北京工业大学 2016-2017 学年第一学期期末

高等数学(管)-1课程模拟试卷

考试方式: 闭卷

考试日期: 2017-01-09

注: 本试剂	卷共6页,三大	题,24 小题。满分	100分。考试时间	可95 分钟。	
题 号	_	=	Ξ	总分	
分数	30	30	40	100	
得分					
一. 单项选择题, 共10小题。每小题3分, 共30分。					
1. 当 $x \to 0$ 时, $f(x)$ 与 $g(x)$ 是等价无穷小。则当 $x \to 0$ 时, $f(x) - g(x)$ 是 $g(x)$					
的			[1	
A. 等价无穷小。 B. 同阶(但不等价)无穷小。C. 高阶无穷小 。D. 低阶无穷小。					
2.设 $f(x)$	在点 x_0 可导,贝	$\iiint_{h\to 0} \frac{f(x_0 - h) - j}{\sinh}$	$\frac{f(x_0)}{} = $	1	
A. $2f'(x_0)$. B. $f'(x)$	(x_0) . $Cf'(x_0)$). D. $(f(-x_0))$)′	
$3. \lim_{x\to 0} \int_0^x ($	$\frac{(1-e^t)dt}{x^2} =$		1		
A. 1	B1	C. $\frac{1}{2}$	D. $-\frac{1}{2}$		
$4. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos \theta$	s x dx =		ı	1	
A2	B. 2	C. 0	D. 1		
5. 设 $f(x)$	在(-a,a)内可导	身,在[-a,a]上连续	读, 设 $g(x) = \frac{1}{2} [f($	$(x)+f(-x)$, ∇	
设 <i>H</i> ($f(x) = \int_{-a}^{x} g(t)dt ,$	则 <i>H</i> (0) =	ı	. 1	
A. 0	B. $H(a)$	$C.\ \frac{1}{2}H(a)$	D. 2		
		众号【丁大喵】收			

6. 设 $\alpha(x) = 2x - x^2$	$,\beta(x) = x^2 - x^3 \stackrel{\text{def}}{=} x \rightarrow 0$ 时	
>===================================		

- A. $\alpha(x)$ 是比 $\beta(x)$ 高阶的无穷小
- B. $\alpha(x)$ 是比 $\beta(x)$ 低阶的无穷小
- C. $\alpha(x)$ 与 $\beta(x)$ 是同阶但不等价的无穷小 D. $\alpha(x)$ 与 $\beta(x)$ 是等价无穷

7. 下列结论中正确的是

1

A.
$$\int_{1}^{+\infty} \frac{dx}{x} = \int_{0}^{1} \frac{dx}{x}$$
 都收敛

B.
$$\int_{1}^{+\infty} \frac{dx}{x} = \int_{0}^{1} \frac{dx}{x}$$
 都发散

C.
$$\int_{1}^{+\infty} \frac{dx}{x}$$
 发散, $\int_{0}^{1} \frac{dx}{x}$ 收敛

D.
$$\int_{1}^{+\infty} \frac{dx}{x}$$
 收敛, $\int_{0}^{1} \frac{dx}{x}$ 发散

8. 函数 f(x) 在 [a,b] 上连续,则

1

- A. f(x)在(a,b)内可导
- B. 是 f(x) 在 [a,b] 上可积的充分条件
- C. 是 f(x) 在 [a,b] 上可积充分必要条件 D. 是 f(x) 在 [a,b] 上可积的必要条件

$$9. \int \frac{1}{1+x^2} dx =$$

A. arc cot x + C

B. $-\arctan x + C$

C. $\arctan \frac{1}{r} + C$

D. $\operatorname{arccot} \frac{1}{r} + C$

10.
$$\lim_{x\to 0} (1+x)^{\frac{1}{\sin x}} =$$

1

A. 1

B. *e*

C. e^{-1}

- D. -e
- 填空题,共10小题。每小题3分,共30分。

11.
$$\lim_{x\to 0} \frac{\ln|1-x|+\sin x}{x} =$$

$$12. \int_{\frac{\pi}{2}}^{0} x \sin x dx =$$

13.
$$\lim_{x\to 0^+} (1-2x)^{\frac{1}{\sin x}} =$$

16.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sin x dx =$$

$$17. \quad \int_0^\pi \sqrt{1-\sin^2 x} dx$$

$$18\frac{d}{dx}\left[x^2\ln(\sin x)\right] =$$

19. 设
$$f(x)$$
 的一个原函数是 a^x ,则 $\int x f(x^2) dx =$

$$20. \left(\int_0^{\cos x} e^{-t^2} dx \right)' =$$

三. 综合题

21. (12 分) 计算不定积分
$$\int arcsin \sqrt{\frac{x}{1+x}} dx$$

22. (12 分) 计算不定积分
$$\int \frac{x+1}{\sqrt{x^2+2x+3}} dx$$

23. (12 分) 设函数
$$F(x) = \int_0^x \ln(\sqrt{1-t^2}) dt$$
 求 $\int F''(x) dx$

24. (4分) 设
$$F(x) = \int_{-x}^{x^2} \frac{1}{x+t+1} dx$$
, 求 $F'(x)$