複素電力、電力三角形

9. 交流回路 (3)

有効電力

- 負荷Zに電圧Vを加えたときに流れる電流をIとする。
- 負荷の抵抗分で消費される平均の電力を有効電力Pと呼ぶ。 単位は[W]。
- Vに対するIの位相差を $\theta = \theta_I \theta_V$ とすると、 $P = |V||I| \cos \theta$

瞬時值表現

$$i(t) = \sqrt{2}I_e \sin(\omega t + \theta_I)$$
 [A]

$$v(t) = \sqrt{2}V_e \sin(\omega t + \theta_V)$$
 [V]

$$p(t) = i(t)v(t)$$
 [W]
= $I_e V_e \{ \cos(\theta_I - \theta_V) - \cos(2\omega t + \theta_I + \theta_V) \}$

周期Tの平均電力=有効電力

$$P = \frac{1}{T} \int_{0}^{T} p(t)dt$$

$$= V_{e}I_{e} \cos(\theta_{I} - \theta_{V})$$

$$= |V||I| \cos(\theta_{I} - \theta_{V})$$

フェーザ表現

$$I = I_e \angle \theta_I$$

$$V = V_e \angle \theta_V$$

$$\theta_I = \theta_V = 0$$
の場合

V,Iが既知の有効電力

①
$$V = 100 \angle 0^{\circ} \text{ [V]}, I = 5 \angle 0^{\circ} \text{ [A]}$$

$$P = 5 \times 100 \times \cos(0^{\circ} - 0^{\circ}) = 500 \text{ [W]}$$

 $\begin{array}{c}
100 \\
\hline
5 \\
I
\end{array}$

位相差が0°なら有効電力は電圧と電流の積。 つまり直流と同様。

②
$$V = 120 \angle 30^{\circ} \text{ [V]}, I = 3 \angle -15^{\circ} \text{ [A]}$$

$$P = 120 \times 3 \times \cos(-15^{\circ} - 30^{\circ}) = 255 \text{ [W]}$$

③
$$V = 100 \angle -90^\circ$$
 [V], $I = 5 \angle 0^\circ$ [A]
$$P = 100 \times 5 \times \cos(0^\circ + 90^\circ) = 0$$
 [W] 位相差が±90° (=C, L)なら有効電力は0になる!

力率

- cos θ は力率と呼び、電力消費の効率を表す。
- 力率が1なら、電源から供給された電力が100%消費されることを意味する。そのため、百分率、すなわち 100cos θ [%]で表すこともある。
- 電源から供給され得る電力は実効値の積となるが、これを 皮相電力と呼ぶ。 $P_a = |V||I|$ で表す。 単位は[VA](ボルトアンペア)。

力率改善

- $\theta = \theta_I \theta_V$ の定義は、Vに対するIの位相差。
- θ > 0のとき
 - 電流が電圧に対して進んでいる。 Zを扱うときはI基準

- 進み力率という。

- コンデンサと抵抗を含む回路(容量性負荷)で発生。

- θ < 0のとき
 - 電流が電圧に対して遅れている。
 - 遅れ力率という。
 - コイルと抵抗を含む回路(誘導性負荷)で発生。

- 典型的な大型負荷はモータ(=コイル)なので、大電力の用途では、遅れ位相の回路を扱うことが多い。
- 遅れ位相の回路にコンデンサを追加して、力率を1に近づけることを力率改善といい、送配電における節電のために行われる。

無効電力

- 負荷のリアクタンス分で一時的に蓄えられる電気エネルギーに対応した電力を無効電力 P_r と呼び、 $P_r = |V||I| \sin \theta$ で表される。単位は[var]。
- |V||I| sin θは、電圧Vと、位相が90°異なる電流との積という意味。

 $P_r = |V||I| \sin \theta$ = 250

複素電力と電力三角形

- ・ 複素電力 $P_c = \overline{V}I$ は、有効電力を実部、無効電力を虚部とする複素数である。
- P_c は、 P_r との幾何的な関係を表すベクトルであって、瞬時電力p(t)のフェーザ表示ではないことに注意
- P, P_r , P_c は直角三角形(電力三角形)を構成する。

まとめ

電圧Vを負荷Zにかけたときの電流をIとするとき、

名称		定義	単位	意味
		$P = V I \cos\theta$	[W]	負荷の抵抗分で消費される電 力
		$P_r = V I \sin\theta$	[var]	負荷のリアクタンス分で一時 的に蓄えられる電力
		$P_a = V I $	[VA]	電流と電圧の実効値の積

]を

- cos θ は力率〔
 力率が1なら、電源から供給された電力が100%消費される。
- ・ 複素電力 $P_c = \overline{V}I$ は、〔 〕を実部、〔 虚部とする複素数である。

9. 演習問題

- 1. ある受動回路の電圧 V_r 電流I が次の値をとるとき、有効電力 P_r ,無効電力 P_r ,力率 $\cos\theta$ を求めよ。
 - 1. V = 100 + j0 [V], I = 5 + j5 [A]
 - 2. $V = 200 \angle 10^{\circ} [V], I = 15 \angle -20^{\circ} [A]$
- 2. インピーダンス $Z = 30 + j40 [\Omega]$ の受動回路に、交流電源E = 100 + j0 [V]を加えたとき、回路に流れる電流Iを求めよ。また、有効電力 P_r , 無効電力 P_r , 力率 $\cos \theta$ を求めよ。
- 3. 図9.3の回路のa-b間にコンデンサCを並列に挿入したとき、力率が1となるようなCの容量を求めよ。

