TITANIC

Case study

Agenda

- 1. Dataset analysis
- 2. Preprocessing techniques
- 3. Output features, correlations and graphs
- 4. KNN classifier
- 5. Random forest classifier
- 6. Decision tree classifier

On April 15, 1912, after colliding with an iceberg, "unsinkable" Titanic sank resulting in death of 1502 out of 2224 passengers and crew"

Dataset analysis

The dataset contains data of 891 passengers:

- Passengerld, Name, Sex, Age
- PClass Class of the passenger (1, 2 or 3)
- Ticket The ticket number (eg. "PC 17955")
- Fare How much did the passenger pay (eg. "14.45")
- Cabin Contains the cabin number (eg. "C85")
- Embarked Port of embarkation (S, C or Q)
- Parch number of parents and children
- SibSp number of siblings and spouses
- Survived whether the passenger survived (1 or 0)

Total: 11 features and 1 binary decision label

Raw correlations

- Pclass and Fare
- SibSp and Parch
- Pclass and Age
- Survived and PClass
- Age and SibSp
- Better class = higher fare
- More parents = more siblings
- Better class = higher age
- Better class = survived
- Lower age = more siblings

Preprocessing Techniques

- a) Standardization (Fare)
- b) Handling missing values (Age, Embarked)
- c) One-hot encoding (Embarked, Title, Sex)
- d) Discretization (AgeBin)
- e) Derived attributes (FamilySize, Title)
- f) Dropped columns (Name, Age, SibSp, Parch)

	Pclass	Fare	AgeBin	FamilySize	Embarked_Q	Embarked_S	Title_Miss	Title_Mr	Title_Mrs	Title_Other	Sex_male
0	3	-0.531122	2	2	False	True	False	True	False	False	True
1	1	1.099279	2	2	False	False	False	False	True	False	False
2	3	-0.513935	2	1	False	True	True	False	False	False	False
3	1	0.636300	2	2	False	True	False	False	True	False	False
4	3	-0.510753	2	1	False	True	False	True	False	False	True

Output features - explanation

Output feature analysis:

- PClass unchanged
- Fare standardized Fare column
- AgeBin discretized Age column
- FamilySize Size of family (sum of SibSp and ParCh columns)
- Embarked_Q, Embarked_S port of embarkment expressed as hot label coding
- Title_Miss, Title_Mrs, Title_Mr, Title_Other one hot encoded title
- Sex_male sex expressed as one hot encoding
- Survived unchanged

Preprocessing result - no missing values

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):
    Column
                 Non-Null Count Dtype
    Pclass
                                int64
                 891 non-null
    Fare
                 891 non-null
                                float64
    AgeBin
                 891 non-null
                                category
    FamilySize
                 891 non-null
                                int64
    Embarked Q
               891 non-null
                                bool
    Embarked S
               891 non-null
                                bool
   Title_Miss
                 891 non-null
                                bool
                 891 non-null
    Title Mr
                                bool
   Title Mrs
                 891 non-null
                                bool
    Title Other 891 non-null
                                bool
    Sex male
                 891 non-null
                                bool
dtypes: bool(7), category(1), float64(1), int64(2)
memory usage: 28.1 KB
```

Distribution of target variable

Distribution of input features with respect to target

Dependency between titles and survival status

Survival Rate with respect to FamilySize

K-Nearest Neighbours (KNN)

```
k_values = range(1, 21)
metric_values = ['euclidean', 'manhattan', 'chebyshev']
search_method_values = ['ball_tree', 'kd_tree', 'brute']
```

Overall:

- Manhattan gives best results
- K~10
- No need for complicated search methods
- 84% best accuracy (average of 10 splits 20%)

k	metric	search_method	accuracy
10	manhattan	brute	0.840782
12	manhattan	brute	0.839665
11	manhattan	ball_tree	0.839106
7	manhattan	ball_tree	0.839106
7	manhattan	brute	0.837989
9	manhattan	brute	0.835754
20	euclidean	ball_tree	0.834078
20	manhattan	ball_tree	0.833520
14	manhattan	brute	0.831844
10	euclidean	brute	0.830726

K-Nearest Neighbours (KNN) - more parameters

- K is higher ~19For top 3
- Again manhattan
 Is the best
- Tree search methods more common
- Higher accuracy 85.2%
 (average of 10 splits 20%)
- 86.1% for 10% split

```
k_values = range(1, 21)
metric_values = ['chebyshev', 'minkowski']
p_values = [1, 2, 3, 4, 5] # 1 is manhattan, 2 is euclidean
search_method_values = ['ball_tree', 'kd_tree', 'brute']
weights_values = ['uniform', 'distance']
leaf_size_values = [10, 20, 30, 40, 50] # for trees
```

```
weight
   metric search_method
                                  leaf_size
                                                  accuracy
                          uniform
minkowski
                kd tree
                                                 85.195531
minkowski
              ball tree
                          uniform
                                                 85.139665
minkowski
                kd_tree
                         distance
                                                 84.972067
minkowski
                kd_tree
                          uniform
                                                 84.916201
                                                 84.860335
minkowski
              ball_tree
                          uniform
minkowski
                kd tree
                          uniform
                                                 84.804469
minkowski
                          uniform
                                                 84.692737
              ball tree
minkowski
                kd tree
                          uniform
                                                 84.692737
   metric search method
                          weight leaf size
                                                  accuracy
minkowski
                kd_tree
                         uniform
                                                 86.111111
                                          50
minkowski
                kd tree
                         uniform
                                                 85.555556
minkowski
                        uniform
                                                 85.444444
                  brute
```

Random Forests!

RandomForestClassifier

```
class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *,
criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None,
ccp_alpha=0.0, max_samples=None, monotonic_cst=None) #
[source]
```

Random Forest - hyperparameter tuning

```
from sklearn.model_selection import GridSearchCV
param grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'bootstrap': [True, False]
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42),
                           param_grid=param_grid,
                           cv=3,
                           verbose=3,
                           n_jobs=-1)
grid_search.fit(X_train, y_train)
```

Random Forest

```
from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import accuracy_score
   params = {
       'bootstrap': True,
       'max_depth': 10,
       'min_samples_leaf': 1,
       'min_samples_split': 10,
       'n_estimators': 100
   rf_classifier = RandomForestClassifier(**params)
   rf classifier.fit(X train, y train)
   y_pred = rf_classifier.predict(X_test)
   accuracy = accuracy_score(y_test, y_pred)
   print(f"Accuracy of the Random Forest model: {accuracy:.2f}")
✓ 0.9s
Accuracy of the Random Forest model: 0.69
```

- Simple
- Sad accuracy:(

Decision Tree - sklearn

```
class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best',
max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
class_weight=None, ccp_alpha=0.0, monotonic_cst=None)
[source]
```

We will be interested in:

- a) criterion
- b) splitter
- c) max_depth

- d) min_samples_split
- e) min_samples_leaf
- f) ccp_alpha

Decision tree - how to use it?

```
clf = tree.DecisionTreeClassifier(criterion = "entropy")
clf = clf.fit(X_train, y_train)
tree.plot_tree(clf, filled = True, feature_names=X_train.columns)

y_tree = clf.predict(X_test)
accuracy = accuracy_score(y_tree, y_test)
print(f"Accuracy obtained for decision tree: {round(100*accuracy, 2)}%")
```

Decision Tree - First case (default)

Parameters:

- a) Criterion = "entropy"
- b) Other parameters = default

Accuracy obtained (avg): 78.54%

Decision Tree - Second case (custom)

Parameters:

- a) criterion: "entropy"
- b) min_samples_split = 25
- c) min_samples_leaf = 5
- d) ccp_alpha = 0.01
- e) Max_depth = 5

Accuracy obtained (avg): 81.42%

Decision Tree - Third case (trained, no ccp)

Parameters:

- a) criterion: "entropy"
- b) min_samples_split = 2
- c) min_samples_leaf = 2
- d) ccp_alpha = 0
- e) Max_depth = 11

Accuracy obtained: 87.0%

Decision Tree - Fourth case (trained, ccp)

Parameters:

- a) criterion: "entropy"
- b) min_samples_split = 5
- c) min_samples_leaf = 2
- e) Max_depth = 4

Accuracy obtained: 85.65%

Be careful with ccp_alpha!

```
Title_Mr <= 0.5
entropy = 0.955
samples = 668
value = [417, 251]
class = False
```

```
entropy = 0.898
samples = 277
value = [87, 190]
class = True
```

```
entropy = 0.625
samples = 391
value = [330, 61]
class = False
```

Parameters:

- a) criterion: "entropy"
- o) min_samples_split = 5
- c) min_samples_leaf = 2
- d) ccp_alpha = 0.1
- e) Max_depth = 4

Accuracy obtained: 77.28%

More stats...

For more statistics (accuracies, confusion matrices etc) and code implementation go to jupyter notebook!

Conclusions

- Model Performance
- Feature Insights
- Preprocessing Impact

Sources

- a) scikit-learn.org (documentation)
- b) wikipedia.org
- c) kaggle.com

Thank You

- Mateusz Idziejczak 155842
- Mateusz Stawicki 155900
- Kuba Czech 156035