2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO PAVYZDINĖS UŽDUOTIES VERTINIMO INSTRUKCIJA

I dalis

1–10 uždavinių atsakymai

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	В	D	С	В	С	Α	C	C	В	С

II dalis

11–18 uždavinių ar jų dalių atsakymai

11	4
12.1	1
12.2	$3x^2 - 2$
13.1	0,2 arba $\frac{1}{5}$
13.2	0,64 arba $\frac{16}{25}$
14	2
15	8
16	2
17	0
18.1	13
18.2	5x-36
18.3	$-\frac{5}{4}$ arba $-1\frac{1}{4}$ arba $-1,25$

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19	•	5	
19.1		1	
	Ats.: 15°	• 1	Už teisingą atsakymą.
		2	
19.2	Pagal sinusų teoremą: $\frac{6}{\sin 30^{0}} = \frac{AC}{\sin 135^{0}}$	• 1	Už teisingai pritaikytą sinusų teoremą.
	$\frac{6}{\frac{1}{2}} = \frac{AC}{\frac{\sqrt{2}}{2}}$ $AC = 6\sqrt{2} \text{ cm}$	• 1	Už įrašytas teisingas kampų sinusų reikšmes ir gautą teisingą atsakymą.
19.3	$S = \frac{1}{2}AC \cdot BC \sin 15^{0} = \frac{1}{2} \cdot 6\sqrt{2} \cdot 6 \cdot \sin 15^{0} =$	2	Už teisingai pasirinktą būdą
	$= 3\sqrt{2} \cdot 6 \cdot \sin 15^{\circ} \approx 6.6 \text{ cm}^{2}$		plotui apskaičiuoti.
	$Ats.: 6,6 \text{ cm}^2$	• 1	Už gautą teisingą atsakymą.
20		4	
20.1		1	
	5!= 120 būdų Ats.: 120	• 1	Už gautą teisingą atsakymą.
20.2		1	
	Ekologiškais produktais prekiaujantys ūkininkai bus greta $2 \cdot 4! = 48$ (arba $2 \cdot 3! \cdot 4 = 48$) būdais	• 1	Už teisingo sprendimo būdo pasirinkimą.
20.3		2	
	I būdas Ekologiškais produktais prekiaujantys ūkininkai nebus greta $5!-2 \cdot 4! = 72$ būdais $P(nebus greta) = \frac{72}{120} = \frac{3}{5}$ Ats.: $P(nebus greta) = \frac{3}{5}$	• 1	Už teisingai apskaičiuotas įvykiui palankias baigtis. Už gautą teisingą atsakymą.
	II būdas		
	$P(bus\ greta) = \frac{48}{120} = \frac{2}{5}$	• 1	Už teisingai apskaičiuotą tikimybę, kad ekologiškais produktais prekiaujantys
	$P(nebus\ greta) = 1 - \frac{2}{5} = \frac{3}{5}$	• 1	ūkininkai bus greta. Už gautą teisingą atsakymą
	Ats.: $P(nebus\ greta) = \frac{3}{5}$		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		3	
	$\cos x + 2\cos(x + \pi) = \frac{1}{2}$		
	_		
	$\cos x - 2\cos x = \frac{1}{2}$		
	4	• 1	Už teisingai pertvarkytą lygtį.
	$\cos x = -\frac{1}{2}$		
	2	1	Už teisingai užrašytus visus
	$x = \pm \frac{2\pi}{3} + 2\pi k, k \in \mathbb{Z}$	• 1	gautos lygties sprendinius.
		• 1	Už teisingą atsakymą.
	$x = -\frac{2\pi}{3}; \frac{2\pi}{3}; \frac{4\pi}{3}$		
22			
22 22.1		6	
<i>44</i> ,1	Antrojo mėnesio gale Antanas turės sumokėti	• 1	LIž atliktus taisingus
	palūkanų: $(12\ 000 - 250) \cdot 0.03 = 352.5$ (Eur)		Už atliktus teisingus skaičiavimus.
	Iš viso antrojo mėnesio gale Antanas sumokės		
	250 + 352,5 = 602,50 (Eur)		
	230 + 332,3 - 602,30 (Eul)		
22.2		2	
	$12000 \cdot 0.03 + (12000 - 250) \cdot 0.03 +$	• 1	Už teisingai apskaičiuotą sumą,
	$+(12000-250\cdot 2)\cdot 0.03+250\cdot 3=1807.5$ (Eur)		kiek Antanas turės sumokėti
			bankui pirmojo arba trečiojo mėnesio gale.
		• 1	Už gautą teisingą atsakymą.
	Ats.: 1 807,5 Eur		OZ guttą teisingą utsukynią.
22.3		3	
	Palūkanos per 4 metus arba per 48 mėnesius bus: $P = 12000 \cdot 0.03 + 11750 \cdot 0.03 + 11500 \cdot 0.03 +$		
		• 1	Už teisingo sprendimo būdo
	$+250 \cdot 0.03 = 0.03(12000 + 11750 + 11500 + +$		pasirinkimą.
	(+250)		L
	Dėmenys 12000, 11750, 11500,, 250 sudaro aritmetinę progresiją.		
		_ 1	
	$S_{48} = \frac{12000 + 250}{2} \cdot 48 = 294000$	• 1	Už teisingą aritmetinės progresijos 48 narių sumos
	$P = 0.03 \cdot 294000 = 8820(Eur)$		apskaičiavimą.
	Iš viso per 4 metus Antanas turės grąžinti:		
	$250 \cdot 48 + P + 12000 \cdot 0,018 = 21036$ (Eur)	• 1	Už gautą teisingą atsakymą.
	Ats.: 21 036 Eur		
23		7	
23.1	I būdas	<u> </u>	
	Lygybės $1=1^3$ ir $1=-1(1-2)$ yra teisingos, todėl	• 1	Už teisingą pagrindimą.
	taškas (1; 1) priklauso abiejų funkcijų grafikams.		
		<u> </u>	
	II būdas		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
	Grafikų susikirtimo taške funkcijų reikšmės lygios,	• 1	Už teisingą pagrindimą.
	todėl teisinga lygybė:		
	$x^3 = -x(x-2),$		
	$x_1 = -2, x_2 = 0, x_3 = 1.$		
	Kai $x = 1$, tai $y = 1^3 = 1$, t. y. $(1; 1)$ – ieškomos		
	taško A koordinatės.		
	Pastaba. 23.1. Taškas skiriamas ir tuo atveju, kai su	daręs lyg	tį, mokinys jos nesprendžia, o
22.2	patikrina, kad ji pavirsta teisinga lygybe, kai $x = 1$.		
23.2	 	2	
	$ I b \bar{u} das $ $y = f(x_0) + f'(x_0)(x - x_0),$		
	k = f'(1),		
	$f'(x) = 3x^2, \ f'(1) = 3.$	• 1	Už teisingai apskaičiuotą $f'(1)$.
	$f(x_0) = f(1) = 1,$		
	y = 1 + 3(x - 1),	• 1	Už teisingai gautą lygtį.
	y = 3x - 2.		Oz teisingai gada iyga.
	Įrodyta.	ļ	
	II būdas		
	y = kx + l,		1
	k = f'(1)	• 1	Už teisingai apskaičiuotą
	$f'(x) = 3x^2$, $f'(1) = 3 = k$		liestinės krypties koeficiento <i>k</i> reikšmę.
	Taškas A priklauso liestinei, todėl:		renksinę.
	$1 = 3 \cdot 1 + \hat{l}, \ l = -2,$	• 1	Už teisingai apskaičiuotą
	y = 3x - 2.		<i>l</i> reikšmę.
	Įrodyta		
23.3		4	
	S_1 S_2 C A		
	Randame taško <i>B</i> abscisę: $3x-2=0$, $x=\frac{2}{3}$.	• 1	Už taškų B ir C abscisių
	Taško <i>C</i> abscisė lygi 2.		nustatymą.
		a 1	Už teisingai apskaičiuotą
	$S_1 = \frac{1}{2} \cdot BD \cdot DA;$ $S_1 = \frac{1}{2} \cdot \frac{1}{3} \cdot 1 = \frac{1}{6}.$		trikampio ABD plotą.
	$S_2 = \int_{1}^{2} (2x - x^2) dx = \left(x^2 - \frac{x^3}{3} \right) \Big _{1}^{2} = \frac{2}{3}.$	• 1	Už teisingai apskaičiuotą kreivinės trapecijos <i>ADC</i> plotą.
	$S_1 + S_2 = \frac{1}{6} + \frac{2}{3} = \frac{5}{6}.$	• 1	Už teisingai gautą atsakymą.
	Ats.: $S = \frac{5}{6}$.		

Sprendimas ir atsakymas		Taška	i Vertinimas
		3	
kar M1	$1 = \angle 2$ – įbrėžtiniai mpai, kurie remiasi į tą tį lanką AB .	• 1	Už pastebėjimą ir pagrindimą, kad $\angle 1 = \angle 2$.
Kadangi $\angle 1 = \angle 2$ ir $\angle 1 = \angle 2$ - kirstinė, tai $\angle 2 = \angle 3$.	$\angle 3$, nes $AD \parallel BC$, AC	• 1	Už įrodymą, kad $\angle 2 = \angle 3$.
$\Delta ABD = \Delta ACD$, nes $AD - \Delta ABD = \Delta ACD$, nes $AD - \Delta ABD$ lanką AD). $\Delta BAD = \Delta CDA$ (jei trikan kampus, tai ir tretieji jų kam Taigi $AB = CD$.	$D = \angle ACD$ (remiasi į mpiai turi du lygius	• 1	Už trikampių ABD ir ACD lygumo įrodymą.
II būdas $C \qquad \angle 1 = \frac{1}{4}M^{1}$ kamp	= ∠2 – įbrėžtiniai pai, kurie remiasi į tą lanką <i>AB</i> .	• 1	Už pastebėjimą ir pagrindimą, kad $\angle 1 = \angle 2$.
$\angle 1 = \angle 3$, nes $AD \parallel BC$, AC $\angle 2 = \angle 4$, -nes $AD \parallel BC$, E $\angle 1 = \angle 2 = \angle 3 = \angle 4$.		• 1	Už įrodymą, kad $\angle 1 = \angle 2 = \angle 3 = \angle 4$.
$\angle AMB = \angle CMD - \text{kryžm}$ BM = MC, $AM = MD$, nes AMD lygiašoniai. $\Delta AMB = \Delta CMD$ pagal dv tarp jų. Taigi, AB = CD.	s trikampiai <i>BMC</i> ir	• 1	Už trikampių <i>AMB</i> ir <i>CMD</i> lygumo įrodymą.
2 1 1 4 CC nes kra	ikampiai <i>AOB</i> , <i>BOC</i> , <i>DD</i> ir <i>AOD</i> lygiašoniai, s kiekvieno dvi aštinės lygios skritimo spinduliui.	• 1	Už pastebėjimą, kad trikampiai <i>AOB</i> , <i>BOC</i> , <i>COD</i> ir <i>AOD</i> lygiašoniai.
$\angle 1 + \angle 2 + \angle 2 + \angle 3 = 180^{\circ}$ Vidaus vienašalių kampų pritiesių <i>BC</i> ir <i>AD</i> suma.		• 1	Už teisingai pritaikytą dviejų kampų prie lygiagrečių tiesių ir kirstinės savybę.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
	$2\angle 2 = 180^{\circ} - (\angle 1 + \angle 3)$		
	$\angle AOB = 180^{\circ} - 2 \cdot \angle 2 = 180^{\circ} - (\angle 1 + \angle 3),$		
	$\angle COD = 180^{\circ} - 2 \cdot \angle 4 = 180^{\circ} - (\angle 1 + \angle 3).$		
	$\Delta AOB = \Delta OCD$ pagal dvi kraštines ir kampą tarp	• 1	Už teisingai pritaikytą trikampių
	jų. Taigi, $AB = CD$.		lygumo požymį.
	IV būdas		
	Brėžiame skersmenį, statmeną stygoms BC ir AD .	• 1	Už teisingo sprendimo būdo pasirinkimą.
	Trikampiai AOD ir BOC – lygiašoniai, todėl aukštinės OM ir ON atitinkamai yra trikampių pusiaukraštinės $BM = MC$, $AN = ND$.	• 1	Už lygiašonio trikampio aukštinės savybės teisingą pritaikymą.
	$BM = MC$, $BC \perp MN$ taškai B ir C simetriški	• 1	Už teisingą atkarpų AB ir CD
	tiesės MN atžvilgiu. Analogiškai taškai A ir D yra simetriški tiesės MN atžvilgiu. AB simetriška CD tiesės MN atžvilgiu, todėl $AB = CD$.		simetriškumo tiesės <i>MN</i> atžvilgiu įrodymą.
25		6	
25.1		2	
	$BC = \sqrt{1 + x^2}$	• 1	Už teisingai išreikštus per <i>x</i>
	AB = 4 - x		atstumus BC ir AB .
	$K(x) = 1000(4 - x) + 1250\sqrt{1 + x^2} =$ $= 250(16 - 4x + 5\sqrt{1 + x^2})$	• 1	Už teisingai sudarytą kainos funkciją.
25.2		4	
23,2	K'(x) = 0	• 1	Už teisingo sprendimo būdo pasirinkimą (kritinių taškų ieškojimą prilyginant funkcijos
	$K'(x) = 250 \cdot \frac{5x - 4\sqrt{1 + x^2}}{\sqrt{1 + x^2}}$	• 1	išvestinę 0). Už teisingai apskaičiuotą išvestinę ($K'(x)$).
	$250 \cdot \frac{5x - 4\sqrt{1 + x^2}}{\sqrt{1 + x^2}} = 0$		
	$x^2 = \frac{16}{9}$		
	$x = \frac{4}{3} \text{ arba } x = -\frac{4}{3} \text{ (netinka)}$	• 1	Už teisingai apskaičiuotas kritinių taškų <i>x</i> koordinates.
	i		

Užd. Sprei	ndimas ir atsakymas	Taškai	Vertinimas
K'(2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• 1	Už teisingą pagrindimą, kad kai $x = 1\frac{1}{3}$ km kaina bus mažiausia.
26		4	
$4(a - a^{2} + a^{2} $		21	Po 1 tašką už teisingą aritmetinės ir geometrinės progresijos savybių taikymą. Už kvadratinės lygties su dviem nežinomaisiais teisingą diskriminanto išraišką. Už teisingą argumentavimą, kad tokia geometrinė progresija neegzistuoja.
a $(a + a^{2} + b)$ $D = a$ Substitute by pagain in $b = a$ apibra $b < 0$ kain region and $a, 2b$ geom		211	Po 1 tašką už teisingą aritmetinės ir geometrinės progresijos savybių taikymą. Už kvadratinės lygties su dviem nežinomaisiais teisingą diskriminanto išraišką. Už teisingą argumentavimą, kad tokia geometrinė progresija neegzistuoja.