Vectors

Basics

Direction Vector
$$\overrightarrow{ab} = \overrightarrow{b} - \overrightarrow{a}$$

Norm $\|\overrightarrow{a}\| = \sqrt{a_1^2 + \dots + a_n^2}$
Unit Vector $\hat{u} = \frac{\overrightarrow{u}}{\|u\|}$

Dot Product

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$$

$$\vec{a} \perp \vec{b} \text{ if } \vec{a} \cdot \vec{b} = 0$$

Projection and Perpendicular

$$\begin{aligned} \operatorname{proj}_{\vec{b}}(\vec{a}) &= \frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^2} \vec{b} = (\vec{a} \cdot \hat{b}) \hat{b} \\ \operatorname{perp}_{\vec{b}}(\vec{a}) &= \vec{a} - \operatorname{proj}_{\vec{b}}(\vec{a}) \end{aligned}$$

Cross Product

$$\vec{a} \times \vec{b} = \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
$$\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin \theta$$
$$\vec{a} \parallel \vec{b} \text{ if } \vec{a} \times \vec{b} = \vec{0}.$$

Area and Volume

$$A = \|\vec{a} \times \vec{b}\|$$

$$A = \left| \det \begin{bmatrix} -\vec{a} - \\ -\vec{b} - \end{bmatrix} \right|$$

$$V = \left| \vec{a} \cdot (\vec{b} \times \vec{c}) \right|$$

$$V = \left| \det \begin{bmatrix} -\vec{a} - \\ -\vec{b} - \\ -\vec{c} - \end{bmatrix} \right|$$

Lines and Planes

Line Equations

Vector/Parametric
$$\vec{x} = \vec{p} + \vec{a}t$$

Two-Point $\vec{x} = (1-t)\vec{a} + t\vec{b}$
Point-Normal Form in \mathbb{R}^2 $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$
Standard Form in \mathbb{R}^2 $ax + by = c$ where $\vec{n} = \langle a, b \rangle$ and $c = \vec{n} \cdot \vec{p}$

Plane Equations in \mathbb{R}^3

MATH 152 Formula Sheet

Vector/Parametric $\vec{x} = \vec{p} + \vec{a}s + \vec{b}t$ Point-Normal Form $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ Standard Form in \mathbb{R}^3 ax + by + cz = d where $\vec{n} = \langle a, b, c \rangle$ and $d = \vec{n} \cdot \vec{p}$ Two Lines/Three Points Use \vec{a} , \vec{b} and $\vec{n} = \vec{a} \times \vec{b}$

Hyperplanes

A hyperplane has dimension n-1 in \mathbb{R}^n Point-Normal Form $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ Standard Form $a_1x_1 + \cdots + a_nx_n = d$ where $\vec{n} = \langle a_1, \dots a_n \rangle$ and $\vec{d} = \vec{n} \cdot \vec{p}$

Distance Between Objects

Distance between point \vec{q} and line $\vec{x} = \vec{p} + \vec{a}t$: $d = \|\mathrm{perp}_{\vec{a}}(\overrightarrow{pq})\| = \|\mathrm{proj}_{\vec{a}^{\perp}}(\overrightarrow{pq})\|$ Distance between point \vec{q} and hyperplane with point \vec{p} : $d = \|\mathrm{proj}_{\vec{n}}(\overrightarrow{pq})\|$

Intersection of Objects

Use parametric forms and see if solutions for parameters are consistent.

Linear Systems

Gauss-Jordan Elimination

- 1. Set the top left entry to 1
- 2. Use the first row to 'kill off' other entries in the first column
- 3. For column 2, use one row to 'kill off' other entries in that column
- 4. Repeat process until the matrix is in RREF

Solutions to Linear Systems

rank: number of leading 1s in the RREF. n: number of unknowns.

- If rank(**A**) < rank([**A** | \vec{b}]), the system is inconsistent.
- If $rank(\mathbf{A}) = rank([\mathbf{A} \mid \vec{b}]) = n$, there is a unique solution.
- If $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}([\mathbf{A} \mid \vec{b}]) < n$, there are infinitely many solutions. k-parameter family of solutions where $k = n \operatorname{rank}(A)$.

Polynomial Interpolation

With points $(x_1, y_1), \dots, (x_n, y_n)$ and $p(x) = r_0 + r_1 x + \dots + r_{n-1} x^{n-1}$, solve:

$$\begin{bmatrix} 1 & x_1 & \cdots & x_1^{n-1} & y_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} & y_n \end{bmatrix}$$

Matrices

Matrix Multiplication

$$\mathbf{A}_{m \times p} \mathbf{B}_{p \times n} = (\mathbf{A}\mathbf{B})_{m \times n}$$

$$\mathbf{A}\mathbf{I} = \mathbf{I}\mathbf{A} = \mathbf{A}$$

$$\begin{bmatrix} -\vec{a}_1 - \\ \vdots \\ -\vec{a}_m - \end{bmatrix} \begin{bmatrix} \begin{vmatrix} & & & \\ \vec{b}_1 & \cdots & \vec{b}_n \\ & & & \end{vmatrix} = \begin{bmatrix} \vec{a}_1 \cdot \vec{b}_1 & \cdots & \vec{a}_1 \cdot \vec{b}_n \\ \vdots & \ddots & \vdots \\ \vec{a}_m \cdot \vec{b}_1 & \cdots & \vec{a}_n \cdot \vec{b}_n \end{bmatrix}$$

Transpose

$$(\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}$$

 $(\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}$
 $(\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$
 $(k\mathbf{A})^{\mathsf{T}} = k\mathbf{A}^{\mathsf{T}}$
Symmetric: $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$
Skew-symmetric: $\mathbf{A}^{\mathsf{T}} = -\mathbf{A}$

Inverse

A is invertible if $\det(\mathbf{A}) \neq 0$. $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$ $(k\mathbf{A})^{-1} = \frac{1}{k}\mathbf{A}^{-1}$ $(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}$ $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ 2×2 matrix inverse: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ General matrix inverse:

- 1. Augment $[\mathbf{A} \mid \mathbf{I}]$
- 2. Use Gauss-Jordan Elimination to row reduce \mathbf{A} to \mathbf{I} , creating the matrix $[\mathbf{I} \mid \mathbf{X}]$
- 3. $A^{-1} = X$.

Elementary Matrices

$$(\mathbf{E}_k \cdots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1) \mathbf{A} = \mathbf{I}$$

$$\mathbf{A} = \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \cdots \mathbf{E}_k^{-1}$$

Invertible Matrix Theorem

- A is invertible
- \bullet A^T is invertible
- $\operatorname{rank}(\mathbf{A}) = n$
- The RREF of $\mathbf{A}_{n \times n}$ is \mathbf{I}_n
- A is a product of elementary matrices
- The linear system $\mathbf{A}\vec{x} = \vec{b}$ has a unique solution
- The homogeneous system $\mathbf{A}\vec{x} = \vec{0}$ has only the trivial solution
- $det(A) \neq 0$
- 0 is not an eigenvalue of **A**

Matrix Equations

$$\mathbf{A}\vec{x} = \vec{b} \implies \vec{x} = \mathbf{A}^{-1}\vec{b}$$

Linear Transformations

$$T(\vec{x}) = \mathbf{A}\vec{x}$$

$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$

$$T(s\vec{x}) = sT(\vec{x})$$

$$\mathbf{A} = [T(\vec{e}_1) \mid T(\vec{e}_2) \mid \cdots \mid T(\vec{e}_n)]$$

$$(S \circ T)(\vec{x}) = S(T(\vec{x})) = \mathbf{B}\mathbf{A}\vec{x}$$

Inverse of linear transformation: $(S \circ T)(\vec{x}) = \vec{x}$. The inverse transformation T^{-1} is induced by the matrix \mathbf{A}^{-1} .

Rotations

$$Rot_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Reflections

$$\operatorname{Ref}_{m} = \frac{1}{1+m^{2}} \begin{bmatrix} 1-m^{2} & 2m\\ 2m & m^{2}-1 \end{bmatrix}$$
$$\operatorname{Ref}_{\theta} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta)\\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

Compositions

$$Rot_{\theta} \circ Rot_{\phi} = Rot_{\theta+\phi}$$

$$Ref_{\theta} \circ Ref_{\phi} = Rot_{2(\theta-\phi)}$$

$$Rot_{\theta} \circ Ref_{\phi} = Ref_{\phi+\theta/2}$$

$$Ref_{\theta} \circ Rot_{\phi} = Ref_{\phi-\theta/2}$$

Projections

$$\operatorname{Proj}_{m} = \frac{1}{1+m^{2}} \begin{bmatrix} 1 & m \\ m & m^{2} \end{bmatrix}$$

$$\operatorname{Proj}_{\theta} = \frac{1}{2} \begin{bmatrix} \cos^{2}\theta & \cos\theta\sin\theta \\ \cos\theta\sin\theta & \sin^{2}\theta \end{bmatrix}$$

$$\operatorname{Proj}_{\theta} = \frac{1}{2} \begin{bmatrix} 1+\cos2\theta & \sin2\theta \\ \sin2\theta & 1-\cos2\theta \end{bmatrix}$$

Simple Determinants

$$\det([a]) = a$$

$$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\det\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Determinant Properties

If $\bf A$ has a zero row or zero column, then $\det({\bf A})=0$ If two rows or two columns are scalar multiples, then $\det({\bf A})=0$ $\det({\bf A})=\det({\bf A}^{\sf T})$

$$det(\mathbf{A}) = det(\mathbf{A}^{\mathsf{T}})$$
$$det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$$

$$\det(\mathbf{A}^x) = \det(\mathbf{A})^x$$

$$det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$$
$$det(k\mathbf{A}) = k^n det(\mathbf{A})$$

If A is triangular, then det(A) is equal to the product of the entires on the main diagonal.

Simplifying Determinants

Swap Rows $\det(\mathbf{B}) = -\det(\mathbf{A})$ Multiply Row by k $\det(\mathbf{B}) = k \det(\mathbf{A})$ Add Factor of a Row $\det(\mathbf{B}) = \det(\mathbf{A})$ These rules also apply if operations are performed on

Calculating Determinants

columns.

Minor: M_{ij} is the determinant of the submatrix that remains after removing row i and column j

Cofactor: $C_{ij} = (-1)^{i+j} M_{ij}$

 $det(\mathbf{A})$ is equal to the products of entries and cofactors along any row or column

Determinants and Inverse

 $\mathbf{C}_{\mathbf{A}}$: matrix of cofactors.

Adjoint matrix:
$$adj(\mathbf{A}) = (\mathbf{C}_{\mathbf{A}})^T$$

$$\mathbf{A}^{-1} = \frac{1}{\det(A)} \operatorname{adj}(\mathbf{A})$$

Cramer's Rule

Let $\mathbf{A}_{n \times n}$ be an invertible matrix, and let $\vec{b} \in \mathbb{R}^n$ be a constant vector.

Define \mathbf{A}_i to be matrix \mathbf{A} with column i replaced by \vec{b} . Then, $x_i = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})}$

Complex Numbers

Definitions

Imaginary Number $i^2 = -1$ Complex Numberz = a + biConjugate $\overline{z} = a - bi$ Real Part $\Re(z) = \frac{z + \overline{z}}{2}$ Imaginary Part $\Im z = \frac{z - \overline{z}}{2}$ Norm $|z| = \sqrt{a^2 + b^2}$

Operations and Identities

$$\begin{array}{l} \overline{(z\pm u)} = \overline{z} \pm \overline{u} \\ \overline{zu} = \overline{z} \cdot \overline{u} \\ \overline{z} = \overline{z} \\ \overline{u} = \overline{z} \\ z \cdot \overline{z} = |z|^2 \\ |zu| = |z||u| \\ \frac{u}{z} = \frac{u\overline{z}}{|z|^2} \end{array}$$

Polar Form

$$z = r(\cos \theta + i \sin \theta) = re^{i\theta}$$

$$\arg(z) = \theta = \arctan(\frac{b}{a})$$

$$z \cdot w = (re^{i\theta}) \cdot (se^{i\phi}) = (rs)e^{i(\theta + \phi)}$$

Powers and Roots

$$z^{n} = r^{n}(\cos(n\theta) + i\sin(n\theta))$$
Solving $z^{n} = w$, where $w = se^{i\phi}$:
$$z_{1} = \sqrt[n]{s}e^{i(\phi)/n}$$

$$z_{2} = \sqrt[n]{s}e^{i(\phi+2\pi\cdot 1)/n}$$

$$\vdots$$

$$z_{n} = \sqrt[n]{s}e^{i(\phi+2\pi\cdot (n-1))/n}$$

Vector Spaces

Vector Space Axioms

- 1. $\vec{u} + \vec{v}$ must be in V (Closure)
- 2. $k \cdot \vec{v}$ must be in V (Closure)
- 3. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (Associativity)
- 4. $\vec{k} \cdot (\vec{m} \cdot \vec{v}) = (km) \cdot \vec{v}$ (Associativity)
- 5. $k \cdot (\vec{u} + \vec{v}) = k \cdot \vec{u} + k \cdot \vec{v}$ (Distributivity)
- 6. $(k+m) \cdot \vec{v} = k \cdot \vec{v} + m \cdot \vec{v}$ (Distributivity)
- 7. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (Commutativity)
- 8. $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$ (Additive Identity)
- 9. $\vec{v} + (-\vec{v}) = \vec{0}$ (Additive Inverse)
- 10. $1 \cdot \vec{v} = \vec{v}$ (Multiplicative Identity)

Vector Subspace

- 1. W contains the zero vector of $V: \vec{0} \in W$
- 2. W is closed under vector addition: $\vec{w}_1 + \vec{w}_2 \in W$
- 3. W is closed under scalar multiplication: $k \cdot \vec{w}_1 \in W$

It suffices to show that $a\vec{w_1} + b\vec{w_2} \in W$

Linear Independence

 $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent

Span

If $S = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n}$, then span(S) is the set of all linear combinations of the vectors in S.

Checking if $\vec{b} \in \text{span}(S)$: solve

$$\begin{bmatrix} | & | & & | & | \\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n & | & \vec{b} \\ | & | & & | & | & | \end{bmatrix}$$

If V is a vector space and span(S) = V, then S is a generating set of V

Basis

If B is linearly independent and a generating set of V, then B is a basis for V

Dimension

in its basis, denoted as $\dim(V)$

Coordinates

If
$$B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$
 is a basis of V , and $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$, then

are the coordinates of \vec{v} relative to the basis B.

Column and Null Space

Given a matrix $\mathbf{A}_{n\times n}$:

Column space: $\operatorname{Col}(\mathbf{A}) = \{ \vec{b} \in \mathbb{R}^n \mid \mathbf{A}\vec{x} = \vec{b} \}$ where $\vec{x} \in \mathbb{R}^n$ Column space: $Col(\mathbf{A}) = span(\{\vec{a}_1, \dots, \vec{a}_n\})$ (column vectors)

Null space: Null(\mathbf{A}) = { $\vec{x} \in \mathbb{R}^n \mid \mathbf{A}\vec{x} = \vec{0}$ } $rank(\mathbf{A}) + dim(Null(\mathbf{A})) = n$

Eigen-Analysis

Eigenvectors and Eigenvalues

Consider $\mathbf{A}_{n\times n}$. $\vec{x}\in\mathbb{R}^n$ is an eigenvector of \mathbf{A} with associated eigenvalue $\lambda \in \mathbb{R}$ if:

$$\mathbf{A}\vec{x} = \lambda\vec{x}$$

Characteristic Polynomial

$$p_A(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$$

Eigenvalues: λ such that $p_A(\lambda) = 0$

Solving Method

- 1. Use $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ to solve for λ
- 2. Use $(\mathbf{A} \lambda_i \mathbf{I})\vec{x}_i = \vec{0}$ to solve for \vec{x}_i . Each eigenvector is not unique, scalar multiples are valid

Algebraic multiplicity: number of times the eigenvalue appears as a root

Geometric multiplicty: number of corresponding eigenvectors for the eigenvalue

 2×2 matrices:

$$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} a & b \\ ? & ? \end{bmatrix} \implies \vec{x} = \begin{bmatrix} -b \\ a \end{bmatrix}$$

Properties

Triangular Matrix Diagonal entries are eigenvalues $\mathbf{A}^m \vec{x} = \lambda^m \vec{x}$ $\det(\mathbf{A}) = \lambda_1 \times \lambda_2 \times \cdots \times \lambda_n$ The dimension of a vector space V is the number of vectors $\operatorname{tr}(\mathbf{A}) = a_1 1 + a_2 2 + \dots + a_n n = \lambda_1 + \lambda_2 + \dots + \lambda_n$ If **P** is an invertible matrix, then **A** is similar to $P^{-1}AP$

Diagonalization

and have the same eigenvalues

 \mathbf{A} is diagonalizable if \mathbf{A} is similar to a diagonal matrix \mathbf{D} ,

where
$$\mathbf{D} = \mathbf{P}^{-1}\mathbf{AP}^{-1}$$

$$\mathbf{P} = \begin{bmatrix} | & | & & | \\ \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \\ | & | & & | \end{bmatrix} \text{ (matrix of eigenvectors)}$$

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n \end{bmatrix} \text{ (eigenvalues in same order)}$$

Diagonalization Theorem

- 1. $\mathbf{A}_{n \times n}$ is diagonalizable if and only if \mathbf{A} has n linearly independent eigenvectors
- 2. Or if algebratic multiplicty matches geometric multiplicity for all eigenvalues
- 3. Or if **A** has n distinct eigenvalues

 $\mathbf{A}^k = \mathbf{P}\mathbf{D}^k\mathbf{P}^{-1}$. For diagonal matrices,

$$\mathbf{D}^{k} = \begin{bmatrix} d_{1}^{k} & 0 & \cdots & 0 \\ 0 & d_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & d_{n}^{k} \end{bmatrix}$$

Markov Chains

A matrix whose columns are numbers between [0, 1], which

 a_{ij} : probability of moving from j to i

State vector:
$$\vec{x}_n = \begin{bmatrix} x_{1n} \\ \vdots \\ x_{nn} \end{bmatrix}$$
 (each amount at time n)

Markov Chain equation: $\vec{x}_{n+1} = \mathbf{A}\vec{x}_n$ Steady state vector: $\vec{x}_s = \mathbf{A}\vec{x}_s$. \vec{x}_n approaches \vec{x}_s for large n $(\mathbf{I} - \mathbf{A})\vec{x}_s = \vec{0}$, solve using Gauss-Jordan elimination

Linear Dynamical Systems

$$\vec{v}_{n+1} = \mathbf{A}\vec{v}_n$$
$$\vec{v}_n = \mathbf{A}^n\vec{v}_0 = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}\vec{v}_0$$

Recurrence Relations

$$\begin{array}{l} x_{n+2}=cx_n+dx_{n+1},\,x_0=a,\,x_1=b. \text{ Let } y_n=x_{n+1}\\ \begin{bmatrix} x_{n+1}\\y_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1\\c & d \end{bmatrix} \begin{bmatrix} x_n\\y_n \end{bmatrix} \end{array}$$

Differential Equations

Simple Differential Equation

Solution to y' = ay is $y(x) = ce^{ax}$

System of Linear Differential Equations

$$\begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- 1. Set $\vec{y}' = \mathbf{A}y$
- 2. Find the eigenvalues and eigenvectors of **A**
- 3. $\vec{x}(t) = (c_1 e^{\lambda_1 x}) \vec{x}_1 + (c_2 e^{\lambda_2 x}) \vec{x}_2 + \dots + (c_n e^{\lambda_n x}) \vec{x}_n$

Higher Order Differential Equation

Substitute $y_1 = y, y_2 = y', \dots$

Convert to system of linear differential equations with single derivatives on the left hand side