SYDE 556/750

Simulating Neurobiological Systems Lecture 6: Recurrent Dynamics

Andreas Stöckel

February 3 & 5, 2020

Feed Forward vs. Recurrent Connections

Recurrence Experiments (I)

Recurrence Experiments (II)

Recurrence Experiments (III)

NEF Principle 3: Dynamics

Time-Invariant Dynamical System

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = f(\mathbf{x}(t), \mathbf{u}(t))$$

Linear Time-Invariant (LTI)

Dynamical System

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

NEF Principle 3 – Dynamics

Neural dynamics are characterized by considering neural representations as control theoretic state variables. We can use control theory (and dynamical systems theory) to analyse and construct these systems.

Making Sense of Dynamics

Phase Portraits

Implementing Dynamics using a Neural Ensemble

Implementing Dynamical Systems as a Neural Ensemble

LTI System

$$\phi(\mathbf{u}, \mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
$$\phi'(\mathbf{u}, \mathbf{x}) = \mathbf{A}'\mathbf{x} + \mathbf{B}'\mathbf{u}$$
$$\mathbf{A}' = \tau \mathbf{A} + \mathbf{I}$$
$$\mathbf{B}' = \tau \mathbf{B}.$$

Additive Time-Invariant System

$$\phi(\mathbf{u}, \mathbf{x}) = f(\mathbf{x}) + g(\mathbf{u})$$
$$\phi'(\mathbf{u}, \mathbf{x}) = f'(\mathbf{x}) + g'(\mathbf{u})$$
$$f'(\mathbf{x}) = \tau f(\mathbf{x}) + \mathbf{x}$$
$$g'(\mathbf{u}) = \tau g(\mathbf{u})$$

"General" Recipe

Scale the original dynamics by τ , add feedback x

Integrator Example (I)

Integrator Example (II)

Oscillator Example (I)

Oscillator Example (II)

Lorentz Attractor

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \begin{pmatrix} 10x_2(t) - 10x_1(t) \\ -x_1(t)x_3(t) - x_2(t) \\ x_1(t)x_2(t) - \frac{8}{3}(x_3(t) + 28) - 28 \end{pmatrix}$$

Heart Shape

Horizontal Eye Control

Image sources

Title slide

"The Canada 150 Mosaic Mural"

Author: Mosaic Canada Murals.

From Wikimedia.