

Act 6: Determinantes de Matrices

Aarón Mireles Barrón

Matrícula: 2132904

Profesor: Luis Ángel Gutiérrez Rodríguez

Materia: Inteligencia Artificial

Tenemos que obtener el determinante de una matriz 4x4 como se muestra a continuación:

a ₁₁	a ₂₁	a ₃₁	a ₄₁	
a ₁₂	a ₂₂	a ₃₂	a ₄₂	
a ₁₃	a ₂₃	a ₃₃	a ₄₃	
a ₁₄	a ₂₄	a ₃₄	a ₄₄	

Usando la regla de Sarrus y la regla de Laplace podemos obtener una fórmula que resuelva directamente esta matriz, primero usamos la regla de Laplace para reducir esta matriz a tres de 3x3

a ₁₁	a ₂₁	a ₃₁	a ₄₁	
a ₁₂	a_{22}	a ₃₂	a ₄₂	
a ₁₃	a ₂₃	a ₃₃	a ₄₃	
a ₁₄	a_{24}	a_{34}	a ₄₄	

Es igual a

$$a_{22}$$
 a_{32}
 a_{42}
 a_{23}
 a_{33}
 a_{43}
 * a_{11} +

 a_{12}
 a_{32}
 a_{42}
 * $(-a_{21})$ +

 a_{13}
 a_{33}
 a_{43}
 * $(-a_{21})$ +

 a_{14}
 a_{34}
 a_{44}
 * $(-a_{21})$ +

 a_{12}
 a_{22}
 a_{42}
 * $(-a_{21})$ +

 a_{12}
 a_{22}
 a_{42}
 * $(-a_{31})$ +

 a_{13}
 a_{23}
 a_{43}
 * $(-a_{31})$ +

 a_{14}
 a_{22}
 a_{32}
 * $(-a_{41})$
 a_{14}
 a_{24}
 a_{34}
 * $(-a_{41})$

Ahora usamos la regla de Sarrus para obtener una fórmula que resuelva cualquier matriz de 4x4

La primera matriz:

Es igual a:

$$a_{11} * [(a_{22}*a_{33}*a_{44}+a_{32}*a_{43}*a_{24}+a_{42}*a_{23}*a_{34}) - (a_{22}*a_{43}*a_{34}+a_{32}*a_{23}*a_{44}+a_{42}*a_{33}*a_{24})]$$

La segunda matriz:

Es igual a:

$$a_{21} * [-(a_{12}* a_{33}* a_{44} + a_{32}* a_{43}* a_{14} + a_{42}* a_{13}* a_{34}) + (a_{12}* a_{43}* a_{34} + a_{32}* a_{13}* a_{44} + a_{42}* a_{33}* a_{14})]$$

La tercera matriz:

Es igual a:

$$a_{31} * [(a_{12} * a_{23} * a_{44} + a_{22} * a_{43} * a_{14} + a_{42} * a_{13} * a_{24}) - (a_{12} * a_{43} * a_{24} + a_{22} * a_{13} * a_{44} + a_{42} * a_{23} * a_{14})]$$

La cuarta matriz:

$$\begin{vmatrix} a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \\ a_{14} & a_{24} & a_{34} \end{vmatrix} * (-a_{41})$$

Es igual a:

$$a_{41} * [-(a_{12}* a_{23}* a_{34} + a_{22}* a_{33}* a_{14} + a_{32}* a_{13}* a_{24}) + (a_{12}* a_{33}* a_{24} + a_{22}* a_{13}* a_{34} + a_{32}* a_{23}* a_{14})]$$

Juntando todo obtenemos la fórmula para resolver una matriz de 4x4:

 $a_{11}a_{22}a_{33}a_{44} + a_{11}a_{32}a_{43}a_{24} + a_{11}a_{42}a_{23}a_{34} - a_{11}a_{22}a_{43}a_{34} - a_{11}a_{32}a_{23}a_{44} - a_{11}a_{42}a_{33}a_{24} - a_{21}a_{12}a_{33}a_{44} - a_{21}a_{32}a_{43}a_{14} - a_{21}a_{42}a_{13}a_{34} + a_{21}a_{12}a_{43}a_{34} + a_{21}a_{32}a_{13}a_{44} + a_{21}a_{42}a_{33}a_{14} + a_{31}a_{12}a_{23}a_{44} + a_{31}a_{22}a_{43}a_{14} + a_{31}a_{42}a_{13}a_{24} - a_{31}a_{12}a_{43}a_{24} - a_{31}a_{22}a_{13}a_{44} - a_{31}a_{42}a_{23}a_{14} - a_{41}a_{12}a_{23}a_{34} - a_{41}a_{22}a_{33}a_{14} - a_{41}a_{32}a_{13}a_{24} + a_{41}a_{12}a_{33}a_{24} + a_{41}a_{22}a_{13}a_{34} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{22}a_{13}a_{34} + a_{41}a_{22}a_{13}a_{34} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{22}a_{13}a_{34} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{22}a_{13}a_{34} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{22}a_{13}a_{24} + a_{41}a_{22}a_{13}a_{34} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{14} + a_{41}a_{32}a_{23}a_{24} + a_{41}a_{22}a_{13}a_{24} + a_{41}a_{22}a_{13}a_{24} + a_{41}a_{22}a_{13}a_{24} + a_{41}a_{22}a_{13}a_{24} + a_{41}a_{22}a_{13}a_{24} + a_{41}a_{22}a_{23}a_{14} + a_{41}a_{22}a_{23}a_{14} + a_{41}a_{22}a_{23}a_{14} + a_{41}a_{22}a_{23}a_{14} + a_{41}a_{22}a_{23}a_{23}a_{14} + a_{41}a_{22}a_{23}a_{23}a_{14} + a_{41}a_{22}a_{23}a_{23}a_{14} + a_{41}a_{22}a_{23}a_{23}a_{24} + a_{41}a_{22}a_{23}a_{24} + a$