NavieBayes-Classifier

#lets import libraries

import pandas as pd

#lets read the dataset

#lets divide them into dependent & independent

x=data.iloc[:,2:4] #age,salary

y=data.iloc[:,-1] #purchased

#splitting data

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,
random_state=0)

#feature scaling

from sklearn.preprocessing import **StandardScaler** #range between-> -3to3 featurescaling=StandardScaler()

x_train=featurescaling.fit_transform(x_train)

 $x_test = features caling.transform (x_test)$

x_test - NumPy object array			2	🔀 x_train - NumPy object array			
	0	1			0	1	
0	-0.798951	0.494608		0	1.92295	2.14602	
1	-0.0212649	-0.577359		1	2.02016	0.378719	
2	-0.312897	0.146943		2	-1.38222	-0.432499	
3	-0.798951	0.262831		3	-1.18779	-1.01194	
4	-0.312897	-0.577359		4	1.92295	-0.925024	
5	-1.09058	-1.44652		5	0.367578	0.291803	
6	-0.70174	-1.59138		6	0.173157	0.146943	
7	-0.215686	2.14602		7	2.02016	1.74041	
8	-1.96548	-0.0558618		8	0.756421	-0.838108	
9	0.853632	-0.780164		9	0.270367	-0.287638	
10	-0.798951	-0.606331		10	0.367578	-0.17175	
11	-0.993372	-0.432499		11	-0.118476	2.20396	
12	-0.118476	-0.432499		12	-1.47943	-0.635303	

#model building

BernoulliNB

from sklearn.naive_bayes import BernoulliNB,MultinomialNB,GaussianNB model=BernoulliNB() model.fit(x_train,y_train)

#prediction

y_pred=model.predict(x_test)

#confusion Matrix

from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test, y_pred)

from sklearn.metrics import accuracy_score

ac=<u>accuracy_score(y_test,y_pred)</u> -> **0.825**

from sklearn.metrics import classification_report
cr=classification_report(y_test,y_pred)

	Text editor - cr					
0		precision	recall	f1-score	support	
า	0 1	0.83 0.79	0.95 0.50	0.89 0.61	58 22	
r	accuracy macro avg weighted avg	0.81 0.82	0.72 0.82	0.82 0.75 0.81	80 80 80	

bias=model.score(x_train,y_train) -> 0.709375

variance = model.score(x_test,y_test)-> 0.825

GuassianNB

model=GaussianNB()

ac=<u>accuracy_score(y_test,y_pred)</u> -> **0.9125**

	Text editor - cr					
ic		precision	recall	f1-score	support	
.n	0 1	0.93 0.86	0.95 0.82	0.94 0.84	58 22	
r n	accuracy macro avg weighted avg	0.89 0.91	0.88 0.91	0.91 0.89 0.91	80 80 80	

bias=model.score(x_train,y_train) -> 0.884375

variance=model.score(x_test,y_test)-> 0.9125

MultinomialNB

Fetaure Scaling

from sklearn.preprocessing import Normalizer

featurescaling=Normalizer()

x_train=featurescaling.fit_transform(x_train)

x_test=featurescaling.transform(x_test)

#we have to use Normalizer for Multionmial Navie-Bayes as Negative Values can't be passed to Multinomial where

Standard Scaler Ranges from -3

model=MultinomialNB()

model.fit(x_train,y_train)

✓ Text editor - cr			,	
	precision	recall	f1-score	support
0 1	0.72 0.00	1.00 0.00	0.84 0.00	58 22
accuracy macro avg weighted avg	0.36 0.53	0.50 0.72	0.72 0.42 0.61	80 80 80

 $\underline{\textbf{bias}} = \texttt{model.score}(x_train, y_train) -> \textbf{0.621875}$

variance = model.score(x_test,y_test)-> 0.72

Deployment Code

```
# importing libraries
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler,Normalizer
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.metrics
import(confusion matrix,accuracy score,classification report,roc curve,ro
c_auc_score)
import seaborn as sns
st.title("NavieBayesClassifier")
# Uploading File
file=st.file_uploader('Upload Your File for Model Building',type=['csv'])
if file is not None:
  # Load
  data=pd.read_csv(file)
  st.write('- Preview')
  st.dataframe(data.head())
  # FeatureSelection
```

x=data.iloc[:,2:4]

```
y=data.iloc[:,-1]
 # SplittingData
  x train,x test,y train,y test=train test split(x,y,test size=0.20,random
state=0)
 # feature scaling
  st.subheader("Feature Scaling")
  scaling method = st.selectbox("Select ScalingMethod",("StandardScaler",
"Normalizer","None"))
  if scaling method == "StandardScaler":
    featurescaling = StandardScaler()
  elif scaling method == "Normalizer":
    featurescaling = Normalizer()
  else:
    featurescaling = None
  if featurescaling is not None:
    x train=featurescaling.fit transform(x train)
    x_test=featurescaling.transform(x_test)
 # model building
  # model selection
  st.subheader("Select Model")
  model = st.selectbox("Choose a model", ("GaussianNB",
"MultinomialNB", "BernoulliNB"))
  if model == "GaussianNB":
    model = GaussianNB()
  elif model == "MultinomialNB":
```

```
model = MultinomialNB()
  else:
    model = BernoulliNB()
  model.fit(x train,y train)
  # prediction
  y_pred=model.predict(x_test)
  y_prob=model.predict_proba(x_test)[:,1]
  # Metrics
  st.subheader("Confusion Matrix")
  cm = confusion matrix(y test, y pred)
  fig cm, ax = plt.subplots()
  sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", ax=ax)
  st.pyplot(fig_cm)
  ac = accuracy_score(y_test, y_pred)
  st.write(f"**Accuracy:** {ac:.2f}")
  st.subheader("Classification Report")
  st.text(classification_report(y_test, y_pred))
  st.write(f"**Training Accuracy (Bias):** {model.score(x_train,
y_train):.2f}")
  st.write(f"**Testing Accuracy (Variance):** {model.score(x_test,
y_test):.2f}")
```

ROC Curve and AUC

```
fpr, tpr, _ = roc_curve(y_test, y_prob)
auc_score = roc_auc_score(y_test, y_prob)
st.write(f"**AUC Score:** {auc_score:.2f}")

st.subheader("ROC Curve")
fig_roc, ax = plt.subplots()
ax.plot(fpr, tpr, color="blue", label=f"ROC curve (AUC = {auc_score:.2f})")
ax.plot([0, 1], [0, 1], color="gray", linestyle="--")
ax.set_xlabel("False Positive Rate")
ax.set_ylabel("True Positive Rate")
ax.set_title("ROC Curve")
ax.legend(loc="lower right")
st.pyplot(fig_roc)
```


Select Model

Confusion Matrix

Accuracy: 0.91

Classification Report

precision	recall f1-sc	ore supp	ort	
0	0.93	0.95	0.94	5
1	0.86	0.82	0.84	2:
accuracy			0.91	80
macro avg	0.89	0.88	0.89	80
weighted avg	0.91	0.91	0.91	80

Training Accuracy (Bias): 0.88

Testing Accuracy (Variance): 0.91

AUC Score: 0.98

ROC Curve

Feature Scaling

Select Model

Confusion Matrix

Accuracy: 0.82

Classification Report

precision	red	call f1-sc	ore supp	ort	
	Θ	0.83	0.95	0.89	58
	1	0.79	0.50	0.61	22
accura	асу			0.82	86
macro a	avg	0.81	0.72	0.75	86
weighted a	gve	0.82	0.82	0.81	86

Training Accuracy (Bias): 0.71

Testing Accuracy (Variance): 0.82

AUC Score: 0.90

ROC Curve

Feature Scaling

Select Scaling Method

Select Model

Choose a model

MultinomialNB
GaussianNB

MultinomialNB

BernoulliNB

Confusion Matrix

Accuracy: 0.72

Classification Report

 precision
 recall
 f1-score
 support

 0
 0.72
 1.00
 0.84
 58

 1
 0.00
 0.00
 0.00
 22

 accuracy
 0.72
 80

 macro avg
 0.36
 0.50
 0.42
 80

 weighted avg
 0.53
 0.72
 0.61
 80

Training Accuracy (Bias): 0.62

Testing Accuracy (Variance): 0.72

AUC Score: 0.57

ROC Curve

