<CS->- <Computer Organization and Assembly Language>

Form number		COURSE OUTLINE / DOCUMENT
COURSE INSTRUCTOR	Name	Muhammad Usama
INFORMATION	Email ID	m.usama@nu.edu.pk

DEGREE	Program	Batch		Sect	ion(s	5)	Semester	FALL
INFORMATION	BSCS	21	Α	В	С		Year	2022

	Course Cate C- Core/ E-Ele		Code	Title	Credit hours
COURSE	С		<u>CS-</u>	<u>COAL</u>	3
INFORMATION	Prereq	uisite(s)	CS-	<u>DLD</u>	4
	TA Required (Yes/ No)	No. of TA(s)		Brief Justification	
	Yes	03			

	7	Γitle	of Book	Assembly Language for x86 Processors		
	Author(s)		hor(s)	Kip R. Irvine		
	Publisher			Pearson		
	7	Γitle	of Book	The Elements of Computing Systems		
TEXT BOOK(s)		Aut	hor(s)	Noam Nisan & Shimon Schocken		
INFORMATION		Pub	lisher	MIT Press		
	7	Γitle	of Book	Assembly Language Programming (Lecture Notes)		
	Author(s)		hor(s)	Belal Hashmi, Junaid Haroon		
	Title of Book		of Book	x86-64 Assembly Language Programming with Ubuntu		
	Author(s)		hor(s)	Ed Jorgensen		
	1.	Title	e of Book			
		Imp	rint details			
	2.	Title	e of Book			
		Imp	rint details			
Reference	3.	Title	e of Book			
Book (s)	-	Imp	rint details			
` ,	al(s)	a.				
	ateria	b.				
	Support Material(s)	C.				
	ldns	d.				

Short Description

This course provides an overview of the architecture and organization of a computer, such as the CPU, memory, I/O organization, peripherals and so on. From this course, students will learn the basics of computer architecture and low-level programming. i.e. assembly code and hardware manipulation.

Description of Course: (not more than 250 words)

This course will focus on the basic concepts of computer architecture and machine instructions; memory access and storage; instruction execution; assembly language; computer organization; data representation and transfer; digital arithmetic; memory storage and addressing methods; procedures and interrupts; conditional processing, and so on.

Assembly language is the foundation language for modern computer applications. This course will introduce the Intel family of computers and its associated assembly language. As you learn assembly language you will also learn about the components of a typical computer system and how the operating system controls these components. Successfully completion of this course will provide students a comprehensive understanding of computer organization and architecture and enable him/her analyze and implement many practical problems with Assembly language.

Course Objectives (CO): (Brief & unambiguous)... at least 5 COs a. tend to describe specific, discrete units of knowledge and skill can be accomplished within a short time frame - still may be relevant for a class period tend to be STATEMENTS OF INTENT; do not necessarily suggest that the behavior has been demonstrate To introduce basic concepts of computer organization with emphasis on the lower-level abstraction of a computer system 1. including instruction set architecture, addressing modes, memory models and assembly language programming. To illustrate the computer organization concepts by Assembly Language programming 2. 3. Introduction to x86 Architecture. 4. Familiarization with Assembly Language directives, macros, operators, and program structures. 5. Learning Programming methodology to be able to create system level software tools and application programs 6. Understanding of interrelationship between hardware and software 7. Comparison between different processors families 8.

Courseware Structu	re: (Mark X where applies)
---------------------------	----------------------------

Lecture (Lect)	Multimedia (MM)	Exercise (s) (Exer)	Labs (Lab)	Case Studies (CAS)	Assignment (s) (Assign)	Group Presentation (G-Pres)	Any other Medium Midterms
х	X	х	Х	X	Х		X

Weeks	Contents/Topics
Week-01	Introduction to the elements of computing systems Review of the combinational logic design (Logic gates and their abstractions, Flipflops and their usage in designing registers, ALU, and RAM)
Week-02	Abstraction to Instruction Introduction to Assembly Language Types of Architectures, Intel Microprocessors, Understanding the first program (Assembler, Linker, and Debugger) Memory models
Week-03	Addressing Modes Data declaration and directives Direct addressing Register indirect addressing Register + offset addressing Other types of addressing modes
Week-04	Branching Conditions Jumps (Types of Jumps) Conditional Jumps
Week-05	Teaching Multiplication to the computer Shifting and rotations Multiplication in assembly Extended multiplication Logical and bitwise operations
Week-06	Revision
Week-07	Stack Intro to stack and subroutines Stack operations
Week-08	Accessing the display memory Display memory and ASCII codes Finding the location in the display memory DIV and MUL instructions
Week-09	String Processing String Instructions with examples
Week-10	Interrupts

Week-11	Software Interrupts Bios and DOS interrupt with examples
Week -12	Revision
Week 13	Real-time Interrupts I/O ports
Week-14	Computer Arithmetic Signed Multiplication
Week-15	Computer Arithmetic Fast Multiplication Integer Division Floating Point Numbers
Week-16	Revision & System on chip

Recommended Web links:		

Grading Criteria							
ABSOLUTE Grading		RELATIVE Grading					

Marks Distribution:

Particulars	% Marks
1. Assignments	10
2. Quizzes	20
3. Mid Term-I	10
4. Mid Term-II	15
6. Final Exam	40
7. Any other-Class performance	5
Total:-	100

Planned Courseware Events:

Particulars	Planned (Qz/As/Labs)	Remarks
1. Quizzes	6	All quizzes announced
2. Assignments/	>2 & <6	
3. Presentations		
4. Labs	< or = 14	Individual Lab Exercises

Academic and Moral Integrity:

All assignments should be your own work (or your group's when approved). PLAGIARISM will be awarded with "F" grade and/or reported to the University for academic and moral misconduct. To protect yourself, ALWAYS PROVIDE REFERENCES!