

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
IČO:	47813121
Projekt:	OP VK 1.5
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	TEKIIT
Popis sady vzdělávacích materiálů:	Technické kreslení I pro obor IT, 1. ročník
Sada číslo:	F-16
Pořadové číslo vzdělávacího materiálu:	08
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_F-16-08
Název vzdělávacího materiálu:	Podstavy těles ve volném rovnoběžném promítání
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Mgr. Zuzana Vildomcová

Podstavy těles ve volném rovnoběžném promítání

Nejdříve se naučíme ve volném rovnoběžném promítání sestrojit podstavy těles. Nejčastější tvary podstav jsou čtverec, obdélník, rovnostranný trojúhelník a pravidelný šestiúhelník. V další kapitole tyto znalosti využijeme k zobrazení základních hranatých geometrických těles.

Těleso zobrazujeme v průčelné poloze a to znamená, že podstava leží v rovině kolmé k nákresně. Bude se tedy při zobrazení zkreslovat.

K sestrojení zkreslené podstavy musíme v každém geometrickém obrazci najít dva typy úseček, které umíme zobrazit a ty pak využijeme při konstrukci samotné. Pro připomenutí, jedná se o tyto typy:

- Úsečky rovnoběžné s průmětnou zobrazují se ve skutečné velikosti;
- úsečky kolmé k průmětně zobrazíme tak, že s vodorovnými přímkami svírají úhel 45°,a zkrátí se na polovinu své délky.

Obrázky jednotlivých podstav si vždy pro pochopení sestrojíme ve skutečném tvaru a velikosti, vedle pak umístíme tutéž podstavu zobrazenou ve volném rovnoběžném promítání.

Čtverec, obdélník

 Vodorovné strany čtverce (obdélníku) jsou rovnoběžné s průmětnou a tudíž se zobrazí ve skutečné velikosti.

 Svislé strany čtverce (obdélníku) jsou kolmé k průmětně, tudíž je ve vrcholech zkosíme pod úhlem 45° a zkrátíme je na polovinu.

Obrázek: Čtverec, obdélník.

Rovnostranný trojúhelník

- Vodorovná strana trojúhelníku je rovnoběžná s průmětnou a zobrazí se ve skutečné velikosti.
- Žádná ze zbývajících stran není kolmá k průmětně. Tuto vlastnost má výška trojúhelníku, proto ji použijeme ke konstrukci.
- Trojúhelník je rovnostranný, a proto je výška zároveň těžnicí. Proto prochází středem vodorovné strany, která se nezkresluje.
- Výška je kolmá k průmětně, proto ji při zobrazení ve volném rovnoběžném promítání zkrátíme na polovinu.
- Vrchol sestrojený na výšce trojúhelníku spojíme se dvěma zbývajícími vrcholy a máme celý trojúhelník.

Obrázek: Rovnostranný trojúhelník.

Pravidelný šestiúhelník

- Původní pravidelný šestiúhelník vepíšeme do kružnice tak, aby úhlopříčka AD a dvě strany byly vodorovné. Jsou tedy rovnoběžné s průmětnou a zobrazí se včetně všech bodů, které na nich leží, ve skutečné velikosti.
- Kolmé k průmětně jsou úhlopříčky BF a CE, zobrazí se tedy pod úhlem 45° a zkrátí se na polovinu.
 Úhlopříčky sestrojíme v bodech K, L které si svou polohu na úhlopříčce AC zachovají.
- Šestiúhelník dostaneme spojením vrcholů.

Obrázek: Pravidelný šestiúhelník.

Při rýsování dbáme na přesnost, protože volné rovnoběžné promítání zachovává rovnoběžnost. Znamená to, že strany (obecně úsečky), které byly rovnoběžné v původním geometrickém obrazci, se opět zobrazí rovnoběžně. Nejvíce je to patrné při rýsování pravidelného šestiúhelníku!

Seznam použité literatury

• ŠVERCL, J., LEINVEBER J. a kol.: *Technické kreslení a základy deskriptivní geometrie*. Praha: Scientia, 1999. ISBN 80-7183-162-X.