Sistemi e Applicazioni Cloud - Esercizio

Simulatore reti sbilanciate [Tempo consegna: 2h 30m]

Parte 1: rete base

Si simuli una rete a code che implementa un modello $\mathrm{M}/\mathrm{G}/1$ come quella in figura.

Figure 1: Modello di rete

La rete ha un generatore di carico che manda richieste con un ritmo $\lambda=6$ richieste al secondo e un server che ha un processing rate $\mu=10$ richieste al secondo. Il processing delle richieste è descritto da una distribuzione truncnormal che ha come valore medio $1/\mu$ e deviazione standard pari a σ .

Mediante simulazione si chiede di mostrare come variano il tempo di risposta del sistema e l'utilizzazione del server in funzione della deviazione standard σ . Calcolare inoltre il valore atteso dalla teoria per il tempo di risposta T_r .

σ	$Avg(T_r)$	$\rho(\mathrm{Srv})$	T_r
0.01			
0.05			
0.10			
0.50			
1.00			

Si chiede inoltre di fornire una stima del valore di σ per cui il sistema entra in congestione.

Parte 2: mitigazione del problema

Si consideri la rete precedente nello scenario con $\sigma=1.00$. Identificare i valori di μ^* e σ^* da fornire al simulatore perché l'utilizzazione e il tempo di risposta siano pari a quanto previsto dalla teoria.

Parte 3: configurazione avanzata

Fornire una formulazione in grado di calcolare in maniera automatica i valori di μ^* e σ^* per un generico valore

$$\mu^*(\mu,\sigma) = ?$$

$$\sigma^*(\mu, \sigma) = ?$$

Validare mediante simulazione la formula ottenuta.

$\overline{\sigma}$	$Avg(T_r)$	$\rho(\mathrm{Srv})$	T_r
0.01			
0.05			
0.10			
0.50			
1.00			