# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

# ОТЧЕТ

# по практической работе № 1 по дисциплине «Операционные системы»

Тема: Исследование структур загрузочных модулей

| Студент гр. 9382 | Русинов Д.А. |
|------------------|--------------|
| Преподаватель    | Ефремов М.А  |

Санкт-Петербург

2021

# Цель работы.

Исследование различий в структурах исходных текстов модулей типов .COM и .EXE, структур файлов загрузочных модулей и способов их загрузки в основную память.

### Задание.

Шаг 1. Напишите текст исходного .COM модуля, который определяет тип PC и версию системы. Это довольно простая задача и для тех, кто уже имеет опыт программирования на ассемблере, это будет небольшой разминкой. Для тех, кто раньше не сталкивался с программированием на ассемблере, это неплохая задача для первого опыта.

За основу возьмите шаблон, приведенный в разделе «Основные сведения». Необходимые сведения о том, как извлечь требуемую информацию, представлены в следующем разделе.

Ассемблерная программа должна читать содержимое предпоследнего байта ROM BIOS, по таблице, сравнивая коды, определять тип PC и выводить строку с названием модели. Если код не совпадает ни с одним значением, то двоичный код переводиться в символьную строку, содержащую запись шестнадцатеричного числа и выводиться на экран в виде соответствующего сообщения.

Затем определяется версия системы. Ассемблерная программа должна по значениям регистров AL и AH формировать текстовую строку в формате хх.уу, где хх - номер основной версии, а уу - номер модификации в десятичной системе счисления, формировать строки с серийным номером ОЕМ и серийным номером пользователя. Полученные строки выводятся на экран.

Отладьте полученный исходный модуль.

Результатом выполнения этого шага будет «хороший» .COM модуль, а также необходимо построить «плохой» .EXE, полученный из исходного текста для .COM модуля.

Шаг 2. Напишите текст исходного .EXE модуля, который выполняет те же функции, что и модуль в Шаге 1 и постройте и отладьте его. Таким образом, будет получен «хороший» .EXE.

Шаг 3. Сравните исходные тексты для .COM и .EXE модулей. Ответьте на контрольные вопросы «Отличия исходных текстов COM и EXE программ».

Шаг 4. Запустите FAR и откройте (F3/F4) файл загрузочного модуля .COM и файл «плохого» .EXE в шестнадцатеричном виде. Затем откройте (F3/F4) файл загрузочного модуля «хорошего» .EXE и сравните его с предыдущими файлами. Ответьте на контрольные вопросы «Отличия форматов файлов COM и EXE модулей».

Шаг 5. Откройте отладчик TD.EXE и загрузите .COM. Ответьте на контрольные вопросы «Загрузка COM модуля в основную память». Представьте в отчете план загрузки модуля .COM в основную память.

Шаг 6. Откройте отладчик TD.EXE и загрузите «хороший» .EXE. Ответьте на контрольные вопросы «Загрузка «хорошего» EXE модуля в основную память».

Шаг 7. Оформление отчета в соответствии с требованиями. В отчете необходимо привести скриншоты. Для файлов их вид в шестнадцатеричном виде, для загрузочных модулей – в отладчике.

Необходимые сведения для составления программы

Тип IBM PC хранится в байте по адресу 0F000:0FFFEh, в предпоследнем байте ROM BIOS. Соответствие кода и типа в таблице:

PC FF
PC/XT FE,FB
AT FC
PS2 модель 30 FA
PS2 модель 50 или 60 FC
PS2 модель 80 F8
PCjr FD

## PC Convertible F9

Для определения версии MS DOS следует воспользоваться функцией 30H прерывания 21H. Входным параметром является номер функции в AH:

MOV AH,30h

INT 21h

Выходными параметрами являются:

AL - номер основной версии. Если 0, то < 2.0

АН - номер модификации

BH - серийный номер OEM (Original Equipment Manufacturer) BL:CX - 24-битовый серийный номер пользователя.

Контрольные вопросы по лабораторной работе No1

Отличия исходных текстов СОМ и ЕХЕ программ

- 1) Сколько сегментов должна содержать СОМ-программа?
- 2) ЕХЕ-программа?
- 3) Какие директивы должны обязательно быть в тексте СОМ-программы?
- 4) Все ли форматы команд можно использовать в СОМ-программе?

Отличия форматов файлов СОМ и ЕХЕ модулей

- 1) Какова структура файла СОМ? С какого адреса располагается код?
- 2) Какова структура файла «плохого» EXE? С какого адреса располагается код? Что располагается с адреса 0?
  - 3) Какова структура файла «хорошего» EXE? Чем он отличается от файла «плохого» EXE?

Загрузка СОМ модуля в основную память

- 1) Какой формат загрузки модуля СОМ? С какого адреса располагается код?
  - 2) Что располагается с адреса 0?
- 3) Какие значения имеют сегментные регистры? На какие области памяти они указывают?

4) Как определяется стек? Какую область памяти он занимает? Какие адреса?

Загрузка «хорошего» EXE модуля в основную память

- 1) Как загружается «хороший» EXE? Какие значения имеют сегментные регистры?
  - 2) На что указывают регистры DS и ES?
  - 3) Как определяется стек?
  - 4) Как определяется точка входа?

# Выполнение работы.

Были объявлены константные строки для вывода информации. Была определена процедура для определения типа PC – DEFINE\_PC в соответствии с таблицей в задании. А также функция для определения ОС и прочих данных – DEFINE OS.

В результате выполнения были получены следующие результаты:

| Модуль       | Результат                   |  |
|--------------|-----------------------------|--|
| Хороший .ЕХЕ | Type: AT                    |  |
|              | Version MS-DOS: 5.0         |  |
|              | Serial number OEM: 0        |  |
|              | User serial number: 000000H |  |
| Плохой .ЕХЕ  | F:\Masm>labicom.exe         |  |
| Хороший .СОМ | Type: AT                    |  |
|              | Version MS-DOS: 5.0         |  |
|              | Serial number OEM: 0        |  |
|              | User serial number: 000000H |  |

# Выводы.

Были исследованы модули .COM и .EXE, рассмотрены из различия в исходных текстах и различия готовых модулей. Также были рассмотрены способы загрузки модулей в основную память.

# ПРИЛОЖЕНИЕ А

### ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

# Отличия исходных текстов СОМ и ЕХЕ программ:

1. Сколько сегментов должна содержать СОМ-программа?

Один сегмент. Стек генерируется автоматически, а код с данными располагаются в одном сегменте.

# 2. ЕХЕ-программа?

Не менее одного сегмента, при этом сегменты стека, кода и данных отдельны друг от друга.

3. Какие директивы должны быть обязательно в тексте СОМ-программы?

В программе должна быть обязательно директива org 100h. Она позволяет сместить всю адресацию на 256 байт. Это необходимо, поскольку первые 256 байт занимает блок PSP, а все сегментные регистры при загрузке указывают именно на него. Также необходимо привязать сегмент данных и сегмент кода на один общий сегмент с помощью ASSUME.

4. Все ли форматы команд можно использовать в СОМ-программе?

Нет. Нельзя использовать, например:

MOV REG, SEG

# Отличия форматов файлов .СОМ и.ЕХЕ программ:

1. Какова структура файла .СОМ? С какого адреса располагается код?

Структура состоит из одного сегмента, в который входит сегмент кода и сегмент данных, стек генерируется автоматически. Также СОМ-файл имеет ограничение в размере, его максимальный размер — 64 КБ — это максимальный размер одного сегмента.

Сегмент с кодом и данными начинается с 0h. При загрузке модуля устанавливается смещение 256 байт.





2. Какова структура файла «плохого» EXE? С какого адреса располагается код? Что располагается с адреса 0?

Код и данные расположены в одном сегменте. Начинается сегмент с кодом и данными с адреса 300h. С 0h идет таблица настроек.





3. Какова структура «хорошего» EXE? Чем он отличается от файла «плохого» EXE?

EXE-файл имеет поделенные на сегменты стек, данные и код, может иметь неограниченный размер, имеет в начале заголовок, который используется при загрузке этого модуля. Заголовок содержит данные и сигнатуру, таблицу для настройки адресов.

Плохой EXE-файл не имеет разделения сегментов кода и данных. Плохой EXE-файл имеет смещение 300h, поскольку изначально смещение 100h, а при создании EXE появляется смещение 200h для модуля PSP. У хорошего EXE выделяется сегмент под стек, поэтому итоговое смещение у хорошего EXE в данной программе – 400h.

```
00000210: 2100 2100 2100
                       2100
                           2100 2100
                                     2100 2100
00000220: 2100 2100 2100 2100
                           2100 2100 2100 2100
00000230: 2100 2100 2100 2100
                           2100 2100 2100 2100
00000240: 2100
             2100
                  2100
                       2100
                            2100
                                2100
                                     2100
                                         2100
00000250: 2100 2100 2100
                       2100
                           2100 2100 2100 2100
00000260: 2100 2100 2100
                       2100
                           2100 2100
                                     2100 2100
00000270: 2100 2100 2100 2100
                           2100 2100 2100 2100
00000280: 2100 2100 2100 2100
                           2100 2100 2100 2100
00000290: 2100
             2100
                  2100
                                2100
                                     2100
                                         2100
000002a0: 2100 2100 2100
                           2100 2100 2100 2100
000002b0: 2100 2100 2100
                       2100
                           2100 2100
                                     2100 2100
000002c0: 2100 2100 2100 2100
                           2100 2100 2100 2100
000002d0: 2100 2100 2100 2100 2100 2100 2100
000002e0: 2100
                  2100
                                         2100
000002f0: 2100 2100 2100
                           2100 2100 2100 2100
00000300: 2100 2100 2100
                       2100
                           2100 2100
                                     2100 2100
00000310: 2100 2100 2100 2100
                           2100 2100 2100 2100
00000320: 2100 2100 2100 2100 2100 2100 2100
00000330: 2100
                  2100
                                2100
00000340: 2100 2100 2100
                           2100 2100 2100 2100
00000350: 2100 2100 2100
                       2100
                           2100 2100
                                     2100 2100
00000360: 2100 2100 2100 2100
                           2100 2100 2100 2100
00000370: 2100 2100 2100 2100 2100 2100 2100
00000380: 2100
             2100
                  2100
                       2100
                            2100
                                2100
                                     2100
                                         2100
00000390: 2100 2100 2100 2100
                           2100 2100 2100 2100
000003a0: 2100 2100 2100
                       2100
                           2100 2100 2100 2100
000003b0: 2100 2100 2100 2100
                           2100 2100 2100 2100
000003c0: 2100 2100 2100 2100 2100 2100 2100
000003d0: 2100
             2100
                  2100
                       2100
                            2100
                                2100
                                     2100
                                         2100
000003e0: 2100 2100 2100 2100
                           2100 2100 2100 2100
000003f0: 2100 2100 2100 2100
                           2100 2100 2100 2100
00000400: 5479 7065 3a20 5043 0d0a 2454 7970 653a
                                               Type: PC..$Type:
00000410: 2050 432f 5854 0d0a 2454 7970 653a 2041
                                                PC/XT..$Type: A
00000420: 540d 0a24
                  5479
                       7065
                            3a20
                                     3220 d0bc
                                               T..$Type: PS2
00000430: d0be d0b4 d0b5 d0bb d18c 2033 300d 0a24
00000440: 5479 7065 3a20 5053 3220 d0bc d0be d0b4
00000450: d0b5 d0bb d18c 2035 3020 d0b8 d0bb d0b8
                                                60..$Type: PS2
00000460: 2036 300d 0a24 5479 7065 3a20 5053 3220
00000470: d0bc d0be d0b4 d0b5 d0bb d18c
```

# Загрузка СОМ модуля в основную память:

1. Какой формат загрузки модуля СОМ? С какого адреса располагается код?

Сначала определяется адрес сегмента оперативной памяти, в котором достаточно места для загрузки программы, затем считывается СОМ-файл с диска и помещается в память, начиная с PSP:0100h. Сегментные регистры CS, DS, ES и SS будут указывать на PSP (48DD). SP будет указывать на конец PSP, 00H помещен в стек, IP содержит 100H из-за команды JMP PSP:100h.

2. Что располагается с адреса 0?

Сегмент PSP, размер сегмента 100h.

3. Какие значения имеют сегментные регистры? На какие области памяти они указывают?

Регистры CS, DS, ES и SS указывают на PSP, имеют значения 48DD.

4. Как определяется стек? Какую область памяти он занимает? Какие адреса?

Стек генерируется автоматически при загрузке COM-программы. SS – на начало – 0h, SP – на конец – FFFEh, адрес расположен в диапазоне 0h – FFFEh.

# Загрузка «хорошего» EXE модуля в основную память:

1. Как загружается «хороший» .EXE? Какие значения имеют сегментные регистры?

Начинается загрузка с адреса PSP:0100h. Считывается информация PSP, выполняется перемещение адресов сегментов, DS и ES устанавливаются на начало PSP, SS устанавливается на начало сегмента стека, CS на начало сегмента кода. В IP загружается смещение до точки входа в программу, оно берется из метки после директивы END.

CS = 490D

SS = 48ED

ES = 48DD

DS = 48DD

2. На что указывают регистры DS и ES?

Регистры DS и ES указывают на начало сегмента PSP.

3. Как определяется стек?

При помощи директивы .STACK, также задается размер стека. Регистр SS будет указывать на начало сегмента стека, а SP на конец.

4. Как определяется точка входа?

Точка входа определяется при помощи директивы END.