

TÖL403G GREINING REIKNIRITA

4. Deila-og-Drottna 2

Hjálmtýr Hafsteinsson Vor 2022

Í þessum fyrirlestri

- Greining á MoMSelect
 - Nota rakningartré
 - Aðrar hópastærðir
- Hraðvirkari heiltölumargföldun
 - Reiknirit Karatsuba
 - Toom-Cook reikniritið
- Veldishafning (exponentiation)
 - Reiknirit Pingala

1.8 - 1.10

Rakningartré

Sáum síðast:

Leysa: T(n) = rT(n/c) + f(n)

Lækkandi kvótaröð:

Lausn: T(n) = O(f(n))

• Jafnir liðir:

Lausn: $T(n) = O(f(n) \cdot \log n)$

• Hækkandi kvótaröð:

Lausn: $T(n) = O(n^{\log_C r})$

Finna miðgildi *n* staka

 Notum QuickSelect og veljum vendistakið sem miðgildi miðgilda í 5-staka hópum

Fáum þá rakningarvenslin

$$T(n) \le T\binom{n}{5} + T\binom{7n}{10} + O(n)$$

•

Notum hér ≤, vegna þess að þetta er versta tilfellis skipting

Þetta er ekki alveg samkvæmt formúlunni fyrir rakningartré, en við getum samt notað þá aðferðafræði til að leysa venslin

Rakningartré fyrir venslin T(n) = T(n/5) + T(n/5) + T(n/5) + O(n)

Summa laga

$$\leq (\frac{9}{10})^0 n$$

$$\leq (\frac{9}{10})^1 n$$

$$\leq (\frac{9}{10})^2 n$$

Almennt:
$$\leq (\frac{9}{10})^i n$$

Summa er
$$<\frac{1}{1-\frac{9}{10}}=10$$

Mesta hæð:
$$(\frac{9}{10})^{i}n = 1$$

eða:
$$\log_{\frac{10}{9}} n = i$$

Aðrar hópastærðir

- Er eitthvað sérstakt við töluna 5?
 - Getum við notað 3, 7, 9, ...?
- Prófum hópastærð 3:

Fáum þá rakningarvenslin: $T(n) \le T(n/3) + T(2n/3) + O(n)$

Auðvelt að sjá að summa hvers lags er:

$$\frac{n}{3} + \frac{2n}{3} = n,$$

$$\frac{n}{9} + \frac{2n}{9} + \frac{2n}{9} + \frac{4n}{9} = n,$$

Getum aðeins útilokað 1/3 stakanna í hvert sinn

Dýpi rakningartrésins er

$$\log_{\frac{3}{2}} n = O(\log n)$$

svo lausn rakningarvenslana er

$$T(n) \le O(n \log n)$$

Ekki línulegur tími!

Hópastærð 7

Stærðin 5 virkar, en stærðin 3 virkar ekki, hvað með 7?

Fáum þá rakningarvenslin:
$$T(n) \le T\binom{n}{7} + T\binom{10n}{14} + O(n)$$

Þá er summan á hverju lagi trésins: $\leq (\frac{6}{7})^i n$

sem er augljóslega lækkandi kvótaröð

Svo lausnin er $T(n) \leq O(n)$

Kostir/gallar við hópastærð 7 m.v. 5

- Hóparnir eru færri og því færri stök í fylkinu M.
 Þurfum því að finna miðgildi í n/7 stökum í stað n/5
- Á móti kemur að það er dýrara að finna miðgildi í hverjum hópi (10 samanburðir í stað 6)

Sama tímaflækja, en hærri fasti

Æfing fyrir miðgildi

Rissið upp mynd af 77 stökum með hópastærð 7 (þá eru 11 hópar)

• Hversu mörg af þessum 77 stökum er hægt að útiloka eftir að MoM hefur verið fundið?

Heiltölumargföldun

Venjuleg margföldun n-stafa heiltalna tekur O(n²) tíma

Dæmi:	3141 * 5962	Tvöföld for -lykkja frá 1 til <i>n</i>
	6282 18846 28269 15705	<u>Grunnaðgerðir:</u> Eins-tölustafa aðgerðir (+ og *)
	18726642	

- Rússneska bændaaðferðin tekur líka O(n²) tíma
- Menn héldu lengi að það væri ekki hægt að gera betur en O(n²)

Margföldun með deila-og-drottna

- Lát X og Y vera tvær n-stafa heiltölur
- Brjótum þær upp í tvo hluta:

$$X = a \cdot 10^{\frac{n}{2}} + b \qquad Y = c \cdot 10^{\frac{n}{2}} + d$$

$$\boxed{a \quad b} \qquad Y \boxed{c} \qquad d$$

Þá gildir:
$$X \cdot Y = (10^{\frac{n}{2}}a + b)(10^{\frac{n}{2}}c + d)$$

= $10^{n}ac + 10^{\frac{n}{2}}(bc + ad) + bd$

Þá höfum við fjórar margfaldanir á *n*/2-stafa heiltölum í stað tveggja margfaldanna á *n*-stafa tölum

Deild-og-drotta reiknirit


```
\frac{\text{SplitMultiply}(x,y,n):}{\text{if } n=1}
\text{return } x \cdot y
\text{else}
m \leftarrow \lceil n/2 \rceil
a \leftarrow \lfloor x/10^m \rfloor; \ b \leftarrow x \bmod 10^m \qquad \langle\langle x=10^m a+b \rangle\rangle
c \leftarrow \lfloor y/10^m \rfloor; \ d \leftarrow y \bmod 10^m \qquad \langle\langle y=10^m c+d \rangle\rangle
e \leftarrow \text{SplitMultiply}(a,c,m)
f \leftarrow \text{SplitMultiply}(b,d,m)
g \leftarrow \text{SplitMultiply}(b,c,m)
h \leftarrow \text{SplitMultiply}(a,d,m)
return 10^{2m}e + 10^m (g+h) + f
```

Lausnin á rakningarvenslunum er $T(n) = O(n^2)$

$$X \cdot Y = 10^{n}ac + 10^{\frac{n}{2}}(bc + ad) + bd$$

$$/ / /$$

$$e \qquad g \qquad h \qquad f$$

Rakningarvenslin eru:

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n),$$
 $T(1) = 1$

Samlagningin á liðunum

Tvær eins-stafa tölur kosta eina grunnaðgerð

Einföldun Karatsuba

Árið 1960 fann Anatoly Karatsuba leið til að gera betur

Í formúlunni
$$10^n ac + 10^{\frac{n}{2}} (bc + ad) + bd$$

þurfum við ekki að vita bc og ad, heldur bara summu þeirra!

Getum fundið gildi (bc + ad) út frá ac, bd og einni annari margföldun

$$ac + bd - (a - b)(c - d) = ac + bd - (ac - ad - bc + bd) = bc + ad$$

Þurfum nú aðeins að framkvæma 3 margfaldanir á *n*/2-stafa tölum ásamt 6 samlagningum (í stað 3 saml.)

Reiknirit Karatsuba


```
FASTMULTIPLY(x, y, n):

if n = 1

return x \cdot y

else

m \leftarrow \lceil n/2 \rceil

a \leftarrow \lfloor x/10^m \rfloor; b \leftarrow x \mod 10^m \langle\langle x = 10^m a + b \rangle\rangle

c \leftarrow \lfloor y/10^m \rfloor; d \leftarrow y \mod 10^m \langle\langle y = 10^m c + d \rangle\rangle

e \leftarrow \text{FASTMULTIPLY}(a, c, m)

f \leftarrow \text{FASTMULTIPLY}(b, d, m)

g \leftarrow \text{FASTMULTIPLY}(a - b, c - d, m)

return 10^{2m}e + 10^m(e + f - g) + f
```

$$(bc + ad) = ac + bd - (a - b)(c - d)$$

$$/ / /$$

$$e f g$$

Rakningarvensl:

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n), \qquad T(1) = 1$$

Lausn fæst með rakningartré og er: $T(n) = O(n^{\log_2 3}) \approx O(n^{1.58496})$

Æfing fyrir Karatsuba

• Ef *X*=23 og *Y*=45, hver eru þá gildin á *a*, *b*, *c* og *d*?

Reiknið (bc + ad)

• Reiknið ac + bd - (a - b)(c - d)

Útvíkkun á Karatsuba

• Getum skipt tölunum X og Y upp í fleiri hluta:

Toom-3 skiptir tölunni upp í 3 hluta:

X		
V		

Toom-k skiptir tölunum upp í k hluta hver þeirra með n/k stafi

Bein endurkvæmni gæfi 9 margfaldanir á n/3-stafa tölum. En Andrei Toom náði að fækka þeim niður í 5

$$T(n) = 5T\left(\frac{n}{3}\right) + O(n)$$

Lausn: $T(n) = O(n^{\log_3 5}) = O(n^{1.465...})$

Með hærri fasta

Toom-Cook reikniritið gerið þetta almennt.

Tími: $O(n^{1+1/(\log k)})$

Lengi vel var besta reikniritið eftir Schönhage og Strassen:

Tími: $O(n \log n \log \log n)$

Aðeins hagkvæmur fyrir tölur með fleiri en 40.000 stafi

Staðan í dag

• Árið 2019 birtu David Harvey og Joris van der Hoeven reiknirit fyrir heiltölumargföldun með tímaflækjuna $O(n \log n)$ (pdf)

Talið að þetta sé það besta sem er mögulegt

- Þetta reiknirit notar hraðavirka Fourier vörpun (Fast Fourier Transform, FFT)
- Reiknirit Schönhage og Strassen gerir það líka
- Aðeins fræðilega séð besta reikniritið

Aðeins best fyrir heiltölur með fjölda bita sem er 2^{1729¹²}

Þetta er tala sem hefur ~10³⁸ tugastafi

Til samanburðar:

Fjöldi atóma í hinum þekkta alheimi er um 2²⁷⁰

GMP (*The GNU Multiple Precision Arithmetic Library*) inniheldur mörg af þessum reikniritum og skiptir á milli þeirra eftir stærð heiltalnanna

Þröskuldar í GMP:

- Karatsuba um 400 tölustafir
- Schönhage-Strassen um 40.000 stafir

Veldishafning

- Gefin tala a og jákvæð heiltala n, viljum reikna an
- Augljósa aðferðin er að framkvæma n-1 margföldun með a:

$\frac{\text{SLowPower}(a, n):}{x \leftarrow a}$ $\text{for } i \leftarrow 2 \text{ to } n$ $x \leftarrow x \cdot a$ return x

Hvað er grunnaðgerðin hér?

Inntakið a getur verið af ýmsu tagi:

- Heiltala
- Fleytitala
- Fylki
- ...

Þar sem við vitum ekki <u>hvers konar hluti</u> við erum að margfalda verðum við að nota <u>fjölda margfaldana</u> sem grunnaðgerð

Hraðvirkari veldishafning - Pingala

Notum deila-og-drottna aðferð:

```
\frac{\text{PingalaPower}(a, n):}{\text{if } n = 1}
\text{return } a
\text{else}
x \leftarrow \text{PingalaPower}(a, \lfloor n/2 \rfloor)
\text{if } n \text{ is even}
\text{return } x \cdot x
\text{else}
\text{return } x \cdot x \cdot a
```

Kennt við <u>Acharya Pingala</u>, indverskan stærðfræðing frá 3ju öld f.Kr.

Byggir á endurkvæmu formúlunni:

$$a^{n} = \begin{cases} 1 & \text{ef } n = 0 \\ (a^{n/2})^{2} & \text{ef } n > 0 \text{ og } n \text{ jöfn tala} \\ (a^{\lfloor n/2 \rfloor})^{2} \cdot a & \text{annars} \end{cases}$$

Hér er vinnan framkvæmd á leiðinni upp endurkvæmnina

Rakningarvenslin:
$$T(n) \le T\left(\frac{n}{2}\right) + 2$$
 Geta verið 2 margfaldanir í hvert sinn

Lausn:
$$T(n) = O(\log n)$$

Hraðvirkari veldishafning - Bændaaðferð

Hægt að aðlaga Bændaaðferðina þannig að hún reikni veldi í stað margföldunar

Þá er formúlan:

$$a^{n} = \begin{cases} 1 & \text{ef } n = 0 \\ (a^{2})^{n/2} & \text{ef } n > 0 \text{ og } n \text{ jöfn tala} \\ (a^{2})^{\lfloor n/2 \rfloor} \cdot a & \text{annars} \end{cases}$$

```
PeasantPower(a, n):
  if n=1
       return a
  else if n is even
       return PeasantPower(a^2, n/2)
  else
       return PeasantPower(a^2, \lfloor n/2 \rfloor) · a
```

```
Hér er vinnan að mestu framkvæmd á leiðinni
niður endurkvæmnina
     (b.e. útreikningur á a^2)
```

Tími:
$$T(n) = O(\log n)$$

Neðri mörk veldishafningar

- Sérhvert reiknirit til að finna a^n verður að nota $\Omega(\log n)$ margfaldanir
 - Því hver margföldun getur mest tvöfaldað núverandi gildi
- Bæði þessi reiknirit eru því með bestu mögulegu tímaflækju (optimal)
- Þegar n er heilt veldi af 2 þá framkvæma bæði reikniritin nákvæmlega log₂ n margfaldanir
- En það eru tilvik þar sem þessi reiknirit ná ekki alveg lægsta fjölda margfaldana

Fyrirlestraæfingar

- 1. Leysið mismunajöfnuna T(n) = 3T(n/3) + n með rakningartré.
- 2. Reiknið 42*36 með reikniriti Karatsuba. Þá er *a*=4, *b*=2, *c*=3 og *d*=6. Það verður engin endurkvæmni í svona stuttum tölum.
- 3. Hvernig er hægt að beita Karatsuba reikniritinu á tölur sem hafa ekki sama fjölda tölustafa?