Xiaoying Li

CS-225: Discrete Structures in CS

Homework 1, Part 2

Exercise Set 2.1: Problem # 22, 42, 45

Exercise Set 2.2: Problem # 11, 13.b, 15, 20, 38, 41, 43, 45

HW 1, part 2: Set 2.1 – Q#22

р	q	r	q∨r	p∧q	p∧r	p∧(q∨r)	(p∧q)∨(p∧r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	F	Т	Т
Т	F	Т	Т	F	Т	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

 $p \land (q \lor r)$ and $(p \land q) \lor (p \land r)$ always have the same truth value, so they are logically equivalent.

● HW 1, part 2: Set 2.1 – Q#42

р	q	r	~p	~p∧q	q∧r	(~p∧q)∧(q∧r)	~q	((~p∧q)∧(q∧r))∧~q
Т	Т	Τ	F	F	Т	F	F	F
Т	Т	F	F	F	F	F	F	F
Т	F	Т	F	F	F	F	Т	F
Т	F	F	F	F	F	F	Т	F
F	Т	Т	Т	Т	Т	Т	F	F
F	Т	F	Т	Т	F	F	F	F
F	F	Т	Т	F	F	F	Т	F
F	F	F	Т	F	F	F	Т	F

The truth values of $((\sim p \land q) \land (q \land r)) \land \sim q$ are all F's, so $((\sim p \land q) \land (q \land r)) \land \sim q$ is a contradiction.

• HW 1, part 2: Set 2.1 – Q#45

Let "p" be the statement "Bob is a double math and computer science major", "q" the statement "Ann is a math major", and "r" the statement "Ann is a double math and computer science major". Then statement a expressed in symbolic notation is " $p \land q \land \neg r$ ", statement b is " $\neg (p \land r) \land (q \land p)$ ".

Then make a truth table to determine whether these two statements are logically equivalent or not.

р	a	r	~r	b√a	pΛr	~(p∧r)	αΛp	p∧q∧~r	~(p\r)\(q\p)
<u>ا</u>	٦	•		۳٬۱۹	P'''	(P'")	۹٬۱۳	ρ, ιη, ι	(

Т	Т	Т	F	Т	Т	F	Т	F	F
Т	Т	F	Т	Т	F	Т	Т	Т	Т
Т	F	Т	F	F	Т	F	F	F	F
Т	F	F	Т	F	F	Т	F	F	F
F	Т	Т	F	F	F	Т	F	F	F
F	Т	F	Т	F	F	T	F	F	F
F	F	Т	F	F	F	Т	F	F	F
F	F	F	Т	F	F	Т	F	F	F

 $p \land q \land \neg r$ and $\neg (p \land r) \land (q \land p)$ always have the same truth value, so they are logically equivalent. So statement a and statement b are logically equivalent.

• HW 1, part 2: Set 2.2 – Q#11

		, i					
р	q	r	p∧q	q→r	$p \rightarrow (q \rightarrow r)$	(p∧q)→r	$p \rightarrow (q \rightarrow r) \leftrightarrow ((p \land q) \rightarrow r)$
Т	Т	Τ	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т
F	Т	F	F	F	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т

• HW 1, part 2: Set 2.2 – Q#13.b

	, i				
р	q	~q	p→q	~(p→q)	p∧~q
Т	Т	F	Т	F	F
Т	F	Т	F	Т	T
F	Т	F	Т	F	F
F	F	Т	Т	F	F

 $[\]sim$ (p \rightarrow q) and p∧ \sim q always have the same truth value, so they are logically equivalent.

• HW 1, part 2: Set 2.2 – Q#15

р	q	r	q→r	p→q	$p \rightarrow (q \rightarrow r)$	(p→q)→r
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	F
F	F	Т	Т	Т	Т	Т
F	F	F	Т	T	Т	F

 $p\rightarrow (q\rightarrow r)$ and $(p\rightarrow q)\rightarrow r$ are not logically equivalent because they have different truth values in row 6 and 8 in the truth table.

- HW 1, part 2: Set 2.2 Q#20
- a. P is a square and P is not a rectangle.
- b. Today is New Year's Eve and tomorrow is not January.
- c. The decimal expansion of r is terminating and r is not rational.
- d. n is prime and n is not odd and n is not 2.
- e. x is nonnegative and x is not positive and x is not 0.
- f. Tom is Ann's father and Jim is not her uncle or Sue is not her aunt.
- g. n is divisible by 6 and n is not divisible by 2 or n is not divisible by 3.
- HW 1, part 2: Set 2.2 Q#38, 41, 43, 45
- 38. If it doesn't rain, then Ann will go.
- 41. If this triangle has two 45° angles, then this triangle is a right triangle.
- 43. If this number is divisible by 9, then this number is divisible by 3.
- 45. If this computer program does not produce error messages during translation, then this computer program is correct.