

## 1. Independent Samples t-test

File: ttest\_data.xlsx

Goal: Compare means between Group A and B

### Steps:

- 1. Open SPSS > File > Open > Data > choose ttest\_data.xlsx
- 2. Click Analyze > Compare Means > Independent-Samples T Test
- 3. Move Score to **Test Variable**
- 4. Move Group to **Grouping Variable**  $\rightarrow$  click Define Groups  $\rightarrow$  enter A and B
- 5. Click OK
- 6. Interpret:
  - o Check Levene's Test for Equality of Variances
  - o Use row with correct assumption
  - Look at Sig. (2-tailed) to see if p < .05 (significant)</li>



## 2. Mann–Whitney U Test (Non-Parametric)

**File**: mannwhitney\_data.xlsx

Goal: Compare two non-normally distributed groups

#### Steps:

- 1. Open file in SPSS
- 2. Click Analyze > Nonparametric Tests > Independent Samples
- 3. Select Fields tab:
  - Test Field: Score
  - o Groups: Group
- 4. Select Settings tab:
  - Click Customize tests > Check Mann–Whitney U
- 5. Click Run
- 6. Interpret:
  - Look for Asymp. Sig. (2-tailed)



## 3. Paired t-test (or Wilcoxon Signed-Rank)

**File**: paired\_data.xlsx

#### **Goal: Compare Pretest and Posttest of same group**

### **Steps for Paired t-test:**

- 1. Open file in SPSS
- 2. Click Analyze > Compare Means > Paired-Samples T Test
- 3. Move Pretest and Posttest to Paired Variables
- 4. Click OK
- 5. Interpret Sig. (2-tailed) in output

#### Steps for Wilcoxon Signed-Rank (if not normal):

- 1. Click Analyze > Nonparametric Tests > Related Samples
- 2. Select both Pretest and Posttest
- 3. In Settings, check Wilcoxon Signed-Rank Test
- 4. Click Run



## 4. One-Way ANOVA

File: anova\_data.xlsx

### Goal: Compare means among 3 groups

### Steps:

- 1. Open file
- 2. Click Analyze > Compare Means > One-Way ANOVA
- 3. Move Score to **Dependent List**
- 4. Move Group to Factor
- 5. Click OK
- 6. **Optional**: Click Post Hoc (e.g., Tukey) if you want to compare all group pairs



## 5. Kruskal–Wallis Test

File: kruskal\_data.xlsx

## **Goal: Compare 3 non-normal groups**

### Steps:

- 1. Click Analyze > Nonparametric Tests > Independent Samples
- 2. In Fields tab:
  - Test Field: Score
  - Groups: Group

- 3. In Settings, check Kruskal-Wallis H
- 4. Click Run
- 5. Interpret p-value in results



## 6. Correlation (Pearson or Spearman)

File: correlation\_data.xlsx

## Goal: Measure association between study hours and scores

### Steps:

- 1. Open file
- 2. Click Analyze > Correlate > Bivariate
- 3. Select Study\_Hours and Exam\_Score
- 4. Choose:
  - o Pearson (normal data)
  - Spearman (non-normal)
- 5. Click OK
- 6. Interpret correlation coefficient (r) and Sig. (2-tailed)



# 7. Chi-Square Test (for Independence)

File: chi2\_data.xlsx

## **Goal: Test if Gender is related to Teaching Method**

#### Steps:

- 1. Click Analyze > Descriptive Statistics > Crosstabs
- 2. Move Gender to Row, Teaching\_Method to \*\*Column`
- 3. Click Statistics > check Chi-square
- 4. Click Cells > check Expected and Row %
- 5. Click OK
- 6. Interpret:
  - Pearson Chi-Square: p < .05 = significant relationship