ME 592X

Assignment 3

Engineering Image Analysis – Group 1 – Combustion Image Set

Given Data Set:

- Training Set 54000 x 25000
- Testing Set 18000 x 25000
- Validation Set 9000 x 25000

Code: Run combustion-classifier.ipynb (Python notebook) or combustion-classifier.py (Python code). Please change path to the combustion data if extracting data from different location (Second cell in Python notebook).

Preprocessing:

- The flattened images are reshaped into (100x250).

Features Extracted:

- The given Combustion image set does not contain any clear edges, because the images are of flames and smoke don't contain any solid object.
- Methods like Canny edge detector doesn't capture edges correctly.
- Thus, the following two features are used for the feature extraction: HoG, Dictionary learning

i) HOG - Histogram of Oriented Gradients

- HoG counts occurrences of gradient orientation in localized portions of an image
- https://www.learnopencv.com/histogram-of-oriented-gradients/
- http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html

Ex:

- Changing the following parameters of the Hog alters the reduction in dimension The trade-off between the capturing the feature and dimension reduction
 - Orientation
 - o Pixels per cell (dimensions of each block)

Orientation	Pixels Per Cell	Feature Vector Dimension
5	10x10	1250
3	16x16	270

Sample Image (HoG)

Input image

Histogram of Oriented Gradients

ii) Dictionary learning

- Constructs a dictionary that can be used to represent data using a sparse code.
- Requires as few as 10 features for the given dataset, for >90% accuracy of classification, hence significantly reducing dimensionality of the dataset.
- Reference code: <u>http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchDictionaryLearning.html#sklearn.decomposition.MiniBatchDictionaryLearning.</u>

Random Forest

- http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
- Following parameters are altered to find out the nature of impact they have on the accuracy
 - Number of trees (n_estimators)

- Number of features considered at each node (n_features)
- o Number of layers (max depth)

Number of Trees	Max Depth	Number of Features	Accuracy
2	2	32	0.87505555556
2	4	64	0.94505555556
6	2	128	0.88444444444
6	4	1250	0.971388888889

Dictionary Learning

Number of Trees	Max Depth	Number of Features	Accuracy
2	2	4	0.83027777778
2	4	4	0.91972222222
6	2	8	0.81977777778
6	4	10	0.91305555556

Boosting Techniques

Boosting Technique	Accuracy with HoG features	Accuracy with Dictionary learning
Decision Trees	0.98094444444	0.980388888889
Extra Tree	0.998277777778	0.993611111111
Gradient Boosting	0.99777777778	0.91072222222
Adaboost	0.99805555556	0.960055555556
Voting Classifier	0.997166666667	0.990833333333

Tuning Hyper Parameters

K-fold cross validation with Grid Search

- Range of the hyper Parameters considered for grid search

For Random Forest classifier:

Hyper Parameter	Set
No of Trees	{2,3}
Max Depth	{2,4}
Max Features	{10.30}

Final Hyper Parameter

(screenshot of the grid search output)

Tuning hyper-parameters for precision

Best parameters set found on development set, using HOG features:

{'max_features': 30, 'n_estimators': 3, 'max_depth': 2}

Grid scores on development set, using HOG features:

```
0.877 (+/-0.167) for {'max_features': 10, 'n_estimators': 2, 'max_depth': 2} 0.924 (+/-0.179) for {'max_features': 10, 'n_estimators': 3, 'max_depth': 2} 0.915 (+/-0.183) for {'max_features': 30, 'n_estimators': 2, 'max_depth': 2} 0.924 (+/-0.192) for {'max_features': 30, 'n_estimators': 3, 'max_depth': 2} 0.907 (+/-0.172) for {'max_features': 10, 'n_estimators': 2, 'max_depth': 4} 0.913 (+/-0.175) for {'max_features': 10, 'n_estimators': 3, 'max_depth': 4} 0.917 (+/-0.187) for {'max_features': 30, 'n_estimators': 2, 'max_depth': 4} 0.922 (+/-0.192) for {'max_features': 30, 'n_estimators': 3, 'max_depth': 4}
```

Detailed classification report:

The model is trained on the full development set, using HOG features. The scores are computed on the full evaluation set, using HOG features.

precision recall f1-score support

0 0.99 0.81 0.89 15000
1 0.81 0.99 0.89 12000

avg / total 0.91 0.89 0.89 27000

Tuning hyper-parameters for recall

Best parameters set found on development set, using HOG features:

```
{'max_features': 10, 'n_estimators': 3, 'max_depth': 4}
```

Grid scores on development set, using HOG features:

```
0.882 (+/-0.163) for {'max_features': 10, 'n_estimators': 2, 'max_depth': 2} 0.843 (+/-0.227) for {'max_features': 10, 'n_estimators': 3, 'max_depth': 2} 0.864 (+/-0.192) for {'max_features': 30, 'n_estimators': 2, 'max_depth': 2} 0.882 (+/-0.257) for {'max_features': 30, 'n_estimators': 3, 'max_depth': 2} 0.879 (+/-0.240) for {'max_features': 10, 'n_estimators': 2, 'max_depth': 4} 0.899 (+/-0.252) for {'max_features': 10, 'n_estimators': 3, 'max_depth': 4} 0.885 (+/-0.256) for {'max_features': 30, 'n_estimators': 2, 'max_depth': 4} 0.896 (+/-0.273) for {'max_features': 30, 'n_estimators': 3, 'max_depth': 4}
```

Detailed classification report:

The model is trained on the full development set, using HOG features. The scores are computed on the full evaluation set, using HOG features.

```
precision recall f1-score support

0 0.96 0.63 0.76 15000
1 0.67 0.97 0.79 12000

avg / total 0.83 0.78 0.77 27000
```

Tuning hyper-parameters for precision

Best parameters set found on development set, using **Dictionary learned features**:

```
{'max_features': 10, 'n_estimators': 2, 'max_depth': 4}
```

Grid scores on development set, using Dictionary learned features:

```
0.805 (+/-0.059) for {'max_features': 3, 'n_estimators': 2, 'max_depth': 2} 0.748 (+/-0.148) for {'max_features': 3, 'n_estimators': 3, 'max_depth': 2}
```

```
0.793 (+/-0.174) for {'max_features': 10, 'n_estimators': 2, 'max_depth': 2} 0.840 (+/-0.167) for {'max_features': 10, 'n_estimators': 3, 'max_depth': 2} 0.867 (+/-0.128) for {'max_features': 3, 'n_estimators': 2, 'max_depth': 4} 0.834 (+/-0.291) for {'max_features': 3, 'n_estimators': 3, 'max_depth': 4} 0.889 (+/-0.166) for {'max_features': 10, 'n_estimators': 2, 'max_depth': 4} 0.880 (+/-0.159) for {'max_features': 10, 'n_estimators': 3, 'max_depth': 4}
```

Detailed classification report:

The model is trained on the full development set, using Dictionary learned features. The scores are computed on the full evaluation set, using Dictionary learned features.

```
precision recall f1-score support

0 0.91 0.92 0.92 15000
1 0.90 0.89 0.89 12000

avg / total 0.91 0.91 0.91 27000
```

Tuning hyper-parameters for recall

Best parameters set found on development set, using Dictionary learned features:

```
{'max_features': 10, 'n_estimators': 2, 'max_depth': 4}
```

Grid scores on development set, using Dictionary learned features:

```
0.754 (+/-0.120) for {'max_features': 3, 'n_estimators': 2, 'max_depth': 2} 0.747 (+/-0.161) for {'max_features': 3, 'n_estimators': 3, 'max_depth': 2} 0.799 (+/-0.235) for {'max_features': 10, 'n_estimators': 2, 'max_depth': 2} 0.729 (+/-0.121) for {'max_features': 10, 'n_estimators': 3, 'max_depth': 2} 0.830 (+/-0.198) for {'max_features': 3, 'n_estimators': 2, 'max_depth': 4} 0.862 (+/-0.199) for {'max_features': 3, 'n_estimators': 3, 'max_depth': 4} 0.869 (+/-0.243) for {'max_features': 10, 'n_estimators': 2, 'max_depth': 4} 0.846 (+/-0.222) for {'max_features': 10, 'n_estimators': 3, 'max_depth': 4}
```

Detailed classification report:

The model is trained on the full development set, using Dictionary learned features. The scores are computed on the full evaluation set, using Dictionary learned features.

```
precision recall f1-score support

0 0.91 0.92 0.92 15000
```

Comparison of Ensemble Classifier

HoG:

Ensemble Classifier	Optimal Parameters		
Elisellible Classifier	Max_features	N_estimators	Max_depth
Random Forest	30	3	4
Decision Tree	30		4
Extra Trees	30		4
Ada Boost		3	
Gradient Tree Boosting	30	3	4

Dictionary Learning:

Ensemble Classifier	Optimal Parameters		
Elisellible Classifier	Max_features	N_estimators	Max_depth
Random Forest	9	2	4
Decision Tree	9		4
Extra Trees	9		4
Ada Boost		3	
Gradient Tree Boosting	9	3	4

Accuracy of boosting techniques after grid search (Optimal parameters):

Boosting Technique	Accuracy with HoG features	Accuracy with Dictionary learning
Decision Trees	0.92483333333	0.9125
Extra Tree	0.889	0.93922222222
Gradient Boosting	0.996111111111	0.978
Adaboost Classifier	0.885888888889	0.87477777778