FORMULAS & TABLES

Discrete Fourier Series (DFS) Complex exponential Fourier series synthesis and analysis equations for a periodic discrete-time signal having period p:

$$x(n) = \sum_{k=\langle p \rangle} X_k e^{ik\omega_0 n} \qquad \longleftrightarrow \qquad X_k = \frac{1}{p} \sum_{n=\langle p \rangle} x(n) e^{-ik\omega_0 n} ,$$

where $\omega_0 = \frac{2\pi}{p}$ and $\langle p \rangle$ denotes a suitable discrete interval of length p (i.e., an interval containing p contiguous integers). For example, $\sum_{k=\langle p \rangle}$ may denote

$$\sum_{k=0}^{p-1} \text{ or } \sum_{k=1}^{p}.$$

Continuous-Time Fourier Series (FS) Complex exponential Fourier series synthesis and analysis equations for a periodic continuous-time signal having period *p*:

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{ik\omega_0 t} \qquad \longleftrightarrow \qquad X_k = \frac{1}{p} \int_{\langle p \rangle} x(t) e^{-ik\omega_0 t} dt ,$$

where $\omega_0=\frac{2\pi}{p}$ and $\langle p\rangle$ denotes a suitable continuous interval of length p. For example, $\int_{\langle p\rangle}$ can denote \int_0^p .

1

Transfer Function and Frequency Response of a DT LTI System Consider a real, discrete-time LTI system having impulse response $h: \mathbb{Z} \to \mathbb{R}$. The transfer function $\hat{H}: \mathbb{C} \to \mathbb{C}$ of the system is given by:

$$\widehat{H}(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n}, \quad \forall z \in \text{RoC}(h).$$

If the system is stable, its frequency response $H : \mathbb{R} \to \mathbb{C}$ is given by:

$$H(\omega) = \sum_{n=-\infty}^{\infty} h(n) e^{-i\omega n}, \quad \forall \omega \in \mathbb{R}.$$

The impulse response of the system is given by:

$$h(n) = \frac{1}{2\pi} \int_{\langle 2\pi \rangle} H(\omega) \, e^{i\omega n} \, d\omega \,.$$

Transfer Function and Frequency Response of a CT LTI System Consider a real, continuous-time LTI system having impulse response $h : \mathbb{R} \to \mathbb{R}$.

If the system is stable, its frequency response $H : \mathbb{R} \to \mathbb{C}$ is given by:

$$H(\omega) = \int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt, \quad \forall \omega \in \mathbb{R}.$$

The impulse response of the system is given by:

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) e^{i\omega t} d\omega.$$

Time domain	Frequency domain		
$\forall n \in \mathbb{Z}, x(n) \text{ is real}$	$\forall \ \omega \in \mathbb{R}, X(\omega) = X^*(-\omega)$		
$\forall n \in \mathbb{Z}, x(n) = x^*(-n)$	$\forall \ \omega \in \mathbb{R}, X(\omega) \text{ is real}$		
$\forall n \in \mathbb{Z}, y(n) = x(n-N)$	$\forall \omega \in \mathbb{R}, Y(\omega) = e^{-i\omega N} X(\omega)$		
$\forall n \in \mathbb{Z}, y(n) = e^{i\omega_1 n} x(n)$	$\forall \omega \in \mathbb{R}, Y(\omega) = X(\omega - \omega_1)$		
$\forall n \in \mathbb{Z},$ $y(n) = \cos(\omega_1 n) x(n)$	$\forall \omega \in \mathbb{R},$ $Y(\omega) = (X(\omega - \omega_1) + X(\omega + \omega_1))/2$		
$\forall n \in \mathbb{Z},$ $y(n) = \sin(\omega_1 n) x(n)$	$\forall \omega \in \mathbb{R},$ $Y(\omega) = (X(\omega - \omega_1) - X(\omega + \omega_1))/2i$		
$\forall n \in \mathbb{Z},$ $x(n) = ax_1(n) + bx_2(n)$	$\forall \omega \in \mathbb{R},$ $X(\omega) = aX_1(\omega) + bX_2(\omega)$		
$\forall n \in \mathbb{Z}, y(n) = (h * x)(n)$	$\forall \omega \in \mathbb{R}, Y(\omega) = H(\omega)X(\omega)$		
$\forall n \in \mathbb{Z}, y(n) = x(n)p(n)$	$Y(\omega) = \frac{1}{2\pi} \int_{0}^{2\pi} X(\Omega) P(\omega - \Omega) d\Omega$		
$\forall \ n \in \mathbb{Z}, \\ y(n) = \\ \left\{ \begin{array}{ll} x(n/N) & n \text{ is a multiple of } N \\ 0 & \text{otherwise} \end{array} \right.$	$\forall \ \omega \in \mathbb{Z},$ $Y(\omega) = X(N\Omega)$		

Table 1: Properties of the DTFT.

Signal	DTFT
$\forall n \in \mathbb{Z}, x(n) = \delta(n)$	$\forall \omega \in \mathbb{R}, X(\omega) = 1$
$\forall n \in \mathbb{Z}, \\ x(n) = \delta(n - N)$	$\forall \omega \in \mathbb{R}, X(\omega) = e^{-i\omega N}$
$\forall n \in \mathbb{Z}, x(n) = K$	$\forall \ \omega \in \mathbb{R},$ $X(\omega) = 2\pi K \sum_{k=-\infty}^{\infty} \delta(\omega - k2\pi)$
$\forall n \in \mathbb{Z},$ $x(n) = a^n u(n), a < 1$	$\forall \omega \in \mathbb{R},$ $X(\omega) = \frac{1}{1 - ae^{-i\omega}}$
$\forall n \in \mathbb{Z},$ $x(n) = \begin{cases} 1 & \text{if } n \leq M \\ 0 & \text{otherwise} \end{cases}$	$X(\omega) = \frac{\sin(\omega(M+0.5))}{\sin(\omega/2)}$
$\forall n \in \mathbb{Z},$ $x(n) = \frac{\sin(Wn)}{\pi n}, 0 < W < \pi$	$orall \ \omega \in [-\pi,\pi],$ $X(\omega) = \left\{egin{array}{ll} 1 & ext{if } \omega \leq W \ 0 & ext{otherwise} \end{array} ight.$

Table 2: Discrete time Fourier transforms of key signals. The function \boldsymbol{u} is the unit step.

Time domain	Frequency domain
$\forall t \in \mathbb{R}, x(t) \text{ is real}$	$\forall \omega \in \mathbb{R}, X(\omega) = X^*(-\omega)$
$\forall t \in \mathbb{R}, x(t) = x^*(-t)$	$orall \ \omega \in \mathbb{R}, X(\omega) ext{ is real}$
$\forall t \in \mathbb{R}, y(t) = x(t - \tau)$	$\forall \omega \in \mathbb{R}, Y(\omega) = e^{-i\omega\tau}X(\omega)$
$\forall t \in \mathbb{R}, y(t) = e^{i\omega_1 t} x(t)$	$\forall \omega \in \mathbb{R}, Y(\omega) = X(\omega - \omega_1)$
$\forall t \in \mathbb{R}, \\ y(t) = \cos(\omega_1 t) x(t)$	$Y(\omega) = (X(\omega - \omega_1) + X(\omega + \omega_1))/2$
$\forall t \in \mathbb{R},$ $y(t) = \sin(\omega_1 t) x(t)$	$Y(\omega) = (X(\omega - \omega_1) - X(\omega + \omega_1))/2i$
$\forall t \in \mathbb{R},$ $x(t) = ax_1(t) + bx_2(t)$	$X(\omega) = aX_1(\omega) + bX_2(\omega)$
$\forall t \in \mathbb{R}, y(t) = (h * x)(t)$	$\forall \omega \in \mathbb{R}, Y(\omega) = H(\omega)X(\omega)$
$\forall t \in \mathbb{R}, y(t) = x(t)p(t)$	$Y(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) P(\omega - \Omega) d\Omega$
$\forall t \in \mathbb{R}, \\ y(t) = x(at)$	$Y(\omega) = \frac{1}{ a } X(\Omega/a)$

Table 3: Properties of the CTFT.

Signal	CTFT
$\forall t \in \mathbb{R}, x(t) = \delta(t)$	$\forall \omega \in \mathbb{R}, X(\omega) = 1$
$\forall t \in \mathbb{R}, x(t) = \delta(t - \tau), \ \tau \in \mathbb{R}$	$\forall \ \omega \in \mathbb{R}, X(\omega) = e^{-i\omega\tau}$
$\forall t \in \mathbb{R}, x(t) = K$	$\forall \ \omega \in \mathbb{R}, X(\omega) = 2\pi K \delta(\omega)$
$\forall t \in \mathbb{R},$ $x(t) = a^t u(t), 0 < a < 1$	$\forall \omega \in \mathbb{R},$ $X(\omega) = \frac{1}{j\omega - \ln(a)}$
$\forallt\in\mathbb{R},$ $x(t)=\left\{\begin{array}{ll}\pi/a & \text{if } t \leq a\\0 & \text{otherwise}\end{array}\right.$	$\forall \omega \in \mathbb{R},$ $X(\omega) = \frac{2\pi \sin(a\omega)}{a\omega}$
$\forall t \in \mathbb{R},$ $x(t) = \frac{\sin(\pi t/T)}{\pi t/T},$	$orall \ \omega \in \mathbb{R},$ $X(\omega) = \left\{ egin{array}{ll} T & ext{if } \omega \leq \pi/T \\ 0 & ext{otherwise} \end{array} \right.$

Table 4: Continuous time Fourier transforms of key signals. The function \boldsymbol{u} is the unit step.

Time Domain $orall n \in \mathbb{Z}$	$\begin{array}{c} \textbf{Transform Domain} \\ \forall \ z \in RoC \end{array}$	RoC	Name	
w(n) = ax(n) + by(n)	$\hat{W}(z) = a\hat{X}(z) + b\hat{Y}(z)$	$RoC(w) \supset \\ RoC(x) \cap RoC(y)$	Linearity	
y(n) = x(n-N)	$\hat{Y}(z) = z^{-N} \hat{X}(z)$	RoC(y) = RoC(x)	Delay	
y(n) = (x * h)(n)	$\hat{Y}(z) = \hat{X}(z)\hat{H}(z)$	$RoC(y) \supset \\ RoC(x) \cap RoC(h)$	Convolution	
$y(n) = x^*(n)$	$\hat{Y}(z) = [\hat{X}(z^*)]^*$	RoC(y) = RoC(x)	Conjugation	
y(n) = x(-n)	$\hat{Y}(z) = \hat{X}(z^{-1})$			
y(n) = nx(n)	$\hat{Y}(z) = -z \frac{d}{dz} \hat{X}(z)$	RoC(y) = RoC(x)	Scaling by n	
$y(n) = a^{-n}x(n)$	$\hat{Y}(z) = \hat{X}(az)$	$ \operatorname{RoC}(y) = $		
$x(n) = 0, \ \forall n < 0$	$\lim_{z \to \infty} \hat{X}(z) = x(0)$	Outside the outermost pole, out to, and including, $+\infty$		

Table 5: Properties of the Z transform. In this table, a,b are complex constants, and N is an integer constant.

$\begin{array}{c} \textbf{Discrete-time signal} \\ \forall \ n \in \mathbb{Z} \end{array}$		$RoC(x)\subset\mathbb{C}$
$x(n) = \delta(n - M)$	$\hat{X}(z) = z^{-M}$	\mathbb{C}
x(n) = u(n)	$\hat{X}(z) = \frac{z}{z-1}$	$\{z\mid z >1\}$
$x(n) = a^n u(n)$	$\hat{X}(z) = \frac{z}{z - a}$	$\{z\mid z > a \}$
$x(n) = a^n u(-n)$	$\hat{X}(z) = \frac{1}{1 - a^{-1}z}$	$\{z\mid z < a \}$
$x(n) = \cos(\omega_0 n) u(n)$	$\hat{X}(z) = \frac{z^2 - z\cos(\omega_0)}{z^2 - 2z\cos(\omega_0) + 1}$	$\{z\mid z >1\}$
$x(n) = \sin(\omega_0 n)u(n)$	$\hat{X}(z) = \frac{z \sin(\omega_0)}{z^2 - 2z \cos(\omega_0) + 1},$	$\{z\mid z >1\}$
$x(n) = \frac{1}{(N-1)!}(n-1)\cdots(n-N+1)$ $a^{n-N}u(n-N)$	$\hat{X}(z) = \frac{1}{(z-a)^N}$	$\{z \mid z > a \}$
$x(n) = \frac{(-1)^{N}}{(N-1)!}(N-1-n)\cdots(1-n)$ $a^{n-N}u(-n)$	$\hat{X}(z) = \frac{1}{(z-a)^N}$	$\{z\mid z < a \}$

Table 6: Z transforms of key signals. The signal u is the unit step, δ is the Kronecker delta, a is any complex constant, ω_0 is any real constant, M is any integer constant, and N>0 is any integer constant.