SBML Model Report

Model name: "Panteleev2002-_TFPImechanism_schmema1"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Michael Schubert¹ at August 26th 2011 at 4:36 p. m. and last time modified at May 28th 2014 at 4:30 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	8
events	0	constraints	0
reactions	5	function definitions	0
global parameters	0	unit definitions	2
rules	0	initial assignments	0

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

¹EBI, schubert@ebi.ac.uk

2.1 Unit time

Name time

Definition 60 s

2.2 Unit substance

Name substance

Definition nmol

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	compartment		3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name compartment

4 Species

This model contains eight species. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
VIIa_TF	VIIa_TF	compartment	$nmol \cdot l^{-1}$		
X	X	compartment	$nmol \cdot l^{-1}$		
$VIIa_TF_X$	VIIa_TF_X	compartment	$n \mod \cdot 1^{-1}$		
VIIa_TF_Xa	VIIa_TF_Xa	compartment	$n \mod \cdot 1^{-1}$		
Ха	Xa	compartment	$n \mod \cdot 1^{-1}$		
TFPI	TFPI	compartment	$n \mod \cdot 1^{-1}$		
Xa_TFPI	Xa_TFPI	compartment	$nmol \cdot l^{-1}$		
Xa_TFPI_VIIa_TF	Xa_TFPI_VIIa_TF	compartment	$nmol \cdot l^{-1}$		

5 Reactions

This model contains five reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	reaction_1	reaction_1	$X + VIIa_TF \Longrightarrow VIIa_TF_X$	
2	${\tt reaction_2}$	reaction_2	$VIIa_TF_X \longrightarrow VIIa_TF_Xa$	
3	reaction_3	reaction_3	$VIIa_TF_Xa \Longrightarrow Xa + VIIa_TF$	
4	${\tt reaction_4}$	reaction_4	$Xa + TFPI \Longrightarrow Xa_TFPI$	
5	${\tt reaction_5}$	reaction_5	$VIIa_TF + Xa_TFPI \Longrightarrow Xa_TFPI_VIIa_TF$	

5.1 Reaction reaction_1

This is a reversible reaction of two reactants forming one product.

Name reaction_1

Reaction equation

$$X + VIIa_TF \Longrightarrow VIIa_TF_X$$
 (1)

Reactants

Table 5: Properties of each reactant.

Id	Name	SBO
X	X	0000010
${\tt VIIa_TF}$	VIIa_TF	0000010

Product

Table 6: Properties of each product.

Id	Name	SBO
VIIa_TF_X	VIIa_TF_X	0000011

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k1} \cdot [\text{X}] \cdot [\text{VIIa_TF}] - \text{k2} \cdot [\text{VIIa_TF_X}]\right) \tag{2}$$

Table 7: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000036	5.0		
k2	k2	0000038	770.0		

5.2 Reaction reaction_2

This is an irreversible reaction of one reactant forming one product.

Name reaction_2

Reaction equation

$$VIIa_TF_X \longrightarrow VIIa_TF_Xa$$
 (3)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
VIIa_TF_X	VIIa_TF_X	0000010

Product

Table 9: Properties of each product.

Id	Name	SBO
VIIa_TF_Xa	VIIa_TF_Xa	0000011

Kinetic Law

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit contains undeclared units

$$v_2 = \text{vol} (\text{compartment}) \cdot \text{k1} \cdot [\text{VIIa_TF_X}]$$
 (4)

Table 10: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000035	420.0		

5.3 Reaction reaction_3

This is a reversible reaction of one reactant forming two products.

Name reaction_3

Reaction equation

$$VIIa_TF_Xa \Longrightarrow Xa + VIIa_TF$$
 (5)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
VIIa_TF_Xa	VIIa_TF_Xa	0000010

Products

Table 12: Properties of each product.

Id	Name	SBO
Ха	Xa	0000011
${\tt VIIa_TF}$	VIIa_TF	0000011

Kinetic Law

SBO:0000083 mass action rate law for first order forward, second order reverse, reversible reactions, two products, continuous scheme

Derived unit contains undeclared units

$$v_3 = \text{vol} (\text{compartment}) \cdot (\text{k1} \cdot [\text{VIIa_TF_Xa}] - \text{k2} \cdot [\text{Xa}] \cdot [\text{VIIa_TF}])$$
 (6)

Table 13: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000035	770.0		$ \mathcal{L} $
k2	k2	0000039	5.0		

5.4 Reaction reaction_4

This is a reversible reaction of two reactants forming one product.

Name reaction_4

Reaction equation

$$Xa + TFPI \Longrightarrow Xa_TFPI$$
 (7)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
Хa	Xa	0000010
TFPI	TFPI	0000010

Product

Table 15: Properties of each product.

Id	Name	SBO
Xa_TFPI	Xa_TFPI	0000011

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k1} \cdot \left[\text{Xa}\right] \cdot \left[\text{TFPI}\right] - \text{k2} \cdot \left[\text{Xa_TFPI}\right]\right)$$
 (8)

Table 16: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000036	0.054		\overline{Z}
k2	k2	0000038	0.020		

5.5 Reaction reaction_5

This is a reversible reaction of two reactants forming one product.

Name reaction_5

Reaction equation

$$VIIa_TF + Xa_TFPI \Longrightarrow Xa_TFPI_VIIa_TF$$
 (9)

Reactants

Table 17: Properties of each reactant.

Id	Name	SBO
VIIa_TF	VIIa_TF	0000010
Xa_TFPI	$Xa_{-}TFPI$	0000010

Product

Table 18: Properties of each product.

Id	Name	SBO
Xa_TFPI_VIIa_TF	Xa_TFPI_VIIa_TF	0000011

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_5 = \text{vol} \left(\text{compartment} \right) \cdot \left(\text{k1} \cdot \left[\text{VIIa_TF} \right] \cdot \left[\text{Xa_TFPI} \right] - \text{k2} \cdot \left[\text{Xa_TFPI_VIIa_TF} \right] \right)$$
 (10)

Table 19: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000036	0.440		$ \mathcal{L} $
k2	k2	0000038	0.066		

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the

consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

6.1 Species VIIa_TF

Name VIIa_TF

Initial concentration $0.9999997 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_1, reaction_5 and as a product in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{VIIa_TF} = \begin{vmatrix} v_3 \end{vmatrix} - \begin{vmatrix} v_1 \end{vmatrix} - \begin{vmatrix} v_5 \end{vmatrix} \tag{11}$$

6.2 Species X

Name X

Initial concentration 169.9999 nmol·l⁻¹

This species takes part in one reaction (as a reactant in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}X = -v_1 \tag{12}$$

6.3 Species VIIa_TF_X

Name VIIa_TF_X

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_2 and as a product in reaction_1).

$$\frac{d}{dt}VIIa_TF_X = v_1 - v_2 \tag{13}$$

6.4 Species VIIa_TF_Xa

Name VIIa_TF_Xa

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_3 and as a product in reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{VIIa_TF_Xa} = v_2 - v_3 \tag{14}$$

6.5 Species Xa

Name Xa

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_4 and as a product in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} X \mathbf{a} = |v_3| - |v_4| \tag{15}$$

6.6 Species TFPI

Name TFPI

Initial concentration $2.399999 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPI} = -v_4 \tag{16}$$

6.7 Species Xa_TFPI

Name Xa_TFPI

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_5 and as a product in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Xa_TFPI} = |v_4| - |v_5| \tag{17}$$

6.8 Species Xa_TFPI_VIIa_TF

Name Xa_TFPI_VIIa_TF

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in reaction_5).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Xa_TFPI_VIIa_TF} = |v_5| \tag{18}$$

A Glossary of Systems Biology Ontology Terms

- **SBO:0000010 reactant:** Substance consumed by a chemical reaction. Reactants react with each other to form the products of a chemical reaction. In a chemical equation the Reactants are the elements or compounds on the left hand side of the reaction equation. A reactant can be consumed and produced by the same reaction, its global quantity remaining unchanged
- **SBO:0000011 product:** Substance that is produced in a reaction. In a chemical equation the Products are the elements or compounds on the right hand side of the reaction equation. A product can be produced and consumed by the same reaction, its global quantity remaining unchanged
- **SBO:000035 forward unimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving only one reactant. This parameter encompasses all the contributions to the velocity except the quantity of the reactant. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000036 forward bimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving two reactants. This parameter encompasses all the contributions to the velocity except the quantity of the reactants. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000038 reverse unimolecular rate constant, continuous case:** Numerical parameter that quantifies the reverse velocity of a chemical reaction involving only one product. This parameter encompasses all the contributions to the velocity except the quantity of the product. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000039** reverse bimolecular rate constant, continuous case: Numerical parameter that quantifies the reverse velocity of a chemical reaction involving only one product. This parameter encompasses all the contributions to the velocity except the quantity of the product. It is to be used in a reaction modelled using a continuous framework
- SBO:000049 mass action rate law for first order irreversible reactions, continuous scheme:

 Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does not include any reverse process that creates the reactants from the products. The change of a product quantity is proportional to the quantity of one reactant. It is to be used in a reaction modelled using a continuous framework.
- SBO:0000083 mass action rate law for first order forward, second order reverse, reversible reactions, two products, continuous scheme: Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does include a reverse process that creates the reactants from the products. The rate of the forward process is proportional to

the quantity of one reactant. The rate of the reverse process is proportional to the product of two product quantities. It is to be used in a reaction modelled using a continuous framework.

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme: Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does include a reverse process that creates the reactants from the products. The rate of the forward process is proportional to the product of two reactant quantities. The rate of the reverse process is proportional to the quantity of one product. It is to be used in a reaction modelled using a continuous framework.

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany