$12n_{0171} \ (K12n_{0171})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{23} + u^{22} + \dots + 6u^2 + b, -u^{21} + u^{20} + \dots + a + 2, u^{26} - 2u^{25} + \dots + 2u - 1 \rangle$$

$$I_2^u = \langle b + 1, u^2 + a + u + 3, u^3 + 2u - 1 \rangle$$

$$I_3^u = \langle b + 1, u^3 + a + u + 2, u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -u^{23} + u^{22} + \dots + 6u^2 + b, \ -u^{21} + u^{20} + \dots + a + 2, \ u^{26} - 2u^{25} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{21} - u^{20} + \dots + 6u - 2 \\ u^{23} - u^{22} + \dots + 12u^{3} - 6u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{22} + u^{21} + \dots + 6u - 1 \\ -u^{22} + u^{21} + \dots - 6u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} + 6u^{9} + 12u^{7} + 8u^{5} + u^{3} + 2u \\ u^{11} + 5u^{9} + 8u^{7} + 3u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{23} + u^{22} + \dots + 6u - 2 \\ u^{23} - u^{22} + \dots + 12u^{3} - 6u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{13} + 6u^{11} + 13u^{9} + 12u^{7} + 6u^{5} + 4u^{3} + u \\ u^{15} + 7u^{13} + 18u^{11} + 19u^{9} + 6u^{7} + 2u^{5} + 4u^{3} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{9} + 4u^{7} + 5u^{5} + 2u^{3} + u \\ u^{11} + 5u^{9} + 8u^{7} + 3u^{5} - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{25} + 8u^{24} - 59u^{23} + 102u^{22} - 370u^{21} + 552u^{20} - 1282u^{19} + 1632u^{18} - 2664u^{17} + 2824u^{16} - 3388u^{15} + 2869u^{14} - 2682u^{13} + 1765u^{12} - 1574u^{11} + 986u^{10} - 1012u^9 + 713u^8 - 547u^7 + 276u^6 - 182u^5 + 78u^4 - 102u^3 + 80u^2 - 8u - 13$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{26} + 30u^{24} + \dots + 25u + 1$
c_2, c_4	$u^{26} - 8u^{25} + \dots + 9u - 1$
c_3, c_7	$u^{26} - u^{25} + \dots - 64u + 128$
c_5, c_6, c_{10}	$u^{26} + 2u^{25} + \dots - 2u - 1$
<i>C</i> ₈	$u^{26} + 2u^{25} + \dots + 3088u - 11981$
c_9,c_{12}	$u^{26} - 2u^{25} + \dots - 7u^2 + 1$
c_{11}	$u^{26} - 2u^{25} + \dots + 48u - 72$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{26} + 60y^{25} + \dots - 337y + 1$
c_2, c_4	$y^{26} + 30y^{24} + \dots - 25y + 1$
c_3, c_7	$y^{26} - 45y^{25} + \dots - 258048y + 16384$
c_5, c_6, c_{10}	$y^{26} + 26y^{25} + \dots - 14y + 1$
c ₈	$y^{26} + 122y^{25} + \dots - 4243693030y + 143544361$
c_9,c_{12}	$y^{26} + 38y^{25} + \dots - 14y + 1$
c_{11}	$y^{26} + 18y^{25} + \dots - 16272y + 5184$

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.703140 + 0.538371I		
a =	0.595244 - 1.218420I	14.5729 + 1.9359I	-4.36941 + 0.69311I
b =	1.13151 - 1.20043I		
u =	0.703140 - 0.538371I		
a =	0.595244 + 1.218420I	14.5729 - 1.9359I	-4.36941 - 0.69311I
b =	1.13151 + 1.20043I		
u =	0.729197 + 0.493462I		
a =	2.28117 - 0.26467I	14.4224 - 6.7123I	-4.71846 + 4.71456I
b =	1.17041 + 1.16109I		
u =	0.729197 - 0.493462I		
a =	2.28117 + 0.26467I	14.4224 + 6.7123I	-4.71846 - 4.71456I
b =	1.17041 - 1.16109I		
u = -	-0.657044 + 0.360115I		
a =	1.94829 - 0.09632I	3.09785 + 3.69296I	-4.58596 - 5.59657I
b =	0.522022 - 0.742639I		
u = -	-0.657044 - 0.360115I		
a =	1.94829 + 0.09632I	3.09785 - 3.69296I	-4.58596 + 5.59657I
b =	0.522022 + 0.742639I		
u = -	-0.532790 + 0.522258I		
a =	0.281675 + 0.540170I	3.71321 + 0.25250I	-2.90666 - 1.69873I
b =	0.345233 + 0.836005I		
u = -	-0.532790 - 0.522258I		
a =	0.281675 - 0.540170I	3.71321 - 0.25250I	-2.90666 + 1.69873I
b =	0.345233 - 0.836005I		
u =	0.146766 + 1.279190I		
a =	1.289160 - 0.159208I	2.95015 - 2.37770I	-2.22960 + 4.04579I
b =	0.339771 + 0.227061I		
u =	0.146766 - 1.279190I		
a =	1.289160 + 0.159208I	2.95015 + 2.37770I	-2.22960 - 4.04579I
b =	0.339771 - 0.227061I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.041859 + 1.351780I		
a = -1.30338 - 1.15705I	2.15651 + 1.07901I	-3.64779 + 0.86156I
b = -1.156640 + 0.215585I		
u = -0.041859 - 1.351780I		
a = -1.30338 + 1.15705I	2.15651 - 1.07901I	-3.64779 - 0.86156I
b = -1.156640 - 0.215585I		
u = 0.108685 + 1.405560I		
a = 0.007384 + 1.006780I	4.56460 - 2.76012I	-2.16196 + 3.94765I
b = -0.587676 - 0.621059I		
u = 0.108685 - 1.405560I		
a = 0.007384 - 1.006780I	4.56460 + 2.76012I	-2.16196 - 3.94765I
b = -0.587676 + 0.621059I		
u = -0.24567 + 1.43288I		
a = 1.45979 + 0.68729I	8.83594 + 6.98292I	-1.16198 - 5.80218I
b = 0.662222 - 0.763929I		
u = -0.24567 - 1.43288I		
a = 1.45979 - 0.68729I	8.83594 - 6.98292I	-1.16198 + 5.80218I
b = 0.662222 + 0.763929I		
u = 0.512846		
a = 1.47619	-1.00355	-9.54280
b = 0.224405		
u = -0.17183 + 1.48536I		
a = -0.125401 - 0.252038I	10.21460 + 2.79653I	0 1.62269I
b = 0.312586 + 1.039960I		
u = -0.17183 - 1.48536I		
a = -0.125401 + 0.252038I	10.21460 - 2.79653I	0. + 1.62269I
b = 0.312586 - 1.039960I		
u = 0.25787 + 1.50930I		
a = 1.32769 - 1.23506I	-18.5465 - 10.3199I	-1.57367 + 4.71876I
b = 1.21947 + 1.15279I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.25787 - 1.50930I		
a = 1.32769 + 1.23506I	-18.5465 + 10.3199I	-1.57367 - 4.71876I
b = 1.21947 - 1.15279I		
u = 0.23540 + 1.52332I		
a = -0.334114 - 0.224598I	-18.1670 - 1.4877I	-1.145266 + 0.723281I
b = 1.12696 - 1.25945I		
u = 0.23540 - 1.52332I		
a = -0.334114 + 0.224598I	-18.1670 + 1.4877I	-1.145266 - 0.723281I
b = 1.12696 + 1.25945I		
u = 0.368033 + 0.267400I		
a = -0.272224 + 1.261050I	-0.775564 - 1.043300I	-8.38623 + 6.25558I
b = -0.657600 - 0.268641I		
u = 0.368033 - 0.267400I		
a = -0.272224 - 1.261050I	-0.775564 + 1.043300I	-8.38623 - 6.25558I
b = -0.657600 + 0.268641I		
u = -0.312651		
a = -4.78676	-2.08164	2.25490
b = -1.08095		

II.
$$I_2^u = \langle b+1, u^2+a+u+3, u^3+2u-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} - u - 3\\-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} - u - 2\\-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\-u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u\\-u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2}+1\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}+1\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2}-u\\u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2}-u-2\\-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2}-u+1\\u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-7u^2 5u 18$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{2}	$(u-1)^3$
c_3, c_7	u^3
C ₄	$(u+1)^3$
c_5, c_6, c_9	$u^3 + 2u - 1$
c_8, c_{10}, c_{12}	$u^3 + 2u + 1$
c_{11}	$u^3 + 3u^2 + 5u + 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_7	y^3
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{12}$	$y^3 + 4y^2 + 4y - 1$
c_{11}	$y^3 + y^2 + 13y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.22670 + 1.46771I		
a = -0.670516 - 0.802255I	7.79580 + 5.13794I	-2.14701 - 2.68036I
b = -1.00000		
u = -0.22670 - 1.46771I		
a = -0.670516 + 0.802255I	7.79580 - 5.13794I	-2.14701 + 2.68036I
b = -1.00000		
u = 0.453398		
a = -3.65897	-2.43213	-21.7060
b = -1.00000		

III.
$$I_3^u = \langle b+1, u^3+a+u+2, u^4+u^3+2u^2+2u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - u - 2 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - u - 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} - 2u - 1 \\ -u^{3} - u^{2} - u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - u - 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + u^{2} + 2u + 2 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^3 + 2u^2 2u 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_7	u^4
C ₄	$(u+1)^4$
c_5, c_6, c_9	$u^4 + u^3 + 2u^2 + 2u + 1$
c_8, c_{10}, c_{12}	$u^4 - u^3 + 2u^2 - 2u + 1$
c_{11}	$(u^2 - u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$
c_{11}	$(y^2+y+1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621744 + 0.440597I		
a = -1.50000 - 0.86603I	1.64493 + 2.02988I	-5.73686 - 3.25323I
b = -1.00000		
u = -0.621744 - 0.440597I		
a = -1.50000 + 0.86603I	1.64493 - 2.02988I	-5.73686 + 3.25323I
b = -1.00000		
u = 0.121744 + 1.306620I		
a = -1.50000 + 0.86603I	1.64493 - 2.02988I	-8.76314 + 4.54099I
b = -1.00000		
u = 0.121744 - 1.306620I		
a = -1.50000 - 0.86603I	1.64493 + 2.02988I	-8.76314 - 4.54099I
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$((u-1)^7)(u^{26} + 30u^{24} + \dots + 25u + 1)$	
c_2	$((u-1)^7)(u^{26} - 8u^{25} + \dots + 9u - 1)$	
c_3, c_7	$u^7(u^{26} - u^{25} + \dots - 64u + 128)$	
c_4	$((u+1)^7)(u^{26} - 8u^{25} + \dots + 9u - 1)$	
c_5, c_6	$ (u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{26} + 2u^{25} + \dots - 2u - 1) $	
c_8	$(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{26} + 2u^{25} + \dots + 3088u - 1198)$	31)
<i>c</i> ₉	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{26} - 2u^{25} + \dots - 7u^2 + 1)$	
c_{10}	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{26} + 2u^{25} + \dots - 2u - 1)$	
c_{11}	$((u^2 - u + 1)^2)(u^3 + 3u^2 + 5u + 2)(u^{26} - 2u^{25} + \dots + 48u - 72)$	
c_{12}	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{26} - 2u^{25} + \dots - 7u^2 + 1)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^7)(y^{26} + 60y^{25} + \dots - 337y + 1)$
c_2, c_4	$((y-1)^7)(y^{26} + 30y^{24} + \dots - 25y + 1)$
c_3, c_7	$y^7(y^{26} - 45y^{25} + \dots - 258048y + 16384)$
c_5, c_6, c_{10}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{26} + 26y^{25} + \dots - 14y + 1)$
c_8	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)$ $\cdot (y^{26} + 122y^{25} + \dots - 4243693030y + 143544361)$
c_9, c_{12}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{26} + 38y^{25} + \dots - 14y + 1)$
c_{11}	$((y^2 + y + 1)^2)(y^3 + y^2 + 13y - 4)(y^{26} + 18y^{25} + \dots - 16272y + 5184)$