USN					
USIN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)
V Semester B. E. Fast Track Examinations Oct-2020

Computer Science and Engineering

ARTIFICIAL NEURAL NETWORKS (ELECTIVE)

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1.11	Give an illustration for the given original set of data points, the effects				
	of mean removal decorrelation and covariance equalization.				
	On grinal Set of data points				
	72				
	· · · · · · · · · · · · · · · · · · ·				
		0.4			
1.10		01			
1.12	Given the significance of implementing sparse interactions by making				
	use of smaller kernels in CNN.	01			
1.13	Max pooling introduces invariance illustrate.	02			
1.14	Define "explaining away" effects, and give an example.	02			
1.15	Give the following Bayes network.				
	(A) (B)				
					
	(D) (E)				
	(F)				
	(g) K				
	Answer the following using d -separation				
	a) Are D and E conditionally independent, given $A \& B$?				
	b) Are A and B conditionally independent, given C?	02			
1.16	Convert the given undirected model to a directed model.				
_,					
	(a) (b)				
	(d)(c)	01			

PART-B

2	а	Explain a nonlinear model of a neuron, with required block diagram				
		basic elements, required mathematical equations and types of				
		activation functions.	08			
	b	Answer the following with respect to learning models:				
		i) Competitive learning versus Hebb's learning over outputs				
		neuron activation.				
		ii) Learning rule of competitive learning and Hebb's learning.	08			
3	а	Write the block diagram of learning with a teacher and discuss	04			
	b	Explain any two types of learning tasks that makes use of the neural networks.				
	c With respect to memory answer the following:					
		i) Characteristics of associative memory				
		ii) Derivation of memory matrix <i>M</i>				
		iii) Memory recall process.	06			
	OR					

4	a b	Derive the equation for $w(n + 1)$ in Newton's method and least-mean-square algorithm Discuss the following with respect to <i>LMS</i> algorithm:	06
	D	i) Learning curves significance ii) Learning rate annealing schedules.	06
	С	Write signal-flow graph of the perceptron, and algorithm for weights adaption in elementary perceptron.	04
5	a b	Write signal-flow graph detailing the output neuron 'j' in Multilayer perceptron, and derive the equation for $\Delta w_{ji}(n)$ and $\delta_j(n)$ Discuss the following two methods used to improve the performance	08
	S	of back propagation algorithm i) Maximizing information content	0.0
		ii) Activation function.	08
		OR	
6	a	Write signal-flow graph highlighting the details of output neuron k' connected to hidden neuron j' , and derive the back propagation	
		formula.	08
	b	By considering any one application areas, demonstrate the use of multilayer perceptron models to solve a problem under consideration.	08
7	a b	Define convolution operation, discuss briefly those three important ideas that <i>CNN</i> leverages to improve a <i>ML</i> system.	08
	c	Write the block diagram depicting a typical convolutional neural networks layer, and discuss the working of pooling. By considering image –processing domain, propose a problem	04
		statement and briefly a process to solve using CNN.	04
8	a	Discuss the process used to create undirected models or Markov networks. Illustrate the same with suitable example.	06
	b	Explain the following:	
		i) Separation and <i>D</i> -separation	
		ii) Converting directed models to undirected.	06
	С	"Directed models are space-efficient compared to undirected models"	0.4
		comment.	04