Neo4j Recommender System

Alessia Cecere 08274A

New Generation Data Models and DBMSs

What is a Recommender System?

An **information filtering** software that provides suggestions for **items** that are most pertinent to a particular **user.**

Recommending Techniques

Collaborative Filtering

Item-based

User-based

Content-based filtering

fruit

red

green

Why Neo4j?

Relationships navigation

Dense representation

Graph algorithms

MovieLens 25M Dataset

25 million **ratings** and one million **tag** applications applied to 62,000 **movies** by 162,000 **users**.

Includes **tag genome** data with 15 million relevance scores across 1,129 tags.

UML diagram

UML diagram

Workflow

- 1. Given a **User**, find his **top k Genres**
- 2. Given a **User**, find his **top k Categories**
 - 3. Given a **Genre**, find its **top k Movies**
- 4. Given a **Category**, find its **top k Movies**
 - 5. Given a User, find similar users
- 6. Given a **User**, recommend Movies based on similar users (**collaborative filtering**)
 - 7. Given a Movie, find similar movies
- 8. Given a **User**, recommend similar Movies to the ones he has watched (**content-based filtering**)

UML diagram

Workflow

- 1. Given a **User**, find his **top k Genres**
- 2. Given a User, find his top k Categories
 - 3. Given a **Genre**, find its **top k Movies**
- 4. Given a Category, find its top k Movies
 - 5. Given a User, find similar users
- 6. Given a **User**, recommend Movies based on similar users (**collaborative filtering**)
 - 7. Given a Movie, find similar movies
- 8. Given a **User**, recommend similar Movies to the ones he has watched (**content-based filtering**)

UML diagram

Workflow

- 1. Given a **User**, find his **top k Genres**
- 2. Given a **User**, find his **top k Categories**
 - 3. Given a **Genre**, find its **top k Movies**
- 4. Given a **Category**, find its **top k Movies**
 - 5. Given a User, find similar users
- 6. Given a **User**, recommend Movies based on similar users (**collaborative filtering**)
 - 7. Given a Movie, find similar movies
- 8. Given a **User**, recommend similar Movies to the ones he has watched (**content-based filtering**)

Population script

- Py2neo: a client library and toolkit for working with Neo4j from within Python applications and from the command line
- Nodes: CREATE from CSV tables ratings, movies and genome_tags

- MATCH and CREATE for HAS_GENRE
- bulk operations for RATES and HAS_CATEGORY (batches of 10.000)

Logical model

To find **similar users** we would need to visit an **average** of

153 MOVIES

X

432 USERS

X

153 MOVIES

=

~10 milions nodes!

GDS library

- Neo4j library containing the efficient and parallel implementation of different graph algorithms, often utilized for recommendation
- FastRP (Fast Random Projection): creates an embedding to represent a node, based on its neighbors
- KNN: finds the **k nearest neighbors** of a node

User based

- FastRP on a subgraph containing Movies,
 Users and their relationship rates to create embeddings
- KNN on Users based on the embedding, similar relationship created

User based

- FastRP on a subgraph containing Movies,
 Users and their relationship rates to create embeddings
- KNN on Users based on the embedding,
 similar relationship created

Item based

- FastRP on a subgraph containing Movies,
 Users and their relationship rates to create embeddings
- KNN on Movie based on the embedding, users-also-liked relationship created

Content-based filtering

- FastRP on a subgraph containing Movies,
 Genres and Categories and their relationship has_genre and has_category to create embeddings
- KNN on Movie based on the embedding, similar relationship created
- Hybrid approach!

Performances

- 1. Given a **User**, find his **top k Genres**
- 2. Given a **User**, find his **top k Categories**
- 3. Given a **Genre**, find its **top k Movies**
- 4. Given a Category, find its top k Movies5. Given a User, find similar users
- 6. Given a **User**, recommend Movies based on similar users (**collaborative filtering**)
 - 7. Given a Movie, find similar movies
- 8. Given a **User**, recommend similar Movies to the ones he has watched (**content-based filtering**)

QUERY	TOTAL TIME	AVG TIME
1	17m 48s	6.5 ms
2	1h 23m	30 ms
3	6m	19s
5	22m 6s	8 ms
7	5m 24s	5 ms

Performances

- 1. Given a User, find his top k Genres
- 2. Given a **User**, find his **top k Categories**
- 3. Given a **Genre**, find its **top k Movies**
- 4. Given a **Category**, find its **top k Movies**
 - 5. Given a **User**, find **similar users**
- 6. Given a **User**, recommend Movies based on similar users (**collaborative filtering**)
 - 7. Given a Movie, find similar movies
- 8. Given a **User**, recommend similar Movies to the ones he has watched (**content-based filtering**)

QUERY	TOTAL TIME	AVG TIME
	17m 48s	6.5 ms
3	6m	1 9s
4	3h 20s	10s
	22m 6s	8 ms
	5m 24s	5 ms

Performances

- 1. Given a User, find his top k Genres
- 2. Given a User, find his top k Categories
- 3. Given a Genre, find its top k Movies
- 4. Given a Category, find its top k Movies
 - 5. Given a **User**, find **similar users**
- 6. Given a **User**, recommend Movies based on similar users (**collaborative filtering**)
 - 7. Given a Movie, find similar movies
- 8. Given a **User**, recommend similar Movies to the ones he has watched (**content-based filtering**)

QUERY	TOTAL TIME	AVG TIME
1	17m 48s	6.5 ms
3	6m	1 9s
5	22m 6s	8 ms
6	41m 41s	15 ms
7	5m 24s	5 ms
8	34m 14s	12 ms

Conclusions

 This project was an opportunity to go deeper into the management of database resources, and their application to the recommendation problem

Further developments

- Tuning
- Systematical evaluation of results (division between test and train graph)
- o Improvement of performances exploiting parallelization and vertical scaling

Thank you for your attention!