

Establishing an awareness of ideal plant phenotype

based on environmental challenges

Amanda K. Nitta*, Joseph Carmelo M. Averion*, Abigail H. Ana, Roma B. Amor Malasarte, Zeus Gean Paul Miguel, Ethan S. Morrell, Stephenie Andriana Santos, Kayla-Marie A. Torres, Keilah C. Wilkes, D. Jaden Yamagata-Santos,

Rishi Prasadh, Michael Kantar, Tai Maaz, Michael Muszynski, Nhu Nguyen

Department of Tropical Plant and Soil Science, University of Hawaii at Manoa

Exploring the characteristics based on abiotic different environments

- Hawai'i is very susceptible to climate change and abiotic stressors thus leading environments to change over time.
- Evaluate physiological responses of plant and root characteristics of different genotypes.
- Model plant was Maize (Zea Mays L.) since it is known to be one of the most understood and abundant crops.
- Each inbred line was sourced from a diversity panel and grown over different years and conditions in a greenhouse.

Analyzing variance of shoot and root traits

Distributions of leaf 4 surface area across each genotype and treatment

Malama i ka 'āina to respect and care for the land

Correlations between leaf 4 surface area and length of each root type

Abiotic stressors affect relationships of characteristics

Growth rate in each genotype and treatment

Characterizing based on shoot and root characteristics

85.71% accuracy in model using 88 characteristics for treatment and genotype combination.

Complexity of attributes differentiates genotype and treatment.

Determining environment of previous experiments

Why understand the relationships?

- Different abiotic stress are best understood when looking at both leaf & root characteristics
- Climate differs greatly across the different island In Hawai'i, determining how plants react to ongoing effects of climate change helps to plan for more resilient use of land.

Acknowledgements

We would like to thank USDA REEU grant 2020-67037-30665 for the funding.
We would like to acknowledge Ishwora Dhungna and John Hintze for contributions to our summer experience and help with technology.