

AD-A172 457 A REEXAMINATION OF SINGLE CHAIN SCATTERING IN 1/1
HETEROGENEOUS BLOCK COPOLYMERS(U) MASSACHUSETTS INST OF
TECH CAMBRIDGE DEPT OF CHEMICAL ENGINEER.

UNCLASSIFIED C V BERNEY ET AL. 01 SEP 86

F/G 11/9 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

AD-A172 457

(12)

OFFICE OF NAVAL RESEARCH
Contract N00014-77-C-0311
Task NR356-646

TECHNICAL REPORT NO. 17

by

C.V. Berney, P. Kofinas and R.E. Cohen
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

September 1, 1986

DTIC
ELECTED
S A D
OCT 1 1986
A

Reproduction in whole or in part is permitted for any purpose
of the U.S. government.

This document has been approved for public release and sale;
its distribution is unlimited.

DTIC FILE COPY

86 10 01 154

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		ADA172457
4. TITLE (and Subtitle) A Reexamination of Single Chain Scattering in Heterogeneous Block Copolymers		5. TYPE OF REPORT & PERIOD COVERED Technical Report
		6. PERFORMING ORG. REPORT NUMBER N00014-77-C-0311
7. AUTHOR(s) C.V. Berney, P. Kofinas and R.E. Cohen		8. CONTRACT OR GRANT NUMBER(s) NR356-646
9. PERFORMING ORGANIZATION NAME AND ADDRESS MIT Department of Chemical Engineering Cambridge, MA 02139		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research 800 North Quincy Street Arlington, VA 22217		12. REPORT DATE September 1, 1986
		13. NUMBER OF PAGES 9
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report)
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this report) Approved for public release and sale; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) block copolymers chain conformation →small angle neutron scattering		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Calculations utilizing a scattering formalism due to deGennes are compared with previously-reported SANS data from two polystyrene-polybutadiene samples which have been blended with similar diblocks in which the B segment is deuterated. The present conclusion is that both the lower- and higher- molecular-weight samples exhibit scattering in excess of that predicted, presumably due to clustering of the labelled chains or some other chain-length dependent phenomenon. Ke W.H.D.		

INTRODUCTION

Bates and coworkers recently reported a study¹ of polybutadiene chain characteristics in samples of polystyrene-polybutadiene block copolymers SB. In these samples, spherical microdomains of polybutadiene are formed when the material is cast from solution. A diblock in which the polybutadiene segment was completely deuterated (SB_d) was blended with a normal (hydrogenous) diblock of similar molecular weight. The B_d/B ratio was chosen so that the neutron scattering-length density of the B domains was matched with that of the S matrix; thus, when small-angle neutron scattering (SANS) spectra of these samples were acquired, structural scattering from the quasicrystalline lattice of microdomains was eliminated, leaving scattering from the labeled B_d chains (confined within the spherical B regions) as the dominant mechanism. The SANS data were used to derive an apparent weight-average polymerization index N_w and a radius of gyration R_g for each of two samples, one of relatively low molecular weight (SB_d1/SB1) and one of relatively high molecular weight (SB_d3/SB7). The results were compared with values of N_w obtained from more direct techniques² (gel permeation chromatography and UV absorption) and values of R_g appropriate for bulk polybutadiene of given N_w. For SB_d1/SB1, the SANS value for N_w was found to be within 40 per cent of the GPC/UV value, a result which was taken to indicate substantial agreement. For the higher molecular-weight sample, SB_d3/SB7, N_w from the SANS analysis was nearly 4 times that from the conventional characterization. This increase (reflecting an increased level of scattering) was attributed¹ to "clustering" (isotopic phase separation) of the labeled B_d chains within the polybutadiene microdomains.

4471

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000
---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------

A-1

Since the appearance of the above report, Bates and coworkers have published a number of illuminating studies of the nonideal behavior of mixtures of hydrogenous and deuterated polymers³⁻⁵. These studies have demonstrated the usefulness of the mean-field random-phase formalism due to de Gennes⁶ in describing the SANS results from isotopic mixtures of polymers. This treatment predicts increased scattering due to random fluctuations in isotopic composition even in the absence of isotopic phase separation. One is then moved to ask whether the mean-field formalism will account for the increased scattering from the SB_d/SB samples previously studied. This communication reports calculations carried out in order to answer this question.

EXPERIMENTAL

The SANS data used in this reconsideration are the same as those previously reported¹. They were acquired on the 30-m instrument at the National Center for Small-Angle Scattering Research at the Oak Ridge National Laboratory. Since the scattering patterns were isotropic, results were radially averaged and converted to absolute intensities (cm^{-1}) via calibration of the instrument by secondary standards⁷. The incoherent scattering correction I_{inc} was determined by running a sample of polystyrene and fitting the results to an equation linear in Q (Q is the momentum transfer, equal to $4\pi\lambda^{-1} \sin \theta$, where λ , the neutron wavelength, is 4.75 Å, and θ is half the scattering angle).

CALCULATIONS

In the original study¹, the observed intensities were reduced to coherent scattering intensities by subtracting the incoherent contribution:

$$I_{coh}(Q) = I_{obs}(Q) - I_{inco}(Q) \quad (1)$$

The resulting coherent intensities were used to determine the parameters I_0 and R_g in a Debye function fit to the data by means of a least-squares routine.

$$I_{coh}(Q) = I_0 [2R_g^{-4}Q^{-4}(R_g^2Q^2 - 1 + e^{-R_g^2Q^2})] = I_0 D \quad (2)$$

I_0 , the coherent scattering intensity at $Q = 0$, is related to N_w as follows:

$$I_0 = \frac{(a_B - a_D)^2}{v_{seg}} X(1 - X)\phi_B N_w \quad (3)$$

where a_B and a_D are the coherent scattering amplitudes of the normal and deuterated repeat units, v_{seg} the volume of a segment of the polymer chain, X the volume fraction of labeled chains in the B domains, and ϕ_B the volume fraction of B domains in the SB sample. For polybutadiene, $a_B = 0.412 \times 10^{-12} \text{ cm}$, $a_D = 6.662 \times 10^{-12} \text{ cm}$ and $v_{seg} = 1.009 \times 10^{-22} \text{ cm}^3$. The samples studied here have $X = 0.16$, and $\phi_B = 0.1414$ ($SB_d1/SB1$) or 0.113 ($SB_d3/SB7$).

De Gennes⁶ presents the results of his mean-field calculation in terms of the inverse of a correlation function $S(Q)$:

$$S^{-1}(Q) = [N_1 X D_1(R_{g1}, Q)]^{-1} + [N_2 (1 - X) D_2(R_{g2}, Q)]^{-1} - 2X \quad (4)$$

Here N_1 , R_{g1} and N_2 , R_{g2} are the weight-average polymerization indices and radii of gyration of the labeled and normal polymers, and D_1 , D_2 are Debye functions without the I_0 as indicated in Equation 2. The Flory parameter x characterizes the interaction between repeat units of labeled and unlabeled chains; its value for polybutadiene at 296 K has been reported² to be 8.7×10^{-4} . Coherent scattering intensity $I_{coh}(Q)$ in our SB samples is simply related to $S(Q)$:

$$I_{coh}(Q) = \frac{(a_g - a_D)^2}{v_{seg}} \phi_B S(Q) \quad (5)$$

For $x = 0$ and $N_1 = N_2$, $R_{g1} = R_{g2}$, Equation 5 can be shown to be equivalent to the single-Debye model specified by Equations 2 and 3.

Results for the lower molecular-weight sample, SB_d1/SB1, are shown in Figure 1a. As indicated in the original study¹, a single Debye function with the fitted SANS parameters ($N_w = 351$, $R_g = 46 \text{ \AA}$) reproduces the observed scattering almost exactly. A calculation based on Equations 4 and 5 with GPC/UV parameters (N_1 , $N_2 = 257$, 216 ; R_{g1} , $R_{g2} = 43.6$, 40.0 \AA) and $x = 8.7 \times 10^{-4}$ gives results for which the coherent component at low Q is smaller than the observed values by a factor of about 0.75.

Results for the higher molecular-weight sample, SB_d3/SB7, are shown in Figure 1b. As before, a single Debye function with fitted parameters ($N_w = 3309$, $R_g = 114 \text{ \AA}$) goes through most of the data points, but now the mean-field calculation with GPC/UV parameters (N_1 , $N_2 = 935$, 1170 ; R_{g1} , $R_{g2} = 83.2$, 93.1 \AA ; $x = 8.7 \times 10^{-4}$) gives coherent intensities at low Q which are too small by a factor of 0.38.

CONCLUSIONS

In our earlier report¹ we concluded that the discrepancy for SB_d1/SB1 could be explained by uncertainty in our knowledge of the chain length of the polybutadiene block, while the discrepancy for SB_d3/SB7 was clearly outside these limits. Since then we have acquired more confidence in the accuracy of our molecular weight measurements (partly due to close agreement between the calculated and observed positions of major structural features in the SANS spectra of unblended SB_d1 and SB1), and our present feeling is that SB_d1/SB1 exhibits extra scattering, although clearly less of it than SB_d3/SB7.

In addition, de Gennes' formulation⁶ of the expected scattering in terms of the Flory parameter x provides a new way of approaching the problem. One can force agreement at low Q by manipulating x rather than N_1 : one finds that the required x for SB_d1/SB1 is 0.0043 (5 times the reported value³) and for SB_d3/SB7 it is 0.0027 (3 times the reported value). From this point of view, SB_d1/SB1 is more anomalous than SB_d3/SB7, although in the case of SB_d1/SB1, the apparent anomaly is accentuated by the short chain length (the ratio of x^*N_1 for the two samples, where x^* takes on the forced values quoted above, is about the same as the ratio of the discrepancy factors for coherent scattering at low Q quoted in the previous section). Thus we conclude that clustering of labeled chains (or some other chain-length-related mechanism) is operating to produce enhanced neutron scattering in both SB_d1/SB1 and SB_d3/SB7.

REFERENCES

1. Bates, F.S.; Berney, C.V.; Cohen, R.E.; Wignall, G.D. *Polymer* 1983, 24, 519-24.
2. Bates, F.S.; Berney, C.V.; Cohen, R.E. *Macromolecules* 1983, 16, 1101.
3. Bates, F.S.; Wignall, G.D.; Koehler, W.C. *Phys. Rev. Letters* 1985, 55, 2425-8.
4. Bates, F.S.; Wignall, G.D.; Dierker, S.B. *Macromolecules* (in press).
5. Bates, F.S.; Wignall, G.D. *Macromolecules* 1986, 19, 932.
6. P.G. de Gennes, *Scaling Concepts in Polymer Physics* (Cornell University Press, Ithaca, New York, 1979).
7. Hendricks, R.W.; Schelten, J.; Schmatz, W. *Phil. Mag.* 1974, 30, 819.

CAPTION FOR THE FIGURE

Fig. 1 (a) SANS data for SB_d1/SB1 with calculated curves. Dashed line (---) is the Debye curve fitted to the SANS data ($N_w = 351$, $R_g = 46 \text{ \AA}$); the full curves below the dashed curve represent mean-field calculations (see text) using GPC/UV parameters for N_1 , N_2 , R_{g1} and R_{g2} . The upper full curve was calculated with $x = 8.7 \times 10^{-4}$, the lower full curve with $x = 0$, simply to show the effect of varying x . A calculation (____ .. ____ ..) using a single Debye function with GPC/UV parameters for the labeled chains ($N_w = 257$, $R_g = 43.6 \text{ \AA}$) lies between the mean-field curves. (b) SANS data for SB_d3/SB7 with calculated curves (note that both ordinate and abscissa scales are different). Dashed line (---) is the Debye curve fitted to the SANS data ($N_w = 3309$, $R_g = 114 \text{ \AA}$). The full curves are again mean-field calculations using GPC/UV parameters and values for x of 8.7×10^{-4} and 0. This time the Debye curve using GPC/UV parameters ($N_w = 935$, $R_g = 83.2 \text{ \AA}$) (____ .. ____ ..) is below the zero- x mean-field curve. In all cases above, the incoherent scattering has been added to the calculated curves to facilitate direct comparison with the experimental data.

Figure 1

ABSTRACTS DISTRIBUTION LIST, 356A

Naval Surface Weapons Center
Attn: Dr. J. M. Augl, Dr. B. Hartman
White Oak
Silver Spring, Maryland 20910

Professor Hatsuo Ishida
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

~~Dr. Robert E. Cohen
Chemical Engineering Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139~~

Dr. R. S. Porter
Department of Polymer Science
and Engineering
University of Massachusetts
Amherst, Massachusetts 01002

Professor A. Heeger
Department of Chemistry
University of California
Santa Barbara, California 93106

Dr. T. J. Reinhart, Jr., Chief
Nonmetallic Materials Division
Department of the Air Force
Air Force Materials Laboratory (AFSC)
Wright-Patterson AFB, Ohio 45433

Professor J. Lando
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Professor C. Chung
Department of Materials Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor J. T. Koberstein
Department of Chemical Engineering
Princeton University
Princeton, New Jersey 08544

Professor J. K. Gillham
Department of Chemistry
Princeton University
Princeton, New Jersey 08540

Professor R. S. Roe
Department of Materials Science
and Metallurgical Engineering
University of Cincinnati
Cincinnati, Ohio 45221

Professor L. H. Sperling
Department of Chemical Engineering
Lehigh University
Bethlehem, Pennsylvania 18015

Professor Brian Newman
Department of Mechanics and
Materials Science
Rutgers University
Piscataway, New Jersey 08854

Dr. Adolf Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Dr. Stuart L. Cooper
Department of Chemical Engineering
University of Wisconsin
Madison, Wisconsin 53706

Professor D. Grubb
Department of Materials Science
and Engineering
Cornell University
Ithaca, New York 14853

Dr. D. B. Cotts
SRI International
333 Ravenswood Avenue
Menlo Park, California 94205

PLASTEC
DRSMC-SCM-O(D), Bldg 351 N
Armament Research & Development
Center
Dover, New Jersey 07801

DL/413/83/01
GEN/413-2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	<u>No. Copies</u>		<u>No. Copies</u>
Office of Naval Research Attn: Code 413 800 N. Quincy Street Arlington, Virginia 22217	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 5042 Crane, Indiana 47522	1	Naval Weapons Center Attn: Dr. A. B. Amster Chemistry Division China Lake, California 93555	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Washington, D.C. 20360	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
DTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1		

END

10-86

DTTC