Tensor2Tensor Transformers New Deep Models for NLP

Łukasz Kaiser

Joint work with Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez, Stephan Gouws, Llion Jones, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, Jakob Uszkoreit, Ashish Vaswani.

RNNs Everywhere

Very successful for variable-length representations

Sequences (e.g. language), images, ...

Gating (LSTM, GRU) for long-range error propagation

At the core of seq2seq (w/ attention)

But...

Sequentiality prohibits parallelization within instances

Long-range dependencies still tricky, despite gating

Many modalities are hierarchical-ish (e.g. language)

RNNs (w/ sequence-aligned states) are wasteful!

CNNs?

Trivial to parallelize (per layer)

Fit intuition that most dependencies are local

Path length between positions can be logarithmic

when using dilated convolutions, left-padding for text.

Auto-Regressive CNNs

WaveNet and ByteNet

Attention

Attention between encoder and decoder is crucial in NMT

Why not use (self-)attention for the representations?

Self-Attention

Convolution

Self-Attention

Self-Attention

Constant path length between any two positions

Variable-sized perceptive field

Gating/multiplication enables crisp error propagation

Trivial to parallelize (per layer)

Can replace sequence-aligned recurrence entirely

Three ways of attention

Encoder-Decoder Attention

Encoder Self-Attention

MaskedDecoder Self-Attention

Attention Mask

The Transformer

Figure 1: The Transformer - model architecture.

Dot-Product Attention

Dot-Product Attention

$$A(Q, K, V) = softmax(QK^T)V$$

Scaled Dot-Product Attention:

$$A(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

	Ops	Activations
Attention (dot-prod)	$n^2 \cdot d$	$n^2 + n \cdot d$
Attention (additive)	$n^2 \cdot d$	$n^2 \cdot d$
Recurrent	$n \cdot d^2$	n · d
Convolutional	$n \cdot d^2$	n · d

n =sequence length d =depth k =kernel size

What's missing from Self-Attention?

Convolution

Self-Attention

What's missing from Self-Attention?

- Convolution: a different linear transformation for each relative position.
 Allows you to distinguish what information came from where.
- Self-Attention: a weighted average :(

Convolution

Self-Attention

The Fix: Multi-Head Attention

- Multiple attention layers (heads) in parallel (shown by different colors)
- Each head uses different linear transformations.
- Different heads can learn different relationships.

Convolution

Multi-Head Attention

The Fix: Multi-Head Attention

The Fix: Multi-Head Attention

	Ops	Activations
Multi-Head Attention with linear transformations. For each of the h heads, $d_q = d_k = d_v = d/h$	$n^2 \cdot d + n \cdot d^2$	$n^2 \cdot h + n \cdot d$
Recurrent	$n \cdot d^2$	n · d
Convolutional	$n \cdot d^2$	n · d

n =sequence length d =depth k =kernel size

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

For any fixed offset k,

PE(pos+k) can be represented as a linear function of PEpos.

Positional Encoding

Why Self-Attention?

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Training and Decoding - usual tricks

- ADAM optimizer with learning rate proportional to (step^{-0.5})
- Dropout during training at every layer just before adding residual
- Label smoothing
- Auto-regressive decoding with beam search and length penalties
- Checkpoint-averaging

Optimizer

 $lrate = d_{\text{model}}^{-0.5} \cdot \min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$

Machine Translation Results: WMT-14

Model	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [17]	23.75				
Deep-Att + PosUnk [37]		39.2		$1.0\cdot 10^{20}$	
GNMT + RL [36]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4\cdot10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$	
MoE [31]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [37]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [36]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}	
Transformer (big)	28.4	41.0	2.3 ·	10^{19}	

Ablations

	N	$d_{ m model}$	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params ×10 ⁶
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(4)				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(B)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(D)							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Constituency Parser

Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23 of WSJ)

Parser	Training	WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7
Transformer (4 layers)	WSJ only, discriminative	91.3
Zhu et al. (2013) [40]	semi-supervised	91.3
Huang & Harper (2009) [14]	semi-supervised	91.3
McClosky et al. (2006) [26]	semi-supervised	92.1
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1
Transformer (4 layers)	semi-supervised	92.7
Luong et al. (2015) [23]	multi-task	93.0
Dyer et al. (2016) [8]	generative	93.3

Coreference resolution (Winograd schemas)

Coreference resolution (Winograd schemas)

Sentence	Google Translate	Transformer
The cow ate the hay because it was delicious .	La vache mangeait le foin parce qu'elle était délicieuse.	La vache a mangé le foin parce qu'il était délicieux.
The cow ate the hay because it was hungry .	La vache mangeait le foin parce qu'elle avait faim.	La vache mangeait le foin parce qu'elle avait faim.
The women stopped drinking the wines because they were carcinogenic.	Les femmes ont cessé de boire les vins parce qu'ils étaient cancérogènes.	Les femmes ont cessé de boire les vins parce qu'ils étaient cancérigènes.
The women stopped drinking the wines because they were pregnant.	Les femmes ont cessé de boire les vins parce qu'ils étaient enceintes.	Les femmes ont cessé de boire les vins parce qu'elles étaient enceintes.
The city councilmen refused the female demonstrators a permit because they advocated violence.	Les conseillers municipaux ont refusé aux femmes manifestantes un permis parce qu'ils préconisaient la violence.	Le conseil municipal a refusé aux manifestantes un permis parce qu'elles prônaient la violence.
The city councilmen refused the female demonstrators a permit because they feared violence.	Les conseillers municipaux ont refusé aux femmes manifestantes un permis parce qu'ils craignaient la violence	Le conseil municipal a refusé aux manifestantes un permis parce qu'elles craignaient la violence.*

Attention Visualization

Attention Vis

Tensor2Tensor Library

https://github.com/tensorflow/tensor2tensor

Transformer (Attention is All You Need)
MultiModel (One Model to Learn Them All)
SliceNet
NeuralGPU
ByteNet, Xception, LSTM, ...

Tensor2Tensor Baselines

Finally a good single-gpu few-days translation model!

```
pip install tensor2tensor && t2t-trainer \
  --generate data \
  --data dir=~/t2t data \
  --problems=wmt ende tokens 32k \
  --model=transformer \
  --hparams_set=transformer_base_single_gpu \
  --output dir=~/t2t train/base \
  --decode interactive
```

Join Tensor2Tensor add datasets and models

https://github.com/tensorflow/tensor2tensor

```
pip install tensor2tensor && t2t-trainer \
  --generate data \
  --data dir=~/t2t data \
  --problems=wmt_ende_tokens_32k \
  --model=transformer \
  --hparams set=transformer base single gpu \
  --output dir=~/t2t train/base \
  --decode interactive
```

Thank you for your attention