# A Low Dimensionality Representation for Language Variety Identification

Francisco Rangel<sup>1,2</sup>, Marc Franco-Salvador<sup>1</sup>, Paolo Rosso<sup>1</sup> francisco.rangel@autoritas.es, mfranco@prhlt.upv.es, prosso@dsic.upv.es

<sup>1</sup>Universitat Politècnica de València, Spain <sup>2</sup>Autoritas Consulting, Spain







#### **Introduction**

#### - Introduction

- Related work
- Low Dimensionality Representation
- Evaluation framework
- Results and discussion
- Conclusions and future work

Language variety identification aims to detect linguistic variations in order to classify different varieties of the same language.

Language variety identification may be considered an **author profiling** task, besides a classification one, because the **cultural idiosyncrasies** may influence the way users use the language (e.g. different expressions, vocabulary...).

#### An example

- Introduction
- Related work
- Low Dimensionality Representation
- Evaluation framework
- Results and discussion
- Conclusions and future work

The same sentence in different varieties of Spanish:

| English      | I was goofing around with my dog and I lost my mobile.         |
|--------------|----------------------------------------------------------------|
| ES-Argentina | Estaba haciendo boludeces con mi perro y extravié el celular.  |
| ES-Mexico    | Estaba haciendo el pendejo con mi perro y extravié el celular. |
| ES-Spain     | Estaba haciendo el tonto con mi perro y perdí el móvil.        |

#### **Related Work**

- Introduction
- Related work
- Low Dimensionality Representation
- Evaluation framework
- Results and discussion
- Conclusions and future work

#### Tasks on language variety identification:

- Workshop on Language Technology for Closely Related Languages and Language Variants at EMNLP 2014
- VarDial Workshop Applying NLP Tools to Similar Languages, Varieties and Dialects at COLING 2014
- T4VarDial Joint Workshop on Language Technology for Closely Related Languages, Varieties and Dialects (DSL) shared task (Zampieri et al., 2014 and 2015) at RANLP 2015

#### **Related Work**

- Introduction
- Related work Low Dimensionality RepresentationEvaluation framework
- Results and discussion
- Conclusions and future work

| Authors                              | Varieties  | Media         | Features                                                            | Algorithm                                               | Evaluation                   | Accuracy |
|--------------------------------------|------------|---------------|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------|----------|
| Zampieri and<br>Gebre (2012)         | Portuguese | News          | word and<br>character n-<br>grams                                   | Probability<br>distributions<br>with log-<br>likelihood | 50-50 split                  | ~90%     |
| Sadat et al.<br>(2014)               | Arabic     | Blogs<br>Fora | character n-<br>grams                                               | Support<br>Vector<br>Machines                           | 10-fold cross-<br>validation | 70-80%   |
| Maier and Gómez-<br>Rodríguez (2014) | Spanish    | Twitter       | character n-<br>grams; LZW;<br>syllable-based<br>language<br>models | Meta-learning                                           | cross-validation             | 60-70%   |

#### **Objective**

To discriminate between different varieties of the same language, but with the following differences:

- We focus on different varieties of Spanish, although we tested our approach also with a different set of languages.
- Instead of n-gram based representations, we propose a low dimensionality representation which is helpful when dealing with big data in social media.
- We evaluate the proposed method with an independent test set generated from different authors in order to reduce possible overfitting.
- We make available our dataset to the research community. (<a href="https://github.com/autoritas/RD-Lab/tree/master/data/HispaBlogs">https://github.com/autoritas/RD-Lab/tree/master/data/HispaBlogs</a>)

## Low dimensionality representation (LDR)

- Conclusions and future work
-idf) matrix:

- Low Dimensionality Representation

IntroductionRelated work

Evaluation frameworkResults and discussion

### **Step 1.** Term-frequency - inverse document frequency (tf-idf) matrix:

$$\Delta = \begin{bmatrix} w_{11} & w_{12} & \dots & w_{1m} & \delta(d_1) \\ w_{21} & w_{22} & \dots & w_{2m} & \delta(d_2) \\ \dots & \dots & \dots & \dots \\ w_{n1} & w_{n2} & \dots & w_{nm} & \delta(d_n) \end{bmatrix}$$
 - Each column is a vocabulary term  $t$  - Each row is a document  $d$  - wij is the tf-idf weight of the term  $j$  in the document in  $\delta(d_i)$  represents the assigned class  $c$  to the document in Step 2. Class-dependent term weighting:

$$W(t,c) = rac{\sum_{d \in D/c = \delta(d)} w_{dt}}{\sum_{d \in D} w_{dt}}, orall d \in D, c \in C$$

$$d = \{F(c_1), F(c_2), ..., F(c_n)\} \sim orall c \in C,$$
  $F(c_i) = \{avg, std, min, max, prob, prop\}$ 

| _ow d | imensi | onality | represe | entation | (LDR) |
|-------|--------|---------|---------|----------|-------|
|       |        |         |         |          |       |
|       |        |         |         |          |       |

- Introduction - Related work

 Evaluation framework - Results and discussion - Conclusions and future work

The average weight of a document is calculated as the sum of weights W(t,c)of its terms divided by the total number of vocabulary terms of the document. The standard deviation of the weight of a document is calculated as the root

std min

avg

prob

square of the sum of all the weights W(t,c) minus the average. The minimum weight of a document is the lowest term weight W(t,c) found in

the document. The maximum weight of a document is the highest term weight W(t,c) found max

in the document.

The proportion between the number of vocabulary terms of the document and prop the total number of terms of the document. Meaning of the measures

- Low Dimensionality Representation

The overall weight of a document is the sum of weights W(t,c) of the terms of the document divided by the total number of terms of the document.

## **Alternative representations**

- Related work - Low Dimensionality Representation

- Introduction

- Evaluation framework - Results and discussion - Conclusions and future work
- We use the common state-of-the-art representations based on n-grams. We iterated n from 1 to 10, and selected the 1000, 5000 and 10000 most frequent n-grams. The best results were obtained with:
  - character 4-grams; the 10,000 most frequent
  - word 1-gram (bag-of-words); the 10,000 most frequent
  - word 2-grams; the 10,000 highest tf-idf
  - Two variations of the continuous Skip-gram model (Mikolov et al.):
    - Skip-grams
    - Sentence Vectors

Maximizing the average of the log probability: Using the negative sampling estimator:

1 
$$\frac{T}{}$$

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log p(w_{t+j} | w_t) \qquad \qquad \log \sigma(v_{w_O}'^T v_{w_I}) + \sum_{i=1}^{k} \mathbb{E}_{w_i} \sim P_n(w) \bigg[ \log \sigma(-v_{w_i}'^T v_{w_I}) \bigg]$$

Hispablogs dataset

450

450

450

2,250

AR - Argentina

CL - Chile

ES - Spain

PE - Peru

TOTAL

MX - Mexico

# Words per post # Blogs/authors # Words Language Variety **Training Test Training Test** Training Test - Completely 450 1,408,103 371 448 385 849 590,583 independent authors 1.081,478 298,386 313 465 225 597 450

618,502

360 426 395 765

437 513 392 894

410 466 257 627

- Introduction - Related work

- Low Dimensionality Representation

between training and

- Manually collected

experts of Autoritas

by social media

 Evaluation framework - Results and discussion - Conclusions and future work

test sets

1,697,091

#### Hispablogs dataset

1,000 7,164,935 2,501,511 380 466 334 764

https://github.com/autoritas/RD-Lab/tree/master/data/HispaBlogs

1,376,478 620,778

1,602,195 373,262

|         |            |          | and the second s |
|---------|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Machine | learning a | aorithms | comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- Introduction

- Related work

- Low Dimensionality Representation

- Evaluation framework

- Results and discussion

- Conclusions and future work

| Algorithm                    | Accuracy | Algorithm       | Accuracy | Algorithm             | Accuracy |
|------------------------------|----------|-----------------|----------|-----------------------|----------|
| <b>Multiclass Classifier</b> | 71.1     | Rotation Forest | 66.6     | Multilayer Perceptron | 62.5     |
| SVM                          | 69.3     | Bagging         | 66.5     | Simple Cart           | 61.9     |
| LogitBoost                   | 67.0     | Random Forest   | 66.1     | J48                   | 59.3     |
| Simple Logistic              | 66.8     | Naive Bayes     | 64.1     | BayesNet              | 52.2     |

#### Accuracy results with different machine learning algorithms

Significance of the results wrt. the two systems with the highest performance

SVM 
$$(z_{0.05}0, 880 < 1, 960)$$
  
LogitBoost  $(z_{0.05} = 1, 983 > 1, 960)$ 



- Introduction
- Related workLow Dimensionality Representation
- Evaluation framework
- Results and discussion
- Conclusions and future work



Accuracy obtained after removing words with frequency equal or lower than n

#### (a) Continuous scale (b) Non-continuous scale

#### **Preprocessing impact**

- Introduction
  - Related work
  - Low Dimensionality Representation
  - Evaluation framework
  - Results and discussion
  - Conclusions and future work



Number of words after removing those with frequency equal or lower than n, and some examples of very infrequent words.

| Class | ifica | tion | resu | ts |
|-------|-------|------|------|----|
|       |       |      |      |    |

- Introduction - Related work

- Low Dimensionality Representation

Evaluation framework

- Results and discussion - Conclusions and future work

| Representation | Accuracy |
|----------------|----------|
| Skip-gram      | 0.722*   |

 $z_{0.05} = 0.5457 < 1.960$ 

LDR

Char. 4-grams

tf-idf 2-grams

Random baseline

0.711

Sen Vec

0.708 \*\*

 $**z_{0.05} = 0,7095 < 1,960$ 

**BOW** 

0.527 0.515

0.393

0.200

Accuracy results per representation

#### **Error analysis**

- Introduction - Related work
- Low Dimensionality Representation
- Evaluation framework
- Results and discussion
- Conclusions and future work



Confusion matrix of the 5-class classification



Recall F1 values for identification as the corresponding language variety vs. others

| dost discrii | ninating | reatures |
|--------------|----------|----------|
| Attribute    | IG       | Attribu  |

 $0.680 \pm 0.006$  ES-std

 $0.675 \pm 0.005$  CL-max

 $0.601 \pm 0.005$  | CL-std

 $0.600 \pm 0.009$  MX-std

 $0.595 \pm 0.033$  | CL-min

 $0.584 \pm 0.004$  AR-std

 $0.577 \pm 0.008$ || PE-std

 $0.564 \pm 0.007$  | AR-min

 $0.550 \pm 0.007$  | CL-avg

 $0.513 \pm 0.027$ || PE-min

PE-avg

AR-avg

MX-max

PE-max

ES-min

ES-avg

MX-avg

ES-max

AR-max

IG

 $0.497 \pm 0.008 | | PE-prob |$ 

 $0.495 \pm 0.007$  | ES-prob

 $0.483 \pm 0.012 || PE-prop||$ 

 $0.463 \pm 0.012$ ||ES-prop

 $0.455 \pm 0.008$  CL-prop

 $0.369 \pm 0.019$  | CL-prob

Features sorted by Information Gain

- Conclusions and future work

- Low Dimensionality Representation

- Introduction - Related work

Attribute

 $0.493 \pm 0.007$  | AR-prob  $0.127 \pm 0.006$ 

 $0.486 \pm 0.013$  | AR-prop  $0.116 \pm 0.005$ 

 $0.485 \pm 0.005$  MX-prop  $0.113 \pm 0.006$ 

 Evaluation framework - Results and discussion

IG  $0.152 \pm 0.005$  $0.496 \pm 0.005$  | MX-prob  $0.151 \pm 0.005$ 

 $0.130 \pm 0.011$ 

 $0.112 \pm 0.005$ 

 $0.110 \pm 0.007$ 

 $0.101 \pm 0.005$ 

 $0.087 \pm 0.010$ 

#### **Most discriminating features**

- Introduction
- Related work
- Low Dimensionality Representation
- Evaluation framework
- Results and discussion
- Conclusions and future work



#### **Cost analysis**

- Introduction
- Related work
- Low Dimensionality Representation
- Evaluation framework
- Results and discussion
- Conclusions and future work

#### Complexity of obtaining the features:

$$O(l\cdot n) + O(l\cdot m) = O(max(l\cdot n, l\cdot m)) = O(l\cdot n)$$

I: number of varieties
n: number of terms of the document
m: number of terms in the document that
coincides with some term in the vocabulary
n > m & I < < n

#### Number of features:

| Representation | # Features |
|----------------|------------|
| LDR            | 30         |
| Skip-gram      | 300        |
| SenVec         | 300        |
| BOW            | 10,000     |
| Char 4-grams   | 10,000     |
| tf-idf 2-grams | 10,000     |

|                                                     | Language             | LDR  | Skip-gram | SenVec |
|-----------------------------------------------------|----------------------|------|-----------|--------|
| Robustness                                          | Bulgarian            | 99.9 | 100       | 100    |
|                                                     | Macedonian           | 99.9 | 100       | 100    |
|                                                     | Spain Spanish        | 84.7 | 82.1      | 86.3   |
| Results obtained with                               | Argentina Spanish    | 88.0 | 90.3      | 87.6   |
| the development set of                              | Portugal Portuguese  | 87.4 | 83.2      | 90.0   |
| the <b>DSLCC</b> corpus                             | Brazilian Portuguese | 90.0 | 94.5      | 87.6   |
| from the                                            | Bosnian              | 78.0 | 80.3      | 74.4   |
| Discriminating<br>between Similar<br>Languages task | Croatian             | 85.8 | 85.9      | 84.7   |
|                                                     | Serbian              | 86.4 | 75.1      | 91.2   |
| (2015)                                              | Indonesian           | 99.4 | 99.3      | 99.4   |
|                                                     | Malay                | 99.2 | 99.2      | 99.8   |
|                                                     | Czech                | 99.8 | 99.9      | 99.8   |
|                                                     | Slovak               | 99.3 | 100       | 99.3   |
|                                                     | Other languages      | 99.9 | 99.8      | 99.8   |
| NOTE: Significant results in bold                   |                      |      |           |        |

## Conclusions and future work

- Related work - Low Dimensionality Representation

Results and discussionConclusions and future work

- Fyaluation framework

- Introduction

**LDR outperforms** common state-of-the-art representations by **35%** increase in accuracy.

LDR obtains competitive results compared with two distributed representation-based approaches that employed the popular **continuous Skip-gram model**.

LDR remains competitive with different **languages** and **media** (DSLCC).

The **dimensionality reduction** is from thousands to only 6 features per language variety. This allows to deal with **big data** in **social media**.

We have applied LDR to **age and gender identification** and we plan to apply LDR to **personality recognition**.

#### Thank you very much!

Interested in digital text forensics (author profiling, authorship identification, author obfuscation)?

Do not hesitate and participate in the PAN laboratory!!

http://pan.webis.de/

Francisco Rangel<sup>1,2</sup>, Marc Franco-Salvador<sup>1</sup>, Paolo Rosso<sup>1</sup> francisco.rangel@autoritas.es, mfranco@prhlt.upv.es, prosso@dsic.upv.es

<sup>1</sup>Universitat Politècnica de València, Spain

<sup>2</sup>Autoritas Consulting, Spain





