Springer Texts in Statistics

Series Editors

- G. Allen, Department of Statistics, Houston, TX, USA
- R. De Veaux, Department of Mathematics and Statistics, Williams College, Williamstown, MA, USA
- R. Nugent, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA

Springer Texts in Statistics (STS) includes advanced textbooks from 3rd- to 4th-year undergraduate courses to 1st- to 2nd-year graduate courses. Exercise sets should be included. The series editors are currently Genevera I. Allen, Richard D. De Veaux, and Rebecca Nugent. Stephen Fienberg, George Casella, and Ingram Olkin were editors of the series for many years.

More information about this series at http://www.springer.com/series/417

Gareth James · Daniela Witten · Trevor Hastie · Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Second Edition

Gareth James
Department of Data Science and Operations
University of Southern California
Los Angeles, CA, USA

Trevor Hastie Department of Statistics Stanford University Stanford, CA, USA Daniela Witten
Department of Statistics
University of Washington
Seattle, WA, USA

Robert Tibshirani Department of Statistics Stanford University Stanford, CA, USA

ISSN 1431-875X ISSN 2197-4136 (electronic) Springer Texts in Statistics ISBN 978-1-0716-1417-4 ISBN 978-1-0716-1418-1 (eBook) https://doi.org/10.1007/978-1-0716-1418-1

1st edition: © Springer Science+Business Media New York 2013 (Corrected at 8th printing 2017) 2nd edition: © Springer Science+Business Media, LLC, part of Springer Nature 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

This Springer imprint is published by the registered company Springer Science+Business Media, LLC part of Springer Nature.

The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

To our parents:

Alison and Michael James

Chiara Nappi and Edward Witten

Valerie and Patrick Hastie

Vera and Sami Tibshirani

and to our families:

Michael, Daniel, and Catherine

Tessa, Theo, Otto, and Ari

Samantha, Timothy, and Lynda

Charlie, Ryan, Julie, and Cheryl

Preface

Statistical learning refers to a set of tools for making sense of complex datasets. In recent years, we have seen a staggering increase in the scale and scope of data collection across virtually all areas of science and industry. As a result, statistical learning has become a critical toolkit for anyone who wishes to understand data — and as more and more of today's jobs involve data, this means that statistical learning is fast becoming a critical toolkit for everyone.

One of the first books on statistical learning — The Elements of Statistical Learning (ESL, by Hastie, Tibshirani, and Friedman) — was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statistics but also in related fields. One of the reasons for ESL's popularity is its relatively accessible style. But ESL is best-suited for individuals with advanced training in the mathematical sciences.

An Introduction to Statistical Learning (ISL) arose from the clear need for a broader and less technical treatment of the key topics in statistical learning. The intention behind ISL is to concentrate more on the applications of the methods and less on the mathematical details. Beginning with Chapter 2, each chapter in ISL contains a lab illustrating how to implement the statistical learning methods seen in that chapter using the popular statistical software package R. These labs provide the reader with valuable hands-on experience.

ISL is appropriate for advanced undergraduates or master's students in Statistics or related quantitative fields, or for individuals in other disciplines who wish to use statistical learning tools to analyze their data. It can be used as a textbook for a course spanning two semesters.

The first edition of ISL covered a number of important topics, including sparse methods for classification and regression, decision trees, boosting, support vector machines, and clustering. Since it was published in 2013, it has become a mainstay of undergraduate and graduate classrooms across the United States and worldwide, as well as a key reference book for data scientists.

In this second edition of ISL, we have greatly expanded the set of topics covered. In particular, the second edition includes new chapters on deep learning (Chapter 10), survival analysis (Chapter 11), and multiple testing (Chapter 13). We have also substantially expanded some chapters that were part of the first edition: among other updates, we now include treatments of naive Bayes and generalized linear models in Chapter 4, Bayesian additive regression trees in Chapter 8, and matrix completion in Chapter 12. Furthermore, we have updated the R code throughout the labs to ensure that the results that they produce agree with recent R releases.

We are grateful to these readers for providing valuable comments on the first edition of this book: Pallavi Basu, Alexandra Chouldechova, Patrick Danaher, Will Fithian, Luella Fu, Sam Gross, Max Grazier G'Sell, Courtney Paulson, Xinghao Qiao, Elisa Sheng, Noah Simon, Kean Ming Tan, Xin Lu Tan. We thank these readers for helpful input on the second edition of this book: Alan Agresti, Iain Carmichael, Yiqun Chen, Erin Craig, Daisy Ding, Lucy Gao, Ismael Lemhadri, Bryan Martin, Anna Neufeld, Geoff Tims, Carsten Voelkmann, Steve Yadlowsky, and James Zou. We also thank Anna Neufeld for her assistance in reformatting the R code throughout this book. We are immensely grateful to Balasubramanian "Naras" Narasimhan for his assistance on both editions of this textbook.

It has been an honor and a privilege for us to see the considerable impact that the first edition of ISL has had on the way in which statistical learning is practiced, both in and out of the academic setting. We hope that this new edition will continue to give today's and tomorrow's applied statisticians and data scientists the tools they need for success in a data-driven world.

It's tough to make predictions, especially about the future.

-Yogi Berra

Contents

P	Preface						
1	Introduction						
2	Stat	istical	Learning	15			
	2.1	What	Is Statistical Learning?	15			
		2.1.1	Why Estimate f ?	17			
		2.1.2	How Do We Estimate f ?	21			
		2.1.3	The Trade-Off Between Prediction Accuracy				
			and Model Interpretability	24			
		2.1.4	Supervised Versus Unsupervised Learning	26			
		2.1.5	Regression Versus Classification Problems	28			
	2.2	Assess	sing Model Accuracy	29			
		2.2.1	Measuring the Quality of Fit	29			
		2.2.2	The Bias-Variance Trade-Off	33			
		2.2.3	The Classification Setting	37			
	2.3	Lab: I	ntroduction to R	42			
		2.3.1	Basic Commands	43			
		2.3.2	Graphics	45			
		2.3.3	Indexing Data	47			
		2.3.4	Loading Data	48			
		2.3.5	Additional Graphical and Numerical Summaries	50			
	2.4	Exerci	ises	52			
3	Line	ear Reg	gression	59			
	3.1	Simple	e Linear Regression	60			
		3.1.1	Estimating the Coefficients	61			
		3.1.2	Assessing the Accuracy of the Coefficient				
			Estimates	63			
		3.1.3	Assessing the Accuracy of the Model	68			
	3.2	Multip	ole Linear Regression	71			
		3.2.1	Estimating the Regression Coefficients	72			
		3.2.2	Some Important Questions	75			
	3.3	Other	Considerations in the Regression Model	83			

x CONTENTS

		3.3.1	Qualitative Predictors		83
		3.3.2	Extensions of the Linear Model		87
		3.3.3	Potential Problems		92
	3.4	The M	Iarketing Plan		103
	3.5	Compa	arison of Linear Regression with K -Nearest		
		Neighb	oors		105
	3.6	Lab: L	inear Regression		110
		3.6.1	Libraries		110
		3.6.2	Simple Linear Regression		111
		3.6.3	Multiple Linear Regression		114
		3.6.4	Interaction Terms		116
		3.6.5	Non-linear Transformations of the Predictors		116
		3.6.6	Qualitative Predictors		119
		3.6.7	Writing Functions		120
	3.7	Exerci	ses		121
4	Clas	sificati			129
	4.1		verview of Classification		130
	4.2		Not Linear Regression?		131
	4.3	Logist	ic Regression		133
		4.3.1	The Logistic Model		133
		4.3.2	Estimating the Regression Coefficients		135
		4.3.3	Making Predictions		136
		4.3.4	Multiple Logistic Regression		137
		4.3.5	Multinomial Logistic Regression		140
	4.4	Genera	ative Models for Classification		141
		4.4.1	Linear Discriminant Analysis for $p = 1 \dots \dots$		142
		4.4.2	Linear Discriminant Analysis for $p > 1 \dots \dots$		145
		4.4.3	Quadratic Discriminant Analysis		152
		4.4.4	Naive Bayes		153
	4.5	A Con	nparison of Classification Methods	137 140 141 142 145 153 158	
		4.5.1	An Analytical Comparison		158
		4.5.2	An Empirical Comparison		161
	4.6	Genera	alized Linear Models		164
		4.6.1	Linear Regression on the Bikeshare Data		164
		4.6.2	Poisson Regression on the Bikeshare Data		167
		4.6.3	Generalized Linear Models in Greater Generality		170
	4.7	Lab: C	Classification Methods		171
		4.7.1	The Stock Market Data		171
		4.7.2	Logistic Regression		172
		4.7.3	Linear Discriminant Analysis		177
		4.7.4	Quadratic Discriminant Analysis		179
		4.7.5	Naive Bayes		180
		4.7.6	K-Nearest Neighbors		181
		4.7.7	Poisson Regression		185

	4.8	Exerci	ses	. 189
5	Res	amplin	g Methods	197
	5.1	Cross-	Validation	. 198
		5.1.1	The Validation Set Approach	. 198
		5.1.2	Leave-One-Out Cross-Validation	. 200
		5.1.3	k-Fold Cross-Validation	203
		5.1.4	Bias-Variance Trade-Off for k -Fold	
			Cross-Validation	
		5.1.5	Cross-Validation on Classification Problems	
	5.2		ootstrap	
	5.3	Lab: C	Cross-Validation and the Bootstrap	
		5.3.1	The Validation Set Approach	. 213
		5.3.2	Leave-One-Out Cross-Validation	
		5.3.3	k-Fold Cross-Validation	. 215
		5.3.4	The Bootstrap	216
	5.4	Exerci	ses	. 219
6	Line	ear Mo	del Selection and Regularization	225
	6.1		Selection	. 227
		6.1.1	Best Subset Selection	
		6.1.2	Stepwise Selection	
		6.1.3	Choosing the Optimal Model	
	6.2		age Methods	
		6.2.1	Ridge Regression	
		6.2.2	The Lasso	
		6.2.3	Selecting the Tuning Parameter	
	6.3		sion Reduction Methods	
		6.3.1	Principal Components Regression	
		6.3.2	Partial Least Squares	
	6.4		derations in High Dimensions	
		6.4.1	High-Dimensional Data	
		6.4.2	What Goes Wrong in High Dimensions?	
		6.4.3	Regression in High Dimensions	
		6.4.4	Interpreting Results in High Dimensions	
	6.5		inear Models and Regularization Methods	
	0.0	6.5.1	Subset Selection Methods	
		6.5.2	Ridge Regression and the Lasso	
		6.5.3	PCR and PLS Regression	
	6.6	Exerci	9	
7	1\Л	ring D-	arond Linconity	200
7	7.1	_	eyond Linearity omial Regression	289 290
	7.1		functions	
	7.2		Functions	
	1.0	Danie .	<u> </u>	

	7 4	D	: 0 1:	201
	7.4	_	sion Splines	295
		7.4.1	Piecewise Polynomials	
		7.4.2	Constraints and Splines	
		7.4.3	The Spline Basis Representation	297
		7.4.4	Choosing the Number and Locations	
			of the Knots	298
		7.4.5	Comparison to Polynomial Regression	300
	7.5	Smoot	hing Splines	301
		7.5.1	An Overview of Smoothing Splines	301
		7.5.2	Choosing the Smoothing Parameter λ	302
	7.6	Local I	Regression	304
	7.7	Genera	alized Additive Models	306
		7.7.1	GAMs for Regression Problems	307
		7.7.2	GAMs for Classification Problems	310
	7.8	Lab: N	Ion-linear Modeling	311
		7.8.1	Polynomial Regression and Step Functions	312
		7.8.2	Splines	317
		7.8.3	GAMs	318
	7.9	Exercis	ses	321
8	Tree		Methods	327
	8.1	The Ba	asics of Decision Trees	327
		8.1.1	Regression Trees	328
		8.1.2	Classification Trees	335
		8.1.3	Trees Versus Linear Models	338
		8.1.4	Advantages and Disadvantages of Trees	339
	8.2	Baggin	g, Random Forests, Boosting, and Bayesian Additive	
		Regres	sion Trees	340
		8.2.1	Bagging	340
		8.2.2	Random Forests	343
		8.2.3	Boosting	345
		8.2.4	Bayesian Additive Regression Trees	348
		8.2.5	Summary of Tree Ensemble Methods	351
	8.3	Lab: D	Decision Trees	353
		8.3.1	Fitting Classification Trees	353
		8.3.2	Fitting Regression Trees	356
		8.3.3	Bagging and Random Forests	
		8.3.4	Boosting	359
		8.3.5	Bayesian Additive Regression Trees	360
	8.4		Ses	361
9	Supp	port Ve	ector Machines	367
	9.1	Maxim	nal Margin Classifier	368
		9.1.1	What Is a Hyperplane?	368
		9.1.2	Classification Using a Separating Hyperplane	369

		9.1.3	The Maximal Margin Classifier	371
		9.1.4	Construction of the Maximal Margin Classifier	372
		9.1.5		373
	9.2	Suppor		373
		9.2.1	Overview of the Support Vector Classifier	373
		9.2.2	Details of the Support Vector Classifier	375
	9.3	Suppor	t Vector Machines	379
		9.3.1	Classification with Non-Linear Decision	
			Boundaries	379
		9.3.2	The Support Vector Machine	380
		9.3.3		383
	9.4	SVMs	with More than Two Classes	385
		9.4.1	One-Versus-One Classification	385
		9.4.2	One-Versus-All Classification	385
	9.5	Relatio		386
	9.6	Lab: St	upport Vector Machines	388
		9.6.1		389
		9.6.2		392
		9.6.3		394
		9.6.4		396
		9.6.5	Application to Gene Expression Data	396
	9.7	Exercis	ses	398
1 0	D	. т	· · · · ·	409
τO	Deeр 10.1	Learn	e e e e e e e e e e e e e e e e e e e	403 404
	10.1 10.2		· ·	$404 \\ 407$
	10.2 10.3			407 411
	10.5			$411 \\ 412$
		10.3.1 $10.3.2$		$412 \\ 415$
		10.3.2	U .	$415 \\ 415$
		10.3.4		$417 \\ 417$
		10.3.4 $10.3.5$		$417 \\ 417$
	10.4		0	$417 \\ 419$
	10.4 10.5			$413 \\ 421$
	10.5	10.5.1		424
		10.5.1 $10.5.2$		427
		10.5.2 $10.5.3$	9	431
	10.6			432
	10.7		- ~	434
	10.1	10.7.1		435
		10.7.1	1 1 0	436
		10.7.2		438
		10.7.3		438
		10.1.4		
	10.8	Interne	plation and Double Descent	430
	10.8 10.9	-		$439 \\ 443$

		10.9.1	A Single Layer Network on the Hitters Data	. 443
		10.9.2	A Multilayer Network on the MNIST Digit Data	. 445
		10.9.3	Convolutional Neural Networks	. 448
		10.9.4	Using Pretrained CNN Models	. 451
		10.9.5	IMDb Document Classification	452
		10.9.6	Recurrent Neural Networks	. 454
	10.10	Exercis	ses	. 458
11	Surv	ival Aı	nalysis and Censored Data	461
	11.1		al and Censoring Times	
	11.2		er Look at Censoring	
	11.3		aplan-Meier Survival Curve	
	11.4		og-Rank Test	
	11.5	Regress	sion Models With a Survival Response	
		11.5.1	The Hazard Function	
		11.5.2	Proportional Hazards	
		11.5.3	Example: Brain Cancer Data	
		11.5.4	r	
	11.6		age for the Cox Model	
	11.7		onal Topics	
		11.7.1	Area Under the Curve for Survival Analysis	
		11.7.2	Choice of Time Scale	
		11.7.3	Time-Dependent Covariates	
		11.7.4	Checking the Proportional Hazards Assumption .	
		11.7.5	Survival Trees	
	11.8		urvival Analysis	
		11.8.1	Brain Cancer Data	
		11.8.2	Publication Data	
		11.8.3	Call Center Data	
	11.9	Exercis	ses	. 490
12			ed Learning	497
	12.1		nallenge of Unsupervised Learning	
	12.2		oal Components Analysis	
		12.2.1	r	
		12.2.2	Another Interpretation of Principal Components	
		12.2.3	The Proportion of Variance Explained	
			More on PCA	
		12.2.5	Other Uses for Principal Components	
	12.3		g Values and Matrix Completion	
	12.4		ring Methods	
		12.4.1	K-Means Clustering	
		12.4.2	Hierarchical Clustering	
		12.4.3	Practical Issues in Clustering	
	12.5	Lab: U	nsupervised Learning	. 532

			CONTENTS	xv
		12.5.1	Principal Components Analysis	532
		12.5.2	Matrix Completion	535
		12.5.3	Clustering	538
		12.5.4	NCI60 Data Example	542
	12.6	Exercis	ses	548
13	Mul	tiple Te	esting	553
	13.1	Ā Quic	ck Review of Hypothesis Testing	554
		13.1.1	Testing a Hypothesis	555
		13.1.2	Type I and Type II Errors	559
	13.2	The Cl	hallenge of Multiple Testing	560
	13.3		amily-Wise Error Rate	561
		13.3.1	What is the Family-Wise Error Rate?	562
		13.3.2	Approaches to Control the Family-Wise Error Rate	564
		13.3.3	Trade-Off Between the FWER and Power	570
	13.4	The Fa	dse Discovery Rate	571
		13.4.1	Intuition for the False Discovery Rate	571
		13.4.2	The Benjamini-Hochberg Procedure	573
	13.5	A Re-S	Sampling Approach to p -Values and False Discovery	
		Rates		575
		13.5.1	A Re-Sampling Approach to the p -Value	576
		13.5.2	A Re-Sampling Approach to the False Discovery Rate	e578
		13.5.3	When Are Re-Sampling Approaches Useful?	581
	13.6	Lab: M	Iultiple Testing	582
		13.6.1	Review of Hypothesis Tests	582
		13.6.2	The Family-Wise Error Rate	583
		13.6.3	The False Discovery Rate	586
		13.6.4	A Re-Sampling Approach	588

597

Index