Problem

Let $\Sigma = \{0,1\}$. Let C_1 be the language of all strings that contain a 1 in their middle third. Let C_2 be the language of all strings that contain two 1s in their middle third.

So $C_1 = \{xyz | x, z \in \Sigma^* \text{ and } y \in \Sigma^* \mathbf{1}\Sigma^*, \text{ where } |x| = |z| \ge |y| \}$ and $C_2 = \{xyz | x, z \in \Sigma^* \text{ and } y \in \Sigma^* \mathbf{1}\Sigma^* \mathbf{1}\Sigma^*, \text{ where } |x| = |z| \ge |y| \}.$

- a. Show that C₁ is a CFL.
- **b.** Show that C_2 is not a CFL.

Step-by-step solution

Step 1 of 7

A language L is said to be **context-free** if there exist some integer $q \ge 1$ (it is also known as pumping length) in such a way that all the string S in L which is equal or longer than q symbols or $|S| \ge q$.

It can be written as S = abcde with substring a,b,c,d and e such that

- 1. $|bcd| \le q$
- 2. $|bd| \ge 1$, and
- 3. $ab^x cd^x e$ is in L for all $x \ge 0$.

Comment

Step 2 of 7

a.

Consider the language $C_{\rm l}$ which is given below:

$$C_1 = \left\{ xyz \mid x, z \in \sum^* and \ y \in \sum^* 1\sum^*, where \mid x \mid = \mid z \mid \geq y \right\}, \text{ where } \Sigma = \left\{ 0, 1 \right\}$$

Now, a Push down automata needs to construct which help in determining the language C_1 . The PDA M that recognizes C_1 is $Q, \sum \frac{1}{3}, \Gamma, \delta, q_0, F)$, where:

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0,1\}$$

$$\Gamma = \{x\}$$

$$F = \{q_2\}$$

Comment

Step 3 of 7

The transition functions $\,\delta\,$ of the represented in a tabular format:

Input:	0		1		ε	
Stack:	х	ε	x	ε	х	ε
$q_{\scriptscriptstyle 0}$	$\{(q_0,xx)\}$	$\{(q_0, x)\}$	$\{(q_0,xx)\}$	$\{(q_0, x)\}$	$\{(q_1,x)\}$	
q_1	$\{(q_1, \varepsilon)\}$		$\{(q_2, \varepsilon)\}$			
q_2	$\{(q_2, \varepsilon)\}$		$\{(q_2, \varepsilon)\}$			

Comment

Step 4 of 7

The state diagram for the PDA M is given below:

Hence from the above explanation it can be said that there exists a Turing machine which accepts the given language.

Hence, C_1 is a context free language.

Comments (4)

Step 5 of 7

b

Now consider the language C_2 that accepts all the string that contains two 1's in their middle of the string. The language C_2 can be defined as:

$$C_2 = \left\{ xyz \mid x, z \in \sum^* and \ y \in \sum^* 1\sum^* 1\sum^*, where \mid x \mid = \mid z \mid \ge y \right\}$$

Now, using a pumping lemma to show Language $\ ^{C_{2}}$ is not CFL.

Let as assume that C_2 is CFL and obtain a contradiction.

Let pumping length of the pumping lemma is p.

Let select a string $S = 0^{p+2}10^{p}10^{p+2}$ of given language.

Comment

Step 6 of 7

Let, divide S into five pieces S = uvxyz, it must satisfy the conditions according to the pumping lemma,

- 1. For each $i \ge 0$, $uv^i x y^i z \in C_2$,
- 2. |vy| > 0, and
- 3. $|vxy| \le p$

Where

$$u=0^{p+2}$$

$$v=1$$

$$x = 0^{\mu}$$

$$v = 1$$

$$z = 0^{p+2}$$

Comments (1)

Step 7 of 7

Let
$$i = 1$$

After pumping, string becomes $S = 0^{p+2}10^{p}10^{p+2}$.

According to the pumping lemma third condition, new string $|10^p1| \le p$ becomes fails, that means, length of the vxz is greater than the pumping length p, i.e. $|vxy| \le p$.

Hence, C_2 is not context free language.