MATH5301 Elementary Analysis. Homework 2. Due: 09/10/2021, 11:59 pm

First Name: Last Name:

2.1

For a function $f:A\to B$ Show that for any $X\subset A,\,Y,Z\subset B$

- (a) $X \subset f^{-1}(f(X))$
- (b) $f(f^{-1}(Y)) \subset Y$
- (c) $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- (d) $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$

Show that

(a)
$$A \cap \bigcup_{\lambda \in \Lambda} A_{\lambda} = \bigcup_{\lambda \in \Lambda} (A_{\lambda} \cap A)$$

(b)
$$\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right) \cup \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} (A_{\lambda} \cup B_{\lambda})$$

2.3

Which of those are equivalence relations?

- (a) for $a, b \in \mathbb{R}$, let $a\mathcal{R}b$ if $a b \in \mathbb{Q}$.
- (b) for $a, b \in \mathbb{R}$, let $a\mathcal{R}b$ if $a b \notin \mathbb{Q}$.
- (c) for $a, b \in \mathbb{R}$, let $a\mathcal{R}b$ if a-b is a square root of rational number.
- (d) Let $X = \mathbb{Z} \times \mathbb{N}$, let $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in \mathcal{R} if $x_1y_2 = x_2y_1$.

2.4

For the relation $(x,y)\succeq (a,b)$ if $(x\geq a)\wedge (y\geq b)$ on the set of ordered pairs of $\{1,2,3\}\times \{1,2,3\}$

- (a) Show that the above relation is an order relation.
- (b) Can you make it the total order?
- (c) How many different total ordering can be constructed?

Provide an example of $f:\mathbb{Z}\to\mathbb{N}$ such that

- (a) f is surjective, but not injective,
- (b) f is injective, but not surjective,
- (c) f is surjective, and injective,
- (d) f is niether surjective nor injective.

2.6 Is the following statement correct?

Theorem 1. If the relation R on A is symmetric and transitive, then it is reflexive.

Proof. For any $a \in A$ let $b \in A$ is such that $a\mathcal{R}b$. Then, by symmetry $b\mathcal{R}a$. Then by symmetry $a\mathcal{R}a$.