Basics of hierarchical clustering

CLUSTERING METHODS WITH SCIPY

Shaumik Daityari
Business Analyst

Creating a distance matrix using linkage

- method: how to calculate the proximity of clusters
- metric : distance metric
- optimal_ordering : order data points

Which method should use?

- single: based on two closest objects
- complete: based on two farthest objects
- average: based on the arithmetic mean of all objects
- centroid: based on the geometric mean of all objects
- median: based on the median of all objects
- ward: based on the sum of squares

Create cluster labels with fcluster

- distance_matrix :output of linkage() method
- num_clusters : number of clusters
- criterion: how to decide thresholds to form clusters

Hierarchical clustering with ward method

Hierarchical clustering with single method

Hierarchical clustering with complete method

Final thoughts on selecting a method

- No one right method for all
- Need to carefully understand the distribution of data

Let's try some exercises

CLUSTERING METHODS WITH SCIPY

Visualize clusters

CLUSTERING METHODS WITH SCIPY

Shaumik Daityari
Business Analyst

Why visualize clusters?

- Try to make sense of the clusters formed
- An additional step in validation of clusters
- Spot trends in data

An introduction to seaborn

- seaborn: a Python data visualization library based on matplotlib
- Has better, easily modifiable aesthetics than matplotlib!
- Contains functions that make data visualization tasks easy in the context of data analytics
- Use case for clustering: hue parameter for plots

Visualize clusters with matplotlib

from matplotlib import pyplot as plt

```
df = pd.DataFrame(\{'x': [2, 3, 5, 6, 2],
                   'y': [1, 1, 5, 5, 2],
                   'labels': ['A', 'A', 'B', 'B', 'A']})
colors = {'A':'red', 'B':'blue'}
df.plot.scatter(x='x',
                y='y',
                c=df['labels'].apply(lambda x: colors[x]))
plt.show()
```


Visualize clusters with seaborn

```
from matplotlib import pyplot as plt
import seaborn as sns
```

Comparison of both methods of visualization

MATPLOTLIB PLOT

SEABORN PLOT

Next up: Try some visualizations

CLUSTERING METHODS WITH SCIPY

How many clusters?

CLUSTERING METHODS WITH SCIPY

Shaumik Daityari
Business Analyst

Introduction to dendrograms

- Strategy till now decide clusters on visual inspection
- Dendrograms help in showing progressions as clusters are merged
- A dendrogram is a branching diagram that demonstrates how each cluster is composed by branching out into its child nodes

Create a dendrogram in SciPy

from scipy.cluster.hierarchy import dendrogram

Next up - try some exercises

CLUSTERING METHODS WITH SCIPY

Limitations of hierarchical clustering

CLUSTERING METHODS WITH SCIPY

Shaumik Daityari
Business Analyst

Measuring speed in hierarchical clustering

- timeit module
- Measure the speed of .linkage() method
- Use randomly generated points
- Run various iterations to extrapolate

Use of timeit module

```
1.02 ms \pm 133 \mus per loop (mean \pm std. dev. of 7 runs, 1000 loops each)
```


Comparison of runtime of linkage method

- Increasing runtime with data points
- Quadratic increase of runtime
- Not feasible for large datasets

Next up - exercises

CLUSTERING METHODS WITH SCIPY

