Необходимо с использованием системы JFLAP, построить контекстносвободную грамматику, описывающую заданный язык, который может быть распознан СҮК-алгоритмом, или формально доказать невозможность этого. Привести эквивалентный МПА, а также пошаговое выполнение преобразований.

Выполняются те задания, чьи номера эквивалентны вариантам заданий к первой части 6 лабораторной работы.

Варианты заданий.

Вариант 1. Язык $L_1 = \{a^n b^m : n \le 3+m, m \ge 0, n \ge 0\}$.

Вариант 2. Язык $L_2 = \{a^n b^m : n \neq m - 1, m \geq 0, n \geq 0\}.$

Вариант 3. Язык $L_3 = \{a^n b^m : n \neq 2m, m \geq 0, n \geq 0\}$.

Вариант 4. Язык $L_4 = \{a^n b^m : 2n \le m \le 3n, m \ge 0, n \ge 0\}.$

Вариант 5. Язык $L_5 = \{w \text{ принадлежит } \{a, b\}^* : n_a(w) \neq n_b(w), m \geq 0, n \geq 0\}.$

Вариант 6. Язык $L_6 = \{w \text{ принадлежит } \{a, b\}^* : n_a(v) \ge n_b(v), m \ge 0, n \ge 0, v -$ любой префикс $w\}$.

Вариант 7. Язык $L_7 = \{ w \text{ принадлежит } \{a, b\}^* : n_a(w) = 2n_b(w) + 1, m \ge 0, n \ge 0 \}.$

Вариант 8. Язык $L_8 = \{a^n b^m c^k : n = m \text{ или } m \le k, m \ge 0, n \ge 0, k \ge 0 \}.$

Вариант 9. Язык $L_9 = \{a^n b^m c^k : n = m \text{ или } m \neq k, m \geq 0, n \geq 0, k \geq 0 \}.$

Вариант 10. Язык $L_{10} = \{a^n b^m c^k : k = n + m, m \ge 0, n \ge 0, k \ge 0 \}.$

Вариант 11. Язык $L_{II} = \{a^n b^m c^k : k = n + 2m, m \ge 0, n \ge 0, k \ge 0\}.$

Вариант 12. Язык $L_{12} = \{a^n b^m c^k : k = |n+m|, m \ge 0, n \ge 0, k \ge 0\}.$

Вариант 13. Язык $L_{13} = \{w \text{ принадлежит } \{a, b, c\}^* : n_a(w) + n_b(w) \neq n_c(w), m \geq 0, n \geq 0\}.$

Вариант 14. Язык $L_{14} = \{a^n b^m c^k : k \neq n + m, m \geq 0, n \geq 0, k \geq 0\}.$

Вариант 15. Язык $L_{15} = \{a^n b^m c^k : k \ge 3, m \ge 0, n \ge 0\}.$

Вариант 16. Язык $L_{16} = \{uvwv^R : u, v, w$ принадлежат $\{a, b\}^+, |u| = |v| = 2\}.$