

From Sequences to Molecules: An open-source Monomer-Centric Toolkit

Davit Rizhinashvili, Datagrok RDKit UGM 2025, Prague September 11, 2025

Bridging sequences and molecules - Why this is valuable

- Sequence representations are more human readable
- Modular building block approach
- Rapid sequence modification
- Efficient database searches
- Easier computational analysis, access to sequence based tools (MSA, composition analysis, clustering, etc.)
- Error prevention
- Interactive UI

While also being able to calculate properties and conduct analysis on molecular level

Datagrok: enterprise-ready life sciences platform

- Data access, exploratory data analysis, scientific computing, etc
- Analyzing big datasets completely in the browser
- Proprietary core, open-source plugin ecosystem
- Industry adoption
- Domain-agnostic
- Cheminformatics as a plugin
- RDKit At its cheminformatics core
- Free for personal or academic use

Monomer libraries

- Manage multiple libraries
- Add, edit, delete monomers
- Selectively extract
- Manage duplicates
- Standardization and validation

Monomer Manager

Monomers

R2 of First monomer connects to R1of second monomer

Linear Sequences Peptides

DNA/RNA

More human-friendly depiction

Peptides

Linear Sequences DNA/RNA

Cyclic structures: HELM

HELM

PEPTIDE1{R.F.R.I.F.D.C.T.G.H.F.Y.G.H.F.Y.G.H.F.Y.P.[THA].[mel].G.T}\$PEPTIDE1,PEPTIDE1,7:R3-22:R3\$\$\$V2.0

Rules - make sequences readable again

PEPTIDE1{R.F.R.I.F.D.C.T.G.H.F.Y.G.H.F.Y.G.H.F.Y.P.[THA].[meI].G.T}\$PEPTIDE1,PEPTIDE1,7:R3-22:R3\$\$\$V2.0

R-F-R-I-F-D-C(1)-T-G-H-F-Y-G-H-F-Y-G-H-F-Y-P-THA(1)-mel-G-T

datagrok

Link Rules

Code	First monomers	Second monomers	First group	First Monomer			
	D	NH2	3	Second group	C HN 11 12 2 2 Monomer Name: Cysteine	dC HN *:1 *:3 Monomer Name: D-Cysteine	D HN 11 22 Monomer Name: Aspartic acid
1	C dC D	C dC D	3	\ 3	Source: HELMCoreLibrary.json Polymer Type: PEPTIDE Second Monomer	Source: HELMCoreLibrary.json Polymer Type: PEPTIDE	Source: HELMCoreLibrary.json Polymer Type: PEPTIDE
10	CDEK	CDEK	3	2	Monomer Name: Cysteine Source: HELMCoreLibrary.json Polymer Type: PEPTIDE Example Result: C(1)-A-A-A-C(1)	Monomer Name: D-Cysteine Source: HELMCoreLibrary.json Polymer Type: PEPTIDE	Monomer Name: Aspartic acid Source: HELMCoreLibrary.json Polymer Type: PEPTIDE
11	CEK	NH2	3	2			
1	C dC	THA MG3	3	3		abs NH abs NH	

BILN - How is it different?

BILN	D-T-H-F-P-I-C(1,3)-I-F-C(2,3)-C(3,3)-G-C(2,3)-C(4,3)-H-R-S-K-C(3,3)-G-M-C(4,3)-C(1,3)-K-T
HELM	PEPTIDE1{D.T.H.F.P.I.C.I.F.C.C.G.C.C.H.R.S.K.C.G.M.C.C.K.T}\$PEPTIDE1,PEPTIDE1,7:R3-23:R3 PEPTIDE1,PEPTIDE1,10:R3-13:R3 PEPTIDE1,11:R3-19:R3 PEPTIDE1,PEPTIDE1,14:R3-22:R3\$\$
Structure	D-T-H-F-P-I-C-I-F-C-C-G-C-C-H-R-S-K-C-G-M-C-C-K-T

Reaction Rules

Reaction Rules

Reaction Rules

Ru	les				Examples			
	Name	First reactant	Second reactant	Product	Code	Monomers	Helm	molfile(sequence)
1	GGaz	:C:1 NEN	:C:2—==	C:2:	4	azG(4) A A A A aG(4)	n ₁ 2 A 3 A 4 A 5 A 6	MA SHOW THE SHARE
2	DARR	∕ C:1:	€C:2:	:C:1 :C:2	8	DRR1(8) A A A A DRR2(8)	n ₁ 2 A 3 A 4 A 5 A 6	AND NOT
3	ODARR	C:1:	∕C:2i	:C:1	8	ODAR1(8) A A A A ODAR2(8)	n ₁ 2 3 3 4 5 5 6	Not. On Not.
4	PHAR_CI S	∕ C:1:	∕C:2:	iC:2 C:1i	7	PHAR1(7) A A A A PHAR2(7)	n ₁	HON SON SON
5	PHAR_TR ANS	∕C:1:	∕C:2i	:C:1 C:2:	6	PHAR1(6) A A A A PHAR2(6)	n ₁ 2 3 4 5 6 6 n ₁	MA COLOR OF THE CO

datagrok

Reaction Rules

Automatically created reaction product monomers

Conversion with rules

Enumerator

Enumerator

Thank You!

Acknowledgements

- RDKit maintainers and community
- Datagrok team
- Rhitankar Pal
- All our users

