Ficha 2: Função inversa

2.1 Bijeção

Definição 2.1 (injetiva) Seja f uma função e $E \subset D_f$ um subconjunto do domínio. A função f \acute{e} injetiva em E se temos

$$\forall x, x' \in E, \ f(x) = f(x') \Rightarrow x = x'.$$

A condição acima chama-se o critério de injetividade

Proposição 2.1

Seja f uma função estritamente monótona no subconjunto $E \subset D_f$. Então f é injetiva.

Definição 2.2 (sobrejetiva) Seja f uma função e $E \subset D_f$ um subconjunto do domínio e $F \subset \mathbb{R}$. Dizemos que a função e sobrejetiva de E sobre F se e e0. Por outras palavras

$$\forall y \in F, \exists x \in E \ tal \ que \ f(x) = y.$$

EXEMPLO 2.1 Por exemplo a função $f(x) = x^2$ é sobrejetiva de [-2, 2] em [0, 4] mas não é injetiva porque f(-2) = f(2) = 4 (dois valores diferentes do domínio têm a mesma imagem).

Definição 2.3 (bijetiva) Sejam f uma função e $E \subset D_f$ um subconjunto do domínio e $F \subset \mathbb{R}$. Dizemos que a função e bijetiva de e sobre e se ela e injetiva e sobrejetiva. Por outras palavras

$$\forall y \in F, \ \exists x \in E : f(x) = y$$

e x é único.

EXEMPLO 2.2 Por exemplo a função $f(x) = x^2$ é bijetiva de [0,2] em [0,4].

Corolário 2.1

Seja f uma função estritamente monótona no subconjunto $E \subset D_f$. Então f \acute{e} bijetiva de E em f(E).

Definição 2.4 (função inversa (recíproca)) Seja f uma função bijetiva de $E \subset D_f$ em $F \subset \mathbb{R}$. Então para qualquer $y \in F$, notamos por $x = f^{-1}(y)$ o único x tal que f(x) = y. Além de mais temos

$$\forall x \in E, \ x = f^{-1}(f(x)), \quad e \quad \forall y \in F, \ y = f(f^{-1}(y)).$$

 f^{-1} chama-se função inversa (ou recíproca) definida de F sobre E.

NOTA 2.1 Infelizmente a notação f^{-1} pode ser ambígua porque podemos confundir com $\frac{1}{f(x)}$. Por exemplo a notação $(x^2)^{-1}$ não é clara porque pode ser o inverso algébrico $\frac{1}{x^2}$ ou a função inversa \sqrt{x} .

Notação 2.1 Notamos $f^{-1} \circ f = Id_E$ e $f \circ f^{-1} = Id_F$ onde Id_E e Id_F são as funções identidades em E e F, respetivamente.

Seja f é uma função bijetiva $E \subset D_f$ sobre F e f^{-1} a sua função inversa. Para qualquer ponto M = (x, f(x)) do gráfico de f, observamos que $M = (f^{-1}(y), y)$. Por consequência o ponto $M' = (y, f^{-1}(y))$ é o ponto simétrico de M relativamente à reta diagonal y = x. Concluimos que os gráficos de f e f^{-1} são simétricos relativamente à diagonal.

2.2 Funções potência, exponencial, logarítmica

Definição 2.5 Seja $a \in \mathbb{R}$, notamos por x^a a função potência. O domínio depende do valor do a. ① $a \in \mathbb{R}^+ \setminus \mathbb{Z}$, $D_f = [0, +\infty[$, ② $a \in \mathbb{R}^- \setminus \mathbb{Z}$, $D_f =]0, +\infty[$. ③ $a \in \mathbb{Z} \setminus \mathbb{N}_0$, $D_f = \mathbb{R} \setminus \{0\}$. ④ $a \in \mathbb{N}_0$, $D_f = \mathbb{R}$.

No caso particular $a = \frac{1}{n}$ com $n \in \mathbb{N}$, notamos $x^{\frac{1}{n}} = \sqrt[n]{x}$.

 ${
m NOTA}~2.2~$ Os monómios x^5 ou o seu inverso algebrico x^{-5} são exemplos de funções potências.

Proposição 2.2

Seja x > 0, temos as propriedades seguintes para qualquer $a, b \in \mathbb{R}$:

$$x^{0} = 1$$
, $x^{a} \cdot x^{b} = x^{a+b}$, $\frac{1}{x^{a}} = x^{-a}$, $(x^{a})^{b} = (x^{b})^{a} = x^{ab}$.

NOTA 2.3 As propridades são também verdadeira para $x \in \mathbb{R}$ desde que $a,b \in \mathbb{N}$.

Proposição 2.3

Seja $a \neq 0$ então $f(x) = x^a$ é uma bijecção de $]0, +\infty[$ sobre $]0, +\infty[$ e a sua função inversa é dada por $f^{-1}(y) = y^{\frac{1}{a}}$

NOTA 2.4 Temos casos mais complexos onde temos uma bijeção de $\mathbb R$ sobre $\mathbb R$. Por exemplo se a=2k+1 é um número inteiro ímpar, então x^a e $x^{\frac{1}{a}}$ faz sentido mesmo se $x\leq 0$.

Definição 2.6 Seja a > 0, notamos por a^x a função exponencial de base a. É a única função que satisfaz as propriedades $\forall x, y \in \mathbb{R}$, ① $a^{x+y} = a^x a^y$, ② $a^{xy} = (a^x)^y = (a^y)^x$, ③ $a^0 = 1$ e $a^1 = a$.

Consideramos a sucessão $u_i = \left(1 + \frac{1}{i}\right)^i$. Podemos mostrar que esta sucessão converge para um valor que notamos habitualmente e (o número de Neper) seja

$$\lim_{i \to \infty} \left(1 + \frac{1}{i} \right)^i = e$$

Simplificamos a notação por $\exp(x) = \exp_e(x)$ quando tratamos da função exponecial com a = e. A razão fundamental deste caso particular é que é o único valor que verifica a propriedade $(e^x)' = e^x$.

NOTA $2.5\,$ É importante distinguir a função potência x^a da função exponencial a^x . Notamos também $\exp_a(x)=a^x$ a exponecial de base a.

NOTA $2.6\,$ É facil verificar que $a^x\geq 0$ porque $a^x=a^{\frac{x}{2}+\frac{x}{2}}=a^{\frac{x}{2}}a^{\frac{x}{2}}\geq 0$. Por outro lado verificamos que $1=a^0=a^{x-x}=a^xa^{-x}\Rightarrow a^{-x}=\frac{1}{a^x}=\left(\frac{1}{a}\right)^x$.

Proposição 2.4

Se $a \in]0,1[$ a função é estritamente decrescente enquanto é estritamente crescente se a > 1.

Proposição 2.5

Seja a>0, a função exponencial de base a é bijetiva de \mathbb{R} sobre \mathbb{R}^+ e notamos por $\log_a(x)$ a função inversa (função logarítmica) tal que

$$\forall x \in \mathbb{R}, \ \log_a(a^x) = x, \quad \forall x \in \mathbb{R}^+, \ \exp_a(\log_a(x)) = x.$$

Notação 2.2 Para tratar do logaritmo na base a = e usamos a notação especial $\ln(x) = \log_e(x)$. Alguns autores usam também da notação $\log(x)$ ou $\log(x)$ para o logarítmo em base a = 10.

Recordadamos aqui as principais propriedades do logarítmo.

Proposição 2.6

Seja
$$a > 0$$
 e $x, y > 0$ então $\mathbb{O}\log_a(xy) = \log_a(x) + \log_a(y)$, $\mathbb{O}\log_a(1) = 0$, $\log_a(a) = 1$, $\mathbb{O}\log_a(1/x) = -\log_a(x)$.

Proposição 2.7

Outras propriedades entre as diferentes bases e o logaritmo neperiano são dadas aqui. Seja a,b>0 e x>0 então $\mathbb{O}\log_a(x)=\frac{\ln(x)}{\ln(a)}$, $\mathbb{O}(a^x)=e^{x\ln(a)}$, $\mathbb{O}(a^x)=x\frac{\ln(b)}{\ln(a)}$.

2.3 Funções trigonométricas elípticas

Definição 2.7 Consideramos uma circunferência de raio 1 centrado em 0

Seja P um ponto na circunferência, A e B são as projeções nos eixos horizontal e vertical respetivamente e a orientação trigonométrica é dada pelo vetor no ponto A de direção (0,1).

O comprimento do arco entre C e P se chama ângulo $\theta \in [0, 2\pi]$. O seno \acute{e} a medida algébrica \overline{OB} .

O cosseno é a medida algébrica $\overline{0A}$.

Como $\sin(0) = \sin(2\pi)$ e $\cos(0) = \cos(2\pi)$ depois fazer uma revolução completa, efetuamos uma extensão das funções por periodicidade do modo seguinte. Seja $x \in \mathbb{R}$, então existe

um único $n \in \mathbb{Z}$ é um único $\theta \in [0, 2\pi[$ tal que $x = \theta + 2\pi n$ e definimos $\cos(x) = \cos(\theta)$, $\sin(x) = \sin(\theta)$.

A função sin é impar enquanto a função cos é par. Por construção, as duas funções são periódicas de periodo 2π .

Definição 2.8 Para qualquer $x \in \mathbb{R}$, $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$ definimos $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Esta função corresponde a medida algebrica \overline{CD} quando $x \in]-\pi/2,\pi/2[$.

Do mesmo modo, para qualquer $x \in \mathbb{R}$, $x \neq k\pi$, $k \in \mathbb{Z}$ definimos $\cot(x) = \frac{\sin(x)}{\cos(x)}$

As duas funções são ímpares e periódicas de período π .

Proposição 2.8 (arco-seno)

A função $x \to y = \sin(x)$ é uma bijeção de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sobre [-1, 1] e notamos por $y \to x = \arcsin(y)$ a função inversa (recíproca) definida de $\left[-1, 1\right]$ sobre $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \arcsin(\sin(x)) = x, \quad \forall y \in [-1, 1], \sin(\arcsin(y)) = y.$$

NOTA 2.7 Os conjuntos de partida e chegada são muito importantes. Podemos também usar a notação $\sin^{-1}(y)$ para a função inversa mas existe um risco muito elevado de confusão com a função $\frac{1}{\sin(y)}$ que usa exatamente a mesma notação. Por isso aconselhamos usar a notação $\arcsin(y)$.

Funções $\sin(x)$ e $\arcsin(x)$.

Exercício 2.1 Resolver as equações $\sin(x) = \frac{1}{2}$, $\sin(2x) = -\frac{\sqrt{3}}{2}$, $\arcsin(y) = -\frac{\pi}{4}$.

Proposição 2.9 (arco-cosseno)

A função $x \to y = \cos(x)$ é uma bijeção de $[0,\pi]$ sobre [-1,1] e notamos por $y \to x = \arccos(y)$ a função inversa (recíproca) definida de [-1,1] sobre $[0,\pi]$

$$\forall x \in [0,\pi],\arccos(\cos(x)) = x, \quad \forall y \in [-1,1],\cos(\arccos(y)) = y.$$

Funções $\cos(x)$ e $\arccos(x)$.

 ${
m Nota} \,\, 2.8\,$ Podemos também usar a notação ${
m cos}^{-1}(y)$ para a função inversa.

Exercício 2.2 Resolver as equações $\cos(x) = \frac{1}{\sqrt{2}}$, $\cos(-x) = \frac{1}{2}$, $\arccos(y/2) = 0$.

Proposição 2.10 (arco-tangente)

A função $x \to y = \tan(x)$ é uma bijeção de] $-\frac{\pi}{2}, \frac{\pi}{2}$ [sobre \mathbb{R} e notamos por $y \to x = \arctan(y)$ a função inversa (recíproca) definida de \mathbb{R} sobre $[-\frac{\pi}{2}, \frac{\pi}{2}]$

$$\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \arctan(\tan(x)) = x, \quad \forall y \in \mathbb{R}, \tan(\arctan(y)) = y.$$

Funções tan(x) e arctan(x).

NOTA 2.9 Podemos também usar a notação $\tan^{-1}(y)$ para a função inversa.

EXERCÍCIO 2.3 Resolver as equações $\tan(x) = \frac{1}{3}$, $\tan(1/x) = -1$, $\arctan(y) = \pi/3$.

Proposição 2.11 (arco-cotangente)

A função $x \to y = \cot(x)$ é uma bijeção de $]0,\pi[$ sobre \mathbb{R} e notamos por $y \to x = \operatorname{arccot}(y)$ a função inversa (recíproca) definida de \mathbb{R} sobre $[0,\pi]$

Funções $\cot(x)$ e $\operatorname{arccot}(x)$.

Exercício 2.4 Resolver as equações $\cot(x) = -1$, $\operatorname{arccot}(y) = \pi/4$.

2.4 Funções trigonométrias hiperbólicas

Definição 2.9 (Cosseno hiperbólico) Para qualquer $x \in \mathbb{R}$ definimos o cosseno hiperbólico por

$$\cosh(x) = \frac{e^x + e^{-x}}{2}.$$

Notamos que a função é par e positiva.

Proposição 2.12

A função $x \to y = \cosh \acute{e}$ uma bijeção de $[0, +\infty[$ sobre $[1, +\infty[$ e notamos por $y \to x = \operatorname{arg} \cosh(y)$ a função inversa (recíproca) de $[1, +\infty[$ sobre $[0, +\infty[$.

$$\forall x \in [0, +\infty[, \operatorname{arg} \cosh(\cosh(x)) = x,$$

$$\forall y \in [1, +\infty[, \cosh(\arg\cosh(y)) = y.$$

Além de mais, para qualquer $y \in [1, +\infty[$, temos

$$\operatorname{arg} \cosh(y) = \ln\left(y + \sqrt{y^2 - 1}\right).$$

Funções $\cosh(x)$ e $\arg \cosh(x)$.

Definição 2.10 (Seno hiperbólico) Para qualquer $x \in \mathbb{R}$ definimos o seno hiperbólico por

$$\sinh(x) = \frac{e^x - e^{-x}}{2}.$$

Notamos que a função é ímpar.

Proposição 2.13

A função $x \to y = \sinh \acute{e}$ uma bijeção de \mathbb{R} em \mathbb{R} e notamos por $y \to x = \arg \sinh(y)$ a função inversa (recíproca) de \mathbb{R} sobre \mathbb{R} .

$$\forall x \in \mathbb{R}, \ \operatorname{arg\,sinh}(\sinh(x)) = x,$$

$$\forall y \in \mathbb{R}, \ \sinh(\arg\sinh(y)) = y.$$

Além de mais, para qualquer $y \in \mathbb{R}$, temos

$$\operatorname{argsinh}(y) = \ln\left(y + \sqrt{y^2 + 1}\right).$$

Funções $\sinh(x)$ e $\arg \sinh(x)$.

Definição 2.11 (tangente hiperbólica) Para qualquer $x \in \mathbb{R}$ definimos a tangente hiperbólica por

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Notamos que a função é ímpar.

Proposição 2.14

A função $x \to y = \tanh \ \acute{e} \ uma \ bijeção \ de \ \mathbb{R} \ sobre$ $| -1,1[e \ notamos \ por \ y \to x = \arg\tanh(y)$

função inversa (recíproca) de] -1,1[sobre $\mathbb R$

$$\forall x \in \mathbb{R}, \ \operatorname{arg\,tanh}(\tanh(x)) = x,$$

$$\forall y \in]-1,1[, \tanh(\arg\tanh(y)) = y.$$

Além de mais, para qualquer $y \in]-1,1[$, temos

$$\operatorname{arg} \tanh(y) = \frac{1}{2} \ln \left(\frac{1+y}{1-y} \right).$$

Funções tanh(x) e arg tanh(x).

Definição 2.12 (cotangente hiperbólica) Para qualquer $x \in \mathbb{R} \setminus \{0\}$ definimos a cotangente hiperbólica por

$$coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}}.$$

Notamos que a função é ímpar.

Proposição 2.15

Além de mais, para qualquer $y \in]1, +\infty[$, temos

$$\operatorname{arg} \coth(y) = \frac{1}{2} \ln \left(\frac{1+y}{1-y} \right).$$

Funções $\coth(x)$ e $\operatorname{arg} \coth(x)$.

2.5 Exercícios

Exercício 1 Determinar os ângulos seguintes:

- 1. $\arcsin\left(\frac{1}{2}\right)$, $\arccos\left(-\frac{1}{\sqrt{2}}\right)$, $\arcsin\left(\sin\left(\frac{5\pi}{6}\right)\right)$, $\arctan\left(\tan\left(\frac{7\pi}{4}\right)\right)$.
- 2. $\arcsin(\sin(\frac{18\pi}{5}))$, $\arccos(\cos(\frac{18\pi}{5}))$ $\arcsin(-\sin(-\frac{15\pi}{7}))$, $\arccos(\cos(-\frac{10\pi}{3}))$.

Exercício 2 Determinar o conjunto solução:

1.
$$\cos(x) > \frac{1}{2}$$
, $|\tan(x)| > 1$, $\sin^2(x) < \frac{1}{4}$.

Exercício 3 Mostrar as relações seguintes:

- 1. $\cos(\arctan(x)) = \frac{1}{\sqrt{1+x^2}}$,
- 2. $\sin(\arctan(x)) = \frac{x}{\sqrt{1+x^2}}$,
- 3. $\cos(\arcsin(x)) = \sin(\arccos(x)) = \sqrt{1-x^2}$

Exercício 4 Mostrar as propriedade seguintes

- 1. $\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$,
- 2. $\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$,
- 3. $\cosh(x) + \sinh(x) = e^x$, $\cosh^2(x) \sinh^2(x) = 1$.

Exercício 5 Simplificar as relações seguintes:

- 1. $f(x) = \log_{10}(2x^n)$, $f(x) = \exp(2+x)\exp(2x-3)$, $f(x) = \ln(x+1) + \ln(x-1) \ln(x^2-1)$.
- 2. $f(x,y) = e^{x \ln(y) y \ln(x^2)}$, $f(x) = \cosh(x) \sinh(x)$, $f(x) = \sin(\pi \sinh(\ln(2)))$.
- 3. $f(x,y) = e^{3x\ln(5) + y\ln(2)}, \ f(x) = 2\ln(e^{\frac{x}{2}}) 2e^{\ln(\frac{x}{2})}, f(x) = \ln(2xe^{4x}).$

Exercício 6 Determine o conjunto solução das equações seguintes:

1.
$$\ln(x-1) = 2\ln(x+1)$$
, $e^{x+4} = 3e^{2x-1}$, $25^x + 5^{x+1} - 6 = 0$.

2.
$$2^x > 3^x$$
, $\ln(x+2) + \ln(x+3) = \ln(x+11)$, $-\cosh(x) + 2\sinh(x) = -1$.

Solução 1

1. (i)
$$\pi/6$$
, (ii) $3\pi/4$, (iii) $\pi/6$, (iv) $\pi/4$.

2.
$$(i) -2\pi/5$$
, $(ii) 2\pi/5$, $(iii) \pi/7$, $(iv) 2\pi/3$.

Solução 2

1. (i)
$$S = \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{3} + 2k\pi, \frac{\pi}{3} + 2k\pi \left[\right], \text{ (ii) } S = \left(\bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{2} + k\pi, -\frac{\pi}{4} + k\pi \right] \right) \bigcup \left(\bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{4} + k\pi, \frac{\pi}{2} + k\pi \right] \right),$$
(iii) $S = \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{6} + 2k\pi, \frac{\pi}{6} + 2k\pi \right].$

Solução 3

1. Seja
$$y = \arctan(x)$$
, mostrar que $\frac{\sqrt{1-\cos^2(y)}}{\cos(y)} = x$ usando $\tan = \frac{\sin}{\cos}$. Deduzir $\cos(y)$ en função de x .

- 2. Usar de novo $\tan = \frac{\sin}{\cos}$
- 3. $Usar \cos^2 + \sin^2 = 1$.

Solução 4

As relações se deduzem da definição de sinh e de cosh em função de e^x .

Solução 5

1. (i)
$$f(x) = \frac{1}{\ln(10)}(n\ln(x) + \ln(2))$$
, (ii) $f(x) = \exp(3x - 1)$, (iii) $f(x) = 0$.

2. (i)
$$f(x) = \frac{y^x}{x^{2y}}$$
, (ii) $f(x) = e^{-x}$, (iii) $f(x) = -1$.

3. (i)
$$f(x,y) = 125^x 2^y$$
, (ii) $f(x) = 0$, (iii) $f(x) = \ln(2) + \ln(x) + 4x$.

Solução 6

1. (i)
$$S = \emptyset$$
, (ii) $S = \{\frac{\ln(3)+4}{\ln(3)-1}\}$, (iii) Fazer $X = 5^x$ e obtemos $S = \{1\}$.

2. (i)
$$S =]-\infty, 0[$$
, (ii) $S = \{-5, 1\}$, (iii) Fazer $X = e^x$ e obtemos $S = \{0\}$.