ETSI TS 126 243 V6.1.0 (2004-12)

Technical Specification

Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); ANSI C code for the fixed-point distributed speech recognition extended advanced front-end (3GPP TS 26.243 version 6.1.0 Release 6)

Reference
DTS/TSGS-0426243v610

Keywords
GSM, UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.
All rights reserved.

DECTTM, **PLUGTESTS**TM and **UMTS**TM are Trade Marks of ETSI registered for the benefit of its Members. **TIPHON**TM and the **TIPHON logo** are Trade Marks currently being registered by ETSI for the benefit of its Members. **3GPP**TM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intell	ectual Property Rights	2
Forev	word	2
	word	
1	Scope	
2	References	
3	Definitions and abbreviations	
3.1	Definitions	
3.2	Abbreviations	5
4	C code structure	5
4.1	Contents of the C source code	5
4.2	Program execution	<i>6</i>
4.3	Code hierarchy	7
4.5	Variables, constants and tables	
4.5.1	Description of constants used in the C-code	13
4.5.2	Description of fixed tables used in the C-code	
4.5.3	Static variables used in the C-code	17
5	File formats	21
5.1	Speech file	21
Anne	ex A (informative): Change history	22
Histo		23

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document contains an electronic copy of the ANSI-C code for DSR Extended Advanced Front-end. The ANSI-C code is necessary for a bit exact implementation of DSR Extended Advanced Front-end.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

[1] ETSI ES 202 050: "Distributed Speech Recognition; Advanced Front-end Feature Extraction

Algorithm; Compression Algorithm", Oct 2002.

[2] ETSI ES 202 212 "Distributed Speech Recognition; Extended Advanced Front-end Feature

Extraction Algorithm; Compression Algorithm, Back-end Speech Reconstruction Algorithm",

Nov 2003.

[3] 3GPP TS 26.177: "Speech Enabled Services (SES); Distributed Speech Recognition (DSR)

extended advanced front-end test sequences".

3 Definitions and abbreviations

3.1 Definitions

Definition of terms used in the present document, can be found in [1], [2]

3.2 Abbreviations

For the purpose of the present document, the following abbreviations apply:

ANSI American National Standards Institute

I/O Input/Output

RAM Random Access Memory ROM Read Only Memory AFE Advanced Front-end

X-AFE eXtended Advanced Front-end DSR Distributed Speech Recognition

4 C code structure

This clause gives an overview of the structure of the bit-exact C code and provides an overview of the contents and organization of the C code attached to this document.

The C code has been verified on the following systems:

- Sun Microsystems workstations and GNU gcc compiler
- IBM PC compatible computers with Linux operating system and GNU gcc compiler.

ANSI-C was selected as the programming language because portability was desirable.

4.1 Contents of the C source code

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files.

Makefiles are provided for the platforms in which the C code has been verified (listed above).

4.2 Program execution

There are separate executables for the FrontEnd and Vector Quantization, with and without Extensions. The command line options are described below.

<> - indicates parameters for the given option for running the executable

() – indicates default parameter.

FrontEnd w/ Extension:

USAGE: bin/ExtAdvFrontEnd infile HTK_outfile pitch_outfile class_outfile [options] OPTIONS:

-q Quiet Mode (FALSE)

-F format Input file format *<NIST,HTK,RAW>* (NIST)
-fs freq Sampling frequency in kHz *<8,16>* (8)
-swap Change input byte ordering (Native)
-noh No HTK header to output file (FALSE)

-noc0 No c0 coefficient to output feature vector (FALSE)
 -nologE No logE component to output feature vector (FALSE)
 -skip header bytes n - Skip header, first n bytes (Only for -F RAW)

-noh, -noc0, -nologE and -skip_header_bytes are not used and should not be changed.

FrontEnd w/o Extension:

USAGE: bin/AdvFrontEnd infile HTK_outfile [options]

OPTIONS: - Same as FrontEnd w/ Extension

Vector Quantization w/ Extension:

Usage: extcoder htk file in pitch file in class file in bitstream file out pitch file out txt file out -freq x -

VAD/No VAD

pitch_file_out txt_file_out -freq x Output quantised pitch period file. Vector quantiser output in text format. Sampling frequency in kHz (8 or 16).

-VAD Use voice activity detector data. Voice activity input file must have same name as htk_file, but

extension .vad

-No_VAD Do not incorporate voice activity detector information in output bitstream.

Vector Quantization w/o Extension:

Usage: coder htk_file_in bitstream_file_out txt_file_out -freq x -VAD/No_VAD htk_file_in Input mel-frequency cepstral coefficient file in HTK MFCC format.

bit_file_out Binary output bitstream.

txt_file_out Vector quantiser output in text format.
-freq x Sampling frequency in kHz (8 or 16).

-VAD Use voice activity detector data. Voice activity input file must have same name as htk_file, but

extension .vad

-No_VAD Do not incorporate voice activity detector information in output bitstream.

File extension descriptions as generated by the sample script:

.cep – Binary file containing cepstral features in HTK format. Output from the FrontEnd, input to the vector quantizer. .pitch – Binary file containing pitch information. Output from the FrontEnd, input to the vector quantizer. Only used for Extension.

.class – Ascii file containing class information. Output from the FrontEnd, input to the vector quantizer. Only used for Extension.

.bs – Binary file containing the bitstream. Output from the vector quantizer.

.log – Log files from the different executables.

4.3 Code hierarchy

Tables 1 to 3 are call graphs that show the functions used for AFE (table 1), VQ (table 2), and Extension (table 3).

Each column represents a call level and each cell a function. The functions contain calls to the functions in rightwards neighboring cells. The time order in the call graphs is from the top downwards as the processing of a frame advances. All standard C functions: printf(), fwrite(), etc. have been omitted. Also, no basic operations (add(), L_add(), mac(), etc.) or double precision extended operations (e.g. L_Extract()) appear in the graphs.

The basic operations are not counted as extending the depth, therefore the deepest level in this software is level 7.

Table 1: AFE call structure

Table 2: VQ call structure

Table 3: Extension call structure

^{*} qsort_be() is a recursive function

4.5 Variables, constants and tables

The data types of variables and tables used in the fixed point implementation are signed integers in 2's complement representation, defined by:

- Word16 16 bit variable;
- Word32 32 bit variable.

4.5.1 Description of constants used in the C-code

Table 5a: Global constants for AFE

Constant	Value	Description
NS_SPEC_ORDER_16K	64	Noise suppression Array length
NS_HANGOVER_16K	15	Noise suppression hangover count
NS_MIN_SPEECH_FRAME_HANGOVER_16K	4	Noise suppression minmum speech frame hangover count
NS_ANALYSIS_WINDOW_16K	80	Noise suppression analysis window
PERC_CODED	0.7	lambda merge (empirically set constant)
LAMBDA_NSE16k	0.99	Noise estimation Lambda
NS_NB_FRAME_THRESHOLD_NSE	100	Noise suppression number of frame threshold used for NSE
LENGTH_QMF	118	QMF filter length
f24	1	multiplier for QMF filter coefficients
SHFF_H	8	shift to get higher value
L_H	16	shift to get lower value
HP16k_MEL_USED	3	Higher frequnecy band Mel used
NB_LP_BANDS_CODING	3	Lower frequency band used in coding
NE16k_FRAMES_THRESH	100	Noise estimation frames threshold
NB_TOPOSTPROC	12	Number of coefficients to postprocess
CEP FRAME LENGTH	200	Frame length for cepstral coefficients
CEP NB COEF	13	Number of cepstral coefficients (including c0)
CEP NB CHANNELS	23	Number of filters used for cepstral coefficients
CEP FFT LENGTH	256	FFT length for cepstral coefficients
FRAME_BUF_SIZE	241	Denoised Output buffer size
FRAME SHIFT	80	WaveProcessing input frame shift
FRAME LENGTH	200	WaveProcessing frame size
NS SPEC ORDER	65	Noise suppression array length (8khz)
NS_BUFFER_SIZE	180	Noise suppression past frame size
NS FRAME SHIFT	80	Noise suppression input frame shift
NS HALF FILTER LENGTH	8	Noise suppression filter half size
NS NB FRAME THRESHOLD LTE	10	Noise suppression long term energy forgetting factor threshold (in frames)
NS NB FRAME THRESHOLD NSE	100	Noise suppression spectrum estimate forgetting factor threshold (in frames)
NS MIN FRAME	10	Number of frame threshold to update average energy for Nosie suppression VAD
NS FFT LENGTH	256	FFT length for noise suppression
WF MEL ORDER	25	Noise suppression Wiener filter order
SHFT NOISE	14	shift applied to noise spectrum estimate
SHFT FACT MUL	14	shift applied to gain coefficient (nosie suppression gain factoriization)
IDCT ORDER	25	Noise suppression idct order
NS BETA	0.98	Noiseless signal suppression factor
NS RSB MIN	0.079432823	Minimum a priori SNR
NS LAMBDA NSE	0.99	Forgetting factor for noise spectrum estimate
NS LOG SPEC FLOOR	-10.0	average energy minimum threshold
NS_SNR_THRESHOLD_VAD	15	SNR threshold for noise suppression VAD
NS_SNR_THRESHOLD_UPD_LTE	20	Long term energy update threshold for noise suppression VAD
NS_ENERGY_FLOOR	80	Energy Minimum threshold for noise suppression VAD
MaxPos	10	Maximum number of maxima in waveprocessing
WP EPS	0.2	weigthing value added or substracted for waveprocessing

Table 5b: Global constants for VQ

Constant	Value	Description
MIN_PERIOD	1245184	Minimum pitch period allowed
MAX_PERIOD	9175040	Maximum pitch period allowed
NUM_MULTI_LEVELS_1	26	number of levels in pitch quantization
NUM_MULTI_LEVELS_2	24	number of levels in pitch quantization
UNVOICED_CODE	0	init value for Qpindex

Table 5c: Global constants for Extension

Constant	Value	Description
HISTORY_LEN	100	History length - past samples for pitch extraction
DOWN_SAMP_FACTOR	4	Down-sampling factor - used in computing correlation
NO_OF_DFT_POINTS	128	Number of DFT points
BREAK_POINT	12	Break point - marks the end of low frequency band
LBN_HIST_WEIGHT	32440	Low band noise history weight
LBN_CURR_WEIGHT	328	Low band noise current weight (32768 - LBN_HIST_WEIGHT)
LBN_MAX_THR	124518	Low band noise maximum threshold
LBN_LOW_ENR_LEVEL_MANT	32000	Low band noise low energy level mantissa
LBN_LOW_ENR_LEVEL_SHFT	22	Low band noise low energy level shift
RVC_OK	0	Return code for success
RVC_ERR	-1	Return code for unspecified error
RVC_ERR_NOT_ENOUGH_MEMORY	-2	Return code for not enough memory
RVC_ERR_ILLEGAL_ARGUMENT	-3	Return code for an illegal input / output argument
RVC_ERR_IO_FAILED	-4	Return code for failed input / output to a file
RVC_ERR_BAD_FILE_FORMAT	-5	Return code for a bad file header
RVC_ERR_NOT_INITIALIZED	-6	Return code for failure due to improper initialization
RVC_ERR_ILLEGAL_USAGE	-7	Return code for illegal usage of a function
RVC_ERR_NOT_ENOUGH_SAMPLES	-8	Return code for insufficient number of samples
RVC_ERR_NOT_IMPLEMENTED	-9	Return code for an unimplemented function

No. Proc.	DVC EDD EAT ODEN EILE	I 40	Deturn and for failure to open a file
250.1 TRL			
SOLIC TORN 1942			
FRAME IN O. S. P. 2 25			
HISTORY LEAD OF THE CONTROL OF THE C		50	
Window Left 18		25	Frame length downsampled divided by 2
MICHAEL MANYSTAN			
NUMBER OF AMERICAN 220 Number of charanters on Mark Responses parted by Market of Charanters on Market and Characters on Market Americans on Mark			
Min. C. L. MING. S. Min. C.			
Manufact Animal Section Manufact Animal			
No. Sept. Sept.			
No. Section			
Section Sect			
CRES MATAC COMPL		18022	
29491 Sharper process Sharper Sharper Sharper process	CE_SM_FAC_COMPL		
C. GAMAA COMPR		3277	Channel noise energy smoothing factor
G. GAMMA COMPL 99.03 Low gamma value complement			
IE GAMMA			
III GAMANA COURF 3777 https://doi.org/10.1008/j.com/ 19.008191			
10 BETA			
H. BETA			
No. February			
SINE_START_CHAN 4 Sine_start channel (for sine wave detection) Peak to variety through Peak to variety threshold			
PEAK TO AVE THLD 10 Peak to average threshold PEY THLD 15/23942 Deviction inverteded PYSTER CNT, THLD 9 Hysteries count threshold CUPDATE CNT, THLD 300 Proceedings count threshold FIX SA 24576 Short Count threshold FIX SA 24576 Short Count of the process count threshold FIX SA 24576 Short Count of the process count threshold FIX SA 24576 Short Count of the process count threshold FIX SA 24576 Short Count of the process count of the proces			
WYSTER, CHT THLD			
NON_SPECH_TH_D	HYSTER_CNT_THLD		Hysteresis count threshold
Fig. 14			
Fig. 18			
FILE 1/1			
WITHER DES ADOWNOTH 85 One third of the reference bandwidth WITWO THERDS, REF, BANDWIDTH 17 Two thirds of the reference bandwidth MIN. ENERGY S, MANTISSA 25600 Minimum energy shift WING ENERGY S, SHIFT 18 Minimum energy shift WORDS, SAMPLE RATE QO 0x1740 Reference sampling rate in Qo format WORDS, SAMPLE RATE QO 0x1740 Reference sampling rate in Qo format WORDS, SAMPLE RATE QO 0x1740 Reference sampling rate in Qo format WORDS, SAMPLE RATE QO 0x1740 Reference sampling rate in Qo format WORDS, SAMPLE RATE QO 0x1740 Reference sampling rate in Qo format WORDS, CARL TO LO 15 0x0571A Frequency domain score threshold 2 in Q15 format WORD CRIT CHILD Q 15 0x06867 Sum threshold in Q14 format WORADOCRR THLD Q 115 0x06967 Sum threshold in Q14 format WORADOCRR THLD Q 115 0x0607 Pitch candidate correlation threshold 2 in Q15 format WORADOCRR THLD Q 15 0x0607 Pitch candidate correlation threshold 3 in Q15 format WORADORD THLD Q 15 0x0607 Pitch candidate correlation threshold 2 in Q15 format	= :		
WITHOUT PHIRDS REF BANDWIDTH			
Minimage			
Minimum energy shift			
SWREFS AMPLE RATE 00 Ox1F40 Reference sampling rate in 0.0 format WKCLOSE PACTOR 014 Ox4CCD Closeness factor in 0.14 format WKPD SCORE, THLD1, 015 0x6307 Frequency domain score threshold 2 in 0.15 format WKD SCORE, THLD2 015 0x6507 Frequency domain score threshold 2 in 0.15 format WKCRTD, OFFSET, 015 0x6517 Correlation threshold in 0.15 format WKCRTD, OFFSET, 015 0x000170A Offset for finding a better pitch enaddate in 0.15 format WKCRTD, OFFSET, 015 0x000170A Offset for finding a better pitch enaddate in 0.15 format WKCANDORR, THLD3, 0.15 0x060CD Pitch candidate correlation threshold 1 in 0.15 format WKCANDORR, THLD3, 0.15 0x06CD Pitch candidate correlation threshold 1 in 0.15 format WKDARDORR, THLD3, 0.15 0x06CD Pitch candidate correlation threshold 1 in 0.15 format WKDARDORR, THLD3, 0.15 0x06EPC Pitch candidate correlation threshold 1 in 0.15 format WKDARDORR, THLD3, 0.15 0x06EPC Pitch candidate correlation threshold 1 in 0.15 format WKDARDORR, THLD3, 0.15 0x06EPC Pitch candidate correlation threshold 1 in 0.15 format WKDARDORR, THLD3, 0x1 0x16EPC Pitch candida			
swFD_SCORE_THILD_G15 0x8307 Frequency domain score threshold 1 in Q15 format swFD_SCORE_THILD_Q15 0x670A Frequency domain score threshold 2 in Q15 format swCORT_HLD_Q15 0x651F Correlation threshold in Q15 format wCRITD_OFFSET_Q15 0x0000170A Offset for finding a better pitch candidate in Q15 format wCANDCORR_THLD2_Q15 0x0000170A Offset for finding a better pitch candidate correlation threshold in Q15 format swCANDCORR_THLD3_Q15 0x0590A Pitch candidate correlation threshold 3 in Q15 format swCANDCORR_THLD3_Q15 0x069F6 Pitch candidate correlation threshold 3 in Q15 format swCANDCORR_THLD3_Q15 0x069F6 Pitch candidate correlation threshold 3 in Q15 format swCANDCORR_THLD3_Q15 0x069F6 Pitch candidate amplitude threshold 3 in Q15 format swCANDCORR_THLD3_Q15 0x069F6 Pitch candidate amplitude threshold 3 in Q15 format swCANDCORR_THLD3_Q15 0x069F6 Pitch candidate correlation threshold 3 in Q15 format swCROPER_Q COEFF 0x069F6 Pitch candidate correlation threshold 3 in Q15 format swCROPER_Q COEFF 0x069F6 Pitch candidate correlation threshold 3 in Q15 format swCROPER_Q COEFF 0x069F6			
SWFD_SCORE_THLD2_Q15 Ox570A Frequency domain score threshold 2 in Q15 format SWCORR_THLD_Q15 0x651F Ox76667 Sum threshold in Q15 format SWCANT_THLD_Q14 0x6667 Sum threshold in Q15 format WCRTD_OFFSET_Q15 0x0000170A Ox799A Ptch candidate correlation threshold 1 in Q15 format SWCANDCORR_THLD2_Q15 0x599A Ptch candidate correlation threshold 3 in Q15 format SWCANDCORR_THLD3_Q15 0x565P Ptch candidate correlation threshold 3 in Q15 format SWCANDARP_THLD3_Q15 0x565P Ptch candidate correlation threshold 3 in Q15 format SWSTARTTREQ_COEFF 0x555P Slant frequency coefficient (for candidate search) William Frequency 0x666E And frequency coefficient (for candidate search		0x4CCD	
swCORR_THLD_G15 wcRNTD_O14 0x6667 wcRNTD_OFFSET_Q15 0x0000170A Offset for finding a better pitch candidate in Q15 format wcRNTD_OFFSET_Q15 0x0000170A Offset for finding a better pitch candidate in Q15 format wcRNDCORR_THLD2_Q15 0x690A Pitch candidate correlation threshold 2 in Q15 format wcRNDCORR_THLD2_Q15 0x690A Pitch candidate correlation threshold 2 in Q15 format wcRNDCORR_THLD3_Q15 0x69CD 0x69CD Pitch candidate correlation threshold 2 in Q15 format wcRNDCORR_THLD3_Q15 0x69CP 0x69CP Pitch candidate correlation threshold 2 in Q15 format wcRNDCORR_THLD3_Q15 0x69CP 0x69CP 0x69CP Pitch candidate correlation threshold 2 in Q15 format wcRNDCORR_THLD3_Q15 0x69CP 0x69CP 0x69CP Pitch candidate correlation threshold 2 in Q15 format wcRNDCORR_THLD3_Q15 0x69CP	swFD_SCORE_THLD1_Q15	0x63D7	Frequency domain score threshold 1 in Q15 format
sws.UM. THLD. 0.14 Ox6667 Jum threshold in Q14 format wCRTD.OFFST. Q15 0x0000170A D789A Pitch candidate correlation threshold in Q15 format swCANDOORR. THLD2, Q15 0x799A Pitch candidate correlation threshold 1 in Q15 format swCANDOORR. THLD3, Q15 0x65CD Pitch candidate correlation threshold 3 in Q15 format swCANDADAP. THLD3, Q15 0x65CD Pitch candidate surplitude threshold 3 in Q15 format swSTARTREG, COEFF 0x553F Start frequency coefficient (for candidate search) swSTARTREG, COEFF 0x553F Start frequency coefficient (for candidate search) DIRICHLET, KERNEL SPAN 8 Direchtek kemal span (for interpolation) REF, SAMPLE, RATE 80000 Reference sampling rate REF, SAMPLE, RATE 80000 Reference sampling rate REF, SAMPLE, BANDWIDTH 174762667 Two thricks of the reference bandwidth wTHIRD, REF, BANDWIDTH 174762667 Two thricks of the reference bandwidth wWFWE, CHEIGHT 0x1800 Side weight swAMP, SCALE, DOWN12 0x393A Amplitude scale down factor 2 swAMP, SCALE, DOWN2 0x393A Amplitude scale down fac			
WCRTIO_OFFSET_015 0x0000170A Offset for finding a better pitch candidate in C15 format WCANDCORR_THLD2_015 0x799A Pitch candidate correlation threshold 2 in 015 format WCANDCORR_THLD2_015 0x599A Pitch candidate correlation threshold 2 in 015 format WCANDAWP_THLD3_015 0x66CD Pitch candidate correlation threshold 3 in 015 format WCANDAWP_THLD3_015 0x66ED Pitch candidate correlation threshold 3 in 015 format WCANDAWP_THLD3_015 0x66ED Pitch candidate correlation threshold 3 in 015 format WSCANDCORR_TRAND 0x66ED Pitch candidate correlation threshold 3 in 015 format WSCANDER_CREP_COEFF 0x666E End frequency coefficient (for candidate search) DIRCHLET_KERREL_SPAN 8 Discribet kemal span (for interpolation) WFEF_SANDWIDTH 4000 Reference sampling rate WFEF_BANDWIDTH 87391333 One third of the reference bandwidth WITHER DEEP SANDWIDTH 174762667 The othrise of the reference bandwidth WWO_THIRDS_REF_BANDWIDTH 174762667 The othrise of the reference bandwidth WWO_THIRDS_ADDWIDTH 174762667 The othrise of the reference bandwidth WWO_THER_WIGHT <td></td> <td></td> <td></td>			
swCANDCORR_THLD1_G15 0x799A Pitch candidate correlation threshold 1 in Q15 format swCANDCORR_THLD3_Q15 0x599A Pitch candidate correlation threshold 3 in Q15 format swCANDCORR_THLD3_Q15 0x68CD Pitch candidate correlation threshold 3 in Q15 format swSTARTREO_COEFF 0x553F Start frequency coefficient (for candidate search) swSTARTREO_COEFF 0x563F Start frequency coefficient (for candidate search) DIRCHLET_KERNEL_SPAN 8 Direchlet kernal span (for interpolation) REF_SAMPLE_RATE 8 Direchlet kernal span (for interpolation) REF_BANDWIDTH 4000 Reference sampling rate REF_BANDWIDTH 97381333 One third of the reference bandwidth wTWO_THIRDS_REF_BANDWIDTH 174762667 Two thirds of the reference bandwidth wTWO_THIRDS_REF_BANDWIDTH 0x5000 Center weight swSIDE_WEIGHT 0x1800 Side weight swAAP_SCALE_DOWN1 0x5333 Amplitude scale down factor 1 swAAP_SCALE_DOWN2 0x3949A Amplitude scale down factor 2 swUDIST2 4600 Utility function distance 2 swUDIST3 4760			
swCANDCORR_THLD2_Q15 0x599A Prich candidate correlation threshold 2 in Q15 formats swCANDCORR_THLD3_Q15 0x66CD Prich candidate correlation threshold 3 in Q15 formats swCANDAMP_THLD3_Q15 0x65EF Prich candidate correlation threshold 3 in Q15 formats swSTARTFREQ_COEFF 0x65EF Prich candidate correlation (or candidate search) DIRCHLET_KERNEL_SPAN 8 Direchte Kennel span (for interpolation) REF SAMPLE_RATE 8000 Reference sampling rate REF_BANDWIDTH 4000 Reference bandwidth WTHIRD REF_BANDWIDTH 87391333 One third of the reference bandwidth WTWO_THIRDS_REF_BANDWIDTH 873913333 One third of the reference bandwidth WTWO_THIRDS_REF_BANDWIDTH 174762667 Two thirds of the reference bandwidth WTWO_THIRDS_REF_BANDWIDTH 0x5800 Center weight SwCENTER_WEIGHT 0x5800 Center weight SwADE_BEL_DOWN1 0x5333 Amplitude scale down factor 1 SwAMP_SCALE_DOWN2 0x399A Amplitude scale down factor 2 SwADP_SCALE_DOWN2b 0x7333 Amplitude scale down factor 2 SwADP_SCALE_DOWN2b 0x73			
swCANDOCRR_THLD3_Q15 Ox6CCD Pich candidate correlation threshold 3 in Q15 format swCANDAMP_THLD3_Q15 Ox68F6 Pich candidate amplitude threshold 3 in Q15 format swSTARTREQ_COEFF 0x553F Staff frequency coefficient (for candidate search) SwSTARTREQ_COEFF 0x563F Staff frequency coefficient (for candidate search) DIRICHLET KERNEL_SPAN 8 Direchlet kemal span (for interpolation) REF_BANDWIDTH 4000 Reference sampling rate REF_BANDWIDTH 4000 Reference bandwidth wTHIRD_REF_BANDWIDTH 112762667 Two thirds of the reference bandwidth wTWO_THIRDS_REF_BANDWIDTH 112762667 Two thirds of the reference bandwidth wTWO_THIRDS_REF_BANDWIDTH 112762667 Two thirds of the reference bandwidth wWTWO_SCALE_DOWN 0x5000 Side weight swSIDE_WEIGHT 0x1600 Side weight swADP_SCALE_DOWN 0x5030 Araplitude scale down factor 1 swADP_SCALE_DOWN 0x5030 Araplitude scale down factor 2 swLDISTS 4160 Utility function distance 2 swLDISTS 4160 Utility function distance 2 <td></td> <td></td> <td></td>			
swCANDAMP_THLD3_Q15 swSADRATERED_COEFF 0x565F 0x565F 0x666F 0x666			
swSTARTEREQ_COEFF			
swENDFREQ_COEFF Ox4666 End frequency coefficient (for candidate search) DIRCHLET_KERNEL_SPAN B Direchlet Kernel span (in interpolation) REF_SAMPLE_RATE 8000 Reference sampling rate REF_BANDWIDTH 4000 Reference bandwidth WTHIRD REF_BANDWIDTH 174762667 Two thirds of the reference bandwidth WTHIRD REF_BANDWIDTH 174762667 Two thirds of the reference bandwidth WTHIRD REF_BANDWIDTH 174762667 Two thirds of the reference bandwidth SWEDE_WEIGHT 0x5000 Center weight SWEDIE_WEIGHT 0x5001 Side weight SWAMP_SCALE_DOWN1 SWAMP_SCALE_DOWN2 0x3333 Amplitude scale down factor 1 SWAMP_SCALE_DOWN2 0x393A Amplitude scale down factor 2 SWAMP_SCALE_DOWN2 0x393A Amplitude scale down factor 2 WEIGHT SWAMP_SCALE_DOWN2 0x393A Amplitude scale down factor 2 WUSIST 4-1600 Uility function distance 2 Uility function distance 2 WUSIST 4-6400 Uility function distance 3 WISIST 4-6400 Uility function distance 1 WISIST 4-6400 Uility function distance 1 WISIST 4-6400 Uility function distance 1 WISIST 4-6400 Uility function distance 2 WISIST 4-6400 Uility function distance 2 WISIST 4-6400 Uility function distance 1 WISI			
REF SAMPLE RATE 8000 Reference sampling rate REF BANDWIDTH 4000 Reference bandwidth WTHIRD REF BANDWIDTH 87381333 One third of the reference bandwidth WTWO_THIRDS_REF_BANDWIDTH 174762667 Two thirds of the reference bandwidth WTWO_THIRDS_REF_BANDWIDTH 0x5000 Center weight SwiSIDE_WEIGHT 0x5000 Center weight 0x5333 Amplitude scale down factor 1 SwAMP_SCALE_DOWN2 0x393A Amplitude scale down factor 2 3wAMP_SCALE_DOWN2 0x7333 Amplitude scale down factor 2b WUDIST1 4-1600 Utility function distance 1 WILL WILL WILL WILL WILL WILL WILL WIL	swENDFREQ_COEFF		
REF BANDWIDTH 8731333 On Pilifo of the reference bandwidth wITHIRO REF BANDWIDTH 174762667 Two thirds of the reference bandwidth wITHIRO THERE AND WIDTH 174762667 Two thirds of the reference bandwidth wXCENTER WEIGHT 0x5000 Center weight 0x5000 Side weight 0x5000 Side weight 0x5030 Amplitude scale down factor 1 0x5030 Amplitude scale down factor 2 0x5030 Amplitude scale down fac	DIRICHLET_KERNEL_SPAN	8	Direchlet kernal span (for interpolation)
WTHIRD REF_BANDWIDTH			
Image: Content Imag			
swCENTER_WEIGHT 0x5000 Center weight swSIDE_WEIGHT 0x1800 Side weight swAMP_SCALE_DOWN1 0x5333 Amplitude scale down factor 1 swAMP_SCALE_DOWN2 0x399A Amplitude scale down factor 2 swAMP_SCALE_DOWN2b 0x7333 Amplitude scale down factor 2b swUDIST1 -4160 Utility function distance 1 swUDIST2 -6400 Utility function stance 2 swLSTEP -16384 Utility function step swFREQ_MARGIN1 0x4AE1 Frequency margin 1 swAMP_MARGIN2 0x07AE Amplitude margin 2 MIN_STABLE_FRAMES 6 Minimum number of stable frames MAX_TRACK_GAP_FRAMES 2 Maximum pitch track gap frames swSTABLE_FREQ_UPPER_MARGIN 0x68EB Stable frequency lower margin UNVOICED 0 Pitch frequency of an unvoiced frame wMAX_PITCH_FREQ 0x014A0000L Maximum pitch frequency in Hz MIN_PITCH_FREQ 0x00340000L Minimum pitch frequency in Hz MIGHTPAFERQ 0x00C80000L Minimum pitch frequency in Hz MICHARA			
SWSIDE WEIGHT 0x1800 Side weight swAMP_SCALE DOWN1 0x5333 Amplitude scale down factor 1 swAMP_SCALE DOWN2 0x399A Amplitude scale down factor 2 swAMP_SCALE DOWN2b 0x7333 Amplitude scale down factor 2b swUDIST1 -4160 Utility function distance 1 swUDIST2 -6400 Utility function distance 2 swUSTEP -16384 Utility function distance 2 swFREQ MARGIN1 0x4AE1 Frequency margin 1 swAMP_MARGIN1 0x07AE Amplitude margin 2 swAMP_MARGIN1 0x07AE Amplitude margin 1 swAMP_MARGIN2 0x07AE Amplitude margin 2 MIN_STABLE FRAMES 6 Minimum number of stable frames swSTABLE_FREQ_UPPER_MARGIN 0x6EB Stable frequency upper margin swSTABLE_FREQ_UPPER_MARGIN 0x6EB Stable frequency on a unvoiced frame UNYOICED 0 Pitch frequency of an unvoiced frame WMAX_PITCH_FREQ 0x01440000L Maximum pitch frequency WMX_PITCH_FREQ 0x00440000L Maximum pitch frequency in Hz W			
SWAMP_SCALE_DOWN12 0x5333 Amplitude scale down factor 1 SWAMP_SCALE_DOWN2b 0x7333 Amplitude scale down factor 2 SWAMP_SCALE_DOWN2b 0x7333 Amplitude scale down factor 2b SWUDIST1 -4160 Utility function distance 1 SWUDIST2 -6400 Utility function distance 2 SWUSTEP -16384 Utility function distance 2 SWAMP_MARGIN1 0x07AE Amplitude margin 1 SWAMP_MARGIN2 0x07AE Amplitude margin 1 MIN_STABLE_FRAMES 6 Minimum number of stable frames MAX_TRACK_GAP_FRAMES 2 Maximum per of stable frames MAX_TRACK_GAP_FRAMES 3 Stable frequency lower margin UNYOICED 0 Pitch frequency lower margin <t< td=""><td></td><td></td><td></td></t<>			
SWAMP_SCALE_DOWN2 SWAMP_SCALE_DOWN2b SWAMP_SCALE_DOWN2b SWAMP_SCALE_DOWN2b SWAMP_SCALE_DOWN2b SWAMP_SCALE_DOWN2b SWAMP_SCALE_DOWN2b SWAMP_MCATT -4160 Uility function distance 1 SWDDIST2 -6400 Uility function distance 2 Uility function stepe 1-16384 Uility function step SWFREQ_MARGIN1 SWAMP_MARGIN1 SWAMP_MARGIN2 OX07AE Amplitude margin 1 SWAMP_MARGIN2 OX07AE Amplitude margin 1 SWAMP_MARGIN2 OX07AE Amplitude margin 1 SWAMP_MCATTALE_FRAMES 6 Minimum number of stable frames MAX_TRACK_GAP_FRAMES 2 MAXIMIN pith track gap frames SWSTABLE_FREQ_UPPER_MARGIN OX4E14 Stable frequency upper margin SWSTABLE_FREQ_UPPER_MARGIN OX4E14 Stable frequency lower margin UNVOICED 0 Pitch frequency of an unvoiced frame WMAX_PITCH_FREQ OX01A40000L MAX_PITCH_FREQ MAX_PITC			·
SWAMP_SCALE_DOWN2b WATER SWUDIST2 -6400 Utility function distance 1 SWUDIST2 -6400 Utility function distance 2 SWUSTEP -16384 Utility function distance 2 SWUSTEP -16384 Utility function distance 2 SWUSTEP -16384 Utility function distance 1 SWAMP_MARGIN1 SWAMP_MARGIN1 SWAMP_MARGIN2 SWAMP_MARGIN2 MIN_STABLE_FRAMES -6 Minimum number of stable frames MAX_TRACK_GAP_FRAMES -6 Minimum number of stable frames MAX_TRACK_GAP_FRAMES -7 Maximum pitch track gap frames SWSTABLE_FREQ_UPPER_MARGIN MAX_PITCH_FREQ SWSTABLE_FREQ_UPPER_MARGIN MAX_PITCH_FREQ SWSTABLE_FREQ_UPPER_MARGIN MINIMIMIMIT SWSTABLE_FREQ SWSTABLE_FREQ_UPPER_MARGIN SWSTABLE_FREQ_UPP			
SWUDIST1			
SwUSTEP swFREQ_MARGIN1 0x4AE1 Frequency margin 1 swAMP_MARGIN2 0x07AE Amplitude margin 2 Maximum pither stable frames MAX_TRACK_GAP_FRAMES 2 Maximum pith track gap frames swSTABLE_FREQ_UPPER_MARGIN 0x6EB Stable frequency topper margin swSTABLE_FREQ_LOWER_MARGIN 0x6EB Stable frequency topper margin swAMP_ITCH_FREQ 0x01A40000L Maximum pitch frequency of an unvoiced frame low MAX_PITCH_FREQ 0x0340000L Minimum pitch frequency MAX_PITCH_FREQ 420 Maximum pitch frequency MAX_PITCH_FREQ 420 Maximum pitch frequency in Hz MIN_PITCH_FREQ 420 Maximum pitch frequency in Hz MIN_PITCH_FREQ 420 Maximum pitch frequency in Hz MIN_PITCH_FREQ 420 Minimum pitch frequency MIN_PITCH_FREQ 420 Minimum on the frequency Minimum on the frequency Minimum on the frequency Minimum on the spectrum MAX_PEAKS_FOR_SORT 30 Maximum number of local maxima on the spectrum MAX_PEAKS_FOR_SORT 30 Maximum number of peaks (final) MAX_PEAKS_FINAL 40 Maximum number of peaks (final) MAX_PEAKS_FINAL 41 Maximum number of peaks (final) MAX_PEAKS_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for short window	swUDIST1		Utility function distance 1
SWFREQ MARGIN1 SWAMP_MARGIN2 OXO7AE Amplitude margin 1 SWAMP_MARGIN2 OXO7AE Amplitude margin 1 SWAMP_MARGIN2 OXO7AE Amplitude margin 1 SWAMP_MARGIN2 MIN STABLE FRAMES 6 Minimum number of stable frames MAX_TRACK_GAP_FRAMES 2 Maximum pitch track gap frames SWSTABLE_FREQ_UPPER_MARGIN OX4E14 Stable frequency upper margin SWSTABLE_FREQ_UPVER_MARGIN OX68EB SWSTABLE_FREQ_UPVER_MARGIN OX68EB Stable frequency upper margin UNVOICED 0 Pitch frequency of an unvoiced frame WMAX_PITCH_FREQ OX01A40000L Maximum pitch frequency of mary moviced frame WMAX_PITCH_FREQ OX0340000L Minimum pitch frequency in Hz HIGHPASS_CUTOFF_FREQ S2 Minimum pitch frequency in Hz HIGHPASS_CUTOFF_FREQ S300 Highpass cut-off frequency in Hz HIGHPASS_CUTOFF_FREQ OX00C80000L Short window end frequency IwSHORT_WIN_START_FREQ OX00C80000L Short window end frequency IwSHORT_WIN_START_FREQ OX00C80000L Short window end frequency IwSINGLE_WIN_END_FREQ OX00C80000L Single window end frequency IwDOUBLE_WIN_END_FREQ OX00C80000L OX00FROOD OX0FREQ OX00C80000L OX0FREQ OX00C80000L OX0FREQ			
swAMP_MARGIN1			
SWAMP_MARGIN2 MIN_STABLE_FRAMES 6 Minimum number of stable frames MAX_TRACK_GAP_FRAMES 2 Maximum pitch track gap frames SWSTABLE_FREQ_UPPER_MARGIN 0x4E14 Stable frequency upper margin SWSTABLE_FREQ_LOWER_MARGIN 0x68EB Stable frequency lower margin UNVOICED 0 Pitch frequency of an unvoiced frame WMAX_PITCH_FREQ 0x01A40000L Maximum pitch frequency WMIN_PITCH_FREQ 0x00340000L Minimum pitch frequency WMIN_PITCH_FREQ MAX_PITCH_FREQ 10 Maximum pitch frequency Minimum pitch frequency MIN_PITCH_FREQ 10 Maximum pitch frequency MIN_PITCH_FREQ MAX_PITCH_FREQ 11 Minimum pitch frequency MIN_PITCH_FREQ 12 Minimum pitch frequency MIN_PITCH_FREQ Max_PITCH_FREQ M			
MIN_STABLE_FRAMES AMA_TRACK_GAP_FRAMES AMA_MARGIN A			
MAX_TRACK_GAP_FRAMES swSTABLE_FREQ_UPPER_MARGIN 0x68EB Stable frequency lower margin 0x08EB stable frequency of an unvoiced frame swSTABLE_FREQ_LOWER_MARGIN 0x01A40000L 0 Pitch frequency of an unvoiced frame lwMAX_PITCH_FREQ 0x01A40000L Maximum pitch frequency MAX_PITCH_FREQ 420 Maximum pitch frequency in Hz MIN_PITCH_FREQ 420 Minimum pitch frequency in Hz Minimum sitch frequency Minimum number of local maxima on the spectrum Minimum sitch frequency Maximum number of local maxima on the spectrum Minimum sitch frequency Minimu			
swSTABLE_FREQ_UPPER_MARGIN 0x4E14 Stable frequency upper margin 0x68EB Stable frequency lower margin 0 Pitch frequency of an unvoiced frame IMMAX_PITCH_FREQ 0x01A40000L Maximum pitch frequency MMIN_PITCH_FREQ 0x0340000L Minimum pitch frequency MMX_PITCH_FREQ 420 Maximum pitch frequency in Hz MIN_PITCH_FREQ 420 Maximum pitch frequency Max_PITCH_FREQ 420 Maximum pitch frequency Max PITCH_FREQ 420 Maximum pitch frequency Max PITCH_FREQ 420 Maximum number of lacinos in Hz Max_PEAKS_PRELIM 70 Maximum number of peaks (preliminary) MIN_PEAKS 72 Minimum number of peaks (preliminary) MIN_PEAKS_FINAL 40 Maximum number of peaks (final) Max_PRELIM_CANDS Create Piecewise function loop limit for single window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG Create Piecewise function loop limit for single window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG Average 30 Create Piecewise function loop limit for single window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
SWSTABLE_FREQ_LOWER_MARGIN Ox68EB Stable frequency lower margin Ox01A40000L Maximum pitch frequency IMMAX_PITCH_FREQ Ox01A40000L Minimum pitch frequency MAX_PITCH_FREQ MAX_PITCH_FREQ MAX_PITCH_FREQ MAX_PITCH_FREQ MIN_PITCH_FREQ MIN_MIN_PITCH_FREQ MIN_MIN_PITCH_FREQ MIN_PEAKS_PRELIM MIN_PEAKS_PRELIM MIN_PEAKS_PRELIM MIN_PEAKS_PINAL MIN_PRELIM_CANDS MIN_MIN_PITCH_FREQ MIN_MIN_MIN_PITCH_FREQ MIN_MIN_MIN_MIN_MIN_MIN_MIN_MIN_MIN_MIN_			
UNVOICED 0 Pitch frequency of an unvoiced frame IMMAX_PITCH_FREQ 0x01A40000L Maximum pitch frequency MAX_PITCH_FREQ 0x0034000U Minimum pitch frequency MAX_PITCH_FREQ 420 Maximum pitch frequency in Hz MIN_PITCH_FREQ 420 Maximum pitch frequency in Hz MIN_PITCH_FREQ MIN_PITCH_FREQ 420 Maximum pitch frequency in Hz MIN_PITCH_FREQ MO0068000L Minimum pitch frequency in Hz MIN_PITCH_FREQ MO0068000L Short window start frequency MIN_PITCH_FREQ MO0068000L Short window start frequency MIN_PITCH_FREQ MO0068000L Single window start frequency MIN_POUBLE_WIN_START_FREQ MO0068000L Single window end frequency MIN_POUBLE_WIN_START_FREQ MO0078000L Double window end frequency MAX_POUBLE_WIN_END_FREQ MO0078000L Double window end frequency MAX_POUBLE_WIN_END_FREQ MAXIMUM number of local maxima on the spectrum MAX_PEAKS_FOR_SORT MIN_PEAKS MAX_MIN_MIN_PEAKS MIN_MIN_PEAKS MIN_MIN_PEAKS MIN_MIN_MIN_PEAKS MIN_MIN_MIN_MIN_MIN_MIN_MIN_MIN_MIN_MIN_			
WMIN_PITCH_FREQ	UNVOICED	0	Pitch frequency of an unvoiced frame
MAX_PITCH_FREQ MIN_PITCH_FREQ 52 Minimum pitch frequency in Hz MIN_PITCH_FREQ 53 Minimum pitch frequency in Hz HighPASS_CUTOFF_FREQ 300 Highpass cut-off frequency in Hz NO_OF_FRACS 77 Number of fractions in the frations table WSHORT_WIN_START_FREQ WSHORT_WIN_END_FREQ WSHORT_WIN_END_FREQ WSHORE_WIN_END_FREQ WSHORE_WIN_END_FREQ WSHORE_WIN_END_FREQ WSOUCE WSHORE_WIN_END_FREQ WSOUCE WSHORE_WIN_END_FREQ WSOUCE WSHORE_WIN_END_FREQ WX00020000L Single window start frequency WSINGLE_WIN_END_FREQ WX00020000L Single window end frequency WDOUBLE_WIN_START_FREQ WX00020000L WDOUBLE_WIN_END_FREQ WX00020000L WDOUBLE_WIN_END_FREQ WX00020000L WAX_PEAKS_FOR_SORT MAX_PEAKS_FOR_SORT MAX_PEAKS_PRELIM 7 Maximum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks (final) MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PERLIM_CANDS CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for single window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG X00000000L Number of frequency MAX_MAX_PEAKB MAX_PECAMS_FINAL MAX_PECAMS_FINAL MAX_PECAMS_FUNC_LOOP_LIM_SNG X0000000L Maximum number of peaks (final) MAX_PECAMS_FUNC_LOOP_LIM_SNG X0000000L Maximum number of peaks (preliminary candidates (pitch) Create Piecewise function loop limit for single window			
MIN_PITCH_FREQ 52 Minimum pitch frequency in Hz HIGHPASS_CUTOFF_FREQ 300 Highpass cut-off frequency in Hz Number of fractions in the frations table wshort_Win_START_FREQ 0x00C80000L Short window start frequency wshort_Win_End_FreQ 0x01A40000 Short window end frequency wshort_Win_START_FREQ 0x00B40000L Single window start frequency wsingle_Win_START_FREQ 0x00D20000L Single window end frequency wsingle_Win_START_FREQ 0x00D20000L Single window end frequency wsingle_win_START_FREQ 0x00D20000L Single window end frequency wdow end frequency wdx_DEAKS_FOR_SORT 30 Maximum number of local maxima on the spectrum MAX_PEAKS_PELIM 70 Maximum number of peaks (preliminary) MIN_PEAKS 71 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks MAX_PEAKS_FINAL 40 Maximum number of peaks MAX_PELIM_CANDS CREATE_PIECEWISE_FUNC_LOOP_LIM_SH CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG Create Piecewise function loop limit for single window			
HIGHPASS_CUTOFF_FREQ 300 Highpass cut-off frequency in Hz NO_OF_FRACS 77 Number of fractions in the frations table WSHORT_WIN_START_FREQ 0x00C80000L WSHORT_WIN_END_FREQ 0x01A40000 Short window start frequency WSINGLE_WIN_START_FREQ 0x00640000L Single window start frequency WSINGLE_WIN_START_FREQ 0x00640000L Single window start frequency WSINGLE_WIN_END_FREQ 0x00340000 Double window end frequency WDOUBLE_WIN_START_FREQ 0x00340000 Double window start frequency WDOUBLE_WIN_END_FREQ 0x00780000L Double window end frequency WAX_LOCAL_MAXIMA_ON_SPECTRUM 70 Maximum number of local maxima on the spectrum MAX_PEAKS_PRELIM 7 Maximum number peaks for sorting MAX_PEAKS_PRELIM 7 Maximum number of peaks MAX_PEAKS_PRELIM 7 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks MAX_PEALS_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
NO_OF_FRACS WSHORT_WIN_START_FREQ 0x00C80000L Short window start frequency WSHORT_WIN_END_FREQ 0x01A40000 Short window end frequency Short window end frequency WSINGLE_WIN_START_FREQ 0x00B40000L Single window end frequency WSINGLE_WIN_START_FREQ 0x00D20000L Single window end frequency WDOUBLE_WIN_START_FREQ 0x00340000 Double window end frequency WDOUBLE_WIN_END_FREQ 0x00780000L Double window end frequency WDOUBLE_WIN_END_FREQ 0x00780000L Double window end frequency MAX_LOCAL_MAXIMA_ON_SPECTRUM 70 Maximum number of local maxima on the spectrum MAX_PEAKS_FOR_SORT 30 Maximum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PRELIM_CANDS 4 Maximum number of preliminary candidates (pitch) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
WSHORT_WIN_START_FREQ WSHORT_WIN_END_FREQ WSHORT_WIN_END_FREQ WSHORT_WIN_END_FREQ WSHORT_WIN_END_FREQ WSOMADOWNOL WSINGLE_WIN_START_FREQ WSOMADOWNOL WSHOEL_WIN_START_FREQ WSOMADOWNOL WDOUBLE_WIN_START_FREQ WSOMADOWNOL WDOUBLE_WIN_START_FREQ WSOMADOWNOL WDOUBLE_WIN_END_FREQ WSOMADOWNOL Double window start frequency WAX_LOCAL_MAXIMA_ON_SPECTRUM MAX_PEAKS_FOR_SORT MAX_PEAKS_PRELIM TO Maximum number of local maxima on the spectrum MAX_PEAKS_PRELIM TO Maximum number of peaks (preliminary) MIN_PEAKS TO Minimum number of peaks (final) MAX_PEAKS_FINAL DO MAXIMUM number of peaks (final) MAX_PERLIN_CANDS THE START SHORT WARRING (FINAL) AMAX_MAX_PEAKIS_FUNC_LOOP_LIM_SH DO CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG Single window start frequency WXODC8000L Double window end frequency Maximum number of local maxima on the spectrum Maximum number of local maxima on the spectrum Maximum number of peaks (preliminary) Min_max_peaks_FOR_SORT Minimum number of peaks (preliminary) MIN_PEAKS TO Maximum number of peaks MAX_PEALIN_CANDS Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG Create Piecewise function loop limit for single window			
IwSHORT_WIN_END_FREQ 0x01A40000 Short window end frequency IwSINGLE_WIN_START_FREQ 0x00640000L Single window start frequency IwDOUBLE_WIN_START_FREQ 0x00340000 Double window end frequency IwDOUBLE_WIN_END_FREQ 0x00340000 Double window start frequency IwDOUBLE_WIN_END_FREQ 0x00780000L Double window end frequency MAX_LOCAL_MAXIMA_ON_SPECTRUM 70 Maximum number of local maxima on the spectrum MAX_PEAKS_FOR_SORT 30 Maximum number peaks for sorting MAX_PEAKS_PRELIM 7 Maximum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks (final) MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PRELIM_CANDS 4 Maximum number of peaks (final) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
WSINGLE_WIN_START_FREQ WSINGLE_WIN_END_FREQ 0x000640000L Single window start frequency Single window end frequency WDOUBLE_WIN_START_FREQ 0x00340000 Double window start frequency WDOUBLE_WIN_END_FREQ 0x00780000L Double window end frequency WAX_LOCAL_MAXIMA_ON_SPECTRUM 70 Maximum number of local maxima on the spectrum MAX_PEAKS_FOR_SORT 30 Maximum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PEALIM_CANDS 4 Maximum number of peaks (final) MAX_PELIM_CANDS CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
WSINGLE_WIN_END_FREQ WDOUBLE_WIN_START_FREQ WDOUBLE_WIN_END_FREQ WDOUBLE_WIN_END_FREQ WDOUBLE_WIN_END_FREQ WDOUBLE_WIN_END_FREQ WAX_LOCAL_MAXIMA_ON_SPECTRUM MAX_PEAKS_FOR_SORT WAX_PEAKS_PRELIM MAX_PEAKS_PRELIM MAX_PEAKS_PRELIM MIN_PEAKS MINIMUM number of peaks (preliminary) MIN_PEAKS MAX_PEAKS_FINAL WAX_MAX_PEAKS_FINAL WAX_PEAKS_FINAL WAX_PRELIM_CANDS WAX_PRELIM_CANDS WAX_PEAKS_FINAL WAX_PRELIM_CANDS WAX_PRELIM_CANDS WAX_PEAKS_FINAL WAX_PRELIM_CANDS WAX_PRE			
wDOUBLE_WIN_END_FREQ 0x00780000L Double window end frequency MAX_LOCAL_MAXIMA_ON_SPECTRUM 70 Maximum number of local maxima on the spectrum MAX_PEAKS_FOR_SORT 30 Maximum number peaks for sorting MAX_PEAKS_PRELIM 7 Maximum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PRELIM_CANDS 4 Maximum number of preliminary candidates (pitch) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window	IwSINGLE_WIN_END_FREQ	0x00D20000L	Single window end frequency
MAX_LOCAL_MAXIMA_ON_SPECTRUM 70 Maximum number of local maxima on the spectrum MAX_PEAKS_FOR_SORT 30 Maximum number peaks for sorting MAX_PEAKS_PRELIM 7 Maximum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PELIM_CANDS 4 Maximum number of preliminary candidates (pitch) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
MAX_PEAKS_FOR_SORT 30 Maximum number peaks for sorting MAX_PEAKS_PRELIM 7 Maximum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PELIM_CANDS 4 Maximum number of preliminary candidates (pitch) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
MAX_PEAKS_PRELIM 7 Maximum number of peaks (preliminary) MIN_PEAKS 7 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PRELIM_CANDS 4 Maximum number of preliminary candidates (pitch) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
MIN_PEAKS 7 Minimum number of peaks MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PRELIM_CANDS 4 Maximum number of preliminary candidates (pitch) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
MAX_PEAKS_FINAL 20 Maximum number of peaks (final) MAX_PRELIM_CANDS 4 Maximum number of preliminary candidates (pitch) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG			
MAX_PRELIM_CANDS 4 Maximum number of preliminary candidates (pitch) CREATE_PIECEWISE_FUNC_LOOP_LIM_SH CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG			
CREATE_PIECEWISE_FUNC_LOOP_LIM_SH 20 Create Piecewise function loop limit for short window CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			
CREATE_PIECEWISE_FUNC_LOOP_LIM_SNG 30 Create Piecewise function loop limit for single window			

swSUM_FRACTION	0x799A	Sum fraction
swAMP_FRACTION	0x33F8	Amplitude fraction
MAX_BEST_CANDS	2	Maximum number of best candidates (pitch)
N_OF_BEST_CANDS_SHORT	2	Number of best candidates for short window
N_OF_BEST_CANDS_SINGLE	2	Number of best candidates for single window
N_OF_BEST_CANDS_DOUBLE	2	Number of best candidates for double window
N_OF_BEST_CANDS	6	Number of best candidates for all windows
SIZE_SCRATCH_DOPITCH	1090	Scratch memory size for DoPitch() function (This is the actual size required. The declared size in C simulation is 1632)
SIZE_SCRATCH_ADVPROCESS	825	Scratch memory size for DoAdvProcess() function (This is the actual size required.
		The declared size in C simulation is 1100)
RVC_PITCH_ROM_SIG	11031	Signature for RVC_PITCH_ROM structure
RVC_PITCH_METER_SIG	21053	Signature for RVC_PITCH_METER structure

4.5.2 Description of fixed tables used in the C-code

This section contains a listing of all fixed tables sorted by source file name and table name. All table data is declared as **Word16**.

Table 6a: Fixed tables for AFE

File	Table Name	Length	Description
16kHzProcessing_B.c	table_pow2	33	Table for square root
	LambdaNSEx2	100	Table used to compute first 100 LambdaNSE
	dp02_h	59	MSB of QMF filter coefficients
	dp02_l	43	LSB of QMF filter coefficients
PostProc_B.c	targetLMS16	12	Target for blind equalization
ComCeps_B.c	HalfHamming16	100	Hamming window coefficients
	CosMatrix16	144	Inverse cosinus coefficients at 8Khz (not used at 16khz)
	CosMatrix16_16khz	156	Inverse cosinus coefficients at 16Khz
	pondMelFilter	309	Mel bank coefficients
ff4nrFix16_B.c	tabSin	64	Sine table
	tabCos	64	Cosine table
MathFunc.c	tbInt0	48	Coefficients for computation of square root
ExtNoiseSup_B.c	lambda_1divX	20	Computation of 1/N
	Hann_sh32_hi	100	MSB of hanning window coefficients (32 bits)
	Hann_sh32_lo	100	LSB of hanning window coefficients (32 bits)
	Hann_sh24_hi	100	MSB of hanning window coefficients (24 bits)
	Hann_sh24_lo	100	LSB of hanning window coefficients (24 bits)
	pondMelFilterNoise	157	Mel-frequency scale coefficients (applied to the Wiener filter)
	idctMel16	234	Mel-warped inverse DCT coefficients
	pondMelFilter16k	134	Filter bank coefficients at 16Khz
	M1_LamdaLTE	8	Computation of 1/N
	M1_LambdaNSEx2	100	Computation of 2/N
	M1_LamdaNSE	9	Computation of 1/N
	mInvLambda16	10	Comutation od 2/N

Table 6b: Fixed tables for VQ

File	Table Name	Length	Description
coder_VAD.c	quantizer16kHz_0_1	128	vq table
	quantizer16kHz_2_3	128	vq table
	quantizer16kHz_4_5	128	vq table
	quantizer16kHz_6_7	128	vq table
	quantizer16kHz_8_9	128	vq table
	quantizer16kHz_10_11	64	vq table
	quantizer16kHz_12_13	512	vq table
	quantizer8kHz_0_1	128	vq table
	quantizer8kHz_2_3	128	vq table
	quantizer8kHz_4_5	128	vq table
	quantizer8kHz_6_7	128	vq table
	quantizer8kHz_8_9	128	vq table
	quantizer8kHz_10_11	64	vq table
	quantizer8kHz_12_13	512	vq table
	weight16kHz_c0_shift	1	vq weights
	weight16kHz_c0_norm	1	vq weights
	weight16kHz_logE	1	vq weights
	weight8kHz_c0_shift	1	vq weights
	weight8kHz_c0_norm	1	vq weights
	weight8kHz_logE	1	vq weights
	plwQuantLevels[127]	127*2	vq tables for pitch/class quantization
	ppplwQuantSections[8][3]	24*2	vq tables for pitch/class quantization
	plwQuantLevels[31]	31*2	vq tables for pitch/class quantization
	pplwQuantSections[4][3]	12*2	vq tables for pitch/class quantization
	pswRatioThld_1[4][6]	24	vq tables for pitch/class quantization
	piMultiLevelIndex[4]	4	vq tables for pitch/class quantization
	pswRatioThld_2[4][8]	32	vq tables for pitch/class quantization
	piMultiLevelIndex_2[4]	4	vq tables for pitch/class quantization
	swAlpha1	1	pitch/class constants
	swAlpha2	1	pitch/class constants

Table 6c: Fixed Tables for Extension

File	Table name	Length	Description
ExtNoiseSup_B.c	pswPePower	129	Coefficients to compute the pre-emphasis power spectrum
preProc_B.c	pswHpfCoef	15	High pass filter coefficients
preProc_B.c	pswLpfCoef	15	Low pass filter coefficients
preProc_B.c	pswLfeCoef	3	Low frequency emphasis filter coefficients
dsrAfeVad_B.c	piBurstConst	20	Burst length constants for different SNR's
dsrAfeVad_B.c	piHangConst	20	Hang length constants for different SNR's
dsrAfeVad_B.c	piVADThld	20	VAD voice metric thresholds for different SNR's
dsrAfeVad_B.c	piVMTable	90	Voice metric table as a function of SNR index
dsrAfeVad_B.c	piSigThld	20	Signal threshold table as a function of SNR
dsrAfeVad_B.c	piUpdateThld	20	Update threshold table as a function of SNR
dsrAfeVad_B.c	pswShapeTable	23	Spectral shape correction table
fix_mathlib.c	coeff_sqrt5_58	5	Coefficients for computation of square root
fix_mathlib.c	coeff_sqrt5_78	5	Coefficients for computation of square root
rvc_pitch_init_B.h	ROM_astFrac	312	Fractions table
rvc_pitch_init_B.h	ROM_pstWindowshiftTable	514	Complex exponents table for time shifting in frequency domain
rvc_pitch_init_B.h	ROM_aswDirichletImag	8	Imaginary part of the Dirichlet kernel

4.5.3 Static variables used in the C-code

In this section two tables that specify the static variables for the AFE, VQ, and Extension respectively are shown.

Table 7a: AFE static variables

Struct Name	Variable	Type[Length]	Description
QMF FIR	Variable	Type[Length]	Description
·· _	lengthQMF	Word32	QMF Filter length
	*dp_l	Word16	QMF filter low frequency Coeff
	<u> *dp_h</u> *T	Word16 Word16	QMF filter high frequency Coeff
	T_dec	Word16	Temporary QMF filter buffer Multiplier for T
DataFor16kProc_B			
	FrameLength	Word32	Input Frame length
	FrameShift numFramesInBuffer	Word32 Word32	Shift value for the frame Number of frames in buffer
	SamplingFrequency	Word32	Sampling frequency (8/16)
	Do16kHzProc	BOOLEAN	Flag to enable 16kHz processing
	*hpBands_B	Word32	Buffer for HP bands
	hpBandsSize CodeForBands16k B	Word32 Word32[9]	hpBands_B buffer size HP coding buffer
	bufferCodeForBands16k B	Word32[27]	buffer used for HP coding
	codeWeights_B	Word16[3]	code Weights buffer
	bufferCodeWeights_B	Word16[9]	buffer used for code Weights
	* pQMF_Fir *bufferData16k B	QMF_FIR Word32	Pointer to QMF_FIR structure temporary buffer to carry QMF LP data
	bufData16kSize	Word32	16k data buffer size
	*FirstWindow16k	MelFB_Window	pointer to MeIFB_Window structure
	noiseSE16k_B	Word32[3]	noise spectrul energy variable
	noise_dec BandsForCoding16k_B	Word16 Word32[9]	Multiplier for noiseSE16k_B buffer for storing Bands for Coding
	vadCounter16k	Word32[9]	vad flag counter
	vad16k	Word32	vad flag
	nbSpeechFrames16k	Word32	number of speech frames counter
	hangOver16k	Word32 Word32	hang over used for VAD
	meanEn16k nb frame threshold nse	Word32 Word32	mean Energy variable threshold NSE for frame
	lambda_nse	Word16	lambda NSE variable
	*dataHP_B	Word32	buffer stores QMF HP value
	dec_16k	Word16[5]	Multiplier for dataHP_B buffer
	BFC_dec fb16k dec	Word16[1] Word16[3]	Multiplier for computing bands for coding Buffer is used to store multiplier for current and pervious two frames
PostProcStructX	is reit_acc	TT GIGT G[G]	Sanor to dood to store manipus for carroin and pervisus the manies
	weightLMS	Word32[12]	Current LMS weight
CompCepsStructX	FFTLength	Word32	FFT size
	Do16khzProc	Word16	Flag to enable 16kHz processing
	*pData16k	Word32	Pointer to data for 16Khz processing
WaveProcStructX			
	*TeagerFilter16 *TeagerWindow32	Word32 Word32	Pointer to teager filter Pointer to teager window
	TeagerOnset	Word32	Unused
	FrameLength	Word32	Input frame length
ns_var_F	0	Word16	0
	SampFreq Do16khzProc	Word16	Sampling frequency (8/16) Flag to enable 16kHz processing
	buffers.nbFramesInFirstStage	Word32	number of frames in first stage
	buffers.nbFramesInFirstStage	Word32	number of frames in second stage
	buffers. nbFramesOutSecondStage	Word32	number of frames out og second stage
	buffers. FirstStageIn16Buffer buffers.SecondStageInBuffer32	Word16[180] Word32[180]	First stage buffer Second stage buffer
	buffers. SecondDecalSig	Word16[4]	Shift factor for each sub-frame of second stage buffer
	prevSamples32.lastSampleIn32	Word32	Last input sample of DC offset compensation
	prevSamples32.lastDCOut32	Word16	last output sample of DC offset compensation
	prevSamples32. oldShift spectrum.indexBuffer1	Word16 Word16	Iprevious window shift factor of DC offset compensation Where to enter new PSD for first stage, alternatively 0 and 1
	spectrum.indexBuffer2	Word16	Where to enter new PSD for second stage, alternatively 0 and 1
	spectrum.noiseSE1_32	Word32[65]	Noise spectrum estimate for first stage
	spectrum.noiseSE1_dec	Word16[65]	Shift factor for Noise spectrum estimate (first sage)
	spectrum.noiseSE2_32 spectrum.noiseSE2_dec	Word32[65] Word16[65]	Noise spectrum estimate for second stage Shift factor for Noise spectrum estimate (second sage)
	spectrum.PSDMeanAntBuffer1	Word32[65]	1st stage PSD Mean buffer for precedent frame
	spectrum.nSigSE1Ant_dec	Word16[65]	Shift factor for PSD Mean buffer for precedent frame (1rst stage)
	spectrum.PSDMeanAntBuffer2	Word32[65]	2nd stage PSD Mean bufferfor precedent frame Shift factor for PSD Mean buffer for precedent frame (2nd stage)
	spectrum.nSigSE2Ant_dec spectrum.denSigSE1_32	Word16[65] Word32[65]	Shift factor for PSD Mean buffer for precedent frame (2nd stage) 1st stage PSD Mean buffer
	spectrum. nSigSE1Cur_dec	Word16[65]	Shift factor for PSD Mean buffer (1rst stage)
	spectrum. denSigSE2_32	Word32[65]	2nd stage PSD Mean buffer
	spectrum. nSigSE2Cur_dec	Word16[65]	Shift factor for PSD Mean buffer (2 nd stage) Nubmer of frames (for the 2 stages)
	vad_data_ns_F. nbFrame vad_data_ns_F. flagVAD	Word16[2] Word16	Vad Flag (1 = SPEECH, 0 = NON SPEECH)
	vad_data_ns_F.hangOver	Word16	hangover
	vad_data_ns_F. nbSpeechFrames	Word16	Number of speech frames (used to set hangover)
	vad_data_ns_F.meanEn32 vad_data_ca. flagVAD	Word16	Mean energy for VAD Vad Flag (1 = SPEECH, 0 = NON SPEECH)
	vad_data_ca. flagVAD vad_data_ca.hangOver	Word16 Word16	hangover
	vad_data_ca. nbSpeechFrames	Word16	Number of speech frames (used to set hangover)
	vad_data_ca.meanEn32	Word32	Mean energy for VAD
	vad_data_fd.MelMean	Word16	SpeechQMel (for frame dropping)
	vad_data_fd.VarMean	Word32	SpeechQVar (for frame dropping)

	vad_data_fd.AccTest	Word32	SpeechQSpec (for frame dropping)
	vad_data_fd.AccTest2	Word32	
	vad_data_fd.SpecMean	Word32	SpecMean (for frame dropping)
	vad_data_fd.MelValues	Word16[2]	SpeechQMel (for frame dropping)
	vad_data_fd.SpecValues	Word32	SpeechQSpec (for frame dropping)
	vad_data_fd.SpeechInVADQ	Word16	Flag (for frame dropping)
	vad_data_fd.SpeechInVADQ2	Word16	Flag (for frame dropping)
	gainFact.logDenEn1_32	Word32[3]	Denoise frame energy for gain factorization
	gainFact.lowSNRtrack32	Word32	Low SNR level for gain factorization
	gainFact. alfaGF16	Word16	Wiener filter gain factorization coefficient
VADStructX_F			
	Focus	Word16	Position of circular buffe
	HangOver	Word16	Hangover length
	FlushFocus	Word16	Position in circular buffer when emptying at end
	H_CountDown	Word16	Main hangover countdown
	V_CountDown	Word16	Short hangover countdown
	**OutBuffer	Word32	outBuffer pointer pointer
	*OutBuffer	Word32[7]	outBuffer pointer
	OutBuffer	Word16[7x15]	outBuffer

Table 7b: VQ static variables

Struct Name	Variable	Type [Length]	Description
coder_VAD.c	four_frames[27]	Word16[27]	Previous frames used to build multiframe
	plwQPHistory[3]	Word32[3]	History of Pitch
	IReliableFlag	Word16	Pitch reliability flag

Table 7c: Extension static variables

Struct Name	Variable	Type[Length]	Description
	iFirstFrameFlag	Word16	First frame flag
	pswUBSpeech	Word16[200]	Upper band speech
	pswDownSampledProcSpeech	Word16[75]	Down-sampled processed speech
	IwCritMax	Word32	Maximum power ratio
	iOldPitchPeriod	Word16	Old pitch period value
	iOldFrameNo	Word16	Old frame number
PCORR_STATE_be	s_be		
	lwX1_X1	Word32	X1*X1
	lwZ1_Z1	Word32	Z1*Z1
	lwZ2_Z2	Word32	Z2*Z2
	lwX1_Z1	Word32	X1*Z1
	lwX1_Z2	Word32	X1*Z2
	lwZ1_Z2	Word32	Z1*Z2
	swX1_Sum	Word16	Sum of X1
	swZ1_Sum	Word16	Sum of Z1
	swZ2_Sum	Word16	Sum of Z2
	iBurstConst	Word16	Burst constant
	iBurstCount	Word16	Burst count
	iHangConst	Word16	Hang constant
	iHangCount	Word16	Hang count
	iVADThld	Word16	VAD threshold
	iFrameCount	Word16	Frame count
	iFUpdateFlag	Word16	Forced update flag
	iHysterCount	Word16	Hysteresis count
	iLastUpdateCount	Word16	Last update count
	iSigThId	Word16	Signal threshold
	iUpdateCount	Word16	Update count
	iChanEnrgShift	Word16	Channel energy shift
	iChanNoiseEnrgShift	Word16	Channel noise energy shift
	pswChanEnrg	Word16[23]	Channel energy
	pswChanNoiseEnrg	Word16[23]	Channel noise energy
	swBeta	Word16	Beta value
	swSnr	Word16	SNR value
NormSw	pnsLogSpecEnrgLong		
	swMantissa	Word16[23]	Mantissa
	iShift	Word16[23]	Shift
	swC0	Word16	C0 value
	swC1	Word16	C1 value
	swC2	Word16	C2 value
	pswHpfXState	Word16[6]	High pass filter input state
	pswHpfYState	Word16[12]	High pass filter output state
	pswLpfXState	Word16[6]	Low pass filter input state
	pswLpfYState	Word16[12]	Low pass filter output state
	pswLfeXState	Word16	Low frequency emphasis filter input state
	pswLfeYState	Word16[2]	Low frequency emphasis filter output state

5 File formats

This section describes the file formats used by the AFE, VQ & Extension programs.

5.1 Speech file

Speech files read by the X-AFE and written by the Extension consist of 16-bit words. The byte order depends on the host architecture (e.g. MSByte first on SUN workstations, LSByte first on PCs etc)

Annex A (informative): Change history

Change history							
Date	TSG#	TSG Doc.	CR	Rev	Subject/Comment	Old	New
2004-06	24	SP-040343			Version 6.0.0 approved at 3GPP TSG SA#24	2.0.0	6.0.0
2004-12	26	SP-040837	001	1	Software bug correction: Removal of Basicops simulation of "C" shift operator	6.0.0	6.1.0
2004-12	26	SP-040837	002	1	Software bug correction: Initialization of the variables lwc and i2aScale	6.0.0	6.1.0
2004-12	26	SP-040837	003	1	Software bug correction: Wrong assignment of the variables *piReliableFlag and *pcQPIndex	6.0.0	6.1.0
2004-12	26	SP-040837	004	2	Software bug correction: Use of incorrect variable fRefPeriod instead of iRefPeriod	6.0.0	6.1.0
2004-12	26	SP-040837	005		Add reference to test sequences document	6.0.0	6.1.0

History

Document history						
V6.1.0	December 2004	Publication				