

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

For Video Solution of this DPP, Click on below link

Solution on Website:-

https://physicsaholics.com/home/courseDetails/41

Solution on YouTube:-

https://youtu.be/8_MuHpKh088

Physics DPP

DPP-7 Relative motion in One-Dimension By Physicsaholics Team

NEET Physics DPP

By PRATEEK JAIN SIR

Q) Two trains, each 50m long are travelling in opposite direction with velocity 10 m/s and 15 m/s The time of crossing is: -

(c) $2\sqrt{3} s$

 $d) 4\sqrt{3} s$

Join Unacademy PLUS Referral Code:

Ans. b

Q) A police jeep is chasing with, velocity of 45 km/h a thief in another jeep moving with velocity 153 km/h. Police fires a bullet with muzzle velocity of 180 m/s. The velocity it will strike the car of the thief w.r.t. the car of the thief is:

(a) $150 \, m/s$

(c) $450 \, m/s$

(b) 27 m/s

d) $250 \, m/s$

Join Unacademy PLUS Referral Code:

Ans. a

45 km/4 = 12.5 m/x
153 lon/4, = 42.5 m/g
velocity of bullet w. x.t. blice cast
Vo/p = 180 M/2
Vb - Vp = 180m/s
1, No = 192.5 m/s
Svelocity of bullet wiret.
Velocity of buillet. w. ort. Thief's cas
$V_{\text{p/T}} = V_{\text{p}} - V_{\text{T}}$
= 192.5 - 42.5 $V_{\text{M}} = 150 \text{ m/s}$

Q) An observer moves with a constant speed along the line joining two stationary objects. He will observe the two objects. Then which of the below statements are correct:

- (1) the two objects have the same speed
- (2) the two objects have the same velocity
- (3) the two objects move in the same direction
- (4) the two objects Move in opposite direction
- (a) 1, 2, 4
- (c) 1, 3, 3

- (b) 2, 3, 4
- (d) 1, 2, 3

Join Unacademy PLUS Referral Code:

Ans. d

Q) Two parallel rail tracks run north-south. Train A moves north with a speed of 54 km/h and train B moves south with a speed of 90 km/h. The relative speed of B with respect to A is:

(a) 40 m/s (towards north)

(b) 40 m/s (towards south)

(c) 10 m/s (towards north)

(d) 10 m/s (towards north)

Join Unacademy PLUS Referral Code:

Ans. b

Q) When a man stands on a moving escalator (moving with constant speed) he goes up in 50 sec. and when he walks up the moving escalator (with constant speed) he goes up in 30 sec. Then the man walks up the stationary escalator in a time of

----sec

(a) 60 s

75s (c) 90

(d) 18.75

Join Unacademy PLUS Referral Code:

Ans. b

Q) The distance between two particle is decreasing at the rate of 6 m/sec. If these particles travel with same speeds and in the same direction, then the separation increase at the rate of 4 m/sec. The particle have speed as

(a) 5 m/s, 1 m/s

(c) 4 m/s, 2 m/s

(b) 4 m/s, 1 m/s

(d) 5 m/s, 2 m/s

Join Unacademy PLUS Referral Code:

Ans. a

Let speed of two positicles with.	
geround are V, & V2:	
Now.	
relative velocity when moving in	
Same direction; (when stelent separati	ty
de creases)	
	1
Vare = V1-V2 = 6 m/3 -	U
if Inelative velocity when both moving away from each other; (when distance increases) Vac = V, + V2 = 4m/8 - (2)	
0+0 > 2V, = 10m/s >> 51	
>> V1 = 5 M/8	
d \\\ \z = 1 m/s \(\cdots \cdots \\ \delta \\	D 1"
	3 /-

Q) Two trains start a distance of 2000m apart. Train one is moving with a constant speed of 30m/s directly towards train 2 which starts from rest and accelerates with a constant acceleration of $5m/s^2$ directly towards train 1. When do the trains meet?

(c) $30 \, s$

(b) 34.9 s

(d) 40 s

Join Unacademy PLUS Referral Code:

Ans. a

Q) A train starts from rest with constant acceleration $a = 1 m/s^2$. A passenger at a distance S (behind the train) from the train runs at this maximum velocity of 10 m/s to catch the train at the same moment at which the train starts. If S = 25.5 m and passenger keeps running, find the time in which he will catch the train:

(c) 3 s

(b) 4 s

(d) $2\sqrt{2}$ s

Join Unacademy PLUS Referral Code:

Ans. c

Q) An express train is moving with a velocity V_1 . Its driver finds another train is moving on the same track in the same direction with velocity V_2 . To escape collision, driver applies retardation a on the train. The minimum time of escaping collision will be:

(a)
$$t = \frac{V_1 - V_2}{a}$$

(c)
$$t = \frac{V_1^2 + V_2^2}{a}$$

(d)
$$2\sqrt{2}$$
 s

Join Unacademy PLUS Referral Code:

Ans. a

Q -1V, = V, 1 E.T. 7 a=-95 initial relocity of Train 1 wis to Train 2 $\vec{V}_{1/2} = \vec{V}_1 - \vec{V}_2 = (V_1 - V_2) \vec{J}$ w/s orceleration; $\vec{a}_{1/2} = \vec{a}_1 - \vec{a}_2 = -a \vec{a}_1 - \vec{a}_2$ 910= -0J. after time (t) speed of train 2 wirt tough a should be zeno to avoid collision; v = u +a+ 0 = (V,-VL) -a+ t = V1-V2

Q) A train 100m long travelling at 40 m/s starts overtaking another train 200m long travelling at 30 m/s. The time taken by the first train to pass the second train completely is:

(c) 50 s

b) 40 s

(d) 60 s

Join Unacademy PLUS Referral Code:

Ans. a

For Video Solution of this DPP, Click on below link

Solution on Website:-

https://physicsaholics.com/home/courseDetails/41

Solution on YouTube:-

https://youtu.be/8_MuHpKh088

CUSIS NIKIS