General Linear Model (GLM)

Mario E. Bermonti-Pérez, MA, PhD

```
*****
Welcome to faux. For support and examples visit:
https://debruine.github.io/faux/
- Get and set global package options with: faux_options()
*****
-- Attaching packages ----- tidyverse 1.3.2 --
v ggplot2 3.3.6 v purrr 0.3.4
v tibble 3.1.8
              v dplyr 1.0.9
v tidyr
      1.2.0 v stringr 1.4.1
v readr 2.1.2 v forcats 0.5.2
-- Conflicts ----- tidyverse conflicts() --
x purrr::%||%() masks faux::%||%()
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
```

Objectives

- Understand the basic concepts of the GLM
- Understand the usefulness of the GLM
- Understand how the GLM underlies most stats methods
- Understand the basic process of applying the GLM

GLM basics

What is the GLM?

Form

Examples

- Attention -> WM
- \bullet Art -> Sustained attention
- ADHD -> Innatention
- Intervention -> Selective attention
- Musical training \rightarrow EF

Familiar? - Regression

Form

•
$$= () + error$$

•
$$Y = (0 + 1) +$$

•
$$Y = (0 + 1 + 2) +$$

Study effects

- Relationship
- Difference between groups

What does a difference mean?

Usefulness

• Existence: statistical significance

• Size: effect size, parameter

GLM with different variables

Lets see the variables

Phonological loop span

Ready?

Volunteer

8
4
0
3
7
1
2
Numbers?
$8\; 4\; 0\; 3\; 7\; 1\; 2$
Selective attention
Ready?
Stroop task
Bottom up, left to right

Go

Back to GLM with different variables

First, there were data

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Tip: 2 centers = 2 pops

Differences between 2 groups?

Process

Group by attentional level

Estimate mean

Warning: `fun.y` is deprecated. Use `fun` instead.

Why the mean?

Estimate relationship (difference)

Warning: `fun.y` is deprecated. Use `fun` instead.

Compare 2 means? - t-test

Line?

Line not in regression??

GLM form

GLM analysis

Call:

lm(formula = wm_span ~ group, data = data_2_groups)

Residuals:

Min 1Q Median 3Q Max -2.64816 -0.65335 0.01536 0.66437 2.62743

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.9081 0.1018 38.40 <2e-16 ***
groupnormal attention 5.1368 0.1439 35.69 <2e-16 ***
--
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.018 on 198 degrees of freedom Multiple R-squared: 0.8654, Adjusted R-squared: 0.8648 F-statistic: 1274 on 1 and 198 DF, p-value: < 2.2e-16

familiar output?

A step further...

Differences between 4 groups

Process

Group by attentional level

Estimate mean

Warning: `fun.y` is deprecated. Use `fun` instead.

Estimate relationship (difference)

Warning: `fun.y` is deprecated. Use `fun` instead.

Warning: Ignoring unknown parameters: method

Compare 4 means? - ANOVA

Line?

GLM form

GLM form 2 vs 4 groups

Difference?

GLM analysis

Call:

lm(formula = wm_span ~ group, data = data_4_groups)

Residuals:

Min 1Q Median 3Q Max -3.13545 -0.73191 0.00175 0.71779 3.14206

Coefficients:

 group normal attention 4.0379 0.1517 26.63 <2e-16 *** group superior attention 8.1193 0.1517 53.54 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.072 on 396 degrees of freedom Multiple R-squared: 0.8875, Adjusted R-squared: 0.8866 F-statistic: 1041 on 3 and 396 DF, p-value: < 2.2e-16

severe deficit as baseline

A step further...

Numeric predictors

Attention and WM

Estimate relationship

graph type?

Estimate relationship line

`geom_smooth()` using formula 'y ~ x'

Relationships 2 numeric variables? - Correlation/Regression

GLM form

GLM analysis

Call:
lm(formula = wm ~ attention, data = data_cont_vars)

Residuals:

Min 1Q Median 3Q Max -3.6430 -1.1998 -0.0126 1.1976 3.3804

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.44587 0.69153 3.537 0.00062 ***
attention 0.11169 0.01633 6.841 6.82e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.591 on 98 degrees of freedom Multiple R-squared: 0.3232, Adjusted R-squared: 0.3163 F-statistic: 46.8 on 1 and 98 DF, p-value: 6.825e-10

Summary of models

Difference?

Numeric = More levels

More levels = More info

Closing

Conclusions

- GLM underlies most stats methods
- Simple but powerful idea
- Use variables to predict variables
- Effects = relationships, differences

Questions or Comments

Further resources

- Andy Field Lectures YouTube
- Field, A. (2017). Discovering Statistics Using IBM SPSS Statistics (5th ed.). London: Sage Publications. Chapter 2.

Bonus

• Always GLM

GLM subtypes

