Structural Concepts Fundamental Operations Additional Operations Extended Operations Null Values Database Modificat

Chapter 2 Relational Model

Tian Tang United International College

- Used by all major commercial database systems
- Very simple model
- Query with high-level languages: simple yet expressive
- Efficient implementations

- Structural Concepts & Terminology of Relational Databases
- Relational Algebra Operations
 - Fundamental Relational-Algebra-Operations
 - Additional Relational-Algebra-Operations
 - Extended Relational-Algebra-Operations
- Null Values
- Modification of the Database

- Database: a set of named relations (or table)
- Each relation has a set of named attributes (or columns), $A_1, A_2, ..., A_m$.
- Each tuple (or row) has a value for each attribute, $t_1, t_2, ..., t_m$. The order of tuples is irrelevant.

Table: Student

ID	Name	Gender	GPA
123	Richard	М	3.9
234	Grace	F	3.4

Table: College

Name	Location	Enrollment
UIC	Zhuhai	7,500
HKUST	Hong Kong	14,208
HKBU	Hong Kong	8,266

- Each attribute has a type (or domain).
 - Integer, string, float, enumerate, · · ·
 - Attribute values are (normally) required to be atomic, which means the value stored is indivisible, e.g., cannot be a set of account numbers.
 - Domain is atomic if all its members are atomic.

Table: Student

 ID
 Name
 Gender
 GPA

 123
 Richard
 M
 3.9

 234
 Grace
 F
 3.4

 ...
 ...
 ...
 ...

Table: College

Name	Location	Enrollment
UIC	Zhuhai	7,500
HKUST	Hong Kong	14,208
HKBU	Hong Kong	8,266
	• • •	• • •

• Schema - structural description of relations in database, including name of relations, attributes and types, denoted as $R = (A_1, A_2, ..., A_m)$. r(R) denotes a relation on the relation schema R.

Table: Student

ID	Name	Gender	GPA
123	Richard	М	3.9
234	Grace	F	3.4

Table: College

Name	Location	Enrollment
UIC	Zhuhai	7,500
HKUST	Hong Kong	14,208
HKBU	Hong Kong	8,266

• Instance - actual contents of the table at a given point of time, consists of the tuples in the relation

Table: Student

ID	Name	Gender	GPA
123	Richard	М	3.9
234	Grace	F	3.4

Table: College

Name	Location	Enrollment
UIC	Zhuhai	7,500
HKUST	Hong Kong	14,208
HKBU	Hong Kong	8,266
		• • •

• NULL - special value for unknown or undefined

Table: Student

ID	Name	Gender	GPA
123	Richard	М	3.9
234	Grace	F	3.4
345	Bob	М	Null

Table: College

Name	Location	Enrollment
UIC	Zhuhai	7,500
HKUST	Hong Kong	14,208
HKBU	Hong Kong	8,266

Student with GPA> 3.5? Student with GPA \geq 3.5? All Student?

- Key attribute whose value is unique in each tuple, or set of attributes whose combined values are unique.
 - Identify specific tuples
 - Database system build special index structures to access tuple by key
 - Refer tuples in another relation

Table: Student

ID	Name	Gender	GPA
123	Richard	М	3.9
234	Grace	F	3.4
345	Bob	М	Null

Table: College

Name	Location	Enrollment
UIC	Zhuhai	7,500
HKUST	Hong Kong	14,208
HKBU	Hong Kong	8,266

- Superkey A set of attributes that uniquely identifies each tuple in a relation
- Candidate key A "minimal superkey"
- Primary Key A candidate key that is most appropriate to become the main key of the relation. A key uniquely identify each tuple in a relation

Table: Student

ID	Name	Gender	GPA	Nationality
123	Richard	М	3.9	Chinese
234	Grace	F	3.4	Chinese
345	Bob	М	Null	USA

 $\label{eq:condition} $$\sup_{ID}, {ID}, {Name}, {GPA}, {Name,Gender,GPA},...$$ $$\operatorname{Candidate key-{ID},{Name},{GPA},...}$$ $$\operatorname{Primary Key-{ID}}$$$

- Secondary key-The candidate key which are not selected for primary key
- Foreign key-An attribute or combination of attributes in one table whose value must either match the primary key in another table or be null.

Table: Student

ID	Name	Gender	GPA	Nationality
123	Richard	М	3.9	Chinese
234	Grace	F	3.4	Chinese
345	Bob	М	Null	USA

Secondary key-{Name,Gender,GPA} Foreign key-{Nationality}

- 1. Given a relation r defined over the schema R, which of the following can always uniquely identify the tuples in r?
 - A. any non-null attributes of R
 - B. super key of R
 - C. the first attribute in R
 - D. R itself
- 2. Given the following relation, list all candidate keys and superkeys.

P	-) -		
Α	В	C	D
A1	B1	C1	D1
A1	B2	C2	D1
A2	B1	C2	D1

- Steps in creating and using a (relational) database
 - Design schema; create using Data Definition Language (DDL)
 - "Bulk load" initial data
 - Repeat: execute queries and modifications

- Computer languages used to make queries in database
- Categories of programming languages
 - Procedural, specifies a series of well-structured steps and procedures to compose a program
 - Non-procedural, or declarative, expresses the logic of a computation without describing its control flow
- Two formal query languages of relational model, form the base for real languages:
 - Relational algebra: procedural, very useful for representing execution plans, foundation for SQL
 - Relational calculus: declarative, lets users describe what they want, rather than how to compute it, e.g, QBE and Datalog

- Algebra in general is a pair (s, o), where
 - s is a set of operands, and
 - o is a set of operators (unary or multiary).
- For example, linear algebra.
- Queries in relational algebra are composed into a sequence of operands and operators.
 - Operators in this course is limited to unary (take one operand) or binary (two arguments).
- Every operator take one or two relations as operands and produce a new relation as the result.
- Categories:
 - Fundamental operations of relational algebra
 - Additional operations of relational algebra
 - Extended operations of relational algebra

Select Operation

- Select Operation (σ) selects tuples that satisfy the given predicate from a relation, denoted as $\sigma_p(r)$,
 - p is called the selection predicate, user defined conditions.
- Notation:

$$\sigma_p(r) = \{t | t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional logic formula consisting of term connected by: \land (and), \lor (or), \neg (not) Each term is in the form of:

$$<$$
 attribute $>$ **op** $<$ attribute $>$ or $<$ constant $>$

where **op** is one of: $=, \neq, >, \geq, <, \leq$

• Example of selection:

$$\sigma_{GPA>3.5}(Student)$$

Relation r

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

• $\sigma_{A=B\wedge D>5}(r)$

Α	В	С	D
α	α	1	7
β	β	23	10

Project Operation

- Project operation ∏ deletes unwanted columns from relation.
- Notation:

$$\prod_{A_1,A_2,\ldots,A_m}(r)$$

where $A_1, A_2, ..., A_m$ are attribute names of relation r.

- The result is defined as the relation of *k* columns, obtained by erasing the columns that are not listed.
- Duplicate rows are removed from the result automatically.
- Example: To eliminate the gender attribute of Students:

$$\prod_{ID,Name,GPA}(r)$$

• Intuitively, this operator is same as projecting a 3-D object to a 2-D plain.

• Relation r

Α	В	С
α	10	1
α	20	1
β	30	1
β	40	2

• $\prod_{A,C}(r)$

$$\begin{array}{c|c} \mathbf{A} & \mathbf{C} \\ \hline \alpha & 1 \\ \hline \alpha & 1 \\ \hline \beta & 1 \\ \hline \beta & 2 \\ \end{array} = \begin{array}{c|c} \mathbf{A} & \mathbf{C} \\ \hline \alpha & 1 \\ \hline \beta & 1 \\ \hline \beta & 2 \\ \end{array}$$

Union Operation

- Union operation (\cup) performs binary union between two given relations, denoted as $r \cup s$
- Notation:

$$r \cup s = \{t | t \in r \text{ or } t \in s\}$$

where r and s are either database relations or relation result set

- For $r \cup s$ to be valid:
 - 1. r, s must have the same number of attributes
 - 2. The attribute domains must be compatible
- Example: To find all customers with either an account or a loan:

$$\prod_{customer_name} (depositor) \cup \prod_{customer_name} (borrower)$$

• Relation r, s

r: $\begin{vmatrix} \mathbf{A} & \mathbf{B} \\ \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \end{vmatrix}$

s: $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \alpha & 2 \\ \beta & 3 \end{bmatrix}$

• r ∪ s:

Α	В
α	1
α	2
β	1
β	3

Set Difference Operation

- ullet Result of set difference (-) operation is tuples, which are present in the first relation but not in the second relation, denoted as r-s
- Notation:

$$r-s=\{t|t\in r \text{ and } t\notin s\}$$

- Set differences must be taken between compatible relations.
 - r and s must have the same number of attributes
 - attribute domains of r and s must be compatible
- Example: to find all customers with an account but no loan:

$$\prod_{customer_name} (depositor) - \prod_{customer_name} (borrower)$$

Set Difference Operation-Example

• Relation r, s

	Α	В
۲.	α	1
r:	α	2
	β	1

s:
$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \alpha & 2 \\ \beta & 3 \end{bmatrix}$$

• r − s:

$$\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \alpha & 1 \\ \beta & 1 \end{array}$$

Cartesian-Product Operation

- ullet Combines information of two different relations into one, denoted as $r \times s$
- Notation:

$$r \times s = \{ \langle t, q \rangle | t \in r \text{ and } t \in s \}$$

return a relation whose schema contains all the fields of r followed by all the fields of s.

- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.
 - Naming conflict might appear

• Relation r, s

r: $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \alpha & 1 \\ \beta & 2 \end{bmatrix}$

r × s:

Α	В	С	D	Е
α	1	α	10	а
α	1	β	10	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

25 / 76

Rename Operation

- ullet Allows us to rename the output relation, denoted as ρ .
- Notation:

$$\rho_{X(A_1,A_2,\ldots,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to $A_1, A_2, ..., A_n$

- Rename the expression name: $\rho_X(E)$
- Rename the given attributes of the expression:

$$\rho_{X(B_1 \rightarrow A_1, B_2 \rightarrow A_2, \dots, B_k \rightarrow A_k)}(E)$$

• Example: $\rho_{UICStudent(ID \rightarrow Student_ID, Name \rightarrow Student_Name)}(Student)$

• Relation r:

Α	В
α	1
β	2

• $\rho_{A\to C,B\to D}(E)$

С	D
α	1
β	2

- Can build expressions using multiple operations
- Since the result of any relational algebra operation is a relation, again, this intermediate result may be the input for a subsequent operation
- Example: $\sigma_{A=C}(r \times s)$

	Α	В
:	α	1
	β	2

	С	D	Ε
	α	10	а
:	β	10	а
	β	20	b
	γ	10	b

Composition of Operations

- Can build expressions using multiple operations
- Since the result of any relational algebra operation is a relation, again, this intermediate result may be the input for a subsequent operation
- Example: $\sigma_{A=C}(r \times s)$

 $q = t \times s$:

Α	В	C	D	E
α	1	α	10	а
α	1	β	10	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)

depositor (customer_name, account_number) borrower (customer_name, loan_number)

• Find all loans of over \$1200

$$\sigma_{amount>1200}(loan)$$

• Find the loan number for each loan of an amount greater than \$1200

$$\prod_{loan_number} (\sigma_{amount>1200}(loan))$$

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)
borrower (customer_name, loan_number)

• Find the names of all customers who have a loan, an account, or both, from the bank

 $\prod_{customer_name}(borrower) \cup \prod_{customer_name}(depositor)$

Example Queries

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

- Find the names of all customers who have a loan at the Perryridge branch
 - Query 1

```
\prod_{\textit{customer\_name}} (\sigma_{\textit{branch\_name}="Perryridge"} \\ (\sigma_{\textit{borrower.loan\_number}=loan.loan\_number} (\textit{borrower} \times \textit{loan})))
```

Query 2

$$\prod_{customer_name} (\sigma_{loan.loan_number=borrower.loan_number} (\sigma_{branch_name="Perryridge"}(loan \times borrower)))$$

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

 Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank

```
    \prod_{\textit{customer\_name}} (\sigma_{\textit{branch\_name}} = \text{``Perryridge''} \\ (\sigma_{\textit{borrower.loan\_number}} = \text{loan.loan\_number} (\textit{borrower} \times \textit{loan}))) \\ - \prod_{\textit{customer\_name}} (\textit{depositor})
```

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

- Find the largest account balance
 - strategy:
 - Find those balances that are not the largest
 - Rename account relation as d so that we can compare each account balance with all others
 - Use set difference to find those account balances that were not found in the earlier step.

 $\prod_{\textit{balance}}(\textit{account}) - \prod_{\textit{account.balance}} (\sigma_{\textit{account.balance}}(\textit{account} \times \rho_d(\textit{account})))$

- Structural Concepts & Terminology of Relational Databases
- Relational Algebra Operations
 - Fundamental Relational-Algebra-Operations
 - Additional Relational-Algebra-Operations
 - Extended Relational-Algebra-Operations
- Null Values
- Modification of the Database

- Additional algebra are defined in terms of the fundamental operations. They do not add power to the algebra, but are useful to simplify common queries
 - Set Intersection
 - Natural join
 - Division
 - Assignment

Set-Intersection Operation

- Set intersection is denoted by ∩, returns a relation that contains tuples that are in both of its argument relations
- Notation:

$$r \cap s = \{t | t \in r \text{ and } t \in s\}$$

- Assume:
 - r, s have the same arity (number of attributes)
 - attributes of r and s are compatible
- Note: $r \cap s = r (r s)$

Set-Intersection Operation-Example

• Relation r, s:

r:
$$\begin{vmatrix} \mathbf{A} & \mathbf{B} \\ \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \end{vmatrix}$$

s:
$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \alpha & 2 \\ \beta & 3 \end{bmatrix}$$

 \circ $r \cap s$

Natural-Join Operation

- Natural join combines a Cartesian product and a selection into one operation, denoted as \bowtie
- Notation:

 $r \bowtie s$, where r and s be relations on schemas R and S. Then, the result is a relation on Schema $R \cup S$, obtained as follows:

- Consider each of of tuples t_r from r and t_s from s
- If t_r and t_s have same value on each of attributes of $R \cap S$, add a tuple t to the result, where 1.t has same value as t_r on R

 - 2.t has same value as t_s on S
- Example: R = (A, B, C, D) and S = (E, B, D)
 - Result schema = (A,B,C,D,E)
 - $r \bowtie s$ is defined as:

$$\prod_{B \cup S} (\sigma_{r.B=s.B \land r.D=s.D}(r \times s))$$

Natural Join Operation-Example

• Relation r, s:

	Α	В	С	D
	α	1	α	а
	β	2	γ	а
•	γ	4	β	b
	α	1	γ	а
	δ	2	β	b

	В	ט	E
	1	а	α
۲.	3	а	β
S:	1	а	γ
	2	b	δ
	3	b	ϵ

 \circ $r \bowtie s$

Α	В	С	D	Е
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

Division Operation

- Suited to queries that include the phrase "for all", denoted as $r \div s$.
- Let r and s be relations on schemas R and S, where
 - $R = (A_1, A_2, \cdots, A_m, B_1, B_2, ..., B_n)$
 - $S = (B_1, B_2, \cdots, B_n)$
 - The result of $r \div s$ is a relation on schema of $R S = (A_1, A_2, ..., A_m)$
 - The tuple t is in $r \div s$ if for every tuple t_s in s, there is a tuple t_r in r satisfying both of the following:
 - 1. $t_r[S] = t_s[S]$
 - 2. $t_r[R S] = t$
 - $r \div s$ can be expressed using fundamental operations $r \div s = \{t | t \in \prod_{R-S}(r) \text{ and } \forall u \in s(tu \in r)\}$, where tu means the concatenation of tuples t and u to produce a single tuple

• Relation r, s:

• $r \div s$: $\begin{bmatrix} \mathbf{A} \\ \alpha \\ \beta \end{bmatrix}$

• Relation r, s:

	Α	В	С	D	E
	α	а	α	а	1
	α	а	γ	а	1
	α	а	γ	b	1
r:	β	а	γ	а	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	а	γ	b	1
	γ	а	β	b	1

•
$$r \div s$$
: $\begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \\ \alpha & \mathbf{a} & \gamma \\ \gamma & \mathbf{a} & \gamma \end{bmatrix}$

Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query
 - Assignment must always be made to a temporary relation variable
- Example: Write $r \div s$ as

$$temp1 \leftarrow \prod_{R-S}(r)$$

$$temp2 \leftarrow \prod_{R-S}((temp1 \times s) - r)$$

$$result = temp1 - temp2$$

- \bullet The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow
- May use variable in subsequent expressions

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

• Find the names of all customers who have a loan and an account at bank

$$\prod_{customer_name}(borrower) \cap \prod_{customer_name}(depositor)$$

• Find the names of all customers who have a loan at the bank and the loan amount

 $\prod_{customer_name,amount}(borrower \bowtie loan)$

Bank Example Queries

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

- Find the names of all customers who have an account from at least the "Downtown" and the "Uptown" branches
 - Query 1

```
\prod_{\substack{\textit{customer\_name}}} (\sigma_{\textit{branch\_name}="Downtown"}(\textit{depositor} \bowtie \textit{account})) \cap \\ \prod_{\substack{\textit{customer\_name}}} (\sigma_{\textit{branch\_name}="Uptown"}(\textit{depositor} \bowtie \textit{account}))
```

• Query 2

 $\prod_{\textit{customer_name}} ((\textit{depositor} \bowtie \textit{account}) \div \\ \rho_{\textit{temp(branch_name)}}(\{("\textit{Downtown"}), ("\textit{Uptown"})\}))$

Note that Query 2 use a constant relation.

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

• Find the names of all customers who have an account at all branches located in Brooklyn city

```
\prod_{\textit{customer}\_name} ((\textit{depositor} \bowtie \textit{account}) \div \prod_{\textit{branch}\_name} (\sigma_{\textit{branch}\_city} = "\textit{Brooklyn''}(\textit{branch})))
```


- Structural Concepts & Terminology of Relational Databases
- Relational Algebra Operations
 - Fundamental Relational-Algebra-Operations
 - Additional Relational-Algebra-Operations
 - Extended Relational-Algebra-Operations
- Null Values
- Modification of the Database

- Relational algebra operations have been extended in various ways
 - More generalised
 - More useful
- Three major extensions:
 - Generalized projection
 - Aggregate functions
 - Additional join operations
- All of these appear in SQL standards

Generalized Projection

• Extends the projection operation by allowing arithmetic functions to be used in the projection list

$$\prod_{F_1,F_2,\ldots,F_n}(E)$$

- E is any relational-algebra expression.
- Each of $F_1, F_2, ..., F_n$ is an arithmetic expressions involving constants and attributes in the schema of E
- Example:
 - Given relation <code>credit_info(customer_name, limit, credit_balance)</code>, find how much more each person can spend:

$$\prod_{customer_name,limit_credit_balance} (credit_info)$$

Apply rename:

 $\prod_{customer_name, limit-credit_balance \rightarrow credit_available} (credit_info)$

Aggregate Functions and Operations

- Aggregate function takes a collection of values and returns a single value as a result
 - Duplicates are not eliminated
- Common aggregate functions:
 - avg: average value
 - min: minimum value
 - max: maximum value
 - sum: sum of values
 - count: number of values
- Notation:

$$g_{F_1(A_1),\ldots,F_n(A_n)}(E)$$

- E is any relational-algebra expression
- Each F_i is an aggregate function applied to attribute A_i of E

Aggregate Functions and Operations

- Grouping. Sometimes need to compute aggregates on a per-item basis
- Back to College relation
 - What is the average enrolment of colleges in each location?
 - How many colleges in each location?
- Steps:
 - Input relation College is grouped by unique values of Location
 - average(enrolment) and count(name) are applied to each group
- Notation:

$$G_1, G_2, ..., G_k g_{F_1(A_1), ..., F_n(A_n)}(E)$$

- E is any relational-algebra expression.
- Each F_i is an aggregate function applied to attribute A_i .
- $G_1, G_2, ..., G_k$ is a list of attributes on which to group.

• Relation r:

Α	В	С
α	α	7
α	β	7
β	β	3
β	β	10

• $g_{sum(c)}(r)$:

• $g_{count(c)}(r)$:

• Relation account grouped by branch-name:

branch_name	account_name	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

 $branch_name$ gsum(balance)(account)

branch_name	sum(balance)
Perryridge	1300
Brighton	1500
Redwood	700

- Result of aggregation does not have a name
 - Can use rename operation to give it a name
 - For convenience, we permit renaming as part of aggregate operation

 $branch_name g_{sum}(balance)$ as $sum_balance(account)$

branch_name	sum_balance
Perryridge	1300
Brighton	1500
Redwood	700

- An extension of the join operation that avoids loss of information
- Natural join requires that both left and right tables have a matching tuple
- Computes the join and then adds tuples from one relation that does not match tuples in the other relation to the result
- Missing information is represented by NULL values
- Categories:
 - Left outer join
 - Right outer join
 - Full outer join

• Left outer join

 $r \bowtie s$

1.If a tuple t_r in r does not match any tuple in s, result contains $\{t_r, null, ..., null\}$

2.If a tuple t_s in s doe not match any tuple in r, it is excluded.

• Right outer join

 $r \bowtie s$

1.If a tuple t_r does not match any tuple in s, it is excluded 2.If a tuple t_s does not match any tuple in r, result contains $\{t_s, null, ..., null\}$

• Full outer join

 $r \bowtie s$

Includes tuples from t_r that does not match s as well as t_s that does not match r

• Relation *loan*

loan_number	branch_name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

• Relation borrower

customer_name	loan_number
Jones	L-170
Smith	L-230
Hayes	L-155

Join

loan ⋈ borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

• Left Outer Join

loan ⋈ borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null

• Right Outer Join

loan ⋈ borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

• Full Outer Join

loan ⋈ borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

- Structural Concepts & Terminology of Relational Databases
- Relational Algebra Operations
 - Fundamental Relational-Algebra-Operations
 - Additional Relational-Algebra-Operations
 - Extended Relational-Algebra-Operations
- Null Values
- Modification of the Database

- It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- null signifies an unknown value or that a value does not exist
- The result of any arithmetic expression involving *null* is *null*
- Aggregate functions simply ignore null values (as in SQL)
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)

- Comparisons with null values return the special truth value: unknown
- Three-valued logic using the truth value *unknown*:
 - OR:(unknown or true)=true, (unknown or false)=unknown, (unknown or unknown)=unknown
 - AND: (true and unknown)=unknown, (false and unknown)=false, (unknown and unknown)=unknown
 - NOT:(not unknown)=unknown
 - In SQL P is unknown evaluates to true if predicate P evaluates to unknown
- For each relational operation, need to specify behaviour w.r.t. null and unknown

- Result of select predicate is treated as false if it evaluates unknown
 - $\sigma_P(r)$ -if P evaluates to unknown for a tuple, the tuple is excluded from the result.
- Natural join. Tuples are excluded if common attribute has a null value
- Project. Null value is treated like any other value.
- Grouping, Union, Intersection and Difference, null value is treated like any other value
- Aggregation
 - Null value is removed from the input multiset before the function is applied
 - If aggregate function gets an empty multiset for input, the result is null (except for count, count returns 0)

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

• $g_{sum(amount)}(r)$

Sum(amount) 10,000

• $g_{count(amount)}(r)$

Count(amount)
3

- Structural Concepts & Terminology of Relational Databases
- Relational Algebra Operations
 - Fundamental Relational-Algebra-Operations
 - Additional Relational-Algebra-Operations
 - Extended Relational-Algebra-Operations
- Null Values
- Modification of the Database

- The content of the database may be modified using the following operations:
 - Deletion
 - Insertion
 - Updating
- ullet All these operations are expressed using the assignment operator (\leftarrow)

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$r \leftarrow r - E$$

where r is a relation and E is a relational algebra query

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

• Delete all account records in the Perryridge branch

$$account \leftarrow account - \sigma_{branch_name="perryridge"}(account)$$

• Delete all loan records with amount in the range of 0 to 50

$$loan \leftarrow loan - \sigma_{amount \geq 0}$$
 and $amount \leq 50 (loan)$

Deletion Examples

```
branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)
```

Delete all accounts at branches located in Needham (reference key)

```
r_1 \leftarrow \sigma_{branch\_city="Needham"}(account \bowtie branch)
r_2 \leftarrow \prod_{account\_number,branch\_name,balance}(r_1)
r_3 \leftarrow \prod_{customer\_name,account\_number}(r_2 \bowtie depositor)
account \leftarrow account - r_2
depositor \leftarrow depositor - r_3
```

- To insert data into a relation, we either:
 - specify a tuple to be inserted
 - write a query whose result is a set of tuples to be inserted
- In relational algebra, an insertion is expressed by:

$$r \leftarrow r \cup E$$

where r is a relation and E is a relational algebra expression

• The insertion of a single tuple is expressed by letting *E* be a constant relation containing one tuple

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

• Insert information in the database specifying that Smith has \$1200 in account A-973 at the Perryridge branch

$$account \leftarrow account \cup \{("A - 973", "Perryridge", 1200)\}$$

 $depositor \leftarrow depositor \cup \{("Smith", "A - 973")\}$

Insertion Examples

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

 Provide as a gift for all loan customers in the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account

$$r_1 \leftarrow \sigma_{branch_name="Perryridge"}(borrow \bowtie loan)$$

$$account \leftarrow account \cup \prod_{loan_number,branch_name,200}(r_1)$$

$$depositor \leftarrow depositor \cup \prod_{customer_name,loan_number}(r_1)$$

- A mechanism to change a value in a tuple without charging *all* values in the tuple
- Use the generalized projection operator to do this task

$$r \leftarrow \prod_{F_1, F_2, \dots, F_l} (r)$$

- Each F_i is either
 - ullet the I^{th} attribute of r, if the I^{th} attribute is not updated, or,
 - if the attribute is to be updated F_i is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

• Make interest payments by increasing all balances by 5 percent

$$account \leftarrow \prod_{account_number, branch_name, balance \times 1.05} (account)$$

 Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent

```
 \begin{array}{l} \textit{account} \leftarrow \\ \prod_{\textit{account\_number,branch\_name,balance} \times 1.06} (\sigma_{\textbf{BAL} > 10000}(\textit{account})) \\ \cup \prod_{\textit{account\_number,branch\_name,balance} \times 1.05} (\sigma_{\textbf{BAL} \leq 10000}(\textit{account})) \end{array}
```