

Accurate Subpixel Edge Location Based on Partial Area Effect

Agustín Trujillo-Pino Karl Krissian Miguel Alemán-Flores Daniel Santana-Cedrés

Edge Detection in the pixel level

Subpixel Edge Detection

Main goal of this work

 Given an ideal image, locate accurately for every edge pixel the following features:

- orientation
- intensity difference at both sides
- subpixel position
- curvature

Acquired intensity in edge pixels

Partial area effect hypothesis

Ideal straight edge with slope 1/2

Error when computing intensity change at both sides

$$A=100$$

$$B=0$$

$$h=1$$

$$\alpha = \sqrt{2}$$

$$||G|| =$$

0	0	0	0	0	0	5
0	0	0	0	5	19	37
0	0	5	19	37	51	51
5	19	37	51	51	37	19
37	51	51	37	19	5	0
51	37	19	5	0	0	0
19	5	0	0	0	0	0

WRONG INTENSITY DIFFERENCE

$$||G|| \neq \frac{A-B}{2h} \leftarrow$$

Error when computing orientation

$$\mathbf{f_x} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 & 11 & 16 \\ 0 & 0 & 3 & 11 & 16 & 19 & 19 \\ 3 & 11 & 16 & 19 & 19 & 16 & 11 \\ 16 & 19 & 19 & 16 & 11 & 3 & 0 \\ 19 & 16 & 11 & 3 & 0 & 0 & 0 \\ 11 & 3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{f_y} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 & 16 & 33 \\ 0 & 0 & 0 & 3 & 16 & 33 & 46 & 46 \\ 3 & 16 & 33 & 46 & 46 & 33 & 16 & 3 & 0 \\ 33 & 46 & 46 & 33 & 16 & 3 & 0 \\ 46 & 33 & 16 & 3 & 0 & 0 & 0 \\ 16 & 3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

WRONG ORIENTATION

$$\frac{f_x}{f_y} = \frac{5\sqrt{2} - 4}{6 + \sqrt{2}} \neq \frac{1}{2}$$

Proposed method for isolated edges of first order

$$a = \frac{2S_M - 5(A+B)}{2(A-B)}$$

 $b = \frac{S_R - S_L}{2(A - B)}$

$$2(A-B)$$

$$S_{L} = 5B + \frac{A - B}{h^{2}}L \qquad L = \int_{-3h/2}^{-h/2} (a + bx + 5h/2) dx$$

$$S_{R} = 5B + \frac{A - B}{h^{2}}R \qquad R = \int_{h/2}^{3h/2} (a + bx + 5h/2) dx$$

$$a = \frac{2S_M - 5(A+B)}{2(A-B)}$$

$$S_M = 5B + \frac{A-B}{h^2}M$$

$$M = \int_{-h/2}^{h/2} (a+bx+5h/2)dx$$

$$L = \int_{-3h/2}^{-h/2} (a + bx + 5h/2) dx$$

$$R = \int_{h/2}^{3h/2} (a + bx + 5h/2) dx$$

Proposed method for isolated edges of second order

$$a = \frac{26S_{M} - S_{L} - S_{R} - 60(A + B)}{24(A - B)}$$

$$b = \frac{S_{R} - S_{L}}{2(A - B)}$$

$$c = \frac{S_{L} + S_{R} - 2S_{M}}{2(A - B)}$$

$$S_{L} = 5B + \frac{A - B}{h^{2}}L \qquad L = \int_{-3h/2}^{-h/2} (a + bx + cx^{2} + 5h/2) dx$$

$$S_{M} = 5B + \frac{A - B}{h^{2}}M \qquad M = \int_{-h/2}^{h/2} (a + bx + cx^{2} + 5h/2) dx$$

$$S_{R} = 5B + \frac{A - B}{h^{2}}R \qquad R = \int_{h/2}^{3h/2} (a + bx + cx^{2} + 5h/2) dx$$

$$L = \int_{-3h/2}^{-h/2} (a + bx + cx^2 + 5h/2) dx$$

$$M = \int_{-h/2}^{h/2} (a + bx + cx^2 + 5h/2) dx$$

$$R = \int_{h/2}^{3h/2} (a + bx + cx^2 + 5h/2) dx$$

Estimating edge features

$$K = \frac{2c}{(1+b^2)^{3/2}}$$

Edge detection in an ideal circle

Traditional method

Proposed method

Radius of curvature	Mean	Minimum	Maximum
Second derivatives	28.32	12.49	32.45
Analitic expression	24.32	15.69	25.43
Proposed method	19.98	19.96	19.98

Experiment with real image

Traditional image smoothing

Edge detection in smooth images

Original image F

$$* \begin{pmatrix} a_{11} & a_{01} & a_{11} \\ a_{01} & a_{00} & a_{01} \\ a_{11} & a_{01} & a_{11} \end{pmatrix} = \begin{bmatrix} \mathbf{B} & \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \mathbf{B} & \mathbf{B} & \mathbf{B} \end{bmatrix}$$

$$G_{x,y} = \sum_{i,j} a_{i,j} F_{x+i,y+j}$$

$a = \frac{2S_M - 7(A+B)}{2(A-B)} - \frac{1 + 24a_{01} + 48a_{11}}{12}c$

$$b = 1 + \frac{S_R - S_L}{2(A - B)}$$

$$c = \frac{S_L + S_R - 2S_M}{2(A - B)}$$

Smooth image G

Experiment with noisy synthetic images

Tradition image restoration

Ideal image with noise added

Gaussian smoothing

Anisotropic diffusion

Real image

Gaussian smoothing

Anisotropic diffusion

Restoration proposed method

Features of the restoration proposed method

- Ideal images remain unchanged
- Effective noise removal

Autofocus

Robustness to different noise and intensity levels

Experiments with synthetic circle of radius 20

Noise
0
20
40
60

	Inten. chan.		
	Mean	Max	
	0.00	0.00	
	0.48	0.66	
	0.74	0.94	
	1.06	1.30	
	1.06	1.30	

Orientation		
Mean	Max	
0.00	0.00	
0.76	2.00	
1.54	4.25	
1.92	5.31	

	Position		
	Mean	Max	
	0.00	0.00	
	10.8	25.2	
	26.8	67.8	
	30.4	85.2	

Radius of curvat.			
Mean	Min	Max	
20.0	20.0	20.0	
20.0	17.2	22.9	
19.9	15.1	30.5	
19.8	15.2	35.4	

Nearby edge location

Tackling very close edges

Experiments with real angiographic image

