Course code	Course code Digital Logic and Design L T P J						
CSE1003						3 0 2 0 4	
Pre-requisite	e	-				Syllabus version	
						V. XX.XX	
Course Obje							
		concept of digital an		ms			
		alyze combinational					
		alyze sequential logi					
		onal blocks of a digit		41	l.		
		ory and techniques to n the laboratory.	augnt in the cia	issroom throug	Ш		
САРС	of fillicities in	ii the labol atol y.					
Expected Co	urse Outc	ome:					
		different types of num	ber systems.				
		olify logic functions u		lgebra andK-ma	p		
		ombinational logic cir					
		ntion of medium comp	lexity standard	combinational c	ircuits like the	encoder, decoder,	
multiplexer, o					FG) (
		c sequential compone			FSM		
		ypes of registers and	counters using fl	lip flops			
CO/:Design	Arithmetic	and Logic Circuits					
Student Lea	rning Out	comes (SLO):	1,2,5,14				
Student Lean	ining Out	comes (SEO).	1,2,3,14				
Module:1	INTRO	DUCTION			3 hours	SLO: 1	
		Conversion- Binary C	odes - Compler	ments(Binary			
and Decimal)							
Module:2	DOOL E	EAN ALGEBRA			8 hours	SI O. 2	
		erties of Boolean algel	ora - Roolean fu		o nours	SLO: 2	
		forms - Logic gates -					
		ions - Tabulation Met					
Module:3		INATIONAL CIRC			4 hours	SLO: 2,5	
Adder -Subtra	actor- Code	e Converter -Analyzii	ıg a Combinatio	onal Circuit			
Module:4	COMPI	INATIONAL CIRC	HT -H	Т	6 hours	SLO: 2,5	
Binary Parall		r- Look ahead carry			o nours	510. 2,5	
•		Multiplexers –Demult		inpurutor			
	1	proord 2 onto	191011010				
Module:5 SEQUENTIAL CIRCUITS - I 6 hours SLO: 1,2,5							
						ealy model - Sequence	
Detector			- 				
Module:6	SEQU	ENTIAL CIRCUITS	6 – II		7 hours	SLO: 2,5	
		ters - Counters - Ripp		nous			
Counters - N	Modulo cou	unters - Ring and John	ison counters				

Module:7	ARITHMETIC LOGIC UNIT	9 hours	SLO: 1,2,5			
	I tion- ALU-Design of ALU-Status Register-Design of Shifter nit- Design of specific Arithmetic Circuits- Accumulator- cumulator	-				
Module:8	Contemporary issues:	2 hours	SLO: x,x			
	Total Lecture hours:	45 hours				
Text Book(s)						
1. 1.M. M ISBN: 9	forris Mano – Digital Logic and Computer Design, Pearson 2789332542525	n Education India	– 1st Edition-2016,			
1. 1.A.P. 1	ooks Malvino, D.P. Leach and GoutamSaha – Digital Principles a	nd Applications(S	IE) Tata MaCross Hill			
8th Edit 2.M. M Educati 3.Thom	tion – 2014, ISBN: 9789339203405. Forris Mano and Michael D.Ciletti– Digital Design: With a on – 5th Edition- 2014. ISBN:9789332535763 as Floyd – Digital Fundamentals – Pearson Education-10th Ed	n introduction to	Verilog HDL - Pearson			
Authors	s, book title, year of publication, edition number, press, place					
Mode of Eva	luation:					
Lab (Indicat	ive List of Experiments in the areas of)		SLO: 1, 2, 5, 14			
Study of Lo	ogic Gates					
Lo	gic gates using discreteComponents					
Ve	rification of truthtable for logic gates					
Re	alization of basic gates using NAND and NOR gates					
Implemen	tation of LogicCircuits					
Vei	rification of Boolean laws					
Vei	rification of De Morgan's law					
Adder and	Subtractor					
Implementation of Half-Adder and Full-Adder						
lm	plementation of Half-Subtractor and Full-Subtractor					
Combinati	onal Circuit Design					
Design of Decoder and Encoder						

	Design of Multiplexer and De mul	ltiplexer						
	Design of Magnitude Comparator	r						
	Design of CodeConverter							
Se	quential Circuit Design							
	Design of Mealy and Moore circuit	t						
	Implementation of Shift registers							
	Design of 4-bit Counter							
	Design of Ring Counter							
List	of Challenging Experiments (Indicative)							
1.	Consider four seats, numbered 0 to 3,		and descri	ibed by Boolean	X hours			
1.	variables I0to I3. Boolean variable I0is tr				11110011			
	not occupied, likewise for I1, I2, and I3.							
	two people are sitting next to each other a	and at least one seat is	s not occupi	ed and design the				
	circuit using basic gates.							
2.	Controller of a car has three control switc				X hours			
	Car runs if A is pressed and either (B an							
	pressed. When the switch C alone is pres							
	three switches are pressed together then will be in off state. Design a circuit to imp							
3.	A digitally controlled locker works base				X hours			
	entered by the user. Each key has a 2-b				71 110 615			
	pressed, the locking system will pass the							
	Otherwise, the locking system will pass t	the sum of the two m	umbers to th	ne controller unit.				
	Design a circuit to determine the input to							
4.	The controller unit in the above problem of			1 4 1 (01)2	X hours			
	predefined data to allow access to the lo							
	design the circuit that outputs true if the pare similar.	predefined key and th	ie input to t	ne controller unit				
5.	A bank queuing system has a capacity	of 5 customers which	h serves or	1 first come first	X hours			
-	served basis. A display unit is used to disp							
	Whenever a customer leaves the queue							
	increased by one if a customer joins a							
	sense customers leaving and joining the							
	the number of customers waiting in the qu		using LEDs					
	Binary '1' is represented by LED glow and '0' otherwise. Total Laboratory Hours 30 hours							
Mod	e of evaluation:		Total	Laboratory Hours	30 Hours			
	Recommended by Board of Studies DD-MM-YYYY							
	roved by Academic Council	No. xx	Date	DD-MM-YYYY	-			
	-			•				

CO-PO MAPPING:

	PO 1	PO 2	PO 3	PO 9	PO							
	SLO 1	SLO 2	SLO 5	SL014	10	11	12	13	15	16	18	20
CO1	*	*										
CO2		*										
CO3		*	*									
CO4		*	*									
CO5		*	*									
CO6			*									
CO7			*	*								

2. Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area	Total Hours of Coverage [Theory]
CE: DIG (Digital Logic)	42
CS: AR Digital Logic and Digital Design	3
Total	45 Hours [45]

2.1 Body of Knowledge coverage

КА	Knowledge Unit	Topics Covered	Hours
CE:	History and overview	Introduction to logic circuits, switching, memory,	1

DIG 0 CS: AR	Digital Logic and Digital Systems	registers, counters and digital systems	
CE: DIG 1	Switching theory	Number System and Codes Binary Arithmetic and Complements Boolean algebra: Properties of Boolean algebra Boolean functions: Canonical and Standard forms Minimization: Karnaugh map, Don't care conditions, Tabulation Method	10
CE: DIG 2 CS:AR	Combinational Logic Circuits Digital Logic and Digital Systems	Logic gates ,Universal gates Realization of switching functions using logic gates Analyzing a Combinational Circuit	2
CE: DIG 3	Modular design of combinational circuits	Adder, Subtractor Binary Parallel Adder, Look ahead carry Magnitude Comparator, Code Converter Decoders, Encoders Multiplexers, Demultiplexers	8
CE: DIG 4 and 5	Memory Elements Sequential Logic Circuits	Flip Flops Sequential Circuit: Design and Analysis Finite State Machine: Moore and Mealy model Sequence Detector	6

CE:	Digital systems design	Registers, Shift Registers	7
DIG 6		Counters: Ripple and Synchronous Counters, Modulo counters, Ring and Johnson counter	
CE: DIG 6	Analyze and design functional building blocks	Bus Organization -ALU -Design of ALU -Status Register -Design of Shifter -Processor Unit- Design of specific Arithmetic Circuits - Accumulator - Design of Accumulator	9
CE: DIG 6	Recent Trends		2
CS:AR	Digital Logic and Digital Systems		
		Total hours	45

3. Where does the course fit in the curriculum?

This course is a

- Core Course.
- Suitable from 2nd semester onwards.
- Knowledge of basic electrical and electronics is desirable.

4. What is covered in the course?

The digital logic and design covers the digital building blocks and techniques in the design of digital systems. Emphasis is on a building-block approach. This syllabus covers a variety of basic topics, including switching theory, combinational circuits such as adders, subtractors, encoder, decoder, multiplexer, demultiplexer etc. The sequential logic covers memory elements and its application includes design of counters and registers along with functional blocks of a digital computer.

4.1 Part 1: Introduction and Boolean Algebra

This section deals with introduction of number system, binary codes and its arithmetic, Boolean algebra, Boolean function and minimization techniques.

4.2 Part II: Combinational Circuits

This section covers logic gates, universal gates, adder, subtractor, encoder, decoder, multiplexer, de multiplexer and design of a minimal combinational circuit.

4.3 Part III: Sequential Circuits

This section deals with memory elements, design of sequential circuit using memory elements, analysing a sequential circuit, design of finite state machines, registers and counters.

4.4 Part IV: Functional Blocks of a Computer

This section deals with design of functional blocks of a digital computer.

5. What is the format of the course?

This Course is designed with 150 minutes of in-classroom sessions per week, additional video/reading instructional material every week and 100 minutes of lab hours per week. Generally this course has the combination of lectures, in-class discussion, assignments, mandatory off-class reading material, quizzes.

6. How are students assessed?

- Students are assessed on a combination of assignments, continuous and final assessment tests.
- Students will be provided with problem sets for every module.

7. Session wise plan

SI.	Topic Covered	Class	Lab	levels of	Text/Reference	Remarks
No		Hour	Hour	mastery	Book	
1	Introduction to logic circuits,	3	2	Familiarity	1,3	
	switching, memory, registers,					
	counters and digital systems					
	Number System and Codes					

	Binary Arithmetic and Complements					
				Usage		
2	Boolean algebra: Properties of Boolean algebra	3	2	Usage	1,4	
	Boolean functions: Canonical and Standard forms , Simplification					
3	Minimization: Karnaugh map, Don't care conditions Tabulation Method	3		Usage	1,4	
4	Tabulation Contd., Logic gates ,Universal gates, Realization of switching functions using logic gates, Adder, Subtractor	3	2	Usage	1,4	
5	Analyzing a Combinational Circuit, Magnitude Comparator, Code Converter, Binary Parallel Adder	3	4	Assessment	1,3	
6	Look ahead carry, Decoders, Encoders Multiplexers, Demultiplexers	3	2	Usage	1,3	
7	Flip Flops Sequential Circuit: Design and Analysis	3	2	Assessment	1,3	
8	Finite State Machine: Moore and Mealy model, Sequence Detector	3	2	Usage	1,5	

10	Registers, Shift Registers, Ripple Counters	3	2	Assessment	1,5
11	Synchronous counters, Modulo counters, Ring and Johnson counters	3	4	Usage	1
12	BusOrganization, DesignofALU	3		Assessment	1
13	Status Register DesignofShifter	3	2	Usage	1
14	Processor Unit DesignofspecificArithmeticCircuits	3		Familiarity	1
15	DesignofAccumulator Recent Trends	3		Familiarity	1
Total hours covered		45 Hours (3 Credit hours /week 2 15 Weeks schedule)	30 Hours (1 Credit hours / week)		