ADDENDUM

GROOMING ACTIVITY OF ALBINO MICE

EFFECT OF CHLORDIAZEPOXIDE AND 1900

INTRODUCTION

Chlordiazepoxide and 1900 were employed to explore the usefulness of a test based on the grooming behavior of albino mice, according to the method of O. Rohte, (Brit. J. Pharmac., 34:236, 1968) for the detection of sedative agents. Rohte states that the main advantage of this test is that it reduces the difficulties in testing weak sedatives by providing a releaser mechanism to the instinctive grooming movements of white mice. Rohte found that administration of certain test substances was associated with a significant inhibition of grooming movements compared with control group.

METHOD

<u>Apparatus</u> - Observation boxes were clear plastic with dimensions of $5.5 \times 10 \times 5 \text{ in}^3$. The boxes were covered with wire screening and the bottoms were lined with cardboard. Activated carbon, Darco grade S-51 of the Atlas Powder Company, was used to cover the mice. All injections were made with a 25-gauge needle and glass syringes.

Subjects - The subjects were 60 female albino mice (19-31 grams), HR/ICR strain supplied from the

<u>Procedure</u> - The test mice were covered with pulverized charcoal and the intensity of blackening and its pattern were noted at 1.5 hour intervals up to 6 hours. The observations were graded on a 3-point scale: 1 = white to light grey; 2 = medium grey; 3 = dark grey to black.

A. Chlordiazepoxide. Five subjects per dose level per day received Chlordiazepoxide (Librium HCl) intravenously between 8 a.m. and 10 a.m. or a saline solution (control). Dose levels of Chlordiazepoxide were 125 mg/kg, 63 mg/kg, 32 mg/kg, 3.2 mg/kg, and 0.32 mg/kg. Saline given at a level of 10 ml/kg (largest drug volume of solution injected). All animals at a single dose level were injected on the same day. After injection the animal was placed in a jar containing the powdered carbon and covered by shaking the jar. The subject was then removed by tail with forceps and placed into a shoebox cage lined with sawdust for approximately 3 minutes. Subject was then placed into a plastic observation cage with ad libitum food and water. Observations of the intensity and pattern of blackening were made at one hour intervals according to the method of Rohte (1968) (see Figure 1,2). Observations were made on both dorsal (ventral) surfaces and each body area was noted as either dark, medium, or light (3,2, or 1, respectively).

B. _____900. Two dose levels, 1 mg/kg and 0.1 mg/kg were tested in five mice each, according to the method used with Librium.

RESULTS

The "grooming unit" appears to accurately measure grooming activity during the first few hours of test. At later intervals grooming becomes more difficult to measure because the observer is unable to note additional grooming activity on areas which are already light. Therefore, the decreased rate of grooming toward the sixth hour in all groups except the controls (see Figure 10) may be due to the inability to measure grooming rather than an actual decrease caused by the drug.

For purposes of statistical analysis, each subject was assigned a grooming index at each hourly observation (see Table 1). The grooming index was obtained by summing the grey values (light = 1, medium = 2, dark = 3) for the six body areas a-f. Each dose group was compared with the controls in a Wilcoxon two-sample test (Laurence and Bacharach, p. 80) (see Table 2). The test was not applied to the one-hour data because of the large number of ties.

For Chlordiazepoxide, the grooming indices of the 125 and 63 mg/kg dose groups were found to be significantly decreased as compared to controls throughout the 6-hour period. The 32 mg/kg group showed a significant decrease in grooming at 2nd and 6th hour. The grooming of the 3.2 mg/kg group was found to be significantly decreased as compared to controls from the 3rd to the 6th hour. No difference in grooming was found with the 0.32 mg/kg group.

For 1900, 0.1 mg/kg was a no effect level. Mice which received 1900 at 1.0 mg/kg showed a significant decrease (P = .05) at the 1-3 hour intervals and very significant decrease (P = 0.01) at the 4-6 hour intervals, when a one tailed test is considered.

1-16H7 110 掘 ite 111 # 1111 4: ijĒ. **C**7 Ŧ. PODY AREAS POR ai Į. 15 4:43: 4:11: 11:3 NUMBER 1 ---抽描 AVERAGE 117: 1 Life -11 抽 TIME (HOURS)

	\$X.		فيدسي		استعا		4 4 4	19.44.		_ what we	•	بسنست	
3 3	4	Fig	2						- 1				
		L	bri			(0.3	2 n	2/k2	ı.v.)				
			c.	hang	HCI 2 in	ion	,+ 110	100	num	her _ore	05 r		
			.	Siχ	hour	ρe	riccl	1.f.t	r in	ectio	ı		
1.1 1.1 1.1		3		LIGHT								1.1	
] -		MEDIU							1711 I		
							1 3		-3-1				
	111			Ī.,									
2-5-	8.				3-1-2-2					EAL.		tordar Februar Jankar	
DY MREMS POR S					1 -								
AREA	11									14			
¥												100	
1L 0									1111		. <u>12</u>		
24 × 3 × 6 01				Also.									
A'SR 966			1	16.									12 (1.47)
					14		113				15112		
	5111 .7113	}								2			
- 101													
	<u> </u>			<u></u>	1	<u></u>		4		5			FILLER Sames
	-					(. V.	= (100 RS) ER 141.

75 48 E

ARCAS POR 2007 AVERAGE NUMBER TIME (HOURS)

12 X 12 FZR INCh

TABLE 1.

DISTRIBUTION OF VALUES OF THE GROOMING INDEX AT

EACH 1-HOUR OBSERVATION FOR 5 DOSE LEVELS OF

LIBRIUM HC1 AND FOR SALINE CONTROLS

		Libriu	HCl (mo	g/kg)		Sa	line	(10	m1/	(g)
Hour	125	63	32	3.2	0.32					
1	18 18 17 18 18	17 17 17 18 17	17 17 17 17	17 17 17 16 17	17 17 17 17 15	17 17 18 17 18	15 17 17 17 17	17 17 16 17 18	17 15 15 17 17	17 17 17 17
2	18 18 17 18	16 17 17 17	17 16 17 17	17 17 16 16 15	17 16 14 13	15 14 17 14 16	12 17 12 16 12	16 16 15 15	15 14 13 14 13	17 17 16 14 16
3	18 18 17 18 18	16 17 17 16 17	17 14 16 15	17 17 16 15	17 15 13 13	12 13 17 11 14	8 12 9 15 9	13 15 15 14 17	15 12 12 13 12	17 14 14 14 15
4	18 18 17 18 18	16 17 17 16 17	17 13 14 13	17 17 14 14 13	16 13 13 11 10	11 13 16 9 12	8 10 7 13 11	12 15 12 12 17	12 12 11 13 12	16 13 13 14 14
5	18 18 17 18 18	16 17 17 16 17	17 11 13 13	17 17 14 13	13 13 11 10 9	10 7 15 8 10	8 10 7 9- 7	12 12 10 11	11 8 11 13 11	14 13 13 14 14
6	18 17 17 17 17	16 17 17 16 17	17 11 13 13	17 16 13 11 11	13 11 11 10 9	8 7 11 7 9	8 9 7 7 7	10 11 8 10 15	8 6 8 10 7	14 11 13 11 11
n	5	5	5 -	5	5	25				

The said of the bear and the said of the s

TABLE 2.

-VALUES FOR A TWO-TAILED TEST
ON 5 DOSE LEVELS OF LIBRIUM HCl

		Wilcox	on 2-Sample		
Hour	125 mg/kg	63 mg/kg	32 mg/kg	3.2 mg/kg	0.32 mg/kg
2	<0.01	0.02	0.05	(>0.05)	(>0.05)
3	<0.01	<0.01	(>0.05)	0.05	(>0.05)
4	<0.01	<0.01	(>0.05)	0.02	(>0.05)
5	<0.01	<0.01	(>0.05)	0.02	(>0.05)
6	∠0.01	∠0.01	0.01	۷0.01	(>0.05)

^{() =} Not significant

^{*} Rumke, C. L., and de Jonge, H., Chapt. 3, Design, Statistical Analyses and Interpretation in Vol. I Evaluation of Drug Activities: Pharmacometrics ed. by Lawrence, D. R., and Bacharach, A. L., Academic Press, N. Y. 1964

TABLE 3.

DISTRIBUTION OF VALUES OF GROOMING INDEX AT EACH 1-HOUR OBSERVATION FOR EACH OF 2 DOSE LEVELS OF

. —				Scores	for	Individua	a1	Mice			
Hour	_		00 -	1 mg/k	g			-1900	- 0	.1 mg/	/kg
HOUL		_2	_3	_4	_5	_	6		8	_9	10
1	18	18	18	18	18	3	17	15	17	18	16
2	17	17	18	17	17	1	L5	11	• 17	14	10
3	16	17	17	17	.16	1	L2	12	17	12	. 8
4	16	16	17	16	16	1	.2	11	13	11 .	7
5	16	14	. 17	15	12	1	.1	10	10	10	6
6	14	14	16	15	12	1	.0	7	10	8	6

The same of the sa

TABLE 4.

P VALUES FOR 2-TAILED TEST OF 1900 0.1 MG/KG VERSUS 1900 1.0 MG/KG DOSE LEVELS

Hour 1	P Values	. •
2	.05	
3	.10	
4	.02	•
5	.02	
. 6	.02	

A Contraction of the Charles of the Contraction of

LD50 36.0 -28.0-45.0-MED50 0.56 -0.18-1.8-RATIO LD50/MED50 63.0

STATE SOLID

A TON THE LOCAL STREET SELECTION OF THE PROPERTY OF THE PROPER

DOSE MG/KG	DILUŤ ML/KG		INTRAVENOUS TOXICITY TO MIC REACTION SIGN	CE	MIN. APPR	DEG-	MIN. TO RECOVER
100.0	10.0	2/2	DEATH	74	0		
32.0	3.2	2/2	DEC LOCOMOTOR ACTIVITY	124	30	*-	120
32.0	3.2	2/2	DEC SENSITIVITY TO PAIN	229	30		180
32.0	3.2	2/2	INC SENSITIVITY TO SOUND	130	0	***	
32.0	.3.2	2/2	INC SENSITIVITY TO TOUCH	131	0	***	G 300
32.0	3.2	2/2	DEC REARING FREQUENCY	632	30		120
32.0	3.2	2/2	STRAUB TAIL	233	0		15
32.0	3.2	12/2	MIXED CONVULSIONS	336	0		- 15
32.0	3.2	2/2	AUDIOGENIC SEIZURE	536	0		30
32.0	3.2	2/2	DEC PREENING	240	8		120
32.0		2/2	RUBBING NOSE	340			30
32.0	3.2	2/2	TREMORS-REST AND MOVEMENT	144	0		- 30
32.0	3.2	2/2	BLINKING-EXCESSIVE	247	0 8 8		30
32.0	3.2	1/2	EYELID PTOSIS-NONPARALYTIC	149	8	*	120
32.0	3.2	2/2	PUPILLARY LIGHT REFLEX ABS	152	0		240
32.0	3.2	2/2	MYDRIASIS	154	0	**	1440
32.0	3.2	2/2	SALIVATION	57	8	***	60
32.0	3.2	2/2	INC URINATION	158	30		60
32.0	3.2	1/2	INC RESPIRATORY DEPTH	161	ō		8
32.0	3.2	2/2	IRREGULAR RESPIRATORY DEPTH		ŏ		60
					-		

			INTRAVENOUS TOXICITY TO MIC	CF				
DOSE MG/KG		REACT. FRACT.	REACTION SIGN		MIN. APPR	DEG- REE		OVER
32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 1/2 2/2	INC RESPIRATORY RATE IRREGULAR RESPIRATORY RATE MOT DEF HORIZONTAL WIRE MOT DEF VERTICAL SCREEN MOT DEF VERTICAL SCREEN MOT DEF VERTICAL ROD MOT DEF ROTA-ROD MOT DEF ROTA-ROD MOT DEF INCLINED STRIP ABNORMAL VIBRISSAE LOW CARRIAGE	162 362 171 271 471 371 771 671 172	0 0 0 0 0 0 0 8 8	****************	: ,	8 60 60 60 60 60 60 60
	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1/2 2/2 2/2 1/2 1/2 2/2 2/2 2/2	DEC LOCOMOTOR ACTIVITY DEC SENSITIVITY TO PAIN INC SENSITIVITY TO TOUCH DEC REARING FREQUENCY MYDRIASIS SALIVATION IRREGULAR RESPIRATORY DEPTI		30 30 30 30 30	***	G	120 180 300 120 120 60 30 30
3.2 3.2	3.2	1/2 2/2	DEC SENSITIVITY TO PAIN INC SENSITIVITY TO TOUCH	229 131	15 0	. *	G	180 300
1.0	10.0	1/2 2/2	ABNORMAL REACTION TO PAIN INC SENSITIVITY TO TOUCH	429 131	120 15		G	240 240
0.32	3.2	2/2	NO EFFECT	73				-10
50.0	.5.0	2/2	DEATH	74	0			
40.0	4.0	2/2	DEATH	7,4	0			
32.0	3.2	0 2	DEATH	74	0			
25.0	2.5	0/2	DEATH	74	0			
DIL.			H20 Q5 C H20		•		-	

The state of the s

LD50 100.0 -63.0-160.0-MED50 1.8 -0.56-5.6-RATIO LD50/MED50 56.0

STATE SOLID

A SECTION OF THE PROPERTY OF T

		INTRAVENOUS TOXICITY TO MICE			
DOSE	DILUT REACT.	REACTION SIGN	MIN.	DEG-	MIN. TO
MG/KG	ML/KG FRACT.		APPR	REE	RECOVER
100.0	1.0 1/2	DEATH 74	. 0		
100.0	1.0 1/2	DEC LOCOMOTOR ACTIVITY 124	. 0	***	180
100.0	1.0 1/2	DEC SENSITIVITY TO TOUCH 23:		*	60
100.0	1.0 1/2	DEC SENSITIVITY TO SOUND 230		· *	. 60
100.0	1.0 1/2	DEC PREENING 240			120
100.0	1.0 1/2	EXTENSION OF LIMBS 34:			15
100.0	1.0 1/2	PROSTRATION 43			15
100.0	1.0 1/2	EYELID PTOSIS-NONPARALYTIC 149		***	180
100.0	1.0 1/2	PUPILLARY LIGHT REFLEX ABS 15			60
100.0	1.0 1/2	MYDRIASIS 154		.*	60
100.0				•	
	1.0 1/2				30
100.0	1.0 1/2	INC RESPIRATORY DEPTH 16:			120
100.0	1.0 1/2	IRREGULAR RESPIRATORY DEPTH36		-	. 30
100.0	1.0 1/2	DEC RESPIRATORY RATE 263			120
100.0	1.0 1/2	IRREGULAR RESPIRATORY RATE 36			30
100.0	1.0 1/2	MOT DEF HORIZONTAL WIRE 17:	. 0	***	15
100.0	1.0 1/2	MOT DEF VERTICAL SCREEN 27:	. 0	***	15
100.0	1.0 1/2	MOT DEF HORIZONTAL STRIP 47	. 0	***	15
100.0	1.0 1/2	MOT DEF VERTICAL ROD 37	. 0	***	30
100.0	1.0 1/2	MOT DEF ROTA-ROD 77		***	15
100.0	1.0 1/2	MOT DEF INCLINED STRIP 67		***	30

DOSE MG/KG	DILUT ML/KG		INTRAVENOUS TOXICITY TO MICE REACTION SIGN	MING		MIN. TO RECOVER
32.0	0.64	2/2	DEC LOCOMOTOR ACTIVITY 12			120
32.0	0.64	1/2	DEC SENSITIVITY TO PAIN 22			60
32.0	0.64	1/2 .	ABNORMAL REACTION TO PAIN 42			50
32.0	0.64	2/2	DEC SENSITIVITY TO TOUCH 23			60
32.0	0.54	2/2	SOCIAL INTERACTION ALTERED 13)	180
32.0	0.64	2/2	DEC REARING FREQUENCY 63)	120
32.0	0.64	2/2			***	15
32.0	0.64	2/2	DEC PREENING . 24)	180
32.0	0.64	1/2	LOW POSTURE 24)	30
32.0	0.64	2/2	EXTENSION OF LIMBS 34)	30
32.0	0.64	2/2	EYELID PTOSIS-NONPARALYTIC 14		3 - ***	120
32.0	0.64	1/2	PUPILLARY LIGHT REFLEX ABS 15		3 **	60 60
32.0	0.64	1/2	MYDRIASIS 15 INC RESPIRATORY DEPTH 16) "*	120
32.0	0.64	2/2	IRREGULAR RESPIRATORY DEPTH		5	30
32.0	0.64	2/2	DEC RESPIRATORY RATE		Ď	120
32.0 32.0	0.64	2/2 2/2	IRREGULAR RESPIRATORY RATE 30		5	30
32.0	0.64	1/2	MOT DEF HORIZONTAL WIRE 1	1) ***	15
32.0	0.64	1/2	MOT DEF VERTICAL SCREEN 2		***	15
32.0	0.64	2/2	MOT DEF HORIZONTAL STRIP 4		***	30
32.0	0.64	1/2	MOT DEF VERTICAL ROD 3		0 - ***	15
32.0	0.64	1/2	MOT DEF ROTA-ROD 7		0 ***	30
32.0	0.64	1/2	MOT DEF INCLINED STRIP 6	7Ī	0 ***	30
10.0	1.0	2/2	DEC LOCOMOTOR ACTIVITY 1	24	0 ***	120
10.0	.1.0	1/2	DEC SENSITIVITY TO PAIN 2	29 3	0	180
10.0	1.0	2/2			0 *	60
10.0	1.0	2/2	SOCIAL INTERACTION ALTERED 1		0	180
10.0	1.0	2/2	DEC REARING FREQUENCY 6		0	120
10.0	1.0	2/2			0	120
10.0	1.0	1/2		41 3		180
10.0	1.0	2/2	EYELID PTOSIS-NONPARALYTIC 1		8 ***	120
10.0	1.0	2/2	IRREGULAR RESPIRATORY DEPTH3		0	30
10.0	1.0	2/2	IRREGULAR RESPIRATORY RATE 3		0 .	30
10.0	1.0	1/2			0 ***	8
10.0	1.0	1/2			0 ***.	
10.0	1.0	1/2			0 ***	30
10.0	1.0	1/2			•	8 15
10.0	1.0	1/2			•	30
10.0	1.0	1/2	MOT DEF INCLINED STRIP 6	71	0 ***	30
3.2	1.6	2/2	DEC LOCOMOTOR ACTIVITY 1	24 3	0 *	120
3.2	1.6	2/2	SOCIAL INTERACTION ALTERED 1	32 3	0	120
3.2	1.6	2/2	DEC REARING FREQUENCY 6	32 3	0	120

And the second s

DOSE MG/KG	DILUT ML/KG	REACT. FRACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN MIN. DEG- MIN. APPR REE RECOV
3.2	1.6	2/2 2/2	DEC PREENING 240 30 1 EYELID PTOSIS-NONPARALYTIC 149 30 * 1
1.0	0.50	2/2	NO EFFECT 73
130.0	1.3	.2/2	DEATH 74 0
79.0	0.79	0/2	DEATH 74 0
63.0	0.63	1/2	DEATH 74 0 .
DIL.			100% PEG 300 QS C 100% PEG 300
	•		· ·
			·
			· · · · · · · · · · · · · · · · · · ·
		-	
			. *
-			

LD50 100.0 -79.0-120.0-MED50 5.6 -1.8-18.0-RATIO LD50/MED50 18.0

STATE SOLID

The second secon

1			INTRAVENOUS TOXICITY TO MIC	Œ			
DOSE		REACT.	REACTION SIGN		MIN.	DEG-	MIN. TO
MG/KG	ML/KG	FRACT.			APPR	REE	RECOVER
100.0	10.0	1/2	DEATH	74	0		
_00.0	10.0	1/2	DEC LOCOMOTOR ACTIVITY	124	15	***	300
100.0	10.0	1/2	DEC SENSITIVITY TO PAIN	229	30		240
100.0	10.0	1/2	ABNORMAL REACTION TO PAIN	429	240		300
100.0	10.0	1/2	DEC SENSITIVITY TO TOUCH	231	30	***	240
100.0	10.0	1/2	DEC REARING FREQUENCY	632	0 :		300
100.0	10.0	1/2	EXTENSION OF LIMBS -	341	15		120
100.0	10.0	1/2	PROSTRATION	43	15		120
100.0	10.0	1/2	EXOPHTHALMOS	46	0		8
100.0	10.0	1/2	EYELID PTOSIS-NONPARALYTIC		15	***	300
100.0	10.0	1/2	PUPILLARY LIGHT REFLEX ABS		8		180
100.0	10.0	1/2	MYDRIASIS	154	8	**	180
100.0	10.0	1/2	INC RESPIRATORY DEPTH	161	ō		~ 30
100.0	10.0	1/2	DEC RESPIRATORY DEPTH	261	30		60
100.0	10.0	1/2	DEC RESPIRATORY RATE	262	ō	*	60
100.0	10.0	1/2	MOT DEF HORIZONTAL WIRE	171	8	*	60
100.0	10.0	1/2	MOT DEF VERTICAL SCREEN	271	ō	*	60
100.0	10.0	1/2	MOT DEF HORIZONTAL STRIP	471	8	*	120
100.0	10.0	1/2	MOT DEF VERTICAL ROD	371	8	*	120
100.0	10.0	1/2	MOT DEF ROTA-ROD	771	8	*	60
100.0	10.0	1/2	MOT DEF INCLINED STRIP	671	8	*	120
		+, 2	MOT DEL THEETHED SIKIP	011	U		120

щ	18.34	A. Park	
•			

DOSE MG/KG	DILUT REACT ML/KG FRACT		MIN. APPR		Min. TO RECOVER
100.0	10.0 1/2 10.0 1/2	PILOERECTION 7 LOW CARRIAGE 17	2 60 5 0		240 240
32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	3.2 2/2 3.2 1/2 3.2 2/2 3.2 2/2 3.2 2/2 3.2 2/2 3.2 2/2 3.2 2/2 3.2 1/2 3.2 2/2	MYDRIASIS : 15	12 15 10 8 11 0 15 15 12 8 14 8 14 8 17 18	*** ** **	60 60 30 15 120 180 180 30 30 30
10.0 10.0 10.0 10.0	10.0 2/2 10.0 2/2 10.0 2/2 10.0 2/2 10.0 2/2	YELID PTOSIS-NONPARALYTIC 14 PUPILLARY LIGHT REFLEX ABS 13 MYDRIASIS IRREGULAR RESPIRATORY DEPTH3 IRREGULAR RESPIRATORY RATE 36	52 8 54 8 51 6	3 3 **	120 120 120 30 30
3.2	3.2 2/2 12.0 2/2		73 74 ()	
80.0 63.0	8.0 0/2 6.3 0/2		74 (
DIL.	441 - 490 90 90	100% STEROL DIL. SUSP QS C Ha	20		

LD50 110.0 -89.0-140.0-MED50 3.2 -1.0-10.0-RATIO LD50/MED50 35.0

STATE SOLID

			INTRAVENOUS TOXICITY TO MICE				
DOSE		REACT.	REACTION SIGN		· DEG-	MIN.	
MG/KG	-ML/KG	FRACT.	•	APPR	REE	RECOV	ER
100.0	10.0	2/2	DEC LOCOMOTOR ACTIVITY 12	4 0	***	3	00
100.0	10.0	2/2	DEC SENSITIVITY TO TOUCH 23	1 0			60
100.0	10.0	2/2	SOCIAL INTERACTION ALTERED 13	2 0			60
100.0	10.0	2/2	DEC REARING FREQUENCY 63	2 0			00
100.0	10.0	1/2	EXTENSION OF LIMBS 34	1 0			30
100.0	10.0	1/2	RIGHTING REFLEX DEPR 74	2 0			-8
100.0	10.0	2/2 -	PROSTRATION 4	3 0			30
100.0	10.0	2/2	EYELID PTOSIS-NONPARALYTIC 14	9 .15	***	G 3	00
100.0	10.0	2/2	INC RESPIRATORY DEPTH 16	1 0		1	.80
100.0	10.0	2/2	DEC RESPIRATORY RATE 26	2 0	*	ī	.80
100.0	10.0	2/2	MOT DEF HORIZONTAL WIRE 17	1 0	***		60
100.0	10.0	2/2	MOT DEF VERTICAL SCREEN 27	1 0	***		60
100.0	10.0	2/2	MOT DEF HORIZONTAL STRIP 47	1 0	***	- 1	20
100.0	10.0	2/2	MOT DEF VERTICAL ROD 37	1 0	***		60
100.0	10.0	2/2	MOT DEF ROTA-ROD 77	1 0	***		60
100.0	10.0	2/2	MOT DEF INCLINED STRIP 67	1 0	***	1	20
100.0	10.0	2/2	LOW CARRIAGE 17	5 30			60
32.0	3.2	2/2	DEC LOCOMOTOR ACTIVITY 12	4 8	***	1	20
32.0	-3.2	'2/2	SOCIAL INTERACTION ALTERED 13	2 0			60
32.0	3.2	2/2	DEC REARING FREQUENCY 63	2 0			60

		_ 5	INTRAVENOUS TOXICITY TO MICE			
DOSE MG/KG		REACT.	REACTION SIGN	MIN. APPR	DEG-	MIN. TO RECOVER
MG/NG	ME/NG	FRACIO	•	APPK	KEE	KECOVEK
32.0	3.2	2/2	EYELID PTOSIS-NONPARALYTIC 149	15	***	60
32.0	3,2		INC RESPIRATORY DEPTH 161		- "	. 60
32.0	3.2		DEC RESPIRATORY RATE 262		*	60
32.0	3.2		MOT DEF HORIZONTAL STRIP 471		***	30
32.0	3.2		MOT DEF VERTICAL ROD 371		***	30
32.0	3.2	2/2	MOT DEF INCLINED STRIP 671	0	****	, 30
10.0	10.0	2/2	EYELID PTOSIS-NONPARALYTIC 149	60	*	240
3.2	-3.2	1/2	EYELID PTOSIS-NONPARALYTIC 149	60	*	240
3.2	3.2	1/2	NO EFFECT 73			
144					•	
1.0	10.0	2/2	NO EFFECT 73			
160.0	16.0	2/2	DEATH 74	- 0		
		-, -				
120.0	12.0	2/2	DEATH 74	. 0		
		0.70				
79.0	7.9	0/2	DEATH 74	. 0		
DIL.			100% STEROL DIL. SUSP QS C H20	1	•	

DOSE MG/KG		REACT. FRACT.	INTRAVENOUS TOXICITY TO MIC REACTION SIGN	E	MIN. APPR	DEG÷ REE		i. TO COVER
0.032 0.032 0.032 0.032 0.032 0.032 0.032	3.2 3.2 3.2 3.2 3.2 3.2 3.2	2/2 1/2 1/2 2/2 2/2 2/2 2/2 1/2	HEAD TWITCH INC PREENING INC SCRATCHING EYELID PTOSIS-NONPARALYTIC PHOTOPHOBIA PILOERECTION SKIN FLICK	531 140 440 149 53 72 79	120 120 180 120 120 120 120	***	G G G	240 300 300 300 300 300 240
0.010 0.010 0.010 0.010 0.010 0.010 0.010	10.0 10.0 10.0 10.0 10.0 10.0	2/2 2/2 2/2 1/2 1/2 1/2 2/2	DEC LOCOMOTOR ACTIVITY HEAD TWITCH INC PREENING RUBBING NOSE INC SCRATCHING PILOERECTION SKIN FLICK	124 531 140 340 440 72 79	15 15 15 30 15 15	***	9999999	120 120 120 120 120 120 120
3.2-3 3.2-3 3.2-3 3.2-3		2/2 2/2 2/2 2/2	DEC LOCOMOTOR ACTIVITY HEAD TWITCH INC PREENING SKIN FLICK	124 531 140 79	30 30 8 15	***	999	120 120 120 120
1.0-3 1.0-3 1.0-3	10.0 10.0 10.0	1/2 1/2 1/2	LICKING COMPARTMENT WALLS INC PREENING NO EFFECT	825 140 73	30 60		G	120 120
3.2-4 3.2-4 3.2-4	3.2 3.2 3.2	1/2 1/2 1/2	LICKING COMPARTMENT WALLS INC PREENING NO EFFECT	825 140 73			G	120 120
39.0	8.0	2/2	DEATH	74	0			
25.0	·5 _• 0	0/2	DEATH	74	0			
20.0	4.0	0/2	DEATH	74	-0			
DIL.			0.1 N HCL QS C H20				-	

	DOSE MG/KG		REACT • FRACT •	INTRAVENOUS TOXICITY TO MICE REACTION SIGN		MIN. APPR	DEG- REE		• TO OVER
	3.2 3.2 3.2 3.2 3.2 3.2	3.2 3.2 3.2 3.2 3.2 3.2	2/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2	LICKING COMPARTMENT WALLS 8 INC SENSITIVITY TO PAIN 1 INC SENSITIVITY TO TOUCH 1 HEAD TWITCH 5 SOCIAL INTERACTION ALTERED 1	.24 .25 .29 .31 .31	120 60 60 8 30 30	***	G G	300 120 300 300 300 120 180
	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	1/2 1/2 1/2 1/2 2/2 1/2 1/2 2/2 2/2	DEC PREENING 2 INC PREENING 1 RUBBING NOSE 3	240 140 340 440	30 120 8 180 60 60 60 120	* *	9 9 9 9	60 300 300 300 300 300 300
(1):	1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1/2 1/2 2/2 1/2 2/2 2/2 2/2 2/2 2/2	LICKING COMPARTMENT WALLS E INC SENSITIVITY TO TOUCH 1 HEAD TWITCH 5 INC PREENING 1 EYELID PHOSIS-NONPARALYTIC 1 PHOTOPHOBIA 1 PILOERECTION 1	124 325 131 531 140 149 53 72	30 120 8 60 120 60 60 60	***	GGG	300 180 300 240 300 300 300 300
	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	2/2	INC SENSITIVITY TO TOUCH INC PREENING INC SCRATCHING EYELID PTOSIS-NONPARALYTIC PHOTOPHOBIA PILOERECTION	825 131 140 440 149 53 72 79	120 15 120 180 60 60 60	***	999	180 300 300 300 300 300 240 300
	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1/2 1/2 1/2 1/2 2/2 2/2 2/2 2/2	INC SENSITIVITY TO TOUCH INEAD TWITCH	825 131 531 140 149 53 72 79	120 30 30 120 120 120 60 60	***	G G	180 180 240 240 300 300 300 240

and the second s

(

(

LD50 28.0 -22.0-36.0-MED50 3.2-4-1.0-4-1.0-3-LD50/MED50 8.8+4 RATIO

STATE SOLID

A LOND A CHEST CO. ACTOR STREET, CO. ACTOR STREE

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MIC REACTION SIGN	ΞE	MIN. APPR	DEG- REE		. TO OVER	
100.0	10.0	2/2	DEATH	74	0				
32.0	3.2	2/2	DEATH	74	0				
.10.0	10.0	2/2	DEC LOCOMOTOR ACTIVITY .	124		***	G	300	
10.0	10.0	1/2	LICKING COMPARTMENT WALLS	825	180			240	
	10.0	2/2	INC SENSITIVITY TO TOUCH	131	-30	***		240	
10.0	10.0	1/2	HEAD TWITCH	531	30	*		240	
10.0			SOCIAL INTERACTION ALTERED	132	0			120	
10.0	10.0		DEC REARING FREQUENCY	632	0		G	300	
10.0	10.0	2/2	DEC PREENING	240				180	
10.0	10.0	2/2	INC PREENING	140			G	300	
10.0	10.0	1/2		340				60	
10.0	10.0	1/2	RUBBING NOSE	46			_	15	
10.0	10.0	2/2	EXOPHTHALMOS			***	G	300	
10.0	10.0	2/2	EYELID PTOSIS-NONPARALYTIC	53		***	Ğ	300	
10.0	10.0	2/2	PHOTOPHOBIA				٠	15	
10.0	10.0	2/2	IRREGULAR RESPIRATORY DEPT	HOOT		*		15	
10.0	10.0	2/2	IRREGULAR RESPIRATORY RATE	364	2 0	*		60	
10.0	10.0	1/2	MOT DEF HORIZONTAL STRIP	471		**		300	
10.0	10.0	2/2	PILOERECTION	72			_		
10.0	10.0	2/2	SKIN FLICK	79	30		G	300	

LD50 36.0 -28.0-45.0-MED50 0.56 -0.18-1.8-RATIO LD50/MED50 63.0

STATE SOLID

DOSE MG/KG	DILUT REACT. ML/KG FRACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN	MIN. APPR	DEG- REE	MIN. TO RECOVER
(.00.0	10.0 2/2	DEATH 7	4 ·0		
32.0 32.0 32.0	3.2 2/2 3.2 2/2 3.2 2/2 3.2 2/2	DEC LOCOMOTOR ACTIVITY DEC SENSITIVITY TO TOUCH SOCIAL INTERACTION ALTERED 13 DEC REARING FREQUENCY EXTENSION OF LIMBS 34	1 0 2 0 2 0	***	G 300 30 60 G 300 30
32.0 32.0 32.0 32.0	3.2 1/2 3.2 1/2 3.2 1/2 3.2 2/2 3.2 2/2	TREMORS-REST AND MOVEMENT 14 TREMORS-MOVEMENT ONLY 24 EYELID PTOSIS-NONPARALYTIC 14 INC URINATION 15	4 0 4 0 9 8	* *	15 30 G 300 30
32.0 32.0 32.0	3.2 2/2 3.2 2/2 3.2 2/2	INC RESPIRATORY DEPTH IRREGULAR RESPIRATORY DEPTH36 IRREGULAR RESPIRATORY RATE 36	1 0 1 0 2 0	*	60 60
32.0 32.0 32.0	3.2 2/2 3.2 2/2 3.2 2/2	MOT DEF HORIZONTAL WIRE MOT DEF VERTICAL SCREEN MOT DEF HORIZONTAL STRIP MOT DEF VERTICAL ROD 37	1 0	***	60 60 120 180
32.0 32.0 32.0 32.0	3.2 2/2 3.2 2/2 3.2 2/2 3.2 2/2	MOT DEF ROTA-ROD 77 MOT DEF INCLINED STRIP 6 LOW CARRIAGE 1	71 O	***	120 120 30
		•			

DOSE MG/KG		REACT. FRACT.	INTRAVENOU: REACT	S TOXICITY TO M ION SIGN	ICE	MIN. APPR	DEG- REE	MIN. T
10.0 10.0 10.0 -	10.0 10.0 10.0	1/2 1/2 2/2	DEC LOCOMO	SIS-NONPARALYTI TOR ACTIVITY RESPIRATORY RAT	124	60 60 0	* - · · * *	24 24 3
3.2	3.2	2/2	IRREGULAR	RESPIRATORY RAT	E 362	0	*	1
1.0	10.0	2/2	INC LOCOMO	TOR ACTIVITY	224	60	.*	12
0.32	3.2	2/2	NO EFFECT		73			
50.0	5.0	2/2	DEATH		74	0		
40.0	4.0	2/2	DEATH		74	0		
25.0	2.5	0/2	DEATH		74	0		
IL.			100% STERC	L DIL. SUSP QS	С Н2О			
				#6 .E.				

LD50 45.0 -36.0-56.0-MED50 5.6 -1.8-18.0-RATIO LD50/MED50 8.0

STATE SOLID

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MIN REACTION SIGN	CE	MIN. APPR	DEG- REE	MIN. TO RECOVER
00.0	10.0	2/2	DEATH	74	0		
32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	3.2222222223.33.33.33.33.33.33.33.33.33.	2/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	DEC LOCOMOTOR ACTIVITY HEAD TWITCH SOCIAL INTERACTION ALTERED DEC REARING FREQUENCY LOW POSTURE EYELID PTOSIS-NONPARALYTIC DYSPNEA INC RESPIRATORY DEPTH DEC RESPIRATORY RATE IRREGULAR RESPIRATORY RATE LOW CARRIAGE	632 241	0 60 0 0 0 15 0 0	***	240 120 30 240 60 240 8 120 120
10.0	10.0	2/2	EYELID PTOSIS-NONPARALYTIC	_	15	*	_ 30 180
3.2	3.2	2/2	NO EFFECT	73			
63.0	6.3	2/2	DEATH	74	0		
50.0	5.0	2/2	DEATH	74	0	•	

2778 W

ある あり 主義の	DOSE MG/KG	DILUT ML/KG	REACT.	INTRAVENOUS TOXICITY T REACTION SIGN	O MICE	MIN. APPR		MIN. TO RECOVER
14.5	40.0	4.0	0/2	DEATH	74	0	'	
×	25.0-	2.5	0/2	DEATH	74	Ō		
1	271			100% STEROL DIL. SUSP	QS C H20			

LD50 20.0 -16.0-25.0-MED50 0.18 -0.056-0.56-RATIO LD50/MED50 110.0

STATE SOLID

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN		MIN APPR	DEG - REE	MIN. RECO	
100.0	10.0	2/2	DEATH	74	0			
32.0	3.2	2/2	DEATH	74	0			
10.0	10.0	2/2		24	8	***		120
10.0	10.0	2/2		32	0			240
10.0	10.0	2/2		32	.0			120
10.0	10.0	1/2	STRAUB TAIL 2	33	.0			8
10.0	10.0	1/2	MIXED CONVULSIONS 3	136	0			8
10.0	10.0	1/2	OPISTHOTONOS	38	0			8
10.0	10.0	2/2	INC PREENING 1	40	0			120
10.0	10.0	2/2	LOW POSTURE 2	41	0			120
10.0	10.0	1/2	TREMORS-REST AND MOVEMENT 1	44	0		-	8
10.0	10.0	2/2	FYFLID PTOSIS-NONPARALYTIC 1	L49	0	***		240
10.0	10.0	2/2	PUPILLARY LIGHT REFLEX ABS 1	L52	8			30
10.0	10.0	2/2	MYDRIASIS 1	L54	8	**		30
10.0	10.0	1/2	DEC RESPIRATORY DEPTH	261	30			120
10.0	10.0	1/2	INC RESPIRATORY DEPTH	161	30			120
10.0	10.0	2/2	IRREGULAR RESPIRATORY DEPTH	361	0			120
10.0	10.0	2/2	DEC RESPIRATORY RATE	262		*		120
10.0	10.0	2/2	IRREGULAR RESPIRATORY RATE	362	0	*		120

DOSE MG/KG		REACT.	INTRAVENOUS TOX REACTION S	ICITY TO MICE IGN		MIN. APPR	DEG - REE		• TO OVER
10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0	1/2	MOT DEF VERTICA MOT DEF HORIZON MOT DEF VERTICA MOT DEF ROTA-RO MOT DEF INCLINE	TAL STRIP L ROD	271 471 371 771 671	15 15 15 15	*** * *		120 120 120 120 120
3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	3.223.222223.33.33.33.33.33.33.33.33.33.	2/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	DEC LOCOMOTOR A INC SENSITIVITY INC SENSITIVITY SOCIAL INTERACT DEC REARING HEI DEC PREENING LOW POSTURE EYELID PTOSIS-I PUPILLARY LIGHT MYDRIASIS IRREGULAR RESP IRREGULAR RESP	TO SOUND TO TOUCH TO TOUCH TION ALTERED GUENCY IGHT NONPARALYTIC T REFLEX ABS	732 240 241 149 152 154	8 8 0	***	G G	120 300 300 180 60 60 120 30 120 30 120
1.0 1.0 1.0	10.0 10.0 10.0	2/2 2/2 1/2	INC SENSITIVIT INC PREENING EYELID PTOSIS-		131 140 149	60	*	G G	300 300 300
0.32	3.2 3.2		INC SENSITIVIT	Y TO SOUND	130 140		*		300
0.10	10.0	2/2	NO EFFECT		73				,
25.0	5.0	2/2	DEATH	1-1-20-20	7.4	- 0			
20.0	.4.0	1/2	DEATH		7.4	• 0			
16.0	3.2	0/2	DEATH		.74	4 0			
2.0	12.0	0/2	DEATH		7	4 0		-	
DIL.			H20 Q5 C H20						

LD50 100.0 -79.0-120.0-MED50 1.8 -0.56-5.6-RATIO LD50/MED50 56.0

STATE SOLID

The state of the s

			INTRAVENOUS TOXICITY TO MIC	Œ				
DOSE		REACT.	REACTION SIGN		MIN	DEG-	MI	Vo TO
MG/KG	ML/KG	FRACT.			APPR	REE	RE	OVER
100.0			BC+ FIL					
	10.0	1/2	DEATH	74	0			
100.0	10.0	1/2	DEC LOCOMOTOR ACTIVITY	124	0	***	G	300
100.0	10.0	1/2	DEC SENSITIVITY TO PAIN	229	8			120
100.0	10.0	1/2		230	8	*		180
100.0	10.0	1/2	DEC SENSITIVITY TO TOUCH	231	8	***		180
100.0	10.0	1/2	DEC REARING FREQUENCY	632	0		G	300
100.0	10.0	1/2	LIMP TAIL	333	0			120
100.0	10.0	1/2	DEC MUSCLE TONE-TRUNK	237	8			120
100.0	10.0	1/2	DEC MUSCLE TONE-LIMBS	437	8			120
100.0	10.0	1/2	DEC PREENING	240	ō		G	300
100.0	10.0	1/2	EXTENSION OF LIMBS	341	ō		•	. 60
100.0	10.0	1/2	PLACING REFLEX ABS	442	ō			60
100.0	10.0	1/2	GRASPING REFLEX ABS	642	8	-		60
100.0	10.0	1/2	LABYRINTHINE REFLEX ABS	042	ŏ			60
100.0	10.0	1/2	PROSTRATION	43	ō			60
100.0	10.0	1/2	EXOPHTHALMOS	46	٠,٥			30
100.0	10.0	1/2	EYELID PTOSIS-NONPARALYTIC	149	8	***	G	300
100.0	10.0	1/2	INC RESPIRATORY DEPTH	161	õ		•	8
100.0	10.0	1/2	DEC RESPIRATORY DEPTH	261	8			240
100.0	10.0	1/2	IRREGULAR RESPIRATORY RATE	362	ő	***		240
100.0	10.0	1/2	MOT DEF HORIZONTAL WIRE	171	ő	***		300
		27.2	HOL OF HOUSE	1,1	U	~ ~ ~ ~		300

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MIC REACTION SIGN	E	MIN. APPR	DEG- REE	MIN REC	
100.0 100.0 100.0 100.0	10.0 10.0 10.0 10.0 10.0	1/2 1/2 1/2 1/2 1/2	MOT DEF VERTICAL SCREEN MOT DEF HORIZONTAL STRIP MOT DEF VERTICAL ROD MOT DEF ROTA-ROD MOT DEF INCLINED STRIP	271 471 371 771 671	0 0 0	*** *** *** ***	G G	3 3 3
10.0 100.0 100.0 100.0 32.0 32.0 32.0 32.0 32.0 10.	3.2 3.2 3.2 3.2 3.2	2/2 2/2 2/2 2/2 2/2 2/2	DEC LOCOMOTOR ACTIVITY DEC REARING FREQUENCY DEC PREENING EYELID PTO515-NONPARALYTIC IRREGULAR RESPIRATORY RATE	124 632 240 149 362	0 60 60 0	***	999	3 3 3 3 3
10.0	10.0	2/2	INC SENSITIVITY TO TOUCH	131 140	60 60	*		1
3.2 3.2	3.2 3.2	2/2	INC SENSITIVITY TO TOUCH	131 140		*		
1.0	10.0	2/2	NO EFFECT	73				
120.0	12.0	2/2	DEATH	74	. 0			
79.0	7.9	0/2	DEATH	74	. 0			
63.0	6.3	0/2	DEATH	74	- 0			
DIL.			100% STEROL DIL. SUSP QS	H20			= 1	
DIL.		j						
Part of the							-	
and the second								
PC-resident Contraction								
decinition of the second								
A CONTRACTOR OF THE PARTY OF TH					1			
A STATE OF THE STA								

LD50 45.0 -36.0-36.0-MED50 5.6 -1.8-18.0-RATIO LD50/MED50 8.0

ATE SOLID

the subsequent of the second o

OSE G/KG	DILUT ML/KG	REACT. FRACT.	INTRAVENOUS TOXICITY TO MI REACTION SIGN	CE	MIN. APPR	DEG- REE	MIN	
0.0	10.0	2/2	DEATH	74	0			
05E 6/KG 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.2 3.2 3.0	3.2 3.2 3.2 3.2 3.2 3.2	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	DEATH DEC LOCOMOTOR ACTIVITY DEC SENSITIVITY TO TOUCH DEC REARING FREQUENCY PUPILLARY LIGHT REFLEX DER MYDRIASIS INC RESPIRATORY DEPTH DEC RESPIRATORY RATE DEC RESPIRATORY RATE	161	0	*** *** *	999 999	300 300 300 240 240 300 300 300
.0.0	3.2 10.0 10.0	1/2 2/2 2/2	IRREGULAR RESPIRATORY RATIONAL PUPILLARY LIGHT REFLEX DEMYDRIASIS		. 0	**		180 180
3.2	3.2	2/2	NO EFFECT	73				
,3.0	6.3	2/2	DEATH	74	30			
;0.0	5.0	2/2	DEATH	74	30			
١.	•		e (
4		٠,,						

DILUT REACT. ML/KG FRACT.

INTRAVENOUS TOXICITY TO MICE REACTION SIGN

MIN. TO RECOVER MIN. APPR DEG-REE

DOSE MG/KG

0/2 DEATH

And the second of the second o

100% STEROL DIL. SUSP QS C H20

LD50 100.0 -79.0-120.0-MED50 0.56 -0.18-1.8-RATIO LD50/MED50 180.0

STATE SOLID

The Party of the Canal Control of the Control of th

			INTRAVENOUS TOXICITY TO MIC	Ε			
DOSE		REACT.	REACTION SIGN		MIN. APPR	- DEG- REE	MIN. TO RECOVER
MG/KG	ML/KG	FRACT.	•		APPR	KCL	RECOVER
100.0	10.0	1/2	DEATH	74		***	100
100.0	10.0	1/2		124		****	120
100.0	10.0	1/2		230	0		60
100.0	10.0	1/2		231	0		.60
100.0	10.0	1/2	SOCIAL INTERACTION ALTERED	132	0		. 120
100.0	10.0	1/2	DEC REARING FREQUENCY	632	. 0		120
100.0	10.0	1/2	DEC PREENING	240	0		60
100.0	10.0	1/2	LOW POSTURE	241	8		60
100.0	10.0	1/2	EYELID PTOSIS-NONPARALYTIC	149		***	180
100.0	10.0	1/2	INC RESPIRATORY DEPTH	161	0		60
100.0	10.0	1/2	DEC RESPIRATORY RATE	262		*	60
100.0	10.0	1/2		471	0	***	60
100.0	10.0	1/2	MOT DEF VERTICAL ROD	371		***	
100.0	10.0	1/2	MOT DEF ROTA-ROD	771		*	30
100.0	10.0	1/2	MOT DEF INCLINED STRIP	671	0	***	60
32.0	3.2	2/2	DEC LOCOMOTOR ACTIVITY	124		***	30
32.0	3.2	2/2	SOCIAL INTERACTION ALTERED	132	. 0		-60
32.0	3.2	2/2	DEC REARING FREQUENCY	632	. 0		60
		2/2	DEC PREENING	240	0		60
32.0	3.2		LOW POSTURE	241	. 8		30
32.0	3.2	2/2	LOW 10010IVE		-		

			INTRAVENOUS TOXICITY TO MICH	Ε			
DOSE MG/KG			REACTION SIGN			DEG- REE	MIN. TO RECOVER
32.0 32.0 32.0 32.0 32.0 32.0	3.2 3.2 3.2 3.2 3.2 3.2	2/2 2/2 2/2 1/2 1/2 1/2 1/2	INC RESPIRATORY DEPTH DEC RESPIRATORY RATE MOT DEF HORIZONTAL STRIP MOT DEF VERTICAL ROD MOT DEF ROTA-ROD	161 262 471 371 771	8 0 0 0	* *** * *	180 60 60 60 30 30
10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0	1/2 2/2 1/2 1/2 1/2 1/2	SOCIAL INTERACTION ALTERED DEC REARING FREQUENCY EYELID PTOSIS-NONPARALYTIC INC RESPIRATORY DEPTH	132 632 149 161	8 0 0 15 0	***	30 30 120 180 30 30
3 • 2	3.2	2/2	EYELID PTOSIS-NONPARALYTIC	149	60	*	180
1.0	10.0	2/2	DEC LOCOMOTOR ACTIVITY	124	30	*	60
0.32	3.2	2/2	NO EFFECT	73			
120.0	12.0	2/2	DEATH	74	0		
79.0	7.9	0/2	DEATH	74	0		
63.0	6.3	0/2	DEATH	74	0		
DIL.			3% ASCORBIC ACID Q5 C H20				
	MG/KG 32.0 32.0 32.0 32.0 32.0 32.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	MG/KG ML/KG 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 32.0 3.2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 70.0 10.0 70.0 10.0 70.0 12.0 70.0 63.0 6.3	MG/KG ML/KG FRACT. 32.0 3.2 2/2 32.0 3.2 2/2 32.0 3.2 1/2 32.0 3.2 1/2 32.0 3.2 1/2 32.0 3.2 1/2 10.0 10.0 1/2	DOSE MILUT REACT REACTION SIGN MC/KG FRACT	MG/KG ML/KG FRACT* 32.0 3.2 2/2 EYELID PTOSIS=NONPARALYTIC 149 32.0 3.2 2/2 INC RESPIRATORY DEPTH 161 32.0 3.2 1/2 MOT DEF ROTA=ROD 771 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 32.0 3.2 1/2 MOT DEF ROTA=ROD 771 32.0 3.2 1/2 MOT DEF ROTA=ROD 771 52.0 10.0 1/2 DEC LOCOMOTOR ACTIVITY 124 53.0 10.0 1/2 DEC RESPIRATORY DEPTH 161 53.0 3.2 2/2 EYELID PTOSIS=NONPARALYTIC 149 53.0 3.2 2/2 DEC LOCOMOTOR ACTIVITY 124 63.0 6.3 0/2 DEATH 74 63.0 6.3 0/2 DEATH 74	DOSE MC/KG ML/KG FRACT. REACTION SIGN MIN- APPR	DOSE DILUT REACT. REACTION SIGN MIN. DEG- MG/KG FRACT. REE REE

The second secon

LD50 63.0 -50.0-79.0-MED50 0.18 -0.056-0.56-LD50/MED50 350.0 RATIO

STATE SOLID

moderate desirable chemical consequences and an experience of the second consequences and the second consequences are second consequences.

	DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN		APPR	DEG-	MIN. TO RECOVER
	100.0	10.0	2/2	DEATH .	74	0		
	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	2/2 2/2 2/2	DEC SENSITIVITY TO SOUND DEC SENSITIVITY TO TOUCH DEC SENSITIVITY TO TOUCH SOCIAL INTERACTION ALTERED TO DEC REARING FREQUENCY DEC MUSCLE TONE-TRUNK DEC MUSCLE TONE-LIMBS DEC PREENING RIGHTING REFLEX ABS EYELID PTOSIS-NONPARALYTIC MIOSIS MYDRIASIS IRREGULAR RESPIRATORY DEPTH IRREGULAR RESPIRATORY RATE DYSPNEA MOT DEF HORIZONTAL WIRE MOT DEF VERTICAL SCREEN	24 230 231 132 237 242 242 254 254 254 361 271 271 471	8 8 120 0 0 0	*** * ** ** ** **	180 180 180 240 180 180 180 180 60 120 180 60 60 60 130
-	32.0 32.0	3.2	2/2		371		***	180

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN	MIN. APPR	DEG - REE	MIN. TO RECOVER
32.0 32.0-	3.2 3.2	2/2 2/2	MOT DEF ROTA-ROD 771 MOT DEF INCLINED STRIP 671		***	120 180
10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0	2/2 2/2 2/2 2/2 2/2 2/2 2/2	INC LOCOMOTOR ACTIVITY 224 SOCIAL INTERACTION ALTERED 13 ATAXIA IRREGULAR RESPIRATORY DEPTH361 IRREGULAR RESPIRATORY RATE 36 RESTLESSNESS 76	0 0 1 0	*	180 180 8 15 15
3.2 3.2 3.2	3.2 3.2 3.2	2/2 1/2 2/2	INC LOCOMOTOR ACTIVITY 224 INC PREENING 146 RESTLESSNESS 76	60	. *	120 120 120
1.0	10.0	2/2	INC PREENING 140	8 0		60
0.32	3.2	2/2	INC PREENING 14	о в		60
0.10	10.0	2/2	NO EFFECT 7	3		
79.0	7.9	2/2	DEATH 7	4 0	•	
63.0	6.3	1/2	DEATH 7	4 0		
50.0	5.0	0/2	DEATH 7	4 0		
DfL.	b.(-		100% STEROL DIL. SUSP QS C H2	0		

是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个

LD50 200.0 -160.0-250.0-MED50 18.0 -5.6-56.0-RATIO LD50/MED50 11.0

STATE SOLID

			INTRAVENOUS TOXICIT	1 IO MITCE			
DOSE MG/KG		REACT. FRACT.	REACTION SIGN	***	MIN. APPR	· DEG=	
100.0 100.0 100.0 100.0	1.0 1.0 1.0 1.0	2/2 2/2 2/2 2/2 2/2	DEC LOCOMOTOR ACTIV DEC REARING FREQUEN DEC PREENING IRREGULAR RESPIRATO IRREGULAR RESPIRATO	1CY 632 240 DRY DEPTH361	30 30 0	***	60 60 60 15
32.0 32.0	0.64 0.64		DEC LOCOMOTOR ACTIV			*	60 15
10.0	1.0	2/2	NO EFFECT	73			
250.0	2.5	2/2	DEATH	74	0		
200.0	2.0	1/2	DEATH	74	0		-
160.0	1.6	0/2	DEATH	74	0		
130.0	1.3	0/2	DEATH	. 74	0		
DIL.			100% PEG 300 QS C 1	100% PEG 300			

LD50 25.0 -20.0-32.0-MED50 1.8 -0.56-5.6-RATIO LD50/MED50 14.0

STATE SEMISOLID

DOSE MG/KG		REACT.	REACTION SIGN	•	MIN. APPR	DEG - REE	MIN. TO RECOVER
100.0	2.0	2/2	DEATH	74	.0		
32.0	0.64	2/2	DEATH	74	-0		
10.0 10.0 10.0	1.0 1.0 1.0	1/2 2/2 2/2	INC SENSITIVITY TO TOUCH IRREGULAR RESPIRATORY DEPTHS	361	1440	*	1440 15 15
3.2	1.6	2/2	INC SENSITIVITY TO TOUCH	131	8	*	30
1.0	0.50	2/2	NO EFFECT	73			
25.0	2.5	1/2	DEATH	74	0	-	
20.0	2.0	0/2	DEATH .	74	0		
16.0	1.6	0/2	DEATH	74	0		
DIL.			100% PEG 300 QS C 100% PEG	300			

LD50 25.0 -11.0-56.0-MED50 0.56 -0.18-1.8-RATIO LD50/MED50 45.0

STATE SOLID

And the second desired the second second

The second secon

			INTRAVENOUS TOXICITY TO MIC	Έ				
DOSE	DILUT	REACT.	REACTION SIGN		MIN. :			• TO
MG/KG		FRACT			APPR	REE	REC	OVER
100.0	10.0	2/2	DEATH	74	0			
32.0	3.2	1/2	DEATH	74	0			
32.0	3.2	1/2	DEC LOCOMOTOR ACTIVITY	124	30	***	G	300
32.0	3.2	1/2	DEC SENSITIVITY TO PAIN	229	30			60
32.0	3.2	1/2	INC SENSITIVITY TO TOUCH	131	0	*		30
32.0	3.2	1/2	INC REARING FREQUENCY	432	0			8
32.0	3.2	1/2	DEC REARING FREQUENCY	632	30	*	G	300
32.0	3.2	1/2	STRAUB TAIL	233	-0			30
32.0	3.2	1/2	MIXED CONVULSIONS	336	0			8
32.0	3.2	1/2	ABNORMAL VIBRISSAE	172	8			60
32.0	3,2	1/2	OPISTHOTONOS	38	0			8
32.0	3.2	1/2	RUBBING NOSE	340	.0			60
32.0	3.2	1/2	LOW POSTURE	241	15			30
32.0	.3.2	1/2	EXTENSION OF LIMBS	341	30			60
32.0	3.2	1/2	TREMORS-REST AND MOVEMENT	144	0	*		60
32.0	3.2	1/2	EXOPHTHALMOS	46	0			15
32.0	3.2	1/2	PUPILLARY LIGHT REFLEX ABS	152	0			60
32.0	3.2	1/2	MYDRIASIS	154	0	***		60
32.0	3.2	1/2	SALIVATION	57	8	***		. 30
32.0	3.2	1/2	INC URINATION	158	ō			60
32.0	3.2	1/2	DYSPNEA	60	ō	*		8

DOSE MG/KG		REACT.	INTRAVENOUS TOXIC REACTION SIG		MIN. APPR	DEG- REE	MIN. TO RECOVER
32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0		1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	INC RESPIRAYORY D DEC RESPIRAYORY D IRREGULAR RESPIRA INC RESPIRAYORY R DEC RESPIRAYORY R IRREGULAR RESPIRA MOT DEF WERTICAL MOT DEF WERTICAL MOT DEF WERTICAL MOT DEF WERTICAL MOT DEF ROTA-ROD MOT DEF INCLINED MOT DEF INCLINED LABYRINTHINE REFL	EPTH 261 TORY DEPTH361 ATE 162 ATE 262 TORY RATE 362 L WIRE 171 SCREEN 271 L STRIP 471 ROD 371 STRIP 671	30 0 30 0 0 0 0 0 0	* * * * * * * * * * * * * * * * * * *	30 120 30 120 120 120 30 30 30 30 60
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	JUMPING ABNORMAL REACTION INC SENSITIVITY T SOCIAL INTERACTIO RUBBING NOSE LABWRINTHINE REFL PUPILLARY LIGHT R MYDRIASIS SALIVATION INC URINATION MOT DEF VERTICAL ABNORMAL VIBRISSA	O TOUCH 131 N ALTERED 132 340 EX DEPR 942 EFLEX ABS 152 154 57 158 ROD 371	15 0 0 8 0 0 0 15 8	* ** ** **	30 60 60 60 60 60 60 30 60
3.2 3.2 3.2 3.2	3.2 3.2 3.2 3.2	2/2 2/2 1/2 2/2	INC SENSITIVITY T INC PREENING RUBBING NOSE INC URINATION	O TOUCH 131 140 340 158	60 8	***	G 300 180 30 60
1.0	10.0 10.0	2/2 2/2	IRREGULAR RESPIRA			*	30 30
0.32	3.2	2/2	NO EFFECT	73		-	
40.0	4,0	2/2	DEATH	74	. 0	·	
25.0	2.5	1/2	DEATH	74	120		
20.0	2.0	1/2	DEATH	74	120		
DIL.			H20 Q5 C H20				

LD50 110.0 -89.0-140.0-MED50 0.56 -0.18-1.8-RATIO LD50/MED50 200.0

STATE SOLID

	DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN	MIN. APPR	DEG- REE	MIN	TO OVER
-	20.0 20.0 20.0 20.0 20.0 20.0 20.0	2.0 2.0 2.0 2.0 2.0 2.0	2/2 2/2 2/2 1/2 2/2 1/2	DEC LOCOMOTOR ACTIVITY 124 SOCIAL INTERACTION ALTERED 132 DEC REARING FREQUENCY 632 EYELID PTOSIS-MONPARALYTIC 149 INC RESPIRATORY DEPTH 161 DEC RESPIRATORY RATE 262 IRREGULAR-RESPIRATORY RATE 362	15 15 15 0	*		180 300 180 180 180 120 180
	10.0 10.0 10.0 10.0	1.0 1.0 1.0 1.0	1/2 1/2 2/2 2/2 2/2	INC LOCOMOTOR ACTIVITY 224 DEC LOCOMOTOR ACTIVITY 124 EYELID PTOSIS-MONPARALYTIC 124 INC RESPIRATORY DEPTH 161 IRREGULAR RESPIRATORY RATE 362	60 60	* *		60 180 180 180 180
	3.2 3.2 3.2 3.2	1.6 1.6 1.6	1/2 2/2 2/2 2/2	INC LOCOMOTOR ACTIVITY DEC LOCOMOTOR ACTIVITY INC RESPIRATORY DEPTH IRREGULAR RESPIRATORY RATE 363	60 8	*		30 180 60 60
	1.0	0.50		INC LOCOMOTOR ACTIVITY 222 DEC LOCOMOTOR ACTIVITY 124		*		60 120

DOSE MG/KG		REACT.		US TOXICITY TION SIGN	TO MICE	MIN. APPR	DEG- REE	MIN. TO RECOVER
1.0	0.50	1/2	IRREGULAR	RESPIRATORY	RATE 362	15	. *	30
0.32	1.6	2/2	NO EFFECT		73			
160.0	2.6	2/2	DEATH		74	0		
120.0	2.1	2/2	DEATH		. 74	0		
100.0	1.7	0/2	DEATH		74	0		
79.0	1.3	0/2	DEATH	·	74	0		
DIL.			100% PEG	300 QS C 100	% PEG 300			

LD50 120.0 -100.0-160.0-MED50 1.8 -0.56-5.6-RATIO LD50/MED50 69.0

STATE SOLID

A PROPERTY OF THE PROPERTY OF

			INTRAVENOUS TOXICITY TO MICE				
DOSE MG/KG		REACT. FRACT.	REACTION SIGN	MIN. · APPR	DEG- REE		• TO OVER
100.0	2.0	2/2	DEC LOCOMOTOR ACTIVITY 12	4 8	***	G	300
100.0	2.0	2/2	DEC SENSITIVITY TO TOUCH 23	18	*		60
100.0	2.0	2/2	DEC PREENING 24	0 0		G	300
100.0	2.0	2/2	EYELID PTOSIS-NONPARALYTIC 14		***	Ġ	300
100.0	2.0	2/2	DYSPNEA 6	0 0	*.		8
100.0	.2.0	1/2	IRREGULAR RESPIRATORY DEPTH36	1 0			15
100.0	2.0	2/2	MOT DEF HORIZONTAL WIRE 17	1 0	·*		15
100.0	.2.0	2/2	MOT DEF VERTICAL SCREEN 27	1 0	*		15
100.0	:2.0	2/2	MOT DEF HORIZONTAL STRIP 47	1 0	***		30
100.0	2.0	1/2	MOT DEF VERTICAL ROD 37	1 0	*		15
100.0	.2.0	2/2	MOT DEF ROTA-ROD 77	1 0	*		15
100.0	2.0	2/2	MOT DEF INCLINED STRIP 67	1 0	***		30
20.0	2.0	2/2	DEC LOCOMOTOR ACTIVITY 12	4 60	*		240
20.0	2.0	1/2	NO EFFECT 7	3			
10.0	1.0	2/2	DEC LOCOMOTOR ACTIVITY 12	4 30	*		300
3.2	1.6	2/2	DEC LOCOMOTOR ACTIVITY 12	4 60	*		240
1.0	0.50	2/2	NO EFFECT 7	3			

DOSE MG/KG		REACT. FRACT.	F	ZENOUS TO REACTION	TO MICE	MIN. APPR	MIÑ. TO RECOVER	
160.0	3.2	2/2	DEATH		74	0		
_20.0-	2.5	1/2	DEATH		74	0	1	
79.0	1.6	0/2	DEATH		74	0		

DIL. 100% PEG 300 QS C 100% PEG 3

では、一般では、10mmのでは、10mm

LD50 36.0 -26.0-49.0-MED50 3.2-3-1.0-3-0.010-RATIO LD50/MED50 1.1+4

STATE SOLID

		INTRAVENOUS TOXICITY TO M	I CE					
		REACTION SIGN		MIN.	DEG - REE			
10.0	2/2	DEATH	74	.0				
3.2	1/2	DEATH	74	0				
		DEC LOCOMOTOR ACTIVITY	124	8	***		120	
		INC LOCOMOTOR ACTIVITY	224	120	*	G	300	
		CIRCLING MOVEMENTS	025	0			- 8	
		DEC REARING FREQUENCY	632	0			120	
		ATAXIA	-35	0	*		8	
		DEC PREENING	240	0			30	
		INC PREENING	140	60			240	
3.2	1/2	IRREGULAR RESPIRATORY DEP	TH361	0			120	
3.2	1/2	DEC REARING FREQUENCY	632	0	***		120	
3.2	1/2	MOT DEF HORIZONTAL WIRE	171	-0			15	
3.2	1/2	MOT DEF VERTICAL SCREEN	271	0	***		15	
3.2	1/2	MOT DEF HORIZONTAL STRIP	471					
3.2	1/2	MOT DEF VERTICAL ROD	371					
3.2	1/2	MOT DEF ROTA-ROD	771					
3.2	1/2	MOT DEF INCLINED STRIP	671		***			
3.2	1/2	PILOERECTION				G		
3.2	1/2	RESTLESSNESS	79	60			300	
	ML/KG 10.0 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	ML/KG FRACT. 10.0 2/2 3.2 1/2	DILUT REACT. ML/KG FRACT. 10.0 2/2 DEATH 3.2 1/2 DEC LOCOMOTOR ACTIVITY 3.2 1/2 INC LOCOMOTOR ACTIVITY 3.2 1/2 INC LOCOMOTOR ACTIVITY 3.2 1/2 DEC REARING FREQUENCY 3.2 1/2 DEC REARING FREQUENCY 3.2 1/2 DEC PREENING 3.2 1/2 DEC PREENING 3.2 1/2 INC PREENING 3.2 1/2 INC PREENING 3.2 1/2 INC PRESIDENTAL WIRE 3.2 1/2 MOT DEF HORIZONTAL WIRE 3.2 1/2 MOT DEF HORIZONTAL STRIP 3.2 1/2 MOT DEF HORIZONTAL STRIP 3.2 1/2 MOT DEF FRETICAL SCREEN 3.2 1/2 MOT DEF FRETICAL STRIP	ML/KG FRACT- 10.0 2/2 DEATH 74 3.2 1/2 DEATH 74 3.2 1/2 DEC LOCOMOTOR ACTIVITY 124 3.2 1/2 INC LOCOMOTOR ACTIVITY 224 3.2 1/2 INC LOCOMOTOR ACTIVITY 224 3.2 1/2 INC LOCOMOTOR ACTIVITY 224 3.2 1/2 CIRCLING MOVEMENTS 025 3.2 1/2 CIRCLING MOVEMENTS 025 3.2 1/2 ATAXIA 35 3.2 1/2 DEC PREENING 240 3.2 1/2 INC PREENING 140 3.2 1/2 INC PREENING 140 3.2 1/2 INC PREENING FREQUENCY 632 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 3.2 1/2 MOT DEF FORTICAL SCREEN 271 3.2 1/2 MOT DEF FORTICAL SCREEN 271 3.2 1/2 MOT DEF FORTICAL STRIP 471 3.2 1/2 MOT DEF FORTICAL STRIP 471 3.2 1/2 MOT DEF FORTICAL STRIP 471 3.2 1/2 MOT DEF FORTICAL STRIP 671 3.2 1/2 MOT DEF INCLINED STRIP 671 3.2 1/2 MOT DEF INCLINED STRIP 671 3.2 1/2 MOT DEF INCLINED STRIP 671	DILUT REACT. REACTION SIGN MIN. APPR	DILUT REACT. REACTION SIGN MIN. DEG-ML/KG FRACT.	DILUT REACT. ML/KG FRACT. REACTION SIGN MIN. DEG- APPR REC MIN. DEG- APPR REC MIN. DEG- APPR REC MIN. DEG- MIN. REC MIN. DEG- APPR REC MIN. DEG- MIN. REC *** G MIN. DEG- MIN. DEG- MIN. REC *** G MIN. DEG- MIN. REC MIN. DEG- MIN. REC *** G *** G MIN. DEG- MIN. REC *** G *** G MIN. DEG- MIN. REC *** G MIN. DEG- MIN. REC *** G *** G MIN. DEG- MIN. REC *** G *** G MIN. DEG- MIN. REC *** G *** G *** G *** G *** G G	DILUT REACT. REACTION SIGN MIN. DEG- MIN. TO APPR REE RECOVER

			•			
			INTRAVENOUS TOXICITY TO MICE			
DOSE	DILUT	REACT.	REACTION SIGN	MINo	DEG-	MIN. TO
MG/KG	ML/KG	FRACT.	•	APPR	REE	RECOVER
10.0	10.0	2/2	INC LOCOMOTOR ACTIVITY 224	60	. *	100
10.0	10.0	2/2	DEC LOCOMOTOR ACTIVITY 124		***	180
10.0	10.0		HEAD TWITCH 531		**	300
10.0	10.0	2/2	INC REARING FREQUENCY 432		*	60
10.0	10.0	2/2	INC PREENING 140			240
10.0	10.0	2/2	INC SCRATCHING 440			180
10.0	10.0	1/2	INC RESPIRATORY DEPTH 161			30
10.5	10.0	1/2	IRREGULAR RESPIRATORY DEPTH361			15
10.0	10.0	2/2	IRREGULAR RESPIRATORY RATE 362		***	30
10.0	10.0	2/2	PILOERECTION 72			240
10.0	10.0	2/2	RESTLESSNESS 79			300
					•	300
3.2	3,2	2/2	INC LOCOMOTOR ACTIVITY 224		*	180
3.2	3,2	2/2	DEC LOCOMOTOR ACTIVITY 124	180	***	240
3.2	3.2	1/2	HEAD TWITCH 531		*	300
3.2	3.2	1/2	INC REARING FREQUENCY 432			60
3.2	3.2	2/2	INC PREENING 140			240
3.2	3.2	1/2	INC SCRATCHING 440			120
3.2	3.2	1/2	INC RESPIRATORY DEPTH 161			15
3.2	3.2	2/2	IRREGULAR RESPIRATORY RATE 362		*	15
3.2	3.2	2/2	PILOERECTION 72		•	300
3.2	3.2	2/2	RESTLESSNESS 79	60		240
1.0	10.0	2/2	INC LOCOMOTOR ACTIVITY 224	. 0	*	60
1.0	10.0	2/2	DEC LOCOMOTOR ACTIVITY 124		***	240
1.0	10.0	2/2	HEAD TWITCH 531		*	300
1.0	10.0	1/2	INC- REARING FREQUENCY 432			- 60
1.0	10.0	2/2	INC PREENING 140	30	10.	240
1.0	10.0	2/2	INC SCRATCHING 440	30		240
1.0	10.0	2/2	INC RESPIRATORY DEPTH 161			240
1.0	10.0	2/2	IRREGULAR RESPIRATORY RATE 362	30	·*	240
1.0	10.0	1/2	PILOERECTION 72			240
1.0	10.0		RESTLESSNESS 79			240
1.0	10.0	2/2	SQUINTING 79	60	***	240
0.32	3.2	2/2	INC LOCOMOTOR ACTIVITY 224	. 15	* -	
0.32	3.2	2/2	DEC LOCOMOTOR ACTIVITY 124		***	60 240
0.32	3.2	1/2	HEAD TWITCH 531		*	300
0.32	3.2	1/2	INC REARING FREQUENCY 432		**	
0.32	3.2	2/2	INC PREENING 140			60 180
0.32	3.2	1/2	INC SCRATCHING 440			120
0.32	3.2	2/2	INC RESPIRATORY DEPTH 161			180
0.32	3.2	2/2	IRREGULAR RESPIRATORY RATE 362		*	180
0.32	3.2	2/2	RESTLESSNESS 79		•	180
	- • -	2,2		30		190

DOSE MG/KG		REACT. FRACT.	INTRAVENOUS TOXICITY TO M REACTION SIGN	ICE	MIN. APPR	DEG~ REE	MIN. TO RECOVER
0.32	3.2	2/2	SQUINTING	79	60	***	180
0.10 0.10 0.10 0.10 0.10 0.10	10.0 10.0 10.0 10.0 10.0	2/2 2/2 1/2 2/2 1/2 1/2	INC LOCOMOTOR ACTIVITY DEC LOCOMOTOR ACTIVITY PILDERECTION SQUINTING INC PREENING INC SCRATCHING	224 124 72 79 140 440	.30 120 120 60 30 30	***	120 180 240 180 120 60
0.032 0.032 0.032 0.032	3.2 3.2 3.2 3.2	2/2 2/2 1/2 2/2	INC LOCOMOTOR ACTIVITY DEC LOCOMOTOR ACTIVITY INC PREENING SQUINTING	224 124 140 79	60 120 30 120	***	120 180 60 180
0.010 0.010 0.010	10.0 10.0 10.0	2/2 2/2 1/2	INC LOCOMOTOR ACTIVITY INC PREENING INC SCRATCHING	224 140 440	0 0 0	*	60 60 60
3.2-3 3.2-3 3.2-3	3.2 3.2 3.2	1/2 1/2 1/2	INC LOCOMOTOR ACTIVITY INC SCRATCHING NO EFFECT	224 440 73	0		60 60
1.0-3	10.0	2/2	NO EFFECT	73			
-50 _• 0	-5.0	2/2	DEATH	74	0		
40.0	4.0	1/2	DEATH -	74	-0		
25.0	2.5	0/2	DEATH	74	0		. *
DIL.		•	100% STEROL DIL. SUSP QS	C H20			

LD50 160.0 -120.0-200.0-MED50 0.18 -0.056-0.56-RATIO LD50/MED50 880.0

STATE SOLID

DOSE MG/KG		REACT. FRACT.	INTRAVENOUS TOXICITY TO MIC REACTION SIGN	E.	MIN. APPR	DEG+ REE	MIN. RECC	
400.0	10.0	2/2	DEC LOCOMOTOR ACTIVITY	124	0	***	G	300
100.0	10.0	1/2	INC SENSITIVITY TO PAIN	129	30			120
100.0	10.0	2/2	ABNORMAL REACTION TO PAIN	429	30			300
100.0	10.0	2/2	DEC SENSITIVITY TO TOUCH	231	0	*		120
100.0	10.0	2/2	SOCIAL INTERACTION ALTERED	132	0			180
105.0	10.0	2/2	DEC REARING FREQUENCY	632	-0			180
100.0	10.0	2/2	ATAXIA	35	0	***		60
100.0	10.0	2/2	DEC PREENING	240	0			300
100.0	10.0	2/2	PUPILLARY LIGHT REFLEX ABS	152	0			60
100.0	10.0	2/2	MYDRIASIS	154		**		60
100.0	10.0	.2/2	INC RESPIRATORY DEPTH	161	0			180
100.0	10.0	2/2	DEC RESPIRATORY RATE	262	15	*	-	180
100.0	10.0	2/2	IRREGULAR RESPIRATORY RATE	362		*		30
100.0	10.0	1/2	MOT DEF HORIZONTAL STRIP	471	.0	*		60
100.0	10.0	1/2	MOT DEF VERTICAL ROD	371	0	***		60
100.0	10.0	1/2	MOT DEF ROTA-ROD	771	0	*		60
100.0	10.0	1/2	MOT DEF INCLINED STRIP	671	0	*		60
100.0	10.0	2/2	LOW CARRIAGE	175	0			60
32.0	3.2	2/2	DEC LOCOMOTOR ACTIVITY	124	.15	*		120
32.0	3.2	2/2	ABNORMAL REACTION TO PAIN	429	60			240

DOSE MG/KG		REACT. FRACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN		MIN. APPR	DEG- REE		N. TO COVER
32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	3.2 3.2 3.2 3.2 3.2 3.2 3.2	2/2 2/2 1/2 2/2 2/2 2/2 1/2 1/2 2/2	SOCIAL INTERACTION ALTERED 1 DEC REARING FREQUENCY DEC PREENING 2 PUPILLARY LIGHT REFLEX ABS 1 MOT DEF HORIZONTAL STRIP 4 MOT DEF INCLINED STRIP 4 MOT DEF INCLINED STRIP 4	31 32 32 40 52 54 71 71	60 0 0 15 0 0 0	***	G	300 60 60 60 60 30 30
10.0 10.0	10.0 10.0 10.0	2/2 1/2 1/2		29 31 72	60 60 120	*	G	300 240 300
3.2 3.2 3.2	3.2 3.2 3.2	1/2 1/2 1/2	PUPILLARY LIGHT REFLEX ABS 1	29 52 54	60 0 0	**		300 60 60
1.0	10.0	2/2	DEC LOCOMOTOR ACTIVITY EYELID PTOSIS-NONPARALYTIC	L24 L49	60 120	*		240 180
0.32 0.32	3.2	1/2		124 149	60 60	*		120 240
0.10	10.0	2/2	NO EFFECT	73				
200.0	20.0	2/2	DEATH	74	0			
160.0	16.0	1/2	DEATH	74	. 0			* ;
120.0	12.0	0/2	DEATH	7,4	. 0			
DIL.			100% STEROL DIL. SUSP QS C	H20				
							-	
ž.								

LD50 50.0 -40.0-63.0-MED50 0.56 -0.18-1.8-RATIO LD50/MED50 89.0

STATE SOLID

DOSE MG/KG		REACT. FRACT.	INTRAVENOUS TOXICITY TO MI REACTION SIGN	CE	MIN. APPR	DEG- REE		TO OVER	
00.0	10.0	2/2	DEATH	74	0				
32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	3.223.223.223.233.233.233.233.23	2/2 2/2 2/2 1/2 1/2 2/2 2/2 2/2 2/2 2/2	DEC LOCOMOTOR ACTIVITY INC PHONATION INC SENSITIVITY TO PAIN INC REACTIVITY TO SOUND INC SENSITIVITY TO SOUND INC SENSITIVITY TO TOUCH SOCIAL INTERACTION ALTERED DEC REARING FREQUENCY DEC REARING HEIGHT EMPROSTHOTONOS IRREGULAR RESPIRATORY DEPI	632 732 138 154	0 30 60 30 0 0 0 8	***	G G G	300 120 240 300 120 300 120 60 180 30 120	
32.0	3.2	1/2	MOT DEF INCLINED STRIP	671	ő	***		120	
10.0 10.0 10.0 10.0	10.0 10.0 10.0	2/2 2/2 2/2 2/2	INC LOCOMOTOR ACTIVITY INC PHONATION INC SENSITIVITY TO PAIN INC SENSITIVITY TO TOUCH	224 128 129 131	0 30 15 30	***	G	120 120 300 120	

PAGE 5071

			INTRAVENOUS TOXICITY TO	MICE			
DOSE MG/KG		REACT.	REACTION SIGN		MIN. APPR	DEG- REE	MIN. TO RECOVER
3.2 3.2 3.2	3.2 3.2 3.2	2/2. 2/2. 1/2	INC LOCOMOTOR ACTIVITY INC SENSITIVITY TO PAIN MYDRIASIS	224 129 154	0 15 15	***	G 300 240
1.0	10.0	2/2	INC LOCOMOTOR ACTIVITY	224	0	*	30
0.32	3.2	2/2	NO EFFECT	73			
79.0	7.9	2/2	DEATH	74	0		
63.0	6.3	2/2	DEATH	74	0		
50.0	5.0	1/2	DEATH	74	-60		
40.0	4.0	0/2	DEATH .	74	0		
DIL.			100% STEROL DIL. SUSP Q	S C H20			

LD50 320.0 GREAT MED50 1.8 -0.56-5.6-RATIO LD50/MED50 UNK

STATE SOLID

DOSE MG/KG	DILUT	REACT. FRACT.	INTRAVENOUS TOXICITY TO MIC REACTION SIGN	.E	MIN APPR	DEG- REE		. TO OVER
Marka	11127114			124	.0	***	G	300
320.0	32.0	2/2	DEC LOCOMOTOR ACTIVITY	229	.0		Ğ	300
320.0	32.0	2/2	DEC SENSITIVITY TO PAIN	230	0	***	_	120
320.0	32.0	2/2	DEC SENSITIVITY TO SOUND	231	. 0	***		180
320.0	32.0	2/2	DEC SENSITIVITY TO TOUCH		ő			120
320.0	32.0	2/2	PINNAL REFLEX ABS	431 132	0			180
320.0	32.0	2/2	SOCIAL INTERACTION ALTERED		0			180
320.0	32.0	2/.2	DEC REARING FREQUENCY	632			G	300
320.0	32.0	2/2	DEC REARING HEIGHT	732	120		•	120
320.0	32.0	2/2	LIMP TAIL	333			G	300
320.0	32.0	1/2	INC AGGRESSIVENESS-PEOPLE	334		***	•	120
320.0	32.0	2/2	ATAXIA	35				8
320.0	32.0	1/2	INC MUSCLE TONE-LIMBS	337				180
320.0	32.0	1/2	DEC MUSCLE TONE-LIMBS	437		-	G	300
320.0	32.0	2/2	DEC PREENING	240				120
320.0	32.0	2/2	LOW POSTURE	241				120
320.0	32.0	2/2	EXTENSION OF LIMBS	341				60
320.0	32.0	2/2	PLACING REFLEX ABS	442				60
320.0	32.0	2/2	GRASPING REFLEX ABS	642				60
320.0	32.0	2/2	RIGHTING REFLEX ABS	842				60
320.0	32.0	1/2	LABYRINTHINE REFLEX ABS	042				8
320.0	32.0	1/2	LABYRINTHINE REFLEX DEPR	942	. 0			٠

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN	MIN. APPR	DEG= REE	MIN. TO RECOVER
320.0 320.0 320.0 320.0	32.0 32.0 32.0 32.0	1/2 1/2 2/2 2/2	EYELID PTOSIS-NONPARALYTIC 149 MIOSIS 254 DEC RESPIRATORY DEPTH 261 IRREGULAR RESPIRATORY DEPTH361	60 0 0	*	G 300 30 120 120
320.0 320.0 320.0 320.0	32.0 32.0 32.0 32.0	2/2 2/2 2/2 2/2	INC RESPIRATORY RATE 162 IRREGULAR RESPIRATORY RATE 362 MOT DEF HORIZONTAL WIRE 171 MOT DEF VERTICAL SCREEN 271	0 0 0	*** *** ***	G 300 G 300 180 G 300
320.0 320.0 320.0 320.0	32.0 32.0 32.0 52.0	2/2 2/2 2/2 2/2	MOT DEF HORIZONTAL STRIP 471 MOT DEF VERTICAL ROD 371 MOT DEF ROTA-ROD 771 MOT DEF INCLINED STRIP 671	0	*** *** ***	G 300 G 300 180 G 300
100.0 100.0 103.0 100.0 100.0 100.0	10.0 10.0 10.0 10.0 10.0 10.0	2/2 2/2 2/2 2/2 2/2 2/2 1/2 1/2	INC LOCOMOTOR ACTIVITY 224 DEC LOCOMOTOR ACTIVITY 125 SOCIAL INTERACTION ALTERED 132 DEC REARING HEIGHT 732 DEC PREENING 240 PUPILLARY LIGHT REFLEX ABS 152 MYDRIASIS 154	15 0 . 0 0	***	15 240 60 120 30 180 180
32.0 32.0 32.0 32.0 32.0 32.0	3.2 3.2 3.2 3.2 3.2	2/2 2/2 2/2 2/2 2/2 2/2 2/2	INC LOCOMOTOR ACTIVITY DEC LOCOMOTOR ACTIVITY 124 SHOVELNOSE MOVEMENTS SINC SENSITIVITY TO TOUCH 135 SOCIAL INTERACTION ALTERED DEC REARING HEIGHT 732	15 15 60 0	***	15 240 30 240 30 30
10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0	2/2 2/2 2/2 2/2 2/2 2/2	INC LOCOMOTOR ACTIVITY INC SENSITIVITY TO PAIN 129 INC SENSITIVITY TO TOUCH 131 INC SPEED OF REARING 512 PUPILLARY LIGHT REFLEX ABS 152 MYDRIASIS 154	60 30 0	***	60 240 180 30 120 120
3.2	3.2-	2/2	INC LOCOMOTOR ACTIVITY 224	. 0	***	60
1.0	10.0	2/2	NO EFFECT 73	3		
DIL.			100% STEROL DIL. SUSP QS C H20)		

the state of the s

LD50 100.0 -79.0-130.0-MED50 0.018-5.6-3-0.056-RATIO LD50/MED50 5.6+3

STATE SOLID

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN		· DEG-		N. TO
MOTEU	MEYNG	FRACI.		APPR	REE	RE	COVER
00.0	2.0	1/2	DEATH 74 DEC LOCOMOTOR ACTIVITY 124		***	G	300
.00.0	2.0	1/2	DEC SENSITIVITY TO SOUND 230		•*		60
.00.0	2.0	1/2	DEC SENSITIVITY TO TOUCH 23:		*		-60
100.0	2.0	1/2	DEC REARING FREQUENCY 63			G	300
.00.0	2.0	1/2	DEC PREENING 240	0 0		Ğ	300
.00.0	2.0	1/2	LOW POSTURE 24:	15			60
.00.0	2.0	1/2	EXTENSION OF LIMBS 34:	L 0			15
.00.0	2.0	1/2	PROSTRATION 4:	3 0			15
.00.0	2.0	1/2	EYELID PTOSIS-NONPARALYTIC 14		***	G	300
100.0	2.0	1/2	PUPILLARY LIGHT REFLEX ABS 15:	2 8			30
.00.0	2.0	1/2	MYDRIASIS 154	. 8	**		30
100.0	2.0	1/2	INC RESPIRATORY DEPTH 16:			-	60
100.0	2.0	1/2	IRREGULAR RESPIRATORY DEPTH36	L o			15
100.0	2.0	1/2	DEC RESPIRATORY RATE 26:	2 0			60
.00.0	2.0	1/2	IRREGULAR RESPIRATORY RATE 36:	2 0			15
.00.0	2.0	1/2	MOT DEF HORIZONTAL WIRE 17:	. 0	***		15
.00.0	2.0	1/2	MOT DEF VERTICAL SCREEN 27:	. 0	***		15
.00.0	2.0	1/2	MOT DEF HORIZONTAL STRIP 47:	. 0	***		30
.00.0	2.0	1/2	MOT DEF VERTICAL ROD 37:	. 0	***		15
.00.0	2.0	1/2	MOT DEF ROTA⊸ROD 77:	. 0	***		15

DOSE MG/KG	DILUT REACT.		MIN. APPR	DEG- REE		• TO OVER
100.0	2.0 1/2.	MOT DEF INCLINED STRIP 67	1 0	***		30
32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	0.64 2/2 0.64 1/2 0.64 2/2 0.64 2/2 0.64 2/2 0.64 2/2 0.64 2/2 0.64 2/2 0.64 2/2 0.64 2/2 0.64 1/2 0.64 1/2 0.64 1/2	RESTLESSNESS	30 240 32 8 40 8 40 240 49 15 51 0 52 0	***	G	120 300 240 300 240 30 30 15 300 300 300
10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.0 2/2 1.0 1/2 1.0 1/2 1.0 1/2 1.0 2/2 1.0 2/2 1.0 2/2 1.0 1/2	EYELID PTOSIS-NONPARALYTIC 14 INC RESPIRATORY DEPTH 14 IRREGULAR RESPIRATORY RATE 36 PILOERECTION RESTLESSNESS	31 240 40 240 49 30 51 0	*	999	300 300 300 60 30 300 300 300
3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	1.6 1/2 1.6 .1/2 1.6 1/2 1.6 2/2 1.6 1/2 1.6 1/2 1.6 1/2 1.6 1/2 1.6 1/2 1.6 1/2 1.6 1/2	INC SENSITIVITY TO SOUND 1: HEAD TWITCH 5: INC PREENING 1: INC SCRATCHING 1: INC SCRATCHING 1: INC RESPIRATORY DEPTH 1: IRREGULAR RESPIRATORY RATE 3: PILOERECTION RESTLESSNESS 3:	31 240 40 240 40 240 61 0	* *	00000 000	300 300 300 300 15 15 300 300
1.0 1.0 1.0	0.50 2/2 0.50 2/2 0.50 1/2 0.50 1/2	INC PREENING 1 INC SCRATCHING 4	24 180 40 180 40 180 72 180	*	G G G	300 300 300 300
0.32 0.32 0.32	1.6 2/2 1.6 1/2 1.6 1/2	HEAD TWITCH 5	24 240 31 240 40 240	*	G G	300 300 300

PAGE 4 5104 V

			INTRAVENOUS TOXICITY TO	MICE .				
DOSE MG/KG		REACT.	REACTION SIGN		MIN. APPR	DEG- REE		• TO OVER
0.32	1.6	1/2 .	INC SCRATCHING	440	240		G	300
0.10	0.50	2/2	INC LOCOMOTOR ACTIVITY	224	180		G	300
0.032 0.032 0.032		1/2	INC LOCOMOTOR ACTIVITY INC REARING FREQUENCY NO EFFECT	224 432 73	180 180	*		300 240
0.010			INC LOCOMOTOR ACTIVITY NO EFFECT	224 73	60	*		240
3.2-3	1.6	2/2	NO EFFECT	73				
120.0	1.2	2/2	DEATH	74	0			
79.0	1.6	0/2	DEATH	74	0			
63.0	.1.2	0/2	DEATH	74	- 0			
DIL.			100% PEG 300 QS C 100%	PEG 300				

LD50 56.0 -45.0-71.0-MED50 0.18 -0.056-0.56-RATIO LD50/MED50 310.0

TATE SOLID

Service and Control of the Control o

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN	Ε	MIN. APPR	DEG- REE	MIN. TO RECOVER
00.0	10.0	2/2	DEATH	74	0		
32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	SOCIAL INTERACTION ALTERED DEC REARING FREQUENCY DEC PREENING EYELID PTOSIS-NONPARALYTIC INC RESPIRATORY DEPTH IRREGULAR RESPIRATORY DEPTH	262	0 0 30 15 0	***	180 30 180 180 180 60 180
10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0	2/2 2/2 2/2 2/2 2/2	SOCIAL INTERACTION ALTERED DEC REARING FREQUENCY DEC PREENING	124 132 632 240 149	8 8 8	***	180 30 120 180 180
3.2 3.2 3.2	3.2 3.2 3.2	2/2 2/2 2/2		124 132 632	8	***	180 30 180

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN	•	MINo '	DEG- REE	MIN. TO RECOVER
3.2 3.2	3.2 3.2	2/2-	DEC PREENING 2 EYELID PTOSIS-NONPARALYTIC 1	240 149	8 60	***	180 180
1.0 1.0 1.0 1.0	10.0 10.0 10.0 10.0	2/2 2/2 2/2 1/2 1/2		361	60 60 0	***	180 180 180 8 8
0.32 0.32 0.32	3.2 3.2 3.2	2/2 2/2 2/2		124 240 149	60 60	***	120 120 120
-0.10	16.0	2/2	NO EFFECT	73			
79.0	7.9	2/2	DEATH	74	0		
63.0	6.3	2/2	DEATH	74	. 0		
50.0	5.0	0/2	DEATH	74	0		
40.0	4.0	0/2	DEATH	74	0		
Dir.			H20 Q5 C H20				

And the second of the second o

LD50 20.0 -16.0-25.0-MED50 0.56 -0.18-1.8-RATIO LD50/MED50 36.0

STATE -SOLID

			INTRAVENOUS TOXICITY TO MI	CE				
DOSE		REACT.	REACTION SIGN		MINo	·DEG-	MII	N. TO
MG/KG	ML/KG	FRACT.			APPR	REE		COVER
20.0	2.0	1/2	DEATH	74	0			
20.0	2.0	1/2	DEC LOCOMOTOR ACTIVITY	124	8	***		240
20.0	2.0	1/2	DEC REARING FREQUENCY	632	ŏ			240
20.0	2.0	1/2	MIXED CONVULSIONS	336	ŏ			8
20.0	2.0	1/2	DEC PREENING	240	ŏ		G	300
20.0	2.0	1/2	TREMORS-REST AND MOVEMENT	144	8		٠	15
20.0	2.0	1/2	EXOPHTHALMOS	46	ŏ			15
20.0	2.0	1/2	EYELID PTOSIS-NONPARALYTIC		30	***		300
20.0	2.0	1/2	DYSPNEA	60	ō	***	G	300
20.0	2.0	1/2	INC RESPIRATORY DEPTH	161	ō		Ğ	300
20.0	2.0	1/2	DEC RESPIRATORY RATE	262	ŏ		Ğ	300
20.0	2.0	1/2	IRREGULAR RESPIRATORY RATE	362	0		Ğ	300
20.0	2.0	1/2	MOT DEF HORIZONTAL STRIP	471	8	*	- G	300
20.0	2.0	1/2	MOT DEF VERTICAL ROD	371	8	·*	G	300
10.0	1.0	2/2	DEC LOCOMOTOR ACTIVITY	124	8	***		240
10.0	1.0	2/2	DEC REARING FREQUENCY	632	8			240
10.0	1.0	2/2	DEC PREENING	240	8			240
10.0	1.0	2/2	EXTENSION OF LIMBS	341	8		,	240
10.0	1.0	2/2	TREMORS-REST AND MOVEMENT	144	ŏ	*		8
10.0	1.0	2/2	EXOPHTHALMOS	46	ŏ			8

DOSE MG/KG		REACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN	MIN. APPR	DEG - REE	MIN. TO RECOVER
10.0	1.0	2/2.	EYELID PTOSIS-NONPARALYTIC 14		***	300 30
1,0.0	1.0	1/2	MYDRIASIS 15		*	30
10.0	1.0	2/2	IRREGULAR RESPIRATORY DEPTH36 IRREGULAR RESPIRATORY RATE 36	2 0	*	30
10.0	1.0 1.0	2/2	RESTLESSNESS 7	9 15		300
3.2	1.6	2/2	DEC LOCOMOTOR ACTIVITY 12	4 60	***	240
3.2	1.6	2/2	DEC REARING FREQUENCY 63			240
3.2	1.6	2/2	DEC PREENING 24			240
3.2	1.6	2/2	EYELID PTOSIS-NONPARALYTIC 14		***	240
3.2	1.6	2/2	RESTLESSNESS	9 60		240
1.0	0.50	2/2		24 60 32 60	***	180 180
1.0	0.50			0 15		180
1.0	0.50	1/2	EYELID PTOSIS-NONPARALYTIC 14		*	180
1.0 1.0	0.50			79 60		180
0.32	.1.6	2/2	NO EFFECT	73		
25.0	2.5	2/2	DEATH	74 0		
16.0	1.6	0/2	DEATH	74 0		
12.0	1.2	0/2	DEATH	74 0		
DIL.		• 0	100% PEG 300 QS C 100% PEG 3	00		

LD50 320.0 GREAT MED50 11.8 -0.56-5.6-RATIO LD50/MED50 UNK

STATE SOLID

A STATE OF S

			INTRAVENOUS TOXICITY TO MICE			
DOSE	DILUT	REACT.	REACTION SIGN	MINo	DEG-	MIN. TO
MG/KG		FRACT.	ARITHMEN STORY	APPR	REE	RECOVER
1107110		· KACIO				INCO VEI
320.0	3.2	2/2	DEC LOCOMOTOR ACTIVITY 124	0	***	240
320.0	3.2	1/2	DEC SENSITIVITY TO SOUND 230	8	*	60
320.0	3.2	1/2	DEC SENSITIVITY TO TOUCH 231	8	*	60
320.0	3.2	1/2	HEAD TWITCH 531	15	*	180
320.0	3.2	2/2	SOCIAL INTERACTION ALTERED 132	_0		300
320.0	3.2	2/2	DEC REARING FREQUENCY 632	0		30C
320.0	3.2	2/2	DEC PREENING 240	0		240
320.0	3.2	2/2	LOW POSTURE 241	O		60
320.0	3.2	2/2	EYELID PTOSIS-NONPARALYTIC 149	.15	***	240
320.0	3.2	2/2	INC RESPIRATORY DEPTH 161	0		240
320.0	3.2	2/2	IRREGULAR RESPIRATORY DEPTH361	0		15
320.0	3,2	2/2	DEC RESPIRATORY RATE 262	8		240
320.0	3.2	2/2	IRREGULAR RESPIRATORY RATE 362	0	-	15
100.0	2.0	2/2	DEC LOCOMOTOR ACTIVITY 124	0	***	120
100.0	2.0	2/2	SOCIAL INTERACTION ALTERED 132		*	120
100.0	2.0	2/2	DEC REARING FREQUENCY 632			120
100.0	2.0	2/2	DEC PREENING 240			120
100.0	2.0	2/2	INC RESPIRATORY DEPTH 161			60
100.0	2.0	2/2	DEC RESPIRATORY RATE 262			60
100.0	2.0	2/2	IRREGULAR RESPIRATORY RATE 362			30
	-•0	4/4	THE SOLIN WEST THAT ON I WATE SOL	U		, 20

DOSE MG/KG	DILUT REACT. ML/KG FRACT.	INTRAVENOUS TOXICITY TO MICE REACTION SIGN	MIN. APPR	DEG - REE	MIN. RECC
100.0	2.0 1/2	PILOERECTION 72	120		
32.0 32.0 32.0 32.0 32.0	0.64 2/2 0.64 1/2 0.64 2/2 0.64 1/2 0.64 2/2	DEC LOCOMOTOR ACTIVITY 124 INC RESPIRATORY DEPTH 161 IRREGULAR RESPIRATORY DEPTH361 DEC RESPIRATORY RATE 262 IRREGULAR RESPIRATORY RATE 362	. 8 0 8	*	
10.0 10.0 10.0	1.0 1/2 1.0 2/2 1.0 2/2	DEC LOCOMOTOR ACTIVITY 124 IRREGULAR RESPIRATORY DEPTH361 IRREGULAR RESPIRATORY RATE 362	0	*	
3.2	1.6 2/2	IRREGULAR RESPIRATORY RATE 362	0		
1.0	0.50 :2/2	NO EFFECT 73			
DIL.		100% PEG 300 QS C 100% PEG 300			

LD50 250.0 - UNKNOWN MED50 0.56 -0.18-1.8-LD50/MED50 450.0 RATIO

	DO: 100.100.100.100.32.0.3.2.3.2.3.2.3.2.3.2.3.2.3.2.3.2.	
	KG ML/K 0 1.66 0 1.66 0 1.66 0 1.66 0 1.66 0 1.66	
	INTRAVENOUS TOXICITY REACTION SIGN	
	TO MICE TY 124 TO MICE TY 124 TO MICE TY 124 TO MICE TY 124 TO MICE	
	,	
	DEG- REE **** ***	
	MIN. TO RECOVER 15 300 15 15 15 240 180 240 240 240 240 240	oc

PAGE 8658

DOSE MG/KG		REACT.	REACTION SIGN		MIN. - APPR	DEG- REE	MIN. RECOV
1.0	0.63	2/2	PILOERECTION	72	120		.2
0.32	1.0	2/2	NO EFFECT	73			
250.0	3.9	1/2	DEATH	74	0		
.200 • 0	3.1	0/2	DEATH	74	0		
DILe			100% PEG 300 Q5 C	100% PEG 300)	,	

A CONTRACTOR OF THE PROPERTY O

LD50 32.0 -25.0-40.0-MED50 0.56 -0.18-1.8-RATIO LD50/MED50 56.0

STATE SOLID

32.0 3.2 1/2 DEC REARING FREQUENCY 632 0 G 300 32.0 3.2 1/2 DEC PREENING 240 0 G 300 32.0 3.2 1/2 LOW POSTURE 241 0 8 60 300 32.0 3.2 1/2 EXPORTANCE 241 0 8 60 300 32.0 3.2 1/2 EXPORTANCE 241 0 8 60 300 32.0 3.2 1/2 EYELID PTOSIS-NONPARALYTIC 149 30 **** G 300 32.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 120 32.0 3.2 1/2 MYDRIASIS 154 0 * 120 32.0 3.2 1/2 MYDRIASIS 154 0 6 300 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 INC RESPIRATORY DEPTH 361 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH 361 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY BETT 362 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 362 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 ** G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 362 0 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 60 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 60 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 371 0 * 60 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 371 0 * 60 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 371 0 * 60 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 371 0 * 60 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 60 32.0 3	DOSE MG/KG	DILUT ML/KG	REACT. FRACT.	INTRAVENOUS TOXICITY TO MI	CE	MIN. APPR	DEG- REE		. TO COVER
32.0 3.2 1/2 DEC LOCOMOTOR ACTIVITY 124 0 *** G 300 32.0 3.2 1/2 DEC REARING FREQUENCY 632 0 G 300 32.0 3.2 1/2 DEC PREENING 240 0 G 300 32.0 3.2 1/2 LOW POSTURE 241 0 66 32.0 3.2 1/2 EXOPHTHALMOS 46 0 E 32.0 3.2 1/2 EXOPHTHALMOS 46 0 E 32.0 3.2 1/2 EXOPHTHALMOS 52.0 3.2 1/2 EYELID PTOSIS-NONPARALYTIC 149 30 *** G 300 32.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 122 6 32.0 3.2 1/2 MYDRIASIS 154 0 * 122 6 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH 361 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH 361 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY BEPTH 361 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY BEPTH 361 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY RATE 262 0 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 600 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 600 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 600 32.0 3.2	100.0	10.0	2/2	DEATH	74	o			
32.0 3.2 1/2 DEC REARING FREQUENCY 632 0 G 300 32.0 3.2 1/2 DEC PRERING FREQUENCY 632 0 G 300 32.0 3.2 1/2 LOW POSTURE 241 0 66 32.0 3.2 1/2 EXOPHTHALMOS 46 0 8 32.0 3.2 1/2 EXOPHTHALMOS 46 0 8 32.0 3.2 1/2 EYELID PTOSIS-NONPARALYTIC 149 30 **** G 300 32.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 122 32.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 *** G 300 32.0 3.2 1/2 MOTRASIS 154 0 ** 122 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 INREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 262 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 ** G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 ** G 300 32.0 3.2 1/2 IND DEF HORIZONTAL WIRE 171 0 ** G 300 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 ** G 300 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 ** 66					74	300			
32.0 3.2 1/2 DEC PREENING 240 0 G 300 32.0 3.2 1/2 LOW POSTURE 241 0 60 32.0 3.2 1/2 EXPHITHALMOS 241 0 80 832.0 3.2 1/2 EXPHITHALMOS 241 0 80 832.0 3.2 1/2 EYELID PIOSIS-NONPARALYTIC 149 30 832.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 122 32.0 3.2 1/2 MYDRIASIS 154 0 8 122 32.0 3.2 1/2 IN RESPIRATORY DEPTH 161 0 G 300 32.0 1/2 IN RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 IN RESPIRATORY PATE 262 0 32.0 3.2 1/2 IN RESPIRATORY RATE 262 0 30 32.0 3.2 1/2 IN RESPIRATORY RATE 162 30 8 G 300 32.0 3.2 1/2 IN RESPIRATORY RATE 162 30 8 G 300 32.0 3.2 1/2 IN RESPIRATORY RATE 362 0 122 32.0 3.2 1/2 IN DEF HORIZONTAL WIRE 171 0 8 G 300 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 8 G 470 MOT DEF HORIZONTAL STRIP 471 0 8 G 470 MOT DEF HORIZONTAL STRIP 471 0 8 G 470 MOT DEF HORIZONTAL STRIP 471 0 8 G 470 MOT DEF HORIZONTAL STRIP 471 0 8 G 470 MOT DEF HORIZONTAL STRIP 471 0 8 G 470 MOT DEF HORIZONTAL STRIP 471 0 8 G 470 MOT DEF HORIZONTAL STRIP 47					124	0	***	G	300
32.0 3.2 1/2 LOW POSTURE 241 0 86 32.0 3.2 1/2 EXPENIENCE 241 0 86 32.0 3.2 1/2 EYELID PTOSIS-NONPARALYTIC 149 30 **** G 300 32.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 120 32.0 3.2 1/2 MYDRIASIS 154 0 * 120 32.0 3.2 1/2 MYDRIASIS 154 0 6 120 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 INC RESPIRATORY DEPTH 361 0 G 300 32.0 3.2 1/2 DEC RESPIRATORY PATE 262 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 262 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 362 0 * G 300 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 60					632	Ö	171	G	300
32.0 3.2 1/2 LOW POSTURE 241 0 56 32.0 3.2 1/2 EXPORTHALMOS 66 0 8 32.0 3.2 1/2 EYELID PTOSIS-NONPARALYTIC 149 30 *** G 30 32.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 122 32.0 3.2 1/2 MYDRIASIS 154 0 * 122 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 DEC RESPIRATORY RATE 262 0 33 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 362 0 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 362 0 22.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 65 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 65 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 65 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 65 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 65 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 65 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 65					.240	0		G	300
32.0 3.2 1/2 EYELID PTOSIS-NONPARALYTIC 149 30 **** G 300 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 120 32.0 3.2 1/2 MYDRIASIS 154 0 * 120 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 3.2 1/2 INC RESPIRATORY DEPTH 361 0 G 300 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 DEC RESPIRATORY RATE 262 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 362 0 120 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 60 40 40 40 40 40 40 40 40 40 40 40 40 40					241				60
32.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 122 32.0 3.2 1/2 MYDRIASIS 154 0 # 122 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 DEC RESPIRATORY RATE 262 0 G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 # G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 # G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 # G 300 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 # 32 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 # 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 # 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 # 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 # 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 # 60					46	0			8
32.0 3.2 1/2 PUPILLARY LIGHT REFLEX ABS 152 0 120 32.0 3.2 1/2 MYDRIASIS 154 0 * 120 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 DEC RESPIRATORY RATE 262 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 171 0 * 300 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL SCREEN 271 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL SCREEN 271 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 60					149	30	***	G	300
32.0 3.2 1/2 MYDRIASIS 154 0 * 120 32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 262 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 362 0 120 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 26 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 60					152	0			120
32.0 3.2 1/2 INC RESPIRATORY DEPTH 161 0 G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 300 32.0 3.2 1/2 DEC RESPIRATORY RATE 262 0 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 362 0 * G 300 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 600 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 600 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 600 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 1200		3.2	1/2		154	0	*		120
32.0 3.2 1/2 IRREGULAR RESPIRATORY DEPTH361 0 G 302 32.0 3.2 1/2 DEC RESPIRATORY RATE 262 0 302 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 IRREGULAR RESPIRATORY RATE 362 0 220 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * GC 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 602 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 600 32.0 3.2 1/2 MOT DEF WERTICAL ROD 371 0 * 600		3 • 2	1/2	INC RESPIRATORY DEPTH	161	0		G	300
32.0 3.2 1/2 DEC RESPIRATORY RATE 262 0 30 32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 300 32.0 3.2 1/2 INREGULAR RESPIRATORY RATE 362 0 122 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 60 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 60 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 60		3.2	1/2	IRREGULAR RESPIRATORY DEPTH	4361	0		G	300
32.0 3.2 1/2 INC RESPIRATORY RATE 162 30 * G 302 32.0 3.2 1/2 IRREGULAR RESPIRATORY RATE 362 0 22 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 62 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 66 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 122 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 66		3.2	1/2	DEC RESPIRATORY RATE	262		-	-	30
32.0 3.2 1/2 IRREGULAR RESPIRATORY RATE 362 0 22 32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 50 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF WERTICAL ROD 371 0 * 60	32.0	3.2	.1/2	INC RESPIRATORY RATE	162	30	*	G	300
32.0 3.2 1/2 MOT DEF HORIZONTAL WIRE 171 0 * 30 32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 60 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 120 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 60		3.2	1/2	IRREGULAR RESPIRATORY RATE	362	0		-	
32.0 3.2 1/2 MOT DEF VERTICAL SCREEN 271 0 * 362 32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 227 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 66	32.0	3.2	.1/2		171		*		
32.0 3.2 1/2 MOT DEF HORIZONTAL STRIP 471 0 * 125 32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 60	32.0	3.2	1/2				*		60
32.0 3.2 1/2 MOT DEF VERTICAL ROD 371 0 * 60	32.0	3.2	1/2						
22.0	32.0	3.2							
35.00 3.5 1/5 MOI DEL KOIM-KOD 221 0 # 90	32.0	3.2	1/2	MOT DEF ROTA-ROD	771	ō	*		60

PAGE 4 865891

)	DOSE MG/KG	DILUT ML/KG	REACT.	INTRAVENOUS TOXICITY TO N REACTION SIGN	MICE	MIN. APPR	DEG- REE	MIN. TO RECOVER
•	32.0 32.0	3.2	1/2 1/2	MOT DEF INCLINED STRIP PILOERECTION	671 72	0 30	*	60 G 300
	10.0 10.0 10.0 10.0	10.0 10.0 10.0	1/2 2/2 1/2 1/2	DEC LOCOMOTOR ACTIVITY EXOPHTHALMOS PUPILLARY LIGHT REFLEX AMYDRIASIS	124 46 BS 152 154	· 0 0 0	*	30 15 60 60
	3 • 2 3 • 2	3.2 3.2	2/2	INC LOCOMOTOR ACTIVITY HEAD TWITCH	224 531	15	*	120 60
	1.0	10.0	2/2	INC LOCOMOTOR ACTIVITY	224	15	*	60
	0.32	3.2	2/2	NO EFFECT	73			
	50.0	5.0	2/2	DEATH	74	0		
	40.0	4.0	,2/2	DEATH	74	. 0		i.
	.25.0	2.5	0/2	DEATH	74	0		
	DIL.			100% STEROL DIL. SUSP QS	.C H2Ö			
`								

and the second s

LOCOMOTOR ACTIVITY OF MICE

A Section of the Control of the Cont

GROUPS OF THREE MICE COUNTS AT INDICATED INTERVAL

CMPND	LEVEL MG/KG	SMIN	10MIN	15MIN	20MIN	25MIN	30MIN	35MIN 40MIN	VIWO+	45MIN	SOMIN	55MIN	60MIN	
1356 MEAN	000*0	543. 252. 398.	347• 371• 359•	365. 315. 340.	167. 243. 205.	261. 213. 237.	137° 230. 184.	145. 184. 165.	203. 195. 199.	150. 144. 147.	101• 78• 90•	2. 44. 23.	. 16. . 8	
1356 MEAN	18.000	246. 51. 149.	241• 67• 154•	364. 114. 239.	291. 140. 216.	240. 240. 240.	279. 219. 249.	331. 106. 219.	326. 45. 186.	75. 95. 85.	22. 78. 50.	85. 110. 98.	449. 466.	
1356 MEAN	10.000	537. 467. 502.	525. 425. 475.	305. 347. 326.	174. 323. 249.	197. 328. 263.	262. 234. 248.	291. 353. 322.	456. 361. 409.	338. 262. 300.	245. 173. 209.	183. 249. 216.	220. 220. 220.	•
1:356 MEAN	1,000	519. 364. 442.	419. 317. 368.	388. 369. 379.	446. 312. 379.	359. 312. 336.	271. 216. 244.	242. 197. 220.	177• 176• 177•	109. 126. 118.	160. 139. 150.	132. 99. 116.	113. 35. 74.	
2367 MEAN	00000	647. 610. 629.	549. 308. 429.	377. 252. 315.	539° 359° 449	450. 389. 420.	418. 363. 391.	378. 261. 320.	359. 206. 283.	336. 353.	317. 258. 288.	364. 203. 284.	393. 230. 312.	
2367 MEAN	10,000	154. 362. 258.	68• 114• 91•	35 30	14. 52. 33.	24. 94. 59.	7. 355.	10. 28. 19.	3. 21. 12.	3. 23. 13.	50. 15. 33.	50. 52. 51.	74. 42. 58.	1
2367 MEAN	•100	615. 627. 621.	356. 329. 343.	241. 266. 254.	229. 265. 247.	230. 397. 314.	222. 352. 287.	155. 252. 204.	92° 392° 242°	116. 324. 220.	311. 160.	0. 194. 97.	99.	

LOCOMOTOR ACTIVITY OF MICE

GROUPS OF THREE MICE

					COU	COUNTS AT		TED 11	INDICATED INTERVAL				
CMPND	LEVEL MG/KG	SMIN	SMIN 10MIN 15MIN	15MIN		20MIN 25MIN	30MIN	35MIN	30MIN 35MIN 40MIN 45MIN	45MIN	SOMIN	55MIN	60MIN
2516	00000	279.	363.	288.	338.	255	199.	290°	216.	244.	350.	283.	166.
MEAN		326	292. 328.	273	314.	267.	218	239.	262	267	302	233	140
						:	:	í		4		:	ç
2516	26,000	29.	20	144.	28	43.		12.	103	* 0	15.0	• † † °	256
MEAN		108.	30.	906	44.	30.	, ,	46.	140	51.	101	109	143.
£ .		•	•	•	•		•						
2516	10,000	299.	143.	122.	191.	159.	75。	1120	31.	13.	13.	М	25.
		852.	541.	339	327.	381°	200°	415.	426°	348	234	195	177
MEAN		576.	342.	231.	259.	270	292。	264.	245	181	124.	•66	101
						;	;	į		,	6	:	ï
2516	1,000	405	369	302	304	333	312	251,	317	267	305	150	163.
		(51.	485	369	0176	677	600	200	101	017	, c	1 7 9	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
MEAN		578.	427.	336.	313°	617	9410	617	667	647	•) 67	• 7 / 1	•
2531	00000	705	566.	446.	472°	465	245.	245。	313.	234.	261.	178.	171。
		348	260	267.	254°	168	169.	152,	219	164.	36.	102	၀
MEAN		527.	413.	357.	363°	317。	206。	199.	266.	199.	149.	140	86.
2531	000	G	36.		19.	26.	15.	6	34,	40	28.	24.	19.
100		13.	00	51.	33	0,4	0,04	340	22°		14.	8	°
MEAN		52°	73.	45.	26.	33°	28°	22°	28°	24.	21.	16,	10.
•		;			-	Č		:		,		Č	ř
2531	10,000	6440	426.	299	199	296.	208	157		234.	222	226	102
MEAN		638	373	277	188	229	222	152.	2170	229	180.	125	1340

LOCOMOTOR ACTIVITY OF MICE GROUPS OF THREE MICE

And the second control of the second second

OUNTS AT INDICATED INTERVAL

					NOO.	COUNTS AT		TED IN	INDICATED INTERVAL					
CMPND	LEVEL MG/KG	SMIN	SMIN 10MIN 15MIN	15MIN	20MIN	20MIN 25MIN		35MIN	30MIN 35MIN 40MIN 45MIN	45MIN	50MIN	55MIN	60MIN	
2531	1,000	609	356.	312.	249	286.	176.	232	329.	347.	240	253	262	
MEAN		602	385	324	224.	312,	238	257.	283	306	240.	214.	163° 193°	
2598	00000	239.	319.	251.	183	273.	227.	270.	202	134.	115	43	31.	
MEAN		239.	319.	251.	183	273.	227°	270.	202	134. 134.	115.	43.	31.	
2598	10,000	363	164.	86.	82.	106.	96	82.	132.	148.	173.	103.	34°	
MEAN		590. 477.	275° 220•	244. 165.	234° 158°	265. 186.	234° 165°	183° 133°	228. 180.	81. 115.	64. 119.	21. 62.	74° 54°	
2598 MEAN	001°	446. 440. 4443.	312. 197. 255.	200. 222. 211.	195, 175, 186.	158. 187. 173.	161°, 187°, 174°,	139. 185. 162.	124° 219° 172°	145 . 99° 122.	149. 107. 128.	170. 29. 100.	113. 43. 78.	
2717 MEAN	00000	741. 825. 783.	575. 565. 570.	436. 401. 419.	314 ₆ 495 ₆ 405 ₆	386. 309. 348.	357。 469。 413。	334° 477° 406•	327。 531。 429。	502. 426. 464.	426. 392. 409.	362 325 344	269. 320. 295.	
2717 MEAN	20,100	249. 194. 222.	56. 58. 57.	167. 129. 148.	88. 97. 93.	126. 91. 109.	127. 107. 117.	24. 140. 82.	26° 229° 128•	182. 212. 197.	177. 325. 251.	155. 211. 183.	263. 104. 184.	
2717 MEAN	1,000	589. 644. 617.	308. 347. 328.	370. 246. 308.	301° 209° 255°	303° 249° 276°	295° 241° 268°	268. 238. 253.	208° 217° 213°	276。 195。 236。	143. 96. 120.	95. 109. 102.	167. 99. 133.	

LOCOMOTOR ACTIVITY OF MICE GROUPS OF THREE MICE

and the first of the state of t

COUNTS AT INDICATED INTERVAL

					DO D	ITS AT	INDIC	COUNTS AT INDICATED INTERVAL	VTERVAL					
CMPND	LEVEL MG/KG	SMIN	1 OM I N	15MIN	SMIN 10MIN 15MIN 20MIN 25MIN 30MIN 35MIN 40MIN 45MIN 50MIN	25MIN	30MIN	35MIN	40MIN	45MIN	SOMIN	55MIN	NIW09	
2778	000 0	823.	415.	185.	345.	244°	217.	238.	252.	239.	229.	.207	179.	
		613	397	304	211	.272	171	191	61.	55	5	2	4	•
MEAN		718.	406.	245	278.	258	194	215.	157.	147.	117.	106.	953	
2778	32,000	207	50	48	79.	19.	99	19.	129.	88	18.	12.	54.	
,		186.	68	97.	71.	77.	95	83.	63.	68	143.	45	18	
MEAN		197.	26	73.	75.	48	81.	51.	96	78.	81.	29.	36	
	7													
2778	10,000	553	373.	.297	266.	166.	273。	220	206.	206.	145	108	48.	
		602	292	194	258	216.	212.	158.	195	120	126.	30	0	
MEAN		578	333	246.	262	191	243	189	201	163	136.	69	649	
										•			•	
2778	.1000	656.	252	254	236。	150	332	274.	102	142.	112.	52,	23,	
		539.	383	321.	3760	295	238	227	2240	176.	147	91.	205	
MEAN		598°	318.	288	306	223.	285	251.	163。	159,	130	72.	114.	
2867	00000	599	363.	256.	249.	252.	197	288°	359	209	249	122,	205	
		618.	361.	410.	380°	257.	364	336.	371.	342	378	349	282	
MEAN		•609	362.	333	315.	255	281。	312.	365°	276.	314.	236.	244.	
2867	10,000	14.	17.	.09	* 0	23.	* 0 *	14.	25°	22.	19.	57.	96	
		68	48	38•	104	89.	24°	32.	95	75.	342.	377.	364	
MEAN		41.	33•	* 64	72.	56.	32.	23°	°09	•64	181.	217.	230.	
2867	1,000	264.	204.	271.	239.	293.	413°	245	459°	273.	232.	260.	135	
		326	249	327	2400	318	296°	184	289°	307	245	257	131.	
MEAN		310	227	299	240	306。	355	213°	359°	290	239.	259	133.	

LOCOMOTOR ACTIVITY OF MICE GROUPS OF THREE MICE

のできる。 「は、一般のできる。 「は、一般のできる。 「は、一般のできる。 「は、一般のできる。 「は、一般のできる。」は、「は、一般のできる。 「は、一般のできる。 「は、一般のできる。」」「は、一般のできる。」

COUNTS AT INDICATED INTERVAL

		• :						
	NIW09	12. 13.	0. 316. 158.	150 . 3. 77.	161. 209. 185.	158. 117. 138.	93. 64.	90. 354. 222.
	S5MIN 4	23. 17. 20.	272. 136.	208. 0. 104.	131. 274. 203.	114. 122. 118.	174. 41. 108.	127. 420. 274.
	NIWOS	105. 140. 123.	57. 294. 176.	207. 18. 113.	247. 329. 288.	199. 220. 210.	98 999 90	92. 343. 218.
		116. 213. 165.	68. 331. 200.	175. 0. 88.	274. 280. 277.	149. 209. 179.	141. 16. 79.	159. 363. 261.
EKVAL	40MIN	152. 166. 159.	80. 343. 212.	216. 22. 119.	238. 290. 264.	212. 181. 197.	157. 13. 85.	194° 367° 281°
COUNTS AT INDICATED INTERVAL	20MIN 25MIN 30MIN 35MIN 40MIN 45MIN	261. 129. 195.	63. 410. 237.	331. 17. 174.	404. 333. 369.	233. 256. 245.	76. 13. 45.	203. 312. 258.
INDICA	30MIN	171. 214. 193.	229. 261. 245.	10. 145. 78.	449° 225° 337°	277.	12.	204. 424. 314.
TS AT	25MIN	315. 313. 314.	163. 201. 182.	60. 177. 119.	359. 380. 370.	187. 217. 202.	123. 5. 64.	317• 474• 396•
NOO.	20MIN	412. 218. 315.	230. 221. 226.	105. 159. 132.	589. 447. 518.	228. 267. 248.	126. , 38. 82.	299. 416. 358.
	15MIN	366. 248. 307.	246. 438. 342.	105. 11. 58.	532. 405. 469.	349. 293. 321.	122. 76. .99.	370. 432. 401.
	1 OM I N	387. 311. 349.	196. 420. 308.	267. 5. 136.	675. 553. 614.	288. 244. 266.	93. 48. 71.	430. 397. 414.
	5MIN	545 359	244. 469. 357.	146. 138. 142.	505. 553. 529.	333. 434. 384.	85. 64. 75.	489. 614. 552.
	LEVEL MG/KG	•100	000•0	50,100	,1,000	000*0	32,000	1.000
	CMPND	2867 MEAN	2897 MEAN	2897 MEAN	MEAN	2935 MEAN	2935 MEAN	2935 MEAN

LOCOMOTOR ACTIVITY OF MICE

The state of the s

GROUPS OF THREE MICE COUNTS AT INDICATED INTERVAL

					2		!						
r.	5MIN	10MIN	15MIN	20MIN	25M1N	30MIN	35MIN 40MIN 45MIN	40MIN	45MIN	50MIN	55MIN	NIW09	
	592. 470. 531.	381. 353. 367.	277. 58. 168.	380. 124. 252.	410. 353. 382.	274. 218. 246.	296。 236。 266。	323. 175. 249.	282. 130. 206.	241. 15. 128.	295. 39. 167.	292. 71. 182.	• •
	19. 41.	26. 14. 20.	7. 40. 24.	58.	5. 18.	25 22 24	9. 22. 16.	44. 32. 38.	57. 19. 38.	3. 101. 52.	75.	8. 125. 67.	
	34. 87. 61.	20. 43.	44. 25. 35.	6. 19. 13.	12. 24. 18.	15. 2. 9.	6. 49. 28.	11. 4. 8.	28. 1. 15.	28. 8. 18.	124. 1. 63.	241. 36. 139.	
10,000	402. 82. 242.	212. 8. 110.	245. 38. 142.	246. 30. 138.	199. 0. 100.	385. 0. 193.	310. 1° 156.	238. 11. 125.	320. 139. 230.	214. 252. 233.	241. 240. 241.	235. 263. 249.	
	444 444 442	310. 355. 333.	249. 394. 322.	245° 558° 402°	226. 500. 363.	312. 545. 429.	200. 450. 325.	215. 470. 343.	174. 485. 330.	180. 477. 329.	68. 446. 257.	201. 495. 348.	
000°0	669. 444. 557.	587. 470. 529.	455. 338. 397.	435. 332. 384.	448 . 349 . 399.	383 305 344	292. 224. 258.	266. 161. 214.	269. 240. 255.	177. 159. 168.	131. 176. 154.	25° 93° 59°	
10,000	583 511 547	498. 448. 473.	368. 416. 392.	379° 294° 337°	252. 337. 295.	263, 382, 323,	. 369. 383. 376.	228. 193. 211.	315. 376. 346.	279. 204. 242.	243. 1113. 178.	115. 59. 87.	
											-		

LOCOMOTOR ACTIVITY OF MICE GROUPS OF THREE MICE

COUNTS AT INDICATED INTERVAL

		• :		٠	٠	0		
	60MIN	267. 175. 221.	225. 125. 175.	30. 10. 20.	275. 191. 233.	75. 96. 86.	77 173 125	377. 108. 243.
	55MIN	244. 215. 230.	256. 166. 211.	125. 8. 67.	199. 275. 238.	112. 98. 105.	67. 202. 135.	268° 232• 250°
	50MIN	340. 170. 255.	251. 226. .239.	29. 27. 28.	348. 246. 297.	128. 160. 144.	104. 107. 106.	104. 264. 184.
	45MIN	479. 228. 354.	317. 296. 307.	37. 8. 23.	449. 341. 395.	183. 163. 173.	108. 94. 101.	244. 309. 277.
EKVAL	40MIN	432. 205. 319.	355. 313. 334.	100. 86. 93.	343° 323° 333°	238. 267. 253.	106。 0。 53。	327° 302° 315•
TED IN	35MIN	416. 189. 303.	362. 362. 362.	325. 135. 230.	386. 259. 323.	311. 316. 314.	102. 1. 52.	282. 297. 290.
COUNTS AT INDICATED INTERVAL	NIWOE	340。 234。 287。	363. 332. 348.	303. 187. 245.	504°. 280°. 392°.	292. 275. 284.	191° 76° 134°	353° 328° 341°
IS AT	SMIN	287. 297. 292.	413. 367. 390.	483. 96. 290.	506. 303. 405.	318. 229. 274.	187. 170. 179.	297。 413。 355。
COUN	5MIN 10MIN 15MIN 20MIN 25MIN 30MIN 35MIN 40MIN 45MIN	382. 203. 293.	470. 314. 392.	368. 139. 254.	396. 266. 331.	363° 271° 317•	132。 189。 161。	316° 293• 305•
	15MIN	393. 284. 339.	486. 394. 440.	281. 157. 219.	384. 376. 380.	428. 382. 405.	82. 216. 149.	461. 339. 400.
	NIWOI	642. 361. 502.	465. 536. 501.	505. 311. 408.	638. 453. 546.	489. 558.	84. 178. 131.	632. 698. 665.
	SMIN	886. 543. 715.	724. 864. 794.	715. 544. 630.	741. 729. 735.	694. 768. 731.	71. 112. 92.	963. 653. 808.
	LEVEL MG/KG	1,000	00000	000*001	1,000	000 0	20,000	1.000
	CMPND	2984 MEAN	2994 MEAN		2994 ME AN	2995 MEAN	2995 MEAN	2995 MEAN

LOCOMOTOR ACTIVITY OF MICE

THE PARTY OF THE PROPERTY OF T

COUNTS AT INDICATED INTERVAL GROUPS OF THREE MICE

					,									
CMPND	LEVEL MG/KG	SMIN	10MIN	15MIN	20MIN	25MIN	30MIN	35MIN 4	40MIN	45MIN		_	60MIN	
2999 MEAN	000 • 0	237. 507. 372.	144. 312. 228.	34. 384. 209.	100. 358. 229.	73. 230. 152.	77° 200° 139°	78. 400. 239.	10. 238. 124.	8. 180. 94.	32. 255. 144.	71. 289. 180.	81. 243. 162.	• :
2999 MEAN	10.000	82. 371. 227.	125. 227. 176.	34. 271. 153.	43. 243. 143.	31. 258. 145.	0. 190. 95.	0. 193. 97.	6. 156. 81.	0. 1111. 56.	16. 130. 73.	3. 152. 78.	0. 181. 91.	
2999	1,000	438. 438. 438.	326. 316. 321.	284. 185. 235.	321. 259. 290.	271. 120. 196.	335. 224. 280.	266. 151. 209.	254. 159. 207.	212. 119. 166.	241. 198. 220.	147. 106. 127.	179. 44. 112.	
204 MEAN	000°0	804. 583. 694.	575. 387. 481.	434. 420. 427.	574. 406. 490.	337. 318. 328.	455° 297° 376°	365. 211. 288.	299. 273. 286.	347. 346. 347.	223. 132. 178.	292. 228. 260.	307. 142. 225.	
5026 MEAN	20,000	681. 689. 685.	535° 469• 502•	266. 331. 299.	455. 203. 329.	368. 335.	282. 227. 255.	242. 191. 217.	346. 115. 231.	217• 97• 157•	385. 117. 251.	166. 112. 139.	243. 285. 264.	
9026 MEAN	•320	437° 438° 438°	383. 379.	191. 295. 243.	311°, 244°, 278°,	252. 242. 247.	269. 229. 249.	242. 340. 291.	219。 244。 232。	180. 259. 220.	129. 204. 167.	87. 171. 129.	237. 137.	
5031 MEAN	00000	647 562 605	509• 475• 492•	342 402 372	363. 330. 347.	404. 312. 358.	411° 360° 386°	351. 320.	280° 293• 287•	268• 249• 259•	400• 264• 332•	232 238	115.	

LOCOMOTOR ACTIVITY OF MICE GROUPS OF THREE MICE

COUNTS AT INDICATED INTERVAL

LEVEL SMIN 10M	5MIN 10M	10M	Z	10MIN 15MIN	20MIN	20MIN 25MIN	30MIN	35MIN	40M1N	45MIN	SOMIN	55MIN	NIW09	
90. 22. 20.	22. 20.	20•		*97		. 6	87.	18	13.	25.	8 1	29.	6	
426, 367, 234, 90, 258, 195, 127, 68,	367. 234. 195. 127.	234.		90° 68°		36.	67.	18.	17	19	23.	20.	6	• •
		•							10					
218. 163.	218. 163.	163.		184.		187.	97.	110.	•66	34.	22.	46.	9	
440. 345. 190.	345. 190.	190		188		175.	167	122,	168	284.	232	179	83	
525. 282. 177. 186.	282. 177.	177.	•	186.		181.	132.	116.	134.	159.	127.	113.	45	
341, 364, 176.	341, 364, 176.	364. 176.	176.	٠.		200	209	214.	197.	100	97.	154	25.	
792. 353. 320. 284.	353. 320. 284.	320. 284.	284.		•••	33.	243	321.	292	314.	148	151	67.	
	347. 342. 230.	342. 230.	230			17.	226.	268.	245.	207.	123.	153.	• 0	
320, 346, 464,	320, 346, 464,	346. 464.	464		4	30.	423	267.	250.	266.	127.	76.	188°	
300, 348, 346, 430,	346. 430.	346. 430.	430		. "	950	413	364.	205	168.	159。	180	214.	
389. 344. 346. 447. 4	344. 346. 447.	346. 447.	447.		4	413.	418.	316,	228.	217.	143.	128.	201.	
771 001 01	771 001	771		135.		87.	103.	125.	70.	118	116.	186.	211,	
1900	1900						7.7	78	144.	215.	206	187	177	
37. 73. 73. 50. 24. 136. 109. 93.	73. 73. 136. 109.	109.		93.		59	75.	105.	107	167.	161.	187	194.	
421 604	421 604	421 604	404	_	u	70.	473.	432	301.		428	•	472.	
100 170 170	100 170 170	170			٠,		37.6	275	254.	212	403	285	350	
286. 225. 2000	286. 225. 2000	225. 2000	007		7	•	617		1 1		717		, 1 1	
435.	480. 423. 435.	423. 435.	435.		.,	.86	374	354	613		0			
200 100 200	300 100 200	100 100	300		•	23	34.1	102.	47.	=	10.	12.	0	
2120 3210 220	2120 3210 220	2077	0 !							174	17	4.5	40.	
634. 448. 332. 187.	448. 332.	332.		187		.02	9 10	0 7 7					30.	
382. 332.	382. 332.	332.	•	· / 0.7		74B	667	661	104	•				

LOCOMOTOR ACTIVITY OF MICE

The state of the s

GROUPS OF THREE MICE

															-								
		•	:			,																	
	NIW09	134.	160.	345.	422 . 384 .		1100	150		304	° .	· 6.	187。	105.	146.		121.	329	225.		298	215	257
	55MIN	102.	132.	211.	469. 340.		• • •	121		326.	149	238.	218.	84.	151.		52.	227	140		326.	288	307
	NIW05	164	162.	515.	426. 471.	•	ءُ دُ			225	01	166.	180.	257	219.		251.	388	320.		164	86	127.
	45MIN	273.	216.	501.	338. 420.	•	• •	1:		417.	1 2 B	288	166.	152,	159.		349.	345	346.		156.	140	148
TERVAL	40MIN	217	179.	390.	535. 463.	•	• •	20.		398°	145	272	203.	246。	225.		299。	4410	370.		1886	969	1290
COUNTS AT INDICATED INTERVAL	30MIN 35MIN 40MIN 45MIN 50MIN 55MIN	297	235	160.	475. 318.		• <u>u</u>	8,8		393	258°	326.	246.	219	233		287.	377.	332。		. 86	e°.	4.10
INDICA	30MIN	155	135	297。	460 . 379.	8	• • • •	12.		405	300	351°	327。	2260	2770	- 4-	340	3670	3540	-	154	168	.191
TS AT		216.	204	269.	536. 403.		• r	19.		347.	281	314.	265.	279.	2720		370.	372.	371.		2010	1470	174.
COUN	20MIN 25MIN	196.	212.	372.	339 . 356.		• •	20.		530	344	437。	267。	227	247。		376.	4370	407		1640	145	155
	15MIN	260.	216.	448.	478. 463.		•	85°		518.	205	362	340	329	335		347.	262	305		147	•66	1230
	SMIN 10MIN 15MIN	349.	329.	335.	547. 441.		• ç	36.		532.	416.	414.	329.	443	386.		630	714.	672.		141.	85.	113
	SMIN	576.	594.	6009	752 . 676.		æ ;	92.		835。	859	847.	404	825	615.		801.	757	779.		172,	114.	1432
	LEVEL MG/KG	.010		00000		7	100.000	,		10,000			1,000				00000				32,000		
	GNGM:	5058	MEAN	5059	MEAN		5059	MEAN	2	5059		MEAN	5059		MEAN		5071		MEAN		5071		MEAN

LOCOMOTOR ACTIVITY OF MICE

The second secon

GROUPS OF THREE MICE

	Z.	7. ,		3.	• •		1.	•	ů.	•0	°	°o	٠,	٠,	2•	,		•		2		
	0 9	234, 47, 141,		15	100		٠.			_	-	_	19	14	172	217.	42	35	109,			
	55MIN 60MIN	187. 43. 115.	٠.,	138	111		•	353	177.	°	27.	14.	211.	198	205	275.	324	300	129.	108	119.	
	50MIN	242. 197. 220.		117,	85°	,	11.	366.	189.	°	18	6	204.	213.	209	348.	235	292	122.	212	167	
	45MIN	253. 270. 262.		241.	135		114.	368	241.	•	262	131.	219.	216.	218.	318.	441	380	•69	66	84.	
IERVAL	40MIN	349. 195. 272.		374.	222		12.	406	209.	•	80	40°	253.	244.	249.	187.	335	261.	137	610	9	
ED IN	35M I N	332. 226. 279.		138	114.		62.	351	207.	41.	°	21.	291。	345	318.	284.	409	347.	95	26.	°66	
COUNTS AT INDICATED INTERVAL	SMIN 10MIN 15MIN 20MIN 25MIN 30MIN 35MIN 40MIN 45MIN 50MIN.	298. 214. 256.		644	196. 323.		134.	306	220.	62°	163	113,	170	276。	223。	367	528	448	59.	52	• / 6	
ls A	25MIN	345. 285. 315.		327.	308. 318.		171.	304	238.	. 27.	89	58.	219.	235	227.	332	365	349.	55	4,4	• 64	
COON	20MIN	437。 306。 372。		438	363		235.	373	304	220	94	58	200	305°	253.	352。	435	394.	410	286	žne	
	15MIN	421. 307. 364.		477	367		340	356	348	34.	224.	129.	232,	436	334	451,	480	466.	63.	6.	:	
	10MIN	441. 488. 465.		622.	233 .		344.	527	436.	59.	207。	133.	225.	576.	401.	509.	580	545	44.	95	\$8¢	
	SMIN	749. 715. 732.		745	358 552		329.	735.	532.	88	495	292	436.	779.	e08°	766.	774	770	97.	139.	811	
	LEVEL MG/KG	10,000		1,000		5	000.0		. f	250,000	-		10,000			00000			63,100			
	CMPND	5071 MEAN		5071	MEAN		5095		MEAN	2605	Carried A	MEAN	5092		MEAN	5104		MEAN	5104		MEAN.	

LOCOMOTOR ACTIVITY OF MICE GROUPS OF THREE MICE

是一次,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们

					NOO.	COUNTS AT	INDICATED	TED IN	INTERVAL					
CMPND	LEVEL MG/KG	SM IN	SMIN IOMIN ISMIN	15MIN	20MIN	20MIN 25MIN	30MIN	35MIN	35MIN 40MIN 45MIN	45MIN	SOMIN	55MIN	NIW09	
5104	10,000	712.	580.	303	527	290.	235.	298	390.	362.	363.	318,	379.	
MEAN		744.	472.	247.	348	248	210	229.	260.	241.	270.	183.	215	·
5104	1,000	697.	484.	425	320.	378.	380.	475.	245.	386.	320.	371.	280.	
MEAN		928. 813.	637. 561.	533. 479.	452 . 386.	448.	367.	421. 448.	261 . 253.	322 . 354.	236. 278.	231. 301.	238. 259.	
	Ţ.	;			Ş					S	5		=	
5143	000.0	364.	344	299.	287	375	222	225	191	170	56.	37.	32.	
MEAN		529	287.	283	344.	295.	179.	206.	169.	115.	34•	28.	22.	
5.143	32,000	190.	107		42.	510	196	100	1111	160	999	115	109.	
1	,	80.	3.5		0		'n	93	63	42.	25.	•	2°	
MEAN	•	140	71.	45.	21.	26.	100.	97.	87.	101	. 44	58	56.	
5143	10,000	749.	287.	143.	73,	42.	15.	72.	48	56.	191	119.	28.	
		647	413	220	191	199	201.	91	62,	23.	3	0	13.	
MEAN		.869	350	182.	132.	121•	108	82.	. 55	40*	97.	•09	21•	
5143	1,000	518.	428	307.	359.	349.	362.	336.	312.	177.	172.	167.	160.	
		766	447.	325	263	192	215	101	118.	154	82.	123,	97.	
MEAN		642.	438	316.	311。	271.	289.	219.	215.	166.	127。	145.	129.	
5145	00000	354	287.	266.	181	363.	378	273	307.	188.	166,	107.	113.	
		380	363	272	365	405.	431	315	136.	167.	67.	23.	ຕໍ່ເ	
MEAN		367。	325.	.697	273.	383.	405	2940	222。	178.	117,	65	58°	

LOCOMOTOR ACTIVITY OF MICE

THE SECOND SECONDARY OF A CONTRACT OF THE SECOND SECONDARY OF THE SECONDAR

Con the winess Contact the Contact

INDICATED INTEDUAL GROUPS OF THREE MICE

					COUN	COUNTS AT		INDICATED INTERVAL	TERVAL				
CMPND	LEVEL MG/KG	SMIN	5MIN 10MIN 15MIN	15MIN	20MIN 25MIN	25MIN		30MIN 35MIN 40MIN 45MIN	40MIN	45MIN	50MIN	55MIN	60MIN
5145	15,800	1111	53.	40. 92.	46.	17.	13. 63.	17. 11.	21.	19. 99.	10. 82. 46.	30. 147. 89.	19. 911
MEAN		75.	128	• • • •		53.	. 46	123.	120	57.	101.	• •	33.
5145 MEAN	10,000	48. 77.	31. 75.	51. 51. 82.	30	62°	53.	107.	90.	101.	20. 61.	35. 21.	0. 17.
5145 MEAN	3,200	373. 524. 449.	225. 271. 248.	201. 292. 247.	97. 303. 200.	98. 244. 171.	203. 236. 220.	166. 220. 193.	144。 201。 173。	50. 172. 111.	43. 110. 77.	15. 229. 122.	17. 56. 37.
5145 MEAN	. 320	837. 444. 641.	428. 319. 374.	181. 300. 241.	174. 233. 204.	. 226. 352. 289.	135° 301° 218•	105. 51. 78.	188. 249. 219.	145. 119. 132.	73. 108. 91.	100. 66. 83.	. 6. 56. 31.
365853 MEAN	000°0	921. 649. 785.	593. 422. 508.	550. 449. 500.	434. 418. 426.	437. 302. 370.	247. 233. 240.	356. 260. 308.	424. 211. 318.	416. 124. 270.	165. 236. 201.	237 147 192	326. 124. 225.
365853 MEAN	100,000	23. 13. 18.	600	115. 0. 58.	122. 0. 61.	74. 39.	163. 89. 126.	135. 12. 74.	78. 29. 54.	95. 107. 101.	120. 24. 72.	65 62. 64.	187. 162. 175.
365853 MEAN	10,000	656. 733. 695.	335. 420. 378.	283. 324. 304.	202 327 265	234. 380. 307.	235° 383° 309°	198. 251. 225.	159. 328. 244.	128. 264. 196.	143. 256. 200.	110. 348. 229.	59. 235. 148.

LOCOMOTOR, ACTIVITY OF MICE

A SECOND CONTRACTOR OF THE SECOND CONTRACTOR O

GROUPS OF THREE MICE

V-04- IV					ÍO O	COUNTS AT		INDICATED INTERVAL	TERVAL					
CMPND	LEVEL MG/KG	5MIN	10MIN 15MIN	15MIN	20MIN 25MIN	25MIN	30MIN	35MIN	30MIN 35MIN 40MIN 45MIN	45MIN	50MIN	55MIN	6 OM I N	
365859	000•0	535.	442. 602.	440. 511.	318° 422° 370°	406.	290. 398.	389	244.	297. 390. 344.	132. 344. 238.	217.	270. 232, 251,	
365859	10,000	305	286.	180.	154,	123.	192.	316.	200	248.	179.	181	162.	
MEAN		215. 260.	124. 205.	157. 169.	252. 203.	237. 180.	265. 229.	241. 279.	250. 225.	168. 208.	199. 189.	117.	139. 151.	
(65859	1,000	625.	365.	334.	203.	250.	270.	290.	248.	186.	188.	210.	111.	
No.	- 1	557.	329.	312.	221,	277.	233	236.	170.	130.	155.	148.	80.	
365891	00000	813. 830.	724.	504. 412.	491.	425.	582。 357。	478. 250.	450°	307.	392. 237.	517. 258.	253 。 152•	
MEAN		822.	662.	458	443°	389.	410	364.	331,	295。	315.	388	203.	
365891	32,000	53°	24.	52. 152.	7. 208.	10. 183.	12° 153°	4.	15°	19. 219.	50.	7. 189.	160	
MEAN	٠.	152.	106.	102.	108.	97.	83°	131,	125.	119.	144.	•86 •	8 0.	
865891	1,000	697	545	420	409	4410	387	281	364.	357.	417	307	392.	
MEAN		631. 664.	414. 480.	496.	455°	416.	391°	322.	383.	404	444.	325.	359	

The second second

CUMULATIVE COUNTS PER 3 MICE FOR # 1356 AT 18,000 MG PER KG 5000. 5000. 8000 •0009 4000 2000 J.WE ZZZ

	100
PER KG	-
9W 000°	8000• I
AT 10	-
1356	, •000°
**	9
MICE FOR	1
CUMULATIVE COUNTS PER 3 MICE FOR # 1356 AT	4000°
CUMULATIVE	2000. I
	1000. I
	• -

TIME MIN

on character deposits the artist to be and

Control of the State of the Sta

.000

20

55

10000. I										
	• :			9		,		• **		
CUMULATIVE COUNTS PER 3 MICE FOR # 1356 AT 1,000 MG PER KG 3000. 5000. 7000. 9000. 2000. I 4000. I 1 I I I I I I										
56 AT 1 ,7000•										
-0R # 135										
8 3.MICE 8 5000.										
OUNTS PER 3 0. 4000. I I										
300 300 10•						•	+	•	•	•
CUMULA1 1000• 2000• 1 1	•		•	• ((
100	† .	•		٠,					. I	1
TIME IN MIN.		10.	15.	20.	. 25.	30.	35.	*0+	45.	50.

The second secon

CUMULATIVE COUNTS PER 3 MICE FOR # 1356 AT 5000. 4000 2000

1000

M. Marie Contact Contact Services

0.000 MG PER KG 8000

7000

0009

20. 55

	10000• I
PER KG 9000.	
AT 10,000 MG PER KG .7000. 9000.	80008 I
7 AT 10 .7000.	
3 # 236	6000• I
PER 3 MICE FOR # 2367 / 5000	
S PER 3	4000+ I
VE COUNT	-
CUMULATIVE COUNTS P 3000.	2000. I
1000	· 🛏
	٠-;
TIME	MIN.

and the state of t

•

٠

•

•

.

100

• • • •

PER KG 9000.	٠
.100 MG PER KG	9000
# 2367 AT	•0009
CUMULATIVE COUNTS PER 3 MICE FOR # 2367 AT .100 3000.	4 000 *
CUMULATIVE COUN	2000
1000	
TIME	Z

The state of the s

The second secon

Property Contractor and Contractor a

The second secon

10000.

100001
PER KG 9000•
0.000 MG PER KG 9000, 8000,
AT 7000•
2367 6000• I
MICE FOR #
PER 3 4000•
CUMULATIVE COUNTS PER 3 MICE FOR # 2367 AT 0. 2000. 3000. 5000. 7000. 2000. I 4000. I i I I I I I I I I I I I I I I I I I
CUMULAT
1000. I
∘ -†

Maria de la companya		C. Y.	illi.
	÷ •		
	.*		
,			

CUMULATIVE COUNTS PER 3 MICE FOR # 2516 AT 56,000 MG PER KG 3000 2000 1000

100001

8000

,7000

•0009

5000

IME Z Ž

40004

30.

25

•0

35.

Control of the second s

10000• I									
PER KG 9000•	• :							-37	
1.000 MG 8000. I									
16 AT ,7000.									
CUMULATIVE COUNTS PER 3 MICE FOR # 2516 AT 1.000 MG PER KG 3000. 5000. 5000. 7000. 9000. 2000. 1 400. 1 1 1 1									
3 MICE 5000									
00NTS PER 300 4000									
3000 3000 0°						٠	٠	*	
CUMULAT 1000• 2000• I I		į		• =	9	٠			
100	*								
TIME NIN.	5.	10.		20	. 25	30.	35.	- •0+	45
			•••						

	10000. I	
0006	-	
	8000• I	
2000		
	60009 I	
2000		
	40004 I	
3000	-	
	2000s	
1000		-

0.000 MG PER KG

CUMULATIVE COUNTS PER 3 MICE FOR # 2516 AT

のでしているとのできるとのできるというのできるというできる

90,

								PA	G
<u> </u>	10000. I								•
-	9000•	• ;				- "			
	000 MG F 8000•								
	AT 10. 7000. ' I								
	# 2531 6000• I								
	CUMULATIVE COUNTS PER 3 MICE FOR # 2531 AT 10,000 MG PER KG 2000, 3000, 5000, 6000, 7000, 9000, 2000, 1 1 1 1 1 1 1 1 1 1 1 1 1					•			
)	S PER 3 4000. I								
	VE COUNT 3000• I						•	•	
	CUMULATI'			*	*	· •			
	1000. I	* + +	• •		**			÷	
		, ,	J 1		1 ,		:	ì	
: A	TIME IN MIN.	5.	15.	.25.	35	45.	50.	55°	
)	•		•						

The second secon

	001
PER KG 9000.	-
000 MG	8000 1
AT 100 7000.	_
2531	1 1
MICE FOR #	, I
PER 3	4000°
CUNULATIVE COUNTS PER 3 MICE FOR # 2531 AT 100.000 MG PER KG 3000. 5000. 5000.	1
CUMULAT	2000.
1000	1
	• - +

+ + 1 1

25.

· 6

45.

55.

•

8000

•0009

4000

CUMULATIVE COUNTS PER 3 MICE FOR # 2531 AT 0.000 MG PER KG 5000. 2000

Samuel Beet Colotte and and section of

1			
1			ij
•			

1.000 MG PER KG 8000 7000 CUMULATIVE COUNTS PER 3 MICE FOR # 2531 AT •0009 5000 4000° 3000 2000 1000

HINE MIN MIN

10000

30 35°

45. 50.

.09

I WE			CUMULATIVE COUNTS PER 3 MICE FOR # 2598 AT 0.000 MG PER KG	/E COUNT	S PER 3	MICE FOR	# 2598	AT 0.	9W 000	PER KG	
N 0	•	1000• I	2000• 1	3000° I	4000+ I	. I	6000• I	· 1 · 1	80008 I	·	10000• I
5.	+									٠.	
10.	,	•									
15.	,	•									
20.	1	٠									
25.		• .							•		
30.	ı										

是一个人,我们就是这种的人,这一种的人,也是是一个人的人,我们就是一个人的人,我们就是一个人的人的人,也是一个人的人的人,也是一个人的人的人,也是一个人的人的人

and the second second

The state of the s

*

35.

. . . .

55.

,09

50.

90

10000•									
PER KG 9000•	• ;							1	
.100 MG PER KG 9000. 8000. I I									*
CUMULATIVE COUNTS PER 3 MICE FOR # 2598 AT 5000. 2000. 1 4000. 1 1 1 1 1									
OR # 259			.8					,	
3 MICE F1 5000.									
415 PER 3									
3000•							•		
						•		*	*
1000.	•	•	٠	•	* .				
• • •	1	•	•	•	•	1	•	,	•
M IN W	م	10.	15.	20.	25.	30.	35.	* 0*	45.

2598 AT 10,000 MG PER KG 8000 CUMULATIVE COUNTS PER 3 MICE FOR # 4000 3000 2000 1000 IME

or our series of the bath Characteristics and

00001

35.

20.

PAGE 10000 CUMULATIVE COUNTS PER 3 MICE FOR # 2717 AT 1.000 MG PER KG 5000. 8000 •0009 5000 4000 3000 2000 1000 San San Marie Maria Maria 60, 30° 35. •0 50. TIME MIN. z

CUMULATIVE COUNTS PER 3 MICE FOR # 2717 AT 20.100 MG PER KG

一日の大きのは大きななると、大きなないできると

50.

S. A	الماعد المتاويد المدادات		فاعتداد متعاسا		- N3
10000. I					
PER KG 9000.	- :				
0.000 MG 8000.					
7000.					
# 2717 6000• I					
CUMULATIVE COUNTS PER 3 MICE FOR # 2717 AT 0.000 MG PER KG 5000. 7000. 7000. 9000. 2000. 1 I I I I I I I I I I I I I I I I I I					
5 PER 3 4000.					
3000• 1	•				+
CUMULATIV 2000• I		•	٠	•	

The state of the s

1000

WIN.

30 35.

0,0

The comments of the second week	ri kaa	
		•
-		

CUMULATIVE COUNTS PER 3 MICE FOR # 2778 AT 32,000 MG PER KG *0005 3000 2000 1000

NIN.

8000

•0009

50.

55.

10000 0006 CUMULATIVE COUNTS PER 3 MICE FOR # 2778 AT 10.000 MG PER KG 8000 •0009 5000 4000 3000 2000 1000

> NIN. Z

55.

50.

• •						2.30
10000. I						
PER KG '9000• I		• :				
8000 NG		-				
AT 1.7000.			••	٠.		
# 2778 6000• I						
CUMULATIVE COUNTS PER 3 MICE FOR # 2778 AT 1.000 MG PER KG 5000. 3000. 8000. 8000. 8000. 1 I I I I I I I I I I I I I I I I I I						
5 PER 3 4000. I						
VE COUNTS						
CUMULATI 2000. I				•	+	•
1000• I	•	•	+			
·- †		•		ı		ı
TIME IN MIN.	5.	10.	15.	20.	25.	30.
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					7 ·	÷.j

明治学院、中央大学の大学を大学を教養を持ては本本のでは、大学のでは、大学のでは、大学のでは、大学の大学の大学の大学の大学の大学の大学の大学の大学の大学のでは、大学のでは、 のできるとは、「は、日本のでは

100001						4	rij le.
.100 MG PER KG 9000. 8000. I							
AT 7000.				٠.			•
# 2867 6000• I							
CUMULATIVE COUNTS PER 3 MICE FOR # 2867 AT 7000. 2000. 4000. 6000. 1 I I I I							
5 PER 3 4000•							
3000. 1							
CUMULATI			٠		•	*	:
10000			•	•			
°;	,	1	1	1			
TIME NIN.	5.	10.	15.	20.	25.	30.	L
					; t		

A SECTION OF THE PROPERTY OF SECTION AND SECTION OF SECTION AND SECTION OF SECTION SECTIONS AND SECTION SECTION

the state of the same of the s

2867 AT

CUMULATIVE COUNTS PER 3 MICE FOR # 4000

2000

1000

E H MIN.

のでは、日本のでは

Salar Salar

•0009

ER KG 9000.				
000 MG PI 8000•				
AT 10. 7000. I				· .
# 2867 6000• I				
CUMULATIVE COUNTS PER 3 MICE FOR # 2867 AT 10,000 MG PER KG 3000, 5000, 5000, 6000, 10 1 1 1 1 1 1 1 1 1 1				
5 PER 3 4000.				
VE COUNT 3000. I		٠		
CUMULATI 2000. 1				
1000.				
· -	†	i	;	;
TIME IN MIN.	•	°	10.	15.

100001								
PER KG 9000.	•					•		
CUMULATIVE COUNTS PER 3 MICE FOR # 2867 AT 1,000 MG PER KG 3000, 3000, 5000, 6000, 1 I I I I I I I I I I I I I I I I I I								
7 AT 1 7000.								
R # 286 6000•		•						
MICE F0 5000. I				·				
15 PER 3 4000• I								
3000.	•						-	
CUMULATI 2000• 1					_		•	+
•0001	es."		٠	+	· .	٠٠,		
·- ;	+	•	1		ř			
TIME IN MIN.	5.	10.	. 15.	20.	25.	30•	35.	40*

CUMULATIVE COUNTS PER 3 MICE FOR # 2897 AT 50.100 MG PER KG 5000. 7000. '9000. 8000 •0009 2000

20.

•00001

5 10 15	٠				H	 -			
15 20									
15	•		-				-	•.	
20.		•					- -	;	
		•							
25							•		
30.			•						
35	٠		•						
•05				*	•				
45.				٠			0		
- •05				٠				'	
. 55.				•				-	

50. -

												PA	c=
\ .	10000• I												g.
	9000. 1					,	,		•				
÷	8000 MG F										•		
	AT 0, 7000.												
	# 2935 6000•								•				
	MICE FOR 5000.								•				
)	S PER 3 4000•												
	VE COUNT 3000. I							•				+	
	CUMULATIVE COUNTS PER 3 MICE FOR # 2935 AT 0.000 MG PER KG 5000. 1000. 1000. 9000. 2000. 1 I I I I I I I I I I I I I I I I I I						•	•	*	•	*		
	1000.	· .	•	•	•	•	٠٠.					٠	
	· · ·	•				1	1	1	, 1	1	•		
	TIME IN MIN.	•	10.	15.	20.	. 25.	30.	35.	40*	45.	• 05	55.	Ç
)	•			,									

The state of the

The second state of the second second

TIME 1000. CUMULATIVE COUNTS PER 3 MICE FOR 2935 AT 32.000 MG PER KG 1000. 100000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 100000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 100000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 100000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 100000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 100000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 100000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 10000. 1000		CUMULATIVE 1000. 2000. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i	* 1	* .	. +	•	 +	+	45 +	+ - •06	55 +.	•
TE FOR # 2935 AT 32°, 2000° L	A contractible to the second of the second	E COUNTS PER 3 MI 3000. 4000. I I											
	And the second s	CE FOR # 2935 AT 32. 0000 60000 I								*			

	TIME			CUMULAT	IVE COUNT	S PER 3	MICE FOR	CUMULATIVE COUNTS PER 3 MICE FOR # 2935 AT 1,000 MG PER KG	AT 1	9M 000	PER KG	
	WIN NIN O	• + †	1000. I	2000 • I	3000• I	4000 •	• 0000 I	1 I	, I	8000 ₀	• 1	10000
	5		٠					-				
	10.	•	. *							•	•	
	15.		**							-	:	
	20.			•								
7	25.	•		*								
	30.	•			•			*				
و داديات	35.	•	٠		*							
	40*	•			•							
	45.	•			•			•				
	50.	•			·							
	55.	•										
	.09	•				٠					,	

0006 CUMULATIVE COUNTS PER 3 MICE FOR # 2963 AT 56.000 MG PER KG 8000 •0009 5000 4000° 3000 2000 1000 TINE MIN 0

.00001

...

. .

• 05

		10000	-
. •	PER KG 9000.		-
	9W 000°	8000	-
	AT 32		-
	# 2963	•0009	
	CUMULATIVE COUNTS PER 3 MICE FOR # 2963 AT 32,000 MG PER KG 3000. 5000. 5000.		-
	rs PER 3	4000	-
	IVE COUN		-
	CUMULAT	2000	-
	1000		-
		•	- +

CUMULATIVE COUNTS PER 3 MICE FOR # 2963 AT 10,000 MG PER KG 3000, 3000, 5000.

5000

3000

2000

1000

1,000 MG PER KG

A SAME SAME AND ASSESSED.

50.

10000 CUMULATIVE COUNTS PER 3 MICE FOR # 2963 AT 0.000 MG PER KG 3000. 7000. 8000 •0009 4000° 2000 TIME NIN. 25. 30° °

1000

and the second distribution of the second

50

35° 40 60,

CUMULATIVE COUNTS PER 3 MICE FOR # 2984 AT 1.000 MG PER KG)))	-				•	-			
Ψ 00	8000	-								
1.0										
AT		-								
5984	•		•-							
*	6000									
FOR	•									
MIC	í									
m	•									
PER	4000	_								
COUNTS	•	_								
IVE	í									
CUMULAT	2000	н								
٥	•	_		•				+		
10001	•				+					
	٠.									
	0	-	t		·			•	٠	
TIME IN	MIN		•0		5.		:	10	15.	
										•

40. -

55.

THE PARTY OF THE P

and the second state of the second second

TIME

Z E

.00001

8000

7000

•0009

0006

CUMULATIVE COUNTS PER 3 MICE FOR # 2984 AT 0.000 MG PER KG

5000

4000

2000

1000

3000

. 50 25.

30°

	10000• I	
•	CUMULATIVE COUNTS PER 3 MICE FOR # 2984 AT 10,000 MG PER KG 2000. 7000. 9000. 2000. 1 I I I I I I I I I I I I I I I I I I	
	.000 MG	
	4 AT 10 7000•	
	8 # 298 6000•	
	MICE FOI 5000.	
)	4000•	
	3000.	
	CUMULATI 2000• I	
	. I	
	•́н+	

50.

ш.		CUMULAT I	CUMULATIVE COUNTS PER 3 MICE FOR # 2994 AT 100.000 MG PER KG	PER 3	MICE FOR	# 2994	AT 100.0	000 MG P	ER KG	
:	0.001	2000	•0006	4000	• •	•0009	• •	8000		1000
•	- ;	-	-	-	-	-	-	-	-	
			٠							
	•								•	
	•								:	
•										
.•	1									
•	1	•								
		+								
•		+								

mountain in the market has been delicated in

100001 CUMULATIVE COUNTS PER 3 MICE FOR # 2994 AT 1,000 MG PER KG 8000 1000 •0009 5000 4000+ 3000 20002 1000

> MIN Z

And the state of the state of the same but assessed to be to see the same of t

CUMULATIVE COUNTS PER 3 MICE FOR # 2994 AT 0.000 MG PER KG Z Z

1000	
PER KG 9000.	
AT 0.000 MG PER KG 7000. 9000. 1 I I	
3 MICE FOR # 2995 A 5000, 6000, 1	
CUMULATIVE COUNTS PER 3 MICE FOR # 2995 A 3000. 3000. 7 2000. 1 I I I I I I I I I I I I I I I I I I	
1000.	

or resemble to the track to the state of the same

のできるとのできるとのできるというできるというできるというできるとのできるというできるというできるとのできるとのできるとのできるとのできるというできるというできるというできるというできるというできると

.

, I

35. -

. °09

55.

		ekameta •		Sec. 10 - Common
10000.				PAG
PER KG 9000•	1 * 1 . 3		•	• •
.000 MG 8000.				•
2995 AT 20.000 MG PER KG 7000. 8000. 1				
R# 299 6000•				
MICE FO 5000.				
.S PER 3				
VE COUNT 3000.	•	•		
CUMULATIVE COUNTS PER 3 MICE FOR # 2000, 4000, 600				
•000	•			· · · · ·

30. 35 403 45. 50. 55

angestional series in a series of the series was the series and the series and the series of the ser

0006

CUMULATIVE COUNTS PER 3 MICE FOR # 2995 AT 1,000 MG PER KG

3000

1000

IME MIN.

z

10000

0.000 MG PER KG

7000

CUMULATIVE COUNTS PER 3 MICE FOR # 2999 AT

5000

1000

9

50.

55.

50. 55.

30.

2000

CUMULATIVE COUNTS PER 3 MICE FOR # 2999 AT 1,000 MG PER KG 5000 +000+

3000

1000

0009

7000

8000

100001 •0006

The state of the s

10000. I	
CUMULATIVE COUNTS PER 3 MICE FOR # 2999 AT 10.000 MG PER KG 5000. 7000. 7000. 9000. 2000. 1 I I I I I I I I I I I I I I I I I I	
MICE FOR # 5000.	
UMULATIVE COUNTS PER 3 3000. 4000. I	
CUM 1000. 20 I	

							•	
	. 0000	1						
	PER KG 9000	•			· .	:		
	8000 MG	1000						
	AT 20.							
	# 5026							
	CUMULATIVE COUNTS PER 3 MICE FOR # 5026 AT 20,000 MG PER KG. 3000. 3000. 5000. 6000.	-						
ı	'S PER 3	, 1						
	VE COUNT 3000*	-		•				
	CUMULATI	1					*	•
	1000	-				•	. *	
		င် 🗕	ţ	,			٠,	
	TIME	٠ ١	•	, %	-	•	15.	 • 0,7•

THE SECURITY OF SECURITY OF SECURITY SECURITY OF SECURITY SECURITY

the state of the s

	10000. I										PAG
. آر ،		• ;						- **		1	
	.320 MG PER KG 9000. 8000. I I								•		
	_										
	# 502 6000•										
	MICE FOR 5000. I	· .						•			
֥)	CUMULATIVE COUNTS PER 3 MICE FOR # 5026 AT 7000. 2000. 4000. 6000. 1 I I I I I I I I I I I I I I I I I I						٠.				•
	-						+	•	*	•	
-	1000.		•	•			• •				
	0 1	•		ì		, ,	,			.1	•
	TIME IN MIN.	ů,	10.		•07	25.	35.	40*	45.	• 05	55.
()											

50.

55

Salar Contract Contract County Contract Contract

10000

0,000 MG PER KG 8000

7000

•0009

4000

2000

1000

Z Z Z

3000

CUMULATIVE COUNTS PER 3 MICE FOR # 5026 AT

10000 9000° 0,000 MG PER KG 8000 .0007 CUMULATIVE COUNTS PER 3 MICE FOR # 5031 AT ,0009 50003 4000 30000 2000 10001

IME

1 1

35°

25

- •05

1.000 MG PER KG

TIME MIN

CUMULATIVE COUNTS PER 3 MICE FOR # 5031 AT

1 1								7			PA	GE A
	•							,				
8000°					,		•		•			
CUNULATIVE COUNTS PER 3 MICE FOR # 5031 AT 20,000 MG PER KG 5000. 3000. 7000. 7000. 9000. 2000. 1 I I I I I I I I I I I I I I I I I I												
R # 503 6000•												
MICE FOI 5000. I									•			
15 PER 3 4000•												
1VE COUN' 3000• I	•						٠					
CUNULAT							•	•	*	•		•
1000. I	٠	٠	٠	•	•		**				•	
. • • •	1			1	1	,	. 1	,	•	1	1	
TIME IN MIN•	\$	10.	. 15.	20.	25.	30.	35°	40°	45.	50.	55.	*09

A STATE OF THE STATE OF

.09

10000

CUMULATIVE COUNTS PER 3 MICE FOR # 5031 AT 100,000 MG PER KG, 5000_ 3000.

£		1.120	No. of contrary	4. 4.	الكشية	Sel total	14 de 1 - 1	6752
	•							
	10000. I							
PER KG	-		ិ : ់					,
.010 MG PER KG	8000• I							
CUMULATIVE COUNTS PER 3 MICE FOR # 5058 AT	6000• I ' I	-						
MICE FOR	1							
TS PER 3	4000 •	•						
IVE COUN	ī	-						* '
CUMULAT	2000• I	•		٠		.	•	. •

15.

25°

50.

,一个时间,我们就是我们的时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,也 第一个时间,我们就是我们的时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我

WIN.

1000				
PER KG. 9000•	•.			
0,000 MG 8000.				
AT 7000,				
# 5058 6000• I				
MICE FOR 5000.				
COUNTS PER 3 30• 4000• I I				
CUMULATIVE COUNTS PER 3 MICE FOR # 5058 AT 0.000 MG PER KG. 3000. 3000. 4000. 6000. 7000. 8000. 1 I I I I I I I I I I I I I I I I I I				
1000	•		+	•
	• †			,
TINE NIN	.	5.	10.	u

* *

30°

35.

• • •

•00001 5058 AT 25,100 MG PER KG 8000 7000 •0009 CUMULATIVE COUNTS PER 3 MICE FOR # 3000. 4000 2000 1000

TIME IN MIN•

						1		7			Р	AGE
	100001											
	9000•								,			
	8000 MG F							٠				
	8 AT 10 7000•											
	6000•											
	MICE FOF 5000• I											+
	5 PER 3 4000•								•	•	•	
	VE COUNT 3000• 1					•	•	•				
	CUMULATIVE COUNTS PER 3 MICE FOR # 5058 AT 10,000 MG PER KG 9000. 3000 4000 5000 6000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•	† ,							
	1000.		•			•	· ·					•
	å- t		1	1	1	•	1	•	١		•	1
	TIME IN MIN.	ν. •	10.	15.	20.	. 25.	30°	35.	40*	45.	50.	ď
٠.												

2000

1000

TIME NIN

30 35°

	100001 I
PER KG	1
CUMULATIVE COUNTS PER 3 MICE FOR # 5059 AT 100.000 MG PER KG	80000 I
9 AT 100	1000,
\$ 505	6000a
MICE FOR	5000 •
S PER 3	4000 • I
VE COUNT	3000e
CUMULATI	2000 . I
	1000. I
	ة -
u u	ZZ O

é0°

CUMULATIVE COUNTS PER 3 MICE FOR # 5059 AT 10.000 MG PER KG •0009 5000 4000 3000 2000 1000

MIN.

Profesional annual second and a second secon

10000

25. 30

•0

20°

1,000 MG PER KG 8000 CUNULATIVE COUNTS PER 3 MICE FOR # 5059 AT 6000 5000 40004 2000 1000

10000. I

.

· · · .

40

.

. 25.

•09

8000 7000 CUMULATIVE COUNTS PER 3 MICE FOR # 5059 AT 3000. •0009

4000

2000

1000

N I W

10000

0.000 MG PER KG

The second secon

on the classification of the second second second

35°

25. 30

PAGE A

90

50. 55

												PAG
	10000• I											PAG
- •	9000•	•	:							- "		
	8000• 1									,		
	CUMULATIVE COUNTS PER 3 MICE FOR # 5071 AT 10,000 MG PER KG 5000, 7000, 9000, 2000, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
	6000.											
	3 MICE F 5000											
	4000•										*	÷
	3000• 1	•					•		+	٠		
	CUMULAT			•	•	+						
	10000	•	•				٠.	,.			·	
	°-†	ı	•	ţ,	ı	1		ı	ı	ı	ı	ı
	TIME IN MIN.	5.	10.	15.	50	25.	30.	35.	*0*	45.	50.	55.

and the second s

Commence of the second of the

1.000 MG PER KG 8000

CUMULATIVE COUNTS PER 3 MICE FOR # 5071 AT ... 5000.

4000

2000

_		2	
,	PER KG 9000.	-	
	000 MS	\$000°	-
	AT 7000.	-	-4
	# 5071	•0009	-
	S PER 3 MICE FOR # 5071 AT 6.0		
	CUMULATIVE COUNTS PER 3		1 1 1
		1000	

to professional state of the st

A CONTRACTOR OF THE PROPERTY OF THE PARTY OF

20.

	0001
PER KG 9000	-
9000 MG	1 I
,T 32	-
4 1	-
507	1
*	•
MICE FUR 5000.	
9	
PER	4000• I
CUMULATIVE COUNTS PER 3 MICE FOR # 5071 AT 32.000 NG PER KG 5000. 5000.	-
CUMULATI	2000 . 1
1000	·
	: - ;

	CUNULATIVE COUNTS PER 3 MICE FOR # 5092 AT 250,000 NG PER P 2000. 3000. 5000. 5000. 5000. 5000. 1 I I I I I I I I I I I I I I I I I I
	00 MG 5000°
	000
	, so.
	7 2 000 1
	1A 70
	092
	* 50 6000•
	÷ 9
	FOR
	₩ <u>8</u>
_	Ψ.
)	8 6
	PER 3
	TS 4
	N
	0 0
	3 3
	-AT
	UMULA 2000•
	5 °
	1000• I

		1000		
PER KG	90006		-	
90 MG		8000	-	
10.0	,000		_	
092 AT	70		-	
¥.		• 0009	-	
MICE FO	5000		-	
5 PER 3		4000	-	
CUMULATIVE COUNTS PER 3 MICE FOR # 5092 AT 10.000 NG PER KG	3000		-	
CUMULAT		2000	-	
	1000			
		•		t

10000 •0006 CUMULATIVE COUNTS PER 3 MICE FOR # 5092 AT 0.000 MG FER KG 8000 7000 •0009 5000 4000 2000 1000

TIME

•

20. 20. 25.

0

30

50.

55.

60°

CUMULATIVE COUNTS PER 3 MICE FOR # 5104 AT 63.100 MG PER KG 8000 •0009 5000 4000 2000

1000

AIN MIN MIN

•00001

, O.A

		10000• I
,	PER KG 9000.	-
	0.000 MG PER KG	8000 I
	AT 7000	
	5104	.0000 I
	CUMULATIVE COUNTS PER 3 MICE FOR # 5104 A	•
	PER 3	. 0000 I
	VE COUNTS	-
	CUMULATI	2000• I
	1000	1
		° •

25.

CUMULATIVE COUNTS PER 3 MICE FOR # 5104 AT 1,000 EN PER KG

5000

40004

3000

2000

1000

10000

8000

7000

6000

and the second of the second o

20,5

55.

50°

60°

10000 CUMULATIVE COUNTS PER 3 MICE FOR # 5104 AT 10,000 MG PER KG 3000. 7000. 9000. 8000 •0009 4000 2000 1000

30°

IME

CUMULAT							·	
	UMULATIVE COUNTS PER 3 MICE FOR # 5143 AT 32,000 MG PER KG	PER 3	MICE FOR	£ 5143	AT 32,	000 MG 1	PER KG	
	•	4000		•0009		0000	•	9
1		-		-		-	-	

50.

TIME	•.	:	CUMULATIVE COUNTS PER 3 MICE FOR # 5143 AT 10.000 MG PER KG	VE COUNT	S PER 3	MICE FOR	# 5143	AT 10	.000 MG F	PR KG	
z z z z	ô	1000	2000	•0006	4000	•	•0009		8000		1000
c	-	-	-	-	-	-	-	-	-	•	
•	*									٠	
ę,		٠								٠	
										: -	
10.	,	•									
15.	,	+									
20.		*									
25.	,		*								•
.30	,		. *								
35.	•		+								
40°	•		, +								
45.	1		*							,	'

A SECTION OF THE PROPERTY OF T

۲ ،	01	-
PER 1		
1.000 MG	8000	-
AT 7000.		-
# 5143	•0009	-
UMULATIVE COUNTS PER 3 MICE FOR # 5143 AT 1,000 NG PER KG 3000.		-
PER 3	4000	-
VE COUNTS		-
CUMULATI	2000	-
1000		-
	•	- :

.

ı M

•

•

•

ô

10000	1							J			P	AGE
) ª												
9000		-										
8000 ES F										•		
AT 5.1												
# 5143 6000• I												
CUMULATIVE COUNTS FER 3 MICE FOR # 5143 AT 5,000 H5 PLL. FG. 2000. 3000. 9000. 9000. 1 I I I I I I I I I I I I I I I I I I									٠			
4000•												
1000 COUNT							•					_
СUMULAT					•	÷	٠	•	•	Ť	•	Ť
1000. I	+	•	٠	i			· ·					
	1					ť	ı	,	,			
WIN WIN	•	10.	15.	20.	25.	.90°	35.	*04	45.	200	55。	•09

	100001		
5 AT 0.000 MG PER KG 7000.	1 I I I '		
MICE FOR # 5145 5000.	· 0009		
CUMULATIVE COUNTS PER 3 MICE FOR # 5145 AT 0.000 MG PE 5000.	2000• 4000• I I I I	•	
0001			

errorman enterpretation interaction has an enterpretation of the first of the first of the theory

. .

20. -

35. -

. . . .

•

CUMULATIVE COUNTS PER 3 MICE FOR # 5145 AT 4000+

.320 NG PER KG

100001 3.200 MS PER KG 8000 7000 CUMULATIVE COUNTS PER 3 MICE FOR # 5145 AT •0009 4000 3000 2000

50.

60,

35. 30°

CUMULATIVE COUNTS PER 3 MICE FOR # 5145 AT 10,000 MG PER KG 3000. 3000. 7000. 8000. 9000. 1				
		86 000	-	
	•	PER 9		
		MG	I	
		000	80	
		01.0	_	
		AT 7007	-	
		145	. _	
		*	009	
		FOR		
		O. C.	-	
		Ξ,	•	
		ER	.000 I	
		15	4	
		NO S	· -	
		IVE	n n	
		LAT	• -	
		OWD	200	
1000				
			001	

10000

できた。大学の大学の大学の大学の大学の大学の大学の大学の大学の大学を表示されている。 | 1997年 |

		10000	-	
,	PER KG 9000•		-	
	5W 000*	8000	-	
	AT 10			
	#865853	•0009	-	
	UMULATIVE COUNTS PER 3 MICE FOR #865853 AT 10,000 MG PER KG 3000. 5000.		-	
	S PER 3	4000	-	
	VE COUNT		-	
	CUMULATI	2000	-	
	1000		-	
		•		

•

1 1

•

50.

.

.

PER KG		1	
9W 000*	8000	-	
AT 100			
#865853	•0009		
CUMULATIVE COUNTS PER 3 MICE FOR #365853 AT 100.000 MG PER KG 3000. 7000. 9000.		-	
S PER 3	4000	-	
VE COUNT		-	
CUMULATI	2000	-	
1000			

		10000	-	
·	PER KG		-	
	0.000 MG	8000	-	
	AT		-	
	#865853	•0009	-	
	MICE FOR	• 0000	-	
)	CUMULATIVE COUNTS PER 3 MICE FOR #865853 AT 0.000 MG PE	4000	-	
	IVE COUNT	2000	-	
	CUMULAT	2000	H	
	;	•0001	-	
		ċ	- 1	

en de proposition de la company de la compan

100001 •0006 0.000 MG PER KG 8000 7000 CUMULATIVE COUNTS PER 3 MICE FOR #965859 AT •0009 5000° 4000 3000 2000

CUMULATIV 1000. 2000. 1 I			•	**	*	*	
CUMULATIVE COUNTS PER 3 MICE FOR #865859 AT 1,000 MG PER KG 5000. 5000. 7000. 8000. 2000. 1 I I I I I I I I I I I I I I I I I I							
3 MICE FOR 5000•							
#865859 6000• I							
AT 1.000 MG 7000. 8000.							
MG PER KG 9000• 0• I	-	:					
10000				•			

THE PERSON OF THE PERSON NAMED IN COLUMN TWO

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90006	-	•	
2000	P.000	•	-	
A I	1000	•	-	
*****	000	•0000	-	
MICE FOR	5000	•	-	
PER 3		* 000 *	_	
VE COUNTS	3000• 5000• 5000• 9000•			
CUMULATI		2000		
	1000			

and the said of the said section in the said said section of the said said section the said said

. KG	-
PER 9	
DO MG	
000.	Š
°.	
AT C 7000.	-
CUMULATIVE COUNTS PER 3 MICE FOR #865891 AT 0.000 MG PER KG 9000. 3000. 3000.	• 1 1
-OR	
ICE F(5000•	-
MI 50	
w	
PER	• 000 •
13	4
COUN	-
IVE 3	
¥.	. _
CUMUL	2000s I
1000	1

MIN.

The second of the back of the second of the

CUMULATIVE COUNTS PER 3 MICE FOR # 5145 AT 15.800 MG FER KG 8000 7000 60009 5000° 2000

25

50

°09

Control of the latest and the latest

N E		1000	CUMULATI	VE COUNT	5 PER 3	CUMULATIVE COUNTS PER 3 MICE FOR #865891 AT 1,000 MG PER KG 3000. 7000.	#865891	AT 1	9W 000*	PER KG	
ž	ċ		2000		*0004		•0009		8000		10000
	_	-	-		-	-	-	-	-	-	-
•	t										
			•								
2.		+									
										•	
•	,	+									
5.			•								
ě			•								
			•								

25°

THE RESIDENCE AND ADDRESS OF THE PARTY OF TH

PER KG		⊷	
M G	8000	-	
• 000	80		
32		-	
AT 700		-	
#865891	•0009	-	
CUMULATIVE COUNTS PER 3 MICE FOR #365891 AT 32,000 MG PER KG 3000. 5000.		-	
æ	•	_	
PE	4000		
COUNTS		-	•
TIVE			
CUMULA	2000	-	

MOTIVATION TESTS IN HOODED RATS

the same of the Party of the same of

START AND RUN SPEEDS IN RECIPROCAL SECONDS

	RUN N	
	TRIAL START	
•	RUN	
	TRIAL, 5 START 'RUN	
	4 RUN	
	TRIAL 4 START RUN	
	3 RUN	
	TRIAL START B	
	2 RUN	
	TRIAL 2 START KUN	
	RUN	
	TRIAL 1 START RUN	
	TIME	
	TIV RAT	
	DOSE MOTIV MG/KG	
	PND NO.	

1,492,04	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	55. 50.
2044 058 3013	1082 2017 1079 1047	5.00
.60 1.61 .62	1,39 1,39 1,51	10 10 10
2.50 .61 2.27	2,08 2,08 3,7 3,7 8,7 8,7	5, 00 4,35 3,70
1.61 .57 1.96	. 53 14,1 14,1	1,00. \$50 \$52
2.44 2.56 2.04	2.08 .58 1.92	4,55 4,00 3,45
1.82 1.96 .62	.58 1.52 1.52 1.56	925
.57 .62 2,17	20.3	4°76 4°76 3°57
. 55 57 86	2,55	1,37 ,56 ,51
1.64 2.38 2.78	1.69	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2,22,82	2000	1,30 555
	2 8 8 12 2 8 8 13 3 8 8 13	3.57 4.17 3.70
20.00 120. 240.	20.00 120. 240. 1440.	20, 00 120, 240,
503	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	507 507 507
AVOID AVOID AVOID	AVOID AVOID AVOID	ESCPE ESCPE
00.00	10,000	00.0
	2460	

. 52 . 52 . 98

55.5

3,45 3,45 3,70

1,49 ,53 ,56 ,83

2,85 4,35 4,35 5,35

, 52 1,00 1,00

.56 4.17 .97 3.70 .92 4.00

2.86 3.57 3.70

1002

3,33

20.00 120. 240. 1440.

507 507 507 507

ESCPE ESCPE ESCPE ESCPE

10.00 10.00 10.00

2460 2460 2460 2460 . .

000

, ,

3.85 4.35 4.76

MOTIVATION TESTS IN HOODED RATS

A CONTRACTOR OF THE PROPERTY O

	6 RUN	1,43
	TRIAL	3,57
۴.	rs. RUN	1,37
	TRIAL 15 START RUN	3,57
CONDS	RUN	.56
START AND RUN SPEEDS IN RECIPROCAL SECONDS	TRIAL 3 TRIAL 4 START RUN START RUN 9	3,85
ECIPRO	3 RUN	.53
SINR	TRIAL START	3,23
SPEED	RUN N	.57
ND RUN	TRIAL 2 START RUN S	3.57
TART A	RUN	090
'n	TRIAL 1 START RUN S	3,13
	TIME	120.
	DOSE MOTIV RAT MG/KG NO.	0.00 AVOID 475 120. 3.13 .60 3.57 .57 3.23 .53 3.85 .56 3.57 1.37 3.57 1.43
	ΔZ	

TPND ô

.51 3.33 1.49 .55 2.27 .59 .55 3.03 .57 1.25 2.63 1.22	1,56 4,55 1;79 1,49 3,70 1,59	10.35 4.17 10.85 10.49 40.17 0.59 10.79 40.55 10.69 10.75 40.75 10.61	. 52 3.33 .56
3.45 2.94 3.03 2.70	5,00 3,85	5 2 6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4017
. 50 . 53 1,69	1,72	1,56 1,56 1,59	,55
2.94 2.86 2.78 1.85	4.76	4.00 4.55 3.85 4.76	4.17
.51 .99 .80 1,33	1.52	1.61	1,33
3.03 2.44 2.50	3,85	4.00 4.57 4.35 3.85	4.76
. 51 . 50 . 60	1.92	1.554	. 83
3.45 2.33 2.33 1.35	4°00 4°00	3.85 4.00 4.17 3.85	4.00
,79 ,93 ,91	. 59	1,64 1,89 ,56 1,45	56
2.94 .64 3.13 2.08	3.45	4.00 3.85 4.17 3.33	3.45
20.00 120. 240. 1440.	20.00 120.	20.00 120. 240. 1440.	00.00
475 475 475	501 501	501 501 501	9
AVOID AVOID AVOID	AVOID AVOID	AVOID AVOID AVOID AVOID	נו נו
10,00 10,00 10,00	00.00	10.00 10.00 10.00	0
2759 2759 2759 2759		2759 2759 2759 2759	1

.53

00.4

4,35 950

3,45

5

4.17

.57

4.655 533

348 10,00 FC(DF = 0.0 00,00 3485

0.00 ESCPE 505 20.00 0.00 ESCPE 505 120.

MOTIVATION TESTS IN HOODED RATS

START AND RUN SPEEDS IN RECIPROCAL SECONDS

ond.	DOSE MG/KG	MOTIV F	NO.	TIME	TRIAL	1 RUN	TRIAL	RUN RUN	TRIAL START	3 RUN	TRIAL	A RUN	TRIAL	RUN.	TR1AL START	6 RUN
	0000	APRCH APRCH APRCH	452 452 452	20,00 120, 240,	1.69 .03:	.28	.04 .29 .59	4440	. 03 . 61 1.54	- 36 • 66	2,63 1,52 1,96	37	1.82 .60 .57	.36 .54 .70	1.59	. 3.5 3.8 3.8 8.8
2759 2759 2759 2759	10.00	APRCH APRCH APRCH APRCH	452 452 452 452	20.00 120. 240. 1440.		.08 .31 .03	.03 .03 .21	22 25	2.09	44. 37. 53.	44. 50. 50. 50. 50.	. 35 . 35 . 56	.79 .51 .16 1.85	. 21 . 06 . 25 . 57	12 25 004 1,85	. 18 . 20 . 30 . 65
	00000	APRCH APRCH APRCH	492 492 492	20.00 120. 240.	2,33 ,25 1,64	.47 .76 3.33	1.89	.66 .37 .15	.13 2.13 2.00	. 65 . 32	.37	3,33 ,16	. 56 . 09 . 99	. 03 . 03 48.	655	.96 .05
2759 2759 2759	10,00 10,00 10,00	APRCH APRCH APRCH APRCH	4 4 9 2 2 4 4 9 2 2 2 2 2 2 2 2 2 2 2 2	20,00 120, 2+0, 16%0,	2,56 2,03 2,23 2,23	2 6 6 4 2 4 4 4 6 3 4 4 4 4	65.53	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.800	86. 100. 100.	643 70° 70°	2000 2000 2000 2000 2000 2000 2000 200	. 93 . 03 1,20	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	S. C. S. S.	E 0 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

MOTIVATION TESTS IN HOODED RATS

A STATE OF THE PROPERTY OF THE

	RUN	.54	. 93	4 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.96 .51	. 10 . 80
	TRIAL STARI	4,35 4,17 4,76	4°76 5°26	4.00 3.70 4.17 5.00	6.58 5.88	1,54
	S. RUN.	2,55 2,22	, 53	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.97 .86 1.00	, 93 , 75 , 88
	TRIAL START	4°17 4°17 1°59	5.00	4,00 4,17 4,76 4,35	1.45	.58 1.79
SECONDS	RUN	55. 1.64	88 88	1,00 8,00 1,00 1,00 1,00 1,00 1,00 1,00	50 50	.34 .83 .61
	TRIAL START	3.85 4.00 5.56	5.00	3.57 4.00 4.00 5.56	.10 .63	.58 2.00 1.75
RECIPROCAL	3 RUN	.52 .57	94.		. 35 . 35 . 99	37°
z	TRIAL START	4.17 4.55 4.35	5.56	3.70 2.94 4.55 4.00	1,52	.56 1.82 .58
SPEEDS	RUN S	.59 1.52	.97	.56 .98 .52	.63 1.000	. 80 7.7.
AND RUN	TRIAL START	3,85 3,85 5,26	4.55	4,00 4,17 5,00	44.00 44.00	.56 1.61 .59
START AN	RUN S	. 56 1,30	1049	. 53 53 63 87	.03 .03	. 03
S	TRIAL START	3.85 4.17 2.86	3.85	4.55 4.55 4.17 3.70	1.59	0.00
	TIME	120° 240° 1440°	120,	20,00 120, 240, 1440,	20.00 120. 240.	20.00 120. 240.
	RAT .	505 505 505	466	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	496 496 496	496 496 496
	MOTIV R/	ESCPE ESCPE ESCPE	ESCPE	ESCPE ESCPE ESCPE ESCPE	APRCH APRCH APRCH	APRCH APRCH APRCH
	DOSE M MG/KG	10,00	0000	10,00	00.00	10.00
	PMD NO•	2759 2759 2759		2759 2759 2759 2759		2460
	ar ner/meneral	O MESS TWO CONTRACTOR SERVICE	GENERAL COLONIA CONTRACTOR	CONTRACTOR OF	CHALLES TO THE PARTY	THE GUILD

MOTIVATION TESTS IN HOODED RATS

CALL STATE OF THE PARTY OF THE

					S	START A	AND RUN		SPEEDS IN R	REC1PR0CAL		SECONDS		٠.		
ONO 10 •	DOSE 1 MG/KG	10T1V	RAT NO.	TIME	TRIAL START	I RUN	TRIAL START	2 RUN	TRIAL STAKT	3 RUN	TRIAL START	4 RUN	TRIAL 1 START	L 15. RUN	TRIAL START	6 RUN
6460	10.00	APRCH 496	964	1440.	1.49	3,33	.93	.67	m m	.92	.40	. 95	• 58	16°	.56	.91
	 0000 	APRCH APRCH APRCH	488 488 488	20.00 120. 240.	1.64	3.33 .03		.28 .27	2,50	69° 70° 80°	. 556 1 854 1 85	.39 .72 .74	2.50 2.17 2.22	.48 .27 .75	2.00 2.00 2.63	.14 .41 .98
24.60 24.60 24.60 24.60	10,00	APRCH APRCH APRCH	4 4 8 8 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8	20.00 120. 240. 1440.	2,72 2,17 1,00 1,54	. 06 03 210 210	1.89 2.08 2.94 56		2°50 3°50 3°12 11		2000 2000 3000 3000 3000 3000 3000 3000	. 75 . 80 . 77	2,50 2,38 2,38	. 65 . 09 . 80 . 87	2.44 2.08 332 2.27	
	00,0	AVOID AVOID AVOID	502 502 502	20.00 120. 240.	.21 .45 1.69	ເປັດ ເປັດ ເປັດ ເປັດ ເປັດ ເປັດ ເປັດ ເປັດ	1.89 2.27 1.92	. 55 55 58 85 85	.88 .59 1.56	.55 .56 .56	2,63		1.64 .61 2.08	000 800 870	1,92 2,50 6,63	.91 .59
2450 2450 2450 2460	10.00	AVOID AVOID AVOID	502	20.00 120, 240, 1440.	.38 1.89 .54	669 652 812	,58 ,97 ,53	* * * * * * * * * * * * * * * * * * *	10.02	.52 1,53 1,27	.53 .91 1,33 1,35	. 52 1. 52 1. 56	,59 ,83 2,08	. 83 1. 59 88	.98 .92 .50	1.53 1.39 85

MOTIVATION TESTS IN HOODED RATS

CONTROL OF THE CONTRO

	TRIAL START	3,35
٠	RUN:	52.
	TRIAL START	4.76 3.33
CONDS	RUN	51
CAL SE	TRIAL 4 START F	4.76 4.76
ECIPRO	3 RUN	53
SINR	TRIAL 3 START R	5.26 4.00
SPEED	.2 RUN	55.55
START AND RUN SPEEDS IN RECIPROCAL SECONDS	TRIAL 2 START RUN	4.76 4.00
TART A	I RUN	552
Ś	TRIAL 1 START RUN	3.70 4.55
	T I ME	120. 240.
	DOSE MOTIV RAT MG/KG NO•	0.00 ESCPE 508

No.

.83 .98

RUN

9

5000	. 3 3 4 . 10 6 . 10 6	63 990 53	Ę
		• - • • •	. '•'
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	80°04 80°04 80°04	0.08 2.13 1.89	2,63
1,00 1,00 55,81	30 m 10 m 10 m	55 55 55 55 54 55	. 88
4.35 4.76 4.76	2.85 1.79 2.00	2,08 2,08 2,63 3,63	2,94 2,08
80 85 88 88	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		, 72 72
4.76 5.00 4.35 4.55	3.23 2.86 3.70	1,41 ,07 2,78 4,00	2,86
83 83 93 93	2 0 2 12 12 12 12 40 40	8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.08
4,000 4,35 4,76	30.23	3,85 2,93 2,56 2,94	2,44
8. 8. 5. 8. 8. 8. 8. 8. 8. 8.	0.55 1.49 5.53	. 687 592 56	572
4°00 4°00 4°17 4°00	.3.85 4.76 2.86	2,27 2,27 53 3,53	3.45
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	w 2.2	សិច្ច សិច្ច សិស្សស	.69 7E
3,85 3,03 4,35 4,76	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.57	3,5
20.00 120. 246. 1440.	20,00 120, 240,	20,00 120, 240, 1440,	20,00
508 508 508	498 498 458	498 498 498	667
ESCPE ESCPE ESCPE ESCPE	APRCH APRCH APRCH	APRCH APRCH APRCH APRCH	APRCH APRCH
10.00 10.00 10.00 10.00	0.00	10,00	0000
2450 2450 2460 2460		2470 2470 2470 2470	

STADT AND RIN SPEEDS IN RECIDENCAL

					Ś	TART A	START AND RUN	SPEED	SPEEDS IN RECIPROCAL	ECIPRO	CAL SE	SECONDS				
CPND NO•	DOSE MG/KG	40717	RAT NO.	TIME	TRIAL	1 RUN	TRIAL START	2 RUN	TRIAL START	RUN RUN	TRIAL	4 RUN	TRIAL	RUN.	TRIAL	6 RUN
	00.00) APRCH 499	499	240°	3.23	.70	2.04	.79	2,86	e0 60	1.32	°74.	2,86	27.	3.57	.80
2470	•			20,00	2,27	937	3.70	.50	3,45	67	91.	.61	2,22	in (4,35	6.
2470	00.00	APRCH	564	240	2,78	2,43	2,86	270	200	990	1.82	2 8	2.63	2 1.		36
				7440°	7) • 1	ກ ຮ້	9,00	9	7707	9	2.63	69•	98°7		0,0	*
	000			20,00	2.63	1.064	2.78	1.95	2,86	1675	2.94	1.69	3,13	1079	2,50	7907
	00,0	AVOID	504	240°	2.63	1,56	2.63	1056	2,22	1.75	1.85	2.04	2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1035	2:22	6
470	10.00			20,00	4.35	1061	2.63	1.54	2,50	2,08	2,86	1,82	2,86	1,96	3,45	1.82
2470	10,00	AVOID	504	240.	2.73	1000	3 2 2 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8	1.82	3,70	1001	3.85	1,72	2,03 3,23	1054	N W.N	1039
	00000	AVOID AVOID	480 480 480	20,00 120, 240.	18.00	0 3 8 0 3 8 0 4	.54 1,43 2,22	.90 .75	2,56 1,49 1,85	.77 2.08	2,22	. 88 75 75	2.44 1.85 1.61	ທູ່ນູ້. ລຸດທຸກ ວຸດທຸກ	2 08 2 2 2 2 2 0 6	

MOTIVATION TESTS IN HOODED RATS

or hand since full his believed

and the second s

RUN TRIAL TRIAL 15. .. START RUN START AND RUN SPEEDS IN RECIPROCAL SECONDS RUN TRIAL START 3 RUN TRIAL 2 RUN TRIAL START Š TRIAL START T I ME DOSE MOTIV RAT ŝ MG/KG ONd ŝ

3 0 0 0 0 0 0 0 0	. 58 . 56 1 . 41	1.59	. 98 . 53
1,92 2,33 1,92 1,92	4.55 5.00 3.23	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4.000 4.76 4.17
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1056	1022 051 1043	. 52 . 95 . 87
2.86 2.86 1.69 1.61	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4,000 4,000 2,27	4.76 4.55 3.70
51 66 50	.51 1.32 1.52	1,41	83 51
2.50 1.96 1.59	3.85 2.85 86 86	5.56 5.00 4.76 4.55	4 • 55 4 • 35 4 • 00
.96 .39 .61		1.33	.95 1.00 54
2.78 1.56 1.82 1.41	50.00	4.00 3.85 2.22 4.35	4,35 4,00 3,85
. 55 767 34 34	1.35	1.25 .05 .05 .05 .05	. 54 52
2.63	5.00 3.85 4.17	5.00 5.00 4.76 4.55	3.57 4.17 4.55
. 38 . 38 . 35		1.23 1.43 0.57 0.51	. 58 58 45
2,44 .53 1,64	2,00 2,00 38	4.17 4.76 2.94 4.00	5.00 3.45 3.45
20.00 120. 240. 1440.	20.00 120. 240.	20°00 120° 240° 1440°	20,00 120, 240,
480 480 480	509	509 509 509 509	487
AVCID AVOID AVOID AVOID	- 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ESCPE ESCPE ESCPE	ESCPE ESCPE ESCPE
10,00	000	10.00 10.00 10.00 10.00	0,00
2470 2470 2470 2470		2470 2470 2470 2470	

MOTIVATION TESTS IN HOODED RATS

うして 大大の 大田 のかかない 大田 ののでき

The second secon

					.s	START A	AND RUN	SPEED	SPEEDS IN RECIPROCAL	ECIPRO		SECONDS				
PND NO•	DOSE MG/KG	40110	RAT .	T I ME	TRIAL START	1 RUN	TRIAL START	2 RUN	TRIAL	3 RUN	TRIAL START	RUN N	TRIAL START	FUN.	TRIAL START	6 RUN
2470	10.00	ESCPE ESCPE ESCPE	487 487 487	120° 240° 1440°	3.85 5.00 4.17	55°	4°17 4°35	. 92 . 51 . 95	4°00 4°36 4°35	. 91 . 51 . 65	4.17 3.85 4.17	99.9	4.76 3.57 4.00	0.01	24-1 0000	.96 .53 1.33
	00.00	APRCH APRCH APRCH	456 496 496	20.00 120. 240.	.16 1.47 2,22	, 60° , 09° , 10°	1.96 1.79 1.85	1,00 ,79 ,52	1067 1096 2033	.12 .91	1.85 2.04 2.04	.92 .87	1,82 2,27 1,82	95 98 895	1,82 2,00 2,08	90000
2607 2607 2607 2607	10.00	APRCH APRCH APRCH	496 496 496	20°00 120° 240°	2.08	80° 80° 86°	10.92	.09	. 60 . 10 1. 69	. 90 6.46 6.55	1.72	. 69 . 45 . 07	2°08 4 4 9 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	84. 84.	. 97 3. 89 1. 15	
	00.00	APRCH APRCH APRCH	488 488 488	20°00 120° 240°	2.00 1.82	047 047 025	.21 .38 .07	.36 .68	1.43 2.56 1.72	.36 .78 .44	1.82	, 92 , 03 , 36	1.82	.03 .03	1,022	643 03 03

03 0.0 03

5.5.5

90.0

.03

.03 440

0.3 2047

.03 440

.03 1 + 4 1 50.00

03

20,00 120° 240°

10.00 APRCH 488

2607 2607

488

10,00 APRCH 10,03 APRCH

48 0.03

MOTIVATION TESTS IN HOODED RATS

was in the control of the control of

では、日本のでは、日

	TRIALS
OCAL SECONDS	TRIAL 4
DS IN RECIPROCAL	TRIAL 3
START AND RUN SPEEDS	TRIAL 2
START	TRIAL 1
	TIME
	OSE MOTIV RAT

					,	ć	No.	1	SINK AND HON STEEDS IN RECIPIONE SECONDS	1	ור זרין	CONDO				
CPND NO•	DOSE MG/KG	DOSE MOTIV RAT MG/KG NO.	RAT NO.	TIME	TRIAL	1 RUN	TRIAL START	- 2 FUN	TRIAL START	3 RUN	TRIAL 4 START RUN	4 RUN	TRIAL,5 START RUN	RUN.	TRIAL 6 START RUN	₹ :-
2607		APRCH	488	0.00 APRCH 488 1440.	1.59		°03 •38	• 38	•38 •12	.47	.47 2.33 .43	. 43	2.63	• 64	2.00	0
	0000	AVOID AVOID AVOID	502 502 502	20.00 120. 240.	1.67 .90 1.82	. 553 573	2,33 2,54 2,56	.56 1.00 1.67	2.50 2.08 2.17	53 1,39 56	1.82 2.27 2.94	1,32 53 1,30	2.17 2.63 1.96	.57 1.30 1.33	2.63 2.04 2.50	m 4 0
2607 10.00 AVOID 502 20.00 .15 .004	. 10,00 . 10,00	AVOID	502	20,00	8 6		1,82 1,041	1,41	1,96 ,56	36	2,22	1,41	1,41 1,72	10.45	2.63	ოი

521

2607	10,00	AVOID AVOID AVOID	502 502 502 502	120° 240° 1440°	4 2.5. 3.5. 0.6.	\$ 10 T T	1.654		2°56 2°04 2°00 2°00	. 90 . 52 . 52	2,42 1,69 1,72 1,72	1,41 1,00 1,00 53	2,50 2,50 2,00 2,00	4 4 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2°09 1°96 1°96	55.00 9.00 9.00 9.00 9.00
	000000000000000000000000000000000000000	AVOID AVOID AVOID	503 503 503	20.00 120. 240.	1.89 2.00	. 55 26 88	1.96 2.53 2.50	53	2.44 2.56 2.17	1.32 1.32 .52	2.17 1.67 2.44	.54 1.54	3.23 2.44 3.03	.56 1.45 1.39	8.85 8.47 8.47	1.30
2607 2607 2607 2607	10,00 10,00 10,00	AVOID AVOID AVOID AVOID	503 503 503	20.00 120, 240. 1440.		660 41 62	1.37 1.59 1.59 1.79	1.00 .74 .56	1064 2044 2,04	48 49 00 80 80	1,92 1,67 1,85		1.54 1.61 2.22 1.43	,550 ,530 ,530 ,530	2.94 2.13 2.00 2.00	1.41 .54 .52

1.41 .54 1.32

2100

MOTIVATION TESTS IN HOODED RATS

CTANT AND DIM COFFER IN DECTADOR IS COMP.

										_						
	s RUN		1.35		• 56	• 55	07	22		929	1.30		.97	52	1,43	.55
	TRIAL START		4.35		4,35	4,35	5,28	4 •00		4,078	6,25		4,55	4°00	4.00	4,35
	, s 'RUN		1.52	-	1,43	.85	692	150		1,23	, v		1,00	.54	1.64	929
	TRIAL 5 ' START 'RUN.		3.45 4.76	•	4,35	4 •00	4,35	9°00		5,26	4.76	٠	4.35	5.00	5,00	4.75
SECONDS	4 RUN		1. 5.53 8.67		1,43	• 56	00	.56		. 51	1,27	-	.52	•55	• 59	1,37
	TRIAL START		3.70 5.00	•	5.00	4.35	4.00	4,00		2,00	5.26		4.76	¢.00	2.00	2.00
IN RECIPROCAL	RUN RUN		1.39	3	1,45	,51	° 93	• 52	1	. 51	1.43		.52	66.	. 55	1,33
SINR	TRIAL START	•	4.17	3	3,85	4.35	4°00	3,65		2,00	4.00		5,26	5.26	4°00	5.00
SPEEDS	2 RUN		1072	1	.54	1.00	•51	4		• 26	1,32		.52	•55	1.54	1.45
AND RUN	TRIAL START		4 ° 4 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 °	3	4,00	3,85	2,85	4017		4.76	5,26		4°00	3.70	4.17	5,00
START A	1 RUN		1072		.54	,56	693	1,32		,56	1°28		54	1,39	• 56	,56
S	TRIAL START		5.56	3	3,23	4.00	4°00	4.27		6.05	5.00		3,33	3,33	3,45	4*00
	TIME		120.00	9	20,00	120	240	1440.		20,00	120 c 240	•	20,00	120.	240€	1440.
	RAT NO.		507	S.	507	507	507	507		508	508 508		508	508	508	508
	MOTIV		ESCPE	13 4 P	ESCPE	ESCPE	ESCPE	ESCPE		ESCPE	ESCOE		ESCPE	ESCPE	ESCPE	ESCPE
	DOSE MG/KG	٠			10.00	10.00	10.00	, 0 . 00		0,00	0000		10,00	10.00	10.00	00.01
	PND NO•	ĺ			2607	2607	2607	2607					2607	2807	11.	14.

33

1.83

1,82

MOTIVATION TESTS IN HOODED RATS

THE PARTY OF THE P

Commence of the Commence of th

START AND RUN SPEEDS IN RECIPROCAL SECONDS

CPND NO.	DOSE MG/KG	۷۵۲۱۷	RAT NO.	TIME	TRIAL START	1 RUN	TRIAL START	2 RUN	TR1AL START	3 RUN	TRIAL START	RUN	TRIAL START	RUN.	TRIAL START	6 RUN
	0000	APRCH APRCH	452	120,	2, <u>1</u> , 7 2, 08	6. 8.49 4.49	2,38	.70	. 40	.36	. 55	.62	.37	. 23 35	1.69	.37
2562 2562 2562 2562 2562	(8 m m m	APRCH APRCH APRCH APRCH	452 452 452	20.00 120. 240. 1440.	2.04 2.04 2.24 5.5	999 500 500 500 500 500 500 500 500 500	.34 .23 .06	.34 .28 .45	2.08 2.13 2.29	.39 .70 .81	. 52 . 52 . 09 . 58	. 36 68 70	.61 1.45 2.00	55 55 65 65	2,22 0,91 2,22 55	.70 .68 .78
	0000	APRCH APRCH APRCH	492 492 492	20.00 120. 240.	2.55 2.38 1.3	. 73 .93 .41	1.67	.13 .74	1,35 1,61 0,40	.75 .85	. 25 . 61	8. 8. 8.1	.10 1.61 .60	69° 59°	85.0 9.0 9.0	762
2562 2552 2562 2562 5562	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	APRCH APRCH APRCH APRCH	7 4 4 4 4 4 5 5 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	20,00 120, 240, 1440,	222 200 200 200 200 200 200 200 200 200	. 52 . 51 . 51	1.75 1.96 .40 2.17	.84 .96 .96	10.79 0.39 0.05	. 93 . 95 . 26	26 1085 208 11	525 551 69	.87 1.82 097	. 80 . 91	1061 227 208 093	8 0 0 0 0 8 8 2 4

1,33

.55 3,33 .51 2,63

.97 3.03 .83 2.33

2.56

.93

.43 2.08 .85 2.63

.79 1.67 .76 1.92

2,38

0.00 AVOID 475 20.00 0.00 AVOID 475 120.

					Ś	TART	AND RUN	SPEED	SPEEDS IN RECIPROCAL	ECIPRO	CAL SE	SECONDS		•		
	0055 P	MOTIV	RA :	TIME	TRIAL START	RUN	TRIAL	2 KUN	TRIAL	3 RUN	TRIAL	4 RUN	TRIAL, START	5 RÚN	7RIAL START	8 RUN
	00,0	AV01D 475	475	2400	2.22	083	1.79	.54	2.85	1033	2,85	1,033	2.00	1,30	() () ()	.0 10
ั้นทูญญา		AVOID AVOID AVOID	44.00	20°00 120° 240° 1440°	2 - 4 - 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2000 2000 2000 2000	2,53 2,58 2,78	43.50	2,644	5.00° 5.00°	2.94 2.38 1.82 2.33	 	3,03 2,70 2,22 2,08	1000 1000 1000 1000 1000 1000 1000 100	2,35 2,50 2,50 2,36	m w m 0
	00.00	AVOID AVOID AVOID	501 501 501	20°05 220°2 240°2	2.70 3.03	3000	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 1.54 1.45		1.89	3.455 4.175	1.89 1.69 1.56	2, 50 3, 4, 00 3, 4, 50	1	4c17 2c94 3o45	4 9 9 8 9 9 8 9 9 9
0000	00000000000000000000000000000000000000	AVOID AVOID AVOID ESCPE ESCPE ESCPE	501 501 501 502 505 505	20,00 120, 240, 1440, 240, 240, 120,	2.00 3.03 2.27 2.70 4.76 4.17	1067 1052 1064 1064 1030	3.33 3.885 3.885 4.17 4.17	1.54	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.559	3.33 4.017 4.000 4.000 3.85	10.33 10.64 10.55 10.55 10.55 10.55	2,686 4,000 4,000 2,000 3,000 3,000	11.000000000000000000000000000000000000	44.0044 34.004 004.00 00000	1.82

3,20 ESCPE 505 20,00 4,55 1,32 4,55 1,27 3,85

1,25

,56 4.35 1,27 4,17

.55 3,23

MOTIVATION TESTS IN HOUDED RATS

THE PARTY OF THE P

THE PARTY OF THE P

	RCIN NO.	0 0 0 0 0 0	\$ 10 t.	, mm m ,	.67	.39 1.28 1.55 1.28
	START	0000	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 8 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60°	2°22 4°00 1°82 3°45
٠	RUN.	1 · · 1 Pd	8 0 0 8 0 0 8 0 0	\$ 40 0 to	1,37	3.34 1.033 1.28
	TRIAL	4 6 4 8 8 4 1 10 14	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4646 665 655 655 655 655 655 655 655 655	3,23	2.64 3.03 2.85
SECONDS	RUM S	44. 44. 44.	1,000	1,52	. 56	1,28 1,89
	TRIAL	2.63 4.00 3.57	4.00	4 0 1 1 4 6 0 1 1 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.03	1.41 3.33 3.03 2.78
RECIPROCAL	3 RUN S	1.032 4.032	000 000 000	1,000 1,000 552 555	66•	. 39 . 55 . 55 . 1
N	TRIAL	3,83	444 600 600 600 600	36.57 5.00 4.35 4.35	2,78	1.56 2.08 3.33
SPEEDS	S NO.	1052	1.37 .57	1018 1018 1061 1035	• 56	
AND RUN	START	3.85 5.00 4.00	6.4.4 6.5.5 6.5.5 7.5 7	6 4 4 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 7 6 6 6 6	2.94	1.96 4.00 2.44 3.03
START AN	PUN S	4 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		10,97	1,00	6.00 5.00 7.00 7.00
iō	TRIAL	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.44 4.17 4.17 2.83	3,23	1.47 3.45 4.00 .03
	E ME	120° 240° 1440°	20.00 120. 240.	20,00 120, 240,	0.00	20.00 120. 240. 1440.
	RAT 510 a	5000	455 455 456	4 6 6 4 6 6 4 6 6 4 6 6 4 6 6	498	498 498 498 498
	OTTY RA	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ESCOE ESCOE ESCOE	ESCOE ESCOE ESCOE ESCOE ESCOE	APRCH	APRCH APRCH APRCH APRCH
	DOSE MOTTY MG/XG	0 0 0 0 0 0 0 0 0 0 0 0	00,00	8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00•0	1.000
	GN4.	2882 8582 5882		55.2 55.2 55.2 25.2 25.2	CONTROL	
C	No.					(Year and

MOYEVATION TESTS IN HOGGED RATS

START AND RUN SPEEDS IN RECIPROCAL SECONDS

20 N	\$ 9 *
TRIAL START	64 64 61
2. W	t. 10
TRIAL' START	2.60
	.77
TRIAL 4 START RUN	n)
	ങ ത 2
TRIAL 3 START RUN	1,92
30N	55
TRIAL	.23
RUN	082
TRIAL	2.58
EK17	0.00
	6ó÷
9270	APRCH
DOSE MOTIV RAT	00.00
SND NO.	CONTROL

i:) rent.

3,53

3,13

1 9 4 1 2,22 1,89 1.64

2,44 2,86 3,23

567

3,33

	3.		(C)	8	1.61	1,01	2 - 3	1,39	1.67	,51
	3,13	703	1:0:7	S	2.33	2,63	2,85	3,33	2,50	2,70
	193	. 84	083	0	1.54	1,41	1,52	1,72	1,72	.77
	3,33	2084	2,33	2,86	3.03	3,13	3,13	2,38	2,22	2.44
	85,	. 71	.77	100	1.79	1,37	2	1.52	1.75	. 52
	2020	2.44	4907	1,92	2.08	3,23	3,70	2,86	2,22	2,33
	(i)	690	44.0	∞ 5••	1.52	.51	1,52	1.69	2.04	.77
	1.85	2,88€	63	2,63	2.70	1,79	2,38	2,33	1.85	2.04
	6%0	0.23	07.9	669	750	.67	899	• 54	1.47	660
	*5 * 2	2,53	3	2.73	60 60 60	2,33	2.0%	2.56	1.69	2.27
	20,03	1200	240	70**1	0000	20,00	120	240	1440.	00.00
	667	665	60.5	4.00	504	504	504	504	504	480
	APROH	APRCH	APRCH	APRCH	AVO:D	AVOID	AVOID	AVOID	AVOID	AVOID
	00.2	1,00	05,5	1,00	00.00	1,00	00	2.00	1.00	00.00
, mg	September 1				ChilTRoll					CONTROL
	1			121/29/24	(水海渠)	ZŠ	1	1		\$ 1 h

ACT AND ACT AN

START AND RUN SPEEDS IN RECIPROCAL SECONDS

					ñ	AK	START AND NON OPERUS IM NECTFOCKE SECONS	SPEED	5	1	1	CONS				
	0056 M	A VITCH	RAT	E E	TRIAL	₽.	START	SUN	TRIAL START	3 RUN	TRIAL	RUN 	TRIEL	. NDB	START	RUI LI
	3.30 8.60 8.60	AVOID AVOID AVOID	084 084 087	240° 240° 240°	2,00 1,002 1,002	245	2.00	400	2,00 2,56 2,70	3 3 5	2000	.36 .55 .08	2,22	0000	2,33 2,00 1,64	# 00 CG
	00,00	ESCPE	609	0000	2, 25	553	3.57	មា	4.55	e.	4027	956	4 ° 7 °	5)	8.8	ith
	2 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	50.00 50.00 50.00 50.00	20,00 120, 240, 1440,	200 200 30 30 30	0000 0000 0000 0000	4 6.58 (13 6.58 (13 9.58	0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.00 0.00 0.00 0.00 0.00	63.50 50.00	, 83 4, 35 3, 30 5, 00	សួយ យុ ស្យុយស្	5000 5000 5000 5000 5000 5000 5000 500	4 0 m 4 4 0 0 0 7 0 0	64470 2006 4506 4500	# 3 4 ♠ U. W. CR CP - 1 & U.
ONTROL	00.00	ESCPE	487	00°0	3,13	,52	3.70	•52	4.55	.53	4.76	. 89	5,00	66°	0ວາເ	.51
CONTRACTOR OF	10001	ESCPE ESCPE ESCPE ESCPE	487 487 487 487	20,00 120, 240, 1440,	9 4 4 8 4 9 4 4 9 4 4 9 4 9 4 9 9 9 9 9	.83 .95 .77	3.45 3.03 2.70 4.00		4,35 2,70 2,78 3,45	. 82 . 77 . 98	3.85 3.85 6.67 2.86	47° 47° 65° 78°	4.00 9.85 4.17 9.57	15. SEC.	2.86	

THE PARTY OF THE P

1.54

3,85 3,03

1079

4,35

1,67

4.17

1.82

3,23 3,85

1.72

3,33

1.54

3.03

0.00 AVOID 554 20.00 0.00 AVOID 564 120.

MOTIVATION TESTS IN HOODED RATS

to the second se

A A DESCRIPTION OF THE PROPERTY OF THE PROPERT

					S	START A	AND RUN		SPEEDS IN RECIPROCAL	CIPRO	CAL SEC	SECONDS				
CPND NO•	DOSE MG/KG	DOSE MOTIV F	RAT NO.	TIME	TRIAL START	1 RUN	TRIAL START	2 RUN	TRIAL	3 RUN	TRIAL START	4 RUN	TRIAL START '	, Sun	TRIAL START	6 RUN
	00•0	AVOID	504	240.	3.57	1,54	4.00	1.59	3.70	1.54	3.45	1.67	3.70	1,82	3.45	1.79
2372 2372 2372 2372	10000	AV01D AV01D AV01D AV01D	504 504 504 504	20,00 120, 240, 1440,	2.33 3.23 3.03 2.78	1.19 1.52 1.43 1.49	3.33 1.82 3.70 3.45	1.54 1.82 1.82 1.69	2.78 1.669 3.23 3.57	1.47 2.50 1.89 1.79	2.70 2.50 3.85	1.43 1.82 1.92 1.67	2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1,45 2,13 1,85 1,85	2.50 2.50 2.86 3.85	1.64 1.75 2.17 1.69
	0000	AV01D AV01D AV01D	480 480 480	20.00 120. 240.	3.33 2.17 1.96	6 8 9 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2,33	10.09 10.09	4.35 2.78 2.50	1.04	2.94 2.00 3.33	63.	3,85 2,27 2,78	\$0°5 86°0 86°0	60 CH G 2000 2000 2000 2000 2000 2000	2.10 .83 .83
2372 2372 2372 2372	10.00 10.00 10.00 10.00	AVOID AVOID AVOID	480 480 480 480	20.00 120. 240. 1440.	.54 1.47 1.22 .31	69° 69° 69°	1.00 .52 1.92 2.44	 6 6 6 8 8 5 7 7 7	1,61 • 52 1,56 2,04	.77 .63 .72	2.63 2.17 1.96 1.56	. 63 . 77.	1,82 ,52 2,17 2,63	. 51 . 51 . 79 . 78	2,57 2,22 1,85	60.00 60.00 60.00 60.00
	00.00	ESCPE ESCPE	487 487 487	20.00 120c 240.	5.88 6.67 4.55	1.30 1.00 1.20	6.67 5.56 6.67	1.09 .93 1.18	6.67 7.14 6.67	1.10 1.15 1.09	6.67 5.56 4.55	1.32 1.09 1.28	6.25 5.88 6.25	1,25	6.67 6.67 4.75	1.25 1.18 1.52

AND DIM CORED

	9	SIN
	TRIAL	START
٠	(C)	Š
	TRIAU	START
SONO	4	R. N
SIAKI AND KON SPEEDS IN KELIPKUCAE SELUNDI	TRIAL 1 TRIAL 2 TRIAL 3 TRIAL 4 TRIAL 5 TRIAL 6	START
1. L.	9	S
27 L	TRIAL	START
37 בב	2	R.S
NOR ON	TRIAL	START
¥	_	NI N
n	TRIAL	START
	TIME	
	V RAT	NO.
	DOSE MOTIV RAT	MG/KG
	CPND	• ON

6 RUN	3000
TRIAL START	3.40 4.35 5.83 5.00
5 R∪Ñ	. 93 1.683 1.19
TRIAL START	4.17 3.23 4.76 6.25
RUN	.81 .88 1,15 1,49
TRIAL START	3.85 3.33 6.67 4.17
3 RUN	.85 .86 1.11 1.10
TRIAL	2.78 4.00 6.25 6.67
2 RUN	. 74 1. 19 1. 32
TRIAL START	3.45 6.65 6.25
1 RUN	.86 .86 .88
TRIAL	3.03 3.70 5.56 6.67
TIME	20,00 120, 240, 1440,
NO.	487 487 487
MOTIV	ESCPE ESCPE ESCPE ESCPE
DOSE MG/KG	10.00 10.00 10.00
ο•	2372 2372 2372 2372

1.49 3.13 3.13	3,33	3.45	3,85	4°00
1,82 1,20 1,25	1,25	• 54	1,32	1,30
1.92 4.17 3.45	3.45	3.85	4.76	2.70
1,64 1,32 1,23	•52	• 53	1.10	1,19
5,88 4,17 5,00	3,70	1.89	5,00	4017
1,32	•52	•52	1.43	1.27
. 94 2. 94 3. 45	2.94	3.45	5.56	2044
1064	.87	• 54	1,27	1014
4 . 35 3 . 23 3 . 23	2.86	2,94	2,50	2.27
20,00 120, 240,	20,00	120	240°	1440.
509 509 509	509	509	509	509
ESCPE ESCPE ESCPE	ESCPE	ESCPE	ESCPE	ESCPE
0000	10,00	10,00	10,00	10.00
	2372	2372	2372	2372

1,943

1.27

2,04 2,55 5,25

2,08 1,10

1.27 .52 1.37

3.85

.52 .55 .05 .45

.17 .75

. 4. 83

1,28

640

. 1

.07

6

>. (S)

. 78

.16 .36 .50 ,03 .62 1,35 ,54 1,92 17. 9.89 68. 1,67 1,82 .87 990 .12 .13 APRCH 497 20.00 APRCH 497 240 3420 APRCH 497 20400 00.00 635 January

MOTIVATION TESTS IN HOODED RATS

A CONTRACTOR OF THE PROPERTY O

	6 RUN	800
	TRIAL START	.27 1.75 1.56
•	is.	89 98 98
	TRIAL 15. START RUN S	1.41 .85 1.79
CONDS	4 RUN	. 81 . 89 . 93
SPEEDS IN RECIPROCAL SECONDS	TRIAL START	1.33 .55 1.54
ECIPRO	3 RUN	. 28 . 89
SINR	TRIAL START	.03 1.61 1.79
SPEED	2 RUN	1.00 .79 .80
AND RUN	TRIAL START	1.96 1.67 1.47
START #	I RUN	.63 .81 .82
S	TRIAL START	1.54
	TIME	120. 240. 1440.
	DOSE MOTIV RAT MG/KG NO•	3.20 APRCH 497 3.20 APRCH 497 3.20 APRCH 497
	O.O.	2636 2636 2636

ZPND

93

51 95

20.17

99

2.50

. 51

2,33 1.54

.89 .91

2,44 2,08

•72

• 07 2,17

,59 ,34

2,33 1.96

20,00 240

964

.50 .52 53

1,092 2,53 1,15 1,89

4 6 6 6

,04 1,67 1,79 0,21

93 78 52 52

2.04 2.38 1.79 2.22

2.17 1.92 1.61 2.33

.51 .91 .87

2.27 .1.82 .54 2.27

64 92 79

2.08 2.22 1.96 2.17

20,00 120, 240, 1440,

496 496 496 496

260 89 43 51 1,30 .55

2,33

55

1,55 57

93

1,43

50

1,69

.45

2.08

932 040

1.67

20,00 240

415

AVOID

475

AVOID

1.43 1.54

3,33 2032

1,32 1,23 1,22 ,98

2,17 2,04 2,00 2,17

.52 .52 .51

2.50 2.22 2.22 1.54

.54 .54 .78

2.56 1.56 2.22

2.86 1.82 1.67 1.92

900

2,86 2,04 2,27 2,50

20.00 120. 240. 1440.

475 475 475

AVOID AVOID AVOID

AVOID

3,20 3,20 3,20

2636 2636 2636 2636 2635

000 .95 47.

,一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们也会一个时间,我们也是一个时间,我们 第一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们

	6 RUN
	TRIAL START
-	5 RUN
	TRIAL, 5 START RU
SECONDS	4 RUN
RECIPROCAL SE	TRIAL 4 START RUN
CIPR	3 RUN
S IN RE	TRIAL 3 START RUN
SPEE	2 RUN
START AND RUN SPEEDS IN F	TRIAL 2 START RUN
TART	I RUN
S	TRIAL 1 START RU
	TIME
	OSE MOTIV RAT
	CPND NO•

	Property Co.		Average .
1.39	1.89 1.96 1.43 1.49	1.25	40.00
3,23	1.67 3.33 2.78 2.50	3.85	3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1,49	1.67	. 92	1,30 48,51 83
3,33 2,56	2.70 4.00 1.85 1.30	5.00	2.85 4.00 3.23 3.33
1,35 1,39	.99 1.52 1.79	. 53	. 53 . 99 . 92 . 54
2,86	2.83 2.63 2.38	4.55 3.33	3.57 3.83 2.85 2.50
1,25	1.45	1,00	1.30
3,45 3,03	3.13 1.43 3.13	3,23 3,13	2.78 3.03 2.86 3.85
1,41	.53 1.61 1.30 1.28	.95	1.93 1.33 .56
3.70	2.56 38 2.78 1.92	3.0 4.5 4.5	4.00 3.33 2.945
1,33	1.67 1.82 1.64	1,19	1,554 524 63
3,33	3.33 2.85 1.67 2.04	4.00 3.03	2.085 3.22 3.33
20.00	20,00 120, 240, 1440,	20,00	20,00 120, 240, 1440,
501	501 501 501 501	505 505	505 505 505 505
AVOID AVOID	AVOID AVOID AVOID AVOID	ESCPE ESCPE	ESCPE ESCPE ESCPE ESCPE
000	9 20 9 20 9 20 9 20	00.00	3.20 3.20 3.20 3.20
	2636 2536 2636 2636 2636		2636 2636 2636 2636 2636

.51

4.00

4.35

•97 3.85 1.00 5.26

.96 3.85

0.00 ESCPE 456 20.00 4.55

MOTIVATION TESTS IN HOODED RATS

Action for the Property and Section

					ST	START A	AND RUN	SPEEDS	z	RECIPROCAL	CAL SE	CONDS				
CPND NO.	DOSE MG/KG	MOTIV	RAT NO.	TIME	TRIAL START	I RUN	TRIAL START	2 RUN	TRIAL	3 RUN	TRIAL START	4 RUN	TRIAL, START	, 5 RUN	TRIAL START	6 RUN
2649	1000	AVOID AVOID	503 503	120. 240. 1440.	1.35	. 67 . 41 . 48	1.52 2.86 1.92	1.00 .95 .78	1.59 3.33 2.22	. 93 93 93	2.17 2.56 1.43	1.09	1.75 2.78 1.67	.54 1.19 1.64	2,22 3,13 2,38	.53 1.33 1.25
	0000	ESCPE ESCPE ESCPE	507 507 507	20.00 120. 240.	3.57 3.13 4.76	.51 .87 1.23	3.23 4.17 4.55	1.00 .74 .88	3.33 4.76 4.17	.54 .95 1.14	3.70 4.00 5.00	.52 1.32 .98	3.70 3.70 4.76	1.18 .94 1.14	4.55 3.57 4.17	.91 .53
2649 2649 2649 2649	1,000 1,000 1,000	ESCPE ESCPE ESCPE	507 507 507 507	20.00 120. 240. 1440.	3.33 2.78 4.00 6.25	. 51 1,32 1,39	3,57 5,26 6,25	.51 1.00 .95 1.49	4.00 3.57 6.25 6.25	.53 1.37 1.45	3.70 4.55 5.00 6.67	.98 .50 1.10 1.39	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.51 .55 .74 1,33	3.45 5.85 6.25 6.25	.53 .98 1.28
2649 2649 2649 2649	000000000000000000000000000000000000000	ESCPE ESCPE ESCPE	508 508 508 508 508	20.00 120. 240. 240. 120. 240. 1440.	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.39 1.54 1.67 1.67 1.641 1.41	44 2 2 2 3 3 2 2 4 4 4 4 4 4 4 4 4 4 4 4	110000 10000 10000 10000 10000 10000 10000	4444 • • • • • • • • • • • • • • • • • • •	10.41 10.56 10.56 0.56 10.49	5.26 5.26 6.67 5.00 5.00		444444 60044 60044 60044 60044	1111 1000 1000 1100 1100 1100 1100 110	7445.00 7445.00 7400.00 7400.00 7400.00	10.33 10.33 10.33 10.33 10.33 10.33

THE CALL THE PARTY OF

MOTIVATION TESTS IN HOODED RATS

CONSTITUTES AND PROPERTY OF THE PROPERTY OF THE STATE OF THE

AND A SHEET STORES AND SOCIAL PARTIES.

START AND RUN SPEEDS IN RECIPROCAL SECONDS

CPND NO•

					n	AKI A	AND AND	7			1			٠		
	DOSE N MG/KG	MOTIV F	RAT NO.	TIME	TRIAL START	1 RUN	TRIAL START	2 RUN	TRIAL	3 RUN	TRIAL START	RUN	TRIAL, START	RÜN N	TR1AL START	6 RUN
649	.1.00	APRCH	498	20,00	3,13	.51	3,85	.53	2.86	. 52	3.70	53	3.70	.67	2,44	533
649 649 649	0000	APRCH APRCH APRCH	498 498 498	240. 240. 1440.	2,50	1.25	61	1.22	5.00	1,30	4.76	1.27	4.55	1.30	1,92	1,32
200	0.00			20,00	1.33	883	1.69	47.	2.08	1,39	1.89	1.27	2.00	.53 1,45	2,04	1.33
	000	AVOID AVOID	505 502	240	1.64	1,45	2,33	. 52	1,72	. 93	2,13	,52	2,38	1,20	1,52	1.39
-	-			•	5.4	,51	2.13	.57	2,13	1,27		1,52	2.56	1,43	2,08	1.79
6497	1.00	AVOID	502	120.	2,44	1,30	2.50	1.41	2.63	1,59	3.45	1.52	3,33	1,85	1,96	1.79
649	1.00				09.	1.14	2.56	1,23	2.86	1.49		1.04	0.0	1001	1 1	•
	00.00	AVOID	503	20.00 120.	2.08	383	1.27	1.79	2.50	1,33	2,38	1,61	2,57	1,550	1.89	1.33
Ó	00.00					°74	1,82	06.		77.1		•				

The same of the sa

START AND RUN SPEEDS IN RECIPROCAL SECONDS

ese:					7		200	מו הי	2		ביים	COMPS				
CPND NO•	DOSE MG/KG	MOTIV F	RAT NO.	T I ME	TRIAL START	I RUN	TRIAL START	2 RUN	TRIAL START	RUN	TRIAL START	RUN	TRIAL, START	RÜN	TRIAL START	6 RUN
	00.0	APRCH APRCH	492	120. 240.	2,22 1,82	. 97	1.43 2.08	.95	1.92	96.	2,13	34.	1,47	96.	1,89	.97
5143	1,00		492	20,00	1.56	,33	1.25	83	8.5	8.8	1,82	.92	1.54	669	.79	. 85
5143	1.00	APRCH APRCH	492	120. 240.	1,92 2,33	83	2.94	,81 1,02	2,56	88° 96°	2.38	1,02	1,09	1,03	2,00 1,23	.92
5143	00.0		492	1440. 120.	2.08 1.82	,70 ,82	2.38	69 83	.93	,93 ,72	2,50	1.00 .96	1,14 2,04	, 8 ¢	1,09	.36
	00.0		466	240°	2,33	67.9	2,27	• 8 4	.87	0.84	2,86	•76	44	9.	2,33	06 · .
5143	1.00		499	20,00	1.75	34,	3,23	89	2,56	.71	2.27	°71	2,44	85,	1,67	.71
5143	1.00	APRCH	499	2400	2,56	627	13		2 . 37	800	42	. 72	1.92	65.5	20°5°	7.3
	000	AVOID AVOID AVOID	504 504 504	20,00 120, 240,	2,13 1,64 2,22	1,82 2,78 2,33	2,27 2,13 2,17	2.50 2.27 2.38	2.33 1.45 1.82	2.08 3.23 2.44	2.86 2.55	2.04 2.50 2.63	2.78 1.25 1.92	2,22 2,17 2,56	2.94	2.04 2.33 2.38

2•13

1.89 2.33 1.89 2.22 2.04 2.38

20.2

1.095 2.44 1.092

1.00 AVOID 504 20.00 2.38

MOTIVATION TESTS IN HOODED RATS

					S	START /	AND RUN	SPEEC	S IN R	ECIPRO	AND RUN SPEEDS IN RECIPROCAL SECONDS	CONDS				
CPND NO•	DOSE MOTIV MG/KG	11V	RAT NO.	TIME	TRIAL START	1 RUN	TRIAL START	2 RUN	TRIAL	3 RUN	TRIAL 4 START RUN	RUN	TRIAL, 5 3 START RUN	. RUN	TRIAL START	6 RUN
5143 5143 5143	000	AVOID AVOID AVOID	504 504 504	120. 240. 1440.	2.13 .73 1.67	1.75 2.04 1.59	1.64 3.23 2.86	2.22 2.50 1.69	1.89 3.03 2.50	1.82 2.63 1.89	2.50 2.22 2.70	1.96 3.13 1.96	2.22 1.79 3.57	2,33 1,96 2,08	1.82 1.16 1.49	2.63

•94

2.33 2.04 2.33

51

1.00

1.69 1.45 3.85 1.32

1.32

1.43

3,33 3,23

1,33 1,27 1,55

5.00 4.00 4.17

1.56

2.44 3.33 1.32

1,25

3,23 4,17 3,33

1.43

4.00 4.17 3.03

1,43 1,41 1,59

3.45 2.38 1.56

20.00 120. 240.

509 509 509

ESCPE ESCPE ESCPE

0000

1.79

2,04

1.549

2,86

1,67

2,33

1,45

4.76

1,41 55

4.35

1,43

2,50

20,00

120

509

ESCPE ESCPE

1.000

5143

5143

without an included in the factor was included to the second of the second included the second second in the second secon

And the same of the last of th

						10 at 6
		6 RUN	1.37	.90 1.14 .95	1.086.	. 84
		TRIAL START	2°78 3°33	4.76 4.00 3.85	5.00 6.00 6.03 7.00 8.00 9.00	3.57
	•		1,41	. 93 1,30	1,16 03 03	1.03
		TRIAL'5. START RUN	3.85	4.00 4.00 4.00	4.00 3.03 6.67	1.45
	CONDS	RUN .	1.47	.51 .50 1,16	.51 .69 1.27 .82	.91 .94 1.06
2	CAL SE	TRIAL START	3.13	4.00	4 6 4 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	2.86 3.23 4.55
HOODED	ECIPRO	3 RUN	1.54	. 98 53 52	.51 .89 1.09 .03	.84 .82
2	S IN R	TRIAL START	2.56	4.55 4.00 4.35	3,70 3,03 5,56	3.03 .21 3.45
N IES	SPEED	2 RUN	1,35	1.19 .98 .55	.51 .85 1.19 .76*	.92 1.04 .88
AOTIVATION LESIS IN HOUDED RAIS	START AND RUN SPEEDS IN RECIPROCAL SECONDS	TRIAL START	3.13	4.00 3.33 4.76	5.00 3.03 6.67	2.78 3.57 3.70
Q	FART A	1 RUN	1,35	.91 .98	1,00	. 56 . 86 . 67
	'n	TRIAL START	3.23	4.00 3.23 3.57	66.04 86.04 86.04	•26 4•00 1•12
		TIME	240. 1440.	20,00 120, 240,	20.00 120. 240. 1440.	20.00 120. 240.
			509	487 487 487	487 487 487	488 488 488
		OTIV RAT NO•	ESCPE	ESCPE ESCPE ESCPE	ESCPE ESCPE ESCPE	APRCH APRCH APRCH
		DOSE MOTIV	1.00	000	1.000	0000
		CPND NO•	5143	4	5143 5143 5143 5143	
70.40	news.	managaran.	CHO TO ENGLISHED AND	CONTRACTOR OF THE	CONTRACTOR E	THE PROPERTY OF THE PARTY OF TH

16. • 69

.38 3.85 3.57

,81 1,12 ,93

3°45 4°35 4°55

,98 1,11

1.79

.91

4.17 3.33 1.67

1.09

.53 .83 1,09

2.33 1.14

120.

•32 APRCH 488 2 •32 APRCH 488 •32 APRCH 488

598 598

APRCH 488 20,00

4.00 2.86

MOTIVATION TESTS IN HOODED RATS

Commence Control of the Control of t

					'n	START	ND KUN	SPEE	AND KUN SPEEDS IN RECIPROCAL SECONDS	ECIPRO	CAL SE	CONDS				
CPND NO•	DOSE 1 MG/KG	40TIV	RAT NO.	TIME	TRIAL STARI	1 RUN	TRIAL START	2 RUN	TRIAL START	3 RUN	TRIAL START	RUN		TRIAL	TRIAL 5 3 START 'RUN	TRIAL 5 TRIAL START RUN START
2598	• 32	2 APRCH	488	1440.	3,23	. 79	4.17	• 85	1,05	8.	3,85	06•		3,85	3,85 ,91	
	0000	APRCH APRCH APRCH	496 496 469	20.00 120. 240.	1.82	.99 .82 1,00	1.32 1.18 1.35	1.22	1.56 .18	1.03 .75 1.18	.43 .77 1.39	.85 1.06 1.25		1.10	1.10 1.11 1.47 1.20 1.01 1.05	
2598 2598 2598 2598	9998	APRCH APRCH APRCH	496 496 496 496	20.00 120° 240° 1440.	1.23 1.61 1.55 1.85	0.89 0.97 1.08	1,25 1,72 1,18 .2,04	1,20	1,43 1,82 1,64	1,09 1,18 1,22 1,19	1.30 1.72 1.49 1.49	1,16 1,19 1,19 1,23		2,5 2,5 2,5 2,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8	1,45 1,19 1,52 1,30 1,25 ,98	
	000	AVOID AVOID AVOID	475 475 475	20,00 120. 240.	1.06 2.22 1.75	. 79 . 58 . 99	2.22 1.09 .92	1.23	1.04	1.01 .93 1.37	2.13 1.28 2.70	1,33 1,12 1,54	- 14	.88 1.28 2.33	.88 1.92 .28 1.43	
2598 2598 2598 2598	9888	AVOID AVOID AVOID	475 475 475 475	20.00 120. 240. 1440.	2.22 2.22 2.38 2.38	1,04 1,08 1,58	2.00 1.85 1.67	1,06 1,06 1,11	2,22 1,96 1,85 1,82	1.15 1.04 1,22 ,75	1.82 2.27 2.94 2.00	1,19	w 0 0 ₩	3,45 2,38 2,58	.45 1.32 .38 1.25 .55 1.43	,

START AND RUN SPEEDS IN RECIPROCAL SECONDS

	TRIAL 6 START RUN	3.45 1.67 4.76 1.54 3.70 1.47	4.55 1.85 2.56 1.39 3.33 1.45 2.70 1.56	4.17 1.20 3.57 1.28 4.35 .71	5,00 1,06 4,35 '81 3,70 1,12 5,26 1,15
		1.67 3 1.69 4 1.67 3	1.67 1.27 2.33 1.43	10.11	1,14. 331 1,08
	TRIAL,5 START RÚN	3.57 2.50 3.13	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.57	4.55 3.57 5.57
	RUN	 1.67 1.43 1.32	1.52 1.45 1.49	1,10	. 94. 11.23
1	TRIAL START	3.85	3.00 × 0.	4.00 3.85 4.35	5.56 4.00 3.33
STAKE AND INON SPEEDS IN NECTTORS	3 RUN	1.47 1.54 1.69	1.61 1.35 1.543 1.54	1,35 1,15 ,98	.87 .46 .97
	TRIAL START.	 3,33 3,23 4,00	3.70 2.56 2.70 2.86	5.88 5.00 4.55	5.88 4.76 4.76
ָ ֡ ֡ ֡	2 RUN	1.61 1.25 1.67	1.52 1.52 1.23 1.30	1.33 1.39 1.39	1,23
ion of	TRIAL START	3.33 3.13 2.70	3.13 2.70 3.03 2.86	5.26 4.00 5.00	3.57
	RUN	1,61 1,54 1,54	1,39 1,39 1,20	1.28	1,20
n	TRIAL START	4.17 2.22 3.45	2.86 2.27 3.13 2.08	5.26 3.70 4.55	
	TIME	20.00 120. 240.	20.00 120. 240. 1440.	20,00 120, 240,	20.00 120. 240.
	RAT NO.	501 501 501	501 501 501 501	505 505 505	505 505 505
	NITO	AVOID AVOID AVOID	AVOID AVOID AVOID AVOID	ESCPE ESCPE ESCPE	ESCPE ESCPE ESCPE
	DOSE MOTIV MG/KG	000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0000	322
		•			

598 598 598

	RUN	1,15	1,28 1,04 1,54
	TRIAL START	1,56 2,56	5.00 4,76 1.56 4.17
	RÜN NÜN	1,04	1,23 1,14 1,06
	TRIAL, START	3,45	5.88 3.23 4.55 4.76
SECONDS	RUN	1,28	1,23 1,25 1,12 1,12
	TRIAL	4,35 5,00	5.00 5.85 5.56 5.00
ECIPRO	3 RUN	1,37	1,15 ,98 1,41 1,27
SPEEDS IN RECIPROCAL	TRIAL START	3.57	5.00. 4.17 4.76 4.55
SPEED	2 RUN	1,33	1.43 1.11 1.23 1.00
AND RUN	TRIAL START	4.76 6.25	99.00 99.00 99.00 99.00
START A	RUN	1.59 1.89	1,28 1,28 1,30
ίγ	TRIAL START	4.55	3,57 2,86 5,56 2,86
	TIME	120.	20,00 120, 240, 1440,
	RAT NO.	466	466 466 466 466
	MOTIV R	ESCPE	ESCPE ESCPE ESCPE ESCPE
	DOSE M MG/KG	00°	328
	н.		# 8 8 8 8 6 6 6 6

CPND NO•

HOURS
e E S
MG/KG
END SEA

KG GM. HOURS
0 361 0.0 NORMAL
0.25 NORMAL

10.0 361 0.0 . 0.25

NORMAL

NORMAL

NORMAL	INCREASED REARING UP SIDES OF CAGE CONTINUALLY NUDGES REWARD DOOR	INCREASED REARING UP SIDES OF CAGE	NORMAL
0.0	0.25	7	4
289			
10.0			
491 M 10.0 289	τ.		

NORMAL

24

RAT NO.

学生,是是一个人,我们就是这个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就会一个人的,我们就是一个人的,我们就是一个人的

The second of the second secon

OBSERVATIONS.		NORMAL	NORMAL	NORMAL	NORMAL	NORMAL		. NORMAL	NORMAL	NORMAL	NORMAL	**
TIME	HOURS	0.0	0.25	2	4	54	•	0.0	0.25	2	4	
¥.	GM.	357						291				
DOSE	MG/KG	10.0						10.0				

NORMAL

491 M

ONS

The same of the same and the same of the s

	;				
NORMAL	#			Ţ ·	
NORMÁL	2				
NORMAL	0.25				
NORMAL	0.0	333	1.6	517 M	
	HOURS	ew GM	MG/KG	AND SEX	
OBSERVATI	TIME	¥.	DOSE	RAT NO.	

NORMAL NORMAL 0.0 371 7.0

NORMAL NORMAL NORMAL 0,25

The Part of the Pa

		-		REWARD DOOR PATTERN			
OBSERVATIONS		•	NORMAL	CONTINUALLY NUDGES REWARD DOOR SLIGHTLY DISRUPTED PATTERN	NORMAL	NORMAL	NORMAL
ŢIME	HOURS		0.0	0.25	7	4	54
¥.	e W		283				
DOSE	MG/KG GM.		10.0				
RAT NO.	AND SEX		491 M	.*	; ·		

NORMAL	4 4			
NORMAL	0.25			
NORMAL	0.0	357	10.0	519 M
-	HOURS	e W	MG/KG	AND SEX
OBSERVATIONS	ŢIME	3 +	DOSE	RAT, NO.

489 M 10.0 418 0.0 NORMAL 0.25 NORMAL

4 NORMAL

NORMAL

ALIEN STATES OF THE STATES OF

OBSERVATIONS		NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	
TIME	HOURS	0.0	0.25	2	4	54	
3 H	GM.	295					
DOSE	MG/KG	3•2					
RAT NO.	AND SEX	525 M					

NORMAL	SLIGHTLY DISRUPTED PATTERN DECREASED LOCOMOTOR ACTIVITY	DECREASED LOCOMOTOR ACTIVITY	NORMAL	NORMAL
0 0	0.25	2	4	, 54
284				
3.2				

SRBA -260.7

AND ASSESSED FOR THE PROPERTY OF THE PARTY O

RAT NO.	DOSE	3	TIME	OBSERVATIONS
AND SEX	MG/KG	€ WS	HOURS	
525 M	10.0	293	0.0	
Ţ.				DECKEASED RESPIRATORY DEPTH INCREASED RESPIRATORY RATE LOW POSTURE
			0.25	INCREASED RESPIRATORY DEPTH IRREGULAR RESPIRATORY DEPTH
3				RESPIRATORY RESPIRATORY
				DECREASED LOCOMOTOR ACTIVITY LOW POSTURE
			7	, DECREASED LOCOMOTOR ACTIVITY
			4	DECREASED LOCOMOTOR ACTIVITY

DECREASED LOCOMOTOR ACTIVITY	2			
DECKEASED LOCUMOION ACIIVIII				
INCREASED RESPIRATORY DEPTH IRREGULAR RESPIRATORY DEPTH IRREGULAR RESPIRATORY RATE DECREASED RESPIRATORY RATE DECREASED RESPIRATORY RATE RECLINES ALONG SIDE OF CAGE	0.25			,
DECREASED RESPIRATORY DEPTH INCREASED RESPIRATORY RATE LOW POSTURE				
DECREASED LOCOMOTOR ACTIVITY DECREASED REARING FREQUENCY	0 • 0	293	10.0	525 M
	HOURS	® ₩9	MG/KG	AND SEX
OBSERVATIONS	TIME	»T»	DOSE	RAT NO.

NORMAL

DECREASED LOCOMOTOR ACTIVITY

A Common and Part of the Common and Common a

	e,	:		HESITATED ON REWARD PEDAL WITH HEAD OUT OF DOOR HEAD SHAKE SKIN FLICK	HESITATED ON REWARD PEDAL WITH HEAD OUT OF DOOR HEAD SHAKE SKIN FLICK		
				J00	100		
				HEAD	HEAD		
			-	H I	H I		
	•		NCREASED RESPIRATORY DEPTH NCREASED RESPIRATORY RATE UBBING NOSE	PEDAL N	PEDAL V		
			PIRATOR PIRATOR	REWARD	REWARD		
S			RES RES OSE	S W	e a x		
/AT10		·E. /	INCREASED RESINCREASED RESING NOSE	SHAK FLIC	SHAK FLIC	7	H
OBSERVATIONS			INCR INCR RUBB	HESITATED (HEAD SHAKE SKIN FLICK	HESITATED HEAD SHAKE SKIN FLICK	NORMAL	NORMAL
0.							•
TIME	HOURS		0.0	0.25	8	4	24
M.	в		364				
DOSE	MG/KG		3.2				
• 0	SEX		528 M				
RAT NO.	AND SEX		52	7 -	, f		
				•			

RAT	• 0N	DOSE	¥T.	ŢIME	OBSERVATION
AND	SEX	MG/KG	GM.	HOURS	

INCREASED RESPIRATORY DEPTH INCREASED RESPIRATORY RATE RUBBING NOSE HOURS 000 ğ. 280

3.2

491 M

HESITATED ON REWARD PEDAL WITH HEAD OUT OF DOOR SKIN FLICK HEAD SHAKE 0.25

SKIN FLICK HEAD SHAKE

NORMAL

OBSERVATIONS		DECREÁSED LOCONOTOR ACTIVITY DECREASED REARING FREQUENCY DECREASED RESPIRATORY PEFTH DECREASED RESPIRATORY RATE	DECREASED LOCOMOTOR ACTIVITY RECLINES ALONG SIDE OF CAGE	AIAXIA DECREASED RESPIRATORY DEPTH DECREASED RESPIRATORY RATE	RECLINES ALONG SIDE OF CAGE
T.IME	HOURS	0.0	0.25		2
»Tw	GM.	323			
DOSE	MG/KG	10.0			
RAT NO.	AND SEX	514 M 10.0	, ~		*

DECREASED LOCOMOTOR ACTIVITY

. NORMAL

AND SEX

	DOSE	MT.	TIME	OBSERVATIONS
	MG/KG	GM.	HOURS	
	10.0	337	0.0	
~				DECREASED RESPIRATORY DEPTI DECREASED RESPIRATORY RATE DECREASED REARING FREQUENC
			0.25	DECREASED LOCOMOTOR ACTIVI RECLINES ALONG SIDE OF CAG
			7	DECREASED LOCOMOTOR ACTIVI RECLINES ALONG SIDE OF CAG
			4	DECREASED LOCOMOTOR ACTIVI RECLINES ALONG SIDE OF CAG
			74	NORMAL

S	PCT	• :		61. 60. 60.	°09	39° 45° 46°	440		
INTERVALS 24 HOUR	T0T			85. 82. 110.	92•	117. 137. 97.	117.		
1NT 24	RWD			26° 24° 33°	28.	20. 31. 21.	24.		
INUTE	PCT	63. 65.	• 49	63. 62. 61.	62.	47. 48. 49.	48. 24.	58. 55.	58.
IVE M	101	86. 93. 96.	92.	89. 87. 90.	89.	131. 127. 107.	122.	96. 93. 71.	87.
OR F	RMD	27° 30° 31°	29°	28. 27. 27.	27.	29. 30. 26.	28.	28. 28. 18.	63. 25.
ORS F	PCT	63. 64. 66.	• 49	62. 66. 63.	• 49	48. 51.	48	66. 66. 62.	63.
OF REWARDS RESPONSES AND PER CENT ERRORS FOR FIVE, MINUTE	101	76. 81. 91.	83.	71° 87° 84•	81.	133° 122° 72°	109.	83° 112• 92•	96
CEN	Z Z	24. 26. 30.	27°	22. 28. 26.	25.	32° 31° 16°	26.	37.	30.
D PER	. PCT	64° 64° 67°	65.	25° 19• 31°	25.	42° 50°	*94	48. 58.	53.
S AN	TOT	77. 88. 85.	83°	24° 68° 75°	56.	119° 136° 123•	126.	110. 119. 102.	110.
PONS	S S	24. 29. 28.	27°	50.00	2.	24° 30° 27°	27°	25° 34° 27°	44. 29.
S RES	PCT	61° 66° 66°	65	62. 61. 61.	61.	48° 50° 44°	47.	37. 47. 50.	44.
EWARD	76 DO	72. 80. 89.	80.	74° 89• 93•	85.	120. 107. 66.	. 98	147° 109• 117•	26. 124.
OF R	Z S	22 . 26 . 29 .	26.	23. 27. 29.	26.	29. 25. 13.	22.	24. 25. 29.	26.
œ	RAT	517	MEAN	517	MEAN	518	MEAN	518	MEAN
Z	CPND	0.00MG/KG		1.00MGYKG		10.00MG/KG		0.00MG/KG	

								-	0	1	1 2 00	VE MI	ALT F	INTE	«VALS	
2	MBER	MIMBER OF REWARDS RESPONSES AND PER CENT ERRORS FOR LIVE 24 HOUR 24 HOUR	WARDS	RE5	PONSE	S AND	PER	EN S	EKKO	Š	7 7 7	OUR		24 HOUR	40UR	ļ
PND	RAT	PR	PRE DOSE	PCT PCT	RWD WD	15 MIN RWD TOT	PCT.	RWD 101	101	PCT	RWD TOT	101	PCT	RWD	101	P.C.
	2	Z A	5						ò		17.	77.			. 91	460
27.5	518	20.	• 46	46.		88	53.	10.	77.	51.	::	53.	43.	23°	93. 149.	40.
10,00MG/KG		22.	85.	52°	23,	84°	50°	23.	93.		20.	83.			454	•
		• 6 7	10	400		91.	52.	21.	85°	49. 16.	16.	71.	46.	20.	87.	48°
	MEAN	• 7 7	• 1							:	ì	,	43.			
	517	26.	88	60 °		88	• 09	27.	868	610	27.	9 20	09			
O DOMG/KG	;	29.	97.	°09	27.	82.	65.	25.	7.0	64	34.	011	63.			
		30	98	61.		0		ï					•			
		Ċ	96	• 09	260	84.	61.	27.	87.	62.	29.	96	• 29			
	MEAN	007									ì	6	1 4	26.	•06	09
	617	27	92.	59.		95°	26		93•	59.		2 0	58	28.	92.	63°
413		28.	94.	61.	31,	66	63	20.	00	58.5	18	83.	51.	20°	71.	2 ₆ °
74 ADMOD® T		21.	74.	57.		850	940		-	,						,
	4		87.	59.	28°	92.	•09	23.	79.	26.	19.	72.	57.	25°	84•	°
	Z U E) 			Ċ			106.	51.		114.	54.			
Market Barren	516		154.			80.	629	17,	75°	45	28.	110	52			
0.03MG/KG	•	30.	13/	52.	16.	50°	64.		95.	50		103	å			
	,		777	46.	20°	67.	63.	22	91.		28.	49. 28. 109.	53			
	MEAN	95.	*													

ond.	NABER NO	R 9	NUMBER OF REWARDS RESPONSES AND PER CENT ERRORS FOR FIYE MINUTE INTERVALS RAT PRE DOSE 15 MIN 2 HOUR PCT RAD TOT PCT PCT PCT PCT PCT PCT PCT PCT PCT PC	s RES	PONS 15 RWD	ES ANI MIN TOT	PCT	CEN RWD	T ERRC HOUR TOT	RS FI	RWD 4	1VE MI 10UR 10T	NUTE	INTE 24 RWD	HOUR TOT	PCT
2460 10.00MG/KG	516	34. 38.	165. 162. 155.	42 48 54	17. 27. 28.	74. 100. 93.	46. 19. 56. 33. 1 60. 34. 1	19. 33.	80. 125. 121.	49. 11. 53. 30. 55. 25.	111. 30. 25.	60. 109. 92.	37. 55.	34. 41. 36.	124. 55. 139. 159. 116. 62.	55.
	MEAN	38.	38. 161.	48. 24.	24.	89.	54.	29.	109.	52. 22.	22.	87.	•64	37.	126.	. 69
O.OOMG/KG	518	19. 25. 29.	87. 110. 124.	44. 50. 48.	23. 30.	102. 128. 124.	46. 48. 48.	16. 30. 25.	76. 126. 102.	47. 27. 51. 28. 51. 27.	27. 28. 27.	110. 101. 106.	49. 55. 51.			
	MEAN	24.	107.	47.	47. 28.	118.	47.	47. 24.	101.	20.	27.	50. 27. 106.	52.			
70.00MG/KG			73. 110. 81.	64. 60. 62.	21. 26. 25.	75. 85.	57. 61. 68.	25. 13. 18.	90° 67° 70°	59.: 20. 49.:27. 56.: 18.	20. 27. 18.	69. 86. 52.	59. 64. 67.	18. 13. 17.	66. 42. 55.	58. 62. 64.
	MEAN	26.	88	62.	24.	78.	62.	19.	76.	55, 22,	22.	•69	• 49	16.	54.	61.
0.00MG/KG	525	26. 33.	88. 100. 106.	65. 67. 66.	28. 30. 31.	999.		64. 31. 66. 33. 66. 35.	94. 100. 107.	6631. 65.34. 65.30.	31. 34. 30.	98. 105. 91.	65. 65.			
	MEAN	31.	98•		66. 30.	93.		33.	65. 33. 100.	6 2•	32.	65, 32, 98,	65.			

SEQUENTIAL RESPONSE TEST IN HOODED RATS

			,					-									
CPND	NUMBER RAT NO	OF R	OF REMANDS RESPONSES AND PER CENT ERRORS FOR FIVE MINUTE 2 HOUR RWD TOT PCT RWD TOT PCT RWD TOT PCT RWD TOT PCT	S RES SE PCT	PONSE 15 RWD	S AND MIN TOT	PCT PCT	RWD H	ERRO OUR TOT	RS F	OR FI	ve MI OUR 101	PCT	24 RWD	INTERVALS 24 HOUR RWD TOT P	PCT .	
2562 3.20MG/KG	525	32. 32. 27.	96. 98. 86.	67. 66.	25° 28° 28°	80. 85. 81.	64. 66.	29. 27. 16.	89. 82. 50.	66.127. 66.31. 64.25.	27. 31. 25.	87. 93. 84.	64. 67. 64.	28. 23. 27.	85. 72. 82.	649 649 699	
	MEAN	30.	93.	•99	27.	82.	•99	24.	14°	65. 28.	28.	88.	65.	26.	80.	, 65°	
O. DOMG/KG	525	33. 32. 23.	100. 105. 80.	66. 64. 61.	19. 25. 21.	74. 84. 72.	64. 65. 61.	24.	75° 74° 69°	65. 19. 62. 16. 59. 10.	19. 16.	62. 51. 31.	63. 63.				
	MEAN	29.	95.	64.	25°	.77	63.	22.	730	62. 15.	15.	48.	. 49	1			
70.00MG/KG	525	26. 27. 35.	87. 84. 107.	61. 64. 65.	2° 0° 0°	11. 0.* 0.*	36.	111.	39. 44. 50.	56. 64. 66.	22. 18. 7.	72. 58. 21.	61. 66. 67.	26. 25. 27.	79. 79. 84.	66° 63° 64°	
	MEAN	29.	93.	64.	ı,	*•9		14.	44.	62.	16.	50.	• 49	26.	81.	• +9	
0.00MG/KG	514	36. 26.	167. 152. 77.	43. 47. 51.	31° 27° 16°	108。 93。 60。	59. 62. 55.	15. 17. 29.	55° 57° 92°	55. 60. 64.	30. 1 25. 26.	100. 84. 86.	61. 61. 60.				

MEAN 31. 132. 47. 25. 87. 59. 20. 68. 59. 27. 90. 61.

NUMBER OF REWARDS RESPONSES AND PER CENT ERRORS FOR FIVE MINUTE INTERVALS 24 HOUR RWD TOT PCT 4 HOUR RWD TOT 61. 26. 59. 29. PCT 2 HOUR RWD TOT 27. 0. 12. 15 MIN RWD TOT PCT RWD TOT, PCT PRE DOSE RAT 2

40, 133,

59.

*06

64. 59. 22. 171. 55, 24, 147.

20. 65. 60. 19.

•09

37. 128. 41. 137. 41. 135.

514

2759 10.00MG/KG

CPND

CATS	
P	
EXAMINATION	
NEUROLOGICAL	
AND	
PHYSICAL	

PEG-300 100% (I-V)

OBSERVATIONS

TIME

CAT NO. AND SEX

HOURS 0.0

MG/KG DOSE

2.50 . 8

44 F

HEART RATE 150 BEATS/MINUTE

RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.4

QUIET

BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL

NEUROLOGICAL TESTS NORMAL NOSE COOL AND MOIST

PRE-DOSE (SAME DAY)

HEART RATE 132 BEATS/MINUTE

RESPIRATIONS PER MINUTE

BODY TEMPERATURE C 38.7

NOSE WARM AND MOIST

NOSE REDDISH

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

RESPIRATIONS PER MINUTE 36

BODY TEMPERATURE C 38.6

NOSE WARM AND MOIST NOSE NORMAL PINK

HEART RATE 138 BEATS/MINUTE

0.0

HEART RATE 132 BEATS/MINUTE

RESPIRATIONS PER MINUTE NOSE WARM AND MOIST

-A! AND NEUROLOGICAL EXAMINATION OF CATS

PHYSICAL AND NEUROLOGICAL EXAMINATION OF CATS	PEG-300 100% (I-V)	OBSERVATIONS		HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 48 ROINY TEMBERATURE C 38.5	NOSE WARM AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 96 BEATS/MINUTE RESPIRATIONS PER MINUTE 84 BODY TEMPERATURE C 30-3 NO SE WARM AND MOIST NO SE WARM AND MOIST NO SE WARMS AND MOIST IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 140 BEATS/MINUTE RESIGNATIONS PER MINUTE 60 RESIGNATIONS (A MINUTE 60 RESIGNATIONS (A MINUTE 60) RESIGNATIONS (A MINUTE 60)	NOSE COOL AND MOIST BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL
PHY51CA		TIME	HOURS	2.0		0 • 4	23.6	٠
		TM	KG•	2.50				
		DOSE	MG/KG		٠	.		•
	Ö	CAT NO.	AND SEX	44 F		· · ,	a .	•

PHYSICAL AND NEUROLOGICAL EXAMINATION OF CATS

1356 (1-1)

		1 ION - NORMAL			JEUROLOGICAL CC		2) 14 31 30 100 131
		CONDIT			L AND P		4
	,	OTE 60 RANCE, AND		11 E 60	N PHYSICAL	JTE 72	
OBSERVATIONS	· sum (HEART RATE 168 BEATS/MINUTE RESPIRATIONS PER MINUTE 60 BODY TEMPERATURE C 39.2 NO DIARRHA HA BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL	NEUROLOGICAL TESTS NORMAL LEAN PRE-DOSE (SAME DAY)	HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 60 BODY TEMPERATURE C 39.2	TAIL LASH NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CC	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 72	HOCY TEMPERATURE C 3839 TAIL LASH
TIME	HOURS	0.0		0 • 2		9°0	
wT.	KG.	3.43					
DOSE	MG/KG	5.6					٠
CAT NO.	AND SEX	32 W					

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 156, BEATS/MINUTE
RESPIRATIONS PER MINUTE 66
BODY TEMPERATURE C 39.7
S.IGHT DIARRHEA WITH CLEAR MUCUS
SKIN TWITCHING ON FLANKS TAIL LASH

NO CTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

1,8

ONDITION

SOLUTION - DISTILLED WATER

PHYSICAL AND NEUROLOGICAL EXAMINATION OF CATS

1356 (1-V)

CAT NO. DOSE WT. TIME AND SEX MG/KG KG. HOURS

OBSERVATIONS

HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE 96 BODY TEMPERATURE C 38.6

209

5.6

32 M

SKIN TWITCHING ON FLANKS NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION TAIL LASH

HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE 66 BODY TEMPERATURE C 38.7

5,2

TAIL LASH

NO SKIN TWITCH NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 156 BEATS/MINUTE

RESPIRATIONS PER MINUTE

22,0

BODY TENPERATURE C 37.7 NO SKIN TWITCH BEHAVIOR, GEFRAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL

SOLUTION - DISTILLED WATER

CAT

				~
		CONDI		AND
-		AND		SICAL
	MINUTE JTE 66	PEARANCE, IORMAL	MINUTE ITE 66 1,2	ED IN PHY
-(mpeople m	BEATS/ ER MINU RE C 36 MOIST	ERAL AF TESTS N E DAY!	BEATS/ ER MINU RE C 38	DRY GES NOT
OBSERVATIONS	HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE 66 BODY TEMPERATURE C 38.7 NOSE COOL AND MOIST	CALM ALERT BEHNYIDR, GENERAL APPEARANCE, AND CONDIT NEUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)	HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 66 BODY TEMPERATURE C 38.2	NOSE WARM AND DRY NO OTHER CHANGES NOTED IN PHYSICAL AND N
TIME HOURS	. 0.0		0.2	
WT.	1.87			
DOSE MG/KG	5.0	Ţ.	i de	3
No.	7		,	*

TION - NORMAL

NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 48
BODY TEMPERATURE 08%
ROSE COOL AND MILST
ROSE THE CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION DEFECATION RIGHT AFTER TEMPERATURE TAKEN DEFECATION WITH CLEAR MUCUS HEART RATE 150 BEATS/MINUTE HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUÍE BCDY TEMPERATURE C 36.5 REDUCED ANAL TENSION

1, 8

0° 3

SUSPENSION - METHYLCELLULOSE 0.5%

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

PHYSICAL AND NEUROLOGICAL EXAMINATION OF CATS

2367 (1-V)

OBSERVATIONS HOUNS TIK. • 8 MG/KG DOSE AND SEX CAT NO.

HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.8

ູ

5,0

NOSE COOL AND MOIST REDUCED ANAL TENSION NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

REDUCED ANAL TENSION NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 48 BODY TEMPERATURE C 38.5 HEART RATE 144 BEATS/MINUTE NOSE WARM AND MOIST

HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.2 NOSE COOL AND MOIST

BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL SUSPENSION - METHYLCELLUCOSE

ANAL TENSION BETTER

PAGE

PHYSICAL AND NEUROLOGICAL EXAMINATION OF CATS

					7	7
			٠.		٠	NOSE WATER THANGOBLABIA NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
			, ė)	CALM NEUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)		OGICAL O
				- NOIT		NEUROL
				CONDI		L AND
				e AND		łys I CA
			NUTE 48	ARANCE	NUTE 78	IN P
			ATS/MI MINUTE C 38.4	L APPE TS NOR AY)	ATS/MI MINUTE C 38.3	IA NOTED
S	1000	with	108 BE S PER ATURE AND MO	GENERA AL TES SAME D	138 BE S PER ATURE	TOPHOB
OBSERVATIONS		•	HEART RATE 108 BEATS/MINUTE RESPIRATIONS PER MINUTE 48 BODY TEMPERATURE C 38.4 NOSE COOL AND MOIST	CALM BEHAVIOR, GENERAL APPEARA NEUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)	HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 78 BODY TEMPERATURE 288,3 MACE WARM AND MOTE TO	SLIGHT PHOTOPHOBIA NO OTHER CHANGES N
OBSER			HEART RESPII BODY NOSE	CALM BEHAY NEUR(PRE-[HEART RESPIG BODY	SCIG NO O
TIME	HOURS		0		0°5	
MT.	, KG		2.81			
DOSE	MG/KG		39 F 10.0 2.81	q	•	£
CAT NO.	AND SEX		39 F	•		
CAT	AND					

SLIGHT PHOTORHOBIA NO OTHER CHAMGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.0 NOSE WARM AND DRY

0.5

SLIGHT PHOTOPHOBIA NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 120 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 37.9 NOSE WARM AND DRY

PHYSICAL AND NEUROLOGIC EXAMINATION OF CATS

CAT NO. DOSE WT. TIME OBSERVATIONS AND SEX MG/KG KG. HOURS

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38,2 NOSE COOL AND MOIST SLIGHT PHOTOPHOBIA

2°0

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.4 NO PHOTOPHOBIA

4.1

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION SUSPENSION - STEROID DILUENT RESPIRATIONS PER MINUTE 36 HEARTBEAT WEAKER

WT. TIME KG. HOURS

DOSE MG/KG

×

OBSERVATIONS

0.0 HEART RATE 96 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 38.1 NOSE COOL AND MOIST QUIET

2,88

11.2

UOTEL GALM BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)

NOSE COOL AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 114 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.7

0,2

TENDEE WARM AND DRY , TENDEE TO LYING (WAS DOSED IN RT. ARM ONLY) NO OTHER CHANGES WORED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 30DY TEMPERATURE C 38.7

9.0

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 126 BEATS/MINUTE NEUROLOGICAL TESTS NORMAL RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.7 NOSE COOL AND MOIST

SUSPENSION - STEROID DILUENT

PAG

PHYSICAL AND NEUROLOGIC . EXAMINATION OF CATS

HEART RATE 156 BEATS/MINUTE OBSERVATIONS TIME : HOURS 5.9 \$ 8 MG/KG DOSE 2.0 AND SEX 32 M CAT NO.

RESPIRATIONS PER MINUTE 72
BODY THERATURE (28.9) PHYSICAL AND NEUROLOGICAL CONDITION
OF HANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 144 BEATS/MINUTE

5.4

RESPIRATIONS PER MINUTE 54
BODY TEMPERATURE 0.8
NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 54 BODY TEMPERATURE C 38.8

21.6

-2531 (I+V)

	CONDITION	CONDITION	CONDITION
~	NEUROLOGICAL	NEUROLOGICAL	NEUROLOGI CAL
	AND	AND	AND
OBSERVATIONS.	HEART RATE 138 BEATS/MINUTE RESPIRATIONS BEATS/MINUTE 40 BODY TEMPERATURE C 38.5 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 120 BEATS/MINUTE RESPIRATIONS PEN NINUTE 36 BODY TEMPERATURE C 38.4 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE 36 BODY TEMPERATISE C 38.2 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
TIME HOURS	2.1	4.0	24.6
WT. TIME KG. HOURS			
DOSE MG/KG	39 F 11•2	-	T :
CAT NO.	39 F		

		NDITION - NORMAL	ND NEUROLOGICAL	ND NEUROLOGICAL	NDITION - NORMAL
OBSERVATIONS	Transaction of Management of M	HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE 72 BODY TEMPERATURE C 38.4 BEHAVIOR, GENERAL APPERRANCE, AND CONDITION - NORMAL PREPLOCOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)	HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 72 BODY TEMPERATURE C 39.0 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 66 BODY TEMPERATURE C 38.9 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL	HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 66 BODY TEMPERATURE C 38-7 BEHAVIOR GENERAL APPERRANCE, AND CONDITION - NORMAL
TIME	HOURS	0 • 0	0.2	0 0	1.0
T.	K6.	3.36			
CAT NO DOSE	MG/KG	64 F 0.28			?
CAT NO.	AND SEX	4			

CONDITION

CONDITION

SOLUTION - HYDROCHLORIC ACID 0.1 N. QS WITH DISTILLED WATER

2598 (1-V)

		EART RATE 132 BEATS/MINUTE ESPIRATIONS PER MINUTE 72 OOY TEMPERATURE C 38.3 BEHADIOS, GENERAL APPEARANCE, AND CONDITION - NORWAL. NEUROLOGICAL, TESTS NORWAL	EART RATE 150 BEATS/MINUTE ESPIRATIONS PER MINUTE 78 ODY TEMPERATURE C 38.9 BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL	EART RATE 138 BEATS/MINUTE ESPIGATIONS PER MINUTE 84 GOOY TENPERATURE C 39.0 BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL	ERRT RATE 162 BEATS/MINUTE E-PITATIONS PER MINUTE 66 1007 TEMPERATURE C 38-7 BEHAVIORO, GENERAL APPEARANCE, AND CONDITION - NORMAL	SOLUTION - HYDROCHLORIC ACID 0.1 N. QS WITH DISTILLED WATER
OBSERVATIONS		HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE 72 BOOY TEMPERATURE C 38.9.8 BEHATIONS, GENERAL APPEARAN NEUROLOGICAL TESTS NORMAL	HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 78 BODY TEMPERATURE C 38.9 BEHAVIOR, GENERAL APPEARAN	HEART RATE 138 BEATS/MINUTE RESPRATIONS PER MINUTE 84 BODY TEMPERATURE C 39.0 BEHAVIOR, GENERAL APPEARAN	HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE 66 BODY TEMPERATURE C 38°7 BEHAVIOR, GENERAL APPEARAN	SOLUTION - HYDROCHLORI
TIME	HOURS	2.1	e 6	4.	21.6	
T.	• ¥	3.36				
DOSE	MG/KG	0.28 3.36	্ব		<i>:</i> .	
CAT NO.	AND SEX	F + F	, ,			

SOLUTION - HYDROCHLORIC ACID 0.1 N. QS WITH DISTILLED WATER

CAT NO.

44 F AND SEX

						CONDITION	CONDITION		- "	CONDI 1 I UN
				TION - NORMAL		NEUROLOGICAL	NEUROLOGI CAL			NEUROLOGI CAL
	-			CONDI		AND	AND			- AND
			7E 48	ANCE, AND	JTE 54	N PHYSICAL	TE 90 N PHYSICAL	90	ETE	N PHYSICAL
2598 (1-V)	OBSERVATIONS		HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 48 BODY TEMPERATURE C 33°.2 NOSE COOL AND MOIST CALM	ACTIVE BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORWAL NEUROLGGICAL TESTS NORWAL PRE-DOSE (SAME DAY)	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 54 BODY TEMPERATURE C 39.2	NOSE WARM AND MOLS! NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 90 BODY TEMPERATURE 38.9 NOSE WARM AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 196 BEATS/MINUTE RESPIRATIONS PER MINUTE 90 BODY TEMPERATURE C 38.5	NOSE WARM AND MOISON PUPILS SLIGHTY DILATED PUPILLARY REFLEX INCOMPLETE SI 16HT PHOIOPHOBIA	NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
	TIME	HOURS	0 2		0.2		0,5	6•0		
	H.	KG.	2.27							
	350C	MG/KG	2 • 8						,	

SLIGHT PHOTOPHOBIA NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 126 BEATS/MINUTE PUPILS SLIGHTLY DILATED PUPILLARY REFLEX NORMAL RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.8 NOSE WARM AND MOIST OBSERVATIONS HOURS 2.1

2.8

8

MG/KG

AND SEX

DOSE

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 38.4 HEART RATE 138 BEATS/MINUTE PUPILS SLIGHTLY DILATED SLIGHT PHOTOPHOBIA NOSE COOL AND MOIST

PUPILLARY REFLEX NORMAL BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL HEART RATE 156 BEATS/MINUTE BODY TEMPERATURE C 38.3 PUPILS SLIGHTLY DILATED RESPIRATIONS PER MINUTE

VEUROLOGICAL TESTS NORMAL

SOLUTION - HYDROCHLORIC ACID 0.1 N. QS WITH DISTILLED WATER

AND SEX MG/KG KG. HOURS AND SEX MG/KG KG. HOURS 32 M 3.6 3.46 0.0 HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE 54 BEHAVIONS REINEAL APPERANCE. AND CONDITION - NORMAL. RESPIRATIONS PER MINUTE 64 BEHAVIONS PER MINUTE 67 BEHAVIONS PER MINUTE 67 RESPIRATIONS PER MINUTE 67 BESPIRATIONS PER MINUTE 67 BESPIRATIONS PER MINUTE 67 BESPIRATIONS PER MINUTE 67 BESPIRATIONS PER MINUTE 68 BESPIRATIONS PER MINUTE 36 BESPIRATIONS PER MINUTE 36 BOOY TEMPERATURE C 38.9 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION SKIN INTICHING ON PARMS 1.0 HEART RATE 152 BEATS/MINUTE BESPIRATIONS PER MINUTE 36 BOOY TEMPERATURE C 38.9 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION SKIN INTICHING ON PERMINUTE 36 BOOY TEMPERATURE C 38.9 DOTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION SKIN THICHING ON PERMINUTE 36 BOOY TEMPERATURE C 38.0 TALL LASH SLIGHTLY TENDE SPENSION - STEROID DILUENT							
M K G T .	 OBSERVATIONS	of Communication (Contraction)	HEART RATE 182 BEATS/MINUTE RESPIRATIONS PER MINUTE 54 BODY TEMPERATURE C 39.0 BEHAVIOR, GENERAL APPERRANCE, AND CONDITION - NORMAL, NEUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)	HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE 60 BODY TEMPERATURE C 39.2 HEARTBEAT SIRONG NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 36 BODY TEMERATURE C 38.9 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION SKIN TWITCHING ON FLANKS	HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE 36 BODY TEMPERATURE C 38.6 TAIL LASHERATURE C 38.6 SLIGHTLY TRYING ON FLANKS SKIN TWITCHING ON FLANKS NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	SUSPENSION - STEROID DILUENT
ın.	1 IME	HOURS	0.0	0.2	0.5	0	
AND SEX MG/KG 32 M 3.6	¥.	, KG	3.46				
AND SEX 32 M	DOSE	MG/KG	9 · 6	q			
	CAT NO.	AND SEX	32 ×		*		

2717 (1-V)

OBSERVATIONS

HOURS

MT.

DOSE MG/KG

CAT NO.

HEART RATE 168 BEATS/MINUTE RESPIRATIONS PER MINUTE 54 BOOY TEMPERATURE C 38.5 TAIL LASH LESS TENSE CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 38.5 NICTITATING MEMBRANE SLIGHTLY RELAXED BEHAVIOR AND APPERARNCE — OTHERWISE ABOUT SAME BEHAVIOR AND APPERARNCE —	HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE 84 BODY TEMPERATURE C 38.68 BEHAVIOR GENERAL APPEARANCE, AND CONDITION - NORMAL BEHAVIOR GENERAL APPEARANCE
2.2	8 •	22.6
3.6 3.46		
	. حب	.
32 M		

	CONDITION	CONDITION	CONDITION	
TION - NORMAL	NEUROLOGICAL	NEUROLOGICAL	NEUROLOGICAL	
ONO	AND	AND	AND	
HEART RATE 190 BEATS/MINUTE RESPIRATIONS PER MINUTE 90 BODY TEMPERATURE C 38.9 NO PHOTOPHOBIA CARLY IEMPERATURE C 18.9 RESTING NORMALLY IN CAGE BEHAVIOR, GENERAL APPERARNCE, AND CONDITION - NORMAL REUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)	HEART RATE 156 BEATS/MINUTE RESPIRATIONS. PER MINUTE 78 BODY TEMPERATURE C 38.9 SLIGHT PHOTOPHORE NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 156 BEATS/MINUTE RESPIRATIONS'PER MINUTE 84 BODY TEMPERATURE C 38.7 S.L.GHT PHOTOPHORIAN NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	RESPIRATIONS PER MINUTE 90 BOOV TEMPERATURE C 38.7 S.IGHT PHYOPHOBLA NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	SUSPENSION - STEROID DILUENT
0	;	٠ د. د.	6.0	
2 • 70	• .		ū	
4				
м.	,			
N.				

OBSERVATIONS

DOSE WT. TIME

CAT NO.

HOURS

AND SEX MG/KG KG.

2778 (1-V)

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 39.0 SLIGHT PHOTOPHOBIA OBSERVATIONS HOURS 2.3 71ME 2.70

> MG/KG 4.5

AND SEX 53 F

DOSE

CAT NO.

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 39.4 SLIGHT PHOTOPHOBIA

۲.

RESPIRATIONS PER MINUTE 84 BODY TEMPERATURE C 39.2 SLIGHT PHOTOPHOBIA SUSPENSION - STEROID DILUENT

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

				•	· AMMOO						
					NOTITIONOL	1011-010					
					AND	2					
(1-1) 1007	OBSERVATIONS	and the second s	HEART RATE 150 BEATS/MINUTE	RESPIRATIONS PER MINUTE 66 BODY TEMPERATURE C 38°3	NOSE COOL AND MOIST REHAVIOR GENERAL AND CONDITION - MORMAN	NEUROLOGICAL TESTS NORMAL	PRE-DOSE (SAME DAY)	HEART RATE 138 BEATS/MINUTE	RESPIRATIONS MER MINUTE 48	BODY TEMPERATURE C 38.4	NOSE WARM AND DRY
	TIME	HOURS	000					0,2			
	MT	KG.	2.0 1.96								
	DOSE	MG/KG	2.0				٠.			·-	
• •	CAT NO.	AND SEX	ر اد 1						•		

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION REDUCED ANAL TENSION NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION NICTITATING MEMBRANE SLIGHTLY RELAXED NICTITATING MEMBRANE SLIGHTLY RELAXED HEART RATE 14% BEATS/MINUTE RESPIRATIONS RER MINUTE BODY TEMPERATURE C 38.3 NOSE WARM AND MOIST REDUCED ANAL TENSION

9,0

NICTITATING MEMBRANE IN NORMAL POSITION HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.3 NOSE COOL AND MOIST

SOLUTION - DISTILLED WATER

2867 (1-V)

OBSERVATIONS	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 72 BODY TEMPERATIVE C 38.2 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE 66 BODY TEMBERATURE 0.38.4 ANAL TENSION BETTER BEHAVIOR AND APPEARANCE - OTHERWISE NORMAL	HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE 50 BODY TEMBERATURE 0.31.8 BODY TEMBERATURE 0.31.8 BODY TEMBERATURE 0.31.8 RUNDLOGICAL TESTS NORMAL SOLUTION - DIŠTILLED WATER
TIME HOURS	ო • ო	4 8 8	21.1
WT.			
DOSE MG/KG	2 • 0		
CAT NO.	75.82 F		Págia.

CAT NO. AND SEX

2897 (1-V)	OBSERVATIONS	HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE (31°9 NOSE COOL AND MOIST	CALM BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESIS NORMAL PRE-DOSE (SAME DAY)	HEART RATE 72 BEATS/MINUTE RESPIRATIONS PER MINUTE 36 BODY TEMPERATURE (38.1 NOSE WARM AND DRY NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 90 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 38.0 NOSE COOL AND DRY NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
	TIME HOURS	0		0.1	0 0
	¥T.	2.75			
	DOSE MG/KG	10.0			

HEART RATE 108 BEAIS/MINUTE
RESPIRATIONS PER MINUTE 48
BODY TEMPERATURE C 38-1 .
NOSE COOL AND MOIST.
NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

1,0

2897 (1-V)	OBSERVATIONS	HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 48 NOSE COOL AND DRY NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 108 BEATS/MINUTE RESPIRATIONS PER MINUTE 32 BOOY TEMPERATURE C 38.6 NOSE COOL AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATIRE C 38.5 BODY TEMPERATIRE C 38.5 MO GHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 380 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
	T I ME HOURS	2.0	4•1	5, 3	22.0
	KG.				
	DOSE MG/KG	10.0		·• .	·
	CAT NO.	39 F		•	

PHYSICAL AND NEUROLOGICAL E".MINATION OF CATS

2935 (1-V)

HEART RATE 162 BEATS/MINUTE **OBSERVATIONS** HOURS TIME **8** MG/KG DOSE 4.5 SEX F.

RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 38.3 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 37.9 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE

20

PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS

2607 (I-M)

ONKEY

OBSERVA I I UNS		THIRD DOSING	SHUTTLED ON LIGHT CUE	RESPIRATIONS PER MINUTE 96 PUPILS NORMAL IN SIZE AND REACTION TO LIGHT	HUTTLED ON LIGHT CUE
	HOURS	3.0 TH	3.2 SF	3.4 RES	Ť
WT. TIME	ew WB				
D05E	MG/KG	14	, :T		
			,		

SUSPENSION - 0.5% METHYL CELLULOSE

SHUTTLED ON LIGHT CUE APPEARANCE AND BEHAVIOR NORMAL

RESPIRATIONS PER MINUTE 102

90

RESPIRATIONS PER MINUTE SHUTTLED ON LIGHT CUE NO CHANGES

5.5

PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS 2607 (I-M)

OBSERVAT 10NS		
TIME.	HOURS	
I	•W9	
DOSE	MG/KG	
HONKEY	NUMBER	

						MONK	
RESPIRATIONS PER MINUTE 90 PRE-DOSE (SAME DAY)	SHUTTLED ON LIGHT CUE APPEARANCE OTHERWISE NORMAL	SECOND DOSING	SHUTTLED ON LIGHT CUE	RESPIRATIONS PER MINUTE 120 NO CHANGES	RESPIRATIONS PER MINUTE 96	WAS RETURNED TO HOME CAGE WITH OTHER MONK! APPEARANCE AND BEHAVIOR NORMAL	SUSPENSION - 0.5% METHYL CELLULOSE
0.0	0.2	1.0	1.1	1.3	2.1		
853							

EYS

SUSPENSION - 0.5% METHYL CELLULOSE

PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS

	-
	(M-I)
	2607
ביין פון פון פון פון פון פון פון פון פון פו	

NONKEY

	*	PER MINUTE 90	PRE-DOSE (SAME DAY) SHUTTLED ON LIGHT CUE	9	LIGHT CUE	RESPIRATIONS PER MINUTE 120 NO CHANGES	RESPIRATIONS PER MINUTE 96 SHUTTLED ON LIGHT CUE	WAS RETURNED TO HOME CAGE WITH OTHER MONKEYS APPEARANCE AND BEHAVIOR NORMAL
OBSERVATIONS		RESPIRATIONS PER MINUTE	SHUTTLED ON LIGHT CUE	SECOND DOSING	SHUTTLED ON LIGHT CUE	RESPIRATIONS F NO CHANGES	RESPIRATIONS PER MINUTE SHUTTLED ON LIGHT CUE	WAS RETURNED APPEARANCE A
TIME.	HOURS	0.0	0.2	1.0	1	1.3	2.1	
¥.	• WD	853						
DOSE	MG/KG		1.0			· .		

PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS

(M-I) 6575

OBSERVATIONS

67

HOURS TIME

MG/KG DOSE

M. ew ew

MONKEY NUMBER

APPEARANCE AND BEHAVIOR NORMAL SHUTTLED ON LIGHT CUE SHUTTLED ON LIGHT CUE 6,3 0.0 773

APPEARANCE AND BEHAVIOR NORMAL APPEARANCE AND BEHAVIOR NORMAL SHUTTLED ON LIGHT CUE

> 1.0 1.5 2.0 2.5

APPEARANCE AND BEHAVIOR NORMAL SHUTTLED ON LIGHT CUE

APPEARANCE AND BEHAVIOR NORMAL SHUTTLED ON LIGHT CUE SHUTTLED ON LIGHT CUE SUSPENSION - 0.5% METHYL CELLULOSE

APPEARANCE AND BEHAVIOR NORMAL

PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS

300

(I-K)

2759

OBSERVATIONS

HOURS g G W MG/KG NUMBER

DOSE

JONKEY

APPEARANCE AND BEHAVIOR NORMAL RESPIRATIONS PER MINUTE .64 HEART RATE 325 BEATS/MINUTE PRE-DOSE (SAME DAY)

0.0

805

0,1 0.5

10.0

INCREASED LOCOMOTOR ACTIVITY HEART RATE 320 BEATS/MINUTE RESPIRATIONS PER MINUTE SHUTTLED ON LIGHT CUE SHUTTLED ON LIGHT CUE SITTING QUIETLY

SHUTTLED ON LIGHT CUE SECOND DOSING

> 2,3 3,3

22,36

PUPILS NORMAL IN SIZE AND REACTION TO LIGHT

9.0 2,0

PUPILS NORMAL IN SIZE AND REACTION TO LIGHT APPEARANCE AND BEHAVIOR NORMAL RESPIRATIONS PER MINUTE 80 IN HOME CAGE

SUSPENSION - 0.5% METHYL CELLULOSE

PAGE

PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS

(N-I)

(I-M)	OBSERVATIONS		RESPIRATIONS PER MINUTE 72 GENERALLY IMPOBILE GRASPING REFLEX WERK RIGHTING REACTION WEAK FIGHTING REACTION WEAK FIGHTING REACTION WEAK FIGHTING REACTION WEAK	ERRATIC LATERAL AND UP-DOWN HEAD MOVEMENTS
	TIME	HOURS	0•1	0.2
	¥.	GM.	840	
	DOSE	MG/KG GM.	1.0	Ţ,

JUMBER IONKEY

ORS ALL OVER

ONE DEEP RESPIRATION ALTERNATING WITH ONE SHALLOW RESPIRATION HAD CRAWLED OUT OF BLANKET WRAPPED ABOUT HIM ON 4 FEET SWAYING UNSTEADILY FROM SIDE TO SIDE DECREASED EQUILIBRIUM RESPONSIVE TO VISUAL STIMULI RESPIRATIONS PER MINUTE TOXIC SIGNS DECREASING GRASPING REFLEX INTACT ON CASUAL OBSERVATION NO RESPONSE TO SOUND EASILY HANDLED 9.0

SPONTANEOUS MOTOR ACTIVITY SLOW AND HALTING RAN TO HOME CAGE TO JOIN OTHER MONKEY APPEARANCE OTHERWISE NORMAL RESPONSIVE TO SOUND

3,5

REDUCED MOTOR ACTIVITY

SOLUTION - 0.9% SALINE

DOMINANCE BEHAVIOR OF SQUIRREL MONKEYS

1		æ	3,3	-			9	0	7	•	0 0	، د	-	A. C. C.	0	1	Ī	1	0	H	7	0	m	0	0	P /	AGE O	. A	-1 m !
	Last	I	11.0		13		6.8	15	14		15	4:		2	15	14	14	11	4	Ξ.	T0	11	о,	15	15	15	15	13	17
dana	ORDER	5	0.5					0	0		0	٠.	0 0	>	0	0	0	0	&	0	0	-	0	0	0	.0	0	0	o (
daddo a smith	OLLIE	24	1.1				0.1	0	•		0	0	-	>	0	0	0	0	70	0	0	-	0	-	٦	0	0	0	o (
	First	T	8.0		- 0		0	0	0		0	0	0	5	0	0	0	0	٦	0	0	0	0	0	0	0	0	0	۰ ٥
		5	13.0	;	14		14.7	12	15		15	n.	7,	T	15	12	15	12	-	12	12	11	12	14	14	12	15	15	15
	No. or Trials		15	:	15			ld 15	15		15	12	15	15	15	15	15	12	12	12	12	12	12	15	15	15	15	15	15
	Time (hrs)		Control*	æ	0.5 - 1.2	Control*	7	1.4 - 1.7 and	1		ģ	ı	4.8 - 5.4	23	Pre-dose	1.7 - 2.1	5.4 - 6.1	 Pre-dose	0.3 - 0.8	4.1 - 4.6	Pre-dose	4.7 - 5.3	.23.5	Pre-dose	0.2 0.8	4,5 - 5,0	4	ę	1,0 - 1,7
	Reinforce-	ment	Neg.		Neg.	Dog.	•	Pos.	Pos.		Neg.	Neg.	Neg.	Neg.	Pos.	Pos.	Pos.	Ned.	Neg.	Neg	Pos	Pos.	Pos.	New	N C	Ned.	Neg.	Pos.	Pos.
1	Dosage Level	mg/kg	100 I.M.		or P.R. shuttle, no control	days, hence means of whole					3.0 I.M.		•					3.2 T.M.						¥ - C					
	Monkey	No.	E	1	shuttle,	hence mea	eriod were used.		. · · ,	•				?		•		ď	,				ē.	ţ	,				
-	punc	٥.	1172		or P.F	days.	eriod				1900							2100	7					0011	2100			a	

DOMINANCE BEHAVIOR OF SQUIRREL MONKEYS (Contd)

		, i			-		-	SI	TUTTLE	SHUTTLE ORDER	-	
3.0 I.M. Neg. Pre-dose 15 15 0 0 0 15 0 0 15 0 0 0 15 0 0 0 15 0 0 0 0	Mo	nkey No.	Dosage Level	Reinforce ment			0	121 1	=	5	T	2
Neg. 4.9 - 5.5 15 15 15 0 0 0 0 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		3.0 T.M.	Neg.	Pre-dose	1	15	00	00	00	15	00
Neg. 7.2.5. 15 15 16 0 0 14 1 Pos. 1.2.5. 15 15 15 0 0 0 14 1 Pos. 1.2.5. 1.9 15 15 0 0 0 114 1 Pos. 1.2.5. 1.9 15 15 0 0 0 113 2 Pos. 1.2.5. 1.9 15 15 0 0 0 113 2 Pos. 1.2.5. 1.9 15 15 0 0 0 114 1 Neg. 0.8 -1.1 15 15 0 0 0 0 14 1 Neg. 0.8 -1.2 15 15 0 0 0 0 15 0 Pos. 1.62.3 15 15 0 0 0 0 15 0 Pos. 1.62.3 15 15 0 0 0 0 15 0 Pos. 2.76.3 15 15 0 0 0 0 15 0 Pos. 1.62.3 15 15 0 0 0 0 14 10 R 30.0 I.M. Neg. Pre-dose 15 15 0 0 0 14 10 Neg. 0.11 -0.7 15 15 15 0 0 0 0 14 10 Neg. 0.11 -0.7 15 15 15 0 0 0 0 14 10 Pos. 1.65.0 10 10 10 0 0 14 10 Pos. 2.51.2 15 15 0 0 0 0 14 10 Pos. 2.51.2 15 15 0 0 0 0 14 10 Pos. 2.51.2 15 15 0 0 0 0 14 10 Pos. 2.51.2 15 15 0 0 0 0 14 10 Pos. 2.51.2 15 15 0 0 0 0 14 10 Pos. 2.51.2 15 15 0 0 0 0 14 10 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.2 15 15 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0 0 0 0 0 10 15 Pos. 2.51.5 15 0		י		Neg.	0.3 - 1.					. 0	13	7
Pos. Pre-dose 15 15 0 0 0 14 1 Pros. Pros. Pre-dose 15 15 0 0 0 12 3 2 Pros. Pre-dose 15 15 15 0 0 0 13 2 Pros. Pre-dose 15 15 0 0 0 0 13 2 Pros. Pre-dose 15 15 0 0 0 0 13 2 Pros. Pre-dose 15 15 0 0 0 0 15 0 Pros. Pre-dose 15 15 0 0 0 0 15 0 Pros. Pre-dose 15 15 0 0 0 0 15 0 Pros. Pre-dose 15 15 0 0 0 0 15 0 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pros. Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. Pros. Pros. Pros. Pre-dose 15 15 0 0 0 0 14 10 Pros. P				Neg.	ı	n	12	0	0	0	14	٦
FOST TITE - TS					Dre-dose		15	0	0	0	14	٦,
FOS. 15 - 6.1 15 15 0 0 0 11 4 1				POS.	1.2 - 1.		15	0	0	0 0	12	n c
Bos. 123.5 15 15 0 0 0 14 1 1 15 0 0 0 14 1 1 15 0 0 0 0 15 0 0 0 15 0 0 0 0 15 0 0 0 0				Pos.	3.5 - 6.		15	0 0	0 0	> c	3 =	1 4
R 30.0 I.M. Neg. Pre-dose 15 15 0 0 0 14 1 Neg. Pre-dose 15 15 0 0 0 15 0 15 0 15 0 0 0 15 0 0 15 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 0	•			Pos.	1, 23.5	12	T	>	٠,	•	;	Ŷ.
R 30.0 I.M. Neg.		Ţ		2	Dre-dose	15	15	0	0	0	14	-
Neg. 12.5.7 15 15 0 0 15 0 0 15 0 0 0 15 0 0 0 0 0		o.	60.0 I.M.	Neg.	0.8 - 1.	1 15	15	0	0	0	51	0 0
Neg. Pre-dose 15 15 0 0 0 15 0 0 0 15 0 0 0 0 0 0 0 0				Neg.	5.1 - 5.		15	0	0	0	<u>ئ</u> ۽	
Pos. Pre-dose 15 15 0 0 0 15 Pos. 1.6 - 2.3 15 15 0 0 0 0 14 Dos. 1.6 - 2.3 15 15 0 0 0 0 14 Dos. 5.0 - 2.4 15 15 0 0 0 0 15 Dos. 1.6 - 2.3 15 15 0 0 0 0 15 Dos. 1.6				Ned.	23.5		12	0	0	0	CT	0
30.0 I.M. Neg. 5.7 = 6.3 15 15 0 0 0 14 1	-		•	Bod	Pre-dose		15	0	0	0	15	0
90.0 I.M. Neg. Pre-dose 15 15 0 0 0 15 0 0 0 15 0 0 0 0 0 0 0 0	•			Pos	1.6 - 2.		12	0	0 (0 0	14	10
30.0 I.M. Neg. Pre-dose 15 15 0 0 0 14 1 Neg. Old Pre-dose 15 15 0 0 0 14 1 Neg. Old Pre-dose 15 15 0 0 0 14 1 Neg. Old Pre-dose 15 15 0 0 0 15 15 0 0 0 15 Neg. Pre-dose 15 15 0 0 0 14 1 Pos. Pre-dose 15 15 0 0 0 14 1 Pos. Old Pre-dose 15 15 0 0 0 14 1 Pos. Old Pre-dose 15 15 0 0 0 14 1 Pos. Old Pre-dose 15 15 0 0 0 10 5 Pos. Old Pre-dose 15 15 0 0 0 10 5 Pos.				Pos.	5.7 - 6.		15	0 0	> C	-	12	0
30.0 I.M. Neg. Pre-dose 15 15 0 0 0 14 1 Neg. 01 - 0.7 15 15 0 0 0 15 0 18 0 Neg. 01 - 0.7 15 15 0 0 0 18 0 Neg. 02.5 5.0 15 15 0 0 0 14 1 Pos. Pre-dose 15 15 0 0 0 14 1 Pos. and 2.0 - 1.2 15 15 0 0 0 14 1 Pos. and 2.0 - 2.4 15 15 0 0 0 19 5 Pos. 2.3 5.4 15 15 0 0 0 19 5				Pos.	24	15	CT	>	,	•	ì	
30.0 I.M. Neg. 011 - 0.7 15 15 0 0 0 15 0 Neg. 012 - 0.7 15 15 15 0 0 0 15 0 Neg. 15 0 0 0 14 1 Neg. Pre-dose 15 15 0 0 0 14 1 Pos. and 2.0 - 1.2 15 15 0 0 0 14 1 Pos. and 2.0 - 2.4 15 15 0 0 0 10 5 Pos. 2.3 5.4 15 15 0 0 0 10 5 Pos.				200	aro-doad	15	15	0	0	0	14	, ,
Ai6 - 5.0 10 9 1 0 0 16 12 12.5 15 15 15 0 0 0 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		œ	30.0 T.M.	N CO	0.1 - 0.		15	0	0	0	51.0	
and 2:0 = 2.4 15 15 0 0 0 14 1				Ned	4.6 - 5.		6	H	0	٥ د	° -	7 -
Pre-dose 15 15 0 0 0 14 1 0 0 0 0 14 1 0 0 0 0 14 1 0 0 0 0				Ned.	22.5		15	0	>	>	7	
and 2:0 - 1.2 15 15 0 0 0 10 5 5 5 5 5 5 5 7 15 15 0 0 0 0 9 1 5 5 5 5 5 5 7 15 15 0 0 0 0 10 5 5 7 15 15 0 0 0 10 5 5 7 15 15 0 0 0 10 5 5 7 15 15 0 0 0 10 5 5 7 15 15 0 0 0 10 5 5 7 15 15 0 0 0 0 10 5 5 7 15 15 15 0 0 0 0 10 5 5 7 15 15 15 15 15 15 15 15 15 15 15 15 15				800	Pre-dose		15	0	0	0	14	٦
and 2:0 - 2:4 15 15 0 0 0 10 15 5:0 - 5:4 15 15 0 0 0 0 10 5 23 5:4 15 15 0 0 0 0 10 5				Pos	0.9 - 1				٠,			u
5.0 - 5.4 10 10 0 0 0 10 5					2.0		15	0	o (-	٩	, -
23 13 15				Pos.	5.0		10	-	- 0	00	107	4 50
P				Pos.	53	CT	3	•	•	,		
												P

)				CONDITION	CONDITION
			ION - NORMAL	EUROLOGICAL	EUROLOGICAL
	***		AND CONDIT	SICAL AND N	SICAL AND N
÷ .			5/MINUTE 42 NUTE 42 37.7 NORMAL APPEARANCE,	S/MINUTE NUTE 66. 38°2 OTED IN PHY	S/MINUTE NUTE 60 38.3
2935 (1-V)	IONS		HEART RATE 156 BEATS/MINUTE RESPIRATIONS FER MINUTE 42 BODY TEMPERATURE C 37.7 HEURCLOGICAL TESTS NORMAL BEHANIOR, GENERAL APPERRANCE, AND CONDITION - NORMAL NOSE COOL AND MOIST PRE-DOSE (SAME DAY)	HEART RATE 108 BEATS/MINUTE BODY TEMPEATURE C 188.2 BODY TEMPEATURE C 188.2 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 150 BEAT\$;MINUTE RESPIRATIONS PER MINUTE 60 BODY TEMPERATURE C 380.3 NOSE WARM AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
	OBSERVATIONS		HEART RA RESPIRAT BODY TEN NEUROLC BEHAVIC NOSE CO	HEART RARESPIRATED BODY TER	HEART RO RESPIRA BODY TEI NOSE W
	TIME	HOURS	0 0	0 • 2	7. 0
	. T	₹ 6•	1.91		
Ÿ	DOSE	MG/KG	φ. Ω.		*

SEX

HEART RATE 156 BEATS/MINUTE
RESPIRATIONS PER MINUTE 48
BODY TEMPERATURE C38.1
NOSE COOL AND MOTS!
NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION SUSPENSION - STEROID DILUENT

1,9

2963 (1-V)

BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL PRE-DOSE (SAME DAY) HEART RATE 150 BEATS/MINUTE HEART RATE 168 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 37.9 NOSE COOL AND MOIST NO PHOTOPHOBIA **OBSERVATIONS** HOUR5 • TIME 2,82 DOSE

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.3 NOSE WARM AND DRY SLIGHT PHOTOPHOBIA

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 30 BODY TEMPERATURE C 38*2 NOSE COOL AND DRY SLIGHT PHOTOPHOBIA

SLIGHT PHOTOPHOBIA NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 132 BEA†S/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38-3 NOSE COOL AND DRY

SOLUTION - ASCORBIC ACID 30%

2963 (1-V)

DOSE WT. TIME OBSERVATIONS
MG/KG KG. HOURS

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.0 SLIGHT PHOTOPHOBIA NOSE COOL AND DRY 2,1

10.0

4

SEX

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.3 SLIGHT PHOTOPHOBIA NOSE COOL AND DRY

RESPIRATIONS PER MINUTE

NO OTHER CHANGES NÖTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 156 BEATS/MINUTE BODY TEMPERATURE C 38.5 HEARTBEAT DIFFICULT TO NOSE COOL AND DRY NO PHOTOPHOBIA

BODY TEMPERATURE (37.9 NOSE COOL AND MOIST NO PHOTOPHOBIA BERAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS, NORMAL

RESPIRATIONS PER MINUTE

SOLUTION - ASCORBIC ACID 3.0%

SEX

HEART RATE 144 BEATS/MINUTE
RESPIRATIONS PER MINUTE 42
BODY TEMPERATURE C 38.6
CALM
BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL
NEUROLOGICAL IESTS NORMAL
PRE-DOSE (SAME DAY)

HERRI RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE 60 BODY FEMPERATURE C 38.4 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

BODY TEMPERATURE C 38.7 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE

9°0

0,2

RESPIRATIONS PER MINUTE 60
BODY TEMPERATURE C 38.0 C 28.0 C ONDITION
OCHANGEN ONTED IN PHYSICAL AND NEUROLOGICAL CONDITION
SUSPENSION - STEROID PILUENT

HEART RATE 138 BEATS/MINUTE

?-! 2984

HOURS 11 WE

¥.

MG/KG DOSE

SEX

RESPIRATIONS PER MINUTE 78 BODY TEMPERATURE C 38.8 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 132 BEATS/MINUTE **OBSERVATIONS**

HEART RATE 120 BEATS/MINUTE RESPIRATIONS PER MINUTE 54

5,0

2,8

6.3

BODY TEMPERATURE C 38.5 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 36 BODY THERATURE (28.0 NO THANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 144 BEATS/MINUTE

21.2

SUSPENSION - STEROID DILUENT

			-		-	-	
			NORMAL	CONDITION	CONDITION	CONDITION	
	-		CONDITION -	NEUROLOGICAL	NEURÖLOGICAL	NEUROLOGICAL	
			AND	AND	AND	2	ž
PHYSICAL AND ALGORITHMS 2994 (1-V)	OBSERVATIONS		HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 78 BODY TEMPERATURE C 37.8 BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)	HEART RATE 120 BEATS/MINUTE RESPIRATIONS RE MINUTE '66 BODY TEMPERATURE C 38.5 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 156 BEATS/MINUTE RESPTRATION INJUTE 66 BOOY TEMPERATURE C 186.5 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE 72 BODY TEMPERATURE C 3844	NO CHANGES NOTED IN PRISICAL
5		•					
рнтэт	TIME	HOURS	0.0	0.1	0.5	1.0	
	. F	. KG	2.72			•	
)	DOSE	MG/KG	20•0		*		

SEX

AGE A

PHYSICAL AND HEUROLOSICAL E JUNATION OF CATS

(A-1) +662

OBSERVATIONS

HOURS

MG/KG

<u>ښ</u>

1.1ME

HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE

2,0

2.72

20.0

BODY TEMPERATURE C 38°1 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 132 BEATS/MINUTE

9

RESPIRATIONS PER MINUTE 84
RESPIRATIONS PER MINUTE 84
NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

RESPIRATIONS PER MINUTE 84 RESPIRATIONS C 3807 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 138 BEATS MINUTE

2602

	Ĺ.
	~
	366
	C.
	3
	C.C
-	
	500
- 1	200

RESPIRATIONS PER MINUTE 68 BODY TEMPERATURE C 88.4 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION BEHAVIOR. GENERAL APPEARANCE. AND CONDITION - NORMAL HEART RATE 150 BEATS/MINUTE. HEART RATE 144 BEATS/MINUTE NEUROLOGICAL TESTS NORMAL RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.3 PRE-DOSE (SAME DAY) SKIN TWITCH SLIGHT TAIL LASH OBSERVATIONS St. IGHT ALERT 9.0 HOURS 0.2 TIME 0 3,92 ري دي دي M6/K6 202 DOSE

> Z Cl

XIII

RESPIRATIONS PER MINUTE 48 RESPIRATIONS C (888.7 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 120 BEATS/MINUTE

HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE 66 BODY TEMPERATURE C:38-8 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

9

2995 (1-4)

OBSERVATIONS

HOURS

Š.

DOSE

3,0

2,5

۲.

RESPIRATIONS PER MINUTE 60
BODY TEMESTURE 63,7
NO CHANGES NATED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 132 BEATS/MINUTE HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE

BODY TEMPERATURE C 38.3

NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
HEART RATE 132 BEATS/MINUTE
BODY TEMPERATURE C 38.4
BODY TEMPERATURE C 38.4
C CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

26.2

the same will be the

OBSERVATIONS

WT. TIME OBSERV KG. HOURS

MG/KG

SEX

3SCQ.

HEART RATE 162 BEATS/MINUTE
RESPIRATIONS FOR MINUTE 75
BODY YEMPERATURE C 38.6
BODY YEMPERATURE C 38.6
BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL
NEUROLOGICAL TESTS NORMAL

2,78

2,5

BODY TEMPERATURE C 38.6 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 168 BEATS/MINUTE RESPIRATIONS PER MINUTE 102

0,1

RESPIRATIONS PER MINUTE 96 BODY TEMPERATURE C 38.6 HEARTBEAT DIFFICULT TO DETECT

0.5

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEARTBEAT DIFFICULT TO DETECT HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.7 ٥,

SOLUTION - DISTILLED WATER

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

	.,	
	'n	
	5026	
	С	
	S	
4	20	а
- 1	r.	4.
	Ċί	\sim
1	S.	42

SEX

			***			CONDITION		CONDITION
				NOSE COOL AND MOIST BEHAVIOR, GENERAL APPERARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL		NOSE WARM AND MOIS! NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION		DUT TERFERENCE OF THE WOLST ON PHYSICAL AND NEUROLOGICAL CONDITION NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
	-			CONDI		AND.		AND
				, AND		IYSICAL		4YSICAI
			407E;	ARANCE MAL	NUTE 54	IN P	NUTE 54	NI N
)?-10	to religion (FW)	Militaria .	BEATS/MIN PER MINUTE JRE C 38°1	MOIST VERAL APPE/ TESTS NOR	4 BEATS/MIN PER MINUTE URE C 38,0	NGES NOTED	D BEATS/MI PER MINUTE	D MOIST
5026 (1V)	OBSERVAT IONS		HEART RATE 108 BEATS/MINUTE RESPIRATIONS PER MINUTE 48 BODY TEMPERATURE C 38°1	NOSE COOL AND MOIST BEHAVIOR, GENERAL APPEARA NEUROLOGICAL TESTS NORMAL	HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE 54 BODY TEMPERATURE C 38,0	NOSE WARM AND MOISI NO OTHER CHANGES NO	HEART RATE 120 BEATS/MINUTE 54 RESPIRATIONS PER MINUTE 54	NOSE COOL AND MOIST NO OTHER CHANGES NO
	TIME	HOURS	. 0.0		0.1			٠
	. •	K6•	2,06		~			
)	DOSE	MG/KG	11.2				·	

°.

(1°C) 5668

HEART RATE 168 BEATS/MINUTE RESPIRATIONS PER MINUTE **OBSERVATIONS**

HOURS

8 8 8

MG/KG

3EX

9,0

is S

IJ.

TIME

DOSE

BOOY TEMPERATURE C 38.8 HEARTBEAT DIFFICULT TO DETECT NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION BOOY TEMPERATURE C 38.9 HEARTBEAT DIFFICULT TO DETECT NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION 84 RESPIRATIONS PER MINUTE

5.0

BODY TEMPERATURE C 38.8 BEHAVIOR, GENERAL, APPEARANCE, AND CONDITION - NORMAL HEART RATE 144 BEATS/MINUTE NEUROLOGICAL TESTS NORMAL RESPIRATIONS PER MINUTE

25.0

SOLUTION - DISTILLED WATER

PAGE

PHYSICAL AND NEUROLOGICAL EXAINATION OF CATS Soze (1-V)	OBSERVATIONS		HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 38.0 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C. 38-0 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 114 BEATS/MINUTE. RESPIRATIONS PER MINUTE 40 BODY TEMPERATURE C'308.0 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	SOLUTION - POLYETHYLENE GLYCOL-300 100%
PHYSICA	TIME	HOURS	2 2	5.1		
	SE WT.	3/KG KG•	2	ু ুকু	3 4	

SEX

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 54
BOOY TEMPERATURE (288.5
BEHAVIOR'S GENERAL APPEARANCE, AND CONDITION - NORMAL
NEUROLOGICAL TESTS NORMAL BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL PHYSICAL AND NEUROLOGICAL EX MINATION OF CATS HEART RATE 150 BEATS/MINUTE HEART RATE 150 BEATS/MINUTE RESTING NORMALLY IN CAGE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.5 RESPIRATIONS PER MINUTE BODY TEMPERATURE C 37.9 NOSE COOL AND MOIST NOSE COOL AND MOIST PRE-DOSE (SAME DAY) 5031 (I-V) **OBSERVATIONS** HOURS 0,0 TIME 2.04 • V

> DOSE MG/KG

5031 (1-4)

HEART RATE 140 SEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.4 OBSERVATIONS HOURS TIME C, 9 MG/KG DOSE 12,5

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.2 NOSE COOL AND DRY SLIGHT PHOTOPHOBIA

202

SLIGHT PHOTOPHOBIA

NOSE COOL AND DRY

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.4 NOSE COOL AND MOIST SLIGHT PHOTOPHOBIA

207

HEART RATE 132 BEA'S/MINUTE
RESPIATIONS PER MINUTE 42
BODY TEMPERATURE C 38.1
BEHAVIOR. GENERAL APPEARANCE, AND CONDITION - NORMAL
NEUROLOGICAL TESTS NORMAL

25.7

5058 · (I~V)

NO. DOSE WT. TIME OBSERVATIONS 3EX MG/KG KG. HOURS

3.65 3.24 0.0

HEART RAYE 168 BEATS/NINUTE
RESPIRATIONS PER MINUTE 60
BODY TEMPERATURE C 38.2
NOSE COOL AND MOIST
CALM
OUTET
BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL
PRENCOCIOLAL TESTS NORMAL
PRENCOCIOLAL TESTS NORMAL

IMMEDIATELY AFTER DOSING UNCONSCIOUS RESPIRATORY RATE ABOUT NORMAL BREATHING DEEP

000

UNCONSCIOUS
UNCONSCIOUS
EVENTEESIS
PUPILS DILATED
EXTENSION OF FRONT LIMBS
FIEXOR REFLEXS ABSENT
NO SIGN OF DEEP OR PERIPHERAL SENSATION

0.05

SUSPENSION - STEROID DILUENT

OTHER TESTS NOT DONE AT THIS TIME

OBSERVATIONS TIME

\$ 8 MG/KG

HOURS

;

PROSTRATE - COULD NOT STAND DEEP AND PERIPHERAL SINSATION PRESENT FEXOR PELEXES PURMAL EXTENSOR THRUST REFLEXES ABSENT, HIND LIMBS PUPILS SLIGHTLY DILATED PUPILLARY REFLEX NORMAL AWAKE

CORNEAL REFLEX ABSENT OTHER NEUROLOGICAL TESTS NORMAL RESPIRATIONS PER MINUTE: 66 BODY TEMPERATURE C 38.2 HEARTBEAT TOO WEAK TO COUNT

20

RIGHTING REACTIONS FAIR PLACING REACTION WITH VISION - POOR

TONIC NECK REFLEXES NOT TESTED

PUPILS NORMAL IN SIZE AND REACTION REDUCED ANAL TENSION NOSE WARM AND MOIST

CAT COULD STAND 0.35 HEART RATE 114 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.2 NOSE COOL AND MOIST

9.0

PAGE

5058 (1-4)

NO.

ACTIVITY DIRING EXAMINATION INCREASED ACTIVITY DIRENGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION NO OTHER CHANGES NOTED IN PHYSICAL AND HEART RATE 114 BEATS/MINUTE NEUROLOGICAL TESTS NORMAL RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.3 QUIET IN CAGE OBSERVATIONS HOURS TIME 1,3 3.6 MG/KG DOSE

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.5 ANAL TENSION BETTER

NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION BODY TEMPERATURE (38.3 BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL 9 HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.5

NEUROLOGICAL TESTS NORMAL

9

HEART RATE 132 BEATS/MINUTE

RESPIRATIONS PER MINUTE

6505

?

BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL HEART RATE 144 BEATS/MINUTE NEUROLOGICAL TESTS NORMAL RESPIRATIONS PER MINUTE BODY TEMPERATURE C 37.3 NOSE COOL AND MOIST OBSERVATIONS

0.0

1.97

16.0

HOURS

. В

MG/KG

SEX

TIME

DOSE

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 37.8 NOSE COOL AND DRY

PRE-DOSE (SAME DAY)

0.2

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 132 BEATS/MINUTE HEART RATE 120 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 37.8 NOSE COOL AND MOIST

NOSE COOL AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION SUSPENSION - STEROID DILUENT RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.0

1.0

)	j.				NO 1	NO.		
	4				CONDIT	CONDIT		
					JL0G1CAL	OLOGICAL		- NORMAI
					NEURG	NEUR		1110N
S		-			AND	AND		COND
TION OF CAT				IUTE 42	IN PHYSICAL	42 IN PHYSICAL	10TE	RANCE , AND
AL E MINA	(1-1)	To a service of the s	2000	BEATS/MINPE PER MINUTE IRE C:37.8	GES NOTED	ER MINUTE JRE C/38.0 DRY: JGES NOTED	BEATS/MIN ER MINUTE	ERAL APPER
PHYSICAL AND NEUROLOGICAL ECMINATION OF CATS	(N-I) 6505	OBSERVATIONS		HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BOOY TEMPERATURE C 337.8	NO OTHER CHANGES ON DIED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 132 BEATS/MINUTE	RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C./38.0 NOSE COOL AND DRY; NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 120 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 38.0	NOSE COUL AND MULE! NOSE GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL
PHYSICAL		ŢIME	HOURS	2,5	9•4		24.6	
		• *	KG.					
,)	-	DOSE	MG/KG	16.0		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	; 	

°° SEX SUSPENSION - STEROJD DILUENT

OBSERVATIONS TIME DOSE

HOURS

8 8 8

MG/KG

AND SEX CAT NO.

HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 39.0

•

3.46

2.0

32 M

BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NOSE COOL AND MOIST SLIGHTLY TENSE DUIET CALM

NEUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)

APPEARED NORMAL ON CASUAL OBSERVATION

. 9.0

HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE 60 BODY TEMPERATURE C 38.7 NOSE COOL AND DRY

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION NO OTHER CHÂNGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.8 NOSE COOL AND MOIST

.

SUSPENSION - STEROID DILUENT

DE Y SICAL

	WT.	TIME OBSERVATIONS	HOURS
DOSE MG/KG		.º	SEX
DOSE	NO.	CAT NO.	AND SEX

HEART RATE 150 BEATS/MINUTE NEUROLOGICAL TESTS NORMAL BODY TEMPERATURE C 39.7 PRE-DOSE (SAME DAY) SMALL AND LEAN MODERATELY ACTIVE ZAT 0.0

SUBCUTANEOUS DOSE STILL PRESENT UNDER SKIN NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 54
BODY TEMPERATURE C 39.4
MORGE OF DOSE INJECTED SUBCUTANEOUS, INSTEAD OF IN VEIN HEART RATE 144 BEATS/MINUTE

0.2

NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 54 BODY TEMPERATURE C 39•7 SUBCUTANEOUS DOSE NOW ALL ABSORBED HEART RATE 144 BEATS/MINUTE

0.5

RESPIRATIONS PER MINUTE 60 BOOY TEMPERATURE 0 PAYSICAL AND NEUROLOGICAL CONDITION SUSPENSION - STEROID DILUENT

HEART RATE 144 BEATS/MINUTE

9.

5092 (1-1)

-	10	
OBSERVATIONS		
TIME	HOURS	
м Т	K 6.	
DOSE	MG/KG	
. ov	SEX	

CAT

BODY TEMPERATURE C 40.3 NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 56
RESPIRATIONS PER MINUTE 56
NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION 9 HEART RATE 132 BEATS/MINUTE HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE •

1.57

32.0

96 F

HEART RATE 13% BEATS/MINUTE
RESPIRATIONS PER MINUTE 50
BODY TEMPERATURE C 39.6
NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
SUSPENSION - STEROID DILUENT

20.3

5104 (I-M)

TIME

DOSE

AND SEX CAT NO.

HOURS • к 6 10.0 2.52 MG/KG

44 F

BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL HEART RATE 114 BEATS/MINUTE NEUROLOGICAL TESTS NORMAL RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.5 NOSE COOL AND MOIST OBSERVATIONS

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 39.4 NOSE WARM AND MOIST

0.2

7

PRE-DOSE (SAME DAY)

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE 108 BODY TEMPERATURE C 39.1 NOSE WARM AND MOIST

0.5

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 144 BEATS/MINUTE RESPIRATIONS, PER MINUTE BODY TEMPERATURE C 38.6 NOSE WARM AND MOIST

1.4

5104 (I-M)

OBSERVATIONS

TIME HOURS

¥6.

DOSE MG/KG

AND SEX

44 F 10.0 3.2

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 120 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38,5 NOSE WARM AND MOIST

NOSE WARM AND!MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 102 BODY TEMPERATURE C 38.4 HEART RATE 120 BEATS/MINUTE

BODY TEMPERATURE C 38.3 NOSE COOL AND MOLST WO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE 96

PHYSICAL AND MEDICULUGIONE EAMINIMITOR OF CALL 5143 (I-V)

		-	
	. •- :	CONDITION	CONDITION
	ION - NORMAL	IEUROLOGICAL	NEUROLOGICAL
	TIONO	AND	AND 1
	ICE, AND CC	PHYSICAL	E S PHYSICAL
TIONS	HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATIVE C 31.9 NOSE COOL AND MOIST. BEHAVIOR, GENERAL APPERRANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL NEUROLOGICAL TESTS NORMAL	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 54 BODY TEMPERALURE C 38.4 NOSE COOL AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 96 BODY TEMPERATURE C 38.3 NOSE WARM PMOIST NO STHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
OBSERVATIONS	HEART R RESPIRA BODY TE NOSE C BEHAVI NEUROL PRE-DC	HEART R RESPIRA BODY TE NOSE O	HEART F RESPIRA BODY TE NOSE A
TIME	• 0 • 0	0.2	ທ _ີ .
WT.	5.6 2.17		
DOSE MG/KG		₹	*
CAT NO.	52 ·		
J E			

SOLUTION - DISTILLED WATER

HEART RATE 150 BEATS/MINUTE
RESPIRATIONS PER MINUTE 72
BODY TEMPERATURE C 30.4
NOSE WARMA AND MOIST.
NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

1.6

JF CATS	
EXAMINATION OF CATS	:
AND NEUROLOGIC";	
AND	,
PHYSICAL	

? **网络斯里**5143

OBSERVATIONS

HOUR5 TIME

MG/KG

AND SEX CAT NO.

DOSE

HEART RATE 150 BEATS/MINUTE

3.2

5.6

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 150 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.2 RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.7 NOSE COOL AND MOIST

SOLUTION - DISTILLED WATER

BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 37.7 NOSE COOL AND MOIST

0

1.87

5,6

SOLUTION - DISTILLED WATER PRE-DOSE (SAME DAY)

NEUROLOGICAL TESTS NORMAL

NEIROUNGER : EXAMINATION OF CATS

	*	HEART RATE 96 BEATS/MINUTE RESPIRATIONS PER MINUTE 90 NOSE WARM AND DRY NOSE WARM AND DRY NOTITATING MEMBRANE SLIGHTLY RELAXED NOTITATING MEMBRANE SLIGHTLY RELAXED NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	72 72
PHYSICAL AND NEUROLUGI (L-V)	OBSERVATIONS	HEART RATE 96 BEATS/MINUTE 90 RESPIRATIONS PER MINUTE 90 NOSE WARM AND DRY NOTITATION MEMBRANE SI IGHT NO OTHER CHANGES NOTED IN P	HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 72 BODY TEMPERATURE C 38°3
PHYSI0	TIME	HOURS 0.2	0.5
	F.	. K6	
	DOSE	MG/KG . KG.	
<u> </u>	CAT NO.	AND SEX 55 F	•

HEART RATE 120 BEATS/MINUTE RESPIRATIONS PER MINUTE 36 BOOY TEMPERATURE C 37.8 BOOY TEMPERATURE C 17.8 RESPIRATIONS PER MINUTE 66 RESPIRATIONS C 38°2 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 114 BEATS/MINUTE HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE

2.4

0

NICTITATING MEMBRANE IN NORMAL POSITION

NOSE COOL AND MOIST

BODY TEMPERATURE C 37.9 NO CHANGES NOKED IN PHYSICAL AND NEUROLOGICAL CONDITION NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE 42 BODY TEMPERATURE C 37.9

5.5

SOLUTION - DISTILLED WATER

MG/KG

AND SEX

DOSE

2,0

?-!

5145

HEART RATE 108 BEATS/MINUTE OBSERVATIONS HOURS TIME 2.4 ¥6. MG/KG D05E 2.0 CAT NO. AND SEX

NOSE COOL AND DRY NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.4

HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.5

5,0

NOSE COOL AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 138 BEATS/MINUTE
RESPIRATIONS PER MINUTE 30
RESPIRATIONS TEMPERATIONS TO THE THE TO THE T

8658-53

SOSB-53
CAT NO. DOSE, WT. TIME OBSERVATIONS
AND SEX MG/KG KG. HOURS

HEART RATE 138 BEATS/MINUTE.
RESPIRATIONS PER MINUTE 42
RODY TEMPERATURE C 38.3
NOSE COOL AND MOIST
CALM
BEHATIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL
NEUROLOGICAL TESTS NORMAL
PRE-DOSE (SAME DAY).

00

2,00

27

NOSE WARM AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.7

.0

0.5

NO OTHER CHÂNGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 120 BEATS/MINUTE RESPIRATIONS PER MINUTE 60 BODY TEMPERATURE C 38.6 NOSE WARM AND MOIST HEART RATE 138 BEATS/MINUTE RESPIRATIONS PER MINUTE

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION SOLUTION - POLYETHYLENE GLYCOL-300 BODY TEMPERATURE C 38.8 NOSE COOL AND MOIST

8658-53 (I-V)

CAT NO. DOSE WT. TIME OBSERVATIONS AND SEX MG/KG KG. HOURS

REDUCED ANAL TENSION NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 132 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.5

2,7

NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 114 BEATS/MINUTE RESPIRATIONS PER MINUTE BODY TEMPERATURE C 38.0 REDUCED ANAL TENSION

4.1

HEART RATE 132 BEATS/MINUTE
RESPIRATIONS PER MINUTE 48
REDOY TEMPERATURE C 38.2
ANAL TEKSION BETIFER
BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL
NEUROLOGICAL, TESTS NORMAL

22.0

CATS	
P	
EXAMINATION	
NEUROLOGIC".	` '
	` '

7 .	• •		ND1T10N
		ION - NORMAL	:UROLOGICAL COI
OF CATS	-	• AND CONDITI	YSICAL AND NE
PHYSICAL AND NEUROLOGIC'', EXAMINATION OF CATS 8658-91 (1-V)	10	HEART RATE 162 BEATS/MINUTE RESPIRATIONS PER MINUTE 48 BOOY TEMPERATURE C 38.3 NOSE COOL AND MOIST BEHAVIOR, GERERAL APPEARANCE, AND CONDITION - NORMAL PRE-BOSE (\$AME DAY)	HEART RATE 150 BEATS/MINUTE 68 FESTRATIONS PER MINUTE 48 BODY TEMPERATURE C 38.8 NOSE HARM AND MOIST NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION
AND NEUROLO	OBSERVATIONS	HEART RATE 162 BEATS BOES PIRATIONS PER MIN BODS COOL AND MOIST CALM BEHAVIOR, GENERAL AI NEUROLOGICAL TESTS AI NEUROLOGICAL TESTS AI	HEART RATE RESPIRATION BODY TEMPER NOSE WARM NO OTHER C
PHYSICAL	TIME HOURS	0 • 0	0
	WT.	3.10	
	DOSE MG/KG	3.5	

AND SEX

CAT NO.

64 F

HEART RATE 114 BEATS/MINUTE

RESPIRATIONS PER MINUTE 60
BODY TEMPERATIONS C 38.8
NOSE WARM AND DRY
NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 96 BEATS/MINUTE TS RESPIRATION, PER MINUTE 72 BODY TEMPERATION, BODY TEMPERATION C 38.5 MOSE COOL AND MOIST.
NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

1.0

0,5

SUSPENSION - STEROID DILUENT

JF CAIS		-					INDIANCE OF TON
PHYSICAL AND NEUROLOGICAL, EXAMINATION OF CAIS	8658-91 (I-V)	OBSERVATIONS		and a	· ·	HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE 66	BODY TEMPERATURE C 39 0
PHYSICAL		E E	1	HOURS	-	2.0	
		<u>,</u>	•	K G.		3.10	

DOSE MG/KG

CAT NO.

NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION

RESPIRATIONS PER MINUTE 60 BODY TEMPERATURE C 38.4 NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION HEART RATE 186 BEATS/MINUTE RESPIRATIONS/PER MINUTE 54 BODY TEMPERATURE C 39.7 BODY TEMPERATURE C 30.7 BODY TEMPERATURE C 38.8 NO CHANGES MOTED IN PHYSICAL AND NEUROLOGICAL CONDITION RESPIRATIONS PER MINUTE 54 HEART RATE 182 BEATS/MINUTE HEART RATE 144 BEATS/MINUTE

5,3

25.2

SUSPENSION - STEROID DILUENT

SUSPENSION - STEROID DILUENT

PHYSICAL AND NEUROLOGIC EXAMINATION OF CATS	(\Lambda-1) 65-8698	OBSERVATIONS	******	HEART RATE 144 BEATS/MINUTE RESPIRATIONS PER MINUTE 48	NOSE COOL AND MOIST BEHAVION. SENERAL APPEARANCE, AND CONDITION - NORMAL. NEUROLOGICAL TESTS NORMAL PRE-DOSE (SAME DAY)	HEART RATE 96 BEATS/MINUTE RESPIRATIONS PIEW MINUTE 84- NOSE WARM AND MOIST	HEARTBEAT DIFFICULT TO DETECT NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 126 BEATS/MINUTE RESPIRATIONS PER MINUTE 78	NOSE COOL AND DRY NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 156 BEATS/MINUTE RESPIRATIONS PER MINUTE 72 MORE CON AND MOTST	NO OTHER CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	HEART RATE 14% BEATS/MINUTE RESPIRATIONS PER MINUTE NO CHANGES NOTED IN PHYSICAL AND NEUROLOGICAL CONDITION	RESPIRATIONS PER MINUTE 42 HEARTGEAT DIFFICULT TO DETECT BEHAVIOR, GENERAL APPEARANCE, AND CONDITION - NORMAL NEUROLOGICAL TESTS NORMAL
PHYSI		TIME	HOURS	0.0		0.1		9 • 0.	٠.	1.9		4.1	50
		T.W	KG.	4.7									
		DOSE	MG/KG	2.8				,					

36 M

CAT NO.

			-					MONKEYS		,	NORMAL	
PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS	L172 (I-M)	OBSERVATIONS (.=- 2	RESPIRATIONS PER MINUTE 78 APPERANTE AND BEHAVIOR NORMAL PUPILS NORMAL IN SIZE AND REACTION TO LIGHT PRE-DOSE (SAME DAY)	SHUTTLED ON LIGHT CUE APPEARANCE AND BEHAVIOR NORMAL	APPEARANCE AND BEHAVIOR NORMAL	SECOND DOSING	INCREASED LOCOMOTOR ACTIVITY EYES APERA MORE ALERI THAN USUAL SKIN OF FACE PALER, MORE LIKE THAT OF OTHER MONKEYS FACE APPEARED MORE RELAXED AND HEALTHY	RESPIRATIONS PER MINUTE 66 PUPILS NORMAL IN SIZE AND REACTION TO LIGHT	RAN TO HOME CAGE TO JOIN OTHER MONKEY INCREASED LOCOMOTOR ACTIVITY	RESPIRATIONS PER MINUTE 60 APPEARANCE AND BEHAVIOR NORMAL APPEARANCE OF ALERINESS IN EYES SUBSIDED TO NORMAL	SKIN OF FACE DARK, AS USUAL
CAL AND	•	TIME	HOURS	0.0	4.0	0.8	0.0	1.0	1.2	1,3	2.5	
PHYSI		×T.	gM,	825								
		DOSE	MG/KG				4.85			n.	•	

MONKEY

SOLUTION - DISTILLED WATER

EXCITABLE ON HANDLING PUPILS NORMAL IN SIZE AND REACTION TO LIGHT PRE-DOSE (SAME DAY) APPEARANCE AND BEHAVIOR NORMAL HEART RATE 320 BEATS/MINUTE RESPIRATIONS PER MINUTE 78 M-11, 2711 OBSERVATIONS HOURS 0.0 DOSE .. WT. .. TIME 609 £ B MG/KG 10.0 NUMBER MONKEY

RESPIRATIONS RER MINUTE 78 SOLUTION - DISTILLED WATER

HEART RATE 280 BEATS/MINUTE

3.0

EMESIS

1402 (I-M)
OBSERVATIONS

DOSE WI. TIME OBSERVA

MONKEY

PUPILS NORMAL IN SIZE AND REACTION TO LIGHT RESPIRATIONS PER MINUTE 84 HEART RATE 240 BEATS/MINUTE PRE-DOSE (SAME DAY) 0.0 850 1.0

В,

APPEARANCE AND BEHAVIOR NORMAL SHUTTLED ON LIGHT CUE

APPEARANCE AND BEHAVIOR NORMAL

0.2

0.5

RESPIRATIONS PER MINUTE 48
SPECARANCE AND BEHAVIOR NORMAL
SHUTTLED ON LIGHT CUE

APPEARANCE AND BEHAVIOR NORMAL

17.3

SOLUTION - 0.9% ASCORBIC ACID

PUPIL'S NORMAL IN SIZE AND REACTION TO LIGHT DOSED ONE DAY AFTER NEXT LOWER DOSING APPEARANCE AND BEHAVIOR NORMAL APPEARANCE AND BEHAVIOR NORMAL HEART RATE 240 BEATS/MINUTE RESPIRATIONS PER MINUTE SHUTTLED SPONTANEOUSLY PRE-DOSE (SAME DAY) 1402 (I-M) OBSERVATIONS HOURS 0 0.2 T I ME 850 g G MG/KG 0.4 DOSE UMBER JONKEY

SOLUTION - 1.0% ASCORBIC ACID

SHUTTLED SPONTANEOUSLY 15 TIMES / MINUTE

CONSTANT LOCOMOTOR ACTIVITY CONSTANT LOCOMOTOR ACTIVITY

ALONE IN SHUTTLE BOX

SLIGHT TREMORS IN HOME CAGE

23

APPEARANCE AND BEHAVIOR NORMAL

SHUTTLED ON LIGHT CUE SHUTTLED ON LIGHT CUE

2.0 20

APPEARANCE AND BEHAVIOR NORMAL APPEARANCE AND BEHAVIOR NORMAL

SHUTTLED ON LIGHT CUE SHUTTLED ON LIGHT CUE

--

0.5

52	RESPIRATIONS PER MENUTE WAS FED 10 BISCUITS ALONE IN SHUTTLE BOX	0.5			
	ALONE IN SHUTTLE BOX	0.4			
Y 6 TIMES / MINUTE	ALONE IN SHUTTLE BOX SOME COARSE PURRING SHUTTLED SPONTANEOUSLY	0,3		•	*
	ALONE IN SHUTTLE BOX SHUTTLED SPONTANEOUSLY SOME COARSE PURRING	0.2			7
. 6	ALONE IN SHUTTLE BOX	0.1			
EXT LOWER DOSING	RESPIRATIONS PER MINUTE 90 PRE-DOSE (SAME DAY) DOSED ONE DAY AFTER NEXT LOWER DOSING	0.0	850	10.0	
		HOURS	GM•	MG/KG	NUMBER
٠	OBSERVATIONS	TIME	WT.	DOSE	MONKEY
	1402 (I-M)				

SOLUTION - 4.0% ASCORBIC ACID

DOSE MG/KG ٩. Ĭ. HOURS TIME 1402 OBSERVATIÓNS (M-I)

NONKEY NUMBER

æ

10.0

850

1.5

SHUTTLED SPONTANEOUSLY 13 TIMES / MINUTE TRIED TO LEAP THRU TRANSPARENT CAGE WALL 2X IN 5 MINUTES ALONE IN SHUTTLE BOX

4.7

23

3.0

ALONE IN SHUTTLE BOX SHUTTLED SPONTANEOUSLY 11 TIMES / MINUTE TRIED TO LEAP THRU TRANSPARENT CAGE WALL 12X IN 3 MINUTES

ALONE IN SHUTTLE BOX SHUTTLED SPONTANÉOUSLY 9 TIMES / MINUTE TRIED TO LEAP THRU TRANSPARENT CAGE WALL 5X IN 2 MINUTES ALONE IN SHUTTLE BOX

SHUTTLED SPONTANEOUSLY 16 TIMES / MINUTE

SULUTION - 4.0% ASCURBIC ACID

(M-I) 0061 OBSERVATIONS

> HOURS TIME I 00SE / 40NKEY

ew GM MG/KG NUMBER

830 1.0

FORWARD SOMERSAULT SHUTTLED ON LIGHT CUE GRASPING AND RIGHTING PEFI EYER INTACT RESPIRATIONS PER MINUTE RESPIRATIONS PER MINUTE DECREASED EQUILIBRIUM NO CHANGES 6.0 0.3

99

RESPIRATIONS PER MINUTE 48
WAS RETURNED TO HOME CAGE WITH OTHER MONKEYS APPEARANCE AND BEHAVIOR NORMAL SOLUTION - DISTILLED WATER

1.9

1900 (I-M)

DOSE NT. TIME, OBSERVATIONS MG/KG GM. HOURS

MONKEY

10.0 815 0.1 PARTIAL PALPEBRAL CLOSURE
FORMARD SOMERSAULT
0.2 PLASTIC IMMOBILITY
MOYED HEAD A LITTLE TO LO

MOVED HEAD A LITTLE TO LOOK AROUND
RESPONSIVE TO SOUND
BIT GLOVED HAND
BIT GLOVED HAND
BIT ONLY SHUTTLE, EVEN AFTER REPEATED ELECTRIC SHOCKS
SQUEALED ON ELECTRIC SHOCK

RESPONSIVE TO VISUAL STIMULI RESPONSIVE TO SOUND OTHERWISE AS ON PREVIOUS REPORTED INTERVAL

0.5

AROUSED BY HANDLING, STOOD ON HIND LEGS, TREMBLED, LAY ON SIDE LYING ON ABDOMEN 0.8

PALPEBRAL CLOSURE RESPONDED TO SHARP SOUND BY MOVING SLIGHTLY AND WHIMPERING RESPIRATIONS PER MINUTE DEEP RESPIRATIONS LYING ON SIDE 1.9

SOLUTION - 0.9% SALINE

WI. TIME OBSERVATIONS GM. HOURS

2.8 LYING ON SIDE GRASP STRONG. RESISTED BEING MOVED WAS PLACED IN ISOLATION CAGE

815

10.0

DOSE MG/KG

MONKEY

STOOD ON 4 FEET TREMORS IN HIND LEGS IN ISOLATION CAGE

4.5

SITTING QUIETLY APPEARED TO SLEEP, UNTIL AROUSED BY SOUND RESPONSE TO SOUND SLUGGISH

CLIMBING AROUND ON LATTICE WALL OF ISOLATION CAGE FACE BLUISH FACE BLUISH FOOD RACTIVITY SLUGGISH ATE FOOD SLUGGISHLY

5.5

APPEARANCE AND BEHAVIOR NORMAL HAD EATEN MOST OF FOOD IN ISOLATION CAGE

SOLUTION - 0.9% SALINE

(I-M) 1900

MT.

DOSE

JONKEY VUMBER

œw.

MG/KG

OBSERVATIONS

APPEARANCE AND BEHAVIOR NORMAL PRE-DOSE (SAME DAY) RESPIRATIONS PER MINUTE 100 HOURS TIME 0.0

645

1.0

SHUTTLED ON LAGHT AND SOUND CUES RESPIRATIONS PER MINUTE

> 0.2 0.3

0,1

SHUTTLED ON LIGHT AND SOUND CUES

SITTING QUIETLY PARTIAL PALPEBRAL CLOSURE SLIGHT - PHOTOPHOBIA

> 7.0 5.5

PALPEBRAL OPENING RETURNING LOCOMOTOR ACTIVITY

SOLUTION - DISTILLED WATER

OBSERVATIONS HOURS TIME Ĭ,

DOSE

HONKEY

g G MG/KG NUMBER 0.25

634

3.0

PARTIAL PALPEBRAL CLOSURE CROUCHING POSTURE HEAD DROP

BETWEEN N.R. SHUTTLE TRIALS MUCH SPONTANEOUS SHUTTLING (NORMALLY NONE, DURING SHUTTLE TEST) SLIGHT SLOW TREMORS IN NECK

0.7

SOLUTION - 0.9% SALINE

TOXIC SIGNS BEGINNING TO ABATE

8

PAGE

PHYSICAL AND NEOROGOSTON (1-M)	OBSERVATIONS	ar ar	PARTIAL PALPEBRAL CLOSURE DECREASED LOCOMOTOR ACTIVITY DECREASED EXCITABILITY
CAL AND N	TIME	HOURS	622 0•2
PHYSI	• Tw	eW9	622
	DOSE	MG/KG	1.0

HONKEY NUMBER

SKIN AROUND EYES SLIGHTLY REDDENED PARTIAL PALPEBRAL OPENING EXCITABILITY RETURNED TO USUAL LEVEL

1.5

PARTIAL PALPEBRAL CLOSURE HICCOUGHS

1:1

SOLUTION - 0,9% SALINE

APPEARANCE AND BEHAVIOR NORMAL

. 54

SOLUTION - 0.9% SALINE

SITTING UP AND LOOKING AROUND

PARTIAL PALPEBRAL CLOSURE PARTIAL PALPEBRAL CLOSURE FACE AROUND EYES NOT RED

PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS

				₹
				WIDE
2100 (I-M)	OBSERVATIONS	-	RESPIRATIONS PER MINUTE 90 APPEARANCE AND BEHAVIOR NORMAL PRE-DOSE (SAME DAY)	RESPIRATIONS PER MINUTE 54 PARTIAL PALPERAL CLOSUGE SATIAL RACUND EYES SLIGHTLY REDDENED LOW, STIFF CROUCHING POSTURE, FEET WIDE A
•	TIME	HOURS	0•0	0.3
	¥.	g M	625	
	DOSE	MG/KG	3.2	g ·

MONKEY NUMBER

USUALLY SHUTPLED ONLY AFTER REPEATED ELECTRIC SHOCKS SITTING WITH HEAD FORWARD AND RESTING ON FLOOR MUCH VOCALIZING AFTER ELECTRIC SHOCK LYING ON SIDE: IN SHUTTLE BOX WITH OTHER MONKEYS LYING ON SIDE IN SHUTTLE BOX WITH OTHER MONKEYS SITTING UP AND LOOKING AROUND BETWEEN N.R. SHUTTLE TRIALS

> 1,5 2,5 3,3

0,5

PART & SL. HEAD DROP

2277 (SUBCUTANEOUS) OBSERVATIONS HOURS TIME GM. MG/KG DOSE YONKEY NUMBER

ROLLED OVER ONTO BACK FREQUENTLY SHUTTLED ON LIGHT AND SOUND CUES SHUTTLED ON LIGHT AND SOUND CUES SHUTTLED ON LIGHT AND SOUND CUES APPEARANCE AND BEHAVIOR NORMAL PRE-DOSE (SAME DAY) RESPIRATIONS PER MINUTE 102 SLIGHT PALPEBRAL CLOSURE 0.5 . 0.2 0,3 0.0 653 0,18

LAY ON BACK FOR A FEW SECONDS BETWEEN No.R. SHUTTLE TRIALS

MOUNTED MONKEY IN IN UNUSUAL. AGGRESSIVE MANNER

9.0

SOLUTION - 0.9% ASCORBIC ACID

٠		
2277 (SUBCUTANEOUS)	JBSERVATIONS T	an an a de
22	OBSE	
•	WT. TIME	HOURS
	• LM	GM.
	DOSE	MG/KG
	40NKEY	NUMBER

		~		œ
		FLOOI		FLOO
		S		N _O
~		RETURNING LOCOMOTOR ACTIVITY AT TIMES STOOD ON HIND LEGS• RESTING TOP OF HEAD ON FLOOR	۲۶	RETURNING LOCOMOTOR ACTIVITY AT TIMES STOOD ON HEAD ON FLOOR TOXIC SIONS, DECREASING TOXIC SIONS, DECREASING
<u> </u>		P	NKE	90
oNK.		T0P	Ñ.	T0P
Σ Σ		9 I	표	. <u>S</u>
Į.		EST	O	EST
MOU			S.	
FELL OVER ONTO BACK, AFTER MOUNTING MONKEY BETWEEN N.R. SHUTTLE TRIALS	SITTING QUIETLY PARTIAL PALPEBRAL CLOSURE BETWEEN P.R. SHUTTLE TRIALS	RETURNING LOCOMOTOR ACTIVITY AT TIMES STOOD ON HIND LEGS:	LAY ON BACK AND PULLED TAILS OF OTHER MONKEYS	RETURNING LOCOMOTOR ACTIVITY AT TIMES STOOD ON HIND LEGS, TOXIC SIGNS DECREASING
AF.	OSU TR	ACT	Œ.	ACT ND NG
ACK,	7 1 2	TOR N HI	PULL	TOR N HI EASI
SEU.	SITTING QUIETLY PARTIAL PALPEBRAL CLOSURE BETWEEN P.R. SHUTTLE TRIAI	OWO O	QV	RETURNING LOCOMOTOR ACTI AT TIMES STOOD ON HIND L TOXIC SIGNS DECREASING
N N	SITTING QUIETLY PARTIAL PALPEBRA BETWEEN P.R. SH	2015	Y.	STOC NS. D
N KER	בר פ	ING	- BA	ING ES SIG
9 3	TIN	Z.E.	Š	TURN TIM
FEL	SIT PAF BET	AT	Ĺ	AT TO
1.0	3•0	5.0	5.5	54
-				
653				
0.18 653				
0.18		٠,		
_	₹ .			

SOLUTION - 0.9% ASCORBIC ACID

PHYSICAL AND NEUROLOGICAL EXAMINATIONS OF SQUIRREL MONKEYS	2277 (SUBCUTANEOUS)	OBSERVATIONS **		RESPIRATIONS ŘER MINUTE 66 PUPILS NORMAL IN SIZE AND REACTION TO LIGHT PRE-DOSE (SAME DAY)	INTERMITTENT CIRCLING ALONE IN SHUTTLE BOX	RESPIRATIONS PER MINUTE 45 RUMP HELD HIGH, HEAD HUNG LOW	IMMOBILE MENT TIMOSES IMMOBILE MED IN HAND SPONTANEOUS LOCOMOTOR ACTIVITY MARKEDLY REDUCED	NO RESPONSE TO SOUND PUPILS NORMAL IN SIZE AND REACTION TO LIGHT
CAL AND	-	TIME	HOURS	0.0	0.1	0.2		٠.
PHYSI		¥.	• М9	830				
	ŕ	DOSE	MG/KG	0.3	, Ţ		3	
		YONKEY	NUMBER	⋖ .	1			

RESPIRATIONS PER MINUTE 36 COUNTING OWE'DEEP 6 ONE SHALLOW RESPIRATION AS ONE ONE DEEP RESPIRATION AITH ONE SHALLOW RESPIRATION GRASPING AND RIGHTING REFLEXES INTACT RESPONSIVE TO LOUD SOUND RESPONSIVE TO ELECTRIC SHOCK GENERALLY IMMOBILE PHOTOPHOBIA

SOLUTION - 0.9% ASCORBIC ACID

TOXIC SIGNS BEGINNING TO ABATE

0.7

2277 (SUBCUTANEOUS)

OBSERVATIONS HOURS TIME ž. Š MG/KG DOSE MONKEY NUMBER

SLIGHT SEDATION SHUTTLED ON ELECTRIC SHOCK LOCOMOTOR ACTIVITY SLOW AND AWKWARD LETHARGY MARKEDLY ABATED

2.3

830

0.3

WAS RETURNED 1TO HOME CAGE WITH OTHER MONKEYS APPROACHED MK. B IN ODD MANNER, PURSUED AS MK. NORMALLY PASSIVE WHEN MOUNTED BY MK. A OR MANY MINUTES

RETREATED

B , IN NORMAL MANNER SOLUTION - 0.9% ASCORBIC ACID SITTING QUIETLY WITH MK.

3,0

2598 (I-M)

ONKEY

DOSE HT. TIME' OBSERVATIONS | MG/KG GM. HOURS | SHUTTLED ON LIGHT | SHUTTLED ON LIGHT

WAS RETURNED TO HOME CAGE WITH OTHER MONKEYS PUPILS NORMAL IN SIZE AND REACTION TO LIGHT APPEARANCE AND BEHAVIOR NORMAL APPEARANCE AND BEHAVIOR NORMAL APPEARANCE AND BEHAVIOR NORMAL SHUTTLED ON LIGHT CUE HEART RATE 248 BEATS/MINUTE HEART RATE 200 BEATS/MINUTE RESPIRATIONS PER MINUTE 102 RESPIRATIONS PER MINUTE 102 KESPIRATIONS PER MINUTE 84 SHUTTLED ON LIGHT CUE SHUTTLED ON LIGHT CUE .3 7.0 . 8

SOLUTION - 0.1 N HYDROCHLORIC ACID QS WITH 0.9% SALINE

4.4 SECOND DOSING

RESPIRATIONS PER MINUTE 76 SHUTTLED ON LIGHT CUE SHUTTLED ON LIGHT CUE APPEARANCE AND BEHAVIOR NORMAL

5.1

PAGE A-2

HONKEY DOSE MT. TIME OBSERVATIONS
HUMBER MG/KG GM. HOURS

5.4 THIRD DOSING
5.9 APPREARANCE AND BEHAVIOR NORMAL
IN HOME CAGE
6.5 APPEARANCE AND BEHAVIOR NORMAL

1.22

MUCH SPONTANEOUS SHUTTLING (NORMALLY NONE, DURING SHUTTLE TEST) SOLUTION - 0.1 N HYDROCHLORIC ACID QS WITH 0.90/0 SALINE

MOVEMENTS SLIGHTLY JERKY

0.3

630

PAGE A-