Contrôle 2: Physique

Cours de mathématiques spéciales (CMS)

9 janvier 2017 Semestre d'automne ID: -999

(écrire lisiblement s.v.p.)
Nom:
Prénom:
Groupe:

Question	Barème	Points
1	5	
2	51/2	
3	41/2	
4	5	
Total	20	

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 1 (à 5 points)

Points obtenus: (laisser vide)

On envoie une masse m d'un point A vers un point B séparé de A par une hauteur et une distance horizontale R. Pour ce faire, on utilise un des deux rails représentés sur la figure ci-dessous. Le premier rail est en ligne droite, alors que le second suit un quart de cercle. Sur chacun de ces deux chemins, m subit un freinage de norme f_0 constante.

(a) Donner pour chacun des deux chemins possibles, la norme v_B de la vitesse de la masse m en B en fonction de la norme v_A de la vitesse de m en A (on admet que m dépasse B).

Rép. : sur droite $v_B^2=v_A^2-R\frac{2mg+2\sqrt{2}f_0}{m}$, sur arc $v_B^2=v_A^2-R\frac{2mg+\pi f_0}{m}$

(b) Pour quelle valeur de v_A la hauteur maximale atteinte par m au-delà de B est-elle la même pour les deux chemins? Rép. : $v_A^2 = \frac{2R}{m} (mg + (\pi - \sqrt{2})f_0)$

Réponse à la question 1:

laisser la marge vide

laisser la marge vide

9 janvier 2017 ID: -999

laisser la marge vide

Question 2 (à $5\frac{1}{2}$ points)

Points obtenus: (laisser vide)

Une masse m peut glisser sans frottement sur un demi-cercle de rayon R placé dans un plan vertical. Elle est reliée au centre O du cercle par un fil élastique de longueur naturelle $\ell_0 = R$ et de constante de raideur k.

On éloigne alors la masse m du sommet en longeant le cercle avant de la lâcher (voir figure ci-contre).

Tous les frottements sont négligeables et la constante de raideur est telle que kR > mg.

- (a) Donner la condition sur la vitesse de m au sommet pour qu'elle n'y décolle pas. $Rép.: v^2 < gR$
- (b) En admettant que la masse m ne décolle pas et qu'elle reste près du sommet, déterminer son mouvement et préciser sa période.

Rép. : oscillation harmonique de période $P=\frac{2\pi}{\omega_0}=2\pi\sqrt{\frac{mR}{kR-mg}}$

Réponse à la question 2:

laisser la marge vide

9 janvier 2017 ID: -999

laisser la marge vide

9 janvier 2017

laisser la marge vide

ID: -999

Question 3 (à 4½ points)

Points obtenus: (laisser vide)

On utilise de la vapeur d'eau à 100°C pour chauffer 3 dl de lait à 20°C, le lait se trouvant dans une tasse ayant elle aussi une température de 20°C. La vapeur d'eau est introduite sous pression directement dans le lait.

Déterminer le volume de vapeur d'eau nécessaire pour que le lait parvienne à une température de 50°C.

On supposera que la tasse a une chaleur spécifique de $170\,\mathrm{J\,K^{-1}}$ et que $2200\,\mathrm{J}$ sont perdues dans l'environnement durant le chauffage. Rép. : 3.771

Constantes physiques :
$$\rho_{\text{lait}} = 1.03 \cdot 10^3 \,\text{kg} \,\text{m}^{-3}$$
, $c_{\text{lait}} = 3.8 \cdot 10^3 \,\text{J} \,\text{kg}^{-1} \,\text{K}^{-1}$, $\rho_{\text{vapeur}} = 5.1 \,\text{kg} \,\text{m}^{-3}$, $c_{\text{eau}} = 4.18 \cdot 10^3 \,\text{J} \,\text{kg}^{-1} \,\text{K}^{-1}$ et $\lambda_{\text{eau, vaporisation}} = 20 \cdot 10^5 \,\text{J} \,\text{kg}^{-1}$.

Réponse à la question 3:

laisser la marge vide

ID: -999

laisser la marge vide

9 janvier 2017

laisser la marge vide

ID: -999

Question 4 (à 5 points)

Points obtenus: (laisser vide)

Un récipient de base S et de hauteur H est ouvert sur le haut. On le ferme hermétiquement avec un piston isolant de masse et d'épaisseur négligeables. On verse alors de l'eau sur le piston de manière à atteindre une hauteur d'eau H/2. On observe que le piston s'immobilise à une hauteur $h_0 = H/4$ et que l'air enfermé sous ce dernier a une température T_0 .

- (a) Quelle est la pression de l'air enfermé sous le piston? Rép. : 1.1 · 10⁵ Pa
- (b) Déterminer le nombre de molécules d'air enfermées sous le piston. Rép.: 1.36·10²⁵ molécules.

On chauffe alors l'air enfermé sous le piston.

- (c) Quelle est la température T_1 de l'air lorsque le piston arrive à la hauteur $h_1 = H/2$? Rép.: 586.3 K
- (d) En admettant que l'on continue de chauffer et qu'une certaine quantité d'eau déborde du récipient, déterminer la hauteur h_2 à laquelle se trouve le piston si la température de l'air est $T_2 = 3T_0$. Rép. : 1.58 m

Application numérique : pression de l'air au-dessus de l'eau : $p_{\rm air}=10^5\,{\rm Pa},\,S=1\,{\rm m}^2,$ $H = 2 \,\mathrm{m}, \, T_0 = 20^{\circ} \mathrm{C} \,\mathrm{et} \, k = 1.38 \cdot 10^{-23} \,\mathrm{J \, K^{-1}}.$

Réponse à la question 4:

laisser

ID: -999

laisser la marge vide

ID: -999

laisser la marge vide

