数据采集方法作业

姓名: 蒋贵豪 **学号:** B+X9bo

2021年10月18日

题目 1. 某市进行家庭收入调查,分城镇居民和农村居民两部分抽样,在全部城镇 $N_1=23560$ 户中抽取,在全部农村 $N_2=148420$ 户中抽取(均按简单随机抽样进行),若设城镇居民抽取一户的平均费用是 $c_1=1$,农村抽取一户的平均费用为 $c_2=2$ 。城镇居民标准差 $S_1=3000$,农村居民标准差 $S_2=2500$ 。若要求的 95% 绝对误差限 d=200,求比例分配、Neyman 最优分配及一般最优分配下所需要的总样本量,又计算各种分配形式下的总费用(设 $c_0=0$)。

解答. 根据已知的数据,通过计算可以得到下表中的结果:

h	N_h	W_h	S_h	c_h	W_hS_h	$W_h S_h / \sqrt{c_h}$	$W_h S_h \sqrt{c_h}$
1	23560	0.137	3000	1	411.0	411.0	411.0
2	148420	0.863	2500	2	2157.5	1525.6	3051.2
求和	171980	1			2568.5	1936.6	3462.2

(1) 比例分配的总样本量为:

$$n = \frac{\sum_{h=1}^{L} W_h S_h^2}{\left(\frac{d}{z_{\frac{\alpha}{2}}}\right)^2 + \frac{1}{N} \sum_{h=1}^{L} W_h S_h^2} = \frac{0.137 \times 3000^2 + 0.863 \times 2500^2}{\left(\frac{200}{1.96}\right)^2 + \frac{1}{171980} \times (0.137 \times 3000^2 + 0.863 \times 2500^2)} \approx 634$$

而 $w_h = W_h$, 于是比例分配的总费用为

$$F = \sum_{h=1}^{L} [nW_h]c_h = [634 \times 0.137] \times 1 + [634 \times 0.863] \times 2 = 1181$$

(2)Neyman 分配的总样本量为:

$$n = \frac{\left(\sum_{h=1}^{L} W_h S_h\right)^2}{\left(\frac{d}{z_{\frac{\alpha}{2}}}\right)^2 + \frac{1}{N} \sum_{h=1}^{L} W_h S_h^2} = \frac{\left(0.137 \times 3000 + 0.863 \times 2500\right)^2}{\left(\frac{200}{1.96}\right)^2 + \frac{1}{171980} \times \left(0.137 \times 3000^2 + 0.863 \times 2500^2\right)} \approx 631$$

又由:

$$w_h = \frac{W_h S_h}{\sum\limits_{h=1}^{L} W_h S_h}$$

于是, Neyman 分配的总费用为:

$$F = \sum_{h=1}^{L} \left[n \frac{W_h S_h}{\sum_{h=1}^{L} W_h S_h} \right] c_h = \left[634 \times \frac{411}{2568.5} \right] \times 1 + \left[634 \times \frac{2157.5}{2568.5} \right] \times 2 = 1161$$

(3) 一般最优分配的总样本量为:

$$n = \frac{\left(\sum_{h=1}^{L} W_h S_h \sqrt{c_h}\right) \left(\sum_{h=1}^{L} W_h S_h / \sqrt{c_h}\right)}{\left(\frac{d}{z_{\frac{\alpha}{2}}}\right)^2 + \frac{1}{N} \sum_{h=1}^{L} W_h S_h^2} = \frac{\left(411 + 3051.2\right) \times \left(411 + 1525.6\right)}{\left(\frac{200}{1.96}\right)^2 + \frac{1}{171980} \times \left(0.137 \times 3000^2 + 0.863 \times 2500^2\right)} \approx 642$$

又由:

$$w_h = \frac{W_h S_h / \sqrt{c_h}}{\sum\limits_{l=1}^{L} W_h S_h / \sqrt{c_h}}$$

于是,一般最优分配的总费用为:

$$F = \sum_{h=1}^{L} \left[n \frac{W_h S_h / \sqrt{c_h}}{\sum_{h=1}^{L} W_h S_h / \sqrt{c_h}} \right] c_h = \left[642 \times \frac{411}{1936.6} \right] \times 1 + \left[634 \times \frac{1525.6}{1936.6} \right] \times 2 = 1148$$

题目 2. 调查某地区居民牛奶消费支出,以居民户为抽样单元,分为 4 层,每层抽 10 户。数据如下图所示;如果在得到第一次调查结果后,想再做一次调查,并且样本量仍为 40 个,则按比例分配和 Neyman 分配,各层的样本量应为多少?

		样本户牛奶年消费支出									
层	居民户总 数	1	2	3	4	5	6	7	8	9	10
1	200	10	40	0	110	15	10	40	80	90	0
2	400	50	130	60	80	100	55	160	85	160	170
3	750	180	260	110	0	140	60	200	180	300	220
4	1500	50	35	15	0	20	30	25	10	30	25

解答. 根据已知的数据,通过计算可以得到下表中的结果:

h	N_h	W_h	S_h	W_hS_h
1	200	0.07018	40.3078	2.8288
2	400	0.14035	46.5475	6.5329
3	750	0.26316	90.5845	23.8382
4	1500	0.52632	13.9044	7.3182
求和	2850	1		40.5181

- (1) **比例分配的各层样本量为:** $n_h = [nW_h]$, 通过表格中的数据**:** $n_1 = [40W_1] = 3$, $n_2 = [40W_2] = 6$, $n_3 = [40W_3] = 10$, $n_4 = [40W_4] = 21$ 。
 - (2)Neyman 分配的各层样本量为:

$$w_h = \frac{W_h S_h}{\sum\limits_{h=1}^L W_h S_h}$$

于是, $n_1 = [40w_1] = 3$, $n_2 = [40w_2] = 6$, $n_3 = [40w_3] = 24$, $n_4 = [40w_4] = 7$ 。

题目 3. 某公司进行财务审计,需要对原始凭证进行审核。该公司先后有两名出纳,由 A 出纳登记的原始凭证占 70%, B 出纳登记的原始凭证占 30%。审计人员从原始凭证中 随机抽出 100 份,结果发现,由 A,B 出纳登记的原始凭证分别为 43 份和 57 份,差 错分别为 1 份和 2 份。

- (1) 用简单随机抽样的公式估计登记原始凭证的差错率,并计算估计的标准差;
- (2) 用事后分层的公式估计登记原始凭证的差错率,并计算估计的标准差。 有限总体校正系数 $1-f\approx 1$

解答. (1) 简单随机抽样估计登记原始凭证的差错率为:

$$p = \frac{1+2}{100} = 3\%$$

方差为:

$$V(p) = \frac{1 - f}{n - 1} p (1 - p) = \frac{0.03 \times 0.97}{99} \approx 2.94 \times 10^{-4}$$

标准差为: $\sqrt{V(p)} \approx 0.0171$

(2) 事后分层估计登记原始凭证的差错率为:

$$p_{pst} = \sum_{h=1}^{L} W_h p_h = 0.7 \times \frac{1}{43} + 0.3 \times \frac{2}{57} = 2.68\%$$

方差为:

$$V(p_{pst}) = \frac{1-f}{n} \sum_{h=1}^{L} W_h \frac{n_h}{n_h - 1} p_h (1-p_h) + \frac{1}{n^2} \sum_{h=1}^{L} (1 - W_h) \frac{n_h}{n_h - 1} p_h (1-p_h) = 2.69284 \times 10^{-4}$$

标准差为: $\sqrt{V(p_{pst})} \approx 0.0164$