云南大学 2018 年秋季学期物理与天文学院 2017 级 《概率论与数理统计》期末考试 (闭卷)试卷 B

满分: 100	分	考试时间:	120 分钟	任课教师:
---------	---	-------	--------	-------

学院:	专业:	学号:	姓名:
1 1/U	ч	, , <u> </u>	<u> </u>

题号	_	-	Ξ	四	五	六	七	总分
得分								

得分 一、填空题(每空 2 分,共 18 分)

- 1. 已知 $P(A) = 0.4, P(B) = 0.3, P(A \cup B) = 0.4$, $P(A\overline{B}) = \underline{\hspace{1cm}}$
- 2. 若 $X \sim N(\mu, \sigma^2)$,则X的概率密度函数曲线的峰值位置 由参数确定。
- 3. 若 $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则 $X \sim$ ______; *Y* ~ _______ •
- **4.** 设 X_1, X_2, \dots, X_{10} 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本,则
- 5. 设随机变量K在区间(0,5)上服从均匀分布,则关于的方 程: $4x^2 + 4Kx + K + 2 = 0$ 有实根的概率为______。
- 6. 设二维随机变量(X,Y)的分布函数为F(x,y),则 $F(+\infty,+\infty) = \underline{\hspace{1cm}}$

- 7. 设 $X \sim N(\mu, \sigma^2)$, 且 其 概 率 密 度 函 数 为 $f(x) = \frac{1}{\sqrt{6\pi}} e^{-\frac{x^2 - 4x + 4}{6}}, (-\infty < x < +\infty), \quad \text{If } \mu = \underline{\qquad}$
- 设 $X_i \sim N(0,1), (i=1,2,3), \chi^2 = X_1^2 + X_2^2 + X_3^2$, 则 $E(\chi^2) = \underline{\hspace{1cm}}$

得分 二、选择题(每小题 3 分,共 18 分)

每小题仅有一个备选项正确,请将其代码填写在题后的 括号内。错选、多选或未选均不得分。

- 1. 设 $X \sim N(\mu, \sigma^2)$,下列关于X的概率密度函数曲线 f(x)的 正确描述是:
 - ① 当 μ 越大, σ 越大时,曲线越尖。
- 对于同样长度的区间,当区间距原点越远, X 落在该 2 区间的概率值就越大。
 - ③ f(x)的最大值为 σ 。
 - μ 表示曲线峰值距原点的位置, σ 决定曲线峰值的高低。

正确答案: ()

2. 设 X_1, X_2, X_3 是总体 $X \sim N(\mu, \sigma^2)$ 的样本, μ, σ^2 已知, 未知,则下列函数不是统计量的是:

①
$$\lambda X_1 + 5X_3$$
 ② $\sum_{i=1}^{3} \mu X_i$

③
$$X_1 + \sigma$$
 ④ $\sum_{i=1}^3 X_i^2$

正确答案:()

3. 设 A,B 为两事件,若 $A \subset B$ 则 P(B-A) =_____

	3	P(B) - P(A)	4	P(A) +	$P(\overline{B})$	$+P(\overline{AB})$)	
						正确答	案: ()
4.	设	随机变量 λ	Y 与 Y 相	互独立	Z, 1	$\exists Z=2X$	X - Y + 1	则
D(Z)	=	_						
	1	4D(X)-1	D(Y)	2	4D	(X)+D	(Y)	
	3	2D(X)+1	D(Y)+1	4	2D	(X)-D((Y)+1	
						正确答簿	案: ()
5.	设X	,Y是任意两	个随机变	€量,若/	E(XY)	Y = E(X)	E(Y)	则:
(① D(XY) = D(X)D(X)	Y)	2 L	O(X +	-Y) = D((X) + D	(Y)
	3	X与Y相关		4 X	与Y	不独立		
						正确答	案: ()
6.	设	X_1, X_2, \dots, X_n	是来自总	总体 N(0	0,1) 餠	的样本,	则统计	量
$\chi^2 = X$	$X_1^2 + X_1$	$X_2^2 + \dots + X_n^2$	服从的约	分布是_				
1	χ^2 ~	$\chi^2(n)$	2 1	$^2 \sim t(n)$				
3	χ^2 ~	F(n)	4 x	$^2 \sim N(0,$	(n)			
						正确答	茶案: ()
得分	三、	设随机	变量X的]概率密	度为:	:		
	j	$f(x) = \frac{1}{2}e^{- x },$	$\infty < x < +$	-∞				
1	求:	E(X),D(X)	X), $Cov(X)$	(X, X)				

② 证明: X = |X| 不相关且不相互独立。(本题 20分)

① P(A) - P(B) ② P(A) - P(B) + P(AB)

得分

四、设有电路如图所示,其中 1,2,3,4 为继电器接点.已知各继电器接点闭合与否相互独立,且每一继电器接点闭合的概率均为 p.求 L 至 R 为通路的概率.(本题 10 分)

五、一负责人到达办公室的时间均匀分布在8~12时,他的秘书道到办公室的时间均匀分布在7~9时,设两人到达的时间相互独立,求两人到达办公室的时间相差不超过5分钟(1/2小时)的概率.(本题10分)

得分

六、设随机变量(X,Y) 具有概率密度: $f(x,y) = \begin{cases} 1 \\ 0 \end{cases}$

|*y*|<*x*,0<*x*<1 *x*<0,*y*<0

证明: X和Y是不相关的。 (本题 12 分)

得分

七、 设数X在区间[0,1]随机地取值,当观察到X = x (0 < x < 1)时,数Y在区间(x,1)上随机地取值,求Y的概率密度函数 $f_Y(y)$ (本题 12 分)