Problem 7.5

Given $\forall x. (p(x) \Rightarrow q(x))$ and $\exists x. p(x)$, use the Fitch system to prove $\exists x. q(x)$.

To apply a rule of inference, check the lines you wish to use as premises and click the button for the rule of inference. Reiteration allows you to repeat an earlier item. To delete one or more lines from a proof, check the desired lines and click Delete.

Whenever entering expressions, use Ascii characters only. Use \sim for \neg ; use & for \wedge ; use | for \vee ; use => for \Rightarrow ; use A for \forall ; use E for \exists ; and use : for . in quantified sentences. Also, for variables use strings of alphanumeric characters that begin with a capital letter. For example, to write the sentence $\forall x. \exists y. (p(x) \land q(y) \Rightarrow r(y) \land \neg s(y))$, write $\exists x. \exists y. (p(x) \land q(y) \Rightarrow r(y) \land \neg s(y))$.

Proof Editor					
1.	$AX:(p(X) \Rightarrow q(X))$	Premise			
2.	EX:p(X)	Premise			
3.	p(X)	Assumption			
4.	p(X) => q(X)	Universal Elimination: 1			
5.	q(X)	Implication Elimination: 4, 3			
6.	EX:q(X)	Existential Introduction: 5			
7.	p(X) => EX:q(X)	Implication Introduction: 6			
8.	AX:(p(X) => EX:q(X))	Universal Introduction: 7			
9.	EX:q(X)	Existential Elimination: 2, 8			
Goal	EX:q(X)	Complete Submit			
	Assumption Negation Introduction Implication Introduction Reiteration Negation Elimination Implication Elimination	Universal Introduction Universal Elimination			

Delete	And Introduction	Biconditional Introduction	Existential Introduction
	And Elimination	Biconditional Elimination	Existential Elimination
	Or Introduction		
	Or Elimination		
	R	Show XML	