MTH207A: Matrix Theory and Linear Estimation (Module II)

Satya Prakash Singh

Indian Institute of Technology Kanpur, India

September 24, 2022

g-inverse

Definition 1

Let A be an $m \times n$ matrix. A matrix G of order $n \times m$ is said to be a generalized inverse (or a g-inverse) of A if AGA = A.

Remark 1: If A is square and nonsingular, then A^{-1} is the unique g-inverse of A. Otherwise, A has infinitely many g-inverses.

g-inver<u>se</u>

Theorem 2

Let A, G be matrices of order $m \times n$ and $n \times m$ respectively. Then the following conditions are equivalent:

- (i) G is a g-inverse of A.
- (ii) For any $\mathbf{y} \in \mathcal{C}(A)$, $\mathbf{x} = G\mathbf{y}$ is a solution of $A\mathbf{x} = \mathbf{y}$.

g-inverse

Proof: $(i) \Rightarrow (ii)$. Any $\mathbf{y} \in \mathcal{C}(A)$ is of the form $\mathbf{y} = A\mathbf{z}$ for some \mathbf{z} . Then $A(G\mathbf{y}) = AGA\mathbf{z} = A\mathbf{z} = \mathbf{y}$.

 $(ii) \Rightarrow (i)$. Since $AG\mathbf{y} = \mathbf{y}$ for any $\mathbf{y} \in \mathcal{C}(A)$ we have $AGA\mathbf{z} = A\mathbf{z}$ for all \mathbf{z} . In particular, if we let \mathbf{z} be the ith column of the identity matrix, then we see that the ith columns of AGA and A are identical. Therefore, AGA = A.

Factorization theorem

Theorem 3

Let A be an $m \times n$ matrix of rank r, $r \neq 0$. Then there exist matrices B and C of order $m \times r$ and $r \times n$, respectively, such that Rank(B) = Rank(C) = r and A = BC. This decomposition is called a rank factorization of A.

Left and right inverse

Theorem 4

Let B be an $m \times r$ matrix of rank r. Then there exists a matrix X (called a left inverse of B), such that XB = I.

Theorem 5

Let C be an $r \times n$ matrix of rank r. Then there exists a matrix Y (called a right inverse of C), such that CY = I.

Proof of left inverse

Proof: If m=r, then B is nonsingular and admits an inverse. So suppose r < m. The columns of B are linearly independent. Thus we can find a set of m-r columns that together with the columns of B form a basis for \mathbb{R}^m . In other words, we can find a matrix U of order $m \times (m-r)$ such that [B,U] is nonsingular. Let the inverse of [B,U] be partitioned as $\begin{bmatrix} X \\ V \end{bmatrix}$, where X is $r \times m$. Since

$$\begin{bmatrix} X \\ V \end{bmatrix} \begin{bmatrix} B & U \end{bmatrix} = I, \tag{1}$$

we have XB = I.

Left inverse

Theorem 6

Let B be an $m \times r$ matrix of rank r. Then there exists a nonsingular matrix P such that

$$PB = \begin{bmatrix} I \\ 0 \end{bmatrix}.$$

Proof: Directly follows from (1).

Right inverse

Theorem 7

Let C be an $r \times n$ matrix of rank r. Then there exists a nonsingular matrix Q such that

$$CQ = \begin{bmatrix} I & 0 \end{bmatrix}.$$

Theorem 8

Let A be an $m \times n$ matrix of rank r. Then there exist nonsingular matrices P and Q such that

$$PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}.$$

Left inverse

Proof: By Factorization Theorem 3 there exist matrices B and C of order $m \times r$ and $r \times n$, respectively, such that Rank(B) = Rank(C) = r and A = BC. Now by Theorems 6 and 7 we have

$$PB = \begin{bmatrix} I \\ 0 \end{bmatrix}$$
 and $CQ = \begin{bmatrix} I & 0 \end{bmatrix}$

where P and Q are some nonsingular matrices. Therefore,

$$PAQ = PBCQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}.$$

Result: Let A be a matrix with of rank r and A = BC be its rank factorization. Then $G = C_r^- B_l^-$ is a g-inverse of A where B_l^- and C_r^- are left and right inverses of B and C respectively.

Result: Consider the matrices U, V and W of appropriate dimensions. It can be easily verified that $\begin{bmatrix} I & U \\ V & W \end{bmatrix}$ is a g-inverse of $\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$. By Theorem 8 any matrix A of rank r can be written as $A = P \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q$ for some nonsingular matrices P and Q. Now it can verified that $Q^{-1} \begin{bmatrix} I & U \\ V & W \end{bmatrix} P^{-1}$ is a g-inverse of A.

Result: Let A be of rank r. Choose any $r \times r$ nonsingular submatrix of A such that

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

where A_{11} is $r \times r$ and nonsingular. Then it can verified that

$$\begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix}$$

is a g-inverse of A.

Theorem 9

If G is a g-inverse of A, then $\mathcal{R}(A) = \mathcal{R}(AG) = \mathcal{R}(GA)$.

Proof: $\mathcal{R}(A) = \mathcal{R}(AGA) \leq \mathcal{R}(AG) \leq \mathcal{R}(A)$. Similarly, $\mathcal{R}(A) = \mathcal{R}(AGA) \leq \mathcal{R}(GA) \leq \mathcal{R}(A)$.

Reflexive *g*-inverse

Definition 10

A g-inverse of A is called a *reflexive* g-inverse if it also satisfies GAG = G. Observe that if G is any g-inverse of A, then GAG is a reflexive g-inverse of A.

Reflexive g-inverse

Theorem 11

Let G be a g-inverse of A. Then $\mathcal{R}_n(A) \leq \mathcal{R}_n(G)$. Furthermore, equality holds if and only if G is reflexive.

Proof: For any g-inverse G we have

$$\mathcal{R}_n(A) = \mathcal{R}_n(AGA) \leq \mathcal{R}_n(G)$$
. If G is reflexive, then

$$\mathcal{R}_n(G) = \mathcal{R}_n(GAG) \leq \mathcal{R}_n(A)$$
 and hence $\mathcal{R}_n(A) = \mathcal{R}_n(G)$.

Reflexive *g*-inverse

Conversely, suppose $\mathcal{R}_n(A) = \mathcal{R}_n(G)$. First observe that $\mathcal{C}(GA) \subset \mathcal{C}(G)$. By Theorem 9, $\mathcal{R}_n(G) = \mathcal{R}_n(GA)$, and hence $\mathcal{C}(G) = \mathcal{C}(GA)$. Therefore, G = GAX for some X. Now,

$$GAG = GAGAX = GAX = G,$$

and G is reflexive.

g–inverse

Theorem 12

Let A be a $m \times n$ matrix, let G be a g- inverse of A and let $\mathbf{y} \in \mathcal{C}(A)$. Then the class of solutions of $A\mathbf{x} = \mathbf{y}$ is given by $G\mathbf{y} + (I - GA)\mathbf{z}$, where \mathbf{z} is arbitrary.

Proof: For any z,

$$A\{Gy + (I - GA)z\} = AGy = y,$$

since $\mathbf{y} \in \mathcal{C}(A)$, and hence $G\mathbf{y} + (I - GA)\mathbf{z}$ is a solution.

g–inverse

Conversely, if \mathbf{u} is a solution i.e. $A\mathbf{u} = \mathbf{y}$, then set $\mathbf{z} = \mathbf{u} - G\mathbf{y}$ and calculate

$$\begin{aligned} \operatorname{G} \mathbf{y} + (\operatorname{I} - \operatorname{GA}) \mathbf{z} &= \operatorname{G} \mathbf{y} + (\operatorname{I} - \operatorname{GA}) (\mathbf{u} - \operatorname{G} \mathbf{y}) \\ &= \operatorname{G} \mathbf{y} + \mathbf{u} - \operatorname{GA} \mathbf{u} - \operatorname{G} \mathbf{y} + \operatorname{GAG} \mathbf{y} \\ &= \mathbf{u} - \operatorname{G} \mathbf{y} + \operatorname{GAGA} \mathbf{u} \\ &= \mathbf{u} - \operatorname{G} \mathbf{y} + \operatorname{GA} \mathbf{u} \\ &= \mathbf{u} - \operatorname{G} \mathbf{y} + \operatorname{G} \mathbf{y} = \mathbf{u}. \end{aligned}$$

Definition 13

A g-inverse G of A is said to be a minimum norm g-inverse of A if in addition to AGA = A, it satisfies (GA)' = GA.

Theorem 14

Let A be an $m \times n$ matrix. Then the following conditions are equivalent:

- (i) G is a minimum norm g-inverse of A.
- (ii) For any $\mathbf{y} \in \mathcal{C}(A)$, $\mathbf{x} = G\mathbf{y}$ is a solution of $A\mathbf{x} = \mathbf{y}$ with minimum norm.

Proof: $(i) \Rightarrow (ii)$ We know from Theorem 12 that the class of solutions of Ax = y is Gy + (I - GA)z for arbitrary z. We have to show that

$$||G\mathbf{y}|| \le ||G\mathbf{y} + (I - GA)\mathbf{z}|| \tag{2}$$

for any $\mathbf{y} \in \mathcal{C}(A)$ and any \mathbf{z} .

We have

$$||G\mathbf{y} + (I - GA)\mathbf{z}||^2 = ||G\mathbf{y}||^2 + ||(I - GA)\mathbf{z}||^2 + 2\mathbf{y}'G'(I - GA)\mathbf{z}.$$
 (3)

Since $\mathbf{y} \in \mathcal{C}(\mathbf{A})$, then $\mathbf{y} = \mathbf{A}\mathbf{u}$ for some \mathbf{u} . Hence

$$\mathbf{y}'G'(I-GA)\mathbf{z} = \mathbf{u}'A'G'(I-GA)\mathbf{z} = \mathbf{u}'GA(I-GA)\mathbf{z} = \mathbf{0},$$

since (GA)' = GA and AGA = A. Inserting this in (3) we get (2)

(ii) \Rightarrow (i). Since for any $\mathbf{y} \in \mathcal{C}(A)$, $\mathbf{x} = G\mathbf{y}$ is a solution of $A\mathbf{x} = \mathbf{y}$, by Theorem 2, G is a g-inverse of A. Now from (2) and (3) we have

$$0 \le |(\mathbf{I} - \mathbf{G}\mathbf{A})\mathbf{z}||^2 + 2\mathbf{u}'\mathbf{A}'\mathbf{G}'(\mathbf{I} - \mathbf{G}\mathbf{A})\mathbf{z}$$
 (4)

for all **u** and **z**.

Replace ${\bf u}$ by $\alpha {\bf u}$ in (4). If ${\bf u}'A'G'(I-GA){\bf z}<0$, then choosing α large and positive we get a contradiction to (4).

Similarly, if $\mathbf{u}'\mathrm{A}'\mathrm{G}'(\mathrm{I}-\mathrm{GA})\mathbf{z}>0$ then choosing α large and negative we get a contradiction. We therefore conclude that

$$\mathbf{u}'\mathrm{A}'\mathrm{G}'(\mathrm{I}-\mathrm{GA})\mathbf{z}=0$$

for all \mathbf{u} , \mathbf{z} and hence A'G'(I-GA)=0. Thus A'G' equals (GA)'GA, which is symmetric.

Least squares g-inverse

Definition 15

A g-inverse G of A is said to be a least squares g-inverse of A if in addition to AGA = A, it satisfies (AG)' = AG.

Theorem 16

Let A be an $m \times n$ matrix. Then the following conditions are equivalent:

- (i) G is a least squares g-inverse of A.
- (ii) For any \mathbf{x} , \mathbf{y} , $||AG\mathbf{y} \mathbf{y}|| \le ||A\mathbf{x} \mathbf{y}||$.

Least squares *g*-inverse

Proof: $(i) \Rightarrow (ii)$ Let $\mathbf{x} - G\mathbf{y} = \mathbf{w}$. We have to show that

$$||AG\mathbf{y} - \mathbf{y}|| \le ||AG\mathbf{y} - \mathbf{y} + A\mathbf{w}||. \tag{5}$$

We have

$$||AGy - y + Aw||^2 = ||AGy - y||^2 + ||Aw||^2 + 2w'A'(AG - I)y.$$
 (6)

But

$$\mathbf{w}'\mathbf{A}'(\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{y} = \mathbf{w}'(\mathbf{A}'\mathbf{G}'\mathbf{A}' - \mathbf{A}')\mathbf{y} = \mathbf{0},$$

since (AG)' = AG. Inserting this in (6) we get (5).

Least squares *g*—inverse

Proof: $(ii) \Rightarrow (i)$. For any vector \mathbf{x} , set $\mathbf{y} = A\mathbf{x}$ in (ii). Then we see that

$$||AGA\mathbf{x} - A\mathbf{x}|| \le ||A\mathbf{x} - A\mathbf{x}|| = 0$$

and hence AGAx = Ax. Since x is arbitrary, AGA = A, and therefore G is a g-inverse of A. The remaining part of the proof parallels that of $(ii) \Rightarrow (i)$ of Theorem 14.

Least squares *g*—inverse

Theorem 17

An $n \times m$ matrix G is a least squares generalized inverse of an $m \times n$ matrix A if and only if A'AG = A', or, equivalently, if and only if G'A'A = A.

Least squares g-inverse

Proof: Suppose that A'AG = A' or, equivalently, that G'A'A = A. Then, A'AGA = A'A, implying that AGA = A (verify!). Moreover, AG = G'A'AG = (AG)'AG, so that AG is symmetric. Thus, G is a least squares generalized inverse of A.

Conversely, if G is a least squares generalized inverse of A, then

$$A'AG = A'(AG)' = (AGA)' = A'$$

.

Least squares *g*—inverse

Proof: Verification that A'AGA = A'A, imply AGA = A.

Note that

$$(AGA - A)'(AGA - A) = (GA - I)'(A'AGA - A'A) = 0.$$

Thus, AGA - A = 0.

Moore-Penrose (MP) inverse

Definition 18

If G is a reflexive g-inverse of A that is both minimum norm and least squares then it is called a *Moore–Penrose inverse* of A. In other words, G is a Moore– Penrose inverse of A if it satisfies

$$AGA = A, GAG = G, (AG)' = AG, (GA)' = GA.$$
 (7)

Moore-Penrose inverse: Uniqueness

Let G_1 and G_2 are two MP inverses of A. Then both G_1 and G_2 will satisfy (7).

$$\begin{split} \mathrm{G}_1 &= \mathrm{G}_1 \mathrm{AG}_1 = \mathrm{G}_1 \mathrm{G}_1' \mathrm{A}' = \mathrm{G}_1 \mathrm{G}_1' \mathrm{A}' \mathrm{G}_2' \mathrm{A}' \\ &= \mathrm{G}_1 \mathrm{G}_1' \mathrm{A}' \mathrm{AG}_2 = \mathrm{G}_1 \mathrm{AG}_1 \mathrm{AG}_2 = \mathrm{G}_1 \mathrm{AG}_2 \\ &= \mathrm{G}_1 \mathrm{AG}_2 \mathrm{AG}_2 = \mathrm{G}_1 \mathrm{AA}' \mathrm{G}_2' \mathrm{G}_2 = \mathrm{A}' \mathrm{G}_1' \mathrm{A}' \mathrm{G}_2' \mathrm{G}_2 \\ &= \mathrm{A}' \mathrm{G}_2' \mathrm{G}_2 = \mathrm{G}_2 \mathrm{AG}_2 = \mathrm{G}_2. \end{split}$$

Moore-Penrose inverse: Existence

We will denote the MP inverse of A by A^+ . We now show the existence. Let A=BC be a rank factorization. Then it can be easily verified that

$$B^+ = (B'B)^{-1}B', \quad C^+ = C'(CC')^{-1},$$

and then

$$A^+ = C^+ B^+.$$