

DATA AUGMENTATION

Artificial Intelligence

Aayush Musyaju KCE074BCT004

2020-09-22

Definition

Data Augmentation is the strategy that enables practitioners to significantly increase the diversity of the data available for training models, without actually collecting new data.

Why do we need Data Augmentation?

- The more the data, the better the model performs.
- It helps in reducing overfitting.

Andrew Ng, "scale drives

machine learning progress"

does the quality

Quantity matters, but so

Overfitting

Total Data

Splitting into train and test

Fitting the training data

Underfitting (high bias)

Overfitting (high variance)

Prediction of testing data

Optimal Solution

Low bias and Low variance

Where can it be used?

- Images
- Texts
- Videos
- Audios

Image Augmentation

Image Augmentation is the technique that can be used to artificially expand the quantity and diversity of the training images artificially by creating the modified versions

Image Augmentation

Horizontal and vertical flipping

Horizontal flip

(Horizontal + Random) flip

Cut out and Distort Color

Cut out

Distort color

Distorted bbox crop and Random pad crop

Distorted bbox crop

Random pad crop

Zoom and Rotation

Lighting and Rotation-Zooming

Lighting

Rotation-zooming

Full Combinations

Forgot the overfitting?

Where is overfitting in all this?

What are these?

Data Augmentation to rescue

Text Augmentation

Text Augmentation is the technique that can be used to artificially expand the quantity and diversity of the words and sentences artificially.

Simulating keyword distancing error

Character	Possible Replacement
е	2, @, 3, #, 4, \$, w, r, s, d, f
f	r, e, t, g, v, c, d, x
k	u, i, o, j, l ,, >, ., <

The quick brown fox jumps over the lazy dog

The wuick vrown gox jymps pver tne ;azy dof

Word Embeddings

Word Embeddings of Fox

word2vec	GloVe	fasttext
foxes	nbc	henhouse
squirrel	abc	foxes
rabbit	cbs	hare
squirrels	turner	Fox
coyote	disney	fennec

Most similar words of 'fox' among classical embeddings models

Word Embeddings

The quick brown fox jumps over the lazy dog

The quick bergen-belsen brown fox jumps over tiko the lazy dog

The quick gray fox jumps over the lazy dog

Contextual Word Embeddings

The quick brown fox jumps over the lazy dog

The lazy quick brown fox always jumps over the lazy dog

The quick thinking fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

Synonym

The quick brown fox parachute over the lazy blackguard

Word deletion

The quick brown fox jumps over lazy dog

Random character

T(he qouickd bwrown flox jumpvs overz kthe csazy dod

Audio Augmentation

Noise Injection

Shifting Time

Changing Pitch

Time stretching

Video Augmentation

Original video

Invert Color

Piecewise Affine Transform

Random rotation

Superpixel

Random resize

Gaussian Blur

Translation

Random crop

Horizontal flip

vertical flip

Addition

Multiply

Elastic transformation

Down sample

Salt

Up sample

shear

Don't have enough storage?

Data Augmentation Type	Description Augmentation = Randomly Applied:	Final Training Set Loss	Test Set Classification Accy (%)	Test Set Classification Error(%)
Baseline	No Data Augmentation	0.4	82.0	18.0
RCS + R360	Random Crop Size + Rotations	0.41	82.9	17.1
H+RC	Mirroring + Fixed Size Crop	0.4	83.6	16.4
H + RC + R360	Mirroring + Fixed Size Crop + Rotations	0.4	84.5	15.5
R360	Rotations	0.4	84.6	15.4
H + RCSIO	Mirroring + Random Crop Size with Zoom In and Out	0.39	84.8	15.2
RO(4)	4 Vertex Polygonal Occlusions	0.36	86.8	13.2
RO(9)	9 Vertex Polygonal Occlusions	0.36	86.9	13.1
RCS + H	Random Crop Size + Mirroring	0.41	87.6	12.4
RCS	Random Crop Size	0.36	88.1	11.9
RO(9) + RCS	9 Vertex Polygonal Occlusions + Random Crop Size	0.38	91.1	8.9

References

- https://www.coursera.org/lecture/convolutional-neural-networks/data-augmentation-AYzbX
- https://medium.com/@keur.plkar/audio-data-augmentation-in-python-a91600613e47
- https://towardsdatascience.com/data-augmentation-for-deep-learning-4fe21d1a4eb9
- https://towardsdatascience.com/pychubby-automated-face-warping-322765f5a1b2
- https://towardsdatascience.com/data-augmentation-library-for-text-9661736b13ff
- https://medium.com/secure-and-private-ai-writing-challenge/data-augmentation-increases-accuracy-of-your-model-but-how-aa1913468722#:~:text=Data%20augmentation%20is%20a%20strategy,to%20train%20large%20neural%20networks.
- https://medium.com/@makcedward/data-augmentation-for-audio-76912b01fdf6
- https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
- https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
- https://medium.com/fenwicks/tutorial-7-data-augmentation-758475125485
- https://towardsdatascience.com/data-augmentation-in-nlp-2801a34dfc28
- https://bair.berkeley.edu/blog/2019/06/07/data_aug/
- http://ai.stanford.edu/blog/data-augmentation/
- https://github.com/okankop/vidaug