Completely Abstract Dynamic Programming

Thomas J. Sargent and John Stachurski

July 21, 2023

Flow

- Motivation 1: uses of dynamic programming
- Motivation 2: the many forms of DP
- Some unifying optimality theory
- Discuss algorithms
- Connected related DPs
- Application: solving an Epstein–Zin problem

Dynamic programming has a vast array of applications

- robotics
- artificial intelligence
- computational biology
- management science
- engineering
- finance
- economics

Used daily to

- sequence DNA
- manage inventories
- test products
- control aircraft, route shipping
- optimize database operations
- recommend products, etc., etc.

Example. Nvidia Hopper GPUs hardwired to accelerate dynamic programming

Within economics and finance, dynamic programming is applied to

- unemployment and search
- monetary policy and fiscal policy
- asset pricing and portfolio choice
- firm investment
- firm entry and exit
- wealth dynamics
- commodity pricing
- sovereign default
- economic geography
- dynamic pricing, etc., etc.

Motivation

Consider

$$\max \sum_{t \geqslant 0} \beta^t u(C_t)$$

subject to

$$W_{t+1} = R(W_t - C_t)$$
 and $0 \leqslant C_t \leqslant W_t$

Standard approach: set up the Bellman operator

$$(Tv)(w) = \max_{0 \le c \le w} \left\{ u(c) + \beta v(R(w-c)) \right\}$$

Value function iteration (VFI)

Under some conditions,

- 1. T is a contraction mapping
- 2. the unique fixed point of T is the value function v_{\top}
- 3. v_{\top} can be approximated via $v_{\top} = \lim_{k \to \infty} T^k v$ for some v
- 4. optimal consumption at wealth \boldsymbol{w} can be found by solving

$$c^* \in \underset{0 \le c \le w}{\operatorname{argmax}} \{ u(c) + \beta v_{\top} (R(w - c)) \}$$

Howard policy iteration

Alternatively, we can use Howard policy iteration (HPI)

A feasible policy is a map $\sigma \colon \mathbb{R}_+ \to \mathbb{R}_+$ with

$$0 \leqslant \sigma(w) \leqslant w$$
 for all $w \in \mathbb{R}_+$

- given current wealth w, choose consumption $c = \sigma(w)$
- $\Sigma :=$ all feasible policies

A feasible policy σ is called v-greedy if

$$\sigma(w) \in \operatorname*{argmax}_{0 \le c \le w} \left\{ u(c) + \beta v(R(w-c)) \right\}$$

Algorithm 1: Howard policy iteration

input $\sigma_0 \in \Sigma$, set $k \leftarrow 0$ and $\varepsilon \leftarrow 1$

while $\varepsilon > 0$ do

 $v_k \leftarrow$ the lifetime value of σ_k

 $\begin{aligned} &\sigma_{k+1} \leftarrow \text{a } v_k\text{-greedy policy}\\ &\varepsilon \leftarrow \mathbb{1}\{\sigma_k \neq \sigma_{k+1}\}\\ &k \leftarrow k+1 \end{aligned}$

$$\varepsilon \leftarrow \mathbb{1}\{\sigma_k \neq \sigma_{k+1}\}$$

$$k \leftarrow k + 1$$

end

return σ_k

Computing Lifetime Value

The lifetime value v_{σ} of policy σ is the unique v that solves

$$v(w) = u(\sigma(w)) + \beta v(R(w - \sigma(w)))$$

To compute it we introduce the **policy operator**

$$(T_{\sigma} v)(w) = u(\sigma(w)) + \beta v(R(w - \sigma(w)))$$

Facts:

- 1. v_{σ} is the unique fixed point of T_{σ}
- 2. $T_{\sigma}^k v \to v_{\sigma}$ as $k \to \infty$ for all reasonable v

Under some conditions, HPI converges to an optimal policy

Example. Suppose we discretize wealth and consumption

Then $HPI \rightarrow$ an exact optimal policy in finitely many steps

Advantages

- 1. exact optimality
- 2. more parallelizable than VFI

(Smaller number of intensive steps)

See opt_savings.ipynb in

https://github.com/jstac/sandpit

Complications

What happens if we introduce state-dependent discounting?

$$(Tv)(w,z) = \max_{0 \leqslant c \leqslant w} \left\{ u(c) + \beta(z) \sum_{z'} v(R(w-c), z') Q(z, z') \right\}$$

- Is T still a contraction?
- Are the previous optimality results still valid?
- Does HPI converge?

What happens if we switch to the expected value function

$$g(w, z, c) := \sum_{z'} v(R(w - c), z')Q(z, z')$$

with "Bellman operator"

$$(Rg)(w, z, c) = \sum_{z'} \max_{0 \le c' \le R(w-c)} \{ u(c') + \beta(z')g(R(w-c), z', c') \} Q(z, z')$$

Does R have the same properties as T?

What are the equivalent algorithms and do they converge?

And what happens if we introduce **Epstein–Zin preferences**?

$$(Tv)(w,z) = \max_{0 \le c \le w} \left\{ c^{\alpha} + \beta(z) \left[\sum_{z'} v(R(w-c), z')^{\gamma} Q(z, z') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

- Is T still a contraction?
- Are the previous optimality results still valid?
- Does HPI converge?

Or risk-sensitive preferences?

$$(Tv)(w,z) = \max_{0 \le c \le w} \left\{ u(c) + \frac{\beta(z)}{\theta} \ln \left[\sum_{z'} e^{\theta v(R(w-c),z')} Q(z,z') \right] \right\}$$

- Is T still a contraction?
- Are the previous optimality results still valid?
- Does HPI converge?

What about if we want to handle

- Q-learning?
- ambiguity?
- Q-learning in an Epstein–Zin framework?
- Q-learning + robust control + state-dependent discounting?
- expected value functions in a risk-sensitive framework?
- expected value functions in a risk-sensitive framework in continuous time?

Is there any unifying theory?

Or are all these problems too diverse?

ADPs

We define an abstract dynamic program (ADP) to be a pair

$$\mathcal{A} = (V, \{T_{\sigma}\}_{{\sigma} \in \Sigma}), \quad \text{where}$$

- 1. $V = (V, \preceq)$ is a partially ordered set and
- 2. $\{T_{\sigma}\}_{{\sigma}\in\Sigma}$ is a family of self-maps on V

Below,

- elements of Σ will be referred to as **policies**
- elements of $\{T_{\sigma}\}$ are called **policy operators**

If T_{σ} has a unique fixed point, then we

- denote it v_{σ} and call it the σ -value function
- understand v_σ as representing lifetime value of σ

Interpretation:

- V is a set of candidate value functions
- ullet Σ is a set of feasible policies
- the lifetime value of $\sigma \in \Sigma$ is v_{σ}
- we seek a greatest element in $\{v_\sigma\}_{\sigma\in\Sigma}$

Example. Consider a **Markov decision process** (MDP) with objective

$$\max_{(A_t)_{t\geqslant 0}} \mathbb{E} \sum_{t\geqslant 0} \beta^t r(X_t, A_t) \quad \text{subject to} \quad A_t \in \Gamma(X_t)$$

when

- X_t takes values in finite set X (the state space),
- A_t takes values in finite set A (the action space),
- Γ is a correspondence from X to A (feasible correspondence),
- r is a reward function,
- $\beta \in (0,1)$ is a discount factor, and
- $P(X_t, A_t, \cdot)$ provides transition probabilities

We define the set of **feasible policies** to be

$$\Sigma := \{ \sigma \in \mathsf{A}^\mathsf{X} : \sigma(x) \in \Gamma(x) \text{ for all } x \in \mathsf{X} \}$$

Let
$$\mathbb{R}^{\mathsf{X}}=(\mathbb{R}^{\mathsf{X}},\leqslant)=$$
 all $v\colon\mathsf{X}\to\mathbb{R}$ with
$$v\leqslant w\qquad\Longleftrightarrow\qquad v(x)\leqslant w(x)\text{ for all }x\in\mathsf{X}$$

For $\sigma \in \Sigma$ and $v \in \mathbb{R}^X$, let

$$(T_{\sigma} v)(x) = r(x, \sigma(x)) + \beta \sum_{x'} v(x') P(x, \sigma(x), x')$$

The pair $(\mathbb{R}^X, \{T_\sigma\})$ is an ADP

Let r_{σ} and P_{σ} be defined by

$$P_{\sigma}(x, x') := P(x, \sigma(x), x')$$
 and $r_{\sigma}(x) := r(x, \sigma(x)).$

The lifetime value of $\sigma \in \Sigma$ given $X_0 = x$ is

$$v_{\sigma}(x) = \mathbb{E} \sum_{t \geqslant 0} \beta^t r(X_t, \sigma(X_t)), \qquad (X_t)_{t \geqslant 0} \ P_{\sigma}\text{-Markov}, \ X_0 = x$$

Equivalently,
$$v_{\sigma} = \sum_{t \geqslant 0} (\beta P_{\sigma})^t r_{\sigma} = (I - \beta P_{\sigma})^{-1} r_{\sigma}$$

Equivalently, v_{σ} is the unique solution to $v=r_{\sigma}+\beta P_{\sigma}\,v$

Equivalently, v_{σ} is the unique fixed point of $T_{\sigma} \, v = r_{\sigma} + \beta P_{\sigma} \, v$

Example. We can modify to handle **Epstein–Zin** preferences

Set

$$V =$$
 all positive functions in \mathbb{R}^{X}

and

$$(T_{\sigma} v)(x) = \left\{ r(x, \sigma(x))^{\alpha} + \beta(x) \left[(Rv)(x, \sigma(x)) \right]^{\alpha} \right\}^{1/\alpha}$$

where r > 0 and

$$(Rv)(x,a) := \left(\sum_{x'} v(x')^{\gamma} P(x,a,x')\right)^{1/\gamma}$$

Then $(V, \{T_{\sigma}\})$ is an ADP

What about

- Q-learning?
- ambiguity?
- Q-learning in an Epstein–Zin framework?
- Q-learning + robust control + state-dependent discounting?
- expected value functions in a risk-sensitive framework?
- MDPs in continuous time?

All these and more can be framed as ADPs

Given $v \in V$, a policy σ in Σ is called v-greedy if

$$T_\sigma\,v\succeq T_\tau\,v\quad\text{for all }\tau\in\Sigma$$

Example. In the MDP example we have

$$(T_{\sigma} v)(x) = r(x, \sigma(x)) + \beta \sum_{x'} v(x') P(x, \sigma(x), x')$$

so σ is v-greedy iff

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} \left\{ r(x,a) + \beta \sum_{x'} v(x') P(x,a,x') \right\} \quad \text{ for all } x \in \mathsf{X}$$

Bellman equation

Fix an ADP
$$\mathcal{A} = (V, \{T_{\sigma}\})$$

We define the **Bellman operator** via

$$T_{\top}v := \bigvee_{\sigma} T_{\sigma} v$$

(if it exists)

Equivalently,

$$T_{\top}v = T_{\sigma}v$$
 when σ is v -greedy

We say that $v \in V$ satisfies the **Bellman equation** if $T_{\top}v = v$

Example. For the MDP,

$$(T_{\top}v)(x)=(T_{\sigma}\,v)(x)$$
 when σ is v -greedy
$$=\max_{a\in\Gamma(x)}\left\{r(x,a)+\beta\sum_{x'}v(x')P(x,a,x')\right\}$$

Hence the ADP Bellman equation is

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

And this is the same as the MDP Bellman equation

Example. In the Epstein–Zin case,

$$\begin{split} (T_\top v)(x) &= \max_{\sigma \in \Sigma} \left\{ r(x, \sigma(x))^\alpha + \beta(x) \left[(Rv)(x, \sigma(x)) \right]^\alpha \right\}^{1/\alpha} \\ &= \max_{a \in \Gamma(x)} \left\{ r(x, a)^\alpha + \beta(x) \left[(Rv)(x, a) \right]^\alpha \right\}^{1/\alpha} \end{split}$$

Hence the ADP Bellman equation is

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a)^{\alpha} + \beta(x) \left[(Rv)(x, a) \right]^{\alpha} \right\}^{1/\alpha}$$

And this is the standard Bellman equation for the EZ problem

Properties

We say that $\mathcal{A} = (V, \{T_{\sigma}\})$ is

- well-posed if T_{σ} has one fixed point in V for each $\sigma \in \Sigma$
- order stable if (V, T_{σ}) is order stable for each $\sigma \in \Sigma$
- max-stable if $\mathcal A$ is order stable, each $v \in V$ has at least one greedy policy, and T_{\top} has at least one fixed point in V

Note: order stability is a regularity property — see the paper

Let $\mathcal A$ be a well-posed ADP

A policy $\sigma \in \Sigma$ is called **optimal** for \mathcal{A} if

$$v_{\tau} \leq v_{\sigma}$$
 for all $\tau \in \Sigma$

We set $v_{\top} := \bigvee_{\sigma} v_{\sigma}$ and call v_{\top} the value function

We define a self-map H on V via

$$H\,v = v_\sigma \quad \text{where} \quad \sigma \text{ is } v\text{-greedy}$$

Iterating with H is an abstract version of HPI

Max-Optimality

Theorem. If A is max-stable, then

- 1. v_{\top} exists in V
- 2. v_{\top} is the unique solution to the Bellman equation in V
- 3. a policy is optimal if and only if it is v_{\top} -greedy
- 4. at least one optimal policy exists

If, in addition, Σ is finite, then HPI $\to v_{\top}$ in finitely many steps

Min-Optimality

Analogous results exist for minimization

The proof follows easily from

- 1. the max case
- 2. order duality

Subordinate ADPs

Let
$$\mathcal{A}:=(V,\{T_\sigma\})$$
 and $\hat{\mathcal{A}}:=(\hat{V},\{\hat{T}_\sigma\})$ be ADPs

We say that \hat{A} is **subordinate** to A if \exists

- 1. an order-preserving map F from V onto \hat{V} and
- 2. order-preserving maps $\{G_{\sigma}\}_{\sigma\in\Sigma}$ from \hat{V} to V

such that

$$T_{\sigma} = G_{\sigma} \circ F$$
 and $\hat{T}_{\sigma} = F \circ G_{\sigma}$ for all $\sigma \in \Sigma$

Let
$$G_{\top} = \bigvee_{\sigma} G_{\sigma}$$

Theorem. If

- 1. A is max-stable and
- 2. \hat{A} is subordinate to A,

then $\hat{\mathcal{A}}$ is also max-stable and the Bellman operators are related by

$$T_{\top} = G_{\top} \circ F$$
 and $\hat{T}_{\top} = F \circ G_{\top}$

while the value functions are related by

$$v_{\top} = G_{\top} \, \hat{v}_{\top} \quad \text{and} \quad \hat{v}_{\top} = F \, v_{\top}$$

Moreover,

- 1. if σ is optimal for \hat{A} , then σ is optimal for \hat{A} , and
- 2. if $G_{\sigma} \hat{v}_{\top} = G_{\top} \hat{v}_{\top}$, then σ is optimal for \mathcal{A}

Application

Consider an Epstein-Zin dynamic program with Bellman equation

$$v(w, e) = \max_{0 \leqslant s \leqslant w} \left\{ r(w, s, e)^{\alpha} + \beta \left(\sum_{e'} v(s, e')^{\gamma} \varphi(e') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

Here

- w is current wealth (discretized)
- s is savings (discretized)
- ullet e is an IID endowment shock with range ${\sf E}$
- β is a constant in (0,1) and r is a reward function

The policy operator corresponding to $\sigma \in \Sigma$ is

$$(T_{\sigma} v)(w, e) = \left\{ r(w, \sigma(w), e)^{\alpha} + \beta \left(\sum_{e'} v(\sigma(w), e')^{\gamma} \varphi(e') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

Proposition. If

- $X := W \times E$ and
- $V := (0, \infty)^{\mathsf{X}}$,

then $\mathcal{A} = (V, \{T_{\sigma}\})$ is a max-stable ADP

(Details in paper)

Next consider the operator

$$(B_{\sigma} h)(w) = \left\{ \sum_{e} \left\{ r(w, \sigma(w), e)^{\alpha} + \beta h(\sigma(w))^{\alpha} \right\}^{\gamma/\alpha} \varphi(e) \right\}^{1/\gamma},$$

where h is an element of $(0, \infty)^{W}$

Define F at $v \in V$ by

$$(Fv)(w) = \left\{ \sum_{e} v(w, e)^{\gamma} \varphi(e) \right\}^{1/\gamma} \qquad (w \in W)$$

Then $\mathcal{B} = (F(V), \{B_{\sigma}\})$ is also an ADP

Moreover, ${\mathcal B}$ is subordinate to ${\mathcal A}$

To see, this, define G_{σ} by

$$(G_{\sigma}h)(w,e) = \{r(w,\sigma(w),e)^{\alpha} + \beta h(\sigma(w))^{\alpha}\}^{1/\alpha}$$

Then

- F and G_{σ} are order-preserving
- T_{σ} is equal to $G_{\sigma} \circ F$ and
- B_{σ} is equal to $F \circ G_{\sigma}$

Algorithm 2: Solving \mathcal{A} via \mathcal{B}

input $\sigma_0 \in \Sigma$, set $k \leftarrow 0$ and $\varepsilon \leftarrow 1$

while $\varepsilon > 0$ do

 $h_k \leftarrow$ the fixed point of B_{σ_k} $\sigma_{k+1} \leftarrow$ an h_k -greedy policy, satisfying

$$\sigma_{k+1}(w) \in \operatorname*{argmax}_{0 \leqslant s \leqslant w} \left\{ \sum_{e} \left\{ r(w, s, e)^{\alpha} + \beta h(s)^{\alpha} \right\}^{\gamma/\alpha} \varphi(e) \right\}^{1/\gamma}$$

$$\varepsilon \leftarrow \mathbb{1}\{\sigma_k \neq \sigma_{k+1}\} \text{ and } k \leftarrow k+1$$

end

Compute σ to satisfy

$$\sigma(w, e) \in \operatorname*{argmax}_{0 \leqslant s \leqslant w} \left\{ r(w, s, e)^{\alpha} + \beta h_k(s)^{\alpha} \right\}^{1/\alpha}$$

return σ

Figure: Optimal savings policy with Epstein-Zin preference

Figure: Speed gain from replacing ${\mathcal A}$ with subordinate model ${\mathfrak B}$

For details of computations see

https://github.com/jstac/adps_public