Modelo de predicción de consumo energético en hogares

Guillermo Fernández

Objetivo

Determinar un modelo en el cual se pueda determinar la demanda de energía eléctrica horaria horario para la planificación de la oferta de energía

Visión

Evitar problemas de suministro de energía eléctrica como cortes en el servicio, flickers u otros, además de poder optimizar el despacho desde el proveedor desde el operador de energía

Curva de demanda horaria nacional

Contexto y Alcance

- El costo hacia el generador es diferenciado
- ▶ El costo en hora punta (t2) es de 17 ctvs/kwh
- ► En T2 y T1 es de aprox 9ctvs/kwh

Determinar un modelo de predicción de demanda en el sector residencial en el que se pueda obtener información de para nuevos proyectos inmobiliarios

Entendimiento de los Datos

- Origen de datos:
- https://www.kaggle.com/datasets /ajinilpatel/energy-consumptionprediction/data
- Generalidades:
- Dataset Original es 1000 incidencias, generó 4000 incidencias adicionales de data sintetica
- Actualizaciones: Cada cuatrimestre

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype	
0	Month	5000 non-null	int64	
1	Hour	5000 non-null	int64	
2	DayOfWeek	5000 non-null	object	
3	Holiday	5000 non-null	object	
4	Temperature	5000 non-null	float64	
5	Humidity	5000 non-null	float64	
6	SquareFootage	5000 non-null	float64	
7	Occupancy	5000 non-null	int64	
8	HVACUsage	5000 non-null	object	
9	LightingUsage	5000 non-null	object	
10	RenewableEnergy	5000 non-null	float64	
11	EnergyConsumption	5000 non-null	float64	
<pre>dtypes: float64(5), int64(3), object(4)</pre>				
memory usage: 468.9+ KB				

Histograma del consumo de energía

200

150

50

60

70

80

90

100

Energia Consumida

Entendimiento de los Datos

Preparación de los Datos

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 12 columns): Column Non-Null Count Dtype Month 5000 non-null int64 Hour 5000 non-null int64 DayOfWeek 5000 non-null object Holiday object 5000 non-null float64 Temperature 5000 non-null Humidity 5000 non-null float64 SquareFootage 5000 non-null float64 int64 **HVACUsage** 5000 non-null object LightingUsage 5000 non-null object RenewableEnergy 5000 non-null float64 float64 EnergyConsumption 5000 non-null dtypes: float64(5), int64(3), object(4) memory usage: 468.9+ KB

Modelado

Tabla resumen de modelos de regresión:

	Model	RMSE	R2
0	Linear Regression	4.308466e-16	1.000000
1	Random Forest	0.000000e+00	1.000000
2	Gradient Boosting	2.967304e-02	0.998203
3	Bagging Regressor	4.324697e-01	0.618278

Evaluación e Interpretación de Resultado

Plan de Implementación

- Dash board en Power BI
- Se deberá actualizar el data set del modelo cada 6 meses
- Se plantean indicadores de consumo de energía por hogar,

* Imagen referencial

Conclusiones, Próximos Pasos y Recomendaciones

- Se debe trabajar en mejorar el modelo de predicción debido a que los picos de demanda debe ser el enfoque mas importante
- Se debe trabajar en un data set de proyecciones climáticas (temperatura) y proyectos de viviendas
- Se deberá realizar encuestas para evitar sesgos por los datos sintéticos

