Identifying Unusual Points in Regression

READING: 4.4

EXERCISES: CH 4. 11abcd

ASSIGNED: HW 5

PRODUCER: DR. MARIO

Leverage

- "Potential" Impact on Linear Regression Fit
- Formula: $h_i = \frac{1}{n} + \frac{(x_i \bar{x})^2}{\sum (x_i \bar{x})^2}$
- Sum of Leverages: $\sum h_i = \sum \frac{1}{n} + \frac{\sum (x_i \bar{x})^2}{\sum (x_i \bar{x})^2} = 1 + 1 = 2$
- Average Leverage or Typical Leverage: $\bar{h} = \frac{\sum h_i}{n} = \frac{2}{n}$
- Less Data or Farther from \bar{x} = More Leverage

- 2000 Election
 - Bush (Republican)
 - Gore (Democrat)
 - Buchanan (Third Party)
- Unusual Results in Palm Beach
 - Nonstandard "Butterfly Ballot"
 - Accidental Voting?

Confusion over Palm Beach County ballot
Although the Democrats are listed


```
#Calculate Average Number of Votes for Bush
avg.x = mean(PalmBeach$Bush)
devsquared= (PalmBeach$Bush - avg.x)^2
#Calculate Leverage
Leverage = 1/nrow(PalmBeach) + devsquared/sum(devsquared)
#Save Leverage Into Data
PalmBeach$Leverage= Leverage
#Print Data in Order of Leverage
head(PalmBeach[order(PalmBeach$Leverage,decreasing=TRUE),],5)
```

##		County	Buchanan	Bush	Leverage
##	13	DADE	561	289456	0.29747301
##	52	PINELLAS	1010	184312	0.10761608
##	6	BROWARD	789	177279	0.09859725
##	29	HILLSBOROUGH	836	176967	0.09820784
##	50	PALM BEACH	3407	152846	0.07085197

Very Unusual Leverage

"Triple the Typical Leverage"

$$3*\frac{2}{n} = 3*\frac{2}{67} = 0.09$$

Standardized Residual

Old Formula:

$$stdres_i = \frac{y_i - \widehat{y}_i}{\widehat{\sigma_{\epsilon}}}$$

New Formula:

$$stdres_i = \frac{y_i - \hat{y}_i}{\widehat{\sigma_{\epsilon}} \sqrt{1 - h_i}}$$

- Further Adjust for Leverage Since Some Points Impact More
- Points with More Leverage Tend to Higher Standardized Residuals

Studentized Residual

• Old Formula:

$$studres_i = \frac{y_i - \hat{y}_i}{\widehat{\sigma_{(i)}}}$$

New Formula:

$$studres_i = \frac{y_i - \hat{y}_i}{\widehat{\sigma_{(i)}}\sqrt{1 - h_i}}$$

- We Calculate Standard Error of Regression After Removing Point
- Line Doesn't Change, Then Standardized Equals Studentized

Cook's Distance

$$D_i = \frac{stdres_i^2}{k+1} \left(\frac{h_i}{1-h_i} \right) \qquad \text{for SLR} \to k = 1$$

- Amount of Influence Depends On:
 - Leverage
 - Distance from Line of "Best" Fit
- Large Cook's D Indicates Point Strongly Influences Regression

Rules of Thumb

- We Can Calculate All Four Measures On Each Observation
- Table Showing Accepted Definitions of
 - "Moderately Unusual"
 - "Very Unusual"

Statistic	Moderately Unusual	Very Unusual
Leverage	Above $2(^2/_n)$	Above $3(^2/_n)$
Standardized Residual	Beyond ±2	Beyond ±3
Studentized Residual	Beyond ±2	Beyond ±3
Cook's D	Above 0.5	Above 1

```
#Fit Model
vote.mod = lm(Buchanan~Bush, data=PalmBeach)
#Extract Standard Error of Regression
sigma.reg = summary(vote.mod)$sigma
#Save Actual Residuals
PalmBeach$Residual = vote.mod$residuals
#Calculate and Save Standardized Residual
PalmBeach$StdRes = PalmBeach$Residual/(sigma.reg*sgrt(1-PalmBeach$Leverage))
#Calculate and Save Cook's Distance
PalmBeach$CookD=cooks.distance(vote.mod)
#Find Very Unusual Cook's Distance
PalmBeach[which(PalmBeach$CookD>1),]
         County Buchanan Bush Leverage Residual StdRes CookD
## 13
           DADE 561 289456 0.29747301 -907.4953 -3.059180 1.981366
## 50 PALM BEACH 3407 152846 0.07085197 2610.1926 7.651072 2.231935
```

```
vote.mod = lm(Buchanan~Bush, data=PalmBeach)

noDade = PalmBeach[which(PalmBeach$County!="DADE"),]
vote.mod.noDade = lm(Buchanan~Bush, data=noDade)

noPB = PalmBeach[which(PalmBeach$County!="PALM BEACH"),]
vote.mod.noPB = lm(Buchanan~Bush, data=noPB)

plot(Buchanan~Bush, data=PalmBeach)
abline(vote.mod, col="blue",lwd=2)
abline(vote.mod.noDade, col="green",lwd=2,lty=3)
abline(vote.mod.noPB, col="red",lwd=2,lty=5)
```


Thank You

Make Reasonable Decisions

