## 二色混合非線形吸収における 混合比のベイズ最適化

-Bayesian optimization for optical nonlinear absorption with two-color excitation-

2019/10/10

Yasushi SHINOHAR(篠原 康)

### Nonlinear absorption of insulators

 Photo carrier creation due to strong electric field via higherorder perturbation or tunnel process



# Theoretical treatment of nonlinear absorption

- Analytic formula based on parabolic band with a monochromatic electric field
  - L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)
  - Easy, computationally cheap
  - Need to derive new formula for more generalized condition like arbitrary shape of electric field
- Numerical simulation based on a first-principles theory
  - An example: TDDFT within SALMON(https://salmon-tddft.jp/)
  - Applicable to arbitrary field shape, reflecting electronic structure
  - Computatinally expensive, typically 1k cores required

### Optimization of two-color field



• 模式図



この混合比 $(E_1': E_2')$ をNumerical simulationでの評価を基準に最適化したい

#### 二色混合電場を用いた光吸収の最適化



• 模式図



#### 実証実験:

- Analytica formulaで全パラメーター探索をして大雑把な傾向をつかむ(一先ず正解を求める)
- 2. ベイズ最適化との相性を確認する

### ベイズ最適化 within combo

- 田村さんの講義・チュートリアルで紹介された最初の例を使う
  - Analytica formulaを使って最初に $(E_1': E_2') \rightarrow n_{PC}$ を計算して`data.csv` に格納
  - 最小値を求める部分を最大値に
  - 一次元自由度のパラメーター探索なので4回random sampling+20回ベイズ探索



#### 結果:

ベイズ最適化の方が若干早い

#### 考察:

そもそも局所最適解がないので、勾配 法の方が早いかも

#### 困ったこと

- Comboのインストール
  - setup.pyのディレクトリで`import combo`をするとエラーがたくさん 出る
    - これを取り除こうとしていて時間が解けた
    - 違うディレクトリに移ってから`import combo`をすれば、別に問題はなかった
  - GithubのREADME.mdではnumpy, scipy, Cythonが依存ライブラリと書かれているが、実はsixも必要
    - `pip install six`で解決
- 以下にまとめた
  - https://qiita.com/Yasushi-Shinohara/items/673406d67714c92d4f04

#### 三色に拡張



#### • 結果



