

Exchange and Correlations Functionals

Slides copied in entirety from:

Neeraj Rai

neerajrai@che.msstate.edu

Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, USA

Exchange-correlation functional

 Write down total kinetic energy functional as the sum of noninteracting particle density (n) and the one that represents rest of the kinetic energy functional

$$T[n] = T_s[n] + T_c[n]$$

where,

$$T_s[n] = -\frac{\hbar^2}{2m} \sum_{i}^{N} \int d^3r \, \phi_i^*(\mathbf{r}) \nabla^2 \phi_i(\mathbf{r})$$

We rewrite the exact energy functional as:

$$E[n] = T[n] + U[n] + V[n] = T_s[\{\phi_i[n]\}] + U_H[n] + E_{xc}[n] + V[n]$$

Perdew's Jacob's ladder

Local density approximation (LDA)

Exchange Functional (based on the exact exchange energy of homogeneous electron system):

$$E_x^{LDA}[n] = -\frac{3q^2}{4} \left(\frac{3}{\pi}\right)^{1/3} \int d^3r \, n(\mathbf{r})^{4/3}$$

The correlation functionals are parameterized against quantum Monte Carlo results for uniform electron gas. The overall exchange-correlation functional is of the form:

$$E_{xc}[n] \approx E_{xc}^{LDA}[n] = \int d^3r \, e_{xc}^{hom}(n)|_{n \to n(\mathbf{r})} = \int d^3r \, e_{xc}^{hom}(n(\mathbf{r}))$$

Success of LDA is primarily due to the cancellation of errors (E_X is overestimated while the E_C is underestimated]

Semilocal functionals

Gradient expansion approximations (GEA, $|\nabla n(r)|$, $|\nabla n(r)|^2$, $|\nabla^2 n(r)|$)

$$T_s[n] \approx T_s^W[n] = T_s^{LDA}[n] + \frac{\hbar^2}{8m} \int d^3r \, \frac{|\nabla n(\mathbf{r})|^2}{n(\mathbf{r})}$$
$$E_x[n] \approx E_x^{GEA(2)}[n] = E_x^{LDA}[n] - \frac{10q^2}{432\pi (3\pi^2)^{1/3}} \int d^3r \, \frac{|\nabla n(\mathbf{r})|^2}{n(\mathbf{r})^{4/3}}$$

Generalized gradient approximation (GGA)

$$E_{xc}^{GGA}[n] = \int d^3r \, f(n(\mathbf{r}), \nabla n(\mathbf{r}))$$

Different choices for $f(n(r), \nabla n(r))$ lead to different GGA density functionals such as PBE (used extensively in physics community) and LYP (used extensively in chemistry community)

GGA: improved molecular structure and energetics; can not account for weak interactions such as van der Waals.

Comparison of different LDA and GGA functions

method	-E/a.u.	
Thomas-Fermi	625.7	
Hartree-Fock	526.818	
OEP (exchange only)	526.812	
LDA (exchange only)	524.517	Ground state energy of the argon
LDA (VWN)	525.946	atom in atomic units (Hartree)
LDA (PW92)	525.940	
LDA- $SIC(PZ)$	528.393	
ADA	527.322	
WDA	528.957	
GGA (B88LYP)	527.551	
experiment	527.6	

Meta-GGA functionals

Exchange-correlation functional depends not only on the density, gradient of the density but also on the Kohn-Sham kinetic energy density

$$\tau(\mathbf{r}) = \frac{\hbar^2}{2m} \sum_{i} |\nabla \phi_i(\mathbf{r})|^2$$

$$E_{xc}[n(\mathbf{r}), \nabla n(\mathbf{r}), \tau(\mathbf{r})]$$

The additional degree of freedom is used to satisfy:

- self-interaction corrected correlation functional
- recovery of fourth order gradient expansion for the exchange
- finite exchange potential at the nucleus

Hybrid GGA, meta GGA

General form of global hybrid functionals is:

$$E_{xc}^{\text{GH}} = c_x E_x^{\text{HF}} + (1 - c_x) E_x^{\text{DFT}} + E_c^{\text{DFT}}$$

$$E_{xc}^{B3PW91} = c_x E_x^{HF} + (1 - c_x - a_x) E_x^S + a_x E_x^{B88} + (1 - a_c) E_c^{PW92} + a_c E_c^{PW91}$$

where $c_x = 0.20$, $a_x = 0.72$, and $a_c = 0.81$

Burke, J. Chem. Phys., 136, 150901, 2018

Other common hybrid functionals are B3LYP, PBE0, etc.

Range separated functionals

Range separated functionals attempt to address self-interaction error and are given

by the following form:

$$E_{xc}^{\text{RSH}} = c_{x,\text{sr}} E_{x,\text{sr}}^{\text{HF}} + c_{x,lr} E_{x,\text{lr}}^{\text{HF}} + (1 - c_{x,\text{sr}}) E_{x,\text{sr}}^{\text{DFT}} + (1 - c_{x,\text{lr}}) E_{x,\text{lr}}^{\text{DFT}} + E_{c}^{\text{DFT}}$$

Common examples include: ωB97, ωB97X, LRC-ωPBE, etc.

Another short coming of DFT functionals is the inability to capture vdW interactions

Grimme, Comput. Mol. Sci., 1, 211-228, 2011

Dispersion-corrected/nonlocal density functionals

Grimme's dispersion correction model:

$$E_{\text{disp}}^{\text{DFT}-D} = -\sum_{A < B} \sum_{n=6,8,...} s_n \frac{C_n^{AB}}{R_{AB}^n} f_{\text{damp},n} (R_{AB})$$

Nonlocal density functionals

$$E_{\text{disp}}^{\text{VV10}} = \int d\mathbf{r} \rho \left(\mathbf{r}\right) \left[\frac{1}{32} \left(\frac{3}{b^2} \right)^{\frac{3}{4}} + \frac{1}{2} \int d\mathbf{r}' \rho \left(\mathbf{r}' \right) \Phi \left(\mathbf{r}, \mathbf{r}' \right) \right]$$

Accuracy of different dispersion correction models

General accuracy for selected MN functionals for atomization energies bond dissociation

Number of parameters in different density functionals

Accuracy of functionals for bond lengths and binding energies

Functional	NCED	NCEC	NCD	IE	ID	TCE	TCD	ВН	EBL	EBE
SPW92	2.14	37.77	7.60	2.22	6.76	42.23	65.35	19.55	0.195	2.81
PBE	1.96	4.08	3.26	1.15	6.53	9.22	15.58	9.17	0.327	2.16
TPSS	2.58	8.90	2.63	1.39	8.44	5.94	10.45	8.03	0.398	2.80
B3LYP	2.86	8.91	1.77	1.49	11.10	5.24	11.97	5.96	0.643	3.04
PBE-D3(BJ)	0.46	5.78	3.67	0.71	5.19	9.67	17.20	9.99	0.049	0.42
revPBE-D3(BJ)	0.49	6.60	2.54	0.77	5.21	6.60	9.91	8.30	0.053	0.44
BLYP-D3(BJ)	0.34	2.18	2.82	0.68	11.40	6.63	11.11	9.91	0.031	0.25
B97-D3(BJ)	0.47	4.82	2.52	0.78	9.15	4.66	7.92	8.32	0.045	0.42
TPSS-D3(BJ)	0.38	2.28	3.06	0.69	6.47	5.88	8.86	8.72	0.070	0.33
SCAN-D3(BJ)	0.54	9.18	3.41	0.55	4.46	5.25	6.39	7.83	0.037	0.60
M06-L	0.55	2.20	1.87	0.71	10.16	5.44	12.97	6.85	0.043	0.60
B97M-rV	0.22	0.67	2.04	0.28	6.45	3.57	4.78	4.36	0.025	0.17
PBE0-D3(BJ)	0.44	4.45	2.28	0.58	3.47	4.76	8.72	4.91	0.043	0.46
B3LYP-D3(BJ)	0.31	3.02	1.88	0.49	8.51	3.72	5.97	5.65	0.022	0.37
ωB97X-D	0.37	1.01	1.46	0.67	3.11	3.44	5.79	2.34	0.038	0.42
ωB97X-V	0.24	0.64	1.23	0.27	2.72	3.41	5.01	2.44	0.042	0.15
TPSSh-D3(BJ)	0.36	1.73	2.49	0.62	5.29	5.55	5.92	6.63	0.068	0.33
M06-2X	0.43	2.52	0.99	0.50	5.56	3.29	7.23	2.57	0.077	0.33
MN15	0.47	1.83	0.96	0.71	4.06	3.76	6.44	1.98	0.042	0.60
ωB97M-V	0.18	0.48	1.13	0.28	2.05	2.48	4.30	1.68	0.014	0.15
Minimum	0.18	0.48	0.91	0.27	2.05	2.48	4.30	1.68	0.014	0.15
Best	ωB97M-V	ωB97M-V	M08-SO	B97M-V	ωB97M-V	ωB97M-V	ωB97M-V	ωB97M-V	ωB97M-V	ωB97X-V

Open-shell non-covalent or dimers characterized by significant electron delocalization

Functional	TA13	XB18	Bauza30	CT20	XB51
SPW92	11.49	4.47	9.63	1.32	5.34
PBE	6.22	0.80	3.59	0.42	1.88
TPSS	5.06	0.80	2.76	0.64	1.65
B3LYP	3.37	1.26	1.66	0.70	1.28
PBE-D3(BJ)	6.54	1.36	4.20	0.49	2.43
revPBE-D3(BJ)	5.06	0.45	2.55	0.39	1.63
BLYP-D3(BJ)	6.10	0.87	2.32	0.43	1.86
B97-D3(BJ)	5.31	0.38	2.31	0.43	1.50
TPSS-D3(BJ)	5.46	1.02	3.49	0.34	2.13
SCAN-D3(BJ)	4.89	1.57	4.57	0.41	2.25
M06-L	3.78	0.39	1.95	0.40	0.89
B97M-rV	4.15	0.63	2.12	0.32	0.91
PBE0-D3(BJ)	3.31	0.38	3.19	0.25	1.12
B3LYP-D3(BJ)	3.85	0.37	1.87	0.28	1.04
ωB97X-D	2.91	0.98	1.34	0.50	0.89
ωB97X-V	2.88	0.51	0.81	0.11	0.63
TPSSh-D3(BJ)	4.20	0.62	3.06	0.28	1.59
M06-2X	1.38	0.58	1.30	0.23	0.69
MN15	2.12	0.28	0.81	0.19	0.52
ωB97M-V	2.75	0.42	0.60	0.11	0.54
Minimum	1.38	0.09	0.60	0.10	0.44
Best	M06-2X	ωB97X	ωB97M-V	PW6B95-D3(0)	M05-D3(0)

Barrier heights

Functional	BHPERI26	CRBH20	DBH24	CR20	НТВН38	NHTBH38	PX13	WCPT27
SPW92	13.24	3.45	16.63	14.26	18.59	15.81	42.96	24.79
PBE	4.38	7.97	9.99	3.13	10.08	10.30	13.56	9.98
TPSS	2.88	10.14	9.21	5.69	8.38	10.06	8.37	5.75
B3LYP	5.10	8.49	4.79	10.83	4.89	5.52	3.38	1.78
PBE-D3(BJ)	6.87	7.91	10.36	1.83	10.63	10.62	15.77	11.56
revPBE-D3(BJ)	6.54	10.95	8.74	4.09	8.63	9.14	7.31	8.19
BLYP-D3(BJ)	4.29	16.62	9.56	9.77	9.42	10.61	9.12	7.20
B97-D3(BJ)	4.24	14.16	7.63	9.53	8.28	7.58	6.46	6.72
TPSS-D3(BJ)	5.70	10.08	9.67	2.68	8.99	10.46	10.95	7.70
SCAN-D3(BJ)	5.74	6.21	8.00	1.97	7.98	8.61	12.64	8.75
M06-L	2.18	13.73	5.24	12.70	4.66	4.86	1.66	2.24
B97M-rV	1.44	7.55	4.97	2.03	4.62	5.33	1.50	2.19
PBE0-D3(BJ)	3.49	1.29	4.68	2.53	5.03	4.68	9.00	6.42
B3LYP-D3(BJ)	1.55	8.29	5.39	6.48	5.62	6.00	6.40	4.29
ωB97X-D	2.40	1.66	2.03	3.68	2.69	1.86	1.62	2.05
ωB97X-V	2.75	3.16	1.75	2.90	2.36	1.69	3.38	2.12
TPSSh-D3(BJ)	4.21	6.44	7.60	1.90	7.21	8.11	8.42	5.82
M06-2X	1.81	1.58	1.08	2.07	1.29	1.67	6.94	3.42
MN15	1.77	1.09	1.82	1.72	1.38	2.55	2.87	2.24
ωB97M-V	1.44	1.23	1.46	0.56	1.72	1.98	2.55	1.82
Minimum	1.21	0.80	1.08	0.56	1.25	1.48	1.04	1.39
Best	PW6B95-D3(0)	ωM05-D	M06-2X	ωB97M-V	M08-HX	M11-D3(BJ)	M06-L-D2	M08-SO

How does a beginning user decide what XC functionals to use – likely without understanding the underlying physics/math of why one might be better or worse for a given situation?

How does a beginning user decide what XC functionals to use – likely without understanding the underlying physics/math of why one might be better or worse for a given situation?

-Ask a physicist/QM developer/expert what might work for your new system/material that no one has ever thought about modeling with QM before

-Look at empirical testing of what has been done on your system or something most similar (ie, has someone gotten the same types of values you want for a similar system and shown a functional that worked well enough)

-Look at what others have used (without perfect validation and possibly unknown error) and be conscious of lack of certainty in conclusions you are reaching.....

Questions?