

Exercice 1. La formule ci-dessous est-elle valide? est-elle satisfaisable?

$$\alpha: \exists x P(x,y) \Rightarrow (\exists x P(z,x) \Rightarrow P(z,y))$$

(Justifier vos réponses)

Réponse

La méthode des expansions finies marche pour cet exercice mais elle risque d'être longue.

Si on utilise une lecture intuitive de la formule. La formule n'est pas fermée. y et z sont des variables libres.

Elle affirme que s'il existe un élément en relation avec y et z est en relation avec au moins un élément alors z est en relation avec y.

La formule n'est pas valide. Elle a un contre modèle.

Par exemple $D = \{0, 1, 2\}$. $P_I = \{(0, 1), (2, 0)\}$. On prend l'état e qui donne à y la valeur 1, et à z la valeur 2.

On a $[\alpha]_{(I,e)} = 0$. Car $[\exists x P(x,y)]_{(I,e)}$ est vraie, puisque P(0,1) est vraie. et $\exists x P(z,x)$ est vraie Car P(2,0) est vraie. Par contre $[P(z,y)]_{(I,e)} = 0$ car P(2,1) est fausse.

Satisfaisabilité α est satisfaisable. Il suffit de prendre l'état e': y=1 et z=0 dans l'interprétation précédente. La formule sera vraie. Car dans ce cas $[P(z,y)]_{(I,e')}=1$.

 $\alpha = A \Rightarrow (B \Rightarrow C)$. Si C est vraie alors $B \Rightarrow C$ sera vraie. Et ainsi $A \Rightarrow (B \Rightarrow C)$ sera vraie. (Reppelons que $A \Rightarrow \top \equiv \top$.

NB On a utilisé la priorité des quantificateurs par rapport aux connecteurs.

Exercice 2. Traduire la définition simplifiée ci-dessous dans le langage des prédicats du premier ordre.

" LE PPCM de deux nombres est le plus petit multiple commun à ces deux nombres "

$$\forall x \forall y \forall z (PPCM(z, x, y) \Leftrightarrow M(z, x) \land M(z, y) \land \forall w (M(w, x) \land M(w, y) \Rightarrow (z \leq w)))$$

L'exercice ne nous interdit pas d'utiliser un prédicat M pour un multiple. Sinon, on peut donner aussi la définition de multiple

$$M(z,x) = \exists y(z = x * y).$$