CS 4102: Algorithms Spring 2020

Lecture 2: Recurrences

Co-instructors: Robbie Hott and Tom Horton (These are slides for Horton's section)

Warm Up

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

Office Hours

TA Offices: TBD! (They're hired, not on-boarded yet.)

Prof. Horton:

- Mon, and Weds., 1:30-2:30pm
- Tue. and Thu., 10:30-11:30
 - But this week and next, Thu. 10-10:50 due to faculty candidate talks
- Also Thu., 1-2pm

Prof. Hott:

- Mondays and Wednesdays, 11am-12pm
- Tuesdays 3-4pm
- This Week Only: Friday 1-3pm

Today's Keywords

Recursion

Recurrences

Asymptotic notation and proof techniques

Divide and conquer

Trominoes

CLRS Readings: Chapter 3

Order classes; math review in 3.2

CLRS Readings: Chapter 4

4.1 and 4.2 for today's lecture; the rest in next lecture

Homework

HW0 due 11pm Tuesday, Jan. 21

Submit 2 attachments (zip and pdf)

HW1 released next week

- Written (use LaTeX!)
- Asymptotic notation
- Recurrences
- Divide and conquer

Attendance

How many people are here today?

Naïve algorithm

- Everyone stand
- Professor walks around counting people
- When counted, sit down

Complexity?

- Class of *n* students
- *O*(*n*) "rounds"

Other suggestions?

Good Attendance

Better Attendance

1. Everyone Stand

What was the run time of this algorithm?

2. Initialize your "count" to 1

What are we going to count?

- 3. Greet a neighbor who is standing: share your name, full date of birth(pause if odd one out)
- 4. If you are older: give "count" to younger and sit. Else if you are younger: add your "count" with older's
- 5. If you are standing and have a standing neighbor, go to Step 3

Attendance Algorithm Analysis

Recurrence

$$T(n) = 1 + 1 + T(\frac{n}{2})$$
 How can we "solve" this?
 $T(1) = 3$ Base case?

Do not need to be exact, asymptotic bound is fine. Why?

Let's Solve the Recurrence!

$$T(n) = 3 + \sum_{i=1}^{\log_2 n} 2 = 2\log_2 n + 3$$

What if $n \neq 2^k$?

More people in the room \Rightarrow more time

•
$$\forall \ 0 < n < m, T(n) < T(m)$$

•
$$T(n) \le T(m) = T(2^{\lceil \log_2 n \rceil}) = 2 \lceil \log_2 n \rceil + 3$$

These are unimportant. Why?

$$= O(\log n)$$

Asymptotic Notation*

O(g(n))

- At most within constant of g for large n
- {functions $f \mid \exists$ constants $c, n_0 > 0$ s.t. $\forall n > n_0, f(n) \le c \cdot g(n)$ }
- Set of functions that grow "in the same way" as or more slowly than g(n)

$\Omega(g(n))$

- At least within constant of g for large n
- {functions $f \mid \exists$ constants $c, n_0 > 0$ s.t. $\forall n > n_0, f(n) \ge c \cdot g(n)$ }
- Set of functions that grow "in the same way" as or more quickly than g(n)

$\Theta(g(n))$

- "Tightly" within constant of *g* for large *n*
- $\Omega(g(n)) \cap O(g(n))$
- Set of functions that grow "in the same way" as g(n)

Asymptotic Notation

Asymptotic Bounds

The Sets big oh O(g), big theta $\Theta(g)$, big omega $\Omega(g)$ – remember these meanings:

- O(g): functions that grow no faster than g, or asymptotic upper bound
- $\Omega(g)$: functions that grow at least as fast as g, or asymptotic lower bound
- $\Theta(g)$: functions that grow at the same rate as g, or asymptotic tight bound

Asymptotic Notation Example

Show: $n \log n \in O(n^2)$

Direct Proof

Technique: Find $c, n_0 > 0$ s.t. $\forall n > n_0, n \log n \le c \cdot n^2$

Proof: Let $c = 1, n_0 = 1$. Then,

 $n_0 \log n_0 = (1) \log (1) = 0,$

 $c n_0^2 = 1 \cdot 1^2 = 1$,

 $0 \leq 1$.

 $\forall n \ge 1, \log(n) < n \Rightarrow n \log n \le n^2 \quad \Box$

Asymptotic Notation Example

Show: $n^2 \notin O(n)$

Indirect Proof

Technique: Contradiction

Proof: Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s. t. $\forall n > n_0, n^2 \le cn$ Some such constant c must exist. Can we derive it?

For all $n>n_0>0$, by our assumption, we know: $cn\geq n^2$, $c\geq n$.

Since c is dependent on n, it cannot be a constant. Contradiction. Therefore $n^2 \notin O(n)$. \square

Proof Techniques

Direct Proof

• From the assumptions and definitions, directly derive the statement

Indirect Proof (Proof by Contradiction)

• Assume the statement is true, then find a contradiction

Proof by Cases

Induction

More Asymptotic Notation

o(g(n))

- Smaller than any constant factor of g for sufficiently large n
- {functions $f : \forall$ constants c > 0, $\exists n_0$ such that $\forall n > n_0$, $f(n) < c \cdot g(n)$ }
- Set of functions that always grow more slowly than g(n)

Equivalently, ratio of $\frac{f(n)}{g(n)}$ is <u>decreasing</u> and tends towards 0: $f(n) \in o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$f(n) \in o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

More Asymptotic Notation

o(g(n))

- Smaller than any constant factor of g for sufficiently large n
- {functions $f : \forall \text{ constants } c > 0$, $\exists n_0 \text{ such that } \forall n > n_0$, $f(n) < c \cdot g(n)$ }
- Set of functions that always grow more slowly than g(n)

$\omega(g(n))$

- Greater than any constant factor of g for large n
- {functions $f : \forall \text{ constants } c > 0$, $\exists n_0 \text{ such that } \forall n > n_0$, $f(n) > c \cdot g(n)$ }
- Set of functions that always grow more quickly than g(n)

Equivalently,
$$f(n) \in \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

Another Asymptotic Notation Example

Show: $n \log n \in o(n^2)$

Direct Proof

Proof Technique: Show the statement directly, using either definition

- $\lim_{n \to \infty} \frac{n \log n}{n^2} = \lim_{n \to \infty} \frac{\log n}{n} = 0$ (why is this true?)
- Equivalently, for every constant c>0, we can find an n_0 such that $\frac{\log n_0}{n_0}=c$. Then for all $n>n_0$, $n\log n< c$ n^2 since $\frac{\log n}{n}$ is a decreasing function

 \forall constants c > 0, $\exists n_0$ such that $\forall n > n_0$, $f(n) < c \cdot g(n)$

Summary: Using Limit Definition

Comparing f(n) and g(n) as n approaches infinity, calculate this:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$

If the result....

- $< \infty$, including the case in which the limit is 0 then $f \in O(g)$
- > 0, including the case in which the limit is ∞ then $f \in \Omega(g)$
- = c and $0 < c < \infty$ then $f \in \Theta(g)$
- = 0 then $f \in o(g)$ read as "little oh of g"
- = ∞ then f $\in \omega(g)$ read as "little omega of g"

A Few Miscellaneous Things....

- Keep in mind that order classes are sets of functions. Computer scientists might be considered sloppy with our notation. We write: $f(n) = \Theta(g(n))$ when we mean: $f(n) \in \Theta(g(n))$
- Why have O(n) and O(n) and O(n)? When do we use which?
 - Depends on what you want to communicate!
 Why so we have ≤ and = and ≥ and < ?
- What if algorithm has multiple parts with different order classes?
- Ig $n \in o(n^{\alpha})$ for any $\alpha > 0$, including fractional powers
- $n^k \in o(c^n)$ for any k > 0 and any c > 1
 - powers of n grow more slowly than any exponential function cⁿ

Back to Trominoes

A solution!

Can you cover an 8×8 grid with 1 square missing using "trominoes?" What about a 4x4 grid? 2x2? ©

What about larger boards?

Divide the board into quadrants

Place a tromino to occupy the three quadrants without the missing piece

Place a tromino to occupy the three quadrants without the missing piece

Observe: Each quadrant is now a smaller subproblem!

Solve Recursively

Solve Recursively

Our first algorithmic technique!

Divide and Conquer

[CLRS Chapter 4]

Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

 Merge solutions to subproblems to obtain solution for original problem

Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \dots, s_k

Combine: C(n) time

Recurrence:

• $T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$

So... You've come up with a clever Divide and Conquer Algorithm! Is it efficient compared to other solutions? You have its T(n). But you what <u>order class</u> does that belong to? $T(n) \in \Theta(???)$

Goal: Reduce recurrence to closed form.

There are several techniques!

Some easier than others (but can't always be used)

Techniques

Tree get a picture of recursion

?

Guess/Check

guess and use induction to prove

"Cookbook" MAGIC!

Substitution Substitute in to simplify

Merge Sort

Divide:

• Break n-element list into two lists of n/2 elements

Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

Combine:

• Merge together sorted sublists into one sorted list

Merge

Combine: Merge sorted sublists into one sorted list

```
We have:
```

```
• 2 sorted lists (L_1, L_2)

• 1 output list (L_{out})

While (L_1 \text{ and } L_2 \text{ not empty}):
\text{If } L_1[0] \leq L_2[0]:
L_{out}.\text{append}(L_1.\text{pop}())
\text{Else:}
L_{out}.\text{append}(L_2.\text{pop}())
L_{out}.\text{append}(L_1)
L_{out}.\text{append}(L_2)
```

Analyzing Merge Sort

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: 0 comparisons

Conquer: recurse on 2 small subproblems, size $\frac{n}{2}$

Combine: *n* comparisons

Recurrence: $T(n) = 2 T\left(\frac{n}{2}\right) + n$

Practice: solve by substitution (like we did for "attendance")

Tree method

$$T(n) = 2T(\frac{n}{2}) + n$$

