附 表

附表 1 几种常用的概率分布

分 布	参 数	分布律或概率密度	数学期望	方 差
0-1 分布	0 <p<1< td=""><td>$P(X=k) = p^{k} (1-k)^{1-k} k=0,1$</td><td>p</td><td>p(1-p)</td></p<1<>	$P(X=k) = p^{k} (1-k)^{1-k} k=0,1$	p	p(1-p)
二项分布	n≥1 0 <p<1< td=""><td>$P(X=k) = C_n^k p^k (1-k)^{1-k} k = 0, 1, 2, \dots, n$</td><td>np</td><td>np(1-p)</td></p<1<>	$P(X=k) = C_n^k p^k (1-k)^{1-k} k = 0, 1, 2, \dots, n$	np	np(1-p)
泊松分布	λ>0	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$ $k=0,1,2,\dots$	λ	λ
几何分布	0 <p<1< td=""><td>$P(X=k) = p (1-p)^{k-1}$ $k=1,2,\cdots$</td><td>$\frac{1}{p}$</td><td>$\frac{1-p}{p^2}$</td></p<1<>	$P(X=k) = p (1-p)^{k-1}$ $k=1,2,\cdots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
超几何分布	$n;M,N$ $(n \leq N-M)$	$P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$ $k=0,1,2,\cdots,\min(n,M)$	$n\frac{M}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\frac{N-n}{N-1}$
帕斯卡分布	r≥1 0 <p<1< td=""><td>$P(X=k) = C_{k-1}^{r-1} p^r (1-p)^{k-r}$ $k=r, r+1, \dots$</td><td>$\frac{r}{p}$</td><td>$\frac{r(1-p)}{p^2}$</td></p<1<>	$P(X=k) = C_{k-1}^{r-1} p^r (1-p)^{k-r}$ $k=r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
均匀分布	a b	$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$

分 布	参 数	分布律或概率密度	数学期望	方 差
正态分布	μ $\sigma^2(\sigma > 0)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
瑞利分布	σ>0	$f(x) = \begin{cases} \frac{x}{\sigma^2} e^{-x^2} / (2\sigma^2), & x \ge 0\\ 0, & x < 0 \end{cases}$	$\sqrt{\frac{\pi}{2}\sigma}$	$\frac{4-\pi}{2}\sigma^2$
对数正态分布	$\sigma > 0$	$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma x}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, & x \geqslant 0\\ 0, & x < 0 \end{cases}$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$
指数分布	λ>0	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0 \\ 0, & x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Γ分布	$\alpha \geqslant 0$ $\lambda > 0$	$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, & x \geqslant 0\\ 0, & x < 0 \end{cases}$ $f(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{n/2-1} e^{-x/2}, & x \geqslant 0 \end{cases}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
χ² 分布	$n\geqslant 1$	$f(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{n/2-1} e^{-x/2}, & x \ge 0\\ 0, & x < 0 \end{cases}$	n	2 <i>n</i>
柯西分布	$\lambda > 0$	$f(x) = \frac{1}{\pi} \frac{1}{\lambda^2 + (x - \mu)^2}$	不存在	不存在
t 分布	$n\geqslant 1$	$f(x) = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$	0	$\frac{n}{n-2}$ $(n>2)$
β分布	$\alpha \geqslant 0$ $\beta > 0$	$f(x) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
威布尔分布	$\beta \geqslant 0$ $\eta > 0$	$f(x) = \begin{cases} \frac{\beta}{\eta} \left(\frac{x}{\eta}\right)^{\beta-1} e^{-\left(\frac{x}{\eta}\right)^{\beta}}, & 0 < x < 1\\ 0, & \text{if } d \end{cases}$	$\eta\Gamma\left(\frac{1}{\beta}+1\right)$	$r^2\left\{\Gamma\left(\frac{2}{\beta}+1\right)-\left[\Gamma\left(\frac{1}{\beta}+1\right)\right]^2\right\}$
F分布	m,n	$f(x) = \begin{cases} \frac{\Gamma \left[(m+n)/2 \right] m}{\Gamma(m/2)\Gamma(n/2) n} \left(\frac{m}{n} x \right)^{(m+n)/2} \left(1 + \frac{m}{n} x \right)^{-(m+n)/2}, & x > 0\\ 0, & \text{ 其他} \end{cases}$	$\frac{n}{n-2}(n>2)$	$\frac{2n^{2}(m+n-2)}{m(n-2)^{2}(n-4)}$ (n>4)

环

表

附表 2 标准正态分布表

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du = P(X \le x)$$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257.	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0. 9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0. 9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

附表 3 泊松分布表

$$1 - F(x - 1) = \sum_{k=x}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!}$$

x	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$	$\lambda = 0.4$	$\lambda = 0.5$
0	1.0000000	1.0000000	1.0000000	1,0000000	1,000000
1	0.0951623	0, 1812692	0.2591818	0.3296800	0. 323469
2	0.0046788	0.0175231	0.0369363	0.0615519	0.090204
3	0.0001547	0.0011485	0.0035995	0.0079263	0.014388
4	0.0000038	0.0000568	0.0002658	0.0007763	0.001752
5	0.0000001	0.0000023	0.0000158	0.0000612	0.000172
6		0.0000001	0.0000008	0.0000040	0.000014
7				0.0000002	0.000001
x	$\lambda = 0.6$	$\lambda = 0.7$	$\lambda = 0.8$	$\lambda = 0.9$	$\lambda = 1.0$
0	1.000000	1.000000	1.000000	1.000000	1,000000
1	0. 451188	0.503415	0.550671	0.593430	0.632121
2	0. 121901	0. 155805	0. 191208	0. 227518	0. 264241
3	0.023115	0.034142	0.047423	0.062857	0.089301
4	0,003358	0.005753	0.009080	0,013459	0.018988
5	0.000394	0.000786	0.001411	0.002344	0.003660
6	0.000039	0.000090	0.000184	0.000343	0.000594
7	0.000003	0.000009	0.000021	0.000043	0.000083
8		0.000001	0.000002	0. 000005	0.000010
9		× ×			0.000001
x	$\lambda = 1.1$	$\lambda = 1.2$	$\lambda = 1.3$	$\lambda = 1.4$	$\lambda = 1.5$
0	1. 000000	1.000000	1,000000	1.000000	1.000000
1	0.667129	0.698806	0.727468	0.753403	0.776870
2	0.300971	0.337373	0.373177	0.408167	0.442175
3	0.099584	0.120513	0. 142888	0.166502	0. 191153
4	0.025742	0.033769	0.043095	0.053725	0.065642
5	0.005435	0.007746	0,010663	0.014253	0.018576
6	0.000968	0.001500	0.002231	0.003201	0.004456
7	0.000149	0.000251	0.000404	0.000622	0.000926
8	0,000020	0.000037	0.000064	0.000107	0.000170
9	0.000002	0.000005	0.000009	0.000016	0.000028
10		0.000001	0.000001	0.000002	0.000004
11					0.000001

					续表
x	$\lambda = 1.6$	$\lambda = 1.7$	$\lambda = 1.8$	$\lambda = 1.9$	$\lambda = 2.0$
0	1.000000	1.000000	1.000000	1.000000	1.000000
1	0, 798103	0, 817317	0.834701	0.850431	0.864665
2	0. 475069	0.506755	0.537163	0. 566251	0. 593994
3	0. 216642	0, 242777	0. 269379	0. 296280	0. 323324
4	0. 078813	0.093189	0.108708	0. 125298	0. 142877
5	0.023682	0.029615	0.036407	0.044081	0.052653
6	0.006040	0.007999	0,010378	0.013219	0.016564
7	0.001336	0.001875	0.002569	0.003446	0.004534
8	0.000260	0.000388	0.000562	0,000793	0.001097
9	0.000045	0.000072	0.000110	0.000163	0.000237
10	0.000007	0,000012	. 0.000019	0,000030	0,000046
11	0,000001	0.000002	0.000003	0,000005	0.000008
12			and the second	0.000001	0,000001
x	$\lambda = 2.5$	$\lambda = 3.0$	$\lambda = 3.5$	$\lambda = 4.0$	$\lambda = 4.5$
0	1,000000	1,000000	1. 000000	1.000000	1,000000
1	0. 917915	0.950213	0. 969803	0.981684	0.988891
2	0.712703	0.800852	0.864112	0.908422	0.938901
3	0. 456187	0.576810	0. 679153	0.761897	0.826422
4	0, 242424	0, 352768	0, 463367	0.566530	0.657704
5	0.108822	0.184737	0. 274555	0, 371163	0.467869
6	0.042021	0,083918	0. 142386	0. 214870	0. 297070
7	0.014187	0.033509	0.065288	0.110674	0. 168949
8	0.004247	0.011905	0. 026739	0, 051134	0.086586
9	0.001140	0.003803	0.009874	0.021368	0.040257
10	0.000277	0.001102	0,003315	0.008132	0.017093
11	0.000062	0.000292	0.001019	0.002840	0.006669
12	0.000013	0.000071	0.000289	0.000915	0.002404
13	0.000002	0.000016	0.000076	0.000274	0.000805
14	0.000000	0.000003	0,000019	0,000076	0.000252
15	:*	0.000001	0.000004	0.000020	0,000074
16			0.000001	0.000005	0.000020
17				0,000001	0,000005
18					0.000001

						续表
х	$\lambda = 5.0$	$\lambda = 5.5$	$\lambda = 6.0$	$\lambda = 6.5$	$\lambda = 7.0$	$\lambda = 7.5$
0	1.000000	1.000000	1,000000	1.000000	1.000000	1.000000
1	0.993262	0. 995913	0. 997521	0.998497	0. 999088	0. 999447
2	0.959572	0. 973436	0. 982649	0.988724	0. 992705	0. 995299
3	0.875348	0, 911624	0. 938031	0.956964	0.970264	0. 979743
4	0.734974	0.798301	0.848796	0.888150	0. 918235	0. 940855
5	0, 559507	0. 642482	0.714944	0.776328	0. 827008	0.867938
6	0.384039	0.471081	0. 554320	0.630959	0.699292	0.758564
7	0. 237817	0.313964	0. 393697	0.473476	0. 550289	0.621845
8	0. 133372	0. 190515	0. 256020	0.327242	0. 401286	0.475362
9	0.068094	0.105643	0. 152763	0.208427	0. 270909	0.338033
10	0.031828	0.053777	0. 083924	0. 122616	0.169504	0. 223592
11	0.013695	0.025251	0.042621	0.066839	0.098521	0. 137762
12	0.005453	. 0.010988	0.020092	0.033880	0.053350	0.079241
13	0.002019	0.004451	0.008827	0.016027	0.027000	0.042666
14	0.000698	0.001685	0.003628	0.007100	0.012811	0.021565
15	0.000226	0.000599	0.001400	0.002956	0.005717	0.010260
16	0.000069	0.000200	0.000509	0.001160	0.002407	0.004608
17	0.000020	0.000063	0.000175	0.000430	0.000958	0.001959
18	0.000005	0.000019	0: 000057	0.000151	0,000362	0.000790
19	0.000001	0.000005	0.000018	0.000051	0.000130	0.000303
20		0.000001	0.000005	0.000016	0.000044	0.000111
21			0.000001	0.000005	0.000014	0.000039
22				0.000001	0,00005	0.000013
23					0.000001	0.000004
24						0,000001
х	$\lambda = 8.0$	$\lambda = 8.5$	$\lambda = 9.0$	$\lambda = 9.5$	$\lambda = 10, 0$	
0	1.000000	1.000000	1.000000	1.000000	1,000000	
1	0.999665	0. 999797	0.999877	0.999925	0. 999955	- 1
2	0,996981	0.998067	0.998766	0.999214	0.999501	
3	0.986246	0. 990717	0.993768	0. 995836	0.997231	
4	0.957620	0, 969891	0.978774	0, 985140	0.989664	
5	0.900368	0. 925636	0. 945036	0. 959737	0. 970747	

						续表
х	$\lambda = 8.0$	$\lambda = 8.5$	$\lambda = 9.0$	$\lambda = 9.5$	$\lambda = 10.0$	
6	0.808764	0.850403	0, 884310	0. 911472	0. 932914	
7	0. 686626	0.743822	0. 793219	0.835051	0.869859	
8	0.547039	0. 614403	0.676103	0. 731337	0.779779	
9	0. 407453	0. 476895	0.544347	0.608177	0.667180	
10	0, 283376	0.347026	0. 412592	0. 478174	0.542070	
11	0. 184114	0. 236638	0. 294012	0. 354672	0.416960	
12	0. 111924	0. 151338	0. 196992	0. 248010	0.303224	
13	0.063797	0.090917	0, 124227	0. 163570	0. 208444	
14	0.034181	0.051411	0.73851	0. 101864	0. 135536	
15	0. 017257	0.027425	0.041466	0.059992	0. 083458	
16	0.008231	0.013833	0, 022036	0.033473	0.048740	
17	0.003718	0.006613	0.011106	0,017727	0.027042	
18	0.001594	0,003002	0,005320	0,008928	0,014278	
19	0.000650	0.001297	0.002426	0.004284	0.007187	
20	0. 000253	0,000535	0,001056	0.001962	0.003454	
21	0.000094	0,000211	0,000439	0.000859	0.001588	
22	0.000033	0.000079	0,000175	0.000361	0.000700	
23	0.000011	0.000029	0,000069	0.000145	0.000296	
24	0.000004	0.000010	0.000025	0.000056	0.000120	
25	0.000001	0.000003	0.000009	0.000021	0.000047	
26		0.000001	0.000003	0.000007	0.000018	
27			0,000001	0.000003	0.000006	
28			100	0.000001	0.000002	
29					0.000001	

附表 4 t 分 布 表

 $P \{T_n > t_\alpha(n)\} = \alpha$

n	$\alpha = 0.25$	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.025$	$\alpha = 0.01$	$\alpha = 0.005$
1	1.0000	3. 0777	6. 3138	12. 7062	31. 8207	63.6574
2	0.8165	1. 8856	2. 9200	4.3027	6.9646	9. 9248
3	0.7649	1. 6377	2. 3534	3. 1824	4.5407	5.8409
4	0.7407	1.5332	2. 1318	2.7764	3.7469	4.6041
5	0.7267	1. 4759	2.0150	2. 5706	3. 3649	4. 0322
6	0.7176	1. 4398	1.9432	2.4469	3. 1427	3.7074
7	0.7111	1. 4149	1.8946	2. 3646	2. 9980	3. 4995
8	0.7064	1.3968	1.8595	2.3060	2. 8965	3. 3554
9	0.7027	1.3830	1.8331	2. 2622	2, 8214	3. 2498
10	0.6998	1. 3722	1.8125	2. 2281	2.7638	3. 1693
11	0.6974	1.3634	1. 7959	2. 2010	2.7181	3. 1058
12	0.6955	1.3562	1.7823	2. 1788	2.6810	3. 0545
13	0.6938	1.3502	1.7709	2. 1604	2, 6503	3.0123
14	0.6924	1.3450	1.7613	2. 1448	2. 6245	2. 9768
15	0.6912	1.3406	1. 7531	2. 1315	2. 6025	2. 9467
16	0.6901	1.3368	1.7459	2. 1199	2. 5835	2. 9208
17	0. 6892	1. 3334	1.7396	2. 1098	2. 5669	2. 8982
18	0.6884	1. 3304	1. 7341	2. 1009	2.5524	2. 8784
19	0.6876	1. 3277	1. 7291	2.0930	2.5395	2.8609
20	0.6870	1. 3253	1.7247	2. 0860	2. 5280	2. 8453
21	0.6864	1. 3232	1.7207	2.0796	2.5177	2. 8314
22	0.6858	1. 3212	1.7171	2. 0739	2. 5083	2. 8188
23	0.6853	1.3195	1.7139	2.0687	2. 4999	2. 8073
24	0.6848	1.3178	1.7109	2.0639	2. 4922	2. 7969
25	0.6844	1. 3163	1.7081	2.0595	2, 4851	2.7874

						续表
n	$\alpha = 0.25$	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.025$	$\alpha = 0.01$	α=0.005
26	0.6840	1.3150	1.7058	2. 0555	2. 4786	2.7787
27	0. 6837	1. 3137	1. 7033	2.0518	2. 4727	2.7707
28	0.6834	1. 3125	1.7011	2.0484	2. 4671	2. 7633
29	0.6830	1. 3114	1.6991	2. 0452	2. 4620	2.7564
30	0. 6828	1.3104	1. 6973	2. 0423	2. 4573	2. 7500
31	0. 6825	1. 3095	1. 6955	2. 0395	2. 4528	2.7440
32	0.6822	1.3086	1.6939	2.0369	2. 4487	2. 7385
33	0.6820	1.3077	1.6924	2.0345	2.4448	2.7333
34	0.6818	1.3070	1.6909	2.0322	2. 4411	2.7284
35	0.6816	1.3062	1. 6896	2.0301	2. 4377	2. 7238
36	0.6814	1.3055	1. 6883	2.0281	2. 4345	2. 7195
37	0.6812	1.3049	1. 6871	2.0262	2. 4314	2.7154
38	0.6810	1.3042	1. 6860	2. 0244	2. 4286	2. 7116
39	0.6808	1.3036	1. 6849	2.0227	2. 4258	2.7079
40	0.6807	1.3031	1.6839	2.0211	2, 4233	2. 7045
41	0.6805	1. 3025	1. 6829	2. 0195	2. 4208	2.7012
42	0.6804	1. 3020	1. 6820	2. 0181	2. 4185	2.6981
43	0.6802	1. 3016	1. 6811	2. 0167	2. 4163	2.6951
44	0.6801	1. 3011	1. 6802	2. 0154	2. 4141	2. 6923
45	0.6800	1.3006	1.6794	2.0141	2, 4121	2,6806

附表 5 χ²分布表

 $P\left\{\chi_n^2 > \chi_\alpha^2(n)\right\} = \alpha$

\overline{n}	$\alpha = 0.995$	0.99	0.975	0.95	0.90	0.75	$\alpha = 0.25$	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	0.102	1.323	2.706	3.841	5,024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	0.575	2.773	4.605	5. 991	7. 378	9. 210	10. 597
3	0.072	0.115	0.216	0.352	0.584	1. 213	4.108	6.251	7.815	9.348	11. 345	12. 838
4	0. 207	0.297	0.484	0.711	1.064	1.923	5.385	7.779	9.488	11. 143	13. 277	14.860
5	0.412	0.554	0.831	1.145	1.610	2. 675	6.626	9. 236	11.071	12. 833	15.086	16. 750
6	0.676	0.872	1. 237	1.635	2. 204	3. 455	7.841	10.645	12. 592	14. 449	16.812	18. 548
7	0.989	1.239	1.690	2. 167	2.833	4. 255	9.037	12.017	14.067	16.013	18. 475	20. 278
8	1.344	1.646	2. 180	2.733	3.490	5.071	10.219	13. 362	15.507	17. 535	20.090	21. 955
9	1.735	2.088	2.700	3. 325	4.168	5.899	11.389	14.684	16.919	19.023	21.666	23. 589
10	2. 156	2.558	3. 247	3.940	4.865	6.737	12.549	15. 987	18. 307	20. 483	23. 209	25. 188
11	2, 603	3.053	3.816	4.575	5. 578	7.584	13.701	17. 275	19.675	21.920	24. 725	26. 757
12	3.074	3.571	4.404	5. 226	6.304	8. 438	14.845	18.549	21.026	23. 337	26. 217	28. 299
13	3. 565	4.107	5.009	5.892	7.042	9. 299	15.984	19.812	22. 362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	10. 165	17.117	21.064	23. 685	26. 119	29. 141	31. 319
15	4.601	5. 229	6. 262	7.261	8. 547	11.037	18. 245	22.307	24. 996	27. 488	30. 578	32. 801
16	5. 142	5.812	6.908	7.962	9.312	11. 912	19.369	23. 542	26. 296	28. 845	32.000	34. 267
17	5. 697	6.408	7. 564	8.672	10.085	12. 792	20. 489	24. 769	27. 587	30. 191	33.409	35. 718
18	6. 265	7.015	8. 231	9.390	10.865	13, 675	21.605	25. 989	28. 869	31. 526	34. 805	37. 156
19	6.884	7.633	8.907	10. 117	11.651	14.562	22.718	27. 204	30.144	32. 852	36. 191	38, 582
20	7.434	8. 260	9.591	10.851	12. 443	15. 452	23. 828	28. 412	31.410	34.170	37. 566	39.997

图

												续表
n	$\alpha = 0.995$	0.99	0.975	0.95	0.90	0.75	$\alpha = 0.25$	0.10	0, 05	0, 025	0.01	0.005
21	8.034	8. 897	10. 283	11.591	13. 240	16.344	24. 935	29.615	32.671	35. 479	38. 932	41.401
22	8. 643	9.542	10.982	12. 338	14.042	17.240	26.039	30.813	33.924	36. 781	40. 289	42. 796
23	9. 260	10.196	11.689	13.091	14.848	18. 137	27. 141	32.007	35. 172	38.076	41.638	44. 181
24	9.886	10.856	12.401	13.848	15.659	19.037	28. 241	33. 196	36.415	39. 364	42.980	45. 559
25	10.520	11.524	13.120	14.611	16. 473	19. 939	29. 339	34. 382	37.652	40.646	44. 314	46. 928
26	11.160	12. 198	13. 844	15. 379	17.292	20.843	30. 435	35. 563	38. 885	41.923	45.642	48. 290
27	11.808	12, 879	14. 573	16. 151	18. 114	21.749	31. 528	36.741	40.113	43. 194	46.963	49.645
28	12.461	13.565	15. 308	16.928	18. 939	22.657	32,620	37.916	41. 337	44.461	48. 278	50. 993
29	13. 121	14. 257	16.047	17.708	19.768	23. 567	33.711	39.087	42. 557	45. 722	49.588	52, 336
30	13. 787	14. 954	16.791	18. 493	20. 599	24. 478	34.800	40. 256	43. 773	46, 979	50. 892	53. 672
31	14. 458	15. 655	17. 539	19. 281	21. 431	25. 390	35. 887	41.422	44.985	48. 232	52. 191	55.003
32	15. 131	16.362	18. 291	20.072	22. 271	26.304	36.973	42.585	46.194	49, 480	53. 486	56. 328
33	15.815	17.074	19.047	20.867	23.110	27.219	38.053	43.745	47.400	50.725	54. 776	57.648
34	16.501	17.789	19.806	21.664	23.952	28. 136	39. 141	44.903	48.602	51.966	56.061	58.964
35	17. 192	18.509	20.569	22. 465	24.797	29.054	40. 223	46.059	49.802	53. 203	57. 342	60. 275
36	17.887	19. 233	21. 336	23, 269	25.643	29.973	41.304	47. 212	50.998	54. 437	58. 619	61.581
37	18. 586	19.960	22. 106	24.075	26.492	30.893	42.383	48.363	52. 192	55.668	59.892	62.883
38	19. 289	20.691	22. 878	24.884	270343	31.815	43.462	49.513	53. 384	56. 896	61.162	64. 181
39	19.996	21.426	23, 654	25.695	28. 196	32. 737	44.539	50.660	54.572	58. 120	62. 428	65. 476
40	20.707	22, 164	24. 433	26.509	29.051	33.660	45.616	51.805	55. 758	59, 342	63. 691	66.766
41	21. 421	22. 906	25. 215	27. 326	29. 907	34. 585	46.692	52.949	56. 942	60.561	64. 950	68.053
42	22. 138	23.650	25. 999	28. 144	30.765	35.510	47.766	54.090	58. 124	61.777	66. 206	69. 336
43	22. 859	24.398	26. 785	28. 965	31.625	36. 436	48, 840	55. 230	59.304	62, 990	67.459	70.606
44	23. 584	25. 148	27.575	29.787	32. 487	37. 363	49.913	56. 369	60.481	64.201	68.710	71.893
45	24. 311	25. 901	28. 366	30.612	33, 350	38. 291	50.985	57.505	61.656	65.410	69.957	73. 166

附表6 F分布表

$$P\{F>F_a(n_1,n_2)\}=\alpha$$

 $\alpha = 0.10$

n_1 n_2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	39.86	49.50	53. 59	55. 83	57. 24	58. 20	58. 91	59.44	59.86	60.19	60.71	61. 22	61.74	62.00	62. 26	62.53	62.79	63.06	63.33
2	8.53	9.00	9.16	9. 24	9. 29	9. 33	9.35	9. 37	9. 38	9.39	9.41	9.42	9.44	9.45	9.46	9.47	9.47	9.48	9.49
3	5.54	5.46	5. 39	5. 34	5. 31	5. 28	5. 27	5. 25	5.24	5. 23	5. 22	5. 20	5. 18	5. 18	5.17	5.16	5. 15	5.14	5. 13
4	4.54	4.32	4. 19	4. 11	4.05	4.01	3. 98	3.95	3.94	3.92	3.90	3. 87	3.84	3. 83	3.82	3.80	3.79	3.78	3.76
5	4.06	3.78	3.62	3. 52	3. 45	3. 40	3. 37	3.34	3. 32	3. 30	3. 27	3. 24	3. 21	3. 19	3. 17	3.16	3. 14	3. 12	3.10
6	3. 78	3. 46	3. 29	3. 18	3. 11	3. 05	3.01	2. 98	2.96	2. 94	2.90	2, 87	2.84	2. 82	2.80	2.78	2.76	2.74	2.72
7	3.59	3, 26	3.07	2.96	2.88	2.83	2.78	2.75	2.72	2.70	2.67	2, 63	2.59	2.58	2.56	2.54	2.51	2.49	2.47
8	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2, 56	2.54	2.50	2.46	2.42	2.40	2. 38	2.36	2.34	2. 32	2, 29
9	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2. 47	2.44	2.42	2. 38	2. 34	2.30	2. 28	2. 25	2. 23	2. 21	2. 18	2.16
10	3. 29	2.92	2.73	2.61	2. 52	2. 46	2. 41	2. 38	2.35	2. 32	2. 28	2. 24	2. 20	2.18	2. 16	2. 13	2. 11	2.08	2.06
11	3. 23	2.86	2.66	2.54	2. 45	2. 39	2.34	2.30	2, 27	2, 25	2. 21	2. 17	2. 12	2. 10	2.08	2.05	2.03	2.00	1.97
12	3. 18	2.81	2.61	2.48	2.39	2. 33	2.28	2. 24	2.21	2.19	2. 15	2. 10	2.06	2.04	2.01	1.99	1.96	1.93	1.90
13	3. 14	2.76	2.56	2.43	2. 35	2. 28	2. 23	2. 20	2.16	2. 14	2. 10	2.05	2.01	1.98	1.96	1.93	1.90	1.88	1.85
14	3.10	2.73	2.52	2.39	2. 31	2. 24	2. 19	2.15	2.12	2. 10	2.05	2.01	1.96	1.94	1.91	1.89	1.86	1.83	1.80
15	3.07	2.70	2.49	2.36	2. 27	2. 21	2.16	2.12	2.09	2.06	2.02	1.97	1.92	1.90	1.87	1.85	1.82	1.79	1.76

-	-()	170

									u v.										
n_2 n_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
16	3.05	2. 67	2.46	2. 33	2. 24	2. 18	2. 13	2.09	2.06	2.03	1.99	1.94	1. 89	1.87	1.84	1.81	1.78	1.75	1.72
17	3. 03	2.64	2.44	2.31	2. 22	2. 15	2.10	2.06	2.03	2.00	1.96	1.91	1.86	1.84	1.81	1.78	1.75	1.72	1.69
18	3.01	2.62	2. 42	2. 29	2. 20	2. 13	2.08	2.04	2.00	1.98	1.93	1.89	1.84	1.81	1.78	1.75	1.72	1.69	1.66
19	2.99	2.61	2.40	2. 27	2. 18	2. 11	2.06	2.02	1.98	1.96	1.91	1.86	1.81	1.79	1.76	1.73	1.70	1.67	1.63
20	2.97	2.59	2. 38	2. 25	2.16	2.09	2.04	2.00	1.96	1.94	1.89	1.84	1.79	1.77	1.74	1.71	1.68	1.64	1.61
21	2.96	2.57	2. 36	2. 23	2. 14	2.08	2.02	1.98	1, 95	1.92	1.87	1.83	1.78	1.75	1.72	1.69	1.66	1.62	1.59
22	2. 95	2.56	2.35	2. 22	2. 13	2.06	2.01	1.97	1.93	1.90	1.86	1.81	1.76	1.73	1.70	1.67	1.64	1.60	1.57
23	2.94	2.55	2. 34	2. 21	2. 11	2.05	1. 99	1.95	1.92	1.89	1.84	1.80	1.74	1.72	1.69	1.66	1.62	1.59	1.55
24	2. 93	2.54	2. 33	2. 19	2.10	2.04	1.98	1.94	1.91	1.88	1.83	1.78	1.73	1.70	1.67	1.64	1.61	1.57	1.53
25	2. 92	2. 53	2. 32	2. 18	2.09	2.02	1.97	1.93	1.89	1.87	1.82	1.77	1.72	1.69	1.66	1.63	1.59	1.56	1.52
26	2. 91	2.52	2. 31	2. 17	2. 08	2.01	1.96	1.92	1.88	1.86	1.81	1.76	1.71	1.68	1.65	1.61	1.58	1.54	1.50
27	2. 90	2. 51	2.30	2. 17	2.07	2.00	1. 95	1.91	1.87	1.85	1.80	1. 75	1.70	1.67	1.64	1.60	1.57	1.53	1.49
28	2.89	2.50	2. 29	2. 16	2.06	2.00	1.94	1.90	1.87	1.84	1.79	1.74	1.69	1.66	1.63	1.59	1.56	1.52	1.48
29	2. 89	2.50	2. 28	2. 15	2.06	1.99	1. 93	1.89	1.86	1.83	1.78	1.73	1.68	1.65	1.62	1.58	1.55	1.51	1.47
30	2. 88	2.49	2. 28	2.14	2.05	1.98	1. 93	1.88	1.85	1.82	1.77	1.72	1.67	1.64	1.61	1.57	1.54	1.50	1.46
40	2.84	2.44	2. 23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.71	1.66	1.61	1.57	1.54	1.51	1.47	1.42	1.38
60	2.79	2.39	2. 18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.66	1.60	1, 54	1.51	1.48	1.44	1.40	1.35	1.29
120	2.75	2. 35	2. 13	1.99	1.90	1.82	1.77	1.72	1.68	1.65	1.60	1.55	1.48	1.45	1.41	1. 37	1.32	1. 26	1. 19
00	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60	1.55	1.49	1.42	1.38	1. 34	1.30	1.24	1. 17	1.00

																		-^-	
n_1 n_2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161.4	199.5	215. 7	224.6	230. 2	234.0	236.8	238. 9	240.5	241.9	243.9	245. 9	248.0	249. 1	250. 1	251. 1	252. 2	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	10.13	9.55	9. 28	9. 12	9.01	8.94	8.89	8, 85	8.81	8.79	8.74	8.70	8.66	8.64	8. 62	8. 59	8. 57	8.55	8. 53
4	7.71	6. 94	6.59	6. 39	6. 26	6, 16	6.09	6.04	6.00	5.96	5. 91	5.86	5.80	5. 77	5. 75	5.72	5.69	5.66	5. 63
5	6.61	5.79	5.41	5. 19	5. 05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4. 56	4.53	4.50	4.46	4. 43	4.40	4.36
6	5. 99	5. 14	4.76	4.53	4. 39	4. 28	4. 21	4.15	4.10	4.06	4.00	3. 94	3. 87	3. 84	3. 81	3.77	3.74	3. 70	3. 67
7	5. 59	4.74	4. 35	4. 12	3. 97	3. 87	3. 79	3. 73	3. 68	3.64	3. 57	3. 51	3. 44	3. 41	3. 38	3. 34	3. 30	3. 27	3. 23
8	5. 32	4.46	4.07	3. 84	3.69	3.58	3.50	3. 44	3. 39	3. 35	3. 28	3. 22	3. 15	3. 12	3.08	3.04	3.01	2.97	2.93
9	5. 12	4. 26	3. 86	3. 63	3. 48	3. 37	3. 29	3. 23	3. 18	3. 14	3.07	3.01	2.94	2.90	2.86	2. 80	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3. 33	3. 22	3. 14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2. 66	2. 62	2. 58	2. 54
11	4. 84	3.98	3.59	3. 36	3, 20	.3. 09	3.01	2.95	2.90	2. 85	2.79	2. 72	2.65	2. 61	2.57	2. 53	2. 49	2. 45	2.40
12	4.75	3. 89	3.49	3. 26	3. 11	3.00	2.91	2.85	2.80	2.75	2, 69	2.62	2.54	2.51	2.47	2. 43	2. 38	2. 34	2. 30
13	4.67	3. 81	3.41	3. 18	3.03	2. 92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2. 42	2. 38	2. 34	2.30	2. 25	2. 21
14	4.60	3.74	3. 34	3. 11	2.96	2. 85	2. 76	2.70	2.65	2.60	2.53	2.46	2.39	2. 35	2. 31	2. 27	2. 22	2. 18	2. 13
15	4.54	3. 68	3. 29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2. 33	2, 29	2. 25	2. 20	2. 16	2. 11	2.07
16	4.49	3.63	3, 24	3. 01	2. 85	2.74	2.66	2.59	2.54	2. 49	2. 42	2, 35	2, 28	2. 24	2. 19	2. 15	2. 11	2.06	2.01
17	4.45	3. 59	3. 20	2.96	2. 81	2.70	2.61	2.55	2.49	2.45	2.38	2. 31	2. 23	2. 19	2. 15	2. 10	2.06	2.01	1.96
18	4.41	3. 55	3. 16	2. 93	2. 77	2.66	2. 58	2. 51	2.46	2.41	2. 34	2, 27	2. 19	2. 15	2. 11	2,06	2.02	1.97	1.93
19	4. 38	3. 52	3. 13	2.90	2.74	2. 63	2.54	2. 48	2. 42	2. 38	2. 31	2. 23	2. 16	2. 11	2.07	2.03	1.98	1.93	1.88
20	4. 35	3. 49	3. 10	2.87	2.71	2.60	2.51	2. 45	2. 39	2. 35	2. 28	2. 20	2. 12	2.08	2.04	1.99	1.95	1.90	1.84

n_2 n_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
21	4.32	3. 47	3.07	2.84	2.68	2.57	2.49	2. 42	2.37	2. 32	2. 25	2. 18	2. 10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2. 46	2.40	2. 34	2.30	2. 23	.2. 15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3. 42	3.03	2.80	2.64	2, 53	2, 44	2. 37	2.32	2. 27	2. 20	2. 13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3. 40	3.01	2. 78	2. 62	2. 51	2. 42	2.36	2.30	2. 25	2. 18	2. 11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4. 24	3. 39	2.99	2.76	2.60	2.49	2. 40	2. 34	2. 28	2. 24	2. 16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4. 23	3. 37	2. 98	2. 74	2.59	2. 47	2. 39	2. 32	2. 27	2. 22	2. 15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3. 35	2.96	2. 73	2.57	2.46	2. 37	2.31	2. 25	2, 20	2. 13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2. 45	2.36	2. 29	2. 24	2.19	2. 12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3. 33	2.93	2.70	2.55	2.43	2. 35	2. 28	2. 22	2.18	2.10	2.03	1.94	190	1.85	1.81	1.75	1.70	1.64
30	4.17	3. 32	2. 92	2.69	2. 53	2. 42	2. 33	2. 27	2. 21	2. 16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3, 23	2.84	2. 61	2. 45	2. 34	2. 25	2. 18	2. 12	2.08	2.00	1. 92	1.84	1.79	1.74	1.69	1.64	1.53	1.51
60	4.00	3. 15	2.76	2.53	2. 37	2. 25	2. 17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3. 07	2. 68	2. 45	2. 29	2. 17	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1. 35	1. 25
∞	3.84	3.00	2.60	2. 37	2. 21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1. 32	1. 22	1.00

n		25

n_2 n_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	647.8	799.5	864.2	899.6	921.8	937.1	943. 2	956. 7	963. 3	968. 6	976.7	984. 9	993. 1	997. 2	1001	1006	1010	1014	1018
2	38. 51	39.00	39.17	39. 25	39.30	39. 33	39.36	39. 37	39. 39	39.40	39. 41	39.43	39. 45	39. 46	39.46	39. 47	39. 48	39.49	39.50
3	17.44	16.04	15. 44	15. 10	14.88	14. 73	14.62	14.54	14. 47	14.42	14. 34	14. 25	14.17	14. 12	14.08	14.04	13.99	13.95	13.90
4	12. 22	10.65	9.98	9.60	9.36	9. 20	9.07	8. 98	8. 90	8.84	8.75	8. 66	8.56	8. 51	8. 46	8.41	8.36	8.31	8. 26
5	10.01	8. 43	7. 76	7. 39	7. 15	6.98	6.85	6.76	6. 68	6.62	6.52	6. 43	6.33	6. 28	6. 23	6.18	6. 12	6.07	6.02
6	8. 81	7. 26	6.60	6. 23	5.99	5. 82	5.70	5. 60	5. 52	5. 46	5. 37	5. 27	5. 17	5. 12	5.07	5.01	4.96	4.90	4. 85
7	8. 07	6.54	5. 89	5. 52	5. 29	5. 12	4.99	4.90	4. 82	4.76	4. 67	4.57	4.47	4. 42	4.36	4.31	4. 25	4. 20	4. 14
8	7. 57	6.06	5. 42	5.05	4. 82	4.65	4.53	4. 43	4.36	4.30	4. 20	4. 10	4.00	3. 95	3. 89	3.84	3. 78	3. 73	3. 67
9	7. 21	5. 71	5. 08	4.72	4. 48	4. 23	4. 20	4.10	4.03	3. 96	3. 87	3. 77	3. 67	3. 61	3. 56	3.51	3. 45	3. 39	3. 33
10	6.94	5.46	4, 83	4.47	4. 24	4.07	3. 95	3. 85	3. 78	3, 72	3. 62	3.52	3. 42	3. 37	3. 31	3. 26	3. 20	3. 14	3.08
11	6.72	5. 26	4.63	4. 28	4.04	3. 88	3. 76	3.66	3.59	3. 53	3. 43	3. 33	3. 23	3. 17	3. 12	3.06	3.00	2.94	2. 88
12	6.55	5. 10	4. 47	4. 12	3. 89	3. 73	3.61	3. 51	3. 44	3. 37	3. 28	3. 18	3.07	3.02	2.96	2.91	2.85	2.79	2.72
13	6. 41	4. 97	4. 35	4.00	3. 77	3.60	3. 48	3. 39	3. 31	3. 25	3. 15	3, 05	2.95	2. 89	2.84	2.78	2. 72	2.66	2.60
14	6.30	4.86	4. 24	3, 89	3. 66	3.50	3. 38	3. 29	3. 21	3. 15	3. 05	2. 95	2.84	2.79	2. 73	2. 67	2.61	2. 55	2.49
15	6. 20	4.77	4.15	3.80	3.58	3.41	3. 29	3. 20	3. 12	3.06	2.96	2.86	2.76	2. 70	2. 64	2.59	2. 52	2.46	2.40
16	6. 12	4.69	4.08	3. 73	3.50	3. 34	3. 22	3. 12	3.05	2.99	2.89	2.79	2. 68	2. 63	2.57	2.51	2. 45	2. 38	2. 32
17	6.04	4.62	4.01	3. 66	3. 44	3. 28	3. 16	3.06	2. 98	2.92	2. 82	2. 72	2.62	2.56	2.50	2.44	2.38	2. 32	2. 25
18	5. 98	4.56	3. 95	3. 61	3. 38	3. 22	3. 10	3.01	2. 93	2. 87	2. 77	2.67	2, 56	2.50	2. 44	2. 38	2. 32	2. 26	2. 19
19	5. 92	4.51	3.90	3. 56	3. 33	3. 17	3.05	2.96	2. 88	2. 82	2.72	2.62	2.51	2, 45	2. 39	2. 33	2. 27	2.20	2. 13
20	5. 87	4.46	3. 86	3.51	3. 29	3. 13	3.01	2. 91	2, 84	2.77	2. 68	2.57	2.46	2. 41	2. 35	2. 29	2. 22	2. 16	2.09

统表

2. 11 | 2. 05 | 1. 98 | 1. 91 | 1. 83

2.03 | 1.96 | 1.89 | 1.81

2.01 | 1.94 | 1.87 | 1.79

1.88 | 1.80 | 1.72 | 1.64

1.74 | 1.67 | 1.58 | 1.48

1.61 | 1.53 | 1.43 | 1.31

1. 48 | 1. 39 | 1. 27 | 1. 00

2. 17

2.15

2.14

2.01

1.88

1.76

1.64

2.09

2.07

1.94

1.82

1.69

1.57

2.23

2.21

2.20

2.07

1.94

1.82

1.71

									α -0.0	123								一大	n
n_2 n_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	000
21	5. 83	4.42	3. 82	3.48	3. 25	3.09	2. 97	2. 87	2.80	2. 73	2. 64	2. 53	2. 42	2. 37	2. 31	2. 25	2. 18	2. 11	2.04
22	5. 79	4. 38	3. 78	3.44	3. 22	3.05	2. 93	2. 84	2.76	2.70	2.60	2.50	2.39	2. 33	2. 27	2. 21	2. 14	2.08	2.00
23	5.75	4. 35	3. 75	3.41	3. 18	3.02	2.90	2. 81	2. 73	2.67	2.57	2. 47	2. 36	2. 30	2. 24	2.18	2. 11	2.04	1.97
24	5.72	4. 32	3.72	3. 38	3. 15	2. 99	2. 87	2. 78	2.70	2. 64	2.54	2. 44	2. 33	2. 27	2. 21	2. 15	2.08	2.01	1.94
25	5. 69	4.20	3. 69	3. 35	3. 13	2. 97	2. 85	2. 75	2. 68	2. 61	2. 51	2. 41	2. 30	2. 24	2.18	2. 12	2.05	1.98	1.91
26	5.66	4. 27	3. 67	3. 33	3. 10	2. 94	2. 82	2. 73	2. 65	2. 59	2. 49	2. 39	2. 28	2. 22	2, 16	2.09	2.03	1. 95	1.88
27	5.63	4. 24	3. 65	3. 31	3.08	2.92	2, 80	2.71	2.63	2.57	2. 47	2. 36	2. 25	2. 19	2. 13	2.07	2.00	1.93	1.85

2.61

2.59

2.57

2.45

2.33

2.22

2.11

2.69

2.67

2.65

2.53

2.41

2.30

2.19

28

29

30

40

60

120

 ∞

5.61

5.59

5.57

5.42

5.29

5.15

5.02

4.22

4.20

4.18

4.05

3.93

3.80

3.69

3.63

3.61

3.59

3.46

3.34

3.23

3.12

3.29

3.27

3.25

3.13

3.01

2.89

2.79

3.06

3.04

3.03

2.90

2.79

2.67

2.57

2.90

2.88

2.87

2.74

2.63

2.52

2.41

2.78

2.76

2.75

2.62

2.51

2.39

2.29

2.45

2.43

2.41

2.29

2.17

2.05

1.94

2.34

2.32

2.31

2.18

2.06

1.94

1.83

2.55

2.53

2.51

2.39

2.27

2.16

2.05

-=0.025

																		-^	
n_1 n_2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	4052	5000	5403	5625	5764	5859	5928	5982	6022	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2	98.50	99.00	99.17	99. 25	99.30	99.33	99.36	99.37	99.39	99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	99.50
3	34. 12	30.82	29.46	28.71	28. 24	27.91	27.67	27.49	27.35	27. 23	27.05	26.87	26.69	26.60	26.50	26.41	26. 32	26. 22	26. 13
4	21. 20	18.00	16.69	15.98	15. 52	15. 21	14.98	14.80	14.66	14, 55	14.37	14.20	14.02	13.93	13.84	13. 75	13.65	13.56	13. 46
5	16.26	13. 37	12.06	11.39	10.97	10.67	10.46	10. 29	10.16	10.05	9.89	9.72	9. 55	9.47	9. 38	9. 29	9. 20	9. 11	9.02
6	13. 75	10.92	9. 78	9.15	8. 75	8. 47	8. 26	8. 10	7.98	7.87	7. 72	7.56	7.40	7. 31	7. 23	7.14	7.06	6.97	6.88
7	12. 25	9.55	8. 45	7.85	7.46	7. 19	6. 99	6.84	6.72	6.62	6. 47	6.31	6.16	6.07	5. 99	5. 91	5.82	5. 74	5.65
8	11. 26	8.65	7. 59	7.01	6. 63	6.37	6. 18	6.03	5.91	5. 81	5. 67	5. 52	5. 36	5. 28	5. 20	5. 12	5.03	4.95	4.86
9	10.56	8.02	6.99	6. 42	6.06	5.80	5. 61 -	5. 47	5. 35	5. 26	5. 11	4.96	4. 81	4.73	4.65	4.57	4. 48	4.40	4.31
10	10.04	7.56	6. 55	5.99	5.64	5. 39	5. 20	5.06	4.94	4. 85	4.71	4.56	4.41	4. 33	4. 25	4. 17	4.08	4.00	3.91
11	9. 65	7. 21	6. 22	5. 67	5. 32	5.07	4. 89	4. 74	4.63	4.54	4.40	4. 25	4.10	4.02	3. 94	3. 86	3. 78	3.69	3.60
12	9. 33	6. 93	5. 95	5. 41	5.06	4. 82	4.64	4.50	4.39	4.30	4. 16	4.01	3.86	3. 78	3.70	3. 62	3. 54	3. 45	3.36
13	9.07	6.70	5.74	5. 21	4.86	4.62	4.44	4.30	4.19	4.10	3. 96	3. 82	3. 66	3. 59	3. 51	3. 43	3. 34	3. 25	3. 17
14	8. 86	6.51	5. 56	5.04	4. 69	4.46	4. 28	4. 14	4.03	3.94	3.80	3. 66	3. 51	3. 43	3. 35	3, 27	3. 18	3.09	3.00
15	8. 68	6.36	5.42	4.89.	4.56	4. 32	4.14	4.00	3.89	3.80	3.67	3.52	3. 37	3. 29	3. 21	3. 13	3.05	2.96	2.87
16	8. 53	6. 23	5. 29	4. 77	4. 44	4. 20	4.03	3. 89	3. 78	3. 69	3. 55	3. 41	3. 26	3. 18	3. 10	3.02	2. 93	2.84	2.75
17	8. 40	6.11	5. 18	4.67	4. 34	4.10	3, 93	3. 79	3. 68	3. 59	3.46	3. 31	3. 16	3. 08	3.00	2. 92	2. 83	2. 75	2.65
18	8. 29	6.01	5.09	4.58	4. 25	4.01	3.84	3. 71	3.60	3. 51	3. 37	3. 23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	8. 18	5. 93	5.01	4.50	4. 17	3. 94	3. 77	3. 63	3. 52	3. 43	3.30	3. 15	3.00	2. 92	2. 84	2. 76	2.67	2.58	2.49
20	8. 10	5. 85	4. 94	4. 43	4.10	3. 87	3. 70	3. 56	3.46	3, 37	3. 23	3. 09	2. 94	2.86	2. 78	2.69	2.61	2. 52	2.42

n_2 n_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	000
21	8. 02	5. 78	4. 87	4. 37	4.04	3. 81	3. 64	3.51	3.40	3. 31	3. 17	3.03	2. 88	2.80	2. 72	2. 64	2. 55	2.46	2. 36
22	7. 95	5. 72	4. 82	4. 31	3. 99	3. 76	3. 59	3. 45	3. 35	3. 26	3. 12	2.98	2. 83	2.75	2. 67	2. 58	2.50	2.40	2. 31
23	7.88	5. 66	4. 76	4. 26	3. 94	3. 71	3. 54	3.41	3. 30	3. 21	3.07	2. 93	2.78	2.70	2. 62	2.54	2. 45	2. 35	2. 26
24	7.82	5. 61	4.72	4. 22	3. 90	3. 67	3.50	3. 36	3. 26	3. 17	3.03	2.89	2.74	2.66	2. 58	2.49	2.40	2. 31	2.21
25	7.77	5. 57	4. 68	4. 18	3.85	3. 63	3. 46	3. 32	3. 22	3. 13	2. 99	2. 85	2.70	2.62	2.54	2. 45	2. 36	2. 27	2. 17
26	7.72	5. 53	4. 64	4. 14	3. 82	3. 59	3. 42	3. 29	3. 18	3.09	2. 96	2. 81	2.66	2. 58	2.50	2. 42	2. 33	2. 23	2. 13
27	7.68	5. 49	4.60	4. 11	3. 78	3.56	3. 39	3. 26	3. 15	3.06	2. 93	2.78	2.63	2.55	2. 47	2. 38	2. 29	2. 20	2. 10
28	7.64	5. 45	4.57	4.07	3.75	3.53	3. 36	3. 23	3. 12	3.03	2. 90	2.75	2.60	2.52	2. 44	2.35	2. 26	2. 17	2.06
29	7.60	5. 42	4.54	4.04	3. 73	3.50	3. 33	3. 20	3.09	3.00	2.87	2.73	2.57	2.49	2.41	2. 33	2. 23	2. 14	2.03
30	7.56	5. 39	4.51	4.02	3.70	3. 47	3. 30	3. 17	3.07	2.98	2. 84	2.70	2. 55	2. 47	2.39	2.30	2. 21	2. 11	2.01
40	7. 31	5. 18	4. 31	3. 83	3. 51	3. 29	3. 12	2.99	2.89	2.80	2.66	2.52	2. 37	2. 29	2. 20	2.11	2.02	1.92	1.80
60	7.08	4.98	4. 13	3. 65	3. 34	3. 12	2. 95	2.82	2.72	2.63	2.50	2. 35	2. 20	2. 12	2.03	1.94	1.84	1.73	1.60
120	6.85	4.79	3. 95	3. 48	3. 17	2.96	2.79	2.66	2.56	2.47	2. 34	2. 19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
∞	6.63	4.61	3. 78	3. 32	3. 02	2.80	2.64	2.51	2.41	2. 32	2. 18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00

α=	0.	005
_	_	_

n_1 n_2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	16211	20000	21615	22500	23056	23437	23715	23925	24091	24224	24426	24630	24836	24940	25044	25148	25253	25359	25465
2	198.5	199.0	199.2	199. 2	199.3	199.3	199.4	199.4	199. 4	199.4	199.4	199.4	199.4	199.5	199.5	199.5	199.5	199.5	199.5
3	55.55	49.80	47.47	46. 19	45.39	44.84	44. 43	44. 13	43.88	43.69	43.39	43.08	42.78	42.62	42.47	42.31	42.15	41.99	41.83
4	31.33	26. 28	24. 26	23. 15	22.46	21.97	21.62	21.35	21.14	20.97	20.70	20.44	20.17	20.03	19.89	19.75	19.61	19.47	19.32
5	22.78	18. 31	16.53	15.56	14.94	14.51	14. 20	13.96	13.77	13.62	13.38	13. 15	12.90	12. 78	12.66	12.53	12.40	12. 27	12. 14
6	18. 63	14. 54	12.92	12.03	11.46	11.07	10.79	10.57	10.39	10.25	10.03	9.81	9.59	9.47	9.36	9. 24	9. 12	9.00	8.88
7	16. 24	12.40	10.88	10.05	9. 52	9.16	8. 89	8. 68	8. 51	8. 38	8. 18	7. 97	7. 75	7. 65	7. 53	7.42	7. 31	7. 19	7.08
8	14.69	11.04	9. 60	8. 81	8. 30	7. 95	7.69	7.50	7. 34	7. 21	7.01	6.81	6.61	6.50	6.40	6. 29	6. 18	6.06	5.95
9	13.61	10.11	8. 72	7.96	7.47	7.13	6. 88	6.69	6. 54	6. 42	6. 23	6.03	5. 83	5.73	5. 62	5. 52	5.41	5.30	5. 19
10	12.83	9. 43	8. 08	7. 34	6. 87	6.54	6.30	6. 12	5. 97	5. 85	5. 66	5. 47	5. 27	5. 17	5.07	4.97	4.86	4.75	4.64
11	12. 23	8. 91	7.60	6.88	6. 42	6. 10	5. 86	5. 68	5.54	5. 42	5. 24	5.05	4.86	4.76	4.65	4.55	4. 44	4. 34	4. 23
12	11. 75	8.51	7. 23	6.52	6.07	5. 76	5. 52	5. 35	5. 20	5.09	4. 91	4.72	4. 53	4.43	4. 33	4. 23	4. 12	4.01	3. 90
13	11. 37	8. 19	6. 93	6. 23	5. 79	5. 48	5. 25	5.08	4.94	4.82	4. 64	4. 46	4. 27	4.17	4.07	3.97	3. 87	3.76	3. 65
14	11.06	7.92	6. 68	6.00	5. 56	5. 26	5. 03	4.86	4.72	4, 60	4. 43	4. 25	4.06	3.96	3. 86	3.76	3.66	3. 55	3. 44
15	10.80	7.70	6. 48	5. 80	5. 37	5.07	4.85	4. 67	4. 54	4, 42	4. 25	4.07	3. 88	3. 79	3.69	3.58	3. 48	3. 37	3. 26
16	10.58	7.51	6.30	5. 64	5. 21	4.91	4.69	4. 52	4. 38	4. 27	4.10	3. 92	3. 73	3.64	3. 54	3. 44	3. 33	3. 22	3. 11
17	10.38	7.35	6. 16	5. 50	5.07	4.78	4.56	4. 39	4. 25	4. 14	3. 97	3. 79	3. 61	3.51	3. 41	3. 321	3. 21	3. 10	2. 98
18	10.22	7.21	6.03	5. 37	4. 96	4.66	4.44	4. 28	4. 14	4.03	3. 86	3. 68	3. 50	3.40	3. 30	3. 20	3. 10	2.99	2. 87
19	10.07	7.019	5. 92	5. 27	4. 85	4.56	4.34	4. 18	4.04	3. 93	3. 76	3. 59	3. 40	3. 31	3. 21	3. 11	3.00	2. 89	2. 78
20	9.94	6.99	5. 82	5. 17	4. 76	4.47	4.26	4.09	3. 96	3.85	3. 68	3. 50	3. 32	3. 22	3. 12	3.02	2.92	2.81	2.69

į.
ŧ.

										23.44									
n_2 n_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
21	9.83	6. 89	5. 73	5. 09	4. 68	4.39	4.18	4.01	3.88	3. 77	3.60	3. 43	3. 24	3. 15	3.05	2.95	2, 84	2.73	2.61
22	9.73	6.81	5. 65	5.02	4. 61	4. 32	4. 11	3. 94	3.81	3. 70	3, 54	.3.36	3. 18	3.08	2.98	2.88	2.77	2.66	2.55
23	9.63	6.73	5. 58	4.95	4.54	4.26	4.05	3. 88	3. 75	3.64	3. 47	3. 30	3. 12	3.02	2.92	2.82	2.71	2.60	2.48
24	9.55	6.66	5. 52	4.89	4.49	4. 20	3. 99	3. 83	3. 69	3.59	3.42	3. 25	3.06	2.97	2.87	2.77	2.66	2.55	2.43
25	9.48	6.60	5.46	4.84	4. 43	4. 15	3. 94	3, 78	3.64	3. 54	3. 37	3. 20	3.01	2. 92	2.82	2.72	2.61	2.50	2.38
26	9.41	6.54	5. 41	4.79	4. 38	4.10	3. 89	3. 73	3.60	3.49	3. 38	3. 15	2.97	2. 87	2. 77	2.67	2.56	2. 45	2. 33
27	9.34	6. 49	5. 36	4.74	4. 34	4.06	3. 85	3. 69	3. 56	3. 45	3. 28	3. 11	2. 93	2.83	2.73	2.63	2.52	2.41	2. 29
28	9. 28	6. 44	5. 32	4.70	4.30	4.02	3. 81	3, 65	3. 52	3.41	3, 25	3.07	2. 89	2. 79	2.69	2.59	2.48	2. 37	2. 25
29	9. 23	6.40	5. 28	4.66	4. 26	3. 98	3. 77	3. 61	3. 48	3. 38	3. 21	3.04	2.86	2: 76	2.66	2.56	2.45	2. 33	2. 21
30	9.18	6.35	5. 24	4.62	4. 23	3. 95	3. 74	3.58	3. 45	3. 34	3. 18	3.01	2. 82	2, 73	2.63	2. 52	2.42	2.30	2.18
40	8.83	6.07	4. 98	4. 37	3.99	3.71	3, 51	3. 35	3. 22	3. 12	2. 95	2.78	2.60	2.50	2.40	2.30	2. 18	2.06	1.93
60	8.49	5. 79	4. 73	4.14	3. 76	3. 49	3. 29	3. 13	3.01	2, 90	2.74	2. 57	2.39	2. 29	2. 19	2.08	1.96	1.82	1.69
120	8. 18	5. 54	4.50	3. 92	3. 55	3. 28	3.09	2. 93	2.81	2. 71	2.54	2. 37	2. 19	2.09	1.98	1.87	1.75	1.61	1.41
∞	7.88	5.30	4. 28	3. 72	3. 35	3.09	2. 90	2.74	2. 62	2. 52	2.36	2. 19	2.00	1.90	1.79	1.67	1.53	1.36	1.00