Data Structures Heaps

Andres Mendez-Vazquez

November 19, 2016

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- 2 Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

Definition of a Heap

Definition

A heap is an array object that can be viewed as a nearly complete binary tree.

Heap: Basic Attributes

Given an array A, we have that length[A]

It is the size of the storing array.

heap-size[A]

Tell us how many elements in the heap are stored in the array.

 $0 \le I$

 $-\operatorname{size}[A] \leq \operatorname{length}[A]$

(1)

Heap: Basic Attributes

Given an array A, we have that length[A]

It is the size of the storing array.

heap - size[A]

Tell us how many elements in the heap are stored in the array.

 $0 \leq heap - size[A] \leq length[A]$

Heap: Basic Attributes

Given an array A, we have that length[A]

It is the size of the storing array.

heap - size[A]

Tell us how many elements in the heap are stored in the array.

Thus, we have

$$0 \leq heap - size[A] \leq length[A]$$

Outline

- 1 Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- 2 Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

Finding Parent and Children given a Node i in the heap

$\overline{Parent(i)}$ - Parent Node

$$Parent(i) = \lfloor \frac{i}{2} \rfloor$$

$$Left(i) = 2i$$

$$Right(i) = 2i + 1$$

Finding Parent and Children given a Node i in the heap

$\overline{Parent(i)}$ - Parent Node

 $Parent(i) = \lfloor \frac{i}{2} \rfloor$

Left Node Child: Left(i)

Left(i) = 2i

Right(i) = 2i + 1

Finding Parent and Children given a Node i in the heap

$\overline{Parent(i)}$ - Parent Node

 $Parent(i) = \lfloor \frac{i}{2} \rfloor$

Left Node Child: Left(i)

Left(i) = 2i

Right Node Child: Right(i)

Right(i) = 2i + 1

7 / 80

Heap's Properties

Given that

A[i] returns the value of the key, we have that

Max heap property

 $A[Parent(i)] \ge A[i]$

Min heap property

 $A[Parent(i)] \le A[i]$

Heap's Properties

Given that

 $A\left[i\right]$ returns the value of the key, we have that

Max heap property

 $A[Parent(i)] \ge A[i]$

Min heap property

 $A[Parent(i)] \le A[i]$

Heap's Properties

Given that

A[i] returns the value of the key, we have that

Max heap property

 $A[Parent(i)] \ge A[i]$

Min heap property

 $A[Parent(i)] \le A[i]$

The ADT Heap

Interface

interface MaxHeapInterface

- add(newEntry)
- removeMax()
- getMax()
- isEmpty()
- getSize()

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- 2 Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

What we want!!!

A function to keep the property of max or min heap

After all, remembering Kolmogorov, we are acting in a part of the array trying to keep certain properties

• Which ONE?

What we want!!!

A function to keep the property of max or min heap

After all, remembering Kolmogorov, we are acting in a part of the array trying to keep certain properties

Which ONE?

Important

Single nodes are always min heaps or max heaps

Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

$\mathsf{Max} ext{-}\mathsf{Heapify}(A,i)$

- r = Right(i)
- $\textbf{ 3} \ \ \mathsf{If} \ l \leq heap size \left[A \right] \ \mathsf{and} \ A \left[l \right] > A \left[i \right]$
- largest = l

- largest = r

- $lacktriang{f 0}$ exchange A[i] with A[largest]
- $\mathbf{0}$ Max-Heapify(A, largest)

Example keeping the heap property starting at i=1

Here, you could imagine that somebody inserted a node at i=1

- 3. If $l \leq heap size[A]$ and A[l] > A[i]
- largest = l
- largest = r

Example keeping the heap property starting at i = 1

One of the children is chosen to be exchanged

- 8. if $largest \neq i$
- 9. exchange A[i] with A[largest]

18 / 80

Complexity of Max-Heapify

Algorithm Complexity

 $O(\log n)$.

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

Example: Using Max-Heapify

Algorithm Build-Max-Heap

Build-Max-Heap(A, i)

- $\bullet heap size[A] = length[A]$
- 2 for i = |length[A]/2| downto 1

Figure: Building a Heap

Cost of Building the Build-Max-Heap

Cost O(n)

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- 2 Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

Applications of Heap Data Structure

Heap Sort of Arrays

Clearly, if the list of numbers is stored in an array!!!

- Priority Queue
- Here, Heaps can be modified to support insert(), delete() and extractmax()
- decrease Key() operations in $O(\log n)$ time

This has direct application

- Bandwidth management:
 - Many modern protocols for Local Area Networks include the concept of Priority Queues at the Media Access Control (MAC).
- Oiscrete Event Simulations
- O Uniform and in a disconnection
- Huffman coding
- The Real-time Optimally Adapting Meshes (ROAM)
 - It computes a dynamically changing triangulation of a terrain using two priority queues

Applications of Heap Data Structure

Heap Sort of Arrays

Clearly, if the list of numbers is stored in an array!!!

Priority Queues

Here, Heaps can be modified to support insert(), delete() and extractmax(), decreaseKey() operations in O(logn) time

- Bandwidth management:
- Many modern protocols for Local Area Networks include the concept of
- Friority Quedes at the Media Access Control (MAC)
- Discrete Event Simulations
- Schedulers
 - Huffman coding
- The Real-time Optimally Adapting Meshes (ROAM)
 - It computes a dynamically changing triangulation of a terrain using two

Applications of Heap Data Structure

Heap Sort of Arrays

Clearly, if the list of numbers is stored in an array!!!

Priority Queues

Here, Heaps can be modified to support insert(), delete() and extractmax(), decreaseKey() operations in O(logn) time

This has direct applications

- Bandwidth management:
 - Many modern protocols for Local Area Networks include the concept of Priority Queues at the Media Access Control (MAC).
- Oiscrete Event Simulations
- 3 Schedulers
- 4 Huffman coding
- The Real-time Optimally Adapting Meshes (ROAM)
 - It computes a dynamically changing triangulation of a terrain using two priority queues.

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

Heapsort Algorithm

Heapsort(A)

- \bullet Build-Max-Heap(A)
- ② for i = length[A] downto 2
- **3** exchange A[1] with A[i]
- heap size[A] = heap size[A] 1
- \bullet Max-Heapify(A, 1)

Figure: Heapsort

Sorting: Using Max-Heapify

Sorting: Using Max-Heapify

Cost of the Heapsort

Cost

 $O(n \log n)$

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- 2 Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

Basic Concepts

Definition

A priority queue is an abstract data type which is like a regular queue or stack data structure, but where additionally each element has a "priority" associated with it.

Basic Concepts

Definition

A priority queue is an abstract data type which is like a regular queue or stack data structure, but where additionally each element has a "priority" associated with it.

Clearly, you could sort the elements by priorities

After all that is what we do when designing data structures

69 / 80

Clearly, you could sort the elements by priorities

Cost of that

 $O(n\log n)$

(2)

We want something better!!!

After all that is what we do when designing data structures

First, the ADT of a Max Priority Queue

ADT of a Max Priority Queue

interface MaxHeapInterface

- Insert(newEntry)
- ② Maximum()
- Extract-Max()
- Increase-Key(T, key)
- isEmpty()
- 6 size()

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- 2 Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

Thus, we need to look at the implementations

First, insertion

public void Insert(T newEntry);

Where is the best place to put the new key?

Thus, we need to look at the implementations

First, insertion

public void Insert(T newEntry);

First, What do we do?

See if you have enough space in the array!!!

Where is the best place to put the new key?

Thus, we need to look at the implementations

First, insertion

public void Insert(T newEntry);

First, What do we do?

See if you have enough space in the array!!!

Second

Where is the best place to put the new key?

What to do?

What about the following... when we draw the Heap!!!

What to do?

Ideas?

What about the following... when we draw the Heap!!!

Yes

- Thus we need to move this it
- lacksquare while i>1 and $Heap\left[Parent\left(i
 ight)
 ight] < Heap\left[i
 ight]$
- exchange Heap[i] with Heap[Parent(i)]
- $0 \qquad \qquad i = Parent\left(i\right)$

Heap.heap-size=Heap.heap-size+1

Yes

Thus we need to move this up!!!

- $\textbf{ 0} \ \, \text{while} \,\, i > 1 \,\, \text{and} \,\, Heap\left[Parent\left(i\right)\right] < Heap\left[i\right]$
- exchange Heap[i] with Heap[Parent(i)]
- i = Parent(i)

Heap.heap - size = Heap.heap - size + 1

Yes

Thus we need to move this up!!!

- $\textcircled{ } \text{ while } i>1 \text{ and } Heap\left[Parent\left(i\right)\right] < Heap\left[i\right]$
- $\textbf{ exchange } Heap\left[i\right] \text{ with } Heap\left[Parent\left(i\right)\right]$
- i = Parent(i)

In addition

Heap.heap - size = Heap.heap - size + 1

Outline

- Heaps
 - Definitions
 - Finding Parents and Children
 - Max-Heapify
 - Build Max Heap: Using Max-Heapify
- 2 Applications of Heap Data Structure
 - For Example
 - Heap Sort
 - Priority Queues
 - Insertion
 - Extract-Max

What about Extract-Max

Here, we can use Max-Heapify

To trickle down as the Max-Heap property is not working

Using the previous code...

Pseudocode

Extract-Max()

- if Heap.heap size < 1
- error "heap underflow"
- \bullet max = Heap[1]
- $\bullet \ Heap[1] = Heap[Heap.heap size]$
- $\bullet Heap.heap size = Heap.heap size 1$
- Max-Heapify(1)
- return max

What about Heap-Increase-Key?

Here, a design issue

- In a Max Priority Queue you can only increase keys
- In a Min Priority Queue you can only decrease keys

Then

Pseudo-Code

Increase-key(i, key)

- if key < Heap[i]
- error "new key is smaller than current key"
- \bullet Heap[i] = key
- while i > 1 and Heap[Parent(i)] < Heap[i]
- ullet exchange $Heap\left[i
 ight]$ with $Heap\left[Parent\left(i
 ight)
 ight]$
- i = Parent(i)