

15

Руководство по эксплуатации содержит технические данные, описание принципа действия и устройства, а также сведения, необходимые для правильной эксплуатации интеллектуального преобразователя давления измерительного APR-2200D (гидростатический преобразователь давления для измерения плотности для закрытых и открытых емкостей) (далее по тексту – преобразователи).

1 Назначение

- 1.1 Преобразователи относятся к многопредельным перенастраиваемым, т.е. пользователь имеет возможность дистанционно управлять работой и контролировать параметры преобразователей.
- 1.2 Преобразователи предназначены для работы в системах автоматического контроля, регулирования и управления технологическими процессами и обеспечивают непрерывное преобразование значения измеряемого параметра гидростатического давления жидкостей с учетом плотности в унифицированный токовый выходной сигнал.

Они могут быть использованы в энергетике, нефтяной и нефтехимической, газовой, пищевой и других отраслях промышленности.

- 1.3 Преобразователи могут работать с различной регистрирующей и показывающей аппаратурой, регуляторами и другими устройствами автоматики и системами управления, работающими с унифицированными входными сигналами от 4 до 20 мА или поддерживающими протокол Hart по линии связи цепи выходного сигнала от 4 до 20 мА.
- 1.4 Преобразователи в исполнении **EExial/IICT6** предназначены для эксплуатации на взрывоопасных производствах.

ВНИМАНИЕ!

Эксплуатация преобразователей в исполнении EExial/IICT6 разрешается только в комплекте с барьерами искрозащиты, установленными вне взрывоопасной зоны и имеющими разрешение Госгортехнадзора России на применение во взрывоопасной среде, относящейся к категории IIC.

- 1.5 Электрические параметры преобразователей с учетом параметров соединительного кабеля должны соответствовать электрическим параметрам, указанным на барьере искробезопасности.
- 1.6 При заказе преобразователей должно быть указано условное обозначение преобразователя. Условное обозначение преобразователя составляется по структурной схеме, приведенной в приложении 1.

Для заметок Приложение 3

Внешний вид электрических присоединений

Рисунок 6 - Внешний вид электрических присоединений

Внимание!

Для исполнения PZ обязательное условие обеспечение коммуникации Hart: 250 Ом $\leq R_0 \geq 1100$ Ом

Приложение 2

Внешний вид и установочные размеры преобразователя давления измерительного **APR-2200D**

Рис. №5

2 Характеристики

2.1 Основные технические данные преобразователя

2.1.1 Диапазоны измерений преобразователей приведены в таблице 1. Таблица 1

1 000111140 1						
$N_{\underline{0}}$	Основной	Основной	Минимальная	Возможность		
	диапазон	диапазон по	устанавливае-	перемещения		
	измерений,	отношению к	мая ширина	начала изме-		
	кПа	измеряемой	измерительно-	рительного		
		плотности	го диапазона,	диапазона		
1	-70	$0 \div 1000 \text{ kg/m}^3$	100 кг/м ³	$0 \div 900 \text{ kg/m}^3$		
2	-77	$0 \div 2000 \text{ kg/m}^3$	200 кг/м ³	$0 \div 1800 \text{ kg/m}^3$		

2.1.2 Предельно допускаемая перегрузка -

4 МПа:

2.1.3 Дополнительная погрешность,

вызванная изменением напряжения питания

 $\pm 0.002 \%$.

2.1.4 Дополнительная погрешность,

вызванная изменением температуры

окружающей среды:

<±0,1 % (осн. Диап. / 10 °C)

макс. $\pm 0.4\%$ (осн. Диап.) во всём диапазоне термокомпенсации < ± 2% минимального диап. Во всём диапазоне термокомпенсации

2.1.5 Предел допускаемой приведенной погрешности

 $\leq \pm 0.1 \%$ для основного диапазона

 $\leq \pm 0.3 \%$ для диапазона $0 \div 10 \%$ основного диапазона

2.1.6 Уход «нуля» под воздействием статического давления: ±0.08 % (осн. диап.) / 1МПа

Уход нуля может быть скорректирован путем «обнуления» преобразователя в условиях воздействия статического давления.

2.1.7 Диапазон рабочих температур

окружающей среды

(от минус 40 до плюс 80) °С.

2.1.8 Диапазон термокомпенсации

от минус 30 до плюс 60 °C

2.1.9 Диапазон температур рабочей среды - от минус 40 до +80 °C

2.1.10Срок фиксирования выходного сигнала -

1.0 c

2.1.11 Дополнительное электронное демпфирование -(0 - 30) c.

2.1.12 Выходной сигнал:

-аналоговый

от 4 до 20 мА (двухпроводная линия

связи);

-цифровой

Hart - протокол (стандарт

Bell 202).

2.1.13 Напряжение питания:

24 В (стандартное); от 10 до 30 В (пост. ток); 24 В (стандартное); от 12 до 28 В для исп. Ех. 4

2.1.14 Активное сопротивление нагрузки

$$R[\Omega] \le \frac{U_{num}[B] - 10[B]}{0.02[A]} \bullet 0.85$$

- 2.1.15 Активное сопротивление для обмена данными (Hart) (250 1100) Ом.
- 2.16 По степени защиты преобразователи имеют исполнение корпуса IP65 по ГОСТ 14254-80.
- 2.1.17 По способу защиты от поражения электрическим током соответствует классу III по ГОСТ 12.2.007.0-75.
- 2.1.18 Входные искробезопасные электрические параметры преобразователей исполнения **EExial/IICT6** приведены в таблице 2.

Таблица 2

Наименование параметра	Значение параметра			
Входное напряжение Ui, B, не более	28			
Максимальный входной ток Ii, мА	97			
Максимальная внутренняя индуктивность Li, мкГн, не	940			
более				
Максимальная внутренняя емкость Сі, нФ, не более	50			

- 2.1.19 Габаритные размеры, мм, не более 6900х200.
- 2.1.20 Материал мембран 00H17N14M2 (316Lss), материал корпуса исполнения PZ, конструкции (трубы) 0H18N9 (304ss).

3 Состав изделия

3.1.Комплектность поставки преобразователя должна соответствовать указанной в таблице № 3

Таблица 3

Наименование устрой-	Обозначение	Кол-	Примечание
ства		во,	
		ШТ	
Преобразователь дав-	APR-2200D	1	
ления измерительный Руководство по экс-		1	на партию
плуатации Паспорт		1	

13 Приложение 1

Способ заказа преобразователя давления измерительного (гидростатического преобразователя давления для измерения плотности) APR-2200D

Пример: Преобразователь давления измерительный (гидростатический преобразователь давления для измерения плотности) APR-2200D /исполнение Ex/ основной диапазон -7 ... 0 кПа / установленный диапазон $800 \dots 998 \ \text{кг/m}^3$ / длина трубы $2000 \ \text{мм}$

APR-2200D/Ex / -7 ... 0 κΠa/ 800 ... 998 κг/ m^3 / L = 2000 mm

- 10.4 Периодичность профилактических осмотров преобразователей устанавливается потребителем, но не реже 2 раза в год.
- 10.5 Эксплуатация преобразователей с повреждением категорически запрещается.

11 Текущий ремонт

- 11.1 Ремонт преобразователей необходимо производить на предприятии-изготовителе: Sp.zo.o. «APLISENS» 03-192, Polska, Warszawa,
 - ul. Morelowa 7 tel. 814-07-77

12 Транспортирование

- 12.1 Преобразователи транспортируются всеми видами транспорта, в том числе воздушным транспортом в отапливаемых герметизированных отсеках.
- 12.2 Способ укладки транспортной тары с изделиями должен исключать возможность их перемещения.
- 12.3 Условия транспортирования должны соответствовать условиям хранения 5 по ГОСТ 15150-69.

13 Хранение

- 13.1 Хранение на складах должно производится в условиях I по ГОСТ 15150-69.
- 13.2. При получении ящиков с преобразователями установить сохранность транспортной и упаковочной тары. В случае ее повреждения следует составить акт и обратиться с рекламацией к транспортной организации.
- 13.3 В зимнее время тару с преобразователями следует распаковывать в отапливаемом помещении.

14 Утилизация

14.1 После окончания срока службы (эксплуатации) преобразователя направляют комплектующие изделия на утилизацию, при этом отделяют детали, содержащие цветные металлы.

4 Устройство и работа преобразователя

- 4.1 Преобразователь состоит из измерительного и электронного модулей.
- 4.2 Внешний вид и установочные размеры преобразователей представлены в приложении 2.
- 4.3 Преобразователь позволяет скомпенсировать статическое давление в емкости.

Преобразуемой величиной остается только гидростатическое давление в емкости, измеряемое между уровнями соответствующими осям мембран разделителей. Входным сигналом преобразователя является разность давлений (плотность столба) среды между разделителями «A-B».

4.4 Измеряемый параметр (разность давлений) воздействует на измерительный модуль (см. рисунок 2) и преобразуется в деформацию чувствительного элемента и изменение его сопротивления. Высокое давление (среда с большей плотностью) подается в камеру «Н», низкое давление (среда с меньшей плотностью) подается в камеру «L».

Рисунок 2 - Устройство измерительного модуля

4.5 Первичным измерительным преобразователем (преобразующим элементом) является пьезорезистивная кремниевая структура (пластина монокристаллического кремния с диффундированными пьезорезисторами, соединёнными по мостовой схеме), действующий в качестве пружинной мембраны, которая разделяет плюсовую и минусовую измерительные камеры.

Измерительные камеры отделены от среды измерения разделительными мембранами и заполнены специальной жидкостью. Конструкция пьезомодуля гарантирует устойчивость измерительного преобразователя от ударных воздействий измеряемым давлением и от перегрузки по давлению

11

Деформация разделительной мембраны приводит к пропорциональному изменению сопротивления пьезорезисторов и разбалансу мостовой схемы.

- 4.6 Электронный модуль преобразует это изменение сопротивления в унифицированный выходной сигнал тока и в цифровой сигнал Hart.
- 4.7 Электронная схема залита силиконовым компаундом в корпусе, который расположен между разделителями, таким образом электронная схема непосредственно отслеживает температуру среды измерения, что значительно снижает дополнительную температурную погрешность. Электрическое присоединение выведено наружу в корпусе исполнения **PZ**, изготовлен из нержавеющей стали 0H18N9 (304ss) со степенью защиты IP65 и зажимной колодкой

Наличие зажимной колодки позволяет измерять выходной ток, не разрывая цепь.

- 4.8 Электронный модуль не выходит из строя при коротком замыкании или обрыве выходной цепи преобразователя, а также при подаче напряжения питания обратной полярности.
- 4.9 Внешний вид электрических присоединений показан на рисунке 4 и в приложении 3.
- 4.10 Для измерения во взрывоопасных зонах предусмотрено искробезопасное исполнение **EExial/IICT6**.

5 Маркировка и пломбирование

- 5.1 На прикрепленной к преобразователю этикетке нанесены следующие знаки и налписи:
 - товарный знак изготовителя;
 - сокращенное наименование преобразователя;
 - маркировка взрывозащиты **EExial/IICT6**;
 - заводской номер преобразователя;
 - адрес изготовителя;
 - год выпуска;
 - верхние пределы измерений (с указанием единиц измерений);
 - установленный диапазон измерений (с указанием единиц измерений);
- верхнее и нижнее предельные значения выходного сигнала (с указанием единиц измерений);
 - параметры питания преобразователя.
 - 5.2 На упаковке преобразователя наклеена этикетка, содержащая:
 - товарный знак и наименование изготовителя;
 - наименование преобразователя;
 - год выпуска преобразователя;
 - адрес изготовителя
 - штамп ОТК.

9 Использование изделия

9.1 Настройка и калибровка

- 9.1.1 Преобразователь откалиброван изготовителем на пределы, соответствующие указанным в заказе на прибор.
- 9.1.2 Настройка и калибровка преобразователя на объекте осуществляется путём последовательной установки «нуля» и «диапазона» измерений.
- 9.1.3 Связь пользователя с преобразователем осуществляется посредством протокола Hart. При этом в качестве линии связи используется цепь выходного сигнала от 4 до 20 мА.
 - 9.1.4 Обмен данными с преобразователем осуществляется с помощью:
 - коммуникатора KAP-01 (см. руководство по эксплуатации на коммуникатор KAP-01);
 - коммуникаторов, поддерживающих протокол Hart;
 - персонального компьютера с использованием конвертера RS-Hart и программного обеспечения «RAPORT-01», производства фирмы Аплисенс.
 - 9.1.5 Обмен данными с преобразователем позволяет осуществлять:
 - идентификацию преобразователя;
 - конфигурацию выходных параметров:
 - единиц измерения давления;
 - значения начала и конца измерительного диапазона;
 - постоянной времени демпфирования;
 - вид характеристики преобразования (квадратичная, обратная, нелинейная).
- отсчет измеряемой в данный момент величины давления, выходного тока и уровня выходного сигнала в процентах;
 - задание значения выходного тока;
- калибровку преобразователя по отношению к образцовому давлению.
 - 9.1.6. Потребитель может заказать преобразователь, калиброванный производителем на диапазон измерений плотности указанный в заказе. Такой плотномер, после подключения и установки на объекте, обеспечивает необходимые измерения.
 - 9.1.7. При необходимости в самостоятельной калибровки необходимо руководствоваться сведениями из каталога или обратиться в офис фирмы по тел. (495) 726-34-61

9.2 Поверка

- 9.2.1 Периодическая поверка преобразователей производится не реже одного раза в 2 года, а также после ремонта.
- 9.2.2 Поверка преобразователей проводится в соответствии с методикой поверки МИ 1997—89 «ГСИ. Преобразователи давления измерительные. Методика поверки».

Внимание!

При поверке преобразователя учитывать рекомендации 5.3.8 методики поверки МИ 1997-89.

10 Техническое обслуживание

- 10.1 Техническое обслуживание преобразователя заключается в профилактических осмотрах.
- 10.2 Метрологические характеристики преобразователя в течение межповерочного интервала соответствуют установленным нормам с учётом показателей безотказности преобразователя и при условии соблюдения потребителем правил хранения, транспортирования и эксплуатации, указанными в настоящем руководстве по эксплуатации.
- 10.3 При профилактическом осмотре должны быть выполнены следующие работы:
- проверка обрыва или повреждения изоляции соединительного кабеля;
 - проверка надежности присоединения кабеля;
- проверка отсутствия вмятин и видимых механических повреждений, а также пыли и грязи на корпусе, разделительных мембранах преобразователя;
 - при необходимости, калибровка «нуля» преобразователя;
- слив конденсата или удаление воздуха из рабочих камер преобразователя;
- -продувка трубки соединительных линий и вентили, не допуская перегрузки преобразователей (в трубках и вентилях не должно быть пробок жидкости при измерении давления газа) или газа (при измерении давления жидкости);
 - проверка вентилей и трубок соединительных линий на герметичность.

6 Упаковка

- 6.1 Упаковка преобразователя обеспечивает его сохранность при транспортировании и хранении.
- $6.2~\mathrm{У}$ паковку преобразователей производят в закрытых вентилируемых помещениях при температуре окружающего воздуха от $15~\mathrm{^oC}$ до $40~\mathrm{^oC}$ и относительной влажности до 80% при отсутствии в окружающей среде агрессивных примесей.
- 6.3 Перед упаковкой отверстия под кабели, отверстия штуцеров, резьба штуцеров должны быть закрыты колпачками или заглушками, предохраняющими внутренние полости от загрязнения, резьбу от механических повреждений
- 6.4 Преобразователи должны быть уложены в потребительскую тару – коробки из картона. Коробки должны быть уложены в транспортную тару.

7 Меры безопасности

- 7.1 По степени защиты человека от поражения электрическим током преобразователи относятся к классу III по ГОСТ 12.2.007.0-75 и соответствуют требованиям безопасности по ГОСТ 12997-84.
- 7.2 Замену, присоединение и отсоединение преобразователя от объекта производить при отсутствии давления в магистралях и отключенном питании.
- 7.3 Не допускается эксплуатация преобразователя при давлениях, превышающих верхний предел измерений.
- 7.4 Эксплуатация преобразователей должна производиться согласно требованиям главы 7.3 ПУЭ, главы 3.4 ПЭЭП и других нормативных документов, регламентирующих применение электрооборудования во взрывоопасных условиях.
- 7.5 Эксплуатация преобразователей разрешается только при наличии инструкции по ТБ, утвержденной руководителем предприятия-потребителя и учитывающей специфику применения преобразователей в данном технологическом процессе.
- 7.6 К эксплуатации преобразователя допускаются лица, достигшие 18 лет, имеющие группу по электробезопасности не ниже II и прошедшие инструктаж по технике безопасности на рабочем месте.

8 Подготовка изделия к использованию

8.1 Прежде чем приступить к монтажу преобразователей, необходимо осмотреть их, проверить маркировку и убедиться в целостности корпусов.

8.2 Пример установки прибора на резервуаре

Рисунок 3 – Пример установки прибора на резервуаре

8.3 При эксплуатации преобразователей в диапазоне минусовых температур необходимо исключить замерзание жидкости в резервуаре.

ВНИМАНИЕ!

Замерзание жидкости в резервуаре приводит к разрушению мембраны преобразователя.

Схема электрических соединений

R – суммарное сопротивление выходной цепи

Рисунок 4 - Схема электрическая подключений преобразователей

- 8.4 Монтаж преобразователей должен производиться в соответствии со схемами электрических подключений, приведенными на рисунках 4.
- 8.5 Линия связи может быть выполнена любым типом кабеля с медными проводами сечением не менее 0.35 мм 2 согласно гл. 7.3 ПУЭ

Внимание!

Рекомендуется применение экранированного кабеля с изолирующей оболочкой при нахождении вблизи мест прокладки линии связи электроустановок мощностью более 0,5 кВ.

- 8.6 Для электрического присоединения с разъёмом типа РZ (штепсельный разъём) (см. рисунок 6) необходимо:
- открутить крышку 1 соединительной коробки 2;
- протянуть кабель питания через гайку 4 и сальник 5;
- подключить к зажимной колодке согласно схеме (рисунки 4,);
- зажать сальник;
- закрутить крышку.
- 8.7 Подсоединение и заделка кабеля должна производится при отключенном питании.
- 8.8 Преобразователи могут устанавливаться во взрывоопасных зонах согласно главе 7.3 ПУЭ, главе 3.4 ПЭЭП и другим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных условиях.
- 8.9 Прежде чем приступить к монтажу преобразователей во взрывоопасных зонах, необходимо осмотреть их. При этом необходимо убедиться в целостности корпусов преобразователей, проверить маркировку по взрывозащите.
- 8.10 Для питания преобразователей с искробезопасным исполнением необходимо использовать блоки питания напряжением, не более, 28 В и активные барьеры искрозащиты.
- 8.11 При наличии в момент установки преобразователя взрывоопасной смеси не допускается подвергать преобразователь трению или ударам, способным вызвать искрообразование.
- 8.12 После окончания монтажа преобразователя необходимо проверить места соединений на герметичность.
- 8.13 Перед включением преобразователя убедится в соответствии его установки и монтажа указаниям, изложенным в 8.1 –8.12 настоящего руководства.
 - 8.14 Подключить питание к преобразователю.
- 8.15 После включения преобразователя проверить и при необходимости, установить значение выходного сигнала, соответствующее нулевому или начальному значению измеряемого параметра, т.е. провести процедуру конфигурации преобразователя.