AJAY KUMAR GARG ENGINEERING COLLEGE, GHAZIABAD Department of Applied Science & Humanities

Pre-University Test

Course: B. Tech.

Session: 2024-25

Subject: Engineering Mathematics - II

Max Marks: 70 ODE Damaele

Semester: IInd

Section: (S1-S9&S11-S20)

Sub. Code: BAS203

Time: 3 hrs.

Q. No.	1	12	T3	14	15	6	17	8	10	T 10	111	1 12	112	1	1.5	T	
CO No.	1	1	2	12	1	1	-	0	12	10	11	12	13	14	15	16	17
and of the state o	-	-	4	4	3	4	5	2	2	3	1	1	4	4	5	5	3
Bloom's Level	LI	L3	LI	LI	L4	L5	L4	L3	L5	L3	LI	L4	L2	L5	L2	L5	L5
Weightage (CO4: 16			-	-	-	-	-						We	ightag	e CO	5: 16

Note: Answer all the sections.

Section-A

A. Attempt all the parts.

 $(7 \times 2 = 14)$

1. Find P.I. of $(D+1)^3y = 2e^{-x}$

2. Determine the differential equation whose set of independent is $\{x, xe^x\}$.

3. Find the Laplace of u(t-2). (t-2).

4. Find the Laplace transformation of $F(t) = \begin{cases} t, 0 < t < 4 \\ 5, t > 4 \end{cases}$.

5. Test the convergence or divergence of whose nth terms is $\left[\sqrt{n^2+1}-\sqrt{n^2-1}\right]$.

(c) If $f(z) = -x^2 + xy + y^2 + i(ax^2 + cy^2 + bxy)$ is analytic then find the value of a, b and c.

7-Discuss the singularity of $f(z) = \sin\left(\frac{1}{z-a}\right)$.

Section-B

B. Attempt any three.

(3 X 7=21)

8. Solve the Differential equations by Laplace transformation y'' + y' - 2y = t, y(0) = 1, y'(0) = 0.

9. Find the Laplace transformation of $L \left| \frac{\sin 3t \cdot \cos t}{t} \right|$.

10. Test the series $\frac{14}{1^3} + \frac{24}{2^3} + \frac{34}{2^3} + \frac{34}{2^3$

11. Solve $\frac{d^2x}{dt^2} + y = \sin t, \frac{d^2y}{dt^2} + x = \cos t.$

12. Use the variation of parameter method solve differential equation $(x^2D^2 - 4xD + 6)y = \sin(\log x)$

18. Attempt any one.

- (a) If $u+v=\frac{2\sin 2x}{e^{2y}+e^{-2y}-2\cos 2x}$ and is an analytic function of z=x+iy, find f(z).
- (b) Show that $f(z) = \sin z$ is Holomorphic everywhere and also prove the real part of f(z) is Harmonic.

14. Attempt any one.

- (a) Examine the nature of the function $f(z) = \begin{cases} \frac{xy^2(x+iy)}{x^2+y^4}, z \neq 0 \\ 0, z = 0 \end{cases}$ in the region including the origin
- (b) Find a bilinear transformation which maps the points i,-i,1 of the z-plane into $0,1,\infty$ of the w-plane respectively.

15. Attempt any one.

- (a) Expand the $f(z) = \frac{1}{(z+1)(z+3)}$ in the regions (i) |z| < 1 (ii) 1 < |z| < 3 (iii) |z| > 3
- (b) Use Cauchy Integral formula Evaluate $\int \frac{z}{z^2 3z + 2} dz$, Where C is the circle $|z 2| = \frac{1}{2}$.

16. Attempt any one.

- (a) Nerify Cauchy integral theorem for $f(z) = z^2$ in the domain 1 + i, 1 i, -1 + i and -1 i.
- (b) Evaluate the integral $\int_{0}^{\infty} \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z+2)} dz$ by using Cauchy's Residue theorem integration.

Where C is the circle |z| = 3.

17. Attempt any one.

- (a) Expand $f(x) = x \sin x$, $0 < x < 2\pi$ as a Fourier series.
- (b) Find the Half range cosine series for the function $f(x) = \sin\left(\frac{\pi x}{l}\right)$, 0 < x < l.

HoD Sign