

Mitja Phillip Richter, Tobias Pockrandt, Mihail Bogojeski, Björn Fischer

Forecast

- ► Ziel: die soziale Wohlfahrt maximieren
- # Aufgaben > # gutem Personal

Outline

- Spezifikation der Rahmenbedinungen
- Algorithmusbeschreibung
- Angewandte Methoden
- Evaluation
- Resumé
- Future Work

Problembeschreibung

- Matching von Agenten und Aufgaben
- Agenten handeln egoistisch
- Koalitionsbildung erfolgt durch Agenten
- Inklusive Verhandlung über Teilnehmer und Auszahlung
- Agenten besitzen nur begrenzte Informationen
- Anwendungsbeispiel: Mögliches Verfahren zur Vergabe von Bauaufträgen an Baufirmen

Spezifischer Aufbau

- Abenteuer
 - Benötigen Skills mit bestimmten Power
 - Wenn erfolgreich abgeschlossen, wird Reward ausgezahlt
- Agenten
 - Haben Skills und zugehörige Power
 - Kosten für jedes Abenteuer
 - Nutzenfunktion
 - Gewinn-Schätzfunktion
 - Vollen individuelle Gewinn maximieren

Algorithmus

- while(no more skills OR deadline over)
 - 1. Nutzen berechnen
 - 2. Berwebung auf max. 4 Abenteuer
 - 3. Ermittlung von Koalitionen in allen Abenteuer
 - 4. Auswahl der besten Koalition für jedes Abenteuer
 - 5. Entfernen von Überschüssen
 - 6. Gewinnverteilung
 - 7. Festlegung auf ein Abenteuer / Koalition
 - 8. Erfüllten Abenteuer schliessen

Angewendeten Methoden

- Utilityfunctions (Inkusive. Rewardabschätzung)
- Konzept (Dummy/Vetosspieler)
- Banzhaf Power Index
- Elitäre vs. Egalitäre funktion
- Powerpruning
- Deadline

- Testaufbau
 - 10-15 Agenten
 - 10-20 Abenteuer
 - 10-50 Runden
- Upper-Bound und Greedy-Bound zum Vergleich
- Randomisierte Initialisierung
 - Beta-Verteilung für benötigte Power von Abenteuer
 - Spieler haben insgesamt 40-50% der benötigten Power der Abenteuer
 - Reward der Abenteuer ist superlinear vom Power abhängig

- Keine vollständige Information → optimale Lösung ist nicht garantiert
- Einschränkungen
 - Rechenaufwand (#Agenten)
 - Verhindern von "schummeln"
- Vorteile für starke Agenten
 - Jeder Agent benutzt sein Power maximal

- ▶ 10 Agenten, 10 Abenteuer
- Prozent des Upper Bound: 75%
- Prozent des Greedy Bound: 91%
- Im Durchschnitt werden 4 Abenteuer geschlossen

10 Agenten, 10 Abenteuer Upper-Bound: 76% Greedy-Bound: 90%

10 Agenten, 15 Abenteuer Upper-Bound: 81% Greedy-Bound: 90%

15 Agenten, 10 Abenteuer Upper-Bound: 75% Greedy-Bound: 89%

15 Agenten, 20 Abenteuer Upper-Bound: 80% Greedy-Bound: 87%

Live Demo

asd

Resumé

- Coalitional Skill Games mit unvollständiger Information sind nicht einfach zu lösen
- Selbständige, egoistische Agenten erzielen relativ gute Gewinne
- Potentiellen Anwendungen:
 - Simulation
 - Modelieren und Testen von Agentenverhalten

Future Work

- pseudoverteilten → verteilten Algorithmus
- Einbindung von Echtem "Maschinellen Lernen"
- Coalition-Building optimieren
- Großflächige Untersuchung veränderter Parameter

Platz für Fragen

