COMPUTER FUNDAMENTALS

कंप्यूटर की बुनियादी बातें

Metals being used to build Hardware Components

हार्डवेयर घटकों के निर्माण में प्रयुक्त धातुएँ

AGENDA | कार्यसूची

Why Metals?

Classification by Usage in Hardware

- 1. Conductive Elements (Used in PCBs, Processors, Circuits)
- 2. Structural/Mechanical Parts (Frames, Heat Sinks, Casings)
- 3. Magnetic Storage Components
- 4. Soldering and Circuit Connections
- 5. Rare and Specialty Metals (Advanced/High-End Devices)
- Example Breakdown: CPU Manufacturing
- Key Notes:

धातुएँ क्यों?

हाईवेयर में उपयोग के आधार पर वर्गीकरण

- ा. चालक तत्व (पीसीबी, प्रोसेसर, सर्किट में प्रयुक्त)
- 2. संरचनात्मक/यांत्रिक भाग (फ्रेम, हीट सिंक, केसिंग)
- 3. चुंबकीय भंडारण घटक
- ४. सोल्डरिंग और सर्किट कनेक्शन
- ५. दुर्लभ और विशिष्ट धातुएँ (उन्नत/उच्च-स्तरीय उपकरण)
- 💡 मुख्य नोट्स:
- 🥒 उदाहरण विश्लेषण: सीपीयू निर्माण

WHY METALS | धातुएँ क्यों

- Metals are essential in hardware manufacturing because of their:
 - High electrical conductivity (for circuits)
 - Thermal conductivity (for heat dissipation)
 - Strength and durability (for structural parts)
 - Malleability and corrosion resistance

- हार्डवेयर निर्माण में धातुएँ निम्नलिखित कारणों से आवश्यक हैं:
 - उच्च विद्युत चालकता (सर्किट के लिए)
 - तापीय चालकता (ताप अपव्यय के लिए)
 - मज़बूती और टिकाऊपन (संरचनात्मक भागों के लिए)
 - आघातवर्ध्यता और संक्षारण प्रतिरोध

1. Conductive Elements (Used in PCBs, Processors, Circuits)

Metal	Use Case	Why It's Used
Copper (Cu)	Wires, PCBs (printed circuit boards), internal connections	Excellent conductor of electricity
Gold (Au)	CPU pins, connectors, RAM contacts, USB ports	Corrosion-resistant, great conductivity
Silver (Ag)	High-end PCBs, sensitive signal paths	Best conductor of electricity
Aluminium (Al)	Some cheaper PCBs, wiring	Lightweight and cost-effective
Tantalum (Ta)	Capacitors in motherboards, GPUs	High capacitance in small volume

1. प्रवाहकीय तत्व (पीसीबी, प्रोसेसर, सर्किट में प्रयुक्त)

धातु	उदाहरण	इसका उपयोग क्यों किया जाता है
तांबा (Cu)	तार, पीसीबी (मुद्रित सर्किट बोर्ड), आंतरिक कनेक्शन	बिजली का उत्कृष्ट कंडक्टर
गोल्ड (Au)	सीपीयू पिन, कनेक्टर, रैम संपर्क, यूएसबी पोर्ट	संक्षारण प्रतिरोधी, महान चालकता
सिल्वर (Ag)	उच्च अंत पीसीबी, संवेदनशील संकेत पथ	बिजली का सबसे अच्छा कंडक्टर
एल्यूमिनियम (अल)	कुछ सस्ते पीसीबी, वायरिंग	हल्के और लागत प्रभावी
टैंटलम (ता)	मदरबोर्ड, GPU में कैपेसिटर	छोटी मात्रा में उच्च धारिता

2. Structural/Mechanical Parts (Frames, Heat Sinks, Casings)

Metal	Use Case	Why It's Used
Aluminum (Al)	Laptop body, heat sinks, HDD casing	Lightweight, corrosion-resistant, good heat conductor
Steel (Fe + Alloy)	Computer case, support frames	Strong and durable
Magnesium (Mg)	Laptop body, internal chassis	Lightweight and strong
Titanium (Ti)	Military-grade laptops, premium devices	High strength-to-weight ratio, corrosion- resistant

2. संरचनात्मक/यांत्रिक भागों (फ्रेम, गर्मी सिंक, आवरण)

धातु	उपयोग	इसका उपयोग क्यों किया जाता है
एल्यूमिनियम (अल)	लैपटॉप बॉडी, हीट सिंक, HDD केस	हल्के, संक्षारण प्रतिरोधी, अच्छा गर्मी कंडक्टर
स्टील (Fe + मिश्र धातु)	कंप्यूटर केस, समर्थन फ्रेम	मजबूत और टिकाऊ
मैग्नीशियम (मिलीग्राम)	लैपटॉप बॉडी, आंतरिक चेसिस	हल्का और मजबूत
टाइटेनियम (Ti)	सैन्य-ग्रेड लैपटॉप, प्रीमियम डिवाइस	उच्च शक्ति-से-वजन अनुपात, संक्षारण प्रतिरोधी

3. Magnetic Storage Components

Metal/Alloy	Use Case	Why It's Used
Iron (Fe)	Hard disk platters (ferromagnetic)	Stores magnetic bits
Nickel (Ni)	Magnetic layers, alloys	Ferromagnetic, corrosion-resistant
Cobalt (Co)	High-density magnetic storage	Enhances magnetization and stability
Metal/Alloy	Use Case	Why It's Used
Iron (Fe)	Hard disk platters (ferromagnetic)	Stores magnetic bits

3. चुंबकीय भंडारण घटक

धातु/मिश्र धातु	उपयोग	इसका उपयोग क्यों किया जाता है
लोहा (Fe)	हार्ड डिस्क प्लैटर्स (फेरोमैग्नेटिक)	चुंबकीय बिट्स स्टोर करता है
निकेल (नी)	चुंबकीय परतें, मिश्र धातु	फेरोमैग्नेटिक, संक्षारण प्रतिरोधी
कोबाल्ट (सह)	उच्च घनत्व चुंबकीय भंडारण	चुंबकीयकरण और स्थिरता को बढ़ाता है
धातु/मिश्र धातु	उपयोग का मामला	इसका उपयोग क्यों किया जाता है
लोहा (Fe)	हार्ड डिस्क प्लैटर्स (फेरोमैग्नेटिक)	चुंबकीय बिट्स स्टोर करता है

4. Soldering and Circuit Connections

Metal/Alloy	Use Case	Why It's Used
Tin (Sn)	Solder (with lead or silver)	Bonds components on PCB
Lead (Pb) (less used today)	Solder (older devices)	Easy to melt and flow
Bismuth (Bi)	Lead-free solder	Environmentally friendly option

4. सोल्डरिंग और सर्किट कनेक्शन

धातु/मिश्र धातु	उपयोग	इसका उपयोग क्यों किया जाता है
ਟਿਰ (Sn)	मिलाप (सीसा या चांदी के साथ)	पीसीबी पर बांड घटक
लीड (Pb) (आज कम उपयोग किया जाता है)	मिलाप (पुराने डिवाइस)	पिघलने और प्रवाह करने में आसान
बिस्मथ (Bi)	सीसा रहित मिलाप	पर्यावरण के अनुकूल विकल्प

5. Rare and Specialty Metals (Advanced/High-End Devices)

Metal	Use Case	Why It's Used
Gallium (Ga)	Transistors in CPUs (GaN tech)	High-speed switching
Indium (In)	Touchscreens, LCDs, semiconductors	Transparent and conductive
Germanium (Ge)	High-frequency circuits, transistors	Semiconductor with fast switching
Ruthenium (Ru)	Magnetic RAM, chip interconnects	Stable, durable in nanoscale circuits

5. दुर्लभ और विशेषता धातु (उन्नत/उच्च अंत उपकरण)

धातु	उपयोग	इसका उपयोग क्यों किया जाता है
गैलियम (Ga)	CPU में ट्रांजिस्टर (GaN तकनीक)	हाई-स्पीड स्विचिंग
इण्डियम (In)	टचस्क्रीन, एलसीडी, अर्धचालक	पारदर्शी और प्रवाहकीय
जर्मेनियम (Ge)	उच्च आवृत्ति सर्किट, ट्रांजिस्टर	तेजी से स्विचिंग के साथ अर्धचालक
 हथेनियम (Ru)	चुंबकीय रैम, चिप इंटरकनेक्ट	नैनोस्केल सर्किट में स्थिर, टिकाऊ

Example Breakdown: CPU Manufacturing

Component	Metal Used	Reason
Internal Wiring	Copper	Conductivity
Contact Pins	Gold-Plated	Prevents oxidation
Die Material	Silicon (non-metal, but conductive)	Base of semiconductor
Solder Balls (BGA)	Tin-Silver alloy	Secure electrical connection
Heat Spreader	Aluminum or Copper	Heat dissipation

🥓 उदाहरण ब्रेकडाउन: सीपीयू विनिर्माण

घटक	प्रयुक्त धातु	कारण
आंतरिक वायरिंग	ताम्र	चालकता
पिन से संपर्क	सोना मढ़वाया	ऑक्सीकरण को रोकता है
सामग्री	सिलिकॉन (गैर-धातु, लेकिन प्रवाहकीय)	अर्धचालक का आधार
सोल्डर बॉल्स (BGA)	टिन-सिल्वर मिश्र धातु	सुरक्षित विद्युत कनेक्शन
हीट स्प्रेडर	एल्यूमीनियम या कॉपर	गर्मी लंपटता

🦞 KEY NOTES | प्रमुख बिंदु

- ❖ Gold and silver are expensive, so often only used in small amounts (contacts, edges, pins).
- ❖ Copper is king in most circuitry due to its cost-efficiency and high conductivity.
- * Aluminum dominates structural and thermal roles.
- ❖ Lead is phased out in modern electronics due to environmental concerns (RoHS compliance).
- 💠 सोना और चांदी महंगे हैं, इसलिए अक्सर केवल छोटी मात्रा (संपर्क, किनारों, पिन) में उपयोग किया जाता है।
- ❖ कॉपर अपनी लागत-दक्षता और उच्च चालकता के कारण अधिकांश सिकंटरी में राजा है।
- एल्यूमीनियम संरचनात्मक और थर्मल भूमिकाओं पर हावी है।
- ❖ पर्यावरणीय चिंताओं (RoHS अनुपालन) के कारण आधुनिक इलेक्ट्रॉनिक्स में सीसा चरणबद्ध है।

THANK YOU

Laxman Krishnamurti
laxmankrishnamurti@outlook.com
8252764932, 9508981101