SEP 2 8 2006

2004

Application No. 10/517,011 Filed: July 7, 2005

> TC Art Unit: 1731 Confirmation No.: 2774

AMENDMENT TO THE CLAIMS

(CANCELLED) 1.

AMENDED) A water-soluble polymer (CURRENTLY 2. according to Claim 1, wherein the in which a water-soluble polymer having at least one type of ionicity selected from among said cationicity and said-amphotericity and occurring in the form of fine particles with a particle size of not greater than 100 µm and a polyalkylenimine in the sulfate salt form coexist, wherein the polymer is produced by dispersion polymerization of a monomer (or monomer mixture) comprising 5 to 100 mole percent of a monomer represented by the general formula (1) and/or (2) given below, 0 to 50 mole percent of a monomer represented by the general formula (3) given below and 0 to 95 mole percent of a water-soluble οf said in the presence with stirring nonionic monomer polyalkylenimine and/or modified polyalkylenimine in the sulfate salt form, if necessary further in the presence of a necessary amount of a water soluble inorganic salt.

General formula (1)

(In the general formula (1), R_1 is a hydrogen atom or a methyl group, R_2 and R_3 may be the same or different and each is an alkyl or an alkoxy group containing 1 to 3 carbon atoms or a benzyl group, R4 is a hydrogen atom, an alkyl or alkoxy group containing

1 to 3 carbon atoms or a benzyl group. A represents an oxygen atom or NH, B represents an alkylene or an alkoxylene group containing 2 to 4 carbon atoms, and X_1 represents an sulfate anion.)

$$R_5$$
 R_6 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_8

General formula (2)

(In the general formula (2), R_5 represents a hydrogen atom or a methyl group, R_6 and R_7 each represents an alkyl or an alkoxy group containing 1 to 3 carbon atoms or a benzyl group, and X_2 represents an sulfate anion.)

General formula (3)

(In the general formula (3), R_8 represents a hydrogen atom, a methyl group or a carboxymethyl group, Q represents SO_3 , $C_6H_4SO_3$, $CONHC(CH_3)_2CH_2SO_3$, C_6H_4COO or COO, R_9 represents a hydrogen atom or $COOY_2$, and Y_1 or Y_2 represents a hydrogen atom or a cation.)

3. (CURRENTLY AMENDED) A water-soluble polymer dispersion according to Claim 1, wherein the in which a water-soluble polymer having at least one type of ionicity selected from among said anionicity and said nonionicity and occurring in the form of fine particles with a particle size of not greater than 100 µm and a

Application No. 10/517,011 Filed: July 7, 2005 TC Art Unit: 1731

Confirmation No.: 2774

polyalkylenimine in the sulfate salt form coexist, wherein the polymer is produced by dispersion polymerization of a monomer composition (mixture) comprising at least one monomer selected from among monomers represented by said general formula (3) given above and water-soluble nonionic monomers in the presence of said polyalkylenimine and/or modified polyalkylenimine—in the sulfate salt form, if necessary further in the presence of a necessary amount of a water soluble inorganic calt.

4-6. (CANCELLED)

- 7. (CURRENTLY AMENDED) A water-soluble polymer dispersion in which a water-soluble polymer having at least one type of ionicity selected from among cationicity, an amphotericity, a nonionicity and an anionicity and occurring as fine particles with a particle size of not greater than 100 µm and a polyalkylenimine in the sulfate salt form coexist, according to Claim 1, wherein the polyalkylenimine is polyethylenimine.
- 8. (CURRENTLY AMENDED) A water-soluble polymer dispersion in which a water-soluble polymer having at least one type of ionicity selected from among cationicity, an amphotericity, a nonionicity and an anionicity and occurring as fine particles with a particle size of not greater than 100 µm and a polyalkylenimine in the sulfate salt form coexist, wherein the polyalkylenimine and/or modified polyalkylenimine

wherein the polyalkylenimine and/or modified polyalkylenimine amounts to 20 to 200% by mass relative to the water-soluble polymer—having at least one type of ionicity selected from among

Application No. 10/517,011 Filed: July 7, 2005 TC Art Unit: 1731

Confirmation No.: 2774

said cationicity, said amphotericity, said nonionicity and said
anionicity.

9. (CURRENTLY AMENDED) A method of producing water-soluble polymer dispersions, wherein a dispersion of fine particles of a polymer having at least one type of ionicity selected from among cationicity and amphotericity is produced by subjecting a monomer (or monomer mixture) comprising 5 to 100 mole percent of a monomer represented by the general formula (1) and/or (2) given below, 0 to 50 mole percent of a monomer represented by the general formula (3) given below and 0 to 95 mole percent of a water-soluble nonionic monomer to dispersion polymerization with stirring in the presence of a polyalkylenimine and/or a modified polyalkylenimine in the sulfate salt form, if necessary further in the presence of a necessary amount of a water soluble inorganic salt.

$$CH_2 = C - R_1$$
 R_2
 $CO - A - B - N - R_4 X_1$
 R_3

General formula (1)

(In the general formula (1), R_1 is a hydrogen atom or a methyl group, R_2 and R_3 may be the same or different and each is an alkyl or alkoxy group containing 1 to 3 carbon atoms or a benzyl group, R_4 is a hydrogen atom, an alkyl or alkoxy group containing 1 to 3 carbon atoms or a benzyl group. A represents an oxygen atom or NH, B represents an alkylene or alkoxylene group containing 2 to 4 carbon atoms, and X_1 represents an sulfate anion.)

WSGL

Application No. 10/517,011
Filed: July 7, 2005
TC Art Unit: 1731
Confirmation No.: 2774

General formula (2)

(In the general formula (2), R_5 represents a hydrogen atom or a methyl group, R_6 and R_7 each represents an alkyl or alkoxy group containing 1 to 3 carbon atoms or a benzyl group, and X_2 represents an sulfate anion.)

General formula (3)

(In the general formula (3), R_8 represents a hydrogen atom, a methyl group or a carboxymethyl group, Q represents SO_3 , $C_6H_4SO_3$, $CONHC(CH_3)_2CH_2SO_3$, C_6H_4COO or COO, R_9 represents a hydrogen atom or $COOY_2$, and Y_1 or Y_2 represents a hydrogen atom or a cation.)

10. (CURRENTLY AMENDED) A method of producing water-soluble polymer dispersions, wherein a dispersion of fine particles of a polymer having at least one type of ionicity selected from among anionicity and nonionicity is produced by subjecting a monomer composition (mixture) comprising at least one monomer selected from among monomers represented by the general formula (3) given below and water-soluble nonionic monomers to dispersion polymerization with stirring in the presence of a polyalkylenimine

and/or a modified polyalkylenimine—in the sulfate salt form,—if necessary—further in the presence of a necessary amount of a water-soluble inorganic salt.

General formula (3)

(In the general formula (3), R_8 represents a hydrogen atom, a methyl group or a carboxymethyl group, Q represents SO_3 , $C_6H_4SO_3$, $CONHC(CH_3)_2CH_2SO_3$, C_6H_4COO or COO, R_9 represents a hydrogen atom or $COOY_2$, and Y_1 or Y_2 represents a hydrogen atom or a cation.)

- 11. (CURRENTLY AMENDED) A method use of using the water-soluble polymer dispersion according to any of Claims 1-2, 3, 7, to 8, 23, 27, 31 and 33 to 35, wherein the water-soluble polymer dispersion is added to paper stuff making raw material before papermaking for pretreatment thereof.
- 12. (CURRENTLY AMENDED) A method use of using the water-soluble polymer dispersion according to any of Claims 1—2, 3, 7, to-8, 23, 27, 31 and 33 to 35, wherein the water-soluble polymer dispersion is added to paper stuff making raw material before papermaking to thereby improve the freeness thereof.
- 13. (CURRENTLY AMENDED) A method use of using—the water-soluble polymer dispersion according to any of Claims 1—2, 3, 7, to 8, 23, 27, 31 and 33—to—35, wherein the water-soluble polymer dispersion is added to paper—stuff—making raw material before papermaking, in

which a sizing agent coexists, to thereby improve the degree of sizing.

- 14. (CURRENTLY AMENDED) A method use of using the water-soluble polymer dispersion according to any of Claims 1-2, 3, 7, to 8, 23, 27, 31 and 33 to 35, wherein the water-soluble polymer dispersion is added to paper stuff making raw material before papermaking to thereby improve the yield, followed by papermaking.
- 15. (CURRENTLY AMENDED) A method use of using the water-soluble polymer dispersion according to any of Claims 1-2, 3, 7, to-8, 23, 27, 31 and 33 to 35, wherein the water-soluble polymer dispersion is added to paper-stuff making raw material before papermaking in combination with an inorganic and/or organic anionic substance to thereby improve the yield, followed by papermaking.
- 16. (CURRENTLY AMENDED) A method use of using—the water-soluble polymer dispersion according to any of Claims 1—2, 3, 7, to-8, 23, 27, 31 and 33 to 35, wherein the water-soluble polymer dispersion is added to organic sludge or paper mill-derived sludge to cause flocculation, followed by dewatering by means of dewatering equipment.
- 17. (CURRENTLY AMENDED) A method use of using—the water-soluble polymer dispersion according to any of Claims 1—2, 3, 7, to—8, 23, 27, 31 and 33 to—35, wherein the water-soluble polymer dispersion is added to organic sludge or paper mill-derived sludge in combination with an amphoteric or anionic water-soluble polymer to

Application No. 10/517,011

Filed: July 7, 2005

TC Art Unit: 1731

Confirmation No.: 2774

cause flocculation, followed by dewatering by means of dewatering equipment.

18-22. (CANCELLED)

23. (PREVIOUSLY PRESENTED) A water-soluble polymer dispersion

according to Claim 2, wherein the polyalkylenimine

polyethylenimine.

24-26. (CANCELLED)

(CURRENTLY AMENDED) A water-soluble polymer dispersion

according to Claim 2, wherein the polyalkylenimine and/or-modified

polyalkylenimine amounts to 20 to 200% by mass relative to the

water-soluble polymer having at least one type of ionicity

selected from among said cationicity, and said amphotericity; said

nonionicity and said anionicity.

28-30. (CANCELLED)

(CURRENTLY AMENDED) A water-soluble polymer dispersion

according to Claim 7, wherein the polyalkylenimine and/or modified

polyalkylenimine amounts to 20 to 200% by mass relative to the

water-soluble polymer-having at least one type of ionicity

selected from among said cationicity, said amphotericity, said

nonionicity and said anionicity.

32-34. (CANCELLED)

-9-

35. (CURRENTLY AMENDED) A water-soluble polymer dispersion according to Claim 31, wherein the water-soluble polymer having at least one type of ionicity selected from among said anionicity and said nonionicity and occurring in the form of fine particles is produced by dispersion polymerization of a monomer composition (mixture) comprising at least one monomer selected from among monomers represented by said general formula (3) given above below and water-soluble nonionic monomers in the presence of said polyalkylenimine and/or modified polyalkylenimine—in the sulfate salt form, if necessary further in the presence of a necessary amount of a water soluble inorganic salt.

General formula (3)

(In the general formula (3), R_8 represents a hydrogen atom, a methyl group or a carboxymethyl group, Q represents SO_3 , $C_6H_4SO_3$, C