MQE: Economic Inference from Data: Module 3: Instrumental Variables

Claire Duquennois

6/9/2020

Even with fixed effects, certain types of unobservables can still bias our estimates.

For OVB to not be a problem, we want a treatment variable x_i where we know that there does not exist some omitted variable x_{ov} such that

- $ightharpoonup cor(x_i, x_{ov}) \neq 0$
- ▶ and $cor(y_i, x_{ov}) \neq 0$.

This is a tall order...

But if you try sometimes,

But if you try <u>sometimes</u>, you just <u>might</u> find,

But if you try <u>sometimes</u>,
you just <u>might</u> find,
you get what you need: a good instrumental variable.

An instrument for what?

I am interested in the relationship between y and x_1 .

The true data generating process looks like this:

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- \triangleright x_i and x_2 are uncorrelated with ϵ
- x_i and x_2 they are correlated with each other such that $Cov(x_1, x_2) \neq 0$

So whats the problem?

you don't actually observe x₂.

Uh oh.

The problem:

The naive approach (but you of course know better then to do this...)

Regress y on just x_1 :

$$y_i = \beta_0 + \beta_1 x_1 + \nu$$

where

$$\nu = \beta_2 x_2 + \epsilon.$$

The problem:

$$\begin{split} \hat{\beta}_{1,OLS} &= \frac{cov(x_1, y)}{var(x_1)} \\ &= \frac{cov(x_1, \beta_0 + \beta_1 x_1 + \nu)}{var(x_1)} \\ &= \frac{cov(x_1, \beta_0) + cov(x_1, \beta_1 x_1) + cov(x_1, \nu)}{var(x_1)} \\ &= \frac{\beta_1 var(x_1) + cov(x_1, \nu)}{var(x_1)} \\ &= \beta_1 + \frac{cov(x_1, \nu)}{var(x_1)} \end{split}$$

 $cov(x_1, \nu) \neq 0 \Rightarrow \hat{\beta}_{1,OLS}$ is biased.

All is not lost!

An instrumental variable (IV) is a variable that

- ightharpoonup is correlated with the "good" or "exogenous" variation in x_1
- ▶ is unrelated to the "bad" or "endogenous" or "related-to-x₂" variation in x₁.

Formally

An IV is a variable, z that satisfies two important properties:

- ► $Cov(z, x_1) \neq 0$ (the first stage).
- $Cov(z, \nu) = 0$ (the exclusion restriction).

The First Stage

 $Cov(z, x_1) \neq 0$

- \triangleright z and x_1 are correlated
- the IV is useless without a first stage.

We are trying to get a $\hat{\beta}_1$ such that $E[\hat{\beta}_1] = \beta_1$. If our instrument is totally unrelated to x_1 , we won't have any hope of using it to get at β_1 .

The exclusion restriction

$$Cov(z, \nu) = 0$$

- \triangleright z has to affect y **only** through x_1 .
- ightharpoonup \Rightarrow $Cov(z,\epsilon)=0$ (because we've already assumed that x_2 is uncorrelated with ϵ).

The IV estimator

$$\hat{\beta}_{1,IV} = \frac{cov(z,y)}{cov(z,x)}$$

$$= \frac{cov(z,\beta_0 + \beta_1 x_1 + \nu)}{cov(z,x_1)}$$

$$= \beta_1 \frac{cov(z,x_1)}{cov(z,x_1)} + \frac{cov(z,\nu)}{cov(z,x_1)}$$

$$= \beta_1 + \frac{cov(z,\nu)}{cov(z,x_1)}.$$

With the exclusion restriction: $cov(z, \nu) = 0 \Rightarrow E[\hat{\beta}_{1,IV}] = \beta_1$ Woot Woot! We have an unbiased estimator!

Chasing Unicorns

- \triangleright z's that satisfy the first condition are easy to find, and we can test that $Cov(z, x_1) \neq 0$
- ightharpoonup z's that satisfy the exclusion restriction are rare and we cannot test that $Cov(z, \nu) = 0$ since we don't observe ϵ .

Chasing Unicorns

A good IV is not unlike a unicorn. It is quite powerful/magical as it will allow you to recover a consistent estimate of $\hat{\beta}_1$ in a situation that was otherwise hopeless.

Chasing Unicorns

It is also a rare, (some may argue imaginary) beast, that usually turns out to be a horse with an overly optimistic rider (author).

- be skeptical of instrumental variables regressions
- be wary of trying them yourself
- be prepared to convince people the exclusion restriction is satisfied

I generate some simulated data, with properties I fully understand:

The DGP: Y depends on two variables, X_1 and X_2 such that

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$$

- \triangleright x_1 and x_2 are correlated with $Cor(x_1, x_2) = 0.75$
- ightharpoonup z is correlated with x_1 such that $Cor(x_1, z) = 0.25$
- ightharpoonup z is not correlated with x_2 (so $Cor(x_2,z)=0$).

```
library(MASS)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.2
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018), stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
sigmaMat<-matrix(c(1,0.75,0.25,0.75,1,0,0.25,0,1), nrow=3)
sigmaMat
        [.1] [.2] [.3]
## [1,] 1.00 0.75 0.25
## [2,] 0.75 1.00 0.00
## [3.] 0.25 0.00 1.00
set.seed(3221)
ivdat<- as.data.frame(mvrnorm(10000, mu = c(0.0.0),</pre>
                     Sigma = sigmaMat))
names(ivdat) <- c("x_1", "x_2", "z")
cor(ivdat)
```

```
## x_1 x_2 z
## x_1 1.000000 0.753135403 0.237314050
## x_2 0.7531354 1.000000000 -0.008862925
## z 0.2373140 -0.008862925 1.00000000
```

```
ivdat$error<-rnorm(10000, mean=0, sd=1)
#The data generating process
B1<-10
B2<-(-20)
ivdat$Y<-ivdat$x_1*B1+ivdat$x_2*B2+ivdat$error
knitr::kable(head(ivdat))</pre>
```

Y	error	z	x_2	×_1
-9.253636	-0.6100699	0.6043023	0.8895539	0.9147512
1.736550	-0.9436084	1.6537624	0.7578459	1.7837077
11.994118	1.2663896	-0.0728647	-0.8811583	-0.6895438
-15.679784	0.1740300	0.2623387	1.0688671	0.5523528
38.493805	-0.5827891	0.6425111	-3.1155154	-2.3233713
4.483690	-0.6097235	0.2199799	-0.3597693	-0.2101972

```
simiv1<-lm(Y~x_1+x_2, data=ivdat)
simiv2<-lm(Y~x_1, data=ivdat)</pre>
```

How will our estimate of $\hat{\beta}_1$ in model 2 compare to the true β ?

 \Rightarrow Top Hat

```
stargazer(simiv1, simiv2, header=FALSE, type='latex', omit.stat = "all", single.row = TRUE)
```

Table 2

	Dependent variable:			
	(1)	(2)		
x_1 x_2	10.011*** (0.015) -20.009*** (0.015)	-5.233*** (0.134)		
Constant	0.016 (0.010)	0.079 (0.134)		
Note:	*p<0.1; *	**p<0.05; ***p<0.01		

- With the correctly specified model $E[\hat{\beta}_1] = \beta_1$.
- ▶ If I do not observe x_2 , the naive approach is biased.

Suppose there exists a variable z that satisfies the two conditions outlined above:

- $ightharpoonup Cov(z, V_1) \neq 0$ (the first stage).
- $Cov(z, \nu) = 0$ (the exclusion restriction).

Our simulated data includes z, a variable with these properties cor(ivdat\$z, ivdat\$x 1)

```
[1] 0.237314
```

#note: we can test this correlation because I am working with simulated data and observe \mathbf{x}_2 .
#In the wild \mathbf{x}_2 would be unobservable and you would have to argue that this condition holds.

ivdat\$nu<-B2*ivdat\$x_2+ivdat\$error
cor(ivdat\$z, ivdat\$nu)</pre>

I instrument my endogenous variable, x_1 , with my instrument z: $_{\mathtt{library(lfe)}}$

```
## Loading required package: Matrix
simiv3<-felm(Y~1|0|(x_1~z),ivdat)</pre>
```


- ▶ I get an unbiased estimate of β_1 !
- Careful: R² values get real funky (negative!?!) don't use.

Table 3

	Dependent variable:				
		Υ			
	OLS		felm		
	(1)	(2)	(3)		
x_1	10.011*** (0.015)	-5.233*** (0.134)			
x_2	-20.009*** (0.015)				
'x_1(fit)'			10.766*** (0.878)		
Constant	0.016 (0.010)	0.079 (0.134)	-0.036 (0.209)		
R ²	0.995	0.133	-1.111		
Adjusted R ²	0.995	0.133	-1.112		
Noto:	* n < 0 1. ** n < 0 05. *** n < 0 01				

Note: *p<0.1; **p<0.05; ***p<0.01

2SLS:

How does β_{IV} uses the instrumental variable to retrieve an unbiased estimate?

To build intuition, let's look at the two-stage least squares (2SLS) estimator β_{2SLS} .

When we are working with only one instrument and one endogenous regressor, $\beta_{IV}=\beta_{2SLS}.$