Université de Tlemcen	Module Sécurité Informatique L3
Année Universitaire 2020-2021	
Faculté des Sciences	
Département Informatique	

Cryptographie classique

Exercice n° 1

1. Dans un chiffrement basé sur la transposition par colonnes utilisant une matrice dont la dimension 2x4 (2 lignes et 4 colonnes) et la clé (4 2 1 3), quel est le chiffrement du message "EINSTEIN"?

1	2	3	4
Е	I	N	S
T	Е	I	N

Le message chiffré: SNIEETNI

2. Quel est le résultat du chiffrement du message "EINSTEIN" si on utilise des transpositions périodiques dont la taille du bloc est 4 et la clé (4 2 1 3) ?

Le chiffré : SIENNETI

Exercice n° 2

En utilisant la numérotation des lettres de l'alphabet suivante :

Α	В	С	D	E	F	G	н	I	J	K	L	м	N	О	P	Q	R	s	Т	U	v	w	x	Y	z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

1. Coder le message "EINSTEIN" à l'aide du chiffrement par décalage dont la clé *K* = 5.

 $C=(M+K) \mod 26$

 $C1=(E+5)\mod 26=(4+5)\mod 26=9=J$

 $C2=(I+5) \mod 26=(8+5) \mod 26=13=N$

 $C3=(N+5) \mod 26=(13+5) \mod 26=18=S$

 $C4=(S+5) \mod 26=(18+5) \mod 26=23=X$

 $C5=(T+5) \mod 26=(19+5) \mod 26=24=Y$

Université de Tlemcen	Module Sécurité Informatique L3
Année Universitaire 2020-2021	
Faculté des Sciences	
Département Informatique	

C6=(E+5)mod26= J C7=(I+5)mod26=N C8=(N+5)mod26= S EINSTEIN-----→ JNSXYJNS

2. Déchiffrer le message "SJBYTS" sachant qu'il a été créé par un chiffrement par décalage dont la clé K=5.

M=m1m2m3m4m5m6m7m8

C=c1c2c3c4c5c6c7c8

C=(M+k) mod 26 chiffrement

M =(C-K) mod 26 déchiffrement

$$M1= (S-5) \mod 26 = (18-5) \mod 26 = 13 = N$$

 $M2=(J-5) \mod 26=(9-5) \mod 26=4=E$

 $M3=(B-5) \mod 26=(1-5) \mod 26=-4 \mod 26=(-4+26) \mod 26=22=W$

M4=(Y-5)mod26=(24-5)mod26=19=T

M5=(T-5)mod26=(19-5)mod26=14=O

 $M6=(S-5) \mod 26=(18-5) \mod 26=13=N$

SJBYTS-----→ NEWTON

Université de Tlemcen	Module Sécurité Informatique L3
Année Universitaire 2020-2021	
Faculté des Sciences	
Département Informatique	

Exercice n° 3

On considère un chiffrement de Hill s'effectuant par bloc de 2 lettres à l'aide d'une clé de chiffrement qui est la matrice carrée d'ordre $2: K= \begin{bmatrix} 2 & 5 \\ 1 & 4 \end{bmatrix}$

On cherche à chiffrer le message M= 'CODAGE ' par le chiffrement de Hill

- 1. A l'aide la grille utilisée dans l'exercice n°2 :
 - a. Calculer les matrices $Y_1=K*X_1$, $Y_2=K*X_2$, $Y_3=K*X_3$ tel que $M=X_1X_2X_3$
 - b. A l'aide du tableau précédent, en associant les éléments des matrices Y₁, Y₂ et Y₃ quel est le résultat de chiffrement du message 'CODAGE'
- 2. Déterminer K-1 la matrice inverse de K
- 3. Déchiffrer le message 'WGGDGW' en utilisant la même clé K pour vérifier que ça redonne le message d'origine

Chiffrement: C=K*M

M = m1m2m3m4

C=c1c2c3c4

$$c1\atop c2 = K * \frac{m1}{m2} \bmod 26$$

M=CODAGE

M=X1X2X3

A	В	С	D	E	F	G	н	I	J	K	L	м	N	О	P	Q	R	s	Т	U	v	w	x	Y	z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

$$Y1 = {2 \atop 1} {5 \atop 4} * {2 \atop 14} \mod 26 = {22 \atop 6} \longrightarrow {W \atop G}$$

$$Y2 = {2 \atop 1} {5 \atop 4} * {3 \atop 0} \mod 26 = {6 \atop 3} \longrightarrow {G \atop D}$$

$$Y3 = \frac{2}{1} \quad \frac{5}{4} * \frac{6}{4} \mod 26 = \frac{6}{22} \quad - \rightarrow \frac{G}{W}$$

Université de Tlemcen	Module Sécurité Informatique L3
Année Universitaire 2020-2021	
Faculté des Sciences	
Département Informatique	

Codage -----→WGGDGW

Chiffrement: C= K* M

Déchiffrement : M=K⁻¹*C / K⁻¹ est la matrice inverse de K

$$K = \begin{pmatrix} 2 & 5 \\ 1 & 4 \end{pmatrix}$$

$$K = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\mathbf{K}^{-1} = 1/\det(\mathbf{k}) * \begin{matrix} d & -b \\ -c & a \end{matrix}$$

$$K^{-1}= 1/3 * {4 \atop -1} {-5 \atop 2}$$

$$K^{-1}=3^{-1}*{4\atop -1} {-5\atop 2}$$

On doit calculer le modulo inverse de 3 mod 26

On suppose **u** est le modulo inverse de 3 mod 26

Pour calculer le modulo inverse d'un nombre on utilise la division euclidienne étendue

D=26

d=3

r !=1

D=d

d=r

D=d=3

d=2

$$1=3*9 - 26*1$$

U=9

L'inverse modulaire de 3 mod 26 =9

$$\mathbf{K}^{-1} = 3^{-1} * {4 \atop -1} * {5 \atop 2} \mod {26}$$

$$\mathbf{K}^{-1} = 9 * 4 \quad -5 \text{ mod 26}$$

$$\mathbf{K}^{-1} = \begin{array}{cc} 36 & -45 \\ -9 & 18 \end{array} \mod 26$$

$$\mathbf{K}^{-1} = \begin{pmatrix} 10 & 7 \\ 17 & 18 \end{pmatrix}$$

4. Déchiffrer le message 'WGGDGW' en utilisant la même clé K pour vérifier que ça redonne le message d'origine

Α	В	C	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	Т	U	v	w	x	Y	z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Université de Tlemcen	
Année Universitaire 2020-2021	
Faculté des Sciences	
Département Informatique	

Module Sécurité Informatique L3

$$M1 = \begin{matrix} 10 & 7 & *W \\ 17 & 18 & G \end{matrix} \mod 26 = \begin{matrix} 10 & 7 & *22 \\ 17 & 18 & 6 \end{matrix} \mod 26 = \begin{matrix} 2 \\ 14 \end{matrix} \longrightarrow \begin{matrix} C \\ O \end{matrix}$$

$$M2 = {10 \atop 17} \quad {7 \atop 18} * {G \atop D} \mod 26 = M2 = {10 \atop 17} \quad {7 \atop 18} * {6 \atop 3} \mod 26 = {3 \atop 0} \longrightarrow {D \atop A}$$

$$M3 = \begin{matrix} 10 & 7 & *_{G} \\ 17 & 18 \end{matrix} \\ \begin{matrix} *_{W} \\ W \end{matrix} \\ mod 26 = M2 = \begin{matrix} 10 & 7 & *_{G} \\ 17 & 18 \end{matrix} \\ \begin{matrix} *_{22} \\ 22 \end{matrix} \\ mod 26 = \begin{matrix} 6 \\ 4 \end{matrix} \\ - \begin{matrix} \rightarrow G \\ E \end{matrix}$$

WGGDGW------→ CODAGE