

录 目

	◆ 术语和	缩写	4
1.	产品简	·介	5
	1.1. 概	述	5
	1.1.1	产品特性	5
	1.1.2	模块封装	6
	1.1.3	模块基本参数	7
	1.2. 硬	[件介绍	8
	1.3. 功	耗	11
	1.4. 射	·频指标	12
	1.5. 尺	寸	13
	1.6. W	/iFi 天线	14
	1.7. 推	荐炉温曲线	14
2.	功能描	述	15
	2.1. 主	要功能	15
	2.2. I	作模式	15
	2.3. 应	用领域	15
	2.4. Ai	Cloud	15
3.	全功能	测试版介绍	16
	3.1. 测	试步骤	17
		·础 AT 指令	
		测试 AT	
		'iFi 功能 AT 指令	
		选择 WiFi 应用模式: AT+CWMODE	
	3.3.2	, , , , , , , , , , , , , , , , , , ,	
		加入接入点:AT+CWJAP	
		退出接入点:AT+CWQAP	
		CPIP AT 指令	
	3.4.1	建立 TCP/UDP 连接: AT+CIPSTART	
	3.4.2	获得 TCP/UDP 连接状态: AT+CIPSTATUS	
	3.4.3	启动多连接: AT+CIPMUX	
	3.4.4	发送数据: AT+CIPSEND	
	3.4.5	关闭 TCP/UDP 连接: AT+CIPCLOSE	
	3.4.6	获取本地 IP 地址: AT+CIFSR	
	3.4.7	配置为服务器:	
	3.4.8	选择 TCPIP 应用模式: AT+CIPMODE	
	3.4.9	设置服务器主动断开的超时时间: AT+CIPSTO	
	3.4.10	7	
4	产品试	·田	31

表格目录

表格 1	术语和缩写	4
表格 2	模块技术规格	7
表格 3	Pin 脚定义	10
表格 4	功耗数据	11
表格 5	射频指标	12
	图	目录
图 2	模块管脚排列图	9
图 3		
图 4		14
图 5		14
图 6	全功能测试板板正面视图	16

◆ 术语和缩写

缩写	描述	
WiFi	Wireless Fidelity	
UART	Universal Asynchronous Receiver & Transmitter	
DTIM	Delivery Traffic Indication Message	
soc	System On a Chip	
P2P	Point to Point	
ТСР	Transmission Control Protocol	
IP	Internet Protocol	
STBC	Space-Time Block Coding	
мімо	Multiple Input Multiple Output	
MPDU	MAC Protocol Data Unit	
MSDU MAC Server Data Unit		
IEEE	Institute Of Electrical And Electronics Engineers	
bps	Bits Per Second	
CCK Corporate Control Key		
DQPSK	Differential Quadrature Phase Shift Keying	
DBPSK	Differential Binary Phase Shift Keying	
QAM	Quadrature Amplitude Modulation	
OFDM	Orthogonal Frequency Division Multiplexing	
WPA	Wi-Fi Protected Access	
WPS	Wi-Fi Protected Setup	
TKIP Temporal Key Integrity Protocol		
WAPI	Wlan Authentication And Privacy Infrastructure	
WEP	Wired Equivalent Privacy	
CRC	Cyclic Redundancy Check	

表格 1 术语和缩写

1.产品简介

1.1. 概述

ESP8266是一款超低功耗的UART-WiFi 透传模块,拥有业内极富竞争力的封装尺寸和超低能耗技术,专为移动设备和物联网应用设计,可将用户的物理设备连接到Wi-Fi 无线网络上,进行互联网或局域网通信,实现联网功能。

ESP8266封装方式多样,天线可支持板载PCB天线,IPEX接口和邮票孔接口三种形式; ESP8266可广泛应用于智能电网、智能交通、智能家具、手持设备、工业控制等领域。 更多资料,请访问安信可开源社区 www.ai-thinker.com

1.1.1 产品特性

- 支持无线802.11 b/g/n 标准
- 支持STA/AP/STA+AP 三种工作模式
- 内置TCP/IP协议栈,支持多路TCP Client连接
- 支持丰富的Socket AT指令
- 支持UART/GPIO数据通信接口
- 支持Smart Link 智能联网功能
- 支持远程固件升级(OTA)
- 内置32位MCU,可兼作应用处理器
- 超低能耗,适合电池供电应用
- 3.3V 单电源供电

1.1.2 模块封装

ESP8266支持五种封装形式,极大的丰富了客户的可选择性,方便应用于各种物联网硬件终端场合。

- 1. 2.54 标准直插工艺
- 2. 贴片封装
- 3. 底贴工艺
- 4. 半孔贴片工艺
- 5. 超小体积封装,只有10*10毫米

1.1.3 模块基本参数

	型号	ESP8266-07			
模块	主芯片	ESP8266			
	无线标准	IEEE 802.11b/g/n			
	频率范围	2.412GHz-2.484GHz			
	—————————————————————————————————————	802.11b: +16 +/-2dBm (@11Mbps)			
	发射功率	802.11g: +14 +/-2dBm (@54Mbps)			
	及別切率				
无线参数		802.11n: +13 +/-2dBm (@HT20, MCS7)			
儿线罗敦	مخر بادا ہے اور بہت	802.11b: -93 dBm (@11Mbps ,CCK)			
	接收灵敏度	802.11g: -85dBm (@54Mbps, OFDM)			
		802.11n: -82dBm (@HT20, MCS7)			
		外置: 邮票孔接口			
	天线形式 	外置: I-PEX 连接器、SMA 连接器			
		内置: 板载PCB 天线			
	硬件接口	UART, IIC, PWM, GPIO, ADC			
	工作电压	3.3V			
	GPIO驱动能力	Max: 15ma			
	工作电流	持续发送下=> 平均值: ~70mA,峰值: 200mA			
		正常模式下=>			
硬件参数		平均: ~12mA,峰值: 200mA			
		待机: <200uA,			
	工作温度	-40℃~125℃			
	存储环境	温度: <40℃,相对湿度: <90%R.H.			
	尺寸	22.2mm*16.4mm*1mm;			
串口透传	传输速率	110-921600bps			
中口位位	TCP Client	5个			
	无线网络类型	STA/AP/STA+AP			
	安全机制	WEP/WPA-PSK/WPA2-PSK			
松供会业	加密类型	WEP64/WEP128/TKIP/AES			
软件参数	固件升级	本地串口,OTA远程升级			
	网络协议	IPv4, TCP/UDP/FTP/HTTP			
	用户配置	AT+指令集, Web 页面 Android/iOS 终端, Smart Link 智能配置APP			

表格 2 模块技术规格

1.2. 硬件介绍

ESP8266 硬件接口丰富,可支持 UART, IIC, PWM, GPIO, ADC等,适用于各种物联网应用场合。

图 1 模块管脚排列图

PIN	Function	Description		
1	URXD	1) UART_RXD,接收;		
	010.0	2) General Purpose Input/Output: GPIO3;		
		1)UART_TXD,发送;		
2	UTXD	2) General Purpose Input/Output: GPIO1;		
		3) 开机时禁止下拉;		
5	REST	外部Reset信号,低电平复位,高电平工作(默认高);		
6	GND	GND		
8	VCC	3.3V,模块供电;		
9	ANT	WiFi Antenna		
	GPIO0	1) 默认WiFi Status: WiFi工作状态指示灯控制信号;		
1.1		2) 工作模式选择:		
11		上拉: Flash Boot,工作模式;		
		下拉: UART Download,下载模式;		
12	ADC	ADC,输入范围: 0V-1V;		
13	GPIO15	下拉:工作模式;		
14	CH DD	1) 高电平工作;		
14	CH_PD	2) 低电平模块供电关掉;		
15	CDIO3	1) 开机上电时必须为高电平,禁止硬件下拉;		
13	GPIO2	2) 内部默认已拉高		

表格 3 Pin 脚定义

1.3. 功耗

下列功耗数据是基于3.3V的电源、25°的环境温度下测得。

- [1] 所有测量均在天线接口处完成。
- [2] 所有发射数据是基于 90% 的占空比,在持续发射的模式下测得的。

模式	最小值	通常	最大值	单位
传送 802.11b,CCK 1Mbps,Pout=+19.5dBm		215		mA
传送 802.11b,CCK 11Mbps,Pout=+18.5dBm		197		mA
传送 802.11g,OFDM54 Mbps,Pout=+16dBm		145		mA
传送 802.11n,MCS7,Pout=+14dBm		135		mA
接收 802.11b,包长 1024 字节,-80dBm		100		mA
接收 802.11g,包长 1024 字节,-70dBm		100		mA
接收 802.11n,包长 1024 字节,-65dBm		102		mA
系统待机模式		70		mA
关机		0.5		μΑ

表格 4 功耗数据

1.4. 射频指标

以下数据是在室内温度下, 电压为 3.3V 时测得。

描述	最小值	通常	最大值	单位
输入频率	2412		2484	MHz
输入电阻		50		Ω
输入反射			-10	dB
72.2Mbps 下, PA 的输出功率	14	15	16	dBm
802.11b 模式下,PA 的输出功率	17.5	18.5	19.5	dBm
灵敏度				
CCK 1Mbps		-98		dBm
CCK 11Mbps		-91		dBm
6Mbps(1/2BPSK)		-93		dBm
54Mbps(3/4 64-QAM)		-75		dBm
HT20, MCS7 (65Mbps, 72.2Mbps)		-71		dBm
邻频抑制				
OFDM, 6Mbps		37		dB
OFDM, 54Mbps		21		dB
HT20, MCS0		37		dB
HT20, MCS7		20		dB

表格 5 射频指标

注:

- 1) 72.2Mbps是在802.11n模式下, MCS=7, GI=200uS时测得;
- 2) 802.11b模式下最高可达+19.5dBm的输出功率;

1.5. 尺寸

图 2 尺寸图

1) ESP8266 模块 PCB 封装可以提供,请联系客服索取;

1.6. WiFi 天线

ESP8266 支持三种天线接口形式: 板载 PCB 天线、IPEX 接口和邮票孔接口, 板载 PCB 天线和 IPEX 接口天线客户可直接使用, 无需添加任何匹配电路。如果客户需要在大板上设计天线部分,可使用 ESP8266 邮票孔天线接口,这种设计时大板需要预留匹配电路,如下:

图 3 WiFi 射频参考电路图

注:

- 1、以上虚线框的部分需要进行天线匹配,以实际天线匹配的电子元器件参数为准:
- 2、以上为 RF 走线要做 50 欧姆阻抗,禁止 90 度直角走线,长度不能超过 15mm;

1.7. 推荐炉温曲线

Refer to IPC/JEDEC standard; Peak Temperature : <250°C; Number of Times: ≤2 times;

图 4 推荐回流曲线图

2. 功能描述

2.1. 主要功能

ESP8266 可以实现的主要功能包括: 串口透传, PWM 调控, GPIO 控制。 串口透传: 数据传输, 传输的可靠性好, 最大的传输速率为: 460800bps。 PWM 调控: 灯光调节, 三色 LED 调节, 电机调速等。

GPIO 控制:控制开关,继电器等。

2.2. 工作模式

ESP8266 模块支持 STA/AP/STA+AP 三种工作模式。

- ◆ STA 模式: ESP8266 模块通过路由器连接互联网,手机或电脑通过互联网实现对设备的远程控制。
- ◆ AP 模式: ESP8266 模块作为热点,实现手机或电脑直接与模块通信,实现局域网无线控制。
- ◆ STA+AP 模式:两种模式的共存模式,即可以通过互联网控制可实现无缝切换,方便操作。

2.3. 应用领域

- ◆ 串口 CH340 转 Wi-Fi;
- ◆ 工业透传 DTU:
- ◆ Wi-Fi 远程监控/控制;
- ◆ 玩具领域;
- ◆ 色 LED 控制;
- ◆ 消防、安防智能一体化管理:
- ◆ 智能卡终端,无线 POS 机,Wi-Fi 摄像头,手持设备等。

2.4. AiCloud

AiCloud 为安信可科技(Ai-Thinker)推出的互联网云平台服务。用户可以在平台上对设备进行监控和管理,实现大数据管理和分析,使设备真正实现智能化。

AiCloud 可将打包全套的服务器解决方案,为客户省去成本,加快开发进度。

AiCloud 可接受客户的定制化需求, Web 页面配置, Android/iOS 平台 App 均可支持。

3.全功能测试版介绍

Ai-Thinker 可提供专门的 UART_WiFi 全功能测试板供客户研发测试 ESP8266 使用,通过该开发板,传统的串口设备或 MCU 设备可以方便的接入 WiFi 网络,通过网络实现对设备的管理与控制。

该开发板可提供 UART 串口数据传输解决方案、RGB 灯光调节、智能插座等硬件演示方案;

图 5 全功能测试板板正面视图

Notice:

由于本全功能测试板利用模块的外围管脚兼容设计了不同的应用,故需要通过拨码开关选择和区分;

- 1) 011010,110000 默认模式,可直接用手机 app 控制;
- 2) 011010,001010 串口调试模式;
- 3) 011110,001010 串口下载模式;
- 4) 011010,000101 单片机下载模式;

3.1. 测试步骤

服务器和客户端要搭载在同一个网络上(要么同时搭载在路由器上要 么同时搭载在模块上,)

- 1.搭载在路由器上(手机/PC 直接连接到路由器,模块通过 AT+CWJAP="SSID","PWD"链接到路由器) 2.搭载在模块上(手机/PC 连接到模块 wifi 上即 Esp8266,模块不用设置)
- 首先要设置服务器 (手机、PC、模块都可以模拟服务器)
- 1.模块作为服务器, AT 指令设置模块进入 server 模式, tcp 调试助手连接模块。

2.PC 作为服务器,设置 pc 端为 tcp server 模式,模块作为客户端向 pc 申请端口(AT+CIPSTART="pc 端 IP",端口)

3.手机作为服务器和 pc 作为服务器原理相同(手机默认 server 模式,等待模块连接)

4. 透传模式测试

上电之后,执行 AT 指令

AT+CWMODE=3

AT+RST

AT+CIPMODE=1 "设置透传模式"

..... "正常 tcp 连接测试"

注:透传只能在单连接模式下进行,所以在建立连接之前一定要用(AT+CIPMUX=0 设置单连接)

3.2. 基础 AT 指令

3.2.1 测试 AT

语法规则:

命令类型	语法	返回和说明
执行命令	AT	OK

3.3. WiFi 功能 AT 指令

3.3.1 选择 WiFi 应用模式: AT+CWMODE

语法规则:

命令类型	语法	返回和说明		
	AT+CWMODE = <mode></mode>	ОК		
设置命令		此指令需重启后生效(AT+RST)		
	AT+CWMODE?	+CWMODE: < mode>		
查询命令		ОК		
		当前处于哪种模式?		
	AT+CWMODE?	+CWMODE:(<mode>取值列表)</mode>		
测试命令		ОК		
		当前可支持哪些模式?		

参数	定义	取值	对取值的说明
	WiFi 应用模式	1	Station模式
<mode></mode>		2	AP模式
		3	AP+Station模式

3.3.2 列出当前可用接入点:AT+CWLAP

语法规则:

命令类型	语法	返回和说明	
		+CWLAP: <ecn>,<ssid>,<rssi>[,<mode>]</mode></rssi></ssid></ecn>	
执行命令	AT+CWLAP	OK	
		此指令返回AP列表	

参数定义:

参数	定义	取值	对取值的说明
		0	OPEN
		1	WEP
<ecn></ecn>	加密方式	2	WPA_PSK
		3	WPA2_PSK
		4	WPA_WPA2_PSK
<ssid></ssid>	接入点名称		字符串参数
<rssi></rssi>	信号强度		
amada.	连接模式	0	手动连接
<mode> 连接模式</mode>	1	自动连接	

3.3.3 加入接入点:AT+CWJAP

语法规则:

1012/20/13		
命令类型	语法	返回和说明
设置命令	AT+CWJAP= <ssid>,<pwd></pwd></ssid>	OK 或 ERROR
区国加之		加入该AP成功则返回OK,失败则返回ERROR
查询命令	AT+CWJAP?	+CWJAP: <ssid> OK</ssid>
		返回当前选择的AP

参数		定义	取值	对取值的说明
<ssic< th=""><th>d></th><th>接入点名称</th><th></th><th>字符串型</th></ssic<>	d>	接入点名称		字符串型
<pw< th=""><th>d></th><th>密码</th><th></th><th>字符串型,最长64字节,ASCII编码</th></pw<>	d>	密码		字符串型,最长64字节,ASCII编码

3.3.4 退出接入点:AT+CWQAP

语法规则:

命令类型	语法	返回和说明
44.C.A.A. A.T. GU	AT L CWOAD	ОК
执行命令	AT+CWQAP	表示成功退出该AP
301-2-A-A A.T O	T. CMOAD. 3	OK
测试命令 AT+CWQAP=?		查询该命令是否支持

3.3.5 设置 AP 模式下的参数:AT+CWSAP

语法规则:

命令类型	语法	返回和说明
设置命令	AT I CWCAD - cocids courds cobbs cocos	ОК
以且叩ぐ	AT+CWSAP= <ssid>,<pwd>,<chl>, <ecn></ecn></chl></pwd></ssid>	设置参数成功
木冶人人	AT L CINCADO	ОК
查询命令 AT+CWSAP?		查询当前AP参数

参数	定义	取值	对取值的说明
	<ecn> 加密方式</ecn>	0	OPEN
		1	WEP
<ecn></ecn>		2	WPA_PSK
		3	WPA2_PSK
		4	WPA_WPA2_PSK
<ssid></ssid>	接入点名称		字符串参数
<pwd></pwd>	密码		字符串型,最长 64 字节, ASCII 编码
<chl></chl>	通道号		

3.4. TCPIP AT 指令

3.4.1 建立 TCP/UDP 连接: AT+CIPSTART

语法规则:

命令类型	语法	返回和说明
		如果格式正确,返回:
		ОК
设置命令	单路连接(+CIPMUX=0)时: AT+CIPSTART= <type>,<addr>,<port> 多路连接(+CIPMUX=1)时: AT+CIPSTART=<id>,<type>,<addr>,<port></port></addr></type></id></port></addr></type>	否则返回: +CME ERROR: invalid input value 连接成功,返回: CONNECT OK (CPIMUX=0) <id>, CONNECT OK (CIPMUX=1) 如果连接已经存在,返回: ALREADY CONNECT 连接失败返回: CONNECT FAIL (CIPMUX=0) <id>, CONNECT FAIL (CIPMUX=1)</id></id>

参数定义:

2 XX C X .			
参数	定义	取值	对取值的说明
<id></id>	Link No.	0~4	表示连接序号 0号连接可client或server连接,其他id只能用于连接远 程server
<type></type>	连接类型	"TCP"/"UDP"	
<addr></addr>	远程服务器 IP 地址		字符串型
<port></port>	远程服务器端口号		

3.4.2 获得 TCP/UDP 连接状态: AT+CIPSTATUS

语法规则:

命令类型	语法	返回和说明
		如果是单路连接(AT+CIPMUX=0),返回:
		OK
执行命令	AT+CIPSTATUS	STATE: <sl_state></sl_state>
		如果是多路连接 (AT+CIPMUX=1),返回:
		OK

		STATE: <ml_state></ml_state>
		如果配置为服务器:
		STATE: IP STATUS
		S: <sid>,<port>,<server state=""></server></port></sid>
		C: <cid>, <tcp udp="">, <ip address="">, <port>, <client state=""></client></port></ip></tcp></cid>
测试命令	AT+CIPSTATUS=?	返回:
视风叩子	AT+CIPSTATUS=?	OK

参数定义:

参数	定义	取值	对取值的说明
		IP INITIAL	初始化
		IP STATUS	获得本地 IP 状态
		TCP	
<cl ctate=""></cl>	単连接状态	CONNECTING/UDP	TCP 连接中/UDP 端口注册中
<sl_state></sl_state>	平足按扒您	CONNECTING	
		CONNECT OK	连接建立成功
		TCP CLOSING/UDP	正在关闭 TCP 连接,正在注销 UDP 端口
		CLOSING	正在天内 TCF 建铵,正任在铂 ODF 编口
aml states	多链接状态	IP INITIAL	初始化
<ml_state></ml_state>		IP STATUS	获得本地 IP 状态
<sid></sid>	服务器 id	0~1	取值为0和1
	<server state=""> 服务器状态</server>	OPENING	正在打开
<server state=""></server>		LISTENING	正在监听
		CLOSING	正在关闭
<cid></cid>	客户端 id	0~4	取值为0,1,2,3,4
<ip address=""></ip>	IP 地址	-	字符串参数(字符串需要加引号)
<port></port>	服务器监听端口号	-	整数型
<client state=""></client>	客户端状态	CONNECTED	已连接
client state>	台 / 圳仏心	CLOSED	已关闭

3.4.3 启动多连接: AT+CIPMUX

语法规则:

1010/1017		
命令类型	语法	返回和说明
设置命令	AT+CIPMUX= <mode></mode>	OK 如果已经处于多连接模式,则返回 Link is builded
		启动多连接成功
查询命令	AT+CIPMUX?	+CIPMUX: <mode></mode>

OK
查询当前是否处在多连接模式

参数定义:

参数	定义	取值	对取值的说明
	日本以大夕大拉拱子	0	单连接模式
<mode></mode>	是否处在多连接模式	1	多连接模式

3.4.4 发送数据: AT+CIPSEND

语法规则:

命令类型	语法	返回和说明	月
设置命令	单路连接(+CIPMUX=0)时: AT+CIPSEND= <length> 多路连接(+CIPMUX=1)时: AT+CIPSEND=<id>>,<length></length></id></length>	响应	模块收到指令后先换行返回">",然后开始接收串口数据,当数据长度满length时发送数据如果未建立连接或连接被断开,返回ERROR如果数据发送成功,返回SEND OK
	The second of th	说明	发送指定长度的数据
测试指令	AT+CIPSEND?	响应	单路连接(AT+CIPMUX=0)返回: +CIPSEND: <length> OK 多路连接(AT+CIPMUX=1)返回: +CIPSEND: <0-7>,<length></length></length>
执行命令	AT+CIPSEND	说明	AT+CIPMODE=1并且作为客户端模式下,进入透传模式(需要支持硬件流控,否则大量数据情况下会丢数据)模块收到指令后先换行返回">",然后会发送串口接收到的数据。

参数定义:

参数	定义	取值	对取值的说明
<length></length>	数据长度		单位: 字节
<id></id>	Link No.	0~4	连接序号

3.4.5 关闭 TCP/UDP 连接: AT+CIPCLOSE

语法规则:

命令类型	语法	返回和说明

ᇄᇛᇫᇫ	单路连接时 AT+CIPCLOSE= <id></id>	返回: CLOSE OK
设置命令	多路连接时 AT+CIPCLOSE= <n>[,<id>]</id></n>	返回: <n>,CLOSE OK</n>
执行命令	AT+CIPCLOSE	如果关闭成功,返回: CLOSE OK 如果关闭失败,返回: ERROR
测试命令	AT+CIPCLOSE?	返回: OK
注意事项	 执行命令只对单链接有效,多链接模式下返回ERROR 执行命令AT+CIPCLOSE 只有在TCP/UDP CONNECTING或CONNECT OK状态下才会关闭连否则会认为关闭失败返回ERROR 单路连接模式下,关闭后的状态为IP CLOSE 	

参数定义:

参数	定义	取值	对取值的说明	
.1.4.	子	<u>0</u>	慢关(缺省值)	
<1u>	<id> 关闭模式</id>		快关	
<n></n>	Link No.	0~7	整数型,表示连接序号	

3.4.6 获取本地 IP 地址: AT+CIFSR

语法规则:

命令类型	语法	响应和说明	
执行命令	AT+CIFSR	响应	+ CIFSR: <ip address=""> OK 或者 ERROR</ip>
测试命令	AT+CIFSR=?	响应	ОК

参数	定义	取值	对取值的说明
<ip address=""></ip>	本机目前的 IP 地址(station)		

3.4.7 配置为服务器:

如何使用 AT 指令与服务器交互

简介:该服务器是 UDP 中转服务器,提供广域网的 UDP 中转服务。用户无需在局域网内进行端口映射操作,NAT 会自动完成这一切。用户使用以下方法,可以在世界上任何可以连接公网的地方,进行一对一的 UDP 通信。

服务器为免费测试版本,域名或 IP 地址随时可能会发生变更。如果用户需要自己部署服务器,请联系安信可科技。

基本概念:

1:注册用户

A 发送

{"type": "signin", "name": "UserNameA", "password": "12345"}

B 发送

{"type": "signin", "name": "UserNameB", "password": "54321"}

2:进入透传模式

A 发送

{"type":"connect","from":"UserNameB","to":"UserNameA","password":"12345"}

或者B发送

{"type":"connect", "from": "UserNameA", "to": "UserNameB", "password": "54321"}

任意一人发送,两个人将会同时进入透传模式,期中 password 是对方的密码。

此时双方都可以得到对方的 IP 地址,建议此时进行 UDP 打洞,若打洞失败,请使用服务器转发。

如果不了解 P2P,此时可以直接使用服务器透传而无需考虑如何 P2P.

3.断开服务器连接

A、B 任意一人发送

{"type":"disconnect"}

两个人将会同时退出透传模式。

4.注销用户

A 发送

{"type": "signout", "name": "UserNameA", "password": "12345"}

B发送

{"type":"signout", "name": "UserNameB", "password": "54321"}

5.服务器地址

iot.ai-thinker.com:5001

使用方法:

1.连接就近的一个可以访问公网的 Wi-Fi 路由器

具体操作步骤如下:

第一步:进入STA模式(CWMODE=1)或者AP+STA模式(CWMODE=3),此时以STA模式为例子:

AT+CWMODE=1

第二步:列出周围的 AP SSID (可选):

AT+CWLAP

第三步:连接 AP 接入公网:

AT+CWJAP="SSID", "PASSWORD"

2.使用 AT 指令操作服务器

具体操作步骤如下:

第一步: 查看是否获得 IP 地址:

AT+CIFSR

第二步: 打开一个 UDP 连接 (方法不仅限于此,仅供参考):

ping iot.ai-thinker.com,得到 IP地址 114.215.154.114(这个 IP 可能会变).

(下个版本不需要这样做,固件将会完成 DNS 解析)

AT+CIPSTART="UDP","114,215,154,114",5001

第三步: 开启透传模式:

AT+CIPMODE=1

第四步:开始传输数据:

AT+CIPSEND

第五步:注册服务器

{"type":"signin", "name": "ai-thinker", "password": "12345"}

第六步: 发起网际连接

{"type":"connect", "from": "ai-thinker", "to": "anyone", "password": "anyonePassword"}

第七步:开始网际透传

若连接成功此时发送任意数据 (除了{"type":"disconnect"}),接收方会收到发送的数据。

第八步:断开网际连接 {"type":"disconnect"} 第九步:注销用户

{"type": "signout", "name": "ai-thinker", "password": "12345"}

3.4.8 选择 TCPIP 应用模式: AT+CIPMODE

语法规则:

命令类型	语法	返回
设置命令	AT+CIPMODE= <mode></mode>	ОК
查询命令	AT+CIPMODE?	+CIPMODE: <mode></mode>

参数定义:

参数	定义	取值	7. 对取值的说明	
<mode></mode>	TCPIP 应用模式 0 1	<u>0</u>	非透明传输模式,缺省模式	
		1	透明传输模式	

3.4.9 设置服务器主动断开的超时时间: AT+CIPSTO

命令类型	语法	返回和说明
设置命令	AT+CIPSTO= <server timeout=""></server>	ОК
查询命令	AT+CIPSTO?	+ CIPSTO: <server timeout=""> OK</server>

参数定义:

参数	定义	取值	对取值的说明
coom con time court	用来设置服务器主动断	<u>0</u> ~28800(s	用本命令设置好超时时间后,服务器到时间就断开
<server timeout=""></server>	开连接的超时时间)	连接。

3.4.10 设置波特率: AT+CIOBAUD

语法规则:

命令类型	语法	返回和说明	
设置命令	AT+CIOBAUD= <rate></rate>	返回:	
		OK	

默认波特率是9600

参数定义:

参数	定义	取值	对取值的说明
	波特率, 单位 bps	<u>0</u>	自适应波特率
		110	
		300	
		1200	
		2400	
		4800	
		9600	
< rate >		14400	
		19200	
		28800	
		38400	
		57600	
		115200	
		230400	
		460800	
		921600	

4. 产品试用

(1)淘宝店铺: 深圳市安信可科技

(2) 技术讨论 QQ 群: 185323735

(3) 技术支持论坛: 物联世界