Useful (anti)Commutation Relation

陈鸿翔 (Taper)

October 30, 2016

${\bf Abstract}$

none

Contents

1 General

2	2nd Quantization 2.1 Boson 2.2 Fermion	
1	General	
	$[A,B] \equiv AB - BA$	(1.0.1)
	$\{A,B\} \equiv AB + BA$	(1.0.2)
	[AB, C] = A[B, C] + [A, C]B	(1.0.3)
	$= A\{B,C\} - \{A,C\}B$	(1.0.4)
	[C, AB] = -[AB, C]	(1.0.5)
	= A[C, B] + [C, A]B	(1.0.6)
	$= \{C, A\}B - A\{C, B\}$	(1.0.7)

2nd Quantization $\mathbf{2}$

2.1Boson

$$n_{\alpha} \equiv a_{\alpha}^{\dagger} a_{\alpha} \tag{2.1.1}$$

$$[a_{\alpha}, a_{\beta}] = [a_{\alpha}^{\dagger}, a_{\beta}^{\dagger}] = 0 \tag{2.1.2}$$

$$[a_{\alpha}, a_{\beta}^{\dagger}] = \delta_{\alpha\beta} \tag{2.1.3}$$

Fermion 2.2

$$n_{\alpha} \equiv c_{\alpha}^{\dagger} c_{\alpha} \tag{2.2.1}$$

$$\{c_{\alpha}, c_{\beta}\} = \{c_{\alpha}^{\dagger}, c_{\beta}^{\dagger}\} = 0$$

$$\{c_{\alpha}, c_{\beta}^{\dagger}\} = \delta_{\alpha\beta}$$

$$(2.2.2)$$

$$\{c_{\alpha}, c_{\beta}^{\dagger}\} = \delta_{\alpha\beta}$$

$$(2.2.3)$$

$$\{c_{\alpha}, c_{\beta}^{\dagger}\} = \delta_{\alpha\beta} \tag{2.2.3}$$

$$\{n_{\alpha}, c_{\alpha}\} = c_{\alpha} \tag{2.2.4}$$

$$\{n_{\alpha}, c_{\alpha}^{\dagger}\} = c_{\alpha}^{\dagger} \tag{2.2.5}$$

References

[1] No books.