MÉTODO DA BISSEÇÃO - UM EXERCÍCIO

MAT 271 – Cálculo Numérico – PER3/2021/UFV Professor Amarísio Araújo

EXERCÍCIO

A equação 1-xlnx=0 possui uma única solução \bar{x} no intervalo [1, 2]. Usando o método da bisseção, encontre uma aproximação de \bar{x} , com erro relativo menor que $\varepsilon=0.01$.

RESOLVENDO O EXERCÍCIO

$$f(x) = 1 - x \ln x$$
, $f(1) = 1 > 0$ e $f(2) = -0.38629 < 0$.

Temos: $a_0 = 1$ e $b_0 = 2$. Então $x_1 = \frac{1+2}{2} = 1.5$.

Decidindo sobre o novo intervalo de busca: $f(x_1) = f(1.5) = 0.39180 > 0$, mesmo sinal de $f(a_0) = f(1) > 0$. Logo: $a_1 = x_1 = 1.5$ e : $b_1 = b_0 = 2.0$.

Temos: $a_1 = 1.5$ e $b_1 = 2.0$. Então $x_2 = \frac{1.5 + 2.0}{2} = 1.75$.

 $\frac{|x_2 - x_1|}{|x_2|} = 0.14286 > 0.01$

Decidindo sobre o novo intervalo de busca: $f(x_2) = f(1.75) = 0.02067 > 0$, mesmo sinal de $f(a_1) = f(1.5) > 0$. Logo: $a_2 = x_2 = 1.75$ e : $b_2 = b_1 = 2.0$.

Temos: $a_2 = 1.75$ e $b_2 = 2.0$. Então $x_3 = \frac{1.75 + 2.0}{2} = 1.875$.

 $\frac{|x_3 - x_2|}{|x_3|} = 0.06667 > 0.01$

Decidindo sobre o novo intervalo de busca: $f(x_3) = f(1.875) = -0.17864 < 0$, sinal contrário de $f(a_2) = f(1.75) > 0$. Logo: $a_3 = a_2 = 1.75$ e : $b_3 = x_3 = 1.875$.

RESOLVENDO O EXEMPLO

Temos:
$$a_3 = 1.75$$
 e $b_3 = 1.875$. Então $x_4 = \frac{1.75 + 1.875}{2} = 1.8125$. $\left| \frac{|x_4 - x_3|}{|x_4|} = 0.03448 > 0.01 \right|$

$$\frac{|x_4 - x_3|}{|x_4|} = 0.03448 > 0.01$$

Decidindo sobre o novo intervalo de busca: $f(x_4) = f(1.8125) = -0.07791 < 0$, sinal contrário de $f(a_3) = f(1.75) > 0$. Logo: $a_4 = a_3 = 1.75$ e: $b_4 = x_4 = 1.8125$.

Temos:
$$a_4 = 1.75$$
 e $b_4 = 1.8125$. Então $x_5 = \frac{1.75 + 1.8125}{2} = 1.78125$. $\left| \frac{|x_5 - x_4|}{|x_5|} = 0.01754 > 0.01 \right|$

$$\left| \frac{|x_5 - x_4|}{|x_5|} = 0.01754 > 0.01$$

Decidindo sobre o novo intervalo de busca: $f(x_5) = f(1.78125) = -0.02834 < 0$, sinal contrário de $f(a_4) = f(1.75) > 0$. Logo: $a_5 = a_4 = 1.75$ e: $b_5 = x_5 = 1.78125$.

Temos:
$$a_5 = 1.75$$
 e $b_5 = 1.78125$. Então $x_6 = \frac{1.75 + 1.78125}{2} = 1.76563$. $\frac{|x_6 - x_5|}{|x_6|} = 0.00847 < 0.01$

$$\frac{|x_6 - x_5|}{|x_6|} = 0.00847 < 0.01$$

Portanto $\bar{x} \approx x_6 = 1.76563$, com erro relativo menor que $\varepsilon = 0.01$

FAZENDO UM ESBOÇO DO GRÁFICO DA FUNÇÃO

$$y = f(x) = 1 - x \ln x$$

$$\lim_{x \to 0^+} (1 - x \ln x) = 1$$

UM ESBOÇO GRÁFICO ALTERNATIVO

$$1 - x ln x = 0 \Leftrightarrow \frac{1}{x} = ln x, x > 0$$

A solução \bar{x} da equação $1 - x \ln x = 0$

corresponde à abscissa do ponto de

interseção entre os gráficos de

$$g(x) = \frac{1}{x} e h(x) = lnx$$
, para $x > 0$.

