

gwsnr: A Python Package for Efficient SNR Calculation of GWs

Phurailatpam Hemantakumar¹ and Otto Akseli HANNUKSELA¹

1 Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Summary

Gravitational waves (GWs), ripples in spacetime predicted by Einstein's theory of General Relativity, have revolutionized astrophysics since their first detection in 2015 (Abbott, B.P. et al. (2016a)). These waves are emitted by cataclysmic events like the merging of binary black holes (BBHs), binary neutron stars (BNSs) and BH-NS pairs, providing a unique window into the cosmos. A critical aspect of GW analysis is the Signal-to-Noise Ratio (SNR). SNR quantifies the strength of a GW signal relative to the background noise in a detector, like LIGO (The LIGO Scientific Collaboration et al. (2015), Abbott et al. (2020), Buikema et al. (2020)), Virgo (F. Acernese et al. (2014), F. Acernese et al. (2019)) or KAGRA (Akutsu et al. (2020), Aso et al. (2013)). This ratio is pivotal in confirming the detection of GWs and extracting astrophysical information from them (Abbott, B.P. et al. (2016b)). However, specific scenarios in GW research, particularly in simulations of detectable GW events (Abbott et al. (2016)) and in hierarchical Bayesian analysis (Thrane and Talbot (2019)) where selection effects are considered, demand extensive and efficient computation of SNR. This requirement presents a significant challenge, as conventional computational approaches, such as noise-weighted inner product, are typically time-consuming and impractical for such specialized and large-scale analyses (Taylor and Gerosa (2018), Gerosa et al. (2020)).

Statement of Need

The qwsnr Python package addresses the need for efficient SNR computation in GW research. It innovatively streamlines SNR calculations, enhancing accuracy and efficiency with several advanced techniques. Firstly, it utilizes an innovative interpolation method, employing a partialscaling approach for accurately interpolating the SNR of GWs from spin-less binary systems wrt to their mass parameters. Secondly, the package features a noise-weighted inner product method, similar to that in the bilby package (Ashton, Gregory et al. (2022)), but enhanced with multiprocessing capabilities. This integration allows for the parallel processing of complex calculations, thereby expediting the SNR computation. Thirdly, a trained Artificial Neural Network (ANN) model is incorporated for rapid 'probability of detection' (Pdet) estimation for BBH systems with spin precession. Lastly, gwsnr leverages the numba's Just-In-Time (njit) compiler (Lam, Pitrou, and Seibert (2022)), which optimizes performance by compiling Python code into machine code at runtime, drastically reducing execution times. Beyond these technical merits, gwsnr stands out for its user-friendly features and seamless integration with other related software packages, making it not just a powerful tool but also an accessible one for researchers. These attributes position gwsnr as an invaluable asset in GW data analysis, particularly in simulations of detectable compact binary mergers, determining rates of GW events, related to both lensed and un-lensed events (Phurailatpam et al. (2024), Ng et al. (2024)), and in the analysis of selection effects within hierarchical Bayesian frameworks (Thrane and Talbot (2019)). The package thus represents a significant step forward in aiding GW research, enabling more precise and efficient exploration of the universe through GW observations and simulations. Additionally, qwsnr is instrumental in the ler (Phurailatpam et al. (2024)) package for calculating detectable rates of both lensed and unlensed GW events,

DOI: 10.xxxxx/draft

Software

- Review ௴
- Repository ♂
- Archive ♂

Editor: Pending Editor ☑ Reviewers:

- @Pending Reviewer
- @

Submitted: 3rd July 2024 **Published**: 3rd July 2024

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

showcasing its utility in advanced GW studies.

Mathematical Formulation

Modified FINDCHIRP Method: Partial Scaling Approach

The gwsnr package introduces the Partial Scaling method for SNR calculations in spin-less binary systems. This method, rooted in the FINDCHIRP algorithm (Allen et al. (2012)), focuses on non-spinning inspiral-merger-ringdown (IMR) waveforms, in lalsimulation library (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration (2018)), and particularly interpolates the Partial scaled SNR $(\rho_{1/2})$ based on mass parameters (M_{tot},q) .

• Interpolation Method: Utilizes a 2D cubic spline technique (njit-ted) for the 'partialsnr' segment.

• Equations:

- For a simple inspiral waveform, the optimal SNR is given by,

$$\rho = F(D_l, \mathcal{M}, \iota, \psi, \alpha, \delta) \sqrt{4 \int_0^{f_{ISCO}} \frac{f^{-7/3}}{S_n(f)} df}$$

- F is defined as a function of luminosity distance (D_l) , chirp mass (\mathcal{M}) , inclination angle (ι) , polarization angles (ψ) , right ascension (α) , and declination (δ) , refer to Eqn(D1) of Allen et al. (2012). f is the frequency, f_{ISCO} is the last stable orbit frequency and $S_n(f)$ is the detector's noise curve or power spectral density (psd).
- Then, partial scaled SNR: $ho_{1/2}=\sqrt{4\int_0^\infty rac{f^{-7/3}}{S_n(f)}df} pprox \sqrt{4\int_0^{f_{ISCO}} rac{f^{-7/3}}{S_n(f)}df}$
- For an spinless frequency-domain IMR waveform with optimal SNR equal to ρ : $\rho_{1/2}=\rho/F(D_l,\mathcal{M},\iota,\psi,\alpha,\delta)$
- $\rho_{1/2}$ is considered a function of M_{tot} and q.

Noise-Weighted Inner Product Method with Multiprocessing

Designed for SNR calculations in systems characterized by frequency domain waveforms in *la lsimulation* (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration (2018)), including spin-precessing binary systems.

- **Methodology**: Combines waveform generation (multi-process), antenna pattern calculation (njit-ted), and noise-weighted inner product computation (njit-ted).
- Equations:
 - Inner product: $\langle a|b\rangle=4\int_{f_{min}}^{f_{max}} \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_n(f)}df$
 - Optimal SNR: $\rho = \sqrt{F_+^2 \left\langle \tilde{h}_+ | \tilde{h}_+ \right\rangle + F_\times^2 \left\langle \tilde{h}_\times | \tilde{h}_\times \right\rangle}$, for orthogonal h_+ and h_\times .
 - $h_{+\times}$ are frequency domain waveform polarizations, and $F_{+\times}$ are antenna patterns.

These formulations highlight gwsnr's capability to efficiently process diverse GW signals, enhancing data analysis accuracy and efficiency.

Artificial Neural Network (ANN) Model for Pdet Estimation

The gwsnr package now incorporates an artificial neural network (ANN) model, developed using TensorFlow (Abadi et al. (2015)) and sklearn (Pedregosa et al. (2011)), to rapidly estimate the Pdet in binary black hole (BBH) systems using the IMRPhenomXPHM waveform

approximant. This complex IMR waveform model accounts for spin-precessing systems with subdominant harmonics. The ANN model is especially useful when precise signal-to-noise ratio (SNR) calculations are not critical, providing a quick and effective means of estimating Pdet. This value indicates detectability under Gaussian noise by determining if the SNR exceeds a certain threshold. Trained on a large dataset from the *ler* package, the ANN model uses 'partial scaled SNR' values as a primary input, reducing input dimensionality from 15 to 5 and enhancing accuracy. This approach offers a practical solution for assessing detectability under specified conditions. Other similar efforts with ANN models are detailed in Chapman-Bird et al. (2023), Gerosa et al. (2020) etc.

Acknowledgements

The author gratefully acknowledges the substantial contributions from all who supported this research. Special thanks go to my academic advisors for their invaluable guidance and unwavering support. The interactions with my research colleagues have greatly enriched this work. The Department of Physics at The Chinese University of Hong Kong is acknowledged for the Postgraduate Studentship that made this research possible. Thanks are also due to the LIGO Laboratory for the computational resources, supported by National Science Foundation Grants No. PHY-0757058 and No. PHY-0823459.

References

[]ref-tensorflow2015 Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, et al. 2015. "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems." https://www.tensorflow.org/.

Abbott, B. P., R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, et al. 2016. "ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914." *The Astrophysical Journal Letters* 818 (2): L22. https://doi.org/10.3847/2041-8205/818/2/122.

Abbott, B.P., R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, et al. 2016a. "Observation of Gravitational Waves from a Binary Black Hole Merger." *Physical Review Letters* 116 (6). https://doi.org/10.1103/physrevlett.116.061102.

Abbott, B.P., R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, et al. 2016b. "GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO." *Physical Review D* 93 (12). https://doi.org/10.1103/physrevd.93.122003.

Abbott, B. P., R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, et al. 2020. "Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA." *Living Reviews in Relativity* 23 (1). https://doi.org/10.1007/s41114-020-00026-9.

Acernese, F., M. Agathos, L. Aiello, A. Allocca, A. Amato, S. Ansoldi, S. Antier, et al. 2019. "Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light." *Phys. Rev. Lett.* 123 (December): 231108. https://doi.org/10.1103/PhysRevLett.123.231108.

Acernese, F, M Agathos, K Agatsuma, D Aisa, N Allemandou, A Allocca, J Amarni, et al. 2014. "Advanced Virgo: A Second-Generation Interferometric Gravitational Wave Detector." *Classical and Quantum Gravity* 32 (2): 024001. https://doi.org/10.1088/0264-9381/32/2/024001.

Akutsu, T., M. Ando, K. Arai, Y. Arai, S. Araki, A. Araya, N. Aritomi, et al. 2020. "Overview of KAGRA: Detector Design and Construction History." https://arxiv.org/abs/2005.05574.

Allen, Bruce, Warren G. Anderson, Patrick R. Brady, Duncan A. Brown, and Jolien D. E. Creighton. 2012. "FINDCHIRP: An Algorithm for Detection of Gravitational Waves from Inspiraling Compact Binaries." *Physical Review D* 85 (12). https://doi.org/10.1103/physrevd. 85.122006.

Ashton, Gregory, Sylvia Biscoveanu, Neil Cornish, Isaac Dal Canto, Prayush Kumar, Duncan Meacher, Hannah Middleton, Divyansh Mistry, Rory Smith, and Tom Stevenson. 2022. "bilby: a user-friendly Bayesian inference library." *GitHub Repository*. GitHub. https://github.com/GregoryAshton/Bilby.

Aso, Yoichi, Yuta Michimura, Kentaro Somiya, Masaki Ando, Osamu Miyakawa, Takanori Sekiguchi, Daisuke Tatsumi, and Hiroaki Yamamoto. 2013. "Interferometer Design of the KAGRA Gravitational Wave Detector." *Phys. Rev. D* 88 (August): 043007. https://doi.org/10.1103/PhysRevD.88.043007.

Buikema, A., C. Cahillane, G. L. Mansell, C. D. Blair, R. Abbott, C. Adams, R. X. Adhikari, et al. 2020. "Sensitivity and Performance of the Advanced LIGO Detectors in the Third Observing Run." *Phys. Rev. D* 102 (September): 062003. https://doi.org/10.1103/PhysRevD.102.062003.

Chapman-Bird, Christian E A et al. 2023. "Rapid Determination of LISA Sensitivity to Extreme Mass Ratio Inspirals with Machine Learning." *Monthly Notices of the Royal Astronomical Society* 522 (4): 6043–54. https://doi.org/10.1093/mnras/stad1397.

Gerosa, Davide et al. 2020. "Gravitational-Wave Selection Effects Using Neural-Network Classifiers." *Physical Review D* 102 (10). https://doi.org/10.1103/physrevd.102.103020.

Lam, Stan, Stéphane Pitrou, and Mark Seibert. 2022. "Numba: A High Performance Python Compiler." *Numba Documentation*. Anaconda, Inc. https://numba.pydata.org/.

LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration. 2018. "LVK Algorithm Library - LALSuite." Free software (GPL). https://doi.org/10.7935/GT1W-FZ16.

Ng, Leo C. Y., Justin Janquart, Hemantakumar Phurailatpam, Harsh Narola, Jason S. C. Poon, Chris Van Den Broeck, and Otto A. Hannuksela. 2024. "Uncovering Faint Lensed Gravitational-Wave Signals and Reprioritizing Their Follow-up Analysis Using Galaxy Lensing Forecasts with Detected Counterparts." https://arxiv.org/abs/2403.16532.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. 2011. "Scikit-Learn: Machine Learning in Python." *Journal of Machine Learning Research* 12: 2825–30.

Phurailatpam, Hemantakumar, Anupreeta More, Harsh Narola, Ng Chung Yin, Justin Janquart, Chris Van Den Broeck, Otto Akseli Hannuksela, Neha Singh, and David Keitel. 2024. "Ler: LVK (LIGO-Virgo-KAGRA Collaboration) Event (Compact-Binary Mergers) Rate Calculator and Simulator." https://arxiv.org/abs/2407.07526.

Taylor, Stephen R., and Davide Gerosa. 2018. "Mining Gravitational-Wave Catalogs to Understand Binary Stellar Evolution: A New Hierarchical Bayesian Framework." *Physical Review D* 98 (8). https://doi.org/10.1103/physrevd.98.083017.

The LIGO Scientific Collaboration, J Aasi, B P Abbott, R Abbott, T Abbott, M R Abernathy, K Ackley, et al. 2015. "Advanced LIGO." *Classical and Quantum Gravity* 32 (7): 074001. https://doi.org/10.1088/0264-9381/32/7/074001.

Thrane, Eric, and Colm Talbot. 2019. "An Introduction to Bayesian Inference in Gravitational-Wave Astronomy: Parameter Estimation, Model Selection, and Hierarchical Models." *Publications of the Astronomical Society of Australia* 36. https://doi.org/10.1017/pasa.2019.2.