

Environmental Remote Sensing GEOG 2021

Lecture 3

Spectral information in remote sensing

Aim

- Mechanisms of variations in reflectance optical/ microwave
- Visualisation/analysis
- Enhancements/transforms
 - Getting info. from multispectral data

Reflectance

- Reflectance = output / input
 - (radiance)
 - measurement of surface complicated by atmosphere
- input solar radiation for passive optical
- input from spacecraft for active systems
 - RADAR
 - Strictly NOT reflectance use related term backscatter

-UCL

Mechanisms

Mechanisms

- •Atmospheric "windows" transmission high so can see through atmosphere
- Particularly microwave

Reflectance

Causes of spectral (with wavelength) variation in reflectance?

- (bio)chemical & structural properties
 - chlorophyll concentration in vegetation
 - soil minerals/ water/ organic matter

Optical Mechanisms: vegetation

Optical Mechanisms: soil

RADAR Mechanisms

Transmit

Receive

UCL

RADAR Mechanisms

RADAR Mechanisms

Scattering Mechanisms

Reflection off a smooth surface
The angle of incidence, i, equals the
angle of reflection.

Double Bounce (Corner Reflector)

Volumetric Scattering Example scattering in a tree

Scattering off a rough surface
The variation in surface height is on
the order of the incoming signal's
wavelength.

Double Bounce
One possible natural occurence reflecting off two smooth surfaces,
grass and a freshly-cut tree's stump

Volumetric Scattering example the incident radiation

In this example the incident radiation is both reflected and refracted/transmitted through a layer of dry snow. The refracted radiation then reflects off underlying ice, scatters off a chunk of ice in the snow, and finally refracts back toward the receiver.

Vegetation amount

consider

- change in canopy cover over time (dynamics)
- varying proportions of soil / vegetation (canopy cover)

A=Bare soil

B=Full cover

C=Senescence

Vegetation amount & dynamics

Change detection

Rondonia 1975 Rondonia 1986 Rondonia 1992

Uses of (spectral) information

consider properties as continuous

- e.g. mapping leaf area index or canopy cover or discrete variable
 - e.g. spectrum representative of cover type (classification)
 - Vegetation reflectance <u>LOW</u> in visible, <u>HIGH</u> in nearinfrared (NIR)

LUCL

*UCL

Leaf Area Index (LAI)

MODIS LAI over Africa: September 2000 (left), December 2000 (right)

See: http://edcdaac.usgs.gov/modis/dataprod.html & http://earthobservatory.nasa.gov/Newsroom/NasaNews/2001/200112206806.html

See: http://www.bsrsi.msu.edu/rfrc/stats/seasia7385.html

Forest cover 1973

Forest cover 1985

LUCL

visualisation/analysis

- spectral curves
 - spectral features, e.g., 'red edge'
- scatter plot
 - two (/three) channels of information
- colour composites
 - three channels of information
- enhancements
 - e.g. NDVI

UCL

visualisation/analysis

- spectral curves
 - reflectance (absorptance) features
 - information on type and concentration of absorbing materials (minerals, pigments)
 - e.g., 'red edge':
 - increase Chlorophyll concentration leads to increase in spectral location of 'feature'
 - e.g., tracking of red edge through model fitting or differentiation

UCL

visualisation/analysis

- Colour Composites
- choose three channels of information
 - not limited to RGB
 - use standard composites e.g. false colour composite (FCC)
 - learn interpretation
 - Vegetation refl. high in NIR, display on red channel, so more veg == more red, soil blue

visualisation/analysis

Std FCC - Rondonia

Vegetation Indices

reexamine red/nir space features

Cloud of reflectance points in NIR-red waveband space for agricultural crops observed throughout the growing season.

23

Vegetation Index (VI) approach

- define function of the two channels to enhance response to vegetation & minimise response to extraneous factors (soil)
- maintain (linear?) relationship with desrired quantity (e.g., canopy coverage, LAI)
- Main categories:
 - ratio indices (angular measure)
 - perpendicular indices (parallel lines)

Vegetation Indices

Vegetation Indices

- Ratio Vegetation Index
 - RVI = NIR/Red
- Normalised Difference Vegetation Index
 - NDVI = (NIR-Red)/(NIR+Red)

LUCL

Enhancements

Vegetation Indices

RATIO INDICES

FCC (veg is red)

NDVI (veg is bright)

Global NDVI from MODIS in 2000

RATIO INDICES

See: http://visibleearth.nasa.gov/view_rec.php?id=106

PERPENDICULAR INDICES

Vegetation Indices

*UCL

Enhancements

PERPENDICULAR INDICES

Vegetation Indices

- Perpendicular Vegetation Index
 - PVI
- Soil Adjusted Vegetation Index
 - SAVI

PERPENDICULAR

a SARVI2

b NDVI

INDICES

And others ...

Illustration of the smoke correcting properties of the SARVI2 (a) along with the NDVI (b) and a color composite (c). (Oregon coastal forest, LANDSAT 5, August 29,1993; 983x660 30 m pixels; atmospherically corrected with the dark object subtraction (DOS) technique)

Multispectral image classification quick intro

- categorising data
- data abstraction / simplification
- data interpretation
- mapping
 - for land cover mapping
 - use land cover class as a surrogate for other information of interest (ie assign relevant information/characteristics to a land cover class)

Multispectral image classification

- Very widely used method of extracting <u>thematic</u> <u>information</u>
- Use multispectral (and other) information
- Separate different land cover classes based on spectral response, texture,

. . . .

• i.e. separability in "feature space"

LUCL

Summary

- Scattering/reflectance mechanisms
- monitoring vegetation amount
- visualisation/analysis
 - spectral plots, scatter plots
- enhancement
 - VIs

Pseudocolour: Thermal imaging (~10-12μm)

Standard greyscale image

Pseuduocolour image