Gauge Theories: Electroweak

Lecturer: Richard Ball

January 22, 2019

1 Introduction

Imagine a world without electroweak:

- Still have electromagnetism (EM), massive hadrons, atoms, gravity etc.
- Parity (P) and charge conjugation (C) are still good symmetries
- Flavour is always conserved: everything lasts forever (and always existed)
- No neutrinos (would be non-interacting)

Neutrinos were first hypothesised by Pauli (1930) to explain the missing energy in β -decay. They were first observed in 1956 (Cowan-Reines). Parity violation was first directly observed in 1956/7 (Lee-Yang-Wu).

1.1 Chirality

Define the projection operators $P_R \equiv \frac{1}{2}(1+\gamma^5)$ and $P_L \equiv \frac{1}{2}(1-\gamma^5)$. Recalling that $(\gamma^5)^2 = 1$ and $(\gamma^5)^{\dagger} = \gamma^5$, we can deduce the following properties:

- $\bullet P_R^2 = P_R$
- $\bullet P_L^2 = P_L$
- $\bullet \ P_L P_R = P_R P_L = 0$
- $P_R + P_L = 1$
- $\bullet P_R P_L = \gamma^5.$

Any Dirac spinor can be split up into a right-handed and a left-handed component, $\psi = \psi_R + \psi_L$, using the projection operators to define $\psi_R = P_R \psi$ and $\psi_L = P_L \psi$. Since $\gamma^{\mu} P_L = P_R \gamma^{\mu}$, it follows that $\bar{\psi} P_R \equiv (\bar{\psi})_R = \bar{\psi}_L$ and $\bar{\psi} P_L \equiv (\bar{\psi})_L = \bar{\psi}_R$. So

$$\bar{\psi}\psi = \bar{\psi}(\psi_R + \psi_L) = \bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L$$
and
$$\bar{\psi}\gamma^\mu \psi = \bar{\psi}\gamma^\mu (\psi_R + \psi_L) = \bar{\psi}_R \gamma^\mu \psi_R \bar{\psi}_L \gamma^\mu \psi_L.$$
(1)

The Dirac Lagrangian splits up like

$$\mathcal{L}_{D} = \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

$$= \bar{\psi}_{R}i\partial \!\!\!/ \psi_{R} + \bar{\psi}_{L}i\partial \!\!\!/ \psi_{L} + m(\bar{\psi}_{L}\psi_{R} + \bar{\psi}_{R}\psi_{L})$$
(2)

so the mass term mixes ψ_R and ψ_L : if $m \to 0$, ψ_R and ψ_L are independent. In this scenario they are both 2-component spinors obeying the Weyl equation $i\partial \psi_{R/L} = 0$.

1.2 Helicity

The spin operator can be expressed as $\Sigma^i = \frac{i}{2} \epsilon^{ijk} [\gamma^j, \gamma^k] = \gamma^5 \gamma^0 \gamma^i$. Then $[P_L, \Sigma^i] = [P_R, \Sigma^i]$: spin and chirality commute. Now consider *helicity*, defined

$$h \equiv \frac{2\underline{\Sigma} \cdot \underline{p}}{|p|}.\tag{3}$$

h has eigenvalues ± 1 , which follows from $(\not p-m)u^{\pm}=0 \implies hu^{\pm}=\pm u^{\pm}$. But $\not p=E\gamma^0-\underline{\gamma}\cdot\underline{p}$ and $h=\gamma^5\gamma^0(\underline{\gamma}\cdot\underline{p})/|\underline{p}|=\gamma^5\gamma^0(E\gamma^0-\not p)$. So

$$\gamma^{5}(E - \gamma^{0} \not p)u^{\pm} = \pm u^{\pm}$$

$$\Longrightarrow (P_{R} - P_{L})(E - \gamma^{0} m)u^{\pm} = \pm p(P_{R} + P_{L})u^{\pm}$$
and $(E \mp p)u_{R}^{\pm} = m\gamma^{0}u_{L}^{\pm}$

$$(E \pm p)u_{L}^{\pm} = m\gamma^{0}u_{R}^{\pm}.$$

$$(4)$$

Again, the mass term mixes R and L, but if $m \to 0$, $p = E + \mathcal{O}(\frac{m^2}{E})$ and $2Eu_R^- = 2Eu_L^+ = 0$ so $u_R^- = u_L^+ = 0$, i.e. u_R has helicity +1 and u_L has helicity -1.

Note that when m=0, helicity is Lorentz invariant (no rest frame). For $m\neq 0$,

$$u_R^- = \frac{m\gamma^0}{E+p} u_L^- \approx \frac{m}{2E} \gamma^0 u_L^-$$
and $u_L^+ \approx \frac{m}{2E} \gamma^0 u_R^+$. (5)

You get similar expressions for negative energy solutions:

for
$$m = 0$$
: $v_R^- = v_L^+ = 0$
for $m \neq 0$: $v_R^- = -\frac{m\gamma^0}{2E}v_L^-$ and $v_L^+ = -\frac{m\gamma^0}{2E}v_R^-$. (6)

1.3 The Chiral Representation

In the chiral representation the gamma matrices can be expressed as:

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \gamma^i = \begin{pmatrix} 0 & -\sigma^i \\ \sigma^i & 0 \end{pmatrix} \qquad \gamma^5 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

so

$$P_R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad P_L = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Longrightarrow \psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix}.$$

Furthermore, the spin operator can be written

$$\Sigma^i = \gamma^5 \gamma^0 \gamma^i = \left(\begin{array}{cc} \sigma^i & 0 \\ 0 & \sigma^i \end{array} \right)$$

so the helicity eigenstates are $\begin{pmatrix} \psi_R^{\pm} \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ \psi_L^{\pm} \end{pmatrix}$. Now consider the positive and negative energy solutions. $(\not p-m)u=0 \implies$

$$\begin{pmatrix} -m & E + \underline{\sigma} \cdot \underline{p} \\ E - \underline{\sigma} \cdot \underline{p} & -m \end{pmatrix} \begin{pmatrix} u_R \\ u_L \end{pmatrix} = 0.$$

But $\underline{\sigma} \cdot \underline{p} \ u_{L/R} = \pm p \ u_{L/R}^{\pm}$ so $(E \pm p) u_L^{\pm} = m \ u_R^{\pm}$. Using $E^2 = p^2 + m^2$:

$$(E \pm p)u_L^{\pm} = \sqrt{(E+p)(E-p)}u_R^{\pm}$$

$$\implies \sqrt{E \pm p} \ u_L^{\pm} = \sqrt{E \mp p} \ u_R^{\pm}$$
(7)

and we can write

$$u^{\pm} = \left(\begin{array}{c} \sqrt{E \pm p} \ \xi^{\pm} \\ \sqrt{E \mp p} \ \xi^{\pm} \end{array}\right)$$

where $\xi^{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\xi^{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Exercise: check that the normalisations $\bar{u}u = 2m$, $u^{\dagger}u = 2E$.

Similarly, (p + m)v = 0 and $(\underline{\sigma} \cdot p)v^{\pm} = \mp p \ v^{\pm}$, so

$$(E \mp p)v_L^{\pm} = -m \ v_R^{\pm}$$

$$\implies \sqrt{E \mp p} \ v_L^{\pm} = -\sqrt{E \pm p} \ v_R^{\pm}$$
(8)

and

$$v^{\pm} = \left(\begin{array}{c} \sqrt{E \mp p} \ \xi^{\pm} \\ -\sqrt{E \pm p} \ \xi^{\pm} \end{array} \right).$$

You can relate ξ^{\pm} to χ^{\pm} by charge conjugation: $v^{\pm} = i \gamma^2 u^{\pm *}$, where

$$i\gamma^2 = \begin{pmatrix} 0 & -i\sigma^2 \\ i\sigma^2 & 0 \end{pmatrix}; \qquad -i\sigma^2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

so $\chi^{\pm}=-i\sigma^2\xi^{\pm}$ and if $\xi^{\pm}=\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right),\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)$ then $\chi^{\pm}=\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right),\left(\begin{smallmatrix}-1\\0\end{smallmatrix}\right)$ as before.

1.4 Parity

Under P, $\psi \to \psi_p = \gamma^0 \psi$. We know that $P_L \gamma^0 = \gamma^0 P_R$, so $\psi_L \to \gamma^0 \psi_L = P_R \gamma^0 \psi_L = (\psi_p)_R$. In other words, $(\psi_L)_p = (\psi_p)_R$, so parity switches L and R.

Note that $[\gamma^0, \Sigma^i] = 0$ but under $P \underline{p} \to -\underline{p}$ so $h \to -h$, as expected. This means $u_R^+ tou_L^-$ etc.: parity flips helicity but not spin.

1.5 Charge conjugation

Under C, $\psi \to \psi_c = C\overline{\psi}^T$ where $C = i\gamma^2\gamma^0$. Then $P_LC = CP_L$ so $\psi_L \to C(\overline{\psi})_L^T$. This means that charge conjugation leaves the chirality unchanged. Helicity is also unchanged: C just takes particles \leftrightarrow antiparticles.

1.6 Time reversal

Under T, $\psi \to \psi_T = B\psi$ where $B = i\gamma^1\gamma^3 = -i\gamma^5C$ and $B^{\dagger} = B = B^{-1}$. Again, $P_L B = B P_L$ so $\psi_L \to B\psi_L$ and time reversal leaves chirality and helicity unchanged (it reverses both spin and momentum).

2 Charged Current Electroweak

2.1 Fermi Theory (1934)

Fermi theory is based on a point-like 4-fermion interaction

$$G_F(\bar{n}\gamma_\mu p)(\bar{\nu}\gamma^\mu e) \tag{9}$$

representing the process $n \to p e^- \bar{\nu}$, where n is a neutron, p is a proton, e^- is an electron and $\bar{\nu}$ is an antineutrino. More generally, the interaction can be written as $G_F J_\mu^\dagger J^\mu$ where J_μ is the "weak current" and is composed of leptonic and hadronic contributions: $J_\mu = \bar{\nu} \gamma_\mu e + \bar{p} \gamma_\mu n + \dots$ Note that J_μ has $\Delta Q = +1$ so J_μ^\dagger has $\Delta Q = -1$ and electric charge is conserved.

Considering mass dimensions [·]: $[m\psi\bar{\psi}] = +\psi$, $[\psi] = 3/2$ and $[J_{\mu}] = 3$ so $[G_F] = -2$. In other words, the coupling scales as $1/\text{mass}^2$. The mass scale is ≈ 300 GeV, so the interaction is weak. The original Fermi interaction conserves parity (and C and CP), just like QED. This turned out to be wrong, according to theory developed by Lee and Yang (1956) and the Wu experiment in 1957. In weak interactions, P and C are violated by CP is conserved. More on this later.

2.2 V-A Theory

Developed by Masshart, Sudarshan, Feynman, Gell-Man ... in 1958. V-A theory is based on a vector current V_{μ} and an axial current A_{μ} ,

$$V_{\mu} = \bar{\nu}\gamma_{\mu}e + \bar{p}\gamma_{\mu}n + \dots$$

$$A_{\mu} = \bar{\nu}\gamma_{\mu}\gamma^{5}e + \bar{p}\gamma_{\mu}\gamma^{5}n + \dots$$
(10)

whose difference gives the overall current

$$\frac{1}{2}J_{\mu} = \frac{1}{2}(V_{\mu} - A_{\mu}) = \bar{\nu}\gamma_{\mu}\frac{1}{2}(1 - \gamma^{5})e + \bar{p}\gamma_{\mu}\frac{1}{2}(1 - \gamma^{5})n + \dots
= \bar{\nu}_{L}\gamma_{\mu}e_{L} + \bar{p}_{L}\gamma_{\mu}n_{L} + \dots$$
(11)

So the weak interactions involve **only left-handed fields**, and maximally violate P and C. In fact, under P, C and CP the currents transform in the following ways:

$$P V^{\mu} \to V_{\mu}, A^{\mu} \to -A_{\mu}, (V - A)^{\mu} \to (V + A)_{\mu}$$

$$C V^{\mu} \to -V^{\mu}, A^{\mu} \to A^{\mu}, (V - A)^{\mu} \to (-V - A)^{\mu}$$

$$CP V^{\mu} \to -V_{\mu}, A^{\mu} \to -A_{\mu}, (V - A)^{\mu} \to -(V - A)_{\mu}$$

$$(12)$$

so $(V-A)^{\mu\dagger}(V-A)_{\mu}$ is invariant under CP (and T).

Note that that neutrinos **only** interact weakly, so ν_R does not interact at all! If neutrinos are massless, there is no need for ν_R . From 1930-1998 neutrinos were always assumed to be massless: here we will assume $m_{\nu} = 0$ so ν are always left handed and $\bar{\nu}$ are always right handed. In reality $m_{\nu} \leq 0.3$ eV, which is very small.

So we have

$$\mathcal{L}_{4F} = -\frac{G_F}{\sqrt{2}} J^{\dagger}_{\mu} J^{\mu} \tag{13}$$

where the $\sqrt{2}$ is historical. $J_{\mu} = J_{\mu}^{l} + J_{\mu}^{h}$ can be split up into a leptonic and a hadronic current, each of which comprises three generations. For example, the leptonic current

$$\frac{1}{2}J_{\mu}^{l} = \bar{\nu}_{e}\gamma_{\mu}e_{L} + n\bar{u}_{(\mu)}\gamma_{\mu}\mu_{L} + \bar{\nu}_{\tau}\gamma_{\mu}\tau_{L}.$$
(14)

Lepton number $L_e = N_{e^-} - N_{e^+} - N_{\nu_e} + N_{\bar{\nu}_e}$ and the corresponding L_{μ} and L_{τ} are conserved, according to Noether's Theorem.

The hadronic current

$$\frac{1}{2}J_{\mu}^{h} = \bar{u}_{L}\gamma_{\mu}d_{L}' + \bar{c}_{L}\gamma_{\mu}s_{L}' + \bar{t}_{L}\gamma_{\mu}b_{L}'$$
(15)

is simplest to express in terms of the quarks. The baryon number $B = \sum_{gen} (N_u - N_{\bar{u}} - N_d + N_{\bar{d}})$ is conserved. Things are complicated due to the effects of quark mixing - see later.

(V-A) Theory is quite complicated, but there is only one coupling, G_F : we call this universality. Explicitly,

$$\mathcal{L}_{4F} = -\frac{G_F}{\sqrt{2}} (J_{\mu}^{l\dagger} J^{l\mu} + (J_{\mu}^{h\dagger} J^{l\mu} + J_{\mu}^{l\dagger} J^{h\mu}) + J_{\mu}^{h\dagger} J^{h\mu})$$
 (16)

so there are three types of (charged current) weak interaction

- leptonic: only leptons (and neutrinos) e.g. $\mu \to e \nu_{\mu} \bar{\nu}_{e}$
- semi-leptonic: both leptons and quarks e.g. $\pi^- = d\bar{u} \to \mu^- \bar{\nu}_{\mu}$
- hadronic: only quarks e.g. $\Lambda \to p\pi$

But all of them violate P and C and conserve CP, only involve left-handed particles and only involve one coupling G_F .

Example: $\pi^+ \approx u\bar{d} \to \mu^+\nu_\mu$.

Fig. 1 demonstrates the sequential application of C and P to this process. Neither of the intermediate steps can happen, as they involve either a right-handed neutrino or a left-handed antineutrino.

Figure 1: Visualisation of applying C and P to the process $\pi^+ \approx u\bar{d} \to \mu^+\nu_{\mu}$.

2.3 Leptonic decays

Example: $\mu^- \to e^- \bar{\nu}_e \nu_\mu$.

We will work with Dirac spinors everywhere and contract the spiniors as required. The matrix element can be written

$$\mathcal{M} = \langle e^{-}(k); \bar{\nu}_e(q') | \mathcal{L}_{4F} | \mu^{-}(p) \rangle \tag{17}$$

and we can identify the Feynman rule for the four fermion vertex as

$$-i\frac{G_F}{\sqrt{2}}[\gamma_{\mu}(1-\gamma^5)]_{ab}[\gamma^{\mu}(1-\gamma^5)]_{cd}$$
 (18)

SO

$$\mathcal{M} = -i\frac{G_F}{\sqrt{2}} \left(\bar{u}(k)\gamma^{\mu} (1 - \gamma^5) v(q') \right) \left(\bar{u}(q)\gamma_{\mu} (1 - \gamma^5) u(p) \right)$$
(19)

where $\bar{u}(k)$, v(q'), $\bar{u}(q)$ and u(p) refer to the electron, anti-electron neutrino, muon neutrino and muon respectively.

Average over initial spins and sum over final spins (assuming the neutrinos are massless):

$$\frac{1}{2} \sum_{spins} |\mathcal{M}|^2 = \frac{1}{4} G_F^2 tr \left((\not k + m_e) \gamma^{\mu} (1 - \gamma^5) \not q' \gamma^{\nu} (1 - \gamma^5) \right) tr \left(\not q \gamma_{\mu} (1 - \gamma^5) (\not p + m_{\mu}) \gamma_{\nu} (1 - \gamma^5) \right)$$
(20)

where we call the first trace $\mathcal{M}^{\mu\nu}(k,q')$ and the second trace $\mathcal{M}_{\mu\nu}(q,p)$. Consider evaluating one of these traces