Advanced Time Series Analysis Quantile Regression

Henrik Madsen

Lecture

1/22

This Presentation

- Quantiles
- Conditional quantiles
- Quantile regression
- Linear models
- Non-linear models
- Example: Quantile regression based probabilistic wind power forecasting
- Performance of quantiles
- Adaptive quantile regression

Quantiles

- Let Y be a random variable with distribution function F_Y and τ a real number between zero and one.
- ullet The au^{th} quantile of F_Y is

$$q_Y(\tau) = F_Y^{-1}(\tau) = \inf\{y : F_Y(y) \ge \tau\}$$

Thus 100τ pct. of the probability mass of Y is below $q_Y(\tau)$

- Special quantiles are the first quartile $q_Y(0.25)$, the second quartile (median) $q_Y(0.5)$, the third quartile $q_Y(0.75)$, and the percentiles $q_Y(0.01), q_Y(0.02), ..., q_Y(0.99)$.
- The interquartile range (IQR) is $q_Y(0.75) q_Y(0.25)$.

Determination of quantiles

Consider the following objective function

$$V(q) = \tau \int_{y>q} |y-q| dF_Y(y) + (1-\tau) \int_{y (1)$$

$$= \tau \int_{y>q} (y-q)dF_Y(y) - (1-\tau) \int_{y (2)$$

- The solution to $\min_q V(q)$ is the τ^{th} quantile of F_Y .
- Proof: The first order condition for a minimization of V is

$$0 = -\tau \int_{y>q} dF_Y(y) + (1-\tau) \int_{y (3)$$

$$= -\tau(1 - F_Y(q)) + (1 - \tau)F_Y(q) \tag{4}$$

$$= -\tau + F_Y(q) \tag{5}$$

Conditional quantiles

- Consider now Y|X with the conditional distribution $F_{Y|X}(y)$, its τ^{th} quantile is clearly a function of X.
- This quantile solves

$$\min_{q} \{ \tau \int_{y>q} |y-q| dF_{Y|X}(y) + (1-\tau) \int_{y (6)$$

• If q is considered as a linear function $q(X) = X'\beta$, unknown up to the parameter vector β , (6) is equivalent to the following minimization problem:

$$\min_{\beta} \{ \tau \int_{y \ge X'\beta} |y - X'\beta| dF_{Y|X}(y) + (1 - \tau) \int_{y < X'\beta} |y - X'\beta| dF_{Y|X}(y) \}$$
 (7)

The solution to (7) is denoted as $\beta_{\tau},$ from which we can obtain the τ^{th} quantile as

Quantile Regression

• Given the data $(y_t, x_t')', t = 1, ..., N$ where x_t is $k \times 1$, and consider the linear model

$$y_t = x_t'\beta + e_t \tag{9}$$

for the particular conditional quantile of y_t .

• Considering the sample counterpart of the previous slides. The τ^{th} quantile regression estimator of β can be found by minimizing the sample counterpart of Eq. (7) as the asummetrically weighted absolute errors with weight τ on positive errors and weight $(\tau-1)$ on negative errors:

$$V_N(\beta, \tau) = \frac{1}{N} \{ \tau \sum_{t: y \ge x_t' \beta} |y - x_t' \beta| + (1 - \tau) \sum_{t: y < x_t' \beta} |y - x_t' \beta|$$
 (10)

• For $\tau=0.5$, 2 times (10) is exactly the objective function for Least Absolute Deviation (LAD) estimation or 'median regression'.

Quantile Regression - Compact form

- Introduce the "check" function ρ_{τ} such that $\rho_{\tau}(e) = \tau e$ if $e \geq 0$ and $\rho_{\tau}(e) = (\tau 1)e$ if e < 0.
- Now the criterion can be written in compact form

$$V_N(\beta, \tau) = \frac{1}{N} \sum_{t=1}^{N} \rho_{\tau}(y_t - x_t'\beta)$$
 (11)

$$= \frac{1}{N} \sum_{t=1}^{N} (\tau - 1_{y_t - x_t' \beta < 0}) (y_t - x_t' \beta)$$
 (12)

• Once $\hat{\beta}_{\tau}$ is obtained, the estimated quantile regression hyperplane is computed as $x_t'\hat{\beta}_{\tau}$, and the quantile regression residuals as $\hat{e}_t(\tau) = y_t - x_t'\hat{\beta}_{\tau}$.

Quantile (Linear) Regression

In this context quantile regression is a linear model

$$y_t = \hat{Q}(\tau, \mathbf{x}_t) + r_t = \mathbf{x}_t^T \hat{\beta} + r_t$$
(13)

with a peicewise linear and asymmetric loss function

$$\rho_{\tau}(r) = \begin{cases} \tau r & , \quad r \ge 0 \\ (\tau - 1)r & , \quad r < 0 \end{cases}$$
 (14)

given N obeservations of y and x, the best estimate of β is

$$\hat{\beta}(\tau) = \arg\min_{\beta} \sum_{i=1}^{N} \rho_{\tau}(r_i) = \arg\min_{\beta} S(\beta; \tau, \mathbf{r})$$
 (15)

As shown previously this construction give the τ quantile.

Some issues related to Quantile

A quantile in which sense?

$$\tfrac{1}{N}\#(r<0) \qquad \leq \tau \leq \qquad \tfrac{1}{N}\#(r\leq 0)$$

$$\frac{1}{N}\#(r>0) \le 1-\tau \le \frac{1}{N}\#(r\ge 0)$$

Or quantile regression divide the response in a proper way, and generalize the sample quantile.

The Quantile Model

We do not always believe that linear regression give a realistic model a general with $\mathbf{x} \in \mathbb{R}^p$ model is

$$Q(\mathbf{x};\tau) = g(\mathbf{x};\tau) \tag{16}$$

An additive model

$$Q(\mathbf{x};\tau) = \alpha(\tau) + \sum_{j=1}^{p} f_j(x_j;\tau)$$
(17)

An additive model with splines

$$Q(\mathbf{x};\tau) = \alpha(\tau) + \sum_{j=1}^{p} \sum_{k=1}^{n_k} b_{jk}(x_j) \beta_{jk}$$
(18)

 b_{jk} are spline basis functions. The model is now linear in the known basis functions.

Splines in Short

But what is a spline basis function?

- Splines are polynomials of degree m on intervals defined by a knot sequence and it is m-1 times differentiable over the knots.
- The knots defines the splines, the more knots the greater the flexibility.
- Different end point conditions can be imposed, by controlling the knotssequence and using linear combination of the basis functions.

Example – The Data Set

The data set consists of data from a wind power plant placed at Tunø Knob. The data are

- Forecated power form WindFor (previously called WPPT)
- Prediction error from WindFor
- Meteorological forecasts from DMI (Danish MET service)

The aim is now to model quantile curves of the prediction error as a function of meteorological forecasts and forecasted power.

This data set is divided into a training set and a test set of approximal equal sizes. Will be used later for adaptive quantile regression.

Quantile Regression with Splines

Two models:

Quantile regression - Example - Klim wind farm

Effect of variables (- the functions are approximated by Spline basis functions):

- Forecasted power has a large influence.
- The effect of horizon is of less importance.
- Some increased uncertainty for Westerly winds.

Example: Probabilistic forecasts - Klim wind farm

- Notice how the confidence intervals varies ...
 - But the correlation in forecasts errors is not described so far.

Correlation structure of forecast errors

- It is important to model the **interdependence structure** of the prediction errors.
- An example of interdependence covariance matrix:

Correct (top) and naive (bottom) scenarios

An Adaptive Approach

The idea is to use knowledge about the solution at time t to find a solution at time t+1, based on some forgetting factor.

- What is needed is
 - An LO formulation for the QR problem
 - The simplex algorithm
 - An algorithm for updating the design matrix

For details please see:

Møller, J. K., Nielsen, H. A., & Madsen, H. (2008). Time-adaptive quantile regression. Computational Statistics and Data Analysis, 52(3), 1292-1303.

The Linear Optimization Formulation

The LO formulation of the Quantile Regression problem

$$\min\{\tau \mathbf{e}^T \mathbf{r}^+ + (1 - \tau) \mathbf{e}^T \mathbf{r}^- : \mathbf{X}\beta + \mathbf{r}^+ - \mathbf{r}^- = \mathbf{y}, (\mathbf{r}^+, \mathbf{r}^-) \in \mathbb{R}^{2N}_+, \beta \in \mathbb{R}^K\}$$

or in a more compact notation

$$\min\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{y}, (\mathbf{r}^+, \mathbf{r}^-) \in \mathbb{R}_0^{2N}, \beta \in \mathbb{R}^K\}$$
(19)

the equality constraints can be written as

$$\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{x}_{\mathcal{B}} + \mathbf{C}\mathbf{x}_{\mathcal{C}} = \mathbf{y} \tag{20}$$

with $\mathbf{x}_{\mathcal{C}} = \mathbf{0}$. \mathbf{B} is a square matrix with several of thousand rows, the expensive part of the simplex algorithm is to find \mathbf{B}^{-1} .

Simplex and Quantile Regression

By interchanging of row ${f B}$ can be written as

$$\mathbf{B} = \begin{bmatrix} \mathbf{X}(h) & \mathbf{0} \\ \mathbf{X}(\bar{h}) & \mathbf{P} \end{bmatrix}$$
 (21)

and the inverse of B can be written as

$$\mathbf{B}^{-1} = \begin{bmatrix} \mathbf{X}(h)^{-1} & \mathbf{0} \\ -\mathbf{P}\mathbf{X}(\bar{h})\mathbf{X}(h)^{-1} & \mathbf{P} \end{bmatrix}$$
 (22)

The number of rows in $\mathbf{X}(h)$ is less than 40 for all the models considered here. This gives large improvements w.r.t. both calculation time and numerical stability.

An Adaptive Model

Reliability Again

Overall Reliability

o veran remasnity					
Model	Reference	Basic 1	Basic 2	Basic 3	Basic4
Below 75% (test)	83.9%	78.6%	77.2%	77.6%	77.2%
Below 25% (test)	22.6%	22.9%	25.7%	25.1%	25.0%

Local Reliability

