

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15010007303

FCC REPORT (WIFI)

Applicant: Binatone Electronics International Limited

Address of Applicant: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong

Equipment Under Test (EUT)

Product Name: SCOUT5000

Model No.: SCOUT5000

Trade mark: motorola

FCC ID: VLJ-SCOUT5000

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Jan., 2015

Date of Test: 27 Jan., 2015 to 05 Feb., 2015

Date of report issued: 06 Feb., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	06 Feb., 2015	Original

_una Gao Report Clerk Prepared by: Date: 06 Feb., 2015

Reviewed by: 06 Feb., 2015 Date:

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1 5.2	CLIENT INFORMATIONGENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4 5.5	LABORATORY FACILITY	
	5.6	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	
	6.3 6.4	CONDUCTED OUTPUT POWER	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	_
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	53
	6.7.1	1 Conducted Emission Method	53
	6.7.2	2 Radiated Emission Method	60
7	TES	T SETUP PHOTO	68
Ω	FIIT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Binatone Electronics International Limited
Address of Applicant:	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong
Manufacturer:	ShenZhen Concox Information Technology Co., Ltd
Address of Manufacturer:	4F, Building B, Gaoxinqi Industrial Park, Liuxian 1st Road, District 67, Bao'an, Shenzhen, china
Factory:	Huizhou Goldenchip Electronics Co., Ltd
Address of Factory:	No. 12 Factory, Songyang Road, Zhongkai Hi-tech Development Zone, Huizhou City, Guangdong Province, China

5.2 General Description of E.U.T.

Product Name:	SCOUT5000
Model No.:	SCOUT5000
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	4.9 dBi
AC adapter:	(1) Model: S006WM0500100 Input:100-240V AC,50/60Hz 0.3A Output:5V DC MAX 1A (2) Model: YW1200M Input:100-240V AC,50/60Hz 0.17A Output:5V DC MAX 1.2A (3) Model: MLF-A00060501000DP0021 Input:100-240V AC,50/60Hz 0.18A Output:5V DC MAX 1A (4) Model: MLF-A00060501000U0021 Input:100-240V AC,50/60Hz 0.18A Output:5V DC MAX 1A
Power supply:	Rechargeable Li-ion Battery DC3.7V-1880mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS15010007303

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15010007303

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	04-01-2015	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015	
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 4.9 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.20	7			
Test Method:		ANSI C63.4:2009			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
•	RBW=9 kHz, VBW=30 kHz				
Receiver setup:	INDVV-9 KITZ, VBVV-30 KITZ	l insit /s	ID. AA		
Limit:	Frequency range (MHz)	Limit (c	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2009 on conducted measurement. 				
Test setup:	LISN 40cm		er — AC power		
Test Instruments:	Refer to section 5.6 for details	<u> </u>			
Test mode:	Refer to section 5.3 for details	-			
Test results:	Passed				

Measurement Data

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 0073RF Condition

Job No. : SCOUT 5000 : SCOUT 5000 : WIFI mode EUT Model Test Mode

Power Rating: AC 120/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: A-bomb
Remark:

Kemark	•	D J	LICH	C-LI-		11-14	0	
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	₫B	₫B	dBu∀	dBu₹	dB	
1	0.277	8.30	0.26	10.74	19.30	50.90	-31.60	Average
1 2 3 4 5 6 7 8 9	0.299	9.30	0.26	10.74	20.30	50.28	-29.98	Average
3	0.318	10.15	0.26	10.74	21.15	49.75	-28.60	Average
4	0.337	9.78	0.26	10.73	20.77	49.27	-28.50	Average
5	0.358	9.54	0.25	10.73	20.52			Average
6	0.402	6.97	0.25	10.72	17.94	47.81	-29.87	Average
7	0.406	27.46	0.25	10.72	38.43		-19.30	
8	0.527	25.18	0.27	10.76	36.21	56.00	-19.79	QP
9	0.767	25.95	0.19	10.80	36.94	56.00	-19.06	QP
10	0.813	26.53	0.20	10.81	37.54	56.00	-18.46	QP
11	0.862	25.39	0.20	10.83	36.42	56.00	-19.58	QP
12	9.552	23.65	0.25	10.92	34.82	60.00	-25.18	QP

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 0073RF Site Condition

Job No. : SCOUT 5000 : SCOUT 5000 EUT Model Test Mode : WIFI mode

Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: A-bomb

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
MHz	dBu∜	₫₿	₫B	dBu∀	dBu₹	dB	3007-9-000
0.318	12.90	0.26	10.74	23.90			
0, 337	13, 43	0.27	10.73		49.27	-24.84	Average
0.410	31.09	0.28	10.72	42.09	57.64	-15.55	QP
0.410	10.34	0.28	10.72	21.34	47.64	-26.30	Average
0.582	26.70	0.26	10.77	37.73			
					46.00	-27.52	Average
							11.77.050
		2000					C. 180
3.720	5.08	0.28	10.90	16.26			
	MHz 0.318 0.337 0.410 0.410 0.582 0.759 0.771 0.857 1.100 2.721 3.346	MHz dBuV 0.318 12.90 0.337 13.43 0.410 31.09 0.410 10.34 0.582 26.70 0.759 7.45 0.771 26.50 0.857 26.12 1.100 24.31 2.721 23.07 3.346 5.68	MHz dBuV dB 0.318 12.90 0.26 0.337 13.43 0.27 0.410 31.09 0.28 0.410 10.34 0.28 0.582 26.70 0.26 0.759 7.45 0.23 0.771 26.50 0.23 0.857 26.12 0.24 1.100 24.31 0.25 2.721 23.07 0.27 3.346 5.68 0.27	MHz dBuV dB dB 0.318 12.90 0.26 10.74 0.337 13.43 0.27 10.73 0.410 31.09 0.28 10.72 0.410 10.34 0.28 10.72 0.582 26.70 0.26 10.77 0.759 7.45 0.23 10.80 0.771 26.50 0.23 10.80 0.857 26.12 0.24 10.83 1.100 24.31 0.25 10.88 2.721 23.07 0.27 10.93 3.346 5.68 0.27 10.91	MHz dBuV dB dB dBuV 0.318 12.90 0.26 10.74 23.90 0.337 13.43 0.27 10.73 24.43 0.410 31.09 0.28 10.72 42.09 0.410 10.34 0.28 10.72 21.34 0.582 26.70 0.26 10.77 37.73 0.759 7.45 0.23 10.80 18.48 0.771 26.50 0.23 10.80 37.53 0.857 26.12 0.24 10.83 37.19 1.100 24.31 0.25 10.88 35.44 2.721 23.07 0.27 10.93 34.27 3.346 5.68 0.27 10.91 16.86	MHz dBuV dB dB dBuV dBuV 0.318 12.90 0.26 10.74 23.90 49.75 0.337 13.43 0.27 10.73 24.43 49.27 0.410 31.09 0.28 10.72 42.09 57.64 0.410 10.34 0.28 10.72 21.34 47.64 0.582 26.70 0.26 10.77 37.73 56.00 0.759 7.45 0.23 10.80 18.48 46.00 0.771 26.50 0.23 10.80 37.53 56.00 0.857 26.12 0.24 10.83 37.19 56.00 1.100 24.31 0.25 10.88 35.44 56.00 2.721 23.07 0.27 10.93 34.27 56.00 3.346 5.68 0.27 10.91 16.86 46.00	MHz dBuV dB dB dBuV dBuV dB 0.318 12.90 0.26 10.74 23.90 49.75 -25.85 0.337 13.43 0.27 10.73 24.43 49.27 -24.84 0.410 31.09 0.28 10.72 42.09 57.64 -15.55 0.410 10.34 0.28 10.72 21.34 47.64 -26.30 0.582 26.70 0.26 10.77 37.73 56.00 -18.27 0.759 7.45 0.23 10.80 18.48 46.00 -27.52 0.771 26.50 0.23 10.80 37.53 56.00 -18.47 0.857 26.12 0.24 10.83 37.19 56.00 -18.81 1.100 24.31 0.25 10.88 35.44 56.00 -20.56 2.721 23.07 0.27 10.93 34.27 56.00 -21.73 3.346 5.68 0.27

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2009 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

-	Ma	aximum Conduct		5 4		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	16.13	12.72	12.65	10.99		
Middle	16.46	14.17	14.20	12.90	30.00	Pass
Highest	16.77	13.76	13.88	11.30		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.4:2009 and KDB558074	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

		6dB Emission				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.26	16.03	17.23	35.75		
Middle	10.26	16.27	17.64	35.75	>500	Pass
Highest	10.26	16.27	17.39	35.91		

T (01)		99% Occupy	1	D 11		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	13.15	16.43	17.64	35.75		
Middle	12.99	16.43	17.64	35.91	N/A	N/A
Highest	13.07	16.43	17.64	35.91		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2009 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

		Power Spec				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	6.94	1.15	0.99	-3.74		
Middle	6.64	2.66	2.46	-2.00	8.00	Pass
Highest	6.89	1.72	1.81	-3.33		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2009 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
Took looks mouto.	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel Highest channel

Lowest channel Highest channel

Lowest channel Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4:2009				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency Above 1GHz	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value
Limit:		Peak	1MHz	10Hz	Average Value
Limit.	Frequency		Limit (dBuV/m @3m)		Remark
	Above 1GHz		54.00		Average Value
			74.00		Peak Value e 1.5 meters above
Test setup:	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 				
	Test Receive Controller				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : SCOUT 5000 Condition

EUT Model : SCOUT 5000 Test mode : WIFI Mode B-L Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

1 2

-		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	₫B	₫₿	dBuV/m	dBuV/m	₫₿		
	2390.000 2390.000				0.00 0.00					

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : SCOUT 5000 : SCOUT 5000 Condition

EUT Model Test mode : WIFI Mode B-L Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni: 55%

Test Engineer: A-bomb REMARK

iller 11.		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
153	MHz	dBu∛	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
	2390.000 2390.000				0.00	56.61 45.37	74.00 54.00	-17.39 -8.63	Peak Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : SCOUT 5000

Model : SCOUT 5000

Test mode : WIFI Mode I

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C

Huni:55%

Test Engineer: A-bomb REMARK :

1 2

Ų,	run :								
			Ant enna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∛	dB/m	dB	dB	dBuV/m	dBu√/m	dB	
	2483.500 2483.500				0.00				Peak Average

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: SCOUT 5000 : SCOUT 5000 EUT Model : WIFI Mode B-H Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: A-bomb

REMARK

		Read	Readânt enna		Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
1	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: SCOUT 5000 : SCOUT 5000 EUT Model : WIFI Mode G-L Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: A-bomb

mu.	44.								
			Antenna					Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000						74.00		
2	2390,000	13.48	27.58	5, 67	0.00	46, 73	54.00	-7.27	Average

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: SCOUT 5000 : SCOUT 5000 : WIFI Mode G-L EUT Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: A-bomb REMARK:

Huni:55%

EMAR	w :								
			Ant enna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫₿	₫₿	dBuV/m	dBuV/m	dB	
1 2	2390.000					61.23			

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : SCOUI 5000

Model : SCOUI 5000

Test mode : WIFI Mode G-H
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb REMARK :

	Read	Ant enna	Cable	Preamp		Limit	Over		
Freq		Factor						Remark	
MHz	dBu∀	dB/m	dB	₫B	dBuV/m	dBuV/m	−−−−dB		
2483.500 2483.500									

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL EUT : SCOUT 5000
Model : SCOUT 5000 Test mode : WIFI Mode G-H

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb REMARK

Linear		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq								Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

802.11n (H20)

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : SCOUT 5000 : SCOUT 5000 Condition

EUT Model : WIFI Mode N20-L Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb REMARK

PHET.		Read	Antenna	Cable	Presmo		Timit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	
	MHz	dBu∀	dB/m	dB	−−−dB	dBuV/m	dBuV/m	dB	
1	2390.000								
2	2390,000	13, 80	27, 58	5.67	0.00	47.05	54.00	-6.95	Average

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : SCOUT 5000

Model : SCOUT 5000

Test mode : WIFI Mode N20-L

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni
Test Engineer: A-bomb

REMARK :

Huni:55%

EMAL	TEN 1976	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBu√/m	ā	
1 2	2390.000 2390.000					65.50 47.05			Peak Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: SCOUT 5000 : SCOUT 5000 : WIFI Mode N20-H EUT Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: A-bomb

REMARK

	7		Antenna Factor					Over Limit	Remark
	MHz	dBu∀	$-\overline{dB}/\overline{m}$	₫₿	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

Site : 3m chamber Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: SCOUT 5000 : SCOUT 5000 : WIFI Mode N20-H EUT Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: A-bomb REMARK :

'mAn	ъ .	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	dB	dBuV/m	dBuV/m	d₿	
1	2483.500					69.31			
2	2483,500	15. 24	21.52	5. (U	0.00	48.40	54.00	-5. 54	Average

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : SCOUT 5000 Condition

EUT : SCOUT 5000 Model Test mode : WIFI Mode N40-L Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: A-bomb

1 2

**	-	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
	2390.000								
	2390,000	13.57	27.58	5, 67	0.00	46.82	54.00	-7.18	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : SCOUT 5000

Model : SCOUT 5000

Test mode : WIFI Mode N40-L

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni

Huni:55%

Test Engineer: A-bomb

REMARK

2

- T-	Read	Ant enna	Cable	Preamp		Limit	Over	
Freq		Factor				Line	Limit	Remark
MHz	dBu₹	dB/m	₫₿	dB	dBuV/m	dBuV/m	dB	-
2390.000 2390.000	2222		5.67 5.67		7.00			Peak Average

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : SCOUT 5000 : SCOUT 5000 Condition

EUT Model Test mode : WIFI Mode N40-H Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb REMARK :

SHEST	un .	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	dB	dB	dBu√/m	dBuV/m	dB	
1	2483.500	35.79	27.52	5.70	0.00	69.01	74.00	-4.99	Peak
2	2483.500	12.62	27.52	5.70	0.00	45.84	54.00	-8.16	Average

Site : 3m chamber Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : SCOUT 5000
Model : SCOUT 5000
Test mode : WIFI Mode N40-H
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb

REMARK

Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	dB/m	dB	dB	dBu∀/m	dBuV/m	dB	
2483.500								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Date: 29.JAN.2015 21:23:10

30MHz~25GHz

Middle channel

Date: 29.JAN.2015 21:23:46

30MHz~25GHz

Highest channel

Date: 29.JAN.2015 21:24:16

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 29.JAN.2015 21:25:06

30MHz~25GHz

Middle channel

Date: 29.JAN.2015 21:25:48

30MHz~25GHz

Highest channel

Date: 29.JAN.2015 21:26:26

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 29.JAN.2015 21:27:18

30MHz~25GHz

Middle channel

Date: 29.JAN.2015 21:27:57

30MHz~25GHz

Highest channel

Date: 29.JAN.2015 21:28:30

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 29.JAN.2015 21:29:12

30MHz~25GHz

Middle channel

Date: 29.JAN.2015 21:29:52

30MHz~25GHz

Highest channel

Date: 29.JAN.2015 21:30:25

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4:2009									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:										
rtocorror cotap.	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value Above 1CHz Peak 1MHz 3MHz Peak Value									
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Va									
	Above 1GHz	Peak Value								
	Above 1G112	Peak	1MHz	10Hz	Average Value					
Limit:										
	Frequency Limit (dBuV/m @3m) Remark									
	30MHz-88MHz 40.0 Quasi-peak Value									
	88MHz-21		43.5		Quasi-peak Value					
	216MHz-9		46.0		Quasi-peak Value					
	960MHz-	TGHZ	54.0		Quasi-peak Value					
	Above 1	GHz	54.0 74.0		Average Value Peak Value					
Test Procedure:	the ground top of a rot camber about determine to determine to antenna, we tower. 3. The antennathe ground Both horizon make the notes and the meters and to find the notes and the	at a 3 meter cating table 1.5 ove 1GHz. The the position of the position of the position of the position as set 3 meter thich was mour to determine the the position and vertice the assurement. The rota table maximum read ceiver system and width with sion level of the would be reported to the position of the position	amber below meters above table was rethe highest research the highest research table was from one maximum al polarization, the EU a was turned was turned was turned ing. Was set to P Maximum He EUT in peasiting could be red. Otherwise re-tested	r 1GHz and re the ground the interfer op of a variate of the property of the angle of the property of t	rence-receiving able-height antenna our meters above he field strength. Intenna are set to happen to its worst from 1 meter to 4 rees to 360 degrees					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30Mig) HORIZONTAL Condition

EUT : SCOUT 5000 Model : SCOUT 5000 : WIFI mode Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey REMARK:

MAKK									
	Freq		Antenna Factor				Limit Line		
_	MHz	dBu₹	$\overline{-dB/m}$	dB	dB	dBuV/m	dBuV/m	dB	
1	99.878	41.44	13.16	0.96	29.53	26.03	43.50	-17.47	QP
2	168.414	38.36	8.92	1.34	29.06	19.56	43.50	-23.94	QP
1 2 3	178.758	39.08	9.62	1.36	28.98	21.08	43.50	-22.42	QP
4 5 6	462.346	36.93	15.65	2.29	28.89	25.98	46.00	-20.02	QP
5	482.216	45.73	16.13	2.35	28.92	35.29	46.00	-10.71	QP
6	499, 425	36, 84	16, 58	2.40	28, 95	26, 87	46,00	-19.13	OP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: SCOUT 5000 : SCOUT 5000 EUT Model : WIFI mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

MARK	:								
	Freq		Antenna Factor				Limit Line		
10	MHz	dBu∜	$\overline{dB/m}$	d₿	dB	dBu√/m	dBuV/m	dB	
1	31.510	42.57	12.32	0.45	29.97	25.37	40.00	-14.63	QP
2	78.139	44.62	8.31	0.84	29.65	24.12	40.00	-15.88	QP
1 2 3 4 5	95.762	39.46	12.90	0.93	29.55	23.74	43.50	-19.76	QP
4	170.195	38.66	8.97	1.35	29.05	19.93	43.50	-23.57	QP
5	462.346	34.94	15.65	2.29	28.89	23.99	46.00	-22.01	QP
6	482, 216	40.18	16.13	2.35	28.92	29.74	46.00	-16.26	QP

Above 1GHz

Test mode: 80	Test mode: 802.11b			nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.85	31.53	8.90	40.24	47.04	74.00	-26.96	Vertical	
4824.00	47.48	31.53	8.90	40.24	47.67	74.00	-26.33	Horizontal	
	est mode: 802.11b		Test channel: Lowest						
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Frequency (MHz)	02.11b Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.	

Test mode: 80	Test mode: 802.11b			nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.58	31.58	8.98	40.15	46.99	74.00	-27.01	Vertical	
4874.00	47.68	31.58	8.98	40.15	48.09	74.00	-25.91	Horizontal	
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.04	31.58	8.98	40.15	36.45	54.00	-17.55	Vertical	
4874.00	37.36	31.58	8.98	40.15	37.77	54.00	-16.23	Horizontal	

Test mode: 8	02.11b		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	46.29	31.69	9.08	40.03	47.03	74.00	-26.97	Vertical	
4924.00	46.53	31.69	9.08	40.03	47.27	74.00	-26.73	Horizontal	
Test mode: 8	02.11b		Test channel: Highest		Remark: Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.49	31.69	9.08	40.03	37.23	54.00	-16.77	Vertical	
4924.00	36.77	31.69	9.08	40.03	37.51	54.00	-16.49	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11g			nel: Lowest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.52	31.53	8.90	40.24	46.71	74.00	-27.29	Vertical
4824.00	46.87	31.53	8.90	40.24	47.06	74.00	-26.94	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.77	31.53	8.90	40.24	36.96	54.00	-17.04	Vertical
4824.00	36.13	31.53	8.90	40.24	36.32	54.00	-17.68	Horizontal

Test mode: 80	02.11g		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.73	31.58	8.98	40.15	46.14	74.00	-27.86	Vertical
4874.00	46.38	31.58	8.98	40.15	46.79	74.00	-27.21	Horizontal
Test mode: 80	02.11g		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.66	31.58	8.98	40.15	36.07	54.00	-17.93	Vertical
4874.00	36.08	31.58	8.98	40.15	36.49	54.00	-17.51	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.55	31.69	9.08	40.03	47.29	74.00	-26.71	Vertical
4924.00	46.87	31.69	9.08	40.03	47.61	74.00	-26.39	Horizontal
Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.27	31.69	9.08	40.03	37.01	54.00	-16.99	Vertical
4924.00	36.42	31.69	9.08	40.03	37.16	54.00	-16.84	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.69	31.53	8.90	40.24	46.88	74.00	-27.12	Vertical
4824.00	45.71	31.53	8.90	40.24	45.90	74.00	-28.10	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.27	31.53	8.90	40.24	36.46	54.00	-17.54	Vertical
4824.00	35.82	31.53	8.90	40.24	36.01	54.00	-17.99	Horizontal

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.48	31.58	8.98	40.15	45.89	74.00	-28.11	Vertical	
4874.00	46.28	31.58	8.98	40.15	46.69	74.00	-27.31	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	35.76	31.58	8.98	40.15	36.17	54.00	-17.83	Vertical	
4874.00	36.05	31.58	8.98	40.15	36.46	54.00	-17.54	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.86	31.69	9.08	40.03	47.60	74.00	-26.40	Vertical
4924.00	47.36	31.69	9.08	40.03	48.10	74.00	-25.90	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.28	31.69	9.08	40.03	37.02	54.00	-16.98	Vertical
4924.00	37.47	31.69	9.08	40.03	38.21	54.00	-15.79	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	46.76	31.53	8.90	40.24	46.95	74.00	-27.05	Vertical
4844.00	46.07	31.53	8.90	40.24	46.26	74.00	-27.74	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Ave	rage	
Frequency	Read	Antenna	Cable	Preamp			Over	
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
		Factor	Loss	Factor			Limit	Polar. Vertical

Test mode: 8	02.11n(H40)		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.31	31.58	8.98	40.15	46.72	74.00	-27.28	Vertical
4874.00	46.21	31.58	8.98	40.15	46.62	74.00	-27.38	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.58	31.58	8.98	40.15	36.99	54.00	-17.01	Vertical
4874.00	36.21	31.58	8.98	40.15	36.62	54.00	-17.38	Horizontal

Test mode: 802.11n(H40)			Test char	Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	46.15	31.69	9.08	40.03	46.89	74.00	-27.11	Vertical	
4904.00	45.81	31.69	9.08	40.03	46.55	74.00	-27.45	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	36.68	31.69	9.08	40.03	37.42	54.00	-16.58	Vertical	
4904.00	35.55	31.69	9.08	40.03	36.29	54.00	-17.71	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.