

AMENDMENT TO THE CLAIMS

This listing of claims will replace all prior versions, and listings of claims in the application.

1. (Currently amended) A compound of formula Ib,

wherein,

R⁰ is isoxazol-3-yl, which is unsubstituted or mono-, di- or trisubstituted independently of one another by R₈, and which is additionally substituted by a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from the group consisting of nitrogen, sulfur or oxygen, wherein, said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R₈;

- R₈ is
- 1) halogen,
 - 2) -NO₂,
 - 3) -CN,
 - 4) -C(O)-NH₂,
 - 5) -OH,
 - 6) -NH₂,
 - 7) -O-CF₃,
 - 8) a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by halogen or -O-(C₁-C₈)-alkyl,

- 9) $-(C_1-C_8)\text{-alkyl}$, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH_2 , $-\text{OH}$ or a methoxy residue,
- 10) $-\text{O}-(C_1-C_8)\text{-alkyl}$, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH_2 , $-\text{OH}$ or a methoxy residue,
- 11) $-\text{SO}_2\text{-CH}_3$ or
- 12) $-\text{SO}_2\text{-CF}_3$;

provided that where R^0 is a monocyclic or bicyclic 6- to 14-membered aryl, then $R8$ is at least one halogen, $-\text{C(O)-NH}_2$ or $-\text{O}-(C_4-C_8)\text{-alkyl}$ residue;

Q is methylene;

R^1 is hydrogen, $-(C_1-C_4)\text{-alkyl}$, wherein alkyl is unsubstituted or substituted one to three times by $R13$; $-(C_1-C_3)\text{-alkylene-C(O)-NH-R}^0$, $-(C_1-C_3)\text{-alkylene-C(O)-O-R}10$, a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by $R8$, a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen; $-(C_1-C_3)\text{-perfluoroalkyl}$,
 $-(C_1-C_3)\text{-alkylene-S(O)-(C}_1\text{-C}_4\text{)-alkyl}$, $-(C_1-C_3)\text{-alkylene-S(O)}_2\text{-(C}_1\text{-C}_3\text{)-alkyl}$,
 $-(C_1-C_3)\text{-alkylene-S(O)}_2\text{-N(R}^4\text{)-R}^5$, $-(C_1-C_3)\text{-alkylene-O-(C}_1\text{-C}_4\text{)-alkyl}$,
 $-(C_0-C_3)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl}$, or $-(C_0-C_3)\text{-alkylene-het}$, wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by $R14$, wherein R^4 and R^5 are independent of one another are identical or different and are hydrogen or $-(C_1-C_4)\text{-alkyl}$;

R^2 is a direct bond or $-(C_1-C_4)\text{-alkylene}$, or

R^1 and $R3$ together with the atoms to which they are bonded form a 6- to 8-membered cyclic group, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, and wherein,

said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14; or

R¹-N(R²)₂-V form a 4- to 8-membered cyclic group, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,

R14 is halogen, -OH, =O, -(C₁-C₈)-alkyl, -(C₁-C₄)-alkoxy, -NO₂, -(C₀-C₄)-alkyl-C(O)-O-R¹⁸, -CN, -(C₀-C₄)-alkyl-N(R¹⁸)-R²¹, -(C₀-C₄)-alkyl-O-R¹⁸, -(C₀-C₄)-alkyl-het, -(C₀-C₈)-alkyl-SO₂, -SO₂-(C₁-C₄)-alkyl, -SO₂-N(R¹⁸)-R²¹, -C(O)-NH-(C₁-C₈)-alkyl, -C(O)-N-[(C₁-C₈)-alkyl]₂, -NR¹⁸-C(O)-NH-(C₁-C₈)-alkyl, -C(O)-NH₂, -S-R¹⁸, or -NR¹⁸-C(O)-NH-[(C₁-C₈)-alkyl]₂,

wherein R¹⁸ and R²¹ are independently from each other hydrogen atom, -(C₁-C₃)-perfluoroalkyl or -(C₁-C₆)-alkyl;

V is 1) a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
2) a 6- to 14-membered aryl, wherein aryl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
3) a monocyclic or bicyclic 4- to 15-membered heterocyclyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;

G is a direct bond, -(CH₂)_m-NR¹⁰-SO₂-NR¹⁰-(CH₂)_n-, -(CH₂)_m-CH(OH)-(CH₂)_n-, -(CH₂)_m-, -(CH₂)_m-O-(CH₂)_n-, -(CH₂)_mC(O)-NR¹⁰-(CH₂)_n-, -(CH₂)-SO₂-(CH₂)_n-, -(CH₂)_mNR¹⁰-C(O)-NR¹⁰-(CH₂)_n-, -(CH₂)_m-NR¹⁰-C(O)-(CH₂)_n-, -(CH₂)_mC(O)-(CH₂)_n-, -(CH₂)-S-(CH₂)_n-, -(CH₂)_m-SO₂-NR¹⁰-(CH₂)_n-, -(CH₂)_m-NR¹⁰-SO₂-(CH₂)_n-, -(CH₂)_m-NR¹⁰-, -(CH₂)_m-O-C(O)-NR¹⁰-(CH₂)_n or -(CH₂)_m-NR¹⁰-C(O)-O-(CH₂)_n;

n and m are independently of one another identical or different and are the integers zero, 1, 2, 3, 4, 5 or 6;

- M is
- 1) hydrogen,
 - 2) -(C₁-C₈)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
 - 3) -C(O)-N(R11)-R12,
 - 4) -(CH₂)_m-NR¹⁰,
 - 5) a 6- to 14-membered aryl, wherein aryl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
 - 6) a monocyclic or bicyclic 4- to 15-membered heterocyclyl, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
 - 7) -(C₃-C₈)-cycloalkyl, wherein said cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
 - 8) a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;

R³ and R⁴ are independent of one another are identical or different and are

- 1) hydrogen,
- 2) halogen,
- 3) -(C₁-C₄)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) -(C₁-C₃)-perfluoroalkyl,
- 5) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 6) -(C₀-C₄)-alkylene-O-R19, wherein R19 is
 - a) hydrogen.

- b) -(C₁-C₄)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13, or
 - c) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
 - d) -CF₃, or
 - e) -CHF₂,
- 7) -NO₂,
 - 8) -CN,
 - 9) -SO_s-R¹¹, wherein s is 1 or 2,
 - 10) -SO_t-N(R¹¹)-R¹², wherein t is 1 or 2,
 - 11) -(C₀-C₄)-alkylene-C(O)-R¹¹,
 - 12) -(C₀-C₄)-alkylene-C(O)-O-R¹¹,
 - 13) -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹²,
 - 14) -(C₀-C₄)-alkylene-N(R¹¹)-R¹²,
 - 15) -NR¹⁰-SO₂-R¹⁰,
 - 16) -S-R¹⁰,
 - 17) -(C₀-C₂)alkylene-C(O)-O-(C₂-C₄)-alkylene-O-C(O)-(C₁-C₄)-alkyl,
 - 18) -C(O)-O-C(R15, R16)-O-C(O)-R17,
 - 19) -(C₀-C₂)alkylene-C(O)-O-(C₂-C₄)-alkylene-O-C(O)-O-(C₁-C₆)-alkyl,
 - 20) -C(O)-O- C(R15, R16)-O-C(O)-O-R17,
 - 21) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R13,
 - 22) -(C₀-C₄)-alkylene-(C₄-C₁₅)-heterocyclyl, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13
 - 23) -(C₀-C₄)-alkylene-(C₃-C₈)-cycloalkyl, wherein cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
 - 24) -(C₀-C₄)-alkylene-het, wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
 - 25) -(C₀-C₄)-alkylene-O-CH₂-(C₁-C₃)-perfluoroalkylene-CH₂-O-(C₀-C₄)-alkyl, or

26) a residue selected from the group consisting of

wherein Me is methyl, or

two -OR₁₉ residues and adjacent atoms through which they are attached form together a 5- or 6-membered ring, that is unsubstituted or substituted one, two, three or four times by R₁₃;

R₁₁ and R₁₂ are independently of one another identical or different and are

- 1) hydrogen,
- 2) -(C₁-C₆)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R₁₃,
- 3) -(C₀-C₆)-alkyl-(C₃-C₈)-cycloalkyl,
- 4) -SO_t-R¹⁰, wherein t is 1 or 2,
- 5) -(C₀-C₆)-alkyl-(C₆-C₁₄)-aryl, wherein alkyl and aryl independently from one another are unsubstituted or mono-, di- or trisubstituted by R₁₃,
- 6) -(C₁-C₃)-perfluoroalkyl,
- 7) -O-R¹⁷, or

- 8) -(C₀-C₆)-alkyl-(C₄-C₁₅)-heterocyclyl, wherein alkyl and heterocyclyl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13, or

R11 and R12 together with the nitrogen atom to which they are bonded can form a 4- to 8-membered monocyclic heterocyclic ring which in addition to the nitrogen atom can contain one or two identical or different ring heteroatoms chosen from oxygen, sulfur and nitrogen; wherein said heterocyclic ring is unsubstituted or mono-, di- or trisubstituted independently of one another by R13;

R13 is halogen, -NO₂, -CN, ≡O, -OH, -CF₃, -C(O)-O-R¹⁰, -C(O)-N(R¹⁰)-R²⁰, -N(R¹⁰)-R²⁰, -(C₃-C₈)-cycloalkyl, -(C₀-C₃)-alkylene-O-R¹⁰, -Si-(CH₃)₃, -N(R¹⁰)-S(O)_u-R¹⁰, wherein u is 1 or 2, -S-R¹⁰, -SO_r-R¹⁰, wherein r is 1 or 2, -S(O)_v-N(R¹⁰)-R²⁰, wherein v is 1 or 2, -C(O)-R¹⁰, -(C₁-C₈)-alkyl, -(C₁-C₈)-alkoxy, phenyl, phenoxy-, -O-CF₃, -(C₀-C₄)-alkyl-C(O)-O-C(R₁₅, R₁₆)-O-C(O)-R₁₇, -(C₁-C₄)-alkoxy-phenyl, -(C₀-C₄)-alkyl-C(O)-O-C(R₁₅, R₁₆)-O-C(O)-O-R₁₇, -(C₁-C₃)-perfluoroalkyl, -O-R₁₅, -NH-C(O)-NH-R¹⁰, -NH-C(O)-O-R¹⁰, or a residue selected from the group consisting of

R¹⁰ and R²⁰ are independently of one another hydrogen, -(C₁-C₆)-alkyl, -(C₀-C₄)-alkyl-OH, -(C₀-C₄)-alkyl-O-(C₁-C₄)-alkyl or -(C₁-C₃)-perfluoroalkyl;

R¹⁵ and R¹⁶ are independently of one another hydrogen, -(C₁-C₆)-alkyl, or together with the carbon atom to which they are bonded they can form a 3- to 6 membered carbocyclic ring which is unsubstituted or substituted one to three times by R¹⁰, and

R¹⁷ is -(C₁-C₆)-alkyl, -(C₁-C₆)-alkyl-OH, -(C₁-C₆)-alkyl-O-(C₁-C₆)-alkyl, -(C₃-C₈)-cycloalkyl, -(C₁-C₆)-alkyl-O-(C₁-C₈)-alkyl-(C₃-C₈)-cycloalkyl, -(C₁-C₆)-alkyl-(C₃-C₈)-cycloalkyl, wherein said cycloalkyl ring is unsubstituted or substituted one, two or three times by -OH, -O-(C₁-C₄)-alkyl or R¹⁰; or

a stereoisomeric form or a mixture thereof in any ratio, or a physiologically tolerable salt thereof.

2-11. (Cancelled)

12. (Previously presented) A compound according to claim 1, which is:

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

5-Chloro-3-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-phenyl-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-methyl-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-ethyl-5-methyl-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-iodo-5-methyl-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-methoxymethyl-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-cyclopropyl-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(2,6-difluoro-phenyl)-3H-imidazole- 4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-cyclopentyl-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(2-methoxy-ethyl)-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(2,6-dichloro-phenyl)-3H-imidazole- 4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-isopropyl-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-pyridin-2-yl-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-methyl-2-phenyl-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-pyridin-3-yl-3H-imidazole-4- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(2-methyl-thiazol-4-yl)-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-ethanesulfonyl-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-methyl-3H-imidazole-2,4-dicarboxylic acid 2-amide 4-[(1-isopropyl-piperidin-4-yl)-amide];

2-Bromo-3-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-methyl-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(2-methoxy-phenyl)-5-methyl-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(3-trifluoromethyl-phenyl)-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-imidazole-2-carboxylic acid ethyl ester;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-[2-(2-methoxy-ethoxy)-ethoxymethyl]-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide;

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(2-methoxy-ethoxymethyl)-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide; or

3-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(perhydro-1,4-oxazepine-4-carbonyl)-3H-imidazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide.

13. (Currently amended) A process for the preparation of a compound according to claim 1 comprising condensing a compound of formula **29** with a compound of formula HR^8 to give a

compound of formula 30 and converting the compound of formula 30 into the compound of formula Ib,

wherein the residue R^{8'} represents -N(R¹)-R²-V-G-M as defined in claim 1, or a group which can be subsequently transformed into said -N(R¹)-R²-V-G-M, and where the residue R⁵³ denotes the group -Q-R⁰ as defined in claim 1 or can denote a group which can be subsequently transformed into said group -Q-R⁰, and where the group -C(O)-R⁵² is a carboxylic acid group or

derivative thereof, and where the groups R^{1a} and R^{1b} in the formulae 29 and 30 have the corresponding definitions of R³ and R⁴ in formula Ia as defined in claim 1, optionally with functional groups in them which are in protected form or in the form of precursor groups.

14. (Previously presented) A pharmaceutical preparation, comprising at least one compound of the formula I according to claim 1 or a stereoisomeric form or a mixture thereof in any ratio, or a physiologically tolerable salt thereof, and a pharmaceutically acceptable carrier.

15-17. (Cancelled)

18. (Currently amended) The compound according to claim 1, wherein,
R⁰ is isoxazol-3-yl, which is substituted by a residue selected from the group consisting of thiienyl, 2-thienyl and 3-thienyl, wherein said residue is unsubstituted or mono- or disubstituted independently of one another by R8;
R8 is fluorine, chlorine or bromine;
Q is methylene;
R¹ is hydrogen;
R² is a direct bond or methylene;
V is 1) a residue selected from the group consisting of azaindolyl, 1H-pyrrolopyridyl, azetidine, 1,4-diazepane, isoxazole, isoquinoline, piperazine, piperidine, pyrazine, pyridazine, pyrimidine, pyrrolidine, quinazoline, quinoline or tetrahydropyran,
wherein said residue is unsubstituted or mono- or disubstituted independently of one another by R14, or
2) phenyl, that is unsubstituted or mono- or disubstituted independently of one another by R14; or
R¹-N-R²-V forms azetidine, pyrrolidine, piperidine or piperazine;
R14 is fluorine, chlorine, methyl, ethyl, -NH₂ or -SO₂-CH₃;
G is a direct bond;
M is a residue selected from the group consisting of hydrogen, (C₂-C₄)-alkyl, azepanyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, imidazolyl, ketomorpholinyl, morpholinyl, [1,4]oxazepanyl, phenyl, piperidinyl, piperidonyl, pyrazinyl, pyrazolyl,

pyridazinyl, pyridinyl, pyrimidyl, pyrrolidinyl, 1,4,5,6-tetrahydro-pyridazinyl, and tetrahydropyranyl, wherein said residue is unsubstituted or mono- or disubstituted independently of one another by R14;

R³ and R⁴ are independent of one another, are identical or different, and are

- 1) hydrogen,
- 2) fluorine or chlorine,
- 3) -(C₁-C₄)-alkyl, wherein said alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) -(C₁-C₃)-perfluoroalkyl,
- 5) phenyl, wherein said phenyl is unsubstituted or mono-, di- or trisubstituted, independently of one another, by R13,
- 6) -(C₀-C₂)-alkylene-O-R19, wherein R19 is
 - a) hydrogen,
 - b) -(C₁-C₄)-alkyl, wherein said alkyl is unsubstituted or mono-, di- or trisubstituted, independently of one another, by R13, or
 - c) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted, independently of one another, by R13,
 - d) -CF₃, or
 - e) -CHF₂,
- 8) -CN,
- 9) -SO_s-R¹¹, wherein s is 1 or 2,
- 10) -SO_t-N(R¹¹)-R¹², wherein t is 1 or 2,
- 11) -(C₀-C₄)-alkylene-C(O)-R¹¹,
- 12) -(C₀-C₄)-alkylene-C(O)-O-R¹¹,
- 13) -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹²,
- 14) -(C₀-C₄)-alkylene-N(R¹¹)-R¹²,
- 15) -NR¹⁰-SO₂-R¹⁰,
- 17) -(C₀-C₂)alkylene-C(O)-O-(C₂-C₄)-alkylene-O-C(O)-(C₁-C₄)-alkyl,
- 18) -C(O)-O-C(R15, R16)-O-C(O)-R17.

- 19) $-(C_0-C_2)\text{alkylene}-C(O)-O-(C_2-C_4)\text{alkylene}-O-C(O)-O-(C_1-C_6)\text{-alkyl}$,
- 20) $-C(O)-O-C(R15, R16)-O-C(O)-O-R17$,
- 23) $-(C_0-C_3)\text{alkylene}-(C_3-C_6)\text{cycloalkyl}$, or $-(C_0-C_4)\text{alkylene}-(C_3-C_6)\text{cycloalkyl}$, that is unsubstituted or mono-, di- or trisubstituted, independently of one another, by R13,
- 24) het, wherein said het is pyridyl or thiazolyl, that is unsubstituted or mono-, di- or trisubstituted, independently of one another, by R13, or
- 25) $-(C_0-C_3)\text{alkylene}-O-CH_2-CF_2-CH_2-O-(C_0-C_3)\text{-alkyl}$, $-(C_0-C_3)\text{alkylene}-O-CH_2-CF_2-CF_2-CH_2-O-(C_0-C_3)\text{-alkyl}$, or $-(C_0-C_3)\text{alkylene}-O-CH_2-(C_1-C_3)\text{perfluoroalkylene}-CH_2-OH$, or
- 26) a residue selected from the group consisting of

wherein Me is methyl;

R11 and R12 are, independently of one another, identical or different and are

- 1) hydrogen,
- 2) $-(C_1-C_4)\text{-alkyl}$, wherein alkyl is unsubstituted or mono-, di- or trisubstituted, independently of one another, by R13,
- 3) $-(C_0-C_6)\text{-alkyl}-(C_3-C_6)\text{-cycloalkyl}$,
- 7) $-O-R^{17}$, or
- 8) $-(C_0-C_6)\text{-alkyl-heterocyclyl}$, wherein alkyl and heterocyclyl, independently from one another, are unsubstituted or mono-, di- or trisubstituted by R13 and wherein heterocyclyl is azetidine, imidazolidine, morpholine, (1,4)-oxazepane or pyrrolidine, or

R11 and R12, together with the nitrogen atom to which they are bonded, form azetidine, imidazolidine, morpholine, (1,4)-oxazepane, 1,4-oxazepine, piperazine, piperidine, pyrrolidine or thiomorpholine;

R13 is fluorine, chlorine, -CN, =O, -OH, -CF₃, -C(O)-O-R¹⁰, -C(O)-N(R¹⁰)-R²⁰, -N(R¹⁰)-R²⁰, -(C₃-C₆)-cycloalkyl, -(C₀-C₃)-alkylene-O-R¹⁰, -Si-(CH₃)₃, -S-R¹⁰, -SO₂-R¹⁰, -(C₁-C₄)-alkyl, -(C₁-C₃)-perfluoroalkyl, or a residue selected from the group consisting of

wherein Me is methyl;

R¹⁰ and R²⁰ are, independently of one another, hydrogen, -(C₁-C₄)-alkyl, or -(C₁-C₃)-perfluoroalkyl; and

R¹⁵ and R¹⁶ are, independently of one another, hydrogen, -(C₁-C₄)-alkyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R¹⁰,

or a stereoisomeric form or a mixture thereof in any ratio, or a physiologically tolerable salt thereof.