As melhores cabeças

MÓDULO 1

Potenciação: Definição e Propriedades

1. DEFINIÇÃO

Sendo a um número real e n um número natural, chama-se potência de expoente inteiro o número an ou a-n assim definido:

• Se a
$$\neq$$
 0, então
$$\mathbf{a}^{-n} = \left(\frac{1}{2}\right)^n = \frac{1}{2^n}$$

2. PROPRIEDADES

Sendo a e b números reais. m e n números inteiros e supondo que o denominador de cada fração seja diferente de zero, valem para as potências as seguintes propriedades:

•
$$a^n \cdot a^m = a^{n+m}$$

•
$$\frac{a^n}{a^m} = a^{n-m}$$

•
$$a^n \cdot b^n = (a \cdot b)^n$$

•
$$\frac{\mathbf{a}^n}{\mathbf{b}^n} = \left(\frac{\mathbf{a}}{\mathbf{b}}\right)^n$$

•
$$(a^n)^m = a^{n \cdot m}$$

Observe que, se $n \ge 2$ e $m \ge 2$, então:

$$a^n \cdot a^m = \underbrace{a \cdot a \cdot \dots \cdot a}_{\text{n fatores}} \cdot \underbrace{a \cdot a \cdot \dots \cdot a}_{\text{m fatores}} =$$

$$=\underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{\text{(n + m) fatores}} =$$

$$= a^{n+m}, a \in \mathbb{R}, n, m \in \mathbb{N}$$

Verifique, substituindo, a validade da propriedade para (n = 0 e m = 0), (n = 0 e m = 1) e (n = 1 e m = 1).

MÓDULO 2

Radiciação: Definição e Propriedades

1. DEFINIÇÃO

Seja a um número real e n um número natural não nulo. O número x é chamado raiz enésima de a se, e somente se, elevado ao expoente n, reproduz a.

Simbolicamente:

x é a raiz enésima de a ⇔ xⁿ = a

2. EXISTÊNCIA (EM R)

• Se a = 0 e n ∈ N, então existe uma única raiz enésima que é o próprio zero.

Assim:
$$\sqrt[n]{0} = 0$$

• Se a é estritamente positivo e n é par, então existem duas e somente duas raízes enésimas de a. Estas duas raízes são simétricas. A raiz enésima estritamente positiva é representada pelo símbolo $\sqrt[n]{a}$. A raiz enésima estritamente negativa, por ser simétrica da primeira, é representada pelo símbolo – $\sqrt[1]{a}$.

- Se a é estritamente negativo e n é par, então não existe raiz enésima de a.
- Se $a \in \mathbb{R}$ e **n** é **impar**, então existe uma única raiz enésima de a. Esta raiz enésima tem o mesmo sinal de a e é representada pelo símbolo $\sqrt[n]{a}$.

Observações

- No símbolo √a:
 - √ é o radical:
 - a é o radicando:
 - é o índice da raiz.
- Por convenção, na raiz quadrada omite-se o índice.

Escreve-se, por exemplo, $\sqrt{4}$ em lugar de $\sqrt[2]{4}$.

• Se a é um número real positivo e n é par, então a raiz enésima positiva de a é chamada raiz aritmética de a, sempre existe, é única e é representada pelo símbolo √a.

Propriedades

Sendo **a** e **b** números reais positivos e **n** um número natural não nulo, valem as seguintes propriedades:

•
$$\sqrt[n]{a}$$
 . $\sqrt[n]{b} = \sqrt[n]{ab}$
• $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$, com b $\neq 0$
• $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$, com $m \in \mathbb{Z}$
• $\sqrt[n]{m} = \sqrt[n]{a^m}$, com $m \in \mathbb{Z}$
• $\sqrt[n]{a^m} = \sqrt[n]{a^{mp}}$, com $m \in \mathbb{Z}$ e $p \in \mathbb{N}^*$

Observe que:

$$\begin{cases} x = \sqrt[n]{a} \\ y = \sqrt[n]{b} \end{cases} \Rightarrow \begin{cases} x^n = a \\ y^n = b \end{cases}$$
$$\Rightarrow x^n \cdot y^n = a \cdot b \Rightarrow (x \cdot y)^n = a \cdot b \Rightarrow$$
$$\Rightarrow x \cdot y = \sqrt[n]{ab} \Rightarrow \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}, a \in \mathbb{R}_+^*, n \in \mathbb{N}^*$$

3. POTÊNCIA DE EXPOENTE RACIONAL

Definição

Sendo **a** um número real positivo, **n** um número natural não nulo e $\frac{\mathbf{m}}{\mathbf{n}}$ um número racional na forma irredutível, define-se:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Propriedades

Demonstra-se que todas as propriedades válidas para as potências de expoentes inteiros valem também para as potências de expoentes racionais.

4. RACIONALIZAÇÃO DE DENOMINADORES

Racionalizar o denominador de uma fração significa eliminar todos os radicais (ou potências de expoentes fracionários) que existem no denominador desta, sem porém alterar o seu valor.

MÓDULOS 3 e 4

Fatoração

1. DEFINIÇÃO

Fatorar é transformar uma soma de duas ou mais parcelas num produto de dois ou mais fatores.

2. CASOS TÍPICOS

1º Caso: FATOR COMUM

$$ax + bx = x \cdot (a + b)$$

2º Caso: AGRUPAMENTO

$$ax + bx + ay + by = x(a + b) +$$

+ $y(a + b) = (a + b) \cdot (x + y)$

3º Caso: DIFERENÇA DE QUADRADOS

$$a^2 - b^2 = (a + b) \cdot (a - b)$$

4º Caso: QUADRADO PERFEITO

$$a^2 + 2ab + b^2 = (a + b) \cdot (a + b) = (a + b)^2$$

$$a^2 - 2ab + b^2 = (a - b) \cdot (a - b) = (a - b)^2$$

MÓDULOS 5 e 6

Exercícios de Potenciação e Radiciação

MÓDULO 7

Fatoração

5º Caso: SOMA E DIFERENÇA DE CUBOS

$$a^3 + b^3 = (a + b) \cdot (a^2 - ab + b^2)$$

 $a^3 - b^3 = (a - b) \cdot (a^2 + ab + b^2)$

6º Caso: CUBO PERFEITO

$$a^3 + 3a^2b + 3ab^2 + b^3 = (a + b) \cdot (a + b) \cdot (a + b) = (a + b)^3$$

 $a^3 - 3a^2b + 3ab^2 - b^3 = (a - b) \cdot (a - b) \cdot (a - b) = (a - b)^3$

Equações do 1º e do 2º Grau

1. INTRODUÇÃO

Analisando as sentenças

- (I) 2.6 1 = 13
- (II) 2.7 1 = 13
- (III) 2x 1 = 13

podemos fazer as seguintes considerações:

- a) A sentença (I) é falsa, pois $2.6 1 = 12 1 = 11 \neq 13$.
- b) A sentença (II) é verdadeira, pois $2 \cdot 7 1 = 14 1 = 13$.
- c) A sentença 2x 1 = 13 não é verdadeira nem falsa, pois x, chamado **variável**, pode assumir qualquer valor. Este tipo de sentença é um exemplo de **sentença aberta**.

Toda **sentença aberta** na forma de **igualdade** é chamada **equação**.

d) Substituindo **x por 7**, a sentença aberta 2x - 1 = 13 transformase em 2 . **7** - 1 = 13, que é uma sentença verdadeira. Dizemos, então, que **7** é uma raiz (ou uma solução) da equação 2x - 1 = 13.

2. RAIZ, CONJUNTO-VERDADE, RESOLUÇÃO

- Raiz (ou solução) de uma equação é um número que transforma a sentença aberta em sentença verdadeira.
- **Conjunto-verdade** (ou conjunto-solução) de uma equação é o conjunto de todas, e somente, as raízes.
- Resolver uma equação é determinar o seu conjunto-verdade.
- Existem processos gerais de resolução de alguns tipos de equações, particularmente as do 1º e do 2º grau, que, a seguir, passamos a comentar.

3. EQUAÇÃO DO 1º GRAU

Definição

É toda sentença aberta, redutível e equivalente a $\mathbf{ax} + \mathbf{b} = \mathbf{0}$, com $\mathbf{a} \in \mathbb{R}^* e \mathbf{b} \in \mathbb{R}$.

Exemplos

São equações do 1º grau as sentenças abertas 5x - 3 = 12 e $\frac{3x}{2} - \frac{x+3}{2} = 1$.

Resolução

Notando que $ax + b = 0 \Leftrightarrow$ $\Leftrightarrow ax = -b \Leftrightarrow x = -\frac{b}{a}$ para $a \neq 0$, concluímos que o conjunto-verdade da equação é $V = \left\{-\frac{b}{a}\right\}$.

□ Discussão

Analisando a equação ax + b = 0, com $a, b \in \mathbb{R}$, temos as seguintes hipóteses:

a) Para $\mathbf{a} \neq \mathbf{0}$, ax + b = 0 \Leftrightarrow $\mathbf{V} = \left\{ -\frac{\mathbf{b}}{\mathbf{a}} \right\}$ (a equação admite uma

única solução).

- b) Para $\mathbf{a} = \mathbf{0}$ e $\mathbf{b} \neq \mathbf{0}$, ax + b = 0 não tem solução, pois a sentença é sempre falsa. Neste caso, $\mathbf{V} = \mathbf{\emptyset}$.
- c) Para $\mathbf{a} = \mathbf{0}$ e $\mathbf{b} = \mathbf{0}$, a equação $\mathbf{a}\mathbf{x} + \mathbf{b} = \mathbf{0}$ admite todos os números reais como solução, pois a sentença $\mathbf{0}\mathbf{x} + \mathbf{0} = \mathbf{0}$ é sempre verdadeira. Neste caso, $\mathbf{V} = \mathbb{R}$.

Observação

Sentenças abertas redutíveis ao tipo 0x = 0 são chamadas **identidades**. $(x + 1)^2 = x^2 + 2x + 1$ é um exemplo de identidade em \mathbb{R} .

4. EQUAÇÕES DO TIPO "PRODUTO" OU "QUOCIENTE"

Definição

São equações dos tipos **a** . **b** = **0** (produto) ou $\frac{\mathbf{a}}{\mathbf{b}}$ = **0** (quociente), com { a; b } $\subset \mathbb{R}$.

Resolução

Ao resolver equações destes tipos, lembrar das duas seguintes equivalências:

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{0} \Leftrightarrow \mathbf{a} = \mathbf{0} \text{ ou } \mathbf{b} = \mathbf{0}$$

$$\frac{\mathbf{a}}{\mathbf{b}} = \mathbf{0} \Leftrightarrow \mathbf{a} = \mathbf{0} \ \mathbf{e} \ \mathbf{b} \neq \mathbf{0}$$

5. EQUAÇÃO DO 2º GRAU

Definição

É toda **sentença aberta**, em x, redutível e equivalente a $ax^2 + bx + c = 0$, com $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ e $c \in \mathbb{R}$.

Resolução para o caso

$$ax^2 + bx + c = 0 \Leftrightarrow ax^2 + bx = 0 \Leftrightarrow$$

 $\Leftrightarrow x . (ax + b) = 0 \Leftrightarrow x = 0 \text{ ou } x = -\frac{b}{a} \Leftrightarrow$

$$\Leftrightarrow V = \left\{0; -\frac{b}{a}\right\}$$

Resolução para o caso

$$ax^2 + bx + c = 0 \Leftrightarrow ax^2 + c = 0 \Leftrightarrow$$

$$\Leftrightarrow$$
 ax² = - c \Leftrightarrow x² = - $\frac{c}{a} \Leftrightarrow$

$$\Leftrightarrow$$
 V = $\left\{ \pm \sqrt{-\frac{c}{a}} \right\}$, se **a** e **c**

forem de sinais contrários, ou $V = \emptyset$, se **a** e **c** forem de mesmo sinal, para $x \in \mathbb{R}$.

☐ Resolução para o caso

$$ax^2 + bx + c = 0 \Leftrightarrow ax^2 = 0 \Leftrightarrow$$

 $\Leftrightarrow x^2 = 0 \Leftrightarrow V = \{0\}$

Resolução do caso geral

Utilizando "alguns artifícios", Báskara verificou que a equação $ax^2 + bx + c = 0$ é equivalente à equação $(2ax + b)^2 = b^2 - 4ac$

De fato:

$$ax^2 + bx + c = 0 \Leftrightarrow ax^2 + bx = -c$$

Multiplicando-se ambos os membros desta última iqualdade por 4a, obtém-se:

$$ax^2 + bx = -c \Leftrightarrow 4a^2x^2 + 4abx = -4ac$$

Somando-se b² aos dois membros da igualdade assim obtida, resulta:

$$4a^2x^2 + 4abx + b^2 = b^2 - 4ac \Leftrightarrow$$

$$\Leftrightarrow$$
 $(2ax + b)^2 = b^2 - 4ac$

Assim, representando por Δ o **discriminante** $b^2 - 4ac$, temos:

a) $\Delta < 0 \Rightarrow$ a equação não tem solução em \mathbb{R} .

b)
$$\Delta \ge 0 \implies 2ax + b = \pm \sqrt{\Delta} \Leftrightarrow$$

$$\Leftrightarrow 2ax = -b \pm \sqrt{\Delta} \Leftrightarrow x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Portanto, sendo V o conjunto-verdade em R, concluise que:

$$\Delta > 0 \Rightarrow V = \left\{ \frac{-\mathbf{b} + \sqrt{\Delta}}{2\mathbf{a}}; \frac{-\mathbf{b} - \sqrt{\Delta}}{2\mathbf{a}} \right\}$$

$$\Delta = \mathbf{0} \Rightarrow \mathbf{V} = \left\{ \frac{-\mathbf{b}}{2\mathbf{a}} \right\}$$

$$\Delta < \mathbf{0} \Rightarrow \mathbf{V} = \mathbf{\emptyset}$$

Propriedades

Se $\Delta \ge 0$ e $\{x_1; x_2\}$ é conjunto-verdade da equação $ax^2 + bx + c = 0$, com $a \neq 0$, então:

$$S = x_1 + x_2 = \frac{-b}{a}$$

$$P = x_1 \cdot x_2 = \frac{c}{a}$$

MÓDULOS 10 e 11

Equações Redutíveis a 1º ou 2º Grau

1. OBTENÇÃO DE UMA **EQUAÇÃO A PARTIR** DAS SUAS RAÍZES

Sendo $S = x_1 + x_2 e P = x_1 \cdot x_2$, então uma equação do 2º grau, cujo conjunto-verdade é {x₁; x₂}, será:

$$x^2 - Sx + P = 0$$

De fato, supondo a \neq 0, temos: $ax^2 + bx + c = 0 \Leftrightarrow$

$$\Leftrightarrow \frac{ax^2}{a} + \frac{bx}{a} + \frac{c}{a} = \frac{0}{a} \Leftrightarrow$$

$$\Leftrightarrow x^2 - \left(-\frac{b}{a}\right)x + \frac{c}{a} = 0 \Leftrightarrow$$

$$\Leftrightarrow x^2 - Sx + P = 0$$

☐ Equações redutíveis a 1º ou 2º grau

a) Se a equação estiver na forma de produto ou na forma de quociente, será útil uma das seguintes equivalências:

$$a \cdot b = 0 \Leftrightarrow a = 0 \text{ ou } b = 0$$

$$\frac{\mathbf{a}}{\mathbf{b}} = \mathbf{0} \Leftrightarrow \mathbf{a} = \mathbf{0} \in \mathbf{b} \neq \mathbf{0}$$

b) Se a equação proposta não for do tipo ax + b = 0 nem $ax^2 + bx + c = 0$. com a \neq 0, deve-se, se possível,

1º) Fatorar e utilizar a equivalência $ab = 0 \Leftrightarrow a = 0$ ou b = 0.

2º) Fazer uma troca de variáveis e procurar recair em 1º ou 2º grau.

MÓDULO 12

Sistemas e Problemas

1. SISTEMAS DE DUAS **EQUAÇÕES E DUAS INCÓGNITAS**

Note que
$$\begin{cases} x = 1 \\ y = 8 \end{cases}$$
,
$$\begin{cases} x = 8 \\ y = 1 \end{cases}$$
,

$$\begin{cases} x = 10 \\ y = -1 \end{cases}, \begin{cases} x = -1 \\ y = 10 \end{cases}$$
 são algumas

das soluções da equação x + y = 9

Além disso,
$$\begin{cases} x = 10 \\ y = 3 \end{cases}$$
, $\begin{cases} x = 9 \\ y = 2 \end{cases}$

$$\begin{cases} x = 8 \\ y = 1 \end{cases}, \begin{cases} x = 7 \\ y = 0 \end{cases}$$
 são algumas das

O sistema formado pelas equações x + y = 9 e x - y = 7, isto é,

Além disso,
$$\begin{cases} x = 10 \\ y = 3 \end{cases}$$
, $\begin{cases} x = 9 \\ y = 2 \end{cases}$, $\begin{cases} x + y = 9 \\ x - y = 7 \end{cases}$, apresenta $\begin{cases} x = 8 \\ y = 1 \end{cases}$ como

solução, pois esses dois valores tornam verdadeiras as duas equações simultaneamente.

A solução de um sistema de duas equações e duas incógnitas, x e y, é qualquer par ordenado de valores (x; y) que satisfaz ambas as equacões.

□ Definição

Chama-se inequação (desigual-dade) do 1º grau, na variável real \mathbf{x} , toda sentença que pode ser reduzida a uma das formas: ax + b > 0 ou ax + b > 0 ou ax + b < 0 ou ax + b < 0, em que $a, b \in \mathbb{R}$ e $a \neq 0$.

Resolução

Resolver, em \mathbb{R} , uma inequação do 1º grau é determinar o conjunto de todos os valores da variável x que tornam a sentença verdadeira.

Por ser mais prático, é costume "isolar" o x da sentença. Para isso são utilizadas as seguintes propriedades da desigualdade em \mathbb{R} , sendo x, y e a números reais:

$$x < y \Leftrightarrow x + a < y + a, \forall a \in \mathbb{R}$$

 $x < y \Leftrightarrow ax < ay$, se $a > 0$
 $x < y \Leftrightarrow ax > ay$, se $a < 0$

Exemplos

1)
$$2x + 10 < 0 \Leftrightarrow$$

 $\Leftrightarrow 2x < -10 \Leftrightarrow x < -5 \Leftrightarrow$
 $\Leftrightarrow V = \{x \in \mathbb{R} \mid x < -5\}$

2)
$$-2x + 10 < 0 \Leftrightarrow$$

 $\Leftrightarrow -2x < -10 \Leftrightarrow x > 5 \Leftrightarrow$
 $\Leftrightarrow V = \{x \in \mathbb{R} \mid x > 5\}$

3)
$$\frac{x-3}{4} - \frac{2x-1}{6} < 1 \Leftrightarrow$$

$$\Leftrightarrow \frac{3(x-3) - 2(2x-1)}{12} < \frac{12}{12} \Leftrightarrow$$

$$\Leftrightarrow$$
 3x - 9 - 4x + 2 < 12 \Leftrightarrow

$$\Leftrightarrow$$
 3x - 4x < 12 + 9 - 2 \Leftrightarrow

$$\Leftrightarrow$$
 - x < 19 \Leftrightarrow x > - 19 \Leftrightarrow

$$\Leftrightarrow V = \{x \in \mathbb{R} \mid x > -19\}$$

MÓDULO 14

Funções do 1º e 2º Grau

1. FUNÇÃO DO 1º GRAU

□ Definição

É a função f : $\mathbb{R} \to \mathbb{R}$, tal que f(x) = ax + b, com $a \in \mathbb{R}^* e b \in \mathbb{R}$.

- Domínio = ℝ
- Contradomínio = Imagem = \mathbb{R}

□ Gráfico

É uma reta não paralela a qualquer um dos eixos do sistema de coordenadas cartesianas.

A raiz de **f** é $x = \frac{-b}{a}$ e conforme os sinais de **a** e **b** podemos ter os seguintes tipos de gráficos:

2. FUNÇÃO DO 2º GRAU

□ Definição

É a função $f: \mathbb{R} \to \mathbb{R}$, tal que $f(x) = ax^2 + bx + c$, com $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ e $c \in \mathbb{R}$.

- Domínio = \mathbb{R}
- Contradomínio = \mathbb{R}
- Conjunto-imagem

(ver mais adiante)

□ Raízes reais de f

Se V é o conjunto-verdade de f(x) = 0, em \mathbb{R} , e $\Delta = b^2 - 4ac$, então:

•
$$\Delta > 0 \Rightarrow V = \left\{ \frac{-b + \sqrt{\Delta}}{2a}; \frac{-b - \sqrt{\Delta}}{2a} \right\}$$

•
$$\Delta = 0 \Rightarrow V = \left\{ \frac{-b}{2a} \right\}$$

•
$$\Delta < 0 \Rightarrow V = \emptyset$$

☐ Gráfico

É sempre uma parábola, com eixo de simetria paralelo ao eixo dos y. Conforme os sinais de a e Δ , podemos ter os seis seguintes tipos possíveis de gráficos.

MÓDULO 15

Inequações do 2º Grau

□ Definição

Chama-se inequação (desigual-dade) do 2º grau, na variável real x, toda sentença que pode ser reduzida a uma das formas: $ax^2 + bx + c > 0$ ou $ax^2 + bx + c < 0$ ou $ax^2 + bx + c \le 0$, com a, b, $c \in \mathbb{R}$ e a $\ne 0$.

Resolução

Resolver, em \mathbb{R} , uma inequação do 2º grau é determinar todos os valores da variável x que tornam a sentença verdadeira.

Sendo $y = f(x) = ax^2 + bx + c$ ($a \ne 0$), podemos analisar a variação de sinais

da função e chegar à solução da seguinte maneira:

- 1º) Determinar as raízes reais de f, marcando esses valores no eixo x, das abscissas.
- 2º) Esboçar o gráfico que representa f (parábola) passando por esses pontos.
- 3º) Assinalar no eixo x os valores que satisfazem à sentença. Se a função não admitir raízes reais, então $f(x) > 0 \ \forall x \in \mathbb{R} \ para \ a > 0 \ ou f(x) < 0 \ \forall x \in \mathbb{R} \ para \ a < 0.$

Exemplo

O conjunto-solução da inequação

- 1º) As raízes de f são $x_1 = -4$ e $x_2 = 2$. Como a > 0 (a = 1), então a parábola tem a "concavidade" voltada para cima.
 - 2º) O esboço do gráfico de f é:

3°.) Para $-4 \le x \le 2$, temos $f(x) \le 0$.

MÓDULO 16

Fatoração do Trinômio do 2º Grau

1. FATORAÇÃO

Se x_1 e x_2 são os zeros reais (raízes) de $f(x) = ax^2 + bx + c$ (a \neq 0), então:

- $\Delta > 0 \Rightarrow f(x) = a(x x_1) \cdot (x x_2)$
- $\Delta = 0 \Rightarrow f(x) = a(x x_1) \cdot (x x_1) = a(x x_2)^2$
- $\Delta < 0 \Rightarrow$ não existe fatoração em \mathbb{R} .

Observe que para a \neq 0 o trinômio f(x) = ax² + bx + c é tal que

$$f(x) = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) =$$

$$= a \cdot \left[x^2 - \left(\frac{-b}{a} \right) x + \frac{c}{a} \right] =$$

$$= a \cdot \left[x^2 - (x_1 + x_2) x + x_1 \cdot x_2 \right] =$$

$$= a \left[x^2 - x_1 \cdot x - x_2 \cdot x + x_1 \cdot x_2 \right] =$$

$$= a \cdot \left[x \cdot (x - x_1) - x_2 \cdot (x - x_1) \right] =$$

$$= a \cdot (x - x_1) (x - x_2)$$

Exemplos

1. Fatorar o trinômio:

$$f(x) = 2x^2 - 9x + 4$$

Resolução

As raízes de f são $x_1 = \frac{9+7}{4}$ e

$$x_2 = \frac{9-7}{4}$$
, isto é, $x_1 = 4$ e $x_2 = \frac{1}{2}$.

Portanto

$$f(x) = 2x^2 - 9x + 4 \Leftrightarrow$$

$$\Leftrightarrow f(x) = 2(x-4) \cdot \left(x - \frac{1}{2}\right) \Leftrightarrow$$

$$\Leftrightarrow f(x) = (x-4) \cdot (2x-1)$$

2. Fatorar o trinômio:

$$f(x) = 4x^2 - 12x + 9$$

Resolução

As raízes de f são

$$x_1 = x_2 = \frac{12 \pm 0}{8} = \frac{3}{2}$$

Portanto,
$$f(x) = 4x^2 - 12x + 9 =$$

$$=4.\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)=$$

$$=4\left(x-\frac{3}{2}\right)^2=2^2\left(x-\frac{3}{2}\right)^2=$$

$$=\left[2\left(x-\frac{3}{2}\right)\right]^2=(2x-3)^2$$

3. Fatorar o trinômio $f(x) = 3x^2 + 8x + 6$

Resolução

Como $\Delta = 8^2 - 4 . 3 . 6 =$

= 64 - 72 = -8 < 0, concluímos que não existe, em \mathbb{R} , a fatoração de $f(x) = 3x^2 + 8x + 6$.

MÓDULO 17

Inequações - Produto e Quociente

□ Definição

Inequações-produto são sentenças na variável real x, que podem ser reduzidas a uma das formas:

$$f(x)$$
 . $g(x) > 0$ ou $f(x)$. $g(x) \ge 0$ ou $f(x)$. $g(x) < 0$ ou $f(x)$. $g(x) < 0$

No caso das inequações-quociente, ao invés de f(x) . g(x), temos

$$\frac{f(x)}{g(x)}, \text{ com } g(x) \neq 0.$$

Resolução

Para resolver esses tipos de sentenças, pode-se analisar isoladamente a variação de sinais de f e g. Isso é feito interpretando-se o esboço do gráfico de cada uma. Em seguida, constrói-se um quadro de sinais através do qual se obtém a resposta.

Como o produto e o quociente de dois números reais não nulos têm o mesmo sinal, convém salientar que as inequações-quociente podem ser resolvidas usando-se uma das seguintes equivalências:

$$\frac{f(x)}{g(x)} > 0 \Leftrightarrow f(x) \cdot g(x) > 0$$

$$\frac{f(x)}{g(x)} \ge 0 \Leftrightarrow f(x) \cdot g(x) \ge 0 \text{ e } g(x) \ne 0$$

$$\frac{f(x)}{g(x)} < 0 \Leftrightarrow f(x) \cdot g(x) < 0$$

$$\frac{f(x)}{g(x)} \le 0 \Leftrightarrow f(x) \cdot g(x) \le 0 \text{ e } g(x) \ne 0$$

Exemplos

1°.)
$$\frac{x+1}{x-3} \ge 0 \Leftrightarrow$$

 \Leftrightarrow $(x + 1) \cdot (x - 3) \ge 0 e x \ne 3 \Leftrightarrow$ \Leftrightarrow $x \le -1 ou x > 3$, pois o gráfico de $f(x) = (x + 1) \cdot (x - 3)$ é do tipo:

2°)
$$\frac{x^2 - 4x + 3}{x - 2} \le 0 \Leftrightarrow$$

 $\Leftrightarrow (x^2 - 4x + 3).(x - 2) \le 0 \text{ e } x \ne 2.$

Esboçando-se o gráfico de $f(x) = x^2 - 4x + 3$, resulta:

Esboçando-se o gráfico de g(x) = x - 2, resulta:

Construindo o quadro de sinais, temos:

	1	1 2	2 ;	3
f(x)	+	_	_	+
g(x)	_	_ (+	+
f(x).g(x)		+		+

O conjunto-verdade, em \mathbb{R} , da inequação é, portanto, $V = \{x \in \mathbb{R} \mid x \le 1 \text{ ou } 2 < x \le 3\}$

MÓDULOS 18 e 19

Conjunto Imagem da Função do 2º Grau e Sinal de Raízes

1. VÉRTICE DA PARÁBOLA

Vértice é o ponto V
$$\left(\frac{-b}{2a}; \frac{-\Delta}{4a}\right)$$
.

Eixo de simetria da parábola

Eixo de simetria é a reta de equação
$$x = \frac{-b}{2a}$$
.

□ Conjunto Imagem de $f(x) = ax^2 + bx + c (a \neq 0)$

$$Im(f) = \left\{ y \in \mathbb{R} \mid y \ge \frac{-\Delta}{4a} \right\}, \text{ se } a > 0.$$

$$Im(f) = \left\{ y \in \mathbb{R} \mid y \le \frac{-\Delta}{4a} \right\}, \text{ se } a < 0.$$

2. SINAL DAS RAÍZES DA EQUAÇÃO $ax^2 + bx + c = 0 (a \neq 0)$

Lembrando que se x1 e x2 são raízes da equação do segundo grau $ax^2 + bx + c = 0$, então:

$$x_1 + x_2 = S = \frac{-b}{a}$$

$$x_1 \cdot x_2 = P = \frac{c}{a}$$

temos, para $\Delta = b^2 - 4ac$:

•
$$x_1 > 0$$
 e $x_2 > 0 \Leftrightarrow \begin{cases} \Delta \ge 0 \\ P > 0 \\ S > 0 \end{cases}$

•
$$x_1 < 0$$
 e $x_2 < 0 \Leftrightarrow \begin{cases} \Delta \ge 0 \\ P > 0 \\ S < 0 \end{cases}$

• $x_1 e x_2$ com sinais contrários $\Leftrightarrow P < 0$.

MÓDULO 20

Definição

É a função f : $\mathbb{R} \to \mathbb{R}^*_{\perp}$, tal que $f(x) = a^{x}$, com 0 < a \neq 1.

- Domínio = ℝ
- Conjunto-imagem = = Contradomínio = \mathbb{R}^*

Exemplos

Esboçar o gráfico da função definida em \mathbb{R} por $f(x) = 2^x$.

Resolução

X	$f(x) = 2^x$
i i	:
-6	1/64
- 5	1/32
- 4	1/16
- 3	1/8
- 2	1/4
– 1	1/2
0	1
1	2
2	4
3	8
4	16
5	32
6	64
i i	:

A função exponencial de base a > 1 é estritamente crescente e contínua em \mathbb{R} . Assim, para $f(x) = 2^x$, temos o esboco:

Esboçar o gráfico da função definida em \mathbb{R} por $f(x) = \left(\frac{1}{2}\right)^x$.

Resolução

x	$f(x) = \left(\frac{1}{2}\right)^x$
:	:
-6	64
- 5	32
- 4	16
- 3	8
- 2	4
– 1	2
0	1
1	1/2
2	1/4
3	1/8
4	1/16
5	1/32
6	1/64
:	:

A função exponencial de base a, com 0 < a < 1, é estritamente decrescente e contínua em R.

Assim, para $f(x) = \left(\frac{1}{2}\right)^x$, temos o esboço:

Resumo

A função exponencial assim definida é:

Injetora e Sobrejetora (Bijetora)
Estritamente Crescente, se a > 1
Estritamente Decrescente, se 0 < a < 1

Conclusões

$$a^{x_1} = a^{x_2} \Leftrightarrow x_1 = x_2, \text{ se } 0 < a \neq 1$$
 $a^{x_1} < a^{x_2} \Leftrightarrow x_1 < x_2, \text{ se } a > 1$
 $a^{x_1} < a^{x_2} \Leftrightarrow x_1 > x_2, \text{ se } 0 < a < 1$

Gráficos

MÓDULO 1

Definição e Propriedades de Conjuntos

1. PRIMEIROS CONCEITOS

Conceitos primitivos

Se A é um conjunto e x é um elemento.

"x ∈ A" significa "x é elemento de A" "x ∉ A" significa "x não é elemento de A"

Exemplo

Seja A o conjunto dos números naturais maiores que 3 e menores que 11 e seja B o conjunto formado pelos elementos de A que são pares. Represente os conjuntos A e B, simbolicamente:

I) enumerando, um a um, os seus elementos:

$$A = \{ 4, 5, 6, 7, 8, 9, 10 \}$$

$$B = \{ 4, 6, 8, 10 \}$$

II) caracterizando seus elementos por uma propriedade;

$$A = \{ x \in \mathbb{N} \mid 3 < x < 11 \}$$

$$B = \{ x \in A \mid x \in \text{par} \}$$

III) construindo diagramas de Venn-Euler.

Conjunto Vazio

Se, para TODO x, tem-se $x \notin A$, diz-se que A é o CONJUNTO VAZIO. Usa-se o símbolo \emptyset para indicar o conjunto vazio.

$$A = \emptyset \Leftrightarrow \forall x, x \notin A$$

Exemplo

 $\emptyset = \{ x : x \text{ \'e um n\'umero inteiro e } 3x + 1 = 2 \}$

2. SUBCONJUNTO OU PARTE

Definição

Sejam A e B dois conjuntos. Se todo elemento de A é também elemento de B, dizemos que A é um SUBCONJUNTO ou PARTE de B e indicamos por A \subset B.

Em símbolos:

$$A \subset B \Leftrightarrow (\forall x), (x \in A \Rightarrow x \in B)$$

 $A \not\subset B \Leftrightarrow (\exists x), (x \in A \in x \not\in B)$

Exemplo

 $\{1;3\}\subset\{1;2;3\}$

Consequências

I) $\forall A, A \subset A$

II) $\forall A, \emptyset \subset A$

Exemplo

 $\{5; 6\} \subset \{5; 6\}$ $\emptyset \subset \{5; 6\}$

3. IGUALDADE DE CONJUNTOS

Definição

Sejam A e B dois conjuntos. Dizemos que A é igual a B e indicamos por A = B se, e somente se, A é subconjunto de B e B é também subconjunto de A.

Em símbolos:

$$A = B \Leftrightarrow A \subset B \in B \subset A$$

 $A \neq B \Leftrightarrow A \not\subset B \text{ ou } B \not\subset A$

Exemplo

 $\{2, 2, 2, 4\} = \{4, 2\}$, pois $\{2, 2, 2, 4\} \subset \{4, 2\}$ e $\{4, 2\} \subset \{2, 2, 2, 4\}$

• Propriedades da inclusão

I) Reflexiva

 \forall A. A \subset A

II) Antissimétrica

$$\forall$$
A, \forall B, A \subset B e B \subset A \Rightarrow \Rightarrow A = B

III)Transitiva

$$\forall$$
A, \forall B, \forall C, A \subset B e B \subset C \Rightarrow

· Propriedades da igualdade

I) Reflexiva

$$\forall A, A = A$$

II) Simétrica

$$\forall A, \forall B; A = B \Rightarrow B = A$$

III)Transitiva

$$\forall$$
A, \forall B, \forall C; A = B e B = C \Rightarrow A = C

4. CARACTERÍSTICAS GERAIS DOS CONJUNTOS

Se A é um conjunto e x é um elemento, então:

5. CONJUNTO DAS PARTES DE UM CONJUNTO

Definição

Dado um conjunto A, podemos construir um novo conjunto formado por todos os subconjuntos (partes) de A. Esse novo conjunto chama-se CONJUNTO DOS SUBCONJUNTOS (ou das partes) de A e é indicado por P (A).

Em símbolos:

$$\mathbb{P}(A) = \{ x \mid x \subset A \}$$
$$x \in \mathbb{P}(A) \Leftrightarrow x \subset A$$

Exemplo

$$A = \{ 1, 2, 3 \}$$

$$\mathbb{P}(A) = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 1, 2 \}, \{ 1, 3 \}, \{ 2, 3 \}, A \}$$

Teorema

Se A tem k elementos, então $\mathbb{P}(A)$ tem 2^k elementos.

1. REUNIÃO OU UNIÃO

Dados dois conjuntos A e B, chama-se REUNIÃO (ou UNIÃO) de A e B, e se indica por A U B, ao conjunto formado pelos elementos de A ou de B.

Em símbolos

Exemplo

 $\{2,3\} \cup \{4,5,6\} = \{2,3,4,5,6\}$

2. INTERSECÇÃO

Dados dois conjuntos A e B, chama-se INTERSECÇÃO de A e B, e se indica por A ∩ B, ao conjunto formado pelos elementos comuns de A e de B.

Em símbolos

$A \cap B = \{ x \mid x \in A \in x \in B \}$

Exemplo

 $\{2, 3, 4\} \cap \{3, 5\} = \{3\}$

Observação

Se A \cap B = \emptyset , dizemos que A e B são CONJUNTOS DISJUNTOS.

3. SUBTRAÇÃO

Dados dois conjuntos A e B, chama-se DIFERENÇA entre A e B, e se indica por A – B, ao conjunto formado pelos elementos que são de A e não são de B.

Em símbolos

$$A - B = \{ x \mid x \in A \in x \notin B \}$$

O conjunto A – B é também conhecido por CONJUNTO COMPLEMENTAR de B em relação a A e, para tal, usa-se a notação $\hat{\mathbf{C}}_{\Lambda}$ B.

Portanto:

$$C_{\Delta}B = A - B = \{ x \mid x \in A \in x \notin B \}$$

Exemplo

$$A = \{0, 1, 2, 3\} e B = \{0, 2\}$$

$$C_{A}B = A - B = \{1, 3\}e$$

$$C_BA = B - A = \emptyset$$

Se $X \subset S$, indicaremos por \overline{X} o CONJUNTO COMPLEMENTAR de X em relação a S.

Portanto:

$$X \subset S \Rightarrow \overline{X} = S - X = C_S X$$

Exemplo

Seja $S = \{0, 1, 2, 3, 4, 5, 6\}$

Então:

$$A = \{ 2, 3, 4 \} \Rightarrow \overline{A} = \{ 0, 1, 5, 6 \}$$

Propriedades

Sejam A e B subconjuntos de S e

$$\bar{\mathsf{A}} = \mathsf{C}_\mathsf{S} \mathsf{A} \in \bar{\mathsf{B}} = \mathsf{C}_\mathsf{S} \mathsf{B}$$

I)
$$C_{\Delta}A = \emptyset$$

II)
$$C_{\Delta}\emptyset = A$$

III)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

IV)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

V)
$$A \cup \overline{A} = S$$

$$VI) \quad A \cap \overline{A} = \emptyset$$

$$VII)$$
 $\overline{\overline{A}} = A$

VIII)
$$A \subset B \Leftrightarrow \overline{B} \subset \overline{A}$$

4. NÚMERO DE ELEMENTOS DE UM CONJUNTO FINITO

Seja A um conjunto com um número finito de elementos. Indicaremos por n(A) o número de elementos de A. Sejam A e B dois conjuntos quaisquer. Valem as seguintes propriedades:

•
$$n(A - B) = n(A) - n(A \cap B)$$

• B
$$\subset$$
 A \Rightarrow n(A - B) = n(A) - n(B)

•
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$\bullet A \cap B = \emptyset \Rightarrow n(A \cup B) = n(A) + n(B)$$

•
$$n(A) = k \Rightarrow n [\mathbb{P}(A)] = 2^k$$

1. PRODUTO CARTESIANO

Par ordenado

O conceito de PAR ORDENADO é PRIMITIVO. A cada elemento **a** e a cada elemento **b** está associado um **único** elemento indicado por (a; b) e chamado PAR ORDENADO, de tal forma que se tenha:

$$(a; b) = (c; d) \Leftrightarrow a = c e b = d$$

Dado o PAR ORDENADO (a; b), diz-se que **a** é o PRIMEIRO ELEMEN-TO e **b** é o SEGUNDO ELEMENTO do par ordenado (a; b).

Produto cartesiano

Dados dois conjuntos A e B, chama-se PRODUTO CARTESIANO de A por B, e indica-se por A x B, ao conjunto formado por **todos** os PARES ORDENADOS (x; y), com $x \in A$ e $y \in B$.

Em símbolos

$A \times B = \{ (x; y) \mid x \in A \in y \in B \}$

Se A = \emptyset ou B = \emptyset , por definição, A x B = \emptyset e reciprocamente.

Em símbolos

$A = \emptyset$ ou $B = \emptyset \Leftrightarrow A \times B = \emptyset$

Nota: Se A = B, em vez de A x A, escreveremos A^2 .

Representação gráfica do produto cartesiano

O PRODUTO CARTESIANO de dois conjuntos não vazios pode ser representado graficamente por DIA-GRAMAS DE FLECHAS ou por DIA-GRAMAS CARTESIANOS.

Por exemplo, se $A = \{1, 2, 3\}$ e $B = \{2, 3\}$, então $A \times B = \{(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3,3)\}$, cujas representações podem ser dadas por:

I) Diagrama de flechas

Consideramos de um lado o conjunto A e de outro de B e representamos cada PAR ORDENADO por uma FLECHA, adotando a seguinte convenção: a flecha parte do primeiro elemento do par ordenado e chega

ao segundo. Assim:

II)Diagrama cartesiano

Tomamos dois eixos ortogonais e representamos sobre o eixo horizontal os elementos de A e sobre o eixo vertical os elementos de B.

Traçamos, por estes elementos, paralelas aos eixos considerados.

As intersecções dessas paralelas representam, assim, os pares ordenados de A x B.

Número de elementos de um produto cartesiano

Teorema: Se A tem **m** elementos e B tem **k** elementos, então A x B tem **m.k elementos**.

2. RELAÇÃO BINÁRIA

Definição

Dados dois conjuntos A e B, chama-se relação binária de A em B a qualquer subconjunto f de A x B.

Então:

f é uma RELAÇÃO BINÁRIA DE A EM B ⇔ f ⊂ A x B

Representação gráfica de uma relação

Sendo a RELAÇÃO BINÁRIA um conjunto de pares ordenados, podemos representá-lo graficamente como já o fizemos com o produto cartesiano.

Exemplo

Se A = \mathbb{R} , B = \mathbb{R} e

 $f = \{(x; y) \in \mathbb{R}^2 \mid y = x + 2\}$, então $f = \{...(0, 2), (-2, 0), (1, 3), (-1, 1), ...\} \subset \mathbb{R}^2$ e o gráfico de f no plano euclidiano (cartesiano) é uma reta que passa por dois desses pontos.

3. FUNCÕES

□ Definições

Seja f uma RELAÇÃO BINÁRIA DE A EM B. Diz-se que f é uma APLI-CAÇÃO DE A EM B ou que f é uma FUNÇÃO DEFINIDA EM A COM VA-LORES EM B se, e somente se:

- I) TODO $x \in A$ se relaciona com ALGUM $y \in B$.
- II) CADA $x \in A$ que se relaciona, relaciona-se com um ÚNICO $y \in B$.

Se $(x, y) \in f$, então y se chama IMAGEM DE x PELA APLICAÇÃO f ou, ainda, VALOR DE f EM x e, em ambos os casos, indicaremos este fato por y = f(x) [lê-se: "y é imagem de x por f" ou "y é valor de f em x"].

Seja f a função definida em \mathbb{R}^* com valores em \mathbb{R}^* , tal que $y = \frac{1}{x}$, ou seja, $f(x) = \frac{1}{x}$.

Portanto:

$$\bullet \ f = \left\{ (x; y) \in \mathbb{R}^* \ x \ \mathbb{R}^* \ | \ y = \frac{1}{x} \right\}$$

- a imagem de 2 por f é f(2) = $\frac{1}{2}$
- a imagem de 1 por f é f(-1) =
 = 1/-1 = -1
- a imagem de x + 3 por f é f(x + 3) = $= \frac{1}{x + 3}$

•
$$f(x + h) = \frac{1}{x + h}$$

Domínio, contradomínio e imagem de uma função

Se f é uma APLICAÇÃO ou FUN-ÇÃO de A em B, então:

 I) O conjunto de partida A passa a ser chamado DOMÍNIO DA APLI-CAÇÃO f e é indicado por D(f).

Assim: D(f) = A

II) O conjunto de chegada B será chamado CONTRADOMÍNIO DA APLICAÇÃO f e é denotado por CD(f). Logo, CD(f) = B.

III)O conjunto de todos os elementos y de B para os quais existe, pelo menos, um elemento x de A, tal que f(x) = y, é denominado IMAGEM DA APLICAÇÃO f e é indicado por Im(f).

Assim:

$$Im(f) = \{y \in B \mid \exists x \in A$$

tal que $y = f(x)\}$

Pela própria definição de Im(f) decorre que:

Sejam A = $\{1, 2, 3\}$ e B = $\{0, 2, 4, 6, 8\}$ e seja f a função de A em B, tal que y = 2x, ou seja, f(x) = 2x. Então:

> • $f = \{(x; y) \in AxB \mid y = 2x\} =$ = $\{(x, f(x)) \in AxB \mid f(x) = 2x\}$ $f = \{(1, 2), (2, 4), (3, 6)\}$

- $D(f) = A = \{1, 2, 3\}$
- $CD(f) = B = \{0, 2, 4, 6, 8\}$
- $Im(f) = \{2, 4, 6\} \subset CD(f)$

Notações

Indicaremos uma APLICAÇÃO f DE DOMÍNIO A e CONTRADOMÍNIO B por uma das notações:

$f: A \rightarrow B \text{ ou } A \xrightarrow{f} B$

Quando não houver dúvidas sobre o DOMÍNIO, o CONTRADOMÍNIO e a definição de f(x), num elemento qualquer x do DOMÍNIO de f, usaremos a notação:

 $f: x \rightarrow f(x)$: [lê-se "f associa a cada $x \in D(f)$ o elemento $f(x) \in CD(f)$ "].

Representação gráfica de uma função

I) Diagramas de flechas

Uma RELAÇÃO f DE A EM B é uma FUNÇÃO se, e somente se, cada elemento x de A se relaciona com um único elemento y de B, o que equivale dizer que: "de cada elemento x de A parte uma única flecha".

II) Diagrama cartesiano (Gráfico)

Seja f uma RELAÇÃO BINÁRIA DE A \subset \mathbb{R} EM \mathbb{R} e consideremos o seu GRÁFICO CARTESIANO.

Então, f é uma FUNÇÃO DEFINIDA em A COM VALORES EM $\mathbb R$ se, e somente se, toda reta paralela ao eixo Oy, que passa por um ponto de abscissa $x \in A$, "corta" o gráfico f num único ponto.

Portanto, a RELAÇÃO f de A $\subset \mathbb{R}$ EM \mathbb{R} NÃO é FUNÇÃO se, e somente se, existe, pelo menos, uma reta paralela ao eixo Oy que passa por um ponto de abscissa $x \in A$ e tal que ou intercepta o gráfico em mais de um ponto, ou não o intercepta.

Por exemplo, no gráfico III, a reta paralela ao eixo Oy passando pelo ponto de abscissa $2 \in A$ não intercepta o gráfico f, logo f não é FUNÇÃO definida em A com valores em \mathbb{R} . No entanto, se restringirmos A ao conjunto A' = $\{x \in \mathbb{R} \mid -3 \le x < 2 \text{ ou } 2 < x \le 6\}$, então a RELAÇÃO DE A' EM \mathbb{R} é uma FUNÇÃO.

III) Domínio e imagem através do gráfico

Um outro problema comum é o da determinação do DOMÍNIO e da IMAGEM DE UMA FUNÇÃO f pelo gráfico. De acordo com as definições e comentários feitos até aqui, dado o gráfico de uma FUNÇÃO f, temos:

- D(f) é conjunto de todas as abscissas dos pontos do eixo tais que as retas verticais por eles traçadas interceptam o gráfico de f.
 - Im(f) é o conjunto de todas

as ordenadas dos pontos do **eixo Oy tais que as retas** horizontais
por eles traçadas interceptam o gráfico de f.

Em outras palavras:

- D(f) é o conjunto de todos os pontos do eixo Ox que são obtidos pelas projeções dos pontos do gráfico de f sobre o referido eixo.
- Im(f) é conjunto de todos os pontos do eixo Oy que são obtidos pelas projeções dos pontos do gráfico de f sobre o referido eixo.

MÓDULOS 4 e 5

Domínio, Contradomínio e Imagem

1. CONVENÇÕES

A função f de A em B fica determinada se especificarmos o domínio A, o contradomínio B e o subconjunto f de A \times B que satisfaz as propriedades que definem a função. Em geral, o subconjunto f de A \times B é substituído pela sentença aberta de duas variáveis que o define (y = f(x)).

Quando dissermos "consideremos a função definida por y = f(x)" ou "seja a função tal que $x \to f(x)$ ", fica convencionado, salvo menção em contrário, que o contradomínio é $\mathbb R$ e o domínio de f é o "mais amplo" subconjunto de $\mathbb R$, para o qual tem sentido a sentença aberta y = f(x).

2. EXEMPLO

Seja a função f definida por $f(x) = \frac{\sqrt{x-2}}{x-3}$. Como não

foi mencionado o contradomínio, subentende-se que

B = CD (f) =
$$\mathbb{R}$$
. Se $\frac{\sqrt{x-2}}{x-3} \in \mathbb{R}$, então $x-3 \neq 0$ e

 $x-2 \ge 0$, pois em $\mathbb R$ não se define a divisão por zero e a raiz quadrada aritmética só tem sentido se o radicando for maior ou igual a zero. Assim,

 $A = D(f) = \{x \in \mathbb{R} \mid x \ge 2 \text{ e } x \ne 3\} \text{ e a}$ imagem Im(f) = \{y \in B \cong 3 \cdot x \in A, \tal \text{que y = f(x)}\}.

3. DOMÍNIO E IMAGEM PELO GRÁFICO

O domínio D(f) é o conjunto de todos os pontos do eixo Ox que são obtidos pelas projeções dos pontos do gráfico de f sobre o referido eixo.

A imagem Im(f) é o conjunto de todos os pontos do eixo Oy que são obtidos pelas projeções dos pontos do gráfico de f sobre o referido eixo.

4. EXEMPLOS

Sejam as funções f; $\mathbb{N} \to \mathbb{R}$, tal que f(x) = x^2 e g: $\mathbb{R} \to \mathbb{R}_+$, tal que g(x) = x^2 .

$$D(f) = \mathbb{N}$$

$$CD(f) = \mathbb{R}$$

$$Im(f) = \{0, 1, 4, 9, ...\} = \{y = n^2, \text{ com } n \in \mathbb{N}\}$$

$$\begin{aligned} \textbf{D}(\textbf{g}) &= \mathbb{R} \\ \textbf{CD}(\textbf{g}) &= \mathbb{R}_+ \\ \textbf{Im}(\textbf{g}) &= \{\textbf{y} = \textbf{x}^2, \, \textbf{com} \, \textbf{x} \in \mathbb{R}\} = \mathbb{R}_+ \end{aligned}$$

1. FUNÇÃO SOBREJETORA

Uma função $f: A \rightarrow B$ é **sobrejetora** se, e somente se, para **todo** elemento y de B existe **pelo menos** um elemento x de A, tal que y = f(x).

Assim,

f : A
$$\rightarrow$$
 B é SOBREJETORA \Leftrightarrow \Leftrightarrow Im(f) = CD (f).

Quanto à representação gráfica:

- f : A → B é sobrejetora se, e somente se, **todo** elemento y ∈ B é atingido por **pelo menos** uma flecha.
- f: A → B é sobrejetora se, e somente se, a reta paralela ao eixo Ox, passando por **todo** ponto de ordenada y ∈ B, intercepta o gráfico de f **pelo menos** uma vez.

Exemplo

Se A = $\{-1, 1, 2, 3\}$, B = $\{1, 4, 9, 10\}$ e C = $\{1, 4, 9\}$, então a função f : A \rightarrow B, definida por y = $f(x) = x^2$, **não é sobrejetora** e a função g : A \rightarrow C, definida por y = $g(x) = x^2$, **é sobrejetora**.

$$D(f) = A$$

 $CD(f) = B$
 $Im(f) = \{1, 4, 9\} \neq CD(f)$

$$D(g) = A$$

$$CD(g) = C = Im(g)$$

2. FUNÇÃO INJETORA

Uma função $f: A \rightarrow B$ é **injetora** se, e somente se, **elementos distintos** de A têm **imagens distintas** em B.

 $\Leftrightarrow (\forall x, x' \in A), (x \neq x' \Rightarrow f(x) \neq f(x')), \text{ ou, ainda,}$ $f: A \to B \notin \text{INJETORA} \Leftrightarrow$ $\Leftrightarrow (\forall x, x' \in A), (f(x) = f(x') \Rightarrow x = x').$

f:A → B é INJETORA ⇔

Nos diagramas de flechas e nos gráficos cartesianos:

- f : A → B é injetora se, e somente se, cada elemento y ∈ B é atingido no máximo por uma flecha.
- f: A → B é injetora se, e somente se, a reta paralela ao eixo Ox, passando por cada ponto de ordenada y ∈ B, intercepta o gráfico de f, no máximo, uma vez.

Exemplo

Se A = $\{-1, 1, 2, 3\}$, B = $\{1, 2, 3\}$ e C = $\{1, 4, 9, 10\}$, então a função f : A \rightarrow C, definida por y = $f(x) = x^2$, **não é injetora** e a função g : B \rightarrow C, definida por y = $g(x) = x^2$, **é injetora**.

$$f(1) = f(-1) e 1 \neq -1$$

 $g(1) \neq g(2)$

 $g(2) \neq g(3)$

 $g(1) \neq g(3)$

3. FUNÇÃO BIJETORA

Uma função f : A \rightarrow B é **bijetora** se, e somente se, f é **sobrejetora** e **injetora**, ou, em outras palavras, se para **cada** elemento $y \in B$ existe um **único** elemento $x \in A$, tal que y = f(x).

Assim:

f : A → B é BIJETORA ⇔

⇔ f : A → B é SOBREJETORA E INJETORA.

Quanto à representação:

- f : A → B é bijetora se, e somente se, cada elemento y ∈ B é atingido por uma única flecha.
- f: A → B é bijetora se, e somente se, a reta paralela ao eixo Ox, passando por cada ponto de ordenada y ∈ B, intercepta o gráfico de fuma única vez.

Exemplo

Se A = $\{1, 2, 3\}$ e B = $\{1, 4, 9\}$, então a função f : A \rightarrow B, definida por $y = f(x) = x^2$, **é bijetora**.

Sejam $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$ uma função e x_1 e x_2 dois elementos quaisquer do intervalo $[a, b] \subset A$.

1. FUNÇÃO ESTRITAMENTE CRESCENTE

Uma função $f: A \to \mathbb{R}$ é uma função **estritamente crescente** em [a, b] se, e somente se, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

2. FUNÇÃO ESTRITAMENTE DECRESCENTE

Uma função $f: A \to \mathbb{R}$ é uma função **estritamente decrescente** em [a, b] se, e somente se, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

Exemplo

A função $f: \mathbb{R} \to \mathbb{R}$, tal que $f(x) = x^2$, não é monotônica, pois é estritamente decrescente em \mathbb{R}_{-} e é estritamente crescente em \mathbb{R}_{+} .

• A função f : $\mathbb{R}_+ \to \mathbb{R}$, tal que $f(x) = x^2$, é estritamente crescente.

• A função $f: \{x \in \mathbb{R} \mid x > 1\} \to \mathbb{R}$, tal que $f(x) = x^2$, é estritamente crescente.

• A função $f: \mathbb{R}_- \to \mathbb{R}$, tal que $f(x) = x^2$, é estritamente decrescente.

3. FUNÇÃO CRESCENTE

Uma função f : A \rightarrow B é **cres cente** em [a, b] se, e somente se, $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$.

4. FUNÇÃO DECRESCENTE

Uma função f : A \rightarrow B é **decres cente** em [a, b] se, e somente se, $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$.

5. FUNÇÃO CONSTANTE

Uma função f : A \rightarrow B é **constante** em [a, b] se, e somente se, $f(x_1) = f(x_2), \forall x_1, x_2 \in [a, b].$

Exemplo

Seja f : $\mathbb{R} \to \mathbb{R}$ a função definida por:

$$f(x) = \begin{cases} -2x + 2, \text{ se } x \leq -1 \\ 4, \text{ se } -1 < x < 3 \\ 2x - 2, \text{ se } x \geq 3 \end{cases}$$

- f não é monotônica.
- f é crescente em
 [1; + ∞ [, por exemplo.
- f é decrescente em
]-∞; 2], por exemplo.
- f é constante em
 [-1; 3], por exemplo.
- A função f: $\{x \in \mathbb{R}/x > -1\} \to \mathbb{R}$, tal que f(x) = $\begin{cases} 4, \text{ se } -1 < x < 3 \\ 2x 2, \text{ se } x \ge 3 \end{cases}$, é crescente.
- A função f : $\{x \in \mathbb{R} \mid x \ge 3\} \to \mathbb{R}$, tal que f(x) = 2x 2, é estritamente crescente.
- A função f : $\{x \in \mathbb{R} \mid x \le -1\} \to \mathbb{R}$, tal que f(x) = -2x + 2, é estritamente decrescente.

- A função f : $\{x \in \mathbb{R} \mid x < 3\} \to \mathbb{R}$, tal que $f(x) = \begin{cases} -2x + 2, \text{ se } x \leq -1 \\ 4, \text{ se} 1 < x < 3 \end{cases}$, é decrescente.
- A função f : R → R, definida por f(x) = 4, é constante.

6. FUNÇÃO PAR

Seja A um subconjunto de \mathbb{R} .

Uma função $f: A \to \mathbb{R}$ é par se, e somente se, f(-x) = f(x), para todo $x \in A$.

Assim,

$$f: A \to \mathbb{R} \in PAR \Leftrightarrow f(-x) = f(x), \forall x \in A$$

O gráfico de uma função par é simétrico em relação ao eixo Oy.

Exemplo

Seja $f: \mathbb{R} \to \mathbb{R}$ a função, tal que $f(x) = \cos x$ (função cosseno).

Temos:

$$f(x) = \cos x = OM$$

$$f(-x) = \cos(-x) = OM$$

Assim, f(-x) = f(x), $\forall x \in \mathbb{R}$.

Logo, f é uma função par.

7. FUNÇÃO ÍMPAR

Seja A um subconjunto de \mathbb{R} . Uma função f : A $\rightarrow \mathbb{R}$ é impar se, e somente se, f(-x) = -f(x), para todo x \in A.

Assim.

$$f: A \to \mathbb{R} \in \mathbf{MPAR} \Leftrightarrow$$

$$\Leftrightarrow$$
 f(-x) = -f(x), \forall x \in A

O gráfico de uma função ímpar é simétrico em relação à origem do sistema de coordenadas.

Exemplo

Seja $f : \mathbb{R} \to \mathbb{R}$ a função, tal que f(x) = sen x (função seno).

Temos:

$$f(x) = sen x = OM$$

$$f(-x) = sen(-x) = OM'$$

Como |OM| = |OM'| e OM = -OM',

então $f(-x) = -f(x), \forall x \in \mathbb{R}$.

Logo, f é uma função ímpar.

8. FUNÇÃO PERIÓDICA

Seja A um subconjunto de R.

□ Definição

Uma função $f: A \to \mathbb{R}$ é **periódica** se, e somente se, **existe** $p \in \mathbb{R}^*$, tal que f(x + p) = f(x), para todo x em A.

Propriedade

Se f(x + p) = f(x), para todo x em A, então $f(x + k \cdot p) = f(x)$, para todo x em A, em que $k \in \mathbb{Z}^*$.

□ Período

Se f é uma função periódica, então o menor valor estritamente positivo de p chama-se período de f e é indicado por P(f).

Exemplo

Seja f: $\mathbb{R} \to \mathbb{R}$, tal que f(x) = sen x. Então f(x + k . 2π) = f(x), para todo x em \mathbb{R} , em que k \in Z. Portanto, f é **periódica** de **período** 2π .

9. FUNÇÃO LIMITADA

Seja A um subconjunto de \mathbb{R} .

Se f : A $\rightarrow \mathbb{R}$ é uma **função limitada**, então **existe** M $\in \mathbb{R}_{+,}^{*}$ tal que $|f(x)| \leq M$, para todo x em A e reciprocamente.

Exemplo

Se f: A $\rightarrow \mathbb{R}$, tal que f(x) = sen x; como -1 \leq sen x \leq 1, \forall x $\in \mathbb{R}$; então -1 \leq f(x) \leq 1, \forall x $\in \mathbb{R}$, ou seja: f é limitada (o mesmo para f: $\mathbb{R} \rightarrow \mathbb{R}$, f(x) = cos x).

Sejam f : A \rightarrow B e g : B \rightarrow C duas funções.

Chama-se composta de g com f a função h : A \rightarrow C, tal que h(x) = g[f(x)].

Sejam f : $M \rightarrow N e g : L \rightarrow M$.

Chama-se composta de f com g a função

 $h: L \rightarrow N$, tal que h(x) = f[g(x)].

Seja f : $A \rightarrow A$.

Chama-se composta de f com f a função

 $h: A \rightarrow A$, tal que h(x) = f(f(x)).

Seja g : $B \rightarrow B$.

Chama-se composta de g com g a função

 $h : B \rightarrow B$, tal que h(x) = g(g(x)).

Exemplo

Sejam $f: \mathbb{R} \to \mathbb{R} \text{ e g}: \mathbb{R} \to \mathbb{R}$ duas funções definidas por f(x) = x + 1 e $g(x) = x^2 + 3$. É claro que neste caso estão definidas as funções compostas gof, fog, gog e fof e, além disso:

gof : $\mathbb{R} \to \mathbb{R}$, fog : $\mathbb{R} \to \mathbb{R}$,

 $gog : \mathbb{R} \to \mathbb{R}$, fof : $\mathbb{R} \to \mathbb{R}$.

Assim sendo.

•
$$(gof)(x) = g[f(x)] =$$

 $= (f(x))^2 + 3 =$
 $= (x + 1)^2 + 3 =$
 $= (x^2 + 2x + 1) + 3 =$
 $= x^2 + 2x + 4, \forall x \in \mathbb{R}$

•
$$(fog)(x) = f[g(x)] =$$

= $g(x) + 1 =$
= $x^2 + 4, \forall x \in \mathbb{R}$

• (fof) (x) = f[f(x)] =
= f(x) + 1 = x + 2,
$$\forall x \in \mathbb{R}$$

•
$$(gog)(x) = g[g(x)] =$$

= $(g(x))^2 + 3 = (x^2 + 3)^2 + 3 =$
= $(x^4 + 6x^2 + 9) + 3 =$
= $x^4 + 6x^2 + 12, \forall x \in \mathbb{R}$

gof:
$$\mathbb{R} \to \mathbb{R}$$

(gof) (x) = $x^2 + 2x + 4$; $\forall x \in \mathbb{R}$

fof:
$$\mathbb{R} \to \mathbb{R}$$

(fof)(x) = x + 2,
$$\forall$$
x \in \mathbb{R}

fog:
$$\mathbb{R} \to \mathbb{R}$$

$$(fog)(x) = x^2 + 4, \forall x \in \mathbb{R}$$

gog:
$$\mathbb{R} \to \mathbb{R}$$

$$(gog)(x) = x^4 + 6x^2 + 12, \forall x \in \mathbb{R}$$

Função Inversa

Seja $f: A \rightarrow B$ uma função. Se existir uma função $g: B \rightarrow A$, tal que:

- $gof = id_A$
- $fog = id_{R}$

dizemos que $g: B \rightarrow A$ é a função inversa da função $f: A \rightarrow B$ e se indica por f^{-1} .

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

1. TEOREMA

 $f: A \rightarrow B$ é inversível \Leftrightarrow \Leftrightarrow f é bijetora.

2. PROPRIEDADES

- f^{-1} of $= id_A$
- $fof^{-1} = id_{R}$
- fog = id_B e gof = $id_A \Rightarrow g = f^{-1}$
- $(fog)^{-1} = g^{-1}of^{-1}$
- Os gráficos de f e f⁻¹ são simétricos em relação à bissetriz dos quadrantes ímpares (1º e 3º).

3. REGRA PRÁTICA

Dada uma função bijetora $f: A \rightarrow B$, a sua função inversa será a função $f^{-1}: B \rightarrow A$, cuja sentença é assim obtida:

- 1º) substitui-se, na sentença de f, f(x) por y;
- 2º) isola-se x num dos membros;
- 3º) substitui-se na nova sentença x por f⁻¹(y).

Exemplo

Consideremos a função $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = 3x - 3. Como f é bijetora, ela é inversível. Determinemos a sua função inversa.

Pela **regra prática**, temos: $f^{-1}: \mathbb{R} \to \mathbb{R}$ e, além disso:

$$f(x) = 3x - 3 \implies y = 3x - 3 \implies$$

$$\Rightarrow y + 3 = 3x \Rightarrow x = \frac{y + 3}{3} \Rightarrow$$
$$\Rightarrow f^{-1}(y) = \frac{y + 3}{3}$$

Portanto,

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$

$$f^{-1}(y) = \frac{y+3}{3}$$

ou, ainda:

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$

$$f^{-1}(x) = \frac{x+3}{3}$$

$$f: \mathbb{R} \to \mathbb{R}$$
 $f^{-1}: \mathbb{R} \to \mathbb{R}$
$$f(x) = 3x - 3 \quad f^{-1}(x) = \frac{x + 3}{3}$$

Notemos que os gráficos de f e f⁻¹ são simétricos em relação à bissetriz do 1º e 3º quadrantes (gráfico da função identidade id).

Façamos, agora, a construção dos gráficos de f e de f⁻¹ num só sistema de coordenadas cartesianas:

Consideremos a função $g: \mathbb{R}_- \to \mathbb{R}_+$, definida por $g(x) = x^2$. Como g é bijetora, ela é inversível. Determinemos a sua função inversa.

Pela regra prática, temos:

$$g^{-1}: \mathbb{R}_+ \to \mathbb{R}_-$$

e além disso:

$$g(x) = x^{2} \Rightarrow y = x^{2} \Rightarrow$$
$$\Rightarrow x = -\sqrt{y} \Rightarrow g^{-1}(y) = -\sqrt{y}$$

Portanto.

$$g^{-1}: \mathbb{R}_+ \to \mathbb{R}_-$$

$$g^{-1}(y) = -\sqrt{y}$$

ou, ainda:

$$g^{-1}: \mathbb{R}_{\perp} \to \mathbb{R}_{\perp}$$

$$g^{-1}(x) = -\sqrt{y}$$

$$g: \mathbb{R} \to \mathbb{R}$$
 $g^{-1}: \mathbb{R}_+ \to \mathbb{R}_ g(x) = x^2$ $g^{-1}(x) = -\sqrt{x}$

Notemos que os gráficos de g e g⁻¹ são simétricos em relação à bissetriz do 1º e 3º quadrantes (gráfico da função identidade id).

Façamos, agora, a construção dos gráficos de g e g⁻¹ num só sistema de coordenadas cartesianas.

Observemos que

$$(-1, 1) \subseteq g \Leftrightarrow (1, -1) \subseteq g^{-1}$$

$$D(g) = Im(g^{-1}) e D(g^{-1}) = Im(g)$$

Trigonometria

MÓDULO 1

Funções Trigonométricas no Triângulo Retângulo

1. DEFINIÇÕES

Seja um triângulo ABC, retângulo em A. Os outros ângulos B e C são agudos e complementares ($\mathring{B} + \mathring{C} = 90^{\circ}$).

Para ângulos agudos, temos as seguintes definições das funções trigonométricas:

cateto oposto		
hipotenusa		
cateto adjacente		
cosseno =	hipotenusa	
cateto oposto		
tangente = —	ateto adjacente	
	cateto adjacente	
cotangente =	cateto oposto	
hipotenusa		
cateto adjacente		
cossecante =	hipotenusa	
cossecante =	cateto oposto	

Com base nessas definições, no triângulo retângulo da figura, temos:

$\operatorname{sen} \stackrel{\wedge}{\mathbf{B}} = \frac{\mathbf{b}}{\mathbf{a}}$	$\operatorname{sen} \hat{C} = \frac{C}{a}$
$\cos \hat{\mathbf{B}} = \frac{\mathbf{c}}{\mathbf{a}}$	$\cos \hat{C} = {a}$
$\mathbf{tg} \hat{\mathbf{B}} = \frac{\mathbf{b}}{\mathbf{c}}$	tg Ĉ = C b
$\cot \hat{\mathbf{B}} = \frac{\mathbf{c}}{\mathbf{b}}$	$\cot \hat{\mathbf{C}} = \frac{\mathbf{b}}{\mathbf{c}}$
$\operatorname{sec} \overset{\wedge}{\mathbf{B}} = \frac{\mathbf{a}}{\mathbf{c}}$	$\operatorname{sec} \hat{\mathbf{C}} = \frac{\mathbf{a}}{\mathbf{b}}$
$\operatorname{cossec} \stackrel{\wedge}{\mathbf{B}} = \frac{\mathbf{a}}{\mathbf{b}}$	$\operatorname{cossec} \hat{\mathbf{C}} = \frac{\mathbf{a}}{\mathbf{c}}$

Observando que:

$$sen \hat{\mathbf{B}} = cos \hat{\mathbf{C}}$$

$$cos \hat{\mathbf{B}} = sen \hat{\mathbf{C}}$$

$$tg \hat{\mathbf{B}} = \cot g \hat{\mathbf{C}}$$
$$\cot g \hat{\mathbf{B}} = tg \hat{\mathbf{C}}$$

$$\sec \hat{\mathbf{B}} = \csc \hat{\mathbf{C}}$$

 $\csc \hat{\mathbf{B}} = \sec \hat{\mathbf{C}}$

concluímos que as "cofunções de ângulos complementares são iguais".

2. VALORES NOTÁVEIS

A partir de triângulos retângulos convenientes, as definições de seno, cosseno e tangente permitem a obtenção do seguinte quadro de valores notáveis (decore-os).

X	sen x	cos x	tg x
30°	1 2	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	1 2	√3

A seguir, temos a obtenção de alguns valores dessa tabela.

No triângulo equilátero de lado ℓ ,

a altura vale
$$h = \frac{\ell \cdot \sqrt{3}}{2}$$
, assim:

sen 30° =
$$\cos 60^\circ = \frac{\ell/2}{\ell} = \frac{1}{2}$$

$$\cos 30^{\circ} = \sec 60^{\circ} = \frac{\ell . \sqrt{3} / 2}{\ell} = \frac{\sqrt{3}}{2}$$

tg 30° =
$$\frac{\ell/2}{\ell.\sqrt{3}/2} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

tg 60° =
$$\frac{\ell \cdot \sqrt{3}/2}{\ell/2} = \sqrt{3}$$

MÓDULO 2

Relações Fundamentais e Auxiliares

F. 1) $sen^2x + cos^2x = 1 \Leftrightarrow$ $\Leftrightarrow \begin{cases} sen^2x = 1 - cos^2x \\ cos^2x = 1 - sen^2x \end{cases}$	F. 3) cotg x = 1 tg x	F. 5) cossec $x = \frac{1}{\text{sen } x}$
E 2) ta x - sen x	F 4) sec v - 1	A. 1) $sec^2x = 1 + tg^2x$
F. 2) tg x = $\frac{\text{sen x}}{\text{cos x}}$	$F. 4) \sec x = \frac{1}{\cos x}$	A. 2) $cossec^2x = 1 + cotg^2x$

Medidas de Arcos e Ângulos

1. ARCOS DE CIRCUNFERÊNCIA

Seja uma circunferência em que são tomados dois pontos, A e B. A circunferência ficará dividida em duas partes chamadas **arcos**. Os pontos A e B são as extremidades desses arcos.

Representação: AB

Se A e B coincidem, esses arcos são chamados:

- arco nulo (de medida 0°);
- arco de **uma volta** (de medida **360°**).

Dessa forma,

• 1 grau (1°) = $\frac{1}{360}$ do arco de uma volta.

Como submúltiplos do grau, temos:

• 1 minuto (1') = $\frac{1}{60}$ do grau ou

60 minutos = 1 grau (60' = 1°);

• 1 segundo (1") = $\frac{1}{60}$ do minuto

ou 60 segundos = 1 minuto (60" = 1').

2. MEDIDA DE ARCOS EM RADIANOS

Definição

A medida de um arco, em radianos, é a razão entre o comprimento do arco e o raio da circunferência sobre a qual este arco está determinado.

■ Observações

• O arco de **uma volta**, cuja medida em graus é **360°**, tem comprimento igual a **2πr**, portanto sua **medida em radianos** é:

$$\alpha = \frac{\text{comp(AB)}}{r} = \frac{2\pi r}{r} = 2\pi \approx 6,28$$

- O arco AB mede 1 radiano, se o seu comprimento é igual ao raio da circunferência.
- A medida de um arco, em radianos, é um número real, portanto é costume omitir-se o símbolo **rad**. Se, por exemplo, escrevermos que um arco mede **3**, fica subentendido que

sua medida é de 3 radianos.

• Seja AÔB o **ângulo central**, determinado pelo arco ÂB. Adota-se como medida (em graus ou radianos) do **ângulo central** a própria medida do arco ÂB.

3. CONVERSÕES

As conversões entre as medidas de arcos (ou ângulos) em graus e radianos são feitas por uma regra de três simples (direta), a partir da relação: **360°** são equivalentes a **2**π radianos, ou **180°** são equivalentes a π radianos.

Exemplo

Conversão de 210° em radianos.

$$180^{\circ} - \pi \text{ rad}$$

$$210^{\circ} - x \text{ rad}$$

$$\Leftrightarrow \frac{180}{210} = \frac{\pi}{x} \Leftrightarrow$$

$$\Leftrightarrow \frac{6}{7} = \frac{\pi}{x} \Leftrightarrow x = \frac{7 \cdot \pi}{6}$$

Portanto, 210° equivalem a $\frac{7\pi}{6}$ radianos.

MÓDULO 4

Medidas de Arcos e Ângulos Trigonométricos

1. CICLO TRIGONOMÉTRICO

O ciclo trigonométrico é uma circunferência de raio unitário, sobre a qual fixamos um ponto (A) como origem dos arcos e adotamos um sentido (o anti-horário) como o positivo. O ciclo trigonométrico é dividido em 4 partes, denominadas quadrantes.

2. ARCO (ÂNGULO) TRIGONOMÉTRICO

Chama-se **arco trigonomé- trico** \overrightarrow{AP} ao conjunto dos **infinitos arcos** que são obtidos partindo-se da origem **A** até a extremidade **P**, girando no sentido positivo (ou negativo), seja na primeira passagem ou após várias voltas completas no ciclo trigonométrico.

O **ângulo trigonométrico** AÔP é o conjunto dos **infinitos ângulos** centrais associados ao arco trigonométrico AP.

• Se, por exemplo, escrevemos que um arco trigonométrico mede 1120°, significa que, partindo da origem, no sentido ⊕, foram dadas 3 voltas completas (3.360° = 1080°) e ainda percorremos mais 40° (1120° = 3.360° + 40°) no ciclo trigonométrico. Dessa forma, todas as funções trigonométricas do arco de 1120° são iguais às correspondentes funções do arco de 40°.

3. CONJUNTO DAS DETERMI-NAÇÕES DE UM ARCO (OU ÂNGULO) TRIGONOMÉTRICO

A **determinação** de um arco AP é a medida desse arco precedida de um sinal \bigoplus ou \bigoplus , conforme o sentido de percurso de A para P seja o anti-horário ou o horário, respectivamente.

Ao arco trigonométrico ÁP associamos infinitas determinações, que são obtidas adicionandose e subtraindo-se múltiplos de 360° (ou 2π) à **1ª determinação** α (positiva ou negativa), e que vão constituir o **conjunto** das determinações:

 α é a 1ª determinação (\bigoplus ou \bigcirc)

 $\alpha + 360^{\circ}$

 α – 360°

 $\alpha + 2.360^{\circ}$

 α – 2.360°

 $\alpha + 3.360^{\circ}$

 $\alpha - 3.360^{\circ}$

:

 α + n . 360°, com $n \in \mathbb{Z}$.

O conjunto das determinações, em radianos, é $\alpha + n \cdot 2\pi$, com $n \in \mathbb{Z}$.

- Lembrete: Como a medida do arco trigonométrico \overrightarrow{AP} (em graus ou radianos) é igual à medida do ângulo trigonométrico \overrightarrow{AOP} , concluise que ambos têm o mesmo conjunto das determinações.
- Na trigonometria, os casos mais comuns são os apresentados a seguir:

Conjunto das determinações:

$$\alpha + \mathbf{n} \cdot 2\pi$$

 $\alpha + \mathbf{n} \cdot 360^{\circ}$ (n $\in \mathbb{Z}$)

Conjunto das determinações:

$$\alpha + \mathbf{n} \cdot \pi$$

 $\alpha + \mathbf{n} \cdot \mathbf{180}^{\circ}$ (n $\in \mathbb{Z}$)

MÓDULO 5

Estudo da Função Seno

1. FUNÇÃO SENO

Definição

Consideremos um arco trigonométrico AP e seja N a projeção ortogonal de P sobre o eixo dos senos.

Por definição, chama-se **seno do arco AP** a medida algébrica do segmento **ON**.

Representa-se:

Notando-se que a um arco AP qualquer de determinação x corresponde um único segmento ON,

de medida algébrica **y**, conclui-se que há uma correspondência unívoca entre os números reais **x**, que medem os arcos, e os números reais **y**, senos desses arcos.

Pode-se, portanto, definir uma função de \mathbb{R} em \mathbb{R} , tal que a cada \mathbf{x} associa um $\mathbf{y} = \mathbf{sen} \ \mathbf{x} = \mathbf{ON}$.

Simbolicamente:

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \rightarrow y = f(x) = sen x = ON$$

Observe que o ponto P, numa volta completa no ciclo trigonométrico, faz o valor do **seno** (ON) variar entre **- 1** e **1**. A cada volta, verificamos que esse comportamento se repete.

Consequências

Da definição da função y = f(x) = sen x, decorre que

Domínio: $D(f) = \mathbb{R}$

Imagem: $Im(f) = \{y \in \mathbb{R} \mid -1 \le y \le 1\}$

Variação da Função Seno

☐ Gráfico

Propriedades

- I) O **período** da função seno é 2π .
- II) A função $y = \operatorname{sen} x$ é **impar**: $\operatorname{sen} (-x) = -\operatorname{sen} x$
- III) A função y = sen x é crescente nos quadrantes I e IV e decrescente nos quadrantes II e III (a cada volta no ciclo trigonométrico).

IV) Sinais

MÓDULO 6

Estudo da Função Cosseno

1. FUNÇÃO COSSENO

■ Definição

Consideremos um arco trigonométrico AP e seja M a projeção ortogonal de P sobre o eixo dos cossenos.

Por definição, chama-se **cosseno do arco AP** a medida algébrica do segmento **OM**.

Pode-se definir uma função de \mathbb{R} em \mathbb{R} , tal que a cada \mathbf{x} associa um $\mathbf{y} = \cos \mathbf{x} = \mathbf{OM}$.

Simbolicamente

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \rightarrow y = f(x) = \cos x = OM$$

Observe que o ponto **P**, numa volta completa no ciclo trigonométrico, faz o valor do **cosseno** (OM) variar entre **-1** e **1**. A cada volta, verificamos que esse comportamento se repete.

Consequências

Da definição da função **y = f(x) = cos x**, decorre que:

Domínio: $D(f) = \mathbb{R}$

Imagem: $Im(f) = \{ y \in \mathbb{R} \mid -1 \le y \le 1 \}$

Variação da Função Cosseno

□ Gráfico

Propriedades

- I) O **período** da função cosseno é 2π .
- II) A função $y = \cos x \in par$: $\cos (-x) = \cos x$
- III) A função y = cos x é **decrescente** nos quadrantes **I** e **II** e **crescente** nos quadrantes **III** e **IV** (a cada volta no ciclo trigonométrico).
 - IV) Sinais

Estudo da Função Tangente

□ Definição

Consideremos um arco trigonométrico \widehat{AP} com $P \neq B$ e $P \neq D$ e seja T a intersecção da reta OP com o **eixo** das tangentes.

Por definição, chama-se **tangen- te do arco** \overrightarrow{AP} a medida algébrica do segmento \overline{AT} .

Representa-se:

tg
$$\overrightarrow{AP}$$
 = AT

Pode-se definir uma função de \mathbb{R} em \mathbb{R} , tal que a cada \mathbf{x} associa, um $\mathbf{y} = \mathbf{tg} \ \mathbf{x} = \mathbf{AT}$.

Simbolicamente:

f:
$$\mathbb{R} - \left\{ \frac{\pi}{2} + n \pi, n \in \mathbb{Z} \right\} \to \mathbb{R}$$

$$x \rightarrow y = f(x) = tg x = AT$$

Observe que: o ponto P, numa volta completa no ciclo trigonométrico, faz o valor da tangente (AT) tender a + ∞ ou a - ∞, quando o ponto P se aproxima de B (ou D), onde a tangente não existe. A cada meia volta, verificamos que os valores da tangente (ℝ) se repetem.

Consequências

Da definição da função

$$y = f(x) = tg x$$
, decorre que:

Domínio:
$$D(f) = \mathbb{R} - \left\{ \frac{\pi}{2} + n \cdot \pi, n \in \mathbb{Z} \right\}$$

Imagem: $Im(f) = \mathbb{R}$

□ Variação da Função Tangente

☐ Gráfico

Propriedades

- I) O **período** da função tangente é π .
- II) A função $y = tg x \in \text{impar}$: tg(-x) = -tg x
- III) A função y = tg x é **crescente** no intervalo

$$-\frac{\pi}{2} + \mathbf{n} \cdot \pi < \mathbf{x} < \frac{\pi}{2} + \mathbf{n} \cdot \pi$$
, para cada $\mathbf{n} \in \mathbb{Z}$.

IV) Sinais

Tangente

MÓDULOS 8 e 9

Estudo das Funções Cotangente, Secante e Cossecante

1. INTRODUÇÃO

O estudo das funções Cotangente, Secante e Cossecante pode ser feito a partir das três funções já estudadas (seno, cosseno e tangente).

□ Função Cotangente

Lembrando que:

$$\cot \mathbf{g} \ \mathbf{x} = \frac{\mathbf{1}}{\mathbf{tg} \ \mathbf{x}}$$

podemos concluir que a função $y = f(x) = \cot g x$ tem:

• Domínio:

D(f) =
$$\mathbb{R}$$
 - { $\mathbf{n} \cdot \mathbf{n}$, $\mathbf{n} \in \mathbb{Z}$ }, pois a função cotangente não existe quando a função tangente é zero (tg x = 0 \Leftrightarrow x = n . \mathbf{n} , n $\in \mathbb{Z}$).

• Imagem: Im(f) = R . A fun-

ção cotangente assume esses valores a partir da imagem da função tangente (\mathbb{R}).

- **Período:** π , pois a função cotangente tem o mesmo período da função tangente (π) .
- **Sinais:** a função cotangente tem os mesmos sinais da tangente, em cada um dos quadrantes.

A função y = cotg x é impar:

$$cotg(-x) = -cotg x$$

Função Secante

Lembrando que:

$$\sec x = \frac{1}{\cos x}$$

podemos concluir que a função

$$y = f(x) = \sec x$$
 tem:

Domínio:

$$D(f) = \mathbb{R} - \left\{ \frac{\pi}{2} + n \cdot \pi, n \in \mathbb{Z} \right\}$$

pois a função secante não existe quando a função cosseno é zero ($\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + n \cdot \pi, n \in \mathbb{Z}$).

• Imagem:

$$Im(f) = \{ y \in \mathbb{R} \mid y \leq -1 \text{ ou } y \geq 1 \}$$

A função secante assume esses valores a partir da imagem da função cosseno (valores do intervalo [-1;1]).

- **Período:** 2π , pois a função secante tem o mesmo período da função cosseno (2π) .
- **Sinais:** a função secante tem os mesmos sinais da função cosseno, em cada um dos quadrantes.

A função y = sec x é par:

$$sec(-x) = sec x$$

Função Cossecante

Lembrando que:

$$cossec x = \frac{1}{sen x}$$

podemos concluir que a função

• Domínio:

$$\mathbf{D}(\mathbf{f}) = \mathbb{R} - \{\mathbf{n} \cdot \boldsymbol{\pi}, \, \mathbf{n} \in \mathbb{Z}\} \quad \text{,pois} \quad \mathbf{a}$$

função cossecante não existe quando a função seno é zero

(sen
$$x = 0 \Leftrightarrow x = n \cdot \pi$$
, $n \in \mathbb{Z}$).

• Imagem:

$Im(f) = \{ y \in \mathbb{R} \mid y \leq -1 \text{ ou } y \geq 1 \}$

A função cossecante assume esses valores a partir da imagem da função seno (valores do intervalo [-1; 1]).

- **Período:** 2π , pois a função cossecante tem o mesmo período da função seno (2π) .
- **Sinais:** a função cossecante tem os mesmos sinais da função seno, em cada um dos quadrantes.

• A função y = cossec x é **impar**:

$$cossec(-x) = -cossecx$$

2. INEQUAÇÕES TRIGONOMÉTRICAS

As **inequações** trigonométricas (elementares) são resolvidas a partir da **leitura**, no ciclo trigonométrico, dos **arcos** determinados pelas condições dos problemas, da mesma maneira como foi feito o estudo das **equações** trigonométricas (elementares)

MÓDULO 10

Estudo das Variações do Período e do Gráfico das Funções Trigonométricas

1. VARIAÇÕES DO PERÍODO NAS FUNÇÕES TRIGONOMÉTRICAS

Seja **y** = **f**(**x**) uma função trigonométrica de período **p** e seja **y** = **g**(**x**) uma outra função, obtida de **y** = **f**(**x**), com período **P**. Sendo **K** um número real não nulo, as relações entre **p** e **P**, nos quatro casos importantes que se seguem, são as seguintes:

$$\int g(x) = K + f(x)$$
, verifica-se que $P = p$

$$(II)$$
 g(x) = K. f(x), verifica-se que P = p

$$(III)$$
 g(x) = f(x + K), verifica-se que P = p

(IV)
$$g(x) = f(\mathbf{K} \cdot x)$$
, verifica-se que $\mathbf{P} = \frac{\mathbf{p}}{|\mathbf{K}|}$

Exemplos

Determinação do período nas funções a seguir.

1)
$$y = \text{sen } x \text{ tem periodo } p = 2\pi$$

 $y = 2 + \text{sen } x \text{ tem periodo}$
 $P = p = 2\pi$
(caso I)

2)
$$y = tg \times tem período p = \pi$$

 $y = 3 \cdot tg \times tem período$
 $P = p = \pi$
(caso II)

3)
$$y = \cos x \text{ tem período } p = 2\pi$$

 $y = \cos (x + \pi) \text{ tem período}$
 $P = p = 2\pi$
(caso III)

4)
$$y = \text{sen } x \text{ tem período } p = 2\pi$$
 $y = \text{sen}(2 \cdot x) \text{ tem período}$

$$P = \frac{p}{|2|} = \frac{2\pi}{2} = \pi$$
(caso IV)

5)
$$y = tg \times tem \ período \ p = \pi$$

$$y = tg\left(\frac{x}{2}\right) \ tem \ período$$

$$P = \frac{p}{\left|\frac{1}{2}\right|} = \frac{\pi}{\frac{1}{2}} = 2\pi$$
(caso IV)

6)
$$y = \cos x$$
 tem período $p = 2\pi$
 $y = 1 + 3 \cdot \cos(\pi \cdot x)$ tem
período $P = \frac{2 \cdot \pi}{|\pi|} = \frac{2\pi}{\pi} = 2$
(casos I, II e IV)

2. VARIAÇÕES NO GRÁFICO DAS FUNÇÕES TRIGONOMÉTRICAS

Considerando os quatro casos mais importantes, temos as seguintes alterações nos gráficos das funções trigonométricas:

g(x) = K + f(x), verifica-se que o gráfico da função da função g(x) é obtido através de um deslocamento na vertical (igual a |K|) do gráfico da função f(x): o gráfico de f(x) sobe quando k > 0, ou desce quando K < 0. Se f(x) é a função seno (ou cosseno), então a imagem da função g(x) será o intervalo [-1 + k; 1 + k].

g(x) = K . f(x), verifica-se que o gráfico da função g(x) é obtido através de uma deformação na vertical do gráfico da função f(x): o gráfico de f(x) abre quando |K| > 1 ou fecha quando |K| < 1. Se K < 0, além dessa deformação, o gráfico gira 180° em torno do eixo x. Se f(x) é a função seno (ou cosseno), então a imagem da função g(x) será o intervalo [-1. |K|; 1 . |K|].

g(x) = f(K + x), verifica-se que o gráfico da função g(x) é obtido através de um **deslocamento na** horizontal (igual a |K|) do gráfico da função f(x): o gráfico de f(x) desloca para a **direita** quando K < 0 ou para a **esquerda** quando K > 0.

função $\mathbf{g}(\mathbf{x})$ é obtido através de uma **deformação na** horizontal do gráfico da função $\mathbf{f}(\mathbf{x})$; graças a uma mudança no período da função $\left(\mathbf{P} = \frac{\mathbf{p}}{|\mathbf{K}|}\right)$: o gráfico de $\mathbf{f}(\mathbf{x})$ abre quando $|\mathbf{K}| < 1$ ou fecha quando $|\mathbf{K}| > 1$.

Nos itens (III) e (IV), se f(x) é a função **seno** (ou **cosseno**), então a imagem da função g(x) será o intervalo [-1;1].

Exemplo

Representação gráfica da função y = 3. sen(2.x), em um período.

Notando que o **período** da função é $P = \frac{2 \cdot \pi}{2} = \pi$ (caso (IV)) e que sua **imagem** é igual ao intervalo [-3; 3] (caso (II)), temos o seguinte gráfico para a função:

FRENTE 4

Matemática e suas Tecnologias

Geometria Plana

MÓDULO 1

Ângulos

1. REGIÃO CONVEXA E NÃO CONVEXA (CÔNCAVA)

R é uma **região convexa** \Leftrightarrow $(\forall A. B \in R (A \neq B) \Rightarrow \overrightarrow{AB} \subset R)$

R' é uma **região não convexa** ⇔

 \Leftrightarrow ($\exists A, B \in R' \mid AB \not\subset R'$)

2. ÂNGULOS

Definição

Ângulo é a união de duas semirretas de mesma origem.

■ Região angular

Um ângulo geralmente determina no plano três conjuntos:

- pontos interiores;
- pontos do ângulo;
- pontos exteriores.

A união do conjunto dos pontos interiores com o conjunto dos pontos do ângulo constitui a região angular.

Bissetriz

É uma semirreta de origem no vértice do ângulo, que o divide em dois ângulos congruentes.

Ângulos consecutivos e adjacentes

• São consecutivos dois ângulos que possuem um lado em comum.

Exemplo

Os ângulos $\hat{1}$ e $\hat{2}$, $\hat{1}$ e $\hat{3}$ e $\hat{2}$ e $\hat{3}$ da figura são consecutivos.

• São adjacentes dois ângulos consecutivos cujas regiões angulares se interceptam no lado comum. Na figura anterior, são adjacentes somente os ângulos 1 e 2.

Ângulos opostos pelo vértice

São ângulos cujos lados de um são semirretas opostas aos lados do outro.

☐ Ângulos: reto, agudo e obtuso

Ângulos complementares, suplementares e replementares

90990990990

1. NOMENCLATURA

Dadas, num plano, duas retas, **r** e **s**, e uma transversal **t**, obtêm-se oito ângulos com as seguintes denominações:

- alternos internos $\begin{cases} \land \land \land \land \land \land \end{cases}$
- alternos externos $\left\{ \begin{array}{l} \wedge & \wedge & \wedge \\ a e z; b e w \end{array} \right.$
- colaterais internos $\left\{ \begin{array}{l} \land \ \ c \ \ e \ \ x \end{array} \right.$

Observação

Se as retas r e s fossem paralelas e a transversal t não fosse perpendicular a r e s, então os oito ângulos determinados seriam tais que quatro deles seriam agudos e congruentes, os outros quatro seriam obtusos e congruentes e finalmente cada ângulo agudo e cada ângulo obtuso seriam suplementares, conforme a figura seguinte.

2. PARALELISMO

Ângulos de lados paralelos possuem nomes e propriedades especiais.

• Ângulos correspondentes

Ângulos alternos

• Ângulos colaterais

 Ângulos de lados paralelos são
 CONGRUENTES ou SUPLEMEN-TARES.

3. PERPENDICULARISMO

Ângulos de lados perpendiculares são **CONGRUENTES** ou **SU-PLEMENTARES**.

1. DEFINIÇÃO

Dados três pontos não alinhados, A, B e C, chama-se triângulo a união dos segmentos \overline{AB} , \overline{BC} e \overline{CA} .

A ABC = AB U BC U CA

2. REGIÃO TRIANGULAR

É a união do triângulo ABC com o conjunto dos pontos interiores.

Elementos do triângulo:

• vértices: A, B, C

• lados: \overline{AB} , \overline{BC} , \overline{AC}

• ângulos internos:

$$\mathring{A} = \mathring{BAC}, \mathring{B} = \mathring{ABC} e \mathring{C} = \mathring{ACB}$$

 ângulo externo: é o ângulo formado por um lado e a reta suporte do outro, suplementar ao ângulo interno.
 Na figura, por exemplo, é o ângulo α.

3. PROPRIEDADES IMPORTANTES

• Lei angular de Tales: a soma dos ângulos internos de qualquer triângulo é 180° , pois, como $\alpha \cong \hat{C} = \beta \cong \hat{B}$ (alternos internos) e $\gamma = \hat{A}$, resulta:

Teorema do ângulo exter-

no: em qualquer triângulo, cada ângulo externo é igual à soma dos internos não adjacentes.

$$\hat{E}x + \hat{C} = 180^{\circ}$$

$$\hat{A} + \hat{B} + \hat{C} = 180^{\circ}$$
Assim:
$$\hat{E}x + \hat{C} = \hat{A} + \hat{B} + \hat{C} \Rightarrow$$

$$\Rightarrow$$
 $\stackrel{\wedge}{\mathbf{E}}\mathbf{x} = \stackrel{\wedge}{\mathbf{A}} + \stackrel{\wedge}{\mathbf{B}}$

• Soma dos ângulos externos: em qualquer triângulo, a soma dos ângulos externos é 360°.

Desigualdade nos triângu-

los: em todo triângulo, ao maior lado se opõe o maior ângulo e vice-versa.

4. CLASSIFICAÇÃO DOS TRIÂNGULOS

quanto aos lados:

- Equilátero: os três lados são congruentes.
- Isósceles: dois lados são congruentes.
- Escaleno: os três lados são não congruentes.
 - quanto aos ângulos:

- Retângulo: possui um ângulo reto.
- Acutângulo: possui os três ângulos agudos.
- Obtusângulo: possui um ânqulo obtuso.

Congruência de Triângulos

1. DEFINIÇÃO

Dois triângulos são congruentes se é possível estabelecer uma correspondência biunívoca entre os vértices de um e os do outro, de modo que os lados e os ângulos correspondentes sejam, respectivamente, congruentes.

2. CRITÉRIOS DE CONGRUÊNCIA

Os critérios de congruência são os casos em que se pode assegurar a congruência de dois triângulos sem que se saiba tudo sobre eles.

Temos quatro casos de congruência de triângulos:

LLL

Dois triângulos são congruentes quando possuem os três lados, respectivamente, congruentes.

LAL

Dois triângulos são congruentes quando possuem dois lados e o ângulo entre eles, respectivamente, congruentes.

ALA

Dois triângulos são congruentes quando possuem dois ângulos e o lado entre eles, respectivamente, congruentes.

LAA

Dois triângulos são congruentes quando possuem um lado, um ângulo e o ângulo oposto a esse lado, respectivamente, congruentes.

MÓDULO 5

Condição de Existência de Triângulos

Consequência

Num triângulo ABC, tem-se sempre:

Observação

- se AB for o maior lado, basta que AB < AC + BC para existir o triângulo.
- A, B e C são pontos de uma mesma reta
 (alinhados) se, e somente se, AB + BC = AC ou
 AB + AC = BC ou AC + BC = AB.

1. DEFINIÇÃO

Consideremos, num plano, n pontos (n \geq 3), A₁, A₂, A₃,..., A_n, ordenados de modo que três consecutivos não sejam colineares.

Chama-se polígono A₁A₂A₃...A_n a figura formada pela união dos n segmentos consecutivos:

$$\overline{A_1A_2} \cup \overline{A_2A_3} \cup \overline{A_3A_4} \cup ... \cup \overline{A_nA_1}$$

2. REGIÃO POLIGONAL

É a região do plano formada pela união dos pontos do polígono com os pontos do seu interior.

Se a região poligonal for convexa, o polígono será denominado polígono convexo.

3. NOMENCLATURA

Conforme o número de lados, temos a seguinte nomenclatura:

n	nome
3	triângulo
4	quadrilátero
5	pentágono
6	hexágono
7	heptágono
8	octógono
9	eneágono
10	decágono
11	undecágono
12	dodecágono
15	pentadecágono
20	icoságono

Para os demais, dizemos polígono de **n** lados.

4. CLASSIFICAÇÃO

• Polígono equilátero: tem todos os lados congruentes.

Exemplos:

losango, quadrado,...

• Polígono equiângulo: tem todos os ângulos internos congruentes.

Exemplos:

retângulo, quadrado,...

• Polígono regular: é equilátero e equiângulo simultaneamente.

Exemplo:

quadrado.

5. NÚMERO DE DIAGONAIS

Chama-se diagonal de um polígono a todo segmento de reta cujas extremidades são vértices não consecutivos.

Num polígono convexo de n lados: a) cada vértice dá origem a (n – 3) diagonais.

- b) os **n** vértices dão origem a n(n-3) diagonais.
- c) com este raciocínio, cada diagonal fica contada duas vezes, pois cada uma delas é determinada por dois vértices.

Assim, sendo d o número de diagonais do polígono, temos:

$$d=\frac{n(n-3)}{2}$$

6. SOMA DOS ÂNGULOS INTERNOS (S;)

Como ilustram as figuras abaixo, as diagonais que partem de um vértice dividem o polígono, em (n – 2) triângulos.

Como a soma dos ângulos internos de um triângulo é 180°, então:

$$S_i = (n - 2) \cdot 180^\circ$$

SOMA DOS ÂNGULOS EXTERNOS(S_e)

Em cada um dos n vértices de um polígono convexo de n lados, tem-se: $\hat{a}_i + \hat{a}_e = 180^\circ$.

Assim:
$$n(\hat{a}_i + \hat{a}_e) = n \cdot 180^\circ \Leftrightarrow$$

 $\Leftrightarrow S_i + S_e = n \cdot 180^\circ \Leftrightarrow$
 $\Leftrightarrow (n-2) \cdot 180^\circ + S_e = n \cdot 180^\circ \Leftrightarrow$
 $\Leftrightarrow S_e = 360^\circ$

8. POLÍGONOS REGULARES

Em todo polígono **regular** de n lados ($n \ge 3$), sendo \hat{a}_i a medida de cada ângulo interno e \hat{a}_e a medida de cada ângulo externo, têm-se:

$$\hat{a}_{i} = \frac{(n-2) \cdot 180^{\circ}}{n}$$
 $\hat{a}_{e} = \frac{360^{\circ}}{n}$
 $\hat{a}_{i} + \hat{a}_{e} = 180^{\circ}$

Quadriláteros Notáveis

1. TRAPÉZIO

Quadrilátero com dois lados paralelos.

AB // CD (bases)

AD e CB (lados transversais)

 $\alpha + \beta = 180^{\circ}$

 $\alpha = 90^{\circ} \Rightarrow$ trapézio retângulo

 $\overline{AD} \cong \overline{CB} \Rightarrow \text{trap\'ezio is\'osceles}$

2. PARALELOGRAMO

Quadrilátero com os lados opostos respectivamente paralelos.

 \overline{AB} // \overline{CD} e \overline{AD} // \overline{BC}

Propriedades

- Lados opostos côngruos.
- Ângulos opostos côngruos.
- Diagonais que se cortam ao meio.

3. RETÂNGULO

Paralelogramo com um ângulo reto.

Propriedades

- Valem as propriedades do paralelogramo.
- As diagonais são côngruas.
- Os quatro ângulos são retos.

4. LOSANGO

Paralelogramo com dois lados consecutivos congruentes.

Propriedades

- Valem as propriedades do paralelogramo.
- As diagonais estão nas bissetrizes dos ângulos internos.
- As diagonais s\u00e3o perpendiculares.
- Os quatro lados são congruentes.

5. QUADRADO

Paralelogramo que é retângulo e losango ao mesmo tempo.

Propriedades

- Valem as propriedades do retângulo.
- Valem as propriedades do losango.

6. DIAGRAMA DE INCLUSÃO ENTRE OS CONJUNTOS DOS QUADRILÁTEROS NOTÁVEIS

Linhas Proporcionais

1. FEIXE DE RETAS PARALELAS

Conjunto de três ou mais retas paralelas entre si.

Qualquer reta interceptando todas as paralelas será uma **transver**sal do feixe.

□ Teorema

Se um feixe de retas paralelas determina sobre uma transversal segmentos congruentes, então determina também, sobre outra transversal qualquer, segmentos congruentes.

Sejam a e b as transversais que determinam no feixe de paralelas r // s // t // u os pontos A, B, C e D e P, Q, R e S, respectivamente:

$$\overline{AB} \cong \overline{BC} \cong \overline{CD} \Rightarrow$$

 $\Rightarrow \overline{PQ} \cong \overline{QR} \cong \overline{RS}$

2. TEOREMA DE TALES

Se duas retas são transversais de um feixe de retas paralelas, então a razão entre as medidas de dois segmentos quaisquer de uma delas é igual à razão entre as medidas dos segmentos correspondentes da outra.

$$\frac{\mathbf{AB}}{\mathbf{CD}} = \frac{\mathbf{PQ}}{\mathbf{RS}} = \frac{\mathbf{LM}}{\mathbf{NU}}$$

Consequência

"Toda paralela a um lado de um triângulo determina sobre os outros dois lados segmentos proporcionais."

Sendo MN // BC, temos:

$$\frac{AM}{MB} = \frac{AN}{NC}$$

ou

$$\frac{\mathbf{AM}}{\mathbf{AB}} = \frac{\mathbf{AN}}{\mathbf{AC}}$$

3. TEOREMA DA BISSETRIZ INTERNA

"Em todo triângulo, a bissetriz de um ângulo interno determina no lado oposto dois segmentos diretamente proporcionais aos lados desse ângulo." Assim, na figura seguinte, temos:

$$\frac{AB}{BS} = \frac{AC}{CS}$$

Uma das demonstrações desse teorema consiste no traçado de retas paralelas à \overline{AS} passando, respectivamente, pelos pontos B e C.

Neste caso, basta aplicar diretamente o Teorema de Tales.

4. TEOREMA DA BISSETRIZ EXTERNA

"Quando a bissetriz de um ângulo externo de um triângulo intercepta a reta suporte do lado oposto, ficam determinados, nesta reta, dois segmentos, cujas medidas são diretamente proporcionais às medidas dos outros dois lados desse triângulo."

Assim, na figura seguinte, temos:

$$\frac{AB}{BS} = \frac{AC}{CS}$$

Como no caso anterior, esse teorema também pode ser demonstrado pelo teorema de Tales.

1. DEFINIÇÃO

Dois triângulos são semelhantes se, e somente se, possuem os três ângulos ordenadamente congruentes e os lados correspondentes respectivamente proporcionais.

$$\Delta ABC \sim \Delta A' B' C' \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \hat{A} \cong \hat{A}', \hat{B} \cong \hat{B}', \hat{C} \cong \hat{C}' \\ \\ \frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{AC}{A'C'} = k \end{cases}$$

O número k é denominado razão de semelhança dos triângulos.

Se k = 1, então os triângulos são congruentes.

2. CRITÉRIOS DE SEMELHANÇA

☐ 1º Critério (AA~)

"Se dois triângulos possuem dois ângulos ordenadamente congruentes, então são semelhantes."

$$\begin{vmatrix}
\hat{A} & \cong \hat{A}' \\
\hat{A} & \cong \hat{B}'
\end{vmatrix}
\Rightarrow \Delta ABC \sim \Delta A'B'C'$$

2º Critério (LAL~)

"Se dois triângulos possuem dois lados correspondentes ordenadamente proporcionais e os ângulos compreendidos entre esses lados são congruentes, então os triângulos são semelhantes."

$$\frac{AB}{A'B'} = \frac{BC}{B'C'}$$

$$\Rightarrow \Delta ABC \sim \Delta A'B'C'$$

☐ 3º Critério (LLL~)

"Se dois triângulos têm os três lados correspondentes ordenadamente proporcionais, então são semelhantes."

$$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{AC}{A'C'} \Rightarrow$$

$$\Rightarrow \Delta ABC \sim \Delta A'B'C'$$

Observação

Se a razão de semelhança de dois triângulos é k, então a razão entre dois elementos lineares correspondentes quaisquer é k.

Exemplo

Se a razão de semelhança de dois triângulos é 2, então a razão entre as medianas correspondentes é 2, a razão entre as alturas correspondentes é 2 etc.

Teorema de Pitágoras

Enunciado

Num triângulo retângulo ABC, reto em A, vale a seguinte relação: $(BC)^2 = (AB)^2 + (AC)^2$ ou "o quadrado da medida da hipotenusa é igual à soma dos quadrados das medidas dos catetos".

Demonstração

Seja o triângulo ABC da figura seguinte, no qual $\overrightarrow{AB} \perp \overrightarrow{AC}$ e $\overrightarrow{AD} \perp \overrightarrow{BC}$.

Os triângulos ABC e DBA são semelhantes pelo critério (AA~).

Assim:

$$\frac{AB}{DB} = \frac{BC}{BA} \Leftrightarrow$$

$$\Leftrightarrow$$
 BC . BD = $(AB)^2$ (I)

Os triângulos ABC e DAC são semelhantes pelo critério (AA~).

Assim:

$$\frac{AC}{DC} = \frac{BC}{AC} \Leftrightarrow$$

$$\Leftrightarrow$$
 BC . DC = $(AC)^2$ (II)

Somando-se (I) e (II), membro a membro, tem-se:

BC . BD + BC . DC =
$$(AB)^2 + (AC)^2 \Leftrightarrow$$

$$\Leftrightarrow$$
 BC . (BD + DC) = (AB)² + (AC)² \Leftrightarrow

$$\Leftrightarrow$$
 BC . BC = $(AB)^2 + (AC)^2 \Leftrightarrow$

$$\Leftrightarrow (BC)^2 = (AB)^2 + (AC)^2$$

Cálculo da medida da diagonal de um quadrado em função da medida do seu lado

Seja ABCD um quadrado de lado ℓ e de diagonal d.

Aplicando o Teorema de Pitágoras ao triângulo retângulo ABD, temos:

$$(BD)^2 = (AB)^2 + (AD)^2$$

Assim:

$$d^2 = \ell^2 + \ell^2 \Leftrightarrow d^2 = 2\ell^2 \Leftrightarrow$$

$$\Leftrightarrow d = \sqrt{2\ell^2} \Leftrightarrow d = \ell \sqrt{2}$$

□ Cálculo da altura h de um triângulo equilátero em função do lado ℓ

Seja ABC um triângulo equilátero de lado ℓ , cujo ponto médio do lado \overline{BC} é M.

Os triângulos MBA e MCA são congruentes pelo critério LLL e assim são retângulos em M.

Aplicando o Teorema de Pitágoras a um deles, temos:

$$h^2 + \left(\frac{\ell}{2}\right)^2 = \ell^2 \Leftrightarrow$$

$$\Leftrightarrow h^2 = \frac{3\ell^2}{2} \Leftrightarrow h = \sqrt{\frac{3\ell^2}{4}} \Leftrightarrow$$

$$\Leftrightarrow h = \frac{\ell\sqrt{3}}{2}$$