FEDERAL AVIATION ADMINISTRATION (FAA) PROJECT

Data Analysis and Findings

Abstract

The Federal Aviation Administration wants to ensure better flight safety across the country, especially during flight landings. 'Landing Distance' plays a major role in it. Therefore it is important that FAA is be able to determine what factors affect the landing distance of a flight so that they can make better predictions to further enhance flight safety. This project analyzed two datasets from FAA using the SAS statistical tool package. The data was cleaned up and made analysis-ready. The clean-up process took into consideration missing values, abnormal observations, and duplicate entries. Following this data visualization and data exploration methods were used to gather basic characteristics about the data. Using a multiple linear regression procedure, the data was modeled to find how and to what degree the predictor variables affect the landing distance. Through a further statistical significance check the model was further streamlined to make the predictions more accurate. The study found that generally key variables like air speed and height affect the landing distance more than other variables. Moreover the study also found that the landing distance is affected in different ways for the two types of aircraft – Airbus and Boeing.

Contents

Chapte	r 1 – Data Exploration, Cleaning and Preparation	2
1.1 \$	pecific Goal for data exploration and cleaning on the FAA dataset:	2
1.2	SAS Code	2
1.3	SAS Output (Only relevant output shown here)	3
1.4	Observations and Conclusions	4
Chapte	r 2 – Data Visualization	5
2.1 S	pecific Goal for data visualization on the FAA dataset:	5
2.2 S	AS Code	5
2.3 S	AS Output (only few selected ones shown here)	6
2.4 0	Observations and Conclusions	9
Chapte	r 3 – Modeling	9
3.1 S	pecific Goal:	9
3.2 S	AS Code:	9
3.3 S	AS Output:	10
3.4 0	Observations and Conclusions:	13
Chapte	r 4 – Model Checking	14
4.1 S	pecific Goal:	14
4.2 S	AS Code:	14
4.3 S	AS Output: (Only selected few have been shown so as not to make the chapter bulky)	15
4.3 (Observations and Conclusions:	17
Chapte	r 5 – Remodeling and Model Checking	19
5.1 S	pecific Goal:	19
5.2 S	AS Code:	19
5.3 S	AS Output:	19
5.4 l	nterpretations and Conclusions:	21
Project	· Questions and Δnswers	23

Chapter 1 – Data Exploration, Cleaning and Preparation

1.1 Specific Goal for data exploration and cleaning on the FAA dataset:

To make the dataset ready for further modeling. From the first look on the datasets, here are some observations

- Each of the datasets seem to have values missing in certain variables.
- Moreover FAA1 contains a new variable 'duration' which is additional information that is missing in FAA2.
- There appear to be some redundant/duplicate observations among the two datasets

Activities we performed are -

- Imported the datasets into SAS
- Ran an initial validity and completeness check on each of the datasets
- Concatenated the datasets
- Ran before-clean-up summary statistics on the data
- Created flag for abnormal values
- Deleted abnormal values to further clean the data; preserve observations and variables with missing values
- Used NODUP KEY to remove the duplicate observations.
- Generated summary statistics on the new cleaned-up dataset.

1.2 SAS Code

```
PROC IMPORT OUT=FAA1 DATAFILE= "/folders/myfolders/GASUE34 data/FAA1.xls"
            DBMS=XLS REPLACE;
     SHEET="FAA1";
     GETNAMES=YES;
RUN:
proc print data=FAA1;
run;
PROC IMPORT OUT=FAA2 DATAFILE= "/folders/myfolders/GASUE34 data/FAA2.xls"
           DBMS=XLS REPLACE;
    SHEET="FAA2";
    GETNAMES=YES;
RUN;
proc print data=FAA2;
proc univariate data=FAA1;
var Duration No pasg Speed ground Speed air Height Pitch Distance;
title name = 'FAA1 univ';
run;
proc univariate data=FAA2;
var No_pasg Speed_ground Speed_air Height Pitch Distance;
```

```
title name = 'FAA2_univ';
run;
/*Concatenate the datasets*/
data FAA;
       set FAA1 FAA2;
       title name = 'FAA';
       run;
proc print data=FAA;
run;
proc univariate data=FAA;
var Duration No_pasg Speed_ground Speed_air Height Pitch Distance;
data FAA_clean1;
       set FAA;
       title name = 'FAA_clean1';
       if duration < 40 and duration ^= . then abn = 1;</pre>
       else if speed_ground < 30 and speed_ground ^= . then abn = 1;</pre>
       else if speed_ground > 140 and speed_ground ^= . then abn = 1;
       else if speed air < 30 and speed air ^= . then abn = 1;</pre>
       else if speed_air > 140 and speed_air ^= . then abn = 1;
       else if height < 6 and height ^= . then abn = 1;</pre>
       else if distance > 6000 and distance ^= . then abn = 1;
       else abn = 0;
run;
proc print data=FAA_clean1;
run;
data FAA clean2;
       set FAA clean1;
       title name = 'FAA clean2';
       if abn = 1 then delete;
       run;
proc print data=FAA_clean2;
/*Let us do a validity check and completeness check on this dataset*/
proc univariate data=FAA_clean2;
var Duration No_pasg Speed_ground Speed_air Height Pitch Distance;
run;
```

1.3 SAS Output (Only relevant output shown here)

Moments (Duration)						
N	781	Sum Weights	781			
Mean	154.775719	Sum Observations	120879.837			
Std Deviation	48.3499237	Variance	2337.71512			
Skewness	0.18986566	Kurtosis	-0.1958773			
Uncorrected SS	20532681.4	Corrected SS	1823417.79			
Coeff Variation	31.2387007	Std Error Mean	1.73009629			

Moments (Ground Speed)						
N	832	Sum Weights	832			
Mean	79.5235023	Sum Observations	66163.5539			
Std Deviation	18.7325852	Variance	350.909747			
Skewness	0.09117377	Kurtosis	-0.2329996			
Uncorrected SS	5553163.53	Corrected SS	291606			
Coeff Variation	23.5560364	Std Error Mean	0.64943554			

Moments (Air speed)							
N	203	Sum Weights	203				
Mean	103.485035	Sum Observations	21007.4621				
Std Deviation	9.73627738	Variance	94.7950972				
Skewness	0.88272686	Kurtosis	0.23173679				
Uncorrected SS	2193106.57	Corrected SS	19148.6096				
Coeff Variation	9.40839162	Std Error Mean	0.68335271				

Moments (Height)							
N	832	Sum Weights	832				
Mean	30.4554041	Sum Observations	25338.8962				
Std Deviation	9.77918085	Variance	95.632378				
Skewness	0.12795758	Kurtosis	-0.33081				
Uncorrected SS	851176.831	Corrected SS	79470.5061				
Coeff Variation	32.1098377	Std Error Mean	0.3390321				

Moments(Pitch)							
N	832	Sum Weights	832				
Mean	4.00507998	Sum Observations	3332.22654				
Std Deviation	0.52625729	Variance	0.27694674				
Skewness	0.01777465	Kurtosis	-0.08739				
Uncorrected SS	13575.9765	Corrected SS	230.142741				
Coeff Variation	13.139745	Std Error Mean	0.01824469				

Moments(Landing Distance)							
N	832	832 Sum Weights 832					
Mean	1521.89391	Sum Observations	1266215.73				
Std Deviation	895.95975	Variance	802743.873				
Skewness	1.47826357	Kurtosis	2.5548043				
Uncorrected SS	2594126168	Corrected SS	667080159				
Coeff Variation	58.8713671	Std Error Mean	31.0618156				

1.4 Observations and Conclusions

Exploration on the data helped us gather the following information –

- We observe that after clean-up, the number of observations have reduced from 950 to 833.
- Mean and median are very close for almost all variables, which means skew is not high
- There were missing values for many of the variables in each dataset
- From the min and max, we know there are abnormal values present in variables which were removed
- We also looked at summary (descriptive) statistics and normality of all the variable distributions.

Summary stats before clean-up Observations = 950)

Variables	Mean	Median	SD	Min	Max	Percent of abnormal	Percent of missing
Duration	154	153.9	49.25	14.76	305.62		20
No_pasg	60.16	60	7.49	29	87		5
Speed_ground	79.28	79.41	19.33	27.73	141.219		5
Speed_air	103.73	100.89	10.60	90.00	141.72		76
Height	30.13	29.90	10.35	-3.54	59.94		5

Pitch	4.019	4.015	0.526	2.28	5.92		5
Distance	1548.8	1267.4	948.68	34.08	6533.04		5
Total						2.4%	

Summary stats after clean-up (Observations = 833)

Variables	Mean	Median	SD	Min	Max	Pct of abnormal	Pct of missing
Duration	154.77	154.28	48.34	41.94	305.62		6.24
No_pasg	60.12	60	7.5	29	87		0.12
Speed_ground	79.4	79.6	18.8	33.5	132.7		0.12
Speed_air	103.3	100.8	9.88	90	132.9		75.63
Height	30.5	30.16	9.83	6.2	59.9		0.12
Pitch	4.01	4.00	0.52	2.28	5.9		0.12
Distance	1543.5	1281.2	906.9	41.7	5381.9		0.12
Total						0	

Chapter 2 – Data Visualization

2.1 Specific Goal for data visualization on the FAA dataset:

- To see through FREQ plots / histograms the distributions of all variables, whether they are normally distributed and whether they show any other trends.
- To see through X-Y plots how the response variable is distributed against each of the predictors. Also we want to see how each of the predictor variables look against the other in X-Y plots.
- To get an indicative idea of any correlations / associations existing between variables.

2.2 SAS Code

```
/*CHAPTER - 2 - DATA VISUALIZATIONS on FAA Dataset*/
proc chart data=FAA_clean3;
vbar Duration No_pasg Speed_ground Speed_air Height Pitch Distance;
run;

/*X-Y plots between the response variable and every predictor variable*/
proc plot data=FAA_clean3;
    plot Distance * Duration;
    plot Distance * No_pasg;
    plot Distance * Speed_ground;
    plot Distance * Speed_air;
    plot Distance * Height;
    plot Distance * Pitch;
    plot Distance * Aircraft;

run;

/*X-Y plots among predictor variables...selected few */
```

```
proc plot data=FAA_clean3;
    plot No_pasg * Duration;
    plot Height * Speed_ground;
    plot Speed_ground * Speed_air;
    plot Pitch * Height;
    plot Speed_ground * Pitch;
run;
```

2.3 SAS Output (only few selected ones shown here)

NOTE: 1 obs had missing values.

NOTE: 1 obs had missing values.

NOTE: 630 obs had missing values.

2.4 Observations and Conclusions

The FREQ plots/histograms and the X-Y plots gave us the following insights about the dataset and variables:-

- (a) Through FREQ plots of each individual variable we wanted to see the distributions
- (b) Almost all variables still have a normal distribution with some having little amount of skew. Which could be because there are many missing values and also because the data was collected from two different sources/datasets.
- (c) Through X-Y plots we were able to get an indicative idea on correlations / associations.
- (d) There is strong correlation/association between Landing Distance and Ground and Air speeds.
- (e) There are no specific positive or negative patterns in the other X-Y plots but there are definitely contributions to response variable from other predictor variables as well.
- (f) Some correlations exist between predictors but the strongest positive linear relationship is between Speed_ground and Speed_air

<u>Chapter 3 – Modeling</u>

3.1 Specific Goal:

Our goals for modeling were -

- (a) To develop a statistically significant model (using multiple linear regression) which can help us accurately predict how Landing Distance is affected with changes in Predictor variables.
- (b) To gain an idea into the correlations between Response and Predictors as well as any significant correlations between predictors which can hamper the accuracy of the model.

3.2 SAS Code:

```
/*Modeling*/
/*Actual Correlation Calculation between variables*/
proc corr data=FAA_clean3;
var Distance Duration No_pasg Speed_ground Speed_air Height Pitch;
title Correlation Coefficients;
run;
/*Regression Model*/
proc reg data=FAA clean3;
model Distance=Duration No_pasg Speed_ground Speed_air Height Pitch / r;
title Regression Model;
run;
proc glm data=FAA clean3;
class Aircraft;
model Distance= Aircraft Duration No pasg Speed ground Speed air Height Pitch / solution
estimates;
run;
```

3.3 SAS Output:

Correlation Procedure

Simple Statistics									
Variable N Mean Std Dev Sum Minimum Maximum							Label		
distance	832	1522	895.95975	1266216	41.72231	5382	distance		
duration	781	154.77572	48.34992	120880	41.94937	305.62171	duration		
no_pasg	832	60.05889	7.48750	49969	29.00000	87.00000	no_pasg		
speed_ground	832	79.52350	18.73259	66164	33.57410	132.78468	speed_ground		
speed_air	203	103.48504	9.73628	21007	90.00286	132.91146	speed_air		
height	832	30.45540	9.77918	25339	6.22752	59.94596	height		
pitch	832	4.00508	0.52626	3332	2.28448	5.92678	pitch		

Pearson			Corre	elation			Coefficients
Prob Number of Observ	> ations	I	r	under	H):	Rho=0
	distance	duration	no_pasg	speed_ground	speed_air	height	pitch
distance distance	1.00000 832	-0.05138 0.1514 781	-0.01801 0.6039 832	0.86627 <.0001 832	0.94210 <.0001 203	0.09953 0.0041 832	0.08710 0.0120 832
duration duration	-0.05138 0.1514 781	1.00000 781	-0.03639 0.3098 781	-0.04897 0.1716 781	0.04454 0.5364 195	0.01112 0.7564 781	-0.04675 0.1918 781
no_pasg no_pasg	-0.01801 0.6039 832	-0.03639 0.3098 781	1.00000 832	-0.00054 0.9877 832	-0.00616 0.9305 203	0.04688 0.1767 832	-0.01799 0.6043 832
speed_ground speed_ground	0.86627 <.0001 832	-0.04897 0.1716 781	-0.00054 0.9877 832	1.00000 832	0.98794 <.0001 203	-0.05737 0.0982 832	-0.03898 0.2615 832
speed_air speed_air	0.94210 <.0001 203	0.04454 0.5364 195	-0.00616 0.9305 203	0.98794 <.0001 203	1.00000 203	-0.07933 0.2606 203	-0.03927 0.5780 203
height height	0.09953 0.0041 832	0.01112 0.7564 781	0.04688 0.1767 832	-0.05737 0.0982 832	-0.07933 0.2606 203	1.00000 832	0.02301 0.5074 832
pitch pitch	0.08710 0.0120 832	-0.04675 0.1918 781	-0.01799 0.6043 832	-0.03898 0.2615 832	-0.03927 0.5780 203	0.02301 0.5074 832	1.00000 832

Regression Procedure

Number of Observations Read	833
Number of Observations Used	195
Number of Observations with Missing Values	638

Root MSE	242.43886	R-Square	0.9173
Dependent Mean	2784.49158	Adj R-Sq	0.9147
Coeff Var	8.70676		

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	6	122625808	20437635	347.72	<.0001	
Error	188	11050001	58777			
Corrected Total	194	133675809				

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	Intercept	1	-6249.84344	291.58960	-21.43	<.0001		
duration	duration	1	0.02246	0.36763	0.06	0.9514		
no_pasg	no_pasg	1	-3.34026	2.48183	-1.35	0.1800		
speed_ground	speed_ground	1	-2.27284	11.56846	-0.20	0.8445		
speed_air	speed_air	1	82.90693	11.75796	7.05	<.0001		
height	height	1	12.65927	1.87055	6.77	<.0001		
pitch	pitch	1	123.73575	31.32815	3.95	0.0001		

GLM Procedure

Class Level Information				
Class	Levels Values			
aircraft	2	airbus boeing		

Source	DF	Type I SS	Mean Square	F Value	Pr > F
aircraft	1	3978580.0	3978580.0	220.08	<.0001
duration	1	493579.7	493579.7	27.30	<.0001
no_pasg	1	46433.3	46433.3	2.57	0.1107
speed_ground	1	119246400.9	119246400.9	6596.32	<.0001
speed_air	1	3377980.8	3377980.8	186.86	<.0001
height	1	3142800.4	3142800.4	173.85	<.0001
pitch	1	9500.9	9500.9	0.53	0.4694

Source	DF	Type III SS	Mean Square	F Value	Pr > F
aircraft	1	7669468.447	7669468.447	424.25	<.0001
duration	1	7080.086	7080.086	0.39	0.5322
no_pasg	1	37368.555	37368.555	2.07	0.1522
speed_ground	1	5523.066	5523.066	0.31	0.5811
speed_air	1	3110148.129	3110148.129	172.04	<.0001
height	1	3134551.016	3134551.016	173.39	<.0001
pitch	1	9500.871	9500.871	0.53	0.4694

Parameter	Estimate		Standard Error	t Value	Pr > t
Intercept	-5791.657272	В	163.2345690	-35.48	<.0001
aircraft airbus	-437.942766	В	21.2621163	-20.60	<.0001
aircraft boeing	0.000000	В			
duration	0.127632		0.2039443	0.63	0.5322
no_pasg	-1.981166		1.3779690	-1.44	0.1522
speed_ground	-3.546367		6.4160142	-0.55	0.5811
speed_air	85.546892		6.5220701	13.12	<.0001
height	13.675598		1.0385572	13.17	<.0001
pitch	-13.489744		18.6077460	-0.72	0.4694

3.4 Observations and Conclusions:

Our observations from the modeling exercise are as follows -

- (a) From the Pearson correlation matrix we observe the following -
 - The statistically significant(based on p-value of 0.0001) and strong +ve correlations are the following:
 - Landing distance * Ground speed 86%
 - o Landing distance * Air speed 94%
 - o Ground speed * Air speed 98%
- (b) From the Regression output we observe the following -
 - SAS used only 195 observations out of 833 to build the model.
 - Majority of observations were left out because of one or more missing values. So our guess is that statistically the model would have been more robust had SAS used more observations in model building
 - The model is Distance = -6249.84 + 0.022*Duration 3.34*No_pasg 2.27*Speed_ground + 82.9*Speed_air + 12.65*Height + 123.73*Pitch

Chapter 4 – Model Checking

4.1 Specific Goal:

- (a) Check whether residuals:
 - Are normally distributed (test hypothesis)
 - Have mean around zero (test hypothesis)
 - Have constant variance (check plots)
- (b) After (a) is satisfied, go on to interpret our model

```
4.2 SAS Code:
/*Model Checking*/
proc reg data=FAA_clean3;
model Distance=Duration No_pasg Speed_ground Speed_air Height Pitch / r;
output out=diagnostics r=residual;
run;
 /*Checking Residual Plots*/
proc plot data=diagnostics;
plot Residual*Duration;
plot Residual*No pasg;
plot Residual*Speed_ground;
plot Residual*Speed_air;
plot Residual*Height;
plot Residual*Pitch;
run;
proc means data=diagnostics t prt;
var Residual;
run;
 /*Checking Normal distribution for Residuals*/
proc chart data=diagnostics;
vbar Residual;
run;
proc univariate data=diagnostics;
var Residual;
histogram;
run;
```

4.3 SAS Output: (Only selected few have been shown so as not to make the chapter bulky)

The Means Procedure

Analysis Variable residual Residual					
t Value	Pr > t				
0.00	1.0000				

The Univariate Procedure (Residuals)

Moments					
N	195	Sum Weights	195		
Mean	0	Sum Observations	0		
Std Deviation	238.660362	Variance	56958.7686		
Skewness	0.19374508	Kurtosis	-0.8658332		
Uncorrected SS	11050001.1	Corrected SS	11050001.1		
Coeff Variation		Std Error Mean	17.0908235		

Basic Statistical Measures					
Location Variability					
Mean	0.0000	Std Deviation 238.66036			
Median	-16.8380	Variance	56959		
Mode		Range	1002		
		Interquartile Range	390.88347		

Tests for Location: Mu0=0					
Test Statistic p Value					
Student's t	t	0	Pr > t	1.0000	
Sign	M	-4.5	Pr >= M	0.5668	
Signed Rank	S	-131	Pr >= S	0.8686	

Quantiles (Definition 5)			
Level	Quantile		
100% Max	573.714		
99%	511.518		
95%	377.591		
90%	310.277		
75% Q3	200.938		
50% Median	-16.838		
25% Q1	-189.946		
10%	-311.520		
5%	-373.791		
1%	-414.050		
0% Min	-427.885		

4.3 Observations and Conclusions:

- (a) The X-Y plot of residuals against each predictor variable indicate that
 - Residuals are uniformly distributed on both sides of the mean(0).
 - Variance is constant.

- (b) The one sample t-test shows that Ho is true, which means that the mean of residuals distribution is zero.
- (c) Checking the histogram of the residuals, we see it appears bi-modal but normal. This could be because initial data collection was from two different sources.
- (d) From SAS output we see that
 - p-value for t-test is very high, which means we can't reject the null hypothesis here (Ho: Residuals are normally distributed).
 - Therefore, now we can go ahead and interpret the model.

Model interpretation

- The p-value for the F-test is significant. So we conclude the model as a whole is statistically significant
- Checking the p-values for each predictor variable we see that the ones statistically significant are
 Air speed and Height
- R-squared is 91.73, which means the model explains 91.73% of variability in Landing Distance.
- So, we now go ahead and remodel. This time keeping out the predictors which are not statistically significant.

<u>Chapter 5 – Remodeling and Model Checking</u>

5.1 Specific Goal:

Our goals for remodeling were -

- (a) To verify how our model looks like after keeping out the variables not statistically significant, so that we can more accurately predict how Landing Distance is affected with changes in Predictor variables.
- (b) To gain an idea into the correlations between Response and Predictors as well as any significant correlations between predictors which can hamper the accuracy of the model.
- (c) To also check whether there is any difference in how predictors affect response for the two different classes of aircrafts Airbus and Boeing.

5.2 SAS Code:

```
/*Remodeling*/
proc reg data=FAA_clean3;
model Distance= Speed_air Height / r;
output out=diagnostics_new r=residual;
run;
/*Model Rechecking*/
  /*Checking Residual Plots*/
proc plot data=diagnostics_new;
 plot Residual*Speed_air;
 plot Residual*Height;
run;
proc means data=diagnostics new t prt;
var Residual;
run;
 /*Checking Normal distribution for Residuals*/
proc chart data=diagnostics_new;
vbar Residual;
run;
proc univariate data=diagnostics_new;
var Residual;
histogram;
run;
```

5.3 SAS Output:

Number of Observations Read	833
Number of Observations Used	203
Number of Observations with Missing Values	630

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	123925115	61962557	988.01	<.0001
Error	200	12542854	62714		
Corrected Total	202	136467968			

Root MSE	250.42817	R-Square	0.9081
Dependent Mean	2774.67289	Adj R-Sq	0.9072
Coeff Var	9.02550		

Parameter Estimates						
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	-5935.72777	201.33934	-29.48	<.0001
speed_air	speed_air	1	80.49493	1.81545	44.34	<.0001
height	height	1	12.54522	1.87638	6.69	<.0001

Means of the residuals

Analysis V residual Residual	Variable : dual
t Value	Pr > t
0.00	1.0000

The Univariate Procedure and Hypothesis Testing for mean = 0

Moments					
N	203	Sum Weights	203		
Mean	0	Sum Observations	0		
Std Deviation	249.185343	Variance	62093.3351		
Skewness	-0.1752555	Kurtosis	-0.9602506		
Uncorrected SS	12542853.7	Corrected SS	12542853.7		
Coeff Variation		Std Error Mean	17.4893824		

Basic Statistical Measures				
Location Variability				
Mean	0.00000	Std Deviation 249.18534		
Median	17.39980	Variance 62093		
Mode		Range	1078	
		Interquartile Range	418.24460	

Tests for Location: Mu0=0						
Test Statistic p Value						
Student's t	t					
Sign	M	4.5	Pr >= M	0.5746		
Signed Rank	S	122	Pr >= S	0.8847		

5.4 Interpretations and Conclusions:

Model Checking

- (a) The X-Y plots of residuals against each predictor variable show that -
 - Residuals are almost equally distributed on both sides of the mean(0).
 - Variance appears to be constant.
- (b) The one sample t-test shows that Ho is true that is the mean of residuals distribution is zero
- (c) Checking the histogram of the residuals, we see it appears slightly bi-modal. This could be because initial data collection was from two different sources
- (d) From SAS output we see that
 - p-value for t-test is very high, which means we can't reject the null hypothesis here (Ho: Residuals are normally distributed).
 - Now we can go ahead and interpret the model.

Final Model and Interpretation

- (a) The p-value for the F-test is significant. So we conclude the model as a whole is statistically significant
- (b) Checking the p-values for predictor variables Height and Air Speed we see that they are statistically significant.
- (c) R-squared is 90.81, which means the model explains 90.81% of variability in Landing Distance. R-squared has come down a little bit as we removed insignificant variables, which means we lost information. But this model is a lot simpler too.
- (d) Though the intercept is also statistically significant it doesn't have much relevance because the values of Air speed and Height as zeroes are out of dataset range.
- (e) So our final model is

Landing Distance = -5935.72 + 80.5 * Air speed + 12.5 * Height

- 1 unit of increase in Air speed will result in 80.5 units of increase in Landing Distance, keeping all other variables constant.
- 1 unit of increase in Height will result in 12.5 units of increase in Landing Distance, keeping all other variables constant.

Comparison between aircrafts

- ✓ For Airbus planes, statistically significant variables to predict Landing Distance tend to be Air speed, Ground Speed, and Height. (From PROC GLM and Class procedure)
- ✓ For Boeing planes, Landing distance predictors are Air speed and Height ((From PROC GLM and Class procedure)
- ✓ Sample estimate of the predictor variable 'height' is more in case of Boeing than Airbus, which means a unit change in height affects the landing distance more for Boeing than Airbus planes.
- ✓ Sample estimate for the predictor 'air speed' is more in case of Airbus than Boeing, which means a unit change in Air speed affects landing distance more for Airbus than Boeing.

Project Questions and Answers

1. How many observations (flights) do you use to fit your **final** model? If not all 950 flights, why?

We used 833 observations in total for modeling the data. Though the two datasets had 950 flights observations in total, upon exploration we found that there were observations with both abnormal values and duplicate entries. A basic data clean-up was done to make the combined dataset ready for analysis. In this process the final observations came down to 833. A point to be noted here is that observations with missing values have been preserved in the process to avoid loss of valuable information.

2. What factors and how they impact the landing distance of a flight?

Upon running our regression model, we found that the two factors – Air speed and Height – of an aircraft when it enters the runway, are major contributors to landing distance. The model and interpretations of the effect are as follows.

Landing Distance = -5935.72 + 80.5 * Air speed + 12.5 * Height

- 1 unit of increase in Air speed will result in 80.5 units of increase in Landing Distance, keeping all other variables constant.
- 1 unit of increase in Height will result in 12.5 units of increase in Landing Distance, keeping all other variables constant.

Though other factors such as Pitch, Duration and Number of passengers also might affect the Landing distance, our model removed them based on a statistical significance test at a significance level of 0.0001.

3. Is there any difference between the two makes Boeing and Airbus?

Yes, there is a difference in factors and how they affect landing distance for the two different types of aircrafts. The difference is described below.

- ✓ For Airbus planes, statistically significant variables to predict Landing Distance tend to be Air speed, Ground Speed, and Height. (From PROC GLM and Class procedure)
- ✓ For Boeing planes, Landing distance predictors are Air speed and Height ((From PROC GLM and Class procedure)
- ✓ Sample estimate of the predictor variable 'height' is more in case of Boeing than Airbus, which means a unit change in height affects the landing distance more for Boeing than Airbus planes.
- ✓ Sample estimate for the predictor 'air speed' is more in case of Airbus than Boeing, which means a unit change in Air speed affects landing distance more for Airbus than Boeing.