Intervals, Transformations, and Slope Solution (version 134)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-2,2) \cup (6,9)$
Negative	$(-10, -2) \cup (2, 6)$
Increasing	$(-5,1) \cup (3,9)$
Decreasing	$(-10, -5) \cup (1, 3)$
Domain	(-10,9)
Range	(-10, 10)

Intervals, Transformations, and Slope Solution (version 134)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=37$ and $x_2=79$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 37 & 81 \\ 46 & 37 \\ 79 & 46 \\ 81 & 79 \\ \hline \end{array}$$

$$\frac{f(79) - f(37)}{79 - 37} = \frac{46 - 81}{79 - 37} = \frac{-35}{42}$$

The greatest common factor of -35 and 42 is 7. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-5}{6}$$

2