Лекция 2

Введение в разностные и дифференциальные уравнения

Вы хорошо знаете *алгебраические уравнения* вроде $x^2 + 2x = 10$.

Решить такое уравнение — найти все его корни, т.е. значения x, которые обращают уравнение в верное равенство.

В разностных и дифференциальных уравнениях неизвестная — это не число, а функция. Надо найти все функции, являющиеся решениями такого уравнения.

Пример. Популяция амёб каждый час удваивается. Каково число амёб в момент t, если изначально (t = 0) в популяции 100 амёб?

Нужно найти функцию P(t), которая удовлетворяет разностному уравнению

$$P(t) = 2P(t-1)$$

с начальным условием

$$P(0) = 100.$$

Разностные уравнения

Возникают, когда мы связываем значение признака y в момент t со значениями этого же признака в предыдущие (дискретные) моменты времени.

Примеры:

$$y(t)-y(t-1)=t$$
 $y(t)=0.5y(t-1)+2$ разностные уравнения первого порядка

$$y(t) = -0.3y(t-1) + 0.5y(t-2)$$
 разностные уравнения второго порядка $y(t) - y(t-2) = 8$

Здесь t не обязательно означает время, y(t) — просто число с номером t в какой-то последовательности.

Числа Фиббоначи:

$$y(t) = y(t-1) + y(t-2)$$

Решить такое уравнение — найти все функции y(t), которые обращают уравнение в тождество.

Мы рассмотрим только простые линейные разностные уравнения первого порядка.

Это было в школе (1)

Такое уравнение задаёт арифметическую прогрессию:

$$y(t) = y(t-1) + b$$

Развернём:

$$y(t) = y(t-1) + b = (y(t-2) + b) + b = ((y(t-3) + b) + b) + b = \dots = y(0) + tb$$

Любая функция вида y(t) = tb + C будет решением. Чтобы найти C, требуется дополнительное ограничение — начальное условие. Например, можно задать y(0) или y(t) для какого-то конкретного t.

Допустим, мы знаем, что y(0) = 5. Тогда

$$y(t) = tb + C$$
 это общее решение; $y(t) = tb + 5$ это частное решение для заданного начального условия.

не вполне частное, потому что в точности b не известно.

Это было в школе (2)

А теперь геометрическая прогрессия:

$$y(t) = ay(t-1)$$

Разворачиваем:

$$y(t) = ay(t-1) = a(ay(t-2)) = a(a(ay(t-3))) = \dots = a^t y(0)$$

Общее решение

$$y(t) = Ca^t$$

Вспомним задачу про амёб:

$$P(t) = 2P(t-1)$$
$$P(0) = 100$$

Общее решение: $P(t) = C \cdot 2^t$.

Частное решение: $P(t) = 100 \cdot 2^t$.

Линейное разностное уравнение первого порядка

Объединим два рассмотренных уравнения:

$$y(t) = ay(t-1) + b$$

Разворачиваем:

$$y(t) = ay(t-1) + b = a(ay(t-2) + b) + b = a(a(ay(t-3) + b) + b) + b = a(ay(t-3) + b) + b + a(ay(t-3) + a(ay(t-3) + b) + a(ay(t-3) + b) + a(ay(t-3) + a(ay(t-3) + b) + a(ay(t-3$$

Используем формулу для суммы геометрической прогрессии:

$$y(t) = a^t y(0) + \frac{b(1-a^t)}{1-a}, \quad a \neq 1.$$

Общее решение:

$$y(t) = Ca^{t} + \frac{b(1-a^{t})}{1-a}.$$

Смотрите: y(t) сходится к константе при |a| < 1:

$$\lim_{t \to \infty} y(t) = \frac{b}{1 - a}$$

В пределе исчезло C — начальное условие не играет роли!

Вспомним прошлую лекцию

Заявки поступают каждые 20 минут (в точности).

Время обслуживания распределено равномерно от 12 до 22 минут.

Есть единственный канал обслуживания.

Нет очереди – если заявка приходит, а система занята, то заявка потеряна.

Найдём вероятность, что заявка k будет потеряна — обозначим $P_{L}(k)$.

В прошлый раз мы получили разностное уравнение:

$$P_L(k) = 0.2 - 0.2P_L(k-1)$$

Мы также знаем, что первая заявка точно обслуживается: $P_L(1) = 0$.

(внимание: начальное условие дано для k = 1, не для k = 0)

Общее решение:

$$P_L(k) = C \cdot (-0.2)^k + \frac{0.2 \cdot (1 - (-0.2)^k)}{1 - (-0.2)} = C \cdot (-0.2)^k + \frac{1 - (-0.2)^k}{6}.$$

$$\lim_{k \to \infty} P_L(k) = \frac{1}{1 - (0.2)} = \frac{1}{6}.$$

Общее решение:

$$P_L(k) = C \cdot (-0.2)^k + \frac{0.2 \cdot (1 - (-0.2)^k)}{1 - (-0.2)} = C \cdot (-0.2)^k + \frac{1 - (-0.2)^k}{6}.$$

$$\lim_{k \to \infty} P_L(k) = \frac{1}{1 - (0.2)} = \frac{1}{6}.$$

В долгосрочном периоде вероятность потери равна 1/6.

Найдём частное решение, соответствующее начальному условию $P_L(1) = 0$.

$$C \cdot (-0.2)^{1} + \frac{1 - (-0.2)^{1}}{6} = 0$$
$$-0.2C = -0.2$$
$$C = 1$$

Итак,

$$P_L(k) = (-0.2)^k + \frac{1 - (-0.2)^k}{6}.$$

Стационарное (устойчивое) решение

Представим теперь, что по каким-то причинам первая заявка может получить отказ:

$$P_L(1) = \frac{1}{6}$$

Тогда для второй заявки $P_L(2)=0.2-0.2P_L(1)=\frac{1}{5}-\frac{1}{5}\cdot\frac{1}{6}=\frac{1}{6}.$

Очевидно, так будет всегда: $P_L(k) = \frac{1}{6} \ \forall k \in N$.

 $P_L(k) = \frac{1}{6} - cmaционарное решение разностного уравнения.$

Его можно получить из условия $P_L(k+1) = P_L(k)$:

$$P_L(k) = 0.2 - 0.2P_L(k) \rightarrow P_L(k) = \frac{1}{6}.$$

Заметьте: оно совпадает с вероятностью в долгосрочном периоде!

Немного о стационарных решениях и сходимости

Если вы чуть подумаете, то придёте к выводам:

- > разностное уравнение y(t) = ay(t-1) + b имеет стационарное решение $y(t) = \frac{b}{1-a}$, если $a \neq 1$;
- ightharpoonup все нестационарные решения сходятся к стационарному тогда и только тогда, когда |a| < 1.

А что если a = 1?

Дифференциальные уравнения

Уравнения, в которых фигурируют производные искомой функции, называются дифференциальными.

Примеры:

(тут
$$y = y(x)$$
 – искомая функция):

$$\frac{dy}{dx} = y + 3$$
 дифференциальные уравнения первого порядка $\frac{dy}{dx} = 2x(x^2 + y)$

$$\frac{d^2y}{dx^2} = 7 + x$$
 $\bigg]$ дифференциальные уравнения второго порядка $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$

Иногда их записывают иначе:

$$y'' + y' - 2y = 0$$
 или $\ddot{y} + \dot{y} - 2y = 0$.

Опять же, решение дифференциального уравнения – функция или множество функций, которые обращают уравнения в тождество.

Простейший пример

Решим такое:

$$\frac{dy}{dx} = 2x.$$

Нужно просто первообразную:

$$\int \frac{dy}{dx} dx = \int 2x dx.$$
$$y = x^2 + C$$

Если хотим частное решение, нужно взять начальное условие.

Пусть это будет y(0) = 7.

$$y(0) = 0^2 + C \rightarrow C = 7.$$

Частное решение: $y = x^2 + 7$.

Вы уже встречались с дифференциальными уравнениями, даже если этого не заметили. Это было в школьном курсе физики.

Пример: свободное падение

Галилео Галилей стоит на Пизанской башне, на высоте 50 метров и держит шарик. В момент t=0 он отпускает шарик, и тот начинает падать с ускорением g=9.81. Найдите y(t) – высоту шарика в момент t.

Пример: свободное падение

Галилео Галилей стоит на Пизанской башне, на высоте 50 метров и держит шарик. В момент t=0 он отпускает шарик, и тот начинает падать с ускорением g=9.81. Найдите y(t) – высоту шарика в момент t.

Решение.

Из условия y(0) = 50.

Первая производная высоты – скорость. В момент t=0 у шарика нет скорости, так что

$$\left. \frac{dy}{dt} \right|_{t=0} = \dot{y}(0) = 0.$$

Пример: свободное падение

Галилео Галилей стоит на Пизанской башне, на высоте 50 метров и держит шарик. В момент t=0 он отпускает шарик, и тот начинает падать с ускорением g=9.81. Найдите y(t) – высоту шарика в момент t.

Решение.

Из условия y(0) = 50.

Первая производная высоты – скорость. В момент t=0 у шарика нет скорости, так что

$$\left. \frac{dy}{dt} \right|_{t=0} = \dot{y}(0) = 0.$$

Вторая производная высоты (и первая производная скорости) – ускорение.

$$\frac{d^2y}{dt^2} = \ddot{y}(t) = -g.$$

Имеем дифференциальное уравнение

$$y(0) = 50$$

$$\dot{y}(0) = 0$$

Имеем дифференциальное уравнение

$$\ddot{y} = -g$$

$$y(0) = 50$$

$$\dot{y}(0)=0$$

Интегрируем обе стороны и получаем скорость::

$$\int \ddot{y}dt = \int -gdt$$
$$\dot{y} = -gt + C_1$$

$$\dot{y} = -gt + C_1$$

Имеем дифференциальное уравнение

$$\ddot{y} = -g$$

$$y(0) = 50$$

$$\dot{y}(0) = 0$$

Интегрируем обе стороны и получаем скорость::

$$\int \ddot{y}dt = \int -gdt$$
$$\dot{y} = -gt + C_1$$

Снова интегрируем и получаем общее решение для высоты:

$$\int \dot{y}dt = \int (-gt + C_1)dt$$
$$y = -\frac{gt^2}{2} + C_1t + C_2$$

Имеем дифференциальное уравнение

$$\ddot{y} = -g$$

$$y(0) = 50$$

$$\dot{y}(0)=0$$

Интегрируем обе стороны и получаем скорость::

$$\int \ddot{y}dt = \int -gdt$$
$$\dot{y} = -gt + C_1$$

Снова интегрируем и получаем общее решение для высоты:

$$\int \dot{y}dt = \int (-gt + C_1)dt$$

$$y = -\frac{gt^2}{2} + C_1 t + C_2$$

Ищем частное решение:

$$\dot{y}(0) = 0$$
, so $C_1 = 0$.
 $y(0) = 50$, so $C_2 = 50$.
 $y(t) = 50 - \frac{gt^2}{2}$.

Дифференциальные уравнения с разделяющимися переменными

Перейдём к не столь тривиальным задачам.

Дифференциальное уравнение вида

$$\frac{dy}{dx} \cdot \varphi(y) = f(x)$$

называют уравнением с разделяющимися переменными.

Схема решения. Сначала, собираем все y на одной стороне, а x — на другой:

$$\varphi(y)dy = f(x)dx$$

A смысл? $\frac{dy}{dx}$ – это ведь не дробь.

Затем интегрируем:

$$\int \varphi(y)dy = \int f(x)dx + C$$

Так получаем обычное, не дифференциальное, уравнение, из которого нужно выразить y через x.

Почему можно отделить dy от dx?

$$\frac{dy}{dx} \cdot \varphi(y) = f(x) \to \varphi(y)dy = f(x)dx$$

Выглядит бредово.

Но вспомним метод замены переменной:

$$\int \varphi(y)dy = \int \varphi(y)\frac{dy}{dx}dx$$

Если интегрировать по-честному, получается ровно то же!

Решите уравнение $6y\frac{dy}{dx}=x^2$ и найдите частное решение, соответствующее начальному условию y(0)=2.

Решите уравнение $6y\frac{dy}{dx}=x^2$ и найдите частное решение, соответствующее начальному условию y(0)=2.

Решение.

Разделяем:

$$6ydy = x^2dx.$$

Решите уравнение $6y\frac{dy}{dx}=x^2$ и найдите частное решение, соответствующее начальному условию y(0)=2.

Решение.

Разделяем:

$$6ydy = x^2dx.$$

Интегрируем:

$$\int 6y dy = \int x^2 dx + C.$$
$$3y^2 = \frac{x^3}{3} + C.$$
$$y^2 = \frac{x^3}{9} + \frac{C}{3}.$$

Решите уравнение $6y\frac{dy}{dx}=x^2$ и найдите частное решение, соответствующее начальному условию y(0)=2.

Решение.

Разделяем:

$$6ydy = x^2dx.$$

Интегрируем:

$$\int 6y dy = \int x^2 dx + C.$$
$$3y^2 = \frac{x^3}{3} + C.$$
$$y^2 = \frac{x^3}{9} + \frac{C}{3}.$$

Общее решение:

$$y(x) = \pm \sqrt{\frac{x^3}{9} + A}.$$

Проверим, правда ли функция $y(x) = \sqrt{\frac{x^3}{9} + A}$ есть решение уравнения $6y \frac{dy}{dx} = x^2$.

Найдём производную:

$$\frac{dy}{dx} = \frac{3x^2}{9} \cdot \frac{1}{2\sqrt{\frac{x^3}{9} + A}} = \frac{x^2}{6\sqrt{\frac{x^3}{9} + A}}.$$

Подставим в исходное уравнение:

$$6y\frac{dy}{dx} = 6\sqrt{\frac{x^3}{9} + A} \cdot \frac{x^2}{6\sqrt{\frac{x^3}{9} + A}} = x^2.$$

То же получится и с функцией $y(x) = -\sqrt{\frac{x^3}{9}} + A$.

We did it!

Теперь – частное решение.

Нужно найти A, удовлетворяющее начальному условию.

$$y(x) = \sqrt{\frac{x^3}{9} + A};$$
$$y(0) = 2.$$

почему не
$$\sqrt{\frac{x^3}{9} + A}$$
 ?

$$\sqrt{A} = 2 \rightarrow A = 4.$$

Частное решение:

$$y(x) = \sqrt{\frac{x^3}{9} + 4}.$$

Задача решена.

Ещё пример

Вернёмся к амёбам. Разработаем модель размножения амёб в непрерывном времени, предположив, что скорость изменения численности пропорциональна численности популяции:

$$\frac{dP}{dt} = kP.$$

Поделим на P:

$$\frac{1}{P} \cdot \frac{dP}{dt} = k.$$

Теперь видно, что это уравнение с разделяющимися переменными.

$$\frac{1}{P}dP = kdt.$$

$$\int \frac{1}{P}dP = \int kdt + C.$$

$$\ln|P| = kt + C.$$

Естественно считать, что численность неотрицательна, так что $\ln |P| = \ln P$. Общее решение:

$$P(t) = e^{kt+C} = Ae^{kt}, A > 0.$$

Исходное уравнение:

$$\frac{dP}{dt} = kP$$

Наше решение:

$$P(t) = e^{kt+C} = Ae^{kt}, A > 0.$$

А единственное ли оно?

Мы ведь поделили исходное уравнение на P. Что если P(t) = 0?

Исходное уравнение:

$$\frac{dP}{dt} = kP$$

Наше решение:

$$P(t) = e^{kt+C} = Ae^{kt}, A > 0.$$

А единственное ли оно?

Мы ведь поделили исходное уравнение на P. Что если P(t) = 0?

Тогда
$$\frac{dP}{dt} = 0$$
.

Уравнение выполнено: $\frac{dP}{dt} = kP$.

Надо подправить ответ. Было:

$$P(t) = e^{kt+C} = Ae^{kt}, A > 0.$$

Стало:

$$P(t) = Ae^{kt}, A \ge 0.$$

Если мы дерзнём рассматривать отрицательные популяции, можно даже отбросить ограничение $A \geq 0$.

имеют вид

$$\frac{dy}{dx} + a(x)y(x) = f(x),$$

где a(x) и f(x) – непрерывные функции.

Линейные уравнения превращаются в разделяющиеся с помощью *интегрирующего множителя*:

$$u(x) = e^{\int a(x)dx}.$$

Посмотрите: $\frac{du}{dx} = a(x)u(x)$.

Домножим уравнение на u(x):

$$\frac{dy}{dx}u(x) + y(x)[a(x)u(x)] = f(x)u(x).$$

Что стало лучше?

$$\frac{dy}{dx}u(x) + y(x)[a(x)u(x)] = f(x)u(x). \tag{*}$$

Пусть g(x) = y(x)u(x). Тогда

$$\frac{dg}{dx} = \frac{dy}{dx}u(x) + y(x)\frac{du}{dx} = \frac{dy}{dx}u(x) + y(x)[a(x)u(x)].$$

Перепишем (*) в таком виде:

$$\frac{dg}{dx} = f(x)u(x).$$

$$\frac{dy}{dx}u(x) + y(x)[a(x)u(x)] = f(x)u(x). \tag{*}$$

Пусть
$$g(x)=y(x)u(x)$$
. Тогда
$$\frac{dg}{dx}=\frac{dy}{dx}u(x)+y(x)\frac{du}{dx}=\frac{dy}{dx}u(x)+y(x)[a(x)u(x)].$$

Перепишем (*) в таком виде:

$$\frac{dg}{dx} = f(x)u(x).$$

Теперь можно разделить g и x:

$$dg = f(x)u(x)dx$$

$$\int dg = \int f(x)u(x)dx + C$$

$$g(x) = y(x)u(x) = \int f(x)u(x)dx + C$$

$$\frac{dy}{dx}u(x) + y(x)[a(x)u(x)] = f(x)u(x).$$

(*)

Пусть
$$g(x)=y(x)u(x)$$
. Тогда
$$\frac{dg}{dx}=\frac{dy}{dx}u(x)+y(x)\frac{du}{dx}=\frac{dy}{dx}u(x)+y(x)[a(x)u(x)].$$

Перепишем (*) в таком виде:

$$\frac{dg}{dx} = f(x)u(x).$$

Теперь можно разделить g и x:

$$dg = f(x)u(x)dx$$

$$\int dg = \int f(x)u(x)dx + C$$

$$g(x) = y(x)u(x) = \int f(x)u(x)dx + C$$

Наконец, решение:

$$y(x) = \frac{1}{u(x)} \Biggl(\int f(x)u(x)dx + C \Biggr).$$

Решите уравнение $\frac{dy}{dx} - y - xe^x = 0$.

Решение.

Выразим в стандартном виде
$$\frac{dy}{dx}+a(x)y(x)=f(x)$$
:
$$\frac{dy}{dx}-y=xe^x.$$

Здесь
$$a(x) = -1$$
, $f(x) = xe^x$.

Решите уравнение $\frac{dy}{dx} - y - xe^x = 0$.

Решение.

Выразим в стандартном виде $\frac{dy}{dx} + a(x)y(x) = f(x)$:

$$\frac{dy}{dx} - y = xe^x.$$

Здесь a(x) = -1, $f(x) = xe^x$.

Интегрирующий множитель: $u(x) = e^{\int a(x)dx} = e^{-x}$ (где константа? куда делась?)

Умножаем:

$$\frac{dy}{dx}e^{-x} - ye^{-x} = x.$$

Пусть
$$g(x) = y(x)u(x) = ye^{-x}$$
. Тогда

$$\frac{dg}{dx} = x.$$

Решите уравнение
$$\frac{dy}{dx} - y - xe^x = 0$$
.

Решение.

Выразим в стандартном виде
$$\frac{dy}{dx} + a(x)y(x) = f(x)$$
:

$$\frac{dy}{dx} - y = xe^x$$
.

3десь
$$a(x) = -1$$
, $f(x) = xe^x$.

Интегрирующий множитель:
$$u(x) = e^{\int a(x) dx} = e^{-x}$$
 (где константа? куда делась?)

Умножаем:

$$\frac{dy}{dx}e^{-x} - ye^{-x} = x.$$

Пусть
$$g(x) = y(x)u(x) = ye^{-x}$$
. Тогда

$$\frac{dg}{dx} = x$$
.

Разделяем:

$$dg = xdx$$
.

Интегрируем:

$$\int dg = \int x dx + C.$$

Пусть
$$g(x) = y(x)u(x) = ye^{-x}$$
. Тогда

$$\frac{dg}{dx} = x.$$

Разделяем:

$$dg = xdx$$
.

Интегрируем:

$$\int dg = \int x dx + C.$$
$$g = \frac{x^2}{2} + C.$$

Пусть
$$g(x) = y(x)u(x) = ye^{-x}$$
. Тогда

$$\frac{dg}{dx} = x.$$

Разделяем:

$$dg = xdx$$
.

Интегрируем:

$$\int dg = \int x dx + C.$$

$$g = \frac{x^2}{2} + C.$$

Теперь вернёмся к y(x):

$$ye^{-x} = \frac{x^2}{2} + C.$$

Общее решение:

$$y = e^x \left(\frac{x^2}{2} + C \right).$$

ХВАТИТ.

В следующий раз – простейший (пуассоновский) поток событий.

