Summary

LING 570

Fei Xia

Week 11: 12/09/09

Outline

Main units

Main techniques

What's next?

Main units

Unit #0: introduction and summary

- 2 weeks
- Hw1
- Course overview
- Tokenization
- Introduction to probability theory
- IE
- Summary

Unit #1: finite-state machine

- 2.5 weeks
- Hw2 Hw4
- Formal language
- Formal grammar
- Regular expression
- FSA
- Regular relation and FST
- Morphological analyzer

Unit #2: LM, HMM, and n-gram tagger

- 3.5 weeks
- Hw5 -- Hw7

- LM: n-gram models
- Smoothing
- HMM
- N-gram model

Unit #3: Classification

- 3 weeks
- Hw8 Hw10
- Classification problem
- Example tasks:
 - MaxEnt POS tagger
 - NE tagging
 - Chunking
- Sequence labeling and beam search
- clustering

Main techniques

Main techniques (1)

- Probability theory:
 - The chain rule
 - The Bayes' rule
 - The (conditional) independence assumption

— ...

Main techniques (2)

Regexp, regular language and regular grammar:

- FSA, FST, morphological analysis:
 - Combining simple FSTs in a pipeline can be very powerful

Main Techniques (3)

LM and Smoothing

N-gram model

- HMM
 - The Markov assumption
 - Viterbi algorithm

Main techniques (4)

- Classification and sequence labeling problems:
 - Representing an instance as a feature vector
 - Selecting features is very important
 - Many problems can be treated as classification or sequence labeling problems
 - Beam search

Tools created

- English Tokenizer with RegEx: Hw1
- Morphological analyzer with FST: Hw4
- LM and smoothing: Hw5
- Taggers:
 - Unigram model: Hw3
 - N-gram tagger: Hw6-Hw7
 - MaxEnt tagger: Hw9
 - Clustering: Hw10
- Using existing packages:
 - Carmel (Hw2)
 - Mallet (Hw8)

What's next?

What's next?

- Other tasks → NLP 571 (winter)
 - Ex: parsing, semantics, discourse, ...
- Supervised learning → NLP 572 (winter)
 - Ex: MaxEnt, Naïve Bayes, SVM, ...
- Information extraction → NLP 575A (winter)
- Emily's ling567 and ling575

Tentative plan for LING 572 (subject to change)

- Unit #0: Introduction
 - 0.5 week
 - Features, training/testing, ...
 - Classification algorithms
- Unit #1: Simple algorithms
 - -2 weeks
 - kNN
 - Decision tree
 - Naïve Bayes

LING 572 (cont)

- Unit #2: More sophisticated algorithms
 - 2.5 weeks
 - MaxEnt (*)
 - SVM (**)
- Unit #3: sequence labeling problem
 - 2 weeks
 - TBL (if time permits)
 - CRF (**)

Other topics: 2 weeks

A head start with LING 572?

- Textbook: none
- Last year's schedule:

http://courses.washington.edu/ling572/winter09/teaching_slides/new_syllabus.pdf

- More math in ling572:
 - Information theory: entropy, mutual information
 - Calculus, derivative of f(x), lagrange multipliers

LING 575

Theme: Information extraction in the medical domain

- Student presentation
- In-class discussion
- System building

 The workload is about the same as ling570: about 20 hours/week excluding class time

LING 575: prerequisites

Strong programming skills

Take LING 572 concurrently

Team work

Participate in class discussion

Online option?

- If you cannot attend class live
 - it won't work well

- If you can attend class live,
 - be able to present remotely, and
 - be able to work with a teammate after class
 - You need let me know by 12/25/09

Between now and Jan

- I will turn in 570 grades on 12/19
 - If you have questions about your grades for 570 assignments, please let me know by 12/17.

 I will be traveling on 12/10-12/22, 12/24-12/26, and 1/6-1/10, and will be slow in replying to emails and GoPost.

No class on Jan 7 for ling572

Course evaluation

In-class students, fill out the paper forms

For online students, fill out the form at

https://depts.washington.edu/oeaias/webq/s urvey.cgi?user=UWDL&survey=1055