	Uiteah
Name :	
Roll No.:	A Date of Executing and Explana
Invigilator's Signature :	

DIGITAL ELECTRONICS & INTEGRATED CIRCUITS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A												
(Multiple Choice Type Questions)												
1.	. Choose		the	correct	alternativ	ves	for	any	ten	of	the	
	following:								10	× 1 =	= 10	
	i)	110	01 –	10001 = 1	?							
		a)	100	1		b)	100	00				
		c)	101	0		d)	101	1.				
	ii)	i) What is the octal equivalent of $1001101 \cdot 1011_2$?										
		a)	114	·54		b)	115	.54				
		c)	115	·45		d)	115	·56.				
	iii)	The maximum number of 3-input gates in a 16 will be									n IC	
		a)	2			b)	3					
		c)	4			d)	5.					

4205 (O) [Turn over

- O Uledh
- iv) The Boolean expression $A\overline{B}C\overline{D}$ is
 - a) a sum term
 - b) a product term
 - c) a literal term
 - d) always 1.
- v) A feature that distinguishes the J-K flip-flop from the S-R flip-flop is the
 - a) toggle condition
 - b) preset input
 - c) type of clock
 - d) clear input.
- vi) The number of flip-flops required for a MOD-10 ring counter is
 - a) 10

b) 5

c) 4

- d) 12.
- vii) A modulus 10 Johnson counter requires
 - a) ten flip-flops
 - b) four flip-flops
 - c) five flip-flops
 - d) twelve flip-flops.

viii) The invalid state of an S-R flip-flop occurs when

- a) S = 1, R = 0
- b) S = 0, R = 1
- c) S = 1, R = 1
- d) S = 0, R = 0.

ix) A 4-bit parallel adder can add

- a) two 4-bit binary numbers
- b) two 2-bit binary numbers
- c) four bits at a time
- d) four bits in sequence.
- x) The minimum number of NAND gates required to implement the Boolean function $A + AB^{\dagger} + AB^{\dagger}C$ is equal to
 - a) zero

b) 1

c) 4

d) 7.

xi) The fastest logic gate family is

a) CMOS

b) ECL

c) TTL

d) RTL.

xii) The memory, which is ultraviolet erasable and electrically programmable is

a) RAM

- b) EEROM
- c) EPROM
- d) PROM.

4205 (O)

3

[Turn over

xiii) The carry expression of full adder circuit is

- a) $X^{\prime}Y + ZX^{\prime}$ b) XY + YZ + ZX
- c) $XY^{l} + YZ^{l} + ZX$ d) $X^{l}Y^{l} + XZ^{l} + YZ$.

xiv) Which one is used in EPROM eraser?

- Laser light a)
- b) UV ray
- LED light c)
- d) Sunrays.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. a) Perform the arithmetic operation:

(
$$-20$$
) $_{Decimal}$ + (15) $_{Decimal}$ + (-10) $_{Decimal}$ using

2's complement binary form.

- b) Design a 4-bit carry look ahead adder. What is the advantage of this adder? 4 + 1
- 3. Minimize the following expression is SOP form using Quine McClusky method:

$$F(A, B, C, D) = \Sigma m(1, 2, 3, 8, 9, 10, 11, 14) + \Sigma d(7, 15).$$

4205 (O)

- 4. Design and implement a full adder circuit using decoder.
- 5. a) Construct the following:
 - i) EX-OR using NAND
 - ii) EX-NOR using NOR.
 - b) Why are NAND gate and NOR gates called universal gates? 2 + 2 + 1
- 6. Simplify algebraically, $Y = AB + A\overline{B} (\overline{A}\overline{C})$.
- 7. What are the specifications for D/A converters?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) Expand the expression to a standard SOP form:

$$A\overline{B} + A\overline{BC}D + CD + B\overline{C}D + ABCD$$
.

b) Simplify the Boolean expression using Karnaugh map technique:

$$F\left(\,A,\,B,\,C,\,D\,\right) = \Sigma\,m\,(\,\,0,\,\,1,\,\,3,\,\,7,\,\,11,\,\,15\,\,) + \Sigma\,d\,(\,\,2,\,\,5,\,\,8,\,\,12\,\,).$$

Also implement the circuit using suitable logic gates.

c) Using 2's complement method subtract 101101_2 from 1011101_2 . 4 + 7 + 4

9. a) Using a 8X1 MUX, implement the following Boolean expression :

 $F(A, B, C, D) = \Sigma m(0, 2, 4, 7, 12, 15)$

- b) Design a full adder using shift register and full adder circuit. 5+10
- 10. a) Design a Master-Slave JK flip-flop using NAND gates only and explain its operation.
 - b) What is the advantage of Programmable Logic Device (PLD)? 12 + 3
- 11. What is a Register ? What is Universal Shift Register ? Implement a 4-bit universal register using multiplexer and D-flip-flops. 1+2+12
- 12. a) Design a 3-bit synchronous up-counter using J-K flip-flops.
 - b) Design a 3-bit Binary up/down counter with a directioncontrol M. Use J-K flip-flops in your design. 7 + 8

4205 (O)

- b) What is sample and hold circuit? Why do we need to use this circuit? 10 + 5
- 14. Write short notes on any *three* of the following: 3×5
 - a) Odd parity checker

converter.

13. a)

- b) Data lock-out in a counter
- c) Dual slope ADC
- d) 7 segment display device
- e) Carry look ahead adder
- f) SOP and POS canonical forms of binary function.