Strojno učenje

2. Nadzirano učenje

prof. dr. sc. Bojana Dalbelo Bašić doc. dr. sc. Jan Šnajder

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Ak. god. 2012/13.

Danas...

- Osnovni pojmovi
- Vapnik-Chervonenkisova dimenzija
- Induktivna pristranost
- 4 Primjer: regresija
- Odabir modela

Danas. . .

- Osnovni pojmovi
- 2 Vapnik-Chervonenkisova dimenzija
- Induktivna pristranost
- 4 Primjer: regresija
- Odabir modela

Strojno učenje – tipični koraci

1 (Označavanje skupa podataka) 🗶 2 Ekstrakcija značajki X 3 (Redukcija dimenzionalnosti) 4 Odabir modela √5 Učenje modela √∫ SU Algoritam učeuja 6 Evaluacija ✓ Označeni primjeri -> h + evaluacija

Primjeri za učenje

- Klasifikacija: odrediti klasu \mathcal{C} kojoj pripada primjer $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}} \in \mathcal{X}$
- \mathcal{X} je n-dimenzijski ulazni prostor (prostor primjera)
- n je broj značajki

Primjeri za učenje

- ullet Nadzirano učenje: poznata nam je oznaka klase y kojoj pripada ${f x}$
- Skup primjera za učenje: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$

• Binarna klasifikacija:

$$(y=1)\Rightarrow$$
 "pozitivan primjer", $(y=0)\Rightarrow$ "negativan primjer" $(\gamma=-\lambda)$

Primjeri za učenje

Pretpostavka (iid

Primjeri $\mathbf{x} \in \mathcal{X}$ uzorkovani međusobno nezavisno i iz iste zajedničke distribucije $P(\mathbf{x},y)$

Vindependently & identically distributed

Od sada nadage pretpostavljano najet da vrijedi 1.1.d.

Hipoteza

$$\begin{array}{cccc} & h: \mathcal{X} \rightarrow \{0,1\} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

Zadovoljivost

Primjer $\mathbf{x} \in \mathcal{X}$ zadovoljava hipotezu $h \in \mathcal{H}$ akko $h(\mathbf{x}) = 1$

Konzistentnost

Hipoteza h je konzistentna s primjerom za učenje (\mathbf{x},y) akko $h(\mathbf{x})=y$

Hipoteta ispenno & Klasificia primjer X

Višeklasna klasifikacija (engl. multiclass)

- Klasifikacija u klase \mathcal{C}_j , gdje $j=1,\ldots(K)$
- Oznaka klase primjera $\mathbf{x}^{(i)}$ je K-dimenzijski vektor $\mathbf{v}^{(i)} = (y_1^{(i)}, y_2^{(i)}, \dots, y_K^{(i)})^{\mathrm{T}}$

Vektor oznaka

$$X^{(1)} \in C_3$$
 $Y_k^{(1)} = \begin{cases} 1 & j=k \\ 0 & \text{inaze} \end{cases}$
 $X^{(1)} \in C_3$, $K = 5$ $Y^{(1)} = (0,0,1,0,0)$

• Različito od klasifikacije s višestrukim oznakama (engl. multilabel)

$$X^{(1)} \in \{C_1, C_3\}$$
 $Y^{(1)} = (1, 0, 1, 0, 0)$
(Neleumo raditi.)

Model

- Model ili prostor hipoteza: skup mogućih hipoteza \mathcal{H}
- Učenje se svodi na pretraživanje prostora hipoteza i nalaženje najbolje hipoteze $h \in H$
- Najbolja hipoteza je ona koja najtočnije klasificira primjere
 H je vrlo velik treba nam heurističko pretraživanje

Empirijska pogreška

• Empirijska pogreška iskazuje koliko dobro hipoteza klasificira primjere

Složenost/kapacitet modela

- Idealno, $\mathcal H$ uključuje klasu $\mathcal C$, tj. postoji $h \in \mathcal H$ takva da je h konzistentna s $\mathcal D$
- No moguće je da takva hipoteza ne postoji, tj. da za sve $h \in \mathcal{H}$ vrijedi $E(h|\mathcal{D})>0$
- ullet Tada kažemo da model ${\cal H}$ nije dovoljnog kapaciteta ili složenosti

Prostor inačica

Prostor inačica (engl. *version space*)

Prostor inačica $VS_{\mathcal{H},\mathcal{D}} \subseteq \mathcal{H}$ modela \mathcal{H} je skup hipoteza koje su konzistentne s primjerima za učenje \mathcal{D} :

$$VS_{\mathcal{H},\mathcal{D}} = \left\{ h \in \mathcal{H} \mid \forall (\mathbf{x}, y) \in \mathcal{D}. \left(h(\mathbf{x}) = y \right) \right\}$$

Danas...

- Osnovni pojmovi
- Vapnik-Chervonenkisova dimenzija
- Induktivna pristranost
- 4 Primjer: regresija
- Odabir modela

- Modeli su različitog kapaciteta: neki su složeniji (fleksibilniji), a neki manje složeni
- Statistička/računalna teorija učenja (engl. COLT)
- VC-dimenzija iskazuje kapacitet modela $\mathcal H$ u smislu broja primjera za klasifikaciju s kojim se $\mathcal H$ može uspješno nositi

ship suin prinjera! (DCX)

Razdjeljivanje primjera

Neka je funkcija $y: \stackrel{\sim}{\mathcal{U}} \to \{0,1\}$ funkcija koja primjerima iz $\mathcal X$ dodjeljuje oznake klase. Model $\mathcal H$ razdjeljuje N primjera akko

$$\exists \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\} \subseteq \mathcal{X}, \forall y, \exists h \in \mathcal{H}, \forall i \in \{1, \dots, N\}.$$
$$\left(h(\mathbf{x}^{(i)}) = y(\mathbf{x}^{(i)})\right)$$

VC-dimenzija

VC-dimenzija modela \mathcal{H} , označena kao $VC(\mathcal{H})$, jest najveći broj primjera koje model \mathcal{H} može razdijeliti

Napomene:

- odabir N primjera je proizvoljan, ali jednom kad je fiksiran, razdvajanje mora biti moguće za 2^N označavanja
- $VC(\mathcal{H})$ ne ovisi o $\mathcal{D} \longrightarrow$ mjera ne ovisi o konkretnom problemu (konkretnoj distribuciji primjera)
- moguće $VC(\mathcal{H}) = \infty$
- dokaz za $VC(\mathcal{H}) = m$ radimo u dva koraka: (1) $VC(\mathcal{H}) \ge m$ i (2) $VC(\mathcal{H}) \ne m+1$
- teorijska i vrlo pesimistična ocjena složenosti modela

$$\mathcal{H} = \text{"skup pravaca"}, \ \mathcal{X} = \mathbb{R}^2, \ VC(\mathcal{H}) = ?$$

$$VC(\mathcal{H}) = n + 1$$

$$VC(\mathcal{H}) = n + 1$$

$$VC(\mathcal{H}) = n + 1$$

$$VC(\mathcal{H}) = 3$$

$$VC(\mathcal{H}) \geq 3$$

$$VC(\mathcal{H}) \geq 3$$

$$VC(\mathcal{H}) \geq 3$$

$$VC(\mathcal{H}) = 3$$

 $\mathcal{H}=$ "skup pravokutnika čije su stranice poravnate s osima", $\mathcal{X}=\mathbb{R}^2$, $VC(\mathcal{H})=$?

$$N = 9$$
 $VC(H) \ge 9$
 $VC(H) \ge 9$
 $VC(H) \ge 9$
 $VC(H) \ne 5$
 $VC(H) \ne 5$
 $VC(H) \ne 5$
 $VC(H) \ne 9$
 $VC(H) = 9$
 $VC(H) = 9$

Danas. . .

- Osnovni pojmovi
- 2 Vapnik-Chervonenkisova dimenzija
- Induktivna pristranost
- 4 Primjer: regresija
- Odabir modela

Induktivna pristranost (engl. inductive bias)

- Učenje hipoteze je loše definiran problem: h ne slijedi deduktivno iz \mathcal{D}
- Npr. učenje Booleove funkcije:

$$N = 3$$

$$X = \{0, 1\}^{3}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 0 & ? \\
0 & 0 & 1 & ? \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 0 & ? \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 1 & ? \\
0 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 1 & ? \\
1 & 0 & 1 & 0
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 1 & ? \\
1 & 0 & 1 & 0
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 1 & ? \\
1 & 0 & 0 & 1
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 1 & ? \\
1 & 0 & 0 & 1
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 1 & ? \\
1 & 0 & 0 & 1
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 1 & ? \\
1 & 0 & 0 & 1
\end{cases}$$

$$\begin{cases}
x_{1} & x_{2} & x_{3} & y \\
0 & 0 & 1 & ? \\
1 & 0 & 0 & 1
\end{cases}$$

- $n=3, N=5, |VS|=2^{2^n-N}=8$ may in hipotern
- Generalizacija: mogućnost klasifikacije još neviđenih primjera
- Učenje i generalizacija nisu mogući bez dodatnih pretpostavki!

Induktivna pristranost (engl. inductive bias)

Induktivna pristranost

 \mathcal{L} – algoritam za učenje

 $h_{\mathcal{L}}$ – hipoteza inducirana pomoću \mathcal{L} na \mathcal{D}

 $h_{\mathcal{L}}(\mathbf{x})$ – klasifikacija primjera $\mathbf{x} \in \mathcal{X}$.

Induktivna pristranost od $\mathcal L$ je bilo koji skup minimalnih pretpostavki $\mathcal B$ takvih da

$$orall \mathcal{D}. \, orall \mathbf{x} \in \mathcal{X}. \, ig((\mathcal{B} \wedge \mathcal{D} \wedge \mathbf{x}) \ ightarrow h_{\mathcal{L}}(\mathbf{x}) ig)$$
 Slijedi deduktivno

Skup pretpostavki koje od indukcije čine dedukciju.

Induktivna pristranost (engl. inductive bias)

- 1 Pristranost ograničenjem (pristranost jezika) odabiremo model \mathcal{H} koji ograničava skup prikazivih hipoteza
- Pristranost pretraživanja (pristranost preferencijom) definiramo način pretraživanja unutar ${\cal H}$ -> definitions optimizacijski poskipak
- Većina algoritama kombinira obje pristranosti

Induktivna pristranost – primjer 1

Učenje binarne Booleove funkcije, $\mathcal{X} = \{0,1\}^2$, \mathcal{H} je skup pravaca u \mathbb{R}^2

Induktivna pristranost – primjer 2

Učenje ternarne Booleove funkcije, $\mathcal{X}=\{0,1\}^3$, \mathcal{H} je skup ravnina u \mathbb{R}^3

x_1	x_2	x_3	y
0	0	0	?
0	0	1	?
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	?
1	1	1	1

Induktivna pristranost – primjer 3

Učenje ternarne Booleove funkcije, $\mathcal{X}=\{0,1\}^3$, \mathcal{H} je skup ravnina u \mathbb{R}^3

x_1	x_2	x_3	y	
0	0	0	?	
0	0	1	?	→ 2c (D2)
0	1	0	1	
0 1	1	1	0	
1	0	0	1	
1	1	0	?	
1	1	0 1	1	
			'	

Problem šuma

- Šum je neželjena anomalija u podacima
- Mogući uzroci:
 - 1 nepreciznost pri mjerenju značajki,
 - 2 pogreške u označavanju (engl. teacher noise),
 - 3 postojanje skrivenih značajki (latentnih varijabli),
 - 4 nejasne granice klasa (subjektivnost).
- Zbog šuma je granica između pozitivnih i negativnih primjera složena!

Problem šuma

- Jednostavni modeli ne mogu doseći $E(h|\mathcal{D})=0$
- Složeni modeli uče šum, a ne pravu klasifikaciju
- Šum u principu nije moguće odvojiti od pravih podataka
- Moguće za: vrijednosti koje odskaču (engl. outliers)

Danas...

- Osnovni pojmovi
- 2 Vapnik-Chervonenkisova dimenzija
- Induktivna pristranost
- 4 Primjer: regresija
- Odabir modela

- Na temelju primjera $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}$ učimo hipotezu (funkciju) h koja aproksimira nepoznatu funkciju $f: \mathcal{X} \to \mathbb{R}$
- \bullet Idealno, $y^{(i)} = f(\mathbf{x}^{(i)})$, ali zbog šuma $y^{(i)} = f(\mathbf{x}^{(i)}) + \varepsilon$

• Empirijska pogreška hipoteze:

$$E(h|\mathcal{D}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - h(\mathbf{x}^{(i)}))^2$$
 Kvadratno odstupanje

· Linearan model: Hiperramina u Rh

$$h_1(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + w_0 = \sum_{i=1}^n w_i x_i + w_0 = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

• Neka $\mathcal{X} = \mathbb{R}$. Onda je model:

$$(n=1)$$
 $h_1(x) = \underline{w}_1 x + \underline{w}_0$ 2 parametra

a empirijska pogreška:

$$E(h_1|\mathcal{D}) = \frac{1}{2} \sum_{i=1}^{N} \left(y^{(i)} - (w_1 x^{(i)} + w_0) \right)^2$$

• Naš cilj je pronaći h_1 koja minimizira $E(h_1|\mathcal{D})$ \Rightarrow Postupak najmanjih kvadrata (engl. least squares)

• Ovo je optimizacijski problem: treba pronaći parametre w_0 i w_1 koji minimiziraju $E(h|\mathcal{D})$. U ovom slučaju postoji analitičko rješenje

$$\nabla w_{0}, w_{1} E(h_{1} | \mathcal{D}) = 0$$

$$\frac{\partial}{\partial w_{0}} \left[\frac{1}{2} \sum_{i}^{N} (y^{(i)} - (w_{1} x^{(i)} + w_{0}))^{2} \right] = 0$$

$$\vdots$$

$$w_{0} = \bar{y} - w_{1} \bar{x}$$

$$\frac{\partial}{\partial w_{1}} \left[\frac{1}{2} \sum_{i}^{N} (y^{(i)} - (w_{1} x^{(i)} + w_{0}))^{2} \right] = 0$$

$$w_1 = \frac{\sum_i^N x^{(i)} y^{(i)} - N\bar{x}\bar{y}}{\sum_i^N (x^{(i)})^2 - N\bar{x}^2}$$
 Rješenje je u Zatvorenoj formi (closed form solution)

Mogli smo odabrati i složeniji model, npr. polinom drugog stupnja:

$$h_2(x) = \underbrace{w_2}_2 + \underbrace{w_1}_2 x + \underbrace{w_0}_2$$

• Ovo je i dalje linearna regresija, i dalje ima analitičko rješenje

• Koji model odabrati? Ovisi!

- Moramo odabrati model \mathcal{H} (učenje bez pristranosti je uzaludno)!
- Često radimo odabir modela unutar neke familije modela npr. odabir stupnja polinoma

- Stupanj polinoma je hiperparametar modela (w_i su parametri)
- Odabir modela = optimizacija modela, odabir parametara

- ullet Što veći kapacitet modela ${\mathcal H}$, to je manja pogreška $E(h|{\mathcal D})$, $h\in {\mathcal H}$
- Ali model mora moći generalizirati!
- Preferiramo jednostavne modele
 - bolja generalizacija
 - lakše učenje/uporaba
 - lakše tumačenje
 - ⇒ Occamova britva
- Trebamo odabrati model koji točno odgovara pravoj složenosti funkcije koju nastojimo naučiti

● Prenaučenost – H je previše složen u odnosu na stvarnu funkciju ⇒ loša generalizacija!

2 Podnaučenost – \mathcal{H} je prejednostavan u odnosu na stvarnu funkciju \Rightarrow loša klasifikacija viđenih i neviđenih primjera!

- Jednostavan model ima visoku pristranost (engl. high bias)
- Složen model ima visoku varijancu (engl. high variance)

- Odabir modela ⇒ dvojba između pristranosti i varijance
- Optimalan model minimizira i pristranost i varijancu

Pretpostavka induktivnog učenja

Ako je (1) pogreška hipoteze na dovoljno velikom skupu primjera za učenje mala i (2) ako model nije suviše složen, hipoteza će dobro klasificirati i nove, (3) slične primjere.

Unakrsna provjera (engl. cross-validation)

- Metoda za procjenu sposobnosti generalizacije modela
- Skup primjera dijelimo na skup za učenje i skup za ispitivanje
- Model učimo na skupu za učenje, a ispitujemo na skupu za ispitivanje
- Primjeri iz skupa za ispitivanje model dosad nije vidio, pa dobivamo dobru (pravednu) procjenu pogreške generalizacije

Unakrsna provjera

- Što ako želimo optimirati parametre modela?
- Ne možemo to raditi na skupu za provjeru!
- Trebamo još jedan skup: skup za provjeru (engl. validation set)

$$\mathcal{D} = \mathcal{D}_U \cup \mathcal{D}_P \cup \mathcal{D}_I$$

$$\mathcal{D}_U \cap \mathcal{D}_P = D_U \cap \mathcal{D}_I = \mathcal{D}_P \cap \mathcal{D}_I = \emptyset$$

Unakrsna provjera

- ullet Empirijska pogreška $E(h|\mathcal{D}_U)$ pada sa složenošću modela
- ullet Pogreška generalizacije $E(h|\mathcal{D}_P)$ tipično pada pa raste
- ullet Optimalan model je onaj koji minimizira $E(h|\mathcal{D}_P)$

Sažetak

- Hipoteza je funkcija koja klasificira primjere, a model je skup hipoteza
- Različiti modeli imaju različite složenosti. Jedna teorijska mjera složenosti modela je Vapnik-Chervonenkisova dimenzija
- Učenje nije moguće bez induktivne pristranosti, koja može biti pristranost ograničenjem ili pristranost pretraživanja
- Učenje se svodi na optimizaciju parametara modela. Kod regresije postoji analitičko rješenje za taj problem
- Model koji je prenaučen ili podnaučen loše generalizira
- Odabir modela svodi se na optimiranje hiperparametara modela
- Unakrsnom provjerom može se procijeniti pogreška generalizacije i odabrati optimalan model

Sljedeća tema: Nadzirano učenje (nastavak)