

# THE UNIVERSITY OF TEXAS AT AUSTIN

#### EE381V LARGE SCALE OPTIMIZATION

### Problem Set 0

Edited by LATEX

Department of Computer Science

STUDENT
Jimmy Lin

xl5224

COURSE COORDINATOR

Sujay Sanghavi

UNIQUE NUMBER

 $\overline{17350}$ 

RELEASE DATE

September 5, 2014

DUE DATE

September 11, 2014

TIME SPENT

10 hours

September 10, 2014

# Table of Contents

| 1 | Mat  | lab and Computational Assignment                                               | 3    |
|---|------|--------------------------------------------------------------------------------|------|
|   | 1.1  | Algorithm 1: Least Square                                                      |      |
|   |      | 1.1.1 Small-scale dataset: Succeed                                             | . 3  |
|   |      | 1.1.2 Medium-scale dataset: Succeed                                            | . 3  |
|   |      | 1.1.3 Large-scale dataset: Failed                                              | . 3  |
|   | 1.2  | Algorithm 2: optimization with LASSO                                           | . 4  |
|   |      | 1.2.1 Small-scale dataset: Succeed                                             | . 4  |
|   |      | 1.2.2 Medium-scale dataset: Succeed                                            | . 4  |
|   |      | 1.2.3 Large-scale dataset: Failed                                              | . 4  |
|   | 1.3  | Orthogonal Matching Pursuit                                                    |      |
|   |      | 1.3.1 Small-scale Dataset: Succeed                                             | . 5  |
|   |      | 1.3.2 Medium-scale Dataset: Succeed                                            | . 5  |
|   |      | 1.3.3 Large-scale Dataset: Succeed                                             | . 5  |
| 2 | Line | ear Algebra Review                                                             | 6    |
|   | 2.1  | More Range and Nullspace                                                       |      |
|   |      | 2.1.1 Smallest and Largest rank of $C = AB$                                    |      |
|   |      | 2.1.2 Largest rank of $C = AB$                                                 |      |
|   | 2.2  | Riesz Representation Theorem                                                   |      |
|   | 2.3  | Polynomial Vector Spaces                                                       | . 7  |
|   |      | 2.3.1 $Tp = 2p(t) - tp'(t)$ : False                                            | . 7  |
|   |      | 2.3.2 $Tp = 2p(t) - 3tp'(t)$ : True                                            |      |
|   |      | 2.3.3 Characterization of Surjectivity: $a_0 \neq 0$                           |      |
|   | 2.4  | Rank                                                                           | . 8  |
|   |      | 2.4.1 Show that $rank(A) \leq min\{m, n\}$                                     | . 8  |
|   |      | 2.4.2 Sylvester's rank inequality                                              | . 8  |
|   |      | 2.4.3 Subadditivity: $rank(A+B) \le rank(A) + rank(B) \dots \dots \dots \dots$ | . 9  |
|   |      | 2.4.4 Frobenius Rank Inequality                                                | . 9  |
| A | Cod  | les Printout                                                                   | 10   |
|   | A.1  | Sparse Recovery                                                                | . 10 |
|   |      | A.1.1 Algorithm 1: Least Square                                                |      |
|   |      | A.1.2 Algorithm 2: Optimization with LASSO                                     |      |
|   | A.2  | Orthogonal Matching Pursuit                                                    |      |
|   |      | A.2.1 OMP Routine                                                              |      |
|   |      | A 2.2 Regression Scripts                                                       |      |

### Chapter 1

# Matlab and Computational Assignment

#### 1.1 Algorithm 1: Least Square

The command to invoke standarded least-squared regression:

>> algo1()

Note that algo 1.m includes scripts for all three datasets.

#### 1.1.1 Small-scale dataset: Succeed

The brief summary of applying standarded least-squared regression on small-scale dataset is as follows:

- Total CPU time (secs) = 0.18
- CPU time per iteration = 0.02
- Regression Error  $||X\beta y||$ : 1.1698e-10
- Testing Error  $||X_{test}\beta y_{test}||$ : 23.058394 (pretty large)

#### 1.1.2 Medium-scale dataset: Succeed

The brief summary of applying standarded least-squared regression on medium-scale dataset is as follows:

- Total CPU time (secs) = 43.95
- CPU time per iteration = 5.49
- Regression Error  $||X\beta y||$ : 3.2594e-09
- Testing Error  $||X_{test}\beta y_{test}||$ : 19.862394 (pretty large)

#### 1.1.3 Large-scale dataset: Failed

This standarded least-square regression task is too large-scaled to be computed.

#### 1.2 Algorithm 2: optimization with LASSO

The command to invoke least-squared regression with LASSO:

#### >> algo2()

Note that algo2.m includes scripts for all three datasets.

#### 1.2.1 Small-scale dataset: Succeed

The brief summary of applying least-squared regression with LASSO on small-scale dataset is as follows:

- Total CPU time (secs) = 0.38
- CPU time per iteration = 0.02
- Regression Error: 6.7886e-10
- Testing Error: 0.144338
- Supports (non-zeros entries of  $\beta$ ): 43 (500 atoms in total)

#### 1.2.2 Medium-scale dataset: Succeed

The brief summary of applying least-squared regression with LASSO on medium-scale dataset is as follows:

- Total CPU time (secs) = 126.66
- CPU time per iteration = 4.87
- Regression Error: 4.4292e-09
- Testing Error: 0.078289
- Supports (non-zeros entries of  $\beta$ ): 342 (5000 atoms in total)

#### 1.2.3 Large-scale dataset: Failed

This least-square regression with LASSO task is too large-scaled to be computed.

**Remarks**: Least-squared regression with LASSO does outperfrom standarded least-squared regression in its prediction accuracy. Besides, it has higher computational complexity since it requires more iterations for convergence and each iteration cost more time to complete.

#### 1.3 Orthogonal Matching Pursuit

The command to invoke regression with OMP preprocessing:

>> regress\_omp()

#### 1.3.1 Small-scale Dataset: Succeed

The brief summary of applying regression with OMP feature selection on small-scale dataset is as follows:

- Indices of Features selected by OMP (with order): 402, 235, 86, 11, 108.
- Elapsed time is 0.198106 seconds.
- Regression Error  $||X\beta y||$ : 5.3785e-02
- Testing Error  $||X_{test}\beta y_{test}||$ : 4.4208e-02

#### 1.3.2 Medium-scale Dataset: Succeed

The brief summary of applying regression with OMP feature selection on medium-scale dataset is as follows:

- Indices of Features selected by OMP (with order): 577, 2760, 561, 3614, 3958.
- Elapsed time is 0.209093 seconds.
- Regression Error  $||X\beta y||$ : 2.1955e-01
- Testing Error  $||X_{test}\beta y_{test}||$ : 1.8219e-02

#### 1.3.3 Large-scale Dataset: Succeed

The brief summary of applying regression with OMP feature selection on large-scale dataset is as follows:

- Indices of Features selected by OMP (with order): 17099, 29426, 35373, 22452, 43354.
- Elapsed time is 2.994790 seconds.
- Regression Error  $||X\beta y||$ : 6.9964e-01
- Testing Error  $||X_{test}\beta y_{test}||$ : 6.4437e-03

Note that Elapsed time is defined as OMP preprocessing and regression for selected atoms on that dataset, but not included computation for regression error and testing error.

**Remarks**: Least-squared regression on OMP feature selection performs much better than standarded least-squared regression and least-squared regression with LASSO. Besides, it has lower computational complexity since it allows the large-scale dataset (third dataset) to be regressed.

# Chapter 2

# Linear Algebra Review

#### 2.1 More Range and Nullspace

#### 2.1.1 Smallest and Largest rank of C = AB

**Conditions**:  $A \in \mathbb{R}^{10 \times 10}$  with rank(A) = 5 and  $B \in \mathbb{R}^{10 \times 10}$  with rank(B) = 5. Sylvester's rank inequality:  $\forall A \in R^{m \times k}, B \in \mathbb{R}^{k \times n}$ 

$$rank(A) + rank(B) - k \le rank(AB)$$

Smallest rank of C = AB is rank(A) + rank(B) - k = 5 + 5 - 10 = 0. Largest rank of C = AB is min(rank(A), rank(B)) = min(5, 5) = 5.

#### 2.1.2 Largest rank of C = AB

Conditions:  $A \in \mathbb{R}^{10 \times 15}$  with rank(A) = 7 and  $B \in \mathbb{R}^{15 \times 11}$  with rank(B) = 8. Largest rank of C = AB is min(rank(A), rank(B)) = min(7, 8) = 7.

#### 2.2 Riesz Representation Theorem

Linear map  $f: \mathbb{R}^n \to \mathbb{R}$  has two critical properties due to its linearity:

additivity: 
$$f(x+y) = f(x) + f(y), \forall x, y \in dom(f)$$
 (2.1)

homogeneity: 
$$f(\alpha x) = \alpha f(x), \forall \alpha \in \mathbb{R}, x \in dom(f)$$
 (2.2)

Let arbitrary vector  $\mathbf{w} = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n$ . Then we can denote  $\mathbf{w}$  as linear combination of standard basis

$$\mathbf{w} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_n \mathbf{e}_n \tag{2.3}$$

Now we start to show that  $f(\mathbf{w})$  can be represented as inner product of  $\mathbf{w}$  and another vector.

$$f(\mathbf{w}) = f(\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_n \mathbf{e}_n)$$
 standard basis representation(2.3) (2.4)  

$$= f(\alpha_1 \mathbf{e}_1) + f(\alpha_2 \mathbf{e}_2) + \dots + f(\alpha_n \mathbf{e}_n)$$
 additivity of linear map(2.1) (2.5)  

$$= \alpha_1 f(\mathbf{e}_1) + \alpha_2 f(\mathbf{e}_2) + \dots + \alpha_n f(\mathbf{e}_n)$$
 additivity of linear map(2.2) (2.6)  

$$= \langle (f(\mathbf{e}_1), f(\mathbf{e}_2), \dots, f(\mathbf{e}_n)), (\alpha_1, \alpha_2, \dots, \alpha_n) \rangle$$
 definition of inner product (2.7)  

$$= \langle \mathbf{x}, \mathbf{w} \rangle$$
 
$$\mathbf{x} = (f(\mathbf{e}_1), f(\mathbf{e}_2), \dots, f(\mathbf{e}_n))$$
 (2.8)

Hence, we have successfully proved that

$$\forall \text{ linear map } f: \mathbb{R}^n \to \mathbb{R}, \exists \mathbf{x} \in \mathbb{R}^n, f(\mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle \tag{2.9}$$

#### 2.3 Polynomial Vector Spaces

#### **2.3.1** Tp = 2p(t) - tp'(t): False

T is represented by an diagonal matrix with all diagonal entries  $b_i = 2 - i$ . Obviously, for  $i = 2, b_i = 0$ . That is to say, the second row of T is zeros. Hence, T is not full-rank and then T is not surjective. There must exist a q that cannot be reached by Tp. For example:  $t^2$ .

#### **2.3.2** Tp = 2p(t) - 3tp'(t): True

T is represented by an diagonal matrix with all diagonal entries  $b_i = 2 - 3 * i$ . Obviously, for  $\exists i \in \mathbb{Z}, b_i = 0$ . That is to say, the matrix T is full rank and then T is surjective: for every polynomial  $q \in V$ , there exists a polynomial  $p \in V$ , with Tp = q.

#### **2.3.3** Characterization of Surjectivity: $a_0 \neq 0$

To make sure that the corresponding mapping T to be surjective: for every polynomial (vector)  $q \in V$ , there does exist a polynomial (vector)  $p \in V$  such that Tp = q, we need to gurantee the T corresponds to full-rank matrix. In general, matrix T is still a diagonal matrix with its diagonal entries  $b_i (i \in [0, d])$  to be

$$b_i = a_0 + a_1 \cdot i + a_2 \cdot i(i-1) + \dots + a_d \cdot i(i-1) \dots (i-d)$$
(2.10)

$$= \sum_{j=0}^{d} \mathbb{I}(i \ge j) \cdot a_j \frac{i!}{(i-j)!}$$
 (2.11)

Since T is diagonal matrix, we need to make sure every diagonal entries is non-zero, that is

$$b_i \neq 0 \tag{2.12}$$

In conclusion, we have

$$\forall i, \sum_{j=0}^{d} \mathbb{I}(i \ge j) \cdot a_j \frac{i!}{(i-j)!} \ne 0 \implies \forall q \in V, \exists p \in V, s.t. \ Tp = q$$
 (2.13)

#### 2.4 Rank

#### **2.4.1** Show that $rank(A) \leq min\{m, n\}$

*Proof.* rank(A) is defined as the number of columns that are linearly independent. Then, we have

$$rank(A) \le \text{number of linearly independent columns} \le n$$
 (2.14)

Since the number of linearly independent columns equals to the number of linearly independent rows,

$$rank(A) \le \text{number of linearly independent rows} \le m$$
 (2.15)

From (2.14) and (2.15), it is easy to derive the desired result:

$$rank(A) \le min\{m, n\} \tag{2.16}$$

#### 2.4.2 Sylvester's rank inequality

Proof of  $rank(AB) \leq min\{rank(A), rank(B)\}$ . Let  $AB\mathbf{x} \in Col(AB), \mathbf{x} \in \mathbb{R}^k$ , then  $AB\mathbf{x} = A(B\mathbf{x}) \in Col(A)$ . Since  $B\mathbf{x}$  may not fill up the whole Col(A), we have

$$Col(AB) \subset Col(A)$$
 (2.17)

Since rank is defined to be the dimensionality of column space, we proved

$$rank(AB) \le rank(A)$$
 (2.18)

By rank-nullity theorem:

$$rank(B) = n - nullity(B) (2.19)$$

Similarly, we have

$$rank(AB) = n - nullity(AB) \tag{2.20}$$

Since  $B\mathbf{x} \Rightarrow AB\mathbf{x}$  and  $AB\mathbf{x} \not\Rightarrow B\mathbf{x}$ , we have

$$nullity(B) \le nullity(AB)$$
 (2.21)

Based on (2.19) and (2.20), we have

$$rank(AB) \le rank(B) \tag{2.22}$$

In terms of (2.18) and (2.22), we have

$$rank(AB) \le min\{rank(A), rank(B)\}$$
(2.23)

Proof of  $rank(A) + rank(B) - k \le rank(AB)$ . We can make use of Frobenius rank inequality by instantiating B as I, C as B.

$$rank(AI) + rank(BI) \le rank(I) + rank(AIB)$$
(2.24)

Since  $rank(I_{p \times k}) \le min\{p, k\} \le k$ , then

$$rank(A) + rank(B) \le k + rank(AB) \tag{2.25}$$

$$rank(A) + rank(B) - k \le rank(AB) \tag{2.26}$$

Hence, we leave the essential part of proof to frobenius rank inequality.

#### **2.4.3** Subadditivity: $rank(A + B) \le rank(A) + rank(B)$

*Proof.* Since both A and B are  $m \times n$  matrix, we can denote them as

$$A = \begin{pmatrix} | & | & | & | & | & | \\ a_0 & a_1 & \dots & a_j & \dots & a_n \\ | & | & | & | & | & | \end{pmatrix}, B = \begin{pmatrix} | & | & | & | & | & | \\ b_0 & b_1 & \dots & b_j & \dots & b_n \\ | & | & | & | & | & | \end{pmatrix}$$
(2.27)

Obviously  $a_j, b_j$  are column vector of A and B respectively. Then we can represent  $(A+B)\mathbf{x}$  as

$$(A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x} = \sum_{j=1}^{n} a_j \mathbf{x}_j + \sum_{j=1}^{n} b_j \mathbf{x}_j$$
 (2.28)

It is easy to see that

$$Col(A+B) = Col(A) + Col(B) - Col(A) \cap Col(B)$$
(2.29)

Note that we remove the space overlapped by Col(A) and Col(B) since this space should not be counted twice for Col(A + B).

In general, some  $a_j$  or  $b_j$  are coupled (mutally dependent), in which cases,  $\emptyset \subset Col(A) \cap Col(B)$ . In summary, we have

$$rank(A+B) \le rank(A) + rank(B) \tag{2.30}$$

At the best case, all  $a_j$  and  $b_j$  are linearly independent and then  $Col(A) \cap Col(B) = \emptyset$ . Hence, in this case, rank(A+B) = rank(A) + rank(B).

#### 2.4.4 Frobenius Rank Inequality

*Proof.* If  $U \subset V$  and  $X: U \to W$ , then

$$\dim ker X|_{U} \le \dim ker X \tag{2.31}$$

By Rank-Nullity Theorem, we have

$$dim \ ker X = dim V - dim \ Ran X \tag{2.32}$$

Hence, in general we have

$$\dim ker X|_{U} \le \dim V - \dim Ran X \tag{2.33}$$

Let U = RanBC and V = RanB and X = A, we have

$$\dim \ker A|_{RanBC} \le \dim RanB - \dim RanA \tag{2.34}$$

$$\leq dim \ RanB - dim \ RanAB$$
 (2.35)

Since  $dim \ ker A|_{RanBC} = dim \ RanB - dim \ RanABC$ , we have

$$dim \ RanBC - dim \ RanABC \le dim \ RanB - dim \ RanAB$$
 (2.36)

That is

$$dim \ RanAB + dim \ RanBC \le dim \ RanB + dim \ RanABC$$
 (2.37)

## Appendix A

### **Codes Printout**

#### A.1 Sparse Recovery

#### A.1.1 Algorithm 1: Least Square

```
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%%% Scripts invoking cvx least-square routines to
%%% solve problems using our three datasets.
\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}
%%% standard least-square for Small-scale dataset
cvx_begin
                variable b1(size(X1,2))
                 minimize( norm( X1*b1-y1 ) )
cvx_end
RegressionError1 = norm( X1*b1-y1 )
TestingError1 = norm( X1test*b1 - y1test )
%%% standard least-square for Medium-scale dataset
cvx_begin
                variable b2(size(X2,2))
                minimize ( norm ( X2*b2 - y2 ) )
cvx_end
RegressError2 = norm( X2*b2 - y2 )
TestError2 = norm(X2test*b2 - y2test)
%%% standard least-square for Large-scale dataset
cvx_begin
                 variable b3(size(X3,2))
                 minimize( norm( X3*b3-y3 ) )
cvx_end
RegressionError3 = norm( X3*b3 - y3 )
TestingError3 = norm( X3test*b3 - y3test)
```

#### A.1.2 Algorithm 2: Optimization with LASSO

```
%%% Scripts invoking cvx least-square routines to
%%% solve LASSO problems using our three datasets.
format short e
EPSILON = 10e-5;
%%% LASSO least-square for Small-scale dataset
cvx_begin
        variable b1(size(X1,2))
        minimize ( norm(X1*b1-y1) + norm(b1,1) )
cvx_end
RegressionError1 = norm( X1*b1-y1 )
TestingError1 = norm( X1test * b1 - y1test )
Support1 = sum(((b1 < EPSILON) + (b1 > -EPSILON)) < 2)
%%% LASSO least-square for Medium-scale dataset
cvx_begin
        variable b2(size(X2,2))
        minimize ( norm(X2*b2-y2) + norm(b2, 1))
cvx_end
RegressionError2 = norm( X2*b2-y2 )
TestingError2 = norm( X2test * b2 - y2test)
Support2 = sum((b2 < EPSILON) + (b2 > -EPSILON)) < 2)
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%%% LASSO least-square for Large-scale dataset
cvx_begin
        variable b3(size(X3,2))
        minimize ( norm(X3*b3-y3) + norm(b3, 1) )
RegressionError3 = norm( X3*b3-y3 )
TestingError3 = norm( X3test * b3 - y3test)
Support3 = sum(((b3 < EPSILON) + (b3 > -EPSILON)) < 2)
```

#### A.2 Orthogonal Matching Pursuit

#### A.2.1 OMP Routine

```
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%% Orthogonal matching Pursuit
function Iset = omp (X, y, SPARSITY)
%% INITIALIZATION
[target_feat_dot_prod, target_feat_idx] = max(X' * y);
Iset = [target_feat_idx];
%% AUGMENTATION
residual = y;
for iter = 1:(SPARSITY-1),
           \mbox{\ensuremath{\$}} perpendicular complement of y to X_i
           phi = X(:, Iset);
           P = phi * inv(phi'*phi) * phi';
           I = eye(size(P));
           residual = (I - P) * residual;
           % elect new atom and add to selected atom set
           [target_feat_dot_prod, target_feat_idx] = max(X' * residual);
           % NOTE that new feature(atom) will not pre-exist in Iset
           % This is theoreotically guaranteed by orthogonal projection
           Iset = [Iset, target_feat_idx];
end
```

#### A.2.2 Regression Scripts

```
%%% Invoke CVX least square regression after OMP
%%% feature selection
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
SPARSITY = 5; % SPARSITY parameter for OMP
%%% Small-scale dataset
tic
Iset1 = omp(X1, y1, SPARSITY);
subX1 = X1(:, Iset1);
cvx_begin
               variable sub_b1(SPARSITY);
               minimize(norm(subX1 * sub_b1 - y1))
toc
Tset.1
RegressionError1 = norm(subX1*sub_b1 - y1)
TestingError1 = norm(X1test(:,Iset1)*sub_b1 - y1test)
\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}
%%% Medium-scale dataset
Iset2 = omp(X2, y2, SPARSITY);
subX2 = X2(:, Iset2);
cvx_begin
              variable sub_b2(SPARSITY);
               minimize(norm(subX2 * sub_b2 - y2))
cvx end
toc
Tset.2
RegressionError2 = norm(subX2*sub_b2 - y2)
TestingError2 = norm(X2test(:,Iset2)*sub_b2 - y2test)
%%% Large-scale dataset
Iset3 = omp(X3, y3, SPARSITY);
subX3 = X3(:, Iset3);
cvx_begin
               variable sub_b3(SPARSITY);
              minimize(norm(subX3 * sub_b3 - y3))
cvx_end
toc
Tset.3
RegressionError3 = norm(subX3*sub_b3 - y3)
TestingError3 = norm(X3test(:,Iset3)*sub_b3 - y3test)
```