OpenCV ile Şerit Tespiti

İlerleyiş

Görüntü İşleme Nedir?

 Görüntü işleme, elimizde bulunan görüntüden anlamlı ifadeler çıkarmamıza yarayan işlemler bütünüdür. Bu işlemler, görüntüyü oluşturan pikseller üzerinde yapılacak matematiksel işlemler sayesinde gerçekleştirilir.

Kullanım Alanları Nelerdir?

OpenCV (Open Source Computer Vision) Nedir?

- 1999 yılında Intel tarafından geliştirilen bir açık kaynak kodlu görüntü işleme kütüphanesidir ve CPU kullanan uygulamaları geliştirmek için tasarlanmıştır.
- C, C++, MATLAB ve Python gibi birçok programlama dilinde kullanılır.

Örnek Çalışma

cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Threshold

cv2.threshold(image,200,255,cv2.THRESH_BINARY)

Gaussian Blur

125	213	98	203	202	170
104	145	161	204	201	157
72	8	209	202	194	144
73	9	202	201	194	156
81	15	189	185	181	144
15	189	185	194	227	158

Original Image

1	2	1
2	4	2
1	2	1

3x3 Gaussian Kernel

cv2.GaussianBlur(image,(5,5),BORDER_DEFAULT)

cv2.Canny(image,50,150)

Region of Interest(ROI)

cv2.bitwise_and(image, mask)

Hough Line Prediction

Perspective Transformation

Perspective Transformation

Şerit Takip Öneri Sistemi

Kazalardan Kim Sorumlu?

Teşekkürler