Distributed consensus strategy for platooning in presence of delays

Elective in Robotics - Control of multi robot systems

Michele Ciciolla Josè L. Bustamante J.

How the presentation is organized

Introduction and preliminaries

Section 1 - Problem statement

Section 2 - Closed-loop vehicular network control

Section 3 - MATLAB implementation

Section 4 - Results

Introduction and preliminaries

Main goal: control vehicles to form a platoon and maintain optimal spacing policy

Theoretical analysis used to prove string stability, i.e perturbations on the leader are not amplified

Introduction and preliminaries

Dynamical network paradigm:

- vehicles are nodes with their own dynamic
- communications between vehicles are represented as edges
- the network topology encodes intervehicles communications

N = 4 vehicles + leader vehicles

- single lane straight trajectory
- V2V sharing of local absolute position, velocity, acceleration
- string leader follower configuration
- reference velocity is given from the leader (v0)

state vector

$$\eta_i = [\eta_i^{(1)}, \eta_i^{(2)}]^\top = [r_i, v_i]^\top \in \mathbb{R}^2.$$

dynamic model as a linear integrator:

$$\dot{r}_i(t) = v_i(t), \quad \dot{v}_i(t) = \frac{1}{M_i} u_i(t)$$

leader configuration

$$\dot{r}_0(t) = v_0, \quad \dot{v}_0 = 0.$$

state vector
$$\eta_i = [\eta_i^{(1)}, \eta_i^{(2)}]^{\top} = [r_i, v_i]^{\top} \in \mathbb{R}^2.$$

the problem of maintaining a desired intervehicle spacing policy and a common velocity can be formulated as a second-order consensus problem

$$r_i(t)
ightarrow rac{1}{d_i} \left\{ \sum_{j=0}^N a_{ij} \cdot (r_j(t) + d_{ij})
ight\}, \quad v_i(t)
ightarrow v_0$$

 d_{ij} are the desired spacing errors between agents

$$d_{ij} = h_{ij}v_0$$

 h_{ij} being the constant time headway

$$d_i = \sum_{j=0}^N a_{ij}$$
 is the degree of agent i elements of the adjacency matrix of graph \mathcal{G}_{N+1}

$$r_i(t) \to \frac{1}{d_i} \left\{ \sum_{j=0}^N a_{ij} \cdot (r_j(t) + d_{ij}) \right\}, \quad v_i(t) \to v_0$$

This consensus target can be rewritten in:

$$r_i(t) \rightarrow r_0(t) + d_{i0}, \quad v_i(t) \rightarrow v_0$$

It can be achieved applying a distributed strategy

$$r_i(t) \to r_0(t) + d_{i0}, \quad v_i(t) \to v_0$$

It can be achieved applying a distributed strategy:

 all vehicles transmit their state to the i-th vehicles together with ID and timestamp t

The i-th vehicle adjusts its dynamics through this decentralized coupling protocol computed onboard

$$u_{i} = -b \left[v_{i}(t) - v_{0} \right] + \frac{1}{d_{i}} \sum_{j=0}^{N} k_{ij} a_{ij} \cdot (\tau_{i}(t)v_{0}) - \frac{1}{d_{i}} \sum_{j=0}^{N} k_{ij} a_{ij} \cdot (\tau_{i}(t) - \tau_{i}(t) - \tau_{i}(t)) - h_{ij} v_{0} \right]$$

$$(r_{i}(t) - r_{j} (t - \tau_{i}(t)) - h_{ij} v_{0})$$
 (9)

Parameters to specify:

1. stiffness and damping and parameter

$$k_{ij} > 0$$
 and $b > 0$

2. communication delays

 $\tau_i(t)$ is the aggregate delay

$$\tau_{\min} \leq \tau_i(t) \leq \tau_{\max}$$

In the paper it is a bounded stochastic piecewise constant function

$$u_{i} = -b \left[v_{i}(t) - v_{0} \right] + \frac{1}{d_{i}} \sum_{j=0}^{N} k_{ij} a_{ij} \cdot (\tau_{i}(t)v_{0}) - \frac{1}{d_{i}} \sum_{j=0}^{N} k_{ij} a_{ij} \cdot (\tau_{i}(t) - \tau_{i}(t) - \tau_{i}(t)) - h_{ij} v_{0} \right)$$
(9)

Section 2 - closed loop vehicular control

$$u_{i} = -b\bar{v}_{i}(t) - \frac{1}{d_{i}} \sum_{j=0}^{N} k_{ij} a_{ij} \cdot (\bar{r}_{i}(t) - \bar{r}_{j} (t - \tau_{i}(t))).$$
 (11)

Defining the error as:

$$\bar{r}_i = (r_i(t) - r_0(t) - h_{i0}v_0)$$
, and $\bar{v}_i = (v_i(t) - v_0)$.

 h_{ij} being the constant time headway

$$\bar{r} = [\bar{r}_1, \dots, \bar{r}_i \dots, \bar{r}_N]^\top$$

$$\bar{v} = [\bar{v}_1, \dots, \bar{v}_i \dots, \bar{v}_N]^\top$$

$$\bar{r} = [\bar{r}_1, \dots, \bar{r}_i, \dots, \bar{r}_N]^{\top} \\
\bar{v} = [\bar{v}_1, \dots, \bar{v}_i, \dots, \bar{v}_N]^{\top} \\
 u_i = -b \Big[[v_i(t) - v_0] \Big] + \frac{1}{d_i} \sum_{j=0}^{N} k_{ij} a_{ij} \cdot (\tau_i(t) v_0) - \frac{1}{d_i} \sum_{j=0}^{N} k_{ij} a_{ij} \\
 \cdot (r_i(t) - r_j (t - \tau_i(t)) - h_{ij} v_0) \quad (9)$$

Quick recap - the controller

Control input

- acting on each vehicle
- composed of two terms:
 - local action
 - o action depending on neighbours

Section 3 - MATLAB implementation

Section 4 - MATLAB implementation

Initial conditions setup

1.
$$[r0, v0] = [0, 20]$$

2.
$$h_i0 = -i*0.8$$

3.
$$noise = 0 \text{ or } 1$$

4.
$$[r, v] = [-i*10, 0]$$

Section 3 - MATLAB implementation

Leader position noise block

Section 4 - Experiment (1a)

In this experiment we've simulated the platoon in **absence of sinusoidal noise** on the leader

Section 4 - Experiment (1b)

In this experiment we've simulated the platoon in **absence of sinusoidal noise** on the leader

Section 4 - Experiment (2a)

In this experiment we've simulated the platoon in **presence of sinusoidal noise** on the leader

Our position error

Paper position error

Section 4 - Experiment (2b)

In this experiment we've simulated the platoon in **presence of sinusoidal noise** on the leader

Our speed error

Paper speed error

Conclusions (1)

Their assumptions:

- 1. Leader starts with an initial velocity of 20 m/s
- 2. Vehicles start at a distance greater than the spacing policy
- 3. Initial velocities of platoon members greater than leader velocity

Our assumptions:

- 1. Leader starts with an initial velocity of 20 m/s
- 2. Vehicles start with a distance
- 3. Initial velocity for all vehicles equal to 0

Conclusions (2)

Conclusions (end)

