

 KÓD TESTU

 20 1447

MATURITA 2020

EXTERNÁ ČASŤ

MATEMATIKA

NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!

- Test obsahuje **30 úloh**.
- Na vypracovanie testu budete mať **150 minút**.
- V teste sa stretnete s dvoma typmi úloh:
 - Pri úlohách s krátkou odpoveďou napíšte jednotlivé číslice výsledku do príslušných políčok odpoveďového hárka. Rešpektujte pritom predtlačenú polohu desatinnej čiarky.
 - Pri úlohách s výberom odpovede vyberte správnu odpoveď spomedzi niekoľkých ponúkaných možností, z ktorých je vždy správna iba jedna. Správnu odpoveď zaznačte krížikom do príslušného políčka odpoveďového hárka.
- Z hľadiska hodnotenia sú všetky úlohy rovnocenné.
- Pri práci smiete používať iba písacie potreby, prehľad vzťahov na poslednom liste tohto testu a kalkulačku, ktorá nie je súčasťou mobilného telefónu, nedokáže vykresľovať grafy, zjednodušovať algebrické výrazy obsahujúce premenné a počítať korene rovníc. Nesmiete používať zošity, učebnice ani inú literatúru.
- Pracujte s hodnotou π , ktorú ponúka kalkulačka.
- Počítajte presne, bez zaokrúhľovania. Ak je to potrebné, zaokrúhlite iba konečný výsledok podľa pokynov uvedených na zadnej strane testu.
- Poznámky si robte na pomocný papier. Na obsah pomocného papiera sa pri hodnotení neprihliada.
- Podrobnejšie pokyny na vyplňovanie odpoveďového hárka sú na poslednej strane testu.

Želáme vám veľa úspechov!

Začnite pracovať, až keď dostanete pokyn!

Časť I

Vyriešte úlohy **01** až **20** a do odpoveďového hárka zapíšte vždy **iba výsledok** – nemusíte ho zdôvodňovať ani uvádzať postup, ako ste k nemu dospeli.

Obrázky slúžia len na ilustráciu, nahrádzajú vaše náčrty, dĺžky a veľkosti uhlov v nich nemusia presne zodpovedať údajom zo zadania úlohy.

- **01** Vypočítajte koreň rovnice $2^{x-1} = \frac{1}{64}$.
- Dané sú dva prekrývajúce sa obdĺžniky tak, ako ich vidíte na obrázku. Jeden z uhlov poznáme. Vypočítajte v stupňoch veľkosť uhla ω .

- Hmotnosť Zeme je 5,97 · 10²⁴ kg a hmotnosť Mesiaca je 7,35 · 10²² kg. Koľkokrát je hmotnosť Zeme väčšia ako hmotnosť Mesiaca?
- **04** Vypočítajte súčet $\frac{2}{50} + \frac{4}{50} + \frac{6}{50} + ... + \frac{48}{50}$.
- Na večeru má prísť 12 ľudí. Martin chce navariť tekvicovú polievku. Podľa receptu vie, že na polievku pre 4 osoby potrebuje 2,5 kg očistenej tekvice. Odpad (šupka, semená) tvorí 17 % z hmotnosti neočistenej tekvice. Koľko kilogramov neočistenej tekvice potrebuje Martin na polievku pre 12 ľudí?

Na obrázku je sedem štvorcov. Pri piatich z nich je uvedená dĺžka ich strany. Vypočítajte v centimetroch súčet obvodov zafarbených štvorcov.

Na číselnej osi je vyznačená nula a ďalšie dve neznáme čísla A a B tak, ako to vidíte na obrázku. Vieme tiež, že súčet čísel A a B je 24. Zistite absolútnu hodnotu rozdielu A a B.

Daná je kocka s dĺžkou hrany 6 cm. Body K, L sú vrcholy kocky a bod M leží v strede hrany kocky tak, ako vidíte na obrázku. Rez kocky rovinou KLM je štvoruholník. Vypočítajte v centimetroch obvod tohto štvoruholníka.

- Do kina išli dvojičky Danka a Janka a ich kamaráti Peter, Jozef a Mária. Všetci sedeli v jednom rade na piatich sedadlách vedľa seba. Číslom z intervalu (0; 1) vyjadrite pravdepodobnosť, že dvojičky sedeli na susedných sedadlách.
- Každé z čísel 2, 5, 6, 11, 12, 13, 17, 27 a 30 je zapísané práve do jedného zo štvorčekov, ktoré vidíte na obrázku. Poznáme umiestnenie čísel 13 a 17. Zuzka vypočítala aritmetické priemery čísel v prvých troch, stredných troch a posledných troch štvorčekoch. Zistila, že sú všetky rovnaké. Ktoré číslo je umiestnené v zafarbenom štvorčeku?

		17		13			
--	--	----	--	----	--	--	--

Na obrázku je parabola, ktorá je grafom funkcie $f: y = (x-a) \cdot (x-b)$, kde $a, b \in R$. Určte y-ovú súradnicu bodu C, ktorý je vrcholom paraboly.

Koľkopercentný ročný úrok mi banka poskytla, ak môj vklad za 12 rokov vzrástol o jednu štvrtinu? Môj vklad a úroky zostávali uložené na účte a každoročne sa úročili. Neplatil som žiadne poplatky ani dane.

Daný je kváder ABCDEFGH, o ktorom vieme, že |AB| = |BC| = 3 cm a |AE| = 4 cm. Vypočítajte v stupňoch veľkosť uhla telesových uhlopriečok AG a CE.

- Daná je funkcia f: y = 2x 4. Nájdite priesečník grafu danej funkcie a grafu funkcie k nej inverznej. Do odpoveďového hárka napíšte jeho *y*-ovú súradnicu.
- 15 Do kocky je vpísaná guľa. Koľko percent objemu kocky tvorí objem danej gule?
- Nájdite najmenšie trojciferné číslo, ktoré má pri delení šiestimi zvyšok 3 a pri delení ôsmimi tiež zvyšok 3.
- Daný je rovnoramenný trojuholník. Vieme, že rameno trojuholníka je o 2 cm dlhšie ako jeho základňa a tiež vieme, že rameno trojuholníka je o 4 cm dlhšie ako výška na základňu. Vypočítajte obsah rovnoramenného trojuholníka v centimetroch štvorcových.
- Na papier sme napísali prvých 2 021 členov Fibonacciho postupnosti, ktorá je daná rekurentným predpisom $a_1 = 1$, $a_2 = 1$ a pre $n \ge 3$ platí $a_n = a_{n-2} + a_{n-1}$. Koľko párnych čísel sme napísali?

Daný je pravidelný štvorsten *ABCD*. Vypočítajte v stupňoch veľkosť uhla hrany *DC* a roviny *ABC*.

Daný je obdĺžnik *ABCD* tak, ako vidíte na obrázku. Bod *A* leží na osi *x*, bod *D* leží na osi *y*. Dĺžka strany *AB* je 1 cm a dĺžka strany *BC* je 5 cm. Vzdialenosť bodu *A* od bodu *O*[0;0] je 3 cm. Určte v centimetroch vzdialenosť bodu *C* od osi *x*.

Časť II

V každej z úloh **21** až **30** je správna práve jedna z ponúkaných odpovedí **(A)** až **(E)**. Svoju odpoveď zaznačte krížikom v príslušnom políčku odpoveďového hárka.

Obrázky slúžia len na ilustráciu, nahrádzajú vaše náčrty, dĺžky a veľkosti uhlov v nich nemusia presne zodpovedať údajom zo zadania úlohy.

Určte definičný obor funkcie $f: y = 2 + \log_{11}(2x+7)$.

- (A) $\langle 2; \infty \rangle$
- **(B)** (2; ∞)
- **(C)** $(0; \infty)$
- **(D)** $\left(-\frac{7}{2};\infty\right)$
- **(E)** $\left\langle -\frac{7}{2}; \infty \right\rangle$

22 Koľko z funkcií f_1 až f_5 je zhora ohraničených?

$$f_1: y = -(x+3)^2 - 7$$

$$f_2$$
: $y = \sqrt{5-x}$

$$f_3$$
: $y = \frac{1}{x - 3}$

$$f_4$$
: $y = 4 \log x$

$$f_5$$
: $y = -x^{-2}$

- **(A)** 1
- **(B)** 2
- **(C)** 3
- (D) 4
- **(E)** 5

- Lucia má na svojej šatňovej skrinke zámok, ktorý sa otvára na 4-miestny číselný kód (napríklad 0000, 0089, 0551, 9123). Lucia svoj kód zabudla. Vie ale, že súčet všetkých štyroch číslic jej kódu je 4. Koľko takýchto kódov existuje?
 - **(A)** 5
 - **(B)** 19
 - **(C)** 20
 - **(D)** 34
 - **(E)** 35
- Výška kužeľa sa rovná priemeru jeho podstavy. Určte pomer obsahu podstavy tohto kužeľa k obsahu jeho plášťa.
 - **(A)** $1:\sqrt{5}$
 - **(B)** $1:\sqrt{3}$
 - **(C)** 1:5
 - **(D)** 1: $(1+\sqrt{5})$
 - **(E)** $1:\sqrt{2}$
- Pre ktoré $a \in R$ je funkcia $f : y = \left(\frac{a-1}{a+1}\right)^x$ rastúca?
 - (A) $(-\infty; -1) \cup (1; \infty)$
 - **(B)** $(-\infty; -1)$
 - **(C)** (−1; ∞)
 - **(D)** (1; ∞)
 - **(E)** (-1; 1)

- Daná je kružnica $x^2 + y^2 4x + 2y 11 = 0$. Vypočítajte obsah pravidelného šesťuholníka, ktorý je do danej kružnice vpísaný.
 - **(A)** $12\sqrt{3}$
 - **(B)** $24\sqrt{3}$
 - (C) $48\sqrt{3}$
 - **(D)** $\frac{33}{2}\sqrt{3}$
 - **(E)** 24
- Vyberte množinu všetkých riešení nerovnice |x + 6| > 2x.
 - **(A)** $(-\infty; -6) \cup (6; \infty)$
 - **(B)** (-6; 6)
 - **(C)** $(-\infty; 6)$
 - **(D)** $(-\infty; -6)$
 - **(E)** $(-\infty; -2)$
- V rovine sú štyri priamky. Priamka p_1 je grafom konštantnej funkcie, priamka p_2 prechádza bodmi [-4;1] a [3;5], priamka p_3 je daná rovnicou y=-x+3 a priamka p_4 je daná rovnicou 5x+y-7=0. Vyberte možnosť, v ktorej sú priamky p_1 až p_4 zoradené podľa hodnoty ich smerníc od najväčšej po najmenšiu.
 - **(A)** p_1 , p_3 , p_4 , p_2
 - **(B)** p_4 , p_3 , p_1 , p_2
 - (C) p_4 , p_2 , p_1 , p_3
 - **(D)** p_3, p_4, p_1, p_2
 - **(E)** p_2 , p_1 , p_3 , p_4

- Milan hodil trikrát klasickou hracou kockou. Určte pravdepodobnosť, že súčet čísel, ktoré padli pri týchto troch hodoch, je väčší ako 14.
 - (A) $\frac{35}{216}$
 - **(B)** $\frac{17}{216}$
 - (C) $\frac{7}{216}$
 - **(D)** $\frac{7}{108}$
 - (E) $\frac{5}{54}$
- Seizmológovia definujú magnitúdu zemetrasenia ako $M = \log \frac{A}{T}$, kde A je amplitúda zemetrasenia a T je perióda danej fázy. V San Franciscu namerali zemetrasenie s magnitúdou 8,3. O pár mesiacov neskôr zaznamenali seizmológovia ďalšie zemetrasenie v Japonsku, ktorého amplitúda bola štyrikrát väčšia ako amplitúda zemetrasenia v San Franciscu. Perióda bola v oboch prípadoch rovnaká. Aká bola magnitúda zemetrasenia v Japonsku?
 - **(A)** 33,2
 - **(B)** 8,7
 - **(C)** 12,3
 - **(D)** 8,9
 - **(E)** 7,7

PREHĽAD VZŤAHOV

Mocniny:

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \frac{a^{x}}{a^{y}} = a^{x-y} \qquad \left(a^{x}\right)^{y} = a^{x \cdot y} \qquad \left(a \cdot b\right)^{x} = a^{x} \cdot b^{x} \qquad \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}} \qquad a^{-x} = \frac{1}{a^{x}} \qquad a^{\frac{x}{y}} = \sqrt[y]{a^{x}}$$

Goniometrické funkcie:

$$\sin^2 x + \cos^2 x = 1 tg x = \frac{\sin x}{\cos x}$$

$$\sin 2x = 2 \cdot \sin x \cos x \qquad \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	0°	30°	45°	60°	90°
sin x	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

Trigonometria: Sínusová veta:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r$$
 Kosínusová veta: $c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$

Logaritmus:
$$\log_z (x \cdot y) = \log_z x + \log_z y$$
 $\log_z \frac{x}{y} = \log_z x - \log_z y$

$$\log_z x^k = k \cdot \log_z x \qquad \qquad \log_y x = \frac{\log_z x}{\log_z y}$$

Aritmetická postupnosť:
$$a_n = a_1 + (n-1) \cdot d$$
 $s_n = \frac{n}{2} (a_1 + a_n)$

Geometrická postupnosť:
$$a_n = a_1 \cdot q^{n-1}$$
 $s_n = a_1 \frac{q^n - 1}{q - 1}, \ q \ne 1$

Kombinatorika:
$$P(n) = n!$$
 $V(k,n) = \frac{n!}{(n-k)!}$ $C(k,n) = \binom{n}{k} = \frac{n!}{(n-k)! \, k!}$

$$P'(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}$$
 $V'(k, n) = n^k$ $C'(k, n) = \binom{n+k-1}{k}$

Analytická Parametrické vyjadrenie priamky: $X = A + t\vec{u}$, $t \in R$ geometria:

Všeobecná rovnica priamky: ax + by + c = 0; $[a; b] \neq [0; 0]$

Uhol vektorov:
$$\cos \varphi = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

Vzdialenosť bodu $M[m_1; m_2]$ od priamky $p: ax + by + c = 0: |Mp| = \frac{|am_1 + bm_2 + c|}{\sqrt{a^2 + b^2}}$

Stredový tvar rovnice kružnice: $(x-m)^2 + (y-n)^2 = r^2$

Objemy a povrchy telies:

	kváder	valec	ihlan	kužeľ	guľa
objem	abc	$\pi r^2 v$	$\frac{1}{3}S_{\rho}V$	$\frac{1}{3}\pi r^2 v$	$\frac{4}{3}\pi r^3$
povrch	2(ab+ac+bc)	$2\pi r^2 + 2\pi r v$	$S_p + S_{pl}$	$\pi r^2 + \pi rs$	$4\pi r^2$

Pokyny na vyplňovanie odpoveďového hárka

Odpoveďové hárky budú skenované, nesmú sa kopírovať, krčiť ani prehýbať. Dodržte nasledujúce pokyny, aby skener vedel prečítať vaše odpovede.

- Píšte perom s čiernou alebo modrou náplňou. Nepoužívajte tradičné plniace perá, veľmi tenko píšuce perá, obyčajné ceruzky ani pentelky.
- Výsledok úlohy s krátkou odpoveďou vyjadrite pomocou celého čísla alebo desatinného čísla. Ak je výsledok celé číslo alebo desatinné číslo s najviac dvoma desatinnými miestami, zapíšte ho presný. Ak je výsledok desatinné číslo s viac ako dvoma desatinnými miestami, zapíšte ho zaokrúhlený na dve desatinné miesta.
- Jednotlivé číslice výsledku zapíšte do príslušných políčok. Do políčka napíšte najviac jednu číslicu alebo znamienko "–" (mínus).
- Pri zápise rešpektujte predtlačenú polohu desatinnej čiarky. Znamienko "–" (mínus) napíšte do samostatného políčka pred prvú číslicu.
- Ak je váš výsledok celé číslo, nevypĺňajte políčka za desatinnou čiarkou.
- Označenie jednotiek (stupne, metre, minúty,...) nezapisujte.

Napríklad:

výsledok 4 633 zapíšte:
výsledok 81,424 61 m zapíšte:
výsledok (pomer) 1:8 = 0,125 zapíšte:
výsledok (zlomok) $\frac{5}{3} = 1,\overline{6}$ zapíšte:

•	V prípade chybného zápisu výsledku
	nepožadujte nový odpoveďový hárok.
	Políčko s chybným údajom úplne zaplňte
	a správny údaj napíšte pred alebo za
	zaplnené políčko.

•	Správne zapísaný výsledok – 3,1:
•	Nesprávne zapísaný výsledok – 3,1:
•	Trespravile Zapisariy vysledok 3,1.
•	Oprava predchádzajúceho zápisu:
	, 1

- Odpoveď na úlohu s výberom odpovede zaznačte krížikom X do príslušného políčka.
- Správne zaznačenie odpovede (C):

Α	В	С	D	Ε
		\times		

• Nesprávne zaznačenie odpovede (C):

A			D	E
A	В	c ×	D	E

 Keď sa pomýlite alebo neskôr zmeníte názor, úplne zaplňte políčko s nesprávnym krížikom a urobte nový krížik:

Α	В	С	D	Ε
X				

 Ak náhodou znovu zmeníte názor a chcete zaznačiť pôvodnú odpoveď, urobte krížiky do všetkých políčok a zaplnené políčko dajte do krúžku:

Α	В	C	D	Ε
X	X		X	X