<u>Introduction</u>

Aerial twisting techniques have gained coaches interest with the arrival of time of flight.

Simulation is a risk of injury free method allowing to find innovate twisting techniques.

Trampolinists mainly use arm abduction/adduction to generate twists, putting aside the change of abduction/adduction plane.

Objective

The purpose of this study is to examine more complex aerial arm twisting techniques allowing shoulder full motion in a backward straight somersault with a multiple-shooting algorithm to find innovative and robust twisting techniques.

<u>Method</u>

3D Model composed of 10 degrees-of-freedom (DOFs) allow to find techniques with computer simulation.

Gaussian noise is added to DoF position nodes.

Multiple-shooting algorithm is used to maximize twist rotation. A multi-start approach (n = 3720) allows to find multiple [near]-ptimal solutions.

The number of twists generated by disturbed movements is then approximated by interpolating quartic splines.

<u>Results</u>

There were 5 out of 20 optimal 3D techniques that were found to be robust.

The optimal 2 DoFs per arm techniques generated on average 4.5 ± 0.3 twists whereas the 1 DoF per arm techniques generated on average 3.66 ± 0.06 twists in a backward straight somersault.

Two families of similar optimal 2 DoF per arm techniques can be extracted from the optimization results

Conclusion

Arm change of plane of abduction/adduction can increase twisting performance. The gain is approximately one twist in a single backward somersault in straight position compared to abduction/adduction only.

The 2 families of 2 DoF per arm techniques found are different from the ones athletes use in competitions.

Impact on olympic athletes

