Cars Market Analysis in Egypt

Team Members: Mahmoud Ahmed Abdelazez Shimy (Leader), Selim Sayed Hussein

Mekawy

Supervisor: Merna Saeed

Organization: AST

1. Project Planning

Project Title: Cars Market Analysis in Egypt

Project Type: Data Analysis / Data Science (Graduation Project)

Project Description (brief):

This project analyses used-car market listings in Egypt by combining CSV datasets (scraped from Hatla2ee and a Kaggle dataset). The analysis explores pricing trends across brands, models, manufacturing year, transmission, fuel type, engine capacity, kilometers, governorates and color to provide actionable insights for dealerships, buyers and financial institutions.

Main Objectives: - Identify factors that significantly affect used-car prices in Egypt. - Produce location- and brand-level pricing insights and recommendations. - Create a reproducible data-processing pipeline starting from CSV files to cleaned, analyzed data and visualizations.

Tools & Technologies: Excel, Power BI, SQL, Git for version control, CSV files as the data source.

Project Phases & Timeline: - Research & Data Gathering — 1 week - Data Cleaning & Preparation — 2 weeks - Exploratory Data Analysis & Feature Engineering — 2 weeks - Modeling & Statistical Tests (if needed) — 1 week - Reporting & Documentation — 1 week.

Team Roles (assigned):

- Mahmoud Ahmed Abdelazez Shimy Project lead, data cleaning lead, final reporting.
- **Selim Sayed Hussein Mekawy** Data analysis & visualizations, exploratory analysis, assisting with feature engineering.

2. Stakeholder Analysis

Stakeholder	Role	Responsibilities
Project Team (Mahmoud, Selim)	Project execution, deliverables	Data collection, cleaning, analysis, reporting
Supervisor — Merna Saeed	Academic supervision	Project guidance, evaluation, feedback
Organization — AST	Project host / sponsor	Provide institutional support, possible dataset access or deployment support
Data Sources (Hatla2ee, Kaggle) — providers	Provide raw listing data	Allow lawful use of dataset; data quality responsibility
End Users	Dealerships, buyers, financial institutions, insurers	Use insights to price, buy/sell and underwrite loans/policies

3. Database Design

Source data: CSV files combined from Hatla2ee (scraped) and a Kaggle dataset. For reproducibility and future extension, we propose a relational database schema (ERD) designed to store normalized listing data.

Proposed Tables (logical):

- 1. **brands** (brand id PK, name)
- 2. **models** (model_id PK, brand_id FK → brands.brand_id, name)
- 3. **locations** (location id PK, governorate, city, raw location text)
- 4. **listings** (listing_id PK, model_id FK \rightarrow models.model_id, location_id FK \rightarrow locations.location_id, manufacture_year, engine_cc, transmission, fuel_type, kilometers, color, body_type, price_egp, price_currency, price_numeric)
- 5. **sources** (source_id PK, name, url, notes) to record Hatla2ee and Kaggle provenance
- 6. **listing source** (listing id FK, source id FK, original url) many-to-many if needed

Primary Keys / Foreign Keys: - brands.brand_id (PK) - models.model_id (PK), models.brand_id (FK \rightarrow brands.brand_id) - locations.location_id (PK) - listings.listing_id (PK), listings.model_id (FK \rightarrow models.model_id), listings.location_id (FK \rightarrow locations.location_id)