# MA5233 Computational Mathematics

Lecture 16: Ordinary Differential Equations

Simon Etter



2019/2020

### Ordinary differential equation (ODE)

Given  $f: \mathbb{R}^n \to \mathbb{R}^n$  and  $y_0 \in \mathbb{R}^n$ , find differentiable  $y: [0, T] \to \mathbb{R}^n$  such that

$$y(0) = y_0$$
 and  $\dot{y}(t) = f(y(t))$  for all  $t \in [0, T]$ .

ODEs are also called initial value problems.

 $\dot{y}(t) := \frac{dy}{dt}(t)$  is a shorthand for the time derivative.

**Example:** Newton's law of motion  $m\ddot{x} = F(x)$ .

This can be written in above form by setting

$$y := \begin{pmatrix} x \\ \dot{x} \end{pmatrix}, \qquad f(y) := \begin{pmatrix} y_2 \\ \frac{1}{m} F(y_1) \end{pmatrix}$$

such that

$$\dot{y} = \begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \frac{1}{m} F(x) \end{pmatrix} = \begin{pmatrix} y_2 \\ \frac{1}{m} F(y_1) \end{pmatrix} = f(y).$$

#### Picard-Lindelöf theorem

Assume  $f: \mathbb{R}^n \to \mathbb{R}^n$  is Lipschitz continuous, i.e. there exists a constant L > 0 such that for all  $y_1, y_2 \in \mathbb{R}^n$  we have

$$||f(y_2) - f(y_1)|| \le L ||y_2 - y_1||.$$
 (1)

Then, there exists a unique differentiable  $y:[0,\infty)\to\mathbb{R}^n$  such that

$$y(0) = y_0$$
 and  $\dot{y}(t) = f(y(t))$  for all  $t \in [0, \infty)$ . (2)

Alternatively, assume f is locally Lipschitz continuous at  $y_0$ , i.e. there exist L>0 and  $\varepsilon>0$  such that (1) holds for  $y_1,y_2\in\{y\mid \|y-y_0\|\leq\varepsilon\}$ . Then, the solution to (2) may be defined only on [0,T) for some  $T<\infty$ .

### **Examples**

- ► f(y) = y is Lipschitz with L = 1. Solution  $y(t) = y_0 \exp(t)$  is defined on  $[0, \infty)$ .
- ►  $f(y) = y^2$  is locally Lipschitz but not globally Lipschitz. Solution  $y(t) = \frac{y_0}{1-y_0t}$  is defined only on  $[0, \frac{1}{y_0})$ .

### Conditioning of initial value problems

Assume  $f: \mathbb{R}^n \to \mathbb{R}^n$  is Lipschitz continuous with constant L, and  $(y_i: [0, T) \to \mathbb{R}^n)_{i \in \{1, 2\}}$  satisfy the two ODEs

$$y_i(0) = s_i, \qquad \dot{y}_i = f(y_i).$$

Then,

$$||y_2(t) - y_1(t)|| \le e^{Lt} ||s_2 - s_1||$$
 for all  $t \in [0, T)$ .

### Interpretation

The map  $s\mapsto y(t)$  is Lipschitz continuous, but the Lipschitz constant deteriorates exponentially for  $t\to\infty$ .

Real-world consequences:

- ▶ Weather prediction is difficult for large *t*.
- Shooting a rocket to Mars requires course corrections.

### Solving ODEs via quadrature

The solution to the ODE  $\dot{y} = f(y)$  is given by

$$y(t) = y(0) + \int_0^t f(y(\tau)) d\tau.$$

Observation: ODEs can be solved via quadrature!

Problem: We don't know  $f(y(\tau_k))$  for quadpoints  $\tau_k > 0$ .

Solution 1: Use left-point rule: (This is known as Euler's method)

$$\tilde{y}(t) := y(0) + f(y(0)) t.$$

Solution 2: Use midpoint rule, and use left-point rule to estimate  $y(\frac{t}{2})$ :

$$\tilde{y}(t) := y(0) + f(\tilde{y}(\frac{t}{2}))t, \qquad \tilde{y}(\frac{t}{2}) := y(0) + f(y(0))\frac{t}{2}.$$

Solution 3: Use trapezoidal rule, and use left-point rule to estimate y(t):

$$\tilde{y}(t) := y(0) + \left(f(y(0)) + f(\tilde{\tilde{y}}(t))\right) \frac{t}{2}, \qquad \tilde{\tilde{y}}(t) := y(0) + f(y(0)) t.$$

## Solving ODEs via quadrature (continued)

Above schemes deliver poor accuracy since they use only few quadpoints. Two ways to improve accuracy:

- ▶ Increase number of quadpoints  $\rightarrow$  *s*-stage Runge-Kutta methods.
- ► Use composite quadrature.

There are limits to how far the first approach can be pushed.

All practical schemes use composite quadrature, which in this context amounts to the following.

- Assume we want to compute  $\tilde{y}(T) \approx y(T)$ .
- Introduce partition  $0 = t_0 < t_1 < \ldots < t_m = 1$ .
- Use any of the schemes on previous slide to iteratively compute

$$y(0) = \tilde{y}(t_0) \rightarrow \tilde{y}(t_1) \rightarrow \ldots \rightarrow \tilde{y}(t_m) = \tilde{y}(T).$$

See 16\_ordinary\_differential\_equations.jl.

### Abstract time-stepping scheme

A single step of Euler's / midpoint / trapezoidal rule can be interpreted as a function  $\tilde{\Phi}_t: y(0) \to \tilde{y}(t)$ .

Composite scheme is then given by

$$\tilde{y}(T) = \tilde{\Phi}_{t_m - t_{m-1}} \big( \dots \tilde{\Phi}_{t_2 - t_1} \big( \tilde{\Phi}_{t_1 - t_0} \big( y(0) \big) \big) \big).$$

 $ilde{\Phi}_t$  is an approximation to  $\Phi_t: y(0) \mapsto y(t)$ .

Terminology:

- $ightharpoonup \tilde{\Phi}_t(y)$ : numerical propagator.
- $\blacktriangleright \Phi_T(y)$ : exact propagator.

Goal: error estimate

$$\|\tilde{y}(T) - y(T)\| = \mathcal{O}(f(m))$$

assuming equispaced partition  $\left(t_k := T \frac{k}{m}\right)_{k=0}^m$ .

### Error analysis for abstract time-stepping scheme

Assumptions on numerical propagator:

- ► Consistency:  $\|\tilde{\Phi}_t(y) \Phi_t(y)\| = \mathcal{O}(t^{p+1})$  for some p > 0.
- $\qquad \qquad \textbf{Stability: } \|\tilde{\Phi}_t(y_2) \tilde{\Phi}_t(y_1)\| \leq (1 + \tilde{L}\,t)\,\|y_2 y_1\| \text{ for some } \tilde{L} > 0.$

Then,

$$\|\tilde{y}(T) - y(T)\| = \mathcal{O}\Big(m^{-\rho}\Big)$$
 for  $m \to \infty$ .

Observe: consistency & stability  $\implies$  convergence.

*Proof.* For notational convenience, we set  $\Delta t := \frac{T}{m}$  and

$$\Phi(y) := \Phi_{\Delta t}(y), \quad \tilde{\Phi}(y) := \tilde{\Phi}_{\Delta t}(y), \quad y_k := y(k \Delta t), \quad \tilde{y}_k := \tilde{y}(k \Delta t).$$

Proof (continued). We compute

$$\begin{split} \|\tilde{y}(T) - y(T)\| &= \|\tilde{\Phi}(\tilde{y}_{m-1}) - \Phi(y_{m-1})\| \\ &\leq \|\tilde{\Phi}(\tilde{y}_{m-1}) - \tilde{\Phi}(y_{m-1})\| + \|\tilde{\Phi}(y_{m-1}) - \Phi(y_{m-1})\| \\ &\leq (1 + \tilde{L}\Delta t) \|\tilde{y}_{m-1} - y_{m-1}\| + \mathcal{O}(\Delta t^{p+1}) \\ &\leq (1 + \tilde{L}\Delta t)^2 \|\tilde{y}_{m-2} - y_{m-2}\| + (1 + (1 + \tilde{L}\Delta t)) \mathcal{O}(\Delta t^{p+1}) \\ &\leq \dots \\ &\leq (1 + \tilde{L}\Delta t)^m \|\tilde{y}_0 - y_0\| + \left(\sum_{k=0}^{m-1} (1 + \tilde{L}\Delta t)^k\right) \mathcal{O}(\Delta t^{p+1}) \\ &\leq 0 + (1 + \tilde{L}\Delta t)^{m-1} \mathcal{O}(\Delta t^p) \end{split}$$

Claim follows after observing that since  $\Delta t = \frac{T}{m}$ , we have

$$\mathcal{O}(\Delta t^p) = \mathcal{O}(m^{-p}), \qquad (1 + \tilde{L} \Delta t)^{m-1} \le \exp(\tilde{L} T \frac{m-1}{m}) \le \exp(\tilde{L} T).$$

### Consistency of Euler's, midpoint and trapezoidal method

Assuming y (and equivalently f) has sufficiently many derivatives, the consistency error  $\tilde{y}(t) - y(t)$  can be estimated using Taylor series.

Euler's method:

$$\tilde{y}(t) = y(0) + f(y(0)) t$$

$$y(t) = y(0) + \dot{y}(0) t + \mathcal{O}(t^2)$$

Since  $\dot{y}(0) = f(y(0))$ , we have  $\tilde{y}(t) - y(t) = \mathcal{O}(t^2)$ .

► Midpoint method:  $\tilde{y}(t) = y(0) + f(y(0) + f(y(0))\frac{t}{2})t$ 

$$\tilde{y}(t) = y(0) + f(y(0)) t + f'(y(0)) f(y(0)) \frac{t^2}{2} + \mathcal{O}(t^3) 
y(t) = y(0) + \dot{y}(0) t + \ddot{y}(0) \frac{t^2}{2} + \mathcal{O}(t^3)$$

Since 
$$\dot{y}(0) = f(y(0))$$
 and  $\ddot{y}(0) = f'(y(0)) \dot{y}(0) = f'(y(0)) f(y(0))$ , we have  $\tilde{y}(t) - y(t) = \mathcal{O}(t^3)$ .

▶ Trapezoidal method: analogous. Result is  $\tilde{y}(t) - y(t) = \mathcal{O}(t^3)$ .

## Stability of Euler's, midpoint and trapezoidal method

Assuming f(y) is Lipschitz continuous,  $||f(y_2) - f(y_1)|| \le L ||y_2 - y_1||$ , we can estimate the stability as follows.

• Euler's method:  $\tilde{\Phi}_t(y) = y + f(y) t$ .

$$\begin{split} \|\tilde{\Phi}_t(y_2) - \tilde{\Phi}_t(y_1)\| &\leq \|y_2 - y_1\| + t \|f(y_2) - f(y_1)\| \\ &\leq (1 + tL) \|y_2 - y_1\|. \end{split}$$

▶ Midpoint method:  $\tilde{\Phi}_t(y) = y + f(y + f(y) \frac{t}{2}) t$ .

$$\begin{split} \|\tilde{\Phi}_{t}(y_{2}) - \tilde{\Phi}_{t}(y_{1})\| &\leq \|y_{2} - y_{1}\| + t \|f(y_{2} + f(y_{2})\frac{t}{2}) - f(y_{1} + f(y_{1})\frac{t}{2})\| \\ &\leq (1 + tL) \|y_{2} - y_{1}\| + \frac{t^{2}}{2} L \|f(y_{2}) - f(y_{1})\| \\ &\leq (1 + tL + (tL)^{2}) \|y_{2} - y_{1}\|. \end{split}$$

► Trapezoidal method: analogous.

### Conclusion

Euler: error =  $\mathcal{O}(m^{-1})$ , midpoint & trapezoidal: error =  $\mathcal{O}(m^{-2})$ .

### Runge-Kutta methods

Assume we have quadrature points  $x_i$  and a sequence of quadrature weights  $w_{ij}$  with  $i \in \{0, ..., s\}$  and  $j \in \{0, ..., i-1\}$  such that

$$x_0=0, \qquad x_s=1,$$

and

$$\int_0^{x_i} f(x) dx \approx \sum_{i=0}^i w_{ij} f(x_j) \quad \text{for all } i \in \{0, \dots, s\}.$$

Then, we can compute an approximate solution to  $\dot{y} = f(y)$  through

$$\widetilde{y}(t) := y(0) + t \sum_{i=0}^{s} w_{sj} f_j \approx y(t)$$

where

$$f_i := f\left(y(0) + t\sum_{i=0}^i w_{ij}f_j\right) \approx f\left(y(tx_i)\right)$$

Algorithms of this form are known as s-stage Runge-Kutta methods.

### Butcher's tableau

The parameters  $x_i$  and  $w_{ij}$  of Runge-Kutta methods can be conveniently represented in a *Butcher's tableau*:

| 0                     |                        |             |       |               |             |
|-----------------------|------------------------|-------------|-------|---------------|-------------|
| $x_1$                 | $w_{10}$               |             |       |               |             |
| <i>x</i> <sub>2</sub> | <i>W</i> <sub>20</sub> | $W_{21}$    |       |               |             |
| :                     | :                      | :           | ٠.    |               |             |
| $x_{s-1}$             | $W_{s-1,0}$            | $w_{s-1,1}$ |       | $W_{s-1,s-2}$ |             |
|                       | $w_{s,0}$              | $w_{s,1}$   | • • • | $W_{s,s-2}$   | $w_{s,s-1}$ |

### **Examples**

| Euler    | Midpoint                    | Trapezoidal                 |
|----------|-----------------------------|-----------------------------|
| 0        | 0                           | 0                           |
| <u> </u> | $\frac{1}{2}$ $\frac{1}{2}$ | 1 1                         |
| 1        | 0 1                         | $\frac{1}{2}$ $\frac{1}{2}$ |

## Error analysis for Runge-Kutta schemes

The analysis from slides 8-11 works for arbitrary Runge-Kutta method.

In particular, it can be used to determine  $x_i$ ,  $w_{ij}$  such that consistency error is  $\mathcal{O}(t^{p+1})$  with p as large as possible.

Bad: calculations get tedious very quickly for increasing s.

Good: others have done the work for us:

 $\verb|https://en.wikipedia.org/wiki/List_of_Runge-Kutta_methods|.$ 

Interesting observation: minimal number of stages s to achieve error  $\mathcal{O}(m^{-p})$  grows faster than p.

### References and further reading

► E. Suli and D. F. Mayers. *An Introduction to Numerical Analysis*. Cambridge University Press (2003),

doi:10.1017/CB09780511801181

Can be accessed online for free via the library website!