5-不带回溯的自上而下分析-LL(1)文法构建 原理

自上而下分析

- ▶ 构造不带回溯的自上而下分析算法
 - ▶消除文法的左递归
 - ▶提取左公共因子,克服回溯
- ▶计算FIRST和FOLLOW集合
- ▶ LL(1)文法的条件

LL(1)文法

- ▶ 构造不带回溯的自上而下分析的文法条件
- 1. 文法不含左递归
- 2. 对于文法中每一个非终结符A的各个产生式的候选首符 集两两不相交。即,若

 $A \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n$ 贝J FIRST(α_i) \cap FIRST(α_j) = ϕ ($i \neq j$)

3. 对文法中的每个非终结符A,若它存在某个候选首符集 包含ε,则

> FIRST(α_i) \cap FOLLOW(A) = ϕ i=1,2,...,n

如果一个文法G满足以上条件,则称该文法G为LL(1)文法。

解读一下

- 1.左边必须是终结符,有的可能看的是非终结符,但是化简后一定是终结符开头的
- 2.虽然已经是终结符了,但是不做提炼化简,一样开头的候选表达式一样会产生二义性,这一步就是要 求你做好最后的提取公因式
- 3.好像是已经很全面的定义了,但是考虑到空集,如果他空了,这整句话的first就变成他的下一个表达式了,也就是follow(A),所以,这个也不能跟已经有的first集合重复,如果有重复,继续对他化简以上三条满足后即可做LL1文法分析

算法

预测分析过程

...X $a_1a_2...a...\# X \rightarrow X_1X_2...X_k$

- ▶ 总控程序根据当前栈顶符号X和输入符号a,执行下列三动作之一:
- 1. 若X=a= '#',则宣布分析成功,停止分析。
- 2. 若X=a≠′#′,则把X从STACK栈顶逐出,让a指向下一个输入符号。从也成
- 3. 若X是一个非终结符,则查看分析表M。
- ▶若M[X,a]中存放着关于X的一个产生式,把X逐出STACK栈顶,把产生式的右部符号串按反序——推进STACK栈(若右部符号为ε,则意味不推什么东西进栈)。

练习题

3.6 a. 计算下面文法的 nullable、FIRST 和 FOLLOW 集合:

$$S \to u B D z$$

$$B \to B v$$

$$B \to w$$

$$D \rightarrow E F$$

$$E \rightarrow y$$

$$E \rightarrow$$

$$F \rightarrow x$$

$$F \rightarrow$$

- b. 构造 LL(1)分析表。
- c. 给出证据说明该文法不是 LL(1) 文法。
- d. 尽可能少地修改该文法使它成为一个接收相同语言的 LL(1) 文法。

答案

a. The nullable, FIRST, and FOLLOW for this grammar:

张明哲 1530	nullable	First	Follow v, x, y, z	
S	no	u		
B	no	W		
D	yes was 1536	x, y	Z 448 1536	
E	yes	y	x, z	
·F	15 yes 355	X	Z	

问题的思考:参看 P50 页的算法。

b. Construct the LL(1) parsing table

	u ^{KHB}	z	V	W	X	y
S	S→uBDz	-nafi 1536		1536	-nafi 1536	
В		315000 -	3K ora	B→Bv	315000	
	张明哲 1536		张月哲 1536	B→Bv B→w	36	张明哲 153
D		D→EF			D→EF	D→EF
E 张明哲 1536		E→	张明	1536	E→ ***** 153€	Е→у
F		F→			F→x	

问题的思考:参看 P51 页的定义。

c. There are duplicate entries in the LL(1) parsing table, so it's not LL(1) grammar.

问题的思考:参看 P52 页的定义。

d. Left Recursion eliminating

B→Bv

B→wB'

B→w

 $B' \rightarrow vB'$

B' →

问题的思考:参看 P52 页的左递归消除方法。