PDE в обработке видео Оптический поток

PDE = уравнения в частных производных

$$\Psi'(I_{z}^{2} + \gamma(I_{xz}^{2} + I_{yz}^{2})) \cdot (I_{x}I_{z} + \gamma(I_{xx}I_{xz} + I_{xy}I_{yz})) - \alpha \cdot \operatorname{div}(\Psi'(|\nabla_{3}u|^{2} + |\nabla_{3}v|^{2})\nabla_{3}u) = 0,$$

$$\Psi'(I_{z}^{2} + \gamma(I_{xz}^{2} + I_{yz}^{2})) \cdot (I_{y}I_{z} + \gamma(I_{yy}I_{yz} + I_{xy}I_{xz})) - \alpha \cdot \operatorname{div}(\Psi'(|\nabla_{3}u|^{2} + |\nabla_{3}v|^{2})\nabla_{3}v) = 0$$

Видео = ...

Одна из основных задач:

Получить информацию о движении в кадре

Одна из основных задач:

Получить информацию о движении в кадре

- •Идентифицировать движение
- •Определить его направление
- •Определить скорость

Одна из основных задач:

Получить информацию о движении в кадре

- •Идентифицировать движение
- •Определить его направление
- •Определить скорость

Положение и перемещения камеры обычно неизвестны

Одна из основных задач:

Получить информацию о движении в кадре

- •Идентифицировать движение
- •Определить его направление
- •Определить скорость

Положение и перемещения камеры обычно неизвестны

Ограничиваем задачу поиском относительного движения объектов в системе отсчета, связанной с камерой

Относительное движение между двумя последовательными кадрами можно представить как векторное поле – **оптический поток**

Применение

- •Визуальные эффекты
- •Отслеживание объектов
- •Автономная навигация роботов
- •Системы видеонаблюдения

Методы нахождения

- Фазовая корреляция
 - преобразование Фурье
 - только прямолинейное движение
 - все точки перемещаются одинаково

Взаимная корреляция сигналов

$$(f \bullet g)(t) = \int_{-\infty}^{+\infty} f^*(y)g(y+t)dy$$

$$F\{f \bullet g\} = (F\{f\})^* \cdot F\{g\}$$

Методы нахождения

- Фазовая корреляция
 - преобразование Фурье
 - только прямолинейное движение
 - все точки перемещаются одинаково
- Блочные методы
 - поиск похожих блоков
 - все точки блока перемещаются одинаково

Методы нахождения

- Фазовая корреляция
 - преобразование Фурье
 - только прямолинейное движение
 - все точки перемещаются одинаково
- Блочные методы
 - поиск похожих блоков
 - все точки блока перемещаются одинаково
- Вариационные методы
 - минимизация некоторого функционала

$$E(u,v) \rightarrow \inf$$

$$x-a=b \Leftrightarrow |x-a-b|=0$$

 $u-$ решение $\Leftrightarrow |u-a-b|=\inf_{x}|x-a-b|=0$
 $\Rightarrow E(u)=|u-a-b| \to \inf$

Вариационные методы

- •формулировка в виде задачи оптимизации
- •плотное поле скоростей
 - •для каждого пикселя
- •высокая точность
 - •смещение не обязательно кратно размеру пикселя

Построение модели

•Дано:

•Непрерывная последовательность изображений

$$I(x,y,t),\;(x,y)\in\Omega,\;t\in[0,T]$$
 яркость в точке в момент времени

•Надо найти:

•Поле смещений

$$\mathbf{w}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \\ 1 \end{pmatrix}$$

Предположение 1

Постоянство яркости пикселей

$$I(x+u, y+v, t+1) - I(x, y, t) = 0$$

Предположение 2

u, v — малы, I — гладкая функция

В этом случае предыдущее равенство можно линеаризовать в точке (x, y, t)

$$I(x+u, y+v, t+1) - I(x, y, t) \approx I_x(x, y, t)u + I_y(x, y, t)v + I_t(x, y, t) \cdot 1$$

$$\Rightarrow I_x u + I_y v + I_t = 0$$

$$I_x u + I_y v + I_t = 0$$

- •Одно уравнение для двух неизвестных
- •Некорректная задача с бесконечным числом решений
- •Известно как проблема апертуры (aperture problem)
 - •наблюдая лишь за небольшой частью кадра невозможно однозначно определить направление движения

$$I_x u + I_y v + I_t = 0$$

- •Одно уравнение для двух неизвестных
- •Некорректная задача с бесконечным числом решений
- •Известно как **проблема апертуры** (aperture problem) •наблюдая лишь за небольшой частью кадра невозможно однозначно определить направление движения

Как движется шаблон?

$$I_x u + I_y v + I_t = 0$$

- •Одно уравнение для двух неизвестных
- •Некорректная задача с бесконечным числом решений
- •Известно как проблема апертуры (aperture problem)
 - •наблюдая лишь за небольшой частью кадра невозможно однозначно определить направление движения

Как движется шаблон?

По диагонали вправо?

$$I_x u + I_y v + I_t = 0$$

- •Одно уравнение для двух неизвестных
- •Некорректная задача с бесконечным числом решений
- •Известно как проблема апертуры (aperture problem)
 - •наблюдая лишь за небольшой частью кадра невозможно однозначно определить направление движения

Как движется шаблон?

По диагонали вправо? Только вправо?

$$I_x u + I_y v + I_t = 0$$

- •Одно уравнение для двух неизвестных
- •Некорректная задача с бесконечным числом решений
- •Известно как проблема апертуры (aperture problem)
 - •наблюдая лишь за небольшой частью кадра невозможно однозначно определить направление движения

Как движется шаблон?

По диагонали вправо? Только вправо? Или только вниз?

Как визуализировать векторное поле

При помощи стрелок, предварительно понизив разрешение

При помощи цвета:

- •Направление цвет
- •Абсолютное значение яркость

optical flow color encoding scheme

Как оценить качество рассчитанного потока

Настоящий поток (ground truth) w^t

Вычисленный поток (estimated) w^e

Размер изображения M imes N

Средняя угловая ошибка (AAE – Average Angular Error)

$$AAE = \frac{1}{NM} \sum_{i=1}^{M} \sum_{j=1}^{N} \arccos\left(\frac{w_{i,j}^{t}}{\left|w_{i,j}^{t}\right|} \frac{w_{i,j}^{e}}{\left|w_{i,j}^{e}\right|}\right)$$

Средняя ошибка по конечной точке (AEE – Average Endpoint Error)

$$AEE = \frac{1}{NM} \sum_{i=1}^{M} \sum_{j=1}^{N} \left| w_{i,j}^{t} - w_{i,j}^{e} \right|$$

Как оценить качество рассчитанного потока

METOД LUCAS-KANADE

Lucas B. D. and Kanade T. 1981, An iterative image registration technique with an application to stereo vision.

Proceedings of Imaging understanding workshop, pp 121--130

Предположение

•Поток кусочно-постоянный

Разобьем изображение на небольшие части (например, блоки 8х8), в которых все точки двигаются одинаково

$$\Omega = \coprod_k \omega_k$$

Для каждой из частей запишем линеаризованное уравнение постоянства яркости

$$I_{x}(i,j)u(\omega_{k}) + I_{y}(i,j)v(\omega_{k}) = -I_{t}(i,j), (i,j) \in \omega_{k}$$

Полученную систему уравнений можно записать в матричном виде

$$A \cdot \begin{pmatrix} u \\ v \end{pmatrix} = -b$$

$$A = \begin{pmatrix} I_x(i_1, j_1) & I_y(i_1, j_1) \\ \vdots & \vdots \\ I_x(i_L, j_L) & I_y(i_L, j_L) \end{pmatrix}, b = \begin{pmatrix} I_t(i_1, j_1) \\ \vdots \\ I_t(i_L, j_L) \end{pmatrix}$$

Полученную систему уравнений можно записать в матричном виде

$$A \cdot \begin{pmatrix} u \\ v \end{pmatrix} = -b$$

$$A = \begin{pmatrix} I_x(i_1, j_1) & I_y(i_1, j_1) \\ \vdots & \vdots \\ I_x(i_L, j_L) & I_y(i_L, j_L) \end{pmatrix}, b = \begin{pmatrix} I_t(i_1, j_1) \\ \vdots \\ I_t(i_L, j_L) \end{pmatrix}$$

Уравнений больше чем неизвестных Ищем **псевдорешение** методом наименьших квадратов

Псевдорешение

$$A^T A \binom{u}{v} = -A^T b$$

$$A^{T}A = \begin{pmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}^{2} \end{pmatrix}, \quad A^{T}b = \begin{pmatrix} \sum I_{x}I_{t} \\ \sum I_{y}I_{t} \end{pmatrix}$$

Для каждой части изображения необходимо

- •вычислить квадратную матрицу 2-го порядка
- •правую часть вектор размерности 2
- •решить СЛАУ 2-го порядка

Недостаток метода:

Матрица может оказаться вырожденной

•В однородных областях (без текстуры)

$$\begin{vmatrix} I_x \approx 0 \\ I_y \approx 0 \end{vmatrix} \Rightarrow A^T A \approx 0$$

•На гранях

$$I_{x} = c \cdot I_{y} \Rightarrow A^{T} A = \begin{pmatrix} c^{2} I_{y}^{2} & c I_{y} I_{y} \\ c I_{y} I_{y} & I_{y}^{2} \end{pmatrix}$$

Пространственные производные удобно вычислить заранее •свертка столбцов(строк) с ядром 5х1 (1х5)

$$\frac{\partial f}{\partial x}(x_i, y_j) \approx \frac{f(x_{i-2}, y_j) - 8f(x_{i-1}, y_j) + 8f(x_{i+1}, y_j) - f(x_{x+2}, y_j)}{12h}$$

Ядро

$$\frac{1}{12}$$

$$-\frac{8}{12}$$

$$\frac{8}{12}$$

$$\frac{1}{12}$$
 $-\frac{8}{12}$ 0 $\frac{8}{12}$ $-\frac{1}{12}$

Решение систем

Распределение работы между потоками

Каждый блок потоков обрабатывает две части изображения

Вычисление матрицы и правой части

•использовать reduce

Решение системы уравнений 2х2

- •выписывается явно
- •удобно вычислять потоками (0,0) и (8,0)

Вариационные методы

Основная идея

поле смещений минимизирует некоторый энергетический функционал

$$E(u,v) = \int_{\Omega} D(u,v) + \alpha \cdot S(u,v) dxdy$$

- D(u,v) (data term) штраф за отклонения от предположений о постоянстве какой-либо величины (например, яркости)
- S(u,v) (smooth term) штраф за отклонения от предположений гладкости векторного поля
 - lpha параметр регуляризации определяет гладкость получаемого векторного поля

METOД HORN-SCHUNK

B.K.P. Horn and B.G. Schunck, "Determining optical flow." *Artificial Intelligence*, vol 17, pp 185-203, 1981

Метод Horn-Schunck

Предположение

Поле смещений – гладкая функция в Ω области

Поле смещений минимизирует функционал

$$E(u,v) = \int_{\Omega} \underbrace{\left(I_{x}u + I_{y}v + I_{t}\right)^{2} + \alpha \underbrace{\left(\left|\nabla u\right|^{2} + \left|\nabla v\right|^{2}\right)}_{\text{smooth}} dxdy$$

data term – штраф за отклонения от предположения постоянства яркости

smooth term – штраф за отклонение от предположения гладкости поля

Минимизация функционала

$$E(u,v) = \int_{\Omega} F(x, y, u, v, u_x, u_y, v_x, v_y) dxdy$$

Уравнения Эйлера-Лагранжа

$$0 = F_{u} - \frac{\partial}{\partial x} F_{u_{x}} - \frac{\partial}{\partial y} F_{u_{y}}$$

$$0 = F_{v} - \frac{\partial}{\partial x} F_{v_{x}} - \frac{\partial}{\partial y} F_{v_{y}}$$

С граничными условиями

$$\mathbf{n}^{T} \begin{pmatrix} F_{u_{x}} \\ F_{u_{y}} \end{pmatrix} = 0, \quad \mathbf{n}^{T} \begin{pmatrix} F_{v_{x}} \\ F_{v_{y}} \end{pmatrix} = 0$$

Уравнения Эйлера-Лагранжа
$$\begin{cases} I_x(I_xu+I_yv+I_t)-\alpha\cdot\Delta u=0\\ I_y(I_xu+I_yv+I_t)-\alpha\cdot\Delta v=0 \end{cases}$$

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Граничные условия

$$\mathbf{n}^T \nabla u = 0, \quad \mathbf{n}^T \nabla v = 0$$

Аппроксимация оператора Лапласа

$$\Delta u_{i,j} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h^2}$$

Дискретизация уравнений

$$\begin{cases} 0 = I_{x}^{2} u_{i,j} + I_{x} I_{y} v_{i,j} + I_{x} I_{t} - \alpha \cdot \sum_{(\bar{i}, \bar{j}) \in III'(i, j)} \frac{u_{\bar{i}, \bar{j}} - u_{i,j}}{h^{2}} \\ 0 = I_{x} I_{y} u_{i,j} + I_{y}^{2} v_{i,j} + I_{y} I_{t} - \alpha \cdot \sum_{(\bar{i}, \bar{j}) \in III'(i, j)} \frac{v_{\bar{i}, \bar{j}} - v_{i,j}}{h^{2}} \end{cases}$$

Граничные условия уже учтены в дискретизованном уравнении •Шаг сетки *h* обычно принимают равным 1

•Система с 2xNxM неизвестными — метод Гаусса неприменим из-за высокой сложности и плохой устойчивости

Метод Якоби для решения СЛАУ

Рассмотрим СЛАУ вида

$$Ax = b$$

$$A = L + D + U$$

Итерационный метод

$$x^{0} = 0$$

$$x^{k+1} = D^{-1}(b - (L+U)x^{k}) \iff x_{i}^{k+1} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j \neq i} a_{ij} x_{j}^{k} \right)$$

Метод Гаусса-Зейделя для решения СЛАУ

Рассмотрим СЛАУ вида

$$Ax = b$$

$$A = L + D + U$$

Итерационный метод

$$x^{0} = 0$$

$$x^{k+1} = (D+L)^{-1}(b-Ux^k) \iff x_i^{k+1} = \frac{1}{a_{ii}} \left(b_i - \sum_{j>i} a_{ij} x_i^k - \sum_{j$$

Метод релаксации (SOR) для решения СЛАУ

Рассмотрим СЛАУ вида

$$Ax = b$$

$$A = L + D + U$$

Итерационный метод

$$x^{0} = 0$$

$$x^{k+1} = (D + \omega L)^{-1} (\omega b - (\omega U + (\omega - 1)D)x^{k}) \iff$$

$$x_{i}^{k+1} = (1 - \omega)x_{i}^{k} + \frac{\omega}{a_{ii}} \left(b_{i} - \sum_{j>i} a_{ij} x_{j}^{k} - \sum_{j$$

Метод Якоби

$$u_{i,j}^{k+1} = \frac{\left(-I_{x}I_{t} - \left(I_{x}I_{y}v_{i,j}^{k} - \alpha \sum_{(\bar{i},\bar{j}) \in III'(i,j)} \frac{1}{h^{2}}u_{\bar{i},\bar{j}}^{k}\right)\right)}{I_{x}^{2} + \alpha \sum_{(\bar{i},\bar{j}) \in III'(i,j)} \frac{1}{h^{2}}}$$

$$v_{i,j}^{k+1} = \frac{\left(-I_{y}I_{t} - \left(I_{x}I_{y}u_{i,j}^{k} - \alpha \sum_{(\bar{i},\bar{j}) \in III'(i,j)} \frac{1}{h^{2}}v_{\bar{i},\bar{j}}^{k}\right)\right)}{I_{y}^{2} + \alpha \sum_{(\bar{i},\bar{j}) \in III'(i,j)} \frac{1}{h^{2}}}$$

Просто распараллеливается

Приближение на следующей итерации полностью определяется по приближению на текущей итерации – нет зависимости между разными пикселями

$$u_{i,j}^{k+1} = \frac{\left(-I_{x}I_{t} - \left(I_{x}I_{y}v_{i,j}^{k} - \alpha \sum_{(\bar{i},\bar{j}) \in \underline{III'_{-}(i,j)}} \frac{1}{h^{2}}u_{\bar{i},\bar{j}}^{k+1} - \alpha \sum_{(\bar{i},\bar{j}) \in \underline{III'_{+}(i,j)}} \frac{1}{h^{2}}u_{\bar{i},\bar{j}}^{k}\right)\right)}{I_{x}^{2} + \alpha \sum_{(\bar{i},\bar{j}) \in \underline{III'_{-}(i,j)}} \frac{1}{h^{2}}}$$

Метод

Гаусса-Зейделя
$$v_{i,j}^{k+1} = \frac{\left(-I_{y}I_{t} - \left(I_{x}I_{y}u_{i,j}^{k+1} - \alpha\sum_{(\bar{i},\bar{j})\in III'_{-}(i,j)}\frac{1}{h^{2}}v_{\bar{i},\bar{j}}^{k+1} - \alpha\sum_{(\bar{i},\bar{j})\in III'_{+}(i,j)}\frac{1}{h^{2}}v_{\bar{i},\bar{j}}^{k}\right)\right)}{I_{y}^{2} + \alpha\sum_{(\bar{i},\bar{j})\in III'(i,j)}\frac{1}{h^{2}}}$$

	i,j+1	
i-1,j	i,j	i+1,j
	i,j-1	

$III'_{+}(i,j)$
$III'_{-}(i,j)$

Нельзя напрямую использовать для параллельных вычислений

Красно-черная схема Гаусса-Зейделя

•Новое значение в красном узле зависит только от текущих значений в самом узле и в его «черных соседях» •Новое значение в черном узле зависит только от текущих значений в самом узле и в его «красных соседях»

Новые значения в узлах одного цвета можно вычислять параллельно

Схема одной итерации

- •Обновить значения в красных узлах
- •Обновить значения в черных узлах

Аналогично можно сделать параллельную версию SOR

•Ядро выполняет одну итерацию итерационного метода

Схема вычислений

- •Вычислить производные изображения (пространственные и временные)
- •Установить начальное приближение нулевой поток
- •Выполнить некоторое количество итераций одного из итерационных методов

Новые значения сохраняются в массив, отличный от массива со старыми значениями. В противном случае возникает конфликт чтения-записи.

$$\max_i \left| x_i^{n+1} - x_i^n \right| \le \varepsilon$$
 критерий останова $\max_i \left| \left(A x^{n+1} \right)_i - b_i \right| \le \varepsilon$

METOД BROX ET AL

T. Brox, A. Bruhn, N. Papenberg, J. Weickert **High accuracy optical flow estimation based on a theory for warping**,

T. Pajdla and J. Matas (Eds.), *European Conference on Computer Vision*(ECCV) Prague, Czech Republic, Springer, LNCS, Vol. 3024, 2536, May 2004

Рассмотренные методы чувствительны к изменению освещения

Рассмотренные методы чувствительны к изменению освещения

Идея

•Рассмотреть другой data term

Предположение

Сохраняется градиент изображения

$$\nabla I(x+u, y+v, t+1) - \nabla I(x, y, t) = 0$$

Плюс:

- •градиент не чувствителен к аддитивному изменению яркости Минус:
- •чувствительность к шуму

Рассмотренные методы чувствительны к изменению освещения

Идея

•Рассмотреть другой data term

Предположение

Сохраняется градиент изображения

$$\nabla I(x+u, y+v, t+1) - \nabla I(x, y, t) = 0$$

С самого начала ищутся только небольшие векторы смещения

Рассмотренные методы чувствительны к изменению освещения

Идея

•Рассмотреть другой data term

Предположение

Сохраняется градиент изображения

$$\nabla I(x+u, y+v, t+1) - \nabla I(x, y, t) = 0$$

С самого начала ищутся только небольшие векторы смещения

Идея

Использовать нелинеаризованное уравнение сохранения яркости

Тогда штраф за отклонение от предположений о сохранении яркости и градиента яркости примет вид

$$E_{Data}(u, v) = \int_{\Omega} \left| I(\mathbf{x} + \mathbf{w}) - I(\mathbf{x}) \right|^2 + \gamma \left| \nabla I(\mathbf{x} + \mathbf{w}) - \nabla I(\mathbf{x}) \right|^2 dxdy$$

Проблема:

•квадратичный штраф чувствителен к выбросам

Проблема:

•квадратичный штраф чувствителен к выбросам

Идея

Заменить квадратичный штраф выпуклой возрастающей функцией

$$\Psi(s^2) = \sqrt{s^2 + \varepsilon^2}$$

 ${\mathcal E}$ малый положительный параметр

Получим новый функционал

$$E_{Data}(u, v) = \int_{\Omega} \Psi \left| I(\mathbf{x} + \mathbf{w}) - I(\mathbf{x}) \right|^{2} + \gamma \left| \nabla I(\mathbf{x} + \mathbf{w}) - \nabla I(\mathbf{x}) \right|^{2} dxdy$$

Предположение

Поток кусочно-гладкий

Штраф за отклонения от предположения о гладкости потока

$$E_{Smooth}(u,v) = \int_{\Omega} \Psi \left(\left| \nabla_3 u \right|^2 + \left| \nabla_3 v \right|^2 \right) dx dy$$

Задача

Найти и и v, минимизирующие функционал

$$E(u,v) = E_{Data}(u,v) + \alpha \cdot E_{Smooth}(u,v)$$

$$E_{Data}(u, v) = \int_{\Omega} \Psi \left(\left| I(\mathbf{x} + \mathbf{w}) - I(\mathbf{x}) \right|^2 + \gamma \left| \nabla I(\mathbf{x} + \mathbf{w}) - \nabla I(\mathbf{x}) \right|^2 \right) dxdy$$

$$E_{Smooth}(u, v) = \int_{\Omega} \Psi \left(\left| \nabla_3 u \right|^2 + \left| \nabla_3 v \right|^2 \right) dxdy$$

Уравнения Эйлера-Лагранжа

Введем обозначения:

$$I_{x} \coloneqq \partial_{x} I(\mathbf{x} + \mathbf{w})$$

$$I_{y} \coloneqq \partial_{y} I(\mathbf{x} + \mathbf{w})$$

$$I_{z} \coloneqq I(\mathbf{x} + \mathbf{w}) - I(\mathbf{x})$$

$$I_{xx} \coloneqq \partial_{xx} I(\mathbf{x} + \mathbf{w})$$

$$I_{yy} \coloneqq \partial_{yy} I(\mathbf{x} + \mathbf{w})$$

$$I_{xz} \coloneqq \partial_{x} I(\mathbf{x} + \mathbf{w}) - \partial_{x} I(\mathbf{x})$$

$$I_{yz} \coloneqq \partial_{y} I(\mathbf{x} + \mathbf{w}) - \partial_{y} I(\mathbf{x})$$

Использование z вместо t говорит о том, что соответствующее выражение **HE** производная, а разность, которую будем минимизировать

Уравнения Эйлера-Лагранжа

$$\Psi'(I_{z}^{2} + \gamma(I_{xz}^{2} + I_{yz}^{2})) \cdot (I_{x}I_{z} + \gamma(I_{xx}I_{xz} + I_{xy}I_{yz})) - \alpha \cdot \operatorname{div}(\Psi'(|\nabla_{3}u|^{2} + |\nabla_{3}v|^{2})\nabla_{3}u) = 0,$$

$$\Psi'(I_z^2 + \gamma(I_{xz}^2 + I_{yz}^2)) \cdot (I_y I_z + \gamma(I_{yy} I_{yz} + I_{xy} I_{xz})) - \alpha \cdot \text{div}(\Psi'(|\nabla_3 u|^2 + |\nabla_3 v|^2)\nabla_3 v) = 0$$

Граничные условия Неймана

Численный метод

- •Уравнения Эйлера-Лагранжа нелинейные
- •Используем метод неподвижной точки для w
- •Если есть смещения на расстояние, большее размера пикселя, то функционал может иметь множество локальных минимумов

Идея

•Использовать пирамиду изображений разного разрешения

Метод неподвижной точки

$$f(x) = x$$

$$\Rightarrow x^{n+1} = f(x^n)$$

$$\Rightarrow \lim_{n \to \infty} x^{n+1} = x^*$$

$$\Rightarrow f(x^*) = x^*$$

Численный метод

- •Совместим метод неподвижной точки с масштабированием
- •Масштабировать будем с коэффициентом $\eta \in (0,1)$
- •Для более плавного перехода от разрешения к разрешению коэффициент выберем близким к 1
- •Используем полную пирамиду изображений, начиная с наименьшего возможного разрешения (например, с 10х10)

Численный метод

Итерации по разрешению назовем внешними

Пусть k – номер изображения в пирамиде (0 – самое низкое разрешение)

$$\mathbf{w}^{k} = (u^{k}, v^{k}, 1)^{T}$$
 — решение на k-ой внешней итерации

$$\Psi'((I_z^{k+1})^2 + \gamma((I_{xz}^{k+1})^2 + (I_{yz}^{k+1})^2)) \cdot (I_x^k I_z^{k+1} + \gamma(I_{xx}^k I_{xz}^{k+1} + I_{xy}^k I_{yz}^{k+1})) -$$

$$-\alpha \cdot \operatorname{div}(\Psi'(\left|\nabla_3 u^{k+1}\right|^2 + \left|\nabla_3 v^{k+1}\right|^2)\nabla_3 u^{k+1}) = 0$$

Осталась нелинейность в

- I_*^{k+1}
- · Ψ'

Численный метод

Устранение нелинейности в производных изображения

$$I_z^{k+1} \approx I_z^k + I_x^k du^k + I_y^k dv^k$$

$$I_{xz}^{k+1} \approx I_{xz}^k + I_{xx}^k du^k + I_{xy}^k dv^k$$

$$I_{yz}^{k+1} \approx I_{yz}^k + I_{xy}^k du^k + I_{yy}^k dv^k$$

$$u^{k+1} = u^k + du^k, \quad v^{k+1} = v^k + dv^k$$

Численный метод

Введем обозначения

$$(\Psi')_{Data}^{k} := \Psi'((I_{z}^{k} + I_{x}^{k} du^{k} + I_{y}^{k} dv^{k})^{2} +$$

$$+ \gamma((I_{xz}^{k} + I_{xx}^{k} du^{k} + I_{xy}^{k} dv^{k})^{2} + (I_{yz}^{k} + I_{xy}^{k} du^{k} + I_{yy}^{k} dv^{k})^{2}))$$

$$(\Psi')_{Smooth}^{k} := \Psi'(\left|\nabla_{3}(u^{k} + du^{k})\right|^{2} + \left|\nabla_{3}(v^{k} + dv^{k})\right|^{2})$$

Численный метод

Аппроксимация слагаемого с дивергенцией

$$\begin{split} \operatorname{div}(k \cdot \nabla u)_{i,j} &= \\ &= \frac{1}{h} \left(k_{i + \frac{1}{2}, j} \frac{u_{i+1, j} - u_{i, j}}{h} - k_{i - \frac{1}{2}, j} \frac{u_{i, j} - u_{i-1, j}}{h} \right) + \\ &+ \frac{1}{h} \left(k_{i, j + \frac{1}{2}} \frac{u_{i, j+1} - u_{i, j}}{h} - k_{i, j - \frac{1}{2}} \frac{u_{i, j} - u_{i, j-1}}{h} \right) \end{split}$$

Численный метод

Численный метод

Численный метод

Численный метод

Численный метод

$$\left|\nabla u\right|_{i+\frac{1}{2},j}^{2} = \left(u_{i+1,j} - u_{i,j}\right)^{2} + \left(\left(\frac{u_{i+1,j+1} + u_{i,j+1}}{2}\right) - \left(\frac{u_{i+1,j-1} + u_{i,j-1}}{2}\right)\right)^{2}$$

$$\left|\nabla u\right|_{i,j+\frac{1}{2}}^{2} = \left(u_{i,j+1} - u_{i,j}\right)^{2} + \left(\left(\frac{u_{i+1,j+1} + u_{i+1,j}}{2}\right) - \left(\frac{u_{i-1,j+1} + u_{i-1,j}}{2}\right)\right)^{2}$$

Численный метод

Оставшаяся нелинейность в Ψ устраняется повторным применением метода неподвижной точки

Начальные значения $\mathbf{w}^0 = (0,0,1)^T$, $du^{k,0} = 0$, $dv^{k,0} = 0$

$$0 = (\Psi')_{Data}^{k,l} \cdot (I_{x}^{k}(I_{z}^{k} + I_{x}^{k}du^{k,l+1} + I_{y}^{k}dv^{k,l+1}) +$$

$$+ \gamma \cdot I_{xx}^{k}(I_{xz}^{k} + I_{xx}^{k}du^{k,l+1} + I_{xy}^{k}dv^{k,l+1}) + \gamma \cdot I_{xy}^{k}(I_{yz}^{k} + I_{xy}^{k}du^{k,l+1} + I_{yy}^{k}dv^{k,l+1})) -$$

$$- \alpha \cdot \operatorname{div} \left((\Psi')_{Smooth}^{k,l} \nabla_{3}(u^{k} + du^{k,l+1}) \right)$$

Полученная система уравнений

- •линейная
- •может быть решена одним из рассмотренных методов

Решение линейной системы

Используем красно-черный метод релаксации (Red-Black SOR)

$$du_{i}^{k,l,m+1} = (1-\omega)du_{i}^{k,l,m} + \\ +\omega \frac{\sum_{j\in M'(i)} (\Psi'_{S})_{i\leftrightarrow j}^{k,l} (u_{j}^{k} + du_{j}^{k,l,m}) - \sum_{j\in M'(i)} (\Psi'_{S})_{i\leftrightarrow j}^{k,l} u_{i}^{k}}{\sum_{j\in M'(i)} (\Psi'_{S})_{i\leftrightarrow j}^{k,l} + \frac{(\Psi'_{D})_{i}^{k,l}}{\alpha} ((I_{x,i}^{k})^{2} + \gamma \cdot ((I_{xy,i}^{k})^{2} + (I_{xx,i}^{k})^{2}))} - \\ -\omega \frac{(\Psi'_{D})_{i}^{k,l}}{\alpha} ((I_{x,i}^{k}I_{y,i}^{k} + \gamma \cdot (I_{xx,i}^{k}I_{xy,i}^{k} + I_{xy,i}^{k}I_{yy,i}^{k}))dv_{i}^{k,l,m} + I_{x,i}^{k}I_{z,i}^{k} + \gamma \cdot (I_{xx,i}^{k}I_{xz,i}^{k} + I_{xy,i}^{k}I_{yz,i}^{k}))}{\sum_{j\in M'(i)} (\Psi'_{S})_{i\leftrightarrow j}^{k,l} + \frac{(\Psi'_{D})_{i}^{k,l}}{\alpha} ((I_{x,i}^{k})^{2} + \gamma \cdot ((I_{xy,i}^{k})^{2} + (I_{xx,i}^{k})^{2}))}$$

Граничные условия

$$\left| du^{k,l,m} \right|_{\partial\Omega} = 0, \left| dv^{k,l,m} \right|_{\partial\Omega} = 0$$

Решение линейной системы

Используем красно-черный метод релаксации (Red-Black SOR)

$$\begin{split} du_{i}^{k,l,m+1} &= (1-\omega)du_{i}^{k,l,m} + \\ &+ \omega \frac{\sum_{j \in III'(i)} (\Psi_{S}')_{i \leftrightarrow j}^{k,l} (u_{j}^{k} + du_{j}^{k,l,m}) - \sum_{j \in III'(i)} (\Psi_{S}')_{i \leftrightarrow j}^{k,l} u_{i}^{k}}{\sum_{j \in III'(i)} (\Psi_{S}')_{i \leftrightarrow j}^{k,l} + \frac{(\Psi_{D}')_{i}^{k,l}}{\alpha} ((I_{x,i}^{k})^{2} + \gamma \cdot ((I_{xy,i}^{k})^{2} + (I_{xx,i}^{k})^{2}))} \\ &- \omega \frac{(\Psi_{D}')_{i}^{k,l}}{\alpha} (\underbrace{(I_{x,i}^{k}I_{y,i}^{k} + \gamma \cdot (I_{xx,i}^{k}I_{xy,i}^{k} + I_{xy,i}^{k}I_{yy,i}^{k})}) dv_{i}^{k,l,m} + \underbrace{I_{x,i}^{k}I_{z,i}^{k} + \gamma \cdot (I_{xx,i}^{k}I_{xz,i}^{k} + I_{xy,i}^{k}I_{yz,i}^{k})})}_{\sum_{j \in III'(i)} (\Psi_{S}')_{i \leftrightarrow j}^{k,l} + \frac{(\Psi_{D}')_{i}^{k,l}}{\alpha} ((I_{x,i}^{k})^{2} + \gamma \cdot ((I_{xy,i}^{k})^{2} + (I_{xx,i}^{k})^{2}))} \end{split}$$

Билинейная интерполяция для **I(x+w)**

Реализация

- •Кадры храним в виде текстур
- •Для продолжения решения с разрешения k на разрешение k+1 используем текстуры

Общая схема метода

Подготовить текстуры с изображениями Задать начальное значения для u и v

- •Для каждого разрешения, начиная с наименьшего
 - •Установить начальное значение du, dv
 - •Подготовить данные для итераций SOR
 - •Выполнить некоторое число итераций SOR
 - •Обновить u, v
 - •Продолжить решение на большее разрешение
- •Сохранить результат

Реализация

- •Кадры храним в виде текстур
- •Для продолжения решения с разрешения k на разрешение k+1 используем текстуры

Общая схема метода

Подготовить текстуры с изображениями Задать начальное значения для u и v

- •Для каждого разрешения, начиная с наименьшего
 - •Установить начальное значение du, dv
 - •Подготовить данные для итераций SOR
 - •Выполнить некоторое число итераций SOR
 - •Обновить u, v
 - •Продолжить решение на большее разрешение
- •Сохранить результат

warping FP iteration
lagged nonlinearity FP iteration
solver FP iteration

- •Сложные шаблоны доступа к памяти
- •Большая часть данных не меняется во время итераций

Текстуры + shared memory работает медленнее чем просто текстуры

Для объединения запросов при записи индексы начала строк округляем до значений, кратных 16

Дополнительные материалы:

- •http://www.google.com
- •http://www.mia.uni-saarland.de
- •http://vision.middlebury.edu/flow/