DBSCAN Implementation

By Adam Brewer, Tarick Mehanna, Robert Stewart

Data Processing Steps

(Penguin Dataset)

	Steps		Results
1.	Find all Null values in the dataset	$\qquad \longrightarrow \qquad$	Limited Nulls found, except for 'Comments' column
2.	Remove columns with over 50% of Null values	$\qquad \Longrightarrow \qquad$	Remove 'Comments' column
3.	Do general outlier detection	$\qquad \Longrightarrow \qquad$	No Outliers detected
4.	Remove rows with over 50% of Null values		Only 2 rows removed
5.	Impute with median to columns with Nulls	s =====>	33 values imputed in total
6.	Remove categorical columns lacking impactful information for model		2 columns removed
7.	Standardize all data using sklearn StandardScaler() function	$\qquad \longrightarrow \qquad$	mean = 0 and stdev = 1 for each column

- Created model using **PCA** (principal component analysis) function
 - Converts high dimensional data to low dimensional data by selecting most import features
- Default values for hyperparameters
- Evaluated performance based on silhouette score
 - 0.391 decent value, indicates no overlapping clusters or mislabeled data points

```
def DBScan_Plot_2D(dataframe, epsilon = 0.5, minimum_samples = 5):
 pca = PCA(2)
 df = pca.fit_transform(dataframe)

 db = DBSCAN(eps=epsilon, min_samples=minimum_samples).fit(df)
 label = db.labels_
     u_labels = np.unique(label)
 fig = plt.figure(figsize=(10, 10))
 for i in u_labels:
     plt.scatter(df[label == i,0], df[label == i, 1], label = i)
 plt.legend()
 plt.show()
 return db
```

DBScan

Defaults: epsilon = 0.5, min_samples = 5

- Parameter should correspond to the size of the data set as well as 'noisiness'
- Good rule of thumb: choose a min_samples value that is greater than or equal to the dimensionality of the data set
- Optimal values are typically around 2 times
 the number of features

Recall from the previous slide, we use PCA(2), indicating 2 features will be selected

Optimal min_samples for this model appears to be **4**, silhouette score = 0.308

DBScan

epsilon = 0.5, min_samples = 4

Hypertuning - epsilon

Used K-Nearest Neighbors algorithm to find optimal epsilon distance

Process: If you have N-dimensional data to begin, then choose n_neighbors in sklearn NearestNeighbors to be equal to 2xN - 1, and find out distances of the K-nearest neighbors for each point in your dataset. Sort these distances out and plot them to find the **elbow** which separates noisy points (with high K-nearest neighbor distance) from points (with relatively low K-nearest neighbor distance) which will most likely fall into a cluster. The distance at which this elbow occurs is your point of optimal epsilon, here seen equal to about 1.186.

Model Comparisons

DBScan

epsilon = 1.186, min_samples = 4

Silhouette Score: 0.462

K-Means

n clusters = 5

Silhouette Score: 0.453

Conclusion

- Silhouette score, is it useful?
- Data analysis of the clusters
- Improving the model
 - More Data
 - Weighting to certain features
 - Less features

Special thanks to the Research Team!

Research Product: https://github.com/aslemc/ML-Assessment