

EM Variants

Qinliang Su (苏勤亮)

Sun Yat-sen University

suqliang@mail.sysu.edu.cn

Review of the EM Algorithms

- To use EM algorithms, the key steps below are required
 - 1) Computing the posteriori distribution

$$p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})$$

2) Evaluating the expectation of $\log p(x, z; \theta)$ w.r.t. the posteriori $p(z|x; \theta^{(t)})$, i.e.,

$$Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) = \mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}^{(t)})}[\log p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})]$$

3) Maximizing

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$$

However, not all of them are always achievable

Two Issues in the EM

Issue one

The maximization is not achievable

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$$

- Issue two
 - 1) The posteriori $p(z|x; \theta^{(t)})$ cannot be derived analytically
 - 2) Even if $p(z|x; \theta^{(t)})$ can be obtained, we still cannot derive the close-form expression for the expectation

$$\mathbb{E}_{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})}[\log p(\mathbf{x},\mathbf{z};\boldsymbol{\theta})]$$

Outline

- Addressing Issue One
- Addressing Issue Two

Generalized EM

It is quite often in training LVMs that the optimization $\max_{m{\theta}} \mathcal{Q}(m{\theta}; m{\theta}^{(t)})$ cannot be solved

How to address this issue?

- Maximizing $Q(\theta; \theta^{(t)})$ is not necessary. Increasing $Q(\theta; \theta^{(t)})$ is sufficient to guarantee the EM algorithm to work
- That is, if we adopt SGD to update the parameter as

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \gamma \cdot \frac{\partial \mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})}{\partial \boldsymbol{\theta}} \bigg|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}}$$

we can also guarantee the monotonic increase of log-likelihood

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t+1)}) \ge \log p(\mathbf{x}; \boldsymbol{\theta}^{(t)})$$

- Sketch of proof
 - First, after the SGD update, it can be easily seen that

$$Q(\boldsymbol{\theta}^{(t+1)}; \boldsymbol{\theta}^{(t)}) \ge Q(\boldsymbol{\theta}^{(t)}; \boldsymbol{\theta}^{(t)})$$

From $\mathcal{L}(p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}),\boldsymbol{\theta}) = \int p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}) \log \frac{p(\mathbf{x},\mathbf{z};\boldsymbol{\theta})}{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})} d\mathbf{z} = \mathcal{Q}(\boldsymbol{\theta};\boldsymbol{\theta}^{(t)}) - \int p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}) \log p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}) d\mathbf{z}$, we further have

$$\mathcal{L}(p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)});\boldsymbol{\theta}^{(t+1)}) \geq \mathcal{L}(p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)});\boldsymbol{\theta}^{(t)})$$

$$= \log p(\mathbf{x};\boldsymbol{\theta}^{(t)})$$

Due to

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t+1)}) = \underbrace{\mathcal{L}(p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)}), \boldsymbol{\theta}^{(t+1)})}_{\geq \log p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} + \underbrace{KL(p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})||p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t+1)}))}_{\geq 0}$$

$$\Longrightarrow \log p(\mathbf{x}; \boldsymbol{\theta}^{(t+1)}) \ge \log p(\mathbf{x}; \boldsymbol{\theta}^{(t)})$$

Outline

- Addressing Issue One
- Addressing Issue Two

MCMC EM

 For any probability distributions, we can always draw samples from it, e.g., using Markov chain Monte Carlo (MCMC) methods

• Although the exact expression of the posteriori $p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})$ is not known, we can use samples drawn from it to approximate it

• Thus, we can draw lots of samples z_s for $s = 1, \dots, S$ from the posteriori distribution $p(z|x; \theta^{(t)})$ such that

$$\mathbf{z}_{s} \sim p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})$$

• Then, the expectation $\mathbb{E}_{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})}[\log p(\mathbf{x},\mathbf{z};\boldsymbol{\theta})]$ can be approximated as

$$Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) \approx \frac{1}{S} \cdot \sum_{s=1}^{S} \log p(\boldsymbol{x}, \boldsymbol{z}_{s}; \boldsymbol{\theta})$$

• We can optimize the approximate $\mathcal{Q}(oldsymbol{ heta};oldsymbol{ heta}^{(t)})$ with SGD algorithm

The two sub-problems in the Issue Two are both solved. Thus, latent-variable models can always be trained with MCMC EM

VB-EM

- Drawing samples from a distribution is computationally expensive
- An alternative approach is to use a simple distribution $q(\mathbf{z}; \boldsymbol{\phi})$ to approximate the exact posterior distribution $p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})$

How to get the approximate simple distribution $q(\mathbf{z}; \boldsymbol{\phi})$?

- Idea
 - 1) Assuming a simple form for $q(z; \phi)$, e.g.,

$$q(\mathbf{z}; \boldsymbol{\phi}) = \prod \mathcal{N}(z_i; \mu_i, \sigma_i^2)$$

2) Finding the best ϕ that minimizes the KL-divergence

$$KL(q(\mathbf{z}; \boldsymbol{\phi}) || p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)}))$$

- Steps to update the model parameter θ
 - 1) Finding the best approximate $q(z; \phi)$ such that

$$\phi^{(t)} = \arg\min_{\phi} KL(q(\mathbf{z}; \phi) || p(\mathbf{z}|\mathbf{x}; \theta^{(t)}))$$

2) Using $q(\mathbf{z}; \boldsymbol{\phi}^{(t)})$ to compute expectation $\mathbb{E}_{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})}[\log p(\mathbf{x},\mathbf{z};\boldsymbol{\theta})]$ approximately as

$$\tilde{Q}(\boldsymbol{\theta}; \boldsymbol{\phi}^{(t)}) = \mathbb{E}_{q(\mathbf{z}; \boldsymbol{\phi}^{(t)})}[\log p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})]$$

3) Obtaining the new value $\theta^{(t+1)}$ as

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} \tilde{\mathcal{Q}}(\boldsymbol{\theta}; \, \boldsymbol{\phi}^{(t)})$$

The two optimization problems can be equivalently written as

$$\min_{\boldsymbol{\phi}} KL(q(\boldsymbol{z}; \boldsymbol{\phi}) \| p(\boldsymbol{z} | \boldsymbol{x}; \boldsymbol{\theta}^{(t)})) \iff \max_{\boldsymbol{\phi}} \int q(\boldsymbol{z}; \boldsymbol{\phi}) \log \frac{p(\boldsymbol{z} | \boldsymbol{x}; \boldsymbol{\theta}^{(t)})}{q(\boldsymbol{z}; \boldsymbol{\phi})} d\boldsymbol{z}$$

$$\iff \max_{\boldsymbol{\phi}} \int q(\boldsymbol{z}; \boldsymbol{\phi}) \log \frac{p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta}^{(t)})}{q(\boldsymbol{z}; \boldsymbol{\phi})} d\boldsymbol{z}$$

$$\max_{\boldsymbol{\theta}} \mathbb{E}_{q(\boldsymbol{z}; \boldsymbol{\phi}^{(t)})} [\log p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})] \iff \max_{\boldsymbol{\theta}} \int q(\boldsymbol{z}; \boldsymbol{\phi}^{(t)}) \log \frac{p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})}{q(\boldsymbol{z}; \boldsymbol{\phi}^{(t)})} d\boldsymbol{z}$$

 The algorithm to optimize θ and φ can be understood as solving the following optimization problem in an alternative way

$$\max_{\boldsymbol{\phi},\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{x};\boldsymbol{\theta},\boldsymbol{\phi})$$

with

$$\mathcal{L}(\boldsymbol{x};\boldsymbol{\theta},\boldsymbol{\phi}) \triangleq \int q(\boldsymbol{z};\boldsymbol{\phi}) \log \frac{p(\boldsymbol{x},\boldsymbol{z};\boldsymbol{\theta})}{q(\boldsymbol{z};\boldsymbol{\phi})} d\boldsymbol{z}$$

• Instead of updating θ , ϕ alternatively, we can also update them simultaneously with the SGD algorithm, that is,

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \gamma \cdot \frac{\partial \mathcal{L}(\boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} \bigg|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}}$$

$$\left. \boldsymbol{\phi}^{(t+1)} = \boldsymbol{\phi}^{(t)} + \gamma \cdot \frac{\partial \mathcal{L}(\boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} \right|_{\boldsymbol{\phi} = \boldsymbol{\phi}^{(t)}}$$

The method is dubbed *variational Bayesian EM* (VB-EM)

• In general, we optimize $\mathcal{L}(x; \theta, \phi)$ w.r.t. the two parameters θ, ϕ simultaneously

• Actually, it can be proved that $\mathcal{L}(x; \theta, \phi)$ is a *lower bound* of the log-likelihood $\ln p(x; \theta)$ for any θ and ϕ , that is,

$$\ln p(\mathbf{x}; \boldsymbol{\theta}) \ge \mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi})$$

(Proof can be found in the next slide)

When the log-likelihood $\ln p(x; \theta)$ cannot be directly maximized, we can seek to optimize its lower bound

$$\mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) \triangleq \int q(\mathbf{z}; \boldsymbol{\phi}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{q(\mathbf{z}; \boldsymbol{\phi})} d\mathbf{z}$$

where $q(\mathbf{z}; \boldsymbol{\phi})$ can be set as any simple distribution forms, e.g.,

$$q(\mathbf{z}; \boldsymbol{\phi}) = \prod \mathcal{N}(z_i; \mu_i, \sigma_i^2)$$

Proof of $\ln p(x; \theta) \ge \mathcal{L}(x; \theta, \phi)$

$$\ln p_{\theta}(\mathbf{x}) = \int_{\mathbf{z}} q_{\phi}(\mathbf{z}) \ln p_{\theta}(\mathbf{x}) d\mathbf{z} = \int_{\mathbf{z}} q_{\phi}(\mathbf{z}) \ln \frac{p_{\theta}(\mathbf{x}, \mathbf{z}) q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z}) p_{\theta}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \int_{\mathbf{z}} q_{\phi}(\mathbf{z}) \ln \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z})} d\mathbf{z} + \int_{\mathbf{z}} q_{\phi}(\mathbf{z}) \ln \frac{q_{\phi}(\mathbf{z})}{p_{\theta}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \int_{\mathbf{z}} q_{\phi}(\mathbf{z}) \ln \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z})} d\mathbf{z} + KL(q_{\phi}(\mathbf{z})||p_{\theta}(\mathbf{z}|\mathbf{x}))$$

$$\geq \int_{\mathbf{z}} q_{\phi}(\mathbf{z}) \ln \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z})} d\mathbf{z}$$

$$\triangleq \mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi})$$