U.S. Filing Date: August 22, 2006

Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

AMENDMENTS TO THE CLAIMS

Claims 1-10 have been previously canceled. Please cancel claims 11-34, 37, 44, and 48 without prejudice, amend claims 35, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49 and 50, and add new claims 51-54 as set forth below. Changes in the amended claims are shown by underlining (for added matter) and strikethrough (for deleted matter). This listing of claims will replace all prior versions and listing of claims in the application.

1-10.1-34 (canceled).

- 12.(previously presented) The device of Claim 11, where said section of cartilage replacement material is formed at least in part of a material selected from the group consisting of non-woven materials and foam materials.
- 13. (previously presented) The device of Claim 11, wherein said section of cartilage replacement material is formed at least on part of a synthetic polymer selected from the group consisting of polyesters such as: poly-L-lactic acid (PLLA), poly-D-lactic acid (D-PLA), polyglycolic acid (PGA), polydioxinone (PDO), polycaprolactone (PCL), polyvinyl alcohol (PV A), polyethylene oxide (PEO), poly(etheylene terephthalate), and co-polymers of the foregoing.
- 14. (previously presented) The device of Claim 11, wherein said section

U.S. Filing Date: August 22, 2006

Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

of cartilage replacement material is a scaffold derived from at least one biological material selected from the group consisting of proteins such as tyrosine, polysaccharides and saccharides such as chitosan and hyaluronic acid, and collagenous tissue.

U.S. Filing Date: August 22, 2006

Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

U.S. Filing Date: August 22, 2006 Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

U.S. Filing Date: August 22, 2006

Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

a section of cartilage replacement material;

comprising:

repair repairing cartilage tissue at a defect site in thea patient, said surgical device

U.S. Serial No.: 10/598,223 U.S. Filing Date: August 22, 2006

Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

a biocompatible flexible member;

a biocompatible anchor connected to an end of said flexible member, said-anchor shaped to site at within into tissue at the defect site to and retain said section of cartilage replacement material atin the defect site; and

a biocompatible flexible member said biocompatible flexible member traversing through said section of cartilage replacement material multiple times, said flexible member being configured to attached to said section of cartilage replacement material at an attachment point and threaded through said anchor at least twice to form at least two pulley loopmechanismss—and a lockable sliding device, wherein when in use the at least two pulley mechanisms are actuated to translate the lockable sliding device distally along said flexible member to a position proximate to said section of cartilage replacement material with a distance between said attachment point and said anchor adjustable to tension said flexible member to and locate and retain said section of cartilage replacement material inat the defect site.

- 36. (currently amended) The device of Claim 35, wherein <u>said flexible</u> member comprises a first end and a second end, wherein the first end is positioned at said attachment point and the second end being an opposite end of said flexible memberthe lockable sliding device positioned aroundlooped around a proximal portion of said flexible member to form a sliding device for <u>use to adjustadjusting</u> asaid distance between said attachment point <u>and</u> said anchor.
- 37. *(canceled)* The device of Claim-26, wherein said sliding device is a slipknot.
- 38. (currently amended) The device of Claim 356, wherein said lockable sliding device is a slipknot which, when tensioned, retains said section of cartilage replacement material inat the defect site.
- 39. (previously presented) The device of Claim 35, wherein said section of cartilage replacement material is formed at least in part of a material selected from the group consisting of non-woven materials and foam materials.

U.S. Filing Date: August 22, 2006

Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

40. *(currently amended)* The device of Claim 35, wherein said section of cartilage replacement material is formed at least on part of a synthetic polymer selected from the group consisting of polyesters such as: poly L-lactic acid (PLLA), poly-D-lactic acid (D-PLA), polyglycolic acid (PGA), polydioxinone (PDO), polycaprolactone (PCL), polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(etheylene terephthalate), and co-polymers of polyesters. of the foregoing.

- 41. *(currently amended)* The device of Claim 35, wherein said section of cartilage replacement material is a scaffold derived from at least one biological material selected from the group consisting of proteins, such as tyrosine, polysaccharides and saccharides such as chitosan and hyaluronic acid, and collagenous tissue.
- 42. *(currently amended)* The device of Claim 35, wherein said flexible members is a are braided sutures.
- 43. *(currently amended)* The device of Claim 35, wherein said flexible member further includes a stopping member, said stopping member <u>being</u> engageable with said section of cartilage replacement material.
- 44. (canceled) The device of Claim 35, wherein said flexible member further includes a stopping member, said stopping member engageable with said section of cartilage replacement material.
- 45. *(currently amended)* The device of Claim <u>43</u>44, wherein said stopping member is a slipknot.
- 46. *(currently amended)* A surgical device for <u>implanting implantation in a patient to anchor</u> a section of cartilage replacement material <u>in at a defect site in a the patient</u>, said surgical device comprising:

at least one biocompatible anchor shaped to sit eat-within into-tissue at the defect site to retain said section atin the defect site; and

a biocompatible flexible member having first and second ends, said first end of said flexible member <u>being</u> attachable to the section of cartilage replacement material at an attachment point, said second end of said flexible member <u>being</u>

U.S. Serial No.: 10/598,223 U.S. Filing Date: August 22, 2006

Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

threaded through said anchor at least twice to form at least two <u>pulley</u> <u>mechanismsloops</u>, and <u>is looped around a proximal portion of said flexible member to form a <u>stopping sliding device around the proximal portion</u>, <u>wherein distal movement of the stopping device along the proximal portion of said flexible member facilitates positioning of with a distance between the attachment point and said anchor is adjustable to tension said flexible member and retain the section of cartilage replacement material within at the defect site.</u></u>

- 47. *(currently amended)* The device of Claim 46, wherein said flexible member further includes a stopping member, said stopping device is memberengageable with a proximal surface of the section of cartilage replacements material.
- 48. (*canceled*) The device of Claim 46, wherein said flexible member further includes a stopping member, said stopping member engageable with the section of cartilage replacement material.
- 49. (*currently amended*) The device of Claim 4<u>7</u>8, wherein said stopping devicemember is a slipknot.
- 50. (canceled) The device of Claim 46, further comprising a sliding device in the form of a slipknot.
- 51. (new) The device of Claim 40, where in the polyesters and co-polymers of polyesters are at last one of poly-L-lactic acid (PLLA), poly-D-lactic acid (D-PLA), polyglycolic acid (PGA), polydioxinone (PDO), polycaprolactone (PCL), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and poly(etheylene terephthalate).
- 52. (new) The device of Claim 41, wherein the proteins are at least one of tyrosine and polysaccharides.
- 53. (new) The device of Claim 41, wherein the saccharides are at least one of chitosan and hyaluronic acid.
- 54. (new) The device of Claim 36, wherein the at least two pulley mechanisms further comprise a proximal looped end and two distal loops with the proximal looped end being positioned through the lockable sliding device, and

U.S. Filing Date: August 22, 2006

Response to Office Action Mailed November 12, 2008

Attorney Docket No.: 3124.006A

wherein upon tensioning of the proximal looped end the two distal loops
corresponding slide thorough the anchor to facilitate decreasing the distance
between said attachment point and said anchor thereby positioning said section of
cartilage replacement material in the defect site.

55. (new) The device of claim 35, wherein the section of cartilage replacement material comprises a scaffold, the scaffold being fabricated from a biocompatible material for facilitating at least one of chondral and osteochondral integration.

* * * *