November 2, 2023

Suppose we want to define the smallest Eigenvalue:

Input: $A, v_0, \text{tol}, \text{matIter}$

Finding the smallest Eigenvalue: If λ_1 is the largest eigenvector of A, then $\frac{1}{\lambda_1}$ is the smallest eigenvalue of A^{-1} . If λ_n is the smallest eigenvalue of A. the $\frac{1}{n}$ is the largest eigenvalue of A^{-1}

We have the means to compute approximations of λ_1 and λ_n

- λ_1 : Use the power method
- λ_n : Use the inverse power method

properties of eigenvalues:

return λ_1 , error;

```
if (\lambda, \nu) an eigen pair, \nu \neq 0. this means A\nu = \lambda \nu. Then for \mu \in \mathbb{R}, (A\nu - \mu I\nu) = (A - \mu I)\nu = \lambda \nu - \mu I\nu = (\lambda - \mu)\nu \rightarrow (\lambda - \mu) is an eigenvalue of (A - \mu I). So, (A - \mu I)\nu = (\lambda - \mu)\nu
```

The idea is choose μ close our eigenvalue. We can use inverse iteration to derive an approximation of $\lambda - \mu$ and then add μ back to get λ .

Iteratively finding eigenvalues:

$$v_0 = a_1v_1 + a_2v_2 + ... + a_nv_n$$

 $A\nu_0=\alpha_1(\lambda_1\nu_1)+\alpha_2(\lambda_2\nu_2)+...+\alpha_n(\lambda_n\nu_n)$