参考問題 2024/09/18(水)

- 1. 物体 2 から物体 1 に及ぼす力を $\vec{F_{21}}$ 、物体 1 から物体 2 に及ぼす力を $\vec{F_{12}}$ とする。外力は存在しないとする。なお、物体 1 の質量は m_1 、速度は $\vec{v_1}$ 、物体 2 の質量は m_2 、速度は $\vec{v_2}$ とする。
 - (a) 物体1と物体2の運動方程式を書け。
 - (b) 作用、反作用の法則から、 $\vec{F_{21}}$ と $\vec{F_{12}}$ の関係を記述せよ。
 - (c) 運動量保存の法則 $(m_1\vec{v_1} + m_2\vec{v_2} = -2)$ から作用反作用の法則を導け。
 - (d) 2つの物体の重心は静止を続けるか、等速直線運動を行うことを説明せよ。
- 2. 運動方程式から運動量の変化は力積に等しいことを導け。
- 3. 1 m の高さから 1 秒間に 2 kg の砂を床に落とす。砂は床と完全非弾性衝突を行うと考えてよい。砂が床にあたるときの速さ、力積を求め、床が受ける力を導け。ただし、重力加速度の大きさは $g=9.8 \text{m/s}^2$ とする。
- 4. 質量 m の物体が鉛直方向に運動している。 ただし、鉛直方向の座標を y とし、上方を正方向にとるものとする. また、重力加速度の大きさを g, 位置, 速度の初期値 (t=0 での値) はそれぞれ y_0 , v_0 とする.
 - (a) 重力のみをうけている場合、速度と位置を時間の関数として求めよ。
 - (b) 重力に加え、速度の二乗に比例する空気抵抗 bv^2 を運動と逆向きに受ける場合について、落下しているときの運動方程式を書け。十分時間がたつと物体は一定速度で落下する。そのときの速度 v_∞ も求めよ。
 - (c) 重力に加え、速度の二乗に比例する空気抵抗 bv^2 を運動と逆向きに受ける場合について、上昇している時の運動方程式を書け。

課題 (LETUS から提出)

質量 m の物体が鉛直方向に運動している。 ただし、鉛直方向の座標を y とし、上方を正方向にとるものとする. また、重力加速度の大きさを g,位置,速度の初期値 (t=0 での値) はそれぞれ y_0 , v_0 とする。重力に加え、速度 v(t) に比例する空気抵抗 bv を運動と逆向きに受ける場合の位置と速度の時間変化を求めよ。 $t=\infty$ における最終速度 v_∞ も求めよ。