第八章 群和环

第五节 群的定义及性质(3)

4. 群方程有唯一解

定理

- 设<G,★>是个群,则对任何a,b∈G,
 - (1) 存在唯一元素 x∈G, 使得 a★x=b(1)
 - (2) 存在唯一元素 y∈G, 使得 y★a=b(2)

证明: 先证明(1)式有解

因<G,★>是群,对任意 a,b∈G,有a⁻¹∈G,所以 a⁻¹

1★b∈G, 将 a⁻¹★b 代入(1)中得:

 $a \star x = a \star (a^{-1} \star b) = (a \star a^{-1}) \star b = e \star b = b$,

所以 x=a⁻¹★b 是方程(1)的解。

再证明(1)式的解有唯一性

设(1) 式有两个解 $x_1, x_2 \in G$, 于是有 $a \star x_1 = b$, $a \star x_2 = b$ 所以 $a \star x_1 = a \star x_2$, 由可消去性得 $x_1 = x_2$ 。

类似的可证明(2)。

方程 a★x=b 的解 为 a⁻¹★b 方程 y★a=b 的解 是什么?

b ★ a⁻¹

例: 设群 $G=<P(\{a,b\}), \oplus >$,其中 \oplus 为对称差运算。解下列群方程:

$$\{a\} \oplus X = \Phi$$
, $Y \oplus \{a,b\} = \{b\}$

<P({a,b}), ⊕>幺元是 Φ,

因对任意集合 $A \in \mathcal{P}(\{a,b\})$, $A \oplus A = \Phi$, 所以 $A^{-1} = A$

解:根据前述定理

$$X=\{a\}^{-1} \oplus \Phi = \{a\} \oplus \Phi = \{a\},\$$

 $Y=\{b\} \oplus \{a,b\}^{-1} = \{b\} \oplus \{a,b\} = \{a\}$

第五节 结束