

Statistics and Data Science for Engineers E178 / ME276DS

Statistical inference: Confidence intervals and Hypothesis tests

sample mean
Sample mean Inbrased sample variated Staged sample variance
Biased sample varions
Start Constitution of the start
Describble Numerial Numerial Results Expectation — K-means

Meaning: "Repeating this procedure many times, the proportion of those in which $\theta \in I_{N,\gamma}$ tends to γ ."

T. property of the calculation 7 S. 0¢ In, y. 0 DE INNI How do we calculate, such an interval Iv,8 mean(0,1,...) -> y

1. Have gn an unbiased estimator of θ 3 y: 3 n On. {Y;3, -> , -> , . 2. En is symmetric.

$$\widehat{\Theta}_{N} = \left[\widehat{\Theta}_{N} - \rho, \widehat{\theta}_{N} + \rho\right].$$

$$\widehat{\Theta}_{N} = \left[\widehat{\Theta}_{N} - \rho, \widehat{\theta}_{N} + \rho\right].$$

$$\frac{1-\vartheta}{2}$$

$$\frac{\hat{\Theta}_{N}}{\theta}$$

$$\frac{1-\vartheta}{2}$$

$$\frac{\hat{\Theta}_{N}}{\theta}$$

$$\frac{1-\vartheta}{2}$$

$$\frac{\hat{\Theta}_{N}}{\theta}$$

$$\frac{1-\vartheta}{2}$$

$$\frac{\hat{\Theta}_{N}}{\theta}$$

$$\frac{1-\vartheta}{2}$$

"Repeating this procedure many times, the proportion of those in which below tends to γ ."

Solution: Normalization.

$$\frac{1-8}{2} \quad \text{Toblem: I dow't know } \theta$$
Solution: Normalization.

Solution: Normalization.

$$\overline{7} = \frac{\widehat{\Theta}_{N} - \Theta}{\widehat{O}_{0N}}$$
 $\overline{7} = \frac{\widehat{P}_{N} - \Theta}{\widehat{O}_{0N}}$
 $\overline{P} = \frac{\widehat{P}_{N} - \Theta}{\widehat{P}_{N}}$
 $\overline{P} = \frac{\widehat{P}_{N} - \Theta}{\widehat{P}_{N}}$

become

 $\overline{P} = \frac{\widehat{P}_{N} - \Theta}{\widehat{P}_{N}}$

$$\begin{array}{c}
\overline{0} = \overline{0} - 1 \left(\frac{1 - \gamma}{2} \right) \\
\overline{0} = \overline{0} - 1 \left(\frac{1 - \gamma}{2} \right)
\end{array}$$

$$\overline{Q} = \left| \overline{Q}_{z}^{-1} \left(\frac{1-\delta}{2} \right) \right|$$

$$\overline{Q} = \left| \overline{Q}_{z} \left(\frac{1-\delta}{2} \right) \right|$$

$$\overline{Q} = \left| \overline{Q}_{z} \left(\frac{1-\delta}{2} \right) \right|$$

Summary: Confidence interval for θ

Problem:

Given 1.
$$\mathcal{D} = \{y_i\}_N \stackrel{\text{iid}}{\sim} Y$$
 ...

- 2. An unbiased estimator of θ : $\hat{\Theta}_N = g_N(Y_1, \dots, Y_N)$
- 3. $\hat{\Theta}_{N}$ is symmetric

find an interval $I_{N,\gamma}$ that contains θ with confidence γ .

$$I_{N,\gamma} = \hat{\theta}_N \pm \rho$$

Solution:
$$I_{N,\gamma} = \hat{\theta}_N \pm \rho$$
 with $\hat{\theta}_N = g_N(y_1,\dots,y_N)$

$$\rho = \sigma_{\hat{\Theta}_N} \left| \Phi_Z^{-1} \left(\frac{1-\gamma}{2} \right) \right|$$

$$Z$$
 = normalized $\hat{\Theta}_N$

Confidence interval for the mean of a normal distribution (σ_V known)

Problem: Given 1.
$$\mathcal{D}=\{y_i\}_N\stackrel{\mathrm{iid}}{\sim} \mathcal{N}(\mu_Y,\sigma_Y^2)$$
 _ \checkmark

2.
$$\bar{Y}_N$$
 is an unbiased estimator of μ_Y (sample mean) 3. $\bar{Y}_N = \mathcal{N}(\mu_Y, \sigma_Y^2/N)$ is symmetric

$$\overline{Y_N} = \mathcal{N}(\mu_Y, \sigma_Y^2/N) \text{ is symmetric } ... \text{ find an interval } I_{N,\gamma} \text{ that contains } \mu_Y \text{ with confidence } \gamma.$$

Solution:
$$I_{N,\gamma}=\hat{\mu}_N\pm\rho$$
 with $\hat{\mu}_N=rac{1}{N}\sum_{i=1}^N y_i$
$$\rho=rac{\sigma_Y}{\sqrt{N}}\left|\Phi_{\mathcal{N}}^{-1}\left(rac{1-\gamma}{2}
ight)\right|$$
 $Z=\mathcal{N}(0,1)$

Example

Process Y is Gaussian with $\sigma_V = 3$. Find a 90% confidence interval for μ_{ν} using the following data.

Solution

```
array([10.53834891, 14.78970656, 11.89977148, 4.77130213, 9.14813745,
      15.69801573, 14.95192423, 12.10085195, 2.65706828, 13.77066178,
       12.19813675. 10.76307477. 5.14012851. 7.03212572. 13.79827886])
```

```
\sim gamma = 0.9
N = D.shape[0] 🐾
   muhatN = D.mean()
   sigmaY = 3
```

сi

import scipy. stats as stats.

[9.343070733411258, 11.891267015064026]

ci = [muhatN-rho, muhatN+rho]

Using tables:

1.2742115209022402

rho

Lookup table

x	$\Phi_{\mathcal{N}}^{-1}(x)$
0.001	-3.090
0.0025	-2.807
0.005	-2.576
0.01	-2.326
0.025	-1.960
0.05	-1.645
0.1	-1.282
0.15	-1.036
0.2	-0.842
0.25	-0.674
0.3	-0.524
0.4	-0.253

Confidence interval for the mean of a normal distribution (σ_{Y} unknown)

- Solution: Estimate σ_Y from the data. ... using the brased sample variance.
- Instead of $Z = \frac{\bar{Y}_N \mu_Y}{\sigma_Y / \sqrt{N}}$ use $t = \frac{\bar{Y}_N \mu_Y}{S_N / \sqrt{N}}$ $\int_{N-1}^{N} \sum_{i=1}^{N} (y_i \mu_N)^2 dx$. Degrees of freedom.

The t distribution $(\dot{\nu}=N\!-\!1)$ 0.3 -0.2 -0.1 -

Nil large: t→N Nil small: t≠N Swin unboard sample variance

Example

Process Y is Gaussian with $\sigma_Y=3$. Find a 90% confidence interval for μ_Y using the same data as before.

Solution

$$\rho = \frac{\hat{G}_N}{|\nabla|} \left[\frac{1-\gamma}{2} \right]$$

Using tables:

$$N=15$$
 $\gamma=0.9 \rightarrow \frac{1-8}{2}=0.05$

```
invcdf = -1.761
rho = sigmahatN/np.sqrt(N) * abs(invcdf)
rho
```

1.8469460718408115

		TEN			
\boldsymbol{x}	$\nu = 1$		$\nu = 13$	v=14)
0.001	-318.3		-3.852	-3.787	
0.0025	-127.3		-3.372	-3.326	
0.005	-63.65		-3.012	-2.977	
0.01	-31.82		-2.650	-2.624	
0.025	-12.70		-2.160	-2.145	
0.05	-6.314	•••	-1.771	-1.761	
0.1					7
	-3.078		-1.350	-1.345	
0.15	-3.078 -1.963		-1.350 -1.079	-1.345 -1.076	
0.15	5.5.5				
	-1.963		-1.079	-1.076	
0.2	-1.963 -1.376		-1.079 -0.870	-1.076 -0.868	
0.2	-1.963 -1.376 -1.000		-1.079 -0.870 -0.694	-1.076 -0.868 -0.692	

B. (x)

Confidence interval for the mean of a Bernoulli r.v.

Problem: Given 1.
$$\mathcal{D}=\{y_i\}_N\stackrel{\mathrm{iid}}{\sim}\mathcal{B}(p)$$
 $\mathcal{D}=\{1,0,0,1,\zeta: \hat{p}: \frac{2}{4}\}_N$

- 2. \bar{Y}_N is the sample mean (unbiased estimator of p)

 $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\sum_{n=1$

Solution: $I_{N,\gamma} = \hat{p} \pm \rho$

with $\hat{p} = \frac{1}{N} \sum_{i=1}^{N} y_i \quad \text{and} \quad N^{+}$

Side note:
$$\begin{array}{c} \text{Side note:} \\ \mathcal{B}in \to \mathcal{N} \\ \text{as } N \to \infty \\ \text{by CLT.} \end{array}$$

$$\rho = \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{N}} \left| \Phi_{\mathcal{N}_{i}}^{-1} \left(\frac{1-\gamma}{2} \right) \right|$$

$$Z = \mathcal{N}(0,1)$$

$$\hat{G}_{N} = \hat{\rho}(1-\hat{\rho})$$

$$\hat{G}_{N} = \hat{\rho}(1-\hat{\rho})$$

$$V_{N} = \hat{\rho}(1-\hat{\rho})$$

$$V_{N} = \hat{\rho}(1-\hat{\rho})$$

$$V_{N} = \hat{\rho}(1-\hat{\rho})$$

Example (from Navidi ch. 5.2)

A soft-drink manufacturer purchases aluminum cans from an outside vendor. A random sample of 70 cans is selected from a large shipment, and each is tested for strength by applying an increasing load to the side of the can until it punctures. Of the 70 cans, 52 meet the specification for puncture resistance. Find a 95% confidence interval for the proportion of cans in the shipment that meet the specification.

```
gamma = 0.95
N = 70
Np = 52
phat = Np/N
rho = np.sqrt(phat*(1-phat)/N) * abs(stats.norm.ppf((1-gamma)/2))
rho
```

0.10238561784264202

```
I = [phat-rho,phat+rho]
I
```

[0.6404715250145009, 0.8452427606997849]

2. A parameter Point
$$G_{\gamma}^{2}$$
 (Var[Y]).

3. C.I. on mean.

Estimator: IN
$$\longrightarrow$$
 $T = MN^{\frac{1}{2}}$?

Estimator: IN
$$\longrightarrow T^{2}$$
 MN?

Estimate: $\widehat{\mu}_{N}$

4. $\widehat{\rho} = \underbrace{\widehat{\nabla} Y}_{N} \left[\underbrace{\nabla}_{N} \left(1 - \sigma \right) \right]$

Variant #1 Sknown -- Ty nunknown... On W becomes t(0). But V When N > 30 Then we can use CLT. to assert In is Gaussian regardless of the distribution of Y

Hypothesis tests

0 ... p

Given: Null hypothesis: $H_0: \theta = x$

Alternate hypothesis: $H_1: \theta \neq x$ or $\theta < x$ or $\theta > x$

Choose between two statements

- \rightarrow H_0 is rejected in favor of H_1 .
 - H_0 is *not* rejected in favor of H_1 .

Types of Error

Type I: H_0 is rejected when it is true. Type II: H_0 is not rejected when it is false... If H_0 a criminal as free.

1. Presume (Assume 1	innocenc	e)			• •	0 (• •	• •		• •	•			•	• • •	•		
2. Collect evid	_				• •	0 0		• •	0 0		• •	 •	• •		 •	• •	•	0	• •
3. Estimale	likelihoo	. . .	of	e e	110	en	cc	 W NO	ςu ce	NG	eng	 •	• •	•	 •	• •	•		

Ho: My = 250 { 248, 249, 250} H. : My < 250. O. Assume Ho is true. 1. Sample mean estimater — un binsed. - 249 Mn = 1/3 (248+249+250) Yn = \frac{1}{3} \frac{7}{2} \cdot \tau: 250.

2. Assume In is Ganssien. Y is Gaussiden or (N>30) 3. Assume Know Ty

The Tay Th

$$\begin{array}{lll}
\Phi_{\vec{\gamma}_{N}}(\tau) = \alpha & & & & & & & & \\
P-value = \Phi_{\vec{\gamma}_{N}}(\hat{\mu}_{N}) & & & & & \\
\vdots & \tau = \Phi_{\vec{\gamma}_{N}}(\alpha) & & & & & & \\
Reject Ho \iff \hat{\mu}_{N} < \tau & & & & & \\
\end{array}$$
Reject Ho \iff pvalue $< \alpha$

$$\frac{\sqrt{\sqrt{N}}}{\sqrt{N}} = \frac{\sqrt{\sqrt{N}}}{\sqrt{N}} = \frac{\sqrt{\sqrt{N}}}{\sqrt{N}} = \frac{\sqrt{\sqrt{N}}}{\sqrt{N}} = \frac{\sqrt{N}}{\sqrt{N}} = \frac{N}{\sqrt{N}} = \frac{N}{$$

Normalize

7 = 0 [(2)

Case
$$\sqrt{y}$$
 is unknown (and $\sqrt{30}$)... otherwise use Garssian of the Garssian (and $\sqrt{15}$ Gaussian)... required for using the $\sqrt{10}$ $\sqrt{10$

General procedure

- 10.
 - 1. Choose a significance level α (e.g. $\alpha = 0.05$).
 - 2. Use the estimator to compute $\hat{\theta}_N$.
 - 3. Assume H_0 is true. Normalize the estimator and the estimate.
 - 4. Use tables or software to find the rejection region. or ρ -value
 - 5. Determine whether the estimate falls within the rejection region.

or in pralue

Given
$$\mathcal{D}=\{248,249,250\}\stackrel{\text{iid}}{\sim} Y$$
 test: $H_0:\mu_Y=250$ $Y=\mathcal{N}(\mu_Y,25)$ 1. $\alpha=0.05$

$$Y = \mathcal{N}(\mu_Y, 25)$$

$$\alpha = 0.05$$

est:
$$H_0: \mu_Y = 250$$

$$H_1: \mu_Y < 250$$

2.
$$\hat{\mu}_N = 249$$
 is a sample from \bar{Y}_N

3.
$$\frac{249-250}{5/\sqrt{3}}=-0.346$$
 is a sample from $Z=\frac{Y_N-\mu_Y}{\sigma_Y/\sqrt{N}}$

4.
$$au = \Phi_Z^{-1}(0.05) = -1.645$$
 rejection region: $(-\infty, -1.645]$

5.
$$-0.346 \notin (-\infty, -1.645)$$
 \Rightarrow H_0 is not rejected.

Possible H_1 's

$$\alpha = \frac{\alpha}{2}$$

$$H_1: \mu < x$$

$$H_1: \mu \neq x$$

$$H_1: \mu > x$$

$$\frac{1}{\sqrt{\frac{2^{2}}{6^{4}}/\sqrt{2^{2}}}}$$

$$\frac{1}{\sqrt{\frac{2^{2}}{6^{4}}/\sqrt{2^{2}}}}$$

$$\frac{1}{\sqrt{\frac{2^{2}}{6^{4}}/\sqrt{2^{2}}}}$$

$$\frac{1}{\sqrt{\frac{2^{2}}{6^{4}}/\sqrt{2^{2}}}}$$

Variations

- 1. H.T. on the mean of a normal distribution, unknown σ_Y .
 - $N > 30 \Rightarrow \text{use } \mathcal{N}(0,1)$
 - $N < 30 \Rightarrow \text{use } t(\nu)$
- 2. H.T. on the mean of a Bernoulli distribution. N > 30.

Example (Navidi 8.10)

8.10 The hardness of a certain rubber (in degrees Shore) is claimed to be 65. Fourteen specimens are tested, resulting in an average hardness measure of 63.1 and a standard deviation of 1.4. Is there sufficient evidence to reject the claim, at the 5% level of significance? What assumption is necessary for your answer to be valid?

```
N = 14
muhat = 63.1
sigmahat = 1.4
alpha = 0.05

tau = abs(stats.t(df=N-1).ppf(alpha/2))
tau
```

2.160368656461013

```
t = (muhat-65)/(sigmahat/np.sqrt(N))
t
```

-5.07796359633606

$$D = \{ 1.4 \}_{14}$$
 $C_1 = \{ 3.1 \}_{14}$
 $C_1 = \{ 3.1 \}_{14}$

0.0002117763591137853

N is small
$$=$$
 to distribution. $t = \frac{\ln - Q}{\ln \sqrt{5n}}$

N is boundary $t = \frac{\ln - 65}{\ln \sqrt{5n}} = \frac{-5}{5}$

Normalize $t = \frac{\ln - 65}{\ln \sqrt{5n}} = \frac{-5}{5}$

Don't reject $=$ $t = \frac{1}{5}$

Don't reject $=$ $t = \frac{1}{5}$

P-value: 2 \$\frac{1}{4}(t) = 0.0002