ANSWER 12 OF 22 CA COPYRIGHT 2001 ACS L3

*

Full-text AN 104:197140 CA

Fixable thermal recording materials

liyama, Kyotaka; Watanabe, Chizuru

Ricon Co., Ltd., Capan

Jpn. Kokai Tokkyo Koho, 10 pp. PA CODEN: JKXXAF

Patent DT

Japanese LA

LA Japanese FAN.CNT 1 PATENT NO.		KIND DATE A2 1985	DATE	APPLICATION NO.		
	19851204		JP 1984-99998	19840518		
ΡI	JP 60244595	B4	19931008	n allowing layer cont	g. leuco o	

Recording materials having thermal coloring layer contg. leuco dye P contains, as auxiliary agent, a heat-melting material of m.p. 60-150.degree. having .gtoreq.l polymg. double bonc. The agent may have .gtoreq.1 :CO group adjacent to the double bond. The use of the agent increases the color d. and eliminates or lowers the background d. Thus, 4dispersions were prepd. contg. (A) 3'-(N-methyl-N-cyclohexylamino)-6'methyl-7'-phenylaminofluoran 10, 10% hydroxyethylcellulose (I) 10, and H20 30 parts, (B) 4,4'-bisphenolsulfone 30, 10% I 10, and H2O 90 parts, (C) 3-phenyl-1-(4-chlorophenyl)-1-propen-3-one (m.p. 114.degree.) 20, 10% I 20, and H2O 60 parts, and (D) CaCO3 30, 5% methylcellulose 30, and H2O 60 parts. These dispersions were mixed and coated on a plain paper to form a layer contg. 0.5 g/m2 dye. The material was exposed to light after thermal recording. Max. and min. d. values were 1.20 and 0.08 before exposure to light, and were 0.23 and 0.09, by repeated thermal recording after the exposure.

④日本国特許庁(JP)

① 特許出願公開

@ 公開特許公報(A) 昭60-244595

Mint Cl.

識別記号

庁内整理番号

每公開 昭和60年(1985) 12月4日

B 41 M 5/18

101

7447-2H

審査請求 未請求 発明の数 1 (全10頁)

感熱記録材料 8発明の名称

②特 顧 昭59-99998

❷出 願 昭59(1984)5月18日

飯 山 包発 明 者

東京都大田区中馬込1丁目3番6号 株式会社リコー内 東京都大田区中馬込1丁目3番6号 株式会社リコー内

清高 渡 辺 千 鶴 砂発 明 者

東京都大田区中馬込1丁目3番6号

株式会社リコー ①出 願 人 弁理士 池浦 餓明 ②代 理 人

1. 発明の名称

感熟記錄材料

- 2. 特許請求の範囲
- (1) ロイコ染料と顕色剤を含有する感熟発色層を 有する感熱記録材料において、重合性?重結合を 少なくとも1個有する融点60~150℃の熱可融性化 合物を補助成分として用いたことを特徴とする感 熟記録材料.
- (2) 該補助成分が、2重合結合の隣接位に少なく とも1個のカルポニル甚又は芳香族甚を有する化 合物からなる特許額求の範囲第1項の感熱記録材 料。3、発明の詳細な説明

〔技術分野〕

本発明は、ロイコ染料と顧色剤との間の発色反 応を利用した感熱記録材料の改良に関するもので ある.

〔從来技術〕

感熱記録材料は、一般に、紙、合成紙、プラス チックフィルム等の支持体上に無発色性組成物を 主成分とする感熱発色層を設けたもので、熱ヘツ ド、熱ペン、レーザー光等で加熱することにより 発色画像が得られる。この種の記録材料は他の記 録材料に比べて現像、定着等の煩雑な処理を施す ことなく、比較的簡単な装置で短時間に記録が得 られること、騒音の発生及び環境汚染が少ないこ と、コストが安いことなどの利点により、図書、 文書などの複写に用いられる他、電子計算機、フ アクシミリ、券売機、ラベル、レコーダーなど多 方面に亘る記録材料として広く利用されている。 このような感黙記録材料に用いられる黙発色性超 成物は一般に発色剤と、この発色剤を無時発色せ しめる頭色剤とからなり、発色剤としては、例え ば、ラクトン、ラクタム又はスピロピラン根を有 する無色又は淡色のロイコ染料が、また顔色剤と しては各種の酸性物質、例えば有機酸やフェノー ル性物質が用いられている。この発色剤と頭色剤 とを組合せた記録材料は特に得られる画像の色麗 が鮮明であり、かつ地肌の白色度が高く、しかも 画像(染料画像)の耐光性が優れているという利点

特開昭 60-244595(2)

を有し、広く利用されてきつつある。

このような感熱記録材料を用いた、感想記録方 佐は、近年では、より高速記録することが要求さ れてきており、機械面からの高速化はもとより、 感熱記録材料を体の高速化(即ち、高感度化)が強 く要望されている。

ロイコ系感燃記録材料の持つ他の大きな問題点

は、このような感熱能解材料が熱印放のみで発色 する非常に簡単で、アクセスタイムで知い記録力 独という便利さの反面、 医後の定着がなされてい ない為に再び繋が広われば、再発色するという匪 負信頼性の低い記録材料ということである。この ような欠点を解決する方法として、ジアゾ感無記 録方法や、熱転写型記録方法等が提案されている。 ジアゾ感熱記録方法は、熱印字弦露光するか、露 光後無印字することによつて、地肌部の発色を防 止するものであるが、地肌部の黄変や、地肌カブ りを生じやすく、また画像部の耐光性の低さ等の 問題がある。一方、熱転写型記録方法は、カーボ ン等を熱溶融性物質等と共に、普通紙に転写する 方法で、画像の信頼性は非常に高いものの、解像 性の問題がある他、転写紙と受容紙の2枚を必要 とする点でコストアツブの問題がある。

また、ロイコ系越熱記録材料においても、地駅 部の再発色防止の提案があり、例えば、特開昭55 - 51590号や特開昭58 - 123535号公報記載のよう に、印字被露光することによつて再発色を防止す

る方法が提案されているが、この場合、光感度定 着性が不十分であつたり、あるいは初期発色診度 が著しく低下する等の問題が残つている。

(B M)

本発明は、ロイコ系感熱記録材料において、発色感度を著しく向上させるのみならず、地肌部の熱による再発色をなくすか、又は著しく低下せしめて、記録画像の信頼性を著しく向上させた感熱記録材料を提供することを目的とする。

(模 成)

本晃明によれば、ロイコ染料と顕色剤を含有する感熱発色層を有する感熱記録材料において、重合性の2重結合を少なくとも1個有する融点60~150℃の熱可融性化合物を補助成分として用いたことを特徴とする感熱記録材料が提供される。

本発明で用いる補助成分は、種々の兆能で悠然発色層に適用することができ、例えば、ロイコ染料や顕色刺等と同一の塗布層に含有せしめてもよく、また、ロイコ染料層と暖色剤層との中間層に本発明の補助成分の層を設けてもよい。また、ロ

イコ染料層の上に、顕色剤と木発明の補助成分と の混合物層を設けてもよく、あるいはその逆に、 ロイコ染料層と本発明の補助成分との混合の層を 設け、その上に顕色剤層を設けてもよい。

本発明の補助成分を含む塗布液を作成する場合、 本発明補助成分は、有機溶媒中に溶解させること ができる他、水又は水性媒体等の本発明補助成分 に対して溶解性を示さない媒体中に分散させるこ ともできる。分散系の場合、本発明の補助成分の 粒径は、できる限り小さくするのが好ましく、一 殷には、5月11以下、好ましくは3月11以下である。 本発明の補助成分を用いて得られる感熱記録材料 は、熱印字後、露光すると、補助成分はその重合 性2重結合を介して重合し、その結果、地肌部の 熱による再発色が防止されるか、あるいはその発 色濃度は著しく低下され、信頼性の高い画像が形 成される。本発明の感熱記録材料の場合、前記し たように、補助成分として用いた化合物が重合性 のものであるため、感熱発色層面に光透過性の原 稿を重ねて露光させた後、その略熱発色層面に熱

特開昭 60-244595(3)

を放えると、その原務の機能部(即主、光明収益の無色部)に対応した発色が得られ、一方、非臨 蘇部(即も、光透過性の白色部)に未発色ないしむ ずかに発色した部分として残り、その結果、その 感熱発色層面には原務に対応した発色画像が形成 される。

本発明で用いる補助成分は、患合性の(重合結合を少なくとも、個有する融点が60~150℃の熟可 動性化合物である。本発明で用いる好ましいな 性2重結合を持つ化合物は、3重結合の階接位に少 なくとも1個のカルボニル基及び/又は芳香族基を 有するものである。この場合の芳香族基は、新世 及び未置換のフェニル基が包含され、置強をとして では、アルキル、シクロアルキル、アリール、ア ルキル等の炭化水素基の他、塩素、臭素等のバル がシ原子、ニトロ基、アルコキシ基等が挙げられる。

本発明で用いる補助成分として用いる化合物の 例を示すと、例えば、以下のようなものを示すこ とができる。 (1) 下記一般式(1)で示されるカルガニル基を有するプロペン誘導体

$$\underbrace{\left(\begin{array}{c} C \\ C \end{array}\right)}_{(\mathbf{R}^{2})} + CH = CH - \underbrace{\left(\begin{array}{c} C \\ C \end{array}\right)}_{(\mathbf{R}^{2})} \underbrace{\left(\begin{array}{c} C \\ C \end{array}\right)}_{(\mathbf{R}^{2})} \underbrace{\left(\begin{array}{c} C \\ C \end{array}\right)}_{(\mathbf{R}^{2})}$$
(1)

(玄中、R²、P² は水素又はアルキル基、シクロ アルキル、アリール、アルアルキル、ハロゲン 又はニトロ基等の質換基であり、(及びnはC~ 5の整数、■は[又は1の整数である)

前記化合物の具体例としては、例えば、以下の ものを挙げることができる。

3- フェニル - 1 - (3 - クロロフェニル) - プロペン(1) - オン(3)、

3-フェニルー1-(4-クロロフェニル)ープロペン(1)ーオン(3)、

3- フェニル-1-(4- クロロフェニル) - プロペン(2) - オン(1) .

3-フェニルー1-(3,4-ジロロフェニル)ープロベン(1)ーオン(3)、

3- フェニル-1-(4-メチルフェニル)プロペ ン(1)-オン(3)、

3-フェニル-1-(4-ブロモフェニル)プロペン(1)-オン(3)、

 $1-(2- \rho$ ロロフエニル $)-3-(4- \rho$ ロロフエニル) プロペン(1)- オン(3).

 $3-(2- \beta \ \Box \ \Box \ \exists \ \bot \ \Box \ \nu)-1-(2,4- \% \beta \ \Box \ \Box$ フェニル)プロペン(1)- オン(3) .

3-フェニル-1-(2,4,6-トリクロロフェニル) プロペン(2)-オン(1)、

3- フェニル-1-[3- プロモフェニル]- プロペン(1)- オン(3)、

3- フェニルー1-[3-ブロモフェニル]-ブロ ペン(2)-オン(1)、

3-(2-プロモフエニル)-1-(2-クロロフエニル)-プロペン(1)-オン(3).

3- フェニル-1-(3-ニトロフェニル)-プロペン(1)-オン(3).

3-(3-3-5) アエニル)-1-(3-5) ロフエニル)-プロベン(1)-オン(3).

1- フェニル - 3 - (3- メチルフェニル) - プロペン(2) - オン(1).

1-フェニル-3-(4-クロロ-3-メチルフエ ニル)-プロベン(1)-オン(3)、

1-(2-=トロフエニル)-3-(6-クロロ-3-メチルフエニル)-プロペン(1)-オン(3)、

1-フエニル-3- $\{2,6-ジプロモー4-メチルフェニル\}$ -プロペン $\{1\}$ -オン $\{3\}$.

1-フェニルー3- $\{2,4,6-$ トリメチルフエニル $\}$ -ブロベン $\{2\}$ -オン $\{1\}$.

1-(2-プロモフエニル)-3-(2,4,6-トリメチルフエニル)-プロペン<math>(2)-オン(1).

1-(4- ニトロフエニル) -3-(2,4,6- トリメ チルフエニル) - プロペン<math>(1)- オン(3).

1-フェニルー3-(4-tert-ブチルフェニル) -プロペン(1)-オン(3)、) - フェニルー3 - (3,4-ジメチルフェニル) -プロバン(1) - オン(2)

3-フェニルー:-フエノキシープロペン(1, -ナン(3).

- (xータロロフエニル)ー(- (3~タロロフエ ノエン)ープロペン(11~オン(3)。

(1) 下記一般式 (1) で表かされるカルポニル基を 持つブテン語導体

(式中、R¹, R² は水素又はアルキル基、シクロアルキル、アリール、アルアルキル、ハロゲン、ニトロ基、アルコキン基等の置換基であり、 f、nは0~5の整数である)

前記化合物の具体例としては、例えば、以下の ものを挙げることができる。

シロニオン(3)

:- フェニルー?ー(キープロモフエニル)ープテン(1, - オン(2)

1-フェニルー4-(*-ニトロフェニル)ープテン(!)-オン(3)

(2) 下記一般式(四)又は(四))で表だされるカル ポニル基を有するペンタジエン誘導な。

$$\begin{array}{c|c}
\hline
O & -CH = CH - C - CH = CH - C \\
\hline
C & (R^{4}) & C
\end{array}$$
(III)

(式中、R¹,R² は水素又はアルキル、シクロアルキル、アリール、アルアルキル、ハロゲン、ニトロ基、アルコキシ基等の置換基であり、 g、nは0~5の整数である)

このような化合物の具体例としては、例えば以 下のものを示すことができる。

$$1.5 - 9711 = 1.5$$

1.5-ジフエニルーペンタジエン(1,3)-オン(5)

5-フェニル-1-(3-クロロフェニル)-ベン タジエン(1,4)-オン(3)

1.5-ビス(3-メトキシフエニル) - ペンタジエ シー(1.4) - オン(3)

5-フエニルー1-(4-クロロフエニル)-ベン タジエン(1,4)-オン(3)

1,5-ビス(2-クロロフエニル)-ベンタジエン (1,4)-オン(3)

5- フェニルー1-[2-ニトロフェニル]ーベン タジエン(1.4) - オン(3)

1-フェニルー5-(4-クロロフエニル)ーペン タジエン(1,3)ーオン(5)

1,5 - ピス (4 - クロロフエニル) - ベンタジェン(1,3) - オン (5)

1.5- ピッ (2-クロロフエニル) - ペンタジェン (1.3) - オン (5)

1,5-ピァ(4-メチルフエニル]ーベンタジエン(1,3)-オン(5)

1,5-ビス(2-メチルフエニル) - ペンタジエン (),3) - オン(5) (4) 下記一般式(Ⅳ)で表わされるアクリル酸エステル鉄準体。

$$\begin{array}{c}
R^{1} \\
\bigcirc \\
-CH = C - COOR^{4}
\end{array}$$
(IV)

(式中、R¹ は水素又はアルキル、ハロゲン、シクロアルキル、アリール、アルアルキル、ニトロ基、アルコキシ基等の質換基であり、R³ はハロゲン又はシアノ基、R⁴ はアルキル、シクロアルキル、アリール、アルアルキルであり、R は0~5の整数である)

このような化合物の具体何としては、例えば、 以下のものを挙げることができる。

β - フェニル - α - シアノ - アクリル酸メチル β - フェニル - α - シアノ - アクリル酸エチル β - (4 - クロロフェニル) - α - ンアノ - アク リル酸エチル

 $\beta = (3.4 - ジクロロフエニル) - \alpha - シアノー アクリル酸エチル$

β-(2-クロロフエニル)-α-シアノーアク

特開昭 60-244595(5)

リル酸エチル

F - フェニルーα - クロローアクリル酸メチル E - フェニルーα - クロローアクリル酸エチル E - (3,4 - ジクロロフェニル) - α - プロモー アクリル酸エチル

(5) 下記一般式(Y)で表わされるアルコキシカルポニルブタジエン誘導体。

$$\begin{array}{c}
R^{2} \\
O \\
-CH = CH - CH = C - COOR^{4}
\end{array}$$
(V)

(式中、E¹ は水素又はアルキル、シクロアルキル、アリール、アルアルキル、ハロゲン、ニトロ基、アルコキシ基等の置換基、E² はハロゲン又はシアノ基、E² はアルキル、シクロアルキル、アリール、アルアルキルであり、 g は0~5の繋数である)

このような化合物の具体例には、例えば、以下のものが挙げられる。

4-フェニル-1-シアノ(又はクロロ)-1-メ トキシカルポニルーブタジエン(1,3) (− フェニル・) − シアノ (支はクロロ) − (− エトロンルボニルブキジエン(1,2)

x-(4-クロロフエニル)-(1-ンデノ(又はクロロ)-1-エトキシカルボニルーでタジエン(1)。2、 x-(4-プロモフエニル)-(1-シアノ(又はクロロ)-(1-エドキシカルボニループタジニン(1)。2)
 (6、下記一般式(Y)で表わされをフエニシンジアクリル酸誘導体。

(式中、R*,R* は水素、ハロゲンスはシマノ基であり、R*,R* はアルキル、シクロアルキル、 アリール又はアルアルキルである)

このような化合物の具体例としては、例えば、以下に示すようなものが挙げられる。

pーフエニレンジアクリル酸ジエチル mーフエニレンジアクリル酸ジメチル mーフエニレンジアクリル酸ジエチル pーフエニレンジアクリル酸ジーnープロビル

p-フェニレンジアクリル酸ジイソプロピル
p-フェニレンジアクリル酸ジベンジル
p-フェニレンジアクリル酸ジーn-ブチル
p-フェニレンジアクリル酸ジイソブチル
=-フェニレンジアクリル酸ジフェニル
β-(4-(2-エトキシカルポニルピニル)フェニル)-α-シアノアクリル酸エチル

β - (4 - (2 - メトキシカルボニルピニル) フエニル) - α - シアノアクリル酸エチル

β - (4 - (2 - メトキシカルボニルビニル) フェニル) - α - シァノアクリル酸プロビル・

(7) ケイ皮酸の芳香族エステル誘導体。

このような化合物としては、例えば、以下のも のを挙げることができる。

ケイ皮酸ー(2ークロロフエニル)

ケイ皮酸-[3-クロロフエニル]

ケイ皮酸~[4~クロロフエニル)

p-クロロケイ皮酸-(2-クロロフエニル)

pーニトロケイ皮酸-フエニル

ケイ皮酸ー(4ープロモフエニル)

ケイ皮酸~(4-ヨードフェニル) p-クロロケイ皮酸~(4-クロロベンジル) ケイ皮酸~(4-ブロモベンジル)

(8) 重合性2重結合を有する前記以外の種々の化合物。

このような化合物としては以下のような種の化合物を挙げることができる。

1,5-ジフエニルーペンテン(1)-オン(3)

5.5-ビス(2-ジメチルフエニル) - ベンテン(4) -オン(3)

1,6-ジフエニルーヘキンセン(1)ーオン(3)

[2-クロロベンジリデン]-マロン酸ジメチル

[3-クロロペンジリデン]-マロン酸ジニトリ

/

- (2,6~ジクロロベンジリデン)-マロン酸ジニ - ロル

(3-ョードベンジリデン)— マロン酸ジニトリ n,

(3-ニトロベンジリデン)-マロン酸ジメチル

持開昭60-244595(6)

- 1,1- ピカ(4-/1-シンナモイロキシエトキシ) フエニル)- プロパン

4-アセトキシー:-シンナモイロキシベンゼン :.o-ビス(シンナモイロキシ)-ナフタレン等。

本発明において用いるロイフの 数料は単独又は2 種以上複合して適用されるが、このようなコイマル 数料としては、この種の感熱材料に適用されていいるものが任意に適用され、例えば、トリフェニル メタン系、フルオラン系、フェノチアジン系、コルメーラミン系、スピロピラン系等の数料のロイフル 合物が好ましく用いられる。このようなロインの 料の具体例としては、例えば、以下に示すような ものが挙げられる。

3.3-ビス(p-ジメチルアミノフエニル)-フタリド、

3.3-ビス(p-ジメチルアミノフエニル)-6-ジメチルアミノフタリド(別名クリスタルバイオ レツトラクトン)、

3,3-ビス(p-ジメチルアミノフエニル)-6-ジエチルアミノフタリド、 2,2-ヒス(p-ジメチルアミノフエニル:-f-クロルフタリド、

5.3-ビス(p-ジプチルアミノフエニル)フタリ

3-シタロペキシルアミノー(- クロルブルオラン).

3-ジメチルアミノー5.7-ジメチルフルオラン、 3-ジエチルアミノー7-クロロフルオラン、 3-ジエチルアミノー7-メチルフルオラン、

3-ジエチルアミ 1-7,8-ベンズフルオラン、 3-ジエチルアミノー6-メチル-7-クロルフ

3-ピロリジノー6-メチルー7-アニリノフルオラン、

2- (N-(3′-トリフルオルメチルフエニル) アミノ) -6-ジエチルアミノフルオラン、

2- (3.6-ビス(ジエチルアミノ)-8-(o-クロルアニリノ)キサンチル安息各般ラクタム)、

3-ジェチルアミノー6-メチル-7-(ェートリ クロロメチルアニリノ)フルオラン、

3ージエチルアミノー7ー(oークロルアニリノ) フルオラン、

3-ジブチルアミノ-7-(o-クロルアニリノ) フルオラン、

3-N-メチル-N-アミルアミノー6-メチルー 7-アニリノフルオラン、

3-N-メチル-N-シクロヘキシルアミノ-6-メチル-7-アニリノフルオラン、

3-ジェチルアミノー6-メチルー7-アニリノフルオラン、

3-(N,N-ジエチルアミノ)-5-メチル-7-(N, N-ジベンジルアミノ)フルオラン、

ベンゾイルロイコメチレンブルー、

6′ -クロロ-8′ -メトキシーベンゾインドリ ノービリロスピラン、

6′ ープロモー3′ ーメトキシーベンソインドリ ノービリロスピラン。

3-(2′-ヒドロキシー4′-ジメチルアミノフ

エニル) - 3 - (2′ - メトキシー5′ - クロルフエニル) フタリド、

3-(2' -ヒドロキシー4' -ジメチルアミノフ エニル)-3-(2' -メトキシー5' -ニトロフエ ニル)フタリド、

3-(2' -ヒドロキシ-4' -ジエチルアミノフエニル)-3-(2' -メトキシ-5' -メチルフエニル)フタリド、

3-モルホリノー7-(K-プロピルートリフルオロメチルアニリノ)フルオラン、

3-ピロリジノ-7-トリフルオロメチルアニリ ノフルオラン、

3-ジエチルアミノ-5-クロロ-7-(N-ベンジルートリフルオロメチルアニリノ)フルオラン、 3-ピロリジノ-7-(ジ-p-クロルフエニル) メチルアミノフルオラン、

3ージエチルアミノー5ークロルー7ー(αーフエ

ニルエチルアミノ,マルオラン。

3-(N-エチルー)・トルイジフ)-1-(ローフ エニルニチルアミフ)フルオラン。

ミージエチルアミューコー(oーメトキシオルポニ ルフエニルアミリ)フルオラン、

ミージエチルアミューミーメチルー^{カー(ロ}ーフエ ニルエチルアミノ)フルスラン、

3-ジエチルアミノー7-ピペリジノフルオラン、 2-クロロー3-(k-メチルトルイジノ)-7-(pn-ブチルアニリフ+フルオラン、

3-(N-ベンジル-N-シクロヘキシルアミノ)-5, 6-ベンソー?-α-ナフチルアミノー4'ープロモフルオラン、

3-ジエチルマミノー6-メチルー7-メシチジ ノー41、51-ベンソフルオラン等。

本発明において用いられる顕色新物質としては、 電子受客性の種々の化合物、例えば、有機酸、フ エノール性化合物、ルイス酸、芳香族カルポン酸 及びその金属塩、チオフエノール性化合物、チオ 尿素誘導体等が好ましく適用され、以下にその具 存例を示す。

4.4′ ープソプロピケーンピスフエノール、

- 4.ピ ープソプロピリデンピス(oーメチルフエ ノール):

- く,ぐ ーセカンダリープチリテンピスプエノール、

4.47 ーイソプロピリデンピス(2~3~シャリーブチルフエノール)。

4.4' ージクロヘキシリデンジフエアール。 4.4' ーイソプロピリデンビス(2ークロロフエ ノール)。

2,2' -メチレンピス(4-メチルー6-ターシヤ リープチルフエノール)、

2.2′ - メチレンビス(4-エチル-6-ターシヤ 1) - ブチルフエノール).

4.4′ ープチリデンビス(6ーtertープチルー2ーメチル)フェノール、

4.4′ーチオピス(6-tertーブチルー2-メチル) フェノール、

4-ヒドロキシジフエニルスルホン.

4-ヒドロキシー4′ーメチルジフエニルスルホン。

4,4′ ージヒドロキシージフエニルスルホンモ ノベンジルエーテル、

4.4' ージヒドロキシージフエニルスルホンモ ノオクチルエーテル、

4-ヒドロキンー4' -クロロジフェニルスルホン.

4,4′ -ジフェノールスルホン、

4,4′ ージフェノールスルホキシド、

pーヒドロキン安息香酸ネオペンチル、

p-ヒドロキシ安恵香酸イソプロピル、

pーヒドロキン安息香酸オクチル.

p-ヒドロキン安息香酸シクロヘキシル、

プロトカテュニ酸プロピル、

カテコールゴチロフエノン、

役食子散プロビル、

役在子盤エステル、

役食子酸ラウリル、

役点子敵オクチル、

N,N′ - ジワエニルチオ尿素...

N,N' - ジ(mークロロフエニル)チオ尿素.

N,N′ - ジ(=- メチルフエニル)チオ尿素、

サリチルアニりド、

5-クロローサリチルアニリド、

サリチルー0ークロロアニリド.

3一クミルサリチル酸、

3-tert-ブチルサリチル酸、

3,5-ジーtertープチルサリチル酸、

3,5-ジーtertーブチルサリチル亜鉛、

3,5-ジクミルサリチル酸、

5-オクチルサリチル酸、

3-フエニルサリチル酸、

2-ヒドロキシー€-ナフトエ酸エチル、

2-ヒドロキシー6-ナフトエ酸イソプロピル、

2-ヒドロキジー6-ナフトエ種イソブチル、

2-ヒドロキンー6-ナフトエ酸ベンジル。

2-ヒドロキレー3-ナフトエ酸、 2-ヒドロキレー1-ナフトエ酸、

1ーヒドロキシー1ーナフト二酸、

時間間 60-244595(8)

とトロキンナフトエ整亜鉛、アルミニウム。カルシウム等の金属複等。

才発明においては、前記ロイコ染料、銀色剤及 びオ発明は補助成分を支持体上に粘合支持させる。 たせに、慣用の種での結合剤を適宜用いることが でき、何えば、ポリビニルアルコール、デンブン 及びその誘導体、メトキシセルコース、ヒドロギ シュチルセルコース、カルボキシメチルセルロー ス、メチルセルロース、エチルセルロース等のセ ルコース誘導体、ポリアクリル酸ソーダ、ポリビ ニルピロリビン、マクリル酸アミド/アクリル酸 エステル共重合体、アクリル酸アミド/アクリル 酸エステル/メタクリル酸3元共愈合体、スチレン /無水マレイン酸共重合体アルカリ塩、イソブチ レン/無水マレイン酸共重合体アルカリ塩、ポリ アクリルアミド、アルギン酸ソーダ、ゼラチン、 カゼイン等の水溶性高分子の他、ポリ酢酸ビニル、 ポリウレタン、スチレン/ブタジエン共重合体。 ポリアクリル酸、ポリアクリル酸エステル、塩化 ビニル/酢酸ビニル共重合体、ポリブチルメタク

リレート、ユチレン·酢酸ビニル共聖台体、スチ レン/ブタジェン/アクリル系共聖合体等のラテン クスを用いることができる。

本発明の必然記録材料は、例えば、前記した名 成分を含む感熱層形成用途液を、紙、合成紙、ブ ラスチンクフィルムなどの適当な支持体上に堕布 し、乾燥することによって製造される。この場合、 ロイコ染料、顔色剤、及び本発明の補助成分の使

用量は、それらの合計量に対し、ロイコ染料は5~30重量%、顕色剤は20~70重量%、不発明の補助成分は10~60重量%にするのがよく、支持休上への全成分の付着量は2~10g/mにするのがよい。
(効 果)

本発明の感熱記録材料は、特別の重合性の補助成分を用いたことにより、熱発色感度が著しく向上されると共に、その熱発色により得られる発色画像は安定化されたもので、地肌部を加熱してもその再発色は防止ないし著しく抑制されたものである。また、本発明の感熱記録材料は、感像状に露光した後、熱現像を行うことにより発色画像を行ることもできる。

(実施例)

次に、本発明を実施例によりさらに詳細に説明 する。なお以下に示す記及び別はいずれも重量基 徴である。

实施例1~5

【A 被】

3-(N-メチル-N-ジクロヘキシル

マミノ)ー6ーメチルー7ーアニリノ	
フルオラン	10部
ヒドロキンエチルセルロース10%水溶液	10部
*	30部
(B被)	
4,4′ ーピスフエノールスルホン	30部
ヒドロキンエチルセルロース10%水溶液	10部
<i>†</i>	90部
(C被)	
表一1に示した補助成分	20部
ヒドロキレエチルセルロースの10%	
才 谘 棭	20部
*	60部
(口被)	
戻 酸 カルシ ウム	30部
メチルセルロースの5%	30 ac
*	60部

前記A核、B核、C核及びD核を混合し、坪量50g/ 州の上質紙に乾燥付着量が染料で0.5g/州となる ようにラボーコーティングロツドで乾布乾燥して 感熱記録材料を作扱した。

次に、この感熱症録が知さ性能を評価し、その 結果を次要に示す。

なお、表中において、最高値度は市販の熱値和 試験機を用いて12(でで15e)、2kg/dの圧力で印 字した時の画値虚度を意味し、地肌速度は未印字 の確度を指す。また、電光後の速度は、市販のジ アゾ程等機(リコー製、SK-1500)の1メモリで1回 露光した核の印字温度を示す。

表 - 1

	4 分		舞光前	農度	鮮光後	
	斯 及	酰点	最高	地肌	最高	地肌
	化合物名	(°C)	@ 度	游皮	渡度	渡度
験						
0	3-フェニルー1-(4-クロロフェニル)プロペン	114	1.20	0.08	0.23	0.09
		104	1.25	0.09	0.19	0.09
		1112	1.22	0.09	0.22	0.09
2		99	1.24	0.08	0.28	0.09
	$\frac{1.5 - 97 \pm 2 \nu \sqrt{29 - 1}}{3 - 7 \pm 2 \nu - 1 - (4 - 3 \pm 2 \nu) - 2 \pm 2 \nu} - 2 \pm 2 \nu$	99	1.47			
4			1.17	0.08	0.29	0.09
	$\frac{\cancel{x}}{\cancel{x}}$ $\frac{\cancel{x}}{x$	117	1.17			
5		ļ	1.26	0.08	0 45	C.09
	$(1) - \pi \times (1)$ $\beta - (1) - \pi \times (1)$ $\beta - (1) - \pi \times (1)$	94	1.20	0.00		
6					0.28	0.09
	酸エチル $\beta - (2,4-ジクロロフエニル) - \alpha - シアノーア$	110	1.28	0.08	0.10	
7	B-(2,4-2) DDD JI-NJ	1	1	<u> </u>	0.30	0.13
	クリル酸エチル - トキシカルポニ	112	1.23	0.1!	0.30	0.10
	クリル酸エチル 1-フェニルー4-シアノー4-エトキシカルボニ	1	1			r 06
-	1 r p 12 - 2 (1.4)	97	1.27	, C. C.B	0.17	0.09
-c	ルーフランニン	8 4	1.30	0.09	10.28	
; 0		120	1.18	0.09	0.20	0.08
1 1	ナー・バーエトキシカルホールヒーバ	1	İ	!		- 61
		132	1.05	C.C8		C. 05
1 2	ル) - a コンデンシアクリル酸ジメチル	97	11.10	C. 68	1.08	C. 1
13 *	十ラニアリン酸アミト	162	11.13	0.08	1.1	0.0
14	8ナフトールベンジルエーテル		0.4	0.08	C.46	C . G
; £ *	w					

[・]比較例を示す。

特問四 00-244595(10)

表一)の結果から明らかなように、不発明の数 品の場合、臨光後の発色濃度が第しく以下し、脂 著な地肌の再発色防止効果が得られているのに対 し、効果の比較品の場合には一篇光前後の発色性 に強んど差異が見られない。

> 特許出願人 株式会社 ジ コ ー 代 理 人 非 理 士 准 希 敏 明