Tugas 2			
iv.			
1) Sebuah Maniabel random x memy	runyai rungsi densitas proLabita		
Ce-> Tentulcan nicaj c yang layo	ale, Jengan asumsi 0 < x 200		
Tentikan reuta-rata den vanan pe	ngsi dansitas probabilitax.		
(b) Menontulcan niliai cy yang	iayak		
- Fungsi danstres probabilitus dan X = FX (x) = ce-co			
- syarat total probabilitas: 500 ce-cx dx=1			
SOTINOTIEM BANKED			
fublitusikan fx (x) 2 (00 ce-cx dx=1			
∫∞ e-1× 2× = 1			
$\int_{c}^{\infty} \int_{0}^{\infty} e^{-cx} dx = c \cdot \frac{1}{c} = 1$			
	h berapapun nivai positif Untulc		
memulahkan perhitugan salanjung			
2) mean (ruta-raya)	3) varian dan x		
-parta-rara pe dan x a mas	Varian o 2 Jan x adaran		
po h = 200 x Ex (x) qx	62 = E[x1] - [[x])2		
-, Subthesilian Fx (x) = ex	= himy E[x2]=		
10 h = Jo x6 -x 9x	E [x,] = 100 x + x (x) gx		
1= x8-x 9x=1	- Subhtesilean FX(x) = ex		
mean X -> m=1	*[x2] = 500 x = e = 2x		
4	1 / x2e-x dx = 2		
	/- E[x2]=2		
) rang - 7 [[x] - [E[x])2		
	- 2 - 13 = 2 - 1 = [
	GARDA		

2) permintuan sueur produk adauar -1,0,+1,+2, perhain dang an probability maring-maring 1 1, 2, 3, se buch permintuan deri-1 manyarata, secura hidale languary de buan unit dikambankan. Tennahan menerata pepmintuan dan nandannya. Gamberkan pungsi listributornya (1) maan N = 5; X, P; tr -1,0,1,2 Permintagn , pi = nhai probability To 1 , 10, 2 , 3 N = (-1) (=) +0 (1)+1 (2)+23 (3) pungsi distribug kumuccust (cop) F(x) 7 didopininilan sahayai probability bahu N= 1 to + 2 + 6 variable random & lung don afer sana lengan x D=-0,2 + 0+0,4 +0,6 1) F(-1) = V (x < -1) = N = 0,8 $\frac{1}{2}$ $+ \frac{1}{10}$ $+ \frac{1}{10}$ (1) variants permintary $\sigma^2 = \sum_{i=1}^{\infty} (x_i - \mu)^2 v_i$ N= 0,8 62 = (-1 -0,8)2 (1/s) + (0-0,3)2 (1/b)+ 6 02 = (-1,8)2 (1)+ (-0,8)2 (1)+ 014--0,0

$$_{P}(X < 30) = \sum_{x=0}^{29} P(X = x)$$

Maka:

	distribusi	20
0	2,0612E-09	
1	4,1223E-08	
2	4,1223E-07	
3	2,7482E-06	
4	1,3741E-05	
5	5,4964E-05	
6	0,00018321	
7	0,00052347	
8	0,00130867	
9	0,00290815	
10	0,00581631	
11	0,0105751	
12	0,01762517	
13	0,02711565	
14	0,03873664	
15	0,05164885	
16	0.06456107	
17	0.0759542	
18	0.08439355	
19	0.08883532	
20	0.08883532	
21	0.08460506	
22	0.07691369	
23	0,06688147	
24	0,05573456	
25	0,04458765	
26	0,03429819	
27	0,02540607	
28	0,01814719	
29	0,0125153	
Jumlah	0,97818178	

probabilitas 0.978~~ atau sekitar 97

4. Misalkan fungsi densitas probabilita sebagai berikut:

$$f(x) = kx$$
$$= k(4 - x)$$
$$= 0$$

$$0 \le x < 2$$

$$2 \le x \le 4$$

$$lainnya$$

- (a) Tentukan nilai k yang f adalah fungsi densitas probabilita.
- (b) Tentukan rata-rata dan varian X.
- (c) Tentukan fungsi distribusi kumulatif.

Jawaban:

(a) Menentukan nilai K Fungsi densitas probabilitas f(x) harus memenuhi syarat yaituintegral f(x) = 1

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Diketahui di soal kx untuk interval $0 \le x < 2$ dan k(4-x) untuk $2 \le x \le 4$ maka intervalnya menjadi $0 \le x \le 4$ maka bis akita tulisakan seperti ini:

$$\int_{0}^{4} f(x)dx = \int_{0}^{4} kxdx + \int_{2}^{4} k(4-x)dx = 1$$

Maka perhitungannya menjadi:

$$\int_0^2 \frac{2}{kx dx = k \int x \, dx k} = k \left[\frac{x^2}{2} \right]_0^2 = \left(\frac{2^2}{2} - \frac{0^2}{2} \right) = k \cdot 2 = 2$$

$$\int_{2}^{4} k(4-x)dx = k \int_{2}^{4} (4-x)dx = k[4x - \frac{x^{2}}{2}]_{2}^{4}$$

$$[4x - \frac{x^2}{2}]_2^4 = (16 - 8) - (8 - 2) = 8 - 6 = 2$$

$$k, 2 = 2k$$

Sehingga 2k + 2k = 4k

Karena integral f(x) = 1 maka 4k = 1, sehingga

$$k = \frac{1}{4}$$

(b) Menentukan rata-rata dan varians X Pertama kita menentukan **rata-rata** dulu

$$[X] = \int_0^2 x + \int_2^4 x \cdot k(4 - x) dx$$

Substitusikan k yang sudah didapat sebelumnya

$$[X] = \int_0^2 x \cdot \frac{1}{4} x dx + \int_2^4 x \cdot \frac{1}{4} (4 - x)_{dx}$$
$$\int_0^2 \frac{1}{4} x^2 dx = \frac{1}{4} \left[\frac{x^3}{3} \right]_0^2 = \frac{1}{4} \cdot \frac{8}{3} = \frac{2}{3}$$

$$\begin{bmatrix} 2 \\ x \end{bmatrix}$$

$$\int_{2}^{4} \frac{1}{4} x (4 - x) dx = \frac{1}{4} \int_{2}^{4} (4x - x^{2}) dx = \frac{1}{4} \left[4 \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{2}^{4}$$

$$^{2} - \frac{x}{3} \Big|_{2}^{2} = (32 - 21.333 \sim) - (8 - 2.666 \sim) = \frac{1}{4}.5.3 \sim = 1.3$$

$$\frac{2}{E[X] = 3 + 1.3 \sim} = 2$$

Kedua kita menentukan varians X

$$Var(X) = E[X^2] - (E[X])^2$$

Karena E[X] sudah didapat maka kita hanya perlu menentukan

$$[X^{2}] = \int_{0}^{2} x^{2} \cdot \frac{1}{4} dx + \int_{2}^{4} x^{2} \cdot \frac{1}{4} (4 - x)_{dx}$$
$$[X^{2}] = \int_{0}^{2} x^{3} \cdot \frac{1}{4} dx + \int_{2}^{4} x^{2} \cdot \frac{1}{4} (4 - x)_{dx}$$

Kemudian mari menghitung integralnya

$$\int_{0}^{2} \frac{1}{4} x^{3} dx = \frac{1}{4} \left[\frac{x^{4}}{4} \right]_{0}^{2} = \frac{1}{4} \cdot \frac{16}{4} = 1$$

$$\int_{2}^{4} \frac{1}{4} x^{2} (4 - x) dx = \frac{1}{4} \int_{2}^{4} (4x^{2} - x^{3}) dx = \frac{1}{4} \left[4 \frac{x^{3}}{3} - \frac{x^{4}}{4} \right]_{2}^{4}$$

$$\left[4 \frac{x^{3}}{3} - \frac{x^{44}}{4} \right]_{2}^{256} = \left(\frac{32}{3} - 64 \right) - \left(\frac{32}{3} - 4 \right) = 21.3 \sim -6.6 \sim = 14.6$$

$$\frac{1}{4} \cdot 14.6 \approx 3.6$$

$$E[X^2] = 1 + 3.6 \cong 4.6 \sim$$

Maka:

$$Var(X) = E[X^2] - (E[X])^2 = 4.6 \sim -2^2 = 0.6 \sim$$

(c) Menentukan fungsi distributive kumulatif Rumus untuk fungsi distibusi kumulatif adalah:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

Kemudian tentukan kumulatif setiap intervalUntuk

interval $0 \le x < 2$:

$$(x) = \int_{-\frac{\pi}{4}}^{x} t dt = \frac{1}{4} \left[\frac{1}{2} \right]_{0} = \int_{-\frac{\pi}{4}}^{x} \int_{-\frac{\pi}{4}}^{x} x dt = \frac{1}{4} \left[\frac{1}{2} \right]_{0} = \int_{-\frac{\pi}{4}}^{x} x dt = \frac{1}{4} \left[\frac{1}{2} \right]_{0} = \int_{-\frac{\pi}{4}}^{x} x dt = \frac{1}{4} \left[\frac{1}{2} \right]_{0} = \int_{-\frac{\pi}{4}}^{x} x dt = \frac{1}{4} \left[\frac{1}{2} \right]_{0} = \int_{-\frac{\pi}{4}}^{x} x dt = \frac{1}{4} \left[\frac{1}{2} \right]_{0} = \frac$$

Untuk interval $2 \le x \le 4$

$$(x) = \int_0^2 \frac{1}{4} t dt + \int_2^x \frac{1}{4} (4 - t) dt = \frac{1}{8} \cdot 4 + \frac{1}{4} \left[4t - \frac{t^2}{2} \right]_2^x$$

$$= \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{x}{2} \qquad \frac{x}{2} \cdot \frac{x}{4} \qquad \frac{x}{2}$$

$$= \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{x}{4} \cdot \frac{x}{2} \qquad \frac{x}{2} \cdot \frac{x}{4} \qquad \frac{x}{2} \cdot \frac{x}{2}$$

$$= \frac{1}{4} \cdot \frac{x^2}{4} \cdot \frac{3}{4} \cdot \frac{x^2}{4} \qquad \frac{x^2}{4} \quad \frac{x^2}{4} \cdot \frac{x^2}{4} \qquad \frac{x^2}{4} \cdot \frac{x^2}{4} \qquad \frac{x^2}{4} \qquad \frac{x^2}{4} \cdot \frac{x^2}{4} \qquad \frac{x^2}{4} \quad \frac{x^2}{4} \qquad \frac{x^2}{4} \quad \frac{x^2}{4} \qquad \frac{x^2}{4} \qquad$$

Untuk x > 4

$$F(x) = 1$$

Karena probabilitas sudah terakumulasi menjadi 1, mencakupsemua nilai x dari 0 hingga 4.