

# CS120: Computer Networks

Lecture 19. Other Topics in Transportation Layer

Haoxian Chen

Slides adopted from: Zhice Yang

# Outline

- TCP Fairness
- QUIC
- QoS

## **Evaluation Criteria**

- Defining fairness is hard
  - In terms of a host, a TCP link, or an application?
- TCP fairness goal: if n TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/n



• Fairness Index

$$f(x_1 \dots x_n) = \frac{(\sum x_i)^2}{n * \sum x_i^2}$$

- Consider the steady state, TCP uses a (linear) scheme to adjust its window cwnd
  - cwnd' = b\*cwnd + a
- Possible Designs
  - Additive increase, additive decrease
  - Additive increase, multiplicative decrease (AIMD)
  - Multiplicative increase, additive decrease
  - Multiplicative increase, multiplicative decrease

Consider a case with two TCP connections





Consider a case with two TCP connections



Increase the throughput to utilize more bandwidth

Consider a case with two TCP connections



Consider a case with two TCP connections



Decrease the throughput to avoid congestion

Consider a case with two TCP connections



- Consider a case with two TCP connections
  - Behavior of additive increase additive decrease
    - Stable but not fair



- Consider a case with two TCP connections
  - Behavior of multiplicative increase multiplicative decrease
    - Stable but not fair



- Consider a case with two TCP connections
  - Behavior of multiplicative increase additive decrease
    - Not stable



- Consider a case with two TCP connections
  - Behavior of AIMD
    - Stable and fair



## Fairness and RTT

- TCP connation with smaller RTT occupies more bandwidth
  - When congestion happens, they recover more quickly
    - TCP adjust cwnd in RTT basis

## Fairness and Parallel TCP Connections

- Application can open multiple parallel connections between two hosts
  - web browsers do this, e.g., link of rate R with 9 existing connections:
    - new app asks for 1 TCP, gets rate R/10
    - new app asks for 11 TCPs, gets R/2

## Fairness and UDP

- Some apps do not use TCP
  - do not want rate throttled by congestion control
- Instead, use UDP:
  - send audio/video at constant rate, tolerate packet loss
- There is no "Internet police" policing use of congestion control

# Outline

- TCP Fairness
- **>**QUIC
- QoS

# QUIC

- QUIC: Quick UDP Internet Connections
- Application-layer protocol, on top of UDP
  - Deployed by Google staring at 2014
    - Deployed on many Google servers, apps (Chrome, mobile YouTube app)
  - QUIC working group formed in Oct 2016
- Initial goal: increase performance of HTTP

# QUIC

Protocol Stack



# QUIC

- Key features
  - Always encrypted
  - 0-RTT connection establishment
  - Connection migration
  - Congestion control
  - Parallel Streams

# QUIC - Header



22

# QUIC Connection Establishment





TCP (2RTT)

TCP+TLS 1.2 (new 4RTT resumed 3RTT ) QUIC (new 2RTT Resumed 1RTT)

## QUIC Connection Establishment

- 1-RTT (First-ever connection)
  - No cached information available
  - First CHLO is inchoate (empty)
    - Simply includes version and server name
  - Server responds with REJ
    - Includes server config, certs, etc.
    - Allows client to make forward progress
  - Second CHLO is complete
    - Followed by initially encrypted request data
  - Server responds with SHLO
    - Followed immediately by forward-secure encrypted response data



# QUIC Connection Establishment

- 0-RTT (Subsequent connection)
  - Motivation: client can cache information about the *origin* it connected to
  - First CHLO is complete
    - Based on information from previous connection
    - Followed by initially encrypted data.
  - Server responds with SHLO
    - Followed immediately by forward-secure encrypted data



# QUIC Connection Migration

- NAT Rebinding
  - NATs remaps port
    - Frequency (~ mins)
    - Why? to release unused ports
      - According to TCP connection state (if they are closed)
    - UDP does not have connection state, QUIC state is encrypted
- Mobility
  - Switching between different IP
    - Wi-Fi and cellular network
- Connection Migration
  - Keep QUIC connections alive even if port and IP are change
  - Detect connection path changes via Connection ID and IP/port
    - Connection is identified by connection ID rather than <IP, port>
    - 64-bit connection ID
    - randomly chosen by client



# QUIC Congestion Control

- Incorporates TCP best practices
  - TCP Cubic, Fast Retransmission, Selective ACK, etc.
- Better signaling than TCP
  - Each packet carries a monotonically increasing packet number
    - Better RTT measurement
  - Retransmitted packets also consume new sequence numbers
    - no retransmission ambiguity
- More verbose ACK
  - support 256 ACK ranges (vs. TCP's 3 SACK ranges)

# QUIC - Parallel Streams

Handle HOL blocking

# Outline

- TCP Fairness
- QUIC ➤QoS

# Realtime Application



# Delay Profile



# Host Solution: Playback Buffer

Buffer can be used to handle delay variance



# Quality of Service (QoS)

- Objective: to provide different service (network quality) to different applications
- Service Model
  - Best effort
  - Integrated Services (IntServ)
    - QoS supports every individual applications/flows
  - Differentiated Services (DiffServ)
    - QoS supports multiple/two classes of data or aggregated traffic

# Integrated Services (IntServ)

- Flow Specification
  - What is the flow
  - What we want to guarantee for the flow
- Admission Control
  - How network decides if it can accept the flow spec
- Resource Reservation Protocol
  - How service request gets from host to network
- Packet Classification and Scheduling
  - How routers deliver service

# Flow Specification

#### There are multiple options

- Specify the maximum bit rate
  - Maximum bit rate may be much higher than average
  - Reserving for the worst case is wasteful
- Specify the average bit rate
  - Network will not be able to carry bursty traffic
- Specify the burstiness of the traffic
  - Specify both the average rate and the burst size

# Specify Burstiness: Token Bucket

- Token Bucket: limit input to specified burst size and average rate
- Parameters:
  - r: average rate, i.e., rate at which tokens fill the bucket
  - b: bucket depth (limits size of burst)

• R: maximum link capacity or peak rate





# Specify Burstiness: Token Bucket

- Host
  - Specify token bucket to describe its traffic
- Router
  - Allocate buffer and bandwidth to guarantee delay





## Token Bucket

A flow can be described by multiple token bucket.













### Packet Classification

- Classify Packets into Flows according to
  - Source Address
  - Destination Address
  - Protocol Number
  - Source Port
  - Destination Port

# Packet Scheduling

- Implementation Dependent
  - Token bucket + Fair Queue



## Scalability Issues

- Specify service for every flow is not scalable in Internet
  - Routers must keep the state of every passing flow

# Quality of Service (QoS)

- Objective: to provide different service (network quality) to different applications
- Service Model
  - Best effort
  - Integrated Services (IntServ)
    - QoS supports every individual applications/flows
  - ➤ Differentiated Services (DiffServ)
    - QoS supports multiple/two classes of data or aggregated traffic

## Differentiated Services (DiffServ)

- Problem with IntServ: scalability
  - Maintain per-flow state
  - Per-flow classification
- DiffServ Approach
  - Segregate packets into a small number of (two) classes
    - Premium
    - Other
  - Class of certain packet (state) is kept in packet header
    - ToS

## Differentiated Services (DiffServ)

- Edge Routers
  - Set the traffic class
    - ToS field => token bucket parameters
  - Schedule traffic according to the traffic class
- Core Routers
  - Schedule traffic according to the traffic class specified by the edge router

## Per Hop Behavior

- Reuse ToS Field
  - 0-5bit: Differentiated Service Code Point (DSCP) Field
  - 6-7bit: Explicit Congestion Notification
- DSCP field encodes Per-Hop Behavior
  - Expedited Forwarding (all packets receive minimal delay & loss)
  - Assured Forwarding (packets marked with low/high drop probabilities)



#### Set Packet Class

- DSCP Field in Practice
  - Edge Routers
    - Set Differentiated Service (DS) Field in IP header
      - Maybe because the user paid the ISP
  - Core Routers
    - Implement Per Hop Behavior
      - According to DS Field of packets

#### Commonly used DSCP values

| DSCP value | Hex value | Decimal value | Meaning                   | Drop probability | Equivalent IP precedence value |
|------------|-----------|---------------|---------------------------|------------------|--------------------------------|
| 101 110    | 0x2e      | 46            | Expedited forwarding (EF) | N/A              | 101 Critical                   |
| 000 000    | 0x00      | 0             | Best effort               | N/A              | 000 - Routine                  |
| 001 010    | 0x0a      | 10            | AF11                      | Low              | 001 - Priority                 |
| 001 100    | 0x0c      | 12            | AF12                      | Medium           | 001 - Priority                 |
| 001 110    | 0x0e      | 14            | AF13                      | High             | 001 - Priority                 |
| 010 010    | 0x12      | 18            | AF21                      | Low              | 010 - Immediate                |
| 010 100    | 0x14      | 20            | AF22                      | Medium           | 010 - Immediate                |
| 010 110    | 0x16      | 22            | AF23                      | High             | 010 - Immediate                |
| 011 010    | 0x1a      | 26            | AF31                      | Low              | 011 - Flash                    |
| 011 100    | 0x1c      | 28            | AF32                      | Medium           | 011 - Flash                    |
| 011 110    | 0x1e      | 30            | AF33                      | High             | 011 - Flash                    |
| 100 010    | 0x22      | 34            | AF41                      | Low              | 100 - Flash override           |
| 100 100    | 0x24      | 36            | AF42                      | Medium           | 100 - Flash override           |
| 100 110    | 0x26      | 38            | AF43                      | High             | 100 - Flash override           |

## Implementation of Per-Hop Behavior

- Expedited Forwarding (EF) PHB
  - Highest Priority
- Assured Forwarding (AF) PHB
  - Different levels of priorities, drop probabilities, bandwidth, etc.

# Implementation of Expedited Forwarding

• First-In-First-Out (FIFO) with Priority



# Implementation of Expedited Forwarding

Weighted Fair Queuing (FQ)



## Implementation of Assured Forwarding

RED with In and Out (RIO)



|    | 月基本费 | 258元 188元                |  |  |  |
|----|------|--------------------------|--|--|--|
| 包含 | 国内流量 | 1GB                      |  |  |  |
| CA | 国内通话 | 800分钟                    |  |  |  |
|    | 本地流量 | 本地流量无限量权益<br>(用满40GB后限速) |  |  |  |

爱奇艺

## Network Neutrality

- Network Neutrality
  - ISPs supply non-discriminated IP connectivity



## Network Neutrality

- Opposite Counterpoint
  - ISPs only allows you to access their (often value-added) services





#### Reference

- Textbook 6.5
- Some slides are adapted from <a href="http://www-net.cs.umass.edu/kurose\_ross/ppt.htm">http://www-net.cs.umass.edu/kurose\_ross/ppt.htm</a> by Kurose Ross
- https://www.chromium.org/quic