0.1 Importing necessary libraries

```
import numpy as np
import pandas as pd
```

0.2 Reading the data

data = pd. read_csv("/content/drive/MyDrive/Colab Notebooks/data.csv")

0.3 Describing the data

data. head()

₽		Number of Kids	Working Experience(years)	Age	Salary	Blood Types
	0	3	15.0	45	250000	А
	1	1	5.0	30	200000	В
	2	2	10.0	38	150000	AB
	3	1	NaN	36	180000	0

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4 entries, 0 to 3
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Number of Kids	4 non-null	int64
1	Working Experience(years)	3 non-null	float64
2	Age	4 non-null	int64
3	Salary	4 non-null	int64
4	Blood Types	4 non-null	object

dtypes: float64(1), int64(3), object(1)

memory usage: 288.0+ bytes

0.4 Filling missing data with median

data["Working Experience(years)"].fillna(data["Working Experience(years)"].median(),inplace=True)

data. head()

	Number of Kids	Working Experience(years)	Age	Salary	Blood Types
0	3	15.0	45	250000	А
1	1	5.0	30	200000	В
2	2	10.0	38	150000	AB
3	1	10.0	36	180000	0

data["Working Experience(years)"]=data["Working Experience(years)"].astype(int)

data. head()

	Number of Kids	Working Experience(years)	Age	Salary	Blood Types
0	3	15	45	250000	А
1	1	5	30	200000	В
2	2	10	38	150000	AB
3	1	10	36	180000	0

0.5 Finding Correlation between Number of Kids and Ages, Number of Kids and Working Experience

```
data["Number of Kids"].corr(data["Age"])
     0.9147673836616229
data["Working Experience(years)"].corr(data["Number of Kids"])
     0.8528028654224419
```

0.6 One Hot Vectors

```
blood_types_encoded, categories=data["Blood Types"].factorize()
blood types encoded
     array([0, 1, 2, 3])
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse=False)
blood type cat 1hot = encoder.fit transform(blood types encoded.reshape(-1,1))
blood_type_cat_1hot
```

data.head()

	Number of Kids	Working Experience(years)	Age	Salary	Blood Types
0	3	15	45	250000	А
1	1	5	30	200000	В
2	2	10	38	150000	AB
3	1	10	36	180000	0

one_hot=pd.get_dummies(data,columns=["Blood Types"],drop_first=False,prefix='',prefix_sep='') one hot

	Number of Kids	Working Experience(years)	Age	Salary	A	AB	В	0
0	3	15	45	250000	1	0	0	0
1	1	5	30	200000	0	0	1	0
2	2	10	38	150000	0	1	0	0
3	1	10	36	180000	0	0	0	1

data=data.drop("Blood Types", axis=1)
data

Number of Kids	Working Experience(years)	Age	Salary
0 3	15	45	250000
1 1	5	30	200000
2 2	10	38	150000
3 1	10	36	180000

```
data=data. join(one_hot["A"])
data=data. join(one_hot["B"])
data=data. join(one_hot["AB"])
data=data. join(one_hot["0"])
```

data

	Number of Kids	Working Experience(years)	Age	Salary	A	В	AB	0
0	3	15	45	250000	1	0	0	0
1	1	5	30	200000	0	1	0	0
2	2	10	38	150000	0	0	1	0

0.7 Scaling the data

from sklearn.preprocessing import StandardScaler

data_scaled

	Number of Kids	Working Experience(years)	Age	Salary	Blood Type A	Blood Type B	Blood Type AB	
0	1.507557	1.414214	1.446956	1.510966	1.732051	-0.577350	-0.577350	-
1	-0.904534	-1.414214	-1.353604	0.137361	-0.577350	1.732051	-0.577350	-
2	0.301511	0.000000	0.140028	-1.236245	-0.577350	-0.577350	1.732051	-
3	-0.904534	0.000000	-0.233380	-0.412082	-0.577350	-0.577350	-0.577350	

data_scaled.round(decimals=2)

	Number of Kids	Working Experience(years)	Age	Salary	Blood Type A	Blood Type B	Blood Type AB	Blood Type O
0	1.51	1.41	1.45	1.51	1.73	-0.58	-0.58	-0.58
1	-0.90	-1.41	-1.35	0.14	-0.58	1.73	-0.58	-0.58
2	0.30	0.00	0.14	-1.24	-0.58	-0.58	1.73	-0.58

✓ 0秒 完成时间: 下午6:44