Пусть Λ - это σ - алгебра.

• Показать, что если $A_1,A_2,...,A_n\in\Lambda,$ то $A_1\cap A_2\cap...\cap A_n\in\Lambda$

Доказательство:

- 1. Пусть $A_1, A_2, ..., A_n \in \Lambda$. Λ это σ алгебра.
- 2. Пусть $\forall k \in N, k > n, A_k = \emptyset$
- 3. Из (2) и (3) следует, что $(A_i)_{i \in N} \in \Lambda$.
- 4. Из счетной аддитивности σ алгебры следует, что $\bigcup_{i\in N}A_k=\bigcup_{i=1}^nA_i\in\Lambda$
- 5. Следующая цепочка импликаций приводит к доказательству: $\bigcup_{i=1}^n A_i \in \Lambda \stackrel{\sum_2}{\Longrightarrow} \overline{\bigcup_{i=1}^n A_i} \in \Lambda \stackrel{DeMorgan}{\Longrightarrow} \bigcap_{i=1}^n \overline{A_i} \in \Lambda \stackrel{\sum_2}{\Longrightarrow} \bigcap_{i=1}^n A_i \in \Lambda$
- 6. Ч.Т.Д.
- $A \in \Lambda$ тогда и только тогда, когда $\overline{A} \in \Lambda$

Доказательство:

- 1. С одной стороны. Предположим $A\in \Lambda$. Тогда из \sum_2 следует, что $\overline{A}\in \Lambda$
- 2. С другой стороны. Предположим $\overline{A}\in\Lambda$. Тогда из \sum_2 следует, что $(A^c)^c\in\Lambda\Longrightarrow A\in\Lambda$
- 3. Ч.Т.Д
- Если $A,B\in\Lambda$, то $A-B\in\Lambda$ и $A\Delta B\in\Lambda$

- 1. Пусть $A, B \in \Lambda$
- 2. Мы уже показали, что $A \cap B \in \Lambda$
- 3. Из \sum_2 следует, что $A\cap B^c\in \Lambda$. Из $A\cap B^c=A-B$ и посылки следует, что $A-B\in \Lambda$.
- 4. По определению $A\Delta B = (A-B) \cup (B-A)$
- 5. Поскольку мы только что показали, что $A,B\in\Lambda\Longrightarrow A-B\in\Lambda$, понятно, что $B-A\in\Lambda$

- 6. Из счетной аддитивности легко вид $A,B\in\Lambda\Longrightarrow A\cup B\in\Lambda.$
- 7. Обозначив $A-B=C\in\Lambda$ и $B-A=D\in\Lambda$ из (6) следует, что $C\cup D=(A-B)\cup(B-A)\in\Lambda$
- 8. Ч.Т.Д

• Показать, что $\mathcal{A} = \{\emptyset, X, B\}, B \neq X$ не сигма алгебра

Доказательство:

- 1. Так как $B^c \notin \mathcal{A}$ не выполняется свойство \sum_2 .
- Пусть $E \subset X$ и \mathcal{A} σ -алегбра на X. Доказать, что $\mathcal{A}_E := E \cap \mathcal{A} = \{E \cap A : A \in \mathcal{A}\}$ снова сигма алгебра, только на E. (Индуцированная сигма-алгебра)

Доказательство:

- 1. Рассмотрим $X \in \mathcal{A}$. Поскольку $E \subset X$, тогда $E \cap X = E$ единица сигма алгебры
- 2. Пусть $E \cap A \in \mathcal{A}_E$. Рассмотрим его дополнение $E (E \cap A)$. $E (E \cap A) = E \cap \overline{(E \cap A)} = E \cap \overline{$
- 3. Пусть $(E \cap A_n)_{n \in N} \in \mathcal{A}_E$, Рассмотрим счетное объединение $\bigcup_{n \in N} E \cap A_n$. По закону дистрибутивности следует, что $E \cap \bigcup_{n \in N} A_n$. Очевидно, что это элемент \mathcal{A}_E
- 4. Ч.Т.Д
- Пусть $f: X \to X'$. Пусть \mathcal{A}' сигма алгебра на X'. Показать, что $\mathcal{A} := f^{-1}\left(\mathcal{A}'\right) := \left\{f^{-1}\left(A'\right) : A' \in \mathcal{A}'\right\}$ сигма алгебра на X

- 1. Пусть $f: X \to X'$.
- 2. Пусть \mathcal{A}' сигма алгебра на X'.
- 3. Рассмотрим $X' \in \mathcal{A}'$
 - (a) Из (1) следует, что $f^{-1}: X' \to X$. Поэтому $X \in \mathcal{A}$
- 4. Рассмотрим $A' \in \mathcal{A}'$.

- (a) Пусть $f^{-1}(A') = A \in \mathcal{A}$.
- (b) Рассмотрим отображение $f^{-1}\left(X-A'\right)$ из (2.6: $f^{-1}\left(A-B\right)=f^{-1}\left(A\right)-f^{-1}\left(B\right)$) следует, что $f^{-1}\left(X'-A'\right)=f^{-1}\left(X'\right)-f^{-1}\left(A'\right)=X-f^{-1}\left(A'\right)=X-A=\overline{A}$
- 5. Пусть $(A_n')_{n\in N}\in\mathcal{A}$ и $\left(f^{-1}\left[A_n'\right]\right)_{n\in N}\in\mathcal{A}.$
 - (a) Поскольку \mathcal{A}' сигма алгебра, следовательно $(A'_n)_{n\in N}\in\mathcal{A}'\Longrightarrow\bigcup_{n\in N}A'_n\in\mathcal{A}'$
 - (b) Из (2.6) верно равенство: $\bigcup_{n \in N} f^{-1}(A'_n) = f^{-1}(\bigcup_{n \in N} A'_n)$
 - (c) Тогда из (a) $\bigcup_{n\in N} f^{-1}(A'_n) \in \mathcal{A}$
- 6. Ч.Т.Д.

- 1. Если G это σ алгебра, то $G = \sigma(G)$, $\sigma(G)$ минимальная сигма алгебра
- 2. Для произвольного включения $A\subset X\Longrightarrow \sigma\left(\{A\}\right)=\left\{\varnothing,X,A,A^C\right\}$
- 3. Если Λ сигма алгебра и $F \subset G \subset \Lambda$ то $\sigma(F) \subset \sigma(G) \subset \sigma(\Lambda) \stackrel{4.1}{=} \Lambda$

Доказательство 1:

- 1. $G \subset \sigma(G)$ по теореме 3.4 (ii)
- 2. Также известно, что $\sigma(G) = \bigcap F$, где F все возможные сигма алгебры, такие что $G \subset F$.
- 3. G сигма алгебра и $G\subset F$, тогда одним из элементов $\bigcap F$ является G. Поэтому $G\supset \sigma\left(G\right)$
- 4. Тогда из (1) и (3) $G = \sigma(G)$
- 5. Ч.Т.Д.

- 1. Пусть $\sigma(\{A\}) = \{\emptyset, X, A, A^C\}$
- 2. Предположим $\{\varnothing\}\notin\sigma\left(\{A\}\right)$, тогда не выполняется свойство \sum_2 для X
- 3. Предположим $\{X\} \notin \sigma\left(\{A\}\right)$, тогда не выполняется свойство \sum_1
- 4. Предположим $\{A\} \notin \sigma(\{A\})$, тогда не выполняется Теорема 3.4 (ii)
- 5. Предположим $\{A^c\} \notin \sigma\left(\{A\}\right)$, тогда не выполняется свойство \sum_2 для A
- 6. Из (2) (3) (4) (5) $\sigma(\{A\})$ сигма алгебра

- 7. Добавив произвольное B в $\sigma(\{A\})$, и расширяя $\sigma(\{A\})$ до Λ , очевидно, что $\sigma(\{A\}) \subset \Lambda$. Поэтому $\sigma(\{A\})$ минимальна
- 8. Ч.Т.Д.

Доказательство 3:

- 1. Пусть $G \subset \Lambda$,
- 2. Пусть $\sigma(G) = \bigcap A$, где A все возможные сигма алгебры, такие что $G \subset A$. Следовательно одним из A является $\sigma(\Lambda)$ Поэтому $\sigma(G) \subset \sigma(\Lambda)$
- 3. Пусть $F \subset G$,
- 4. Пусть $\sigma(F) = \bigcap B$, где B все возможные сигма алгебры, такие что $G \subset B$. Следовательно одним из B является $\sigma(G)$ Поэтому $\sigma(F) \subset \sigma(G)$
- 5. Из (2) и (4) следует, что $\sigma(F) \subset \sigma(G) \subset \sigma(\Lambda)$

Задача № 5

Найти сигма алгебры сгенерированные множествами, где X=[0,1]:

- 1. A = (0, 1/2)
- 2. A = [0, 1/4), B = (3/4, 1]
- 3. A = [0, 3/4), B = (1/4, 1]

Решения:

- 1. $\sigma(\{(0,1/2)\}) = \{\emptyset, [0,1], (0,1/2), [1/2,1]\}$
- 2. $\sigma(\{[0,1/4),(3/4,1]\}) = \{\emptyset,[0,1],[0,1/4),(3/4,1],[1/4,1],[0,3/4],[0,1/4) \cup (3/4,1],[1/4,1) \cup [0,3/4]\}$
- 3. $\sigma(\{[0,3/4),(1/4,1]\}) = \{\emptyset,[0,1],[0,3/4),(1/4,1],[3/4,1],[0,1/4],[0,1/4] \cup [3/4,1],(1/4,3/4)\}$

Задача № 6

Пусть $A_1,A_2,....,A_N$ непустые множества из X

- 1. Если A попарно непересекаются и $\bigsqcup_{i=1}^N A_i = X$, тогда $|\sigma\left(A_1,A_2,...,A_N\right)| = 2^N$
- 2. Показать, что $\sigma(A_1, A_2, ..., A_N)$ содержит конечное атомов

Доказательство 1:

- 1. Пусть $A_1, A_2,, A_N$ непустые множества из X
- 2. Пусть A попарно непересекаются и $\bigsqcup_{i=1}^{N} A_i = X$
- 3. Пусть сигма алгебра индуцирована A_1 . Тогда из (2) следует, что $X = A_1$. И из этого образуется тривиальная сигма алгебра. Ее мощность 2^1
- 4. Пусть сигма алгебра индуцирована A_1, A_2 . Тогда она имеет вид: $\sigma(A_1, A_2) = \{\emptyset, X, A_1, A_2, A_1^c, A_2^c\}$. Ее мощность 2^2
- 5. Очевидно, что сигма алгебра индукцированная A_1, A_2, A_3 имеет мощность 2^3
- 6. Поэтому сигма алгебра индуцированная $A_1, A_2,, A_N$ имеет мощность 2^N

Доказательство 2:

- 1. Пусть $A_1, A_2,, A_N$ непустые множества из X
- 2. Пусть А попарно непересекаются и $\bigsqcup_{i=1}^{N} A_i = X$
- 3. Пусть сигма алгебра индуцирована A_1 . Тогда из (2) следует, что $X=A_1$. Это единственный атом
- 4. Пусть сигма алгебра индуцирована A_1, A_2 . Тогда она имеет вид: $\sigma(A_1, A_2) = \{\emptyset, X, A_1, A_2, A_1^c, A_2^c\}$. Она имеет ровно 2 атома
- 5. Очевидно, что сигма алгебра индукцированная A_1, A_2, A_3 имеет мощность. Она имеет ровно 3 атома
- 6. Очевидно, что существует биекция между можностью N и числом атомов в индуцированной ими сигма алгебре. Поскольку по условию N конечно, следовательно число атомов в Λ

Задача № 7

Пусть (X,Λ) - измеримое пространство. Показать, что не существует сигма алгебры Λ , которая содержит бесконечное счетное число множеств.

- 1. Предположим, что $k \in N, A_k$ попарно непересекающиеся и непустые атомы.
- 2. Предположим $\forall k \in N, A_k \in \Lambda$.

- 3. Поскольку A_k проиндексирована натуральными числами, следовательно $|A| \geq |N|$. Однако сигма алгебра замкнута относительно счетных объединений, следовательно элементов в ней больше чем |N|. Это значит, что |A| > |N|
- 4. Следовательно, мощность такой сигма алгебры больше чем счетная

Найти пример, который показывает, что $\bigcap_{n\in N}U_n$ закрыт, в том случае, если $\forall n\in N, U_n$ - открыт. **Ответ:**

• Синглетоны закрыты. $\bigcap_{n \in N} \left(-\frac{1}{n}, \frac{1}{n} \right) = \lim_{n \to \infty} \bigcap_{i=1}^n \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$

Задача № 9

Проверить свойства O_1, O_2, O_3 для открытых множеств в R^n . Является ли O - σ -алгеброй Доказательство. Часть 1.

- 1. Пусть $x \in \emptyset$. Тогда по правилу ех falso следует, что \emptyset открыто. **Поэтому** $\emptyset \in O$
- 2. Пусть $X=R^n$. Поскольку в любой точке R^n можно включить шар с конечным радиусом, следовательно R^n открыт. **Поэтому** $R^n \in O$
- 3. Пусть U,V открыты. По определению, для U существует $\epsilon_1>0$ такой что шар $B_{\epsilon_1}(x)\subset U$. Аналогично и для V
- 4. Пусть $\epsilon = min\{\epsilon_1, \epsilon_2\}$. Следовательно такой шар впишется в пересечение $U \cap V$. Поэтому $U \cap V \in O$
- 5. Предположим $U_{i\in I}\in O$. Поскольку для каждого из $U_{i\in I}$ существует шар с радиусом $\epsilon_i>0$, такой что $B_{\epsilon_i}(x)\subset U_i$. Зафиксируем такой шар $B_{\epsilon_{i_0}}(x)\subset U_{i_0}$ с минимальным радиусом ϵ_{i_0} .
- 6. Из (5) следует, что $\forall i \in I, B_{\epsilon_{i_0}}(x) \subset U_i$.
- 7. Поскольку $U_{i_0} \subset \bigcup_{i \in I} U_i$. Тогда по транзитивности из (6) следует, что $B_{\epsilon_{i_0}}(x) \subset \bigcup_{i \in I} U_i$. Поэтому $\bigcup_{i \in I} U_i$ открыто
- 8. Ч.Т.Д.

Доказательство. Часть 2.

1. Предположим $A \in O$.

- 2. Предположим $A \in \Lambda$, где Λ сигма алгебра.
- 3. Поскольку сигма алгебра замкнута относительно дополнения, следовательно $A^c \in \Lambda$
- 4. Поскольку дополнение к открытому множеству закрыто, следовательно $A^c \notin O$
- 5. Поэтому система открытых множеств не является сигма-алгеброй

Обозначим $B_r(x)$ как открытый шар в R^n с центром х и радиусом г. Показать, что Борелевские множества $\mathcal{B}(R^n)$, сгенерированны всеми возможными открытыми шарами $\mathcal{B} := \{B_r(x) : x \in R^n, r > 0\}$. Верно ли это для $\mathcal{B}' := \{B_r(x) : x \in Q^n, r \in Q^+\}$?

- 1. Чтобы доказать, что Борелевские множества $\mathcal{B}(R^n)$ сгенерированы всеми открытыми шарами \mathcal{B} , а также шарами из рациональных точек \mathcal{B}' , необходимо показать, что $\mathcal{B}(O^n) = \sigma(\mathcal{B}') = \sigma(\mathcal{B}')$
- 2. С одной стороны
- 3. Очевидно, что $\mathcal{B}' \subset \mathcal{B} \subset O^n$, тогда из задачи 4, следует, что $\sigma(\mathcal{B}') \subset \sigma(\mathcal{B}) \subset \sigma(O^n)$
- 4. Покажем, что утверждение $U = \bigcup_{b \in B'} B_{B \subset U}(q)$ верно.
 - (a) Пусть U открыто
 - (b) C одной стороны.
 - (c) По определению (4), верно, что $U \supset \bigcup_{b \in B'} B_{B \subset U}(q)$
 - (d) **С** другой стороны, верно следующее $B_{\epsilon/3}\left(q\right)\subset B_{\epsilon}\left(x\right)$
 - і. Из определения открытого множества: $B_{\epsilon}\left(x\right)\subset U$
 - іі. Мы уже задали, что $\epsilon \in R^n$. Однако можно положить, что $r \leq \epsilon$ такое что $\epsilon \in Q^+$
 - ііі. Поскольку Q^n плотно в R^n мы всегда можем найти такой q, что $|q-x|<\epsilon/3$.
 - (e) из (i), (ii) и (iii) верно (d) и также верно и $B_{\epsilon/3}(q) \subset B_{\epsilon}(x) \subset U$
- 5. С другой стороны.
- 6. Поскольку произвольный $U \in O^n$ образован объединением всех шаров с центрами в рациональных точках, следовательно по теореме 4 верно, что $O^n \subset \sigma(\mathcal{B}')$
- 7. из (3) и (6) верно, что $O^n = \sigma(\mathcal{B}')$
- 8. Аналогично можно показать и для $O^n \subset \sigma(\mathcal{B})$

9. Поэтому $\mathcal{B}(O^n) = \sigma(\mathcal{B}) = \sigma(\mathcal{B}')$

Задача № 13

Пусть \mathcal{O} - топология в R^n и пусть $A \subset R^n$. Мы определяем топологию \mathcal{O}_A на A следующим образом: Множество $V \subset A$ называется открытым если $V = U \cap A$, для произвольного $U \in \mathcal{O}$. Такая топология называется индуцированной и ее элементы не обязательно открыты.

ullet Показать, что \mathcal{O}_A - индуцированная топология на A

Доказательство:

- 1. Пусть \mathcal{O} топология на X. Пусть $U \in \mathcal{O}$
- 2. Очевидно, что $V = \emptyset \cap A \in \mathcal{O}_A$. $V = \mathbb{R}^n \cap A \in \mathcal{O}_A$.
- 3. Пусть $U\cap A\in\mathcal{O}_A$ и $E\cap A\in\mathcal{O}_A$ тогда $(E\cap U)\cap A\in\mathcal{O}_A$ поскольку $E\cap U\in\mathcal{O}$
- 4. Пусть $i\in I$ и $U_i\cap A\in\mathcal{O},$ тогда $\left(\bigcup_{i\in I}U_i\right)\cap A\in\mathcal{O}_A$, поскольку $\bigcup_{i\in I}U_i\in\mathcal{O}$
- Пусть $A \in B(\mathbb{R}^n)$. Показать, что индуцированная сигма алгебра $A \cap B(\mathbb{R}^n)$ совпадает с $\sigma(\mathcal{O}_A)$

Доказательство:

- 1. Пусть \mathcal{O} топология на X. Пусть $A \in B\left(R^{n}\right)$
- 2. Из теоремы 3.7, $\sigma(\mathcal{O}) = B(\mathbb{R}^n)$.
- 3. Тогда индуцированная сигма алгебра $\mathcal{A}_E = A \cap B\left(R^n\right) = A \cap \sigma\left(\mathcal{O}_A\right)$

Залача № 14

1. Повторить доказательство теоремы 3.4, чтобы показать, что существует минимальный монотонный класс $m(\mathcal{F})$, такой что $\mathcal{F} \subset \mathcal{P}(X)$

- 1. Чтобы доказать, что минимальный монотонный класс существует, необходимо образовать все возможные пересечения монотонных классов \mathcal{M} таких, что $\mathcal{F} \subset \mathcal{M}$. Для этого необходимо доказать, что пересечение монотонных классов $\mathcal{M}_{i \in I}$ образуют монотонный класс.
- 2. Пусть $\mathcal{M}_{i \in I}$ монотонные классы. Рассмотрим $\mathcal{M} = \bigcap_{i \in I} \mathcal{M}_i$. Покажем \mathcal{M} монотонный класс

- (a) Поскольку $\forall i \in I, X \in \mathcal{M}_{i \in I}$, следовательно $X \in \mathcal{M}$
- (b) Пусть $(A_n)_{n\in N}\subset \bigcap_{i\in I}\mathcal{M}_i$, тогда $\bigcap_{n\in N}A_n\subset \bigcap_{i\in I}\mathcal{M}_i$, поэтому $\bigcap_{n\in N}A_n\subset \mathcal{M}$
- (c) Пусть $(A_n)_{n\in\mathbb{N}}\subset\bigcap_{i\in I}\mathcal{M}_i$, тогда $\bigcup_{n\in\mathbb{N}}A_n\subset\bigcap_{i\in I}\mathcal{M}_i$, поэтому $\bigcup_{n\in\mathbb{N}}A_n\subset\mathcal{M}$
- (d) из (a) (b) и (c) следует, что пересечение монотонных классов монотонный класс
- 3. Пусть $\emptyset \neq \mathcal{F} \subset \mathcal{P}(X)$. Положим $\mathcal{F} \subset \mathcal{M}$ множество монотонных классов. Пусть $m(\mathcal{F}) := \bigcap_{\mathcal{F} \subset \mathcal{M}} \mathcal{M} -$ мон.
- 4. Поскольку \mathcal{M} монотонны, следовательно пересечение непусто.
- 5. Пусть $\mathcal{M} \subset \mathcal{M}'$ больший монотонный класс такой что $\mathcal{F} \subset \mathcal{M}'$. Тогда такой класс является элементом $\bigcap \mathcal{M}$ $\mathcal{F} \subset \mathcal{M}$ \mathcal{M} мон.
- 6. Из (5) следует, что $m\left(\mathcal{F}\right)$ минимален
- Показать, что, если $F \in \mathcal{F} \implies F^c \in \mathcal{F}$, следовательно $m(\mathcal{F})$ также замкнут относительно дополнения

- 1. Пусть $m(\mathcal{F})$ монотонный класс с генератором \mathcal{F} .
- 2. Пусть \mathcal{F} замкнута относительно дополнения. Это значит, что $F \in \mathcal{F} \implies F^c \in \mathcal{F}$,
- 3. Из (1) и (2) следует, что $F \in m\left(\mathcal{F}\right) \implies F^c \in m\left(\mathcal{F}\right)$
- 4. Рассмотрим $(A_n)_{n\in \mathbb{N}}\subset m$ (\mathcal{F}) , такие что $A_1\subset A_2\subset\subset A_n\uparrow A=\bigcup_{n\in \mathbb{N}}A_n$
 - (a) Из (3) следует, что $\overline{\bigcup_{n\in N} A_n} \in m(\mathcal{F})$
 - (b) По закону Де Моргана из (a) следует, что $\bigcap_{n\in N}\overline{A_n}\in m\left(\mathcal{F}\right)$
 - (c) Из (b) следует, что $\left(\overline{A_n}\right)_{n\in N}\in m\left(\mathcal{F}\right)$
 - (d) Тогда По MC2 следует, что $\overline{A} \in m(\mathcal{F})$
- 5. Рассмотрим $(B_n)_{n\in\mathbb{N}}\in m\left(\mathcal{F}\right)$, такие что $B_1\supset B_2\supset....\supset B_n\downarrow B=\bigcap_{n\in\mathbb{N}}B_n\in m\left(\mathcal{F}\right)$
 - (а) Из (3) следует, что $\overline{\bigcap_{n\in N}B_n}\in m\left(\mathcal{F}\right)$
 - (b) По закону Де Моргана из (a) следует, что $\bigcup_{n\in N}\overline{B_n}\in m\left(\mathcal{F}\right)$

- (c) Из (b) следует, что $\overline{B_n}\in m\left(\mathcal{F}\right)$ (d) Тогда По МС1 следует, что $\overline{B}\in m\left(\mathcal{F}\right)$
- 6. Следовательно $m\left(\mathcal{F}\right)$ монотонен
- 7. Ч.Т.Д