Regularization -Bias Variance Trade-off (VVIMP for Interview)

Asked in almost every interview.

- Only 1% people actually understand this topic
- Can be applied to ALL the ML as well as Deep Learning algorithms.

Bias (Underfitting)

Variance (Overfitting)

Regularization Reduces Overfitting (Variance)

Bias-Variance Trade-off

Bias and variance are two sources of error in a model:

- High Bias (Underfitting): Model is too simple, fails to capture patterns.
- **High Variance (Overfitting):** Model is too complex, captures noise instead of patterns.
- Regularization helps balance bias & variance by adding a penalty term to the loss function.

Impact of Regularization

Aspect	Effect on Bias	Effect on Variance
No Regularization	Low Bias: Model fits training data well.	High Variance : Overfits noise in training data.

Aspect	Effect on Bias	Effect on Variance
Moderate Regularization	Balanced : Maintains model flexibility while reducing overfitting.	Reduced : Penalizes complexity, generalizes better.
High Regularization	High Bias: Oversimplifies the model (underfitting).	Low Variance : Model becomes rigid and less sensitive to data fluctuations.

For adjusting the variance and bias we use:

- 1. Lasso (L1)
- 2. Ridge (L2)
- 3. Elastic Net

Regularization	Bias	Variance	Effect
No Regularization	Low	High	Overfits
L1 (Lasso)	Medium	Medium	Feature selection + reduced overfitting
L2 (Ridge)	Medium	Lower	Handles collinearity + reduces overfitting
L1 + L2 (Elastic Net)	Medium	Medium	Best of both worlds

Problem:

- You have to predict result for the entire population from sample data.
- The WILL BE some error.
- You can't do an accurate prediction due to this error.
- So, we try to find out best estimate.
- If we have data for the entire population, the equation will be y=f(x)
- The prediction is $\rightarrow f'(x) = \hat{y}$
- $f(x) f'(x) \rightarrow \text{Reducible Error}$
- You can reduce this \(\frac{1}{2} \) error.

You cannot reduce the irreducible error.

$$ReducibleError = Bias^2 + Variance$$

Bias Variance Trade-off

- We'll go reverse:
 - from Population → to Sample

(In real world, you will not have population data)

• We'll add an error/noise to this

Population data=

$$y = \chi^2 + error$$

$$(-75,11)$$

• Draw 3 random samples from the above data \(\frac{1}{2} \)

• We try to fit a linear regression from the sample data:

BIAS: The inability of a machine learning model to fit the training data

Underfitting

Above graph is HIGH BIAS.

High Bias = Underfitting

As the bias decreases, the data starts fitting

Variance: Change in ML model when data is changed.

Overfitting \(\bar{\q} \)

- Above graph is LOW VARIANCE.
- Variance in machine learning refers to the model's sensitivity to small changes in the training data.
- A model with high variance overfits, meaning it **captures noise and random fluctuations** in the training data, leading to **poor generalization** to new data.

Now, apply polynomial regression ti the above data.

- The models are Low Bias (less Underfitting)
 - The training data is fitting very well.
- But the results of all three models it's varying from each other.
 - Therefore it's a high variance model.

High variance is closely related to overfitting.

Underfitting is closely related to high bias.

Ideal Situation:

Low variance-Low Bias

Meaning → Your data is fitting test data properly. And when you get another training data, the model doesn't drastically change.

Problem → Bias and Variance are inversely proportional to each other.

- As you increase the complexity, bias decreases
- BUT variance starts to increase.
- AIM: To find the middle point

Expected Value and Variance

 Expected value represents the average outcome of a random variable over a large number of trials or experiments.

- We roll a die 1 Lac times
 - Mean will be →3.5
 - This is EXPECTED VALUE

Expected Value E[X] = Population Mean

Var(X) = Variance of Population

$$\begin{aligned} \operatorname{Var}(X) &= \operatorname{E} \left[(X - \operatorname{E}[X])^2 \right] \\ &= \operatorname{E} \left[X^2 - 2X \operatorname{E}[X] + \operatorname{E}[X]^2 \right] \\ &= \operatorname{E} \left[X^2 \right] - 2 \operatorname{E}[X] \operatorname{E}[X] + \operatorname{E}[X]^2 \\ &= \operatorname{E} \left[X^2 \right] - 2 \operatorname{E}[X]^2 + \operatorname{E}[X]^2 \\ &= \operatorname{E} \left[X^2 \right] - \operatorname{E}[X]^2 \end{aligned}$$

Bias and Variance Mathematically?

Bias:

$$Bias(f'(x)) = E[f'(x)] - f(x)$$

If difference between them is zero → Our model is unbiased

If we draw 100 samples & find out the mean → It will be close to the population mean.

Variance:

- Variance refers to the amount by which the prediction of our model will change if we used a different training data set.
- In other words, it measures how much the predictions for a given point vary between different realizations of the model.

$$Var(f'(x)) = E[(f'(x) - E[f'(x)])^2]$$

- If this is high → Upon changing the data, the accuracy, R2 score, etc will change a lot.
- Because the model is OVERFITTING

Fig. 1 Graphical illustration of bias and variance.

Fig. 1 Graphical illustration of bias and variance.

Bias Variance Decomposition (VIMP)

- It divides the loss (eg. MSE) into 3 parts:
 - 1. Bias
 - 2. Variance
 - 3. Irreducible Error

Total Error = Bias² + Variance + Irreducible Error

VIMP NOTE: Here, we're <u>DECOMPOSING</u>. First we get the loss. Then we split it into these 3.

• Irreducible Error (ε) → Moving target/Noise

Bias² will cancel out the negative values.

- Bias + Variance → Reducible Errors
- High Bias: Simplified model → Underfitting → Low accuracy.
- **High Variance**: Complex model → Overfitting → Poor generalization.

Code Example

from mlxtend.evaluate import bias_variance_decomp from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LinearRegression from mlxtend.data import boston_housing_data from sklearn.model_selection import train_test_split

```
Ir = LinearRegression()
avg_expected_loss, avg_bias, avg_var = bias_variance_decomp(
    Ir, X_train, y_train, X_test, y_test,
    loss='mse',
    random_seed=123)
print('Average expected loss: %.3f' % avg_expected_loss)
```

print('Average bias: %.3f' % avg_bias)
print('Average variance: %.3f' % avg_var)

Output:

Average **expected loss**: 29.891 **#(MSE)**

Average bias: 28.609 $\#Bias^2$

Average **variance**: 1.282

bias_variance_decomp(...):

- This function is used to compute the bias, variance, and expected loss of the model on a given dataset.
 - avg_expected_loss: The average error on the test set (MSE).
 - avg_bias: The average bias of the model (how far off the model's predictions are from the true values).
 - avg_var: The variance of the model's predictions (how much the predictions fluctuate across different data subsets).

Total Error = Bias² + Variance + Irreducible Error

- Linear Regression gives high bias (predictions are away from actual value) &
- Low variance (It's precise when ran multiple times)
- DecisionTreeRegressor is opposite of linear regression

Let's apply DecisionTreeRegressor on same dataset:

```
dt = DecisionTreeRegressor(random_state=123)
```

avg_expected_loss, avg_bias, avg_var = bias_variance_decomp(

```
dt, X_train, y_train, X_test, y_test, loss='mse', random_seed=123)

print('Average expected loss: %.3f' % avg_expected_loss) print('Average bias: %.3f' % avg_bias) print('Average variance: %.3f' % avg_var)
```

Output:

Average expected loss: 31.536

Average bias: 14.096

Average variance: 17.440

 Here, bias has reduced but variance is increased as compared to linear regression

When to use Regularization?

1. Prevent Overfitting

 Use when your model performs well on training data but poorly on validation/test data.

2. High Dimensionality (Many Features, Few Samples)

 Use L1/L2 to reduce model complexity and avoid overfitting (e.g., text/gene data).

3. Multicollinearity (Correlated Features)

 Use Ridge (L2) to stabilize coefficients and distribute weights among correlated features.

4. Feature Selection

 Use Lasso (L1) to shrink irrelevant features' coefficients to zero, retaining only important ones.

5. Improve Interpretability

• Simplify models by reducing feature count (L1) or shrinking coefficients (L2).

6. Boost Model Performance

• Apply regularization to enhance out-of-sample performance, even if overfitting isn't evident.