

- 1. Merge Sort
- 2. Bottom-Up Merge Sort
- 3. Komplexität
- 4. Stabilität

Programmiertechnik II

Merge Sort und Quick Sort

Algorithmus	Best Case	Average Case	Worst Case
Selection Sort	n^2	n^2	n^2
Insertion Sort	n	n^2	n^2
Bubble Sort	n	n^2	n^2
Shell Sort $(3x + 1)$	$n \cdot \log_2(n)$?	$n^{1.5}$
Merge Sort	$1/2 \cdot n \cdot \log_2(n)$	$n \cdot \log_2(n)$	$n \cdot \log_2(n)$
Quick Sort	$n \cdot \log_2(n)$	$2n \cdot \ln(n)$	$1/2 \cdot n^2$

- Merge Sort und Quick Sort sind kritische Komponenten in heutiger digitaler Infrastruktur
 - Praktisch die am meisten benutzten Sortierverfahren
 - Quick Sort als einer der Top-10 Algorithmen aller Zeiten ausgezeichnet

Programmiertechnik II

- 1. Merge Sort
- 2. Bottom-Up Merge Sort
- 3. Komplexität
- 4. Stabilität

Programmiertechnik II

Merge Sort

- **Grundidee**: Array in zwei Teile zerlegen, sortieren und Teile verschmelzen (*merge*)
 - 1. Zerlege ein gegebenes Array in zwei (fast) gleich große, nicht-überlappende Teilarrays
 - 2. Sortierte beide Teilarrays rekursiv
 - 3. Verschmelze (*merge*) beiden sortierten Teilarrays wieder

Eingabe	M	Ε	R	G	Ε	S	0	R	Т	E	X	Α	М	P	L	E
Erste Hälfte Sortieren	Ε	Ε	G	M	0	R	R	S	Т	Е	Χ	Α	M	P	L	Е
Zweite Hälfte Sortieren	Е	Е	G	M	0	R	R	S	Α	Ε	Ε	L	M	P	Т	Χ
Beide Hälften verschmelzen	Α	Е	Е	Е	Е	G	L	М	М	0	Р	R	R	S	т	Х

John von Neumann (1903 – 1957)

2.2 MERGING DEMO

Programmiertechnik II

Merge Sort Algorithmus


```
// Implements the recursive merge sort
template <typename Value>
void merge_sort(Value* a, Value* aux, const int lo, const int hi) {
   if (hi <= lo) return;

   auto mid = lo + (hi - lo) / 2;
   merge_sort(a, aux, lo, mid);
   merge_sort(a, aux, mid+1, hi);
   merge(a, aux, lo, mid, hi);
   return;
}</pre>
```


Kopieren des Arrays

Verschmelzen durch paarweisen Vergleich des aktuellen Elements in der unteren und oberen Hälfte

Programmiertechnik II

Merge Sort: Ausführung


```
9 10 11 12 13 14 15
        merge(a, aux, 0, 1, 1)
         merge(a, aux, 2, 2, 3)
     merge(a, aux, 0, 1, 3)
         merge(a, aux, 4, 4, 5)
        merge(a, aux, 6, 6, 7)
     merge(a, aux, 4, 5, 7)
   merge(a, aux, 0, 3, 7)
        merge(a, aux, 8, 8, 9)
        merge(a, aux, 10, 10, 11)
     merge(a, aux, 8, 9, 11)
        merge(a, aux, 12, 13, 13)
        merge(a, aux, 14, 14, 15)
     merge(a, aux, 12, 13, 15)
   merge(a, aux, 8, 11, 15)
merge(a, aux, 0, 7, 15)
```

```
// Implements the recursive merge sort
template <typename Value>
void merge_sort(Value* a, Value* aux, const int lo, const int hi) {
   if (hi <= lo) return;

   auto mid = lo + (hi - lo) / 2;
   merge_sort(a, aux, lo, mid);
   merge_sort(a, aux, mid+1, hi);
   merge(a, aux, lo, mid, hi);
   return;
}</pre>
```

Programmiertechnik II

Merge Sort in der Praxis

- *Insertion Sort* für kleine Arrays benutzen <
 - Merge Sort hat zu viel Kopierkosten für kleine Arrays
 - Typischer cutoff bei Array der Länge 10

- 2. **Kein Verschmelzen** wenn die Arrays schon sortiert sind
 - Überprüfe wenn größtes Element von unterem Array kleiner ist als kleinstes Element von oberem Array
 - Hilft bei teilweise sortierten Arrays

```
A B C D E F G H M N O P Q R S T
A B C D E F G H M N O P O R S T
```

```
// Implements the recursive merge sort with optimizations
template <typename Value>
void merge sort(Value* a, Value* aux, const int lo, const int hi) {
    if (hi <= lo + CUTOFF - 1) insertion_sort(a, lo, hi);

    auto mid = lo + (hi - lo) / 2;
    merge_sort(a, aux, lo, mid);
    merge_sort(a, aux, mid+1, hi);
    if (!less(a, mid+1, mid)) return;
    merge(a, aux, lo, mid, hi);
    return;
}</pre>
```

Programmiertechnik II

Merge Sort in der Praxis II

3. **Kein Kopieren** zum temporären Array notwendig indem die Rolle der beiden Arrays in der Rekursion vertauscht wird

Merge Sort mit Kopieren

```
// Implements the recursive merge sort
template <typename Value>
void merge_sort(Value* a, Value* aux, const int lo, const int hi) {
   if (hi <= lo) return;

   auto mid = lo + (hi - lo) / 2;
   merge_sort(a, aux, lo, mid);
   merge_sort(a, aux, mid+1, hi);
   merge(a, aux, lo, mid, hi);
   return;
}</pre>
```

Merge Sort ohne Kopieren

```
// Implements merge from aux to a array
template <typename Value>
void merge(Value* a, Value* aux, const int lo, const int mid, const int hi) {
    auto i = lo, j = mid+1;
    for (auto k = lo; k <= hi; k++) {
        if (i > mid)
        else if (j > hi)
        else if (less(aux, j, i))
        else
    }
    return;
}

Verschmelzt von aux[]
    nach a[]
```

```
// Implements the recursive merge sort with optimizations
template <typename Value>
void merge_sort(Value* a, Value* aux, const int lo, const int hi) {
    if (hi <= lo) return;

    auto mid = lo + (hi - lo) / 2;
    merge_sort(aux, a, lo, mid);
    merge_sort(aux, a, mid+1, hi);
    merge(a, aux, lo, mid, hi);
    return;
}

Programmiertechnik II

Unit 5b - Merge Sort

Sortiert aux[] mit a[] als Speicher

9/23

Verschmelzt von aux[] nach a[]
```


- 1. Merge Sort
- 2. Bottom-Up Merge Sort
- 3. Komplexität
- 4. Stabilität

Programmiertechnik II

Bottom-Up Merge Sort

Idee:

Verschmelze Teilarrays der Größe 2ⁱ

- Trivial: i = 0
- Wiederhole für i = 1,2,3,...
- Algorithmus ist nicht rekursiv!

```
Größe = 2<sup>1</sup>

merge(a, aux, 0, 1, 1)

merge(a, aux, 2, 2, 3)

merge(a, aux, 4, 4, 5)

merge(a, aux, 6, 6, 7)

merge(a, aux, 8, 8, 9)

merge(a, aux, 10, 10, 11)

merge(a, aux, 12, 13, 13)

merge(a, aux, 14, 14, 15)

Größe = 2<sup>2</sup>
```

```
M
L) E
B) E
C) E
C) E
11) E
13) E
15) E
```

```
E G M R E S O R E T A X M P E E G M R E O R S E T A X M P E E G M R E O R S A E T X M P E E G M R E O R S A E T X M P E
```

8 9 10 11 12 13 14 15

Größe = 2^3 merge(a, aux, 0, 3, 7)

merge(a, aux, 8, 11, 15)

merge(a, aux, 0, 1, 3) merge(a, aux, 4, 5, 7) merge(a, aux, 8, 9, 11)

Größe = 2⁴

```
merge(a, aux, 0, 7, 15)
```

merge(a, aux, 12, 13, 15)

```
E E G M O R R S A E T X E L M
E E G M O R R S A E E L M P T
```

Programmiertechnik II

Unit 5b – Merge Sort

11/23

A E E E G L M M O P R R S T)

Bottom-Up Merge Sort Algorithmus


```
// Implements the iterative merge sort
template <typename Value>
void bottom_up_merge_sort(Value* a, const int n) {
    Value* aux = new Value[n];
    for (auto sz = 1; sz < n; sz *= 2) {
        for (auto lo = 0; lo < n-sz; lo += sz+sz) {
            merge(a, aux, lo, lo+sz-1, std::min(lo+sz+sz-1, n-1));
        }
    }
    delete[] aux;
    return;
}</pre>
```


Programmiertechnik II

Unit 5b – Merge Sort

12/23

Natural Merge Sort

■ **Idee**: Anstatt die Teilarrays in Größe 2ⁱ zu wählen, kann man auch die natürliche Ordnung in der Ursprungslösung ausnutzen!

Eingabe	1	5	10	16	3	4	23	9	13	2	7	8	12	14	17	31
Natürliche Teilarrays	1	5	10	16	3	4	23	9	13	2	7	8	12	14	17	31
Erstes Verschmelzen	1	3	4	5	10	16	23	9	13	2	7	8	12	14	17	31
Zweites Verschmelzen	1	3	4	5	10	16	23	2	7	8	9	13	12	14	17	31
Finales Verschmelzen	1	2	3	4	5	7	8	9	10	12	13	14	16	17	23	31

- Weniger Verschmelzungen aber Mehraufwand bei Finden der natürlichen Teilarrays
- **Timsort (2002)**: Kombination aus
 - Natural Merge Sort
 - Binärem Insertion Sort für den ersten Durchlauf
 - Optimierungen beim Zwischenspeicher für das Verschmelzen
- Timsort hat in der Praxis oft lineare Komplexität
 - Wird in Python, Java 7, Rust, GNU Octave, Android, ... benutzt

Tim Peters

Programmiertechnik II

- 1. Merge Sort
- 2. Bottom-Up Merge Sort
- 3. Komplexität
- 4. Stabilität

Programmiertechnik II

Merge Sort: Anzahl Vergleiche

- **Satz**: *Merge Sort* benutzt höchstens $n \cdot \log_2(n)$ Vergleiche, um ein Array der Länge n zu sortieren.
 - Beweisskizze: Die Anzahl der Vergleiche $\mathcal{C}(n)$ treten alle in merge auf und es gilt

$$C(n) \le C\left(\left\lceil \frac{n}{2}\right\rceil\right) + C\left(\left\lceil \frac{n}{2}\right\rceil\right) + n$$

$$C(1) = 0$$

 $= 2^{k+1} \cdot \log_2(2^{k+1})$

Zur Vereinfachung nehmen wir an, dass n durch zweiteilbar ist. Dann bleibt zu zeigen dass $C(n) = 2 \cdot C(n/2) + n$ durch $C(n) = n \cdot \log_{\mathbb{Z}}(n)$ erfüllt ist. Wir benutzen Induktion über k für $n = 2^k$.

```
Induktionsanfang (k = 0): C(2^0) = C(1) = 1 \cdot \log_2(1) = 0
Induktionsannahme (k): C(2^k) = 2^k \cdot \log_2(2^k)
Induktion (k + 1): C(2^{k+1}) = 2 \cdot C(2^k) + 2^{k+1}
Angenommene Eigenschaft von C(n) = 2 \cdot (2^k \cdot \log_2(2^k)) + 2^{k+1}
Induktionsannahme = 2^{k+1} \cdot (\log_2(2^k) + 1)
```

```
// Implements the recursive merge sort
template <typename Value>
void merge_sort(Value* a, Value* aux, const int lo, const int hi) {
   if (hi <= lo) return;

   auto mid = lo + (hi - lo) / 2;
   merge_sort(a, aux, lo, mid);
   merge_sort(a, aux, mid+1, hi);
   merge(a, aux, mid+1, hi);
   return;
}</pre>
```

Merge Sort: Minimale Anzahl Vergleiche

- **Frage**: Kann die Anzahl der Vergleiche im schlechtesten Fall kleiner sein als $n \cdot \log_2(n)$?
 - Antwort: Nein!
- Beweisskizze: Entscheidungsbaum mit paarweisen Vergleichen, um Sortierung zu bestimmen
 - 1. Jeder Blattknoten ist eine Sortierung des Arrays
 - 2. Ein perfekt balancierter Baum der Tiefe n (d.h. n Vergleiche) hat 2^n Blattknoten
 - 3. Ein Array der Länge n hat $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$ Sortierungen
 - 4. Daher ist die minimale Tiefe des Baumes $\log_2(n!) = \log_2(1) + \log_2(2) + \cdots + \log_2(n)$

Programmiertechnik II

Unit 5b - Merge Sort

 $\sim n \cdot \log_2(n)$

Aber: Merge Sort ist nicht optimal im Speicherplatz!

- 1. Merge Sort
- 2. Bottom-Up Merge Sort
- 3. Komplexität
- 4. Stabilität

Programmiertechnik II

Stabilität

- Was passiert, wenn ein Array mehrere gleiche Schlüssel enthält?
 - Beispiel: Abflugzeiten an einem Flughafen

Ursprungsr	eihenfolge	Sortiert nach Zielflu	ughafen (nicht st	abil)	Sortiert nach Ziel	flughafen (sta	bil)
Berlin	9:13:17	Berlin	9:13:17		Berlin	9:13:17	
München	9:27:23	Berlin	11:02:34		Berlin	10:01:05	\
Köln	9:52:11	Berlin	10:01:05		Berlin	11:02:34	
Berlin	10:01:05	Köln	9:52:11	\ nicht mehr nach Zeit	Köln	9:52:11	\ \ weiterhin \
München	10:04:12	Köln	10:52:07	/ sortiert	Köln	10:52:07	/ sortiert
München	10:18:00	München	10:04:12		München	9:27:23	/
Köln	10:52:07	München	10:18:00		München	10:04:12	¥
Berlin	11:02:34	München	9:27:23		München	10:18:00	

 Stabilität: Ein Sortieralgorithmus ist stabil, wenn die Ursprungsreihenfolge für alle Elemente mit dem gleichen Schlüssel beibehalten werden.

Programmiertechnik II

Stabilität: *Insertion Sort*

- Satz. Insertion Sort ist stabil.
- **Beweis**: Gleiche Schlüssel werden nie vertauscht!

_	i	j	0	1	2	3	4	5	6	7	8	9	10	
			S	0	R	Т	E ₁	Х	Α	М	P	L	E ₂	
	1	0	0	S	R	Т	E ₁	Х	Α	M	Р	L	\mathbf{E}_2	
	2	1	0	R	S	Т	E_1	Χ	Α	M	P	L	\mathbb{E}_2	
	3	3	0	R	S	Т	E_1	Χ	Α	M		L	\mathbb{E}_2	
	4	0	E ₁	0	R	S	Т	Χ	Α	M	P	L	\mathbb{E}_2	
	5	5	E ₁	0	R	S	Т	X	Α	M	P	L	\mathbb{E}_2	
	6	0	Α	E ₁	0	R	S	Т	X	M	P	L	\mathbb{E}_2	
	7	2	Α	\mathbb{E}_1	M	0	R	S	Т	Χ	P	L	\mathbb{E}_2	
	8	4	Α	\mathbb{E}_1	M	0	P	R	S	Т	Χ	L	\mathbb{E}_2	
	9	2	Α	\mathbb{E}_1	L	M	0	P	R	S	Т	Χ	\mathbb{E}_2	
	10	2	Α	\mathbb{E}_1	$\mathbf{E_2}$	L	M	0	P	R	S	Т	X	
			l											

```
// Implements insertion sort
template <typename Value>
void insertion_sort(Value* a, const int n) {
    for (auto i = 1; i < n; i++) {
        for (auto j = i; j > 0 && less(a, j, j - 1); j--) {
            swap(a, j, j - 1);
        }
    }
    return;
}
```

Programmiertechnik II

Stabilität: Selection Sort

- Satz. Selection Sort ist nicht stabil.
- **Beweis**: Durch Vertauschen über weite "Distanzen" kann die Reihenfolge innerhalb einer Gruppe sich ändern.

1 2	0	min	i
B ₂ A	B ₁		
B ₂ B ₁	Α	2	0
\mathbf{B}_{2} \mathbf{B}_{1}	Α	1	1

```
// Implements selection sort
template <typename Value>
void selection_sort(Value* a, const int n) {
    for (auto i = 0; i < n; i++) {
        auto min = i;
        for (auto j = i+1; j < n; j++) {
            if (less(a, j, min)) {
                min = j;
            }
        }
        swap(a, i, min);
    }
    return;
}</pre>
```

Programmiertechnik II

Stabilität: Shell Sort

- Satz. Shell Sort ist nicht stabil.
- **Beweis**: Durch Vertauschen über weite "Distanzen" kann die Reihenfolge innerhalb einer Gruppe sich ändern.

h	0	1	2	3	4
	B ₁	B ₂	B ₃	B_4	Α
4	Α	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	\mathbf{B}_{1}
1	Α	\mathbf{B}_{2}	\mathbf{B}_3	B_4	\mathbf{B}_{1}

```
// Implements shell sort
template <typename Value>
void shell_sort(Value* a, const int n) {
   // 3x+1 increment sequence: 1, 4, 13, 40, 121, 364, 1093, ...
   int h = 1;
   while (h < n/3) {
       h = 3*h + 1;
   while (h >= 1) {
       // h-sort the array
       for (auto i = h; i < n; i++) {
           for (auto j = i; j >= h \&\& less(a, j, j-h); j -= h) {
               swap(a, j, j-h);
       h /= 3;
    return;
```

Programmiertechnik II

Stabilität: Merge Sort

- Satz. Merge Sort ist stabil.
- Beweis: Es reicht, zu überprüfen dass die merge Funktion stabil ist

Die entscheidende Einsicht ist, dass beim Vergleich immer vom linken Teilarray kopiert wird!

```
// Implements the recursive merge sort
template <typename Value>
void merge_sort(Value* a, Value* aux, const int lo, const int hi) {
   if (hi <= lo) return;

   auto mid = lo + (hi - lo) / 2;
   merge_sort(a, aux, lo, mid);
   merge_sort(a, aux, mid+1, hi);
   merge(a, aux, lo, mid, hi);
   return;
}</pre>
```


Viel Spaß bis zur nächsten Vorlesung!