modelpart1

April 24, 2025

0.0.1 Objective:

Build different models and evaluate each one of them using different metrics.

```
[1]: ## import essential libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     from functions_model import *
     from sklearn.linear_model import LogisticRegression
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler
[2]: ## Reading and printing csv file
     df = pd.read_csv("FileModel.csv")
     df.head()
[2]:
        Gender Age
                    Academic Pressure CGPA
                                               Study Satisfaction
                                                                     Degree
          Male
                 33
                                         8.97
                                                                    B.Pharm
                                                                        BSc
     1 Female
                                      2 5.90
                                                                 5
                 24
     2
          Male
                 31
                                      3 7.03
                                                                 5
                                                                         BA
     3 Female
                                                                 2
                 28
                                      3 5.59
                                                                        BCA
     4 Female
                 25
                                      4 8.13
                                                                 3
                                                                     M.Tech
       Have you ever had suicidal thoughts ?
                                               Work/Study Hours
                                                                Financial Stress
     0
                                                               3
                                          Yes
                                                                                 1
     1
                                           No
                                                               3
                                                                                 2
     2
                                           No
                                                               9
                                                                                 1
     3
                                                               4
                                                                                 5
                                          Yes
     4
                                          Yes
       Family History of Mental Illness
                                                      State
                                                             Sleep Duration_encoded
     0
                                      No
                                             Andhra Pradesh
     1
                                     Yes
                                                  Karnataka
                                                                                   1
     2
                                          Jammu and Kashmir
                                                                                   0
                                     Yes
     3
                                     Yes
                                              Uttar Pradesh
                                                                                   3
     4
                                      No
                                                  Rajasthan
                                                                                   1
```

	Dietary	Habits_encoded	Depression
0		2	1
1		1	0
2		2	0
3		1	1
4		1	0

[3]: print(df.dtypes)

Gender	object
Age	int64
Academic Pressure	int64
CGPA	float64
Study Satisfaction	int64
Degree	object
Have you ever had suicidal thoughts ?	object
Work/Study Hours	int64
Financial Stress	int64
Family History of Mental Illness	object
State	object
Sleep Duration_encoded	int64
Dietary Habits_encoded	int64
Depression	int64
dtwne: object	

dtype: object

0.0.2 One Hot Encoding Columns

Columns need to be one hot encoded.

- Gender
- Degree
- Have you ever had suicidal thoughts
- Family History of Mental Illness
- State

```
[4]: df = one_hot_encode_column(df, 'Gender')
    df = one_hot_encode_column(df, 'Degree')
    df = one_hot_encode_column(df, 'Have you ever had suicidal thoughts ?')
    df = one_hot_encode_column(df, 'Family History of Mental Illness')
    df = one_hot_encode_column(df, 'State')
df.head()
```

```
[4]:
             Academic Pressure CGPA
                                      Study Satisfaction
                                                           Work/Study Hours \
        Age
         33
                             5 8.97
     0
                                                        2
                                                                           3
         24
                             2 5.90
                                                        5
                                                                           3
     1
                             3 7.03
     2
                                                        5
                                                                          9
         31
     3
                             3 5.59
                                                        2
                                                                           4
         28
```

4	25 4	8.13	3	1		
	Financial Stress Sleep	Duration_end	coded Dietary Ha	bits_encoded \		
0	1		1	2		
1	2		1	1		
2	1		0	2		
3	5		3	1		
4	1		1	1		
	Depression Gender_Fema	le … State	_Jammu and Kashmi	r State_Karnataka \		
0	1	0		0 0		
1	0	1		0 1		
2	0	0		1 0		
3	1	1		0 0		
4	0	1		0 0		
	State_Madhya Pradesh S	tato Maharash	ntra State Punia	b State_Rajasthan \		
0	0	cace_nanarasi	_	0 0		
1	0			0 0		
2	0			0 0		
3	0			0 0		
4	0			0 1		
_	·		•	· -		
	State_Tamil Nadu State	_Telangana S	State_Uttar Prade	sh State_West Bengal		
0	0	0		0 0		
1	0	0		0 0		
2	0	0		0 0		
3	0	0		1 0		
4	0	0		0 0		
[5	[5 rows x 57 columns]					
	## checking all the datatypes after one hot encoding print(df.dtvpes)					

[]: print(df.dtypes)

Age	int64
Academic Pressure	int64
CGPA	float64
Study Satisfaction	int64
Work/Study Hours	int64
Financial Stress	int64
Sleep Duration_encoded	int64
Dietary Habits_encoded	int64
Depression	int64
Gender_Female	int64
Gender_Male	int64
Degree_'Class 12'	int64
Degree_B.Arch	int64

Degree_B.Com	int64
Degree_B.Ed	int64
Degree_B.Pharm	int64
Degree_B.Tech	int64
Degree_BA	int64
Degree_BBA	int64
Degree_BCA	int64
Degree_BE	int64
Degree_BHM	int64
Degree_BSc	int64
Degree_LLB	int64
Degree_LLM	int64
Degree_M.Com	int64
Degree_M.Ed	int64
Degree_M.Pharm	int64
Degree_M.Tech	int64
Degree_MA	int64
Degree_MBA	int64
Degree_MBBS	int64
Degree_MCA	int64
Degree_MD	int64
Degree_ME	int64
Degree_MHM	int64
Degree_MSc	int64
Degree_PhD	int64
Have you ever had suicidal thoughts ?_No	int64
Have you ever had suicidal thoughts ?_Yes	int64
Family History of Mental Illness_No	int64
Family History of Mental Illness_Yes	int64
State_Andhra Pradesh	int64
State_Bihar	int64
State_Delhi	int64
State_Gujarat	int64
State_Haryana	int64
State_Jammu and Kashmir	int64
State_Karnataka	int64
State_Madhya Pradesh	int64
State_Maharashtra	int64
State_Punjab	int64
State_Rajasthan	int64
State_Tamil Nadu	int64
State_Telangana	int64
State_Uttar Pradesh	int64
State_West Bengal	int64
dtype: object	

0.0.3 Models to be used:

- Logistic Regression
- Decision Tree
- Random Forest
- SVM

0.0.4 Baseline Model

Constructing a baseline model, using Logistic Regression because we have binary target variable.

0.0.5 Logistic Regression

```
[6]: X = df.drop("Depression", axis=1)
y = df["Depression"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, \( \text{\text} \)
\text{\text{\text{-}}} random_state= 42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
model1 = LogisticRegression()

model_evaulate(model1, X_train_scaled, y_train, X_test_scaled, y_test)
```

support	f1-score	recall	precision	
2316	0.80	0.77	0.84	0
3253	0.87	0.89	0.85	1
5569	0.84			accuracy
5569	0.84	0.83	0.84	macro avg
5569	0.84	0.84	0.84	weighted avg

0.0.6 Decision Tree

[7]: from sklearn.tree import DecisionTreeClassifier

[8]: model2 = DecisionTreeClassifier(criterion= 'gini', random_state=42)
model_evaulate(model2, X_train, y_train, X_test, y_test)

	precision	recall	f1-score	support
0 1	0.73 0.80	0.72 0.81	0.72 0.81	2316 3253
accuracy			0.77	5569
macro avg	0.77	0.76	0.76	5569
weighted avg	0.77	0.77	0.77	5569

0.0.7 Random Forest

[9]: from sklearn.ensemble import RandomForestClassifier
model3 = RandomForestClassifier(random_state=42)
model_evaulate(model3, X_train, y_train, X_test, y_test)

support	f1-score	recall	precision	
2316	0.81	0.78	0.84	0
3253	0.87	0.89	0.85	1
5569	0.84			
5569	0.04			accuracy
5569	0.84	0.83	0.84	macro avg
5569	0.84	0.84	0.84	weighted avg

0.0.8 Hyperparameter Tuning for Random Forest

```
[]: RFC = RandomForestClassifier()
     params = {
         'n_estimators': [100, 300],
         'max_depth': [None, 20, 30],
         'min_samples_split': [2, 5],
         'min_samples_leaf': [1, 4],
         'max_features': ['sqrt', 0.8],
         'bootstrap': [True],
         'class_weight': ['balanced'],
         'criterion': ['gini', 'entropy']
     }
      ## Using GridSearch
     grid_search = GridSearchCV(
         estimator=RFC,
         param_grid=params,
         cv=5,
```

```
scoring='recall',
n_jobs=-1,
verbose=2
)
```

Finding the best model using best.estimator_ function

• Note: Uncomment the line below to see the best hyperparameters

```
[12]: \begin{tabular}{ll} ##model\_evaulate(grid\_search, X\_train, y\_train, X\_test, y\_test) \\ \hline \end{tabular}
```

0.0.9 Cross Validation:

Cross Validating the data. Trying to improve recall.

Fold Metrics:

[0.88995399 0.88113497 0.89033742 0.87423313 0.88190184]

Average Score:

0.8835122699386504

```
[]: ## Printing each iteration, since the dataset was split into 5 parts crossval_evaluate(RF, X, y)
```

```
Fold 1 Recall: 0.8776
Confusion Matrix:
[[1853 457]
[ 399 2860]]
```

	precision	recall	f1-score	support
0	0.82	0.80	0.81	2310
1	0.86	0.88	0.87	3259
accuracy			0.85	5569
macro avg	0.84	0.84	0.84	5569

weighted avg 0.85 0.85 0.85 5569

Fold 2 Recall: 0.8825

Confusion Matrix:

[[1818 492]

[383 2876]]

	precision	recall	f1-score	support
0	0.83	0.79	0.81	2310
1	0.85	0.88	0.87	3259
accuracy			0.84	5569
macro avg	0.84	0.83	0.84	5569
weighted avg	0.84	0.84	0.84	5569

Fold 3 Recall: 0.8699

Confusion Matrix:

[[1808 502] [424 2835]]

	precision	recall	f1-score	support
0	0.81	0.78	0.80	2310
1	0.85	0.87	0.86	3259
accuracy			0.83	5569
macro avg	0.83	0.83	0.83	5569
weighted avg	0.83	0.83	0.83	5569

Fold 4 Recall: 0.8864

Confusion Matrix:

[[1808 503] [370 2888]]

	precision	recall	f1-score	support
0	0.83	0.78	0.81	2311
1	0.85	0.89	0.87	3258
accuracy			0.84	5569
macro avg	0.84	0.83	0.84	5569
weighted avg	0.84	0.84	0.84	5569

Fold 5 Recall: 0.8849

Confusion Matrix:

[[1814 497] [375 2883]]

	precision	recall	f1-score	support
0	0.83	0.78	0.81	2311
1	0.85	0.88	0.87	3258
accuracy			0.84	5569
macro avg	0.84	0.83	0.84	5569
weighted avg	0.84	0.84	0.84	5569

Cross-Validation Summary

All Fold Recalls: [0.8775698066891685, 0.8824792881251918, 0.869898741945382,

0.8864333947206875, 0.8848987108655617]

Mean Recall: 0.8803
Best Fold Recall: 0.8864
Best Confusion Matrix:

[[1808 503] [370 2888]]