→ DATA VISUALIZATION

import seaborn as sns
import matplotlib.pyplot as plt

STEP-1 IMPORT LIBRARIES

▼ STEP-2 LOAD DATASET

mpg=sns.load_dataset("mpg")
mpg.head()

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

▼ STEP-3 PLOT A GRAPH

```
sns.lineplot(x="acceleration",y="displacement",data=mpg)
plt.xlim(2)
plt.ylim(3)
plt.title("2022 session transportation")
```

Text(0.5, 1.0, '2022 session transportation')

→ BAR PLOT

sns.barplot(x="cylinders",y="origin",data=mpg)

<Axes: xlabel='cylinders', ylabel='origin'>

cylinders

→ BOX PLOT

sns.boxplot(x="name",y="mpg",data=mpg)

<Axes: xlabel='name', ylabel='mpg'>

▼ SCATTER PLLOT

sns.scatterplot(x="model_year",y="horsepower",data=mpg)

<Axes: xlabel='model_year', ylabel='horsepower'>

▼ CAT PLOT

/51 # 1 8 4 # # # # #

sns.catplot(x="name",y="cylinders",data=mpg,color="red")

← <seaborn.axisgrid.FacetGrid at 0x7f00418da5f0>

