中山大学本科生期中考试

考试科目:《大学物理》(A卷)

学年学期: 2020学年第2学期 姓	名:
学院/系: 学号:	
考试方式: 闭卷 年级专业:	20级
考试时长: 120分钟 班 别:	
	大题,总分100分,考生请在答题纸上作答
一、单选题(共15小题,每小题2分,	共 30 分)
1. 右图是一个2.0kg的玩具赛车在轨道上转弯	前后的情形。转弯前它的速度
是0.50m/s, 转弯后是0.40 m/s。由于转弯,	拿车的线动量变化Λρ 为
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
().	
A. $(0.8\vec{i} + 1.0\vec{j})$ kg·m/s	3. (0.4i – 0.5j)kg⋅m/s
C. $0.8\vec{i} + 1.0\vec{j}$	D. 1.8 kg⋅m / s
2. 下列说法 <u>错误</u> 的是().	
A. 加速度的方向是速度变化的方向,和原	5占的运动方向—致·
B. 物体做曲线运动时,加速度的方向总是	
C. 法向加速度只改变速度的方向;	
D. 位置矢量、速度和加速度的大小和方向	5)都与参照系的选择有关,具有相对性。
	力作用,且此系统所受外力的矢量和为零,则系统().
	B. 动量和机械能一定都不守恒
C. 动量不一定守恒,机械能一定守恒	D. 动量一定守恒,机械能不一定守恒
]量的改变和内力无关; (2)质点系总动能的改变和内力
无关;(3)质点系机械能的改变和内部保守之	
A. 只有(1)正确	B. (1) (2)正确
C. (1) (3)正确	D. (2) (3)正确
5. 如图, 子弹射入放在水平光滑地面上静止的	的木块后穿出,以地面为参考系,下列说法正确的是
().	
A. 子弹减少的动能转化为木块的动能	
B. 子弹和木块构成的系统的机械能守恒	
C. 子弹动能的减少等于子弹克服木块阻力	力所做的功
D. 子弹和木块构成的系统的总动量不守	
6. 一个截面不同的水平管道,在不同截面处竖	是直接两个管状压强指示计,流体在管中流动时,两压
强计中液面有确定的高度。如果把水平管道的	出口堵住,此时压强计中液面变化情况是().
A. 都不变化 B.	两液面同时升高相等高度

- C. 两液面同时下降相等高度 D. 两液面上升到相同高度
- 7. 将一小球粘于弹簧一端,另一端固定,小球在弹簧力作用下在光滑平面上左右运动,下列说法正 确的是(
 - A. 弹簧在其不被拉伸或压缩的位置时, 小球的动能最大
 - B. 在小球运动的任意时刻, 动能都比势能大
 - C. 小球运动一段时间后将停止在弹簧不被拉伸或压缩时的位置
 - D. 在小球运动的任意时刻, 势能都比动能大
- 8. 广州从化北回归线标志塔位于北纬23°26'的纬线圈上. 它随地球自转而具有的角速度方向:
 - A. 与所在纬线的切线方向平行; B. 与所在纬线的径向平行;
- - C. 与地心指向其所在点的径向平行; D. 与地球自转轴平行
- 9. 已知一个匀质实心圆盘半径为R、厚度为h、质量为m,它关于经过其圆心、与圆盘平面垂直的固

定轴的转动惯量是 $\frac{1}{2}mR^2$ 。那么一个厚度和质量都与它相同、内外半径分别为r和R的匀质圆环,关 于同一个轴的转动惯量是().

A.
$$\frac{1}{2}m(R^2+r^2)$$
;

A.
$$\frac{1}{2}m(R^2+r^2)$$
; B. $\frac{1}{2}m(R^2-r^2)$; C. $\frac{1}{2}m(R-r)^2$; D. 以上都不对。

C.
$$\frac{1}{2}m(R-r)^2$$
;

- 10. 设绳索波表达式为 $y_1 = A\cos[\omega(t-\frac{x}{u}) + \frac{\pi}{6}]$,希望在绳索上形成驻波,且使x=0处为波节,应 加入哪一列波.()

A.
$$y_2 = A\cos[\omega(t - \frac{x}{u}) - \frac{\pi}{6}]$$

A.
$$y_2 = A\cos[\omega(t-\frac{x}{u})-\frac{\pi}{6}];$$
 B. $y_2 = A\cos[\omega(t+\frac{x}{u})-\frac{\pi}{6}];$

C.
$$y_2 = A\cos[\omega(t - \frac{x}{u}) - \frac{5\pi}{6}];$$
 D. $y_2 = A\cos[\omega(t + \frac{x}{u}) - \frac{5\pi}{6}]$

D.
$$y_2 = A\cos[\omega(t + \frac{x}{u}) - \frac{5\pi}{6}]$$

11. 一只盘子绕过圆心且与盘面垂直的轴无摩擦地做定轴转动。盘子边缘有一只质量相对于盘子来 说不算很小的虫子随盘子一起运动。此时这只虫子沿着盘子的一条确定的半径从边缘爬向圆心。在 爬到圆心之前的这个过程中, 盘子旋转的角速度将会(

- A. 变小 B. 变大 C. 先变大再变小 D. 先变小再变大
- 12. 若室内点燃火炉后温度从15摄氏度升高到27摄氏度,而室内气压不变,则此时室内的分子数减 少了().

A. 0.5%

- B. 4%
- C. 9%
- D. 21%
- 13. 悬挂在竖直方向上的弹簧振子,周期T=2s, 从最低点位置向上运动时刻开始计时,在一个周期 内的振动图像如图所示,关于这个图像,下列哪些说法是正确的是().

- A. t=1.25s时, 振子的加速度为正, 速度也为正
- B. t=1.7s时, 振子的加速度为负, 速度也为负
- C. t=1.0s时, 振子的速度为零, 加速度为负的最大值
- D. t=1.5s时, 振子的速度为零, 加速度为负的最大值
- 14. 两个简谐振动的振动曲线如图所示,实曲线为 x_1 振动,虚 线为 x_2 振动,请问 x_1 和 x_2 的初相位分别是(

A. 0, $\pi/2$

C. π, π/2

B. $\pi/2$, π

D. $-\pi/2$, π

- 15. 平面简谐波在弹性介质中传播时,某一时刻在传播方向上介质中某质元处于平衡位置,则此时刻该质元的能量是().
 - A. 动能为零, 势能最大

B. 动能为零, 势能为零

C. 动能最大, 势能最大

D. 动能最大, 势能为零

二、填空题(共5小题,每小题2分,共10分)

- 2. 一物体放在水平传送带上,物体与传送带间无相对滑动。以地面为参考系,当传送带做加速运动时,静摩擦力对物体做功为_____;当传送带做减速运动时,静摩擦力对物体做功为_____.(说明:填"正","负"或"零")
- 4. 一个质点沿x轴作简谐运动,振动范围的中心点为x轴的原点。已知周期为T,振幅为A。若t=T/4时质点过x=A/2处且朝x轴负方向运动,则质点的振动方程为x=_________.

三、计算题(共5小题,每小题12分,共60分)

1. 如图所示,质量为*m*,速度为*v*的钢球,射向质量为*M*的靶,靶中心有一个小孔,内有劲度系数为*k*的弹簧。此靶一开始处在静止状态,但可以在水平面无摩擦滑动,求:

- (1) 弹簧被最大压缩时, 钢球的速度;
- (2) 钢球射中靶内弹簧后, 弹簧最大压缩长度.
- 2. 两滑冰运动员质量分别为 M_A =60kg, M_B =50kg, 他们的速率分别为 V_A =5m/s, V_B =6m/s, 在相距1.5m的两平行线上相向而行, 当两者最接近时, 便拉起手来, 开始绕质心轴 (即通过这两人所组成的系统的质心, 且垂直于地面的轴) 作刚性圆周运动并保持两者间的距离为1.5m。求该瞬时(运动员可视为质点, 他们绕质心轴作定轴转动):
 - (1) 系统关于质心轴的总角动量L;
 - (2) 系统关于质心轴的角速度 ω ;
 - (3) 两人拉手前的总动能 E_{o}
- 3. 如图所示是"竹蜻蜓"的结构示意图。当用手捻动柄,让"竹蜻蜓"旋转起来后再释放开它,那么

- "竹蜻蜓"可以向上飞行。现在让我们通过一个简化的模型来研究"竹蜻蜓"上升的高度。为此,我们 作出如下的假设:
 - (A) "竹蜻蜓"有三条完全相同的桨叶,它们位于同一平面内。每条桨叶看作为长度是*l*,质量是*m* 的刚体杆,杆的厚度忽略不计;
 - (B) 捻动柄的过程看作是施加了一个以O为参考点的恒定的力矩,力矩的方向与柄平行,力矩的大小为M;
 - (C) 忽略掉柄的质量;
 - (D) 忽略掉一切的摩擦和空气阻力。

下面进行计算:

- (1) 请写出三条桨叶绕柄定轴转动的总转动惯量, 结果应当写为*m*和l的函数。并以它作为"竹蜻蜓"绕柄旋转的转动惯量;
- (2) 在释放开"竹蜻蜓"之前以恒定的力矩M让"竹蜻蜓"旋转了M圈。假定初始时"竹蜻蜓"的角速度为零。请计算出在此情况下"竹蜻蜓"定轴转动的动能。结果应当写为M和M的函数;
- (3) 假定"竹蜻蜓"在释放后垂直上升,且到达最高点处时,它绕柄旋转的角速度为 ω 。把释放"竹蜻蜓"时桨叶所处平面的位置设为坐标原点。计算出"竹蜻蜓"桨叶所处平面到达的最高高度h。结果应当写为m, l, M, N和 ω 的函数。

- 4. 水在管中某一点处的流速为2m/s,该处的横截面积为 $200cm^2$,该处高出大气压的计示压强为 $10^4 Pa$,若管中另一点处的高度比第一点降低了1m,且第二点处的横截面积为第一点处的 $\frac{1}{2}$.
 - (1) 计算管中水的流量为多少?
 - (2) 计算第二点处水流速度和实际压强为多少? (大气压强取 $1.013 \times 10^5 Pa$,重力加速度g取 10 m/s^2)
- 5. 有一振源在y方向做简谐振动,其振幅为0.1m,振动频率为10Hz,初相位为 $\frac{\pi}{2}$,该振动以波速10 m/s往正x方向传播,试求:
 - (1) 该波动的波长为多少?
 - (2) 写出简谐波波动方程?
 - (3) x正方向距离波源10m处的质点在t=2s时的位移是多少? 此时振动速度大小和方向分别是多少?