VNU-HUS MAT3500: Toán rời rạc

Lời giải Bài tập 6 trong slides Lý thuyết số cơ bản I

Hoàng Anh Đức

Bộ môn Tin học, Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

 $\mathbf{D}\mathbf{\hat{e}}$ bài: Nếu các số nguyên dương a và b được phân tích thành tích các số nguyên tố

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$
 $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$

trong đó các số mũ là các số nguyên không âm (có thể bằng 0), thì

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}$$

Ta sẽ sử dụng mệnh đề sau (Bài tập 5): Nếu p là một số nguyên tố và $p \mid a_1 a_2 \dots a_n$ trong đó $a_i \in \mathbb{Z}$ với $1 \leq i \leq n$, thì $p \mid a_i$ với j nào đó $(1 \leq j \leq n)$.

Chứng minh. Đặt $P=\gcd(a,b)$ và $Q=p_1^{\min(a_1,b_1)}p_2^{\min(a_2,b_2)}\dots p_n^{\min(a_n,b_n)}=p_1^{m_1}p_2^{m_2}\dots p_n^{m_n}$ trong đó $m_i=\min(a_i,b_i)$ với $1\leq i\leq n$. Để chứng minh P=Q, ta chứng minh $P\leq Q$ và $Q\leq P$.

(1) Ta chứng minh $Q \leq P$. Do $m_i \leq a_i$ và $m_i \leq b_i$ với $1 \leq i \leq n$, ta có thể viết $a_i = m_i + k_i$ và $b_i = m_i + \ell_i$ với các số nguyên $k_i, \ell_i \geq 0$ nào đó.

$$\begin{split} a &= p_1^{a_1} p_2^{a_2} \dots p_n^{a_n} \\ &= p_1^{m_1 + k_1} p_2^{m_2 + k_2} \dots p_n^{m_n + k_n} \\ &= (p_1^{m_1} \cdot p_1^{k_1}) (p_2^{m_2} \cdot p_2^{k_2}) \dots (p_n^{m_n} \cdot p_n^{k_n}) \\ &= (p_1^{m_1} p_2^{m_2} \dots p_n^{m_n}) \cdot (p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}) \\ &= Q \cdot (p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}). \end{split}$$

Do đó, $Q \mid a$. Tương tự, ta cũng có $Q \mid b$. Do đó, Q là ước chung của a và b, nghĩa là $Q \leq \gcd(a,b) = P$.

- (2) Ta chứng minh $P \leq Q$. Cụ thể, ta sẽ chứng minh $P \mid Q$ và dễ thấy nếu điều này xảy ra thì $P \leq Q$ với $P,Q \in \mathbb{N}$. Chú ý rằng P có thể được viết dưới dạng $P = p_1^{\lambda_1} p_2^{\lambda_2} \dots p_n^{\lambda_n} k$ trong đó λ_i là các số nguyên không âm, $k \in \mathbb{N}$, và không có số nguyên tố p_i nào là ước của k, với $1 \leq i \leq n$. Ta sẽ chứng minh bằng phương pháp phản chứng rằng
 - (a) k=1. Và do đó ta có $P=p_1^{\lambda_1}p_2^{\lambda_2}\dots p_n^{\lambda_n}.$
 - (b) $\lambda_i \leq m_i$ với mọi i thỏa mãn $1 \leq i \leq n.$ Do đó ta sẽ kết luận $P \mid Q$ (do cùng lý do như $Q \mid a$ ở trên).

Giả sử (a) sai, nghĩa là $k \neq 1$. Do đó k > 1 và theo Định lý cơ bản của số học, k có một ước nguyên tố q nào đó. Do không có số nguyên tố p_i ($1 \leq i \leq n$) nào là ước của k, ta có $q \neq p_i$ với mọi i. Mặt khác, do $P = \gcd(a,b), P \mid a$, và do đó $q \mid a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$. Do đó, tồn tại $i, 1 \leq i \leq n$, thỏa mãn $q \mid p_i^{a_i}$, suy ra $q = p_i$. Điều này mâu thuẫn với kết luận $q \neq p_i$ với mọi i ở trên. Do đó, k = 1.

Giả sử (b) sai, nghĩa là tồn tại $i, 1 \le i \le n$, thỏa mãn $\lambda_i > m_i$. Không mất tính tổng quát, giả sử i = 1. (Nếu $i \ne 1$ thì đánh số lại các ước nguyên tố). Do $m_1 = \min(a_1, b_1)$, ta có $m_1 = a_1$ hoặc $m_1 = b_1$. Ta xét trường hợp $m_1 = a_1$. Trong trường hợp này $\lambda_1 > a_1$. Do $P \mid a$, tồn tại $s \in \mathbb{N}$ thỏa mãn sP = a. Nói cách khác

$$s \cdot p_1^{\lambda_1} p_2^{\lambda_2} \dots p_n^{\lambda_n} = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}.$$

Chia cả hai vế cho $p_1^{a_1},$ ta có

$$s \cdot p_1^{\lambda_1 - a_1} p_2^{\lambda_2} \dots p_n^{\lambda_n} = p_2^{a_2} \dots p_n^{a_n}.$$

Do $\lambda_1-a_1>0$, ta có $p_1\mid (s\cdot p_1^{\lambda_1-a_1}p_2^{\lambda_2}\dots p_n^{\lambda_n})$ và do đó $p_1\mid p_2^{a_2}\dots p_n^{a_n}$, nghĩa là tồn tại j thỏa mãn $2\leq j\leq n$ và $p_1\mid p_j^{a_j}$, suy ra $p_1=p_j$. Đây là một mâu thuẫn. Trường hợp $m_1=b_1$ hoàn toàn tương tự. Do đó, $\lambda_i\leq m_i$ với mọi i thỏa mãn $1\leq i\leq n$.

Như đã đề cập ở trên, ta có $P \mid Q$ và do đó $P \leq Q$.

Do
$$P \leq Q$$
 và $Q \leq P$, ta kết luận $P = Q$.