

Network Layer Part 6

Mark Allman mallman@case.edu

Fall 2018

"And so I wake in the morning and I step outside And I take a deep breath and I get real high And I scream from the top of my lungs... WHAT'S GOING ON?" These slides are more-or-less directly from the slide set developed by Jim Kurose and Keith Ross for their book "Computer Networking: A Top Down Approach, 5th edition".

The slides have been lightly adapted for Mark Allman's EECS 325/425 Computer Networks class at Case Western Reserve University.

All material copyright 1996-2010 J.F Kurose and K.W. Ross, All Rights Reserved

Reading Along ...

- Network layer is chapters 4 & 5
 - Address shortage

- *The supply of IPv4 addresses thinned to the point of extinction
- *What to do?

- The supply of IPv4 addresses thinned to the point of extinction
- *What to do?
 - CIDR to provide more fine-grained address allocations
 - quick fix
 - IPv6 to provide more addresses
 - · long term fix

- The supply of IPv4 addresses thinned to the point of extinction
- *What to do?
 - CIDR to provide more fine-grained address allocations
 - quick fix
 - IPv6 to provide more addresses
 - · long term fix
 - NAT to better leverage constrained IPv4 address space

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7.

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

*How does the router get its external address?

- *How does the router get its external address?
 - *From ISP

- *How does the router get its external address?
 - *From ISP
 - Static or DHCP

*What are these 10.x.x.x addresses?

- *What are these 10.x.x.x addresses?
 - *Explicitly private address space

- *What are these 10.x.x.x addresses?
 - *Explicitly private address space
 - *10/8, 192.168/16, 172.16/12, 100.64/10

*Motivation: local network uses just one IP address as far as outside world is concerned:

- *Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one
 IP address for all devices

- *Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one
 IP address for all devices
 - can change addresses of devices in local network without notifying outside world

- *Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one
 IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network

- *Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one
 IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).

Implementation: NAT router must:

outgoing datagrams: replace client source IP address of every outgoing datagram with NAT IP address
 ... remote clients/servers will respond using the NAT's external IP address as destination addr.

- outgoing datagrams: replace client source IP address of every outgoing datagram with NAT IP address
 . . . remote clients/servers will respond using the NAT's external IP address as destination addr.
- incoming datagrams: replace NAT's external IP address in dest field of every incoming datagram with the client's internal IP address

- outgoing datagrams: replace (client source IP address, port #) of every outgoing datagram with (external NAT IP address, new port #)
 - ... remote clients/servers will respond using (external NAT IP address, new port #) as destination addr.

- outgoing datagrams: replace (client source IP address, port #) of every outgoing datagram with (external NAT IP address, new port #)
 - ... remote clients/servers will respond using (external NAT IP address, new port #) as destination addr.
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair

- outgoing datagrams: replace (client source IP address, port #) of every outgoing datagram with (external NAT IP address, new port #)
 - ... remote clients/servers will respond using (external NAT IP address, new port #) as destination addr.
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT translation table					
WAN side addr	LAN side addr				
138.76.29.7, 5001	10.0.0.1, 3345				

NAT translation table				
WAN side addr	LAN side addr			
138.76.29.7, 5001	10.0.0.1, 3345			

NAT translation table					
WAN side addr	LAN side addr				
138.76.29.7, 5001	10.0.0.1, 3345				

- *16-bit port-number field:
 - 60,000+ simultaneous connections with a single LAN-side address!

- *16-bit port-number field:
 - 60,000+ simultaneous connections with a single LAN-side address!
- *NAT is (was?) controversial:

- *16-bit port-number field:
 - 60,000+ simultaneous connections with a single LAN-side address!
- *NAT is (was?) controversial:
 - routers should only process up to layer 3

- *16-bit port-number field:
 - 60,000+ simultaneous connections with a single LAN-side address!
- *NAT is (was?) controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications

- *16-bit port-number field:
 - 60,000+ simultaneous connections with a single LAN-side address!
- *NAT is (was?) controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

- *client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can't use it as destination addr)
 - only one externally visible
 NATed address: 138.76.29.7

- *solution 1: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000

- *solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed clients to:
- *learn public IP address (138.76.29.7)
- *add/remove port mappings (with lease times)

*solution 3: relaying (used in Skype)

- *solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay

- *solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - External client connects to relay

- *solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - External client connects to relay
 - relay bridges packets between to connections

Subscribers | ISP | Internet

Carrier Grade NAT Deployment

	routed ASes (N=52K)		eyeball ASes, PBL (N=2.9K)		eyeball ASes, APNIC (N=3.1K)	
	covered	CGN-positive	covered	CGN-positive	covered	CGN-positive
BitTorrent	2,724 (5.2%)	254 (9.40%)	1,673 (57.7%)	180 (10.8%)	1,824 (59.6%)	204 (11.2%)
Netalyzr non-cellular	1,367 (2.6%)	195 (14.3%)	866 (29.8%)	151 (17.4%)	929 (30.4%)	174 (18.7%)
$\textbf{BitTorrent} \cup \textbf{Netalyzr}$	3,166 (6.0%)	421 (13.3%)	1,791 (61.7%)	306 (17.1%)	1,946 (63.6%)	350 (18.0%)
Netalyzr cellular	218 (0.4%)	205 (94.0%)	175 (6.0%)	162 (92.6%)	171 (5.6%)	161 (94.2%)

- *13-18% of non-cellular eyeball ASes now use CGNS
- *92-94% of cellular ASes now use CGNs

Carrier Grade NAT Deployment

(b) eyeball ASes CGN-positive

(c) cellular ASes CGN-positive

APNIC

ARIN

CNIC

Carrier Grade NAT Deployment

Results from

Philipp Richter, Florian Wohlfart, Narseo Vallina-Rodriguez, Mark Allman, Randy Bush, Anja Feldmann, Christian Kreibich, Nicholas Weaver, Vern Paxson. *A Multi-perspective Analysis of Carrier-Grade NAT Deployment*. ACM Internet Measurement Conference, November 2016.

http://www.icir.org/mallman/pubs/RWV+16/

*Is there a problem with adding CGNs to the mix?

*CGNs exacerbate the NAT traversal problem

- *CGNs exacerbate the NAT traversal problem
 - configuring a port mapping in a local NAT is not enough

- *CGNs exacerbate the NAT traversal problem
 - configuring a port mapping in a local NAT is not enough
 - configuring a port mapping in a NAT controlled by the ISP is not likely to be allowed

- *CGNs exacerbate the NAT traversal problem
 - configuring a port mapping in a local NAT is not enough
 - configuring a port mapping in a NAT controlled by the ISP is not likely to be allowed
 - ... which leaves relaying ...

*Benefit: extends a finite resource in a backwards compatible way

Benefit: extends a finite resource in a backwards compatible way

- *Cost: makes reachability more difficult
 - and often impossible

Benefit: extends a finite resource in a backwards compatible way

- *Cost: makes reachability more difficult
 - and often impossible
 - so much for the dumb middle and the thin waist!