

... T R G L<sub>13</sub> L<sub>14</sub> G C I<sub>17</sub> I<sub>18</sub> T S L<sub>21</sub> T ...



FIG. 1



**FIG. 2**



**FIG. 3**



**FIG. 4**

0102030405060708090A0B0C0D0E0F0



**FIG. 5A**



**FIG. 5B**



**FIG. 5C**

## FIG. 6

| Seq | ID | NO : 1  | 1                                                                                               | 2 | 3 | 4 | 5 | 6 |
|-----|----|---------|-------------------------------------------------------------------------------------------------|---|---|---|---|---|
| Seq | ID | NO : 3  | 5                                                                                               | 0 | 0 | 0 | 0 | 0 |
| Seq | ID | NO : 12 |                                                                                                 |   |   |   |   |   |
| Seq | ID | NO : 14 | -MAPITAYAQQTTRGLGCIIITSLTGRDKNQVEGEVQIVSTAQAQTLFLATCINGVCWTVYHAGTIA                             |   |   |   |   |   |
| Seq | ID | NO : 16 | MKKRGSVVIVGRIVL-NG-AYAQQTRGLGCIIITSLTGRDKNQVEGEVQIVSTAQAQTLFLATCINGVCWTVYHAGTIA                 |   |   |   |   |   |
| Seq | ID | NO : 18 | MKKRGSVVIVGRIVL-NG-AYAQQTRGEEGCOETSQTGRDKNQVEGEVQIVSTAQAQTLFLATCINGVCWTVYHAGTIA                 |   |   |   |   |   |
| Seq | ID | NO : 20 | MKKRGSVVIVGRIVL-MKKRGSVVIVGRIVL-NG-AYAQQTRGEEGCOETSQTGRDKNQVEGEVQIVSTAQAQTLFLATCINGVCWTVYHAGTIA |   |   |   |   |   |
| Seq | ID | NO : 22 | MKKRGSVVIVGRIVL-MKKRGSVVIVGRIVL-NG-AYAQQTRGEEGCOETSQTGRDKNQVEGEVQIVSTAQAQTLFLATCINGVCWTVYHAGTIA |   |   |   |   |   |
| Seq | ID | NO : 24 | MKKRGSVVIVGRIVL-NG-AYAQQTRGLGCIIITSLTGRDKNQVEGEVQIVSTAQAQTLFLATCINGVCWTVYHAGTIA                 |   |   |   |   |   |
| Seq | ID | NO : 1  | 7                                                                                               | 8 | 9 | 1 | 1 | 1 |
| Seq | ID | NO : 3  | 0                                                                                               | 0 | 0 | 0 | 2 | 4 |
| Seq | ID | NO : 12 |                                                                                                 |   |   |   |   |   |
| Seq | ID | NO : 14 | SPKGPVIQMYTNVDKDLVLGWPAPQGSRSLLTPCTCGSSDLYLVLTRHADVIPVRRRGDSRGSLISPRPISYLKGSGGPLLC              |   |   |   |   |   |
| Seq | ID | NO : 16 | SPKGPVIQMYTNVDKDLVLGWPAPQGSRSLLTPCTCGSSDLYLVLTRHADVIPVRRRGDSRGSLISPRPISYLKGSGGPLLC              |   |   |   |   |   |
| Seq | ID | NO : 18 | SPKGPVIQMYTNVDKDLVLGWPAPQGSRSLLTPCTCGSSDLYLVLTRHADVIPVRRRGDSRGSLISPRPISYLKGSGGPLLC              |   |   |   |   |   |
| Seq | ID | NO : 20 | SPKGPVIQMYTNVDKDLVLGWPAPQGSRSLLTPCTCGSSDLYLVLTRHADVIPVRRRGDSRGSLISPRPISYLKGSGGPLLC              |   |   |   |   |   |
| Seq | ID | NO : 22 | SPKGPVIQMYTNVDKDLVLGWPAPQGSRSLLTPCTCGSSDLYLVLTRHADVIPVRRRGDSRGSLISPRPISYLKGSGGPLLC              |   |   |   |   |   |
| Seq | ID | NO : 24 | SPKGPVIQMYTNVDKDLVLGWPAPQGSRSLLTPCTCGSSDLYLVLTRHADVIPVRRRGDSRGSLISPRPISYLKGSGGPLLC              |   |   |   |   |   |
| Seq | ID | NO : 1  | 1                                                                                               | 6 | 7 | 1 | 1 | 1 |
| Seq | ID | NO : 3  | 0                                                                                               | 0 | 0 | 0 | 0 | 0 |
| Seq | ID | NO : 12 |                                                                                                 |   |   |   |   |   |
| Seq | ID | NO : 14 | PAGHAVGIFRAAVCTRGVAKAVDFIPVESLETTMRS--                                                          |   |   |   |   |   |
| Seq | ID | NO : 16 | PAGHAVGIFRAAVCTRGVAKAVDFIPVESLETTMRS--                                                          |   |   |   |   |   |
| Seq | ID | NO : 18 | PAGHAVGIFRAAVCTRGVAKAVDFIPVESLETTMRS--                                                          |   |   |   |   |   |
| Seq | ID | NO : 20 | PAGHAVGIFRAAVCTRGVAKAVDFIPVESLETTMRS--                                                          |   |   |   |   |   |
| Seq | ID | NO : 22 | PAGHAVGIFRAAVCTRGVAKAVDFIPVESLETTMRS--                                                          |   |   |   |   |   |
| Seq | ID | NO : 24 | PAGHAVGIFRAAVCTRGVAKAVDFIPVESLETTMRS--                                                          |   |   |   |   |   |



**FIG. 7**



**FIG. 8**

1.00 A

M A P I T A Y A Q Q T R G L L G C I I T  
 1 ATGGCTCCGAT CACCGCTTA CGCTCAGCAG ACCCGTGGTC TGCTGGTTG CATCATCAC  
 TACCGAGGCT AGTGGCGAAT GCGAGTCGTC TGGGCACCAG ACGACCCAAC GTAGTAGTGG

S L T G R D K N Q V E G E V Q I V S T A  
 61 TCCCTGACCG GTCGTGACAA AAACCAGGTT GAAGGTGAAG TTCAGATCGT TTCCACCGCT  
 AGGGACTGGC CAGCACTGTT TTTGGTCCAA CTTCCACTTC AAGTCTAGCA AAGGTGGCGA

A Q T F L A T C I N G V C W T V Y H G A  
 121 GCTCAGACCT TCCTGGCTAC CTGCATCAAC GGTGTTGCT GGACCGTTA CCACGGTGCT  
 CGAGTCTGGA AGGACCGATG GACGTAGTTG CCACAAACGA CCTGGCAAAT GGTGCCACGA

G T R T I A S P K G P V I Q M Y T N V D  
 181 GGTACCCGTA CCATCGCTTC CCCGAAAGGT CCGGTTATCC AGATGTACAC CAACGTTGAC  
 CCATGGGCAT GGTAGCGAAG GGGCTTTCCA GGCCAATAGG TCTACATGTG GTTGCAACTG

K D L V G W P A P Q G S R S L T P C T C  
 241 AAAGACCTGG TTGGTTGGCC GGCTCCGCAG GGTTCCCGTT CCCTGACCCC GTGCACCTGC  
 TTTCTGGACC AACCAACCGG CCGAGGCGTC CCAAGGGCAA GGGACTGGGG CACGTGGACG

G S S D L Y L V T R H A D V I P V R R R  
 301 GGTCCCTCCG ACCTGTACCT GGTTACCCGT CACGCTGACG TTATCCCGT TCGTCGTCGT  
 CCAAGGAGGC TGGACATGGA CCAATGGCA GTGCGACTGC AATAGGGCCA AGCAGCAGCA

G D S R G S L L S P R P I S Y L K G S S  
 361 GGTGACTCCC GTGGTCCCT GCTGCCCCG CGTCCGATCT CCTACCTGAA AGGTTCCCTCC  
 CCACTGAGGG CACCAAGGG CAACAGGGGC GCAGGCTAGA GGATGGACTT TCCAAGGAGG

G G P L L C P A G H A V G I F R A A V C  
 421 GGTGGTCCGC TGCTGTGCCG GGCTGGTCAC GCTGTTGGTA TCTTCCGTGC TGCTGTTGC  
 CCACCAAGGGC ACGACACGGG CCGACCAAGTG CGACAACCAT AGAAGGCACG ACGACAAACG

T R G V A K A V D F I P V E S L E T T M  
 481 ACCCGTGGTG TTGCTAAAGC TGTTGACTTC ATCCCGGTTG AATCCCTGGA AACCAACCATG  
 TGGGCACCAC AACGATTTCG ACAACTGAAG TAGGGCCAAC TTAGGGACCT TTGGTGGTAC

R S \*  
 541 CGTCCCTGA  
 GCAAGGACT

**FIG. 9**

M K K K G S V V I V G R I V L N G A Y A  
 1 ATGAAAAAAA AAGGTTCCGT TGTTATCGTC GGCGTATAG TACTGAACGG TGCTTACGCT  
 TACTTTTTT TTCCAAGGCA ACAATAGCAG CCGGCATATC ATGACTTGCC ACGAATGCGA

Q Q T R G L L G C I I T S L T G R D K N  
 61 CAGCAGACTC GAGGTCTGCT GGGTTGCATC ATCACCTCCC TGACCGGTG TGACAAAAAC  
 GTCGTCTGAG CTCCAGACGA CCCAACGTAG TAGTGGAGGG ACTGGCCAGC ACTGTTTTG

Q V E G E V Q I V S T A A Q T F L A T C  
 121 CAGGTTGAAG GTGAAGTTCA GATCGTTCC ACCGCTGCTC AGACCTTCCT GGCTACCTGC  
 GTCCAACCTC CACTTCAAGT CTAGCAAAGG TGGCGACGAG TCTGAAAGGA CCGATGGACG

I N G V C W T V Y H G A G T R T I A S P  
 181 ATCAACGGTG TTTGCTGGAC CGTTTACCAAC GGTGCTGGTA CCCGTACCAT CGCTTCCCCG  
 TAGTTGCCAC AAACGACCTG GCAAATGGTG CCACGACCAT GGGCATGGTA GCGAAGGGGC

K G P V I Q M Y T N V D K D L V G W P A  
 241 AAAGGTCCGG TTATCCAGAT GTACACCAAC GTTGACAAAG ACCTGGTTGG TTGGCCGGCT  
 TTTCCAGGCC AATAGGTCTA CATGTGGTTG CAACTGTTTC TGGACCAACC AACCGGCCGA

P Q G S R S L T P C T C G S S D L Y L V  
 301 CCGCAGGGTT CCCGTTCCCT GACCCCGTGC ACCTGCGGTT CCTCCGACCT GTACCTGGTT  
 GGCGTCCCAA GGGCAAGGG A CTGGGGCACG TGGACGCCAA GGAGGCTGGA CATGGACCAA

T R H A D V I P V R R R G D S R G S L L  
 361 ACCCGTCACG CTGACGTTAT CCCGGTTCGT CGTCGTGGTG ACTCCCGTGG TTCCCTGCTG  
 TGGGCAGTGC GACTGCAATA GGGCCAAGCA GCAGCACCAAC TGAGGGCAC AAGGGACGAC

S P R P I S Y L K G S S G G P L L C P A  
 421 TCCCCCGCGTC CGATCTCCTA CCTGAAAGGT TCCTCCGGTG GTCCGCTGCT GTGCCCGGCT  
 AGGGGCGCAG GCTAGAGGAT GGACTTCCA AGGAGGCCAC CAGGCGACGA CACGGGCCGA

G H A V G I F R A A V C T R G V A K A V  
 481 GGTCAAGCTG TTGGTATCTT CCGTGCTGCT GTTTGCACCC GTGGTGTG TAAAGCTGTT  
 CCAGTGCAC AACCATAGAA GGCACGACGA CAAACGTGGG CACCACAACG ATTCGACAA

D F I P V E S L E T T M R S P \*  
 541 GACTTCATCC CGGTTGAATC CCTGGAAACC ACCATGCGTT CCCCCGTGA  
 CTGAAGTAGG GCCAACTTAG GGACCTTGG TGGTACGCAA GGGGCACT

**FIG. 10**

|           |      |   |   |   | L <sub>13</sub> | L <sub>14</sub> |   | I <sub>17</sub> | I <sub>18</sub> |   | L <sub>21</sub> |   |   |   |   |   |
|-----------|------|---|---|---|-----------------|-----------------|---|-----------------|-----------------|---|-----------------|---|---|---|---|---|
| Wild-type | (5)  | Q | Q | T | R               | G               | L | L               | G               | C | I               | I | T | S | L | T |
| Helix0-1  | (6)  | . | . | . | .               | .               | E | E               | .               | . | Q               | E | . | . | Q | . |
| Helix0-3  | (7)  | . | . | . | .               | .               | E | E               | .               | . | Q               | Q | . | . | E | . |
| Helix0-4  | (8)  | . | . | . | .               | .               | N | Q               | .               | . | E               | K | . | . | E | . |
| Helix0-7  | (9)  | . | . | . | .               | .               | E | Q               | .               | . | Q               | K | . | . | H | . |
| Helix0-8  | (10) | . | . | . | .               | .               | E | Q               | .               | . | D               | E | . | . | E | . |
| Helix0-10 | (11) | . | . | . | .               | .               | E | E               | .               | . | E               | Q | . | . | E | . |

FIG. 11

M K K K G S V V I V G R I V L N G A Y A  
 1 ATGAAAAAAA AAGGATCCGT TGTTATCGTC GGCGTATAG TACTAACGG TGCTTACGCT  
 TACTTTTTT TTCCTAGGCA ACAATAGCAG CGGCATATC ATGACTTGCC ACGAATGCGA  
  
 Q Q T R G E E G C Q E T S Q T G R D K N  
 61 CAGCAGACTC GAGGTGAGGA GGGTTGCCAA GAAACCTCCC AGACCGGTG TGACAAAAAC  
 GTCGTCTGAG CTCCACTCCT CCCAACGGTT CTTGGAGGG TCTGGCCAGC ACTGTTTG  
  
 Q V E G E V Q I V S T A A Q T F L A T C  
 121 CAGGTTGAAG GTGAAGTTCA GATCGTTCC ACCGCTGCTC AGACCTTCCT GGCTACCTGC  
 GTCCAACCTTC CACTTCAAGT CTAGCAAAGG TGGCGACGAG TCTGGAAGGA CCGATGGACG  
  
 I N G V C W T V Y H G A G T R T I A S P  
 181 ATCAACGGTG TTTGCTGGAC CGTTTACAC GGTGCTGGTA CCCGTACCAT CGCTCCCCG  
 TAGTTGCCAC AACGACCTG GCAAATGGTG CCACGACCAT GGGCATGGTA GCGAAGGGC  
  
 K G P V I Q M Y T N V D K D L V G W P A  
 241 AAAGGTCCGG TTATCCAGAT GTACACCAAC GTTGACAAAG ACCTGGTTGG TTGGCCGGCT  
 TTTCCAGGCC AATAGGTCTA CATGTGGTG CAACTGTTTC TGGACCAACC AACCGGCCGA  
  
 P Q G S R S L T P C T C G S S D L Y L V  
 301 CCGCAGGGTT CCCGTCCCT GACCCCGTGC ACCTGGTGT CCTCCGACCT GTACCTGGTT  
 GGCCTCCCAA GGGCAAGGGGA CTGGGGCACG TGGACGCCAA GGAGGCTGGA CATGGACCAA  
  
 T R H A D V I P V R R R G D S R G S L L  
 361 ACCCGTCACG CTGACGTTAT CCCGGTTCGT CGTCGTGGTG ACTCCCGTGG TTCCCTGCTG  
 TGGGCAGTGC GACTGCAATA GGGCCAAGCA GCAGCACAC TGAGGGCACCC AAGGGACGAC  
  
 S P R P I S Y L K G S S G G P L L C P A  
 421 TCCCCGCGTC CGATCTCCTA CCTGAAAGGT TCCTCCGGTG GTCCGCTGCT GTGCCCGGCT  
 AGGGGCGCAG GCTAGAGGAT GGACTTCCA AGGAGGCCAC CAGGCGACGA CACGGGCCGA  
  
 G H A V G I F R A A V C T R G V A K A V  
 481 GGTCACGCTG TTGGTATCTT CCGTGCTGCT GTTTGCACCC GTGGTGTG TAAAGCTGTT  
 CCAGTGCAC ACCATAGAA GGCACGACGA CAAACGTGGG CACCACAACG ATTCGACAA  
  
 D F I P V E S L E T T M R S P \*  
 541 GACTTCATCC CGGTGAATC CCTGGAAACC ACCATGCGTT CCCCGTGA  
 CTGAAGTAGG GCCAACTTAG GGACCTTGG TGGTACGCAA GGGGCACT

**FIG. 12**

M K K K G S V V I V G R I N L S G D T A  
 1 ATGAAAAAAA AAGGATCCGT TGTTATCGTC GGCGTATCA ACCTGTCCGG TGACACCGCT  
 TACTTTTTT TTCCCTAGGCA ACAATAGCAG CGGGCATAGT TGGACAGGCC ACTGTGGCGA

Y A Q Q T R G E E G C Q E T S Q T G R D  
 61 TACGCTCAGC AGACTCGAGG TGAGGAGGGT TGCCAAGAAA CCTCCCAGAC CGGTCGTGAC  
 ATGCGAGTCG TCTGAGCTCC ACTCCTCCC ACGGTTCTT GGAGGGTCTG GCCAGCACTG

K N Q V E G E V Q I V S T A A Q T F L A  
 121 AAAAACCAAGG TTGAAGGTGA AGTTCAAGATC GTTTCCACCG CTGCTCAGAC CTTCTGGCT  
 TTTTGTCG AACTTCCACT TCAAGTCTAG CAAAGGTGGC GACGAGTCTG GAAGGACCGA

T C I N G V C W T V Y H G A G T R T I A  
 181 ACCTGCATCA ACGGTGTTG CTGGACCGTT TACCACGGTG CTGGTACCCG TACCATCGCT  
 TGGACGTAGT TGCCACAAAC GACCTGGCAA ATGGTGCCAC GACCATGGGC ATGGTAGCGA

S P K G P V I Q M Y T N V D K D L V G W  
 241 TCCCCGAAAG GTCCGGTTAT CCAGATGTAC ACCAACGTTG ACAAAAGACCT GGTTGGTTGG  
 AGGGGCTTTC CAGGCCAATA GGTCTACATG TGGTGCAAC TGTTCTGGA CCAACCAACC

P A P Q G S R S L T P C T C G S S D L Y  
 301 CCGGCTCCGC AGGGTTCCCG TTCCCTGACC CCGTGCACCT GCGGTTCCCT CGACCTGTAC  
 GGCGAGGCG TCCCAAGGGC AAGGGACTGG GGCACGTGGA CGCCAAGGAG GCTGGACATG

L V T R H A D V I P V R R R G D S R G S  
 361 CTGGTTACCC GTCACGCTGA CGTTATCCCG GTTCGTCGTC GTGGTGAUTC CCGTGGTTCC  
 GACCAATGGG CAGTGCAGACT GCAATAGGGC CAAGCAGCAG CACCACTGAG GGCACCAAGG

L L S P R P I S Y L K G S S G G P L L C  
 421 CTGCTGTCCC CGCGTCCGAT CTCCCTACCTG AAAGGTTCCCT CCGGTGGTCC GCTGCTGTGC  
 GACGACAGGG GCGCAGGCTA GAGGATGGAC TTTCCAAGGA GGCCACCAGG CGACGACACG

P A G H A V G I F R A A V C T R G V A K  
 481 CCGGCTGGTC ACGCTGTTGG TATCTCCGT GCTGCTGTT GCACCCGTGG TGTTGCTAAA  
 GGCGACCAAGG TGCGACAACC ATAGAAGGCA CGACGACAAA CGTGGGCACC ACAACGATTT

A V D F I P V E S L E T T M R S P \*  
 541 GCTGTTGACT TCATCCCGT TGAATCCCTG GAAACCACCA TGCCTCCCC GTGA  
 CGACAACTGA AGTAGGGCCA ACTTAGGGAC CTTGGTGGT ACGCAAGGGG CACT

**FIG. 13**

M K K K G S V V I V G R I N L S G D T A  
 1 ATGAAAAAAA AAGGATCCGT TGTTATCGTC GGCGTATCA ACCTGTCCGG TGACACCGCT  
 TACTTTTTT TTCCTAGGCA ACAATAGCAG CCGGCATAGT TGGACAGGCC ACTGTGGCGA

Y A Q Q T R G E E G C Q E T S Q T G R D  
 61 TACGCTCAGC AGACTCGAGG TGAGGAGGGT TGCCAAGAAA CCTCCCAGAC CGGTCGTGAC  
 ATGCGAGTCG TCTGAGCTCC ACTCCTCCCA ACGGTTCTT GGAGGGTCTG GCCAGCACTG

K N Q V E G E V Q I V S T A T Q T F L A  
 121 AAAAACCAAGG TTGAAGGTGA AGTTCAAGATC GTTCCACCG CTACCCAGAC CTTCCCTGGCT  
 TTTTGGTCC AACTTCCACT TCAAGTCTAG CAAAGGTGGC GATGGGTCTG GAAGGACCGA

T C I N G V C W T V Y H G A G T R T I A  
 181 ACCTGCATCA ACGGTGTTG CTGGACCGTT TACCACGGTG CTGGTACCCG TACCATCGCT  
 TGGACGTAGT TGCCACAAAC GACCTGGCAA ATGGTGCCAC GACCATGGC ATGGTAGCGA

S P K G P V T Q M Y T N V D K D L V G W  
 241 TCCCCGAAAG GTCCGGTTAC CCAGATGTAC ACCAACGTTG ACAAAAGACCT GGTTGGTTGG  
 AGGGGCTTTC CAGGCCAATG GGTCTACATG TGGTTGCAAC TGTTCTGGA CCAACCAACC

Q A P Q G S R S L T P C T C G S S D L Y  
 301 CAGGCTCCGC AGGGTTCCCG TTCCCTGACC CCGTGCACCT GCGGTTCTC CGACCTGTAC  
 GTCCGAGGCG TCCCAAGGGC AAGGGACTGG GGCACGTGGA CGCCAAGGGAG GCTGGACATG

L V T R H A D V I P V R R R G D S R G S  
 361 CTGGTTACCC GTCACGCTGA CGTTATCCCG GTTCGTCGTC GTGGTGACTC CCGTGGTTCC  
 GACCAATGGG CAGTGCAGT GCAATAGGGC CAAGCAGCAG CACCACTGAG GGCACCAAGG

L L S P R P I S Y L K G S S G G P L L C  
 421 CTGCTGTCCC CGCGTCCGAT CTCCCTACCTG AAAGGTTCCCT CCGGTGGTCC GCTGCTGTGC  
 GACGACAGGG GCGCAGGCTA GAGGATGGAC TTTCCAAGGA GGCCACCAAGG CGACGACACG

P A G H A V G I F R A A V C T R G V A K  
 481 CCGGCTGGTC ACGCTGTGG TATCTCCGT GCTGCTGTT GCACCCGTGG TGTTGCTAAA  
 GGCCGACCAAGG TGCGACAACC ATAGAAGGCA CGACGACAAA CGTGGGCACC ACAACGATT

A V D F I P V E S L E T T M R S P \*  
 541 GCTGTTGACT TCATCCCGT TGAATCCCTG GAAACCACCA TGCCTTCCCC GTGA  
 CGACAACTGA AGTAGGGCCA ACTTAGGGAC CTTGGTGGT ACGCAAGGGG CACT

**FIG. 14**

M K K K G S V V I V G R I N L S G D T A  
 1 ATGAAAAAAA AAGGATCCGT TGTTATCGTC GGCGTATCA ACCTGTCCGG TGACACCGCT  
 TACTTTTTT TTCCTAGGCA ACAATAGCAG CGGCATAGT TGGACAGGCC ACTGTGGCGA

Y A Q Q T R G E E G C Q E T S Q T G R D  
 61 TACGCTCAGC AGACTCGAGG TGAGGAGGGT TGCCAAGAAA CCTCCCAGAC CGGTCGTGAC  
 ATGCGAGTCG TCTGAGCTCC ACTCCTCCA ACGGTTCTT GGAGGGTCTG GCCAGCACTG

K N Q V E G E V Q I V S T A T Q T F L A  
 121 AAAAACCAAGG TTGAAGGTGA AGTTCAAGATC GTTCCACCG CTACCCAGAC CTTCCCTGGCT  
 TTTTGGTCC AACTCCACT TCAAGTCTAG CAAAGGTGGC GATGGGTCTG GAAGGACCGA

T S I N G V L W T V Y H G A G T R T I A  
 181 ACCTCCATCA ACGGTGTTCT GTGGACCGTT TACCACGGTG CTGGTACCCG TACCATCGCT  
 TGGAGGTAGT TGCCACAAGA CACCTGGCAA ATGGTGCCAC GACCATGGGC ATGGTAGCGA

S P K G P V T Q M Y T N V D K D L V G W  
 241 TCCCCGAAAG GTCCGGTTAC CCAGATGTAC ACCAACGTTG ACAAAAGACCT GGTTGGTTGG  
 AGGGGCTTTC CAGGCCAATG GGTCTACATG TGGTTGCAAC TGTTCTGGA CCAACCAACC

Q A P Q G S R S L T P C T C G S S D L Y  
 301 CAGGCTCCGC AGGGTTCCCG TTCCCTGACC CCGTGCACCT GCGGTCCCTC CGACCTGTAC  
 GTCCGAGGCG TCCCAAGGGC AAGGGACTGG GGACGTGGA CGCCAAGGAG GCTGGACATG

L V T R H A D V I P V R R R G D S R G S  
 361 CTGGTTACCC GTCACGCTGA CGTTATCCCG GTTCGTCGTC GTGGTGAETC CCGTGGTTCC  
 GACCAATGGG CAGTGCAGACT GCAATAGGGC CAAGCAGCAG CACCACTGAG GGCACCAAGG

L L S P R P I S Y L K G S S G G P L L C  
 421 CTGCTGTCCC CGCGTCCGAT CTCCTACCTG AAAGGTTCCCT CCGGTGGTCC GCTGCTGTGC  
 GACGACAGGG GCGCAGGCTA GAGGATGGAC TTTCCAAGGA GGCCACCAAGG CGACGACACG

P A G H A V G I F R A A V S T R G V A K  
 481 CCGGCTGGTC ACGCTGTTGG TATCTTCCGT GCTGCTGTT CCACCCGTGG TGTTGCTAAA  
 GGCCGACCAG TGCGACAACC ATAGAAGGCA CGACGACAAA GGTGGGCACC ACAACGATTT

A V D F I P V E S L E T T M R S P \*  
 541 GCTGTTGACT TCATCCCGT TGAATCCCTG GAAACCACCA TGCGTTCCCC GTGA  
 CGACAACTGA AGTAGGGCCA ACTTAGGGAC CTTGGTGGT ACGCAAGGGG CACT

**FIG. 15**

M K K K G S V V I V G R I N L S G D T A  
 1 ATGAAAAAAA AAGGATCCGT TGTTATCGTC GGCGTATCA ACCTGTCCGG TGACACCGCT  
 TACTTTTTT TTCCTAGGCA ACAATAGCAG CCGGCATAGT TGGACAGGCC ACTGTGGCGA

Y A Q Q T R G E Q G C Q K T S H T G R D  
 61 TACGCTCAGC AGACTCGAGG TGAGCAGGGT TGCCAGAAGA CCTCCCACAC CGGTCGTGAC  
 ATGCGAGTCG TCTGAGCTCC ACTCGTCCC ACGGTCTTCT GGAGGGTGTG GCCAGCACTG

K N Q V E G E V Q I V S T A T Q T F L A  
 121 AAAAACCAAGG TTGAAGGTGA AGTTCAGATC GTTCCACCG CTACCCAGAC CTTCCGGCT  
 TTTTGGTCC AACTTCACT TCAAGTCTAG CAAAGGTGGC GATGGGTCTG GAAGGACCGA

T S I N G V L W T V Y H G A G T R T I A  
 181 ACCTCCATCA ACGGTGTTCT GTGGACCGTT TACCACGGTG CTGGTACCCG TACCATCGCT  
 TGGAGGTAGT TGCCACAAGA CACCTGGCAA ATGGTGCCAC GACCATGGGC ATGGTAGCGA

S P K G P V T Q M Y T N V D K D L V G W  
 241 TCCCCGAAAG GTCCGGTTAC CCAGATGTAC ACCAACGTTG ACAAAAGACCT GGTTGGTTGG  
 AGGGGCTTTC CAGGCCATG GGTCTACATG TGGTTGCAAC TGTTCTGGA CCAACCAACC

Q A P Q G S R S L T P C T C G S S D L Y  
 301 CAGGCTCCGC AGGGTTCCCG TTCCCTGACC CCGTGCACCT GCGGTTCCCTC CGACCTGTAC  
 GTCCGAGGCG TCCCAAGGGC AAGGGACTGG GGCACGTGGA CGCCAAGGAG GCTGGACATG

L V T R H A D V I P V R R R G D S R G S  
 361 CTGGTTACCC GTCACGCTGA CGTTATCCCG GTTCGTCGTC GTGGTGACTC CCGTGGTTCC  
 GACCAATGGG CAGTGCAGACT GCAATAGGGC CAAGCAGCAG CACCACTGAG GGCACCAAGG

L L S P R P I S Y L K G S S G G P L L C  
 421 CTGCTGTCCC CGCGTCCGAT CTCCTACCTG AAAGGTTCCCT CCGGTGGTCC GCTGCTGTGC  
 GACGACAGGG GCGCAGGCTA GAGGATGGAC TTTCCAAGGA GGCCACCAAGG CGACGACACG

P A G H A V G I F R A A V S T R G V A K  
 481 CCGGCTGGTC ACGCTGTTGG TATCTTCCGT GCTGCTGTT CCACCCGTGG TGTTGCTAAA  
 GGCCGACCAAGG TGCGACAACC ATAGAAGGCA CGACGACAAA GGTGGGCACC ACAACGATTT

A V D F I P V E S L E T T M R S P \*  
 541 GCTGTTGACT TCATCCCGGT TGAATCCCTG GAAACCACCA TGCGTTCCCC GTGA  
 CGACAACTGA AGTAGGGCCA ACTTAGGGAC CTTTGGTGGT ACGCAAGGGGG CACT

## FIG. 16

M K K K G S V V I V G R I N L S G D T A  
 1 ATGAAAAAAA AAGGATCCGT TGTTATCGTC GGCGTATCA ACCTGTCCGG TGACACCGCT  
 TACTTTTTT TTCCTAGGCA ACAATAGCAG CCGGCATAGT TGGACAGGCC ACTGTGGCGA

Y A Q Q T R G E Q G T Q K T S H T G R D  
 61 TACGCTCAGC AGACTCGAGG TGAGCAGGGT ACCCAGAAGA CCTCCCACAC CGGTCGTGAC  
 ATGCGAGTCG TCTGAGCTCC ACTCGTCCC TGGGTCTTCT GGAGGGTGTG GCCAGCACTG

K N Q V E G E V Q I V S T A T Q T F L A  
 121 AAAAACCAAGG TTGAAGGTGA AGTCAGATC GTTCCACCG CTACCCAGAC CTTCTGGCT  
 TTTTGGTCC AACCTCCACT TCAAGTCTAG CAAAGGTGGC GATGGGTCTG GAAGGACCGA

T S I N G V L W T V Y H G A G T R T I A  
 181 ACCTCCATCA ACGGTGTCT GTGGACCCTT TACCACGGTG CTGGTACCCG TACCATCGCT  
 TGGAGGTAGT TGCCACAAGA CACCTGGCAA ATGGTGCCAC GACCATGGGC ATGGTAGCGA

S P K G P V T Q M Y T N V D K D L V G W  
 241 TCCCCGAAAG GTCCGGTTAC CCAGATGTAC ACCAACGTTG ACAAAAGACCT GGTTGGTTGG  
 AGGGGCTTTC CAGGCCAATG GGTCTACATG TGGTTGCAAC TGGTCTGGA CCAACCAACC

Q A P Q G S R S L T P C T C G S S D L Y  
 301 CAGGGCTCCGC AGGGTCCCCG TTCCCTGACC CCGTGCACCT GCGGTCCCTC CGACCTGTAC  
 GTCCGAGGCG TCCCAAGGGC AAGGGACTGG GGCACGTGGA CGCCAAGGAG GCTGGACATG

L V T R H A D V I P V R R R G D S R G S  
 361 CTGGTTACCC GTCACGCTGA CGTTATCCCG GTTCGTCGTC GTGGTGAATC CCGTGGTTCC  
 GACCAATGGG CAGTGCAGACT GCAATAGGGC CAAGCAGCAG CACCACTGAG GGCACCAAGG

L L S P R P I S Y L K G S S G G P L L C  
 421 CTGCTGTCCC CGCGTCCGAT CTCCTACCTG AAAGGTTCCCT CCGGTGGTCC GCTGCTGTGC  
 GACGACAGGG GCGCAGGCTA GAGGATGGAC TTTCCAAGGA GGCCACCAAGG CGACGACACG

P A G H A V G I F R A A V S T R G V A K  
 481 CCGGCTGGTC ACGCTGTTGG TATCTTCCGT GCTGCTGTT CCACCCGTGG TGTTGCTAAA  
 GGCCGACCAAGG TGCGACAACC ATAGAAGGCA CGACGACAAA GGTGGGCACC ACAACGATTT

A V D F I P V E S L E T T M R S P \*  
 541 GCTGTTGACT TCATCCCGT TGAATCCCTG GAAACCACCA TGCGTTCCCC GTGA  
 CGACAACTGA AGTAGGGCCA ACTTAGGGAC CTTGGTGGT ACGCAAGGGG CACT

## FIG. 17

M K K K G S V V I V G R I N L S G D T A  
 1 ATGAAAAAAA AAGGATCCGT TGTTATCGTC GGCGTATCA ACCTGTCCGG TGACACCGCT  
 TACTTTTTT TTCCTAGGCA ACAATAGCAG CCGGCATAGT TGGACAGGCC ACTGTGGCGA

Y A Q Q T R G L L G C I I T S L T G R D  
 61 TACGCTCAGC AGACTCGAGG TCTGCTGGGT TGCATCATCA CCTCCCTGAC CGGTCGTGAC  
 ATGCGAGTCG TCTGAGCTCC AGACGACCCA ACGTAGTAGT GGAGGGACTG GCCAGCACTG

K N Q V E G E V Q I V S T A A Q T F L A  
 121 AAAAACCAAGG TTGAAGGTGA AGTCAGATC GTTCCACCG CTGCTCAGAC CTTCTGGCT  
 TTTTGGTCC AACTTCACT TCAAGTCTAG CAAAGGTGGC GACGAGTCTG GAAGGACCGA

T C I N G V C W T V Y H G A G T R T I A  
 181 ACCTGCATCA ACGGTGTTG CTGGACCGTT TACCACGGTG CTGGTACCCG TACCATCGCT  
 TGGACGTAGT TGCCACAAAC GACCTGGCAA ATGGTGCCAC GACCATGGGC ATGGTAGCGA

S P K G P V I Q M Y T N V D K D L V G W  
 241 TCCCCGAAAG GTCCGGTTAT CCAGATGTAC ACCAACGTTG ACAAAAGACCT GGTTGGTTGG  
 AGGGGCTTTC CAGGCCAATA GGTCTACATG TGGTGCAAC TGTTCTGGA CCAACCAACC

P A P Q G S R S L T P C T C G S S D L Y  
 301 CCGGCTCCGC AGGGTTCCCG TCCCCTGACC CCGTGCACCT GC GGTTCCCTC CGACCTGTAC  
 GGCGAGGCG TCCAAGGGC AAGGGACTGG GGCACGTGGA CGCCAAGGAG GCTGGACATG

L V T R H A D V I P V R R R G D S R G S  
 361 CTGGTACCC GTCACGCTGA CGTTATCCCG GTTCGTCGTC GTGGTGACTC CCGTGGTCC  
 GACCAATGGG CAGTGCAGT GCAATAGGGC CAAGCAGCAG CACCACTGAG GGCACCAAGG

L L S P R P I S Y L K G S S G G P L L C  
 421 CTGCTGTCCC CGCGTCCGAT CTCCTACCTG AAAGGTTCTT CCGGTGGTCC GCTGCTGTGC  
 GACGACAGGG GCGCAGGCTA GAGGATGGAC TTTCCAAGGA GGCCACCAAGG CGACGACACG

P A G H A V G I F R A A V C T R G V A K  
 481 CCGGCTGGTC ACGCTGTTGG TATCTTCCGT GCTGCTGTT GCACCCGTGG TGTTGCTAAA  
 GGCGACCAAG TCGACAAACC ATAGAAGGCA CGACGACAAA CGTGGGCACC ACAACGATTT

A V D F I P V E S L E T T M R S P \*  
 541 GCTGTTGACT TCATCCCGT TGAATCCCTG GAAACCACCA TGCCTTCCCC GTGA  
 CGACAACGTA AGTAGGGCCA ACTTAGGGAC CTTGGTGGT ACGCAAGGGG CACT

**FIG. 18**