

Conhecimento e Raciocínio

Ano Letivo 2018/2019

Redes Neuronais

Relatório do Trabalho Prático - Tema 1

Índice

Introdução	3
Procedimento	3
Tabela 1 - Tabela de funções de Matlab utilizadas	3
Resultados	4
Resultados de Formas_1	4
Treino de Formas_1	4
Algoritmos de Treino de Formas_1	4
F1: Perceptron training rule	4
Tabela 2 – Resultados Obtidos por perceptron training rule em folhas_1 F1: Gradient Descent	
Tabela 3 – Resultados Obtidos por gradient descent em folhas_1	5
F1: Stochastic Approximation to Gradient Descent	
Tabela 4 – Resultados Obtidos por stochastic approximation to gradient descent em folhas_1	
Conclusão para Formas_1	5
Resultados de Formas_2	6
Treino de Formas_2	6
Algoritmos de Treino de Formas_2	6
F2: Perceptron training rule	
Tabela 5 – Resultados Obtidos por perceptron training rule em folhas_2 F2: Gradient Descent	
Tabela 6 – Resultados Obtidos por gradient descent em folhas_2	
F2: Stochastic Approximation to Gradient Descent	
Tabela 7 – Resultados Obtidos por stochastic approximation to gradient descent em folhas_2	7
Conclusão para Formas_2	7
Resultados de Formas_3	8
Formas_3 – Usando a RN treinada por Formas_2	8
Figura 1 - Resultados de Formas_3 com a rede guardada anteriormente	8
Treino para Formas_3	8
Algoritmos de Treino para Formas_3	9
F3: Perceptron training rule	
Tabela 8 – Resultados Obtidos por perceptron training rule em folhas_3	
F3: Gradient Descent	
F3: Stochastic Approximation to Gradient Descent	
Tabela 10 – Resultados Obtidos por stochastic approximation to gradient descent em folhas_3	10
Conclusão para Formas_3	10
Interface Gráfica	
Figura 2 - Janela inicial	
Figura 3 - Opções de configuração de rede neuronal Figura 4 - Output do programa	
Figura 5 - Exemplo do funcionamento do programa	
Conclusão	13

Introdução

Com este trabalho prático explora-se a capacidade de uma rede neuronal aprender a classificar formas distintas: círculo, quadrado, triangulo e estrela. Para a realização e exploração deste tema é utilizado o ambiente Matlab com recurso a Excel para tratamento de resultados.

Foram fornecidas três pastas com imagens de várias formas diferentes: Formas 1 (4 imagens), Formas_2 (840 imagens) e Formas_3 (200 imagens). Primeiramente é treinada a rede apenas com as imagens presentes na pasta Formas_1.

Seguidamente é utilizado o conteúdo das pastas Formas 2, a rede é treinada. A rede com melhor desempenho é gravada.

Por fim são utilizadas as imagens e Formas_3 para verificar a classificação da rede neuronal gravada anteriormente e treina-se com novamente com Formas_3.

Procedimento

De forma a identificar a forma presente em cada uma das imagens, primeiramente as imagens são tratadas: é atribuído um id a cada uma e são convertidas me matrizes binarias de 32 por 32, onde o valor de 0 corresponde a pixéis pretos e o de 2 pixéis brancos. Estas matrizes são seguidamente agregadas todas num único vetor.

Assim, o input da rede será os id's das imagens e a matriz vetorizada transposta e o output será ao tipo de figura.

Para conseguir esclarecer o tipo de figura de forma rápida, recorre-se a diferentes funções de Matlab de modo a extrair características relevantes.

Funções	Descrição
ConvexArea	número de pixéis contidos em 'ConvexImage', retornados como escalar
Eccentricity	excentricidade da elipse, retornada como escalar. A excentricidade é o rácio da distancia entre os focos da elipse e o seu maior comprimento de eixos.
Extent	rácio de pixéis na região para os pixéis totais no retângulo envolvente, retornado como escalar, ou seja, uma área a dividir pela área do retângulo envolvente
EquivDiameter	diâmetro do circulo com a mesma área que a região, retornado como escalar
FilledArea	número de pixéis contidos em 'FilledImage', retornados como escalar
MajorAxisLength	comprimento, em pixéis, do maior eixo da elipse, retornado como escalar.
MinorAxisLength	comprimento, em pixéis, do menor eixo da elipse, retornado como escalar.
Orientation	ângulo entre o eixo dos xx e o maior eixo da elipse. O valor é dado em graus, variando entre -90 e 90º
Perimeter	distância à volta da fronteira, retornado como escalar
Solidity	proporção de pixéis contidos no lado convexo que também fazem parte da região, retornados como escalar.

Tabela 1 - Tabela de funções de Matlab utilizadas

Resultados

De acordo com enunciado do trabalho, é solicitado que se registe os resultados da melhor rede utilizada. Uma das formas de verificar se uma rede cumpre os objetivos propostos, é observando a sua taxa de acerto: Se existe uma boa taxa de acerto, sabese que os tipos de figuras foram bem identificados.

Resultados de Formas_1

Treino de Formas_1: Nesta fase inicial não foram definidos valores para o treino, validação e teste.

Algoritmos de Treino de Formas_1

F1: Perceptron training rule

Com a utilização do algoritmo de treino perceptron training rule, a melhor taxa de acerto conseguida (100%) foi obtida com o recurso á função de ativação Step.

A duração do tos testes está exposta pela coluna Tempo na tabela de resultados obtidos com este algoritmo de treino sendo que, o melhor tempo corresponde também á função de ativação responsável pela melhor taxa de acerto. A coluna Epoch fornece-nos o número de épocas bastante variável pois são valores atribuídos automaticamente.

Pasta Inputs	Camadas	Funções d	e Ativação	Algoritmo de Treino		Rácio (em %)		Quantidade de Imagens	Acerto	Epoch	Tempo	
i asta	IIIputa	Carriadas	Função 1	Função 2	Algoritino de Treino	Treino	Validação	Teste	Tratadas	(%)	Еросп	(min,seg)
Formas_1	Imagem em binário	10	Step	Step	Perceptron Training Rule				4	100%	0	0.02
Formas_1	Imagem em binário	10	Linear	Linear	Perceptron Training Rule				4	0%	3	0.06
Formas_1	Imagem em binário	10	Sigmoide	Sigmoide	Perceptron Training Rule				4	0%	6	0.14
Formas_1	Imagem em binário	10	TanH	TanH	Perceptron Training Rule				4	0%	6	0.11
Formas_1	Imagem em binário	10	Sinal	Sinal	Perceptron Training Rule				4	0%	0	0

Tabela 2 - Resultados Obtidos por perceptron training rule em folhas_1

F1: Gradient Descent

De acordo com os resultados apresentados na tabela 3, utilizando o algoritmo de treino gradient descent, a função de ativação que fornece uma melhor taxa de acerto é a função tanH.

Imagens I	Inputs	Camadas	Funções d	e Ativação	Algoritmo		Rácio (em %)		Quantidade de	Acerto	Epoch	Tempo
illiagelis	ilipuis	Calliauas	Função 1	Função 2	Algoritho	Treino	Validação	Teste	Imagens Tratadas	(%)	Еросп	(min,seg)
Formas_1	Imagem em binário	10	Step	Step	Gradient Descent				4	0%	0	0
Formas_1	Imagem em binário	10	Linear	Linear	Gradient Descent				4	0%	11	0
Formas_1	Imagem em binário	10	Sigmoide	Sigmoide	Gradient Descent				4	0%	6	0
Formas_1	Imagem em binário	10	TanH	TanH	Gradient Descent				4	100%	6	0
Formas_1	Imagem em binário	10	Sinal	Sinal	Gradient Descent				4	0%	0	0

Tabela 3 - Resultados Obtidos por gradient descent em folhas_1

F1: Stochastic Approximation to Gradient Descent

Por aplicação do algoritmo stochastic approximation to gradient descent a maior taxa de acerto registada é o resultado da utilização da função de ativação Sinal. É também devido á aplicação deste algoritmo que resulta a variação do número de épocas e do tempo de duração dos testes.

Imagens Ir			Funções de Ativação				Rácio (em %)		Quantidade de	Acerto		Tempo
Imagens	Inputs	Camadas	Função 1	Função 2	Algoritmo	Treino	Validação	Teste	Imagens Tratadas	(%)	Epoch	(min,seg)
Formas_1	Imagem em binário	10	Step	Step	Stochastic Approximation to Gradient Descent				4	0%	0	0
Formas_1	Imagem em binário	10	Linear	Linear	Stochastic Approximation to Gradient Descent				4	0%	6	0.8
Formas_1	Imagem em binário	10	Sigmoide	Sigmoide	Stochastic Approximation to Gradient Descent				4	0%	9	1.19
Formas_1	Imagem em binário	10	Sinal	Sinal	Stochastic Approximation to Gradient Descent				4	100%	6	0.78

Tabela 4 - Resultados Obtidos por stochastic approximation to gradient descent em folhas_1

Conclusão para Formas_1

Através da análise das imagens em Folhas_1 e da aplicação dos 3 diferente algoritmos , podemos concluir que o número de imagens utilizadas é insuficiente para que a rede aprenda corretamente.

Resultados de Formas_2

Treino de Formas_2: Não foram definidos valores para o treino, validação e teste.

Algoritmos de Treino de Formas_2

F2: Perceptron training rule

Por aplicação do algoritmo perceptron training rule obtêm-se os resultados apresentados pela tabela 5:

- » A função TanH (Tangente Hiperbólica) apresenta uma maior taxa de acerto;
- » O número de épocas apresenta-se muito variável, sendo que o atinge o seu maior valor com a função de ativação Sigmoide;
- » Em relação á duração dos testes, é também a função sigmoide que apresentas maiores valores.

Imagens Inputs	lassida	Camadas	Funções de Ativação		Almonitore		Rácio (em %)		Quantidade de	Acerto	Fasah	Tempo
illiagens	, , , , , , , , , , , , , , , , , , , ,	Calliduds	Função 1	Função 2	Algoritmo	Treino	Validação	Teste	Imagens Tratadas	(%)	Epoch	(min,seg)
Formas_2	Imagem em binário	10	Step	Step	Perceptron Training Rule	70	15	15	804	12.4%	0	0
Formas_2	Imagem em binário	10	Linear	Linear	Perceptron Training Rule	70	15	15	804	99.17%	10	2.12
Formas_2	Imagem em binário	10	Sigmoide	Sigmoide	Perceptron Training Rule	70	15	15	804	76.03%	410	109.7
Formas_2	Imagem em binário	10	TanH	TanH	Perceptron Training Rule	70	15	15	804	100%	19	4.16
Formas_2	Imagem em binário	10	Sinal	Sinal	Perceptron Training Rule	70	15	15	804	26.45%	0	0

Tabela 5 - Resultados Obtidos por perceptron training rule em folhas_2

F2: Gradient Descent

Por aplicação do algoritmo *gradient descent* obtêm-se os resultados apresentados pela tabela 6:

- » A função de ativação TanH (Tangente Hiperbólica) é a que apresenta uma maior taxa de acerto.
- » É também com esta função de ativação que se conseguem a quantidade de épocas mais elevada.
- » Todos estes estes foram rápidos, com duração de apenas segundos.

Imagens Inpu	Inputs	Camadas -	Funções de Ativação		Algoritmo		Rácio (em %)		Quantidade de	Acerto	Epoch	Tempo
illiagelis	IIIputs	Calliduds	Função 1	Função 2	Algoriuno	Treino	Validação	Teste	Imagens Tratadas	(%)	Еросп	(min,seg)
Formas_2	Imagem em binário	10	Step	Step	Gradient Descent	70	15	15	804	19.83%	0	0
Formas_2	Imagem em binário	10	Linear	Linear	Gradient Descent	70	15	15	804	88.43%	1000	0.05
Formas_2	Imagem em binário	10	Sigmoide	Sigmoide	Gradient Descent	70	15	15	804	62.81%	1000	0.06
Formas_2	Imagem em binário	10	TanH	TanH	Gradient Descent	70	15	15	804	99.17%	1000	0.05
Formas_2	Imagem em binário	10	Sinal	Sinal	Gradient Descent	70	15	15	804	14.05%	0	0

Tabela 6 - Resultados Obtidos por gradient descent em folhas_2

F2: Stochastic Approximation to Gradient Descent

Por aplicação do algoritmo stochastic approximation gradient descent obtêm-se os resultados apresentados pela tabela 7:

- » A maior taxa de acerto acontecer com a função de ativação Linear;
- » É também coma função Linear que acontecem os testes com uma maior quantidade de épocas;
- » Com a aplicação deste algoritmo observamos que a duração dos testes aumentou significativamente, em alguns casos supera os 60 minutos;

Imagens Inpu	Innuto	Camadas	Funções d	e Ativação	Algoritmo		Rácio (em %)		Quantidade de Imagens	Acerto	Epoch	Tempo
illiagelis	iriputs	Calliduas	Função 1	Função 2	Algoritino	Treino	Validação	Teste	Tratadas	(%)	Еросп	(min,seg)
Formas_2	Imagem em binário	10	Step	Step	Stochastic Approximation to Gradient Descent	70	15	15	804	3.31%	0	0
Formas_2	Imagem em binário	10	Linear	Linear	Stochastic Approximation to Gradient Descent	70	15	15	804	99.17%	136	63.91
Formas_2	Imagem em binário	10	Sigmoide	Sigmoide	Stochastic Approximation to Gradient Descent	70	15	15	804	22.31%	5	2.26
Formas_2	Imagem em binário	10	TanH	TanH	Stochastic Approximation to Gradient Descent	70	15	15	804	97.52%	56	28.57
Formas_2	Imagem em binário	10	Sinal	Sinal	Stochastic Approximation to Gradient Descent	70	15	15	804	26.45%	0	0

Tabela 7 - Resultados Obtidos por stochastic approximation to gradient descent em folhas_2

Conclusão para Formas_2

Podemos concluir que a melhor rede é a resultante da aplicação do algoritmo perceptron training rule por ter a maior taxa de acerto (100%) relativamente a outros algoritmos explorados. Essa é a rede guardada.

Relativamente ao número de épocas e á duração do tempo de testes nos diferentes algoritmos podemos concluir que são altamente variáveis. Deste modo pode-se apenas ressaltar a aplicação do algoritmo stochastic approximation gradient fez disparar o tempo dos testes, superando até os 60 minutos de duração,

Resultados de Formas_3

Formas_3 - Usando a RN treinada por Formas_2

Considerando os testes efetuados anteriormente concluiu-se que a melhor rede neuronal é formada pela utilização do algoritmo Perceptron training rule com a função de ativação TanH (tangente Hiperbólica).

Como forma de verificar a veracidade da afirmação anterior, usou-se essa mesma rede para classificar as imagens em Formas_3. Assim, desta atividade resultou uma taxa de acerto de 76% o que podemos considerar uma boa taxa de acerto e consequentemente uma boa rede neuronal.

Figura 1 - Resultados de Formas_3 com a rede guardada anteriormente

Treino para Formas_3

Nesta fase, a rede é treinada com os parâmetros seguintes: *Treino: 70% , Validação: 15% ; Teste: 15% .*

Algoritmos de Treino para Formas_3

F3: Perceptron training rule

Por aplicação do algoritmo perceptron training rule obtêm-se os resultados apresentados pela tabela 8:

- » A taxa de acerto é 100% para as funções de ativação Linear, Sigmoide e tanH (Tangente Hiperbólica):
- » Tanto a quantidade de épocas como a duração dos testes é superior com a função sigmoide;

Imagens Inputs	Camadas	Funções d	e Ativação Algoritmo		Rácio (em %)			Quantidade de	Acerto	Epoch	Tempo	
imagens	, , , , , , , , , , , , , , , , , , , ,	Camadas	Função 1	Função 2	Algoritmo	Treino	Validação	Teste	Imagens Tratadas	Acerto	Еросп	rempo
Formas_3	Imagem em binário	10	Step	Step	Perceptron Training Rule				200	23.33%	0	0
Formas_3	Imagem em binário	10	Linear	Linear	Perceptron Training Rule				200	100%	8	0.57
Formas_3	Imagem em binário	10	Sigmoide	Sigmoide	Perceptron Training Rule				200	100%	128	14.74
Formas_3	Imagem em binário	10	TanH	TanH	Perceptron Training Rule				200	100%	16	1.41
Formas_3	Imagem em binário	10	Sinal	Sinal	Perceptron Training Rule				200	56.67%	0	0

Tabela 8 - Resultados Obtidos por perceptron training rule em folhas_3

F3: Gradient Descent

Por aplicação do algoritmo gradient descent obtêm-se os resultados apresentados pela tabela 9:

- » As funções de ativação Linear, Sigmoide e TanH (Tangente Hiperbólica) possuem uma taxa de acerto de 100%;
- »Também com essas funções de ativação conseguimos 1000 épocas com tempos de duração de testes muito pequenos.

Imanaaa	Imagens Inputs	Camadas	Funções de Ativação		Almonitus		Rácio (em %)		Quantidade de	Acerto	Fasah	Tempo
imagens	inputs Cama		Função 1	Função 2	Algoritmo	Treino	Validação	Teste	Imagens Tratadas	(%)	Epoch	(min,seg)
Formas_3	Imagem em binário	10	Step	Step	Gradient Descent				200	10%	0	0
Formas_3	Imagem em binário	10	Linear	Linear	Gradient Descent				200	100%	1000	0.03
Formas_3	Imagem em binário	10	Sigmoide	Sigmoide	Gradient Descent				200	100%	1000	0.03
Formas_3	Imagem em binário	10	TanH	TanH	Gradient Descent				200	100%	1000	0.03
Formas_3	Imagem em binário	10	Sinal	Sinal	Gradient Descent				200	26.67%	0	0

Tabela 9 - Resultados Obtidos por gradient descent em folhas_3

F3: Stochastic Approximation to Gradient Descent

Por aplicação do algoritmo stochastic approximation gradient descent obtêm-se os resultados apresentados pela tabela 10:

» As funções de ativação Linear e TanH (Tangente Hiperbólica) atingem uma taxa de acerto de 100%;

» Com a função de ativação Linear resultam também o maior número de épocas e a maior duração dos testes.

			Funções d	e Ativação	A1		Rácio (em %)		Quantidade de	Acerto		Tempo
Imagens	Inputs	Camadas	Função 1	Função 2	Algoritmo	Treino	Validação	Teste	Imagens Tratadas	(%)	Epoch	(min,seg)
Formas_3	Imagem em binário	10	Step	Step	Stochastic Approximation to Gradient Descent				200	36.67%	0	0
Formas_3	Imagem em binário	10	Linear	Linear	Stochastic Approximation to Gradient Descent				200	100%	119	44.55
Formas_3	Imagem em binário	10	Sigmoide	Sigmoide	Stochastic Approximation to Gradient Descent				200	43.33%	20	7.73
Formas_3	Imagem em binário	10	TanH	TanH	Stochastic Approximation to Gradient Descent				200	100%	25	11.17
Formas_3	Imagem em binário	10	Sinal	Sinal	Stochastic Approximation to Gradient Descent				200	40%	0	0

Tabela 10 - Resultados Obtidos por stochastic approximation to gradient descent em folhas_3

Conclusão para Formas_3

Utilizando as imagens em Formas_3 (200 imagens) testa-se verdadeiramente a fidelidade da rede obtida e gravadas dos treino anteriores efetuados. Através da rede gravada anteriormente, foram registadas taxas de acerto si

Interface Gráfica

Ao iniciar o programa, abre-se uma janela com o seguinte aspeto:

Figura 2 - Janela inicial

Nesta janela estão presentes todas as opções para a configuração do treino ou uso de uma rede neuronal.

Na parte superior da janela estão presentes as opções de input: Campos onde se podem inserir o nome da pasta a trabalhar, escolher as funções de ativação desejadas entre outros apresentados na imagem.

O botão "Tratar Imagens" recolhe as imagens da pasta selecionada e transforma-as numa matriz binária pronta a ser utilizada. O botão "Carregar Rede" carrega a última rede guardada para memória de forma a que fique pronta para ser usada ou treinada. Finalmente, os botões "Treinar Rede" e "Guardar Rede": o primeiro treina a rede com as características inseridas anteriormente e o segundo guarda essa mesma rede.

Figura 3 - Opções de configuração de rede neuronal

Na parte superior da janela estão presentes as opções de output: é apresentada a taxa de acerto da rede neuronal e o total de imagens tratadas. Possui ainda 2 botões, "Visualizar", que abre a tabela de dados das redes gravadas, e "Gravar" que grava esses dados.

Figura 4 - Output do programa

♠ Neural Network Training (nntraintool) Neural Network Data Division: Random (dividerand) **▲** T. Training: Levenberg-Marquardt (trainIm)
Performance: Mean Squared Error (mse) O treino da rede foi completado! Calculations: MEX OK Treinar Rede Epoch: 0 0:00:00 15 Guardar Rede Performance: 0.550 0.00 0.00 Gradient: 0.00 1.00e-07 0.00100 1.00e+10 Mu: 0.00100 Validation Checks: Plots 18.18% Performance (plotperform) Training State (plottrainstate) Error Histogram (plotregression) 1 epochs

A imagem seguinte expõe um exemplo de treino de uma rede neuronal.

Figura 5 - Exemplo do funcionamento do programa

Stop Training Cancel

Minimum gradient reached.

Ln 9 Col

Conclusão

Uma boa rede neuronal está associada ao cumprimento dos objetivos propostos para a mesma. Uma das formas de se poder verificar o cumprimento desses objetivos é através da percentagem da taxa de acerto sendo que, uma alta percentagem é equivalente a uma boa rede neuronal.

Través do treino das imagens em Formas_1 podemos concluir que apenas 4 imagens é uma quantidade inferior á necessária para treinar uma rede. Com um número tão reduzido de imagens não é possível treinar uma rede eficiente.

Em relação às imagens em Formas_ 2 , o treino e testes destas, com recurso aos 3 diferente algoritmos e 4 diferentes funções de ativação, revela um par algoritmo – função de ativação relevante: perceptron training rule e função de ativação TanH (tangente Hiperbólica). É com este par : perceptron training rule e função de ativação TanH que se consegue a melhor taxa de acerto (100%).

É também ainda de ressaltar que a utilização do algoritmo stochastic approximation gradient, com as imagens em Formas_2, fez disparar o tempo dos testes, superando até os 60 minutos de duração.

Encontrada a melhor rede neuronal com Formas_2, utilizaram-se a imagens em Formas_3 para verificar a fidelidade da rede guardada. Através da mesma rede, mas com recurso a Formas 3 foi conseguido uma taxa de acerto de 76%, uma taxa de acerto significativamente alta.