1. Cálculo Proposicional clássico

1.1. Sintaxe do Cálculo Proposicional clássico

Notação 14: Normalmente, usaremos CP para abreviar Cálculo Proposicional da Lógica Clássica.

Definição 15: O alfabeto do CP é notado por \mathcal{A}^{CP} e é constituído:

- a) pelas *variáveis proposicionais* $p_0, p_1, ..., p_n, ...$ $(n \in \mathbb{N}_0)$, que formam um conjunto numerável, denotado por \mathcal{V}^{CP} ;
- b) pelos conetivos proposicionais ⊥, ¬, ∧, ∨, →, ↔, chamados, respetivamente, absurdo, negação, conjunção, disjunção, implicação e equivalência;
- c) pelos parênteses esquerdo e direito (,), chamados *símbolos de pontuação*.

Exemplo 16: As sequências de símbolos $\perp p_{20}$) e (p_1) (ambas de comprimento 3) são palavras sobre \mathcal{A}^{CP} . A sequência de símbolos p_1 (de comprimento 1) é também uma palavra sobre \mathcal{A}^{CP} , sendo diferente da palavra (p_1) .

Definição 17: O conjunto das *fórmulas do CP* é notado por \mathcal{F}^{CP} e é a linguagem sobre \mathcal{A}^{CP} definida indutivamente pelas seguintes regras:

- a) $\perp \in \mathcal{F}^{CP}$;
- **b)** $p \in \mathcal{F}^{CP}$, para todo $p \in \mathcal{V}^{CP}$;
- c) $\varphi \in \mathcal{F}^{CP} \Longrightarrow (\neg \varphi) \in \mathcal{F}^{CP}$, para todo $\varphi \in (\mathcal{A}^{CP})^*$;
- **d)** $\varphi, \psi \in \mathcal{F}^{CP} \Longrightarrow (\varphi \square \psi) \in \mathcal{F}^{CP}$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todos $\varphi, \psi \in (\mathcal{A}^{CP})^*$.

Exemplo 18: A palavra $((\neg \bot) \land (p_6 \rightarrow p_0))$ é uma fórmula do CP. De facto,

- i) $\perp \in \mathcal{F}^{CP}$ por **a**);
- ii) $(\neg \bot) \in \mathcal{F}^{CP}$ por i) e por c);
- iii) $p_6, p_0 \in \mathcal{F}^{CP}$ por **b**);
- iv) $(p_6 \rightarrow p_0) \in \mathcal{F}^{CP}$ por iii) e por d);
- v) $((\neg \bot) \land (p_6 \rightarrow p_0)) \in \mathcal{F}^{CP}$ por ii), iv) e por d)

As palavras $\perp p_{20}$) e (p_1) não são fórmulas do CP. De facto, nenhuma palavra sobre \mathcal{A}^{CP} de comprimento 3 é uma fórmula do CP.

Notação 19: Os parênteses extremos e os parênteses à volta de negações são muitas vezes omitidos. Por exemplo, a palavra

$$(p_5 \wedge \neg p_0) \vee \bot$$

será utilizada como uma representação da fórmula

$$((p_5 \wedge (\neg p_0)) \vee \bot).$$

Por abuso de linguagem, chamaremos fórmulas a tais representações de fórmulas.

Teorema 20 (Princípio de indução estrutural para fórmulas do CP): Seja $P(\varphi)$ uma propriedade relativa a fórmulas $\varphi \in \mathcal{F}^{CP}$. Se:

- a) $P(\perp)$;
- **b)** P(p), para todo $p \in \mathcal{V}^{CP}$;
- c) $P(\psi) \Rightarrow P(\neg \psi)$, para todo $\psi \in \mathcal{F}^{CP}$;
- **d)** $P(\psi_1) \in P(\psi_2) \Rightarrow P(\psi_1 \square \psi_2)$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todos $\psi_1, \psi_2 \in \mathcal{F}^{CP}$;

então $P(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$.

Dem.: Basta particularizar o Princípio de indução estrutural associado a uma definição indutiva ao caso da definição indutiva de \mathcal{F}^{CP} .

Observação 21: Uma aplicação do resultado anterior para demonstrar uma proposição é chamada uma *demonstração por indução estrutural em fórmulas do CP*.

Exemplo 22: Mostremos que nenhuma fórmula do CP tem comprimento O, 2 ou 3, com recurso ao Princípio de indução estrutural para fórmulas do CP.

Seja $P(\varphi)$ a propriedade "o comprimento de φ é distinto de 0, de 2 e de 3", para $\varphi \in \mathcal{F}^{CP}$.

- a) Seja $\psi \in \{\bot\} \cup \mathcal{V}^{CP}$. Então, ψ é uma palavra de comprimento 1, sendo ψ a sua única letra. Assim, $P(\psi)$ é válida, para todo $\psi \in \{\bot\} \cup \mathcal{V}^{CP}$.
- b) Seja $\psi \in \mathcal{F}^{CP}$ tal que $P(\psi)$ é válida, i. e., tal que o seu comprimento é distinto de 0, de 2 e de 3 (HI). Note-se que $(\neg \psi)$ é obtida por concatenação das palavras $(, \neg, \psi e)$. Logo, o comprimento de $(\neg \psi)$ é obtido somando 3 ao comprimento de ψ , que, por HI, é 1 ou maior que 3. Logo, $P((\neg \psi))$ é válida.

c) Sejam $\psi_1, \psi_2 \in \mathcal{F}^{CP}$ tais que $P(\psi_1)$ e $P(\psi_2)$ são válidas (HI) e seja $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. Note-se que $(\psi_1 \square \psi_2)$ é obtida por concatenação das palavras $(, \psi_1, \square, \psi_2 e)$. Assim, o comprimento de $(\psi_1 \square \psi_2)$ é obtido adicionando 3 à soma dos comprimentos de ψ_1 e de ψ_2 , sendo essa soma, por HI, não inferior a 2. Portanto, $P((\psi_1 \square \psi_2))$ é válida.

De **a)**, **b)** e **c)**, pelo Princípio de indução estrutural para fórmulas do CP, $P(\varphi)$ é válida para todo $\varphi \in \mathcal{F}^{CP}$.

Observação 23: A definição indutiva de \mathcal{F}^{CP} é determinista e, por esta razão, admite um princípio de recursão estrutural. Uma aplicação deste princípio para definir uma função é chamada uma definição por recursão estrutural em fórmulas do CP.

Definição 24: A função $var : \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{V}^{CP})$ é a função que a cada fórmula faz corresponder o conjunto das variáveis proposicionais que nela ocorrem.

Exemplo 25:
$$var((p_0 \land p_1) \to (\neg p_0 \lor p_2)) = \{p_0, p_1, p_2\}$$

 $var((p_0 \to \bot) \to \bot) = \{p_0\}$

Observação 26: $var : \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{V}^{CP})$ é definida, por recursão estrutural em fórmulas do CP, do seguinte modo:

- **a)** $var(\bot) = \emptyset;$
- **b)** $var(p) = \{p\}$, para todo $p \in \mathcal{V}^{CP}$;
- c) $var(\neg \varphi) = var(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **d)** $var(\varphi \square \psi) = var(\varphi) \cup var(\psi)$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todos $\varphi, \psi \in \mathcal{F}^{CP}$.

Exemplo 27:
$$var(p_1 \rightarrow (\neg p_2 \lor \bot))$$

= $var(p_1) \cup var(\neg p_2 \lor \bot)$
= $\{p_1\} \cup var(\neg p_2) \cup var(\bot)$
= $\{p_1\} \cup var(p_2) \cup \varnothing$
= $\{p_1\} \cup \{p_2\}$
= $\{p_1, p_2\}.$

Definição 28: Sejam ψ uma fórmula e p uma variável proposicional. A função $[\psi/p]: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$ é a função que a cada fórmula φ faz corresponder a fórmula notada por $\varphi[\psi/p]$, que resulta de φ por substituição das ocorrências de p por ψ .

Exemplo 29:
$$(\neg p_1 \rightarrow (p_2 \land \bot))[p_0 \lor p_1/p_2] = \neg p_1 \rightarrow ((p_0 \lor p_1) \land \bot)$$

Observação 30: $[\psi/p]: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$ é definida, por recursão estrutural em fórmulas do CP, como a única função tal que:

a)
$$\perp [\psi/p] = \perp;$$

b)
$$p_i[\psi/p] = \begin{cases} \psi \text{ se } p_i = p \\ p_i \text{ se } p_i \neq p \end{cases}$$
, para todo $i \in \mathbb{N}_0$;

c)
$$(\neg \varphi_1)[\psi/p] = \neg \varphi_1[\psi/p]$$
, para todo $\varphi_1 \in \mathcal{F}^{CP}$;

d)
$$(\varphi_1 \square \varphi_2)[\psi/p] = \varphi_1[\psi/p] \square \varphi_2[\psi/p]$$
, para todo $\square \in \{\land, \lor, \to, \leftrightarrow\}$ e todos $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$.

Exemplo 31:

- a) $(\neg p_1 \rightarrow (p_2 \land \bot))[p_0 \lor p_1/p_2]$ = $(\neg p_1)[p_0 \lor p_1/p_2] \rightarrow (p_2 \land \bot)[p_0 \lor p_1/p_2]$ = $\neg p_1[p_0 \lor p_1/p_2] \rightarrow (p_2[p_0 \lor p_1/p_2] \land \bot[p_0 \lor p_1/p_2])$ = $\neg p_1 \rightarrow ((p_0 \lor p_1) \land \bot)$
- **b)** Verifique que $(\neg p_1 \rightarrow (p_2 \land \bot))[p_0 \lor p_1/p_0] = (\neg p_1 \rightarrow (p_2 \land \bot))$. Esta igualdade corresponde a um caso particular da proposição que se segue (observe que $p_0 \notin var(\neg p_1 \rightarrow (p_2 \land \bot))$).

Proposição 32: Para todos $\varphi, \psi \in \mathcal{F}^{CP}$, $p \in \mathcal{V}^{CP}$, se $p \notin var(\varphi)$, então $\varphi[\psi/p] = \varphi$.

Dem.: Por indução estrutural em φ . (Exercício.)

Definição 33: A função $subf: \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{F}^{CP})$ é definida, por recursão estrutural em fórmulas do CP, do seguinte modo:

- a) $subf(\varphi) = \{\varphi\}$, para todo $\varphi \in \mathcal{V}^{CP} \cup \{\bot\}$;
- **b)** $subf(\neg \varphi) = {\neg \varphi} \cup subf(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- c) $subf(\varphi \square \psi) = \{\varphi \square \psi\} \cup subf(\varphi) \cup subf(\psi)$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todos $\varphi, \psi \in \mathcal{F}^{CP}$.

Dadas fórmulas φ e ψ , diremos que φ é uma subfórmula de ψ quando $\varphi \in subf(\psi)$.

Exemplo 34:
$$subf(\neg p_1 \rightarrow p_2)$$

= $\{\neg p_1 \rightarrow p_2\} \cup subf(\neg p_1) \cup subf(p_2)$
= $\{\neg p_1 \rightarrow p_2\} \cup \{\neg p_1\} \cup subf(p_1) \cup \{p_2\}$
= $\{\neg p_1 \rightarrow p_2\} \cup \{\neg p_1\} \cup \{p_1\} \cup \{p_2\}$
= $\{\neg p_1 \rightarrow p_2, \neg p_1, p_1, p_2\}.$

Proposição 35: Para todos $\varphi, \psi \in \mathcal{F}^{CP}$, φ é uma subfórmula de ψ se e só se uma das seguintes condições é satisfeita:

- a) $\psi = \varphi$;
- **b)** existe $\psi_1 \in \mathcal{F}^{CP}$ tal que $\psi = \neg \psi_1$ e φ é uma subfórmula de ψ_1 ;
- c) existe um conetivo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e existem fórmulas $\psi_1, \psi_2 \in \mathcal{F}^{CP}$ tais que $\psi = \psi_1 \square \psi_2$ e φ é uma subfórmula de ψ_1 ou de ψ_2 .

Dem.: Por análise de casos em ψ .

Caso $\psi \in \mathcal{V}^{CP} \cup \{\bot\}$. Então,

 φ subformula de ψ sse $\varphi \in subf(\psi)$ sse $\varphi \in \{\psi\}$ sse $\varphi = \psi$.

Assim, supondo que φ é uma subfórmula de ψ , teremos que a condição **a**) é satisfeita. Reciprocamente, uma vez que $\psi \in \mathcal{V}^{CP} \cup \{\bot\}$, as condições **b**) e **c**) não são satisfeitas, pelo que teremos que ter $\varphi = \psi$, donde, pela sequência de equivalências anterior, segue que φ é uma subfórmula de ψ .

Restantes casos (caso $\psi = \neg \psi_1$, para algum $\psi \in \mathcal{F}^{CP}$, e caso $\psi = \psi_1 \square \psi_2$, para algum $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para alguns $\psi_1, \psi_2 \in \mathcal{F}^{CP}$): exercício.