

Radial Basis Function Mesh Morphing Tool in OpenFOAM

Hrvoje Jasak Wikki Ltd, United Kingdom

Outline

Objective

 Definition, numerical background and examples of use for the Radial Basis Function (RBF) mesh morphing tool in OpenFOAM

Topics

- Background: Parametrisation of geometry for shape optimisation
- Definition and mathematics of Radial Basis Function
- Radial Basis Function interpolation
- RBF mesh morphing tool
- Examples in 2-D and 3-D

Background

Geometry Parametrisation

- In shape optimisation, the optimiser will seek to minimise the penalty function with respect to a small number of control parameters
- A CAD description or a CFD mesh carries a very large number of shape parameters: for the optimiser to work effectively, changes in geometry must be described in a simpler manner
- Defining motion of individual vertices or returning to the CAD description is out of the question: smoothness criteria, re-meshing concerns etc.
- Even automatic mesh motion is unsatisfactory: boundary motion should be defined on all vertices, which is already too much information

Radial Basis Function Mesh Morphing

- Geometry morphing tools are defined without reference to mesh or CAD: deforming space as a function of motion of control points
- Control motion will be parametrised (for the optimiser) and used to move the computational mesh directly
- The main concern is mesh motion function smoothness: mesh must remain valid after morphing: using parametrisation based on FEM-like background shape functions or Radial Basis Function

Radial Basis Function

Radial Basis Function Interpolation

• RBF interpolation defines the interpolation directly from the sufficient smoothness criterion on the interpolation (positive weighting factors):

$$s(\mathbf{x}) = \sum_{j=1}^{N_b} \gamma_j \phi(|\mathbf{x} - \mathbf{x}_{b,j}|) + q(\mathbf{x})$$

where

- o x is the interpolant location
- \circ \mathbf{x}_b is the set of N_b locations carrying the data
- $\circ \phi(x)$ is the basis function, dependent on point distance
- o $q(\mathbf{x})$ is the (usually linear) polynomial function, depending on choice of basis function and γ_j
- ullet Consistency of interpolation is achieved by requiring that all polynomials of the order lower than q disappear at data points

$$\sum_{j=1}^{N_b} \gamma_j p(\mathbf{x}_{b,j}) = 0$$

Radial Basis Function

Radial Basis Function Interpolation

• Upon choosing the basis function, coefficients of $q = b_0 + b_1 x + b_2 y + b_3 z$ and γ_j are determined by solving the system:

$$\begin{bmatrix} s(\mathbf{x}_{b,j}) \\ 0 \end{bmatrix} = \begin{bmatrix} \Phi_{bb} & Q_b \\ Q_b^T & 0 \end{bmatrix} \begin{bmatrix} \gamma \\ \beta \end{bmatrix}$$

where

- \circ $s(\mathbf{x}_{b,j})$ is the function value at interpolant locations (source data)
- \circ γ carries all γ_i coefficients and β carries b_0-b_3
- Φ_{bb} carries the evaluation of the basis function for pairs of interpolation points $(\mathbf{x}_{b,i},\mathbf{x}_{b,j})$ and acts as a dense connectivity matrix:

$$\Phi_{(i,j)} = s(|\mathbf{x}_{b,i} - \mathbf{x}_{b,j}|)$$

- $\circ \ Q_b$ is the rectangular matrix with $[1 \mathbf{x}_b]$ in each row
- The system is a dense matrix and needs to be solved for γ and β using QR decomposition (direct solver), thus defining the interpolation

Radial Basis Function

Choice of Radial Basis Function

• Functions with local support disappear beyond the radius r and are typically polynomial. This eliminates some entries in Φ_{bb} , making the system easier to solve. Defined in terms of

$$\xi = x/r$$

with the condition to equal zero for $\xi > 1$

• Functions with global support cover the whole interpolation space, and usually require a smoothing function to make the system easier to solve

RBF Name	Abbrev.	s(x)
Wendland, second order	W2	$pos(r-\xi)(1-\xi)^4(4\xi+1)$
Thin plate spline	TPS	$x^2 \log(x)$
Inverse multi-quadratic bi-harmonic	IMQB	$\frac{1}{\sqrt{a^2+x^2}}$
Quadratic bi-harmonic	QB	$ \begin{array}{c c} \sqrt{a^2 + x^2} \\ 1 + x^2 \end{array} $
Gaussian	Gauss	e^{-x^2}

Example basis functions

RBF Interpolation

RBF Interpolation Procedure

- 1. Establish locations of data-carrying points x_b and their values
- 2. Assemble and solve the equation set for γ and β using a direct solver
- 3. Calculate values at desired locations by evaluating $s(\mathbf{x})$

Extinguishing Far Field: Smoothing Function

- If it can be established that that far-field value of interpolated function is known and uniform, far-field data carriers may be eliminated: reduce RBF contribution to zero
- Defining inner r and outer radius R for a focal point \mathbf{x}_f :

$$\psi(\mathbf{x}) = \begin{cases} 1, & \widetilde{x} < 0 \\ 1 - \widetilde{x}^2 (3 - 2\widetilde{x}), & 0 \le \widetilde{x} \le 1 \\ 0 & \widetilde{x} > 1 \end{cases} \text{ where } \widetilde{x} = \frac{|\mathbf{x} - \mathbf{x}_f| - r}{R - r}$$

$$s(\mathbf{x}) = \psi(\widetilde{x}) \left[\sum_{j=1}^{N_b} \gamma_j \phi(|\mathbf{x} - \mathbf{x}_{b,j}|) + q(\mathbf{x}) \right]$$

RBF Mesh Morphing

RBF Mesh Morphing Object

- RBF morphing object defines the parametrisation of geometry (space):
 - 1. Control points in space, where the parametrised control motion is defined
 - 2. Static points in space, whose motion is blocked
 - 3. Range of motion at each control point: $(\mathbf{d}_0, \mathbf{d}_1)$
 - 4. Set of scalar parameters δ for control points, defining current motion as

$$\mathbf{d}(\delta) = \mathbf{d}_0 + \delta(\mathbf{d}_1 - \mathbf{d}_0), \text{ where } 0 \le \delta \le 1$$

- ullet For each set of δ parameters, mesh deformation is achieved by interpolating motion of control points ${f d}$ over all vertices of the mesh: new deformed state of the geometry
- Mesh in motion remains valid since RBF satisfies smoothness criteria

Using RBF in Optimisation

- Control points may be moved individually or share δ values: further reduction in dimension of parametrisation of space
- Mesh morphing state is defined in terms of δ parameters: to be controlled by the optimisation loop

Examples

Simple Examples: Morphing of a Cylinder

• Control points in motion: (-0.02 -0.02 0); motion range: ((0 0 0) (0.02 0.02 0))

Examples

Simple Examples: Morphing of a Cylinder

• Control points in motion:

Point	Motion range
(-0.02 -0.02 0)	((0 0 0) (-0.01 0.01 0))
(0.02 -0.02 0)	((0 0 0) (0.2 0.0 0))
(-0.02 0.02 0)	((0 0 0) (-0.01 -0.01 0))
(0.02 0.02 0)	((0 0 0) (0.02 0 0))

ullet Note: parametrisation uses a single parameter δ for this motion

Example: Morphing

Simple Examples: Morphing of a Sphere

• Control points in motion:

Point	Motion range	
$(-0.3 \pm 0.3 \pm 0.3)$	$((0\ 0\ 0)\ (\pm 0.1\ \pm 0.1\ \pm 0.1))$	
$(0.3 \pm 0.3 \pm 0.3)$	$((\ 0\ 0\ 0)\ (\pm 0.1\ \pm 0.1\ \pm 0.1))$	
(0.7 0 0)	((0 0 0) (0.3 0 0))	

- Note: parametrisation uses a single parameter δ for this motion
- Optimisation shall be performed with 3 parameters: front, back, tail

Example: Shape Optimisation

Geometric Shape Optimisation with Parametrised Geometry

 Specify a desired object of optimisation and use the parametrisation of geometry to explore the allowed solution space in order to find the minimum of the optimisation objective

$$objective = f(\mathbf{shape})$$

- 1. Parametrisation of Geometry
 - Computational geometry is complex and usually available as the computational mesh: a large amount of data
 - Parametrisation tool: RBF mesh morphing, defining deformation at a small number of mesh-independent points in space
- 2. **CFD Flow Solver** is used to provide the flow solution on the current geometry, in preparation for objective evaluation
- 3. **Evaluation of Objective**: usually a derived property of the flow solution
- 4. **Optimiser Algorithm**: explores the solution space by providing sets of **shape** coordinates and receiving the value of objective. The search algorithm iteratively limits the space of solutions in search of a minimum value of objective

Example: Shape Optimisation

Example: HVAC 90 deg Bend: Flow Uniformity at Outlet

- Flow solver: incompressible steady-turbulent flow, RANS $k-\epsilon$ model; coarse mesh: 40 000 cells; 87 evaluations of objective with CFD restart
- RBF morphing: 3 control points in motion, symmetry constraints; 34 in total
- Objective: flow uniformity at outlet plane

```
iter = 0 pos = (0.9 \ 0.1 \ 0.1) v = 22.914 size = 0.69282 iter = 5 pos = (0.1 \ 0.1 \ 0.1) v = 23.0088 size = 0.584096 iter = 61 pos = ((0.990164 \ 0.992598 \ 0.996147) v = 13.5433 size = 0.00095
```

