

Math.IA

Curso basAR

Christopher Shneider Cerqueira – <u>christophercerqueira@gmail.com</u>
Claudio Kirner – <u>ckirner@gmail.com</u>

https://sites.google.com/site/christophercerqueira/projetos/ear/basar http://www.ckirner.com/basar

Requisitos

- Windows
- basAR
 - Download:
 - https://sites.google.com/site/christophercerqueira/projetos/ear/basar
 - http://www.ckirner.com/basar
- Alguns modelos 3D em VRML
- Editor de texto simples, como o Bloco de Notas.

Roteiro

- Introdução: Metas
- basAR
- Criando infraestrutura, estrutura e conteúdo
- Criando comportamento com controle matemático.
 - Conceitos:
 - Mudança de estado
 - Lógicas de controle.
 - Comandos
 - Atividade

Introdução

- Criar um cenário de Realidade Aumentada.
 - Dois pontos de seleção e um ponto de exibição
- Utilizar o software basAR.

- Entender a construção do cenário.
- Entender os conceitos de mudança de estado e mudança de atributos

basAR

basAR: Behavioral Authoring System for Augmented Reality

- Meta-ferramenta de autoria de ambientes inteligentes de realidade aumentada.
 - Estrutura de comportamento baseada em pontos de ação
 - Cross-Reality
- COMPORTAMENTO DINÂMICO entre PONTOS DE AÇÃO

Aplicação em camadas

- Infraestrutura: especificar a área de trabalho (workspace) da aplicação
- Estrutura: os posicionamentos dos pontos de ação sobre a infraestrutura.
- Contexto: modelos, sons e outros objetos definidos na estrutura.
- Atuação: método de interação com a estrutura.
- Comportamento: regras de interação entre os atuadores e a estrutura.

Hierarquia de objetos

Hierarquia de arquivos

Criando

INFRAESTRUTURA, ESTRUTURA, CONTEÚDO E ATUAÇÃO

Sistema

Sistema

- Configura:
 - a primeira interligação dos objetos;
 - modo de exibição da janela;
 - objetos padrões.
- Arquivo: {basAR}/Data/config_basAR

```
#config basAR
basAR
WINDOWED
VRML wrl/action/ballBlue.dat
VRML Wrl/Action/ballGreen.dat
VRML Wrl/Action/ballRED.dat
VRML Wrl/action/tampa.dat
Audio/explosion.wav 0.5
Audio/backTrack.mp3 LOOP 0.3
Audio/bell.wav
                ONCE 0.5
Data/config behavior
                       # Rule Machine
# Bases
Data/config base1
# Actuators
```

ARTKSM Data/config transport

Infraestrutura

Infraestrutura

- correlação entre o mundo real e o mundo virtual
- Definição de base
- Arquivo: {basAR}/Data/config_base

```
#config_base1
# This file contains the setup for a workspace
BASE1
# Single ARToolKit Marker configuration
ARTKSM
Data/Markers/base.patt
53.0
0.0 0.0
USE DEFAULT
# Workspace Sounds
Audio/bell.wav
                 ONCE 0.5
                              # Visible Sound
Audio/explosion.wav 0.5
                              # Error sound
wrl/action/status.dat
```


Estrutura

Estrutura

- Pontos do espaço virtual com esferas de ação, modelos associados e comportamento.
- Localização, orientação e escala dos objetos virtuais.
- Arquivo: {basAR}/Data/config_base

•••

Pen # Point Name
DEFAULT_IPOINT # Action Model File
Data/app_pen # OBJECT Model File
20.0 20.0 0.0 # Translation
0.0 0.0 0.0 # Rotation
1.0 1.0 1.0 # Scale
900.0 # Action radius

• • •

Exemplo com 3 pontos

• • •

3

Ponto1

DEFAULT_IPOINT

NO_OBJECT

100.0 100.0 25.0

0.0 0.0 0.0

1.0 1.0 1.0

300.0

Ponto2

DEFAULT_IPOINT

NO_OBJECT

100.0 -100.0 25.0

0.0 0.0 0.0

1.0 1.0 1.0

300.0

pontoVisual

DEFAULT_IPOINT

Data/App/app_obj

100.0 0.0 25.0

0.0 0.0 0.0

1.0 1.0 1.0

0

Arquivo config_base completo _p1

BASE1

ARTKSM
Data/Markers/base.patt
53.0
0.0 0.0
USE_DEFAULT

Audio/bell.wav ONCE 0.5 Audio/explosion.wav 0.5 wrl/action/status.dat 3

Ponto1
DEFAULT_IPOINT
NO_OBJECT
100.0 100.0 25.0
0.0 0.0 0.0
1.0 1.0 1.0
300.0

Arquivo config_base completo _p2

Ponto2

DEFAULT_IPOINT

NO_OBJECT

100.0 -100.0 25.0

0.0 0.0 0.0

1.0 1.0 1.0

300.0

pontoVisual

DEFAULT_IPOINT

Data/App/app obj

100.0 0.0 25.0

0.0 0.0 0.0

1.0 1.0 1.0

0

Conteúdo

Conteúdo

- objetos 3D e áudios que são utilizados.
- Arquivos:

{basAR}/Data/App/app_obj

{basAR}/Wrl/quad.dat / {basAR}/Wrl/triang.dat/

{basAR}/Wrl/quad.wrl {basAR}/Wrl/triang.wrl

```
#app_obj
2 # Number of objects
```

MODEL3D VRML Wrl/quad.dat MODEL3D VRML Wrl/triang.dat

```
#quad.dat
quad.wrl
0 0 0
0 90 0
0 0 0
```

```
# triang.dat
triang.wrl
0 0 0
0 90 0
0 0 0
```


Atuação

Atuação

 Interação do usuário com o sistema

#config_tranport
ARTKSM1

Single ARToolKit Marker configuration

Data/Markers/shovell.patt # Marker

37.0 # Width(mm)

0.0 0.0 # Central

USE_DEFAULT # Marker cover

VRML wrl/Action/ssd.dat # Symbolic

model

Collision point

DEFAULT_IPOINT # Point model

20.0 0.0 0.0 # Translation (x,y,z) (mm)

400.0 # Action radius of the point

Criando

COMPORTAMENTO DE CLICKS

Comportamento?

- Controle do feedback do sistema ao receber estimulo do usuário.
- Baseado em máquina de estados (grafo de cena).
- Ações → Comandos
- Estados \rightarrow Blocos de comandos

Exemplo de estado

- Inicia estado
- Ponto 1 estático, exibe tudo
- Ponto 1 estático, exibe tudo
- Ponto 1 estático, exibe tudo
- Finaliza estado

BEGIN_STATE 1

1 STAT BOTH
2 STAT BOTH
3 STAT BOTH
END_STATE

Outros comandos vide manual do basAR!

O que é click?

Seleção → Ação → Liberação

 Selecionar um ponto onde a ação é alterar o fluxo de execução para outro estado, onde as ações e atributos dos pontos podem ser alterados.

Mapa de atitudes:

- Clicando um ponto
 - Configuração do sistema
 - Modelos do ponto
 - Posicionamento do ponto
 - Animações simuladas
 - Matrizes de posicionamento

Mudança de estado

- A mudança de estado pode ser realizada pelo sucesso dos comandos de movimentação (Vide tutorial sobre movimentação) ou utilizando um ponto com uma ação de mudança de estado.
- Com o click do atuador no ponto de mudança de estado é possível mudar os atributos e reconfigurar a atitude e exibição do ambiente.

Tipos de estados

Estado de trabalho

 Este tipo de estado espera uma ação ser completada para que ocorra mudança de estado

Estado de configuração

 Este tipo de estado, após aplicar as alterações de comportamento, altera automaticamente o estado.

Comando que habilita mudança de estado

- Mudar estado (Change State)
 - CHGST

Point ID

CHGST

ShowMode

NextState

Audio

Overplay

• 1 CHGST ONLY OBJECT 4

Funções de controle matemáticas

 Permitem a construção de lógicas para auxiliar no controle do fluxo do programa.

Permitem loops (For, while, do-while)

 Permitem colocar peso nos nós (Inteligência Artificial)

Variáveis por ponto

 Cada ponto tem uma variável A e B.

Comandos entre as variáveis

- Carregar Valor:
- Adicionar valor
- Subtrair entre variaveis
- Swap
- Inverter sinal
- Multiplicar
- Comparar

Comandos de carregar valor

- Carregar valor na variável A. A <= Value
 - LOADA

Point ID

LOADA

Value

- 1 LOADA 25.5

- Carregar valor na variável B. B<= Value
 - LOADB

Point ID

LOADB

Value

- 1 LOADB 30

Comandos para adicionar valor

Somar valor em A.

$$A \le A + Value$$

- ADDA

Point ID

ADDA

Value

- 1 ADDA 15

Somar valor em B.

— ADDB

Point ID

ADDB

Value

- 1 ADDB 35

variáveis

Subtrair B de A.

$$A \leq A - B$$

- AMB

Point ID

AMB

 $\overline{-1}$ AMB

Subtrair A de B

$$B \leq B - A$$

- BMA

Point ID

BMA

- 1 BMA

Comandos para inverter sinal

• Inverte o sinal de A.

$$A \leq = -A$$

— NEGA

Point ID

NEGA

- 1 NEGA

Inverte o sinal de B.

$$B \le -B$$

- NEGB

Point ID

NEGB

- 1 NEGB

Comandos para multiplicar valor

Multiplica valor em A.

A <= A * Valor

- MULA

Point ID

MULA

Value

- 1 MULA 5

Multiplica valor em B.

B <= B * Valor

- MULB

Point ID

MULB

Value

- 1 MULB 3

Comando de troca entre variáveis

Trocar variáveis.

- SWAB

Point ID

SWAB

— 1 SWAB

Comandos de comparação

 Compara A com B. Com condições. Se comparação é válida muda de estado.

```
-A > B (GREATER)
```

$$-A < B$$
 (LESSER)

$$-A = B$$
 (EQUALS)

- CMP

Point ID

CMP

TYPE

NextState

- 1 CMP LESSER 7

Comandos de comparação

 Compara A com Value. Com condições. Se comparação é válida muda de estado.

```
-A > Value (GREATER)
```

- -A < Value (LESSER)
- -A = Value (EQUALS)
- CMP

Point ID CMPV Value TYPE NextState

- 1 CMP 35.5 LESSER 7

Comportamento

Exemplo de Loop

Exemplo 1. Criar loop para contar Clicks.

Arquivo de comportamento:

{basAR}/Data/config_behavior

 Clicando em qualquer ponto soma contador e quando houver um total de 6 clicks para a aplicação

Fluxograma

Arquivo de Comportamento

```
BEGIN STATE 1
      1 CHGST ONLY BALL 2
       2 CHGST ONLY BALL 3
      3 CHGST ONLY BALL 4
END STATE
BEGIN STATE 2
      1 STAT ONLY BALL
END STATE GO TO 5 AFTER 1
BEGIN STATE 3
      2 STAT ONLY BALL
END STATE GO TO 5 AFTER 1
BEGIN STATE 4
       3 STAT ONLY BALL
END STATE GO TO 5 AFTER 1
```

```
BEGIN STATE 5
      1 ADDA 1
END STATE GO TO 6
BEGIN STATE 6
      1 CMPV 6 EQUALS 7
END STATE GO TO 1
BEGIN STATE 7
       1 STAT ONLY BALL
       1 STAT ONLY BALL
       1 STAT ONLY BALL
END STATE
```


RESUMO

Resumo comandos utilizados

- —STAT: [PointID] STAT [ShowMode] <AUDIO> <OVER?>
- CHGST: [PointID] CHGST [ShowMode] [NextState] <AUDIO> <OVER?>
- LOADA: [PointID] LOADA [Value]
- -LOADB: [PointID] LOADB [Value
- —ADDA: [PointID] ADDA [Value]
- —ADDB: [PointID] ADDB [Value]
- -AMB: [PointID] AMB
- -BMA: [PointID] BMA
- NEGA: [PointID] NEGA
- NEGB: [PointID] NEGB
- MULA: [PointID] MULA [Value]
- MULB: [PointID] MULB [Value]
- CMP: [PointID] CMP [GREATER/LESSER/EQUALS] [NEXTSTATE]
- CMPV: [PointID] CMPV [Value] [GREATER/LESSER/EQUALS] [NEXTSTATE]

Ajuda online

 Videos exemplificando cada comportamento disponível e os arquivos utilizados neste tutorial estão disponíveis em:

https://sites.google.com/site/christophercerquei ra/projetos/ear/basar/cursos

Math.IA

Curso basAR

Christopher Shneider Cerqueira – <u>christophercerqueira@gmail.com</u>
Claudio Kirner – <u>ckirner@gmail.com</u>

https://sites.google.com/site/christophercerqueira/projetos/ear/basar http://www.ckirner.com/basar