

DEPARTMENT OF COMPUTER SCIENCE

ARTIFICIAL INTELLIGENCE: TEST

DURATION: 1HR 30 MINS

EXAMINER: T D KAVU

INSTRUCTIONS:

- 1. Answer all questions.
- 2. This is an **open book** practical test.
- 3. Create a **Google Colab file** and put all your experiments(code) in that file, submit a link for the file on <u>LMS</u>, make sure you have set the share options to (**anyone with the link can edit the file**).

Question One [50 marks]

Topic: Unsupervised Learning

(a) Application of Association rule mining.

A given a dataset *transactions.txt* which consists of text that looks as follows:

- 1 3 4
- 1 2 3 5
- 2 3 5
- 2 5
- 1 2 3 6

In the file, blanks separate items (identified by integers) and new lines separate transactions. For example, the above illustration contains information about a total of 5 transactions and its second transaction consists of 4 items.

- (a) Using the **apriori** algorithm and the dataset given, generate the association rules which have minimum support value of 0.157 and minimum confidence value of 0.9. [20 Marks]
- (b) Print the rules as a DataFrame sorted by the number of items that they contain in decreasing order. [10 Marks]
- (c) Print the rules as a DataFrame sorted by the confidence value in decreasing order. [10 Marks]
- (d) Print the rules as a DataFrame sorted by the lift value in decreasing order. [10 Marks]

Total Marks [50 Marks]

Question Two [30 marks]

Topic: Ensemble Learning

Given a Dataset CSV File (<u>pima-indians-diabetes.csv</u>) perform the following operations:

a)	Scale the proper independent variables using a proper scaling algorithm.	[5]
b)	Split the data in a proportion of 80% training and 20% testing, again make sure the target variable is evenly	
	distribute between the training and testing set.	[5]
c)	Build, train and evaluate (using a classification report) an AdaboostClassifier.	[5]
d)	Build, train and evaluate (using a classification report) an GradienBoostClassifier.	[5]
e)) Build, train and evaluate (using a classification report) a hard VotingClassifier composed of (decision trees,	
	support vector classifier and naive bayes classifier).	[5]
f)	Which among the three classifiers is the best according to the classification report (put your answer as a	comment
	in the last cell).	[5]

Total Marks [30 Marks]

THE END