Measuring the Impact of Bot Accounts on Political Network Polarization

Mert Ozer Arizona State University

$$RWC = P_{LL} + P_{RR} + - P_{LR} + P_{RL} +$$

K. Garimella, G. De Francisci Morales, A. Gionis, and M. Mathioudakis, "Quantifying controversy in social media," in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. ACM, 2016, pp. 33–42.

K. Garimella, G. De Francisci Morales, A. Gionis, and M. Mathioudakis, "Quantifying controversy in social media,"

in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. ACM, 2016, pp. 33–42.

K. Garimella, G. De Francisci Morales, A. Gionis, and M. Mathioudakis, "Quantifying controversy in social media,"

in Proceedings of the Ninth ACM International Conference on Web Search:

in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. ACM, 2016, pp. 33–42.

$$RWC = P_{LL} + P_{RR} + - P_{LR} + P_{RL} +$$

K. Garimella, G. De Francisci Morales, A. Gionis, and M. Mathioudakis, "Quantifying controversy in social media," in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. ACM, 2016, pp. 33–42.

Existing nodes connect

BOLLOBAS', B., BORGS, C., CHAYES, J. T., AND RIORDAN, O. 2003. Directed scale-free graphs. In ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA

BOLLOBAS', B., BORGS, C., CHAYES, J. T., AND RIORDAN, O. 2003. Directed scale-free graphs.
In ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA

Existing nodes connect polarWeight polarWeight

BOLLOBAS', B., BORGS, C., CHAYES, J. T., AND RIORDAN, O. 2003. Directed scale-free graphs.
In ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA

• New node comes

Data Collection & Preprocessing

Data Collection & Preprocessing

50K labeled accounts

Label Propagation

	Precision	Recall	F-1
Left	0.98	0.99	0.98
Right	0.96	0.90	0.93

Retweet Activity

Retweet Network

Data Collection & Preprocessing

Bot Accounts' Effect

Complete RT Network
RT Network w/o Bots

Random Removal Effect

Bot Accounts' Effect on Hashtags

Out of top 100 hashtags;

- 63 increase
- 10 no difference
- 27 decrease

Non-Bot and Bot Interactions

User Mention:

Quote:

Non-Bot and Bot Interactions

User Mention:

Quote:

What type of posts of bot accounts achieve higher RT engagement?

ZI Negative Binomial Regression On 100K Bot Generated Tweets	Incident Rate Ratios		
Dependent Variables (***p < 0.0001)	IRR	Lower 95%	Upper 95%
url_count***	0.5522044	0.5350116	0.5699496
mention_count***	0.9830683	0.9776805	0.9884858
followers_count***	1.0000667	1.0000653	1.0000681
Emotional Only***	1.0762037	1.0588882	1.0938023
Moral-Emotional***	1.1104801	1.0741481	1.148041
Moral Only***	0.951206	0.9312959	0.9715419
media_count***	1.5962573	1.538831	1.6558266
we	1.0027852	0.9726296	1.0338758
they***	1.1832946	1.1430972	1.2249056

Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A. & Bavel, J. J. V. Emotion shapes the diffusion of moralized content in social networks PNAS (2017). Suh, B., Hong, L., Pirolli, P., & Chi, E. Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. SocialCom (2010).

@screen_name Account Name

@screen_name Account Name

Complete RT Network RT Network w/o Self Identified Bots pval:0.5288 Δ polar:0.0000 35 30 25 0.87 0.88 0.89 0.90 0.91 0.92 0.93

Quote:

Discussion & Future Steps

- [D] Bot accounts appear to have contributed to the polarization of endorsement networks during the unfolding of Parkland Shooting incident more than randomly selected samples.
- [D] Analysis of engaging content generated by bot accounts overlap with previous studies of general engaging content on social media.
- [D] When a bot is self identified, the effect seems to be not measurable given the data;
 - Can a simple indicator (such as tick of for verified accounts) alleviate the impact?
- [F] May Botometer classifier be picking up correlates of polarizing accounts?
- [F] Analyzing polarizing bot generated content against bridging ones.

Thank you!