$(\Pi_{i_id}(advisor) \subseteq \Pi_{ID}(instructor)) \wedge (\Pi_{s_id}(advisor) \subseteq \Pi_{ID}(student))$

2)

 $re_student =
ho_{(s_id, s_name, s_dept_name, tot_cred)}(student)$

 $re_instructor =
ho_{(i_id,i_name,i_dept_name,salary)}(instructor)$

 $IS_ship = (re_student \bowtie advisor) \bowtie re_instructor$

$$crox_dept = \sigma_{_{s_dept_name <> i_dep_name}}(IS_ship)$$

 $result = \Pi_{i_id,s_id,i_name,s_name,i_dept_name,s_dept_name,}(corx_dept)$

3)

$$G(\Pi_{ID}(instructor) - \Pi_{ID}(
ho_{(s_id,ID)}(advisor)))$$

4)

 $\Pi_{ID,name}((student \bowtie takes) \div \Pi_{course_id}(\sigma_{_{dept_name='SE'}}(course)))$