

2강 식물 병의 원인 / 식물 병의 발생

충남대 응용생물학과 유승헌 명예교수

교재: 3장 식물 병의 원인

- 식물 병이란?
- 식물 병의 중요성
- 식물 병의 원인
- 발병의 3요인 (병 삼각형) 4
- 병원성, 감수성과 저항성
- 병원체의 영양흡수 양식 6

1 식물 병이란?

🚺 식물 병이란?

1. 식물의 기능

- 식량, 사료
- 섬유,목재, 의약품, 향료 등
- 화석식물: 지구의 연료 축적
- 쾌적한 환경 및 휴식처
- 건강한 생태계 (ecosystem)

식물 병이란?

2. 식물 병의 정의

식물 병이란?

- 병원체나 환경요인의 연속적인 자극에 의해 식물의 세포나 조직이 가지고 있는 대사의 흐름이 교 란되는 과정, 그 결과로서 식물은 형태나 생리기능의 이상 (異常)을 나타낸다 (객관적 개념)

- 식물이 왕성한 발육을 할 수 없다든지, 또는 식물 흉작의 원인이 되어 재배자에게 피해를 줄 경우 (주관적 개념) (예: 대나무 개화병)

건강한 식물 / 병든 식물

1 식물 병이란?

2. 식물 병의 정의

병과 상해

- 병 (diseases): 연속적인 자극에 의하여
- 병해: 병의 결과로 생긴 피해
- 상해 (injuries): (곤충 등) 일시적인 작용
- 으로 인한 이상(異常)

〈파밤나방 유충 잎 가해〉

현대농업: 집약적 관리와 많은 에너지를 투입하는 소모적인 농업 균일한 재배 환경, 대규모 집단 재배 = 병의 발생과 유행에 좋은 조건 식물 병의 발생과 유행은 농업이라고 하는 인간활동의 필연적 결과의 하나

3. 식물병리학 (plant pathology)이란?

- 식물에 병을 일으키는 병원체 및 환경 요인 (병의 원인)
- 이들 요인이 식물에 병을 일으키는 기작 (발병기작)
- 식물 병의 예방 및 방제법 (병의 관리) 을 연구하는 학문

- 식물 병이 인류의 역사와 문화에 미친 영향-

1. 고대 식물 병에 관한 기록

- -고대 바빌로니아 (기원 전 1900년경): 밀 깜부기병에 관한 기록
- 구약성경: 밀, 포도의 병에 관한 기록
- -고대 로마시대 (기원 전 715년경): 밀 녹병 피해—신에게 제사

2. 아일랜드 감자대흉년 (1845)

- 아일랜드 및 유럽의 <mark>감자 대흉년</mark> (1845)
- 아일랜드 100만명이 병과 기아로 사망, 200만명이 북미, 호주로 이주 (감자 대흉년으로 <mark>아일랜드 인구의 1/3 감소</mark>)

아일랜드 감자 대흉년 (Schumann, 1991)

2. 아일랜드 감자대흉년 (1845)

아일랜드 감자 대흉년 (Schumann, 1991)

감자 대흥년의 원인 에 대한 논쟁

- 신의 노여움, 악마의 저주
- 기관차(기차)에서 나오는 정전기
- 저온 다습한 기후

일부 식물학자들 병든 감자조직에서 자라는 곰팡이(균류) 확인

- 병의 원인 ?
- 병의결과? 대논쟁

2. 아일랜드 감자대흉년 (1845)

독일 식물학자 안톤 드바리 (Anton de Bary)

- 균류 (*Phytophthora infestans*)가 감자 역병의 원인임을 과학적으로 증명 (1862년)
- 현대 식물병리학의 탄생

Anton de Bary (Agrios, 2005)

2. 아일랜드 감자대흉년 (1845)

감자 역병의 대 발생은 단지 과거의 역사만이 아니다

감자 역병 대 발생의 예

- 1980년대 후반 ~ 1990년대 초: 유럽, 중동, 북미에 대발생 (1992년 미국에서 감자 역병으로 인한 손실: \$1billion)
- 2009년: 미국 북동부 유기농 재배농가에 대 발생
- 2009 ~ 2010년: 방글라데시, 인도 서부에서 35% 손실
- 개발도상국의 감자 역병으로 인한 연간 손실액: 약 \$3 billion

3. 인도 벼 깨씨무늬병 대발생 (1942)

인도 북동부 뱅갈 (Bengal)지역

- 1942년 벼깨씨무늬병 대발생으로 대흉년
- 1943년 벼 대 흉년으로 2백만명 기아로 사망

벼깨씨무늬병

4. 실론 (스리랑카)의 커피 녹병 대 발생 (1875)

왜 영국인들은 홍차를 마실까?

- 1600년대 커피는 영국 및 유럽의 인기있는 음료
- 1825년 실론 (영국 식민지) 커피 재배 시작
- 1870년 실론, 세계 최대 커피 생산국 (160,000 ha)
- 1875년 실론커피 녹병 대 발생
- 실론커피 재배 중단, 차나무로 대체
- 홍차: 영국인들의 주요 음료가 됨 (기호가 바뀜)

커피 재배지가 중남미 (브라질, 콜롬비아 등)로 이동

커피 녹병

4. 실론 (스리랑카)의 커피 녹병 대발생 (1875)

2012 ~ 2013 중미(Central America)에 커피 녹병 대 발생

- 과타멜라 70% 감수, 엘살바드로 74% 감수, 코스타리카 64% 감수

5. 바나나 시들음병 (Panama disease)(1960년대, 2014 - 2016)

- 1950년대 파나마에서 대발생 최초로 진단: Panama disease로 명명
- 1960년대 : 이 병으로 인해 그로 미셸 (Gros Michel) 품종 사라지다
- 병에 저항성인 신품종 카벤디쉬 (Cavendish) 등장, 보급
- -2010년대 병원균의 새로운 레이스 (TR-4) 발생으로 카벤디쉬도 발병
- 2014-16년: 전세계적인 바나나 재배의 위기

바나나시들음병

그로미셜바나나

카벤디쉬 바나나

6. 식물 병의 피해

- 농산물의 생산량 감소 (흉작)
- 농산물의 품질 저하
- 독성물질에 의한 인축 중독
- 자연의 경관미, 생태계 파괴
- 막대한 경제적 손실 초래 (수량 감소, 방제비용)

전 세계의 예상 연간 작물 손실

가능한 작물생산 (2002년 기준)	\$1.5 trillion
실질적 작 물 생산 (-36.5%)	\$950 billion
연간 작물 손실 (36.5%)	\$550 billon
- 병으로 인한 손실 (14.1%)	\$220 billion
- 해충으로 인한 손실 (10.2%)	\$150 billion
- 잡초로 인한 손실 (12.2%)	\$180 billion

(Agrios, 2005)

+ 병해충으로 인한 수확후 손실(6-12%)

3 식물 병의 원인

식물 병의 원인 (병원, 病原)

1. 전염성 원인 (생물성 원인)

- <mark>균류</mark> (진균, 유사균류)
- 원핵생물 (세균, 파이토플라스마)
- 바이러스, 바이로이드
- 선충
- 기생식물
- 기타: 응애, 원생동물 등

병원체 병원균

식물병원체의 형태와 크기 모식도 (Agrios, 2005)

식물 병의 원인 (병원, 病原)

2. 비전염성 원인 (비생물성 원인)

o 부적당한 토양조건: -부적당한 토양수분

-부적당한 토양 pH

-양분결핍

o 부적당한 기상조건: - 과도한 고온, 저온

-건조 및 과습

o 기타: -농약약해

-대기오염

-수질오염

4 발병의 3요인 (병 삼각형)

4] 발병의 3요인 (식물 병 삼각형)

고추 탄저병 발병의 요인

- 병원균 (탄저병균 *Colletotrichum acutatum*)
- 감수성인 고추
- 고온 다습한 환경 (장마철)

감자 역병 발병의 요인

- 병원균 (역병균 *Phytophthora infestans*)
- 감수성인 감자
- 저온 다습한 환경

발병의 3요인 (식물 병 삼각형)

<u>식물 병 삼각형 (disease triangle)</u>

- 식물의 발병에는 <mark>병원체, 기주식물,</mark> 발병에 좋은 환경 등 3요인이 필요하다
- 이 3요인의 상호작용을 삼각형으로 표시 한 것을 병 삼각형이라 한다.
- 삼각형의 각 변은 3요인을 표시,각 변의 길이는 각 요인의 양에 비례.

• <mark>소인</mark> : 식물체가 어떤 병원체에 감염 될 수 있는 소질

발병의 3요인 (식물 병 삼각형)

식물 병 삼각형 (disease triangle)

- 식물의 발병정도는 세 요인의 조합에 의하여 다르다.
- 세 요인을 정확히 파악하는 것은 병의 방제 를 위하여도 필요하다.
- 세 요인중에서 한 요인을 불완전하게 하면 발병이 성립되지 않음으로 병을 방제할 수 있다.
 - 농약 살포 : 병원체(주인) 배제
 - 저항성품종 이용 : 기주(소인) 배제
- 환경조절: 발병환경(유인) 배제

5 병원성, 감수성과 저항성

5

병원성, 감수성과 저항성

병원성 (pathogenicity): 병원체가 기주에 감염하여 병을 일으키는 능력

감수성 (susceptibility): 식물이 어떤 병에 걸리기 쉬운 성질.

감수체 (susceptibility): 감수성을 가지고 있는 식물

저항성 (resistance): 식물이 어떤 병에 잘 걸리지 않는 성질

면역성 (immunity): 병원체를 접종하여도 식물이 전혀 병에 걸리지 않는 성질

내병성 (tolerance): 식물이 감염되어도 수량 등 실질적 피해가 적은 성질

기주 (host): 기생체의 침입을 받아 병에 걸린 식물 (기주가 될 수 있는 식물을 포함)

6 병원체의 영양획득양식

6

|병원체의 영양획득 양식

- 기생체 (parasite): 전적으로 또는 부분 적으로 다른 살아있는 생물조직에서 양분을 흡수하는 균류나 세균.
- -부생체 (saprotroph): 생명이 없는 물질, 죽은 유기물에서 양분을 흡수하는 균류, 세균.

생물성 병원체는 모두 기생체이다. 기주식물로부터 영양을 얻는다 →

병원체의 영양획득 양식

그러나 모든 기생체가 병원체는 아니다!

- <mark>공생체 (symbiont)</mark>: 기생체중 병을 일으키지 않고 식물과 공생하면서 생활하는 것

한국방송통신대학교 Karea Naturial Open University 6 병원체의 영양획득 양식

병원체를 영양획득 양식에 의하여 분류하면:

1. 활물기생체 (biotrophic parasite)

- 살아 있는 식물세포에서만 영양을 흡수할 수 있다 (활물영양체, 절대기생체).
- 극히 일부를 제외하고는 실험실에서 인공배양되지 않는다. (예) 노균병균, 흰가루병균, 녹병균, 배추뿌리혹병균과 파이토플라스마

2. 사물기생체 (necrotrophic parasite)

- 살아 있는 식물세포와 조직을 공격적으로 침입하여 죽이고, 죽은 조직에서 양분을 흡수한다 (사물영양체, 비절대기생체).
- 침입과정에서 독소나 분해효소를 분비하여 기주조직을 파괴.
- (예) 균류중 잿빛곰팡이병균, 푸사리움시들음병균, 균핵병균, 피시움모잘록병균, 맥류붉은곰팡이병균,
- 옥수수깨씨무늬병균, 감자겹둥근무늬병균 등. 세균중 채소류무름병균

6 병원체의 영양획득양식

3. 반활물기생체 (hemibiotrophic parasite)

처음에는 활물기생(활물영양체) 단계를 거치고, 나중에는 사물기생 (사물영양체) 단계로 이어지는 병원체 (반활물영양체)

(예) 벼도열병균, 사과나무검은별무늬병균, 보리구름무늬병균, 토마토잎곰팡이병균, 감자역병균, 수박탄저병균 등

수박탄저병균 Colletotrichum orbiculare

교재: 4장 식물 병의 발생

- 병의 발생과정: 병환
- 접종원 및 전염원
- 3 전반
- 감염 및 발병
- 기주교대

1 병의 발생과정 : 병환

1

병의 발생과정 : 병환

- 식물의 전염성병에 있어서 균류, 세균과 같은 병원체는 기주식물에 병을 일으키고 계속해서 다음 기주로 전염되어 병의 발생 이 연속적으로 이어진다.
- 이와 같이 식물과 식물집단 내에서 어떤 병이 되풀이하여 발생하는 단계별 과정을 병환(disease cycle) 이라고 한다.

2 접종원 및 전염원

접종원 및 전염원

1. 접종원

접종원 (inoculum): 식물체에 도달 하거나 접촉하여 감염을 시작하는 병 원체의 모든 부분을 총칭, 균류는 포 자, 균사체의 조각, 균핵 등이, 세균, 파이토플라스마, 바이러스 등은 각각 의 세포나 개체가 모두 접종원이 된 다.

각종 접종원 (Agrios, 2005)

2 접종원 및 전염원

2. 전염원

전염원 (inoculum source): 접종원 (inoculum)의 소재, 즉 병원체가 존재하거나 잠복되어 있는 장소.

1차 전염원의 제거는 월동병원체를 박멸할 수 있어 식물 병의 예방법으로 중요.

전염원의 종류

2. 전염원

① 병든 식물의 조직 및 잔재

병든 볏짚: 벼도열병균, 벼깨씨무늬병균 등 병든 과수의 가지나 열매 : 사과탄저병균, 감귤궤양병균 등 병든 잎, 줄기, 열매 : 오이노균병균, 토마토겹둥근무늬병균, 딸기잿빛곰팡이병균 등 병든 식물의 잔재 제거는 병의 예방법으로 중요

② 병원체에 오염된 종자 및 영양번식기관

종자 : 벼키다리병균, 벼도열병균, 보리겉깜부기병균, 토마토시들음병균 등 덩이줄기 : 감자역병균, 감자둘레썩음병균, 감자Y바이러스 등 묘목: 과수뿌리혹병균, 자주날개무늬병균 등

2. 전염원

③ 병원체로 오염된 토양

채소류균핵병균의 균핵, 모잘록병균(*Pythium*균)의 난포자, *Fusarium*시들음병균의 후벽포자, 가지과풋마름병균, 맥류오갈바이러스 등

④ 잡초 및 곤충

잡초 : 벼흰잎마름병균 (겨풀, 둑새풀)

벼누른오갈병균 (둑새풀, 갈풀, 개밀)

오이모자이크바이러스 (별꽃, 물레나물, 개겨자)

곤충 : 벼줄무늬잎마름병바이러스(애멸구)

병원체의 전반

3 병원체의 전반

전반 방법

전반 (전염, dissemination): 병원체가 전염원 으로부터 기주식물로 이동하는 과정. 식물 병원체의 전반은 대체로 수동적이다.

병원체의 전반

1. 바람에 의한 전반 (풍매전반)

포자를 형성하는 균류의 가장 중요한 전반방법 (공기전염병)

- 벼도열병균: 미풍에 의해 분생포자경으로부터 이탈하여 기류를 타고 전염
- 밀줄기녹병균: 5,000m 상공에서도 여름포자 발견, 수백km까지 운반
- 배나무붉은별무늬병균: 향나무에서 소생자가 배나무로 이동 (약 2km)

밀줄기녹병균의 장거리 비산 (미국)

2. 물에 의한 전반 (수매전반)

빗물이나 관개수에 의하여 전염되는 병 (물전염병)

- · 유주포자를 형성하는 균류 : 배추무사마귀병균, 벼모썩음병균, 모잘록병균 고추역병균, 오이역병균 등
- · <mark>균핵</mark>을 형성하는 균류 : 벼잎집무늬마름병균
- · 세균 : 벼흰잎마름병균, 토마토풋마름병균 등
- ·식물기생선충
- · 포자를 형성하는 <mark>균류중</mark> 고추탄저병균, 사과나무부란병균 등 (분생포자는 끈끈한 점질물에 싸여 있어 빗물에 희석되어 비산)

3. 종자 및 묘목에 의한 전반 (종묘전반)

종자가 병원체를 매개하여 발생하는 병 (종자전염병)

보균 양식	주요 병원체
감염	벼도열병균(Pyricularia oryzae), 벼키다리병균(Gibberella fujikuroi), 보리겉깜부기병균(Ustilago nuda), 콩자주무늬병균(Cercospora kikuchi), 토마토시들음병균(Fusarium oxysporum f. sp. lycopersici), 콩모자이크바이러스(Soybean mosaic virus), 땅콩반문바이러스(Peanut mottle virus)
오염	보리속깜부기병균(Ustilago hordei), 밀비린깜부기병균(Tilletia caries), 무검은무늬병균(Alternaria japonica), 벼도열병균, 세균성벼알마름병균(Burkholderia glumae), 오이녹반모자이크바이러스(Cucumber green mottle mosaic virus), 토마토모자이크바이러스(Tomato mosaic virus)
혼입	맥류맥각병균(Claviceps purpurea var. purpurea) 채소류균핵병균(Sclerotinia sclerotiorum)

4. 토양전반

병원체가 토양 중에 생존하면서 식물을 침입하거나, 토양에 묻어서 타지역으로 이동 전염하는 병 (토양전염병)

토양서식균류: 모잘록병균(Pythium debaryanum, Rhizoctonia solani)

토마토시들음병균(Fusarium oxysporum)

토양침입균류: 맥류마름병균 (Gaeumannomyces graminis),

과수자주날개무늬병균 (Helicobasidium mompa)

바이러스: 토마토모자이크바이러스(ToMV), 오이녹반모자이크바이러스 (CGMMV)

등 20여종 바이러스, 선충매개바이러스, Olpidium매개 바이러스

5. 곤충에 의한 전반 (충매전반)

곤충에 의해 전반되는 병 (곤충전염병), 이 때 매개하는 곤충을 <mark>매개충 (insect vector)</mark>. 바이러스 매개충: 대부분 흡수구를 가진 진딧물류, 멸구류.

바이러스의 곤충전염양식

전염양식	전염형태	바이러스 획득시간	충체 내 잠복기간	전염능력 보유기간	주요 바이 러스 형태	주요 매개 충
비영속전 염	구침형	짧다(초 ~분)	없다	분~시	사상·소구 형	진딧물
영속전염	순환형 증식형	길다(시) 길다(시)	시~일 일~주	일~주 평생	소구형 소구형·대 구형·간 상	매미충·멸 구

③ 병원체의 전반

6. 기타 전반방법

- 접목전반: 과수바이러스병의 중요한 전염경로
- 접촉전반: 담배모자이크바이러스(TMV), 토마토모자이크바이러스(ToMV),
 오이녹반모자이크바이러스(CGMMV)
 (식물간의 접촉이나 곁순제거와 같은 농작업에 의해 전염)

4

감염 및 발병

1. 부착 및 인식

감염 (infection): 병원체가 감수성 식물과 접촉하여 제각기 기생자와 기주가 되는 과정, 감염의 과정은 병원체의 감수체 부착으로부터 시작하여 여러 단계를 거친다.

부착 (attachment): 전반에 의하여 기주식물에 도달한 병원체가 식물체의 표면에 접촉하는 것.

인식 (recognition): 병원체가 식물체와 접촉하면 식물체에서 병원체의 생장과 침입을 허락할 것인지 또는 저지할 것인지를 결정하는 단계.

2. 침입 (invasion)

균류, 세균, 바이러스의 기주체 침입 방법

- (1) 표피를 통한 직접침입 (각피침입): 균류
- (2) 자연개구(기공, 수공, 피목)를 통한 침입: 균류, 세균
- (3) 상처를 통한 침입 (상처침입):

균류, 세균, 바이러스

균류와 세균의 기주체 침입방법 (Schumann)

2. 침입

(1) 직접침입 (각피침입):

각종 균류(벼도열병균, 각종 흰가루병균, 각종 탄저병균, 벼잎집무늬마름병균 등)

벼잎집무늬마름병균: 감염욕 형성에 의한 각피침입

콩녹병균 여름포자 발아에 의한 각피침입

2. 침입

(2) 자연개구를 통한 침입:

- 기공침입: 벼도열병균, 흰가루병균 등 균류
- 수공침입: 벼흰잎마름병균, 양배추검은썩음

병균 등 세균

- <mark>피목침입: 뽕나무줄기마름병균등 균류,</mark> 감자더뎅이병균 등 세균
- (3) 상처침입
- <mark>균류</mark>: 고구마무름병균, 감귤푸른곰팡이병균 등
- 세균: 채소류무름병균, 과수뿌리혹병균 등
- 바이러스: 모든 바이러스

귀리관녹병균 여름포자의 기공을 통한 침입 모식도 (Sato, 1983)

3. 감염의 성립

병원체가 감수성식물에 부착하여 침입한 후 기주 식물로부터 영양을 획득하면서 정착할 때까지, 즉 영양 수수(授受)관계가 성립될 때 까지의 과정.

4. 발병

감염이 성립된 후 병원체가 기주 조직내에서 증식, 만연하여 병장이 나타나는 단계.

잠복기간 (incubation period): 감염으로부터 최초의 병징이 나타나는 기간

(벼 도열병: 4 - 10일, 잣나무 털녹병: 2 - 4년)

<u></u> 기주교대

5 기주교대

이종기생균: 두 종의 기주식물위에서 다른 번식체를 만들어 생활사를 완성하는 균.

기주교대: 두 종의 기주식물에서 이종기생을 하는 현상. 이때 경제적 가치가 적은 기주를 중간기주라고 한다.

이종기생을 하는 녹병균의 생활환에는 5종의 포자세대가 있다. 이들은 ①녹병포자 (정자), ②녹포자, ③여름포자, ④겨울포자, ⑤담자포자(소생자) 등이다.

녹병균중에는 5종의 포자를 전부 형성한 것도 있지만 (예: 밀줄기녹병균), 그중에서 몇 종만을 형성하여 (예: 배나무붉은별무늬병균, 사과나무붉은별무늬병균은 여름 포자 세대가 없다) 생활환을 되풀이하는 것도 있다.

배나무붉은별무늬병균의 기주교대

5 기주교대

이종기생하는 녹병균과 기주식물

	HOLE	기주식물		
녹병균	병이름	기주	중간기주	
Cronartium quercuum	소나무혹병	소나무속	졸참나무, 신갈나무	
C. ribicola	<u> </u>	잣나무	까치밥나무, 송이풀	
Gymnosporangium asiaticum	배나무붉은병무늬병	배나무, 모과나무	향나무	
G. yamadae	사과나무붉은별무늬병	사과나무	향나무	
Puccinia striiformis	맥류줄녹병	맥류	불명	
P. graminis	맥류줄기녹병	맥류	매자나무	
P. recondita	밀붉은녹병	밀	좀꿩의 다리	
Coleosporium asterum	소나무잎녹병	소나무속	참취	
Melampsora larci-populina	포플러잎녹병	포플러	낙엽송	

3강

'병원의 종류와 특성 (균류)' 입니다.

