Algorithm for Energy Efficient Sensor Network in Precision Agriculture

Abhay Pratap Singh (2015IPG-114)
Nishant Sharma (2015IPG-124)
Under Guidance of:
Dr. Anuraj Singh
Dr. Yash Daultani

ABV-Indian Institute of Information Technology & Management, Gwalior-474015, MP, India

October 10, 2018

Content

- Introduction
- Motivation
- Literature Review
- Problem Statement
- Tools
- Methodology
- Implementation
- Result.
- Conclusion and Future Scope
- References

Introduction

- Shift in economic development and urbanization, significantly shrinking the farming land: putting a stress over farm land.
- Here we need a role of technology to surpass this problem.
- Precision agriculture: IoT based application of technology helping farmers decide:
 - What type of crops to be harvested?
 - How to get maximum output?
- Advancement in technology in agriculture saves time and cost of farmers.

Motivation

- An IoT based network mode let farmers fetch all the information in less time and with minimum efforts.
- Much attention has already been drawn over PA abroad, large scale use of IoT in agriculture is taking place.
- Hoping! India get to see next revolution with the technology assisted farming soon.
- Precision Agriculture consisting of sensors and actuators:needs power source.
- Battery becomes the heart for working and heart of volatility with the network.
- Efficient utilization of the available source is must.

Literature Review

Author	Title	Techniques	Year of
Name		Used	Publication
Chu-Fu	A Network Life-	MCP	2014
Wang, Jau-	time Enhancement		
Der Shih,	Method of Sink		
Bo-Han Pan,	Relocation		
and Tin-Yu			
Wu			
Sanat	Adaptive Data-	Data Mining	2016
Sarangi,	centric Clustering		
and Srinivasu	with Sensor Net-		
Pappula	works for Energy		
	Efficient		
O.Moussaoui,	A novel clustering al-	MAC and	2006
A.Ksentini,	gorithm for efficient	TDMA	
and M.Naimi	energy saving	< -> < -> >	< E → < E → E = <0

/ 20

Problem Statement

 Using Master-Slave division along with Additive Increase-Multiplicative Decrease approach to enhance sensor network lifetime for Precision Agriculture

Tools

- TinkerCad
- Arduino UNO
- LEDs
- Resistors
- Multimeter
- Arduino IDE (C++)

Methodology

- Master Slave division
 - Among the nodes, one node considered master and others as slaves at a time.
 - Master node sensing, more frequent than that of slaves.
 - Smallest interval:Master, Largest interval:Slave.

Figure: Temperature sensors: Master node

Figure: Di-electric: Master node

- Master rotation
 - Master node rotated within the nodes.
 - Battery level considered before making slave as the master node.
- Additive Increase Multiplicative Decrease
 - Sensed data compared with the Threshold Value.
 - AIMD implemented considering the Threshold Value.

Implementation

- Analogy Used
 - Circuit implementation of the problem circuit is done online on virtual environment tinkercad.
 - Different types of sensors used in precision agriculture offers different resistance.
- Why Analogy?
 - Analogy: used to eliminate possible physical errors.
 - Helps to measure the results of the proposed approach algorithm in simpler manner.

- Working of the analogy
 - Arduino UNO works as the central node.
 - The LEDs in series with different resistors gives analogy to real time sensors.
 - ON LED:Sensor Active state, OFF LED: Sensor Inactive state.

Figure: Slave nodes working

- Historical data consideration
 - Nodes at 2,4,6 pins of arduino: Temperature sensors.
 - Nodes at 8,10,12 pins of arduino: Moisture sensors.
 - Master node checks every hour.
 - Slave nodes checks every two hour.
 - Additive increment time:20 minutes.
 - Master time period<= incremented time<=Slave time period
 - Multiplicative decrement time makes the increment time comes down to one hour again

Result

• TABLE: number of times a node gets activated in 6 hours duration.

Cases	Approach	Node 1	Node 2	Node 3	Total
А	!D !R !A	6	6	6	18
В	!D !R A	4	4	4	12
С	D !R !A	6	3	3	12
D*	D !R A	4	3	3	10
E	DR!A	6	3	3	12
F*	DRA	4	3	3	10

- How much efficient is our algorithm?
- From above table:
 - Case A & Case F:

$$\frac{18-10}{18}\times 100=44.5\%$$

• Case B or C & Case F:

$$\frac{12-10}{12}\times 100=16.67\%$$

• Case E & Case F:

$$\frac{12-10}{12}\times 100=16.67\%$$

 Hence, we see implementing AIMD gives 0.16 times better efficiency.

Conclusion

Conclusion

- Novel clustering and cluster head rotation give a platform to energy efficiency approach.
- We considered best possible scenarios in all possible cases.
- We implemented our solution derived from novel clustering, sink relocation with AIMD, and observed better efficiency.

Future scope

• Future Scope

 We implemented our algorithm for one cluster only i.e. one master node with slave nodes. This can further be implemented for multi-cluster network.

- Chu-Fu Wang and Jau-Der Shih; A Network Lifetime Enhancement Method for Sink Relocation and Its Analysis in Wireless Sensor Networks, IEEE Sensors Journal, Vol. 14,pp. 1932-1943, 2014.
- Georg Ru and Alexander Brenning; Data Mining in Precision Agriculture: Management of Spatial Information, Springer-Verlag Berlin Heidelberg, pp. 350-359, 2010.
- V.I. Adamchuka, J.W. Hummel, M.T. Morgan, S.K. Upadhyaya; Computers and Electronics in Agriculture, Elsevier, pp 71-91, 2004.

REFERENCES

- Jeromina J and Dr. K. V. Anusuya; A Network Lifetime Enhancement Method for Sink Relocation and Its Analysis in Wireless Sensor Networks; IEEE Sensors Journal, Vol. 14, pp 1932-1943, 2014.
- Moussaoui, A. Ksentini, and M Naimi; A novel clustering algorithm for efficient energy saving in Wireless Sensor Networks, Seventh IEEE International Symposium on Computer Networks; pp 66-72.
- Sanat Sarangi and Srinivasu Pappula; Adaptive Data-centric Clustering with Sensor Networks for Energy Efficient IoT Applications, IEEE 41st Conference on Local Computer Networks, pp 398-405, 2016.

Thank You