MI-FME Cvičení 11

Tomáš Chvosta

Duben 2020

Uvažujte následující specifikaci programu:

```
• Input: x, y \in \mathbb{N}_0, y \ge 1

• Output: xy

r \leftarrow x

i \leftarrow 1

while i < y do

@

r \leftarrow r + x

i \leftarrow i + 1

@ r = xy

return r
```

Cvičení 11a

Zadání

Vytvořte tabulku, která bude ukazovat hodnoty proměnných r a i v místě programu s chybějící assertací ve všech iteracích cyklu pro nějaké netriviální vstupy x a y.

Řešení

Nejprve pojďme zvolit dvě libovolné hodnoty x a y (samozřejmě tak, aby platilo, že $x,y\in\mathbb{N}_0,y\geq 1$). Například x=10 a y=5. Následující tabulka zobrazuje hodnoty proměnných i a r v místě programu s chybějící assertací pro celý běh programu:

	i	r
	1	10
Ī	2	20
	3	30
	4	40

Nyní si pojďme ukázat, jak bude tabulka vypadat pro obecné hodnoty x,y a $n\in\{1,...,y-1\}$:

i	r
1	x
2 3	2x
3	3x
	•
n	nx
y-1	(y-1)x

Cvičení 11b

Zadání

Pokuste se odhadnout chybějící assertaci uvnitř cyklu.

Řešení

Z předchozích tabulek se můžeme pokusit odhadnout, který výraz bychom mohli doplnit do assertace na začátku cyklu. Z tabulky lze vypozorovat následující vlastnosti:

- \bullet r = ix
- \bullet i < y

Pojďme tedy tyto dvě vlastnosti doplnit do assertace na začátku cyklu. Doplněním vznikne následující program:

```
\begin{split} r &\leftarrow x \\ i \leftarrow 1 \\ \textbf{while} \ i < y \ \textbf{do} \\ &@ \ r = ix \land i < y \\ r \leftarrow r + x \\ i \leftarrow i + 1 \\ @ \ r = xy \\ \textbf{return} \ r \end{split}
```

Cvičení 11c

Zadání

Zapište odpovídající základní cesty programu a zkontrolujte, zda platí jejich ověřovací podmínky.

Řešení

Z programu v předchozí sekci lze vytvořit následující základní cesty programu.

Základní cesta 1

```
\begin{aligned} r &\leftarrow x \\ i &\leftarrow 1 \\ \textbf{assume} \ \neg (i < y) \\ @ \ r &= xy \end{aligned}
```

SSA forma 1

V tomto případě není třeba zavádět nové názvy proměnných.

Logická formule 1

$$(\forall x, y, r, i \in \mathbb{N}_0, y \ge 1)([r = x \land i = 1 \land \neg(i < y)] \Rightarrow r = xy)$$

Ověřovací podmínka 1

Máme předpoklady $r=x,\ i=1,\ \neg(i< y)$ a máme dokázat r=xy. Z předpokladů $\neg(i< y)$ a i=1 můžeme vytvořit předpoklad $y\leq 1$. Jelikož však zadání definuje, že $y\geq 1$, může y nabývat pouze hodnoty y=1. Použijeme tedy předpoklady r=x a y=1 a dosadíme je do dokazované části formule r=xy, čímž dostaneme x=x, což je triviálně dokázáno. Ověřovací podmínka pro základní cestu 1 tedy platí.

Základní cesta 2

```
\begin{split} r \leftarrow x \\ i \leftarrow 1 \\ \textbf{assume} \ i < y \\ @ \ r = ix \land i < y \end{split}
```

SSA forma 2

V tomto případě není třeba zavádět nové názvy proměnných.

Logická formule 2

$$(\forall x, y, r, i \in \mathbb{N}_0, y \ge 1)([r = x \land i = 1 \land i < y] \Rightarrow [r = ix \land i < y])$$

Ověřovací podmínka 2

Máme předpoklady $r=x,\ i=1,\ i< y$ a máme dokázat $r=ix\wedge i< y$, tedy dokázat zvlášť r=ix a i< y. Můžeme si všimnout, že i< y je zároveň i předpoklad, tedy tuto část máme triviálně dokázanou. Nyní použijeme předpoklady r=x a i=1 a dosadíme je do dokazované části formule r=ix, čímž dostaneme x=x, což je triviálně dokázáno. Ověřovací podmínka pro základní cestu 2 tedy platí.

Základní cesta 3

SSA forma 3

Logická formule 3

$$(\forall x, y, r, i \in \mathbb{N}_0, y \ge 1)$$

$$([r = ix \land i < y \land r_1 = r + x \land i_1 = i + 1 \land i_1 < y] \Rightarrow [r_1 = i_1 x \land i_1 < y])$$

Ověřovací podmínka 3

Máme předpoklady $r=ix,\ i< y,\ r_1=r+x,\ i_1=i+1,\ i_1< y$ a máme dokázat $r_1=i_1x\wedge i_1< y,$ tedy dokázat zvlášť $r_1=i_1x$ a $i_1< y.$ Můžeme si všimnout, že $i_1< y$ je zároveň i předpoklad, tedy tuto část máme triviálně dokázanou. Z předpokladů r=ix a $r_1=r+x$ můžeme vytvořit nový předpoklad $r_1=(i+1)x.$ Do tohoto předpokladu můžeme dosadit předpoklad $i_1=i+1,$ čímž vznikne předpoklad $r_1=i_1x,$ což jsme zároveň měli dokázat. Ověřovací podmínka pro základní cestu 3 tedy platí.

Základní cesta 4

SSA forma 4

Logická formule 4

$$(\forall x, y, r, i \in \mathbb{N}_0, y \ge 1)$$

$$([r = ix \land i < y \land r_1 = r + x \land i_1 = i + 1 \land \neg(i_1 < y)] \Rightarrow r_1 = xy)$$

Ověřovací podmínka 4

Máme předpoklady $r=ix,\ i< y,\ r_1=r+x,\ i_1=i+1,\ \neg(i_1< y)$ a máme dokázat $r_1=xy$. Z předpokladů r=ix a $r_1=r+x$ můžeme vytvořit nový předpoklad $r_1=(i+1)x$. Do tohoto předpokladu můžeme dosadit předpoklad $i_1=i+1$, čímž vznikne nový předpoklad $r_1=i_1x$. Dále můžeme získat z předpokladu $\neg(i_1< y)$ předpoklad $y\le i_1$, který můžeme následně spojit s předpokladem i< y, čímž získáme předpoklad $i< y\le i_1$ z čehož zjistíme, že $y=i_1$. Tento nový předpoklad můžeme dosadit do předpokladu $r_1=i_1x$ a tím zíksat $r_1=xy$, což jsme zároveň měli dokázat. Ověřovací podmínka pro základní cestu 4 tedy platí.

Cvičení 11d

Zadání

Pokud jsou všechny základní cesty programu korektní, stejně tak jako celý algoritmus, pak je úkol dokončen. V opačném případě upravte assertaci uvnitř cyklu a pokračujte předchozími dvěma úkoly, dokud nejsou všechny základní cesty korektní.

Řešení

V předchozí sekci si můžeme všimnout, že všechny základní cesty programu jsou korektní a tím tedy i celý algoritmus.