离散数学第八次作业

一些提醒

- 1. 请仔细阅读教材上的定义 1、2、3(P145)以及相关定理,并检查你的答案能否从中找到依据;
- 2. 如无特殊说明,本次作业中"可数"总包括"有限"和"可数无限"两种情况;
- 3. 本次作业中,若找到了集合 A 到已知可数集(如 \aleph_0)的单射,可以直接说 A 是可数集;
- 4. 本次作业中,若找到了已知不可数集(如 \aleph_1)到集合 B 的单射,可以直接说 B 是不可数集。

Problem 1

计算下列集合的基数.

a)
$$A = \{x, \{\}, \{x\}\}$$

b)
$$B = \{x \mid x = n^2 \land n \in N\}$$

c)
$$C = \{x \mid x = n^{109} \land n \in N\}$$

d) $B \cap C$

e) 所有整系数一元二次方程的根的集合

f) 平面上所有的圆心在 x 轴上的单位圆的集合

Problem 2

如果 A 和 B 是集合, 证明:

- a) 如果 $A \subseteq B$, 则 $|A| \le |B|$ 。
- b) 如果 A 可数且存在一个从 A 到 B 的满射函数 f, 则 B 也是可数的。

Problem 3

设 $A = \{a, b, c\}, B = 2^A,$ 由定义证明 $\mathcal{P}(A) \approx B$.

Problem 4

令 $\{1,2,3\}^{\omega}$ 为所有仅由数字 1,2 或 3 构成的无限长的序列的集合。证明该集合不可数。

Problem 5

请证明: $\mathbb{N}^{\mathbb{N}} \approx R$, (注: A^{B} 表示 $\{f \mid f : B \to A\}$)。

Problem 6

证明:

- a) 设 A,B 为可数集, $A \times B$ 是可数集;
- b) 可数多个可数集的并也是可数集。

Problem 7

设 A,B,C 为集合, 其满足 $A\cap B=A\cap C=\emptyset$ 且 |B|=|C|, 试证明:

- a) $|A \cup B| = |A \cup C|$;
- b) 若 $A \cup B$ 是不可数集, B 是可数集, 证明或反驳 A 一定是不可数集。