Theory of Computation

Lab Session 7

News

Essay

- ▶ The essay is to be submitted on April 08th, 2016.
- Live presentation will be on April 23rd, 2016.

Agenda

- Recap.
 - exercises on FSA,
 - operations on FSA,
 - the pumping lemma,
 - exercises on DPDA.
- ► FSA transducer.
- ► Acceptance of DPDAs by empty stack.

Exercise 1

Build a complete FSA accepting the following language over the alphabet $A=\{0,1\}$

- ▶ $L_0 = \{x \in A^* \mid |x| \ge$
 - 2 \land the two final symbols of x are the same};

 $L_0 = \{x \in A^* \mid |x| \geq 2 \ \land \ \text{the two final symbols of} \ x \ \text{are the same} \}$

Exercise 2

Build a complete FSA accepting the following language over the alphabet $A = \{a, b, c\}$

▶ $L_1 = \{x \in A^* \mid \text{the substring } abc \text{ in } x \text{ occurs an odd number of times}\};$

Exercise 3

Build a complete FSA accepting the following language over the alphabet $A=\{0,1\}$

▶ $L_2 = \{x \in A^* \mid |x| \ge 1 \land x \text{ ends with } 10\};$

Let's start by building a complete FSA accepting the following language over the alphabet $A=\{0,1\}$

▶
$$L_a = \{x \in A^* \mid |x| \ge 1\};$$

$$L_a = \{x \in A^* \mid |x| \ge 1\}$$

Now, let's build a complete FSA accepting the following language over the alphabet $A=\{0,1\}$

▶ $L_b = \{x \in A^* \mid x \text{ ends with } 10\};$

$$L_b = \{x \in A^* \mid x \text{ ends with } 10\}$$

Now, let's build a complete FSA that accepts L_a and L_b .

Now, let's build a complete FSA that accepts L_a and L_b . To solve it we need to build the intersection of the FSAs.

Reminder: Intersection of FSAs

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the complete FSA $M=(Q,A,\delta,q_0,F)$, where

$$Q = Q^1 \times Q^2$$

 $q_0 = (q_0^1, q_0^2)$

the transition function δ is defined by the formula

$$\delta((q,p),a) = (\delta^1(q,a),\delta^2(p,a))$$

for every $q \in Q^1$, every $p \in Q^2$, and every $a \in A$. And the set of final states is defined as

$$F = \{(q, p) \mid q \in F^1 \land p \in F^2\}$$

M accepts the language $L_1 \cap L_2$.

Build a complete FSA over the language $A = \{a, b\}$ that accepts only strings ending with the letter b. The FSA will translate the input string where every second symbol a in the input is erased.

Build a complete FSA over the language $A = \{a, b\}$ that accepts only strings ending with the letter b. The FSA will translate the input string where every second symbol a in the input is erased.

▶ So far we have seen (in the lab. sessions) acceptors FSAs.

Build a complete FSA over the language $A = \{a, b\}$ that accepts only strings ending with the letter b. The FSA will translate the input string where every second symbol a in the input is erased.

- ▶ So far we have seen (in the lab. sessions) acceptors FSAs.
- Now, we will see, not just acceptance, but also translation of input string: Finite State Transducer

Finite State Transducer

A Finite State Transducer (FST) is a tuple $\langle Q, I, \delta, q_0, F, O, \eta \rangle$ where

- Q, I, δ, q_0, F : just like acceptors;
- O is the output alphabet;

Remark:

- the condition for acceptance remains the same as in acceptors;
- the translation is performed only on accepted strings.

FST: an example

Build a complete FST accepting the following language over the alphabet $A=\{0,1\}$

$$L = \{x \in A^* \mid \text{ the number of 0's is even}\}$$

The FST outputs the string obtained by removing every odd occurrence of 0 and doubling every occurrence of 1. Examples of inputs recognised by L and their respective outputs:

▶ input: 010010, output: 110110

▶ input: 00, output: 0

▶ input: 000100011, output: 011001111

FST: an example

$$L = \{x \in A^* \mid \text{ the number of 0's is even}\}$$

Coming back to the exercise:

Build a complete FSA over the language $A = \{a, b\}$ that accepts only strings ending with the letter b. The FSA will translate the input string where every second symbol a in the input is erased.

Coming back to the exercise:

Build a complete FSA over the language $A = \{a, b\}$ that accepts only strings ending with the letter b. The FSA will translate the input string where every second symbol a in the input is erased.

Pumping Lemma – Exercise

Prove that $L = \{a^{n^2} \mid n \ge 0\}$ is NOT regular.

Consider
$$L = \{a^{n^2} \mid n \ge 0\}$$
.

Consider $L = \{a^{n^2} \mid n \ge 0\}$. Suppose there were an FA for L with k states.

Consider $L = \{a^{n^2} \mid n \ge 0\}$. Suppose there were an FA for L with k states. Let $x = a^{k^2 - k}$, $y = a^k$, $z = \epsilon$, so $xyz = a^{k^2} \in L$.

Consider $L = \{a^{n^2} \mid n \ge 0\}.$

Suppose there were an FA for L with k states.

Let $x = a^{k^2 - k}$, $y = a^k$, $z = \epsilon$, so $xyz = a^{k^2} \in L$.

Given any splitting of y as uvw with $v \neq \epsilon$, we have $1 \leq |v| \leq k$.

Consider $L = \{a^{n^2} \mid n \ge 0\}$.

Suppose there were an FA for L with k states.

Let $x = a^{k^2 - k}$, $y = a^k$, $z = \epsilon$, so $xyz = a^{k^2} \in L$.

Given any splitting of y as uvw with $v \neq \epsilon$, we have $1 \leq |v| \leq k$.

So taking i = 2, we have $xuv^2wz = a^n$ where $k^2 + 1 \le n \le k^2 + k$.

Consider $L = \{a^{n^2} \mid n \ge 0\}$.

Suppose there were an FA for L with k states.

Let $x = a^{k^2 - k}$, $y = a^k$, $z = \epsilon$, so $xyz = a^{k^2} \in L$.

Given any splitting of y as uvw with $v \neq \epsilon$, we have $1 \leq |v| \leq k$.

So taking i = 2, we have $xuv^2wz = a^n$ where $k^2 + 1 \le n \le k^2 + k$.

But there are no perfect squares between k^2 and $k^2 + 2k + 1$, so n is not a perfect square. Thus $xuv^2vvz \not\in I$

is not a perfect square. Thus $xuv^2wz \notin L$.

Consider $L = \{a^{n^2} \mid n \ge 0\}$.

Suppose there were an FA for L with k states.

Let $x = a^{k^2 - k}$, $y = a^k$, $z = \epsilon$, so $xyz = a^{k^2} \in L$.

Given any splitting of y as uvw with $v \neq \epsilon$, we have $1 \leq |v| \leq k$.

So taking i = 2, we have $xuv^2wz = a^n$ where $k^2 + 1 \le n \le k^2 + k$.

But there are no perfect squares between k^2 and $k^2 + 2k + 1$, so n is not a perfect square. Thus $xuv^2wz \notin L$.

By the pumping lemma, we conclude that L is not regular.

Consider the language described before. Now, suppose that in addition to regular parentheses "(" and ")", there is also available bracket "]", which has the effect of closing all open parentheses up to that point.

Examples of strings (not) belonging to the language are:

belongs to the language	does not belong to the language
(a + b]	(a + b)]
((a) + (b * c]	((a) + (b * (c)])
((((((((a + b)	(a]]
(a + b)	a + b]
((a) + (b * (c))	(a + b

Define a DPDA that recognises this language. For simplicity, consider the following alphabet $I = \{a, (,),], +\}$.

Acceptance by a PDA

In a previous lab. session we defined a type of acceptance by a PDA:

Acceptance by final state

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, and $x \in I^*$. The string x is accepted by M if

$$(q_0, x, Z_0) \vdash^* (q, \epsilon, \gamma)$$

for some $\gamma \in \Gamma^*$ and some $q \in F$.

Acceptance by a PDA

In a previous lab. session we defined a type of acceptance by a PDA:

Acceptance by final state

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, and $x \in I^*$. The string x is accepted by M if

$$(q_0, x, Z_0) \vdash^* (q, \epsilon, \gamma)$$

for some $\gamma \in \Gamma^*$ and some $q \in F$.

Another way of acceptance is by empty stack:

Acceptance by a PDA

Acceptance by empty stack

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, and $x \in I^*$. The string x is accepted by M if

$$(q_0, x, Z_0) \vdash^* (q, \epsilon, \epsilon)$$

for any $q \in Q$.

Build a PDA that accepts well-parenthesised input strings (acceptance by final state).

Solution

Build a PDA that accepts well-parenthesised input strings (acceptance by empty stack).

Solution

Homework

Define a TM that recognises this language:

$$L = \{a^n b^n | n \ge 0\} \cup \{a^n b^{2n} | n \ge 0\}$$