AN 1 - Intégrales généralisées

Dans ce chapitre I désigne l'un des intervalles : [a, b[,]a, b] ou]a, b[avec $(a, b) \in (\overline{\mathbb{R}})^2$, a < b. f désigne une fonction définie sur I à valeurs dans \mathbb{R} ou \mathbb{C} .

1 Intégrales généralisées

1.1 Convergence d'une intégrale sur I

Définition 1

On dit que f est localement intégrable sur I si pour tous les réels α et β de $]a,b[,\int_{\alpha}^{\beta}f(t)\mathrm{d}t$ existe.

Remarque 1

• Si f est continue sur]a, b[, alors elle est localement intégrable sur I.

On suppose désormais que f est localement intégrable sur I.

Vocabulaire,:

L'intégrale $\int_a^b f(t)dt$ est dite intégrale impropre de f sur I.

Définition 2

- Pour $I = [a, b[, (a, b) \in \mathbb{R} \times \overline{\mathbb{R}}]$, on dit que l'intégrale de f sur I est convergente si la fonction $x \mapsto \int_a^x f(t) dt$ admet une limite finie quand x tend vers b par valeurs inférieures. Dans le cas contraire, on dit que l'intégrale diverge.
- Pour $I =]a, b], (a, b) \in \mathbb{R} \times \mathbb{R}$, on dit que l'intégrale de f sur I est convergente si la fonction $x \mapsto \int_x^b f(t) dt$ admet une limite finie quand x tend vers a par valeurs supérieures. Dans le cas contraire, on dit que l'intégrale diverge.

Dans le cas de convergence, la limite s'appelle intégrale généralisée de f sur I, et se note $\int_a^b f(t)dt$ ou $\int_I f(t)dt$.

• Pour I =]a, b[, $(a, b) \in (\overline{\mathbb{R}})^2$, on dit que l'intégrale de f sur I est convergente s'il existe un réel $c \in]a, b[$, tel que $\int_a^c f(t) dt$ et $\int_a^b f(t) dt$ convergent.

En cas de convergence, on note encore $\int_I f(t) dt = \int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$.

Dans le cas contraire, on dit encore que l'intégrale diverge.

1.2 Intégrales de référence

Théorème 1

- $\int_0^1 \ln(t) dt$ converge. $\int_0^{+\infty} e^{-\alpha t} dt$ converge si, et seulement si $\alpha > 0$.
- $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge si, et seulement si $\alpha > 1$.
- $\int_0^1 \frac{\mathrm{d}t}{t^{\alpha}}$ converge si, et seulement si $\alpha < 1$.

Vocabulaire:

Les deux dernières intégrales sont appelées intégrales de Riemann.

1.3 Propriétés

Proposition 1

Les intégrales généralisées vérifient la relation de Chasles.

Proposition 2

L'ensemble des fonctions à valeurs dans \mathbb{R} (resp. \mathbb{C}), d'intégrale convergente sur un intervalle I, muni des lois usuelles est un \mathbb{R} -espace vectoriel (resp. \mathbb{C} -espace vectoriel).

Proposition 3

• linéarité

Dans l'espace vectoriel des fonctions d'intégrale convergente sur I, $f\mapsto \int_I f(t)\mathrm{d}t$ est linéaire.

• positivité

Si f est une fonction réelle d'intégrale convergente sur I, telle que : $f \ge 0$, alors $\int_I f(t) dt \ge 0$.

• Si f est une fonction continue sur I telle que $\int_I |f(t)| dt = 0$, alors f est identiquement nulle.

• croissance

Si f et g sont deux fonctions réelles d'intégrale convergente sur I, telles que : $f \leq g$, alors $\int_I f(t) dt \leq \int_I g(t) dt$.

Proposition 4

Si f est à valeurs dans \mathbb{C} , d'intégrale convergente sur I, alors $\int_I \operatorname{Re}(f)(t) dt$ et $\int_I \operatorname{Im}(f)(t) dt$ convergent et on a :

$$\int_{I} f(t)dt = \int_{I} \operatorname{Re}(f)(t)dt + i \int_{I} \operatorname{Im}(f)(t)dt.$$

Pour ne pas alour dir la rédaction, on considère dans la suite du chapitre que $I=[a,b[,\,(a,b)\in\mathbb{R}\times\overline{\mathbb{R}}.$

2 Critères de convergence

2.1 Critères pour les fonctions positives

Dans l'ensemble de ce paragraphe, f et g désignent des fonctions continues sur I à valeurs dans \mathbb{R}^+ .

Proposition 5

$$\int_{a}^{b} f(t) dt \text{ converge } \Leftrightarrow \exists M > 0, \forall x \in [a, b[, 0 \le \int_{a}^{x} f(t) dt \le M]$$

Théorème 2

Si $0 \le f \le g$ sur I, alors :

- Si $\int_a^b g$ est convergente, alors $\int_a^b f$ est convergente.
- Si $\int_a^b f$ est divergente, alors $\int_a^b g$ est divergente.

Remarque 2

- On peut remplacer l'hypothèse $0 \le f \le g$ sur I par $0 \le f \le g$ au voisinage de b.
- \bullet On peut énoncer des résultats analogues pour des fonctions négatives :

Si $f \leq g \leq 0$ au voisinage de b,

$$\int_a^b f \text{ converge} \Rightarrow \int_a^b g \text{ converge}; \int_a^b g \text{ diverge} \Rightarrow \int_a^b f \text{ diverge}.$$

Théorème 3

Si
$$\int_a^b g(t)dt$$
 converge et si $f(t) \underset{t \to b}{=} O(g(t))$, alors $\int_a^b f(t)dt$ converge.

Théorème 4

Si
$$f \sim g$$
, alors $\int_a^b f$ et $\int_a^b g$ sont de même nature.

2.2 Fonction intégrable sur un intervalle

Définition 3

f est dite intégrable sur I si $\int_{I} |f(t)| dt$ est convergente.

Remarque 3

• L'intégrabilité sur I est équivalente à l'intégrabilité sur l'intérieur de I.

Proposition 6

Si f est intégrable sur I, alors $\int_I f(t) dt$ est convergente et on a :

$$\left| \int_{I} f(t) dt \right| \leq \int_{I} |f(t)| dt.$$

2.3 Inégalité de Cauchy Schwarz

Théorème 5

Soient f et g des fonctions à valeurs dans \mathbb{R} , localement intégrables sur I. Si $\int_I f^2$ et $\int_I g^2$ sont convergentes, alors $\int_I f.g$ est convergente, et :

$$\left(\int_{I} f.g\right)^{2} \leq \int_{I} f^{2}.\int_{I} g^{2}$$

3 Calculs

3.1 Utilisation de primitives

Proposition 7

Si f est continue sur [a, b[, alors elle admet une primitive F sur [a, b[. $\int_a^b f$ converge si, et seulement si F admet une limite finie en b^- et alors :

$$\int_{a}^{b} f dt = \lim_{x \to b^{-}} \left(F(x) - F(a) \right)$$

3.2 Intégration par parties

Théorème 6

Soient f et g de classe C^1 sur I, localement intégrables sur I telles que $\lim_{t\to b^-} f(t)g(t)$ existe et est finie.

Si l'une des deux intégrales $\int_a^b fg'$ ou $\int_a^b f'g$ est convergente, il en est de même pour l'autre et on a :

$$\int_a^b fg' = [fg]_a^b - \int_a^b f'g = \left(\lim_{t \to b^-} f(t)g(t) - f(a)g(a)\right) - \int_a^b f'g$$

3.3 Changement de variable

Théorème 7

Soient f continue sur I, et φ de classe C^1 , strictement monotone sur un intervalle J d'extrémités α et β tel que $\varphi(J)=I$; alors les intégrales $\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) \mathrm{d}t$ et $\int_{\alpha}^{\beta} f\left(\varphi(u)\right) \varphi'(u) \mathrm{d}u$ sont de même nature, et égales en cas de convergence.