Chapter 3: Vector Spaces

- **②** A nonempty set V of objects (called elements or vectors) is called a vector space over the scalars \mathbb{F} ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) if the following axioms are satisfied.
- Closure axioms:
 - i. (closure under vector addition) For every pair of elements $x,y \in V$ there is a unique element $x+y \in V$ called the sum of x and y.
 - ii. (closure under scalar multiplication of vectors by elements of \mathbb{F}) For every $x \in V$ and every scalar $\alpha \in \mathbb{F}$ there is a unique element $\alpha x \in V$ called the product of α and x.
- Axioms for vector addition:
 - iii. (commutative law) x + y = y + x for all $x, y \in V$.
 - iv. (associative law) x + (y + z) = (x + y) + z for all $x, y, z \in V$.
 - v. (existence of zero element) There exists an element 0 in V such that x+0=0+x=x for all $x\in V$.
 - vi. (existence of inverse or negatives) For $x \in V$ there exists an element written as $-x \in V$ such that x + (-x) = 0.

Vector Spaces: Definition

Axioms for scalar multiplication:

vii. (associativity) For all $\alpha, \beta \in \mathbb{F}, x \in V$,

$$\alpha(\beta x) = (\alpha \beta) x.$$

viii. (distributive law for addition in V) For all $x, y \in V$ and $\alpha \in \mathbb{F}$,

$$\alpha(x+y)=\alpha x+\alpha y.$$

ix. (distributive law for addition in \mathbb{F}) For all $\alpha, \beta \in \mathbb{F}$ and $x \in V$,

$$(\alpha + \beta)x = \alpha x + \beta x.$$

x. (existence of identity for multiplication) For all $x \in V$,

$$1x = x$$
.

- ② When $\mathbb{F} = \mathbb{R}$ we say that V is a real vector space.
- If we replace real numbers in the above definition by complex numbers then we get the definition of a complex vector space.

Vector Spaces: Examples

- In the examples below we leave the verification of the vector addition and scalar multiplication axioms as exercises.
- ② $V = \mathbb{R}$, $\mathbb{F} = \mathbb{R}$ with ordinary addition and multiplication as vector addition and scalar multiplication. This gives a real vector space.
- $\bullet V=\mathbb{C}, \ \mathbb{F}=\mathbb{C} \ \text{with ordinary addition and multiplication as vector addition} \\ \text{and scalar multiplication}. \ \text{This gives a complex vector space}.$
- ullet $V=\mathbb{C}$, $\mathbb{F}=\mathbb{R}$ with ordinary addition and multiplication as vector addition and scalar multiplication. This gives a real vector space.
- **③** $V = \mathbb{R}^n = \{[a_1, a_2, \dots, a_n] | a_1, \dots, a_n \in \mathbb{R}\}$, $\mathbb{F} = \mathbb{R}$ with addition of row vectors as vector addition and multiplication of a row vector by a real number as scalar multiplication. This gives a real vector space.
- We can similarly define a real vector space of column vectors with n real components.
- **②** Depending on the context \mathbb{R}^n could refer to either row vectors or column vectors with n real components.

Vector Spaces: Examples

- $V = \mathbb{C}^n = \{[a_1, a_2, \dots, a_n] | a_1, \dots, a_n \in \mathbb{C}\}, \mathbb{F} = \mathbb{C}$ with addition of row vectors as vector addition and multiplication of a row vector by a complex number as scalar multiplication. This gives a complex vector space.
- We can similarly define a complex vector space of column vectors with n complex components.
- **9** Depending on the context \mathbb{C}^n could refer to either row vectors or column vectors with n complex components.
- Let a < b be real numbers and set $V = \{f : [a,b] \longrightarrow \mathbb{R}\}$, $\mathbb{F} = \mathbb{R}$. If $f,g \in V$ then we set (f+g)(x) = f(x) + g(x) for all $x \in [a,b]$. If $a \in \mathbb{R}$ and $f \in V$ then (af)(x) = af(x) for all $x \in [a,b]$. This gives a real vector space. Here V is also denoted by $\mathbb{R}^{[a,b]}$.
- **1** Let t be an indeterminate. The set $\mathcal{P}_n(\mathbb{R}) = \{a_0 + a_1t + \ldots + a_nt^n | a_0, a_1, \ldots, a_n \in \mathbb{R}\}$ is a real vector space under usual addition of polynomials and multiplication of polynomials with real numbers.

Vector Spaces: Examples

- **①** $C[a,b] := \{f : [a,b] \longrightarrow \mathbb{R} | f \text{ is continuous on } [a,b] \}$ is a real vector space under addition and scalar multiplication defined in item 4 of the last slide.
- ② $V = \{f : [a, b] \longrightarrow \mathbb{R} | f \text{ is differentiable at } x \in [a, b], x \text{ fixed} \}$ is a real vector space under the operations described in item 4 of the last slide.
- **②** The set of all solutions to the differential equation $y^{''} + ay^{'} + by = 0$ where $a, b \in \mathbb{R}$ form a real vector space. More generally, in this example we can take a = a(x), b = b(x) suitable functions of x.
- Let $V = M_{m \times n}(\mathbb{R})$ denote the set of all $m \times n$ matrices with real entries. Then V is a real vector space under usual matrix addition and multiplication of a matrix by a real number.
- The above examples indicate that the notion of a vector space is quite general.
- A result proved for vector spaces will simultaneously apply to all the above different examples.

Subspace of a Vector Space

- **Exercise**: Using only the vector space axioms show that $0_{\mathbb{F}} \cdot u = 0_V$ and $\alpha \cdot 0_V = 0_V$ for all $u \in V$ and $\alpha \in \mathbb{F}$. Note that $0_{\mathbb{F}}$ is the zero element of the set \mathbb{F} (\mathbb{R} or \mathbb{C}) of the scalars and 0_V is the zero vector of the vector space V.
- extstyle ext
- A nonempty subset W of V is called a subspace of V if
 i. 0 ∈ W
 - ii. $u, v \in W$ implies $u + v \in W$
 - iii. $u \in W, \alpha \in \mathbb{F}$ implies $\alpha u \in W$.
- Before giving examples we discuss an important notion.
- Linear span:
- **1** Let V be a vector space over \mathbb{F} . Let x_1, \ldots, x_n be vectors in V and let $c_1, \ldots, c_n \in \mathbb{F}$.
- **②** The vector $\sum_{i=1}^{n} c_i x_i \in V$ is called a linear combination of x_i 's and c_i is called the coefficient of x_i in this linear combination.
- **1** Let S be a subset of a vector space V over \mathbb{F} .

Subspace of a Vector Space: Linear Span

The linear span of S is the subset of all vectors in V expressible as linear combinations of finitely many elements in S, i.e.,

$$L(S) = \left\{\sum_{i=1}^n c_i x_i | n \geq 1, \ x_1, x_2, \ldots, x_n \in S \ ext{and} \ c_1, c_2, \ldots, c_n \in \mathbb{F}
ight\}.$$

- **②** By convention the empty sum of vectors is the zero vector. Thus $L(\emptyset) = \{0\}$.
- **3** We say that L(S) is spanned by S.
- The linear span L(S) is actually a subspace of V (why?).
- **②** Now, if $S \subset W \subset V$ and W is a subspace of V then $L(S) \subset W$. It follows that L(S) is the smallest subspace of V containing S.
- **1** Let A be an $m \times n$ matrix over \mathbb{F} , with rows R_1, \ldots, R_m and columns C_1, \ldots, C_n .
- **1** The row space of A, denoted $\mathcal{R}(A)$, is the subspace of \mathbb{F}^n spanned by the rows of A.
- **1** The column space of A, denoted C(A), is the subspace of \mathbb{F}^m spanned by the columns of A.

Linear Span

- **①** The null space of A, denoted $\mathcal{N}(A)$, is defined by $\mathcal{N}(A) = \{x \in \mathbb{F}^n : Ax = 0\}$.
- Notice that the null space of A is the set of all solutions of the homogeneous system (of linear equations) Ax = 0.
- **1** Check that (in fact, we have already done this!) $\mathcal{N}(A)$ is a subspace of \mathbb{F}^n .
- Oifferent sets may span the same subspace.
- **5** For example, $L(\{e_1, e_2\}) = L(\{e_1, e_1 + e_2\}) = \mathbb{R}^2$.
- **1** The vector space $\mathcal{P}_n(\mathbb{R})$ is spanned by $\{1, t, t^2, \dots, t^n\}$ and also by $\{1, (1+t), \dots, (1+t)^n\}$ (why?).
- We have introduced the notion of linear span of a subset S of a vector space. This raises some natural questions:
 - i. Which vector spaces can be spanned by finite number of elements?
 - ii. If a vector space V = L(S) for a finite subset S of V then what is the size of smallest such S?
- To answer these questions we introduce the notions of linear dependence and independence, basis and dimension of a vector space.

Linearly Dependent and Independent subsets of V.S.

- Linear independence:
- ullet Let V be a vector space.
- ⓐ A subset $S \subset V$ is called linearly dependent (L.D.) if there exist distinct elements $v_1, v_2, \ldots, v_n \in S$ (for some $n \ge 1$) and scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$ not all zero such that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = \mathbf{0}.$$

• A set S is called <u>linearly independent</u> (L.I.) if it is not linearly dependent, i.e., for all $n \ge 1$ and for all distinct $v_1, v_2, \ldots, v_n \in S$ and scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0 \Longrightarrow \alpha_i = 0$$
, for all i .

- 5 Elements of a linearly independent set are called linearly independent.
- Note that the empty set is linearly independent.
- Linearly independent sets are important because each one of them gives us data that we cannot obtain from any linear combination of the others.

L.D. and L.I. subsets of V.S.: Remarks and Examples

- **1** Proposition: The following statements are true.
 - i. Any subset of V containing a linearly dependent set is linearly dependent.
 - ii. Any subset of a linearly independent set in V is linearly independent.
 - iii. It can be seen that S is linearly dependent \iff either $0 \in S$ or a vector in S is a linear combination of other vectors in S.
- Proof: Exercise.
- Examples:
 - i. Consider the vector space \mathbb{R}^n and let $S = \{e_1, e_2, \ldots, e_n\}$. Then S is linearly independent. Indeed, if $\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n = 0$ for some scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$ then $(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$.
 - ii. Let $S:=\left\{ \begin{bmatrix} 1 & 2 \end{bmatrix}^t, \begin{bmatrix} 2 & 1 \end{bmatrix}^t, \begin{bmatrix} 1 & -1 \end{bmatrix}^t \right\} \subset \mathbb{R}^{2 \times 1}.$ Then the set S is linearly dependent since

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{. Clearly, } \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{.}$$

L.D. and L.I. subsets of V.S.: Examples

iii. Let S denote the subset of $\mathbb{R}^{1\times 4}$ consisting of the vectors $\begin{bmatrix}1&0&0&0\end{bmatrix},\begin{bmatrix}1&1&0&0\end{bmatrix},\begin{bmatrix}1&1&0&0\end{bmatrix},\begin{bmatrix}1&1&1&0\end{bmatrix}$ and $\begin{bmatrix}1&1&1&1\end{bmatrix}$. Then S is linearly independent.

To see this, let
$$\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{R}$$
 be such that $\alpha_1 \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix} + \alpha_4 \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}.$

Then
$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$$
, $\alpha_2 + \alpha_3 + \alpha_4 = 0$, $\alpha_3 + \alpha_4 = 0$ and $\alpha_4 = 0$, that is, $\alpha_4 = \alpha_3 = \alpha_2 = \alpha_1 = 0$.

iv. Let V be the vector space of all continuous functions from $\mathbb R$ to $\mathbb R$. Let $S=\{1,\cos^2t,\sin^2t\}$. Then the relation $\cos^2t+\sin^2t-1=0$ shows that S is linearly dependent.

L.D. and L.I. subsets of V.S.: Examples

v. Let $\alpha_1 < \alpha_2 < \ldots < \alpha_n$ be real numbers. Let $V = \{f : \mathbb{R} \longrightarrow \mathbb{R} | f \text{ is continuous} \}$. Consider the set $S = \{e^{\alpha_1 x}, e^{\alpha_2 x}, \ldots, e^{\alpha_n x}\}$.

We show that S is linearly independent by induction on n. Let n=1 and $\beta e^{\alpha_1 x}=0$. Since $e^{\alpha_1 x}\neq 0$ for any x, we get $\beta=0$. Now assume that the assertion is true for n-1 and

$$\beta_1 e^{\alpha_1 x} + \ldots + \beta_n e^{\alpha_n x} = 0.$$

Then
$$\beta_1 e^{(\alpha_1 - \alpha_n)x} + \ldots + \beta_n e^{(\alpha_n - \alpha_n)x} = 0.$$

Let $x \longrightarrow \infty$ to get $\beta_n = 0$ (why?). Now apply induction hypothesis to get $\beta_1 = \ldots = \beta_{n-1} = 0$.

L.D. and L.I. subsets of V.S.: Examples

vi. Let \mathcal{P} denote the vector space of all polynomials p(t) with real coefficients.

Then the set $S = \{1, t, t^2, ...\}$ is linearly independent.

For, suppose that $0 \le n_1 < n_2 < \ldots < n_r$ and

$$\alpha_1 t^{n_1} + \alpha_2 t^{n_2} + \ldots + \alpha_r t^{n_r} = 0$$

for certain real numbers $\alpha_1, \alpha_2, \ldots, \alpha_r$.

Differentiate the left hand side polynomial of the above equation n_r times to get $\alpha_r = 0$. Continuing this way we see that all $\alpha_1, \alpha_2, \dots, \alpha_r$ are zero.

Bases and Dimension

- Bases and dimension are two important notions in the study of vector spaces.
- As we have seen already a vector space may be realized as linear span of several sets of different sizes.
- We study properties of the smallest sets whose linear span is the given vector space.

Definition

A subset S of a vector space V is called a **basis** of V if elements of S are linearly independent and V = L(S). A vector space V possessing a finite basis is called **finite dimensional**. Otherwise V is called **infinite dimensional**.

○ Let $\{v_1, \ldots, v_n\}$ be a basis of a finite dimensional vector space V. Then every $v \in V$ can be **uniquely** (why?) expressed as $v = a_1v_1 + \cdots + a_nv_n$, for scalars a_1, \ldots, a_n .

Bases and Dimension

- We show that all bases of a finite dimensional vector space have same cardinality (i.e., they contain the same number of elements).
- For this we prove the following result.

Lemma

Let $S = \{v_1, v_2, \dots, v_k\}$ be a subset of a vector space V. Then any k + 1 elements in L(S) are linearly dependent.

9 Proof. Let $T = \{u_1, \ldots, u_{k+1}\} \subseteq L(S)$. Write

$$u_i = \sum_{i=1}^k a_{ij} v_j, \quad i = 1, \ldots, k+1.$$

• Consider the $(k+1) \times k$ matrix $A = (a_{ij})$.

Bases and Dimension: Proof continues...

• Since A has more rows than columns there exists (why?) a nonzero row vector $c = [c_1, \ldots, c_{k+1}]$ such that $cA = (A^tc^t)^t = 0$, i.e., for $j = 1, \ldots k$

$$\sum_{i=1}^{k+1} c_i a_{ij} = 0.$$

We now have

$$\sum_{i=1}^{k+1} c_i u_i = \sum_{i=1}^{k+1} c_i \left(\sum_{j=1}^{k} a_{ij} v_j \right) = \sum_{j=1}^{k} \left(\sum_{i=1}^{k+1} c_i a_{ij} \right) v_j = 0$$

where NOT all c_i 's are 0. Hence T is linearly dependent

Bases and Dimension

Theorem

Any two bases of a finite dimensional vector space have same number of elements.

Proof.

- **3** Suppose S and T are bases of a finite dimensional vector space V, i.e., S and T both are linearly independent and L(S) = V = L(T).
- **②** Suppose |S| < |T|. Since $T \subset L(S) = V$, T is linearly dependent.
- **1** This is a contradiction. Similarly, |T| < |S| also gives a contradiction.
- Hence |T| = |S|.

Definition

The number of elements in a basis of a finite-dimensional vector space V is called the **dimension** of V. It is denoted by dim V.

Bases and Dimension: Examples

Examples:

- i. The *n* "coordinate vectors" e_1, e_2, \ldots, e_n in \mathbb{R}^n form a basis of \mathbb{R}^n .
- ii. Let A be an $n \times n$ matrix. Then the columns of A form a basis of \mathbb{F}^n iff the linear system Ax = 0 has only the zero solution (why?) iff A is invertible.
- iii. $\mathcal{P}_n(\mathbb{R}) = \{a_0 + a_1t + \ldots + a_nt^n | a_0, a_1, \ldots, a_n \in \mathbb{R}\}$ is spanned by $S = \{1, t, t^2, \ldots, t^n\}$. Since S is linearly independent, dim $\mathcal{P}_n(\mathbb{R}) = n + 1$.
- iv. Let $M_{m\times n}(\mathbb{F})$ denote the vector space of all $m\times n$ matrices with entries in \mathbb{F} .

Let e_{ij} denote the $m \times n$ matrix with 1 in $(i,j)^{\text{th}}$ position and 0 elsewhere.

If
$$A = (a_{ij}) \in M_{m \times n}(\mathbb{F})$$
 then $A = \sum_{i=1}^m \sum_{j=1}^n a_{ij} e_{ij}$.

It is easy to see that the mn matrices e_{ij} are linearly independent. Hence $M_{m\times n}(\mathbb{F})$ is an mn-dimensional vector space.

① What is the dimension of $M_{n\times n}(\mathbb{C})$ as a real vector space?

Bases and Dimension

Proposition

Suppose V is a finite dimensional vector space. Let S be a linearly independent subset of V. Then S can be enlarged to a basis of V.

- **1 Proof.** Suppose that dim V = n and S has less than n elements.
- ② Let $v \in V \setminus L(S)$. Then $S \cup \{v\}$ is a linearly independent subset of V (why?). Continuing this way we can enlarge S to a basis of V.
- What if |S| = n? Is it possible that |S| > n?
- Gauss elimination, row space and column space:

Lemma

Let A be an $m \times n$ matrix over $\mathbb F$ and E a non-singular (that is, invertible) $m \times m$ matrix over $\mathbb F$. Then

- i. $\mathcal{R}(A) = \mathcal{R}(EA)$. Hence dim $\mathcal{R}(A) = \dim \mathcal{R}(EA)$.
- ii. Let $1 \le i_1 < i_2 < \cdots < i_k \le n$. Columns $\{i_1, \ldots, i_k\}$ of A are linearly independent if and only if columns $\{i_1, \ldots, i_k\}$ of EA are linearly independent. Hence $\dim \mathcal{C}(A) = \dim \mathcal{C}(EA)$.

Bases and Dimension: Row and Column spaces of a Matrix

- Proof.
 - i. Note that $R(EA) \subseteq R(A)$ (why?) since every row of EA is a linear combination of the rows of A. Similarly,

$$R(A) = R(E^{-1}(EA)) \subseteq R(EA).$$

ii. Suppose columns $\{i_1, \ldots, i_k\}$ of A are linearly independent.

Then

$$\alpha_{1}(EA)_{i_{1}} + \alpha_{2}(EA)_{i_{2}} + \cdots + \alpha_{k}(EA)_{i_{k}} = 0$$
iff
$$E(\alpha_{1}A_{i_{1}} + \alpha_{2}A_{i_{2}} + \cdots + \alpha_{k}A_{i_{k}}) = 0$$
iff
$$E^{-1}(E(\alpha_{1}A_{i_{1}} + \alpha_{2}A_{i_{2}} + \cdots + \alpha_{k}A_{i_{k}})) = 0$$
iff
$$\alpha_{1}A_{i_{1}} + \alpha_{2}A_{i_{2}} + \cdots + \alpha_{k}A_{i_{k}} = 0$$
iff
$$\alpha_{1} = \cdots = \alpha_{k} = 0.$$

3 Thus columns $\{i_1, \ldots, i_k\}$ of *EA* are linearly independent. The proof of the converse is similar.

Bases and Dimension: Row and Column spaces of a Matrix

Theorem

Let A be an $m \times n$ matrix. Then $\dim \mathcal{R}(A) = \dim \mathcal{C}(A)$.

- **Proof**. Apply row operations to reduce A to the RCF U. That is, U = EA where E is an invertible matrix which is product of elementary matrices.
- ② Suppose U has r nonzero rows. Thus U has r pivotal columns.
- **1** Then (why?) the r nonzero rows of U form a basis of $\mathcal{R}(A)$ (thanks to the last lemma). Let k_1, \ldots, k_r be the pivotal columns of U.
- Then (why?) columns $k_1, ..., k_r$ of A form a basis of C(A) (thanks to the last lemma again). Thus dim $R(A) = \dim C(A)$.
- **1 Example:** Let A be a 4×6 matrix whose RCF is

$$U = \left[\begin{array}{ccccccc} 1 & 2 & 3 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right].$$

• Columns A_1, A_4, A_6 of A form a basis of C(A) and the first 3 rows of U form a basis of R(A).

Bases and Dimension: Rank-Nullity Theorem for a Matrix

Definition

The **rank** of an $m \times n$ matrix A, denoted by r(A) or rank A, is $\dim \mathcal{R}(A) = \dim \mathcal{C}(A)$. The **nullity** of A is the dimension of the nullspace $\mathcal{N}(A)$.

The Rank-Nullity Theorem:

Theorem

Let A be an $m \times n$ matrix. Then

$$rank A + nullity A = n.$$

- **9 Proof.** Let r = r(A). Reduce A to its RCF (or even REF) U using elementary row operations. Then U has r nonzero rows, r pivotal columns k_1, k_2, \ldots, k_r and n r non-pivotal columns $l_1, l_2, \ldots, l_{n-r}$.
- **③** We need to show that $\dim \mathcal{N}(A) = \dim \mathcal{N}(U) = n r$.

Rank in terms of determinants

- For this, we just need to check that the set $S = \{s_{l_1}, s_{l_2}, \dots, s_{l_{n-r}}\}$ of the n-r basic solution vectors of the linear system Ax = 0 is linearly independent (why?) (since $L(S) = \mathcal{N}(A)$).
- ② Now recall how the basic solution vectors s_{l_i} for $1 \le j \le n r$ are defined.
- **3** The linearly independence of the set $\{s_{l_1}, s_{l_2}, \ldots, s_{l_{n-r}}\}$ directly follows from their definitions (why?). Hence dim $\mathcal{N}(A) = n r$.
- **Quantheristic** Now, you got the answer to the question "why are the n-r solution vectors $s_{l_1}, s_{l_2}, \ldots, s_{l_{n-r}}$ called basic solution vectors for the linear system Ax = 0?".
- **1** We now characterize rank A in terms of minors of A. Recall that a minor of order r of A is a submatrix of A consisting of r rows and r columns of A.

Theorem

An $m \times n$ matrix A has rank $r \ge 1$ iff $\det M \ne 0$ for some order r minor M of A and $\det N = 0$ for all order r + 1 minors N of A.

Rank in terms of determinants: Proof

- **Q** Proof. Let the rank of A be $r \ge 1$.
- **3** Let B be the $m \times r$ matrix consisting of these r columns of A.
- **1** Then rank (B) = r and thus some r rows of B will be linearly independent.
- **1** Let *C* be the $r \times r$ matrix consisting of these *r* rows of *B*.
- Then $det(C) \neq 0$ (why?), since C is invertible as nullity (C) = r r = 0 and hence Cx = 0 has only the zero solution.
- Let N be a $(r+1) \times (r+1)$ minor of A.
- **③** Without loss of generality we may take N to consist of the first r+1 rows and columns of A (why?), since the interchanges of rows or interchanges of columns does not change the rank of the matrix.
- **②** Suppose $det(N) \neq 0$. Then the r+1 rows of N, and hence the first r+1 rows of A, are linearly independent, a contradiction.
- The converse is left as an exercise.