MULYIPLE LINEAR REGRESSION MODEL

Mohammed Swaned M

2022 - 12 - 05

Contents

1	Multiple Linear Regression Model										
	1.1	1.1 Introduction									
	1.2	Make the scatter plot	4								
	1.3	Calculate the correlation coefficient	5								
	1.4 Fitting of multiple Linear Regression Model										
	1.5	Checking Significance of Model	6								
	1.6	Checking Significance of Variables	6								
	1.7	Adequacy of Model	7								
	1.8	Dummy Variable	8								
Name : Mohammed Swaned M											
Enrollment_no: GN4994											
Faculty_no: 22DSMSA104											

1 Multiple Linear Regression Model

1.1 Introduction

The Multiple linear regression model is defined as $y = \beta_0 + \beta_1 \times X_1 + \dots + \beta_p X_p + \epsilon$ Now we consider the wage12 data and the multiple linear regression model for that data is given as $wage = \beta_0 + \beta_1 \times education + \beta_2 \times tenure + \beta_3 \times nonwhite + \beta_4 \times female + \beta_5 \times married + \epsilon$ Now read data

```
credit=read.csv("credit.csv")
head(credit)
```

##		Income	Limit	Rating	Cards	Age	Education	Own	${\tt Student}$	${\tt Married}$	Region	Balance
##	1	14.891	3606	283	2	34	11	No	No	Yes	South	333
##	2	106.025	6645	483	3	82	15	Yes	Yes	Yes	West	903
##	3	104.593	7075	514	4	71	11	No	No	No	West	580
##	4	148.924	9504	681	3	36	11	Yes	No	No	West	964
##	5	55.882	4897	357	2	68	16	No	No	Yes	South	331
##	6	80.180	8047	569	4	77	10	No	No	No	South	1151

##		Income	Limit	Rating	Cards	Age	Education	Balance
##	1	14.891	3606	283	2	34	11	333
##	2	106.025	6645	483	3	82	15	903
##	3	104.593	7075	514	4	71	11	580
##	4	148.924	9504	681	3	36	11	964
##	5	55.882	4897	357	2	68	16	331
##	6	80.180	8047	569	4	77	10	1151
##	7	20.996	3388	259	2	37	12	203
##	8	71.408	7114	512	2	87	9	872
##	9	15.125	3300	266	5	66	13	279
##	10	71.061	6819	491	3	41	19	1350
##	11	63.095	8117	589	4	30	14	1407
##	12	15.045	1311	138	3	64	16	0
##	13	80.616	5308	394	1	57	7	204
##	14	43.682	6922	511	1	49	9	1081
##	15	19.144	3291	269	2	75	13	148
##	16	20.089	2525	200	3	57	15	0
##	17	53.598	3714	286	3	73	17	0
##	18	36.496	4378	339	3	69	15	368
##	19	49.570	6384	448	1	28	9	891
##	20	42.079	6626	479	2	44	9	1048
##	21	17.700	2860	235	4	63	16	89
##	22	37.348	6378	458	1	72	17	968
##	23	20.103	2631	213	3	61	10	0
##	24	64.027	5179	398	5	48	8	411
##	25	10.742	1757	156	3	57	15	0
##	26	14.090	4323	326	5	25	16	671
##	27	42.471	3625	289	6	44	12	654
##	28	32.793	4534	333	2	44	16	467
##	29	186.634	13414	949	2	41	14	1809
##	30	26.813	5611	411	4	55	16	915
##	31	34.142	5666	413	4	47	5	863
##	32	28.941	2733	210	5	43	16	0
##	33	134.181	7838	563	2	48	13	526
##	34	31.367	1829	162	4	30	10	0
##	35	20.150	2646	199	2	25	14	0
##	36	23.350	2558	220	3	49	12	419
##	37	62.413	6457	455	2	71	11	762
##	38	30.007	6481	462	2	69	9	1093
##	39	11.795	3899	300	4	25	10	531
##	40	13.647	3461	264	4	47	14	344
##	41	34.950	3327	253	3	54	14	50
##	42	113.659	7659	538	2	66	15	1155
##	43	44.158	4763	351	2	66	13	385
##	44	36.929	6257	445	1	24	14	976
##	45	31.861	6375	469	3	25	16	1120
##	46	77.380	7569	564	3	50	12	997
##	47	19.531	5043	376	2	64	16	1241
##	48	44.646	4431	320	2	49	15	797
##	49	44.522	2252	205	6	72	15	0

##	50	43.479	4569	354	4	49	13	902
##	51	36.362	5183	376	3	49	15	654
##	52	39.705	3969	301	2	27	20	211
##	53	44.205	5441	394	1	32	12	607
##	54	16.304	5466	413	4	66	10	957
##	55	15.333	1499	138	2	47	9	0
##	56	32.916	1786	154	2	60	8	0
##	57	57.100	4742	372	7	79	18	379
##	58	76.273	4779	367	4	65	14	133
##	59	10.354	3480	281	2	70	17	333
##	60	51.872	5294	390	4	81	17	531
##	61	35.510	5198	364	2	35	20	631
##	62	21.238	3089	254	3	59	10	108
##	63	30.682	1671	160	2	77	7	0
##	64	14.132	2998	251	4	75	17	133
##	65	32.164	2937	223	2	79	15	0
##	66	12.000	4160	320	4	28	14	602
##	67	113.829	9704	694	4	38	13	1388
##	68	11.187	5099	380	4	69	16	889
##	69	27.847	5619	418	2	78	15	822
##	70	49.502	6819	505	4	55	14	1084
##	71	24.889	3954	318	4	75	12	357
##	72	58.781	7402	538	2	81	12	1103
##	73	22.939	4923	355	1	47	18	663
##	74	23.989	4523	338	4	31	15	601
##	75	16.103	5390	418	4	45	10	945
##	76	33.017	3180	224	2	28	16	29
##	77	30.622	3293	251	1	68	16	532
##	78	20.936	3254	253	1	30	15	145
##	79	110.968	6662	468	3	45	11	391
##	80	15.354	2101	171	2	65	14	0
##	81	27.369	3449	288	3	40	9	162
##	82	53.480	4263	317	1	83	15	99
##	83	23.672	4433	344	3	63	11	503
##	84	19.225	1433	122	3	38	14	0
##	85	43.540	2906	232	4	69	11	0
##	86	152.298	12066	828	4	41	12	1779
	87	55.367 11.741	6340	448	1	33	15	815
## ##	88 89		2271	182	4	59 57	12 8	0 F70
##	90	15.560	4307	352	4 3	52	9	579
		59.530	7518 5767	543				1176
##	91	20.191	5767	431	4	42	16	1023
##	92	48.498	6040	456	3	47 51	16	812
##	93	30.733	2832	249	4	51	13	0
##	94	16.479	5435	388	2	26	16	937
##	95	38.009	3075	245	3	45	15	0
##	96	14.084	855	120	5	46	17	1390
##	97	14.312	5382	367	1	59	17	1380
##	98	26.067	3388	266	4	74	17	155
##	99	36.295	2963	241	2	68	14	375
##	100	83.851	8494	607	5	47	18	1311
##	101	21.153	3736	256	1	41	11	298
##	102	17.976	2433	190	3	70	16	431
##	103	68.713	7582	531	2	56	16	1587

```
## 104 146.183
                                                         1050
                  9540
                           682
                                    6
                                       66
                                                   15
## 105
        15.846
                  4768
                           365
                                    4
                                       53
                                                   12
                                                          745
## 106
        12.031
                  3182
                                       58
                                                           210
                           259
                                    2
                                                   18
## 107
         16.819
                  1337
                                                             0
                           115
                                    2
                                       74
                                                   15
## 108
        39.110
                  3189
                           263
                                    3
                                       72
                                                   12
                                                             0
## 109 107.986
                  6033
                           449
                                    4
                                       64
                                                   14
                                                          227
## 110
        13.561
                  3261
                           279
                                    5
                                       37
                                                   19
                                                           297
## 111
        34.537
                  3271
                                    3
                                                            47
                           250
                                       57
                                                   17
## 112
        28.575
                  2959
                           231
                                    2
                                       60
                                                   11
                                                             0
## 113
        46.007
                                    4
                                       42
                                                   14
                                                         1046
                  6637
                           491
## 114
        69.251
                  6386
                           474
                                    4
                                       30
                                                   12
                                                          768
         16.482
                                                           271
## 115
                  3326
                           268
                                    4
                                       41
                                                   15
## 116
        40.442
                  4828
                                                          510
                           369
                                    5
                                       81
                                                    8
## 117
         35.177
                  2117
                           186
                                    3
                                       62
                                                   16
                                                             0
## 118
        91.362
                  9113
                           626
                                    1
                                       47
                                                   17
                                                         1341
## 119
        27.039
                  2161
                           173
                                    3
                                       40
                                                   17
                                                             0
## 120
        23.012
                  1410
                           137
                                    3
                                       81
                                                   16
                                                             0
## 121
        27.241
                                    2
                                                             0
                  1402
                           128
                                       67
                                                   15
## 122 148.080
                  8157
                           599
                                    2
                                       83
                                                   13
                                                           454
## 123
        62.602
                  7056
                                                          904
                           481
                                    1
                                       84
                                                   11
## 124
        11.808
                  1300
                           117
                                    3
                                       77
                                                   14
                                                             0
## 125
        29.564
                  2529
                           192
                                    1
                                       30
                                                   12
                                                             0
        27.578
                                                             0
## 126
                  2531
                           195
                                       34
                                                   15
                                    1
## 127
        26.427
                  5533
                           433
                                    5
                                       50
                                                   15
                                                         1404
## 128
        57.202
                  3411
                                    3
                                       72
                                                             0
                           259
                                                   11
## 129 123.299
                  8376
                           610
                                    2
                                       89
                                                   17
                                                         1259
## 130
        18.145
                  3461
                           279
                                    3
                                       56
                                                   15
                                                          255
## 131
        23.793
                  3821
                           281
                                    4
                                       56
                                                   12
                                                          868
## 132
        10.726
                                    5
                  1568
                           162
                                       46
                                                   19
                                                             0
## 133
        23.283
                  5443
                           407
                                       49
                                                          912
                                    4
                                                   13
## 134
        21.455
                  5829
                           427
                                    4
                                       80
                                                   12
                                                         1018
## 135
        34.664
                  5835
                           452
                                    3
                                       77
                                                   15
                                                          835
## 136
         44.473
                  3500
                           257
                                    3
                                       81
                                                            8
                                                   16
## 137
        54.663
                  4116
                                    2
                                       70
                                                    8
                                                            75
                           314
  138
        36.355
                                       35
                                                           187
                  3613
                           278
                                    4
                                                    9
## 139
        21.374
                 2073
                           175
                                    2
                                       74
                                                   11
                                                             0
## 140 107.841 10384
                           728
                                    3
                                       87
                                                    7
                                                         1597
## 141
        39.831
                 6045
                           459
                                    3
                                       32
                                                   12
                                                         1425
                                    2
## 142 91.876 6754
                           483
                                       33
                                                   10
                                                           605
    [ reached 'max' / getOption("max.print") -- omitted 258 rows ]
```

1.2 Make the scatter plot

```
pairs(credit1)
```


From the above plot, we may see that there is a linear relationship between TV and sales, radio "andsales' and newspaper and sales. To figure out more we obtain the correlation coefficient among the variables.

1.3 Calculate the correlation coefficient

```
cor(credit1)
##
                               Limit
                                                         Cards
                                                                                              Balance
                  Income
                                           Rating
                                                                              Education
                                                                       Age
## Income
              1.00000000
                          0.79208834
                                       0.79137763 -0.01827261 0.175338403 -0.027691982
                                                                                         0.463656457
## Limit
              0.79208834
                           1.0000000
                                       0.99687974
                                                   0.01023133 0.100887922 -0.023548534
                                                                                          0.861697267
## Rating
              0.79137763
                          0.99687974
                                       1.00000000
                                                   0.05323903 0.103164996 -0.030135627
                                                                                          0.863625161
                                                   1.00000000 0.042948288 -0.051084217
## Cards
             -0.01827261
                          0.01023133
                                       0.05323903
                                                                                          0.086456347
                                       0.10316500
                                                   0.04294829 1.000000000
## Age
              0.17533840
                          0.10088792
                                                                            0.003619285
                                                                                          0.001835119
## Education -0.02769198 -0.02354853 -0.03013563 -0.05108422 0.003619285
                                                                            1.000000000
                                                                                        -0.008061576
## Balance
              0.46365646
                          0.86169727
                                      0.86362516  0.08645635  0.001835119  -0.008061576
                                                                                         1.000000000
```

1.4 Fitting of multiple Linear Regression Model

To estimate the coefficients of the variables TV, radio and newspaper, we fit the following model

```
M1=lm(Balance~., data = credit)
summary(M1)
```

```
##
## Call:
  lm(formula = Balance ~ ., data = credit)
##
##
##
  Residuals:
##
       Min
                                 3Q
                1Q
                    Median
                                         Max
##
   -161.64
            -77.70
                    -13.49
                              53.98
                                     318.20
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
##
   (Intercept) -479.20787
                             35.77394 -13.395
                                                < 2e-16 ***
                                                < 2e-16 ***
##
  Income
                  -7.80310
                              0.23423 - 33.314
                  0.19091
                              0.03278
                                         5.824 1.21e-08 ***
## Limit
## Rating
                   1.13653
                              0.49089
                                         2.315
                                                 0.0211 *
                                         4.083 5.40e-05 ***
## Cards
                  17.72448
                              4.34103
## Age
                  -0.61391
                              0.29399
                                        -2.088
                                                 0.0374 *
                 -1.09886
                                        -0.688
                                                 0.4921
## Education
                              1.59795
## OwnYes
                -10.65325
                              9.91400
                                        -1.075
                                                 0.2832
## StudentYes
                425.74736
                             16.72258
                                        25.459
                                                < 2e-16 ***
## MarriedYes
                  -8.53390
                             10.36287
                                        -0.824
                                                 0.4107
## RegionSouth
                  10.10703
                             12.20992
                                         0.828
                                                 0.4083
                  16.80418
                                                 0.2347
## RegionWest
                             14.11906
                                         1.190
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 98.79 on 388 degrees of freedom
## Multiple R-squared: 0.9551, Adjusted R-squared:
## F-statistic: 750.3 on 11 and 388 DF, p-value: < 2.2e-16
```

1.5 Checking Significance of Model

To check the significance of the model, we check F statistic and for that we set the hypotheses as follows:

```
Null Hypothesis:H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0
```

Alternative Hypothesis: H_1 : At least one $\beta_i \neq 0, i = 1, 2, \dots, k$.

F-statistic: 750.3 on 11 and 388 DF, p-value: < 2.2e-16 Since the F statistic is 750.3 on 11 and 388 df with p-value < 2.2e-16 i.e. almost zero. Hence we reject the null hypothesis that means there is at least one β_i that is not equal to zero. Therefore, our model is significant.

1.6 Checking Significance of Variables

To check the significance of variable(s), we check the t-ratios and its corresponding p-values. We set the hypotheses as follows: $H_0: \beta_i = 0 \ Vs \ H_1: \beta_i \neq 0 \ where \ i = 0, 1, 2, 3 \ Now we check the t-statistics and p value of the corresponding variables one by one and decide that which one is significant. SO the p-value for intercept term is <math>2 \times 10^{-16}$ that is almost zero, hence we reject the null hypothesis and accept that $\beta_0 \neq 0$. The p-value of Income is 2×10^{-16} that is almost zero, hence we reject the null hypothesis and accept that $\beta_1 \neq 0$ The p-value of Limit is 1.21×10^{-8} that is almost zero, hence we reject the null hypothesis and accept that $\beta_3 \neq 0$. The p-value of Rating is 0.0211 that is less than 0.05, hence we reject the null hypothesis and accept that $\beta_5 \neq 0$. The p-value of Age is 0.034 that is less than 0.05, hence we reject the null hypothesis and accept that $\beta_5 \neq 0$. The p-value of Student is 2×10^{-16} that is almost zero, hence we reject the null hypothesis and accept that $\beta_5 \neq 0$. The p-value of Student is 2×10^{-16} that is almost zero, hence we reject the null hypothesis and accept that $\beta_5 \neq 0$. The p-value of Education is 0.4921 that is greater than

0.05, hence we fail to reject the null hypothesis and accept that $\beta_3 = 0$. The p-value of Own is 0.2832 that is greater than 0.05, hence we fail to reject the null hypothesis and accept that $\beta_2 = 0$. The p-value of Married is 0.4107 that is greater than 0.05, hence we fail to reject the null hypothesis and accept that $\beta_6 = 0$. The p-value of Region is 0.4083 that is greater than 0.05, hence we fail to reject the null hypothesis and accept that $\beta_6 = 0$. This means that the variables $Education, Own, Married \ and \ Region$ is not significant in this model. Since these variables is not significant, so we remove these variable from the model. Hence our final model is: $Balance = \beta_0 + \beta_1 \times Income + \beta_2 \times Limit + \beta_3 \times Ratings + \beta_4 \times Cards + \beta_5 \times Age + \beta_8 \times Student + \epsilon$

```
M2=lm(Balance~Income+Limit+Rating+Cards+Age+Student,data=credit)
summary(M2)
```

```
##
## Call:
  lm(formula = Balance ~ Income + Limit + Rating + Cards + Age +
##
       Student, data = credit)
##
  Residuals:
##
##
       Min
                1Q Median
                                3Q
                                       Max
  -170.00 -77.85
                   -11.84
                             56.87
                                    313.52
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                            24.82476 -19.889
## (Intercept) -493.73419
                                              < 2e-16 ***
## Income
                 -7.79508
                             0.23342 - 33.395
                                              < 2e-16 ***
## Limit
                  0.19369
                             0.03238
                                       5.981 4.98e-09 ***
                                       2.251
                                                0.0250 *
## Rating
                  1.09119
                             0.48480
## Cards
                 18.21190
                             4.31865
                                       4.217 3.08e-05 ***
                                                0.0331 *
## Age
                 -0.62406
                             0.29182
                                      -2.139
## StudentYes
                425.60994
                            16.50956
                                      25.780 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 98.61 on 393 degrees of freedom
## Multiple R-squared: 0.9547, Adjusted R-squared: 0.954
## F-statistic: 1380 on 6 and 393 DF, p-value: < 2.2e-16
```

1.7 Adequacy of Model

1.7.1 Residual Standerd Error

```
RSE = \sqrt{(\frac{RSS}{n-p-1})} where RSS = \sqrt{(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2)} and is called residual sum of squares(RSS)
```

```
Balance=credit$Balance
Income=credit$Income
Limit=credit$Limit
Rating=credit$Rating
Cards=credit$Cards
Age=credit$Age
Balancehat=M2$coefficients[1]*Income+M2$coefficients[2]*Limit+M2$coefficients[3]*Rating+M2$coefficients
#alternaively
resid=M2$residuals
```

```
rss=sum(resid^2)
rss

## [1] 3821620

n=length(credit$Income)
p=5
rse=sqrt(rss/n-p-1)
rse

## [1] 97.71412

Now Calculate RSE from the rectified model

resid2=M2$residuals
rss2=sum(resid2^2)
rss2

## [1] 3821620

p=5
rse2=sqrt(rss/n-p-1)
rse

## [1] 97.71412
```

1.7.2 R Squared

Multiple R-squared: 0.9551, Adjusted R-squared: 0.9538. The reported R squared is 0.9551 that is approximately 0.95. So we see that 95% variability of Balance is explained by Income, Limit, Rating, Cards, Age, Education, Own, Student, Married and Region and the adjusted R-squared is 0.9538 when insignificant variables (Education, Own, Married and Region) is attached. After omitting these insignificant variables from the model and we examine the R-squared and adjusted R squared. They are as follows: Multiple R-squared: 0.9547, Adjusted R-squared: 0.954. We find that there is no difference in R squared but adjusted R-squared has increased a little bit. That is the evidence that if we remove any insignificant variable from the model, them adjusted R-squared increased.

1.8 Dummy Variable

1.8.1 Studnt as dummy variable

Here we model the data as follows: $Balance = \beta_0 + \beta_1 \times Student$

```
M3=lm(Balance~Student,data = credit)
summary(M3)
```

```
##
## Call:
## lm(formula = Balance ~ Student, data = credit)
```

```
##
## Residuals:
##
      Min
                1Q Median
  -876.82 -458.82 -40.87
##
                           341.88 1518.63
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 480.37
                             23.43
                                     20.50 < 2e-16 ***
## StudentYes
                 396.46
                             74.10
                                      5.35 1.49e-07 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 444.6 on 398 degrees of freedom
## Multiple R-squared: 0.06709,
                                    Adjusted R-squared:
## F-statistic: 28.62 on 1 and 398 DF, p-value: 1.488e-07
```

Table displays the coefficient estimates and other information associated with the model. So the Model of the data as follows: $Balance = 480.37 + 396.46 \times Student$

However, we notice that the p-value for the dummy variable that is 1.488×10^{-7} . This means that the variable *Student* is significant.

1.8.2 Married as dummy variable

Here we model the data as follows: $Balance = \beta_0 + \beta_1 \times Married$

```
M4=lm(Balance~Married, data = credit)
summary(M4)
```

```
##
## Call:
## lm(formula = Balance ~ Married, data = credit)
##
## Residuals:
##
       Min
                1Q Median
                               3Q
                                      Max
##
  -523.29 -451.03 -60.12 345.06 1481.06
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                           36.974 14.153
## (Intercept)
               523.290
                                            <2e-16 ***
## MarriedYes
                 -5.347
                           47.244
                                  -0.113
                                              0.91
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 460.3 on 398 degrees of freedom
## Multiple R-squared: 3.219e-05, Adjusted R-squared:
## F-statistic: 0.01281 on 1 and 398 DF, p-value: 0.9099
```

Table displays the coefficient estimates and other information associated with the model. So the Model of the data as follows: $Balance = 523.290 - 5.347 \times Married$ However, we notice that the p-value for the dummy variable is high that is 0.9099 This means that the variable Married is insignificant. ### Own as dummy variable Here we model the data as follows: $Balance = \beta_0 + \beta_1 \times Own$

```
M5=lm(Balance~Own,data = credit)
summary(M5)
```

```
##
## Call:
## lm(formula = Balance ~ Own, data = credit)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
  -529.54 -455.35 -60.17
                           334.71 1489.20
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                509.80
                            33.13 15.389
                                            <2e-16 ***
## OwnYes
                 19.73
                            46.05
                                    0.429
                                             0.669
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 460.2 on 398 degrees of freedom
## Multiple R-squared: 0.0004611, Adjusted R-squared:
## F-statistic: 0.1836 on 1 and 398 DF, p-value: 0.6685
```

Table displays the coefficient estimates and other information associated with the model. So the Model of the data as follows: $Balance = 509.80 + 19.73 \times Own$ However, we notice that the p-value for the dummy variable is high that is 0.6685 This means that the variable Own is insignificant.

1.8.3 Region as dummy variable

Here we model the data as follows: $Balance = \beta_0 + \beta_1 \times Region$

```
M6=lm(Balance~Region,data = credit)
summary(M6)
```

```
##
## Call:
## lm(formula = Balance ~ Region, data = credit)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -531.00 -457.08 -63.25 339.25 1480.50
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                531.00
                             46.32 11.464
                                             <2e-16 ***
## RegionSouth
                -12.50
                             56.68
                                    -0.221
                                              0.826
## RegionWest
                             65.02 -0.287
                -18.69
                                              0.774
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 460.9 on 397 degrees of freedom
## Multiple R-squared: 0.0002188, Adjusted R-squared: -0.004818
## F-statistic: 0.04344 on 2 and 397 DF, p-value: 0.9575
```

Table displays the coefficient estimates and other information associated with the model. So the Model of the data as follows: $Balance = 531 - 12.50 \times RegionSouth - 18.69 \times RegionWest$ However, we notice that the p-value for the dummy variable is high that is 0.9575 This means that the variable Region is insignificant.