University of Toronto Faculty of Applied Science and Engineering

ESC194F Calculus

Midterm Test

9:10 – 10:55, 23 November 2023

105 minutes

No calculators or aids

There are 10 questions, each question is worth 10 marks

Examiners: P.C. Stangeby and J.W. Davis

1) Find
$$\frac{dy}{dx}$$
 for:

a)
$$y = \ln(2x)$$

b)
$$v = e^{-x^2}$$

a)
$$y = \ln(2x)$$
 b) $y = e^{-x^2}$ c) $y = \ln[x + (x^2 - 1)^{1/2}]$

d)
$$y = \frac{1}{x(x+1)(x+2)\cdots(x+n)}$$
 where $n > 2$ is a positive integer

a)
$$\frac{dy}{dx} = \frac{1}{2x} \cdot z = \frac{1}{x}$$

b)
$$\frac{dy}{dx} = e^{-x^2}(-2x) = -2xe^{-x^2}$$

e)
$$\frac{dy}{dx} = \frac{1}{x + (x^2 - 1)^{1/2}} \cdot (1 + \frac{1}{2}(x^2 - 1)^{1/2}(2x)) = \frac{1}{x + (x^2 - 1)^{1/2}} \left(1 + \frac{x}{(x^2 - 1)^{1/2}}\right)$$

$$= \frac{1}{x + (x^2 - 1)^{1/2}} \left(\frac{(x^2 - 1)^{1/2} + x}{(x^2 - 1)^{1/2}}\right) = (x^2 - 1)^{-1/2}$$

d)
$$\frac{dy}{dx} = \frac{-1}{x(x+1)\cdots(x+n)} \left[\frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2} + \cdots + \frac{1}{x+n} \right]$$

2) Evaluate the integrals:

a)
$$\int_0^{\pi} \sin 5x \, dx = \left[-\frac{1}{5} \cos 5x \right]_0^{\pi} = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}$$

b)
$$\int_{1}^{8} x^{-2/3} dx = \left[3 \times \right]_{1}^{8} = 6 - 3 = 3$$

c)
$$\int \frac{dx}{ax+b} dx = \frac{1}{a} |n| ax+b| + C$$

$$(a \neq 0)$$

d)
$$\int_{-\pi/3}^{\pi/3} x^4 \sin x \, dx = 0 \qquad \left(x^4 \sin x \text{ is an odd function} \right)$$

e)
$$\int_{0}^{4} |\sqrt{x} - 1| dx = \int_{0}^{1} (1 - \sqrt{2}) dx + \int_{1}^{4} (\sqrt{3}x - 1) dx$$

$$= \left[x - \frac{2}{3}x^{3/2} \right]_{0}^{1} + \left[\frac{2}{3}x^{3/2} - x \right]_{1}^{4}$$

$$= 1 - \frac{2}{3} + \frac{16}{3} - 4 - \frac{2}{3} + 1$$

$$= 2$$

3) Find the area of the region that lies between the curves $f(x) = x^2 - x$ and $g(x) = x - x^2$ on the interval [-1,2]. Provide a sketch of the region.

Intersections: x2-x=x-22 =7 2x=2x2 =7 x=0,1

$$R = \int_{-1}^{0} \left[(x^{2} - x) - (x - x^{2}) \right] dx + \int_{0}^{1} \left[(x - x^{2}) - (x^{2} - x) \right] dx + \int_{0}^{2} \left[(x^{2} - x) - (x - x^{2}) \right] dx$$

$$= \int_{-1}^{0} \left(2x^{2} - 2x \right) dx + \int_{0}^{1} \left(2x - 2x^{2} \right) dx + \int_{0}^{2} \left(2x^{2} - 2x \right) dx$$

$$= \left[\frac{2x^{3}}{3} - x^{2} \right]_{-1}^{0} + \left[x^{2} - \frac{2x^{3}}{3} \right]_{0}^{1} + \left[\frac{2x^{3}}{3} - x^{2} \right]_{1}^{2}$$

$$= \left(\frac{2}{3} + 1 \right) + \left(1 - \frac{2}{3} \right) + \left(\frac{16}{3} - 4 \right) - \left(\frac{2}{3} - 1 \right)$$

$$= \frac{5}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{11}{3}$$

- 4) a) A rectangle is constructed with one side on the x-axis, one side on the positive y-axis, and the vertex opposite the origin on the line y = 10 2x. What dimensions maximize the area of the rectangle? What is the maximum area?
 - b) Is it possible to construct a rectangle with a greater area than that found in part (a) by placing one side of the rectangle on the line y = 10 2x and the two vertices not on that line on the positive x- and y-axes? Find the dimensions of the rectangle of maximum area that can be constructed this way.

61

a)
$$A = \alpha(10-2\alpha) \Rightarrow A = 10-4\alpha \Rightarrow A = 0 \Rightarrow \alpha = \frac{5}{2} : A = \frac{25}{2}$$

b)
$$l = \int (2a)^2 + a^2 = \int 5a$$

to find w, set $2a + \frac{3}{2} = 10 - 2x = 7\frac{5}{2}x = 10 - 2a = 7x = 20 - 4a$
 $\therefore y = 2 + \frac{8a}{5}$

:
$$A = 1.w = 10a - 7a^2$$
: $A' = 10 - 4a = A' = 0 = a = \frac{5}{2}$
: $A = 10(\frac{5}{2}) - 2(\frac{5}{2})^2 = \frac{25}{2}$

- 5) Consider the region R in the first quadrant bounded by $y = x^{1/n}$ and $y = x^n$, where n > 1 is a positive number.
 - a) Find the volume V(n) of the solid generated when R is revolved about the x-axis. Express your answer in terms of n. Provide a sketch of the region.
 - b) Evaluate $\lim_{n\to\infty}V(n)$. Interpret this limit geometrically.

a)
$$V = \int_{0}^{1} T \left(\left(\frac{1}{x^{2}} \right)^{2} - x^{2} \right) dx = T \left[\frac{2}{x^{2}+1} - \frac{2}{2x+1} \right]_{0}^{1}$$

$$= T \left(\frac{1}{x^{2}+1} - \frac{1}{2x+1} \right) = T \left(\frac{n}{2+n} - \frac{1}{2n+1} \right)$$

$$= T \left(\frac{2n^{2}+n - 2-n}{(2+n)(2n+1)} \right) = T \frac{2(n^{2}-1)}{2n^{2}+5n+2}$$

6) Show that the function $g(x) = \sqrt{x-2}$, $x \ge 2$, is one-to-one and find its inverse. Provide a simple sketch of g(x) and $g^{-1}(x)$.

For $x_1 \neq x_2 \Rightarrow x_1 - 2 \neq x_2 - 2 \Rightarrow \int x_1 - 2 \neq \int x_2 - 2$: $g(x) = \int x - 2 = x + \int x_2 - 2$

let $y = g'(z) \implies x = g(y) = Jy-z' \implies y = z^2 + z$ $y = z^2 + z$

 $:. g'(x) = x^2 + 2, x = 20$

- 7) For the function: $f(x) = \ln(1 + x^3)$
 - i) Determine the domain of f, the x and y intercepts, and identify any symmetry.
 - ii) Find the intervals in which f increases or decreases.
 - iii) Find the extreme values.
 - iv) Determine the concavity of the graph.
 - v) Sketch the graph specifying the points of inflection, asymptotes and vertical tangents, if any.

i)
$$1+x^3 70 \Rightarrow x^3 7-1 \Rightarrow x7-1 : Domain (-1,00)$$

 $f(0) = |x| = 0 : intercept (0,0)$
no symmetry

ii)
$$f'(x) = \frac{3z^2}{1+x^3}$$
 $f'(x) = \frac{3z^2}{1+x^3}$ $f'(x) = \frac{3z^2}{1+x^3}$ $f'(x) = \frac{3z^2}{1+x^3}$

(iv)
$$f''(x) = \frac{(1+x^3)(1x) - 3x^2(3x^2)}{(1+x^3)^2} = \frac{3x[2(1+x^3) - 3x^3]}{(1+x^3)^2} = \frac{3x[2-x^3]}{(1+x^3)^2} = \frac{3x[2-x^3]}{(1+x^3)^2} = \frac{3x[2-x^3]}{(1+x^3)^2}$$

$$f'' = 0 \quad \text{at} \quad x = 0, \quad x = 2^{1/3} : (-1,0) \Rightarrow f'' = 0 : \text{concave down}$$

$$(0,2^{1/3}) \Rightarrow f'' = 0 : \text{up}$$

$$(2^{1/3}, \infty) \Rightarrow f'' = 0 : \text{up}$$

v)
$$\lim_{x \to -1^+} \ln(1+x^3) = -\infty$$

 $\therefore x = -1$ is a vertical asymptote

8) Given
$$a$$
 a constant, find $f'(x)$ for:

a)
$$f(x) = x^{a^a}$$

$$b) f(x) = a^{x^a}$$

c)
$$f(x) = a^{a^x}$$

d)
$$f(x) = x^{x^x}$$

a) let
$$y = x^{\alpha^{\alpha}} \Rightarrow \ln y = \alpha^{\alpha} \ln x \Rightarrow y' = \alpha^{\alpha} \Rightarrow y' = \alpha^{\alpha} x^{\alpha^{\alpha}}$$

$$\Rightarrow y' = \alpha^{\alpha} x^{\alpha^{\alpha}-1}$$

b) let
$$y = \alpha^{x^{\alpha}}$$
 => $|ny| = x^{\alpha} |n\alpha|$ $\Rightarrow \frac{y'}{y} = \alpha x^{\alpha} |n\alpha|$
 $\Rightarrow y' = \alpha |n\alpha| (x^{\alpha + 1}, \alpha^{+x^{\alpha}})$
 $= x^{-1} \alpha^{1+x^{\alpha}} |n\alpha|$

c) let
$$y = a^{\alpha x} \Rightarrow \ln y = a^{21} \ln \alpha \Rightarrow \frac{y'}{y} = \ln a \cdot \alpha^{2} \cdot \ln \alpha$$

$$\Rightarrow y' = a^{\alpha x} \cdot a^{x} \cdot (\ln \alpha)^{2}$$

$$= a^{x+\alpha^{x}} \cdot (\ln \alpha)^{2}$$

d) led
$$y = x^{x^{2}} \Rightarrow \ln y = x^{2} \ln x \Rightarrow y' = x^{2} + (x^{2}) \ln x$$

let $z = x^{2} \Rightarrow \ln z = x \ln x \Rightarrow z' = \ln x + x' = 1 + \ln x$

$$\therefore 2' = x^{2} (1 + \ln x) = (x^{2})^{2}$$

$$\Rightarrow y' = x^{2} (x^{2}) + x^{2} (1 + \ln x) \ln x$$

Page 9 of 11

 $= \chi^{(\chi^2 + \chi - 1)} + \chi^{(\chi^2 + \chi)} (1 + \ln \chi) \ln \chi$

9) A function F is defined by the following integral: $F(x) = \int_1^x \frac{e^t}{t} dt$ for x > 0. For what values of x is $\ln x \le F(x)$?

$$F(x) = \int_{1}^{x} \frac{e^{t}}{t} dt , \quad |nx| = \int_{1}^{x} \frac{1}{t} dt$$

=> for
$$x=1$$
, $F(1) = |n| = 0$

$$F(x) = -\int_{x}^{x} \frac{e^{t}}{t} dt$$

$$: F(x) - \ln x = - \int_{x}^{1} \frac{e^{t} - 1}{t} dt < 0$$

10) Evaluate:
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n}\sqrt{n+1}} + \frac{1}{\sqrt{n}\sqrt{n+2}} + \dots + \frac{1}{\sqrt{n}\sqrt{n+n}} \right)$$

$$\int_{\mathbb{R}} f(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x) = \int_{\mathbb{R}}$$

$$\Rightarrow \lim_{N \to \infty} \frac{2}{|x|} = \lim_{N \to \infty} \frac{2}{|x|} = \lim_{N \to \infty} \frac{2}{|x|} = \int_{1}^{2} f(x) dx$$

$$= \int_{1}^{2} \frac{dx}{\sqrt{x}} = \left[\frac{2}{\sqrt{x}} \right]_{1}^{2} = \frac{2}{\sqrt{x}} = \frac{2}{$$