Exercise 1

Suppose you used only 1 type of block to model each number. How ma	ny hundreds blocks
would you need to model 2000?	

a. 20

b. 200

c. 40

d. 100

Exercise 2

How many thousands blocks would you need to model 2000?

a. 10

b. 2

c. 20

d. 200

Exercise 3

How many hundreds blocks would you need to model 4000?

a. 20

b. 400

c. 40

d. 10

Exercise 4

How many thousands blocks would you need to model 4000?

a. 100

b. 20

c. 10

d. 4

Exercise 5

How many hundreds blocks would you need to model 9000?

a. 100

b. 90

c. 9

d. 900

Exercise 6

How many thousands blocks would you need to model 9000?

a. 100

b. 90

c. 900

d. 9

Exercise 7

What number does this model show?

c. 3663

d. 3673

Exercise 8

What number does this model show?

c. 6731

d. 6821

Exercise 9

What number does this model show?

c. 5677

d. 5676

Exercise 10

A tern flies 4276 kilometres to migrate. Which blocks would you use to model 4276 with the least number of blocks?

a. 3 thousands + 12 hundreds + 7 tens + 6 ones

b. 4 thousands + 2 hundreds + 7 tens + 6 ones

c. 4 thousands + 2 hundreds + 6 tens +16 ones

Exercise 11

This shape has 2 lines of symmetry.

Exercise 12

This shape has 4 lines of symmetry.

Exercise 13

This shape has 0 lines of symmetry.

Exercise 14

This shape has 2 lines of symmetry.

Exercise 15

This shape has 0 lines of symmetry.

