

Introduction: The Problem

Shark Attacks are glorified in the media

 Shark attacks do not occur as frequently as portrayed by pop culture

 No current research on the spatio-temporal overlap between White Sharks (Carcharodon carcharias) and beach recreationalists

Introduction: The Solution

Drone Technology in Marine Biology:

- Increasingly popular
- Allows observation of animals without influencing their behavior

Caveats:

- Amount of footage increases substantially with each drone flight
- Need a fast way to identify whether humans are present in a image

Introduction: Project Objectives

Objectives:

 Use a Deep Neural Network to identify how many people are present in each drone still image

Audience:

 Researchers with similar problems or who are trying to answer similar research questions

Data Sources

- 2,465 drone images (3840 x 2160 px) from CSU Long Beach Shark Lab
- Surveys along beaches in Southern California
- Include footage of:
 - Beach Recreationalists:
 - Walking
 - Wading
 - Swimming
 - Paddle boarding
 - Surfing
 - Kayaking
 - White Sharks
 - Other marine animals

Methods: Image Labeling

- Images resized (960 x 540 px) to make labeling easier
- Manual labeling by placing dots on locations of humans

Labeled images saved in black and white

Methods: Image Slicing and Contrast Editing

- Resized Images cut into 25 smaller images (192 x 108 px)
 - Increase model efficiency
- Smaller images changed to grayscale/HSV to increase color contrast

Methods/Results: Exploratory Data Analysis

- 521 images with humans present
 - Most with ≤ 7 humans

- 521 large images yielded 39,075 smaller images
 - ~90% had 0 people
 - ~7% had one person

