CONTEXT FREE CRAMMAR

COMP 4200 - Formal Language

OVERVIEW

- Grammar
 - Derivation from a grammar
 - Types
- Context-Free Grammars
 - Formal Definition
 - Examples of CFG
 - Designing CFG
 - Parse/derivation tree
 - Ambiguity
 - Simplification of CFG
 - · Chomsky Normal Form
 - Greibach Normal form
- Pushdown Automata
 - Formal Definition
 - Examples of PDA
 - Equivalence with CFGs
- Non-Context Free Languages
 - The pumping lemma for context-free languages

GRAWWAR

- Regular grammar \rightarrow set of rules that we use for proper composition.
- Grammar can be formally described using 4 tuples as G = {V,T,S,P}
 - $V \rightarrow$ set of variables/non terminal symbols
 - $T \rightarrow Terminal symbols$
 - $S \rightarrow Start symbol$
 - P \rightarrow Production rule for terminal and non terminal symbols.
- Production rule, has the form $a \rightarrow \beta$, where a and β are strings on V U T and atleast one symbol of 'a' belongs to V.
- Example: $G = (\{S,A,B\}, \{a,b\}, S, \{S \rightarrow AB, A \rightarrow a, B \rightarrow b\})$

STEPS

- Write down the start variable. It is the variable on the left-hand side of the top rule, unless specified otherwise.
- Find a variable that is written down and a rule that starts with that variable. Replace the written down variable with the right-hand side of that rule.
- Repeat step 2 until no variables remain.

 $A \rightarrow 0A1$

 $A \rightarrow B$

 $B \rightarrow \#$

- Grammar G1 generates the string 000#111. The sequence of substitutions to obtain a string is called a derivation.
- A derivation of string 000#111 in grammar G1 is

 $A \rightarrow 0A1$

 $A \rightarrow B$

 $B \rightarrow \#$

- Grammar G1 generates the string 000#111. The sequence of substitutions to obtain a string is called a derivation.
- A derivation of string 000#111 in grammar G1 is
- $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$.

$G = (\{S,A,B\}, \{A,B\}, S, \{S \rightarrow AB, A \rightarrow a,B \rightarrow b\})$

- $V = \{S,A,B\}$
- $T = \{a,b\}$
- S = s
- $P = S \rightarrow AB, A \rightarrow a, B \rightarrow b$
 - S \rightarrow AB, we know that A \rightarrow a
 - $S \rightarrow aB$
 - $S \rightarrow ab$

DERIVATION FROM A GRAMMAR

- The set of all the strings that can be derived from a grammar is said to be the Language generated from that grammar.
- Example: $G = (\{S,A\}, \{a,b\}, S, \{S \rightarrow aAb, A \rightarrow aaAbb, A \rightarrow \epsilon\})$
 - $S \rightarrow aAb$, $A \rightarrow aaAbb$
 - Expanding, $S \rightarrow aaaAbbb$
 - S \rightarrow aaaAbbb, A $\rightarrow \varepsilon$
 - S → aaabbb, String derived from grammar G
 - $L = a^n b^n$

DERIVATION FROM A GRAMMAR

- The set of all the strings that can be derived from a grammar is said to be the Language generated from that grammar.
- Example: $G = (\{S,A\}, \{a,b\}, S, \{S \rightarrow aAb, A \rightarrow aaAbb, A \rightarrow \epsilon\})$

TYPES OF GRAMMAR

Grammar	Grammar	Language	Automaton
Туре	Accepted	Accepted	
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Ma- chine
Type 1	Context- sensitive grammar	Context-sensitive language	Linear-bound- ed automaton
Type 2	Context-free grammar	Context-free language	Pushdown Automaton
Туре 3	Regular gram- mar	Regular language	Finite state automaton

CONTEXT FREE GRAMMAR

- Methods of describing languages:
 - Finite automata
 - Regular expressions
- Some simple languages, such as $\{0^n1^n | n \ge 0\}$, cannot be described by these languages.
- We study Context-Free Grammars, a more powerful method of describing languages. Such grammars can describe certain features that have a recursive structure.
- The collection of languages associated with context-free grammars are called the Context-Free languages
- PDA: a class of machines recognizing the context-free languages A Context Free Grammar is a "machine" that creates a language. A language created by a CFG is called A Context Free Language

CONTEXT FREE LANGUAGE

Consider language $\{ 0^n 1^n \mid n \ge 0 \}$, which is nonregular.

- •Start variable S with "substitution rules": $S \rightarrow 0S1 S \rightarrow \epsilon$
- Rules can yield string $0^k 1^k$ by applying rule "S \rightarrow 0S1" k times, followed by rule "S \rightarrow ϵ " once.
- ■Derivation of string 0^31^3 S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000S111 \Rightarrow 000ε111 = 000111

- Example of CFG Example: Language $\{0^n1^n \mid n \ge 0\}$ has CFG G = (V, Σ, R, S)
- Variables V = {S}
- Terminals $\Sigma = \{0, 1\}$
- Start variable S
- Rules R: S \rightarrow 0S1 S \rightarrow ϵ
- Combine rules with same left-hand side in Backus-Naur (or Backus Normal) Form (BNF):

$$S \rightarrow OS1 \mid \epsilon$$

The following is an example of CFG, which we call G1.

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

- A grammar consists of a collection of rules. Each rule appears as a line in the grammar, comprising a symbol and a string separated by an arrow.
- The symbol is called a variable.
- The string consists of variables and other symbols called terminals.
- One variable is designated as the start variable.
- It usually occurs on the LHS of the topmost rule.
- For example, grammar G1 contains 3 rules. G1's variables are A and B, where A is the start variable. Its terminals are 0, 1, and #.

$$A \rightarrow 0A1$$
 $A \rightarrow B$
 $A \rightarrow 0A1 \mid B$
 $A \rightarrow B$

For example, grammar G1 generates the string 000#111. The sequence of substitutions to obtain a string is called a derivation.

A derivation of string 000#111 in grammar G1 is

$$A \rightarrow 0 \ A1 \rightarrow 00 \ A11 \rightarrow 000 \ A111 \rightarrow 000 \ B111 \rightarrow 000 \ \# 111.$$

Language defined by grammar G1 $\{0^n \# 1^n \mid n \ge 0\}$

Parse tree for 000#111 in grammar G1

- Consider grammar $G3 = (\{S\}, \{a, b\}, R, S)$. The set of rules, R, is
- \bullet S → aSb | SS | ε
- What are some of the strings generated by this grammar?
- Can you verify if the strings abab, aaabbb, and aababb, belong to the grammar.

- CFG G = (V, Σ, R, S) with
- $1.V = \{S\}$
- $2.\Sigma = \{0, 1\}$
- 3. Rules R: S \rightarrow 0S | ϵ

Then $L(G) = \{ 0^n \mid n \ge 0 \}.$

For example, S derives 0³

$$S \Rightarrow 0S \Rightarrow 00S \Rightarrow 000S \Rightarrow 000\epsilon = 000$$

Note that \rightarrow and \Rightarrow are different.

- \rightarrow used in defining rules
- ⇒ used in derivation

- CFG G = (V, Σ, R, S) with
- 1. $V = \{S\}$
- 2. $\Sigma = \{0, 1\}$
- 3. Rules R: S \rightarrow 0S | 1S | ϵ

Then $L(G)=\Sigma^*$.

For example, S derives 0100

$$S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010S \Rightarrow 0100S \Rightarrow 0100$$

```
Consider grammar G4 = (V, \Sigma,R, <EXPR>)

V is {<EXPR>, <TERM>, <FACTOR>} and \Sigma is {a, +, x, (,)}. The rules are

<EXPR> \rightarrow <EXPR> + <TERM> | <TERM>

<TERM> \rightarrow <TERM> *<FACTOR> | <FACTOR>

<FACTOR> \rightarrow (<EXPR>) | a
```

The two strings a + a * a and (a + a) * a can be generated with grammar G4.

PARSE TREE


```
Consider grammar G4 = (V, \Sigma, R, \langle EXPR \rangle)
V is \{\langle EXPR \rangle, \langle TERM \rangle, \langle FACTOR \rangle\} and \Sigma is \{a, +, x, (, )\}.
The rules are
            \langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle
            \langle TERM \rangle \rightarrow \langle TERM \rangle * \langle FACTOR \rangle | \langle FACTOR \rangle
            \langle FACTOR \rangle \rightarrow (\langle EXPR \rangle) \mid a
                      \rightarrow < EXPR> + < TERM>
<EXPR>
            \rightarrow <TERM> + <TERM>
            \rightarrow <FACTOR> + <TERM>
            \rightarrow a + <TERM>
                                + <FACTOR>
            \rightarrow a
                                + (EXPR>)
            \rightarrow a
                                + (<TERM>)
            \rightarrow a
                                + (<TERM> * <FACTOR> )
            \rightarrow a
                                + (<<u>FACTOR</u>> * <<u>FACTOR</u>> )
            \rightarrow a
                                + (a * < FACTOR >) = a + (a * a)
            \rightarrow a
```


TRY YOURSELF!

- **•** CFG G = (V, Σ, R, S) with V = {S}, Σ = {0, 1}, Rules R: S → 0S | 1S | 1
- CFG G = (V, Σ , R, S) with V = {S, Z}, Σ = {0, 1}, Rules R: S → 0S1 | Z Z → 0Z | ϵ
- PALINDROME = { $w \in \Sigma * \mid w = wR$ }, where $\Sigma = \{a, b\}$. CFG G = (V, Σ, R, S) with V = {S}, $\Sigma = \{a, b\}$, Rules R: S → aSa | bSb | a | b | ε

TRY YOURSELF!

- CFG G = (V, Σ , R, S) with V = {S}, Σ = {0, 1}, Rules R: S \rightarrow 0S | 1S | 1. Derive 011
- CFG G = (V, Σ, R, S) with V = {S, Z}, Σ = {0, 1}, Rules R: S → 0S1 | Z Z → 0Z | ε. L(G) = {0ⁱ1^j | i>=j}
- PALINDROME = { $w \in \Sigma * \mid w = wR$ }, where $\Sigma = \{a, b\}$. CFG G = (V, Σ , R, S) with V = {S}, $\Sigma = \{a, b\}$, Rules R: S \rightarrow aSa | bSb | a | b | ϵ
- $A \rightarrow 0A$, $A \rightarrow 1B \mid 1$, $B \rightarrow 0A \mid 1B \mid 1$, Derive the string 10011011
- S \rightarrow 0S1 | 1S0 | SS | ε , derive the string 00011011.

CFG FOR SIMPLE ARITHMETIC EXPRESSIONS

- CFG G = (V, Σ, R, S) with
- 1. $V = \{S\}$
- 2. $\Sigma = \{+, -, \times, /, (,), 0, 1, 2, ..., 9\}$
- 3. Rules R: $S \rightarrow S + S \mid S S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \dots \mid 9$

L(G) is a set of valid arithmetic expressions over single-digit integers.

S derives string $2 \times (3 + 4)$

CFG FOR SIMPLE ARITHMETIC EXPRESSIONS

- CFG G = (V, Σ, R, S) with
- 1. $V = \{S\}$
- 2. $\Sigma = \{+, -, \times, /, (,), 0, 1, 2, ..., 9\}$
- 3. Rules R: $S \rightarrow S + S \mid S S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \cdots \mid 9$

L(G) is a set of valid arithmetic expressions over single-digit integers.

S derives string $2 \times (3 + 4)$

$$S \Rightarrow S \times S \Rightarrow S \times (S) \Rightarrow S \times (S+S) \Rightarrow 2 \times (S+S) \Rightarrow 2 \times (3+S) \Rightarrow 2 \times (3$$

DERIVATION TREE

CFG

$$S \rightarrow S + S \mid S - S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \dots \mid 9$$

Can generate string 2 × 3+4 using derivation

$$S \Rightarrow S + S \Rightarrow S \times S + S \Rightarrow 2 \times S + S \Rightarrow 2 \times 3 + S \Rightarrow 2 \times 3 + 4$$

- Leftmost derivation: leftmost variable replaced in each step.
- Corresponding derivation (or parse) tree

DESIGNING CFG

For example, to get a grammar for the language $\{0^n 1^n \mid n \ge 0\}$ U $\{1^n 0^n \mid n \ge 0\}$, first construct the grammar

$$S_1 \rightarrow 0 S_1 1 \mid \epsilon$$

for the language $\{0^n \mid n \geq 0\}$ and the grammar

$$S_2 \rightarrow 1 S_2 0 \mid \epsilon$$

for the language $\{1^n 0^n \mid n \ge 0\}$ and then add the rule

 $S \rightarrow S_1 \mid S_2$ to give the grammar

$$S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow 0 S_1 1 \mid \epsilon$$

$$S_2 \rightarrow 1 S_2 0 \mid \epsilon$$

- Generate CFG for given language $L=\{a^nb^n/n\geq 0\}$
- Let $L=\{a^nb^{2n}/n \ge 1\}$. Find CFG
- L={ $a^nba^n/n \ge 1$ }. Find CFG.
- L={wcw^r /w is element of (a,b)*}. Find the CFG.

CONTEXT FREE LANGUAGE (CFL)

• The CFG is given as $S \rightarrow aSb/ab$. Find the CFL.

CONTEXT FREE LANGUAGE (CFL)

- The CFG is given as $S \rightarrow aSb/ab$. Find the CFL.
- Let $G=(\{S\},\{a,b\},\{S\rightarrow aSb,S\rightarrow ab\},\{S\})$
- $S \rightarrow ab$
- $S \rightarrow aSb$
 - $S \rightarrow aabb$
- $S \rightarrow aSb$
 - $S \rightarrow aaSbb$
 - $S \rightarrow aaabbb$
- $L(G) = \{ab,aabb,aaabbb,....\}$ Therefore, $L(G) = \{a^nb^n/n \ge 1\}$

• Find the CFL for S \rightarrow a B/bA, A \rightarrow a/aS/bAA, B \rightarrow b/bS/aBB

TRY YOURSELF!

- Find L(G) S \rightarrow aSa/bSb/ ε
- Find L(G) S \rightarrow aSa/bSa/ ε
- Find L(G) $S \rightarrow aSa/bSb/a/b$
- Find L(G) $S \rightarrow SS/bS/a$
- Find L(G) for $S \rightarrow aS/bS/a$
- Find L(G) S \rightarrow aSa/bSb/ ε

TRY YOURSELF!

- Consider the grammar $G=(\{A,S\},\{a,b\},P,S)$ where p consist of $S \to aAS/a$ $A \to SbA/SS/ba$ Draw the derivation for string"aabbaa"
- •Draw the derivation for the string abb where $S \rightarrow aAB \ A \rightarrow bBb \ B \rightarrow A/\epsilon$

PARSE OR DERIVATION TREE

- Parse tree is an ordered rooted tree that graphically presents the semantic information of string derived from CFG.
- Any one production or derivation derived from tree format.
- It is the graph form of representation.
- RULE
 - Start with 'S'. → Root
 - The final answer should be terminal. →Leaves
 - The derivation should be applied from left to right.
 - The intermediate derivation should be terminal or nonterminal. → vertex

- •W = 01C10, E \rightarrow 0E0 E \rightarrow 1E1 E \rightarrow C
- DERIVATION E => 0E0

=>
$$01E10 : E => 1E1$$

=> $01C10 : E => C$
=> $E => 01C10$

PARSE TREE (OR) DERIVATION TREE

TYPES OF DERIVATION

- LEFT MOST DERIVATION (LMD): If at each step-in derivation, a production is applied to the left most variable (or) left most non-terminal then the derivation method is called left most derivation.
- Example $w = id + id*id E \rightarrow E + E, E \rightarrow E*E, E \rightarrow id$

$$E \rightarrow E + E$$

$$E \rightarrow id+E : E=>id$$

$$E \rightarrow id+E*E :: E=>E*E$$

$$E \rightarrow id+id*E : E=>id$$

$$E \rightarrow id+id*id$$

- RIGHT MOST DERIVATION (RMD): A derivation in which the right most variable is replaced at each step then, the derivation method is called right most derivation.
- Example

$$E \rightarrow E+E$$

$$E \rightarrow E+E*E :: E=>E*E$$

$$E \rightarrow E+E*id :: E=>id$$

$$E \rightarrow E + id*id = > id + id*id$$

EXAMPLE

- Draw derivation for the string abbabba For thee CFG given G where production is $S \rightarrow bA/aB$ A $\rightarrow a/aS/Baa$ B $\rightarrow b/bS/Abb$
 - $s \rightarrow aB$
 - $s \rightarrow aBB$
 - $s \rightarrow abSB$
 - $s \rightarrow abSbs$
 - $s \rightarrow abbAbs$
 - $s \rightarrow abbAbbA$
 - $s \rightarrow abbabbA$
 - $s \rightarrow abbabba$

EXAMPLE

Draw derivation tree for the string abaaba for the CFG given by G where p is S \rightarrow aSa/bSb/b/a/ ε

Solution:

 $S \rightarrow aSa$

 $S \rightarrow abSba$

 $S \to abaSaba$

 $S \rightarrow aba \epsilon aba$

 $S \rightarrow abaaba$

- Draw derivation tree for the string aabbaabba For thee CFG given G where production is $S \rightarrow bA/aB$ $A \rightarrow a/aS/bAA$ $B \rightarrow b/bS/aBB$
- Draw the derivation tree for the string abb where $S \to aAB$ $A \to bBb$ $B \to A/\epsilon$.
- Draw the derivation tree for the given graph CFG G=(v,t,p,s) where p={S \rightarrow aSb/ ε} and the input string :aabb

EXAMPLE

- Draw derivation for the string abbabba For thee CFG given G where production is $S \rightarrow bA/aB$ $A \rightarrow a/aS/Baa$ $B \rightarrow b/bS/Abb/BB$
 - $s \rightarrow aB$
 - $s \rightarrow aBB$
 - $s \rightarrow abSB$
 - $s \rightarrow abSbS$
 - $s \rightarrow abbAbS$
 - $s \rightarrow abbAbbA$
 - $s \rightarrow abbabbA$
 - $s \rightarrow abbabba$

- Consider the grammar $G=(\{A,S\},\{a,b\},P,S)$ where p consist of $S \to aAS/a$ $A \to SbA/SS/ba$ Draw the derivation for string"aabbaa"
- •Draw the derivation for the string abb where $S \rightarrow aAB \ A \rightarrow bBb \ B \rightarrow A/\epsilon$

TYPES OF DERIVATION

- LEFT MOST DERIVATION (LMD): If at each step-in derivation, a production is applied to the left most variable (or) left most non-terminal then the derivation method is called left most derivation.
- Example $w = id + id*id E \rightarrow E + E, E \rightarrow E*E, E \rightarrow id$

$$E \rightarrow E + E$$

$$E \rightarrow id+E : E=>id$$

$$E \rightarrow id+E*E :: E=>E*E$$

$$E \rightarrow id+id*E : E=>id$$

$$E \rightarrow id+id*id$$

- RIGHT MOST DERIVATION (RMD): A derivation in which the right most variable is replaced at each step then, the derivation method is called right most derivation.
- Example

$$E \rightarrow E+E$$

$$E \rightarrow E+E*E :: E=>E*E$$

$$E \rightarrow E+E*id :: E=>id$$

$$E \rightarrow E + id*id = > id + id*id$$

- Draw derivation tree for the string aabbaabba For thee CFG given G where production is $S \rightarrow bA/aB$ $A \rightarrow a/aS/bAA$ $B \rightarrow b/bS/aBB$
- Draw the derivation tree for the string abb where $S \to aAB$ $A \to bBb$ $B \to A/\epsilon$.
- Draw the derivation tree for the given graph CFG G=(v,t,p,s) where p={S \rightarrow aSb/ ε} and the input string :aabb

AMBIGUITY

- CFG G is ambiguous if string $w \in L(G)$ having different parse trees (or equivalently, different leftmost derivations).
- A string is derived ambiguously in a CFG if it has two or more different leftmost derivations
- A grammar that produces more than one parse tree (or) derivation tree for some string then the grammar is said to be an ambiguous grammar.
- An ambiguous grammar produces more than one LMD (or) more than 1 RMD then, the given grammar is said to be an ambiguous grammar.
- Leftmost derivation: At every step in the derivation the leftmost variable is replaced
- A grammar is ambiguous if it generates some string ambiguously
- Some context free languages are inherently ambiguous, that is, every grammar for the language is ambiguous

• LMD:

$$E \Rightarrow id + E : E \Rightarrow id$$

$$E => id+E*E$$

$$E \Rightarrow id+id*E$$

$$E => id+id*id$$

$$E=>id+id*id$$

• RMD:

$$E => E*E$$

$$E \Rightarrow E + E \times E$$

$$E => E+E*id$$

$$E => E + id*id$$

$$E => id+id*id$$

PARSE TREE

Rules:

$$E \rightarrow E+E$$
, $E \rightarrow E*E$, $E \rightarrow (E)$, $E \rightarrow id$
w=id+id*id

Therefore, the above grammar is ambiguous.

Show that CFG having productions A \to a/Aa/bAA/AAb/AbA is ambiguous. The string can be baaaa

Show that CFG having productions $A \rightarrow a/Aa/bAA/AAb/AbA$ is ambiguous.

Parse tree 1 A
$$\rightarrow$$
 Aa => bAAa => bAaaa A \rightarrow baaaa

■ Parse tree 2 $A \rightarrow bAA => bAaA => bAaAa$ $A \rightarrow baaaa$

• Therefore, the above grammar is ambiguous.

• Prove that given CFG is ambiguous, S \rightarrow 0B/1A A \rightarrow 0/0S/1AA B \rightarrow 1/1S/0BB. The string can be randomly chosen. For reference I have chosen "0011010"

• Show that grammar is S =>aSbS/ bSaS/ ε ambiguous.

RESOLVING AMBIGUITY

- Designing unambiguous grammars is tricky and requires planning from the start.
- It's hard to start with an ambiguous grammar and to manually convert it into an unambiguous one.
- Often, must throw the whole thing out and start over.
- We have just seen that this grammar is ambiguous:

$$E \rightarrow E+E|E*E|id$$

If we take a string id+id*id or id+id+id we get two parse trees.

- Goals:
 - Eliminate the ambiguity from the grammar.
 - Make the only parse trees for the grammar the ones corresponding to operator precedence.

SIMPLIFYING GRAMMAR

SIMPLIFIED CONTEXT FREE GRAMMAR

- 1. Eliminate useless symbols i.e., symbols or terminals which do not appear in any derivation of a terminal string from start symbol.
- 2. Eliminate ε -productions which are of the form $A \to \varepsilon$ form some variable A.
- 3. Eliminate unit production which are of the form $A \rightarrow B$ for variables A and B.

ELIMINATING USELESS PRODUCTIONS

- Non-generating symbols are those symbols which do not produce any terminal string.
- Non-reachable symbols are those symbols which cannot be reached at any time starting from the start symbol.
- Find the non-generating symbols, i.e., the symbols which do not generate any terminal string. If the start symbol is found non-generating, leave that symbol. For removing non-generating symbols, remove those productions whose right side and left side contain those symbols.
- Now find the non-reachable symbols, i.e., the symbols which cannot be reached, starting from the start symbol. Remove the non-reachable symbols.

Remove the useless symbols from the given CFG.

$$S \rightarrow AC$$
,
 $S \rightarrow BA$,
 $C \rightarrow CB$,
 $C \rightarrow AC$,
 $A \rightarrow a$,
 $B \rightarrow aC/b$

- Those symbols which do not produce any terminal string are non-generating symbols. Here, C is a non-generating symbol. So, we have to remove the symbol C.
- Minimized grammar will be: $S \rightarrow BA$, $A \rightarrow a$, $B \rightarrow b$
- Now, we have to find non-reachable symbols, the symbols which cannot be reached at any time starting from the start symbol. There is no non-reachable symbol in the grammar.
- The minimized grammar is, $S \rightarrow BA$, $A \rightarrow a$, $B \rightarrow b$

EXAMPLE

Remove the useless symbols from the given CFG.

- 1. $S \rightarrow aB/bX$, $A \rightarrow Bad/bSX/a$, $B \rightarrow aSB/bBX$, $X \rightarrow SBD/aBx/ad$
- 2. $S \rightarrow AB \mid CA, A \rightarrow a, B \rightarrow BC \mid AB, C \rightarrow aB \mid b$
- 3. $S \rightarrow aA \mid a \mid Bb \mid cC, A \rightarrow aB, B \rightarrow a \mid Aa, C \rightarrow cCD, D \rightarrow ddd$

- S \rightarrow aC|SB, A \rightarrow bSCa|ad, B \rightarrow aSB|bBC, C \rightarrow aBC|ad
- $S \rightarrow aAa, A \rightarrow bBB, B \rightarrow ab, C \rightarrow aB$
- S \rightarrow aS|A|C, A \rightarrow a, B \rightarrow aa, C \rightarrow aCb

REMOVAL OF UNIT PRODUCTIONS

- Any production rule of the form $A \rightarrow B$, where $A, B \in N$ on terminal is called Unit production.
- Steps:
 - To remove A \rightarrow B, add production, A \rightarrow X to the grammar rule whenever B \rightarrow x occurs in grammar. X \rightarrow Null
 - Delete $A \rightarrow B$
 - Repeat step 1 until all the unit productions are removed.

REMOVAL OF UNIT PRODUCTIONS

- A unit production is a production which is of form $A \rightarrow B$, where both A and B are variables.
- Production in the form $non-terminal \rightarrow single non-terminal$ is called unit production.
- Let there be a grammar $S \to AB$, $A \to E$, $B \to C$, $C \to D$, $D \to b$, $E \to a$
- From here, if we are going to generate a language, then it will be generated by the following way
 - $S \rightarrow AB => EB => aB => aC => aD => ab => 6 steps$
- The grammar, by removing unit production and as well as minimizing, will be
 - $S \rightarrow AB, A \rightarrow a, B \rightarrow b => 3 \text{ steps}$

- $S \rightarrow 0ABA \rightarrow 01|BB \rightarrow 0A|1$
- $S \rightarrow 0A \mid 1B \mid C A \rightarrow 0S \mid 00 B \rightarrow 1 \mid A C \rightarrow 01$
- Remove the unit production from the following grammar. $S \to AB$, $A \to a$, $B \to C$, $C \to D$, $D \to b$
- Remove the unit production from the following grammar. $S \rightarrow aX/Yb/Y, X \rightarrow S, Y \rightarrow Yb/b$
- Remove the unit production from the following grammar. $S \rightarrow AA$, $A \rightarrow B/BB$, $B \rightarrow abB/b/bb$

REMOVAL OF NULL PRODUCTIONS

- In CFG, a nonterminal symbol A is a nullable variable if there is a production, $A \rightarrow \varepsilon$ or there is a derivation that starts at A and leads to ε .
- Steps:
 - To remove A $\rightarrow \varepsilon$ look for all productions whose right side contains A.
 - Replace each occurrences of A in each of these productions with ε .
 - Add the resultant production to the grammar.
- Example: $S \rightarrow ABAC$, $A \rightarrow aA/\varepsilon$, $B \rightarrow bB/\varepsilon$, $C \rightarrow c$
 - Null productions: $A \rightarrow \varepsilon$ and $B \rightarrow \varepsilon$
- To eliminate $A \rightarrow \varepsilon$, look for production whose right side contains A.
 - S \rightarrow ABAC, replace A $\rightarrow \varepsilon$
 - Possible outcomes, S→ABC/BAC/BC
 - A \rightarrow aA, replace A $\rightarrow \varepsilon$, A \rightarrow a
 - S \rightarrow ABAC/ABC/BAC/BC, A \rightarrow aA/a, B \rightarrow bB/ ε , C \rightarrow c

REMOVAL OF NULL PRODUCTIONS

- To eliminate $B \rightarrow \varepsilon$, look for production whose right side contains B.
 - S \rightarrow ABAC, replace B $\rightarrow \varepsilon$
 - Possible outcomes, S→AAC/AC/C
 - B \rightarrow bB, replace B $\rightarrow \varepsilon$, B \rightarrow b
 - S \rightarrow ABAC/ABC/BAC/BC/AAC/AC/C, A \rightarrow aA/a, B \rightarrow bB/b, C \rightarrow c

- S \rightarrow aSa|bSb| ε
- $S \rightarrow aS \mid A, A \rightarrow aA \mid \varepsilon$
- S \rightarrow a | Ab | aBa, A \rightarrow b | ε , B \rightarrow b | A
- S \rightarrow AB, A \rightarrow aAA | ε , B \rightarrow bBB | ε