

Ser. No. 10/619,294, Prelim. Amd.

IN THE CLAIMS

1. (previously presented): A loudspeaker for outputting sound in a frequency range including a lowest frequency f , the lowest frequency f having a wave number k ; the loudspeaker comprising:
a generally annular source of wind pulsating at the frequency f , the source having an annular radius r such that a quantity rk is approximately equal to or larger than one;
whereby wind is converted into sound at the lowest frequency f and bass response is improved.
2. (original): The loudspeaker according to claim 1, wherein the generally annular source of wind comprises a plurality of electrodynamic loudspeakers disposed in an arcuate line array.
3. (original): The loudspeaker according to claim 1, comprising a central baffle aligned with a plane defined by the generally annular source of wind.
4. (original): The loudspeaker of claim 3, wherein the generally annular source of wind comprises a plurality of electrodynamic loudspeakers disposed in at least one arcuate line array, and the central baffle comprises a planar surface and the loudspeakers are mounted in the surface.
5. (original): The loudspeaker of claim 4, comprising a cabinet, and wherein the cabinet comprises the planar surface.
6. (original): The loudspeaker of claim 5, wherein the cabinet is sealed.
7. (original): The loudspeaker of claim 1, wherein the annular source of wind is circular.
8. (original): The loudspeaker of claim 3, comprising a mount for mounting at least one symmetry baffle aligned substantially perpendicular to the central baffle, and wherein the annular source of wind extends around an arc and meets the symmetry baffle generally perpendicularly.
9. (original): The loudspeaker of claim 8, wherein the symmetry baffle is a radial symmetry baffle and a center point of the arc lies adjacent the symmetry baffle.
- 10.-13. (canceled)
14. (original): The loudspeaker of claim 8, wherein the symmetry baffle is a radial symmetry baffle.

Ser. No. 10/619,294, Prelim. Amd.

15. (original): The loudspeaker of claim 10, wherein the arcuate line array is circular.
16. (original): A loudspeaker comprising a plurality of electrodynamic loudspeakers mounted in a panel surrounding a central area in which there are none of the loudspeakers.
17. (previously presented): The loudspeaker of claim 1, wherein the wind has a wind direction generally perpendicular to an annular plane of the source
18. (new): A method of creating sound of a frequency f , having a wave number k ; the method comprising:

providing a generally annular source of pulsating wind having an annular radius r such that a quantity rk is approximately equal to or larger than one; and

pulsating the wind at the frequency f , whereby the pulsating wind is converted into sound at the frequency f with a high radiation efficiency.
19. (new): The method of claim 18, comprising providing a central baffle aligned with a plane defined by the generally annular source of wind.
20. (new): The method of claim 19, comprising providing at least one symmetry baffle aligned substantially perpendicular to the central baffle, and wherein the step of providing a generally annular source of pulsating wind includes providing the annular source around an arc to meet the symmetry baffle generally perpendicularly.