Space X Falcon 9 First Stage Landing Prediction

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.

Several examples of an unsuccessful landing are shown here:

Most unsuccessful landings are planned. Space X performs a controlled landing in the oceans.

Objectives

- Perform exploratory Data Analysis and determine Training Labels
- Create a column for the class
- · Standardize the data
- Split into training data and test data
- Find best Hyperparameter for SVM, Classification Trees and Logistic Regression
- · Find the method performs best using test data

Import Libraries and Define Auxiliary Functions

We will import the following libraries for the lab

```
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix, f1_score, precision.
```

This function is to plot the confusion matrix.

```
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                           title='Confusion matrix',
                          cmap=plt.cm.Blues):
    0.00
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')
    print(cm)
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center"
                 color="white" if cm[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
```

Load the dataframe

Load the data

```
data = pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/I
In [3]:
          data.head()
Out[3]:
            FlightNumber
                           Date BoosterVersion PayloadMass Orbit LaunchSite Outcome Flights GridFins Reused
                          2010-
                                                                       CCAFS
                                                                                   None
         0
                                       Falcon 9
                                                 6104.959412
                                                              I FO
                                                                                                    False
                                                                                                            False
                                                                                              1
                          06-04
                                                                       SLC 40
                                                                                   None
                          2012-
                                                                       CCAFS
                                                                                   None
          1
                                       Falcon 9
                                                  525.000000
                                                              LEO
                                                                                                    False
                                                                                                            False
                          05-22
                                                                       SLC 40
                                                                                   None
         2
                          2013-
                                       Falcon 9
                                                  677.000000
                                                               ISS
                                                                       CCAFS
                                                                                   None
                                                                                              1
                                                                                                    False
                                                                                                            False
                          03-01
                                                                       SLC 40
                                                                                   None
```

	4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False
In [4]:	<pre>X = pd.read X.head()</pre>	l_c	sv('https:/	/cf-cours	ses-data.s3	.us.clou	d-object-s	torage.app	odomai	n.cloud	/IBM-

500.000000

VAFB SLC

False

Ocean

False

False

Out[4]:		FlightNumber	PayloadMass	Flights	Block	ReusedCount	Orbit_ES- L1	Orbit_GEO	Orbit_GTO	Orbit_HEO	Oı
	0	1.0	6104.959412	1.0	1.0	0.0	0.0	0.0	0.0	0.0	
	1	2.0	525.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	
	2	3.0	677.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	
	3	4.0	500.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	
	4	5.0	3170.000000	1.0	1.0	0.0	0.0	0.0	1.0	0.0	

5 rows × 83 columns

2013-

09-29

Falcon 9

TASK 1

3

Create the outcome variable from the column Class in data, then assign it to the variable Y, make sure the output is a Pandas series (only one bracket df['name of column']).

```
Y = data['Class']
In [5]:
        type(Y)
        pandas.core.series.Series
Out[5]:
In [6]:
        df=Y.value_counts()
        plt.figure(figsize=(8,8))
        ax=sns.barplot(x=df.index, y=df.values, palette='hls', alpha=0.9)
        sns.despine(top=True, right=True, left=False, bottom=False)
        for p in ax.patches:
             ax.annotate('n = \{:.0f\}'.format(p.get_height()), (p.get_x()+0.4, p.get_height()),
                         ha='center', va='bottom', color='black', fontsize=14)
        ax.set_xticklabels(['Unsuccessful', 'Successful'], minor=False, fontsize=12)
        plt.yticks(fontsize=12)
        plt.xticks(fontsize=12)
        plt.title('Launch Outcome Success Counts', fontsize=24)
        plt.ylabel('Number of Launches', fontsize=18)
        plt.xlabel('Outcome', fontsize=18)
        plt.show()
```

Launch Outcome Success Counts

TASK 2

Use the function train_test_split to split the data sets X and Y into training and test data. Set the parameter test_size to 0.2 and random state to 2.

```
In [7]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
In [8]: X_train.shape
Out[8]: (72, 83)
In [9]: X_test.shape
Out[9]: (18, 83)
```

After splitting the data, there are 72 records in our training set and 18 in our test set.

TASK 3

Use the function using fit_transform() to standardize the training data so that we can learn the scaling parameters of our training set. Then, use these learned parameters to scale our test data.

```
In [10]: scaler = preprocessing.StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

Create a logistic regression object then create a GridSearchCV object logreg_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
object to find the best parameters from the dictionary parameters.
          parameters = \{'C': [0.01, 0.1, 1],
In [11]:
                        'penalty':['12'],
                        'solver':['lbfgs']}
          lr=LogisticRegression(random_state=1)
          logreg_cv = GridSearchCV(lr, parameters, cv=10, refit=True)
          logreg_cv.fit(X_train, Y_train)
         GridSearchCV(cv=10, estimator=LogisticRegression(random_state=1),
Out[11]:
                       param_grid={'C': [0.01, 0.1, 1], 'penalty': ['12'],
                                    'solver': ['lbfgs']})
         We output the GridSearchCV object for logistic regression. We display the best parameters using the
         data attribute best_params\_ and the accuracy on the validation data using the data attribute
          best_score\_.
In [12]:
          print("Tuned hyperparameters:", logreg_cv.best_params_)
          print("Cross-validation accuracy:",logreg_cv.best_score_)
         Tuned hyperparameters: {'C': 0.01, 'penalty': 'l2', 'solver': 'lbfgs'}
         Cross-validation accuracy: 0.8464285714285713
         TASK 5
         Calculate the accuracy on the test data using the method score:
In [13]:
         glm_acc=logreg_cv.score(X_test, Y_test)
          print("Test set accuracy: {:.1%}".format(glm_acc))
          glm_probs = logreg_cv.predict_proba(X_test)[:,1]
          glm_auc=roc_auc_score(Y_test, glm_probs)
          print("Test set AUC: {:.3}".format(glm_auc))
         Test set accuracy: 83.3%
         Test set AUC: 0.889
         Lets look at the confusion matrix:
In [14]: # Compute confusion matrix
          glm_yhat = logreg_cv.predict(X_test)
          glm_f1 = f1_score(Y_test, glm_yhat)
          glm_prec = precision_score(Y_test, glm_yhat)
          glm_rec = recall_score(Y_test, glm_yhat)
```

0.67

6

1 0.80 1.00 0.89 12 accuracy 0.83 18

0.50

1.00

0

```
        macro avg
        0.90
        0.75
        0.78
        18

        weighted avg
        0.87
        0.83
        0.81
        18
```

```
Confusion matrix, without normalization [[12 0] [ 3 3]]
```


Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

TASK 6

Create a support vector machine object then create a <code>GridSearchCV</code> object <code>svm_cv</code> with <code>cv-10</code>. Fit the object to find the best parameters from the dictionary <code>parameters</code> .

```
parameters = {'kernel':('linear', 'rbf', 'poly', 'rbf', 'sigmoid'),
In [15]:
                        'C': np.logspace(-3, 3, 5),
                        'gamma':np.logspace(-3, 3, 5)}
         svm = SVC(probability=True, random_state=1)
         svm_cv = GridSearchCV(svm, parameters, cv=10)
In [16]:
         svm_cv.fit(X_train, Y_train)
         GridSearchCV(cv=10, estimator=SVC(probability=True, random_state=1),
Out[16]:
                      param_grid={'C': array([1.00e-03, 3.16e-02, 1.00e+00, 3.16e+01, 1.00e+03]),
                                   'gamma': array([1.00e-03, 3.16e-02, 1.00e+00, 3.16e+01, 1.00e+0
         3]),
                                   'kernel': ('linear', 'rbf', 'poly', 'rbf', 'sigmoid')})
         print("Tuned hyperparameters:", svm_cv.best_params_)
In [17]:
         print("Cross-validation accuracy:", svm_cv.best_score_)
         Tuned hyperparameters: {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'}
```

Cross-validation accuracy: 0.8482142857142856

Calculate the accuracy on the test data using the method score:

```
svm_acc=svm_cv.score(X_test, Y_test)
In [18]:
         print("Test set accuracy: {:.1%}".format(svm_acc))
         svm_probs = svm_cv.predict_proba(X_test)[:,1]
         svm_auc=roc_auc_score(Y_test, svm_probs)
         print("Test set AUC: {:.3}".format(svm_auc))
         Test set accuracy: 83.3%
         Test set AUC: 0.958
         We can plot the confusion matrix
In [19]:
         # Compute confusion matrix
         svm_yhat = svm_cv.predict(X_test)
         svm_f1 = f1_score(Y_test, svm_yhat)
         svm_prec = precision_score(Y_test, svm_yhat)
         svm_rec = recall_score(Y_test, svm_yhat)
         cnf_matrix = confusion_matrix(Y_test, svm_yhat, labels=[1,0])
         np.set_printoptions(precision=2)
         print(classification_report(Y_test, svm_yhat))
         # Plot non-normalized confusion matrix
         plt.figure(figsize=(8,6))
         plot_confusion_matrix(cnf_matrix, classes=['Landed', 'Did not land'], normalize=False, t
                       precision
                                    recall f1-score
                                                        support
                            1.00
                                       0.50
                                                              6
                    0
                                                 0.67
                            0.80
                                       1.00
                                                 0.89
                                                             12
                                                 0.83
                                                             18
             accuracy
                            0.90
                                                             18
                                       0.75
                                                 0.78
            macro avg
                            0.87
                                                             18
         weighted avg
                                       0.83
                                                 0.81
         Confusion matrix, without normalization
         [[12 0]
          [ 3 3]]
```


Create a decision tree classifier object then create a GridSearchCV object tree_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
In [20]:
              'max_depth': [2*n for n in range(1,10)],
              'max_features': ['auto', 'sqrt'],
              'min_samples_leaf': [1, 2, 4],
              'min_samples_split': [2, 5, 10]}
         tree = DecisionTreeClassifier(random_state=1)
In [21]: tree_cv = GridSearchCV(tree, parameters, cv=10)
         tree_cv.fit(X_train, Y_train)
         GridSearchCV(cv=10, estimator=DecisionTreeClassifier(random_state=1),
Out[21]:
                     'max_features': ['auto', 'sqrt'],
                                 'min_samples_leaf': [1, 2, 4],
                                 'min_samples_split': [2, 5, 10],
                                 'splitter': ['best', 'random']})
         print("Tuned hyperparameters:", tree_cv.best_params_)
In [22]:
         print("Cross-validation Accuracy:", tree_cv.best_score_)
         Tuned hyperparameters: {'criterion': 'gini', 'max_depth': 4, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 10, 'splitter': 'random'}
```

TASK 9

Cross-validation Accuracy: 0.8357142857142857

Calculate the accuracy of tree_cv on the test data using the method score :

```
tree_acc=tree_cv.score(X_test, Y_test)
In [23]:
         print("Test set accuracy: {:.1%}".format(tree_acc))
         tree_probs = tree_cv.predict_proba(X_test)[:,1]
         tree_auc=roc_auc_score(Y_test, tree_probs)
         print("Test set AUC: {:.3}".format(tree_auc))
         Test set accuracy: 77.8%
         Test set AUC: 0.792
         We can plot the confusion matrix
In [24]: # Compute confusion matrix
         tree_yhat = tree_cv.predict(X_test)
         tree_f1 = f1_score(Y_test, tree_yhat)
         tree_prec = precision_score(Y_test, tree_yhat)
         tree_rec = recall_score(Y_test, tree_yhat)
         cnf_matrix = confusion_matrix(Y_test, tree_yhat, labels=[1,0])
         np.set_printoptions(precision=2)
         print(classification_report(Y_test, tree_yhat))
         # Plot non-normalized confusion matrix
         plt.figure(figsize=(8,6))
         plot_confusion_matrix(cnf_matrix, classes=['Landed', 'Did not land'], normalize=False, t
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.62
                                       0.83
                                                 0.71
                                                              6
                    1
                            0.90
                                       0.75
                                                 0.82
                                                             12
                                                             18
             accuracy
                                                 0.78
                            0.76
                                       0.79
                                                 0.77
                                                             18
            macro avg
         weighted avg
                            0.81
                                       0.78
                                                 0.78
                                                             18
         Confusion matrix, without normalization
         [[9 3]
          [1 5]]
```


Create a k nearest neighbors object then create a GridSearchCV object knn_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
In [25]:
         parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                        'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
                        'p': [1,2]}
         KNN = KNeighborsClassifier()
         knn_cv = GridSearchCV(KNN, parameters, cv=10)
In [26]:
         knn_cv.fit(X_train, Y_train)
         GridSearchCV(cv=10, estimator=KNeighborsClassifier(),
Out[26]:
                      param_grid={'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
                                   'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                                   'p': [1, 2]})
         print("Tuned hyperparameters:", knn_cv.best_params_)
In [27]:
         print("Cross-validation accuracy:", knn_cv.best_score_)
         Tuned hyperparameters: {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1}
```

TASK 11

Calculate the accuracy of tree cv on the test data using the method accuracy_score:

Cross-validation accuracy: 0.8482142857142858

```
In [28]: knn_acc = knn_cv.score(X_test, Y_test)
    print("Test set accuracy: {:.1%}".format(knn_acc))
    knn_probs = knn_cv.predict_proba(X_test)[:,1]
```

```
knn_auc=roc_auc_score(Y_test, knn_probs)
print("Test set AUC: {:.3}".format(knn_auc))
```

Test set accuracy: 83.3% Test set AUC: 0.847

We can plot the confusion matrix

```
In [29]: # Compute confusion matrix
knn_yhat = knn_cv.predict(X_test)
knn_f1 = f1_score(Y_test, knn_yhat)
knn_prec = precision_score(Y_test, knn_yhat)
knn_rec = recall_score(Y_test, knn_yhat)
cnf_matrix = confusion_matrix(Y_test, knn_yhat, labels=[1,0])
np.set_printoptions(precision=2)
print(classification_report(Y_test, knn_yhat))

# Plot non-normalized confusion matrix
plt.figure(figsize=(8,6))
plot_confusion_matrix(cnf_matrix, classes=['Landed', 'Did not land'], normalize=False, t
```

		precision	recall	f1-score	support
	0	1.00	0.50	0.67	6
	1	0.80	1.00	0.89	12
accura	СУ			0.83	18
macro av	vg	0.90	0.75	0.78	18
weighted av	vg	0.87	0.83	0.81	18

Confusion matrix, without normalization
[[12 0]
 [3 3]]

Find the method performs best:

Out[30]:

	AUC	F1-Score	Precision	Recall	Accuracy
SVM	0.958	0.889	0.8	1.00	0.833
Logistic Regression	0.889	0.889	0.8	1.00	0.833
KNN	0.847	0.889	0.8	1.00	0.833
Decision Tree	0.792	0.818	0.9	0.75	0.778

Model Accuracy on the Test Set


```
In [32]: plt.figure(figsize=(12,8))
    ax=sns.barplot(x=res.index, y='AUC', data=res, palette='Blues_d')
    sns.despine(top=True, right=True, left=False, bottom=False)
    plt.xlabel('Model', fontsize=20)
```


The SVM, KNN, and Logistic Regression model achieved the highest accuracy at 83.3%, while the SVM performs the best in terms of Area Under the Curve at 0.958.