

தேசிய தொண்டைமானாறு வெளிக்கள நிலையம் ஆநாம் தவணைப் பரீட்சை-2024

National Field Work Centre, Thondaimanaru Sixth Term Examination – 2024

இணைந்த கணிதம் - I

தரம் : 13(2024)

10	T	I

முன்று மணித்தியாலம் மேலதிக வாசிப்பு நேரம் 10 நிமிடங்கள்

சுட்டெண்						
----------	--	--	--	--	--	--

அநிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக்கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	(10) இணைந்	த கணிதம் - I
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
ရ	மாத்தம்	

இணைந்த கணிதம் -I	
இணைந்த கணிதம் -II	
இறுதிப் புள்ளிகள்	

				Ц	குதி .	A				
1.	$a_1=3$ எனவும்	สல்லா <i>n</i> €	E Z⁺ இந்	க a _{n+1}	$=\frac{n+1}{n+2}$	a_n எனவு	ம் கொ	ள்வோம்.	கணிதத்	தொகுத்தநிவுக்
	கோட்பாட்டைப்									
								• • • • • • • • • • • • • • • • • • • •		
2.	$y = x^2$, $y = x $ அல்லது வேறு பெறுமானங்களை	விதமாக, க	சமனிலி							க. இதிலிருந்து எல்லா மெய்ப்
				• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •		
				• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •		
				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
								• • • • • • • • • • • • • • • • • • • •		
				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
				• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •		
								• • • • • • • • • •		
				• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •		
								• • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		• • • • • • • •	• • • • • • • • • • •	• • • • • • •			
		• • • • • • • • • • • • • • • • • • • •					• • • • • • •	• • • • • • • • • • • • • • • • • • • •		
								•••••		

3.	$ z-2i \ge z-2 $, $ z-2-2 $ ஐ வகைகுறிக்கும் புள்ளிகளை S இல் உள்ள z இந்கு $ z-2 $	க் கொண்ட பிர 4 இன் இழிவுட்	தேசம் <i>S</i> ஐ ஓர் ச ப பெறுமானத்தைக்	ஆகண் வரிப்படத்தில் காண்க.	நிழற்றுக. பிரதேசம்
		• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
		• • • • • • • • • • • • • • • • • • • •		•••••	
		• • • • • • • • • • • • • • • • • • • •		•••••	
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •	•••••	
				• • • • • • • • • • • • • • • • • • • •	
4.	$n\in\mathbb{Z}^+$ இற்கு $(1+kx+x^2)$ எனின், மெய்ம் மாநிலி k இன்			ாள x^{2} இன் குணகம்	$\frac{1}{2}(n+1)(n+2)$
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$	$^n\mathcal{C}_0$ எனக் காட்டுக.	
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		
	இதிலிருந்து அல்லது வேறுவித	மாக, $^{n+2}C_2$ =	$= {}^{n}C_{2} + 2 {}^{n}C_{1} +$		

5.	$\lim \frac{\sin 2x - 2\sin(x + u) + \sin 2u}{\sin 2x - 2\sin(x + u) + \sin 2u} = -$	<u>்பாச்</u> எனக் காட்டுக	
٠.	$\lim_{x \to \alpha} \frac{\sin 2x - 2\sin(x + \alpha) + \sin 2\alpha}{(x + \alpha)(x - \alpha)^2} = -\frac{1}{2}$	2α	
			• • • •
			• • • •
	•••••		• • • •
			••••
			••••
	•••••		• • • •
			• • • •
	•••••		• • • •
			••••
			• • • •
6.	32 0 0		
		ஆகிய வளையிகளினால் உள்ளடைக்கப்பட்ட y $y=e^{3x}$	x
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச்	நிழற்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழற்றுவதனால் உண்டாகும் திண்மத்தின்	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு குழந்துவுகனால் உண்டாகும். கிண்மக்கின்	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழற்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழற்றுவதனால் உண்டாகும் திண்மத்தின்	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	
	பிரதேசம் R ஆனது உருவில் $\frac{e^6-1}{3}$ சதுர அலகுகள் எனக் க செங்கோணங்களினூடாகச் கனவளவையும் காண்க.	நிழந்றிக் காட்டப்பட்டுள்ளது. R இன் பரப்பளவு $y = e^{-x}$ ாட்டுக. பிரதேசம் R ஐ x அச்சைப் பற்றி நான்கு சுழந்றுவதனால் உண்டாகும் திண்மத்தின் 0 2	

9.	$x^2+y^2-3x-4y+1=0$, $x^2+y^2+6x+8=0$ ஆகிய வட்டங்களை நிமிர்கோணமுறையாக இடைவெட்டுவதும் x அச்சை $x+3>0$ என்னும் பிரதேசத்தில் தொடுவதுமான வட்டத்தின் சமன்பாட்டைக் காண்க.
10.	$8\left(1-\cos\frac{\pi}{8}\right)\left(1+\sin\frac{\pi}{8}\right)\left(1-\cos\frac{3\pi}{8}\right)\left(1+\sin\frac{3\pi}{8}\right)=1$ எனக் காட்டுக.

தேசிய தொண்டைமானாறு வெளிக்கள நிலையம் ஆறாம் தவணைப் பரீட்சை-2024

National Field Work Centre, Thondaimanaru Sixth Term Examination – 2024

இணைந்த கணிதம் - ${f I}$ பகுதி ${f B}$

- 11.(a) $x \in \mathbb{R}$ இந்கு $f(x) = ax^2 + bx + c$ எனக் கொள்வோம்; இங்கு $a,b,c \in \mathbb{R}$ உம் a < 0 உம் ஆகும். f(x) இன் உயர்வுப் பெறுமானம் $-\frac{\Delta}{4a}$ எனக் காட்டுக; இங்கு $\Delta = b^2 4ac$. $x \in \mathbb{R}$ இந்கு $g(x) = (2-3k)x^2 + (1+3k)x 3$ எனவும் இருபடிச்சமன்பாடு g(x) = 0 இன் மூலங்கள் α , β எனவும் கொள்வோம்.
 - (i) $k\in\mathbb{R}$ இற்கு g(x)=0 இற்கு மெய்ம் மூலங்கள் இருக்கின்றதெனக் காட்டுக.
 - (ii) lpha, eta ஆகிய இரண்டும் நேராக இருக்கும் k இன் பெறுமானங்களைக் காண்க.
 - $(iii)\ g(x)$ இன் உயர்வுப் பெறுமானம் 1 எனின், k இன் பெறுமானங்களைக் காண்க.
 - (b) **மீதித் தேற்றத்தைக்** கூறி நிறுவுக.

5 ஆம் படியில் உள்ள பல்லுறுப்பி f(x) ஐ x, (x-1), (x-2), (x-3), (x-4), (x-5) ஆகியவற்றினால் வகுக்கப்படும்போது மீதிகள் முறையே 1, 1, 2, 3, 4, 5 ஆகும். g(x) = f(x) - x எனக் கொள்வோம். g(x) இன் எல்லா ஏகபரிமாணக் காரணிகளையும் கண்டு **இதிலிருந்து**, பல்லுறுப்பி f(x) ஐக் காண்க. f(x) ஐ (x-6) இனால் வகுக்க வரும் மீதியைக் காண்க.

- 12.(a) RESTITUTION என்னும் சொல்லில் உள்ள எல்லா எழுத்துக்களையும் எடுத்துச் செய்யத்தக்க வரிசைமாற்றங்களின் எண்ணிக்கையைக் காண்க. இவற்றுள்
 - (i) மூன்று T களும் அடுத்தடுத்து இருக்கும் எண்ணிக்கை யாது?
 - (ii) மூன்று T களில் இரு T கள் அடுத்தடுத்தும் மூன்றாவது அதை அடுத்தும் இருக்காத எண்ணிக்கை யாது?
 - (iii) எந்த இரு உயிர் எழுத்துக்கள் அடுத்துடுத்து இருக்காத எண்ணிக்கை யாது?
 (RESTITUTION என்னும் சொல்லில் உள்ள எழுத்துக்களில் E, I, O, U என்பன உயிர் எழுத்துக்களாகும்.)
 - $(b)\ r\in\mathbb{Z}^+$ இந்கு $\ U_r=rac{1}{(2r-1)(2r+1)}-rac{1}{4r(r+1)}$ எனவும் $\ V_r=rac{2}{(2r-1)}-rac{1}{r}$ எனவும் கொள்வோம். $4U_r=V_r-V_{r+1}$ எனக் காட்டுக.
 - **இதிலிருந்து,** $n \in \mathbb{Z}^+$ இற்கு $\sum_{r=1}^n U_r = \frac{1}{4} \frac{1}{2(2n+1)} + \frac{1}{4(n+1)}$ எனக் காட்டுக.

முடிவில் தொடர் $\sum_{r=1}^\infty U_r$ ஒருங்குகின்றதெனக் காட்டி, அதன் கூட்டுத்தொகையையும் காண்க.

$$r \in \mathbb{Z}^+$$
 இற்கு $W_r = \frac{(-1)^{r-1}}{r(r+2)}$ எனக் கொள்வோம்.

$$r\in\mathbb{Z}^+$$
 இந்கு $W_{2r-1}+W_{2r}=U_r$ எனக் காட்டுக.

இதிலிருந்து,

$$n$$
 ஓர் இரட்டை நேர்நிறைவெண் எனின், $\sum_{r=1}^n W_r = \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}$ எனக் காட்டுக.

$$n$$
 ஓர் ஒற்றை நேர்நிறைவெண் எனின், $\sum_{r=1}^n W_r = \frac{1}{4} - \frac{1}{2(n+2)} + \frac{1}{2(n+3)} + \frac{1}{(n+1)(n+3)}$ என்பதை உய்த்தறிக.

 $13.(a)\ a,b\in\mathbb{R}$ இற்கு $\pmb{A}=\begin{pmatrix} a & b \ 3 & -1 \end{pmatrix}$ எனவும் $\pmb{A}^2=\pmb{A}+5\pmb{I}$ எனவும் கொள்வோம், இங்கு \pmb{I} என்பது வரிசை $\pmb{2}$ இலுள்ள சர்வசமன்பாட்டுத் தாயம் ஆகும்.

$$a=2$$
, $b=1$ எனக் காட்டுக.

இதிலிருந்து,
$$A^6 = 96A + 205I$$
 எனக் காட்டுக.

$$A^6 = \begin{pmatrix} 397 & 96 \\ 288 & 109 \end{pmatrix}$$
 ஐ உய்த்தறிக.

(b) $z\in\mathbb{C}$ எனக் கொள்வோம்.

$$|z+i|^2 = |z|^2 + 2 \text{ Im} z + 1$$
 எனக் காட்டுக.

இதிலிருந்து,
$$z \neq -i$$
 இற்கு $Im\left(\frac{1}{z+i}\right) = -\frac{1+\operatorname{Im}z}{|z+i|^2}$ எனக் காட்டுக.

மேலே உள்ள இரு முடிவுகளையும் பயன்படுத்தி

 $z \neq -i$ ஆகவும் |z| = 1 ஆகவும் இ**ருந்தால்-இருந்தால் மாத்திரம்** $Im\left(\frac{1}{z+i}\right) = -\frac{1}{2}$ என்பதை காட்டுக.

 $Im\left(rac{1}{z+i}
ight) = -rac{1}{2}$, $-\pi < {
m Arg} \ z < 0$ என்னும் இரு நிபந்தனைகளையும் திருப்தியாக்கும் சிக்கலெண்கள் z ஐக் கொண்ட தொடை S எனக் கொள்வோம்.

S இல் உள்ள சிக்கலெண்களை வகைகுறிக்கும் புள்ளிகளை ஓர் ஆகண் வரிப்படத்தில் குறிக்க.

z ஆனது S இலும் $Re~z+Im~z=-rac{1}{\sqrt{2}}$ ஆகவும் இருப்பின், $z=\cosrac{5\pi}{12}-i\sinrac{5\pi}{12}$ எனக் காட்டுக.

மேலும் **தமோய்வரின் தேற்றத்தைப்** பயன்படுத்தி $z^{2024} + \frac{1}{z^{2024}} = -1$ எனக் காட்டுக.

 $14.(a) \ x \neq 1$ இற்கு $f(x) = \frac{x^3}{x-1}$ எனக் கொள்வோம்.

$$x \neq 1$$
 இற்கு $f'(x) = \frac{x^2(2x-3)}{(x-1)^2}$ எனக் காட்டுக.

இதிலிருந்து, f(x) அதிகரிக்கின்ற ஆயிடையையும் f(x) குறைகின்ற ஆயிடைகளையும் காண்க.

மேலும் f(x) இன் திரும்பற் புள்ளியின் ஆள்கூறுகளையும் காண்க.

y=f(x) இன் வரைபை அணுகுகோடு, திரும்பற் புள்ளி, விபத்திப் புள்ளி ஆகியவற்றைக் காட்டிப் பரும்படியாக வரைக.

(b) $a,b,c\in\mathbb{R}$ எனவும் $y=ax^2+bx+c$ எனவும் கொள்வோம். $\frac{dy}{dx}$ ஐக் காண்க. **இதிலிருந்து,** a>0 எனின், y இன் இழிவுப் பெறுமானம் $\frac{4ac-b^2}{4a}$ எனக் காட்டுக.

a>0, $b^2-4ac<0$ எனின், எல்லா $x\in\mathbb{R}$ இந்கும் $ax^2+bx+c>0$ என்பதை உய்த்தறிக.

எல்லா $x \in \mathbb{R}$ இற்கும் $y = ax^2 + bx + c$ இன் வரைபானது மேன்முகக் குழிவைக் கொண்டிருக்கும் எனக் காட்டுக.

15. (a) எல்லா $x \in \mathbb{R}$ இற்கும் $x+4=A(x-2)(x^2+1)+Bx(x^2+1)+Cx(x-2)(7x-6)$ ஆகுமாறு மாநிலிகள் A,B,C என்பன உள்ளனவெனத் தரப்பட்டுள்ளன. மாநிலிகள் A,B,C ஆகியவற்றைக் காண்க.

இதிலிருந்து, $\frac{x+4}{x(x-2)(x^2+1)}$ ஐப் பகுதிப்பின்னங்களில் எழுதி, $\int \frac{x+4}{x(x-2)(x^2+1)} dx$ ஐக் காண்க. மேலே உள்ள முடிவைப் பயன்படுத்தி, $\int \frac{e^x+4}{(e^x-2)(e^{2x}+1)} dx$ ஐயும் காண்க.

(b) a ஒரு மாறிலியாக இருக்கும் சூத்திரம் $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ ஐ நிறுவுக. $\int_0^\pi x f(\sin x)\,dx = \frac{\pi}{2}\int_0^\pi f(\sin x)\,dx$ எனக் காட்டுக.

இதிலிருந்து, $\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$ ஐப் பெறுமானங் கணிக்க.

- (c) (i) $0 \le x \le \pi$ இந்கு $g(x) = \frac{\sqrt{1+\cos x}}{\sqrt{1+\cos x} + \sqrt{1-\cos x}}$ எனக் கொள்வோம். $g'(x) = -\frac{1}{2(1+\sin x)}$ எனக் காட்டுக. $\int_0^\pi \frac{1}{1+\sin x} dx$ இன் பெறுமானத்தை **உய்த்தறிக**.
 - (ii) பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int \ln(2-x)dx$ ஐக் காண்க.

16. புள்ளி $(x_1,\ y_1)$ இலிருந்து நேர்கோடு ax+by+c=0 இற்கு வரையப்படும் செங்குத்தின் நீளம் $\frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}$ எனக் காட்டுக.

புள்ளி A(5,0) இனூடாகச் செல்வதும் படித்திறன் m ஐ உடையதுமான நேர்கோட்டின் சமன்பாட்டைக் காண்க.

உந்பத்தியில் இருந்து இந்நேர்கோட்டிற்கான செங்குத்துத் தூரம் 4 அலகுகள் எனின், $m=\pm \frac{4}{3}$ எனக் காட்டுக.

 $\frac{4}{3}$, $-\frac{4}{3}$ ஆகிய m இன் பெறுமானங்களிற்கு ஒத்த நேர்கோடுகள் முறையே l_1 , l_2 எனக் கொள்வோம். l_1 , l_2 இன் சமன்பாடுகளைக் காண்க.

 l_1 , l_2 ஆகிய இரு நேர்கோடுகளையும் தொடுவதும் x அச்சில் மையத்தைக் கொண்டுள்ளதும் ஆரை 2 அலகுகளைக் கொண்டதுமான S_1, S_2 என்னும் இரு வட்டங்களின் சமன்பாடுகளைக் காண்க.

 S_1, S_2 ஆகிய இரு வட்டங்களைத் தொடுவதும் $l_1,\ l_2$ ஆகிய இரு கோடுகளைத் தொடுவதுமான வட்டங்களின் சமன்பாடுகளைக் காண்க.

 $17.(a)\ \sqrt{3}\cos\theta+\sin\theta$ ஐ $R\cos(\theta-\alpha)$ எனும் வடிவில் எடுத்துரைக்க; இங்கு $R,\alpha\in\mathbb{R}$ உம் $0<\alpha<\frac{\pi}{2}$ உம் ஆகும்.

இதிலிருந்து சமன்பாடு $\sqrt{3}\cos^2\theta+\left(1-\sqrt{3}\right)\sin\theta\cos\theta-\sin^2\theta-\cos\theta+\sin\theta=0$ இன் பொதுத்தீர்வைக் காண்க.

- (b) $(a^2 b^2)\sin(A + B) = (a^2 + b^2)\sin(A B)$ எனின் முக்கோணி ABC ஆனது இருசமபக்க முக்கோணி அல்லது செங்கோண முக்கோணி எனக் காட்டுக.
- (c) $A+B+C=\pi$ எனின் $\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$ எனக் காட்டுக.

இதிலிருந்து அல்லது வேறுவழியாக

 $\sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\pi$ எனின் $x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}=2xyz$ எனக் காட்டுக.