METHOD AND DEVICE FOR SIMULATION OF INJECTION MOLDING **PROCESS**

Patent Number:

JP8230007

Publication date:

1996-09-10

Inventor(s):

HORIKAWA JUNICHI; YAMAGATA HIROAKI

Applicant(s):

CANON INC

Requested Patent:

☐ JP8230007

Application Number: JP19950037983 19950227

Priority Number(s):

IPC Classification:

B29C45/76; G06F17/00; G06F17/50

EC Classification:

Equivalents:

Abstract

PURPOSE: To realize more exact estimate of temperature of resin, its pressure and its specific volume behavior by a method wherein the thermal behavior of a sprue runner part in a hot runner device is modelled as the more strict thermal boundary condition.

CONSTITUTION: The shape models for a mold and of a molded article are divided so as to execute a numerical, analysis method including a finite element method, a boundary element method and a finite difference method in the step S1. The dividing method of resin, its heating method, the cooling capacity of cooling pipe and the like on a hot runner device used as defined in the step S2. On the basis of the defined information, boundary conditions on each infinitesimal element is set under the consideration of the difference between the heating systems in the step S3. For any infinitesimal element in the shape model of the molded article, a field of flow is calculated by use of equation of motion, equation of continuity and equation of energy in the step S4. In the flowing, dwelling and cooling process of resin to any infinitesimal element, pressure, temperature and specific volume are calculated momentarily in the step S5.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-230007

(43)公開日 平成8年(1996)9月10日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
B 2 9 C 45/76		7365-4F	B29C 4	15/76		
G06F 17/00		9168-5L	G06F 1	5/20	D	
17/50			1	15/60 6 8 0		J
			家在請求	未請求	請求項の数7	OL (全 7 頁)
(21)出願番号	特顧平7-37983		(71)出願人	000001007		
				キヤノン	ン株式会社	
(22)出願日	平成7年(1995)2		東京都力	大田区下丸子3	丁目30番2号	
			(72)発明者	堀川川	值一	
				東京都力	大田区下丸子3	丁目30番2号 キヤ
				ノン株式	式会社内	
			(72)発明者	山縣引	丛明	
				東京都大	大田区下丸子3	丁目30番2号 キヤ
				ノン株式	式会社内	
			(74)代理人	弁理士	大塚 康徳	(外1名)

(54) 【発明の名称】 射出成形プロセスのシミュレーション方法及びその装置

(57)【要約】

【目的】 射出成形加工シミュレーションをより正確に 予測することが可能な方法及びその装置の提供。

【構成】 ホットランナ装置を用いた射出成形加工シミュレーションにおいて、ホットランナ装置におけるスプルランナ部の熱的挙動を、より厳密な熱的境界条件として射出成形加工シミュレーションに用いるよう構成。

1

【特許請求の範囲】

【簡求項1】 射出成形品形状モデルの任意の点について、樹脂の流動・保圧・冷却過程における圧力、温度、 比容積の遷移をシミュレーションする方法において、 使用するホットランナ装置の種類を識別し、

スプルランナ部の熱的挙動を特定することにより、スプルランナ部の熱的境界条件に表現し、

表現された熱的境界条件を用いてシミュレーションする ことを特徴とする射出成形プロセスのシミュレーション 方法。

【請求項2】 熱的境界条件を温度規定、熱伝達、熱流 東規定等を含む数値計算により表現することを特徴とす る請求項1記載のシミュレーション方法

【請求項3】 流れ場の計算を樹脂データ、成形条件データに基づき、運動方程式、連続の式、エネルギー方程式を用いて求めることを特徴とする請求項1記載のシミュレーション方法

【請求項4】 射出成形品形状モデルの任意の点について、樹脂の流動・保圧・冷却過程における圧力、温度、比容積の遷移をシミュレーションする装置において、使用するホットランナ装置の種類を入力する手段と、スプルランナ部の熱的境界条件を計算することにより熱的挙動を予測する手段を備えたことを特徴とする射出成形プロセスのシミュレーション装置。

【請求項5】 熱的境界条件を温度規定、熱伝達、熱流 東規定等を含む数値計算手段により求めることを特徴と する請求項4記載のシミュレーション装置

【請求項6】 流れ場の計算を樹脂データ、成形条件デ る熱的挙動を正確に表現する。 一夕に基づき、運動方程式、連続の式、エネルギー方程 境界条件の設定にシミュレーに 式より計算する手段を備えたことを特徴とする請求項4 30 きく現われる可能性があった。 記載のシミュレーション装置 【0007】従ってホットラ

【請求項7】 シミュレーション結果を、ディスプレイ 装置にグラフィック表示することを特徴とする請求項4 記載のシミュレーション装置

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、射出成形品形状及び金型モデルを微小要素に分割して行う、射出成形プロセスのシミュレーション方法及びその装置において、

射出成形品形状および成形金型のモデル化を簡単に行い、各射出成形プロセスにおける熱可塑性樹脂の温度、 圧力、比容積の遷移を予測し、充填に必要な圧力や成形 不良、その成形プロセスを経て得られる成形品の反り変 形量を、より高精度に予測する方法及びその装置に関す

[0002]

【従来の技術】射出成形加工のシミュレーションを行な 形材料を評価するプロセスシミュレーションにおいて、 う場合、成形材料から金型への熱移動を考慮するための あらかじめ指定されたホットランナ装置のタイプを識別
熟的な境界条件を、モデル化されたスプル、ランナ及び し、装置タイプによって異なる熱的挙動を、温度規定、
成形品モデルの各部分に対して与える。その条件の下で 50 熱伝達、熱流東規定等を含む数値計算上の熱境界条件に

充填に必要な圧力、ウエルドライン発生位置及び反り変形の予測などが一般に行われている。

【0003】従来は、前配シミュレーションの境界条件の規定方法として、金型表面温度の任意設定、定常的な熱の移動量(熱流束)や、定常的に移動する熱量の大小を表す比例定数(熱伝導率)等の方法が利用されてきた。これらは、代表的な熱伝導の基本形態である。

【0004】つまり、溶融状態にある成形材料が金型のキャピティ内に充填が開始されてから、充填が完了し、 10 十分に冷却されて金型から取り出されるまでの間の熱移動(即ち、成形材料から金型間、冷却管を流れる冷媒、金型外表面から大気中等)は前記の代表的な熱伝導の基本形態で工夫を凝らして表現し、境界条件として与えていた。

【0005】特に、加工金型にホットランナ装置が用いられている場合、スプル及びランナ部分の周辺では、成形材料の溶融点温度付近で制御される。そのため装置は複雑になり装置タイプも様々である。従って、より正確な境界条件を設定するには、それぞれのタイプごとに、20 しかも複雑な装置の構成を考慮して境界条件の規定に工夫を暮らす必要があった。

[0006]

【発明が解決しようとする課題】しかし成形材料から金型への熱移動は、定常的に規定できるものではないため、前記のような熱伝導の基本形態のみにより熱的挙動を厳密に表現することは困難であった。特にホットランナ装置を用いた金型の場合、その装置タイプごとに異なる熱的挙動を正確に表現することは非常に困難であり、境界条件の設定にシミュレーション実施者の個人差が大きく思われる可能性があった。

【0007】従ってホットランナ装置を用いた金型において、成形材料から金型への熱移動を、射出成形加工シミュレーションの熱的な境界条件として、いかに正確に表現するか、そして、シミュレーション実施者に左右されない熱的な境界条件の設定が、より正確な計算結果を得るための未解決の課題であった。

【0008】そこで、本発明の目的は、前述した課題を解決するため、ホットランナ装置におけるスプルランナ部の熱的挙動を、より厳密な熱的境界条件としてモデル化し、樹脂の温度、圧力、比容積挙動を、より正確に予測することが可能な方法及び装置の提供である。

[0009]

【課題を解決するための手段】上記目的を達成するため、本発明に係るホットランナ装置を用いた射出成形プロセスのシミュレーション方法及びその装置の基本構成について、射出成形プロセスの金型構造、成形条件、成形材料を評価するプロセスシミュレーションにおいて、あらかじめ指定されたホットランナ装置のタイプを識別し、装置タイプによって異なる熱的挙動を、温度規定、動伝達 熱症車担定等を含む数値針算上の熱境界条件に

.3

表現し、成形品形状モデルの任意の点について、樹脂データ、成形条件データに基づいて、運動方程式、連続の式、エネルギー方程式を用いて流れ場を求めることにより、任意の点への樹脂の流動・保圧・冷却過程における圧力、温度、比容積の遷移を算出する。

[0010]

【実施例】ホットランナ装置は、スプル及びランナ部分の廃材を無くすことができるため、原材料のコスト削減、地球環境保護の観点からも多く採用されている。その装置に必要な機能として、以下の3つが主なものとし 10 て掲げられる。

【0011】1)スプルランナが常に高温に保持され、 少なくとも射出行程で溶酸樹脂がランナからキャビティ へ流入可能であること。

【0012】2)キャビティは十分に低温であり、成形時に樹脂が冷却固化すること。

【0013】3)ランナとキャビティの境界であるゲートは、射出時には溶融しながらも、冷却終了時にはランナとキャビティを容易に分断でき、樹脂漏れしないこ

【0014】まず3番目の機能に注目し、一般的なホットランナ装置の分類を図1に示す。図中、4つのいずれのタイプにおいても、樹脂はマニホールドと呼ばれるランナの部分で溶融状態に保持されながら、1ショット毎にキャビティに供給される。まず、ランナとキャビティの分断方法により、以下のように分類する。

【0015】「熱パランス方式」図2及び図3のタイプでは、ゲートの近くに冷却孔が配置されている。充填終了後に、冷却孔周辺の樹脂の温度を下げ、やや固化させることでキャビティ部分とマニホールド部分の樹脂の分 30 断を容易にする役目を果たす。つまり、熱的なバランスを取りながら、前配3)の機能を果している訳である。

【0016】「メカニカルバルブ方式」図4及び図5、図6のタイプでは、充填終了後、キャビティ部分とマニホールド部分の樹脂の分断を行う手段として、樹脂を熱的に固化させるのではなく、機械的な仕組みにより強制的に前記3)の機能を果している具体的に、ニードルでゲート(マニホールドの出口)をふさぐ例を図4、キャビティ部分とマニホールド部分との間にパーティングを設け、金型を移動する際に樹脂の分断を実現する例を図 405、図6に示す。

【0017】また、各々のタイプを、前記1)の機能に 注目して分類する。

【0018】「外部加熱方式」まず図2、図4及び図5、図6のタイプは、マニホールド内の樹脂をその外周から加熱する。カートリッジヒータやシーズヒータ、更に、パンドヒータ、ヒートパイプを用いて加熱するものや、樹脂の流れるチャンネルそのものを抵抗発熱体として、それに低電圧をかけて加熱するもの、また、電磁誘導加熱方式を用いるものなどがあり、多種多用である。

【0019】「内部加熱方式」一方図3のタイプは、マニホールドの内部に散けられたトーピードそのものが加熱体となって樹脂を加熱する。

【0020】以上のことをふまえて、添付図7、図8、図9を参照し、本発明を適用した実施例を説明する。

【0021】図7は、射出成形プロセスのシミュレーション処理を示すプロック図である。

【0022】まずS1において、金型および成形品形状 モデルを、有限要素法、境界要素法、差分法を含む数値 解析法が行えるように、微小要素に分割する。

【0023】次にS2において、使用するホットランナ 装置に関する情報、すなわち、樹脂の分断方式、加熱方式、加熱体の加熱能力や金型内部での位置/レイアウト、冷却管の冷却能力、及びその位置/レイアウト、更 に型材の熱的物性値等を定義する。もちろんここで、加熱体の発熱能力や型材の熱的物性値や、マニホールド、ノズル部、冷却管などをユニット化して一連の熱的データを用意し、それをあらかじめデータベース化しておっき、必要に応じて引用することも可能である。

20 【0024】そしてS3において、定義されたホットランナ装置に関する情報から、加熱方式の違いを考慮し、個々の微小要素における境界条件を以下のように設定する

【0025】(外部加熱方式の場合)樹脂流路から離れた位置に加熱体が存在し、その間には熱伝導率が十分に高い材料(一般に言う断熱体ではない材料)が存在するものとする。ここでは、その加熱体の加熱能力、及び加熱プログラム、加熱体と樹脂の流路の間の距離、型材の熱伝導/伝達能力などの情報を入力する。これらの情報から、以下のような手順に従い、樹脂流路の任意の位置での境界位置での境界条件が設定される。

【0026】まず、加熱体から樹脂流路との間に存在する材料への熱の移動は、その装置のタイプにより、温度既定値、熱流束値、熱伝達係数のいずれかを特定する。特に熱流束値は、時間経過にしたがって任意に値を変えたり、任意の位置においた温度センサからのフィードバック制御により、任意に値を変えることも可能である。また、実際は1つの加熱体の加熱表面のすべてにおいて、熱的な挙動は均一ではないが、装置のメーカーやタイプによって、その分布状態を特定し、条件を設定することも可能である。

【0027】次に、加熱体-樹脂流路間の材料内の熱の 移動は、その材料に応じて熱伝導率を特定する。

【0028】また、加熱体-樹脂流路間の材料から樹脂 流路内の樹脂への熱の移動は、その材料に応じて熱伝達 係数を特定する。

[0029] (内部加熱方式の場合) 樹脂流路の中央部 に加熱体が存在し、加熱体から樹脂流路へ直接熱の移動 が起こるものとする。ここでは、その加熱体の加熱能 50 力、および加熱プログラムに関する情報を入力する。こ 5

れらの情報から、樹脂流路の任意の位置での境界条件が設定される。

【0030】加熱体から樹脂流路への熱の移動は、その装置のタイプにより、温度規定値、熱流束値、熱伝達係数のいずれかを特定する。特に熱流束値は、時間経過にしたがって任意に値を変えたり、任意の位置においた温度センサからのフィードバック制御により、任意に値を変えることも可能である。また、実際は1つの加熱体の加熱表面のすべてにおいて、熱的な挙動は均一ではないが、装置のメーカーやタイプによって、その分布状態を 10 特定し、条件を設定することも可能である。

【0031】また、ゲート付近やキャビティ付近等に水管が配置された場合(「熱パランス方式」や「メカニカルバルプ方式」のいずれかにかかわらず)、その付近の樹脂から水管へ、熱の移動が起こるものとする。その境界条件は、水管の断面形状/寸法、冷媒の種類/流量、水管-樹脂流路間の材料の熱的物性等を考慮して、熱流束値、熱伝達係数のいずれかが設定される。

【0032】次にS4において、成形品形状モデルの任意の微小要素について、定義された樹脂データ、成形条 20件データに基づいて、運動方程式、連続の式、エネルギー方程式を用いて流れ場を求る。

【0033】そしてS5において、任意の微小要素への 樹脂の流動・保圧・冷却過程における刻々の圧力、温 度、比容積を計算する。

【0034】図9は、本発明の一実施例として、射出成形プロセスのシミュレーション装置の構成を示すプロック図である。

【0035】図9において、21は形状モデリング作成 装置であり、金型及び成形品形状モデルを、有限要素 法、境界要素法、差分法を含む数値解析法が行えるよう に、微小要素に分割し、計算に用いる樹脂データ、成形 条件データを入力する。そしてここで作成されたデータ を形状モデリングデータ記憶装置31へ送る。

【0036】22はホットランナ装置に関する情報入力装置であり、使用するホットランナ装置に関する情報、すなわち、樹脂の分断方式、加熱方式、加熱体の加熱能力や金型の内部であの位置/レイアウト、冷却管の冷却能力、及びその位置/レイアウト、更に型材の熱的物性値等を入力し、そのデータをホットランナ装置に関する40情報データ記憶装置32へ送る。

【0037】23は熱境界条件データ計算装置であり、32に記憶されているホットランナ装置に関する情報から、各々の微小要素における加熱方式の違いを判断し、熱的な境界条件を設定する。そしてそのデータを、熱境界条件データ記憶装置33へ送る。

【0038】24は流れ場計算装置であり、31に記憶されている形状モデリングデータと、33に記憶されている熟境界条件データに基づき、成形品形状モデルの任意の微小要素について、運動方程式、連続の式、エネル 50

6

ギー方程式を用いて流れ場を求める。そしてここで求めた流れ場を計算結果データ記憶装置34に送る。

【0039】25は圧力、温度、比容積計算装置であり、34に記憶されている流れ場の計算結果のデータから、任意の微小要素への樹脂の流動・保圧・冷却過程における刻々の圧力、温度、比容積を計算し、そのデータを、圧力、温度、比容積データ記憶装置35に送る。

【0040】26はディスプレイ装置であり、シミュレーション結果をグラフィックで表示する。

【0041】尚、本発明は、複数の機器から構成されるシステムに適用しても、1つの機器から成る装置に適用しても良い。また、本発明はシステム或は装置にプログラムを供給することによって達成される場合にも適用できることは貸うまでもない。

【発明の効果】本発明によれば、射出成形品形状モデルの任意の点について、樹脂データ、成形条件データに基づいて、運動方程式、連続の式、エネルギー方程式を用いて流れ場を求めることにより、任意の点への樹脂の流動・保圧・冷却過程における圧力、温度、比容積の遷移を計算する際、使用するホットランナ装置による熱的挙動を、スプルランナ部の任意の点において、温度規定、熱伝達、熱流速規定等の熱境界条件に置き換えることにより、ホットランナ装置のタイプの違いによる、スプルランナ部分の樹脂の流動・保圧・冷却中のより正確な熱的挙動を考慮した計算が可能になり、成形品全体の樹脂の温度、圧力、比容積のより正確な予測が可能となる。

【0042】このことから以下の3つの具体的な効果が期待できる。

- (1)射出成形プロセス中の成形品内の、より正確な圧 30 力分布変化の予測が可能となるので、充填に必要な圧力 (最大圧力)や、型締め力の予測が可能となり、最適か つ必要十分な出力を持つ射出成形機の選定が可能とな る。従って成形品のコストの一部を占める成形設備投資 を最も安価に抑えることが可能となる。
 - (2)射出成形プロセス中の成形品内のより正確な温度分布変化の予測が可能となり、その樹脂の固化温度にまで冷却される時間、つまり型内冷却時間の予測が可能となり、成形サイクルタイムが特定できる。従って成形条件や、金型設計を変えて計算を繰り返すことで、最も短い成形サイクルタイムを追求することができるので、成形品のコストを最も安価に抑えることが可能となる。
 - (3)射出成形プロセス中の成形品内のより正確な比容積分布変化の予測が可能となるので、成形品全体に離散化することで、最終的な成形品寸法や、反り変形量の予測が可能となる。従って成形条件や、金型設計を変えてシミュレーションを繰り返すことで、反り変形が最も小さく、より高精度で要求精度範囲が狭い成形品を短時間で実現することができる。

[0043]

【図面の簡単な説明】

7

- 【図1】一般的なホットランナ装置の分類図である。
- 【図2】ホットノズル型ホットランナ装置例
- 【図3】トーピード型ホットランナ装置例
- 【図4】 ニードルパルプ型ホットランナ装置例
- 【図5】スライドパルプ型ホットランナ装置例(クロー

ズ状態)

【図6】スライドバルブ型ホットランナ装置例(オープン状態)

【図7】本発明の実施例としての、射出成形プロセスの シミュレーション処理を示すプロック図である。

【図8】 金型及び成形品形状モデルを、微小要素に分割 したモデル図の一例である。

【図9】射出成形プロセスのシミュレーション装置の構成を示すプロック図である。

【符号の説明】

- 1 キャピティ
- 2 ランナ
- 3 ゲート
- 4 パーティングライン
- 5 ニードル
- 6 冷却孔

- 7 マニホールド
- 8 ホットノズル
- 9 パルプゲート
- 10 トーピード
- 11 トーピードヒータ
- S1 解析モデル入力ステップ
- S2 ホットランナ情報入力ステップ
- S3 流れ場の計算ステップ
- S4 熱境界条件算出ステップ
- 10 S5 樹脂の圧力、温度、比容積計算ステップ
 - 21 形状モデリング作成装置
 - 22 ホットランナ装置に関する情報入力装置

8

- 23 熱境界条件データ計算装置
- 24 流れ場計算装置
- 25 圧力、温度、比容積計算装置
- 26 ディスプレイ装置
- 31 形状モデリングデータ記憶装置
- 32 ホットランナ装置に関する情報データ記憶装置
- 33 熱境界条件データ記憶装置
- 20 34 流れ場の計算結果データ記憶装置
 - 35 圧力、温度、比容積データ記憶装置

【図1】

【図2】

[図3]

[図4]

[図9]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.