Intro to Crypto and Cryptocurrencies

Slides by Arvind Narayanan et al.

Hash Pointers and Data Structures

hash pointer is:

* pointer to where some info is stored, and

* (cryptographic) hash of the info

if we have a hash pointer, we can

* ask to get the info back, and

* verify that it hasn't changed

build data structures with hash pointers

key idea:

linked list with hash pointers = "block chain"

use case: tamper-evident log

use case: tamper-evident log

binary tree with hash pointers = "Merkle tree"

proving membership in a Merkle tree

Advantages of Merkle trees

Tree holds many items

but just need to remember the root hash

Can verify membership in O(log n) time/space

Variant: sorted Merkle tree can verify non-membership in O(log n) (show items before, after the missing one)

More generally ...

can use hash pointers in any pointer-based data structure that has no cycles

GoofyCoin

Simple Cryptocurrencies

Obvious approach

- 1. Use public keys as addresses
- 2. Sign to authorize transfer to new address

New coins created [somehow]

Goofy can create new coins

signed by sk_{Goofy}

CreateCoin [uniqueCoinID]

New coins belong to me.

A coin's owner can spend it.

The recipient can pass on the coin again.

double-spending attack

double-spending attack

the main design challenge in digital currency

Double-spends must be prevented

Traditional approach: talk to the issuer

ScroogeCoin

CreateCoins transaction creates new coins

Valid, because I said so.

PayCoins transaction consumes (and destroys) some coins, and creates new coins of the same total value

transID:	73 type:PayCoins	
consumed coinIDs: 68(1), 42(0), 72(3)		
coins created		
num	value	recipient
0	3.2	0x
1	1.4	0x
2	7.1	0x
signatures		

Valid if:

- -- consumed coins valid,
- -- not already consumed,
- -- total value out = total value in, and
- -- signed by owners of all consumed coins

Immutable coins

Coins can't be transferred, subdivided, or combined.

But: you can get the same effect by using transactions to subdivide: create new trans consume your coin pay out two new coins to yourself

optimization: put multiple transactions in the same block

Don't worry, I'm honest.

What if Scrooge is malicious?

Don't worry, I'm honest.

Crucial question:

Can we descroogify the currency, and operate without any central, trusted party?

