Predicting Future Stock Returns Using Financial Data

Peng Zhao | Christine Tan | Ashton Cho

Motivation

- Market capitalization in the US is close to \$50T dollars (2024).
- Number of trades in US will approx. \$85B (2025).
- Approx 4000 hedge funds just in the US alone
- Research Question: Can we use fundamental data (data published in companies' financial reports) and prior stock prices trends to predict future stock prices?
- Model: (1) Train model on prior stock return; (2) Train model on financial/fundamental company data
- Summary findings:
 - Prior stock returns slight improvement over baseline model; structural shifts in economic/political landscape may limit the model's validity to predict future returns
 - Extend analyses to financial data for multiple quarters no evidence that ML models outperform baseline

Data

- Use yfinance library
 - Uses Yahoo Finance API to retrieve market data
 - Has stock price data (including historical going back to prior years)
 - Has financial statement data (Income statement, Balance sheet, Cash Flow statement)
 - Limitation: Goes back to only 2023 Q3
- Focus on S&P 500 companies
- Downloaded all closing stock price
- Downloaded all financial data available (329 possible features)

Price	Adj Close	Close	High	Low	Open	Volume
Ticker	TSLA	TSLA	TSLA	TSLA	TSLA	TSLA
Date						
2010-06-29 00:00:00+00:00	1.592667	1.592667	1.666667	1.169333	1.266667	281494500
2010-06-30 00:00:00+00:00	1.588667	1.588667	2.028000	1.553333	1.719333	257806500
2010-07-01 00:00:00+00:00	1.464000	1.464000	1.728000	1.351333	1.666667	123282000
2010-07-02 00:00:00+00:00	1.280000	1.280000	1.540000	1.247333	1.533333	77097000
2010-07-06 00:00:00+00:00	1.074000	1.074000	1.333333	1.055333	1.333333	103003500
2024-12-02 00:00:00+00:00	357.089996	357.089996	360.000000	351.149994	352.380005	77986500
2024-12-03 00:00:00+00:00	351.420013	351.420013	355.690002	348.200012	351.799988	58267200
2024-12-04 00:00:00+00:00	357.929993	357.929993	358.100006	348.600006	353.000000	50810900
2024-12-05 00:00:00+00:00	369.489990	369.489990	375.429993	359.500000	359.869995	81403600
2024-12-06 00:00:00+00:00	389.220001	389.220001	389.489990	370.799988	377.420013	80548300
3636 rows × 6 columns						

	Date	Close
0	2010-06-29	1.592667
1	2010-06-30	1.588667
2	2010-07-01	1.464000
3	2010-07-02	1.280000
4	2010-07-06	1.074000
3631	2024-12-02	357.089996
3632	2024-12-03	351.420013
3633	2024-12-04	357.929993
3634	2024-12-05	369.489990
3635	2024-12-06	389.220001
3636 ro\	ws × 2 columns	

Data Exploration - Stock Prices (Tesla)

Data Exploration - Stock Prices (Tesla)

Past 2 Years

Modelling - Stock Prices (Tesla)

Using Linear Regression as a Baseline

Restructuring the Data to Fit the LSTM Model

	Close
Date	
2010-06-29	1.592667
2010-06-30	1.588667
2010-07-01	1.464000
2010-07-02	1.280000
2010-07-06	1.074000
2024-12-02	357.089996
2024-12-03	351.420013
2024-12-04	357.929993
2024-12-05	369.489990
2024-12-06	389.220001
3636 rows × 1	columns

	Target Date	Target-3	Target-2	Target-1	Target
	larget Date	rarget-3	rarget-2	raiget-i	larget
0	2022-12-07	194.860001	182.449997	179.820007	174.039993
1	2022-12-08	182.449997	179.820007	174.039993	173.440002
2	2022-12-09	179.820007	174.039993	173.440002	179.050003
3	2022-12-12	174.039993	173.440002	179.050003	167.820007
4	2022-12-13	173.440002	179.050003	167.820007	160.949997
498	2024-12-02	338.230011	332.890015	345.160004	357.089996
499	2024-12-03	332.890015	345.160004	357.089996	351.420013
500	2024-12-04	345.160004	357.089996	351.420013	357.929993
501	2024-12-05	357.089996	351.420013	357.929993	369.489990
502	2024-12-06	351.420013	357.929993	369.489990	389.220001
503 ro	ws × 5 columns				

Restructuring the Data to Fit the LSTM Model

Features

	Close
Date	
2010-06-29	1.592667
2010-06-30	1.588667
2010-07-01	1.464000
2010-07-02	1.280000
2010-07-06	1.074000
2024-12-02	357.089996
2024-12-03	351.420013
2024-12-04	357.929993
2024-12-05	369.489990
2024-12-06	389.220001
3636 rows × 1	columns

	Target Date	Target-3	Target-2	Target-1	Target
0	2022-12-07	194.860001	182.449997	179.820007	174.039993
1	2022-12-08	182.449997	179.820007	174.039993	173.440002
2	2022-12-09	179.820007	174.039993	173.440002	179.050003
3	2022-12-12	174.039993	173.440002	179.050003	167.820007
4	2022-12-13	173.440002	179.050003	167.820007	160.949997
498	2024-12-02	338.230011	332.890015	345.160004	357.089996
499	2024-12-03	332.890015	345.160004	357.089996	351.420013
500	2024-12-04	345.160004	357.089996	351.420013	357.929993
501	2024-12-05	357.089996	351.420013	357.929993	369.489990
502	2024-12-06	351.420013	357.929993	369.489990	389.220001
503 ro	ws × 5 columns				

Splitting the Data into Training, Validation, and Test Sets

Modelling - Stock Prices (Tesla)

Building the LSTM Model

Epoch 50/50 - loss: 10693.3867 - mean absolute error: 95.4124 - val loss: 12784.7822 - val mean absolute error: 111.7912

Experiments - Stock Prices (Tesla)

Tuning the Hyperparameters

Epoch 50/50 - loss: 59.8151 - mean_absolute_error: 5.6036 - val_loss: 79.2024 - val_mean_absolute_error: 6.8545

Experiments - Stock Prices (Tesla)

Tuning the Hyperparameters

Modelling - Stock Prices (Tesla)

Plotting the Results

Modelling - Stock Prices (Tesla)

Improvements Over the Baseline - Past 2 Years

Model	Train	Test
Linear Regression	1929.251592	1917.893714
LSTM	67.511055	3633.377197

Experiments - Stock Prices (Tesla)

Improvements Over the Baseline - All Available Data

Data Preparation - Stock Prices (SP500)

Past 10 Years

Experiments - Stock Prices (Tesla)

Tuning the Hyperparameters

 $1 \rightarrow 2$

Modelling - Stock Prices (SP500)

Plotting the Results

Modelling - Stock Prices (SP500)

Improvements Over the Baseline

Data Preparation - Stock Prices (SP500)

Past 2 Years

Modelling - Stock Prices (SP500)

Improvements Over the Baseline

Model	Train	Test
Linear Regression	138.619551	137.897163
LSTM	3.286796	143.644852

Analyzed fundamental data and selected 16 financial features

	Corre	elation	Matr	ix of	Nume	ric Fe	ature	s Afte	r Drop	ping	Highl	y Cori	relate	d Fea	tures
Yr -	1.00	-0.00	0.03	-0.03	0.01	0.01	0.02	0.02	0.01	0.01	0.00	0.01	-0.04	-0.01	0.02
Qtr -	-0.00	1.00	0.06	0.21	-0.00	0.00	0.01	0.00	-0.00	0.00	-0.00	-0.00	0.05	0.01	-0.04
Return -	0.03	0.06	1.00	-0.03	0.04	0.04	0.01	-0.01	0.01	-0.01	0.02	0.01	0.01	-0.01	0.03
Next_Qtr_Return -	-0.03	0.21	-0.03	1.00	0.03	0.02	-0.02	-0.02	0.04	-0.01	0.05	-0.00	0.01	-0.00	-0.02
Diluted EPS_IS -	0.01	-0.00	0.04	0.03	1.00	0.08	0.07	0.02	-0.00	-0.01	0.01	0.00	0.00	-0.00	-0.01
Net Income_IS -	0.01	0.00	0.04	0.02	0.08	1.00	0.81	0.60	0.36	0.58	0.37	0.67	0.45	-0.27	-0.25
Research And Development_IS -	0.02	0.01	0.01	-0.02	0.07	0.81	1.00	0.88	0.55	0.71	0.87		0.88		-0.71
Total Revenue_IS -	0.02	0.00	-0.01	-0.02	0.02	0.60		1.00	0.38	0.80	0.29		0.39	-0.25	-0.20
Long Term Debt And Capital Lease Obligation_BS -	0.01	-0.00	0.01	0.04	-0.00	0.36	0.55	0.38	1.00		0.88	0.52	0.02		0.19
Current Liabilities_BS -	0.01	0.00	-0.01	-0.01	-0.01	0.58		0.80	0.64	1.00		0.90	0.68		-0.4€
Total Assets_BS -	0.00	-0.00	0.02	0.05	0.01	0.37		0.29	0.88	0.84	1.00		-0.04		0.25
Current Assets_BS -	0.01	-0.00	0.01	-0.00	0.00				0.52			1.00	0.73		-0.49
Operating Cash Flow_cSCF -	-0.04	0.05	0.01	0.01	0.00	0.45	0.88	0.39	0.02	0.68	-0.04	0.73	1.00	-0.01	-0.63
Investing Cash Flow_cSCF -	-0.01	0.01	-0.01	-0.00	-0.00	-0.27		-0.25					-0.01	1.00	
Financing Cash Flow_cSCF -	0.02		0.03	-0.02	-0.01	-0.25	-0.71	-0.20	0.19				-0.63		
	4	OK DET	un aet	JIM EPE	15 m	's ou	JS NIE	15 00	85 .65	85 ×5	85 X5	85	ي ' ج	چۈ ر	ge '
		et	Ott Pet	Jun By	et Inco.	elopma	Reven	bligation Current	Jabilition	gs all Assets	ating Car	W Elow	W Elong	W Elon	
		-		No.	And	OIX.	ALEBS	CHITE		Cu.	BS RESERVE	Sting	SCF SCF COM STREET		
				Long let	NEP.	uq Car				O.		4.			
				1et	m Det										
				roug											

- Aligning dates for stock prices into Year and Quarter (e.g., 2023Q1, 2023Q2) using Datetime
- Calculating target variable next period return for each company
 - Using features from time t=0 to predict stock returns in time t+1
 - Quarterly return = (Quarter closing stock price Quarter beginning stock price) / Quarter beginning stock price
 - 2024Q4 return = 11/29/24 closing price Quarter beginning stock price) /
 Quarter beginning stock price

- Fundamental data already provided in Year and Quarter format in yfinance
 - Derived average previous 2 quarters for each feature for t=0 (i.e., we averaged t-1 and t-2)
- Train/validation/test split
 - Removed 2024Q3 from training and validation datasets because we are using 2024Q3 fundamental data to predict 2024Q4 returns
 - Split based on 60/20/20 by unique company
 - Test dataset only has 2024Q3
- Data structure:
 - Each row has ticker, year_qtr, next_quarter_return, current quarter fundamentals, average previous 2 quarters fundamental

aap	ol .					1.							
. —								Target					
	Date	Ticker	Yr	Qtr	year_qtr	Return	Next_Qtr_Return	EBITDA_IS	Basic EPS_IS	Diluted EPS_IS	 Research And Development_IS	Gross Profit_IS	Tota Revenue_IS
8	2023-03-31 00:00:00+00:00	AAPL	2023	1	2023Q1	0.320475	0.168913	NaN	NaN	NaN	NaN	NaN	Nah
9	2023-06-30 00:00:00+00:00	AAPL	2023	2	2023Q2	0.168913	-0.109211	NaN	NaN	NaN	NaN	NaN	NaN
10	2023-09-30 00:00:00+00:00	AAPL	2023	3	2023Q3	-0.109211	0.109546	3.065300e+10	1.47	1.46	7.307000e+09	4.042700e+10	8.949800e+10
11	2023-12-31 00:00:00+00:00	AAPL	2023	4	2023Q4	0.109546	-0.075098	4.322100e+10	2.19	2.18	7.696000e+09	5.485500e+10	1.195750e+1′
12	2024-03-31 00:00:00+00:00	AAPL	2024	1	2024Q1	-0.075098	0.240403	3.073600e+10	1.53	1.53	7.903000e+09	4.227100e+10	9.075300e+10
13	2024-06-30 00:00:00+00:00	AAPL	2024	2	2024Q2	0.240403	0.076215	2.820200e+10	1.40	1.40	8.006000e+09	3.967800e+10	8.577700e+10
14	2024-09-30 00:00:00+00:00	AAPL	2024	3	2024Q3	0.076215	0.050312	3.250200e+10	0.97	0.97	7.765000e+09	4.387900e+10	9.493000e+10
15	2024-12-31 00:00:00+00:00	AAPL	2024	4	2024Q4	0.050312	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Further Data Processing and Model Training Strategy

Stock Identifier (Ticker) Removal

- Eliminate company-specific bias
- Focus on universal financial patterns
- Enable model generalization across different stocks
- Prevent model from learning stock-specific behaviors

Date Information Processing

- Retain quarterly patterns rather than specific dates
- Avoid temporal overfitting
- Focus on financial metric trends
- Reduce time-specific dependencies

Baseline Model: Simple Majority Classifier

```
Training Set Analysis:

(1) The number of positive (class 1) samples in y_train: 1155
(2) The number of negative (class 0) samples in y_train: 652
The majority class in y_train is: Class 1 (Positive)
The baseline accuracy for y_train (majority class classifier) is: 0.6392
The baseline loss for y_train is: 12.4622

Validation Set Analysis:
(1) The number of positive (class 1) samples in y_val: 397
(2) The number of negative (class 0) samples in y_val: 217
The majority class in y_val is: Class 1 (Positive)
The baseline accuracy for y_val (majority class classifier) is: 0.6466
The baseline loss for y_val is: 12.2067
```


Further Data Processing and Model Training Strategy

1, Model Architecture

- three-layer neural network

```
# Define layer configurations
layer_config = [
    # (units, dropout_rate, 12_reg)
    (128, 0.3, None),  # First layer
    (64, 0.2, 0.01),  # Second layer
    (32, 0.1, 0.01)  # Third layer
]
```

2, Key Features:

A. Data cleaning handles outliers

```
def handle_extremes(df):
    """Handle extreme values using percentile clipping"""
    df = df.copy()
    # Select only numeric columns for processing
    numeric_cols = df.select_dtypes(include=['float64']).columns
    for col in numeric_cols:
        # Calculate the 1st and 99th percentiles for each numeric column
        q1 = df[col].quantile(0.01)
        q3 = df[col].quantile(0.99)
```

B. Built-in safeguards prevent overfitting

```
if 12_reg:
    model.add(keras.layers.Dense(units, kernel_regularizer=keras.regularizers.12(12_reg)))
else:
    model.add(keras.layers.Dense(units))
model.add(keras.layers.BatchNormalization()) # Normalize activations to stabilize training
```

C. Automatic learning speed adjustment

```
# Define a callback for learning rate reduction
reduce_lr = keras.callbacks.Reduce!RonPlateau(
    monitor='val_loss', # Monitor the validation loss
    factor=0.2, # Reduce the learning rate by a factor of 0.2
    patience=5, # Wait for 5 epochs before reducing learning rate
    min_lr=0.0001 # Set the minimum learning rate 0.0001
```

D. Training stops when no more improvement

```
# Define a callback for early stopping
early_stopping = keras.callbacks.EarlyStopping(
monitor='val_loss', # Monitor the validation loss
patience=10, # Wait for 10 epochs before stopping
restore_best_weights=True # Restore model weights from the epoch with the lowest validation loss
```


Model Training Plot

Model Stability Analysis:

- Loss Curve Characteristics:
 - Initial rapid decrease in first 10 epochs
 - Smooth convergence after epoch 20
 - Final loss stabilizes around 0.7
 - Training and validation loss curves closely aligned

- Accuracy Curve Characteristics:
 - Quick improvement in first 5 epochs
 - Stable performance after epoch 10
 - Consistent accuracy around 64%
 - Minimal gap between training and validation accuracy

Model Training

- Test result

Training Acc	uracv:	0.6491			
Validation A					
Test Accurac					
Test Set Cla	assific	ation R	eport:		
	prec	ision	recall	f1-score	support
í)	A 11	A 1A	0.16	178
1				0.76	
		0.05	0.52	0.70	323
accuracy	,			0.63	503
macro avg	3	0.53	0.51	0.46	503
weighted ave	3	0.57	0.63	0.55	503
Confusion Ma	atrix:				
	Pre	dicted:	0 Pred	icted: 1	
True: 0	18		160		
True: 1	26		299		

Class Prediction Capability:

- Upward Trend (Class 1): High recall and moderate precision, resulting in strong overall performance. A majority of actual upward trends were correctly identified, and most predicted upward trends were accurate.
- Downward Trend (Class 0): Low recall and moderate precision, leading to poor overall performance. Only a small fraction of actual downward trends were detected, and less than half of the predicted downward trends were correct.

Confusion Matrix Analysis:

- True Negatives (TN): Correctly identified a small portion of downward trends.
- **False Positives (FP):** Majority of actual downward movements were misclassified as upward trends.
- False Negatives (FN): Missed a small portion of upward trends.
- **True Positives (TP):** Correctly identified the majority of actual upward trends.

Experiments

- Hyperparameter Tuning
- 1. Batch Size (32->64) & Learning Rate Adjustment 0.0005->0.001)
- 2. Neuron Count Adjustment (128,64,32 -> 64,32,16)
- 3. Reducing Hidden Layers (3 -> 2)
- 4. Early Stopping Parameter Adjustment (10 -> 15)

1, Accuracy

	Train	Val	Test	
Base Model:	64.91%	64.17%	62.06%	
Batch&LR Adjust:	64.42%	64.33%	62.64%	6
Neuron Reduced:	64.08%	64.33%	63.86%	6
Hidden Layer Red:	63.97%	63.68%	60.95%	
Early Stop Adjust:	64.42%	64.17%	60.89%	

2, Downward Trend(Class2) Prediction

	Precision	Recall	F1	
Base Model:	0.41	0.10	0.16	
Batch&LR Adjust:	0.56	0.11	0.18	4
Neuron Reduced:	0.23	0.02	0.03	
Hidden Layer Red:	0.40	0.14	0.21	4
Early Stop Adjust:	0.42	0.15	0.22	4

3, Upward Trend(Class1) Prediction

	Precision	Recall	F1
Base Model:	0.65	0.92	0.76
Batch&LR Adjust:	0.66	0.95	0.78 👍
Neuron Reduced:	0.64	0.97	0.77
Hidden Layer Red:	0.65	0.88	0.75
Early Stop Adjust:	0.66	0.89	0.75

- Batch Size & Learning Rate shows best options across all tunings
 - High test accuracy
 - Highest precision for Class 0
 - Most balanced overall performance for Class 1
 - Smallest difference between training and validation metrics
 - Most stable loss and accuracy curves

Experiments

Hyperparameter Tuning Vs Baseline

Overall Accuracy:

- All models perform similarly to the baseline on training and validation sets
- Model improvements mostly focused on predictive capability rather than raw accuracy
- Test set performance consistently lower than training/validation

Model Stability:

- Batch&LR adjustment showed most stable loss curves
- Reduced neuron count led to smoother training process
- Two-layer model showed good training stability but lower test accuracy

• Parameter Impact:

- Batch size & Learning rate adjustments: Best balance of stability and performance
- Neuron count reduction: Improved stability but reduced downtrend detection
- Layer reduction: Simplified model but decreased overall performance
- Early stopping adjustment: Limited impact on model performance

	Train	Val	Test	vs Baseline(Train)
Baseline:	63.92%	64.66%		
Base Model:	64.91%	64.17%	62.06%	+0.99%
Batch&LR Adjust:	64.42%	64.33%	62.64%	+0.50%
Neuron Reduced:	64.08%	64.33%	63.86%	+0.16%
Hidden Layer Red:	63.97%	63.68%	60.95%	+0.05%
Early Stop Adjust:	64.42%	64.17%	60.89%	+0.50%

Model Selection:

- Batch Size & Learning Rate adjusted model shows best overall performance
- Maintains baseline accuracy while adding predictive capabilities
- Demonstrates most stable training process

Trade-offs:

- Accuracy vs. Predictive Power: Models barely surpass baseline accuracy
- Complexity vs. Performance: Simpler models showed lower but more stable performance
- Up/Down Detection: All models struggle with downward trend detection

Ethical Considerations

- Yahoo Finance API is for personal/educational purposes so cannot be used for commercial purposes (i.e., trading/investing for clients, etc)
 - Should not rely on data to advise clients
 - Data may not be accurate and up-to-date
- Yfinance scrapes data from Yahoo Finance which may potentially breach Yahoo Finance terms of service (note that the official Yahoo Finance API was discontinued in 2017).

Conclusions

- Both basic stock returns and expanded fundamentals models show little improvements over the baseline
- Limitations:
 - Models are too basic
 - We did not use all the possible fundamental features available on Yahoo Finance
 - Data limitations other types of information may be impounded into stock prices (e.g., market sentiment, political factors)
- Future work:
 - Try different/alternative/advanced model architectures
 - Use all 330 possible fundamental features
 - Use additional features (e.g., ESG scores) available on Yahoo Finance
 - Use another fundamental data source (SEC's EDGAR) that has a longer time-series data
- Summary not time to retire, YET!

References

https://www.statista.com/outlook/fmo/stocks/united-states

https://www.ibisworld.com/united-states/market-research-reports/hedge-funds-industry/

https://pypi.org/project/yfinance/

https://www.youtube.com/watch?v=OXwZtlcTiuk&t=69s

https://www.youtube.com/watch?v=CbTU92pbDKw

Contributions

Christine

- Data sourcing for S&P500 from yfinance
- Data cleansing, structuring and prepping for stock returns and fundamentals data
- Feature engineering

Ashton

- Data sourcing, cleaning, exploring, structuring, experimenting for:
- Linear Regression Model
- LSTM Model

Peng

- o Data sourcing, cleaning, exploring, structuring, feature engineering, experimenting for:
- Neural Network model Training

