

FIGURE 1A

PART ONE: TRIGGER REACTION

PART TWO: DETECTION REACTION

Denature, anneal

G TO GOTT COCOT CITT GAGC C CAAAGG C C G G C C C C G G G G G				1 6 6 6 6 6 1 6 A 1 6 A A 6 6 A 6 6	
				00000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·
(SEQ ID NO:7) (SEQ ID NO:1) (SEQ ID NO:2) (SEQ ID NO:3)				≻ 0 . +	- 11
MAJORITY DNAPTAO DNAPTR. DNAPTR.	MAJORITY DNAPTAO DNAPTR DNAPTTH	MAJORITY ONAPTAO ONAPTR- ONAPTRH	MAJORITY ONAPTAO CNAPTR	MAJORITY ONAPTA ONAPTH ONAPTH	

	417 414 420	487 484 490	!	557 554 560		627 624 630		694 691 700
C G A G G G G G G G G G C T G G G C G C G G G G	0	ACCGCGGACCCGACCCGACCTCCTTCCGACCGCGATCGCCGTCCTCCGACCCGAGGGGTACCTCA 4 1 1 1 2 4 1 6 6 6 6 6 7 6 6 6 6 7 8 9 1 1 1 1 1 1 2 2 3 4	ST G G G T T T G G G A G A G T A C G G C C T G A G G C C G G A G T G G G T G G A C T A C C G G C C C T G G C		GGGGGGGCCCCT CCGA CAA CCT CCCCGGGGT CAAGGGGCAT CGGGGAGAAGACGGGGGGAGAAGGT CCT CXAAG	CGAGTTTGG	GAGTGGGGGAGGCTGGAAAGGTGGTGAAGGTGGAGGGGGGTGAAGGGGGGG··· CXTGGGGGAGAGA	GGT.G.GT.G.GT.G.GT.GG
MAJORITY (SEQ ID NO:7)	(SEQ ID NO:1) (SEQ ID NO:2) (SEQ ID NO:3)						>-	.
MAJORITY	DNAPTAD DNAPTR. DNAPTTH	MAJORITY DNAPTAD DNAPTR	MAJORITY	DNAPTAO CNAPTEL CNAPTTH	MAIMRITY	ONAPTAO ONAPTE.	MAJORITY	ONAPTAO ONAPTE. ONAPTTH

	764 761 770		834 831 840		904 901 910		974 971 980		1044 1041 1050	
T C C A G G G C C A C A T G G A X G A C G T G C C T C C C G G G C T T C C C A G G T G C G C G C C C C C C C C C C C C	C. T. C. T. A. C. C. A. C. C. GG. A. C.	SCC GA C C G G G G G G G G T T A G G G C C T T T T T G T G G A G A G G G T G G A G T T T		GOCA GOCT COT CCA C GAGG TOT T C G G C C C T G G A G G G C C C C A A G G C C C T G G A G G C C C C C C C C C C C C C C C		CGGAAGGGGCTTCGT GG GCTTT GJ CCTTT GC CG G G G G G G G G G G G G G G		CGCCCCAGGCAGGCGCGCGCTCCACCGGGCAGCCAGACCCCTTTAXGGGCCTXAGGGACCTXAAGGAGGTG	т. 66. 61	
MAJORITY (SEQ ID NO:7)	(SEQ ID NO:1) (SEQ ID NO:2) (SEQ ID NO:3)									
MAJORITY	DNAPTAD DNAPTR DNAPTR	MAJORITY	ONAPTAD ONAPTH ONAPTH	MAJORITY	ONAPTAD DNAPTR DNAPTR	MAJORITY	ONAPTAD CHAPTE. CHAPTEL	MAJORITY	ONAPTAO ONAPTEL ONAPTTH	-

C G G G X C T C G T C G G G G G G T T T T G G C C G T G A G G G G G C G T X G A C C T C X T G C C C G G G A C G	6. T		1184 		C	C G C C T T C A C G G G G G G G G G C C T T T G G C T T T A C C A G G A G G G G G C C C T T C C C G G G T C C T G G	A. G A A. A. A. A	C C C A C A T G G A G G G G G G G G G G G G G G G	1394 166
(SEQ ID NO:7)	(SEQ ID NO:1) . (SEQ ID NO:2) . (SEQ ID NO:3)	-							-
MAJORITY	DNAPTAD DNAPTR. DNAPTTH	MAJORITY	DNAPTAD DNAPTR DNAPTH	MAJORITY	DNAPTAD DNAPTR. DNAPTTH	MAJORITY	DNAPTAD DNAPTH. DNAPTTH	MAJORITY	ONAPTAO ONAPTR ONAPTR

CTCAACTCCCGGGAC	1464 	; A G A A G A C C C A A G C		4 G A A G A T C C T G C A G T A	. CCGC 1604	CCACCCAGGACGGGC	. G. G	TCCGACCCCAACCTGC	
G G A G A T C C C C C C C C C C C C C C C C C C		CA G C T G G A A A G G G T G T G T T T G A G G G C T X G G G C T T C C C C C C A T C G G C A A G A G A G A G A	GC	G C T C C A C C A G C C C C C C C C C C C C C	6	C C G G G A G C T C A A C C A A G A A C A C C T A C A T X G A C C C C C C C C C C C C C C C C C C	G. A	ACCC	6
MAINRITY (SEC) ID NO:7) 6		Ö				ပ			
י אחמטוועש	DNAPTAD DNAPTR DNAPTR DNAPTR	MAJORITY	ONAPTAO ONAPTH. ONAPTTH	MAJORITY	ONAPTAO ONAPTR ONAPTH	MAJORITY	DNAPTAD DNAPTEL DNAPTEL	MAJORITY	DNAPTAD

1814 1811 1820		1884 1881 1890		1954 1951 1960		2024 2021 2030		2094 2091 2100
A GAA CAT C C C C C C C C C C C C C C C G G C C C A G G A T C G G C C G G C C C T T C G T G G C G A G G G X T G G G T C C C C C C C C C C C C C C C	GIT GGT GGC CCT GGA GTATA GC GA GATA GA G CT C GG GGT C GT G G C C C C C C C G G G G	A	AT CCGGGT CTT CCAGGAGGGGAGGGAGAT CCACAGAGGGGGGGGGG	66 6 T 6 T 6 T 6 T 6	A G G G C G G G G G C G G G G G G G G G	B. G. G. C. A. C.	CCACCECCT CT CCCAGGAG CTT G C CAT C C C CTA C G A G G G G G G G C C T T CAT T G A G G G C T T C C A G	
MAJORITY (SEQ ID NO:7) DNAPTAD (SEQ ID NO:1) DNAPTA (SEQ ID NO:2)	(SEQ ID NO.3)							
MAJORITY DNAPTAD DNAPTR	~	ONAPTAD CNAPTR. CNAPTTH	MAJORITY	DNAPTAD DNAPTR. DNAPTR	MAJORITY	DNAPTAD DNAPTR DNAPTR	MAJORITY	DNAPTAD DNAPTH. DNAPTH

MAJORITY (SEQ ID NO:7) AGCTTCCCA	A G G T G C G G C C T G G A T T G A G A C C C T G G A G G G G G G G G G G G G G G G G	3
DNAPTAD (SEQ ID NO:1) DNAPTA (SEQ ID NO:2) DNAPTH (SEQ ID NO:3)	AAAAAAAAA	2164 2161 2170
	CCCT CTT CGGCCGCCGCGCGTACGT GCCCGGACGT CAACGCCGGGT GAAGAGGGGTGCGGGGGGGGGG	
	6 T A A.G. G C C	2234 2231 2240
MAJORITY	GCCCATGCCCTTCAACATGCCCGTCCAGGCCACCGCCGCCGACCTCATGAAGCTGGCGGTGGTGAAGCTC	
DNAPTAD CNAPTR.		2304 2301 2310
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	CI	
DNAPTAD CNAPTH CNAPTH	A6666666666	2374 2371 2380
MAJORITY	999999	
DNAPTAD DNAPTR DNAPTTH	A	2444 2441 2450

MAJORITY	(SEQ ID NO:7)	MAJORITY (SEQ ID NO:7) GCCCCTGGAGGTGGAGGTGGGGATGGGGGAGGAGTGGGTTGGGTTTCCCCAAGGAAGTAG
DNAPTAD	DNAPTAD (SEQ ID NO:1)	А 9
DNAPTH	DNAPTH (SEQ ID NO.2)	
DNAPTIH	DNAPTH (SEQ ID NO:3)	

2499 2496 2505

	69 68 70	c c	138 140		209 208 210		278 277 280		348 347 350
) MXAML PLFEPKGRVLLVDGHHLAYRTFFALKGLTTSRGEPVQAVYGFAKSLLKALKEDG. DAVXVVFDAK	. RG	·		~		ட	A L AI L D K WD. AK	GSLLHEFGLLEXPKALEEAPWPPPEGAFVGFVLSRPEPMWAELLALAAARXGRVHRAXDPLXGLRDLKEV	S
MAIDBITY (SEQ ID NO:8)	140 PRO (SEQ ID NO:4) IR PRO (SEQ ID NO:5) ITH PRO (SEQ ID NO:6)	MAJORITY	140 PR0 TR. PR0 TH. PR0	MAJORITY	140 PR0 IT PR0 ITH PR0	маловпт	740 PR0 FF PR0 TH PR0	MAJORITY	740 PRO FR PRO TH PRO

RGLLAKDLAVLALREGLDLXPGDDPML S G. P	MAJORITY (SEQ ID NO:4) TAD PRO (SEQ ID NO:4) TH PRO (SEQ ID NO:5) TH PRO (SEQ ID NO:5) TAD PRO
-------------------------------------	--

	768 767 770		833 831 835
MAJORITY (SEQ 10 NO:8) SFPKVRAWI EKTLEEGRRRGYVETLFGRRRYVPDLNARVKSVREAAERMAFNMPVOGTAADLMKLAMVKL	768 . Y	F P R L X E MG A R M L L O V H D E L V L E A P K X R A E X V A A L A K E V ME G V Y P L A V P L E V E V G X G E D W L S A K E X	E
(SEQ ID NO:8)	TAD PRO (SEQ ID NO:4) TR PRO (SEQ ID NO:5) TR PRO (SEQ ID NO:6)		
MAJORITY	140 PR0 171 PR0 171 PR0	MAJORITY	140 PR0 FT PR0

FIGURE 4

Genes for Wild-Type and Pol(-) DNAPT#

Codons essential to polymerase Polymerase "3' Exo." Domain Coding Regions: 5' Nuclease (MT)

Bam H

Strand

Cleavage

Cleavage

a Siles

Cleavage

a Siles

Codantrate Stranc

Control of the transport of the Strand

Template Strand

FIGURE 7

FIGURE 8

FIGURE 12

B DNAP: - + + + 30-0 · - - + + + 46

Substrate RNA (46 nt)

15 nt

. 4

A4^{QC}Wecaugecugeagguegaeucuagaggaueee 3° 3°CGTACGGACGTECAGCTGAGATETECTAGG 3°CGTAGG 3°CGTAGG

, 15 -35 <u>HGAC</u>AATTAATCATCGGCTCG<u>IAIAAIG</u>TGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCG

lac 19, lacZ pTTQ118 4563 b.p. ptac Ampr

RBS; Ribosome binding site

ptac: Synthetic tac promoter

lac IQ: Lac repressor gene

lacZ: Beta-galactosidase alpha fragment

rrnBt: E. coli rrnB transcription lerminalor

FIGURE 15

P_{\$10}: Bacteriophage T7 \$10 promoter

RBS: Ribosome binding site

T¢: T7 ¢ Terminator

1 2 3 4 5 6 7

A

(32P) ATACGACTCACTATAGGGGAAT CCCCCTTA G 5 CTTAAGCTAAATCCACTGTGATATCTTATGTGCCTTA A G

B

-41" Ab" No (2 pt. Unmodified Pd. Israell DNAT Tag

Afrit activity

1 2 3 4 5 6 7 8 - harrpin test molecule 84 nz + conversion to double standed. (complete extension of primer)

desired product U nuc. Multiple books Jeaused by polymeization

I some abarroant cleavage with "46" because of residual polymerase activity.

CGCCAGGGIIITCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTCGAGTCCTC CGCCAAAAGGGTCACTTTTGCTGCGGTCACTTAACATTATGCTGAGTGATTCCCGCTTAAGCTCGAGCCCTAGGCCCTAGGGCCCTAGGGCCCTAGGGCCCTAAGGTTGTAAAAAAAA	Sall BSpM 1 Hind III Hind III TAGAGTCGACCTGCACGCATGCTTGAGTATTCTAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATAGCTTAACAATAGTTAACAATAGTTTAACAATAGTTTAACAATAGTTTAACAAATAGTTTAACAAATAGTTTAACAAATAGTACCAGTATCGACAAAGGACACACTTTAACAATAGATATCAACAGTTTAACAATAGATATCAACAGTTTAACAATAGATATCAACAATAGATATCAACAATAGTACCAGTATCAACAAATAGATATCAACAAATAGAATATCAACAATAGTAACAATAGTAACAAATAGTAACAAATAGTAACAAATAGTAACAAATAGAAATAACAAATAGTAACAAAATAGTAACAAATAGTAACAAAATAGTAACAAAATAACAAATAGTAACAAAAAAAA	ACAACATACGA 1GTTGTATGCT
CGCCAGGGIIITCCCAGTCACGACGTIGTAAAACGGGCGTCCCAAAAGGGTCAGTGCTGCAGACGTTTTGC	Sall BepMI Acc I Hinc II TAGAGTCGACCTGCAGCATGCAAGCTTGAGTATA ATCTCAGCTGCACGTCGTACGTTCGAACTCATA	TCCGCTCACAATTCCACACATACGA 228 AGGCGAGTGTTAAGGTGTGTTGTATGCT -48'xcv' 206

FIGURE 22A

.____

Aztor Marker 11

MILLI

2011 Markery

!

 $\star = ^{32}P$

FIGURE 28A

4 = 32P 5' terminal phosphate

FIGURE 28B

M 1 2 3 4 5 6

Wild-type Substrate

Mutant Substrate

1 Des

SOC)

1

Denature

5' _____A_3'

5'_____G_3'

2

Renature

5'_____A___A___3'

5' <u>AAA</u> 3'

3

Add cleavage agent

► = cleavage site

4

Resolve reaction products

Scie Office Air Reserve

5

Detect unique cleavage "fingerprint"

strand	5'BIOTIN SENSE STRAND	5! Flucrescein Anti-sense strand
55 DNA	Wt 419 422 WT 419 422	WT 419 422 WT 4F9 422
250 ^{ng} BN		2
M	123456	7 8 9 10 11 12
<u>_</u>		
	hand hand	
	**	— —
	#####################################	

S'IGAIGIAIAAAIATCACIGCATITCGCICTGIAITCAGICGCICTGCGGA GAGGCIGGCAGAITGAGCCCTGGGAGGIICTCTCCCAGCACTAGCAGGIAG 3 'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCQAGACGCCT CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC L.46.16-10 5'TGATGTATAAATATCACTGCATTTCGCTCTGTTCAGTCGCTCTGCGGA GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCTCCAGCACGTAGCAGGTAG L.46.16-12 5'TGGTGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCTCCAGCACTAGCAGGTAG 3º ACCACATATITIATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC 5 TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG 3 ' ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCQACCGTCTAACTCGGGACCCTCCAAGAGAGGGCGTGATCGTCCÄTC S'IGAIGIAIAAATATCACTGCATTICGCTCTGTAITCAGTCGCTCTGCGGA GAGGCTGGCAGAITGAGCCCTGGGAGGTTCTCTCTCAGCAGCTAGCAGGTAG 3 ' ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACGACTGTAACTCGGGACCCTCCAAGAGAGAGTCGTGATCGTCCATC 3 'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGGATCGTCCATC 3' CCGACTGTTCTTCCTTTGAGGGACTCTGTCGTCCTTGAAGGTGTTCCCC TACAATGCCCCTCCATGACCCCTCCTTGGGCCCTTGCGGGGGGAGAGA S'OCTIGACAAGAACTCGCTGAAACAGCAGGGACTTTCCACAAGGGG ATGTTACGGGGAGGTACTGGGAAGGAGGCGGTCGGGAACGCCCACTTTCT 3 · CCBACTGITCITCCTTICAGCGACTITGTCGICCTCGTGAAGGIGTTCCCC TACAATGCCCCTCCATGACCCTTCCTCGGCCAGCCCTTGCGGGTGAAAGA S'GGTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG ATGTTACGGAGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCACTCTCT 3 · CCGACTGITCTTCCTTIGAGCGACTCTGTCGTCCTGAAAGGIGTTCCCC TACAATGCCTCTCCATGACCTCCTCCTCGGCCAGCCCTTGCGGGTGAGAA 3. CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCCTGAAAGGTGTTCCCC TACAATACCCCTCC------TCGGCCAGCCCTTGTGGGTGAAAGA L.46.16-12 5'GGCTGACAAGAAACTCGCTGAGATAGCAGGGACTTTCCACAAGGGG ATGTTATGGGGAAGG------AGCCGGTCGGGAACACCCACTTTCT S'GGCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG ATGTTACGGGGAGGAAGTACTGGGGAAGGAGGAAGGCGGGAACGCCCCCTTCT ----TCGGCCAGCCTTGTGGGTGAAGA 5' GOCTGACAAGAAAGCTCGCTGAGACAGCAGGGACTTTCCACAAGGG ATGTTACGGGGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCACTCTCT 3 COGACTETTCTTCTTTGAGCGACTCTGTCGTCCTGAAAGGTGTTCCCC TACAATGCCCCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGTGAGAAA --- AGCCGGTCGGGAACACCCACTITCT (560 ID NO: 17) 3' CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCCTGAAAGGTGTTCCCC TACAATACCCCTCC---L.46.16-10 5'GGTTGACAAGAAACTCGCTGAGATAGCAGGGACTTTCCACAAGGGG ATGTTATGGGGAGG---(18:0N Q1 BBS) (PT: ON (1) 535) L.36.8-3

S'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA GAGGCTGGCAGATTGAGCCCTAGGAGGTTCTCTCCCAGCACTTAGCAGGTAG 3º ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT CTCCGACCGTCTAACTCGGGATCCTCCAAGAGAGGGCGTGATCGTCCATC

5 ' AGCCTGAGTGTTCCCTGCTAAACTCTCACCAGCACTTGGCCGGTGCTGGG CAGAGCGGCTCCACGCTTGCTTGATAAAGACCTCTTCAATAAAGCTGCC L.CEM/251 S'AGCOTGGOTGITCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG CAGAGTGACTCCACGCTTGCTIGCTIAAAGCCTCTTCAATAAAGCTGCC 3º TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC GTCTCACTGAGGTCGAACGAACGAATTTTCGGGAGAAGTTATTTCGACGG (SQ) ID ND: 79) 3'TCGGACCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC GTCTCACCGAGGTGCGAACGAACTATTTTGGAAGGTATTTTCGACGG L.46.16-12 5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCAGTGCTGGG CAGAGTGGCTCCACGCTTGCTTAAAAGACCTCTTCAATAAAGCTGCC (SEQ 1DN0: 78) 3' TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGTCACGACCC GTCTCACCGAGGTGCGAACGAACTAATTTTCGACGG L.19.16-3 5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC L.46,16-10 5'AGCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTAGCCAGTGCTGGG CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC $(56Q_{1D}N0:77)$ 3'Icgaaccaaaaggaacgaargaagtggtggtggtggtcacgaacce gtctcacgaggtgcgaacgaacgaatttctggagaagttatttcgacgg 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC GTCTCACCGAGGTGCGAACGAATTTCTGGAGAAGTTATTTCGACGG s agectegetettecetectacaccacacatttggecgetectgg cagagiggerectecacgetttgetttaaagaectettaaaagaeteeee

5'ATTTTAGAAGTAGGCCAGTGTGTTCCCATCTCTCCTAGCCGCCGCCTG G 3' 3'TAAAATCTTCATCCGGTCACACAAGGGTAGAAGGATCGGCGGCGGAC C 5'

3 º TCGGACTCACAAGGGACGATTTGAGAGTGGTCGTGAACCGGCCACGACCC GTCTCGCCGAGGTGCGAACGAACGAATTTCTGGAGAAGTTATTTCGACGG

- Hairpin-

L.46.16-10 5'ATTTTAGAAGTAAGCCAGTGTGTTTCCCATCTCTCTAGCCGCCGCCTG G 3' 3'TAAAAICTTCATTCGGTCACACACACAGGGTAGAGGAAGGAATCGGCGGGGCGGAC C 5'ATTITAGAAGTAAGCCAGTGIGIGITCCCATCICTCCTAGCCGCCGCCTG G 3' 3'TAAAAICTTCATTCGGTCACACACAAGGGTAGAGAGGATCGGCGGCGGGG L.19.16-3 5'ATTITAGAAGTAGGCTAGTGTGTTCCCATCTCCTAGCCGCCGCCTG G 3' 3'TAAAATCTTCATCCGATCACACACAAGGGTAGAGAGGATCGGCGGCGGAC C 5' 5' ATTITAGAAGTAAGCTAGTGTGTTCTCCCATCTCTCTAGCCGCCGCCTG G 3' 3. TAAAATCTTCATTCGATCACACACAAGGGTAGAGAAGGATCGGCGGCGGGGC 5. ATTITAGAAGTAGGCTAGTGTTGCCATCTCTCCTAGCCGCCGCCTG G 3' 3.TAAAATCTTCATCCGATCACACACAAGGGTAGAGAAGGATCGGCGGCGGAC C 5'

2, 0, 25, 50, 75, 100, 100 mm KCI

A

B

В

A

\$ 5 1.25 Units TFI DNAP 8 0 50 0 50 mm KCI

5'

B

A

1234M

FIGURE 76

p53 Segment "upstream PCR" "downstream PCR" 3' & Combine, Denature & 5' Anneal "Recombinant 3' PCR" Recombinant p53 segment

12345678

12345678

7

Antisense Strand

1234

				60	,
10	20	30 4	10 50	00	1638
	TCCT GGCTCAG	rm caacccTGC	C GGCAGGCCTA	ACACATGCAA	
AAATTGAAGA GTTTGA' TTTAACTTCT CAAACT	ACTA CCGAGTCT	AA CTTGCGAC	CG CCGTCCGGAT	TGTGTACGTT	
TTTAACTTCT CAAACT	AGIN CCCC.		110	120	
70	80	90 10	00 110	GGGTGAGTAA	ER10
		ma mmmaaman	AGTGGCGGAC	GGGTGAGTAA	
GTCGAACGGT AACAGG CAGCTTGCCA TTGTCC	BAAGA AGCTTGCT	AG AAACGACT	GC TCACCGCCTG	CCCACTCATT	
CAGCTTGCCA TIGTCC	TICT TOWARDS	10 122100		400	
130	140 1	50 1	60 170		
	TGAT GGAGGGGG	AT AACTACTG	GA AACGGTAGC1	TTATGGCGTA	
TGTCTGGGAA ACTGCC ACAGACCCTT TGACGG	SACTA CCTCCCC	TA TIGATGAC	CT TIGCCATCO.		
100	200 2	210 2	20 230	240	
190 AACGTCGCAA GACCAA	200		TG CCATCGGATC	TGCCCAGATG	
AACGTCGCAA GACCAA TTGCAGCGTT CTGGT	TTCTC CCCCTGG	AAG CCCGGAGA	AC GGTAGCCTAG	ACGGGTCTAC	
		_	80 290		
250 GGATTAGCTA GTAGG'	200	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AC GATCCCTAGO	TGGTCTGAGA	
GGATTAGCTA GTAGG CCTAATCGAT CATCC	TGGGG TAACGGC ACCCC ATTGCCG	AGT GGATCCGC	TG CTAGGGATC	G ACCAGACTCT	
CCTAATCGAT CATCC	ACCCC MITOCCO			2.60	
310	320	330	35		
	CTGGA ACTGAGA	CAC GGTCCAGA	ACT CCTACGGA	CGTCGTCACC	
GGATGACCAG CCACA CCTACTGGTC GGTGT	GACCT TGACTCT	CONTRACTOR OF THE CONTRACTOR O	IGA GGATGCCCT		1659
		•			
370	380	390	400 41	0 420	
370 GGAATATTGC ACAAT	GGGCG CAAGCCT	GAT GCAGCCA	TGC CGCGTGTAT	C TTCTTCCGGA	
GGAATATTGC ACAAT CCTTATAACG TGTTA	ACCCGC GTTCGGA	CTA CGTCGGT	ACG GCGCACATA	e ileilee	
420	440	450	460 47		
430 TCGGGTTGTA AAGTA		TOO TROCCAC	TAA AGTTAATAC	C TTTGCTCATT	
TCGGGTTGTA AAGTA AGCCCAACAT TTCAT	TGAAAG TCGCCCC	TCC TTCCCTC	ATT TCAATTATC	G AAACGAGTAA	
			520 53	- 4 4	
490 GACGTTACCC GCAGA	500	510 יעאא כער הער איי	CCA GCAGCCGC	G TAATACGGAG	
GACGTTACCC GCAGA CTGCAATGGG CGTC	MAGAAG CACCGGC TTCTTC GTGGCC(GATT GAGGCAC	GGT CGTCGGCG	CC ATTATGCCTC	
CTGCAATGGG CGTC	110110 0111				
550	560	570	580 5!		
550 GGTGCAAGCG TTAA' CCACGTTCGC AATT.	TCGGAA TTACTG	GCC TAAAGCC	CAC GCAGGCGG	AA ACAATTCAGI	1
CCACGTTCGC AATT.	AGCCTT AATGAC	COC ATTICO			
610	620	630	640 6	50 660	
610 GATGTGAAAT CCCC	GGGCTC AACCTG	GGAA CTGCAT	TGA TACTGGCA	MG CANCTCAGAC	-
GATGTGAAAT CCCC CTACACTTTA GGGG	CCCGAG TTGGAC	CCTT GACGTA	GACT ATGACCGT	TC GAACTCAOL	•
		600	700 7	10 720)
670 GTAGAGGGGG GTAG	680 בסדדע AGGTGT AGGTGT	CMCAAA	TGCG TAGAGATC	TG GAGGAATAC	
GTAGAGGGGG GTAG CATCTCCCCC CATC	TTAAGG TCCACA	TCGC CACTTT	ACGC ATCTCTAG	AC CTCCTTATG	3
CIII CI COCCO CIII C				70 78	
730 GGTGGCGAAG GCGC	740	750	mcac crcccaAA	GC GTGGGGAGC	A
GGTGGCGAAG GCGC CCACCGCTTC CGCC	CCCCCT GGACGE	TCTG ACTGCG	AGTC CACGCTT	CG CACCCCTCG	T
CCACCGCTTC CGCC	GGGGGA CC10C1				

830 840	
810 810 820 830 840	
790 800 810 820 GGACTTGG AGGTTGTGCC AACAGGATTA GATACCCTGG TAGTCCACGC CGTAAACGAT GTCGACTTGG AGGTTGTGCC AACAGGATTA GATACCCTGG TAGTCCACGG GCATTTGCTA CAGCTGAACC TCCAACACGG	
AACAGGATTA GATACCCTGG TAGTCCACGC CGTAAACGAT GTCGACTGG TCCAACACGG TTGTCCTAAT CTATGGGACC ATCAGGTGCG GCATTTGCTA CAGCTGAACC TCCAACACGG	
TTGTCCTAAT CTATGGGACC MOST	
CTTGAGGCGT GGCTTCCGGA GCTATGCGCA ATTCAGCTGG CGGACCCCTC ATGCCGGCGT	
CTTGAGGCGT GGCTTCCGGA GCTAACGCGT TAAGTCGACC GCCTGGGGAC CTTGAGGCGT GGCTTCCGGA GCTAACGCGT ATTCAGCTGG CGGACCCCTC ATGCCGGCGT GAACTCCGCA CCGAAGGCCT CGATTGCGCA ATTCAGCTGG CGGACCCCTC ATGCCGGCGT	
01() JAV	
910 920 930 940 AGGTTAAAAC TCAAATGAAT TGACGGGGGC CCGCACAAGC GGTGGAGCAT GTGGTTTAAT TCCAATTTTG AGTTTACTTA ACTGCCCCCG GGCGTGTTCG CCACCTCGTA CACCAAATTA	
TCCAATTTTG AGTTTACTTA ACTOODS	
0.10 300	
TCGATGCAAC GCGAAGAACC TACCTOOTO AACTGTAGGT GCCTTCAAAA GTCTCTACTC	
AGCTACGTTG CGCTTCTTGG AATOMAS	
1070	
1030 1040 1050 1060 1060 1060 1060 1060 1060 106	
TTACACGGAA GCCCTTGGCA CTCTGTGTGT	
1110 1120 1130	SB-1
100	35-1
GC AACGAGCGCA ACCCTTATCC TTTGTTGCCA GCGGTCCGGC	
GC AACGAGCGCA ACCC AATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTATCC TTTGTTGCCA GCGGTCCGGC TTACAACCCA ATTCAGGGCG TTGCTCGCGT TGGGAATAGG AAACAACGGT CGCCAGGCCG	
TTACAACCCA ATTCAGGGCG 11000	
1180 1190 1200	SB-3
1150 1160 117° ATG ACGTCAAGTC	SB-3 SB-4
ATG ACGTCAAGTC	20-4
ACTICANCIA GGTGGGGATG ACGTCAAGTC	
CGGGAACTCA AAGGAGACTG CCAGTGATAA ACTGGAGGAA GGTGGGGATG ACGTCAAGTC GCCCTTGAGT TTCCTCTGAC GGTCACTATT TGACCTCCTT CCACCCCTAC TGCAGTTCAG	
CCCCTTCAGT TTCCTCTGAC GGTCAGTTTT	
1220 1240 1250	an 3
1210 1220 1230 1240 1230	SB-3 SB-4
ATCATGGCCC TTA	20-1
A TOTAL COCCOLATION AND ANGAGAGCG	
ATCATGGCCC TTACGACCAG GGCTACACAC GTGCTACATTA CCGCGTATGT TTCTCTTCGC	
TACTACCGGG AATGCTGGTC CCGMT010	
1110 1120	
1270 1280 1290 DECCENTIFIC AGTOTICAL	
ACCTCGCGAG AGCAAGCGGA CCTCATAAAG IGCGICGIAG AGGCCTAACC TCAGACGTTG	
TEGAGECTE TEGTICACET CONTE	
1370 1300	
1330 1340 1350 CARCCACG GTGAATACGT	
1330 1340 1350 1360 1370 TCGACTCCAT GAAGTCGGAA TCGCTAGTAA TCGTGGATCA GAATGCCACG GTGAATACGT TCGACTCCAT GAAGTCGGAA TCGCTAGTAA TCGTGGATCA CTTACGGTGC CACTTATGCA AGCTGAGGTA CTTCAGCCTT AGCGATCATT AGCACCTAGT CTTACGGTGC CACTTATGCA	1743
AGCTGAGGTA CTTCAGCCTT AGCGATCATT AGCACCTION GC CACTTATGCA	1/43
1410 1420 1430 1440	
1200 1400 1410 - am accompact AA AGAAGTAGGI	
TCCCGGGCCT TGTACACACC GCCCGTCACCCTCA CCCAACGTTT TCTTCATCCA	1743
1390 1400 1410 1420 1430 TCCCGGGCCT TGTACACACC GCCCGTCACA CCATGGGAGT GGGTTGCAAA AGAAGTAGGT AGGGCCCGGA ACATGTGTGG CGGGCAGTGT GGTACCCTCA CCCAACGTTT TCTTCATCCA	1743
AGGGCCCGGA ACATG	1743
AGGGCCCGGA ACATG AGGGCCCGGA ACATG 1490 1500	1743
AGGGCCCGGA ACATG AGGGCCCGGA ACATG 1460 1470 1480 1490 1500	1743
AGGGCCCGGA ACATG AGGGCCCGGA ACATG 1460 1470 1480 1490 1500	1743
AGGGCCCGGA ACATG AGGGCCCGGA ACATG 1460 1470 1480 1490 1500	1743
AGGCCCGGA ACATG AGGCCCGGA ACATG 1450 1460 1470 1480 1490 1500 AGCTTAACCT TCGGGAGGGC GCTTACCACT TTGTGATTCA TGACTGGGGT GAAGTCGTAA TCGAATTGGA AGCCCTCCCG CGAATGGTGA AACACTAAGT ACTGACCCCA CTTCAGCATT	1743
AGGGCCCGGA ACATG AGGGCCCGGA ACATG 1450 1460 1470 1480 1490 1500 AGCTTAACCT TCGGGAGGGC GCTTACCACT TTGTGATTCA TGACTGGGGT GAAGTCGTAA TCGAATTGGA AGCCCTCCCG CGAATGGTGA AACACTAAGT ACTGACCCCA CTTCAGCATT 1510 1520 1530 1540 1550	1743
AGGGCCCGGA ACATG AGGGCCCGGA ACATG 1450 1460 1470 1480 1490 1500 AGCTTAACCT TCGGGAGGGC GCTTACCACT TTGTGATTCA TGACTGGGGT GAAGTCGTAA TCGAATTGGA AGCCCTCCCG CGAATGGTGA AACACTAAGT ACTGACCCCA CTTCAGCATT 1510 1520 1530 1540 1550	1743
AGGCCCGGA ACATG AGGCCCGGA ACATG 1450 1460 1470 1480 1490 1500 AGCTTAACCT TCGGGAGGGC GCTTACCACT TTGTGATTCA TGACTGGGGT GAAGTCGTAA TCGAATTGGA AGCCCTCCCG CGAATGGTGA AACACTAAGT ACTGACCCCA CTTCAGCATT	1743

NO:151) SEQ ID NO:158) 0AAATTGAAGGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACATGCA SEQ ID NO:159) 0 ~TTTTTATGGAGAGTTTGATCCTGGCTCAGAGTGAACGCTGGCGGCGTGCCTAATACATGCA SEQ ID NO:160) 0TTTTATGGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCCTAATACATGCA	AGCGGACGGG NO:152) 60 AGTCGAACGGTAACAGGAAGAAGCTTGCTTCTTTGCTGACGAGTGGCGACGGG 62 AGTCGAACGATGAAGCTTCTAGCTTGCTAGAAGTGGATTAGTGGCGCACGGG 61 AGTCGAACGAACGGACGAGAAGCTTGCTTCTCTGATGTT-AGCGGCGGACGGG	TGAGTAA 114 TGAGTAATGTCTGGGA_AACTGCCTGATGGAGGGGATAACTACTGGAAACGGTAGCTAATA 114 TGAGTAAGGTATAGTTAATCTGCCCTACACAGGGACAACAGTTGGAAACGACTGCTAATA 113 TGAGTAACCGTGGATAACCTACCTATAAGACTGGGATAACTTCGGGAAACCGGAGCTAATA	175 CCGCATAACGTCGCAAGACCAAAGAGGGGGGACCTTCG_GGCCTCTTG 176 CTCTATACTCCTGCTTAACACAAGTTGAGTAGG_GAAAGTTTTTCG 175 CCGGATAATTTTGAACCGCATGGTTCAAAAGTGAAAGAGGTCTTGCTGTCA	221 CCATCGGATGTGCCCAGATGGGATTAGCTAGTGGGGGTAACGGCTCACCTAGGCGACGA 221 GTGTAGGATGAGACTATATAGTATTAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCTATGA 229 CTTATAGATGGATCCGCGCTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGA	283 TCCCTAGCTGGTCTGAGAGGATGACCAGCCACTGGAACTGAGACACGGTCCAGACTCCTA 283 CGCTTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTA 291 TACGTAGCCGACCTGAGAGGTGATCGGCCACACTGGAACTGAGACACGGTCCAGACTCCTA	345 CGGGAGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTG 345 CGGGAGGCAGCAGTAGGGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACGCCGCTG 353 CGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCTG CGGGAGGCACAG	407 TATGAAGAAGCCTTCGGGTTGTAAAGTACTTTCAGCGGGAGGAA_GGGAGTAAAGTTAATT 407 GAGGATGACACTTTTCGGAGCGTAAACTCCTTTTTTAGGGAAGAATT 415 AGTGATGAAGGTCTTCGGATCGTAAAACTCTGTTATTAGGGAAGAACATATGTGTAAGTAA	468 ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACGGGCTAACTCCGTGCCAGCAGCGGGGAAGCGGGGGCTAACTCCGTGCCAGCAGCGGCGGGGAATAAGCACCGGGCTAACTCCGTGCCAGCAGCGCGGGGAATAAGCACGGGTAACTACGTGCCAGCAGCGGCGGGGGAATAAGCCACGGGTAACTACGTGCCAGCAGCGGCGGGGGGAAAAGCCACGGCTAACTACGTGCCAGCAGCGGCGGGGGAAAAAGCCACGGCTAACTACGTGCCAGCAGCGGCGGGGGGGG
1638 (SEQ ID N E.colirrsE (SE Cam.jejun5 (SI Stp.aureus (SI	A	ER10 E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus

GTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA	GTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTT ATCAAGTCTCTTGTGAAATCTAATGGCTTAACCATTAAACTGCTTGGGAAACTGATAGTCTA TTTAAGTCTGATGTGAAAGCCCACGGCTCAACGTGGAGGGTCATTGGAAACTGGAAACTT	GAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGA GAGTGAGGGAGAGGCAGATGGAATTGGTGGTGTAGGGGGTAAAATCCGTAGATATCACCAAGA GAGTGCAGAAGAAGAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGATATGGAGGA	ATACCGGTGGCGAAGGCGGCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGA ATACCCATTGCGAAGGCGATCTGCTGGAACTCAACTGACGCTAAGGCGCGCGAAAGCGTGGGGA ACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGA	GCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGC GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTACACTAGTTGTTGGGGT TCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGG	C_CTTGA_GGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGC G_CTAGT_CATCTCAGTAATGCAGCTAACGCATTAAGTGTACCGCCTGGGGAGTACGGTCGC GT_TTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACGC	AAGGTTAAAACTCAAATGAATTGACGGGGCCCCGCACAAGCGGTGGAGCATGTGGTTTAATT AAGATTAAAACTCAAAGGAATAGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATT AAGGTTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATT	CGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAGAAT CGAAGATACGCGAAGAACCTTACCTGGGCTTGATATCCTAAGAACCTTTTAGAGATAAGAGG CGAAGCAACGCGAAGAACCTTACCAAATCTTGACATCCTTTGACAACTCTAGAGATAGAGCC	GTG==CCTTCGGG=-AA-CCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTGTTGTGA GTGCTAGCTTGCTAGAA-CTTAGAGACAGGTGCTGCAGGCTGTCGTCGTCGTGTGTGT	GCAACGAACCAACCAACCAACCAACCTTATCCTTTGTTGCCAGCGGTCCGG_CC GATGTTGGGTTAAGTCCCGCAACGAACCCAACCCACGTATTTAGTTGCTAACGGTTCGG_CC GATGTTGGGTTAAGTCCCGCAACGAACCCAACCCTTAAGCTTAGTTGCCATCA_TTAAGT_T
530 538 538	592 568 600	654 630 662	716 692 724	778 754 786	840 816 848	900 876 909	962 938 971	1024 1000 1033	1081 1061 1092
E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	SB-1 E.colirrsE Cam.jejun5 Stp.aureus

Cam.jejun5 1122 GAGCACTCTAAATAGACTGCCTTCG-TAAGGAGGAAGGTGTGGACGACGTCAAGTCATC Stp.aureus 1152 GGGCACTCTAAGTTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATC ATGACGTCAAGTCATC E.colirrsE 1142 GGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGGTTGACGTCAAGTCATC ATGACGTCAAGTCATC (SEQ ID NO:157) (SEQ ID NO:154)

E.colirrsE 1204 AIGGCCCTTACGACCAGGGCTACACACGTGCTACAAIGGCGCATACAAAGAGAAGCGACCTC Cam.jejun5 1183 ATGGCCCTTATGCCCAGGGCGACACACGTGCTACAATGGCATATAGAATGAGACGCAATACC Stp.aureus 1214 AIGCCCCTIAIGAITIGGGCIACACACGIGCIACAAIGGACAAIACAAAGGGCAGCGAAACC ATGGCCCTTACGA ATGGCCCTTA

E.colirrsE 1266 GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTC Cam.jejun5 1245 GCGAGGTGGAG_CAAATCTATAAAATATGTCCCAGTTCGGATTGTTCTCTGTAACTTCGAACTCGAAGT Stp.aureus 1276 GCGAGGTCAAGCAAATCCCATAAAGTTGTTCTCAGTTGGATTGTAGTCTGCAACTCGACTA

Stp. aureus 1338 CATGAAGCTGGAATCGCTAGTAATCGTAGATCAG-ATGCTACGGTGAATACGTTCCCGGGT E.colirrsE 1328 CATGAAGTCGGAATCGCTAGTAATCGTGGATCAGA_ATGCCACGGTGAATACGTTCCCGGGC cam.jejun5 1306 CATGAAGCCGGAATCGCTAGTAATCGTAGATCAGCCATGCTACGTGAATACGTTCCCGGGT 1743 (compl)

CTTGTACTCACCGCCGTCACACCATGGGAGTTGATTTCACTCGAAGCCGGAATACT==A=A ATTGTACACACCGCCGTCACACCACGAGAGTTTGTAACACCCGAAGCCGGTGGAGTAACCT Cam.jejun5 1368 Stp.aureus 1399 1743 (compl)

E.colirrsE 1451 TCG_GGAGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAACCG Cam.jejun5 1427 AC___T_AGTTACCGTCCACAGTGGAATCAGCGACTGGGGTGAAGTCGTAACAAGGTAACCG Stp.aureus 1461 TTTAGGAGCTAGCCGTCGAAGGTGGGACAAATGATTGGGGTGAAGTCGTAACAAGGTAGCCG

E.colirrsE 1512 TAGGGGAACCTGCGGTTGGATCACCTCCTTA~~~Cam.jejun5 1485 TAGGAGAACCTGCGGTTGGATCACCTCCT~~~~Stp.aureus 1523 TATCGGAAGGTGCGGCTGGATCACCTCCTTTCT~

B.

08/520946

 $\text{-} Cleavase^{\mathsf{TM}}$

+CleavaseTM

MMI 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16