

Análisis Avanzado - Teorema Punto Fijo

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Si \underline{X} es un conjunto y $\underline{f}: X \to X$ una función, decimos que $(x_0 \in X)$ es un punto fijo de \underline{f} si $f(x_0) = x_0$.

Si X es un conjunto y $f: X \to X$ una función, decimos que $x_0 \in X$ es un punto fijo de f si $f(x_0) = x_0$.

Teorema de punto fijo:

Si X es un conjunto y $f: X \to X$ una función, decimos que $x_0 \in X$ es un punto fijo de f si $f(x_0) = x_0$.

Teorema de punto fijo:

 Determinar condiciones en X f que garanticen la existencia de un punto fijo;

Si X es un conjunto y $f: X \to X$ una función, decimos que $x_0 \in X$ es un punto fijo de f si $f(x_0) = x_0$.

Teorema de punto fijo:

- Determinar condiciones en X y f que garanticen la existencia de un punto fijo;
- · Determinar condiciones que garanticen unicidad.

Ejemplo

a a b

Teorema de Punto Fijo (Banach (1922)

Sea (E, d) un espacio métrico completo y $f: E \to E$ una función contractiva, es decir, existe $\alpha \in (0, 1)$ tal que

$$d(f(x),f(y)) \leq \alpha d(x,y), \ \forall \ x,y \in E.$$

Teorema de Punto Fijo (Banach - 1922)

Sea (E, d) un espacio métrico completo y $f: E \to E$ una función contractiva, es decir, existe $\alpha \in (0, 1)$ tal que

$$d(f(x), f(y)) \le \alpha d(x, y), \ \forall \ x, y \in E.$$

Entonces existe un único punto fijo de f en E.

Teorema de Punto Fijo (Banach - 1922)

Sea (E, d) un espacio métrico completo y $f: E \to E$ una función contractiva, es decir, existe $\alpha \in (0, 1)$ tal que

$$d(f(x), f(y)) \le \alpha d(x, y), \ \forall \ x, y \in E.$$

Entonces existe un único punto fijo de f en E.

$$x \in E$$
 $x = f^{n}(x)$
 $f = f \circ f \circ f \circ \cdots \circ f$
 $f = f \circ f \circ f \circ \cdots \circ f$

Demostración del Teorema

Sea
$$xo \in E$$
, definions $x_1 = f(x_0)$, $x_2 = f(x_1) = f^2(x_0)$
 $x_3 = f(x_2) = f^3(x_0)$... $x_{u+1} = f(x_u)$. $\Rightarrow f(x_u)_u \subseteq E$
Vealues give (x_u)_u es de Coady.
 $m_1 m_1 m_2 m_3 = m = m + u = m$
 $d(x_u, x_u) = d(x_u, x_{u+u})$
 $d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s}) + \cdots + d(x_{u+u-1}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_{u+s}, x_{u+s}) + d(x_{u+s}, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_u, x_{u+s}) + d(x_u, x_{u+s})$
 $= d(x_u, x_{u+s}) + d(x_u, x_{u+s}) + d(x_u, x_{u+s})$

Demostración del Teorema

d(xu, xu+u) & d(xu, xu+i). 1-de & d(xu, xu+i) 1 1-d dif(xu-1), f(xu) 1-d Sdd(new, Xn) & du densino). I - o o :. (xu) es de Cardy. Como E comple 7 xCE/2en-02. => x=f(x). Si yEE/f(y)=y $J(x,y) = df(x), f(y) \leq dd(x,y) = 0 d(x,y) = 0 = 0 \times = y$

Bajo las condiciones del Teorema de punto fijo

Bajo las condiciones del Teorema de punto fijo $x \in F$, la sucesión $\{f^n(x)\}_{n \in \mathbb{N}}$ converge al punto fijo.

Bajo las condiciones del Teorema de punto fijo

- Dado $x \in E$, la sucesión $\{f^n(x)\}_{n \in \mathbb{N}}$ converge al punto fijo.
- El punto fijo se puede aproximar.

Bajo las condiciones del Teorema de punto fijo

- Dado $x \in E$, la sucesión $\{f^n(x)\}_{n \in \mathbb{N}}$ converge al punto fijo.
- · El punto fijo se puede aproximar.

Proposición

Sea (E,d) un espacio métrico compacto y $f: E \to E$. Si d(f(x),f(y)) < d(x,y) para todos $x,y \in E$, entonces f tiene un único punto fijo.

Deux: {d(x, f(x)): x∈E} ⊆ 112, mo vacio (E≠0) acotado inf. por o => 3 a = inf{d(x,f(x):xtt} Veauvos que inf se alcoura ce 7 xocE/ $a=d(x_0, f(x_0))$ (ie = www). Seguro 7 (Ru) u CE / d(xu) f(xu)) - o a (ergur. de sue. de 14f). subsuc de (Zu) u Ecompado 3 (2lun) concergente a 20 EE.

=
$$\mathbb{N}$$
 d($\mathbb{R}u_n$, $f(\mathbb{R}u_n)$) ___ \mathbb{N} a
$$\int \mathbb{R}^3 \frac{12 \, \mathbb{R}^3}{d(\mathbb{R}o)} = \frac{12 \, \mathbb{R}^3}{2} = \frac{12 \, \mathbb{R}^3}{2}$$

$$G: a > 0 = 0$$
 d($f(x_0), f(f(x_0)) < d(x_0, f(x_0)) = a$
 $f(x_0) f(y)$
ABS!

Unicidad se prelsa arus a el Jeoreus ant.

¿Por qué es importante el Teorema de Punto fijo?

¿Por qué es importante el Teorema de Punto fijo?

Tenerife

¿Por qué es importante el Teorema de Punto fijo?

Existencia de soluciones de ecuaciones diferenciales:

Sea \underline{I} es un intervalo en \mathbb{R} y $\underline{f}: I \times \mathbb{R} \to \mathbb{R}$ una función localmente Lipschitz en la variable x. Esto es, existe L > o tal que $|f(t,x)-f(t,y)| \le L|x-y|$ para todos $x,y \in \mathbb{R}$ y $t \in I$. Sea $\tau \in I$ y $\xi \in \mathbb{R}$.

Existencia de soluciones de ecuaciones diferenciales:

Sea I es un intervalo en \mathbb{R} y $f:I\times\mathbb{R}\to\mathbb{R}$ una función localmente Lipschitz en la variable x. Esto es, existe L> o tal que $|f(t,x)-f(t,y)|\leq L|x-y|$ para todos $x,y\in\mathbb{R}$ y $t\in I$. Sea $\tau\in I$ y $\xi\in\mathbb{R}$. Entonces, existe un r> o tal que el problema

$$\begin{cases} x'(t) = f(t, x(t)), & t \in I \\ x(\tau) = \xi. \end{cases}$$

tiene una única solución $x : [\tau - r, \tau + r] \to \mathbb{R}$ de clase \mathcal{C}^1 .

Existencia de soluciones de ecuaciones diferenciales:

Sea I es un intervalo en \mathbb{R} y $f:I\times\mathbb{R}\to\mathbb{R}$ una función localmente Lipschitz en la variable x. Esto es, existe L> o tal que $|f(t,x)-f(t,y)|\leq L|x-y|$ para todos $x,y\in\mathbb{R}$ y $t\in I$. Sea $\tau\in I$ y $\xi\in\mathbb{R}$. Entonces, existe un r> o tal que el problema

$$\begin{cases} x'(t) = f(t, x(t)), & t \in I \\ x(\tau) = \xi. \end{cases}$$

tiene una única solución $x : [\tau - r, \tau + r] \to \mathbb{R}$ de clase \mathcal{C}^1 .

Recordemos que x es solución si y sólo si

- · Teorema de la función implícita.
- Aproximación de soluciones lineales.

AER^{uxu}, yer Boso solucioner
$$Ax=y$$
 $T: \mathbb{R}^u - 0.1\mathbb{R}^u / Tx = (I-A)x+y$ si $x \in [x m + 0.6]$ of $x \in [x - A]x+y = x - Ax+y = x + Ax=y$

Buscor cond / $x \in [x - A]$ contractivo.

 $x \in [x - A] = x \in [x - A]$ $x \in [x - A]$

Ejemplo

Sea
$$f(x) = \cos(x) \cos x \in \mathbb{R}$$
. Probar que f tiene un único punto fijo.

 $E = II2 \cos(x) = \int f(x) - f(x) = \int f(x) |x-x| = \int f(x) |x-x| = \int f(x) - f(x) |x-x| = \int f(x) |x-x|$