Session Data

Evan Misshula

emisshula@qc.cuny.edu

What is session data?

- Session data is the summary of the communications between two devices
- log is like the bill of a mobile phone
- Who? What? Where?

Typical report

- source ip
- destination ip
- amount of data transfered
- timestamps

Sample session data

000	1. sanders@seconion: ~ (ssh)									
sanders@seconion:~∜	rwfilter	-sensor:	=S0p	roto=	0-255type:	=all ——pas	s=stdout rwcuf	: head		
sIP	dIF	sPort	dPort	pro	packets	bytes	f lags	sTime	duration	eTime sen
172.16.16.142	224.0.0.252	2 50956	5355	17	2	100	[2013/11,	/06T19:23:32.109	0.102 2013/11/	06T19:23:32.211 S0
172.16.16.144	4.2.2.2	2 57289	53	17	11	571	2013/11/	/06T19:23:33.903	0.000 2013/11/	06T19:23:33.903 S0
172.16.16.142	224.0.0.252	2 58088	5355	17	2	100	[2013/11,	/06T19:23:34.668	0.103 2013/11/	06T19:23:34.771 S0
172.16.16.149 239	.255.255.250	3 34615	1900	17	1	509	2013/11/	/06T19:23:39.390	0.000 2013/11/	06T19:23:39.390 S0
172.16.16.149 239	.255.255.250	154666	1900	17	1	519	2013/11/	/06T19:23:39.395	0.000 2013/11/	06T19:23:39.395 S0
172.16.16.149 239	.255.255.250	155884	1900	17	1	517	2013/11/	/06T19:23:39.400	0.000 2013/11/0	06T19:23:39.400 S0
172.16.16.149 239	.255.255.256	160738	1900	17	1	509	2013/11/	06T19:23:39.493	0.000 2013/11/	36T19:23:39.493 S0
172.16.16.149 239	.255.255.256	3 34426	1900	17	1	519	2013/11/	06T19:23:39.498	0.000 2013/11/	06T19:23:39.498 S0
172.16.16.149 239	.255.255.250	146407	1900	17	11	517	2013/11/	06T19:23:39.508	0.000 2013/11/	06T19:23:39.508 S0

What is industry practice?

- FPC minutes or hours
- Session months or years

Analysis Benefit

- Less cruft faster analysis
- abiltiy to zero in on what is important

Do records have a standard format?

- standard 5-tuple
 - source ip
 - destination ip
 - source port
 - destination ip
 - transport protocol

Other formats

- NetFlow v5
- NetFlow v9
- IPFIX

Termination

- Natural Timeout
- Idle Timeout
- Active Timeout

Creation

- When packet with new five tuple
 - create new record

A good exercise

- capture packet and flow
- map the packets to the flow
- flow data is a projection of packet data

Netflow

- originally a cisco spec in 1990
- provided comparison from router to other net services
- identify and summarize large amounts of traffic to simplify processes (ie ACL comparisons)

Netflow

- v5 20 fields
- v9 104 fields (supports ipV6)
- IPFIX (binary) variable length fields (supports ipV6)

Other Flow Types

- Juniper JFlow
- Citrix ApFlow
- sFlow (a sample)

Collecting Session Data

- generator
- collector

Collection can be derivative or "off the wire" Also called

- hardware
- software

Hardware

- can be done off an existing router
- can be computationally expensive
- NetFlow can be generated from any cisco router

Software

• create a daemon on the sensor to collect and forward data

Common solutions

- Fprobe (can be installed via apt-get)
- generate the flow on:
 - eth1
 - send it to 192.168.15 port 2888

fprobe -i eth1 192.168.1.15:2888

YAF (Yet another flowmeter)

- IPFIX data format
- integrates with SiLK
- IPFIX template architecture and SiLK apllication labels
- NetSA https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html

SiLK (System for Internet-Level Knowledge)

- manageable security analysis across networks
- combination of python, c and perl
- known for a good community
- packing and analysis

Packing

• ability to compress flow data into binary format

Analysis

- complex calculations and formating
 - chaining through pipes (a la regex)

Obtaining data

- generator and collector pair
- records separated by flow type
- flow types are further separated by class
 - external -> internal
 - internal -> external
 - internal -> internal
 - network architecture

Based on a configuration file

Collection process

- rwflowpack
 - parses
 - determines origin
 - stores data

rflowpack.conf

service rwflowpack start

Startup

- The startup may throw an error.
- rwflowpack checks the configuration of silk.conf and sensor.conf
 - it also won't start if not all sensors are available
- flowcap can be used if data needs to be stored and fowarded
 - preprocessor
 - other tools include
 - 1. rwflowappend
 - 2. rwpackchecker
 - 3. rwpollexec

SiLK flow types

- SiLK data can be organized
 - In: inbound
 - Out: outbound
 - Int2int: internal
 - Ext2ext: external
 - Inweb: inbound on port 80, 443, 8080
 - OutWeb: outbound on port 80, 443, 8080
 - Inicmp: inbound icmp
 - Outicmp: outbound icmp
 - Other:

SiLK Analysis Toolset

- 55 seperate tools
- rwfilter most common
 - select statement
 - compound statements applied through pipes

Filtering flow data with rwfilter

- selecting session data
- important for narrowing network forensics
 - find the offending source ip
 - rwfilter -anyaddress -start-date -end-date -type -pass=stdout
 - pass this to rwcut
 - a sample statement follows

rwfilter --anyaddress=1.2.3.4 --start-date=2013/06/22:11 --end-date=2013/06/22:11 --type=8

This captures from 11am to 1pm

Another scenario

- Suspicious ip 6.6.6.6 is receiving data after midnight
- Get the size of the data

rwfilter --anyaddress=6.6.6.6 --start-date=2013/06/22:00 --type=all --pass=stdout | rwcut

Restricted to a port

or we can restrict it to the https port:

rwfilter --anyaddress=6.6.6.6 --start-date=2013/06/22:00 --aport=443 --type=all --pass=st

Restricted to a single conversation

or to restrict it to one conversation

rwfilter --anyaddress=6.6.6.6 --start-date=2013/06/22:00 --saddress=192.168.1.100 --daddr

Piping

- The pipe to rwcut changes binary to human readable
- Rwcount returns counts
 - How many users?
 - When is traffic busiest

Records over time

rwfilter --start-date=2013/06/22 --proto=0-255 --type=all --pass=stdout | rwcount --bin-

