אלגברה ב' - גיליון תרגילי בית 6 הפולינום המינימלי וההעתקה המשוכלפת תאריך הגשה: 25.05.2021

תרגיל 1. עבור פולינום מתוקן $p \in \mathbb{F}\left[x\right]$ נכתוב

$$p\left(x\right) = \sum_{i=0}^{n} c_i x^i$$

כאשר p ונגדיר את **המטריצה המלווה של** על ידי, $c_n=1$

$$.C(p) := \begin{pmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{n-1} \end{pmatrix} \in M_n(\mathbb{F})$$

- $A \in M_n\left(\mathbb{F}\right)$ בראו שהתנאים הבאים שקולים עבור 1. מותר להניח כי \mathbb{F} סגור אלגברית, למרות שזה לא נחוץ.
 - $.C\left(p_{A}
 ight)$ דומה ל־A (i)
- הפולינום האופייני של A שווה לפולינום המינימלי שלה.
- V בסיס של $(v,Av,\ldots,A^{n-2}v,A^{n-1}v)$ בסיס של $v\in\mathbb{F}^n$ בסיס של (iii)
- נגדיר את **הפולינום המינימלי של** T ב**יחס ל**v להיות הפולינום המתוקן $v \in V$ ו $T \in \operatorname{End}_{\mathbb{F}}(V)$ עבור. $m_{T,v}\left(T
 ight)\left(v
 ight)=0$ מהמעלה הנמוכה ביותר עבורו $m_{T,v}$ מהמעל דו דונגווכנד ביונט בבתי מהמעל או דונגווכנד ביונט מהמעל מהמעל לפן אם $(v,Tv,\dots,T^{k-1}v)$

$$(v, Tv, \ldots, T^{k-1}v)$$

בלתי־תלויה לינארית.

3. מטריצה מהצורה

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{n-1} \end{pmatrix} \in M_n(\mathbb{F})$$

נקראת **בלוק רציונלי**. מטריצת בלוקים שכל בלוקיה הם בלוקים רציונליים נקראת **מטריצה רציונלית** קנונית.

תהי רציונלית $[T]_B$ עבורו עם בסיס של שקיים הראו שקיים סגור אלגברית. העבור \mathbb{F} סגור עבור $T\in \operatorname{End}_{\mathbb{F}}(V)$

רמז: השתמשו בבסיס ז'ורדן כדי לבנות תת־מרחבים מהצורה

Span
$$(v, Av, \dots, A^{n-1})$$

וכך ש־V הוא הסכום הישר שלהם.

 $T\in \mathsf{Hom}_{\mathbb{F}}\left(V,W
ight)$ נגדיר נגדיר $T\in \mathsf{Hom}_{\mathbb{F}}\left(V,W
ight)$

$$T^t \colon W^* \to V^*$$

$$f \mapsto f \circ T$$

 $T^{t}\sim T$ מתקיים $T\in\operatorname{End}_{\mathbb{F}}\left(V
ight)$.1

ני מתקיים . $L_A^t \sim L_{A^t}$ וגם וגם $L_{A^t} \sim R_A$ מתקיים $A \in M_n\left(\mathbb{F}
ight)$.2

$$L_A \sim L_{A^t} \sim R_A \sim R_{A^t}$$