

University Institute of Engineering

Department of Computer Science & Engineering

EXPERIMENT: 1

NAME : ADITI ARYA UID : 23BCS11535

BRANCH: BE-CSE SECTION/GROUP: KRG 1A

SEMESTER: 5TH SUBJECT CODE: 23CSP-339

SUBJECT NAME: ADBMS

1. Aim Of The Practical:

[EASY] Author-Book Relationship Using Joins and Basic SQL Operations

- 1. Design two tables one for storing author details and the other for book details.
- 2. Ensure a foreign key relationship from the book to its respective author.
- 3. Insert at least three records in each table.
- 4. Perform an INNER JOIN to link each book with its author using the common author ID.
- 5. Select the book title, author name, and author's country.

[MEDIUM] Department-Course Subquery and Access Control.

- 1. Design normalized tables for departments and the courses they o er, maintaining a foreign key relationship.
- 2. Insert five departments and at least ten courses across those departments.
- 3. Use a subquery to count the number of courses under each department.
- 4. Filter and retrieve only those departments that o er more than two courses.
- 5. Grant SELECT-only access on the courses table to a specific user.
- 2. Tools Used: SQL Server Management Studio

5. Couc.	
EASY	
CREATE TABLE TBL_AUTHOR_DETAIL	S(
AUTHOR_ID INT PRIMARY KEY,	
AUTHOR NAME VARCHAR(50),	

COUNTRY VARCHAR(50)

3 Code:

```
);
CREATE TABLE TBL_BOOK_DETAILS(
BOOK_ID INT PRIMARY KEY,
BOOK TITLE VARCHAR(MAX),
AUTHORID INT
FOREIGN KEY (AUTHORID) REFERENCES TBL AUTHOR DETAILS(AUTHOR ID)
);
INSERT INTO TBL_AUTHOR_DETAILS VALUES (1,'AMAN','INDIA');
INSERT INTO TBL_AUTHOR_DETAILS VALUES (2,'MARK','USA');
INSERT INTO TBL AUTHOR DETAILS VALUES (3,'KANG','CHINA');
SELECT * FROM TBL AUTHOR DETAILS;
INSERT INTO TBL BOOK DETAILS VALUES (1,'JAVA HANDS ON',1);
INSERT INTO TBL BOOK DETAILS VALUES (2, 'FB MARKETPLACE', 2);
INSERT INTO TBL BOOK DETAILS VALUES (3,'MOON DANCE',3);
SELECT * FROM TBL BOOK DETAILS;
SELECT BD.BOOK TITLE, AD.AUTHOR NAME, AD.COUNTRY
FROM
TBL AUTHOR DETAILS AS AD
INNER JOIN
TBL BOOK_DETAILS AS BD
ON
AD.AUTHOR\_ID = BD.AUTHORID;
----- MEDIUM -----
CREATE TABLE TBL DEPARTMENTS (
DEPT ID INT PRIMARY KEY,
DEPT NAME VARCHAR(100) NOT NULL
CREATE TABLE TBL COURSES (
COURSE ID INT PRIMARY KEY,
COURSE NAME VARCHAR(150) NOT NULL,
DEPT ID INT,
FOREIGN KEY (DEPT_ID) REFERENCES TBL_DEPARTMENTS(DEPT_ID)
INSERT INTO TBL DEPARTMENTS VALUES
(1, 'COMPUTER SCIENCE'),
(2, 'MATHEMATICS'),
(3, 'PHYSICS'),
(4, 'CHEMISTRY'),
(5, 'BIOLOGY');
SELECT * FROM TBL_DEPARTMENTS;
INSERT INTO TBL COURSES VALUES
(101, 'Data Structures', 1),
```

```
(103, 'Algorithms', 1),
(104, 'Calculus I', 2),
(105, 'Linear Algebra', 2),
(106, 'Quantum Mechanics', 3),
(107, 'Classical Mechanics', 3),
(108, 'Modern Poetry', 4),
(109, 'Cell Biology', 5),
(110, 'Genetics', 5);
SELECT * FROM TBL_COURSES;
SELECT DEPT NAME
FROM TBL DEPARTMENTS
WHERE DEPT ID IN (
SELECT DEPT_ID
FROM TBL_COURSES
GROUP BY DEPT_ID
HAVING COUNT(COURSE_ID) > 2
    ); 4.
```

(102, 'Operating Systems', 1),

Output:

[EASY]

	AUTHOR_ID	AUTHOR_NAME	COUNTRY
1	1	AMAN	INDIA
2	2	MARK	USA
3	3	KANG	CHINA

................ BOOK_ID **AUTHORID** BOOK_TITLE 1 JAVA HANDS ON 1 1 2 2 FB MARKETPLACE 2 3 3 MOON DANCE 3

		-	
	BOOK_TITLE	AUTHOR_NAME	COUNTRY
1	JAVA HANDS ON	AMAN	INDIA
2	FB MARKETPLACE	MARK	USA
3	MOON DANCE	KANG	CHINA

[MEDIUM]

	DEPT_ID	DEPT_NAME
1	1	COMPUTER SCIENCE
2	2	MATHEMATICS
3	3	PHYSICS
4	4	CHEMISTRY
5	5	BIOLOGY

	COURSE_ID	COURSE_NAME	DEPT_ID
1	101	Data Structures	1
2	102	Operating Systems	1
3	103	Algorithms	1
4	104	Calculus I	2
5	105	Linear Algebra	2
6	106	Quantum Mechanics	3
7	107	Classical Mechanics	3
8	108	Modern Poetry	4
9	109	Cell Biology	5
10	110	Genetics	5

	DEPT_NAME
1	COMPUTER SCIENCE

5. Learning Outcomes:

- Learn how to define and create relational database tables using CREATE TABLE syntax. Understand the use of data types like INT and VARCHAR.
- Gain practical knowledge of establishing a primary key for uniquely identifying records.
- Understand how to create and enforce foreign key relationships to maintain data integrity between related tables (Books → Authors).
- Develop the ability to use INNER JOIN to combine data from multiple tables based on a common key (e.g. author id).
- Understand how to design normalized relational tables with foreign key constraints for real-world entities like departments and courses.
- Gain proficiency in inserting multiple records into related tables using the INSERT INTO statement.
- Learn how to use subqueries with GROUP BY and HAVING to aggregate data and apply conditional logic.
- Apply filtering logic to retrieve records from a parent table based on results from a subquery on a related child table.