Programación entera y binaria

Métodos cuantitativos para la toma de decisiones Informática Empresarial Jonathan Fernández González

Introducción

 Uno de los supuestos de la PL es que las variables de decisión pueden tomar valores fraccionarios como X₁= 0,33 X₂= 1,57

- Un gran número de problemas se resuelven solamente si se tienen valores enteros (vehículos a comprar, computadoras a comprar etc.)
- Un problema de la PL es que obliga a los tomadores de decisiones a establecer un solo objetivo

Introducción

- Un gerente puede querer maximizar la utilidad, pero también puede querer maximizar la participación en el mercado, mantener las fuerzas de trabajo completas y minimizar costos.
- Una empresa puede tener como objetivo, maximizar la extracción de recursos, la fiabilidad y seguridad, y minimizar el costo de operación como los impactos ambientales generados en la comunidad.

Programación entera

- Un modelo de programación entera es un modelo con restricciones y una función objetivo idénticas a las formuladas en PL.
- La diferencia es que una o más variables de decisión tiene que tomar un valor entero en la solución final. Existen tres tipos:

- 1. Programación entera pura
- 2. Programación entera mixta
- 3. Programación entera cero-uno

Una empresa fabrica dos productos (A y B), el proceso de producción de ambos productos implica dos procesos, cableado y ensamblaje de la siguiente manera:

2 horas para cablear A y 3 para B El ensamble requiere de 6 horas A y 5 para B

La capacidad de producción solo tiene disponibles 12 horas para cableado y 30 horas para ensamble. Si cada producto A genera ingresos de \$7 y cada producto B \$6

¿Cómo se formularía la decisión de mezcla de producción en PL buscando maximizar las utilidades?

Maximizar utilidad =
$$7X_1 + 6 X_2$$

 $2X_1 + 3X_2 <= 12$
 $6X_1 + 5X_2 <= 30$
 $X_1, X_2 >= 0$

 X_1 = producción de A X_2 = producción de B

Resultado:

$$X_1 = 3,75$$

$$X_2 = 1,5$$

Variables	X1	X2			
Valores	3.75	1.5	Total		
Ingresos	7	6	35	5.25	
Restricciones			LHS		Rhs
Cableado	2	3		12 <=	12
Ensamble	6	5		30 <=	30

Resultado:

$$X_1 = 3,75$$

$$X_2 = 1,5$$

Redondear estos resultados puede hacer que:

- Salgan de la zona factible
- No sería una respuesta práctica

Si se redondea a una solución factible, puede que esta no sea óptima.

Una solución obtenida con programación entera, nunca genera una utilidad mayor que la que se logra con PL, casi siempre significa un valor menor.

Planeamiento con variables 0-1 (binarias)

- Se asigna 0 si no se satisface una condición
- Se asigna 1 si satisface una condición

En problemas de asignación, que implica decidir que individuos asignar un conjunto de trabajos (1 si se le asigna y 0 si no se le asigna)

- Una empresa especializada en carteras de inversión tiene las siguientes peticiones de un cliente:
- Por lo menos dos compañías petroleras de (A, D y E) deben estar en la cartera de inversión
- No se puede hacer más de una inversión en compañías petroleras (B y C)
- Se tiene que adquirir una de dos carteras de acciones de empresas petroleras (FyG)

El cliente dispone de \$3 millones para invertir. El objetivo es maximizar el rendimiento anual sujeto a las restricciones.

El cliente dispone de \$3 millones para invertir. El objetivo es maximizar el rendimiento anual sujeto a las restricciones.

		Rendimiento	Costo por		
Cartera	Compañía	anual	acciones en		
		allual	millones		
1	Α	50	480		
2	В	80	540		
3	С	90	680		
4	D	120	1000		
5	E	110	700		
6	F	40	510		
7	G	75	900		

X=1 si se compra la acción X=0 si no se compra la acción

Maximizar rendimiento=
$$50X_1 + 80X_2 + 90X_3 + 120X_4 + 110X_5 + 40X_6 + 75X_7$$

$$X_1 + X_4 + X_5 >= 2$$

$$X_2 + X_3 <= 1$$

$$X_6 + X_7 = 1$$

$$480X_1 + 540X_2 + 680X_3 + 1000X_4 + 700X_5 + 510X_6 + 900X_7 <= 3.000$$

Cartera	Compañía	Rendimiento anual	Costo por acciones en millones
1	А	50	480
2	В	80	540
3	С	90	680
4	D	120	1000
5	Е	110	700
6	F	40	510
7	G	75	900

Maximizar rendimiento= $50X_1 + 80X_2 + 90X_3 + 120X_4 + 110X_5 + 40X_6 + 75X_7$

$$X_1 + X_4 + X_5 >= 2$$

$$X_2 + X_3 <= 1$$

$$X_6 + X_7 = 1$$

$$480X_1 + 540X_2 + 680X_3 + 1000X_4 + 700X_5 + 510X_6 + 900X_7 \le 3.000$$

Variables	X1	X2	Х3	X4	X5	X6	X7			
Valores	1	1	1	1	1	. 1	. 1	Retorno		
Ingresos	50	80	90	120	110	40	75	565		
Restricciones								Lhs		
A, D y E	1			1	1			3	>=	2
ВуС		1	1					2	<=	1
FyG						1	1	2	=	1
3 millones	480	540	680	1000	700	510	900	4810	<=	3000

X1	X2	X3	X4	X5	X6	X7			
0	0	1	1	1	. 1	0	Retorno		
50	80	90	120	110	40	75	360		
							Lhs		
1			1	1			2	>=	2
	1	1					1	<=	1
					1	1	1	=	1
480	540	680	1000	700	510	900	2890	<=	3000
	50	0 0 50 80	0 0 1 50 80 90	0 0 1 1 50 80 90 120	0 0 1 1 1 50 80 90 120 110 1 1 1 1 1 1 1 1	0 0 1 1 1 1 50 80 90 120 110 40	0 0 1 1 1 1 0 50 80 90 120 110 40 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 0 Retorno 50 80 90 120 110 40 75 360 Lhs 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 0 Retorno 50 80 90 120 110 40 75 360 Lhs 1 1 1 2 >= 1 1 1 1 1 1 1 1 1 1 1 1 1