Native Differentiation in an Algebra

Nicholas Todoroff

December 1, 2021

Let A be a finite n-dimensional real algebra and let $D\subseteq A$, and let $f:D\to A$. By $\mathbf{D}f$ we mean the total derivative of f regarded as a function $\varphi(D)\to\mathbb{R}^n$ for some choice of basis $\varphi:A\xrightarrow{\sim}\mathbb{R}^n$; we will usually use ϕ implicitly.

1. Under what conditions is $\mathbf{D}f$ represented in the algebra? I.e. when do we have

$$\mathbf{D}_{a_0} f(a) = f'(a_0)a$$
 or $\mathbf{D}_{a_0} f(a) = af'(a_0)$

for some function $f': D \to A$? Call such a function the (left or right) *native derivative* of f. Is this function well defined?

- 2. When does (1) for f imply (1) for f?
- 3. Is f' necessarily a derivation?
- 4. Convergence of powerseries via singularities in algebraic extension?
- Relationship between generalized Cauchy-Riemann equations and gradients
- 6. Do all gradients arise from reciprocal bases induced by a correlation?

See [1] which answers (1) and (3) mainly for unital associative algebras and touches upon (2), and see [2] which is relevant to (4).

Native Gradients

Our motivation is found in the *multivector derivative* from Clifford calculus, as can be found in [3]. For C a nondegenerate Clifford algebra, to any vector basis (e_1,\ldots,e_n) we may associate a unique reciprocal basis (e^1,\ldots,e^n) with the property that $e^i\cdot e_j=\delta^i_j$, where δ^i_j is the Kronecker delta. These extend to algebra bases

$$\{e_{i_m} \wedge \dots \wedge e_{i_1} \mid 0 \le m \le n, \ 1 \le i_1 < \dots < i_m \le n\},
 \{e^{i_1} \wedge \dots \wedge e^{i_m} \mid 0 \le m \le n, \ 1 \le i_1 < \dots < i_m \le n\},$$

(including $\mathbb{1}$ in the case m=0). Under the scalar product $(a,b) \mapsto \langle ab \rangle$ (the scalar projection of the algebra product) these bases are reciprocal:

$$\left\langle (e^{i_1} \wedge \dots \wedge e^{i_m})(e_{j_m} \wedge \dots \wedge e_{j_1}) \right\rangle = \delta_{j_m}^{i_m} \dots \delta_{j_1}^{i_1}.$$

It is with these bases that the multivector derivative is defined as

$$\nabla f(x) = \sum_{\substack{0 \le m \le n \\ 1 \le i_1 < \dots < i_m \le n}} (e^{i_1} \wedge \dots \wedge e^{i_m}) \mathbf{D}_x f(e_{i_m} \wedge \dots \wedge e_{i_1}).$$

It can be found that this definition is independent of the initial choice of basis. To generalize to any algebra A, let $B=(\mathcal{B},\mathcal{B}')$ be a pair of bases for A such that $\mathcal{B}=(v_1,\ldots,v_n)$ and $\mathcal{B}'=(v_1',\ldots,v_n')$. Then define

$$\nabla^B f(x) = \sum_{i=1}^n v_i \mathbf{D}_x f(v_i').$$

For this definition to be independent of B, consider $C = (\mathfrak{C}, \mathfrak{C}')$ such that $\mathfrak{C} = (u_1, \ldots, u_n)$ and $\mathfrak{C}' = (u'_1, \ldots, u'_n)$ are bases. Let (x_1, \ldots, x_n) , (x'_1, \ldots, x'_n) , (y_1, \ldots, y_n) , (y'_1, \ldots, y'_n) be the coordinates for $\mathfrak{B}, \mathfrak{B}', \mathfrak{C}, \mathfrak{C}'$ respectively so that what we want is

$$\nabla^B f = \sum_{i=1}^n v_i \frac{\partial f}{\partial x_i'} = \sum_{j=1}^n u_j \frac{\partial f}{\partial y_j'} = \nabla^C f,$$

where we've suppressed the dependence on x. The partial derivatives between coordinates give the change-of-basis:

$$x_i = \sum_j \frac{\partial x_i}{\partial y_j} y_j, \quad v_i = \sum_j \frac{\partial y_j}{\partial x_i} u_j.$$

Together with the chain rule, this gives

$$\sum_{i} \sum_{j} u_{j} \frac{\partial y_{j}}{\partial x_{i}} \frac{\partial f}{\partial x'_{i}} = \sum_{j} \sum_{i} u_{j} \frac{\partial x'_{i}}{\partial y'_{j}} \frac{\partial f}{\partial x'_{i}} \implies \sum_{i} \sum_{j} u_{j} \left(\frac{\partial y_{j}}{\partial x_{i}} - \frac{\partial x'_{i}}{\partial y'_{j}} \right) \frac{\partial f}{\partial x'_{i}} = 0.$$

In order to be independent of f, we need $\sum_j u_j (\partial y_j / \partial x_i - \partial x_i' / \partial y_j') = 0$ for each i, and since (u_j) is a basis this is true iff

$$\frac{\partial y_j}{\partial x_i} - \frac{\partial x_i'}{\partial y_j'} = 0, \quad 1 \leq i, j \leq n.$$

Since the partials give the change-of-basis matrix, we may rewrite this condition as

$$(\mathfrak{C} \leftarrow \mathfrak{B})^T = (\mathfrak{B}' \leftarrow \mathfrak{C}') = (\mathfrak{C}' \leftarrow \mathfrak{B}')^{-1}$$

where $(Y \leftarrow X)$ is the (coordinate) change-of-basis matrix from X to Y and $(_)^T$ is the transpose. It is evident that, conversely, if this conditon is true then ∇ is independent of the choice of B or C. Note that when $\mathcal{C} = \mathcal{B}'$ and $\mathcal{C}' = \mathcal{B}$ this becomes

$$(\mathcal{B}' \leftarrow \mathcal{B})^{\mathrm{T}} = (\mathcal{B}' \leftarrow \mathcal{B})$$

so that the change-of-basis matrix is symmetric.

Defining Native Derivatives

We find that whether or not A is unital makes a tremendous difference. First, the native derivative is not necessarily well defined: if f_1', f_2' are both native derivatives of f, then for all $a \in A$ we have (e.g. in the right case)

$$af_1'(a_0) = af_2'(a_0) \implies a(f_1'(a_0) - f_2'(a_0)) = 0;$$

if $f'_1(a_0) - f'_2(a_0)$ is a nonzero *null element*, an element which multiplies with any other to 0, then f'_1 and f'_2 need not be equal. The case of the trivial algebra where every a is null is also possible, but seems useless in this context so we will not consider it here. Non-trivial algebras with nonzero null elements do exist:

Example 1. Let $A = \mathbb{R}^2$ be an \mathbb{R} -algebra via (x,y)(z,w) = (xz,0) for all $x,y,z,w \in \mathbb{R}$. It is easily verified that this defines an algebra but (0,y)(z,w) = (0,0), particularly when $y \neq 0$; each (0,y) is a nonzero null element. Note that this is a non-unital algebra.

When A is unital there are no nonzero null elements, since if z is null then z=1z=0. Furthermore, we may take a=1 above to conclude that $f_1'(a_0)=f_2'(a_0)$ so that in a unital algebra the native derivative is always well-defined when it exists. To say more about the non-unital case, we need some more facts about null elements.

Proposition 2. The set of null elements $\mathfrak{Z} \subseteq A$ forms a non-unital subalgebra; in particular, it is an algebra ideal.

The proof of this is simple and direct so we omit it. Since $\mathfrak Z$ is an ideal, we may quotient out and arrive at a definition of native derivative. In the following, let $\pi:A\to A/\mathfrak Z$ be the canonical projection.

Definition 3. Let $f: D \to A$ and $a_0 \in D$. Then f is (*left, right*) *natively differentiable at* a_0 or just (*left, right*) *differentiable at* a_0 if f is totally differentiable at a_0 and there is $\xi \in A$ such that for all $a \in A$.

$$({\sf left}) \quad \mathbf{D}_{a_0} f(a) = \xi a, \qquad ({\sf right}) \quad \mathbf{D}_{a_0} f(a) = a \xi$$

f is (right, left)-differentiable if it is (right, left)-differentiable at each $a_0 \in D$. Then we define the right derivative of f to be the unique function $f^R: D \to A/3$ such that

$$\pi(\mathbf{D}_a f(b)) = \pi(b) f^R(a)$$

for all $b \in A$. We similarly define the *left derivative* f^L .

Appendix

Structure of Zero Divisors

Suppose A is an associative unital n-dimensional algebra. Then the (*left*) regular (matrix) \mathcal{B} -representation of A for \mathcal{B} a basis is

$$\mathcal{M}_{\mathcal{B}}(A) = \left\{ \left([ae_1]_{\mathcal{B}}, [ae_2]_{\mathcal{B}}, \dots, [ae_n]_{\mathcal{B}} \right) \mid a \in A \right\}$$

for $\mathcal{B}=(e_1,\ldots,e_n)$; that is, the collection of all matrices with columns ae_1,\ldots,ae_2 represented in \mathcal{B} -coordinates. There is an isomorphism $\Phi_{\mathcal{B}}:A\to\mathcal{M}_{\mathcal{B}}(A)$.

For each $a \in A$, we may define the *left* and *right annihilators* to be

1

$$@_L a = \{a' \in A \mid a'a = 0\}, @_R a = \{a' \in A \mid aa' = 0\}.$$

It is easy to see that these are linear subsets, and must be at most n-1 dimensional since A is unital and $\mathbb{1} \not\in @_L a, @_R a$ for nonzero a. Then the set of all zero divisors may be expressed as

$$\mathsf{zd}(A) := \{a \in A \ | \ \exists a' \in A \backslash \{0\}. aa' = 0 \text{ or } a'a = 0\} = \bigcup_{a \in A \backslash \{0\}} @_L a \cup @_R a.$$

This is to say that the set of zero divisors is a union of linear subspaces each with dimension $\leq n-1$; however, given any basis \mathcal{B} , the zeros divisors can also be described as the set

$$zd(A) = \{a \in A \mid \det \Phi_{\mathcal{B}}(a) = 0\},\$$

the roots of the polynomial $\det \Phi_{\mathcal{B}}(a)$. In order for $\mathrm{zd}(A)$ to be a union of linear subspaces, such a polynomial must have a linear factor for each such subspace. But there can only be *finitely many* such factors. It follows that $\mathrm{zd}(A)$ is a *finite* union of linear subspaces of A with dimension at most n-1. Note also that $\det \Phi_{\mathcal{B}}(a)$ is a degree-n polynomial and can have at most n linear factors, so $\mathrm{zd}(A)$ is made up of at most n such linear subspaces.

From this fact, we may constuct an invertible basis for A. Let $\operatorname{zd}(A) = \bigsqcup_{k=1}^m Z_k$ such that $m \leq n$ and each $\varnothing \neq Z_k \subseteq A$ is a linear subspace. We note that $\mathbb{1} \not\in Z_k$ for any k, and so for any scalar $c \neq 0$ and $z \in Z_k$ it must be that $z+c\mathbb{1} \not\in Z_k$. Then given a basis $(\mathbb{1},v_2,v_3,\ldots,v_n)$, we may construct an invertible basis $(\mathbb{1},v_2',v_3',\ldots,v_n')$ as follows: For any i where v_i is invertible, take $v_i'=v_i$. Then suppose WLOG that $v_i \in Z_1$. We have $v_i+\mathbb{1} \not\in Z_1$; if this is invertible, then we're done and take this as v_i' . Otherwise $v_i+\mathbb{1} \in Z_2$ WLOG, and then $v_i+\mathbb{1}+\mathbb{1} \not\in Z_2$ but also still $\not\in Z_1$; if this is invertible, then take this as v_i' . Continue this process until $v_i+l\mathbb{1}$ is invertible for some positive integer l; this process terminates since there are only finitely many Z_k . Some version of this will work over any infinite field.

Let A be an n-dimensional K-vector space, and let A^* be its dual. Then for each basis $\mathbb{B}=(e_1,\ldots,e_n)$ of A there is a unique $\mathit{dual basis}\ \mathbb{B}^*=(\varepsilon^1,\ldots,\varepsilon^n)$ of A^* such that $\varepsilon^j(e_k)=\delta^j_k$. We use the convention that $(\mathbb{B}^*)^*=\mathbb{B}$. Every nondegenerate correlation $\xi:A\to A^*$ with induced bilinear form $\langle _,_\rangle:A\times A\to K$ then gives rise to $\mathit{reciprocal bases}.$

Definition 4. The *left reciprocal basis* of \mathcal{B} is $\mathcal{B}_L^{\xi}=\xi^{-1}[\mathcal{B}^*]$, and the *right reciprocal basis* of \mathcal{B} is $\mathcal{B}_R^{\xi}=\xi[\mathcal{B}]^*$. If $\mathcal{B}_L^{\xi}=(l^1,\ldots,l^n)$ and $\mathcal{B}_R^{\xi}=(r^1,\ldots,r^n)$ then

$$\langle l^j, e_k \rangle = \langle e_k, r^j \rangle = \delta_k^j, \quad \forall j, k = 1, \dots, n.$$

Proposition 5. $\mathcal{B}_L^{\xi} = \mathcal{B}_R^{\xi}$ iff $\langle \underline{\hspace{0.2cm}}, \underline{\hspace{0.2cm}} \rangle$ is symmetric; $\mathcal{B}_L^{\xi} = -\mathcal{B}_R^{\xi}$ iff $\langle \underline{\hspace{0.2cm}}, \underline{\hspace{0.2cm}} \rangle$ is antisymmetric.

Proof. We give the proof for the symmetric case, and the antisymmetric case is very similar. (\Longrightarrow) Let $e^j:=l^j=r^j$. Trivially $\langle e^j,e_k\rangle=\langle e_k,e^j\rangle$, from which it follows that $\langle_,_\rangle$ is symmetric. (\Longleftrightarrow) We have $\langle e_j,l^k\rangle=\langle l^k,e_j\rangle=\delta_j^k$, but this means that \mathcal{B}_L^ξ is the unique right reciprocal of \mathcal{B} ; thus $\mathcal{B}_L^\xi=\mathcal{B}_R^\xi$.

Let $T=(\mathcal{B}_L^\xi\leftarrow\mathcal{B}).$ Using the convention that repeated indices are summed over, we find that

$$\delta_k^j = \langle l^j, e_k \rangle = \langle l^j, l^i T_{ik} \rangle = \langle l^j, l^i \rangle T_{ik},$$

but this says that $\left\langle l^j,l^i\right\rangle=T_{ji}^{-1}.$ Similar considerations give us the following proposition:

Proposition 6. Let $T=(\mathcal{B}_L^\xi\leftarrow\mathcal{B})$ and $U=(\mathcal{B}_R^\xi\leftarrow\mathcal{B})$. Then

$$\langle l^j, l^k \rangle = T_{jk}^{-1}, \quad \langle r^j, r^k \rangle = U_{kj}^{-1},$$

$$T_{kj} = \langle e_j, e_k \rangle = U_{jk},$$

where the last equation is equivalent to $T^{T} = U$.

Corollary 7. *If* $\langle \underline{\hspace{0.2cm}}, \underline{\hspace{0.2cm}} \rangle$ *is symmetric then* $(\mathfrak{B}^{\xi} \leftarrow \mathfrak{B})$ *is symmetric.*

References

- [1] James S. Cook. *Introduction to A-Calculus*. Aug. 4, 2017. arXiv: 1708.04135 [math]. URL: http://arxiv.org/abs/1708.04135 (visited on 04/28/2021).
- [2] James S. Cook and Daniel Freese. *Theory of Series in the A-Calculus and the N-Pythagorean Theorem*. Aug. 13, 2018. arXiv: 1708.04136 [math]. URL: http://arxiv.org/abs/1708.04136 (visited on 04/29/2021).
- [3] Chris Doran and Anthony Lasenby. *Geometric Algebra for Physicists*. Cambridge: Cambridge University Press, 2003.