Introduction to intelligent systems

Statistics

Mikkel N. Schmidt

 ${\bf Technical\ University\ of\ Denmark,}$ DTU Compute, Department of Applied Mathematics and Computer Science.

Overview

- Descriptive statistics
- Probability distributions
- 3 Population and sample
- Central limit theorem
- 6 Standard error of the mean
- **6** Confidence intervals
- Tasks

Feedback group

- Magnus Alexander Mollatt van Capel
- Rasmus Johansen Rieneck
- Christian Rahbæk Warburg
- Clara Louise Brodt

Learning objectives

- I Descriptive and inferential statistics: Population, sample, statistic, parameters, estimator.
- II Population mean and standard deviation.
- II Sample estimate of mean and standard deviation.
- II Confidence interval for mean and proportion.
- II Sample size estimate for mean an proportion.

- I Understand the concepts and definitions, and know their application. Reason about the concepts in the context of an example. Use correct technical terminology.
- II As above plus: Read, manipulate, and work with technical definitions and expressions (mathematical and Python code). Carry out practical computations. Interpret and evaluate results.

Descriptive statistics

Mean and variance of a population

Population mean Average value of the population

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Population variance Average squared distance to the mean

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2$$

Population standard deviation Square root of variance

Exercise: Population mean and variance

Consider a population of N=3 observations.

$$x = \{1, 4, 10\}$$

■ What is the population mean μ_x and variance σ_x^2 ?

Definitions

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2$$

Exercise: Population mean and variance

Consider a population of N=3 observations.

$$x = \{1, 4, 10\}$$

■ What is the population mean μ_x and variance σ_x^2 ?

Definitions

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2$$

$$\mu_x = \frac{1}{3}(1+4+10) = 5$$

$$\sigma_x^2 = \frac{1}{3}((1-5)^2 + (4-5)^2 + (10-5)^2) = 14$$

 ${\bf Probability\ distributions}$

Probability distributions

Probability distribution

- Mathematical function that gives the probability of each possible outcome in an experiment
- Describes a random phenomenon in terms of probabilities of events
- Can be used as an infinite population

Probability distributions

Probability distribution

- Mathematical function that gives the probability of each possible outcome in an experiment
- Describes a random phenomenon in terms of probabilities of events
- Can be used as an infinite population

Discrete outcomes

 Probability mass function provides probability of each outcome.

Continuous outcomes

- Probability density function (PDF) provides relative probability of each outcome.
- The probability of any particular outcome is zero.
- The probability of an outcome within some range is the area under the PDF curve.

Probability distributions

Mean and variance of a population / distribution

Finite population

- Sum over all values in population
- Weigh each equally by 1/N

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2$$

Mean and variance of a population / distribution

Finite population

- Sum over all values in population
- Weigh each equally by 1/N

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2$$

Discrete distribution

- \blacksquare Sum over all Kpossible outcomes
- Weigh each by their probability

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\mu_x = \sum_{k=1}^{K} P(x_k) \cdot x_k$

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2 \quad \sigma_x^2 = \sum_{i=1}^{K} P(x_k) \cdot (x_k - \mu_x)^2$$

Mean and variance of a population / distribution

Finite population

- Sum over all values. in population
- Weigh each equally by 1/N

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2$$

Discrete distribution

- \blacksquare Sum over all Kpossible outcomes
- Weigh each by their probability

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \qquad \mu_x = \sum_{k=1}^{K} P(x_k) \cdot x_k$$

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2 \qquad \sigma_x^2 = \sum_{i=1}^{K} P(x_k) \cdot (x_k - \mu_x)^2 \qquad \sigma_x^2 = \int_{-\infty}^{\infty} p(x) \cdot (x - \mu_x)^2 \cdot dx$$

Continuous distribution

- Integral over all possible outcomes
- Weigh each by their probability density

$$\mu_x = \int_{-\infty}^{\infty} p(x) \cdot x \cdot \mathrm{d}x$$

$$\sigma_x^2 = \int_{-\infty}^{\infty} p(x) \cdot (x - \mu_x)^2 \cdot dx$$

Population and sample

Population and sample

Population Entire set of entities under study

- Can be a hypothetical population
- Typically impossible to survey/measure entire population
- May be infinite

Sample Random subset of entire population

 When studying a population using a sample, we may obtain slightly different answers depending on the sample

Terms used in inferential statistics

Population The entire set of items of interest.

Sample A subset of the population.

Statistic A numerical value computed from the sample.

Parameter A characteristic of the population under study.

Estimator A statistic used to estimate a parameter.

Example: Population and sample

Sample estimate of mean and variance

Sample estimate of mean Average value of the sample

$$m_x = \frac{1}{n} \sum_{i=1}^n x_i$$

Sample estimate of variance Estimate of average squared distance to the mean. Notice, we divide by n-1, as opposed to n

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - m_x)^2$$

Why divide by n-1?

Sample estimate of variance

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - m_x)^2$$

Intuition

- Sample mean is always between the lowest and highest value in the sample—the population mean need not be
- Variance observed in a sample tends to underestimate the population variance
- We would like the *average of all possible sample variances* to equal the population variance

Consider a population of N=3 observations

$$x = \{1, 4, 10\}$$

with population mean and variance

$$\mu_x = 5 \qquad \sigma_x^2 = 14$$

■ List all possible ordered samples with replacement of size n = 2. (Hint: There are 9 such possible samples)

Consider a population of N=3 observations

$$x = \{1, 4, 10\}$$

with population mean and variance

$$\mu_x = 5 \qquad \sigma_x^2 = 14$$

■ List all possible ordered samples with replacement of size n = 2. (Hint: There are 9 such possible samples)

Solution

The 9 possible samples are

$$\{1,1\},\{1,4\},\{1,10\},\{4,1\},\{4,4\},\{4,10\},\{10,1\},\{10,4\},\{10,10\}$$

Consider a population of N=3 observations

$$x = \{1, 4, 10\}$$

with population mean and variance

$$\mu_x = 5 \qquad \sigma_x^2 = 14$$

Sample estimate

$$m_x = \frac{1}{n} \sum_{i=1}^n x_i$$
$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - m_x)^2$$

■ Compute the sample estimate of the mean and variance, m_x and s_{n-1}^2 for each possible sample

$$\{1,1\},\{1,4\},\{1,10\},\{4,1\},\{4,4\},\{4,10\},\{10,1\},\{10,4\},\{10,10\}$$

What is the average sample estimate of the mean and variance (averaged over all possible samples)?

Sample	m_x	s_x^2
$\{1, 1\}$		
$\{1, 4\}$		
$\{1, 10\}$		
$\{4, 1\}$		
$\{4,4\}$		
$\{4, 10\}$		
$\{10, 1\}$		
$\{10, 4\}$		
$\{10, 10\}$		

Sample	m_x	s_x^2
{1,1}	$\frac{1+1}{2} = 1$	$\frac{(1-1)^2 + (1-1)^2}{2-1} = 0$
$\{1, 4\}$		
$\{1, 10\}$		
$\{4, 1\}$		
$\{4,4\}$		
$\{4, 10\}$		
$\{10, 1\}$		
$\{10, 4\}$		
$\{10, 10\}$		

Sample	m_x	s_x^2
{1,1}	$\frac{1+1}{2} = 1$	$\frac{(1-1)^2 + (1-1)^2}{2-1} = 0$
$\{1,4\}$	$\frac{1+4}{2} = 2.5$	$\frac{(1-2.5)^2 + (4-2.5)^2}{2-1} = 4.5$
$\{1, 10\}$		
$\{4, 1\}$		
$\{4,4\}$		
$\{4, 10\}$		
$\{10, 1\}$		
$\{10, 4\}$		
$\{10, 10\}$		

Sample	m_x	s_x^2
$\{1, 1\}$	$\frac{1+1}{2} = 1$	$\frac{(1-1)^2 + (1-1)^2}{2-1} = 0$
$\{1, 4\}$	$\frac{1+4}{2} = 2.5$	$\frac{(1-2.5)^2 + (4-2.5)^2}{2-1} = 4.5$
$\{1, 10\}$	$\frac{1+10}{2} = 5.5$	$\frac{(1-5.5)^2 + (10-5.5)^2}{2-1} = 40.5$
$\{4, 1\}$	-	2 .
$\{4, 4\}$		
$\{4, 10\}$		
$\{10, 1\}$		
$\{10, 4\}$		
$\{10, 10\}$		

Sample	m_x	s_x^2
{1,1}	$\frac{1+1}{2} = 1$	$\frac{(1-1)^2 + (1-1)^2}{2-1} = 0$
$\{1, 4\}$	$\frac{1+4}{2} = 2.5$	$\frac{(1-2.5)^2 + (4-2.5)^2}{2-1} = 4.5$
$\{1, 10\}$	$\frac{1+10}{2} = 5.5$	$\frac{(1-5.5)^2 + (10-5.5)^2}{2-1} = 40.5$
$\{4, 1\}$	2.5	4.5
$\{4, 4\}$	4	0
$\{4, 10\}$	7	18
$\{10, 1\}$	5.5	40.5
$\{10, 4\}$	7	18
$\{10, 10\}$	10	0

Solution

Sample	m_x	s_x^2
{1,1}	$\frac{1+1}{2} = 1$	$\frac{(1-1)^2 + (1-1)^2}{2-1} = 0$
$\{1, 4\}$	$\frac{1+4}{2} = 2.5$	$\frac{(1-2.5)^2 + (4-2.5)^2}{2-1} = 4.5$
$\{1, 10\}$	$\frac{1+10}{2} = 5.5$	$\frac{(1-5.5)^2+(10-5.5)^2}{2-1}=40.5$
$\{4, 1\}$	2.5	4.5
$\{4, 4\}$	4	0
$\{4, 10\}$	7	18
$\{10, 1\}$	5.5	40.5
$\{10, 4\}$	7	18
$\{10, 10\}$	10	0

Average s_x^2 over all possible samples

$$avg(m_x) = \frac{1+2.5+5.5+2.5+4+7+5.5+7+10}{9} = \frac{45}{9} = 5 = \mu_x$$

$$avg(s_x^2) = \frac{0+4.5+40.5+4.5+0+18+40.5+18+0}{9} = \frac{126}{9} = 14 = \sigma_x^2$$

Sampling distribution

The *sampling distribution* is the distribution of sample means that occurs as we draw samples (of size n) from the population

Example We want to study how many kilometers DTU students commute every morning

- We cannot ask all students in the population, so we randomly choose a sample of n = 10 persons
- We then compute the mean distance travelled for the 10 persons

Sampling If we then repeat this 5 times, each time asking another sample of 10 persons, we might get the following results

Sample number	Mean number of kilometers
1	5.5
2	7.6
3	2.1
4	6.2
5	1.9

Example: Population and sample means

Central limit theorem

Central limit

What happens to the sampling distribution of the mean, as we increase the sample size n?

- The sample tends to follow a normal distribution
- The sample mean tends to cluster closer around the population mean

Demo: Central limit theorem

 $Demo: \ {\tt O2-CentralLimitTheorem.ipynb} \ notebook$

Standard error of the mean

Standard error of the mean

We have seen that, as we increase the sample size

- The sample tends to follow a normal distribution
- The sample mean tends to cluster closer around the population mean

If we know the population variance and the sample size n, is there a way to predict the variance of the sampling distribution?

Variance of the sample mean

$$\sigma_{m_x}^2 = \frac{\sigma^2}{n}$$

Standard error of the mean

$$\sigma_{m_x} = rac{\sigma}{\sqrt{n}}$$

Standard error of the mean: Proof

Variance of a sum of independent random variables

$$var(x_1 + x_2 + \cdots + x_n) = var(x_1) + var(x_2) + \cdots + var(x_n)$$

Variance scales quadratically

$$var(a \cdot x) = a^2 \cdot var(x)$$

Variance of the sample mean

$$\sigma_{m_x}^2 = \operatorname{var}(m_x) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^n x_i\right) = \frac{1}{n^2}\operatorname{var}\left(\sum_{i=1}^n x_i\right) = \frac{\sigma^2}{n}$$

Using the central limit theorem

- We know the sample means approximately follow a normal distribution (when the sample size is moderately large)
- We can calculate the mean and variance of that distribution (it is simply $\mu_{m_x} = \mu$ and $\sigma_{m_x}^2 = \frac{\sigma^2}{n}$)
- We can use this to predict which values of the sample mean are most likely

Example: Population and sample

Confidence intervals

Example: Population and sample

Confidence interval

Confidence interval for mean We want to estimate the population mean μ

- \blacksquare Sample *n* observations
- Compute the sample mean $m_x = \frac{1}{n} \sum_{i=1}^n x_i$
- Choose confidence level, e.g. $1 \alpha = 95\%$, and look up critical value
- Compute standard error and multiply by critical value

Critical value

Example: Critical value for $1 - \alpha = 95\%$ interval

Look up in a table or compute in Python using scipy.stats.norm.ppf

Table of critical values

Central area	Tail area	Critical value
$1-\alpha$	$\alpha/2$	$z_{lpha/2}$
50%	0.25	0.67
90%	0.05	1.64
95%	0.025	1.96
99%	0.005	2.58
1-α α/2 χ		
0 Z _{a/2}		

Interpretation of confidence interval

- Expresses error due to random sampling
- A larger sample size gives a smaller margin of error
- Is defined at a desired confidence level, e.g. $1 \alpha = 95\%$
- 95% confidence means that out of 100 samples, we expect that 95 times the true population parameter is within the margin of error

Exercise: Mean and variance of a 6-sided dice

Mean and standard deviation of a discrete distribution

- Sum over all possible outcomes
- Weigh each by their probability

$$\mu_x = \sum_{k=1}^K P(x_k) \cdot x_k \qquad \sigma_x^2 = \sum_{k=1}^K P(x_k) \cdot (x_k - \mu)^2$$

■ What is μ_x and σ_x^2 for a normal 6-sided dice? K = 6, $x_1 = 1, x_2 = 2, ..., x_6 = 6$, $P(x_1) = P(x_2) = \cdots = P(x_6) = \frac{1}{6}$

Exercise: Mean and variance of a 6-sided dice

Mean and standard deviation of a discrete distribution

- Sum over all possible outcomes
- Weigh each by their probability

$$\mu_x = \sum_{k=1}^K P(x_k) \cdot x_k$$
 $\sigma_x^2 = \sum_{k=1}^K P(x_k) \cdot (x_k - \mu)^2$

■ What is μ_x and σ_x^2 for a normal 6-sided dice? K = 6, $x_1 = 1, x_2 = 2, ..., x_6 = 6$, $P(x_1) = P(x_2) = \cdots = P(x_6) = \frac{1}{6}$

Solution

$$\mu_x = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6 = \frac{21}{6} = 3.5$$

$$\sigma_x^2 = \frac{1}{6} \left((1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (5 - 3.5)^2 + (6 - 3.5)^2 \right)$$

$$= \frac{1}{6} (6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25) \approx 2.917$$

Exercise: Confidence interval of 10 dice throws

- Throw a 6-side dice 10 times and record the results (e.g. use www.random.org/dice)
- Compute the 50% confidence interval for the mean Express it as a range [low, high]

Exercise: Confidence interval of 10 dice throws

- Throw a 6-side dice 10 times and record the results (e.g. use www.random.org/dice)
- Compute the 50% confidence interval for the mean Express it as a range [low, high]

Solution example

Exercise: Confidence interval of 10 dice throws

- Throw a 6-side dice 10 times and record the results
 (e.g. use www.random.org/dice)
- Compute the 50% confidence interval for the mean Express it as a range [low, high]

Solution example

$$m_x = \frac{1}{10}(1+6+5+6+1+6+3+1+3+1) = \frac{33}{10} = 3.3$$

 $s_x^2 = \frac{1}{10-1}((1-3.3)^2 + (6-3.3)^2(5-3.3)^2 + \cdots + (1-1)^2) \approx 5.12$

Confidence interval

$$m_x \pm z_{\alpha/2} \cdot \sqrt{\frac{s_x^2}{n}} = 3.3 \pm 0.67 \cdot \sqrt{\frac{5.12}{10}} = 3.3 \pm 0.48$$

$$[2.82, 3.78]$$

The population mean is 3.5 and we expect 50% of the computed confidence intervals to include it

Estimating a proportion

Bernoulli distribution

$$P(k) = \pi^k \cdot (1 - \pi)^{1-k} = \begin{cases} (1 - \pi), & k = 0 \\ \pi, & k = 1 \end{cases}$$

What is the mean and variance?

Estimating a proportion

Bernoulli distribution

$$P(k) = \pi^k \cdot (1 - \pi)^{1-k} = \begin{cases} (1 - \pi), & k = 0 \\ \pi, & k = 1 \end{cases}$$

What is the mean and variance? Mean

$$\mu_k = \sum_{k \in \{0,1\}} P(k) \cdot k$$
$$= \underbrace{(1 - \pi) \cdot 0}_{k=0} + \underbrace{\pi \cdot 1}_{k=1} = \pi$$

Estimating a proportion

Bernoulli distribution

$$P(k) = \pi^k \cdot (1 - \pi)^{1 - k} = \begin{cases} (1 - \pi), & k = 0 \\ \pi, & k = 1 \end{cases}$$

What is the mean and variance? *Mean*

$$\mu_k = \sum_{k \in \{0,1\}} P(k) \cdot k$$
$$= \underbrace{(1-\pi) \cdot 0}_{k-0} + \underbrace{\pi \cdot 1}_{k=1} = \pi$$

Variance

$$\sigma_k^2 = \sum_{k \in \{0,1\}} (k - \mu)^2 \cdot P(k)$$

$$= \underbrace{(0 - \pi)^2 \cdot (1 - \pi)}_{k=0} + \underbrace{(1 - \pi)^2 \cdot \pi}_{k=1}$$

$$= \pi^2 (1 - \pi) + (1 + \pi^2 - 2\pi)\pi$$

$$= \pi^2 - \pi^3 + \pi + \pi^3 - 2\pi^2 = \pi - \pi^2 = \pi(1 - \pi)$$

Confidence interval for proportion

Confidence interval for proportion
$$p = \underbrace{z_{\alpha/2}}_{\text{critical value}} \cdot \underbrace{\sqrt{\frac{p(1-p)}{n}}}_{\text{standard error}}$$

Confidence interval for proportion

- **E**stimate unknown true proportion parameter, π
- \blacksquare Sample *n* observations
- Compute the sample proportion $p = \frac{\#\text{correct}}{n}$
- Choose confidence level, e.g. $1 \alpha = 95\%$, and look up critical value.
- Compute standard error and multiply by critical value

Sample size for proportion

- The equation for the confidence interval can be solved for the sample size
- This gives a formula for the required sample size to give a desired margin of error

Sample size for proportion $n = z_{\alpha/2}^2 \frac{p(1-p)}{e^2}$

- n: Required sample size
- e: Desired margin of error
- α : Significance level

Tasks

Tasks

Tasks today

- Start working on lab report 1: Read description on DTU Learn
- Today's feedback group
 - Magnus Alexander Mollatt van Capel
 - Rasmus Johansen Rieneck
 - Christian Rahbæk Warburg
 - Clara Louise Brodt

Lab report hand in

■ Lab 1: Image recognition (Deadline: Thursday 14 September 20:00)

Next time

 \blacksquare Algorithms. Preparation: Read the note "Algorithms" + solve problems