Table 1: Table: Summary Statistics by 30-Day Complication Status

| Variable                 | No Complication $N = 927^1$ | Complication $N = 73^1$ | $\overline{\mathbf{p}}$ -value <sup>2</sup> |
|--------------------------|-----------------------------|-------------------------|---------------------------------------------|
| Age                      | 59.22 (14.06)               | 65.99 (12.11)           | < 0.001                                     |
| BMI                      | 27.00 (4.69)                | 27.49 (5.11)            | 0.6                                         |
| Surgery_Duration_Minutes | 95.95 (39.79)               | 113.55 (47.64)          | 0.001                                       |
| Estimated_Blood_Loss     | 126.47 (98.13)              | 143.85 (107.14)         | 0.2                                         |

 $<sup>^{1}</sup>$ Mean (SD)

# Complication Risk Model: SDSC Analytic Pitch

Walker Blackston, MSPH

2025-04-04

## Background

To demonstrate how I think through surgical outcome prediction and statistical problems, I built a prototype risk model for 30-day complications based on simulated surgical data.

In this hypothetical dataset of 1,000 patients, we sought to compare predictors of complications at 30-days follow up from surgery. We simulated a variety of demographic and clinical variables based on seeds of real-world data and expected distributions in a random sample of patients. The following brief will highlight steps in the analysis, modeling and interpretation of findings. A full printout of code used to generate data and this document are available in the Github provided in my pitch.

### **Data Summary**

These data suggest relatively balanced groups for those with and without complications within 30 days post-op, except that those experiencing complications are more likely to be older (p < .001), experience a longer surgery (p < .01) and experience intra-operative events (p < .01).

Visualizing these data can help us understand these relationships more clearly.

<sup>&</sup>lt;sup>2</sup>Wilcoxon rank sum test

Table 2: Table: Procedure, Events and ASA class by 30-Day Complication Status

| Procedure Type        | No Complication $N = 927^1$ | Complication $N = 73^1$ | p-value <sup>2</sup> |
|-----------------------|-----------------------------|-------------------------|----------------------|
| Procedure_Type        |                             |                         | 0.2                  |
| Appendectomy          | 128 (14%)                   | 13 (18%)                |                      |
| Colectomy             | 242 (26%)                   | 13 (18%)                |                      |
| Gastrectomy           | 80 (8.6%)                   | 10 (14%)                |                      |
| Hernia Repair         | 183 (20%)                   | 18 (25%)                |                      |
| Lap Chole             | $294\ (32\%)$               | 19 (26%)                |                      |
| Intraoperative_Events | 138 (15%)                   | 21 (29%)                | 0.002                |
| ASA_Class             | ` '                         | ,                       | 0.039                |
| 1                     | 83 (9.0%)                   | 8 (11%)                 |                      |
| 2                     | 290 (31%)                   | 18(25%)                 |                      |
| 3                     | 352(38%)                    | 22 (30%)                |                      |
| 4                     | 159 (17%)                   | 16 (22%)                |                      |
| 5                     | $43\ (4.6\%)$               | 9 (12%)                 |                      |

<sup>&</sup>lt;sup>1</sup>n (%)

# Exploring the data



<sup>&</sup>lt;sup>2</sup>Pearson's Chi-squared test; Fisher's exact test

## **Predictive Modeling**

#### Logistic Model

In order to best predict post-op complications, we want to build a series of robust, interpretable models. Often prediction can come at the expense of interpretability, so in this case we first want to build an explainable logistic model and evaluate what variables most contribute to increased risk of complication.



While important to analyze output and diagnostics of the models (below), visual inspection of Odds Ratios (ORs) can provide useful information for the most important variables driving our outcome of interest. Here, as only age and the presence of an intra-operative event were significant positive predictors of complications. We can determine this simply and visually by assessing which plots and their standard error do not cross the reference line where OR = 1.

## Machine Learning Model (Random Forest)



#### Results

The model achieved an AUC (Logistic): 0.72 and AUC(RandomForest): 0.71, respectively with higher odds of complication associated only with:

- Advanced age
- Intra-operative events

## **Accuracy and Interpretation**

Table 3: Confusion Matrix (Logistic Regression)

| Prediction \ Reference | No Complication | Complication |
|------------------------|-----------------|--------------|
| No Complication        | 185             | 14           |
| Complication           | 0               | 0            |

Table 4: Overall Performance Metrics (Logistic Regression)

| Accuracy | Kappa | AccuracyLower | AccuracyUpper | AccuracyNull | AccuracyPValue | McnemarPValue |
|----------|-------|---------------|---------------|--------------|----------------|---------------|
|----------|-------|---------------|---------------|--------------|----------------|---------------|

| 0.02 | 0 | 0.00 | 0.06 | 0.02 | 0.57 | 0 |
|------|---|------|------|------|------|---|
| 0.93 | U | 0.88 | 0.96 | 0.93 | 0.57 | U |

Table 5: Class-Specific Performance Metrics (Logistic Regression)

| Sensitivity | Specificity | Pos Pred Value | Neg Pred Value | Precision | Recall | F1   | Prevalence | Detection Rate | Ι |
|-------------|-------------|----------------|----------------|-----------|--------|------|------------|----------------|---|
| 1           | 0           | 0.93           | NaN            | 0.93      | 1      | 0.96 | 0.93       | 0.93           |   |

Table 6: Confusion Matrix (Random Forest)

| ${\bf Prediction} \ \backslash \ {\bf Reference}$ | No Complication | Complication |
|---------------------------------------------------|-----------------|--------------|
| No Complication                                   | 185             | 14           |
| Complication                                      | 0               | 0            |

Table 7: Overall Performance Metrics (Random Forest)

| Accuracy | Kappa | AccuracyLower | ${\bf Accuracy Upper}$ | AccuracyNull | AccuracyPValue | ${\bf Mcnemar PV alue}$ |
|----------|-------|---------------|------------------------|--------------|----------------|-------------------------|
| 0.93     | 0     | 0.88          | 0.96                   | 0.93         | 0.57           | 0                       |

Table 8: Class-Specific Performance Metrics (Random Forest)

| Sensitivity | Specificity | Pos Pred Value | Neg Pred Value | Precision | Recall | F1   | Prevalence | Detection Rate | ] |
|-------------|-------------|----------------|----------------|-----------|--------|------|------------|----------------|---|
| 1           | 0           | 0.93           | NaN            | 0.93      | 1      | 0.96 | 0.93       | 0.93           |   |

### **Next Steps**

This model demonstrates early potential to extract explainable risk signals from surgical outcomes data. If advanced with real-world video and procedural metadata, the insights could power a live surgeon feedback loop or benchmark dashboard.