AFWAL-TR-87-3068

AD-A199 336

EVALUATION OF RST STRUCTURAL DURABILITY AND LIFE CYCLE COSTS

W. R. GARVER, D. Y. LEE, AND D. E. GORDON GENERAL DYNAMICS FORT WORTH DIVISION P. O. Box 748 Fort Worth, Texas 76101

19 October 1987

FINAL REPORT FOR PERIOD October 1983 - September 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, 0HIO 45433

88 9 15 048

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Project Engineer

FRANK D. ADAMS, Chief Structural Integrity Branch

Structures Division

FOR THE COMMANDER

Chief, Structures Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/FIBEC W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE

	REPORT DOCUME	NTATION PAGE			
14 REPORT SECURITY CLASSIFICATION Unclassified		16. RESTRICTIVE M	ARKINGS		
20. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	VAILABILITY O	F REPORT	
75 0501		Approved fo	r public re	ilease; distr	bution
26. DECLASSIFICATION/DOWNGRADING SCHED	JOCE	unlimited]
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING OR	GANIZATION R	EPORT NUMBERIS)
		AFWAL-TR-	87-3068		
64 NAME OF PERFORMING ORGANIZATION General Dynamics/	6b. OFFICE SYMBOL (If applicable)	74. NAME OF MONIT Air Force Wri			ratories
Fort Worth Division		(AFWAL/FIBEC)	•	dereal babo.	acoraco
õc. ADDRESS (City, State and XIP Code)	<u> </u>	76. ADDRESS (City,	State and ZIP Cod	ie)	
P.O. Box 748		Wright-Patter	son Air Fo	rce Base	İ
Fort Worth, TX 76101	:	Ohio 45433			
&. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL	9. PROCUREMENT II	NSTRUMENT ID	ENTIFICATION N	JMBER
AFWAL/FIBEC	.,, 5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F33615-83	-C-3227		
8c. ADDRESS (City, State and ZIP Code)	 	10. SOURCE OF FUN	IDING NOS.		
Wright-Patterson Air Force Ba Ohio 45433	se	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT
	· · · · · · · · · · · · · · · · · · ·	62201F	2401	01	69
11. TITLE (Include Security Classification) EValu.		ļ		ł	
Structural Durability and Life 12 PERSONAL AUTHOR(S)	e Cycle Costs	<u> </u>		1	
Garver, W.R., Lee, D.Y., and	Gordon, D.E.				
13a. TYPE OF REPORT 13b. TIME CO	-	14. DATE OF REPOR		15. PAGE C	TNUC
Final Report FROM OC	t. 83 το Sept 87	1967, 0000	er 17	161	
	U				
17. COSATI CODES	18. SUBJECT TERMS (C	ontinue on reverse if ne	cessary and ident	ify by block number	,
	Equivalent Init	cial Flaw Size	, RST Stru	ctures, P/M	Aluminum
0103 1403 1107	Alloys, Spectru Crack Growth, 1	um Loading, ra (nitial Fatigu	tigue, iim e Ouality.	e-to-Crack-l Reliability	Initiation,
19. ABSTRACT (Continue on reverse if necessary and					, JL
The main objective of this st	udv is to charac	cterize the st	ructural d	urability of	high-
strength powder metallurgy (P. trusions, 7091-extrusions and	m) aluminum ali 7091-forvines f	loys. The ser for P/M allovs	and 2124-	riais were of the place and 74	Worex-
trusions, 7091-extrusions and for baseline materials. An F-					
figuration since a preliminary					
for this application. This a manufacturing technologies, m					
specimens were designed to mor	del a critical l	location in th	e F-16 FS4	46 bulkhead.	Spectrum
HUD 34 is a tension-compression	· •	• •			4
for the F-16 FS446 bulkhead, w	while NOR1 is a	tension-domin	ated type	spectrum rep	resenting
the B-l wing carry-through bo	x spectrum. Te s	t results obt	ained from	spectrum fa	etigue
tests were analyzed based upor	n the equivalent	initial flaw	size (EIF	S) concept.	The data
analysis shows that the EIFS	concept is a pow	verful tool to	character	ize and eval	luate the
20. DISTRIBUTION/AVAILABILITY OF ABSTRAC	T	21. ABSTRACT SECU	RITY CLASSIFI	CATION	
UNCLASSIFIED/UNLIMITED 🗵 SAME AS RPT.	D DTIC USERS 🗷	Unclassifie	ed .		
22a. NAME OF RESPONSIBLE INDIVIDUAL	A company of the second	22b. TELEPHONE NU		22c. OFFICE SYM	BOL
Margery Artley		(513)255-61		AFWAL/FIB	EC
DD FORM 1473, 83 APR	EDITION OF 1 JAN 73 I	S OBSOLETE.	Und	lassified	

SECURITY CLASSIFICATION OF THIS PAGE

19. (Continued)

structural durability of P/M alloys. The EIFS distribution is common to all spectra and stress levels for a given material and can be conveniently used to quantify structural performance of P/M alloys. The analyzed data demonstrated that initial fatigue quality and spectrum fatigue crack growth resistance of P/M alloys are better compared with baseline materials. From the fatigue quality model parameters obtained in this study, reliability was determined as a function of maximum stress level in spectrum loading. Results showed that reliability of P/M alloys is superior to that of baseline materials for a given stress level.

Delete the <u>Export Restrictions Apply</u> statement in Block 16 of the DD Form 1473. Per Ms. Evelyn Foster, AFWAL/IST

SUMMARY

This report summarizes a research program aimed at achieving the following goals:

- 1. To quantify the failure processes in rapidly solidified technology (RST) structures in order to characterize their damage tolerance and durability.
- 2. To develop a "figure of merit" within the framework of fracture-based design which will reflect the relative merit of RST material versus conventional construction.

A preliminary trade study had established an F-16 aft fuselage bulkhead (FS446) as a prime configuration for weight savings of Powder Metallurgy alloys over conventional ingot metallurgy aluminum alloys. Spectrum fatigue tests were conducted on approximately 150 test coupons designed to model a critical location in the F-16 FS446 bulkhead. Tests were conducted on two different P/M alloys, CW67 and 7091, and compared to two ingot metallurgy aluminum alloys, 7475-T7351 and 2124-T851. Also, 7071 material produced under two manufacturing technologies, machined plate and net shape forging were compared.

Spectrum fatigue tests were conducted under two types of spectrum load histories, HUD34 and NOR1. HUD34 is a tension-compression type spectrum representing the 500-hour block spectrum for the F-16 FS446 bulkhead, while NOR1 is a tension-dominated type spectrum representing the B-1 wing carry-through box spectrum. Test results obtained from spectrum fatigue tests were analyzed based upon the equivalent initial flaw size (EIFS) concept. Methodology used in comparing RST structures with conventional I/M structures is presented and discussed. Techniques which can be used in design studies are proposed.

FOREWORD

This report was prepared by General Dynamics/Fort Worth Division, Fort Worth, Texas, for the Structural Integrity Branch, Structures Division, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio under Contract F33615-83-C-3227. Ms. Margery Artley of AFWAL/FIBEC, was the Project Engineer.

General Dynamics/Fort Worth Division was the contractor for this program. Dr. W. R. Garver served as Program Manager. Dr. D. Y. Lee and Mr. D. E. Gordon were Principal Investigators.

Many individuals at General Dynamics contributed to this program. All tests were performed in General Dynamics' Materials and Processes Laboratory by R. O. Nay under the direction of R. L. Jones. Fractographic readings were made by K. M. Koepsel and S. B. Kirschner. R. W. Haile, R. S. Prowant, and M. A. Osterkamp developed computer software for the program. B. S. Head and P. L. Carper performed all nondestructive examinations of the test specimens. J. H. Chung conducted crack growth predictions. S. R. Fisk typed the report.

This report is the Final Technical Report for this program, covering all work during the period October, 1983 through September, 1987.

TABLE OF CONTENTS

SECT	ION		Page
1	INTRO	DDUCTION	1
2	BACK	GROUND OF RSP ALUMINUM ALLOYS	2
3.	EXPE	RIMENTAL PROCEDURES	6
	3.1	Selection of RST Test Element	6
	3.2	Selection of Materials	6
	3.3	Load History Development and Spectrum Fatigue Testing	13
	3.4	Inspection Procedures	13
		3.4.1 Eddy Current	18
		3.4.2 Dial Bore Gauge	21
		3.4.3 X-Radiography	21
		3.4.4 Ultrasonic	21
		3.4.5 X-Ray Diffraction	21
4.		ABILITY AND DAMAGE TOLERANCE METHODS (LOPMENT	25
	4.1	Crack Growth Analysis	25
	4.2	Determination of Equivalent Critical Flaw Size	27

TABLE OF CONTENTS (Continues)

SEC	TION		PAGE
5.	RESU	JLTS AND DISCUSSION	42
	5.1	Mechanical Properties	42
	5.2	NDI Results	44
		5.2.1 Baseline Specimens	44
		5.2.2 RST Specimens	48
	5.3	Spectrum Fatigue Tests	54
		5.3.1 Time-To-Failure (TTF)	54
		5.3.2 Fatigue Crack Growth Rate (FCGR)	62
		5.3.3 Time-To-Crack-Initiation (TTCI)	69
		5.3.4 Measurement of EIFS Distribution	75
	5.4	Durability Analysis Based on IFQ Model	84
		5.4.1 Crack Growth Modeling	84
		5.4.2 Reliability and Figure of Merit	89
	5.5	Severity of Spectrum	100
6.	CON	CHUSIONS	102

TABLE OF CONTENTS (Concluded)

SECT	TION	PAGE
7.	RECOMMENDATIONS	104
	References	105
	List of Symbols	108
	Appendices	110
	A. Fractographic Crack Growth Data	110
	B. Fractographic Analysis Program Parameters	148

LIST OF FIGURES

FIGUE	RE	PAGE
1.	Fracture Toughness and Yield Strength for 7XXX P/M Versus 7075 1/M Forgings	4
2.	Results of ASTM G44-75 SCC Tests for T7 Type Tempers	5
3.	Drawing of FS 446 Bulkhead On F-16 Aircraft	7
4.	Test Element Design	8
5.	Test Element Geometry	9
6.	Aging Characteristics of 7091 Aluminum Alloy	12
7.	HUD 34 Test Spectrum	14
8.	NOR 1 Test Spectrum	15
9.	Fractographic Markings On A 7091 Extrusion Fracture Surface Exposed To HUD 34 Spectrum	16
10.	Sensitivity of Eddy Current To Surface Defects	20
11.	Dial Bore Gauge Inspection Scheme	22
12.	Portable Ruud-Barrett Residual Stress System	23
13.	Initial Crack Geometries For Crack Growth Predictions	28
14.	Crack Growth Predictions For 2124-T851 Aluminum Alloy	29
15.	Crack Growth Predictions for 7475-T7351 Aluminum	30

LIST OF FIGURES (Continues)

FIGUE	RE	PAGE
16.	Crack Growth Predictions for 7091-T7E69 Aluminum	31
17.	Crack Growth Prediction Comparisons for Three Aluminum Alloys	32
18.	Crack Growth Rate Predictions for 2124-T851 Aluminum Alloy	33
19.	Crack Growth Rate Predictions for 7475-T7351 Aluminum Alloy	34
20.	Crack Growth Rate Predictions for 7091-T7E69 Aluminum Alloy	35
21.	Crack Growth Rate Prediction Comparisons for Three Aluminum Alloys	36
22.	Conceptual Description of IFQ Model	38
23.	Generic EIFS Concept	41
24.	Typical Eddy Current Bolt Hole Scans. (a) Specimen No. 2124-6, (b) Specimen No. 2124-41, (c) Standard Specimen with 0.022 Inch Fatigue Crack	46
25.	Eddy Current Amplitude Versus Time-To-Failure In 7475-T7351 Aluminum Alloy	47
26.	Hole Out-Of-Roundness Versus Time-To-Failure In 7475-T7351 Aluminum Alloy	49
27.	Hole Diameter Versus Time-To-Failure In 7475-T7351 Aluminum Alloy	50
28.	Typical Ultrasonic C-Scan In 7091 Aluminum Alloy	51

LIST OF FIGURES (Continues)

FIGU	RE	PAGE
29.	Residual Stress Versus Time-To-Failure In 7091-Forged Specimens	53
30.	Time-To-Failure Comparisons For Materials Tested Under The HUD 34 Spectrum (Maximum Stress = 40 ksi)	58
31.	Time-To-Failure Comparisons For RST Material (HUD 34 Spectrum, Maximum Stress = 45 ksi)	59
32.	Time-To-Failure Comparisons For Materials Tested Under The NOR 1 Spectrum (Maximum Stress = 45 ksi)	60
33.	Time-To-Failure Plots Showing Stress Dependence	63
34.	Crack Growth Rates For 2124-T851 Aluminum Alloy (HUD 34 Spectrum)	64
35.	Crack Growth Rates For 7091-T7E69 Aluminum Alloy (HUD 34 Spectrum)	65
36.	Crack Growth Rates of 2124-T851, 7091-T7E69, CW67-T7E91, and 7091-Forgings As A Function Of Crack Length Under The HUD 34 Spectrum	67
37.	Crack Growth Rates Of 2124-T851, 7475-T7351, 7091-T7E69, and CW67-T7E91 As A Function Of Crack Length Under The NOR 1 Spectrum	68
38.	TTCI Distributions For 2124-T851 Aluminum Alloy	70
39.	TTCI Distributions For 7475-T7351 Aluminum Alloy	71
40.	TTCI Distributions For 7091-Extrusion	72

LIST OF FIGURES (Continues)

FIGUE	RE	PAGE
41.	TTCI Distributions For 7091-Forging	73
42.	TTCI Distributions For CW67-Extrusion	74
43.	TTCI Comparisons For Three Aluminum Alloys (HUD 34 Spectrum)	76
44.	TTCI Comparisons For Four Aluminum Alloys (NOR 1 Spectrum)	77
45.	EIFS Distributions For 2124-T851 Aluminum Alloy	79
46.	EIFS Distributions For 7475-T7351 Aluminum Alloy	80
47.	EIFS Distributions For 7091-Extrusion	81
48.	EIFS Distributions For 7091-Forging	82
49.	EIFS Distributions For CW67-Extrusion	83
50.	EIFS Comparisons For Three Aluminum Alloys (HUD 34 Spectrum)	86
51.	EIFS Comparisons For Four Aluminum Alloys (NOR 1 Spectrum)	87
52.	EIFS Comparisons (Pooled Data)	88
53.	Crack Growth Comparisons In Three Aluminum Alloys (HUD 34 Spectrum, Maximum Stress = 40 ksi)	90
54.	Crack Growth Comparisons In Four Aluminum Alloys (NOR 1 Spectrum)	91
55.	Crack Growth Comparisons In P/M Aluminum Alloys (HUD 34 Spectrum, Maximum Stress = 45 ksi)	92

LIST OF FIGURES (Concluded)

FIGU	RE	PAGE
56.	Comparison Of Structural Reliability Of P/M Aluminum Alloys Versus I/M Aluminum Alloys (HUD 34 Spectrum At 16,000 Flight Hours)	94
57.	Comparison Of Reliability Above 90 Percent For Three Aluminum Alloys (HUD 34 Spectrum)	95
58.	Comparison Of Structural Reliability Of P/M Aluminum Alloys Versus I/M Aluminum Alloys (NOR 1 Spectrum At 27,000 Flight Hours	96
59.	Comparison Of Reliability Above 90 Percent Of 7091-Extrusion and 2124-T951 Plate (NOR 1 Spectrum)	97
60.	Effect Of Property Improvements On Weight Savings	99
61.	TTCI Distributions Of 7091-Extrusion Showing Comparison Of Load Spectra	101

LIST OF TABLES

TABL	.E	PAGE
1.	Nominal Composition of 7XXX Aluminum P/M Alloy	3
2.	Procedure Used In Heat Treating 7091 P/M Aluminum Alloy	10
3.	Spectrum Fatigue Test Matrix	17
4.	NDI Test Matrix	19
5.	RXN Crack Growth Cap.	26
6.	Basic Mechanical Properties Of Longitudinal Orientation	43
7.	Results Of Mechanical Tests On CW67 Extrusion	4 5
8.	Residual Stress Depth Profile	52
9.	Initial Fatigue Quality Model Parameters	55
10.	Summary Of Spectrum Fatigue Test Results	57
11.	Average TTCI and EIFS Of Each Material	85

SECTION I

INTRODUCTION

The current Air Force structural integrity [MIL-A-87221, Ref. 1] design specifications require that an aircraft be designed to meet both damage tolerance [MIL-A-83444, Ref. 2] and durability [MIL-A-8866B, Ref. 3, and MIL-A-8867B, Ref. 4] requirements. Using a fracture mechanics approach, these design criteria assume that initial quality of aircraft primary structures must be such that there is no catastrophic failure nor widespread damage accumulation within one design service life.

The selection of the initial flaw size and geometry to be used for design is one of the most important tasks in implementing the damage tolerance and durability requirements. The flaw sizes and geometries currently specified in MIL-A-83444 and MIL-A-8866B have been developed primarily for conventional ingot metallurgy (I/M) aerospace alloys. With the advent of rapid solidification processing (RSP), the data base for establishing initial flaw sizes must be expanded for RSP Powder Metallurgy alloys. The main objective of this study is to provide data for two types of RSP structural concepts that can be used to base assumptions of initial flaw size and geometry for direct use within the current Air Force specifications.

A second goal of this program is to provide the designer with a realistic way to assess design trade-offs for using high strength P/M alloys over conventional I/M alloys. A methodology similar to that used in assessing advanced joining concepts was used [5]. Based on this methodology, the reliability of high strength P/M alloys can be compared to conventional I/M alloys.

SECTION II

BACKGROUND OF RSP ALUMINUM ALLOYS

During recent years, improvements in mechanical properties of aluminum alloys have been achieved by rapid solidification processing (RSP). Extending control of microstructure via higher solidification rates has led to the development of unique alloy systems [6].

Fine grains, small constituents and dispersoids, as well as a homogeneous distribution of alloy elements, have been developed as a direct consequence of Rapid Solidification (RS) processes, including Powder Metallurgy (P/M). The uniformity in microstructures achieved in RS alloys created superior combinations of mechanical properties and resulted in an improved balance between strength, toughness, fatigue properties and corrosion resistance.

Unfortunately, the cost of RST structural aluminum alloys remains higher than those produced from standard ingot metallurgy. Therefore, their applications are limited to components where superior performance requirements must justify their use. The growth of P/M alloys has also been constrained by the size of billets available for processing into wrought products. Quality and endproduct consistency have also hindered acceptance of aluminum wrought P/M products, particularly in aerospace applications. Even though P/M alloys exhibit significantly greater combinations of strength and fracture toughness compared to conventional ingot alloys, inclusions which can be introduced during processing must be controlled in order for these materials to be reliable in critical applications. It has been recognized that one of the most important factors controlling the fatigue performance of RST materials is the cleanliness of the RST material [6]. For example, it has been revealed that recent failures of Boeing's 7090 landing gear forgings for the 757 were associated with large inclusions of size about 0.060 inch [7].

Table 1 lists the compositions of I/M and several P/M alloys which have been developed by Alcoa. These alloys contain Zn, Mg, and Cu and utilize various types and amounts of dispersoid forming elements such as Cr, Zr, Co, or Ni to control recrystallization.

Table I Nominal Compositions* of 7XXX Aluminum P/M Alloy

Alloy	Zn	Mg	Cu	Ç	Cr	Zr	<u>Ni</u>	Ω	Al	Ref.
7075 I/M	5.6	2.5	1.6		0.23				Bai.	
7050 I/M	6.2	2.2	2.3			0.12			Bal.	
7090	8.0	2.5	1.0	1.5				0.35	Bal.	а
7091	6.5	2.5	1.0	0.4				0.35	Bal.	a
CW67	9.0	2.5	1.5			0.14	0.1	0.35	Bal.	b
(a) Alum	inum	Comp	any of	Ame	rica, T	Tech E	Brief,	March,	1985	
(b) Alcoa	a IRA	D, Apı	ril, 198	33				-		
* Flem	ents in	n Wei	oht %							

* Elements in Weight %

The advantage that P/M alloys have over slowly cooled I/M alloys is the ability to utilize rapid solidification to refine the dispersoid size and spacing as well as dendrite arm spacing.

The refined microstructural features in the atomized powder ultimately results in a fine grain size in the wrought alloy with improved combinations of properties as demonstrated in Figure 1. In die forgings, P/M alloys 7090 and 7091 in a T7 temper have better strength and toughness than I/M 7075 [8]. Continued development of 7XXX P/M alloys [9] has led to the second generation alloy designated by Alcoa as CW67. As shown in Figure 1, this alloy which has twice the fracture toughness as 7090 with equivalent strength, is expected to play a major role in the continued commercialization of 7000 series P/M alloys for aerospace applications.

P/M alloys also exhibit superior corrosion resistance compared to I/M alloys. Figure 2 shows that P/M alloys offer between 10 to 20 percent greater strength compared to 7075-T73 and had no failures [10] in short-transverse tensile bars stressed at 45 ksi (310 MPa).

Figure 1. Fracture Toughness and Yield Strength for 7XXX P/M Versus 7075 1/M Forgings

Figure 2. Results of ASTM G44-75 SCC Tests for T7 Type Tempers

SECTION III

EXPERIMENTAL PROCEDURES

3.1 SELECTION OF RST TEST ELEMENT

A list of 48 fracture critical parts were obtained from the F-16C/D aircraft as potential parts to be replaced by P/M alloys. An F-16 aft fuselage bulkhead (FS446) was chosen for this study as a prime configuration since a preliminary trade study predicted good weight savings from P/M alloys for this application (Figure 3). Potential cracking problems were known to exist in this bulkhead, also. This also provided a good opportunity to compare two manufacturing technologies, machined plate vs. net shape forging. Therefore, spectrum fatigue test specimens were designed to model a critical location in the F-16 FS446 bulkhead as shown in Figure 4. The test element geometry is shown in Figure 5.

Load transfer between 1/4" fastener holes was accomplished with a composite strap. Mylar tape between the strap and the specimen minimizes fretting that would promote crack initiation at locations away from the fastener holes. Specimens were tested in the as-machined condition with no additional surface treatment. No intentional pre-flaws were introduced.

3.2 SELECTION OF MATERIALS

The high strength P/M aluminum alloys selected for this program were CW67-extrusions, 7091-extrusions, and 7091-forgings. Both the Alcoa second generation alloy, CW67, and first generation alloy, 7091, were discussed in Section II. The CW67 and 7091 extrusions were obtained in the form of bars (1.5 inch thick and 4.5 inch wide). The CW67 material was obtained in the T7E91 heat treat. This heat treat consisted of:

- (a) Solution treatment at 910°F for 2 hrs,
- (b) cold water quench,
- (c) artificially aging at 250°F for 24 hrs. followed by
- (d) artificially aging at 325°F for 1 hr.

The 7091 material was obtained in the T7E69 heat treat. This heat treatment is shown in Table 2. The 7091-forgings were

Figure 3. Drawing of FS 446 Bulkhead On F-16 Aircraft

Figure 4. Test Element Design

Figure 5. Test Element Geometry

TABLE 2. PROCEDURE USED IN HEAT TREATING 7091 P/M ALUMINUM ALLOY

	7091-EXTRUSIONS	7091-FORGINGS
SOLUTION TREATMENT	920°F, 2 HRS	920°F, 2 HRS
WATER QUENCH	R.T.	R.T.
STRESS RELIEF	3% STRETCH	NONE
NATURAL AGING	R. T., 5 DAYS	R. T., 5 DAYS
1ST STEP ARTIFICIAL AGING	250°F, 24 HRS	250°F, 24 HRS
2ND STEP ARTIFICIAL AGING	325°F, 8 HRS	325°F, 20 HRS

)

prepared from 7091-T7E69 extruded bars by a precision forging process at Pioneer Aluminum Forging Company, Colorado Springs, Colorado. A hydraulic press was used for forging preheated (3 hours at 800°F) blanks of 7091. During the forging process, the die temperature was also 800°F. Forged specimens were air cooled to room temperature. Post forging heat treatments are also shown in Table 2.

During the final step of artificial aging, the forged material was heated at 325°F until hardness values similar to the extruded material were obtained (Figure 6). Longer times were required for aging at 325°F (20 hrs) for the forged material as compared to the extruded material (8 hrs. at 325°F).

The baseline materials selected were 2124-plate and 7475-plate. Both materials are used on the F-16 aircraft.

The 2124-T851 aluminum plate alloy is used extensively in the F-16 fuselage in various thicknesses up to 5.5 inches. Its fracture toughness is not as high as 7475 but its crack growth resistance is very good, particularly in a corrosive media under spectrum loading [11]. The 2124-T851 aluminum alloy is currently being used in the F-16 aft fuselage bulkhead (FS446).

The 7475-T7351 aluminum plate alloy was selected because it is representative of the primary material of the F-16 aircraft for safety-of-flight structure up to 4.0-inches thick. Thin plate (0.625-inch) is used for the lower wing skin, where fracture control is a prime design requirement. Thicker plate (1.0 - 4.0 inches) is used for wing spars and certain of the thinner center fuselage lower bulkhead segments. This material is also used in the aft fuselage to a limited extent. The combination of this alloy and temper exhibits high resistance to exfoliation and stress corrosion cracking in all directions, and has extremely high fracture toughness [11].

All 2124-T851 and 7475-T7351 test coupons were obtained from plate (1.5 inch thick). All material used in the program was obtained from Aluminum Company of America.

Figure 6. Aging Characteristics of 7091 Aluminum Alloy

3.3 LOAD HISTORY DEVELOPMENT AND SPECTRUM FATIGUE TESTING

Spectrum fatigue tests were conducted under two types of spectrum load histories, HUD34 and NOR1 (Figures 7 and 8). HUD34 represents the 500-hour block spectrum for the F-16 FS446 bulkhead (A tension-compression type spectrum), while NOR1 represents the B-1 wing carry-through box spectrum (a tensiondominated type spectrum). All specimens were spectrum fatigue tested for the equivalent of three design lives or until failure, whichever occurred first. One design life for HUD34 and NOR1 are 8,000 and 13,500 flight hours, respectively. Following testing, unfailed specimens were monotonically tested to failure and residual strength of each specimen was recorded. The crack growth data were determined by a fractographic method [5] using a Bausch and Lomb stereomicroscope and digital X-Y stage micrometers. The data were read continuously from the final crack length back to the origin. Both spectra produced easily distinguishable markings on the fracture surfaces (Figures 8 and 9).

For tests conducted under the HUD34 test spectrum, maximum tensile stresses of 35 ksi and 40 ksi were selected for the 2124-T851 aluminum alloy while maximum tensile stresses of 40 ksi and 45 ksi were selected for the 7091 and CW67 P/M materials (Table 3). For spectrum fatigue studies conducted under the NOR1 spectrum, maximum tensile stresses of 45 ksi and 50 ksi were used (Table 3).

Testing was conducted in computer-controlled test frames within the Materials and Processing Group Laboratory. Load cells in these facilities were periodically calibrated under Air Force supervision. Test rates were set so that program and feedback loads agreed to within two percent at all load levels. Due to the design of the test specimen, no lateral constraints were required during testing.

Table 3 summarizes the spectrum fatigue test plan.' The experimental results obtained from the spectrum fatigue testing are presented in Section 5.

3.4 INSPECTION PROCEDURES

Nondestructive techniques were used to characterize all fastener holes subjected to cyclic loading. For determining initial hole quality, eddy current techniques and dial bore gauge

1 BLOCK = 500 FLIGHT HOURS

Figure 7. HUD 34 Test Spectrum

LAST 50 LOAD POINTS

SEGMENT OF B1-BOMBER SPECTRUM SHOWING TRANSITION FROM 1ST TO 2ND LIFE

Figure 8. NOR 1 Test Spectrum

Figure 9. Fractographic Markings On A 7091 Extrusion Fracture Surface Exposed To HUD 34 Spectrum

TABLE 3 SPECTRUM FATIGUE TEST MATRIX

MATERIAL	SPECTRUM	STRESS	NO, OF SPECIMENS
2124-7851	HUD34	35	15
	HUD34	04	15
	NOR1	45	10
7475-17351	NOR1	45	10
7091-EXTRUSION	HOD34	0ħ	15
	HUD34	45	15
	NOR1	45	10
,	NOR1	50	10
7091-FORGING ,	HUD34	0ħ	6
	HUD34	45	6
CW67-EXTRUSION	HUD34	40	10
	HUD34	. 5ħ	10
	NOR1	45	10

measurements were made. Comparisons were made between NDI parameters as measured by the different inspection techniques and fatigue properties. Cracks initiated at the fastener holes in all test specimens. They initiated from inclusions, defects, out of roundness of holes and axial scratches.

Since control of inclusions is a major problem in the high strength P/M aluminum alloys, ultrasonic and x-ray inspections were also made of all RST test coupons prior to cyclic loading. Both inspection techniques are known to be particularly sensitive to detecting inclusions.

In the 7091-forged specimens, surface residual stresses in the test coupons were also considered. In the forged material, the residual stress distributions are considered an additional unknown variable which could affect spectrum fatigue performance. All NDI techniques used in this program are shown in Table 4. All inspection procedures are described below.

3.4.1 Eddy Current

Eddy current procedures for inspecting fastener hole quality were similar to those described in the "Initial Quality of Advanced Joining Concepts" program [5] and "Fastener Hole Quality" program [12]. An automated eddy current inspection unit was used for inspecting fastener holes. The unit consists of an Automation Industries EM 3300 eddy current unit, a mini-scanner head and a dual channel recorder. The eddy current signal, after being filtered and amplified, is sent to a dual channel recorder, where the data is then plotted.

Considerable insight was gained during the Fastener Hole Quality program [12] into the types of initial defects that most seriously affect the fatigue behavior of fastener holes. The axial or vertical scratch in a fastener hole has been identified as an initial defect that significantly affects the fatigue behavior of fastener holes under no-load transfer conditions. Consequently, the eddy current technique has been optimized to detect axial scratches. Shown in Figure 10 are eddy current signatures of typical manufacturing induced axial scratches. A signal-to-noise ratio of about 7 has been achieved in the detection of this type of initial defect.

TABLE 4. NOI TEST MATRIX

RST MATERIALS

- INCLUSIONS, VOIDS, (FORGING LAPS) ULTRASONIC

- CRACKS, SCRATCHES IN FASTENER HOLES - INCLUSIONS, VOIDS, (FORGING LAPS) X-RADIOGRAPHY

EDDY CURRENT

DIAL BORE GAGE

- DIAMETER, ROUNDNESS OF FASTENER HOLES

· CONVENTIONAL ALLOYS

EDDY CURRENT

DIAL BORE GAGE

Figure 10. Sensitivity of Eddy Current To Surface Defects

Despite the sensitivity of eddy current inspection, it is difficult to detect some of the axial scratches or voids which can adversely affect fatigue performance. It is possible, however, to monitor variations in hole dimensions, such as hole out-of-roundness, with eddy current inspection. Also, surface roughness can easily be detected.

3.4.2 Dial Bore Gauge

A dial bore gauge (Boise Model No. 1) was used to measure the diameter of the fastener holes at different orientations (Figure 11), and thus, give a relative measure of out-of-roundness (OOR). Measurements were taken at different depths in the hole, also, to determine if hole tapering was present. Numbering of the holes for dial bore gauge and eddy current measurements were in accordance with Figure 11.

3.4.3 X-Radiography

In the inspection of the 7091 and CW-67 coupons, a Field Emission Corporation Faxitron, Model 805, radiographic inspection system was used. Specimens were mounted such that the center of the x-ray beam were normal to the face of the specimen. A film-to-source distance (FTSD) of 22.0 inches was used. X-ray parameters found to work best were either 35 kv, 3 ma, for 5 minutes or 35 kv 3 ma, for 6.5 minutes. The longer exposure time is slightly more effective for the detection of higher density inclusions which might be present. Kodak Type AA film was used.

3.4.4 Ultrasonic

Ultrasonic inspections were performed on all P/M specimens in the transmission mode. Ultrasonic C-scans were taken, with the samples immersed in an Automation Industries research tank. Measurements were made with 5MHz transducers with a separation of 5.0 inches. A flaw level of 20 percent was used for these scans.

3.4.5 X-ray Diffraction

For surface residual stress measurements, a portable Ruud-Barrett Residual Stress System was used [13]. This system used x-ray diffraction techniques to measure residual stresses (Figure 12).

Figure 11. Dial Bore Gauge Inspection Scheme

PORTABLE RUUD-BARRETT RESIDUAL STRESS SYSTEM

>

Figure 12. Portable Ruud-Barrett Residual Stress System

In two specimens, residual stress depth profiles were obtained. These measurements were obtained by etching away different thicknesses of material and measuring the depth of removed material.

SECTION IV

DURABILITY AND DAMAGE TOLERANCE METHODS DEVELOPMENT

In this section, techniques used in predicting fatigue crack growth (FCG) and determining the equivalent initial flaw size (EIFS) are described. Comparisons of crack growth predictions with actual crack growth data are presented in Section V. EIFS distributions of actual test results are also shown in Section V.

4.1 CRACK GROWTH ANALYSIS

Crack growth analyses were conducted using a computer code called RXN. The RXN computer code is a production code used at General Dynamics/Fort Worth Division [14]. The RXN code is an improved version of R5N which has been used in previous programs [5].

The existing RXN program can analyze up to fifteen different crack geometries using any combination of seven different crack growth models and four retardation models. The combination of geometry type/retardation model/crack growth model is defined simply by selecting the respective values for three input variables. Table 5 lists the specific geometry types, retardation models, and crack growth laws internally available in the program.

These new features available on RXN are especially valuable. First stress intensity factors for both surface flaws [15] and corner cracks at loaded bolt holes [16] are available for the case of bending loading as well as for uniform tension stress. Second, the Rockwell/Chang retardation Model [17] helps to correct for compressive loading effects.

Finally, the tabular input options for the stress intensity factor (either corner bolt hole or through flaws) allows complex or unique stress intensity factor solutions to be incorporated into the crack growth analysis.

For the predictions used in this program, the "Modified Walker Crack Growth Equation" was used in conjunction with the "Generalized Willenborg Retardation Model." These options are listed in Table 5.

TABLE 5. RXN CRACK GROWTH PROGRAM CAPABILITIES

GEOMETRY TYPES	RETARDATION MODELS	CRACK GROWTH LAWS
PT SF TEN (CONST. MF)	WIEELER	PARIS
PT SF TEN (EQ. MF)	GENERALIZED WILLENBORG	FORMAN
PT SF TEN (FIEWMAN)	MULTI-PARAMETER YIELD ZONE	MODIFIED FORMAN
PT SF BEND (NEWMAN)	ROCKWELL/CHANG	WALKER AK
TT SF TEN	NO RETARDATION	WALKER KMAX
CF AT HOLE TEN		VROMAN/CHANG
CF AT HOLE BER		TABULAR
CF AT HOLE TEN + BER		
TT AT HOLE TEN		
TT AT HOLE BER		
TT AT HOLE TEN + BER		
CF AT EDGE TEN		
TT AT EDGE TEN ,		
CF (INPUT SIF)	•	
TT (INPUT SIF)		

PT - PART THROUGH THICKNESS FLAW
CF - CORNER FLAW
TEN - TENSION STRESS
BER - BEARING STRESS

TT - THROUGH THICKNESS FLAW SF - SURFACE FLAW BEND - BENDING STRESS SIF - STRESS INTENSITY FACTOR All crack growth analyses were conducted for the HUD34 spectrum at a nominal stress level of 40 ksi. Analyses were performed for single and double (symmetric) cracks emanating from the critical fastener holes. Both corner and through cracks were considered. All analyses used appropriate stress intensity factor estimates for loaded bolt holes. The starting crack size was taken as 0.001 inch. Analyses were terminated upon reaching the estimated critical crack size or upon reaching two design lifetimes. Crack geometries are shown in Figure 13.

Calculations were conducted for three different materials, 2124-T851, 7475-T7351, and 7091-extrusions. Results of these calculations are shown in Figure 14-16. A comparison of materials for two corner plus a through crack is shown in Figure 17. According to the analysis, superior crack growth resistance is obtained in the 7475-T7351 material as compared to 7091-T7E69 and 2124-T851. Comparisons of predicted crack growth and actual crack growth will be discussed in Section V.

Following a methodology developed previously at GD/FWD [18,19] and using a modified secant method [20], crack growth rate $(\frac{\Delta s}{\Delta t})$ was predicted as a function of crack length, a. These calculations were conducted for crack geometries, spectra, and stress level shown in Figures 14-16.

Figures 18-20 summarize the crack growth analyses for three different materials, 2124-T851, 7475-T7351, and 7091-T7E69. A comparison of these materials for two corner and one through crack is shown in Figure 21. Predictions based on this methodology are discussed in Section V.

4.2 DETERMINATION OF EQUIVALENT INITIAL FLAW SIZE

A model for initial fatigue quality based on the equivalent initial flaw size (EIFS) concept has been established from several preceding programs [5,12,21,22]. Many details of the model which support its usage will not be presented here. Several variations in modeling crack growth to fit fractographic data have been presented [5,12,21]. However, the model followed in this program is similar to that used in the "Initial Quality of Advanced Joining Concepts" program [5].

SINGLE THROUGH

Figure 13. Initial Crack Geometries For Crack Growth Predictions

Figure 14. Crack Growth Predictions For 2124-T851 Aluminum Alloy

Figure 15. Crack Growth Predictions for 7475-T7351 Aluminum Alloy

Figure 16. Crack Growth Predictions for 7091-T7E69 Aluminum Alloy

FLIGHT HOURS

FLIGHT HOURS

Figure 17. Crack Growth Prediction Comparisons for Three Aluminum Alloys

Figure 18. Crack Growth Rate Predictions for 2124-T851 Aluminum Alloy

Figure 19. Crack Growth Rate Predictions for 7475-T7351 Aluminum Alloy

Figure 20. Crack Growth Rate Predictions for 7091-T7E69
Aluminum Alloy

Figure 21. Crack Growth Rate Prediction Comparisons for Three Aluminum Alloys

One of the most important factors governing the structural performance of advanced structural concepts is the initial fatigue quality (IFQ). IFQ defines the initial manufactured state of a structural detail with respect to crack growth which is expected to occur in service. The IFQ for a group of replicate details can be presented by a distribution of equivalent initial flaw sizes (EIFS). Given that a crack occurs in a structure during service, the EIFS is the size of a hypothetical initial flaw which would result in the observed crack. The EIFS can be derived using fractography from fatigue test results. Crack growth observed after fatigue testing (fractography) is extrapolated backward to estimate EIFS. An EIFS distribution is obtained by fitting a statistical distribution to EIFS data sets.

An arbitrary crack size a_0 can be selected such that it can be unambiguously observed. The time required for an initial defect to become a fatigue crack of size a_0 is defined as the time-to-crack-initiation (TTCI). In general, the EIFS distribution is chosen so that the crack growth rate maps the EIFS distribution into the observed TTCI distribution. A conceptual description of the IFQ mcdel is shown in Figure 22.

It has long been noted that fatigue failure distributions can be fit by three-parameter Weibull distributions. Since failure in fracture critical structure corresponds to attainment of the critical crack size, it is reasonable to hope that this distributional form is appropriate for all crack sizes of interest. Preceding programs show [5,18,19] that observed TTCI values for small crack sizes can usually be fit very well by a three-parameter Weibull distribution.

Therefore, a fractographically observed TTCI distribution can be expressed as:

$$F_{T}(t) = P[T \le t] = 1 - \exp\left\{-\left[\frac{t-\varepsilon}{\beta}\right]^{\alpha}\right\} ; t \ge \varepsilon$$
 (1)

where T is a random variable indicating TTCI and $F_T(t)$ is just $P[TTCI \le t]$. The Weibull parameter α , is the shape parameter, β is the scale parameter, and ϵ is the lower bound of TTCI. The parameters α , β and ϵ , are determined from a best-fit of fractography data, according to conditions discussed further below.

Figure 22. Conceptual Description of IFQ Model

The crack growth rate over the crack size range of interest is assumed to be expressed as:

$$\frac{da(t)}{dt} = Q[a(t)]^b$$
 (2)

where a(t) is the crack size at time t, and Q and b are constants that are determined from the least square fit of all log da/dt vs. log a pairs of the sample.

Integrating Eq. (2) from t=0 to t=T, the relationship between the crack size at t=0, a(o) (i.e., EIFS), and that at t=T (i.e. a_0) is found to be:

EIFS =
$$a(0) = \frac{a_0}{(1+a_0^c \cot)^{1/c}}$$
 (3)

where c = b - 1.

Combining Eq. (1) and (3), one may obtain the EIFS distribution as:

$$F_{a(o)}(x) = \exp \left\{ -\left[\frac{x^{-c} - x_{u}^{-c}}{cQ \beta} \right]^{a} \right\} ; 0 < x \le x_{u}$$

$$= 1 \qquad ; x \ge x_{u}$$

where $F_{a(0)}(x)$ is just P[EIFS < x] and where x_u is the upper bound of the EIFS which is defined as:

$$x_{u} = \left\{a_{0}^{-c} + CQ\varepsilon\right\} \tag{5}$$

Therefore, the EIFS distribution can be determined from Eq. (4), if the parameters Q, c = b-1, α , β , and ϵ are properly calibrated based on the fractographic data.

As mentioned previously, EIFS is intuitively a generic property of such factors as the material, manufacturing/assembly techniques, and workmanship and should be independent of load spectrum and stress level. Eq. (4) shows that the necessary conditions to ensure that the EIFS distribution is generic among two or more data sets are:

$$b_1 = b_2 = \dots = b_n$$

$$\alpha_1 = \alpha_2 = \dots = \alpha_n$$

$$Q_1 \beta_1 = Q_2 \beta_2 = \dots = Q_n \beta_n$$
(6)

Accordingly, it is recommended that any sample of identically prepared test elements be randomly split into at least two groups (Figure 23). These should be tested at different stress levels. If possible, a third group tested with a different spectrum is desirable. Then all fractography is least squares fit subject to the conditions given in Eq. (6). Adequate fits to the data have been found so far using this procedure, and this procedure ensures that the EIFS is as generic as can be among the conditions tested. Testing at two stress levels also reveals the dependence of crack growth on stress level, which is useful for preforming trade studies.

Figure 23. Generic EIFS Concept

SECTION V

RESULTS AND DISCUSSION

In this section. all experimental results are presented and analyzed. These results include: (1) basic mechanical properties, (2) NDI results, and (3) spectrum fatigue tests. Spectrum fatigue results are divided into the following categories: (a) time-to-failure (TTF), (b) fatigue crack growth rate (FCGR), (c) time-to-crack-initiation (TTCI), and (d) measurements of equivalent initial flaw size (EIFS).

Also, in this section, the durability and damage tolerance of RST structures are discussed. Methodology used in comparing RST structures with conventional I/M structures is presented and discussed. Techniques which can be used in design studies are proposed.

5.1 MECHANICAL PROPERTIES

Table 6 shows basic mechanical properties of 2124-T851, 7475-T7351, 7091-T7E69 extruded material, 7091-forgings, and CW67-T7E91 extruded material.

Improved strength is observed in the RST P/M alloys as compared to the ingot metallurgy materials. Ultimate tensile strengths as high as 90 ksi were observed in the CW67 extruded material in the (L) orientation.

Fracture toughness values of CW67-T7E91 are quite high, also. Values as high as 50 ksi $\sqrt{\text{in.}}$ (L-T orientation) were obtained from one billet of material. These toughness values are comparable to values obtained for 7475-T7351 (48 ksi $\sqrt{\text{in.}}$) and higher than those obtained in 7091-T7E69 and 2124-T851 (36 ksi $\sqrt{\text{in.}}$ and 29 ksi $\sqrt{\text{in.}}$, respectively.

By controlling the heat treat, the mechanical properties of 7091-forgings were quite similar to values obtained for 7091-extrusions (Table 6). As discussed in Section III, final aging times at 325°F were extended in the 7091-forged material in order to achieve these strength values.

TABLE 6. BASIC MECHANICAL PROPERTIES OF LONGITUDINAL ORIENTATION

MATERIAL	YIELD STRENGTH (ksi)	TENSILE STRENGTH (ksi)	PERCENT ELONGATION (%)	FRACTURE TOUGHNESS (ksi √in.)
2124-T851	64	71	9	29
7475-T7351	63	73	14	48
7091-T7E69	75	83	14	36
7091-FORG.	73	80	15	
CW67-T7E91	86	90	12	50

Results of mechanical tests conducted on CW67 extrusions are shown in Table 7. The first batch of spectrum fatigue coupons tested were obtained from a CW67 powder billet, #514553-2. The specimens tested later were obtained from powder billets, #514570 and #514571. Higher strengths and larger fracture toughness values were obtained for material obtained from billet #514553-2. Better fatigue properties were also obtained from test coupons fabricated from this billet. Fatigue properties are discussed in Section 5.3. Slightly higher elongation and reduction of area was obtained in CW67 extrusions obtained from billets #514570 and #514571.

Some anisotropy was observed in basic mechanical properties for the CW67 extrusions. Ultimate tensile strengths are observed to decrease from 90.7 ksi in the front (L) orientation to 82.7 ksi in the rear (ST) orientation for material from the #514553-2 billet. Fracture toughness values decreased from 49.8 ksi fin. in the (L-T) orientation to 24.1 ksi in. in the (S-L) orientation for the same material.

5.2 NDI RESULTS

5.2.1 Baseline Specimens

Eddy current and dial bore gauge measurements were made on all fastener holes of the spectrum fatigue test coupons. NDI parameters such as eddy current amplitude, hole out-of-roundness, and hole diameter were measured and compared to fatigue life.

Typical eddy current scans for fastener holes in two test coupons, are shown in Figure 24. Also shown is the eddy current signature from a reference hole containing a 0.022-inch-deep fatigue crack. In general, no correlation was observed between eddy current amplitude and fatigue life. Typical results where eddy current amplitude is plotted as a function of fatigue life is shown in Figure 25. These results are shown for 7475-T7351 test coupons imposed to the NOR 1 spectrum. Eddy current results indicated that the hole quality was fairly equivalent in all of the holes.

Dial bore gauge results also indicated little correlation between hole quality parameters such as out-of-roundness or oversized holes with fatigue life. Results are shown in Figures 26-

TABLE 7. RESULTS OF MECHANICAL TESTS ON CW67 EXTRUSION

Billet No.	Temper	Location of Test Specimens	Specimen Orientation	UTS (ksi)	YS (ksi)	EL (%)	RA (%)	Kic (ksi /m.)
514553-2	T7E91	Front	L (L T) LT (T-L) ST (S-L)	90.7 85.9 84.0	86.2 81.6 74.3	11.8 10.9 8.6	23 13	49.8 29.8 24.1
		Rear	L (L-T) LT (T-L) ST (S-L)	89.7 84.0 82.7	85.0 79.8 73.6	12.3 10.7 9.9	24 26 22	49.8 31.0 27.3
514570 and 514571		Front	L(L-T) LT(T-L) ST (S·L)	89.2 84.7 82.2	84.7 78.4 72.9	12.9 12.9 8.7	31.0 25.2 18.0	44.1 24.0 20.4
•		Rear	L(L-T) LT(T-L) ST(S-L)	86.4 81.0 81.3	81.3 74.1 68.8	13.3 12.0 9.7	34.4 27.9 18.2	45.7 26.1 25.5

Results obtained from Alcoa.

}

(c) Standard specimen - .022""fatigue crack

Figure 24. Typical Eddy Current Bolt Hole Scans.

- (a) Specimen No. 2124-6, (b) Specimen No. 2124-41,
- (c) Standard Specimen with .022 Inch Fatigue Crack

Figure 25. Eddy Current Amplitude Versus Time-To-Failure In 7475-T7351 Aluminum Alloy

27 for 7475-T7351 test coupons tested under the NOR 1 spectrum at a maximum spectrum stress of 45 ksi.

The results of little or no correlation between fatigue behavior and hole quality as measured by the two different NDE techniques are consistent with results obtained from the "Fastener Hole Quality" [12] and "Initial Quality of Advanced Joining Concept programs" [5]. In the "Fastener Hole Quality" program, flaws which degraded the cosmetic hole quality, such as rifling marks, gouges, drill tool chatter marks, etc., did not necessarily affect structural fatigue performance.

5.2.2 RST Specimens

Eddy current and dial bore gauge measurements were also made on all fastener holes in the RST test coupons. In addition, ultrasonic and x-ray inspections were made on all of the P/M specimens and residual stress measurements were made on the 7091-forged test coupons. Ultrasonic and x-ray inspections were only made on the RST test coupons since control of inclusions is considered extremely important in these materials. Both ultrasonic and x-ray inspection techniques are considered sensitive NDI techniques for detecting these inclusions.

Similar to results obtained for baseline coupons, no correlation between NDI parameters such as eddy current amplitude, hole out-of-roundness, and hole diameter and fatigue life were obtained in the RST materials.

Ultrasonic and x-ray inspections of the RST test coupons revealed no large inclusions or voids in these materials. A typical ultrasonic C-scan of the 7091 material is shown in Figure 28. Inspections of the 7091-forged test coupons did not reveal any defects due to forging such as forging laps.

Residual stress measurements taken on the surface of the 7091-forged coupons before testing indicated small compressive stresses. The depth of this compressive layer measured less than 0.010 inch deep as shown in residual stress depth profile measurements (Table 8). Little correlation between magnitude of the surface residual stresses and time-to-failure were observed in 7091-forged coupons tested under the HUD34 spectrum at a maximum stress level of 45 ksi (Figure 29).

Figure 26. Hole Out-Of-Roundness Versus Time-To-Failure In 7475-T7351 Aluminum Alloy

Figure 27. Hole Diameter Versus Time-To-Failure In 7475-T7351 Aluminum Alloy

•

Figure 28. Typical Ultrasonic C-Scan In 7091 Aluminum Alloy

TABLE 8. RESIDUAL STRESS DEPTH PROFILE

71	STRESS (ksi)	-16	-14	-14	-5
<u> 7091F-17</u>	DEPTH (In.)	SURFACE	0.002	0.004	0.010
7091F-12	STRESS (ksi)	-10	-12	-13	7
<u>209</u>	DEPTH (In.)	SURFACE	0.001	0.002	0.010

Figure 29. Residual Stress Versus Time-To-Failure In 7091-Forged Specimens

5.3 SPECTRUM FATIGUE TESTS

Results of the spectrum fatigue tests are given in this section. Results are based on approximately 150 tests. The section is divided into four areas: (a) time-to-failure (TTF), (b) fatigue crack growth rate (FCGR), (c) time-to-crack-initiation (TTCI), and (d) measurements of equivalent initial flaw size (EIFS).

All spectrum fatigue crack growth data were analyzed based upon the equivalent initial flaw size (EIFS) concept [5,12,18,21,22]. The basic elements of the initial fatigue quality (IFQ) model include a power law crack growth description containing parameters Q and b and a Weibull distribution describing the time for a fatigue crack to grow to any arbitrary size, a_0 . The Weibull distribution is described by parameters α , β , and ϵ . The concepts of the IFQ model and the procedures for determining IFQ model parameters are described in detail in Section 4.2.

Table 9 summarizes the IFQ model parameters for this program. Table 9 shows that the values of b, α , and $\alpha\beta$ do not vary with the test condition. These invariance conditions must be satisfied in order for the equivalent initial flaw size (EIFS) distribution to be generic, that is, independent of spectrum or stress level. This property is desirable since we expect the initial fatigue quality to depend on structural concept, material, and manufactured quality rather than on subsequent service conditions.

The information in Table 9 is a complete description of the results of approximately one hundred fifty spectrum tests. It contains all the information necessary for determining the crack growth performance of each structural concept. It is the information needed for predicting crack growth behavior, as shown in Section 4. Q and b in Table 9 describe the average crack growth for each test condition, according to equation (2). The parameters α and β , describe the time to initiate a crack of arbitrary size a_0 . The upper bound of the EIFS distribution, x_0 , is determined by the other parameters.

TABLE 9 INITIAL FATIGUE QUALITY MODEL PARAMETERS

SPECIMEN	SPECTRUM	STRESS (KSI)	a 0 (IR.)	X _U	0	q	٤	67	в0	TTF (Fit Hrs)	acrit (IN.)
2124-1851	HUD34	35	0.15	0.15	3,4012 X 10-4	0.8209	2,8556	11088	3,7713	14993	.74
	HUD34	40	0.15	0.15	7.8911 X 10-4	0.8209	2.8556	4779	3.7713	5886	.49
	NOR1	45	0.15	0.15	2.6592 X 10-4	0.8209	2.8556	14182	3.7713	15423	.59
7475-T7351	NOR1	45	0.15	0.15	1.5314 X 10-4	0.8343	3.5257	20749	3.1776	26465	69.
7091-EXTR.	HUD34	40	0.15	0.15	1,4106 X 10-4	0.6096	2,4417	9830	1.3866	17997	.78
	HUD34	45	0.15	0.15	3.8433 X 10-4	9609.0	2.4417	3608	1.3866	7309	.80
	NOR1	45	0.15	0.15	6.5999 X 10·5	9609.0	2,4417	21009	1.3866	36949	.74
	NOR1	20	0.15	0.15	1.3795 X 10-4	9609.0	2.4417	10051	1.3866	15238	.72
7091-FORG.	HUD34	40	0.15	0.15	1.7583 X 10-4	0.5622	2,6221	6029	1,1796	11667	.80
	HUD34	45	0.15	0.15	3.7679 X 10-4	0.5622	2.6221	3131	1.1796	5544	98.
CW67	HUD34	40	0.15	0.15	2.1798 X 15-4	0.7094	2.6717	6386	1.5818	14360	.92
	HUD34	45	0.15	0.15	4.2535 X 10-4	0.7094	2.6717	3940	1.5818	10572	16:
	NOR1	45	0.15	0.15	1.0663 X 10-4	0.7094	2.6717	15732	1.5818	21939	68.

5.3.1 Time-To-Failure (TTF)

A summary of spectrum fatigue test results are given in Table 10. Average time-to-failure (TTF) values are given along with the standard deviation. In general, stress levels were selected such that fatigue failure was achieved before three lifetimes were completed. Table 10 shows that the P/M alloys (CW67-T7E91 and 7091-T7E69) exhibit longer total time-to-failure (TTF) than the I/M alloys (2124-T851 and 7475-T7351). In general, scatter of experimental data, was observed to be no greater in the high starength P/M alloys than in the I/M alloys. Only one group of P/M specimens, (7091-T7E69 under the data set RINR45) exhibited a fairly large standard deviation in TTF.

Material comparisons in TTF were made in terms of Weibull probability plots. In Figures 30-32, comparisons are made where tests were conducted under identical spectra and stress levels. For test coupons tested under the HUD34 spectrum at a maximum stress level of 40 ksi, optimum fatigue life was obtained in the 7091-extruded test coupons survived three lifetimes (24,000 flight hours) without failing. Considerable improvement in fatigue life was observed in the 7091 P/M material as compared to the 2124-T851 I/M test coupons. Average TTF values for the 7091-extruded specimens were approximately three times as large as for 2124-T851 (17,997 flight hours as compared to 5,886 flight hours). Some degradation in fatigue life was observed in the 7091-forged material as compared to extruded specimens. However, superior TTF was still observed in the P/M forged material as compared to 2124-T851 (Figure 30).

CW67 P/M material tested under the HUD34 spectrum at a maximum stress of 40 ksi were obtained from billets, #514570 and #514571. Coupons tested from these billets had inferior spectrum fatigue properties compared to specimens obtained from billet #514553.

However, the CW67 test coupons from these billets still had considerable improvement in total fatigue life as compared to the 2124-T851 I/M test coupons (Figure 30).

For coupons tested under the HUD 34 spectrum at a maximum stress level of 45 ksi, largest TTF values were obtained in CW67-T7E91 P/M material (Figure 31). Extruded CW67 coupons used in these tests were from billet #514553 which showed superior fatigue properties. An increase in TTF of 45 percent was obtained

TABLE 10. SUMMARY OF SPECTRUM FATIGUE TESTS RESULTS

GE STANDARD DEVIATION .) (Fit. Hrs.)	33 5,558 1,276 23 5,162	65 5,104	197 5,997 109 2,807 149 10,282 138 3,233	.67 2,667 .44 1,362	14,360 5090 10,572 1250 21,939 5650
AVERAGE TTF (Ftt. Hrs.)	14,933 5,886 15,423	26,465	17,997 7,309 26,949 15,238	11,667	14,360 10,572 21,939
NUMBER OF SPECIMENS	15 15 10	11	15 10 10	တ တ	10 8 0,
DATA SET NAME	C1HD35 C1HD40 C1NR45	C2NR45	R1HD40 R1HD45 R1NR45	R2HD40 R2HD45	R3HD40 R3HD45 R3NR45
STRESS LEVEL (Ksi)	35 40 45	45	40 45 45 50	40	40 45 45
SPECTRUM	HUD34 HUD34 NOR1	NOR1	HUD34 HUD34 NOR1	HUD34 HUD34	HUD 34 HUD 34 NOR 1
MATERIAL	2124-T851	7475-17351	7091-T7E69	7091-FOAG.	CW-67-T7E91

FIGURE 30. Time-To-Failure Comparisons For Materials Tested Under The HUD 34 Spectrum (Maximum Stress = 40 ksi)

FIGURE 31. Time-To-Failure Comparisons For RST Material (HUD 34 Spectrum, Maximum Stress = 45 ksi)

gure 32. Time-To-Failure Comparisons for Materials Tested Under The NOR 1 Spectrum (Maximum Stress = 45 ksi)

over extruded 7091-T7E69 at this stress level. Some degradation in fatigue life was observed in the 7091-forged material as compared to extruded material at the 45 ksi stress level, also.

Results for test coupons tested under the NOR1 spectrum at a maximum stress level of 45 ksi are shown in Figure 32. For the I/M alloys, 7475-T7351 exhibited superior fatigue performance over 2124-T851. The average values of TTF for 7475-T7351 was 26,465 flight hours compared to 15,423 flight hours for 2124-T851. Experimental scatter was about the same in the two I/M materials. Considerably more scatter was observed in the P/M 7091-extruded material. The lower ranked 7091 test coupons exhibited poorer fatigue performance than 7475-T7351 test specimens whereas the higher ranked 7091 specimens exhibited better TTF than 7475-T7351. Average values of TTF were approximately the same in the two materials (26,949 flight hours for 7091-T7E69 vs. 26,465 flight hours for 7475-T7351).

Five CW67 test coupons tested under the NOR 1 spectrum were obtained from billet #514553 while the other five coupons were fabricated from billets #514570 and #514571. All of the better performing CW67 test coupons (longer TTF) were obtained from the #514553 billet. Average values of TTF for CW67 specimens from billet #514553 were 26,121 flight hours. This value is approximately the same as obtained for 7091-T7E69 and 7475-T7351 (26,949 flight hours and 26,465 flight hours, respectively). However, average values of TTF for CW67 coupons from billets #514570 and #514571 were 17,557 flight hours. Although greater than the average TTF obtained for 2124-T851 (15,423 flight hours), this value is still considerably less than obtained for 7091-T7E69, 7475-T7351, and CW67-T7E91 (from billet #514553).

Largest critical crack lengths were obtained in the CW67-T7E91 extrusions (Table 9). Crack lengths of primary cracks reached approximately 0.9 inch before failure occurred in all three data sets. Smallest critical crack lengths occurred in 2124-T851. Critical crack sizes ranged from 0.49 inches for the HUD34, 40 ksi data set to 0.74 inch for material tested under the HUD34, 35 ksi data set (Table 9). These results are consistent with fracture toughness values for these two alloys where CW67 extrusions had the largest plane strain fracture toughness values and 2124-T851 had the poorest fracture toughness of the materials tested.

Figures 30 and 32, show improvement of fatigue performance in 7091 over 2124 is much greater under the tension-compression HUD34 spectrum than under the tension-dominated NOR1 spectrum. This seems to be related to cyclic stability of materials. A recent study [23] has demonstrated that cyclic stability of materials strongly depends on the type of load histories encountered. Under strain-controlled low cycle fatigue tests with strain ratio -1, 2124-T851 exhibits cyclic softening behavior, while 7091-T7E69 is cyclically stable. However, cyclic softening behavior of 2124-T851 disappears when strain ratios are increased to 0 and 0.3 Therefore, the greater difference in fatigue performance between 2124-T851 and 7091-T7E69 under the tension-compression HUD34 spectrum can at least be partially attributed to cyclic softening behavior of 2124-T851.

The stress level dependence on fatigue life can be observed for 2124-T851 in Figure 33. A considerable decrease in average TTF is observed at 40 ksi. More scatter is observed at the lower stress level as expected. The stress level dependence on fatigue properties will be discussed in Section 5.4.2.

5.3.2 Fatigue Crack Growth Rate (FCGR)

Fracture critical structures using the "Damage Tolerance Concept" rely on slow crack growth in order to withstand two design lives before failure. Therefore, it is important to separate the crack initiation stage from propagation in analyzing fatigue data. The crack growth rates of P/M alloys compared to I/M alloys are presented and analyzed in this section.

Procedures used in crack growth analysis assuming different crack geometries were discussed in Section 4.1. Calculations were conducted for three different materials, 2124-T851, 7475-T7351, and 7090-extrusions. Comparisons between predicted data and actual data are shown in Figures 34-35 for 2124-T851 and 7091-T7E69. Actual data was compared to assumed double corner cracks and double through cracks. Results indicated comparable prediction results to test data in 2124-T851 (Figure 34). However, the crack growth analysis in 7091-T7E69 was somewhat conservative. Actual crack growth rates in this material were considerably better than the model had predicted (Figure 35).

igure 33. Time-To-Failure Plots Showing Stress Dependence

Figure 34. Crack Growth Rates For 2124-T851 Aluminum Alloy (HUD 34 Spectrum)

)

Figure 35. Crack Growth Rates For 7091-T7E69 Aluminum Alloy (HUD 34 Spectrum)

A comparison of crack growth rate as a function of crack length between the P/M materials and I/M alloys is shown in Figures 36-37. Comparisons are shown for both HUD34 and NOR 1 spectra. Crack growth rates were determined from eq. 2 where a(t) is the crack size at time t, and Q and b are constants that were determined from the least square fit of all log da/dt vs. log a pairs of the sample. Values of Q and b for all data sets are listed in Table 9. Individual Q and b values for all test coupons are listed in Appendix B.

A slower crack growth rate is observed in the RST materials especially at larger crack lengths. The poorest crack growth rate performance was obtained in 2124-T851 plate for tests conducted under both the HUD34 and NOR1 spectra. Crack growth rates in the 7091-forged material were intermediate between the 7091-extruded material and 2124-T851 (Figure 36). Crack growth rate comparisons between CW67-T7E91 and 7091-T7E91 were dependent on the billets from which the CW67 material had been extruded. Extrusions from billets #514570 and #514571 showed inferior crack propagation characteristics compared to 7091-T7E69 (Figures 36-37). However, CW67 test coupons fabricated from the billet #514553-2 showed superior crack growth rate compared to 7091-T7E91.

Crossover effects are observed in comparing spectrum crack growth rates of the RST materials with 7475-T7351 plate run under the NOR1 spectrum. For smaller crack lengths, the crack growth resistance of 7475-T7351 is superior, while at larger crack lengths, the crack propagation behavior of the P/M-T7E69 material is better. These results are consistent with constant amplitude crack growth comparisons between 7091-T7E69 and 7475-T7351 where it was found that for low Δ K values, 7475 had superior crack growth resistance, and at high values of stress intensity factor, 7091 had better resistance [24]. The ranking between P/M and I/M aluminum alloys in spectrum fatigue crack growth resistance has been found to be strongly dependent on the type of load histories encountered [25].

Additional crack growth curves based on the "Initial Fatigue Quality" (IFQ) Model are presented in Section 5. The technique used in generating these crack growth curves was presented in Section IV.

Figure 36. Crack Growth Rates of 2124-T851, 7091-T7E69, CW67-T7E91, and 7091-Forgings As A Function Of Crack Length Under The HUD 34 Spectrum

Figure 37. Crack Growth Rates Of 2124-T851, 7475-T7351, 7091-T7E69, and CW67-T7E91 As A Function Of Crack Length Under The NOR 1 Spectrum

Additional crack growth curves based on the "Initial Fatigue Quality" (IFQ) Model are presented in Section 5. The technique used in generating these crack growth curves was presented in Section IV.

5.3.3 Time-To-Crack-Initiation (TTCI)

The time required for an initial defect to become a fatigue crack of size 0.150 inch was used to define the arbitrary crack size a_0 in this program. This value was easily obtainable from fractographic results.

As presented in Section IV, observed TTCl values are known to be fit very well by a three-parameter Weibull distribution. Therefore, a fractographically observed TTCl distribution can be expressed as shown in Eq. (1). The parameter T is a random variable indicating TTCl, α is the shape parameter, β is the scale parameter, and ϵ is the lower bound of TTCl.

Eq (1) may be transformed into:

$$\log \left| -\ln \left| 1 - F_{T}(\tau) \right| \right| = \alpha \log (\tau - \epsilon) - \alpha \log \beta \tag{7}$$

Eq. (7) shows that $-\ln[I-F_T(t)]$ vs. (t- ϵ) is plotted as a straight line on log-log scale paper.

Figures 38-42 show the TTCI distributions obtained from this program. Each data point represents the -ln [I - 1/(n +1)] vs. (TTCI - ϵ) pair for each specimen, where i/(n + 1) is the TTCI rank of the specimen within the individual data set. The straight line in Figures 38-42 is the F_T(t) distribution giving the best least squares fit to the plotted -ln[I-F_T(t)] vs. (TTCI - ϵ). F_T(t) can be calculated from Eq. (1) using the parameters α , β , and ϵ . The parameters α and β are presented in Table 9. The parameter ϵ was equal to zero for all analyses. The slopes of the straight lines in Figures 38-42 are directly related to the parameter α . As mentioned earlier, the parameter α is not expected to be a function of the spectrum type and stress level. Therefore, a set of identical test specimens is expected to have the same slope even though tested under various spectrum types and stress levels.

Figure 38. TTCI Distributions For 2124-T851 Aluminum Alloy

Figure 39. TTCI Distributions For 7475-T7351 Aluminum Alloy

Figure 40. TTCI Distributions For 7091-Extrusion

Figure 41 . TTCI Distributions For 7091-Forging

Figure 42. TTCI Distributions For CW67-Extrusion

The observed TTCI values are fit quite well by a three-parameter Weibull distribution. The data points from two different types of spectra and two different stress levels are fit well by TTCI distributions with the same slope.

A comparison of materials based on TTCI results are shown in Figures 43-44. Superior crack initiation resistance is obtained in the 7091 P/M material. Increased scatter is observed in this alloy, however. The poorest performing 7091-T7E69 specimens performed only slightly better than the poorest 2124-T851 coupons under both spectra. Crossover effects between 7475-T7351 and 7091-T7E69 were observed in the TTCI data for the NOR1 spectrum, also. This crossover effect, however, was due to the increased scatter in the experimental data for 7091-extrusions as compared to the I/M 7475-T7351 material. The control of inclusions in the RS P/M alloys will be expected to strongly influence crack initiation. By proper control, the worst performing P/M specimens would be eliminated therefore reducing the experimental scatter.

The TTCI distribution for CW67 extruded material tested under the HUD34 spectrum was similar to 7091-forged specimens (Figure 43). Better performing CW67-T7E91 and 7091-forged specimens had TTCI values intermediate between 2124-T851 and 7091-T7E69 extruded specimens. For CW67 specimens tested under the NOR1 specimens, a relatively small scatter in TTCI values was obtained (Figure 44). Poorer performing CW67 coupons had improved TTCI values over 7091-TE69 extruded material and 2124-T851 plate.

5.3.4 Measurements of EIFS Distribution

As described in Section 4.2, the EIFS distribution can be derived from the TTCI distribution by extrapolating TTCI backward using an assumed crack growth equation (Eq. 2). In that particular equation, a(t) is the crack size at time t, Q and b are constants. The EIFS distribution can be written as (Eq. 4), where x is a random variable indicating a(0), the crack size at time zero (or EIFS), c is b-1, and x_{U} is the upper bound of the EIFS distribution which is defined in Eq. 5. Eq. (4) can be used to find the probability that the EIFS is less than a given size, x, using parameters for any structural concept found in Table 9.

Figure 43. TTCI Comparisons For Three Aluminum Alloys (HUD 34 Spectrum)

Figure 44. TTCI Comparisons For Four Aluminum Alloys (NOR 1 Spectrum)

Individual EIFS values for all test coupons are listed in Appendix B. In some instances the EIFS for a specimen may be given as a negative number. This, in effect, causes the analysis to predict that some time is required to reach a crack length of zero. We interpret this physically to mean that some time was required to initiate fatigue cracks in our unflawed specimens. In these cases the backward extrapolation of the crack growth curve can intersect the abcissa at positive time, or intersect the ordinate at negative crack size. For such cases, x in Eq. (4) is negative so that Eq. (4) is undefined. This can be remedied by using Eq. (8) whenever x is negative.

$$F_{a(0)}(x) = \exp\left[-\left[\frac{-(-x)^{-c} - x_u^{-c}}{cQ\beta}\right]^{\alpha}\right]$$
 (8)

Eq. (4) may be transformed into:

$$\log\left[-\ln F_{a(0)}(x)\right] = \alpha\log\left(x^{-c} - x_{u}^{-c}\right) - \alpha\log cQ\beta \tag{9}$$

Eq. (9) shows that -ln $F_{a(0)}(x)$ vs. $(x^{-C}-x_u^{-C})$ is plotted as a straight line on log-log paper. The slope of the straight line is directly related to the parameter α . Figures 45-49 show the EIFS distributions obtained from this program. Each data point in Figures 45-49 represents the -ln(i/n=1) vs. (EIFS^{-C}- x_u^{-C}) pair for each specimen, where i/(n+1) is the EIFS rank of the specimen among the set of identical test specimens. The straight lines in Figures 45-49 are plotted from -ln $F_{a(0)}(x)$ vs. $(x^{-C}-x_u^{-C})$. $F_{a(0)}(x)$ can be calculated from Eq. (4) using the parameters Q, b, α , β , and x_u presented in Table 9.

As shown in Figures 45-49, the experimental EIFS distributions (data points) are reasonably fit by the best fit EIFS function (straight lines) given by Eq. (4). For a given set of identical test specimens, all the data points obtained from different test conditions merge more or less into a single EIFS distribution. This tends to confirm the assumption that the EIFS distribution is generic, as described in Section 4.2.

Figure 45. EIFS Distributions For 2124-T851 Aluminum Alloy

Figure 46. EIFS Distributions For 7475-T7351 Aluminum Alloy

Figure 47. EIFS Distributions For 7091-Extrusion

Figure 48. EIFS Distributions For 7091-Forging

Figure 49. EIFS Distributions For CW67-Extrusion

On comparing EIFS values of RST materials with I/M alloys, EIFS values of 7091-T7E69 extrusions were considerably less than 2124-T851 plate. This difference is reflected in Table 11 where the average TTCI and EIFS values are shown for the different spectra. The average EIFS values for 7475-T7351 plate tested under the NOR1 spectrum were intermediate between 7091-T7E69 extrusions and CW67-T7E91 extrusions with the 7091-T7E69 material having the smallest EIFS values. Average EIFS values for 7091-forgings were slightly higher than initial flaw sizes obtained for 7091-extrusions.

Comparisons of IEIFS^{-c}- \times_{u} -cl distributions between P/M alloys and I/M alloys are shown in Figures 50-52. Comparisons are shown for both the tension-compression HUD34 spectrum and tensile-dominated NOR1 spectrum. As mentioned previously, the EIFS distribution plots for a given material are fairly independent of spectrum.

On comparing 7091 extruded material with 7475-T7351 material, crossover effects are also observed in the EIFS distributions. Again, the crossover effect is due to greater scatter in the 7091-extrusion experimental data. The poorer performing 7091-extrusion coupons have larger EIFS values than the poorer 7475-T7351 specimens. Correspondingly, the better performing 7091-T7E69 coupons have lower EIFS values than 7475-T7351.

5.4 DURABILITY ANALYSIS BASED ON IFQ MODEL

5.4.1 Crack Growth Modeling

Using the Initial Fatigue Quality (IFQ) model, the crack growth rate over the crack size range of interest is assumed to be expressed as Eq. 2, where a(t) is the crack size at time, t, and Q and b are constants that are determined from the least square fit of all log da/dt vs. log a pairs of the sample.

Integrating Eq. (2) from t = 0 to t = t will give the time required for an initial defect to become a fatigue crack of size a(t):

$$t = -\frac{1}{cQ} \left[a^{-c}(t) - a^{-c}(0) \right]$$
 (10)

TABLE 11. AVERAGE TTCI AND EIFS OF EACH MATERIAL

• UNDER HUD34, 40 KSI

	AVG. TTCI	AVG. EIFS
2124-T851	4396 FLT. HOURS	3.5980 X 10 ⁻⁴ INCH
7091-EXTR.	8756	-1.0847 X 10 ⁻²
7091-FORG.	6015	-8.0123 X 10 ⁻³
CW67-EXTR.	6358	-8.0224 X 10 ⁻⁴

• UNDER NOR1, 45 KSI

	AVG. TTCI	AVG. EIFS
2124-T851	12643	1.4831 X 10 ⁻³ INCH
7475-T7351	18657	1.4404 X 10 ⁻³
7091-EXTR.	18636	-9.4831 X 10 ⁻³
CW67-EXTR.	13467	4.644 X 10 ⁻³

• UNDER HUD34, 45 KSI

	AVG. TTCI	AVG. EIFS
7091-EXTR.	3227	1.0233 X 10 ⁻³ INCH
7091-FORG.	2786	8.2078 X 10 ⁻³
CW67-EXTR.	3373	4.4522 X 10 ⁻³

Figure 50. EIFS Comparisons For Three Aluminum Alloys (HUD 34 Spectrum)

Figure 51. EIFS Comparisons For Four Aluminum Alloys (NOR 1 Spectrum)

Figure 52. EIFS Comparisons (Pooled Data)

Using Eq. (10) the crack growth behavior of P/M alloys can be compared to I/M samples assuming the a(o) or EIFS values are known. By using an average EIFS value for each data set (Table 11), the following crack growth curves shown in Figures 53-55 can be generated. Results are shown for coupons tested under both the HUD34 and NOR1 test spectra. Eq. 10 can also be used to calculate time-to-failure (TTF). In this case, at t = 0, a = a(0), which is the EIFS. At t = TTF, a = a(TTF), which is the crack size at failure, or critical crack size, a_{crit} . Calculated TTF values can be obtained from Figures 53-55 and compared to experimental values (Table 10). Relatively good agreement was obtained between calculated values of TTF and experimental average values.

Results from Figures 53-55 show superior crack growth resistance for the P/M aluminum alloys. The poorest crack growth behavior was obtained in 2124-T851 for coupons tested under both the HUD34 and NOR1 test spectra (Figures 53-54). The best crack growth life was obtained in 7091-T7E69 extruded material for tests conducted under NOR1 spectrum and HUD34 spectrum (40 ksi maximum stress). For tests conducted under the HUD 34 spectrum with a maximum stress of 45 ksi, maximum flight hours was obtained from the CW67-T7E91 material (Fig. 55). In this set of experiments, all of the CW67 'test coupons were fabricated from the #514553-2 billet.

5.4.2 Reliability and Figure of Merit

The durability of structures depends on both the EIFS distribution and crack growth rate. These two elements must be combined in order to judge their relative importance. A recommended method for properly considering both the EIFS distribution and the crack growth rate is to combine them to compute the flaw distribution after a desired service interval. This technique was used in the "Initial Quality of Advanced Joining Concepts" program [5]. The flaw distribution after service (FDAS) can be computed by transforming (1) and (4) to obtain:

$$F_{a(T)}(x) = P[a(T) \le x]$$

$$= \exp \left\{ -\left[\frac{x^{-c} - a_0^{-c} + cQT(T - \epsilon)}{cQ\beta}\right]^{\alpha} \right\}$$
(11)

CRACK LENGTH (inch)

FLIGHT HOURS

ligure 53. Crack Growth Comparisons In Three Aluminum Alloys (HUD 34 Spectrum, Maximum Stress = 40 ksi)

Figure 54. Crack Growth Comparisons In Four Aluminum Alloys (NOR 1 Spectrum)

CBYCK FENCIH (Inch)

Crack Growth Comparisons In P/M Aluminum Alloys (HUD 34 Spectrum, Maximum Stress = 45 ksi) 55. Pigure

CRACK LENGTH (Inch)

where $F_{a(T)}(x)$ is the distribution of flaws after time T.

Equation (11) can be used to find the cumulative flaw distribution for any conditions. The parameters a_0 , α , and β are given in Table 9. The lower bound of TTCI, ϵ , was set equal to zero in all of our analysis. The parameters Q and c (where c=b-1) describe crack growth, which is a function of geometry and loading. These are already known for the test conditions of this program and are also given in Table 9. They can also be calculated using any valid crack growth prediction, such as a cycle-by-cycle computer analysis. The parameter x in Equation(11) can represent any flaw size of interest. If flaw sizes are extended to the critical crack size in Equation 11, x= a_{crit} , reliability of both RST structures and ingot metallurgy materials may be calculated at any service time.

From previous studies [5,12,18] it is shown that characteristic crack growth rate, Q, can be given as a function of stress level, σ , by:

$$Q = A\sigma^{B} \tag{12}$$

for a reasonable range of σ . Equation (12) provides the means for determining the effect of spectrum stress on structural performance. If Q is experimentally determined for two different stress levels, the constants A and B can be determined from Equation (12). Values of Q can then be calculated for any stress level.

Equations (11) and (12) were used to generate reliabilities and results are plotted in Figures 56-57 for the HUD34 spectrum at 16,000 flight hours and Figs. 58-59 for the NOR1 spectrum at 27,000 flight hours. Since aircraft structural reliabilities less than 90 percent are generally of little interest, a closer look at the regions of interest are shown in Figure 57 and Figure 59. These results indicate that at high reliabilities, P/M alloys can tolerate the most stress, or that the RST structures can be operated at higher stresses than the conventional I/M aluminum alloys.

Figure 56. Comparison Of Structural Reliability Of P/M Aluminum Alloys Versus I/M Aluminum Alloys (IIUD 34 Spectrum At 16,000 Flight Hours)

RELIABILITY

Figure 57 Comparison Of Reliability Above 90 Percent For Three Aluminum Alloys (HUD 34 Spectrum)

Figure 58. Comparison Of Structural Reliability Of P/M Aluminum Alloys Versus I/M Aluminum Alloys (NOR 1 Spectrum At 27,000 Flight Hours)

Figure 59. Comparison Of Reliability Above 90 Percent Of 7091-Extrusion and 2124-T951 Plate (NOR 1 Spectrum)

In these examples, the information desired is the probability that a flaw is less than a_{crit} after 16,000 flight hours (2 lifetimes) of the HUD34 spectrum and 27,000 flight hours of the NOR1 spectrum. A durability analysis such as used in this section for comparing structural reliability of P/M aluminum alloys versus I/M aluminum alloys (Figures 56-59) can be used for making "figure of merit" comparisons. This method gives quantitative, statistically based information for design comparison with relatively little effort.

In addition to durability comparisons, designers must often consider other factors in making "figure of merit" comparisons. These factors include density, strength, stiffness, corrosion resistance, cost, and availability of material. Studies have been conducted on determining how improvements in various properties affect weight savings in aircraft structures [26]. Results of these studies are shown in Figure 60. For example, a 10 percent weight savings can be achieved by a 10% decrease (improvement) in density, by a 30 percent increase in strength or by a 45 percent increase in stiffness. Depending on the specific component, damage-tolerance and fatigue are properties where improvements can also lead to weight savings.

The effects of the various engineering parameters will change in relative importance depending on both the mission of the aircraft and the governing failure mode (tension, compression, or other modes). The modulus of elasticity and the compression yield strength are more important in compression-critical structures, particularly in thin sections, and the fatigue resistance, fracture toughness, and tensile strength are more important in tension-critical applications.

For structural components requiring high strength plus excellent corrosion resistance, RST P/M aluminum alloys are particularly appealing. For example, P/M alloys offer between 10 to 20 percent greater strength than 7075-T73 which is commonly used in these applications. This translates into at least a 5 percent weight savings (Figure 60). However, when specific strength (strength/density) is considered, some of the potential weight savings is lost. Based on density comparisons, the density of CW67 is 0.104 lb./in.³. The density of 7475 is 0.101 lb./in.³ and that of 2124 material is 0.100 lb./in.³. Based on density comparisons alone,

FIGURE 60. Effect Of Property Improvements On Weight Saving

weight penalty of approximately 3 percent is obtained by replacing conventional I/M alloys such as 7475 and 2124 with an RST P/M alloy such as CW67.

The cost of P/M products remains higher than those produced from standard ingot metallurgy. Therefore, their applications are limited to components where superior performance requirements must justify their use. The growth of P/M alloys has also been constrained by the size of billets available for processing into wrought products. In the past, RST P/M billets have been restricted to 300 lb. capacity. However, in the future this capacity can be raised to 4,000 lb. [27]. This should ease some of the past problems related to obtaining sufficient material.

5.5 SEVERITY OF SPECTRUM

A comparison of the HUD34 spectrum with the NOR1 spectrum in terms of spectrum severity is shown in Figure 60. A TTCI comparison for 7091-T7E91 extrusion tested at a maximum stress level of 45 ksi is shown. Much faster crack initiation is observed for the material tested under the HUD34 spectrum. These results are consistent with high compressive loads which are present in the HUD34 spectrum causing crack initiation to occur at an earlier stage.

Figure 61. TTCI Distributions Of 7091-Extrusion Showing Comparison Of Load Spectra

- 8. Superior crack initiation resistance was observed in the higher ranked P/M specimens, especially extruded 7091-T7E69. However, lower ranked 7091-T7E69 test coupons exhibited little improvement in crack initiation resistance over I/M alloys tested. The control of inclusions in the RS P/M alloys will be expected to strongly influence crack initiation. By proper control, the worst performing P/M specimens would be eliminated therefore reducing the experimental scatter.
- 9. Experimental EIFS distributions of P/M and I/M materials were reasonably fit by a best fit EIFS function.
- 10. A fairly large variation in fatigue properties was observed in CW67 extruded material. Test coupons from one billet had significantly better durability than extrusions obtained from two other billets. These results emphasize the need for using material from different billets when generating design test data.
- 11. None of the inspection techniques provided correlations of NDI parameters with spectrum fatigue performance. It was concluded that the size of the flaws which influenced fatigue performance are smaller than can be detected with the NDI techniques used in these studies.

SECTION VII

RECOMMENDATIONS

- 1. High strength RST P/M aluminum alloys should be considered for usage in structures where I/M aluminum alloys such as 2124-T851 and 7475-T7351 are currently used. Potential weight savings exist with the RST aluminum alloys due to the improvement in fatigue properties. The type of spectrum loading needs to be considered when comparing RST P/M aluminum alloys with I/M aluminum alloys, however.
- 2. The high tensile strength, excellent corrosion resistance, good fracture toughness, and slow crack growth at large crack sizes, make CW67 particularly attractive for aerospace applications. However, the cause of variation in fatigue properties from billet to billet needs to be investigated. Testing material from different billets is recommended when generating design test data.
- 3. Effects of anisotropy in basic mechanical properties of CW67 on spectrum fatigue performance needs to be examined.
- 4. Durability and damage tolerance specification, based on the IFQ model should be considered for both RST P/M structures and conventional I/M structures. These methods based on element level testing, provide an effective compromise between the deterministic analysis and limited testing on the one hand, and very high costs associated with multiple structural tests, on the other.
- 5. Mechanisms responsible for the reduction in fatigue life of the forged material compared to extruded material needed to be investigated further. Correlations between parameters such as grain flow, forging variables, residual stress, etc. with fatigue properties need to be established.

REFERENCES

- 1. MIL-A-87221 (USAF) "Military Specification: General Specification for Aircraft Structures," February, 1985.
- 2. MIL-A-83444 (USAF), "Airplane Damage Tolerance Requirements," July 1974.
- 3. MIL-A-8866B (USAF), "Airplane Strength and Rigidity Reliability Requirements, Repeated Loads and Fatigue," August 1975.
- 4. MIL-A-8867B (USAF), "Airplane Strength and Rigidity Ground Tests," August 1975.
- 5. W. R. Garver, D. Y. Lee and K. M. Koepsel, "Initial Quality of Advanced Joining Concepts Final Report," AFWAL-TR-84-3066, December 1984.
- 6. W. M. Griffith and J. S. Santner, "Effect of Defects in Aluminum P/M, in High Strength Powder Metallurgy Aluminum Alloys," TMS-AIME, 1982, PP125-146.
- 7. B. Quist, presented at Air Force/Industry Aluminum Cooperative Testing Meeting, June 4, 1984.
- 8. G. W. Kuhlman, "High Strength and Elevated Temperature Alloy Forgings for Aerospace Applications," Metal Powder Report Conference on PM Aerospace Materials, Berne, Switzerland, MPR Publishing (November 1984).
- 9. G. J. Hildeman, D. J. Brownhill, D. K. Denzer and A. Hafeez, "7XXX P/M Alloy Development," WESTEC Conference Symposium on Advanced 7XXX P/M and I/M Alloys, Los Angeles, CA (March 1983).
- 10. A. Hafeez, "Corrosion Resistance of Wrought P/M Alloys," Alcoa Techbrief (March 1985).

REFERENCES (Continue)

- 11. J. W. Morrow, F. C. Nordquist, and T. E. Coyle, "Test Results of Spectrum/Environmental Fatigue Testing to Determine the Crack Growth Rates of Flaws in 7475, 2124 and 2024 Aluminum Alloys and 6Al-4V-Titanium," General Dynamics, Fort Worth Division Report, 16PR925, 10 June 1978.
- 12. P. J. Noronha, S. P. Henslee, D. E. Gordon, F. R. Wolanski, and B. G. W. Yee, "Fastener Hole Quality-Final Report," AFFDL-TR-78-206, December 1978.
- 13. C. O. Ruud and C. S. Barrett, "Use of Cr K-Beta X-Rays and Position Sensitive Detection for Residual Stress Measurement in Stainless Steel Pipe," Advances in X-Ray Analysis, Vol. 22, p. 247, 1979.
- 14. S. Forness, "Fracture Mechanics Methodology Update," General Dynamics, Fort Worth Division ERR-FW-2219, May 1982.
- 15. J. C. Newman and I. S. Raju, "Analysis of Surface Cracks in Finite Plates Under Tension or Bending Loads," NASA TP 1578, Dec. 1979.
- 16. J. C. Newman and I. S. Raju, "Stress Intensity Factors for Two Symmetrical Corner Cracks," ASTM STP 677, C. W. Smith, Ed., 1979, pp. 411-430.
- 17. J. B. Chang, R. M. Hiyama, J. Szamossi, "Improved Methods for Predicting Spectrum Loading Effects," AFWAL-TR-81-3092, Volume I, Technical Summary, Air Force Flight Dynamics Laboratory, November 1981.
- 18. S. D. Manning, J. N. Yang, M. Shinozuka, D. E. Gordon, S. M. Speaker, and B. G. W. Yee, "Durability Methods Development, Volume V," Air Force Flight Dynamics Laboratory, AFFDL-TR-79-3118, Vol. V, 1982.
- 19. S. D. Manning, J. N. Yang, and J. W. Norris "USAF Durability Design Handbook: Guidelines for the Analysis and Design of Durable Aircraft Structures," Air Force Flight Dynamics Laboratory, AFFDL-TR-99-3118, Vol. XI, February 1983.

REFERENCES (Concluded)

- 20. D. A. Virkler, B. W. Hillberry, and P. V. Goel, "The Statistical Nature of Fatigue Crack Propagation-Final Report," AFFDL-TR-78-43, April 1978.
- 21. S. D. Manning, S. M. Speaker, and D. E. Gordon, "Durability Methods Development Volume VII Phase II Documentation," AFFDL-TR-79-3118, January 1984.
- 22. S. D. Manning and J. N. Yang, "Advanced Durability Analysis Volume I Analytical Methods," AFWAL-TR-86-3017, Volume I, July 1987.
- 23. D. Y. Lee and D. E. Gordon, "Cyclic Stability of Aluminum Alloys Strain Ratio Effect," Presented at TMS-AIME Meeting at Denver, Colorado on 26 February 1987.
- 24. D. Y. Lee and W. R. Garver, "Fatigue Performance of P/M and I/M Aluminum Alloys Stress Ratio Effect," Presented at TMS-AIME Meeting at Detroit, Michigan on 19 September 1984.
- D. Y. Lee, D. E. Gordon, and W. R. Garver, "Structural Performance of RSP P/M Aluminum Alloys Under Spectrum Loading," Presented at WESTEC Meeting, Los Angeles, California.
- 26. J. C. Ekwall, E. J. Rhodes, and G. G. Wald, "Methodology for Evaluating Aircraft Weight Savings from Basic Material Properties," ASTM STP 761, Symposium on Design of Fatigue and Fracture Resistant Structures, 327-44, 1980.
- 27. R. H. Graham, Aluminum Company of America, Alcoa Laboratories, Private Communication, October 1987.

LIST OF SYMBOLS

SYMBOL	DESCRIPTION
RST	Rapidly Solidified Technology
RSP	Rapid Solidification Processing
P/M	Powder Metallurgy
I/M	Ingot Metallurgy
OOR	Out-Of-Roundness
FTSD	Film-To-Source-Distance
FCGR	Fatigue Crack Growth Rate
FCG	Fatigue Crack Growth
a	Crack Length
a _o	Crack Length at t = TTCI
a(o)	EIFS
a crit	a(TTF), Critical Crack Size
b	Crack Growth Parameter
c	= b-1
EIFS	Equivalent Initial Flaw Size
F _{a(o)} (x)	= P[a(o) < x]
F _T (t)	= P[T < t]
FDAS	= Flaw Distribution After Service
i	Subscript Representing an Individual Specimen
I	Subscript Representing an Individual Data Set

LIST OF SYMBOLS (Continued)

SYMBOL	DESCRIPTION
IFQ	Initial Fatigue Quality
P[]	Probability
Q	Crack Growth Parameter
o _i	Q for Specimen Using Pooled b
o _I	Q Obtained from Pooled Data Set
t	Time
т	A Random Variable Indicating TTCI
TTCI	Time to Crack Initiation
TTF	Time to Failure
x	A Random Variable indicating EIFS
×u	Upper bound of EIFS
α	Shape Parameter of TTCI Distribution
β .	Scale Parameter of TTCI Distribution
€	Lower Bound of TTCI Distribution
*	Superscript Representing a Pooled Data Set

APPENDIX A

Fractographic Crack Growth Data

Measured crack growth data for all of the data sets are listed in this section. Crack sizes are given in inches and time is given in flight hours. Data set notations used are listed in Table A-1. For example, C1HD35 refers to 2124-T851 material tested under the HUD 34 spectrum with a maximum stress of 35 ksi.

A 1 - POOLED DATA SETS FOR EIFS DETERMINATION

POOLED DATA SET	INDIVIDUAL DATA SET	NO OF SPECIMENS
2124-7851	CIHD35	15
	C1HD40	15
	CINR45	10
7475-17351	C2NR45	11
7091-EXTRUSION	RIHD40	14
	R1HD45	15
	RINR45	10
	R1NR50	10
7091-FORGING	RZHD40	5
	R2HD45	6
CW67-EXTRUSION	R3HD40	10
	R3HD45	∞
	R3NR45	10

2124-T851 HUD 34 SPECTRUM 35 KSI MAXIMUM STRESS

·3		; 33 VOI LIMY	TLINLI 2 I VE22		
· *	C1HD35-01			C1HD35-04	
Point	Hours	Length	Point	Hours	Length
1	500.	0.0071	1	1500.	0.0207
2	1000.	0.0196	. 2	2000.	0.0312
3	1500.	0.0370	3	2500.	0.0436
4	2000.	0.0624	4	3000.	0.0600
5	2500.	0.0829	5	350C.	0.0759
6 7	3000.	0.1024	6	4000.	0.0936
7	3500.	0.1259	7 8	4500.	0.1086
8	4000.	0.1483		5000.	0.1236
9	4500.	0.1794	9	5500.	0.1384
10	5000.	0.2267	10	6000.	0.1532
11	5500.	0.2921	11	6500.	0.1727
12	6000.	0.6314	12	7000.	0.1959
			13	7500.	0.2242
			14	8000.	0.2700
			15	·· 8500.	0.3267
			16	9000.	0.4274
			17	9500.	0.6035
	C1HD35-02		18	10000.	0.7887
	CIMD32_A		19	10500.	0.8285
Point	Hours	Length			
1	2000.	0.0092			
2	2500.	0.0247			
3	3000.	0.0446			
4	3500.	0.0601			
5	4000.	0.0757		CIUDOR Am	
6	4500.	0.1451		C1HD35-05	
6 7	5000.	0.2945	5-1-4	:	
8	5500.	0.3811	Point	Hours	Length
9	6000.	0.6729	1	3500.	0.0268
10	6500.	0.8741	2	4000.	0.0391
			3	4500.	0.0496
			4	5000.	0.0606
			5 6	5500.	0.0743
	C1HD35-03			6000.	0.0840
.			7	6500.	0.0978
Point	Hours	Length	8 9	7000. 7500.	0.1166
1	2000.	0.0290		8000.	0.1348 0.1516
2	2500.	0.0441	10 11	8500.	0.1516
3	3000.	0.0611	12	9000.	0.1963
4	3500.	0.0766	13	9500.	0.2279
5 6	4000.	0.0954	14	10000.	0.2588
5	4500.	0.1131	15	10500.	0.3192
7 8	5000.	0.1413	16	11000.	0.4226
9	5500.	0.1719 0.2093	17	11500.	0.8224
10	6000. 6500.	0.2673			
11	7000.	0.2673			
12	7500.	0.5147			
13	8000.	0.6378			
14	8500.	0.7813			
15	9000.	0.8869			

	C1HD35-06			C1HD35-08	
Paint	Hours	Length	Point	Hours	Length
) 1	5500.	0.0548	1	4500.	0.0297
2	6000.	0.0696	2	5000.	0.0360
3	6500.	0.0847	3	5500.	0.0434
4	7000.	0.0957	4	6000.	0.0534
5	7500.	0.1076	5	6500.	0.0604
5 6	8000.	0.1195	6	7000.	0.0676
7	8500.	0.1372	7	7500.	0.0776
8	9000.	0.1580	8	8000.	0.0921
9	9500.	0.1889	9	8500.	0.1060
10	10000.	0.2289	10	9000.	0.1211
11	10500.	0.2882	11	9500.	0.1364
12	11000.	0.3690	12	10000.	0.1589
13	11500.	0.5576	13	10500.	0.1746
14	12000.	0.8309	14	11000.	0.1869
• •			15	11500.	0.2096
			16	12000.	0.2293
			17	12500.	0.2582
	C1HD35-07		18	13000.	0.2771
			19	13500.	0.3096
Point	Hours	Length	20	14000.	0.3492
1	7000.	0.0313	21	14500.	0.4100
2	7500.	0.0404	22	15000.	0.5156
3	8000.	0.0542	44		
4	8500.	0.0687			
5	9000.	0.0806			
6	9500.	0.0921			
7	10000.	0.1058		C1HD35-09	
8	10500.	0.1216			
9	11000.	0.1373	Do i o A	Hours	Length
	11500.	0.1552	Point	9000.	0.0635
10	12000.	0.1799	. 1	9500.	0.0733
11 12	12500.	0.2037	3	10000.	0.0839
13	13000.	0.2862	4	10500.	0.0980
	13500.	0.4169		11000.	0.1096
14	14000.	0.5829	5 6	11500.	0.1191
15	14000.	0.3627		12000.	0.1323
			7 8	12500.	0.1480
			9	13000.	0.1665
				13500.	0.1818
			10	14000.	0.1969
	•		11	14500.	0.2091
			12	15000.	0.2244
			13	15500.	0.2447
			14	16000.	0.3504
			15	16500.	0.6172
			16	10300.	V.01/2

	C1HD35-10			1 C1HD35-12	
roint	Hours	Length	Point	Hours	 Length
1	4000.	0.0198	1	8500.	0.0519
2	4500.	0.0262	2	9000.	0.0593
3	50 00.	0.0329	; 3	9500.	0.0659
4	5500.	0.0392	4	10000.	0.0729
5	6000.	0.0455		10500.	0.0794
6	6500.	0.0517	5	11000.	0.0886
7	7000.	0.0585	7	11500.	0.0964
8	7500.	0.0658	. ,	12000.	
9	8000.	0.0733		12500.	0.1030
10	8500.	0.0809	9		0.1104
11	9000.	0.0888		13000.	0.1183
12	9500.	0.0955	11	13500.	0.1290
13	10000.	0.1007	12	14000.	0.1396
14	10500.	0.1078	13	14500.	0.1481
15	11000.	0.1155	14	15000.	0.1568
16	11500.	0.1238	15	15500.	0.1680
17	12000.	0.1345	16	16000.	0.1845
18	12500.	0.1461	17	16500.	0.2030
19	13000.	0.1589	18	17000.	0.2214
2ó	13500.	0.1704	19 20	17500. 18 000 .	0.2368 0.2706
21	14000.	0.1839	21	18500.	0.3216
22	14500.	0.1972	22	19000.	0.4181
23	15000.	0.2178	23	19500.	0.7850
24	15500.	0.2417	23	13300.	0.7630
25	16000.	0.2695			
26	16500.	0.3051			
27	17000.	0.8268			
				C1HD35-14	
			Point	Hours	Length
			1	10500.	0.0811
	C1HD35-11		2	11000.	0.0954
			3	11500.	0.1088
Point	Hours	Length	3 4	12000.	0.1201
1	6500.	0.0228	5	12500.	0.1308
2	7000.	0.0290	6	13000.	0.1431
3	7500.	0.0385	7	13500.	0.1594
4	8000.	0.0457	8	14000.	0.1788
5	8500.	0.0514	• 9	14500.	0.2020
6 7	9000.	0.0590	10	15000.	0.2239
	9500.	0.0684	ii	15500.	0.2494
8	10000.	0.0784	12	16000.	0.2759
· 9	10500.	0.0890	13	16500.	0.3042
10	11000.	0.1033	14	17000.	0.3341
11	11500.	0.1137	15	17500.	0.3594
12	12000.	0.1261	16	18000.	0.3913
13	12500.	0.1386	17	18500.	0.4178
14	13000.	0.1553	18	19000.	0.4701
15	13500.	0.1752	19	19500.	0.5087
16	14000.	0.2015	20	20000.	0.5680
17	14500.	0.2242	21	20500.	0.6437
18	15000.	0.2664	22	21000.	0.6975
19	15500.	0.3051	23	21500.	0.7400
20 21	16000.	0.3767	24	22000.	0.7778
22	16500. 17000.	0.4760	25	22500.	0.8149
44	17000.	0.7895	26	23000.	0.8494

	C1HD35-13			C1HD35-15
Point	Hours	Length	' Paint	Hours
1	500.	0.1078	1	18000.
3	1000-	0.1141	1 2	18500.
3	1500.	0.1171	¹ 3	19000.
4	2000.	0.1235	i 4	19500.
5	2500.	0.1302	5	20000.
5 6	3000.	0.1364	6	20500.
7	3500.	0.1432	7	21000.
8	4000.	0.1503	8	21500.
9	4500.	0.1558	9	22000.
10	5000.	0.1596	10	22500.
11	5500.	0.1631	11	23000.
12	6000.	0.1667	12	23500.
13	6500.	0.1724	13	24000.
14	7000.	0.1788		
15	7500.	0.1834		
16	8000.	0.1887		
17	8500.	0.1917		
18	9000.	0.1956		
19	9500.	0.1997		
20	10000.	0.2047		
21	10500.	0.2096		
2 2	11000.	0.2119		
23	11500.	0.2184		
24	12000.	0.2271		
25	12500.	0.2350		
26	13000.	0.2435		
27	13500.	0.2493		
28	14000.	0.2598		
29	14500.	0.2658		
30	15000.	0.2741		
31	15500.	0.2837		
32	16000.	0.2951		
33	16500.	0.3048		
34	17000.	0.3056		
35	17500.	0.3256		
36	15000.	0.3397		
37	18500.	0.3534		
58	19000-	0.3698		
39	19500.	0.3921		
40	20000.	0.4088		
41	20500.	0.4496	•	
42	21000.	0.4947		
43	21500.	0.5410		
44	22000.	0.5739		
45	22500.	0.6137		

Length 0.1268 0.1336 0.1394 0.1471 0.1567

0.1643 0.1718 0.1852

0.1984 0.2152 0.2376 0.2513 0.2754

Cl	ID40-01	2124-T851 HUD 34 SPECTRUM		D40-05
Hours	Length ,,	WAS MANIMUM OTDESS	Hours	Length
500.	0.0274 40	KSI MAXIMUM STRESS		0.0141
	0.0457		1000.	0.0233
1000.	0.0649	•	1500.	0.0365
1500.	0.0869		2000.	0.0496
2000.	0.1285		2500.	
2500.			3000.	0.0631
3000.	0.1802		3500.	0.0855
3500.	0.4236		4000.	0.1232
4000.	0.6378		4500.	0.1526
				0.2041
			5000.	0.2759
		:	5500.	0.4259
CIH	D40-02			
Hours	Length			•
500.	0.0196		C1H	U40-06
1000.	0.0362		Ma	_
1500.	0.0523		Hours	Length
2000.	0.0831		1500.	0.0090
2500.	0.1107		2000.	0.0196
3000.	0.1432		2500.	0.0328
3500.	0.1747		3000.	0.0486
4000.	0.2663		3500.	0.0654
4500.	0.3167		4000.	0.0947
			4500.	0.1645
			5000.	0.2188
			5500.	0.4148
CIHI	040-03			
Hours	Length			
2000.	0.0152			
2500.	0.0332		CIH	D40-07
3000.	0.0528	1	Hours	•
3500.	0.0727		2500.	Length
4000.	0.1166		3000.	0.0287
4500.	0.1777		3500.	0.0575
4500.	••••			0.0982
			1000.	0.1380
	•		1500.	0.1826
		5	5000.	0.2275
		5	5500.	0.3934
Clh	D40-04			
Hours	Length			
500.	0.0362			
1000.	0.0430			
1500.	0.0782		CIH	D40-08
2000.	0.1096		• • •	
2500.	0.1594		Hours	•
3000.	0.2219		3000.	Length
3500.	0.3015		3500. 3500.	0.0691
4000.	0.5234		4000.	0.0849
4500.	0.7260		4500.	0.1168
4809.	0.9219			0.1540
			5000.	0.2079
			5500.	0.3047

Foint) 2 3 4 5 6 7 8 9	Hours 1500. 2000. 2500. 3000. 3500. 4000. 4500. 5000. 6000.	Lengt: 0.0202 0.0325 0.0497 0.0748 0.1002 0.1378 0.1976 0.2672 0.4370 0.7782	Point 1 2 3 4 5 6 7 8 9 10 11 12 13	Hours 500. 1000. 1500. 2000. 2500. 3500. 4000. 5000. 5500. 6000. 6700.	Length 0.0084 0.0215 0.0392 0.0547 0.0721 0.0855 0.1044 0.1239 0.1432 0.1643 0.2017 0.2565 0.3165 0.4705
	C1HD40-10	•			
Point 1 2 3 4 5 6 7	Hours 4000. 4500. 5000. 5500. 6000. ClHD40-11 Hours 3000. 4500. 4500. 5500. 6000.	Length 0.0910 0.1193 0.1566 0.2288 0.4124 Length 0.0258 0.0370 0.0653 0.1050 0.1423 0.2052 0.3473	Point 1 2 3 4 5 6 7 8 9 10	C1HD40-14 Hours 4000. 4500. 5000. 6000. 6500. 7000. 7500. 8000.	Length 0.0102 0.0255 0.0372 0.0665 0.0916 0.1173 0.1439 0.1792 0.2477 0.2773
				C1HD40-15	
Point 1 2 3 4 5 6 7 8	Hours 2500. 3000. 3500. 4000. 4500. 5500. 6000.	Length 0.0230 0.0375 0.0708 0.0975 0.1378 0.1908 0.3518 0.4616 0.6973	Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Hours 1500. 2000. 2500. 3500. 4000. 4500. 5500. 6000. 7500. 8000.	Length 0.0091 0.0179 0.0295 0.0479 0.0668 0.0804 0.0953 0.1167 0.1354 0.1615 0.1928 0.2340 0.3162 0.7058 0.8153

C1HD40-09

C1HD40-13

	C1NR45-02		:	•	
				C1NR45-06	
Point	Hours		<u>.</u>	. 1	
1	3164.	Length 0.0114	Point	Hours	Length
<u>ء</u>	4218.	0.0114	1	6328.	0.0064
) з	5273.	0.0388	2	7383.	0.0138
4	6328.	0.0653	3	8437.	0.0172
5	7383.	0.1140	5	9492. 10547.	0.0252
6	8436.	0.2480	; 6	11601.	0.0406
7	9479.	0.3700	7	12656.	0.0580
			8	13500.	0.0948
			9	14555.	0.1071
	•		10	15609.	0.1510 0.1992
	C1NR45-03		. 11	16664.	0.2488
	CINKAD-VO		12	16968.	0.3244
Point	Hours	Longth			0.0214
roint 1	2109.	Length 0.0107			
2	3164.	0.0164			
รั	4219.	0.0315		01 NE AP - 69	
4	5273.	0.0450		C1NR45-07	
5	6328.	0.0621	.		
ē	7383.	0.0772	Point	Hours	Lenath
7	8437.	0.1084	1	4219.	0.0166
8	9492.	0.1564	2	5274.	0.0242
9	10534.	0.2803	. 3	6328.	0.0384
			4	7383.	0.0523
			5	8438.	0.0649
			6	9492.	0.0820
`	C1NR45-04		フ 8	10547.	0.1072
)	CIMMAO		9	11602.	0.1433
Point	Hours	1	10	12656.	0.1780
1	1055.	Length 0.0166	11	13500.	0.2331
2	2110.	0.0209	12	14555.	0.2939
3	3164.	0.0299	13	15ë10. 16654.	0.3505
4	4219.	0.0384	14	17719.	0.4722
5	5274.	0.0523	15	17768.	0.5729
6	6328.	0.0645		1//56.	0.7871
7	7083.	0.0905			
7 8	8438.	0.1154			
č.	9492.	0.1773		C1NR45-08	
10	10547.	0.2920		CIRRAJ-08	
11	11170.	0.6571	B-4-4	llaa.a	Length
			Point	Hours 5273.	0.0089
		•	1 2	6328.	0.0134
	C1NR45-05		ž	7383.	0.0176
			4	8436.	0.0248
Point	Hours	Length	5	9492.	0.0312
1	5273.	0.0071	5 6	10547.	0.0384
2	6328.	0.0120	7	11601.	0.0476
3	7383.	0.0207	8	12656.	0.0563
4	8436.	0.0289	9	13500.	0.0669
5 6	9492.	0.0368	10	14554.	0.0764
6	10547.	0.0472	11	15609.	0.0921
7	11601.	0.0595	12	16664.	0.1228
8	12656.	0.0807	13	17719.	0.1505
9	13500.	0.1084	14	18773.	0.1912
10	14554.	0.1521	15	19828.	0.2500
11	15609.	0.2954	16	. 20883.	0.4100
12	16018.	0.6800	17	21398.	0.8500
			118		

C1NR45-09

Point	Hours	Length
1	3164.	0.0089
ž	4218.	0.0119
3	5273.	0.0167
4	6328.	0.0232
5	7383.	0.0290
6	8436.	0.0356
. 7	9492.	0.0421
8	10547.	0.0476
9	11601.	0.0564
10	12656.	0.0663
= =	13500.	0.0780
11	14554.	0.0918
12	15609.	0.1120
13	16664.	0.1340
		0.1570
15	17719.	0.1920
16	18773.	
17	19828.	0.2400
18	20883.	0.3420
19	21704.	0.8600

C1NR45-10

oint	Hours	Length
1	13500.	0.0160
2	14555.	0.0310
3	15610.	0.0531
4	16664.	0.0929
5	17719.	0.1217
6	18774.	0.1673
7	19828.	0.2336
, 8	20883.	0.4137
จ	21821.	0.5215

C1NR45-01

Point	Hours	Length
1	3164.	0.0280
2	4218.	0.0500
3	5273.	0.1300
4	6328.	0.2100
5	7372.	0.6000

7475-T7351 NOR 1 SPECTRUM

	C2NR45-01	45 KSI MA)	(IMUM STRESS	C2NR45-03	
loint 1 2 3 4 5 6 7 8 9 10 11	Hours 2109. 3164. 4218. 5273. 6328. 7383. 8436. 9492. 10547. 11601. 12656.	Length 0.0093 0.0147 0.0218 0.0316 0.0445 0.0590 0.0798 0.1045 0.1394 0.1684 0.2021	Point 1 2 3 4 5 6 7 8 9 10 11 12 13	Hours 7383. 8436. 9492. 10547. 11601. 12656. 13500. 14554. 15609. 16664. 17719. 18773.	Length 0.0234 0.0322 0.0473 0.0622 0.0833 0.1110 0.1352 0.1614 0.1943 0.2306 0.2663 0.3062 0.3564
13 14 15 16	14554. 15609. 16664. 17705.	0.2951 0.3847 0.5450 0.8200	14 15 16	20883. 21937. 22979.	0.4251 0.5384 0.7100

				C2NR45-04	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Hours 4218. 5273. 6328. 7383. 8436. 9492. 10547. 11601. 12656. 13500. 14554. 17719. 18773. 19828. 20883. 21937.	Length 0.0089 0.0143 0.0205 0.0284 0.0362 0.0452 0.0551 0.0663 0.0786 0.0963 0.1140 0.1323 0.1586 0.1933 0.2310 0.2853 0.3585 0.4650 0.6020	Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Hours 5273. 6326. 7383. 8436. 9492. 10547. 11601. 12656. 14554. 15609. 16664. 17719. 18773. 19828. 20883. 21937. 22979.	Length 0.0145 0.0191 0.0256 0.0314 0.0383 0.0492 0.0672 0.0985 0.1312 0.1534 0.1817 0.2158 0.2540 0.3036 0.3866 0.4869 0.6290

	C2NR45-05			C2NR45-07	
rint 1 2 3 4 5 6 7	C2NR45-05 Hours 3164. 4218. 5273. 6328. 7383. 8436. 9492.	Length 0.0040 0.0071 0.0114 0.0159 0.0235 0.0306 0.0374 0.0453	Point 1 2 3 4 5 6 7	Hours 5273. 6328. 7383. 8436. 9493. 10547. 11601. 12656.	Length 0.0064 0.0108 0.0156 0.0211 0.0272 0.0377 0.0476 0.0584
8 9 10 11 12 13 14 15 16 17 18 19 20 21	11601. 12656. 13500. 14554. 15609. 16664. 17719. 18773. 19828. 20883. 21937. 22992. 24047.	0.0549 0.0652 0.0784 0.0950 0.1184 0.1410 0.1643 0.1942 0.2333 0.2796 0.3433 0.4350 0.5920 0.8400	9 10 11 12 13 14 15 16 17 18 19 20 21	13500. 14554. 15609. 16664. 17719. 18773. 19828. 20883. 21937. 22992. 24047. 25101.	0.0705 0.0840 0.1015 0.1192 0.1429 0.1635 0.1882 0.2227 0.2661 0.3174 0.3809 0.4812 0.6620

	C2NR45-06			C2NR45~08	
Point 1 2 3 4 5 6 7 8 9 10 11	Hours 15609. 16664. 17718. 18773. 19828. 20882. 21937. 22992. 24046. 25101.	Length 0.1481 0.1650 0.1802 0.1885 0.2071 0,2308 0,2725 0.3034 0.3673 0.4609 0.5586	Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Hours 15610. 16664. 17719. 18774. 19828. 20883. 21938. 22992. 24047. 25102. 26156. 27000. 28055.	Length 0.0143 0.0219 0.0312 0.0481 0.0692 0.0896 0.1199 0.1579 0.1976 0.2388 0.2965 0.3740 0.4782 0.6011

C2NR45-09

C2NR45-11

Point	Hours	Length	Point	Hours	Length
1	11602.	0.0209	1	21937.	0.0817
2	12656.	0.0316	2	22992.	0.0967
3	13500.	0.0468	3	24047.	0.1117
	14554.	0.0619	4	25101.	0.1274
4 -	- · · · ·	0.0740	5	26156.	0.1406
5	15609.		6	28054.	0.1771
6	16664.	0.0920	7	29109.	0.2027
7	17718.	0.1077	á	30164.	0.2286
8	18773.	0.1158	8	=	
9	19828.	0.1416	9	31218.	0.2581
10	20882.	0.1679	10	32273.	0.2903
11	21937.	0.1941	11	33328.	0.3323
12	22992.	0.2100	12	34382.	0.3876
13	24046.	0.2372	13	35437.	0.4581
	=	0.2736	14	36492.	0.5774
14	25101.		15	37534.	0.7322
15	26156.	0.3207	10	0,00	***************************************
16	27000.	0.4377			•
17	28 055.	0.7900			
18	29095.	0.5179			

C2NR45-10

Point	Hours	Length
1	19828.	0.0143
2	20883.	0.0197
3	21938.	0.0284
4	22992.	0.0475
5	24047.	0.0647
Ġ	25102.	0.0776
7	26156.	0.0912
8	27000.	0.1203
9	28035.	0.1620
10	29110.	0.2045
11	30164.	0.2689
12	31219.	0.3429
13	32250.	0.6272

	MATERI	IAL _	SPECTRUM	STRESS	
	7091-EXTR	ISION	HUD34	40	-
)	R1m940=01			RIH D ::0-03	
Foint	Hours	Length	Foint	Hours	iengtn-
1	1000.	0.0218	1	500,	0.0202
3	1500.	0.0379	2	1000.	0.0371
3	2000.	0.0743	:	1500.	0. 702
4	2500.	0.1055	4	2000.	0.1003
5	3000.	0.1417	5	2500.	0.1225
÷	3500.	0.1734	ů.	3700.	0.1408
7	4000.	6.2107	7	3500.	0.1664
5	45/0.	0.3472	S	4000.	0.1354
9	3000.	0.2872	Ģ	4500.	0.2063
10	5500.	0.3263	10	5000.	0.3251
11	600¢.	0.3590	11	5500.	0.2497
12	6500.	0.4163	12	6000.	0.3794
15	7000.	0.5070	13	6500.	0.3697
14	7500.		14	7600.	
15	9000.	0.5974	15	7500.	0.3484
15	8500.	0.6719	16		0.4331
1.3	enov.	0.9546	17	8000.	0.4971
				9500.	0.5729
			13	9000.	0.6234
			19	9500.	0.7032
			20 21	10000.	0.7826
			21	10500.	0.5/98
	R1H540-02			R1HD40-04	
			Point	Hours	Length
Point	ours	Lang		1000.	0.0145
1	1000.	0.008	- ·	1500.	0.0307
<u></u>	1500.	0.021		2000.	0.0551
3	3000.	0.035		2500.	0.0351
4	25001	0.049		3000.	0.1040
5	3000.	0.064		3500.	0.1286
5	3500.	0.095	_	4000.	0.1567
7	4000.	0.113		4500.	0.1885
フ 0 9	45().	0,132	1 9	3000.	0.2236
	5000.	0.150		3500.	0.0663
10	5500.	0.166	5 11	6000.	
11	6000.	0.191		6500.	0.3124 0.3635
13	6000.	0.212		7 0 00.	0.4170
1.3	7000.	0.337		7 5 00.	0.4551
14	7500.	0.290		8000.	0.5369
15	9000.	0.372		8500.	0.5836
iō	8500.	0.442			
17	9000.	0.500		9000.	0.6414
18	9500.	0.767		9500. 10000.	0.6982 0.7363
- -		V • / U /	20	10500.	0.7383
			21	11000.	0.5159
			القد .	11000.	0.5127

}				Donasa		_
Pa	int	Hours	Length	Point	Hours	Length
	1	1000.	0.0146	1	2500.	0.0480
	2	1500.	0.0240	<i>2</i>	3000.	0.0601
	3	2000.	0.0315	3	3500.	0.0766
	4	2500.	0.0371	4	4000.	0.6358
	5	3000.	0.0440	5	4500.	0.1113
	6	3500.	0.0524	á	5000.	0.1317
	7	4000.	0.0610	7	5500.	0.1339
	8	4500.	0.0704	9	6000.	0.1498
	9	5000.	0.0785	5	6500.	9.1624
	10	5500.	0.0868	10	7000.	0.3765
	11	6000.	0.0954	11	7500.	0.1515
	12	6500.	0.1040	12	9000.	0.2053
	13	7000.	0.1119	13	2500.	0.2380
	14	7500.	0.1212	14	9000.	0.2350
	15	8000.	0.1377	15	9500.	0.2534
	16	8500.	0.1473	lé	10000.	0.2678
	17	9000.	0.1581	17	10500.	0.2544
	18	9500.	0.1709	13	11000.	0.3031
	19	10000.	0.1864	19	11500.	0.3242
	20	10500.	0.2025	20	12000.	0.3503
	21	11000.	0.2173	21	12500.	0.3737
	22	11500.	0.2280	22	13000.	0.4019
	23	12000.	0.2560	23	33500.	0.4327
`	24	12500.	0.2879	24	14000.	0.4664
}	25	13000.	0.3070	25	14500.	0.5057
	26	13500.	0.3247	26	15000.	0.5575
	27	14000.	0.4553	27	5500.	0.6002
	28	14500.	0.5461	26	16000.	0.6453
	29	15000.	0.6552	29	16500.	0.6900
	30	15500.	0.7679	30	17000.	0.7240
	31	15954.	0.8218	F1	17500.	(.7500
				32	12000.	0.7995
				33	18500.	0.8780

R1HD40-07

R1HD40-08

Point	Hours	Length	Point	Hours	Lenath
1	7000.	0.0090	1	1506.	0.0223
2	7500.	0.0140	2	2000.	0.0403
3	8000.	0.0232	3	2500.	0.0708
4	8500.	0.0338	4	3000.	0.0939
5	9000.	0.0446	5	3500.	0.1140
6	9500.	0.0549	6	400G.	0.1315
7	10000.	0.0640	7	4500.	0.1482
8	10500.	0.0718	5	5000.	0.1632
9	11000.	0.0787	9	5500.	0.1781
10	11500.	0.0870	10	6000.	0.1931
11	12000.	0.0955	11	6500.	0.2098
12	12500.	0.1034	12	7000.	0.2247
13	13000.	0.1113	13	7500.	0.2390
14	13500.	0.1198	14	5000.	0.2566
15	14000.	0.1286	15	8500.	0.2736
16	14500.	0.1361	16	9000.	0.2910
17	15000.	0.1440	17	9500.	0.3080
18	15500.	0.1517	18	10000.	0.3263
19	16000.	0.1593	19	10500.	0.3467
20	16500.	0.1664	20	11000.	0.3730
21	17000.	0.1750	21	11500.	0.4009
) 22	17500.	0.1831	22	12000.	0.4261
23	18000.	0.1886	23	12500.	0.4533
24	18500.	0.1935	24	13000.	0.4300
			25	13500.	0.5134
			26	14000.	9.5449
			27	14500.	0.5626
			29	15000.	0.5928
			29	15500.	0.6413
			30	16000.	0.6846
			31	16500.	0.7292
			32	17000.	0.7745
			33	17500.	0.8225
			34	19000.	0.9113
			35	18500.	0.5477
			36	19000.	0.9889

)

Point	Hours	Length	Point	Hours	Length
1	500.	0.0119	1	5000.	0.0101
2	1000.	0.0242	2	5500.	0.0160
3	:500.	0.0363	3	6000.	0.0223
4	2000.	0.0469	4	6500.	0.0288
5	2500.	0.0576	5	7000.	0.0357
6	3000.	0.0670	6	7500.	0.0424
7	3500.	0.0779	7	8000.	0.0493
9	4000.	0.0894	8	8500 .	0.0558
9	4500.	0.1016	9	9000.	0.0620
10	5000.	0.1139	10	9500.	0.0679
11	5500.	0.1227	11	10000.	0.0734
12	£000.	0.1328	12	10500.	0.0794
13	6500.	0.1419	13	11000.	0.0852
14	7000.	0.1506	14	11500.	0.0906
15	7500.	0.1621	15	12000.	0.0961
16	B000.	0.1723	16	12500.	0.1012
17	8500.	0.1845	17	13000.	0.1065
13	9000.	0.1984	18	13500.	0.1117
19	9500.	0.2133	19	14000.	0.1179
20	10000.	0.2257	20	14500.	0.1234
21	10500.	0.2448	21	15000.	0.1291
22	11000.	0.2657	22	15500.	0.1346
23	11500.	0.2866	23	16000.	0.1400
24	12000.	0.3077	24	16500.	0.1453
25	12500.	0.3283	25	17000.	0.1508
26	12000.	0.3539	26	17500.	0.1561
37	13500.	0.3768	27	18000.	0.1611
28	14000.	0.4063	28	18500.	0.1657
29	14500.	0.4357	29	1 900 0.	0.1706
30	15000.	0.4727	30	19500.	0.1755
31	15500.	0.5128	31	20000.	0.1803
32	16000.	0.5507	32	20500.	0.1855
33	16500.	0.5818	33	21000.	0.1908
34	17000.	0.6108	34	21500.	0.1960
35	17500.	0.6341	35	22000.	0.2015
36	18000.	0.6591	36	22500.	0.2067
37	13500.	0.6897	37	23000.	0.2117
38	19000.	0.7184	38	23500.	0.2166
38	19500.	0.7417	39	24000.	0.2242
40	20000.	0.7651			
41	20500.	0.7930			

)

Point	Hours	Length	Point	Hours	Length
1	6000.	0.0080		11500.	0.1170
2	6500.	0.0154	1 2	12000.	0.1257
3	7000.	0.0239	3	12500.	0.1343
4	7500.	0.0336	4	13000.	0.1440
5 6	8000.	0.0409	5	13500.	0.1533
6	8500.	0.0486	6	14000.	0.1617
? 8	9000.	0.0576	7	14500.	0.1725
8	9500.	0.0725	7 8	15000.	0.1840
9	10000.	0.0840	9	15500.	0.1960
10	10500.	0.0937	10	16000.	0.2106
11	11000.	0.1030	11	16500.	0.2258
12	11500.	0.1117	12	17000.	0.2417
13	12000.	0.1218	13	17500.	0.2617
14	12500.	0.1308	14	18000.	0.2826
15	13000.	0.1411	15	18500.	0.3042
16	13500.	0.1515	16	19000.	0.3260
17	14000.	0.1608	17	19500.	0.3517
18	14500.	0.1706	18	20000.	0.3798
19	15000.	0.1815	19	20500.	0.4083
20	15500.	0.1920	20	21000.	0.4352
21	16000.	0.2029	21	21500.	0.4666
22	16500.	0.2142	22	22000.	0.4982
23	17000.	0.2243	23	22500.	0.5366
24	17500.	0.2362	24	23000.	0.5739
25	18000.	0.2472	- 25	23500.	0.6121
26	18500.	0.2583	26	24000.	0.6452
27	19000.	0.2688			
28	19500.	0.2793			
29	20000.	0.2907			
30	20500.	0.3027			
31	21000.	0.3162			
32	21500.	0.3281			
33	22000.	0.3412			
34	22500.	0.3550			
35	23000.	0.3709			
36	23500.	0.3860			
3 7	24000.	0.4031			

R1HD40-13

Point	Hours	Length	Point	Hours	Length
1	8500.	0.1600	1	6000.	0.0433
2	9000.	0.1682	2	6500.	0.0473
3	9500.	0.1755	3	7000.	0.0497
4	10000.	0.1828	4	7500.	0.0524
5	10500.	0.1893	5 6	8000.	0.0557
6	11000.	0.1968	6	8500.	0.0592
7	11500.	0.2080	7	9000.	0.0632
8	12000.	0.2165	8	9500.	0.0693
้	12500.	0.2265	9	10000.	0.0752
10	13000.	. 0.2367	10	10500.	0.0862
11	13500.	0.2468	11	11000.	0.0921
12	14000.	0.2564	12	11500.	0.0980
13	14500.	0.2693	13	12000.	0.1056
14	15000.	0.2796	14	12500.	0.1131
15	15500.	0.2911	15	13000.	0.1213
16	16000.	0.3018	16	13500.	0.1309
17	16500.	0.3133	17	14000.	0.1418
18	17000.	0.3244	18	14500.	0.1533
19	17500.	0.3364	19	15000.	0.1658
20	18000.	0.3491	20	15500.	0.1795
21	18500.	0.3613	21	16000.	0.1959
22	19000.	0.3735	22	16500.	0.2147
23	19500.	0.3863	23	17000.	0.2315
24	20000.	0.3988	24	17500.	0.2502
25	20500.	0.4124	25	18000.	0.2718
26	21000.	0.4263	26	18500.	0.2931
27	21500.	0.4407	27	19000.	0.3176
28	22000.	0.4592	28	19500.	0.3417
29	22500.	0.4767	29	20000.	0.3693
30	23000.	0.4968	30	20500.	0.3973
31	23500.	0.5168	31	21000.	0.4281
32	24000.	0.5372	32	21500.	0.4646
			33	22000.	0.5020
			34	22500.	0.5429
			35	23000.	0.5831
	•		36	23500.	0.6275
			3 <i>7</i>	24000.	0.6628

7091-T7E69 EXT.

HUD 34 SPECTRUM

	R1HD45-01	45 KSI MAX	IMUM STRESS	R1HD45-07	
Point	Hours	100045	Point	Hours	1 4 5
1	500.	Length	1	1000.	Length
2		0.0498	2	1500.	0.0244
	1000.	0.1361	3		0.0412
3	1500.	0.3453	4	2000.	0.0582
4	2000.	0.8851	5	2500.	0.0970
				3000.	0.1283
			6	3500.	0.1742
			7	4000.	0.2190
			8	4500.	0.2780
			9	5000.	0.3448
			10	5500.	0.4280
	R1HD 45 -03		11	6000.	
			12	6500.	0.5486
Point	Hours	Length	13	7000.	0.6695
1	1000.	0.0130	14		0.7640
2	1300.	0.0246	**	7373.	0.9300
3	2000.	0.0418			
4	2500.				
5	3000.	0.0793		R1HD45-08	
5 6	3500.	0.1300		W211040 00	
7		0.2606	Point	Hours	1 4
Ŕ	4000.	0.3968	1	500.	Length
· ·	4500.	0.6693	2	1000.	0.0093
			3		0.0202
			4	1500.	0.0457
			3	2000.	0.0717
	R1HD45-04		5 6	2500.	0.0980
	RIND45-04		6	3000.	0.1280
Point			7	3500.	0.1635
_	Hours	Length	8	4000.	0.1999
1	500.	0.0158	9	4500.	0.2414
2	1000.	0.0351	10	5000.	0.3011
3	1500.	0.0843	11	5500.	0.3744
4	2000.	0.1468	12	6000.	0.4680
5	2500.	0.2176	13	6500.	0.5421
6	3000.	0.2660	14	7000.	
7	3500.		15	7500.	0.6388
8	4000.	0.3466		, 500.	0.7717
9	4500.	0.4751			
•	4500.	0. 6657			
				R1HD45-09	
			Point	Hours	
	53115.48 63			500.	Length
	R1HD45-06		1 2 3 4	1000.	0.0065
			2		0.0157
Point	•.			1500.	0.0393
	Hours	Length		2000.	0.0589
I	2000.	0.0189	5	2500.	0.0863
<u> </u>	2500.	0.0433	6	3000.	0.1269
2 3 4 5 6 7 8	3000.	0.0655	5 6 7 8 9	3500.	0.1963
4	3500.	0.0944	8	4000.	0.2625
5	4000.	0.1387		4500.	0.3000
6	4500.	0.1918	10	5000.	0.3629
7	5000.	0.2948	11	5500.	
8 .	5500.	0 401 m	12	6000.	0.4578
9	6000.	0.4015	13	6500.	0.5197
4		0.8454	7 14		0.6327
		129	15	7000.	0.7139
			- 1 13	7500.	0.7867

	R1HD45-10			R1HD45-14	
Point	Hours	Length	Point	Hours	Length
1	1000.	0.0056	1	1000.	0.0162
2	1500.	0.0159	2	1500.	0.0446
3	2000.	0.0286	3	2000.	0.0654
4	2500.	0.0565	4	2500.	0.0908
5	3000.	0.0758	5	3000.	0.1121
6	3500.	0.1109	<u>`</u> 6	3500.	0.1356
7	4000.	0.1239	7	4000.	0.1553
9	4500.	0.1564	8	4500.	0.1766
9	5000.	0.1903	9	5000.	0.1936
10	5500.	0.2494	10	5500.	0.2230
11	6000.	0.2954	11	6000.	0.2494
12	6500.	0.3484	12	6500.	0.2767
13	7000.	0.4284	13	7000.	0.3077
14	7500.	0.5586	14	7500.	0.3371
. 15	8000.	0.6906	15	8000.	0.3743
16	8500.	0.7844	16	8500.	0.4203
			17	9000.	0.4545
			18	9500.	0.5027
	R1HD45-11		19	10000.	0.5532
			20	10500.	0.6097
Point	Hours	Length	21	11000.	0.6541
1	1500.	0.0213			
2	2000.	0.0489			
3	2500.	0.0793			
4	3000.	0.1101		R1HD45-15	
5	3500.	0.1373			
6	4000.	0.1661	Point	Hours	1 4
7	4500.	0.1979	1	1000.	Length 0.0124
8	5000.	0.2313	2	1500.	0.0124
9	5500.	0.2762	3	2000.	0.0451
10	6000.	0.3194	4	2500.	0.0711
11 12	6500.	0.3763	5	3000.	0.0887
13	7000. 7500.	0.4527	6	3500.	0.1069
14	8000.	0.5625	7	4000.	0.1225
15	8500.	0.6624	8	4500.	0.1438
16	9000.	0.7276 0.7977	9	5000.	0.1672
	7000.	V./3//	10	5500.	0.1918
			11	6000.	0.2146
	R1HD45-12		12	6500.	0.2333
Point'		_	13	7000.	0.2673
_	Hours	Length	14	7500.	0.2975
1 2	1000. 1500.	0.0307	15	8000.	0.3314
3	2000.	0.0640	16	8500.	0.3750
4	2500.	0.0961	17	9000.	0.4170
5	3000.	0.1277	18	9500.	0.4667
5 6	3500.	0.1567	19	10000.	0.5264
	4000.	0.1827 0.211 4	20	10500.	0.5629
7 8	4500.	0.2427	21	11000.	0.6062
9	5000.	0.2827	22	11500.	0.6396
10	5500.	0.3222	23	12000.	0.6912
11	6000.	0.3760	24	12500.	0.7414
12	6500.	0.4374	25	13000.	0.7963
13	7000.	0.4995	26	13260.	0.8722
14	7500.	0.5771			
15	8000.	0.6672			
16	8500.	0.7225			
17	9000.	0.7759	130		
					

7091-T7E69 EXT. ÷

NOR 1 SPECTRUM R1NR45-04 R1NR45-01 45 KSI MAXIMUM STRESS Length Point

Point	Hours	Length	101110	4001.2	Length
1	2109.	0.0092	1	5273.	0.0164
•	3164.	0.0195	2	6328.	0.0276
2	4218.	0.0375	3	7383.	0.0427
3			4	8436.	0.0604
4	5273.	0.0650	5	9492.	0.0862
5	6328.	0.1060	6		: : = -
6	7383.	0.1451	<u>.</u>	10547.	0.1176
7	8436.	0.2119	7	11601.	0.1487
8	9492.	0.2709	8	12656.	0.1760
9	10547.	0.3793	9	13500.	0.2160
10	11601.	0.5860	10	14554.	0.2600
1.1	12647.	0.6921	11	15609.	0.3050
<i>-</i> . -		,	12	16664.	0.3600
			13	17719.	0.4700
			14	18773.	0.5800
			15	19815.	0.7100

R1NR45-02			R1NR45-05		
Point 2 3 4 5 6 7 8 9	Hours 5273. 6328. 7383. 8436. 9492. 10547. 11601. 12656. 14540.	Length 0.0070 0.0176 0.0335 0.0817 0.1353 0.2134 0.3366 0.4734 0.7309	Point 1 2 3 4 5 6 7 8 9 10 11 12 13	Hours 12656. 13500. 14554. 15609. 16664. 17719. 18773. 19828. 20883. 21937. 22992. 24047. 25101.	Length 0.0113 0.0145 0.0189 0.0248 0.0320 0.0408 0.0535 0.0723 0.1107 0.1900 0.2700 0.3800 0.4900 0.5700
	R1NR45-03		15 16	27000. 28054.	0.6600 0.7600

Point	Hours	Length
1	2110.	0.0002
2	3164.	0.0043
3	4219.	0.0113
4	5274.	1,0275
5	6328.	0.0385
S	7383.	0.0693
7	34 38.	0.1555
3	9493.	0.1729
ឡ	20547.	0.1236
10	11503.	0.3981
11	12656.	0.3733
12	13500.	0.5752
13	14555.	0.6458
14	15395.	A.7387

)	R1NR45-06			R1NR45-08	
Point	Hour s	Length	Point	Hours	Length
1	9492.	0.0180	1	6328.	0.0125
2	10547.	0.0260	2	7383.	0.0177
3	11601.	0.0350	3	8436.	0.0227
4	12656.	0.0480	4	9492.	0.0292
5	13500.	0.0600	5 6	10547.	0.0351
6	14554.	0.0730	6 7	11601.	0.0418
7	15609.	0.0990	8	12656. 13500.	0.0481 0.0549
8	16664.	0.1280	9	14554.	0.0549
9	17719.	0.1524	10	15609.	0.0718
10	18773. 19828.	0.1772 0.2042	11	16664.	0.0807
11 12	20883.	0.2334	12	17719.	0.0904
13	21937.	0.2732	13	18773.	0.1009
14	22992.	0.3147	14	19828.	0.1113
15	24047.	0.3736	15	20883.	0.1211
16	25101.	0.4500	16	21937.	0.1310
17	26156.	0.5500	17	22992.	0.1405
18	27000.	0.6500	18	24047.	0.1507
19	28054.	0.7500	19	25101.	0.1610
20	29095.	0.8800	20	26156.	0.1725
			21	27000.	0.1862
			22	28054.	0.1999
			23	29109.	0.2198
			24 25	30164. 31218.	0.2444 0.2708
			26	32273.	0.2983
	R1NR45-07		27 27	33328.	0.3284
•			28	34382.	0.3840
Point	Hours	Length	29	35437.	0.4400
1	7383.	0.0089	30	36492.	0.5050
2	8436.	0.0121	31	37547.	0.5900
3	9492.	0.0160	32	38589.	0.6600
4	10547.	0.0216			
5	11601.	0.0291		R1NR45-09	
6	12656.	0.0381	Point	e ruoh	Length
7 8	13500.	0.0498	1	18773.	0.0173
9	14554. 15609.	0.0615 0.0811	2 3	19828.	0.0207
10	16664.	0.1063	4	20883. 21937.	0.0260 0.0319
11	17719.	0.1342		22992.	0.0376
12	18773.	0.1631	5 6	24047.	0.0415
13	19828.	0.1921	7	25101.	0.0509
14	20883.	0.2227	8	26156.	0.0612
15	21937.	0.2576	9	28054.	0.0913
16	22992.	0.2995	10	29109.	0.1180
17	24047.	0.3381	11	30164.	0.1384
18	25101.	0.3900	12	31218.	0.1657
19 20	26156.	0.4920	13	32273.	0.1919
21	27000. 28054.	0.5510	14	33328.	0.2214
21	28054. 29109.	0.6100 0.69 0 0	15	34382.	0.2712
23	30153.	0.7600	16	35437.	0.3305
2.5	30173.	V•/GVV	17	36492.	0.4169
			18	37547.	0.5083
			19 20	38601. 39656.	0.5931 0.6752
			132 20 21	40500.	0.7473
					V - , 1 - U

7091-T7E69 NOR I SPECTRUM 50 KSI MAXIMUM STRESS

		DO KOT MAXI	TUM STRESS		
,	R1NR50-01			R1NR50-05	
	,	1	D-1-4	11	•
Point	Hours	Length	Point	Hours	Length
1	42)8.	0.0347	1	2109.	0.0046
2	5279.	0.0553	2	3164.	0.0164
3	5328.	0.0781	3	4218.	0.0296
4	7383.	0.1141	4	5273.	0.0496
5	8436.	0.1789	5	6328.	0.0747
5	5192.	0.2903	6	73 83.	0.1108
7	10547.	0.4526	7	8436.	0.1527
8	11589.	.7390	8	9492.	0.2015
			9	10547.	0.2545
			10	11601.	0.3227
			11	12656.	0.4244
	R1NR50-02		12	14554.	0.6573
	K14K30-02	•	13	15490.	
oint	Hours	Length	1.3	15490.	0.7844
1	2109.	0.0143			
2	3164.	0.0351			
3	4218.	0.0663			
4	5273.	0.1079		R1NR50-06	
5 5	6328.	0.1656		KINKSO OS	
6	7383.	0.2284	Point	Hours	Length
		0.3005	1	3164.	0.0242
7	8436.		2	4218.	0.0406
8	9492.	0.4049	3	5273.	0.0677
9	10547.	0.5360	4	6328.	
10	11589.	0.6827			0.0978
.•			5	7383.	0.1364
			6	8436.	0.1810
			7	9492.	0.2296
			8	10547.	0.2907
	R1NR50-03		9	11601.	0.3819
	Name -		10	12656.	0.4775
.	. .		11	14554.	0.6654
Point	Hours	Length	12	15595.	0.7328
1	3164.	0.0230			***************************************
2	4218.	0.0521		•	
3	5273.	0.0935			
4	6328.	0.1387			
5	7383.	0.1878			
6	8436.	0.2751		R1NR50-07	
7	9492.	0.4628			
8	10547.	0.7523	Point	Hours	Length
9	11589.	0.8299	1	4218.	0.0197
•	11007.	0.6299	1 2 3 4	5273.	0.0392
			3	6328.	0.0733
			4	7383.	0.1070
	R1NR50-04		7		
			5 6 ,	8436.	0.1408
Point	Hours	Length		9492.	0.1769
1	3164.	0.0196	7	10547.	0.2176
2	4218.	0.0349	8	11601.	0.2617
3	5273.	0.0515	9	12656.	0.3456
. 4	6328.	0.0719	10	14554.	0.5527
5	7383.	0.0957	11	15595.	0.6934
J £		0.1318			
6	8436.				
7	9492.	0.1643			
8	10547.	0.2999			
9	11601.	0.4604			
10	12647.	0.6146			

R1NR50-08

Point	Hours	Length
1	4218.	0.0174
2	5273.	0.0328
3	6328.	0.0489
4	7383.	0.0738
5	8436.	0.0933
6	9492.	0.1230
7	10547.	0.1526
8	11601.	0.2100
9	12656.	0.2754
10	14554.	0.4833
11	15609.	0.6460
12	16664.	0.7468

R1NR50-09

Point	Hours	Length
1	632 8 .	0.0088
2	7383.	0.0253
3	8436.	0.0483
4	9492.	0.0859
5	10547.	0.1226
6	11601.	0.1544
7	12656.	0.2081
8	14554.	0.3124
9	15609.	0.4287
10	16664.	0.5600
11	17705.	0.6187

R1NR50-10

Point	Hours	Lenath
1	5492.	6.0291
2	10547.	0.0397
3	11601.	0.0511
4	12656.	0.0647
5	14554.	0.1023
6	15609.	0.1381
7	15664.	0.1751
3	17719.	0.2531
9	13773.	0.3374
10	19628.	0.4598
11	20274.	0.7920

7091-FORGING HUD 34 SPECTRUM 40 KSI MAXIMUM STRESS

40 KSI MAXIMUM STRESS					
	R2HD40-01	10 1101 18011	ion onneod	R2HD40-03	
Point	Hours	Length	foint	Hours	Length
1	1000.	9.0345	1	500.	0.0137
2	1500.	0.0329	2	1000.	0.0270
3	2000.	0.0501	3	1500.	0.0502
4	2500.	0.0784	j.	3000.	0.0775
5	3000.	0.1128	5	3500.	0.000
5	3500.	0.1430	<u>č</u>	3000.	0.3367
7	4000.	0.1640	7	3500.	0.1540
8	4500.	0.1967	5	4000.	0.1848
9	5000.	0.2324	9	4500.	0.2393
1 Č	5500.	0.2538	10	5000.	0.2552
11	6000.	0.2911	13	5500.	0.2999
13	6500.	. 0.3395	12	6000.	0.3457
13	7000.	0.3943	ù 3	6500.	0.3779
14	7500.	3.4736	14	7000.	0.1181
15	9000.	0.5744	1.5	750 0.	0.4831
16	8500.	0.8140	15	30(0.	A.5365
	2 4		17	8500.	0.6237
			18	9000.	0.6700
			19	7500.	0.7448
			20	10000.	0.8619
	R2HD40-03			RCHD40-04	
Point	Hours	Length	Point	Hou≁ .	Lereth
ì	2000.	0.0442	1	3000.	0.0239
3	2500.	0.0753	2	2500.	0.0431
3	3000.	0.1056	. 3	4000.	0.0604
4	3500.	0.1348	4	4500.	0.0858
5	4000.	0.1663	5	5000.	0.1165
5	4500.	0.2025	6	5500.	0.1510
7	5000.	0.2390	7	6000.	0.1973
e	5500.	0.2839	9	6500.	0.2455
9	600 0.	0.3293	9	7000.	0.3020
10	6500.	0.3865	10	7500.	0.3664
11	7000.	0.4433	11	8000.	0.4443
12	7500.	0.5254	12	8500.	0.5499
13	8000.	0.6071	13	9000.	0.6579
14	8500.	0.7140	14	9500.	0.7396
15	9000.	0.8177	: 5	10000.	0.8246
16	9500.	0.9328			

k2HD40-05			R2HD40+07			
		Lenath	Point	Hours	Length	
Point	Hours	·	1	4000.	0.0051	
1	3000.	0.0067	•	4500.	0.0134	
2	1500.	0.0138	2	5000.	0.0252	
3	2000.	0.0159				
4	2500.	0.0260	4	5500.	0.0438	
r.	୍ରେନ୍	6.0347	E	6000.	0.0017	
3	3 80 0	0.0448	- ₹	6500.	0.0829	
ž	4600.	6.0353	7	7600.	0.1c76	
ó	4500.	0.0698	8	7500.	0.1323	
9 9	5000.	0.0856	ପ୍ର	3000.	5.1599	
	5500.	0.1016	10	8500.	0.1918	
15		0.1364	11	9000.	0.2359	
11	6000.		12	9300.	0.2831	
12	6500.	0.1311	13	10000.	0.3351	
3 3	7000.	0.1448	14	10500.	0.4090	
14	7500.	0.1616				
1 5	8000.	0.1812	15	11000.	0.5374	
16	850 0.	0.2088	15	11500.	0.6050	
17	9000.	0.3435	17	12000.	0.7950	
13	9500.	0.2911				
19	10000.	0.3393				
30	10500.	0.4508				
		0.5552				
21	11000.					
33	11800.	0.6969				

R2HD40-08 R2HD40-06 Point Hours Length Point Hours Length 3 8500. 0.0638 1500. 0.0072 0.0840 9000. 2000. 0.0236 9500. 0.1/03 3 2500. 0.0481 0.1784 10000. 3000. 0.0721 5 0.2232 10500. 5 3500. 0.0989 Ğ 0.2944 11000. õ 4000. 0.1246 7 11500. 0.4172 7 4500. 0.1491 3 12000. 0.5535 3 5000. 0.1769 3 12500. 0.7369 9 5500. 0.2043 10 13000. 0.8340 10 0.2352 6000. īì 13500. 0.941 6500. 0.2656 11 12 7000. 0.2973 0.3325 13 7500. 14 .0008 0.3679 :5 3500. 0.4051 15 9000. 3.4370 17 9500. 0.4960 13 10000. 0.5538 13 10500. 0.6167 20 11000. 0.6933 21 22 0.7635 11500. 12000. 0.3309

R2HD40-09

Point	Hours	Length
1	3000.	0.0095
1 2	3500.	0.0185
3	4000.	0.0296
4	4500.	0.0378
ร์	5000.	0.0495
6	5500.	0.0623
7	6000.	0.0751
9	6500.	0.0869
9	7000.	0.1021
10	7500.	0.1153
11	8000.	0.1289
12	8500.	0.1435
13	9000.	0.1577
14	9000.	0.1731
15	10000.	0.1548
16	10500.	0.2143
17	11000.	0.2533
15	11500.	0.2517
19	12000.	0.2747
20	12500.	0.2942
21	13000.	0.3237
22	13500.	0.3466
23	14000.	0.3577
24	14500.	0.3915
25	15000.	0.4313
26	15500.	0.4621
27	16000.	0.5085
28	16500.	0.5328
29	17000.	0.5458
30	17500.	0.5632
31	18000.	0.5801

7091-FORGING HUD 34 SPECTRUM 45 KSI MAXIMUM STRESS

}		12 1/01 1/1/1	THOSE STRESS	•	
*	R2HD45-01			R2HD45-05	
	·	•45			
Point	Hours	Length	Point	Hours	Length
1	500.	0.0509		500.	0.0162
1 2 9 4 5	1000.	0.1213	1 2 3	1000.	0.0414
2	1500.	0.1931 '	3	1500.	0.0734
4	2000.	0.2753	4	2000.	0.1113
5	2500.	0.4053	5	2500.	0.1570
6	3000.	0.5476	6	3000.	0.1966
7	3500.	0.6718			0.2447
,	3300.	0.2.00	7	3500.	
			8	4000.	0.3005
			9	4500.	0.4382
			10	5000.	0.8223
	R2HD45-02				
Foint	Hours	Length			
1	500.	0.0203			
2	1000.	0.0739		R2HD45-06	
3	1500.	0.1668			
4	2000.	0.2527		Hours	Lengto
ភ ៤	2500.	0.3530	Point	500.	0.0063
Ġ	3000.	0.4275	1		0.0190
7	3500.	0.4909	2	1000.	0.0520
8	4000.	0.5819	3	1500.	
			4	2000.	0.0855
9	4500.	0.8602	5	2500.	0.1141
			6	3000.	0.1613
			7 .	3500.	0.2489
			8	4000.	0.3117
			9	4500.	0.4215
	R2HD45-03		10	5000.	0.5353
	ZD-05			5411.	1.0000
		1	11	2411.	
Foint	Hours	Length			
1 2	500.	0.0223			
2	1000.	0.0480	•		
3	1500.	0.0703			
4	2000.	0.0983			
5	2500.	0.1343		R2HD45-07	
6	3000.	0.2050			
	3500.	0.2965			
7 3 9	4000.	0.5205	Point	Hours	Length
ดี	4500.	0.7326	1	500.	0.0146
9	4300%	0.,226	2	1000.	0.0371
			3	1500.	0.0674
				2000.	0.1019
			4		0.1350
	R2HD45-04		5	2500.	0.1638
Point	Hours	Length	6	3000.	
	500.	0.0147	7	3500.	0.2055
1			8	4000.	0.2368
2 3	1000.	0.0230	9	4500.	0.2900
. 3	1500.	0.0398	10	5000.	0.3518
4	2000.	0.0725	11	5500.	0.3889
5 6	2500 <i>.</i>	0.1077	12	6000.	0.4634
6	3000.	0.1581	13	6500.	0.6065
7	3500.	0.2275	13 14.	7000.	0.7214
7 8	4000.	0.2982	14.	,,,,,	V./217
9	4500.	A 4647			
10	5000	0.8136	138		
1 7		the sum at the sum to			

R2HD45-08

Point	Hours	Length
1	1500.	0.0198
2	2000.	0.0425
3	2500.	0.0618
4	3000.	0.0820
5	3500.	0.1129
6	4000.	0.1438
7	4500.	0.1816
8	5000.	0.2168
ÿ	5500.	0.2732
10	6000.	0.3652
1.1	6500.	0.4842
12	7000.	0.6678
13	7488.	0.7994

R2HD45-09

Point	Hours	Length
1	2500.	0.0166
2	3000.	0.0448
3	3500.	0.0609
4	4000.	0.0923
5	4500.	0.1389
6	5000.	0.1794
7	5500.	0.2321
8	6000.	0.2916
9	6500.	0.4378
10	7000.	0.6479
2.1	7500.	0.7980

CW67-T7E91 HUD 34 SPECTRUM 40 KSI MAXIMUM STRESS R 34D49-2

	R 3HD40-1	10 1/01 18/	VILION 21KE22	R 3HD40-2	
Point	Hours	Length	Point	Hours	1 41
1	2000.	0.0111	, 1	3000.	L e ngth Ø.0262
2	2500.	0.0194	, ,	3500.	Ø.0422
2 3	3000.	0.0289	3	4000.	Ø.0630
4	3500.	0.0454	2 3 4	4500.	Ø.0870
	4000.	0.0667		5000.	Ø. 1084
5 6 7	4500.	0.0849	6	55 0 0.	0.1004 0.1287
7	5000.	0.1042	5 6 7	6000.	0.1500
8	5500.	0.1204	8	6500.	0.1723
9	6000.	0.1332	. 9	7000.	0.1943
10	6500.	0.1442	10	7500.	0.2201
11	7000.	0.1547	11	8000.	Ø.2508
12	7500.	0.1638	12	8500.	Ø.2828
13	800 0.	0.1726	13	9000.	Ø.3136
14	8500.	Ø.1866	14	9500.	Ø.3571
15	9000.	0.2015	15	10000.	0.4008
16	95 00.	0.2170	16	10500.	0.4496
17	10000.	0.2363	17	11000.	0.497 7
18	1 0500.	0.2560	18	11500.	0.5516
19	11000.	0.2755	19	12000.	0.6048
20	11500.	0.3011	20	12500.	0.6624
21	12000.	0.3271	21	13000.	0.7185
22	1 250 0.	0.3834	22	13500.	0.7658
23	13000.	0.4247	23	14000.	0.8044
24	13500.	0.4705	24	14010.	0.9220
25	14000.	0. 5183			0.5200
26	14500.	0.5842			
27	15000.	0.6157			
28	15500.	0.6469			
29	16000.	0.7161			
30	16500.	0.7529			
31	17000.	0.7834			
32	17500.	0.8043			
33	18000.	4.8232			
34	18013.	9.9163			
		•			

	R3HD40-3			R 3HD40-5	
Point 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Hours 2000. 2500. 3000. 3500. 4000. 5500. 6000. 7500. 8000. 8500. 9000. 9006.	Length 0.0261 0.0416 0.0623 0.0973 0.1423 0.1964 0.2525 0.3136 0.3748 0.4421 0.5371 0.5958 0.6739 0.7560 0.8129 0.9380	Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Hours 1500. 2000. 2500. 3500. 3500. 4000. 4500. 5500. 6000. 6500. 7000. 9500. 9000. 1000. 11500. 11500.	Length 0.0253 0.0447 0.0707 0.0954 0.1183 0.1451 0.1694 0.1974 0.2292 0.2657 0.3017 0.3456 0.3906 0.4498 0.5115 0.5603 0.6271 0.6947 0.7640 0.8322 0.8789 0.9317
	R3HD40-4			R3HD40-6	
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hours 1000. 1500. 2000. 2500. 3000. 3500. 4000. 4500. 5000. 6500. 7000. 7500. 8000. 9500. 10000. 11500. 12000.	Length 0.0181 0.0329 0.0472 0.0860 0.1133 0.1434 0.1733 0.2022 0.2380 0.2701 0.3064 0.3435 0.3812 0.4487 0.5208 0.5826 0.6437 0.6954 0.7347 0.7662 0.7992 0.8281 0.8905 0.9263	Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Hours 2000. 2500. 3500. 3500. 4000. 4500. 5500. 6000. 6500. 7500. 8000. 9500. 10000. 11000. 11500. 12500. 13500. 13500.	Length 0.0157 0.0288 0.0429 0.0647 0.0923 0.1166 0.1463 0.1764 0.2064 0.2421 0.2759 0.3178 0.3614 0.4040 0.4519 0.5031 0.6054 0.6590 0.7100 0.7537 0.7927 0.8276 0.8688 0.8890

R3HD40-7	HD49	}- 7
----------	------	-----------------

R	3	D	48) –	9	

Point	Hours	Length	Point	Hours	Length
1	1000.	Ø.0391	1	14000.	0.0393
2	1500.	0.0688	2	14500.	0.0539
3	2000.	0.1121	3	15000.	0.0679
4	2500.	0.1551	4	15500.	0.0800
5	3000.	0.1948	5	16888.	0.0932
6	3500.	0.2344	6	16500.	0.1085
. 7	4000.	0.2724	7	17000.	0.1159
8	4500.	0.3187	8	17500.	0.1242
9	5000.	0.3625	9	18000.	0.1329
10	5500.	0.4235	10	18500.	0.1488
11	6000.	0.5108	11	19000.	0.1654
12	6500.	0.5737	12	19500.	
13	7000.	0.6543	13	20000.	0.1805 [.] 0.2017
14	7500.	0.7149	10	20000.	0.2017
15	8000.	0.8048			
16	85 0 0.	0.8467			
17	9000.	Ø.8961			
18	9006.	0.9314			

R 3HD40-8

Point	Hours	Lengt
1	2000.	Lengti 0.0352
	2500.	0.0920
2 3	3000.	
4	3500.	0.1322
5	4000.	0.1697
4 5 6		0.2147
7	45 00 .	0,2543
8	5000.	0,2930
	5500.	0,3392
9	6 000 .	0.388 9
10	6 50 0.	0.4417
11	7000.	0,5002
12	7500.	0.5510
13	8000.	0.6205
14	8500.	0.6694
15	9000.	0.7126
16	9500.	0.7574
17	10000.	0.7841
18	10500.	0.8051
19	11000.	0.8223
20	11500.	0.8434
21	11508.	0.9043

R 3HD40-10

Point 123456789011231451671890122345678990133333567899041234546	Hours 3000. 3500. 4000. 4500. 5500. 6000. 6500. 7500. 8000. 8500. 9000. 10500. 11000. 11500. 12000. 12500. 14000. 15500. 15000. 15500. 15000. 15500. 15000. 15500.	Length 0.0124 0.0191 0.0269 0.0388 0.0505 0.0605 0.0716 0.0816 0.0919 0.1025 0.1134 0.1234 0.1234 0.1234 0.1234 0.1234 0.1564 0.1671 0.1792 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2954 0.2955 0.3752 0.6001 0.6360 0.6360 0.7339 0.6001 0.6360 0.7339 0.9210
---	--	---

CW67-T7E91 HUD 34 SPECTRUM 45 KSI MAXIMUM STRESS

	R 3HD45-1	13 KOT THATTI	DIT STRESS	R 3HD45-3	
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	R 3HD45-1 Hours 2000. 2500. 3000. 3500. 4000. 5000. 5000. 6000. 6500. 7000. 8500. 9000.	Length 0.0474 0.0740 0.0941 0.1167 0.1399 0.1577 0.1806 0.2019 0.2249 0.2249 0.2492 0.2596 0.2731 0.2863 0.3019 0.3211 0.3475	Point 1 2 3 4 5 6 7 8 9 10 11 12 13	R 3HD45-3 Hours 1500. 2000. 2500. 3500. 4000. 5500. 5500. 6000. 7000. 7040.	Length 0.0408 0.0875 0.1376 0.1920 0.2606 0.3327 0.4060 0.4768 0.5597 0.6240 0.7070 0.8118 0.8834
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	10000. 10500. 11000. 11500. 12000. 12500. 13500. 14000. 14500. 15500. 16000. 17000.	0.3716 0.3922 0.4180 0.4485 0.4826 0.5178 0.5563 0.5964 0.6402 0.6756 0.7182 0.7542 0.7737 0.7916 0.8113 0.9150	Point 1 2 3 4 5 6 7 8 9 10 11	R 3HD45-4 Hours 1500. 2000. 2500. 3500. 4000. 5500. 5500. 6000.	Length Ø. 0221 Ø. 0442 Ø. 0692 Ø. 0947 Ø. 1190 Ø. 1450 Ø. 1736 Ø. 2047 Ø. 2309 Ø. 2600
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	R 3HE45-2 Hours 500. 1000. 1500. 2000. 2500. 3000. 3500. 4000. 5500. 5000. 7000. 7500. 8000.	Length 0.0111 0.0455 0.0775 0.1231 0.1592 0.1956 0.2393 0.2858 0.3351 0.3873 0.4537 0.5100 0.5880 0.7063 0.7063 0.7745 0.9360	12 13 14 15 16 17 18 19 20 21 22 23	7000. 7500. 8000. 8500. 9000. 10000. 10500. 11500. 12000. 12000.	0.3153 0.3532 0.3943 0.4406 0.4803 0.5490 0.5878 0.7196 0.7196 0.7788 0.8330 0.9330

R 3HD45-5			R:3HD45-7		
Point	Hours	Length	Point	Hours	Length
1	1500.	Ø. Ø1 9 6	1	1000.	0.0314
2	2000.	Ø. Ø37 5	2	1500.	0.0518
3	2500.	0.0660	3	2000.	0.0981
4	3000 .	0.1 09 5	4	2500.	0.1485
5	3500.	0.1540	5	3000.	0.2049
6	4000.	0.2040	6	3500.	0.2610
7	4500.	0.2630	7	4000.	0.3140
8	5000.	0.3400	8	4500.	0.3760
9	5500.	0.4260	9	5000.	0.4710
10	6000.	0.5330	10	5500.	0.5630
11	6500.	0.6060	11	6000.	Ø.6460
12	7000.	0.6490	12	6500.	0.7100
13	7500.	0.7190	13	7000.	0.7720
14	8000.	0.8130	14	7500.	
15	8494.	0.9170	15		0.8320
10	O->	0.5110	15	7520.	0.9400

	R 3HD45-6			R 3HD45-8	
Point	Hours	Length	Point	Hours	Length
1	1000.	0.0205	1	1500.	0.0290
Ž	1500.	0.0402	Ž	2000.	0.0614
3 2	2000.	0.0574	2 3	2500.	0.0944
4	2500.	0.0791	4	3000.	0.1249
	3000.	0.0995		3500.	0.1563
5 6 7	3500.	0.1211	5 6 7	4000.	0.1864
	4000.	0.1397	7	4500.	0.2191
8	4500.	0.1593	8	5000.	0.2528
9	5000.	0.1821	9	5500.	Ø.2908
10	55 00 .	0.2051	10	6000.	0.3308
11	6 00 0.	0.2324	11	650 0.	0.3650
12	6500.	Ø.2592	12	7000.	0.4005
13	7 00 0.	0.2863	13	7500.	0.4780
14	7500.	0.3153	14	8000.	0.5400
15	8000.	0.3440	15	8500.	0.6120
16	8500.	0.376 8	16	9000.	0.6870
17	9000.	0.4105	17	9500.	0.7640
18	9500.	0.4460	18	10000.	0.8390
19	10000.	0.4745	19	10007.	0.9110
20	10500.	0.5249			
21	11000.	0.5841		,	
22	11500.	0.6382			
23	12000.	0.6857			
. 24	12500.	0.7457			
25	13000.	0.7831			
26	13500.	0.8186			
27	13998.	0.9087			

CW67-T7E91 NOR 1 SPECTRUM 45 KSI MAXIMUM STRESS

	R3NR45-1			R 3NR45-3	
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Hours 9492. 10547. 11601. 12656. 13500. 14554. 15609. 16664. 17719. 18773. 19828. 20883. 21937. 22992. 24047. 25101. 26156. 27000. 27675.	Length 0.0118 0.0184 0.0265 0.0370 0.0490 0.0678 0.0936 0.1284 0.1693 0.2177 0.2721 0.3344 0.3958 0.4570 0.5540 0.6583 0.7549 0.8280 0.9220	Point 1 2 3 4 5 6 7 8 9 10 11 12 13	Hours 7383. 8436. 9492. 10547. 11601. 12656. 13500. 14554. 15609. 16664. 17719. 18773. 19575.	Length 0.0236 0.0462 0.0916 0.1506 0.2118 0.2715 0.3270 0.3960 0.4970 0.5870 0.5870 0.7840 0.9300

R'3NR45-2			R 3NR45-4	
Hours	Length	Point	Hours	Length
11601.	Ø. ØØ57	1	12656.	0.0390
12656.	Ø.0130	2	13500.	0.0580
13500.	0.02 3 0	3	14554.	0.0680
14554.	0.03 3 0	4	15609.	0.0930
156 09 .	0.0489	5		0.1280
16664.	0 .07 0 1	6		0.1810
17719.	0.0 9 47	7		0.2400
18773.	0. 1255	8		0.3030
19828.	Ø. 1600	9		0.3820
2 0883.	0.1972			0.4620
21 937.	0. 2374			0.5400
2 2992.	0.280 2			0.6670
24047.	0.3211			0.8040
25101.	0.3682			0.8630
<i>2</i> 61 5 6.	0.42 20	15	<i>2</i> 61 9 0.	0.8950
2 7000 .	0.48 0 0			
28054.	0.53 9 0			
29109.	0.6 039			
30164.	0.6 94 0			
31218.	0.7142			
32273.	0.7644			
	0.8194			
34155.	Ø.8789			
	Hours 11601. 12656. 13500. 14554. 15609. 16664. 17719. 18773. 19828. 20883. 21937. 22992. 24047. 25101. 26156. 27000. 28054. 29109. 30164. 31218. 32273. 33328.	Hours Length 11601. 0.0057 12656. 0.0130 13500. 0.0230 14554. 0.0330 15609. 0.0489 16664. 0.0701 17719. 0.0947 18773. 0.1255 19828. 0.1600 20883. 0.1972 21937. 0.2374 22992. 0.2802 24047. 0.3211 25101. 0.3682 26156. 0.4220 27000. 0.4800 28054. 0.5390 29109. 0.6039 30164. 0.6940 31218. 0.7142 32273. 0.7644 33328. 0.8194	Hours Length Point 11601. 0.0057 1 12656. 0.0130 2 13500. 0.0230 3 14554. 0.0330 4 15609. 0.0489 5 16664. 0.0701 6 17719. 0.0947 7 18773. 0.1255 8 19828. 0.1600 9 20883. 0.1972 10 21937. 0.2374 11 22992. 0.2802 12 24047. 0.3211 13 25101. 0.3682 14 26156. 0.4220 15 27000. 0.4800 28054. 0.5390 29109. 0.6039 30164. 0.6940 31218. 0.7142 32273. 0.7644 33328. 0.8194	Hours Length Point Hours 11601. 0.0057 1 12656. 12656. 0.0130 2 13500. 13500. 0.0230 3 14554. 14554. 0.0330 4 15609. 15609. 0.0489 5 16664. 16664. 0.0701 6 17719. 17719. 0.0947 7 18773. 18773. 0.1255 8 19828. 19828. 0.1600 9 20883. 20883. 0.1972 10 21937. 21937. 0.2374 11 22992. 22992. 0.2802 12 24047. 24047. 0.3211 13 25101. 25101. 0.3682 14 26156. 26156. 0.4220 15 26190. 27000. 0.4800 28054. 0.5390 29109. 0.6039 30164. 0.6940 31218. 0.7142 32273. 0.7644 33328. 0.8194

	R 3NR45-5			, R 3NR45-8	
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Hours 7383. 8436. 9492. 10547. 11601. 12656. 13500. 14554. 15609. 16664. 17719. 18773. 19828. 20883. 21937. 22950.	Length 0.0172 0.0296 0.0421 0.0564 0.0771 0.1045 0.1443 0.2014 0.2612 0.3240 0.3875 0.4590 0.5390 0.6400 0.8440 0.9150	Point 1 2 3 4 5 6 7 8 9 10 11 12	Hours 5273. 6328. 7383. 8436. 9492. 10547. 11601. 12656. 13500. 14554. 15609. 15660.	Length 0.0166 0.0266 0.0420 0.0687 0.1135 0.1883 0.2824 0.3894 0.5015 0.6460 0.7920 0.8980
	R 3NR45-6			R 3NR45-9	
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Hours 5273. 6328. 7383. 8436. 9492. 10547. 11601. 12656. 13500. 14554. 15609. 16664. 17719. 18773.	Length Ø.0183 Ø.0257 Ø.0357 Ø.0519 Ø.0785 Ø.1037 Ø.1460 Ø.1908 Ø.2400 Ø.3106 Ø.3963 Ø.5011 Ø.6000 Ø.6946 Ø.8939	Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Hours 6328. 7383. 8436. 9492. 10547. 11601. 12656. 13500. 14554. 15609. 16664. 17719. 18773. 19828. 20250.	Length 0.0110 0.0151 0.0194 0.0261 0.0367 0.0507 0.0764 0.1200 0.1727 0.2621 0.3635 0.4818 0.6123 0.7340 0.7845
	R3NR45-7			R 314R45−10	
Point 1 2 3 4 5 6 7 8 9 10 11 12	Hours 7383. 8436. 9492. 10547. 11601. 12656. 13500. 14554. 15609. 16664. 17719. 18495.	Length 0.0295 0.0421 0.0682 0.1070 0.1515 0.2086 0.2634 0.3377 0.4538 0.5964 0.7412 0.9075	Point 1 2 3 4 5 6 7	Hours 5273. 6328. 7383. 8436. 9492. 10547. 11601.	Length 0.0112 0.0210 0.0472 0.1055 0.1857 0.2832 0.3728

APPENDIX B

Fractographic Analysis Program Parameters

The basic parameters obtained from the initial fatigue quality (IFQ) model are given in this section. These parameters include individual Q, b, TTCI, and EIFS values for each test coupon. Also, included are pooled Q, b, TTCI, and EIFS values for each data set. Data set notations used are listed in Table A-1. Pooled b, α , and Q_{β} values for each alloy are listed in Table 9.

Fractography Analysis Program

Summary for data set C1HD35

Item	Least Square	Arithmetic Average	Variance of Average
α	0.16384E-03	0.40038E-03	0.18929E-03
b	0.77743	1.08650	0.35728
R2	0.64490		
Qhat	0.16384E-03	0.25580E-03	0.15879E-03
Qhat*beta(mv)	1.71502	2.67775	1.66224
@hat⊁beta(mle)	1.90044	2.96724	1.84195
TTCI		9809.	4599.
EIFS		0.31780E-02	0.53501E-02

Here are the crack growth parameters for CIHD35 Bata type.

Specimen	Q	ь	R2	qhət	TTCI
1	0.3532E-03	0.67632	0.8128	0.4984E-03	4033.
2	0.5587E-03	0.73460	0.9319	0.6728E-03	4529.
3	0.3334E-03	0.79328	0.9494	0.3494E-03	5147.
4	0.2175E-03	0.71952	0.8439	0.2629E-03	5892.
5	0.479GE-03	1.07995	0.8882	0.2833E-03	7951.
6	0.7393E-03	1.34747	0.9568	0.2917E-03	8819.
7	0.4804E-03	1.08743	0.9117	0.2753E-03	11362.
8	0.2068E-03	0.87093	0.9344	0.1869E-03	9836.
9	0.6206E-03	1.46171	0.8473	0.1899E-03	12559.
10	0.2611E-03	1.03925	0.7883	0.1594E-03	12658.
11	0.3996E-03	1.09899	0.9280	0.2212E-03	12862.
12	0.5991E-03	1.53414	0.9087	0.1513E-03	14610.
13	0.1319E-03	1.40434	0.8587	0.5641E-04	3979.
14	0.1167E-03	0.64298	0.8986	0.1447E-03	13234.
15	0.5077E-03	1.80656	0.9674	0.9336E-04	19665.

Specimen	Qhat ∤ beta(mle)	Qhat * beta(mv)	EIFS
1	5.781370	5.217326	0.1411E-01
2	7.804647	7.043208	0.9710E-02
3	4.053202	3.657762	0.5866E-02
4	3.049329	2.751829	0.2985E-02
5	3.286667	2.966012	0.2571E-03
6	3.384031	3.053877	0.5868E-04
7	3.192903	2.881396	0.2935E-09
8	2.168270	1.956729	0.5080E-05
9	2.202825	1.987912	-0.7782E-07
10	1.849256	1.668838	-0.1419E-06
11	2.566116	2.315759	-0.4104E-06
12	1.754636	1.583450	-0.6595E-04
13	0.654283	0.590450	0.1468E-01
1.4	1.678060	1.514344	-0.1900E-05
15	1.082966	0.977310	-0.1787E-01

Summary for data set CIHD40

Least Square	Arithmetic Average	Variance of Average
0.46090E-03	0.59284E-03	0.34424E-03
0.78999	0.83042	0.27394
0.89327		
0.46090E-03	0.51899E-03	0.93577E 04
	2.63973	0.47596
	2.42639	0.43749
5410,02	4396.	1160.
	0.4288GE-03	0.10495E-02
	Square 0.46090E-03 0.78999	Square Average 0.46090E-03

Here are the crack growth parameters for C1HD40 Data type

ecimen	Q	ь	R2	qhat	TTCI	Ind.
1	0.8472E-03	0.97022	0.9491	0.6175E-03	2724.	1.0
2	0.2236E-03	0.52948	0.9234	0.4420E-03	3107.	1.0
	0.2907E-03	0.55969	0.9103	0.6102E-03	4302.	1.0
3	0.7993E-03	1.05564	0.9761	0.5385E-03	2438.	1.1
4	0.4945E-03	0.86094	0.9676	0.4477E-03	3952.	1.0
2	-	0.83777	0.9518	0.6170E-03	4475.	1.0
<u>5</u>	0.6459E-03	0.63102	0.8636	0.6136E-03	4141.	1.0
7	0.4105E-03		0.9916	0.4121E-03	4451	1.0
8	0.9127E-03	1.22123	0.9799	0.5726E-03	4131.	1.0
9	0.8073E-03	0.98267		0.5488E-03	4925.	1.0
10	0.1411E-02	1.36117	0.9733	0.5762E-03	5084.	1.0
1.1	0.7558 E -03	0.93573	0.9840		-	1.0
1.3	0.6314E-03	0.84006	0.9805	0.6078E-03	4631.	
1.3	0.2125E-03	0.57882	0.8026	0.3747E-03	4666.	1.0
14	0.1298E-03	0.35343	0.8619	0.420 0E-03	7100.	1.1
15	0.3209E-03	0.73845	0.8710	0.3860E-03	5808.	1.0

Here are the crack growth parameters for CIHD40

Specimen	Qhat * beta(mle)	Qhat ★ beta(mv)	EIFC
1	2.387129	3.140980	0.1943E-02
2	2.066604	2.248310	0.7081E-03
3	2.852626	3.103444	0.3226E-05
4	2.517619	2.738981	0.3728E-02
5	2.093275	2.277326	0.2836E-04
ϵ	2.884685	3.138321	0.7034E-06
7	2.868645	3.120871	0.9740E-05
8	1.926738	2.096146	0.9103E-06
9	2.677131	2.912518	0.1032E-04
10	2.565566	2.791144	0.8622E-10
11	2.694059	2.930934	-0.8107E-12
12	2.841464	3.091300	0.1164E-06
13	1.751997	1.906042	0.6 978E -07
14	1.963709	2.136368	-0.1031E-02
15	1.804655	1.963330	-0.4261E-05

Summary for data set ClNR45

Item	Least Square	Arithmetic · Average	Variance of Average
Q	0.51434E-03	0.55743E-03	0.30714E-03
ь	1.12859	1.06713	0.24606
R2	0.90285		
Qhat	0.51434E-03	0.27413E-03	0.10563E-03
Qhatkbeta(mv)	7.23407	3.85554	1.48561
Qhat*beta(mle)	7.17883	3.82610	1.47427
TTCI		12643.	4538.
EIFS		0.14896E-02	0.35249E-02

Here are the crack growth parameters for C1Nk45 Data type

Specimen	Q	ь	R 2	qhat	TTCI
1.	0.6860E-03	0.94271	0.9753	0.52 87E- 03	5537.
2	0.3267E-03	0.79611	0.9708	0.3492E-03	7932.
3	0.3073E-03	0.91388	0.9582	0.2352E-03	9391.
4	0.1078E-02	1.41497	0.9824	0.2311E-03	9156.
5	0.9608E-03	1.26005	0.9418	0.2748E-03	14511.
G	0.3258E-03	0.91778	0.9353	0.2479E-03	14540.
7	0.8147E-03	1.35870	0.8611	0.2735E-03	11802.
3	0.5065E-03	1.21410	0.9417	0.1782E-03	17699.
9	0.3568E-03	1.15650	0.9363	0.1450E-03	17403.
10	0.2112E-03	0.69648	0.9586	0.2777E-03	18463.

Specimen	Qhat A beta(mle)	Qhat ≯ beta(mv)	EIFS
1 2 3 4 5 6 7 8 9 10	7.379910 4.873246 3.282090 3.226236 3.836109 3.459988 3.816987 2.486647 2.023756 3.876023	7.436697 4.910745 3.307345 3.251061 3.865627 3.486613 3.846358 2.505782 2.039328 3.905848	0.1133E-01 0.2195E-02 0.5973E-03 0.7528E-03 0.3918E-09 0.2669E-09 0.2485E-04 -0.1192E-04 -0.6317E-05

Summary for data set C2NR45

Item	Least	Arithmetic	Variance
	Square	Average	of Average
Q b R2 Qhat Qhat*beta(mv) Dhat*beta(mle) TTCI EIFS	0.15314E-03 0.83433 0.91519 0.15314E-03 3.17757 3.15260	0.36890E-03 1.05968 0.15636E-03 3.24430 3.21881 18657. 0.14404E-02	0.64975E-03 0.64503 0.30159E-04 0.62576 0.62085 5257. 0.24576E-02

Here are the crack growth parameters for C2NR45 Data type

7			5.0		77 T C T
Specimen	Q	b	R2	qhat	TTCI
1	0.2183E-03	0.87964	0.9759	0.1968E-03	10914.
2	0.1502E-03	0.83695	0.9666	0.1492E-03	16379.
3	0.1439E-03	0.78469	0.9586	0.1580E-03	14077.
4	0.1731E-03	0.90544	0.9785	0.1474E-03	15460.
5	0.1591E-03	0.84334	0.9640	0.1555E-03	17075.
6	0.2321E-02	2.96115	0.9551	0.1281E-03	15728.
7	0.1349E-03	0.80379	0.9635	0.1454E-03	18068.
8	0.1697E-03	0.77558	0.9902	0.1925E-03	22798.
9	0.9642E-04	0.67399	0.7499	0.1312E-03	20167.
10	0.3024E-03	0.99781	0.9606	0.2052E-03	27770.
11	0.1884E-03	1.19416	0.9688	0.1108E-03	26788.

Specimen	Qhat ★ beta(mle)	Qhat ★ beta(mv)	EIFS
7	4.051627	4.083716	0.8444E-02
2	3.071751	3.096079	0.9325E-03
3	3.251788	3.277542	0.2605E-02
4	3.033389	3.057413	0.1436E-02
7. 5	3.200510	3.225857	0.6579E-03
6	2.636104	2.656982	0.1270E-02
7	2.992907	3.016610	0.3855E-03
•	3.963755	3.995147	0.1147E-04
8 9	2.700763	2.722152	0.1034E-03
	4.223589	4.257040	0.2545E-09
10	2.280711	2.298774	0.1516E-07

Summary for data set R1HD40

Item	Least Square	Arithmetic Average	Variance of Average
Q	0.79538E-04	0.10603E-03	0.67070E-04
b	0.52518	0.49458	0.32274
R2	0.64111		
Qhat	0.79538E-04	0.11576E-03	0.62915E-04
Qhatkbeta(mv)	0.73165	1.06480	0.57873
Qhatkbeta(mle)	0.83266	1.21182	0.65864
TTCI		8756.	4919.
EIFS		0.12481E-01	0.12708E-01

Here are the crack growth parameters for R1HD40 Data type

Specimen	Q	ь	R 2	qhat	TICI
1	0.2144E-03	0.52915	0.8733	0.2426E-03	3125.
2	0.2116E-03	0.60660	0.7882	0.2129E-03	4997.
3	0.1605E-03	0.51260	0.7976	0.1851E-03	3206.
4	0.1154E-03	0.30647	0.8984	0.1789E-03	3888.
5	0.1483E-03	0.75643	0.8459	0.1111E-03	8631.
G	0.9900E-04	0.59103	0.8667	0.1014E-03	6007.
7	0.1550E-04	0.00000	-0.1212	0.7059E-04	15389.
8	0.7401E-04	0.32288	0.6598	0.1046E-03	4557.
9	0.6161E-04	0.36462	0.8042	0.8967E-04	6965.
10	0.1126E-04	0.00000	-0.5485	0.4633E-04	16928.
11	0.2971E-04	0.16152	0.7694	0.7205E-04	13428.
12	0.1318E-03	0.97734	0.9832	0.8189E-04	13320.
13	0.6073E-04	0.79241	0.9520	0.4874E-04	7778.
14	0.1506E-03	1.00299	0.9835	0.7469E-04	14359.

Specimen	Qhat ★ beta(mle)	Qhat ★ beta(mv)	EIFS
1.	2.540196	2.232023	0.4764E-01
2	2.228729	1.958343	0.1654E-01
3	1.937784	1.702694	0.4587E-01
4	1.872702	1.645508	0.3259E-01
5	1.162576	1.021534	0.6204E-07
6	1.061862	0.933038	0.7238E-02
7	0.738993	0.649339	-0.7863E-01
8	1.095155	0.962292	0.2212E-01
9	0.938760	0.824871	0.2297E-02
10	0.485017	0.426175	-0.1333
11	0.754229	0.662727	-0.3255E-01
12	0.857249	0.753249	-0.3070E-01
1.3	0.510241	0.448339	0.4299E-03
14	0.781948	0.687083	-0.5140E-01

Summary for data set R1HD45

Item	Least	Arithmetic	Variance
	Square	Average	of Average
a	0.22222E-03	0.39332E-03	0.32580E-03
b	0.52658	0.57324	0.19791
R 2	0.75040		
Qhat	0.2222E-03	0.36212E-03	0.24773E-03
Qhatkbeta(mv)	0.81914	1.33484	0.91320
Qhatkbeta(mle)	0.77725	1.26658	0.86650
TTCI		3227.	1165.
EIFS		0.67746E-02	0.14543E-01

Here are the crack growth parameters for R1HD45 Data type .

Specimen	Q	ь	R2	qhat	TTCI
1	0.1272E-02	0.67184	0.9868	0.1156E-02	1064.
2	0.4284E-03	0.55328	0.9499	0.4732E-03	1920.
3	0.8489E-03	0.85908	0.9939	0.4773E-03	3150.
4	0.3830E-03	0.55180	0.9539	0.4271E-03	2024.
5	0.3861E-03	0.58542	0.7851	0.4000E-03	1641.
6	0.7477E-03	0.85652	0.9341	0.4548E-03	4115.
7	0.3431E-03	0.68612	0.9810	0.3044E-03	3271.
8	0.2422E-03	0.54077	0.9703	0.2752E-03	3322.
9	0.2152E-03	0.47049	0.9674	0.2775E-03	3216.
10	0.2279E-03	0.53446	0.9432	0.2647E-03	4486.
11	0.1670E-03	0.39104	0.8402	0.2324E-03	3724.
12	0.1339E-03	0.31238	0.7601	0.2022E-03	2881.
1.3	0.2915E-03	0.91295	0.9692	0.1680E-03	5100.
14	0.8820E-04	0.23419	0.6809	0.1593E-03	3858.
15	0.1243E-03	0.43824	0.8484	0.1601E-03	4638.

Specimen	Qhat ★ beta(mle)	Qhat 🖈 beta(mv)	EIFS
1	4.042309	4.260170	0.5276E-01
2	1.655019	1.744217	0.1398E-01
3	1.669385	1.75935 <i>7</i>	0.8090E-06
4	1.493913	1.574428	0.1120E-01
5	1.398990	1.474389	0.2334E-01
G	1.590809	1.676546	-0.6574E-02
7	1.064533	1.121907	-0.1761E-04
8	0.962546	1.014423	-0.5369E-04
9	0.970528	1.022835	-0.1790E-05
10	0.925820	0.975717	-0.1544E-01
11	0.812815	0.856622	-0.1648E-02
12	0.707378	0.745502	0.3464E-03
13	0.587670	0.619343	-0.4135E-01
14	0.557124	0.587150	-0.2890E-02
15	0.559880	0.590055	-0.2043E-01

Summary for data set R1NR45

Item	Least Square	Arithmetic Average	Variance of Average
Q	0.10598E-03	0.13550E-03	0.50550E-04
b	0.68351	0.70868	0.13442
R 2	0.87226		
Qhat	0.10598E-03	0.11354E-03	0.52126E-04
Qhatkbeta(mv)	2.13091	2.28292	1.04809
Qhatkbeta(mle)	2.30370	2.46805	1.13308
TTCI		18636.	9672.
EIFS		0.10099E-01	0.14643E-01

Here are the crack growth parameters for $\kappa_1\kappa_4\tau_5$ Data type

Specimen	a	ь	R2	qhat	TICI
1	0.1808E-03	0.64119	0.9778	0.1689E-03	7492.
2	0.2144E-03	0.62458	0.9849	0.2072E-03	9734.
3	0.1188E-03	0.47410	0.9369	0.1697E-03	8995.
4	0.1349E-03	0.67504	0.9735	0.1190E-03	11648.
5	0.1960E-03	0.88058	0.9691	0.1053E-03	21595.
6	0.1255E-03	0.76026	0.9774	0.9554E-04	17608.
7	0.1051E-03	0.73312	0.9879	0.8099E-04	18300.
8	0.6748E-04	0.74721	0.9175	0.5040E-04	23977.
9	0.1473E-03	0.93605	0.9870	0.7443E-04	30662.
10	0.6489E-04	0.61467	0.9190	0.6387E-04	36349.

Specimen	Qhat * beta(mle)	Qhat ★ beta(mv)	EIFS
1 2 3 4 5 6 7 8 9 10	3.672502 4.503451 3.688482 2.587268 2.289636 2.076695 1.760410 1.095607 1.617972 1.388446	3.397033 4.165654 3.411815 2.393201 2.117894 1.920925 1.628364 1.013427 1.496610 1.284301	0.3970E-01 0.2216E-01 0.2726E-01 0.1180E-01 -0.1528E-02 0.6463E-04 0.1498E-05 -0.6610E-02 -0.5110E-01

Summary for data set R1NR50

Item	Least Square	Arithmetic Average	Variance of Average
Q	0.17273E-03	0.23089E-03	0.17823E-03
b	0.65543	0.69492	0.27676
R2	0.88742	A 140050 AS	0 05010F 04
Qhat	0.17273E-03	0.16235E-03	0.25818E-04
	1.88470	1.77141	0.28170
Qhatkbeta(mv) Qhatkbeta(mle)	1.69990	1.59771	0.25408
TTCI		9245.	2850.
EIFS		0.13356E-02	0.26249E-02

Here are the crack growth parameters for RINR50 Data type

Specimen	Q	ь	R 2	qhat	TTCI
1	0.4087E-03	0.97399	0.9893	0.2061E-03	8101.
2	0.1650E-03	0.54429	0.9875	0.1867E-03	6090.
3	0.1692E-03	0.51749	0.8349	0.1979E-03	6579.
4	0.2566E-03	0.83704	0.9520	0.1573E-03	9015.
5	0.1373E-03	0.55644	0.9702	0.1541E-03	8374.
6	0.1122E-03	0.51902	0.9571	0.1312E-03	7723.
7	0.1337E-03	0.56390	0.9294	0.1457E-03	8712.
8	0.1514E-03	0.66748	0.9559	0.1350E-03	10454.
9	0.1065E-03	0.43925	0.9228	0.1509E-03	11447.
10	0.6684E-03	1.33031	0.9685	0.1587E-03	15952.

Specim en	Qhat ★ beta(mle)	Qhat ★ beta(mv)	EIFS
1.	2.028134	2.248624	0.2720E-03
2	1.837334	2.037081	0.7606E-02
3	1.947120	2.158802	0.4617E-02
4	1.547552	1.715795	-0.5188E-05
5	1.516578	1.681454	0.8601E-04
6	1.291330	1.431718	0.7711E-03
7	1.433652	1.589512	0.3812E-05
8	1.328654	1.473099	-0.1874E-02
9	1.485240	1.646709	-0.6456E-02
10	1.561550	1.731315	-0.8514E-01

Summary for data set R2HD40

Item	Least Square	Arithmetic Average	Variance of Average
Q	0.17073E-03	0.20292E-03	0.78807E-04
to	0.54408	0.52727	0.15592
R2	0.79959		
Qhat	0.17073E-03	0.20085E-03	0.57183E-04
Qhat⊁beta(m∨)	1.15349	1.35703	0.38635
Qhat*beta(mle)	1.15425	1.35793	0.38661
TTCI		6015.	2360.
EIFS		0.53909E-02	0.73571E-02

Here are the crack growth parameters for R2HD40 Data type

Specimen	Q	ь	R2	qhat	TTCI
1	0.2273E-03	0.56699	0.8199	0.2254E-03	3670.
2	0.2111E-03	0.53133	0.9295	0.2197E-03	3746.
3	0.1601E-03	0.45454	0.9370	0.1893E-03	3415.
4	0.2267E-03	0.53221	0.9676	0.2377E-03	5486.
5	0.2475E-03	0.79132	0.9452	0.1468E-03	7168.
6	0.1185E-03	0.32263	0.8800	0.1724E-03	4517.
7	0.2550E-03	0.60881	0.9510	0.2314E-03	7829.
.8	0.3213E-03	0.64554	0.9039	0.2898E-03	9573.
9	0.5873E-04	0.29203	0.7926	0.9534E-04	8727.

Specimen	Qhat ★ beta(mle)	Ghat ★ beta(mv)	EIFS
1 2 3 4	1.523647 1.485452 1.279507	1.522637 1.484467 1.278659	0.1380E-01 0.1261E-01 0.1817E-01
5 6 7	1.607232 0.992269 1.165365 1.564250	1.606167 0.991612 1.164593 1.563213	0.5334E-04 -0.7293E-02 0.3889E-02 -0.1674E-01
8 9	1.959133 0.64455 0	1.957834 0.644123	-0.6445E-01 -0.3695E-01

Summary for data set R2HD45

Item	Least Square	Arithmetic Average	Variance of Average
Q	0.3877 4E-03	0.42791E-03	0.17778E-03
	0.62759	0.59750	0.21295
R2	0.85807		
Qhat	0.38774E-03	0.36135E-03	0.67544E-04
Qhatkbeta(mv)	1.20522	1.12318	0.20995
Qhatkbeta(mle)	1.21399	1.13135	0.21148
TTCI	•	2786.	1095.
EIFS		0.69617E-02	0.14059E-01

Here are the crack growth parameters for R2HD45 Data type

	* •				
Specimen	Q	ь	R2	qhat	TTCI
1	0.2999E-03	0.29381	0.8996	0.4385E-03	1201.
2	0.3009E-03	0.30270	0.6866	0.4373E-03	1444.
3	0.5738E-03	0.77569	0.9415	0.3781E-03	2666.
4	0.7702E-03	0.92192	0.9743	0.3523E-03	2937.
5	0.4731E-03	0.68793	0.8565	0.3716E-03	2431.
G	0.5445E-03	0.59190	0.9191	0.4177E-03	2917.
7	0.2012E-03	0.43751	0.8645	0.2496E-03	2761.
8	0.3246E-03	0.65974	0.9222	0.2724E-03	4090.
9	0.3629E-03	0.60627	0.9060	0.3347E-03	4631.

Specimen	Qhat & beta(mle)	Qhat ∱ beta(mv)	EIFS
1 2 3 4 5 6 7	1.373058 1.369226 1.183766 1.103048 1.163350 1.307781 0.781382 0.852766	1.363141 1.359337 1.175216 1.095081 1.154948 1.298336 0.775738 0.846606	0.3756E-01 0.2463E-01 -0.3334E-05 -0.1002E-02 0.4677E-03 -0.8560E-03 -0.1255E-03 -0.3801E-01
9 9	1.047794	1.040226	-0.7843E-01

Summary for data set R3HD40

ítem	Least	Arithmetic	Van i ar
	Square	Aver age	of Aver
Q	0.21369E-03	0.26464E-03	0.20911E-03
ь	0.72536	0.63953	0.27097
R2	0.58613		
Qhat	0.213696-03	0.24871E-03	0.10819E-03
Qhat*beta(m∪)	1.36456	1.58320	0.69084
Qhat*beta(mle)	1.74167	2.02712	0.88176
TTCI		6358.	4772.
EIFS		0.16348E-01	0.16960E-01

ography Analysis Program

Here are the crack growth parameters for R3HD40 Data type

Specimen	Q	b	Ř2	ghat	ттет
1	0.1567E-03	0.67826	0.5897	0.1643E-03	6773.
2	0.3254E-03	0.89106	0.6065	0.2539E-03	6000.
3	0.7768E-03	1.05246	0.6574	0.4855E-03	4078.
4	0.2034E-03	0.57502	0.5546	0.2411E-03	3610.
5	0.3485E-03	0.84746	0.6291	0.2909E-03	4097.
6	0.1834E-03	0.55095	0.6504	0.2267E-03	5062.
7	0.3524E-03	0.75201	0.5599	0.3362E-03	2441.
8	0.1718E-03	0.34727	0.2314	0.244 0E- 03	3224.
9	0.3522E-04	0.12122	0.2136	0.1323E-03	18537.
10	0.9277E-04	0.57957	0.7682	0.1124E-03	9761

sim⊕n	Qhat * beta(mle)	Qhat * beta(mu)	EIFS
1	1.338916	1.049005	0.1368E-02
2	2.069772	1.621612	0.3678E-02
3	3.956650	3.099931	0.1937E-01
4	1.964786	1.539358	0.2633E-01
5	2.371250	1.857812	0.1912E-01
6	1.847327	1.447332	0.9143E-02
7	2.739768	2.146536	0.5120E-01
8	1.988585	1.558004	0.3327E-01
9	1.077971	0.844562	-0.1705
	0.916214	0.717830	-0.1339E-04

Fractography Analysis Program Summary for data set R3HD45

Item	Least	Arithmetic	Variance
• • • •	Square	fiverage	of Average
ū	0.20410E-03	0.27488E-03	0.14805E+03
ь	0.55954	0.59487	0.22595
R2	0. 50806		
Ohat	0.20410E-00	0.29702 E -03	0.10783E-03
Qhat*beta(mv)	0.80424	1.17035	0.42488
Ohat*beta(mle)	0.70851	1.03105	0.37431
TTCI		3373.	798.
EIFS		0.445228-02	0.54096F

Here are the clack growth parameters for R3HD45 Data type

pecimen	ō	b	F/2	qhat	7. I
1 2 3 4 5 6 7	0.1132E-03 0.1625E-03 0.3872E-03 0.3106E-03 0.2051E-03 0.1058E-03 0.4769E-03 0.4376E-03	0.55438 0.22483 0.61943 0.80560 0.41590 0.37881 0.79661 0.90336	0.4374 0.7659 0.6423 0.571∠ 0.9300 0.8576 0.6377	0.1346E-03 0.1926E-03 0.4290E-03 0.2734E-03 0.3097E-03 0.1655E-03 0.4287E-03	4271. 2364. 2618. 4091. 3456. 4266. 251:

_< 1 men	Chat + betainle:	Qhat * beta(mo)	ĔĬ
1 2	0.467149	0.530264	0.2949E-04
3	1.015652 1.491930	1.152875 1.693502	9.1315E+01 8.9785E+02
4 5	0.949125	1.077360	0.1988E-03
9, 6	1.075223 0.574663	1.220494 0.652305	0.1431E-02 0.3083E-04
• 2	1,488284	1.689364	0.1042E-
•	1.186347	1.346633	୍ଡି,1666E

actography Analysis Program Summary for data set R3HR45

Item	Least Square	Arithmetic Average	Vanis of Av. age
Q	0.16420E-03	0.21366E-03	0.13878E-03
Ď	0.71707	0.74215	0.19543
R2	0.88939		
Qhat	0.16420E-03	0.18086E-03	0.57636E-04
Qhat*beta(mv)	2.58311	2.84524	0.90672
Qhat*beta(mle)	2.29264	2.52530	0.80476
TTCI		13467.	3514
EIFS		0.46448E-02	0.512525

Here are the chack growth parameters for R3NR45 Data type

i ecimen	Q	ь	R2	qhat	TTC.
1	0.1328E-03	0.70549	0.9940	0.1337E+03	17246.
2	0.7131E-04	0.45998	0.9639	0.1090E-03	19536.
3	0.1323E-03	0.47997	0.9638	0.1814E-03	10538.
4	0.2532E-03	0.93220	0.8678	0.1860E-03	17181.
5	0.1285E-03	0.64003	0.9572	0.1448E-03	13614.
6	0.1845E-03	0.80427	0.9937	0.1550E-03	11698.
7	0.2182E-03	0.79167	0.9959	0.1913E-03	11568.
8	0.5744E-03	1.07910	0.9128	0.2999 E-03	10117.
		.8798 6	0.9764	0.1528E-03	14095.
		64396	0.9655	0.2547E-03	9078

ecimen.	Qhat * beta(mle)	Qhat * beta(mu)	EJ
1	1.866909	2.103435	0.1799E-0-
2	1.521865	1.714677	-0.5213E-05
3	2.533206	2.854149	0.8436E-02
4	2.596993	2.926018	0.2114E-04
5	2.022134	2.27 8327	0.1613E-02
6	2.164225	2.438420	0.4942E-02
7	2.670831	3.009210	0.5269E-02
8	4.187189	4.717682	0.1005E-0
	2.133332	2.403613	0.11362
	3.556328	4.006894	0.1496E