

SLAM: Exploiting Sparsity

Robot Localization and Mapping 16-833

Michael Kaess

October 4+7, 2024

Factor Graph Representation of SLAM

Variables: $\Theta = \{x_0, x_1 \cdots x_n, l_1, l_2\}$

Measurements: $Z = \{p, u_1 \cdots u_n, m_1 \cdots m_4\}$

Factorization: $p(Z|\Theta) = \operatorname{argmax}_{\Theta} \prod_{z \in Z} p(z|\Theta)$

SLAM as a Least-Squares Problem

Normal equations:

$$A^T A x = A^T b$$

Solving for θ by matrix inversion is too expensive!

SLAM as a Least-Squares Problem: Example

- On the board:
 - Linear 1D example

SLAM Least-Squares Example

Localize robot and door based on 1D range measurements

Measurements: distance to the door, signed

Factor graph:

$d_0 leftharpoonup d_1 leftharpoonup d_2$

SLAM Least-Squares Example

Localize robot and door based on 1D range measurements

Matrix A:

Each row corresponds to a factor Each column to a variable A is sparse!

SLAM as a **Sparse** Least-Squares Problem

Efficient Solution

- On the board:
 - Sparse matrix factorization
 - Solving by backsubstitution

Efficient Solution: Cholesky Factorization

Cholesky factor R is an upper triangular matrix so that

$$R'R = A'A$$

Yielding

$$R'Rx = A'b$$

Solve by forward-/backsubstitution

$$R'y = A'b$$
$$Rx = y$$

Similar: LDL' factorization, faster than Cholesky, avoids square roots

Efficient Solution: QR Factorization

$$A = Q \begin{bmatrix} R \\ 0 \end{bmatrix}$$

Yielding

$$||Ax - b||^2 = \left\| Q \begin{bmatrix} R \\ 0 \end{bmatrix} x - b \right\|^2 = \left\| Q'Q \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} d \\ e \end{bmatrix} \right\|^2 = ||Rx - d||^2 + ||e||^2$$

Solve by backsubstitution

$$Rx = d$$

Note that in practice Q is never explicitly formed.

Matrix Factorization

• QR on A: Numerically more stable

Cholesky on A^TA: Faster

Solving the Sparse Linear Least-Squares System

Solve: $\operatorname{argmin}_{\theta} ||A\theta - b||^2$

Normal equations

$$A^T A \theta = A^T b$$

Information matrix

Matrix factorization

$$A^T A = R^T R$$

Square root information matrix

Solving by Backsubstitution

After factorization: $R^TR x = A^Tb$

• Forward substitution $R^{T}y = A^{T}b$, solve for y

BacksubstitionR x = y, solve for x

Retaining Sparsity: Variable Ordering

Fill-in depends on elimination order:

Default ordering (poses, landmarks)

Ordering based on COLAMD heuristic [Davis04] (best order: NP hard)

Sparse Factorization Example

Example from real sequence:

Square root inf. matrix

Side length: 21000 variables

Dense: 1.7GB, sparse: 1MB

Example 2 - Standard Intel Dataset

(b) Final trajectory and evidence grid map.

(c) Final R factor with side length 2730.

910 poses, 4453 constraints

Example 3 - MIT Killian Court Dataset

(b) Final trajectory and evidence grid map.

R

(c) Final R factor with side length 5823.

1941 poses, 2190 constraints

QR on A:

Does the order of the rows of A impact fill-in?

QR on A:

- Does the order of the rows of A impact fill-in?
 No!
- Does the order of the columns of A impact fill-in?

QR on A:

- Does the order of the rows of A impact fill-in?
 No!
- Does the order of the columns of A impact fill-in? Yes, the order will influence fill-in in R and therefore efficiency!

Cholesky on A^TA

Does the order of the rows of A^TA impact fill-in?

Cholesky on A^TA

Does the order of the rows of A^TA impact fill-in?

The information matrix is symmetric, have to permute both rows and columns at the same time!

The order of rows and columns does impact fill-in in R.

Summary

- Exploiting sparsity is key to efficiency
- Sparse matrix factorization avoids explicitly calculating the (dense) inverse matrix

Next: Nonlinear Least-Squares
 Factor Graphs for Robot Perception: 2.5