#### UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

#### **ROBOTICS (AER 525F)**

MID-TERM EXAMINATION October 17, 2014

Note: Rulers may be used in this test.

**Time: 105 Minutes** 

## **Question 1:**

Describe the following terms briefly (maximum 40 words for each, no formulation required):

a) Pieper's Theorem **(5)** 

b) Redundant Manipulator **(5)** 

### **Question 2:**

Draw a schematic diagram and show the link coordinate frames of a manipulator with the following Standard DH table and root frame.

| Link | $a_i$ | $\alpha_i$ (deg) | $d_i$      | $\theta_i$ (deg)   |
|------|-------|------------------|------------|--------------------|
| 1    | 0     | 0                | $d_1(D_1)$ | 0                  |
| 2    | 0     | - 90             | $D_2$      | $\theta_2 (-90)$   |
| 3    | $L_3$ | - 90             | $-D_3$     | $\theta_3(0)$      |
| 4    | 0     | - 90             | $D_4$      | $\theta_4$ (90)    |
| 5    | 0     | - 90             | 0          | $\theta_{5}$ (180) |
| 6    | 0     | 0                | $D_5$      | $\theta_6(0)$      |

$$\begin{bmatrix} R & T_0 = \begin{bmatrix} 0 & 1 & 0 & D_3 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (15)

# **Question 3:**

Based on the course notation for the differentiation of vector  $\hat{q}$ , indicate whether each of the following four terms is correct or incorrect. If correct, explain the term; if incorrect, explain why. (10)

**a)**  $d_B\hat{q}$  **b)**  $d_B(^Aq)$  **c)**  $^A\dot{q}$  **d)**  $^A(d_B\hat{q})$ 

### **Question 4:**

For a vector  $\hat{p}$ , describe how to relate  $\dot{p}$  and  $\dot{p}$ , where  $\{A\}$  and  $\{B\}$  are two arbitrary coordinate frames (write the formulation): (15)

# **Question 5:**

For the 3-d.o.f. spatial manipulator shown in the figure ( $0^{\circ} \le \theta_1 < 360^{\circ}$ ,  $-90^{\circ} \le \theta_2 < +270^{\circ}$ , and  $d_3 \ge 0$ ):

- a) Draw a schematic of the manipulator, and by using the Standard Denavit-Hartenberg convention define link coordinate frames and link parameters, arrange the DH table, and then determine  ${}^{0}T_{3}$ . Check the results for when  $\theta_{1} = \theta_{2} = 0$ . (20)
- **b)** What is the expression of  $\hat{x}_0$  in the end-effector coordinate frame, i.e.,  ${}^3x_0$ ? (10)
- c) Having the position of the end-effector point (Point 3), expressed in the base frame, determine the corresponding joint variables. Discuss the number and feasibility of all possible solutions.



 $I_{i-1}T_{i} = \begin{vmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{vmatrix}$ 

 $a_i \equiv \text{ the length of the common normal between } \hat{z}_{i-1} \text{ and } \hat{z}_i \text{ along } \hat{x}_i \text{ (link length)};$ 

 $\alpha_i \equiv \text{ the angle between } \hat{z}_{i-1} \text{ and } \hat{z}_i \text{ measured about } \hat{x}_i \text{ (twist angle)};$ 

 $d_i \equiv \text{ the distance from } \hat{x}_{i-1} \text{ to } \hat{x}_i \text{ measured along } \hat{z}_{i-1} \text{ (link offset)};$ 

 $\theta_i \equiv \text{ the angle between } \hat{x}_{i-1} \text{ and } \hat{x}_i \text{ measured about } \hat{z}_{i-1} \text{ (joint angle)};$ 

$$\cos q = A \implies q = \pm \operatorname{Atan} 2 \left( \frac{\sqrt{1 - A^2}}{A} \right) \qquad {}^{A}\Omega_{B} = {}^{A}\dot{T}_{B}^{A}T_{B}^{-1} = \left[ \begin{array}{c} {}^{A}\widetilde{\omega}_{AB} & | & {}^{A}V_{AB} \\ \hline 0 & | & 0 \end{array} \right] \qquad {}^{A}\widetilde{\omega}_{AB} = \left[ \begin{array}{c} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{array} \right]$$

$$-A\sin q + B\cos q = C \implies q = \operatorname{Atan} 2 \left( \frac{B}{A} \right) - \operatorname{Atan} 2 \left( \frac{C}{\pm \sqrt{A^2 + B^2 - C^2}} \right) \qquad \frac{d_{A}\hat{p}}{dt} = \frac{d_{B}\hat{p}}{dt} + \hat{\omega}_{AB} \times \hat{p}$$