Exploratory Data Analysis in Finance Using PerformanceAnalytics

Brian G. Peterson & Peter Carl

¹Diamond Management & Technology Consultants Chicago, IL brian@braverock.com

> ²Guidance Capital Chicago, IL peter@braverock.com

UseR! International User and Developer Conference, Ames, Iowa, 8-10 Aug 2007

Outline

Visualization

Methods

Summary

Appendix: Set Up PerformanceAnalytics

Overview

- Exploratory data analysis with finance data often starts with visual examination to:
 - examine properties of asset returns
 - compare an asset to other similar assets
 - compare an asset to one or more benchmarks
- Application of performance and risk measures can build a set of statistics for comparing possible investments
- Examples are developed using data for six (hypothetical) managers, a peer index, and an asset class index
- Hypothetical manager data was developed from real manager timeseries using accuracy and perturb packages to disguise the data while maintaining some of the statistical properties of the original data.

Draw a Performance Summary Chart.

- > charts.PerformanceSummary(managers[,c(manager.col,indexes.cols)],
- + colorset=rich6equal, 1wd=2, ylog=TRUE)

HAM1 Performance

Show Calendar Performance.

```
> t(table.CalendarReturns( managers[,c(manager.col,indexes.cols)]) )
            1996 1997 1998 1999 2000
                                      2001
                                            2002 2003 2004 2005 2006
Jan
                       0.6 - 0.9 - 1.0
                                        0.8
Feb
                       4.3 0.9
                                1.2
                                             -1.2 -2.5 0.0
Mar
                       3.6
                            4.6
                                 5.8
                                       -1.1
Apr
            -0.9
                       0.8
                            5.1
                                 2.0
                                        3.5
                                              0.5
                                                   6.5 -0.4 -2.1
                                 3.4
May
                      1.2
                            3.3
                  1.5 -2.1
Jul
                            1.0
                                 0.5
                                             -7.5
                                                  1.8
                                                        0.0
Aug
                  2.4 -9.4 -1.7
                       2.5 - 0.4
                                 0.1
                                       -3.1
                                            -5.8
                                                   0.9
Sep
Oct
                       5.6 -0.1 -0.8
                                        0.1
                                              3.0
                                                  4.8 -0.1 -1.9
                 2.5
                      1.3 0.4 1.0
                                        3.4
                                             6.6
Nov
                       1.0
                           1.5 -0.7
                                        6.8
                                            -3.2
Dec
            13.6 20.4 6.1 16.1 17.7
                                      22.4
                                            -8.0 23.7 14.9 7.8 20.5
HAM1
EDHEC LS EQ NA 21.4 14.6 31.4 12.0
                                      -1.2 -6.4 19.3 8.6 11.3 11.7
SP500 TR
            23.0 33.4 28.6 21.0 -9.1 -11.9 -22.1 28.7 10.9 4.9 15.8
```

Calculate Statistics.

> table.Stats(managers[,c(manager.col,peers.cols)])

	HAM1	HAM2	HAM3	HAM4	HAM5	HAM6
Observations	132.0000	125.0000	132.0000	132.0000	77.0000	64.0000
NAs	0.0000	7.0000	0.0000	0.0000	55.0000	68.0000
Minimum	-0.0944	-0.0371	-0.0718	-0.1759	-0.1320	-0.0404
Quartile 1	0.0000	-0.0098	-0.0054	-0.0198	-0.0164	-0.0016
Median	0.0112	0.0082	0.0102	0.0138	0.0038	0.0128
Arithmetic Mean	0.0111	0.0141	0.0124	0.0110	0.0041	0.0111
Geometric Mean	0.0108	0.0135	0.0118	0.0096	0.0031	0.0108
Quartile 3	0.0248	0.0252	0.0314	0.0460	0.0309	0.0255
Maximum	0.0692	0.1556	0.1796	0.1508	0.1747	0.0583
SE Mean	0.0022	0.0033	0.0032	0.0046	0.0052	0.0030
LCL Mean (0.95)	0.0067	0.0076	0.0062	0.0019	-0.0063	0.0051
UCL Mean (0.95)	0.0155	0.0206	0.0187	0.0202	0.0145	0.0170
Variance	0.0007	0.0013	0.0013	0.0028	0.0021	0.0006
Stdev	0.0256	0.0367	0.0365	0.0532	0.0457	0.0238
Skewness	-0.6588	1.4580	0.7908	-0.4311	0.0738	-0.2800
Kurtosis	2.3616	2.3794	2.6829	0.8632	2.3143	-0.3489

Compare Distributions.

- > chart.Boxplot(managers[trailing36.rows, c(manager.col, peers.cols,
- + indexes.cols) |, main = "Trailing 36-Month Returns")

Trailing 36-Month Returns

Compare Distributions.

```
> layout(rbind(c(1,2),c(3,4)))
> chart.Histogram(managers[,1,drop=F], main = "Plain", methods = NULL)
> chart.Histogram(managers[,1,drop=F], main = "Density", breaks=40,
```

> chart.Histogram(managers[,1,drop=F], main = "Density"

+ methods = c("add.density", "add.normal"))

> chart.Histogram(managers[,1,drop=F], main = "Skew and Kurt", methods = c

+ ("add.centered", "add.rug"))

> chart.Histogram(managers[,1,drop=F], main = "Risk Measures", methods = c

+ ("add.risk"))

Show Relative Return and Risk.

- > chart.RiskReturnScatter(managers[trailing36.rows,1:8], Rf=.03/12, main =
- + "Trailing 36-Month Performance", colorset=c("red", rep("black",5), "orange",
- + "green"))

Trailing 36-Month Performance

Examine Performance Consistency.

- > charts.RollingPerformance(managers[, c(manager.col, peers.cols,
- + indexes.cols)], Rf=.03/12, colorset = c("red", rep("darkgray",5), "orange",
- + "green"), 1wd = 2)

Rolling 12 month Performance

Display Relative Performance.

```
> chart.RelativePerformance(managers[ , manager.col, drop = FALSE], 
+ managers[ , c(peers.cols, 7)], colorset = timBequal[-1], lwd = 2, legend.loc 
+ = "tooleft")
```


Compare to a Benchmark.

- > chart.RelativePerformance(managers[, c(manager.col, peers.cols)],
- + managers[, 8, drop=F], colorset = rainbow8equal, 1wd = 2, legend.loc =
- + "topleft")

Compare to a Benchmark.

- > table.CAPM(managers[trailing36.rows, c(manager.col, peers.cols)], + managers[trailing36.rows, 8, drop=FALSE], Rf = managers[trailing36.rows,
- + Rf.col, drop=F 1)

. Milcoi, diop i j,												
	HAM1	to	SP500	TR	HAM2	to	SP500	TR	HAM3	to	SP500	TR
Alpha		0.0051		0.0020			020			0.0	020	
Beta		0.6267			0.3223		223			0.6	320	
Beta+		0.8227		0.4176					0.8	240		
Beta-		1.1218			-0.0483					0.8	291	
R-squared		0.3829			0.1073						0.4	812
Annualized Alpha		0.0631			0.0247						0.0	243
Correlation		0.6188			0.3276						0.6	937
Correlation p-value		0.0001				0.0511					0.0	000
Tracking Error		0.0604			0.0790						0.0	517
Active Premium		0.0384			-0.0260					-0.0	022	
Information Ratio		0.6363			-0.3295				-0.0428			
Treynor Ratio		0.1741		0.1437				0.1	101			
	HAM4	to	SP500	TR	HAM5	to	SP500	TR	НАМб	to	SP500	TR
Alpha			0.0	009		0.0002					0.0	022
Beta		1.1282									0.8	150
Beta+		1.8430			1.0985					0.9	993	
Beta-		1.2223			0.5283						1.1	320
R-squared		0.3444			0.5209					0.4	757	
Annualized Alpha		0.0109			0.0030					0.0	271	
Correlation		0.5868			0.7218					0.6	897	
Correlation p-value		0.0002			0.0000					0.0	000	
Tracking Error		0.1073			0.0583					0.0	601	
Active Premium		0.0154			-0.0077					0.0		
Information Ratio		0.1433			-0.1319					0.2	296	
Treynor Ratio		0.0768			0.0734				0.1045			

Calculate Returns.

 The single-period arithmetic return, or simple return, can be calculated as

$$R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}} \tag{1}$$

Simple returns, cannot be added together. A multiple-period simple return is calculated as:

$$R_t = \frac{P_t}{P_{t-k}} - 1 = \frac{P_t - P_{t-k}}{P_{t-k}} \tag{2}$$

The natural logarithm of the simple return of an asset is referred to as the continuously compounded return, or log return:

$$r_t = ln(1 + R_t) = ln\frac{P_t}{P_{t-1}} = p_t - p_{t-1}$$
 (3)

Calculating log returns from simple gross return, or vice versa:

$$r_t = ln(1 + R_t), R_t = exp(r_t) - 1.$$
 (4)

Return.calculate or CalculateReturns (now deprecated) may be used to compute discrete and continuously compounded returns for data containing asset prices.

table.CAPM underlying techniques

Return.annualized — Annualized return using

$$prod(1 + R_a)^{\frac{scale}{n}} - 1 = \sqrt[n]{prod(1 + R_a)^{scale}} - 1$$
 (5)

TreynorRatio — ratio of asset's Excess Return to Beta β of the benchmark

$$\frac{(\overline{R_a - R_f})}{\beta_{a,b}} \tag{6}$$

- ActivePremium investment's annualized return minus the benchmark's annualized return
- Tracking Error A measure of the unexplained portion of performance relative to a benchmark, given by

TrackingError =
$$\sqrt{\sum \frac{(R_a - R_b)^2}{len(R_a)\sqrt{scale}}}$$
 (7)

InformationRatio — ActivePremium/TrackingError

Compare to a Benchmark.

- > charts.RollingRegression(managers[, c(manager.col, peers.cols), drop =
- + FALSE], managers[, 8, drop = FALSE], Rf = .03/12, colorset = redfocus, 1wd = + 2)
 - Polling 12 month Pogros

Rolling 12-month Regressions

Calculate Downside Risk.

> table.DownsideRisk(managers[,1:6],Rf=.03/12)

	HAM1	HAM2	HAM3	HAM4	HAM5	HAM6
Semi Deviation	0.0191	0.0201	0.0237	0.0395	0.0324	0.0175
Gain Deviation	0.0169	0.0347	0.0290	0.0311	0.0313	0.0149
Loss Deviation	0.0211	0.0107	0.0191	0.0365	0.0324	0.0128
Downside Deviation (MAR=10%)	0.0178	0.0164	0.0214	0.0381	0.0347	0.0161
Downside Deviation (Rf=3%)	0.0154	0.0129	0.0185	0.0353	0.0316	0.0133
Downside Deviation (0%)	0.0145	0.0116	0.0174	0.0341	0.0304	0.0121
Maximum Drawdown	0.1518	0.2399	0.2894	0.2874	0.3405	0.0788
Historical VaR (95%)	-0.0258	-0.0294	-0.0425	-0.0799	-0.0733	-0.0341
Historical ES (95%)	-0.0513	-0.0331	-0.0555	-0.1122	-0.1023	-0.0392
Modified VaR (95%)	-0.0342	-0.0276	-0.0368	-0.0815	-0.0676	-0.0298
Modified ES (95%)	-0.0610	-0.0614	-0.0440	-0.1176	-0.0974	-0.0390

Semivariance and Downside Deviation

 Downside Deviation as proposed by Sharpe is a generalization of semivariance which calculates bases on the deviation below a Minimumn Acceptable Return(MAR)

$$\delta_{MAR} = \sqrt{\frac{\sum_{t=1}^{n} (R_t - MAR)^2}{n}}$$
 (8)

- Downside Deviation may be used to calculate semideviation by setting MAR=mean(R) or may also be used with MAR=0
- Downside Deviation (and its special cases semideviation and semivariance) is useful in several performance to risk ratios, and in several portfolio optimization problems.

Value at Risk

- Value at Risk (VaR) has become a required standard risk measure recognized by Basel II and MiFID
- Traditional mean-VaR may be derived historically, or estimated parametrically using

$$z_c = q_p = qnorm(p) (9)$$

$$VaR = \bar{R} - z_c \cdot \sqrt{\sigma} \tag{10}$$

- Even with robust covariance matrix or Monte Carlo simulation, mean-VaR is not reliable for non-normal asset distributions
- For non-normal assets, VaR estimates calculated using GPD (as in VaR.GPD) or Cornish Fisher perform best
- Modified Cornish Fisher VaR takes higher moments of the distribution into account:

$$z_{cf} = z_c + \frac{(z_c^2 - 1)S}{6} + \frac{(z_c^3 - 3z_c)K}{24} + \frac{(2z_c^3 - 5z_c)S^2}{36}$$
(11)

$$modVaR = \bar{R} - z_{cf}\sqrt{\sigma}$$
 (12)

 Modified VaR also meets the definition of a coherent risk measure per Artzner,et.al.(1997)

Risk/Reward Ratios in PerformanceAnalytics

 SharpeRatio — return per unit of risk represented by variance, may also be annualized by

$$\frac{\sqrt[n]{prod(1+R_a)^{scale}} - 1}{\sqrt{scale} \cdot \sqrt{\sigma}}$$
 (13)

 Sortino Ratio — improvement on Sharpe Ratio utilizing downside deviation as the measure of risk

$$\frac{(\overline{R_a - MAR})}{\delta_{MAR}} \tag{14}$$

- Calmar and Sterling Ratios ratio of annualized return (Eq. 1) over the absolute value of the maximum drawdown
- Sortino's Upside Potential Ratio upside semdiviation from MAR over downside deviation from MAR

$$\frac{\sum_{t=1}^{n} (R_t - MAR)}{\delta_{MAR}} \tag{15}$$

 Favre's modified Sharpe Ratio — ratio of excess return over Cornish-Fisher VaR

$$\frac{(\overline{R_a - R_f})}{modVaR_{B_a P}} \tag{16}$$

Summary

- Performance and risk analysis are greatly facilitated by the use of charts and tables.
- ► The display of your infomation is in many cases as important as the analysis.
- PerformanceAnalytics contains several tool for measuring and visualizing data that may be used to aid investment decision making.
- Further Work
 - Additional parameterization to make charts and tables more useful.
 - Pertrac or Morningstar-style sample reports.
 - Functions and graphics for more complicated topics such as factor analysis and optimization.

Install PerformanceAnalytics.

- As of version 0.9.4, PerformanceAnalytics is available in CRAN
- Version 0.9.5 was released at the beginning of July
- Install with:
 - > install.packages("PerformanceAnalytics")
- ► Required packages include Hmisc, zoo, and Rmetrics packages such as fExtremes.
- Load the library into your active R session using:
 - > library("PerformanceAnalytics").

Load and Review Data.

- > data(managers)
- > head (managers)

	HAM1	HAM2	HAM3	HAM4	HAM5	HAM6	EDHEC	LS	EQ	SP500 TR	
1996-01-31	0.0074	NA	0.0349	0.0222	NA	NA			NA	0.0340	
1996-02-29	0.0193	NA	0.0351	0.0195	NA	NA			NA	0.0093	
1996-03-31	0.0155	NA	0.0258	-0.0098	NA	NA			NA	0.0096	
1996-04-30	-0.0091	NA	0.0449	0.0236	NA	NA			NA	0.0147	
1996-05-31	0.0076	NA	0.0353	0.0028	NA	NA			NA	0.0258	
1996-06-30	-0.0039	NA	-0.0303	-0.0019	NA	NA			NA	0.0038	
	US 10Y 7	TR US	3m TR								
1996-01-31	0.0038	30 0	.00456								
1996-02-29	-0.0353	32 0	.00398								
1996-03-31	-0.0105	57 0	.00371								
1996-04-30	-0.0173	39 0	.00428								
1996-05-31	-0.0054	13 0	.00443								
1996-06-30	0.0150	7 0	.00412								

Set Up Data for Analysis.

```
> dim(managers)
[1] 132 10
> managers.length = dim(managers)[1]
> colnames (managers)
 [1] "HAM1"
                  "НДМО"
                                 "HAMS"
                                               "HAM4"
                                                             "HAMS"
 [61 "HAM6"
             "EDHEC LS EO" "SP500 TR"
                                            "US 10Y TR"
                                                             "US 3m TR"
> manager.col = 1
> peers.cols = c(2,3,4,5,6)
> indexes.cols = c(7.8)
> Rf.col = 10
> #factors.cols = NA
> trailing12.rows = ((managers.length - 11):managers.length)
> trailing12.rows
 [11 121 122 123 124 125 126 127 128 129 130 131 132
> trailing36.rows = ((managers.length - 35):managers.length)
> trailing60.rows = ((managers.length - 59):managers.length)
> #assume contiquous NAs - this may not be the way to do it na.contiquous()?
> frInception.rows = (length(managers[,1]) -
+ length(managers[,1][!is.na(managers[,1])]) + 1):length(managers[,1])
```

Draw a Performance Summary Chart.

- > charts.PerformanceSummary(managers[,c(manager.col,indexes.cols)],
- + colorset=rich6equal, 1wd=2, ylog=TRUE)

HAM1 Performance

