ANÀLISI MATEMÀTICA (AMA)

UT4 - Problemas propuestos: GENERALIDADES Y CÁLCULO DE LÍMITES

1. Para las sucesiones $\{a_n\}$, $\{b_n\}$ y $\{c_n\}$ definidas mediante

$$a_n = \frac{(-1)^n}{(n+1)!} \quad , \quad b_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \quad , \quad \left\{ \begin{array}{l} c_n = 4n + c_{n-1} & , \quad n \geq 2 \\ c_1 = 1 & \end{array} \right.$$

determina los valores de a_2 , a_4 , b_1 , b_4 , c_3 y c_5 .

- 2. A partir de las subsucesiones de los términos pares e impares de la sucesión $a_n = [(-1)^n + 1]\cos(n\pi)$, deduce si $\{a_n\}$ converge o diverge.
- 3. Calcula los límites de las sucesiones:

a)
$$\frac{4-2n-3n^2}{2n^2+n}$$

b)
$$\frac{\sqrt{3n^2-5n+4}}{2n-7}$$

c)
$$\sqrt[3]{\frac{(3-\sqrt{n})(\sqrt{n}+2)}{8n+4}}$$

d)
$$\sqrt{2n^2+3}-\sqrt{n^2-n}$$

e)
$$\sqrt{n^2 + 3n} - \sqrt{n^2 + 3}$$

f)
$$\sqrt{n^2+n}-n$$

g)
$$\frac{4 \cdot 10^n - 3 \cdot 10^{2n}}{3 \cdot 10^{n-1} + 2 \cdot 10^{2n-1}}$$

h)
$$\frac{2 \cdot 3^{n+1} - 3 \cdot 4^{n-1}}{3^n + 2^{2n}}$$

4. Encuentra los límites de las sucesiones que siguen. La fórmula de Euler puede ayudarte:

a)
$$\left(\frac{n+2}{n}\right)^n$$

b)
$$\left(\frac{1+3n}{5+3n}\right)^{\frac{n^2}{4n-2}}$$

c)
$$\left(\frac{n+1}{n}\right)^{\frac{\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}}$$

5. Haciendo uso del criterio de Stolz, encuentra los límites de las sucesiones:

a)
$$\frac{1+4+\dots+n^2}{5+8+\dots+(n^2+4)}$$

b)
$$\left(\frac{1^2+2^2+\dots+n^2}{n^3}\right)^n$$

c)
$$\frac{1+2+\cdots+n+(n+1)\cdots+2n}{n^2}$$

6. Compara los órdenes de magnitud de las sucesiones:

a)
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
 y $b_n = \log(n)$

b)
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
 y $b_n = \sqrt{n}$

c)
$$a_n = \sqrt{n}$$
 y $b_n = log(n)$

d)
$$a_n = 2^n$$
 y $b_n = 3 + 3^2 + \dots + 3^n$

e)
$$a_n = n^2 + \log(n)$$
 y $b_n = 1 + 2 + 3 + \dots + n$

f)
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 y $b_n = n^2$

g)
$$a_n = 1 + 2^2 + 3^2 + \dots + n^2$$
 y $b_n = n^3$

h)
$$a_n = n!$$
 y $b_n = 1! + 2! + \cdots + n!$

7. Ordena, según su magnitud y justificando el resultado, las sucesiones: \sqrt{n} , n, $\log(n)$, n^2 , e^n , n^3 y n!. Selecciona, de entre ellas, las que tengan el mismo orden de magnitud que cada una de las que siguen:

a)
$$n^2 + \sqrt{n+1}$$

b)
$$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$

c)
$$\frac{\sqrt{n^7 - \sqrt{n^3 + 1}}}{5 + 2\sqrt{n}}$$

*d) $\log (n^5 + e^{2n})$

*d)
$$\log (n^5 + e^{2n})$$

8. Ordena, de menor a mayor magnitud, las tres sucesiones

$$3\sqrt{n^5 + n} - n^2$$
 , $\log(n)$, $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$

ANÀLISI MATEMÀTICA (AMA)

UT4 - Ejercicios Adicionales: GENERALIDADES Y CÁLCULO DE LÍMITES

- 1. Calcula el término general de las sucesiones:
 - a) -1, +2, -3, +4, -5, +6, ...
 - b) $\frac{2}{3}$, $\frac{1}{3}$, $\frac{4}{27}$, $\frac{5}{81}$, ...
 - c) Una progresión aritmética de diferencia d y primer término $a_1 = a$
 - d) Una progresión geométrica de razón r y primer término $a_1=a$. Calcula también $\sum_{k=1}^n a_k$.
- 2. Verifica, a partir de las definiciones correspondientes, que:
 - a) La sucesión $a_n = \frac{10 n^2}{n + 2}$ es decreciente y está acotada superiormente por 3
 - b) La sucesión $a_n = \frac{\sqrt{n}}{n+1}$ decrece y, además, $0 < a_n \le \frac{1}{2}$
 - c) La sucesión que satisface $a_{n+1}=4a_n$ es creciente sólo si $a_1>0$. ¿En qué caso está acotada?
 - d) La sucesión $a_{n+1} = \frac{n \cdot a_n}{n+7}$ con $a_1 = 7$ es decreciente y acotada.
- 3. Verifica que $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$ es estrictamente creciente y está acotada superiormente.
- 4. Estudia el crecimiento/decrecimiento y si son o no acotadas las sucesiones:

a)
$$\begin{cases} 2a_{n+1} = 2 + a_n \\ a_1 = 0 \end{cases}$$

b)
$$\begin{cases} a_{n+2} = n + a_{n+1} \\ a_1 = 10 \end{cases}$$

- *5. Determina el valor del límite de la sucesión $\sqrt{n^2+n-1}-nx$, según los valores de $x\in\mathbb{R}$.
- 6. Encuentra los valores de los parámetros α y β tales que:

a)
$$\lim_{n} \left(\frac{1 - \alpha n^2}{3n^2 - 2} \right)^{1 - \beta n^2} = \sqrt{e}$$

b)
$$\lim_{n} \left(\frac{n+\alpha}{n+2} \right)^{\alpha n+\beta} = \lim_{n} \left(\frac{n+\beta}{n+2} \right)^{2n+\alpha}$$

7. Compara los ódenes de magnitud de las sucesiones

$$a_n = \frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \dots + \frac{1}{n \cdot 2^n} \quad y \quad b_n = \log(n)$$

- 8. Teniendo en cuenta que $x=e^{\log(x)}$, aplica logaritmos y el criterio de Stolz para hallar los límites de las sucesiones:
 - a) $\sqrt[n]{n}$
 - b) $\sqrt[n]{2^n + 3^n}$
- *9. Definimos la sucesión de puntos $\{P_n\}$ a partr de $P_0 = (0,0)$ de manera que P_1 se encuentra al norte de P_0 y a una distancia de 1, P_2 se encuentra al oest de P_1 y a una distancia de $\frac{1}{2}$, P_3 está al norte de P_2 y a una distancia de $\frac{1}{4}$, P_4 está al oeste de P_3 y a una distancia de $\frac{1}{8}$, y así sucesivamente. Determina las coordenadas del punto P_n y el límite de la sucesión. (Sol: $P_n \to \left(-\frac{2}{3}, \frac{4}{3}\right)$)
- *10. Para los valores $a=1+\sqrt{2}$ i $b=1-\sqrt{2}$, definimos la sucesión de término general $a_n=a^n-b^n$. Calcula el límite de $\frac{a_{n+1}}{a_n}$.
- 11. Comprueba si las sucesiones recurrentes que siguen son crecientes/decrecientes o acotadas:
 - a) $a_1 = 1$, $a_{n+1} = \frac{3+2a_n}{4}$
 - b) $b_1 = \sqrt{2}$, $b_{n+1} = \sqrt{2b_n}$

Además, encuentra sus expresiones explícitas respectivas y, a partir de sus expresiones calcula el límite de cada sucesión.

*12. Verifica que las sucesiones recurrentes que siguen son divergentes a $+\infty$:

a)
$$a_1 = 1, a_{n+1} = 2a_n + 1$$

b)
$$b_1 = 1$$
, $b_{n+1} = b_n + 3n$

Hallar explícitamente el término general en cada caso consiste en resolver una recurrencia lineal de primer orden.

*13. Considera la sucesión de Fibonacci

$$a_{n+2} = a_{n+1} + a_n$$
 , $a_1 = a_2 = 1$

y define a partir de ella $b_n = \frac{a_{n+1}}{a_n}$. Encuentra la relación entre b_{n+1} y b_n y, sabiendo que $\{b_n\}$ es convergente, calcula su límite.