Lecture 29: Delta method and variance stabilizing transformations

alisiorillations

Ciaran Evans

Motivating example: Exponential confidence interval

$$X_1,...,X_n \stackrel{iid}{\sim} Exponential(\theta)$$

Last time: Used a pivotal quantity to find $1 - \alpha$ CI for θ :

$$\left[\frac{a}{\sum_{i} X_{i}}, \frac{b}{\sum_{i} X_{i}}\right]$$

Alternative: Wald Confidence interval

- ightharpoonup MLE: $\widehat{\theta} =$
- Asymptotic distribution: $\sqrt{n}(\widehat{\theta} \theta) \approx$
- ► Wald CI:

Motivating example: non-constant variance

Example: Data on the number of hospitals and number of doctors (MDs) in US counties

Question: How do we adjust for non-constant variance in a linear model?

Motivating example: non-constant variance

Example: Data on the number of hospitals and number of doctors (MDs) in US counties

Goal: variance stabilizing transformation

Suppose $\widehat{\theta}$ is an estimator, and $Var(\widehat{\theta})$ depends on θ . Examples:

- **Exponential**: $\sqrt{n}(\hat{\theta} \theta) \approx N(0, \theta^2)$
- Poisson: $\sqrt{n}(\hat{\lambda} \lambda) \approx N(0, \lambda)$
- ▶ Bernoulli: $\sqrt{n}(\hat{p}-p) \approx N(0, p(1-p))$

Goal: Find a transformation g such that $Var(g(\widehat{\theta}))$ does **not** depend on θ

Delta method

Delta method

Suppose that $\widehat{\theta}$ is an estimate of $\theta \in \mathbb{R}$, such that

$$\sqrt{n}(\widehat{\theta}-\theta) \stackrel{d}{\to} N(0,\sigma^2)$$

for some σ^2 , and g is a continuously differentiable function with $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(\widehat{\theta}) - g(\theta)) \stackrel{d}{\to} N(0, \sigma^2[g'(\theta)]^2)$$

Example: Exponential

$$\sqrt{n}(\widehat{\theta}-\theta)\approx N(0,\theta^2)$$

Example: Poisson

$$\sqrt{n}(\widehat{\lambda} - \lambda) \approx N(0, \lambda)$$

Example: Bernoulli

$$\sqrt{n}(\widehat{p}-p)\approx N(0,p(1-p))$$