

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

PATENT COOPERATION TREATY

PCT

From the INTERNATIONAL BUREAU

To:

LAUDIEN, Dieter
 Boehringer Ingelheim GmbH
 B Patente
 D-55216 Ingelheim/Rhein
 ALLEMAGNE

Date of mailing (day/month/year)
 11 juillet 2001 (11.07.01)

Applicant's or agent's file reference
 5/1266-FL

International application No.
 PCT/EP00/07457

IMPORTANT NOTIFICATION

International filing date (day/month/year)
 02 août 2000 (02.08.00)

1. The following indications appeared on record concerning:

the applicant the inventor the agent the common representative

Name and Address

STASSEN, Jean, Marie
 Gottlieb-Gnann-Str. 25
 88422 Bad Buchau
 Germany

State of Nationality

BE

State of Residence

DE

Telephone No.

Facsimile No.

Teleprinter No.

2. The International Bureau hereby notifies the applicant that the following change has been recorded concerning:

the person the name the address the nationality the residence

Name and Address

STASSEN, Jean, Marie
 Joseph Ravoetstr. 5
 B-3012 Leuven
 Belgium

State of Nationality

BE

State of Residence

BE

Telephone No.

Facsimile No.

Teleprinter No.

3. Further observations, if necessary:

4. A copy of this notification has been sent to:

<input checked="" type="checkbox"/> the receiving Office	<input type="checkbox"/> the designated Offices concerned
<input type="checkbox"/> the International Searching Authority	<input checked="" type="checkbox"/> the elected Offices concerned
<input type="checkbox"/> the International Preliminary Examining Authority	<input type="checkbox"/> other:

The International Bureau of WIPO
 34, chemin des Colombettes
 1211 Geneva 20, Switzerland

Facsimile No.: (41-22) 740.14.35

Authorized officer

Elisabeth KÖNIG

Telephone No.: (41-22) 338.83.38

THIS PAGE BLANK (USPTO)

PATENT COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)Date of mailing (day/month/year)
14 May 2001 (14.05.01)To:
Commissioner
US Department of Commerce
United States Patent and Trademark
Office, PCT
2011 South Clark Place Room
CP2/5C24
Arlington, VA 22202
ETATS-UNIS D'AMERIQUE
in its capacity as elected OfficeInternational application No.
PCT/EP00/07457Applicant's or agent's file reference
5/1266-FLInternational filing date (day/month/year)
02 August 2000 (02.08.00)Priority date (day/month/year)
07 August 1999 (07.08.99)

Applicant

RIES, Uwe et al

1. The designated Office is hereby notified of its election made: in the demand filed with the International Preliminary Examining Authority on:

07 February 2001 (07.02.01)

 in a notice effecting later election filed with the International Bureau on:

2. The election was was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Facsimile No.: (41-22) 740.14.35

Authorized officer

Juan Cruz

Telephone No.: (41-22) 338.83.38

THIS PAGE BLANK (USPTO)

**VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT
F DEM GEBIET DES PATENTWESENS**

PCT

INTERNATIONALER RECHERCHENBERICHT

(Artikel 18 sowie Regeln 43 und 44 PCT)

Aktenzeichen des Anmelders oder Anwalts 5/1266-FL	WEITERES VORGEHEN	siehe Mitteilung über die Übermittlung des internationalen Recherchenberichts (Formblatt PCT/ISA/220) sowie, soweit zutreffend, nachstehender Punkt 5
Internationales Aktenzeichen PCT/EP 00/07457	Internationales Anmeldedatum (Tag/Monat/Jahr) 02/08/2000	(Frühestes) Prioritätsdatum (Tag/Monat/Jahr) 07/08/1999
Anmelder BOEHRINGER INGELHEIM-PHARMA KG		

Dieser internationale Recherchenbericht wurde von der Internationalen Recherchenbehörde erstellt und wird dem Anmelder gemäß Artikel 18 übermittelt. Eine Kopie wird dem Internationalen Büro übermittelt.

Dieser internationale Recherchenbericht umfaßt insgesamt 3 Blätter.

Darüber hinaus liegt ihm jeweils eine Kopie der in diesem Bericht genannten Unterlagen zum Stand der Technik bei.

1. Grundlage des Berichts

a. Hinsichtlich der **Sprache** ist die internationale Recherche auf der Grundlage der internationalen Anmeldung in der Sprache durchgeführt worden, in der sie eingereicht wurde, sofern unter diesem Punkt nichts anderes angegeben ist.

Die internationale Recherche ist auf der Grundlage einer bei der Behörde eingereichten Übersetzung der internationalen Anmeldung (Regel 23.1 b)) durchgeführt worden.

b. Hinsichtlich der in der internationalen Anmeldung offenbarten **Nucleotid- und/oder Aminosäuresequenz** ist die internationale Recherche auf der Grundlage des Sequenzprotokolls durchgeführt worden, das

in der internationalen Anmeldung in Schriftlicher Form enthalten ist.

zusammen mit der internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.

bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.

bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.

Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.

Die Erklärung, daß die in computerlesbarer Form erfaßten Informationen dem schriftlichen Sequenzprotokoll entsprechen, wurde vorgelegt.

2. **Bestimmte Ansprüche haben sich als nicht recherchierbar erwiesen** (siehe Feld I).

3. **Mangelnde Einheitlichkeit der Erfindung** (siehe Feld II).

4. Hinsichtlich der Bezeichnung der Erfindung

wird der vom Anmelder eingereichte Wortlaut genehmigt.

wurde der Wortlaut von der Behörde wie folgt festgesetzt:

5. Hinsichtlich der Zusammenfassung

wird der vom Anmelder eingereichte Wortlaut genehmigt.

wurde der Wortlaut nach Regel 38.2b) in der in Feld III angegebenen Fassung von der Behörde festgesetzt. Der Anmelder kann der Behörde innerhalb eines Monats nach dem Datum der Absendung dieses internationalen Recherchenberichts eine Stellungnahme vorlegen.

6. Folgende Abbildung der Zeichnungen ist mit der Zusammenfassung zu veröffentlichen: Abb. Nr. —

wie vom Anmelder vorgeschlagen

weil der Anmelder selbst in Abbildung vorgeschlagen hat.

weil diese Abbildung die Erfindung besser kennzeichnet.

keine der Abb.

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

EP 00/07457

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 C07C257/18 C07D295/18 C07D207/12 A61K31/40 A61K31/4164
A61P7/02 C07D295/12 C07C311/21 C07C311/46 C07D233/54

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C07C C07D A61K A61P

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	JUN SAKAGUCHI ET AL.: "Synthesis, Gastrointestinal Prokinetic Activity and Structure-Activity Relationships of Novel N-‘2-(Dialkylamino)ethoxy!benzyl!-benzamide Derivatives" CHEMICAL AND PHARMACEUTICAL BULLETIN, Bd. 40, Nr. 1, 1992, Seiten 202-211, XP002152593 TOKYO JP page 204, table I, compounds II-23 and II-24; page 208, table V, compounds II-23 and II-24 --- -/-	1, 2, 10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
10. November 2000	01/12/2000
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Zervas, B

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

EP 00/07457

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	L. SIMON ET AL.: "Darstellung von substituierten Isochinolinderivaten" PHARMAZIE., Bd. 29, Nr. 5, 1974, Seiten 313-314, XP002152594 BERLIN DD Seite 314, Spalte 1, Zeile 10 - Zeile 20 ---	1,2,10
A	D. LABES ET AL.: "Free-Wilson-Analyse der Hemmwirkung von 4-substituierten Benzamidinen gegenüber Thrombin, Plasmin und Trypsin" PHARMAZIE., Bd. 34, Nr. 9, 1979, Seiten 554-555, XP002152595 BERLIN DD das ganze Dokument ---	1,6-9
A	US 5 726 159 A (ELI LILLY) 10. März 1998 (1998-03-10) Ansprüche; Beispiele ---	1,6-9
A	GB 2 007 663 A (VEB ARZNEIMITTELWERK DRESDEN) 23. Mai 1979 (1979-05-23) Ansprüche; Beispiele -----	1,6-9

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/07457

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5726159	A	10-03-1998	AU 684918 B AU 1975295 A BR 9506979 A CA 2183464 A CN 1147205 A CZ 9602584 A EP 0672658 A FI 963451 A HU 76330 A JP 9509937 T NO 963684 A NZ 282588 A PL 320637 A WO 9523609 A US 5705487 A US 5707966 A US 5914319 A US 5710130 A	08-01-1998 18-09-1995 18-11-1997 09-08-1995 09-04-1997 11-06-1997 20-09-1995 03-09-1996 28-08-1997 07-10-1997 28-10-1996 19-12-1997 13-10-1997 08-09-1995 06-01-1998 13-01-1998 22-06-1999 20-01-1998
-----	-----	-----	-----	-----
GB 2007663	A	23-05-1979	DD 142804 A DE 2845941 A FR 2407915 A JP 54106448 A SE 7811454 A	16-07-1980 10-05-1979 01-06-1979 21-08-1979 08-05-1979
-----	-----	-----	-----	-----

THIS PAGE BLANK (USPTO)

34
T-16

**VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM
GEBIET DES PATENTWESENS**

PCT

REC'D 15 MAY 2001

WIPO PCT

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

(Artikel 36 und Regel 70 PCT)

Aktenzeichen des Anmelders oder Anwalts 5/1266-FL	WEITERES VORGEHEN	siehe Mitteilung über die Übersendung des internationalen vorläufigen Prüfungsberichts (Formblatt PCT/IPEA/416)
Internationales Aktenzeichen PCT/EP00/07457	Internationales Anmeldedatum (Tag/Monat/Jahr) 02/08/2000	Prioritätsdatum (Tag/Monat/Tag) 07/08/1999
Internationale Patentklassifikation (IPK) oder nationale Klassifikation und IPK C07C257/18		
Anmelder BOEHRINGER INGELHEIM PHARMA KG et al.		

<p>1. Dieser internationale vorläufige Prüfungsbericht wurde von der mit der internationalen vorläufigen Prüfung beauftragten Behörde erstellt und wird dem Anmelder gemäß Artikel 36 übermittelt.</p> <p>2. Dieser BERICHT umfaßt insgesamt 7 Blätter einschließlich dieses Deckblatts.</p> <p><input type="checkbox"/> Außerdem liegen dem Bericht ANLAGEN bei; dabei handelt es sich um Blätter mit Beschreibungen, Ansprüchen und/oder Zeichnungen, die geändert wurden und diesem Bericht zugrunde liegen, und/oder Blätter mit vor dieser Behörde vorgenommenen Berichtigungen (siehe Regel 70.16 und Abschnitt 607 der Verwaltungsrichtlinien zum PCT).</p> <p>Diese Anlagen umfassen insgesamt Blätter.</p>

<p>3. Dieser Bericht enthält Angaben zu folgenden Punkten:</p> <ul style="list-style-type: none"> I <input checked="" type="checkbox"/> Grundlage des Berichts II <input type="checkbox"/> Priorität III <input type="checkbox"/> Keine Erstellung eines Gutachtens über Neuheit, erforderliche Tätigkeit und gewerbliche Anwendbarkeit IV <input checked="" type="checkbox"/> Mangelnde Einheitlichkeit der Erfindung V <input checked="" type="checkbox"/> Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erforderlichen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung VI <input type="checkbox"/> Bestimmte angeführte Unterlagen VII <input checked="" type="checkbox"/> Bestimmte Mängel der internationalen Anmeldung VIII <input checked="" type="checkbox"/> Bestimmte Bemerkungen zur internationalen Anmeldung
--

Datum der Einreichung des Antrags 07/02/2001	Datum der Fertigstellung dieses Berichts 11.05.2001
Name und Postanschrift der mit der internationalen vorläufigen Prüfung beauftragten Behörde: Europäisches Patentamt D-80298 München Tel. +49 89 2399 - 0 Tx: 523656 epmu d Fax: +49 89 2399 - 4465	Bevollmächtigter Bediensteter Slootweg, A Tel. Nr. +49 89 2399 8326

THE UNITED STATES PATENT AND TRADEMARK OFFICE (USPTO)

INTERNATIONALER VORLÄUFIGER
PRÜFUNGSBERICHT

Internationales Aktenzeichen PCT/EP00/07457

I. Grundlag d s Berichts

1. Hinsichtlich der **Bestandteile** der internationalen Anmeldung (*Ersatzblätter, die dem Anmeldeamt auf eine Aufforderung nach Artikel 14 hin vorgelegt wurden, gelten im Rahmen dieses Berichts als "ursprünglich eingereicht" und sind ihm nicht beigefügt, weil sie keine Änderungen enthalten (Regeln 70.16 und 70.17): Beschreibung, Seiten:*)

1-61 ursprüngliche Fassung

Patentansprüche, Nr.:

1-10 ursprüngliche Fassung

2. Hinsichtlich der **Sprache**: Alle vorstehend genannten Bestandteile standen der Behörde in der Sprache, in der die internationale Anmeldung eingereicht worden ist, zur Verfügung oder wurden in dieser eingereicht, sofern unter diesem Punkt nichts anderes angegeben ist.

Die Bestandteile standen der Behörde in der Sprache: zur Verfügung bzw. wurden in dieser Sprache eingereicht; dabei handelt es sich um

- die Sprache der Übersetzung, die für die Zwecke der internationalen Recherche eingereicht worden ist (nach Regel 23.1(b)).
- die Veröffentlichungssprache der internationalen Anmeldung (nach Regel 48.3(b)).
- die Sprache der Übersetzung, die für die Zwecke der internationalen vorläufigen Prüfung eingereicht worden ist (nach Regel 55.2 und/oder 55.3).

3. Hinsichtlich der in der internationalen Anmeldung offenbarten **Nucleotid- und/oder Aminosäuresequenz** ist die internationale vorläufige Prüfung auf der Grundlage des Sequenzprotokolls durchgeführt worden, das:

- in der internationalen Anmeldung in schriftlicher Form enthalten ist.
- zusammen mit der internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.
- bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.
- bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.
- Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.
- Die Erklärung, daß die in computerlesbarer Form erfassten Informationen dem schriftlichen Sequenzprotokoll entsprechen, wurde vorgelegt.

4. Aufgrund der Änderungen sind folgende Unterlagen fortgefallen:

- Beschreibung, Seiten:
- Ansprüche, Nr.:
- Zeichnungen, Blatt:

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

**INTERNATIONALER VORLÄUFIGER
PRÜFUNGSBERICHT**

Internationales Aktenzeichen PCT/EP00/07457

5. Dieser Bericht ist ohne Berücksichtigung (von einigen) der Änderungen erstellt worden, da diese aus den angegebenen Gründen nach Auffassung der Behörde über den Offenbarungsgehalt in der ursprünglich eingereichten Fassung hinausgehen (Regel 70.2(c)).

(Auf Ersatzblätter, die solche Änderungen enthalten, ist unter Punkt 1 hinzuweisen; sie sind diesem Bericht beizufügen).

6. Etwaige zusätzliche Bemerkungen:

IV. Mangelnde Einheitlichkeit der Erfindung

1. Auf die Aufforderung zur Einschränkung der Ansprüche oder zur Zahlung zusätzlicher Gebühren hat der Anmelder:

die Ansprüche eingeschränkt.

zusätzliche Gebühren entrichtet.

zusätzliche Gebühren unter Widerspruch entrichtet.

weder die Ansprüche eingeschränkt noch zusätzliche Gebühren entrichtet.

2. Die Behörde hat festgestellt, daß das Erfordernis der Einheitlichkeit der Erfindung nicht erfüllt ist, und hat gemäß Regel 68.1 beschlossen, den Anmelder nicht zur Einschränkung der Ansprüche oder zur Zahlung zusätzlicher Gebühren aufzufordern.

3. Die Behörde ist der Auffassung, daß das Erfordernis der Einheitlichkeit der Erfindung nach den Regeln 13.1, 13.2 und 13.3

erfüllt ist

aus folgenden Gründen nicht erfüllt ist:

4. Daher wurde zur Erstellung dieses Berichts eine internationale vorläufige Prüfung für folgende Teile der internationalen Anmeldung durchgeführt:

alle Teile.

die Teile, die sich auf die Ansprüche Nr. beziehen.

V. Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung

1. Feststellung

Neuheit (N)

Ja: Ansprüche 1-10
Nein: Ansprüche

THIS PAGE BLANK (USPTO)

**INTERNATIONALER VORLÄUFIGER
PRÜFUNGSBERICHT**

Internationales Aktenzeichen PCT/EP00/07457

Erfinderische Tätigkeit (ET) Ja: Ansprüche 1-10
Nein: Ansprüche

Gewerbliche Anwendbarkeit (GA) Ja: Ansprüche 1-10
Nein: Ansprüche

**2. Unterlagen und Erklärungen
siehe Beiblatt**

VII. Bestimmte Mängel der internationalen Anmeldung

Es wurde festgestellt, daß die internationale Anmeldung nach Form oder Inhalt folgende Mängel aufweist:
siehe Beiblatt

VIII. Bestimmte Bemerkungen zur internationalen Anmeldung

Zur Klarheit der Patentansprüche, der Beschreibung und der Zeichnungen oder zu der Frage, ob die Ansprüche in vollem Umfang durch die Beschreibung gestützt werden, ist folgendes zu bemerken:
siehe Beiblatt

THIS PAGE BLANK (USPTO)

Zu Punkt I

Grundlage des Bescheides

1. Die Prüfung wird durchgeführt für die Verbindungen gemäß Formel (I) von Anspruch 1 worin $m = 0$ und $n = 1$ (wie vom Anmelder in seinem Bescheid vom 11.04.2001 beantragt hat).

Zu Punkt V

Begründete Feststellung nach Regel 66.2(a)(ii) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung

2. Die Anmeldung betrifft zwei unabhängige Stoffansprüche, Anspruch 1 und Anspruch 2 (siehe auch unter Punkt VII, Absatz 11).
3. Dokument D2 (D2 = D. LABES ET AL.: 'Free-Wilson-Analyse der Hemmwirkung von 4-substituierten Benzamidinen gegenüber Thrombin, Plasmin und Trypsin' PHARMAZIE., Bd. 34, Nr. 9, 1979, Seiten 554-555, BERLIN DD) offenbart die Verbindung 47 auf Seite 555. Diese Verbindung unterscheidet sich von dem in Anspruch 1 beanspruchte Verbindungen durch das fehlen von einem Substituenten R^1 (welches im vorliegendem Anspruch nicht Wasserstoff sein kann). Diese Verbindung hat Thrombin inhibierende Eigenschaften.
4. Aus D3 (D3 = US-A-5 726 159) sind Verbindungen bekannt (z. B. die aus den Beispielen 14-34) worin eine Ar-Gruppe der eine Imidinogruppe trägt durch eine CH_2NHCO Kette mit einer anderen Gruppe verbunden ist, welche Verbindungen Thrombin inhibierende Eigenschaften haben.
5. Dokument D4 (D4 = GB-A-2 007 663) offenbart bestimmte Amidinophenylcarboxylsäureamiden die anti-koagulierende Eigenschaften habe.
6. Der Stand der Technik offenbart keine Verbindungen die unter Anspruch 1 oder 2 fallen. Die Ansprüche 1 und 2 erfüllen somit die Erfordernisse des Art.33 (2) PCT.

THIS PAGE BLANK (USPTO)

7. Das zu lösende Problem kann darin gesehen werden alternative Thrombin inhibierende Verbindungen bereitzustellen.
8. Dieses Problem ist auf eine nicht naheliegende Weise gelöst durch die Verbindungen gemäß Formel (I) von den Ansprüche 1 und 2 (worin in die Verbindungen ein R₁ substituenten anwesend ist). Die Ansprüche 1 und 2 erfüllen somit auch die Erfordernisse des Art. 33 (3) PCT.
9. Die Ansprüche 2-6 sind von den Ansprüche 1 und 2 abhängig und erfüllen somit auch die Erfordernisse der Art. 33 (2) und (3) PCT. Die Ansprüche 7-10 betreffen, der Reihe nach, Ansprüche zu Arzneimittel enthaltend-, die Verwendung von-, ein Verfahren zur Herstellung von Arzneimittel enthaltend- und die Herstellung von- Verbindungen gemäß einer der Ansprüche 1-6. Diese Ansprüche erfüllen somit auch die Erfordernisse der Art. 33 (2) und (3) PCT.

Zu Punkt VII

Bestimmte Mängel der internationalen Anmeldung

10. Die Anmeldung betrifft Verbindungen mit Pharmazeutischen Eigenschaften, insbesondere eine Antithrombotische Wirkung. Die Anmelderin hat aber keine Dokumente Zitiert der der Nächstliegenden Stand der Technik wiedergibt. Im Widerspruch zu den Erfordernissen der Regel 5.1 a) ii) PCT werden in der Beschreibung weder der in den Dokumenten D2-D4 offenbare einschlägigen Stand der Technik noch diese Dokumente angegeben.

Zu Punkt VIII

Bestimmte Bemerkungen zur internationalen Anmeldung

11. In Anspruch 1 wird R⁵ definiert als "... eine gegebenenfalls durch eine oder zwei C₁₋₃-Alkylgruppen substituierte Amidinogruppe". In Anspruch 2, der als abhängiger Anspruch von Anspruch 1 formuliert ist, ist R⁵ als "... eine gegebenenfalls durch eine C₁₋₆-Alkoxy carbonyl- oder Benzoylgruppe substituierte Amidinogruppe" definiert. Diese Definition ist kein Unterbereich von R⁵ aber ein ganz anderer Bereich. Anspruch 2 kann somit nicht von Anspruch 1 abhängig sein (Art. 6 PCT). In den Ansprüchen 3 und 4 findet sich die gleiche Definition für R⁵ als in Anspruch 2.

THIS PAGE BLANK (USPTO)

12. Anspruch 1 definiert, daß die Verbindungen "gegebenenfalls im Kohlenstoffgerüst" substituiert sein können. Es ist nicht klar was mit Kohlenstoffgerüst gemeint ist (Art. 6 PCT). Ist es z.B. eine Substitution an einem der C-Atomen der explizit schon in Formel (I) gemäß Anspruch 1 vorhanden ist, oder kann es an jedem beliebigen C-Atom im Molekül sein?
13. Es wird weiter in Anspruch 1 definiert, daß die in den Verbindungen genannten Carboxygruppen durch "eine in-vivo in eine Carboxygruppe überführbaren Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein", und die Amino- oder Iminogruppen durch "eine in vivo abspaltbaren Rest substituiert sein können". Diese Definitionen sind nicht klar.
14. Die Anmeldung erfüllt somit nicht die Erfordernisse des Art. 6 PCT.

THIS PAGE BLANK (USPTO)

Translation

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

8

Applicant's or agent's file reference 5/1266-FL	FOR FURTHER ACTION See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)	
International application No. PCT/EP00/07457	International filing date (day/month/year) 02 August 2000 (02.08.00)	Priority date (day/month/year) 07 August 1999 (07.08.99)
International Patent Classification (IPC) or national classification and IPC C07C 257/18,		
Applicant BOEHRINGER INGELHEIM PHARMA KG		

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.

2. This REPORT consists of a total of 7 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of _____ sheets.

3. This report contains indications relating to the following items:

- I Basis of the report
- II Priority
- III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
- IV Lack of unity of invention
- V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- VI Certain documents cited
- VII Certain defects in the international application
- VIII Certain observations on the international application

Date of submission of the demand 07 February 2001 (07.02.01)	Date of completion of this report 11 May 2001 (11.05.2001)
Name and mailing address of the IPEA/EP	Authorized officer
Facsimile No.	Telephone No.

THIS PAGE BLANK (USPTO)

I. Basis of the report

1. This report has been drawn on the basis of (*Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.*):

the international application as originally filed.

the description, pages 1-61, as originally filed,
pages _____, filed with the demand,
pages _____, filed with the letter of _____,
pages _____, filed with the letter of _____.

the claims, Nos. 1-10, as originally filed,
Nos. _____, as amended under Article 19,
Nos. _____, filed with the demand,
Nos. _____, filed with the letter of _____,
Nos. _____, filed with the letter of _____.

the drawings, sheets/fig _____, as originally filed,
sheets/fig _____, filed with the demand,
sheets/fig _____, filed with the letter of _____,
sheets/fig _____, filed with the letter of _____.

2. The amendments have resulted in the cancellation of:

the description, pages _____

the claims, Nos. _____

the drawings, sheets/fig _____

3. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).

4. Additional observations, if necessary:

THIS PAGE BLANK (USPTO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORTInternational application No.
EP 00/07457**L Basis of the report**

1. This report has been drawn on the basis of (*Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.*):

1. The examination is carried out for the compounds of Formula (I), as defined in Claim 1, in which $m = 0$ and $n = 1$ (as requested by the applicant in his letter of 11 April 2001).

THIS PAGE BLANK (USPTO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

EP 00/07457

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Claims	1-10	YES
	Claims		NO
Inventive step (IS)	Claims	1-10	YES
	Claims		NO
Industrial applicability (IA)	Claims	1-10	YES
	Claims		NO

2. Citations and explanations

2. The application concerns two independent substance claims, Claims 1 and 2 (see also Box VII, item 11).

3. Document D2 (D. LABES ET AL.: "Free-Wilson Analyse der Hemmwirkung von 4-substituierten Benzamidinen gegenüber Thrombin, Plasmin und Trypsin", PHARMAZIE., Vol. 34, No. 9, 1979, pages 554-555, BERLIN, DD) discloses the compound 47 on page 555. That compound differs from the compounds as per Claim 1 in that an R¹ substituent (which, in the present claim, cannot be hydrogen) is missing. That compound shows thrombin-inhibiting properties.

4. Document US-A-5 726 159 (D3) describes compounds (e.g. in Examples 14-34) in which an Ar group bears an imidino group and is linked by a CH₂NHCO chain to another group, said compounds showing thrombin-inhibiting properties.

5. Document GB-A-2 007 663 (D4) discloses certain amidinophenylcarboxylic acid amides with anti-coagulating properties.

6. The prior art does not disclose any compounds that

THIS PAGE BLANK (USPTO)

would be covered by Claims 1 or 2, which therefore meet the requirements of PCT Article 33(2).

7. The problem addressed can be considered to be that of providing alternative thrombin-inhibiting compounds.
8. This problem is solved in a non-obvious manner by the compounds of Formula (I) as defined in Claims 1 and 2 (in which an R1 substituent is present). Claims 1 and 2 therefore also meet the requirements of PCT Article 33(3).
9. Claims 2-6 are dependent on Claims 1 and 2 and therefore also meet the requirements of PCT Article 33(2) and (3). Claims 7-10 concern medicaments containing the compounds as per one of the Claims 1-6, the use of these compounds, a method for producing medicaments containing these compounds and the preparation of these compounds. These claims therefore also meet the requirements of PCT Article 33(2) and (3).

THIS PAGE BLANK (USPTO)

VII. Certain defects in the international application

The following defects in the form or contents of the international application have been noted:

10. The application concerns compounds with pharmaceutical properties, in particular an anti-thrombotic activity. However, the applicant has not cited any documents reflecting the closest prior art. Contrary to PCT Rule 5.1(a)(ii), the description does not cite documents D2-D4 and does not indicate the relevant prior art disclosed therein.

THIS PAGE BLANK (USPTO)

VIII Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

11. Claim 1 defines R^5 as "an amidino group optionally substituted by one or two C_{1-3} -alkyl groups". In Claim 2, which is formulated as a claim dependent on Claim 1, R^5 is defined as an "amidino group optionally substituted by a C_{1-6} -alkoxycarbonyl or benzoyl group". This definition is not a subrange of R^5 but rather an entirely different range. Claim 2 therefore cannot be dependent on Claim 1 (PCT Article 6). Claims 3 and 4 give the same definition of R^5 as Claims 3 and 4.
12. Claim 1 specifies that the compounds may be "optionally substituted in the carbon structure". It is not clear what is meant by carbon structure (PCT Article 6). Is it, for example, a substitution at one of the C atoms, which is already explicitly contained in Formula (I), as defined in Claim 1, or could it be a substitution at any C atom in the molecule?
13. Claim 1 further states that the carboxy groups indicated in the compounds could be "replaced by a group that could be transformed *in vivo* into a carboxy group or by a group that is negatively charged in physiological conditions", and that the amino or imino groups "could be substituted by a group that can be split *in vivo*". These definitions are not clear.
14. The application therefore does not meet the requirements of PCT Article 6.

THIS PAGE BLANK (USPTO)

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
15. Februar 2001 (15.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/10823 A1

(51) Internationale Patentklassifikation⁷: C07C 257/18, C07D 295/18, 207/12, A61K 31/40, 31/4164, A61P 7/02, C07D 295/12, C07C 311/21, 311/46, C07D 233/54

(21) Internationales Aktenzeichen: PCT/EP00/07457

(22) Internationales Anmeldedatum:
2. August 2000 (02.08.2000)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
199 37 494.5 7. August 1999 (07.08.1999) DE
100 25 663.5 24. Mai 2000 (24.05.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; D-55216 Ingelheim/Rhein (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): RIES, Uwe [DE/DE]; Tannenstrasse 31, D-88400 Biberach (DE). PRIEPKE,

Henning [DE/DE]; Birkenharder Strasse 11, D-88447 Warthausen (DE). HECKEL, Armin [DE/DE]; Geschwister-Scholl-Strasse 71, D-88400 Biberach (DE). NAR, Herbert [DE/DE]; Ulrika-Nisch-Strasse 8, D-88441 Mittelbiberach (DE). WIENEN, Wolfgang [DE/DE]; Kirschenweg 27, D-88400 Biberach (DE). STASSEN, Jean, Marie [BE/DE]; Berggrubenweg 11, D-88447 Warthausen (DE).

(74) Anwalt: LAUDIEN, Dieter; Boehringer Ingelheim GmbH, B Patente, D-55216 Ingelheim/Rhein (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent

[Fortsetzung auf der nächsten Seite]

(54) Title: CARBOXYLIC ACID AMIDES, THEIR PRODUCTION AND THEIR USE AS DRUGS

(54) Bezeichnung: CARBONSÄUREAMIDE, DEREN HERSTELLUNG UND DEREN VERWENDUNG ALS ARZNEIMITTEL

WO 01/10823 A1

(57) Abstract: The invention relates to carboxylic acid amides of formula (I), wherein R₁ to R₅, Ar, m and n are defined in Claim 1, their tautomers, their stereoisomers, their mixtures, their prodrugs and their salts, which exhibit valuable properties. The compounds of the above mentioned formula (I), wherein R₅ represents a cyano group, are valuable intermediates for the production of other compounds of formula (I). The compounds of said formula (I), wherein R₅ represents one of the amidino groups mentioned in Claim 1, exhibit valuable pharmacological properties, especially an antithrombotic property and a factor Xa-inhibitory property.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Carbonsäureamide der allgemeinen Formel (I), in der R₁ bis R₅, Ar, m und n wie im Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere, deren Gemische, deren Prodrugs und deren Salze, welche wertvolle Eigenschaften aufweisen. Die Verbindungen der obigen allgemeinen Formel (I), in denen R₅ eine Cyanogruppe darstellt, stellen wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel (I) dar, und die Verbindungen der obigen allgemeinen Formel (I), in denen R₅ eine der im Anspruch (I) erwähnten Amidinogruppen darstellt, weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine antithrombotische Wirkung und eine Faktor Xa-inhibierende Wirkung.

(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

- *Mit internationalem Recherchenbericht.*
- *Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen.*

Carbonsäureamide, deren Herstellung und deren Verwendung als
Arzneimittel

Gegenstand der vorliegenden Erfindung sind Carbonsäureamide
der allgemeinen Formel

deren Tautomere, deren Stereoisomere, deren Gemische, deren Prodrugs, deren Derivate, die an Stelle einer Carboxygruppe eine unter physiologischen Bedingungen negativ geladene Gruppe enthalten, und deren Salze, insbesondere deren physiologisch verträglichen Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle Eigenschaften aufweisen.

Die Verbindungen der obigen allgemeinen Formel I, in denen R₅ eine Cyanogruppe darstellt, stellen wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel I dar, und die Verbindungen der obigen allgemeinen Formel I, in denen R₅ eine der nachfolgenden Amidinogruppen darstellt, sowie deren Tautomere, deren Stereoisomere, deren Gemische, deren Prodrugs, deren Derivate, die an Stelle einer Carboxygruppe eine unter physiologischen Bedingungen negativ geladene Gruppe enthalten, und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Salzen, und deren Stereoisomere weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine antithrombotische Wirkung und eine Faktor Xa-inhibierende Wirkung.

- 2 -

Gegenstand der vorliegenden Anmeldung sind somit die neuen Verbindungen der obigen allgemeinen Formel I sowie deren Herstellung, die die pharmakologisch wirksamen Verbindungen enthaltende Arzneimittel, deren Herstellung und Verwendung.

In der obigen allgemeinen Formel bedeutet

einer der Reste m oder n die Zahl 0 und
der andere Reste m oder n die Zahl 1,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C₁₋₃-Alkyl-, Hydroxy-, C₁₋₃-Alkoxy-, Phenyl-C₁₋₃-alkoxy-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-Alkyl)-aminogruppe substituierte Phenyl- oder Naphthylengruppe, wobei die Phenylengruppe durch ein weiteres Fluor-, Chlor- oder Bromatom oder durch eine weitere C₁₋₃-Alkylgruppe substituiert sein kann,

eine gegebenenfalls im Kohlenstoffgerüst durch eine C₁₋₃-Alkylgruppe substituierte Thienylen-, Thiazolylen-, Pyridinylen-, Pyrimidinylen-, Pyrazinylen- oder Pyridazinylengruppe,

R₁ eine gegebenenfalls durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-Alkyl)-amino-, Phenyl-, Naphthyl-, Heteroaryl- oder 4- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe,

eine C₃₋₇-Cycloalkylgruppe, die in 1-Stellung durch eine 5- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe substituiert ist,

eine Amino-, C₁₋₅-Alkylamino-, C₅₋₇-Cycloalkylamino- oder Phenyl-C₁₋₃-alkylaminogruppe, die jeweils am Aminstickstoffatom durch eine Benzoyl- oder Phenylsulfonylgruppe oder durch eine gegebenenfalls im C₁₋₃-Alkylteil durch eine Carboxygruppe substituierte C₁₋₃-Alkyl- oder C₁₋₃-Alkylcarbonylgruppe substituiert sein kann,

- 3 -

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte 4- bis 7-gliedrige Cycloalkyleniminocarbonyl- oder Cycloalkylen-iminosulfonylgruppe,

eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Aminosulfonylgruppe,

eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Aminosulfonyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylgruppe, die zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein kann,

eine C_{1-3} -Alkoxy-, Phenyl- C_{1-3} -alkoxy-, Heteroaryloxy- oder Heteroaryloxy- C_{1-3} -alkoxygruppe, in der der Alkoxyteil jeweils in 2- oder 3-Stellung auch durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -Alkyl)-aminogruppe substituiert sein kann,

eine C_{3-7} -Cycloalkoxygruppe, wobei die Methylengruppe in 3- oder 4-Stellung in einer C_{5-7} -Cycloalkoxygruppe durch eine -NH-Gruppe ersetzt sein kann, wobei die -NH-Gruppe

durch eine C_{1-3} -Alkylgruppe, die in 2- oder 3-Stellung durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -Alkyl)-aminogruppe substituiert sein kann, durch eine C_{1-3} -Alkylcarbonyl-, Arylcarbonyl- oder Arylsulfonylgruppe oder

durch Aminocarbonyl-, C_{1-3} -Alkylaminocarbonyl- oder Di-(C_{1-3} -Alkyl)-aminocarbonylgruppe, in denen jeweils das Sauerstoffatom der Carbonylgruppe durch eine Iminogruppe ersetzt ist, substituiert sein kann,

R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkyl-, Hydroxy- oder C_{1-3} -Alkoxygruppe,

R_3 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe,

R_4 ein Wasserstoffatom oder eine gegebenenfalls durch eine Carboxygruppe substituierte C_{1-3} -Alkylgruppe und

R_5 eine Cyanogruppe oder eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Amidinogruppe,

insbesondere jedoch, wenn m , n , Ar und R_2 bis R_5 wie vorstehend erwähnt definiert sind, bedeutet

R_1 eine gegebenenfalls durch eine Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Phenyl-, Naphthyl- oder Heteroarylgruppe substituierte C_{1-3} -Alkylgruppe,

eine C_{3-7} -Cycloalkylgruppe, die in 1-Stellung durch eine 5- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe substituiert ist,

eine 4- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe,

eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylgruppe,

eine C_{1-3} -Alkoxy-, Phenyl- C_{1-3} -alkoxy-, Heteroaryloxy- oder Heteroaryloxy- C_{1-3} -alkoxygruppe, in der der Alkoxyteil jeweils in 2- oder 3-Stellung auch durch eine Amino-, C_{1-3} -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein kann,

eine C_{3-7} -Cycloalkoxygruppe, wobei die Methylengruppe in 3- oder 4-Stellung in einer C_{5-7} -Cycloalkoxygruppe durch eine -NH-Gruppe ersetzt sein kann, wobei die -NH-Gruppe durch eine Arylcarbonyl- oder Arylsulfonylgruppe, durch eine C_{1-3} -Alkylcarbonylgruppe, in welcher das Sauerstoffatom der Carbonylgruppe durch eine Iminogruppe ersetzt sein und der Alkanoylteil durch eine Amino-, C_{1-3} -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein kann, oder durch eine C_{1-3} -Alkylgruppe, die in 2-

oder 3-Stellung durch eine Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-Alkyl)-aminogruppe substituiert sein kann,

insbesondere bedeutet

R₁ eine durch eine 4- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe,

eine Amino-, C₁₋₅-Alkylamino-, C₅₋₇-Cycloalkylamino- oder Phenyl-C₁₋₃-alkylaminogruppe, die jeweils am Aminstickstoffatom durch eine Benzoyl- oder Phenylsulfonylgruppe oder durch eine gegebenenfalls im C₁₋₃-Alkylteil durch eine Carboxygruppe substituierte C₁₋₃-Alkyl- oder C₁₋₃-Alkylcarbonylgruppe substituiert sein kann,

eine durch eine C₁₋₃-Alkylgruppe substituierte 4- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte 4- bis 7-gliedrige Cycloalkyleniminatosulfonylgruppe,

eine gegebenenfalls durch eine oder zwei C₁₋₃-Alkylgruppen substituierte Aminosulfonylgruppe,

eine Aminosulfonylphenylgruppe,

eine durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Aminosulfonyl-, C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituierte Phenylgruppe, die zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituiert ist,

eine C₃₋₇-Cycloalkoxygruppe, wobei die Methylengruppe in 3- oder 4-Stellung in einer C₅₋₇-Cycloalkoxygruppe durch eine -NH-Gruppe ersetzt ist, wobei die -NH-Gruppe

- 6 -

durch eine Aminocarbonyl-, C_{1-3} -Alkylaminocarbonyl- oder Di- (C_{1-3} -Alkyl)-aminocarbonylgruppe, in denen jeweils das Sauerstoffatom der Carbonylgruppe durch eine Iminogruppe ersetzt ist, substituiert ist.

Unter den vorstehend erwähnten Heteroarylgruppen ist eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte 5-gliedrige Heteroarylgruppe, die im heteroaromatischen Teil

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und ein Sauerstoff-, Schwefel- oder Stickstoffatom,

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte 6-gliedrige Heteroarylengruppe, die im heteroaromatischen Teil

ein oder zwei Stickstoffatome enthält,

zu verstehen.

Außerdem können die bei der Definition der vorstehend erwähnten Resten erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein oder

- 7 -

die bei der Definition der vorstehend erwähnten Resten erwähnten Amino- und Iminogruppen durch einen in vivo abspaltbaren Rest substituiert sein. Derartige Gruppen werden beispielsweise in der WO 98/46576 und von N.M. Nielsen et al. in International Journal of Pharmaceutics 39, 75-85 (1987) beschrieben.

Unter einer in-vivo in eine Carboxygruppe überführbare Gruppe ist beispielsweise eine Hydroxymethylgruppe, eine mit einem Alkohol veresterte Carboxygruppe, in der der alkoholische Teil vorzugsweise ein C₁₋₆-Alkanol, ein Phenyl-C₁₋₃-alkanol, ein C₃₋₉-Cycloalkanol, wobei ein C₅₋₈-Cycloalkanol zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₅₋₈-Cycloalkanol, in dem eine Methylengruppe in 3- oder 4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-C₁₋₃-alkyl-, Phenyl-C₁₋₃-alkoxy-carbonyl- oder C₂₋₆-Alkanoylgruppe substituierte Iminogruppe ersetzt ist und der Cycloalkanolteil zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₄₋₇-Cyclo-alkenol, ein C₃₋₅-Alkenol, ein Phenyl-C₃₋₅-alkenol, ein C₃₋₅-Alkinol oder Phenyl-C₃₋₅-alkinol mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt, ein C₃₋₈-Cyclo-alkyl-C₁₋₃-alkanol, ein Bicycloalkanol mit insgesamt 8 bis 10 Kohlenstoffatomen, das im Bicycloalkylteil zusätzlich durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein 1,3-Dihydro-3-oxo-1-isobenzfuranol oder ein Alkohol der Formel

in dem

R_a eine C₁₋₈-Alkyl-, C₅₋₇-Cycloalkyl-, Phenyl- oder Phenyl-C₁₋₃-alkylgruppe,

R_b ein Wasserstoffatom, eine C₁₋₃-Alkyl-, C₅₋₇-Cycloalkyl- oder Phenylgruppe und

R_c ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe darstellen,

unter einer unter physiologischen Bedingungen negativ geladenen Gruppe wie eine Tetrazol-5-yl-, Phenylcarbonylaminocarbonyl-, Trifluormethylcarbonylaminocarbonyl-, C_{1-6} -Alkylsulfonylamino-, Phenylsulfonylamino-, Benzylsulfonylamino-, Trifluormethylsulfonylamino-, C_{1-6} -Alkylsulfonylaminocarbonyl-, Phenylsulfonylaminocarbonyl-, Benzylsulfonylaminocarbonyl- oder Perfluor- C_{1-6} -alkylsulfonylaminocarbonylgruppe

und unter einem von einer Imino- oder Aminogruppe in-vivo abspaltbaren Rest beispielsweise eine Hydroxygruppe, eine Acylgruppe wie eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppen mono- oder disubstituierte Benzoylgruppe, wobei die Substituenten gleich oder verschieden sein können, eine Pyridinoylgruppe oder eine C_{1-16} -Alkanoylgruppe wie die Formyl-, Acetyl-, Propionyl-, Butanoyl-, Pentanoyl- oder Hexanoylgruppe, eine 3,3,3-Trichlorpropionyl- oder Allyloxycarbonylgruppe, eine C_{1-16} -Alkoxycarbonyl- oder C_{1-16} -Alkylcarbonyloxygruppe, in denen Wasserstoffatome ganz oder teilweise durch Fluor- oder Chloratome ersetzt sein können, wie die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopropoxycarbonyl-, Butoxycarbonyl-, tert. Butoxycarbonyl-, Pentoxy carbonyl-, Hexoxycarbonyl-, Octyloxycarbonyl-, Nonyloxycarbonyl-, Decyloxycarbonyl-, Undecyloxycarbonyl-, Dodecyloxycarbonyl-, Hexadecyloxycarbonyl-, Methylcarbonyloxy-, Ethylcarbonyloxy-, 2,2,2-Trichlorethylcarbonyloxy-, Propylcarbonyloxy-, Isopropylcarbonyloxy-, Butylcarbonyloxy-, tert. Butylcarbonyloxy-, Pentylcarbonyloxy-, Hexylcarbonyloxy-, Octylcarbonyloxy-, Nonylcarbonyloxy-, Decylcarbonyloxy-, Undecylcarbonyloxy-, Dodecylcarbonyloxy- oder Hexadecylcarbonyloxygruppe, eine Phenyl- C_{1-6} -alkoxy-carbonylgruppe wie die Benzyloxycarbonyl-, Phenylethoxycarbonyl- oder Phenylpropoxycarbonylgruppe, eine 3-Amino-propionylgruppe, in der die Aminogruppe durch C_{1-6} -Alkyl- oder C_{3-7} -Cycloalkylgruppen mono- oder disubstituiert und die Substituenten gleich oder verschieden sein können, eine C_{1-3} -Alkylsulfonyl-

C_{2-4} -alkoxycarbonyl-, C_{1-3} -Alkoxy- C_{2-4} -alkoxycarbonyl-, R_a -CO-O-(R_b CR_c)-O-CO-, C_{1-6} -Alkyl-CO-NH-(R_d CR_e)-O-CO- oder C_{1-6} -Alkyl-CO-O-(R_d CR_e)-(R_d CR_e)-O-CO-Gruppe, in denen R_a bis R_c wie vorstehend erwähnt definiert sind,

R_d und R_e , die gleich oder verschieden sein können, Wasserstoffatome oder C_{1-3} -Alkylgruppen darstellen,

zu verstehen.

Desweiteren schließen die bei der Definition der vorstehend erwähnten gesättigten Alkyl- und Alkoxyteile, die mehr als 2 Kohlenstoffatome enthalten, auch deren verzweigte Isomere wie beispielsweise die Isopropyl-, tert.Butyl-, Isobutylgruppe etc. ein.

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

einer der Reste m oder n die Zahl 0 und der andere Reste m oder n die Zahl 1,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl-, Hydroxy-, Methoxy- oder Benzyloxygruppe substituierte Phenylengruppe, welche durch eine weitere Methylgruppe substituiert sein kann,

R_1 eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Aminosulfonyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylgruppe, die zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein kann,

eine durch eine Dimethylamino-, Pyrrolidino- oder Imidazolylgruppe substituierte Methylgruppe, wobei der Imidazolylteil durch eine Methylgruppe substituiert sein kann,

eine Amino-, C_{1-5} -Alkylamino-, Cyclopentylamino- oder Benzylaminogruppe, die am Aminstickstoffatom durch eine Carboxy- C_{1-2} -alkyl-, C_{1-3} -Alkoxycarbonyl- C_{1-2} -alkyl-, Carboxy- C_{1-2} -alkyl-carbonyl- oder C_{1-3} -Alkoxycarbonyl- C_{1-2} -alkylcarbonylgruppe substituiert sein kann,

eine Benzoylamino- oder Phenylsulfonylaminogruppe,

eine Cyclopropylgruppe, die in 1-Stellung durch eine 5- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe substituiert ist,

eine gegebenenfalls durch eine Methylgruppe substituierte Pyrrolidinocarbonyl-, Piperidinocarbonyl-, Pyrrolidinosulfonyl- oder Piperidinosulfonylgruppe,

eine C_{1-3} -Alkoxygruppe, in der der Alkoxyteil jeweils in 2- oder 3-Stellung durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -Alkyl)-aminogruppe substituiert sein kann,

eine Phenyl- C_{1-3} -alkoxy- oder Pyridinyloxygruppe,

eine C_{5-7} -Cycloalkoxygruppe, in der die Methylengruppe in 3- oder 4-Stellung durch eine -NH-Gruppe ersetzt sein kann, wobei die -NH-Gruppe

durch eine C_{1-3} -Alkyl- oder C_{2-3} -Alkanoylgruppe,

durch eine C_{2-3} -Alkanoyl- oder Aminocarbonylgruppe, in der jeweils das Sauerstoffatom der Carbonylgruppe durch eine Iminogruppe ersetzt ist, substituiert sein kann,

R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Hydroxy- oder Methoxygruppe,

R_3 ein Wasserstoffatom oder eine Methylgruppe,

R_4 ein Wasserstoffatom oder eine gegebenenfalls durch eine Carboxy- oder C_{1-3} -Alkoxycarbonylgruppe substituierte Methyl- oder Ethylgruppe und

R_5 eine Cyanogruppe oder eine gegebenenfalls durch eine C_{1-6} -Alkoxycarbonyl- oder Benzoylgruppe substituierte Amidinogruppe bedeuten,

deren Isomere und deren Salze.

Besonders bevorzugte Verbindungen der allgemeinen Formel I, sind diejenigen, in denen

einer der Reste m oder n die Zahl 0 und der andere Reste m oder n die Zahl 1,

Ar eine gegebenenfalls durch eine Methyl-, Hydroxy-, Methoxy- oder Benzyloxygruppe substituierte Phenylengruppe,

R_1 eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Aminosulfonyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylgruppe, die zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein kann,

eine Cyclopropylgruppe, die in 1-Stellung durch eine 5- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe substituiert ist, oder eine 4- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe,

eine gegebenenfalls durch eine Methylgruppe substituierte Pyrrolidinocarbonyl-, Piperidinocarbonyl- oder Pyrrolidinosulfonylgruppe,

R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom oder eine Methylgruppe,

R_3 ein Wasserstoffatom oder eine Methylgruppe,

R_4 ein Wasserstoffatom oder eine durch eine Carboxy-, Methoxycarbonyl- oder Ethoxycarbonylgruppe substituierte Methyl- oder Ethylgruppe und

R_5 eine gegebenenfalls durch eine C_{1-6} -Alkoxy carbonyl- oder Benzoylgruppe substituierte Amidinogruppe bedeuten,

deren Isomere und deren Salze.

Beispielsweise seien folgende bevorzugte Verbindungen erwähnt:

(a) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid,

(b) 2-(2-Benzylxy-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid,

(c) 2-(2-Hydroxy-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid,

(d) 2-(2-Hydroxy-5-carbamimidoyl-phenyl)-N-(2-carboxy-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid,

(e) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(piperidin-1-yl-carbonyl)-phenyl]-acetamid und

(f) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(2-aminosulfonyl-phenyl)-phenyl]-acetamid,

in denen die Amidinogruppe zusätzlich durch eine C_{1-6} -Alkoxy carbonyl- oder Benzoylgruppe substituiert sein kann, und deren Salze.

Erfnungsgemäß erhält man die Verbindungen der allgemeinen Formel I nach an sich bekannten Verfahren, beispielsweise nach folgenden Verfahren:

a) Acylierung einer Verbindung der allgemeinen Formel

in der

R₁ bis R₄ und m wie eingangs erwähnt definiert sind, mit einer Carbonsäure der allgemeinen Formel

in der

Ar, R₅ und n wie eingangs erwähnt definiert sind, oder mit deren reaktionsfähigen Derivaten.

Die Acylierung wird zweckmäßigerweise mit einem entsprechenden Halogenid oder Anhydrid in einem Lösungsmittel wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Ether, Tetrahydrofuran, Dioxan, Benzol, Toluol, Acetonitril oder Sulfolan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt.

Die Acylierung kann jedoch auch mit der freien Säure gegebenenfalls in Gegenwart eines die Säure aktivierenden Mittels oder eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Chlorwasserstoff, Schwefelsäure, Methansulfinsäure, p-Toluolsulfinsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodi-

imid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder N,N'-Thionyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt werden.

b) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R₅ eine Amidinogruppe, die durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann:

Umsetzung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel

in der

R₁ bis R₄, Ar und n wie eingangs erwähnt definiert sind und Z₁ eine Alkoxy- oder Aralkoxygruppe wie die Methoxy-, Ethoxy-, n-Propoxy-, Isopropoxy- oder Benzyloxygruppe oder eine Alkylthio- oder Aralkylthiogruppe wie die Methylthio-, Ethylthio-, n-Propylthio- oder Benzylthiogruppe darstellt, mit einem Amin der allgemeinen Formel

in der

R₆ und R₇, die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe bedeuten, oder mit dessen Salzen.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Methanol, Ethanol, n-Propanol, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Tempe-

raturen zwischen 0 und 80°C, mit einem Amin der allgemeinen Formel V oder mit einem entsprechenden Säureadditionssalz wie beispielsweise Ammoniumcarbonat oder Ammoniumacetat durchgeführt.

Eine Verbindung der allgemeinen Formel IV erhält man beispielsweise durch Umsetzung einer entsprechenden Cyanoverbindung mit einem entsprechenden Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol oder Benzylalkohol in Gegenwart einer Säure wie Salzsäure oder durch Umsetzung eines entsprechenden Amids mit einem Trialkyloxoniumsalz wie Triethylxonium-tetrafluorborat in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei 20°C, oder eines entsprechenden Nitriils mit Schwefelwasserstoff zweckmäßigerweise in einem Lösungsmittel wie Pyridin oder Dimethylformamid und in Gegenwart einer Base wie Triethylamin und anschließender Acylierung des gebildeten Thioamids mit einem entsprechenden Alkyl- oder Aralkylhalogenid.

Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine Amino- oder Iminogruppe enthält, so kann diese anschließend mit einem entsprechenden Acylderivat in eine entsprechende Acylverbindung der allgemeinen Formel I übergeführt werden und/oder

eine Verbindung der allgemeinen Formel I, die eine veresterte Carboxygruppe enthält, so kann diese mittels Hydrolyse in eine entsprechende Carbonsäure der allgemeinen Formel I übergeführt werden und/oder

eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, so kann diese anschließend mittels Veresterung in einen entsprechenden Ester übergeführt werden.

Die anschließende Acylierung wird zweckmäßigerweise mit einem entsprechenden Halogenid oder Anhydrid in einem Lösungsmittel

wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Ether, Tetrahydrofuran, Dioxan, Benzol, Toluol, Acetonitril oder Sulfolan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt. Diese kann jedoch auch mit der freien Säure gegebenenfalls in Gegenwart eines die Säure aktivierenden Mittels oder eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Chlorwasserstoff, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphor-pentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder N,N'-Thionyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt werden.

Die nachträgliche Hydrolyse wird zweckmäßigerweise entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Trichloressigsäure, Trifluoressigsäure oder deren Gemischen oder in Gegenwart einer Base wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmittel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopropanol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/Dioxan und die anschließende Decarboxylierung in Gegenwart einer Säure wie vorstehend beschrieben bei Temperaturen zwischen -10 und 120°C, z.B. bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, durchgeführt.

Die nachträgliche Veresterung wird mit einem entsprechenden Alkohol zweckmäßigerweise in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan, vorzugsweise jedoch in einem Überschuß des eingesetzten Alkohols, gegebenenfalls in Gegenwart einer Säure wie Salzsäure oder in

Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Salzsäure, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N,N'-Carbonyldiimidazol- oder N,N'-Thionyldiimidazol, Triphenylphosphin/Tetrachlorkohlenstoff oder Triphenylphosphin/Azodicarbonsäurediethylester gegebenenfalls in Gegenwart einer Base wie Kaliumcarbonat, N-Ethyl-diisopropylamin oder N,N-Dimethylamino-pyridin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, oder mit einem entsprechenden Halogenid in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylformamid oder Aceton gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie Natrium- oder Kaliumiodid und vorzugsweise in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, oder gegebenenfalls in Gegenwart von Silberkarbonat oder Silberoxid bei Temperaturen zwischen -30 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 80°C, durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Methoxy-, Benzyloxy-, Trimethylsilyl-, Acetyl-, Benzoyl-, tert.Butyl-, Trityl-, Benzyl- oder Tetrahydropyanylgruppe,

als Schutzreste für eine Carboxylgruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.Butyl-, Benzyl- oder Tetrahydropyranylgruppe und

als Schutzrest für eine Amino-, Alkylamino- oder Iminogruppe die Acetyl-, Trifluoracetyl-, Benzoyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Sodiumhydroxid oder Kaliumhydroxid oder mittels Etherspaltung, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar.

Die Abspaltung einer Methoxybenzylgruppe kann auch in Gegenwart eines Oxidationsmittels wie Cer(IV) ammoniumnitrat in einem Lösungsmittel wie Methylenchlorid, Acetonitril oder Acetonitril/Wasser bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, erfolgen.

Die Abspaltung einer Methoxy erfolgt zweckmäßigerweise in Gegenwart Bortribromid in einem Lösungsmittel wie Methylenchlorid bei Temperaturen zwischen -35 und -25°C.

Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

Die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan oder Ether.

Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C.

Die Abspaltung eines Allyloxycarbonylrestes erfolgt durch Behandlung mit einer katalytischen Menge Tetrakis-(triphenylphosphin)-palladium(O) vorzugsweise in einem Lösungsmittel wie Tetrahydrofuran und vorzugsweise in Gegenwart eines Überschusses von einer Base wie Morpholin oder 1,3-Dimedon bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Raumtemperatur und unter Inertgas, oder durch Behandlung mit einer katalytischen Menge von Tris-(triphenylphosphin)-rhodium(I)-chlorid in einem Lösungsmittel wie wässrigem Ethanol und gegebenenfalls in Gegenwart einer Base wie 1,4-Diazabicyclo-[2.2.2]octan bei Temperaturen zwischen 20 und 70°C.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis V, welche teilweise literaturbekannt sind, erhält man nach literaturbekannten Verfahren, desweiteren wird ihre Herstellung in den Beispielen beschrieben.

Die Chemie der Verbindungen der allgemeinen Formel II wird beispielsweise von Schröter in Stickstoffverbindungen II, Seiten 341-730, Methoden der organischen Chemie (Houben-Weyl), 4. Auflage, Verlag Thieme, Stuttgart 1957, und die der allge-

meinen Formel III von J.F. Hartwig in Angew. Chem. 110, 2154-2157 (1998) beschrieben.

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/-oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierte Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Apfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Menthol und als optisch aktiver

Acylrest in Amiden beispielsweise der (+)- oder (-)-Menthyl-oxycarbonylrest in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Wie bereits eingangs erwähnt, weisen die neuen Verbindungen der allgemeinen Formel I und deren Salze wertvolle Eigenschaften auf. So stellen die Verbindungen der allgemeinen Formel I, in denen R_5 eine Cyanogruppe darstellt, wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel I dar, und die Verbindungen der allgemeinen Formel I, in denen R_5 eine der eingangs erwähnten Amidinogruppen darstellt, sowie deren Tautomeren, deren Stereoisomeren und deren physiologisch verträglichen Salze weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine antithrombotische Wirkung, welche vorzugsweise auf einer Thrombin oder Faktor Xa beeinflussenden Wirkung beruht, beispielsweise auf einer thrombinhemmenden oder Faktor Xa-hemmenden Wirkung, auf einer die aPTT-Zeit verlängernden Wirkung und auf einer Hemmwirkung auf verwandte Serinproteasen wie z. B. Trypsin, Urokinase Faktor VIIa, Faktor IX, Faktor XI und Faktor XII.

Beispielsweise wurden die Verbindungen

A = 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid,

B = 2-(2-Benzylxy-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid,

C = 2-(2-Hydroxy-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid,

D = 2-(2-Hydroxy-5-carbamimidoyl-phenyl)-N-(2-carboxy-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

E = 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(piperidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid und

F = 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(2-aminosulfonyl-phenyl)-phenyl]-acetamid-hydrochlorid,

auf ihre Wirkung auf die Hemmung des Faktors Xa wie folgt untersucht:

Methodik: Enzymkinetische Messung mit chromogenem Substrat. Die durch humanen Faktor Xa aus dem farblosen chromogenen Substrat freigesetzte Menge anp-Nitroanilin (pNA) wird photometrisch bei 405 nm bestimmt. Sie ist proportional der Aktivität des eingesetzten Enzyms. Die Hemmung der Enzymaktivität durch die Testsubstanz (bezogen auf die Lösungsmittelkontrolle) wird bei verschiedenen Testsubstanz-Konzentrationen ermittelt und hieraus die IC_{50} berechnet als dieje-

nige Konzentration, die den eingesetzten Faktor Xa um 50 % hemmt.

Material:

Tris(hydroxymethyl)-aminomethan-Puffer (100 mMol) und Natriumchlorid (150 mMol), pH 8.0

Faktor Xa (Roche), Spez. Aktivität: 10 U/0.5 ml, Endkonzentration: 0.175 U/ml pro Reaktionsansatz

Substrat Chromozym X (Roche), Endkonzentration: 200 μ Mol/l pro Reaktionsansatz

Testsubstanz: Endkonzentration 100, 30, 10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001 μ Mol/l

Durchführung: 10 μ l einer 23.5-fach konzentrierteren Ausgangslösung der Testsubstanz bzw. Lösungsmittel (Kontrolle), 175 μ l Tris(hydroxymethyl)-aminomethan-Puffer und 25 μ l Faktor Xa-Gebrauchslösung von 1.65 U/ml werden 10 Minuten bei 37°C inkubiert. Nach Zugabe von 25 μ l Chromozym X-Gebrauchslösung (1.88 μ Mol/l) wird die Probe im Photometer (SpectraMax 250) bei 405 nm für 150 Sekunden bei 37°C gemessen.

Auswertung:

1. Ermittlung der maximalen Zunahme (deltaOD/Minuten) über 3 Messpunkte.
2. Ermittlung der %-Hemmung bezogen auf die Lösungsmittelkontrolle.
3. Erstellen einer Dosiswirkungskurve (%-Hemmung vs Substanzkonzentration).

4. Ermittlung der IC_{50} durch Interpolation des X-Wertes (Substanzkonzentration) der Dosiswirkungskurve bei $Y = 50\%$ Hemmung.

Die nachfolgende Tabelle enthält die gefundenen Werte:

Substanz	Hemmung des Faktors Xa (IC_{50} in μM)
A	0.030
B	0.680
C	0.120
D	0.850
E	0.085
F	0.260

Die erfindungsgemäß hergestellten Verbindungen sind gut verträglich, da bei therapeutischen Dosen keine toxischen Nebenwirkungen beobachtet werden konnten.

Aufgrund ihrer pharmakologischen Eigenschaften eignen sich die neuen Verbindungen und deren physiologisch verträglichen Salze zur Vorbeugung und Behandlung venöser und arterieller thrombotischer Erkrankungen, wie zum Beispiel der Behandlung von tiefen Beinvenen-Thrombosen, der Verhinderung von Reocclusionen nach Bypass-Operationen oder Angioplastie (PT(C)A), sowie der Occlusion bei peripheren arteriellen Erkrankungen wie Lungenembolie, der disseminierten intravaskulären Gerinnung, der Prophylaxe der Koronarthrombose, der Prophylaxe des Schlaganfalls und der Verhinderung der Occlusion von Shunts. Zusätzlich sind die erfindungsgemäßen Verbindungen zur antithrombotischen Unterstützung bei einer thrombolytischen Behandlung, wie zum Beispiel mit rt-PA oder Streptokinase, zur Verhinderung der Langzeitrestenose nach PT(C)A, zur Verhinderung der Metastasierung und des Wachstums von koagulationsabhängigen Tumoren und von fibrinabhängigen Entzündungsprozessen, z.B. bei der Behandlung der pulmonaren Fibrosis, geeignet.

- 25 -

Die zur Erzielung einer entsprechenden Wirkung erforderliche Dosierung beträgt zweckmäßigerweise bei intravenöser Gabe 0,1 bis 30 mg/kg, vorzugsweise 0,3 bis 10 mg/kg, und bei oraler Gabe 0,1 bis 50 mg/kg, vorzugsweise 0,3 bis 30 mg/kg, jeweils 1 bis 4 x täglich. Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen oder Zäpfchen einarbeiten.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern:

Beispiel 12- (3-Carbamimidoyl-phenyl) -N- [2-chlor-5-(1-(pyrrolidin-1-yl-carbonyl)-cyclopropyl)-phenyl]-acetamid-hydrochlorida. 1-(4-Chlor-3-nitro-phenyl)-cyclopropancarbonsäure

350 ml rauchende Salpetersäure werden bei -25 bis -30°C portionsweise mit 50.0 g (0.21 Mol) 1-(4-Chlor-phenyl)-cyclopropancarbonsäure versetzt. Nach beendeter Zugabe wird noch 15 Minuten bei -25°C gerührt und anschließend auf Eis gegossen. Die ausgefallene Substanz wird abgesaugt, mit Wasser gewaschen und getrocknet.

Ausbeute: 58.5 g (95 % der Theorie),

R_f-Wert: 0.43 (Kieselgel; Methylenechlorid/Methanol = 9.5:0.5)

b. 5-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-2-chlor-nitrobenzol

2.4 g (0.01 Mol) 1-(4-Chlor-3-nitro-phenyl)-cyclopropancarbonsäure werden in 25 ml Tetrahydrofuran gelöst und nach Zugabe von 3.2 g (0.01 Mol) O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluorborat, 1.1 ml (0.01 Mol) N-Methyl-morpholin und 1.0 ml (0.012 Mol) Pyrrolidin 16 Stunden bei Raumtemperatur gerührt. Das Solvens wird abdestilliert, der Rückstand auf Eiswasser gegossen, mit Ammoniak alkalisch gestellt und mit Essigester extrahiert. Die organische Phase wird getrocknet und eingedampft.

Ausbeute: 2.5 g (85 % der Theorie),

R_f-Wert: 0.18 (Kieselgel; Cyclohexan/Essigester = 1:1)

c. 5-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-2-chlor-anilin

1.8 g (8.14 mMol) 5-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-2-chlor-nitrobenzol werden in 30 ml Essigester und 30 ml Ethanol gelöst und nach Zugabe von 0.8 g Palladium auf Aktivkohle (10%ig) 3 Stunden bei Raumtemperatur mit Wasserstoff hydriert. Anschließend wird vom Katalysator abfiltriert und eingedampft.

- 27 -

Ausbeute: 2.0 g (92.8 % der Theorie),

R_f-Wert: 0.24 (Kieselgel; Cyclohexan/Essigester/Ammoniak = 1:1:0.01)

C₁₄H₁₇ClN₂O (264.75)

Massenspektrum: M⁺ = 264/6 (Cl)

d. 2-(3-Cyano-phenyl)-N-[2-chlor-5-(1-(pyrrolidin-1-yl-carbonyl)-cyclopropyl)-phenyl]-acetamid

Hergestellt analog Beispiel 1b aus 5-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-2-chlor-anilin, O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluorborat, N-Methyl-morpholin und 3-Cyanophenylessigsäure in Dimethylformamid.

Ausbeute: 43 % der Theorie,

R_f-Wert: 0.21 (Kieselgel; Cyclohexan/Essigester = 1:2)

e. 2-(3-Carbamimidoyl-phenyl)-N-[2-chlor-5-(1-(pyrrolidin-1-yl-carbonyl)-cyclopropyl)-phenyl]-acetamid-hydrochlorid

400 mg (0.1 mMol) 2-(3-Cyano-phenyl)-N-[2-chlor-5-(1-(pyrrolidin-1-yl-carbonyl)-cyclopropyl)-phenyl]-acetamid werden in 60 ml gesättigter ethanolischer Salzsäure gelöst und 17 Stunden bei Raumtemperatur gerührt. Das Solvens wird abdestilliert, der Rückstand in 50 ml absolutem Ethanol gelöst und mit 1.5 g (15.6 mMol) Ammoniumcarbonat versetzt. Nach 22 Stunden bei Raumtemperatur wird zur Trockene eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Methylenchlorid/Methanol/Eisessig (9:1:0.01) eluiert wird.

Ausbeute: 50 mg (11 % der Theorie),

R_f-Wert: 0.59 (Kieselgel; Methylenchlorid/Methanol/Ammoniak = 4:1:0.01)

C₂₃H₂₅ClN₄O₂ x HCl (424.94/461.4)

Massenspektrum: (M+H)⁺ = 425/7 (Cl)

Beispiel 23-Carbamimidoyl-N-[3-(1-(pyrrolidin-1-yl-carbonyl)-cyclopropyl)-benzyl]-benzamid-hydrochlorida. 1-(3-Brom-phenyl)-1-cyclopropan-nitril

25 g (0.13 Mol) 3-Brom-benzylcyanid werden in 32 ml (0.38 Mol) 1-Brom-2-chlor-ethan aufgenommen und mit 0.6 g (2.6 mMol) Benzyltriethylammoniumchlorid versetzt. Anschließend wird eine Lösung von 105.8 g (2.65 Mol) Natriumhydroxid in 106 ml Wasser bei 10 bis 25°C zugetropft. Nach 20 Stunden bei 55°C wird die Reaktionslösung auf Eiswasser gegossen und mit Essigester extrahiert. Die organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird mit Petrolether verrieben, abgesaugt und getrocknet.

Ausbeute: 19.3 g (68 % der Theorie),

R_f-Wert: 0.69 (Petrolether/Essigester = 4:1)

b. 1-(3-Brom-phenyl)-cyclopropancarbonsäure

7.6 g (0.135 Mol) Kaliumhydroxid werden in 60 ml Ethylenglykol gelöst, portionsweise mit 10.0 g (0.045 Mol) 1-(3-Brom-phenyl)-1-cyclopropan-nitril versetzt und nach Zugabe von 30 ml Wasser 4.5 Stunden auf 140°C erhitzt. Nach Abkühlung wird auf 600 ml Eiswasser gegossen und mit Ether extrahiert. Die wässrige Phase wird auf Eis/konz. Salzsäure gegossen, das ausgefallene Produkt abgesaugt und getrocknet.

Ausbeute: 10.1 g (93 % der Theorie),

R_f-Wert: 0.85 (Kieselgel; Cyclohexan/Essigester/Eisessig = 1:1:0.01)

c. 3-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-brom-benzol

Hergestellt analog Beispiel 1b aus 1-(3-Brom-phenyl)-cyclopropancarbonsäure, Pyrrolidin, O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluorborat und N-Methyl-morpholin in Tetrahydrofuran.

Ausbeute: 98 % der Theorie,

- 29 -

R_f-Wert: 0.55 (Kieselgel; Cyclohexan/Essigester/Eisessig = 1:1:0.01)

d. 3-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-benzonitril
6 g (20.4 mMol) 3-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-brom-benzol werden in 25 ml Dimethylformamid gelöst und nach Zugabe von 2.7 g (30.6 mMol) Kupfer-I-cyanid, 0.3 g (0.216 mMol) Tetrakis-triphenylphosphin-palladium-(0) und 5 g Aluminiumoxid 30 Stunden bei 140°C gerührt. Das unlösliche Material wird abfiltriert und die Lösung eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Cyclohexan/Essigester (1:2) eluiert wird.

Ausbeute: 1.8 g (36 % der Theorie),

R_f-Wert: 0.32 (Kieselgel; Cyclohexan/Essigester/Eisessig = 1:1:0.01)

e. 3-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-benzylamin
1.8 g (7.5 mMol) 3-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-benzonitril werden in 50 ml methanolischem Ammoniak unter Zugabe von 300 mg Raney-Nickel 3 Stunden bei 70°C mit Wasserstoff hydriert. Anschließend wird vom Katalysator abfiltriert und eingedampft.

Ausbeute: 1.8 g (98 % der Theorie),

R_f-Wert: 0.94 (Kieselgel; Methylenchlorid /Methanol/Ammoniak = 4:1:0.01)

f. 3-Cyano-N-[3-(1-(pyrrolidin-1-yl-carbonyl)-cyclopropyl)-benzyl]-benzamid

Hergestellt analog Beispiel 1b aus 3-[1-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl]-benzylamin, 3-Cyanobenzoësäure, O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluorborat und N-Methyl-morpholin in Tetrahydrofuran.

Ausbeute: 96 % der Theorie,

R_f-Wert: 0.56 (Kieselgel; Essigester/Ethanol = 9:1)

- 30 -

g. 3-Carbamimidoyl-N- [3- (1- (pyrrolidin-1-yl-carbonyl) -cyclo-
propyl) -benzyl]-benzamid-hydrochlorid

Hergestellt analog Beispiel 1e aus 3-Cyano-N- [3- (1- (pyrrolidin-1-yl-carbonyl) -cyclopropyl) -benzyl]-benzamid und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 58 % der Theorie,

R_f -Wert: 0.19 (Reversed Phase RP 8; 5%ige Natriumchlorid-Lösung/Methanol = 1:1)

$C_{23}H_{26}N_4O_2 \times HCl$ (390.48/426.95)

Massenspektrum: $(M+H)^+ = 391$
 $(M-H+HCl)^- = 425/7$ (Cl)

Analog Beispiel 2 werden folgende Verbindungen hergestellt:

(1) 3-Carbamimidoyl-N- [4- (1- (pyrrolidin-1-yl-carbonyl) -cyclopropyl) -benzyl]-benzamid-hydrochlorid

Ausbeute: 68 % der Theorie,

$C_{23}H_{26}N_4O_2 \times HCl$ (390.48/426.95)

Massenspektrum: $(M+H)^+ = 391$
 $(M+2H)^{++} = 196$

(2) 5-Carbamimidoyl-2-hydroxy-N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl) -benzyl]-benzamid-hydrochlorid

Ausbeute: 34% der Theorie,

R_f -Wert: 0.1 (Reversed Phase RP8; 5%ige Kochsalzlösung/Methanol = 1:1)

$C_{21}H_{24}N_4O_3 \times HCl$ (380.46/416.91)

Massenspektrum: $(M+H)^+ = 381$
 $(M-H)^- = 379$

Beispiel 3

2- (5-Carbamimidoyl-2-hydroxy-phenyl) -N- [2-methyl-5- (1-(pyrrolidin-1-carbonyl)-cyclopropyl)-phenyl]-acetamid-hydrochlorid

a. 5-Cyano-2-methoxy-phenylessigsäure

Hergestellt analog Beispiel 2d aus 5-Brom-2-methoxy-phenylessigsäure, Kupfer-I-cyanid, Tetrakis-triphenylphosphin-palladium-(0) und Aluminiumoxid in Dimethylformamid.

Ausbeute: 37 % der Theorie,

R_f -Wert: 0.26 (Kieselgel; Cyclohexan/Essigester/Eisessig = 1:1:0.01)

b. 2- (5-Cyano-2-methoxy-phenyl) -N- [2-methyl-5- (1-(pyrrolidin-1-carbonyl)-cyclopropyl)-phenyl]-acetamid

0.6 g (3.3 mMol) 5-Cyano-2-methoxy-phenylessigsäure werden in 10 ml Dimethylformamid gelöst und nach Zugabe von 0.5 g (3.3 mMol) N,N-Carbonyldiimidazol 10 Minuten bei Raumtemperatur gerührt. Anschließend werden 0.8 g (3.3 mMol) 5-(Pyrrolidin-1-yl-carbonyl)-cyclopropyl-2-methyl-anilin zugegeben. Das Reaktionsgemisch wird 4 Stunden bei 80°C gerührt, auf Raumtemperatur abgekühlt, mit Eiswasser versetzt, mit Ammoniak alkalisch gestellt und mehrfach mit Essigester extrahiert. Die vereinigten organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wo bei mit Cyclohexan/Essigester (7:3) eluiert wird.

Ausbeute: 73 % der Theorie,

R_f -Wert: 0.30 (Kieselgel; Essigester)

c. 2- (5-Cyano-2-hydroxy-phenyl) -N- [2-methyl-5- (1-(pyrrolidin-1-carbonyl)-cyclopropyl)-phenyl]-acetamid

0.7 g (1.67 mMol) 2-(5-Cyano-2-methoxy-phenyl)-N-[2-methyl-5-(1-(pyrrolidin-1-carbonyl)-cyclopropyl)-phenyl]-acetamid werden in 35 ml Methylenechlorid gelöst und bei -35 bis -25°C tropfenweise mit 10 ml einer 1-molaren Lösung von Bortribromid in Methylenchlorid (10 mMol) versetzt. Nach 1-stündigem Rühren bei 20°C wird zunächst mit Eis versetzt, anschließend werden

20 ml 2N Salzsäure zugegeben. Die wäßrige Phase wird mehrfach mit Methylenechlorid extrahiert, die vereinigten organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Methylenechlorid/-Ethanol (100:1) eluiert wird.

Ausbeute: 81 % der Theorie,

R_f-Wert: 0.14 (Kieselgel; Methylenchlorid/Ethanol = 49:1)

d. 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[2-methyl-5-(1-(pyrrolidin-1-carbonyl)-cyclopropyl)-phenyl]-acetamid-hydrochlorid

Hergestellt analog Beispiel 1e aus 2-(5-Cyano-2-hydroxy-phenyl)-N-[2-methyl-5-(1-(pyrrolidin-1-carbonyl)-cyclopropyl)-phenyl]-acetamid, und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 80 % der Theorie,

R_f-Wert: 0.39 (Kieselgel; Methylenchlorid/Methanol/Eisessig = 4:1:0.01)

C₂₄H₂₈N₄O₃ x HCl (420.51/456.98)

Massenspektrum: (M+H)⁺ = 421

(M+Cl)⁻ = 455/7 (Cl)

Analog Beispiel 3 wird folgende Verbindung hergestellt:

(1) 2-(5-Carbamimidoyl-2-methoxy-phenyl)-N-[2-methyl-5-(1-(pyrrolidin-1-carbonyl)-cyclopropyl)-phenyl]-acetamid-hydrochlorid

Ausbeute: 92 % der Theorie,

R_f-Wert: 0.33 (Kieselgel; Methylenchlorid/Methanol/Eisessig = 4:1:0.01)

C₂₅H₃₀N₄O₃ x HCl (434.55/471.01)

Massenspektrum: (M+H)⁺ = 435

Beispiel 4

2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

a. 2-(5-Cyano-2-methoxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid

0.4 g (2 mMol) 3-Methyl-4-(pyrrolidin-1-yl-carbonyl)-anilin werden in 15 ml Tetrahydrofuran gelöst und nach Zugabe von 0.3 ml (2 mMol) Triethylamin und 0.4 g (2 mMol) 5-Cyano-3-methoxy-phenylessigsäurechlorid 48 Stunden bei Raumtemperatur gerührt. Danach wird mit Wasser versetzt, mit Ammoniak alkalisch gestellt und mit Essigester extrahiert. Die vereinigten organischen Extrakte werden mit 1N Salzsäure gewaschen, getrocknet und eingedampft.

Ausbeute: 0.45 g (59 % der Theorie),

R_f-Wert: 0.18 (Kieselgel; Essigester)

b. 2-(5-Carbamimidoyl-2-methoxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

Hergestellt analog Beispiel 1e aus 2-(5-Cyano-2-methoxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 36 % der Theorie,

R_f-Wert: 0.33 (Reversed Phase RP 8; 5%ige Natriumchlorid-Lösung/Methanol = 1:1)

C₂₂H₂₆N₄O₃ x HCl (394.48/430.94)

Massenspektrum: (M+H)⁺ = 395

(M-H+HCl)⁻ = 429

c. 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

Hergestellt analog Beispiel 3c aus 2-(5-Carbamimidoyl-2-methoxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid und Bortribromid in Dichlormethan.

Ausbeute: 19 % der Theorie,

R_f -Wert: 0.38 (Reversed Phase RP 8; 5%ige Natriumchlorid-Lösung/Methanol = 1:1)

$C_{21}H_{24}N_4O_3 \times HCl$ (380.45/416.91)

Massenspektrum: $(M+H)^+ = 381$

$(M-H)^- = 379$

Analog Beispiel 4 werden folgende Verbindungen hergestellt:

(1) 2-(3-Carbamimidoyl-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

Ausbeute: 12 % der Theorie,

$C_{21}H_{24}N_4O_2 \times HCl$ (364.45/400.92)

Massenspektrum: $(M+H)^+ = 365$

(2) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-methyl-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

Ausbeute: 99 % der Theorie,

$C_{22}H_{26}N_4O_3 \times HCl$ (394.48/430.94)

Massenspektrum: $(M+H)^+ = 395$

$(M-H)^- = 393$

(3) 2-(5-Carbamimidoyl-2-benzyloxy-phenyl)-N-methyl-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

Ausbeute: 90 % der Theorie,

$C_{29}H_{32}N_4O_3 \times HCl$ (484.60/521.06)

Massenspektrum: $(M+H)^+ = 485$

$(M-H+HCl)^- = 519/21$ (Cl)

(4) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-cyclopentyl-amino)-phenyl]-acetamid-hydrochlorid

Ausbeute: 74% der Theorie,

$C_{27}H_{34}N_4O_5 \times HCl$ (494.61/531.06)

R_f -Wert: 0.36 (Reversed Phase RP8; 5%ige Kochsalzlösung/Methanol = 4:6)

Massenspektrum: $(M+H)^+ = 495$

- 35 -

$$(M+Cl)^- = 529/531 \text{ (Cl)}$$
$$(M-H)^- = 493$$

(5) 2-(5-Carbamimidoyl-2-benzyloxy-phenyl)-N-[3-methyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-(2-methyl-propyl)-amino)-phenyl]-acetamid-hydrochlorid

Ausbeute: 74% der Theorie,

R_f -Wert: 0.21 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

$C_{33}H_{40}N_4O_5 \times HCl$ (572.71/609.18)

Massenspektrum: $(M+H)^+ = 573$

$$(M-H)^- = 571$$

(6) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-(2-methyl-propyl)-amino)-phenyl]-acetamid-hydrochlorid

Ausbeute: 100% der Theorie,

R_f -Wert: 0.33 (Reversed Phase RP8; 5%ige Kochsalzlösung/Methanol = 4:6)

$C_{26}H_{34}N_4O_5 \times HCl$ (482.58/519.05)

Massenspektrum: $(M+H)^+ = 483$

$$(M-H)^- = 481$$

$$(M+Cl)^- = 517/519 \text{ (Cl)}$$

(7) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(N-ethoxycarbonylacetyl-N-cyclopentyl-amino)-phenyl]-acetamid-hydrochlorid

(8) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-sulfonyl)-phenyl]-acetamid-hydrochlorid

Beispiel 5

2- (5-Carbamimidoyl-2-hydroxy-phenyl) -N- [2,5-dimethyl-4- (pyrrolidin-1-yl-carbonyl) -phenyl]-acetamid-hydrochlorid

a. 2,5-Dimethyl-4- (pyrrolidin-1-yl-carbonyl) -brombenzol

Hergestellt analog Beispiel 1b aus 4-Brom-3,5-dimethyl-benzoesäure, Pyrrolidin, O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluorborat und Triethylamin in Dimethylformamid.

Ausbeute: 63 % der Theorie,

R_f-Wert: 0.45 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

b. 2,5-Dimethyl-4- (pyrrolidin-1-yl-carbonyl) -benzylanilin

2.3 g (0.01 Mol) 2,5-Dimethyl-4- (pyrrolidin-1-yl-carbonyl) -brombenzol und 1.3 g (0.012 Mol) Benzylamin werden in 25 ml Toluol gelöst und nach Zugabe von 4.6 g Cäsiumcarbonat, 100 mg Palladium-II-acetat und 200 mg 2,2'-Bis(-diphenylphosphino)-1,1'-binaphthyl 7 Stunden unter Argonatmosphäre bei 100°C gerührt. Nach dem Abkühlen wird mit Eiswasser verdünnt und mit Essigester extrahiert. Die vereinigten organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Methylenchlorid/Ethanol (50:1 und 25:1) eluiert wird.

Ausbeute: 60 % der Theorie,

R_f-Wert: 0.30 (Kieselgel; Methylenchlorid/Ethanol = 9:1)

c. 2,5-Dimethyl-4- (pyrrolidin-1-yl-carbonyl) -anilin

Hergestellt analog Beispiel 1c aus 2,5-Dimethyl-4- (pyrrolidin-1-yl-carbonyl) -benzylanilin und Palladium auf Aktivkohle in Methanol.

Ausbeute: 94 % der Theorie,

R_f-Wert: 0.30 (Kieselgel; Essigester/Petrolether = 1:1)

d. 2-Benzylxy-5-brom-phenylessigsäure

Eine Lösung von 12.4 g (0.053 Mol) 2-Hydroxy-5-brom-phenyl-essigsäure in 125 ml Dimethylformamid wird mit 14 g (0.125 Mol) Kalium-tert.butylat versetzt. Nach 15 Minuten bei Raumtemperatur werden 18.5 g (0.108 Mol) Benzylbromid zugegeben. Die Reaktionslösung wird 3 Stunden bei Raumtemperatur gerührt, auf Eiswasser gegossen und mit Essigester extrahiert. Die vereinten organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird in 100 ml Ethanol gelöst und nach Zusatz von 50 ml 2N Natronlauge 3 Stunden bei Raumtemperatur gerührt. Das Solvens wird abdestilliert, der Rückstand wird mit 2N Salzsäure auf pH 4 gestellt. Nach Extraktion mit Essigester werden die organischen Phasen getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert und mit Petrolether/Essigester (8:2) eluiert.

Ausbeute: 6.7 g (38 % der Theorie),

R_f-Wert: 0.50 (Kieselgel; Essigester/Petrolether = 1:1)

e. 2-Benzylxy-5-cyano-phenylessigsäure

Hergestellt analog Beispiel 2d aus 2-Benzylxy-5-brom-phenyl-essigsäure, Kupfer-I-cyanid, Tetrakis-triphenylphosphin-palladium-(0) und Aluminiumoxid in Dimethylformamid.

Ausbeute: 26 % der Theorie,

R_f-Wert: 0.45 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

f. 2-(5-Cyano-2-benzylxy-phenyl)-N-[2,5-dimethyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid

Hergestellt analog Beispiel 1b aus 2-Benzylxy-5-cyano-phenylessigsäure, 2,5-Dimethyl-4-(pyrrolidin-1-yl-carbonyl)-anilin, O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-tetrafluorborat und N-Methylmorpholin in Tetrahydrofuran.

Ausbeute: 44 % der Theorie,

R_f-Wert: 0.75 (Kieselgel; Essigester/Ethanol = 9:1)

- 38 -

g. 2- (5-Carbamimidoyl-2-benzyloxy-phenyl) -N- [2,5-dimethyl-
4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid

Hergestellt analog Beispiel 1e aus 2-(5-Cyano-2-benzyloxy-phenyl) -N- [2,5-dimethyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 86 % der Theorie,

R_f-Wert: 0.20 (Kieselgel; Methylenchlorid/Ethanol/Eisessig = 8:2:0.01)

h. 2- (5-Carbamimidoyl-2-hydroxy-phenyl) -N- [2,5-dimethyl-
4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

355 mg (0.68 mMol) 2-(5-Carbamimidoyl-2-benzyloxy-phenyl) -N- [2,5-dimethyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid werden in 40 ml Methanol gelöst und nach Zugabe von 250 mg Palladium auf Aktivkohle 15 Minuten mit Wasserstoff hydriert. Anschließend wird vom Katalysator abfiltriert und eingedampft.

Ausbeute: 145 mg (49 % der Theorie),

R_f-Wert: 0.10 (Kieselgel; Methylenchlorid/Ethanol/Eisessig = 8:2:0.01)

C₂₂H₂₆N₄O₃ x HCl (394.48/430.94)

Massenspektrum: (M+H)⁺ = 395

(M-H)⁻ = 393

Analog Beispiel 5 werden folgende Verbindungen hergestellt:

(1) 2-(5-Carbamimidoyl-2-hydroxy-phenyl) -N- [3-methyl-4-(piperidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

Ausbeute: 98% der Theorie,

R_f-Wert: 0.75 (Reversed Phase RP8; 5%ige Kochsalzlösung/Methanol = 1:4)

C₂₂H₂₆N₄O₃ x HCl (394.49/430.94)

Massenspektrum: M⁺ = 395

(M+Cl)⁻ = 429/431 (Cl)

(M-H)⁻ = 393

- 39 -

(2) 2- (5-Carbamimidoyl-2-hydroxy-phenyl) -N- [3-methyl-4- (2-methyl-pyrrolidin-1-yl-carbonyl) -phenyl] -acetamid-hydrochlorid
Ausbeute: 100% der Theorie,

R_f-Wert: 0.7 (Reversed Phase RP8; 5%ige Kochsalzlösung/Methanol = 1:4)

C₂₂H₂₆N₄O₃ x HCl (394.49/430.94)

Massenspektrum: M⁺ = 395

(M+Cl)⁻ = 429/431 (Cl)

(M-H)⁻ = 393

Beispiel 6

2- (2-Benzylxy-5-carbamimidoyl-phenyl) -N- (2-ethoxycarbonyl-ethyl) -N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl) -phenyl] -acetamid-hydrochlorid

a. N- (2-Methoxycarbonyl-ethyl) -3-methyl-4- (pyrrolidin-1-yl-carbonyl) -anilin

1.5 g (7.3 mMol) 3-Methyl-4- (pyrrolidin-1-yl-carbonyl) -anilin, 20 ml (220 mMol) Acrylsäuremethylester, 1 ml (2.2 mMol) Triton B und 60 mg (0.27 mMol) 2,5-Di-tert.butyl-hydrochinon werden 22 Stunden bei 85°C gerührt. Anschließend wird das Reaktionsgemisch eingedampft, der Rückstand wird an Kieselgel chromatographiert, wobei mit Methylenchlorid + 0 bis 5 % Ethanol eluiert wird.

Ausbeute: 1.6 g (76 % der Theorie),

R_f-Wert: 0.70 (Kieselgel; Methylenchlorid/Ethanol = 9:1)

b. 2- (2-Benzylxy-5-cyano-phenyl) -N- (2-ethoxycarbonyl-ethyl) -N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl) -phenyl] -acetamid

0.8 g (2.88 mMol) N- (2-Methoxycarbonyl-ethyl) -3-methyl-4- (pyrrolidin-1-yl-carbonyl) -anilin werden in 50 ml Tetrahydrofuran gelöst und nach Zugabe von 1.1 ml (7.86 mMol) Triethylamin und 0.8 g (2.62 mMol) 2-Benzylxy-5-cyano-phenylessigsäurechlorid 8 Stunden bei Raumtemperatur gerührt. Anschließend wird mit Wasser verdünnt und mit Methylenchlorid extrahiert. Die vereinigten organischen Extrakte werden getrocknet und einge-

- 40 -

dampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Methylchlorid eluiert wird.

Ausbeute: 1.0 g (71 % der Theorie),

R_f-Wert: 0.72 (Kieselgel; Methylchlorid/Ethanol = 9:1)

c. 2-(2-Benzyl-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

Hergestellt analog Beispiel 1e aus 2-(2-Benzyl-5-cyano-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 44 % der Theorie,

R_f-Wert: 0.17 (Kieselgel; Methylchlorid/Ethanol = 4:1)

C₃₃H₃₈N₄O₅ x HCl (570.69/607.16)

Massenspektrum: (M+H)⁺ = 571

Beispiel 7

2-(2-Hydroxy-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid

Hergestellt analog Beispiel 5h aus 2-(2-Benzyl-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid und Palladium auf Aktivkohle in Methanol.

Ausbeute: 96 % der Theorie,

R_f-Wert: 0.45 (Reversed Phase RP 8; Methanol/5%ige Natriumchlorid-Lösung = 6:4)

C₂₆H₃₂N₄O₅ x HCl (480.57/517.04)

Massenspektrum: (M+H)⁺ = 481

Beispiel 8

2- (2-Hydroxy-5-carbamimidoyl-phenyl) -N- (2-carboxy-ethyl) -N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl) -phenyl] -acetamid-hydrochlorid

0.3 g (0.58 mMol) 2- (2-Hydroxy-5-carbamimidoyl-phenyl) -N- (2-ethoxycarbonyl-ethyl) -N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl) -phenyl] -acetamid-hydrochlorid werden in einer Mischung von 3.2 ml (3.2 mMol) 1-molarer Lithiumhydroxidlösung, 6.2 ml Wasser und 7.6 ml Tetrahydrofuran 2 Stunden bei Raumtemperatur gerührt. Nach Zusatz von 74 mg Ammoniumchlorid wird die Lösung eingedampft. Der Rückstand wird an Reversed Phase chromatographiert und mit Wasser eluiert.

Ausbeute: 0.2 g (71 % der Theorie),

R_f -Wert: 0.62 (Reversed Phase RP 8; Methanol/5%ige Natriumchlorid-Lösung = 6:4)

$C_{24}H_{28}N_4O_5 \times HCl$ (452.52/488.97)

Massenspektrum: $(M+H)^+ = 453$
 $(M-H)^- = 451$

Analog Beispiel 8 werden folgende Verbindungen hergestellt:

(1) 2- (5-Carbamimidoyl-2-hydroxy-phenyl) -N- [3-methyl-4- (N- (3-carboxypropionyl) -N-cyclopentyl-amino) -phenyl] -acetamid-hydrochlorid

Ausbeute: 83% der Theorie,

$C_{25}H_{30}N_4O_5 \times HCl$ (466.55/503.01)

R_f -Wert: 0.84 (Reversed Phase RP8; 5%ige Kochsalzlösung/Methanol = 6:4)

(2) 2- (5-Carbamimidoyl-2-hydroxy-phenyl) -N- [3-methyl-4- (N-carboxyacetyl-N-cyclopentyl-amino) -phenyl] -acetamid-hydrochlorid

Beispiel 93-Carbamimidoyl-N-[4-(pyrrolidin-3-yl-oxy)-benzyl]-benzamid-dihydrochlorida. N-tert. Butyloxycarbonyl-3-pyrrolidinol

5.8 g (66.5 mMol) 3-Pyrrolidinol und 6.7 g (67 mMol) Triethylamin werden in 80 ml Methylenchlorid gelöst und tropfenweise mit einer Lösung von 15.3 g (70 mMol) Di-tert. Butyl-dicarbonat in 40 ml Methylenchlorid versetzt. Nach 16 Stunden bei Raumtemperatur wird mit Wasser verrührt, die organische Phase wird getrocknet und eingedampft.

Ausbeute: 12.4 g (100 % der Theorie),

R_f -Wert: 0.75 (Kieselgel; Essigester/Methanol = 9:1)

b. 4-[(N-tert. Butyloxycarbonyl)-pyrrolidin-3-yl-oxy]-benzonitril

3.8 g (20 mMol) N-tert. Butyloxycarbonyl-3-pyrrolidinol werden in 100 ml Tetrahydrofuran gelöst und nach Zugabe von 2.4 g (20 mMol) 4-Hydroxybenzonitril, 5.7 g (22 mMol) Triphenylphosphin und 3.9 g (22 mMol) Diethylazodicarbonsäurediethylester 18 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird abdestilliert und der Rückstand an Kieselgel chromatographiert, wobei mit Cyclohexan/Essigester (10:5) eluiert wird.

Ausbeute: 4.5 g (78 % der Theorie),

R_f -Wert: 0.40 (Kieselgel; Cyclohexan/Essigester = 10:5)

c. 4-[(N-tert. Butyloxycarbonyl)-pyrrolidin-3-yl-oxy]-benzylamin

4.5 g (15.6 mMol) 4-[(N-tert. Butyloxycarbonyl)-pyrrolidin-3-yl-oxy]-benzonitril werden in 100 ml Methanol und 50 ml methanolischem Ammoniak gelöst und nach Zugabe von 1 g Raney-Nickel 2 Stunden bei 50°C mit Wasserstoff hydriert. Anschließend wird vom Katalysator abfiltriert und eingedampft.

Ausbeute: 4.2 g (92 % der Theorie),

R_f -Wert: 0.08 (Kieselgel; Essigester/Methanol = 4:1)

- 43 -

d. 3-Cyano-N- [4- (N'-tert.butyloxycarbonyl-pyrrolidin-3-yl-oxy)-benzyl]-benzamid

1.1 g (3.8 mMol) 4- [(N-tert.Butyloxycarbonyl)-pyrrolidin-3-yl-oxy]-benzylamin werden in 30 ml Methylenchlorid gelöst und nach Zugabe von 0.9 g (9 mMol) Triethylamin portionsweise mit 1.6 g (3.8 mMol) 3-Cyanobenzoësäurechlorid versetzt. Nach 4 Stunden bei Raumtemperatur wird die Lösung mit Wasser versetzt, die organische Phase wird getrocknet und eingedampft. Ausbeute: 1.5 g (94 % der Theorie),
R_f-Wert: 0.27 (Kieselgel; Methylenchlorid/Essigester = 9:1)

e. 3-Carbamimidoyl-N- [4- (pyrrolidin-3-yl-oxy)-benzyl]-benzamid-dihydrochlorid

Hergestellt analog Beispiel 1e aus 3-Cyano-N- [4- (N'-tert.butyloxycarbonyl-pyrrolidin-3-yl-oxy)-benzyl]-benzamid und Salzsäure/Ammoniumchlorid in Ethanol.
Ausbeute: 100 % der Theorie,
Schmelzpunkt: ab 180°C (Zersetzung)
C₁₉H₂₂N₄O₂ x 2 HCl (338.41/411.41)
Massenspektrum: (M+H)⁺ = 339

Analog Beispiel 9 werden folgende Verbindungen hergestellt:

(1) 3-Carbamimidoyl-N- [4- (cyclopentyloxy)-benzyl]-benzamid-hydrochlorid

Ausbeute: 86 % der Theorie

R_f-Wert: 0.42 (Kieselgel; Methylenchlorid/Ethanol = 8:2)

C₂₀H₂₃N₃O₂ x HCl (337.43/373.89)

Massenspektrum: (M+H)⁺ = 338

(2) 3-Carbamimidoyl-N- [4- (benzyloxy)-benzyl]-benzamid-hydrochlorid

Ausbeute: 63 % der Theorie

R_f-Wert: 0.28 (Kieselgel: Methylenchlorid/Ethanol = 17:1)

C₂₂H₂₁N₃O₂ x HCl (359.43/395.89)

Massenspektrum: (M+H)⁺ = 360

- 44 -

(3) 3-Carbamimidoyl-N-[4-(N'-acetyl-pyrrolidin-3-yl-oxy)-benzyl]-benzamid-hydrochlorid

Ausbeute: 100 % der Theorie,

R_f-Wert: 0.08 (Kieselgel; Methylenchlorid/Ethanol = 9:1)

C₂₁H₂₄N₄O₃ x HCl (380.45/416.91)

Massenspektrum: (M+H)⁺ = 381

(4) 3-Carbamimidoyl-N-[4-(N'-methyl-pyrrolidin-3-yl-oxy)-benzyl]-benzamid-hydrochlorid

Ausbeute: 29 % der Theorie,

R_f-Wert: 0.07 (Kieselgel; Methylenchlorid/Ethanol = 7:3)

C₂₀H₂₄N₄O₂ x HCl (352.44/388.91)

Massenspektrum: (M+H)⁺ = 353

(5) 3-Carbamimidoyl-N-[4-(N'-(aminomethylcarbonyl)-pyrrolidin-3-yl-oxy)-benzyl]-benzamid-dihydrochlorid

Ausbeute: 82 % der Theorie,

Schmelzpunkt: ab 160°C (Zersetzung)

C₂₁H₂₅N₅O₃ x 2 HCl (395.54/468.46)

Massenspektrum: (M+H)⁺ = 396

(6) 3-Carbamimidoyl-N-[4-(N'-(2-aminoethyl-carbonyl)-pyrrolidin-3-yl-oxy)-benzyl]-benzamid-dihydrochlorid

Ausbeute: 88 % der Theorie,

Schmelzpunkt: ab 165°C (Zersetzung)

C₂₂H₂₇N₅O₃ x 2 HCl (409.48/482.48)

Massenspektrum: (M+H)⁺ = 410

(7) 3-Carbamimidoyl-N-[4-(3-amino-propyloxy)-benzyl]-benzamid-dihydrochlorid

Ausbeute: 82 % der Theorie,

Schmelzpunkt: ab 122°C (Zersetzung)

C₁₈H₂₂N₄O₂ x 2 HCl (326.40/399.4)

Massenspektrum: (M+H)⁺ = 327

- 45 -

(8) 3-Carbamimidoyl-N-[4-(2-dimethylamino-ethyloxy)-benzyl]-benzamid-dihydrochlorid

Ausbeute: 85 % der Theorie,

Schmelzpunkt: ab 65°C (Zersetzung)

$C_{19}H_{24}N_4O_2 \times 2 HCl$ (340.43/413.43)

Massenspektrum: $(M+H)^+ = 341$

(9) 3-Carbamimidoyl-N-[4-(pyridin-4-yl-oxy)-benzyl]-benzamid-dihydrochlorid

Ausbeute: 66 % der Theorie,

Schmelzpunkt: 115°C (Zersetzung)

$C_{20}H_{18}N_4O_2 \times HCl$ (346.39/382.89)

Massenspektrum: $(M+H)^+ = 347$

(10) 3-Carbamimidoyl-N-[4-(piperidin-4-yl-oxy)-benzyl]-benzamid-dihydrochlorid

Ausbeute: 62 % der Theorie

Schmelzpunkt: ab 170°C (Zersetzung)

$C_{20}H_{24}N_4O_2 \times HCl$ (352.44/388.89)

Massenspektrum: $(M+H)^+ = 353$

Beispiel 10

3-Carbamimidoyl-N-[4-(1-(1-imino-ethyl)-pyrrolidin-3-yl-oxy)-benzyl]-benzamid-dihydrochlorid

a. 3-Cyano-N-[4-(pyrrolidin-3-yl-oxy)-benzyl]-benzamid

2.4 g (5.7 mMol) 3-Cyano-N-[4-(N-tert.butyloxycarbonyl-pyrrolidin-3-yl-oxy)-benzyl]-benzamid werden in 30 ml Methylenchlorid gelöst und bei 0°C mit 8 ml Trifluoressigsäure versetzt. Nach 1 Stunde bei Raumtemperatur wird das Solvens abdestilliert, der Rückstand in Methylenchlorid aufgenommen, mit Ammoniak alkalisch gestellt und mit Wasser versetzt. Die vereinigte organischen Extrakte werden getrocknet und eingedampft.

Ausbeute: 1.4 g (76 % der Theorie),

R_f -Wert: 0.29 (Kieselgel; Methylchlorid/Methanol/Ammoniak = 7:3:0.2)

b. 3-Cyano-N-[4-(1-(1-imino-ethyl)-pyrrolidin-3-yl-oxy)-benzyl-benzamid

0.7 g (2,17 mMol) 3-Cyano-N-[4-(pyrrolidin-3-yl-oxy)-benzyl]-benzamid, 0.4 g (3.2 mMol) Acetimidsäureethylester-hydrochlorid und 1 g (10 mMol) Triethylamin werden in 70 ml Ethanol gelöst und 6 Tage bei Raumtemperatur gerührt. Das Solvens wird abdestilliert, der Rückstand in Wasser aufgenommen und mit Natriumcarbonat alkalisch gestellt. Anschließend wird mit Methylchlorid extrahiert, die vereinten organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird mit Ether verrieben und abgesaugt.

Ausbeute: 0.6 g (76 % der Theorie),

R_f -Wert: 0.37 (Kieselgel; Methylchlorid/Methanol/Ammoniak = 7:3:0.2)

Schmelzpunkt: ab 80°C (Zersetzung)

c. 3-Carbamimidoyl-N-[4-(1-(1-imino-ethyl)-pyrrolidin-3-yl-oxy)-benzyl]-benzamid-dihydrochlorid

Hergestellt analog Beispiel 1e aus 3-Cyano-N-[4-(1-(1-imino-ethyl)-pyrrolidin-3-yl-oxy)-benzyl]-benzamid und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 64 % der Theorie,

Schmelzpunkt: ab 100°C (Zersetzung)

$C_{21}H_{25}N_5O_2 \times 2 HCl$ (379.46/452.46)

Massenspektrum: $(M+H)^+ = 380$

Analog Beispiel 10 wird folgende Verbindung hergestellt:

(1) 3-Carbamimidoyl-N-[4-(1-carbamimidoyl-pyrrolidin-3-yl-oxy)-benzyl]-benzamid-dihydrochlorid

Ausbeute: 88 % der Theorie,

Schmelzpunkt: ab 160°C (Zersetzung)

$C_{20}H_{24}N_6O_2 \times 2 HCl$ (380.45/453.38)

Massenspektrum: $(M+2H)^{++} = 191$

Beispiel 113-Carbamimidoyl-N- [4- (benzoylamino) -benzyl] -benzamid-hydrochlorida. 3-Cyano-N- (4-amino-benzyl) -benzamid

6 g (0.05 Mol) 4-Aminobenzylamin und 10 g (0.1 Mol) Triethylamin werden in 150 ml Methylenchlorid gelöst und bei Raumtemperatur tropfenweise mit einer Lösung von 8.3 g (0.05 Mol) 3-Cyanobenzoylchlorid in 20 ml Methylenchlorid versetzt. Nach einer Stunde werden 150 ml Wasser und 20 ml Methanol zugesetzt. Nach Extraktion werden die vereinigten organischen Extrakte getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert und mit Essigester eluiert.

Ausbeute: 4.4 g (35 % der Theorie),

R_f-Wert: 0.69 (Kieselgel; Essigester)

b. 3-Cyano-N- [4- (benzoylamino) -benzyl] -benzamid

Zu einer Lösung von 1 g (4 mMol) 3-Cyano-N- (4-amino-benzyl) -benzamid und 0.6 g (6 mMol) Triethylamin in 30 ml Methylenchlorid wird bei Raumtemperatur eine Lösung von 0.6 g (4.2 mMol) Benzoylchlorid in 10 ml Methylenchlorid zugetropft. Nach 8 Stunden bei Raumtemperatur wird das auskristallisierte Produkt in Methylenchlorid und Methanol gelöst. Nach Extraktion mit Wasser werden die vereinigten organischen Extrakte getrocknet und eingedampft.

Ausbeute: 1.2 g (84 % der Theorie),

Schmelzpunkt: 210°C

c. 3-Carbamimidoyl-N- [4- (benzoylamino) -benzyl] -benzamid-hydrochlorid

Hergestellt analog Beispiel 1e aus 3-Cyano-N- [4- (benzoyl-amino) -benzyl] -benzamid und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 65 % der Theorie,

Schmelzpunkt: 190-215°C

$C_{22}H_{20}N_4O_2 \times HCl$ (372.43/408.93)

Massenspektrum: $(M+H)^+ = 373$

Analog Beispiel 11 werden folgende Verbindungen hergestellt:

(1) 3-Carbamimidoyl-N-[4-(phenylsulfonylamino)-benzyl]-benzamid-hydrochlorid

Ausbeute: 80 % der Theorie,

Schmelzpunkt: 266°C

$C_{21}H_{20}N_4O_3S \times HCl$ (408.48/444.98)

Massenspektrum: $(M+H)^+ = 409$

(2) 3-Carbamimidoyl-N-[4-(benzylamino)-benzyl]-benzamid-hydrochlorid

Ausbeute: 69 % der Theorie,

$C_{22}H_{22}N_4O \times HCl$ (358.44/394.94)

Massenspektrum: $(M+H)^+ = 359$

(3) 3-Carbamimidoyl-N-[4-(N-benzyl-N-ethoxycarbonylmethylamino)-benzyl]-benzamid-hydrochlorid

Ausbeute: 79 % der Theorie,

Schmelzpunkt: ab 100°C

$C_{26}H_{28}N_4O_3 \times HCl$ (444.54/481.04)

Massenspektrum: $(M+H)^+ = 445$

(4) 3-Carbamimidoyl-N-[4-biphenyl-methyl]-benzamid

Ausbeute: 79 % der Theorie,

Schmelzpunkt: ab 160°C (Zersetzung)

$C_{21}H_{19}N_3O$ (329.40)

Massenspektrum: $(M+H)^+ = 330$

(5) 3-Carbamimidoyl-N-[4-(cyclopentylamino)-benzyl]-benzamid-hydrochlorid

Ausbeute: 80 % der Theorie,

Schmelzpunkt: ab 135°C (Zersetzung)

$C_{20}H_{24}N_4O \times HCl$ (336.44/372.94)

Massenspektrum: $M^+ = 336$

Beispiel 123-Carbamimidoyl-N-(4-dimethylaminomethyl-benzyl)-benzamid-dihydrochlorida. 4-Cyano-N,N-dimethyl-benzylamin

Zu einer Lösung von 10 g (0.05 Mol) 4-Cyanobenzylbromid in 400 ml Ether wird bei -5°C eine Lösung von 7.3 g (0.16 Mol) Dimethylamin in 100 ml Ether zugetropft. Anschließend wird das Reaktionsgemisch 2 Stunden bei -5°C und 20 Stunden bei Raumtemperatur gerührt. Nach Zusatz von 200 ml Wasser und 200 ml konz. Salzsäure wird die wässrige Lösung abgetrennt, mit Na-tronlauge alkalisch gestellt und mit Methylenchlorid extrahiert. Die vereinigten organischen Extrakte werden getrocknet und eingedampft.

Ausbeute: 8 g (100 % der Theorie),

R_f -Wert: 0.58 (Kieselgel; Methylenchlorid/Ethanol = 9:1)

b. 4-Dimethylaminomethyl-benzylamin

Hergestellt analog Beispiel 9c aus 4-Cyano-N,N-dimethylbenzylamin, methanolischem Ammoniak und Raney-Nickel/Wasserstoff.

Ausbeute: 94 % der Theorie,

R_f -Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 9:1)

c. 3-Cyano-N-(4-dimethylaminomethyl-benzyl)-benzamid

Hergestellt analog Beispiel 9d aus 4-Dimethylaminomethylbenzylamin, 3-Cyanobenzoylchlorid und Triethylamin in Methylenchlorid.

Ausbeute: 73 % der Theorie,

Schmelzpunkt: 100°C

- 50 -

d. 3-Carbamimidoyl-N-(4-dimethylaminomethyl-benzyl)-benzamid-dihydrochlorid

Hergestellt analog Beispiel 1e aus 3-Cyano-N-(4-dimethylaminomethyl-benzyl)-benzamid und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 100 % der Theorie,

Schmelzpunkt: ab 101°C (Zersetzung)

$C_{18}H_{22}N_4O \times 2 HCl$ (310.40/383.40)

Massenspektrum: $(M+H)^+ = 311$

Analog Beispiel 12 werden folgende Verbindungen hergestellt:

(1) 3-Carbamimidoyl-N-[4-(imidazol-1-yl)-methyl-benzyl]-benzamid-hydrochlorid

Ausbeute: 86 % der Theorie,

Schmelzpunkt: ab 152°C (Zersetzung)

$C_{19}H_{19}N_5O \times HCl$ (333.39/369.89)

Massenspektrum: $(M+H)^+ = 334$

(2) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-methyl)-phenyl]-acetamid-dihydrochlorid

Ausbeute: 60% d. Theorie

Rf-Wert (Reversed Phase RP8; 5% Kochsalzlösung/Methanol = 2:3) : 0.7

$C_{21}H_{26}N_4O_2 \times 2 HCl$ (366.47/439.38)

Massenspektrum: $(M+H)^+ = 367$

$(M-H)^- = 365$

(3) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(imidazol-1-yl-methyl)-phenyl]-acetamid-dihydrochlorid

Ausbeute: 57% d. Theorie

Rf-Wert (Reversed Phase RP8; 5% Kochsalzlösung/Methanol = 2:3) : 0.7

$C_{20}H_{21}N_5O_2 \times 2 HCl$ (363.42/436.33)

Massenspektrum: $(M+H)^+ = 364$

$(M-H)^- = 362$

(4) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(2-methyl-imidazol-1-yl-methyl)-phenyl]-acetamid-dihydrochlorid

Beispiel 13

2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(2-amino-sulfonyl-phenyl)-phenyl]-acetamid-hydrochlorid

a. 3-Allyl-4-hydroxy-benzonitril

82.3 g (0.52 Mol) 4-Allyloxy-benzonitril werden unter Stickstoffatmosphäre 2 Stunden auf 200°C erhitzt. Nach Abkühlung wird das Rohprodukt an Kieselgel gereinigt, wobei anfangs mit Petrolether, später mit Petrolether/Essigester (9:1, 8:2, 7:3 und 1:1) eluiert wird. Die einheitlichen Fraktionen werden vereinigt und eingedampft, der Rückstand wird mit Petrolether gewaschen und getrocknet.

Ausbeute: 43 g (52% der Theorie),

R_f -Wert: 0.45 (Kieselgel; Petrolether/Essigester = 1:1)

$C_{10}H_9NO$ (159.19)

Massenspektrum: $(M-H)^- = 158$

$(2M+Na)^+ = 341$

b. 3-Allyl-4-benzyloxy-benzonitril

Hergestellt analog Beispiel 5d aus 3-Allyl-4-hydroxy-benzonitril und Benzylbromid/Kaliumcarbonat in Dimethylformamid.

Ausbeute: 90% der Theorie,

Schmelzpunkt: 59-60°C

R_f -Wert: 0.55 (Kieselgel; Petrolether/Essigester = 4:1)

c. 2-Benzylxy-5-cyano-phenylsäure

30 g (0.12 Mol) 3-Allyl-4-benzyloxy-benzonitril werden in 450 ml Acetonitril gelöst und bei 40°C mit 0.7 g Rutheniumtrichlorid-hydrat und einer Lösung von 179.7 g (0.84 Mol) Natriumperjodat in 1 Liter Wasser versetzt. Nach beendeter Zugabe wird das Reaktionsgemisch noch weitere 30 Minuten auf 40°C erwärmt und anschließend 3 x mit je 1 Liter Essigester extrahiert. Die organischen Phasen werden mit Kochsalzlösung

- 52 -

gewaschen und über Natriumsulfat getrocknet. Das Rohprodukt wird unter Zusatz von Aktivkohle aus Petrolether/Essigester (7:3) umkristallisiert

Ausbeute: 18.4 g (58% der Theorie),

Schmelzpunkt: 144-145°C

R_f -Wert: 0.2 (Kieselgel; Petrolether/Essigester = 1:1)

$C_{16}H_{13}NO_3$ (267.29)

Massenspektrum: $(M-H)^- = 266$

$(M+Na)^+ = 290$

d. 2- (5-Cyano-2-benzyloxy-phenyl) -N- [3-methyl-4- (2-tert.bu-
tylaminosulfonyl-phenyl)-phenyl]-acetamid

Hergestellt analog Beispiel 1b aus 2-Benzyloxy-5-cyano-phe-
nylessigsäure und 4'-Amino-2'-methyl-biphenyl-2-sulfonsäure-
tert.-butylamid/O- (Benzotriazol-1-yl) -N,N,N',N'-tetramethyl-
uroniumtetrafluorborat/Triethylamin in Dimethylformamid.

Ausbeute: 60% der Theorie,

R_f -Wert: 0.5 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

e. 2- (5-Carbamimidoyl-2-benzyloxy-phenyl) -N- [3-methyl-
4-(2-aminosulfonyl-phenyl)-phenyl]-acetamid-hydrochlorid

Hergestellt analog Beispiel 1e aus 2-(5-Cyano-2-benzyloxy-
phenyl) -N- [3-methyl-4- (2-tert.butyaminosulfonyl-phenyl)-
phenyl]-acetamid und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 70% der Theorie,

R_f -Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 9:1 +
1% Eisessig)

$C_{29}H_{28}N_4O_4S \times HCl$ (528.63/565.08)

Massenspektrum: $(M-H)^- = 527$

$(M+H)^+ = 529$

f. 2- (5-Carbamimidoyl-2-hydroxy-phenyl) -N- [3-methyl-
4-(2-aminosulfonyl-phenyl)-phenyl]-acetamid-hydrochlorid

Hergestellt analog Beispiel 5h aus 2-(5-Carbamimidoyl-2-ben-
zyloxy-phenyl) -N- [3-methyl-4- (2-aminosulfonyl-phenyl)-phenyl]-
acetamid-hydrochlorid und Wasserstoff/Palladium auf Aktivkohle

Ausbeute: 62% der Theorie,

R_f -Wert: 0.45 (Reversed Phase RP8; 5%ige Kochsalzlösung/Metha-
nol = 1:1)

$C_{22}H_{22}N_4O_4S \times HCl$ (438.52/474.97)

Massenspektrum: $(M+H)^+ = 439$

$(M+Cl)^- = 473/5$ (Cl)

Analog Beispiel 13 werden folgende Verbindungen hergestellt:

(1) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-(3-methyl-4-phenyl-phenyl)-acetamid-hydrochlorid

Ausbeute: 13% der Theorie,

R_f-Wert: 0.15 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

C₂₂H₂₁N₃O₂ x HCl (359.45/395.9)

Massenspektrum: (M+H)⁺ = 360

(M-H)⁻ = 358

(2) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(2-aminosulfonyl-5-methyl-phenyl)-phenyl]-acetamid-hydrochlorid

Ausbeute: 23% d. Theorie

R_f-Wert (Kieselgel; Methylenchlorid/Ethanol = 7:3): 0.3

C₂₃H₂₄N₄O₄S x HCl (452.54/488.99)

Massenspektrum: (M+H)⁺ = 453

(M-H)⁻ = 451

Beispiel 14

2-[5-(N-Benzoyl-carbamimidoyl)-2-hydroxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid

a. 2-[5-(N-Benzoyl-carbamimidoyl)-2-benzyloxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid

350 mg (0.69 mMol) 2-(5-Carbamimidoyl-2-benzyloxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-hydrochlorid werden in 40 ml Methylenchlorid suspendiert und mit 1.0 ml Triethylamin und 300 mg (1.3 mMol) 4-Nitrophenylbenzoat versetzt. Das Reaktionsgemisch wird 4 Stunden unter Rückfluß erhitzt. Nach Zugabe von 100 ml Kochsalzlösung wird die wässrige Phase 3 x mit Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und eingeeengt. Das Rohprodukt wird an Kieselgel gereinigt, wobei anfangs mit Methylenchlorid, später mit Methylenchlorid/Ethanol (50:1 und 19:1) eluiert wird. Die

- 55 -

einheitlichen Fraktionen werden vereinigt, eingeengt und mit Petrolether/Ether (1:1) verrührt. Der gebildete Feststoff wird abgesaugt und getrocknet.

Ausbeute: 280 mg (71% der Theorie),

R_f -Wert: 0.2 (Kieselgel; Petrolether/Essigester = 1:1)

$C_{35}H_{34}N_4O_4$ (574.69)

Massenspektrum: $(M-H)^- = 573$

$(M+H)^+ = 575$

b. 2-[5-(N-Benzoyl-carbamimidoyl)-2-hydroxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid

Hergestellt analog Beispiel 5h aus 2-[5-(N-Benzoyl-carbamimidoyl)-2-benzyloxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid und Wasserstoff/Palladium auf Aktivkohle.

Ausbeute: 31% der Theorie,

R_f -Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

$C_{28}H_{28}N_4O_4$ (484.56)

Massenspektrum: $(M+H)^+ = 485$

$(M+Na)^+ = 507$

Analog Beispiel 14 werden folgende Verbindungen hergestellt:

(1) 2-[5-(N-n-Hexyloxycarbonyl-carbamimidoyl)-2-hydroxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid

Ausbeute: 17% der Theorie,

R_f -Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

$C_{28}H_{36}N_4O_5$ (508.62)

Massenspektrum: $(M+H)^+ = 509$

$(M-H)^- = 507$

(2) 2-[5-(N-Benzoyl-carbamimidoyl)-2-methoxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid

Ausbeute: 40% der Theorie,

R_f -Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

$C_{29}H_{30}N_4O_4$ (498.59)

Massenspektrum: $(M+H)^+ = 499$

- 56 -

$(M-H)^- = 497$

(3) 2- [5- (N-n-Hexyloxycarbonyl-carbamimidoyl)-2-methoxy-phenyl] -N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl)-phenyl] -acetamid
Ausbeute: 35% der Theorie,

R_f -Wert: 0.25 (Kieselgel; Methylenechlorid/Ethanol = 19:1)

$C_{29}H_{28}N_4O_5$ (522.65)

Massenspektrum: $(M+H)^+ = 523$

$(M-H)^- = 521$

$(M+Na)^+ = 545$

(4) 2- [5- (N-Ethyloxycarbonyl-carbamimidoyl)-2-methoxy-phenyl] -N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl)-phenyl] -acetamid
Ausbeute: 32% der Theorie,

R_f -Wert: 0.45 (Kieselgel; Methylenechlorid/Ethanol = 9:1)

$C_{25}H_{30}N_4O_5$ (466.54)

Massenspektrum: $(M+H)^+ = 467$

$(M-H)^- = 465$

$(M+Na)^+ = 489$

Beispiel 15

2- [5- (N-Hydroxy-carbamimidoyl)-2-hydroxy-phenyl] -N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl)-phenyl] -acetamid-acetat

a. 2- [5- (N-Hydroxy-carbamimidoyl)-2-benzyloxy-phenyl] -N- [3-methyl-4- (pyrrolidin-1-yl-carbonyl)-phenyl] -acetamid-acetat

1.1 g (2.5 mMol) 2-(5-Cyano-2-benzyloxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid werden in 100 ml Methanol gelöst und mit einer Lösung von 300 mg (5 mMol) Hydroxylamin-hydrochlorid in 2.0 ml Wasser versetzt. Nach Zugabe von 800 mg (2.5 mMol) Cäsiumcarbonat und 300 mg (3.0 mMol) Natriumcarbonat wird das Reaktionsgemisch 6 Stunden unter Rückfluß erhitzt. Nach Abkühlung und Zusatz von 0.5 l Eiswasser wird das gebildete Rohprodukt abgesaugt und an Kieselgel gereinigt, wobei anfangs mit Methylenchlorid und Methylen-

- 57 -

chlorid/Ethanol (19:1), später mit Methylenchlorid/Ethanol (9:1 + 1% Eisessig und 4:1 + 1% Eisessig) eluiert wird. Die einheitlichen Fraktionen werden vereinigt und eingeengt.

Ausbeute: 620 mg (51% der Theorie),

R_f -Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 9:1): 0.3

$C_{28}H_{30}N_4O_4$ (486.58)

Massenspektrum: $(M-H)^- = 485$

$(M+H)^+ = 487$

$(M+Na)^+ = 509$

b. 2-[5-(N-Hydroxy-carbamimidoyl)-2-hydroxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-acetat

Hergestellt analog Beispiel 5h aus 2-[5-(N-Hydroxy-carbamimidoyl)-2-benzyloxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-acetat und Wasserstoff/Palladium auf Aktivkohle.

Ausbeute: 50% der Theorie,

R_f -Wert: 0.25 (Kieselgel; Methylenchlorid/Ethanol = 4:1 + 1% Eisessig)

$C_{21}H_{24}N_4O_4 \times CH_3COOH$ (396.45/456.5)

Massenspektrum: $(M+H)^+ = 397$

$(M-H)^- = 395$

Analog Beispiel 15 wird folgende Verbindung hergestellt:

(1) 2-[5-(N-Hydroxy-carbamimidoyl)-2-methoxy-phenyl]-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid-acetat

Ausbeute: 7% der Theorie,

R_f -Wert: 0.28 (Kieselgel; Methylenchlorid/Ethanol = 4:1 + 1% Eisessig)

$C_{22}H_{26}N_4O_4 \times CH_3COOH$ (410.48/470.52)

Massenspektrum: $(M+H)^+ = 411$

$(M-H)^- = 409$

$(M+Na)^+ = 433$

Beispiel 16

Trockenampulle mit 75 mg Wirkstoff pro 10 ml

Zusammensetzung:

Wirkstoff	75,0 mg
Mannitol	50,0 mg
Wasser für Injektionszwecke	ad 10,0 ml

Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet. Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

Beispiel 17Trockenampulle mit 35 mg Wirkstoff pro 2 ml

Zusammensetzung:

Wirkstoff	35,0 mg
Mannitol	100,0 mg
Wasser für Injektionszwecke	ad 2,0 ml

Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet.

Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

Beispiel 18Tablette mit 50 mg Wirkstoff

Zusammensetzung:

(1) Wirkstoff	50,0 mg
---------------	---------

(2) Milchzucker	98,0 mg
(3) Maisstärke	50,0 mg
(4) Polyvinylpyrrolidon	15,0 mg
(5) Magnesiumstearat	<u>2,0 mg</u>
	215,0 mg

Herstellung:

(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zugesetzt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkarbe.

Durchmesser der Tabletten: 9 mm.

Beispiel 19

Tablette mit 350 mg Wirkstoff

Zusammensetzung:

(1) Wirkstoff	350,0 mg
(2) Milchzucker	136,0 mg
(3) Maisstärke	80,0 mg
(4) Polyvinylpyrrolidon	30,0 mg
(5) Magnesiumstearat	<u>4,0 mg</u>
	600,0 mg

Herstellung:

(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zugesetzt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkarbe.

Durchmesser der Tabletten: 12 mm.

Beispiel 20

Kapseln mit 50 mg Wirkstoff

- 60 -

Zusammensetzung:

(1) Wirkstoff	50,0 mg
(2) Maisstärke getrocknet	58,0 mg

- 61 -

(3) Milchzucker pulverisiert	50,0 mg
(4) Magnesiumstearat	<u>2,0 mg</u>
	160,0 mg

Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 3 abgefüllt.

Beispiel 21

Kapseln mit 350 mg Wirkstoff

Zusammensetzung:

(1) Wirkstoff	350,0 mg
(2) Maisstärke getrocknet	46,0 mg
(3) Milchzucker pulverisiert	30,0 mg
(4) Magnesiumstearat	<u>4,0 mg</u>
	430,0 mg

Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 0 abgefüllt.

Beispiel 22

Suppositorien mit 100 mg Wirkstoff

1 Zäpfchen enthält:

Wirkstoff	100,0 mg
Polyethyenglykol (M.G. 1500)	600,0 mg

- 62 -

Polyethylenglykol (M.G. 6000)	460,0 mg
Polyethylensorbitanmonostearat	<u>840,0 mg</u>
	2 000,0 mg

Herstellung:

Das Polyethylenglykol wird zusammen mit Polyethylensorbitanmonostearat geschmolzen. Bei 40°C wird die gemahlene Wirksubstanz in der Schmelze homogen dispergiert. Es wird auf 38°C abgekühlt und in schwach vorgekühlte Suppositorienformen ausgegossen.

Patentansprüche

1. Carbonsäureamide der allgemeinen Formel

in der

einer der Reste m oder n die Zahl 0 und
der andere Reste m oder n die Zahl 1,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom,
durch eine Trifluormethyl-, C₁₋₃-Alkyl-, Hydroxy-, C₁₋₃-Alkoxy-,
Phenyl-C₁₋₃-alkoxy-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-Al-
kyl)-aminogruppe substituierte Phenyl- oder Naphthylengrup-
pe, wobei die Phenylengruppe durch ein weiteres Fluor-, Chlor-
oder Bromatom oder durch eine weitere C₁₋₃-Alkylgruppe substi-
tuiert sein kann,

eine gegebenenfalls im Kohlenstoffgerüst durch eine C₁₋₃-Alkyl-
gruppe substituierte Thienylen-, Thiazolylen-, Pyridinylen-,
Pyrimidinylen-, Pyrazinylen- oder Pyridazinylengruppe,

R₁ eine gegebenenfalls durch eine Amino-, C₁₋₃-Alkylamino-, Di-
(C₁₋₃-Alkyl)-amino-, Phenyl-, Naphthyl-, Heteroaryl- oder 4- bis
7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkyl-
gruppe,

eine C₃₋₈-Cycloalkylgruppe, die in 1-Stellung durch eine 5- bis
7-gliedrige Cycloalkyleniminocarbonylgruppe substituiert ist,

eine Amino-, C_{1-5} -Alkylamino-, C_{5-7} -Cycloalkylamino- oder Phenyl- C_{1-3} -alkylaminogruppe, die jeweils am Aminstickstoffatom durch eine Benzoyl- oder Phenylsulfonylgruppe oder durch eine gegebenenfalls im C_{1-3} -Alkylteil durch eine Carboxygruppe substituierte C_{1-3} -Alkyl- oder C_{1-3} -Alkylcarbonylgruppe substituiert sein kann,

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte 4- bis 7-gliedrige Cycloalkyleniminocarbonyl- oder Cycloalkyleniminosulfonylgruppe,

eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Aminosulfonylgruppe,

eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Aminosulfonyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylgruppe, die zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein kann,

eine C_{1-3} -Alkoxy-, Phenyl- C_{1-3} -alkoxy-, Heteroaryloxy- oder Heteroaryloxy- C_{1-3} -alkoxygruppe, in der der Alkoxyteil jeweils in 2- oder 3-Stellung auch durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -Alkyl)-aminogruppe substituiert sein kann,

eine C_{3-7} -Cycloalkoxygruppe, wobei die Methylengruppe in 3- oder 4-Stellung in einer C_{5-7} -Cycloalkoxygruppe durch eine -NH-Gruppe ersetzt sein kann, wobei die -NH-Gruppe

durch eine C_{1-3} -Alkylgruppe, die in 2- oder 3-Stellung durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -Alkyl)-aminogruppe substituiert sein kann, durch eine C_{1-3} -Alkylcarbonyl-, Arylcarbonyl- oder Arylsulfonylgruppe oder

durch Aminocarbonyl-, C_{1-3} -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, in denen jeweils das Sauerstoffatom der Carbonylgruppe durch eine Iminogruppe ersetzt ist, substituiert sein kann,

R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkyl-, Hydroxy- oder C_{1-3} -Alkoxygruppe,

R_3 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe,

R_4 ein Wasserstoffatom oder eine gegebenenfalls durch eine Carboxygruppe substituierte C_{1-3} -Alkylgruppe und

R_5 eine Cyanogruppe oder eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Amidinogruppe bedeuten, wobei

unter den vorstehend erwähnten Heteroarylgruppen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte 5-gliedrige Heteroarylgruppe, die im heteroaromatischen Teil

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Wasserstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und ein Wasserstoff-, Schwefel- oder Stickstoffatom,

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Wasserstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte 6-gliedrige Heteroarylengruppe, die im heteroaromatischen Teil

ein oder zwei Stickstoffatome enthält,
zu verstehen ist,
die bei der Definition der vorstehend erwähnten Resten erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein und
die bei der Definition der vorstehend erwähnten Resten erwähnten Amino- und Iminogruppen durch einen in vivo abspaltbaren Rest substituiert sein können,
deren Isomere und deren Salze.

2. Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in denen

einer der Reste m oder n die Zahl 0 und
der andere Reste m oder n die Zahl 1,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl-, Hydroxy-, Methoxy- oder Benzyloxygruppe substituierte Phenylengruppe, welche durch eine weitere Methylgruppe substituiert sein kann,

R₁ eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Aminosulfonyl-, C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituierte Phenylgruppe, die zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituiert sein kann,

eine durch eine Dimethylamino-, Pyrrolidino- oder Imidazolylgruppe substituierte Methylgruppe, wobei der Imidazolylteil durch eine Methylgruppe substituiert sein kann,

eine Amino-, C_{1-5} -Alkylamino-, Cyclopentylamino- oder Benzylaminogruppe, die am Aminstickstoffatom durch eine Carboxy- C_{1-2} -alkyl-, C_{1-3} -Alkoxycarbonyl- C_{1-2} -alkyl-, Carboxy- C_{1-2} -alkyl-carbonyl- oder C_{1-3} -Alkoxycarbonyl- C_{1-2} -alkylcarbonylgruppe substituiert sein kann,

eine Benzoylamino- oder Phenylsulfonylaminogruppe,

eine Cyclopropylgruppe, die in 1-Stellung durch eine 5- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe substituiert ist,

eine gegebenenfalls durch eine Methylgruppe substituierte Pyrrolidinocarbonyl-, Piperidinocarbonyl-, Pyrrolidinosulfonyl- oder Piperidinosulfonylgruppe,

eine C_{1-3} -Alkoxygruppe, in der der Alkoxyteil jeweils in 2- oder 3-Stellung durch eine Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -Alkyl)-aminogruppe substituiert sein kann,

eine Phenyl- C_{1-3} -alkoxy- oder Pyridinyloxygruppe,

eine C_{5-7} -Cycloalkoxygruppe, in der die Methylengruppe in 3- oder 4-Stellung durch eine -NH-Gruppe ersetzt sein kann, wobei die -NH-Gruppe

durch eine C_{1-3} -Alkyl- oder C_{2-3} -Alkanoylgruppe,

durch eine C_{2-3} -Alkanoyl- oder Aminocarbonylgruppe, in der jeweils das Sauerstoffatom der Carbonylgruppe durch eine Iminogruppe ersetzt ist, substituiert sein kann,

R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Hydroxy- oder Methoxygruppe,

R_3 ein Wasserstoffatom oder eine Methylgruppe,

R_4 ein Wasserstoffatom oder eine gegebenenfalls durch eine Carboxy- oder C_{1-3} -Alkoxycarbonylgruppe substituierte Methyl- oder Ethylgruppe und

R_5 eine Cyanogruppe oder eine gegebenenfalls durch eine C_{1-6} -Alkoxycarbonyl- oder Benzoylgruppe substituierte Amidinogruppe bedeuten,

deren Isomere und deren Salze.

3. Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in denen

einer der Reste m oder n die Zahl 0 und
der andere Reste m oder n die Zahl 1,

Ar eine gegebenenfalls durch eine Methyl-, Hydroxy-, Methoxy- oder Benzyloxygruppe substituierte Phenylengruppe,

R_1 eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Aminosulfonyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylgruppe, die zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein kann,

eine Cyclopropylgruppe, die in 1-Stellung durch eine 5- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe substituiert ist, oder eine 4- bis 7-gliedrige Cycloalkyleniminocarbonylgruppe,

eine gegebenenfalls durch eine Methylgruppe substituierte Pyrrolidinocarbonyl-, Piperidinocarbonyl- oder Pyrrolidinosulfonylgruppe,

R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom oder eine Methylgruppe,

R₃ ein Wasserstoffatom oder eine Methylgruppe,

R₄ ein Wasserstoffatom oder eine durch eine Carboxy-, Methoxycarbonyl- oder Ethoxycarbonylgruppe substituierte Methyl- oder Ethylgruppe und

R₅ eine gegebenenfalls durch eine C₁₋₆-Alkoxy carbonyl- oder Benzoylgruppe substituierte Amidinogruppe bedeuten,

deren Isomere und deren Salze.

4. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 1:

(a) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid,

(b) 2-(2-Benzylxy-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid,

(c) 2-(2-Hydroxy-5-carbamimidoyl-phenyl)-N-(2-ethoxycarbonyl-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid,

(d) 2-(2-Hydroxy-5-carbamimidoyl-phenyl)-N-(2-carboxy-ethyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid,

(e) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(piperidin-1-yl-carbonyl)-phenyl]-acetamid und

(f) 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(2-aminosulfonyl-phenyl)-phenyl]-acetamid,

in denen die Amidinogruppe zusätzlich durch eine C₁₋₆-Alkoxy-carbonyl- oder Benzoylgruppe substituiert sein kann, und deren Salze.

5. 2-(5-Carbamimidoyl-2-hydroxy-phenyl)-N-[3-methyl-4-(pyrrolidin-1-yl-carbonyl)-phenyl]-acetamid und dessen Salze.

6. Physiologisch verträgliche Salze der Verbindungen gemäß den Ansprüchen 1 bis 5, in denen R_5 eine der in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen darstellt.

7. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen R_5 eine der in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen darstellt, oder ein Salz gemäß Anspruch 6 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.

8. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen R_5 eine der in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen darstellt, oder ein Salz gemäß Anspruch 6 zur Herstellung eines Arzneimittels mit einer antithrombotischen Wirkung.

9. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 7, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen R_5 eine der in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen darstellt, oder ein Salz gemäß Anspruch 6 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.

10. Verfahren zur Herstellung der Verbindungen gemäß den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß

a) eine Verbindung der allgemeinen Formel

in der

R_1 bis R_4 und m wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, mit einer Carbonsäure der allgemeinen Formel

in der

Ar , R_5 und n wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, oder mit deren reaktionsfähigen Derivaten acyliert wird oder

b) zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_5 eine Amidinogruppe, die durch eine oder zwei C_{1-3} -Alkylgruppen substituiert sein kann, eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel

in der

R_1 bis R_4 , Ar und n wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

Z_1 eine Alkoxy-, Aralkoxy-, Alkylthio- oder Aralkylthiogruppe darstellt, mit einem Amin der allgemeinen Formel

in der

R_6 und R_7 , die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe bedeuten, oder mit dessen Salzen umgesetzt wird und

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, die eine Amino- oder Iminogruppe enthält, mittels einem entsprechenden Acylderivat in eine entsprechende Acylverbindung der allgemeinen Formel I übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine veresterte Carboxygruppe enthält, mittels Hydrolyse in eine entsprechende Carbonsäure der allgemeinen Formel I übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, mittels Veresterung in einen entsprechenden Ester übergeführt wird und/oder

ein während den Umsetzungen zum Schutze von reaktiven Gruppen verwendeter Schutzrest abgespalten wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit einer anorganischen oder organischen Säure oder Base, übergeführt wird.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/07457

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07C257/18 C07D295/18 C07D207/12 A61K31/40 A61K31/4164
A61P7/02 C07D295/12 C07C311/21 C07C311/46 C07D233/54

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07C C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>JUN SAKAGUCHI ET AL.: "Synthesis, Gastrointestinal Prokinetic Activity and Structure-Activity Relationships of Novel N-‘‘2-(Dialkylamino)ethoxy!benzyl!-benzamide Derivatives" CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 40, no. 1, 1992, pages 202-211, XP002152593 TOKYO JP page 204, table I, compounds II-23 and II-24; page 208, table V, compounds II-23 and II-24</p> <p>---</p> <p>-/-</p>	1,2,10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

10 November 2000

Date of mailing of the international search report

01/12/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Authorized officer

Zervas, B.

INTERNATIONAL SEARCH REPORT

Ref. no. / International Application No

PCT/EP 00/07457

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	L. SIMON ET AL.: "Darstellung von substituierten Isochinolinderivaten" PHARMAZIE., vol. 29, no. 5, 1974, pages 313-314, XP002152594 BERLIN DD page 314, column 1, line 10 - line 20 ---	1,2,10
A	D. LABES ET AL.: "Free-Wilson-Analyse der Hemmwirkung von 4-substituierten Benzamidinen gegenüber Thrombin, Plasmin und Trypsin" PHARMAZIE., vol. 34, no. 9, 1979, pages 554-555, XP002152595 BERLIN DD the whole document ---	1,6-9
A	US 5 726 159 A (ELI LILLY) 10 March 1998 (1998-03-10) claims; examples ---	1,6-9
A	GB 2 007 663 A (VEB ARZNEIMITTELWERK DRESDEN) 23 May 1979 (1979-05-23) claims; examples -----	1,6-9

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/07457

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5726159	A 10-03-1998	AU	684918 B	08-01-1998
		AU	1975295 A	18-09-1995
		BR	9506979 A	18-11-1997
		CA	2183464 A	09-08-1995
		CN	1147205 A	09-04-1997
		CZ	9602584 A	11-06-1997
		EP	0672658 A	20-09-1995
		FI	963451 A	03-09-1996
		HU	76330 A	28-08-1997
		JP	9509937 T	07-10-1997
		NO	963684 A	28-10-1996
		NZ	282588 A	19-12-1997
		PL	320637 A	13-10-1997
		WO	9523609 A	08-09-1995
		US	5705487 A	06-01-1998
		US	5707966 A	13-01-1998
		US	5914319 A	22-06-1999
		US	5710130 A	20-01-1998
-----	-----	-----	-----	-----
GB 2007663	A 23-05-1979	DD	142804 A	16-07-1980
		DE	2845941 A	10-05-1979
		FR	2407915 A	01-06-1979
		JP	54106448 A	21-08-1979
		SE	7811454 A	08-05-1979
-----	-----	-----	-----	-----

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 00/07457

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07C257/18 C07D295/18 C07D207/12 A61K31/40 A61K31/4164
A61P7/02 C07D295/12 C07C311/21 C07C311/46 C07D233/54

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07C C07D A61K A61P

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	JUN SAKAGUCHI ET AL.: "Synthesis, Gastrointestinal Prokinetic Activity and Structure-Activity Relationships of Novel N-‘‘2-(Dialkylamino)ethoxy!benzyl!-benzamide Derivatives" CHEMICAL AND PHARMACEUTICAL BULLETIN, Bd. 40, Nr. 1, 1992, Seiten 202-211, XP002152593 TOKYO JP page 204, table I, compounds II-23 and II-24; page 208, table V, compounds II-23 and II-24 --- -/-	1, 2, 10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Aussicht oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

10. November 2000

01/12/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Zervas, B

INTERNATIONALES RECHERCHENBERICHT

nationales Aktenzeichen

PCT/EP 00/07457

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	L. SIMON ET AL.: "Darstellung von substituierten Isochinolinderivaten" PHARMAZIE., Bd. 29, Nr. 5, 1974, Seiten 313-314, XP002152594 BERLIN DD Seite 314, Spalte 1, Zeile 10 - Zeile 20 ---	1,2,10
A	D. LABES ET AL.: "Free-Wilson-Analyse der Hemmwirkung von 4-substituierten Benzamidinen gegenüber Thrombin, Plasmin und Trypsin" PHARMAZIE., Bd. 34, Nr. 9, 1979, Seiten 554-555, XP002152595 BERLIN DD das ganze Dokument ---	1,6-9
A	US 5 726 159 A (ELI LILLY) 10. März 1998 (1998-03-10) Ansprüche; Beispiele ---	1,6-9
A	GB 2 007 663 A (VEB ARZNEIMITTELWERK DRESDEN) 23. Mai 1979 (1979-05-23) Ansprüche; Beispiele -----	1,6-9

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zu derjenigen Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 00/07457

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5726159	A 10-03-1998	AU	684918 B	08-01-1998
		AU	1975295 A	18-09-1995
		BR	9506979 A	18-11-1997
		CA	2183464 A	09-08-1995
		CN	1147205 A	09-04-1997
		CZ	9602584 A	11-06-1997
		EP	0672658 A	20-09-1995
		FI	963451 A	03-09-1996
		HU	76330 A	28-08-1997
		JP	9509937 T	07-10-1997
		NO	963684 A	28-10-1996
		NZ	282588 A	19-12-1997
		PL	320637 A	13-10-1997
		WO	9523609 A	08-09-1995
		US	5705487 A	06-01-1998
		US	5707966 A	13-01-1998
		US	5914319 A	22-06-1999
		US	5710130 A	20-01-1998
GB 2007663	A 23-05-1979	DD	142804 A	16-07-1980
		DE	2845941 A	10-05-1979
		FR	2407915 A	01-06-1979
		JP	54106448 A	21-08-1979
		SE	7811454 A	08-05-1979

THIS PAGE BLANK (USPTO)