(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-111080 (P2002-111080A)

(43)公開日 平成14年4月12日(2002.4.12)

(51) Int.Cl.7 H01L 35/32

35/34

織別紀号 FΙ

H01L 35/32 35/34 テーマコード(参考)

審査請求 未請求 請求項の数10 OL (全 10 頁)

(21)出願番号

特顧2000-300176(P2000-300176)

(22)出願日 平成12年9月29日(2000, 9, 29) (71) 出頭人 000005832

松下霞工株式会社

大阪府門真市大字門真1048番地

(72) 発明者 岡田 浩明

大阪府門真市大字門真1048番地松下電工株

式会社内

(74)代理人 100111656

弁理士 安藤 淳二 (外1名)

(54) 【発明の名称】 ベルチェモジュール及びその製造方法

(57) 【要約】

【課題】 接合部やP型又はN型の熱電素子に繰り返し 熱応力がかかっても、接合部やP型又はN型の熱電素子 にクラック等が発生しにくく、耐久性が向上しているペ ルチェモジュールを提供する。

【解決手段】 対向する一対の基板 1、1' 間に、P型 及びN型熱電素子を複数個並設するとともに、各基板 1、1'に対向するように設けている接合電極4、4' を介してP型熱電素子2とN型熱電素子3を直列に接続 しているペルチェモジュールであって、一対の基板1、 1'のそれぞれに設けている接合電極4、4'で形成さ れる配列パターンが外周に角部を有する配列パターンで あり、この配列パターンの角部を形成して対向している 角部接合電極 4 A、 4' Aに、同じ特性の熱電素子を複 数個接合していることを特徴とするペルチェモジュー N.

【特許請求の籐囲】

【請求項1】 対向する一対の基板間に、P型及びN型 熱電素子を複数個並設するとともに、各基板に対向する ように設けている接合電板を介してP型熱電素子とN型 熱電素子を直列に接続しているペルチェモジュールであ って、

一対の基板のそれぞれに設けている接合電極で形成され る配列パターンが外間に角部を有する配列パターンであ り、この配列パターンの角部を形成して対向している角 ることを特徴とするベルチェモジュール。

【請求項2】 上記配列パターンが路四角形状であるこ とを特徴とする請求項1記載のペルチェモジュール。 【請求項3】 上記配列パターンが略長方形状であり、 この配列パターンの長辺側の外周部を形成して対向して いる長辺側外周部接合電極に、同じ特性の熱電素子を複 数個接合していることを特徴とする請求項1又は請求項 2 記載のペルチェモジュール。

【請求項4】 P型熱雷素子とN型熱雷素子とを接合電 極を介して直列に接続している平面状の回路パターンの 20 ルの製造方法。 折返し部となる位置にあって、対向している接合電極 に、同じ特性の熱電素子を複数個接合していることを特 徴とする請求項1~請求項3の何れかに記載のベルチェ モジュール。

【請求項5】 断面が略四角形の棒状の熱電素子材を、 一方の基板上の複数の接合電極にまたがらせて接合し、 その後、棒状の熱電素子材を切断して個々に分離した熱 電素子とし、次いで他方の基板上の接合電極を個々に分 難した前記熱電素子と接合してなるペルチェモジュール の製造方法であって、請求項2又は請求項3記載のペル 30 チェモジュールを製造するに際して、一方の基板の接合 雷極で形成する配列パターンの相対する一対の辺の一方 側の外周部を形成している外周部接合電極の外周側にま たがらせて接合する棒状の勢雷素子材として、複数本の 同じ特性の棒状の熱電素子材を使用していることを特徴 とするペルチェモジュールの製造方法。

【請求項6】 使用する同じ特性の棒状の熱電素子材 が、全て断面形状が同一であることを特徴とする請求項 5 記載のペルチェモジュールの製造方法。

【請求項7】 使用する断面が略四角形の棒状の熱電素 40 子材の高さが全て等しくて、一方の基板の接合電極で形 成する配列パターンの相対する一対の辺の一方側の外周 部を形成している外周部接合電極の外周側にまたがらせ て接合する複数本の同じ特性の棒状の熱電素子材の中の 最外周側のもの幅が、接合される同じ特性の棒状の熱電 素子材は1本のみである接合電極に配設される同じ特性 の棒状の熱電素子材の幅より大きいことを特徴とする請 求項5記載のペルチェモジュールの製造方法。

【請求項8】 使用する断面が略四角形の棒状の熱電素 子材の高さが全て等しくて、一方の基板の接合電極で形 50 モジュール及びその製造方法を提供することにある。

成する配列パターンの相対する一対の辺の一方側の外周 部を形成1. ている外周部接合電板の外周側にまたがらせ て接合する複数本の同じ特性の棒状の熱電素子材の幅の 合計寸法が、接合される同じ特性の棒状の熱電素子材は 1本のみである接合電板に配設される同じ特性の棒状の 熟電素子材の幅と同じであることを特徴とする請求項5 記載のペルチェモジュールの製造方法。

【請求項9】 一方の基板の接合電極で形成する配列パ ターンの相対する一対の辺の一方側の外周部接合電極の 部接合電極に、同じ特性の熱電素子を複数個接合してい 10 外周側にまたがらせて接合する複数本の同じ特性の棒状 の熱電素子材と、前記一対の辺の他方側の外周部接合電 極の外周側にまたがらせて接合する複数本の同じ特性の 権状の熱雷素子材が、共に同じ特性の熱電素子材である ことを特徴とする請求項5~請求項8の何れかに記載の ペルチェモジュールの製造方法。

> 【結求項10】 請求項9記載のペルチェモジュールの 製造方法における、外間部接合電極の外層側にまたがら せて接合する複数本の同じ特性の棒状の熱電素子材の特 性が全てP型であることを特徴とするペルチェモジュー

【発明の詳細な説明】

[0001] 【発明の属する技術分野】本発明は、対向する一対の基 板間にP型熱電素子と、N型熱電素子と、接合電極を備 えていて冷却装置等に使用されるペルチェモジュール及 びその製造方法に関するものである。

[0002]

【従来の技術】従来から冷却装置等に使用されるペルチ ェモジュールとして、一対のセラミック等の基板間にP 型熱雷素子とN型熱雷素子を配置すると共に、各基板に 取着した鋼等の金属板からなる接合電極に、P型及びN 型熱電素子を、P型熱電素子とN型熱電素子とが接合電 板を介して直列に接続されるように接合して、直列通電 回路を形成したペルチェモジュールが知られている。 【0003】このペルチェモジュールに通常すると、一

方の基板が放熱側、他方の基板が吸熱側として作用する が、そのために両基板は熱膨張と熱収縮を行うことにな る。そして、この熱膨張と熱収縮が繰り返されるため、 従来のペルチェモジュールでは、接合部やP型又はN型 の熱電素子に繰り返し熱応力がかかって、接合部やP型 又はN型の熱電素子にクラック等が発生し、ペルチェモ ジュールの寿命が短くなることがあった。

[0004]

【発明が解決しようとする課題】本発明は、上記の従来 のペルチェモジュールの問題を解決するためになされた ものであり、その目的とするところは、熱電素子と接合 電極の接合部やP型、N型の熱質素子に繰り返し熱応力 がかかっても、接合部やP型、N型の熱電素子にクラッ ク等が発生しにくくて、耐久性が向上しているペルチェ

ある。

になる.

【課題を解決するための手段】 請求項1に係る発明のペ ルチェモジュールは、対向する一対の基板間に、P型及 びN型熱電素子を複数個並設するとともに、各基板に対 向するように影けている総合領極を介してP型熱雷素子 とN型熱電素子を直列に接続しているペルチェモジュー ルであって、一対の基板のそれぞれに設けている接合電 極で形成される配列パターンが外周に角部を有する配列 パターンであり、この配列パターンの角部を形成して対 向している角部接合電板に、同じ特性の熱電素子を複数 10 個接合していることを特徴とするペルチェモジュールで ある。なお、ここでいう同じ特性については、例えば2 個の熱電素子がP型とP型の場合又はN型とN型の場合 には同じ特性の熱雷素子と表すようにしている。

3

【0006】この請求項1に係る発明のペルチェモジュ ールでは、配列パターンの角部を形成して対向している 角部接合電極に、同じ特性の熱電素子を複数個接合する 構成を備える。そのために、この発明によれば、熱応力 が集中する配列パターンの角部において、複数個の熱電 素子による荷重分担ができると共に、接合電極と熱電素 20 子の接合面積の増大ができるので、接合部及び熱電素子 への熱応力の緩和ができクラック等の不具合を低減でき る。また、対向している角部接合電極に接合している複 数個の間じ特性の熱電素子中の1個の熱電素子が破壊し ても他の熱電素子で導通がとれるので、断線による破壊 を防止できる。従って、この発明によれば、信頼性の高 い、耐久性が向上したペルチェモジュールを構成するこ とができるようになる。

【0007】請求項2に係る発明のペルチェモジュール は、上記配列パターンが路四角形状であることを特徴と 30 する請求項 1 記載のペルチェモジュールである。

【0008】この請求項2に係る発明のペルチェモジュ ールは、接合電極で形成される配列パターンが略四角形 状であるので、他の形状に比べて、ペルチェモジュール を容易に作製できるという利点がある。

【0009】 請求項3に係る発明のペルチェモジュール は、上記配列パターンが略長方形状であり、この配列パ ターンの長辺側の外周部を形成して対向している長辺側 外周部接合電極に、同じ特性の熱電素子を複数個接合し ていることを特徴とする請求項1又は請求項2記載のペ 40 ルチェモジュールである。

【0010】この請求項3に係る発明のペルチェモジュ ールでは、角部接合電極に加えて、長辺側外周部接合電 極に、同じ特性の熱電素子を複数個接合している。従っ て、この発明によれば、熱応力が集中する配列パターン の角部及び長辺側外周部において、複数個の熱電素子に よる荷重分担ができると共に、接合電極と熱電素子の接 合面積の増大ができるので、接合部及び熱電素子への熱 応力の緩和ができクラック等の不具合を低減できる。 ま 外周部接合電極に接合している複数個の同じ特性の熱電 素子中の1個の熱雷素子が破壊しても他の熱電素子で導 **通がとれるので、断線による破壊を防止できる。従っ** て、この発明によれば、信頼性の高い、耐久性が向上し たペルチェモジュールを構成することができるようにな

【0011】請求項4に係る発明のペルチェモジュール は、P型熱雷素子とN型熱電素子とを接合電極を介して 直列に接続している平面状の回路パターンの折返し部と なる位置にあって、対向している接合電板に、同じ特性 の熱電素子を複数個接合していることを特徴とする請求 項1~請求項3の何れかに記載のペルチェモジュールで

【0012】この請求項4に係る発明のペルチェモジュ ールでは、角部接合質様に加えて、P型熱電素子とN型 熱電素子とを接合電極を介して直列に接続している平面 状の同路パターンの折返し部となる位置にあって、対向 している接合電極に、同じ特性の熱電素子を複数個接合 している機成を備えている。従って、この発明によれ

ば、勢応力が集中する配列パターンの角部及び回路パタ 一ンの折返し部において、複数個の熱電素子による荷重 分担ができると共に、接合電極と熱電素子の接合面積の 増大ができるので、接合部及び熱電素子への熱応力の緩 和ができクラック等の不具合を低減できる。また、対向 している角部接合電極及び折返し部となる位置にあって 対向している接合電極に接合している複数個の同じ特性 の熱電素子中の1個の熱電素子が破壊しても他の熱電素 子で導通がとれるので、断線による破壊を防止できる。 従って、この発明によれば、信頼性の高い、耐久性が向 上したペルチェモジュールを構成することができるよう

【0013】 請求項5に係る発明のペルチェモジュール の製造方法は、断面が脳四角形の棒状の熱電素子材を、 一方の基板上の複数の接合電板にまたがらせて接合し、 その後、棒状の熱電素子材を切断して個々に分離した熱 電素子とし、次いで他方の基板上の接合電極を個々に分 蘇した前記熱電素子と接合してなるペルチェモジュール の製造方法であって、請求項2又は請求項3記載のペル チェモジュールを製造するに際して、一方の基板の接合 電極で形成する配列パターンの相対する一対の辺の一方 側の外周部を形成している外周部接合電極の外周側にま たがらせて接合する棒状の熱電素子材として、複数本の

とするペルチェモジュールの製造方法である。 【0014】 この請求項5に係る発明のペルチェモジュ ールの製造方法では、請求項2又は請求項3記載のペル チェモジュールを製造するに際して、基板上の外周部接 合電板の外周側にまたがらせて接合する棒状の熱電素子 材として、複数本の同じ特性の棒状の熱電素子材を使用 た、対向している角部接合電極及び対向している長辺側 50 するようにしているので、非常に簡便に請求項2又は請

同じ特性の棒状の熱電素子材を使用していることを特徴

求項3記載のベルチェモジュールを製造することが可能 となる。

【0015】請求項6に係る発明のペルチェモジュール の製造方法は、使用する同じ特性の棒状の熱電素子材 が、全て断面形状が同一であることを特徴とする請求項 5 記載のペルチェモジュールの製造方法である。

【0016】この請求項6に係る発明のペルチェモジュ ールの製造方法では、使用する同じ特性の棒状の熱電素 子材が、全て断面形状が同一であるので、新たな形状の 熱電素子材を準備することなしに、請求項2又は請求項 10 3 記載のペルチェモジュールを製造することが可能とな శ.

【0017】請求項7に係る発明のペルチェモジュール の製造方法は、使用する断面が略四角形の棒状の熱電素 子材の高さが全て等しくて、一方の基板の接合電極で形 成する配列パターンの相対する一対の辺の一方側の外周 部を形成している外周部接合電極の外周側にまたがらせ て接合する複数本の同じ特性の棒状の熱電素子材の中の 最外周側のもの幅が、接合される同じ特性の棒状の熱電 素子材は1本のみである接合電極に配設される同じ特性 20 の棒状の熱電素子材の幅より大きいことを特徴とする請 求項5記載のペルチェモジュールの製造方法である。 [0018] この請求項7に係る発明のペルチェモジュ

ールの製造方法では、外周部接合電極の外周側にまたが らせて接合する複数本の同じ特性の棒状の熱電素子材の 中の最外周側のもの幅を、接合される同じ特性の棒状の 熱電素子材は1本のみである接合電極に配設される同じ 特性の棒状の熱電素子材の幅より大きくしているので、 熱応力が集中する配列パターンの角部及び外周部におい て、接合電域と勢雷素子の接合面積や勢電素子のトータ 30 ルの断面精を大きくしているペルチェモジュールを製造 することができ、従って、接合部及び熱電素子にクラッ ク等が発生しにくくて、信頼性の高い、耐久性が向上し たペルチェモジュールを製造することができるようにな

る。なお、ここでいう高さと幅は、基板上に断面が略四

角形の棒状の熱質素子材を構設したときの高さと幅を表

している。

【0019】 請求項8に係る発明のペルチェモジュール の製造方法は、使用する断面が略四角形の棒状の熱電素 子材の高さが全て等しくて、一方の基板の接合電極で形 40 成する配列パターンの相対する一対の辺の一方側の外周 部を形成している外周部接合電極の外周側にまたがらせ て接合する複数本の同じ特性の棒状の熱電素子材の幅の 合計寸法が、接合される同じ特性の棒状の熱電素子材は 1本のみである接合電極に配設される同じ特性の棒状の 熱電素子材の幅と同じであることを特徴とする請求項5 記載のペルチェモジュールの製造方法である。

【0020】この請求項8に係る発明のベルチェモジュ ールの製造方法では、外周部接合電極の外周側にまたが 幅の合計寸法を、接合される同じ特性の棒状の熱電素子 材は1本のみである接合電極に配設される同じ特性の棒 状の熱電素子材の幅と同じにしているので、P-N対の 素子断面積に関して、複数本の棒状の熱電素子材を接合 電極に接合して製造される外周部と、1本の機状の熱電 素子材を接合電板に接合して製造される中央部とで同じ にできるので、外周部での吸熱量の低下を生じさせるこ となく、信頼性の高い、耐久性が向上したペルチェモジ ュールを製造することができるようになる。

【0021】請求項9に係る発明のペルチェモジュール の製造方法は、一方の基板の接合電極で形成する配列パ ターンの相対する一対の辺の一方側の外間部接合電極の 外周側にまたがらせて接合する複数本の同じ特性の棒状 の熱電素子材と、前記一対の辺の他方側の外周部接合電 極の外周側にまたがらせて接合する複数本の同じ特性の 棒状の熱電素子材が、共に同じ特性の熱電素子材である ことを特徴とする請求項5~請求項8の何れかに記載の ペルチェモジュールの製造方法である。

【0022】この請求項9に係る発明のペルチェモジュ ールの製造方法では、配列パターンの相対する一対の辺 の両方の外周部接合電極の外周側に同じ特性の棒状の熱 **雷素子材を配設するので、強度的に両辺が均等になり、** より品質が安定したベルチェモジュールを得ることが可 能となる。

【0023】請求項10に係る発明のベルチェモジュー ルの製造方法は、請求項9記載のペルチェモジュールの 製造方法における、外周部接合電極の外間側にまたがら せて接合する複数本の同じ特性の棒状の熱電素子材の特 性が全てP型であることを特徴とするペルチェモジュー ルの製造方法である。

【0024】この請求項10に係る発明のペルチェモジ ュールの製造方法では、外周部接合電極の外周側にまた がらせて接合する複数本の同じ特性の棒状の熱電素子材 の特性が全てP型である。そして、P型の熱電素子材の 方が、N型のものより一般的に高強度であるため、この 発明のペルチェモジュールの製造方法によれば、より耐 久性が良好なペルチェモジュールを得ることが可能とな る。

[0025]

【発明の実施の形態】以下に本発明のペルチェモジュー ルに関する実施の形態を図面に基づいて説明する。 【0026】図1は本発明のペルチェモジュールの一実 施の形態 (第1実施形態) を説明するための上側基板 1'を省略した平面図である。この第1実施形態では、 図1に示すように、対向する一対のアルミナ等のセラミ ックよりなる上下の基板 1、1、間に(上側基板 1)は 図に表れていない)、P型熱電素子2及びN型熱電素子 3を複数個並設している。各基板1、1'には対向する ように接合電極4、4'を設けていて、図1では、下側 らせて接合する複数本の同じ特性の棒状の熱電素子材の 50 基板1に設けている下側接合電極4は実線の枠で示し、

上側基板1'(図に表れていない)の下面に設けている 上側接合電極4'は破線の枠で示している。図1に示す ように、下側基板1に備えた下側接合電板4と、上側基 板1'に設けた上側接合電板4'とが対向している位置 に、P型熱電素子2又はN型熱電素子3が接合されてい て、下側接合電極4又は上側接合電極4'を介してP型 熱電索子2とN型熱電素子3を直列に接続するようにし ている。なお、図1において、符号6はリード線を示 す。また、図1中でP型熱電素子2にはP、N型熱電素 子3にはNの記号を付している。

7

【0027】そして、下側接合電極4と、上側接合電極 4'で形成される配列パターンのそれぞれは、図1に示 すように、四角形状であり、ペルチェ効果を発するP型 熱電素子2とN型熱電素子3は、5 (列) ×5 (列) が、下側接合電極4又は上側接合電極4'を介して直列 接続されている。ここでは、対向する接合電極4、4' に同一特性の熱電素子が2個接合されていても、直列接 続されている列数は1としている。そして、下側接合電 極4と、上側接合電極4'でそれぞれ四角形状に形成さ れている配列パターンの角部を形成して対向している角 20 部接合電極4Aと、4'Aに、同じ特性の熱電素子を2 個接合している。また、図1に示す下側接合電板4と、 上側接合電極4'でそれぞれ形成されている配列パター ンでは、P型熱電素子2とN型熱電素子3とを接合電極 (4又は4')を介して直列に接続している平面状の回 路パターンの折返し部となる位置が、全て配列パターン の外周部となっている。そして、図1に示すように、第 1 実施形態では平面状の回路パターンの折返し部となる 位置にあって、対向している外周部接合電板 4 B、 4' Bにも、同じ特性の勢質素子を2個接合している。な お、一部の角部接合電極4A、4'Aは、平面状の回路 パターンの折返し部となる位置にあって、対向している 外周部接合電極 4 B、 4' Bにも相当している。

【0028】そして、各熟電素子2、3の接合電極4、 4' との接合面積は全て同じとし、同じ特性の熱電素子 を2個接合している接合領極の而積は、同じ特性の熱電 素子はそれぞれ1個のみしか接合していない接合電極の 而積より大きくしている。

【0029】この第1実施形態では、対向している角部 接合電極4A、4'A及び平面状の回路パターンの折返 40 し部となる位置にあって、対向している外間部接合電極 4 B、4' Bに同じ特性の熱電素子を2個接合すると共 に、同じ特性の熱電素子を2個接合している接合電極の 而稽は、同じ特性の熱電素子はそれぞれ1個のみしか接 合していない接合電極の面積より大きくしている。その ため、熱応力が集中する配列パターンの角部及び回路パ ターンの折返し部において、2個の熱電素子による荷重 分担ができると共に、接合電極と熱電素子の接合面積が 増大している。さらに、同じ特性の熱電素子2個中の1

ようになっている。従ってこの第1実施形態のペルチェ モジュールは、接合部及び熱電素子にクラック等の不具 合が発生しにくくて、信頼性の高い、耐久性が向上した ペルチェモジュールとなる。

【0030】なお、図示しないが、回路パターンの折返 し部を、配列パターンの外周部とせずに、配列パターン の中間位置に設けるようにすることもこの第1実施形態 の変形した形態として可能である。

【0031】次に、図2は本発明のペルチェモジュール 10 異なる実施の形態(第2実施形態)を説明するための上 側基板1'を省略した平面図である。この第2実施形態 では、図2に示すように、対向する一対のアルミナ等の セラミックよりなる上下の基板1、1、間(上側基板 1'は図に表れていない)に、P型熱電素子2及びN型 熱電素子3を複数個並設している。各基板1、1'には 対向するように接合電極4、4'を設けていて、図2で は、下側基板1に設けている下側接合電極4は実線の枠 で示し、上側基板1'(図に売れていない)の下面に設 けている上側接合電極4'は破線の枠で示している。図 2に示すように、下側基板1に備えた下側接合電極4

と、上側基板1'に設けた上側接合電極4'とが対向し ている位置に、P型熱電素子2又はN型熱電素子3が接 合されていて、下側接合電極4又は上側接合電極4'を 介してP型熱雷素子2とN型熱雷素子3を直列に接続す るようにしている。なお、図2において、符号6はリー ド線を示す。また、図2中でP型熱電素子2にはP、N 型熱電素子3にはNの配号を付している。

【0032】そして、下側接合電極4と、上側接合電極 4'で形成される配列パターンのそれぞれは、図2に示 30 すように、この第2実施形態では、長方形状である。そ れらの配列パターンの角部を形成して対向している角部 接合電極4Aと、4'Aに、同じ特性の熱電素子を2個 又は4個接合している。また、下側接合電極4と、上側 接合電極4'でそれぞれ形成される配列パターンの長辺 側の外周部を形成して対向している長辺側外周部接合電 極4Bと4'Bにも、同じ特性の熱電素子を2個又は4 個接合している。なお、角部接合電極 4 A、 4' A は、 長辺側外周部接合電板4B、4'Bにも相当している。 そして、各熱電素子2、3の接合電極4、4'との接合 面積は全て同じとし、同じ特性の熱電素子を2個又は4 個接合している接合電極の面積は、同じ特性の熱電素子 はそれぞれ1個のみしか接合していない接合電極の面積

【0033】 この第2実施形態では、対向している角部 接合電板 4 A、 4' A及び対向している外周部接合電極 4 B、4' Bに同じ特性の熱電素子を複数個接合すると 共に、角部接合電板4A、4'A及び外周部接合電板4 B、4'Bの面積は、同じ特性の熱電素子はそれぞれ1 個のみしか接合していない接合電極の面積より大きくし 個の熱電素子が破壊しても他の熱電素子で導通がとれる 50 ている。そのため、熱応力が集中する配列パターンの角

より大きくしている。

部及び長辺側外周部において、複数個の熱電素子による 荷重分担ができると共に、接合電極と熱電素子の接合面 積が増大している。さらに、複数個の同じ特性の熱電素 子中の1個の熱電素子が破壊しても他の熱電素子で導通 がとれるようになっている。従って、この第2実施形態 のペルチェモジュールは、接合部及び熱電素子にクラッ ク等の不具合が発生しにくくて、信頼性の高い、耐久性 が向上したペルチェモジュールとなる。

【0034】また、第2実施形態では、P型熱雷素子2 とN型熱電素子3とを接合電板(4又は4')を介して 10 基板1'(図示せず)に形成している上側接合電板4' 直列に接続している平面状の回路パターンの折返し部と なる位置にあって、対向している接合電極は、配列パタ 一ンの長辺側の外周部を形成して対向している外周部接 合電極4Bと4'Bに相当することになり、熱応力が集 中する回路パターンの折返し部についても、耐久性が向 上する構成になっていることになる。

【0035】次に、本発明のペルチェモジュールの製造 方法に関する実施の形態を説明する。

【0036】上述した図2に示す、第2実施形態のペル チェモジュールの製造方法について説明する。まず、図 20 す、第2実施形態のペルチェモジュールを製造すること 3に示すように、下側接合電極4を固着しているアルミ ナ等のセラミックよりなる下側基板 1 を準備する。な お、下側接合電極4は、例えば銅板等の金属板で形成す る。次いで、図4に示すように、四角柱状であって、断 面形状が同一であるP型及びN型の棒状の熱量素子材 7、8を、下側基板1上の複数の下側接合電板4にまた がらせて配設し、次いで接合する。この場合の接合は、 例えば下側接合電極4の所定位置に半田ペーストを塗布 しておき、加熱する方法等によって行うことができる。 棒状の熱電素子材7、8の配置については、下側接合電 30 極4で形成する配列パターン(長方形状)の相対する長 辺の一方側の外周部を形成している外周部接合電極 4 B、4B、…の外周側にまたがらせて、2本のP型熱電 素子材7を配置している。そして、配列パターンの相対 する長辺の他方側の外周部を形成している外周部接合電 極4B、4B、…の外周側にまたがらせて、同様に2本 のP型熱電素子材7を配置している。そして、上記の外 周部接合電極 4 B、 4 B、 · · の内側に独立している接合 電極4には、棒状のP型熱電素子材7及び棒状のN型熱 電素子材8を各1本接合している。

【0037】このように、配列パターンの相対する長辺 の両方側の外周部接合電極 4 B、 4 B、 …の外周側に、 2本の同じ特性 (この場合はP型) であって、同形状の 熱電素子材を配設するようにすると、強度的に両辺が均 等になり、より品質が安定したペルチェモジュールを得 ることが可能となる。また、P型の熱電素子材の方が、 N型のものより一般的に高強度なので、このように外周 部接合電極4B、4B、・・の外周側に配影する2本の同 じ特性の棒状の熱電素子材についてその特性をP型とす ると、より耐久性が良好なベルチェモジュールを得るこ 50 四角形であって、高さが等しい2本の同じ特性(この場

とができる利点がある。

【0038】次いで、下側基板1上の下側接合電極4に 接合した棒状のP型及びN型熱電素子材7、8をワック スで固定した後、図4に示す複数の切断刃を有する切断 部材9で、各熱電素子材7、8の所定位置を切断し、ワ ックスを洗浄除去して、図5に示すように個々に分離し た勢雷素子 (P型勢電素子2 又はN型勢電素子3) を下 側接合電極4に接合した下側基板1を得る。次いで、予 め準備しておいたアルミナ等のセラミックよりなる上側

と下側基板1上の各熱電素子2、3とを、例えば半田ペ ースト等を用いて接合して図2に示す、第2実施形態の ペルチェモジュールを作製する。 【0039】 このように、この製造方法に関する実施形

態では、断面が四角形の棒状のP型熱電素子材7及びN 型熱電素子材7を原材料として用い、日つ下側基板1上 の外周部接合電極 4 B の外周側にまたがらせて接合する 勢雷素子材として、2本の同じ特性の棒状の勢雷素子材 を使用するようにしているので、非常に簡便に図2に示 が可能となる。

【0040】また、下側接合電板4で形成する配列パタ ーン (長方形状) の相対する一対の辺である、長辺の一 方側の外周部を形成している外周部接合電板 4 B. 4 B、…の外層側にまたがらせて、断面が四角形であっ て、高さが等しい2本の棒状のP型熱電素子材7を配置 する場合に、図6に示すように、最外周側に配置するP 型熱電素子材7の幅を、接合される同じ特性の棒状の熱 電素子材は1本のみである接合電極4に配設される同じ 特性の権状の熱電素子材の幅より大きくすることもでき る。ここでいう接合される同じ特性の棒状の熱電素子材 は1本のみである接合電極4とは、図6に示すように、 外周部接合電極 4 B、 4 B、 …の内側にある接合電極 4 である。このように、最外周側に配置するP型熱電素子 材7の幅を、接合される同じ特性の棒状の熱電素子材は 1本のみである接合電板4に配設される同じ特性の権状 の熱雷素子材の幅より大きくすると、熱応力が集中する 配列パターンの角部及び外周部において、接合電極と熱 雷素子の接合面積や熱雷素子のトータルの断面積(基板 40 面と平行する方向の断面積)を大きくしているペルチェ モジュールを製造できるため、接合部及び熱電素子にク ラック等が発生しにくくて、信頼性の高い、耐久性が向 上したペルチェモジュールを製造することができるよう になる。

【0041】また、ペルチェモジュールを製造するに際 して、図7に示すように、下側接合電極4で形成する配 列パターン (長方形状) の相対する一対の辺である、長 辺の一方側の外周部を形成している外周部接合電極 4 B、4B、…の外周側にまたがらせて配置する、断面が

[0042]
【預明の効果】請求項1に係る発明のベルチェモジュールでは、配列パターンの角階を形成して対向している角部接合電極に、同じ特性の熱電素子を複複価接合する構成を備える。そのために、この請求項1に係る予明によれば、熱応力が集中する配列パターンの角部において、複数個の熱電素子による荷服分担ができると共に、接合電極と熱電素子の製造力の増大ができるので、接合部及び熱電素子への熟応力の緩和ができるので、接合部及び熱電素子への製売力の場合ができるが、表分階のよりを他の地震素子中の1個の熱電素子の機能の自然機電素子で導動がとれるので、所給による複数個の同じ特性の熱電素子中の1個の熱電素子が確境して他の熱電素子で導動がとれるので、所能による複数種の世界で表現である。従って、この請求項1に係る発明によれば、信頼性の高い、耐久性が向上したベルチェモジュールを構成することができるようになる。

【0043】請求項2に係る発明のペルチェモジュール 30 は、接合電極で形成される配列パターンが略四角形状で あるので、請求項1係る発明の効果に加えて、ペルチェ モジュールの作製が容易になるという効果を察する。 【0044】請求項3に係る発明のペルチェモジュール では、角部接合電極に加えて、長辺側外周部接合電極 に、同じ特性の熱質素子を複数個接合している。従っ て、この請求項3に係る発明によれば、熱応力が集中す る配列パターンの角部及び長辺側外周部において、複数 個の熱電素子による荷重分担ができると共に、接合電極 と熱電素子の接合面積の増大ができるので、接合部及び 40 熱電素子への熱応力の緩和ができクラック等の不具合を 低減できる。また、対向している角部接合電極及び対向 している長辺側外周部接合電極に接合している複数個の 同じ特性の熱電素子中の1個の熱電素子が破壊しても他 の熱雷素子で導通がとれるので、斯線による破壊を防止 できる。従って、この請求項3に係る発明によれば、信 類性の高い、耐久性が向上したベルチェモジュールを構 成することができるようになる。

【0045】請求項4に係る発明のペルチェモジュールでは、角部接合電極に加えて、P型熱電素子とN型熱電50

素子とを接合電極を介して直列に接続している平面状の 回路パターンの折返し部となる位置にあって、対向して いる接合電極に、同じ特性の熱電素子を複数個接合して いる構成を備えている。従って、この請求項4に係る発 明によれば、熱応力が集中する配列パターンの角部及び 回路パターンの折返し部において、複数個の熱電素子に よる荷重分担ができると共に、接合電極と熱電素子の接 合面積の増大ができるので、接合部及び熱電素子への熱 応力の緩和ができクラック等の不具合を低減できる。ま た、対向している角部接合電極及び折返し部となる位置 にあって対向している接合電極に接合している複数個の 同じ特性の熱電素子中の1個の熱電素子が破壊しても他 の熱電素子で導通がとれるので、断線による破壊を防止 できる。従って、この請求項4に係る発明によれば、信 頼性の高い、耐久性が向上したペルチェモジュールを構 成することができるようになる。

【0046】請求項5に係る発卵のベルチェモジュールの製造方法では、請求項2又は請求項3配額のベルチェモジュールを製造するに際して、基板上の外用商財産合電極の外開間にまたが5セで接合する棒状の熱電素子材をして、複数本の同じ特性の棒状の熱電子が春使用するようにしているので、非常に衝便に請求項2又は請求項3配額のベルチェモジュールを製造することが可能とな

【0047】請求項6に係る発明のペルチェモジュール の製造方法では、使用する同じ特性の棒状の熱電素子材 が、全て断面形状が同一であるので、新たな形状の熱電 索子材を準備することなしに、請求項2又は請求項3記 載のペルチェモジュールを製造することが可能となる。 【0048】請求項7に係る発明のペルチェモジュール の製造方法では、外周部接合電極の外周側にまたがらせ て接合する複数本の同じ特性の棒状の熱電素子材の中の 最外周側のもの幅を、接合される同じ特性の棒状の熱量 素子材は1本のみである接合質板に配設される同じ特性 の棒状の熱雷素子材の幅より大きくしているので、熱広 力が集中する配列パターンの角部及び外周部において、 接合電板と勢雷素子の接合面積や勢雷素子のトータルの 断面積を大きくしているペルチェモジュールを製造する ことができ、従って、接合部及び熱電素子にクラック等 が発生しにくくて、信頼性の高い、耐久性が向上したペ ルチェモジュールを製造することができるようになる。 【0049】 請求項8に係る発明のペルチェモジュール の製造方法では、外間部接合電板の外層側にまたがらせ て接合する複数本の同じ特性の棒状の熱電素子材の幅の 合計寸法を、接合される同じ特性の棒状の熱電素子材は 1本のみである接合電板に配設される同じ特性の棒状の 熱電素子材の幅と同じにしているので、P-N対の素子 断面積に関して、複数本の棒状の熱電素子材を接合電極 に接合して製造される外周部と、1本の棒状の熱電素子 材を接合電極に接合して製造される中央部とで同じにで

13 きるので、外周部での要熱量の低下を生じさせることな く、倡頼性の高い、耐久性が向上したペルチェモジュー ルを製造することができるようになる。

[0050] 請求項9に係る発明のペルチェモジュールの製造方法では、配列パターンの相対する一対の辺の両方の外国際は各種を対例。同じ特性の棒状数等 子材を配設するので、強度的に両辺が均等になり、より 品質が変足したペルチェモジュールを得ることが可能と なる。

[0051] 請求項10に係る登明のペルチェモジュ 10 小の製造方法では、外周部接合電極の外周側にまたが5 せて接合する複数本の同じ特性の棒状の熱電素子材の特性が全て早型である。そして、P型の熱電素子材の方が、N型のものより一般的に高速であるため、この請求項10に係る登明のベルチェモジュールの製造方法によれば、より耐火性が良好なペルチェモジュールを得ることが可能となった。

【図面の簡単な説明】

【図1】本発明のベルチェモジュールの第1実施形態を 説明するための上頻基板を省略した平面図である。 【図2】本発明のベルチェモジュールの第2実施形態を 説明するための上側基板を省略した平面図である。

【図3】本発明の製造方法を説明するための図であって、下側接合電極を固着している下側基板を示す平面図*

* である.

【図4】本発明の製造方法を説明するための図であって、棒状の熱電素子材の配設状態を示す平面図である。 【図5】本発明の製造方法を説明するための図であっ

て、切断部材で熱電素子材の所定位置を切断した状態を示す平面図である。

【図6】本発明の製造方法を説明するための図であって、棒状の熱電素子材の異なる配設状態を示す平面図で

10 【図7】本発明の製造方法を説明するための図であって、棒状の熱電素子材のさらに異なる配設状態を示す平 面図である。

【符号の説明】

- 1、1' 基板
- 2 P型熱電素子
- 3 N型熱電素子
- 4、4'接合電極
- 4 A、4'A 角部接合電極 4 B、4'B 外周部接合電極
- 20 6 リード線
 - 7 P型熱電素子材
 - 8 N型熱電素子材
 - 9 切断部材

[図7]

