Status of the Neutron Radiative Decay Experiment

RDK II Collaboration

R. Alarcon¹, M. Bales², C. Bass³, E. Beise⁴, H. Breuer⁴, J. Byrne⁵, T. Chupp², K. Coakley³, R. Cooper⁶,

M. Dewey³, C. Fu³, T. Gentile³, H. Mumm³, J. Nico³,

B. O'Neill¹, A. Thompson¹, F. Wietfeldt⁷

¹Arizona State University

²University of Michigan

³National Institute of Standards and Technology

⁴University of Maryland

⁵University of Sussex

⁶Indiana University

⁷Tulane University

Radiative Decay Measurement

- Measure neutron radiative decay branching ratio and energy sprectrum to 1% uncertainty
 - 10% uncertainty in RKD I
- Test QED neutron radiative corrections
- Challenges
 - Long lifetime $\tau_n = (881.5 \pm 1.5)$ s
 - Small branching ratio
 - Large γ background

$$n \rightarrow p^+ + e^- + v_a^- + \gamma + 782 \text{keV}$$

Motivation

- RDK I^{1,2}
 - (3.09±0.30[syst.]±0.11[stat.])×10⁻³
- RDK II
 - Goal 1% uncertainty
- Beyond 0.5%
 - Non-leading order terms
 - Proton bremsstrahlung
 - Recoil corrections
 - Polarization (n, y, etc.)
 - Gardner & He³

¹Cooper, R. *et al.* PRC 81, 035503 (2010)

²Nico, J. S. *et al. Nature* 444, 1059–1062 (2006)

³arXiv:1101.1128v1

NIST Beam Line

Experimental Setup

- Neutrons decay along beam
- •Protons and electrons are confined in cyclotron orbits by magnetic field and guided into silicon detector
- •Electrostatic mirror turns around "wrong-way" protons
- Protons are accelerated into the silicon detector
- Waveform base data acquisition

Electron-Proton Detector

- Surface Barrier Detector (SBD)
 - 1-1.5mm thick
 - 600mm² area
 - At -25kV bias

Electron-Proton Detector

SBD amplified signal

Scintillator Detector

- Bismuth germanate (BGO) scintillator crystals coupled to avalanche photodiodes (APD)
 - 12 Detectors
 - 200x12x12mm³
 BGOs
 - 14x14mm² APDs
 - ~5keV endpoint

Scintillator Detector

BGO-APD pre-amp signal

Direct Detector

- Large area bare (non scintillating) avalanche photo-diode (bAPD) to extend low energy range
 - 3 detectors
 - 28x28mm²
 - ~500eV ~20keV

Direct Detector

bAPD pre-amp signal

Simulation

Critical to extracting results:

- Monte Carlo
 - Geant4
 - MCMP
- EM Field
 - Biot-Savart
 - TOSCA

Electron-Proton ToF

Status of RDK II Analysis

Photon timing

Status of RDK II Analysis

Conclusion

- Achieved ~0.5% statistics on branching ratio
- Expanded energy range below 1keV and up to the endpoint (approx 780keV)
- Work continues on systematic errors
 - Analysis of Calibrations
 - Detector response, temperature dependence, non-linearity
 - Monte Carlo
- Goal of ~1% total uncertainty on branching ratio and energy spectrum
- Future work pending results of analysis