

Master 1 Informatique Parcours SRS

Final report

Epilepsy seizure detection using multisensors

Abla Errahmane, Tanguy Le Bretton Supervisors : M.Gheryani, O.Salem

May 2019

Summary

1	Introduction			
	1.1	Context	4	
	1.2	About the situation	2	

1 Introduction

1.1 Context

Our project...

1.2 About the situation

Let X1,...Xn independent and identically distributed random variables with a mean μ and a standard deviation σ . We denote $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then the law of $\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$ tends to the reduced central normal law. This is also written: for all a and b real numbers,

where Z is a reduced centered Gaussian variable, $Z \sim \mathcal{N}(0, 1)$

```
Algorithm 1: quantization
```

```
Result: quantized: the data quantized

Data: data: One feature of an activity (a matrix), TS: a threshold quantized \leftarrow [];

for each data_{i,j} in data do

| if data_{i,j} \geq TS or data_{i,j} \leq -TS then
| quantized_{i,j} = 1;
| end
| else
| quantized_{i,j} = 0;
| end
| end
```

$$Z = \frac{X - \mu}{\sigma}$$

Algorithm 2: CUMSUM

```
Result: A boolean if there is an abrupt changing

Data: X: a Gaussian distribution, TS: a threshold, \omega: a weight

n=0;

S_n=0;

while S_n < TS do

| if n==length(X) then
| return false;
| end
| S_n=max(0,S_n+X-\omega);
| n=n+1;
| end
| return true;
```