Image Processing: Image Enhancement

Michael A. Wirth, Ph.D.

University of Guelph Computing and Information Science Image Processing Group © 2004

Introduction

- image processing
 - $f(x,y) \rightarrow f'(x,y)$
- image analysis
 - $f(x,y) \rightarrow image features$
- image understanding
 - $f(x,y) \rightarrow high-level image descriptors$

Relationships Between Pixels

- A single pixel considered in isolation conveys information on the intensity at a single location in an image
- Perform calculations over regions of an image where the new value of a pixel must be computed from its old value and the values of pixels in its vicinity

 neighborhood

Neighbours of a Pixel

- A pixel p at coordinates (x,y) has four horizontal and vertical neighbors
 - The coordinates are given by:
 (x+1,y), (x-1,y), (x,y+1), (x,y-1)
 - This set of pixels are called the 4-neighbours
 - Some of the neighbours of p lie outside the image if (x,y) is on the border of the image.
- The four diagonal neighbours of p have coordinates:
 - -(x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)
 - Together with the 4-neighbours, they are called the 8neighbours of p.

Distance Measures

- For pixels p and q with coordinates (x₁,y₁) and (x₂,y₂) respectively:
 - The Euclidean distance between p and q is defined as:

$$D_{e}(p,q) = [(x_1-x_2)^2+(y_1-y_2)^2]^{\frac{1}{2}}$$

 Pixels having a distance less than or equal to some value *r* from (x₁,y₁) are the points contained in a disk of radius *r* centred at (x₁,y₁).

Distance Measures

 The D₄ distance (city-block) between p and q is defined as:

$$D_4(p,q) = |x_1 - x_2| + |y_1 - y_2|$$

- The pixels having $\mathbf{D_4}$ distance from (x_1,y_1) less than or equal to some value \mathbf{r} form a diamond centred at (x_1,y_1) .
- The D₈ distance (chessboard) between p and q is defined as:

$$D_8(p,q) = \max(|x_1 - x_2|, |y_1 - y_2|)$$

Distance Measures

D_4							D ₈							
		2								2	2	2	2	2
	2	1	2							2	1	1	1	2
2	1	0	1	2						2	1	0	1	2
	2	1	2							2	1	1	1	2
		2								2	2	2	2	2

On a per pixel basis

- "adding two images together"
 - This means that the addition is carried out between corresponding pixels in the two images.

$$g = f_1 + f_2$$

 $g(x,y) = f_1(x,y) + f_2(x,y)$

Image Enhancement

- The goal of image enhancement is to improve the visual appearance of an image.
 - Visual evaluation of image quality is a highly subjective process
- Approaches to image enhancement fall into two broad categories:
 - Spatial domain: direct modification of the pixels in an image.
 - Frequency domain: modification of the Fourier transform of an image.

Spatial Domain

 Characterized by point-by-point and neighborhood transformations

- The process of image acquisition frequently leads (inadvertently) to image degradation.
- Noise is an unexplained variation in intensity values:
 - Noise manifests itself as an unevenness in background and foreground regions
 - Imparts a bumpy or jagged appearance to otherwise smooth regions of intensity

- Spatial noise descriptors:
 - Gaussian noise
 - Rayleigh noise
 - Gamma noise
 - Exponential noise
 - Uniform noise
 - Impulse (salt-and-pepper, shot, spike) noise

Image Contrast

- For an object to be visible on an image, it is not enough to have sufficient resolution but sufficient contrast also.
- Contrast quantifies the visibility of an object on the background:

$$C = \frac{I_o - I_b}{I_o + I_b}$$

where I_o is the intensity (brightness) of the object and I_b is the intensity (brightness) of the background.

Image Contrast

Several variations of are frequently used also:

$$C = \left| \frac{I_o - I_b}{I_o + I_b} \right| \qquad C = \frac{I_b - I_o}{I_o + I_b} \qquad C = \frac{I_o - I_b}{I_b} \qquad C = \frac{I_b - I_o}{I_o}$$

Image Contrast

- Contrast can be clearly illustrated using a histogram
 - Low contrast appears as a narrow set of intensity values, leaving other intensity levels minimally or completely unoccupied.
 - High contrast appears as a broad range of intensity values, with a near uniform distribution.

$$Contrast = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} \le 1.0$$

Low-contrast image

 A histogram that is narrowed and centred towards the middle.

High-contrast image

 A histogram that covers a broad range of the intensity values, and a uniform distribution.

Low-intensity image

Biased towards low intensities

High-intensity image

Biased towards high intensities

Intensity Transformations

Spatial transformations are of the form:

$$g(x,y) = T[f(x,y)]$$

where *T* is an intensity transformation.

- The simplest form of T is when the neighborhood is of size 1×1
 - This is known as point, or point-by-point processing

Point Processing

- There are various methods of pixel manipulation through intensity mapping functions
 - histogram
 - sliding, stretching, equalization
 - linear (negative)
 - logarithmic (log, inverse log, exponential)
 - power-law (nth power and nth root, square-root)

Image Negatives

 The negative of an image with grayscale values in the range [0,L-1] is obtained by using the negative transformation:

$$g(x,y) = (L-1)-f(x,y)$$

Logarithmic

The general form of the log transformation is:

$$g(x,y) = c \log(1 + f(x,y))$$

where c is a constant, and it is assumed that $f(x,y) \ge 0$.

 This transformation maps a narrow range of low grayscale values in the input image into a wider range of output values.

Logarithmic

- It expands the values of low-intensity pixels, compressing higher-level intensities.
 - $-\Delta f_1 < \Delta g_1$ contrast is increased
 - $-\Delta f_2 > \Delta g_2$, contrast is reduced

Logarithmic

Inverse Logarithmic

 The inverse logarithmic transformation compresses the dynamic range of images with large variations in pixel values.

Exponential

- Uses a exponential function to perform the intensity mapping.
 - Enhances low-intensity regions
 - $-\Delta f_1 > \Delta g_1$ contrast is reduced
 - $-\Delta f_2 < \Delta g_2$, contrast is increased

Power-law

Power-law transformations have the following form:

$$g(x,y) = cf(x,y)^{\gamma}$$

where c and γ are positive constants

e.g. square-root
$$\gamma = 0.5$$

Power-law

Squared versus SQRT

Linear vs. Nonlinear Transformations

 A transformation T, is said to be linear if, for any two images f and g and two scalars a and b:

$$T(af + bg) = aT(f) + bT(g)$$

- e.g. An operation to compute the sum of K images is *linear*
- e.g. An operation to compute the absolute value of the difference of two images is not → nonlinear

Local vs. Global Transformations

- A global transformation is performed using the entire image.
- A *local* transformation is performed by dividing the image into sub-images and processing each of these independently.
 - Also called adaptive or variable

Histogram

- A histogram represents the frequency distribution of intensity values in an image.
 - For example a histogram of an 8-bit image has
 256 "bins" indexed from 0 to 255

Histogram

 The histogram of an image with grayscale values in the range [0,L-1] is a function of the form:

$$h(r_k) = n_k$$

where r_k is the k^{th} intensity value and n_k is the number of pixels in the image having intensity value k.

Histogram Normalization

 A histogram can be normalized by dividing each of its values by the total number of pixels in the image, denoted by n.

$$p(k) = h_k/n$$

- p(k) gives an estimate of the probability of occurrence of intensity value k.
- The sum of all the bins in a normalized histogram is equal to 1.

Histogram

Count: 132096 Min: 0 Mean: 84.796 Max: 255

StdDev: 72.334 Mode: 0 (33335)

ALGORITHM: Calculation of an image histogram

Create an array *histogram* with 2^b elements

```
for i = 1:max_intensity
   histogram[i] = 0;
end
for x = 1:nrows
   for y = 1:ncolumns
        D = image[x,y];
        histogram[D] = histogram[D] + 1;
   end
end
```

- A number of global image statistical parameters can be derived from the histogram.
- Maximum, Minimum
 - The pixels with the highest and lowest intensity values.
- Mean
 - The average intensity $\sum_{i=0}^{L-1} h(i)$ of the image. $m = \frac{i=0}{n}$

Variance

A measure of the width of the histogram.

$$v = \sum_{i=0}^{L-1} (h(i) - m)^2$$

Skewness

 A measure of the non-symmetric distribution of the histogram.

$$sk = \sum_{i=0}^{L-1} (h(i) - m)^3$$

Kurtosis

 A measure of the deviation of the histogram from a Gaussian profile.

$$k = \sum_{i=0}^{L-1} (h(i) - m)^4 - 3$$

Entropy

A measure of "choas" or noise in the image.

$$e = \sum_{i=0}^{L-1} \left\{ \frac{h(i)}{(n^2 \times m)} \cdot \log_2 \left(\frac{h(i)}{n^2 \times m} \right) \right\}$$

- Standard Deviation
 - A measure

$$sd = \sqrt{v}$$

Cumulative Histogram

- A cumulative histogram represents the cumulative frequency distribution of intensity values in an image.
 - The cumulative frequency of an intensity value, i, is the number of times that an intensity value less than or equal to i occurs in an image.
 - Cumulative frequencies, c_i , are computed from histogram counts, h(i):

$$c_j = \sum_{i=0}^{j} h(i)$$
 $j = 0, 1, ..., L-1$

Cumulative Histogram

ALGORITHM: Calculation of a cumulative histogram

Create an array *histogram* with 2^b elements

```
sum = 0;
for i = 1:max_intensity
   sum = sum + histogram[i];
   cumulative_histogram[i] = sum;
end
```

Histograms

- One of the principal uses of the histogram is the selection of threshold parameters.
- It is useful to plot h(i) as a function of i.
 - From this graph a suitable position for the threshold can be related directly to the position of the foot of a hill or valley in the histogram.

Histogram Sliding

- Histogram sliding involves the addition or subtraction of a constant value, b, to all the pixels in an image.
 - It is sometimes referred to as adding bias to the image intensity

$$g(x,y) = f(x,y) + b$$

 If b > 0, then brightness is increased; if b < 0, it is decreased.

Histogram Sliding

Histogram Stretching

- Histogram stretching involves the multiplication or division of all pixels in an image by a constant value, a.
 - It is sometimes referred to as adding gain to the image intensity

$$g(x,y) = af(x,y)$$

 If a > 1, then contrast is increased; if a < 1, it is reduced.

Histogram Stretching

Histogram Sliding & Stretching

 Histogram stretching and sliding can be combined to give a general expression for brightness and contrast modification:

$$g(x,y) = af(x,y) + b$$

To map a particular range of intensity values
 [f₁,f₂] onto a new range [g₁,g₂]

$$g(x,y) = g_1 + \left(\frac{g_2 - g_1}{f_2 - f_1}\right) [f(x,y) - f_1]$$

Histogram Sliding & Stretching

Linear vs. Nonlinear Mappings

- In linear mapping the gain, a, is static
- In nonlinear mapping the gain, a, can vary.
 - The way in which contrast is modified depends on the input intensity value
 - e.g. logarithmic, exponential functions

Histogram Equalization

- Histogram equalization or linearization redistributes intensity values in an attempt to "flatten" the frequency distribution.
 - Involves normalizing the histogram
 - For each intensity level j in the original image histogram, the new intensity value K is calculated as:

$$k_j = \sum_{i=0}^{J} \frac{h(i)}{T}$$

h(i) is the number of pixels with intensity value i. T is the total number of pixels in the image and j = 0,1,2,...,L-1

ALGORITHM: Histogram equalization

Compute a scaling factor, b=255/number of pixels Calculate histogram

```
c[1] = b * histogram[1];
for i = 2:max_intensity
    c[i] = c[i-1] + b*histogram[i];
end
for x = 1:nrows
    for y = 1:ncolumns
        D = image[x,y];
        g[x,y] = c[D+1];
    end
end
```

Histogram Equalization

Histogram Equalization

Histogram Specification

 A method which generates an image that has a specified histogram.

- One of the fundamental operations in image processing
 - Enhancement techniques based on this type of approach are often referred to as spatial filtering.

- In convolution, the calculation performed at a pixel is a weighted sum of intensity values from a neighborhood surrounding a pixel.
 - If a neighborhood is centred on a pixel then it must have odd dimensions
 - Intensity values from a neighborhood are weighted by coefficients that come from a convolution kernel, or mask

The kernel is usually small relative to the image

e.g. 3x3 is most common i-1,j-1 i-1,j i-1,j+1 i,j-1 i,j i,j+1 i+1,j-1 i+1,j i+1,j+1

 During convolution, each kernel coefficient is taken in turn and multiplied by a value from the neighborhood of the image lying under the kernel.

$$g(x,y) = \sum_{j=-1}^{1} \sum_{i=-1}^{1} w(i,j)f(x-i,y-j)$$

For example:

For a kernel of width m and height n, both odd:

$$g(x,y) = \sum_{j=-n}^{n} \sum_{i=-m}^{m} w(i,j)f(x-i,y-j)$$

the kernel half-width m_2 , and half-height n_2 are given as: $m_2^2 = \lfloor m/2 \rfloor$, $m_2^2 = \lfloor n/2 \rfloor$

Kernels

- An omnidirectional kernel is one whose response is the same, whatever the direction in which intensity values vary.
- A uniform kernel has coefficients which all have the same weight.
- A nonuniform kernel has coefficients which have differing weights.

Kernel Shapes

 Rectangular versus circular (pill-box) uniform (smoothing) kernels

Kernel Shapes

 Pyramidal versus cone nonuniform (smoothing) kernels

$$w(i,j) = \frac{1}{81} \begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 4 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{bmatrix} \quad w(i,j) = \frac{1}{25} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 2 & 0 \\ 1 & 2 & 5 & 2 & 1 \\ 0 & 2 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Separable Kernels

- A separable n×n kernel is represented as a vector product of two orthogonal 1D kernels, each of width n.
 - One is applied down the columns of an image, generating an intermediate result.
 - The other kernel is then applied along the rows of the intermediate image, producing the final result.

The Convolution Process

- 1. Place the centre of the kernel over a pixel, *P*, in the input image.
- 2. Multiply each pixel in the $k \times k$ neighborhood by the appropriate filter kernel coefficient superimposed on it.
- 3. Sum all the products.
- 4. Place the suitably normalized sum into the pixel position, *P*, in the output image

ALGORITHM: Image convolution

```
Create a kernel, w, with dimensions m \times n
Compute kernel half-width, m2
Compute kernel half-height, n2
Create an M \times N output image, g
for x = 1:nrows
    for y = 1:ncolumns
        q[x,y] = 0;
    end
end
```

ALGORITHM: Image convolution

```
for x = m2:M-m2
   for y = n2:N-n2
      sum = 0;
      for i = -m2:m2
         for j = -n2:n2
             sum = sum + w[i+m2,j+n2] * image[x-i,y-j];
         end
      end
      g[x,y] = sum;
   end
end
```

Image Borders

- Along the borders of an image it is not possible to compute a convolution, because part of the kernel lies beyond the image.
 - True of any neighborhood operation
- The size of the region in which normal convolution is possible is dictated by the dimensions of the convolution kernel.
 - e.g. for a 3x3 kernel: 1-edge border

• For certain values of x and y, one or both of the expressions (x-i) and (y-j) will give a value outside the allowed range [0,M-1][0,N-1]

- For an image $f(x,y)_{M\times N}$ the region to which the kernel applies is $(M-2)\times (N-2)$ with an origin at (1,1)
- In general an origin at (m_2, n_2) and dimensions of $(M-2m_2) \times (N-2n_2)$
- A number of different strategies exist to deal with this problem

1. No processing at the border

Ignore those pixels for which convolution is not possible

2. Copy of input pixels

- Copy the corresponding pixel value from the input image wherever it is not possible to carry out convolution.
- The image will have a border of unprocessed pixels

3. Truncation of the image

- Remove those pixels for which convolution is not possible.
- The resulting image is smaller than, and offset to, the input image.

4. Truncation of the kernel

 Deal with the borders of the image as a special case and use a modified kernel to perform convolution.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

 Adds considerably to the complexity of convolution.

5. Reflected indexing

- Test (x-i) to see whether it corresponds to a valid pixel value, and if it doesn't, the coordinate can be reflected-back into the image.
- The same can be done at (y-j)
- Simulates mirroring of the image at its borders

6. Circular indexing

 Imaging that the image repeats itself endlessly in all directions.

Reflected and Circular indexing

Spatial Frequency

- Spatial frequency is a measure of how rapidly intensity varies as an image is traversed.
 - Images in which intensity varies slowly and smoothly → low spatial frequency
 - Images with sudden intensity transitions, fine detail and strong texture → high spatial frequency

Linear Filtering

- Convolution can be used to carry out linear filtering of an image.
 - The response is given by a sum of products of the kernel coefficients and the corresponding image pixels in the area spanned by the filter mask.
 - There are two complementary types of linear filters: spatial or frequency filters.

- Image smoothing or low-pass filtering, allows low spatial frequencies to remain unchanged, but suppresses high frequencies.
 - A low-pass filter has the effect of smoothing or blurring the image, reducing noise but obscuring fine detail.

- The filter replaces the value of every pixel in an image by the average of the intensity values in the neighborhood defined by the kernel.
 - The resulting image has reduced "sharp" transitions in the intensity values.
 - Noise consists of sharp transitions → noise reduction
 - Edges are also characterized by sharp transitions in intensities, so smoothing filters blur edges.

- Any convolution kernel whose coefficients are all positive will act as a low-pass filter.
- In the simplest case, all coefficients are equal.

$$w = \begin{bmatrix} 0.04 & 0.04 & 0.04 & 0.04 & 0.04 \\ 0.04 & 0.04 & 0.04 & 0.04 & 0.04 \\ 0.04 & 0.04 & 0.04 & 0.04 & 0.04 \\ 0.04 & 0.04 & 0.04 & 0.04 & 0.04 \\ 0.04 & 0.04 & 0.04 & 0.04 & 0.04 \end{bmatrix}$$

 Note that the kernel has already been normalized. It's coefficients sum to 1.

Factor out the normalization:

 Pixel values in the neighborhood are summed without being weighted, and the sum is divided by the number of pixels in the neighborhood.

- Computing the mean intensity value over the neighborhood defined by the kernel:
 - Often described as mean filters.
 - Large kernels, or the repeated application of a small kernel produces more pronounced smoothing.

Example of Image Smoothing

 The Gaussian filter is a smoothing filter with a nonuniform kernel, whose coefficients are derived from a 2D Gaussian function.

 The kernel coefficients diminish in size with increasing distance from the kernels centre

$$w(i,j) = \exp\left[\frac{-(i^2+j^2)}{2\sigma^2}\right]$$

for
$$i, j = -[3\sigma], ..., [3\sigma]$$

- [3σ] denotes the "integer part" of 3σ
- Limits of ±3 are chosen because Gaussian weights are negigible beyond them

• If σ^2 = 1 then the normalised Gaussian kernel is:

$$w(i,j) = \frac{1}{1000} \begin{bmatrix} 0 & 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 3 & 13 & 22 & 13 & 3 & 0 \\ 1 & 13 & 59 & 97 & 59 & 13 & 1 \\ 2 & 22 & 97 & 159 & 97 & 22 & 2 \\ 1 & 13 & 59 & 97 & 59 & 13 & 1 \\ 0 & 3 & 13 & 22 & 13 & 3 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 & 0 \end{bmatrix}$$

$$\sigma^2 = \frac{2}{3}, 2, 6\frac{2}{3}$$

Other common values for

- Gaussian characteristics:
 - More weight is given to central pixels than to those in the periphery of the neighborhood
 - Large values of σ produce a wider peak → increased blurring
 - As σ increases the dimensions of the kernel also increase
 - The kernel is rotationally symmetric, so there is no directional bias in the amount of smoothing
 - The Gaussian kernel is separable.

Median Filter

- Noise tends to spread outwards when convolution is applied.
- In a median filter pixels are replaced by the median value of the neighboring intensities in a k×k neighborhood.
- Efficient in eliminating isolated and impulse (i.e. salt-and-pepper) noise.

Median Filter

Image Sharpening

- Image sharpening, or high-pass filtering allows high spatial frequencies to remain unchanged, but suppresses low frequencies.
 - A high-pass filter has the effect of preserving sudden variations in intensity, such as those that occur at the boundaries of objects, but suppresses more gradual variations.
 - Makes noise more prominent (noise has a strong high-frequency component).

Image Sharpening

- A HPF convolution kernel contains a mixture of positive and negative values.
- An omnidirectional high pass filter should have positive coefficients near its centre and negative coefficients in the periphery of the kernel.

The sum of the coefficients in this kernel is zero.

Image Sharpening

- When the kernel is over an area of constant or slow-changing intensity values the result of the convolution is zero (or small).
- When the intensity values vary rapidly within a neighborhood, the result of the convolution is a large number.
- The result can be positive or negative:
 - Map the pixel values onto a 0-255 range. A filter response of 0 maps onto the middle of the range.

Example of Image Sharpening

Unsharp Masking

• Subtracting from an image a "blurred" version of that image (thereby removing the low spatial frequencies) is known as *unsharp* masking. $\hat{f}(x,y) = f(x,y) - S(f(x,y))$

High-Boost Filter

- Compute a weighted sum of the original image and the output from a high-pass filter.
 - The result is an image in which high spatial frequencies are emphasized relative to lower frequencies.
 - The high-boost filter is used to sharpen an image.

Can be performed in a single convolution operation

$$\begin{vmatrix} -1 & -1 & -1 \\ -1 & c & -1 \\ -1 & -1 & -1 \end{vmatrix}$$
 $(c > 8)$