STA 235 - Causal Inference: Regression Discontinuity Design

Spring 2021

McCombs School of Business, UT Austin

Another identification strategy

We have seen:

RCTs

Selection on observables

Natural experiments

Differences-in-Differences

Regression Discontinuity Designs

I'm on the edge [of glory?]

Introduction to Regression Discontinuity Designs

Regression Discontinuity (RD) Designs

Arbitrary rules determine treatment assignment

E.g.: If you are above a threshold, you are assigned to treatment, and if your below, you are not (or vice versa)

Key Terms

Running/ forcing variable

Index or measure that determines eligibility

Cutoff/ cutpoint/ threshold

Number that formally assigns you to a program or treatment

Hypothetical tutoring program

Students take an entrance exam

Those who score 70 or lower get a free tutor for the year

Students then take an exit exam at the end of the year

Assignment based on entrance score

Let's look at the area close to the cutoff

Let's get closer

Causal inference intuition

Observations right before and after the threshold are essentially the same

Pseudo treatment and control groups!

Compare outcomes right at the cutoff

Exit exam results according to running variable

Fit a regression at the right and left side of the cutoff

Fit a regression at the right and left side of the cutoff

You can find discontinuities everywhere!

Geographic discontinuities

Time discontinuities

Voting discontinuities

How do we do RDs in practice?

Behind the scenes of RDs

- Basically, regression discontinuities work under an asymptotic assumption:
- Let Y_i be the outcome of interest, Z_i the treatment assignment, R_i the running variable, and c the cutoff score:

$$Z_i = \left\{egin{array}{ll} 0 & R_i \leq c \ 1 & R_i > c \end{array}
ight.$$

ullet Then, we can define the treatment effect δ as:

$$\delta = \lim_{\epsilon o 0^+} E[Y_i | R_i = c + \epsilon] - \lim_{\epsilon o 0^-} E[Y_i | R_i = c + \epsilon]$$

What does the limit expression mean?

What does the limit expression mean?

What does the limit expression mean?

What is the estimand we are estimating?

Local Average Treatment Effect (LATE) for units at R=c

Conditions required for identification

- Threshold rule exists and cutoff point is known
- The running variable R_i is **continuous** near c.
- Key assumption:

Continuity of E[Y(1)|R] and E[Y(0)|R] at R=c

Potential outcomes need to be smooth across the threshold

Potential outcomes need to be smooth across the threshold

Can you think situations where that could happen?

Let's go back to our discount example

Customers are given discounts based on their order of arrival

• We could think of this as an RD in time, where c is the time of arrival of customer 1,000.

Work in groups

1) Each group will be given a task and some code

2) You need to complete the code and discuss the results

Let's get into estimation

How do we actually estimate an RD?

The simplest way to do this is to fit a regression:

$$Y_i = eta_0 + eta_1(R_i - c) + eta_2 \mathrm{I}[R_i > c] + eta_3(R_i - c) \mathrm{I}[R_i > c]$$

You want to add flexibility for each side of the cutoff.

Can you identify these parameters in a plot?

Let's see some examples: Sales using a linear model

```
sales <- sales %>% mutate(dist = c-time)
lm(sales ~ dist + treat + dist*treat, data = sales)
```


Let's see some examples: Sales using a linear model

```
summary(lm(sales ~ dist + treat + dist*treat, data = sales))
##
## Call:
## lm(formula = sales ~ dist + treat + dist * treat, data = sales)
##
## Residuals:
      Min
              10 Median 30
                                    Max
## -65.738 -13.940 0.051 13.538 76.515
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 178.640954   1.300314   137.38   <2e-16 ***
               0.205355    0.008882    23.12    <2e-16 ***
## dist
## treat 31.333952 1.842338 17.01 <2e-16 ***
## dist:treat -0.200845 0.012438 -16.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.52 on 1996 degrees of freedom
## Multiple R-squared: 0.6939, Adjusted R-squared: 0.6934
## F-statistic: 1508 on 3 and 1996 DF, p-value: < 2.2e-16
```

What happens if we fit a quadratic model?

```
lm(sales ~ dist + I(dist^2) + treat + dist*treat + treat*I(dist^2), data = sales)
```


What happens if we fit a quadratic model?

```
summary(lm(sales ~ dist + I(dist^2) + treat + dist*treat + treat*I(dist^2), data = sales))
##
## Call:
## lm(formula = sales ~ dist + I(dist^2) + treat + dist * treat +
      treat * I(dist^2), data = sales)
##
##
## Residuals:
##
      Min
              10 Median 30
                                    Max
## -66.090 -13.979 0.239 13.154 76.656
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.698e+02 1.937e+00 87.665 < 2e-16 ***
## dist
         -4.302e-03 3.556e-02 -0.121 0.903725
## I(dist^2) -8.288e-04 1.363e-04 -6.083 1.41e-09 ***
## treat 3.308e+01 2.747e+00 12.041 < 2e-16 ***
## dist:treat 1.713e-01 4.964e-02 3.452 0.000569 ***
## I(dist^2):treat 2.034e-04 1.877e-04 1.084 0.278554
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.23 on 1994 degrees of freedom
```

Next class

- Check how to rely less on parametric assumptions
- What is the optimal bandwidth to estimate our RD?
- Talk about fuzzy regression discontinuities

Have a good Spring Break!