test: \bar{X} > \mu_0 + t_{n-1,\alpha} \frac{S_{n-1}}{\sqrt{n}}, or equivalently \frac{X - \mu_0}{\frac{S_{n-1}}{n}} > t_{n-1,\alpha}
One-sided less test: \bar{X} < \mu_0 - t_{n-1,\alpha} \frac{S_{n-1}}{\sqrt{n}}, or equivalently \frac{\bar{X} - \mu_0}{\frac{S_{n-1}}{\sqrt{n}}} < -t_{n-1,\alpha}
Two-sided test: \bar{X} < \mu_0 - t_{n-1,\frac{\alpha}{2}} \frac{S_{n-1}}{\sqrt{n}} or \bar{X} > \mu_0 + t_{n-1,\frac{\alpha}{2}} \frac{S_{n-1}}{\sqrt{n}}, or equivalently \left| \frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}} \right| > t_{n-1,\frac{\alpha}{2}}
CI for \mu when \sigma^2 is unknown with C = 1 - \alpha: \left| \bar{X} - t_{n-1,\frac{\alpha}{2}} \frac{S_{n-1}}{\sqrt{n}}, \bar{X} + t_{n-1,\frac{\alpha}{2}} \frac{S_{n-1}}{\sqrt{n}} \right|, Reject H_0 if \mu_0 \notin CI (two-sided test)
> t.test(x, alternative = "two.sided/less/greater", mu = 0, conf.level = 0.95)
               t = t-value, df = n - 1, p-value
               alternative hypothesis: true mean is not equal to mu
               95 percent confidence interval:
                                                                                                            # edge = (-) Inf for one-sided test
               mean of x
                XXX
\text{p-value} = P\left(t \ge \frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}}\right) = \int_{\frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}}}^{+\infty} f(t)dt, \quad t \sim t_{n-1} \text{ (right test)}, t_{n-1,p-value} = \text{t-value}
p-value = P\left(t \le \frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}}\right) = \int_{-\infty}^{\frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}}} f(t)dt, \quad t \sim t_{n-1} \text{ (left test)}
\text{p-value} = P\left(\left|t\right| \ge \left|\frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}}\right|\right) = \int_{-\infty}^{-\left|\frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}}\right|} f(t)dt + \int_{\left|\frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}}\right|}^{+\infty} f(t)dt
```

$$=2P\left(t\geq\left|\frac{\bar{X}-\mu_0}{S_{n-1}/\sqrt{n}}\right|\right)=2\int_{\left|\frac{\bar{X}-\mu_0}{S_{n-1}/\sqrt{n}}\right|}^{+\infty}f(t)dt,\quad t\sim t_{n-1} \text{ (two-sided test)}$$

Reject
$$H_0$$
 if p-value $\leq \alpha$
$$\frac{\bar{X} - \mu_0}{S_{n-1}/\sqrt{n}} = \text{t-value} > t_{n-1,\alpha}$$
Relationships: $t_{n-1,\cdot} \uparrow \downarrow P(t > \cdot)$ (rejection region)
$$p\text{-value} \leq \alpha$$

$$t_{n-1}
\uparrow \downarrow P(t > \cdot)$$
 (rejection region)

p-value
$$\leq \alpha$$

Testing of popular variance σ^2

$$\begin{split} &\text{Idea: } X \sim N(\mu,\sigma^2) \Rightarrow \frac{(n-1)S_{n-1}^2}{\sigma^2} \sim \chi_{n-1}^2 \\ &\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 > \sigma_0^2 \end{cases} &, \text{Reject } H_0 \text{ if } S_{n-1}^2 > \sigma_0^2 \frac{\chi_{n-1,\alpha}^2}{n-1}, \text{ or equivalently, } \frac{(n-1)S_{n-1}^2}{\sigma_0^2} > \chi_{n-1,\alpha}^2 \\ &\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 < \sigma_0^2 \end{cases} &, \text{Reject } H_0 \text{ if } S_{n-1}^2 < \sigma_0^2 \frac{\chi_{n-1,1-\alpha}^2}{n-1}, \text{ or equivalently, } \frac{(n-1)S_{n-1}^2}{\sigma_0^2} < \chi_{n-1,1-\alpha}^2 \\ &\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 \neq \sigma_0^2 \end{cases} &, \text{Reject } H_0 \text{ if } S_{n-1}^2 < \sigma_0^2 \frac{\chi_{n-1,1-\alpha}^2}{n-1} \text{ or } S_{n-1}^2 > \sigma_0^2 \frac{\chi_{n-1,2-\alpha}^2}{n-1}, \end{split}$$

CI for
$$\sigma^2$$
 with $C = 1 - \alpha$:
$$\left[\frac{(n-1)S_{n-1}^2}{\chi_{n-1,\frac{\alpha}{2}}^2}, \frac{(n-1)S_{n-1}^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2}\right]$$
, Reject H_0 if $\sigma_0^2 \notin CI$ (two-sided test)

or equivalently,
$$\frac{(n-1)S_{n-1}^2}{\sigma_0^2} < \chi_{n-1,1-\frac{\alpha}{2}}^2 \text{ or } \frac{(n-1)S_{n-1}^2}{\sigma_0^2} > \chi_{n-1,\frac{\alpha}{2}}^2$$

p-value =
$$P\left(U > \frac{(n-1)S_{n-1}^2}{\sigma_0^2}\right)$$
, $U \sim \chi_{n-1}^2$ (right test)

$$\text{p-value} = 2 \cdot \min \left\{ P\left(U < \frac{(n-1)S_{n-1}^2}{\sigma_0^2}\right), P\left(U > \frac{(n-1)S_{n-1}^2}{\sigma_0^2}\right) \right\}, \quad U \sim \chi_{n-1}^2 \text{ (two-sided test)}$$

$$\frac{(n-1)S_{n-1}^2}{\sigma_0^2} \quad > \quad \chi_{n-1,\alpha}^2$$

Relationships:

$$\chi^2_{n-1,\cdot}\uparrow\downarrow P(U>\cdot\,)$$

p-value
$$\leq \alpha$$

Testing of μ_X , μ_Y when σ_X^2 , σ_Y^2 are known

$$\text{Idea: } \begin{cases} X \sim N(\mu_X, \sigma_X^2) \\ Y \sim N(\mu_Y, \sigma_Y^2) \end{cases} \Rightarrow \begin{cases} \bar{X} \sim N\left(\mu_X, \frac{\sigma_X^2}{n}\right) \\ \bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{m}\right) \end{cases} \Rightarrow \bar{X} - \bar{Y} \sim N\left(\mu_X - \mu_Y, \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right) \Rightarrow \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim N(0, 1)$$

Two-sided test:
$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases}$$
, Rejection region: $|\bar{X} - \bar{Y}| > z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$, or equivalently, $\frac{|\bar{X} - \bar{Y}|}{\sqrt{\frac{\sigma_X^2}{N} + \frac{\sigma_Y^2}{m}}} > z_{\frac{\alpha}{2}}$

CI for
$$\mu_X - \mu_Y$$
 with $C = 1 - \alpha$: $\left[\bar{X} - \bar{Y} - z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}, \ \bar{X} - \bar{Y} + z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} \right]$, Reject H_0 if $0 \notin CI$

Testing of
$$\mu_X$$
, μ_Y when σ_X^2 , σ_Y^2 are unknown but equal (two-sample t-test)

Pooled sample variance estimator: $S_p^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{j=1}^m (Y_i - \bar{Y})^2}{n+m-2} = \frac{(n-1)S_{n-1,X}^2 + (m-1)S_{m-1,Y}^2}{n+m-2}$

$$\begin{aligned} & \operatorname{Idea:} \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} & \sim t_{n+m-2} \\ & \operatorname{Two-sided test:} \left\{ \begin{aligned} & H_0: \mu_X = \mu_Y \\ & H_1: \mu_X \neq \mu_Y \end{aligned} \right. & \text{t-value:} \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \\ & \operatorname{Rejection region:} |\bar{X} - \bar{Y}| > t_{n+m-2, \frac{\alpha}{2}} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}}, \text{ or equivalently,} \\ & \frac{|\bar{X} - \bar{Y}|}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} > t_{n+m-2, \frac{\alpha}{2}} \cdot (\text{t-test}) \end{aligned} \\ & \operatorname{One-sided greater test:} \left\{ \begin{aligned} & H_0: \mu_X = \mu_Y \\ & H_1: \mu_X > \mu_Y \end{aligned} \right. & \begin{cases} & H_0: \mu_X = \mu_Y \\ & H_1: \mu_X < \mu_Y \end{aligned} \right. & \begin{cases} & H_0: \mu_X = \mu_Y \\ & H_1: \mu_X < \mu_Y \end{aligned} \\ & \text{Rejection region: } \bar{X} - \bar{Y} > t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned} \\ & \operatorname{Rejection region: } \bar{X} - \bar{Y} < t_{n+m-2, \alpha} \cdot S_p \sqrt{\frac{1}{n} + \frac{1}{m}} \end{aligned}$$

$$= \frac{1}{n} \cdot \sum_{n=1}^{n} \sum$$

 $\nu \in (\min\{n-1, m-1\}, n+m-2)$ t-value: $\frac{|\bar{X} - \bar{Y}|}{\sqrt{\frac{S_{n-1}^2, X}{n} + \frac{S_{m-1}^2, Y}{m}}}$

$$\nu \in (\min\{n-1,m-1\},n+m-2) \\ \text{t-value:} \frac{|\bar{X}-\bar{Y}|}{\sqrt{\frac{S_{n-1}^2,X}{n} + \frac{S_{m-1}^2,Y}{m}}} \\ \text{Welch's t-test:} \frac{|\bar{X}-\bar{Y}|}{\sqrt{\frac{S_{n-1}^2,X}{n} + \frac{S_{m-1}^2,Y}{m}}} > t_{\nu,\frac{\alpha}{2}} \\ \left\{ H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y, \text{ Rejection region: } |\bar{X}-\bar{Y}| > t_{\nu,\frac{\alpha}{2}} \cdot \sqrt{\frac{S_{n-1}^2,X}{n} + \frac{S_{m-1}^2,Y}{m}}} \text{ or equivalently, } \frac{|\bar{X}-\bar{Y}|}{\sqrt{\frac{S_{n-1}^2,X}{n} + \frac{S_{m-1}^2,Y}{m}}} > t_{\nu,\frac{\alpha}{2}} \right\}$$

CI for
$$\mu_X - \mu_Y$$
 with $C = 1 - \alpha$:
$$\left[\bar{X} - \bar{Y} - t_{\nu, \frac{\alpha}{2}} \cdot \sqrt{\frac{S_{n-1, X}^2}{n} + \frac{S_{m-1, Y}^2}{m}}, \ \bar{X} - \bar{Y} + t_{\nu, \frac{\alpha}{2}} \cdot \sqrt{\frac{S_{n-1, X}^2}{n} + \frac{S_{m-1, Y}^2}{m}} \right]$$

Reject H_0 if $\mu_X - \mu_Y = 0 \notin CI$

> t.test(x, y, alternative = "two.sided/less/greater", mu = 0, conf.level = 0.95, var.equal = F (default))

output:

t = t-value, df = nu, p-value alternative hypothesis: true difference in means is not equal to mu 95 percent confidence interval:

XXX XXX mean of x mean of y XXX XXX

Analysis of Variance

Points outside $[Q_1 - 1.5IQR, Q_3 + 1.5IQR]$ are potential outliers.

Minimum data point excluding outliers

Maximum data point excluding outliers

 $\max\{Q_1 - 1.5 \text{IQR}, \min \text{ value}\}, \min\{Q_3 + 1.5 \text{IQR}, \max \text{ value}\}$

Factor: a categorical variable

Level: the possible value of a factor

Quantile:
$$Q_i = \begin{cases} x_k & , k \in \mathbb{Z} \\ \frac{x_{[k]} + x_{[k]+1}}{2} & , k \notin \mathbb{Z} \end{cases}$$
 $k = nq + 0.5, \quad i = \frac{q}{0.25}, \quad x_1 \le x_2 \le \cdots \le x_n$

Types of Variance

Anova model: Group $i: Y_{i,1}, Y_{i,2}, ..., Y_{i,n_i}$ are i.i.d. samples from $N(\mu_i, \sigma^2), Y_{i,j} = \mu_i + \varepsilon_{i,j}$, i.i.d. $\varepsilon_{i,j} \sim N(0, \sigma^2)$

Total variance (sum of square total):
$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{i,j} - \bar{Y})^2$$
, $df = n_1 + \dots + n_k - 1 = n - 1$, $n = \sum_{i=1}^{k} n_i$

Between variance (sum of square treatment) $SS_{Treat} = \sum_{i=1}^{K} n_i (\bar{Y}_i - \bar{Y})^2$, df = k - 1

Within variance (sum of square error): $SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{i,j} - \bar{Y}_i)^2$, $df = (n_1 - 1) + \dots + (n_k - 1) = n - k$

d1=1, d2=1 d1=2, d2=1

d1=5, d2=2 d1=10, d2=1 d1=100, d2=100

2

1.5

0.5

Total variance = Between variance + Within variance, $SST = SS_{Treat} + SSE$

Mean square total: $MST = \frac{SST}{n-1}$

Mean square treatment: $MS_{\text{Treat}} = \frac{SS_{\text{Treat}}}{k-1}$

Mean square error: $MSE = \frac{SSE}{n-k} = \hat{\sigma}^2$

F statistics

F statistics:
$$F = \frac{\frac{SS_{\text{Treat}}}{k-1}}{\frac{SSE}{n-k}} = \frac{MS_{\text{Treat}}}{MSE}$$

When σ^2 is unknown but uniform $\int H_0: \mu_1 = \mu_2 = \dots = \mu_k$ $\begin{cases} \Pi_0 \cdot \mu_1 - \mu_2 - \dots - \mu_k \\ H_1 : \text{Some } \mu_i \text{ are different}, Y_{i,j} = \mu_i + \varepsilon_{i,j}, \quad \varepsilon_{i,j} \sim N(0,\sigma^2), \sigma^2 \text{ is unknown but uniform, } \varepsilon_{i,j} \text{ are i.i.d.} \end{cases}$

For Anova, we should reject H_0 if F is large.

F distribution: Under
$$H_0$$
, $F = \frac{MS_{\text{Treat}}}{MSE} \sim F(k-1, n-k)$

Reject H_0 if $F > F_{k-1,n-k,\alpha}$

When k = 2, two-sample two-sided t-test and Anova will give the same p-value, and $F = t^2$.

- > qf(p, df1, df2, lower.tail = TRUE)
- > data = read.csv("Data name.csv")
- > na.omit() # omit the N/A entries
- > alldata = c(data\$X1,data\$X2,data\$X3,data\$X4,data\$X5)
- > factor = c(rep("X1", n1), rep("X2", n2), rep("X3", n3))
- > data = data.frame(Y = alldata, X = as.factor(factor))
- > boxplot(Y ~ X, data = data)
- > aov result = aov(Y ~ X, data = data)
- > **summary**(aov result) # assuming equal variance

Output:

When σ^2 is unknown and not uniform (Welch's Anova)

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k \\ H_1: \text{Some } \mu_i \text{ are different}, Y_{i,j} = \mu_i + \varepsilon_{i,j}, \quad \varepsilon_{i,j} \sim N(0,\sigma_i^2), \ \sigma_i^2 \text{ is unknown}, \ \varepsilon_{i,j} \text{ are i.i.d.} \end{cases}$$

Welch's Anova: $F_W \stackrel{\sim}{\sim} F(k-1,\frac{1}{\Lambda})$, hence we reject H_0 if $F_W > F_{k-1,\frac{1}{\Lambda},\alpha}$

When k = 2, Welch's t-test and Welch's Anova will give the same p-value, and $F_W = t^2$.

Tukey's Honestly Significant Difference (HSD)

$$\begin{cases} H_0: \mu_i = \mu_j \\ H_1: \mu_i \neq \mu_j \end{cases} \ \forall i, j, \text{CI with } C = 1 - \alpha: \left[\bar{X}_i - \bar{X}_j - q_{k,n-k,\frac{\alpha}{2}} s \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}, \bar{X}_i - \bar{X}_j + q_{k,n-k,\frac{\alpha}{2}} s \sqrt{\frac{1}{n_i} + \frac{1}{n_j}} \right], \ \ s = \sqrt{MSE} \end{cases}$$

Reject H_0 if $0 \notin CI$

> TukeyHSD (aov result)

> plot(TukeyHSD(aov result))

Linear Regression

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, i.i.d. $\varepsilon_i \sim N(0, \sigma^2)$

Y: Dependent variable, response, regressand

x: Independent variable, explanatory variable, regressor (not random in this course)

$$\hat{\beta}_0, \hat{\beta}_1 \text{ minimize } \sum_{i=1}^n (Y_i - (\beta_0 + \beta_1 x_i))^2$$

Notation:
$$\begin{cases} \hat{\beta_0}, \hat{\beta_1} \text{ minimize } \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 x_i))^2 \\ S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = (n-1)S_{n-1,x} \\ S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y}) \\ S_{yy} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = (n-1)S_{n-1,Y} \end{cases}$$

$$\begin{cases} \hat{\beta_1} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}} \\ \hat{\beta_0}, \hat{\beta_1} \text{ are unbiased} \end{cases}$$

$$\begin{cases} \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}} \\ \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} \end{cases}$$
 $\hat{\beta}_0, \hat{\beta}_1$ are unbiased

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}, \ \ Var(\hat{\beta}_0) = \frac{\sigma^2 \overline{x^2}}{S_{xx}} := \frac{\frac{\sigma^2}{n} \sum_{i=1}^n x_i^2}{\frac{S_{xx}}{n}}$$

Idea:
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right)$$
, $\hat{\beta}_0 \sim N\left(\beta_0, \frac{\sigma^2 \overline{x^2}}{S_{xx}}\right)$, or equivalently, $\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{\sigma^2}{S_{xx}}}} \sim N(0,1)$, $\frac{\hat{\beta}_0 - \beta_0}{\sqrt{\frac{\sigma^2 \overline{x^2}}{S_{xx}}}} \sim N(0,1)$

Two-sided test:
$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

Reject
$$H_0$$
 if $|\hat{\beta}_1| > z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{S_{xx}}}$, or equivalently, $\frac{|\hat{\beta}_1|}{\sqrt{S_{xx}}} > z_{\frac{\alpha}{2}}$

CI for
$$\hat{\beta}_1$$
 with $C = 1 - \alpha$ when $\sigma^2 = Var(\varepsilon_i)$ is known:
$$\left[\hat{\beta}_1 - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{S_{xx}}}, \hat{\beta}_1 + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{S_{xx}}}\right]$$

CI for
$$\hat{\beta}_0$$
 with $C = 1 - \alpha$ when $\sigma^2 = Var(\varepsilon_i)$ is known:
$$\hat{\beta}_0 - z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma^2 \overline{x^2}}{S_{xx}}}, \hat{\beta}_0 + z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma^2 \overline{x^2}}{S_{xx}}}$$

Risidual:
$$e_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

Mean Squared Error (MSE):
$$S^2 = \frac{\sum_{i=1}^n e_i^2}{n-2} = \frac{S_{yy} - \hat{\beta}_1 S_{xy}}{n-2}$$
 is unbiased for estimating $Var(\varepsilon)$, but $\sigma_{MLE}^2 = \frac{\sum_{i=1}^n e_i^2}{n}$ is.

Idea:
$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{S^2}{S_{xx}}}} \sim t_{n-2}, \quad \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\frac{S^2 \overline{x^2}}{S_{xx}}}} \sim t_{n-2}$$

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases} \text{Reject } H_0 \text{ if } |\hat{\beta}_1| > t_{n-2, \frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}}, \text{ or equivalently, } \frac{|\hat{\beta}_1|}{\sqrt{S_{xx}}} > t_{n-2, \frac{\alpha}{2}} \end{cases}$$

 β_1 describes the strength of the linear relation.

CI for
$$\hat{\beta}_1$$
 with $C = 1 - \alpha$ when $\sigma^2 = Var(\varepsilon_i)$ is unknown:
$$\hat{\beta}_1 - t_{n-2,\frac{\alpha}{2}} \frac{S}{\sqrt{S_{rr}}}, \hat{\beta}_1 + t_{n-2,\frac{\alpha}{2}} \frac{S}{\sqrt{S_{rr}}}$$

CI for
$$\hat{\beta}_0$$
 with $C = 1 - \alpha$ when $\sigma^2 = Var(\varepsilon_i)$ is unknown:
$$\begin{bmatrix} \hat{\beta}_0 - t_{n-2,\frac{\alpha}{2}} \sqrt{S_{xx}}, \hat{\beta}_1 + t_{n-2,\frac{\alpha}{2}} \sqrt{S_{xx}} \end{bmatrix}$$
CI for $\hat{\beta}_0$ with $C = 1 - \alpha$ when $\sigma^2 = Var(\varepsilon_i)$ is unknown:
$$\begin{bmatrix} \hat{\beta}_0 - t_{n-2,\frac{\alpha}{2}} \cdot S\sqrt{\frac{x^2}{S_{xx}}}, \hat{\beta}_0 + t_{n-2,\frac{\alpha}{2}} \cdot S\sqrt{\frac{x^2}{S_{xx}}} \end{bmatrix}$$

Linear model

Output: (Intercept)


```
> abline(a = \beta0, b = \beta1, col = "red")
                                                                                  # Draw a line
> summary(lm(formula = Y ~ X, data = alldata))
       # Output:
           Residuals:
           Min
                       1Q
                                   Median3Q
                                                          Max
                                  XXX XXX
           XXX
                       XXX
                                                          XXX
            Coefficients:
                                                                               t value
xxx
                                   Estimate
                                                          Std. Error
                                                                                                       Pr(>|t|)
                                                          S\sqrt{x^2}/\sqrt{Sxx}
            (Intercept)
                                                                                                         p-value *
                                   β0
            Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
           Residual standard error: \sqrt{\text{MSE}} on n - 2 degrees of freedom
           Multiple R-squared: R^2
                                                                                Adjusted R-squared: xxx
            F-statistic: xxx on x and n - 2 DF
                                                                               p-value: xxx
Idea: \hat{Y}_{\text{new}} = \hat{\beta}_0 + \hat{\beta}_1 x_{\text{new}} is unbiased, and \frac{\hat{Y}_{\text{new}} - (\beta_0 + \beta_1 x_{\text{new}})}{S\sqrt{\frac{1}{n} + \frac{(x_{\text{new}} - \bar{x})^2}{S_{XX}}}} \sim t_{n-2}
CI for \hat{Y}_{\text{new}} with C = 1 - \alpha: \left[ \hat{Y}_{\text{new}} - t_{n-2, \frac{\alpha}{2}} \cdot S \sqrt{\frac{1}{n} + \frac{(x_{\text{new}} - \bar{x})^2}{S_{xx}}}, \hat{Y}_{\text{new}} + t_{n-2, \frac{\alpha}{2}} \cdot S \sqrt{\frac{1}{n} + \frac{(x_{\text{new}} - \bar{x})^2}{S_{xx}}} \right]
```

Prediction Interval for
$$\hat{Y}_{\text{new}}$$
 with $C = 1 - \alpha$:
$$\left[\hat{Y}_{\text{new}} - t_{n-2\frac{\alpha}{2}} \cdot S\sqrt{1 + \frac{1}{n} + \frac{(x_{\text{new}} - \bar{x})^2}{S_{xx}}}, \hat{Y}_{\text{new}} + t_{n-2\frac{\alpha}{2}} \cdot S\sqrt{1 + \frac{1}{n} + \frac{(x_{\text{new}} - \bar{x})^2}{S_{xx}}}\right]$$

> Y_hat = lm(formula = Y \sim X, data = alldata) predict(Y_hat, data.frame(X = x_new)) # Output

> predict(Y hat, data.frame(X = x new), interval = "confidence", level = 0.95)

Ŷ new xxx

> predict(Y hat, data.frame(X = x new), interval = "prediction", level = 0.95) # Output

 $\hat{\mathbf{Y}}$ new xxx XXX

Decomposition of Variance

Total variance (SST):
$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$
, df = $n - 1$

Regression variance (RSS): $RSS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$, df = 1

Residual variance (SSE): $SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$, df = n - 2

$$SST = RSS + SSE$$
Coefficient of determination: $R^2 = \frac{RSS}{SST} = 1 - \frac{SSE}{SST} = \frac{\left(\sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y})\right)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2} = \frac{S_{xy}^2}{S_{xx}S_{yy}} \in [0,1]$
Pearson's correlation coefficient: $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \in [-1,1]$