



# SI-RT-03 Revision B Imaging Parameters Reference Table

The purpose of this document is to provide a listing and definitions for the Particle Morphology Parameters available in the Microtrac PartAn Software

| Listing of Microtrac Morphological Parameters by Primary Characterization Groups |                            |                      |                |
|----------------------------------------------------------------------------------|----------------------------|----------------------|----------------|
| Size                                                                             | Shape/Form                 | Surface<br>Roughness | Intensity      |
| Da**                                                                             | Sphericity**               | Convexity**          | Transparency** |
| Dp                                                                               | Circularity**              | Solidity             | Curvature      |
| FLength**                                                                        | Roundness                  | Concavity            |                |
| FWidth**                                                                         | Krumbein Roundness         |                      |                |
| FThickness** (3D Only)                                                           | Extent                     |                      |                |
| ELength                                                                          | Ellipse Ratio              |                      |                |
| EWidth                                                                           | W/L Aspect Ratio**         |                      |                |
| EThickness (3D Only)                                                             | L/W Aspect Ratio**         |                      |                |
| Actual Area                                                                      | T/L Aspect Ratio (3D Only) |                      |                |
| Actual Perimeter                                                                 | L/T Ratio (3D Only)        |                      |                |
| Volume                                                                           | T/W Ratio (3D Only)        |                      |                |
| Surface Area                                                                     | W/T Ratio (3D Only)        |                      |                |
| CHull Area                                                                       | Ellipticity                |                      |                |
| CHull Perimeter                                                                  |                            |                      |                |
| CHull Surface Area                                                               | Angularity                 |                      |                |
| Sieve (3D Only)                                                                  | Rectangularity (3D Only)   |                      |                |
| Cylinder Diameter (3D Only)                                                      | Compactness                |                      |                |
| Cylinder Length (3D Only)                                                        |                            |                      |                |
| Fiber Length                                                                     |                            |                      |                |
| Fiber Width                                                                      |                            |                      |                |

Note 1: The letter "F" refers to Feret calculations. The letter "E" refers to Legendre Ellipse calculations. See explanations on following pages for more details.

Note 2: Values containing Thickness (T) are not available in PartAn SI or Sync Hybrid Analyzers (2D). Thickness is only available in PartAn 3D models.

#### \*\* Often used parameter



# **General Parameter Terminology**

This table describes the basic parameters of the measured particles.

| Notation                                                     | Description, units                                                                        |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Actual Area = A                                              | Area, µ <sup>2</sup>                                                                      |  |
| Actual Perimeter = P                                         | Perimeter, μ                                                                              |  |
| Volume                                                       | Volume, $\mu^3$                                                                           |  |
| Centroid                                                     | Center of gravity or the x/y point on image (only used for Legendre Ellipse calculations) |  |
| $Da$ $Da = (4A/\pi)^{1/2}$                                   | Area Equivalent Diameter, µ                                                               |  |
| $\mathbf{D}\mathbf{p}$ $\mathrm{D}\mathbf{p}=\mathrm{P}/\pi$ | Perimeter Equivalent Diameter, μ  —•                                                      |  |

#### \*\* Often used parameter



## **General Parameter Calculations**

General parameters indicate dimensions of the outside of particles. Basic Size Parameters used for other calculations

| General<br>Parameter     | 2D Description<br>For Individual Particle                                                                                                                                                                                                                                                                                                                  | 3D Calculation from Series of<br>Tracked Individual Particle         | Result Presentation                                                                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Actual Area              | Area = Area of the projected image                                                                                                                                                                                                                                                                                                                         | Average area of the sequence of 3D images.                           | Area: Basic size parameter and used in other subsequent calculations                                                                   |
| Convex Hull<br>Area      | CHull Area = Area of the convex hull of the image. The convex outline of a projected shape having concavities.  If a rubber band is placed around the image, it will describe the Convex Hull. The area is then calculated.                                                                                                                                | Average convex hull area of the sequence of 3D images.               | CHull Area: Not normally used as a parameter, but is a basic size parameter and used in other subsequent calculations.                 |
| Actual<br>Perimeter      | <b>Perimeter</b> = Perimeter of the projected image for 2D.                                                                                                                                                                                                                                                                                                | Average perimeter of the sequence of 3D images.                      | Perimeter: Basic size<br>parameter and used in other<br>subsequent calculations                                                        |
| Convex Hull<br>Perimeter | CHull Perimeter = Perimeter of the convex hull of the image.  If a rubber band is placed around the image, it will describe the Convex Hull. The perimeter is then calculated.                                                                                                                                                                             | Average convex hull perimeter of the sequence of 3D image shapes.    | CHull Perimeter: Not<br>normally used as a parameter,<br>but is a basic size parameter<br>and used in other subsequent<br>calculations |
| Legendre<br>Ellipse      | Determination of the moments of inertia of the shape coordinates. $\sigma_{xx} = \frac{1}{n} \sum (x_i \ \bar{x})^2$ $\sigma_{yy} = \frac{1}{n} \sum (y_i \ \bar{y})^2$ $\sigma_{xy} = \frac{1}{n} \sum (y_i \ \bar{y})(xi \ \bar{x})$ Definition of intermediate determs. Determination of the lengths of the axes of an ellipse with equivalent inertia. |                                                                      |                                                                                                                                        |
|                          | $\alpha = \frac{1}{2} (\sigma_{xx} + \sigma_{yy})$ $\beta = \sqrt{\alpha^2 - \sigma_{xx}\sigma_{yy} + \sigma_{xy}}$                                                                                                                                                                                                                                        | Length of the major axis Le  Length = $4\sqrt{\alpha + \beta}$ EWidt | ngth of the minor axis $\mathbf{h} = 4\sqrt{\alpha - \beta}$                                                                           |

#### \*\* Often used parameter



## **Size Parameter Calculations**

| Size<br>Parameter                | 2D Calculation for<br>Individual Particle                                                                                                                                                      | 3D Calculation from<br>Series of Tracked,<br>Individual Particles                                               | Result presentation                      |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Area Equivalent diameter**       | Da = $(4 \text{Area} / \pi)^{1/2}$                                                                                                                                                             | Area = average Area in sequence of 3D images                                                                    | Da -                                     |
| Equivalent perimeter diameter    | $Dp = Perimeter / \pi$                                                                                                                                                                         | Perimeter = average<br>Perimeter in sequence of 3D<br>images                                                    | Dp →                                     |
| Legendre<br>Ellipse Length       | Measured length of the major axis of a Legendre ellipse whose center is the centroid of the particle shape. The moments of the Legendre ellipse and shape are the same up to the second order. | ELength = max ELength in sequence of 3D images  Note that "E" values are based upon the Legendre ellipse.       | ELength                                  |
| Legendre<br>Ellipse Width        | Measured length of the minor axis of a Legendre ellipse whose center is the centroid of the particle shape. The moments of the Legendre ellipse and shape are the same up to the second order. | EWidth = maximum EWidth in sequence of 3D images  Note that "E" values are based upon the Legendre ellipse.     | EWidth                                   |
| Legendre<br>Ellipse<br>Thickness | Not available in 2D.                                                                                                                                                                           | EThickness = minimum EWidth in sequence of 3D images  Note that "E" values are based upon the Legendre ellipse. | EThickness (3D Only)  Rength  Ethickness |
| Feret Length**                   | FLength = Maximal distance between parallel tangents                                                                                                                                           | FLength = maximum<br>FLength in sequence of 3D<br>images                                                        | FLength                                  |
| Feret Width**                    | FWidth = Minimal distance between parallel tangents                                                                                                                                            | FWidth = maximum FWidth in sequence of 3D images                                                                | FWidth                                   |
| Feret<br>Thickness**             | Not available in 2D.                                                                                                                                                                           | FThickness = minimum<br>FWidth in sequence of 3D<br>images                                                      | FThickness (3D Only)                     |
| Sieve                            | Not available in 2D.                                                                                                                                                                           | Sieve = (Sieve Coeff x<br>FWidth) + ((1- Sieve Coeff)<br>x FThickness) (3D only)                                | Sieve -<br>Sieve data required           |

## \*\* Often used parameter

The copyright of this document is the property of Microtrac Inc. The document is supplied in confidence and must not be used for any purpose other than that for which it is supplied. part of VERDER

scientific



## **Size Parameter Calculations**

| Size<br>Parameter    | 2D Calculation for<br>Individual Particle                                 | 3D Calculation from<br>Series of Tracked,<br>Individual Particles                                                  | Result presentation                                           |
|----------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Cylinder<br>Diameter | Not available in 2D.                                                      | CylDia = Distance parallel to<br>shortest edges of the above<br>Rectangularity minimum<br>rectangle<br>(3D only)   | CylDia – Used when cylinder calculation option is selected    |
| Cylinder<br>Length   | Not available in 2D.                                                      | CylLength = Distance<br>parallel to longest edges of<br>the above Rectangularity<br>minimum rectangle<br>(3D only) | CylLength – Used when cylinder calculation option is selected |
| Fiber Length         | $X_{LG} = \frac{1}{4} (P + \sqrt{(P^2 - 16A)})$<br>A= Area<br>LG = length | Not available in 3D                                                                                                | Fiber Length  X LG                                            |
| Fiber Width          | $W = A/X_{LG} - X_{LG}$                                                   | Not available in 3D.                                                                                               | Fiber Width  W                                                |



# **Shape Parameter Calculations**

| Shape<br>Parameter    | 2D Calculation for Individual Particle                         | 3D Calculation from Series of<br>Tracked, Individual Particles                                                                                                                                                                                                                                                                                                                                         | Result presentation                                                                                                                                                  |
|-----------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ellipse Ratio         | Ellipse Ratio = EWidth /<br>ELength (2D)                       | Ellipse Ratio = EThickness/ELength. (3D) Minimum EWidth / ELength  Note that "E" values are based upon the Legendre ellipse.                                                                                                                                                                                                                                                                           | Measure of overall form. As it decreases, measures of circularity decrease. Ratio of Width to Length, 0 to 1 (square to circle). Uses Legendre ellipse calculation.  |
| Ellipticity           | Ellipticity = 1/Ellipse Ratio (2D)                             |                                                                                                                                                                                                                                                                                                                                                                                                        | Measure of overall form. Inverse of Ellipse Ratio                                                                                                                    |
| Compactness           | Compactness = $(4\text{Area}/\pi)^{1/2}$   FLength             | Area = average Area of a sequence of 3D images FLength = max FLength in the series of images                                                                                                                                                                                                                                                                                                           | Less sensitive but more robust, than Roundness Values 0 to 1 (circle).                                                                                               |
| Roundness             | <b>Roundness</b> = $4\text{Area} / \pi$ (FLength) <sup>2</sup> | Area = average Area of a sequence of 3D images = FLength = max FLength in the series of images                                                                                                                                                                                                                                                                                                         | Measure of proximity to circle, 0 to 1 (circle). Sensitive to elongated deviations from a circle. Overall shape indicator.                                           |
| Krumbein<br>Roundness |                                                                | Average of a sequence of 3D images  General explanation: The largest circle that can be inscribed in the particle is determined. Turns in the particle shape are identified and the radius of each is calculated. The average of the radii of all turns is calculated. The average is divided by the radius of the inscribed circle.  A perfect, circularly shaped particle will provide a value of 1. | Calculation used for proppants and materials having protrusions and sharp angles.                                                                                    |
| T/L Aspect Ratio      | Not available in 2D.                                           | T/L Aspect Ratio = FThickness / FLength (3D) = Minimum FWidth / Maximum FLength in the series of images                                                                                                                                                                                                                                                                                                | FThickness and FLength from the sequence of 3D images of the same particle. Value range = 0 to 1 where 1 represents sphere.                                          |
| L/T Ratio             | <i>Not available</i> in 2D.                                    | L/T Ratio = FLength / FThickness (3D) = Maximum FLength / Minimum FWidth in the series of images                                                                                                                                                                                                                                                                                                       | FLength and FThickness from the sequence of 3D images of the same particle. Value range = 1 to infinity where 1 represents sphere.                                   |
| W/L Aspect Ratio **   | W/L Aspect Ratio =<br>FWidth / FLength (2D)                    | W/L Ratio = FWidth / FLength (3D) = Maximum FWidth/ maximum FLength in the series of images                                                                                                                                                                                                                                                                                                            | For 2D, FLength and FWidth are from one particle image. 3D uses from the sequence of 3D images of the same particle. Value range = 0 to 1 where 1 represents sphere. |

#### \*\* Often used parameter



# **Shape Parameter Calculations**

| Shape<br>Parameter  | 2D Calculation for<br>Individual Particle                                                       | 3D Calculation from Series of Tracked, Individual Particles                                             | Result presentation                                                                                                                                                                                |
|---------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L/W Aspect Ratio ** | L/W Aspect Ratio =<br>FLength / FWidth (2D)                                                     | L/W Ratio = FLength / FWidth = Maximum FLength / Maximum FWidth in the series of images                 | For 2D, FLength and FWidth are from one particle image. For 3D, FLength and FWidth are from the sequence of 3D images of the same particle. Value range = 1 to infinity where 1 represents sphere. |
| T/W Ratio           | Not available in 2D.                                                                            | T/W Ratio = FThickness / FWidth (3D) = Minimum FWidth / Maximum FWidth in the series of images          | FThickness and FWidth from the sequence of 3D images of the same particle. Value range = 0 to 1 where 1 represents sphere.                                                                         |
| W/T Ratio           | Not available in 2D.                                                                            | W/T Ratio = FWidth / FThickness (3D) = Maximum FWidth / Minimum FWidth in the series of images          | FWidth and FThickness from the sequence of 3D images of the same particle. Value range = 1 to infinity where 1 represents sphere.                                                                  |
| Extent              | Extent = Area / (FLength x FWidth) (2D)                                                         | Extent = Area / (FLength x FThickness) (3D) = Area / (Maximum FLength x Minimum FWidth)                 | Value of 1 describes the degree to which<br>the actual area takes up maximum possible<br>area based on product of the two largest<br>perpendicular dimensions.                                     |
| Sphericity**        | Sphericity = $[4\pi \text{Area} / (\text{Perimeter}^2)]^{1/2} = \text{Da/Dp}$                   | Area = average Area of a sequence of 3D images Perimeter = average Perimeter of a sequence of 3D images | Measure of the proximity to a circle<br>Values range 0 to 1(value of 1 equals a<br>perfect circle)                                                                                                 |
| Circularity**       | Circularity = Sphericity <sup>2</sup> $[4\pi \text{Area / (Perimeter}^2)]^2 = (\text{Da/Dp})^2$ | Area = average Area of a sequence of 3D images Perimeter = average Perimeter of a sequence of 3D images | Measure of proximity to a circle. More sensitive, less robust, than Sphericity. Range of values 0 to 1 (value of 1 equals a perfect circle).                                                       |
| Solidity            | Solidity = Area / CHull Area                                                                    | Area = average Area of a sequence of 3D images CHull Area = average Convex Hull Area                    | Measure of surface roughness, 0 to 1.<br>Value of 1 describes very smooth surface.<br>Ratio of area of the particle to the area of the convex hull.                                                |
| Concavity           | Concavity = (CHull Area –<br>Area) / CHull Area                                                 | Area = average Area of a sequence of 3D images CHull Area = average Convex Hull Area                    | Measure of surface roughness, 0 to 1. In this case, a value of 1 describes an extremely rough, spikey surface                                                                                      |
| Convexity**         | Convexity = CHull Perimeter /<br>Perimeter                                                      | Perimeter = average Perimeter of a sequence of 3D images                                                | Measure of surface roughness, 0 to 1 (smooth). As roughness increases, measures of circularity decrease.                                                                                           |

## \*\* Often used parameter





## **Shape Parameter Calculations**

| Shape<br>Parameter | 2D Calculation for<br>Individual Particle                                                                                                                                                                                                                                                                                                                                                                                           | 3D Calculation from Series of<br>Tracked, Individual Particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result presentation                                                                                                                                                                                                                 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rectangularity     | <i>Not available</i> in 2D.                                                                                                                                                                                                                                                                                                                                                                                                         | Rectangularity = Maximum ratio of Area of image in 3D row divided by Area of maximum rectangle that can be inscribed within that image. (3D only)                                                                                                                                                                                                                                                                                                                                                                                    | Rectangularity - Used when cylinder calculation option is selected                                                                                                                                                                  |
| Angularity         | First the outline is reduced to be expressed by a fewer number of points. Angle at each point is calculated, $\alpha_1, \alpha_2 \dots \alpha_n$ Change in angle at each point is calculated: $\beta_n = \alpha_n - \alpha_{n+1}$ Angularity Index is calculated, where $e$ is 0, 10, 20 170 for class in $AI = \frac{\sum_{e=0}^{e=170} eP(e)}{n}$ Where $P(e)$ is the frequency of $\beta_n$ in each interval 0-10, 10-20 170-180 | Reference: Evaluation of Aggregate Imaging Techniques for the Quantification of Morphological Characteristics, Wang, Sun, Tutumluer, Druta (Paper Submitted August 1, 2012 for Presentation at the 2013 TRB Annual Meeting and Publication in the Transportation Research Record: Journal of the Transportation Research Board).  Uses: Any material including aggregates used in and materials showing protrusions and sharp angles such as abrasives. Range of values 0 to 180. 180= many sharp edges. Value=0 for perfect circle. | Particle shape, <i>angularity</i> , and surface texture are critical properties in assessing aggregate usage for asphalt concrete. Fractured and flat and/or elongated particles are used in most specifications to assure quality. |

Shape Parameter Notes: Form indicators in that they diverge further from a sphere to other shapes. All are ratios that use the above values to elucidate shape features. For instance, Surface Roughness parameters (convexity, etc.) can identify poor flowability/compaction and agglomerated particles. This chart uses values from Appendix I table to provide special calculations to assist defining shape characteristics. 3D refers to 3Dimensional image data. 2D refers to 2Dimensional image data. When thickness (T) is applied to a formula, only 3D calculation is available.

10-Jan-2020

VERDER,

scientific



## **Surface Area and Volume Calculations**

| Surface Area / Volume<br>Parameter | 2D Calculation for<br>Individual Particle                                                             | 3D Calculation from Series<br>of Tracked, Individual<br>Particle                               | Result presentation                  |
|------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|
| Surface Area (Sphere)              | Surface Area = $\pi * (Da)^2$                                                                         | Da calculated from average<br>Area of the sequence of 3D                                       | Surface Area (not a BET measurement) |
| CHull Surface Area (Sphere)        | CHull Surface Area = $\pi^*(Dca)^2$                                                                   | images.  Dca (CHull Area) calculated from the average CHull Area in the sequence of 3D images. | CHull Surface Area-                  |
| Volume                             | Calculated from the Area Equivalent Diameter, Da.<br><b>Volume</b> = $\pi$ (Da) <sup>3</sup> / 6 (2D) | Calculated from actual 3D size parameters. <b>Volume</b> = FLength x                           | Volume                               |

# **Intensity Parameter Calculations**

| Shape Parameter | Description                                                                                                                                                                                                                                                                                                          |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transparency**  | Transparency is the mean light intensity of the longest vertical line analyzed. The value is normalized to the range 0 to 1, with 0 being least transparent and 1 being the most transparent. See Particle Measurement section for more detail.                                                                      |
| Curvature       | The middle 50% of the line used to calculate Transparency (above) is fit to a parabolic function. The second order derivative of this function gives the Curvature value (concavity of the intensity gradient). On a scale of 0 to 1, any curvature values greater than 0.1 is very transparent, spherical particle. |

\*\* Often used parameter





#### **Parameter Choice Decisions**

A best practice for the development of data selection and specification setting is by starting with View Particles. Begin by selecting samples of "very good" and "very bad" product to facilitate the selection of the best parameters to use for SOP development. Additional selection of product having intermediate grades between "very good" and "very bad" will then be useful in further refinement of limits for optimal quality control.



#### **Setting Specifications / Selecting Data**

- Select "very good" and "very bad" product samples.
- Make measurements.
- Go to View Particles and determine what values allow discrimination between good and bad product.
- Obtain additional samples inside the range of "very good" and "very bad" product to further refine the acceptance values.

#### \*\* Often used parameter

