Agentic vs. Automated Block Building

Maryam Bahrani Ritual

based on joint work with Naveen Durvasula

Maryam Bahrani Ritual

based on joint work with Naveen
Durvasula

Introduction block permissionless, verifiable compute on a shared global state

demand i i i i

permissionless, verifiable compute on a shared global state

see market

block

permissionless, verifiable compute on a shared global state

≤ee market block agents permissionless, verifiable compute on a shared global state

demand

see market

Transaction Supply Network

block

permissionless, verifiable compute on a shared global state

demand

≴ee market

"MEV"

Transaction Supply Network

block

permissionless, verifiable compute on a shared global state

- agents have their own objectives and outsized control over block production

Latest Blocks			88 Customize
	21191231 12 secs ago	Miner Titan Builder 286 txns in 12 secs	0.04896 Eth
	21191230 24 secs ago	Miner beaverbuild 135 txns in 12 secs	0.13521 Eth
	21191229 36 secs ago	Miner Titan Builder 173 txns in 12 secs	0.02886 Eth
	21191228 48 secs ago	Miner beaverbuild 147 txns in 12 secs	0.02635 Eth
	21191227 1 min ago	Miner Titan Builder 141 txns in 12 secs	0.02365 Eth

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user
 welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

February 26, 2024

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

Maryam Bahrani[†]

Pranay Garimidi[‡]

Transaction Fee Mechanism Design in a Post-MEV World*

Tim Roughgarden§

February 26, 2024

responses to MEV:

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

February 26, 2024

responses to MEV:

(reduce) at the app layer

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user
 welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

February 26, 2024

responses to MEV:

(reduce) at the app layer

(mitigate) minimize the influence of agents

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user
 welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

February 26, 2024

responses to MEV:

(reduce) at the app layer

(mitigate) minimize the influence of agents

(democratize) accept as "inevitable evil," and counter its negative side effects on e.g. centralization and censorship resistance.

Goal of this talk

"Agents bad" — "MEV toxic"

"Agents ok?" — "MEV nuanced"

Give a framework for

talking about degree of agenticism in different block production paradigms

reasoning about when an agentic design is appropriate

Automated Block Building

Agentic Block Building

Agentic Block Building

An allocation rule f is *more agentic* than g if for all M,

Agentic Automated

Bitcoin Solan a

Agentic Automated

Bitcoin Solan EIP-155 9 mev-boost

Agentic

Automated

Bitcoin Solan EIP-155 9 mev-boost

shared sequencing

Agentic

Automated

Bitcoin Solan EIP-155 9 mev-boost

shared sequencing

Agentic

Bitcoin Solan EIP-155 9 mev-boost

shared sequencing

Automated

Fair Sequencing
Service
most L2
sequencers

Agentic

Bitcoin Solan EIP-155 9 mev-boost

shared sequencing

Automated

SUAV Fair Sequencing
E PRO Service
most L2
F sequencers

Bitcoin Solan EIP-155 9 mev-boost

shared sequencing

Automated

FOCIL BRAI D SUAV Fair Sequencing
E PRO Service
F sequencers

FOCIL BRAI

Bitcoin Solan EIP-155 9 mev-boost

shared sequencing

How to choose the right place on the spectrum?

Automated

SUAV Fair Sequencing
E PRO Service most L2
F sequencers

low latency	/	

low latency	+	
tractability	possible to run on-chain (co	mputationally)

low latency	+	
tractability	possible to run on-chain (co	mputationally)
simple UX	users shouldn't need to do	complex strategization

low latency	-	
tractability	possible to run on-chain (co	mputationally)
simple UX	users shouldn't need to do	complex strategization
surplus maximization	creates the most economic	value / "gains from trade"

low latency	+	
tractability	possible to run on-chain (con	nputationally)
simple UX	users shouldn't need to do co	omplex strategization
surplus maximization	creates the most economic va	alue / "gains from trade"
no extraction	the generated surplus goes to	users

low latency	+	
tractability	possible to run on-chain (co	mputationally)
simple UX	users shouldn't need to do	complex strategization
surplus maximization	creates the most economic	value / "gains from trade"
no extraction	the generated surplus goes	to users

user pays 3200 Buy 1 ETH

user pays 3500

Buy 10 ETH

user pays 3500

user pays 3500

Buy 1 ETH

Sell 10 ETH

zero-sum game between user and agent:

user paid \$300 extra agent made \$300 profit

user pays 3500

Buy 1 ETH

Sell 10 ETH

zero-sum game between user and agent:

purely extractive MEV!

user paid \$300 extra agent made \$300 profit

Frontrunning (extractive MEV)

Agentic block building can be vulnerable to extraction e.g. Ethereum public mempools / mev-boost

Frontrunning (extractive MEV)

Agentic block building can be vulnerable to extraction e.g. Ethereum public mempools / mev-boost

Automated block building can achieve no extraction

e.g. SUAVE — encrypted mempool + deterministic ordering

bringing off-chain information on-chain

bringing off-chain information on-chain simultaneously

on-chai n

off-chai n

bringing off-chain information on-chain simultaneously

on-chai

off-chai n

Uniswap prices will reflect the most recent market information

bringing off-chain information on-chain simultaneously

on-chai

off-chai n

strolus generation for users:

Uniswap prices will reflect the most recent market information

extraction from liquidity providers:
agent's profit = loss to liquidity providers (minus trading fees)

bringing off-chain information on-chain simultaneously

on-chai

off-chai n

imilias generation for users:

Uniswap prices will reflect the most recent market information

extraction from liquidity providers:
agent's profit = loss to liquidity providers (minus trading fees)

"Loss-vs-Rebalancing (LVR)"

bringing off-chain information on-chain simultaneously

on-chai

off-chai n

tralus generation for users:

Uniswap prices will reflect the most recent market information

extraction from liquidity providers:
agent's profit = loss to liquidity providers (minus trading fees)

"Loss-vs-Rebalancing (LVR)"

tension between surplus maximization and no extraction!

bringing off-chain information on-chain simultaneously

on-chai

off-chai n

strolus generation for users:

Uniswap prices will reflect the most recent market information

observation. Crucial that the agent has certainty about the on-chain trade going through.

bringing off-chain information on-chain simultaneously:

on-chai

off-chai n

strolus generation for users:

Uniswap prices will reflect the most recent market information

observation. Crucial that the agent has certainty about the on-chain trade going through.

Uncertainty -> higher arb bounds -> less efficient DEX
prices

bringing off-chain information on-chain simultaneously

on-chai

off-chai n

strolus generation for users:

Uniswap prices will reflect the most recent market information

observation. Crucial that the agent has certainty about the on-chain trade going through.

Uncertainty -> higher arb bounds -> less efficient DEX
prices

claim. Automated block building can't get surplus maximization + tractability candidate automated ordering rules:

First-come-first-serve: side competition for latency reduction

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming

claim. Automated block building can't get surplus maximization + tractability candidate automated ordering rules:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering

Priority Is All You Need

06.04.2024 | By Dan Robinson, Dave White

claim. Automated block building can't get surplus maximization + tractability candidate automated ordering

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes
- Priority Ordering:

Priority Is All You Need

06.04.2024 | By Dan Robinson, Dave White Paradigm

coordination in mempool: competition => contention => uncertainty due to reversions

claim. Automated block building can't get surplus maximization + tractability candidate automated ordering

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes
- Priority Ordering:

Priority Is All You Need

06.04.2024 | By Dan Robinson, Dave White Paradigm

coordination in mempool: competition => contention => uncertainty due to reversions

observation. Crucial that the agent has certainty about the on-chain trade going through.

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection.
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection.
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"
 "interdependent
 valuations"

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage" "interdependent valuations"
 - computationally hard to optimize => intractable to run on-chain

claim. Automated block building can't get surplus maximization + tractability. candidate automated ordering rules:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"
 "interdependent
 valuations"
 - computationally hard to optimize => intractable to run on-chain

claim. Agentic block building can surplus maximization + tractability!

claim. Automated block building can't get surplus maximization + tractability. candidate automated ordering rules:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"
 "interdependent
 valuations"
 - computationally hard to optimize => intractable to run on-chain

claim. Agentic block building can surplus maximization + tractability!

e.g. mev-boost

The trade-offs

	agentic	automated
low latency		+ 7
tractability	+	
simple UX	+	
economic efficiency	?	?
no extraction		+

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

Conclusion

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

"NYSE on-chain"

Conclusion

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

"NYSE on-chain"

Agents are particularly well-suited for surplus-maximization, especially in the presence of complex user preferences, but utilizing them opens up the possibility of extraction

Conclusion

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

"NYSE on-chain"

Agents are particularly well-suited for surplus-maximization, especially in the presence of complex user preferences, but utilizing them opens up the possibility of extraction

Ritual Resonance Marketplace for Al computation complex preferences (heterogenous supply and demand) potential for generating large surplus from optimal resource allocation low toxicity — few extraction opportunities

Conclusion

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

"NYSE on-chain"

Agents are particularly well-suited for surplus-maximization, especially in the presence of complex user preferences, but utilizing them opens up the possibility of extraction

Ritual Resonance Marketplace for Al computation complex preferences (heterogenous supply and demand) potential for generating large surplus from optimal resource allocation low toxicity — few extraction opportunities

devnet today!

X

anks :)

- agents have their own objectives and outsized control over block production

- agents have their own objectives and outsized control over block production

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

February 26, 2024

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

responses to MEV:

February 26, 2024

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

responses to MEV:

February 26, 2024

(reduce) at the app layer

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

responses to MEV:

February 26, 2024

(reduce) at the app layer

(mitigate) minimize the influence of agents

- agents have their own objectives and outsized control over block production
- incentive misalignment between users and agents -> reduced user welfare

Transaction Fee Mechanism Design in a Post-MEV World*

Maryam Bahrani[†]

Pranav Garimidi[‡]

Tim Roughgarden§

responses to MEV:

February 26, 2024

(reduce) at the app layer

(mitigate) minimize the influence of agents

(democratize) accept as "inevitable evil," and counter its negative side effects on e.g. centralization and censorship resistance.

Goal of this talk

"Agents bad" — "MEV toxic"

"Agents ok?" — "MEV nuanced"

Goal of this talk

"Agents bad" — "MEV toxic"

"Agents ok?" — "MEV nuanced"

Give a framework for

talking about degree of agenticism in different block production paradigms

reasoning about when an agentic design is appropriate

Automated Block Building

An allocation rule is *automated* if it is only a function of the mempool

Agentic Block Building

Agentic Block Building

Agentic Automated

Bitcoin Solan a

Agentic Automated

Bitcoin Solan 9 mey-boost

Agentic Automated

```
Bitcoin EIP-155
Solan 9
mev-boost
```

shared sequencing

How to choose the right place on the spectrum?

low latency	/	

low latency	/	
tractability	possible to run on-chain (co	mputationally)

low latency	/	
tractability	possible to run on-chain (co	mputationally)
simple UX	users shouldn't need to do	complex strategization

low latency	/	
tractability	possible to run on-chain (co	mputationally)
simple UX	users shouldn't need to do	complex strategization
surplus maximization	creates the most economic	value / "gains from trade"

Desired Properties in a fee market

low latency	/	
tractability	possible to run on-chain (co	mputationally)
simple UX	users shouldn't need to do	complex strategization
surplus maximization	creates the most economic	value / "gains from trade"
no extraction	the generated surplus goes	to users

Desired Properties in a fee market

low latency	/	
tractability	possible to run on-chain (co	mputationally)
simple UX	users shouldn't need to do	complex strategization
surplus maximization	creates the most economic	value / "gains from trade"
no extraction	the generated surplus goes	to users

Two Examples

frontrunning

CEX-DEX arbitrage

user pays 3200 Buy 1 ETH

user pays 3200 Buy 1 ETH

user pays 3200

Buy 1 ETH

user pays 3500

user pays 3200

user pays 3500

user pays
3200

Buy 1 ETH

user pays
3500

zero-sum game between user and agent:

user paid \$300 extra agent made \$300 profit

user pays 3200 Buy 1 ETH

> user pays 3500

zero-sum game between user and agent:

purely extractive MEV!

user paid \$300 extra agent made \$300 profit

Frontrunning (extractive MEV)

Agentic block building can be vulnerable to extraction e.g. Ethereum public mempools / mev-boost

Frontrunning (extractive MEV)

Agentic block building can be vulnerable to extraction e.g. Ethereum public mempools / mev-boost

Automated block building can achieve no extraction
e.g. SUAVE — encrypted mempool + deterministic ordering

bringing off-chain information on-chain

bringing off-chain information on-chain simultaneously:

Buy 10 ETH on off-chain off-chainn

surplus generation for users:

Uniswap prices will reflect the most recent market information

surplus generation for users:

Uniswap prices will reflect the most recent market information

extraction from liquidity providers:

agent's profit = loss to liquidity providers (minus trading fees)

surplus generation for users:

Uniswap prices will reflect the most recent market information

extraction from liquidity providers:
agent's profit = loss to liquidity providers (minus trading fees)

"Loss-vs-Rebalancing (LVR)"

surplus generation for users:

Uniswap prices will reflect the most recent market information

extraction from liquidity providers:
agent's profit = loss to liquidity providers (minus trading fees)

"Loss-vs-Rebalancing (LVR)"

tension between surplus maximization and no extraction!

surplus generation for users:

Uniswap prices will reflect the most recent market information

observation. Crucial that the agent has certainty about the on-chain trade going through.

surplus generation for users:

Uniswap prices will reflect the most recent market information

Observation. Crucial that the agent has certainty about the on-chain trade going through.
 Uncertainty -> higher arb bounds -> less efficient DEX prices

surplus generation for users:

Uniswap prices will reflect the most recent market information

observation. Crucial that the agent has certainty about the on-chain trade going through.

Uncertainty -> higher arb bounds -> less efficient DEX

prices

claim. Automated block building can't get surplus maximization + tractability

claim. Automated block building can't get surplus maximization + tractability candidate automated ordering rules:

First-come-first-serve: side competition for latency reduction

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming

claim. Automated block building can't get surplus maximization + tractability candidate automated ordering rules:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering:

Priority Is All You Need

06.04.2024 | By Dan Robinson, Dave White

claim. Automated block building can't get surplus maximization + tractability candidate automated ordering rules:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering:

Priority Is All You Need

06.04.2024 | By Dan Robinson, Dave White Paradigm

coordination in mempool: competition => contention => uncertainty due to reversions

claim. Automated block building can't get surplus maximization + tractability candidate automated ordering rules:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering:

Priority Is All You Need

06.04.2024 | By Dan Robinson, Dave White

coordination in mempool: competition => contention => uncertainty due to reversions

observation. Crucial that the agent has certainty about the on-chain trade going through.

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"

 "interdependent

 valuations"

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"

 "interdependent

 valuations"
 - computationally hard to optimize => intractable to run on-chain

claim. Automated block building can't get surplus maximization + tractability. candidate automated ordering rules:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"

 "interdependent

 valuations"
 - computationally hard to optimize => intractable to run on-chain

claim. Agentic block building can surplus maximization + tractability!

claim. Automated block building can't get surplus maximization + tractability. candidate automated ordering rules:

- First-come-first-serve: side competition for latency reduction
- Random: incentivizes spamming
- Priority Ordering: vulnerable to reversions
- Ordering Rule with Reversion Protection:
 - allow transactions to submit bids conditioned on state
 - "Include my transaction only if I'm the first person to do this arbitrage"

 "interdependent

 valuations"
 - computationally hard to optimize => intractable to run on-chain

claim. Agentic block building can surplus maximization + tractability!

e.g. mev-boost

The trade-offs

	agentic	automated
low latency		+
tractability	+	
simple UX	+	
economic efficiency	?	?
no extraction		+

The Agentic—Automated spectrum as a design axis for block building mechanisms

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

"NYSE on-chain"

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

"NYSE on-chain"

Agents are particularly well-suited for surplus-maximization, especially in the presence of complex user preferences, but utilizing them opens up the possibility of extraction

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

```
"NYSE on-chain"
```

Agents are particularly well-suited for surplus-maximization, especially in the presence of complex user preferences, but utilizing them opens up the possibility of extraction

Ritual Resonance Marketplace for AI computation complex preferences (heterogenous supply and demand) potential for generating large surplus from optimal resource allocation low toxicity — few extraction opportunities

The Agentic—Automated spectrum as a design axis for block building mechanisms

Automated block building has low latency and less extraction, but can fail to create the most economic value due to on-chain computational constraints

"NYSE on-chain"

Agents are particularly well-suited for surplus-maximization, especially in the presence of complex user preferences, but utilizing them opens up the possibility of extraction

Ritual Resonance Marketplace for AI computation complex preferences (heterogenous supply and demand) potential for generating large surplus from optimal resource allocation low toxicity — few extraction opportunities

devnet today!

