Universidad Torcuato Di Tella Maestrías en Economía y en Econometría

Exámen Final de Econometría 12 de diciembre de 2023

Nombre y Apellido					
	Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Total
Nota					

Importante: Valores críticos para utilizar en el exámen: $t(5\%) = \pm 2$, F(5%) = 8.66, $\chi^2(5\%) = 6$.

Definiciones: $Var(\cdot)$ indica varianza y $Cov(\cdot, \cdot)$ indica covarianza

- 1. (25 puntos) Considere el siguiente modelo: $y = X\beta + \epsilon$ donde se satisfacen los supuestos de linealidad, los regresores son fijos, no singularidad, varianza de los errores esférica y normalidad de ϵ . Sea Z una variable instrumental exógena para X. Defina $q = \hat{\beta}_{MCC} \hat{\beta}_{VI}$
 - (a) ¿Cuál es la esperanza matemática de q?
 - (b) Calcule la covarianza entre $\hat{\beta}_{MCC}$ y q
 - (c) Use su respuesta al punto anterior para encontrar Var(q) en términos de $Var(\hat{\beta}_{MCC})$ y $Var(\hat{\beta}_{IV})$.
 - (d) Defina el estadístico de contraste para $H_0: \beta_{MCC} \beta_{IV} = 0$.
 - (e) Explique en palabras cual sería la conclusión del contraste del punto anterior si se rechaza la hipótesis nula.
 - (a) cero, porque los dos estimadores son insesgados.
 - (b)

$$E(X'X)^{-1}X'\epsilon[(X'X)^{-1}X'\epsilon - (Z'X)^{-1}Z'\epsilon]'$$

$$= E(X'X)^{-1}X'\epsilon\epsilon'X(X'X)^{-1} - E(X'X)^{-1}X'\epsilon\epsilon'Z(X'Z)^{-1}$$

- (c) IV = MCC q, entonces Var(IV) = Var(MCC) 2Cov(MCC, q) + Var(q) = Var(MCC) + Var(q) tal que Var(q) = Var(IV) Var(MCC).
- (d) $q'[Var(q)]^{-1}q$ se distribuye como una $\chi^2_{\#q}$ donde #q es la dimensión de q.
- (e) La hipótesis nula es que X y ϵ son independientes, tal que MCC y IV son insesgados. La alternativa es que X y ϵ no son independientes y entinces MCC es sesgado mientras que IV es asintóticamente insegado.
- 2. (25 puntos) Suponga que estima por MCC el modelo $y = \beta_0 + \beta_1 x + \beta_2 w + \epsilon$ y obtiene los siguientes resultados: $\hat{\beta}_1 = 4.0$, $\hat{\beta}_2 = 0.2$, $Var(\hat{\beta}_1) = 2.0$, $Var(\hat{\beta}_2) = 0.06$ y $Cov(\hat{\beta}_1, \hat{\beta}_2) = 0.05$. Contraste la hipótesis que β_1 es la inversa de β_2 . Defina las hipótesis, el estadístico de contraste y su distribución muestral y la regla de decisión. Muestre todos sus cálculos. Use un test de Wald para chequear la restricción no lineal $\beta_1\beta_2 1 = 0$. La primera derivada del vector es $(0, \beta_2, \beta_1)'$ evaluada en los estimadores de MCC es (0, 0.2, 4.0)'. La varianza estimada de $\beta_1\beta_2 1$ es 1.12 y el estadístico W es 0.04/1.12 = 0.33.
- 3. (25 puntos) Suponga que el ingreso y se distribuye Pareto con función de densidad: $f(y) = \alpha y^{-(\alpha+1)}$ para $y \ge 1$ y con $\alpha > 1$. Usted tiene una muestra de tamaño N = 100 tomada desde la población de ingresos mayores o iguales a 9,000 pesos (es decir que está muestreando sus observaciones desde una distribución truncada). El promedio del logaritmo natural de los ingresos en su muestra es de 9.62 y $\ln 9000 = 9.10$.
 - (a) ¿Cuál es el estimador de máxima verosimilitud (MV) de α ?
 - (b) ¿Cuál es la varianza del estimador de MV de α ?
 - (c) Contraste la hipótesis nula $H_0: \alpha = 2$ contra la alternativa $H_1: \alpha < 2$.
 - (a) Ajuste la distribución original dividiendo por el area a la derecha de 9000 pata obtener $f(y) = \alpha \, 9000^{\alpha} y^{-(\alpha+1)}$ para $y \geq 9000$. El logaritmo de la función de verosimilitud es: $T \ln \alpha + T \alpha \ln 9000 (\alpha + 1) \sum \ln y$. La primera derivada es $\frac{T}{\alpha} + T \ln 9000 \sum \ln y$ tal que α^{MLE} es $T(\sum \ln y T \ln 9000)^{-1}$. Reemplazando por los valores del ejercicio $\alpha^{\text{MLE}} = 1.94$

- (b) La derivada segunda es $\frac{-T}{\alpha^2}$ tal que la cota de Cramer-Rao es $\frac{\alpha^2}{T}$ dando una varianza de 0.0369.
- (c) el estadístico t es $\frac{0.04}{0.19}=0.3158$ y no se puede rechazar la hipótesis nula a niveles usuales de significación.
- 4. (25 puntos) Se quiere estimar la varianza de los errores, σ^2 , en el modelo de regresión lineal múltiple (se cumplen todos los supuestos listados en el primer ejercicio del exámen) multiplicando una constante θ por la suma de residuos al cuadrado (RSS). Cuenta con N observaciones y K variables explicativas (incluyendo la constante). Encuentre el valor de θ que minimiza el error medio cuadrático de este estimador.

$$\begin{split} & E\theta RSS = \theta\sigma^2(\text{ T-K}) \text{ entonces el sesgo es} = \sigma^2[\theta(T-K)-1]. \text{ Var}(\text{ θRSS}) = 2\theta^2\sigma^4(\text{ T-K}). \\ & \text{Por lo tanto } \text{MSE}(\theta RSS) = \sigma^4[\theta(T-K)-1]^2 + 2\theta^2\sigma^4(\text{ T-K}). \end{split}$$

Minimizando con respecto a θ da 1/(T - K + 2).