Information Bottleneck

Youlong Wu

ShanghaiTech University

wuyl1@shanghaitech.edu.cn

- Vanilla Information Bottleneck
- Supervised Variational Information Bottleneck
- Unsupervised Variational Information Bottleneck v

Vanilla Information Bottleneck¹

- ullet Source input X, Label Y
- Extracted Feature Z: Estimated label \hat{Y}
- Information complexity: I(X;Z), information utility I(Z;Y)

$$L = \min_{p(z|x)} I(X; Z) - \beta I(Z; Y)$$

¹N. Tishby, F.C. Pereira, and W. Biale. The information bottleneck method. In The 37th annual Allerton Conf. on Communication, Control, and Computing. pp. 368–377, 1999

Usefulness of Information Bottleneck

- Explain the learning process of DNN (T: layer's output of DNN)
- Guide the feature extraction of learning process

Challenges: 1) How to calculate/estimate mutual information; 2) Optimal stochastic information p(x, z) are hard to unknown

Deep Variational Information Bottleneck²

$$L = \min_{p(z|x)} I(X;Z) - \beta I(Z;Y)$$

- I(Y;Z) is a function of p(z,y), p(z,y) is hard to know
- ullet Let decoder q(y|z) be a variational approximation to p(y|z)

$$\begin{split} I(Z;Y) &= H(Y) + \int p(y,z) \log p(y|z) dy dz \\ &= H(Y) + \int p(y,z) \log \frac{p(y|z)}{q(y|z)} dy dz + \int p(y,z) \log q(y|z) dy dz \\ &\geq H(Y) + \int p(y,z) \log q(y|z) dy dz = H(Y) + E_{p(y,z)} \log q(y|z) \\ &= H(Y) + \int p(x,y) p(z|x) \log q(y|z) dx dy dz \end{split}$$

where the inequality holds by $KL(p||q) \ge 0$. Note H(Y) = const.

²Alemi, Alexander A. et al. Deep Variational Information Bottleneck. ICLR, 2017

Deep Variational Information Bottleneck

$$L = \min_{p(z|x)} I(X;Z) - \beta I(Z;Y)$$

- I(X;Z) is a function of p(z,x), where computing p(z) is difficult
- Let r(z) be be a variational approximation to p(z)

Since
$$\mathrm{KL}(p(z)||r(z)) = \int p(z) \log p(z)/r(z) dz \ge 0$$
, we have
$$\int p(z) \log p(z) dz \ge \int p(z) \log r(z) dz \tag{1}$$

Thus,

$$\begin{split} I(Z;X) &= H(Z) - H(Z|X) \\ &= -\int p(z)\log p(z)dz + \int p(x,z)\log p(z|x)dxdz \\ &\leq -\int p(z)\log r(z)dz + \int p(x,z)\log p(z|x)dxdz \\ &= \int p(x,z)\log \frac{p(z|x)}{r(z)}dxdz \end{split}$$

Deep Variational Information Bottleneck

$$L = \min_{p(z|x)} I(X;Z) - \beta I(Z;Y)$$

Rewrite: Need p(x, y), r(z), p(z|x), q(y|z) to compute

$$\begin{split} &I(Z;Y) \geq H(Y) + \int p(x,y)p(z|x)\log q(y|z)dxdydz\\ &I(Z;X) \leq \int p(x,z)\log \frac{p(z|x)}{r(z)}dydz \end{split}$$

Use Monte Carlo sampling: $p(x,y) = \frac{1}{N} \sum_{n=1}^{N} \delta_{x_n}(x) \delta_{y_n}(y)$, we have

$$\min_{p(z|x)} I(X; Z) - \beta I(Z; Y) \le \min_{p(z|x)} \int p(x, z) \log \frac{p(z|x)}{r(z)} dx dz - \beta E_{p(y, z)} \log q(y|z)$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} \left[\int p(z|x_n) \log \frac{p(z|x_n)}{r(z)} dz - \beta \int p(z|x_n) \log q(y_n|z) dz \right]$$

Question: How to compute the integration over RV Z?

The Reparameterization Trick³: Computing $E_{p(z|x)}[f(Z)]$

- Let a deterministic mapping $z=g_\phi(x,\epsilon)$
- ullet is an RV with independent marginal $p(\epsilon)$
- The noise ϵ is independent of f, so it is easy to take gradients
- ullet g_{ϕ} is some vector-value function parameterzied by ϕ
- we have

$$\begin{split} g_\phi(z|x)dz &= p(\epsilon)d\epsilon \\ \int g_\phi(x,\epsilon)f(z)dz &= \int p(\epsilon)f(z)d\epsilon = \int p(\epsilon)f(g_\phi(\epsilon,x))d\epsilon \\ \int g_\phi(x,\epsilon)f(z)dz &= \frac{1}{N}\sum_{n=1}^N f(g_\phi(\epsilon_n,x)) \text{, where } \epsilon_n \sim p(\epsilon) \end{split}$$

• E.g., Let $z=(\mu+\sigma\epsilon)\sim p(z|x)=\mathcal{N}(\mu,\sigma^2)$, where $\epsilon\sim\mathcal{N}(0,1)$. Then

$$E_{\mathcal{N}(z;\mu,\sigma^2)}[f(Z)] = E_{\mathcal{N}(z;0,1)}[f(\mu+\sigma\epsilon)] \approx \frac{1}{N} \sum_{n=1}^{N} f(\mu+\sigma\epsilon_n)$$

³Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.

The Reparameterization Trick for Deep IB

Rewrite Deep IB:

$$L = \frac{1}{N} \sum_{n=1}^{N} E_{p(z|x_n)} \left[\log \frac{p(z|x_n)}{r(z)} - \beta \log q(y_n|z) \right]$$

- Assume $p(z|x) = \mathcal{N}(z|f_e^\mu(x,f_e^\Sigma(x)))$
- f_e : MLP encoder that outputs J-dimensional mean μ and variance matrix $\Sigma = \mathrm{diag}(\sigma_1^2,\ldots,\sigma_J^2)$ for z.
- Let $p(z|x)dz = p(\epsilon)d\epsilon$ where $z = \mu + \Sigma \epsilon$, $\epsilon \sim \mathcal{N}(0, \mathbf{I})$
- Let $r(Z) = \mathcal{N}(0, \mathbf{I})$ $\big(r(z)$ is the variational approximation to $p(z)\big)$

$$L = \frac{1}{N} \sum_{n=1}^{N} E_{p(z|x_n)} \left[\log \frac{p(Z|x_n)}{r(Z)} - \beta \log q(y_n|z) \right]$$
$$= \frac{1}{N} \sum_{n=1}^{N} \left[\sum_{j=1}^{J} (1 + \log \sigma_j^2 - \mu_j^2 - \sigma_j^2) - \beta \log q(y_n|z) \right]$$

Deep IB v.s. Variational Autoencoder

$$L_{\mathsf{Unsuper-IB}} = \max_{p(z|x)} I(X; Z) - \beta I(Z; i),$$

Consider unsupervised versions of IB:

$$I(Z,X) - \beta I(Z,i) \leq \int dx \, p(x) \int dz \, p(z|x) \log q(x|z) - \beta \frac{1}{N} \sum_i \mathrm{KL}[p(Z|x_i), r(Z)].$$

- Different from $L = \min_{p(z|x)} I(X;Z) \beta I(Z;Y)$
- ullet Maximize the mutual information contained in some encoding Z
- ullet Restrict how much information we allow our representation to contain about the identity of each data element in our sample (i)
- The upper bound is exactly the same as VAE

Upper Bound of Unsupervised IB

$$I(Z,X) - \beta I(Z,i) \leq \int dx \, p(x) \int dz \, p(z|x) \log q(x|z) - \beta \frac{1}{N} \sum_i \mathrm{KL}[p(Z|x_i), r(Z)].$$

Proof:

$$\begin{split} I(Z,X) &= \int dx \, dz \, p(x,z) \log \frac{p(x|z)}{p(x)} \\ &= H(x) + \int dz \, p(x) \int dx \, p(x|z) \log p(x|z) \\ &\geq \int dz \, p(x) \int dx \, p(x|z) \log q(x|z) \\ &= \int dx \, p(x) \int dz \, p(x|z) \log q(x|z). \end{split}$$

Since
$$p(z|i) = \int p(z|x)p(x|i) = \int p(z|x)\delta(x-x_i) = p(z|x_i)$$
 with $p(i) = \frac{1}{N}$.
$$I(Z,i) = \sum_i \int dz \, p(z|i)p(i)\log\frac{p(z|i)}{p(z)}$$

$$= \frac{1}{N}\sum_i \int dz \, p(z|x_i)\log\frac{p(z|x_i)}{p(z)}$$

$$\leq \frac{1}{N}\sum_i \int dz \, p(z|x_i)\log\frac{p(z|x_i)}{r(z)},$$

Applications of Deep IB

- Joint source-channel coding + IB
- Reinforcement Learning + IB
- Multimodal Data Learning + IB
- Graph Nural Leanring + IB
- etc.

On Variational Bounds of Mutual Information

Upper bound

$$\begin{split} I(X;Y) &\equiv \mathbb{E}_{p(x,y)} \left[\log \frac{p(y|x)}{p(y)} \right] \\ &= \mathbb{E}_{p(x,y)} \left[\log \frac{p(y|x)q(y)}{q(y)p(y)} \right] \\ &= \mathbb{E}_{p(x,y)} \left[\log \frac{p(y|x)}{q(y)} \right] - KL(p(y)\|q(y)) \\ &\leq \mathbb{E}_{p(x)} \left[KL(p(y|x)\|q(y)) \right] \triangleq R, \end{split} \tag{1}$$

On Variational Bounds of Mutual Information

 \bullet Lower bound: p(y|x) is unknown and its approximation q(x|y) is tractable

$$\begin{split} I(X;Y) &= \mathbb{E}_{p(x,y)} \left[\log \frac{q(x|y)}{p(x)} \right] \\ &+ \mathbb{E}_{p(y)} \left[KL(p(x|y)||q(x|y)) \right] \\ &\geq \mathbb{E}_{p(x,y)} \left[\log q(x|y) \right] + h(X) \triangleq I_{\text{BA}}, \end{split}$$

Deep Variational Multivariate Information Bottleneck

• Applications in different methods⁴.

Method Description	Gencoder	$G_{decoder}$
beta-VAE (Kingma & Welling, 2014; Higgins et al., 2016): Two independent Variational Autoencoder (VAE) models trained, one for each view, X and Y (only X graphs/loss shown). $L_{\text{VAE}} = \bar{I}^E(X; Z_X) - \beta \bar{I}^D(X; Z_X)$		$\begin{pmatrix} x \\ \vdots \\ z_{\chi} \end{pmatrix}$
DVIB (Alemi et al., 2017): Two bottleneck models trained, one for each view, X and Y , using the other view as the supervising signal. (Only X graphs/30s shown). $L_{\text{DVIB}} = \bar{I}^E(X;Z_X) - \beta \bar{I}^D(Y;Z_X)$	(x)-(y)	X Y Zx
beta-DVCCA: Similar to DVIB (Alemi et al., 2017), but with reconstruction for both views. Two models trained, compressing either X or Y , while reconstructing both X and Y . (Only X graphs/floss shown). $L_{DVCCA} = \bar{I}^{E}(X; Z_{X}) - \beta(\bar{I}^{D}(Y; Z_{X}) + \bar{I}^{D}(X; Z_{X}))$ DVCCA (Wang et al., 2016): a special case of β -DVCCA with $\beta = 1$.	(x)-(v)	
beta-joint-DVCCa: A single model trained using a concatenated variable $[X,Y]$, learning one latent representation Z . $L_{DVCCa} = \bar{l}^E((X,Y);Z) - \beta(\bar{l}^D(Y;Z) + \bar{l}^D(X;Z))$ joint-DVCCA (Wang et al., 2016): a special case of β -jbVCCA with $\beta = 1$.	X Y	(X), (Y)

beta-DVCCA-private: Two models trained, compressing either X or Y , while reconstructing both X and Y , and simultaneously learning private information W_X and W_Y . (Only X graphs/loss shown). $L_{\text{DVCCA},p} = \bar{I}^E(X;Z) + \bar{I}^E(X;W_X) + \bar{I}^E(Y;W_Y) - \beta(\bar{I}^D(X;(W_X,Z)) + \bar{I}^D(Y;(W_Y,Z)))$	(X — V (W _S (Z) H _T	X (7 0 (8)
DVCCA-private (Wang et al., 2016): a special case of β -DVCCA-p with $\beta = 1$. beta-joint-DVCCA-private: A single model was trained using a concatenated variable $[X, Y]$, learning one latent representation		
Z , and simultaneously learning private information W_X and W_Y . $L_{\rm BWCCA-p} = \bar{I}^E((X,Y);Z) + \bar{I}^E(X;W_X) + \bar{I}^E(Y;W_Y) - \beta(\bar{I}^D(X;(W_X,Z)) + \bar{I}^D(Y;(W_Y,Z)))$	Q-0 60 0 60	
joint-DVCCA-private (Wang et al., 2016): β -jDVCCA-p with $\beta=1$.		
$\begin{aligned} & \textbf{DVSIB: A symmetric model trained, producing } \ Z_X \ \text{and } \ Z_Y. \\ & L_{\text{DVSIB}} = \bar{I}^{\bar{E}}(X;Z_X) + \bar{I}^{\bar{E}}(Y;Z_Y) \\ & - \beta \left(\bar{I}^{M}_{\text{BINE}}(Z_X;Z_Y) + \bar{I}^{\bar{D}}(X;Z_X) + \bar{I}^{\bar{D}}(Y;Z_Y) \right) \end{aligned}$	(x) (x) (z)	$\begin{pmatrix} x & y \\ y & z \\ z_x \rightarrow z_y \end{pmatrix}$
DVSB-private: A symmetric model trained, producing Z_X and Z_Y , while simultaneously learning private information W_X and W_Y . $L_{\text{DVSIMP}} = \bar{I}^E(X; W_X) + \bar{I}^E(X; Z_X) + \bar{I}^E(Y; Z_Y) + \bar{I}^E(Y; Z_Y) + \bar{I}^E(Y; Z_Y)$	eg ge	66-60
$\beta \left(\bar{I}_{MINE}^{D}(Z_X; Z_Y) + \bar{I}^{D}(X; (Z_X, W_X)) + \bar{I}^{D}(Y; (Z_Y, W_Y)) \right)$		

⁴ Abdelaleem, Eslam et al. "Deep Variational Multivariate Information Bottleneck - A Framework for Variational Losses." ArXiv abs/2310.03311 (2023)