Objectives

Section 1: Loading and Preprocess the data

1.1: Preprocess each CSV file

```
In []: #Ignore all warnings
import warnings("ignore")

#Importing the necessary libraries
import pandas as pd
from prettypandas import PrettyPandas
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

Preprocess Trade Indicators - FAOSTAT_data_en_2-22-2024.csv file

```
In [ ]: # Load the dataset
df_trade = pd.read_csv('./Food trade indicators - FAOSTAT_data_en_2-22-2024.csv')
            # Select the columns and rename them
df_trade = df_trade[['Area', 'Item', 'Year', 'Element', 'Value']]
             # Drop rows with any empty values
df_trade = df_trade.dropna()
             # Pivot the table for 'Import Value' and 'Export Value'
df_import = df_trade[df_trade['Element'] == 'Import Value'].pivot_table(
   index=['Area', 'Item', 'Year'],
   values='Value',
   aggfunc='first'
) rename(c] west='Italian', 'Import Value';
             ).rename(columns={'Value': 'Import_Value'}).reset_index()
             df export = df trade[df trade['Element'] == 'Export Value'].pivot_table(
                    index=['Area', 'Item', 'Year'],
values='Value',
aggfunc='first'
             ).rename(columns={'Value': 'Export_Value'}).reset_index()
            # Merge the pivoted DataFrames on 'Area', 'Item', and 'Year'
df_trade_values = pd.merge(df_import, df_export, on=['Area', 'Item', 'Year'], how='inner')
            # Create a new column for 'Year' 3 years ahead
df_trade_values['Year_3_Ahead'] = df_trade_values['Year'] + 3
            # Sort by 'Area', 'Item', 'Year' to ensure chronological order for lag and rolling calculations df_trade_values.sort_values(by=['Area', 'Item', 'Year'], inplace=True)
             # Function to create lag and rolling window features within each group
def create_features(group):
                   create_features(group):
    # Create lag features for 'Export_Value'
group['Export_Value_Lag1'] = group['Export_Value'].shift(1)
group['Export_Value_Lag2'] = group['Export_Value'].shift(2)
group['Export_Value_Lag3'] = group['Export_Value'].shift(3)
                  # Create a 3-year rolling mean for 'Export_Value'
group['Export_Value_Rolling_Mean3'] = group['Export_Value'].rolling(window=3).mean()
              # Apply the function to each group
             df_trade_values = df_trade_values.groupby(['Area', 'Item']).apply(create_features)
             # Drop rows with any NaN values created by the lag and rolling operations
df_trade_values.dropna(inplace=True)
            # Drop unnecessary columns
df_trade_values.drop(['Year_3_Ahead', 'Year_3_Years_Ahead'], axis=1, inplace=True)
            # One-hot encode the 'Item' columns but keep the original column
item_columns = df_trade_values['Item']
df_trade_values = pd_get_dumnies(df_trade_values, columns=['Item'])
df_trade_values['Item'] = item_columns
```

Preprocess Pesticides use - FAOSTAT_data_en_2-27-2024.csv file

```
In []: # Load the dataset
    df_pesticides = pd.read_csv('./Pesticides use - FAOSTAT_data_en_2-27-2024.csv')

# Select the columns
    df_pesticides = df_pesticides[['Area', 'Item', 'Year', 'Element', 'Value']]

# Drop rows with any empty values
    df_pesticides = df_pesticides.dropna()

# Pivot the table

df_pesticides_pivot = df_pesticides.pivot_table(
        index=['Area', 'Year'],
        columns=['Item', 'Element'],
        values='Value',
        aggfunc='first'
).reset_index()

# Join with _
    df_pesticides_pivot.columns = ['_'.join(col).strip() for col in df_pesticides_pivot.columns.values]
    df_pesticides_pivot = df_pesticides_pivot.rename(columns=('Area_': 'Area', 'Year_': 'Year'))

# Rename the columns
    df_pesticides_pivot = df_pesticides_pivot.rename(columns=lambda x: f'Pesticide_{x}' if x not in ['Area', 'Year'] else x)

PrettyPandas(df_pesticides_pivot.head())
```

```
Pesticide_Fungicides Pesticide_Fungicides -
                                                                                                                                   Pesticide_Insecticides -
                                                           Seed Pesticide_Herbicides_Agricultural Pesticide_Insecticides_Agricultural
     Area Year and Bactericides_Agricultural
                                                                                                                                                           (total)_Agricultural
                                         treatments_Agricultural
                                                                                                                                   Treatments_Agricultural
                                    Use
                                                           Use
                                                                                                                                                     Use
0 Albania 2000
                              105.730000
                                                       0.050000
                                                                                       7.990000
                                                                                                                       169.600000
                                                                                                                                                9.010000
                                                                                                                                                                  307.980000
1 Albania 2001
                          108.080000
                                                      0.060000
                                                                                       7.990000
                                                                                                                       174.520000
                                                                                                                                               10.810000
                                                                                                                                                                  319.380000
2 Albania 2002
                                                                                       7.980000
                                                                                                                                               12.610000
                                                                                                                                                                  330.780000
                                                                                       7.980000
                                                                                                                                               14.410000
                                                                                                                                                                342.170000
3 Albania 2003
                           112.770000
                                                                                                                       184.360000
4 Albania 2004
                              115.120000
                                                       0.090000
                                                                                       7.980000
                                                                                                                       189,280000
                                                                                                                                               16.210000
                                                                                                                                                                  353.570000
```

Preprocess Land use - FAOSTAT_data_en_2-22-2024.csv file

```
In []: # Load the dataset
df_land_use = pd.read_csv('./Land use - FAOSTAT_data_en_2-22-2024.csv', low_memory=False)

# Select the columns
df_land_use = df_land_use[['Area', 'Year', 'Item', 'Value']]

# Drop rows with any empty values
df_land_use = df_land_use.dropna()

# Drop rows with 'Item' = 'Country are' and 'Land area'
df_land_use = df_land_use.loc[~df_land_use['Item'].isin(['Country area', 'Land area', 'Agricultural land'])]

# Drop rows with any empty values
df_land_use = df_land_use.dropna()

# Pivot the table to have one row per 'Area' and 'Year' and each 'Item' as a column
df_land_use_pivot = df_land_use.pivot_table(
    index=['Area', 'Year'],
    columns='Item',
    values='Value'
).reset_index()

# Rename the columns
df_land_use_pivot.columns = ['Area', 'Year'] + [f'LandUse_{col}' for col in df_land_use_pivot.columns[2:]]

PrettyPandas(df_land_use_pivot.head())
```

1:	Area	Year	LandUse_Agriculture	LandUse_Agriculture area actually irrigated	LandUse_Arable land	LandUse_Cropland	LandUse_Cropland area actually irrigated	LandUse_Farm buildings and Farmyards	LandUse_Forestry area actually irrigated	LandUse_Land area actually irrigated	LandUse_La area equip for irrigat
	0 Afghanistar	1980	38049.000000	nan	7910.000000	8049.000000	nan	nan	nan	nan	2505.000
	1 Afghanistar	1981	38053.000000	nan	7910.000000	8053.000000	nan	nan	nan	nan	2520.000
	2 Afghanistar	1982	38054.000000	nan	7910.000000	8054.000000	nan	nan	nan	nan	2535.000
	3 Afghanistar	1983	38054.000000	nan	7910.000000	8054.000000	nan	nan	nan	nan	2550.000
	4 Afghanistar	1984	38054.000000	nan	7910.000000	8054.000000	nan	nan	nan	nan	2581.000

Preprocess Land temperature change - FAOSTAT_data_en_2-27-2024.csv

```
In []: # Load the dataset
df_temperature = pd.read_csv('./Land temperature change - FAOSTAT_data_en_2-27-2024.csv')

# Select the columns
df_temperature = df_temperature[['Area', 'Months', 'Year', 'Element', 'Value']]

# Drop rows with any empty values
df_temperature = df_temperature.dropna()

# Filter for 'Temperature change' during the 'Meteorological year'
df_temperature["Element'] == 'Temperature change') &
    (df_temperature["Element"] == 'Meteorological year')
]

# Select relevant columns
df_temperature_annual = df_temperature_annual[['Area', 'Year', 'Value']]

# Rename the columns
df_temperature_annual.rename(columns={'Value': 'TempChange_Annual'}, inplace=True)

PrettyPandas(df_temperature_annual.head())
```

```
| 184 | Afghanistan | 2001 | 0.993000 | 185 | Afghanistan | 2001 | 1.311000 | 186 | Afghanistan | 2002 | 1.365000 | 187 | Afghanistan | 2003 | 0.587000 | 188 | Afghanistan | 2004 | 1.373000 | 188 | Afghanistan | 2004 | 1.373000 | 187 | 1.373000 | 187 | 1.373000 | 187 | 1.373000 | 187 | 1.373000 | 187 | 1.373000 | 187 | 1.373000 | 187 | 1.373000 | 187 | 1.373000 | 187 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.373000 | 1.
```

Preprocess Foreign direct investment - FAOSTAT_data_en_2-27-2024.csv

```
In []: # Load the dataset
df_fdi = pd.read_csv('./Foreign direct investment - FAOSTAT_data_en_2-27-2024.csv')

# Select the columns
df_fdi_relevant = df_fdi[['Area', 'Year', 'Item', 'Value']]

# Drop rows with any empty values
df_fdi_relevant = df_fdi_relevant.dropna()

# Use FDI inflows to agriculture only
df_fdi_agri = df_fdi_relevant[df_fdi_relevant['Item'].str.contains('FDI inflows to Agriculture, Forestry and Fishing')]

# Pivot the table
df_fdi_pivot = df_fdi_agri.pivot_table(
    index=['Area', 'Year'],
    columns='Item',
    values='Value'
).reset_index()

# Rename the columns
df_fdi_pivot.rename(columns=lambda x: f'{x.replace(", ", "_").replace(" ", "_")}' if x not in ['Area', 'Year'] else x, inplace=True)
```

```
# Select the columns
df_food_security = df_food_security[['Area', 'Year', 'Item', 'Value']]
# Filter for relevant 'Item' categories based on the focus of the analysis
rrelevant_items = [

'Prevalence of anemia among women of reproductive age (15-49 years)',
     'Prevalence of low birthweight (percent)',

'Per capita food production variability (constant 2014–2016 thousand int$ per capita)',

'Percent of arable land equipped for irrigation (percent) (3-year average)'
# Drop irrelevant items
df_food_security_relevant = df_food_security['Item'].isin(irrelevant_items)].copy()
# Drop rows with any empty values
df_food_security_relevant = df_food_security_relevant.dropna()
# Convert 'Year' to a string to handle both single years and ranges (e.g., '2000-2002') df_food_security_relevant['Year'] = df_food_security_relevant['Year'].astype(str)
# Split into yearly and 3-year average DataFrames
df_yearly = df_food_security_relevant[~df_food_security_relevant['Year'].str.contains('-')]
df_3year_avg = df_food_security_relevant[df_food_security_relevant['Year'].str.contains('-')]
# Expand 3-year averages into annual values
expanded_rows = []
for _, row in df_3year_avg.iterrows():
    start_year, end_year = map(int, row['Year'].split('-'))
    for year in range(start_year, end_year + 1):
        new_row = row.copy()
        new_row['Year'] = str(year)
        expanded_rows.append(new_row)
df_expanded = pd.DataFrame(expanded_rows)
# Merge expanded 3-year data with yearly data, giving precedence to yearly data
df_combined = pd.concat([df_yearly, df_expanded]).drop_duplicates(subset=['Area', 'Year', 'Item'], keep='first')
df_fsi_combined_pivot = df_combined.pivot_table(
      index=['Area', 'Year'],
columns='Item',
values='Value',
      addfunc='first
).reset_index()
PrettyPandas(df_fsi_combined_pivot.head())
           Area Year FSI_Average_dietary_energy_supply_adequacy_percent_3_year_average FSI_Average_protein_supply_g/cap/day_3_year_average FSI_Cereal_import_dependency_ratio.
                                                                                                        88.000000
                                                                                                                                                                               51.400000
1 Afghanistan 2001
2 Afghanistan 2002
                                                                                                        88 000000
                                                                                                                                                                                51 400000
3 Afghanistan 2003
                                                                                                        89.000000
                                                                                                                                                                               52.100000
```

Preprocess Food balances indicators - FAOSTAT_data_en_2-22-2024.csv

4 Afghanistan 2004

92.000000

54.000000

```
Out[]: Element Item
                                                                  Area Year FoodBalance_Export_Quantity_Alcoholic_Beverages FoodBalance_Export_Quantity_Cereals___Excluding_Beer FoodBalance_Export_Quantity_Fruits_
                                              0 Afghanistan 2010
                                                                                                                                                                                                                                                                                                                0.000000
                                          1 Afghanistan 2011
                                                                                                                                                                                                                                                                                                                0.000000
                                              2 Afghanistan 2012
                                                                                                                                                                                                  nan
                                                                                                                                                                                                                                                                                                                0.000000
                                                                                                                                                                                                                                                                                                                0.000000
                                            3 Afghanistan 2013
                                                                                                                                                                                                 nan
                                              4 Afghanistan 2014
                                                                                                                                                                                      0.000000
                                                                                                                                                                                                                                                                                                                2.000000
                    Preprocess Fertilizers use - FAOSTAT_data_en_2-27-2024.csv
In [ ]: # Load the dataset
df_fertilizers = pd.read_csv('./Fertilizers use - FAOSTAT_data_en_2-27-2024.csv')
                    df_fertilizers_relevant = df_fertilizers[['Area', 'Year', 'Item', 'Value']]
                    # Drop rows with any empty values
df_fertilizers_relevant = df_fertilizers_relevant.dropna()
                    aggfunc='first
).reset_index()
                     # Rename the columns
                    df_fertilizers_pivot.rename(columns=lambda x: f'FertilizerUse_{x.replace(" ", "_").replace(",", "_").replace(",", "_").replace(",", "").replace(",", "").replac
                    PrettyPandas(df_fertilizers_pivot.head())
                                              Area Year FertilizerUse_Ammonia_anhydrous FertilizerUse_Ammonium_nitrate_AN FertilizerUse_Ammonium_sulphate FertilizerUse_Calcium_ammonium_nitrate_CAN_and_
Out[]: Item
                          0 Afghanistan 2002
                                                                                                                                               nan
                                                                                                                                                                                                                               nan
                                                                                                                                                                                                                                                                                                           nan
                    1 Afghanistan 2003
                                                                                                                                              nan
                                                                                                                                                                                                                               nan
                                                                                                                                                                                                                                                                                                           nan
                           2 Afghanistan 2004
                    3 Afghanistan 2005
                           4 Afghanistan 2006
                    Preprocess Exchange rate - FAOSTAT_data_en_2-22-2024.csv
In []: # Load the dataset
                     df_exchange_rates = pd.read_csv('./Exchange rate - FAOSTAT_data_en_2-22-2024.csv')
                     # Select the columns
                    df_exchange_rates = df_exchange_rates[['Area', 'Year', 'Value']]
                     # Drop rows with any empty values
                    df_exchange_rates = df_exchange_rates.dropna()
                   # Group by 'Area' and 'Year' and calculate the mean 'Value'
df_yearly_exchange_rates = df_exchange_rates.groupby(['Area', 'Year'])['Value'].mean().reset_index()
                    df_yearly_exchange_rates.rename(columns={'Value': 'Average_Exchange_Rate'}, inplace=True)
                    PrettyPandas(df_yearly_exchange_rates.head())
                                        Area Year Average_Exchange_Rate
                     0 Afghanistan 1980
                    1 Afghanistan 1981
                                                                                               49.479902
                                                                                                 50.599608
                     2 Afghanistan 1982
                    3 Afghanistan 1983
                                                                                              50.599608
                     4 Afghanistan 1984
                                                                                                 50.599606
                    Preprocess Emissions - FAOSTAT_data_en_2-27-2024.csv
                    df_emissions = pd.read_csv('./Emissions - FAOSTAT_data_en_2-27-2024.csv')
                     # Select the columns
                    df_emissions = df_emissions[['Area', 'Year', 'Element', 'Item', 'Value']]
                         Drop rows with any empty values
                    df_emissions = df_emissions.dropna()
                     # Pivot the table
                   df_emissions_pivot = df_emissions.pivot_table(
   index=['Area', 'Year'],
   columns=['Element', 'Item'],
   values='Value',
   aggfunc='first'
                    ).reset_index()
                    df_emissions_pivot.columns = ['_'.join(col).strip() for col in df_emissions_pivot.columns.values]
                    df_emissions_pivot.columns = ['Area', 'Year'] + [f'Emission_{c.replace(" ", "_").replace("(", "").replace(")", "").replace("-", "_")}'
                                                                                                                                           for c in df emissions pivot.columns[2:]]
                    PrettyPandas(df_emissions_pivot.head())
                                        \label{thm:constraints} Area \quad Year \quad Emission\_Crops\_total\_Emissions\_CH4\_All\_Crops \quad Emission\_Crops\_total\_Emissions\_N2O\_All\_Crops \quad Emission\_Emissions\_CO2\_Cropland\_organic\_soils \quad Emission\_Emission\_Emissions\_CO2\_Cropland\_organic\_soils \quad Emission\_Emission\_Crops\_total\_Emissions\_CO2\_Cropland\_organic\_soils \quad Emission\_Emission\_Crops\_total\_Emissions\_CO2\_Cropland\_organic\_soils \quad Emission\_Emission\_Crops\_total\_EmissionS\_CO2\_Cropland\_organic\_soils \quad Emission\_EmissionS\_CO3\_Cropland\_organic\_soils \quad Emission\_Emission\_EmissionS\_CO3\_Cropland\_organic\_soils \quad Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_Emission\_E
                     0 Afghanistan 2000
                                                                                                                                                     20.847100
                                                                                                                                                                                                                                                                 0.705600
                                                                                                                                                                                                                                                                                                                                                                            0.000000
                    1 Afghanistan 2001
                                                                                                                                                     19.260500
                                                                                                                                                                                                                                                                 0.705400
                                                                                                                                                                                                                                                                                                                                                                            0.000000
```

21.255300

23.701700

30.308900

1.065600

1.311700

2 Afghanistan 2002

3 Afghanistan 2003

4 Afghanistan 2004

0.000000

0.000000

0.000000

Preprocess Crops production indicators - FAOSTAT_data_en_2-22-2024.csv

```
df_crops = pd.read_csv('./Crops production indicators - FAOSTAT_data_en_2-22-2024.csv')
         # Select the columns
df_crops_filtered = df_crops[['Area', 'Year', 'Element', 'Item', 'Value']]
         # Drop rows with any empty values
df_crops_filtered = df_crops_filtered.dropna()
         # Pivot the table
         df_crops_pivoted = df_crops_filtered.pivot_table(index=['Area', 'Year'], columns='Item', values='Value').reset_index()
         # Rename the columns
         df_crops_pivoted = df_crops_pivoted.rename(columns=lambda x: 'CropYield_' + x.replace(', ', '_').replace(', ', '_').replace('(', '').replace(')', '')

if x not in ['Area', 'Year'] else x)
         PrettyPandas(df crops pivoted.head())
Out[]: Item
                    Area Year CropYield_Cereals_primary CropYield_Citrus_Fruit_Total CropYield_Fibre_Crops_Fibre_Equivalent CropYield_Fruit_Primary CropYield_Oilcrops_Cake_Equivalent
                                              8063.000000
            0 Afghanistan 2000
                                                                           71245.000000
                                                                                                                                            76730.000000
                                                                                                                    3990.000000
         1 Afghanistan 2001
                                           10067.000000
                                                                        71417.000000
                                                                                                                                         80268.000000
                                                                                                                                            80174.000000
            2 Afghanistan 2002
                                              16698.000000
                                                                           71477.000000
                                                                                                                    3990.000000
                                                                                                                                                                                 3818.000000
                                          14580.000000
         3 Afghanistan 2003
                                                                       73423.000000
                                                                                                                   3850.000000
                                                                                                                                            82792.000000
                                                                                                                                                                                 3844.000000
            4 Afghanistan 2004
                                             13348.000000
                                                                          78025.000000
                                                                                                                    3843.000000
                                                                                                                                            79157.000000
                                                                                                                                                                                 3951.000000
         Preprocess Consumer prices indicators - FAOSTAT_data_en_2-22-2024.csv
In [ ]: # Load the dataset
         df_consumer_prices = pd.read_csv('./Consumer prices indicators - FAOSTAT_data_en_2-22-2024.csv')
        # Select the columns
df_consumer_prices = df_consumer_prices[['Area', 'Year', 'Item', 'Value']]
         # Drop rows with any empty values
df_consumer_prices = df_consumer_prices.dropna()
         df_consumer_prices_pivot = df_consumer_prices.pivot_table(
   index=['Area', 'Year'],
   columns='Item',
              values='Value',
aggfunc='mean' # Use mean to aggregate monthly data into a single annual value
         ).reset_index()
         # Nerlande The Cottomis
df_consumer_prices_pivot.rename(columns={
    'Consumer Prices, Food Indices (2015 = 100)': 'ConsumerPrice_Food_Indices',
    'Food price inflation': 'ConsumerPrice_Food_Price_Inflation'
         PrettyPandas(df consumer prices pivot.head())
Out[]: Item
                    Area Year ConsumerPrice_Food_Indices ConsumerPrice_Food_Price_Inflation
            0 Afghanistan 2000
                                                   26.629848
         1 Afghanistan 2001
                                               29.893548
                                                                                         12.780692
                                                    35.344892
                                                40.203113
         3 Afghanistan 2003
                                                                                         14.102244
            4 Afghanistan 2004
                                                   45.840561
                                                                                         14.072172
         Preprocess Employment - FAOSTAT_data_en_2-27-2024.csv
In [ ]: # Load the dataset
         df_employment = pd.read_csv('./Employment - FAOSTAT_data_en_2-27-2024.csv')
          # Select the column:
         df_employment = df_employment[['Area', 'Year', 'Indicator', 'Value']]
         # Drop rows with any empty values
         df_employment = df_employment.dropna()
         # Pivot the table
df_employment_pivot = df_employment.pivot_table(
             index=['Area', 'Year'],
columns='Indicator',
values='Value',
aggfunc='first'
         ).reset_index()
         df employment pivot.rename(columns={
         'Mean weekly hours actually worked per employed person in agriculture, forestry and fishing': 'Employment_Agriculture_Work_Hours_Per_Week', 'Employment in agriculture, forestry and fishing - ILO modelled estimates': 'Employment_Agriculture_Estimates'}, inplace=True)
         PrettyPandas(df_employment_pivot.head())
0 Afghanistan 2000
                                                           2765.950000
                                                                                                                    nan
          1 Afghanistan 2001
                2 Afghanistan 2002
         3 Afghanistan 2003
                                                         3093,270000
```

1.2: Perform Merging of DataFrames

4 Afghanistan 2004

```
In []: # Ensure 'Area' and 'Year' are not part of the index
df_trade_values = df_trade_values.reset_index(drop=True)

# Ensure 'Area' is string type and 'Year' is string type in all DataFrames
df_trade_values['Area'] = df_trade_values['Area'].astype(str)
df_trade_values['Year'] = df_trade_values['Year'].astype(str)
```

```
df_pesticides_pivot['Year'] = df_pesticides_pivot['Year'].astype(str)
df_pesticides_pivot['Year'] = df_pesticides_pivot['Year'].astype(str)
df_land_use_pivot['Year'] = df_land_use_pivot['Year'].astype(str)
df_land_use_pivot['Year'] = df_land_use_pivot['Year'].astype(str)
df_temperature_annual['Year'] = df_temperature_annual[Year'].astype(str)
df_temperature_annual['Year'] = df_temperature_annual[Year'].astype(str)
df_fdi_pivot['Year'] = df_fd_pivot['Year'].astype(str)
df_fdi_pivot['Year'] = df_fd_pivot['Year'].astype(str)
df_fsi_combined_pivot['Year'] = df_fsi_combined_pivot['Year'].astype(str)
df_fsi_combined_pivot['Year'] = df_fsi_combined_pivot['Year'].astype(str)
df_food_balances.pivot['Year'] = df_food_balances.pivot['Year'].astype(str)
df_ford_balances.pivot['Year'] = df_feod_balances.pivot['Year'].astype(str)
df_fertilizers_pivot['Year'] = df_fertilizers_pivot['Year'].astype(str)
df_warly_exchange_rates['Year'] = df_fertilizers_pivot['Year'].astype(str)
df_warly_exchange_rates['Year'] = df_exchange_rates['Year'].astype(str)
df_warly_exchange_rates['Year'] = df_exchange_rates['Year'].astype(str)
df_exchange_rates['Year'] = df_exchange_rates['Year'].astype(str
```

1.3: Recoding labels into classes

```
In []: import pandas as pd
             import numpy as np
from sklearn.preprocessing import LabelEncoder
              # Calculate percentiles for each item type
             def calculate_percentiles(df):
low = np.percentile(df['Export_Value_3_Years_Ahead'], 33)
medium = np.percentile(df['Export_Value_3_Years_Ahead'], 66)
return {
                           'low': low,
'medium': medium,
             # Apply calculate_percentiles to each group
percentiles = df_merged.groupby('Item').apply(lambda df: calculate_percentiles(df))
             # Convert the results to a dictionar
if not isinstance(percentiles, dict)
                    percentiles = percentiles.to_dict()
             # Categorize based on the percentiles
def categorize_value(row):
                   caregorize_value(row):
thresholds = percentiles[row['Item']]
value = row['Export_Value_3_Years_Ahead']
if value <= thresholds['low']:
    return 0 # Low</pre>
                    elif value <= thresholds['medium'] and value > thresholds['low']:
    return 1 # Medium
else:
                           return 2 # Hiah
             df_merged['Export_Value_3_Years_Ahead_Category'] = df_merged.apply(categorize_value, axis=1)
             # Count the unique number of labels
num_labels = df_merged['Export_Value_3_Years_Ahead_Category'].nunique()
print(f"Number of unique labels: {num_labels}")
           Number of unique labels: 3
In [ ]: # Dropping the columns
             df_merged = df_merged.drop(columns=['Area'])
df_merged = df_merged.drop(columns=['Year'])
df_merged = df_merged.drop(columns=['Export_Value_3_Years_Ahead'])
             # Dropping duplicate rows
df_merged = df_merged.drop_duplicates()
```

Section 2: Selecting training, validation, and test sets

```
In [ ]: from sklearn.model_selection import train_test_split

def split_data(df, test_size=0.2, validation_size=0.25):
    df_train, df_temp = train_test_split(df, test_size=test_size, random_state=42)
    df_validation, df_test = train_test_split(df_temp, test_size=validation_size, random_state=42)
    return df_train, df_validation, df_test

grouped = df_merged.groupby('Item')
    train_list = []
    validation_list = []
    test_list = []

for name, group in grouped:
        train, validation, test = split_data(group)
```

```
train_list.append(train)
  validation_list.append(validation)
  test_list.append(test)

train_df = pd.concat(train_list)
  val_df = pd.concat(validation_list)
  test_df = pd.concat(test_list)

train_df = train_df.sample(frac=1, random_state=42).reset_index(drop=True)
  val_df = val_df.sample(frac=1, random_state=42).reset_index(drop=True)
  test_df = test_df.sample(frac=1, random_state=42).reset_index(drop=True)
```

Section 3: Imputing missing data, select features

```
In [ ]: from sklearn.impute import KNNImputer
                   # Drop Item column
                  train_df = train_df.drop(columns=['Item'])
val_df = val_df.drop(columns=['Item'])
test_df = test_df.drop(columns=['Item'])
                  # Drop columns with missing values percentage greater than 50%
missing_values = train_df.isnull().mean()
columns_to_drop = missing_values[missing_values > 0.5].index
train_df.drop(columns=columns_to_drop, inplace=True)
test_df.drop(columns=columns_to_drop, inplace=True)
val_df.drop(columns=columns_to_drop, inplace=True)
In [ ]: # Select features using RFE with a Random Forest model
    from sklearn.feature_selection import RFE
    from sklearn.ensemble import RandomForestClassifier
                  #columns start with 'Item'
item_columns = [col for col in train_df.columns if 'Item_' in col]
                  model = RandomForestClassifier(n estimators=100, random state=42)
                  # Define the RFE
rfe = RFE(model, n_features_to_select=20)
                  # Fit the RFE
X_train = train_df.drop(columns=['Export_Value_3_Years_Ahead_Category'] + item_columns)
y_train = train_df['Export_Value_3_Years_Ahead_Category']
                   # Get the selected feature.
                   selected_features = X_train.columns[rfe.support_].tolist()
                  print(f"Selected features: {selected_features}"
                  #apply the selected features to the datasets
train_df = train_df[selected_features + ['Export_Value_3_Years_Ahead_Category'] + item_columns]
val_df = val_df[selected_features + ['Export_Value_3_Years_Ahead_Category'] + item_columns]
test_df = test_df[selected_features + | 'Export_Value_3_Years_Ahead_Category'] + item_columns]
                Selected features: ['Import_Value', 'Export_Value', 'Export_Value_Lag1', 'Export_Value_Lag2', 'Export_Value_Lag3', 'Export_Value_Rolling_Mean3', 'LandUse_Agriculture', 'LandUse_Arable land', 'LandUse_Cropland', 'LandUse_Land area equipped for irrigation', 'LandUse_Permanent crops', 'LandUse_Permanent meadows and pastures', 'FSI_Average_protein_supply_g/cap/day_3_year_average', 'FSI_Value_of_food_imports_in_total_merchandise_exports_percent_3_year_average', 'Average_Exchange_Rate', 'E mission_Crops_total_Emissions_N2O_All_Crops', 'CropYield_Cereals_primary', 'CropYield_Oilcrops_Cake_Equivalent', 'CropYield_Oilcrops_Oil_Equivalent', 'CropYield_Ve getables_Primary']
In []: # Drop the target column
                  X_train = train_df.drop(columns=['Export_Value_3_Years_Ahead_Category'])
y_train = train_df['Export_Value_3_Years_Ahead_Category']
                   # Initialize the KNNImputer
                  imputer = KNNImputer(n_neighbors=5)
                  # Fit the imputer on the training data and transform it
train_df_imputed = imputer.fit_transform(train_df)
train_df = pd.DataFrame(train_df_imputed, columns=train_df.columns)
                  # Transform the test data with the same imputer
test_df_imputed = imputer.transform(test_df)
test_df = pd.DataFrame(test_df_imputed, columns=test_df.columns)
                  # Transform the validation data
val_df_imputed = imputer.transform(val_df)
val_df = pd.DataFrame(val_df_imputed, columns=val_df.columns)
```

Section 4: Scaling/normalization

```
In []: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

# Select features to scale
features_to_scale = [feature for feature in train_df.columns if feature != 'Export_Value_3_Years_Ahead_Category']

# Fit the scaler on the training data
scaler.fit(train_df[features_to_scale])

# Apply the scaling
scaled_train_data = scaler.transform(train_df[features_to_scale])
scaled_val_data = scaler.transform(val_df[features_to_scale])
scaled_val_data = scaler.transform(test_df[features_to_scale])

# Add the target variable 'Export_Value_3_Years_Ahead' back
scaled_train_df = pd.DataFrame(scaled_train_data, columns=features_to_scale)
scaled_val_df = pd.DataFrame(scaled_val_data, columns=features_to_scale)

scaled_train_df['Export_Value_3_Years_Ahead_category'] = train_df['Export_Value_3_Years_Ahead_Category'].values
scaled_train_df['Export_Value_3_Years_Ahead_Category'] = val_df['Export_Value_3_Years_Ahead_Category'].values
scaled_test_df['Export_Value_3_Years_Ahead_Category'] = test_df['Export_Value_3_Years_Ahead_Category'].values
# Check the scaled_train_df.head())
```

Out[]:

:	Import_Value	Export_Value	Export_Value_Lag1	Export_Value_Lag2	Export_Value_Lag3	Export_Value_Rolling_Mean3	LandUse_Agriculture	LandUse_Arable land	LandUse_Cropland	Land are: fo
0	-0.268980	-0.254013	-0.250791	-0.248111	-0.244865	-0.252297	-0.379929	-0.354770	-0.370088	
1	-0.262246	-0.103120	-0.248912	-0.247546	-0.164031	-0.198819	-0.333500	-0.252903	-0.266535	
2	-0.270896	-0.254207	-0.250961	-0.249323	-0.245923	-0.252809	-0.371971	-0.336618	-0.352881	
3	-0.254280	-0.181176	-0.175844	-0.162202	-0.184523	-0.174209	-0.301782	-0.180668	-0.198914	
4	-0.119183	0.083080	0.134733	0.096710	0.062194	0.105205	-0.202547	-0.065540	0.001861	

Section 5: Building and evaluating a multilayer perceptron (MLP)

```
In [ ]: from tensorflow.keras import layers, models, regularizers, callbacks
   import tensorflow as tf
            import numpy as np
from sklearn.utils import class_weight
            np.random.seed(42)
tf.random.set_seed(42)
            model = models.Sequential([
                  1)
            optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)
            model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
            # Add Early Stopping to prevent overfitting
            early_stopping = callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
           # Prepare feature and target datasets for training, validation, and testing
X_train = scaled_train_df.drop(columns=['Export_Value_3_Years_Ahead_Category'])
y_train = scaled_train_df['Export_Value_3_Years_Ahead_Category']
X_val = scaled_val_df.drop(columns=['Export_Value_3_Years_Ahead_Category'])
y_val = scaled_val_df['Export_Value_3_Years_Ahead_Category']
X_test = scaled_test_df.drop(columns=['Export_Value_3_Years_Ahead_Category'])
y_test = scaled_test_df['Export_Value_3_Years_Ahead_Category']
            class\_weights\_array = class\_weight.compute\_class\_weight('balanced', classes=np.unique(y\_train), y=y\_train) \\ class\_weights\_dict = \{i: weight \ \textit{for} \ i, weight \ in enumerate(class\_weights\_array)\} \\
            print(f"Class Weights: {class weights dict}")
            # Train the model
history = model.fit(
    X_train,
                  y_train,
epochs=300,
                   batch size=1024,
                  validation_data=(X_val, y_val),
verbose=1,
callbacks=[early_stopping],
                  class_weight=class_weights_dict
            test_loss, test_accuracy = model.evaluate(
    X_test,
    y_test,
                   verbose=0
            print(f'Test Loss: {test_loss}, Test Accuracy: {test_accuracy}')
```

					•
Class	Weights: {0: 1.01279	97682	6459624, 1: 1.007201718967675, 2: 0.98	305977011494252}	
Epoch 42/42	1/300				a E40al laan, 2 226a
Epoch	2/300		l1ms/step - accuracy: 0.3609 - loss: 2		
42/42 Epoch		- 0s	Bms/step – accuracy: 0.5856 – loss: 2.	.2640 - val_accuracy:	0.6457 - val_loss: 2.0487
42/42		0 s	Bms/step – accuracy: 0.6456 – loss: 2.	.0090 - val_accuracy:	0.6805 - val_loss: 1.8847
Epoch 42/42		- 0s	Bms/step – accuracy: 0.6778 – loss: 1.	.8592 - val_accuracy:	0.7045 - val_loss: 1.7596
Epoch 42/42		- 0s	Bms/step – accuracy: 0.7032 – loss: 1	.7365 - val accuracy:	0.7245 - val loss: 1.6503
Epoch	6/300				
42/42 Epoch		- 05	Bms/step – accuracy: 0.7273 – loss: 1.	.0311 - Val_accuracy:	0.7410 - Val_(OSS: 1.5588
42/42 Epoch		- 0s	Oms/step – accuracy: 0.7430 – loss: 1.	.5433 - val_accuracy:	0.7471 - val_loss: 1.4833
42/42		0 s	8ms/step – accuracy: 0.7538 – loss: 1	.4701 - val_accuracy:	0.7552 - val_loss: 1.4209
Epoch 42/42		- 0s	Bms/step - accuracy: 0.7637 - loss: 1.	.4087 - val_accuracy:	0.7639 - val_loss: 1.3665
Epoch 42/42	10/300	- 0s	Bms/step – accuracy: 0.7700 – loss: 1.	.3556 - val accuracy:	0.7699 - val loss: 1.3202
Epoch	11/300				
42/42 Epoch	12/300	- 0s	Bms/step – accuracy: 0.7767 – loss: 1.	.3094 - val_accuracy:	0.//4/ - val_loss: 1.2/96
42/42 Enoch	13/300	0 s	Oms/step – accuracy: 0.7818 – loss: 1.	.2687 - val_accuracy:	0.7793 - val_loss: 1.2435
42/42		- 0s	Oms/step – accuracy: 0.7868 – loss: 1	.2321 - val_accuracy:	0.7824 - val_loss: 1.2114
Epoch 42/42	14/300	- 0s	LOms/step - accuracy: 0.7915 - loss: 1	1.1993 - val_accuracy:	0.7853 - val_loss: 1.1825
Epoch 42/42	15/300	1 e	l1ms/step - accuracy: 0.7956 - loss: 1	1 1606 - val accuracy:	0 7885 - val loss: 1 1556
Epoch	16/300				
42/42 Epoch	17/300	- 0s	l1ms/step – accuracy: 0.7993 – loss: 1	1.1423 - val_accuracy:	0./906 - val_loss: 1.1313
42/42 Enoch	18/300	- 0s	LOms/step - accuracy: 0.8020 - loss: 1	1.1174 – val_accuracy:	0.7947 - val_loss: 1.1088
42/42		0 s	Bms/step – accuracy: 0.8055 – loss: 1.	.0945 - val_accuracy:	0.7958 - val_loss: 1.0880
Epoch 42/42	19/300	- 0s	Oms/step - accuracy: 0.8082 - loss: 1.	.0735 - val_accuracy:	0.7979 - val_loss: 1.0691
	20/300		Oms/step - accuracy: 0.8095 - loss: 1		
Epoch	21/300				
42/42 Epoch	22/300	- 0s	Bms/step – accuracy: 0.8128 – loss: 1.	.0361 - val_accuracy:	0.8020 - val_loss: 1.0344
42/42 Enoch	23/300	0 s	Oms/step – accuracy: 0.8150 – loss: 1.	.0192 - val_accuracy:	0.8061 - val_loss: 1.0183
42/42		0 s	Bms/step - accuracy: 0.8183 - loss: 1.	.0034 - val_accuracy:	0.8084 - val_loss: 1.0029
42/42	24/300	- 0s	Bms/step – accuracy: 0.8215 – loss: 0.	.9886 - val_accuracy:	0.8117 - val_loss: 0.9890
Epoch 42/42	25/300	- 05	Bms/step - accuracy: 0.8227 - loss: 0.	.9750 - val accuracy:	0.8140 - val loss: 0.9750
Epoch	26/300				
42/42 Epoch	27/300	- 0s	Oms/step – accuracy: 0.8249 – loss: 0.	.9618 - val_accuracy:	0.8166 - val_loss: 0.9625
42/42 Enoch	28/300	- 0s	LOms/step - accuracy: 0.8265 - loss: 0	0.9498 - val_accuracy:	0.8177 - val_loss: 0.9498
42/42		- 0s	8ms/step – accuracy: 0.8287 – loss: 0.	.9378 - val_accuracy:	0.8214 - val_loss: 0.9383
42/42		- 0s	Bms/step – accuracy: 0.8302 – loss: 0.	.9269 - val_accuracy:	0.8245 - val_loss: 0.9263
Epoch 42/42	30/300	0 c	Oms/step - accuracy: 0.8324 - loss: 0.	0160 = val accuracy:	0 8271 - val locc: 0 9158
Epoch	31/300				
	32/300		Sms/step – accuracy: 0.8353 – loss: 0.		
42/42 Epoch	33/300	- 0s	Oms/step – accuracy: 0.8370 – loss: 0.	.8955 - val_accuracy:	0.8315 - val_loss: 0.8967
42/42		0 s	Oms/step – accuracy: 0.8373 – loss: 0.	.8867 - val_accuracy:	0.8324 - val_loss: 0.8883
42/42		- 0s	Bms/step – accuracy: 0.8391 – loss: 0.	.8769 - val_accuracy:	0.8341 - val_loss: 0.8801
Epoch 42/42	35/300	- 0s	Oms/step – accuracy: 0.8405 – loss: 0.	.8681 - val accuracy:	0.8355 - val loss: 0.8723
Epoch	36/300				
	37/300		Sms/step – accuracy: 0.8419 – loss: 0.		
42/42 Epoch	38/300	- 0s	Bms/step – accuracy: 0.8428 – loss: 0.	.8524 - val_accuracy:	0.8370 - val_loss: 0.8576
42/42 Epoch	39/300	0 s	Oms/step – accuracy: 0.8441 – loss: 0.	.8450 - val_accuracy:	0.8390 - val_loss: 0.8508
42/42		- 0s	Oms/step – accuracy: 0.8444 – loss: 0.	.8373 - val_accuracy:	0.8388 - val_loss: 0.8445
Epoch 42/42	40/300	- 0s	Oms/step – accuracy: 0.8454 – loss: 0.	.8298 - val_accuracy:	0.8405 - val_loss: 0.8379
	41/300		Bms/step - accuracy: 0.8462 - loss: 0.		
Epoch	42/300				
	43/300		Sms/step – accuracy: 0.8464 – loss: 0.		
42/42 Epoch	44/300	- 0s	Oms/step – accuracy: 0.8484 – loss: 0.	.8108 - val_accuracy:	0.8428 - val_loss: 0.8205
42/42		0 s	0ms/step – accuracy: 0.8490 – loss: 0	.8044 - val_accuracy:	0.8436 - val_loss: 0.8151
42/42		- 0s	Bms/step - accuracy: 0.8501 - loss: 0.	.7974 - val_accuracy:	0.8424 - val_loss: 0.8112
Epoch 42/42	46/300	- 0s	Bms/step - accuracy: 0.8505 - loss: 0.	.7926 - val_accuracv:	0.8428 - val_loss: 0.8064
Epoch	47/300				
	48/300		Oms/step - accuracy: 0.8519 - loss: 0.		
42/42 Epoch	49/300	- 0s	Oms/step – accuracy: 0.8522 – loss: 0.	./813 - val_accuracy:	0.8446 - val_loss: 0.7952
42/42		0 s	Oms/step - accuracy: 0.8522 - loss: 0.	.7758 - val_accuracy:	0.8449 - val_loss: 0.7906
42/42		- 0s	Bms/step – accuracy: 0.8526 – loss: 0.	.7703 - val_accuracy:	0.8446 - val_loss: 0.7864
Epoch 42/42	51/300	- 0s	Bms/step – accuracy: 0.8533 – loss: 0.	.7657 - val_accuracy:	0.8459 - val_loss: 0.7816
	52/300		Oms/step - accuracy: 0.8538 - loss: 0.		
Epoch	53/300				
42/42 Epoch	54/300	- 0s	Oms/step – accuracy: 0.8545 – loss: 0.	./567 - val_accuracy:	0.8465 - val_loss: 0.7747
42/42		0 s	8ms/step – accuracy: 0.8549 – loss: 0.	.7529 - val_accuracy:	0.8456 - val_loss: 0.7698
42/42		- 0s	Bms/step - accuracy: 0.8567 - loss: 0.	.7475 - val_accuracy:	0.8471 - val_loss: 0.7668
Epoch 42/42	56/300	- 0s	Bms/step - accuracy: 0.8575 - loss: 0.	.7436 - val_accuracy:	0.8472 - val_loss: 0.7633
	57/300		Oms/step - accuracy: 0.8572 - loss: 0.		
Epoch	58/300				
	59/300		Bms/step – accuracy: 0.8581 – loss: 0.		
42/42		- 0s	Oms/step - accuracy: 0.8583 - loss: 0.	.7318 - val_accuracy:	0.8503 - val_loss: 0.7514
_pocii					

42/42 Epoch	61/300	0s	8ms/step	- accuracy:	0.8597 -	- loss:	0.7274 -	val_accuracy:	0.8487	- val_loss:	0.7489
42/42 Enoch	62/300	0s	8ms/step	- accuracy:	0.8592 -	- loss:	0.7245 -	val_accuracy:	0.8494	- val_loss:	0.7461
42/42		0s	9ms/step	- accuracy:	0.8598 -	loss:	0.7220 -	val_accuracy:	0.8503	- val_loss:	0.7416
42/42		0s	8ms/step	- accuracy:	0.8609 -	loss:	0.7172 -	val_accuracy:	0.8499	- val_loss:	0.7402
42/42		0s	8ms/step	- accuracy:	0.8604 -	- loss:	0.7148 -	val_accuracy:	0.8515	- val_loss:	0.7359
Epoch 42/42	65/300	0s	9ms/step	- accuracy:	0.8614 -	- loss:	0.7107 -	val_accuracy:	0.8516	- val_loss:	0.7336
Epoch 42/42	66/300	0s	8ms/step	- accuracy:	0.8612 -	- loss:	0.7086 -	val_accuracy:	0.8518	- val loss:	0.7306
	67/300							val_accuracy:			
Epoch	68/300			-				_			
	69/300							val_accuracy:			
	70/300			,				val_accuracy:		_	
42/42 Epoch	71/300	0s	9ms/step	- accuracy:	0.8630 -	- loss:	0.6965 -	val_accuracy:	0.8526	- val_loss:	0.7206
42/42		0s	9ms/step	- accuracy:	0.8632 -	loss:	0.6937 -	val_accuracy:	0.8529	- val_loss:	0.7182
42/42		0s	8ms/step	- accuracy:	0.8635 -	- loss:	0.6910 -	val_accuracy:	0.8531	- val_loss:	0.7159
42/42		0s	9ms/step	- accuracy:	0.8639 -	- loss:	0.6883 -	val_accuracy:	0.8530	- val_loss:	0.7137
42/42		0s	8ms/step	- accuracy:	0.8646 -	loss:	0.6857 -	val_accuracy:	0.8533	- val_loss:	0.7115
42/42		0s	9ms/step	- accuracy:	0.8649 -	loss:	0.6831 -	val_accuracy:	0.8537	- val_loss:	0.7094
Epoch 42/42	76/300	0s	8ms/step	- accuracy:	0.8652 -	- loss:	0.6807 -	val_accuracy:	0.8540	- val_loss:	0.7072
Epoch 42/42	77/300	0s	9ms/step	- accuracy:	0.8657 -	- loss:	0.6782 -	val_accuracy:	0.8541	- val loss:	0.7052
	78/300							val_accuracy:			
	79/300										
Epoch	80/300							val_accuracy:			
	81/300							val_accuracy:			
42/42 Epoch	82/300	0s	9ms/step	- accuracy:	0.8666 -	- loss:	0.6690 -	val_accuracy:	0.8554	- val_loss:	0.6974
42/42 Epoch	83/300	0s	9ms/step	- accuracy:	0.8672 -	- loss:	0.6668 -	val_accuracy:	0.8556	- val_loss:	0.6955
42/42		0s	8ms/step	- accuracy:	0.8674 -	- loss:	0.6647 -	val_accuracy:	0.8561	- val_loss:	0.6937
42/42		0s	9ms/step	- accuracy:	0.8678 -	- loss:	0.6625 -	val_accuracy:	0.8562	- val_loss:	0.6918
42/42		0s	9ms/step	- accuracy:	0.8680 -	- loss:	0.6604 -	val_accuracy:	0.8562	- val_loss:	0.6900
42/42		0s	8ms/step	- accuracy:	0.8681 -	loss:	0.6584 -	val_accuracy:	0.8561	- val_loss:	0.6883
42/42		0s	9ms/step	- accuracy:	0.8682 -	loss:	0.6564 -	val_accuracy:	0.8562	- val_loss:	0.6866
Epoch 42/42	88/300	0s	9ms/step	- accuracy:	0.8687 -	loss:	0.6544 -	val_accuracy:	0.8566	- val_loss:	0.6850
Epoch 42/42	89/300							val_accuracy:			
	90/300							val_accuracy:			
Epoch	91/300			-							
	92/300							val_accuracy:			
	93/300							val_accuracy:			
	94/300							val_accuracy:			
42/42 Epoch	95/300	0s	9ms/step	- accuracy:	0.8695 -	- loss:	0.6434 -	val_accuracy:	0.8583	- val_loss:	0.6757
42/42 Epoch	96/300	0s	8ms/step	- accuracy:	0.8698 -	loss:	0.6416 -	val_accuracy:	0.8586	- val_loss:	0.6743
42/42		0s	9ms/step	- accuracy:	0.8703 -	loss:	0.6399 -	val_accuracy:	0.8590	- val_loss:	0.6728
42/42		0s	8ms/step	- accuracy:	0.8705 -	- loss:	0.6383 -	val_accuracy:	0.8593	- val_loss:	0.6714
42/42		0s	9ms/step	- accuracy:	0.8708 -	loss:	0.6366 -	val_accuracy:	0.8596	- val_loss:	0.6700
42/42		0s	9ms/step	- accuracy:	0.8712 -	loss:	0.6349 -	val_accuracy:	0.8599	- val_loss:	0.6687
42/42		0s	9ms/step	- accuracy:	0.8717 -	loss:	0.6334 -	val_accuracy:	0.8599	- val_loss:	0.6673
Epoch 42/42	101/300	0s	9ms/step	- accuracy:	0.8720 -	- loss:	0.6318 -	val_accuracy:	0.8597	- val_loss:	0.6660
Epoch 42/42	102/300	0s	9ms/step	- accuracy:	0.8725 -	- loss:	0.6302 -	val_accuracy:	0.8596	- val loss:	0.6648
Epoch 42/42	103/300							val_accuracy:			
Epoch 42/42	104/300							val_accuracy:			
	105/300							val_accuracy:			
Epoch	106/300			-							
	107/300							val_accuracy:			
42/42 Epoch	108/300							val_accuracy:			
42/42 Epoch	109/300	0s	9ms/step	- accuracy:	0.8734 -	- loss:	0.6214 -	val_accuracy:	0.8597	- val_loss:	0.6574
42/42 Epoch	110/300	0s	9ms/step	- accuracy:	0.8736 -	loss:	0.6199 -	val_accuracy:	0.8601	- val_loss:	0.6562
42/42		0s	9ms/step	- accuracy:	0.8737 -	loss:	0.6185 -	val_accuracy:	0.8602	- val_loss:	0.6550
42/42		0s	9ms/step	- accuracy:	0.8740 -	loss:	0.6171 -	val_accuracy:	0.8605	- val_loss:	0.6539
42/42		0s	9ms/step	- accuracy:	0.8743 -	- loss:	0.6158 -	val_accuracy:	0.8608	- val_loss:	0.6528
42/42		0s	9ms/step	- accuracy:	0.8746 -	loss:	0.6144 -	val_accuracy:	0.8609	- val_loss:	0.6517
42/42		0s	9ms/step	- accuracy:	0.8748 -	loss:	0.6131 -	val_accuracy:	0.8612	- val_loss:	0.6505
Epoch 42/42	115/300							val_accuracy:			
	116/300							val_accuracy:			
	117/300							vai_accuracy			
Epoch	118/300										
	119/300							- val_accuracy			
42/42 Epoch	120/300	1s	12ms/step	- accuracy	: 0.8758	- loss:	0.6066	- val_accuracy	: 0.8619	∂ – val_loss	: 0.6451

42/42 Enach	121/300	0 s	10ms/step - accuracy: 0.8758 - loss: 0.6054 - val_accuracy: 0.8619 - val_loss: 0.6441
42/42		- 0s	9ms/step - accuracy: 0.8758 - loss: 0.6042 - val_accuracy: 0.8621 - val_loss: 0.6431
Epoch 42/42	122/300	٩c	9ms/step - accuracy: 0.8759 - loss: 0.6029 - val_accuracy: 0.8622 - val_loss: 0.6422
Epoch	123/300		
42/42 Enoch	124/300	- 0s	9ms/step - accuracy: 0.8762 - loss: 0.6017 - val_accuracy: 0.8619 - val_loss: 0.6412
42/42		0 s	9ms/step - accuracy: 0.8764 - loss: 0.6005 - val_accuracy: 0.8618 - val_loss: 0.6402
Epoch 42/42	125/300	- 0s	9ms/step - accuracy: 0.8764 - loss: 0.5994 - val_accuracy: 0.8618 - val_loss: 0.6393
Epoch	126/300		
42/42 Epoch	127/300	- US	9ms/step - accuracy: 0.8766 - loss: 0.5982 - val_accuracy: 0.8619 - val_loss: 0.6384
42/42	128/300	0 s	10ms/step - accuracy: 0.8768 - loss: 0.5971 - val_accuracy: 0.8618 - val_loss: 0.6375
42/42		- 0s	8ms/step - accuracy: 0.8769 - loss: 0.5960 - val_accuracy: 0.8616 - val_loss: 0.6365
Epoch 42/42	129/300	- 0s	9ms/step - accuracy: 0.8771 - loss: 0.5948 - val accuracy: 0.8620 - val loss: 0.6356
Epoch 42/42	130/300	0.0	Ome /stop pecuracy
	131/300	05	9ms/step - accuracy: 0.8772 - loss: 0.5937 - val_accuracy: 0.8620 - val_loss: 0.6347
42/42 Epoch	132/300	- 0s	10ms/step - accuracy: 0.8772 - loss: 0.5926 - val_accuracy: 0.8620 - val_loss: 0.6338
42/42		- 0s	9ms/step - accuracy: 0.8773 - loss: 0.5915 - val_accuracy: 0.8622 - val_loss: 0.6329
42/42	133/300	- 0s	9ms/step - accuracy: 0.8776 - loss: 0.5905 - val_accuracy: 0.8624 - val_loss: 0.6320
Epoch 42/42	134/300	- 05	9ms/step - accuracy: 0.8777 - loss: 0.5895 - val_accuracy: 0.8621 - val_loss: 0.6311
Epoch	135/300		
42/42 Epoch	136/300	- US	9ms/step - accuracy: 0.8777 - loss: 0.5884 - val_accuracy: 0.8624 - val_loss: 0.6304
42/42 Enach		0 s	10ms/step - accuracy: 0.8778 - loss: 0.5874 - val_accuracy: 0.8620 - val_loss: 0.6295
42/42		- 0s	9ms/step - accuracy: 0.8778 - loss: 0.5863 - val_accuracy: 0.8624 - val_loss: 0.6287
Epoch 42/42	138/300	- 0s	9ms/step - accuracy: 0.8779 - loss: 0.5853 - val_accuracy: 0.8622 - val_loss: 0.6279
Epoch	139/300		
42/42 Epoch	140/300	- 05	9ms/step - accuracy: 0.8779 - loss: 0.5842 - val_accuracy: 0.8621 - val_loss: 0.6270
42/42 Enoch	141/300	- 0s	9ms/step - accuracy: 0.8780 - loss: 0.5832 - val_accuracy: 0.8616 - val_loss: 0.6262
42/42		0 s	9ms/step - accuracy: 0.8783 - loss: 0.5822 - val_accuracy: 0.8618 - val_loss: 0.6255
Epoch 42/42	142/300	- 0s	9ms/step - accuracy: 0.8783 - loss: 0.5813 - val_accuracy: 0.8619 - val_loss: 0.6247
	143/300		9ms/step - accuracy: 0.8784 - loss: 0.5803 - val_accuracy: 0.8621 - val_loss: 0.6238
Epoch	144/300		
42/42 Epoch	145/300	- 0s	9ms/step - accuracy: 0.8785 - loss: 0.5793 - val_accuracy: 0.8622 - val_loss: 0.6230
42/42		0 s	10ms/step - accuracy: 0.8788 - loss: 0.5784 - val_accuracy: 0.8622 - val_loss: 0.6223
42/42	146/300	- 0s	9ms/step - accuracy: 0.8789 - loss: 0.5774 - val_accuracy: 0.8622 - val_loss: 0.6216
Epoch 42/42	147/300	- 05	9ms/step - accuracy: 0.8790 - loss: 0.5765 - val_accuracy: 0.8620 - val_loss: 0.6208
Epoch	148/300		
42/42 Epoch	149/300	- 0s	8ms/step - accuracy: 0.8792 - loss: 0.5755 - val_accuracy: 0.8619 - val_loss: 0.6201
42/42		0 s	9ms/step - accuracy: 0.8797 - loss: 0.5745 - val_accuracy: 0.8622 - val_loss: 0.6194
42/42		- 0s	9ms/step - accuracy: 0.8796 - loss: 0.5736 - val_accuracy: 0.8624 - val_loss: 0.6186
Epoch 42/42	151/300	- 0s	9ms/step - accuracy: 0.8799 - loss: 0.5727 - val accuracy: 0.8624 - val loss: 0.6179
Epoch	152/300		
42/42 Epoch	153/300	05	9ms/step - accuracy: 0.8799 - loss: 0.5718 - val_accuracy: 0.8625 - val_loss: 0.6172
42/42 Epoch	154/300	- 0s	9ms/step - accuracy: 0.8800 - loss: 0.5708 - val_accuracy: 0.8626 - val_loss: 0.6165
42/42		0 s	10ms/step - accuracy: 0.8803 - loss: 0.5699 - val_accuracy: 0.8631 - val_loss: 0.6158
42/42	155/300	- 0s	9ms/step - accuracy: 0.8801 - loss: 0.5690 - val_accuracy: 0.8627 - val_loss: 0.6152
Epoch 42/42	156/300	. 0 c	9ms/step - accuracy: 0.8801 - loss: 0.5681 - val_accuracy: 0.8634 - val_loss: 0.6146
Epoch	157/300		
42/42 Epoch	158/300	- 0s	10ms/step - accuracy: 0.8802 - loss: 0.5672 - val_accuracy: 0.8631 - val_loss: 0.6139
42/42		0 s	9ms/step - accuracy: 0.8801 - loss: 0.5664 - val_accuracy: 0.8634 - val_loss: 0.6133
42/42		- 0s	9ms/step - accuracy: 0.8802 - loss: 0.5655 - val_accuracy: 0.8631 - val_loss: 0.6127
Epoch 42/42	160/300	- 0s	9ms/step - accuracy: 0.8802 - loss: 0.5647 - val_accuracy: 0.8634 - val_loss: 0.6120
Epoch	161/300		
	162/300		9ms/step - accuracy: 0.8802 - loss: 0.5639 - val_accuracy: 0.8634 - val_loss: 0.6114
42/42 Epoch	163/300	0 s	10ms/step - accuracy: 0.8801 - loss: 0.5630 - val_accuracy: 0.8635 - val_loss: 0.6107
42/42		- 0s	9ms/step - accuracy: 0.8803 - loss: 0.5622 - val_accuracy: 0.8641 - val_loss: 0.6101
42/42		0 s	9ms/step - accuracy: 0.8804 - loss: 0.5614 - val_accuracy: 0.8641 - val_loss: 0.6095
Epoch 42/42	165/300	- 0s	10ms/step - accuracy: 0.8806 - loss: 0.5606 - val_accuracy: 0.8639 - val_loss: 0.6089
	166/300		10ms/step - accuracy: 0.8806 - loss: 0.5598 - val_accuracy: 0.8640 - val_loss: 0.6082
Epoch	167/300		
42/42 Epoch	168/300	- 0s	9ms/step - accuracy: 0.8808 - loss: 0.5590 - val_accuracy: 0.8637 - val_loss: 0.6076
42/42 Enoch	169/300	0 s	9ms/step - accuracy: 0.8809 - loss: 0.5582 - val_accuracy: 0.8640 - val_loss: 0.6070
42/42		0 s	9ms/step - accuracy: 0.8809 - loss: 0.5574 - val_accuracy: 0.8637 - val_loss: 0.6063
Epoch 42/42	170/300	- 0s	10ms/step - accuracy: 0.8808 - loss: 0.5566 - val_accuracy: 0.8639 - val_loss: 0.6057
Epoch 42/42	171/300		
Epoch	172/300		10ms/step - accuracy: 0.8808 - loss: 0.5559 - val_accuracy: 0.8639 - val_loss: 0.6051
42/42 Epoch	173/300	0 s	9ms/step - accuracy: 0.8811 - loss: 0.5551 - val_accuracy: 0.8639 - val_loss: 0.6044
42/42		0 s	9ms/step - accuracy: 0.8813 - loss: 0.5543 - val_accuracy: 0.8639 - val_loss: 0.6038
42/42		- 0s	9ms/step - accuracy: 0.8814 - loss: 0.5536 - val_accuracy: 0.8639 - val_loss: 0.6032
Epoch 42/42	175/300		10ms/step - accuracy: 0.8814 - loss: 0.5528 - val_accuracy: 0.8641 - val_loss: 0.6026
Epoch	176/300		
	177/300		9ms/step - accuracy: 0.8815 - loss: 0.5520 - val_accuracy: 0.8646 - val_loss: 0.6019
42/42		- 0s	9ms/step - accuracy: 0.8816 - loss: 0.5513 - val_accuracy: 0.8643 - val_loss: 0.6014
42/42		0 s	8ms/step - accuracy: 0.8817 - loss: 0.5505 - val_accuracy: 0.8644 - val_loss: 0.6008
Epoch 42/42	179/300	- 0s	8ms/step - accuracy: 0.8819 - loss: 0.5498 - val_accuracy: 0.8645 - val_loss: 0.6002
Epoch	180/300		-

42/42		- 0s	10ms/step - accuracy: 0.8820 - loss: 0.5491 - val_accuracy: 0.8644 - val_loss: 0.5996
42/42	181/300	- 0s	9ms/step - accuracy: 0.8820 - loss: 0.5483 - val_accuracy: 0.8645 - val_loss: 0.5990
Epoch 42/42	182/300	0.0	Ome /ctop Decuracy 0 0021 local 0 5476 yel Decuracy 0 0646 yel local 0 5004
	183/300	05	9ms/step - accuracy: 0.8821 - loss: 0.5476 - val_accuracy: 0.8646 - val_loss: 0.5984
42/42 Enoch	184/300	- 0s	9ms/step - accuracy: 0.8821 - loss: 0.5469 - val_accuracy: 0.8646 - val_loss: 0.5979
42/42		- 0s	9ms/step - accuracy: 0.8823 - loss: 0.5462 - val_accuracy: 0.8644 - val_loss: 0.5973
Epoch 42/42	185/300	- 0s	9ms/step - accuracy: 0.8826 - loss: 0.5454 - val_accuracy: 0.8643 - val_loss: 0.5968
Epoch	186/300		
42/42 Epoch	187/300	- 05	9ms/step - accuracy: 0.8827 - loss: 0.5447 - val_accuracy: 0.8644 - val_loss: 0.5962
42/42 Epoch	188/300	- 1s	12ms/step - accuracy: 0.8827 - loss: 0.5440 - val_accuracy: 0.8643 - val_loss: 0.5956
42/42		- 0s	9ms/step - accuracy: 0.8827 - loss: 0.5433 - val_accuracy: 0.8644 - val_loss: 0.5951
Epoch 42/42	189/300	- 0s	9ms/step - accuracy: 0.8828 - loss: 0.5426 - val_accuracy: 0.8645 - val_loss: 0.5945
Epoch 42/42	190/300	0.0	10ms/step - accuracy: 0.8828 - loss: 0.5419 - val_accuracy: 0.8645 - val_loss: 0.5940
Epoch	191/300		
42/42 Epoch	192/300	- 0s	10ms/step - accuracy: 0.8829 - loss: 0.5413 - val_accuracy: 0.8646 - val_loss: 0.5935
42/42		0s	9ms/step - accuracy: 0.8830 - loss: 0.5406 - val_accuracy: 0.8644 - val_loss: 0.5929
42/42	193/300	- 0s	9ms/step - accuracy: 0.8832 - loss: 0.5399 - val_accuracy: 0.8644 - val_loss: 0.5923
Epoch 42/42	194/300	۵c	10ms/step - accuracy: 0.8830 - loss: 0.5393 - val_accuracy: 0.8644 - val_loss: 0.5918
Epoch	195/300		
42/42 Epoch	196/300	- 0s	11ms/step - accuracy: 0.8831 - loss: 0.5386 - val_accuracy: 0.8644 - val_loss: 0.5912
42/42 Enoch	197/300	- 0s	9ms/step - accuracy: 0.8835 - loss: 0.5380 - val_accuracy: 0.8645 - val_loss: 0.5907
42/42		- 0s	9ms/step - accuracy: 0.8835 - loss: 0.5373 - val_accuracy: 0.8644 - val_loss: 0.5902
Epoch 42/42	198/300	- 0s	11ms/step - accuracy: 0.8837 - loss: 0.5367 - val_accuracy: 0.8643 - val_loss: 0.5897
Epoch	199/300		9ms/step - accuracy: 0.8839 - loss: 0.5360 - val accuracy: 0.8643 - val loss: 0.5892
42/42 Epoch	200/300	- 05	ams/step - accuracy: 0.0039 - toss: 0.3300 - Vat_accuracy: 0.0043 - Vat_toss: 0.3092
42/42 Epoch	201/300	- 0s	10ms/step - accuracy: 0.8839 - loss: 0.5354 - val_accuracy: 0.8643 - val_loss: 0.5887
42/42		- 0s	10ms/step - accuracy: 0.8840 - loss: 0.5348 - val_accuracy: 0.8644 - val_loss: 0.5882
42/42	202/300	- 0s	9ms/step - accuracy: 0.8840 - loss: 0.5341 - val_accuracy: 0.8640 - val_loss: 0.5877
Epoch 42/42	203/300	0 c	9ms/step - accuracy: 0.8844 - loss: 0.5335 - val_accuracy: 0.8644 - val_loss: 0.5872
Epoch	204/300		
42/42 Epoch	205/300	- 0s	10ms/step - accuracy: 0.8846 - loss: 0.5329 - val_accuracy: 0.8641 - val_loss: 0.5868
42/42		0s	10ms/step - accuracy: 0.8846 - loss: 0.5323 - val_accuracy: 0.8644 - val_loss: 0.5862
42/42		- 0s	9ms/step - accuracy: 0.8846 - loss: 0.5316 - val_accuracy: 0.8643 - val_loss: 0.5858
Epoch 42/42	207/300	- 0s	10ms/step - accuracy: 0.8846 - loss: 0.5310 - val_accuracy: 0.8643 - val_loss: 0.5853
Epoch	208/300		
42/42 Epoch	209/300	- 0s	10ms/step - accuracy: 0.8848 - loss: 0.5304 - val_accuracy: 0.8643 - val_loss: 0.5848
42/42 Enoch	210/300	- 0s	10ms/step - accuracy: 0.8847 - loss: 0.5297 - val_accuracy: 0.8643 - val_loss: 0.5843
42/42		0s	10ms/step - accuracy: 0.8847 - loss: 0.5291 - val_accuracy: 0.8643 - val_loss: 0.5839
42/42	211/300	- 0s	9ms/step - accuracy: 0.8848 - loss: 0.5285 - val_accuracy: 0.8644 - val_loss: 0.5834
Epoch 42/42	212/300	. 05	9ms/step - accuracy: 0.8850 - loss: 0.5279 - val_accuracy: 0.8641 - val_loss: 0.5829
Epoch	213/300		
42/42 Epoch	214/300	- 05	9ms/step - accuracy: 0.8851 - loss: 0.5273 - val_accuracy: 0.8640 - val_loss: 0.5825
42/42 Enoch	215/300	- 0s	9ms/step - accuracy: 0.8854 - loss: 0.5267 - val_accuracy: 0.8641 - val_loss: 0.5820
42/42		- 0s	10ms/step - accuracy: 0.8852 - loss: 0.5261 - val_accuracy: 0.8637 - val_loss: 0.5816
42/42	216/300	- 0s	9ms/step - accuracy: 0.8857 - loss: 0.5255 - val_accuracy: 0.8637 - val_loss: 0.5811
Epoch 42/42	217/300	. 05	10ms/step - accuracy: 0.8855 - loss: 0.5249 - val_accuracy: 0.8637 - val_loss: 0.5807
Epoch	218/300		
42/42 Epoch	219/300	- 0s	9ms/step - accuracy: 0.8856 - loss: 0.5242 - val_accuracy: 0.8637 - val_loss: 0.5803
42/42 Enoch	220/300	- 0s	10ms/step - accuracy: 0.8857 - loss: 0.5237 - val_accuracy: 0.8639 - val_loss: 0.5800
42/42		- 0s	9ms/step - accuracy: 0.8858 - loss: 0.5231 - val_accuracy: 0.8637 - val_loss: 0.5795
42/42		- 0s	10ms/step - accuracy: 0.8858 - loss: 0.5224 - val_accuracy: 0.8636 - val_loss: 0.5791
Epoch 42/42	222/300		10ms/step - accuracy: 0.8860 - loss: 0.5218 - val_accuracy: 0.8639 - val_loss: 0.5787
Epoch	223/300		
42/42 Epoch	224/300		9ms/step - accuracy: 0.8862 - loss: 0.5212 - val_accuracy: 0.8640 - val_loss: 0.5784
42/42		- 0s	11ms/step - accuracy: 0.8862 - loss: 0.5206 - val_accuracy: 0.8640 - val_loss: 0.5781
42/42		- 0s	9ms/step - accuracy: 0.8864 - loss: 0.5201 - val_accuracy: 0.8637 - val_loss: 0.5777
42/42		- 0s	9ms/step - accuracy: 0.8865 - loss: 0.5195 - val_accuracy: 0.8641 - val_loss: 0.5773
	227/300		10ms/step - accuracy: 0.8866 - loss: 0.5189 - val_accuracy: 0.8641 - val_loss: 0.5770
Epoch	228/300		
42/42 Epoch	229/300	• 0s	10ms/step - accuracy: 0.8867 - loss: 0.5183 - val_accuracy: 0.8639 - val_loss: 0.5767
42/42 Enoch	230/300	- 0s	10ms/step - accuracy: 0.8868 - loss: 0.5177 - val_accuracy: 0.8636 - val_loss: 0.5764
42/42		- 0s	9ms/step - accuracy: 0.8869 - loss: 0.5171 - val_accuracy: 0.8635 - val_loss: 0.5761
Epoch 42/42	231/300	- 0s	10ms/step - accuracy: 0.8868 - loss: 0.5165 - val_accuracy: 0.8634 - val_loss: 0.5758
	232/300		9ms/step - accuracy: 0.8869 - loss: 0.5160 - val_accuracy: 0.8631 - val_loss: 0.5755
Epoch	233/300		
42/42 Epoch	234/300	- 0s	9ms/step - accuracy: 0.8871 - loss: 0.5154 - val_accuracy: 0.8629 - val_loss: 0.5752
42/42		0s	10ms/step - accuracy: 0.8872 - loss: 0.5149 - val_accuracy: 0.8629 - val_loss: 0.5749
42/42		- 0s	9ms/step - accuracy: 0.8875 - loss: 0.5143 - val_accuracy: 0.8626 - val_loss: 0.5746
Epoch 42/42	236/300	- 0s	9ms/step - accuracy: 0.8872 - loss: 0.5138 - val_accuracy: 0.8622 - val_loss: 0.5745
Epoch	237/300		
	238/300		9ms/step - accuracy: 0.8871 - loss: 0.5133 - val_accuracy: 0.8621 - val_loss: 0.5741
42/42 Epoch	239/300	- 0s	11ms/step - accuracy: 0.8870 - loss: 0.5127 - val_accuracy: 0.8621 - val_loss: 0.5738
42/42		0s	9ms/step - accuracy: 0.8870 - loss: 0.5122 - val_accuracy: 0.8619 - val_loss: 0.5736
Epoch			

42/42 Enoch	241/300	- 0s	9ms/step - accuracy: 0.8871 - loss: 0.5117 - val_accuracy: 0.8620 - val_loss: 0.5734
42/42		- 0s	9ms/step - accuracy: 0.8869 - loss: 0.5112 - val_accuracy: 0.8621 - val_loss: 0.5731
Epoch 42/42	242/300	۵c	10ms/step - accuracy: 0.8868 - loss: 0.5106 - val_accuracy: 0.8622 - val_loss: 0.5728
Epoch	243/300		
42/42 Enoch	244/300	- 0s	10ms/step - accuracy: 0.8867 - loss: 0.5101 - val_accuracy: 0.8624 - val_loss: 0.5724
42/42		- 0s	9ms/step - accuracy: 0.8868 - loss: 0.5096 - val_accuracy: 0.8624 - val_loss: 0.5722
Epoch 42/42	245/300	- 0s	10ms/step - accuracy: 0.8871 - loss: 0.5091 - val_accuracy: 0.8625 - val_loss: 0.5718
Epoch	246/300		
42/42 Epoch	247/300	- 0s	10ms/step - accuracy: 0.8870 - loss: 0.5086 - val_accuracy: 0.8627 - val_loss: 0.5715
42/42		0s	9ms/step - accuracy: 0.8871 - loss: 0.5081 - val_accuracy: 0.8627 - val_loss: 0.5712
42/42	248/300	- 0s	11ms/step - accuracy: 0.8871 - loss: 0.5076 - val_accuracy: 0.8627 - val_loss: 0.5708
Epoch 42/42	249/300	- 0s	10ms/step - accuracy: 0.8874 - loss: 0.5071 - val_accuracy: 0.8625 - val_loss: 0.5706
Epoch	250/300		
42/42 Epoch	251/300	- 05	9ms/step - accuracy: 0.8874 - loss: 0.5066 - val_accuracy: 0.8626 - val_loss: 0.5703
42/42 Epoch	252/300	- 0s	9ms/step - accuracy: 0.8874 - loss: 0.5061 - val_accuracy: 0.8622 - val_loss: 0.5700
42/42		0s	10ms/step - accuracy: 0.8877 - loss: 0.5056 - val_accuracy: 0.8626 - val_loss: 0.5697
Epoch 42/42	253/300	- 0s	10ms/step - accuracy: 0.8877 - loss: 0.5050 - val_accuracy: 0.8626 - val_loss: 0.5693
Epoch	254/300		
42/42 Epoch	255/300		10ms/step - accuracy: 0.8877 - loss: 0.5046 - val_accuracy: 0.8626 - val_loss: 0.5691
42/42 Enoch	256/300	- 0s	10ms/step - accuracy: 0.8878 - loss: 0.5041 - val_accuracy: 0.8625 - val_loss: 0.5688
42/42		- 0s	10ms/step - accuracy: 0.8878 - loss: 0.5036 - val_accuracy: 0.8625 - val_loss: 0.5685
42/42	257/300	- 0s	10ms/step - accuracy: 0.8879 - loss: 0.5031 - val_accuracy: 0.8622 - val_loss: 0.5683
Epoch 42/42	258/300		10ms/step - accuracy: 0.8878 - loss: 0.5026 - val_accuracy: 0.8622 - val_loss: 0.5679
Epoch	259/300		
42/42 Epoch	260/300	- 0s	10ms/step - accuracy: 0.8880 - loss: 0.5021 - val_accuracy: 0.8619 - val_loss: 0.5677
42/42		0s	9ms/step - accuracy: 0.8881 - loss: 0.5017 - val_accuracy: 0.8618 - val_loss: 0.5675
42/42	261/300	- 0s	11ms/step - accuracy: 0.8880 - loss: 0.5012 - val_accuracy: 0.8619 - val_loss: 0.5672
Epoch 42/42	262/300		9ms/step - accuracy: 0.8881 - loss: 0.5008 - val_accuracy: 0.8621 - val_loss: 0.5668
Epoch	263/300		
42/42 Epoch	264/300	- 0s	9ms/step - accuracy: 0.8880 - loss: 0.5003 - val_accuracy: 0.8620 - val_loss: 0.5665
42/42 Enoch	265/300	- 0s	10ms/step - accuracy: 0.8880 - loss: 0.4998 - val_accuracy: 0.8619 - val_loss: 0.5661
42/42		- 0s	9ms/step - accuracy: 0.8881 - loss: 0.4993 - val_accuracy: 0.8619 - val_loss: 0.5658
Epoch 42/42	266/300	- 0s	10ms/step - accuracy: 0.8883 - loss: 0.4989 - val_accuracy: 0.8619 - val_loss: 0.5655
Epoch	267/300		
42/42 Epoch	268/300	- 05	9ms/step - accuracy: 0.8884 - loss: 0.4984 - val_accuracy: 0.8616 - val_loss: 0.5653
42/42 Enoch	269/300	- 0s	10ms/step - accuracy: 0.8885 - loss: 0.4980 - val_accuracy: 0.8621 - val_loss: 0.5649
42/42		- 0s	10ms/step - accuracy: 0.8884 - loss: 0.4975 - val_accuracy: 0.8620 - val_loss: 0.5648
42/42	270/300	- 0s	9ms/step - accuracy: 0.8884 - loss: 0.4971 - val_accuracy: 0.8621 - val_loss: 0.5647
Epoch 42/42	271/300		11ms/step - accuracy: 0.8884 - loss: 0.4967 - val accuracy: 0.8622 - val loss: 0.5643
Epoch	272/300		
42/42 Epoch	273/300	- 0s	10ms/step - accuracy: 0.8884 - loss: 0.4962 - val_accuracy: 0.8625 - val_loss: 0.5641
42/42		0s	9ms/step - accuracy: 0.8885 - loss: 0.4958 - val_accuracy: 0.8624 - val_loss: 0.5637
42/42		- 0s	10ms/step - accuracy: 0.8886 - loss: 0.4953 - val_accuracy: 0.8625 - val_loss: 0.5634
Epoch 42/42	275/300	- 0s	9ms/step - accuracy: 0.8885 - loss: 0.4949 - val_accuracy: 0.8622 - val_loss: 0.5631
Epoch	276/300		
42/42 Epoch	277/300	- 0s	10ms/step - accuracy: 0.8886 - loss: 0.4944 - val_accuracy: 0.8618 - val_loss: 0.5629
42/42 Enoch	278/300	- 0s	10ms/step - accuracy: 0.8885 - loss: 0.4940 - val_accuracy: 0.8619 - val_loss: 0.5626
42/42		- 0s	10ms/step - accuracy: 0.8886 - loss: 0.4936 - val_accuracy: 0.8621 - val_loss: 0.5623
Epoch 42/42	279/300	- 0s	10ms/step - accuracy: 0.8886 - loss: 0.4931 - val_accuracy: 0.8622 - val_loss: 0.5620
Epoch 42/42	280/300		10ms/step - accuracy: 0.8887 - loss: 0.4927 - val_accuracy: 0.8624 - val_loss: 0.5617
Epoch	281/300		
42/42 Epoch	282/300	- 0s	10ms/step - accuracy: 0.8888 - loss: 0.4922 - val_accuracy: 0.8619 - val_loss: 0.5615
42/42		• 0s	10ms/step - accuracy: 0.8887 - loss: 0.4918 - val_accuracy: 0.8616 - val_loss: 0.5612
42/42		0s	10ms/step - accuracy: 0.8887 - loss: 0.4913 - val_accuracy: 0.8619 - val_loss: 0.5611
Epoch 42/42	284/300	- 0s	10ms/step - accuracy: 0.8887 - loss: 0.4909 - val_accuracy: 0.8614 - val_loss: 0.5608
	285/300		11ms/step - accuracy: 0.8887 - loss: 0.4905 - val_accuracy: 0.8612 - val_loss: 0.5606
Epoch	286/300		
42/42 Epoch	287/300	- Øs	10ms/step - accuracy: 0.8885 - loss: 0.4901 - val_accuracy: 0.8610 - val_loss: 0.5604
42/42 Epoch	288/300	0 s	11ms/step - accuracy: 0.8886 - loss: 0.4898 - val_accuracy: 0.8608 - val_loss: 0.5600
42/42		- 0s	10ms/step - accuracy: 0.8888 - loss: 0.4893 - val_accuracy: 0.8610 - val_loss: 0.5597
Epoch 42/42	289/300	- 0s	11ms/step - accuracy: 0.8886 - loss: 0.4889 - val_accuracy: 0.8610 - val_loss: 0.5594
	290/300		
Epoch	291/300		10ms/step - accuracy: 0.8887 - loss: 0.4885 - val_accuracy: 0.8608 - val_loss: 0.5592
42/42 Epoch	292/300	- 0s	10ms/step - accuracy: 0.8889 - loss: 0.4881 - val_accuracy: 0.8609 - val_loss: 0.5589
42/42		0s	10ms/step - accuracy: 0.8889 - loss: 0.4877 - val_accuracy: 0.8608 - val_loss: 0.5585
42/42		- 0s	10ms/step - accuracy: 0.8889 - loss: 0.4873 - val_accuracy: 0.8605 - val_loss: 0.5584
Epoch 42/42	294/300		11ms/step - accuracy: 0.8891 - loss: 0.4869 - val_accuracy: 0.8606 - val_loss: 0.581
Epoch	295/300		
42/42 Epoch	296/300	- Øs	10ms/step - accuracy: 0.8890 - loss: 0.4865 - val_accuracy: 0.8604 - val_loss: 0.5578
42/42		0s	10ms/step - accuracy: 0.8890 - loss: 0.4861 - val_accuracy: 0.8606 - val_loss: 0.5575
42/42		- 0s	10ms/step - accuracy: 0.8890 - loss: 0.4857 - val_accuracy: 0.8605 - val_loss: 0.5573
Epoch 42/42	298/300	- 0s	11ms/step - accuracy: 0.8891 - loss: 0.4853 - val_accuracy: 0.8609 - val_loss: 0.5570
Epoch	299/300		
42/42 Epoch	300/300	US	10ms/step - accuracy: 0.8892 - loss: 0.4849 - val_accuracy: 0.8608 - val_loss: 0.5568

```
42/42 0. 0s 10ms/step - accuracy: 0.8892 - loss: 0.4845 - val_accuracy: 0.8605 - val_loss: 0.5566 Test Loss: 0.5308677554130554, Test Accuracy: 0.8662921190261841
```

```
In []: plt.figure(figsize=(10, 6))

# Plot training and validation loss values
plt.plot(history.history('toss'), label='Training Loss')

if 'val_loss' in history.history:
    plt.plot(history.history['val_loss'], label='Validation Loss')

plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Validation Loss Over Time')
plt.legend()
plt.grid(True)
plt.show()
```


Section 6: Performance of the model

```
In [ ]: import numpy as np
         import pandas as pd
from sklearn.metrics import accuracy_score, classification_report
         predictions = model.predict(scaled_test_df.drop(columns=['Export_Value_3_Years_Ahead_Category']))
predicted_classes = np.argmax(predictions, axis=1)
         true_labels = scaled_test_df['Export_Value_3_Years_Ahead_Category'].values
         # Calculate accuracy
         accuracy = round(accuracy_score(true_labels, predicted_classes), 2)
class_report = classification_report(true_labels, predicted_classes)
         print(f'Accuracy: {accuracy}')
print('Classification Report:\n', class_report)
        84/84 -
                                     — 0s 1ms/step
        Accuracy: 0.87
Classification Report:
                                        recall f1-score
                         precision
                                                               support
                  0.0
1.0
2.0
                              0.89
0.78
                                                                  877
                              0.93
                                          0.93
                                                     0.93
                                                      0.87
                                                                 2670
             accuracy
                                          0.87
                                                      0.87
                                                                  2670
            macro avg
        weighted avg
                              0.87
                                          0.87
                                                     0.87
                                                                 2670
In [ ]: import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.metrics import confusion_matrix
          # Calculate the confusion matrix
         cm = confusion_matrix(true_labels, predicted_classes)
         plt.show()
```



```
In []: # Save the results to a CSV file
    results_df = pd.DataFrame({
        'Id': range(1, len(predicted_classes) + 1),
        'True_Label': true_labels,
        'Predicted_Class': predicted_classes,
})
    results_df.to_csv('classification_results.csv', index=False)
```