第5章 原子结构与元素周期性

一 电子运动的描述

1. 波函数

波函数 $\phi(x,y,z)$ 量子力学中,描述粒子运动状态的**数学函数**

- · 运动状态相关的观测值(位置、动量等)都通过对波函数进行数学运算得到
- · 粒子在空间各点有概率地出现,其**概率密度函数**为 $|\phi|^2$,通过**电子云**来表现

电子云 以小黑点的疏密来表示概率密度大小所得的图象

2. 薛定谔方程

· 微观粒子的波函数应该满足薛定谔方程

薛定谔方程 $\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + \frac{8\pi^2 m}{h^2} (E - V) \psi = 0$

m— 粒子质量 ϕ — 波函数 E — 体系总能量 V — 粒子势能 h — 普朗克常数

· 偏微分方程, 有多个解, 但只有一部分解是能够描述微观状态的波函数

二 单电子原子的结构

- 0. 方程求解(省略,只需记住以下两点)
 - ① 求解过程中进行了**坐标系变换**(直角坐标系 \rightarrow 球坐标系,如果不了解详见《微积分 \parallel 》) 最后得到的**波函数解** $\phi(r,\theta,\varphi)$ **可以写成变量分离的形式** $R(r)Y(\theta,\varphi)$
 - ② 微分方程存在无穷多个解,但不是所有的解都能够作为波函数。**求解过程中有三个常数** *n*, *l*, *m* **需要取特定值,才能解出合理的唯一波函数**(实际上解仍有无穷多个,但它们都代表同一个波函数)
 - : -4n,l,m 就能确定一个波函数 ϕ 及其能量 E , 从而反映电子的状态
- 1.量子数(4个量子数就描述原子中每个电子的运动状态)

名称	符号	取值限制	对波函数的影响	备注
主量子数	n	1, 2, 3, ···	最大概率区域离核远近	n 相同的电子构成一个 电子层
角量子数	l	$0, 1, 2, \cdots, n-1$	电子云形状	n, l 相同的电子构成一个亚层
磁量子数	m	$0, \pm 1, \pm 2, \cdots, \pm l$	电子云空间取向	n,l,m 确定了一个原子轨道
自旋量子数	\mathcal{S}_i	$\pm 1/2$	电子自身运动状态	一个轨道容纳两个自旋相反的电子

- ·一个亚层的轨道数 2l+1,电子数 2(2l+1);一个电子层的轨道数 n^2 ,电子数 $2n^2$
- · 主量子数用数字表示, 角量子数用 "s,p,d,f……" 表示

l	0	1	2	3
符号	s	p	d	f

2. 波函数的图象

① 原子轨道角度分布 $Y_{l,m}(\theta,\varphi)$

★ 曲线/面上一 点到原点距离 |Y|角度为θ,φ

● 图形中标记"+""-"表示Y的正负

② 电子云角度分布 |Y|²

★ 曲线/面上一 点到原点距离 |Y|²角度为θ,φ

↑ 相比原子轨道 角度分布,电子云 角度分布更瘦,并 且不分正负

三 多电子原子的结构

- · 由于电子间存在相互作用, 多电子薛定谔方程无法精确求解
- · 近似求解:原子轨道仍然相同,但能量发生变化,不仅取决于n,还取决于l
- · 电子按照三条规则排布在这些轨道上

1. 基态原子中电子分布原理

- ① 能量最低原理 电子优先占据能量较低的轨道
 - · 同一电子层中各个能级都不同, 同一亚层的能级都相同
 - · 大部分元素的原子轨道能级顺序遵循**鲍林能级图**,但不同元素的同一原子轨道能级绝对值并不相同

→ 鲍林能级图

· 只反映同一原子的不同轨道能级的相对高低

- ② 泡利不相容原理 同一原子轨道的两个电子自旋方向相反
- ③ **洪特规则** 电子在同一亚层中排布时,**优先占据空轨道**,并保持相同的自旋方向 亚层被**半充满**或**全充满**时最稳定(→ Cr、Cu 等原子排布式书写)
- · 用图表示排布: 以 □ 或 ___ 表示原子轨道,用 ↑ ↓表示电子及其自旋方向

2. 原子核外电子排布式书写

·用"1s" "2p" 这样的 n,l 来表示亚层,右上角标出电子个数,也就是不再区分亚层轨道

亚层的书写顺序按照n和l的顺序,而非能级顺序

· 大多电子排布的前面一部分是某稀有气体的电子排布, 因此可以简化为 [稀有气体] + 后续电子排布

原子实 ↑ ↑ 外层电子构型

3. 基态原子的价层电子构型

价电子	原子发生化学反应时易参与形成化学键的电子	
价层	价电子所在的亚层	
价层电子构型	构型 价层电子分布式,能反应该元素原子电子层结构	

· 价层中的电子并非一定全是价电子,如 Ag 的价层电子构型为 $4d^{10}5s^1$,而其氧化数只有+1、+2、+3

4. 简单基态阳离子的电子分布

· 形成阳离子时,电子失去顺序为 $np \rightarrow ns \rightarrow (n-1)d \rightarrow (n-2)f$ 如 Fe^{2+} [Ar] $3d^6$ $4s^0$

四 元素周期表

1. 周期

基态原子填有电子能级中的最大主量子数为元素所处周期数,前三周期为短周期,后四周期为长周期

2.分区

名称	备注	价电子构型
s⊠	最后一个电子填充在 s 轨道	n s $^{1\sim2}$
p⊠	最后一个电子填充在 p 轨道	$n\mathrm{s}^2n\mathrm{p}^{1\sim 6}$
d⊠	最后一个电子填充在次外层 d 轨道	$(n-1) d^{1\sim 9} n s^{1\sim 2}$
ds ⊠	次外层d轨道全满	$(n-1) d^{10} n s^{1-2}$
f⊠	最后一个电子填充在 f 轨道	略

3.族

名称	简介	符号	族数判断
主族	s 区和 p 区元素	$\operatorname{I} A \sim \operatorname{\mathbb{I}} A$	价电子总数即为族数
副族	d 区、ds 区、f 区元素	IB~Ⅷ(有3列)	d 区、f 区元素价电子总数为族数 ds 区最外层 s 电子数为族数
零族	稀有气体	$(n-1) d^{1\sim 9} n s^{1\sim 2}$	

五 元素周期律

1. 相关性质一览

① 原子半径

共价半径	两个相同原子形成共价键时,其核间距离的一半	
金属半径	金属单质晶体中,两个相邻金属原子核间距离的一半	
范德华半径	分子晶体中,两个相邻分子核间距离的一半	

② 电离能

第一电离能 I, 基态的中性气态原子失去一个电子形成气态阳离子所需的能量

第二电离能 I_2 氧化数为+1 的气态阳离子失去一个电子形成氧化数为+2 的气态阳离子所需的能量

· 电离能越小, 原子越易失去电子; 电离能越大, 原子越难失去电子

③ 电子亲合能

第一电子亲合能 E_{A1} 基态气态原子得到一个电子形成气态阴离子所放出的能量

第二电子亲合能 E_{A2} 氧化数-1 的气态阴离子得一个电子形成氧化数-2 的气态阴离子放出的能量

· 电子亲合能代数值越小, 原子越易得到电子

④ 电负性

电负性 γ 元素在分子中吸引成键电子的能力

· 电负性越大, 元素原子吸引电子能力越强 → 元素原子越易得到电子, 越难失去电子

⑤ 金属性与非金属性

金属性 在化学反应中失去电子,变为低正氧化数阳离子的特性

非金属性 在化学反应中得到电子,变为阴离子的特性

· 金属性通过电离能判断, 非金属性通过电子亲合能判断, 两者均可通过电负性判断

2. 变化规律

名称	周期规律(从左往右)	族规律(从上到下)
原子半径	主族: ↓ 副族: 略 ↓ 镧系: ↓ (镧系收缩)	主族: ↑ 副族: 略↑
电离能	主族: ↑ 副族: —	主族: ↓ 副族: 略↑
电负性	^	主族: ↓ III~VB: ↓ VI~IIB: ↑
金属性	\	主族: ↑ Ⅲ~VB: ↑ Ⅵ~ⅡB: ↓
非金属性	^	主族: ↓