(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 September 2002 (26.09.2002) (10) International Publication Number WO 02/075507 A2

(51) International Patent Classification7:	G06F 1/00	(81) Designated States (national): AE, AG, AL, AM, AT, AU,
		AZ, BA, BB, BG, BR, BY, BZ, CA. CH, CN, CO, CR, CU,
(21) International Application Number:	PCT/US02/01971	CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
		GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(22) International Filing Date: 17 January 2002 (17.01.2002)		LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
		MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
		SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,

(25) Filing Language: English

(26) Publication Language:

(71) Applicant (for all designated States except US): PHAR-

15 March 2001 (15.03.2001) US

MACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49007 (US).

(72) Inventors; and

(30) Priority Data:

09/809.665

(75) Inventors/Applicants (for US only): LOWERY, David, E. [US/US]; 1207 Woodland Drive, Portage, MI 49024 (US). FULLER, Troy, E. [US/US]; 111 Dreamfield Drive, Battle Creek, MI 49014 (US). KENNEDY, Michael, J. [US/US]; 2364 Quincy Avenue, Portage, MI 49024 (US).

(74) Agent: WILLIAMS, Joseph, A., Jr.; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

English (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Published:

VN. YU. ZA. ZW.

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

02/075507 A2

(54) Title: ANTI-BACTERIAL VACCINE COMPOSITIONS

(57) Abstract: Gram negative bacterial virulence genes are identified, thereby allowing the identification of novel anti-bacterial agents that target these virulence genes and their products, and the provision of novel gram negative bacterial mutants useful in vaccines.

ANTI-BACTERIAL VACCINE COMPOSITIONS

This application is a continuation-in-part of U.S. Patent Application Serial No: 09/545,199, filed April 6, 2000, which claims benefit of U.S. Provisional Patent Application Serial Nos. 60/153,453, filed September 10, 1999 and 60/128,689, filed April 9, 1999.

FIELD OF THE INVENTION

The present invention relates generally to the identification of genes responsible for virulence of *Pasteurellaceae* bacteria, thereby allowing for production of novel attenuated mutant strains useful in vaccines and identification of new antibacterial agents that target the virulence genes and their products.

BACKGROUND OF THE INVENTION

The family Pasteurellaceae encompasses several significant pathogens that infect a wide variety of animals. In addition to P. multocida, prominent members of the family include Pasteurella (Mannheimia) haemolytica, Actinobacillus pleuropneumoniae and Haemophilus somnus. P. multocida is a gram-negative, nonmotile coccobacillus which is found in the normal flora of many wild and domestic animals and is known to cause disease in numerous animal species worldwide [Biberstein, In M. Kilian, W. Frederickson, and E. L. Biberstein (ed.), Haemophilus, Pasteurella, and Actinobacillus. Academic Press, London, p. 61-73 (1981)]. The disease manifestations following infection include septicemias, bronchopneumonias, rhinitis, and wound infections [Reviewed in Shewen, et al., In C. L. Gyles and C. O. Thoen (ed.), Pathogenesis of Bacterial Infections in Animals. Iowa State University Press, Ames, p. 216-225 (1993), incorporated herein by reference].

Infection by P. multocida generally results from invasion during periods of stress, but transmission may also occur by aerosol or contact exposure, or via flea and tick vectors. In fowl, P. multocida infection gives rise to acute to peracute septicemia, particularly prevalent in domestic turkeys and wild waterfowl under stress conditions associated with overcrowding, laying, molting, or severe

elimatic change. In cattle, a similar hemorrhagic septicemia follows infection and manifests conditions including high fever and depression, generally followed by quick death. Transmission is most likely through aerosol contact, but infection can also arise during periods of significant climatic change. In rabbits, infection gives rise to recurring purulent rhinitis, generally followed by conjunctivitis, otitis media, sinusitis, subcutaneous abscesses, and chronic bronchopneumonia. In severe infections, rabbit mortality arises from acute fibrinous bronchopneumonia, septicemia, or endotoxemia. Disease states normally arise during periods of stress. In pigs, common P. multocida disease states include atrophic rhinitis and bacterial pneumonia. Similar pneumonia conditions are also detected in dogs, cats, goats, and sheep. P. multocida is commonly detected in oral flora of many animals and is therefore a common contaminant in bite and scratch wounds.

5

10

15

20

25

P. multocida strains are normally designated by capsular serogroup and somatic serotype. Five cansular serogroups (A. B. D. E. and F) and 16 somatic serotypes are distinguished by expression of characteristic heat-stable antigens. Most strains are host specific and rarely infect more than one or two animals. The existence of different serotypes presents a problem for vaccination because traditional killed whole cell bacteria normally provide only serotype-specific protection. However, it has been demonstrated that natural infection with one serotype can lead to immunological protection against multiple serotypes [Shewen, et al., In C. L. Gyles and C. O. Thoen (Ed.), Pathogenesis of Bacterial Infections in Animals. Iowa State University Press, Ames, p. 216-225 (1993)] and cross protection can also be stimulated by using inactivated bacteria grown in vivo [Rimler, et al., Am J Vet Res. 42:2117-2121 (1981)]. One live spontaneous mutant P. multocida strain has been utilized as a vaccine and has been shown to stimulate a strong immune response [Davis, Poultry Digest. 20:430-434 (1987), Schlink, et al., Avian Dis. 31(1):13-21 (1987)]. This attenuated strain, however, has been shown to revert to a virulent state or cause mortality if the vaccine recipient is stressed [Davis, Poultry Digest, 20:430-434 (1987), Schlink, et al., Avian Dis. 31(1):13-21 (1987)].

Another member of the Pasteurella family, A. pleuropneumoniae exhibits strict host specificity for swine and is the causative agent of highly contagious porcine pleuropneumonia. Infection normally arises in intensive breeding conditions, and is believed to occur by a direct mode of transmission. The disease is often fatal and, as a result, leads to severe economic loss in the swine producing industry. A. pleuropneumoniae infection may be chronic or acute, and infection is characterized by a hemorrhagic, necrotic bronchopneumonia with accompanying fibrinous pleuritis. To date, bacterial virulence has been attributed to structural proteins, including serotype-specific capsular polysaccharides, lipopolysaccharides, and surface proteins, as well as extracellular cytolytic toxins. Despite purification and, in some instances cloning, of these virulence factors, the exact role of these virulence factors in A. pleuropneumoniae infection is poorly understood.

Twelve serotypes of A. pleuropneumoniae have been identified based on antigenic differences in capsular polysaccharides and production of extracellular toxins. Serotypes 1, 5, and 7 are most relevant to A. pleuropneumoniae infection in the United States, while serotypes 1, 2, 5, 7, and 9 are predominant in Europe. There are at least three significant extracellular toxins of A. pleuropneumoniae that are members of the haemolysin family and are referred to as RTX toxins. RTX toxins are produced by many Gram negative bacteria, including E. coli, Proteus wulgarisa, and Pasteurella haemolytica, and the proteins generally share structural and functional characteristics. Toxins from the various serotypes differ, however, in host specificity, target cells, and biological activities.

The major A. pleuropneumoniae RTX toxins include ApxI, ApxII, and ApxIII. ApxI and ApxII have haemolytic activity, with ApxI being more potent. ApxIII shows no haemolytic activity, but is cytotoxic for alveolar macrophages and neutrophils. Most A. pleuropneumoniae serotypes produce two of these three toxins. For example, serotypes 1, 5, 9, and 11 express ApxI and ApxII, and serotypes 2, 3, 4, 6, and 8 express ApxII and ApxIII. Serotype 10, however, produces only ApxI, and serotypes 7 and 12 express only ApxII. Those A. pleuropneumoniae serotypes that produce both ApxI and ApxII are the most virulent strains of the bacteria.

The Apx toxins were demonstrated to be virulence factors in murine models and swine infection using randomly mutated wild type bacteria [Tascon, et al., Mol. Microbiol. 14:207-216 (1994)]. Other A. pleuropneumoniae mutants have also been generated with targeted mutagenesis to inactivate the gene encoding the AopA outer membrane virulence protein [Mulks and Buysee, Gene 165:61-66 (1995)].

5

10

15

20

25

30

At least eleven serotypes (1, 2, 5-9, 12-14 and 16) have been demonstrated within Mannheimia [Pasteurella] haemolytica [Angen, et al., Vet Microbiol 65(4):283-90 (1999)], a Pasteurellaceae species which is responsible for serious outbreaks of acute pneumonia in neonatal, weaned, growing and adult lambs, calves, and goats [Ackermann, et al., Microbes Infect 2(9):1079-88 (2000)]. Transportation, viral infections, overcrowding, and other stressful conditions predispose animals to M. haemolytica infection [Ackermann, et al., supra.] The leukotoxin (Lkt) of M. haemolytica is believed to play a significant role in pathogenesis, causing cell lysis and apoptosis that lead to the lung pathology characteristic of bovine shipping fever [Highlander, et al., Infect Immun 68(7):3916-22 (2000)] as well as lung injury in bovine pneumonic pasteurellosis [Jeyaseelan, et al., Microb Pathog 30(2):59-69 (2001)]. Lkt is a pore-forming exotoxin that has the unique property of inducing cytolysis only in ruminant leukocytes and platelets [Jeyaseelan, et al., (2001), supra.]. Cytolysis of many cell types is mediated by arachidonic acid (AA) and its generation by phospholipases is regulated by G-protein-coupled receptors [Jevaseelan, et al., (2001) supra] Recent studies indicate that M. haemolytica Lkt binds to bovine CD18, the common subunit of all beta2 integrins [Jeyaseelan, et al., Infect Immun 68(1):72-9 (2000)]. It has also been shown that LFA-1 is a Lkt receptor, Lkt binding to LFA-1 is not target cell specific, Lkt binding to bovine LFA-1 correlates with calcium elevation and cytolysis. and bovine LFA-1 expression correlates with the magnitude of Lkt-induced target cell cytolysis [Jeyaseelan, et al., Infect Immun 68(1):72-9 (2000)].

In attempts to produce vaccine compositions, traditional killed whole cell bacteria have provided only serotype-specific protection [MacInnes and Smart, supra], however, it has been demonstrated that natural infection with a highly virulent

serotype can stimulate strong protective immunity against multiple serotypes [Nielsen, Nord Vet Med. 31:407-13 (1979), Nielsen, Nord Vet Med. 36:221-234 (1984), Nielsen, Can J Vet Res. 29:580-582 (1988), Nielsen, ACTA Vet Scand. 15:80-89 (1994)]. One defined live-attenuated vaccine strain producing an inactive form of the ApxII toxin has shown promise for cross protection in swine [Prideaux, et al., Infection & Immunity 67:1962-1966 (1999)], while other undefined live-attenuated mutants have also shown promise [Inzana, et al., Infect Immun. 61:1682-6, (1993), Paltineanu, et al., In International Pig Veterinary Society, 1992, p. 214, Ulrera, et al., In International Pig Veterinary Society, 1992, p. 213].

5

10

15

20

25

30

Because of the problems associated with vaccine formulations comprising bacterial strains with undefined, spontaneous mutations, there exists a need in the art for rational construction of live attenuated bacterial strains for use in vaccines that will safely stimulate protective immunity against homologous and heterologous Pasteurellaceae serotypes. There further exists a need to identify attenuated bacterial strains and genes required for bacterial virulence, thereby facilitating development of methods to identify anti-bacterial agents.

SUMMARY OF THE INVENTION

In general, the present invention provides materials and methods for production and use of vaccine compositions comprising attenuated gram negative bacteria. In one aspect, vaccine compositions of the invention comprise attenuated species in the Pasteurellaceae family of bacteria, which is known in the art and described, in part, in Dewhirst, et al., J. Bacteriol. 174:2002-2013 (1992), incorporated herein by reference in its entirety. Species in the family include, but are not limited to, A. actinomycetemcomitans, A. capsulatus, A. equuli, A. lignieresii, A. pleuropneumoniae (H. pleuropneumoniae), A. seminis, A. suis (H. suis), A. ureae (p. ureae), A. capsulatus, Bisgaard taxon 11, H. aegyptius, H. aphrophilus, H. aphrophilus, H. haemolylicus, H. influenzae, H. paracuniculus, H. paragallinarum, H. parathaemolyticus, H. paraginfluenzae, (H. paraphrophilus), H.

paraphrohaemolyticus, H. paraphrophilus, H. parasuis, H. parasuis type 5, H. segnis, H. somnus, Haemophilus minor group, Haemophilus taxon C, P. aerogenes, P. anatis, P. avium (H. avium), P. canis, P. dagmatis, P. gallinarum, P. (Mannheimia) haemolytica, P. tehalosi (P. haemolytica biotype T), P. langaa, P. multocida, P. pneumotropica, P. stomatis, P. volantium (H. parainfluenzae), P. volantium, Pasteurella species A, Pasteurella species B, and Haemophilus paraphrohaemolyticus. Preferably, vaccine compositions comprise attenuated Pasteurella (Mannheimia) haemolytica, Actinobacillus pleuropneumoniae, Haemophilus somnus, or Pasteurella multocida bacteria. In a most preferred embodiment, vaccine compositions of the invention comprise attenuated Pasteurella multocida and A. plueropneumoniae bacterial strains.

5

10

15

20

25

One aspect of the invention provides gram negative bacterial organisms containing a functional mutation in a gene sequence represented by any one of SEO ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or species homologs thereof, wherein the mutation inhibits or abolishes expression and/or biological activity of an encoded gene product (i.e., the polypeptide encoded by a gene); said functional mutation resulting in attenuated virulence of the bacterial strain. Functional mutations that modulate (i.e., increase or decrease) expression and/or biological activity of a gene product include insertions or deletions in the protein coding region of the gene itself or in sequences responsible for, or involved in, control of gene expression. Deletion mutants include those wherein all or part of a specific gene sequence is deleted. Also contemplated are compositions, and preferably vaccine compositions, comprising mutated and attenuated gram negative bacterial organisms, optionally comprising a suitable adjuvant and/or a pharmaceutically acceptable diluent or carrier. In order for a modified strain to be effective in a vaccine formulation, the attenuation must be significant enough to

prevent the pathogen from evoking severe clinical symptoms, but also insignificant enough to allow limited replication and growth of the bacteria in the host.

The invention also provides polynucleotides encoding gene products that are required for virulence in gram negative bacteria. Polynucleotides of the 5 invention include DNA, such as complementary DNA, genomic DNA including complementary or anti-sense DNA, and wholly or partially synthesized DNA; RNA. including sense and antisense strands; and peptide nucleic acids as described, for example in Corey, TIBTECH 15:224-229 (1997). Virulence gene polynucleotides of the invention include those set forth in SEO ID NOs:1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 10 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or species homologs thereof, polynucleotides encoding a virulence gene product encoded by a polynucleotide of SEQ ID NOs: 1, 3, 15 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or a species homolog thereof, and polynucleotide that hybridize, under moderately to highly stringent conditions, to the noncoding strand (or complement) of any one of the polynucleotides 20 set out in SEO ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 25 174, or species homologs thereof. The invention therefore comprehends gene sequences from Pasteurellaceae set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162,

30

gram negative bacterial organisms, including naturally occurring (*i.e.*, species homologs) and artificially induced variants thereof. The invention also comprehends polynucleotides which encode polypeptides deduced from any one of the polynucleotides set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 164, 166, 168, 170, 172, and 174, and species homologs thereof. Knowledge of the sequence of a polynucleotide of the invention makes readily available every possible fragment of that polynucleotide. The invention therefore provides fragments of a polynucleotide of the invention.

The invention further embraces expression constructs comprising polynucleotides of the invention. Host cells transformed, transfected or electroporated with a polynucleotide of the invention are also contemplated. The invention provides methods to produce a polypeptide encoded by a polynucleotide of the invention comprising the steps of growing a host cell of the invention under conditions that permit, and preferably promote, expression of a gene product encoded by the polynucleotide, and isolating the gene product from the host cell or the medium of its growth.

Identification of polynucleotides of the invention makes available the encoded polypeptides. Polypeptides of the invention include full length and fragment, or truncated, proteins; variants thereof; fusion, or chimeric proteins; and analogs, including those wherein conservative amino acid substitutions have been introduced into wild-type polypeptides. Antibodies that specifically recognize polypeptides of the invention are also provided, and include monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, humanized antibodies, human antibodies, and complementary determining region (CDR)-grafted antibodies, as well as compounds that include CDR sequences which specifically recognize a polypeptide of the invention. The invention also provides anti-idiotype antibodies immunospecific for antibodies of the invention.

5

10

15

20

25

30

According to another aspect of the invention, methods are provided for identifying novel anti-bacterial agents that modulate the function of gram negative bacteria virulence genes or gene products. Methods of the invention include screening potential agents for the ability to interfere with expression of virulence gene products encoded by the DNA sequences set forth in any one of SEO ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or species homologs . thereof, or screening potential agents for the ability to interfere with biological function of a bacterial gene product encoded in whole or in part by a DNA sequence set forth in any one of SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, species homologs thereof, or the complementary strand thereof. followed by identifying agents that provide positive results in such screening assays. In particular, agents that interfere with the expression of virulence gene products include anti-sense polynucleotides and ribozymes that are complementary to the virulence gene sequences. The invention further embraces methods to modulate transcription of gene products of the invention through use of oligonucleotide-directed triplet helix formation.

Agents that interfere with the function of virulence gene products include variants of virulence gene products, binding partners of the virulence gene products and variants of such binding partners, and enzyme inhibitors (where the product is an enzyme).

Novel anti-bacterial agents identified by the methods described herein are provided, as well as methods for treating a subject suffering from infection with gram negative bacteria involving administration of such novel anti-bacterial agents in an amount effective to reduce bacterial presence.

Numerous additional aspects and advantages of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of the invention which describes presently prepared embodiments thereof.

5

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

"Virulence genes," as used herein, are genes whose function or products are required for successful establishment and/or maintenance of bacterial infection in a host animal. Thus, virulence genes and/or the proteins encoded thereby are involved in pathogenesis in the host organism, but may not be necessary for growth.

"Signature-tagged mutagenesis (STM)," as used herein, is a method generally described in International Patent Publication No. WO 96/17951, incorporated herein by reference, and includes, for example, a method for identifying bacterial genes required for virulence in a murine model of bacteremia. In this method, bacterial strains that each have a random mutation in the genome are produced using transposon integration; each insertional mutation carries a different DNA signature tag which allows mutants to be differentiated from each other. The tags comprise 40 bp variable central regions flanked by invariant "arms" of 20 bp which allow the central portions to be co-amplified by polymerase chain reaction (PCR). Tagged mutant strains are assembled in microtiter dishes, then combined to form the "inoculum pool" for infection studies. At an appropriate time after inoculation, bacteria are isolated from the animal and pooled to form the "recovered pool." The tags in the recovered pool and the tags in the inoculum pool are separately amplified, labeled, and then used to probe filters arrayed with all of the different tags representing the mutants in the inoculum. Mutant strains with attenuated virulence are those which cannot be recovered from the infected animal, i.e., strains with tags that give hybridization signals when probed with tags from the inoculum pool but not when probed with tags from the recovered pool. In a variation of this method, nonradioactive detection methods such as chemiluminescence can be used

Signature-tagged mutagenesis allows a large number of insertional mutant strains to be screened simultaneously in a single animal for loss of virulence. Screening nineteen pools of mutant P. multocida strains resulted in the identification of more than 60 strains with reduced virulence, many of which were confirmed to be attenuated in virulence by subsequent determination of an approximate LD₅₀ for the individual mutants. Screening of A. pleuropneumoniae mutants resulted in identification of more than 100 strains having mutations in 35 different genes. Of these, mutations in 22 genes results in significantly attenuated A. pleuropneumoniae strains. The nucleotide sequence of the open reading frame disrupted by the transposon insertion was determined by sequencing both strands and an encoded amino acid sequence was deduced. Novelty of both the polynucleotide and amino acid sequences was determined by comparison of the sequences with DNA and protein database sequences. Knowledge of the virulence genes in these species permitted identification of species homologs in P. (Mannheimia) haemolytica.

The identification of bacterial, and more particularly *P. multocida A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* virulence genes provides for microorganisms exhibiting reduced virulence (*i.e.*, attenuated strains), which are useful in vaccines. Such microorganisms include *Pasteurellaceae* mutants containing at least one functional mutation inactivating a gene represented by any one of SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174. The worker of ordinary skill in the art will easilize that a "functional mutation" may occur in protein coding regions of a gene of the invention, as well as in regulatory regions that modulate transcription of the virulence gene RNA.

The worker of ordinary skill will also appreciate that attenuated P. multocida, A. pleuropneumoniae and P. (Mannheimia) haemolytica strains of the invention include those bearing more than one functional mutation. More than one mutation may result in additive or synergistic degrees of attenuation. Multiple

mutations can be prepared by design or may fortuitously arise from a deletion event originally intended to introduce a single mutation. An example of an attenuated strain with multiple deletions is a Salmonella typhimurium strain wherein the cya and crp genes are functionally deleted. This mutant S. typhimurium strain has shown promise as a live vaccine.

5

10

15

20

25

30

Identification of virulence genes in P. multocida, A. pleuropneumoniae and P. (Mannheimia) haemolytica can provide information regarding similar genes in other pathogenic species. As an example, identification of the aroA gene led to identification of conserved genes in a diverse number of pathogens, including Aeromonas hydrophila, Aeromonas salmonicida, Salmonella typhimurium, Salmonella enteritidis, Salmonella dublin, Salmonella gallanerum, Bordella pertussis, Yersinia entericolitica, Neisseria gonorrhoeae, and Bacillus anthracis. In many of these species, attenuated bacterial strains bearing mutations in the aroA gene have proven to be effective in vaccine formulations. Using the virulence genes sequences identified in P. multocida, similar or homologous genes can be identified in other organisms, particularly within the Pasteurella family, as well as A. pleuropneumoniae, P. (Mannheimia) haemolytica, and Haemophilus somnus. Likewise, identification of A. pleuropneumoniae virulence genes can permit identification of related genes in other organisms. Southern hybridization using the P. multocida, A. pleuropneumoniae and P. (Mannheimia) haemolytica genes as probes can identify these related genes in chromosomal libraries derived from other organisms. Alternatively, PCR can be equally effective in gene identification across species boundaries. As still another alternative, complementation of, for example, a P. inultocida mutant with a chromosomal library from other species can also be used to identify genes having the same or related virulence activity. Identification of related virulence genes can therefore lead to production of an attenuated strain of the other organism which can be useful as still another vaccine formulation. Examples of P. multocida genes that have been demonstrated to exist in other species (e.g. P. (Mannheimia) haemolytica. A. pleuropneumoniae and H. sonnus) include genes exbB, ainG, pnp. guaB and vigF.

Attenuated *P. multocida* strains identified using STM are insertional mutants wherein a virulence gene has been rendered non-functional through insertion of transposon sequences in either the open reading frame or regulatory DNA sequences. These insertional mutants still contain all of the genetic information required for bacterial virulence and can possibly revert to a pathogenic state by deletion of the inserted transposon. Therefore, in preparing a vaccine formulation, it is desirable to take the information gleaned from the attenuated strain and create a deletion mutant strain wherein some, most, or all of the virulence gene sequence is removed, thereby precluding the possibility that the bacteria will revert to a virulent state.

The vaccine properties of an attenuated insertional mutant identified using STM are expected to be the same or similar to those of a bacteria bearing a deletion in the same gene. However, it is possible that an insertion mutation may exert "polar" effects on adjoining gene sequences, and as a result, the insertion mutant may possess characteristic distinct from a mutant strain with a deletion in the same gene sequence. Deletion mutants can be constructed using any of a number of techniques well known and routinely practiced in the art.

In one example, a strategy using counterselectable markers can be employed which has commonly been utilized to delete genes in many bacteria. For a review, see, for example, Reyrat, et al., Infection and Immunity 66:4011-4017 (1998), incorporated herein by reference. In this technique, a double selection strategy is often employed wherein a plasmid is constructed encoding both a selectable and counterselectable marker, with flanking DNA sequences derived from both sides of the desired deletion. The selectable marker is used to select for bacteria in which the plasmid has integrated into the genome in the appropriate location and manner. The counterselecteable marker is used to select for the very small percentage of bacteria that have spontaneously eliminated the integrated plasmid. A fraction of these bacteria will then contain only the desired deletion with no other foreign DNA present. The key to the use of this technique is the availability of a suitable counterselectable marker.

In another technique, the cre-lox system is used for site specific recombination of DNA. The system consists of 34 base pair lox sequences that are recognized by the bacterial cre recombinase gene. If the lox sites are present in the DNA in an appropriate orientation, DNA flanked by the lox sites will be excised by the cre recombinase, resulting in the deletion of all sequences except for one remaining copy of the lox sequence. Using standard recombination techniques, it is possible to delete the targeted gene of interest in the P. multocida, A. pleuropneumoniae or P. (Mannheimia) haemolytica genome and to replace it with a selectable marker (e.g., a gene coding for kanamycin resistance) that is flanked by the lox sites. Transient expression (by electroporation of a suicide plasmid containing the cre gene under control of a promoter that functions in P. multocida, A. pleuropneumoniae, or P. (Mannheimia) haemolytica) of the cre recombinase should result in efficient elimination of the lox flanked marker. This process would result in a mutant containing the desired deletion mutation and one copy of the lox sequences.

In another approach, it is possible to directly replace a desired deleted sequence in the *P. multocida*, *A. pleuropneumoniae* or *P. (Mannheimia) haemolytica* genome with a marker gene, such as green fluorescent protein (GFP), β-galactosidase, or luciferase. In this technique, DNA segments flanking a desired deletion are prepared by PCR and cloned into a suicide (non-replicating) vector for *P. multocida*, *A. pleuropneumoniae*, or *P. (Mannheimia) haemolytica*. An expression cassette, containing a promoter active in *P. multocida*, *A. pleuropneumoniae*, or *P. (Mannheimia) haemolytica* and the appropriate marker gene, is cloned between the flanking sequences. The plasmid is introduced into wild-type *P. multocida*, *A. pleuropneumoniae* or *P. (Mannheimia) haemolytica*. Bacteria that incorporate and express the marker gene (probably at a very low frequency) are isolated and examined for the appropriate recombination event (*i.e.*, replacement of the wild type gene with the marker gene).

The reduced virulence of these organisms and their immunogenicity
may be confirmed by administration to a subject animal. While it is possible for an
avirulent microorganism of the invention to be administered alone, one or more of

such mutant microorganisms are preferably administered in a vaccine composition containing suitable adjuvant(s) and pharmaceutically acceptable diluent(s) or carrier(s). The carrier(s) must be "acceptable" in the sense of being compatible with the avirulent microorganism of the invention and not deleterious to the subject to be immunized. Typically, the carriers will be water or saline which will be sterile and pyrogen free. The subject to be immunized is a subject needing protection from a disease caused by a virulent form of P. multocida, A. pleuropneumoniae, P. (Mannheimia) haemolytica or other pathogenic microorganisms.

5

10

15

20

25

30

It will be appreciated that the vaccine of the invention may be useful in the fields of human medicine and veterinary medicine. Thus, the subject to be immunized may be a human or other animal, for example, farm animals including cows, sheep, pigs, horses, goats and poultry (e.g., chickens, turkeys, ducks and geese) companion animals such as dogs and cats; exotic and/or zoo animals; and laboratory animals including mice, rats, rabbits, guinea pigs, and hamsters.

The invention also provides polypeptides and corresponding polynucleotides required for P. multocida, A. pleuropneumoniae or P. (Mannheimia) haemolytica virulence. The invention includes both naturally occurring and non-naturally occurring polynucleotides and polypeptide products thereof. Naturally occurring virulence products include distinct gene and polypeptide species as well as corresponding species homologs expressed in organisms other than P. multocida, A. pleuropneumoniae, or P. (Mannheimia) haemolytica strains. Non-naturally occurring virulence products include variants of the naturally occurring products such as analogs and virulence products which include covalent modifications. In a preferred embodiment, the invention provides virulence polynucleotides comprising the sequences set forth in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 and species homologs thereof, and polypeptides having amino acids sequences encoded by the polynucleotides.

5

10

15

20

25

30

The present invention provides novel purified and isolated P. multocida, A. pleuropneumoniae and P. (Mannheimia) haemolytica polynucleotides (e.g., DNA sequences and RNA transcripts, both sense and complementary antisense strands) encoding the bacterial virulence gene products. DNA sequences of the invention include genomic and cDNA sequences as well as wholly or partially chemically synthesized DNA sequences. Genomic DNA of the invention comprises the protein coding region for a polypeptide of the invention and includes variants that may be found in other bacterial strains of the same species. "Synthesized," as used herein and is understood in the art, refers to purely chemical, as opposed to enzymatic. methods for producing polynucleotides. "Wholly" synthesized DNA sequences are therefore produced entirely by chemical means, and "partially" synthesized DNAs embrace those wherein only portions of the resulting DNA were produced by chemical means. Preferred DNA sequences encoding P. multocida virulence gene products are set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, and 120, and species homologs thereof. Preferred A. pleuropneumoniae DNA sequences encoding virulence gene products are set out in SEQ ID NOs: 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, and 164, and species homologs thereof. Preferred P. (Mannheimia) haemolytica virulence gene products are set out in SEO ID NOs: 166, 168, 170, 172 and 174, and species homologs thereof. The worker of skill in the art will readily appreciate that the preferred DNA of the invention comprises a double stranded molecule, for example, molecules having the sequences set forth in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 and species homologs thereof, along with the complementary molecule (the "noncoding strand" or "complement") having a sequence deducible from the sequence of SEO ID NO: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53,

55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, according to Watson-Crick base pairing rules for DNA. Also preferred are polynucleotides encoding the gene products encoded by any one of the polynucleotides set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 and species homologs thereof. The invention further embraces species, preferably bacterial, homologs of the *P. multocida*, *A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* DNA.

The polynucleotide sequence information provided by the invention makes possible the identification and isolation of polynucleotides encoding related bacterial virulence molecules by well known techniques including Southern and/or Northern hybridization, and polymerase chain reaction (PCR). Examples of related polynucleotides include polynucleotides encoding polypeptides homologous to a virulence gene product encoded by any one of the polynucleotides set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, and species homologs thereof, and structurally related polypeptides sharing one or more biological and/or physical properties of a virulence gene product of the invention.

The invention also embraces DNA sequences encoding bacterial gene products which hybridize under moderately to highly stringent conditions to the non-coding strand, or complement, of any one of the polynucleotides set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, and 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146,

148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172 and 174, and species homologs thereof. DNA sequences encoding virulence polypeptides which would hybridize thereto but for the degeneracy of the genetic code are contemplated by the invention. Exemplary high stringency conditions include a final wash in buffer comprising 0.2X SSC/0.1% SDS, at 65°C to 75°C, while exemplary moderate stringency conditions include a final wash in buffer comprising 2X SSC/0.1% SDS, at 35°C to 45°C. It is understood in the art that conditions of equivalent stringency can be achieved through variation of temperature and buffer, or salt concentration as described in Ausubel, et al. (Eds.), Protocols in Molecular Biology, John Wiley & Sons (1994), pp. 6.0.3 to 6.4.10. Modifications in hybridization conditions can be empirically determined or precisely calculated based on the length and the percentage of guanosine/cytosine (GC) base pairing of the probe. The hybridization conditions can be calculated as described in Sambrook, et al., (Eds.), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York (1989), pp. 9.47 to 9.51.

Autonomously replicating recombinant expression constructions such as plasmid and viral DNA vectors incorporating virulence gene sequences are also provided. Expression constructs wherein virulence polypeptide-encoding polynucleotides are operatively linked to an endogenous or exogenous expression control DNA sequence and a transcription terminator are also provided. The virulence genes may be cloned by PCR, using P. multocida genomic DNA as the template. For ease of inserting the gene into expression vectors, PCR primers are chosen so that the PCR-amplified gene has a restriction enzyme site at the 5' end preceding the initiation codon ATG, and a restriction enzyme site at the 3' end after the termination codon TAG, TGA or TAA. If desirable, the codons in the gene are changed, without changing the amino acids, according to E. coli codon preference described by Grosjean and Fiers, Gene, 18:199-209 (1982), and Konigsberg and Godson, Proc. Natl. Acad. Sci. (USA), 80:687-691 (1983). Optimization of codon usage may lead to an increase in the expression of the gene product when produced in E. coli. If the gene product is to be produced extracellularly, either in the periplasm of

5

10

15

20

25

30

E. coli or other bacteria, or into the cell culture medium, the gene is cloned without its initiation codon and placed into an expression vector behind a signal sequence.

According to another aspect of the invention, host cells are provided, including procaryotic and eukaryotic cells, either stably or transiently transformed, transfected, or electroporated with polynucleotide sequences of the invention in a manner which permits expression of virulence polypeptides of the invention. Expression systems of the invention include bacterial, yeast, fungal, viral. invertebrate, and mammalian cells systems. Host cells of the invention are a valuable source of immunogen for development of antibodies specifically immunoreactive with the virulence gene product. Host cells of the invention are conspicuously useful in methods for large scale production of virulence polypeptides wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells or from the medium in which the cells are grown by, for example, immunoaffinity purification or any of the multitude of purification techniques well known and routinely practiced in the art. Any suitable host cell may be used for expression of the gene product, such as E. coli, other bacteria, including P. multocida. Bacillus and S. aureus, yeast, including Pichia pastoris and Saccharomyces cerevisiae, insect cells, or mammalian cells, including CHO cells, utilizing suitable vectors known in the art. Proteins may be produced directly or fused to a peptide or polypeptide, and either intracellularly or extracellularly by secretion into the periplasmic space of a bacterial cell or into the cell culture medium. Secretion of a protein requires a signal peptide (also known as pre-sequence); a number of signal sequences from prokaryotes and eukaryotes are known to function for the secretion of recombinant proteins. During the protein secretion process, the signal peptide is removed by signal peptidase to yield the mature protein.

To simplify the protein purification process, a purification tag may be added either at the 5' or 3' end of the gene coding sequence. Commonly used purification tags include a stretch of six histidine residues (U.S. Patent Nos. 5,284,933 and 5,310,663), a streptavidin-affinity tag described by Schmidt and Skerra, Protein Engineering, 6:109-122 (1993), a FLAG peptide [Hopp et al., Biotechnology, 6:1205-

5

10

15

20

25

30

1210 (1988)], glutathione S-transferase [Smith and Johnson, Gene, 67:31-40 (1988)], and thioredoxin [LaVallie et al., Bio/Technology, 11:187-193 (1993)]. To remove these peptide or polypeptides, a proteolytic cleavage recognition site may be inserted at the fusion junction. Commonly used proteases are factor Xa, thrombin, and enterokinase.

The invention also provides purified and isolated P. multocida, A. pleuropneumoniae and P. (Mannheimia) haemolytica virulence polypeptides encoded by a polynucleotide of the invention. Presently preferred are polypeptides comprising the amino acid sequences encoded by any one of the polynucleotides set out in SEO ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 164, 166, 168, 170, 172 and 174, and species homologs thereof. The invention embraces virulence polypeptides encoded by a DNA selected from the group consisting of: a) the DNA sequence set out in any one of SEO ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 164, 166, 168, 170, 172, and 174 and species homologs thereof; b) DNA molecules encoding P. multocida, A. pleuropneumoniae or P. (Mannheimia) haemolytica. polypeptides encoded by any one of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 164, 166, 168, 170, 172, and 174, and species homologs thereof; and c) a DNA molecule, encoding a virulence gene product, that hybridizes under moderately stringent conditions to the DNA of (a) or (b).

The invention also embraces polypeptides that have at least about 99%, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 65%, at least about 60%, at least about 65%, at least about 60%, at least about 65%, at least about 60%, at least about 65%, at least 65

about 55%, and at least about 50% identity and/or homology to the preferred polypeptides of the invention. Percent amino acid sequence "identity" with respect to the preferred polypeptides of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the virulence gene product sequence after aligning both sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Percent sequence "homology" with respect to the preferred polypeptides of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in one of the virulence polypeptide sequences after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and also considering any conservative substitutions as part of the sequence identity. Conservative substitutions can be defined as set out in Tables A and B.

15

10

5

Table A
Conservative Substitutions I

	SIDE CHAIN	CHARACTERISTIC	AMINO ACID
20	Aliphatic	Non-polar	GAP
			ILV
		Polar - uncharged	CSTM
			ΝQ
		Polar - charged	DE
25		-	ΚR
	Aromatic		HFWY
	Other		NODE

30

Polypeptides of the invention may be isolated from natural bacterial cell sources or may be chemically synthesized, but are preferably produced by recombinant procedures involving host cells of the invention. Virulence gene products of the invention may be full length polypeptides, biologically active fragments, or variants thereof which retain specific biological or immunological activity. Variants may comprise virulence polypeptide analogs wherein one or more

of the specified (i.e., naturally encoded) amino acids is deleted or replaced or wherein one or more non-specified amino acids are added: (1) without loss of one or more of the biological activities or immunological characteristics specific for the virulence gene product; or (2) with specific disablement of a particular biological activity of the virulence gene product. Deletion variants contemplated also include fragments lacking portions of the polypeptide not essential for biological activity, and insertion variants include fusion polypeptides in which the wild-type polypeptide or fragment thereof have been fused to another polypeptide.

5

10

15

Variant virulence polypeptides include those wherein conservative substitutions have been introduced by modification of polynucleotides encoding polypeptides of the invention. Conservative substitutions are recognized in the art to classify amino acids according to their related physical properties and can be defined as set out in Table A (from WO 97/09433, page 10, published March 13, 1997 (PCT/GB96/02197, filed 9/6/96). Alternatively, conservative amino acids can be grouped as defined in Lehninger, [Biochemistry, Second Edition; Worth Publishers, Inc. NY:NY (1975), pp.71-77] as set out in Table B.

Table B
Conservative Substitutions II

SIDE CHAIN CHARACTERISTIC	AMINO ACID
Non-polar (hydrophobic)	
A. Aliphatic:	ALIVP
B. Aromatic:	F W
C. Sulfur-containing:	M
D. Borderline:	G
Uncharged-polar	
A. Hydroxyl:	STY
B. Amides:	NQ
C. Sulfhydryl:	C `
D. Borderline:	G
Positively Charged (Basic):	KRH
Negatively Charged (Acidic):	DE
	CHARACTERISTIC Non-polar (hydrophobic) A. Aliphatic: B. Aromatic: C. Sulfur-containing: D. Borderline: Uncharged-polar A. Hydroxyl: B. Amides: C. Sulfhydryl: D. Borderline: Positively Charged (Basic):

Variant virulence products of the invention include mature virulence gene products, i.e., wherein leader or signal sequences are removed, having additional amino terminal residues. Virulence gene products having an additional methionine residue at position -1 are contemplated, as are virulence products having additional methionine and lysine residues at positions -2 and -1. Variants of these types are particularly useful for recombinant protein production in bacterial cell types. Variants of the invention also include gene products wherein amino terminal sequences derived from other proteins have been introduced, as well as variants comprising amino terminal sequences that are not found in naturally occurring proteins.

The invention also embraces variant polypeptides having additional amino acid residues which result from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as a fusion protein with glutathione-S-transferase (GST) provide the desired polypeptide having an additional glycine residue at position -1 following cleavage of the GST component from the desired polypeptide. Variants which result from expression using other vector systems are also contemplated.

Also comprehended by the present invention are antibodies (e.g., monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, humanized, human, and CDR-grafted antibodies, including compounds which include CDR sequences which specifically recognize a polypeptide of the invention) and other binding proteins specific for virulence gene products or fragments thereof. The term "specific for" indicates that the variable regions of the antibodies of the invention recognize and bind a virulence polypeptide exclusively (i.e., are able to distinguish a single virulence polypeptides from related virulence polypeptides despite sequence identity, homology, or similarity found in the family of polypeptides), but may also interact with other proteins (for example, S. aureus protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and in particular, in the constant region of the molecule. Screening assays to determine binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see

Harlow et al. (Eds), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988), Chapter 6. Antibodies that recognize and bind fragments of the virulence polypeptides of the invention are also contemplated, provided that the antibodies are first and foremost specific for, as defined above, a virulence polypeptide of the invention from which the fragment was derived.

The DNA and amino acid sequence information provided by the present invention also makes possible the systematic analysis of the structure and function of the virulence genes and their encoded gene products. Knowledge of a polynucleotide encoding a virulence gene product of the invention also makes available anti-sense polynucleotides which recognize and hybridize to polynucleotides encoding a virulence polypeptide of the invention. Full length and fragment anti-sense polynucleotides are provided. The worker of ordinary skill will appreciate that fragment anti-sense molecules of the invention include (i) those which specifically recognize and hybridize to a specific RNA (as determined by sequence comparison of DNA encoding a virulence polypeptide of the invention to DNA encoding other known molecules) as well as (ii) those which recognize and hybridize to RNA encoding variants of the family of virulence proteins. Antisense polynucleotides that hybridize to RNA encoding other members of the virulence family of proteins are also identifiable through sequence comparison to identify characteristic, or signature, sequences for the family of molecules.

The invention further contemplates methods to modulate gene expression through use of ribozymes. For a review, see Gibson and Shillitoe, Mol. Biotech. 7:125-137 (1997). Ribozyme technology can be utilized to inhibit translation of mRNA in a sequence specific manner through (i) the hybridization of a complementary RNA to a target mRNA and (ii) cleavage of the hybridized mRNA through nuclease activity inherent to the complementary strand. Ribozymes can be identified by empirical methods but more preferably are specifically designed based on accessible sites on the target mRNA [Bramlage, et al., Trends in Biotech 16:434-438 (1998)]. Delivery of ribozymes to target cells can be accomplished using either

exogenous or endogenous delivery techniques well known and routinely practiced in the art. Exogenous delivery methods can include use of targeting liposomes or direct local injection. Endogenous methods include use of viral vectors and non-viral plasmids.

5

Ribozymes can specifically modulate expression of virulence genes when designed to be complementary to regions unique to a polynucleotide encoding a virulence gene product. "Specifically modulate" therefore is intended to mean that ribozymes of the invention recognizes only a single polynucleotide. Similarly, ribozymes can be designed to modulate expression of all or some of a family of proteins. Ribozymes of this type are designed to recognize polynucleotide sequences conserved in all or some of the polynucleotides which encode the family of proteins.

10

The invention further embraces methods to modulate transcription of a virulence gene of the invention through use of oligonucleotide-directed triplet helix formation. For a review, see Lavrovsky, et al., Biochem. Mol. Med. 62:11-22 (1997). Triplet helix formation is accomplished using sequence specific oligonucleotides which hybridize to double stranded DNA in the major groove as defined in the Watson-Crick model. Hybridization of a sequence specific oligonucleotide can thereafter modulate activity of DNA-binding proteins, including, for example, transcription factors and polymerases. Preferred target sequences for hybridization include transcriptional regulatory regions that modulate virulence gene product expression. Oligonucleotides which are capable of triplet helix formation are also useful for site-specific covalent modification of target DNA sequences.

Oligonucleotides useful for covalent modification are coupled to various DNA damazing agents as described in Lavrovsky, et al. [supra].

20

25

15

The identification of *P. multocida*, *A. pleuropneumoniae* and *P.*(Mannheimia) haemolytica virulence genes renders the genes and gene products useful in methods for identifying anti-bacterial agents. Such methods include assaying potential agents for the ability to interfere with expression of virulence gene products represented by the DNA sequences set forth in any one of SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68,

30

70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 and species homologs thereof (i.e., the genes represented by DNA sequences of SEO ID NOS: 1, 3, 7, 9, 11, 5 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 encode the virulence gene product, or the DNA sequences of SEO ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 are adjacent the gene encoding the virulence gene product, or are involved in regulation of expression of the virulence gene product), or assaying potential agents for the ability to interfere with the function of a bacterial gene product encoded in whole or in part by a DNA sequence set forth in any one of SEO ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, species homologs thereof, or the complementary strand thereof, followed by identifying agents that are positive in such assays. Polynucleotides and polyneptides useful in these assays include not only the genes and encoded polypeptides as disclosed herein, but also variants thereof that have substantially the same activity as the wild-type genes and polypeptides.

10

15

20

25

30

The virulence gene products produced by the methods described above are used in high throughput assays to screen for inhibitory agents. The sources for potential agents to be screened are chemical compound libraries, fermentation media of Streptomycetes, other bacteria and fungi, and cell extracts of plants and other vegetations. For proteins with known enzymatic activity, assays are established based

on the activity, and a large number of potential agents are screened for ability to inhibit the activity. For proteins that interact with another protein or nucleic acid, binding assays are established to measure such interaction directly, and the potential agents are screened for ability to inhibit the binding interaction.

5

10

15

20

25

30

The use of different assays known in the art is contemplated according to this aspect of the invention. When the function of the virulence gene product is known or predicted by sequence similarity to a known gene product, potential inhibitors can be screened in enzymatic or other types of biological and/or biochemical assays keyed to the function and/or properties of the gene product. When the virulence gene product is known or predicted by sequence similarity to a known gene product to interact with another protein or nucleic acid, inhibitors of the interaction can be screened directly in binding assays. The invention contemplates a multitude of assays to screen and identify inhibitors of binding by the virulence gene product. In one example, the virulence gene product is immobilized and interaction with a binding partner is assessed in the presence and absence of a putative inhibitor compound. In another example, interaction between the virulence gene product and its binding partner is assessed in a solution assay, both in the presence and absence of a putative inhibitor compound. In both assays, an inhibitor is identified as a compound that decreases binding between the virulence gene product and its binding partner. Other assays are also contemplated in those instances wherein the virulence gene product binding partner is a protein. For example, variations of the di-hybrid assay are contemplated wherein an inhibitor of protein/protein interactions is identified by detection of a positive signal in a transformed or transfected host cell as described in PCT publication number WO 95/20652, published August 3, 1995.

Candidate inhibitors contemplated by the invention include compounds selected from libraries of potential inhibitors. There are a number of different libraries used for the identification of small molecule modulators, including: (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules. Chemical libraries consist of structural analogs of known compounds or compounds that are

5

10

15

20

25

30

identified as "hits" or "leads" via natural product screening. Natural product libraries are collections of microorganisms, animals, plants, or marine organisms which are used to create mixtures for screening by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, non-ribosomal pentides. and variants (non-naturally occurring) thereof. For a review, see Science 282:63-68 (1998). Combinatorial libraries are composed of large numbers of peptides, oligonucleotides, or organic compounds as a mixture. They are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning, or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to modulate activity.

Still other candidate inhibitors contemplated by the invention can be designed and include soluble forms of binding partners, as well as binding partners as chimeric, or fusion, proteins. Binding partners as used herein broadly encompasses antibodies, antibody fragments, and modified compounds comprising antibody domains that are immunospecific for the expression product of the identified virulence gene.

Other assays may be used when a binding partner (i.e., ligand) for the virulence gene product is not known, including assays that identify binding partners of the target protein through measuring direct binding of test binding partner to the target protein, and assays that identify binding partners of target proteins through affinity ultrafiltration with ion spray mass spectroscopy/HPLC methods or other physical and analytical methods. Alternatively, such binding interactions are evaluated indirectly using the yeast two-hybrid system described in Fields and Song, Nature, 340:245-246 (1989), and Fields and Sternglanz, Trends in Genetics, 10:286-292 (1994), both of

5

10

15

20

25

30

which are incorporated herein by reference. The two-hybrid system is a genetic assay for detecting interactions between two proteins or polypeptides. It can be used to identify proteins that bind to a known protein of interest, or to delineate domains or residues critical for an interaction. Variations on this methodology have been developed to clone genes that encode DNA-binding proteins, to identify peptides that bind to a protein, and to screen for drugs. The two-hybrid system exploits the ability of a pair of interacting proteins to bring a transcription activation domain into close proximity with a DNA-binding domain that binds to an upstream activation sequence (UAS) of a reporter gene, and is generally performed in yeast. The assay requires the construction of two hybrid genes encoding (1) a DNA-binding domain that is fused to a first protein and (2) an activation domain fused to a second protein. The DNAbinding domain targets the first hybrid protein to the UAS of the reporter gene; however, because most proteins lack an activation domain, this DNA-binding hybrid protein does not activate transcription of the reporter gene. The second hybrid protein, which contains the activation domain, cannot by itself activate expression of the reporter gene because it does not bind the UAS. However, when both hybrid proteins are present, the noncovalent interaction of the first and second proteins tethers the activation domain to the UAS, activating transcription of the reporter gene. When the virulence gene product (the first protein, for example) is already known to interact with another protein or nucleic acid, this assay can be used to detect agents that interfere with the binding interaction. Expression of the reporter gene is monitored as different test agents are added to the system; the presence of an inhibitory agent results in lack of a reporter signal.

When the function of the virulence gene product is unknown and no ligands are known to bind the gene product, the yeast two-hybrid assay can also be used to identify proteins that bind to the gene product. In an assay to identify proteins that bind to the first protein (the target protein), a large number of hybrid genes each encoding different second proteins are produced and screened in the assay. Typically, the second protein is encoded by a pool of plasmids in which total cDNA or genomic DNA is ligated to the activation domain. This system is applicable to a wide variety

of proteins, and it is not even necessary to know the identity or function of the second binding protein. The system is highly sensitive and can detect interactions not revealed by other methods; even transient interactions may trigger transcription to produce a stable mRNA that can be repeatedly translated to yield the reporter protein.

5

10

15

Other assays may be used to search for agents that bind to the target protein. One such screening method to identify direct binding of test ligands to a target protein is described in U.S. Patent No. 5,585,277, incorporated herein by reference. This method relies on the principle that proteins generally exist as a mixture of folded and unfolded states, and continually alternate between the two states. When a test ligand binds to the folded form of a target protein (i.e., when the test ligand is a ligand of the target protein), the target protein molecule bound by the ligand remains in its folded state. Thus, the folded target protein is present to a greater extent in the presence of a test ligand which binds the target protein, than in the absence of a ligand. Binding of the ligand to the target protein can be determined by any method which distinguishes between the folded and unfolded states of the target protein. The function of the target protein need not be known in order for this assay to be performed. Virtually any agent can be assessed by this method as a test ligand, including, but not limited to, metals, polypeptides, proteins, lipids, polysaccharides, polynucleotides and small organic molecules.

20

25

Another method for identifying ligands for a target protein is described in Wieboldt et al., Anal. Chem., 69:1683-1691 (1997), incorporated herein by reference. This technique screens combinatorial libraries of 20-30 agents at a time in solution phase for binding to the target protein. Agents that bind to the target protein are separated from other library components by centrifugal ultrafiltration. The specifically selected molecules that are retained on the filter are subsequently liberated from the target protein and analyzed by HPLC and pneumatically assisted electrospray (ion spray) ionization mass spectroscopy. This procedure selects library components with the greatest affinity for the target protein, and is particularly useful for small molecule libraries.

The inhibitors/binders identified by the initial screens are evaluated for their effect on virulence in in vivo mouse models of P. multocida infections. Models of bacteremia, endocarditis, septic arthritis, soft tissue abscess, or pneumonia may be utilized. Models involving use of other animals are also comprehended by the invention. For example, rabbits can be challenged with a wild type P. multocida strain before or after administration of varying amounts of a putative inhibitor/binder compound. Control animals, administered only saline instead of putative inhibitor/binder compound provide a standard by which deterioration of the test animal can be determined. Other animal models include those described in the Animal and Plant Health Inspection Sevice, USDA, January 1, 1994 Edition, §§113.69-113.70; Panciera and Corstvet, Am. J. Vet. Res. 45:2532-2537; Ames, et al., Can. J. Comp. Med. 49:395-400 (1984); and Mukkur, Infection and Immunity 18:583-585 (1977). Inhibitors/binders that interfere with bacterial virulence are can prevent the establishment of an infection or reverse the outcome of an infection once it is established.

Any adjuvant known in the art may be used in the vaccine composition, including oil-based adjuvants such as Freund's Complete Adjuvant and Freund's Incomplete Adjuvant, mycolate-based adjuvants (e.g., trehalose dimycolate), bacterial lipopolysaccharide (LPS), peptidoglycans (i.e., mureins, mucopeptides, or glycoproteins such as N-Opaca, muramyl dipeptide [MDP], or MDP analogs), proteoglycans (e.g., extracted from Klebsiella pneumoniae), streptococcal preparations (e.g., OK432), BiostimTM (e.g., OIK2), the "Iscoms" of EP 109 942, EP 180 564 and EP 231 039, aluminum hydroxide, saponin, DEAE-dextran, neutral oils (such as miglyol), vegetable oils (such as arachis oil), liposomes, Pluronic® polyols, the Ribi adjuvant system (see, for example GB-A-2 189 141), or interleukins, particularly those that stimulate cell mediated immunity. An alternative adjuvant consisting of extracts of Amycolata, a bacterial genus in the order Actinomycetales, has been described in U.S. Patent No. 4,877,612. Additionally, proprietary adjuvant mixtures are commercially available. The adjuvant used will depend, in part, on the

recipient organism. The amount of adjuvant to administer will depend on the type and size of animal. Optimal dosages may be readily determined by routine methods.

The vaccine compositions optionally may include vaccine-compatible pharmaceutically acceptable (i.e., sterile and non-toxic) liquid, semisolid, or solid diluents that serve as pharmaceutical vehicles, excipients, or media. Any diluent known in the art may be used. Exemplary diluents include, but are not limited to, polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and propylhydroxybenzoate, talc, alginates, starches, lactose, sucrose, dextrose, sorbitol, mannitol, gum acacia, calcium phosphate, mineral oil, cocoa butter, and oil of theobroma.

5

10

15

20

25

30

The vaccine compositions can be packaged in forms convenient for delivery. The compositions can be enclosed within a capsule, caplet, sachet, cachet, gelatin, paper, or other container. These delivery forms are preferred when compatible with entry of the immunogenic composition into the recipient organism and, particularly, when the immunogenic composition is being delivered in unit dose form. The dosage units can be packaged, e.g., in tablets, capsules, suppositories or cachets.

The vaccine compositions may be introduced into the subject to be immunized by any conventional method including, e.g., by intravenous, intradermal, intramuscular, intramammary, intraperitoneal, or subcutaneous injection; by oral, sublingual, nasal, anal, or vaginal, delivery. The treatment may consist of a single dose or a plurality of doses over a period of time.

The invention also comprehends use of an attenuated bacterial strain of the invention for manufacture of a vaccine medicament to prevent or alleviate bacterial infection and/or symptoms associated therewith. The invention also provides use of inhibitors of the invention for manufacture of a medicament to prevent or alleviate bacterial infection and/or symptoms associated therewith.

The present invention is illustrated by the following examples.

Example 1 describes constructions of *P. multocida* mutants. Example 2 relates to screening for *P. multocida* mutants. Example 3 addresses methods to determine

virulence of the *P. multocida* mutants. Example 4 describes cloning of *P. multocida* virulence genes. Example 5 addresses identification of genes in other species related to *P. multocida* virulence genes. Example 6 describes construction of *A. pleuropneumoniae* mutants. Example 7 addresses screening for attenuated *A. pleuropneumoniae* mutants. Example 8 relates to identification of *A. pleuropneumoniae* virulence genes. Example 9 describes competition challenge of *A. pleuropneumoniae* mutants and wild type bacteria. Example 10 characterizes *A. pleuropneumoniae* genes identified. Example 11 addresses efficacy of *A. pleuropneumoniae* mutant to protect against wild type bacterial challenge. Example 12 describes identification of species homolog virulence genes in *P. (Mannheimia) haemolytica*.

5

10

15

20

25

30

Example 1 Construction of a Library of Tagged-Transposon P. multocida Mutants

A library of tagged-transposon mutants was constructed in parental vector pLOF/Km [Herrero, et al., J Bacteriol. 172:6557-67 (1990)] which has previously been demonstrated to be functional and random in P. multocida [Lee, et al., Vet Microbiol. 50:143-8 (1996)]. Plasmid pLOF/Km was constructed as a modification of suicide vector pGP704 and included a transposase gene under control of the Tac promoter as well as the mini-Tn10 transposable element encoding kanamycin resistance. Plasmid pTEF-1 was constructed as described below by modifying pLOF/Km to accept sequence tags which contained a semi-random [NK]₃₅ sequence.

Plasmid pLOF/Km was first modified to eliminate the unique KpnI restriction site in the multiple cloning region and then to introduce a new KpnI site in the mini-Tn10 region. The plasmid was digested with KpnI and the resulting overhanging ends were filled in with Klenow polymerase according to manufacturer's suggested protocol. Restriction digests and ligations described herein were performed according to manufacturer's suggested protocols (Gibco BRL, Gaithersburg, MD and Boehringer Mannheim, Indianapolis, IN). The blunt end product was self-ligated to

produce a plasmid designated pLOF/Km-KpnI which was transformed into E.coli DH5α: Apir for amplification. E.coli DH5α: (Apir φ80dlacZΔM15, recA1, endA1, gyrA96, thi-1, hsdR17(r_x, m_e, supE44, relA1, deoR, Δ(lacZYA-argF)U169, was propagated at 37°C in Luria-Bertani (LB) medium. Plasmids were prepared using QlAGEN SpinPreps from QlAGEN Inc. (Santa Clarita, CA) and digested with S/iI which cuts at a unique site within the mini-Tn10 transposable element. A S/iI-Kpn1-S/iI adaptor was prepared by annealing oligonucleotides TEF1 (SEQ ID NO: 86) and TEF3 (SEQ ID NO: 87) and the resulting double-stranded adapter was ligated into the S/iI site to create plasmid pTEF-1. Oligonucleotides TEF1 and TEF3 (as well as all other oligonucleotides described herein) were synthesized by Genosys Biotechnologies (The Woodlands, TX).

5

10

15

20

TEF3

TEF14

TEF1	5'-AGGCCGGTACCGGCCGCCT	SEQ ID NO: 86	

SEQ ID NO: 87

SEQ ID NO: 88

Unique sequence tags for insertion into the KpnI site of pTEF-1 were prepared as follows. PCR was carried out to generate double stranded DNA tags using a GeneAmp XL PCR Kit (PE Applied Biosystems, Foster City, CA) under conditions including 250 µM each dNTP, 1.5 mM Mg(OAc)₂, 100 pmol each primer TEF14 (SEQ ID NO: 88) and TEF15 (SEQ ID NO: 89), 1 ng TEF26 (SEQ ID NO: 90) as template DNA and 2.5 units recombinant Tth DNA Polymerase XL.

5'-CATGGTACCCATTCTAAC

5'-CGGCCGGTACCGGCCTAGG

25						
	TEF15	5'-CTAGGTACCTACAACCTC	SEQ ID NO: 89			
	TEF26		SEQ ID NO: 90			
	5'-CTAGGTACCTACAACCTCAAGCTT-[NK]35-					
30	AAGCTTGGTTAGAATGGGTACCATG					

Reaction conditions included an initial incubation at 95°C for one minute, followed by thirty cycles of 30 seconds at 95°C, 45 seconds at 45°C, and 15 seconds at 72°C, followed by a final incubation at 72°C for two minutes. The PCR products were digested with *Kpnl* and purified using a QIAGEN Nucleotide Removal Kit (QIAGEN, Inc., Chatsworth, GA) according to the manufacturer's suggested protocol. The unique tag sequences were ligated into the mini-Tn10 element of linearized pTEF-1, previously digested with *Kpnl* and dephosphorylated with calf intestinal alkaline phosphatase (Boehringer Mannheim) using standard procedures. The resulting plasmid library was transformed into *E.coli* DH5α:λpir. Colony blot analysis was performed according to the DIG User's Guide (Boehringer-Mannheim) with hybridization and detection performed as follows.

Hybridizations were essentially performed according to the Genius Non-Radioactive User's Guide (Boehringer Mannheim Biochemicals), the product sheet for the DIG-PCR labeling kit (Boehringer Mannheim Biochemicals), and the product sheet for CSPD (Boehringer Mannheim Biochemicals). For preparation of probes, a 100 µl primary PCR reaction was set up using Amplitaq PCR buffer (PE Applied Biosystems), 200 µM dNTPs, 140 pmol each of primers TEF5 (SEQ ID NO: 91) and TEF6 (SEQ ID NO: 92), 2 mM MgCl₂, 2.5 units Amplitaq (PE Applied Biosystems) and 1 ne of plasmid DNA.

20

25

30

5

10

15

TEF5 5'-TACCTACAACCTCAAGCT SEQ ID NO: 91

TEF6 5'-TACCCATTCTAACCAAGC SEQ ID NO: 92

Cycle conditions included an initial incubation at 95°C for two minutes, followed by 35 cycles of 95°C for 30 seconds, 50°C for 45 seconds, 72°C for 15 seconds and a final incubation at 72°C for three minutes. The amplification products were separated using electrophoresis on a 2% - 3:1 NuSieve GTG (FMC BioProducts, Rockland, ME, USA):Agarose gel and the 109 bp product was excised and purified. Gel extractions were carried out using a OIAGEN Gel Extraction kit (QIAGEN).

5

10

15

20

25

Approximately 15 ng of the primary product was labeled in a $50 \mu l$ PCR reaction using the DIG PCR Kit, 50 pmol each of primers TEF24 and TEF25, and a 1:1 mix of DIG Probe Synthesis Mix with 2 mM dNTP stock solution.

TEF24 5'-TACCTACAACCTCAAGCTT SEO ID NO: 93

TEF25 5'-TACCCATTCTAACCAAGCTT SEQ ID NO: 94

PCR conditions included an initial incubation at 95°C for four minutes, followed by 25 cycles of 95°C for 30 seconds, 50°C for 45 seconds, 72°C for 15 seconds and a final incubation at 72°C for three minutes. The labeled PCR product was digested with HindIII in a total reaction volume of 90 μ1 and purified from the constant primer arms using a 2% - 3:1 NuSieve GTG (FMC BioProducts): Agarose gel. The region containing the labeled variable tag was excised and the entire gel slice was dissolved and denatured in 10 ml of DIG EasvHvb at 95°C for ten minutes.

Dot blots were prepared using a Hybond [®]-N* membrane (Amersham-Pharmacia Biotech). Target DNA for each tag was prepared in 96 well plates using approximately 30 ng of PCR product. An equal volume of 0.1 N NaOH was added to denature the sample and each sample was applied to the membrane with minimal vacuum using a Minifold I™ Dot-Blot Apparatus from Schleicher and Schuell (Keene, NH, USA). Each well was washed with 150 µl of Neutralization Solution (0.5 M Tris /3 M NaCl, pH 7.5) and 150 µl of 2X SSC. Membranes were UV-crosslinked in a Stratalinker (Stratagene, La Jolla, CA, USA) and prehybridized for one hour in 20 mls DIG EasyHyb Buffer at 42°C. The denatured probe was added and hybridization carried out overnight at 42°C. The membrane was washed two times in 2X SSC containing 0.1% SDS for five minutes each wash. Two high stringency washes were performed in 50 ml of pre-warmed 0.1X SSC buffer containing 0.1% SDS at 68°C for 15 minutes before proceeding with standard Genius Detection protocols (Genius Manual).

5

10

15

20

25

30

It is desirable to use a non-radioactive detection system for safety, lower cost, ease of use, and reduction of hazardous materials. In initial experiments using similar procedures previously described [Mei, et al., Mol Microbiol. 26:399-407 (1997)], unacceptable background levels of hybridization were obtained in negative controls. In order to decrease background, tag length was increased by 30 bp to a total of 70, amplification primers were lengthened to include all sequence flanking the variable region, a lower concentration of dig-dUTP was used, and the conserved sequences flanking the sequence tag region were removed by gel purification. Most significantly, PCR was used to generate [NK]₃₃, sequence tags as the target DNA in dot blots rather than the entire plasmids containing the tagged transposons after detecting background hybridization from the transposon itself. Using these modifications background was eliminated making chemiluminescent/non-radioactive screening more effective.

Approximately four hundred different transformants resulting from the ligation of pTEF-1 with the PCR generated sequence tags were screened by colony blot and the 96 strongest hybridizing colonies were assembled into microtiter plates for further use. Even though the likelihood of duplicated tags was very low, half of the plate of master tags was probed against the other to confirm that no tags were duplicated. The plasmids containing these tags were purified and transformed into E.coli S17-1:λpir (pir, recA, thi, pro, hsd, (r-m+), RP4-2, (Tc::Mu), (Km::Tn7), [TmpR], [SmR]), and the transformed bacteria propagated at 37°C in Luria-Bertani (LB) medium. Each of the 96 E.coli S17-1:λpir transformants containing the tagged plasmid pTEF-1 was used in conjugative matings to generate transposon mutants of P. multocida. P. multocida strain TF5 is a spontaneous nalidixic acid resistant mutant derived from UC6731, a bovine clinical isolate. P. multocida strains were grown on brain heart infusion (BHI) media (Difco Laboratories, Detroit, MI, USA) at 37°C and in 5% CO₂ when grown on plates. Matings were set up by growing each E.coli S17-1:λpir /pTEF1:[NK]₂₆ clone and the TF5 strain to late log phase. Fifty ul of culture for each tagged-pTEF-1 clone was mixed with 200 µl of the TF5 culture and 50 µl of each mating mixture was spotted onto 0.22 TM filters previously placed on BHI plates

5

10

15

20

25

30

containing 100 mM IPTG and 10 mM MgSO₄. Following overnight incubation at 37°C with 5% CO₂, mating mixtures were washed off of each filter into 3 ml of PBS and 25 µl of each was plated onto BHIN⁵⁰K¹⁰⁰ plates. Following selective overnight growth, colonies were assembled into microtiter plates by toothpick transfer into 200 µl BHIN⁵⁰K¹⁰ making sure that each well in a microtiter plate always contained a transposon mutant with the same sequence tag. Following overnight growth, 50 µl of 75% glycerol was added to each well and plates were stored frozen at -80°C.

Nineteen pools were assembled by transferring the transposon mutants to microtiter plates making sure that each well contained a transposon mutant with the appropriate tag for that well. In other words, a specific well in each microtiter plate always contained a transposon mutant with the same sequence tag even though the location of the transposon within those mutants may be different.

Example 2 Murine Screening for Attenuated P. multocida Mutants

Nineteen pools of Pasteurella multocida transposon mutants were

screened using a murine model of septicemia. Frozen plates of pooled *P. multocida* transposon mutants were removed from -80°C storage and subcultured by transferring 10 µl from each well to a new 96 well round bottom plate (Corning Costar, Cambridge, MA, USA) containing 200 µl of brain heart infusion (DIFCO) with 50 µg/ml halidixic acid (Sigma) and 50 µg/ml kanamycin (Sigma) (BHIN⁵⁰K*⁵⁰). Plates were incubated without shaking overnight at 37°C in 5% CO₂. Overnight plates were subcultured by transferring 10 µl from each well to a new flat bottomed 96-well plate (Corning Costar) containing 100 µl of BHI per well and incubating at 37°C with shaking at approximately 150 rpm. The OD₅₄₀ was monitored using a micro-titer plate reader. At an OD₅₄₀ of approximately 0.2 to 0.25, each plate was pooled to form the "input pool" by combining 100 µl from each of the wells of the micro-titer plate. The culture was diluted appropriately in BHI to doses of approximately 10⁴, 10⁵, 10⁶ CFU/ml and 0.2 ml of each dilution was used to infect female 14-16 g BALB/c mice by intraperitoneal administration. At two days post-infection, one or two surviving mice were euthanized and the spleens harvested. The entire spleen was homogenized

in 1.0 ml sterile 0.9 % saline. Dilutions of the homogenate from 10⁻² to 10⁻³ were prepared and plated onto BHIN⁵⁰K. plates. Following overnight growth, at least 20,000 colonies were pooled in 10 mls BHI broth to form the "recovered pool" and 0.5 ml of the recovered pool was centrifuged at 3,500 X g and the pellet used to prepare genomic DNA according to a previously described protocol [Wilson, In F. M. Ausubel, et al., (ed.), Current Protocols in Molecular Biology, vol. 1. John Wiley and Sons, New York, p. 2.4.1-2.4.5. (1997)].

5

10

15

20

25

30

Initial experiments with virulent wild-type P. multocida indicated that organisms could be recovered from the spleen, lungs, kidneys, and liver indicating a truly septicemic model of infection. Dot blots for both the "input" and "recovered" pools were performed as described in Example 1 and evaluated both by visual inspection and by semi-quantitative analysis. Hybridization was carried out as described in Example 1 except that 5 µg of genomic DNA from input and recovered pools was used as template. Semi-quantitative analysis indicates whether a significant reduction in a single clone has occurred. If a mutant is unable to survive within the host, then the recovered signal should be very low compared to the input signal yielding a high input/recovered ratio. Most mutants will grow as well in vivo as in vitro and therefore a ratio of their signals should be approximately equal to 1. Clones selected by quantitative analysis as being highly reduced in the recovered pool were selected for further study. Additional clones with questionable input/recovered ratios were also selected after visually evaluating films made from the dot blots.

Example 3 Determination of Virulence for P. multocida Candidate Mutants

Each potential mutant which exhibited reduced recovery from splenic tissue was isolated from the original pool plate and used individually in a challenge experiment to verify and roughly estimate the attenuation caused by the transposon mutation. Individual candidate mutants from in vivo screens were grown on Sheep Blood Agar plates overnight in 5% CO₂ at 37°C. Approximately six colonies of each mutant were inoculated into BHI broth and allowed to grow for six hours. Dilutions were prepared and five mice each were infected as described above with 10°, 10°, 10°

and 10³ CFU each. Attenuation was determined by comparing mortality after six days relative to the wild type. Surviving mice were presumed to be protected and then challenged with a dose of wild type *P. multocida* at a concentration approximately 200-fold greater than the LD₂₀ for the wild type strain. Survival rate was then determined for each challenged group of mice.

Results indicated that 62 of 120 potential transposon mutants were attenuated, having an approximate LD_{50} of at least 10 fold higher than the wild type strain. The clones and their approximate LD_{50} values are listed in Table 1. A control experiment with the wild type strain was run in parallel with each set of challenges and in all cases mortality in wild type-challenged groups was 100%.

In addition to LD₃₀ values, Table 1 also provides data from vaccination and challenge experiments. Briefly, groups of mice (n = 5 to 10) were vaccinated by intraperitoneal injection with the individual P. multocida strains shown in Table 1 at a dose that was approximately 200 times greater than the LD₃₀ of the virulent, wild type strain. Animals were observed for 28 days after which mortality figures were calculated.

Table 1

P. multocida Virulence Genes

Nucleotide SEQ ID NO:	Representative Isolate	PossibleGene Function	Vaccination # survivers/total	Challenge # survivors/total	LD ₅₀
	wild type		0/10		<10
23	PM1B1	guaB	10/10, 10/10, 10/10	9/10, 9/10	4.3 x 10
11	PM1D1	dsbB	10/10, 5/10	10/10, 5/5	8.4 x 10
3	PM1BD7	atpG	5/5, 10/10	10/10	>3 x 10
74	PM1BE11	yhcJ (HI0145)	10/10	5/10	>2 x 10
70	PM1BF6	yabK (H11020)	3/5, 8/10	9/9	>2 x 10
19	PM2G8	fhaC	4/5, 9/10	9/9	>4 x 105
76	PM3C9	yiaO (HI0146)	3/5		>6 x 105
118	PM3G11	UnkO	4/5, 10/10	10/10	>3 x 105
31	PM7B4	iroA (UnkB)	0/5		
17	PM4C6	fhaB (fhaB2)	2/5, 10/10, 9/10	10/10, 9/9	>3 x 106
9	PM4G10-T9	dnaA	4/5		>5 x 105
1	PM4D5-T5	atpB	5/5		>4 x 105
53	PM4D5-T1	UnkC2	5/5		>4 x 105
15	PM4F2	fhaB (fhaB1)	3/5, 6/10, 10/10	6/6, 10/10	>3 x 105
41	PM5F7	nweB	4/5		1 x 103
7	PM5E2	devB	0/5, 3/10	2/3	ND
68	PM6H5-T1	xylA	5/5		>3 x 105
78	PM6H8	yigF (HI0719)	5/5, 9/10	9/9	>3 x 105
108	PM7D12	pnp	5/5, 9/10	9/9	
51	PM8C1R1-T2	UnkC1	5/5		~6 x 105

Nucleotide	Representative	PossibleGene	Vaccination	Challenge	LD ₅₆
SEQ ID NO:	Isolate	Function	# survivors/total	# survivors/total	
37	PM8C1-T3	mgIB	5/5	-	-6 x 1
58	PM8C1R1-T6	UnkD1	5/5		~6 x 1
45	PM10H7	purF (H11207)	3/5, 8/10, 8/10	8/8, 8/8	>3 x 1i
25	PM10H10-T2	H11501	5/5		>1 x 1
72	PM11G8-T2	ygiK	5/5		>2.4 x *
21	PM11G8-T4	greA	5/5		>2.4 x
84	PM12H6	yyam (HI0687)	3/5, 0/10		-2.2 x 1
33	PM15G8-T2	kdtB	5/5		>1.2 x 1
116	PM15G8-T1	UnkK	5/5		>1.2 x 1
104	PM16G11-T1	hmbR	3/5		>1.9 x 1
29	PM16G11-T2	hxuC	3/5		>1.9 x 1
35	PM16H8	1gtC	5/5, 10/10	10/10	>2.4 x 1
80	PM16H3	ylcA (H10019)	5/5, 10/10		> 2.0 x 1
49	PM17H6-T1	sopE	4/5		-6 x 10
120	PM17H6	UnkP	4/5		~6 x 10
5	PM18F5-T8	cap5E	5/5		>2.4 x 1
82	PM18F5-T10	yojB (HI0345)	5/5		>2.4 x 1
13	PM19A1	exbB	5/5, 10/10	10/10	>1.2 x 1
112	PM19D4	rci	5/5, 8/10	8/8	~1.6 x 1
39	PM20A12	mioC (HI0669)	3/5, 8/10	8/8	-2 x 10
60	PM20C2 ·	UnkD2	5/5, 10/10	10/10	>8.2 x 1

Example 4
Cloning and Identification of Genes Required for *P. multocida* Virulence

Each transposon mutant which was verified to be attenuated was analyzed further to determine the identity of the disrupted open reading frame. DNA from each mutant was amplified, purified, and digested with restriction enzymes that were known not to cut within the transposon and generally produced 4-8 kb fragments that hybridized with the transposon. Using selection for kanamycin resistance encoded by the transposon, at least one fragment for each transposon mutant was cloned.

Southern hybridization with multiple restriction enzymes was performed for each attenuated mutant using a labeled 1.8 kb MluI fragment from pLOF/Km as a probe to identify a suitably sized fragment for cloning. The mini-Tn10 element and flanking DNA from each mutant was cloned into pUC19 and the flanking sequence determined using internal primers TEF32 and TEF40, primer walking and in some cases universal pUC-19 primers.

TEF-32 GGCAGAGCATTACGCTGAC SEQ ID NO: 95
TEF-40 GTACCGGCCAGGCGGCCACGCGTATTC SEO ID NO: 96

Sequencing reactions were performed using the BigDye™ Dye Terminator Chemistry kit from PE Applied Biosystems (Foster City, CA) and run on an ABI Prism 377 DNA Sequencer. Double stranded sequence for putative interrupted open reading frames was obtained for each clone. Sequencer 3.0 software (Genecodes, Corp., Ann Arbor, MI) was used to assemble and analyze sequence data. GCG programs [Devereux, et al., 1997. Wisconsin Package Version 9.0, 9.0 ed. Genetics Computer Group, Inc., Madison] were used to search for homologous sequences in currently available databases.

In 37% of the clones that were identified as being attenuated, there were multiple insertions of the mini-Tn10 transposable element. Each insertion including its flanking sequence was cloned individually into pGP704 and mated into the wild-type strain to produce new mutants of *P. multocida*, each carrying only one of the multiple original insertions. Individual mutants were retested individually to determine the insertion responsible for the attenuated phenotype. The nucleotide sequence of the disrupted, predicted open reading frame was determined by sequencing both strands, and the predicted amino acid sequence was used to search currently available databases for similar sequences. Sequences either matched known genes, unknown genes, and hypothetical open reading frames previously sequenced or did not match any previously identified sequence. For those genes having homology to previously identified sequences, potential functions were assigned as set out in Table 1

25

30

20

5

10

15

Example 5 Identification of Related Genes in Other Species

In separate experiments, STM was also performed using Actinobacillus pleuropneumoniae (App). One of the App strains contained an insertion in a gene that was sequenced (SEQ ID NO: 97) and identified as a species homolog of the P. multocida atpG gene. This result suggested the presence in other bacterial species of

5

10

15

20

25

30

homologs to previously unknown *P. multocida* genes that can also be mutated to produce attenuated strains of the other bacterial species for use in vaccine compositions. In order to determine if homologs of other *P. multocida* genes exists in other bacterial species, Southern hybridization was performed on genomic DNA from other species using the *A. pleuropneumoniae* atpG gene as a probe.

Actinobacillus pleuropneumoniae, Pasteurella haemolytica (Ph), P. multocida, and Haemophilus somnus (Hs) genomic DNA was isolated using the CTAB method and digested with EcoRl and HindIII for two hours at 37°C. Digested DNA was separated on a 0.7% agarose gel at 40V in TAE buffer overnight. The gel was immersed sequentially in 0.1 M HCL for 30 minutes, twice in 0.5 M NaOH/1.5 M NaCl for 15 minutes each, and twice in 2.5 M NaCl/1 M Tris, pH 7.5. The DNA was transferred to nitrocellulose membranes (Amersham Hybond N') overnight using 20X SSC buffer (3 M NaCl/0.3 M sodium citrate). The DNA was crosslinked to the membrane using a UV Stratalinker on autocrosslink setting (120 millijoules). The membrane was prehybridized in 5X SSC/1% blocking solution/0.1% sodium lauroyl sarcosine/0.02% SDS at 50°C for approximately seven hours and hybridized overnight at 50°C in the same solution containing a PCR generated atgG probe.

The probe was prepared using primers DEL-1389 (SEQ ID NO: 98) and TEF-46 (SEQ ID NO: 99) in a with a GeneAmp XL PCR kit in a GeneAmp PCR System 2400. Template was genomic *A. pleuropneumoniae* DNA.

DEL-1389	TCTCCATTCCCTTGCTGCGGCAGGG	SEQ ID NO: 98
TEF-46	GGAATTACAGCCGGATCCGGG	SEO ID NO: 99

The PCR was performed with an initial heating step at 94°C for five minutes, 30 cycles of denaturation t 94°C for 30 sec, annealing at 50°C for 30 sec, and elongation at 72°C for three minutes, and a final extension step at 72°C for five minutes. The amplification products were separated on an agarose gel, purified using a QlAquick gel purification kit (QlAGEN), and labeled using a DIG-High Primer kit (Boehringer Mannheim). The blot was removed from the hybridization solution and rinsed in 2X

SSC and washed two times for five minutes each wash in the same buffer. The blot was then washed two times for 15 minutes each in 0.5X SSC at 60°C. Homologous bands were visualized using a DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

Single bands were detected in Pasteurella haemolytica, Haemophilus somnus and A. pleuropneumoniae using EcoRl digested DNA. Two bands were detected using EcoRi digested DNA from Pasteurella multocida.

5

10

15

20

25

30

Example 6 Construction of a Library of Tagged-Transposon P. multocida Mutants

Transposon mutagenesis using pLOF/Km has previously been reported to be functional and random in A. pleuropneumoniae [Tascon, et al., J Bacteriol. 175:5717-22 (1993)]. To construct tagged transposon mutants of A. pleuropneumoniae, each of 96 E. coli S17-1:λpir transformants containing preselected tagged plasmids (pTEF-1:[NK]₃₅) was used in conjugative matings to generate transposon mutants of A. pleuropneumoniae strain AP225, a serotype I spontaneous nalidixic acid resistant mutant derived from an in vivo passaged ATCC 27088 strain. A. pleuropneumoniae strains were grown on Brain Heart Infusion (BHI) (Difco Laboratories, Detroit, MI) media with 10 μg/ml B-nicotinamide adenine dinucleotide (V¹⁶), (Sigma, St. Louis, Missouri) at 37°C and in 5% CO₂ when grown on plates. E.coli S17-1:λpir (λpir, recA, thi, pro, hsdR(r_k-m_k+), RP4-2, (Tc^R::Mu), (Km^R::Tn7), [Tmp^R], [Sm^R]) was propagated at 37°C in Luria-Bertani (LB) medium. Antibiotics when necessary were used at 100 μg/ml ampicillin (Sigma), 50 μg/ml nalidixic acid (N⁵⁰)(Sigma), and 50 (K⁵⁰) or 100 (K¹⁰⁰) μg/ml of kanamycin (Sigma).

Matings were set up by growing each *E. coli* S17-1:λpir/pTEF1:[NK]₃₅ clone and the AP225 strain to late log phase. A 50 μl aliquot of culture for each tagged-pTEF-1 clone was mixed with 150 μl of the APP225 culture, and then 50 μl of each mating mixture was spotted onto 0.22 μM filters previously placed onto BHIV¹⁰ plates containing 100 μM IPTG and 10 mM MgSO₄. Following overnight incubation at 37°C with 5% CO₂, mating mixtures were washed off of each filter into 2 ml of PBS and 200 μl of each was plated onto BHIV¹⁰N⁵⁰K¹⁰⁰ plates. After selective

5

10

15

20

25

30

overnight growth, colonies were assembled into microtiter plates by toothpick transfer into 200 μ l BHIV $^{10}N^{50}K^{50}$ making sure that each well in a microtiter plate always contained a transposon mutant with the same sequence tag. Following overnight growth, 50 μ l of 75% glycerol was added to each well and plates were stored frozen at $-80^{\circ}C$

APP does not appear to have as much bias towards multiple insertions of the mini-Tn10 element as did P. multocida. Only approximately 3% of the mutants were determined to contain multiple insertions, which is in agreement with the 4% previously reported [Tascon, et al., J Bacteriol. 175:5717-22 (1993)]. A problem in APP consisted of identifying numerous mutants (discussed below) containing insertions into 23S RNA regions: 28 total mutants with insertions into 13 unique sites. This may indicate that 23S RNA contains preferential insertion sites and that the growth of APP is affected by these insertions enough to result in differential survival within the host. Southern blot analysis using an APP 23S RNA probe suggests that APP may contain only three ribosomal operons as compared to five in H. influenzae [Fleischmann, et al., Science 269:496-512 (1995)] and seven complete operons in E. coli [Blattner, et al., Science 277:1453-1474 (1997)]. This site preference and its effect on growth rate may be a significant barrier to "saturation mutagenesis" since a significant number of clones will contain insertions into these rRNAs and large volume screening will be necessary to obtain additional unique attenuating mutations.

Example 7 Porcine Screening for Attenuated A. pleuropneumoniae Mutants

Twenty pools of A. pleuropneumoniae transposon mutants, containing a total of approximately 800 mutants, were screened using a porcine intratracheal infection model. Each pool was screened in two separate animals.

Frozen plates of pooled A. pleuropneumoniae transposon mutants were removed from -80°C storage and subcultured by transferring 20 µl from each well to a new 96 well round bottom plate (Corning Costar, Cambridge, MA, USA) containing 180 µl of BHIV¹⁰N²⁶K.²⁰. Plates were incubated without shaking overnight at 37°C in

5

10

15

20

25

30

5% CO₂. Overnight plates were then subcultured by transferring 10 µl from each well to a new flat bottomed 96 well plate (Corning Costar) containing 100 µl of BHIV10 per well and incubating at 37°C with shaking at 150 rpm. The OD562 was monitored using a microtiter plate reader. At an OD of approximately 0.2 to 0.25, each plate was pooled to form the "input pool" by combining 100 ul from each of the wells of the microtiter plate. The culture was diluted appropriately in BHI to approximately 2 X 106 CFU/ml. For each diluted pool, 4.0 ml was used to infect 10-20 kg SPF pigs (Whiteshire-Hamroc, Albion, IN) by intratracheal administration using a tracheal tube. At approximately 20 hours post-infection, all surviving animals were euthanized and the lungs removed. Lavage was performed to recover surviving bacteria by infusing 150 mls of sterile PBS into the lungs, which were then massaged to distribute the fluid. The lavage fluid was recovered, and the process was repeated a second time. The lavage fluid was centrifuged at 450 x g for 10 minutes to separate out large debris. Supernatants were then centrifuged at 2,800 x g to pellet the bacteria. Pellets were resuspended in 5 mls BHI and plated in dilutions ranging from 10.2 to 10.5 onto BHIV10N50K50 plates. Following overnight growth, at least 100,000 colonies were pooled in 10 mls BHI broth to form the "recovered pools". A 0.7 ml portion of each recovered pool was used to prepare genomic DNA by the CTAB method [Wilson, In Ausubel, et al., (eds.), Current Protocols in Molecular Biology, vol. 1. John Wiley and Sons, New York, p. 2.4.1-2.4.5 (1997)].

Recovery from the animals routinely was in the $10^8\, \text{CFU}$ range from lung lavage.

Dot blots were performed and evaluated both by visual inspection and by semi-quantitative analysis as described previously. All hybridizations and detections were performed as described. Briefly, probes were prepared by a primary PCR amplification, followed by agarose gel purification of the desired product and secondary PCR amplification incorporating dig-dUTP. Oligonucleotides including TEF5, TEF6, TEF24, TEF25, TEF48 and TEF62, were synthesized by Genosys Biotechnologies (The Woodlands, TX). Primers TEF69, TEF65, and TEF66 were also used for inverse PCR reactions and sequencing.

TEF69	GACGTTTCCCGTTGAATATGGCTC	SEQ ID NO: 166
TEF65	GCCGGATCCGGGATCATATGACAAGA	SEQ ID NO: 167
TEF66	GACAAGATGTGTATCCACCTTAAC	SEQ ID NO: 168

5

10

15

The labeled PCR product was then digested with HindIII to separate the constant primer arms from the unique tag region. The region containing the labeled variable tag was excised and the entire gel slice was then dissolved and denatured in DIG EasyHyb. Dot blots were prepared and detected using the standard CSPD detection protocol. Film exposures were made for visual evaluation, and luminescent counts per second (LCPS) were determined for each dot blot sample. The LCPS input / LCPS recovered ratio for each mutant was used to determine mutants likely to be attenuated.

Clones selected as being present in the input pool but highly reduced in the recovered pool were selected for further study. Additional clones with questionable input/recovered ratios were also selected after visually evaluating films made from the dot blots. A total of 110 clones were selected.

Example 8 Identification of A. pleuropneumoniae Virulence Genes

20

25

A partial flanking sequence was determined for each of the 110 mutants by inverse PCR and direct product sequencing. Inverse PCR was used to generate flanking DNA products for direct sequencing as described above.

Sequencing reactions were performed using the BigDyetm Dye Terminator Chemistry kit from PE Applied Biosystems (Foster City, CA) and run on an ABI Prism 377 DNA Sequencer. Sequencher 3.0 software (Genecodes, Corp., Ann Arbor, MI) was used to assemble and analyze sequence data. GCG programs [Devereux and Haeberli, Wisconsin Package Version 9.0, 9.0 ed. Genetics Computer Group, Inc., Madison (1997)] were used to search for homologous sequences in currently available databases

30

Table 2 shows the A. pleuropneumoniae genes identified and extent to which open reading frames were determinable. Sequence identification numbers are provided for nucleotide sequences as well as deduced amino acid sequences where located.

Table 2
A. pleuropneumoniae Open Reading Frames

5

25

30

	Complete Open Re	ading Frame	NO Start Codon - Sto	p Codon
	atpH	SEQ ID NO: 134	dksA	SEQ ID NO: 136
10	aptG	SEQ ID NO: 132	dnaK	SEQ ID NO: 138
	exbB	SEQ ID NO: 140	HI0379	SEQ ID NO: 144
	OmpP5	SEQ ID NO: 152		
	OmpP5-2	SEQ ID NO: 150	NO Start Codon - NO	Stop Codon
	tig	SEQ ID NO: 160	pnp	SEQ ID NO: 154
15	fkpA	SEQ ID NO: 142	apvA-or 1	SEQ ID NO: 122
	hupA	SEQ ID NO: 146	apvA-or 2	SEQ ID NO: 124
	rpmF	SEQ ID NO: 158	apvB	SEQ ID NO: 126
	-		apvD	SEQ ID NO: 130
	Start Codon - NO S	top Codon		
20	lpdA	SEQ ID NO: 148	RNA or Noncoding S	equences
	potD	SEQ ID NO: 156	tRNA-leu	SEQ ID NO: 162
	yaeE	SEQ ID NO: 164	tRNA-glu	SEQ ID NO: 163
	apvC	SEO ID NO: 128	-	

The putative identities listed in Table 3 (below, Example 9) were assigned by comparison with bacterial databases. The 110 mutants represented 35 groups of unique transposon insertions. The number of different mutations per loci varied, with some clones always containing an insertion at a single site within an ORF to clones containing insertions within different sites of the same ORF. Three multiple insertions were detected in the 110 mutants screened as determined by production of multiple PCR bands and generation of multiple sequence electropherograms.

5

10

15

20

25

Example 9 Competition Challenge of A. pleuropneumoniae Mutants with Wild Type APP225

A representative clone from each of the unique attenuated mutant groups identified above that was absent or highly reduced in the recovered population was isolated from the original pool plate and used in a competition challenge experiment with the wild type strain (AP225) to verify the relative attenuation caused by the transposon mutation. Mutant and wild type strains were grown in BHIV¹⁰ to an OD₅₀₀ of 0.6 – 0.9. Approximately 5.0 × 10⁶ CFU each of the wild type and mutant strains were added to 4 mls BHI. The total 4 ml dose was used infect a 10-20 kg SPF pig by intratracheal administration with a tracheal tube. At approximately 20 hours post-infection, all surviving animals were euthanized and the lungs removed. Lung lavages were performed as described above. Plate counts were carried out on BHIV¹⁶N⁵⁰ and BHIV¹⁶N⁵⁰K¹⁰⁰ to determine the relative numbers of wild type to mutant in both the input cultures and in the lung lavage samples. A Competitive Index (CI) was calculated as the [mutant CFU / wild type CFU]_{input} / [mutan

Of the 35 potential transposon mutants, 22 were significantly attenuated, having a competitive index (CI) of less than 0.2. A transposon mutant that did not seem to be attenuated based on the STM screening results was chosen from one of the pools as a positive control. This mutant had a CI in vivo of approximately 0.6. An in vitro competition was also done for this mutant resulting in a CI of 0.8. The mutant was subsequently determined to contain an insertion between 2 phenylalanine tRNA's.

Competitive indices for unique attenuated single-insertion mutants are listed in Table 3. Competitive indices for atpG, pnp, and exbB App mutants indicated that the mutants were unable to compete effectively with the wild type strains and were therefore attenuated.

Table 3
Virulence and Proposed Function of A. pleuropneumoniae Mutants

	Mutant	Similarity	Putative or Known Functions	C.I.
5	AP20A6			
,		atpH	ATP synthase	.009
	AP7F10	atpG_	ATP synthase	.013
	AP17C6	lpdA	dihydrolipoamide dehydrogenase	.039
	AP11E7	exbB	transport of iron compounds	.003,.003,.006
0	AP3H7	potD		
U			Spermidine/putrescine transport	.308
	AP8H6	OmpP5	Adhesin / OmpA homolog	.184
	AP18H8	OmpP5-2	Adhesin / OmpA homolog	.552
	AP13E9	tig	Peptidyl-prolyl isomerase	.050
	AP13C2	fkp∧	Peptidyl-prolyl isomerase	<.001
5				
	AP15C11	pnp	Polynucleotide phosphorylase	.032
	AP18F12	hupA	Histone - like protein	.001
	AP20F8	dksA	Dosage dependent suppressor of dnaK mutations	.075
	AP5G4	dnaK	Heat shock protein - molecular chaperone	.376
0				
	AP17C9	tRNA-leu	Protein Synthesis	.059
	AP5D6	tRNA-glu	Protein Synthesis	.055
	AP18B2	rpmF	Protein Synthesis	.112
5	AP10E7	yaeA	Unknown	.001
	AP19A5	HI0379	Unknown	.061
	AP10C10	аруА	Unknown	.157
	AP18F5	аруВ	Unknown	.103
	AP2A6	apvC	Unknown	.091
0	AP2C11	apvD	Unknown	.014

Accuracy of the CI appeared to be very good as the exbB mutant was competed within three different animals yielding CI's of 0.003, 0.003 and 0.006. The use of a Competitive Index number to assign attenuation based upon one competition in a large animal study was further confirmed based on preliminary vaccination results in pigs with 7 mutants (n=8) described below in Example 11.

35

Example 10

Characterization of Attenuated A. pleuropneumoniae Virulence Genes

The A. pleuropneumoniae genes identified represent four broad functional classes: biosynthetic enzymes, cellular transport components, cellular regulation components and unknowns.

5

10

15

20

25

30

The atpG gene, encoding the F1-γ subunit of the F₀F₁ H+-ATPase complex, can function in production of ATP or in the transport of protons by hydrolyzing ATP. A related atpG attenuated mutant was also identified in P. multocida. Another atp gene, atpH, that encodes the F₁ δ subunit was also identified. Phenotypes of atp mutants include non-adaptable acid-sensitivity phenotype [Foster, J Bacteriol. 173:6896-6902 (1991)], loss of virulence in Salmonella typhimurium [Garcia del Portillo, et al., Infect Immun. 61:4489-4492 (1993)] and P. multocida (above) and a reduction in both transformation frequencies and induction of competence regulatory genes in Haemophilus influenzae Rd [Gwinn, et al., J Bacteriol. 179:7315-20 (1997)].

LpdA is a dihydrolipoamide dehydrogenase that is a component of two enzymatic complexes: pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. While the relationship to virulence is unknown, production of LpdA is induced in Salmonella typhimurium when exposed to a bactericidal protein from human which may suggest that this induction may be involved in attempts to repair the outer membrane [Qi, et al., Mol Microbiol. 17:523-31 (1995)].

Transport of scarce compounds necessary for growth and survival are critical in vivo. ExbB is a part of the TonB transport complex [Hantke, and Zimmerman, Microbiology Letters. 49:31-35 (1981)], interacting with TonB in at least two distinct ways [Karlsson, et al., Mol Microbiol. 8:389-96 (1993), Karlsson, et al., Mol Microbiol. 8:379-88 (1993)]. Iron acquisition is essential for pathogens. In this work, attenuated exbB mutants in both APP and P. multocida have been identified. Several TonB-dependent iron receptors have been identified in other bacteria [Biswas, et al., Mol. Microbiol. 24:169-179 (1997), Braun, FEMS Microbiol Rev. 16:295-307 (1995), Elkins, et al., Infect Immun. 66:151-160 (1998), Occhino, et

al., Mol Microbiol. 29:1493-507 (1998), Stojiljkovic and Srinivasan, J Bacteriol.

179:805-12 (1997)]. A. pleuropneumoniae produces 2 transferrin-binding proteins, which likely depend on the ExbB/ExbD/TonB system, for acquisition of iron. PotD is a periplasmic binding protein that is required for spermidine (a polyamine) transport [Kashiwagi, et al., J Biol Chem. 268:19358-63 (1993)]. Another member of the Pasteurellaceae family, Pasteurella haemolytica, contains a homologue of potD (Lpp38) that is a major immunogen in convalescent or outer membrane protein vaccinated calves [Pandher and Murphy, Vet Microbiol. 51:331-41 (1996)]. In P. haemolytica, PotD appeared to be associated with both the inner and outer membranes. The role of PotD in virulence or in relationship to protective antibodies is unknown although previous work has shown potD mutants of Streptococcus pneumoniae to be attenuated [Polissi, et al., Infect. Immun. 66:5620-9 (1998)].

5

10

15

20

25

30

Relatively few "classical virulence factors," such as adhesins or toxins with the exception of homologues to OMP P5 of Haemophilus influenzae, were identified. H. influenzae OMP P5 is a major outer membrane protein that is related to the OmpA porin family of proteins [Munson, et al., M Infect Immun, 61:4017-20 (1993)]. OMP P5 in nontypeable Haemophilus influenzae has been shown to encode a fimbrial subunit protein expressed as a filamentous structure [Sirakova, et al., Infect Immun. 62:2002-20 (1994)] that contributes to virulence and binding of both mucin and epithelial cells [Miyamoto and Bakaletz, Microb Pathog. 21:343-56 (1996), Reddy, et al., Infect Immun. 64:1477-9 (1996), Sirakova, et al., Infect Immun. 62:2002-20 (1994)]. A significant finding was identification of two distinct ORF's . that appear to encode OMP P5 homologues. This is also the case with two very similar proteins, MOMP and OmpA2 from Haemophilus ducreyi. It remains to be determined whether both are functionally involved in the production of fimbriae and whether the presence of two such ORFs represents a divergent duplication with redundant or complementing functions. Interestingly, the two OMP P5 mutants seem to have disparate CI values, suggesting a difference in essentiality or functionality for only one copy. OMP P5 has been shown to undergo molecular variation during chronic infections [Duim, et al., Infect Immun. 65:1351-1356 (1997)], however, this

5

10

15

20

25

30

appears to be restricted to a single gene undergoing point mutations resulting in amino acid changes rather than "type switching" due to differential expression of multiple genes.

Protein folding enzymes are important accessories for the efficient folding of periplasmic and extracellular proteins, and two genes were identified whose products have peptidyl-prolyl isomerase activity: fkpA and tig (trigger factor). FkpA is a periplasmic protein that is a member of the FK506-binding protein family [Horne and Young, Arch Microbiol. 163:357-65 (1995); Missiakas, et al., Mol Microbiol. 21:871-84 (1996)]. FkpA has been shown to contribute to intracellular survival of Salmonella typhimurium [Horne, et al., Infect Immun. 65:806-10 (1997)] and a Legionella pneumophila homolog, mip [Engleberg, et al.; Infect Immun. 57:1263-1270 (1989)], is responsible for virulence and infection of macrophages [Cianciotto, et al., J. Infect. Dis. 162:121-6 (1990); Cianciotto, et al., Infect. Immun. 57:1255-1262 (1989)]. Tig, or trigger factor [Crooke and Wickner, Proc. Natl. Acad. Sci. USA. 84:5216-20 (1987), Guthrie, and Wickner, J Bacteriol. 172:5555-62 (1990), reviewed in Hesterkamp, and Bukau., FEBS Lett. 389:32-4 (1996)], is a peptidyl prolyl isomerase containing a typical FKBP region [Callebaut and Mornon, FEBS Lett. 374:211-215 (1995)], but is unaffected by FK506 [Stoller, et al., EMBO J. 14:4939-48 (1995)]. Tig has been shown to associate with the ribosomes and nascent polypeptide chains [Hesterkamp, et al., Proc Natl Acad Sci USA 93:4437-41 (1996), Stoller, et al., EMBO J. 14:4939-48 (1995)]. Possible roles include an unknown influence on cell division [Guthrie, and Wickner, J Bacteriol, 172:5555-62 (1990)] in E. coli, a role in the secretion and activation of the Streptococcus pyogenes cysteine proteinase [Lyon, et al., EMBO J. 17:6263-75 (1998)] and survival under starvation conditions in Bacillus subtilis [Gothel, et al., Biochemistry 37:13392-9 (1998)].

Bacterial pathogens employ many mechanisms to coordinately regulate gene expression in order to survive a wide variety of environmental conditions within the host. Differences in mRNA stability can modulate gene expression in prokaryotes [Belasco and Higgins, Gene 72:15-23 (1988)]. For example, rnr (vacB) is required for expression of plasmid borne virulence genes in Shigella flexneri [Tobe, et al., J.

Bacteriol. 174:6359-67 (1992)] and encodes the RnaseR ribonuclease [Cheng, et al., J. Biol. Chem. 273:14077-14080 (1998)]. PNP is a polynucleotide phosphorylase that is involved in the degradation of mRNA. Null pnp / rnr mutants are lethal, suggesting a probable overlap of function. It therefore is possible that both rnr and pnp are involved in the regulation of virulence gene expression. A pnp mutant of P. multocida is avirulent in a mouse septicemic model (Example 2)]. Other pnpassociated phenotypes include competence deficiency and cold sensitivity in Bacillus subtilis [Wang and Bechhofer, J Bacteriol. 178:2375-82 (1996)].

5

10

15

20

25

30

HupA is a bacterial histone-like protein, which in combination with HupB constitute the HU protein in E. coli. Reports have suggested that hupA and hupB single mutants do not demonstrate any observable phenotype [Huisman, et al., J Bacteriol. 171:3704-12 (1989), Wada, et al., J Mol Biol. 204:581-91 (1988)], however, hupA-hupB double mutants have been shown to be cold sensitive, sensitive to heat shock and blocked in many forms of site-specific DNA recombination [Wada, et al., J Mol Biol. 204:581-91 (1988), Wada, et al., Gene. 76:345-52 (1989)]. One limited data previously indicated that hupA is directly involved in virulence [Turner, et al., Infect Immun. 66:2099-106 (1998)]. The mechanism of hupA attenuation remains unknown.

DnaK is a well known and highly conserved heat shock protein

involved in regulatory responses to various stressful environmental changes [reviewed in Lindquist and Craig, Annu Rev Genet. 22:631-77 (1988)]. DnaK is also one of the most significantly induced stress proteins in Yersinia enterocolitica after being phagocytosed by macrophages [Yamamoto, et al., Microbiol Immunol. 38:295-300 (1994)] and a Brucella suis dnaK mutant failed to multiply within human macrophage-like cells [Kohler, et al., Mol Microbiol. 20:701-12 (1996)]. In contrast, another intracellular pathogen, Listeria monocytogenes, did not show induction of dnaK after phagocytosis [Hanawa, et al., Infect Immun. 63:4595-9 (1995)]. A dnaK mutant of Vibrio cholera affected the production of ToxR and its regulated virulence factors in vitro but similar results were not obtained from in vivo grown cells [Chakrabarti, et al., Infect Immun. 67:1025-1033 (1999)]. The Cl of A.

pleuropneumonia dnaK mutant was higher than most of the attenuated mutants although still approximately half of the positive control strain.

5

10

15

20

25

30

DksA is a dosage dependent suppressor of filamentous and temperature-sensitive growth in a dnaK mutant of E. coli [Kang and Craig, J Bacteriol. 172:2055-64 (1990)]. There is currently no defined molecular function for DksA, but the gene has been identified as being critical for the virulence of Salmonella typhimurium in chickens and newly hatched chicks [Turner, et al., Infect Immun. 66:2099-106 (1998)]. In that work, it was noted that the dksA mutant did not grow well with glucose or histidine but did grow well with glutamine or glutamate as the sole carbon source. This observation may indicate that the dksA mutant is somehow impaired in the biosynthesis of glutamate [Turner, et al., Infect Immun. 66:2099-106 (19981).

Three genes were identified that have roles in protein synthesis: tRNA-leu, tRNA-glu and rpmF. Excluding protein synthesis, tRNA's also have a wide variety of functional roles in peptidoglycan synthesis [Stewart, et al., Nature 230:36-38 (1971)], porphyrin ring synthesis [Jahn, et al., Trends Biochem Sci. 17:215-8 (1992)], targeting of proteins for degradation [Tobias, et al., Science 254:1374-7 (1991)], post-translational addition of amino acids to proteins [Leibowitz and Soffer. B.B.R.C. 36:47-53 (1969)] and mediation of bacterial-eukaryotic interactions [Gray, et al., J Bacteriol, 174:1086-98 (1992), Hromockvi, et al., Mol Microbiol, 6:2113-24 (1992)]. More specifically, tRNA-leu is implicated in transcription attenuation [Carter, et al., Proc. Natl. Acad. Sci. USA 83:8127-8131 (1986)], lesion formation by Pseudomonas syringae [Rich and Willis, J Bacteriol. 179:2247-58 (1997)] and virulence of uropathogenic E. coli [Dobrindt, et al., FEMS Microbiol Lett. 162:135-141 (1998), Ritter, et al., Mol Microbiol. 17:109-21 (1995)]. It is unknown whether the tRNA that we have identified represents a minor species of tRNA-leu in A. pleuropneumoniae. Regardless, it is possible that tRNA-leu may have any one of a wide range of functions. RpmF is a ribosomal protein whose gene is also part of an operon containing fatty acid biosynthesis enzymes in E. coli. Further work will be required to indicate if this is the case in A. pleuropneumoniae, although the same

5

10

15

20

25

clustering of fab genes and rpmF occurs in Haemophilus influenzae [Fleischmann, et al., Science 269:496-512 (1995)]. The expression of the fab genes is not necessarily dependent on transcripts originating upstream of rpmF as there has been a secondary promoter identified within rpmF [Zhang and Cronan, Jr., J Bacteriol. 180:3295-303 (1998)].

The final class of attenuated mutants includes mutations within genes of unknown function or genes that have not been previously identified. Homologs of yaeA and Hl0379 have previously been identified in Escherichia coli [Blattner, et al., Science 277:1453-1474 (1997)] and Haemophilus influenzae [Fleischmann, et al., Science 269:496-512 (1995)], respectively. The remaining unknowns have been designated Actinobacillus pleuropneumoniae virulence genes (apv). The apvC gene shows significant similarity to Hl0893, however, the proposed similarity of Hl0893 as a transcriptional repressor similar to the fatty acid response regulator Bm3R1 [Palmer, J Biol Chem. 273:18109-16 (1998)] is doubtful. The apvD gene is also most similar to a putative membrane protein (b0878) with unknown function from E. coli [Blattner, et al., Science 277:1453-1474 (1997)]. Two other unknowns, apvA and apvB had no significant matches in the public databases.

Example 11 Safety and Efficacy of A. pleuropneumoniae Mutants

Nine groups (n=8) of SPF pigs (4-5 weeks old, 3-10 kg) were used to determine the safety and efficacy of seven *A. pleuropneumoniae* mutants as live attenuated vaccine strains. Seven groups were infected intranasally with 10¹⁰ CFU of each mutant on day 1. One group was vaccinated on days 1 and 15 with the commercially available vaccine Pleuromune (Bayer), and one naive group was not vaccinated. On day 29, all groups were challenged intranasially with 1-5 x 10⁵ CFU per pig of wild type APP225. All surviving animals were euthanized and necropsied on day 42 of the study. Results are shown in Table 4.

Table 4
Efficacy of A. pleuropneumoniae Mutants

	<u>Vaccine</u>	% Mortality following intranasal challenge				
		Vaccination	Challenge			
5	Pleuromune	0	37.5			
	exbB	0	0			
	tig	12.5	0			
	fkpA	12.5	0			
	HI0385	50.0	0			
10	pnp	0	0			
	yaeE	0	0			
	atpG	0	0			
	None	N/A	50.0			

15

20

25

The exbB, atpG, pnp, and yaeA mutants caused no mortality when administered at a dosage of 10^{10} CFU intranasally. The fkpA and tig mutant groups had one death each and the HI0379 group (highest CI of the 7 mutants tested shown in Example 9) had four deaths. Wildtype LD₅₀ using this model was generally 1×10^7 CFU, indicating that each of these mutants is at least 100 fold attenuated and that there is a reasonable correlation between CI and attenuation.

Example 12 Identification of *P.(Mannheimia) haemolytica* Species Homologs

Based on the sequences of virulence genes identified in P. multocida and A. pleuropneumoniae, attempt were made to identify related genes, i.e., species homologs, in P. (Mannheimia) haemolytica. PCR was utilized with the degenerate primers shown below to attempt amplification of the P. (Mannheimia) haemolytica genes as indicated. Primer sequences, synthesized by Sigma-Genosys (The Woodlands, TX), include standard single letter designations, wherein B indicates

either (C,G or T), D indicates either (G,A or T), H indicates either (A,C or T), K indicates either (G or T), M indicates either (A or C), N indicates either (A,G,C or T), R indicates either (A or G), S indicates either (G or C), V indicates either (G, A, or C), W indicates either (A or T), and Y indicates either (C or T).

	atpG	TEF146 TEF148	ATG GCN GGN GCN AAR GAR AT GCN GCY TTC ATN GCN ACC AT	SEQ ID NO: 176 SEQ ID NO: 177
10	guaB	TEF240 TEF243	GGN TTY ATY CAY AAA AAY ATG TCT TTN GTR ATN GTN ACA TCR TG	SEQ ID NO: 178 SEQ ID NO: 179
	pnp	TEF141 TEF142	GCS GGY AAA CCR CGT TGG GAT TGG CRC CTA ARA TRT CTG AAA GCA CCA C	SEQ ID NO: 180 SEQ ID NO: 181
15	purF	TEF244 TEF247	ATG TGY GGN ATY GTN GGN AT CAT ATC AAT ACC ATA CAC ATT	SEQ ID NO: 182 SEQ ID NO: 183
	yjgF	TEF162 TEF163	GGN CCN TAY GTN CAR G NGC NAC YTC NAC RCA	SEQ ID NO: 184 SEQ ID NO: 185

20

For amplification of initial degenerate PCR products, a 50 µl reaction was set up using 3.3X XL buffer II (PE Applied Biosystems), 200 µM dNTPs, 25 pmol each of the appropriate primers, 0.8 mM MgCl₂, 0.5 U rTth DNA polymerase, XL (PE Applied Biosystems) and approximately 1 µg of TF1 DNA.

25

Cycle conditions were 94°C for 1.5 min; followed by 35 cycles of 94°C for 15 s, 40-60°C for 60 s, 72°C for 1.5 min; and a final hold at 72°C for 5 min. Each PCR product was band purified from an agarose gel using the QIAGEN Gel Extraction Kit (QIAGEN, Valencia CA).

(

Sequencing reactions were performed using the BigDyetm Dye Terminator Chemistry kit from PE Applied Biosystems (Foster City, CA) and run on an ABI Prism 377 DNA Sequencer. Double stranded sequence for the open reading frame (ORF) for each clone was obtained. Sequencher 3.0 software (Genecodes, Corp., Ann Arbor, MI) was used to assemble and analyze sequence data. GCG programs were used to confirm the identity of the ORF by searching for homologous sequences in currently available databases.

35

30

The Vectorette Kit (Genosys Biotechnologies, The Woodlands, TX) was used to obtain additional flanking sequence for each of the genes. Vectorette libraries were prepared according to the manufacturer's suggested protocol. Perkin Elmer Applied Biosystems GeneAmp XL PCR Kit components were used to create the Vectorette PCR products with the following reaction conditions. A 50 µl reaction was set up using 3.3X XL buffer II (PE Applied Biosystems), 200 µM dNTPs, 25 pmol each of the appropriate primers(shown below), 0.8 mM MgCl₃, 0.5 U rTth DNA polymerase, XL (PE Applied Biosystems) and 1 µl of the appropriate vectorette library. Cycle conditions were 94°C for 1.5 min; followed by 35 cycles of 94°C for 20 s, 60°C for 45s, 72°C for 4 min; and a final hold of 72°C for 7 min. The second primer for each library was the manufacturer's vectorette primer.

5

10

Table 5

Gene	Vectorette library	Primer(s)
atpG	BglII, HindIII	TEF217 GAAGCCGCCATACGCTCTTGGG
		SEQ ID NO: 18
	ClaI	TEF218 GTTGCTTCCTTTGCCTGCACTGG
		SEQ ID NO: 18
guaB	EcoRI	TEF265 GGCTCAGAAACAATACCACTTTCA
guan	Lord	SEQ ID NO: 18
-	HindIII, Taq1	TEF268 GCACCAAAGCAGAATTTGTCC
		SEQ ID NO: 18
pnp	ClaI, HincII	TEF219 GGTGATGATGTCGATGATAGTCCC
		SEQ ID NO: 19
	TaqI,	TEF220 GGCGTATTAGCCGTGATGCCAACC
	BamHI	SEQ ID NO: 19 TEF286 GACCACTTAGGCGATATGGACTT
	Damrii	
		SEQ ID NO: 19:
purF	TaqI	TEF271 ACCATCATAAATCGCCTGATTC
		SEQ ID NO: 19:
		TEF292 ACCTGCGGCATCTTGTCCTC SEQ ID NO: 194
	HincII	TEF274 ACGGGTTTATTTTGCCTCTG
		SEQ ID NO: 195
yjgF	ClaI	TEF221 CGCCGGTTTCAGGATTCACGGG
JJ6-		SEO ID NO: 196
	EcorV	TEF281 CTGAACAACGTGAAAGCCAT
		SEQ ID NO: 197

15

20

5

10

Vectorette PCR products were band purified and sequenced as described above.

Polynucleotide sequences for the atpG, guaB, pnp, purF, and yjgF genes are set out in SEQ ID NOs: 166, 168, 170, 172 and 174, respectively. Polypeptides encoded by these genes are set out in SEQ ID NOs: 167, 169, 171, 173, and 175, respectively.

Numerous modifications and variations in the invention as set forth in the above illustrative examples are expected to occur to those skilled in the art. Consequently only such limitations as appear in the appended claims should be placed on the invention.

WHAT IS CLAIMED IS:

 A gram-negative bacteria comprising a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOs: 1, 3, 7, 9, 21, 25, 27, 29, 39, 41, 51, 53, 55, 57, 58, 60, 68, 72, 74, 76, 78, 80, 82, 84, 104, 108, 112, 116, 118, 120
 122, 124, 126, 128, and 130, or species homologs thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.

- The gram-negative bacteria of claim 1 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.
- The gram-negative bacteria of claim 1 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
- The gram-negative bacteria of claim 1 wherein said mutation results in deletion of all or part of said gene.
- 5. An attenuated *Pasteurellaceae* bacteria comprising a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172 and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.
- The Pasteurellaceae bacteria of claim 5 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.
- The Pasteurellaceae bacteria of claim 5 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.

 The Pasteurellaceae bacteria of claim 5 wherein said mutation results in deletion of all or part of said gene.

- The Pasteurellaceae bacteria of claim 5 selected from the group consisting of Pasteurella (Mannheimia) haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae and Haemophilus somnus.
- 10. The Pasteurellaceae bacteria of claim 9 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.
- 11. The Pasteurellaceae bacteria of claim 9 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
- 12. The Pasteurellaceae bacteria of claim 9 wherein said mutation results in deletion of all or part of said gene.
- 13. The attenuated Pasteurellaceae bacteria of claim 9 that is a P. multocida bacteria.
- 14. The Pasteurellaceae bacteria of claim 13 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.
- 15. The Pasteurellaceae bacteria of claim 13 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
- 16. The Pasteurellaceae bacteria of claim 13 wherein said mutation results in deletion of all or part of said gene.
- The attenuated Pasteurellaceae bacteria of claim 9 that is a A. pleuropneumoniae bacteria.

18. The Pasteurellaceae bacteria of claim 17 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.

- 19. The Pasteurellaceae bacteria of claim 17 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
- 20. The Pasteurellaceae bacteria of claim 17 wherein said mutation results in deletion of all or part of said gene.
- An immunogenic composition comprising the bacteria according to any one of claims 1 through 20.
- A vaccine composition comprising the immunogenic composition according to claim 21 and a pharmaceutically acceptable carrier.
- The vaccine composition according to claim. 22 further comprising an adjuvant.
- 24. A method for producing a gram-negative bacteria mutant comprising the step of introducing a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.
- 25. A method for producing an attenuated *Pasteurellaceae* bacteria comprising the step of introducing a mutation in a gene represented by a nucleotide sequence set forth in any one of SEO ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29.

31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.

- 26. A purified and isolated *Pasteurellaceae* polynucleotide comprising a nucleotide sequence selected from the group consisting of nucleotide sequences set forth in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172 and 174.
- 27. A purified and isolated *Pasteurellaceae* polynucleotide comprising a nucleotide sequence selected from the group consisting of nucleotide sequences set forth in SEQ ID NOs: 1, 3, 7, 9, 21, 25, 27, 29, 39, 41, 51, 53, 55, 57, 58, 60, 68, 72, 74, 76, 78, 80, 82, 84, 104, 108, 112, 116, 118, 120 122, 124, 126, 128, and 130.
- 28. A purified and isolated polynucleotide encoding a Pasteurellaceae. virulence gene product, or species homolog thereof, selected from the group consisting of:
 - a) the polynucleotide according to claim 27,
 - b) polynucleotides encoding a polypeptide encoded by the polynucleotide of (a), and
 - c) polynucleotides that hybridize to the complement of the polynucleotides of (a) or (b) under moderate stringency conditions.
- 29. A purified and isolated *Pasteurellaceae* polynucleotide encoding a polypeptide selected from the group consisting of polypeptides having amino acid sequences set forth in SEQ ID NOs: 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 42, 52, 54, 56, 59, 61, 69, 71, 73, 75, 77, 79, 81, 83, 85, 101, 103, 105, 107, 109,

111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 167, 169, 171, 173, and 175.

- 30. The polynucleotide of claim 29 which is a DNA.
- 31. A vector comprising the DNA of claim 30.
- 32. The vector of claim 31 that is an expression vector, wherein the DNA is operatively linked to an expression control DNA sequence.
- 33. A host cell stably transformed or transfected with the DNA of claim 30 in a manner allowing the expression of the encoded polypeptide in said host cell.
- 34. A method for producing a recombinant polypeptide comprising culturing the host cell of claim 33 in a nutrient medium and isolating the encoded polypeptide from said host cell or said nutrient medium.
 - 35. A purified polypeptide produced by the method of claim 34.
- 36. A purified polypeptide comprising a polypeptide selected from the group consisting of polypeptides having amino acid sequences set forth in SEQ ID NOs: 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 42, 52, 54, 56, 59, 61, 69, 71, 73, 75, 77, 79, 81, 83, 85, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 167, 169, 171, 173, and 175.
- An antibody that is specifically reactive with the polypeptide of claim
 36.
 - 38. The antibody of claim 33 that is a monoclonal antibody.

39. A method of using the monoclonal antibody of claim 39 for identifying a bacteria of claim 1, 5, 9, or 13 comprising the step of contacting an extract of bacteria with said monoclonal antibody and detecting the absence of binding of said monoclonal antibody.

- 40. A method of identifying an anti-bacterial agent comprising the steps of assaying potential agents for the ability to interfere with expression or activity of gene products represented by the amino acid sequences set forth in any one of SEQ ID NOS: 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 42, 52, 54, 56, 59, 61, 69, 71, 73, 75, 77, 79, 81, 83, 85, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 167, 169, 171, 173, and 175 and identifying an agent that interferes with expression or activity of said gene products.
- A method of identifying an anti-bacterial agent comprising the steps of:
 - a) measuring expression or activity of a gene product as set out in SEQ ID NOS: 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 42, 52, 54, 56, 59, 61, 69, 71, 73, 75, 77, 79, 81, 83, 85, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 167, 169, 171, 173, and 175:
 - b) contacting the gene product in (a) with a test compound
 - c) measuring expression or activity of the gene product in the presence of the test compound; and
 - d) identifying the test compound as an antibacterial agent when expression or activity of the gene product is decreased in the presence of the test compound as compared to expression or activity in the presence of the test compound.

SEQUENCE LISTING

```
<110> Lowery E., David, et al.
<120> Anti-Bacterial Vaccine Compositions
<130> 28341/00435
<140> 09/809,665
<141> 2001-03-15
<150> 60/153,453
<151> 1999-09-10
<150> 60/128.689
<151> 1999-04-09
<150> 09/545,199
<151> 2000-04-06
<160> 197
<170> PatentIn Ver. 2.0
<210> 1
<211> 1112
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (210)..(1001)
<220>
<223> atpB
<220>
<221> misc_feature
<222> 1099
\langle 223 \rangle n = A or T or G or C
<220>
<221> misc_feature
<222> 1104
<223> n = A or T or G or C
gtcaacaaca ttttatggtg gagaggccgt taaatttata tccacaattt ttttgattgt 60
acttgctttt aaactgttca attcaatgca ttttattgca ttttttgttg gatattttat 120
aacaatagtt ttaaacaata ttottooatt ttttataagt aagtacttaa atataaagca 180
ttttcataaa tatcaataaa ggattagtt atg gca gca gag ctt aca aca gcg
                                                                         233
                                   Met Ala Ala Glu Leu Thr Thr Ala
gga tat att ggg cac cat tta gca ttc ttg aaa aca ggg gat tct ttc Gly Tyr Ile Gly His His Leu Ala Phe Leu Lys Thr Gly Asp Ser Phe
                                                                         281
                           15
                                                  20
```

tgg Trp 25	cat His	gtt Val	cat His	tta Leu	gat Asp 30	acc Thr	ctt Leu	cta Leu	ttt Phe	tca Ser 35	att Ile	att Ile	tca Ser	ggt Gly	gca Ala 40	329
att Ile	ttt Phe	ctt Leu	ttt Phe	gtt Val 45	ttt Phe	tca Ser	aaa Lys	gtt Val	gca Ala 50	aaa Lys	aaa Lys	gca Ala	acg Thr	ccg Pro 55	ggt Gly	377
gtg Val	cct Pro	agc Ser	aag Lys 60	atg Met	caa Gln	tgt Cys	ttt Phe	gtt Val 65	gag Glu	ata Ile	atg Met	gtt Val	gat Asp 70	tgg Trp	att Ile	425
gat Asp	ggg Gly	atc Ile 75	gta Val	aaa Lys	gaa Glu	aat Asn	ttc Phe 80	cat His	ggt Gly	cct Pro	cgt Arg	cat His 85	gct Ala	gtt Val	gga Gly	473
		gca Ala														521
		atc Ile														569
att Ile	gaa Glu	tac Tyr	tta Leu	aga Arg 125	gct Ala	gtt Val	cca Pro	aca Thr	gca Ala 130	gat Asp	atc Ile	agt Ser	gga Gly	aca Thr 135	tta Leu	617
		tca Ser														665
		ggt Gly 155														713
aat Asn	cat His 170	cct Pro	ttg Leu	tta Leu	att Ile	ccg Pro 175	gtt Val	aac Asn	tta Leu	gcg Ala	ctt Leu 180	gaa Glu	tca Ser	gtc Val	aca Thr	761
		gca Ala														809
		ggt Gly														857
aat Asn	aat Asn	tt t Phe	gca Ala 220	ctt Leu	aat Asn	tca Ser	atg Met	ggt Gly 225	att Ile	ttc Phe	atg Met	cat His	ttg Leu 230	gct Ala	tgg Trp	905
		ttc Phe 235														953
atg Met	ctt Leu 250	aca Thr	gtg Val	gtt Val	ta t Tyr	ttg Leu 255	agt Ser	atg Met	ggt Gly	tat Tyr	aac Asn 260	aaa Lys	gca Ala	gaa Glu	cac His	1001
taat	tttt	ta t	aaac	aaaa	ic ca	gaco	ttgg	gto	taaa	ttt	caat	ctta	itg g	gagaa	catta	1061
tgga	acac	tg t	aatt	acta	c aa	caat	cato	gca	tctg	naa	ttnt	tctt	gc t	:		1112

```
<210> 2
<211> 264
<212> PRT
<213> Pasteurella multocida
<400> 2
Met Ala Ala Glu Leu Thr Thr Ala Gly Tyr Ile Gly His His Leu Ala
Phe Leu Lys Thr Gly Asp Ser Phe Trp His Val His Leu Asp Thr Leu
Leu Phe Ser Ile Ile Ser Gly Ala Ile Phe Leu Phe Val Phe Ser Lys
Val Ala Lys Lys Ala Thr Pro Gly Val Pro Ser Lys Met Gln Cys Phe
Val Glu Ile Met Val Asp Trp Ile Asp Gly Ile Val Lys Glu Asn Phe
His Gly Pro Arg His Ala Val Gly Pro Leu Ala Leu Thr Ile Phe Cys
Trp Val Phe Ile Met Asn Ala Ile Asp Leu Ile Pro Val Asp Phe Leu
Pro Gln Leu Ala His Leu Phe Gly Ile Glu Tyr Leu Arg Ala Val Pro
Thr Ala Asp Ile Ser Gly Thr Leu Gly Leu Ser Ile Gly Val Phe Phe
Leu Ile Ile Phe Tyr Thr Ile Lys Ser Lys Gly Met Ser Gly Phe Val
Lys Glu Tyr Thr Leu His Pro Phe Asn His Pro Leu Leu Ile Pro Val
Asn Leu Ala Leu Glu Ser Val Thr Leu Leu Ala Lys Pro Val Ser Leu
Ala Phe Arg Leu Phe Gly Asn Met Tyr Ala Gly Glu Leu Ile Phe Ile
Leu Ile Ala Val Met Tyr Met Ala Asn Asn Phe Ala Leu Asn Ser Met
                        215
Gly Ile Phe Met His Leu Ala Trp Ala Ile Phe His Ile Leu Val Ile
Thr Leu Gln Ala Phe Ile Phe Met Met Leu Thr Val Val Tyr Leu Ser
Met Gly Tyr Asn Lys Ala Glu His
           260
```

<210> 3

<211> 1972

<212> DNA

<213> Pasteurella multocida

<220> <221> CDS <222> (364)..(1230) ~220× <223> atpG agegggeeat ttggeteagt teggettegg attettatga tgeacacgta ageaattate 60 acatggtcaa aaagtaactg aattattgaa acaaaaccaa tactctccgt tatctgtagc 120 acaacaagca ttagtgttat ttgcagtaga gtttggttac ttagaagaag tggacttaga 180 togtattggt toatttgaat cagcactttt agagtatget aaccataact atgetgattt 240 tatgcgtgag ttaacccaat ctggcaatta caatgatgaa attaaagagt cattaaaagg 300 cattttggat agcttcaaag caaacagtgc gtggtaagtt aacactttaa atggagagac 360 aaa atg gca ggt gct aaa gag ata aga acc aaa atc gcg agt gta aaa Met Ala Gly Ala Lys Glu Ile Arg Thr Lys Ile Ala Ser Val Lys agt aca caa aaa att act aaa gcg atg gaa atg gtt gct gcc tcg aaa Ser Thr Gln Lys Ile Thr Lys Ala Met Glu Met Val Ala Ala Ser Lys 456 atg cgt aaa acg caa gaa cgc atg tct tct tca cgc cct tat tca gaa 504 Met Arg Lys Thr Gln Glu Arg Met Ser Ser Ser Arg Pro Tyr Ser Glu aca ata cgt aac gtg att agc cac gtt tcc aaa gca acg att ggt tac Thr Ile Arg Asn Val Ile Ser His Val Ser Lys Ala Thr Ile Gly Tyr 552 aag cat cca ttt tta gtg gat cgc gaa gta aaa aaa gtg ggc atg att 600 Lys His Pro Phe Leu Val Asp Arg Glu Val Lys Lys Val Gly Met Ile gtt gtg tcc aca gat cgt ggt ctt tgt ggt ggc tta aac gtg aac ttg Val Val Ser Thr Asp Arg Gly Leu Cys Gly Gly Leu Asn Val Asn Leu ttt aaa act gta tta aat gaa atg aaa gaa tgg aaa gaa aaa gat gtt Phe Lys Thr Val Leu Asn Glu Met Lys Glu Trp Lys Glu Lys Asp Val tcc gtt caa ttg agt tta atc ggt tct aaa tct atc aac ttt ttc caa Ser Val Gln Leu Ser Leu Ile Gly Ser Lys Ser Ile Asn Phe Phe Gln 792 tot ttg gga att aaa att tta acc caa gat tca ggt att ggt gat act Ser Leu Gly Ile Lys Ile Leu Thr Gln Asp Ser Gly Ile Gly Asp Thr ccc tct gtt gag cag tta att ggt tca gtc aat tct atg att gat gct 840 Pro Ser Val Glu Gln Leu Ile Gly Ser Val Asn Ser Met Ile Asp Ala tat aaa aaa ggg gaa gta gat gtt gtg tat tta gtt tat aac aaa ttt Tyr Lys Lys Gly Glu Val Asp Val Val Tyr Leu Val Tyr Asn Lys Phe 170 160 165

4

														cca Pro 190		936
														tgg Trp		984
														ttg Leu		1032
cgt Arg	tat Tyr 225	tta Leu	gaa Glu	tct Ser	cag Gln	gtt Val 230	tat Tyr	caa Gln	gca Ala	gca Ala	gtt Val 235	gaa Glu	aac Asn	ctt Leu	gct Ala	1080
														gat Asp		1128
														gct Ala 270		1176
														gca Ala		1224
gca Ala		taad	caaat	ag a	ıggat	cggt	a at	ggca	acto	gaa	aaat	tgt	acaa	atca	tc	1280
ggtg	gcggt	ta t	tgad	gtt	ja at	tcc	acaa	gat	gcaç	tac	caaa	agta	ta t	gato	cctta	1340
aat	gttga	aa d	aggt	ttag	t ac	ttga	agtt	caa	caac	aat	tagg	tggt	gg t	gtag	ttcgc	1400
tgta	tcgc	aa 1	ggga	atcat	c to	gatgo	atta	aaa	cgcç	gtt	taag	cgta	ac a	aata	cgaat	1460
aaco	caat	tt	etgtt	ccas	ıt gç	gaac	gaaa	aca	ttgg	gtc	gtat	catg	aa c	gtat	tgggt	1520
gaad	caat	cg a	atgag	caac	g to	jaaat	cggt	gca	gaaç	aga	atto	gtct	at t	cacc	gtgcg	1580
ccac	caac	jtt a	atgaa	gaac	a at	ctaa	cagt	act	gaac	ttt	taga	aacg	igg a	atta	aagtt	1640
atco	gactt	ag t	ttgt	ccgt	t to	gcgaa	aggg	ggt	aaag	tag	gttt	atto	gg t	ggtg	cgggt	1700
gtcg	gtaa	aa o	ccgt	aata	it ga	tgga	atta	ato	cgta	aca	tcgc	aatt	gag	cact	caggt	1760
tact	ctgt	ct t	tgcg	19999	t ag	gtga	gcgt	acg	cgtg	aag	gtaa	cgac	tt c	tato	atgag	1820
atga	aaga	ct o	taac	gtat	t ag	gataa	agtg	tct	cttg	ttt	atgg	tcaa	at g	aacg	agcca	1880
ccaç	gtaa	cc s	gttta	cgtg	t gg	catt	aaca	ggo	ttaa	cta	tggc	ggaa	aa a	ttcc	gtgat	1940
gaag	gtcg	tg a	tgto	ttat	t ct	tcgt	tgat	aa								1972

<210> 4 <211> 289 <212> PRT

<213> Pasteurella multocida

Met Ala Gly Ala Lys Glu Ile Arg Thr Lys Ile Ala Ser Val Lys Ser

10 1 15 Thr Gln Lys Ile Thr Lys Ala Met Glu Met Val Ala Ala Ser Lys Met Arg Lys Thr Gln Glu Arg Met Ser Ser Ser Arg Pro Tyr Ser Glu Thr Ile Arg Asn Val Ile Ser His Val Ser Lys Ala Thr Ile Gly Tyr Lys His Pro Phe Leu Val Asp Arg Glu Val Lys Lys Val Gly Met Ile Val Val Ser Thr Asp Arg Gly Leu Cys Gly Gly Leu Asn Val Asn Leu Phe Lys Thr Val Leu Asn Glu Met Lys Glu Trp Lys Glu Lys Asp Val Ser Val Gln Leu Ser Leu Ile Gly Ser Lys Ser Ile Asn Phe Phe Gln Ser Leu Gly Ile Lys Ile Leu Thr Gln Asp Ser Gly Ile Gly Asp Thr Pro Ser Val Glu Gln Leu Ile Gly Ser Val Asn Ser Met Ile Asp Ala Tyr Lys Lys Gly Glu Val Asp Val Val Tyr Leu Val Tyr Asn Lys Phe Ile Asn Thr Met Ser Gln Lys Pro Val Leu Glu Lys Leu Ile Pro Leu Pro Glu Leu Asp Asn Asp Glu Leu Gly Glu Arg Lys Gln Val Trp Asp Tyr Ile Tyr Glu Pro Asp Ala Lys Val Leu Leu Asp Asn Leu Leu Val Arg Tyr Leu Glu Ser Gln Val Tyr Gln Ala Ala Val Glu Asn Leu Ala Ser Glu Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn Ala Gly Asn Leu Ile Asn Glu Leu Gln Leu Val Tyr Asn Lys Ala Arg Gln Ala Ser Ile Thr Asn Glu Leu Asn Glu Ile Val Ala Gly Ala Ala Ala

Ile

<210 > 5 <211 > 1357

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS <222> (1)(813)	
<220> <223> cap5E	
<400> 5 gtc gac tat att tat cat gct gcc gca tta aag caa gtg cct tca tgc 48 Val Asp Tyr Ile Tyr His Ala Ala Ala Leu Lys Gln Val Pro Ser Cys 1 1 5 16 15	
gag ttt tat ccg tta gag gca gtg aaa acc aat att tta ggt acg gca 96 Glu Phe Tyr Pro Leu Glu Ala Val Lys Thr Asn Ile Leu Gly Thr Ala 20 30	
aat gto tta gaa goo goo ato caa aac cag ata aaa cgo gto gto tgt 14 Asn Val Leu Glu Ala Ala Ile Gln Asn Gln Ile Lys Arg Val Val Cys 45	4
ctt ag: aca gat aaa gcg gtg tac cca att aat gcg atg ggc att tct 19 : Leu Ser Thr Asp Lys Ala Val Tyr Pro Ile Asn Ala Met Gly Ile Ser 50	2
aaa gca atg atg gaa aaa gtc atc atc gca aaa tcg cgt aac cta gaa 24 Lys Ala Met Met Glu Lys Val Ile Ile Ala Lys Ser Arg Asn Leu Glu 65 70 70 80	0
ggc aca cca acg aca atc tgt tgt act cgc tat ggc act gtc atg gca 28 Gly Thr Pro Thr Thr Ile Cys Cys Thr Arg Tyr Gly Asn Val Met Ala 85 95	8
tog cgt ggt tog gtt atc oca tta ttt gtc gat caa ata cgt caa ggc 336 Ser Arg Gly Ser Val Ile Pro Leu Phe Val Amm Gln Ile Arg Gln Gly 100 105 110	6
and cot ttt act att act gat cot gag atg aca cgc ttt atg atg aca $$ 384 Lys Pro Phe Thr Ile Thr Asp Pro Glu Met Thr Arg Phe Met Met Thr $$ 125 $$ 120 $$ 125	4
ttg gaa gat get gtg gat tta gtc cta tat gca ttt aaa aat ggt caa 432 Leu Glu Asp Ala Val Asp Leu Val Leu Tyr Ala Phe Lys Asn Gly Gln 130 135	2
aat ggt gat gtt ttt gta caa aaa gcc ccc gca gca acc att ggt acc 480 Aan gdy Aap Val Phe Val Gln Lys Ala Pro Ala Ala Thr Ile Gly Thr 145 150 160	0
ott gcc aaa gca att acc gaa tta tta tot gtc cca aat cac oct att 526 Leu Ala Lys Ala Ile Thr Glu Leu Leu Ser Val Pro Asn His Pro Ile 165 170 175	8
toc att ata ggt acg cgt Cat gga gag aaa gca ttc gaa gct tta tta 576 Ser 11e 11e Gly Thr Arg His Gly Glu Lys Ala Phe Glu Ala Leu Leu 180 185	6
ago cgt gaa gaa atg gtt cat gca att aat gaa ggt aat tat tat ogc 624 Ser Arg Glu Glu Met Val His Ala Ile Asn Glu Gly Asn Tyr Tyr Arg 195 200 205	4
atc oca goo gat caa ogo agt tta aat tao agt aaa tat gto gaa aaa 672 11e Pro Ala Asp Gln Arg Ser Leu Asn Tyr Ser Lys Tyr Val Glu Lys 210	2

7

```
ggg gaa cca aaa att acc gaa gtc acc gac tac aac tca cat aat act
                                                                   720
Gly Glu Pro Lys Ile Thr Glu Val Thr Asp Tyr Asn Ser His Asn Thr
                                        235
gag cgt ttg act gtc aag gaa atg aag cag tta ctg ctt aaa ctt gaa
                                                                   768
Glu Arg Leu Thr Val Lys Glu Met Lys Gln Leu Leu Leu Lys Leu Glu
ttc ata cag aaa atg att gag ggt gaa tac atc tca ccg gag gta
                                                                   813
Phe Ile Gln Lys Met Ile Glu Gly Glu Tyr Ile Ser Pro Glu Val
            260
taaaaatgaa agtottaqta actqqttcaa atqqttttat tqcqaaaaat ctqattcaqt 873
ctttatctga ggaacaagat attgagattt tatgttatca ccgtcaatcc tctgagaaaa 933
cgcttattca tcatgtattg agtgctgatt ggattattca tcttgcgggt gcgaatcgtc 993
cacctgaaga acaagaattt atgacatcaa atacacaatt gacggaaaaa atttgccgta 1053
ttttacagcg tcatcagaaa aaaacgcctt tgttatattc ctctagcatt caagtagaaa 1113
gtcccaaaat aagtacttat tcgcaaacca aattagaaag tgaatatcat gttcatcaat 1173
tacataaaga aaatggtaat ccgatttata tctgccgttt agctaatgtc tttggcaaat 1233
ggtcacgacc tcactataac tcggtagtcg ccacattttg ccataactta attcatgatt 1293
tacccatcga aattcatgat catactgcag aaataaggct catttatatt gatgatgtcq 1353
ttqa
                                                                  1357
<210> 6
<211> 271
<212> PRT
<213> Pasteurella multocida
<400> 6
Val Asp Tyr Ile Tyr His Ala Ala Ala Leu Lys Gln Val Pro Ser Cys
Glu Phe Tyr Pro Leu Glu Ala Val Lys Thr Asn Ile Leu Gly Thr Ala
Asn Val Leu Glu Ala Ala Ile Gln Asn Gln Ile Lys Arg Val Val Cys
Leu Ser Thr Asp Lys Ala Val Tyr Pro Ile Asn Ala Met Gly Ile Ser
Lys Ala Met Met Glu Lys Val Ile Ile Ala Lys Ser Arg Asn Leu Glu
Gly Thr Pro Thr Thr Ile Cys Cys Thr Arg Tyr Gly Asn Val Met Ala
Ser Arg Gly Ser Val Ile Pro Leu Phe Val Asp Gln Ile Arg Gln Gly
Lys Pro Phe Thr Ile Thr Asp Pro Glu Met Thr Arg Phe Met Met Thr
       115
```

```
Leu Glu Asp Ala Val Asp Leu Val Leu Tyr Ala Phe Lys Asn Gly Gln
                         135
Asn Gly Asp Val Phe Val Gln Lys Ala Pro Ala Ala Thr Ile Gly Thr
Leu Ala Lys Ala Ile Thr Glu Leu Leu Ser Val Pro Asn His Pro Ile
Ser Ile Ile Gly Thr Arg His Gly Glu Lys Ala Phe Glu Ala Leu Leu
            180
Ser Arg Glu Glu Met Val His Ala Ile Asn Glu Gly Asn Tyr Tyr Arg
Ile Pro Ala Asp Gln Arg Ser Leu Asn Tyr Ser Lys Tyr Val Glu Lys
Gly Glu Pro Lys Ile Thr Glu Val Thr Asp Tyr Asn Ser His Asn Thr
Glu Arg Leu Thr Val Lys Glu Met Lys Gln Leu Leu Leu Lys Leu Glu
Phe Ile Gln Lys Met Ile Glu Gly Glu Tyr Ile Ser Pro Glu Val
            260
                                265
                                                    270
<210> 7
<211> 6132
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (4032)..(4727)
<220>
<223> devB
-400× 7
gtcaacaatt accgcacttt agtggagtaa ataacaatgg cgaaaaagaa taacggqcat 60
gaaaaagagg atgatgttog ootagataaa tggotttggg otgooogttt ttataaaaca 120
cgtactttag caaaagacat gattgatggc ggtaaagtgc attataatgg gcagcgcacg 180
aaacccaata aaacqgttga aattggtggt gtgatcaaac ttcgtcaagg taatgacqaa 240
aaagaagtigg aagtigcttigc gotttotacg caacgtogtig qqqoqocaqa aqcacaattiq 300
ttgtatcaag aaacagaaaa aagcettgaa caacgtgega aaatggegat tgcacgtaag 360
attaatgcat taacgatgcc gcatcctgat cgtcgcccga ataaaaaaga gcggcgtgat 420
ttattgaaat ttaaacatca agatagettt teatettgat gatgtgattt acctaetttt 480
cttattaaag aaaggaatat qqqqaaqctq tqtqcttqcc cttaacctqa ataaaqqctt 540
tttatgacag acaacacaga caatgacaaa ctgtatcgct accttttcca agatcgcgcg 600
gtgcgcggtg aatgggtacg gttaaaccaa acgtttactg atacgttaaa tacacatcaa 660
```

tatccgaaag tcatccaaaa cttgctcggt gaaatgatgg tggcgaccag tttattgacg 720 gcgacgttaa aatttgaagg ggatattact qttcaaqtac aaggtgatgg accattaaaa 780 ttagcattag ttaatggcaa tcatcagcag caaattcgcg cattagcgcg tttacaagcg 840 gatgtcagtg atgatatgag tttggcgcaa ttagtcggga aaggggtatt agtgattacq 900 attgcaccga cagaaggcga gcgttaccaa ggcqtgattg cgttagataa gccaaccatt 960 actgcctgtc ttgaagatta ttttgtgcqt tcagaacaat tgcaaaccca gcttattatt 1020 cgtgctggcg aatttgaagg acaacctgtg gcagccggta tgttgttaca aattatqccq 1080 gacggttcag gttctccaga ggattttgaa cacttagcaa cattggcagc gacggtgaaa 1140 gaggaagaac tatttggttt aacagcagaa gaattattgt accgtttata tcatqaaqaq 1200 cgtgttgaaa ttttcccttc acagccgatc tcatttttct gtggctgctc acaaqaacqt 1260 totggtgccg cattgttgtt gatttctgat gaagaattgg atgaagtctt ggcagagcat 1320 aacggtacca ttgatatgca gtgtgaatgt tgtgggacgc attatttctt caataaaqca 1380 gcgattatgc aattgaaagt agaaaaataa gtcttggtat tatggatttt qttqcaqqct 1440 atcaagatat ttgatagcct gtttttcctt tgcagcaaac gattttatga gaaaaacgcc 1500 gtcttctcac acagtagttt aggtattgca tagcatgaag cgggaaacta tgtttggcgc 1560 ttgtctgttt aaaaaggtta tctatgttag cactttcacc atcattactt gaaaaaacac 1620 ttgaaatcgc ggatcaagca ggagattttt taacgcqatt ttataccqac tcaqqqcaaa 1680 atgcgttagc aattcaaacc aaacaagata acacgccagt gactgccgtg gatttatttt 1740 tqaqtcaatt tttaattqaa aaattqaccq cactqacacc tqaqqtcccq attctttccq 1800 aagaqaqttq taaaatcccc ttacaaqatc qtqcacattq qqcaqaatat tqqttaattq 1860 acccactcga tggaacccaa caatttatta atcgcaccga tcaattttcc attttgatta 1920 cactiques acacaateaa eccqtettaa qeattaceea tqcccetatt ttacaaacqa 1980 cctattatgc tatgcagggc tttggtgctt acagaaggca gggcaatcaa caagaaaagc 2040 taaacaacca aqcqcqacct qaqcaqcqaa aaatcaaaat tqctqtqqqa qtcqqqqqcq 2100 ttgaacggaa aattcagccc ttgttaaatc cagcttatca atatgaattt ttggtttatg 2160 gttcaagtgg cttaaaaggc ggcttagtgg ccgatggcac ttgtgattgc tatattcgaq 2220 taggaaaaac gggtgaatgg gatacggggg cggctgaaat cctcttacgt gaaatgggag 2280 gtgctgtgtt tgactttgct tttcaaccgc ttagctataa tcagagagaa agttttatta 2340 atcccaattt tgtgatggta gcgaatacag aatttgattg gcagaaaatt tttcaatttc 2400 attogoacta ggcattattt attataagat gcgatatott atgacotota tttttaacaa 2460 acggatttca ggaaaaaaat gaaaattgaa qcagacaaca attgtattgt aattttttggt 2520 quatcaqqtq atttaactta togtaaattq attoctgoac tgtataactt atataaaatc 2580

ggtcgtttga ctgagcattt ctccgtgtta ggtgtggcaa gaacggaatt aagtgatgag 2640 ggtttccgtq aaaaaatgcg ccaagcgttg atcaaaagtq aaaaagcgaa tggcgaaaca 2700 ctcgatcaat tttgtagcca cctttattat caggcattaa ataccgcgga tqctqccgat 2760 tatggcaagt taattcctcg tcttgatgac ttacatgata aatatcaaac ttgtggtaac 2820 acactttact atttatctac gccgccaagc ctttatggcg tgattccaqa atgccttqcq 2880 gcacatgggt taaatactga agagtttggc tggaagcggt taattgtgga aaaaccqttt 2940 ggttatgata tacgcacggc aaaagaactc gatattcaaa ttcaccgttt ctttqatqaa 3000 caccaaattt atcgtattga ccactatctt ggtaaagaaa cggttcaaaa tctgcttgtg 3060 ttgcgttttt ctaatggatg gtttgaacca ctctggaacc gtaatttcat tqattatatt 3120 gaaatcacgg gcgcagaatc tatcggtgta gaagagcgtg gtggttatta cqatqattct 3180 ggcgcaatgc gtgatatgtt ccaaaaccat ttgttgcaag tgttagccat ggttgcgatg 3240 gagccaccag caattattaa tgccgactca atgcgtgatg aagtggcaaa agtcttgtat 3300 tgtttacatc cattaagtga ggatgactta gaaaatcatt tagtcttagg gcaatatacg 3360 gcaggcacag ttgaaggtga agcggttaag ggctacttac aggaaaaagg tgtgccqqca 3420 gagtetaata eqgaaactta catggcatta egttgtgaaa ttgacaactg geqttqqqeq 3480 ggtgtgccat tttatgtgcg tactgggaaa cggttaccaa gtcgagtgac cgaaattgtg 3540 attcatttca aaaccacacc acatccggta tttagccaaa aagcaccaga aaacaaatta 3600 attateegta tteaaceega tgaagegatt tegatgegtt ttggtttgaa aaaacegqqa 3660 gcaggttttg aagcaaaaga agtgtcgatg gatttccgtt atgcggatct tgcctcacca 3720 agettactga cegettatga gegtttatta ttggatteta tgaaaggega tgccaetttg 3780 tttgcgcgta ctgatgcggt acatqcctqt tggcaqtttq tqqaqccqat tttacaatat 3840 aaagcacaaa atgggcqtqt ttatgaqtat gaaqccqqta cttqqqqacc qacaqaagcc 3900 gacaaactga tcgcgaaaac gggtcgtgtt tggcgtaaac caagtggatt aatgaaaaag 3960 aaagtgtaat gtccgcctct ttcgtaagaa atgcgagggg ctaatgtgag cagattgagt 4020 aaggaaagat c atg aat aca atc att ttt gac agt gca cag cat gcc gta 4070 Met Asn Thr Ile Ile Phe Asp Ser Ala Gln His Ala Val gag aaa att gca caa gaa ttg tta gcg tat agc tta gaa ggt cgc cct 4118 Glu Lys Ile Ala Gln Glu Leu Leu Ala Tyr Ser Leu Glu Gly Arg Pro gtg cat att tcc tta tcc gga ggc tca acg ccg aaa ttg tta ttt aaa 4166 Val His Ile Ser Leu Ser Gly Gly Ser Thr Pro Lys Leu Leu Phe Lys act tta gct caa gca ccg tat aac acc gag att caa tgg aaa aat ttg Thr Leu Ala Gln Ala Pro Tyr Asn Thr Glu Ile Gln Trp Lys Asn Leu 50 55 60

cat His	ttt Phe	tgg Trp	tgg Trp 65	ggc Gly	gat Asp	gat Asp	cgt Arg	atg Met 70	gtg Val	cca Pro	cca Pro	acc Thr	gat Asp 75	cca Pro	gaa Glu	4262
														cag Gln		4310
cct Pro	gca Ala 95	g a a Glu	aat Asn	att Ile	cac His	cgc Arg 100	att Ile	cgt Arg	ggt Gly	gaa Glu	gcc Ala 105	ccc Pro	gtt Val	gag Glu	agt Ser	4358
gaa Glu 110	ctt Leu	cac His	cgt Arg	ttt Phe	gaa Glu 115	caa Gln	gcg Ala	cta Leu	agt Ser	gcg Ala 120	gtc Val	att Ile	cct Pro	ggg Gly	caa Gln 125	4406
gtt Val	ttt Phe	gat Asp	tgg Trp	att Ile 130	att Ile	ttg Leu	ggc Gly	atg Met	gga Gly 135	acg Thr	gac Asp	Gly ggg	cac His	acg Thr 140	gcc Ala	4454
tca Ser	tta Leu	ttc Phe	ccg Pro 145	cat His	caa Gln	acc Thr	gat Asp	ttt Phe 150	gac Asp	gat Asp	cct Pro	cat His	ttc Phe 155	gcc Ala	gtg Val	4502
														aca Thr		4550
														ggt Gly		4598
agt Ser 190	aaa Lys	gcc Ala	gag Glu	atc Ile	tta Leu 195	aaa Lys	gaa Glu	att Ile	caa Gln	act Thr 200	act Thr	ccg Pro	gca Ala	gaa Glu	caa Gln 205	4646
ctg Leu	cct Pro	tat Tyr	cct Pro	gct Ala 210	gcg Ala	aaa Lys	atc Ile	aaa Lys	gcg Ala 215	aag Lys	cat His	ggg Gly	gtg Val	acg Thr 220	gaa Glu	4694
tgg Trp	tat Tyr	ttg Leu	gat Asp 225	aag Lys	gat Asp	gcg Ala	gca Ala	aaa Lys 230	tta Leu	ctg Leu	taat	gcgt	cg 1	tgaga	ttttt	4747
caac	attt	tt c	caaa	gaga	c tt	gaaa	caaa	ata	gaco	ata	gcgt	tcgt	tt 1	caac	gagtg	4807
ctga	aaat	ga a	iggct	ctc	gt to	jaaaa	tggc	gcc	attt	agt	gggt	aago	tt a	aaggt	tcgct	4867
caga	cago	gc t	atca	aaaç	gg gt	aaaa	gaat	gta	tcaa	ctc	tatt	ttaa	tc o	acca	aaatc	4927
ttca	tggt	ca t	tacg	cgtt	t gg	gtgt	tatt	gaa	agaa	ctg	gcaa	ttcc	ett t	tgag	cctaa	4987
aatt	gtac	gt t	attt	ggat	g at	ttaa	gtga	aca	acgo	caa	caat	ttaa	gg d	gttt	tegee	5047
gact	tcaa	aa a	tccc	agta	it to	cato	ctga	tgg	tgtt	gtc	attt	ggga	ıca ç	gttta	gcgat	5107
tato	gagt	tt t	tggc	agaa	a gt	tato	cgca	cgt	gtgg	gcg	caag	ataa	igg (gaca	agagc	5167
gtgg	tcac	gt t	ctgo	ttgt	g ct	gaaa	tgca	ctc	tggc	ttt	gaaa	attt	gc g	gtgaa	atgtg	5227
tgat	ttcg	cc c	cttt	agct	c go	aaac	cgtt	aca	agaa	atg	cccg	ctgt	gt t	aago	caaga	5287
gcta	acaa	igg c	ttaa	tcaa	it ta	ttag	aaga	agg	gtta	aca	aato	acac	tg (gcga	tttaa	5347

tggaaactt cagtgetttt ggtegagtac aatectegtt gtettttte egtaattee 5407
atgatgactt tgeegettat egtgeggtgt taaategttt aaetggettt catageegeg 5467
ttaaageegge taategeeca ageaaattag tgeteacaga aagtegteat gatattegtt 5527
tteatgatet caaegtagag acceegeaag gaaaaacett aattgacaag eteaaceta 5587
aattteetet eggtacatgg ttattaatte aaggacatte tggtgtaggg aaaacaacet 5647
tgttaaggaac cattgeegga etatggeett atgetagtgg gacaatteaa egtecacaa 5707
aagatactet gtteettet caaaaacett atttgeeaca aggtegeeta ettgatgee 5767
tattttatee tgaaetggeg ectgaagaeg tgaatgagea acaagttata gacatacte 5827
egaaagtaca actegggeat ttaageegata aactagaaca agaaaatgat tggacaeggg 5887
tacteetett aggtgaacaa caaegtetge egittgeteg eatttattg eataaacet 5947
ettgttgttt ettagatgaa gecaetgeea geatgatga aggactggaa gatgegatg 6007
acegettact gaaagatgaa etgeeteaga ttactgtgat eagtgttgg eacegtegg 6007
acegettact gaaagatgaa etgeeteaga ttactgaata acaagacagg gegttgtgg 6007
acegettact gaaagatgaa caaegatata acatteaata acaagacag gegttgtgg 6027
gtetaattee geaceattea eageaattae acatteaata acaagacag gegttgtgg 6127
gtega 6132

Pro His Gln Thr Asp Phe Asp Asp Pro His Phe Ala Val Ile Ala Lys

```
145
                   150
                                      155
                                                          160
His Pro Glu Thr Gly Gln Ile Arg Ile Ser Lys Thr Ala Lys Leu Ile
Glu Gln Ala Lys Arg Val Thr Tvr Leu Val Thr Gly Ser Ser Lys Ala
Glu Ile Leu Lys Glu Ile Gln Thr Thr Pro Ala Glu Gln Leu Pro Tyr
Pro Ala Ala Lys Ile Lys Ala Lys His Gly Val Thr Glu Trp Tyr Leu
    210
                       215
Asp Lys Asp Ala Ala Lys Leu Leu
225
<210> 9
<211> 2438
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1635)..(2396)
<220>
<223> dnaA
<400> 9
gacccaatgc ttgccaccgg cggctctatg attgcgacaa tcgatcttct aaaagcgaaa 60
ggctgtaaac acattaaagt gctcgtgtta gtcgccgcgc ctgaaggcat taaagcatta 120
qaagctqcqc accctgatat cqaattatat accgcatcaq ttqataqtca cttaaatqaa 180
caaggctata ttattccaqq tcttqqtqat qccqqtqata aaatttttqq cactaaataa 240
toccaacaca agoggoatot tatgoogott tittoogito aattiatago gottacaato 300
ttaacaqctt qaacactata aaatqaaaaq ttaattcaqa caqaqagttq aaacttaaca 360
tgacaaatca aaatccccct gttcttctag aacaaaatca cgcaaaacaa gccttcgttg 420
qqctacaaat gctttttqtt qccttcqqtq ctttaqtcct tqttcccctg attacqqqtt 480
taaatqccaa tactqcctta ttqaccqcaq qqattqqqac actcttattc caactttqta 540
ctqqacqcca aqtcccaatt ttcttaqcct cttcctttqc ttttattqca ccaattcaat 600
tttattttgc cctcagtacg ttagtcaaaa ttaaaggtgc tggtgcttta caaaaagtct 720
ttccgccagt agttgttggt cccgttatta tcatcatcgg tatgggactt gcccctgttg 780
ccgtggacat ggcattaggt aaaaacagca cttatcaata taacgatgcc gtattcgttt 840
cgatggcaac attattgaca acgttaggtg ttgcggtgtt tgctaaaggc atgatgaaat 900
taattootat catgittiggt attigtogtog gotatatoot otgottatto tiaggottaa 960
```

ttaatttcca acctqtcatt qatqcacctt qqtttaqtqt qccaqaaatt actaccctq 1020 aatttaaatt agaagctatt ctttatttat taccgattgc tatcgcccca gcagttgagc 1080 atgtcggtgg gatcatggca atcagttcgg tgacagggaa agacttccta caaaaaccag 1140 gattacatcq cacttlatta qqqqatqqta ttqcaacqaq tqccqcctca ttcttaqqaq 1200 gaccacctaa tacaacttat gctgaagtca ctggtgctgt catgcttacg cgcaacttta 1260 accetaaaat catgacatgg gcagccgttt gggcaattge gattteette tgtggtaaag 1320 teggggettt cetetetace attecaacta ttgtcatggg tggcattatg atgttagtgt 1380 ttggctctat cgccgtagtc ggtatgagta cactgatccg tggtaaagtg gatgtaacag 1440 aaggggtaa totgtgtatt atttoogttg tgatgacgtt tggcatcggt ggtatgtttg 1500 tgaactttgg agaagtctcc ttaaaaggga ttagtttatg cgccgttgtc gcgattttac 1560 tcaacttaat cttacccaaa qccaaaaaca ccccaataga agaaaatcga taagagaaaa 1620 ttaagggtta agtc ttg ctt aac cct tca ttt ttc gtt tat cct tat tct Leu Leu Asn Pro Ser Phe Phe Val Tyr Pro Tyr Ser cct ttt ttc gat ttt gta ggt tgc ttt ttg tta gaa aat ttc caa tta Pro Phe Phe Asp Phe Val Gly Cys Phe Leu Leu Glu Asn Phe Gln Leu cct ttg cct att cat caa ctc gat gat gaa acg ctg gat aat ttc tat 1766 Pro Leu Pro Ile His Gln Leu Asp Asp Glu Thr Leu Asp Asn Phe Tyr ccc gac aat aat tta ttg ttg ctc aat tcg cta cgc aaa aat ttt act 1814 Pro Asp Asn Asn Leu Leu Leu Leu Asn Ser Leu Arg Lys Asn Phe Thr tgt cta aca caa caa ttt ttt tat att tgg ggc gag caa agc agt ggt 1862 Cys Leu Thr Gln Gln Phe Phe Tyr Ile Trp Gly Glu Gln Ser Ser Gly aaa agt cac ctc tta aaa ggc att act cat cat ttt ttc ctt tta cag 1910 Lys Ser His Leu Leu Lys Gly Ile Thr His His Phe Phe Leu Leu Gln 8 n cgc ccc gct atc tat gtg ccc tta gaa aaa tcc caa tat ttc tca ccg 1958 Arg Pro Ala Ile Tyr Val Pro Leu Glu Lys Ser Gln Tyr Phe Ser Pro gcg gta ctc gaa aac tta gaa caa caa caa ttg gtt tgt tta gat aat 2006 Ala Val Leu Glu Asn Leu Glu Gln Gln Gln Leu Val Cys Leu Asp Asn 115 110 tta cag gca att ata ggc aat act gaa tgg gaa tta gcg att ttt gat Leu Gln Ala Ile Ile Gly Asn Thr Glu Trp Glu Leu Ala Ile Phe Asp 130 135 tta ttt aat cgc ata aaa tct gtt gaa aat aca ctg ctt gtg atc agt 2102 Leu Phe Asn Arg Ile Lys Ser Val Glu Asn Thr Leu Leu Val Ile Ser gca aat caa tcc cca act gca tta cct gta agt tta cct gac tta gct 2150

Ala	Asn	Gln	Ser 160	Pro	Thr	Ala	Leu	Pro 165	Val	Ser	Leu	Pro	Asp 170	Leu	Ala	
	egt Arg															2198
	caa Gln 190															2246
	ctc Leu															2294
	atg Met															2342
tta Leu	caa Gln	gcc Ala	caa Gln 240	cgt Arg	aaa Lys	tta Leu	acg Thr	att Ile 245	ccc Pro	ttt Phe	gta Val	aaa Lys	gaa Glu 250	att Ile	tta Leu	2390
	cta Leu	taaa	aaaa	aga (ccac	eteti	t at	cag	gtgai	cti	tct	gtc	ga			2438
<21 <21	0 > 10 1 > 29 2 > Pl	54 RT														
<21	3 > P	aste	irel.	la m	lto	cida										
<40	3> Pa 0> 10 Leu	,					Val	Tyr	Pro 10	Tyr	Ser	Pro	Phe	Phe 15	Asp	
<40 Leu 1	0 > 10) Asn	Pro	Ser 5	Phe	Phe			10					15		
<40 Leu 1 Phe	0> 10 Leu	Asn Gly	Pro Cys 20	Ser 5 Phe	Phe Leu	Phe Leu	Glu	Asn 25	10 Phe	Gln	Leu	Pro	Leu 30	15 Pro	Ile	
<40 Leu 1 Phe	0> 10 Leu Val	Asn Gly Leu 35	Pro Cys 20 Asp	Ser 5 Phe Asp	Phe Leu Glu	Phe Leu Thr	Glu Leu 40	Asn 25 Asp	10 Phe Asn	Gln Phe	Leu Tyr	Pro Pro 45	Leu 30 Asp	15 Pro Asn	Ile Asn	
<40 Leu 1 Phe His	0> 10 Leu Val Gln Leu	Asn Gly Leu 35 Leu	Pro Cys 20 Asp Leu	Ser 5 Phe Asp Asn	Phe Leu Glu Ser	Phe Leu Thr Leu 55	Glu Leu 40 Arg	Asn 25 Asp Lys	10 Phe Asn Asn	Gln Phe Phe	Leu Tyr Thr 60	Pro Pro 45 Cys	Leu 30 Asp Leu	Pro Asn Thr	Ile Asn Gln	
<40° Leu 1 Phe His Leu Gln 65	Val Gln Leu 50	Asn Gly Leu 35 Leu	Pro Cys 20 Asp Leu Tyr	Ser 5 Phe Asp Asn	Phe Leu Glu Ser Trp 70	Phe Leu Thr Leu 55	Glu Leu 40 Arg Glu	Asn 25 Asp Lys	10 Phe Asn Asn Ser	Gln Phe Phe Ser 75	Leu Tyr Thr 60 Gly	Pro Pro 45 Cys	Leu 30 Asp Leu Ser	Pro Asn Thr	Ile Asn Gln Leu 80	
c400 Leu 1 Phe His Leu Gln 65 Leu	Val Gln Leu 50	Asn Gly Leu 35 Leu Phe	Pro Cys 20 Asp Leu Tyr	Ser 5 Phe Asp Asn Ile	Phe Leu Glu Ser Trp 70	Phe Leu Thr Leu 55 Gly	Glu Leu 40 Arg Glu Phe	Asn 25 Asp Lys Gln	10 Phe Asn Asn Ser Leu 90	Gln Phe Phe Ser 75 Leu	Leu Tyr Thr 60 Gly	Pro Pro 45 Cys Lys	Leu 30 Asp Leu Ser	Pro Asn Thr His Ala 95	Ile Asn Gln Leu 80	
<400 Leu 1 Phe His Leu Gln 65 Leu	0> 10 Leu Val Gln Leu 50 Phe	Asn Gly Leu 35 Leu Phe Gly	Pro Cys 20 Asp Leu Tyr Ile Leu Lou	Ser 5 Phe Asp Asn Ile Thr 85 Glu	Phe Leu Glu Ser Trp 70 His	Phe Leu Thr Leu 55 Gly His	Glu Leu 40 Arg Glu Phe	Asn 25 Asp Lys Gln Phe	10 Phe Asn Asn Ser Leu 90 Phe	Gln Phe Phe Ser 75 Leu Ser	Leu Tyr Thr 60 Gly Gln Pro	Pro 45 Cys Lys Arg	Leu 30 Asp Leu Ser Pro	Pro Asn Thr His Ala 95 Leu	Ile Asn Gln Leu 80 Ile Glu	
c400 Leu 1 Phe His Leu Gln 65 Leu Tyr	O> 10 Leu Val Gln Leu 50 Phe Lys	Asn Gly Leu 35 Leu Phe Gly Pro Glu 115	Pro Cys 20 Asp Leu Tyr Ile Leu 100 Gln	Ser 5 Phe Asp Asn Ile Thr 85 Glu Gln	Phe Leu Glu Ser Trp 70 His Lys	Phe Leu Thr Leu 55 Gly His Ser Leu	Glu Leu 40 Arg Glu Phe Gln Val	Asn 25 Asp Lys Gln Phe Tyr 105 Cys	10 Phe Asn Asn Ser Leu 90 Phe	Gln Phe Phe Ser 75 Leu Ser Asp	Leu Tyr Thr 60 Gly Gln Pro	Pro 45 Cys Lys Arg Ala Leu 125	Leu 30 Asp Leu Ser Pro Val 110	Pro Asn Thr His Ala 95 Leu Ala	Ile Asn Gln Leu 80 Ile Glu Ile	

16

```
Pro Thr Ala Leu Pro Val Ser Leu Pro Asp Leu Ala Ser Arg Leu Arg
Trp Gly Glu Ser Tyr Gln Leu Val Pro Leu Asn Asp Gln Gln Lys Ile
His Val Leu Gln Lys Asn Ala His Gln Arq Gly Ile Glu Leu Pro Asp
                            200
Glu Val Ala Asn Phe Leu Leu Lys Arg Leu Glu Arg Asp Met Lys Thr
    210
                        215
Leu Phe Glu Ala Leu Ser Lys Leu Asp Lys Ala Ser Leu Gln Ala Gln
Arg Lys Leu Thr Ile Pro Phe Val Lys Glu Ile Leu Lys Leu
<210> 11
<211> 2060
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (856)..(1389)
<220>
<223> dsbB
<400> 11
gaattettet taegtatget cecagteacg ttgccagtte teatttgtgg tttagtgace 60
tgcttcttag tggaaaaatt tggtgtattt ggctatggcg ccaaattgcc acgtaaagta 120
tggggcatct tggcaaagtt tgatcgcaat aatcaacaa aaatgtcacg acaagatcgt 180
ttgaaacttt ttgtgcaage tttaattggt atttggttgg ttgttggact cgcattccat 240
ctcgccgccg tcggtatcat tggtttaacg gtgattattt tggctacttc attttgtgqt 300
gtcaccagcg agcatgctat tggtaaaqcc tttcaqqaat ccttaccctt cacaqcattq 360
ttagtggtgt tetteteggt tgttgeegte atcattgace aacatetgtt tgcgccaatt 420
atteagtttg tgctggctgc cagtgaacat acteagettg ctcttttcta tatttttaac 480
ggtttgttat ccgccatttc agataatgtg tttqtqqcca caqtttatat caatqaaacc 540
aaageggcat tagaggctgg cttaattgct caaccacaat atgaattact ggcagtagca 600
attaataccq qtaccaatct tccttctqtt qcaaccccaa atqqtcaaqc cqcattctta 660
ttttttattga cctcatcact ggcaccatta attcgtcttt cttatggtag aatggtttat 720
atggcattgc cttataccat cgtattatcc tgtattggtt tattgactgt ggaatatatt 780
ttgcctggcg caaccaatgt gctcattcaa attggtttat taaaaccaat gtaatgacaa 840
gtaaaaggag gaaac atg cta agc ttt ttt aag aca ctc tca aca aaa cga 891
                Met Leu Ser Phe Phe Lys Thr Leu Ser Thr Lys Arg
                  1
                                                      10
```

														gct Ala		939
gct Ala	ctt Leu 30	tat Tyr	ttt Phe	caa Gln	cat His	ggc Gly 35	atg Met	ggg Gly	ctc Leu	gcc Ala	cct Pro 40	tgt Cys	gtc Val	atg Met	tgt Cys	987
														tta Leu		1035
														tta Leu 75		1083
														acc Thr		1131
tta Leu	gat Asp	cta Leu 95	caa Gln	ctt Leu	tac Tyr	cct Pro	gca Ala 100	cct Pro	tgg Trp	aaa Lys	caa Gln	tgt Cys 105	tca Ser	gcg Ala	gtg Val	1179
gca Ala	gaa Glu 110	ttt Phe	ccc Pro	gag Glu	act Thr	tta Leu 115	ccc Pro	tta Leu	gat Asp	cag Gln	tgg Trp 120	ttt Phe	cct Pro	gca Ala	ctc Leu	1227
ttc Phe 125	ctc Leu	cct Pro	tca Ser	ggc Gly	tca Ser 130	tgc Cys	agt Ser	gaa Glu	gta Val	aca Thr 135	tgg Trp	caa Gln	ttt Phe	ctc Leu	ggc Gly 140	1275
ttt Phe	tct Ser	atg Met	gtg Val	caa Gln 145	tgg Trp	atc Ile	gtc Val	gtc Val	att Ile 150	ttt Phe	gca Ala	ctc Leu	tat Tyr	acc Thr 155	tta Leu	1323
tta Leu	ct t Leu	gct Ala	ctc Leu 160	att Ile	ttc Phe	atc Ile	agc Ser	caa Gln 165	gtc Val	aaa Lys	egt Arg	cta Leu	aaa Lys 170	ccc Pro	aag Lys	1371
cag Gln	cgc Arg	aga Arg 175	ctc Leu	ttt Phe	cat His	taag	gtcat	aa a	aaat	ggtg	jc ga	taaa	agcad	2		1419
catt	tttc	at t	tctc	gtto	g gt	atac	atta	aat	ttct	tgc	acga	caaa	ct c	gcago	gaatg	1479
tctt	gcta	at a	atct	tgct	t ta	cgct	gctt	taa	gcgt	ttt	aaac	gtaa	tg c	gegt	ccttg	1539
tgat	aaac	ga t	ataa	tttt	t tt	gtc	gctt	caa	aaag	ctt	ttac	gtct	cg c	cata	ctett	1599
ceto	ttat	tg t	gtcg	ttac	g gt	tgto	gcta	acc	tato	cgt	ttct	ttct	tg a	tttc	gttga	1659
tgtt	ttct	at t	tcgg	cggc	t to	tgta	tcta	ato	tttc	ttc	aatt	tgtg	ct t	gctg	taccc	1719
gata	ataa	tg o	acaa	tgct	g tt	cata	taac	gac	ggat	att	ttcc	acat	ag t	gata	tgctt	1779
cata	gcct	cg c	gcat	acco	g ta	tttt	aacc	ccc	tgta	ata	gcgt	tttt	ct g	gctaa	tagtg	1839
gcaa	atto	ett o	ttca	cato	t aa	ccaa	ttat	cgg	gato	acc	acct	aggo	tc t	tggt	taaac	1899
ggcg	cgca	itc t	aaca	aatç	ge ee	taat	ссса	tat	tata	cgc	cgct	aagg	jca a	acca	aatac	1959
gctc	atct	tc t	ttaa	tcgt	a to	aggo	attt	gcg	taat	aag	ccaa	tgta	aa t	atto	tgaac	2019

```
eggetttaat actitigtice ggateegtte titettgaat t
                                                                   2060
<210> 12
<211> 178
<212> PRT
<213> Pasteurella multocida
<400> 12
Met Leu Ser Phe Phe Lys Thr Leu Ser Thr Lys Arg Ser Ala Trp Phe
Leu Leu Phe Ser Ser Ala Leu Leu Leu Glu Ala Ile Ala Leu Tyr Phe
Gln His Gly Met Gly Leu Ala Pro Cys Val Met Cys Ile Tyr Glu Arg
Val Ala Ile Leu Gly Ile Ala Phe Ser Gly Leu Leu Gly Leu Leu Tyr
Pro Ser Ser Met Leu Leu Arg Leu Val Ala Leu Leu Ile Gly Leu Ser
Ser Ala Ile Lys Gly Leu Met Ile Ser Ile Thr His Leu Asp Leu Gln
Leu Tyr Pro Ala Pro Trp Lys Gln Cys Ser Ala Val Ala Glu Phe Pro
Glu Thr Leu Pro Leu Asp Gln Trp Phe Pro Ala Leu Phe Leu Pro Ser
Gly Ser Cys Ser Glu Val Thr Trp Gln Phe Leu Gly Phe Ser Met Val
Gln Trp Ile Val Val Ile Phe Ala Leu Tyr Thr Leu Leu Leu Ala Leu
Ile Phe Ile Ser Gln Val Lys Arg Leu Lys Pro Lys Gln Arg Arg Leu
Phe His
<210> 13
<211> 4426
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (2756)..(3211)
<220>
<223> exbB
<400> 13
gaattettga cetggtgtga ggettttatt gaetteeace eeaattgege qttettteac 60
tttattaata aagtcacgta ccactggtaa cgccacatcc gcttctaata atgccatgcg 120
```

gacttcacgt agcgtttcct taatattgtc atcagttaaa cgtccacgtc cactaatgtt 180 acgtagegtt tttgacaage gateegacaa atteteaaac atgcaatett cetatttaat 240 ctcgaaaaaa ttgccctaat tatactgaaa tcccatagat tttcatcctt tgtaataaat 300 ttatagcgat ttcacagtga gaaagttaga atggacggag aacaaaggtg agggaatttc 360 aatgtggctt tcaatttttt ccgtgttttt ttatctattg agtgtcttac tcattacccc 420 tatgttgtta aaaattcaag cgggcgaacc cgcatcggtt cccaatagga tgccttttt 480 aacggcagca ttactcgcca ttcttctgca ctttatcaat cttattcctc tttttaccga 540 tttaaccagc ggtcaaaatt tctcggttat cgaaatcagt tccttaatca gtgttatgac 600 agcaacgatc gccacattag cgtttttatt tcgcatacac actttatggt ttttattacc 660 gattatttat totttogcca toattaatot ggtootcagt accttaatgo cggcgcattt 720 tttatatcat cttaatcaag atatgggctt atttattcat gtaggcttat cactgttgac 780 ttattcggtc tgttcgattg tcgcgttata ttccattcaq ttaqtttqqa tcqatcgcgc 840 cttaaaaaat aaaaaactgc ctttttcacc aatgattcca ccgttaatga ccgtagagcg 900 ccattttttt cgtttaatgc tgataggtga aatattactc acgattgtcc tcatttcagg 960 gagetaceat ttategaaaa eetttgeece acaagacate cagaaagetg ttttttettt 1020 cttggcttgg atagtctttg ggagtgcact ggttggtcat tggaagctcc attggcgtgg 1080 aaaaaaagtg gtgtattatg cgcttttagg tatcattctc ctgactatcg cctattttgg 1140 tagtcgtgta atgcttgaaa tataaacaag atttatttat gctacgccat agtaaaaqtq 1200 cggttcaaaa aacgaaaaaa tgaccgcact tttcgatttt tgattaactc gcaaaaggat 1260 gcattttgga cagtattccc cttagtaccc tctttattac actcatcatc ttattgatca 1320 tototgotta titticaggo totgaaacog gittgitgic igocaatogi talogaciac 1380 gccatttagc cgaaaaaggg catagaggtg cgaaaaaagc ggaaaaatta ctgaaaaaaa 1440 cagatgtttt gcttagcctg attttaattt gtaataactt agtcaatatt actgcttctq 1500 ccattaccac gattatcggc atgcgcttat atggcgatgc gggagtcgcc attgcaactg 1560 gggcattaac ctttgtgatg cttatttttg ccgaaatttt gccgaaaact atcgccgccc 1620 gttatccaga aaaagtggca ttcacgtcca gtcatttgtt gtccgttttt ctgcgacttt 1680 ttaccccgct ggtctattta atgaatttaa ttattcaggg gattttggca ctattacgtc 1740 taaaatcaga taataaatca acctcattaa gcccagagga attacgttcc atcgtaaatg 1800 aatcaggtaa atttattoot toogoocaco aagaaatgot gttatotatt ttggatttag 1860 aaggggtcac cgtagatgac attatggtgc cacgtaatga cattgggggt attgatattg 1920 acgatgattg gaaagccatt atgcgtcaac ttaaccatgc agcgcacggg cgtgttgtac 1980 tgtataaagg aaatatggat gaaaatattt tggggatgtt acgtgtacgt gaagcctatc 2040

gettaatget egataaaaat gaatttaaca aagaaacttt aateegtgee geegatgaag 2100 tgtattttat teetgaaggt aegecaetga atagecaatt attaaattte egeaacaata 2160 aagaaaggat tggtttagtt gtagatgaat atggtgatat taaaggctta gtcaccttag 2220 aaqatatett aqaaqaqatt qtcqqtqaat ttaccaette aacaqeeeca tcaattaacq 2280 atgaagttat cccacaatca gacggttegc ttatcattga gggatcegcc aatttacgtg 2340 atttgaataa attatttgac tggaatctcg ataccgaaga tgcacgtacc ttcaacggct 2400 taattttaga gcatttagaa gaaattccag aagaaggaac ggtatgtgaa attaatgggc 2460 tacaaatcac qattctagaa qtqaatqaca acatqattaa acaagccaaa qtcattaaac 2520 tttaattcaa catctggcta agcgatgtca tcaagacatc gcttttttat tccgtacatg 2580 aatqtttqat ccaacacaac atttattcaa cattqqataa ataatcatcc taaatcqcac 2640 gaatttetta titaeceegt tittiggetti tgetagaate tigeaattga aattaattet 2700 caataccgta taatgttcaa cattattttg cgatacaaat taaaggatta ttaaa atg 2758 Met cca caa tta ttc caa ttc tta caa caa tat att gat tac att att cta 2806 Pro Gln Leu Phe Gln Phe Leu Gln Gln Tyr Ile Asp Tyr Ile Ile Leu ggc tta ctt gcc ttc atg agc ttt att atg gtt tgg ctt gtg att gaa 2854 Gly Leu Leu Ala Phe Met Ser Phe Ile Met Val Trp Leu Val Ile Glu cgc ttt ctt ttc tta agt cgc gtc aac gtg gca tct tat gaa agc ata 2902 Arg Phe Leu Phe Leu Ser Arg Val Asn Val Ala Ser Tyr Glu Ser Ile 35 cat gaa tta gac att gac tta caa cgc cac ctc aca gct atc tct aca 2950 His Glu Leu Asp Ile Asp Leu Gln Arg His Leu Thr Ala Ile Ser Thr ate ggt tet aat gea eet tat gta ggt ttg ett ggt ace gte att ggt 2998 Ile Gly Ser Asn Ala Pro Tyr Val Gly Leu Leu Gly Thr Val Ile Gly att etc tta act tte tat gaa tta ggt eac tee ggt gge gat att gat 3046 Ile Leu Leu Thr Phe Tyr Glu Leu Gly His Ser Gly Gly Asp Ile Asp gcg gcg gcc att atg gtg cac tta tca tta gcc tta aaa gcc aca qca 3094 Ala Ala Ala Ile Met Val His Leu Ser Leu Ala Leu Lys Ala Thr Ala 105 gta ggt att tta gtc gcc att cct gca atg gtg tgt tac aac ggt tta 3142 Val Gly Ile Leu Val Ala Ile Pro Ala Met Val Cys Tyr Asn Gly Leu 120 gga cgt aaa gtc gaa gtt aat cgt ttg aaa tgg ttt gcc tta aat gag 3190 Gly Arg Lys Val Glu Val Asn Arg Leu Lys Trp Phe Ala Leu Asn Glu aaa aaa gcc aaa caa gca tagggagccg tcatgaaaaa gtttgatgaa 3241

Lys Lys Ala Lys Gln Gln Ala

atcaacatta tecettttat teacateate tteetatt teetateet teteattaca 3301 qcctctttta tttcacaagg taaaatccaa gtgaatgtac caaaagcaag ttcaacagtt 3361 gcqtttcqtt caqatqattt agccaaattg ctgactatta cqqaaaqcqq tgaaattttt 3421 tatcacgata aaccgattac gatagaggc. ttggaacaag aaatcagtaa ttgggaaaaa 3481 gatcaaaaag tcaccttgaa ggtagatgca aaatccagtt tccaagattt cgtttctatc 3541 actgatatta tggctaaaaa tgaaattaaa aatgtcgcta tcgtgacggt taaagaaaag 3601 gcatctcaat gatagataaa agtcgttctt gcatcgggtt tgcaatttca ttgctttttc 3661 acqcaaqttt tqtctctttc ctqtattqqa ttqtacaaaa aqacqatqac aqcqcqaatq 3721 gatttgctgc cgatatcatc tcaactcata tttccatgga aatgctggcg gctaccgttt 3781 tagaagaacc agagccggaa ccagagccgg cgcctccggt agtagaacct gaactgccaa 3841 aaqaaqtaqt cqcaqatccq acqqtaaaac ctqaqccacc aaaaqaaccc qaaaaaccaa 3901 aagagcctga aaagccaaaa gagaaaccga aagaaaaacc aaaagaaaag ccgaaaaaac 3961 cqaaqaaaqa acaacqtqat ttaccaaaqt caqatcqcca aattqattct aattcatcqa 4021 tcaatcaaca agegaccaca acaggeaaca tcacaaccaa taatcegaat ctggteggta 4081 aaggtaatag cacagatgaa gtcaatgctt atcgctcggc tttacgcaga gaaattgaaa 4141 aacataaacg ctatccaaac cgtgcacgca tgatgcgcaa acaaggtgtg gtaacaatca 4201 cgttccatct taataatgcc ggcgtaatta gtaatgcgcg aatcagcaaa tcttccqqct 4261 cagaagaatt agataacgct gcactggtag ctgtcaataa tgcccqtcca attgqtccac 4321 tgcctgttgg tatgccaaat gaagtgageg ttcctgtcag tttcagaatc acaaattaaa 4381 aaagtgcggt aaaatttacc gcactttttt ctctctatta gaatt 4426

<210> 14 <211> 152

<212> PRT <213> Past

<213> Pasteurella multocida

¹²¹³⁷ Fasteurella multocio

Met Pro Gln Leu Phe Gln Phe Leu Gln Gln Tyr Ile Asp Tyr Ile Ile 1 5 10 15

Leu Gly Leu Leu Ala Phe Met Ser Phe Ile Met Val Trp Leu Val Ile
20 25 30
Glu Arg Phe Leu Phe Leu Ser Arg Val Asn Val Ala Ser Tyr Glu Ser

^{35 40 45}Ile His Glu Leu Asp Ile Asp Leu Gln Arg His Leu Thr Ala Ile Ser
50 56

Thr Ile Gly Ser Asn Ala Pro Tyr Val Gly Leu Leu Gly Thr Val Ile

75

70

```
65
                                                              80
Gly Ile Leu Leu Thr Phe Tyr Glu Leu Gly His Ser Gly Gly Asp Ile
Asp Ala Ala Ala Ile Met Val His Leu Ser Leu Ala Leu Lys Ala Thr
                                 105
Ala Val Gly Ile Leu Val Ala Ile Pro Ala Met Val Cys Tyr Asn Gly .
Leu Gly Arg Lys Val Glu Val Asn Arg Leu Lys Trp Phe Ala Leu Asn
Glu Lys Lys Ala Lys Gln Gln Ala
                    150
<210> 15
<211> 6876
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (534)..(6863)
<220>
<223> fhaB1
<400> 15
agatqcqtqa tctqatcctt caactcaqca aaaqttcqat ttattcaaca aaqccqccqt 60
cccqtcaaqt caqcqtaatq tctqccaqtq ttacaccaat taaccaattc tqattagaaa 120
aactcatcga gcatcaaatg aaactgcaat ttattcatat caggattatc aataccatat 180
ttttgaaaaa gccgtttctg taatgaagga gaaaactcac cgaggcagtt ccataggatq 240
gcaagateet ggtateggte tgegatteeg actegteeaa cateaataca acetattaat 300
ttcccctcgt caaaaataag gttatcaagt gagaaatcac catgagtgac gactgaatcc 360
ggtgagaatg gcaaaagctt atgcatttct ttccaqactt gttcaacagg ccagccatta 420
cgctcgtcat caaaatcact cgcatcaacc aaaccgttat tcattcgtga ttgcgcctga 480
gegagaegaa ataegegate getgttaaaa ggacaattae aaacaggaat ega atg
                                                                   536
                                                            Met
caa cog gog cag gaa cac tgo cag ogo ato aac aat att gtt aac caa
Gln Pro Ala Gln Glu His Cys Gln Arg Ile Asn Asn Ile Val Asn Gln
gaa aac ggt tta ttc cat aca ctc qqt aat atq atq tta qaa qca qaq
                                                                   632
Glu Asn Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala Glu
cgt tct gtt tat aat att ggc gat att tat gcg agt aaa aaa tta aca
                                                                   680
Arg Ser Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu Thr
     35
                         40
                                             45
```

gtt Val 50	cat His	act Thr	cat His	aat Asn	ttg Leu 55	att Ile	aat Asn	gat Asp	gtg Val	cgt Arg 60	tta Leu	tct Ser	ggc Gly	aat Asn	gtg Val 65	728
agt Ser	tat Tyr	aag Lys	cct Pro	atc Ile 70	ggt Gly	tca Ser	agt Ser	cgt Arg	gat Asp 75	tat Tyr	gat Asp	atc Ile	agt Ser	cgt Arg 80	gtt Val	776
gcg Ala	gta Val	cat His	ggt Gly 85	tgg Trp	cac His	aat Asn	aat Asn	gtt Val 90	tat Tyr	aag Lys	ctc Leu	aac Asn	tta Leu 95	aat Asn	cta Leu	824
caa Gln	gaa Glu	caa Gln 100	gat Asp	aaa Lys	acc Thr	gat Asp	att Ile 105	aaa Lys	gtt Val	gtg Val	aaa Lys	atg Met 110	Gly 999	gct Ala	atc Ile	872
cgt Arg	tct Ser 115	gat Asp	ggt Gly	gat Asp	ttt Phe	gac Asp 120	ttt Phe	aag Lys	gga Gly	ata Ile	aag Lys 125	gcg Ala	aca Thr	tca Ser	tca Ser	920
gaa Glu 130	tca Ser	aaa Lys	ccg Pro	cag Gln	tta Leu 135	att Ile	aat Asn	cat His	gga Gly	tta Leu 140	att Ile	aat Asn	gtc Val	aaa Lys	gga Gly 145	968
aca Thr	ttt Phe	aat Asn	gcg Ala	gaa Glu 150	gct Ala	gat Asp	caa Gln	gtg Val	gtg Val 155	aac Asn	caa Gln	atg Met	aaa Lys	gcg Ala 160	ttt Phe	1016
aac Asn	caa Gln	aat Asn	gca Ala 165	tta Leu	gca Ala	agc Ser	gtg Val	ttt Phe 170	aag Lys	aat Asn	cca Pro	gcg Ala	aaa Lys 175	atc Ile	acg Thr	1064
														tcg Ser		1112
														gcc Ala		1160
														gaa Glu		1208
ttt Phe	agt Ser	gct Ala	tat Tyr	cag Gln 230	ctt Leu	cta Leu	tct Ser	cat His	att Ile 235	cag Gln	cat His	tca Ser	cca Pro	atg Met 240	tac Tyr	1256
caa Gln	aaa Lys	gcg Ala	atg Met 245	gca Ala	caa Gln	gtg Val	ttt Phe	ggt Gly 250	gca Ala	gag Glu	tgg Trp	cat His	agt Ser 255	aaa Lys	tcc Ser	1304
tat Tyr	gat Asp	gag Glu 260	atg Met	cga Arg	aac Asn	aaa Lys	tgg Trp 265	aaa Lys	agc Ser	ttt Phe	aaa Lys	gaa Glu 270	aat Asn	cca Pro	aca Thr	1352
gat Asp	ttc Phe 275	att Ile	tat Tyr	tac Tyr	cca Pro	tca Ser 280	gaa Glu	aaa Lys	gca Ala	aaa Lys	atc Ile 285	cta Leu	gcg Ala	gga Gly	a a a Lys	1400
														gaa Glu		1448

										aaa Lys						1496
cca Pro	tca Ser	gta Val	gag Glu 325	ctt Leu	aaa Lys	gcg Ala	gag Glu	Phe 330	agt Ser	gat Asp	aaa Lys	gaa Glu	cgt Arg 335	ttg Leu	gaa Glu	1544
gag Glu	gac Asp	999 Gly 340	gta Val	gat Asp	tta Leu	tcc Ser	tcg Ser 345	atc Ile	gcc Ala	gaa Glu	ctc Leu	tta Leu 350	gaa Glu	atg Met	cca Pro	1592
										gaa Glu						1640
ect Pro 370	att Ile	gag Glu	gat Asp	cta Leu	gat Asp 375	gaa Glu	gaa Glu	cca Pro	cgt Arg	aaa Lys 380	aat Asn	ctg Leu	gat Asp	ata Ile	gaa Glu 385	1688
gaa Glu	agc Ser	cat His	tct Ser	aat Asn 390	tca Ser	tcg Ser	gat Asp	gac Asp	gtg Val 395	ctt Leu	agc Ser	atg Met	aat Asn	gat Asp 400	gat Asp	1736
gag Glu	tct Ser	gat Asp	aca Thr 405	gac Asp	gat Asp	agc Ser	aag Lys	tgg Trp 410	agt Ser	atg Met	ggc Gly	aat Asn	gat Asp 415	gag Glu	aaa Lys	1784
										cgt Arg						1832
										tat Tyr						1880
Phe 450	ttt Phe	gaa Glu	aat Asn	ggt Gly	tat Tyr 455	ctc Leu	ttg Leu	aat Asn	gag Glu	cta Leu 460	cta Leu	cag Gln	gag Glu	ctt Leu	gga Gly 465	1928
gaa Glu	gag Glu	ccg Pro	tta Leu	cta Leu 470	aaa Lys	gaa Glu	999 999	gaa Glu	gat Asp 475	cat His	ttt Phe	aaa Lys	cgt Arg	tct Ser 480	acc Thr	1976
										caa Gln						2024
										aca Thr						2072
										cac His						2120
										tca Ser 540						2168
cgt Arg	gtt Val	gaa Glu	gaa Glu	cgt Arg 550	aag Lys	caa Gln	gag Glu	gaa Glu	aaa Lys 555	cgt Arg	caa Gln	gcg Ala	caa Gln	gat Asp 560	aaa Lys	2216

	gct Ala															2264
	cgc Arg															2312
	aaa Lys 595															2360
gaa Glu 610	cag Gln	aaa Lys	caa Gln	aaa Lys	gct Ala 615	gag Glu	gag Glu	aaa Lys	gtt Val	gca Ala 620	caa Gln	gaa Glu	aga Arg	tta Leu	gac Asp 625	2408
att Ile	gaa Glu	caa Gln	cag Gln	aaa Lys 630	gcg Ala	tat Tyr	gaa Glu	gaa Glu	atg Met 635	gcg Ala	aag Lys	cga Arg	gag Glu	gca Ala 640	gag Glu	2456
	tca Ser															2504
gtg Val	gaa Glu	act Thr 660	gat Asp	cca Pro	ctt Leu	ttc Phe	cgt Arg 665	aca Thr	aaa Lys	ttg Leu	aaa Lys	tat Tyr 670	atc Ile	aat Asn	caa Gln	2552
	gac Asp 675															2600
aca Thr 690	aaa Lys	ggt Gly	cat His	caa Gln	aaa Lys 695	gta Val	aat Asn	gtg Val	tta Leu	999 Gly 700	gat Asp	aac Asn	tat Tyr	ttt Phe	gat Asp 705	2648
	caa Gln															2696
	caa Gln															2744
	aat Asn						Gln									2792
		, 40					745					750				
	tta Leu 755	act					gct	aac	ttg	acc	caa	750 gat	atc			2840
Ala	Leu	act Thr	Lys acg	Glu	Gln gta	Gln 760 aag	gct Ala ggc	aac Asn aaa	ttg Leu gat	acc Thr	caa Gln 765 ttt	750 gat Asp gtt	atc Ile Cca	Val	Trp	2840 2888
tat Tyr 770	Leu 755 gtc	act Thr aaa Lys	Lys acg Thr	Glu aag Lys gaa	gta Val 775	Gln 760 aag Lys ctc	gct Ala ggc Gly gta	aac Asn aaa Lys gaa	ttg Leu gat Asp	acc Thr gtg Val 780 caa	caa Gln 765 ttt Phe	750 gat Asp gtt Val	atc Ile cca Pro	Val aag Lys	Trp gtt Val 785 tta	

gtg Val	gtg Val	aat Asn 820	acc Thr	999 Gly	aca Thr	tta Leu	gct Ala 825	61 y 99 9	aga Arg	aaa Lys	ctc Leu	aat Asn 830	gtt Val	gaa Glu	gcg Ala	3032
agt Ser	aat Asn 835	aaa Lys	atc Ile	aaa Lys	aat Asn	caa Gln 840	ggg Gly	agt Ser	atc Ile	tta Leu	agt Ser 845	act Thr	caa Gln	gaa Glu	aca Thr	3080
cgt Arg 850	tta Leu	gtc Val	999 999	cgt Arg	aaa Lys 855	ggt Gly	att Ile	gaa Glu	aac Asn	gta Val 860	tct Ser	cgt Arg	tca Ser	ttt Phe	gca Ala 865	3128
aat Asn	gat Asp	gaa Glu	tta Leu	gga Gly 870	gtc Val	act Thr	gca Ala	caa Gln	cgc Arg 875	tca Ser	gaa Glu	atc Ile	aaa Lys	acg Thr 880	gaa Glu	3176
ggt Gly	cat His	tta Leu	cat His 885	ctt Leu	gaa Glu	aca Thr	gat Asp	aag Lys 890	gat Asp	tca Ser	act Thr	att Ile	gat Asp 895	gta Val	caa Gln	3224
						aaa Lys										3272
aat Asn	ctc Leu 915	aaa Lys	aat Asn	aca Thr	tac Tyr	aat Asn 920	act Thr	aaa Lys	cat His	gcc Ala	tac Tyr 925	cgt Arg	gag Glu	aaa Lys	ttc Phe	3320
tcg Ser 930	ccg Pro	agt Ser	gca Ala	cta Leu	caa Gln 935	gtt Val	gca Ala	gaa Glu	ctt Leu	gat Asp 940	gtg Val	gca Ala	999 999	ctt Leu	aaa Lys 945	3368
						tcg Ser										3416
agt Ser	gag Glu	gca Ala	act Thr 965	tca Ser	gag Glu	gga Gly	tca Ser	atc Ile 970	ttc Phe	gaa Glu	gta Val	G1y 999	cac His 975	tta Leu	cat His	3464
						gtg Val										3512
					Val	gtg Val 1000				Phe						3560
aag Lys 1010	Asn	att Ile	aaa Lys	His	gtc Val 1015	gaa Glu	aaa Lys	gaa Glu	Glu	tat Tyr 1020	agt Ser	tca Ser	cag Gln	Leu	Phe 1025	3608
gct Ala	tca Ser	gca Ala	His	gcg Ala 1030	agt Ser	ggt Gly	ggt Gly	Gly	acc Thr	tca Ser	gtt Val	cgt Arg	Tyr	gac Asp 1040	tat Tyr	3656
aac Asn	agc Ser	Gln	gat Asp 1045	ggt Gly	ggc Gly	aat Asn	Ala	tct Ser 1050	gtt Val	ggt Gly	gtt Val	Pro	aca Thr 1055	aac Asn	cat His	3704
act Thr	Gly	gtt Val L060	99 9 Gly	gca Ala	gag Glu	gca Ala	gga Gly 1065	atg Met	tca Ser	ttc Phe	Thr	cat His 1070	acc Thr	aaa Lys	gac Asp	3752

				aa gtc aaa cat In Val Lys His	3800
ggg aaa tta Gly Lys Leu 1090	cat gtg ctt His Val Leu 1099	Gly Tyr Ala	gat att ggt g Asp Ile Gly G 1100	ga gta gat att Hy Val Asp Ile 1105	3848
		Asp Ala Gln		ag aaa gag ata In Lys Glu Ile 1120	3896
Ala Ala Ser	aag cca gag Lys Pro Glu 1125	aag acc gag Lys Thr Glu 1130	caa tct gca c Gln Ser Ala G	ag gat gtg gct ln Asp Val Ala 1135	3944
	Ser Asn Ala		Lys Glu Asn L	aa gcc cca gaa ys Ala Pro Glu 50	3992
ata aaa gaa Ile Lys Glu 1155	tta tca gag Leu Ser Glu	gct gaa atc Ala Glu Ile 1160	gcg gat ctc a Ala Asp Leu M 1165	tg tca gaa aaa let Ser Glu Lys	4040
tca aaa gcg Ser Lys Ala 1170	tat ttt gat Tyr Phe Asp 1175	Asp Phe Ala	gag caa gcg a Glu Gln Ala L 1180	aa aaa gca cct ys Lys Ala Pro 1185	4088
		Leu Ser Ala		ag tcg agc aaa ys Ser Ser Lys 1200	4136
Gln Lys Asp	Gln Tyr Asp	cat gag tct His Glu Ser	gaa cgg acg a	ct ttt aaa gtt	4184
	1205	1210	ora ing ini i	1215	
gga cct gaa	gcg gag gct	1210 cat tot gog	qtt qcc qat a	1215 tg gtg agc cat et Val Ser His	4232
gga cct gaa Gly Pro Glu 1220 tta gtg aaa	gcg gag gct Ala Glu Ala gaa tat aga Glu Tyr Arg	cat tct gcg His Ser Ala 1225 gat gca caa	gtt gcc gat a Val Ala Asp M 12 aat ggg act a	1215 tg gtg agc cat et Val Ser His	4232 4280
gga cct gaa Gly Pro Glu 1220 tta gtg aaa Leu Val Lys 1235 aca gta gca	gcg gag gct Ala Glu Ala gaa tat aga Glu Tyr Arg	cat tot gog His Ser Ala 1225 gat goa caa Asp Ala Gln 1240 got agt gat	gtt gcc gat a Val Ala Asp M 12 aat ggg act a Asn Gly Thr L 1245 gtc tta aat a	tg gtg agc cat et Val Ser His 30	
gga cct gaa Gly Pro Glu 1220 tta gtg aaa Leu Val Lys 1235 aca gta gca Thr Val Ala 1250	gcg gag gct Ala Glu Ala gaa tat aga Glu Tyr Arg tta caa cat Leu Gln His 1255	cat tct gcg His Ser Ala 1225 gat gca caa Asp Ala Gln 1240 gct agt gat Ala Ser Asp gct aaa ttg Ala Lys Leu	gtt gcc gat a Val Ala Asp M 12 aat ggg act a Asn Gly Thr L 1245 gtc tta aat a Val Leu Asn I 1260 tct gtt gaa aa	tg gtg agc cat et Val Ser His 30 aa caa gac ggt ys Gln Asp Gly tt gtg acg ggg le Val Thr Gly	4280
gga cct gaa Gly Pro Glu 1220 tta gtg aaa Leu Val Lys 1235 aca gta gca Thr Val Ala 1250 gat tta gcg Asp Leu Ala	gcg gag gct Ala Glu Ala gaa tat aga Glu Tyr Arg tta caa cat Leu Gln His 1255 ggg agt tca Gly Ser Ser 1270 acg aca gaa	cat tct gcg His Ser Ala 1225 gat gca caa Asp Ala Gln 1240 gct agt gat Ala Ser Asp gct aaa ttg Ala Lys Leu acg ggg gat	gtt gcc gat a Val Ala Asp M 12 aat ggg act a Asn Gly Thr L 1245 gtc tta aat a Val Leu Asn I 1260 tct gtt gaa a Ser Val Glu A: 275 att gtt act a	tg gtg agc cat tg gtg agc cat val Ser His 30 aa caa gac ggt ys Gln Asp Gly tt gtg acg ggg le Val Thr Gly 1265 gga aca cat gag rg Thr His Glu	4280
gga cct gaa Gly Pro Glu 1220 tta gtg aaa Leu Val Lys 1235 aca gta gca Thr Val Ala 1250 gat tta gcg Asp Leu Ala aca aaa cga Thr Lys Arg	gcg gag gct Ala Glu Ala gaa tat aga Glu Tyr Arg tta caa cat Leu Gln His 1250 ggg agt tca Gly Ser Ser 1270 acg aca gaa Thr Thr Glu 1285 ctg tca gca	cat tet get His Ser Ala 1225 gat gca caa Asp Ala Gln 1240 gct agt gat Ala Ser Asp gct aaa ttg Ala Lys Leu acg ggg gat Thr Gly Asp 1290 cgc agt ggt	gtt gcc gat a Val Ala Asp M 12 aat ggg act a Asn Gly Thr L 1245 gtc tta aat a Val Leu Asn I 1260 tct gtt gaa a Ser Val Glu A 21 21 21 21 21 21 21 21 21 21 21 21 21	1215 tg gtg agc cat et val Ser His 30 aa caa gac ggt ys Gln Asp Gly tt gtg acg ggg le Val Thr Gly 1265 ga aca cat gag grg Thr His Glu 1280 ag att ggt ggc ys Ile Gly Gly 1295 tt aaa aat gta	4280 4328 4376

aat gtg ctg tct ggt gaa aaa aca cga gaa acc aca gaa aca g Asn Val Leu Ser Gly Glu Lys Thr Arg Glu Thr Thr Glu Thr V 1330 1335 1340	ta tca 49 al Ser 1345	568
aga cag aaa ctt tot cat ggt gtg aac gca ggt tgc agt atg a Arg Gln Lys Leu Ser His Gly Val Asn Ala Gly Cys Ser Met M 1350 1355 13	tg agt 4 let Ser 60	616
ggc gcc tgt act gcc ggt gtt agc aca tca ctt gaa gga aat g Gly Ala Cys Thr Ala Gly Va. Ser Thr Ser Leu Glu Gly Asn G 1365 1370 1375		664
tat acg tca gaa cgt gaa acg gct caa aat aac agt ttc tta a Tyr Thr Ser Glu Arg Glu Thr Ala Gln Asn Asn Ser Phe Leu L 1380 1385 1390	aa gca 4' ys Ala	712
cgc aac atg aaa gtt gaa gca ggt cgc gat ttt aat gtt gtc a Arg Asn Met Lys Val Glu Ala Gly Arg Asp Phe Asn Val Val S 1395 1400 1405	gt tcg 4° er Ser	760
aat att gat gca gat aag ctc gat ctc cac gtt aaa gga aaa a Asn Ile Asp Ala Asp Lys Leu Asp Leu His Val Lys Gly Lys T 1410 1415 1420	cg aat 48 hr Asn 1425	808
gtg gta tcc aaa caa gat acg tta caa aaa gtg acg cat gga g Val Val Ser Lys Gln Asp Thr Leu Gln Lys Val Thr His Gly V $1430 \hspace{1.5cm} 1435$	al Asp	856
tat aat ctt tcc gct ggc gtt gca ctt tct agt gca aca att g Tyr Asn Leu Ser Ala Gly Val Ala Leu Ser Ser Ala Thr Tle A 1445 1450 1450		904
cca acc ggt aat gtt ggt ttc ggt tat acc aat gag acc gaa a Pro Thr Gly Asn Val Gly Phe Gly Tyr Thr Asn Glu Thr Glu S 1460 1465 1470		952
cgg acg gtt aat caa caa gca ggg att aaa gcg aat aaa att a Arg Thr Val Asn Gln Gln Ala Gly Ile Lys Ala Asn Lys Ile T 1475 1480 1485	ca ggg 50 hr Gly	000
caa acg cat gac tta aat ctt gag ggg gga tat ctt gtc agc a Gln Thr His Asp Leu Asn Leu Glu Gly Gly Tyr Leu Val Ser A 1490 1500	ac gat 50 sn Asp 1505	048
aag gat aat cag ctg aaa gtt acc ggc gat gtc aca act aaa g Lys Asp Asn Gln Leu Lys Val Thr Gly Asp Val Thr Thr Lys A 1510 1515 15	la Leu	96
cac gat caa cat gat aaa gat ggt gga aca ttt ggt tta tct g His Asp Gln His Asp Lys Asp Gly Gly Thr Phe Gly Leu Ser $V_{\rm c}$ 1525 1530 1530	tg ggt 51 al Gly	144
atc agt gaa cgt ggt act acc gcc ttt aat gta cga ggt ggg c Ile Ser Glu Arg Gly Thr Thr Ala Phe Asn Val Arg Gly Gly A 1540 1550	ga gct 51 rg Ala	192
Ile Ser Glu Arg Gly Thr Thr Ala Phe Asn Val Arg Gly Gly A	rg Ala gc gtg 52	192 240

aag gca aaa gct gte aca cgt gat ga	t act tac gca agt acg caa ttt 5336
Lys Ala Lys Ala Val Thr Arg Asp As	p Thr Tyr Ala Ser Thr Gln Phe
1590	1595 1600
agt ttt gaa gtg gca gat att gtg ga Ser Phe Glu Val Ala Asp Ile Val Gl 1605	u Leu Gly Gln Arg Ala Lys Asn
aag ctg tca gca cca aac aat gac ac	c gat atg gcg tca ggc tcc aca 5432
Lys Leu Ser Ala Pro Asn Asn Asp Th	r Asp Met Ala Ser Gly Ser Thr
1620 1625	1630
tta cgc tcg cgt tct act aca gaa ga	a gca gat gta cca aca aca aga 5480
Leu Arg Ser Arg Ser Thr Thr Glu Gl	u Ala Asp Val Pro Thr Thr Arg
1635 1640	1645
tcg cgt gta acg gat gag gcg gat tc Ser Arg Val Thr Asp Glu Ala Asp Se 1650 1655	
tat gaa agt gca gat gct gtt gta cc	a aca cca cgt agt aga aat gtg 5576
Tyr Glu Ser Ala Asp Ala Val Val Pr	o Thr Pro Arg Ser Arg Asn Val
1670	1675 1680
gac agt acc gat ctt gtg gac aat cc Asp Ser Thr Asp Leu Val Asp Asn Pr 1685	o Leu Tyr Ala Ser Ala Thr Thr
aaa gca aac atc cat gat tat gaa ga Lys Ala Asn Ile His Asp Tyr Glu Gl 1700 1705	
gtc ggt gat aac aat gct gat ctt gt	t cgt cat aaa acg gca act agt 5720
Val Gly Asp Asn Asn Ala Asp Leu Va	1 Arg His Lys Thr Ala Thr Ser
1715 1720	1725
gat gag cat ctt tat gca gag att aa	t gaa cca aca tat agc cgt gtt 5768
Asp Glu His Leu Tyr Ala Glu Ile As:	n Glu Pro Thr Tyr Ser Arg Val
1730 1735	1740
ggt gat aaa aat gca gat atg aga cg	t cat aac gog goa ggt aca aca 5816
Gly Asp Lys Asn Ala Asp Met Arg Arg	g His Asn Ala Ala Gly Thr Thr
1750	1755 1760
gac tat gcc gat gtc gtg caa gca ca Asp Tyr Ala Asp Val Val Gln Ala Hi 1765	Thr Arg Lys Ala Asp Asp Pro
cta cca gca tta ccg aat cag ggt aa:	a gca aga acg gta aac gac ggt 5912
Leu Pro Ala Leu Pro Asn Gln Gly Ly:	s Ala Arg Thr Val Asn Asp Gly
1780 1785	1790
tca gag cat att tat act gat att ag	c gac gtg ggc act caa act aaa 5960
Ser Glu His Ile Tyr Thr Asp Ile Ser	r Asp Val Gly Thr Gln Thr Lys
1795 1800	1805
gct att gat agt act tat gca aca gt.	a ggc atg ccg aaa gcg aat gcc 6008
Ala Ile Asp Ser Thr Tyr Ala Thr Va	l Gly Met Pro Lys Ala Asn Ala
1810 1815	1820 1825
gtt aac ttg ata ggg caa aat ggc tt:	a ggc agc att tat cac agc cca 6056
Val Asn Leu Ile Gly Gln Asn Gly Leu	1 Gly Ser Ile Tyr His Ser Pro
1830	1835 1840

gac agt gct tat Asp Ser Ala Tyr 1845	aaa aca tgg caa ttg Lys Thr Trp Gln Leu 1850	ctt gat caa ttt gcc aac aaa Leu Asp Gln Phe Ala Asn Lys 1855	6104
		gca aca gaa atg aaa tgt gca Ala Thr Glu Met Lys Cys Ala 1870	6152
		gtg mgt gat tat ttg ctc aga Val Arg Asp Tyr Leu Leu Arg 1885	6200
		ttt tat aac gca cat aat aaa Phe Tyr Asn Ala His Asn Lys 1900 1905	6248
Thr Leu Phe Ser	Val Pro Ile Val Asp	gca aaa gtc aaa atg ctg ttt Ala Lys Val Lys Met Leu Phe 1915 1920	6296
		gat cgt agc ctt aca gcc att Asp Arg Ser Leu Thr Ala Ile 1935	6344
gat ctg agt aaa Asp Leu Ser Lys 1940	cgt att gcg acc ttt Arg Ile Ala Thr Phe 1945	aat agc cca gaa gga gtt gta Asn Ser Pro Glu Gly Val Val 1950	6392
gaa gtc cct tat Glu Val Pro Tyr 1955	gat ttt att aat gtg Asp Phe Ile Asn Val 1960	gta cct cca atg cga gca cct Val Pro Pro Met Arg Ala Pro 1965	6440
gat gcc gtt cgt Asp Ala Val Arg 1970	caa tca gca ctc gcg Gln Ser Ala Leu Ala 1975	tgg caa gaa gga aaa tgg gct Trp Gln Glu Gly Lys Trp Ala 1980 1985	6488
Asn Asp Gly Trp	Val Glu Val Glu Lys	cat acc ttg cgt cac cgt cgt His Thr Leu Arg His Arg Arg 1995 2000	6536
tat gcc aat gtg Tyr Ala Asn Val 2005	ttt gct gtg ggt gat Phe Ala Val Gly Asp 2010	gtg gca ggg gtc cca aaa ggc Val Ala Gly Val Pro Lys Gly 2015	6584
		gtt cct gtt gca gtg gca cat Val Pro Val Ala Val Ala His 2030	6632
		tgt gat gaa att tac aac ggt Cys Asp Glu Ile Tyr Asn Gly 2045	6680
tat aca tot tgt Tyr Thr Ser Cys 2050	cca tta att act caa Pro Leu Ile Thr Gln 2055	tta gga aag ggg atg cta gta Leu Gly Lys Gly Met Leu Val 2060 2065	6728
Glu Phe Asp Tyr	Asn Asn His Leu Thr	cct tct ttc ccc ggt gta ata Pro Ser Phe Pro Gly Val Ile 2075 2080	6776
gcg cca tta gaa Ala Pro Leu Glu 2085	gaa ctg tgg gca aca Glu Leu Trp Ala Thr 2090	tgg gca att aaa aca tta ggt Trp Ala Ile Lys Thr Leu Gly 2095	6824

6873

6876

tta aaa ccc act tat tta ggt atg tta cgt gga tta gct taaggagcgt Leu Lys Pro Thr Tyr Leu Gly Met Leu Arg Gly Leu Ala 2100 2105 tga <210> 16 <211> 2110 <212> PRT <213> Pasteurella multocida <400> 16 Met Gln Pro Ala Gln Glu His Cys Gln Arg Ile Asn Asn Ile Val Asn Gln Glu Asn Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala Glu Arg Ser Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu Thr Val His Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn Val Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu 215 220 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met 230 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys

32

Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro 260 265 270

Thr Asp Phe Ile Tyr Tyr Pro Ser Glu Lys Ala Lys Ile Leu Ala Gly Lys Leu Glu Gly Lys Leu Thr Thr Leu Gln Asn Gly Glu Tyr Ala Glu Arg Gly Lys Phe Asp Glu Ser Ile Gln Ile Gly Lys His Gln Leu Ser Leu Pro Ser Val Glu Leu Lys Ala Glu Phe Ser Asp Lys Glu Arg Leu Glu Glu Asp Gly Val Asp Leu Ser Ser Ile Ala Glu Leu Leu Glu Met Pro Asn Leu Phe Ile Asp Asn Ser Ile Gln Leu Glu Lys Lys Leu Ser Pro Ile Glu Asp Leu Asp Glu Glu Pro Arg Lys Asn Leu Asp Ile Glu Glu Ser His Ser Asn Ser Ser Asp Asp Val Leu Ser Met Asn Asp Asp Glu Ser Asp Thr Asp Asp Ser Lys Trp Ser Met Gly Asn Asp Glu Lys Glu Met Pro Asp Asp Lys Leu Gly Ile Ser Arg Asp Asp Arg Gly Asn Lys Pro Pro Arg Thr Asp Pro Thr Val Asp Tyr Leu Asn Pro Asp Glu Phe Phe Glu Asn Gly Tyr Leu Leu Asn Glu Leu Leu Gln Glu Leu Gly Glu Glu Pro Leu Leu Lys Glu Gly Glu Asp His Phe Lys Arg Ser Thr Asn Leu Val Arg Leu Gly Glu Arg Asp Arg Gln Asn Arg Glu Lys Arg Glu Lys Glu Gly Tyr Phe Asp Leu Pro Gly Thr Leu Asp Met Lys Leu Gln Glu Leu Phe Glu Lys Arg Lys Gln Lys His Glu Ala Glu Gln Lys Ala Arg Ile Glu Lys Ala Leu Leu Gln Lys Ser Glu Gln Glu Lys Arg Val Glu Glu Arg Lys Gln Glu Glu Lys Arg Gln Ala Gln Asp Lys Ile Ala Lys Gln Val Glu Ile Ala Lys Glu Met Gln Arg Val Glu Glu Ile Arg Gln Arg Glu Lys Gln Leu Ala Ile Gln Leu Gln Glu Glu Glu Lys Lys Gln Gln Glu Glu Lys His Leu Ser Glu Glu Lys Lys Gln 600

Ala Glu Gln Lys Gln Lys Ala Glu Glu Lys Val Ala Gln Glu Arg Leu Asp Ile Glu Gln Gln Lys Ala Tyr Glu Glu Met Ala Lys Arg Glu Ala Glu Ala Ser Lys Asn Val Leu Leu Lys Ala Ile Asp Glu Glu Arg Pro Lys Val Glu Thr Asp Pro Leu Phe Arg Thr Lys Leu Lys Tyr Ile Asn Gln Asp Asp Tyr Ala Gly Ala Asn Tyr Phe Phe Asn Lys Val Gly Leu Asn Thr Lys Gly His Gln Lys Val Asn Val Leu Gly Asp Asn Tyr Phe Asp His Gln Val Ile Thr Arg Ser Ile Glu Lys Lys Val Asp Asn His Leu Asn Gln Lys Tyr Asn Leu Ser Asp Val Glu Leu Val Lys Gln Leu Met Asp Asn Ser Thr Thr Gln Ala Gln Glu Leu Asp Leu Lys Leu Gly Ala Ala Leu Thr Lys Glu Gln Gln Ala Asn Leu Thr Gln Asp Ile Val Trp Tyr Val Lys Thr Lys Val Lys Gly Lys Asp Val Phe Val Pro Lys Val Tyr Phe Ala Ser Glu Thr Leu Val Glu Ala Gln Lys Leu Gln Gly Leu Gly Thr Gly Thr Ile Arg Val Gly Glu Ala Lys Ile Lys Ala Lys Asp Val Val Asn Thr Gly Thr Leu Ala Gly Arg Lys Leu Asn Val Glu Ala Ser Asn Lys Ile Lys Asn Gln Gly Ser Ile Leu Ser Thr Gln Glu Thr Arg Leu Val Gly Arg Lys Gly Ile Glu Asn Val Ser Arg Ser Phe Ala Asn Asp Glu Leu Gly Val Thr Ala Gln Arg Ser Glu Ile Lys Thr Glu Gly His Leu His Leu Glu Thr Asp Lys Asp Ser Thr Ile Asp Val Gln Ala Ser Asp Ile Lys Ala Lys Thr Ser Phe Val Lys Thr Gly Asp 905 Val Asn Leu Lys Asn Thr Tyr Asn Thr Lys His Ala Tyr Arg Glu Lys Phe Ser Pro Ser Ala Leu Gln Val Ala Glu Leu Asp Val Ala Gly Leu 935

Lys Val Pro Leu Leu Gly Val Ser Ser Pro Ser Ser Tyr Ser Glu His 945 950 955 960

- Thr Ser Glu Ala Thr Ser Glu Gly Ser Ile Phe Glu Val Gly His Leu 965 970 975
- His Leu Ala Val Asp Arg Asp Val Asn Gln Ala Gly Ser Lys Ile Lys 980 985 990
- Ala Lys Tyr Thr Thr Gly Val Val Lys Gly Asn Phe Asn Thr Glu Ala 995 1000 1005
- Gly Lys Asn Ile Lys His Val Glu Lys Glu Glu Tyr Ser Ser Gln Leu 1010 1020
- Phe Ala Ser Ala His Ala Ser Gly Gly Gly Thr Ser Val Arg Tyr Asp 1025 1030 1035 1040
- Tyr Asn Ser Gln Asp Gly Gly Asn Ala Ser Val Gly Val Pro Thr Asn 1045 \$1050
- His Thr Gly Val Gly Ala Glu Ala Gly Met Ser Phe Thr His Thr Lys 1060 \$1050\$
- Asp Lys Glu Thr Leu Leu Thr His Thr Asn Ser Glu Leu Gln Val Lys 1075 1080 1085
- His Gly Lys Leu His Val Leu Gly Tyr Ala Asp Ile Gly Gly Val Asp 1090 $\,$ 1090
- Ile Asn Thr Lys Leu Pro Glu Asp Ala Gln Ser Lys Ala Gln Lys Glu 1105 1110 1115 1126
- Ile Ala Ala Ser Lys Pro Glu Lys Thr Glu Gln Ser Ala Gln Asp Val 1125 1130 1135
- Ala Gln Ala Gln Ser Asn Ala Asn Lys Asp Lys Glu Asn Lys Ala Pro 1140 \$1145\$
- Glu Ile Lys Glu Leu Ser Glu Ala Glu Ile Ala Asp Leu Met Ser Glu 1155 1160 1165
- Lys Ser Lys Ala Tyr Phe Asp Asp Phe Ala Glu Gln Ala Lys Lys Ala 1170 1180
- Pro Glu Asn Asn Arg Phe Glu Leu Ser Ala Lys Glu Ile Lys Ser Ser 1185 1190 1195
- Val Gly Pro Glu Ala Glu Ala His Ser Ala Val Ala Asp Met Val Ser 1220 1225 1230
- His Leu Val Lys Glu Tyr Arg Asp Ala Gln Asn Gly Thr Lys Gln Asp 1235 1240 1245
- Gly Thr Val Ala Leu Gln His Ala Ser Asp Val Leu Asn Ile Val Thr 1250 1260
- Gly Asp Leu Ala Gly Ser Ser Ala Lys Leu Ser Val Glu Arg Thr His 1265 1270 1270 1280

35

Glu Thr Lys Arg Thr Thr Glu Thr Gly Asp Ile Val Thr Lys Ile Gly 1285 1290 1295

- Gly Asn Val Thr Leu Ser Ala Arg Ser Gly Ser Val Asn Leu Lys Asn 1300 1305
- Val Gln Ser Asp Glu Gln Ala Asn Leu Thr Leu Arg Ala Lys Glu Asp 1315 1320 1325
- Val Asn Val Leu Ser Gly Glu Lys Thr Arg Glu Thr Thr Glu Thr Val
- Ser Arg Gln Lys Leu Ser His Gly Val Asn Ala Gly Cys Ser Met Met 1345 1355 1360
- Ser Gly Ala Cys Thr Ala Gly Val Ser Thr Ser Leu Glu Gly Asn Glu 1365 1370 1375
- Ser Tyr Thr Ser Glu Arg Glu Thr Ala Gln Asn Asn Ser Phe Leu Lys 1380 1385 1390
- Ala Arg Asn Met Lys Val Glu Ala Gly Arg Asp Phe Asn Val Val Ser 1395
- Ser Asn Ile Asp Ala Asp Lys Leu Asp Leu His Val Lys Gly Lys Thr 1410 1415 1420
- Asn Val Val Ser Lys Gln Asp Thr Leu Gln Lys Val Thr His Gly Val 1425 1435 1440
- Asp Tyr Asn Leu Ser Ala Gly Val Ala Leu Ser Ser Ala Thr Ile Ala 1445 1450 1455
- Thr Pro Thr Gly Asn Val Gly Phe Gly Tyr Thr Asn Glu Thr Glu Ser 1460 1465 1470
- Lys Arg Thr Val Asn Gln Gln Ala Gly Ile Lys Ala Asn Lys Ile Thr $1475 \ \ \, 1480 \ \ \, 1485$
- Gly Gln Thr His Asp Leu Asn Leu Glu Gly Gly Tyr Leu Val Ser Asn 1490 1500
- Asp Lys Asp Asn Gln Leu Lys Val Thr Gly Asp Val Thr Thr Lys Ala 1505 1510 1515 1520
- Gly Ile Ser Glu Arg Gly Thr Thr Ala Phe Asn Val Arg Gly Gly Arg 1540 1545
- Ala Glu Gln Lys His Tyr Asn Ala Thr Gln Lys Ser Thr Leu Ser Gly 1555 \$1560\$
- Val Asp Thr Ser Gln Ala Asn Val Ser Gly Gln Val Asn Thr Asp Leu 1570 1575 1580
- Thr Lys Ala Lys Ala Val Thr Arg Asp Asp Thr Tyr Ala Ser Thr Gln 1585 1590 1595
- Phe Ser Phe Glu Val Ala Asp Ile Val Glu Leu Gly Gln Arg Ala Lys 1615 1615

Asn Lys Leu Ser Ala Pro Asn Asn Asp Thr Asp Met Ala Ser Gly Ser

Thr Leu Arg Ser Arg Ser Thr Thr Glu Glu Ala Asp Val Pro Thr Thr 1635

Arg Ser Arg Val Thr Asp Glu Ala Asp Ser Val Ser Val Lys Asn Pro 1650 1660

Ile Tyr Glu Ser Ala Asp Axa Val Val Pro Thr Pro Arg Ser Arg Asn 1665 1670 1686

Val Asp Ser Thr Asp Leu Val Asp Asn Pro Leu Tyr Ala Ser Ala Thr 1695

Thr Lys Ala Asn Ile His Asp Tyr Glu Glu Ile Pro Ala Val Tyr Ser 1700 1705 1710

Lys Val Gly Asp Asn Asn Ala Asp Leu Val Arg His Lys Thr Ala Thr 1715 1720 1725

Ser Asp Glu His Leu Tyr Ala Glu Ile Asn Glu Pro Thr Tyr Ser Arg 1730 1730 1740

Val Gly Asp Lys Asn Ala Asp Met Arg Arg His Asn Ala Ala Gly Thr 1745 1750 1765

Thr Asp Tyr Ala Asp Val Val Gln Ala His Thr Arg Lys Ala Asp Asp 1765 1770 1770 1775

Pro Leu Pro Ala Leu Pro Asn Gln Gly Lys Ala Arg Thr Val Asn Asp 1780 1785 1790

Gly Ser Glu His Ile Tyr Thr Asp Ile Ser Asp Val Gly Thr Gln Thr 1795 1800 1805

Lys Ala Ile Asp Ser Thr Tyr Ala Thr Val Gly Met Pro Lys Ala Asn 1810 1815 1820

Ala Val Asn Leu Ile Gly Gln Asn Gly Leu Gly Ser Ile Tyr His Ser 1825 1830 1835

Pro Asp Ser Ala Tyr Lys Thr Trp Gln Leu Leu Asp Gln Phe Ala Asn 1845 1850 1855

Lys Gly Gly Asp Ala Val Phe Leu Arg Pro Ala Thr Glu Met Lys Cys 1860 1865 1870

Ala Gly Ala Pro Leu Lys Tyr Thr Phe Ile Val Arg Asp Tyr Leu Leu 1875 1880

Arg Arg His Thr Leu Asp Lys Ser Arg Leu Phe Tyr Asn Ala His Asn 1890 1895 1900

Lys Thr.Leu Phe Ser Val Pro Ile Val Asp Ala Lys Val Lys Met Leu 1905 $$ 1910 $$ 1915 $$ 1915 $$ 1920 $$

Phe Ala Glu Lys Asn Ile Gln Val Asn Tyr Asp Arg Ser Leu Thr Ala 1925 1930 1935

Ile Asp Leu Ser Lys Arg Ile Ala Thr Phe Asn Ser Pro Glu Gly Val

```
Val Glu Val Pro Tyr Asp Phe Ile Asn Val Val Pro Pro Met Arg Ala
        1955
Pro Asp Ala Val Arg Gln Ser Ala Leu Ala Trp Gln Glu Gly Lys Trp
                         1975
Ala Asn Asp Gly Trp Val Glu Val Glu Lys His Thr Leu Arg His Arg
                                          1995
Arg Tyr Ala Asn Val Phe Ala Val Gly Asp Val Ala Gly Val Pro Lys
                2005
                                     2010
Gly Lys Thr Ala Ala Ser Val Lys Trp Gln Val Pro Val Ala Val Ala
His Leu Leu Ala Glu Leu Glu Gly Lys Pro Cys Asp Glu Ile Tyr Asn
        2035
Gly Tyr Thr Ser Cys Pro Leu Ile Thr Gln Leu Gly Lys Gly Met Leu
Val Glu Phe Asp Tyr Asn Asn His Leu Thr Pro Ser Phe Pro Gly Val
2065
                     2070
Ile Ala Pro Leu Glu Glu Leu Trp Ala Thr Trp Ala Ile Lys Thr Leu
Gly Leu Lys Pro Thr Tyr Leu Gly Met Leu Arg Gly Leu Ala
                                 2105
<210> 17
<211> 3247
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1479) .. (3245)
<220>
<223> fhaB2
<400> 17
gtcgaccttg cgggtgaaaa ggtatctcta aattttggcg atatcattca tgcttaccaa 60
aaccagcccc tatcaacaaa agttgttttt caattagtga aagatttgac ggaagtttta 120
taccgttctg gctacgtgac aagtgcaatt ggtttaaaaa attcaaaaat cagcaatggc 180
gatcttgaat ttattgtact gtggggaaga actcgcgatc tgtttgtgaa tggggagaaa 240
ccaacccgtt ttagagataa aacaatgtta tcagtcctac ccaatttaat cggaaatcgc 300
ttaagtattc acgacattga ccagttqatc qaaatcttaa atactacqaa taaaaaagcc 360
acagtgaatg tggttgcaag tgaagaaaaa ggcagctcaa atctaaatat tgaaagacaa 420
tatgatgttt ttccgcaagt gagtgtcgga ttcaataatt caggtgctgg caataatgcc 480
aatgggcgta atcaagctac attgaatatt gcttggagtg atctattagg cacgaatgat 540
cgttggagtt tctcgagtag ttaccgttta tataaaaatc atcatgctaa ccagcaacgc 600
```

aattatactt tgtcttacag tcagcctata ggcttttcta cagtagaaat taaagcatcg 660 gaatetacgt atgaaaaaga acttcgeggt ataaatacte attcttctca tgggaaaacc 720 caaaqcttaq ctqtcaaqct qatqcatqtq ttattqcqta ataaggagaq tattttatct 780 acatataccq aqttcqaqtt taaaaaacqq attaqttatt tttctqatat tttqattqqq 840 aaatatcaca ataataaaqt qaqcqtaqqq ttatcttaca tqactaattt tqcttacqqq 900 aagetttaca gegacattge ttaegegaat gggttgagat ggtttgggge gaattattea 960 gcatatgatg caaatcgtga aaaaacctta aaattattgt caggaagtat taattggcag 1020 cqtccaatat ccctqtttqa acqtqcqatq aattatcaat tacqtattqq tqcccaatat 1080 ggttttgata gtttgtattc tgaaaatcaa ttttcaattg gtgatgaata tacagtaaga 1140 qqatttaaaq qtqqtqcqqt ttctqqtqat aqtqqtqcqt atttatcaca aacactqacq 1200 gttccttttt atccacaaaa agcatattta tctcaggtat ccccttttat tggatttgat 1260 atgggtaaag tacatattaa atcaaagcat aaaacaacca ctttagtcgg ttttgcccta 1320 ggcttgaaaa cgcaaataaa gttattttca ttatcattaa cctatgcaca accaatgaat 1380 ggtgtgagtg gtgttacgca acatcgtcaa aaaccgattt attatttctc aggatcactt 1440 totttttaat otottttaag titaaggatt aacttaat atg aac aaa aat ogt tac 1496 Met Asn Lys Asn Arg Tyr aaa ctc att ttt agt caa gtc aaa ggt tgt ctc gtt cct gtg gca gaa 1544 Lys Leu Ile Phe Ser Gln Val Lys Gly Cys Leu Val Pro Val Ala Glu 10 tgt att aac tca gct att agc aat ggt tca tct gat tca aca tcc aca 1592 Cys Ile Asn Ser Ala Ile Ser Asn Gly Ser Ser Asp Ser Thr Ser Thr 25 30 tca gaa caa gtt gaa gag gaa cct ttc ctt cta gaa caa tat tca ctt 1640 Ser Glu Gln Val Glu Glu Glu Pro Phe Leu Leu Glu Gln Tyr Ser Leu 40 tcc tcc gtg tct tta tta gta aaa agc acg ttc aat cct gtt tcg tat 1688 Ser Ser Val Ser Leu Leu Val Lys Ser Thr Phe Asn Pro Val Ser Tyr gca atg caa ttg act tgg aaa cag ctt tct att tta ttt tta act gtg 1736 Ala Met Gln Leu Thr Trp Lys Gln Leu Ser Ile Leu Phe Leu Thr Val att tot gtt oot gtt ttg got gag gga aaa ggg gat gaa aga aat caa 1784 Ile Ser Val Pro Val Leu Ala Glu Gly Lys Gly Asp Glu Arg Asn Gln 95 tta aca gtg att gat aat agc gat cat att aaa tta gat gca tct aat 1832 Leu Thr Val Ile Asp Asn Ser Asp His Ile Lys Leu Asp Ala Ser Asn ctt gct ggt aat gat aaa aca aaa atc tat caa gca gaa aat aaa gtt 1880 Leu Ala Gly Asn Asp Lys Thr Lys Ile Tyr Gln Ala Glu Asn Lys Val 120 125

ctg Leu 135	gtt Val	att Ile	gat Asp	att Ile	gct Ala 140	aaa Lys	cca Pro	aat Asn	99 9 Gly	aaa Lys 145	ggg ggg	att Ile	tca Ser	gat Asp	aac Asn 150	1928
cgt Arg	ttt Phe	g aa Glu	aaa Lys	ttt Phe 155	aat Asn	att Ile	cca Pro	aat Asn	agc Ser 160	gcg Ala	gtg Val	ttt Phe	aat Asn	aat Asn 165	aat Asn	1976
			gcg Ala 170													2024
			tta Leu													2072
			cct Pro													2120
ggt Gly 215	aaa Lys	aaa Lys	gct Ala	gat Asp	atc Ile 220	gtc Val	att Ile	gca Ala	aac Asn	caa Gln 225	aat Asn	ggt Gly	att Ile	acc Thr	tta Leu 230	2168
			aga Arg													2216
			gat Asp 250													2264
			gat Asp													2312
gat Asp	att Ile 280	att Ile	gct Ala	aaa Lys	aaa Lys	att Ile 285	gaa Glu	caa Gln	aag Lys	caa Gln	tca Ser 290	att Ile	aca Thr	tca Ser	ggg ggg	2360
			gaa Glu													2408
			tta Leu													2456
gta Val	tct Ser	aat Asn	gat Asp 330	gtt Val	att Ile	gct Ala	atc Ile	acg Thr 335	gga Gly	tct Ser	agt Ser	aca Thr	ggc Gly 340	gca Ala	atg Met	2504
			aat Asn													2552
			gga Gly													2600
			gac Asp													2648

				aaa Lys 400				2696
				acg Thr			tcg Ser	2744
				aaa Lys				2792
				ggt Gly				2840
				gat Asp				2888
				gag Glu 480				2936
				gct Ala				2984
				att Ile				3032
				cgc Arg				3080
				agc Ser				3128
				gaa Glu 560				3176.
				tta Leu				3224
aga Arg			ac					3247

<210> 18 <211> 589 <212> PRT

<213> Pasteurella multocida

<400> 18 Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Gln Val Lys Gly Cys 1 1 5 1 10 1 15

Leu Val Pro Val Ala Glu Cys Ile Asn Ser Ala Ile Ser Asn Gly Ser Ser Asp Ser Thr Ser Thr Ser Glu Gln Val Glu Glu Glu Pro Phe Leu Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr Phe Asn Pro Val Ser Tyr Ala Met Gln Leu Thr Trp Lys Gln Leu Ser Ile Leu Phe Leu Thr Val Ile Ser Val Pro Val Leu Ala Glu Gly Lys Gly Asp Glu Arg Asn Gln Leu Thr Val Ile Asp Asn Ser Asp His Ile Lys Leu Asp Ala Ser Asn Leu Ala Gly Asn Asp Lys Thr Lys Ile Tyr Gln Ala Glu Asn Lys Val Leu Val Ile Asp Ile Ala Lys Pro Asn Gly Lys Gly Ile Ser Asp Asn Arg Phe Glu Lys Phe Asn Ile Pro Asn Ser Ala Val Phe Asn Asn Asn Gly Thr Glu Ala Gln Ala Arg Ser Thr Leu Ile Gly Tyr Ile Pro Gln Asn Gln Asn Leu Arg Gly Gly Lys Glu Ala Asp Val Ile Leu Asn Gln Val Thr Gly Pro Gln Glu Ser Lys Ile Val Gly Ala Leu Glu Val Leu Gly Lys Lys Ala Asp Ile Val Ile Ala Asn Gln Asn Gly Ile Thr Leu Asn Gly Val Arg Thr Ile Asn Ser Asp Arg Phe Val Ala Thr Thr Ser Glu Leu Ile Asp Pro Asn Gln Met Met Leu Lys Val Thr Lys Gly Asn Val Ile Ile Asp Ile Asp Gly Phe Ser Thr Asp Gly Leu Lys Tyr Leu Asp Ile Ile Ala Lys Lys Ile Glu Gln Lys Gln Ser Ile Thr Ser Gly Asp Asn Ser Glu Ala Lys Thr Asp Val Thr Leu Ile Ala Gly Ser Ser Glu Tyr Asp Leu Ser Lys His Glu Leu Lys Lys Thr Ser Gly Glu Asn Val Ser Asn Asp Val Ile Ala Ile Thr Gly Ser Ser Thr Gly Ala Met His Gly Lys Asn Ile Lys Leu Ile Val Thr

```
Asp Lys Gly Ala Gly Val Lys His Asp Gly Ile Ile Leu Ser Glu Asn
Asp Ile Gln Ile Glu Met Asn Glu Gly Asp Leu Glu Leu Gly Asn Thr
Ile Gln Gln Thr Val Val Lys Lys Asp Arg Asn Ile Arg Ala Lys Lys
Lys Ile Glu Val Lys Asn Ala Asn Arg Val Phe Val Gly Ser Gln Thr
                                     410
Lys Ser Asp Glu Ile Ser Leu Glu Ala Lys Gln Val Lys Ile Arg Lys
Asn Ala Glu Ile Arg Ser Thr Thr Gln Ala Lys Ile Val Ala Lys Gly
                           440
Ala Leu Ser Ile Glu Gln Asn Ala Lys Leu Val Ala Lys Lys Ile Asp
Val Ala Thr Glu Thr Leu Thr Asn Ala Gly Arg Ile Tyr Gly Arg Glu
Val Lys Leu Asp Thr Asn Asn Leu Ile Asn Asp Lys Glu Ile Tyr Ala
                485
Glu Arg Lys Leu Ser Ile Leu Thr Lys Gly Lys Asp Leu Glu Ile Ile
Gln Asp Arg Tyr Leu Ser Pro Leu Met Arg Val Lys Ser Ser Val Arg
Phe Leu Gly Ser Pro Phe Phe Ser Ile Ser Pro Ser Met Leu Ala Ser
Leu Ser Ala Gln Phe Lys Pro Gly Phe Val Asn Lys Gly Leu Ile Glu
                                        555
Ser Ala Gly Ser Ala Glu Leu Thr Phe Lys Glu Lys Thr Ser Phe Leu
Thr Glu Gly Asn Asn Phe Ile Arg Ala Lys Asp Ala Leu
            580
                                585
<210> 19
<211> 3247
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1)..(1446)
<220>
<223> fhaC
<400> 19
gto gao ott gog ggt gaa aag gta tot ota aat tit ggo gat ato att
Val Asp Leu Ala Gly Glu Lys Val Ser Leu Asn Phe Gly Asp Ile Ile
                                     10
```

cat His	gct Ala	tac Tyr	caa Gln 20	aac Asn	cag Gln	ccc Pro	cta Leu	tca Ser 25	aca Thr	aaa Lys	gtt Val	gtt Val	Phe 30	caa Gln	tta Leu	96
gtg Val	aaa Lys	gat Asp 35	ttg Leu	acg Thr	gaa Glu	gtt Val	tta Leu 40	tac Tyr	egt Arg	tct Ser	ggc Gly	tac Tyr 45	gtg Val	aca Thr	agt Ser	144
														gaa Glu		192
att Ile 65	gta Val	ctg Leu	tgg Trp	gga Gly	aga Arg 70	act Thr	cgc Arg	gat Asp	ctg Leu	Phe 75	gtg Val	aat Asn	ggg Gly	gag Glu	aaa Lys 80	240
														aat Asn 95		288
														gaa Glu		336
tta Leu	aat Asn	act Thr 115	acg Thr	aat Asn	aaa Lys	aaa Lys	gcc Ala 120	aca Thr	gtg Val	aat Asn	gtg Val	gtt Val 125	gca Ala	agt Ser	gaa Glu	384
														gtt Val		432
ccg Pro 145	caa Gln	gtg Val	agt Ser	gtc Val	gga Gly 150	ttc Phe	aat Asn	aat Asn	tca Ser	ggt Gly 155	gct Ala	ggc Gly	aat Asn	aat Asn	gcc Ala 160	480
														cta Leu 175		528
														tat Tyr		576
														agt Ser		624
														acg Thr		672
														aaa Lys		720
														aag Lys 255		768
agt Ser	att Ile	tta Leu	tct Ser 260	aca Thr	tat Tyr	acc Thr	gag Glu	ttc Phe 265	gag Glu	ttt Phe	aaa Lys	aaa Lys	cgg Arg 270	att Ile	agt Ser	816

						att Ile										864
gta Val	999 Gly 290	tta Leu	tct Ser	tac Tyr	atg Met	act Thr 295	aat Asn	ttt Phe	gct Ala	tac Tyr	300 Gly ggg	aag Lys	ctt Leu	tac Tyr	agc Ser	912
						Gly ggg										960
						gaa Glu										1008
						ata Ile										1056
						caa Gln										1104
						gat Asp 375										1152
						agt Ser										1200
						aaa Lys										1248
						aaa Lys										1296
acc Thr	act Thr	tta Leu 435	gtc Val	ggt Gly	ttt Phe	gcc Ala	cta Leu 440	ggc Gly	ttg Leu	aaa Lys	acg Thr	caa Gln 445	ata Ile	aag Lys	tta Leu	1344
ttt Phe	tca Ser 450	tta Leu	tca Ser	tta Leu	acc Thr	tat Tyr 455	gca Ala	caa Gln	cca Pro	atg Met	aat Asn 460	ggt Gly	gtg Val	agt Ser	ggt Gly	1392
gtt Val 465	acg Thr	caa Gln	cat His	cgt Arg	caa Gln 470	aaa Lys	ccg Pro	att Ile	tat Tyr	tat Tyr 475	ttc Phe	tca Ser	gga Gly	tca Ser	ctt Leu 480	1440
tct Ser	ttt Phe	taat	ctct	tt t	aagt	ttaa	g ga	ttaa	ctta	ata	tgas	caa	aaat	cgtt	ac	1496
aaac	tcat	tt t	tagt	caac	jt ca	aagg	ttgt	cto	gtto	ctg	tggc	agaa	tg t	atta	actca	1556
gcta	ttag	ca a	tggt	tcat	c to	atto	aaca	tco	acat	cag	aaca	agtt	ga a	gagg	aacct	1616
ttcc	ttct	ag a	acaa	tatt	c ac	tttc	ctcc	gto	tctt	tat	tagt	aaaa	ag c	acgt	tcaat	1676
ccts	tttc	gt a	tgca	atgo	a at	tgac	ttgg	g aaa	cago	ttt	ctat	ttta	tt t	ttaa	ctgtg	1736

atttctqttc Ctgttttqqc tqaqqqaaaa qqqqatqaaa qaaatcaatt aacaqtqatt 1796 gataatagcg atcatattaa attagatgca tctaatcttg ctggtaatga taaaacaaaa 1856 atctatcaag caqaaaataa aqttctqqtt attqatattq ctaaaccaaa tqqqaaaqqq 1916 atttcaqata accqttttqa aaaatttaat attccaaata qcqcqqtqtt taataataat 1976 qqqactqaaq Cqcaqqcaaq atcaacatta attqqttaca ttccqcaaaa tcaaaattta 2036 aggggagga aagaagctga tgttatatta aatcaagtga caggtcctca agaaagtaaa 2096 attqttqqcq cqcttqaaqt attaqqtaaa aaaqctqata tcqtcattqc aaaccaaaat 2156 ggtattacct taaatggtgt aagaacaata aattcagatc gttttgttgc cactacgagt 2216 gagottatag atcogaatca gatgatgtta aaggttacaa aaggaaatgt gatcattgat 2276 attgatggtt tttcgacaga tggattaaag tatttagata ttattgctaa aaaaattgaa 2336 caaaaqcaat caattacatc aqqqqataat tcaqaaqcaa aaacaqatqt cactcttatt 2396 gcgggttcca gtgaatatga tttaagcaaa catgagctga aaaaaacgag cggtgaaaat 2456 gtatctaatg atgttattgc tatcacggga tctagtacag gcgcaatgca tggtaaaaat 2516 attaagttga ttgtgacaga taaaggtgca ggcgtaaaac atgatggaat tattttgtct 2576 qaaaatqata ttcaqattqa aatqaatqaa qqtqacttaq aacttqqcaa tacqattcag 2636 caaacagtgg taaaaaaaga ccgaaatatt cgagccaaga aaaaaattga agtgaaaaac 2696 gctaatcgtg tttttgttgg tagtcaaacg aaatcagatg aaatttcgtt agaggcgaaa 2756 caagttaaaa tcagaaaaaa cgcagagatt aggagtacga cacaagccaa aatcgtagca 2816 aagggtgccc tgtctattga gcaaaatgcg aagctcgtcg ctaaaaagat agatgtggca 2876 acagaaactc taactaatgc tgggcgtatt tatggtcgag aggttaagct tgacactaat 2936 aatttgatta atgataaaga aatttatgct gaacggaaat tgagtatttt gacgaaaqqa 2996 aaagatettg aaattattea agatagatat ttgteteeac tgatgegegt aaaaaqtaqt 3056 gtccgctttt taggctctcc gtttttctca atatctccgt cqatqctcqc aaqccttaqt 3116 gcacagttta agcctgqttt tqtqaataaq qqactcattq aaagtqcqqq qagtqcaqaa 3176 ttaactttta aagaaaaac cagttttta acagagggca ataattttat tagagctaaa 3236 gatgcgttaa c 3247

<210> 20 <211> 482

<211> 482 <212> PRT

<213> Pasteurella multocida

<400> 20

Val Asp Leu Ala Gly Glu Lys Val Ser Leu Asn Phe Gly Asp Ile Ile

His Ala Tyr Gln Asn Gln Pro Leu Ser Thr Lys Val Val Phe Gln Leu Val Lys Asp Leu Thr Glu Val Leu Tyr Arg Ser Gly Tyr Val Thr Ser Ala Ile Gly Leu Lys Asn Ser Lys Ile Ser Asn Gly Asp Leu Glu Phe Ile Val Leu Trp Gly Arg Thr Arg Asp Leu Phe Val Asn Gly Glu Lys Pro Thr Arg Phe Arg Asp Lys Thr Met Leu Ser Val Leu Pro Asn Leu Ile Gly Asn Arg Leu Ser Ile His Asp Ile Asp Gln Leu Ile Glu Ile Leu Asn Thr Thr Asn Lys Lys Ala Thr Val Asn Val Val Ala Ser Glu Glu Lys Gly Ser Ser Asn Leu Asn Ile Glu Arg Gln Tyr Asp Val Phe Pro Gln Val Ser Val Gly Phe Asn Asn Ser Gly Ala Gly Asn Asn Ala Asn Gly Arg Asn Gln Ala Thr Leu Asn Ile Ala Trp Ser Asp Leu Leu Gly Thr Asn Asp Arg Trp Ser Phe Ser Ser Ser Tyr Arg Leu Tyr Lys Asn His His Ala Asn Gln Gln Arg Asn Tyr Thr Leu Ser Tyr Ser Gln Pro Ile Gly Phe Ser Thr Val Glu Ile Lys Ala Ser Glu Ser Thr Tyr Glu Lys Glu Leu Arg Gly Ile Asn Thr His Ser Ser His Gly Lys Thr 230 Gln Ser Leu Ala Val Lys Leu Met His Val Leu Leu Arg Asn Lys Glu Ser Ile Leu Ser Thr Tyr Thr Glu Phe Glu Phe Lys Lys Arg Ile Ser Tyr Phe Ser Asp Ile Leu Ile Gly Lys Tyr His Asn Asn Lys Val Ser Val Gly Leu Ser Tyr Met Thr Asn Phe Ala Tyr Gly Lys Leu Tyr Ser Asp Ile Ala Tyr Ala Asn Gly Leu Arg Trp Phe Gly Ala Asn Tyr Ser 310 Ala Tyr Asp Ala Asn Arg Glu Lys Thr Leu Lys Leu Leu Ser Gly Ser Ile Asn Trp Gln Arg Pro Ile Ser Leu Phe Glu Arg Ala Met Asn Tyr

```
Gln Leu Arg Ile Gly Ala Gln Tyr Gly Phe Asp Ser Leu Tyr Ser Glu
Asn Gln Phe Ser Ile Gly Asp Glu Tyr Thr Val Arg Gly Phe Lys Gly
Gly Ala Val Ser Gly Asp Ser Gly Ala Tyr Leu Ser Gln Thr Leu Thr
Val Pro Phe Tyr Pro Gln Lys Ala Tyr Leu Ser Gln Val Ser Pro Phe
                405
Ile Gly Phe Asp Met Gly Lys Val His Ile Lys Ser Lys His Lys Thr
Thr Thr Leu Val Gly Phe Ala Leu Gly Leu Lys Thr Gln Ile Lys Leu
Phe Ser Leu Ser Leu Thr Tyr Ala Gln Pro Met Asn Gly Val Ser Gly
Val Thr Gln His Arg Gln Lys Pro Ile Tyr Tyr Phe Ser Gly Ser Leu
465
Ser Phe
<210> 21
<211> 1170
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (639)..(1022)
-220×
<223> greA
<400> 21
gtcaacaaac ggcaaccact tcggcaaaaa gcgattgcgc ttgtgttctg ctctaaqctc 60
aagogttggg atogoggaa ttgogttgao caotggtgag atoggggtca cotgtaaaac 120
gtacgataag atcgccatgc atttcattgt tttttatttt tccattggtt aatagactgg 180
tttcaaattg aaattggtca cttagtacga gtttggcggt taaggcggtg agcacttttt 240
gtgtactggc gggtaacata aaggtactgg cttggtgcgc tacaattttt tcattacqat 300
ttaagttttt agccacaaaa cctaggctgg tcccttcggg taaatgagcg ttgatttcag 360
caagatcaat ctcagcataa ctgaaatgac tgacgagtaa actacatata agtatcgttc 420
gtttgaaaag gcgtaaaagc gtggcagtaa aaaaagaaga tattttatac ataattggct 480
cgagcagttg ctatttttt attgtcgaac aataatagta tttgaaccct cgagagtaaa 540
teettttete gttaaacact tatttttta tteaactacg gcattgttt tacaatgttg 600
```

tggtt	ttg	tt 1	tta	tcta	aa a	agga	agaa	a aa	acga						ca atg ro Met 5	
act a Thr I	ata [le	cgt Arg	ggt Gly 10	gcg Ala	gaa Glu	caa Gln	tta Leu	aga Arg 15	caa Gln	gaa Glu	ctc Leu	gat Asp	ttt Phe 20	Leu	aaa Lys	704
aac a Asn T																752
cat g His G	ggc 3ly 40	gat Asp	cta Leu	aaa Lys	gaa Glu	aat Asn 45	gca Ala	gaa Glu	tac Tyr	cat His	gct Ala 50	gcg Ala	cgt Arg	gaa Glu	cag Gln	800
caa g Gln G 55	gga 31y	ttt Phe	tgt Cys	gaa Glu	gga Gly 60	cga Arg	atc Ile	caa Gln	gaa Glu	att Ile 65	gaa Glu	Gly ggg	aaa Lys	tta Leu	gcg Ala 70	848
aat a Asn S	er Ger	caa Gln	att Ile	att Ile 75	gat Asp	gtc Val	aca Thr	aag Lys	atc Ile 80	cca Pro	aat Asn	aat Asn	ggc Gly	aaa Lys 85	gtg Val	896
att t Ile P																944
gtc t Val S																992
cta a Leu I 1										taga	agaaa	agc 1	taaa	tggal	tt	1042
Leu I	le 120	Ser	Val	Asn	Ala	Thr 125	Arg	Leu	Asn						tt attacg	
Leu I 1 gccca	le 120 aga	Ser tc t	Val tgg	Asn cgtca	Ala aa a	Thr 125	Arg gtta	Leu a att	Asn	actt	ccgt	cati	aa	agcga		1102
Leu I 1 gccca	lle 120 aga atgc	Ser tc t	Val tgg	Asn cgtca	Ala aa a	Thr 125	Arg gtta	Leu a att	Asn	actt	ccgt	cati	aa	agcga	attacg	1102
Leu I gccca caaaa	ile 120 aaga atgo tga 22 12 PR	ser tc t ct t	Val tggd	Asn egtea	Ala aa ac ga ac	Thr 125 caaac	Arg gtta	Leu a att	Asn	actt	ccgt	cati	aa	agcga	attacg	1102 1162
Leu I 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ile L20 aaga atgc :tga 22 12 PR PR	ser tc t ct t	Val tgge aate	Asn egtea ggaco	Ala aa ac ga ac	Thr 125 caaac cagge	Arg	Leu a att	Asn gaca	actt	ccgt	cati	aa	agcga accga	attacg	1102 1162
Leu I 1 gccca caaaa ttcgt <210> <211> <212> <213> <400> Met L	Ile 120 aaga atgc tga 22 12 PR Pa 22	ser tc t ct t 8 T ster	Val tgge aate	Asn egtca ggacq la mu Pro	Ala aa ac ga ac	Thr 125 caaac caggo	Arg egtta caaga	Leu a att	Asn gaca gago	actt	ccgi atgg	gcagi	caa cac	agcga accga accga	attacg aatact Gln	1102 1162
Leu I 1 2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 3 2 2 1 2 2 1 2 1	Ile 120 aaga atgo ttga 22 PR PR Pa 22 27 S	Ser tc t ct t 8 T stee	Val ttggd taatg	Asn egtea ggac ggac Pro 5 Leu	Ala aa ad ga ad ultoo Met Lys	Thr 125 caaaac caggo cida Thr	Arg cgtta caaga	Leu a att	Asn cgaca cgago Gly 10 Arg	Ala	ccgf atgg	ccatt gcagt Gln Ile	Leu Ile 30	agoga accga Arg 15 Asn	attacg aatact Gln Ala	1102 1162
Leu I 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ile L20 aaga atgc ttga > 222 > PR PR - Pa - 22 - ys	Ser tc t ct t 8 T stee	Val ttggc aats Tle Phe 20	Asn egtea ggac ggac La mu Pro 5 Leu Arg	Ala aaa ac ga ac Met Lys Glu	Thr 125 caaaa caggo cida Thr Asn	Arg cgtta caaga Ile Thr Gly 40	Leu a att a att Arg 25 Asp	Asn cgaca cgago Gly 10 Arg	Ala Pro	ccgs atgg	Gln Ile Asn 45	Leu Ile 30	Arg 15 Asn	attacg aatact Gln Ala	1102 1162

Pro Asn Asn Gly Lys Val Ile Phe Gly Ala Thr Ile Leu Leu Leu Asn

Ile Asp Thr Glu Glu Glu Val Ser Tyr Gln Ile Val Gly Asp Asp Glu Ala Asn Ile Lys Ala Gly Leu Ile Ser Val Asn Ala Thr Arg Leu Asn <210> 23 <211> 4666 <212> DNA <213> Pasteurella multocida <220> <221> CDS <222> (980) .. (2440) <220> <223> guaB <400> 23 aacacatqaa cotottooco aaaatacqca tocatatoto qccaatottq qcqaaatqct 60 tcatcaattc ctgcttgttc aaaatgttgt aaacgtgcaa tcaacttttt acctaattct 120 gcgatcaatt tattccgatc aatcgttggt aatacttcaa tcagctctgc ccaaggttga 180 tcaatttgct gtgtttgttt tgggaaagac aaattaatgc caaagccaat cacgagatta 240 tgttgattat tctgacgatt ggcgatttcg accaaaatcc ctgctaattt gcgcccatgt 300 aatagcacat catttggcca ttttaatcca atgttcaaag cacctgcttg ctttagcqtt 360 totgogattg coataccoac tactaaacto aagcottota aattgacott ttggtcacat 420 gcccaataca aactcataat cacttgtcca gcaaaaggag aaagccattg acgaccacgt 480 cqtccacqtc ccgcagtttg atattctqct aagcaaataq cqcctttttc caaatqtqca 540 atattqtcaa qcaaqaattq attqqtcqaq ttaataatcq qcttaatata aaqtqqqtaa 600 ggtgctaacg cttgcgtcaa ataagattca tttaagcgac ttaattgagg tatgagacga 660 aaatgttqqa cttqctqttc tatttgtatc ccttqttqtt tcaatttttc gatattqtqt 720 aagatatett gitetgaata acetaaaaqt qeagteaatt etgetaaaga aagitgitga 780 tagctagcga gtaatgcaag tacgttttgc ataaaaatcc ttatttatat aaccaaagag 840 aggcaactta ttatagacaa tgattttctc gaaaatcgat aaaaaaatcc attttcaaac 900 agcaacgaaa totgtataat gogaccgcaa tattttttac cottttattt ttoatatcaa 960 cotaagagag aatattgca atg tta oga gta ata aaa gaa gca tta acc tto 1012 Met Leu Arg Val Ile Lys Glu Ala Leu Thr Phe

gat gat gtt ttg ctt gtc cca gca cat tct act gtg ctc cca aat acc 1060 Asp Asp Val Leu Leu Val Pro Ala His Ser Thr Val Leu Pro Asn Thr 15 20

										atc Ile						1108
atg Met	tta Leu 45	tcc Ser	gcc Ala	gcc Ala	atg Met	gat Asp 50	acc Thr	gtg Val	aca Thr	gaa Glu	act Thr 55	aaa Lys	ctg Leu	gca Ala	atc Ile	1156
										att Ile 70						1204
att Ile	gag Glu	cgt Arg	caa Gln	gcg Ala 80	gaa Glu	cgt Arg	gtc Val	cgc Arg	aaa Lys 85	gtg Val	aaa Lys	aaa Lys	ttt Phe	gag Glu 90	agc Ser	1252
ggt Gly	att Ile	gta Val	tcc Ser 95	gat Asp	cct Pro	gtc Val	acc Thr	gtt Val 100	tca Ser	cca Pro	acc Thr	tta Leu	tct Ser 105	tta Leu	gca Ala	1300
										ttt Phe						1348
gtt Val	gat Asp 125	gat Asp	gaa Glu	aaa Lys	aat Asn	ctt Leu 130	gtc Val	ggt Gly	atc Ile	att Ile	act Thr 135	ggt Gly	cgt Arg	gat Asp	aca Thr	1396
cgc Arg 140	ttt Phe	gtc Val	acg Thr	gat Asp	tta Leu 145	aat Asn	aaa Lys	aca Thr	gtg Val	gcg Ala 150	gac Asp	ttt Phe	atg Met	acc Thr	cct Pro 155	1444
										gca Ala						1492
										aaa Lys						1540
										tta Leu						1588
	gag			cca	caa	gcc	tat	222						++=	cat	1636
	205	Gln	Lys	Pro	Gln	Ala 210				gaa Glu						
gtc Val 220	205 ggt	gct	gca	gta	gga	210 gca	Cys	Lys	Asp		Phe 215 gaa	Gly	Arg	Leu att	Arg	1684
Val 220 gca	ggt Gly tta	gct Ala gtg	gca Ala aaa	gta Val gca	gga Gly 225	210 gca Ala gtc	Cys gga Gly gat	Lys cct Pro gtg	Asp ggt Gly tta	Glu aat Asn	Phe 215 gaa Glu att	Gly gaa Glu gac	egt Arg tca	Leu att Ile tca	gat Asp 235	
Val 220 gca Ala ggt	ggt Gly tta Leu cat	gct Ala gtg Val	gca Ala aaa Lys	gta Val gca Ala 240	gga Gly 225 ggg Gly	gca Ala gtc Val	Cys gga Gly gat Asp	Lys cct Pro gtg Val	Asp ggt Gly tta Leu 245 gtg	Glu aat Asn 230 ttg	Phe 215 gaa Glu att Ile gaa	gaa Glu gac Asp	cgt Arg tca Ser	att Ile tca Ser 250	gat Asp 235 cac His	1684

gca att gcg ttg gct gat gca ggg gca agt gca gtg aaa gtg ggg att 18 Ala Ile Ala Leu Ala Asp Ala Gly Ala Ser Ala Val Lys Val Gly Ile 285 290	76
ggt cct ggt tca att tgt aca aca cgt att gtc aca ggc gtg ggc gtt $$ 19 Gly Pro Gly Ser Ile Cys Thr Thr Arg Ile Val Thr Gly Val Gly Val 305 $$ 305 $$ 305 $$ 315 $$	24
cca caa att aca gcg att gcc gat gcg gca gca gca cta aaa gat cgg $$ 19 Pro Oln Ile Thr Ala Ile Ala Aap Ala Ala Glu Ala Leu Lys Asp Arg $$ 220 $$ 330 $$	72
ggt att cet gtg att gea gat gge ggt atc egt ttc tet ggt gat att $$ 20 Gly Ile Pro Val Ile Ala Asp Gly Gly Ile Arg Phe Ser Gly Asp Ile $$ 345 $$ 340 $$ 345	20
teg aaa gec att geg geg gec tet tgt gtt atg gtg ggt tec atg 20 Ser Lys Ala Ile Ala Ala Gly Ala Ser Cys Val Met Val Gly Ser Met 350 360	68
ttt gea ggt aca gaa gaa gca cca ggt gaa atc gaa ctt tat caa ggt $$ 21 Phe Ala Gly Thr Glu Glu Ala Pro Gly Glu Ile Glu Leu Tyr Gln Gly $$ 375 $$ 375 $$	16
cgt goc tht aaa tot tat cga ggt atg gga tog tta ggt gcg atg agc $$ 21 Arg Ala Phe Lys Ser Tyr Arg Gly Met Gly Ser Leu Gly Ala Met Ser 380 $$ 395 $$	64
aaa ggc tca agc gac cgc tat ttc cag tcc gat aat gca gct gac aaa $$ 22 Lys Oly Ser Ser Amp Arg Tyr Phe Oln Ser Amp Asn Ala Ala Amp Lys $$ 405 $$	12
tta gta cca gaa ggt att gaa gga cgt att cca tat aaa gga ttc tta 22 Leu Val Pro Glu Gly Ile Glu Gly arg Ile Pro Tyr Lys Gly Phe Leu 415 425 425	60
aaa gaa att atc cat caa caa atg ggt gga ttg cgt tct tgt atg ggc 23 Lys Glu The The His Gln Gln Met Gly Gly Leu Arg Ser cys Met Gly 430 440	08
tta acg ggt tgt gca acc att gat gaa ctc cgt acc aaa gcg cag ttt $$ 23: Leu Thr Gly cys Ala Thr 11e Asp Glu Leu Arg Thr Lys Ala Gln Phe $$ 455 $$	56
gtg cgc att agt ggt gca ggg atc caa gaa agc cat gtg cat gat gtg $$ 24 Val Arg Ile Ser Gly Ala Gly Ile Gln Glu Ser His Val His Asp Val $$ 460 $$ 475 $$	04
act atc aca asa gas gcc cct aat tat cgt atg ggt tasacattgc Thr lie Thr Lys Glu Ala Pro Asn Tyr Arg Met Gly 480	50
ttaggtgggg attatcccca cctaagttta ttttaaataa caacgttaat agagaagctt 25	10
atttttatgt atggcattaa aattaaaaat gttattaaac tttttctatt aaagttttta 25	70
agaaataaat atcgatataa aatcaatatt caacatcatc tcattagtat tgaaggaaaa 26	30
tgcggtgagt ttgatttaag ccagctaaac tatgtttatt tggtgaaaga tcctgagata 26	90
agaaataatc gactgacact gtacttgaat gattttttca aaattggggt aaattatcat 27	50
ggatttactc aaatgtatca gacactatca tccaagtatg gttttgatga cgcaacgttt 28	10

tttgaatatc tttgtaaqaa aqqqcctttt tctattcaaa tttggcgtaa aaaacaaact 2870 caaaattatg tgattcttqa tqaaqcctat actgactata cacaaggttt tqaaattcaa 2930 tetectqaaa aaatatttat teettqqqqq actaettatq aaqeettatt teaqeaqaca 2990 caatttaaaq aaaaaqqaat ctcttatqac tttatcttcc ctattcqqat aqqqcqttta 3050 ttactcaaqq atqtqtqqat cacaccaaqt qtccqaaaaq atqtaccqat tttaqcqtta 3110 tacactgagt gctatcatga atccgcgaca gaaaaaagtt atcaggaatt aaccgccgca 3170 ttacgtgaga accaacagtt aatcagatca tgtgttgaag aacgagccga tccgaaatta 3230 tataaqtctq ttttacqcct taacqcqaca qaatttqaat tqcqttatta tcqacatata 3290 cgagacgatt ttgatagggg atacactaaa ttcagcatta gagatacgac agactattta 3350 gattatgtqa tcaacqaqcc ttatqaaaat caattaqtqa taacqqatta tttaqtqatt 3410 gaggcgcaaa atttaataaa aatqqattat accqataatt ccattattaa acqccqacca 3470 ccaaaaataa aagaaaagtt tcgtgatgca caaagcctga tttggacaga tgatctcaat 3530 cataaaatcg gttttaccag tgatgaccgc gctatcgtct ttgataaagc ggacattgaa 3590 tcctttactc tggcaaatat agagacaacc cgaagacata atcgcagttc actcagcatc 3650 tqttttqtqq ataaaaataa qqaaqccatc actqtatttc taqctqaaca tcattttctq 3710 ataccctatg tggataaaat aaaaacactg acacaaaaag aggtgttgtt tcttgaagaa 3770 tatataqaqq atqtttaaaa aaccqataac atcttqatqt catcqcaaat tcaaactcct 3830 tttacacaat atatttaaac tttaacccga tttaatattt acgtaaaaac aactaagaga 3890 acttaaatga acaacattca caaccataaa attttaattt tggacttcgg ttcacaatat 3950 accoagitiga tigocoqoog tigtacgigaa attigoogigi actiqoqaact tigogoatqq 4010 gatgtatccg aagccgatat tcgtgagttt aatccaactg ggattattct ttctggtggt 4070 cctgaaagta ccactgaaga aaacagccca cgagctcccq aatacgtatt caacqccqqt 4130 gtacccqtat tagggatctg ttatggtatg caaaccatgg cgatgcaact aggtggttta 4190 actgaaactt ctactcaccg agaatttggt tatqcatcaq tqaatctaaa agccgcqqac 4250 gegttattig etcaattaaa tgatgatqte geaaqtteae ageeeaaatt aqaeqtttqq 4310 atgagccatg gcgataaagt qacgcgtttg ccagatcatt tccaaqtcac cqcaatqacc 4370 tcaacctgtc caatcgcagc tatgtcqqat qaacqtcqtc qtttttatqq tqtccaattc 4430 cacccagaag tgactcatac aaaaagcggg cttgaattat taacgaattt tgtggtgaag 4490 atcigiggti gigaacgiaa ciggacacca gaaaatatca tigaagaigc cgiigcicgi 4550 cttaaagcac aagtgggcga tgatgaagtg attttaggct tatctggtgg cgttaactgc 4610 cqtataqqca qcttagaaaa aqtqtccqcq ctcacqttaa tccccqtaaq cqttqa 4666

<210> 24 <211> 487 <212> PRT <213> Pasteurella multocida <400> 24 Met Leu Arg Val Ile Lys Glu Ala Leu Thr Phe Asp Asp Val Leu Leu Val Pro Ala His Ser Thr Val Leu Pro Asn Thr Ala Asp Leu Ser Thr Gln Leu Thr Lys Thr Ile Arg Leu Asn Ile Pro Met Leu Ser Ala Ala Met Asp Thr Val Thr Glu Thr Lys Leu Ala Ile Ser Leu Ala Gln Glu Gly Gly Ile Gly Phe Ile His Lys Asn Met Ser Ile Glu Arg Gln Ala Glu Arg Val Arg Lys Val Lys Lys Phe Glu Ser Gly Ile Val Ser Asp Pro Val Thr Val Ser Pro Thr Leu Ser Leu Ala Glu Leu Ser Glu Leu Val Lys Lys Asn Gly Phe Ala Ser Phe Pro Val Val Asp Asp Glu Lys Asn Leu Val Gly Ile Ile Thr Gly Arg Asp Thr Arg Phe Val Thr Asp Leu Asn Lys Thr Val Ala Asp Phe Met Thr Pro Lys Ala Arg Leu Val Thr Val Lys Arg Asn Ala Ser Arg Asp Glu Ile Phe Gly Leu Met His Thr His Arg Val Glu Lys Val Leu Val Val Ser Asp Asp Phe Lys Leu Lys Gly Met Ile Thr Leu Lys Asp Tyr Gln Lys Ser Glu Gln Lys Pro Gln Ala Cys Lys Asp Glu Phe Gly Arg Leu Arg Val Gly Ala Ala Val Gly Ala Gly Pro Gly Asn Glu Glu Arg Ile Asp Ala Leu Val Lys Ala Gly Val Asp Val Leu Leu Ile Asp Ser Ser His Gly His Ser Glu Gly Val Leu Gln Arg Val Arg Glu Thr Arg Ala Lys Tyr Pro Asp Leu Pro Ile Val Ala Gly Asn Val Ala Thr Ala Glu Gly Ala Ile Ala Leu Ala Asp Ala Gly Ala Ser Ala Val Lys Val Gly Ile Gly Pro Gly Ser Ile 290 295

```
Cys Thr Thr Arg Ile Val Thr Gly Val Gly Val Pro Gln Ile Thr Ala
Ile Ala Asp Ala Ala Glu Ala Leu Lys Asp Arg Gly Ile Pro Val Ile
Ala Asp Gly Gly Ile Arg Phe Ser Gly Asp Ile Ser Lys Ala Ile Ala
Ala oly Ala Ser Cys Val Met Val Gly Ser Met Phe Ala Gly Thr Glu
                            360
Glu Ala Pro Gly Glu Ile Glu Leu Tyr Gln Gly Arg Ala Phe Lys Ser
Tyr Arg Gly Met Gly Ser Leu Gly Ala Met Ser Lys Gly Ser Ser Asp
Arg Tyr Phe Gln Ser Asp Asn Ala Ala Asp Lys Leu Val Pro Glu Gly
Ile Glu Gly Arg Ile Pro Tyr Lys Gly Phe Leu Lys Glu Ile Ile His
Gln Gln Met Gly Gly Leu Arg Ser Cys Met Gly Leu Thr Gly Cys Ala
Thr Ile Asp Glu Leu Arg Thr Lys Ala Gln Phe Val Arg Ile Ser Gly
Ala Gly Ile Gln Glu Ser His Val His Asp Val Thr Ile Thr Lys Glu
Ala Pro Asn Tyr Arg Met Gly
                485
<210> 25
<211> 2364
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (191)..(1828)
<220>
<223> Hi1501
<400> 25
gtcaacactc atcgcacagc tgaggcattt cccqaaaqct qatcatqatq atggacctga 60
tgcgctagag atgctgtgga aaaatgcggt aagcagctct gccccgattg agttcatgac 120
aattgacggc gatttagggc gtgatgaatt tgatgacggc gatttataca gtatttggcg 180
gagataaaaa atg gcg aag aaa aag aaa aaa tta caa caa gcg aaa aaa
           Met Ala Lys Lys Lys Lys Leu Gln Gln Ala Lys Lys
gta caa gtt ggc tta gat aca caa aca aat gag gcg cgt gtc acg gaq
Val Gln Val Gly Leu Asp Thr Gln Thr Asn Glu Ala Arg Val Thr Glu
                         20
     15
```

aca Thr 30	gga Gly	aga Arg	att Ile	att Ile	tct Ser 35	gat Asp	cac His	cca Pro	agc Ser	aat Asn 40	Lys	att Ile	acc Thr	ccc Pro	gca Ala 45	325
			ggg Gly													373
			ctt Leu 65													421
gca Ala	aat Asn	att Ile 80	caa Gln	acc Thr	cgt Arg	aag Lys	cgt Arg 85	gcg Ala	att Ile	tta Leu	acc Thr	ctt Leu 90	gac Asp	tgg Trp	cgc Arg	469
att Ile	gca Ala 95	gag Glu	cca Pro	cgt Arg	aat Asn	gcc Ala 100	aca Thr	ccg Pro	caa Gln	gaa Glu	gaa Glu 105	aaa Lys	ctg Leu	caa Gln	gtc Val	517
gaa Glu 110	att Ile	gac Asp	gag Glu	ctt Leu	ttc Phe 115	tat Tyr	caa Gln	ttc Phe	cca Pro	atg Met 120	cta Leu	gaa Glu	gat Asp	tta Leu	atg Met 125	565
gtg Val	gat Asp	atg Met	atg Met	gat Asp 130	gcg Ala	gta Val	gga Gly	cat His	ggt Gly 135	ttt Phe	tcg Ser	gcg Ala	tta Leu	gaa Glu 140	att Ile	613
gaa Glu	tgg Trp	aag Lys	caa Gln 145	gct Ala	gaa Glu	agt Ser	aaa Lys	tgg Trp 150	att Ile	cca Pro	gtt Val	aat Asn	ttt Phe 155	atc Ile	gca Ala	661
			tcg Ser													709
aaa Lys	acg Thr 175	cca Pro	gat Asp	aat Asn	caa Gln	gac Asp 180	ggt Gly	gag Glu	ccg Pro	ttg Leu	aga Arg 185	caa Gln	tat Tyr	ggc Gly	tgg Trp	757
gta Val 190	gtg Val	cat His	acc Thr	cac His	aaa Lys 195	tca Ser	aga Arg	aca Thr	gta Val	cag Gln 200	ctt Leu	gct Ala	cgt Arg	atg Met	ggt Gly 205	805
			acg Thr													853
			gcc Ala 225													901
			cca Pro													949
cgt Arg	gca Ala 255	ctt Leu	gct Ala	caa Gln	Ile	gga Gly 260	cat His	aac Asn	gca Ala	gca Ala	999 Gly 265	att Ile	atg Met	cca Pro	gaa Glu	997
gga Gly 270	atg Met	aat Asn	gtt Val	gag Glu	ttg Leu 275	cat His	aat Asn	gtg Val	aca Thr	aac Asn 280	act Thr	act Thr	ggc Gly	tcg Ser	gct Ala 285	1045

gga Gly	agc Ser	aac Asn	ccg Pro	ttt Phe 290	Leu	caa Gln	atg Met	gtg Val	gac Asp 295	tgg Trp	tgt Cys	gaa Glu	aag Lys	tcc Ser 300	gcc Ala	1093
gca Ala	cgt Arg	ttg Leu	att Ile 305	cta Leu	gly ggg	caa Gln	aca Thr	tta Leu 310	aca Thr	agc Ser	ggt Gly	gca Ala	gat Asp 315	ggt Gly	aaa Lys	1141
act Thr	tca Ser	act Thr 320	aat Asn	gcc Ala	ctt Leu	gga Gly	caa Gln 325	gtg Val	cat His	aat Asn	gaa Glu	gtc Val 330	aga Arg	cgt Arg	gac Asp	1189
						aaa Lys 340										1237
att Ile 350	att Ile	ctg Leu	cca Pro	tat Tyr	ctt Leu 355	caa Gln	att Ile	aac Asn	att Ile	gat Asp 360	ccg Pro	aat Asn	att Ile	ttg Leu	cct Pro 365	1285
tct Ser	cgt Arg	gtg Val	ccg Pro	tat Tyr 370	ttc Phe	gag Glu	ttt Phe	gac Asp	acg Thr 375	aaa Lys	gaa Glu	tat Tyr	gct Ala	gat Asp 380	tta Leu	1333
agt Ser	gtc Val	cta Leu	gcg Ala 385	gat Asp	gct Ala	att Ile	cct Pro	aag Lys 390	ctt Leu	gtg Val	agc Ser	gta Val	gga Gly 395	gtg Val	cgc Arg	1381
att Ile	cct Pro	gaa Glu 400	aat Asn	tgg Trp	gtg Val	cgt Arg	gat Asp 405	aaa Lys	gcg Ala	ggc Gly	att Ile	cca Pro 410	gaa Glu	ccg Pro	cag Gln	1429
						agt Ser 420										1477
tta Leu 430	aac Asn	gat Asp	gtt Val	gaa Glu	aat Asn 435	ccg Pro	aaa Lys	aaa Lys	cag Gln	acc Thr 440	gca Ala	ctt Leu	tct Ser	gta Val	caa Gln 445	1525
aat Asn	cac His	gtg Val	aca Thr	ggt Gly 450	tgt Cys	cag Gln	tgt Cys	gat Asp	ggc Gly 455	tgt Cys	cgt Arg	ggt Gly	gtt Val	gca Ala 460	tta Leu	1573
tct Ser	gcg Ala	aat Asn	aat Asn 465	aac Asn	agt Ser	tct Ser	act Thr	gcg Ala 470	cag Gln	ggc Gly	gtg Val	cta Leu	gat Asp 475	ggt Gly	gga Gly	1621
ctt Leu	gcg Ala	caa Gln 480	gca Ala	ttt Phe	aat Asn	gag Glu	cct Pro 485	gat Asp	ttt Phe	aat Asn	aaa Lys	caa Gln 490	tta Leu	aat Asn	cca Pro	1669
						gcg Ala 500										1717
gag Glu 510	gcg Ala	gca Ala	gaa Glu	aaa Lys	ctc Leu 515	gct Ala	gaa Glu	gca Ala	tac Tyr	cca Pro 520	gaa Glu	att Ile	tca Ser	agt Ser	cac His 525	1765
gaa Glu	cac His	gaa Glu	cag Gln	tat Tyr 530	ctc Leu	tca Ser	aat Asn	gcg Ala	ctg Leu 535	ttt Phe	tta Leu	gct Ala	gat Asp	tta Leu 540	ctt Leu	1813

gga gga act aat gtc taaaccgctt agttttctat tcggacttga accaacgcaa Gly Gly Thr Asn Val 545 qccattqagt ttttacataa taaaaaatta cttqcaacqa aagtgtttaa aaaatcactq 1928 catqataqtq ccatcqcaaq aqctacaaca atcqcqaqat tatctagtct tqaqatqacq 1988 aatqatattt ataaatcaat qqaaqttqcc aaaaaaqaqq qtaaqagctt tacacaatqq 2048 aaaaaaqact tqqtaaqtqa qtttqaqaaa aaaqqctqqq tattcqqqca tqataaatct 2108 atcagtcgcg gtatcgacgg aaaactgttg gctgatccga aaacaggcga atattttggt 2168 acaccqcqtc qqctqaatac aatttatcqt acaaacqtqc aaqccqcata ttctqcqqcq 2228 cgctatcagc gcatgatgga taatattgat catcgcccct attggcaata ttccgctgtc 2288 agogatgago qtacacqaco ototcatott qoactaaacq qtcgaattta tcqctatqat 2348 gacccgtttt ggtcga <210> 26 <211> 546 <212> PRT <213> Pasteurella multocida <400> 26 Met Ala Lys Lys Lys Lys Leu Gln Gln Ala Lys Lys Val Gln Val Gly Leu Asp Thr Gln Thr Asn Glu Ala Arg Val Thr Glu Thr Gly Arg Ile Ile Ser Asp His Pro Ser Asn Lys Ile Thr Pro Ala Lys Leu Lys Gly Ile Leu Glu Asp Ala Glu Gly Gly Asp Ile Thr Ala Gln His Glu Leu Phe Met Asp Ile Glu Glu Arg Asp Ser Cys Ile Gly Ala Asn Ile Gln Thr Arg Lys Arg Ala Ile Leu Thr Leu Asp Trp Arg Ile Ala Glu Pro Arg Asn Ala Thr Pro Gln Glu Glu Lys Leu Gln Val Glu Ile Asp 105 Glu Leu Phe Tyr Gln Phe Pro Met Leu Glu Asp Leu Met Val Asp Met Met Asp Ala Val Gly His Gly Phe Ser Ala Leu Glu Ile Glu Trp Lys

2364

Gln Ala Glu Ser Lys Trp Ile Pro Val Asn Phe Ile Ala Arg Pro Gln 145 Ser Trp Phe Lys Leu Asp Lys Asp Asp Asn Leu Leu Leu Lys Thr Pro 170

Asp Asn Gln Asp Gly Glu Pro Leu Arg Gln Tyr Gly Trp Val Val His Thr His Lys Ser Arg Thr Val Gln Leu Ala Arg Met Gly Leu Phe Arg Thr Leu Ala Trp Leu Tyr Met Phe Lys His Tyr Ser Val His Asp Phe Ala Glu Phe Leu Glu Leu Tyr Gly Met Pro Ile Arg Ile Gly Lys Tyr Pro Phe Gly Ala Thr Asn Asp Glu Lys Arg Thr Leu Leu Arg Ala Leu Ala Gln Ile Gly His Asn Ala Ala Gly Ile Met Pro Glu Gly Met Asn Val Glu Leu His Asn Val Thr Asn Thr Thr Gly Ser Ala Gly Ser Asn Pro Phe Leu Gln Met Val Asp Trp Cys Glu Lys Ser Ala Ala Arg Leu Ile Leu Gly Gln Thr Leu Thr Ser Gly Ala Asp Gly Lys Thr Ser Thr Asn Ala Leu Gly Gln Val His Asn Glu Val Arg Arg Asp Leu Leu Val Ser Asp Ala Lys Gln Ile Ala Gln Thr Ile Thr Gln Gln Ile Ile Leu Pro Tyr Leu Gln Ile Asn Ile Asp Pro Asn Ile Leu Pro Ser Arg Val Pro Tyr Phe Glu Phe Asp Thr Lys Glu Tyr Ala Asp Leu Ser Val Leu Ala Asp Ala Ile Pro Lys Leu Val Ser Val Gly Val Arg Ile Pro Glu Asn Trp Val Arg Asp Lys Ala Gly Ile Pro Glu Pro Gln Glu Asn Glu Thr Ile Leu Ser Ala Val Gln His Asp Phe Lys Thr Asp Leu Asn Asp Val Glu Asn Pro Lys Lys Gln Thr Ala Leu Ser Val Gln Asn His Val Thr Gly Cys Gln Cys Asp Gly Cys Arg Gly Val Ala Leu Ser Ala Asn Asn Asn Ser Ser Thr Ala Gln Gly Val Leu Asp Gly Gly Leu Ala Gln 465 Ala Phe Asn Glu Pro Asp Phe Asn Lys Gln Leu Asn Pro Met Val Lys Lys Ala Val Ala Val Leu Met Ala Cys Asp Ser Tyr Asp Glu Ala Ala 505

Glu Lys Leu Ala Glu Ala Tyr Pro Glu Ile Ser Ser His Glu His Glu

```
Gln Tyr Leu Ser Asm Ala Leu Phe Leu Ala Asp Leu Leu Gly Gly Thr
Asn Val
545
<210> 27
<211> 1353
<212> DNA
<213> Pasteurella multocida
<220>
<223> hmbR
<220>
<221> CDS
<222> (2)..(1351)
<221> misc_feature
<222> 125
<223> Xaa = any or unknown amino acid
<220>
<221> misc feature
<222> 133
<223> Xaa = any or unknown amino acid
<220>
<221> misc_feature
<222> 141
<223> Xaa = anv or unknown amino acid
<221> misc_feature
<222> 151
<223> Xaa = any or unknown amino acid
g toa acg aaa gto ggt tao gat att aat aac act cat cgt ttt aca ctg 49
  Ser Thr Lys Val Gly Tyr Asp Ile Asn Asn Thr His Arg Phe Thr Leu
ttt tta gaa gat cgc cgt gaa aag att acc gaa gaa aaa aca tta
Phe Leu Glu Asp Arg Arg Glu Lys Lys Leu Thr Glu Glu Lys Thr Leu
             20
                                 25
ggg ctt agt gat gca gtg cgt ttt gct aat gat caa acc cct tat ctc
Gly Leu Ser Asp Ala Val Arg Phe Ala Asn Asp Gln Thr Pro Tyr Leu
         35
cgt tat ggt att gaa tat cga tat aac ggc ttg tct tgg ttg gaa acg
                                                                  193
Arg Tyr Gly Ile Glu Tyr Arg Tyr Asn Gly Leu Ser Trp Leu Glu Thr
     50
gta aag ctt ttt ttg gca aag cag aaa atc gaa caa cgt tct gct ctc
Val Lys Leu Phe Leu Ala Lys Glm Lys Ile Glu Gln Arg Ser Ala Leu
                     70
```

							agg Arg									289
ttt Phe	gta Val	tat Tyr	tta Leu 100	caa Gln	aga Arg	cag Gln	aat Asn	ata Ile 105	gct Ala	cgg Arg	gga Gly	gaa Glu	Phe 110	tca Ser	acg Thr	337
							agt Ser 120									385
							gaa Glu									433
							ttc Phe									481
							tcc Ser									529
							ttg Leu									577
							Pro 200									625
aac Asn	agg Arg 210	aca Thr	cag Gln	aga Arg	tta Leu	Pro 215	tat Tyr	cca Pro	aaa Lys	aca Thr	tca Ser 220	tcc Ser	aaa Lys	ttt Phe	tcg Ser	673
							caa Gln									721
							agg Arg									769
							tct Ser									817
cta Leu	caa Gln	ccg Pro 275	gaa Glu	act Thr	gca Ala	ctg Leu	aat Asn 280	cat His	gaa Glu	ata Ile	agt Ser	tac Tyr 285	cgt Arg	ttc Phe	caa Gln	865
							gtc Val									913
							atg Met									961
							tgc Cys									1009

```
gtt aat gaa cct gaa gcc gtg att aaa ggg gtt gaa gta agc ggt gct 1057
Val Asn Glu Pro Glu Ala Val Ile Lys Gly Val Glu Val Ser Gly Ala
                                     345
tta aat ggg tcg gca ttc gga ctt tcc gac ggt tta act ttc cgt ctc
Leu Asn Gly Ser Ala Phe Gly Leu Ser Asp Gly Leu Thr Phe Arg Leu
                                                                              1105
aaa ggg agc tac agc aaa ggt caa aat cat gac ggc gat ccg tta aaa
                                                                             1153
Lys Gly Ser Tyr Ser Lys Gly Gln Asa His Asp Gly Asp Pro Leu Lys
     370
tct att caa cca tgg aca gtg gta acc ggt att gat tac gaa act gaa
                                                                              1201
Ser Ile Gln Pro Trp Thr Val Val Thr Gly Ile Asp Tyr Glu Thr Glu
385
ggg tgg agc gtg agt ttg agc ggg cgt tat agt gcg gct aaa aaa gcc Gly Trp Ser Val Ser Leu Ser Gly Arg Tyr Ser Ala Ala Lys Lys Ala
                                                                              1249
aaa gat gcg ata gaa acg gaa tac aca cat gat aaa aag gtt gtc aaa
                                                                              1297
Lys Asp Ala Ile Glu Thr Glu Tyr Thr His Asp Lys Lys Val Val Lys
caa tgg ccg cat tta agt cca tcc tac ttt gtt gtt gat ttt acg ggg
                                                                              1345
Gln Trp Pro His Leu Ser Pro Ser Tyr Phe Val Val Asp Phe Thr Gly
                                440
caa gtt ga
                                                                              1353
Gln Val
    450
<210> 28
<211> 450
<212> PRT
<213> Pasteurella multocida
<220×
<221> misc_feature
<222> 125
<223> Xaa = any or unknown amino acid
<221> misc_feature
<222> 133
<223> Xaa = anv or unknown amino acid
<220>
<221> misc_feature
<222> 141
<223> Xaa = anv or unknown amino acid
<220>
<221> misc feature
<222> 151
<223> Xaa = any or unknown amino acid
Ser Thr Lys Val Gly Tyr Asp Ile Asn Asn Thr His Arg Phe Thr Leu
```

Phe Leu Glu Asp Arg Arg Glu Lys Lys Leu Thr Glu Glu Lys Thr Leu 20 25 30 Gly Leu Ser Asp Ala Val Arg Phe Ala Asn Asp Gln Thr Pro Tyr Leu Arg Tyr Gly Ile Glu Tyr Arg Tyr Asn Gly Leu Ser Trp Leu Glu Thr Val ⊥ys Leu Phe Leu Ala Lys Gln Lys Ile Glu Gln Arg Ser Ala Leu Gln Glu Phe Asp Ile Asn Asn Arg Asn Lys Leu Asp Ser Thr Met Ser Phe Val Tyr Leu Gln Arg Gln Asn Ile Ala Arg Gly Glu Phe Ser Thr Ser Pro Leu Tyr Trp Gly Pro Ser Arg His Arg Leu Xaa Ala Lys Phe Glu Phe Arg Asp Xaa Phe Leu Glu Asn Met Asn Lys Xaa Phe Thr Phe Arg Pro Trp Gln Ile Asn Xaa Phe Arg Gln Gln Gly Arg Asn Asn Tyr Thr Glu Val Phe Pro Val Lys Ser Arg Glu Phe Ser Phe Ser Leu Met Asp Asp Ile Lys Ile Gly Glu Leu Leu His Leu Gly Leu Gly Arg Trp Asp His Tyr Asn Tyr Lys Pro Leu Leu Asn Ser Gln His Asn Ile Asn Arg Thr Gln Arg Leu Pro Tyr Pro Lys Thr Ser Ser Lys Phe Ser Tyr Gln Leu Ser Leu Glu Tyr Gln Leu His Pro Ser His Gln Ile Ala Tyr Arg Leu Ser Thr Gly Phe Arg Val Pro Arg Val Glu Asp Leu Tyr Phe Glu Asp Arg Gly Lys Ser Ser Ser Gln Phe Leu Pro Asn Pro Asp Leu Gln Pro Glu Thr Ala Leu Asn His Glu Ile Ser Tyr Arg Phe Gln Asn Gln Tyr Ala His Phe Ser Val Gly Leu Phe Arg Thr Arg Tyr His Asn Phe Ile Gln Glu Arg Glu Met Thr Cys Asp Lys Ile Pro Tyr Glu Tyr Asn Arg Thr Tyr Gly Tyr Cys Thr His Asn Thr Tyr Val Met Phe Val Asn Glu Pro Glu Ala Val Ile Lys Gly Val Glu Val Ser Gly Ala

Leu Asn Gly Ser Ala Phe Gly Leu Ser Asp Gly Leu Thr Phe Arg Leu Lys Gly Ser Tyr Ser Lys Gly Gln Asn His Asp Gly Asp Pro Leu Lys Ser Ile Gln Pro Trp Thr Val Val Thr Gly Ile Asp Tyr Glu Thr Glu 385 Gly Trp Ser Val Ser Leu Ser Gly Arg Tyr Ser Ala Ala Lys Lys Ala 405 410 415 Lys Asp Ala Ile Glu Thr Glu Tyr Thr His Asp Lys Lys Val Val Lys Gln Trp Pro His Leu Ser Pro Ser Tyr Phe Val Val Asp Phe Thr Gly 440 Gln Val 450 <210> 29 <211> 4936 <212> DNA <213> Pasteurella multocida <220> <221> CDS <222> (1078)..(2769) <220> <223> hxuC <400> 29 gtcaacaaca aagcgcacag gcattacttc atgccacaca catcatacag aaagtacgta 60 ccgatttaac gcaaattaat gccgtcaaca ttcatcttt cctatcataa agcgtttcat 120 catggctagc attctagcaa aaattagttg aggaaaatag cggtcttgtt ttgcttaaaa 180 aacaacccac cccgtagggc acggctgttt ctttttgaga aattacgctt cttcatcttg 240 atcttttttc aagatctcat cttcattgag ttttaaaaga cqqqcaatcq cattqcqqta 300 ggagatttca aggctttctc gactagtagc aatgacacct tgatcgatta agaaaccgtc 360 attgacatca taaacccaac catgtaatga gagttttttc ccatttttcc acgcggattt 420 aatgattgac gagcgaccta agttataaac ttgctctgcg acqttaattt tcgtcaqcat 480 atcagcccgt ttttcaggcg gtaaattgcc aagtaaatga ctatgcttat accaaatatc 540 gcgtaagtgg aqtaaccaqt tattaattaa acctaaatct tqatccqcca ttqcqqcttt 600 aattccacca caqtttqtat qtccacaaat aataatqtqt tcaatattta aqacctcaac 660 ggcatattgc acaacagata aacagtttaa atcggtgtga atgacttgat ttgcaacatt 720 acquitquaca aacaqcicac coqqicctaa attiqtiaat titticiqcaq qaacacqqci 780 atccgagcaa ccaatccaaa gatagctcgg ggtttgatga tcagccaatt ctttaaagta 840

agaggagttt tcctcttt	ca teegtaaege ee	agctataa t	tattggcaa aaag	ttgttc 900
aatttttttc attagage	ga ttcctatacc go	aaaaataa g	ggggctagt atag	cttaga 960
aatagacagt gggtaaag	gaa aggcaaaaaa tt	gtatagga ta	aacttgttt ttta	ttgcca 1020
tttatttaga attagaat	ct ttaataataa aa	ataattat ca	attaaggtt aata	gtt 1077
atg gat aaa aat tta Met Asp Lys Asn Let 1	a atg aag gga tgt 1 Met Lys Gly Cys 5	gta ttc tt Val Phe Le	ta tca ata gto eu Ser Ile Val 15	Gly
tgc ggt atc caa ata Cys Gly Ile Gln Ile 20		Asn Pro As		
gat gag tta tta cot Asp Glu Leu Leu Pro 35	: att att gtg aat > Ile Ile Val Asn 40	gct gat ga Ala Asp Gl	aa gat aat aaa lu Asp Asn Lys 45	tta 1221 Leu
cca ggt cgt tct gta Pro Gly Arg Ser Val		Asn Ile As		
gat aat gcc gct gad Asp Asn Ala Ala Asp 65	tta ata aat att Leu Ile Asn Ile 70	tta cct go Leu Pro Gl 75	gg gta aat atg ly Val Asn Met	gcg 1317 Ala 80
gga gga ttt cgc cct Gly Gly Phe Arg Pro	Gly Gly Gln Thr			Gly
gat gct gaa gat gtt Asp Ala Glu Asp Val 100	aga gtt caa cta Arg Val Gln Leu 105	Asp Gly Al	ca aca aaa agt la Thr Lys Ser 110	ttc 1413 Phe
gaa aaa tat caa caa Glu Lys Tyr Gln Glr 115	ggc tct att ttt Gly Ser Ile Phe 120	att gaa co Ile Glu Pr	ct gag tta tta ro Glu Leu Leu 125	aga 1461 Arg
aag gtg aca gta gad Lys Val Thr Val Asp 130	aaa gga aat tat Lys Gly Asn Tyr 135	tct cct ca Ser Pro Gl	ln Tyr Gly Asn	ggt 1509 Gly
ggc ttt gct ggt act Gly Phe Ala Gly Thr 145				
ttg aaa gaa aat cag Leu Lys Glu Asn Glr 165	Lys Ile Gly Gly			
agc aat aat aac caa Ser Asn Asn Asn Glm 180	aaa act tat agt Lys Thr Tyr Ser 185	aca gcc ct Thr Ala Le	ta gtt tta cag eu Val Leu Gln 190	aat 1653 Asn
gaa caa aaa aat att Glu Gln Lys Asn Ile 195	gat ttg tta tta Asp Leu Leu Leu 200	ttt ggt to Phe Gly Se	ct gta aga aat er Val Arg Asn 205	gca 1701 Ala
agc aat tat aca aga Ser Asn Tyr Thr Arg 210	cct gat aaa agt Pro Asp Lys Ser 215	aaa att ct Lys Ile Le 22	eu Phe Ser Lys	aac 1749 Asn

											caa Gln					1797
											cat His					1845
											cca Pro					1893
											cgt Arg					1941
											tat Tyr 300					1989
gaa Glu 305	aat Asn	aat Asn	aag Lys	tgg Trp	att Ile 310	aat Asn	ttg Leu	tct Ser	gtt Val	cag Gln 315	ctg Leu	agt Ser	tat Tyr	agt Ser	aaa Lys 320	2037
											act Thr					2085
											tca Ser					2133
gat Asp	ata Ile	agt Ser 355	aac Asn	aca Thr	agt Ser	act Thr	cta Leu 360	aat Asn	att Ile	999 Gly	cgt Arg	gct Ala 365	gag Glu	cat His	gaa Glu	2181
											aga Arg 380					2229
tat Tyr 385	cat His	aaa Lys	g1y g9g	gga Gly	gtc Val 390	aag Lys	aag Lys	gca Ala	gac Asp	tat Tyr 395	aat Asn	tat Tyr	ggc Gly	tat Tyr	ttt Phe 400	2277
cag Gln	cct Pro	tat Tyr	tat Tyr	atg Met 405	cct Pro	tct Ser	gga Gly	cgc Arg	cag Gln 410	tat Tyr	aca Thr	caa Gln	gca Ala	ttt Phe 415	tat Tyr	2325
tta Leu	caa Gln	gat Asp	caa Gln 420	ata Ile	aaa Lys	tgg Trp	cag Gln	aat Asn 425	ttc Phe	ctc Leu	ttt Phe	aca Thr	gga Gly 430	ggg Gly	ata Ile	2373
											aat Asn					2421
											cag Gln 460					2469
ggt Gly 465	tgg Trp	tct Ser	tat Tyr	tat Tyr	tta Leu 470	ggt Gly	ctt Leu	aag Lys	tat Tyr	gat Asp 475	gta Val	aat Asn	cat His	tat Tyr	tta Leu 480	2517

agt tta ttt acg aat ttt agt aaa act tgg cga gcc cct gtt att gat 2565 Ser Leu Phe Thr Ann Phe Ser Lys Thr Trp Arg Ala Pro Val Ile Asp 485 490
gas cag tat gag aca cas tat agt cas gct tct gts tct gcg act tct $$ 2613 Glu Gln Tyr Glu Thr Gln Tyr Ser Gln Ala Ser Val Ser Ala Thr Ser $$ 500 $$ 505 $$
tta aat tta gaa aaa gaa atg att aat caa acc aga gtg ggt gga att 2661 Leu Aan Leu Glu Lys Glu Met Ile Asn Gln Thr Arg Val Gly Gly Ile 515 520 525
att act ctc aat cat cta ttt cag gaa aat gat gct ttt caa ttt aga 2709 Ile Thr Leu Asn His Leu Phe Gln Glu Asn Asp Ala Phe Gln Phe Arg 530 540
act act tat ttt tac aat cgc ggc aag aat gaa atc ttc aaa acg aga 2757 Thr Thr Thr Phe Tyr Aan Arg Gly Lys Asn Glu Ile Phe Lys Thr Arg 545 $$ 550 $$
ggg gtt aac cgt tagagttggt tgaaatgact gaaaaattag acctatacgt 2809 Gly Val Asn Arg
tactgttaaa ggtggcggta tttctggtca agcgggtgca atccgtcacg gtatcactcg 2869
tgcattaatc gaatatgatg agagtttacg ctctgtatta cgcgcagctg gtttcgttac 2929
tegegatgea egteaagttg aacgtaaaaa agtgggttta egcaaagege gtegtegtee 2989
acaattotoa aaaogttaat tittotitta ogtittatat toagattgoa agoocaaaag 3049
gettgcaatt tttttatete aataaaattt acgataatet ttggaaatca gtgggegatt 3109
tgtggtagaa taaacgccca ttttttatat aaaatcatgc cagaatcagg caaagtttaa 3169
taaattttaa ttcattttag agctgtcgga ggaatagatg acaagcgctg caaataaacg 3229
ttcaataatg acactttttt cagataaaac agatatttat tgccaccaag taaggattgt 3289
tttggctgaa aagggtgttg cttatgaaac ggaagttgta gatcctcaag tcgtatcaga 3349
agatttaatg gaattaaatc cgtatggcac gttgccgaca ttagttgatc gtgatttagt 3409
gttatttaat tcacgtatta ttatggaata tcttgatgag cgtttccctc atccaccttt 3469
gatgcctgtt tatccagtgg cacgtgggaa aagccgttta ttaatgttac gtattgagca 3529
agattggtac ccagtattag caaaagctga aaaaggcacg gacgcagaac gtgctgtcgc 3589
attaaaacaa ttaagagaag agattttagc gattgcgcct attttcacgc agatgcctta 3649
ttttatgage gaagagttta gtttagtaga ttgttatate geeceattat tatggegtat 3709
gcaagaactg ggtgtggatt tcagtggggc gggtagcaaa gcaattaaag cttacatggc 3769
acgtgttttt gaacgcgatt catttatgca atctttaggc gtgtcggctc cgaaaaactt 3829
aatggatgag aaataatcag tatgctacat aaatcatcac caaagcgtcc ttacttgtta 3889
agagogtatt atgattggtt agtggataat gatttcaccc cttatttagt ggtggacgcg 3949
acttatgttg gtgtgaaagt cootgtggaa tatgtcaaag atgggcaaat tgtcotcaat 4009

ttatctgcga atgcgacagg taatctggta ctaagcaatg aaagtattca gtttaqcqcq 4069 cgttttcgtg gtatttcaca agatattttt attcctatgg gggctgcgtt agccatttat 4129 gctcgtgaaa atggtgatgg tgtactgttt gaacctgaag cgatttatga tgagctcgca 4189 acacaaaata ttggtattga gcagccactg agctttgttg aggctgtcga taaaccaaaa 4249 accagtgaga atactcaaaa aagcacaaac aaagacaaaa cgacggaaaa aaaagcgact 4309 totoatttaa gaattattaa ataaaagagg ttttotttot toataaaaaa acacgotttt 4369 acgogtgttt ttttgttgcg gacagtttat tgtgccattt tttttgcggc ttttaaqaag 4429 ccttgcgcac tcgtgtagat gtcactttta ttctgtgccg ctaaaatcat atccgacatt 4489 tcacgaaagg ccccttgtcc acctttcagg cttagtacgt gatcagcgtg cattttgata 4549 taageggege atettgtact geaaaggeaa caccacageg geaaaageag geagateaac 4609 gctgtcatca ccaatataag ccgtttcttg cgcacagaca ttggcttgtt gtatcaattc 4669 aagacaggcg ctttcttttt ccaatttgcc gaggaaaaag tgttggatgc ctagatctgc 4729 aatacgtttg cgtagaatcg gggaatctcg ccccgagagt accgcgactt gaatgccaga 4789 ttccattaac attctgatcc ccaagccatc acgaacatga aaggttttga aagcttcacc 4849 atgggcatcg taatgcaaag agccgtcggt cagtacaccg tcgatatctg taatcacaaa 4909 tttaattttt ttgagttttt ccgttga 4936

120

<210> 30

Lys Val Thr Val Asp Lys Gly Asn Tyr Ser Pro Gln Tyr Gly Asn Gly Gly Phe Ala Gly Thr Val Lys Phe Glu Thr Lys Asp Ala Thr Asp Phe Leu Lys Glu Asn Gln Lys Ile Gly Gly Leu Phe Lys Tyr Gly Asn Asn Ser Asn Asn Asn Gln Lys Thr T,r Ser Thr Ala Leu Val Leu Gln Asn Glu Gln Lys Asn Ile Asp Leu Leu Leu Phe Gly Ser Val Arg Asn Ala Ser Asn Tyr Thr Arg Pro Asp Lys Ser Lys Ile Leu Phe Ser Lys Asn Asn Gln Lys Ser Gly Leu Ile Lys Val Asn Trp Gln Ile Thr Pro Glu His Leu Leu Thr Leu Ser Ser Val Tyr Gly Ile His Lys Gly Trp Glu Pro Trp Ala Ala Lys Arg Asp Val Met Ser Arg Pro Thr Glu Thr Glu Ile Lys His Tyr Gly Ile Asp Val Ala Trp Lys Arg Lys Leu Val Tyr Arg Asp Gln Lys Asp Glu Ser Tyr Ser Leu Lys Tyr Arg Tyr Leu Pro Glu Asn Asn Lys Trp Ile Asn Leu Ser Val Gln Leu Ser Tyr Ser Lys Thr Glu Gln Asn Asp Thr Arg His Glu Lys Val Thr Ser Ser Phe Leu Gly Thr Leu Gly Asn Lys Ser Trp Ile Thr Tyr Ser Asp Leu Thr Phe Asp Ile Ser Asn Thr Ser Thr Leu Asn Ile Gly Arg Ala Glu His Glu Leu Leu Phe Gly Leu Gln Trp Leu Lys Asn Lys Arg Asn Thr Leu Met Tyr His Lys Gly Gly Val Lys Lys Ala Asp Tyr Asn Tyr Gly Tyr Phe 385 Gln Pro Tyr Tyr Met Pro Ser Gly Arg Gln Tyr Thr Gln Ala Phe Tyr Leu Gln Asp Gln Ile Lys Trp Gln Asn Phe Leu Phe Thr Gly Gly Ile Arg Tyr Asp His Ile Asn Asn Ile Gly Gln Lys Asn Leu Ala Pro Arg Tyr Asn Asp Ile Ser Ala Gly His Asp Tyr Ser Gln Lys Asn Tyr Asn

69

Gly Trp Ser Tyr Tyr Leu Gly Leu Lys Tyr Asp Val Asn His Tyr Leu Ser Leu Phe Thr Asn Phe Ser Lys Thr Trp Arg Ala Pro Val Ile Asp 490 Glu Gln Tyr Glu Thr Gln Tyr Ser Gln Ala Ser Val Ser Ala Thr Ser Leu Asn Leu Glu Lys Glu Met Ile As. Gln Thr Arg Val Gly Gly Ile 515 520 Ile Thr Leu Asn His Leu Phe Gln Glu Asn Asp Ala Phe Gln Phe Arq Thr Thr Tyr Phe Tyr Asn Arg Gly Lys Asn Glu Ile Phe Lys Thr Arg 545 550 555 Gly Val Asn Arg <210> 31 <211> 9814 <212> DNA <213> Pasteurella multocida <220> <221> CDS <222> (4762)..(7662) <220> <223> iroA <400> 31 gtcgacctgc agcaqacaat gtccactgtg taatagtcca acgactgtta taaaaatctt 60 cogotgottt tictaatgit tgtacacggt gittitcaaa ticticcaaa tictiqqitq 120 gttggactaa aaqttgttca gccgccgctt taaaattggc qacaaaatcc gattgtttqa 180 ttaaaccata ggattttgct tggatttgtg cgccggctgc ttcacccaat ttatcgaaaa 240 attraggogt ataagtracg tttgggatcg taggogogat gatotgatta acaccaqcot 300 gttgtaatgc tccccattgc tgtgccatcg tttgtgccat qqttttaata ctqqctaaca 360 cgtaggcttg tttctcttca ggtgttgtct tcgttactgc tgttgctaat actgtcgcca 420 aatcattacc acctgcccat agaatatgta aagcttcttt tttgactggc gcatgtaaat 480 actogttgat otgottttot agtgotaaat gaggttgtto tgotgttota gtattatgtg 540 caccaacaat caccccaccq ctqtacqcqt aqttcaaacc accttqtqta qaaqqtatta 600 attititicce aaatgetiga getaaatati cateataaag gigatgatag titecateag 660 cetttaaata agaggettte ttatteeaac etgtttgeee catateactt aaactateac 720 caaacacgac aacatettgt gecagageag cegaacttag tgaacaaaat aatgegaatg 780 aaagtgtatt aattttcaca ataatgtcct tcaattattc atcgtcagtc aaaaatttgc 840

gtcatcatac gttgattata ggaagatacc tagccagacc actactggta tgaacagaag 900 tcaatqttta atcacataaa aaaqcctctq tqctttcaca caqaqqcttt tatqtccatt 960 cacctactca aattacatcg cttgagtaaa ggtacgcgta atcacgtctt gttgttqttc 1020 tttggttaac gagttaaagc gtactgcata acccgaaaca cgaatggtta attgtggata 1080 tttctccgga ttttccattg catctaacaa catttcacgg ttcatgacgt tcacgtttaa 1140 gtgttgtccg ccttcaatcg ttgcttcatg gtggaagtaa ccgtccatta gacctgcaag 1200 gttacgtttt tgtgcttcgt aatctttacc taaggCattt ggtacgattg agaaggtata 1260 agaaatacca totttoqcat aagcaaatgg caatttoqca acagaagtta acgatgctac 1320 tgcacctttt tggtcacgac cgtgcattgg gttcgcaccc ggtccaaatg gtgcaccaga 1380 acquequeca tetqqqqtqt tacetqtttt ettaccataa accaeqttaq atqtaataqt 1440 aagtacagat tgtgtcggtg tcgcattacg ataagtaccc aatttttgga ttttcttcat 1500 aaagcgttca actaaatcac aagcgatttc atcaacacgg ttatcgttgt taccgaattg 1560 tggatattcg ccttcaattt caaagtcgat tgccacatct tttgcaatac caaccacttc 1620 accegettta tttttgattt egatateace acgaactggt tteaettteg catatttaat 1680 ggcagataaa gagtccgctg cgacagaaag ccctgcgata ccacaagcca tagtacggaa 1740 tacatcacga tcatgaagtg ccattagtgc ggcttcatac gcgtatttat cgtgcataaa 1800 gtgaatgatg ttcaatgcag taacatattg tttcgctaac caatccataa agctgtctaa 1860 gogogtcatg acatcatcat aatctaagta ttogotggta attggatogg ttttoggtoc 1920 tacttggtca cotgatttct catocacaco gocattgatt gogtataaca aggtttteqc 1980 taagttggca cgtgcaccga agaattgcat cattttaccc acgatcattg gcgatacaca 2040 gcatgcaatc gcatagtcat cgttttggaa gtcaggacgc attaagtcat cgttttcata 2100 ctgaacagaa gacgtatcga tagacacttt tgccgcataa cgtttgaaac cttctgqtaa 2160 tttttcagac caaagaatcg ttaagtttgg ctctggtgac ggtcccatcg tataaaqqqt 2220 qtqtaagata cggaagctgt ttttggttac taaaqtacga ccatctaagc ccatacccqc 2280 taaggtttcc gttgcccaca ttgggtcgcc cgagaataat tgatcgtact ctggggtacq 2340 taaqaaacqc accatacqta atttcatqac taaqtqqtca attaattctt qtqcttcttq 2400 ttctqtaatt ttqcctqctt ttaaatcacq ctcaatataa atatctaaqa aaqtcqatac 2460 acgaccaaat gacatggcag caccgttttg tgatttcact gcagcggtac gactttgcac 2520 agttategga agataattga aatcataacc agcaacaaat gtcagcegtt ctatttcttc 2580 tgaagaatat eggegattge gttetggegg aatggetggt ttttteacat tettgagatg 2640 attitictic aagtatitic attitiqqat tgctqtcqta ataatqtqcq aaaqaqtatt 2700 ccatteteta ageacacttg ccqcactaac ttgtgaaagt cqttcatcac qccactqcac 2760

aaagtgatgt tottgtaaat ogattaatot cacgttagaa atoggoatat ttagcaageg 2820 aaqtaaacgc aacttttcaq cacqataqcc ctttttattt atgctcactt ctttqatata 2880 tttatcgaca agttgtgcaa aagtgatgtc gggaatatca gtgaatacac cgtttatgat 2940 tttttqttct atqtctaacg cccacqcttq cqcatcaqct ttagtccqaa atqttqctqa 3000 tttatagaca ccttttttgc gaatttgaac tcgccaacct gatttttgtt tgttaaaagt 3060 cqccacqcct aactaccatt aattttqcac aattcqttqt qcaattttqt qcaattttat 3120 ttcttaaatg atgtttagcg gatcataaat gaagaaaaaa cagaagtaaa acactatata 3180 aaaaaacaqt atatttttq ttqaaqtqct taatqtaqtt tqtaacttat tqatttttaa 3240 atattaaaqa taaaqaaaaa qooqacaaaa qtoqqottto tttttttatq otqtttatca 3300 atggtgccta gggccggact cgaaccggca cacccgaagg cggttgattt tgaatcaact 3360 gcgtctacca atttcgccac ccaqqctaat attqataaaq aqcatcaaat taqqtctqta 3420 ttataccttt tcattgatag gttacaagca aaaaatgatt ttagatattc aattgtcttt 3480 attttcatca gtgtggctgt tctctcttac tttattcagg tgcagtgaag taaccttata 3540 aaaataaagg ttttttgttt aaattttaaa taactttttt gtaaaaagat cgcagtttct 3600 tttgaaaaaa agaccgatta caaatataat taaaaactat tatcaatatt gataataatg 3660 ggattttaac catgacattt ataaggataa agtcaagatg atgctaaaag cacaaattgc 3720 agattatatt acacaaaatc cactggcaat tactttggat atggcttcgc actttggcaa 3780 acctgaaggt gaaattttat gtgctttacc tgatgagttt gttcgagtgt ttcctgcgga 3840 acgtgcggag gaagtgcttg ctgagatcag tagttggggg attttcacqa ccattattqa 3900 aaaagaagga tegatttttg aaattaaaga eegtttteeg aeegggatgg ttgggegtgg 3960 ttattataat ttgaatatga aagatgaaga aggcacgctt catggtcacc ttaaattaga 4020 taacatcagc aaaattgcct ttgtgagttt accgtttcgc gqtaaaqaaa qttataacat 4080 cgcatttatt gcgaataatg ggcaaactat ttttaaagtt tatttggggc gcgatgctga 4140 gcgtcaatta tttccagaac aagttcaaaa atttaaagca tttatttaga aggttaaaaa 4200 agtaatgaca acaaatcgtc aagaagtatt acaaaatcgt ttaggtccag aaattcaaga 4260 gttaaaggca caatqtaaaa cagtcatgct cqctactqtc qqtqaaqatq qtaatcccaa 4320 tgtgagttat gcgccatttg caattaataa tggggaatac caagtcttta tttctactat 4380 tgcacgtcat gcacgtaatc tacaagaagt accaaaagtt tctttaatgt tgatcgaaga 4440 tgaaagttaa agtcgtcaga tttttgctcg tcgtcgttta tcttttgatg cggttgcgcg 4500 tgttgtcgag agagaaagtg aagaatggca ttctggtgtt gaggcactca aagcaagaca 4560 tggtgcatta atggatgaat tgtctcggat gaaagatttt catttgttta gttttaaqcc 4620 ctcacaaggg ttatttgtaa aaggttttgg tcaagctttc caagtgagta atgatgattt 4680

agt	gagc	ttt	gttc	actt	gg t	tgaa	ggac	a cc	aaga	ataa	att	ttgt	caa	cttt	ttaggg	4740
tat	ttac	ttg	aggt	tagg	aa a									tct Ser		4791
														gat Asp 25		4839
cat His	caa Gln	gag Glu	gcg Ala 30	act Thr	gaa Glu	ctt Leu	gat Asp	acg Thr 35	att Ile	acc Thr	gtt Val	tct Ser	Ser 40	caa Gln	caa Gln	4887
														aaa Lys		4935
														ctt Leu		4983
cgc Arg 75	tat Tyr	gaa Glu	acc Thr	ggt Gly	gtg Val 80	act Thr	gtg Val	gta Val	gaa Glu	gct Ala 85	gga Gly	cgt Arg	ttt Phe	ggt Gly	tcg Ser 90	5031
agc Ser	ggt Gly	tat Tyr	gcc Ala	att Ile 95	cgt Arg	ggt Gly	gtg Val	gat Asp	gag Glu 100	aac Asn	cga Arg	gta Val	gca Ala	att Ile 105	aca Thr	5079
														ttt Phe		5127
gaa Glu	tta Leu	ttc Phe 125	gaa Glu	ggt Gly	tac Tyr	ggc Gly	aat Asn 130	ttt Phe	aac Asn	aat Asn	acc	cga Arg 135	aat Asn	agt Ser	gtg Val	5175
gaa Glu	att Ile 140	gag Glu	acg Thr	ttg Leu	aaa Lys	gtc Val 145	gct Ala	aaa Lys	atc Ile	gcg Ala	aaa Lys 150	ggt Gly	gct Ala	gat Asp	tct Ser	5223
gta Val 155	Lys	gtg Val	ggt Gly	agt Ser	ggt Gly 160	tct Ser	ttg Leu	gga Gly	ggc Gly	gct Ala 165	gta Val	ctt Leu	ttt Phe	gaa Glu	aca Thr 170	5271
														ggc Gly 185		5319
aaa Lys	gcg Ala	ggc Gly	tac Tyr 190	tca Ser	acg Thr	gca Ala	gat Asp	aat Asn 195	cag Gln	gga Gly	tta Leu	aat Asn	gca Ala 200	gtg Val	act Thr	5367
ctt Leu	gca Ala	ggt Gly 205	cgc Arg	tat Tyr	caa Gln	atg Met	ttt Phe 210	gat Asp	gca Ala	ttg Leu	att Ile	atg Met 215	cat His	tct Ser	aag Lys	5415
														aga Arg		5463

att Ile 235	caa Gln	ggg Gly	aaa Lys	gaa Glu	aga Arg 240	gag Glu	aaa Lys	gcg Ala	gat Asp	cct Pro 245	tat Tyr	acg Thr	att Ile	acg Thr	aaa Lys 250	5511
	agt Ser															5559
	aca Thr															5607
	tca Ser															5655
	tct Ser 300															5703
act Thr 315	tat Tyr	gaa Glu	aat Asn	tat Tyr	act Thr 320	gtt Val	acg Thr	cca Pro	ttt Phe	tgg Trp 325	gat Asp	acg Thr	ctc Leu	aag Lys	tta Leu 330	5751
	tat Tyr															5799
	gat Asp															5847
	ttt Phe															5895
cta Leu	cag Gln 380	gly ggg	tct Ser	gga Gly	ttg Leu	agc Ser 385	act Thr	cag Gln	att Ile	gta Val	gat Asp 390	gaa Glu	aat Asn	gga Gly	aaa Lys	5943
cca Pro 395	ttt Phe	cct Pro	aca Thr	aca Thr	aca Thr 400	ggt Gly	act Thr	aat Asn	aat Asn	gct Ala 405	gct Ala	ttt Phe	agt Ser	aat Asn	aat Asn 410	5991
	cga Arg															6039
	aat Asn															6087
	aga Arg															6135
	aaa Lys 460															6183
cct Pro 475	aat Asn	tct Ser	aaa Lys	ggt Gly	tat Tyr 480	ctt Leu	cct Pro	tat Tyr	gat Asp	tat Tyr 485	aaa Lys	gaa Glu	agg Arg	gat Asp	ctt Leu 490	6231

					caa Gln											6279
act Thr	ttc Phe	aac Asn	atc Ile 510	gaa Glu	aat Asn	aat Asn	ctg Leu	tca Ser 515	tat Tyr	ggt Gly	gga Gly	gtt Val	tat Tyr 520	tct Ser	cgg Arg	6327
					att Ile											6375
					aga Arg											6423
					ccg Pro 560											6471
					aca Thr											6519
					agc Ser									His		6567
					tac Tyr											6615
gat Asp	atg Met 620	gta Val	aaa Lys	ggt Gly	ttg Leu	ttt Phe 625	att Ile	cct Pro	atg Met	cca Pro	aaa Lys 630	gag Glu	cca Pro	cag Gln	cta Leu	6663
					aac Asn 640											6711
					cca Pro											6759
					ttt Phe											6807
ttc Phe	gat Asp	cct Pro 685	ctg Leu	aat Asn	ttt Phe	tta Leu	cga Arg 690	gta Val	caa Gln	gta Val	aaa Lys	tat Tyr 695	tca Ser	aaa Lys	ggg Gly	6855
					tcg Ser											6903
					ccg Pro 720											6951
aat Asn	caa Gln	gag Glu	att Ile	gca Ala 735	tta Leu	aca Thr	gtg V a l	cac His	gat Asp 740	aat Asn	tgg Trp	gga Gly	ttt Phe	gtt Val 745	agc Ser	6999

aca agt gtt ttc caa aca aag tat cgt cat Thr Ser Val Phe Gln Thr Lys Tyr Arg His 750 755	
tta ggt tca aga aat tta tcg aat tcc gtg	gga ggg cag gca caa gca 7095
Leu Gly Ser Arg Asn Leu Ser Asn Ser Val	Gly Gly Gln Ala Gln Ala
765 770	775
aga gat ttc caa gtt tat caa aat gtc aat Arg Asp Phe Gln Val Tyr Gln Asn Val Asn 780 785	
aaa gga ctt gaa att aat gca cgt ttg aat	ttg gga tat ttt tgg cat 7191
Lys Gly Leu Glu Ile Asn Ala Arg Leu Asn	Leu Gly Tyr Phe Trp His
795 800	805 810
gtg ttg gat gga ttt aat acg agc tat aaa	ttc act tac caa cgt ggt 7239
Val Leu Asp Gly Phe Asn Thr Ser Tyr Lys	Phe Thr Tyr Gln Arg Gly
815 820	825
cgt ttg gat ggc gat cgt cca atg aat gcg	att cag cct aaa gct tct 7287
Arg Leu Asp Gly Asp Arg Pro Met Asn Ala	Ile Gln Pro Lys Ala Ser
830 835	840
gtt ttt ggt ttg ggc tac gat cat aaa gaa	aat aaa ttt ggc gct gat 7335
Val Phe Gly Leu Gly Tyr Asp His Lys Glu	Asn Lys Phe Gly Ala Asp
845 850	855
tta tat att aca cgt gtg agt gag aaa aaa	gcg aaa gac act tat aat 7383
Leu Tyr Ile Thr Arg Val Ser Glu Lys Lys	Ala Lys Asp Thr Tyr Asn
860 865	870
atg ttc tat aaa gaa cag gga tat aaa gat	agt gct gtt cgt tgg aga 7431
Met Phe Tyr Lys Glu Gln Gly Tyr Lys Asp	Ser Ala Val Arg Trp Arg
875 880	885 890
agt gat gac tat acg cta gtt gat gcg gtt	ggt tat att aaa ccg att 7479
Ser Asp Asp Tyr Thr Leu Val Asp Ala Val	Gly Tyr Ile Lys Pro Ile
895 900	905
aag aat tta acg tta cag ttt ggc gtt tat Lys Asn Leu Thr Leu Gln Phe Gly Val Tyr 910 915	aat ttg aca gac cgt aaa 7527 Asn Leu Thr Asp Arg Lys 920
tac ttg aca tgg gaa tct gct cgt tcg att Tyr Leu Thr Trp Glu Ser Ala Arg Ser Ile 925 930	
aat tta att aat caa aaa aca ggc gca gga	att aat cgt ttt tac tca 7623
Asn Leu Ile Asn Gln Lys Thr Gly Ala Gly	Ile Asn Arg Phe Tyr Ser
940 945	950
cca ggt cgt aac ttt aaa ctc agt gcc gaa	atc acc ttc taatcctaag 7672
Pro Gly Arg Asn Phe Lys Leu Ser Ala Glu	Ile Thr Phe
955 960	965
cctgcgtatg caggctttct ttttagggaa agtgcgg	tgg atttgacaaa gatttattgc 7732
ttttctgtaa atcaatgcta aaattcacac tcctttg	steg tagetggatt agagategge 7792
tagegatgta tttttaactt aacttttagg agttate	aaa tgtctctaag tacagaaaaa 7852
aaagcagcaa ttgttgctga atttggtcgt gatgcaa	aag ataccggttc ttcagaagtg 7912

caaatcgcat tattaactgc acaaatcaac cacttacaat ctcactttgc aacgcacaaa 7972 aaagaccacc acggtcgtcg tggtttattg cgtatggttt ctcgtcgtcg taaactttta 8032 gattacttaa aacgtactaa tottgagott tacacttcaa ctatcgctcg tttaqqttta 8092 cgtcgctaat ttgtattagg atttattcca aacaaaaaac ccttgataat tttatcaaqq 8152 gttttctttt ttctgcatac taggcatgtt taaattatcg caaaacacac cgcacatttc 8212 gtggaaaagt gcggtcattt ttttaattta ttttacttct ttaaacatga tctcacttqq 8272 gattactgaa cettgecagt aaageteagt agegaetttt teagetaatt geataaaega 8332 ttgggcaatg tegettteag gtgeggegae aaeggttggg atacetttgt etaaatette 8392 acgtaagcga atatgtaatg cctgttgtcc taaaactttg acattatatt tttqtqcaat 8452 gegeteagea cegeetgtte egaaaategt ttettgatga ceacaattge tacaaatatg 8512 categacata ttttegataa tgcctaaaac qggtacagaa acaegeteaa acategecac 8572 acctttaatc gcatccagta aagcaatatc ttgtggtgtt qtcaccacqa ccqccccqt 8632 cactggaatt tgttgagaaa gggtcagctg gatateceet gtaceeggtg geatateaat 8692 gactaaataa totaaatoag gooataaggt ttottgoaaa aqotqaotta aqqoactqot 8752 tgccattgga ccgcgccaaa tcgtagcatt gtccggttcc attaagaaac caatggaatt 8812 ggcaaaaata tgatgtgctt gaattggggt aatgtgctgg ttatctggcg aagttgggcg 8872 ttgatcagca acccctaaca tgtgtggaat agatggacca taaatatcgg catctaaaat 8932 tccaacacga gcaccttgtc tttgtaaggc aagagcaaga ttgacggaaa tagtagattt 8992 tectacacca cetttacccq atqtcacqqc aataatattt tttacccett ttaccqctqq 9052 qtqqctatta qcqcqtttta atqtcqcqat ttqataattt aattqccatt tgatqtcttt 9112 gcattetget aatgtgagaa gttetgtgga gagagegete ttgagttgtt egaatgeagt 9172 attocaaqca aacqqcatqc tqatttcaat acqtaacqtc tcaccqcctt tttcaatttt 9232 tttgatagca tttaggctga cgagatcttt ttgtaagcta ggatgttgaa attgttgaaa 9292 tqtqttttqq ataqcttqtt tttqactqtc cqttaaactq tcagaaaata aaattcccat 9352 tgattttatc ccgttatttt tggtggctaa ttaaagccct agttaatcac tcaactatat 9412 ttaaccacga agetgtagaa etgttaagca gaaatgtgga aaagegeggt taaagtagaa 9472 aaaatactgc gaataaggta acataagcgc caattttttg atgaaaaata ggaatgataa 9532 catqqcaaat tcggcacgcg atattttggt cacttgcgcc ttaccttatg caaatggtgc 9592 aattcattta gggcatttat tagaacatat tcaagcagat atttgggtgc gttccaacgt 9652 atgcgtgggc ataaagtgca ttttatttgt gcagatgatg cccatggcac accaatcatg 9712 ttaaatgcga taaattaggt attacaccaa agcattaatt geteetegaa agcagaacat 9772 gtggcggatt tgaaggetta atattageta tgataatate at 9814

<210> 32

<211> 967 <212> PRT <213> Pasteurella multocida <400> 32 Met Arg Thr Thr Ile Lys Phe Ser Ala Ile Thr Leu Ala Leu Leu Ser Tyr Cys Gly Thr Ile Leu Ala Asp Ser His Gln Glu Ala Thr Glu Leu Asp Thr Ile Thr Val Ser Ser Gln Gln Asp Glu Met Asn Ile Lys Glu Lys Lys Ile Gly Glu Thr Val Lys Thr Ala Ser Gln Leu Lys Arg Gln Gln Val Gln Asp Ser Arg Asp Leu Val Arg Tyr Glu Thr Gly Val Thr Val Val Glu Ala Gly Arg Phe Gly Ser Ser Gly Tyr Ala Ile Arg Gly Val Asp Glu Asn Arg Val Ala Ile Thr Val Asp Gly Leu His Gln Ala Glu Thr Leu Ser Ser Gln Gly Phe Lys Glu Leu Phe Glu Gly Tyr Gly Asn Phe Asn Asn Thr Arg Asn Ser Val Glu Ile Glu Thr Leu Lys Val Ala Lys Ile Ala Lys Gly Ala Asp Ser Val Lys Val Gly Ser Gly Ser Leu Gly Gly Ala Val Leu Phe Glu Thr Lys Asp Ala Arg Asp Phe Leu Thr Glu Lys Asp Trp His Ile Gly Tyr Lys Ala Gly Tyr Ser Thr Ala Asp Asn Gln Gly Leu Asn Ala Val Thr Leu Ala Gly Arg Tyr Gln Met Phe Asp Ala Leu Ile Met His Ser Lys Arg His Gly His Glu Leu Glu Asn Tyr Asp Tyr Lys Asn Gly Arg Asp Ile Gln Gly Lys Glu Arg Glu Lys Ala Asp Pro Tyr Thr Ile Thr Lys Glu Ser Thr Leu Val Lys Phe Ser Phe Ser Pro Thr Glu Asn His Arg Phe Thr Val Ala Ser Asp Thr Tyr Leu Gln His Ser Arg Gly His Asp Leu Ser Tyr Asn Leu Val Ala Thr Thr His Ile Gln Leu Asp Glu Lys Glu Ser Arg His Ala Asn

Asp Leu Thr Lys Arg Lys Asn Val Ser Phe Thr Tyr Glu Asn Tyr Thr Val Thr Pro Phe Trp Asp Thr Leu Lys Leu Ser Tyr Ser Gln Gln Arg Ile Thr Thr Arg Ala Arg Thr Glu Asp Tyr Cys Asp Gly Asn Glu Leu Cys Aup Ser Tyr Lys Asn Pro Leu Gly Leu Gln Phe Lys Asp Gly Gln Ile Leu Asp Pro Ala Gly Asn Lys Ile Lys Leu Gln Gly Ser Gly Leu Ser Thr Gln Ile Val Asp Glu Asn Gly Lys Pro Phe Pro Thr Thr Thr Gly Thr Asn Asn Ala Ala Phe Ser Asn Asn Leu Arg Leu Arg Pro Thr Gly Phe Trp Leu Asp Cys Ser Val Phe Asp Cys Asn Lys Pro Phe Thr Val Tyr Asn Ile Ser Asn Gly Thr Tyr Gln Ala Arg Glu Val Leu Leu 440 Ser Glu Glu Ile Thr Val Asp Gly Lys Leu Tyr Lys Thr Ala Lys Glu Glu Gly Gly Leu Pro Asn Tyr Leu Ile Leu Pro Asn Ser Lys Gly Tyr Leu Pro Tyr Asp Tyr Lys Glu Arg Asp Leu Asn Thr Asn Thr Lys Gln Ile Asn Leu Asp Leu Thr Lys Thr Phe Leu Thr Phe Asn Ile Glu Asn Asn Leu Ser Tyr Gly Gly Val Tyr Ser Arg Ile Glu Lys Glu Met Ile Asn Lys Ala Gly Tyr Glu Gly Arg Asn Pro Thr Trp Trp Ala Asp Arg Ile Leu Gly Gln Ser Ser Tyr Cys Gly Tyr Asn Ala Leu Lys Cys Pro 545 Lys His Glu Pro Leu Thr Ser Phe Leu Ile Pro Val Glu Ala Thr Thr Gln Ser Leu Tyr Phe Ala Asn Ile Leu Lys Val His Asn Met Ile Ser Ile Asp Leu Gly Tyr Arg Tyr Asp His Ile Lys Tyr Asn Pro Glu Tyr Thr Pro Gly Val Thr Pro Lys Ile Pro Asp Asp Met Val Lys Gly Leu Phe Ile Pro Met Pro Lys Glu Pro Gln Leu Lys Asp Phe Asp Tyr Asn

Tyr Ala Lys Phe Gly Glu Ala Tyr Lys Lys Trp Lys Glu Tyr Leu Pro 650 Lys Asn Ala Glu Glu Asn Ile Ala Tyr Ile Ala Gln Asp Lys Thr Phe Lys Lys His Ser Tyr Ser Leu Gly Ala Thr Phe Asp Pro Leu Asn Phe Leu Arg Val Gln Val Lys Tyr Ser Lys Gly Phe Arg Ala Pro Thr Ser Asp Glu Leu Tyr Phe Thr Phe Lys His Pro Asp Phe Thr Ile Leu Pro Asn Pro Val Leu Lys Pro Glu Glu Ala Lys Asn Gln Glu Ile Ala Leu Thr Val His Asp Asn Trp Gly Phe Val Ser Thr Ser Val Phe Gln Thr Lys Tyr Arg His Phe Ile Asp Leu Ala Tyr Leu Gly Ser Arg Asn Leu Ser Asn Ser Val Gly Gly Gln Ala Gln Ala Arg Asp Phe Gln Val Tyr Gln Asn Val Asn Val Asp Asn Ala Lys Val Lys Gly Leu Glu Ile Asn 785 790 795 800 Ala Arg Leu Asn Leu Gly Tyr Phe Trp His Val Leu Asp Gly Phe Asn Thr Ser Tyr Lys Phe Thr Tyr Gln Arg Gly Arg Leu Asp Gly Asp Arg Pro Met Asn Ala Ile Gln Pro Lys Ala Ser Val Phe Gly Leu Gly Tyr Asp His Lys Glu Asn Lys Phe Gly Ala Asp Leu Tyr Ile Thr Arg Val Ser Glu Lys Lys Ala Lys Asp Thr Tyr Asn Met Phe Tyr Lys Glu Gln Gly Tyr Lys Asp Ser Ala Val Arg Trp Arg Ser Asp Asp Tyr Thr Leu Val Asp Ala Val Gly Tyr Ile Lys Pro Ile Lys Asn Leu Thr Leu Gln Phe Gly Val Tyr Asn Leu Thr Asp Arg Lys Tyr Leu Thr Trp Glu Ser Ala Arg Ser Ile Lys Pro Phe Gly Thr Ser Asn Leu Ile Asn Gln Lys 935 Thr Gly Ala Gly Ile Asn Arg Phe Tyr Ser Pro Gly Arg Asn Phe Lys Leu Ser Ala Glu Ile Thr Phe 965

```
<210> 33
<211> 2990
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1106)..(1564)
<2205
<223> kdtB
qtcaacccct ttqqctttqa qttqtqctaa taaaqcatcq tcaaaatqca aqccqqcaqt 60
tggtgccgca accgcgccag ggactttgtt ataaacggtt tgataacgtt ctttatccgc 120
ttcttcqtca qqqcqatcaa tataaqqqqq caatqqcata tqcccaattt qctqtaacac 180
qtctaaaaqt qcqqtctqtt tttqcqcqat ttctaattca aataaqqtat catqqcqcqc 240
aaccatqatc attttqacac catqatqttc acctaactta tcttcqccta accacaqttc 300
tgccccttct ttcggtgctt ttgaggagcg cacatgggct aaaaagcgtg tgtcggataa 360
aatccqctcq accaacactt ccaccttacc qccactqqct ttacqtccaa acatccttqc 420
aggaatcacg cgcgtgttat taaaaattaa taagtcgcct tcatgaattt gatcaaggat 480
atcagcaaaa gtgcggtggg taatctcacc attttcgccg ttaagttgta ataagcgact 540
agoggtgoga tooggttttg ggtaacgago aatcagotoa togggtaaat caaaataaaa 600
gtcagaaaca cgcataaata gggttataaa aagttatcta aaaaatcgtg ggcgtaagtc 660
tagtgtgaat teegetettg cacaaggaaa aatecagatt ttgttgttta gtategaatt 720
gagatgattt tggacaaaaa aaaagccctt tcaagaaaga cgaaagggcg aaaatatatt 780
tggagtcata ctttttaggg tatgtgtcgg attatacaca caaaaataac aaatgcaaca 840
tttttttaac aatcatatgt aagcgtattg tgtgagaacg agcgtaaaaa tgaacgcatt 900
ctaaaqqatg atttatttag cctattaaaa aaacacatga gatgaqaqtt tqcgagagcg 960
gtaataaaag tgcggtgggt tttagaaaag ttttgaatag qatcacaaat taaacaaagt 1020
ttgtgaaata ccaagtagta gtttttaaqt atatgatgaa tcatatgcta aagtttaaac 1080
ccgttasata accaagaggt ggaag atg aca gaa gaa aat aaa gga aag aga
                                                                  1132
                            Met Thr Glu Glu Asn Lys Gly Lys Arg
tat ttt tta tgg ttc ata ttg ttt atc ctt tca atc tat tta ttt att
Tyr Phe Leu Trp Phe Ile Leu Phe Ile Leu Ser Ile Tyr Leu Phe Ile
 10
                     15
                                         20
acc ata caa qaa aqa cga ggt tat tgt ttt gac aaa cgt gca tat att
                                                                  1228
Thr Ile Gln Glu Arg Arg Gly Tyr Cys Phe Asp Lys Arg Ala Tyr Ile
                 30
                                     35
```

cat gag ctt tat act His Glu Leu Tyr Th 45	gag caa gag Glu Gln Glu	tta att gat Leu Ile Asp 50	cgg ggg att Arg Gly Ile 55	Glu Tyr	1276
gtg gta tcc acc atg Val Val Ser Thr Met 60	ccg tca ggt Pro Ser Gly 65	gtt att aaa Val Ile Lys	cca gat ggo Pro Asp Gly 70	aca ata :	1324
aaa gaa gta aag cgt Lys Glu Val Lys Arg 75					1372
cca gct tgt tgt aca Pro Ala Cys Cys Thi 90	tta acc acc Leu Thr Thr : 95	ttt att gat Phe Ile Asp 100	gaa gga ggo Glu Gly Gly	gat ggc : Asp Gly 105	1420
tat cca gat gat gat Tyr Pro Asp Asp Asp 110	Gly Tyr Gly '	tat gtc aga Tyr Val Arg 115	att gaa tat Ile Glu Tyr	tta aga Leu Arg 120	1468
cat tat gtt gag aat His Tyr Val Glu Asr 125	Leu Lys Pro'	tat cat aga Tyr His Arg 130	gtg att tat Val Ile Tyr 135	Leu Glu	1516
tat acg ccc tgt gga Tyr Thr Pro Cys Gly 140	gag tta agg o Glu Leu Arg (145	gaa gag gcg Glu Glu Ala	gct ttt tca Ala Phe Ser 150	aaa aat : Lys Asn	1564
taagagtgag gtgaagaa	at ggcattacca	acagcaacaa	taatgaggaa	tttatcttta :	1624
tctaaaaatc aattcact	ct gaaagggatg	gaatgcgtag	attccctatt	tcaagcatgc :	1684
agtaatatgg atcatggg	ta ctgaggtgga	agatggcaga	agaaaataaa	ggaaagagat 1	1744
attttttatg gttcatat	tg tttatccttt	caatctattt	atttattacc	atacaagaaa 1	1804
gacgaggtta ttgttttg	ac aaatgggaat	atatccataa	cctttatacc	gagcaagagt 1	1864
tgatcgatag aggggttg	aa tatgtggtat	ccaccatgcc	gtcaggtgtt	tttgaaccag 1	1924
atggcacaac aaccgaaa	ta aaacgttatg	ctagtgttga	ggagtttaaa	cagatgaacc 1	1984
ctgattgttg taaattaa	ca agatttatta	atgaaggaat	agatggctat	ccagatgatg 2	2044
atggatatgg ttatataa	ga attgaatatt	taagacatta	tgttgggaat	tttaaacctg 2	2104
atcatagagt gctttato	tc gaatatacgc	cttgtggaga	attaagggaa	gaggtttctt 2	2164
tttaaaaaat aaataata	gt gaggtgaaga	aatggcatta	ccaacaqcaa	cagaaatcac 2	2224
aaatgcatat ttatataa					
•	aa ataaattaac	tcctaaagcg		tagattcaat 2	2284
acaaattett gaaaaagg			gaggaaagag		
	ag atgaacattt	cgaagtaaat	gaggaaagag tttaattgat	caaagtactc 2	2344
acaaattctt gaaaaagg	ag atgaacattt ca gtggaattaa	cgaagtaaat tggcaggtat	gaggaaagag tttaattgat ggcagtttct	caaagtactc 2 gcggaaatta 2	2344
acaaattott gaaaaagg	ag atgaacattt ca gtggaattaa ta ttagattact	cgaagtaaat tggcaggtat tatttagccc	gaggaaagag tttaattgat ggcagtttct attaaaaacc	caaagtactc 2 gcggaaatta 2 acaaaataat 2	2344 2404 2464
acaaattett gaaaaagg tattgattga aggaaaaa aaacaggtaa acgcagtg	ag atgaacattt ca gtggaattaa ta ttagattact tc gtataataaa	cgaagtaaat tggcaggtat tatttagccc tatactgttg	gaggaaagag tttaattgat ggcagtttct attaaaaacc ctttgattac	caaagtacte 2 geggaaatta 2 acaaaataat 2 gtteteaaca 2	2344 2404 2464 2524

acaaatgggc ttaaccegcg tgatcttatc ccgtgagctt tcgcttgatg aaattgccga 2704
aattcgtcag caagtgccag aaatggaaat tgaagtgttc gtgcatgggg cattatgcat 2764
ggcgtattct ggacgttgtt tattatcagg ctatattaat aaacgtgatc caaatcaagg 2824
cacctgtacc aatgcgtgcc gttgggaata cagtgtaacc gaagccaaag aagatgagat 2884
cggcaacatt gtgaatgtgg gtgaagaaat tccagtgaaa aatgtagcac cgacacttgg 2944
cgaaggcgac accaccagta aagtatttt attagcagaa agtcga

```
cgaaggcgac accaccaqta aaqtattttt attagcagaa aqtcqa
<210> 34
<211> 153
<212> PRT
<213> Pasteurella multocida
<400> 34
Met Thr Glu Glu Asn Lys Gly Lys Arg Tyr Phe Leu Trp Phe Ile Leu
Phe Ile Leu Ser Ile Tyr Leu Phe Ile Thr Ile Gln Glu Arg Arg Gly
Tyr Cys Phe Asp Lys Arg Ala Tyr Ile His Glu Leu Tyr Thr Glu Gln
Glu Leu Ile Asp Arg Gly Ile Glu Tyr Val Val Ser Thr Met Pro Ser
Gly Val Ile Lys Pro Asp Gly Thr Ile Lys Glu Val Lys Arg Tyr Thr
Ser Val Glu Glu Phe Lys Gln Met Asn Pro Ala Cys Cys Thr Leu Thr
Thr Phe Ile Asp Glu Gly Gly Asp Gly Tyr Pro Asp Asp Asp Gly Tyr
Gly Tyr Val Arg Ile Glu Tyr Leu Arg His Tyr Val Glu Asn Leu Lys
Pro Tyr His Arg Val Ile Tyr Leu Glu Tyr Thr Pro Cys Gly Glu Leu
Arg Glu Glu Ala Ala Phe Ser Lys Asn
145
                    150
<210> 35
<211> 1683
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (325)..(1230)
```

<220> <223> lgtC

⁸³

```
<220>
<221> misc feature
<222> 219
<223> Xaa = any or unknown amino acid
<221> misc_feature
<222> 226
<223> Xaa = any or unknown amino acid
-220×
<221> misc_feature
<222> 269
<223> Xaa = any or unknown amino acid
<220>
<221> misc_feature
<222> 270
<223> Xaa = any or unknown amino acid
-220×
<221> misc_feature
<222> 274
<223> Xaa = any or unknown amino acid
atatcaaagt ctcatggcaa gaaaattaga aaagagcgat caattattat ttgcaagatt 60
tgggtattat tcataggcta ggtgaaagat atatttttcc atgatattaa aacgattcaq 120
gcagaactgg ctagcttatc acttttagat aattgtatta ttaaaaqaaq ctgtatqatt 180
gttattctat cattagtgga taataaatat tctttatttt ttqaqaqata aaaacaattc 240
atatttcaat agaaaacaga aaataaagat tatcaaaaga attatccqtc cttataaata 300
tgagtctgta ttgtgagatg atat atg aat att tta ttt qtt tct qat qat
                            Met Asn Ile Leu Phe Val Ser Asp Asp
gtt tat gct aaa cat ctg gtg gtt gcg att aaa agc att ata aat cat Val Tyr Ala Lys His Leu Val Val Ala Ile Lys Ser Ile Ile Asn His-
 10
aat gaa aaa ggt att tca ttt tat att ttt gat ttg ggt ata aag gat
Asn Glu Lys Gly Ile Ser Phe Tyr Ile Phe Asp Leu Gly Ile Lys Asp
gaa aat aag aga aat att aat gat att gtt tot tot tat gga agt gaa
                                                                     495
Glu Asn Lys Arg Asn Ile Asn Asp Ile Val Ser Ser Tyr Gly Ser Glu
gtc aac ttt att gct gtg aat gag aaa gaa ttt gag agt ttt cct gtt
                                                                     543
Val Asn Phe Ile Ala Val Asn Glu Lys Glu Phe Glu Ser Phe Pro Val
caa att agt tat att tot tta goa aca tat goa agg ota aaa gog goa
                                                                     591
Gln Ile Ser Tyr Ile Ser Leu Ala Thr Tyr Ala Arg Leu Lys Ala Ala
gag tat ttg ccg gat aat tta aat aaa att att tat tta gat gtt gat
                                                                     639
Glu Tyr Leu Pro Asp Asn Leu Asn Lys Ile Ile Tyr Leu Asp Val Asp
```

gtt ttg gtt ttt aac tca tta gaa atg tta tgg aat gtt gat gtt aat 68° Val Leu Val Phe Asn Ser Leu Glu Met Leu Trp Asn Val Asp Val Asn 110	7
aat tit cit acc gca gcc tgt tat gat tot tit atc gaa aat gaa aag 73! Asn Phe Leu Thr Ala Ala Cys Tyr Aap Ser Phe Ile Glu Ann Glu Lys 125 130 130 135 135 136 137 137 138 138 139 139 139 139 139 139 139 139 139 139	5
tot gag cat aaa aaa tog att toa atg toa gat aag gaa tat tat ttt 78: Ser Glu His Lys Lys Ser Ile 5er Met Ser Asp Lys Glu Tyr Tyr Phe 140 145 150	3
aat gca gga gta atg cta ttt aat tta gat gaa tgg cgg aag atg gat 83; Asn Ala Gly Val Met Leu Phe Asn Leu Asp Glu Trp Arg Lys Met Asp 155 160 165	1
gta ttc tca aga gct tta gac ctg tta gct atg tat cct aat caa atg 879 Val Phe Ser Arg Ala Leu Asp Leu Leu Ala Met Tyr Pro Asn Gln Met 170 180 185	•
att tat cag gat caa gat ata ttg aat atc ctt ttt agg aat aaa gtc 927 Ile Tyr Gln Asp Gln Asp Ile Leu Asn Ile Leu Phe Arg Asn Lys Val 190 200	7
tgt tat tta gat tgc aga ttt aat ttc atg cca aat caa ctt gaa aga 975 Cys Tyr Leu Aap Cys Arg Phe Asn Phe Met Pro Asn Gln Leu Glu Arg 205 210 215	5
ata man caa tac cat maa gga mam ntg agc mac tta cat tot tta gam 102 Ile Xma din Tyr His Lys Gly Lys Xma Ser Asn Leu His Ser Leu Glu 220 230	23
aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa 107 Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys 235 240 245	71
gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa 111 Ala Trp His Ala Aep Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys 250 260 265	19
ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct 116 Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser 270 280	57
ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc 121 Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe 285 290	15
aaa tat caa gto tat taactattga attittgcaa atgagataag agtatagtgo 127 Lys Tyr Gln Val Tyr 300	10
tgatttette aaagegaaaa ggaggaaata gettgtteta atttattaca ataatggttg 133	3 0
tattcatctt gattttgaag gaaagagagt gttttttgta taaaagcatt ttcgtcacct 135	90
aaatttacta atcctcca aa ttctcctcct cgnagaattt ctttcggacc ggtagggcag 145	50
tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggtaacccc 153	ιo
tettteaaag aggtgtgtaa aaatagetta geatttttta ttaatggata eggattatet 157	
ttatttccta aaagaaaaca atcttcttgt agattgagtg attctatttg tttctctaat 163	30

```
ttttctcgac actcaccatc ccaaacaata tatancnttt cttggatacc tcc
                                                                  1683
<210> 36
<211> 302
<212> PRT
<213> Pasteurella multocida
<220>
<221> misc_feature
<222> 219
<223> Xaa = any or unknown amino acid
<221> misc_feature
<222> 226
<223> Xaa = any or unknown amino acid
<220>
<221> misc_feature
<222> 269
<223> Xaa = any or unknown amino acid
<220>
<221> misc_feature
<222> 270
<223> Xaa = anv or unknown amino acid
<221> misc_feature
<222> 274
<223> Xaa = any or unknown amino acid
<400> 36
Met Asn Ile Leu Phe Val Ser Asp Asp Val Tyr Ala Lys His Leu Val
Val Ala Ile Lys Ser Ile Ile Asn His Asn Glu Lys Gly Ile Ser Phe
Tyr Ile Phe Asp Leu Gly Ile Lys Asp Glu Asn Lys Arg Asn Ile Asn
Asp Ile Val Ser Ser Tyr Gly Ser Glu Val Asn Phe Ile Ala Val Asn
Glu Lys Glu Phe Glu Ser Phe Pro Val Gln Ile Ser Tyr Ile Ser Leu
Ala Thr Tyr Ala Arg Leu Lys Ala Ala Glu Tyr Leu Pro Asp Asn Leu
Asn Lys Ile Ile Tyr Leu Asp Val Asp Val Leu Val Phe Asn Ser Leu
Glu Met Leu Trp Asn Val Asp Val Asn Asn Phe Leu Thr Ala Ala Cys
Tyr Asp Ser Phe Ile Glu Asn Glu Lys Ser Glu His Lys Lys Ser Ile
                        135
```

```
Ser Met Ser Asp Lys Glu Tyr Tyr Phe Asn Ala Gly Val Met Leu Phe
145
Asn Leu Asp Glu Trp Arg Lys Met Asp Val Phe Ser Arg Ala Leu Asp
Leu Leu Ala Met Tyr Pro Asn Gln Met Ile Tyr Gln Asp Gln Asp Ile
Leu Asn Ile Leu Phe Arg Asn Lys Val Cys Tyr Leu Asp Cys Arg Phe
Asn Phe Met Pro Asn Gln Leu Glu Arg Ile Xaa Gln Tyr His Lys Gly
Lys Xaa Ser Asn Leu His Ser Leu Glu Lys Thr Thr Met Pro Val Val
225
Ile Ser His Tyr Cys Gly Pro Glu Lys Ala Trp His Ala Asp Cys Lys
His Phe Asn Val Tyr Phe Tyr Gln Lys Ile Leu Ala Xaa Xaa Ser Arg
Gly Xaa Asp Lys Glu Arg Val Leu Ser Ile Lys Thr Tyr Leu Lys Ala
Leu Ile Arg Arg Ile Arg Tyr Lys Phe Lys Tyr Gln Val Tyr
                        295
<210> 37
<211> 2029
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (2)..(499)
<220>
<223> mg1B
<221> misc_feature
<222> 33
<223> Xaa = anv or unknown amino acid
<220>
<221> misc_feature
<222> 99
<223> Xaa = any or unknown amino acid
<220>
<221> misc_feature
<222> 101
<223> Xaa = any or unknown amino acid
<221> misc_feature
<222> 928
<223> n = A or T or G or C
```

```
<220>
<221> misc_feature
<222> 1007
\langle 223 \rangle n = A or T or G or C
<220>
<221> misc_feature
<222> 1740
<223> n = A or T or G or C
<220>
<221> misc feature
<222> 1808
<223> n = A or T or G or C
<220>
<221> misc_feature
<222> 1816
\langle 223 \rangle n = A or T or G or C
<220>
<221> misc_feature
<222> 1820
\langle 223 \rangle n = A or T or G or C
<400> 37
c tta aat aaa gcc ggt aaa att caa tac gtt tta tta aaa ggt aac caa 49
  Leu Asn Lys Ala Gly Lys Ile Gln Tyr Val Leu Leu Lys Gly Asn Gln
gga cac cca gat gca gaa gct cgt aca aaa ttc gtc att aaa gaa tta
Gly His Pro Asp Ala Glu Ala Arg Thr Lys Phe Val Ile Lys Glu Leu
nat aat aaa ggc att caa gat gag caa tta ttc atc gac acg ggg atg
Xaa Asn Lys Gly Ile Gln Asp Glu Gln Leu Phe Ile Asp Thr Gly Met
                                                                        145
tgg gat gcc gct tta gcg aaa gat aaa atg gat gca tgg tta tct agc
Trp Asp Ala Ala Leu Ala Lys Asp Lys Met Asp Ala Trp Leu Ser Ser
tot aaa goa aat caa att gaa gtg atc atc got aac aac gat ggt atg
Ser Lys Ala Asn Gln Ile Glu Val Ile Ile Ala Asn Asn Asp Gly Met
gcg atg ggg gca ttg gaa gcc acg aaa gca cat ggt aaa aaa tta cca
                                                                        289
Ala Met Gly Ala Leu Glu Ala Thr Lys Ala His Gly Lys Lys Leu Pro
                   85
atc ttc ngt gta nat gcg tta cca gaa gtc ctc caa tta atc aaa aaa
Ile Phe Xaa Val Xaa Ala Leu Pro Glu Val Leu Gln Leu Ile Lys Lys
             100
                                   105
ggt gaa att gca ggt acg gtg tta aat gac ggt gtg aac caa ggt aaa
                                                                       385
Gly Glu Ile Ala Gly Thr Val Leu Asn Asp Gly Val Asn Gln Gly Lys
gcc gtt gtt caa tta agt aat aat ctt gca aaa gga aaa cct gcc act
Ala Val Val Gln Leu Ser Asn Asn Leu Ala Lys Gly Lys Pro Ala Thr
    130
                          135
```

gaa ggc aca aaa tgg cag tta aaa cga tcg tgt cct Glu Gly Thr Lys Trp Gln Leu Lys Arg Ser Cys Pro 145 150		481
tgt tgg tgt gga tgc gga taacttaaac gagttcctaa a Cys Trp Cys Gly Cys Gly 165	ataataaac	529
tataacaaaa caagamgttg taattctcgg ggaggtatac cct	cccctt tttatgtgag	589
gttggatatg acaactcaaa ttccaaatca agacagtgaa ata	ctgctca caatgaccaa	649
cgtctgtaaa tcctttcccg gtgttaaagc gttagacaat gca	aacctaa ctgtgcgctc	709
gcattctgtc catgccttaa tgggcgaaaa tggggcgggc aaa	atcgacct tattaaaatg	769
cttatttggt atttacagta aagatgaagg tgacatcctt tto	ttaggca agccagtcaa	829
ctttaaaacg tcgaaagaag ccttagagaa cgggattttc atg	gtgcacc aagaacttaa	889
cttggttaaa caatgtactg taatggataa teetttggnt agg	acgttat ccattaaaag	949
caggetttgt egateaegge aaaatgtate gtgataceaa age	agatttt tgaagaanta	1009
gatatcgata tcgatccaaa agaaaaagtg gccaaattgt cag	tgtcaca aatgcaaatg	1069
atcgagatcg caaaggcett ttcatacaat gccaaaatcg taa	tcatgga cgaaccgact	1129
tcttcgcttt cagaaaaaga agttgaacac ctatttaaaa tta	tcgcgaa gctaaaacaa	1189
cgtggctgtg gcattattta tatttcgcac aaaatggacg aaa	tetteaa aatttgtgae	1249
gaaattacga ttttacgcga tggtaaatgg atcaatacgg tcg	ctgttaa aggcaccaca	1309
atggatcaga ttgtatccat gatggttggg cgtgaactca cgc	aacgttt cccaccaaaa	1369
accaataccc caaaagaaac catcttaacg gtggaaaatc tga	ccgcact taatcagcca	1429
tctattcaag atgttagttt tgaattacgc aaaggcgaag tgc	teggeat tgegggaetg	1489
gttggggcaa aacggtaccg atattgtgga aacgatcttc ggg	gtgcgtg aacgtaaatc	1549
tggtgtgatt aaactacacg ataaggaaat gaaaaaccgg aat	gcgttcg aagccattaa	1609
caatggtttt gccttggtca cggaagaacg tcgctctaca ggg	atttatg cgaatctcag	1669
tattgagttt aactcattaa tttctaacat gaagaaatcc tat	atcagca agttaggttt	1729
attgagtaac ncaaaaatga aaagcgacac gcaatggggt cat	tgattcc atgaatgtga	1789
aaacgccatc acaaaaccna tattggntca ntatctgggg tgg	taaccaa caaaaagtgg	1849
tcattggtcg ttggttatta acceaecetg aaatettgat gtt	agacgaa ccaacacgtg	1909
gtatcgacat tggtgcgaaa tatgaaattt atcagctgat tat	ggagtta gccaaaaaag	1969
ataaaggtat catcatgatt tcatctaaag gccagagtta tta	ggggtac tgaccgaatt	2029

<210> 38 <211> 166 <212> PRT

<213> Pasteurella multocida

```
<220>
<221> misc_feature
<222> 33
<223> Xaa = anv or unknown amino acid
<220>
<221> misc_feature
<222> 99
<223> Xaa = any or unknown amino acid
<220>
<221> misc feature
<222> 101
<223> Xaa = any or unknown amino acid
<400> 38
Leu Asn Lys Ala Gly Lys Ile Gln Tyr Val Leu Leu Lys Gly Asn Gln
Gly His Pro Asp Ala Glu Ala Arg Thr Lys Phe Val Ile Lys Glu Leu
Xaa Asn Lys Gly Ile Gln Asp Glu Gln Leu Phe Ile Asp Thr Gly Met
Trp Asp Ala Ala Leu Ala Lys Asp Lys Met Asp Ala Trp Leu Ser Ser
Ser Lys Ala Asn Gln Ile Glu Val Ile Ile Ala Asn Asn Asp Gly Met
Ala Met Gly Ala Leu Glu Ala Thr Lys Ala His Gly Lys Lys Leu Pro
Ile Phe Xaa Val Xaa Ala Leu Pro Glu Val Leu Gln Leu Ile Lys Lys
                                105
Gly Glu Ile Ala Gly Thr Val Leu Asn Asp Gly Val Asn Gln Gly Lys
Ala Val Val Gln Leu Ser Asn Asn Leu Ala Lys Gly Lys Pro Ala Thr
Glu Gly Thr Lys Trp Gln Leu Lys Arg Ser Cys Pro Thr Tyr Pro Leu
Cys Trp Cys Gly Cys Gly
                165
<210> 39
<211> 2628
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (326) . . (766)
<220>
<223> mioC
<400> 39
```

gtcaactaga gtaaaataga cacactta	at tacattgtag	aggaatcctt ttatgtcttt	60
agaaatttta gatcagttag aagaaaa	aat taaacaagcg	gttgaaacta tccaattact	120
tcaattggaa attgatgaat taaaaga	aaa aaataaccaa	tctcaacaag caaatgacgc	180
attacgcagt gaaaatgaac aactaaa	gag tgagcaccaa	aactggcaag aacgtttacg	240
ctcattatta ggcaaaattg ataacgt.	ata attcacttct	tattaaggct tagtttttct	300
aagccttatt ttttaggaga aatta a	to aaa aca aaa	att tot att atc act	352
		Ile Cys Ile Ile Thr	
ggc agt acg ctt ggt ggt gca g			400
Gly Ser Thr Leu Gly Gly Ala G	lu Tyr Val Ala 20	Glu His Ile Ala Glu 25	
ata tta gaa caa caa gat tat co	ct gta cgt tta	gaa cat gga cca aat	448
Ile Leu Glu Gln Gln Asp Tyr P	ro Val Arg Leu 35	Glu His Gly Pro Asn 40	
ttt gaa gaa gtg atc gat gaa aa			496
Phe Glu Glu Val Ile Asp Glu Ly 45	ys Cys Trp Leu 50	Val Val Thr Ser Thr 55	
cat ggt gca ggt gaa tta ccg ga		act ata ttt ann non	544
His Gly Ala Gly Glu Leu Pro As	sp Asn Ile Lys	Pro Leu Phe Glu Lys	344
60	55	70	
tta gca ttt cac cca aaa cag tt Leu Ala Phe His Pro Lys Gln Le			592
75 80		85	
ggg tta ggt aat tcg gat tat ga			640
Gly Leu Gly Asn Ser Asp Tyr As 90 95	sp Thr Phe Cys 100	His Ala Val Asp His	
gtg gaa caa tta ctg cta agc aa	a gat gct tta	caa ctg tgt gaa tcg	688
Val Glu Gln Leu Leu Leu Ser Ly 110			
cta aga atg gat atg cta acc at Leu Arg Met Asp Met Leu Thr I			736
125	130	135	
caa tgg ctc cca caa ttt ctc ag Gln Trp Leu Pro Gln Phe Leu Se		tatttat tccctataca	786
140			
atggcatatg taaatcaaat atgccati	tt tcatctcgat	caagcataat atttaaccaa	846
tcaaatcaat attttctctg tggataa	ta agatcaaaac	tgtataaaag ctgtttttat	906
tccctgaata agattgaatg tttttta	tc tgtggataac	taaagaagtt attcacagtt	966
ttttctggtg ccaaattgag atcttaa	aa cttaaaaaat	gatctaagtt attcatttaa	1026
aaaaagaaaa ggatcttaat cacagca	ta taggateeta	ataatcataa taataagatc	1086
totttatata aaaagatoot atottta	ta actcacgatc	tttttcacga tcatcgtaca	1146
gtottgatca aaaatgtttc tttcatg	gat ccataaattt	cagtagaata gccaaccagc	1206

aaaaaggatc aaaagatcca taaaatccga gataaattaa caaggttact atgttttata 1266 ctgaaaatta tgatgttatt gtgatcggtg gtggacacgc aggtactgaa gctgcacttg 1326 caccggcacg catgggacte aagaccetat tattaaceca taatgttgat acactagggc 1386 aaatgtettg taateetgeg attggtggga ttggtaaagg ceatttagte egagaaattg 1446 atgcgatggg cggtttaatg gcaactgctg cggaccaagc aggaatccaa tttcgtacct 1506 taaacaqcaq caaaqqaccq qcqqtacqtq ctacacqtqc qcaaqctqac cqcqttttat 1566 atcqccaaqc aqtacqtatt qcattaqaaa atcaagaaaa tttaqatatt tttcaacaaq 1626 aaqtqaccqa tattatttta qatcaqqatc qtqtctqcqq tqttqttact aaaatqqqtt 1686 taaaatttca cqcaaaaqca qtqattttaa caqccqqtac tttcctttct qqtaaqatcc 1746 acattggttt agaaaattat acaggtggac gcgcgggtga tcctgcttca gtgatgttag 1806 ccqatcqttt aaqaqaactq aatttacqtq tanatcqttt aaaaacqqqt acaccqcccc 1866 qtattqatqc acqtactatt qatttctcaa tactqqctaa acaacatqqc qatqaaaaat 1926 tacctqtctt ttccttcatq qqatctqttq atcaacaccc acqtcaaatt ccatqtttta 1986 ttacccatac aaatqaacaa acqcatqaaq tqatccqtaa taacttacat cqcaqcccaa 2046 tqtatqctqq qatcattqaa qqqatcqqtc cacqttattq cccttctatt qaaqataaaq 2106 taatqcqttt ttctqaqcqt aattctcatc aaatctacct tqaacctqaa qqqttqacaa 2166 acaaaacaaa gaaattgcgg atttacaaaa acaagtgcaa gcactgcaag cagatttaag 2226 cyaaatggca aagaaaaacc gcaatcaagc gttgattgca ggtggtattg gcggtggcat 2286 tgttgcagtc ggtattgagc tcattcgctt gcaatttggg ggctaactga tggcatttga 2346 tgaaaaaaca cotococtoo ttcotcocta ctatgtattt gagttittat cocttoagca 2406 atcagcaagt aaagctaaag totoatttaa caccgogoga ogotggaaga aagaggoggo 2466 aagcaagggc gatgactggg ataaagtgcg tgatgtacaa gtaatggcgg gcaatgagct 2526 gactgatatc acaaaaggat tgttatcggg ctttattatt caatatcgcg caaccatgga 2586 tgagattcaa aactcggatt taaaagcaca agataaagtc ga 2628

<210> 40 <211> 147 <212> PRT

<213> Pasteurella multocida

<400> 40
Met Lys Thr Lys Ile Cys Ile Ile Thr Gly Ser Thr Leu Gly Gly Ala
1
5
10
15

Glu Tyr Val Ala Glu His Ile Ala Glu Ile Leu Glu Gln Gln Asp Tyr 20 25 30

Pro Val Arg Leu Glu His Gly Pro Asn Phe Glu Glu Val Ile Asp Glu 35 40 45

Lys Cys Trp Leu Val Val Thr Ser Thr His Gly Ala Gly Glu Leu Pro 55 Asp Asn Ile Lys Pro Leu Phe Glu Lys Leu Ala Phe His Pro Lys Gln Leu Ala Asp Leu Arg Phe Ala Val Ile Gly Leu Gly Asn Ser Asp Tyr Asp Thr Phe Cys His Ala Val asp His Val Glu Gln Leu Leu Ser Lys Asp Ala Leu Gln Leu Cys Glu Ser Leu Arg Met Asp Met Leu Thr Ile Thr Asp Pro Glu His Thr Ala Glu Gln Trp Leu Pro Gln Phe Leu 140 Ser Gln Leu 145 <210> 41 <211> 5191 <212> DNA <213> Pasteurella multocida <220> <221> CDS <222> (3203)..(4255) <220> <223> mreB -400 > 41 ctgcagtacc aaccacccaa atgttgtgct tctgctgtaa ttcacgcaaa gtgcgcgcga 60 ggttggttac acggattaat ggcacgactt cagcggcacc acaagctact ttacgtgcga 120 tagcggttaa ttgggcagat ttatcttttg gtactatcac agcacacacg cccgctgcat 180 ccgcagtacg caaacaagca cctaagttat gtggatcagt cacaccatct aacactaata 240 gcaacggatt ggactgattt tgtaaaagcg tatctaaatc tgcttcattc aattctttcg 300 ctggctgaac acgtgccatg atgccttggt gtacttcgcc ctctgctttt ttatcaaggg 360 tttggcgatt aacaaattgg atagtaatac ccaaccgatg aagttcattg agcaaaggtt 420 gtaaacgttt atcgtcgcgc cctttgagtg cataaacttc aattaaacgc tctqqcqcqt 480 tgtttaaaaa ggcacttact gcatgaatgc cataaatatt ttcactcatc tactttctct 540 ttttagctga tttcttactg gcttttttcg tggttgttga tggtttaaca acgcttgttt 600 ttcttaccgc acttttactg gtgcttggtt tacgtttatg gcgttgtttt tcgagacttt 660 cagogtageg tgcatttttc ttgagettgt etttggetgt tttgeettet egtaatggtt 720 tacgeteact egacactaaa gaaaaateea ettggegttg tteaaggeta actgetteea 780 cacggatttt taccttatcg ccaatgcggt agatcatacc actattttca ccgattaaac 840

gttgtcgagc gagatcaaat tggtagtagt cgttatctaa ggtagaaatg tggactaagc 900 catcaataaa gaggtcatct aagcggacaa ataagccaaa acctgtcaca gatgaaatca 960 cacctgtaaa ttcttcgcct acatgatctt gcatatattc gcattttagc cagtctgcaa 1020 catcacgagt ggcatcatcg gcccgtcgtt ctgtcatgga gcagtggtcg cctaatacat 1080 ccatgtcatc aagtgtatag tgataccctc ccgtatcagt ggttctccgt ttcgagcctt 1140 ttaqtttqqc taacaagtat ttaatcccac gatgcaaagt caaatcagga taacqqcqaa 1200 ttggcgaagt aaaatgcgca tattcttcga gtgcaagccc aaagtqccca atattqtcaq 1260 qatgataaac ggcttgactt aacgaacqta atacatggtt tqcaataact catqatctqq 1320 acgttcgcga atttgctcca ataatttagc gtagtctgcg qtacttggtt tactqccacc 1380 ttcaaggett aaaccacatt cactgaggaa ttggcggaaq cccqtcactt tttcttcqct 1440 tggacccgca tgaatacgga aaagggctqq ctcttqatqt ttttccataa aqtttqccqc 1500 cgcaatattg gcgaggatca tacattcttc aatgatttta tqcqcatcat tacgaataac 1560 aggeteaate egitegatte gecceattte attaaacaca aacttacttt caatqqttte 1,620 aaagtcaatg gcgccacgtt gatgacgggc ttccactaag gcttggtaca ttacatggag 1680 ttottttaaa tggggaacca gtgcttgata acgagtacaa agttottcat cgtoctotaa 1740 aatacgagca actttggtat aggttaagcg agcatgagag ttcatgaccg cttcataaaa 1800 ttcatagcct gtgattttac cttttgctga aacattcagc tcacagacca tacataagcg 1860 atcgacttgt gggtttaatg aacaaagtcc attggagagg atttccggta gcataggaac 1920 aacgcgattt gggaaatata ccgagtttcc acgcgcatgt gcttcggtat caagggcagt 1980 acqtaaacqa acataqtaqc tqacatcqqc aatqqcaacc cacaqtttcc aaccqcctcc 2040 acgttttttc tggcaaaaaa ccgcatcgtc aaaatcgcga gcatcttcac catcaatggt 2100 gactaacgga agatggcgta aatcaatacg teetgatttg gettetteeg gtaettette 2160 actcagttta gaaacttgtt tgaggaccgc gtctggaaaa acatggggaa tatcatgatt 2220 acggatagca atttccacct ccatcccttt tgccatattt tcaccgagaa tttcgctaat 2280 cattccaaca ggttggctaa atgttgcggt acgtggtttt aattcaacta caaccacttg 2340 tcccatacga gcgccttggc ggtgttcatt cggaattaaa atgtcgcgat taattcgact 2400 atcgtcaggt actacataac caataccatc ttctaagaaa aaacqaccaa caatctqttt 2460 tttacgctgt tgtaagacgc ggacaatccg cacttcttgg cgaccacgac ggtcaaaacc 2520 gctaggttgg gcgaggacat agtcaccgtg cattactcgc tgcatttggc tgttgggtat 2580 aaaccaatcg ctgtctttac cttcqacttq taaaaaacca taaccatcac qatqacctaa 2640 tacggtccct tttaataaat ccagtttttc cggtaaagcg tagcgtttac gtttagtgaa 2700 aaccaattgt ccgtcatttt ccatcgctct taagcgacgg cgcatggctt cttgttgttc 2760

ttcattttga atagcaaatg tggtcagtaa ttcttctttt gagataggtg cattatgttg 2820 acgaattgta tcaagaataa attcgcgact tgggatcggq ttctcatatt ttgcgagttc 2880 ttcttqatag tttggatctt gcaaatgtgg attgtttttg atttttgcca taatgactcc 2940 ctttgagaat ggaaatacgc attcgtttaa tgacctcaag tttgacactc tgatttgttg 3000 aaagcaagta aaaaacctgt tcgtgactga aacaatctgt actcgcggga tttgtcgtqc 3060 atgaaagcgt aaagacaaag caaatttcga caatttacag aaaattctct gttataaaqg 3120 tacatttttt gatacattta qcacaatttt tcaatactca aatcagagtg tccattattt 3180 aatttagttc agcggaattc tt atg tta ttt aaa aaa att cga ggc tta ttt 3232 Met Leu Phe Lys Lys Ile Arg Gly Leu Phe tca aat gat ctg tcc atc gat ctt ggc aca gcg aat acc tta att tat Ser Asn Asp Leu Ser Ile Asp Leu Gly Thr Ala Asn Thr Leu Ile Tyr 3280 gtc aaa gga caa ggg att gtt tta gat gaa cct tct gtt gtg gcg att 3328 Val Lys Gly Gln Gly Ile Val Leu Asp Glu Pro Ser Val Val Ala Ile cgc caa gaa cgt tca ggt gca tta aaa agc att gct gcg gtt ggt cgt 3376 Arg Gln Glu Arg Ser Gly Ala Leu Lys Ser Ile Ala Ala Val Gly Arg gat gcc aaa tta atg tta ggc cgt aca ccg aaa agc att gca gcg att 3424 Asp Ala Lys Leu Met Leu Gly Arg Thr Pro Lys Ser Ile Ala Ala Ile cgt cct atg aaa gat ggg gtg atc gca gat ttc ttt gtg aca gaa aaa 3472 Arg Pro Met Lys Asp Gly Val Ile Ala Asp Phe Phe Val Thr Glu Lys atg ttg caa tat ttt att aaa caa gtg cac agc agc aat ttt atg cgt Met Leu Gln Tyr Phe Ile Lys Gln Val His Ser Ser Asn Phe Met Arg 100 cca agt cca cgt gtc tta gtt tgt gta cct gcg gga gct acg caa gtc 3568 Pro Ser Pro Arg Val Leu Val Cys Val Pro Ala Gly Ala Thr Gln Val gaa cga cgt gca atc aaa gaa tct gcc att ggt gct ggg gca cgc gag 3616 Glu Arg Arg Ala Ile Lys Glu Ser Ala Ile Gly Ala Gly Ala Arg Glu gtg tac ttg att gag gaa ccg atg gcg gca gcg att ggt gct aaa tta 3664 Val Tyr Leu Ile Glu Glu Pro Met Ala Ala Ala Ile Gly Ala Lys Leu 145 ect gtt teg act gee aca ggt teg atg gtg ate gat ate ggt ggt ggt 3712 Pro Val Ser Thr Ala Thr Gly Ser Met Val Ile Asp Ile Gly Gly Gly 160 acg acg gaa gtt gcg gtg att tet tta aat ggc att gtg tat tee tet 3760 Thr Thr Glu Val Ala Val Ile Ser Leu Asn Gly Ile Val Tyr Ser Ser 180 tca gtc cgc att ggt ggt gat cgt ttt gat gag gcg att att tct tat 3808

Ser	Val	Arg	Tle 190	Gly	Gly	Asp	Arg	Phe 195	Asp	Glu	Ala	Ile	Tle 200	Ser	Tyr	
gta Val	cgc Arg	aag Lys 205	acg Thr	ttc Phe	ggt Gly	tca Ser	att Ile 210	att Ile	999 Gly	gaa Glu	ccg Pro	aca Thr 215	gca Ala	gag Glu	cgt Arg	3856
atc Ile	aaa Lys 220	caa Gln	gag Glu	att Ile	ggt Gly	agt Ser 225	gcg Ala	ttt Phe	att Ile	caa Gln	gaa Glu 230	ggc Gly	gat Asp	gaa Glu	gtc Val	3904
														ccg Pro		3952
tct Ser	ttc Phe	aaa Lys	ctc Leu	acc Thr 255	tca Ser	cgt Arg	gat Asp	gtg Val	tta Leu 260	gaa Glu	gct Ala	att Ile	caa Gln	gcc Ala 265	ccg Pro	4000
														tgt Cys		4048
														act Thr		4096
														gaa Glu		4144
														gcc Ala		4192
ggt Gly	ggt Gly	ggc Gly	gag Glu	gca Ala 335	tta Leu	gag Glu	atg Met	atc Ile	gat Asp 340	atg Met	cac His	ggt Gly	ggt Gly	gat Asp 345	att Ile	4240
		gac Asp			taat	atga	itt t	aaaa	gtgo	g gt	gata	ttaç	g acc	gcad	ttt	4295
taci	tete	et t t	tatt	gcto	ga ca	aggo	tago	cta	atto	gta	tate	gaaad	ct a	attt	tggaa	4355
aag	acct	cc t	ttaç	gtct	t c	ctta	atto	tg	cgat	ttt	agca	tcca	tt 9	gcatt	gattg	4415
ttt	ggad	gg t	caat	ccaa	it go	gato	atta	aag	cace	cag	tatt	atgg	aa a	accgo	agtag	4475
gcg	gcto	gta t	tato	ttg	c aa	taca	ccga	gaa	cggt	att	ggat	gggg	jtt 1	caga	taatt	4535
tggi	tgat	ac o	aata	aatt	g ca	aatt	gaaa	acc	gagt	ttt	gcgt	gato	aa o	tgcg	tgaaa	4595
aaaa	tgca	aga t	ttat	tgtt	g tt	agat	caac	tca	aagt	aga	aaat	caad	gc (etge	cttat	4655
tgct	taat	te d	ccto	ctace	gt ac	agat	gagt	ata	aaaa	aat	tgct	gaaq	gtt 1	taac	ggcag	4715
aaa	tgat	gt	tato	gtaa	ig ca	agto	gtga	tta	acca	agg	acaa	cgt	ac o	ggtgo	ttatg	4775
teg	gcaç	gee g	gatta	attga	at ga	aaag	ggta	tte	ttgg	gca	actt	atcı	cc s	gttgg	tgaaa	4835
ata	gagt	cg o	gtto	ttct	a tt	gaca	gato	tga	ctca	ttc	tatt	cca	jta (caagt	actac	4895

gtaatgatgt ccgtttgatt gctagtggaa caggacggaa tgatgaactg agtttagatc 4955
atgtgccgcg ttcggtcgat attgtcaaag gggatttatt agtcacttct ggattaggtg 5015
ggcgtttttt agaaggttat cctgttgcca ttgtggaatc cgtatcacgt gatgggcaaa 5075
attattttgc tactgtaaca gcaaagccat tagcttcgat tgaacgttta cgctatgtt 5135
tgcttttatg gccgacgaat gaagagatgc gcaaagtcca gtctatttca cctgca 5191

<210> 42 <211> 351 <212> PRT <213> Pasteurella multocida Met Leu Phe Lys Lys Ile Arg Gly Leu Phe Ser Asn Asp Leu Ser Ile Asp Leu Gly Thr Ala Asn Thr Leu Ile Tyr Val Lys Gly Gln Gly Ile Val Leu Asp Glu Pro Ser Val Val Ala Ile Arg Gln Glu Arg Ser Gly Ala Leu Lys Ser Ile Ala Ala Val Gly Arg Asp Ala Lys Leu Met Leu Gly Arg Thr Pro Lys Ser Ile Ala Ala Ile Arg Pro Met Lys Asp Gly Val Ile Ala Asp Phe Phe Val Thr Glu Lys Met Leu Gln Tyr Phe Ile Lys Gln Val His Ser Ser Asn Phe Met Arg Pro Ser Pro Arg Val Leu 105 Val Cys Val Pro Ala Gly Ala Thr Gln Val Glu Arg Arg Ala Ile Lys Glu Ser Ala Ile Gly Ala Gly Ala Arg Glu Val Tyr Leu Ile Glu Glu Pro Met Ala Ala Ala Ile Gly Ala Lys Leu Pro Val Ser Thr Ala Thr Gly Ser Met Val Ile Asp Ile Gly Gly Gly Thr Thr Glu Val Ala Val Ile Ser Leu Asn Gly Ile Val Tyr Ser Ser Ser Val Arg Ile Gly Gly 180 185 Asp Arg Phe Asp Glu Ala Ile Ile Ser Tyr Val Arg Lys Thr Phe Gly Ser Ile Ile Gly Glu Pro Thr Ala Glu Arg Ile Lys Gln Glu Ile Gly Ser Ala Phe Ile Gln Glu Gly Asp Glu Val Arg Glu Ile Glu Val His Gly His Asn Leu Ala Glu Gly Ala Pro Arg Ser Phe Lys Leu Thr Ser

245 255 250 Arg Asp Val Leu Glu Ala Ile Gln Ala Pro Leu Asn Gly Ile Val Ala 260 265 Ala Val Arg Thr Ala Leu Glu Glu Cys Gln Pro Glu His Ala Ala Asp Ile Phe Glu Arg Gly Met Val Leu Thr Gly Gly Gly Ala Leu Ile Arg 295 Asn Ile Asp Val Leu Leu Ser Lys Glu Thr Gly Val Pro Val Ile Ile 305 Ala Asp Asp Pro Leu Thr Cys Val Ala Arg Gly Gly Gly Glu Ala Leu Glu Met Ile Asp Met His Gly Gly Asp Ile Phe Ser Asp Asp Ile 345 <210> 43 <211> 2172 <212> DNA <213> Pasteurella multocida <220> <221> CDS <222> (1) .. (1464) <220> <223> pnp acc cgc gtt ggg att ggg tgg cac ctg aac cca aat acc gcg tta att Thr Arg Val Gly Ile Gly Trp His Leu Asn Pro Asn Thr Ala Leu Ile gaa aaa gtg aaa gcg att gca gaa gcg cgt tta ggc gaa gca tac cgt Glu Lys Val Lys Ala Ile Ala Glu Ala Arg Leu Gly Glu Ala Tyr Arg 20 atc act gas asc asg cac gtt atg asc ass att gat gcg att ass gct Ile Thr Glu Asn Lys His Val Met Asn Lys Ile Asp Ala Ile Lys Ala 35 gat gtg att gca caa atc aca gct gaa gta gca gaa ggc gaa gac atc 192 Asp Val Ile Ala Gln Ile Thr Ala Glu Val Ala Glu Gly Glu Asp Ile agt gaa ggg aaa att gtc gat att ttc acc gca ctt gaa agc caa atc 240 Ser Glu Gly Lys Ile Val Asp Ile Phe Thr Ala Leu Glu Ser Gln Ile gta cgt agc cgt atc att gct ggt gaa cca cgt att gat ggt cgt aca Val Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile Asp Gly Arg Thr gtg qat act qtt cqt qca tta qat att tqt act qqt qtt tta cca cqt Val Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Gly Val Leu Pro Arg aca cac ggt tct gcg att ttc acc cgt ggt gaa aca cag gcg tta gct

98

Thr	His	Gly 115	Ser	Ala	Ile	Phe	Thr 120	Arg	Gly	Glu	Thr	Gln 125	Ala	Leu	Ala	
							cgt Arg									432
							ttc Phe									480
tat Tyr	tct Ser	gtg Val	ggt Gly	gaa Glu 165	acc Thr	ggt Gly	atg Met	att Ile	ggt Gly 170	tca Ser	cca Pro	aaa Lys	cgt Arg	cgt Arg 175	gaa Glu	528
att Ile	ggt Gly	cat His	ggt Gly 180	cgt Arg	tta Leu	gcg Ala	aaa Lys	cgc Arg 185	ggt Gly	gta Val	gct Ala	gca Ala	gtg Val 190	atg Met	cca Pro	576
aca Thr	ctt Leu	gcc Ala 195	gag Glu	ttc Phe	ccg Pro	tat Tyr	gtg Val 200	gta Val	cgt Arg	gtt Val	gtc Val	tct Ser 205	gaa Glu	atc Ile	aca Thr	624
							atg Met									672
gca Ala 225	tta Leu	atg Met	gat Asp	gcg Ala	ggt Gly 230	gta Val	cca Pro	att Ile	aaa Lys	gcg Ala 235	gcg Ala	gtt Val	gca Ala	ggt Gly	att Ile 240	720
gca Ala	atg Met	ggc Gly	tta Leu	gtc Val 245	aaa Lys	gaa Glu	gac Asp	gaa Glu	aaa Lys 250	ttt Phe	gtg Val	gtg Val	ctt Leu	tca Ser 255	gac Asp	768
atc Ile	tta Leu	ggt Gly	gat Asp 260	gaa Glu	gat Asp	cac His	tta Leu	ggt Gly 265	gac Asp	atg Met	gac Asp	ttc Phe	aaa Lys 270	gtc Val	gcg Ala	816
ggt Gly	aca Thr	cgt Arg 275	acg Thr	ggt Gly	gtg Val	acg Thr	gca Ala 280	tta Leu	caa Gln	atg Met	gat Asp	atc Ile 285	aaa Lys	atc Ile	gaa Glu	864
ggt Gly	atc Ile 290	aca Thr	gca Ala	gaa Glu	atc Ile	atg Met 295	caa Gln	att Ile	gcg Ala	tta Leu	aac Asn 300	caa Gln	gcg Ala	aaa Lys	agc Ser	912
gca Ala 305	cgt Arg	tta Leu	cac His	att Ile	tta Leu 310	ggt Gly	gtg Val	atg Met	gag Glu	caa Gln 315	gcg Ala	atc Ile	cca Pro	gcg Ala	cca Pro 320	960
cgt Arg	gcg Ala	gat Asp	att Ile	tct Ser 325	gat Asp	ttt Phe	gca Ala	ccg Pro	cgt Arg 330	att Ile	tac Tyr	act Thr	atg Met	aaa Lys 335	att I le	1008
gat Asp	ccg Pro	aag Lys	aaa Lys 340	atc Ile	aaa Lys	gat Asp	gtg Val	atc Ile 345	ggt Gly	aaa Lys	ggt Gly	ggt Gly	gca Ala 350	acc Thr	att Ile	1056
cgt Arg	gcc Ala	tta Leu 355	aca Thr	gaa Glu	gaa Glu	aca Thr	ggt Gly 360	acc Thr	tca Ser	att Ile	gat Asp	atc Ile 365	gat Asp	gat Asp	gat Asp	1104

ggt acg gtg aag att gct gcg gtt gat ggc aat tca gca aaa gag gtg 1152 Gly Thr Val Lys Ile Ala Ala Val Asp Gly Asn Ser Ala Lys Glu Val 370	:
atg gcg cgt att gaa gat att act gca gaa gtt gaa gcg ggt gca gtg 1200 Met Ala Arg Ile Glu Aap Ile Thr Ala Glu Val Glu Ala Gly Ala Val 385	
tat aaa ggt aaa gtt act cgt tta gct gat ttt ggt gcc ttc gtt tct 1248 Tyr Lys Cly Lys Val Thr Arg Leu Ala Asp Phe Cly Ala Phe Val Ser 410	
atc gta ggt aac aaa gaa ggc tta gtg cat att tct caa atc gcg gaa 1296 Ile Val Gly Aan Lys Glu Gly Leu Val His Ile Ser Gln Ile Ala Glu 420 425 430	
gag cgt gtt gag aaa gtg agt gat tat ctt gca gtg ggg caa gaa gtg 1344 Glu Arg Val Glu Lys Val Ser Asp Tyr Leu Ala Val Qly Gln Glu Val 445	
act gtt aaa gtg gtt gag att gat cgt caa ggt cgt att cgt tta acc 1392 Thr Val Lys Val Val Olu Ile Asp Arg Gln Gly Arg Ile Arg Leu Thr 450 460	
atg aaa gaa gtt gea eea aag eaa gaa eae gtt gat tet gtt gte gea 1440 Met Lys Glu Val Ala Pro Lys Gln Glu His Val Asp Ser Val Val Ala 465 470 480	
gac gtt gcc gca gaa gaa aac gca taagcaataa acaccaacgc ccttcgtgat 1494 Asp Val Ala Ala Glu Glu Asn Ala 485	
aaagggcgtt ggtgtgcatg ttgataagta caatttgtgc tttaaggcga agcgaaatga 1554	
agcaatttca teegtggtta aagtgeetge taatttteee attttgggta tgttgtttaa 1614	
cagettgtgt taateatgaa caagttttte ttteaaaaga gaaattaatg ttageagage 1674	
aacatccgaa tgatcatctt gagcatgagg tgatggttgc gcaaattagc gaattgttac 1734	
ttgttaaagg gttaaaaaaa gaagaacgtg cgattttaca ttttgagcga ggcgtgctgt 1794	
acgatagett aggattgtgg geattggege gttatgattt tgaccaaaca ttagegttgt 1854	
atccaaagtt ggcagcagcg tttaattatt taggtttata tttattgtta gaggaagatt 1914	
acagogoato totagatato tttaatgtgt tgtttgaact tgatcotcaa tatgagtatg 1974	
cattcctaaa tagagggcta aatttttatt acgtcggacg ttatgaatta gctcagcggg 2034	
attitictica attitiaticaa geogataaat eagateeata eegeaetita tggettitatt 2094	
taaatgaatt aaagcataat cetcaggatg ettetaaaaa tettgeteaa egagcaatgg 2154	
ggctttctga tgaatatt 2172	
<210> 44	

<400> 44

<210> 44 <211> 488 <212> PRT <213> Pasteurella multocida

Thr Arg Val Gly Ile Gly Trp His Leu Asn Pro Asn Thr Ala Leu Ile Glu Lys Val Lys Ala Ile Ala Glu Ala Arg Leu Gly Glu Ala Tyr Arg Ile Thr Glu Asn Lys His Val Met Asn Lys Ile Asp Ala Ile Lys Ala Asp Val Ile Ala Gln Ile Thr Ala Glu Val Ala Glu Gly Glu Asp Ile Ser Glu Gly Lys Ile Val Asp Ile Phe Thr Ala Leu Glu Ser Gln Ile Val Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile Asp Gly Arg Thr Val Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Gly Val Leu Pro Arg Thr His Gly Ser Ala Ile Phe Thr Arg Gly Glu Thr Gln Ala Leu Ala Val Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile Ile Asp Glu Leu Thr Gly Glu Arg Ser Asp His Phe Leu Phe His Tyr Asn Phe Pro Pro Tyr Ser Val Gly Glu Thr Gly Met Ile Gly Ser Pro Lys Arg Arg Glu Ile Gly His Gly Arg Leu Ala Lys Arg Gly Val Ala Ala Val Met Pro Thr Leu Ala Glu Phe Pro Tyr Val Val Arg Val Val Ser Glu Ile Thr Glu Ser Asn Gly Ser Ser Ser Met Ala Ser Val Cys Gly Ala Ser Leu Ala Leu Met Asp Ala Gly Val Pro Ile Lys Ala Ala Val Ala Gly Ile Ala Met Gly Leu Val Lys Glu Asp Glu Lys Phe Val Val Leu Ser Asp Ile Leu Gly Asp Glu Asp His Leu Gly Asp Met Asp Phe Lys Val Ala 265 Gly Thr Arg Thr Gly Val Thr Ala Leu Gln Met Asp Ile Lys Ile Glu Gly Ile Thr Ala Glu Ile Met Gln Ile Ala Leu Asn Gln Ala Lys Ser Ala Arg Leu His Ile Leu Gly Val Met Glu Gln Ala Ile Pro Ala Pro Arg Ala Asp Ile Ser Asp Phe Ala Pro Arg Ile Tyr Thr Met Lys Ile 330

```
Asp Pro Lys Lys Ile Lys Asp Val Ile Gly Lys Gly Gly Ala Thr Ile
            340
Arg Ala Leu Thr Glu Glu Thr Gly Thr Ser Ile Asp Ile Asp Asp Asp
Gly Thr Val Lys Ile Ala Ala Val Asp Gly Asn Ser Ala Lys Glu Val
                        375
Met Ala Arg Ile Glu Asp Ile Thr A'a Glu Val Glu Ala Gly Ala Val
Tyr Lys Gly Lys Val Thr Arg Leu Ala Asp Phe Gly Ala Phe Val Ser
Ile Val Gly Asn Lys Glu Gly Leu Val His Ile Ser Gln Ile Ala Glu
Glu Arg Val Glu Lys Val Ser Asp Tyr Leu Ala Val Gly Gln Glu Val
Thr Val Lys Val Val Glu Ile Asp Arg Gln Gly Arg Ile Arg Leu Thr
    450
Met Lys Glu Val Ala Pro Lys Gln Glu His Val Asp Ser Val Val Ala
Asp Val Ala Ala Glu Glu Asn Ala
                485
<210> 45
<211> 633
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (2)..(631)
<220>
<223> purF
<400> 45
c gat ggg gtt tot gtt tat gct gcc cgt gtt cat atg gga caa cgt tta 49
 Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu
ggt gaa aaa att gca cgg gaa tgg gcg gat gtg gat gat att gat gtg
Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val
gto att cot gtg cot gaa acc tot aac gat att got tta ogt att gog
                                                                   145
Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala
cgc gtg tta aat aaa ccg tat cgt caa ggt ttt gtg aaa aat cgc tat
                                                                   193
Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr
gta gga cgt acg ttt att atg ccg ggg cag gca ttg cga gtc agt tct
                                                                   241
Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser
65
                     70
                                         75
```

			cgt Arg														289
	gtg Val	tta Leu	tta Leu	gtt Val 100	gac Asp	gac Asp	tcg Ser	att Ile	gta Val 105	cgt Arg	ggt Gly	acc Thr	acg Thr	tct Ser 110	gaa Glu	caa Gln	337
	att Ile	gtc Val	gaa Glu 115	atg Met	gcg Ala	aga Arg	gcg Ala	gca Ala 120	ggt Gly	gcg Ala	aag Lvs	aaa Lys	att Ile 125	tat Tyr	ttt Phe	gcc Ala	385
	tct Ser	gct Ala 130	gca Ala	cca Pro	gaa Glu	att Ile	cgt Arg 135	tat Tyr	cca Pro	aat Asn	gtg Val	tat Tyr 140	ggt Gly	att Ile	gat Asp	atg Met	433
pana			aaa Lys														481
			tta Leu														529
			ggt Gly														577
	tgt Cys	tcg Ser	gtg Val 195	ttt Phe	aca Thr	ggg Gly	gtt Val	tat Tyr 200	gtg Val	acg Thr	ggc Gly	gat Asp	att Ile 205	aca Thr	cct Pro	gaa Glu	625
	tat Tyr	ctg Leu 210	ga														633
	<210 <211 <211	Leu 210 > 46 l> 23 2> PI	5 LO	ırell	la mu	iltoo	:ida										633
	<pre><210 <210 <210 <210 <210 <400</pre>	Leu 210 0> 46 1> 2: 2> PF 3> Pa	i LO RT astei					Ala	Arg	Val	His	Met	Gly	Gln	Arg 15	Leu	633
	<pre><210 <210 <210 <210 <210 <400 Asp 1</pre>	Leu 210 > 46 > 2: > Pi > Pi	S LO RT aster	Ser	Val 5	Tyr	Ala			. 10					15		633
	<pre><210 <210 <210 <210 <210 <400 Asp 1 Gly</pre>	Leu 210)> 46 l> 2: 2> PF 3> Pa Gly Glu	S LO RT uster S Val	Ser Ile 20	Val 5 Ala	Tyr Arg	Ala Glu	Trp	Ala 25	10 Asp	Val	Asp	Asp	Ile 30	15 Asp	Val	633
	<210 <211 <211 <211 <400 Asp 1 Gly	Leu 210)> 46 > 22 > PR > 3> PR Gly Glu Ile	S LO RT wasten S Val Lys	Ser Ile 20 Val	Val 5 Ala Pro	Tyr Arg Glu	Ala Glu Thr	Trp Ser 40	Ala 25 Asn	Asp Asp	Val Ile	Asp Ala	Asp Leu 45	Ile 30 Arg	15 Asp Ile	Val Ala	633
**	<pre><210 <211 <212 <212 <400 Asp 1 Gly Val Arg</pre>	Leu 210 210 220 210 220 220 220 220 220 220	LO RT Saster Val Lys Pro 35	Ser Ile 20 Val Asn	Val 5 Ala Pro Lys	Tyr Arg Glu Pro	Ala Glu Thr Tyr 55	Trp Ser 40 Arg	Ala 25 Asn Gln	Asp Asp Gly	Val Ile Phe	Asp Ala Val 60	Leu 45 Lys	Ile 30 Arg Asn	Asp Ile Arg	Val Ala Tyr	633
*	<pre></pre>	Leu 210 210 220 22 PF 33 Pe Gly Glu Ile Val 50 Gly	5 10 RT aster Val Lys Pro 35	Ser Ile 20 Val Asn	Val 5 Ala Pro Lys	Tyr Arg Glu Pro Ile 70	Ala Glu Thr Tyr 55 Met	Trp Ser 40 Arg Pro	Ala 25 Asn Gln	Asp Asp Gly	Val Ile Phe Ala 75	Asp Ala Val 60 Leu	Asp Leu 45 Lys Arg	Ile 30 Arg Asn Val	Asp Ile Arg Ser	Val Ala Tyr Ser 80	633

```
Ile Val Glu Met Ala Arg Ala Ala Gly Ala Lys Lys Ile Tyr Phe Ala
        115
Ser Ala Ala Pro Glu Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met
Pro Thr Lys Asn Glu Leu Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile
Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala
Leu Thr Gly Ser Val Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp
                                185
Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu
Tyr Leu
    210
<210> 47
<211> 4788
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1)..(876)
<220>
<223> rci
<220>
<223> Nucleotide at position 3084 is A, T, G, or C.
<400> 47
gac gag gag aga aaa tta gct gat ttg gca aaa ggt atc gct cca gat
Asp Glu Glu Arg Lys Leu Ala Asp Leu Ala Lys Gly Ile Ala Pro Asp
att att ttt aga gat gta ata gaa cgc tat caa aat gaa gtg tct ata
Ile Ile Phe Arg Asp Val Ile Glu Arg Tyr Gln Asn Glu Val Ser Ile
act aaa aaa ggc gcg cga aat gaa att ata aga tta aac cgc ttt tta
                                                                   144
Thr Lys Lys Gly Ala Arg Asn Glu Ile Ile Arg Leu Asn Arg Phe Leu
aga tat gat att tot aat otg tat att ogt gat tta aga aaa gaa qat
                                                                   192
Arg Tyr Asp Ile Ser Asm Leu Tyr Ile Arg Asp Leu Arg Lys Glu Asp
ttt gag gag tgg atc aga att cgc cta acc gaa gta tcg gat gct agc
                                                                   240
Phe Glu Glu Trp Ile Arg Ile Arg Leu Thr Glu Val Ser Asp Ala Ser
gtt aga cgt gag ctt gtt act ata tcg tca gtg ctg aca aca gca ata
                                                                   288
Val Arg Arg Glu Leu Val Thr Ile Ser Ser Val Leu Thr Thr Ala Ile
aat aag tgg gga tat att tca agg cat cca atg act ggt att gaa aaa
                                                                   336
```

104

Asn Lys Trp Gly 1	Tyr Ile Ser An	rg His Pro Met 105	Thr Gly Ile (Glu Lys
cca aaa aac tcg c Pro Lys Asn Ser i 115	gca gaa aga aa Ala Glu Arg Ly 12	ys Glu Arg Tyr	tca gaa cag Ser Glu Gln i 125	gac att 384 Asp Ile
aaa aca ata tta c Lys Thr Ile Leu (130	gaa aca gct ag Glu Thr Ala Ai 135	ga tat tgt gaa rg Tyr Cys Glu	gat aaa cta Asp Lys Leu 1 140	ccc ata 432 Pro Ile
aca ctc aaa caa a Thr Leu Lys Gln 2 145				
gct atg cgt gct g Ala Met Arg Ala (Trp Asp Asn	
ctt gaa aag aga a Leu Glu Lys Arg : 180				
aga gat gtg ccg o Arg Asp Val Pro 1 195	ctt tcg caa ac Leu Ser Gln Ai 20	rg Ala Val Ala	cta att tta a Leu Ile Leu I 205	aaa atg 624 Lys Met
aaa gag gta gaa a Lys Glu Val Glu A 210	aat gga gat ct Asn Gly Asp Le 215	t gtg ttt cag eu Val Phe Gln	acc acg cct of Thr Thr Pro 0 220	gaa tca 672 Glu Ser
tta agc acc acg t Leu Ser Thr Thr 1 225				
ctc cat ttt cat of Leu His Phe His A	gat acg aga ag Asp Thr Arg Ai 245	gg gaa gcg ttg rg Glu Ala Leu 250	Thr Arg Leu :	tct aag '768 Ser Lys 255
aaa gta gat gta a Lys Val Asp Val ! 260				
aga att tta caa a Arg Ile Leu Gln 2 275		r Ala Pro Asn		
aac ttg ttg gat 1 Asn Leu Leu Asp 290	taattcactc tto	ettaaata egeett	ttgc cacttga	tta 916
categeeage ettata	atctt ttacttto	cat tacttccttt	ttctaatgaa a	ctggggatg 976
gaaagtettg geggg	taata atatgaco	gag atgtgtaatt	gtaagaacga ti	taatcatga 1036
tagaaatgtc ttcaa	tacta agaagaad	etg gactatette	tttaagttga ge	ctaaggctc 1096
caaacctcac agagc	gtagc acttcato	ctt gttgtttctt	tgttagagaa a	tattttcca 1156
tttttacctc actta	aataa aaaagcc	gtc atggacggct	taataaagca t	ttcgctata 1216
cagttctttt gaggt	gtacc caatate	gaa cttgatttga	ttgttttgtt t	tgcgatttc 1276

cagtgottot tittogatoaa caaatottoo gaagttggta ataacaccot gtttotraco 1336 aattagogga tattgtgtac ogttotoaat agatttaatt tgtttacgca taaacatgto 1396 atagtgtctc gcgccagtca ctaaatgaag ttcttttgtt gtgtaatctt caagctcgca 1456 cgcagcgcag acgattaatt ctggacgatc tcccattttc ctatctccga gcattttca 1516 tagoctcaaa ccaagottgt gogtotoott cactgtaaaa taatgaacog otttotagoa 1576 tttttctgtg cttatctcta ttagcatcaa aatagaatct aataattgtt gagttacctc 1636 ttttaaagac ctcttgattg tggtgtgctg ttttgattgq aqcqqqcaaa gtaaqcqtta 1696 ctgttgggcg tggttcttcc cacattccga ctatatcaaa tggattttct aaatgcggat 1756 atttgttatg ttcaaaaaaa gaagatccat caatcgtcca agaatttctc tcaaattgtg 1816 tcttgctctt gccaatttga aatacacctt gatataagaa agtgttgaac ggaaagaact 1876 ttgaataatc agcagttaca tatcctttac ttccatttct aagcacaact ggctcaccqq 1936 ttaatgettt ttetaagtea aatgetttea ttttttaete teeagettge teateaataa 1996 gotcatcaat coattotoga atttoagatt ggaaatttto taacgaatta ttttoattaa 2056 aataatctgc ttcttttaac ttactcaccg ctgttttact aaagcattta taaaaaagac 2116 gettitette aaacaaatea tettitgaga tigeqeatae titteetaeg eeetetatae 2176 ttttgtcttg aataaaacta ttaaaaagaa cctcttcttg ctgcttqttt tctactaaaa 2236 tagaaatcgt atatttttt ggatattcca tttttaatcc tttcttttag ataacaaaaa 2296 accgcatttc tgcggttatt ctgtqtattt atttaaaata ttacttatag tttcagcatc 2356 ttctaatgtt aatttagaat agcttgaggt catttttcct ttaacggcaa tcctcaattc 2416 ttccagcttt aagctataca agtagtcttt tttatcttta taaatacgac cgtacaccat 2476 tooggataat ttaccttott catacccatt agataaattg atotttotat otogaccgcg 2536 cactctaatt gttaaatatt ttcttccaat ttttaagact tcagcctcat gttcaatgtt 2596 tgagogcatg agtgtttcta aaaaatatac qqtatcqcca actttaagat ttttaatcca 2656 atctttattc ataaataccc ttatactttc ggtggcagtg gaagtggttg ccaatgagtt 2716 actgaagata gatggtaagt acgaagagac ataaagaaaa catcatctcg ccacqcgatt 2776 tttatttccc ctctatctgt ataaatcaga atatcctctc tctcactggg caatctatct 2836 tttacactaa tccagccatc atcttgcgaa aattccacaa tttctgqctt ttcaaqcacc 2896 aaatcagago ogtaatotto tttttootot togotoaact gottttoott goaqtoagoo 2956 ttgccaagga cgacaccgta cacggcataa ggtaaatcat tcaacqcaaa atcctcatqa 3016 tcacacatat catctgcgaa ctcatgagct tctactgcac catctaaaca actttgctta 3076 gcttgatnta atgtttcgtg taagttaacg atatgtatgt cattagatac atctactgag 3136 aaaaattttt tttctgtttc tatcatagtt aaattcctta ttcttttatt aatgggcgag 3196

gaatcggttg ccagtgtgta acgttaatag ctagatcata aattggacca ttctgattta 3256 tagctaccca aaaatattca ccatcagcaa tttctcttga tgcaattgcg taatgctcgc 3316 catattcacc ttcacaaaaa gcaatgactg gtgtttcaac ttctggtaac ttgtcatcaa 3376 cactaatcca gttgctatat tcccaatgaa aattaagctt ctcatagcca ttgatgactt 3436 gatctaacgc aggtcttaat tgggtttctc caacaataat atgtgttgtt atcttaatct 3496 ctgggattcc atctattact tcacaccaqt ttttttcaat aaagtccaat ctttttttat 3556 ctgctaaaag actttcatat tctgcttttg tgattgttac tgtttctqtc atagttaaat 3616 tecteatgat aaatteeatg tttatttace ttttttetgg cacaaaaaaa cacqetattq 3676 cgtgctgtct tgattgatat aatcaattaa tctaagccca atccatttca taactgqaac 3736 agccatactg tttccaattg ctttqtatcq tqqagaatca qggcattcat ctattqattt 3796 gttgcgatat gggattttag tgtaatcgtc tggaaatccc tqtaatcttt cacactcacq 3856 cggcgttagt tttctaacaa ctgattctac tgataaagca acgcaaggaa cattattacc 3916 accagtteee attettgett ttaaqqttqq tqaaatatea tegtqaatae qacaagette 3976 ttcaccctta acctcaaata gaatattttc caatcctcca tttcttccaa tqcaatqcqc 4036 tgtattttta gaaatgattg gatcttgtqa accgtqaaca acaaaagttt cactaccqcc 4096 agcaagaact ccaccgcttq ctcttaatgt tcccqcaaca tcqqatttqc qatattqaqc 4156 aaagcttqtc tcaataaagg cggcaatatc ttttqcctqc qttccqctct qttcaatatt 4216 ecctequacy cittingact caatqaqtat tiqtqcaaca citcqttttc taqcactiqc 4276 cacaaqaaac actettttac qacqttqqqc aactecqaaq tattqaqcat cqaqaacteq 4336 ccaqcagatt qttcqqattq aatqcacata accaqcqttc qtccatcttc tccctqtqtq 4396 ctgcaatggc tcacactctt gaaccagtcc agccagaagg tgtccgaatg cgttgtccga 4456 qqtqqataqc acacccqqaa cqttttccca cacqaqaatq cacqqtqqtt tqttqtcatt 4516 gaatctaaca tagtegateg ettetaaaat titaattaaa aetaaegtga gattteeteg 4576 ctcatcqtct aaactttqac qattqccaqc aactqaaaaa qattqacaaq qaqtaccacc 4636 aactaaaacq tctqqtqccq qaatttcacq atctaatatt ttctqttqca attcaqtcat 4696 atcaccaaga ttgggaacgt tagggtaatg gtaagctaat actgcgcttg ggaattgctc 4756 aatttcagaa aaccagagtg gctctgcgaa tt 4788

<210> 48

<212> PRT

<213> Pasteurella multocida

<213> Pasteurella multocid

<400> 48 Asp Glu Glu Arg Lys Leu Ala Asp Leu Ala Lys Gly Ile Ala Pro Asp

```
Ile Ile Phe Arg Asp Val Ile Glu Arg Tyr Gln Asn Glu Val Ser Ile
Thr Lys Lys Gly Ala Arg Asn Glu Ile Ile Arg Leu Asn Arg Phe Leu
Arg Tyr Asp Ile Ser Asn Leu Tyr Ile Arg Asp Leu Arg Lys Glu Asp
Phe Glu Glu Trp Ile Arg Ile Arg Leu Thr Glu Val Ser Asp Ala Ser
Val Arg Arg Glu Leu Val Thr Ile Ser Ser Val Leu Thr Thr Ala Ile
Asn Lys Trp Gly Tyr Ile Ser Arg His Pro Met Thr Gly Ile Glu Lys
Pro Lys Asn Ser Ala Glu Arg Lys Glu Arg Tyr Ser Glu Gln Asp Ile
Lys Thr Ile Leu Glu Thr Ala Arg Tyr Cys Glu Asp Lys Leu Pro Ile
Thr Leu Lys Gln Arg Val Ala Ile Ala Met Leu Phe Ala Ile Glu Thr
Ala Met Arg Ala Gly Glu Ile Ala Ser Ile Lys Trp Asp Asn Val Phe
Leu Glu Lys Arg Ile Val His Leu Pro Thr Thr Lys Asn Gly His Ser
Arg Asp Val Pro Leu Ser Gln Arg Ala Val Ala Leu Ile Leu Lys Met
Lys Glu Val Glu Asn Gly Asp Leu Val Phe Gln Thr Thr Pro Glu Ser
Leu Ser Thr Thr Phe Arg Val Leu Lys Lys Glu Cys Gly Leu Glu His
                    230
Leu His Phe His Asp Thr Arg Arg Glu Ala Leu Thr Arg Leu Ser Lys
Lys Val Asp Val Met Thr Leu Ala Lys Ile Ser Gly His Arg Asp Leu
Arg Ile Leu Gln Asn Thr Tyr Tyr Ala Pro Asn Met Ser Glu Val Ala
Asn Leu Leu Asp
    290
<210> 49
<211> 1618
<212> DNA
<213> Pasteurella multocida
<220>
```

108

<221> CDS <222> (2)..(1195)

<220> <223> sopE <400> 49 g ggc gat Cta tgt ctg aaa ata tct aca tgg tgt caa agt cac aga atc 49 Gly Asp Leu Cys Leu Lys Ile Ser Thr Trp Cys Gln Ser His Arg Ile aat caa gca att cgc aca att caa agt cta tca acc gca gtc atc ggt Asn Gln Ala Ile Arg Thr Ile Gln Ser Leu Ser Thr Ala Val Ile Gly att gtc tgt act gca aat gac gca gac aat gaa aca ttc cca ctc aat Ile Val Cys Thr Ala Asn Asp Ala Asp Asn Glu Thr Phe Pro Leu Asn gaa ccc gtt ctc atc aca aac gtg gca gcg gca att ggc aag gct gga 193 Glu Pro Val Leu Ile Thr Asn Val Ala Ala Ala Ile Gly Lys Ala Gly aaa caa ggc acg ctt tca cgt gcg ctt gac ggg att tct gat gta gtc Lys Gln Gly Thr Leu Ser Arg Ala Leu Asp Gly Ile Ser Asp Val Val 241 aat tgc aaa gtg att gtt gtg cga gtg caa gaa agt gcg caa gaa gac Asn Cys Lys Val Ile Val Val Arg Val Gln Glu Ser Ala Gln Glu Asp 289 85 gaa gaa aca aaa gca agt gaa atg aac acg gca att att ggc aca atc Glu Glu Thr Lys Ala Ser Glu Met Asn Thr Ala Ile Ile Gly Thr Ile 337 aca gaa gaa ggg cag tac aca ggc ttg aag gcg tta ttg att gcg aaa 385 Thr Glu Glu Gly Gln Tyr Thr Gly Leu Lys Ala Leu Leu Ile Ala Lys aac aaa tto ggt atc aaa cca cgt att tta tgt gtg cca aaa tto gac 433 Asn Lys Phe Gly Ile Lys Pro Arg Ile Leu Cys Val Pro Lys Phe Asp 130 aca aaa gaa gtc gcc aca gag ctt gca agt atc gcc gcc aaa ctc aac Thr Lys Glu Val Ala Thr Glu Leu Ala Ser Ile Ala Ala Lys Leu Asn 145 goa ttt got tac att toa tgt caa ggg tgt aaa acg aaa gaa caa gcg 529 Ala Phe Ala Tyr Ile Ser Cys Gln Gly Cys Lys Thr Lys Glu Gln Ala gtg caa tat aaa cgc aac ttc tca caa cgt gaa gtc atg ctg atc atg 577 Val Gln Tyr Lys Arg Asn Phe Ser Gln Arg Glu Val Met Leu Ile Met ggc gat ttt ctg tca ttt aat gtc aac aca tca aaa gtt gag att gac Gly Asp Phe Leu Ser Phe Asn Val Asn Thr Ser Lys Val Glu Ile Asp 200 tat gcc gtc act cgt gcg gcg gca atg cgt gca tat ctt gat aaa gaa Tyr Ala Val Thr Arg Ala Ala Ala Met Arg Ala Tyr Leu Asp Lys Glu 673 cag ggc tgg cat acg tct att tca aat aaa ggc att aat ggc gtg agc Gln Gly Trp His Thr Ser Ile Ser Asn Lys Gly Ile Asn Gly Val Ser 225 230

		aca Thr														769
		tat Tyr														817
		cgt Arg 275														865
		gaa Glu														913
		gcg Ala														961
		gat Asp														1009
		ggc Gly														1057
		gca Ala 355														1105
		cca Pro														1153
		gaa Glu														1195
taa	ggggt	ag a	aaaat	ggct	t ta	accad	gca	act	taaa	attg	atga	att	aa I	cato	gacgg	1255
taad	aaat	at o	ctcgg	gegaa	g to	acgg	gaagt	gad	tcaa	acca	aaat	tago	aa 1	gaaa	atcga	1315
agaa	ttt	gc g	geggg	geggt	a to	gatte	gtto	ggt	ggat	gtc	aato	tcgg	gc I	tgaa	aagct	1375
cgaa	gegg	gaa 1	ttaa	agc	g gt	ggct	acat	ggt	cgaa	itta	atta	aaaa	at t	cggc	gggtc	1435
aato	aac	ggc a	attco	atte	gc gt	tttc	ttg	cto	atat	cag	cgt	jatga	ica d	agaa	gaagt	1495
caca	itct	gtt 9	gaget	tgt	ga tọ	caaç	gtc	att	tact	gaa	atto	acaç	geg g	jaaac	agcaa	1555
agt	ggc	gat q	gacac	tgaa	ıc aa	acat	tcaa	agt	gcct	tta	acgt	atta	ica a	aato	attgt	1615
tga																1618

<210> 50 <211> 398 <212> PRT <213> Pasteurella multocida

<400> 50

Gly Asp Leu Cys Leu Lys Ile Ser Thr Trp Cys Gln Ser His Arg Ile Asn Gln Ala Ile Arg Thr Ile Gln Ser Leu Ser Thr Ala Val Ile Gly Ile Val Cys Thr Ala Asn Asp Ala Asp Asn Glu Thr Phe Pro Leu Asn Glu Pro Val Leu Ile Thr Asn Val Ala Ala Ala Ile Gly Lys Ala Gly Lys Gln Gly Thr Leu Ser Arg Ala Leu Asp Gly Ile Ser Asp Val Val Asn Cys Lys Val Ile Val Val Arg Val Gln Glu Ser Ala Gln Glu Asp Glu Glu Thr Lys Ala Ser Glu Met Asn Thr Ala Ile Ile Gly Thr Ile Thr Glu Glu Gly Gln Tyr Thr Gly Leu Lys Ala Leu Leu Ile Ala Lys Asn Lys Phe Gly Ile Lys Pro Arg Ile Leu Cys Val Pro Lys Phe Asp Thr Lys Glu Val Ala Thr Glu Leu Ala Ser Ile Ala Ala Lys Leu Asn Ala Phe Ala Tyr Ile Ser Cys Gln Gly Cys Lys Thr Lys Glu Gln Ala Val Gln Tyr Lys Arg Asn Phe Ser Gln Arg Glu Val Met Leu Ile Met Gly Asp Phe Leu Ser Phe Asn Val Asn Thr Ser Lys Val Glu Ile Asp Tyr Ala Val Thr Arg Ala Ala Ala Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile Ser Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr Phe Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln Gly Ile Thr Cys Cys Val Asn His Asn 265 Gly Phe Arg Phe Trp Gly Leu Arg Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg Thr Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala Ile Asn Ala Lys Trp Arg Asp Tyr Thr

Thr Lys Gly Tyr Leu Ile Gly Gly Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu Glu Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp Phe Ser Asn Arg Leu Ala Ser <210> 51 <211> 353 <212> DNA <213> Pasteurella multocida <220> <221> CDS <222> (1)..(351) <220× <223> unknown C1 <400> 51 atg aca tta ttt gat gaa tgt aaa tta gct ctt aga gac gat ttt aat Met Thr Leu Phe Asp Glu Cys Lys Leu Ala Leu Arg Asp Asp Phe Asn cta att tgt gat gaa gag aag gat tgt gta atg gat aag ttt tat ttc Leu Ile Cys Asp Glu Glu Lys Asp Cys Val Met Asp Lys Phe Tyr Phe tat ttc ttg gaa aag aaa gag gaa ttt aat ttt caa gat tat tca ttt Tyr Phe Leu Glu Lys Lys Glu Glu Phe Asn Phe Gln Asp Tyr Ser Phe 40 gaa gaa atg tat ata ttt tca aaa atg gaa cct gtg tat gtt tta tgt Glu Glu Met Tyr Ile Phe Ser Lys Met Glu Pro Val Tyr Val Leu Cys gat ago tot aat ata cot tig tit agg agt aat igg gaa tig att ato Asp Ser Ser Asn Ile Pro Leu Phe Arg Ser Asn Trp Glu Leu Ile Ile 65 aat aat ata tat gat gtt gtc tgt tta tct aca aaa gta ttt ttt cta 288 Asn Asn Ile Tyr Asp Val Val Cys Leu Ser Thr Lys Val Phe Phe Leu gat gat gaa aag tta atg atg gaa tta ttt cct gaa gat aaa gta aga Asp Asp Glu Lys Leu Met Met Glu Leu Phe Pro Glu Asp Lys Val Arg 100 105 353 gtc atc tat aaa aga ta Val Ile Tyr Lys Arq 115

<210> 52 <211> 117

<212> PRT

<213> Pasteurella multocida

<400> 52 Met Thr Leu Phe Asp Glu Cys Lys Leu Ala Leu Arg Asp Asp Phe Asn Leu Ile Cys Asp Glu Glu Lys Asp Cys Val Met Asp Lys Phe Tyr Phe Tyr Phe Leu Glu Lys Lys Glu Glu Phe Asn Phe Gln Asp Tyr Ser Phe Glu Glu Met Tyr Ile Phe Ser Lys Met Glu Pro Val Tyr Val Leu Cys Asp Ser Ser Asn Ile Pro Leu Phe Arg Ser Asn Trp Glu Leu Ile Ile Asn Asn Ile Tyr Asp Val Val Cys Leu Ser Thr Lys Val Phe Phe Leu Asp Asp Glu Lys Leu Met Met Glu Leu Phe Pro Glu Asp Lys Val Arg 105 Val Ile Tyr Lys Arg 115 <210> 53 <211> 509 <212> DNA <213> Pasteurella multocida <221> CDS <222> (1)..(507) <220> <223> unknown C2 atg aaa aat ttt agg aat ata aat att tat agt gat tat gga aag gtt Met Lys Asn Phe Arg Asn Ile Asn Ile Tyr Ser Asp Tyr Gly Lys Val gat aag gaa att ata tta gaa ttc gaa aat gaa ttt aat ata aag ctt 96 Asp Lys Glu Ile Ile Leu Glu Phe Glu Asn Glu Phe Asn Ile Lys Leu cct tct tta tac ata gat tta att acg gcg cat aat gct ccg aag agt 144 Pro Ser Leu Tyr Ile Asp Leu Ile Thr Ala His Asn Ala Pro Lys Ser 35 gaa gag aat tgc ttt gaa tat tac aat gag cgt aat gag ccc acg ttt Glu Glu Asn Cys Phe Glu Tyr Tyr Asn Glu Arg Asn Glu Pro Thr Phe tet tee tit gga tit gaa ggg tit gag aca gag egg tet age gee tet Ser Ser Phe Gly Phe Glu Gly Phe Glu Thr Glu Arg Ser Ser Ala Ser ctt gaa dat ata tat get eag tat att tat gat gat eea ate tat ggt 288 Leu Glu Asn Ile Tyr Ala Gln Tyr Ile Tyr Asp Asp Pro Ile Tyr Gly 90

```
tat gaa cat gtg tat tot ttt ggt agt act ggc gag gga cat ttt atc
Tyr Glu His Val Tyr Ser Phe Gly Ser Thr Gly Glu Gly His Phe Ile
            100
tgt ttt gat tat cgt gat gat cca aaa ggt gat gaa ccc aaa atc tgt
                                                                      384
Cys Phe Asp Tyr Arg Asp Asp Pro Lys Gly Asp Glu Pro Lys Ile Cys
atc gtg att cac gat gaa tat gat gaa aaa aca ggg aaa atg cga ctg
Ile Val Ile His Asp Glu Tyr Asp Glu Lys Thr Gly Lys Met Arg Leu
    130
ttt cct ata gca gag aat ttt gaa gcg ttt tta gat agt ttg aaa tca
Phe Pro Ile Ala Glu Asn Phe Glu Ala Phe Leu Asp Ser Leu Lys Ser
ttt gat gaa atg ata gag aag tat tcg ta
                                                                      509
Phe Asp Glu Met Ile Glu Lys Tyr Ser
                165
<210> 54
<211> 169
<212> PRT
<213> Pasteurella multocida
<400> 54
Met Lys Asn Phe Arg Asn Ile Asn Ile Tyr Ser Asp Tyr Gly Lys Val
Asp Lys Glu Ile Ile Leu Glu Phe Glu Asn Glu Phe Asn Ile Lys Leu
Pro Ser Leu Tyr Ile Asp Leu Ile Thr Ala His Asn Ala Pro Lys Ser
Glu Glu Asn Cys Phe Glu Tyr Tyr Asn Glu Arg Asn Glu Pro Thr Phe
Ser Ser Phe Gly Phe Glu Gly Phe Glu Thr Glu Arg Ser Ser Ala Ser
Leu Glu Asn Ile Tyr Ala Gln Tyr Ile Tyr Asp Asp Pro Ile Tyr Gly
Tyr Glu His Val Tyr Ser Phe Gly Ser Thr Gly Glu Gly His Phe Ile
Cys Phe Asp Tyr Arg Asp Asp Pro Lys Gly Asp Glu Pro Lys Ile Cys
Ile Val Ile His Asp Glu Tyr Asp Glu Lys Thr Gly Lys Met Arg Leu
Phe Pro Ile Ala Glu Asn Phe Glu Ala Phe Leu Asp Ser Leu Lys Ser
145
                                          155
Phe Asp Glu Met Ile Glu Lys Tyr Ser
                165
<210> 55
```

<211> 443

```
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1)..(441)
<223> unknown C3
<400> 55
atg ata aaa tat tta gag gga aat att aac tcg ttt ata tcg gca tta
Met Ile Lys Tyr Leu Glu Gly Asn Ile Asn Ser Phe Ile Ser Ala Leu
Gly Lys Asn Glu Ser Asn Lys Asp Ile Leu Lys Leu Val Glu Ile Val
tot toa gat tit gaa gig gat gaa ota agt oat aaa gat gaa oac gag
                                                                   144
Ser Ser Asp Phe Glu Val Asp Glu Leu Ser His Lys Asp Glu His Glu
ata tat tat ttg ttt tat aag agg ggt gtt gaa ttt tgt ttt aaa aga
                                                                   192
Ile Tyr Tyr Leu Phe Tyr Lys Arg Gly Val Glu Phe Cys Phe Lys Arg
ata gat gaa gag tat gto tta tat tog gtt tto ttt tto ttg gta gag
                                                                   240
Ile Asp Glu Glu Tyr Val Leu Tyr Ser Val Phe Phe Leu Val Glu
gtt gat aat tat ttt tca tgc cca ttt att cat gaa tta ata tgt gat
                                                                   288
Val Asp Asn Tyr Phe Ser Cys Pro Phe Ile His Glu Leu Ile Cys Asp
ctt aaa cac gga ttc tca ata gag gat att ata agg ttt tta ggg gag
Leu Lys His Gly Phe Ser Ile Glu Asp Ile Ile Arg Phe Leu Gly Glu
cca aat ttt aaa ggt agt ggc tgg gta aga tat tct tat aat gga aga
Pro Asn Phe Lys Gly Ser Gly Trp Val Arg Tyr Ser Tyr Asn Gly Arg
                                                                   384
aat att cat ttc gaa ttt aat gaa tct aat gaa tta tcc cag att agc
                                                                   432
Asn Ile His Phe Glu Phe Asn Glu Ser Asn Glu Leu Ser Gln Ile Ser
    130
                        135
                                            140
att ttt att ta
                                                                   443
Ile Phe Ile
145
<210> 56
<211> 147
<212> PRT
<213> Pasteurella multocida
<400 > 56
Met Ile Lys Tyr Leu Glu Gly Asn'Ile Asn Ser Phe Ile Ser Ala Leu
Gly Lys Asn Glu Ser Asn Lys Asp Ile Leu Lys Leu Val Glu Ile Val
```

Ser Ser Asp Phe Glu Val Asp Glu Leu Ser His Lys Asp Glu His Glu Ile Tyr Tyr Leu Phe Tyr Lys Arg Gly Val Glu Phe Cys Phe Lys Arg Ile Asp Glu Glu Tyr Val Leu Tyr Ser Val Phe Phe Leu Val Glu Val Asp Asn Tyr Phe Ser Cys Pro Phe Ile His Glu Leu Ile Cys Asp Leu Lys His Gly Phe Ser Ile Glu Asp Ile Ile Arg Phe Leu Gly Glu Pro Asn Phe Lys Gly Ser Gly Trp Val Arg Tyr Ser Tyr Asn Gly Arg Asn Ile His Phe Glu Phe Asn Glu Ser Asn Glu Leu Ser Gln Ile Ser Ile Phe Ile 145 <210> 57 <211> 8498 <212> DNA <213> Pasteurella multocida <220> <223> unknown C <400> 57 gaattcgaat taaqcqaqaa aattqctqaa acactaqaac aaaqtcaatt aaatattaqt 60 caattatcaa ttgttgaaat ttatcctttc aatgaagaac aagggatacg ttttcataat 120 aaaagtgtgg tacaacttaa accaqaaqaq qtqqaatqqt catcaatcca ttatcttttc 180 tttgctggcg atattcagca aqtcqctcat ctcqcqaaaq ccqcaqaaat qqqttqcqtq 240 gtgattgata tgaaagggat ttgtgccagc ttgcaagacg tccctgtggt gataccggga 300 gtaaatcagg aaaaattggt agatttacgt cagcgtaata ttgtgtcctt agccgatcca 360 caagtgacac aacttgcatt agtcatcgcc tcgttgatgt caaatcacga aatcaagac 420 attgccgtaa cctcgttatt acctgcatct tatactaacg gagaaacggt aggtaaatta 480 gcgggaCaaa Cagcgcgatt gttaaatggc attccacttg atgaaggcga acaacgttta 540 qcttttqatq ttttccctac qcctqcatcq catttaaata tqcaaattca caaqatcttt 600 ccacaattag ataatgtcgt atttcattct atccaagtgc ctgttttcta cggqatqqqq 660 caaatggtga gcgtattatc ggattatgca ttagatcctc aatcttgctt agcgaqctqq 720 actgacaato ogttgatgac ttatcatgca gaaaaatatt gcaccccagt gacqaatqqc 780 gaacaggaaa tggcagaaga gcaagcagca aaattacata taagtgggtt aagtgcqqtq 840 gaaaatggtc tacaattttg gtcggttgca gatgaacagc gctttaatct tqctttattq 900

agtgttacgc ttgcagagtt aatttactcg caaggttatt aatttaaatg tgtttttgca 960 cgatattttt atcttgaact ttgagagege actegttttt gacgagtgeg tttttgttaa 1020 aacattegtt tgaaagacaq tqaatqaata qegqaqttat tqataaqaat caatttatac 1080 aaaagcaact gaatgttatt aatcgaggca ataaacctat tgatagtttt agttggcgcc 1140 ataatacata aactgtactt aataatatgc aatcaatacc tagaaatatt catgacgtaa 1200 tccaacatat cggggagggg attttaagtg atggtagaaa aaacatttag aaatctaaaa 1260 atatatgatg attatggttc tgtctctcag gaaattattt ttaattttga aaaagagttt 1320 gatataaaac tccctttatc ctatatctca cttgtgaaaa agtataatgg cgtttggttt 1380 aaggaaagtg attttgaata tttatctcaa aatgggaaaa gaataataaq ctcattqaqt 1440 tttgatagtt ttgagacaaa agataatatc gaaccaatga ataatatatt aagacaatat 1500 atttatgatg atgaaattta tggatataag aatgtttatt cctttggtta cactggaaat 1560 ggtgactttg tctgttttga ttatcgtgat gacccaaaag gtgatgagcc caaaatctqt 1620 ategtgatte atgatgaata tgatgaaaaa acaggcaage gtttgttatt geetgtggea 1680 gaaaattttg aggcattttt agatatgctt tacgattttg atgaacgcta tccgaatggt 1740 tatgaatagg tatttgttta aataatgtgt tgtatttttt aagcattatt tacaactaac 1800 attttaagtg cggtcaattt tgaaaaagtt ttgggctttg agaattgggc gcattttttt 1860 tgaaatattc ttcaatgatg agcactaatt atggattaga taatqqqaat tatcqaqata 1920 tggatggtaa taaaggatgg aggctagatt ttgatcctqa qaaaqttqtt catqtaaata 1980 tttttgactt tactaaaggt aaaqqactag qtaaaqcaqt taaaaaqtca ttctttttqa 2040 tagtactgaa caagagtttg aaaaatttta aagcaattaa ataaggaaga taaaatgaca 2100 ttatttgatg aatgtaaatt agctottaga gacgatttta atctaatttg tgatgaagag 2160 aaggattgtg taatggataa gttttatttc tatttcttgg aaaagaaaga ggaatttaat 2220 tttcaagatt attcatttga agaaatgtat atattttcaa aaatggaacc tgtgtatgtt 2280 ttatgtgata gctctaatat acctttqttt aqqaqtaatt qqqaattqat tatcaataat 2340 atatatgatg ttgtctgttt atctacaaaa gtattttttc tagatgatga aaagttaatg 2400 atggaattat ttcctgaaga taaagtaaga gtcatctata aaagataatt accccttgat 2460 cgcgctcgtg tcagcacgag ttcgctttca ttaaagctct cgttaaagac tagcactagc 2520 agtgaggttg atcgtaatca atttactgaa gaacagttaa ttaaaattaa taagaggctt 2580 gataaaatag agggatttac atggcatcat aactcacaaa gtagtcccca aaatatgtag 2640 ttaataccta caccaattca taaggctgtt cagcatatag gtgaaggcgc tttaagtgaa 2700 ggaaagtgat aaaatgaaaa attttaggaa tataaatatt tatagtgatt atggaaaggt 2760 tgataaggaa attatattag aattcgaaaa tgaatttaat ataaagcttc cttctttata 2820

catagattta attacggcgc ataatgctcc gaagagtgaa gagaattgct ttgaatatta 2880 caatgagcgt aatgagccca cgttttcttc ctttggattt gaagggtttg agacagagcg 2940 gtctagcgcc tctcttgaaa atatatatgc tcagtatatt tatgatgatc caatctatgg 3000 ttatgaacat gtgtattott ttggtagtac tggcgaggga cattttatot qttttgatta 3060 togtgatgat ccaaaaggtg atgaacccaa aatotgtato gtqattcacq atgaatatga 3120 tgaaaaaaca gggaaaatgc gactgtttcc tatagcagag aattttgaag cgtttttaga 3180 tagtttgaaa teatttgatg aaatgataga gaagtatteg taatgtetee gtteatatet 3240 catagogatg ctctctcccc tgattttatg gaaattttgt ttaaattagg agggcactaa 3300 aatgaaaaaa tittatttaa tittittatt attootaagi ggatgittit atoatgatgg 3360 atgtatctat actcctcaga tggtaaattg ttttgttgat aaaggagata tatttccatc 3420 aatatctcgg tatcaaaagc cttatagtct aggaaaaacc aattcagaac agcgttggaa 3480 ggatgttatg ttttgtggag gtaaatatgg tgattataaa ttagagaata taaaaacagt 3540 ggaacaatcg gataaattac atcattgtat gacccaaaaa gggtatatcc atttaactcc 3600 cgcagaatgt ggataccaaa atcctaaatg ggataaaggc gtttgtaatt tataagtgtt 3660 ttggatttta ctttacgaat tttttttgaa aaaagttacc gcaggtatgt ttttaatcaa 3720 agcccaggtg gcgcttgttg gatgtgttat tcgcatagta gttattatgc ggaagtgcta 3780 aatgaattca ttattaaaaa tggaattaaa gagcgtaatt agcaccgttt gcggtgagtg 3840 atttaatttc tcctgatgtt atggaaatat tatttaagtt aggaggtgat taggatgaaa 3900 aagttgttat tgttcagttt attattactt ttaaatggat gcctatattc ttttgaaqaq 3960 gagtgtttta gaccgttaat tcaggtgggg tcatctgctt gtcataagaa taaaggagat 4020 atatttccat caatagcacg tttccaaaaa gtagagaaca tcggaaaaac tgatqccaaq 4080 caacgttgga aagatgcggt tgattgtgga agtaagtatg gcgatgaaga tttaatatat 4140 ataaatgata ataatttata tagcattttt cactcctgta tggttaaaaa aggatataaa 4200 aagtttcatc ccgcagaatg tggataccaa aatcctaaat gggataaggg tatttgtaat 4260 ttataagtgt tttgaatttt actttacaaa ctttttttga aaaatgttac cgctggtatg 4320 totgttttta gggataaaga ttogttoatt ttotttaaat ttaggoacgg tataaaagag 4380 cttgattatc aaataataat atcgtgttcg tgtccacacg agtagggttt gattaaagta 4440 ctcctcaaaa gcgagtgcta gctgtggggt aaacggtggg aaagaaagta aagagtatat 4500 aaaccaattg accgcataac gtgcggtcaa tttctaagat ttatgagttc cagaaaaata 4560 gaccgaaaag tgcggtaaag gggtaacgaa acacaaaaaa taaaaatatg acagcaagct 4620 gtgtcattaa accccagaaa aaaacttgac cgattgttgc actgctgaaa atggcaaaaa 4680 gtaageegat tteatagggt ageattgeaa taaaceagat taateeactt ggatgateae 4740

ttttcattac ggactcctta tttatqqctg ataacttaac acttgtattg aaaattaaaq 4800 caqatttaaa caatqcqttq aqcqatttta aaqcqcttaa aacqqaattg caacqcqcaq 4860 qcqtqqaqtc tatcaqtaaq taactcqcca gtttttgcaa tcatttatca tattcacaaa 4920 qccqtaatqc atattqqaqa aqqttaaqtq taaqtgaaqq aagataaaat qaaatttaqa 4980 cattttqqca tttattatqa ttatqqcqta qtttcccaaq aqattatttt aqattttqaq 5040 qaaacqtttq qtattaaatt accaaaattq tatattqaqt tqatcacaaa acataattcc 5100 ccaagattga atagagatca tttcaattat tatgatttct ctacgagtga ggaagaagga 5160 acqqaattta tattcaaaqq atttqaaaca qaaaqtaata qqcatqcqcc qccaqaaaat 5220 atttatgcac aatatettta tgatgatgaa atatatggtt atgaacatgt gtattetttt 5280 qqcaqtaccq ctaqtqqtqa ctttqtctqt tttqattacc qaqataatcc qaaaqqcaqt 5340 gaacctaaaa tttgtcttgt gattcatgat gaatatgatg aagaaacagg caagcattta 5400 ttqtttcctq tqqcaqaaaa ttttqaqqta tttttaqata tqctttacqa ttttqatqaa 5460 cgctatccga atggttatga ataggtattt aaataatgta ttgtattttt taagcgttat 5520 ttaataacgt tttaagtgcg gtcaatttca aaaaagtttt gctttgagga attgaccgtt 5580 tttqtatcat qqatatqatq tqaqcaattq atatcctqtt tqtqttaact qqcatqtqqt 5640 aaagcattcg tcaaagacga gctctagtgg tgagggacta atcatgaatg aactattgga 5700 cttttataga aatataactt tttttgaaga atatgatgaa aactcattca taggaagatg 5760 gcttgattac tcggaatgga atgataaaga atattggaaa ttagagaaag atttactgaa 5820 aattgctcaa atgtatagaa ctactaatga agtttttcca gatattttaa taggggttat 5880 gcgtatcatt gaattattaa tgatacctaa ctggaatagt tttataatat ctaattcaga 5940 aagtgttgat atttatgata gatatgaacg atttaaatat ataatttcaa tacttttcaa 6000 taataaagat gttagactag atggcttttc atatacagaa aagaatgatg atgtatttta 6060 taatgaatag aaaaattaaa agtaagctaa tttgtagaaa taataaaagt ctcqcttgta 6120 ttttttcttt gagatcgtgc ttgagtccac acgagtgcta gctgtaggca gagtgtcttg 6180 qtqattataa aaagttaagg atagtattqt tqatatqaaa qaaaagacta aatattcaat 6240 ggggaatcaa agtgataaaa aataaatttt atatttettq qttaqqattt tcaatatcat 6300 tatatqtttt qcttttatqt aqaqatttqt tttattctct ttatatqttt tttattatqa 6360 tgtatttgtc ttaaaatttt cttttaagga ggcgtttttt actatcttta tttttattgt 6420 gctatgtttc attattcatt attcattatt cattattcat tattcattat tcattatttt 6480 'atatataaat atggtaaaag gtctgaatgc ccaaaaaaga aaccattaag tgaaaatgta 6540 acatacaata aaaqqtaqta qqaataaata aaatattaqq aataacaqaa tqataaaata 6600 tttagaggga aatattaact cgtttatatc ggcattaggt aaaaacgaaa gtaataaaga 6660

tattttaaaa ttagtagaaa tagtttcttc agattttgaa gtggatgaac taaqtcataa 6720 agatgaacac gagatatatt atttgtttta taagaggggt gttgaatttt gttttaaaaq 6780 aatagatgaa gagtatgtct tatattcggt tttctttttc ttggtagagg ttgataatta 6840 tttttcatgc ccatttattc atgaattaat atgtgatctt aaacacggat tctcaataqa 6900 ggatattata aggittitag gggagccaaa tittaaaggi agiggciggg taaqatatic 6960 ttataatgga agaaatattc atttcgaatt taatgaatct aatgaattat cccaqattaq 7020 catttttatt taataattta ggattgggaa cgctctcgtg ttcacacaag tqcqqtttqa 7080 ttaaagcact tgtcaaaggc gagatccagc tgtgggagat ttgatagaga aatggctctc 7140 aggattgacg ttagtagagg gagcataaat caaqaaaaaa catttaaaat aqqaacatta 7200 ggtggtgagt aatggaaatc actcgtttta aaatcctact tattgccttg attatattag 7260 gtaatgggta tgtgtttctt ggtggaccag ctaaaaaaca attcgctata gaagcagaaa 7320 caaggcggat ttatcgtact ttaacgaaag aaattatttt tatgaatqqa gaatataaac 7380 aatttggagg gcgagttatt caaggattta ctttagtcat ttctttttct cattcaagta 7440 cagaaaaccg cattaagatt ttagaaaaaa ttaaagagat gggatttgat tcaaaaaata 7500 aaacatcaaa accgagtott catotttttt qtcaaqqaqa aaqtqqtttt ttqatcqcaq 7560 aaaaacctga atttagaata gattatgaga aaaagatgac ttattgtttg gagtagcaaa 7620 ggaaggcaat gataagtgta ttttctaatc agatttaatt taagtattaa agtgcggtca 7680 attitgaaaa cgitttacti tqaaaaattq accqtttttt tacatqaqaq aqtqaaaqta 7740 caccacctta ggcaatgtgg ttgtggataa ggtgattaag gaatacccaa atgggggtta 7800 tgaagcgagg gtgctgatcc ctaacccgaa agcgaaaacc gatcctgatg cgccgaaatt 7860 tttggagaaa àggggaaatg aaggtgtatc cacaatgttt ccaagaacat ggacagagga 7920 taggttgaaa gtggagttag agcatgcgtt taataataga gtaccaatgg aaaagtttga 7980 aaataaatqq qaaqqtataa caaaatcaqq cqtqaaaqta qaatqqqttc tqqataqaaa 8040 tggtaaagtg ttgactctat tttgttaatt ttctgtgtct ttttgtaaaa aataagttgt 8100 tqaaataaca tttttctcta taatcaaatc ttaatqataa ttaatatcat taaataagaa 8160 tggatactta gatgaggatt atatgaaaga tttatcaaaa atgacctqcc ttqaagactt 8220 acgccgtgtt gcgcaacgta aagtgccaaa aatgttttat gactatgtag tttcaggatc 8280 ttggaqcqaa agcacattgc atgccaaccg taatgatttt caagcaatta agctacgtcg 8340 acctqtqqcg attttgccca tttctgcatt cagctctgca attcgtcgct tgtgctgttc 8400 tgttgcgcgc gcaagctctc ttgtcgactt qccttttcta attqggcttq ttqctcccaa 8460 taacgtgagg tcgccacatc cactttacgt aqtqttga 8498

```
<210> 58
<211> 5798
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (2686)..(4446)
<220>
<223> unknown D1
<400> 58
qtcqacaaqa ataaaacqaa acaqcaaata qaattaqaat tactacttat taacaataat 60
ccttttttaa aqattctaqc tqttttaqat aaaaatatac qtqtqaaqct tttqqtcaca 120
ttattattat caqqcctata ttatttatat qcaqtaaaaa acqattcaaa ttttqtcata 180
qqtttatcta ttattttaqt ttttattatt qtcattccaq qqattttqac aaatqctatt 240
ttqaaaqcta aqqtqaaaaa aatcatqqta qatttaccaq qttttattqa cttaqttqca 300
qtaaatqttc aaacaqqqat taqtattqat qcqqctttaa aacaaqtqqc aatcqatttt 360
aaqaaactta atccaqatct tacttatqtq atqttaaqqa ttattaqaaa atctqaactt 420
acgggattat cacaagcgtt acaggatett tegateteat tgecaacaac agaaataaga 480
atqttttqta ctqttttaca acaqaqttta aattttqqtt cttcaattta ttctcactta 540
attcaqttqt ctqcaqatat caqqqaqata caattattaa tcattqaqqa aaaqttaqqt 600
acattatcag ctaaaatgag tatcccattg attttgttta ttatgttccc aataatcatt 660
ttaattctag caccaggtat aatgagggta tttccaaatg ttttttaaat ttaccaagaa 720
aatcgttttt gttagtttag ctttatctgt cgttggttgt tctacccatt ctcagcaaqq 780
catgacacag aaaagtatgt catctgaaac aataacggca aaagagactt tatatgaaag 840
tacqcaaaat tattcggcac tcatttcact gtatcgcgat gtgttgaaag ccaaagaaga 900
tccttcaata cgctataaat tagcgaagac atactatcag cgaggtgaca gcaaatcttc 960
tttactttat ttaacgccat tactgaatga taatacgaag cttgctacac aagcgaaaat 1020
attacagata aaaaatctaa ttcaattaaa taatttccaa gaaqcaattt ctqtcqcaaa 1080
tgaactctta ttaaaatcac ctaatgaagg agaagtatat aatttaagag gtatcqctta 1140
tqcqcaaaat qqqaatttqq tqaatqccq aaatqatatc aataaaqcaa qaqaqttctt 1200
tattaatgat aatqttqcta ttaataattt aqccatqcta aatattatta atqqcqattt 1260
taataatgct gtttctttac tgttgccaca atatttaaat ggcgttaaga attctcgatt 1320
qattcataat cttqtttttq ctttaqttaa aaatqqtqat cttqattatq caaaaqatat 1380
cattgttaaa qaqcqtttaa atacttcacc agatgattta attaatgcat tgaaaaaaac 1440
tacacatqta tcaaaaqqtq taactcqqta acactaaqqa tttqatatqa aaaaqtttct 1500
```

atcaaatata aaaggaacct cqtcaattga atttgctttg acgatagcgt tctatttatt 1560 tgttqtgatg tttatttttg aattttqtcg attagcggtt gcgacagctt attgggattt 1620 aqctataacg gaaagtqtca qaattqcqaa gaatgaacaa gcaatttctg gaaattatga 1680 aqaaqcattt aqqaaaqctc ttacaaaqca aaaaaaattc catgatqaat cqacaattqq 1740 atatttqqcq ttqttagaaq ataataaatt tgatgtaaaa gtccaatatg tgqattqtqa 1800 taaaqaaacq qaatqtatta aaaatcttct qcttaataaa tttcqccaac cacaaaaaaa 1860 tcataaagga gagttaatct ctcctacggg gagtcgcgcg actttagcac aatattcttt 1920 aacttataaa tataagttta tggtgccgtt agtatttatt cctgagtctt ggtctcaagt 1980 aqtqctqaac cqtqaatttq ttqttqtaca qqaatttgaq cqttctcaat ttatqttaqq 2040 aqcaaaacca aqttctcttq qqacqaatcc ataqaaaatt tactcattat ttcqaqctat 2100 atatgaaaqa qtcagqttta qttaaattca aqcatttttg qaaaaataaa aaqqqcqcaq 2160 tgacgataqa qttccttttt atqtcaatqt ttctqattqt qctatttqca tttctcttcq 2220 atttagtaat gttacgttct acattaggca agttagataa tgcctcatat acattagtta 2280 qtattctccq tqaacqtaca caqttqtacq ataqaqttqc acaaattaat attgatqatc 2340 ataagcaatt tgaaaagctt gctaagaaac tgatttatgg tgatcagaat agtaataaaa 2400 qqatcqatqt tqttttaqaa tattqqqcac aaqacqqttc tqqacqqaqq attccaaata 2460 tcattggcga ttgtacgcct tacaaaaaac tttctgattt atcctattta tctcctcgct 2520 cagaactcaa taatgaaaga aaaataccgc tttatcaaat tactctttgt gttgaaactc 2580 agggettgtt tgaaacaata ttactggata agtetgageg ttcaacgggg ctgattagat 2640 catcgtcaat gtcagtatca cgataaatta tcgttaggga acttt atg aaa aaa ctt 2697 Met Lys Lys Leu tat tta att cgt tct tgc tat gat tca gtc aga aaa ttt tat gag aat 2745 Tyr Leu Ile Arg Ser Cys Tyr Asp Ser Val Arg Lys Phe Tyr Glu Asn 10 gag cta ggt gtt tat aca gta atg act gca tta cta gca ttt cca tta Glu Leu Gly Val Tyr Thr Val Met Thr Ala Leu Leu Ala Phe Pro Leu tta gtt ttg att gga ttt acq gtt gat gga act ggg gtt gtg ctt gat Leu Val Leu Ile Gly Phe Thr Val Asp Gly Thr Gly Val Val Leu Asp aaa gca cgt tta gct caa gga atg gat caa gct gct tta gct ttg gtt 2889 Lys Ala Arg Leu Ala Gln Gly Met Asp Gln Ala Ala Leu Ala Leu Val qct qaa aac aat qac tac cqa qaa aat aaa aaa cat qqt qat qtt aat 2937 Ala Glu Asn Asn Asp Tyr Arg Glu Asn Lys Lys His Gly Asp Val Asn cqq caa gta gta tcq cct caa gac aaa qca aaa ttt qqt qqt aat qaa 2985

Arg 85	Gln	Val	Val	Ser	Pro 90	Gln	Asp	Lys	Ala	Lys 95	Phe	Gly	Gly	Asn	Glu 100	
					gaa Glu											3033
					cgt Arg											3081
cca Pro	atc Ile	act Thr 135	att Ile	gat Asp	aaa Lys	cct Pro	ttt Phe 140	cat His	tat Tyr	tca Ser	tgt Cys	gag Glu 145	gag Glu	tta Leu	gat Asp	3129
tta Leu	cct Pro 150	aca Thr	gct Ala	aat Asn	gag Glu	tat Tyr 155	gca Ala	cgt Arg	cgt Arg	aaa Lys	cct Pro 160	att Ile	gtt Val	tgt Cys	gaa Glu	3177
gtg Val 165	caa Gln	ggt Gly	ggc Gly	gtc Val	aat Asn 170	cgt Arg	aaa Lys	ttt Phe	tgg Trp	ctt Leu 175	Pro	gtc Val	agt Ser	gaa Glu	tcg Ser 180	3225
					aaa Lys											3273
gat Asp	acc Thr	agt Ser	tat Tyr 200	gcg Ala	att Ile	aaa Lys	gaa Glu	aaa Lys 205	ggc	atc Ile	gtg Val	att Ile	cct Pro 210	gtg Val	gag Glu	3321
					gat Asp											3369
					tct Ser											3417
gaa Glu 245	gtg Val	gtt Val	agt Ser	gaa Glu	att Ile 250	tcg Ser	aaa Lys	att Ile	tta Leu	ttg Leu 255	cca Pro	gaa Glu	gat Asp	gtt Val	agc Ser 260	3465
					ttc Phe											3513
					gat Asp											3561
gga Gly	aaa Lys	ata Ile 295	tca Ser	caa Gln	act Thr	tct Ser	cga Arg 300	aaa Lys	tta Leu	act Thr	att Ile	cgt Arg 305	tat Tyr	tgg Trp	att Ile	3609
acg Thr	ggt Gly 310	aat Asn	aat Asn	aca Thr	cct Pro	tgg Trp 315	aaa Lys	ttt Phe	aat Asn	gct Ala	999 Gly 320	aga Arg	tgg Trp	gag Glu	aga Arg	3657
					cag Gln 330											3705

cat His	tct Ser	tca Ser	act Thr	tgt Cys 345	aga Arg	ggc Gly	tca Ser	999 Gly	agc Ser 350	tct Ser	aga Arg	act Thr	tgt Cys	caa Gln 355	att Ile	3753
gat Asp	gca Ala	aat Asn	cct Pro 360	aag Lys	aaa Lys	att Ile	atg Met	gat Asp 365	tat Tyr	gca Ala	cta Leu	aaa Lys	att Ile 370	aat Asn	gac Asp	3801
	acg Thr															3849
acg Thr	att Ile 390	gac Asp	caa Gln	att Ile	tcc Ser	cag Gln 395	ttt Phe	gat Asp	ggt Gly	tca Ser	aac Asn 400	aga Arg	cgt Arg	tat Tyr	gat Asp	3897
	gtg Val															3945
aga Arg	aca Thr	act Thr	cga Arg	gct Ala 425	tgg Trp	ttt Phe	gat Asp	caa Gln	aaa Lys 430	aat Asn	aaa Lys	gat Asp	att Ile	aca Thr 435	aga Arg	3993
gag Glu	ttg Leu	aat Asn	att Ile 440	gtt Val	cgt Arg	cct Pro	tct Ser	ggt Gly 445	tgg Trp	act Thr	tct Ser	gca Ala	tct Ser 450	tcg Ser	gly ggg	4041
ctt Leu	ctt Leu	gtt Val 455	gga Gly	gct Ala	aat Asn	atc Ile	atg Met 460	atg Met	gac Asp	gag Glu	aat Asn	aag Lys 465	aat Asn	cct Pro	gat Asp	4089
	caa Gln 470															4137
	tct Ser															4185
	tta Leu															4233
	caa Gln															4281
gcg Ala	ttt Phe	ggc Gly 535	tat Tyr	agt Ser	cca Pro	cca Pro	gca Ala 540	aac Asn	caa Gln	gtt Val	gcc Ala	gct Ala 545	tgg Trp	aaa Lys	aaa Lys	4329
	gta Val 550															4377
gat Asp 565	agt Ser	ttc Phe	aaa Lys	caa Gln	att Ile 570	att Ile	gga Gly	ttt Phe	gaa Glu	gaa Glu 575	gag Glu	gtg Val	ggg Gly	cgt Arg	tct Ser 580	4425
	tct Ser						taag	jatto	gtc (aagg	gataa	ac go	taaa	aaat	:	4476

ctcttagcac aggctaagag attttttat gtgtttttca aattttatct actqqtqatt 4536 ttaattcatt acataacata actttttcgt gaataataca gaatagacaa caataagaat 4596 taaaacgctc aaggcataga ggcttagtcg aacaaactaa gctattttgc gcgattgatt 4656 gggatataga tgttatttca aataagcaat aaccatggta ctgagaaaga agatgagtgc 4716 cqtaataaag tagaagcgat ttttcttttg gctgaaaggt ggtgttagcc tttttcgqct 4776 aaagaaaata gtagcaacgg caatataaag ggcgataaag agcattttgt aaatgaacca 4836 tqttgttaca ttttgctgaa aaaqaaqaaa tagcccaatt cccqaacaqa acaacaqcqt 4896 atcacttaag tgcggtaaga tttttaatac ttttctqtct cqccaatttt tqcctqttaa 4956 ttqcatcatg ccacggataa taaatagact qaggctqaga aaqqcacaqq caatqtqtaq 5016 ataaataaga taatatgcca toqatttttt tootaagata aagaaagcag tagcgaggct 5076 actgetttaa aataatateg tatttagtga atgaatttaa etttetgege tttegacege 5136 actttegete geateactet caatgtette tteateqaea teacaaacga gttgtaatee 5196 aaccagtqtt tcactttcac ttqttcqqat qaqacqtact ccttqtqtat ttcqaccqat 5256 aatattgatt toqtttacqc gaqtacqtac taqcqtaccq qcatcaqtaa tqaqcataat 5316 ttgatcgctt tcctcaactt gtgttgctgc aacgacttta ccgttacgct cactcacttt 5376 aatcqaqatc acqcctttqq tqttacqtqa tttaqttqqq tattccqcta attcaqtacq 5436 tttaccataa ccqttttqtq tqqcqqttaa aatqqcqcct tcattttttq qaataacaaq 5496 tgacacgact ttatcaatat tgagatccaa ggcatcatta gtattctcat cagagatctc 5556 ttccatatog accgcacttt catcatccga caaatcattc gttaacgcca gtttaatacc 5616 gogtacacct gttgctgcac gccccatggc acgcacagca ttttcactaa agcgaactac 5676 acgtccttgt gcggagaaga gcatgatttc attttgacca tcggtgatat ccacaccgat 5736 aagttegtet teateaegea agttgagtge aataatgeet gttgaaegag gaegaetgaa 5796 tt 5798

<210> 59

<211> 587 <212> PRT

<213> Pasteurella multocida

<400> 59 Met Lys Leu Tyr Leu Ile Arg Ser Cys Tyr Asp Ser Val Arg Lys

^{1 5 10 15}Phe Tyr Glu Asn Glu Leu Gly Val Tyr Thr Val Met Thr Ala Leu Leu

^{20 25 30}Ala Phe Pro Leu Leu Val Leu Ile Gly Phe Thr Val Asp Gly Thr Gly

Val Val Leu Asp Lys Ala Arg Leu Ala Gln Gly Met Asp Gln Ala Ala

50 Leu Ala Leu Val Ala Glu Asn Asn Asp Tyr Arg Glu Asn Lys Lys His Gly Asp Val Asn Arg Gln Val Val Ser Pro Gln Asp Lys Ala Lys Phe Gly Gly Asn Glu Phe Met Ala Lys Gln Glu Lys Arg Asn Gln Glu Leu Ile Gln Gly Ile Ala Lys Leu Tyr Leu Arg Ser Glu Asn Ala Asn Ala Ser Ser Asp Ala Pro Ile Thr Ile Asp Lys Pro Phe His Tyr Ser Cys Glu Glu Leu Asp Leu Pro Thr Ala Asn Glu Tyr Ala Arg Arg Lys Pro Ile Val Cys Glu Val Gln Gly Gly Val Asn Arg Lys Phe Trp Leu Pro Val Ser Glu Ser Leu Val Ser Glu Asp Lys Leu Lys Lys Asp Arg Val Arg Leu Glu Ser Asp Thr Ser Tyr Ala Ile Lys Glu Lys Gly Ile Val Ile Pro Val Glu Leu Met Leu Val Ser Asp Tyr Ser Gly Ser Met Asn Ser His Leu Gln Asp Lys Asn Gly Arg Ser Leu Gly Lys Ala Lys Ile Thr Ile Leu Arg Glu Val Val Ser Glu Ile Ser Lys Ile Leu Leu Pro Glu Asp Val Ser Glu Gly Val Ser Pro Phe Asn Arg Ile Gly Phe Thr Thr Phe Ser Gly Gly Val Arg Gln Arg Asp Val Thr Glu Gly Cys Val Leu Pro Tyr Glu Gly Lys Ile Ser Gln Thr Ser Arg Lys Leu Thr Ile Arg Tyr Trp Ile Thr Gly Asn Asn Thr Pro Trp Lys Phe Asn Ala Gly Arg Trp Glu Arg Ser Thr Val Ser Phe Gln Glu His Tyr Lys Gly Tyr Tyr Asp Lys Phe His Ser Ser Thr Cys Arg Gly Ser Gly Ser Ser Arg Thr Cys Gln Ile Asp Ala Asn Pro Lys Lys Ile Met Asp Tyr Ala Leu Lys Ile Asn Asp Trp Thr Thr Ile Arg Glu Leu Phe Asn Thr Tyr Ile Asp Val Ser Gly Thr Ile Asp Gln Ile Ser Gln Phe Asp Gly Ser Asn

385 395 390 400 Arg Arg Tyr Asp Met Val Phe Thr Asp Glu Glu Arg Cys Leu Gly Gly 410 Asn Ile Gly Arg Arg Thr Thr Arg Ala Trp Phe Asp Gln Lys Asn Lys Asp Ile Thr Arg Glu Leu Asn Ile Val Arg Pro Ser Gly Trp Thr Ser Ala Ser Ser Gly Leu Leu Val Gly Ala Asn Ile Met Met Asp Glu Asn 450 Lys Asn Pro Asp Ala Gln Pro Ser Lys Leu Gly Thr Asn Ile Gln Arg Val Ile Leu Val Leu Ser Asp Gly Glu Asp Asn Trp Pro Thr Tyr Ser Thr Leu Thr Thr Leu Leu Asn Asn Gly Met Cys Asp Lys Ile Arg Glu Gln Leu Gly Lys Leu Gln Asp Pro Asn Leu Arg Glu Leu Pro Gly Arg Ile Ala Phe Val Ala Phe Gly Tyr Ser Pro Pro Ala Asn Gln Val Ala 535 Ala Trp Lys Lys Cys Val Gly Asp Gln Tyr Tyr Thr Ala Tyr Ser Lys Glu Glu Leu Leu Asp Ser Phe Lys Gln Ile Ile Gly Phe Glu Glu Glu Val Gly Arg Ser Ser Ser His Lys Pro Lys Phe 580 <210> 60 <211> 5798 <212> DNA <213> Pasteurella multocida <220> <221> CDS <222> (698)..(1468) <220> <223> unknown D2 <400> 60 qtcqacaaqa ataaaacqaa acaqcaaata qaattaqaat tactacttat taacaataat 60 ccttttttaa agattctagc tgttttagat aaaaatatac gtgtgaagct tttggtcaca 120 ttattattat caqqcctata ttatttatat qcaqtaaaaa acqattcaaa ttttqtcata 180 ggtttatcta ttattttagt ttttattatt gtcattccag ggattttgac aaatgctatt 240 ttgaaagcta aggtgaaaaa aatcatggta gatttaccag gttttattga cttagttgca 300 gtaaatgttc aaacagggat tagtattgat gcggctttaa aacaagtggc aatcgatttt 360

aagaaactta	atccagat	ct tactt	atgtg at	gttaagga	ttattag	aaa atct	gaactt	420
acgggattat	cacaagc	tt acagg	atctt to	gatctcat	tgccaac	aac agaa	ataaga	480
atgttttgta	ctgtttt	ica acaga	gttta aa	ttttggtt	cttcaat	tta ttct	cactta	540
attcagttgt	ctgcagat	at caggg	agata ca	attattaa	tcattga	gga aaag	ttaggt	600
acattatcag	ctaaaat	gag tatco	cattg at	tttgttta	ttatgtt	ccc aata	atcatt	660
ttaattctag	caccaggt	at aatga	gggta tt	Me	g ttt tt t Phe Ph	e Lys Ph		715
aag aaa at Lys Lys Il	c gtt ttt e Val Phe 10	gtt agt Val Ser	tta gct Leu Ala 15	Leu Ser	gtc gtt Val Val	ggt tgt Gly Cys 20	tct Ser	763
acc cat to Thr His Se	t cag caa r Gln Glr 5	ggc atg Gly Met	aca cag Thr Gln 30	aaa agt Lys Ser	atg tca Met Ser 35	tct gaa Ser Glu	aca Thr	811
ata acg go Ile Thr Al 40	a aaa gaq a Lys Glu	act tta Thr Leu 45	tat gaa Tyr Glu	agt acg Ser Thr	caa aat Gln Asn 50	tat tcg Tyr Ser	gca Ala	859
ctc att to Leu Ile Se 55	a ctg tat r Leu Tyi	cgc gat Arg Asp 60	gtg ttg Val Leu	aaa gcc Lys Ala 65	aaa gaa Lys Glu	gat cct Asp Pro	tca Ser 70	907
ata cgc ta Ile Arg Ty		Ala Lys						955
tct tct tt Ser Ser Le	a ctt tat u Leu Tyr 90	tta acg	cca tta Pro Leu 95	Leu Asn	gat aat Asp Asn	acg aag Thr Lys 100	ctt Leu	1003
gct aca ca Ala Thr Gl	n Ala Lys							1051
aat ttc ca Asn Phe Gl 120	a gaa gca n Glu Ala	att tct Ile Ser 125	gtc gca Val Ala	aat gaa Asn Glu	ctc tta Leu Leu 130	tta`aaa Leu Lys	tca Ser	1099
cct aat ga Pro Asn Gl 135								1147
aat ggg aa Asn Gly As	t ttg gtg n Leu Val 155	Asn Ala	cga aat Arg Asn	gat atc Asp Ile 160	aat aaa Asn Lys	gca aga Ala Arg 165	gag Glu	1195
ttc ttt at Phe Phe Il	t aat gat e Asn Asp 170	aat gtt Asn Val	gct att Ala Ile 175	aat aat Asn Asn	tta gcc Leu Ala	atg cta Met Leu 180	aat Asn	1243
att att aa Ile Ile As 18	n Gly Asp	ttt aat Phe Asn	aat gct Asn Ala 190	gtt tct Val Ser	tta ctg Leu Leu 195	ttg cca Leu Pro	caa Gln	1291
tat tta aa	t ggc gtt	aag aat	tct cga	ttg att	cat aat	ctt gtt	ttt	1339

Tyr Leu Asn Gly Val Lys Asn Ser Arg Leu Ile His Asn Leu Val Phe

205 got tha gtt aaa aat ggt gat ott gat tat gca aaa gat atc att gtt 1387 Ala Leu Val Lys Asn' Gly Asp Leu Asp Tyr Ala Lys Asp Ile Ile Val aaa gag cgt tta aat act tca cca gat gat tta att aat gca ttg aaa 1435 Lys Glu Arg Leu Asn Thr Ser Pro Asp Asp Leu Ile Asn Ala Leu Lys 240 aaa act aca cat gta tca aaa ggt gta act cgg taacactaag gatttgatat 1488 Lys Thr Thr His Val Ser Lys Gly Val Thr Arg gaaaaagttt ctatcaaata taaaaggaac ctcgtcaatt qaatttgctt tgacqatagc 1548 gttctattta tttgttgtga tgtttatttt tgaattttgt cgattagcgg ttgcgacagc 1608 ttattgggat ttagctataa cggaaagtgt cagaattgcg aagaatgaac aagcaatttc 1668 tggaaattat gaagaagcat ttaggaaagc tcttacaaag caaaaaaaat tccatgatga 1728 atcgacaatt ggatatttgg Cgttgttaqa aqataataaa tttqatqtaa aaqtccaata 1788 tgtggattgt gataaagaaa cqqaatqtat taaaaatctt ctqcttaata aatttcqcca 1848 accacaaaaa aatcataaag gaqaqttaat ctctcctacq qqqaqtcqcq cqactttaqc 1908 acaatattot ttaacttata aatataagtt tatggtgccg ttagtattta ttcctgagtc 1968 ttggtctcaa gtagtgctga accgtgaatt tgttgttgta caggaatttg agcgttctca 2028 atttatqtta qqaqcaaaac caaqttctct tqqqacqaat ccataqaaaa tttactcatt 2088 atttcqaqct atatatqaaa qaqtcaqqtt taqttaaatt caaqcatttt tqqaaaaata 2148 aaaagggcgc agtgacgata gagttccttt ttatgtcaat gtttctgatt gtgctatttg 2208 catttctctt cgatttagta atgttacgtt ctacattagg caagttagat aatgcctcat 2268 atacattagt tagtattctc Cgtgaacgta cacagttgta cgatagagtt gcacaaatta 2328 atattgatga tcataagcaa tttgaaaagc ttgctaagaa actgatttat ggtgatcaga 2388 atagtaataa aaggatcgat gttgttttag aatattgggc acaagacggt tctggacgga 2448 ggattccaaa tatcattggc gattgtacgc cttacaaaaa actttctgat ttatcctatt 2508 tatctcctcg ctcagaactc aataatgaaa gaaaaatacc gctttatcaa attactcttt 2568 gtgttgaaac tcaqqqcttg tttgaaacaa tattactgga taaqtctgaq cqttcaacqq 2628 qqctqattag atcatcgtca atgtcagtat cacgataaat tatcgttagg gaactttatg 2688 aaaaaacttt atttaattcg ttcttgctat gattcagtca gaaaatttta tgagaatgag 2748 ctaggtgttt atacagtaat gactgcatta ctagcatttc cattattagt tttgattgga 2808 tttacggttg atggaactgg ggttgtgctt gataaagcac gtttagctca aggaatggat 2868 caagctgctt tagctttggt tgctgaaaac aatgactacc gagaaaataa aaaacatggt 2928

qatqttaatc qqcaaqtaqt atcqcctcaa qacaaaqcaa aatttqqtqq taatqaattt 2988 atggcgaaac aagaaaagcg taatcaagag cttatccagg gtattgccaa actttatta 3048 cgttcagaaa atgcgaatgc ttcatctgat gcaccaatca ctattgataa accttttcat 3108 tattcatqtq aqqaqttaga tttacctaca qctaatqaqt atqcacqtcq taaacctatt 3168 gtttgtgaag tgcaaggtgg cgtcaatcgt aaattttggc ttcctgtcag tgaatcqtta 3228 gttagtgaag ataaactgaa aaaagatcga gttagactgg aatccgatac cagttatqcq 3288 attaaagaaa aaggcatcgt gatteetgtg gagctaatge ttgtttegga ttattetqqt 3348 tegatgaata gteatttaca ggataaaaac ggtagatete taggaaaaqe taaaattact 3408 attttaagag aagtqqttag tgaaatttcg aaaattttat tgccagaaga tgttaqcqaa 3468 ggtgtgagcc ctttcaaccg tattggcttt acgacttttt ctggcggtqt taqacaacqq 3528 gatgtcactg aaggctgtgt gcttccatat gaaggaaaaa tatcacaaac ttctcgaaaa 3588 ttaactattc gttattggat tacgggtaat aatacacctt ggaaatttaa tgctgggaga 3648 tgggagagaa qtacaqtgtc tttccaggag cattataaag gctattatga caaattccat 3708 tottcaactt gtagaggotc agggagotct agaacttgtc aaattgatgc aaatcctaaq 3768 aaaattatgg attatgcact aaaaattaat gactggacga caattagaga attatttaat 3828 acttatatag atgtaagtgg gacgattgac caaatttccc agtttgatgg ttcaaacaga 3888 cgttatgata tggtgtttac tgatgaagaa cggtgtcttg gcggaaatat tggtagaaga 3948 acaactcgag cttggtttga tcaaaaaaat aaagatatta caagagagtt gaatattgtt 4008 egteettetg gttggaette tqeatetteg qqqettettg ttqqaqetaa tateatqatq 4068 qacqaqaata agaatcctga tqcqcaacct tcgaaactcg ggacaaatat tcaacgtgtt 4128 atcttagtat tatctgatqq tqaagataac tgqccaactt ataqtacatt aacqactctt 4188 ttaaacaatg qtatqtqta caaaattcqa gaacaattqq qcaaqttaca agatccaaat 4248 ttacgagagt taccaggaag aattgcgttt gttgcgtttg gctatagtcc accagcaaac 4308 caaqttgccg cttggaaaaa atgtgtaqqt qatcaatatt atacqqctta ttcqaaagaa 4368 gagttgttag atagtttcaa acaaattatt ggatttgaag aagaggtggg gcgttcttca 4428 tctcataaac cgaaatttta agattgtcca aggataacgc taaaaaatct cttagcacag 4488 gctaagagat ttttttatgt gtttttcaaa ttttatctac tggtgatttt aattcattac 4548 ataacataac tttttcgtga ataatacaga atagacaaca ataagaatta aaacqctcaa 4608 ggcatagagg cttagtcgaa caaactaagc tattttgcgc gattgattgg qatatagatg 4668 ttatttcaaa taagcaataa ccatggtact gagaaagaag atgagtgccg taataaagta 4728 gaagcgattt ttcttttggc tgaaaggtgg tqttagcctt tttcqqctaa aqaaaataqt 4788 agcaacggca atataaaggg cgataaagag cattttgtaa atgaaccatg ttqttacatt 4848

ttgctgaaaa agaagaaata gcccaattcc cgaacagaac aacagcgtat Cacttaaqtg 4908 cggtaagatt tttaatactt ttctgtctcg ccaatttttg cctgttaatt gcatcatgcc 4968 acggataata aatagactga ggctgagaaa ggcacaggca atgtgtagat aaataaqata 5028 atatgccatc gatttttttc ctaaqataaa gaaaqcagta gcgaggctac tgctttaaaa 5088 taatategta tttagtgaat qaatttaact ttetgegett tegacegeac tttegetege 5148 atcactctca atqtcttctt catcgacatc acaaacgagt tgtaatccaa ccaqtqtttc 5208 actttcactt gttcggatga gacgtactcc ttgtgtattt cgaccgataa tattgatttc 5268 gtttacgcga qtacgtacta gcgtaccqgc atcagtaatg aqcataattt qatcqctttc 5328 ctcaacttqt qttqctqcaa cqactttacc qttacqctca ctcactttaa tcgagatcac 5388 gcctttggtg ttacqtgatt tagttgggta ttccgctaat tcagtacgtt taccataacc 5448 qttttqtqtg geggttaaaa tqqcqccttc attttttqqa ataacaaqtq acacqacttt 5508 atcaatattg agatccaagg catcattagt attctcatca gagatctctt ccatatcqac 5568 cgcactttca tcatccgaca aatcattcgt taacgccagt ttaataccgc qtacacctqt 5628 tgctgcacgc cccatggcac gcacagcatt ttcactaaaq cgaactacac gtccttqtqc 5688 ggagaagagc atgatttcat tttgaccatc ggtgatatcc acaccgataa qttcqtcttc 5748 atcacqcaaq ttqaqtqcaa taatqcctqt tqaacqaqqa cqactqaatt 5798

<210> 61

```
Glu Leu Leu Lys Ser Pro Asn Glu Gly Glu Val Tyr Asn Leu Arg
                        135
Gly Ile Ala Tyr Ala Gln Asn Gly Asn Leu Val Asn Ala Arg Asn Asp
Ile Asn Lys Ala Arg Glu Phe Phe Ile Asn Asp Asn Val Ala Ile Asn
                                    170
Asn Leu Ala Met Leu Asn Ile Ile Asn Gly Asp Phe Asn Asn Ala Val
Ser Leu Leu Pro Gln Tyr Leu Asn Gly Val Lys Asn Ser Arq Leu
                            200
Ile His Asn Leu Val Phe Ala Leu Val Lys Asn Gly Asp Leu Asp Tyr
                        215
Ala Lys Asp Ile Ile Val Lys Glu Arg Leu Asn Thr Ser Pro Asp Asp
225
Leu Ile Asn Ala Leu Lys Lys Thr Thr His Val Ser Lys Gly Val Thr
Arq
<210> 62
<211> 1788
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1)..(600)
<220>
<223> unknown K
<400> 62
gtc aac act ggg cta att cac agt aac ggt aat gcc aaq ctc act ttt
Val Asn Thr Gly Leu Ile His Ser Asn Gly Asn Ala Lys Leu Thr Phe
aaa gat gac acc agt ttt gtg act gaa gga aat aac ttt atc aca gca
Lys Asp Asp Thr Ser Phe Val Thr Glu Gly Asn Asn Phe Ile Thr Ala
                                 25
aaa gac aac tta gaa atc acg gca aaa aat qtt caa att qat caa qcq
                                                                  144
Lys Asp Asn Leu Glu Ile Thr Ala Lys Asn Val Gln Ile Asp Gln Ala
aaa aat att caa tta aac gcg aat atc acg atc aat acc aag tct ggt
                                                                  192
Lys Asn Ile Gln Leu Asn Ala Asn Ile Thr Ile Asn Thr Lys Ser Gly
                         55
ttt qtq aat tac qqt acc tta qca aqt qct caa aat tta acq att aat
Phe Val Asn Tyr Gly Thr Leu Ala Ser Ala Gln Asn Leu Thr Ile Asn
65
acc gaa caa ggc agc att tat aac ata ggc ggt atc ttg ggg gcg ggt
Thr Glu Gln Gly Ser Ile Tyr Asn Ile Gly Gly Ile Leu Gly Ala Gly
```

132

8	5 90	95	
		gaa aac caa gga gga tat 3 Glu Asn Gln Gly Gly Tyr 110	36
ctt att aat caa gg Leu Ile Asn Gln Gl 115	t aag agt cta ctc cat y Lys Ser Leu Leu His 120	tct gaa ggc gcc atg aac 3 Ser Glu Gly Ala Met Asn 125	84
ctc aca gcg gat cg Leu Thr Ala Asp Ar 130	c acg gty tac aat tta g Thr Val Tyr Asn Leu 135	ggg aat att ttt gct aaa 4 Gly Asn Ile Phe Ala Lys 140	32
ggt gac gcg acg at Gly Asp Ala Thr Il 145	c aat gca aac gcg tta e Asn Ala Asn Ala Leu 150	att aat gat gtt act ctc 4 Ile Asn Asp Val Thr Leu 155 160	80
aca ggt cgt ctt ga Thr Gly Arg Leu Gl 16	u Tyr Gln Asp Leu Lys	aaa gat tat acg cgt tat 5 Lys Asp Tyr Thr Arg Tyr 175	28
tat cgt atc aat ga Tyr Arg Ile Asn Gl 180	a acg gca aaa cat ggt u Thr Ala Lys His Gly 185	tgg cat aat aac ttc tat 5 Trp His Asn Asn Phe Tyr 190	76
gaa tta aac gtc ga Glu Leu Asn Val As 195	e aga gtt tct tgatttgt p Arg Val Ser 200	gc atcaattttg taaccaccgg 6	30
ttaataaaac accagca	att tcaacgccat tcatggc	aga taatgccgct gcgacgatca 6	90
catcaggacg atccgcg	gaa gtgacaagta aacttcc	aac goggaaatgt tocaccatat 7	50
tggtcaaatt acgtgca	ag aaagtgatge cacgaat	gcg acgttcattg atcgcgcctt 8	10
catgaataat ggcagca	cct aaatgtttgg ctaaatc	aat ggcacgagtc gcaattaatt 8°	70
ctgcgctcca aggaata	cat gccaagattt taattgg	gct tttctcaaat aaatgataaa 9	30
tctcagatac ttgattt	gt gtgtgttgga aagaatc	aaa aatttetgee aagteaggge 99	90
gagtacgacc agattca	ca atcggcgcat taaattt	att gatcacaaca ccaagtaaat 10	050
tagggttatt tttgctg	ca aataatgagg ctgcggc	ttt gatgcgttct ttgagttctg 1	110
		ttc cgcatcaagt gcttgagcaa 1	
		cgt agggattaaa ccttccacca 12	
		ttc aacaattttt tctagtacca 17	
		act taacataaat ggttcactgg 13	
		gcg atcaatcata tetteacetg 14	
		cgc ccctttttgc tccagtgcat 14	
		agc actaatcggg ataaggataa 15	
		tta tacaaaaaga aactgccgat 1	
yaarcggcag ttaattga	te tetacgegat geaaagg	cgc gcggtatctt gtgcaataac 16	550

```
aagttettea ttegttggga teaceatgge aacaggegta ttgtetgetg taateacece 1710
ttcatgacca aagcgagccg ctttgttttt atctgaatcc acttgataac cgaacagttt 1770
taaatggttt aaggttga
                                                                   1788
<210> 63
<211> 200
<212> PRT
<213> Pasteurella multocida
<400> 63
Val Asn Thr Gly Leu Ile His Ser Asn Gly Asn Ala Lys Leu Thr Phe
Lys Asp Asp Thr Ser Phe Val Thr Glu Gly Asn Asn Phe Ile Thr Ala
Lys Asp Asn Leu Glu Ile Thr Ala Lys Asn Val Gln Ile Asp Gln Ala
Lys Asn Ile Gln Leu Asn Ala Asn Ile Thr Ile Asn Thr Lys Ser Gly
Phe Val Asn Tyr Gly Thr Leu Ala Ser Ala Gln Asn Leu Thr Ile Asn
Thr Glu Gln Gly Ser Ile Tyr Asn Ile Gly Gly Ile Leu Gly Ala Gly
Lys Ser Leu Asn Leu Ser Ala Lys Arg Gly Glu Asn Gln Gly Gly Tyr
Leu Ile Asn Gln Gly Lys Ser Leu Leu His Ser Glu Gly Ala Met Asn
Leu Thr Ala Asp Arg Thr Val Tyr Asn Leu Gly Asn Ile Phe Ala Lys
Gly Asp Ala Thr Ile Asn Ala Asn Ala Leu Ile Asn Asp Val Thr Leu
Thr Gly Arg Leu Glu Tyr Gln Asp Leu Lys Lys Asp Tyr Thr Arg Tyr
Tyr Arg Ile Asn Glu Thr Ala Lys His Gly Trp His Asn Asn Phe Tyr
```

```
<210> 64
<211> 278
<212> DNA
<213> Pasteurella multocida
```

Glu Leu Asn Val Asp Arg Val Ser 195 200

<220>

<220>
<221> CDS
<222> (108)..(278)

```
<223> unknown O
<400> 64
gaattccaac caaatctcac accagagcaa gaacgctaca tagtggaatg gttgqcaqaa 60
cattacccaa atggaaataa accttaacca tagcaagaga gaagaaa atg aaa att
                                                       Met Lys Ile
act att aca cga aat cat cca gaa gta ttt caa gaa tcc gct cgt tta
Thr Ile Thr Arg Asn His Pro Glu Val Phe Gln Glu Ser Ala Arg Leu
gta gcc gaa aag ttc att aaa gcc caa tgt gta gaa gca tta aca ttg
                                                                       212
Val Ala Glu Lys Phe Ile Lys Ala Gln Cys Val Glu Ala Leu Thr Leu
                      25
gct ttg att gag ggt gtc gag cac ttt gtg ctg gaa ggt gag gaa gla Ala Leu Ile Glu Gly Val Glu His Phe Val Leu Glu Gly Glu Glu Glu
                                                                       260
                  40
                                       45
agc aaa agg gga cat agt
                                                                       278
Ser Lys Arg Gly His Ser
<210> 65
<211> 57
<212> PRT
<213> Pasteurella multocida
Met Lys Ile Thr Ile Thr Arg Asn His Pro Glu Val Phe Gln Glu Ser
Ala Arg Leu Val Ala Glu Lys Phe Ile Lys Ala Gln Cys Val Glu Ala
Leu Thr Leu Ala Leu Ile Glu Gly Val Glu His Phe Val Leu Glu Gly
Glu Glu Glu Ser Lys Arg Gly His Ser
<210> 66
<211> 1020
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1)..(597)
<223> unknown P
<400> 66
gtc aac aca tca aaa gtt gag att gac tat gcc gtc act cgt gcg gcg
Val Asn Thr Ser Lys Val Glu Ile Asp Tyr Ala Val Thr Arg Ala Ala
gca atg cgt gca tat ctt gat aaa gaa cag ggc tgg cat acg tct att
```

Ala Met Arg λ la Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile 20 30	
tca aat aaa ggc att aat ggc gtg agc ggt gtc aca caa cca ctc tat Ser Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr $_{\rm 35}$	144
ttt gåc att aac gac age teg aet gåt gtg aac tat etc aat gaa caa Phe Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln 50 60	192
ggc atc acg tgt tgc gtg aat cat aat ggc ttt cgt ttt tgg ggc tta Gly Ile Thr Cys Cys Val Asn His Asn Gly Phe Arg Phe Trp Gly Leu 65 70 80	240
cgc acg act gca gaa gat cca tta ttc aag ttt gaa gtg tac acc cgc Arg Thr Thr Ale Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg 99 95	288
act gca caa atc tta aaa gat acg att gca gcg gcg ttt gat tgg gca Thr Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala 100 105	336
gtg gat aaa gat att tot gtc acg cta gtg aaa gat att att gaa gca Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala 120	384
atc aat gcg aag tgg cgt gat tac acc aca aaa ggc tac tta att ggc Ile Aan Ala Lys Trp Arg Asp Tyr Thr Thr Lys Gly Tyr Leu Ile Gly 130	432
ggt aaa gcg tgg ctt aat aaa gag ctt aac agt gca acg aat tta aa Gly Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys 145 150	480
gat gcg aag ttg ttg atc tct tat gat tat cac cca gta cca ccg ctc Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu 165 170 175 175 175 175 175 175 175 175 175 175	528
gaa Cag cta ggc ttt aat cag tac att tct gat gaa tac ctt gtt gat Glu Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp 180 185 190 190 195 190 195 190 195 190 195 190 195 195 195 195 195 195 195 195 195 195	576
ttt tca aat ogt tta gca tcg taaggggtag aaaatggctt taccacgcaa Phe Ser Aen Arg Leu Ala Ser 195	627
acttaaattg atgaatttaa tcatcgacgg taacaaatat ctcggcgaag tcacggaagt	687
gactcaacca aaattagcaa tgaaaatcga agaatttegc gegggeggta tgattggtte	747
ggtggatgtc aatctcgggc ttgaaaagct cgaagcggaa tttaaagccg gtggctacat	807
ggtcgaatta attaaaaaat tcggcgggtc aatcaacggc attccattgc gttttcttgg	867
ctcatatcag cgtgatgaca cagaagaagt cacatctgtt gagcttgtga tgcaaggtcg	927
atttactgaa attgacagcg gaaacagcaa agtgggcgat gacactgaac aaacattcaa	987
agtgccttta acgtattaca aaatcattgt tga	1020

<210> 67

<211> 199

```
<212> PRT
<213> Pasteurella multocida
Val Asn Thr Ser Lys Val Glu Ile Asp Tyr Ala Val Thr Arg Ala Ala
Ala Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile
Ser Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr
Phe Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln
Gly Ile Thr Cys Cys Val Asn His Asn Gly Phe Arg Phe Trp Gly Leu
Arg Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg
Thr Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala
Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala
Ile Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys Gly Tyr Leu Ile Gly
Gly Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys
Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu
Glu Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp
Phe Ser Asn Arg Leu Ala Ser
        195
<210> 68
<211> 2584
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1042)..(2286)
<220>
<223> xvlA
<400> 68
gtcgaccagc ttagattttg cgacggggtt aatttcttct atcgtttcaa tcattgcgtt 60
taccattatt ttatggaatc tctctqqacc qatqaccatt qccaatattq aaattcctca 120
cgcgatggtc ttttttggtct ttatttacgt gctgtttagc agtattgtgg catttaaaat 180
```

eggtegeeeg ttaatteage teaattttge caatgaaege ttaaaegeea actacegtta 240 ttcacttatc cqtctqaaaq aatatqctqa aaqcattqct ttttatcqtq qtqaaaaaat 300 ggaaaaacgt ctattgacca cacaatttaa tcaggtgatt gataacgttt ggcaagtaat 360 ctaccgcacc ttgaaattat ccggttttaa cttaatcatt acgcagattt cggtggtttt 420 teegetggtg atteaagtga caegttattt tegtegacaa taggtgcata tgagggtgtt 480 agaatagcga tactttctgt tggaaaagta aactctttaa tataaataga aatcqcttqa 540 atgatteteq qgcaaaaaat aatgtactea tttgegatet catactgata atgqeqaaqt 600 aaatatette ttacaatatt atggtaatta teaggtaata eegtatagee atagatteea 660 gttctatttt gttttgctaa ataattgatg agcatttgag gcgcaggtaa atccatatct 720 gcaacagaca ttgaaatcat atccttgccg tatttacgag taattgccca tttagcacta 780 tgacaatctg atctatcagt aaaaacatca aacaaattat ccqtcataca tgttctccaa 840 tattggattt atataaactt tagaacttga ggtagattgt tggaattgtt aaatctggta 900 tttctattac gttttttctt ttttgtgata taagccacaa taaccaataa tcttaattgt 960 taaqtqaaat aacqtaattg atcctcccat tqttttacta aattatqtct ctqaaactta 1020 tttgttcagg agaaatcatt t atg tcc act tac ttc gac aaa att gaa aaa 1071 Met Ser Thr Tyr Phe Asp Lys Ile Glu Lys gta aat tat gaa ggt gta act toa tot aat oog ttt goa tat aag oat Val Asn Tyr Glu Gly Val Thr Ser Ser Asn Pro Phe Ala Tyr Lys His 1119 tat gat gct aat caa gtt att tta ggt aag acg atg gct gaa cac tta 1167 Tyr Asp Ala Asn Gln Val Ile Leu Gly Lys Thr Met Ala Glu His Leu cqt tta qcc qtc tqt tat tqq cac act ttc tqt tqq aca qqq aat qat 1215 Arg Leu Ala Val Cys Tyr Trp His Thr Phe Cys Trp Thr Gly Asn Asp atg ttc ggt gtc ggt tct ttc gat cgt tgt tgg cag aag gcg agt gat 1263 Met Phe Gly Val Gly Ser Phe Asp Arg Cys Trp Gln Lys Ala Ser Asp tca tta gca ggt gca aaa caa aaa gca gat atc gct ttt gaa ttt ttc Ser Leu Ala Gly Ala Lys Gln Lys Ala Asp Ile Ala Phe Glu Phe Phe agt aaa tta ggc ata cct tat tat tgt ttt cat gat gtt gat gtt gcg 1359 Ser Lys Leu Gly Ile Pro Tyr Tyr Cys Phe His Asp Val Asp Val Ala 100 cca gaa ggt cat tca ttt aaa gaa tat ttg tcg aac ttt aat aca atg 1407 Pro Glu Gly His Ser Phe Lys Glu Tyr Leu Ser Asn Phe Asn Thr Met 115 atc gat gtt tta gcg cag aaa caa gaa gaa aca ggc gtc aaa ttg ttg 1455 Ile Asp Val Leu Ala Gln Lys Gln Glu Glu Thr Gly Val Lys Leu Leu 125 130

										cgt Arg						1503
										tgg Trp 165						1551
ttt Phe	act Thr	gcc Ala	atg Met	999 Gly 175	gca Ala	act Thr	cag Gln	cgt Arg	tta Leu 180	ggt Gly	ggt Gly	gaa Glu	aat Asn	tat Tyr 185	gtt Val	1599
ttg Leu	tgg Trp	gga Gly	gga Gly 190	cgt Arg	gaa Glu	gga Gly	tat Tyr	gaa Glu 195	acg Thr	tta Leu	tta Leu	aat Asn	acc Thr 200	aat Asn	tta Leu	1647
										atg Met						1695
										ttg Leu						1743
										tat Tyr 245						1791
tat Tyr	ggc	ttt Phe	tta Leu	aag Lys 255	cag Gln	ttt Phe	ggt Gly	tta Leu	gaa Glu 260	aaa Lys	gaa Glu	att Ile	aaa Lys	gtg Val 265	aat Asn	1839
										cac His						1887
										ggt Gly						1935
										gat Asp						1983
										att Ile 325						2031
										aaa Lys						2079
										att Ile						2127
ctt Leu	gcc Ala	tta Leu 365	tca Ser	cta Leu	aaa Lys	tgt Cys	gcg Ala 370	gcg Ala	aaa Lys	atg Met	ctt Leu	gaa Glu 375	gag Glu	caa Gln	gct Ala	2175
tta Leu	caa Gln 380	aaa Lys	gtc Val	gtc Val	aat Asn	caa Gln 385	cgt Arg	tat Tyr	gct Ala	ggt Gly	tgg Trp 390	aca Thr	tca Ser	tca Ser	ctt Leu	2223

2584

ggt caa ctt gtt caa atc cgg tcc tac cac gcg tgt ctg caa tac aga Gly Gln Leu Val Gln Ile Arg Ser Tyr His Ala Cys Leu Gln Tyr Arg cta aca aaa gtg ctt taaaacqttc cqqcttacqc caqacatcta qacqattqaa Leu Thr Lys Val Leu taatttcaat attgtctccg cacgtaattc aaaggctttg tgtatgtgcg aatgatattc 2386 acaacaaagt totgcaaaat ottgaattgc gtgaggtaat ttaaagcgct gacataagcg 2446 tettgtegge atgacaccag ettttteatg tecataatga tgtggcaata tttettttgg 2506 tgttaaggct tttcctaaat catgacaaat tgcagcaaaa cgtaccgcac ttttgtcact 2566 gtccgtgttt tctgtcga <210> 69 <211> 415 <212> PRT <213> Pasteurella multocida <400> 69 Met Ser Thr Tyr Phe Asp Lys Ile Glu Lys Val Asn Tyr Glu Gly Val Thr Ser Ser Asn Pro Phe Ala Tyr Lys His Tyr Asp Ala Asn Gln Val Ile Leu Gly Lys Thr Met Ala Glu His Leu Arg Leu Ala Val Cys Tyr Trp His Thr Phe Cys Trp Thr Gly Asn Asp Met Phe Gly Val Gly Ser Phe Asp Arg Cys Trp Gln Lys Ala Ser Asp Ser Leu Ala Gly Ala Lys Gln Lys Ala Asp Ile Ala Phe Glu Phe Phe Ser Lys Leu Gly Ile Pro Tyr Tyr Cys Phe His Asp Val Asp Val Ala Pro Glu Gly His Ser Phe Lys Glu Tyr Leu Ser Asn Phe Asn Thr Met Ile Asp Val Leu Ala Gln Lys Gln Glu Glu Thr Gly Val Lys Leu Leu Trp Gly Thr Ala Asn Cys Phe Thr His Pro Arg Tyr Met Ser Gly Ala Ala Thr Asn Pro Asn Pro Glu Ile Phe Ala Trp Ala Ala Ala Gln Val Phe Thr Ala Met Gly Ala Thr Gln Arg Leu Gly Gly Glu Asn Tyr Val Leu Trp Gly Gly Arg Glu

Gly Tyr Glu Thr Leu Leu Asn Thr Asn Leu Lys Gln Glu Arg Glu Gln

200

195

```
Ile Gly Arg Phe Met Gln Met Val Val Glu His Lys Tyr Lys Ile Gly
    210
                        215
Phe Asn Gly Thr Leu Leu Ile Glu Pro Lys Pro Gln Glu Pro Thr Lys
His Gln Tyr Asp Tyr Asp Val Ala Thr Val Tyr Gly Phe Leu Lys Gln
Phe Gly Leu Glu Lys Glu Ile Lys Val Asn Ile Glu Ala Asn His Ala
Thr Leu Ala Gly His Thr Phe Gln His Glu Val Ala Met Ala Thr Ala
Leu Asp Ile Phe Gly Ser Ile Asp Ala Asn Arg Gly Asp Pro Gln Leu
Gly Trp Asp Thr Asp Gln Phe Pro Asn Ser Val Glu Glu Asn Thr Leu
Val Ile Tyr Glu Ile Leu Lys Ala Gly Gly Phe Thr Thr Gly Gly Phe
Asn Phe Asp Ala Lys Ile Arg Arg Gln Ser Thr Asp Pro Tyr Asp Leu
Phe His Gly His Ile Gly Ala Ile Asp Val Leu Ala Leu Ser Leu Lys
Cys Ala Ala Lys Met Leu Glu Glu Gln Ala Leu Gln Lys Val Val Asn
Gln Arg Tyr Ala Gly Trp Thr Ser Ser Leu Gly Gln Leu Val Gln Ile
Arg Ser Tyr His Ala Cys Leu Gln Tyr Arg Leu Thr Lys Val Leu
                405
                                    410
<210> 70
<211> 3501
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (298)..(1905)
<220>
<223> yabk
<400> 70
qaattcqaqq aaqqqqgcgt attacaaatt gaaacggctg cacgtgtagc acaacatqat 60
aatgcctgtg cggatcattt ccttgccttt ttacttcatc cagaagcaca aggqcattta 120
gtcaaqaata atgtgatgtt accggtgatt aataccaata ttgaaccgca ctttgatgcc 180
cttagagcca cccaaatgaa cacgaaagtq ctcgatacct caaaagtqaa tqccqaacaa 240
```

gtcaaaaaat ggattgctgt ttggcaaacg accctaaccc aataattgtt tgtcttg 297

atg Met 1	ttt Phe	aag Lys	cga Arg	ttt Phe 5	cgt Arg	gca Ala	ttc Phe	aca Thr	tac Tyr 10	cgt Arg	ccc Pro	gcc Ala	agt Ser	tat Tyr 15	ctt Leu	345
								ctg Leu 25								393
								ttt Phe								441
								gtg Val								489
gcc Ala 65	ttt Phe	ctg Leu	tcg Ser	gcg Ala	gta Val 70	ctt Leu	gcg Ala	gtc Val	ctc Leu	ttt Phe 75	ggt Gly	ggc Gly	att Ile	gta Val	gca Ala 80	537
cga Arg	gcc Ala	ttt Phe	ttt Phe	tat Tyr 85	caa Gln	ccg Pro	ttt Phe	gtg Val	ggc Gly 90	aag Lys	aaa Lys	ctg Leu	atc Ile	ctc Leu 95	aaa Lys	585
								cct Pro 105								633
tta Leu	tta Leu	ggc Gly 115	gtg Val	tat Tyr	ggc Gly	gct Ala	tct Ser 120	ggc Gly	tgg Trp	tta Leu	gcg Ala	atg Met 125	tta Leu	agc Ser	cag Gln	681
								aat Asn								729
tta Leu 145	ctg Leu	gcg Ala	cat His	ctt Leu	ttt Phe 150	ttt Phe	aat Asn	gtc Val	cca Pro	tta Leu 155	gct Ala	tgt Cys	cgc Arg	ctg Leu	ttt Phe 160	777
tta Leu	caa Gln	ggt Gly	t tg Leu	caa Gln 165	gca Ala	att Ile	ccg Pro	gtg Val	caa Gln 170	caa Gln	cgt Arg	cag Gln	ctc Leu	gcg Ala 175	gca Ala	825
caa Gln	ctc Leu	aat Asn	tta Leu 180	cgt Arg	ggt Gly	tgg Trp	cat His	ttt Phe 185	ata Ile	cgt Arg	ctg Leu	att Ile	gag Glu 190	tgg Trp	ccc Pro	873
tat Tyr	tta Leu	cgc Arg 195	cag Gln	caa Gln	ttg Leu	tta Leu	cct Pro 200	gca Ala	ttt Phe	act Thr	ttg Leu	att Ile 205	ttc Phe	atg Met	ctg Leu	921
tgt Cys	ttt Phe 210	acc Thr	agt Ser	ttt Phe	gcg Ala	att Ile 215	gtg Val	ctc Leu	act Thr	tta Leu	ggt Gly 220	ggc Gly	gga Gly	ccg Pro	aaa Lys	969
tat Tyr 225	acc Thr	acg Thr	ttg Leu	gaa Glu	gtg Val 230	gct Ala	atc Ile	tat Tyr	caa Gln	gcg Ala 235	att .Ile	tta Leu	ttt Phe	gag Glu	ttt Phe 240	1017
gat Asp	gta Val	ccg Pro	aaa Lys	gcc Ala 245	ggc Gly	tta Leu	ttt Phe	gcg Ala	tta Leu 250	tta Leu	caa Gln	ttt Phe	gtt Val	ttt Phe 255	tgt Cys	1065

						agt Ser										1113
aca Thr	tta Leu	cac His 275	agt Ser	caa Gln	cct Pro	act Thr	tgg Trp 280	ttt Phe	gcg Ala	ccc Pro	caa Gln	tcg Ser 285	tat Tyr	tgg Trp	gtt Val	1161
						atc Ile 295										1209
						cta Leu										1257
ttt Phe	acc Thr	ttg Leu	tgg Trp	tta Leu 325	caa Gln	cct Pro	caa Gln	tta Leu	tgg Trp 330	aaa Lys	gca Ala	tta Leu	ggt Gly	tac Tyr 335	tcg Ser	1305
						tct Ser										1353
gcc Ala	tta Leu	tta Leu 355	ttg Leu	ctt Leu	gcc Ala	aga Arg	gaa Glu 360	tta Leu	cat His	tgg Trp	cga Arg	cat His 365	tat Tyr	cgc Arg	agc Ser	1401
						aat Asn 375										1449
						ggt Gly										1497
ttt Phe	tct Ser	cca Pro	tac Tyr	cat His 405	ctt Leu	ttt Phe	ggg ggg	gtt Val	gtg Val 410	gta Val	tgc Cys	tgt Cys	aac Asn	gcg Ala 415	tta Leu	1545
						ttg Leu										1593
						aaa Lys										1641
tgg Trp	caa Gln 450	cgt Arg	ttt Phe	cga Arg	ttg Leu	att Ile 455	gaa Glu	tgg Trp	cac His	aag Lys	ctt Leu 460	cgt Arg	gcg Ala	cca Pro	atg Met	1689
						gct Ala										1737
						cag Gln										1785
ttg Leu	tat Tyr	caa Gln	caa Gln 500	ttg Leu	ggg Gly	cat His	tat Tyr	cgt Arg 505	agt Ser	cag Gln	gaa Glu	gcg Ala	gca Ala 510	gta Val	aca Thr	1833

1881 Ala Phe Ile Leu Leu Val Phe Cys Leu Ser Val Phe Met Ile Ile Glu 520 cga cat cag gaa ccg cgt gat gat taatttaaac ggtgttcagt tttcctataa 1935 Arg His Gln Glu Pro Arg Asp Asp tacctttact tttqaqctqq atttqcaqat tcctgctcaa caaaaaqttq ctattattqq 1995 egecagtgge geagggaaga gtacettatt aaatttgatt gegggttttg cattgecaca 2055 qcaaggggaa atttqqttqa atqqtqaaaa tcatagccaa actcaacctt atqaacqtcc 2115 ggtatctatt ttgtttcaag aaaacaactt gtttacqcat ttgactgtgg cagagaatat 2175 ggcattaggg ctgaaaccaa gcctaaaact gaccgcactt gaacaacaac gcgtacaaca 2235 aqtqqcaaqt qcaqtqqqtt tqcaqqqttt tcttaatcaa ttacccaccc aqttatcqqq 2295 tqqqcaaaaa caqcqtqtqq cqttqqcqcq ttqtttatta cqcqataaqc caattttqtt 2355 attggatgaa cctttttctg ccttagatcc cgatttacgg gcagaaatgt tgcatttatt 2415 qttacaqttq tqtqatqaaa aaaaattaac actcctqatc qtqacacatc aagtqaacga 2475 attacagcag aaaatqqatc qtatqattcq ttttqaacat qqtaqqatqa qtqaqtccac 2535 cattttqaaq qataatttta acqaaaaaca qaccqcactt taqqcqqctt attaattaga 2595 taaqqaaaqa qaaaaatatq acaacqqcaa cqqcatttqa qattcqtaca cttactcctc 2655 accogacett agaatattgg tetgtgtgta aaattgaage eetgtttgag acceettttt 2715 tagatttggt ttatcgggct gcgcaagtgc accgagaaaa ctttaatcct aaagccattc 2775 aattatccac tttaatgtcg attaaaacgg ggggatgtcc agaggattgt ggctactgtc 2835 cqcaqtcaqc acqttatcat actqqaqtaq aaaaqcaqca attactcqat qtqqaaqaaa 2895 ttgttgaaaa agccaaaatt gccaaagcac gtggtgcagg gcgcttttgt atgggggctq 2955 catggcgtgg accgaaaccg aaagacattg aaaaagttac cgcaatcatt aaagcgqtga 3015 aagaactggg Cttagaaacc tgtggtacct ttggtttatt gcaagatggg atggcagaag 3075 atttaaaaga agogggtttg gattattata accataatot ogatacagoo coaqaacact 3135 acggtaatgt gattggtacc cgtcaatttg atgatcgtat taatacgtta ggtaaagtgc 3195 gtaaagetgg ettaaaagtg tgetgtggeg ggattattgg eatgaatgaa acceqtaaag 3255 aaagagcagg attaattgct agcttagcta atttagaccc gcaacccgaa tcqqtqccqa 3315 ttaatcaatt agtgaaagtg gaaggtaccc ctttagccga tgcggcagaa ttagactgga 3375 caqaatttqt qcqcactatt qcqqtqqcqc qtattaccat qccqaaaaqc tatqtacqtt 3435 tatcagcagg gcqtcaaggc atqtcqqaaq aaatqcaagc catqtqcttt atgqctqgcg 3495 cgaatt 3501

<210> 71

<211> 536 <212> PRT <213> Pasteurella multocida <400> 71 Met Phe Lys Arg Phe Arg Ala Phe Thr Tyr Arg Pro Ala Ser Tyr Leu Gly Gly Met Leu Val Ile Val Phe Leu Ser Ala Phe Tyr Ala Phe Ala Leu Gly Ala Val Phe Ser Leu Pro Phe Ala Arg Ser Trp Thr Ala Leu Leu Ser Asp Gln Tyr Leu Gln His Val Ile Ile Phe Ser Phe Trp Gln Ala Phe Leu Ser Ala Val Leu Ala Val Leu Phe Gly Gly Ile Val Ala Arg Ala Phe Phe Tyr Gln Pro Phe Val Gly Lys Lys Leu Ile Leu Lys Leu Phe Ser Leu Thr Phe Val Leu Pro Ala Leu Val Ala Ile Phe Gly Leu Leu Gly Val Tyr Gly Ala Ser Gly Trp Leu Ala Met Leu Ser Gln Phe Phe Ala Trp Asp Trp Thr Pro Asn Ile Tyr Gly Leu Thr Gly Ile Leu Leu Ala His Leu Phe Phe Asn Val Pro Leu Ala Cys Arg Leu Phe Leu Gln Gly Leu Gln Ala Ile Pro Val Gln Gln Arg Gln Leu Ala Ala Gln Leu Asn Leu Arg Gly Trp His Phe Ile Arg Leu Ile Glu Trp Pro Tyr Leu Arg Gln Gln Leu Leu Pro Ala Phe Thr Leu Ile Phe Met Leu Cys Phe Thr Ser Phe Ala Ile Val Leu Thr Leu Gly Gly Gly Pro Lys 215 Tyr Thr Thr Leu Glu Val Ala Ile Tyr Gln Ala Ile Leu Phe Glu Phe Asp Val Pro Lys Ala Gly Leu Phe Ala Leu Leu Gln Phe Val Phe Cys 250 Phe Leu Leu Phe Thr Leu Ser Ser Phe Phe Ser Pro Ala Pro Ala Thr Thr Leu His Ser Gln Pro Thr Trp Phe Ala Pro Gln Ser Tyr Trp Val Lys Leu Trp Gln Arg Met Ile Ile Val Cys Ala Thr Val Phe Ile Leu

```
Leu Pro Leu Leu Asn Thr Leu Val Ser Ala Leu Leu Ser Ser Gln Phe
                    310
Phe Thr Leu Trp Leu Gln Pro Gln Leu Trp Lys Ala Leu Gly Tyr Ser
Leu Thr Ile Ala Pro Thr Ser Ala Leu Leu Ala Leu Val Leu Ser Phe
Ala Leu Leu Leu Ala Arg Glu Leu His Trp Arg His Tyr Arg Ser
Leu Ser His Val Ile Leu Asn Ile Gly Ala Thr Ile Leu Ala Ile Pro
Thr Leu Val Leu Ala Ile Gly Leu Phe Ile Leu Leu Arg Glu Ile Asp
Phe Ser Pro Tyr His Leu Phe Gly Val Val Val Cys Cys Asn Ala Leu
Ala Ala Met Pro Phe Val Leu Arg Ile Leu Ala Leu Pro Met His Asn
Asn Met Ile Tyr Tyr Glu Lys Leu Cys Gln Ser Leu Asn Leu Arg Gly
Trp Gln Arg Phe Arg Leu Ile Glu Trp His Lys Leu Arg Ala Pro Met
Lys Tyr Ala Phe Ala Leu Ala Cys Ala Leu Ser Leu Gly Asp Phe Thr
Ala Ile Ala Leu Phe Gly Gln Ala Asp Phe Thr Ser Leu Pro His Leu
Leu Tyr Gln Gln Leu Gly His Tyr Arg Ser Gln Glu Ala Ala Val Thr
Ala Phe Ile Leu Leu Val Phe Cys Leu Ser Val Phe Met Ile Ile Glu
        515
                            520
Arg His Gln Glu Pro Arg Asp Asp
<210> 72
<211> 3182
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (1544)..(2809)
<220>
<223> vqiK
<220>
<221> misc_feature
<222> 452
<223> N = A or T or G or C
```

<400> 72 aactactaag gagttatgta tgaatattag aaaatcatta ctattaatat ccctaqcaaq 60
cttcatgtca Ctttcagttt cagctgcaga aattaatttg aaatttgaaa qttcqaattt 120
tgcaggagaa aaagtttatg aaatccaaaa agaatggact gacaatattg aaaaagcttc 180
caatgggaga ataagtatag agttattacc tctcgactca gtcttaaaat ctagtgacat 240
getttetggt gttegaaata aaattattga tggageggtt geaacagegg caatgtatge 300
aggcactgac cotggattcg gattaattgg tgatactatt totgottgga accatgacqa 360
agatatttta aatttttact ataatggagg tggttttgaa gttgttgata atattttcca 420
acaatatggt gccaaactca ttggtgtatc anttacggga gcagaatcat taccatcgaa 480
agtaaaaata gotaatactg aagattttaa aggtataaaa attegggete cetetggtee 540
tatccaaaaa ttgtttgcaa gattaggagc cgctcctgtt ggtcttcctg gttcagaaat 600
ctatactagt ttagaaaaag gtattattga tgctgccgat ttctcaacgt ttgcaaataa 660
tcaagcacaa ggagtccatg atattgcaaa atatccaatc tatccgggaa ttcattcttc 720
accagccgtt catatgatta tgaatcataa aacttggagt agcttaactc catcggatca 780
agcattetta attgettaet ttaaagggat ggetetegat actetgaete gtgeteatta 840
tgaagataaa ctagcatata aagaagcact tgagaaagga gtacaaccag tttcttggaa 900
tcaacaagaa attacaaaag ttcgttctat cgctaaagaa atttggcaag agatagctca 960
acaatctgaa ataggtaatc aagtattatc aagtattaat gaaattccta gaatctcaag 1020
gaatgctgca ataatcgtca agatggataa gacgatatcg tcttatccat taaggagtaa 1080
aacatgctta tttctaaata tttattatgg ctctgtaata agctagatca aatattcatt 1140
aaagtaggtt attacgtttc ttatattttt ctattagttg ttatcattgg ttttacgagg 1200
ttgttgctcg gtatttattc tctagcccaa cactttgggt tcatgaagta acaacatttt 1260
taataagtot atcattactt tatggtggag tagottgtta cgccagtaat aaacatattg 1320
ccatgacatt tattagacaa aaattaccta ataagatcaa atggttacta gaactcttag 1380
ttgaaatact tatttttatc ttctttattt tgcttagtta cggagcatac ttatcagcta 1440
gagaagcatt atttactcca tcaggaaaat tcaaaatgca aacttctgga agtgtattag 1500
acatgccatt tocagcaatt gaaaaaagtt tottotttat tto atg cot cat cat 1555
Met Pro His His
tgt tgt tct ttc agt act aca tat att ccg tca cat cta tac aaa ata 1603
Cys Cys Ser Phe Ser Thr Thr Tyr Ile Pro Ser His Leu Tyr Lys Ile 5 10 15 20
tca gga gga att atc atg ata agt gca ttt ggg ata ggt att gga act 1651 Ser Gly Gly Ile Ile Met Ile Ser Ala Phe Gly Ile Gly Ile Gly Thr
Ser Gly Gly Ile Het Ile Ser Ala Phe Gly Ile Gly Ile Gly Thr 25 30 35

	att Ile															1699
tta Leu	ggt Gly	Phe 55	ctc Leu	act Thr	9 99 Gly	tta Leu	atc Ile 60	gct Ala	tta Leu	gtt Val	att	tca Ser 65	tat Tyr	ctt Leu	tgg Trp	1747
	gat Asp 70															1795
Phe 85	aca Thr	tca Ser	tct Ser	tac Tyr	act Thr 90	ttt Phe	gta Val	gct Ala	gtg Val	Pro 95	atg Met	ttt Phe	gtt Val	ctt Leu	atg Met 100	1843
	aca Thr															1891
	cga Arg															1939
atg Met	ttt Phe	gtt Val 135	gca Ala	gtt Val	cta Leu	ctt Leu	gct Ala 140	acg Thr	atg Met	tca Ser	ggt Gly	att Ile 145	atc Ile	ggt Gly	gga Gly	1987
	act Thr 150															2035
ggc Gly 165	tat Tyr	aat Asn	aaa Lys	aac Asn	tta Leu 170	gct Ala	ata Ile	gga Gly	act Thr	gtt Val 175	gta Val	gca Ala	gga Gly	gga Gly	gca Ala 180	2083
ttg Leu	ggt Gly	aca Thr	atg Met	gtt Val 185	cct Pro	cca Pro	agt Ser	atc Ile	gtg Val 190	ttg Leu	att Ile	att Ile	tac Tyr	gga Gly 195	atg Met	2131
acc Thr	gca Ala	aat Asn	gtt Val 200	tct Ser	att Ile	gga Gly	gaa Glu	cta Leu 205	ttt Phe	ctt Leu	gca Ala	gca Ala	att Ile 210	cca Pro	gcc Ala	2179
	tta Leu															2227
tac Tyr	Phe 230	aaa Lys	cct Pro	agc Ser	tat Tyr	ggc Gly 235	cct Pro	gca Ala	atg Met	cct Pro	agc Ser 240	tca Ser	gaa Glu	aat Asn	cat His	2275
	tta Leu															2323
	gta Val															2371
gca Ala	tca Ser	atc Ile	act Thr 280	gaa Glu	tct Ser	gcc Ala	tgt Cys	gtt Val 285	ggt Gly	gta Val	gtt Val	G1y 999	gta Val 290	ata Ile	tta Leu	2419

gca gca ttc tat cga aaa gaa tta aat ttc aaa ata gta caa gaa tca 2467 Ala Ala Phe Tyr Arg Lys Glu Leu Asn Phe Lys Ile Val Gln Glu Ser 300 305
cta aaa cat aca atc aat act gtg ggt atg ata atc tgg gtc ggc att $$ 2515 Leu Lys His Thr Ile Asn Thr Val Gly Met Ile Ile Trp Val Gly Ile $$ 310 $$ 315 $$
ggc gca aca atg att ata ggt att tat aat cta atg ggt ggt ggc cga 2563 Gly Ala Thr Met Ile Ile Gly Ile Tyr Asn Leu Met Gly Gly Asp Arg 325 330 340
ttt ata gct aac tta ttc gct agc tta gat gcc tct cca att tat act 2611 Phe Ile Ala Asn Leu Phe Ala Ser Leu Asp Ala Ser Pro Ile Tyr Thr 345 355
atc att att atg atg gtt att tta tta ata ctt ggt atg ttc tta gat $$ 2659 Ile Ile Ile Ile Met Met Val Ile Leu Leu Ile Leu Oly Met Phe Leu Asp $$ 360 $$ 370 $$
tgg att ggt gtt gcc atg ttg act ttc ctc aag aca agt aaa gcg aca 2707 Trp Ile Gly Val Ala Met Leu Thr Phe Leu Lys Thr Ser Lys Ala Thr 375 380 385
atc aat ttg tgt ttt gac ata gtc agg tac agt att tgg cgt ggt ccc 2755 Ile Asn Leu Cys Phe Asp Ile Val Arg Tyr Ser Ile Trp Arg Gly Pro 390 400
tcc ttc cac agt acc aat gtt cat cgt ggt acc ttt gtc ggg cgc ggt Ser Phe His Ser Thr Asn Val His Arg Gly Thr Phe Val Gly Arg Gly 405 410 420
act ttt tagtaaatct tgcgcgatac gaataaacgc attgatggca tttgctccgt 2859 Thr Phe
tttgtggatc gactgccgca tgagcagatt tgccaaaaaa ttcaattaca tacttcccaa 2919
toccttttct ttcgttaacg tttccactta gattgcccag aagccgatct gtctgaatgg 2979
gaacaagtgt tataccaaga agcgaatcca acaggtgaag tggtgatcgg tatggtgggt 3039
aaatacactg aattaccgga tgcctacaaa tcggttaatg aagccttgaa acacgcaggc 3099
ttaaaaaacc gtcttagcgt gcaaatcaaa tatattgatt cacaagatgt ggaaaccaaa 3159
ggcacagaag tgttagaagg cgt 3182
<210> 73 <211> 422 <212> PRT <213> Pasteurella multocida
<400> 73 Met Pro His His Cys Cys Ser Phe Ser Thr Thr Tyr Ile Pro Ser His 1 5 10 15
Leu Tyr Lys Ile Ser Gly Gly Ile Ile Met Ile Ser Ala Phe Gly Ile

149

Gly Ile Gly Thr Leu Ile Ile Phe Leu Met Met Ile Ser Leu Leu Phe $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Ile Gly Met Pro Leu Gly Phe Leu Thr Gly Leu Ile Ala Leu Val Ile Ser Tyr Leu Trp Phe Asp Thr Thr Ala Ile Met Gln Met Ile Ala Ser Arg Val Thr Asp Phe Thr Ser Ser Tyr Thr Phe Val Ala Val Pro Met Phe Val Leu Met Ala Thr Leu Leu Asp Lys Thr Gly Ile Ala Arg Asp Leu Tyr Asn Ala Met Arg Val Ile Gly Gly Arg Leu Arg Gly Gly Ile Ala Ile Gln Ser Met Phe Val Ala Val Leu Leu Ala Thr Met Ser Gly Ile Ile Gly Gly Glu Thr Val Leu Leu Gly Met Leu Ala Leu Pro Gln Met Leu Arg Leu Gly Tyr Asn Lys Asn Leu Ala Ile Gly Thr Val Val Ala Gly Gly Ala Leu Gly Thr Met Val Pro Pro Ser Ile Val Leu Ile 185 Ile Tyr Gly Met Thr Ala Asn Val Ser Ile Gly Glu Leu Phe Leu Ala 200 Ala Ile Pro Ala Ser Leu Leu Leu Ser Thr Phe Tyr Ile Leu Tyr Ile Leu Val Leu Cys Tyr Phe Lys Pro Ser Tyr Gly Pro Ala Met Pro Ser Ser Glu Asn His Thr Leu Thr Lys Glu Asp Ile Lys Lys Ile Ile His Asp Ile Ala Ile Pro Val Ala Ile Ala Thr Trp Ile Leu Gly Ser Ile Tyr Gly Gly Ile Ala Ser Ile Thr Glu Ser Ala Cys Val Gly Val Val Gly Val Ile Leu Ala Ala Phe Tyr Arg Lys Glu Leu Asn Phe Lys Ile Val Gln Glu Ser Leu Lys His Thr Ile Asn Thr Val Gly Met Ile Ile Trp Val Gly Ile Gly Ala Thr Met Ile Ile Gly Ile Tyr Asn Leu Met Gly Gly Asp Arg Phe Ile Ala Asn Leu Phe Ala Ser Leu Asp Ala Ser Pro Ile Tyr Thr Ile Ile Ile Met Met Val Ile Leu Leu Ile Leu Gly Met Phe Leu Asp Trp Ile Gly Val Ala Met Leu Thr Phe Leu Lys Thr

```
Ser Lys Ala Thr ile Asn Leu Cys Phe Asp Ile Val Arg Tyr Ser Ile
                     390
Trp Arg Gly Pro Ser Phe His Ser Thr Asn Val His Arg Gly Thr Phe
                                      410
Val Gly Arg Gly Thr Phe
            420
<?10> 74
<211> 2787
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (463) .. (936)
<220>
<223> yhcJ
<400> 74
gttaacacac catgattaat qatqccqqtt qaaqccactq caacqtaatc qaattqtccq 60
gcatacaaag caagaatgtt ggccagtgtg tcatgcatcg cattggcagc atcagcttgt 120
ggcgttgcaa tctgttggcg ttgttctatt ttgccgtctg ttacaatagc cgaggcaatt 180
tttgttccac caatatctaa tgctaaacag cgcataggct ctccttctgt gatgacttat 240
tttgccgatt tgacggcatc ggcaaaccag cttacgatat gttcgaggcg agtcagcgca 300
gatcctacgg tgacagagta agcaccaatc tcaattgcgg ttttcgccaa ttctggggtg 360
ttatagegee ettetgeeat cacteggeag ccagcageat tcaaatettt gactaactga 420
taatccggtt cagctggaat ttcaccgcca gtataaccag ac atg gtg cta cca
                                                 Met Val Leu Pro
ata att tot acc cot aag ttg tgg caa tac atc cot tot toa aaa tta
Ile Ile Ser Thr Pro Lys Leu Trp Gln Tyr Ile Pro Ser Ser Lys Leu
gaa caa too goo atg got aaa caa cot aat tot ttg att oot tta ata
Glu Gln Ser Ala Met Ala Lys Gln Pro Asn Ser Leu Ile Arg Leu Ile
                  25.
atg gct tca cgt gta gtt gga cgg acg cga tcg gta cca tca aaa gca
Met Ala Ser Arg Val Val Gly Arg Thr Arg Ser Val Pro Ser Lys Ala
             40
ata ata tog gog cot got gog got aac tot toa atg tot tgt aaa aat
                                                                     666
Ile Ile Ser Ala Pro Ala Ala Ala Asn Ser Ser Met Ser Cys Lys Asn
         55
ggg cta ata cga acg gga ctg tca ggt aaa tcg cgt tta acg ata cca
Gly Leu Ile Arg Thr Gly Leu Ser Gly Lys Ser Arg Leu Thr Ile Pro
ata atc ggt aca ttg acg acg tta cgc gtg gct ttt aaa ttt tcg atc Ile Ile Gly Thr Leu Thr Thr Leu Arg Val Ala Phe Lys Phe Ser Ile
```

85 90 95 100	
cct tea ata egt aac ceg gca gca cca ceg ata acg gat gct tgc gcc Pro Ser Ile Arg Asn Pro Ala Ala Pro Pro Ile Thr Asp Ala Cys Ala 105 115	810
atg gcg gca aca att tot ggc gag toc att ggc cca tta tot acg ggc Met Ala Ala Thr Ile Ser Gly Glu Ser Ile Gly Pro Leu Ser Thr Gly 120 125	858
tgg caa gat gcg att aag cca tat tta att tgt tct aaa act tgc gga ! Trp Gln Asp Ala Ile Lys Pro Tyr Leu Ile Cys Ser Lys Thr Cys Gly 135 140 145	906
tgt gat agt ttt gac ata tta act cca gtc taaatttatc aaaagaagat Cys ABP Ser Phe ABP Ile Leu Thr Pro Val 150	956
tgactccaat ttgcataggt taatcttaga attaaaaaat aacaaccaaa ataataaaaa	1016
tttgagatct ttgtcgcata tttattcata gggaatagac agcttaattt tagttatgat :	1076
ttgtcaatcc ttgctatttt ttgtgtttgc tggtttgcga tacactgttc taatattgct	1136
ttgagcactt gataaccttg ctcattaaaa tgtaatccgt cggtacaaag gcgtaaatcc	1196
agttcaccgt tagaatcaca aaagtatttt tgtgtttcaa cgtaagtcac gtctgacgga	1256
caatgttgtt ttaaataggt attgagcctg tgaatttgtg cgttagtgac cgtattaatc	1316
tgattgaccg gtgtggcttc taataaaaag tagtgggacg taggagaaat ggtgtgtagg	1376
tgagtcagaa tgtcatttaa ctatcgcatg acttgcgccg gtgaatacgt ttcttcctta	1436
caaatatcat tgacgcctaa aaaaagaaaa acagattgtc caagttgttg aatccgttta	1496
ggtttaacga taacatccaa atattgtcgc gtactgacgc cagaaagtcc taaattggcg 1	1556
acggtttgtc ccgctaattg aggtgtgcct gctacctgtt cgtcccacat gtcaaaaagt	1616
gaatgaccaa ttaagctgat attggcaggt ttggaaaatt ccgccatttt gctctgatag 1	1676
cgttgataaa tatcctgatc acttagcatg tgtggacctc tattttgaaa taaaacgcta 1	1736
agtattatat aaaacctgat atgeeggtaa acagtaaact tatetteegt aggggtaaat 1	1796
attcaatttt gtgacgaacc tatcatttat gaaataaaac ttcattttct atataaaaaa 1	1856
tagttttttc actttagaat gccaaacgtg tgaaatttat ttcatcatca ttttaacgta 1	1916
atcccaacgt aaccaataga ggagaactca taatgaaatt taaaaaacta ctacttgcat 1	1976
ctttatgttt aggtgtttca gcttctgtat ttgcagcaga ttacgatctt aaattcggta 2	2036
tggttgcggg tccaagctca aacgaatata aagcagtaga attctttgcg aaagaagtga 2	2096
aagaaaaatc caatggcaaa attgatgtgg ctattttccc tagctcacag ttaggtgatg 2	2156
accgtgtgat gattaaacaa ttaaaagacg gtgcattaga ctttacgtta ggtgaatcag 2	2216
cacgtttcca aatttacttc ccagaagcag aagtatttgc gttgccttat atgattccta 2	2276
attttgaaac ctctaaaaaa gcgttgctcg acacaaaatt tggtcaaggt ttattgaaaa 2	2336

```
aaattgataa agagttaaac gtacaaqtqt tatctgtggc gtataacgqt acacqtcaaa 2396
caacttctaa ccgtgcaatc aacagcattg aagacatgaa agggttaaaa ttacgtgtac 2456
ctaacgcggc aaccaacctt gcttatqcaa aatacgtggg tgcaqcqcca acaccaatgg 2516
cattetetga agtttacett gegetteaaa caaactetgt ggatggteaa gaaaacceat 2576
taccgacaat ccaaqcacaa aaattctatq aagtacaaaa atacttagcg ttaactaacc 2636
acatettaaa tgaccaaett taettaatea gtaacgatac gttggcagat ttaccaqaag 2696
atttacaaaa agtggttaaa gatgcagcag cgaaagccgc tgaatatcac actaaactct 2756
tcgttgacgg tgagaacagc ttagttgaat t
                                                                   2787
<210> 75
<211> 158
<212> PRT
<213> Pastéurella multocida
<400> 75
Met Val Leu Pro Ile Ile Ser Thr Pro Lys Leu Trp Gln Tyr Ile Pro
Ser Ser Lys Leu Glu Gln Ser Ala Met Ala Lys Gln Pro Asn Ser Leu
Ile Arg Leu Ile Met Ala Ser Arg Val Val Gly Arg Thr Arg Ser Val
Pro Ser Lys Ala Ile Ile Ser Ala Pro Ala Ala Ala Asn Ser Ser Met
Ser Cys Lys Asn Gly Leu Ile Arg Thr Gly Leu Ser Gly Lys Ser Arg
Leu Thr Ile Pro Ile Ile Gly Thr Leu Thr Thr Leu Arg Val Ala Phe
Lys Phe Ser Ile Pro Ser Ile Arg Asn Pro Ala Ala Pro Pro Ile Thr
            100
Asp Ala Cys Ala Met Ala Ala Thr Ile Ser Gly Glu Ser Ile Gly Pro
Leu Ser Thr Gly Trp Gln Asp Ala Ile Lys Pro Tyr Leu 1le Cys Ser
Lys Thr Cys Gly Cys Asp Ser Phe Asp Ile Leu Thr Pro Val
<210> 76
<211> 2787
<212> DNA
<213> Pasteurella multocida
```

<220> <221> CDS

<222> (1949)..(2785)

<220> <223> yia0

<400> 76 gttaacacac catgattaat qatqccqqtt qaaqccactq caacqtaatc qaattqtccq 60 gcatacaaag caagaatgtt ggccagtgtg tcatgcatcg cattggcagc atcagcttgt 120 ggcgttgcaa tctqttggcg ttqttctatt ttqccqtctq ttacaatagc cgaggcaatt 180 tttgttccac caatatctaa tgctaaacag cgcataggct ctccttctgt gatgacttat 240 tttqccqatt tqacqqcatc qqcaaaccaq cttacqatat qttcqaqqcq agtcaqcqca 300 gatectaegg tgacagagta ageaceaate teaattgegg ttttegeeaa ttetggggtq 360 ttatagegee ettetgeeat cacteggeag ceageageat teaaatettt gaetaactga 420 taatccggtt cagctggaat ttcaccgcca gtataaccag acatggtgct accaataatt 480 totaccccta agttgtggca atacatccct tottcaaaat tagaacaatc cgccatggct 540 aaacaaccta attetttgat tegtttaata atggetteae gtgtagttgg acggaegega 600 teggtaccat caaaagcaat aatateggeg eetgetgegg etaactette aatgtettgt 660 aaaaatgggc taatacgaac gggactgtca ggtaaatcgc gtttaacgat accaataatc 720 ggtacattga cgacgttacg cgtggctttt aaattttcga tcccttcaat acgtaacccq 780 gcagcaccac cgataacgga tgcttgcgcc atggcggcaa caatttctgg cgaqtccatt 840 ggcccattat ctacgggctg gcaagatgcg attaagccat atttaatttq ttctaaaact 900 tgcggatgtg atagttttga catattaact ccagtctaaa tttatcaaaa gaagattgac 960 tccaatttgc ataggttaat cttagaatta aaaaataaca accaaaataa taaaaatttg 1020 agatottigt ogcatattia ticataggga atagacagot taattitagt tatgattigt 1080 caatccttgc tattttttgt gtttgctggt ttgcgataca ctqttctaat attqctttga 1140 gcacttgata accttgctca ttaaaatgta atccqtcqqt acaaaqqcqt aaatccaqtt 1200 caccgttaga atcacaaaag tatttttgtq tttcaacgta agtcacgtct gacggacaat 1260 gttgttttaa ataggtattg agcctgtgaa tttgtgcqtt agtgaccgta ttaatctgat 1320 tgaccggtgt ggcttctaat aaaaagtagt gggacgtagg agaaatggtg tgtaggtgag 1380 tcagaatgtc atttaactat cgcatgactt gcgccggtga atacgtttct tccttacaaa 1440 tatcattgac gcctaaaaaa agaaaaacaq attqtccaaq ttqttqaatc cqtttaqqtt 1500 taacgataac atccaaatat tgtcgcgtac tgacgccaga aagtcctaaa ttggcgacgq 1560 tttgtcccgc taattgaggt gtgcctgcta cctgttcgtc ccacatgtca aaaagtgaat 1620 gaccaattaa getgatattg geaggtttgg aaaatteege cattttgete tgatagegtt 1680 gataaatatc ctgatcactt agcatgtgtg gacctctatt ttgaaataaa acgctaagta 1740 ttatataaaa cctgatatgc cggtaaacag taaacttatc ttccgtaggg gtaaatattc 1800

aattttgtga cgaa	cctatc atttatga	aa taaaacttca	ttttctatat aaaaaata	t 1860
tttttcactt taga	atgcca aacgtgtg	aa atttatttca	tcatcatttt aacgtaate	c 1920
caacgtaacc aata	gaggag aactcata		aaa aaa cta cta ctt Lys Lys Leu Leu 5	1972
gca tct tta tgt Ala Ser Leu Cys 10	tta ggt gtt to Leu Gly Val Se 15	a get tet gta r Ala Ser Val	ttt gca gca gat tac Phe Ala Ala Asp Tyr 20	2020
gat ctt aaa ttc Asp Leu Lys Phe 25	ggt atg gtt gc Gly Met Val Al 30	g ggt cca agc a Gly Pro Ser 35	tca aac gaa tat aaa Ser Asn Glu Tyr Lys 40	2068
			aaa too aat ggo aaa Lys Ser Asn Gly Lys 55	2116
			ggt gat gac cgt gtg Gly Asp Asp Arg Val 70	2164
	Leu Lys Asp Gl		ttt acg tta ggt gaa Phe Thr Leu Gly Glu 85	2212
			gaa gta ttt gcg ttg Glu Val Phe Ala Leu 100	2260
			aaa gcg ttg ctc gac Lys Ala Leu Leu Asp 120	2308
			gat aaa gag tta aac Asp Lys Glu Leu Asn 135	2356
gta caa gtg tta Val Gln Val Leu 140	tot gtg gcg ta Ser Val Ala Ty	t aac ggt aca r Asn Gly Thr 145	cgt caa aca act tct Arg Gln Thr Thr Ser 150	2404
		u Asp Met Lys	ggg tta aaa tta cgt Gly Leu Lys Leu Arg 165	2452
gta cet aac geg Val Pro Asn Ala 170	gca acc aac ct Ala Thr Asn Le 175	t gct tat gca u Ala Tyr Ala	aaa tac gtg ggt gca Lys Tyr Val Gly Ala 180	2500
			ctt gcg ctt caa aca Leu Ala Leu Gln Thr 200	2548
			aca atc caa gca caa Thr Ile Gln Ala Gln 215	2596
			act aac cac atc tta Thr Asn His Ile Leu 230	2644

aat gac caa ctt tac tta atc agt aac gat acg ttg gca gat tta cca 2692 Asn Asp Gln Leu Tyr Leu Ile Ser Asn Asp Thr Leu Ala Asp Leu Pro gaa gat tta caa aaa gtg gtt aaa gat gca gca gcg aaa gcc gct gaa 2740 Glu Asp Leu Gln Lys Val Val Lys Asp Ala Ala Ala Lys Ala Ala Glu 255 tat cac act aaa ctc ttc gtt gac ggt gag aac agc tta gtt gaa tt 2787 Tyr His Thr Lys Leu Phe Val Asp Gly Glu Asn Ser Leu Val Glu <210> 77 <211> 279 <212> PRT <213> Pasteurella multocida <400> 77 Met Lys Phe Lys Lys Leu Leu Leu Ala Ser Leu Cys Leu Gly Val Ser Ala Ser Val Phe Ala Ala Asp Tyr Asp Leu Lys Phe Gly Met Val Ala Gly Pro Ser Ser Asn Glu Tyr Lys Ala Val Glu Phe Phe Ala Lys Glu Val Lys Glu Lys Ser Asn Gly Lys Ile Asp Val Ala Ile Phe Pro Ser Ser Gln Leu Gly Asp Asp Arg Val Met Ile Lys Gln Leu Lys Asp Gly Ala Leu Asp Phe Thr Leu Gly Glu Ser Ala Arg Phe Gln Ile Tyr Phe Pro Glu Ala Glu Val Phe Ala Leu Pro Tyr Met Ile Pro Asn Phe Glu Thr Ser Lys Lys Ala Leu Leu Asp Thr Lys Phe Gly Gln Gly Leu Leu Lys Lys Ile Asp Lys Glu Leu Asn Val Gln Val Leu Ser Val Ala Tyr Asn Gly Thr Arg Gln Thr Thr Ser Asn Arg Ala Ile Asn Ser Ile Glu Asp Met Lys Gly Leu Lys Leu Arg Val Pro Asn Ala Ala Thr Asn Leu Ala Tyr Ala Lys Tyr Val Gly Ala Ala Pro Thr Pro Met Ala Phe Ser Glu Val Tyr Leu Ala Leu Gln Thr Asn Ser Val Asp Gly Gln Glu Asn Pro Leu Pro Thr Ile Gln Ala Gln Lys Phe Tyr Glu Val Gln Lys Tyr Leu Ala Leu Thr Asn His Ile Leu Asn Asp Gln Leu Tyr Leu Ile Ser

```
Asn Asp Thr Leu Ala Asp Leu Pro Glu Asp Leu Gln Lys Val Val Lys
                245
Asp Ala Ala Ala Lys Ala Ala Glu Tyr His Thr Lys Leu Phe Val Asp
                             . 265
Gly Glu Asn Ser Leu Val Glu
        275
<210> 78
<211> 2590
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (908)..(1294)
<220>
<223> yjgF
<400> 78
ctgcaggctc gattagtggg gcaccgaaag aaaaaaccgt gcaaattatt cacgccgcag 60
aacaqcaqcc acqcqqttat tacacqqqqa tttttqqtct qttcqatqqt qaqtcqttac 120
aaagtgcggt ggcaattcgt tttattgagc aagtggacga gaaattgatt ttccgcagcg 180
gtggcggat tacgatctta agcgagctag aagacgagta ccaagaattg atccaaaaag 240
tgtatgtacc agtaggataa gcgatgacat ttcctttatt tgagacgatc gctattgtga 300
acggtgaaat tcagcacctt gccctgcatc aacaacgtta tgcggcaagt ttggcgacct 360
tttacggcga gaaaggagcg aaagtacagg atcttgcgaa aattattcag attccgaccg 420
cacttgaaca cactcaacat gegeegataa teegttgteg gattgattac aatcagcaag 480
actgtgacgt gcattatttt ccctatcaac gcaaaattta ccgcactttt caqcctqtca 540
tttgcgatga aattaactat gatctgaaat atgctgatcg ggcattatta aatcagttat 600
ttgctcagcg tagggattgt gatgagatta tgattatcaa acacggcaag gtgacggatt 660
gcagtattgg taatctggtg tttcqccaag gtgagcaatg gttcacgcca gatagcccgt 720
tattttacgg cacacaacga gcctggttat tacaacaagg caaaattcaa gcccgttcca 780
tottattgca agagategca caatttgaag aaatteggtt aattaatgca ctaaateege 840
tgtaaatttt ccttgaacag cgtaaaataa aacaactttt tcagtcagat aaaaggagat 900
aaacgac atg acg aaa gta att cat act gac aat gca cca gcc gcc att
       Met Thr Lys Val Ile His Thr Asp Asn Ala Pro Ala Ala Ile
          1
                                             10
ggt cct tat gta caa gcg gta gat tta ggt aat atg ctg tta acc tct
                                                                  997
Gly Pro Tyr Val Gln Ala Val Asp Leu Gly Asn Met Leu Leu Thr Ser
15
                     20
ggg caa att cca gtg aat cca aaa acc ggt gaa gtg cca gcg gat atc
                                                                  1045
Gly Gln Ile Pro Val Asn Pro Lys Thr Gly Glu Val Pro Ala Asp Ile
```

35 40 45	
gta gca caa gca cgt caa tog tta gaa aac gtg aaa gcg att gtg gaa Val Ala Gln Ala Arg Gln Ser Leu Glu Asn Val Lys Ala Ile Val Glu 50 55	1093
caa gcg gga tta caa gtc gca aat atc gtg aaa acc acg gtg ttt gtg Gln λ la Gly Leu Gln ν la λ	1141
aaa gat tta aat gac ttt gca g g gtc aat gcg gag tat gaa cgt ttc Lys Asp Leu Asn Asp Phe Ala Ala Val Asn Ala Glu Tyr Glu Arg Phe 80 $$ 90 $$	1189
ttt mam gag mac aat cac oot ago tto oot get ogt tom tet geg gam Phe Lys Glu Asn Asn His Pro Ser Phe Pro Alm Arg Ser Cys Val Glu 95 105 106 105 110	1237
gtg gca cgt ttg ccg aaa gat gtg ggg att gaa atc gag gca atc gct Val Ala Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala 115 125 120 125 125 120 125 125 120 125 125 120 125 125 120 125 125 120 125 125 120 125 125 125 120 125 125 125 125 125 125 125 125 125 125	1285
gta aaa gcc taatgaatag cttgcattta tcttagtcgt agcaaaacaa Val Lys Ala	1334
totottttca ottgototot toaaagcaag ttgataagtg atttttattg ggogttmttd	1394
tattgatago caaaaacgoo otttactgat agagaataaa otatgcaaaa tcaagtcato	1454
gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttcacca aattatgcgt	1514
gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgta tggaaattca	1574
ttacatgata ttgacagcta ttatttaatc cgtgcatttg agacagaaac caaattgcaa	1634
cagcagctcg atgcttttta tgccagtgat gattggcgtg atggaccaag agaaagtat	1594
attogootga ttgaaagcag tttaaaatog gtgatcatgo tocogacaca ggcaatcoat	1754
gcactacgca accattatcc tcaataaaat caacaaccgc acccaatcag tgcggtcatt	1814
ttttcttact ttttcagtgc taagggaaaa acaacgatag tggacgttgt ttaatcaatt	1874
tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg	1934
caacccataa cgcgataaag aaactgacaa tcaaattcac cataccaatc aataacacga	1994
acactaaacc ttgtaagaac atctgccaag taaacgcgcc actgatcgcc atatagccca	2054
aattcgcaga agaaaacgcc acatggcgaa tatctaacgg taaattaagc aaatacccga	2114
ctaaccccgt taaaccaagc aataaaccaa aacacagatt tcccataatc gaaccgtaat	2174
tatcatgcca gtattctgca aatttgtagc gcatattacg ggtcaacaga cggcgtaaaa	2234
tagggtgatt tettagtege atttttaagt teaaataatt actaegatta teaaaataa	2294
cagaaataat cccagaaaag aataaccaga aacccgcaat ggcggcaaac cataaggac	2354
ctttcatcgg atcaagggat ttttgttggt aggcaatctc cgcgtcactc aataaaggtg	2414
taccaacata atgttgatag cctagcgcaa gcaaacaagc cacagaaatc gctaaagtga	2474

cattacccaa gactgccact gtttgcgagc gaaacacatc gatcagcagt tgagctaatt 2534 quadattaac qqatttqcct tqtccattat ccaccotttc tqcaaaacqt qctqca 2590 <210> 79 <211> 129 <212> PRT <213> Pasteurella multocida :400> 79 Met Thr Lys Val Ile His Thr Asp Asn Ala Pro Ala Ala Ile Gly Pro Tyr Val Gln Ala Val Asp Leu Gly Asn Met Leu Leu Thr Ser Gly Gln Ile Pro Val Asn Pro Lys Thr Gly Glu Val Pro Ala Asp Ile Val Ala Gln Ala Arg Gln Ser Leu Glu Asn Val Lys Ala Ile Val Glu Gln Ala Gly Leu Gln Val Ala Asn Ile Val Lys Thr Thr Val Phe Val Lys Asp Leu Asn Asp Phe Ala Ala Val Asn Ala Glu Tyr Glu Arg Phe Phe Lys Glu Asn Asn His Pro Ser Phe Pro Ala Arg Ser Cys Val Glu Val Ala 105 Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala Val Lys 120 Ala <210> 80 <211> 6642 <212> DNA <213> Pasteurella multocida <220> <221> CDS <222> (463) .. (1884) <220> <223> yleA <400> 80 aacccagete agataagttt aattetgget atggaaagtg gaccaaatee ttegatetee 60 caggitteta aggegegata egggeaaata egagtattit egatataetg eeaageacet 120 agttgtttta agagattaac ggaagcaaca ctgatcgcag aaatgcgaag atcgtaaggc 180 gaattaggtt gaaactgtgg gagtggggcg tqttcqataa qctqqacttq atqtccttqt 240

ttacgtaagc caagegcaca ggctgcacca accatgccac cgccaaccac gatcatgtct 300
ttttgtatga cgtccatagg attttccttt tctttttgtt acgtattcta ccgtcaatga 360

ggg	aatti	ca a	aaaga	aaat	ct c	tttt	ttage	tag	gcca	gcat	agg	ttca	aga -	ctgt	aaaata	420
gtc	agtca	aca 1	tttt	atag	gg t	taaci	tgaai	t tt	tta	aacg		atg a Met 1				474
	cat His															522
	atg Met															570
	ccg Pro															618
	aaa Lys															666
	aag Lys 70															714
gcc Ala 85	tca Ser	caa Gln	gaa Glu	gga Gly	gaa Glu 90	cac His	att Ile	cgt Arg	act Thr	cgt Arg 95	gct Ala	cct Pro	tat Tyr	gtc Val	gat Asp 100	762
	att Ile															810
	atc Ile															858
att Ile	gaa Glu	aaa Lys 135	ttc Phe	gac Asp	cgt Arg	tta Leu	cca Pro 140	gaa Glu	ccg Pro	cgt Arg	gca Ala	gaa Glu 145	ggt Gly	cca Pro	act Thr	906
gct Ala	ttc Phe 150	gta Val	tcc Ser	att Ile	atg Met	gaa Glu 155	ggc Gly	tgt Cys	aat Asn	aaa Lys	tat Tyr 160	tgc Cys	tca Ser	ttc Phe	tgt Cys	954
	gtg Val															1002
	t ta Leu															1050
	tta Leu															1098
	ggt Gly															1146
gat	ggt	att	gac	cgt	tta	cgt	ttt	acc	acc	agt	cac	cca	att	gag	ttc	1194

Asp Gly II 230	e Asp Arg	Leu Arg 235	Phe Th	Thr	Ser His		Ile	Glu	Phe	
act gat ga Thr Asp As 245	c att att p Ile Ile	gat gtg Asp Val 250	tac cgt Tyr Arg	Asp '	acg cca Thr Pro 255	gag Glu	ttg Leu	gtg Val	agt Ser 260	1242
ttc tta ca Phe Leu Hi		Val Gln								1290
atg aaa co Met Lys Ar	c aat cat g Asn His 280	acg gca Thr Ala	tta gaa Leu Glu 289	Tyr 1	aaa tcg Lys Ser	att Ile	att Ile 290	cgg Arg	aag Lys	1338
tta aga go Leu Arg Al 29	a Val Arg									1386
ggt ttc co Gly Phe Pr 310						Thr				1434
att gca ca Ile Ala Gl 325				Phe :						1482
cgt cca gg Arg Pro Gl	c acg cca y Thr Pro 345	Ala Ala	gat ato	Pro 350	gat gat Asp Asp	gtg Val	aca Thr	gaa Glu 355	gaa Glu	1530
gag aag aa Glu Lys Ly				Gln						1578
gcc gcg ca Ala Ala Gl 37	n Phe Ser									162€
gtg gaa gg Val Glu Gl 390						Thr				1674
gaa act aa Glu Thr As 405	t cgt atc n Arg Ile	gtc aat Val Asn 410	ttt gte Phe Val	Gly '	acg cct Thr Pro 415	gat Asp	atg Met	att Ile	999 Gly 420	1722
aag ttt gt Lys Phe Va										1770
ggt gaa gt Gly Glu Va	c gtt aga 1 Val Arg 440	act gaa Thr Glu	gaa caa Glu Gli 449	Met (gga ctt Gly Leu	cgc Arg	gtt Val 450	gtt Val	caa Gln	1818
tcg cca ca Ser Pro Gl 45	n Met Val	att aat Ile Asn	cgt act Arg Thi 460	cgt a	aaa gaa Lys Glu	gat Asp 465	gaa Glu	ctc Leu	ggc Gly	1866
gtg gga cg Val Gly Ar 470			tegtget	atccc	ttcaa a	tatt	aaco	=		1914

getetegagt tteteaagag eggttatttt ttatgaaaaa tttttgataa attgaceget 1974 ctttttattg cttcatttta tqataqacag cgtgttttct gttattcatc gtatttcttt 2034 ttatttcact tcattaataa attattaaat ttcaattgct tatcaaaatt gttgtttttt 2094 qctttttttc tatttatagc atqqttattt tttatacaca catqqcqtat ttctccatat 2154 ttttacaaaa aactgtgact tcactctaac tattgttctc tcgtgcttta ctccatttta 2214 taaggoggtt agtttagate atgttgtttt tacaacatat tttgaggttg tttgaaggtt 2274 qaqcttattt tataqttqaq qtqatqatqa aaaaatttaa tcctaqtata ttqqcqttqt 2334 ccatatcaaq totqctactc acatccacat tqacctttqq tcaaatccaq caacaaqata 2394 aagcactett tggtgtgaaa gaacatcaag aaagcctact ettteateag agettagtag 2454 aacaaqqtaq tqataatqtq ccaatttqqc qcattccqtc tttattaaqa acaaaaqacq 2514 gtgtattaat tgccgccgca gataagcgtt ggcaacaccg tggtgactgg ggcgatattg 2574 ataccqcaat ccqaattaqt catqatqatq qqaaaacatq qqqaaatatt acaacqattt 2634 tggatttgcc atcaaagaat ggggaaaaat ccccatcagc accagatcct gtaacattca 2694 acgcgtgggg agatagacaa aattgtacaa cttactgtaa ttctgctttt ttgatcgatg 2754 ctcaqatqqt acaaqataaa cqtaatqqta qaattttttt aqcaqttqat atqtttqccq 2814 atggagcagg tttttttggt gtaaaagaca gtggtaatgg gcgcattaat attgatggta 2874 aacaqtatcc tattttaaat qaaaaqcaat cqqqtcqaca ttqaaccctq tqttcttaac 2934 tettteaett geteaaegtt eaeeggaate aegeggteaa taaaagtegg ttteeagttt 2994 aaacccggtt gaacaatagc gtgtaattca ccaaaacgca tcaccacgcc acgttctgct 3054 tetttgacag tataaaaace getaacgeee cagacaattg caccaatcae egetgeaatt 3114 ggcaataatt taccaagatt taacgatcca ccagaatgcg agttattgcg tttaccgcca 3174 ttccctgaac cgcctaattt tttcagcaga ttattaaaaa tctcttcaat atcaggtggt 3234 gattgctctt gattgttttg cttacgacct gactggttat cattccaatt cggctgaccg 3294 cetteattat caggacgetg acteteaggt tittitetgte egggtitgee ceaaggatet 3354 tgatctgaac cgttcaatga cattacgttc tccatttgtc aaaaaattgt tacttgttta 3414 aacaaattcc cacagtctaa acaaaatgtt ggattaagtc taacgaaact cgttactaaa 3474 tggggatatt ttttatgatt taaagtgccg ccaataaaaa cgcacaatgg tctcattttt 3534 acqqcttact acctqacttt tqtcctatcq ctttqtcqqt catqtttttt cattcacctt 3594 ataataaatq qcqtcqtqta aqqtqqtttc cqctaatatt cccctctqcc aaqtaaaata 3654 gtgcacatct aagcactgtg tttggttaat aaaaaaagcc aagtaaaacg gcaagcggtg 3714 actaaaqaqq aqttaactaa qtttctqtat qctaqcqtac tattqactct tcttqcactq 3774 tqtttgggtt ttattgcggt qaatqaaacc ctagcgtgta tttctttgtt attgttggct 3834

tatttaagcg ttagccgagt attatttgcg ctcgcgttgt tgggcgtgat catgaatttg 3894 agetattact attatetett gagtateeet ttattacata aatetttett aeteatggga 3954 gtaggcatcg ttctggcact agttacgttt gttttatcac gttataacaa ggcaccqcaq 4014 gcaacattac aagctgaatc gcacaatacq tttcaaccac aaacaatgtt acqtaaaaaa 4074 ctaggattca ctttgttggc qacatgtttg attgcctttg ccacgaatta tactattcat 4134 aaatatgaag atattttaac qaatggtgag tcaattattt taaaaacqqc acccqttqat 4194 ccgcgttcct tgatgcaagg ggattatatg acgttgaact atgaaatctt ggcagacatt 4254 agtgaggaat ggggaaaaaa tttagaagag gaaaaaacac agtattttgt ttatgcgttg 4314 ttaaaacgag acagcctagg gattgctacc ttgtqtcqtc ttqaaaccaa aqcacctaca 4374 acatttgacg ggtgtacacc aaatatttac ttaccggtga atgtcgcgat gtggtggccg 4434 cgtttaccaa gtcaagacta cttttttgcc gagggaaaaq gtgaatatta tgcacaagct 4494 gaatatgccg aatatcgctt taaaggggga aaagcgttgt tgttccgctt actagataaa 4554 aatttaaaag cattataaaa caaaaggcgg tagtgaaccg cetttatgtt gtatgccact 4614 tacttcaccg caatcattga gccaaaatta aagcattgaa accataattc cacttgttga 4674 aaaccgactt cagctaaacg cattttatgg gcttgaatgc tgtctgtacg catcacattt 4734 tcaagtgcgg tgcgtttttq qctqacttca aqttcactqt atccattcqc qcgtttaaat 4794 tgatgatgta aatcaatcaa caaggcattc atgttttgat cttcaaaatg aaatttctcg 4854 gatagtacca agatcccatt cggttgtaag ccttggtaaa tcttacttaa taaggctcga 4914 cgatcttcag gtggcagaaa ttgcaaagtg aaatttaaaa ttaccatgaa ggcattttcg 4974 atttcgatat ggcgtatatc atcacaaata atgtccacag gtattgtact ttgataggca 5034 ctaacatqct qqcqacaacq atcqaccatq qqttqtqaqt tatcaacacc aatqatcttq 5094 acgccgggtt gattaatatg acgacgtgca gataatgttg ccgcaccgcg cgagcacccc 5154 agatcataga cgttgctatt cgccgtaaca aagcgtgatg ccaacatccc aatagcggta 5214 atgatgttgg catagccggg aatagagcgt tggatcatgt cgggaaagac ttcagctacg 5274 ctttcatcaa aagtaaaatc ccccaattta gcaatgggga gtcgaaaata gagtatcttt 5334 tgtcataatg tattaaagac cgagaaaaag tgcggtcatt ttagaaqaaq tttcqaccta 5394 tcacaaataa attatgattt Cgggaataaa tgcgccatgg cactttcttc ttqtttaata 5454 Cgcacgccta ggataagcaa ataaatgggt aatccaatca atqcqqtata ttttqcttqq 5514 cagaaaagcg ataaaccaat taactcggga ataatgttta agaaataatt cgggtgacgt 5574 acgtatttaa acaagaaaga gcggttaatg tgatgttccg gtaaaatgta aagttttact 5634 gtccaaatct ctttcagttc ataaatcacg taaaatagca tggcgatcgc aaagactaaa 5694 atcgccagcc ctatttgtga ggtgctatta aatgctgtgt tttggttatt agcttcaatg 5754

atcgcggcga gataaaatac aacatgggca atggataaca gcgtagaatt gcgtttacca 5814 tattgtattg caccttttgc aatcaatgct ttttcatggc ggattgaaat agacaqacta 5874 taaaaaacgga tcgctaaaat acaggcaaaa gtgatattga taaataacat gtggttatcc 5934 ttaacataat tttattccaa taaagtqqcg taatataaca aaaaatccqa tqatatqqca 5994 tqqaaatacq cctttatttt gaacgttcat cgcttttctt tttctttatt qqttqatttq 6054 taagcataaa taaccttttt atctctcttg gttttccgct ataattgagt gaatttttga 6114 gcataattaa gagtacaaag gattttgaaa tgatgcgtac acattattqc ggtqcattaa 6174 accetegacaa tatcegacaa gaaqtaacat teagtegette qetecatcet cecceteatt 6234 taggtgggtt aatttttatt gatatgcgtg atcgtgaagg gattgtacaa gtgtgtttcg 6294 atccaatata tcaagaagca ctcaccacag cagcaagttt acgtaatqaq ttttqtattc 6354 aaattaaagg cgaagtgatt gecegeecag ataatcaaat caacaaaaat atggcaacag 6414 gcgaagtgga agtgttagca aaatccctgt ctatttataa cagcgcagag ccattacctc 6474 togactttaa ccaaaataat acggaagaac agcgtttaaa ataccgttat ttagacttac 6534 gtcgcccaga aatggcgcaa cgtttaaaaa cacgagccaa aattaccaqc tttqtqcqtc 6594 gctttatgga cgaacatggt ttcttaqata ttgaaacacc gatqttqa 6642

Glu 145	Gly	Pro	Thr	Ala	Phe 150	Val	Ser	Ile	Met	Glu 155	Gly	Cys	Asn	Lys	Tyr 160
Сув	Ser	Phe	Cys	Val 165	Val	Pro	Tyr	Thr	Arg 170	Gly	Glu	Glu	Val	Ser 175	Arg
Pro	Val	qaA	Asp 180	Val	Leu	Phe	Glu	Ile 185	Ala	Gln	Leu	Ala	Glu 190	Gln	Gly
Val	Arg	Glu 195	Val	Asn	Leu	Leu	Gly 200	Gln	Asn	Val	Asn	Ala 205	Tyr	Arg	Gly
Ala	Thr 210	His	Asp	Asp	Gly	Ile 215	Cys	Thr	Phe	Ala	Glu 220	Leu	Leu	Arg	Leu
Val 225	Ala	Ala	Ile	Asp	Gly 230	Ile	Asp	Arg	Leu	Arg 235	Phe	Thr	Thr	Ser	His 240
Pro	Ile	Glu	Phe	Thr 245	Asp	Asp	Ile	Ile	Asp 250	Val	Tyr	Arg	Asp	Thr 255	Pro
Glu	Leu	Val	Ser 260	Phe	Leu	His	Leu	Pro 265	Val	Gln	Ser	Gly	Ser 270	Asp	Arg
Val	Leu	Ser 275	Met	Met	Lys	Arg	Asn 280	His	Thr	Ala	Leu	Glu 285	Tyr	Lys	Ser
Ile	Ile 290	Arg	Lys	Leu	Arg	Ala 295	Val	Arg	Pro	Glu	Ile 300	Gln	Ile	Ser	Ser
Asp 305	Phe	Ile	Val	Gly	Phe 310	Pro	Gly	Glu	Thr	Ala 315	Glu	Asp	Phe	Glu	Gln 320
Thr	Met	Asn	Leu	11e 325	Ala	Gln	Val	Asn	Phe 330	Asp	Met	Ser	Phe	Ser 335	Phe
Ile	Tyr	Ser	Ala 340	Arg	Pro	Gly	Thr	Pro 345	Ala	Ala	Asp	Met	Pro 350	Asp	Asp
Val	Thr	Glu 355	Glu	Glu	Lys	Lys	Gln 360	Arg	Leu	Tyr	Val	Leu 365	Gln	Gln	Arg
Ile	Asn 370	Asn	Gln	Ala	Ala	Gln 375	Phe	Ser	Arg	Ala	Met 380	Leu	Gly	Thr	Glu
Gln 385	Arg	Val	Leu	Val	Glu 390	Gly	Pro	Ser	Lys	Lys 395	Asp	Leu	Met	Glu	Leu 400
Thr	Gly	Arg	Thr	Glu 405	Thr	Asn	Arg	Ile	Val 410	Asn	Phe	Val	Gly	Thr 415	Pro
Asp	Met	Ile	Gly 420	Lys	Phe	Val	Asp	Ile 425	Lys	Ile	Thr	Asp	Val 430	Phe	Thr
Asn	ser	Leu 435	Arg	Gly	Glu	Val	Val 440	Arg	Thr	Glu	Glu	Gln 445	Met	Gly	Leu
Arg	Val 450	Val	Gln	Ser	Pro	Gln 455	Met	Val	Ile	Asn	Arg 460	Thr	Arg	Lys	Glu
Asp 465	Glu	Leu	Gly	Val	Gly 470	Arg	Tyr	His	Ala						

```
<210> 82
<211> 4835
<212> DNA
<213> Pasteurella multocida
<220>
<221> CDS
<222> (407)..(1156)
<220>
<223> voiB
<400> 82
gtcaacgacg gggcgggtct tagaacattg gcatacgggt acgatgacac gccgtgtccc 60
agageteeat egeteettee caaataactt qqtttqqatq cacccattaq atqcqaaaaa 120
acgtggttta cgtcatggcg ataaagtgaa gatcagctca cgtcgtggcg aaatgatttc 180
tcacttagat accogtqqac qtaataaaqt cccacaaqqc ttaqtttaca ccactttett 240
tgatgcaggt cagttagcaa actatctcac tttagatgcg acagacccaa tttcaaaaga 300
aacggacttc aaaaaatgtg cggtcaaagt ggaaaaagcg taacacgtta aatttaatga 360
ggaacgaccg cactttgctt tcagtaaagt gcggttggaa agtcga atg aaa asa
                                                                   415
                                                    Met Lys Lys
aca gtt gtg aat cct gaa cgt cgt cga ttt ttt aaa gag gct acg cgc
                                                                   463
Thr Val Val Asn Pro Glu Arg Arg Arg Phe Phe Lys Glu Ala Thr Arg
act gca ggc ggg ttg gca ggg gtg act ttg ctc ctt ggt ttg caa caa
                                                                   511
Thr Ala Gly Gly Leu Ala Gly Val Thr Leu Leu Cly Leu Gln Gln
aag cag agt ctt gcg cgc gaa ggc gtg gcg tta cgc cca cct ttt gcc
Lys Gln Ser Leu Ala Arg Glu Gly Val Ala Leu Arg Pro Pro Phe Ala
                 40
ctt gag aat gag aaa gcg ttt tct gct gcg tgc att cgt tgt ggt cag
                                                                   607
Leu Glu Asn Glu Lys Ala Phe Ser Ala Ala Cys Ile Arg Cys Gly Gln
                                 60
tgt gta caa gcc tgt cca cat gag atg ttg cat ctt gcc tca ctg att
                                                                   655
Cys Val Gln Ala Cys Pro His Glu Met Leu His Leu Ala Ser Leu Ile
tca ccg atg gaa gca ggt aca ccg tat ttc att gcg cgc gat aag ccc
                                                                   703
Ser Pro Met Glu Ala Gly Thr Pro Tyr Phe Ile Ala Arg Asp Lys Pro
tgt gaa atg tgt gtg gat att cet tgt gca aaa gee tge eea ace ggt
                                                                  751
Cys Glu Met Cys Val Asp Ile Pro Cys Ala Lys Ala Cys Pro Thr Gly
100
gea ttg gat aat caa gea aca gaa ate gat gat geg egt atg ggg tta
                                                                  799
Ala Leu Asp Asn Gln Ala Thr Glu Ile Asp Asp Ala Arg Met Gly Leu
get gte etg eta gat eat gaa aet tgt etg aac tgg eaa ggt tta ege
Ala Val Leu Leu Asp His Glu Thr Cys Leu Asn Trp Gln Gly Leu Arg
```

135 140 145	
tgt gat gtg tgt tat ege gte tgt eeg etg att aat aaa geg att aeg Cys Asp Val Cys Tyr Arg Val Cys Pro Leu Ile Asm Lys Ala Ile Thr 155	895
tta gtg atg cat cgt aat gag cgt acg ggt aag cac gcc gtc ttt atc Leu Val Met His Arg Asn Glu Arg Thr Gly Lys His Ala Val Phe Ile 165 170 175	943
cca aca gtg cat tcc gaa gcc tgt aca gga tgt ggc aaa tgt gaa gaa Pro Thr Val His Ser Glu Ala Cys Thr Gly Cys Gly Lys Cys Glu Glu 180 185	991
got tgc gtt cta gaa gaa gog goa atc aaa gtg tta cog atg goa tta Ala Cys Val Leu Glu Glu Ala Ala Ile Lys Val Leu Pro Met Ala Leu 200 205	1039
gog ama ggc atg tta ggt ama cat tac ogt tta ggt tgg gma gag ama Ala Lys Gly Met Leu Gly Lys His Tyr Arg Leu Gly Trp Glu Lys 225 220	1087
gaa aaa gcc ggg cat toc ctt gcg cca gaa ggc att att tot ctc ccg Glu Lys Ala Gly His Ser Leu Ala Pro Glu Gly Ile Ile Ser Leu Pro 235 240	1135
act egg tta eeg gag age ttg taatggeaaa tteaceaaaa tatgegggta Thr Arg Leu Pro Glu Ser Leu 245	1186
aagaagcacg agaaaagtta ggctggtggt acgccaatcg ctttttgttc tggcgacgtt	1246
taacccaget gagtattett gecatgtttt taageggaee ttattttggg gtgtggatet	1306
tgaaaggcaa ttacagtagt agtcttttgc ttgatttgat	1366
ttatggcaga aagtetegeg aceggtttta tgeetaceat gacegegttg ttgggtgeee	1426
tgattgtggt ggtgctttat gccattttag ggagtcgcgt tttctgtgct tgggtttgtc	1486
egttaaacat egtgacagat gegteegett ggeteagaeg taaattagaa attegteaat	1546
cggcaaaact cccacgaagt ttacgctatg cgatcttagt gatgattttg ttaggcagtg	1606
cgctaagcgg gttattactt tgggaatggc tcaatccggt tgcagcacta ggtcgtgcgt	1666
taatttacgg tttcggtgcg acagtttggc ttgttcttgc ggtgttttta tttgatttat	1726
ttattgtcga gcatggttgg tgtgggcatt tatgcccaat aggtgcagcc tatggtgtga	1786
ttggtgcgaa aggacttttt cgtatcaaag ttgagcatcg ccaacaatgt gataattgca	
ttggtgcgaa aggactttt cgtatcaaag ttgagcatcg ccaacaatgt gataattgca tggattgcta taacgtctgt ccagaaccac aagtgttacg cgatccatta catgcaaaaa	1846
	1846 1906
tggattgcta taacgtctgt ccagaaccac aagtgttacg cgatccatta catgcaaaaa	1846 1906 1966
tggattgcta taacgtctgt ccagaaccac aagtgttacg cgatccatta catgcaaaaa agagtgaaag cccacttgtg ctttcaaaag attgtatcag ctgtggacgt tgtatcgacg	1846 1906 1966 2026
tggattgcta taacgtctgt ccagaaccac aagtgttacg cgatccatta catgcaaaaa agagtgaaag cccacttgtg ctttcaaaag attgtatcag ctgtggacgt tgtatcgacg tttgccctga aaaagtattt atttttacaa cacgatttaa tcattcagtt aatcattcgg	1846 1906 1966 2026 2086

accgatggtg ccacacgcga cgaaaaacta tcaggtgacg aaaaatatca accaatgttt 2266 aacttgtcat agcccagaag cctcacgtgt tactggtgca acacgcatca gtccaaccca 2326 ctttatggat cgtgatggta acattgtegg aggcacctca cctcgccgtt acttctgttt 2386 acaatgccat gtctctcaat ctgatgttga gccgattatt caaaatgaat ttaaaccgat 2446 qqctqqtttt qqtaaataaq ttaaqqacqq aactatqttq aacttaatta aacqcttttq 2506 gaaatggttt cgctcgccca gtcgtattgc cgttggtacc ttgattaccc ttgcttttat 2566 tgcaggtatt gtctcttggg ttgggtttaa ttatggctta gagcaaacca atacagagga 2626 attotgtqtt agttqtcaca qtaatqatqt qtatccaqaa tatttacata cggcgcatta 2686 tttaaatcgc agtggagtaa aagccacttg teetgattgc catgtaccgc acgaatttat 2746 tccaaaaatg atccgtaaag tccaaqccaq tcgaqaaqtq tatqcqcatc ttatqcgtta 2806 tacggatacc attgataaat ttaactcccg tcgtttgcat atggcagaac gtgaatgggc 2866 acgattaaaa gccaataact cgcaggaatg ccgtaactgc cataactttg agaatatgga 2926 ttttagtcag caaaaaacgg tggcggaaaa aatgcatgca cttgctataa aagaagaaaa 2986 aacctgtatt gactgtcaca aagggattgc gcaccaatta ccggatatga gcggtgttga 3046 gtcgggtttt agtacggaac aaaaataaca cttttcttgt tctcccacag gaaatctgca 3106 togtattcag gtgcagattt ttttatttt acgatcatcc tcacaacctt ttcgctgata 3166 aataggatac aacgctagct acacgctatc ttgctgcttt ttgtgtttgtt gtgagggatt 3226 atgtcatctt atctgcctct tttattacgt ttgttacaaa ttccgcgttt gggttcqctq 3286 gcgatccagc gtttattgga gcacatcagt ccagcggaat taatggaata tgatacaaaa 3346 gcctttcaac agataggctg gacggcacag cagattcaqc gttqqtttac qcctqaqaac 3406 cgttatattg atcccgcgtt agcctgggta aacgaacaac aacatattgt qgattqqttt 3466 gatecteatt atecteett gttaaageaa acagaagaqq caccaettqt ettqtttqtq 3526 aaaggggaag tggctacgct atctgcacag caagtggcga tcgtgggcag tcgtcattgt 3586 tcacgttatg gggaatactg ggcaaattat ttcgccactc aactggctta tgccgatatt 3646 gtggtgacca gtggtttagc gttaggtatt gatggtttct cacatcaagc ggtagtggat 3706 atccacggga agacgattgc agtattaggc agtggtttag aggtcattta tccgaaaaaa 3766 caccgaggtt tagccgaaaa aattattgaa catcaaggtg cgttagtgtc tgaattttta 3826 cctttccaac cccctgtggc agaaaatttt ccacgtcgta atcgcattat tagtggttta 3886 tetttgggga cattagteat tgaageetea gaaaacagtg gttetttaat tactgeeege 3946 tatgetttag ageaaaateg agatgttttt gegttacegg ggcagattea geatggattt 4006 agccaaggtt gtcataaact gattaaacag ggggcaatat tagtcgaaag tattcaggat 4066 attitagaac atctctcqcc ttattcqcat tqtqccatqc caqcqttqcc tcqtacqqaq 4126

aacqcctttt ctcaacaagt aacagacaca tcaaccatca atactgege gataacgcca 4186
gaacatcegg aattatatge caaaattgge tatatgeceg tcagtattga tgtattagec 2426
caacaagtca atctacctat tgatacctta ttagtacage ttttaacctt ggaattgcaa 4366
gacttgattg ttgctgaaaa tggattatat cagegcaaat aacggaaaga gtaaccacaa 4426
atgagaaagg actgtgttga aacggctatc aacatcagte cttgcagtat attactcaa 4426
atgacacgag acggcagttt catgagatta atagagacta aacgcttgta aatacggtag 4486
tttgcctcgt tgtagcattt tctcaatatt gcctttgtga tcatcacgac ctaagcctcg 4546
tagctcaata ttgataccaa tacttttgtc ataaaaaatt tgattegecg tttggttttc 4666
ttgctggtc acactacgtc gggcaccaac attaatcgcc caacagcaag tgctgtattc 4666
tagtcccaaa tattgctcaa caggctttc caacgcaaga tcttgataat gacgtgcta 4726
caccgcccat tgatccgtga gtgcccatgc cacagttaga ccaagctgt ttatgtctt 4835

```
<210> 83
<211> 250
<212> PRT
<213> Pasteurella multocida
<400> 83
Met Lys Lys Thr Val Val Asn Pro Glu Arg Arg Arg Phe Phe Lys Glu
Ala Thr Arg Thr Ala Gly Gly Leu Ala Gly Val Thr Leu Leu Leu Gly
Leu Gln Gln Lys Gln Ser Leu Ala Arg Glu Gly Val Ala Leu Arg Pro
Pro Phe Ala Leu Glu Asn Glu Lys Ala Phe Ser Ala Ala Cys Ile Arg
Cys Gly Gln Cys Val Gln Ala Cys Pro His Glu Met Leu His Leu Ala
Ser Leu Ile Ser Pro Met Glu Ala Gly Thr Pro Tyr Phe Ile Ala Arg
Asp Lys Pro Cys Glu Met Cys Val Asp Ile Pro Cys Ala Lys Ala Cys
Pro Thr Gly Ala Leu Asp Asn Gln Ala Thr Glu Ile Asp Asp Ala Arg
Met Gly Leu Ala Val Leu Leu Asp His Glu Thr Cys Leu Asn Trp Gln
Gly Leu Arg Cys Asp Val Cys Tyr Arg Val Cys Pro Leu Ile Asn Lys
Ala Ile Thr Leu Val Met His Arg Asn Glu Arg Thr Gly Lys His Ala
```

```
Val Phe Ile Pro Thr Val His Ser Glu Ala Cys Thr Gly Cys Gly Lys
Cys Glu Glu Ala Cys Val Leu Glu Glu Ala Ala Ile Lys Val Leu Pro
Met Ala Leu Ala Lys Gly Met Leu Gly Lys His Tyr Arg Leu Gly Tro
Glu Glu Lys Glu Lys Ala Gly His Ser Leu Ala Pro Glu Gly Ile Ile
225
                                                             240
Ser Leu Pro Thr Arg Leu Pro Glu Ser Leu
                245
<210> 84
<211> 3494
<212> DNA
<213> Pasteurella multocida
<2205
<221> CDS
<222> (2411)..(2719)
<220>
<223> yyaM
<400> 84
gtcaacgatc cgaatacgac ggaagaaaac tatatgcaag tcatttatgg caagactgcg 60
cgtctattcg aagctgcgac gcattgcgcc gcgatacttg ctcatgcgac ggaagcccaa 120
gaaaatgctt tacgcgaata tggttgttat ctaqqcacaq cttttcaatt agtcgatgat 180
attttagatt atagtgcaga tgcaaaaqca ctcqqcaaaa atattqqtqa tgatttagcg 240
gaaggtaaac caacattacc gttattacac gccatgcatc acggcaatcc agcacaagca 300
aaattgattc gcgaagcgat tgagcaaggg ggtaagcgtg atattttaga ggatgtactg 360
acaattatga cagaacataa atccctcgac tatgcgatga tgcgcgctaa acaagaagca 420
caaaaagccg ttgatgcgat tgcattattg cctgaaaatg aatataaaca agcgttaatt 480
tcattagctt acttatccgt cgatcgcgct tattaaccac ttaataaggc gagacatgtt 540
agcgtaacga ccgcctaaag tgcggtcatt tatttagtaa ttttaaacac gacaatgaca 600
gaacaaaaca tccctacgaa aaaaacacgc aaaggcaaag atcctcacgc gccttttqta 660
cgcgaaaaat tatccctacc aaatgggcat aacaaattgt tattgcattc ttgttqtqcq 720
ccttgctcgg gagaagtaat ggaggcaatt catgcttcag gtattgaatt tactatttac 780
ttctacaacc caaacattca cccattaaaa gaatatctca ttcqtaaaqa aqaaaatatt 840
cgttttgcgg aaaaatgggg cattccgttt attgatgccg attatgatcg tcaagaatgg 900
tttgaccgtg ccaaaggcat ggaagatgag ccagagcgtg gtattcgttg cactatgtgc 960
tttgatatgc gttttgaaaa agccgcagaa tatgcacaca acaatggttt ccccgtattt 1020
```

actagetget taggtattte acgttggaaa gacatgaace aaateaacgg ttgtggacae 1080 cgtgccgccg aaaaatatga tgatgtagtg tattgggatt ataactggcg taaaggtggt 1140 ggctcacaac gtatgattga aatcagtaag cgtgaacgtt tttaccagca agaatattgc 1200 ggttgtgtgt attetttgcg tgacacgaat aaatggcgtg aagcaaacgg acgccaaaaa 1260 attgaaattg gcaaattgta ttattccgcc gattaaaaca accaagtaaa ccatcgtgcc 1320 gtcatataac atggcggcac ttttttaggc tttatatatg caacgttttc gccaatcttt 1380 cgaaacctaa tgctaacgcc tcttcactaa tatttaatgc tggggcaaaa cgcaatacat 1440 taggacccgc cactaaaatc attaagccat tatetgetge ttttttgaca aattegeteg 1500 ctcttccgtg atattgctcg ataagttctg caccaattaa caaaccttcg ccacqqattt 1560 ctttaaataa gccacattgc tgattaattt cttgcagctt ttgcataaat ttttcagaag 1620 tgcgctgaat tttttgcaag aatggtggtg ctgaaatgat atcaatcact ttttctgcca 1680 eggeacaage gagaggattg ccaccaaagg tggtgccatg cacgccaggt gcaaaacttt 1740 tggcgatctc atgcgttgtc aacgaatgag aaaattgtga cagattgggc tccaacggga 1800 cgtgcggatg agattgggga tacgcaagta cgttatgaaa ttgagcaggt gagttctagc 1860 aattatagtg cactgtttgt ctccatttta cagatgaaac gtaatgaggt ggtatttagt 1920 ccacatttag cggataaaca acgttatagt tctgatcgct tgaaccaact tqttgqtqaa 1980 ttagatgegt cttategtaa acaagteegt gatttgaata acageggatt gatgeeaatt 2040 cagtctgtat tcggtacgga cagtaatggg cgtactgctc tcgtgttagg cgcaccettt 2100 aatcatgcgt ggacaaaact aggacaagtt ttaccgcagc ttgaatttga tattaaagat 2160 gaaattattg gtcgtggggt aagggagtta aaataccgtc cagctggagc aaaaagttgg 2220 tggtggccat ttggtcgtgc tgaaggcagt agcggactga aaacaggtac ctattttatg 2280 cagttaagcg ccttagggaa gcaaagtgcg gtggtgatga ccgatgatga tggcaatgcg 2340 ttatctgggg agcaagctca ggcgctttat caagcattac aaaatctctt agcgaaataa 2400 tacagtcaag atg act aaa ctc agt atc cag cga gat aac ttg att tgt 2449 Met Thr Lys Leu Ser Ile Gln Arg Asp Asn Leu Ile Cys ttg agt tat gtc gca tta atg gga ttc ggc ttt ccc att atg cgt tat 2497 Leu Ser Tyr Val Ala Leu Met Gly Phe Gly Phe Pro Ile Met Arg Tyr atg agt att cat tit gat aca tia aat aat aac got git ogc tit otc 2545 Met Ser Ile His Phe Asp Thr Leu Asn Asn Asn Ala Val Arg Phe Leu 35 tca ggg ggc agc gtt ttt att tta gcc tgt ttt ttt tat tat cgc gct 2593 Ser Gly Gly Ser Val Phe Ile Leu Ala Cys Phe Phe Tyr Tyr Arg Ala 50 gag tha aca tot tog ggg got ggc gtc cag too gtt gcg atg ttg ccq 2641

```
Glu Leu Thr Ser Ser Gly Ala Gly Val Gln Ser Val Ala Met Leu Pro
agt tca agt tta ggt ttc tta ata ttg aaa act gta cca tct ttt tca
Ser Ser Ser Leu Gly Phe Leu Ile Leu Lys Thr Val Pro Ser Phe Ser
         80
tac gtt aca atc tca aca ctt aat cgc gtt tgaccttccg atttttgata
                                                                   2739
Tyr Val Thr Ile Ser Thr Leu Asn Arg Val
     95
                         100
gtcaaagact actgagtaac gcttgtagtc gcgtgaatcg actgttacat aagccgatat 2799
gtcagaataa gtactgccgg tatatcgtct taatctaaga ttaagcttgc cacttttgtt 2859
cgataaagcg tcaaacgaaa gcacgacttt accgtccttg acttccacct gatcttcaat 2919
gagcacttga cttagtgcga ccaatcgacc gttggcagtc agtgtcgcaa tgccgtgatc 2979
cgtatcaagc gttacaccgc tattttttcc ccagttttta ttgagctttt cactatgttt 3039
cagtaagttt ctgccaccaa tctgcaactg attaaactta gcttcaagcg tttcactctt 3099
gactgcaagc gacttgtttt cattgctaac cgtctgctca agtgctgtga ttttggatgt 3159
taaatctaac ttagttgcat tgacttcatc agtccattct gactttaact cttttctcgc 3219
aagtgacgcc acttcatctt tgctagcttt cgtttctttt aagtcagaaa tgccactagt 3279
attttgcgcc actttagaat cgagcgtttc tagttttgta gagaaagatt tgtctttttc 3339
gctagccgtt ttttgaatta gctgtatttc actttcgctc aatccaactc tagcagttag 3399
actgtctagc ttgtcagcag tagatttatt cacagtcgct tgtgattgct tgtgttgaat 3459
aatatccgcg cttacttccg agatagccac gtcga
                                                                   3494
<210> 85
<211> 103
<212> PRT
<213> Pasteurella multocida
<400> 85
Met Thr Lys Leu Ser Ile Gln Arg Asp Asn Leu Ile Cys Leu Ser Tyr
                                     10
Val Ala Leu Met Gly Phe Gly Phe Pro Ile Met Arg Tyr Met Ser Ile
His Phe Asp Thr Leu Asn Asn Asn Ala Val Arg Phe Leu Ser Gly Gly
Ser Val Phe Ile Leu Ala Cys Phe Phe Tyr Tyr Arg Ala Glu Leu Thr
Ser Ser Gly Ala Gly Val Gln Ser Val Ala Met Leu Pro Ser Ser Ser
 65
Leu Gly Phe Leu Ile Leu Lys Thr Val Pro Ser Phe Ser Tyr Val Thr
                                     90
Ile Ser Thr Leu Asn Arg Val
```

100

<220>

```
<210> 86
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
aggccggtac cggccgcct
                                                                    19
<210> 87
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<400> 87
cggccggtac cggcctagg
                                                                    19
<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
catggtaccc attctaac
                                                                    18
<210> 89
<211> 18
<212> DNA
<213> Artificial Seguence
<223> Description of Artificial Sequence: primer
<400> 89
ctaggtacct acaacctc
                                                                    18
<210> 90
<211> 119
<212> DNA
<213> Artificial Sequence
<220>
<221>
<222>
<223> Description of Artificial Sequence: transposon
      insert
```

```
<221> misc_feature
<222> 25
<223> N = A or T or G or C
<220>
<221> misc feature
<222> 27
<223> N = A or T or G or C
<221> misc feature
<222> 29
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 31
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 33
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 35
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 37
\langle 223 \rangle N = A or T or G or C
<221> misc_feature
<222> 39
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 41
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 43
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 45
<223> N = A or T or G or C
<220>
<221> misc feature
<222> 47
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 49
<223> N = A or T or G or C
```

```
<220>
<221> misc_feature
<222> 51
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 53
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 55
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 57
<223> N = A or T or G or C
<220>
<221> misc feature
<222> 59
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 61
\langle 223 \rangle N = A or T or G or C
<220>
<221> misc_feature
<222> 63
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 65
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 67
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 69
<223>N=A or T or G or C
<220>
<221> misc feature
<222> 71
<223>N=A or T or G or C
<220>
<221> misc_feature
<222> 73
\langle 223 \rangle N = A or T or G or C
```

```
<220>
<221> misc_feature
<222> 75
<223 > N = A or T or G or C
<220>
<221> misc feature
<222> 77
<223>N=A or T or G or C
<220>
<221> misc feature
<222> 79
<223>N=A or T or G or C
<221> misc_feature
<222> 81
<223> N = A or T or G or C
<220>
<221> misc feature
<222> 83
<223>N=A or T or G or C
<220>
<221> misc_feature
<222> 85
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 87
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 89
\langle 223 \rangle N = A or T or G or C
<220>
<221> misc_feature
<222> 91
<223> N = A or T or G or C
<220>
<221> misc feature
<222> 93
<223> N = A or T or G or C
nknknknkn nknknknknk nknknknknk nknkaagett ggttagaatg ggtaceatg 119
<210> 91
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
```

<400> 91 tacctacaac ctcaagct	18
<210> 92 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificia_ Sequence: primer	
<400> 92 tacccattct aaccaage	18
<210> 93 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 93 tacctacaac ctcaagctt	19
<210> 94 <211> 20 <212> DNA <213- Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 94 tacccattct aaccaagctt	20
<210> 95 <211> 19 <212> DNA <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 95 ggcagagcat tacgctgac	19
<210> 96 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 96 gtaccggcca ggcggccacg cgtattc	27

```
<210> 97
<211> 531
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> atpG
<400> 97
tgttgagctt ggtttagtag ggtcgaaagg cgtaagcttt taccaaaatc taggcttaaa 60
cgtgagatet caagtaacgg gattaggega taatceggaa atggaacgta teqtqqcqc 120
agttaatgaa atgattaatg cgttccgaaa cggagaagtg gatgcggttt acgtcgctta 180
caaccgtttt gaaaatacga tgtcacaaaa acctgttatc gcacaqttac ttccqttacc 240
taaactaqat gacqatgaat tagatacgaa aggttcatgq qattatattt atqaaccqaa 300
tccacaagtt ttattggata gtttacttgt tcgttattta gaaactcagg tataccaagc 360
agttgtagat aacctagctt ctgaacaagc cgctcgaatg gtagcgatga aagccgcaac 420
agataatgcg ggtacattaa tcgatgaatt acaattagtg tataacaaag ctcqccaagc 480
aagcattaca aatgaattaa acgaaattgt tgcgggtqcc gcagcaattt a
                                                                   531
<210> 98
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 98
tetecattee ettgetgegg cacce
                                                                   25
<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 99
ggattacagc cggatccggg
                                                                   20
<210> 100
<211> 1034
<212> DNA
<213> Pasteurella multocida
<220>
<223> cap5E
<220>
<221> CDS
<222> (1)..(1032)
```

	atg	0> 10 ttt	aaa	aat	aaa	aca	ctt	tta	att	aca	ggt	gga	acg	ggt	tct	ttt	48	
	Met 1	Phe	Lys	Asn	Lys 5	Thr	Leu	Leu	Ile	Thr 10	Gly	Gly	Thr	Gly	Ser 15	Phe		
	ggt Gly	aat Asn	gct Ala	gta Val 20	ct c Leu	aaa Lys	cgt Arg	ttc Phe	tta Leu 25	gaa Glu	aca Thr	gat Asp	att Ile	cga Arg 30	Glu	att Ile	96	
	Arg	Val	Phe 35	tcg Ser	Arg	Asp	Glu	Lys 40	Lys	Gln	Asp	Asp	Met 45	Arg	Lys	Lys	144	
	tat Tyr	aat Asn 50	gat Asp	gca Ala	aaa Lys	tta Leu	aaa Lys 55	ttt Phe	tat Tyr	att Ile	ggc Gly	gat Asp 60	gtt Val	cgt Arg	gac Asp	tac Tyr	192	
	gat Asp 65	agt Ser	att Ile	tta Leu	aat Asn	gcc Ala 70	tcg Ser	cga Arg	ggt Gly	gtt Val	gac Asp 75	tat Tyr	att Ile	tat Tyr	cat His	gct Ala 80	240	
	gcc Ala	gca Ala	tta Leu	aag Lys	caa Gln 85	gtg Val	cct Pro	tca Ser	tgc Cys	gag Glu 90	ttt Phe	tat Tyr	ccg Pro	tta Leu	gag Glu 95	gca Ala	288	
	gtg Val	aaa Lys	acc Thr	aat Asn 100	att Ile	tta Leu	ggt Gly	acg Thr	gca Ala 105	aat Asn	gtc Val	tta Leu	gaa Glu	gcc Ala 110	gcc Ala	atc Ile	336	
	caa Gln	aac Asn	cag Gln 115	ata Ile	aaa Lys	cgc Arg	gtc Val	gtc Val 120	tgt Cys	ctt Leu	agc Ser	aca Thr	gat Asp 125	aaa Lys	gcg Ala	gtg Val	384	
	tac Tyr	cca Pro 130	att Ile	aat Asn	gcg Ala	atg Met	ggc Gly 135	att Ile	tct Ser	aaa Lys	gca Ala	atg Met 140	atg Met	gaa Glu	aaa Lys	gtc Val	432	
	atc Ile 145	atc Ile	gca Ala	aaa Lys	tcg Ser	cgt Arg 150	aac Asn	cta Leu	gaa Glu	ggc Gly	aca Thr 155	cca Pro	acg Thr	aca Thr	atc Ile	tgt Cys 160	480	
	tgt Cys	act Thr	cgc Arg	tat Tyr	ggc Gly 165	aat Asn	gtc Val	atg Met	gca Ala	tcg Ser 170	cgt Arg	ggt Gly	tcg Ser	gtt Val	atc Ile 175	cca Pro	528	
	tta Leu	ttt Phe	gtc Val	gat Asp 180	caa Gln	ata Ile	cgt Arg	caa Gln	ggc Gly 185	aag Lys	cct Pro	ttt Phe	act Thr	att Ile 190	act Thr	gat Asp	576	
	cct Pro	Glu	atg Met 195	aca Thr	cgc Arg	ttt Phe	Met	atg Met 200	aca Thr	ttg Leu	gaa Glu	gat Asp	gct Ala 205	gtg Val	gat Asp	tta Leu	624	
•	Val	cta Leu 210	tat Tyr	gca Ala	ttt Phe	Lys	aat Asn 215	ggt Gly	caa Gln	aat Asn	ggt Gly	gat Asp 220	gtt Val	ttt Phe	gta Val	caa Gln	672	
1	aaa Lys 225	gcc Ala	ccc Pro	gca Ala	gca Ala	acc Thr 230	att Ile	ggt Gly	acc Thr	ctt Leu	gcc Ala 235	aaa Lys	gca Ala	att Ile	acc Thr	gaa Glu 240	720	
1	tta Leu	tta Leu	tct Ser	gtc Val	cca Pro	aat Asn	cac His	cct Pro	att Ile	tcc Ser	att Ile	ata Ile	ggt Gly	acg Thr	cgt Arg	cat His	768	

			245					250					255		
gga gag Gly Glu	aaa Lys	gca Ala 260	ttc Phe	gaa Glu	gct Ala	tta Leu	tta Leu 265	agc Ser	cgt Arg	gaa Glu	gaa Glu	atg Met 270	gtt Val	cat His	816
gca att Ala Ile	aat Asn 275	gaa Glu	ggt Gly	aat Asn	tat Tyr	tat Tyr 280	cgc Arg	atc Ile	cca Pro	gcc Ala	gat Asp 285	caa Gln	cgc Arg	agt Ser	864
tta aat Leu Asn 290	tac Tyr	agt Ser	aaa Lys	tat Tyr	gtc Val 295	gaa Glu	aaa Lys	ggg Gly	gaa Glu	cca Pro 300	aaa Lys	att Ile	acc Thr	gaa Glu	912
gtc acc Val Thr 305	gac Asp	tac Tyr	aac Asn	tca Ser 310	cat His	aat Asn	act Thr	gag Glu	cgt Arg 315	ttg Leu	act Thr	gtc Val	aag Lys	gaa Glu 320	960
atg aag Met Lys	cag Gln	tta Leu	ctg Leu 325	ctt Leu	aaa Lys	ctt Leu	gaa Glu	ttc Phe 330	ata Ile	cag Gln	aaa Lys	atg Met	att Ile 335	gag Glu	1008
ggt gaa Gly Glu	tac Tyr	atc Ile 340	tca Ser	ccg Pro	gag Glu	gta Val	ta								1034
<210 > 10 <211 > 34 <212 > PI	14 RT														
<213> Pa)1					T	T1-	mt	61	a 1	mb	a 1		.	
<400> 10 Met Phe 1)1 Lys	Asn	Lys 5	Thr	Leu			10				-	15		
<400> 10 Met Phe 1 Gly Asn	Lys Ala	Asn Val 20	Lys 5 Leu	Thr Lys	Leu Arg	Phe	Leu 25	10 Glu	Thr	Asp	Ile	Arg 30	15 Glu	Ile	
<400> 10 Met Phe 1 Gly Asn	Lys Ala	Asn Val 20	Lys 5 Leu	Thr Lys	Leu Arg	Phe	Leu 25	10 Glu	Thr	Asp	Ile	Arg 30	15 Glu	Ile	
<400> 10 Met Phe 1 Gly Asn Arg Val	Lys Ala Phe 35	Asn Val 20 Ser	Lys 5 Leu Arg	Thr Lys Asp	Leu Arg Glu	Phe Lys 40	Leu 25 Lys	10 Glu Gln	Thr Asp	Asp Asp	Ile Met 45	Arg 30 Arg	15 Glu Lys	Ile Lys	
<400> 10 Met Phe 1 Gly Asn Arg Val Tyr Asn 50	Lys Ala Phe 35 Asp	Asn Val 20 Ser Ala	Lys 5 Leu Arg Lys	Thr Lys Asp Leu	Leu Arg Glu Lys 55	Phe Lys 40 Phe	Leu 25 Lys Tyr	Glu Gln Gln	Thr Asp Gly	Asp Asp Asp 60	Ile Met 45 Val	Arg 30 Arg Arg	15 Glu Lys Asp	Ile Lys Tyr	
<4400 > 10 Met Phe 1 Gly Asn Arg Val Tyr Asn 50 Asp Ser 65	Ala Phe 35 Asp	Asn Val 20 Ser Ala Leu	Lys 5 Leu Arg Lys Asn	Thr Lys Asp Leu Ala 70	Leu Arg Glu Lys 55 Ser	Phe Lys 40 Phe Arg	Leu 25 Lys Tyr	Glu Gln Ile Val	Thr Asp Gly Asp 75	Asp Asp 60 Tyr	Ile Met 45 Val	Arg 30 Arg Arg	15 Glu Lys Asp His	Ile Lys Tyr Ala	
<4400> 10 Met Phe 1 Gly Asn Arg Val Tyr Asn 50 Asp Ser 65 Ala Ala	D1 Lys Ala Phe 35 Asp Ile	Asn Val 20 Ser Ala Leu	Lys 5 Leu Arg Lys Asn Gln 85	Thr Lys Asp Leu Ala 70 Val	Leu Arg Glu Lys 55 Ser	Phe Lys 40 Phe Arg Ser	Leu 25 Lys Tyr Gly Cys	Glu Gln Ile Val Glu 90	Thr Asp Gly Asp 75 Phe	Asp Asp 60 Tyr	Ile Met 45 Val Ile Pro Glu	Arg 30 Arg Arg Tyr	15 Glu Lys Asp His Glu 95	Lys Tyr Ala 80 Ala	
<4400> 10 Met Phe 1 Gly Asn Arg Val Tyr Asn 50 Asp Ser 65 Ala Ala	D1 Lys Ala Phe 35 Asp Ile Leu	Asn Val 20 Ser Ala Leu Lys	Lys 5 Leu Arg Lys Asn 6ln 85	Thr Lys Asp Leu Ala 70 Val	Leu Arg Glu Lys 55 Ser Pro	Phe Lys 40 Phe Arg Ser	Leu 25 Lys Tyr Gly Cys Ala 105	Glu Gln Ile Val Glu 90 Asn	Thr Asp Gly Asp 75 Phe	Asp Asp 60 Tyr Tyr	Ile Met 45 Val Ile Pro Glu	Arg 30 Arg Tyr Leu Ala	15 Glu Lys Asp His Glu 95 Ala	Ile Lys Tyr Ala 80 Ala Ile	
<400> 10 Met Phe 1 Gly Asn Arg Val Tyr Asn 50 Asp Ser	D1 Lys Ala Phe 35 Asp Ile Leu Thr	Asn Val 20 Ser Ala Leu Lys Asn 100 Ile	Lys 5 Leu Arg Lys Asn Gln 85 Ile	Thr Lys Asp Leu Ala 70 Val Leu Arg	Leu Arg Glu Lys 55 Ser Pro Gly Val	Phe Lys 40 Phe Arg Ser Thr	Leu 25 Lys Tyr Gly Cys Ala 105	10 Glu Gln Ile Val Glu 90 Asn	Thr Asp Gly Asp 75 Phe Val	Asp Asp 60 Tyr Tyr Leu	Ile Met 45 Val Ile Pro Glu Asp 125	Arg 30 Arg Arg Tyr Leu Ala 110	15 Glu Lys Asp His Glu 95 Ala	Ile Lys Tyr Ala 80 Ala Ile	

```
Cys Thr Arg Tyr Gly Asn Val Met Ala Ser Arg Gly Ser Val Ile Pro
Leu Phe Val Asp Gln Ile Arg Gln Gly Lys Pro Phe Thr Ile Thr Asp
Pro Glu Met Thr Arg Phe Met Met Thr Leu Glu Asp Ala Val Asp Leu
Val Leu Tyr Ala Phe Lys Asn Gly Gln Asn Gly Asp Val Phe Val Gln
Lys Ala Pro Ala Ala Thr Ile Gly Thr Leu Ala Lys Ala Ile Thr Glu
Leu Leu Ser Val Pro Asn His Pro Ile Ser Ile Ile Gly Thr Arg His
Gly Glu Lys Ala Phe Glu Ala Leu Leu Ser Arg Glu Glu Met Val His
                                265
Ala Ile Asn Glu Gly Asn Tyr Tyr Arg Ile Pro Ala Asp Gln Arg Ser
Leu Asn Tyr Ser Lys Tyr Val Glu Lys Gly Glu Pro Lys Ile Thr Glu
Val Thr Asp Tyr Asn Ser His Asn Thr Glu Arg Leu Thr Val Lys Glu
Met Lys Gln Leu Leu Lys Leu Glu Phe Ile Gln Lys Met Ile Glu
                                     330
                                                         335
Gly Glu Tyr Ile Ser Pro Glu Val
            340
<210> 102
<211> 4931
<212> DNA
<213> Pasteurella multocida
<220>
<223> fhaB2
<220>
<221> CDS
<222> (1)..(4929)
<220>
<221> misc_feature
<222> 1632
<223> Xaa = any or unknown amino acid
atg aac aaa aat cgt tac aaa ctc att ttt agt caa gtc aaa ggt tgt
Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Gln Val Lys Gly Cys
ctc gtt cct gtg gca gaa tgt att aac tca gct att agc aat ggt tca
Leu Val Pro Val Ala Glu Cys Ile Asn Ser Ala Ile Ser Asn Gly Ser
```

20 25 30 tot gat toa aca too aca toa gaa caa gtt gaa gag gaa cot tto ott 144 Ser Asp Ser Thr Ser Thr Ser Glu Gln Val Glu Glu Glu Pro Phe Leu 40 cta gaa caa tat toa ott too too gtg tot tta tta gta aaa ago acg Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr ttc aat cct gtt tcg tat gca atg caa ttg act tgg aaa cag ctt tct Phe Asn Pro Val Ser Tyr Ala Met Gln Leu Thr Trp Lys Gln Leu Ser att tta ttt tta act gtg att tct gtt cct gtt ttg gct gag gga aaa 288 Ile Leu Phe Leu Thr Val Ile Ser Val Pro Val Leu Ala Glu Gly Lys ggg gat gaa aga aat caa tta aca gtg att gat aat agc gat cat att 336 Gly Asp Glu Arg Asn Gln Leu Thr Val Ile Asp Asn Ser Asp His Ile 105 aaa tta gat gca tct aat ctt gct ggt aat gat aaa aca aaa atc tat 384 Lys Leu Asp Ala Ser Asn Leu Ala Gly Asn Asp Lys Thr Lys Ile Tyr caa gca gaa aat aaa gtt ctg gtt att gat att gct aaa cca aat ggg 432 Gln Ala Glu Asn Lys Val Leu Val Ile Asp Ile Ala Lys Pro Asn Gly 135 aaa ggg att toa gat aac ogt ttt gaa aaa ttt aat att oca aat ago 480 Lys Gly Ile Ser Asp Asn Arg Phe Glu Lys Phe Asn Ile Pro Asn Ser gcg gtg ttt aat aat aat ggg act gaa gcg cag gca aga tca aca tta Ala Val Phe Asn Asn Asn Gly Thr Glu Ala Gln Ala Arg Ser Thr Leu 528 170 att ggt tac att ccg caa aat caa aat tta agg gga ggg aaa gaa gct 576 Ile Gly Tyr Ile Pro Gln Asn Gln Asn Leu Arg Gly Gly Lys Glu Ala 180 gat gtt ata tta aat caa gtg aca ggt cct caa gaa agt aaa att gtt 624 Asp Val Ile Leu Asn Gln Val Thr Gly Pro Gln Glu Ser Lys Ile Val 195 ggc gcg ctt gaa gta tta ggt aaa aaa gct gat atc gtc att gca aac Gly Ala Leu Glu Val Leu Gly Lys Lys Ala Asp Ile Val Ile Ala Asn caa aat ggt att acc tta aat ggt gta aga aca ata aat tca gat cgt Gln Asn Gly Ile Thr Leu Asn Gly Val Arg Thr Ile Asn Ser Asp Arg ttt gtt gcc act acg agt gag ctt ata gat ccg aat cag atg atg tta 768 Phe Val Ala Thr Thr Ser Glu Leu Ile Asp Pro Asn Gln Met Met Leu 245 aag gtt aca aaa gga aat gtg atc att gat att gat ggt ttt tcg aca 816 Lys Val Thr Lys Gly Asn Val Ile Ile Asp Ile Asp Gly Phe Ser Thr

gat gga tta aag tat tta gat att att gct aaa aaa att gaa caa aag

Asp	Gly	Leu 275	Lys	Tyr	Leu	Asp	11e 280	Ile	Ala	Lys	Lys	11e 285	Glu	Gln	Lys	
			aca Thr													912
			ggt Gly													960
aaa Lys	acg Thr	agc Ser	ggt Gly	gaa Glu 325	aat Asn	gta Val	tct Ser	aat Asn	gat Asp 330	gtt Val	att Ile	gct Ala	atc Ile	acg Thr 335	gga Gly	1008
tct Ser	agt Ser	aca Thr	ggc Gly 340	gca Ala	atg Met	cat His	ggt Gly	aaa Lys 345	aat Asn	att Ile	aag Lys	t tg Leu	att Ile 350	gtg Val	aca Thr	1056
gat Asp	aaa Lys	ggt Gly 355	gca Ala	ggc Gly	gta Val	aaa Lys	cat His 360	gat Asp	gga .Gly	att Ile	att Ile	ttg Leu 365	tct Ser	gaa Glu	aat Asn	1104
gat Asp	att Ile 370	cag Gln	att Ile	gaa Glu	atg Met	aat Asn 375	gaa Glu	ggt Gly	gac Asp	tta Leu	gaa Glu 380	ctt Leu	ggc Gly	aat Asn	acg Thr	1152
att Ile 385	Cag Gln	caa Gln	aca Thr	gtg Val	gta Val 390	aaa Lys	aaa Lys	gac Asp	cga Arg	aat Asn 395	att Ile	cga Arg	gcc Ala	aag Lys	aaa Lys 400	1200
aaa Lys	att Ile	gaa Glu	gtg Val	aaa Lys 405	aac Asn	gct Ala	aat Asn	cgt Arg	gtt Val 410	ttt Phe	gtt Val	ggt Gly	agt Ser	caa Gln 415	acg Thr	1248
Lys	Ser	Asp	gaa Glu 420	Ile	Ser	Leu	Glu	Ala 425	Lys	Gln	Val	Lys	11e 430	Arg	Lys	1296
Asn	Ala	Glu 435	att Ile	Arg	Ser	Thr	Thr 440	Gln	Ala	Lys	Ile	Val 445	Ala	Lys	Gly	1344
Ala	Leu 450	Ser	att Ile	Glu	Gln	Asn 455	Ala	Lys	Leu	Val	Ala 460	Lys	Lys	Ile	Asp	1392
Val 465	Ala	Thr	gaa Glu	Thr	Leu 470	Thr	Asn	Ala	Gly	Arg 475	Ile	Tyr	Gly	Arg	Glu 480	1440
Val	Lys	Leu	gac Asp	Thr 485	Asn	Asn	Leu	Ile	Asn 490	Asp	Lys	Glu	Ile	Tyr 495	Ala	1488
Glu	Arg	Lys	ttg Leu 500	Ser	Ile	Leu	Thr	Lys 505	Gly	Lys	Asp	Leu	Glu 510	Ile	Ile	1536
caa Gln	gat Asp	aga Arg 515	tat Tyr	ttg Leu	tct Ser	cca Pro	ctg Leu 520	atg Met	cgc Arg	gta Val	aaa Lys	agt Ser 525	agt Ser	gtc Val	cgc Arg	1584

ttt Phe	tta Leu 530	ggc Gly	tct Ser	ccg Pro	ttt Phe	ttc Phe 535	tca Ser	ata Ile	tct Ser	ccg Pro	tcg Ser 540	atg Met	ct c Leu	gca Ala	agc Ser	1632
ctt Leu 545	agt Ser	gca Ala	cag Gln	ttt Phe	aag Lys 550	cct Pro	ggt Gly	ttt Phe	gtg Val	aat Asn 555	aag Lys	gga Gly	ctc Leu	att Ile	gaa Glu 560	1680
agt Ser	gcg Ala	gly ggg	agt Ser	gca Ala 565	g aa Glu	tta Leu	act Thr	ttt Phe	aaa Lys 570	gaa Glu	aaa Lys	acc Thr	agt Ser	ttt Phe 575	tta Leu	1728
aca Thr	gag Glu	ggc Gly	aat Asn 580	aat Asn	ttt Phe	att Ile	aga Arg	gct Ala 585	aaa Lys	gat Asp	gcg Ala	tta Leu	act Thr 590	att Ile	aac Asn	1776
gcc Ala	caa Gln	aat Asn 595	att Ile	g aa Glu	att Ile	gat Asp	ааа Lув 600	aat Asn	caa Gln	gat Asp	att Ile	caa Gln 605	ttg Leu	ggt Gly	gct Ala	1824
aat Asn	ata Ile 610	acg Thr	ttg Leu	aat Asn	gtg Val	gaa Glu 615	gaa Glu	aac Asn	ttt Phe	gtt Val	aat Asn 620	cgt Arg	gca Ala	gga Gly	aca Thr	1872
ctg Leu 625	gca Ala	act Thr	ggt Gly	aaa Lys	aca Thr 630	ctg Leu	aca Thr	att Ile	aat Asn	acc Thr 635	gaa Glu	agt Ser	ggc Gly	agt Ser	att Ile 640	1920
tac Tyr	aat Asn	ctt Leu	ggt Gly	999 Gly 645	aca Thr	tta Leu	ggt Gly	gct Ala	gga Gly 650	aaa Lys	tca Ser	tta Leu	aaa Lys	ctg Leu 655	act Thr	1968
gct Ala	aaa Lys	tca Ser	acg Thr 660	gaa Glu	gaa Glu	ggt Gly	atg Met	gga Gly 665	aat Asn	att Ile	gtt Val	aac Asn	caa Gln 670	gaa Glu	aac Asn	2016
ggt Gly	tta Leu	Phe 675	cat His	aca Thr	ctc Leu	ggt Gly	aat Asn 680	atg Met	atg Met	tta Leu	gaa Glu	gca Ala 685	gag Glu	cgt Arg	tct Ser	2064
gtt Val	tat Tyr 690	aat Asn	att Ile	ggc Gly	gat Asp	att Ile 695	tat Tyr	gcg Ala	agt Ser	aaa Lys	aaa Lys 700	tta Leu	aca Thr	gtt Val	cat His	2112
act Thr 705	cat His	aat Asn	ttg Leu	att Ile	aat Asn 710	gat Asp	gtg Val	cgt Arg	tta Leu	tct Ser 715	ggc Gly	aat Asn	gtg Val	agt Ser	tat Tyr 720	2160
aag Lys	cct Pro	atc Ile	Gly	tca Ser 725	agt Ser	cgt Arg	gat Asp	tat Tyr	gat Asp 730	atc Ile	agt Ser	cgt Arg	gtt Val	gcg Ala 735	gta Val	2208
cat His	ggt Gly	Trp	cac His 740	aat Asn	aat Asn	gtt Val	tat Tyr	aag Lys 745	ctc Leu	aac Asn	tta Leu	aat Asn	ctg Leu 750	caa Gln	g aa Glu	2256
caa Gln	gat Asp	aaa Lys 755	acc Thr	gat Asp	att Ile	Lys	gtt Val 760	gtg Val	aaa Lys	atg Met	Gly	gct Ala 765	atc Ile	cgt Arg	tct Ser	2304
gat Asp	ggt Gly 770	gat Asp	ttt Phe	gac Asp	Phe	aag Lys 775	gga Gly	ata Ile	aag Lys	gcg Ala	aca Thr 780	tca Ser	tca Ser	gaa Glu	tca Ser	2352

	ccg Pro															2400
aat Asn	gcg Ala	gaa Glu	gct Ala	gat Asp 805	caa Gln	gtg Val	gtg Val	aac Asn	caa Gln 810	atg Met	aaa Lys	gcg Ala	ttt Phe	aac Asn 815	caa Gln	2448
aat Asn	gca Ala	tta Leu	gca Ala 820	agc Ser	gtg Val	ttt Phe	aag Lys	aat Asn 825	cca Pro	gcg Ala	aaa Lys	atc Ile	acg Thr 830	atg Met	tac Tyr	2496
tat Tyr	caa Gln	cca Pro 835	ctt Leu	act Thr	cgt Arg	tat Tyr	att Ile 840	tgg Trp	aca Thr	cca Pro	tta Leu	tcg Ser 845	ggt Gly	aat Asn	gca Ala	2544
tcg Ser	cgt Arg 850	gaa Glu	ttt Phe	aac Asn	aat Asn	tta Leu 855	gag Glu	tct Ser	ttc Phe	ctc Leu	gat Asp 860	gcc Ala	ttg Leu	ttt Phe	ggc Gly	2592
tca Ser 865	aca Thr	aca Thr	atc Ile	tta Leu	aaa Lys 870	tca Ser	agt Ser	ttc Phe	tat Tyr	agt Ser 875	acg Thr	gaa Glu	aat Asn	ttt Phe	agt Ser 880	2640
gct Ala	tat Tyr	cag Gln	ctt Leu	cta Leu 885	tct Ser	cat His	att Ile	cag Gln	cat His 890	tca Ser	cca Pro	atg Met	tac Tyr	caa Gln 895	aaa Lys	2688
gcg Ala	atg Met	gca Ala	caa Gln 900	gtg Val	ttt Phe	ggt Gly	gca Ala	gag Glu 905	tgg Trp	cat His	agt Ser	aaa Lys	ser 910	tat Tyr	gat Asp	2736
gag Glu	atg Met	cga Arg 915	aac Asn	aaa Lys	tgg Trp	aaa Lys	agc Ser 920	ttt Phe	aaa Lys	gaa Glu	aat Asn	cca Pro 925	aca Thr	gat Asp	ttc Phe	2784
att Ile	tat Tyr 930	tac Tyr	cca Pro	tca Ser	gaa Glu	aaa Lys 935	gca Ala	aaa Lys	atc Ile	cta Leu	gcg Ala 940	gga Gly	aaa Lys	cta Leu	gaa Glu	2832
ggt Gly 945	aag Lys	ctt Leu	aca Thr	acg Thr	cta Leu 950	caa Gln	aat Asn	ggt Gly	gaa Glu	tat Tyr 955	gcc Ala	gaa Glu	cgt Arg	ggt Gly	aag Lys 960	2880
ttt Phe	gat Asp	gag Glu	agt Ser	atc Ile 965	caa Gln	att Ile	ggt Gly	aaa Lys	cac His 970	caa Gln	tta Leu	tcg Ser	cta Leu	cca Pro 975	tca Ser	2928
	gag Glu															2976
ggg Gly	gta Val	gat Asp 995	tta Leu	tcc Ser	tcg Ser	atc Ile	gcc Ala 1000	Glu	cto Lev	tta Lev	gaa Glu	atg Met	Pı	ca aa ro As	nc tta sn Leu	3024
ttt Phe	att Ile 1010	Asp	aat Asr	agt Ser	ato Ile	caa Glr 101	ιLe	a ga eu Gl	a aa .u Ly	g aa rs Ly	rs Ly	ig t vs I 020	tg t	ct o	ct at Pro Il	t 3072 e
gag Glu 102!	Asp	cta Leu	gat Asp	gaa Glu	ga G1 103	u Pr	a cg	t aa g Ly	a aars As	n Le	g g u A 135	at a	ita g	gaa g Glu (gaa ag Slu Se 10	r

cat tot aat toa tog gat gac gtg ott agc atg aat gat gat gag tot 3 His Ser Asn Ser Ser Asp Asp Val Leu Ser Met Asn Asp Asp Glu Ser 1045	168
gat aca gac gat agc aag tgg agt atg ggc aat gat gag aaa gag atg 3 Asp Thr Asp Asp Ser Lys Trp Ser Met Gly Aan Asp Glu Lys Glu Met 1060	216
ccc gat gat aag ctg ggt ata agt cgt gat gat cgt gga aat aaa cca 3: Pro Aap Asp Lys Leu Gly Ile Ser Arg Asp Asp Arg Gly Asn Lys Pro 1075 1080	264
cet egt act gat cet aca gtt gat tat ett aac eet gat gaa tte ttt 3. Pro Arg Thr Aap Pro Thr Val Asp Tyr Leu Asn Pro Asp Glu Phe Phe 1090	312
gaa aat ggt tat ctc ttg aat gag cta cta cag gag ctt gga gaa gag 3: Glu Asn Gly Tyr Leu Leu Asn Glu Leu Leu Gln Glu Leu Gly Glu Clu 1110 1115 1110	360
ccg tta cta aaa gaa ggg gaa gat cat ttt aaa cgt tct acc aat cta 3/ Pro Leu Leu Lys Glu Gly Glu Asp His Phe Lys Arg Ser Thr Asn Leu 1125 1130	408
gtc cgt cta ggc gag aga gat agg caa aat aga gaa aag aga gaa aaa 34 Val Arg Leu Gly Glu Arg Aep Arg Gln Aen Arg Glu Lye Arg Glu Lye 1140	456
gag gag tat tit gat ctg cct ggt aca tta gat atg aaa ctg cag gag 31 Glu Gly Tyr Phe Amp Leu Pro Gly Thr Leu Amp Met Lym Leu Gln Glu 1165 1160 1165	504
tta ttc gaa aaa aga aaa caa aa cac gaa gca gaa cag aaa gca aga Leu Phe Glu Lys Arg Lys Gln Lys His Glu Ala Glu Gln Lys Ala Arg 1170	552
ata gaa aaa gca ctt cta caa aaa tca gaa caa caa gaa aaa cgt gtt 36 Ile Glu Lys Ala Leu Leu Gln Lys Ser Glu Gln Gln Glu Lys Arg Val 1185 1190 1200	600
gaa gaa cgt aag caa gag gaa aaa cgt caa gcg caa gat aaa att gct 36 Glu Glu Arg Lys Gln Glu Glu Lys Arg Gln Ala Gln Asp Lys Ile Ala 1205 1210	548
aag caa gta gaa att gca aaa gaa atg caa cgg gta gaa gaa att cgc 36 Lys Gln Val Glu Ile Ala Lys Glu Met Gln Arg Val Glu Glu Ile Arg 1220 1225	596
Cag aga gaa aaa aaa cat geg atc caa ctg caa gaa gaa gag aag aa 37 Gln Arg Glu Lys Gln Leu Ala 11e Gln Leu Gln Glu Glu Glu Lys Lys 1245	744
caa caa gaa gaa aaa cat tta toc gag gag aaa aaa caa got gaa cag 37 Gln Gln Glu Glu Lys His Leu Ser Glu Glu Lys Lys Gln Ala Glu Gln 1250	792
ama cama ama gct gag gag ama gtt gca cam gam aga tta gac att gam 38 Lys Gln Lys Ala Glu Glu Lys Val Ala Gln Glu Arg Leu Amp Ile Glu 1275 1280	340
caa cag aaa gcg tat gaa gaa atg gcg aag gga gag gca gag gca tca 38 Gln Gln Lys Ala Tyr Glu Glu Met Ala Lys Arg Glu Ala Glu Ala Ser 1285	888

Lys Asn Val Leu 1300	aaa gcg att gat gaa Lys Ala Ile Asp Glu 1305	Glu Arg Pro Lys Val	Ğlu
act gat cca ctt ttc Thr Asp Pro Leu Phe 1315	cgt aca aaa ttg aaa Arg Thr Lys Leu Lys 1320	tat atc aat caa gat Tyr Ile Asn Gln Asp 1325	gac 3984 Asp
tat gct ggt gca aat Tyr Ala Gly Ala Asn 1330	tat ttc ttc aat aaa Tyr Phe Phe Asn Lys 1335	gtt ggt tta aat aca Val Gly Leu Asn Thr 1340	aaa 4032 Lys
ggt cat caa aaa gta Gly His Gln Lys Val 1345	aat gtg tta ggg gat Asn Val Leu Gly Asp 1350	aac tat ttt gat cat Asn Tyr Phe Asp His 1355	caa 4080 Gln 1360
gtg att act cgc tcg Val Ile Thr Arg Ser 1365	att gag aaa aaa gta Ile Glu Lys Lys Val 1370	Asp Asn His Leu Asn	caa 4128 Gln
aaa tac aat ctc agc Lys Tyr Asn Leu Ser 1380	gat gtg gaa tta gtt Asp Val Glu Leu Val 1385	aaa cag ctg atg gac Lys Gln Leu Met Asp 1390	aat 4176 Asn
tcc aca aca caa gcg Ser Thr Thr Gln Ala 1395	cag gag ttg gat ttg Gln Glu Leu Asp Leu 1400	aaa cta ggt gcg gca Lys Leu Gly Ala Ala 1405	tta 4224 Leu
act aaa gaa caa caa Thr Lys Glu Gln Gln 1410	gct aac ttg acc caa Ala Asn Leu Thr Gln 1415	gat atc gtt tgg tat Asp Ile Val Trp Tyr 1420	gtc 4272 Val
aaa acg aag gta aag Lys Thr Lys Val Lys 1425	ggc aaa gat gtg ttt Gly Lys Asp Val Phe 1430	gtt cca aag gtt tat Val Pro Lys Val Tyr 1435	ttc 4320 Phe 1440
gct tct gaa acg ctc Ala Ser Glu Thr Leu 1445	gta gaa gcc caa aaa Val Glu Ala Gln Lys 1450	tta caa ggt tta ggc Leu Gln Gly Leu Gly 1455	act 4368 Thr
ggg act atc aga gtt Gly Thr Ile Arg Val 1460	ggt gaa gct aag att Gly Glu Ala Lys Ile 1465	aaa gcc aaa gat gtg Lys Ala Lys Asp Val 1470	
aat acc ggg aca tta Asn Thr Gly Thr Leu 1475	gct ggg aga aaa ctc Ala Gly Arg Lys Leu 1480	aat gtt gaa gcg agt Asn Val Glu Ala Ser 1485	aat 4464 Asn
	ggg agt atc tta agt Gly Ser Ile Leu Ser 1495		
	att gaa aac gta tct Ile Glu Asn Val Ser 1510		
Val Gly Arg Lys Gly 1505	Ile Glu Asn Val Ser	Arg Ser Phe Ala Asn 1515	Asp

gat att aaa gca aaa aca agc ttt gtg aag act ggt gat gtg aat ctc Asp Ile Lys Ala Lys Thr Ser Phe Val Lys Thr Gly Asp Val Asn Leu 1555 1560	4704
aaa aat ac aat act aaa cat gcc tac cgt gag aaa t tc tcg ccg Lys Aan Thr Tyr Asn Thr Lys His Ala Tyr Ar g Glu Lys Phe Ser Pro 1570 $$	4752
agt gca cta caa gtt gca gaa ctt gat gtg gca ggg ctt aaa gtc cca Ser Ala Leu Gln Val Ala Glu Leu Asp Val Ala Gly Leu Lys Val Pro 1585 - 1590 - 1590 - 1595 - 1595 - 1595	4800
ctt tta ggc gtg tcc gtc tcc atc cag ttt att cag agc ata cta gtg Leu Leu Ugy Val Ser Val Ser Ile Gln Phe Ile Gln Ser Ile Leu Val 1605 1615 1615	4848
agg caa ctt caa gag gga tca atc ttc gaa gta ggg cac tta cat ntt Arg Oln Leu Gln Olu Gly Ser Ile Phe Olu Val Gly His Leu His Xaa 1620 1620 1620	4896
gog gta gac aga aga tgt gaa cca agc ggg gag ta Ala Val Amp Arg Arg Cym Glu Pro Ser Gly Glu 1635	4931
<210> 103 <211> 1643 <212> PRT <213> Pasteurella multocida	
<220> <221) misc_feature <222> 1632 <222> Xaa = any or unknown amino acid	
<400> 103 Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Gln Val Lys Gly Cys $\stackrel{1}{1}$ $\stackrel{5}{5}$ $\stackrel{10}{10}$ $\stackrel{10}{15}$	
Leu Val Pro Val Ala Glu Cys Ile Asn Ser Ala Ile Ser Asn Gly Ser $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$	
Ser Asp Ser Thr Ser Thr Ser Glu Glu Val Glu Glu Pro Phe Leu	
35 40 45	
35 40 45 Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr 50 60	
Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr	
Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr 50 60 Phe Asn Pro Val Ser Tyr Ala Met Gln Leu Thr Trp Lys Gln Leu Ser	
Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr 50 Phe Asn Pro Val Ser Tyr Ala Met Gln Leu Thr Trp Lys Gln Leu Ser 75 To 80 Ile Leu Phe Leu Thr Val Ile Ser Val Pro Val Leu Ala Glu Gly Lys	
Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr 50 Phe Asn Pro Val Ser Tyr Ala Met Gln Leu Thr Trp Lys Gln Leu Ser 75 Ro Ile Leu Phe Leu Thr Val Ile Ser Val Pro Val Leu Ala Glu Gly Lys 85 Gly Asp Glu Arg Asn Gln Leu Thr Val Ile Asp Asn Ser Asp His Ile	

Lys 145	Gly	Ile	Ser	Asp	Asn 150	Arg	Phe	Glu	Lys	Phe 155	Asn	Ile	Pro	Asn	Ser 160
Ala	Val	Phe	Asn	Asn 165	Asn	Gly	Thr	Glu	Ala 170	Gln	Ala	Arg	Ser	Thr 175	Leu
Ile	Gly	Tyr	Ile 180	Pro	Gln	Asn	Gln	Asn 185	Leu	Arg	Gly	Gly	Lys 190	Glu	Ala
Asp	Val	Ile 195	Leu	Asn	Gln	Val	Thr 200	Gly	Pro	Gln	Glu	Ser 205	Lys	Ile	Val
Gly	Ala 210	Leu	Glu	Val	Leu	Gly 215	Lys	Lys	Ala	Asp	Ile 220	Val	Ile	Ala	Asn
Gln 225	Asn	Gly	Ile	Thr	Leu 230	Asn	Gly	Val	Arg	Thr 235	Ile	Asn	Ser	Asp	Arg 240
Phe	Val	Ala	Thr	Thr 245	Ser	Glu	Leu	Ile	Asp 250	Pro	Asn	Gln	Met	Met 255	Leu
Lys	Val	Thr	Lys 260	Gly	Asn	Val	Ile	11e 265	Asp	Ile	Asp	Gly	Phe 270	Ser	Thr
Asp	Gly	Leu 275	Lys	Tyr	Leu	Asp	Ile 280	Ile	Ala	Lys	Lys	Ile 285	Glu	Gln	Lys
Gln	Ser 290	Ile	Thr	Ser	Gly	Asp 295	Asn	Ser	Glu	Ala	Lys 300	Thr	Asp	Val	Thr
Leu 305	Ile	Ala	Gly	Ser	Ser 310	Glu	Tyr	Asp	Leu	Ser 315	Ьуs	His	Glu	Leu	Lys 320
Lys	Thr	Ser	Gly	Glu 325	Asn	Val	Ser	Asn	Asp 330	Val	Ile	Ala	Ile	Thr 335	Gly
Ser	Ser	Thr	Gly 340	Ala	Met	His	Gly	Lys 345	Asn	Ile	Lys	Leu	Ile 350	Val	Thr
Asp	Lys	Gly 355	Ala	Gly	Val	Lys	His 360	Asp	Gly	Ile	Ile	Leu 365	Ser	Glu	Asn
Asp	Ile 370	Gln	Ile	Glu	Met	Asn 375	Glu	Gly	Asp	Leu	Glu 380	Leu	Gly	Asn	Thr
Ile 385	Gln	Gln	Thr	Val	Val 390	Lys	Lys	Asp	Arg	Asn 395	Ile	Arg	Ala	Lys	Lys 400
Lys	Ile	Glu	Val	Lys 405	Asn	Ala	Asn	Arg	Val 410	Phe	Val	Gly	Ser	Gln 415	Thr
Lys	Ser	Asp	Glu 420	Ile	Ser	Leu	Glu	Ala 425	Lys	Gln	Val	Lys	Ile 430	Arg	Lys
Asn	Ala	Glu 435	Ile	Arg	Ser	Thr	Thr 440	Gln	Ala	Lys	Ile	Val 445	Ala	Lys	Gly
Ala	Leu 450	Ser	Ile	Glu	Gln	Asn 455	Ala	Lys	Leu	Val	Ala 460	Lys	Lys	Ile	Asp
Val 465	Ala	Thr	Glu	Thr	Leu 470	Thr	Asn	Ala	Gly	Arg 475	Ile	Tyr	Gly	Arg	Glu 480

Val Lys Leu Asp Thr Asn Asn Leu Ile Asn Asp Lys Glu Ile Tyr Ala Glu Arg Lys Leu Ser Ile Leu Thr Lys Gly Lys Asp Leu Glu Ile Ile 505 Gln Asp Arg Tyr Leu Ser Pro Leu Met Arg Val Lys Ser Ser Val Arg Phe Leu Gly Ser Pro Phe Phe Ser Ile Ser Pro Ser Met Leu Ala Ser Leu Ser Ala Gln Phe Lys Pro Gly Phe Val Asn Lys Gly Leu Ile Glu Ser Ala Gly Ser Ala Glu Leu Thr Phe Lys Glu Lys Thr Ser Phe Leu Thr Glu Gly Asn Asn Phe Ile Arg Ala Lys Asp Ala Leu Thr Ile Asn Ala Gln Asn Ile Glu Ile Asp Lys Asn Gln Asp Ile Gln Leu Gly Ala Asn Ile Thr Leu Asn Val Glu Glu Asn Phe Val Asn Arg Ala Gly Thr Leu Ala Thr Gly Lys Thr Leu Thr Ile Asn Thr Glu Ser Gly Ser Ile Tyr Asn Leu Gly Gly Thr Leu Gly Ala Gly Lys Ser Leu Lys Leu Thr Ala Lys Ser Thr Glu Glu Gly Met Gly Asn Ile Val Asn Gln Glu Asn Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala Glu Arg Ser Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu Thr Val His Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn Val Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala Phe Asn Gln 805

Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile Thr Met Tyr 825 Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro Thr Asp Phe Ile Tyr Tyr Pro Ser Glu Lys Ala Lys Ile Leu Ala Gly Lys Leu Glu Gly Lys Leu Thr Thr Leu Gln Asn Gly Glu Tyr Ala Glu Arg Gly Lys Phe Asp Glu Ser Ile Gln Ile Gly Lys His Gln Leu Ser Leu Pro Ser Val Glu Leu Lys Ala Glu Phe Ser Asp Lys Glu Arg Leu Glu Glu Asp 985 Gly Val Asp Leu Ser Ser Ile Ala Glu Leu Leu Glu Met Pro Asn Leu 1000 Phe Ile Asp Asn Ser Ile Gln Leu Glu Lys Lys Lys Leu Ser Pro Ile Glu Asp Leu Asp Glu Glu Pro Arg Lys Asn Leu Asp Ile Glu Glu Ser 1025 1030 His Ser Asn Ser Ser Asp Asp Val Leu Ser Met Asn Asp Asp Glu Ser Asp Thr Asp Asp Ser Lys Trp Ser Met Gly Asn Asp Glu Lys Glu Met Pro Asp Asp Lys Leu Gly Ile Ser Arg Asp Asp Arg Gly Asn Lys Pro 1080 Pro Arg Thr Asp Pro Thr Val Asp Tyr Leu Asn Pro Asp Glu Phe Phe Glu Asn Gly Tyr Leu Leu Asn Glu Leu Leu Gln Glu Leu Gly Glu Glu 1105 1110 1115 Pro Leu Leu Lys Glu Gly Glu Asp His Phe Lys Arg Ser Thr Asn Leu 1130 Val Arg Leu Gly Glu Arg Asp Arg Gln Asn Arg Glu Lys Arg Glu Lys 1140 1145

Glu Gly Tyr Phe Asp Leu Pro Gly Thr Leu Asp Met Lys Leu Gln Glu 1155 1160 1165

Leu Phe Glu Lys Arg Lys Gln Lys His Glu Ala Glu Gln Lys Ala Arg 1170 1180

Ile Glu Lys Ala Leu Leu Gln Lys Ser Glu Gln Gln Glu Lys Arg Val 1185 1190 1195 1200

Glu Glu Arg Lys Gln Glu Glu Lys Arg Gln Ala Gln Asp Lys Ile Ala 1205 1210 1215

Lys Gln Val Glu Ile Ala Lys Glu Met Gln Arg Val Glu Glu Ile Arg 1220 1225 1230

Gln Arg Glu Lys Gln Leu Ala Ile Gln Leu Gln Glu Glu Glu Lys Lys 1235 1240 1245

Gln Gln Glu Glu Lys His Leu Ser Glu Glu Lys Lys Gln Ala Glu Gln 1250 1255 1260

Lys Gln Lys Ala Glu Glu Lys Val Ala Gln Glu Arg Leu Asp Ile Glu 1265 1270 1286

Gln Gln Lys Ala Tyr Glu Glu Met Ala Lys Arg Glu Ala Glu Ala Ser 1285 1290 1295

Lys Asn Val Leu Leu Lys Ala Ile Asp Glu Glu Arg Pro Lys Val Glu 1300 1310

Thr Asp Pro Leu Phe Arg Thr Lys Leu Lys Tyr Ile Asn Gln Asp Asp 1315 1320 1325

Tyr Ala Gly Ala Asn Tyr Phe Phe Asn Lys Val Gly Leu Asn Thr Lys 1330 1335 1340

Gly His Gln Lys Val Asn Val Leu Gly Asp Asn Tyr Phe Asp His Gln

1345 1350 1355 1360
Val Ile Thr Arg Ser Ile Glu Lys Lys Val Asp Asn His Leu Asn Gln

Lys Tyr Asn Leu Ser Asp Val Glu Leu Val Lys Gln Leu Met Asp Asn 1380 1385 1390

Ser Thr Thr Gln Ala Gln Glu Leu Asp Leu Lys Leu Gly Ala Ala Leu

Thr Lys Glu Gln Gln Ala Asn Leu Thr Gln Asp Ile Val Trp Tyr Val 1410 1420

Lys Thr Lys Val Lys Gly Lys Asp Val Phe Val Pro Lys Val Tyr Phe 1425 1430 1435

Ala Ser Glu Thr Leu Val Glu Ala Gln Lys Leu Gln Gly Leu Gly Thr 1445 1450 1450

Gly Thr Ile Arg Val Gly Glu Ala Lys Ile Lys Ala Lys Asp Val Val 1460 1465 1470

Asn Thr Gly Thr Leu Ala Gly Arg Lys Leu Asn Val Glu Ala Ser Asn 1475 1480 1485

```
Lys Ile Lys Asn Gln Gly Ser Ile Leu Ser Thr Gln Glu Thr Arg Leu
    1490
Val Gly Arg Lys Gly Ile Glu Asn Val Ser Arg Ser Phe Ala Asn Asp
                     1510
                                           1515
Glu Leu Gly Val Thr Ala Gln Arg Ser Glu Ile Lys Thr Glu Gly His
                1525
                                      1530
Leu His Leu Glu Thr Asp Lys Asp Ser Thr Ile Asp Val Gln Ala Ser
Asp Ile Lys Ala Lys Thr Ser Phe Val Lys Thr Gly Asp Val Asn Leu
Lys Asn Thr Tyr Asn Thr Lys His Ala Tyr Arg Glu Lys Phe Ser Pro
    1570
                          1575
Ser Ala Leu Gln Val Ala Glu Leu Asp Val Ala Gly Leu Lys Val Pro
                    1590
Leu Leu Gly Val Ser Val Ser Ile Gln Phe Ile Gln Ser Ile Leu Val
Arg Gln Leu Gln Glu Gly Ser Ile Phe Glu Val Gly His Leu His Xaa
Ala Val Asp Arg Arg Cys Glu Pro Ser Gly Glu
<210> 104
<211> 2009
<212> DNA
<213> Pasteurella multocida
-2205
<223> hmbR
<221> CDS
<222> (1)..(2007)
<400> 104
atc cgt ggc gtt gat aaa gat cgt gtc gct gtt att gtt gat gga ata
Ile Arg Gly Val Asp Lys Asp Arg Val Ala Val Ile Val Asp Gly Ile
ccg cag gct gaa tog act ata tot act too gca cgt tat tog act gaa
Pro Gln Ala Glu Ser Thr Ile Ser Thr Ser Ala Arg Tyr Ser Thr Glu
ogt cat aat ggt aat att aat aat att gaa tac gaa aat gtt agt tog
                                                                    144
Arg His Asn Gly Asn Ile Asn Asn Ile Glu Tyr Glu Asn Val Ser Ser
ttg aaa gtt caa aaa ggg gca gct tct gta atg tat ggt agc ggt gcg
                                                                    192
Leu Lys Val Gln Lys Gly Ala Ala Ser Val Met Tyr Gly Ser Gly Ala
tta ggt gga acc gtg gag ttt acc aca aaa gat att gag gac ttt gtc
Leu Gly Gly Thr Val Glu Phe Thr Thr Lys Asp Ile Glu Asp Phe Val
                                                                    240
```

gaa Glu	cct Pro	ggt Gly	cgc Arg	cat His 85	ttg Leu	ggc Gly	ttt Phe	ttg Leu	tct Ser 90	aaa Lys	acc Thr	ggc Gly	tat Tyr	act Thr 95	tca Ser	288
aaa Lys	aac Asn	aga Arg	gaa Glu 100	tat Tyr	cgt Arg	caa Gln	gtc Val	atc Ile 105	gga Gly	gtt Val	gga Gly	gjà aaa	aaa Lys 110	ggg Gly	gaa Glu	336
cac His	ttt Phe	ttt Phe 115	ggt Gly	ttt Phe	gta Val	caa Gln	tta Leu 120	acc Thr	aaa Lys	cgt Arg	tgg Trp	999 Gly 125	cat His	gaa Glu	aca Thr	384
atc Ile	aac Asn 130	aac Asn	ggc Gly	aaa Lys	ggt Gly	aca Thr 135	gac Asp	att Ile	ctc Leu	ggc Gly	gaa Glu 140	cat His	cga Arg	ggt Gly	aaa Lys	432
ccc Pro 145	aat Asn	ccg Pro	ctc Leu	aac Asn	tac Tyr 150	tat Tyr	act Thr	aca Thr	tca Ser	tgg Trp 155	tta Leu	acg Thr	aaa Lys	gtc Val	ggt Gly 160	480
tac Tyr	gat Asp	att Ile	aat Asn	aac Asn 165	act Thr	cat His	cgt Arg	ttt Phe	aca Thr 170	ctg Leu	ttt Phe	tta Leu	gaa Glu	gat Asp 175	ege Arg	528
cgt Arg	gaa Glu	aag Lys	аад Lys 180	ctt Leu	acc Thr	g aa Glu	gaa Glu	aaa Lys 185	aca Thr	tta Leu	ggg Gly	ctt Leu	agt Ser 190	gat Asp	gca Ala	576
gtg Val	cgt Arg	ttt Phe 195	gct Ala	aat Asn	gat Asp	caa Gln	acc Thr 200	cct Pro	tat Tyr	ctc Leu	cgt Arg	tat Tyr 205	ggt Gly	att Ile	gaa Glu	624
Tyr	Arg 210	Tyr	Asn	ggc Gly	Leu	Ser 215	Trp	Leu	Glu	Thr	Val 220	Lys	Leu	Phe	Leu	672
gca Ala 225	aag Lys	cag Gln	aaa Lys	atc Ile	gaa Glu 230	caa Gln	cgt Arg	tct Ser	gct Ala	ctc Leu 235	caa Gln	gag Glu	ttt Phe	gat Asp	att Ile 240	720
aat Asn	aat Asn	agg Arg	aat Asn	aaa Lys 245	ttg Leu	gat Asp	tcg Ser	act Thr	atg Met 250	tcg Ser	ttt Phe	gta Val	tat Tyr	tta Leu 255	caa Gln	768
aga Arg	cag Gln	aat Asn	ata Ile 260	gct Ala	cgg Arg	gga Gly	gaa Glu	ttt Phe 265	tca Ser	acg Thr	agt Ser	cct Pro	tta Leu 270	tat Tyr	tgg Trp	816
ggg Gly	ccg Pro	agt Ser 275	cgc Arg	cat His	cgt Arg	Leu	tct Ser 280	gcg Ala	aaa Lys	ttc Phe	gaa Glu	ttt Phe 285	cgt Arg	gat Asp	aag Lys	864
Phe	tta Leu 290	gaa Glu	aat Asn	atg Met	Asn	aag Lys 295	cat His	ttt Phe	acg Thr	ttt Phe	cgg Arg 300	ccg Pro	tgg Trp	caa Gln	atc Ile	912
aat Asn 305	aga Arg	ttc Phe	aga Arg	caa Gln	caa Gln 310	ggt Gly	cga Arg	aat Asn	Asn	tat Tyr 315	aca Thr	gaa Glu	gtg Val	ttt Phe	ecc Pro 320	960
gtt Val	aaa Lys	tcc Ser	cga Arg	gag Glu 325	ttt Phe	tct Ser	ttt Phe	Ser	ctt Leu 330	atg Met	gac Asp	gac Asp	Ile	aag Lys 335	att Ile	1008

ggc Gly	gaa Glu	ttg Leu	cta Leu 340	cat His	ctc Leu	gga Gly	ttg Leu	ggc Gly 345	ggt Gly	cgg Arg	tgg Trp	gat Asp	cac His 350	tat Tyr	aac Asn	1056
tat Tyr	aag Lys	cca Pro 355	tta Leu	tta Leu	aat Asn	tct Ser	cag Gln 360	cat His	aat Asn	atc Ile	aac Asn	agg Arg 365	aca Thr	cag Gln	aga Arg	1104
tta Leu	Pro 370	tat Tyr	cca Pro	aaa Lys	aca Thr	tca Ser 375	tcc Ser	aaa Lys	ttt Phe	tcg Ser	tat Tyr 380	caa Gln	ttg Leu	agt Ser	tta Leu	1152
gag Glu 385	tat Tyr	caa Gln	tta Leu	cat His	cca Pro 390	tca Ser	cat His	caa Gln	att Ile	gca Ala 395	tac Tyr	cgt Arg	tta Leu	agt Ser	acc Thr 400	1200
ggt Gly	ttt Phe	agg Arg	gtt Val	ccc Pro 405	cgt Arg	gtt Val	gaa Glu	gat Asp	ctt Leu 410	tat Tyr	ttt Phe	gaa Glu	gac Asp	cga Arg 415	gga Gly	1248
aaa Lys	agt Ser	tct Ser	tca Ser 420	caa Gln	ttt Phe	ctt Leu	cct Pro	aac Asn 425	ccc Pro	gat Asp	cta Leu	caa Gln	ccg Pro 430	gaa Glu	act Thr	1296
gca Ala	ctg Leu	aat Asn 435	cat His	gaa Glu	ata Ile	agt Ser	tac Tyr 440	cgt Arg	ttc Phe	caa Gln	aat Asn	caa Gln 445	tat Tyr	gcc Ala	cat His	1344
ttc Phe	agc Ser 450	gtc Val	ggg Gly	ctt Leu	ttc Phe	cgt Arg 455	aca Thr	cgt Arg	tat Tyr	cat His	aac Asn 460	ttt Phe	att Ile	caa Gln	gaa Glu	1392
cgt Arg 465	gag Glu	atg Met	acc Thr	tgt Cys	gat Asp 470	aaa Lys	att Ile	cca Pro	tat Tyr	gag Glu 475	tat Tyr	aat Asn	agg Arg	act Thr	tat Tyr 480	1440
gga Gly	tat Tyr	tgc Cys	acg Thr	cat His 485	aat Asn	act Thr	tat Tyr	gta Val	atg Met 490	ttt Phe	gtt Val	aat Asn	gaa Glu	cct Pro 495	gaa Glu	1488
gcc Ala	gtg Val	att Ile	aaa Lys 500	ggg Gly	gtt Val	gaa Glu	gta Val	agc Ser 505	ggt Gly	gct Ala	tta Leu	aat Asn	999 Gly 510	tcg Ser	gca Ala	1536
ttc Phe	gga Gly	ctt Leu 515	tcc Ser	gac Asp	ggt Gly	tta Leu	act Thr 520	ttc Phe	cgt Arg	ctc Leu	aaa Lys	999 Gly 525	agc Ser	tac Tyr	agc Ser	1584
aaa Lys	ggt Gly 530	caa Gln	aat Asn	cat His	gac Asp	ggc Gly 535	gat Asp	ccg Pro	tta Leu	aaa Lys	tct Ser 540	att Ile	caa Gln	cca Pro	tgg Trp	1632
aca																
545	gtg Val	gta Val	acc Thr	ggt Gly	att Ile 550	gat Asp	tac Tyr	gaa Glu	act Thr	gaa Glu 555	61à 88 8	tgg Trp	agc Ser	gtg Val	agt Ser 560	1680
545 ttg	Val	Val 999	Thr	Gly tat	Ile 550 agt	gat Asp gcg Ala	Tyr	Glu	Thr	Glu 555 qcc	Gly	Trp	Ser	Val	Ser 560 gaa	1680 1728

agt Ser	cca Pro	tcc Ser 595	tac Tyr	ttt Phe	gtt V a l	gtt Val	gat Asp 600	Phe	acg Thr	61y 999	caa Gln	gtt Val 605	aac Asn	ctc Leu	agt Ser	1824
aaa Lys	aat Asn 610	gtc V a l	att Ile	ttg Leu	aat Asn	atg Met 615	ggg ggg	gta Val	ttt Phe	aac Asn	ttg Leu 620	ttc Phe	aat Asn	cgt Arg	gat Asp	1872
tat Tyr 625	atg Met	acg Thr	tgg Trp	gac Asp	agt Ser 630	gca Ala	tat Tyr	aac Asn	ttg Leu	ttt Phe 635	act Thr	agg Arg	ggg	tat Tyr	act Thr 640	1920
tcc Ser	cgt Arg	tct Ser	gtc Val	cgt Arg 645	gct Ala	aac Asn	agc Ser	cca Pro	ggc Gly 650	att Ile	aat Asn	cgg Arg	ttt Phe	acc Thr 655	gca Ala	1968
cca Pro	aaa Lys	cgt Arg	aat Asn 660	ttt Phe	gct Ala	gcc Ala	tcg Ser	gtg Val 665	gaa Glu	att Ile	cgt Arg	ttt Phe	ta			2009
<21 <21	0> 10 1> 60 2> Pl 3> Pa	59 RT	urel:	la m	ulto	cida										
	0> 10 Arg		Val	Asp 5	Lys	Asp	Arg	Val	Ala 10	Val	Ile	Val	Asp	Gly 15	Ile	
Pro	Gln	Ala	Glu 20	Ser	Thr	Ile	Ser	Thr 25	Ser	Ala	Arg	Tyr	Ser 30	Thr	Glu	
Arg	His	Asn 35	Gly	Asn	Ile	Asn	Asn 40	Ile	Glu	Tyr	Glu	Asn 45	Val	Ser	Ser	
Leu	Lys 50	Val	Gln	Lys	Gly	Ala 55	Ala	Ser	Val	Met	Tyr 60	Gly	Ser	Gly	Ala .	
Leu 65	Gly	Gly	Thr	Val	Glu 70	Phe	Thr	Thr	Lys	Asp 75	Ile	Glu	Asp	Phe	Val 80	
Glu	Pro	Gly	Arg	His 85	Leu	Gly	Phe	Leu	Ser 90	Lys	Thr	Gly	Tyr	Thr 95	Ser	
Lys	Asn	Arg	Glu 100	Tyr	Arg	Gln	Val	Ile 105	Gly	Val	Gly	Gly	Lys 110	Gly	Glu	
His	Phe	Phe 115	Gly	Phe	Val	Gln	Leu 120	Thr	Lys	Arg	Trp	Gly 125	His	Glu	Thr	
Ile	Asn 130	Asn	Gly	Lys	Gly	Thr 135	Asp	Ile	Leu	Gly	Glu 140	His	Arg	Gly	Lys	
Pro 145	Asn	Pro	Leu	Asn	Tyr 150	Tyr	Thr	Thr	Ser	Trp 155	Leu	Thr	Lys	Val	Gly 160	
Tyr	Asp	Ile	Asn	Asn 165	Thr	His	Arg	Phe	Thr 170	Leu	Phe	Leu	Glu	Asp 175	Arg	
Arg	Glu	Lys	Lys 180	Leu	Thr	Glu	Glu	Lys 185	Thr	Leu	Gly	Leu	Ser 190	Asp	Ala	

Val Arg Phe Ala Asn Asp Gln Thr Pro Tyr Leu Arg Tyr Gly Ile Glu Tyr Arg Tyr Asn Gly Leu Ser Trp Leu Glu Thr Val Lys Leu Phe Leu Ala Lys Gln Lys Ile Glu Gln Arg Ser Ala Leu Gln Glu Phe Asp Ile Asn Asn Arg Asn Lys Leu Asp Ser Thr Met Ser Phe Val Tyr Leu Gln Arg Gln Asn Ile Ala Arg Gly Glu Phe Ser Thr Ser Pro Leu Tyr Trp Gly Pro Ser Arg His Arg Leu Ser Ala Lys Phe Glu Phe Arg Asp Lys Phe Leu Glu Asn Met Asn Lys His Phe Thr Phe Arg Pro Trp Gln Ile Asn Arg Phe Arg Gln Gln Gly Arg Asn Asn Tyr Thr Glu Val Phe Pro Val Lys Ser Arg Glu Phe Ser Phe Ser Leu Met Asp Asp Ile Lys Ile Gly Glu Leu Leu His Leu Gly Leu Gly Gly Arg Trp Asp His Tyr Asn Tyr Lys Pro Leu Leu Asn Ser Gln His Asn Ile Asn Arg Thr Gln Arg Leu Pro Tyr Pro Lys Thr Ser Ser Lys Phe Ser Tyr Gln Leu Ser Leu Glu Tyr Gln Leu His Pro Ser His Gln Ile Ala Tyr Arg Leu Ser Thr Gly Phe Arg Val Pro Arg Val Glu Asp Leu Tyr Phe Glu Asp Arg Gly Lys Ser Ser Ser Gln Phe Leu Pro Asn Pro Asp Leu Gln Pro Glu Thr Ala Leu Asn His Glu Ile Ser Tyr Arg Phe Gln Asn Gln Tyr Ala His Phe Ser Val Gly Leu Phe Arg Thr Arg Tyr His Asn Phe Ile Gln Glu Arg Glu Met Thr Cys Asp Lys Ile Pro Tyr Glu Tyr Asn Arg Thr Tyr Gly Tyr Cys Thr His Asn Thr Tyr Val Met Phe Val Asn Glu Pro Glu Ala Val Ile Lys Gly Val Glu Val Ser Gly Ala Leu Asn Gly Ser Ala 505 Phe Gly Leu Ser Asp Gly Leu Thr Phe Arg Leu Lys Gly Ser Tyr Ser 520

```
Lys Gly Gln Asn His Asp Gly Asp Pro Leu Lys Ser Ile Gln Pro Trp
Thr Val Val Thr Gly Ile Asp Tyr Glu Thr Glu Gly Trp Ser Val Ser
Leu Ser Gly Arg Tyr Ser Ala Ala Lys Lys Ala Lys Asp Ala Ile Glu
Thr Glu Tyr Thr His Asp Lys Lys Val Val Lys Gln Trp Pro His Leu
Ser Pro Ser Tyr Phe Val Val Asp Phe Thr Gly Gln Val Asn Leu Ser
Lys Asn Val Ile Leu Asn Met Gly Val Phe Asn Leu Phe Asn Arg Asp
Tyr Met Thr Trp Asp Ser Ala Tyr Asn Leu Phe Thr Arg Gly Tyr Thr
Ser Arg Ser Val Arg Ala Asn Ser Pro Gly Ile Asn Arg Phe Thr Ala
Pro Lys Arg Asn Phe Ala Ala Ser Val Glu Ile Arg Phe
<210> 106
<211> 908
<212> DNA
<213> Pasteurella multocida
<220>
<223> lgtC
<220>
<221> CDS
<222> (1)..(906)
<400> 106
atg aat att tta ttt gtt tct gat gat gtt tat gct aaa cat ctg gtg
Met Asn Ile Leu Phe Val Ser Asp Asp Val Tyr Ala Lys His Leu Val
gtt gcg att aaa agc att ata aat cat aat gaa aaa ggt att tca ttt
Val Ala Ile Lys Ser Ile Ile Asn His Asn Glu Lys Gly Ile Ser Phe
             20
                                 25
tat att ttt gat ttg ggt ata aag gat gaa aat aag aga aat att aat
Tyr Ile Phe Asp Leu Gly Ile Lys Asp Glu Asn Lys Arg Asn Ile Asn
gat att gtt tot tot tat gga agt gaa gtc aac ttt att gct gtg aat
                                                                  192
Asp Ile Val Ser Ser Tyr Gly Ser Glu Val Asn Phe Ile Ala Val Asn
gag aaa gaa ttt gag agt ttt oot gtt caa att agt tat att tot tta
Glu Lys Glu Phe Glu Ser Phe Pro Val Gln Ile Ser Tyr Ile Ser Leu
65
                   70
                                         75
```

			gca Ala													288
			att Ile 100													336
			tgg Trp													384
tat Tyr	gat Asp 130	tct Ser	ttc Phe	atc Ile	gaa Glu	aat Asn 135	gaa Glu	aag Lys	tct Ser	gag Glu	cat His 140	aaa Lys	aaa Lys	tcg Ser	att Ile	432
			gat Asp													480
aat Asn	tta Leu	gat Asp	gaa Glu	tgg Trp 165	cgg Arg	aag Lys	atg Met	gat Asp	gta Val 170	ttc Phe	tca Ser	aga Arg	gct Ala	tta Leu 175	gac Asp	528
			atg Met 180													576
			ctt Leu													624
aat Asn	Phe 210	atg Met	cca Pro	aat Asn	caa Gln	ctt Leu 215	gaa Glu	aga Arg	ata Ile	aaa Lys	caa Gln 220	tac Tyr	cat His	aaa Lys	gga Gly	672
			aac Asn													720
att Ile	tca Ser	cat His	tat Tyr	tgt Cys 245	ggt Gly	cca Pro	gaa Glu	aaa Lys	gcg Ala 250	tgg Trp	cat His	gcg Ala	gat Asp	tgt Cys 255	aaa Lys	768
			gta Val 260													816
			aaa Lys													864
			agg Arg											ta		908

<210> 107 <211> 302 <212> PRT <213> Pasteurella multocida

<400> 107

```
Met Asn Ile Leu Phe Val Ser Asp Asp Val Tyr Ala Lys His Leu Val
Val Ala Ile Lys Ser Ile Ile Asn His Asn Glu Lys Gly Ile Ser Phe
Tyr Ile Phe Asp Leu Gly Ile Lys Asp Glu Asn Lys Arg Asn Ile Asn
Asp Ile Val Ser Ser Tyr Gly Ser Glu Val Asn Phe Ile Ala Val Asn
Glu Lys Glu Phe Glu Ser Phe Pro Val Gln Ile Ser Tyr Ile Ser Leu
Ala Thr Tyr Ala Arg Leu Lys Ala Ala Glu Tyr Leu Pro Asp Asn Leu
Asn Lys Ile Ile Tyr Leu Asp Val Asp Val Leu Val Phe Asn Ser Leu
Glu Met Leu Trp Asn Val Asp Val Asn Asn Phe Leu Thr Ala Ala Cys
Tyr Asp Ser Phe Ile Glu Asn Glu Lys Ser Glu His Lys Lys Ser Ile
Ser Met Ser Asp Lys Glu Tyr Tyr Phe Asn Ala Gly Val Met Leu Phe
Asn Leu Asp Glu Trp Arg Lys Met Asp Val Phe Ser Arg Ala Leu Asp
Leu Leu Ala Met Tyr Pro Asn Gln Met Ile Tyr Gln Asp Gln Asp Ile
Leu Asn Ile Leu Phe Arg Asn Lys Val Cys Tyr Leu Asp Cys Arg Phe
Asn Phe Met Pro Asn Gln Leu Glu Arg Ile Lys Gln Tyr His Lys Gly
Lys Leu Ser Asn Leu His Ser Leu Glu Lys Thr Thr Met Pro Val Val
                   230
Ile Ser His Tyr Cys Gly Pro Glu Lys Ala Trp His Ala Asp Cys Lys
His Phe Asn Val Tyr Phe Tyr Gln Lys Ile Leu Ala Glu Ile Thr Arg
Gly Thr Asp Lys Glu Arg Val Leu Ser Ile Lys Thr Tyr Leu Lys Ala
Leu Ile Arg Arg Ile Arg Tyr Lys Phe Lys Tyr Gln Val Tyr
```

<210> 108

<211> 2054

<212> DNA

<213> Pasteurella multocida

<22 <22	0> 3> p	np														
	0> 1> C 2> ((205	2)												
atg	0> 1 gca Ala	agt	atg Met	gat Asp 5	gat Asp	act Thr	act Thr	gtg Val	ttt Phe 10	gtc Val	aca Thr	gtg Val	gtt Val	gcc Ala 15	aaa Lys	48
aaa Lys	gat Asp	gtg Val	aaa Lys 20	gaa Glu	ggt Gly	caa Gln	gac As p	ttc Phe 25	ttc Phe	cca Pro	tta Leu	act Thr	gtt Val 30	aac Asn	tat Tyr	96
caa Gln	gag Glu	cgt Arg 35	act Thr	tat Tyr	gct Ala	gca Ala	ggc Gly 40	cgt Arg	att Ile	cct Pro	ggt Gly	ggc Gly 45	ttt Phe	ttc Phe	aaa Lys	144
cgt Arg	gaa Glu 50	ggt Gly	cgt Arg	cct Pro	tct Ser	gaa Glu 55	ggc Gly	gaa Glu	act Thr	tta Leu	att Ile 60	gct Ala	cgt Arg	tta Leu	att Ile	192
gac Asp 65	cgt Arg	cca Pro	att Ile	cgt Arg	Pro 70	ctt Leu	ttc Phe	cca Pro	gaa Glu	ggt Gly 75	ttt Phe	tat Tyr	aac Asn	gaa Glu	atc Ile 80	240
caa Gln	atc Ile	gtg Val	gcg Ala	aca Thr 85	gtg Val	gtg Val	tct Ser	gtt Val	aat Asn 90	ccg Pro	caa Gln	att Ile	tgt Cys	cca Pro 95	gat Asp	288
tta Leu	gtg Val	gca Ala	atg Met 100	atc Ile	ggt Gly	gca Ala	tct Ser	gcg Ala 105	gca Ala	ctt Leu	tct Ser	tta Leu	tca Ser 110	ggt Gly	gtg Val	336
cca Pro	ttt Phe	aat Asn 115	ggc Gly	cct Pro	atc Ile	ggt Gly	gcg Ala 120	gca Ala	cgt Arg	gtt Val	ggt Gly	ttt Phe 125	att Ile	gat Asp	gat Asp	384
caa Gln	ttt Phe 130	gtg Val	tta Leu	aac Asn	cca Pro	acc Thr 135	atg Met	aac Asn	g a g Glu	caa Gln	aaa Lys 140	caa Gln	agc Ser	cgt Arg	tta Leu	432
gac Asp 145	ttg Leu	gtt Val	gtc Val	gcg Ala	gga Gly 150	aca Thr	gat Asp	aaa Lys	gcg Ala	gtg Val 155	tta Leu	atg Met	gtg Val	gaa Glu	tct Ser 160	480
gaa Glu	gcc Ala	gat Asp	gta Val	tta Leu 165	acc Thr	gaa Glu	gaa Glu	caa Gln	atg Met 170	tta Leu	gct Ala	gcg Ala	gtg Val	gtg Val 175	ttt Phe	528
ggt Gly	cat His	cag Gln	caa Gln 180	caa Gln	caa Gln	gtg Val	gtg Val	att Ile 185	gac Asp	gcg Ala	atc Ile	aaa Lys	gaa Glu 190	ttt Phe	acc Thr	576
gca Ala	gaa Glu	gcc Ala 195	ggt Gly	aaa Lys	ccg Pro	cgt Arg	tgg Trp 200	gat Asp	tgg Trp	gtg Val	gca Ala	cct Pro 205	gaa Glu	cca Pro	aat Asn	624
acc Thr	gcg Ala 210	tta Leu	att Ile	gaa Glu	aaa Lys	gtg Val 215	aaa Lys	gcg Ala	att Ile	gca Ala	gaa Glu 220	gcg Ala	cgt Arg	tta Leu	ggc Gly	672

gaa Glu 225	gca Ala	tac Tyr	cgt Arg	atc Ile	act Thr 230	gaa Glu	aaa Lys	caa Gln	gca Ala	cgt Arg 235	tat Tyr	gaa Glu	caa Gln	att Ile	gat Asp 240	720
gcg Ala	att Ile	aaa Lys	gct Ala	gat Asp 245	gtg Val	att Ile	gca Ala	caa Gln	atc Ile 250	aca Thr	gct Ala	gaa Glu	gta Val	gca Ala 255	gaa Glu	768
ggc Gly	gaa Glu	gac Asp	atc Ile 260	agt Ser	gaa Glu	G1y ggg	aaa Lys	att Ile 265	gtc Val	gat Asp	att Ile	ttc Phe	acc Thr 270	gca Ala	ctt Leu	816
gaa Glu	agc Ser	caa Gln 275	atc Ile	gta Val	cgt Arg	agc Ser	cgt Arg 280	atc Ile	att Ile	gct Ala	ggt Gly	gaa Glu 285	cca Pro	cgt Arg	att Ile	864
gat Asp	ggt Gly 290	cgt Arg	aca Thr	gtg Val	gat Asp	act Thr 295	gtt Val	cgt Arg	gca Ala	tta Leu	gat Asp 300	att Ile	tgt Cys	act Thr	ggt Gly	912
gtt Val 305	tta Leu	cca Pro	cgt Arg	aca Thr	cac His 310	ggt Gly	tct Ser	gcg Ala	att Ile	ttc Phe 315	acc Thr	cgt Arg	ggt Gly	gaa Glu	aca Thr 320	960
cag Gln	gcg Ala	tta Leu	gct Ala	gtc Val 325	gcg Ala	aca Thr	tta Leu	ggt Gly	aca Thr 330	gaa Glu	cgt Arg	gat Asp	gca Ala	caa Gln 335	att Ile	1008
att Ile	gat Asp	gaa Glu	tta Leu 340	aca Thr	ggt Gly	gag Glu	cgt Arg	tca Ser 345	gat Asp	cac His	ttc Phe	tta Leu	ttc Phe 350	cac His	tac Tyr	1056
aac Asn	ttc Phe	ccg Pro 355	cca Pro	tat Tyr	tct Ser	gtg Val	ggt Gly 360	gaa Glu	acc Thr	ggt Gly	atg Met	att Ile 365	ggt Gly	tca Ser	cca Pro	1104
aaa Lys	cgt Arg 370	cgt Arg	gaa Glu	att Ile	ggt Gly	cat His 375	ggt Gly	cgt Arg	tta Leu	gcg Ala	aaa Lys 380	cgc Arg	ggt Gly	gta Val	gct Ala	1152
gca Ala 385	gtg Val	atg Met	cca Pro	aca Thr	ctt Leu 390	gcc Ala	gag Glu	ttc Phe	ccg Pro	tat Tyr 395	gtg Val	gta Val	cgt Arg	gtt Val	gtc Val 400	1200
tct Ser	gaa Glu	atc Ile	aca Thr	gaa Glu 405	tca Ser	aat Asn	ggt Gly	tct Ser	tct Ser 410	tct Ser	atg Met	gca Ala	tcg Ser	gtt Val 415	tgt Cys	1248
ggt Gly	gcg Ala	tct Ser	tta Leu 420	gca Ala	tta Leu	atg Met	gat Asp	gcg Ala 425	ggt Gly	gta Val	cca Pro	att Ile	aaa Lys 430	gcg Ala	gcg Ala	1296
gtt Val	gca Ala	ggt Gly 435	att Ile	gca Ala	atg Met	ggc Gly	tta Leu 440	gtc Val	aaa Lys	gaa Glu	gac Asp	gaa Glu 445	aaa Lys	ttt Phe	gtg Val	1344
gtg Val	ctt Leu 450	tca Ser	gac Asp	atc Ile	tta Leu	ggt Gly 455	gat Asp	gaa Glu	gat Asp	cac His	tta Leu 460	ggt Gly	gac Asp	atg Met	gac Asp	1392
ttc Phe 465	aaa Lys	gtc Val	gcg Ala	ggt Gly	aca Thr 470	cgt Arg	acg Thr	ggt Gly	gtg Val	acg Thr 475	gca Ala	tta Leu	caa Gln	atg Met	gat Asp 480	1440

										atg Met						1488
										ggt Gly						1536
										ttt Phe						1584
										gat Asp						1632
										aca Thr 555						1680
										gcg Ala						1728
										att Ile						1776
										cgt Arg						1824
										ggc Gly						1872
caa Gln 625	atc Ile	gcg Ala	gaa Glu	gag Glu	cgt Arg 630	gtt Val	gag Glu	aaa Lys	gtg Val	agt Ser 635	gat Asp	tat Tyr	ctt Leu	gca Ala	gtg Val 640	1920
ggg ggg	caa Gln	gaa Glu	gtg Val	act Thr 645	gtt Val	aaa Lys	gtg Val	gtt Val	gag Glu 650	att Ile	gat Asp	cgt Arg	caa Gln	ggt Gly 655	cgt Arg	1968
att Ile	cgt Arg	tta Leu	acc Thr 660	atg Met	aaa Lys	gaa Glu	gtt Val	gca Ala 665	cca Pro	aag Lys	caa Gln	gaa Glu	cac His 670	gtt Val	gat Asp	2016
										aac Asn		ta				2054

<210> 109

<211> 684
<212> PRT
<213> Pasteurella multocida

Met Ala Ser Met Asp Asp Thr Thr Val Phe Val Thr Val Val Ala Lys 1 5 10 15

Lys Asp Val Lys Glu Gly Gln Asp Phe Phe Pro Leu Thr Val Asn Tyr

20 30 25 Gln Glu Arg Thr Tyr Ala Ala Gly Arg Ile Pro Gly Gly Phe Phe Lys Arg Glu Gly Arg Pro Ser Glu Gly Glu Thr Leu Ile Ala Arg Leu Ile Asp Arg Pro Ile Arg Pro Leu Phe Pro Glu Gly Phe Tyr Asn Glu Ile Gln Ile Val Ala Thr Val Val Ser Val Asn Pro Gln Ile Cys Pro Asp Leu Val Ala Met Ile Gly Ala Ser Ala Ala Leu Ser Leu Ser Gly Val Pro Phe Asn Gly Pro Ile Gly Ala Ala Arg Val Gly Phe Ile Asp Asp Gln Phe Val Leu Asn Pro Thr Met Asn Glu Gln Lys Gln Ser Arg Leu Asp Leu Val Val Ala Gly Thr Asp Lys Ala Val Leu Met Val Glu Ser Glu Ala Asp Val Leu Thr Glu Glu Gln Met Leu Ala Ala Val Val Phe Gly His Gln Gln Gln Val Val Ile Asp Ala Ile Lys Glu Phe Thr 185 Ala Glu Ala Gly Lys Pro Arg Trp Asp Trp Val Ala Pro Glu Pro Asn Thr Ala Leu Ile Glu Lys Val Lys Ala Ile Ala Glu Ala Arg Leu Gly . Glu Ala Tyr Arg Ile Thr Glu Lys Gln Ala Arg Tyr Glu Gln Ile Asp Ala Ile Lys Ala Asp Val Ile Ala Gln Ile Thr Ala Glu Val Ala Glu Gly Glu Asp Ile Ser Glu Gly Lys Ile Val Asp Ile Phe Thr Ala Leu Glu Ser Gln Ile Val Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile Asp Gly Arg Thr Val Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Gly Val Leu Pro Arg Thr His Gly Ser Ala Ile Phe Thr Arg Gly Glu Thr Gln Ala Leu Ala Val Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile Ile Asp Glu Leu Thr Gly Glu Arg Ser Asp His Phe Leu Phe His Tyr Asn Phe Pro Pro Tyr Ser Val Gly Glu Thr Gly Met Ile Gly Ser Pro

360 365 Lys Arg Arg Glu Ile Gly His Gly Arg Leu Ala Lys Arg Gly Val Ala 375 Ala Val Met Pro Thr Leu Ala Glu Phe Pro Tyr Val Val Arg Val Val Ser Glu Ile Thr Glu Ser Asn Gly Ser Ser Ser Met Ala Ser Val Cys Gly Ala Ser Leu Ala Leu Met Asp Ala Gly Val Pro Ile Lys Ala Ala Val Ala Gly Ile Ala Met Gly Leu Val Lys Glu Asp Glu Lys Phe Val Val Leu Ser Asp Ile Leu Gly Asp Glu Asp His Leu Gly Asp Met Asp Phe Lys Val Ala Gly Thr Arg Thr Gly Val Thr Ala Leu Gln Met Asp Ile Lys Ile Glu Gly Ile Thr Ala Glu Ile Met Gln Ile Ala Leu Asn Gln Ala Lys Ser Ala Arg Leu His Ile Leu Gly Val Met Glu Gln Ala Ile Pro Ala Pro Arg Ala Asp Ile Ser Asp Phe Ala Pro Arg Ile Tyr Thr Met Lys Ile Asp Pro Lys Lys Ile Lys Asp Val Ile Gly Lys Gly Gly Ala Thr Ile Arg Ala Leu Thr Glu Glu Thr Gly Thr Ser Ile Asp Ile Asp Asp Asp Gly Thr Val Lys Ile Ala Ala Val Asp Gly Asn Ser Ala Lys Glu Val Met Ala Arg Ile Glu Asp Ile Thr Ala Glu Val Glu Ala Gly Ala Val Tyr Lys Gly Lys Val Thr Arg Leu Ala Asp Phe Gly Ala Phe Val Ser Ile Val Gly Asn Lys Glu Gly Leu Val His Ile Ser Gln Ile Ala Glu Glu Arg Val Glu Lys Val Ser Asp Tyr Leu Ala Val Gly Gln Glu Val Thr Val Lys Val Val Glu Ile Asp Arg Gln Gly Arg Ile Arg Leu Thr Met Lys Glu Val Ala Pro Lys Gln Glu His Val Asp 665 Ser Val Val Ala Asp Val Ala Ala Glu Glu Asn Ala

680

```
<210> 110
<211> 1514
<212> DNA
<213> Pasteurella multocida
-220×
<223> purF
<220>
<221> CDS
<222> (1)..(1512)
<400> 110
atg tgt ggt att gtt ggt att gtt agc caa agc ccc gtt aac caa tca
Met Cys Gly Ile Val Gly Ile Val Ser Gln Ser Pro Val Asn Gln Ser
att tat gat geg tta acc tta ttg caa cac ege ggg caa gae gee gee
Ile Tyr Asp Ala Leu Thr Leu Leu Gln His Arg Gly Gln Asp Ala Ala
                                 25
ggg att gta acc gta gat gat gaa aac cga ttc cgc ttg cgt aaa gcg
                                                                   144
Gly Ile Val Thr Val Asp Asp Glu Asn Arg Phe Arg Leu Arg Lys Ala
aac ggg tta gtc agc gat gta ttt gaa caa gtt cat atg tta cgt tta
                                                                   192
Asn Gly Leu Val Ser Asp Val Phe Glu Gln Val His Met Leu Arg Leu
     50
caa ggc aat gct ggc att gga cat gtt cgt tat cct acg gct ggg agc
                                                                   240
Gln Gly Asn Ala Gly Ile Gly His Val Arg Tyr Pro Thr Ala Gly Ser
tca agt gtc tct gaa gcg caa cct ttt tat gta aat tcg cct tat ggc
Ser Ser Val Ser Glu Ala Gln Pro Phe Tyr Val Asn Ser Pro Tyr Gly
tta acc tta gtg cat aat ggt aac ttg acc aat tca agt gaa tta aaa
Leu Thr Leu Val His Asn Gly Asn Leu Thr Asn Ser Ser Glu Leu Lys
gaa aag tta ttt ogt oto goa ogt ogo oat gta aat acc aat toa gat
Glu Lys Leu Phe Arg Leu Ala Arg Arg His Val Asn Thr Asn Ser Asp
tot gaa tta tta ctc aat atc tta gcc aat cac ctt gat cac ttc gaa
                                                                   432
Ser Glu Leu Leu Asn Ile Leu Ala Asn His Leu Asp His Phe Glu
                       135
aaa tac caa tta gat ceg caa gat gta tte agt get gte aaa caa aeg
                                                                  480
Lys Tyr Gln Leu Asp Pro Gln Asp Val Phe Ser Ala Val Lys Gln Thr
                    150
cat cag gat att cgt ggt gct tat gct tgt atc gcc atg att att ggt
                                                                  528
His Gln Asp Ile Arg Gly Ala Tyr Ala Cys Ile Ala Met Ile Ile Gly
cat ggt atg gtc gcg ttt cgt gat ccg aac ggt atc cgt ccg tta gtg
                                                                  576
His Gly Met Val Ala Phe Arg Asp Pro Asn Gly Ile Arg Pro Leu Val
            180
tta ggg aaa cgc gag gaa aat ggc aaa aca gag tat atg ttt gcc tcc
Leu Gly Lys Arg Glu Glu Asn Gly Lys Thr Glu Tyr Met Phe Ala Ser
```

		195					200					205				
gaa Glu	agt Ser 210	atc Ile	gca Ala	tta Leu	gat Asp	aca Thr 215	gtg Val	ggt Gly	ttt Phe	gag Glu	ttt Phe 220	gta Val	cga Arg	gat Asp	gta Val	672
caa Gln 225	ecc Pro	ggc Gly	gaa Glu	gcg Ala	att Ile 230	tat Tyr	gtc Val	acg Thr	ttt Phe	gaa Glu 235	ggg Gly	gaa Glu	atg Met	tat Tyr	gct Ala 240	720
cag Gln	caa Gln	tgc Cys	gca Ala	gac Asp 245	aaa Lys	cca Pro	aca Thr	tta Leu	aca Thr 250	cct Pro	tgt Cys	att Ile	ttt Phe	gaa Glu 255	tac Tyr	768
gtc Val	tat Tyr	ttt Phe	gca Ala 260	cgt Arg	cca Pro	gac Asp	tct Ser	tgc Cys 265	atc Ile	gat Asp	ggg Gly	gtt Val	tct Ser 270	gtt Val	tat Tyr	816
gct Ala	gcc Ala	cgt Arg 275	gtt Val	cat His	atg Met	gga Gly	caa Gln 280	cgt Arg	tta Leu	ggt Gly	gaa Glu	aaa Lys 285	att Ile	gca Ala	cgg Arg	864
gaa Glu	tgg Trp 290	gcg Ala	gat Asp	gtg Val	gat Asp	gat Asp 295	att Ile	gat Asp	gtg Val	gtc Val	att Ile 300	cct Pro	gtg Val	cct Pro	gaa Glu	912
acc Thr 305	tct Ser	aac Asn	gat Asp	att Ile	gct Ala 310	tta Leu	cgt Arg	att Ile	gcg Ala	cgc Arg 315	gtg Val	tta Leu	aat Asn	aaa Lys	ccg Pro 320	960
tat Tyr	cgt Arg	caa Gln	ggt Gly	ttt Phe 325	gtg Val	aaa Lys	aat Asn	cgc Arg	tat Tyr 330	gta Val	gga Gly	cgt Arg	acg Thr	ttt Phe 335	att Ile	1008
atg Met	ccg Pro	ggg Gly	cag Gln 340	gca Ala	ttg Leu	cga Arg	gtc Val	agt Ser 345	tct Ser	gtt Val	aga Arg	cgt Arg	aaa Lys 350	ctc Leu	aat Asn	1056
acc Thr	att Ile	gct Ala 355	tca Ser	gaa Glu	ttt Phe	aaa Lys	gat Asp 360	aag Lys	aat Asn	gtg Val	tta Leu	tta Leu 365	gtt V al	gac Asp	gac Asp	1104
tcg Ser	att Ile 370	gta Val	cgt Arg	ggt Gly	acc Thr	acg Thr 375	tct Ser	gaa Glu	caa Gln	att Ile	gtc Val 380	gaa Glu	atg Met	gcg Ala	aga Arg	1152
gcg Ala 385	gca Ala	ggt Gly	gcg Ala	aag Lys	aaa Lys 390	att Ile	tat Tyr	ttt Phe	gcc Ala	tct Ser 395	gct Ala	gca Ala	cca Pro	gaa Glu	att Ile 400	1200
cgt Arg	tat Tyr	cca Pro	aat Asn	gtg Val 405	tat Tyr	ggt Gly	att Ile	gat Asp	atg Met 410	cca Pro	acc Thr	aaa Lys	aat Asn	gaa Glu 415	ttg Leu	1248
atc Ile	gct Ala	tat Tyr	ggt Gly 420	cgt Arg	gat Asp	gta Val	gat Asp	gaa Glu 425	att Ile	gct Ala	aac Asn	tta Leu	att Ile 430	ggt Gly	gtg V al	1296
gat Asp	aaa Lys	ttg Leu 435	att Ile	ttc Phe	caa Gln	gat Asp	ttg Leu 440	gat Asp	gcg Ala	tta Leu	act Thr	ggt Gly 445	tct Ser	gtg Val	caa Gln	1344
caa	gaa	aat	сса	agt	att	caa	gac	ttt	gat	tgt	tcg	gtg	ttt	aca	999	1392

Gln	Glu 450	Asn	Pro	Ser	Ile	Gln 455	Asp	Phe	Asp	Cys	Ser 460		Phe	Thr	Gly	
gtt Val 465	tat Tyr	gtg Val	acg Thr	ggc Gly	gat Asp 470	att Ile	aca Thr	cct Pro	gaa Glu	tat Tyr 475	ctg Leu	gat Asp	aat Asn	att Ile	gca Ala 480	1440
gaa Glu	cag Gln	cgt Arg	aat Asn	gat Asp 485	atc Ile	gcc Ala	aag Lys	aaa Lys	aag Lys 490	Arg	gaa Glu	aaa Lys	gat Asp	gct Ala 495	acc Thr	1488
		gaa Glu						ta								1514
<21 <21	0 > 1 1 > 5 2 > Pi 3 > Pi	04	urel:	la m	ulto	cida										
	0> 1: Cys	11 Gly	Ile	Val 5	Gly	Ile	Val	Ser	Gln 10	Ser	Pro	Val	Asn	Gln 15	Ser	
Ile	Tyr	Asp	Ala 20	Leu	Thr	Leu	Leu	Gln 25	His	Arg	Gly	Gln	Asp 30	Ala	Ala	
Gly	Ile	Va1 35	Thr	Val	Asp	Asp	Glu 40	Asn	Arg	Phe	Arg	Leu 45	Arg	Lys	Ala	
Asn	Gly 50	Leu	Val	Ser	Asp	Val 55	Phe	Glu	Gln	Val	His 60	Met	Leu	Arg	Leu	
G1n 65	Gly	Asn	Ala	Gly	Ile 70	Gly	His	Va l	Arg	Tyr 75	Pro	Thr	Ala	Gly	Ser 80	
Ser	Ser	Val	Ser	Glu 85	Ala	Gln	Pro	Phe	Tyr 90	Val	Asn	Ser	Pro	Tyr 95	Gly	
Leu	Thr	Leu	Val 100	His	Asn	Gly	Asn	Leu 105	Thr	Asn	Ser	Ser	Glu 110	Leu	Lys	
Glu	Lys	Leu 115	Phe	Arg	Leu	Ala	Arg 120	Arg	His	Val	Asn	Thr 125	Asn	Ser	Asp	
Ser	Glu 130	Leu	Leu	Leu	Asn	Ile 135	Leu	Ala	Asn	His	Leu 140	Asp	His	Phe	Glu	
Lys 145	Tyr	Gln	Leu	Asp	Pro 150	Gln	Asp	Val	Phe	Ser 155	Ala	Va1	Lys	Gln	Thr 160	
His	Gln	Asp	Ile	Arg 165	Gly	Ala	Tyr	Ala	Cys 170	Ile	Ala	Met	Ile	Ile 175	Gly	
His	Gly	Met	Val 180	Ala	Phe	Arg	Asp	Pro 185	Asn	Gly	Ile	Arg	Pro 190	Leu	Val	
Leu	Gly	Lys 195	Arg	Glu	Glu	Asn	Gly 200	Lys	Thr	Glu	Tyr	Met 205	Phe	Ala	Ser	
Glu	Ser 210	Ile	Ala	Leu	Asp	Thr 215	Val	Gly	Phe	Glu	Phe 220	Val	Arg	Asp	Val	

```
Gln Pro Gly Glu Ala Ile Tyr Val Thr Phe Glu Gly Glu Met Tyr Ala
Gln Gln Cys Ala Asp Lys Pro Thr Leu Thr Pro Cys Ile Phe Glu Tyr
Val Tyr Phe Ala Arg Pro Asp Ser Cys Ile Asp Gly Val Ser Val Tyr
Ala Ala Arg Val His Met Gly Gln Arg Leu Gly Glu Lys Ile Ala Arg
Glu Trp Ala Asp Val Asp Asp Ile Asp Val Val Ile Pro Val Pro Glu
Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala Arg Val Leu Asn Lys Pro
Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr Val Gly Arg Thr Phe Ile
Met Pro Gly Gln Ala Leu Arg Val Ser Ser Val Arg Arg Lys Leu Asn
Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn Val Leu Leu Val Asp Asp
Ser Ile Val Arg Gly Thr Thr Ser Glu Gln Ile Val Glu Met Ala Arg
Ala Ala Gly Ala Lys Lys Ile Tyr Phe Ala Ser Ala Ala Pro Glu Ile
Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met Pro Thr Lys Asn Glu Leu
Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile Ala Asn Leu Ile Gly Val
Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala Leu Thr Gly Ser Val Gln
Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp Cys Ser Val Phe Thr Gly
Val Tyr Val Thr Gly Asp Ile Thr Pro Glu Tyr Leu Asp Asn Ile Ala
Glu Gln Arg Asn Asp Ile Ala Lys Lys Lys Arg Glu Lys Asp Ala Thr
Asn Leu Glu Met His Asn Glu Lys
           500
```

<210> 112

<211> 989

<212> DNA

<213> Pasteurella multocida

<220>

<223> rci

<220> <221 CDS (222 (1)(987)	
<400> 112 atg gca aca ata aga aaa cgt ggt aac tca tat cgt gct gag ata agg Met Ala Thr Ile Arg Lys Arg Gly Asn Ser Tyr Arg Ala Glu Ile Ser 1 5 10 15	
aaa aac gga gta agg aaa tca gca aca ttt aag act aaa tca gaa gct Lys Asn Gly Val Arg Lys Ser Ala Thr Phe Lys Thr Lys Ser Glu Ala 20 25 30	
aat gcg tgg gct gtt gac gag gag aga aaa tta gct gat ttg gca aa a Asn Ala Trp Ala Val Asp Glu Glu Arg Lys Leu Ala Asp Leu Ala Lys 40	
ggt atc gct cca gat att att ttt aga gat gta ata gaa cgc tat cas Gly Ile Ala Pro Asp Ile Ile Phe Arg Asp Val Ile Glu Arg Tyr Glr 50 60	
aat gaa gtg tct ata act aaa aaa ggc gcg cga aat gaa att ata aga Asn Glu Val Ser Ile Thr Lys Lys Gly Ala Arg Asn Glu Ile Ile Arg 65 70 75 80	3
tta aac cgc ttt tta aga tat gat att tct aat ctg tat att cgt gat Leu Asn Arg Phe Leu Arg Tyr Asp Ile Ser Asn Leu Tyr Ile Arg Asp 85 90 95	
tta aga aaa gaa gat ttt gag gag tgg atc aga att cgc cta acc gaa Leu Arg Lys Glu Asp Phe Glu Glu Trp Ile Arg Ile Arg Leu Thr Glu 105	a 336
gta tog gat got ago gtt aga ogt gag ott gtt act ata tog toa gto Val Ser Asp Ala Ser Val Arg Arg Glu Leu Val Thr Ile Ser Ser Val 115 120 125	
ctg aca aca gca ata aat aag tgg gga tat att tca agg cat cca atg Leu Thr Thr Ala Ile Asn Lys Trp Gly Tyr Ile Ser Arg His Pro Met 130 135 140	432
act ggt att gaa aaa cca aaa aac tcg gca gaa aga aaa gaa cga tat Thr Gly Ile Glu Lys Pro Lys Asn Ser Ala Glu Arg Lys Glu Arg Tyr 145 150 155 160	:
tca gaa cag gac att aaa aca ata tta gaa aca gct aga tat tgt gaa Ser Glu Gln Amp Ile Lys Thr Ile Leu Glu Thr Ala Arg Tyr Cys Glu 165 170	
gat aaa cta ccc ata aca ctc aaa caa aga gta gca att gca atg tta Asp Lys Leu Pro Ile Thr Leu Lys Gln Arg Val Ala Ile Ala Met Leu 180 190	
ttt gct att gaa acc gct atg cgt gct ggt gag att gct agt ata aaa Phe Ala Ile Glu Thr Ala Met Arg Ala Gly Glu Ile Ala Ser Ile Lys 195 200 205	
tgg gat aat gtt ttt ctt gaa aag aga ata gta cat tta ccg aca act Trp Aap Asn Val Phe Leu Glu Lys Arg Ile Val His Leu Pro Thr Thr 210 $$ 225	

aaa															
Lys 225	aac Asn	ggg	cac His	tct Ser	aga Arg 230	gat Asp	gtg Val	ccg Pro	ctt Leu	teg Ser 235	caa Gln	aga Arg	gct Ala	gtt Val	gcg Ala 240
			aaa Lys												
acc Thr	acg Thr	cct Pro	gaa Glu 260	tca Ser	tta Leu	agc Ser	acc Thr	acg Thr 265	ttt Phe	aga Arg	gtg Val	tta Leu	aag Lys 270	aaa Lys	gag Glu
tgt Cys	gga Gly	ctt Leu 275	gaa Glu	cat His	ctc Leu	cat His	ttt Phe 280	cat His	gat Asp	acg Thr	aga Arg	agg Arg 285	gaa Glu	gcg Ala	ttg Leu
acg Thr	aga Arg 290	tta Leu	tct Ser	aag Lys	aaa Lys	gta Val 295	gat Asp	gta Val	atg Met	act Thr	cta Leu 300	gcc Ala	aaa Lys	att Ile	agc Ser
gga Gly 305	cat His	aga Arg	gat Asp	tta Leu	aga Arg 310	att Ile	tta Leu	caa Gln	aac Asn	aca Thr 315	tat Tyr	tac Tyr	gca Ala	ccg Pro	aat Asn 320
atg Met	agt Ser	gaa Glu	gtg Val	gca Ala 325	aac Asn	t tg Leu	ttg Leu	gat Asp	ta						
<21:	1> 3: 2> Pi 3> Pi	RT	urel	La mi	ılto	ida									
)> 1: Ala		Ile	Arg 5			Gly	Asn	Ser 10	Tyr	Arg	Ala	Glu	Ile 15	Ser
Met 1	Ala	Thr	Ile Val 20	5	Lys	Arg	-		10	-	_			15	
Met 1 Lys	Ala Asn	Thr	Val	5 Arg	Lys Lys	Arg Ser	Ala	Thr 25	10 Phe	Lys	Thr	Ĺys	Ser 30	15 Glu	Ala
Met 1 Lys Asn	Ala Asn Ala	Thr Gly Trp 35	Val 20	5 Arg Val	Lys Lys Asp	Arg Ser Glu	Ala Glu 40	Thr 25 Arg	10 Phe Lys	Lys Leu	Thr Ala	Lys Asp 45	Ser 30 Leu	15 Glu Ala	Ala Lys
Met 1 Lys Asn Gly	Ala Asn Ala Ile 50	Thr Gly Trp 35 Ala	Val 20 Ala	Arg Val Asp	Lys Lys Asp Ile	Arg Ser Glu Ile 55	Ala Glu 40 Phe	Thr 25 Arg Arg	10 Phe Lys Asp	Lys Leu Val	Thr Ala Ile 60	Lys Asp 45 Glu	Ser 30 Leu Arg	15 Glu Ala Tyr	Ala Lys Gln
Met 1 Lys Asn Gly Asn 65	Ala Asn Ala Ile 50 Glu	Thr Gly Trp 35 Ala Val	Val 20 Ala Pro	Arg Val Asp	Lys Lys Asp Ile Thr	Arg Ser Glu Ile 55 Lys	Ala Glu 40 Phe Lys	Thr 25 Arg Arg	10 Phe Lys Asp	Lys Leu Val Arg	Thr Ala Ile 60 Asn	Lys Asp 45 Glu Glu	Ser 30 Leu Arg	15 Glu Ala Tyr Ile	Ala Lys Gln Arg 80
Met 1 Lys Asn Gly Asn 65 Leu	Ala Asn Ala Ile 50 Glu Asn	Thr Gly Trp 35 Ala Val	Val 20 Ala Pro Ser	Arg Val Asp Ile Leu 85	Lys Lys Asp Ile Thr 70 Arg	Arg Ser Glu Ile 55 Lys	Ala Glu 40 Phe Lys Asp	Thr 25 Arg Arg Gly	10 Phe Lys Asp Ala Ser	Lys Leu Val Arg 75 Asn	Thr Ala Ile 60 Asn	Lys Asp 45 Glu Glu Tyr	Ser 30 Leu Arg Ile	IS Glu Ala Tyr Ile Arg 95	Ala Lys Gln Arg 80 Asp
Met 1 Lys Asn Gly Asn 65 Leu Leu	Ala Asn Ala Ile 50 Glu Asn	Thr Gly Trp 35 Ala Val Arg	Val 20 Ala Pro Ser Phe Glu	Arg Val Asp Ile Leu 85 Asp	Lys Lys Asp Ile Thr 70 Arg	Arg Ser Glu Ile 55 Lys Tyr	Ala Glu 40 Phe Lys Asp	Thr 25 Arg Arg Gly Ile Trp	10 Phe Lys Asp Ala Ser 90 Ile	Lys Leu Val Arg 75 Asn	Thr Ala Ile 60 Asn Leu Ile	Lys Asp 45 Glu Glu Tyr	Ser 30 Leu Arg Ile Ile Leu 110	15 Glu Ala Tyr Ile Arg 95 Thr	Ala Lys Gln Arg 80 Asp
Met 1 Lys Asn Gly Asn 65 Leu Leu	Ala Asn Ala Ile 50 Glu Asn Arg	Thr Gly Trp 35 Ala Val Arg Lys Asp 115	Val 20 Ala Pro Ser Phe	Arg Val Asp Ile Leu 85 Asp	Lys Lys Asp Ile Thr 70 Arg Phe	Arg Ser Glu Ile 55 Lys Tyr Glu Arg	Ala Glu 40 Phe Lys Asp Glu Arg 120	Thr 25 Arg Arg Gly Ile Trp 105 Glu	10 Phe Lys Asp Ala Ser 90 Ile	Lys Leu Val Arg 75 Asn Arg	Thr Ala Ile 60 Asn Leu Ile	Lys Asp 45 Glu Glu Tyr Arg Ile 125	Ser 30 Leu Arg Ile Ile Leu 110 Ser	15 Glu Ala Tyr Ile Arg 95 Thr	Ala Lys Gln Arg 80 Asp Glu Val
Met 1 Lys Asn Gly Asn 65 Leu Leu Leu	Ala Asn Ala Ile 50 Glu Asn Arg Ser Thr	Thr Gly Trp 35 Ala Val Arg Lys Asp 115 Thr	Val 20 Ala Pro Ser Phe Glu 100 Ala	S Arg Val Asp Ile Leu 85 Asp Ser Ile	Lys Lys Asp Ile Thr 70 Arg Phe val	Arg Ser Glu Ile 55 Lys Tyr Glu Arg Lys 135	Ala Glu 40 Phe Lys Asp Glu Arg 120	Thr 25 Arg Arg Gly Ile Trp 105 Glu Gly	10 Phe Lys Asp Ala Ser 90 Ile Leu	Lys Leu Val Arg 75 Asn Arg Val	Thr Ala Ile 60 Asn Leu Ile Thr	Lys Asp 45 Glu Glu Tyr Arg Ile 125 Arg	Ser 30 Leu Arg Ile Ile Leu 110 Ser	15 Glu Ala Tyr Ile Arg 95 Thr	Ala Lys Gln Arg 80 Asp Glu Val

145	150		155		160
Ser Glu Gln Asp		Thr Tle Le		Ara Tur Cue	
	165	1111 110 110	170	175	
Asp Lys Leu Pro		Leu Lys Gl		Ile Ala Met 190	Leu
Phe Ala Ile Glu 195	Thr Ala	Met Arg Al 200	a Gly Glu Ile	Ala Ser Ile 205	Lys
Trp Asp Asn Val		Glu Lys Ar 215	g Ile Val His 220	Leu Pro Thr	Thr
Lys Asn Gly His 225	Ser Arg 230	Asp Val Pr	o Leu Ser Gln 235	Arg Ala Val	Ala 240
Leu Ile Leu Lys	Met Lys 245	Glu Val Gl	u Asn Gly Asp 250	Leu Val Phe 255	
Thr Thr Pro Glu 260		Ser Thr Th 26		Leu Lys Lys 270	Glu
Cys Gly Leu Glu 275	His Leu	His Phe Hi 280	s Asp Thr Arg	Arg Glu Ala 285	Leu
Thr Arg Leu Ser 290		Val Asp Va 295	l Met Thr Leu 300	Ala Lys Ile	Ser
Gly His Arg Asp 305	Leu Arg 310	Ile Leu Gl	Asn Thr Tyr 315	Tyr Ala Pro	Asn 320
Met Ser Glu Val	Ala Asn 325	Leu Leu As	•		
<210> 114					
<211> 1190 <211> DNA <213> Pasteurel	la multoc	ida			
<220>					
<223> sopE					
<220> <221> CDS <222> (1)(118	8)				
<400> 114					
<400> 114 atg tct gaa gaa Met Ser Glu Glu 1	tat cta o Tyr Leu i	cat ggt gto His Gly Va	c aaa gtc aca Lys Val Thr 10	gaa atc aat Glu Ile Asn 15	caa 48 Gln
atg tct gaa gaa Met Ser Glu Glu	Tyr Leu I	His Gly Val	Lys Val Thr 10 acc gca gtc Thr Ala Val	Glu Ile Asn 15 atc qqt att	Gln gtc 96
atg tct gaa gaa Met Ser Glu Glu 1 gca att cgc aca Ala Ile Arg Thr	Tyr Leu I 5 att caa a Ile Gln s	His Gly Vai agt cta tca Ser Leu Se: 29 gac aat gas	L Lys Val Thr 10 acc gca gtc Thr Ala Val	Glu Ile Asn 15 atc ggt att Ile Gly Ile 30 ctc aat gaa	gtc 96 Val

212

	50					55					60					
ggc Gly 65	acg Thr	ctt Leu	tca Ser	cgt Arg	gcg Ala 70	ctt Leu	gac Asp	999 Gly	att Ile	tct Ser 75	Asp	gta Val	gtc Val	aat Asn	tgc Cys 80	240
aaa Lys	gtg Val	att Ile	gtt Val	gtg Val 85	cga Arg	gtg Val	caa Gln	gaa Glu	agt Ser 90	gcg Ala	caa Gln	gaa Glu	gac Asp	gaa Glu 95	gaa Glu	288
aca Thr	aaa Lys	gca Ala	agt Ser 100	gaa Glu	atg Met	aac Asn	acg Thr	gca Ala 105	att Ile	att Ile	ggc Gly	aca Thr	atc Ile 110	aca Thr	gaa Glu	336
gaa Glu	999 999	cag Gln 115	tac Tyr	aca Thr	ggc Gly	ttg Leu	aag Lys 120	gcg Ala	tta Leu	t tg Leu	att Ile	gcg Ala 125	aaa Lys	aac Asn	aaa Lys	384
ttc Phe	ggt Gly 130	atc Ile	aaa Lys	cca Pro	cgt Arg	att Ile 135	tta Leu	tgt Cys	gtg Val	cca Pro	aaa Lys 140	ttc Phe	gac Asp	aca Thr	aaa Lys	432
gaa Glu 145	gtc Val	gcc Ala	aca Thr	gag Glu	ctt Leu 150	gca Ala	agt Ser	atc Ile	gcc Ala	gcc Ala 155	aaa Lys	ctc Leu	aac Asn	gca Ala	ttt Phe 160	480
gct Ala	tac Tyr	att Ile	tca Ser	tgt Cys 165	caa Gln	G 1y	tgt Cys	aaa Lys	acg Thr 170	aaa Lys	gaa Glu	caa Gln	gcg Ala	gtg Val 175	caa Gln	528
tat Tyr	aaa Lys	cgc Arg	aac Asn 180	ttc Phe	tca Ser	caa Gln	cgt Arg	gaa Glu 185	gtc Val	atg Met	ctg L e u	atc Ile	atg Met 190	ggc Gly	gat Asp	576
ttt Phe	ctg Leu	tca Ser 195	ttt Phe	aat Asn	gtc Val	aac Asn	aca Thr 200	tca Ser	aaa Lys	gtt Val	gag Glu	att Ile 205	gac Asp	tat Tyr	gcc Ala	624
gtc Val	act Thr 210	cgt Arg	gcg Ala	gcg Ala	gca Ala	atg Met 215	cgt Arg	gca Ala	tat Tyr	ctt Leu	gat Asp 220	aaa Lys	gaa Glu	cag Gln	ggc Gly	672
tgg Trp 225	cat His	acg Thr	tct Ser	att Ile	tca Ser 230	aat Asn	aaa Lys	ggc Gly	att Ile	aat Asn 235	ggc Gly	gtg Val	agc Ser	ggt Gly	gtc Val 240	720
aca Thr	caa Gln	cca Pro	ctc Leu	tat Tyr 245	ttt Phe	gac Asp	att Iļe	aac Asn	gac Asp 250	agc Ser	tcg Ser	act Thr	gat Asp	gtg Val 255	aac Asn	768
tat Tyr	ctc Leu	aat Asn	gaa Glu 260	caa Gln	ggc Gly	atc Ile	acg Thr	tgt Cys 265	tgc Cys	gtg Val	aat Asn	Cat His	aat Asn 270	ggc Gly	ttt Phe	816
cgt Arg	ttt Phe	tgg Trp 275	ggc Gly	tta Leu	cgc Arg	acg Thr	act Thr 280	gca Ala	gaa Glu	gat Asp	cca Pro	tta Leu 285	ttc Phe	aag Lys	ttt Phe	864
gaa Glu	gtg Val 290	tac Tyr	acc Thr	cgc Arg	act Thr	gca Ala 295	caa Gln	atc Ile	tta Leu	aaa Lys	gat Asp 300	acg Thr	att Ile	gca Ala	gly aaa	912
gcg	ttt	gat	tgg	gca	gtg	gat	aaa	gat	att	tct	gtc	acg	cta	gtg	aaa	960

Ala Phe Asp Trp Ala Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys 305 310 315	
gat att att gaa gca atc aat gcg aag tgg cgt gat tac acc aca aaa Asp Ile Ile Glu Ala Ile Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys 325 330 335	1008
ggc tac tta att ggc ggt aaa gcg tgg ctt aat aaa gag ctt aac agt Cly Tyr Leu Ile Cly Gly Lys Ala Trp Leu Aen Lys Glu Leu Aen Ser 340	1056
gca acg aat tta aaa gat gcg aag ttg ttg atc tct tat gat tat cac Ala Thr Asn Leu Lys Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His 360	1104
cca gta cca ccg ctc gaa cag cta ggc ttt aat cag tac att tct gat Pro Val Pro Pro Leu Glu Gln Leu Gly Phe Asm Gln Tyr Ile Ser Asp 370 380	1152
gaa tac ctt gtt gat ttt tca aat cgt tta gca tcg ta Glu Tyr Leu Val Asp Phe Ser Asn Arg Leu Ala Ser 385	1190
<210> 115 <211> 396 <212> PRT <213> Pasteurella multocida	
<pre><400> 115 Met Ser Glu Glu Tyr Leu His Gly Val Lys Val Thr Glu Ile Asn Gln 1 5 10 15</pre>	
Ala Ile Arg Thr Ile Gln Ser Leu Ser Thr Ala Val Ile Gly Ile Val $20 \hspace{1cm} 25 \hspace{1cm} 30$	
Cys Thr Ala Asn Asp Ala Asp Asn Glu Thr Phe Pro Leu Asn Glu Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$	
Val Leu Ile Thr Asn Val Ala Ala Ala Ile Gly Lys Ala Gly Lys Gln $_{\mbox{50}}$	
Gly Thr Leu Ser Arg Ala Leu Asp Gly Ile Ser Asp Val Val Asn Cys 65 70 75 80	
Lys Val Ile Val Val Arg Val Gln Glu Ser Ala Gln Glu Asp Glu Glu 85 90 95	
Thr Lys Ala Ser Glu Met Asn Thr Ala Ile Ile Gly Thr Ile Thr Glu 100 $$105$$	
Glu Gly Gln Tyr Thr Gly Leu Lys Ala Leu Leu Ile Ala Lys Asn Lys 115 120 125	
115 120 125 Phe Gly Ile Lys Pro Arg Ile Leu Cys Val Pro Lys Phe Asp Thr Lys	

```
Tyr Lys Arg Asn Phe Ser Gln Arg Glu Val Met Leu Ile Met Gly Asp
Phe Leu Ser Phe Asn Val Asn Thr Ser Lys Val Glu Ile Asp Tyr Ala
Val Thr Arg Ala Ala Ala Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly
Trp His Thr Ser Ile Ser Asn Lys Gly Ile Asn Gly Val Ser Gly Val
Thr Gln Pro Leu Tyr Phe Asp Ile Asn Asp Ser Ser Thr Asp Val Asn
Tyr Leu Asn Glu Gln Gly Ile Thr Cys Cys Val Asn His Asn Gly Phe
Arg Phe Trp Gly Leu Arg Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe
Glu Val Tyr Thr Arg Thr Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly
Ala Phe Asp Trp Ala Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys
Asp Ile Ile Glu Ala Ile Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys
Gly Tyr Leu Ile Gly Gly Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser
Ala Thr Asn Leu Lys Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His
Pro Val Pro Pro Leu Glu Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp
Glu Tyr Leu Val Asp Phe Ser Asn Arg Leu Ala Ser
                    390
<210> 116
<211> 2204
<212> DNA
<213> Pasteurella multocida
<220>
<223> unkK
<220>
<221> CDS
<222> (1)..(2202)
<400> 116
atg aat aaa aat cgc tat aaa ctc att ttt agt aaa act aaa ggc tgt
                                                                   48
Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Lys Thr Lys Gly Cys
ctt gta cct gtt gct gaa acg att aat tct gca gta gga aat gcc tca
                                                                  96
Leu Val Pro Val Ala Glu Thr Ile Asn Ser Ala Val Gly Asn Ala Ser
                                25
```

215

Ser	aaa Lys	gac Asp 35	• Val	Ser	gac Asp	Thr	gag Glu 40	Ile	agt	gct	Ser	Gln 45	Pro	gcg Ala	Leu	144
Asn	Ser 50	Pro	ctt Leu	tcg Ser	Thr	Leu 55	tct Ser	gta Val	tta Leu	gtc Val	aaa Lys 60	Thr	gca	Phe	aat Asn	192
Pro 65	Val	tca Ser	aca	Leu	atg Met 70	Ser	ttg Leu	act Thr	tgg Trp	aaa Lys 75	Glu	tac Tyr	gcc	gtt Val	tta Leu 80	240
tta Leu	tta Leu	agt Ser	gtg Val	gtg Val 85	tct Ser	ttt Phe	cct Pro	ctt Leu	atg Met 90	Ala	caa Gln	gcc Ala	tct Ser	gat Asp 95	aca Thr	288
gat Asp	tca Ser	gtg Val	gta Val 100	caa Gln	aga Arg	aaa Lys	cct Pro	gaa Glu 105	tta Leu	act Thr	gat Asp	gtg Val	acg Thr 110	aat Asn	agc Ser	336
aac Asn	agc Ser	tat Tyr 115	cat His	gtg Val	gaa Glu	tta Leu	gat Asp 120	aga Arg	gag Glu	cat His	cat His	aaa Lys 125	ggg Gly	gag Glu	cat His	384
caa Gln	aca Thr 130	aaa Lys	atc Ile	aaa Lys	cat His	act Thr 135	gag Glu	aat Asn	aat Asn	gtc Val	atc Ile 140	att Ile	gtt Val	gat Asp	att Ile	432
gca Ala 145	aaa Lys	Cca Pro	aac Asn	caa Gln	aag Lys 150	ggc Gly	att Ile	tca Ser	gat Asp	aac Asn 155	cgt Arg	ttt Phe	aaa Lys	cac His	ttc Phe 160	480
aac Asn	atc Ile	cca Pro	aat Asn	ggg Gly 165	gcg Ala	gta Val	ttt Phe	aac Asn	aat Asn 170	agc Ser	gcc Ala	aag Lys	gaa Glu	aaa Lys 175	cgc Arg	528
tca Ser	cag Gln	tta Leu	gtg Val 180	ggg Gly	tat Tyr	ttg Leu	cca Pro	ggt Gly 185	aac Asn	cag Gln	aat Asn	tta Leu	acg Thr 190	gaa Glu	ggt Gly	576
agt Ser	gaa Glu	gca Ala 195	aaa Lys	gcg Ala	atc Ile	tta Leu	aat Asn 200	cag Gln	gtg Val	act Thr	gga Gly	ccg Pro 205	gat Asp	gcc Ala	agt Ser	624
aaa Lys	att Ile 210	gaa Glu	ggc Gly	gcc Ala	ctt Leu	gaa Glu 215	att Ile	tta Leu	ggg Gly	caa Glņ	aaa Lys 220	gcc Ala	gat Asp	t tg Leu	gtg Val	672
att Ile 225	gcg Ala	aac Asn	caa Gln	aat Asn	ggc Gly 230	att Ile	gtg Val	ctt Leu	aat Asn	ggg Gly 235	gta Val	aaa Lys	acc Thr	att Ile	aat Asn 240	720
gcc Ala	aat Asn	cgt Arg	ttt Phe	gtg Val 245	gca Ala	aca Thr	acc Thr	agt Ser	agt Ser 250	acc Thr	att Ile	gat Asp	cct Pro	gag Glu 255	caa Gln	768
atg Met	cag Gln	tta Leu	aat Asn 260	gtc Val	acg Thr	caa Gln	Gly	aca Thr 265	gtg Val	aca Thr	att Ile	ggg Gly	gtg Val 270	gat Asp	gga Gly	816
ttt Phe	gcc Ala	aca Thr 275	gat Asp	ggc Gly	tta Leu	Pro	tat Tyr 280	ttg Leu	gat Asp	atc Ile	att Ile	gcc Ala 285	aaa Lys	aag Lys	att Ile	864

gaa Glu	caa Gln 290	aaa Lys	caa Gln	gcg Ala	att Ile	aca Thr 295	aaa Lys	gaa Glu	aga Arg	aca Thr	gga Gly 300	aat Asn	tcc Ser	gaa Glu	acc Thr	912
			ttt Phe													960
caa Gln	gtg Val	aca Thr	gaa Glu	aag Lys 325	cat His	acc Thr	gct Ala	gag Glu	gca Ala 330	caa Gln	ggt Gly	gaa Glu	att Ile	gcg Ala 335	att Ile	1008
			agt Ser 340													1056
gta Val	acg Thr	gat Asp 355	aaa Lys	ggc Gly	gct Ala	gjå aaa	gta Val 360	aaa Lys	cat His	gat Asp	ggc Gly	att Ile 365	att Ile	tta Leu	tct Ser	1104
gag Glu	gcg Ala 370	gat Asp	att Ile	caa Gln	att Ile	gaa Glu 375	acc Thr	cat His	gag Glu	ggc Gly	gat Asp 380	gtt Val	gaa Glu	tta Leu	ggc Gly	1152
aat Asn 385	aca Thr	aaa Lys	aat Asn	aat Asn	cag Gln 390	aat Asn	gag Glu	aat Asn	tat Tyr	gcc Ala 395	aaa Lys	gct Ala	cat His	gcg Ala	gaa Glu 400	1200
gly ggg	aat Asn	ttt Phe	acg Thr	gtt Val 405	aaa Lys	ggc Gly	ggt Gly	aag Lys	cac His 410	gtt Val	att Ile	att Ile	ggt Gly	aag Lys 415	gaa Glu	1248
gtt Val	aaa Lys	gcc Ala	aac Asn 420	aaa Lys	gcg Ala	gtc Val	gat Asp	att Ile 425	caa Gln	gca Ala	caa Gln	gaa Glu	aca Thr 430	aca Thr	gta Val	1296
			gcg Ala													1344
agt Ser	aag Lys 450	agt Ser	gtg Val	aat Asn	ctt Leu	gaa Glu 455	gat Asp	aac Asn	gcg Ala	aaa Lys	ctt Leu 460	att Ile	gct Ala	aat Asn	gag Glu	1392
ctg Leu 465	agc Ser	aca Thr	aca Thr	acc Thr	aat Asn 470	aaa Lys	tta Leu	acc Thr	aat Asn	aaa Lys 475	ggt Gly	agc Ser	att Ile	tac Tyr	ggc Gly 480	1440
aag Lys	aaa Lys	gtg Val	acg Thr	cta Leu 485	gat Asp	gct Ala	gat Asp	aat Asn	tta Leu 490	gtc Val	aat Asn	agt Ser	aaa Lys	gaa Glu 495	atc Ile	1488
tat Tyr	gcg Ala	tct Ser	agc Ser 500	gaa Glu	ctt Leu	gat Asp	att Ile	caa Gln 505	acc Thr	aaa Lys	ggt Gly	cgt Arg	gat Asp 510	ctt Leu	tta Leu	1536
ctt L e u	gag Glu	gat Asp 515	Gly ggg	gtt Val	aat Asn	Gln	cca Pro 520	ctg Leu	agt Ser	ttc Phe	tta Leu	aaa Lys 525	ggc Gly	gct Ala	tca Ser	1584
ttg Leu	tta Leu 530	gcg Ala	ccg Pro	gly aaa	ttt Phe	gtc Val 535	aac Asn	act Thr	g gg Gly	Leu	att Ile 540	cac His	agt Ser	aac Asn	ggt Gly	1632

aat Asn 545	Ala	aag Lys	Ctc Leu	Thr	Phe 550	aaa Lys	gat Asp	gac Asp	Thr	agt Ser 555	Phe	gtg Val	Thr	gaa Glu	gga Gly 560	1680
aat Asn	aac Asn	ttt Phe	atc Ile	aca Thr 565	gca Ala	aaa Lys	gac Asp	aac Asn	tta Leu 570	gaa Glu	atc Ile	acg Thr	gca Ala	aaa Lys 575	aat Asn	1728
gtt Val	caa Gln	att Ile	gat Asp 580	caa Gln	gcg Ala	aaa Lys	aat Asn	att Ile 585	caa Gln	tta Leu	aac Asn	gcg Ala	aat Asn 590	atc Ile	acg Thr	1776
atc Ile	aat Asn	acc Thr 595	aag Lys	tct Ser	ggt Gly	ttt Phe	gtg Val 600	aat Asn	tac Tyr	ggt Gly	acc Thr	tta Leu 605	gca Ala	agt Ser	gct Ala	1824
caa Gln	aat Asn 610	tta Leu	acg Thr	att Ile	aat Asn	acc Thr 615	gaa Glu	caa Gln	ggc Gly	agc Ser	att Ile 620	tat Tyr	aac Asn	ata Ile	ggc Gly	1872
ggt Gly 625	atc Ile	ttg Leu	ggg Gly	gcg Ala	ggt Gly 630	aaa Lys	agt Ser	ttg Leu	aat Asn	ctg Leu 635	agc Ser	gcg Ala	aaa Lys	aga Arg	gga Gly 640	1920
gaa Glu	aac Asn	caa Gln	gga Gly	gga Gly 645	tat Tyr	ctt Leu	att Ile	aat Asn	caa Gln 650	ggt Gly	aag Lys	agt Ser	cta Leu	ctc Leu 655	cat His	1968
tct Ser	gaa Glu	ggc Gly	gcc Ala 660	atg Met	aac Asn	ctc Leu	aca Thr	gcg Ala 665	gat Asp	cgc Arg	acg Thr	gtg Val	tac Tyr 670	aat Asn	tta Leu	2016
ggg Gly	aat Asn	att Ile 675	ttt Phe	gct Ala	aaa Lys	ggt Gly	gac Asp 680	gcg Ala	acg Thr	atc Ile	aat Asn	gca Ala 685	aac Asn	gcg Ala	tta Leu	2064
att Ile	aat Asn 690	gat Asp	gtt Val	act Thr	ctc Leu	aca Thr 695	ggt Gly	cgt Arg	ctt Leu	gag Glu	tat Tyr 700	caa Gln	gat Asp	ctg Leu	aaa Lys	2112
aaa Lys 705	gat Asp	tat Tyr	acg Thr	cgt Arg	tat Tyr 710	tat Tyr	cgt Arg	atc Ile	aat Asn	gaa Glu 715	acg Thr	gca Ala	aaa Lys	cat His	ggt Gly 720	2160
tgg Trp	cat His	aat Asn	aac Asn	ttc Phe 725	tat Tyr	gaa Glu	tta Leu	aac Asn	gtc Val 730	gac Asp	aga Arg	gtt Val	tct Ser	tg		2204
<210																
<211	> 73	4														

<212> PRT <213> Pasteurella multocida

<400> 117

Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Lys Thr Lys Gly Cys 1 5 10 15 Leu Val Pro Val Ala Glu Thr Ile Asn Ser Ala Val Gly Asn Ala Ser 20 25 30Ser Lys Asp Val Ser Asp Thr Glu Ile Ser Ala Ser Gln Pro Ala Leu

40

Asn Ser Pro Leu Ser Thr Leu Ser Val Leu Val Lys Thr Ala Phe Asn Pro Val Ser Thr Leu Met Ser Leu Thr Trp Lys Glu Tyr Ala Val Leu Leu Leu Ser Val Val Ser Phe Pro Leu Met Ala Gln Ala Ser Asp Thr Asp Ser Val Val Gln Arg Lys Pro Glu Leu Thr Asp Val Thr Asn Ser Asn Ser Tyr His Val Glu Leu Asp Arg Glu His His Lys Gly Glu His Gln Thr Lys Ile Lys His Thr Glu Asn Asn Val Ile Ile Val Asp Ile Ala Lys Pro Asn Gln Lys Gly Ile Ser Asp Asn Arg Phe Lys His Phe Asn Ile Pro Asn Gly Ala Val Phe Asn Asn Ser Ala Lys Glu Lys Arg Ser Gln Leu Val Gly Tyr Leu Pro Gly Asn Gln Asn Leu Thr Glu Gly Ser Glu Ala Lys Ala Ile Leu Asn Gln Val Thr Gly Pro Asp Ala Ser Lys Ile Glu Gly Ala Leu Glu Ile Leu Gly Gln Lys Ala Asp Leu Val Ile Ala Asn Gln Asn Gly Ile Val Leu Asn Gly Val Lys Thr Ile Asn Ala Asn Arg Phe Val Ala Thr Thr Ser Ser Thr Ile Asp Pro Glu Gln Met Gln Leu Asn Val Thr Gln Gly Thr Val Thr Ile Gly Val Asp Gly Phe Ala Thr Asp Gly Leu Pro Tyr Leu Asp Ile Ile Ala Lys Lys Ile Glu Gln Lys Gln Ala Ile Thr Lys Glu Arg Thr Gly Asn Ser Glu Thr Asp Ile Thr Phe Val Ala Gly Asn Ser Lys Tyr Asp Leu Lys Thr His Gln Val Thr Glu Lys His Thr Ala Glu Ala Gln Gly Glu Ile Ala Ile Ser Gly Ala Ser Thr Gly Ala Met Tyr Gly Lys Asn Ile Lys Leu Ile Val Thr Asp Lys Gly Ala Gly Val Lys His Asp Gly Ile Ile Leu Ser Glu Ala Asp Ile Gln Ile Glu Thr His Glu Gly Asp Val Glu Leu Gly

Asn Thr Lys Asn Asn Gln Asn Glu Asn Tyr Ala Lys Ala His Ala Glu Gly Asn Phe Thr Val Lys Gly Gly Lys His Val Ile Ile Gly Lys Glu Val Lys Ala Asn Lys Ala Val Asp Ile Gln Ala Gln Glu Thr Thr Val Arg Gln Asn Ala Lys Leu Thr Ala Lys Thr Ser Ala Lys Ile Thr Ala Ser Lys Ser Val Asn Leu Glu Asp Asn Ala Lys Leu Ile Ala Asn Glu Leu Ser Thr Thr Thr Asn Lys Leu Thr Asn Lys Gly Ser Ile Tyr Gly Lys Lys Val Thr Leu Asp Ala Asp Asn Leu Val Asn Ser Lys Glu Ile Tyr Ala Ser Ser Glu Leu Asp Ile Gln Thr Lys Gly Arg Asp Leu Leu Leu Glu Asp Gly Val Asn Gln Pro Leu Ser Phe Leu Lys Gly Ala Ser Leu Leu Ala Pro Gly Phe Val Asn Thr Gly Leu Ile His Ser Asn Gly Asn Ala Lys Leu Thr Phe Lys Asp Asp Thr Ser Phe Val Thr Glu Gly Asn Asn Phe Ile Thr Ala Lys Asp Asn Leu Glu Ile Thr Ala Lys Asn Val Gln Ile Asp Gln Ala Lys Asn Ile Gln Leu Asn Ala Asn Ile Thr Ile Asn Thr Lys Ser Gly Phe Val Asn Tyr Gly Thr Leu Ala Ser Ala Gln Asn Leu Thr Ile Asn Thr Glu Gln Gly Ser Ile Tyr Asn Ile Gly Gly Ile Leu Gly Ala Gly Lys Ser Leu Asn Leu Ser Ala Lys Arg Gly Glu Asn Gln Gly Gly Tyr Leu Ile Asn Gln Gly Lys Ser Leu Leu His Ser Glu Gly Ala Met Asn Leu Thr Ala Asp Arg Thr Val Tyr Asn Leu 665 Gly Asn Ile Phe Ala Lys Gly Asp Ala Thr Ile Asn Ala Asn Ala Leu Ile Asn Asp Val Thr Leu Thr Gly Arg Leu Glu Tyr Gln Asp Leu Lys Lys Asp Tyr Thr Arg Tyr Tyr Arg Ile Asn Glu Thr Ala Lys His Gly

Trp His Asn Asn Phe Tyr Glu Leu Asn Val Asp Arg Val Ser 725 <210> 118 <211> 251 <212> DNA <213> Pasteurella multocida <220> <223> unk0 <220> <221> CDS <222> (1)..(249) <400> 118 atg ama att act att aca cga mat cat cca gam gtm ttt cam gam tcc Met Lys Ile Thr Ile Thr Arg Asn His Pro Glu Val Phe Gln Glu Ser 10 gct cgt tta gta gcc gaa aag ttc att aaa gcc caa tgt gta gaa gca Ala Arg Leu Val Ala Glu Lys Phe Ile Lys Ala Gln Cys Val Glu Ala 96 tta aca ttg gct ttg att gag ggt gtc gag cac ttt gtg ctg gaa ggt Leu Thr Leu Ala Leu Ile Glu Gly Val Glu His Phe Val Leu Glu Gly gag gag gaa agc aaa agg gga cat agt att aag gtt gta tta aaa gga 192 Glu Glu Glu Ser Lys Arg Gly His Ser Ile Lys Val Val Leu Lys Gly agt cac gaa gtt att aag tca gag gtg aat aca aat gaa aaa aat cat 240 Ser His Glu Val Ile Lys Ser Glu Val Asn Thr Asn Glu Lys Asn His 70 tgt aat cat ta 251 Cys Asn His <210> 119 <211> 83 <212> PRT <213> Pasteurella multocida <400> 119 Met Lys Ile Thr Ile Thr Arg Asn His Pro Glu Val Phe Gln Glu Ser Ala Arg Leu Val Ala Glu Lys Phe Ile Lys Ala Gln Cys Val Glu Ala Leu Thr Leu Ala Leu Ile Glu Gly Val Glu His Phe Val Leu Glu Gly Glu Glu Glu Ser Lys Arg Gly His Ser Ile Lys Val Val Leu Lys Gly Ser His Glu Val Ile Lys Ser Glu Val Asn Thr Asn Glu Lys Asn His

221

Cys Asn His

<210> 120 <211> 548 <212> DNA <213> Pasteurella multocida <223> unkP <220~ <221> CDS <222> (1)..(546) c400> 120 atg cgt gca tat ctt gat aaa gaa cag ggc tgg cat acg tct att tca Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile Ser aat aaa ggc att aat ggc gtg agc ggt gtc aca caa cca ctc tat ttt Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr Phe 96 gac att aac gac agc tog act gat gtg aac tat otc aat gaa caa ggc 144 Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln Gly atc acg tgt tgc gtg aat cat aat ggc ttt cgt ttt tgg ggc tta cgc 192 Ile Thr Cys Cys Val Asn His Asn Gly Phe Arg Phe Trp Gly Leu Arg 50 acg act gca gaa gat cca tta ttc aag ttt gaa gtg tac acc cgc act 240 Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg Thr gca caa atc tta aaa gat acg att gca ggg gcg ttt gat tgg gca gtg 288 Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala Val gat aaa gat att tot gto acg ota gtg aaa gat att att gaa goa atc Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala Ile 336 105 aat gcg aag tgg cgt gat tac acc aca aaa ggc tac tta att ggc ggt 384 Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys Gly Tyr Leu Ile Cly Gly aaa gcg tgg ctt aat aaa gag ctt aac agt gca acg aat tta aaa gat Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys Asp 432 geg aag ttg ttg atc tet tat gat tat cac cca gta cca ceg etc gaa 480 Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu Glu 145 cag cta ggc ttt aat cag tac att tct gat gaa tac ctt gtt gat ttt Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp Phe 165 170 tca aat cgt tta gca tcq ta 548

```
Ser Asn Arg Leu Ala Ser
            180
<210> 121
<211> 182
<212> PRT
<213> Pasteurella multocida
Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile Ser
Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr Phe
Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln Gly
Ile Thr Cys Cys Val Asn His Asn Gly Phe Arg Phe Trp Gly Leu Arg
Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg Thr
Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala Val
Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala Ile
Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys Gly Tyr Leu Ile Gly Gly
Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys Asp
Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu Glu
Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp Phe
                                     170
                                                         175
Ser Asn Arg Leu Ala Ser
            180
<210> 122
<211> 69
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> apvA-or1
<220>
<221> CDS
<222> (1) .. (69)
<400> 122
atg ttt tat gtc atg ctt gcc aat agg acg tct ata att tca tca atc
Met Phe Tyr Val Met Leu Ala Asn Arg Thr Ser Ile Ile Ser Ser Ile
                                      10
```

```
gat aag ttt aag ata ctt agc
                                                                    69
Asp Lys Phe Lys Ile Leu Ser
             20
<210> 123
<211> 23
<212> PRT
<213> Actinobacillus pleuropneumoniae
<400> 123
Met Phe Tyr Val Met Leu Ala Asn Arg Thr Ser Ile Ile Ser Ser Ile
  1
Asp Lys Phe Lys Ile Leu Ser
              20
<210> 124
<211> 64
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> apvA-or2
<220>
<221> CDS
<222> (3)..(62)
<400> 124
ag cta agt atc tta aac tta tcg att gat gaa att ata gac gtc cta
                                                                 47
   Leu Ser Ile Leu Asn Leu Ser Ile Asp Glu Ile Ile Asp Val Leu
     1
                     5
ttg gca agc atg aca ta
                                                                   64
Leu Ala Ser Met Thr
                 20
<210> 125
<211> 20
<212> PRT
<213> Actinobacillus pleuropneumoniae
Leu Ser Ile Leu Asn Leu Ser Ile Asp Glu Ile Ile Asp Val Leu Leu
                                      10
Ala Ser Met Thr
             20
<210> 126
<211> 653
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> apvB
<220>
<221> CDS
```

<222> (1)(6	51)				
<400> 126 tta att agc t Leu Ile Ser P					
gaa att gga t Glu Ile Gly L					
cat aaa gta g His Lys Val A 35					
aat ttt tat a Asn Phe Tyr M 50	tg aga ggg a et Arg Gly 1	act gca gga Thr Ala Gly 55	att agc gaa Ile Ser Glu 60	ata gga tat Ile Gly Tyr	gaa 192 Glu
caa tot tto a Gln Ser Phe Th					
gat ggt ttt to Asp Gly Phe So	ca att aaa g er Ile Lys (85	gga aaa gac Gly Lys Asp	ttg tta cct Leu Leu Pro 90	gga tat caa Gly Tyr Gln 95	agt 288 Ser
att caa act co					
aat ttg gga g Asn Leu Gly G 115					
gga aaa agc g Gly Lys Ser G 130	ly Lys Arg C	ggt gcg agt Gly Ala Ser 135	agt aat gtc Ser Asn Val 140	agc tta ctt Ser Leu Leu	aaa 432 Lys
tcg ttt aat at Ser Phe Asn Me 145					
agt tat tat to Ser Tyr Tyr Se					
tcc gaa tta g Ser Glu Leu G					
tat gca aca ca Tyr Ala Thr H: 195					
ctt ggc atg gg Leu Gly Met G 210	ly Leu Ser V		at		653

<210> 127 <211> 217 <212> PRT

```
<213> Actinobacillus pleuropneumoniae
 <400> 127
 Leu Ile Ser Phe Pro Phe Ile Thr Phe Ala Ser Asn Val Asn Gly Ala
 Glu Ile Gly Leu Gly Gly Ala Arg Glu Ser Ser Ile Tyr Tyr Ser Lys
 His Lys Val Ala Thr Asn Pro Phe Leu Ala Leu Asp Leu Ser Leu Gly
 Asn Phe Tyr Met Arg Gly Thr Ala Gly Ile Ser Glu Ile Gly Tyr Glu
Gln Ser Phe Thr Asp Asn Phe Ser Val Ser Leu Phe Val Asn Pro Phe
Asp Gly Phe Ser Ile Lys Gly Lys Asp Leu Leu Pro Gly Tyr Gln Ser
Ile Gln Thr Arg Lys Thr Gln Phe Ala Phe Gly Trp Gly Leu Asn Tyr
Asn Leu Gly Gly Leu Phe Gly Leu Asn Asp Thr Phe Ile Ser Leu Glu
Gly Lys Ser Gly Lys Arg Gly Ala Ser Ser Asn Val Ser Leu Leu Lys
Ser Phe Asn Met Thr Lys Asn Trp Lys Val Ser Pro Tyr Ile Gly Ser
Ser Tyr Tyr Ser Ser Lys Tyr Thr Asp Tyr Tyr Phe Gly Ile Lys Gln
Ser Glu Leu Gly Asn Lys Ile Thr Ser Val Tyr Lys Pro Lys Ala Ala
Tyr Ala Thr His Ile Gly Ile Asn Thr Asp Tyr Ala Phe Thr Asn Asn
Leu Gly Met Gly Leu Ser Val Gly Trp
<210> 128
<211> 242
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> apvC
<220>
<221> CDS
<222> (1)..(240)
<400> 128
atg tgg cgg atg gga gat ttt atg tct aaa aaa gag agg ctg aat gat
Met Trp Arg Met Gly Asp Phe Met Ser Lys Lys Glu Arg Leu Asn Asp
                                      i٥
```

```
atg gct cgc cag att tta tca gcg gcg gag ttg ctc att gca aag gaa
Met Ala Arg Gln Ile Leu Ser Ala Ala Glu Leu Leu Ile Ala Lys Glu
 ggt ttg caa aat tta tcg atg agg aaa atc gca agt gaa gcc ggt atc
Gly Leu Gln Asn Leu Ser Met Arg Lys Ile Ala Ser Glu Ala Gly Ile
 gca aca ggc acg ctt tat ctc tat ttc aaa acg aaa gac gag tta ctg
                                                                       192
 Ala Thr Gly Thr Leu Tyr Leu Tyr Phe Lys Thr Lys Asp Glu Leu Leu
gat tgt ttg gcg gaa caa tta cat gaa cga tat tat cgt tat ctg aat
 Asp Cys Leu Ala Glu Gln Leu His Glu Arg Tyr Tyr Arg Tyr Leu Asn
at
                                                                       242
<210> 129
<211> 80
<212> PRT
<213> Actinobacillus pleuropneumoniae
 <400> 129
Met Trp Arg Met Gly Asp Phe Met Ser Lys Lys Glu Arg Leu Asn Asp
Met Ala Arg Gln Ile Leu Ser Ala Ala Glu Leu Leu Ile Ala Lys Glu
Gly Leu Gln Asn Leu Ser Met Arg Lys Ile Ala Ser Glu Ala Gly Ile
Ala Thr Gly Thr Leu Tyr Leu Tyr Phe Lys Thr Lys Asp Glu Leu Leu
Asp Cys Leu Ala Glu Gln Leu His Glu Arg Tyr Tyr Arg Tyr Leu Asn
<210> 130
<211> 527
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> apvD
<220>
<221> CDS
<222> (1)..(525)
<400> 130
aat att caa aaa aca gtt att gct agc ggc aca ttg caa gcg act gaa
                                                                      4 B
Asn Ile Gln Lys Thr Val Ile Ala Ser Gly Thr Leu Gln Ala Thr Glu
caa gta gat att ggt gca caa gta tct ggg cag att aag cat att tta
Gln Val Asp Ile Gly Ala Gln Val Ser Gly Gln Ile Lys His Ile Leu
gta caa gaa gga cag aag gtt aaa aaa ggt gaq cta tta qct qta att
```

Val	Gln	Glu 35	Gly	Gln	Lys	Val	Lys 40	Lys	Gly	Glu	Leu	Leu 45	Ala	Val	Ile	
	cca Pro 50															192
	aat Asn															240
	caa Gln															288
aca Thr	agc Ser	caa Gln	aag Lys 100	gaa Glu	aca Thr	gaa Glu	gaa Glu	gca Ala 105	aaa Lys	agt Ser	aga Arg	tta Leu	aat Asn 110	acg Thr	gcc Ala	336
aaa Lys	gca Ala	gaa Glu 115	ctt Leu	caa Gln	att Ile	gcg Ala	caa Gln 120	aat Asn	aat Asn	cta Leu	gat Asp	atc Ile 125	gct Ala	aaa Lys	atc Ile	384
aga Arg	gtg Val 130	gaa Glu	aaa Lys	gct Ala	gaa Glu	acc Thr 135	gaa Glu	cta Leu	gga Gly	tat Tyr	aca Thr 140	gaa Glu	att Ile	cgt Arg	tct Ser	432
cca Pro 145	ctt Leu	gat Asp	gca Ala	aca Thr	gta Val 150	att Ile	tca Ser	gta Val	ttt Phe	gcg Ala 155	caa Gln	aat Asn	ggt Gly	caa Gln	act Thr 160	480
tta Leu	gtc Val	acc Thr	acc	caa Gln 165	caa Gln	gta Val	cca Pro	gtg Val	ctg Leu 170	atg Met	aaa Lys	tta Leu	gct Ala	aat Asn 175	at	527
<21 <21	0 > 13 1 > 13 2 > PF 3 > Ac	5 T	baci	illus	ple	europ	neum	nonia	ıe							•
	0 > 13															
Asn 1	Ile	Gln	Lys	Thr 5	Val	Ile	Ala	Ser	Gly 10	Thr	Leu	Gln	Ala	Thr 15	Glu	
	Val		20					25	-				30			
Val	Gln	Glu 35	Gly	Gln	Lys	Val	Lys 40	Lys	Gly	Glu	Leu	Leu 45	Ala	Val	Ile	
Asp	Pro 50	Arg	Leu	Ala	Glu	Thr 55	Glu	Leu	Lys	Leu	Ala 60	Lys	Ala	Glu	Leu	
Ala 65	Asn	Ala	Ser	Ala	Asn 70	Leu	Asp	Thr	Lys	Lys 75	Ile	Asn	Leu	Lys	Gln 80	
Leu	Gln	Ser	Asp	Trp 85	Glu	Arg	His	Gln	Arg 90	Leu	Ile	Arg	Thr	Asn 95	Ala	

```
Lys Ala Glu Leu Gln Ile Ala Gln Asn Asn Leu Asp Ile Ala Lys Ile
Arg Val Glu Lys Ala Glu Thr Glu Leu Gly Tyr Thr Glu Ile Arg Ser
Pro Leu Asp Ala Thr Val Ile Ser Val Phe Ala Gln Asn Gly Gln Thr
Leu Val Thr Thr Gln Gln Val Pro Val Leu Met Lys Leu Ala Asn
                  165
                                       170
<210> 132
<211> 867
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> atpG
<220>
<221> CDS
<222> (1)..(864)
<400> 132
atg gca ggt gcg aaa gag ata aga acc aaa att gca agt gtg aaa aat
Met Ala Gly Ala Lys Glu Ile Arg Thr Lys Ile Ala Ser Val Lys Asn
act caa aaa atc acc aaa gca atg gaa atg gtt gct acc tct aaa atg
Thr Gln Lys Ile Thr Lys Ala Met Glu Met Val Ala Thr Ser Lys Met
cgt aaa acg caa gag cgt atg gct gcc agt cgt cct tat tcg gaa aca
Arg Lys Thr Gln Glu Arg Met Ala Ala Ser Arg Pro Tyr Ser Glu Thr
atc cgt aag gtg att agc cat att gcg aaa gga agc att ggt tat aag
                                                                         192
Ile Arg Lys Val Ile Ser His Ile Ala Lys Gly Ser Ile Gly Tyr Lys
cac ccg ttt tta act gaa cgt gat att aaa aaa gta ggc tat ctt gtc
                                                                         240
His Pro Phe Leu Thr Glu Arg Asp Ile Lys Lys Val Gly Tyr Leu Val
gtt tcg acc gat cgc ggt tta tgc ggt ggc ctt aat atc aat tta ttc
Val Ser Thr Asp Arg Gly Leu Cys Gly Gly Leu Asn Ile Asn Leu Phe
aaa gcg act ttg aat gaa ttt aaa acg tgg aaa gat aaa gac gtt agt
Lys Ala Thr Leu Asn Glu Phe Lys Thr Trp Lys Asp Lys Asp Val Ser
                                                                        336
             100
gtt gag ctt ggt tta gta ggg tcg aaa ggc gta agc ttt tac caa aat
Val Glu Leu Gly Leu Val Gly Ser Lys Gly Val Ser Phe Tyr Gln Asn
cta ggc tta aac gtg aga tct caa gta acg gga tta ggc gat aat ccg
                                                                        432
Leu Gly Leu Asn Val Arg Ser Gln Val Thr Gly Leu Gly Asp Asn Pro
gaa atg gaa cgt atc gtg ggc gca gtt aat gaa atg att aat gcg ttc
```

Glu 145	Met	Glu	Arg	Ile	Val 150	Gly	Ala	Val	Asn	Glu 155	Met	Ile	Asn	Ala	Phe 160	
cga Arg	aac Asn	gga Gly	gaa Glu	gtg Val 165	gat Asp	gcg Ala	gtt Val	tac Tyr	gtc Val 170	gct Ala	tac Tyr	aac Asn	cgt Arg	ttt Phe 175	gaa Glu	528
aat Asn	acg Thr	atg Met	tca Ser 180	caa Gln	aaa Lys	cct Pro	gtt Val	atc Ile 185	gca Ala	cag Gln	tta Leu	ctt Leu	ccg Pro 190	tta Leu	cct Pro	576
aaa Lys	cta Leu	gat Asp 195	gac Asp	gat Asp	gaa Glu	tta Leu	gat Asp 200	acg Thr	aaa Lys	ggt Gly	tca Ser	tgg Trp 205	gat Asp	tat Tyr	att Ile	624
tat Tyr	gaa Glu 210	ccg Pro	aat Asn	cca Pro	caa Gln	gtt Val 215	tta Leu	ttg Leu	gat Asp	agt Ser	tta Leu 220	ctt Leu	gtt Val	cgt Arg	tat Tyr	672
tta Leu 225	gaa Glu	act Thr	cag Gln	gta Val	tac Tyr 230	caa Gln	gca Ala	gtt Val	gta Val	gat Asp 235	aac Asn	cta Leu	gct Ala	tct Ser	gaa Glu 240	720
caa Gln	gcc Ala	gct Ala	cga Arg	atg Met 245	gta Val	gcg Ala	atg Met	aaa Lys	gcc Ala 250	gca Ala	aca Thr	gat Asp	aat Asn	gcg Ala 255	ggt Gly	768
aca Thr	tta Leu	atc Ile	gat Asp 260	gaa Glu	tta Leu	caa Gln	tta Leu	gtg Val 265	tat Tyr	aac Asn	aaa Lys	gct Ala	cgc Arg 270	caa Gln	gca Ala	816
agc Ser	att Ile	aca Thr 275	aat Asn	gaa Glu	tta Leu	aac Asn	gaa Glu 280	att Ile	gtt Val	gcg Ala	ggt Gly	gcc Ala 285	gca Ala	gca Ala	att Ile	864
taa																867
<21 <21	0> 1: 1> 28 2> PI 3> Ad	88 RT	baci	.llus	ple	europ	neum	nonia	ie							
	0> 13 Ala		Ala	Lys 5	Glu	Ile	Arg	Thr	Lys 10	Ile	Ala	Ser	Val	Lys 15	Asn	•
Thr	Gln	Lys	Ile 20	Thr	Lys	Ala	Met	Glu 25	Met	Val	Ala	Thr	Ser 30	Lys	Met	
Arg	Lys	Thr 35	Gln	Glu	Arg	Met	Ala 40	Ala	Ser	Arg	Pro	Tyr 45	Ser	Glu	Thr	
Ile	Arg 50	Lys	Val	Ile	Ser	His 55	Ile	Ala	Lys	Gly	Ser 60	Ile	Gly	Tyr	Lys	
His 65	Pro	Phe	Leu	Thr	Glu 70	Arg	Asp	Ile	Lys	Lys 75	Val	Gly	Tyr	Leu	Val 80	
Val	Ser	Thr	Asp	Arg 85	Gly	Leu	Cys	Gly	Gly 90	Leu	Asn	Ile	Asn	Leu 95	Phe	

```
Lys Ala Thr Leu Asn Glu Phe Lys Thr Trp Lys Asp Lys Asp Val Ser
            100
                                 105
Val Glu Leu Gly Leu Val Gly Ser Lys Gly Val Ser Phe Tyr Gln Asn
Leu Gly Leu Asn Val Arg Ser Gln Val Thr Gly Leu Gly Asp Asn Pro
Glu Met Glu Arg Ile Val Gly Ala Val Asn Glu Met Ile Asn Ala Phe
Arg Asn Gly Glu Val Asp Ala Val Tyr Val Ala Tyr Asn Arg Phe Glu
Asn Thr Met Ser Gln Lys Pro Val Ile Ala Gln Leu Leu Pro Leu Pro
Lys Leu Asp Asp Asp Glu Leu Asp Thr Lys Gly Ser Trp Asp Tyr Ile
Tyr Glu Pro Asn Pro Gln Val Leu Leu Asp Ser Leu Leu Val Arg Tyr
Leu Glu Thr Gln Val Tyr Gln Ala Val Val Asp Asn Leu Ala Ser Glu
225
Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn Ala Gly
Thr Leu Ile Asp Glu Leu Gln Leu Val Tyr Asn Lys Ala Arg Gln Ala
Ser Ile Thr Asn Glu Leu Asn Glu Ile Val Ala Gly Ala Ala Ala Ile
                            280
<210> 134
<211> 534
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> atpH
<220>
<221> CDS
<222> (1) .. (531)
<400> 134
atg tea gaa tta agt aca gta get ege eee tae get aaa gea get ttt
Met Ser Glu Leu Ser Thr Val Ala Arg Pro Tyr Ala Lys Ala Ala Phe
gat ttt gct tta gaa caa ggt cag ttg gac aaa tgg caa gaa atg tta
Asp Phe Ala Leu Glu Gln Gly Gln Leu Asp Lys Trp Gln Glu Met Leu
cag ttt tcg gca ttc gtt gct gaa aac gaa caa gtg gcg gaa tat att
                                                                   144
Gln Phe Ser Ala Phe Val Ala Glu Asn Glu Gln Val Ala Glu Tyr Ile
                             40
aat tot too ott goa ago ggt cag att tot gaa act ttt atc aaa atc
```

231

As n Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe Ile Lys Ile tog gog gac caa ctt gat caa tat gog caa aat ttt att cgt gta atg Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 65 gct gaa aat aaa cgt ctg gct gtg ttg cct atg gtt ttt gat act ttc 76 gct gaa aat aaa cgt ctg gct gtg ttg cct atg gtt ttt gat act ttc Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 85 gta tca tta cga gcg gaa cat gaa gcg gta aaa gat gta aca att gtt Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val 100 tcg gca aac gaa tta agt caa gca caa gaa gat aaa atc gca aaa gcg Ser Ala Asn Glu Leu Ser Gln Ala Gln Glu Asp Lys Ile Ala Lys Ala det Glu Lys Arg Leu Gly Gln Lys Val Arg Leu Thr Asn Gln Ile Asp 130 aca agc ctg att gca gcg gct att att aaa tac gat gat gtt att Asn Ser Leu Ile Ala Gly Val Ile Ile Lys Tyr Asp Asp Val Val Ile 145 gat ggt agt agc cgc ggt cag tta aat cgc tta gcg tca gcg tta gc Asp Gly Ser Ser Arg Gly Gln Leu Asn Arg Leu Ala Ser Ala Leu c210> 135 c310> 135 c310> 135 c311> 177 c312> PRT c311> 178 c311> 17																	
Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 65 65 65 65 66 65 66 65 66 66 67 67	Asn		Ser	Leu	Ala	Ser		Gln	Ile	Ser	Glu		Phe	Ile	Lys	Ile	
Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 850	Cys					Asp					Asn					Met	240
Val Ser Leu Arg Ala Glu His Glu Ala Lys Asp Val Thr Ile Val 1005 1005 1005 1005 1006 1007 1006 1007 1007 1008					Arg					Pro					Thr		288
Ser Ala Asn Glu Leu Ser Gln Ala Gln Glu Asp Lys Ile Ala Lys Ala 115 126 127 128 129 130 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 130 131 130 1				Arg					Ala					Thr			336
Met Glu Lys Arg Leu Gly Gln Lys Val Arg Leu Thr Asn Gln Ile Asp 130 aac agc ctg att gca ggc gta att att aaa tac gat gat gtt gtt att Asn Ser Leu Ile Ala Gly Val Ile Ile Lys Tyr Asp Asp Val Val Ile 150 gat ggt agt agc cgc ggt cag tta aat cgc tta gcg tca gcg ttg agc Asp Gly Ser Ser Arg Gly Gln Leu Asn Arg Leu Ala Ser Ala Leu Ser 165 ttg taa Leu <pre></pre>			Asn					Ala					Ile				384
Asn Ser Leu Ile Ala Giy Val Ile Ile Lys Tyr Asp Asp Val Val Ile 150 160 gat ggt agt agc cgc ggt cag tta aat cgc tta gcg tca gcg ttg agc Asp Gly Ser Ser Arg Gly Gln Leu Asn Arg Leu Ala Ser Ala Leu Ser 165 170 ttg taa 4210> 135 4211> 177 4212> PKT 4213> Actinobacillus pleuropneumoniae 4400> 135 Met Ser Glu Leu Ser Thr Val Ala Arg Pro Tyr Ala Lys Ala Ala Phe 1 Asp Phe Ala Leu Glu Gln Gly Gln Leu Asp Lys Trp Gln Glu Met Leu 20 Gln Phe Ser Ala Phe Val Ala Glu Asn Glu Gln Val Ala Glu Tyr Ile 35 Asn Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe Ile Lys Ile 50 Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 70 Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val	atg Met	Glu	aaa Lys	cgc Arg	tta Leu	ggt Gly	Gln	aaa Lys	gtt Val	cgt Arg	tta Leu	Thr	aac Asn	caa Gln	atc Ile	gat Asp	432
Asp Gly Ser Ser Arg Gly Gln Leu Asn Arg Leu Ala Ser Ala Leu Ser 165 ttg taa Leu 534 <210> 135 <2211> 177 <2212> PKT <2213> Actinobacillus pleuropneumoniae 4000> 135 4000> 135 4000> 135 4000> 135 401 Asp Phe Ala Leu Ser Thr Val Ala Arg Pro Tyr Ala Lys Ala Ala Phe 15 Asp Phe Ala Leu Glu Gln Gly Gln Leu Asp Lys Trp Gln Glu Met Leu 25 Gln Phe Ser Ala Phe Val Ala Glu Asn Glu Gln Val Ala Glu Tyr Ile 45 Asn Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe Ile Lys Ile 50 Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 70 Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val	Asn					Gly					Tyr					Ile	480
Leu <210> 135 c211> 177 c212> PRT c213> Actinobacillus pleuropneumoniae <4400> 135 Met Ser Glu Leu Ser Thr Val Ala Arg Pro Tyr Ala Lys Ala Ala Phe 10 15 Asp Phe Ala Leu Glu Gln Gly Gln Leu Asp Lys Trp Gln Glu Met Leu 20 Gln Phe Ser Ala Phe Val Ala Glu Asn Glu Gln Val Ala Glu Tyr Ile 40 Asn Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe Ile Lys Ile 50 Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val	gat Asp	ggt Gly	agt Ser	agc Ser	Arg	ggt Gly	cag Gln	tta Leu	aat Asn	Arg	tta Leu	gcg Ala	tca Ser	gcg Ala	Leu	agc Ser	528
<pre><211> 177 <212> PKT <213> Actinobacillus pleuropneumoniae <400> 135 Met Ser Glu Leu Ser Thr Val Ala Arg Pro Tyr Ala Lys Ala Ala Phe</pre>		taa															534
Met Ser Glu Leu Ser Thr Val Ala Arg Pro Tyr Ala Lys Ala Ala Phe 1 10 15 Asp Phe Ala Leu Glu Gln Gly Gln Leu Asp Lys Trp Gln Glu Met Leu 20 30 Gln Phe Ser Ala Phe Val Ala Glu Asn Glu Gln Val Ala Glu Tyr Ile 35 45 Asn Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe 11e Lys Ile 50 Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 70 Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val	<21 <21	l> 17 2> PF	77 ?T	baci	llus	ple	europ	neum	nonia	ne .							
20 25 30 Gln Phe Ser Ala Phe Val Ala Glu Asn Glu Gln Val Ala Glu Tyr Ile 35 40 Asn Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe Ile Lys Ile 50 60 Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 70 80 Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 95 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val				Leu		Thr	Val	Ala	Arg		Tyr	Ala	Lys	Ala		Phe	
Asn Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe Ile Lys Ile 50 Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 70 Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val	Asp	Phe	Ala		Glu	Gln	Gly	Gln		Asp	Lys	Trp	Gln		Met	Leu	
50 55 60 Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met 65 70 80 Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 95 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val	Gln	Phe		Ala	Phe	Val	Ala		Asn	Glu	Gln	Val		Glu	Tyr	Ile	
65 70 75 80 Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe 85 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val	Asn		Ser	Leu	Ala	Ser		Gln	Ile	Ser	Glu		Phe	Ile	Lys	Ile	
85 90 95 Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val		Gly	Asp	Gln	Leu		Gln	Tyr	Gly	Gln		Phe	Ile	Arg	Val		
	Ala	Glu	Asn	Lys		Leu	Ala	Val	Leu		Met	Val	Phe	Asp		Phe	
	Val	Ser	Leu		Ala	Glu	His	Glu		Val	Lys	Asp	Val		Ile	Val	

```
Ser Ala Asn Glu Leu Ser Gln Ala Gln Glu Asp Lys Ile Ala Lys Ala
          115
Met Glu Lys Arg Leu Gly Gln Lys Val Arg Leu Thr Asn Gln Ile Asp
Asn Ser Leu Ile Ala Gly Val Ile Ile Lys Tyr Asp Asp Val Val Ile
145
Asp Gly Ser Ser Arg Gly Gln Leu Asn Arg Leu Ala Ser Ala Leu Ser
                                       170
Leu
<210> 136
<211> 321
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> dksA
<220>
<221> CDS
<222> (1)..(318)
<400> 136
gca tgg cat gtg caa att atg gac gaa gct gag cgt aca aaa aac caa
Ala Trp His Val Gln Ile Met Asp Glu Ala Glu Arg Thr Lys Asn Gln
atg cag gaa gaa gtc gct aat ttc gcc gat cct gcg gac cgc gcc act
Met Gln Glu Glu Val Ala Asn Phe Ala Asp Pro Ala Asp Arg Ala Thr
cag gaa gaa gaa ttc agt ctt gaa tta aga aac cgt gac cgt gag cgt
                                                                          144
Gln Glu Glu Glu Phe Ser Leu Glu Leu Arg Asn Arg Asp Arg Glu Arg
aaa ttg ctt aag aag att gag caa acg tta aat agc att gcc gaa gac
                                                                          192
Lys Leu Leu Lys Lys Ile Glu Gln Thr Leu Asn Ser Ile Ala Glu Asp
gaa tac ggc tat tgc gaa act tgc ggt gtt gaa atc ggt tta cgt cgt
                                                                          240
Glu Tyr Gly Tyr Cys Glu Thr Cys Gly Val Glu Ile Gly Leu Arg Arg
                                             75
tta gaa gcg cgc ccg acc gcg gat atg tgt atc gat tgc aaa aca ctt
                                                                          288
Leu Glu Ala Arg Pro Thr Ala Asp Met Cys Ile Asp Cys Lys Thr Leu
gcg gaa atc cgt gaa aag caa atg ggc tta taa
                                                                          321
Ala Glu Ile Arg Glu Lys Gln Met Gly Leu
             100
<210> 137
<211> 106
<212> PRT
<213> Actinobacillus pleuropneumoniae
```

```
Ala Trp His Val Gln Ile Met Asp Glu Ala Glu Arg Thr Lys Asn Gln
Met Gln Glu Glu Val Ala Asn Phe Ala Asp Pro Ala Asp Arg Ala Thr
Gln Glu Glu Glu Phe Ser Leu Glu Leu Arg Asn Arg Asp Arg Glu Arg
Lys Leu Leu Lys Lys Ile Glu Gln Thr Leu Asn Ser Ile Ala Glu Asp
Glu Tyr Gly Tyr Cys Glu Thr Cys Gly Val Glu Ile Gly Leu Arg Arg
 65
Leu Glu Ala Arg Pro Thr Ala Asp Met Cys Ile Asp Cys Lys Thr Leu
Ala Glu Ile Arg Glu Lys Gln Met Gly Leu
                                 105
<210> 138
<211> 33
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> dnaK
<220>
<221> CDS
<222> (1)..(30)
<400> 138
gct gag ttt gaa gaa gtg aaa gat aat aaa taa
                                                                   33
Ala Glu Phe Glu Glu Val Lys Asp Asn Lys
<210> 139
<211> 10
<212> PRT
<213> Actinobacillus pleuropneumoniae
<400> 139
Ala Glu Phe Glu Glu Val Lys Asp Asn Lys
<210> 140
<211> 453
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> exbB
<220>
<221> CDS
<222> (1) . . (450)
```

<400	- 14	10														
atg g Met 0	gaa	caa	atg Met	ctt Leu 5	gaa Glu	ctt Leu	tta Leu	caa Gln	ggt Gly 10	cat His	gtt Val	gat Asp	tat Tyr	att Ile 15	att Ile	48
tta g Leu (ggc 31y	tta Leu	tta Leu 20	cta Leu	tta Leu	atg Met	agt Ser	gtt Val 25	gtg Val	ttg Leu	gta Val	tgg Trp	aaa Lys 30	att Ile	att Ile	96
gaa d Glu A	ege Arg	gta Val 35	ctt Leu	ttc Phe	tac Tyr	aaa Lys	caa Gln 40	ttg Leu	gat Asp	gtg Val	acc Thr	aaa Lys 45	tat Tyr	gac Asp	acg Thr	144
cta c Leu C																192
act a Thr I 65	atc Ile	ggt Gly	gcc Ala	aac Asn	gcc Ala 70	cct Pro	tat Tyr	atc Ile	ggt Gly	tta Leu 75	tta Leu	gga Gly	acc Thr	gta Val	tta Leu 80	240
ggg a	atc [le	tta Leu	ctt Leu	acc Thr 85	ttc Phe	tat Tyr	cat His	tta Leu	999 Gly 90	cat His	tcc ser	ggc Gly	ggt Gly	gat Asp 95	att Ile	288
gac c Asp A	gcc	gca Ala	tcc Ser 100	att Ile	atg Met	gtt Val	cac His	ctt Leu 105	tcg Ser	ctt Leu	gca Ala	tta Leu	aaa Lys 110	gca Ala	acc Thr	336
gca g Ala A	gcc Ala	ggt Gly 115	atc Ile	tta Leu	gtc Val	gct Ala	att Ile 120	ccg Pro	gca Ala	atg Met	atg Met	ttc Phe 125	tac Tyr	agc Ser	ggt Gly	384
ttt a Phe A	aac Asn 130	cgt Arg	aaa Lys	gtg Val	gat Asp	gaa Glu 135	agc Ser	aaa Lys	ctt Leu	aaa Lys	tgg Trp 140	caa Gln	gcg Ala	att Ile	caa Gln	432
gct c Ala A 145						taa										453
<210><211><211><212><213>	15 PR	0 T	baci	.llus	ple	urop	neun	nonia	ie							
<400> Met G			Met	Leu 5	Glu	Leu	Leu	Gln	Gly 10	His	Val	Asp	Tyr	Ile 15	Ile	
Leu G	ЗІУ	Leu	Leu 20	Leu	Leu	Met	Ser	Val 25	Val	Leu	Val	Trp	Lys 30	Ile	Ile	
Glu A	arg	Val 35	Leu	Phe	Tyr	Lys	Gln 40	Leu	Asp	Val	Thr	Lys 45	Tyr	Asp	Thr	
Leu G	1n 50	Asp	Leu	Glu	Ile	Asp 55	Thr	Thr	Arg	Asn	Leu 60	Thr	Thr	Ile	Ser	
Thr I 65	1e	Gly	Ala	Asn	Ala 70	Pro	Tyr	Ile	Gly	Leu 75	Leu	Gly	Thr	Val	Leu 80	

```
Gly Ile Leu Leu Thr Phe Tyr His Leu Gly His Ser Gly Gly Asp Ile
Asp Ala Ala Ser Ile Met Val His Leu Ser Leu Ala Leu Lys Ala Thr
                                 105
Ala Ala Gly Ile Leu Val Ala Ile Pro Ala Met Met Phe Tyr Ser Gly
Phe Asn Arg Lys Val Asp Glu Ser Lys Leu Lys Trp Gln Ala Ile Gln
Ala Arg Lys Ala Asn Gln
<210> 142
<211> 720
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> fkpA
<220>
<221> CDS
<222> (1)..(717)
<400> 142
atg tta aaa aat aaa ctt tct gtt ctt gca atc gta gcc ggt acg ttc
Met Leu Lys Asn Lys Leu Ser Val Leu Ala Ile Val Ala Gly Thr Phe
gtt tca gct caa act gca ttt gca gcg gat caa aaa ttc att gac gat
Val Ser Ala Gln Thr Ala Phe Ala Ala Asp Gln Lys Phe Ile Asp Asp
tca tca tat gca gtc ggc gta ttg atg ggt aaa aat atc gaa ggc gtc
                                                                   144
Ser Ser Tyr Ala Val Gly Val Leu Met Gly Lys Asn Ile Glu Gly Val
gtt gaa toa caa aaa gaa att ttt tot tat aac caa gat aaa atc ttg
                                                                   192
Val Glu Ser Gln Lys Glu Ile Phe Ser Tyr Asn Gln Asp Lys Ile Leu
gcg ggt gtc caa gat acc atc aaa aaa acc ggt aaa tta acc gat gaa
Ala Gly Val Gln Asp Thr Ile Lys Lys Thr Gly Lys Leu Thr Asp Glu
                     70
gat cta caa aaa caa tta aaa tcg ctt gat act tat ctt gca agt caa
Asp Leu Gln Lys Gln Leu Lys Ser Leu Asp Thr Tyr Leu Ala Ser Gln
                 85
                                     90
gaa agc aaa att gcg gcg gag aaa agc aaa gca acc gta gaa gcc ggt
                                                                  336
Glu Ser Lys Ile Ala Ala Glu Lys Ser Lys Ala Thr Val Glu Ala Gly
aat aaa ttt cgt acc gac tac gaa aaa caa agc ggc gtg aaa aaa acc
                                                                  384
Asn Lys Phe Arg Thr Asp Tyr Glu Lys Gln Ser Gly Val Lys Lys Thr
get tee ggt tta ett tat aaa att gaa aaa gee gge acg gge gaa teg
```

Ala	Ser 130	Gly	Leu	Leu	Tyr	Lys 135		Glu	Lys	Ala	Gly 140		Gly	Glu	Ser	
cct Pro 145	aaa Lys	gcg Ala	gaa Glu	gat Asp	acc Thr 150	Val	aaa Lys	gtt Val	cac His	tat Tyr 155	aaa Lys	ggg Gly	aca Thr	tta Leu	acc Thr 160	480
gat Asp	ggt Gly	acg Thr	gta Val	ttc Phe 165	gat Asp	agc Ser	tca Ser	tac Tyr	gat Asp 170	cgc Arg	ggt Gly	gag Glu	ccg Pro	att Ile 175	gaa Glu	528
ttc Phe	caa Gln	tta Leu	aac Asn 180	caa Gln	tta Leu	att Ile	ccg Pro	ggt Gly 185	tgg Trp	att Ile	gaa Glu	gcg Ala	att Ile 190	cca Pro	atg Met	576
ttg Leu	aaa Lys	aaa Lys 195	ggc Gly	gga Gly	aaa Lys	atg Met	gaa Glu 200	atc Ile	gtc Val	gtt Val	ccg Pro	cct Pro 205	gaa Glu	ctt Leu	ggt Gly	624
					gca Ala											672
ttc Phe 225	gag Glu	att Ile	gaa Glu	ttg Leu	tta Leu 230	gat Asp	ttc Phe	aaa Lys	gcg Ala	gcc Ala 235	gaa Glu	gcg Ala	aaa Lys	aaa Lys	taa	720
<211 <212)> 14 l> 23 ?> PF l> Ac	89 RT	baci	illus	ple	europ	oneur	nonia	ie							
)> 14 Leu		Asn	Lvs	Len	Ser	Val	Len	Δla	Tle	Val	212	Glv	Thr	Dhe	
Met 1	Leu	Lys		5	Leu				10				_	15		
Met 1	Leu	Lys		5	Leu Ala				10				_	15		
Met 1 Val	Leu Ser	Lys Ala	Gln 20	5 Thr		Phe	Ala	Ala 25	10 Asp	Gln	Lys	Phe	Ile 30	15 Asp	Asp	
Met 1 Val Ser	Leu Ser Ser	Lys Ala Tyr 35	Gln 20 Ala	5 Thr Val	Ala	Phe Val	Ala Leu 40	Ala 25 Met	10 Asp Gly	Gln Lys	Lys Asn	Phe Ile 45	Ile 30 Glu	15 Asp Gly	Asp Val	
Met 1 Val Ser	Ser Ser Glu 50	Lys Ala Tyr 35 Ser	Gln 20 Ala Gln	5 Thr Val Lys	Ala Gly	Phe Val Ile 55	Ala Leu 40 Phe	Ala 25 Met Ser	10 Asp Gly Tyr	Gln Lys Asn	Lys Asn Gln 60	Phe Ile 45 Asp	Ile 30 Glu Lys	15 Asp Gly Ile	Asp Val Leu	
Met 1 Val Ser Val Ala 65	Ser Ser Glu 50	Lys Ala Tyr 35 Ser Val	Gln 20 Ala Gln Gln	5 Thr Val Lys Asp	Ala Gly Glu Thr	Phe Val Ile 55	Ala Leu 40 Phe Lys	Ala 25 Met Ser	Asp Gly Tyr	Gln Lys Asn Gly 75	Lys Asn Gln 60 Lys	Phe Ile 45 Asp	Ile 30 Glu Lys Thr	Asp Gly Ile Asp	Asp Val Leu Glu 80	
Met 1 Val Ser Val Ala 65 Asp	Ser Ser Glu 50 Gly Leu	Lys Ala Tyr 35 Ser Val	Gln 20 Ala Gln Gln Lys	5 Thr Val Lys Asp Gln 85	Ala Gly Glu Thr 70	Phe Val Ile 55 Ile Lys	Ala Leu 40 Phe Lys Ser	Ala 25 Met Ser Lys Leu	Asp Gly Tyr Thr Asp	Gln Lys Asn Gly 75 Thr	Lys Asn Gln 60 Lys	Phe Ile 45 Asp Leu Leu	Ile 30 Glu Lys Thr	Asp Gly Ile Asp Ser	Asp Val Leu Glu 80 Gln	
Met 1 Val Ser Val Ala 65 Asp Glu	Ser Ser Glu 50 Gly Leu Ser	Lys Ala Tyr 35 Ser Val Gln Lys	Gln 20 Ala Gln Gln Lys Ile 100	5 Thr Val Lys Asp Gln 85 Ala	Ala Gly Glu Thr 70 Leu	Phe Val Ile 55 Ile Lys Glu	Ala Leu 40 Phe Lys Ser	Ala 25 Met Ser Lys Leu Ser 105	10 Asp Gly Tyr Thr Asp 90 Lys	Gln Lys Asn Gly 75 Thr	Lys Asn Gln 60 Lys Tyr	Phe Ile 45 Asp Leu Leu Val	Ile 30 Glu Lys Thr Ala Glu 110	Asp Gly Ile Asp Ser 95 Ala	Asp Val Leu Glu 80 Gln Gly	
Met 1 Val Ser Val Ala 65 Asp Glu Asn	Ser Ser Glu 50 Gly Leu Ser	Lys Ala Tyr 35 Ser Val Gln Lys Phe	Gln 20 Ala Gln Gln Lys Ile 100 Arg	5 Thr Val Lys Asp Gln 85 Ala	Ala Gly Glu Thr 70 Leu Ala	Phe Val Ile 55 Ile Lys Glu Tyr	Ala Leu 40 Phe Lys Ser Lys Glu 120	Ala 25 Met Ser Lys Leu Ser 105	10 Asp Gly Tyr Thr Asp 90 Lys	Gln Lys Asn Gly 75 Thr Ala	Lys Asn Gln 60 Lys Tyr Thr	Phe Ile 45 Asp Leu Leu Val Val	Ile 30 Glu Lys Thr Ala Glu 110 Lys	15 Asp Gly Ile Asp Ser 95 Ala	Asp Val Leu Glu 80 Gln Gly Thr	

```
Asp Gly Thr Val Phe Asp Ser Ser Tyr Asp Arg Gly Glu Pro Ile Glu
                                       170
Phe Gln Leu Asn Gln Leu Ile Pro Gly Trp Ile Glu Ala Ile Pro Met
Leu Lys Lys Gly Gly Lys Met Glu Ile Val Val Pro Pro Glu Leu Gly
Tyr Gly Glu Arg Gln Ala Gly Lys Ile Pro Ala Ser Ser Thr Leu Lys
Phe Glu Ile Glu Leu Leu Asp Phe Lys Ala Ala Glu Ala Lys Lys
                     230
<210> 144
<211> 290
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> HI0379
<220>
<221> CDS
<222> (3)..(287)
<400> 144
tg cat agc gtg aga ggt ccg ggc ggc ggt tat caa ctc ggt aag caa
                                                                      47
   His Ser Val Arg Gly Pro Gly Gly Gly Tyr Gln Leu Gly Lys Gln
cct gaa gag att agt gtg ggg atg att att gcg gcg gtg aat gaa aat
Pro Glu Glu Ile Ser Val Gly Met Ile Ile Ala Ala Val Asn Glu Asn
                                                                      95
ctc gac gta acc aaa tgt aaa ggt agc ggc aac tgt agc aaa aac tct
                                                                      143
Leu Asp Val Thr Lys Cys Lys Gly Ser Gly Asn Cys Ser Lys Asn Ser
cag tgc tta acc cat cat tta tgg gaa cgt tta gaa gaa caa atc ggt
                                                                      191
Gln Cys Leu Thr His His Leu Trp Glu Arg Leu Glu Glu Gln Ile Gly
gtg ttt tta aat acg att act tta gcg gaa ctt gtt gaa gaa cat tcg
Val Phe Leu Asn Thr Ile Thr Leu Ala Glu Leu Val Glu Glu His Ser
                          70
gat cac gat tgt gaa aaa gaa cat tgc cac gat cat tca cac aaa cat
                                                                      287
Asp His Asp Cys Glu Lys Glu His Cys His Asp His Ser His Lys His
80
                      85
taa
                                                                      290
<210> 145
<211> 95
<212> PRT
<213> Actinobacillus pleuropneumoniae
<400> 145
His Ser Val Arg Gly Pro Gly Gly Gly Tyr Gln Leu Gly Lys Gln Pro
```

```
10
 Glu Glu Ile Ser Val Gly Met Ile Ile Ala Ala Val Asn Glu Asn Leu
 Asp Val Thr Lys Cys Lys Gly Ser Gly Asn Cys Ser Lys Asn Ser Gln
 Cys Leu Thr His His Leu Trp Glu Arg Leu Glu Glu Gln Ile Gly Val
 Phe Leu Asn Thr Ile Thr Leu Ala Glu Leu Val Glu Glu His Ser Asp
His Asp Cys Glu Lys Glu His Cys His Asp His Ser His Lys His
<210> 146
<211> 273
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> hupA
<221> CDS
<222> (1)..(270)
<400> 146
atg aac aaa act gag tta atc gat gca atc gca gct ggt gca gag tta
Met Asn Lys Thr Glu Leu Ile Asp Ala Ile Ala Ala Gly Ala Glu Leu
age aag aaa gac geg aaa geg gea tta gaa geg act tta aat geg ate
Ser Lys Lys Asp Ala Lys Ala Ala Leu Glu Ala Thr Leu Asn Ala Ile
tct gaa agc cta aaa aat ggc gac acc gtt cag tta atc ggc ttc ggt
Ser Glu Ser Leu Lys Asn Gly Asp Thr Val Gln Leu Ile Gly Phe Gly
                                                                           144
act ttt aaa gta aac gag cgt aat gca cgt acg ggt cgt aac ccg cgt
                                                                           192
Thr Phe Lys Val Asn Glu Arg Asn Ala Arg Thr Gly Arg Asn Pro Arg
acc ggc gaa gaa atc aaa atc gca gca tct aaa gtg ccg gcg ttt gtt Thr Gly Glu Glu Ile Lys Ile Ala Ala Ser Lys Val Pro Ala Phe Val
                        70
gca ggt aaa gca tta aaa gat tta gta aaa taa
                                                                           273
Ala Gly Lys Ala Leu Lys Asp Leu Val Lys
                   85
<210> 147
```

<211> 90 <212> PRT

<213> Actinobacillus pleuropneumoniae

<400> 147

Met Asn Lys Thr Glu Leu Ile Asp Ala Ile Ala Ala Gly Ala Glu Leu

```
10
Ser Lys Lys Asp Ala Lys Ala Ala Leu Glu Ala Thr Leu Asn Ala Ile
Ser Glu Ser Leu Lys Asn Gly Asp Thr Val Gln Leu Ile Gly Phe Gly
Thr Phe Lys Val Asn Glu Arg Asn Ala Arg Thr Gly Arg Asn Pro Arg
Thr Gly Glu Glu Ile Lys Ile Ala Ala Ser Lys Val Pro Ala Phe Val
Ala Gly Lys Ala Leu Lys Asp Leu Val Lys
<210> 148
<211> 551
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> 1pdA
<220>
<221> CDS
<222> (1)..(549)
<400> 148
atg agc aaa gaa atc aaa acg caa gtc gtg gta ctt ggt gcg ggt cct
Met Ser Lys Glu Ile Lys Thr Gln Val Val Val Leu Gly Ala Gly Pro
gcc ggt tat tca gcg gca ttc cgt tgt gcc gac tta ggc tta gaa aca
Ala Gly Tyr Ser Ala Ala Phe Arg Cys Ala Asp Leu Gly Leu Glu Thr
gta att gtc gaa cgt tat tca act ttg ggc ggt gta tgc tta aac gta
                                                                             144
Val Ile Val Glu Arg Tyr Ser Thr Leu Gly Gly Val Cys Leu Asn Val
ggt tgt att ccg tct aaa gca tta tta cac gtt gca aaa gtt atc gaa
                                                                             192
Gly Cys Ile Pro Ser Lys Ala Leu Leu His Val Ala Lys Val Ile Glu
gaa gca aaa cac gca gag aaa aac ggt att act ttc ggt gag ccc aac Glu Ala Lys His Ala Glu Lys Asn Gly Ile Thr Phe Gly Glu Pro Asn
                                                                             240
att gat tta gat aaa gtg cgt gcg ggt aaa gaa gcg gtt gtt tct aaa
                                                                             288
Ile Asp Leu Asp Lys Val Arg Ala Gly Lys Glu Ala Val Val Ser Lys
tta acc ggc ggt tta gcg ggt atg gct aaa gca cgt aaa gta aca gta
                                                                             336
Leu Thr Gly Gly Leu Ala Gly Met Ala Lys Ala Arg Lys Val Thr Val
                                     105
gtg gaa ggt tta gcg gcg ttt acc gat ccg aat act tta gta gct cgt
Val Glu Gly Leu Ala Ala Phe Thr Asp Pro Asn Thr Leu Val Ala Arg
                                                                             384
                                120
```

```
gac cgt gac ggt aat ccg aca acg att aaa ttt gat tat gca att att
Asp Arg Asp Gly Asn Pro Thr Thr Ile Lys Phe Asp Tyr Ala Ile Ile
                         135
gca gcc ggt tot cgt ccg att cag ott ccg tto att cca cac gaa gat
                                                                       480
Ala Ala Gly Ser Arg Pro Ile Gln Leu Pro Phe Ile Pro His Glu Asp
ccg cgt gtg tgg gat tct acg gat gca ctt aaa tta aaa gaa gta ccc
Pro Arg Val Trp Asp Ser Thr Asp Ala Leu Lys Leu Lys Glu Val Pro
                                                                      528
gaa aaa att act cat tat ggg cc
                                                                      551
Glu Lys Ile Thr His Tyr Gly
             180
<210> 149
<211> 183
<212> PRT
<213> Actinobacillus pleuropneumoniae
Met Ser Lys Glu Ile Lys Thr Gln Val Val Val Leu Gly Ala Gly Pro
Ala Gly Tyr Ser Ala Ala Phe Arg Cys Ala Asp Leu Gly Leu Glu Thr
Val·Ile Val Glu Arg Tyr Ser Thr Leu Gly Gly Val Cys Leu Asn Val
Gly Cys Ile Pro Ser Lys Ala Leu Leu His Val Ala Lys Val Ile Glu
Glu Ala Lys His Ala Glu Lys Asn Gly Ile Thr Phe Gly Glu Pro Asn
Ile Asp Leu Asp Lys Val Arg Ala Gly Lys Glu Ala Val Val Ser Lys
Leu Thr Gly Gly Leu Ala Gly Met Ala Lys Ala Arg Lys Val Thr Val
Val Glu Gly Leu Ala Ala Phe Thr Asp Pro Asn Thr Leu Val Ala Arg
Asp Arg Asp Gly Asn Pro Thr Thr Ile Lys Phe Asp Tyr Ala Ile Ile
Ala Ala Gly Ser Arg Pro Ile Gln Leu Pro Phe Ile Pro His Glu Asp
Pro Arg Val Trp Asp Ser Thr Asp Ala Leu Lys Leu Lys Glu Val Pro
                                     170
Glu Lys Ile Thr His Tyr Gly
            180
<210> 150
<211> 1095
<212> DNA
```

241

```
<213> Actinobacillus pleuropneumoniae
<220>
<223> Omp5-2
<220>
<221> CDS
<222> (1)..(1092)
<400> 150
atg aaa aaa tca tta gtt gct tta aca gta tta tcg gct gca gcg gta
Met Lys Lys Ser Leu Val Ala Leu Thr Val Leu Ser Ala Ala Val
gct caa gca gcg cca caa caa aat act ttc tac gca ggt gcg aaa gca
Ala Gln Ala Ala Pro Gln Gln Asn Thr Phe Tyr Ala Gly Ala Lys Ala
ggt tgg gcg tca ttc cat gat ggt atc gaa caa tta gat tca gct aaa
Gly Trp Ala Ser Phe His Asp Gly Ile Glu Gln Leu Asp Ser Ala Lys
                                                                     144
aac aca gat cgc ggt aca aaa tac ggt atc aac cgt aat tca gta act
                                                                     192
Asn Thr Asp Arg Gly Thr Lys Tyr Gly Ile Asn Arg Asn Ser Val Thr
tac ggc gta ttc ggc ggt tac caa att tta aac caa gac aaa tta ggt
Tyr Gly Val Phe Gly Gly Tyr Gln Ile Leu Asn Gln Asp Lys Leu Gly
tta gcg gct gaa tta ggt tat gac tat ttc ggt cgt gtg cgc ggt tct
                                                                     288
Leu Ala Ala Glu Leu Gly Tyr Asp Tyr Phe Gly Arg Val Arg Gly Ser
gaa aaa cca aac ggt aaa gcg gac aag aaa act ttc cgt cac gct gca
Glu Lys Pro Asn Gly Lys Ala Asp Lys Lys Thr Phe Arg His Ala Ala
cac ggt gcg aca atc gca tta aaa cct agc tac gaa gta tta cct gac
His Gly Ala Thr Ile Ala Leu Lys Pro Ser Tyr Glu Val Leu Pro Asp
tta gac gtt tac ggt aaa gta ggt atc gca tta gta aac aat aca tat
                                                                     432
Leu Asp Val Tyr Gly Lys Val Gly Ile Ala Leu Val Asn Asn Thr Tyr
aaa aca ttc aat gca gca caa gag aaa gtg aaa act cgt cgt ttc caa
Lys Thr Phe Asn Ala Ala Gln Glu Lys Val Lys Thr Arg Arg Phe Gln
145
agt tot tta att tta ggt gcg ggt gtt gag tac gca att ctt cct gaa
Ser Ser Leu Ile Leu Gly Ala Gly Val Glu Tyr Ala Ile Leu Pro Glu
                 165
tta gcg gca cgt gtt gaa tac caa tgg tta aac aac gca ggt aaa gca
                                                                     576
Leu Ala Ala Arg Val Glu Tyr Gln Trp Leu Asn Asn Ala Gly Lys Ala
age tac tet act tta aat egt atg ggt gea act gae tac egt teg gat
Ser Tyr Ser Thr Leu Asn Arg Met Gly Ala Thr Asp Tyr Arg Ser Asp
        195
                             200
```

	agt Ser 210															672
	ccg Pro															720
	gac Asp															768
	aca Thr															816
tca Ser	aat Asn	gct Ala 275	gcg Ala	atc Ile	caa Gln	gta Val	aac Asn 280	ggt Gly	tac Tyr	acg Thr	gac Asp	cgt Arg 285	atc Ile	ggt Gly	aaa Lys	864
gaa Glu	gct Ala 290	tca Ser	aac Asn	tta Leu	aaa Lys	ctt Leu 295	tca Ser	caa Gln	cgt Arg	cgt Arg	gcg Ala 300	gaa Glu	aca Thr	gta Val	gct Ala	912
	tac Tyr															960
	tac Tyr															1008
	ggt Gly															1056
	gtt Val											taa				1095
<211 <212)> 15 l> 36 l> PF l> Ac	4 T	baci	.llus	; ple	urop	neum	nonia	ie							
)> 19 Lys		Ser	Leu	Val	Ala	Leu	Thr	Val	Leu	Ser	Ala	Ala	Ala	Val	
1				5					10					15		
Ala	Gln	Ala	Ala 20	Pro	Gln	Gln	Asn	Thr 25	Phe	Tyr	Ala	Gly	Ala 30	Lys	Ala	
Gly	Trp	Ala 35	Ser	Phe	His	Asp	Gly 40	Ile	Glu	Gln	Leu	Asp 45	Ser	Ala	Lys	

243

Asn Thr Asp Arg Gly Thr Lys Tyr Gly Ile Asn Arg Asn Ser Val Thr 50 Ryr Gly Val Phe Gly Gly Tyr Gln Ile Leu Asn Gln Asp Lys Leu Gly 70 75 80 Leu Ala Ala Glu Leu Gly Tyr Asp Tyr Phe Gly Arg Val Arg Gly Ser

85 Glu Lys Pro Asn Gly Lys Ala Asp Lys Lys Thr Phe Arg His Ala Ala His Gly Ala Thr Ile Ala Leu Lys Pro Ser Tyr Glu Val Leu Pro Asp Leu Asp Val Tyr Gly Lys Val Gly Ile Ala Leu Val Asn Asn Thr Tyr Lys Thr Phe Asn Ala Ala Gln Glu Lys Val Lys Thr Arg Arg Phe Gln Ser Ser Leu Ile Leu Gly Ala Gly Val Glu Tyr Ala Ile Leu Pro Glu Leu Ala Ala Arg Val Glu Tyr Gln Trp Leu Asn Asn Ala Gly Lys Ala Ser Tyr Ser Thr Leu Asn Arg Met Gly Ala Thr Asp Tyr Arg Ser Asp Ile Ser Ser Val Ser Ala Gly Leu Ser Tyr Arg Phe Gly Gln Gly Ala Ala Pro Val Ala Ala Pro Ala Val Glu Thr Lys Asn Phe Ala Phe Ser 225 Ser Asp Val Leu Phe Ala Phe Gly Lys Ser Asn Leu Lys Pro Ala Ala Ala Thr Ala Leu Asp Ala Met Gln Thr Glu Ile Asn Asn Ala Gly Leu Ser Asn Ala Ala Ile Gln Val Asn Gly Tyr Thr Asp Arg Ile Gly Lys Glu Ala Ser Asn Leu Lys Leu Ser Gln Arg Arg Ala Glu Thr Val Ala Asn Tyr Ile Val Ser Lys Gly Ala Pro Ala Ala Asn Val Thr Ala Val Gly Tyr Gly Glu Ala Asn Pro Val Thr Gly Ala Thr Cys Asp Lys Val Lys Gly Arg Lys Ala Leu Ile Ala Cys Leu Ala Pro Asp Arg Arg Val Glu Val Gln Val Gln Gly Thr Lys Glu Val Thr Met

<210> 152 <211> 1110

<211> 1110 <212> DNA

<213> Actinobacillus pleuropneumoniae

<220>

<223> Omp5

<220>

<221> CDS <222> (1)..(1107)

<40	0 > 1!	52														
					gtt Val											48
					caa Gln											96
					cac His											144
					gat Asp											192
					gta Val 70											240
aac Asn	ttc Phe	ggt Gly	tta Leu	gca Ala 85	gct Ala	gaa Glu	tta Leu	ggc Gly	tat Tyr 90	gac Asp	tac Tyr	tac Tyr	ggt Gly	cgc Arg 95	gta Val	288
cgt Arg	ggt Gly	aac Asn	gta Val 100	gat Asp	gaa Glu	ttc Phe	cgt Arg	aca Thr 105	gtt Val	aaa Lys	cac His	tct Ser	gct Ala 110	cac His	ggt Gly	336
					aaa Lys											384
gtt Val	tac Tyr 130	ggt Gly	aaa Lys	gta Val	ggt Gly	att Ile 135	gcg Ala	gtt Val	gtt Val	cgt Arg	aat Asn 140	gac Asp	tat Tyr	aaa Lys	aaa Lys	432
					act Thr 150											480
aaa Lys	gca Ala	tca Ser	act Thr	att Ile 165	tta Leu	ggt Gly	gca Ala	ggt Gly	gtt Val 170	gag Glu	tac Tyr	gca Ala	att Ile	ctt Leu 175	cct Pro	528
					gtt Val											576
tta Leu	aat Asn	aaa Lys 195	gca Ala	tta Leu	gtt Val	cgt Arg	tca Ser 200	ggc Gly	aca Thr	caa Gln	gat Asp	gtg Val 205	gac Asp	ttc Phe	caa Gln	624
					cac His											672
ggt Gly 225	caa Gln	ggc Gly	gct Ala	gta Val	gca Ala 230	cca Pro	gtt Val	gtt Val	gag Glu	cca Pro 235	gaa Glu	gtt Val	gta Val	act Thr	aaa Lys 240	720

aac Asn	ttc Phe	gca Ala	ttc Phe	agc Ser 245	tca Ser	gac Asp	gtt Val	tta Leu	ttt Phe 250	gat Asp	ttc Phe	ggt Gly	aaa Lys	tca Ser 255	agc Ser	768
	aaa Lys															816
	aac Asn															864
	cgt Arg 290															912
	gaa Glu															960
	gta Val															1008
	tgt Cys															1056
ccg Pro	gat Asp	cgt Arg 355	cgt Arg	gtt Val	gaa Glu	gtt Val	caa Gln 360	gta Val	caa Gln	ggt Gly	gct Ala	aaa Lys 365	aac Asn	gta Val	gct Ala	1104
atg Met	taa															1110
<21 <21	0> 15 l> 36 2> PF B> Ac	9 T	baci	illus	s ple	europ	oneum	nonia	ıe							
<400)> 15	3														
Met 1	Lys	Lys	Ser	Leu 5	Val	Ala	Leu	Ala	Val 10	Leu	Ser	Ala	Ala	Ala 15	Val	
Ala	Gln	Ala	Ala 20	Pro	Gln	Gln	Asn	Thr 25	Phe	Tyr	Ala	Gly	Ala 30	Lys	Val	
Gly	Gln	Ser 35	Ser	Phe	His	His	Gly 40	Val	Asn	Gln	Leu	Lys 45	Ser	Gly	His	
Asp	Asp 50	Arg	Tyr	Asn	Asp	Lys 55	Thr	Arg	Lys	Tyr	Gly 60	Ile	Asn	Arg	Asn	
Ser 65	Val	Thr	Tyr	Gly	Val 70	Phe	Gly	Gly	Tyr	Gln 75	Ile	Leu	Asn	Gln	Asn 80	
Asn	Phe	Gly	Leu	Ala 85	Ala	Glu	Leu	Gly	Tyr 90	Asp	Tyr	Tyr	Gly	Arg 95	Val	

Leu Asn Leu Ala Leu Lys Pro Ser Tyr Glu Val Leu Pro Asp Leu Asp Val Tyr Gly Lys Val Gly Ile Ala Val Val Arg Asn Asp Tyr Lys Lys Tyr Gly Ala Glu Asn Thr Asn Glu Ser Thr Thr Lys Phe His Lys Leu Lys Ala Ser Thr Ile Leu Gly Ala Gly Val Glu Tyr Ala Ile Leu Pro Glu Leu Ala Ala Arg Val Glu Tyr Gln Tyr Leu Asn Lys Ala Gly Asn Leu Asn Lys Ala Leu Val Arg Ser Gly Thr Gln Asp Val Asp Phe Gln 200 Tyr Ala Pro Asp Ile His Ser Val Thr Ala Gly Leu Ser Tyr Arg Phe Gly Gln Gly Ala Val Ala Pro Val Val Glu Pro Glu Val Val Thr Lys Asn Phe Ala Phe Ser Ser Asp Val Leu Phe Asp Phe Gly Lys Ser Ser Leu Lys Pro Ala Ala Ala Thr Ala Leu Asp Ala Ala Asn Thr Glu Ile Ala Asn Leu Gly Leu Ala Thr Pro Ala Ile Gln Val Asn Gly Tyr Thr Asp Arg Ile Gly Lys Glu Ala Ser Asn Leu Lys Leu Ser Gln Arg Arg Ala Glu Thr Val Ala Asn Tyr Leu Val Ser Lys Gly Gln Asn Pro Ala Asn Val Thr Ala Val Gly Tyr Gly Glu Ala Asn Pro Val Thr Gly Ala Thr Cys Asp Ala Val Lys Gly Arg Lys Ala Leu Ile Ala Cys Leu Ala Pro Asp Arg Arg Val Glu Val Gln Val Gln Gly Ala Lys Asn Val Ala Met

<210> 154

<211> 1076

<212> DNA

<213> Actinobacillus pleuropneumoniae

<220>

<223> pnp new

<220> <221> CDS

<222> (1)..(1074)

	0 > 1!															
Asn 1	att Ile	Lys	Glu	Phe 5	Val	aaa Lys	gaa Glu	Ala	Gly 10	Lys	Pro	Arg	Trp	gat Asp 15	Trp	48
gtt Val	gcg Ala	ccg Pro	gaa Glu 20	ccg Pro	aat Asn	acc Thr	gca Ala	tta Leu 25	atc Ile	aac Asn	caa Gln	gtt Val	aaa Lys 30	gcg Ala	tta Leu	96
gcg Ala	gaa Glu	gcg Ala 35	cgt Arg	atc Ile	ggc Gly	gat Asp	gcg Ala 40	tat Tyr	cgt Arg	att Ile	aca Thr	gaa Glu 45	aaa Lys	caa Gln	gcg Ala	144
cgt Arg	tac Tyr 50	gaa Glu	caa Gln	atc Ile	gat Asp	gca Ala 55	att Ile	aaa Lys	gcg Ala	gat Asp	gtt Val 60	atc Ile	gca Ala	caa Gln	tta Leu	192
acc Thr 65	gca Ala	caa Gln	gac Asp	gaa Glu	acc Thr 70	gtt Val	tct Ser	gaa Glu	ggt Gly	gcg Ala 75	att Ile	att Ile	gat Asp	att Ile	att Ile 80	240
acc Thr	gca Ala	tta Leu	gaa Glu	agt Ser 85	tct Ser	att Ile	gtt Val	cgc Arg	ggt Gly 90	cgt Arg	att Ile	att Ile	gcc Ala	ggc Gly 95	gaa Glu	288
ccg Pro	cgt Arg	att Ile	gac Asp 100	ggt Gly	cgt Arg	acg Thr	gta Val	gat Asp 105	acg Thr	gtt Val	cgt Arg	gca Ala	tta Leu 110	gac Asp	att Ile	336
tgc Cys	acc Thr	ggc Gly 115	gta Val	tta Leu	cct Pro	cgt Arg	acg Thr 120	cac His	ggt Gly	tct Ser	gca Ala	atc Ile 125	ttt Phe	act Thr	cgc Arg	384
ggt Gly	gaa Glu 130	aca Thr	caa Gln	gca Ala	tta Leu	gcg Ala 135	gtt Val	gca Ala	acc Thr	tta Leu	ggt Gly 140	act Thr	gag Glu	cgc Arg	gat Asp	432
gca Ala 145	caa Gln	att Ile	gtt Val	gac Asp	gaa Glu 150	tta Leu	acc Thr	ggc Gly	gag Glu	aaa Lys 155	tca Ser	gac Asp	cgt Arg	ttc Phe	tta Leu 160	480
ttc Phe	cac His	tat Tyr	aac Asn	ttc Phe 165	cct Pro	ccg Pro	tac Tyr	tct Ser	gtc Val 170	ggt Gly	gaa Glu	acc Thr	ggt Gly	cgt Arg 175	atc Ile	528
ggt Gly	tcg Ser	ccg Pro	aaa Lys 180	cgt Arg	cgt Arg	gaa Glu	atc Ile	ggc Gly 185	cac His	ggt Gly	cgt Arg	tta Leu	gcg Ala 190	aaa Lys	cgc Arg	576
ggt Gly	gta Val	tta Leu 195	gcg Ala	gta Val	atg Met	ccg Pro	act Thr 200	gct Ala	gaa Glu	gaa Glu	ttc Phe	ccg Pro 205	tat Tyr	gta Val	gtg Val	624
cgc Arg	gta Val 210	gta Val	tct Ser	gaa Glu	att Ile	acc Thr 215	gaa Glu	tca Ser	aac Asn	ggt Gly	tct Ser 220	tct Ser	tca Ser	atg Met	gct Ala	672
tcc Ser 225	gta Val	tgc Cys	ggc Gly	gca Ala	tct Ser 230	tta Leu	gcg Ala	tta Leu	atg Met	gac Asp 235	gca Ala	ggc Gly	gta Val	ccg Pro	att Ile 240	720
aa a Lys	gcg Ala	gcg Ala	gtt Val	gcg Ala	ggt Gly	atc Ile	gca Ala	atg Met	ggc Gly	tta Leu	gtg Val	aaa Lys	gaa Glu	gaa Glu	gaa Glu	768

				245					250					255		
aaa Lys	ttt Phe	gtg Val	gtg Val 260	Leu	tca Ser	gac Asp	atc Ile	tta Leu 265	Gly	gac Asp	gaa Glu	gac Asp	cat His 270	Leu	ggc Gly	816
gat Asp	atg Met	gac Asp 275	Phe	aaa Lys	gta Val	gcc Ala	ggt Gly 280	acg Thr	cgt Arg	gaa Glu	ggt Gly	gta Val 285	Thr	gca Ala	ctt Leu	864
caa Gln	atg Met 290	Asp	att Ile	aaa Lys	atc Ile	gaa Glu 295	ggt Gly	atc Ile	acg Thr	cct Pro	gaa Glu 300	att Ile	atg Met	caa Gln	atc Ile	912
gca Ala 305	Leu	aat Asn	caa Gln	gcg Ala	aaa Lys 310	ggt Gly	gcg Ala	cgt Arg	atg Met	cac His 315	atc Ile	tta Leu	agc Ser	gtg Val	atg Met 320	960
gaa Glu	caa Gln	gcg Ala	att Ile	cct Pro 325	gca Ala	cct Pro	cgt Arg	gcc Ala	gat Asp 330	att Ile	tcc Ser	gat Asp	ttt Phe	gcg Ala 335	cct Pro	1008
cgt Arg	att Ile	cat His	acg Thr 340	atg Met	aag Lys	atc Ile	gat Asp	ccg Pro 345	aag Lys	aaa Lys	atc Ile	aaa Lys	gac Asp 350	gtg Val	atc Ile	1056
ggt Gly	aaa Lys	ggc Gly 355	ggt Gly	gcg Ala	gtt Val	at										1076
<21 <21	0 > 19 1 > 39 2 > PI 3 > Ac	58 RT	obaci	illus	s ple	europ	neur	nonia	ie							
<21: <21: <21: <40:	1> 3! 2> PI 3> Ad	58 RT Stind	obaci Glu							Lys	Pro	Ārg	Trp	Asp 15	Trp	
<21: <21: <21: <40: Asn	1> 3! 2> Pl 3> Ad 0> 1! Ile	58 RT etino 55 Lys		Phe 5	Val	Lys	Glu	Ala	Gly 10					15		
<21: <21: <21: <40: Asn 1	1> 3! 2> PI 3> Ad 0> 1! Ile	55 Lys	Glu Glu	Phe 5 Pro	Val Asn	Lys Thr	Glu Ala	Ala Leu 25	Gly 10 Ile	Asn	Gln	Val	Lys 30	15 Ala	Leu	
<21: <21: <21: <40: Asn 1 Val	1> 3: 2> PI 3> Ac 0> 1: Ile Ala Glu	SE Etino SE Lys Pro Ala 35	Glu Glu 20	Phe 5 Pro Ile	Val Asn Gly	Lys Thr Asp	Glu Ala Ala 40	Ala Leu 25 Tyr	Gly 10 Ile Arg	Asn Ile	Gln Thr	Val Glu 45	Lys 30 Lys	15 Ala Gln	Leu Ala	
<21: <21: <21: <40: Asn 1 Val Ala	1> 3: 2> PI 3> Ad 0> 1: Ile Ala Glu Tyr 50	SE SET SET SET SET SET SET SET SET SET S	Glu Glu 20 Arg	Phe 5 Pro Ile	Val Asn Gly Asp	Lys Thr Asp Ala	Glu Ala Ala 40 Ile	Ala Leu 25 Tyr	Gly 10 Ile Arg Ala	Asn Ile Asp	Gln Thr Val 60	Val Glu 45 Ile	Lys 30 Lys Ala	Ala Gln Gln	Leu Ala Leu	
<211 211</210</400 Assn 1 Val Ala Arg Thr 65</td <td>1> 39 2> PP 3> Ac 00> 1! Ile Ala Glu Tyr 50</td> <td>SERT ctino</td> <td>Glu Glu 20 Arg Gln</td> <td>Phe 5 Pro Ile Ile Glu</td> <td>Val Asn Gly Asp Thr 70</td> <td>Lys Thr Asp Ala 55 Val</td> <td>Glu Ala Ala 40 Ile Ser</td> <td>Ala Leu 25 Tyr Lys Glu</td> <td>Gly 10 Ile Arg Ala Gly</td> <td>Asn Ile Asp Ala 75</td> <td>Gln Thr Val 60 Ile</td> <td>Val Glu 45 Ile Ile</td> <td>Lys 30 Lys Ala Asp</td> <td>Ala Gln Gln Ile</td> <td>Leu Ala Leu Ile 80</td> <td></td>	1> 39 2> PP 3> Ac 00> 1! Ile Ala Glu Tyr 50	SERT ctino	Glu Glu 20 Arg Gln	Phe 5 Pro Ile Ile Glu	Val Asn Gly Asp Thr 70	Lys Thr Asp Ala 55 Val	Glu Ala Ala 40 Ile Ser	Ala Leu 25 Tyr Lys Glu	Gly 10 Ile Arg Ala Gly	Asn Ile Asp Ala 75	Gln Thr Val 60 Ile	Val Glu 45 Ile Ile	Lys 30 Lys Ala Asp	Ala Gln Gln Ile	Leu Ala Leu Ile 80	
<21	1> 39 2> PPP 2> PP 3> Ac 3> Ac 50 19 11e Ala Glu Tyr 50 Ala Ala	55 Etino 55 Lys Pro Ala 35 Glu Gln	Glu Glu 20 Arg Gln Asp	Phe 5 Pro Ile Ile Glu	Val Asn Gly Asp Thr 70	Lys Thr Asp Ala 55 Val	Glu Ala Ala 40 Ile Ser	Ala Leu 25 Tyr Lys Glu	Gly 10 Ile Arg Ala Gly	Asn Ile Asp Ala 75	Gln Thr Val 60 Ile	Val Glu 45 Ile Ile	Lys 30 Lys Ala Asp	Ala Gln Gln Ile Gly 95	Leu Ala Leu Ile 80	
<211 <211 <211 <400 Asn 1 Val Ala Arg Thr 65 Thr	1> 3: 2> PP	55 Lys Pro Ala 35 Glu Gln Leu	Glu Glu 20 Arg Gln Asp Glu Asp	Phe 5 Pro Ile Ile Glu Ser 85 Gly	Val Asn Gly Asp Thr 70 Ser	Lys Thr Asp Ala 55 Val Ile	Glu Ala Ala 40 Ile Ser Val	Ala Leu 25 Tyr Lys Glu Arg	Gly 10 Ile Arg Ala Gly 90 Thr	Asn Ile Asp Ala 75 Arg	Gln Thr Val 60 Ile Ile	Val Glu 45 Ile Ile	Lys 30 Lys Ala Asp Ala Leu	Ala Gln Gln Ile Gly 95 Asp	Leu Ala Leu Ile 80 Glu Ile	

```
130
                         135
                                             140
Ala Gln Ile Val Asp Glu Leu Thr Gly Glu Lys Ser Asp Arg Phe Leu
145
                    150
Phe His Tyr Asn Phe Pro Pro Tyr Ser Val Gly Glu Thr Gly Arg Ile
Gly Ser Pro Lys Arg Arg Glu Ile Gly His Gly Arg Leu Ala Lys Arg
Gly Val Leu Ala Val Met Pro Thr Ala Glu Glu Phe Pro Tyr Val Val
Arg Val Val Ser Glu Ile Thr Glu Ser Asn Gly Ser Ser Ser Met Ala
Ser Val Cys Gly Ala Ser Leu Ala Leu Met Asp Ala Gly Val Pro Ile
Lys Ala Ala Val Ala Gly Ile Ala Met Gly Leu Val Lys Glu Glu Glu
Lys Phe Val Val Leu Ser Asp Ile Leu Gly Asp Glu Asp His Leu Gly
Asp Met Asp Phe Lys Val Ala Gly Thr Arg Glu Gly Val Thr Ala Leu
Gln Met Asp Ile Lys Ile Glu Gly Ile Thr Pro Glu Ile Met Gln Ile
Ala Leu Asn Gln Ala Lys Gly Ala Arg Met His Ile Leu Ser Val Met
305
Glu Glm Ala Ile Pro Ala Pro Arg Ala Asp Ile Ser Asp Phe Ala Pro
Arg Ile His Thr Met Lys Ile Asp Pro Lys Lys Ile Lys Asp Val Ile
Gly Lys Gly Gly Ala Val
        355
<210> 156
<211> 1055
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> potD
<220>
<221> CDS
<222> (1)..(1053)
<400> 156
atg aaa aaa tta gcg ggt tta ttt gca gca ggt tta gcg aca gtt gca
Met Lys Lys Leu Ala Gly Leu Phe Ala Ala Gly Leu Ala Thr Val Ala
tta aca gcg tgt aat gaa gaa aag cca aaa gcg gct gaa gca gcg gct
```

Leu	Thr	Ala	Cys 20	Asn	Glu	Glu	Lys	Pro 25	Lys	Ala	Ala	Glu	Ala 30	Ala	Ala	
										tat Tyr						144
gtg Val	cct Pro 50	gaa Glu	ggc Gly	ttg Leu	tta Leu	gat Asp 55	gaa Glu	ttt Phe	aca Thr	aag Lys	caa Gln 60	acc Thr	ggt Gly	atc Ile	aaa Lys	192
gta Val 65	gag Glu	gtt Val	tca Ser	agc Ser	ctt Leu 70	gaa Glu	tct Ser	aac Asn	gaa Glu	acc Thr 75	atg Met	tat Tyr	gcg Ala	aaa Lys	tta Leu 80	240
										gtt Val						288
tac Tyr	ttc Phe	gtt Val	tca Ser 100	aaa Lys	atg Met	gcg Ala	aaa Lys	gaa Glu 105	ggt Gly	atg Met	tta Leu	gcg Ala	gaa Glu 110	tta Leu	gat Asp	336
										aac Asn						384
										tta Leu						432
gca Ala 145	ccg Pro	ggt Gly	atc Ile	gca Ala	ttt Phe 150	aac Asn	tca Ser	aat Asn	gac Asp	tat Tyr 155	aag Lys	ggc Gly	gat Asp	gcg Ala	ttc Phe 160	480
act Thr	tct Ser	tgg Trp	ggt Gly	gat Asp 165	tta Leu	tgg Trp	aaa Lys	cct Pro	gag Glu 170	ttt Phe	gcg Ala	aat Asn	aaa Lys	gta Val 175	caa Gln	528
										att Ile						576
ggt Gly	aaa Lys	aac Asn 195	cct Pro	aat Asn	aca Thr	acc Thr	aat Asn 200	ccg Pro	gaa Glu	gag Glu	att Ile	aaa Lys 205	gcg Ala	gct Ala	tac Tyr	624
gaa Glu	gag Glu 210	tta Leu	aga Arg	aaa Lys	tta Leu	cgt Arg 215	cca Pro	aac Asn	gta Val	ctt Leu	tct Ser 220	ttc Phe	act Thr	tca Ser	gac Asp	672
aac Asn 225	cca Pro	gcg Ala	aac Asn	tca Ser	ttt Phe 230	atc Ile	gca Ala	ggt Gly	gaa Glu	gta Val 235	tct Ser	gta Val	ggt Gly	caa Gln	tta Leu 240	720
tgg Trp	aac Asn	ggt Gly	tct Ser	gta Val 245	cgt Arg	att Ile	gcg Ala	aaa Lys	aaa Lys 250	gaa Glu	caa Gln	gcg Ala	ccg Pro	gta Val 255	aac Asn	768
										tgg Trp						816

			260					265					270			
att Ile	ccg Pro	gcg Ala 275	aat Asn	gcg Ala	aaa Lys	aac Asn	aaa Lys 280	gaa Glu	aat Asn	gcg Ala	cat His	aag Lys 285	tta Leu	atc Ile	aac Asn	864
tac Tyr	tta Leu 290	tta Leu	agc Ser	gca Ala	ccg	gtt Val 295	gcg Ala	gaa Glu	aaa Lys	tta Leu	acg Thr 300	tta Leu	gaa Glu	atc Ile	ggt Gly	912
tat Tyr 305	ccg Pro	act Thr	tca Ser	aac Asn	gta Val 310	gaa Glu	gcg Ala	tta Leu	aaa Lys	aca Thr 315	tta Leu	cca Pro	aaa Lys	gag Glu	att Ile 320	960
														gcg Ala 335		1008
caa Gln	tgg Trp	caa Gln	gac Asp 340	gat Asp	gta Val	ggt Gly	aat Asn	gca Ala 345	atc Ile	gaa Glu	ctt Leu	tac Tyr	gaa Glu 350	a a a Lys	ta	1055
<21:	0> 15 1> 35 2> PF 3> Ac	RT	obac:	illu	s ple	euroj	pneur	nonia	ae.							
	0> 19		Len	λla	al.	Lou	Dhe	71-	71-	~1	Lou	21-	The	Val	21.	
1	- Jy -	Буо	Бси	5	GLY	Deu	FIIC	AIG	10	GIY	ьeu	AIA	IIII	15	AIA	
Leu	Thr	Ala	Cys 20	Asn	Glu	Glu	Lys	Pro 25	Lys	Ala	Ala	Glu	Ala 30	Ala	Ala	
Gln	Pro	Ala 35	Ala	Ala	Gly	Thr	Val 40	His	Leu	Tyr	Thr	Trp 45	Thr	Glu	Tyr	
Val	Pro 50	Glu	Gly	Leu	Leu	Asp 55	Glu	Phe	Thr	Lys	Gln 60	Thr	Gly	Ile	Lys	
Val 65	Glu	Val	Ser	Ser	Leu 70	Glu	Ser	Asn	Glu	Thr 75	Met	Tyr	Ala	Lys	Leu 80	
Lys	Leu	Gln	Gly	Lys 85	Asp	Gly	Gly	Tyr	Asp 90	Val	Ile	Ala	Pro	Ser 95	Asn	
Tyr	Phe	Val	Ser 100	Lys	Met	Ala	Lys	Glu 105	Gly	Met	Leu	Ala	Glu 110	Leu	Asp	
His	Ala	Lys 115	Leu	Pro	Val	Ile	Lys 120	Glu	Leu	Asn	Gln	Asp 125	Trp	Leu	Asn	
Lys	Pro 130	Tyr	Asp	Gln	Gly	Asn 135	Lys	Tyr	Ser	Leu	Pro 140	Gln	Leu	Leu	Gly	
Ala 145	Pro	Gly	Ile	Ala	Phe 150	Asn	Ser	Asn	Asp	Tyr 155	Lys	Gly	Asp	Ala	Phe 160	
Thr	Ser	Trp	Gly	Asp 165	Leu	Trp	Lys	Pro	Glu 170	Phe	Ala	Asn	Lys	Val 175	Gln	
Leu	Leu	Asp	Asp	Ala	Arg	Glu	Val	Phe	Asn	Ile	Ala	Leu	Leu	Lys	Leu	

		180					185					190			
Gly Ly	s Asn 195		Asn	Thr	Thr	Asn 200	Pro	Glu	Glu	Ile	Lys 205	Ala	Ala	Tyr	
Glu Gl 21		Arg	Lys	Leu	Arg 215	Pro	Asn	Val	Leu	Ser 220	Phe	Thr	Ser	Asp	
Asn Pr 225	o Ala	Asn	Ser	Phe 230	Ile	Ala	Gly	Glu	Val 235	Ser	Val	Gly	Gln	Leu 240	
Trp As	n Gly	Ser	Val 245	Arg	Ile	Ala	Lys	Lys 250	Glu	Gln	Ala	Pro	Val 255	Asn	
Met Va	l Phe	Pro 260	Lys	Glu	Gly	Pro	Val 265	Leu	Trp	Val	Asp	Thr 270	Leu	Ala	
Ile Pr	275	Asn	Ala	Lys	Asn	Lys 280	Glu	Asn	Ala	His	Lys 285	Leu	Ile	Asn	
Tyr Le 29	ı Leu O	Ser	Ala	Pro	Val 295	Ala	Glu	Lys	Leu	Thr 300	Leu	Glu	Ile	Gly	
Tyr Pr 305	o Thr	Ser	Asn	Val 310	Glu	Ala	Leu	Lys	Thr 315	Leu	Pro	Lys	Glu	Ile 320	
Thr Gl	u Asp	Pro	Ala 325	Ile	Tyr	Pro	Thr	Ala 330	Asp	Val	Leu	Lys	Ala 335	Ala	
Gln Tr	o Gln	Asp 340	Asp	Val	Gly	Asn	Ala 345	Ile	Glu	Leu	Tyr	Glu 350	Lys		
		340					343					330			
<210> <211> <212> <213>	525 DNA		illus	s ple	europ	neum		ıe.				330			
<211> <212>	525 ONA Actin		illus	s ple	europ	oneum		i e				330			
<211> <212> <213> <220>	525 ONA Actin rpmP	obac:		s ple	europ	oneum		ae				330			
<211> <212> <213> <220> <223> <222> <221> <222> <400>	525 DNA Actin rpmF CDS (1)	obac:					nonia								
<211> <212> <213> <220> <223> <220> <221> <221> <222>	525 DNA Actin rpmF CDS (1)	obac: (522) gta	aaa	cta	ccc	ctc	nonia	att				aaa			48
<211> <212> <213> <220> <223> <221> <221> <222> <400> atg ca Met GI:	DS (1)	(522) gta Val	aaa Lys 5 gat	cta Leu	ccc Pro	ctc Leu ggc	ace Thr	att Ile 10	Asp	Pro cgt	Tyr agt	aaa Lys	Asp 15 ctt	Ala	48
<211><212><213> 213 <220><223> <221><222> <400> atg ca Met G1 1 cag cg	DS (1) LS8 a aag 1 Lys cga Hrg	(522) gta Val atg Met 20 gaa	aaa Lys 5 gat Asp	cta Leu tac Tyr	ccc Pro gaa Glu agc	ctc Leu ggc Gly	ace Thr tac Tyr 25 gtg	att Ile 10 atc Ile	Asp tca Ser	egt Arg	Tyr agt Ser gca	aaa Lys ctg Leu 30 caa	Asp 15 ctt Leu gtt	Ala aat Asn	
<211><212><213> 121 121 122 123 122 cag cg cg cg ch Arccag cg tttcgt tttcgt ttt	525 DNA Actin TrpmF CDS (1) L58 a aag 1 Lys cga Arg Arg 1 Gly 35	(522) gta Val atg Met 20 gaa Glu	aaaa Lys 5 gat Asp tct Ser atc	cta Leu tac Tyr gtg Val	ccc Pro gaa Glu agc Ser	ctc Leu ggc Gly aat Asn 40 caa	acc Thr tac Tyr 25 gtg Val	att Ile 10 atc Ile cta Leu	Asp tca Ser agc Ser	egt Arg gat Asp	agt Ser gca Ala 45	aaa Lys ctg Leu 30 caa Gln	Asp 15 ctt Leu gtt Val	Ala aat Asn act Thr	96

Ala 65	Thr	Val	Glu	Val	Glu 70	Phe	Asp	Cys	Gln	Arg 75	Cys	Gly	Asn	Pro	Phe 80	
aca Thr	caa Gln	acg Thr	ctt Leu	gac Asp 85	tgt Cys	tcg Ser	ttt Phe	tgt Cys	ttc Phe 90	agt Ser	ccg Pro	gtg Val	tcc Ser	aat Asn 95	atg Met	288
	cag Gln															336
	ttc Phe															384
	gaa Glu 130															432
tcc Ser 145	gtg Val	agt Ser	gaa Glu	cag Gln	gtg Val 150	ttt Phe	ggc Gly	gaa Glu	ttg Leu	cct Pro 155	gaa Glu	gaa Glu	ttg Leu	gcg Ala	aaa Lys 160	480
aaa Lys	cct Pro	aac Asn	ccg Pro	ttc Phe 165	gct Ala	gta Val	tta Leu	gct Ala	aat Asn 170	tta Leu	aag Lys	aaa Lys	aac Asn	tag		525
<210> 159 <211> 174 <212> PRT <212> Actinobacillus pleuropneumoniae																
			Daci	LIIUS	s pre	urop	lieui	CILLE	16							
<400)> 15 Gln	9			-	-				Asp	Pro	туr	Lys	Asp 15	Ala	
<400 Met 1)> 15	9 Lys	Val	Lys 5	Leu	Pro	Leu	Thr	Ile 10					15		
<400 Met 1 Gln)> 15 Gln	9 Lys Arg	Val Met 20	Lys 5 Asp	Leu Tyr	Pro Glu	Leu Gly	Thr Tyr 25	Ile 10 Ile	Ser	Arg	Ser	Leu 30	15 Leu	Asn	
<400 Met 1 Gln Arg)> 15 Gln Arg	Lys Lys Arg Gly	Val Met 20 Glu	Lys 5 Asp Ser	Leu Tyr Val	Pro Glu Ser	Leu Gly Asn 40	Thr Tyr 25 Val	Ile 10 Ile Leu	Ser Ser	Arg Asp	Ser Ala 45	Leu 30 Gln	15 Leu Val	Asn Thr	
<400 Met 1 Gln Arg)> 15 Gln Arg Leu Ser	Lys Arg Gly 35 Leu	Val Met 20 Glu Tyr	Lys 5 Asp Ser Ile	Leu Tyr Val Asp	Pro Glu Ser Pro	Leu Gly Asn 40 Gln	Thr Tyr 25 Val Arg	Ile 10 Ile Leu	Ser Ser Thr	Arg Asp Val 60	Ser Ala 45 Ile	Leu 30 Gln Lys	15 Leu Val Gly	Asn Thr	
<400 Met 1 Gln Arg Leu Ala 65	O> 15 Gln Arg Leu Ser 50	Arg Gly 35 Leu Val	Val Met 20 Glu Tyr	Lys 5 Asp Ser Ile Val	Leu Tyr Val Asp Glu 70	Pro Glu Ser Pro 55	Leu Gly Asn 40 Gln Asp	Thr Tyr 25 Val Arg Cys	Ile 10 Ile Leu Leu	Ser Ser Thr Arg 75	Arg Asp Val 60 Cys	Ser Ala 45 Ile Gly	Leu 30 Gln Lys Asn	Leu Val Gly Pro	Asn Thr Thr	
<400 Met 1 Gln Arg Leu Ala 65 Thr	O> 15 Gln Arg Leu Ser 50 Thr	Lys Arg Gly 35 Leu Val	Val Met 20 Glu Tyr Glu Leu	Lys 5 Asp Ser Ile Val Asp	Leu Tyr Val Asp Glu 70 Cys	Pro Glu Ser Pro 55 Phe	Leu Gly Asn 40 Gln Asp	Thr Tyr 25 Val Arg Cys	Ile 10 Ile Leu Leu Gln Phe 90	Ser Ser Thr Arg 75 Ser	Arg Asp Val 60 Cys	Ser Ala 45 Ile Gly Val	Leu 30 Gln Lys Asn	Leu Val Gly Pro Asn 95	Asn Thr Thr Phe 80 Met	
<400 Met 1 Gln Arg Leu Ala 65 Thr	Ser 50 Thr	Lys Arg Gly 35 Leu Val Thr	Val Met 20 Glu Tyr Glu Leu Asp 100	Lys 5 Asp Ser Ile Val Asp 85 Asn	Leu Tyr Val Asp Glu 70 Cys	Pro Glu Ser Pro 55 Phe Ser	Leu Gly Asn 40 Gln Asp Phe	Thr Tyr 25 Val Arg Cys Cys Ile 105	Ile 10 Ile Leu Leu Gln Phe 90	Ser Ser Thr Arg 75 Ser	Arg Asp Val 60 Cys Pro	Ser Ala 45 Ile Gly Val	Leu 30 Gln Lys Asn Ser Glu 110	Leu Val Gly Pro Asn 95	Asn Thr Thr Phe 80 Met Asn	
<400 Met 1 Gln Arg Leu Ala 65 Thr Asp)> 15 Gln Arg Leu Ser 50 Thr	Lys Arg Gly 35 Leu Val Thr Ala Gly 115	Val Met 20 Glu Tyr Glu Leu Asp 100 Glu	Lys 5 Asp Ser Ile Val Asp 85 Asn Val	Leu Tyr Val Asp Glu 70 Cys Leu Asn	Pro Glu Ser Pro 55 Phe Ser Pro Leu	Leu Gly Asn 40 Gln Asp Phe Glu Leu 120	Thr Tyr 25 Val Arg Cys Cys Ile 105 Asp	Ile 10 Ile Leu Gln Phe 90 Tyr	Ser Ser Thr Arg 75 Ser Glu	Arg Val 60 Cys Pro Pro	Ser Ala 45 Ile Gly Val Ile Asp	Leu 30 Gln Lys Asn Ser Glu 110	15 Leu Val Gly Pro Asn 95 Val	Asn Thr Thr Phe 80 Met Asn	

Lys Pro Asn Pro Phe Ala Val Leu Ala Asn Leu Lys Lys Asn 165 <210> 160 <211> 1302 <212> DNA <213> Actinobacillus pleuropneumoniae <220> <223> tig <220> <221> CDS <222> (1)..(1299) <400× 160 atg tca att tct att gaa act tta gaa ggc tta caa cgc cgc gta act Met Ser Ile Ser Ile Glu Thr Leu Glu Gly Leu Gln Arg Arg Val Thr att acc gta gct gct gat aaa atc gaa gcg gct tac aaa gag caa tta Ile Thr Val Ala Ala Asp Lys Ile Glu Ala Ala Tyr Lys Glu Gln Leu aaa ggc tat gcg aaa aac gct cgt gta gac ggt ttc cgt aaa ggt aaa Lys Gly Tyr Ala Lys Asn Ala Arg Val Asp Gly Phe Arg Lys Gly Lys gta ccg cac gca att atc gaa caa cgt ttc ggt tta gcg gct cgc caa 192 Val Pro His Ala Ile Ile Glu Gln Arg Phe Gly Leu Ala Ala Arg Gln gac gta tta tcc gat gaa atg caa cgt gcg ttc ttt gat gcg gta atc 240 Asp Val Leu Ser Asp Glu Met Gln Arg Ala Phe Phe Asp Ala Val Ile gct gag aaa att aac ctt gcc ggt cgt cct acc ttc aca ccg aac aac 288 Ala Glu Lys Ile Asn Leu Ala Gly Arg Pro Thr Phe Thr Pro Asn Asn tac caa ccg agt caa gaa ttc agc ttc act gca act ttt gaa gta ttc 336 Tyr Gln Pro Ser Gln Glu Phe Ser Phe Thr Ala Thr Phe Glu Val Phe ccg gaa gtt gaa tta aaa ggc tta gaa aat atc gaa gtt gaa aaa ccg 384 Pro Glu Val Glu Leu Lys Gly Leu Glu Asn Ile Glu Val Glu Lys Pro 120 gtt gta gaa atc aca gaa gct gat tta gac aaa atg atc gat gtg tta 432 Val Val Glu Ile Thr Glu Ala Asp Leu Asp Lys Met Ile Asp Val Leu 135 cgt aaa caa caa gcg act tgg gct gaa tct caa gca gcg gca caa gcg 480 Arg Lys Gln Gln Ala Thr Trp Ala Glu Ser Gln Ala Ala Ala Gln Ala 145 gaa gac cgt gtt gta atc gac ttc gta ggt tct gta gac ggt gaa gag 528 Glu Asp Arg Val Val Ile Asp Phe Val Gly Ser Val Asp Gly Glu Glu

576

ttt gaa ggc ggt aaa gcg aca gac ttc act tta gca atg ggt caa agt

Phe Glu Gly Gly Lys Ala Thr Asp Phe Thr Leu Ala Met Gly Gln Ser

	180	185		190	
cgt atg atc Arg Met Ile 195	cct ggt ttt Pro Gly Phe	gaa gaa ggt Glu Glu Gly 200	atc gtt ggt Ile Val Gly	cac aaa gcc His Lys Ala 205	ggc 624 Gly
			cct gaa gaa Pro Glu Glu 220		
aac tta aaa Asn Leu Lys 225	ggt aaa gcg Gly Lys Ala 230	gcg aaa ttc Ala Lys Phe	gca att aca Ala Ile Thr 235	ctt aag aaa Leu Lys Lys	gta 720 Val 240
			gaa gaa ttc Glu Glu Phe 250		
			cgt gcg gaa Arg Ala Glu		
atg caa cgt Met Gln Arg 275	gaa ctt aaa Glu Leu Lys	aac gca gta Asn Ala Val 280	acc gca cgc Thr Ala Arg	gtt aaa aac Val Lys Asn 285	caa 864 Gln
			gaa att gaa Glu Ile Glu 300		
			cgt cgt caa Arg Arg Gln 315		
			caa tta ccg Gln Leu Pro 330		
gaa gcg gat Glu Ala Asp	gca aaa cgt Ala Lys Arg 340	cgt gtt caa Arg Val Gln 345	gta ggt tta Val Gly Leu	tta ctt tca Leu Leu Ser 350	acc 1056 Thr
gta atc ggt Val Ile Gly 355	act aac gaa Thr Asn Glu	tta aaa gtt Leu Lys Val 360	gat gaa aaa Asp Glu Lys	cgt gtt gaa Arg Val Glu 365	gaa 1104 Glu
acg att gca Thr Ile Ala 370	gaa atc gct Glu Ile Ala	tca gct tac Ser Ala Tyr 375	gaa caa ccg Glu Gln Pro 380	gcg gaa gtt Ala Glu Val	gtt 1152 Val
			acc gaa aat Thr Glu Asn 395	Ile Arg Asn	
gtg tta gaa Val Leu Glu	gag caa gcg Glu Gln Ala 405	gtt gaa gtt Val Glu Val	gta ctt gcg Val Leu Ala 410	aaa gca aaa Lys Ala Lys 415	gta 1248 Val
			gta atg gct Val Met Ala		
ggc taa					1302

Gly

<210> 161 <211> 433 <212> PRT <213> Actinobacillus pleuropneumoniae <400> 161

Met Ser Ile Ser Ile Glu Thr Leu Glu Gly Leu Gln Arg Arg Val Thr Ile Thr Val Ala Ala Asp Lys Ile Glu Ala Ala Tyr Lys Glu Gln Leu Lys Gly Tyr Ala Lys Asn Ala Arg Val Asp Gly Phe Arg Lys Gly Lys Val Pro His Ala Ile Ile Glu Gln Arg Phe Gly Leu Ala Ala Arg Gln Asp Val Leu Ser Asp Glu Met Gln Arg Ala Phe Phe Asp Ala Val Ile Ala Glu Lys Ile Asn Leu Ala Gly Arg Pro Thr Phe Thr Pro Asn Asn Tyr Gln Pro Ser Gln Glu Phe Ser Phe Thr Ala Thr Phe Glu Val Phe Pro Glu Val Glu Leu Lys Gly Leu Glu Asn Ile Glu Val Glu Lys Pro Val Val Glu Ile Thr Glu Ala Asp Leu Asp Lys Met Ile Asp Val Leu Arg Lys Gln Gln Ala Thr Trp Ala Glu Ser Gln Ala Ala Ala Gln Ala Glu Asp Arg Val Val Ile Asp Phe Val Gly Ser Val Asp Gly Glu Glu Phe Glu Gly Gly Lys Ala Thr Asp Phe Thr Leu Ala Met Gly Gln Ser

Arg Met Ile Pro Gly Phe Glu Glu Gly Ile Val Gly His Lys Ala Gly Glu Gln Phe Asp Ile Asp Val Thr Phe Pro Glu Glu Tyr His Ala Glu Asn Leu Lys Gly Lys Ala Ala Lys Phe Ala Ile Thr Leu Lys Lys Val Glu Asn Ile Val Leu Pro Glu Leu Thr Glu Glu Phe Val Lys Lys Phe

Gly Ser Ala Lys Thr Val Glu Asp Leu Arg Ala Glu Ile Lys Lys Asn 265 Met Gln Arg Glu Leu Lys Asn Ala Val Thr Ala Arg Val Lys Asn Gln

280

```
Val Ile Asn Gly Leu Ile Ala Gln Asn Glu Ile Glu Val Pro Ala Ala
    290
                         295
                                             300
Ala Val Ala Glu Glu Val Asp Val Leu Arg Arg Gln Ala Val Gln Arg
Phe Gly Gly Lys Pro Glu Met Ala Ala Gln Leu Pro Ala Glu Leu Phe
Glu Ala Asp Ala Lys Arg Arg Val Gln Val Gly Leu Leu Ser Thr
Val Ile Gly Thr Asn Glu Leu Lys Val Asp Glu Lys Arg Val Glu Glu
Thr Ile Ala Glu Ile Ala Ser Ala Tyr Glu Gln Pro Ala Glu Val Val
Ala His Tyr Ala Lys Asn Arg Gln Leu Thr Glu Asn Ile Arg Asn Val
Val Leu Glu Glu Gln Ala Val Glu Val Val Leu Ala Lys Ala Lys Val
Thr Glu Lys Ala Thr Ser Phe Asp Glu Val Met Ala Gln Gln Ala Gln
                                425
Gly
<210> 162
<211> 316
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> tRNA-qlu
<400> 162
aatattgcgc tcaaatggca aagcggagag catctttaaa tgttgtcccc atcgtctaga 60
ggcctaggac ategccettt cacggcggta aceggggttc gaateceegt ggggacgcca 120
tttaaagatg acttttgttg tetgaattgt tetttaaaaa attggaaaca agetgaaaac 180
tgagagattt tcgaaagaaa gtctgagtag taaaagataa gtaattatct tgaaaatctt 240
agctgaacaa aagcagctaa gtgtttagtt gaataaagta tcgcgttgaa tgcgttcaaa 300
taaaatttga aaatat
                                                                   316
<210> 163
<211> 85
<212> DNA
<213> Actinobacillus pleuropneumoniae
<220>
<223> tRNA-leu
getetggtgg tggaattggt agacacgeta tettgagggg gtagtgteca taggatgtge 60
```

gagttcgagt ctcgcccaga gcacc	85
<210> 164 <211> 623 <212> DNA <212> DNA <213> Actinobacillus pleuropneumoniae	
<220> <223> yaeE	
<220> <221> CDS <222> (1)(621)	
<pre><400> 164 atg caa gaa ctc aca cct caa atg tgg ggc tta gtc ggc act tca acg Met Gln Glu Leu Thr Pro Gln Met Trp Gly Leu Val Gly Thr Ser Thr</pre>	48
ctt gâm acg ctc tat atg ggc ttt gcg gcg act tta ctt gct gtg gta Leu Glu Thr Leu Tyr Met Gly Phe Ala Ala Thr Leu Leu Ala Val Val 25	96
gtc ggt ttg ccg atc ggt ttt ctg gca ttt tta acc ggt aaa gga gag Val Gly Leu Pro Ile Gly Phe Leu Ala Phe Leu Thr Gly Lys Gly Glu 45	144
att tta gag aat ccg cgt tta cat caa gta tta gat gtg att att aat lle Leu Glu Asn Pro Arg Leu His Gln Val Leu Aap Val Ile Ile Asn 50 $$	192
atc ggt cgt tcc gta Ccg ttt att att ttg tta gtc gtg ttg tta cct lle Gly Arg Ser Val Pro Phe Ile Ile Leu Leu Val Val Leu Leu Pro 55 70 78	240
ttt acg cgt tta ttg gtc ggg aca acg ctc ggt act acg gcg gcg att Phe Thr Arg Leu Val Gly Thr Thr Leu Gly Thr Thr Ala Ala Ile 85 90 95	288
gtg ccg tta agc gtt tcg gca att ccg ttt ttt gcg cgt tta act tca Val Pro Leu Ser Val Ser Ala 1le Pro Phe Phe Ala Arg Leu Thr Ser 100 105	336
aat gog tta tta gaa atc cca gca ggt tta acc gaa gcg gcg aaa tcg Asn Ala Leu Leu Glu Ile Pro Ala Gly Leu Thr Glu Ala Ala Lys Ser 120 125	384
atg ggc gca acg aat tgg caa gtg gtc agt aaa ttt tat tta ccg gaa Met Gly Ala Thr Asn Trp Gln Val Val Ser Lys Phe Tyr Leu Pro Glu 130 140	432
tca ctg ccg att tta atc aat ggt atc aca tta act tta gtc gct tta Ser Leu Pro Ile Leu Ile Asn Gly Ile Thr Leu Thr Leu Val Ala Leu 145 150 150	480
atc ggt tat tcg gca atg gcg ggt gcg gtc ggc ggc ggc ggt ttg ggt Ile Gly Tyr Ser Ala Met Ala Gly Ala Val Gly Gly Gly Gly Leu Gly 165 170 175	528
aac ctt gcc atc agt tac ggt gaa cac cga aat atg gtc tat gta aaa Asn Leu Ala Ile Ser Tyr Gly Glu His Arg Asn Met Val Tyr Val Lys 180 185 190	576

```
tgg atc tca aca att att atc gta gcg att gtg atg atc agt caa aa 623
Trp Ile Ser Thr Ile Ile Ile Val Ala Ile Val Met Ile Ser Gln
         195
                              200
                                                   205
<210> 165
<211> 207
<212> PRT
<213> Actinobacillus pleuropneumoniae
<400> 165
Met Gln Glu Leu Thr Pro Gln Met Trp Gly Leu Val Gly Thr Ser Thr
Leu Glu Thr Leu Tyr Met Gly Phe Ala Ala Thr Leu Leu Ala Val Val
Val Gly Leu Pro Ile Gly Phe Leu Ala Phe Leu Thr Gly Lys Gly Glu
Ile Leu Glu Asn Pro Arg Leu His Gln Val Leu Asp Val Ile Ile Asn
Ile Gly Arg Ser Val Pro Phe Ile Ile Leu Leu Val Val Leu Leu Pro
Phe Thr Arg Leu Leu Val Gly Thr Thr Leu Gly Thr Thr Ala Ala Ile
Val Pro Leu Ser Val Ser Ala Ile Pro Phe Phe Ala Arg Leu Thr Ser
                                  105
Asn Ala Leu Leu Glu Ile Pro Ala Gly Leu Thr Glu Ala Ala Lys Ser
Met Gly Ala Thr Asn Trp Gln Val Val Ser Lys Phe Tyr Leu Pro Glu
Ser Leu Pro Ile Leu Ile Asn Gly Ile Thr Leu Thr Leu Val Ala Leu
Ile Gly Tyr Ser Ala Met Ala Gly Ala Val Gly Gly Gly Leu Gly
                 165
Asn Leu Ala Ile Ser Tyr Gly Glu His Arg Asn Met Val Tyr Val Lys
Trp Ile Ser Thr Ile Ile Ile Val Ala Ile Val Met Ile Ser Gln
<210> 166
<211> 866
<212> DNA
<213> Pasteurella (Mannheimia) haemolytica
<220>
<221> CDS
<222> (1)..(864)
<220>
<223> atpG
```

-40	0> 10	5.6														
			act		~~~		2012	300		att	gca	agt	att	cat		48
											Ala					40
											gcc Ala					96
											cct Pro					144
											aac Asn 60					192
											gtt Val					240
gtt Val	tca Ser	acc Thr	gat Asp	cgc Arg 85	ggt Gly	tta Leu	tgt Cys	ggt Gly	ggc Gly 90	tta Leu	aat Asn	atc Ile	aat Asn	tta Leu 95	ttt Phe	288
aaa Lys	acc Thr	gtt Val	tta Leu 100	cat His	gaa Glu	ttg Leu	aaa Lys	gaa Glu 105	aaa Lys	gat Asp	gac Asp	caa Gln	ggt Gly 110	gtt Val	a ag Lys	336
tct Ser	cga Arg	ctt Leu 115	gct Ala	gtg Val	gtg Val	gga Gly	aat Asn 120	aaa Lys	ggg Gly	atc Ile	tcc Ser	ttt Phe 125	ttt Phe	aac Asn	cca Pro	384
atg Met	ggg Gly 130	cta Leu	gag Glu	att Ile	aaa Lys	ggt Gly 135	cat His	atc Ile	aat Asn	gga Gly	ttg Leu 140	ggt Gly	gat Asp	aca Thr	ccg Pro	432
gca Ala 145	atg Met	gaa Glu	gat Asp	tta Leu	gtc Val 150	ggt Gly	att Ile	gtt Val	aat Asn	ggt Gly 155	atg Met	gta Val	aat Asn	gcc Ala	tac Tyr 160	480
cgt Arg	gaa Glu	ggc Gly	gaa Glu	att Ile 165	gat Asp	gaa Glu	gtg Val	tat Tyr	gtg Val 170	gta Val	tat Tyr	aac Asn	cgt Arg	ttt Phe 175	ata Ile	528
											t tg Leu					576
											tct Ser					624
tat Tyr	gaa Glu 210	cca Pro	aat Asn	cca Pro	caa Gln	gcg Ala 215	tta Leu	tta Leu	gac Asp	agc Ser	tta Leu 220	ctg Leu	gtt Val	cgt Arg	tat Tyr	672
											aat Asn					720
											acc Thr					768

				245					250					255		
aat Asn	ctg Leu	att Ile	aat Asn 260	gag Glu	tta Leu	cag Gln	tta Leu	gtg Val 265	tat Tyr	aac Asn	aaa Lys	gct Ala	cgt Arg 270	ca a Gln	gca Ala	816
agt Ser	att Ile	acg Thr 275	aat Asn	gaa Glu	tta Leu	aat Asn	gaa Glu 280	att Ile	gtc Val	gcg Ala	ggt Gly	gcc Ala 285	gca Ala	gca Ala	att Ile	864
ta																866
<21 <21	0 > 1 1 > 2 2 > P 3 > P	88 RT	urel	la (I	Mannl	neim	ia) l	haemo	olyt:	ica						
	0> 1 Ala		Ala	Lys 5	Glu	Ile	Arg	Thr	Lys 10	Ile	Ala	Ser	Val	Arg 15	Asn	
Thr	Gln	Lys	Ile 20	Thr	Lys	Ala	Met	Glu 25	Met	Val	Aļa	Ala	Ser 30	Lys	Met	
Arg	Lys	Thr 35	Gln	Glu	Arg	Met	Ala 40	Ala	Ser	Arg	Pro	Tyr 45	Ala	Glu	Ser	
Ile	Arg 50	Lys	Ala	Ile	ser	His 55	Ile	Ala	Lys	Gly	Asn 60	Ile	Glu	Tyr	Lys	
His 65	Pro	Phe	Leu	Thr	Pro 70	Arg	Pro	Val	Lys	Lys 75	Val	Gly	Tyr	Leu	Val 80	
Val	Ser	Thr	Asp	Arg 85	Gly	Leu	Cys	Gly	Gly 90	Leu	Asn	Ile	Asn	Leu 95	Phe	
Lys	Thr	Val	Leu 100	His	Glu	Leu	Lys	Glu 105	Lys	Asp	Asp	Gln	Gly 110	Val	Lys	
Ser	Arg	Leu 115	Ala	Val	Val	Gly	Asn 120	ГÀЗ	Gly	Ile	Ser	Phe 125	Phe	Asn	Pro	
Met	Gly 130	Leu	Glu	Ile	Lys	Gly 135	His	Ile	Asn	Gly	Leu 140	Gly	Asp	Thr	Pro	
Ala 145	Met	Glu	Asp	Leu	Val 150	Gly	Ile	Val	Asn	Gly 155	Met	Val	Asn	Ala	Tyr 160	
Arg	Glu	Gly	Glu	11e 165	Asp	Glu	Val	Tyr	Val 170	Val	Tyr	Asn	Arg	Phe 175	Ile	
Asn	Thr	Met	Ser 180	Gln	Lys	Pro	Thr	Val 185	Gln	Gln	Leu	Leu	Pro 190	Leu	Pro	
Ala	Leu	Glu 195	Asn	Asp	Ser	Leu	Glu 200	Gln	Thr	Gly	Ser	Trp 205	Asp	Tyr	Leu	
Tyr	Glu 210	Pro	Asn	Pro	Gln	Ala 215	Leu	Leu	Asp	Ser	Leu 220	Leu	Val	Arg	Tyr	
Leu 225	Glu	Ser	Gln	Val	Tyr 230	Gln	Ala	Val	Val	Asp 235	Asn	Leu	Ala		Glu 240	

Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn Ala Gly 245 250 Asn Leu Ile Asn Glu Leu Gln Leu Val Tyr Asn Lys Ala Arg Gln Ala Ser Ile Thr Asn Glu Leu Asn Glu Ile Val Ala Gly Ala Ala Ala Ile <210> 168 <211> 1463 <212> DNA <213> Pasteurella (Mannheimia) haemolytica <220> <221> CDS <222> (1)..(1461) <220> <223> guaB <400> 168 atg cta cga att aaa caa gaa gcc ctc act ttt gat gat gtt ctt ctc Met Leu Arg Ile Lys Gln Glu Ala Leu Thr Phe Asp Asp Val Leu Leu gtc ccg gca cat tct act gtg ctt cct aat act gct gat ctt tct act Val Pro Ala His Ser Thr Val Leu Pro Asn Thr Ala Asp Leu Ser Thr 20 caa tta act aaa acc att cgt tta aac att ccg atg ctt tct gct gca Gln Leu Thr Lys Thr Ile Arg Leu Asn Ile Pro Met Leu Ser Ala Ala atg gat acc gtt aca gaa act aag ctt gcg atc tcc ctt gct caa gaa Met Asp Thr Val Thr Glu Thr Lys Leu Ala Ile Ser Leu Ala Gln Glu ggc ggc att ggt ttt atc cat aaa aat atg tcg att gaa cgc cag gca Gly Gly Ile Gly Phe Ile His Lys Asn Met Ser Ile Glu Arg Gln Ala gac cgt gtg cgt aaa gtg aaa aaa ttt gaa agt ggt att gtt tct gag Asp Arg Val Arg Lys Val Lys Lys Phe Glu Ser Gly Ile Val Ser Glu cca gtg acg att tct cct gat atg aca tta gcg gaa ttg gct gaa ttg 336 Pro Val Thr Ile Ser Pro Asp Met Thr Leu Ala Glu Leu Ala Glu Leu 100 105 gtg aaa aag aac ggt ttt gca ggc tat ccg gtg att gat gaa aac caa Val Lys Lys Asn Gly Phe Ala Gly Tyr Pro Val Ile Asp Glu Asn Gln 115 aat tta gtg gga att att acc gga cgt gat acc cga ttt gtc acg gat 432 Asn Leu Val Gly Ile Ile Thr Gly Arg Asp Thr Arg Phe Val Thr Asp 130 135 tta agc aaa aca gtg cgt gaa ttt atg aca cca aaa gac cgt tta gtg 480 Leu Ser Lys Thr Val Arg Glu Phe Met Thr Pro Lys Asp Arg Leu Val 145 150 155

acg Thr	gta Val	aaa Lys	gaa Glu	aac Asn 165	gca Ala	agc Ser	cgt Arg	gaa Glu	gaa Glu 170	att Ile	ttc Phe	cac His	tta Leu	atg Met 175	cac His	528
gaa Glu	cac His	cga Arg	gtg Val 180	gag Glu	aaa Lys	gtg Val	ctg Leu	gta Val 185	gtg Val	aat Asn	aat Asn	gaa Glu	ttt Phe 190	cag Gln	tta Leu	576
											gcg Ala					624
aat Asn	gcc Ala 210	tgt Cys	aaa Lys	gat Asp	gag Glu	ttt Phe 215	gly ggg	cgt Arg	ttg Leu	cgt Arg	gtg Val 220	ggg Gly	gcg Ala	gca Ala	gtg Val	672
gga Gly 225	gcc Ala	ggt Gly	ccg Pro	ggc Gly	aat Asn 230	gaa Glu	gaa Glu	cga Arg	att Ile	gat Asp 235	gct Ala	tta Leu	gta Val	aaa Lys	gcg Ala 240	720
ggt Gly	gtc Val	gat Asp	gtg Val	cta Leu 245	tta Leu	atc Ile	gac Asp	tct Ser	tcg Ser 250	cac His	999 Gly	cat His	tct Ser	gaa Glu 255	ggt Gly	768
gta Val	tta Leu	caa Gln	cgt Arg 260	gtg Val	cgt Arg	gaa Glu	acc Thr	cgt Arg 265	gca Ala	aaa Lys	tac Tyr	cct Pro	gat Asp 270	tta Leu	ccg Pro	816
att Ile	gtt Val	gcc Ala 275	ggt Gly	aat Asn	att Ile	gcc Ala	act Thr 280	gca Ala	gaa Glu	gga Gly	gcg Ala	att Ile 285	gcg Ala	tta Leu	gct Ala	864
gat Asp	gca Ala 290	gga Gly	gcc Ala	agt Ser	gct Ala	gtg Val 295	aaa Lys	gta Val	gga Gly	atc Ile	ggc Gly 300	ccg Pro	ggt Gly	tca Ser	att Ile	912
tgt Cys 305	acc Thr	acc Thr	aga Arg	att Ile	gta Val 310	aca Thr	ggc Gly	gtt Val	ggc Gly	gtg Val 315	cca Pro	caa Gln	atc Ile	acg Thr	gca Ala 320	960
atc Ile	gca Ala	gaa Glu	gcg Ala	gca Ala 325	gct Ala	gcg Ala	ctt Leu	aaa Lys	gaa Glu 330	cga Arg	ggc Gly	att Ile	cct Pro	gtg Val 335	att Ile	1008
gct Ala	gat Asp	ggt Gly	gga Gly 340	att Ile	cgt Arg	tat Tyr	tca Ser	ggc Gly 345	gat Asp	att Ile	tca Ser	aaa Lys	gct Ala 350	att Ile	gcc Ala	1056
gcc Ala	ggt Gly	gca Ala 355	agt Ser	tgc Cys	gta Val	atg Met	gtc Val 360	ggt Gly	tcg Ser	atg Met	ttt Phe	gcc Ala 365	ggc Gly	aca Thr	gaa Glu	1104
gaa Glu	gcc Ala 370	ccg Pro	ggt Gly	gaa Glu	Ile	gag Glu 375	ctt Leu	tat Tyr	caa Gln	ggc Gly	aga Arg 380	gca Ala	ttc Phe	aaa Lys	tcc Ser	1152
tac Tyr 385	cgt Arg	gga Gly	atg Met	gga Gly	tca Ser 390	tta Leu	ggt Gly	gca Ala	atg Met	agt Ser 395	aaa Lys	ggc Gly	tcg Ser	tca Ser	gat Asp 400	1200
cgc Arg	tat Tyr	ttc Phe	Gln	tct Ser 405	gat Asp	aat Asn	gcc Ala	Ala	gac Asp 410	aag Lys	ctc Leu	gta Val	ccg Pro	gaa Glu 415	gly aaa	1248

														Ile	cac His	1296
caa Gln	caa Gln	atg Met 435	ggc Gly	ggc Gly	tta Leu	cgc Arg	tcc Ser 440	tgt Cys	atg Met	gga Gly	tta Leu	acc Thr 445	ggc Gly	tgt Cys	gcc Ala	1344
															ggt Gly	1392
gct Ala 465	ggt Gly	att Ile	aaa Lys	gaa Glu	agc Ser 470	cac His	gtc Val	cac His	gat Asp	gtg Val 475	Thr	att Ile	acc Thr	aaa Lys	gaa Glu 480	1440
		aac Asn				ggt Gly	ta									1463
<21 <21	0 > 10 1 > 40 2 > Pi 3 > Pa	37 RT	urel:	la (I	4annl	neim:	ia) l	haemo	olyt:	ica						
Met	0> 10 Leu		Ile		Gln	Glu	Ala	Leu		Phe	Asp	Asp	Val		Leu	
1 Val	Pro	Ala		5 Ser	Thr	Val	Leu		10 Asn	Thr	Ala	Asp	Leu	15 Ser	Thr	
			20					25					30			
Gln	Leu	Thr 35	Lys	Thr	Ile	Arg	Leu 40	Asn	Ile	Pro	Met	Leu 45	Ser	Ala	Ala	
Met	Asp 50	Thr	Val	Thr	Glu	Thr 55	Lys	Leu	Ala	Ile	Ser 60	Leu	Ala	Gln	Glu	
Gly 65	Gly	Ile	Gly	Phe	Ile 70	His	Lys	Asn	Met	Ser 75	Ile	Glu	Arg	Gln	Ala 80	
Asp	Arg	Val	Arg	Lys 85	Val	Lys	Lys	Phe	Glu 90	Ser	Gly	Ile	Val	Ser 95	Glu	
Pro	Val	Thr	Ile 100	Ser	Pro	Asp	Met	Thr 105	Leu	Ala	Glu	Leu	Ala 110	Glu	Leu	
Val	Lys	Lys 115	Asn	Gly	Phe	Ala	Gly 120	Tyr	Pro	Val	Ile	Asp 125	Glu	Asn	Gln	
Asn	Leu 130	Val	Gly	Ile	Ile	Thr 135	Gly	Arg	Asp	Thr	Arg 140	Phe	Val	Thr	Asp	
Leu 145	Ser	Lys	Thr	Val	Arg 150	Glu	Phe	Met	Thr	Pro 155	Lys	Asp	Arg	Leu	Val 160	
Thr	Val	Lys	Glu	Asn 165	Ala	Ser	Arg	Glu	Glu 170	Ile	Phe	His	Leu	Met 175	His	
Glu	His	Arg	Val 180	Glu	Lys	Val	Leu	Val 185	Val	Asn	Asn	Glu	Phe 190	Gln	Leu	

Lys Gly Met Ile Thr Leu Lys Asp Tyr Gln Lys Ala Glu Ser Lys Pro 200 Asn Ala Cys Lys Asp Glu Phe Gly Arg Leu Arg Val Gly Ala Ala Val Gly Ala Gly Pro Gly Asn Glu Glu Arg Ile Asp Ala Leu Val Lys Ala Gly Val Asp Val Leu Leu Ile Asp Ser Ser His Gly His Ser Glu Gly Val Leu Gln Arg Val Arg Glu Thr Arg Ala Lys Tyr Pro Asp Leu Pro Ile Val Ala Gly Asn Ile Ala Thr Ala Glu Gly Ala Ile Ala Leu Ala Asp Ala Gly Ala Ser Ala Val Lys Val Gly Ile Gly Pro Gly Ser Ile Cys Thr Thr Arg Ile Val Thr Gly Val Gly Val Pro Gln Ile Thr Ala Ile Ala Glu Ala Ala Ala Leu Lys Glu Arg Gly Ile Pro Val Ile Ala Asp Gly Gly Ile Arg Tyr Ser Gly Asp Ile Ser Lys Ala Ile Ala Ala Gly Ala Ser Cys Val Met Val Gly Ser Met Phe Ala Gly Thr Glu Glu Ala Pro Gly Glu Ile Glu Leu Tyr Gln Gly Arg Ala Phe Lys Ser Tyr Arg Gly Met Gly Ser Leu Gly Ala Met Ser Lys Gly Ser Ser Asp Arg Tyr Phe Gln Ser Asp Asn Ala Ala Asp Lys Leu Val Pro Glu Gly Ile Glu Gly Arg Ile Ala Tyr Lys Gly Tyr Leu Lys Glu Ile Ile His Gln Gln Met Gly Gly Leu Arg Ser Cys Met Gly Leu Thr Gly Cys Ala Thr Ile Glu Glu Leu Arg Thr Lys Ala Glu Phe Val Arg Ile Ser Gly Ala Gly Ile Lys Glu Ser His Val His Asp Val Thr Ile Thr Lys Glu Ala Pro Asn Tyr Arg Met Gly

<210> 170

<211> 2150

<212> DNA

<213> Pasteurella (Mannheimia) haemolytica

<220> <221> CDS <222> (1)..(2148) <223> pnp <400> 170 atg act cca att gta aaa cag ttt aaa tac ggt cag cac acc gtg acc Met Thr Pro Ile Val Lys Gln Phe Lys Tyr Gly Gln His Thr Val Thr tta gaa acc ggt gct atc gca cgc caa gca acg gca gca gta atg gca 96 Leu Glu Thr Gly Ala Ile Ala Arg Gln Ala Thr Ala Ala Val Met Ala agt atg gac gac aca acc gta ttt gtt acc gta gta gcg aaa aaa gac Ser Met Asp Asp Thr Thr Val Phe Val Thr Val Val Ala Lys Lys Asp gta aaa gaa ggg caa gat ttc ttc cca tta acc gta gat tat caa gag Val Lys Glu Gly Gln Asp Phe Phe Pro Leu Thr Val Asp Tyr Gln Glu cgt act tac gca gcc ggt cgt att ccg ggc ggt ttc ttc aaa cgt gaa Arg Thr Tyr Ala Ala Gly Arg Ile Pro Gly Gly Phe Phe Lys Arg Glu gga cgt cct agc gaa ggt gaa acc tta atc gct cgc ttg atc gac cgt 288 Gly Arg Pro Ser Glu Gly Glu Thr Leu Ile Ala Arg Leu Ile Asp Arg cct gtg cgt cca ctt ttc cca gaa ggt ttc ttt aac gaa att caa gtg 336 Pro Val Arg Pro Leu Phe Pro Glu Gly Phe Phe Asn Glu Ile Gln Val 105 att gcg acc gta gta tcg gta aac cca caa atc agt cct gat ctg gtt 384 Ile Ala Thr Val Val Ser Val Asn Pro Gln Ile Ser Pro Asp Leu Val gcg atg atc ggt gca tcg gct gcc ctt tca tta tcc ggc gtg ccg ttt Ala Met Ile Gly Ala Ser Ala Ala Leu Ser Leu Ser Gly Val Pro Phe 130 135 aac ggt cca atc ggt gcg gct cgt gtc ggt ttt atc aac gat caa ttc Asn Gly Pro Ile Gly Ala Ala Arg Val Gly Phe Ile Asn Asp Gln Phe 145 150 gta tta aac cca acc acc agc gag caa aaa atc agc cgc tta gat tta Val Leu Asn Pro Thr Thr Ser Glu Gln Lys Ile Ser Arg Leu Asp Leu gtg gtt tca ggt aca gac aaa gcc gtg ttg atg gtg gaa tct gaa gcg Val Val Ser Gly Thr Asp Lys Ala Val Leu Met Val Glu Ser Glu Ala gat atc tta acc gaa gag caa atg tta gcg gcg gtg gtg ttc ggc cac Asp Ile Leu Thr Glu Glu Glu Met Leu Ala Ala Val Val Phe Gly His 624 gag caa caa cag gtt gta atc gaa aac atc aaa gaa ttt gtt aaa gaa Glu Gln Gln Gln Val Val Ile Glu Asn Ile Lys Glu Phe Val Lys Glu 210 215

gcg Ala 225	ggc	aaa Lys	cca Pro	cgt Arg	tgg Trp 230	gat Asp	tgg Trp	gtt Val	gca Ala	cca Pro 235	gag Glu	cca Pro	aat Asn	aca Thr	gat Asp 240	720
tta Leu	atc Ile	aac Asn	aaa Lys	gta Val 245	aaa Lys	gca Ala	tta Leu	gca Ala	gaa Glu 250	aca Thr	cgc Arg	ctt Leu	ggc	gat Asp 255	gct Ala	768
					aaa Lys											816
aaa Lys	gca Ala	gag Glu 275	gtg Val	att Ile	gca Ala	caa Gln	ctt Leu 280	acc Thr	gca Ala	gaa Glu	gat Asp	gaa Glu 285	act Thr	gtt Val	tct Ser	864
					gac Asp											912
					gca Ala 310	Gly										960
gat Asp	acc Thr	gtg Val	cgt Arg	gca Ala 325	ttg Leu	gat Asp	att Ile	tgc Cys	acc Thr 330	agt Ser	gtg Val	tta Leu	cca Pro	cgc Arg 335	acc Thr	1008
cac His	ggt Gly	tct Ser	gct Ala 340	ctt Leu	ttc Phe	acc Thr	cgt Arg	ggc Gly 345	gaa Glu	acc Thr	caa Gln	gca Ala	tta Leu 350	gca Ala	gta Val	1056
					gag Glu											1104
					cgt Arg											1152
tct Ser 385	gtg Val	ggc Gly	gaa Glu	acc Thr	ggt Gly 390	cgt Arg	atc Ile	ggc Gly	tcg Ser	cca Pro 395	aaa Lys	cgc Arg	cgt Arg	gaa Glu	atc Ile 400	1200
					gca Ala											1248
gct Ala	gaa Glu	gag Glu	ttc Phe 420	ccg Pro	tat Tyr	gta Val	gtg Val	egt Arg 425	gtg Val	gtg Val	tct Ser	gaa Glu	atc Ile 430	act Thr	gaa Glu	1296
					tca Ser											1344
ttg Leu	atg Met 450	gac Asp	gca Ala	ggt G ly	gtg Val	cca Pro 455	atc Ile	aaa Lys	gca Ala	gcg Ala	gtt Val 460	gcc Ala	ggt Gly	atc Ile	gca Ala	1392
					gaa Glu 470				Phe					Asp		1440

	ggt Gly															1488
acc Thr	cgt Arg	acc Thr	ggt Gly 500	gtg Val	act Thr	gcg Ala	ctg Leu	caa Gln 505	atg Met	gac Asp	atc Ile	aaa Lys	atc Ile 510	gaa Glu	ggg Gly	1536
atc Ile	acc Thr	cct Pro 515	gaa Glu	att Ile	atg Met	cgt Arg	att Ile 520	gcc Ala	tta Leu	aac Asn	caa Gln	gct Ala 525	aaa Lys	ggt Gly	gca Ala	1584
	atg Met 530															1632
	gat Asp															1680
	aag Lys															1728
	tta Leu															1776
	gtg Val															1824
	cgt Arg 610															1872
aac Asn 625	ggt Gly	aaa Lys	gta Val	acc Thr	cgt Arg 630	gtg Val	gtg Val	gac Asp	ttc Phe	ggt Gly 635	gca Ala	ttc Phe	gtt Val	tcc Ser	atc Ile 640	1920
tta Leu	ggt Gly	ggc Gly	aaa Lys	gaa Glu 645	ggt Gly	tta Leu	gtc Val	cac His	att Ile 650	tca Ser	caa Gln	atc Ile	acc Thr	aac Asn 655	gaa Glu	1968
	gtt Val															2016 .
	aaa Lys															2064
	gac Asp 690															2112
gaa Glu 705	aat Asn	gtg Val	gta Val	gaa Glu	aca Thr 710	gaa Glu	caa Gln	gaa Glu	aat Asn	aat Asn 715	ttc Phe	ta				2150

<210> 171 <211> 716

<212> PRT <213> Pasteurella (Mannheimia) haemolytica

Met Thr Pro Ile Val Lys Gln Phe Lys Tyr Gly Gln His Thr Val Thr Leu Glu Thr Gly Ala Ile Ala Arg Gln Ala Thr Ala Ala Val Met Ala Ser Met Asp Asp Thr Thr Val Phe Val Thr Val Val Ala Lys Lys Asp Val Lys Glu Gly Gln Asp Phe Phe Pro Leu Thr Val Asp Tyr Gln Glu Arg Thr Tyr Ala Ala Gly Arg Ile Pro Gly Gly Phe Phe Lys Arg Glu Gly Arg Pro Ser Glu Gly Glu Thr Leu Ile Ala Arg Leu Ile Asp Arg Pro Val Arg Pro Leu Phe Pro Glu Gly Phe Phe Asn Glu Ile Gln Val Ile Ala Thr Val Val Ser Val Asn Pro Gln Ile Ser Pro Asp Leu Val Ala Met Ile Gly Ala Ser Ala Ala Leu Ser Leu Ser Gly Val Pro Phe 135 Asn Gly Pro Ile Gly Ala Ala Arg Val Gly Phe Ile Asn Asp Gln Phe Val Leu Asn Pro Thr Thr Ser Glu Gln Lys Ile Ser Arg Leu Asp Leu Val Val Ser Gly Thr Asp Lys Ala Val Leu Met Val Glu Ser Glu Ala Asp Ile Leu Thr Glu Glu Gln Met Leu Ala Ala Val Val Phe Gly His Glu Gln Gln Gln Val Val Ile Glu Asn Ile Lys Glu Phe Val Lys Glu 215 Ala Gly Lys Pro Arg Trp Asp Trp Val Ala Pro Glu Pro Asn Thr Asp Leu Ile Asn Lys Val Lys Ala Leu Ala Glu Thr Arg Leu Gly Asp Ala Tyr Arg Ile Val Glu Lys Gln Val Arg Tyr Glu Gln Ile Asp Ala Ile Lys Ala Glu Val Ile Ala Gln Leu Thr Ala Glu Asp Glu Thr Val Ser Glu Gly Thr Ile Ile Asp Ile Ile Thr Ala Leu Glu Ser Gln Ile Val Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile Asp Gly Arg Thr Val 315

Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Ser Val Leu Pro Arg Thr 325 His Gly Ser Ala Leu Phe Thr Arg Gly Glu Thr Gln Ala Leu Ala Val Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile Ile Asp Glu Leu Thr Gly Glu Lys Ser Asp Arg Phe Leu Phe His Tyr Asn Phe Pro Pro Tyr Ser Val Gly Glu Thr Gly Arg Ile Gly Ser Pro Lys Arg Arg Glu Ile Gly His Gly Arg Leu Ala Lys Arg Gly Val Leu Ala Val Met Pro Thr Ala Glu Glu Phe Pro Tyr Val Val Arg Val Val Ser Glu Ile Thr Glu Ser Asn Gly Ser Ser Ser Met Ala Ser Val Cys Gly Ala Ser Leu Ala Leu Met Asp Ala Gly Val Pro Ile Lys Ala Ala Val Ala Gly Ile Ala Met Gly Leu Val Lys Glu Asp Glu Lys Phe Val Val Leu Ser Asp Ile Leu Gly Asp Glu Asp His Leu Gly Asp Met Asp Phe Lys Val Ala Gly Thr Arg Thr Gly Val Thr Ala Leu Gln Met Asp Ile Lys Ile Glu Gly 505 Ile Thr Pro Glu Ile Met Arg Ile Ala Leu Asn Gln Ala Lys Gly Ala Arg Met His Ile Leu Gly Val Met Glu Gln Ala Ile Pro Ala Pro Arg Ala Asp Ile Ser Asp Tyr Ala Pro Arg Ile His Thr Met Lys Ile Asp Pro Lys Lys Ile Lys Asp Val Ile Gly Lys Gly Gly Ala Thr Ile Arg Ala Leu Thr Glu Glu Thr Asn Thr Ser Ile Asp Ile Asp Asp Asp Gly Thr Val Lys Ile Ala Ala Thr Asp Gly Asn Ala Ala Lys Ala Val Met Ala Arg Ile Glu Glu Ile Val Ala Glu Val Glu Val Asn Gln Ile Tyr Asn Gly Lys Val Thr Arg Val Val Asp Phe Gly Ala Phe Val Ser Ile Leu Gly Gly Lys Glu Gly Leu Val His Ile Ser Gln Ile Thr Asn Glu 650

Arg Val Glu Arg Val Ala Asp Tyr Leu Thr Val Gly Gln Glu Val Gln 660 665 Val Lys Val Val Glu Ile Asp Arg Gln Gly Arg Ile Arg Leu Thr Met Lys Asp Ile Asn Asn Thr Asn Glu Ala Asn Ala Glu Glu Thr Val Ala Glu Asn Val Val Glu Thr Glu Gln Glu Asn Asn Phe <210> 172 <211> 1517 <212> DNA <213> Pasteurella (Mannheimia) haemolytica <220> <221> CDS <222> (1)..(1515) <220> <223> purF <400> 172 atg tgc ggc att gtc ggt att att ggg aat tcg ccg gtg aat cag gcg Met Cys Gly Ile Val Gly Ile Ile Gly Asn Ser Pro Val Asn Gln Ala att tat gat ggt tta aca tta ctt caa cac cga gga caa gat gcc gca Ile Tyr Asp Gly Leu Thr Leu Leu Gln His Arg Gly Gln Asp Ala Ala 25 ggt atc gtc acc ata gac gat gaa aat cgt ttc cgc tta cgc aaa gct 144 Gly Ile Val Thr Ile Asp Asp Glu Asn Arg Phe Arg Leu Arg Lys Ala aac ggc tta gtc agc gat gtt ttc cag caa gag cat atg gtg aga tta 192 Asn Gly Leu Val Ser Asp Val Phe Gln Gln Glu His Met Val Arg Leu 50 caa ggc aat gtt gga att ggt cac gtt cgc tac cca aca gca ggt agc 240 Gln Gly Asn Val Gly Ile Gly His Val Arg Tyr Pro Thr Ala Gly Ser 65 70 tca agt gtg tct gaa gcc cag cca ttt tat gtc aat tca cct ttc ggt Ser Ser Val Ser Glu Ala Gln Pro Phe Tyr Val Asn Ser Pro Phe Gly att acc tta gtt cac aac ggt aat tta act aat aat gcg gaa ctt aaa Ile Thr Leu Val His Asn Gly Asn Leu Thr Asn Asn Ala Glu Leu Lys 100 get ege tha tac aac gaa gee ege ege cat gtg aac act aat tet gat Ala Arg Leu Tyr Asn Glu Ala Arg Arg His Val Asn Thr Asn Ser Asp 120 tot gaa too ott ott aat att ttt got tao ttt tta gat oto tat too 432 Ser Glu Ser Leu Leu Asn Ile Phe Ala Tyr Phe Leu Asp Leu Tyr Ser 135 140 act cag cat tta agc cca gac aat atc ttt gaa acg gtt cgt aaa acc

Thr 145		His	Leu	Ser	Pro 150	Asp	Asn	Ile	Phe	Glu 155	Thr	Val	Arg	Lys	Thr 160	
aat Asn	gat Asp	agc Ser	att Ile	cgt Arg 165	ggt Gly	gct Ala	tat Tyr	gct Ala	tgc Cys 170	Ile	gcg Ala	atg Met	att Ile	atc Ile 175	gga Gly	528
													ccg Pro 190			576
ctg Leu	ggt Gly	aaa Lys 195	cgt Arg	gaa Glu	atc Ile	gag Glu	ggt Gly 200	aaa Lys	acc Thr	gaa Glu	tat Tyr	atg Met 205	ttt Phe	gct Ala	tcg Ser	624
gaa Glu	agt Ser 210	gtg Val	gct Ala	ctt Leu	gat Asp	gta Val 215	gtg Val	Gly ggg	ttt Phe	gaa Glu	ttt Phe 220	gtg Val	cga Arg	gat Asp	gtg Val	672
ctg Leu 225	ccg Pro	ggt Gly	gaa Glu	gcg Ala	att Ile 230	tat Tyr	gtt Val	acc Thr	ttt Phe	gat Asp 235	Gly 999	caa Gln	tta Leu	cat His	tcg Ser 240	720
caa Gln	att Ile	tgt Cys	gcc Ala	gat Asp 245	aat Asn	cca Pro	aaa Lys	ctg Le u	aat Asn 250	cct Pro	tgt Cys	att Ile	ttt Phe	gaa Glu 255	tat Tyr	768
													tct Ser 270			816
tct Ser	gca Ala	cga Arg 275	gtg Val	cat His	atg Met	ggc Gly	gaa Glu 280	tta Leu	tta Leu	ggt Gly	gag Glu	aaa Lys 285	att Ile	aaa Lys	cgt Arg	864
gaa Glu	tgg Trp 290	gga Gly	cga Arg	att Ile	atc Ile	gat Asp 295	gat Asp	att Ile	gat Asp	gtg Val	gtg Val 300	atc Ile	ccg Pro	att Ile	cct Pro	912
gaa Glu 305	acc Thr	tca Ser	aat Asn	gat Asp	att Ile 310	gcg Ala	gta Val	cgt Arg	att Ile	gct Ala 315	aat Asn	atg Met	t tg Leu	tat Tyr	aaa Lys 320	960
ccc Pro	tat Tyr	cgt Arg	caa Gln	ggg Gly 325	ttt Phe	gtt Val	aaa Lys	aac Asn	cgc Arg 330	tat Tyr	gta Val	gct Ala	cga Arg	act Thr 335	ttt Phe	1008
													cgt Arg 350			1056
aat Asn	gcg Ala	att Ile 355	gcc Ala	tct Ser	gaa Glu	ttt Phe	aaa Lys 360	ggc Gly	aaa Lys	agc Ser	gtg Val	tta Leu 365	ctg Leu	gtt Val	gat Asp	1104
gat Asp	tct Ser 370	att Ile	gta Val	cga Arg	ggt Gly	aca Thr 375	acg Thr	tct Ser	gaa Glu	caa Gln	atc Ile 380	gtg Val	gaa Glu	atg Met	gca Ala	1152
cga Arg 385	gca Ala	gct Ala	ggt Gly	gca Ala	aaa Lys 390	cgg Arg	gtt Val	tat Tyr	ttt Phe	gcc Ala 395	tct Ser	gcc Ala	gca Ala	ccg Pro	gaa Glu 400	1200

att																
	Arg	tac Tyr	ccg Pro	aat Asn 405	gtg Val	tat Tyr	ggc Gly	att Ile	gat Asp 410	Met	ccg Pro	act Thr	tgt Cys	gaa Glu 415	gaa Glu	1248
tta Leu	gtg Val	gct Ala	tat Tyr 420	gat Asp	cgc Arg	tca Ser	gtg Val	gaa Glu 425	gag Glu	gtt Val	gca Ala	cag Gln	atg Met 430	Ile	ggg Gly	1296
gtg Val	gat Asp	aaa Lys 435	ttg Leu	att Ile	ttc Phe	caa Gln	gac Asp 440	ctt Leu	gaa Glu	gca Ala	ctt Leu	tat Tyr 445	aag Lys	tct Ser	att Ile	1344
caa Gln	ctg Leu 450	gaa Glu	aat Asn	ccg Pro	act Thr	att Ile 455	cat His	cgc Arg	ttt Phe	gat Asp	gac Asp 460	tct Ser	gta Val	ttt Phe	aca Thr	1392
gga Gly 465	gaa Glu	tat Tyr	att Ile	aca Thr	ggt Gly 470	gat Asp	gta Val	gat Asp	aaa Lys	tgc Cys 475	tat Tyr	tta Leu	gac Asp	agt Ser	ata Ile 480	1440
gca Ala	aga Arg	tct Ser	cga Arg	aac Asn 485	gat Asp	aaa Lys	gca Ala	aaa Lys	gca Ala 490	gag Glu	gcg Ala	gca Ala	aaa Lys	caa Gln 495	gcc Ala	1488
	aat Asn								ta							1517
<21	2> PE 3> Pa		rell	n /1												
				ia (r	iannr	1e1M1	.a) h	aemo	lyt:	l ca						
Met 1	0> 17 Cys	Gly	Ile	Val 5	Gly	Ile	Ile	Gly	Asn 10	Ser				15		
let 1 [le	Cys Tyr	Gly	Ile Gly 20	Val 5 Leu	Gly Thr	Ile Leu	Ile Leu	Gly Gln 25	Asn 10 His	Ser Arg	Gly	Gln	Asp 30	15 Ala	Ala	
Met 1 Ile	Cys	Gly	Ile Gly 20	Val 5 Leu	Gly Thr	Ile Leu	Ile Leu	Gly Gln 25	Asn 10 His	Ser Arg	Gly	Gln	Asp 30	15 Ala	Ala	
Met 1 Ile Gly	Cys Tyr	Gly Asp Val 35	Ile Gly 20 Thr	Val 5 Leu Ile	Gly Thr Asp	Ile Leu Asp	Ile Leu Glu 40	Gly Gln 25 Asn	Asn 10 His	Ser Arg Phe	Gly Arg	Gln Leu 45	Asp 30 Arg	15 Ala Lys	Ala Ala	
Met 1 Ile Sly Asn	Tyr Ile Gly	Gly Asp Val 35 Leu	Ile Gly 20 Thr	Val 5 Leu Ile Ser	Gly Thr Asp Asp	Ile Leu Asp Val	Ile Leu Glu 40 Phe	Gly Gln 25 Asn Gln	Asn 10 His Arg	Ser Arg Phe Glu	Gly Arg His 60	Gln Leu 45 Met	Asp 30 Arg Val	15 Ala Lys Arg	Ala Ala Leu	
Met 1 Ile Gly Asn 65	Tyr Ile Gly 50	Gly Asp Val 35 Leu Asn	Ile Gly 20 Thr Val	Val 5 Leu Ile Ser	Gly Thr Asp Asp Ile 70	Ile Leu Asp Val 55 Gly	Ile Leu Glu 40 Phe	Gly Gln 25 Asn Gln Val	Asn 10 His Arg Gln Arg	Ser Arg Phe Glu Tyr 75	Gly Arg His 60 Pro	Gln Leu 45 Met	Asp 30 Arg Val	Ala Lys Arg Gly	Ala Ala Leu Ser 80	
Met 1 Ile Sly Asn 65	Tyr Ile Gly 50	Gly Asp Val 35 Leu Asn Val	Ile Gly 20 Thr Val Val	Val 5 Leu Ile Ser Gly	Gly Thr Asp Asp Ile 70	Ile Leu Asp Val 55 Gly	Ile Leu Glu 40 Phe His	Gln 25 Asn Gln Val	Asn 10 His Arg Gln Arg	Ser Arg Phe Glu Tyr 75	Gly Arg His 60 Pro	Gln Leu 45 Met Thr Ser	Asp 30 Arg Val Ala	Ala Lys Arg Gly Phe 95	Ala Ala Leu Ser 80	
Met 1 Ile Gly Asn 65 Ser Ile	Cys Tyr Ile Gly 50 Gly Ser Thr	Gly Asp Val 35 Leu Asn Val	Ile Gly 20 Thr Val Val Ser Val	Val 5 Leu Ile Ser Gly Glu 85	Gly Thr Asp Asp Ile 70 Ala	Ile Leu Asp Val 55 Gly Gln Gly Ala	Ile Leu Glu 40 Phe His	Gly Gln 25 Asn Gln Val Phe Leu 105	Asn 10 His Arg Gln Arg Tyr 90	Ser Arg Phe Glu Tyr 75 Val	Gly Arg His 60 Pro Asn Asn	Gln Leu 45 Met Thr	Asp 30 Arg Val Ala Pro Glu 110	15 Ala Lys Arg Gly Phe 95 Leu	Ala Ala Leu Ser 80 Gly Lys	

Thr Gln His Leu Ser Pro Asp Asn Ile Phe Glu Thr Val Arg Lys Thr Asn Asp Ser Ile Arg Gly Ala Tyr Ala Cys Ile Ala Met Ile Ile Gly His Gly Met Val Ala Phe Arg Asp Pro Phe Gly Ile Arg Pro Leu Val Leu Gly Lys Arg Glu Ile Glu Gly Lys Thr Glu Tyr Met Phe Ala Ser Glu Ser Val Ala Leu Asp Val Val Gly Phe Glu Phe Val Arg Asp Val Leu Pro Gly Glu Ala Ile Tyr Val Thr Phe Asp Gly Gln Leu His Ser Gln Ile Cys Ala Asp Asn Pro Lys Leu Asn Pro Cys Ile Phe Glu Tyr Val Tyr Phe Ala Arg Pro Asp Ser Val Ile Asp Gly Val Ser Val Tyr Ser Ala Arg Val His Met Gly Glu Leu Leu Gly Glu Lys Ile Lys Arg 275 280 285 Glu Trp Gly Arg Ile Ile Asp Asp Ile Asp Val Val Ile Pro Ile Pro Glu Thr Ser Asn Asp Ile Ala Val Arg Ile Ala Asn Met Leu Tyr Lys 305 Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr Val Ala Arg Thr Phe Ile Met Pro Gly Gln Ala Gln Arg Lys Ser Ser Val Arg Arg Lys Leu Asn Ala Ile Ala Ser Glu Phe Lys Gly Lys Ser Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln Ile Val Glu Met Ala Arg Ala Ala Gly Ala Lys Arg Val Tyr Phe Ala Ser Ala Ala Pro Glu Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met Pro Thr Cys Glu Glu Leu Val Ala Tyr Asp Arg Ser Val Glu Glu Val Ala Gln Met Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Glu Ala Leu Tyr Lys Ser Ile Gln Leu Glu Asn Pro Thr Ile His Arg Phe Asp Asp Ser Val Phe Thr Gly Glu Tyr Ile Thr Gly Asp Val Asp Lys Cys Tyr Leu Asp Ser Ile

```
Ala Arg Ser Arg Asn Asp Lys Ala Lys Ala Glu Ala Ala Lys Gln Ala
Thr Asn Leu Glu Ile His Asn Glu Arg
              500
<210> 174
<211> 386
<212> DNA
<213> Pasteurella (Mannheimia) haemolytica
<220>
<221> CDS
<222> (1) . . (384)
<220>
<223> yjgF
<400> 174
atg aca gtt atc cac aca gaa aat gca ccg gca gcg att ggg cct tat
Met Thr Val Ile His Thr Glu Asn Ala Pro Ala Ala Ile Gly Pro Tyr
gtg caa gca gtt gat tta ggc aat atg gtt tta act tct ggg caa att
Val Gln Ala Val Asp Leu Gly Asn Met Val Leu Thr Ser Gly Gln Ile
                                                                          96
 ccc gtg aat cct gaa acc ggc gaa atc ccg agt gat att gtg caa caa
                                                                          144
Pro Val Asn Pro Glu Thr Gly Glu Ile Pro Ser Asp Ile Val Gln Gln
acc cgc caa tot ctg aac aac gtg aaa gcc att atc gaa caa gcc ggc
Thr Arg Gln Ser Leu Asn Asn Val Lys Ala Ile Ile Glu Gln Ala Gly
tta acc gtt gcc gat att gta aag acc acc gta ttt gtc aaa gat ctt
                                                                          240
Leu Thr Val Ala Asp Ile Val Lys Thr Thr Val Phe Val Lys Asp Leu
                        70 .
aac gac ttc gca aag gta aat gcg gaa tac caa gcc ttc ttc caa gaa
                                                                          288
Asn Asp Phe Ala Lys Val Asn Ala Glu Tyr Gln Ala Phe Phe Gln Glu
aac gaa cac cct aat ttt ccg gct cgt tct tgc gta gaa gtg gct cgt
Asn Glu His Pro Asn Phe Pro Ala Arg Ser Cys Val Glu Val Ala Arg
                                                                          336
             100
                                    105
tta cca aaa gat gtt ggc att gag atc gaa gcg att gca gta cgc cga
                                                                          384
Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala Val Arg Arg
         115
                               120
ta
                                                                          386
<210> 175
<211> 128
<212> PRT
<213> Pasteurella (Mannheimia) haemolytica
Met Thr Val Ile His Thr Glu Asn Ala Pro Ala Ala Ile Gly Pro Tyr
```

```
Val Gln Ala Val Asp Leu Gly Asn Met Val Leu Thr Ser Gly Gln Ile
              20
Pro Val Asn Pro Glu Thr Gly Glu Ile Pro Ser Asp Ile Val Gln Gln
Thr Arg Gln Ser Leu Asn Asn Val Lys Ala Ile Ile Glu Gln Ala Gly
Leu Thr Val Ala Asp Ile Val Lys Thr Thr Val Phe Val Lys Asp Leu
Asn Asp Phe Ala Lys Val Asn Ala Glu Tyr Gln Ala Phe Phe Gln Glu
Asn Glu His Pro Asn Phe Pro Ala Arg Ser Cys Val Glu Val Ala Arg
             100
                                 105
Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala Val Arg Arg
                             120
<210> 176
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221>
<222>
<223> Description of Artificial Sequence: PRIMER
<400> 176
atggenggng enaargarat
                                                                    20
<210> 177
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<221>
<222>
<223> Description of Artificial Sequence: PRIMER
<220>
<221> misc_feature
<222> 3
\langle 223 \rangle n = A or T or G or C
<220>
<221> misc_feature
<222> 12
<223> n = A or T or G or C
<220>
<221> misc_feature
<222> 15
<223> n = A or T or G or C
<400> 177
gengeyttea tngcnaccat
                                                                  20
<210> 178
```

277

```
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<221> misc_feature
<222> 3
<223> N = A or T or G or C
<400> 178
ggnttyatyc ayaaaaayat g
                                                                   21
<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<220> "
<221> misc_feature
<222> 6
<223> N = A or T or G or C
<221> misc_feature
<222> 12
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 15
<223> N = A or T or G or C
<400> 179
tettingtra inginacate rig
                                                                   23
<210> 180
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<400> 180
gcsggyaaac crcgttggga ttgg
                                                                   24
<210> 181
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<400> 181
crectaarat rtetqaaage accae
                                                                   25
```

```
<210> 182
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<220>
<221> misc feature
<222> 9
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 15
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 18
<223>N=A or T or G or C
<400> 182
atgtgyggna tygtnggnat
                                                                   20
<210> 183
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 183
catatcaata ccatacacat t
                                                                   21
<210> 184
<211> 16
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<220>
<221> misc_feature
<222> 3
<223>N=A or T or G or C
<220>
<221> misc_feature
<222> 6
\langle 223 \rangle N = A or T or G or C
<221> misc_feature
<222> 12
<223> N = A or T or G or C
<400> 184
ggncentayg thearg
                                                                   16
```

```
<210> 185
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<221> misc_feature
<222> 1
<223> N = A or T or G or C
<220>
<221> misc_feature
<222> 4
<223> N = A or T or G or C
<220>
<221> misc feature
<222> 10
<223> N = A or T or G or C
<400> 185
ngcnacyten acrea
                                                                   15
<210> 186
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<400> 186
gaagccgcca tacgctcttg gg
                                                                   22
<210> 187
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
<400> 187
                                                                   23
gttgcttcct ttgcctgcac tgg
<210> 188
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PRIMER
                                                                   24
ggctcagaaa caataccact ttca
<210> 189
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220> <223> Description of Artificial Sequence: PRIMER	
<400> 189 gcaccaaagc agaatttgtc c	21
<210> 190 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PRIMER	
<400> 190 ggtgatgatg tcgatgatag tccc	24
<210> 191 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PRIMER	
<400> 191 ggcgtattag ccgtgatgcc aacc	24
<210> 192 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PRIMER	
<400> 192 gaccacttag gcgatatgga ctt	23
<210> 193 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PRIMER	
<400> 193 accatcataa atcgcctgat tc	22
<210> 194 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PRIMER	
<400> 194 acctgcggca tcttgtcctc	20
<210> 195 <211> 20	

<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PRIMER	
<400> 195 acgggtttat tttgcctctg	20
<21^> 196 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PRIMER	
<400> 196 cgccggtttc aggattcacg gg	22
<210> 197 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PRIMER	
<400> 197 ctgaacacg tgaaagccat	20

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 September 2002 (26,09,2002)

PCT

(10) International Publication Number WO 02/075507 A3

- (51) International Patent Classification7: A61K 39/102, 35/74, C12N 15/31, 15/63, C07K 14/285, 16/12, C12Q 1/18, G01N 33/68
- (21) International Application Number: PCT/US02/01971
- (22) International Filing Date: 17 January 2002 (17.01.2002)
- (25) Filing Language:
- English
- (26) Publication Language: English
- (30) Priority Data: 09/809,665
- 15 March 2001 (15.03.2001) US
- (71) Applicant (for all designated States except US): PHAR-MACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49007 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LOWERY, David, E. [US/US]; 1207 Woodland Drive, Portage, MI 49024 (US). FULLER, Troy, E. [US/US]; 111 Dreamfield Drive, Battle Creek, MI 49014 (US). KENNEDY, Michael, J. [US/US]; 2364 Quincy Avenue, Portage, MI 49024 (US).
- (74) Agent: WILLIAMS, Joseph, A., Jr.; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

- C12N 1/20, (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID. IL. IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG. SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
 - (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 12 September 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Variable anti-bacterial vaccine compositions

(57) Abstract: Gram negative bacterial virulence genes are identified, thereby allowing the identification of anti-bacterial agents that target these virulence genes and their products, and the provision of gram negative bacterial mutants useful in vaccines.

Relevant to claim No.

1-41

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N1/20 A61K39/102 A61K35/74 C12N15/31 C12N15/63 CO7K14/285 C07K16/12 C12Q1/18 G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Х

Minimum documentation searched (classification system followed by classification symbols) I PC $\,7\,$ C12N $\,$ A61K $\,$ C07K $\,$ C12Q $\,$ G01N

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EMBL, EPO-Internal, WPI Data, BIOSIS, MEDLINE

Category o Citation of document, with indication, where appropriate, of the relevant passages

DATABASE EMBL [Online]

^	10 February 2001 (2001-02-10) MAY B.J. ET AL.: "Pasteurella r PM70 section 152 of 204 of the genome"	nultocida complete	
х	Database accession no. AE00606/ XP002224305 nucleotides 3352-4146 & DATABASE EMBL [Online] Entry AE006064, 10 February 2001 (2001-02-10) MAY B.J. ET AL.: "Pasteurella r PM70 section 31 of 204 of the of genome"	multocida	5-23,25, 28
A	the whole document & BARBARA J. MAY ET AL.: "Com genomic sequence of Pasteurella Pm70" PROCEEDINGS OF THE NATIONAL ACA	a multocida,	1-41
X Furti	her documents are listed in the continuation of box C.	Patent family members are listed	in annex.
"A" docume consid "E" earlier of filing d "L" docume which citation "O" docume other r "P" docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another nor other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"I" later document published after the into or priority data and not in conflict with the conflict of the project or the terrention." "I document of particular relevance; the caranct to considered noved respect to the considered noved to particular relevance; the Cocument of particular relevance; the Cocument of particular relevance; the document is contributed with one or me ments, such conflictation being obvior in the art. "It document is contributed with one or me ments, such conflictation being obvior	eary underlying the slained invention the considered to current is taken alone slained invention ventive step when the re other such docu- us to a person skilled
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
1:	2 May 2003	16.0	5. 2003
Name and n	nalling address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Fijswijk, Tel. (431-70) 340-2040, Tx. 31 851 epo nl, Fax: (431-70) 340-3016	Authorized officer Montero Lopez, B	
Form PCT/ISA/2	210 (second sheet) (July 1992)		

C/Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/03 0	2/019/1
Category *	Citation of document, with indication, where appropriate, of the relevant passages		
oulogory	Ontain of decument, with indication, where appropriate, of the relevant passages		Relevant to claim No.
	SCIENCES OF USA, vol. 98, no. 6, 13 March 2091 (2001-03-13), pages 3460-3465, XP002202785 WASHINGTON USA, page 3463, right-hand column, paragraph 2 -page 3464, left-hand column, paragraph 1		
	COONEY ET AL: "Three contiguous lipoprotein genes in Pasteurella haemolytica AL which are homologous to a lipoprotein gene in Haemophilus influenza Type b" INFECTION AND IMMUNITY, AMERICAN SOCIETY		5-23,25, 28
	OF MICROBIOLOGY, MASHINGTON, DC, US, vol. 61, no. 11, November 1993 (1993-11), pages 4682-4688, XP002148894 ISSN: 0019-9567 abstract page 4683, left-hand column, last paragraph -page 4685, left-hand column, paragraph 1; figures 3,4		
	page 4686, right-hand column, paragraph 2		
	TROY E. FULLER ET AL.: "Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis" MICROBIAL PATHOGENESIS, vol. 29, 2000, pages 25-38, XP002224304 the whole document		1-41
		ļ	

orm PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)		
This Inte	rmational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:		
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:		
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:		
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).		
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)		
This Inter	national Searching Authority found multiple inventions in this international application, as follows:		
	see additional sheet		
1. 🔲 🛔	As all required additional search fees were timely paid by the applicant, this International Search Report covers all earchable claims.		
2	is all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment any additional fee.		
0	as only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: 1-41 partially		
4. N	o required additional search fees were timely paid by the applicant. Consequently, this International Search Report is stricted to the invention first mentioned in the claims; it is covered by claims Nos.:		
Remark or	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees,		

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-41 partially

Gram-negative bacteria comprising a mutation in a gene of sequence SEQ ID NO:1 resulting in decreased activity of the gene product; immunogenic composition comprising the bacteria; method of producing such mutant bacteria; nucleotide sequence comprising SEQ ID NO:1, vector and host cell comprising the same and use thereof to produce a polypeptide; encoded polypeptide of sequence SEQ ID NO:2; antibody against it; use of the polypeptide of sequence SEQ ID NO:2 for identifying antibacterial agents.

2. Claims: 1-41 partially

Idem as subject 1 for, respectively sequences SEQ ID NO:3 and 4; 7 and 8; 9 and 10; 21 and 22; 25 and 26.

3. Claims: 1-4, 21-23, 27, 28 partially

Gram-negative bacteria comprising a mutation in a gene of sequence SEQ ID NO:27 resulting in decreased activity of the gene product; immunogenic composition comprising the bacteria; nucleotide sequence comprising SEQ ID N

Claims: 1-41 partially

Idem as subject 1 for, respectively, sequences SEQ ID NOs:29 and 30; 39 and 40; 41 and 42; 51 and 52; 53 and 54; 55 and 56.

5. Claims: 1-28 partially

Gram-negative bacteria comprising a mutation in a gene of sequence SEQ ID NO:57 resulting in decreased activity of the gene product; immunogenic composition comprising the bacteria; method of producing such mutant bacteria; nucleotide sequence comprising SEQ ID NO:57.

6. Claims: 1-41 partially

Idem as subject 1 for, respectively sequences SEQ ID NOs:58 and 59; 60 and 61; 68 and 69; 72 and 73; 74 and 75; 76 and 77; 78 and 79; 80 and 81; 82 and 83; 84 and 85; 104 and 105; 108 and 109; 112 and 113; 116 and 117; 118 and 119; 120 and 121; 122 and 123; 124 and 125; 126 and 127; 128 and 129; 130 and 131

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

7. Claims: 5-26, 29-41 partially

Attenuated Pasteurellaceae bacteria comprising a mutation in a gene of sequence SEQ ID NO:11; immunogenic composition containing it; method of producing such mutant bacteria; nucleotide sequence comprising SEQ ID NO:11, vector and host cell comprising the same and use thereof to produce a polypeptide; encoded polypeptide of sequence SEQ ID NO:12; antibody against it; use of the polypeptide of sequence SEQ ID NO:22 for identifying antibacterial agents.

8. Claims: 5-26, 28-41 partially

Idem as subject 36 for, respectively, sequences SEQ ID NOs:13 and 14; 15 and 16; 17 and 18; 19 and 20; 23 and 24; 31 and 32; 33 and 34; 35 and 36; 37 and 38; 70 and 71; 100 and 101; 102 and 103; 106 and 107; 110 and 111; 114 and 115; 132 and 133; 134 and 135; 136 and 137; 138 and 139; 140 and 141; 142 and 143; 144 and 145; 146 and 147; 148 and 149; 150 and 151; 152 and 153; 154 and 155; 156 and 157; 158 and 159; 160 and 161

9. Claims: 5-26 partially

Attenuated Pasteurellaceae bacteria comprising a mutation in, respectively a gene of sequence SEQ ID NO:162 and 163; immunogenic composition containing it; method of producing such mutant bacteria; nucleotide sequence comprising SEQ ID NO:162 or 163.

10. Claims: 5-26, 28-41 partially

Idem as subject 36 for, respectively, sequences SEQ ID NOs:164 and 165; 166 and 167; 168 and 169; 170 and 171; 172 and 173; 174 and 175

name 2 of 2

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 September 2002 (26,09,2002)

PCT

(10) International Publication Number WO 02/075507 A3

- (51) International Patent Classification7: C12N 1/20. A61K 39/102, 35/74, C12N 15/31, 15/63, C07K 14/285, 16/12, C12Q 1/18, G01N 33/68
- (21) International Application Number: PCT/US02/01971
- (22) International Filing Date: 17 January 2002 (17.01.2002)
- (25) Filing Language:

English

English

- (26) Publication Language: (30) Priority Data: 09/809,665
 - 15 March 2001 (15.03.2001) US
- (71) Applicant (for all designated States except US): PHAR-MACIA & UPJOHN COMPANY [US/US]; 301 Henricita Street, Kalamazoo, MI 49007 (US).
- (72) Inventors: and
- (75) Inventors/Applicants (for US only): LOWERY, David, E. [US/US]; 1207 Woodland Drive, Portage, MI 49024 (US). FULLER, Trov, E. [US/US]; 111 Dreamfield Drive,
- Battle Creek, M1 *****

 (US/US); 2364 Quincy Avenue, Portage, M1 ****

 (74) Agent: WILLAM, Joseph, A., Jr.: Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, II. 60606 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT. AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM. HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN. YU. ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FL FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BE, BJ, CE, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
 - with amended claims
- (88) Date of publication of the international search report: 12 September 2003

Date of publication of the amended claims: 11 December 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

02/075507 A3

AMENDED CLAIMS

[received by the International Bureau on 11 July 2003 (11.07.03) original claims 1 to 41 have been amended by claims 1 to 29

WHAT IS CLAIMED IS:

- An attenuated Mannheimia bacteria comprising a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOS: 166, 168, 170, 172 and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.
 - The Mannheimia bacteria of claim 1 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.
- 10 3. The Mannheimia bacteria of claim 1 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
 - The Mannheimia bacteria of claim 1 wherein said mutation results in deletion of all or part of said gene.
 - The Mannheimia bacteria of claim 1 wherein the Mannheimia bacteria is Mannheimia haemolytica.
- 6. The *Mannheimia* bacteria of claim 5 wherein said mutation results in
 20 decreased expression of a gene product encoded by the mutated gene.
 - 7. The *Mannheimia* bacteria of claim 5 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
- The Mannheimia bacteria of claim 5 wherein said mutation results in deletion of all or part of said gene.
 - $9. \qquad \text{An immunogenic composition comprising the bacteria according to} \\$ any one of claims 1 through 8.

15

 A vaccine composition comprising the immunogenic composition according to claim 9 and a pharmaceutically acceptable carrier.

- The vaccine composition according to claim 10 further comprising an
 adjuvant.
 - 12. A method for producing a gram-negative bacteria mutant comprising the step of introducing a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOS: 166, 168, 170, 172, and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.

10

15

25

- 13. A method for producing an attenuated Mannheimia bacteria comprising the step of introducing a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOS: 166, 168, 170, 172, and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.
- A purified and isolated Mannheimia polymucleotide comprising a
 nucleotide sequence selected from the group consisting of nucleotide sequences set forth in SEO ID NOS: 166, 168, 170, 172 and 174.
 - A purified and isolated Mannheimia polynucleotide comprising a nucleotide sequence as set forth in SEQ ID NO: 166.
 - 16. A purified and isolated polynucleotide encoding a Mannheimia virulence gene product, or species homolog thereof, selected from the group consisting of:
 - a) the polynucleotide according to claim 14;

 b) polynucleotides encoding a polypeptide encoded by the polynucleotide of (a); and

c) polynucleotides that hybridize to the complement of the polynucleotides of (a) or (b) under moderate stringency conditions.

A purified and isolated Mannheimia polynucleotide encoding a
polypeptide selected from the group consisting of polypeptides having amino acid
sequences set forth in SEQ ID NOS: 167, 169, 171, 173, and 175.

10 18. The polynucleotide of claim 17 which is a DNA.

5

25

- 19. A vector comprising the DNA of claim 18.
- The vector of claim 19 that is an expression vector, wherein the DNA
 is operatively linked to an expression control DNA sequence.
 - A host cell stably transformed or transfected with the DNA of claim 18 in a manner allowing the expression of the encoded polypeptide in said host cell.
- 20 22. A method for producing a recombinant polypeptide comprising culturing the host cell of claim 21 in a nutrient medium and isolating the encoded polypeptide from said host cell or said nutrient medium.
 - 23. A purified polypeptide produced by the method of claim 22.

 A purified polypeptide comprising a polypeptide selected from the group consisting of polypeptides having amino acid sequences set forth in SEQ ID NOS: 167, 169, 171, 173, and 175.

An antibody that is specifically reactive with the polypeptide of claim

26. The antibody of claim 25 that is a monoclonal antibody.

5

27. A method of using the monoclonal antibody of claim 26 for identifying a bacteria of claims 1 or 5, comprising the steps of contacting an extract of bacteria with said monoclonal antibody and detecting the absence of binding of said monoclonal antibody.

10

15

28. A method of identifying an anti-bacterial agent comprising the steps of assaying potential agents for the ability to interfere with expression or activity of gene products represented by the amino acid sequences set forth in any one of SEQ ID NOS: 167, 169, 171, 173, and 175 and identifying an agent that interferes with expression or activity of said gene products.

 A method of identifying an anti-bacterial agent comprising the steps of:

a) measuring expression or activity of a gene product as set out in
 any one of SEO ID NOS: 167, 169, 171, 173, and 175;

- b) contacting the gene product in (a) with a test compound;
- c) measuring expression or activity of the gene product in the presence of the test compound; and
- d) identifying the test compound as an antibacterial agent when
 25 expression or activity of the gene product is decreased in the presence of the test compound as compared to expression or activity in the absence of the test compound.