

République Algérienne Démocratique et Populaire. Ministère de l'Enseignement Supérieur et de la Recherche Scientifique. Université d'Alger. Faculté de Médecine. Département de Médecine

Pharmacologie 3^{ème} année de médecine

PHARMACODYNAMIE

Dr Ait Hammou. k

27/04/2023 2022-2023

Plan

- I. Introduction
- II. Définition de la pharmacodynamie.
- II. Intérêt de la question.
- IV. Mécanisme moléculaire de l'action des médicaments.
- 1. Récepteur
- 2. Interaction entre un médicament (M) et un récepteur (R)
- 3. Liaisons chimiques dans l'interaction médicament-récepteur (MR)
- 4. La relation structure-activité et description de la surface du récepteur.
- 5. Conséquences des interactions entre les médicaments et les récepteurs: la relation doseréponse (log dose-réponse ou LDR)
- 6. Utilité pratique des principes de pharmacodynamie.
- 7. Interaction pharmacodynamie.
- V. Conclusion.

I. Introduction:

La pharmacologie générale englobe deux domaines:

Relation entre la concentration du médicament et l'effet

II. Définition de la pharmacodynamie :

- Elle étudie :
- > Les effets biochimiques et physiologiques des médicaments.
- > Leur mode d'action.

III. Intérêt de la question :

- La pharmacodynamie nous amène à :
 - Mieux comprendre les mécanismes d'action du médicament.

IV. Le mécanisme moléculaire de l'action des médicament

I. Récepteur:

Les effets (ou réponses) à un médicament, sont le résultat d'interactions physicochimiques entre le produit et les molécules fonctionnelles (macromolécules = récepteurs) de l'organisme vivant.

> Historique de la découverte du récepteur

- 20 ème siècle: Concept de récepteur.
- Paul Ehrlich (1845-1915): haute spécificité de la réaction antigène – anticorps.
- Claude Bernard (1813-1878): travaillant sur le curare, utilisé par les indiens pour empoisonner les flèches de leurs arcs destinés à la chasse et à la guerre, localisa au niveau des fibres fines terminales du muscle squelettique le blocage de la transmission atteint par ces projectiles.
- Langley (1852-1926): démontra que la stimulation chimique du muscle par application de nicotine existait toujours, même après la section et la dégénérescence des fibres terminales du muscle squelettique.

2. Interaction entre un médicament (M) et un récepteur (R):

$$M + R \longrightarrow M-R \longrightarrow effet thérapeutique$$
(2)

Réaction (1): Capacité du médicament M à se lier au récepteur R par des liaisons chimiques « l'affinité ».

Réaction (2): Effet pharmacologique qui se définit par « l'efficacité ».

3. Liaisons chimiques dans l'interaction médicament- récepteur

(MR):

Toutes ces forces jouent un rôle dans l'interaction spécifique médicament – récepteur.

a. Liaison covalente:

- Mise en commun d'un doublet d'électrons, chaque atome donnant un électron.

Caractéristique:

Liaison stable, Irréversible à moins d'une intervention d'un catalyseur (ex. une enzyme)

b. Liaison de coordination:

Liaison ou les deux électrons du doublet proviennent d'un atome donneur (N, S, O) et vont compléter la structure externe d'un atome receveur (H+, Ca++, Hg++ etc...)

Exp: chélation, EDTA

Caractéristique:

Liaison faible

Ces complexes aboutissent à la création de structures cycliques.

c. Liaison ionique

Attraction électrostatique entre deux ions de charge opposée.

Exemple : Na + CI- → NacL

Caractéristique:

- Liaison faible

d. Liaison hydrogène

La liaison hydrogène est la faculté que peut posséder un proton pour accepter une paire d'électrons venant de 2 donneurs comme l'oxygène ou l'azote et de former ainsi un pont entre eux.

<u>Caractéristique</u>: liaison faible

e. Forces de Van der WAALS

- o liaison très faible
- existe entre deux atomes semblables
- oles forces attractives sont produites par de légères distorsions induites par les nuages électroniques entourant chaque noyau

4. <u>La relation structure – activité et description de la surface du récepteur</u>:

4.1. Méthodes d'étude des récepteurs:

Deux méthodes:

1. La méthode dite directe: isoler les R et les identifier, basée sur des études biochimiques et physicochimiques (fluorescence,.).

2. La méthode dite indirecte: renseignements sur le R à partir des effets obtenus par l'application du médicament.: exp l'acétylcholine (Ach)

4.2. Exemple d'étude du R de l'ACH:

L' Ach: neurotransmetteur libéré par les fibres nerveuses cholinergiques dans plusieurs partis du corps.

L'Ach agit sur les récepteurs de la plaque neuro-musclaire.

Retrouvée dans : muscles lisses, cellules glandulaires sécrétrices, cellules des ganglions du système nerveux autonome, et probablement dans certaines cellules du système nerveux central.

4.2.1. Formule de l'Acétylcholine:

4.2.2. L'Ach est testée sur le cœur

- 1. L'organe bat spontanément lorsqu'il est suspendu dans un bain d'eau de mer : enregistrer la fréquence et l'amplitude des contractions.
- 2. L'Ach est rajoutée progressivement au bain, jusqu'à l'obtention d'une réponse: diminution de l'amplitude des contractions enregistrées.

Fig. 4 : Appareil pour mesurer les effets des médicaments sur les organes isolés

Fig. 5 : Effet caractéristique de l'acetylcholine sur le cœur de moule.

changement	ent · composé		puissance relative
molécule d'Ach	CH_3 $CH_3 - N^{\dagger} - CH_2 - C$	O H ₂ – O – C – CH ₃	100
	CH ₃	0	
 de 0 par methylène de Co par methylène 			83 15

1 et 2 : représentent les modifications chimiques de la molécule Ach et les diminutions de la puissance relative.

Conclusions:

- Action maximale de l'Ach : présence obligatoire d'une structure ester,
- Le groupe carboxyl : rôle significatif dans cet effet.

Conclusions sur la configuration de surface du récepteur de cœur de moule :

- Le groupe cationique à une partie de la molécule d'Ach, indique la présence d'un groupe anionique complémentaire à la surface du récepteur.
- Les changements opérés dans le groupe méthyl de l'ammonium quaternaire donc la partie cationique indique que le site anionique dans le récepteur est dans une cavité qui s'accommode avec 2 groupes méthyl. Les 2 groupes méthyl aident à stabiliser le complexe Ach-Récepteur grâce à des forces de Van der WAALS.

Une surface plane qui augmente l'effet attractif des forces de Van der WAALS et stabilise la liaison Ach-Récepteur.

L'oxygène du groupe carboxyl, grâce à une liaison du type hydrogène, accroît la stabilité du complexe Ach-Récepteur

5. Les conséquences des interactions entre les médicaments et les récepteurs la relation dose-réponse (log dose-réponse ou L.D.R.):

La relation qui existe entre la dose ou concentration d'un médicament et la réponse biologique obtenue après l'action de celui-ci: courbe sigmoïde qui approche la réponse 0 % à faibles doses, puis la réponse maximale 100 % à hautes doses.

Exemple: Les résultats d'une expérience faite avec de l'Acétylcholine et l'Arécoline (Ar) sur l'iléon de cobaye ont montré ce qui suit.

- L' A ch à une plus grande affinité : action à concentration plus faible que l' Arécoline.
- L' Arécoline à une plus grande efficacité: réponse plus forte.
- L'affinité représente la tendance du médicament à former un complexe stable avec le R .
- L'efficacité reflète l'activité biologique de ce complexe médicamentrécepteur.

Deux médicaments ayant le même mode d'action sur le récepteur ont leur courbes log dose-réponse (LDR) parallèles.

a. Les variations biologiques et la marge thérapeutique:

> Notion de variabilité de la réponse aux médicaments:

Dans une population donnée, la même dose de médicament ne produit pas le même effet. Il existe des variations inter individuelles dans les réponses induites par les médicaments.

b. La marge thérapeutique / Index thérapeutique (IT): :

> La marge thérapeutique:

Intervalle qui existe entre LDR de l'effet pharmacologique et LDR de l'effet létale (ou toxique).

> L'index thérapeutique (IT):

C'est le rapport entre la dose létale 50 et la dose efficace 50.

c. Antagonisme et synergie:

Antagonisme: si l'un des médicament s'oppose à l'effet de l'autre Synergie: effets de chaque médicament s'ajoutent.

✓ Antagonisme compétitif:

L'adjonction du médicament A à des concentrations croissantes (0, 1, 2, ...) entraîne une diminution apparente de l'affinité du médicament B pour le récepteur.

La courbe L.D.R du médicament agoniste B est déplacée parallèlement vers la droite en présence de concentrations croissantes du médicament antagoniste A dont l'activité intrinsèque = O. L'effet maximum ne change pas.

✓ Antagonisme non compétitif:

- 1/ Les courbes ne sont plus parallèles mais divergentes lorsque la concentration de l'antagoniste D augmente.
- 2/ l'adjonction du médicament D entraîne une diminution de l'activité intrinsèque de C: la pente de la courbe LDR de l'agoniste diminue entraînant une diminution de l'effet maximal en présence de l'antagoniste.

Synergie:

- La synergie est **potentialisatrice** lorsque l'effet est supérieur à la somme des effets élémentaires .

Exemple: la gentamycine qui potentialise l'effet de la pénicilline en augmentant son effet bactéricide et évite l'apparition de résistance.

- La synergie **est additive lorsque l'effet global** résulte de l'addition des effets individuels de chaque produit .

Exemple: utilisation de deux antihypertenseurs

6. Utilité pratique des principes de pharmacodynamie:

- L'atropine et la d-tubocurarine: action par liaison réversible avec les récepteurs cholinergiques, et empêchent l'action du neurotransmetteur physiologique (l'acétylcholine).
- Antagonisme des analgésiques narcotiques (morphine) par la nalorphine, et la compétition entre l'isoprénaline et le propranolol pour les récepteurs adrénergiques bêta.
- Certains médicaments modifient **la sensibilité des récepteurs**: augmentation de la réponse préssive à l'adrénaline par l'administration chronique de guanéthidine.

7. Interaction pharmacodynamie:

a) Effet de l'Ach:

V. CONCLUSION:

La pharmacodynamie reste un outil indispensable dans l'amélioration et le développement du médicament au profit de la santé humaine voire universelle.