6 多変数関数の極値

2 変数関数の極値

f(x,y) が点 (a,b) で極値をとるとすると,

- y = b で固定した関数 g(x) := f(x,b) も x = a で極値をとる. つまり, $g'(a) = f_x(a,b) = 0$ を満たす.
- 同様に $f_y(a,b) = 0$ を満たす.

このとき、f(x,y) の点 (a,b) の近傍での 2 次近似は

$$f(x,y) = f(a,b) + \frac{1}{2}(x-a,y-b) \begin{pmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{xy}(a,b) & f_{yy}(a,b) \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix}$$

で与えられる. (x,y) (\neq (a,b)) に対して、上式右辺の第 2 項が常に正のとき、(a,b) は(孤立した)極小値を与える。また、上式右辺の第 2 項が常に負のとき、(a,b) は(孤立した)極大値を与える。

極値の求め方(判定法)

- (1) $f_x(a,b) = f_y(a,b) = 0$ を満たす (a,b) を求める.
- (2) 上で求めた (a,b) に対して $H_f(a,b) := \begin{pmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{xy}(a,b) & f_{yy}(a,b) \end{pmatrix}$ を計算する.
 - $\det(H_f(a,b)) > 0$ かつ,
 - $-f_x(a,b) > 0$ のとき、f(x,y) は (a,b) で極小値をとる.
 - $-f_x(a,b) < 0$ のとき、f(x,y) は (a,b) で極大値をとる.
 - $\det(H)_f(a,b) < 0$ のとき、f(x,y) は点 (a,b) で極値をとらない。
 - $\det(H)_f(a,b)=0$ のとき、f(x,y) は点 (a,b) で極値をとるかどうか判定できない。

問題 6.1. 次の関数の極値を求めよ.

(1)
$$f(x,y) = (x+y)e^{-x^2-y^2}$$
 (2) $f(x,y) = \frac{2}{3}y^3 + y^2 - x^2y + x^2$

(1)
$$f(x,y) = (x+y)c$$
 (2) $f(x,y) = \frac{3}{3}y + y + x$
(3) $f(x,y) = xy(1-2x-3y)$ (4) $f(x,y) = xy\log(x^2+y^2)$

(5)
$$f(x,y) = 2\log x + 3\log y + \log(6 - x - y)$$