Proof of conjecture in A215068

Robert Israel

August 2, 2020

Theorem. Suppose n has the property that for all divisors d of n, d+1 is either a prime or a perfect power. Then n is a divisor of 48 or a Mersenne prime.

Proof. If odd prime p divides n, p+1 is not a prime, so it must be a perfect power $(x^k$ where $x \geq 2$ and $k \geq 2$). But $x^k - 1$ is divisible by x - 1, and therefore can't be prime unless x = 2, i.e. $p = 2^k - 1$ is a Mersenne prime.

Every Mersenne prime $\equiv 3 \mod 4$. So pq+1, where p and q are (not necessarily distinct) Mersenne primes, is divisible by 2, but not by 4, and can't be a prime or a perfect power. Therefore n can't be divisible by the square of a Mersenne prime or by two distinct Mersenne primes.

Since $2^5 + 1 = 33$ is neither a prime nor a perfect power, n can't be divisible by 2^5 .

At this point the only possibilities are $n=2^j$ or $2^j(2^m-1)$ where $0 \le j \le 4$, and 2^m-1 is a Mersenne prime. Now if 2^m-1 is a Mersenne prime >3, m is odd so $2 \cdot (2^m-1)+1=2^{m+1}-1$ is divisible by 3, and can't be a prime. But since it differs from the perfect power 2^{m+1} by 1, it can't be a perfect power by Mihăilescu's theorem. So n can't be divisible by $2 \cdot (2^m-1)$. This leaves only 2^j or $2^j \cdot 3$ for $j \le 4$ (which are the divisors of 48) and the Mersenne primes.