Progress Report

Syed Ahmad Raza 2018.05.02

1 2D FVD solver Navier-Stokes using two layers of ghost cells

1.1 Ghost cells

Two layers of ghost cells were implemented in C++ using Finite Volume Method to solve the Navier-Stokes equations, as shown in the following figure for a reduced grid size.

	y_n											
	Dy _{n-1} y _{n-1}		1,n _{y-1}	2,n _{y-1}	3,n _{y-1}	4,n _{y-1}	5,n _{y-1}	6,n _{y-1}	7,n _{y-1}	n _{x-2} , n _{y-1}	n _{x-1} , n _{y-1}	
	į.	0,n _{y-2}	1,n _{y-2}	2,n _{y-2}	3,n _{y-2}	4,n _{y-2}	5,n _{y-2}	6,n _{y-2}	7,n _{y-2}	n _{x-2} , n _{y-2}	n _{x-1} , n _{y-2}	
Dy.	-n-2 Dy ₇ У7	0,7	1,7	2,7	3,7	4,7	5,7	6,7	7,7	n _{x-2} ,7	n _{x-1} ,7	
	Dy_6 y_6	0,6	1,6	2,6	3,6	4,6	5,6	6,6	7,6	n _{x-2} ,6	n _{x-1} ,6	
	Dу ₅	0,5	1,5	2,5	3,5	4,5	5,5	6,5	7,5	n _{x-2} ,5	n _{x-1} ,5	
	Dy ₄ y ₄	0,4	1,4	2,4	3,4	4,4	5,4	6,4	7,4	n _{x-2} ,4	n _{x-1} ,4	
	Dy ₃ y ₃	0,3	1,3	2,3	3,3	4,3	5,3	6,3	7,3	n _{x-2} ,3	n _{x-1} ,3	
Di	Dy ₂	0,2	1,2	2,2	3,2	4,2	5,2	6,2	7,2	n _{x-2} ,2	n _{x-1} ,2	
	Dy ₁	0,1	1,1	2,1	3,1	4,1	5,1	6,1	7,1	n _{x-2} ,1	n _{x-1} ,1	
	Dy ₀	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	n _{x-2} ,0	n _{x-1} ,0	
		Dx_0	x_1 Dx_1 $x_1 \rightarrow \leftarrow Dx$	Dx_2	X ₃ DX ₃	Dx ₄	<i>D</i> x ₅	x_6 Dx_6		X_{n-2} DX_{n-2} $S_{n-2} \leftarrow DX_{n-2}$	Dx_{n-1}	x _n
			1	~								

Figure 1: Figure representing the utilization of two ghost cells around the grid, for grid of reduced size

1.2 Debugging

Earlier code had a major bug, which in that it implemented the far-side velocity boundary conditions incorrectly. The corrected velocity boundary conditions in the x and y directions for the far side are given below.

u-velocity for the east boundary:

$$u_{n_x-3,j} = 0 u_{n_x-2,j} = u_{n_x-3,j} (1)$$

v-velocity for the north boundary:

$$v_{i,n_y-3} = 0$$
 $v_{i,n_y-2} = v_{i,n_y-3}$ (2)

This can be understood with the help of the following figure.

Figure 2: Representation of the utilization of two ghost cells around the grid, for grid of reduced size

1.3 Results

The code was solved for the case of a lid-driven cavity flow in a two-dimensional square box. The results are shown in the following figures.

Figure 3: Comparing the solution provided by Ghia et. al versus the numerical solution for u-velocity values for all y at the center of x -axis, for a 121×121 grid.

Figure 4: Comparing the solution provided by Ghia et. al versus the numerical solution for v-velocity values for all x at the center of x-axis, for a 121×121 grid.

1.4 Ongoing tasks

- 1. Calculating the virtual force for a cylinder inside a lid-driven cavity
- 2. Employ parallel computing by using ultraMPP C++ library to execute the code on parallel cores
- 3. Solve cavity-driven flow for 3D