РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №8

дисциплина: Математическое моделирование

Преподователь: Кулябов Дмитрий Сергеевич

Студент: Поляков Арсений Андреевич

Группа: НФИбд-03-19

MOCKBA

2022 г.

Цель работы

Построение модели конкуренции двух фирм.

Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования,

когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим: N — число потребителей производимого продукта. S — доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. М — оборотные средства предприятия τ — длительность производственного цикла ρ — рыночная цена товара $\tilde{\rho}$ — себестоимость продукта, то есть переменные издержки на производство единицы продукции. δ — доля оборотных средств, идущая на покрытие переменных издержек. κ — постоянные издержки, которые не зависят от количества выпускаемой продукции.

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме (Puc [-@fig:001]):

$$Q = q - k \frac{p}{S} = q \left(1 - \frac{p}{p_{cr}} \right)$$
 {#fig:001 width=90%}

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = pcr (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина pcr = Sq/k. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p) = 0 при $p \ge pcr$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде (Рис [-@fig:002]):

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa$$

#fig:002 width=90% }

После некоторых преобразований получаем два состояния стационарных значений М (Рис [-@fig:003]):

$$\tilde{M}_{+} = Nq \frac{\tau}{\delta} \left(1 - \frac{\tilde{p}}{p_{cr}} \right) \tilde{p}, \ \tilde{M}_{-} = \kappa \tilde{p} \frac{\tau}{\delta \left(p_{cr} - \tilde{p} \right)}$$
 {#fig:003 width=90% }

Первое состояние M+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние M- неустойчиво, так, что при M < M- оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу M- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с т. Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла.

Условия задачи

Вариант 36

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений (Рис [-@fig:004]):

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \\ \end{split}, \tag{\#fig:004 width=90\%}$$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед М1М2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений (Рис [-@fig:005]):

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \left(\frac{b}{c_1} + 0,00063\right) M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

{ #fig:005

width=90% }

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами (Рис [-@fiq:006]):

```
M_0^1 = 3.7, \ M_0^2 = 2.8, p_{cr} = 27, N = 37, q = 1 \tau_1 = 27, \tau_2 = 17, \tilde{p}_1 = 6.7, \tilde{p}_2 = 11.7 {#fig:006 width=90%}
```

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Выполнение лабораторной работы

Построение модели конкуренции двух фирм

Чтобы построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1, я написал следующий код (Рис [-@fig:007]):

```
model Lab8_1
//[0:0.01:30]
 parameter Real M0 1 = 3.7; // Начальное x1
  parameter Real MO 2 = 2.8; // Начальное x2
  parameter Real p_cr = 27; // Критическая стоимость продукта
  parameter Real tau1 = 27; // Длительность производственного цикла 1 фирмы
  parameter Real tau2 = 17; // Длительность производственного цикла 2 фирмы
  parameter Real p1= 6.7; // Себестоимость продукта фирмы 1 parameter Real p2 = 11.7; // Себестоимость продукта фирмы 2
  parameter Real N = 37; // Число потребителей производимого продукта
  parameter Real q = 1; // максимальная потребность одного человека в продукте в единицу времени
  Real x1(start = M0 1);
  Real x2(start = M0^{-}2);
  parameter Real b = p_cr / (tau1 * tau1 * tau2 * p2 * p2 * N * q);
parameter Real c1 = (p_cr - p1) / (tau1 * p1);
parameter Real c2 = (p_cr - p2) / (tau1 * p2);
equation
  der(x1) = (c1/c1) * x1 - (b/c1) * x1 * x2 - (a1/c1) * x1 * x1;
  der(x2) = (c2/c1) * x2 - (b/c1) * x1 * x2 - (a2/c1) * x2 * x2;
end Lab8 1;
```

{ #fig:007 width=90% }

и получил график (Рис [-@fig:008]):

{ #fig:008 width=90% }

Чтобы построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2, я написал следующий код (Рис [-@fig:009]):

```
model Lab8 2
//[0:0.01:30]
 parameter Real MO_1 = 3.7; // Начальное x1
  parameter Real M0_2 = 2.8; // Начальное x2
  parameter Real p_cr = 27; // Критическая стоимость продукта
  parameter Real tau1 = 27; // Длительность производственного цикла 1 фирмы
  parameter Real tau2 = 17; // Длительность производственного цикла 2 фирмы
  parameter Real pl= 6.7; // Себестоимость продукта фирмы 1
  parameter Real p2 = 11.7; // Себестоимость продукта фирмы 2
  parameter Real N = 37; // Число потребителей производимого продукта
  parameter Real q=1; // максимальная потребность одного человека в продукте в единицу времени
  Real x1(start = M0_1);
  Real x2(start = M0 2);
 parameter Real al = p_cr / (tau1 * tau1 * p1 * p1 * N * q); parameter Real a2 = p_cr / (tau2 * tau2 * p2 * p2 * N * q);
  parameter Real b = p_cr / (tau1 * tau1 * tau2 * tau2 * p2 * p2 * N * q);
 parameter Real c1 = (p_cr - p1) / (tau1 * p1);
parameter Real c2 = (p_cr - p2) / (tau1 * p2);
equation
  der(x1) = (c1/c1) * x1 - (b/c1) * x1 * x2 - (a1/c1) * x1 * x1;
  der(x2) = (c2/c1) * x2 - (b/c1 + 0.00063) * x1 * x2 - (a2/c1) * x2 * x2;
end Lab8 2;
```

{ #fig:009 width=90% }

и получил график (Рис [-@fig:010]):

{ #fig:010 width=90% }

Выводы

После завершения данной лабораторной работы - я научился выполнять построение модели конкуренции двух фирм без учета постоянных издержек и с веденной нормировкой в OpenModelica.

Список литературы

1. Кулябов, Д.С. - Модель конкуренции двух фирм https://esystem.rudn.ru/pluginfile.php/1343905/mod_resource/content/2/ Лабораторная%20работа%20№%207.pdf