Question Number	Scheme	Marks
9(a)	$f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - 2x^2 + 4x \ (+c)$	M1A1
	$x = -2 y = -\frac{28}{3} \Rightarrow c = 0$	M1
	$\left(f\left(x\right) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - 2x^2 + 4x\right) \therefore C \text{ passes through } O$	A1 cso (4)
(b)(i)	x = 2 f'(x) = 8 - 4 - 8 + 4 = 0	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3x^2 - 2x - 4$	M1
	$x = 2$ $\frac{d^2 y}{dx^2} = 12 - 4 - 4 > 0$: min at $x = 2$	A1cso
	x = 1 $f'(x) = 1 - 1 - 4 + 4 = 0$	M1
	$x = 1$ $\frac{d^2 y}{dx^2} = 3 - 2 - 4 < 0$: max at $x = 1$	A1 cso
ALT	f'(x) = (x-2)(x-1)(x+2) (=0) factorise	M1
	x = 2,1,(-2) solve (solutions to be 2,1 (and another))	M1
	OR: $f'(x) (=0)$ solved by calculator.	
	All 3 solutions needed (and correct) $= 0$ not needed M2	
	$\frac{d^2y}{dx^2} = 3x^2 - 2x - 4$ differentiate	M1
	$x = 2$ $\frac{d^2y}{dx^2} = 12 - 4 - 4 > 0$: min at $x = 2$	A1cso
	$x = 1$ $\frac{d^2 y}{dx^2} = 3 - 2 - 4 < 0$: max at $x = 1$	A1cso
(ii)	$x = 1 \Rightarrow y = 1\frac{11}{12}$ $x = 2 \Rightarrow y = 1\frac{1}{3}$	B1B1 (7)
(c)	y' = (x-1)(x-2)(x+2)	M1
	$x = -2$, $y = -\frac{28}{3}$ or $\left(-2, -\frac{28}{3}\right)$	A1
(ii)	$x = -2$ $\frac{d^2 y}{dx^2} = 12 + 4 - 4 > 0$: min point	A1cso (3)
		[14]

Question Number	Scheme	Marks	
(a)M1	Attempt to integrate $f'(x)$. The power of at least one x term must increase and none should decrease. c not needed		
A1	Correct integration, c not needed		
M1	Substitute the given coordinates to show $c = 0$. If c is not included (or assumed to be 0), then showing that substitution of $x = -2$ gives $y = -28/3$ is acceptable. Substitutions must be shown.		
A1cso	Correct conclusion from fully correct work. Accept eg f $(0) = 0$: shown		
(b)	Ignore labels (i) and (ii) when marking (b)		
(i)M1	Substitute $x = 2$ in the expression for $f'(x)$ to show $f'(x) = 0$. Substitution must be shown		
M1	Differentiate the expression for $f'(x)$. At least one power must decrease and none increase.		
A1cso	Show second derivative is > 0 at $x = 2$ and give the conclusion. No errors or omissions in the working.		
M1	Substitute $x = 1$ in the expression for $f'(x)$ to show $f'(x) = 0$. Substitution must be shown		
Alcso	Show second derivative is < 0 at $x = 1$ and give the conclusion. No errors of the working.	or omissions in	
(ii)B1	For either <i>y</i> coordinate correct (and <i>x</i> coordinate correctly indicated; substitution shown indicates this)		
B1	For the second <i>y</i> coordinate correct		
(c)	(May have been seen in (b))		
M1	Factorise $f'(x)$ completely – any valid method OR use the factor theorem to find $x = -2$		
(i)A1	Extract the <i>x</i> coordinate of the third turning point and obtain the corresponding <i>y</i> coordinate. May quote <i>y</i> coordinate from the question		
(ii)A1cso	Test the sign of the second derivative at this point and make the conclusion. All work in		
, ,	(c) and $\frac{d^2y}{dx^2}$ (from (b)) must be completely correct for this mark to be awarded.		
	Alternative ways to determine the nature of the turning points:		
1.	If the change of sign of $f'(x)$ is used then values of $f'(x)$ either side of 1 and 2 must be calculated to provide evidence.		
2.	The continuity of a cubic function can be used to establish the nature of th points. If in doubt send to review.	e turning	