```
In [40]:
         import warnings
         warnings.filterwarnings("ignore")
         import matplotlib.pyplot as plt
         import plotly.express as px
         import pandas as pd
         import numpy as np
         import seaborn as sns
In [11]:
         #importing data
         df = pd.read_csv("B:\studio\workspace\datamining\out.csv",sep=",")
         infos= df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1000 entries, 0 to 999
         Data columns (total 40 columns):
                                           Non-Null Count Dtype
          #
              Column
              -----
                                           _____
          0
              months_as_customer
                                           1000 non-null
                                                           int64
          1
                                           1000 non-null int64
              age
          2
                                         1000 non-null int64
              policy number
          3
              policy bind date
                                         1000 non-null object
                                         1000 non-null object
          4
              policy_state
                                         1000 non-null object
          5
              policy_csl
                                        1000 non-null int64
1000 non-null float64
                                           1000 non-null
          6
              policy deductable
          7
              policy_annual_premium
          8
              umbrella_limit
                                         1000 non-null int64
          9
              insured_zip
                                         1000 non-null int64
                                         1000 non-null object
          10 insured sex
                                         1000 non-null object
1000 non-null object
          11 insured_education_level
          12 insured occupation
          13 insured_hobbies
                                         1000 non-null object
                                         1000 non-null object
1000 non-null int64
          14 insured_relationship
          15 capital-gains
                                        1000 non-null int64
1000 non-null object
1000 non-null object
1000 non-null object
          16 capital-loss
          17 incident_date
          18 incident type
          19 collision_type
          20 incident_severity
                                         1000 non-null object
1000 non-null object
          21 authorities_contacted
                                         1000 non-null object
          22 incident_state
                                         1000 non-null
          23 incident_city
                                                           object
          24 incident_location
                                         1000 non-null object
          25 incident_hour_of_the_day 1000 non-null int64
          26 number_of_vehicles_involved 1000 non-null int64
          27
             property damage
                                           1000 non-null int64
                                           1000 non-null int64
          28 bodily_injuries
                                           1000 non-null int64
          29 witnesses
                                        1000 non-null
          30 police_report_available
                                                           int64
                                           1000 non-null int64
          31 total_claim_amount
          32 injury_claim
                                         1000 non-null int64
          33 property_claim
                                         1000 non-null int64
                                         1000 non-null int64
          34 vehicle_claim
          35 auto_make
                                           1000 non-null
                                                           object
          36 auto model
                                           1000 non-null object
          37 auto_year
                                           1000 non-null int64
          38 fraud reported
                                           1000 non-null
                                                           object
          39 _c39
                                           1000 non-null
                                                           int64
         dtypes: float64(1), int64(20), object(19)
         memory usage: 312.6+ KB
         #Checking pour les valeurs nulls
```

In [12]: df.isnull().sum()

```
0
         months_as_customer
Out[12]:
                                        0
                                        0
         policy_number
         policy_bind_date
                                        0
         policy_state
                                        0
         policy_csl
                                        0
         policy_deductable
                                        0
                                        0
         policy_annual_premium
         umbrella limit
                                        0
         insured_zip
                                        0
         insured_sex
                                        0
         insured_education_level
                                        0
         insured_occupation
                                        0
         insured_hobbies
                                        0
         insured_relationship
                                        0
         capital-gains
                                        0
         capital-loss
                                        0
         incident_date
                                        0
         incident_type
                                        0
                                        0
         collision type
         incident_severity
         authorities_contacted
                                        0
                                        0
         incident_state
         incident_city
                                        0
                                        0
         incident_location
         incident_hour_of_the_day
         number_of_vehicles_involved
         property_damage
                                        0
                                        0
         bodily_injuries
         witnesses
                                        0
                                        0
         police_report_available
         total_claim_amount
                                        0
         injury_claim
         property_claim
                                        0
         vehicle_claim
                                        0
                                        0
         auto_make
                                        0
         auto_model
         auto year
                                        0
                                        0
         fraud_reported
                                        0
         _c39
         dtype: int64
In [49]: #nous voyons que nous avons bien netoyyer notre dataset et on a aucune valeur null
         plt.figure(figsize=(18,12))
         corr=df.corr()
         sns.heatmap(data = corr, annot = True, fmt = '.2g', linewidth = 1)
         plt.show()
```

																	- 1.0
months_as_customer -	1	0.027	0.005	0.015	0.0064	0.02	0.071	0.015	-0.014	-0.01	0.058	-0.022	0.065	0.035	0.061		1.0
policy_deductable -	0.027	1	-0.0032	0.011	0.035	-0.024	0.061	0.051	0.013	-0.023	0.067	0.038	0.039	0.065	0.0053		
policy_annual_premium -	0.005	-0.0032	1	-0.0062	-0.014	0.024	-0.0016	-0.046	0.052	0.027	0.0023	0.022	-0.018	-0.012	0.02		- 0.8
umbrella_limit -	0.015	0.011	-0.0062	1	-0.047	-0.024	-0.023	-0.021	-0.064	0.023	-0.0067	-0.045	-0.045	-0.024	-0.039		
capital-gains -	0.0064	0.035	-0.014	-0.047	1	-0.047	-0.016	0.062	-0.035	0.056	-0.018	-0.013	0.026	-0.00078	0.016		
capital-loss -	0.02	-0.024	0.024	-0.024	-0.047	1	-0.025	-0.015	0.025	-0.024	-0.041	-0.039	-0.046	-0.023	-0.033		- 0.6
incident_hour_of_the_day -	0.071	0.061	-0.0016	-0.023	-0.016	-0.025	1	0.12	0.049	-0.035	0.0065	0.041	0.17	0.18	0.22		
number_of_vehicles_involved -	0.015	0.051	-0.046	-0.021	0.062	-0.015	0.12	1	-0.03	0.014	-0.015	-0.0073	0.22	0.22	0.27		
property_damage -	-0.014	0.013	0.052	-0.064	-0.035	0.025	0.049	-0.03	1	0.021	-0.0052	0.071	0.013	0.029	0.048		- 0.4
bodily_injuries -	-0.01	-0.023	0.027	0.023	0.056	-0.024	-0.035	0.014	0.021	1	-0.0056	0.012	0.047	0.04	0.043		
witnesses -	0.058	0.067	0.0023	-0.0067	-0.018	-0.041	0.0065	-0.015	-0.0052	-0.0056	1	0.049	-0.025	0.053	-0.023		
police_report_available -	-0.022	0.038	0.022	-0.045	-0.013	-0.039	0.041	-0.0073	0.071	0.012	0.049	1	0.028	0.012	0.04		- 0.2
injury_claim -	0.065	0.039	-0.018	-0.045	0.026	-0.046	0.17	0.22	0.013	0.047	-0.025	0.028	1	0.56	0.72		
property_claim -	0.035	0.065	-0.012	-0.024	-0.00078	-0.023	0.18	0.22	0.029	0.04	0.053	0.012	0.56	1	0.73		
vehicle_claim -	0.061	0.0053	0.02	-0.039	0.016	-0.033	0.22	0.27	0.048	0.043	-0.023	0.04	0.72	0.73	1		- 0.0
	months_as_customer -	policy_deductable -	policy_annual_premium -	umbrella_limit -	capital-gains -	capital-loss -	incident_hour_of_the_day -	nber_of_vehicles_involved -	property_damage -	bodily_injuries -	witnesses -	police_report_available -	injury_claim -	property_claim -	vehicle_claim -	•	

In [11]: #cheking pour les valeurs uniques
unique=df.nunique()
print(unique)

months_as_customer	391
age	46
policy_number	1000
policy_bind_date	951
policy_state	3
policy_csl	3
policy_deductable	3
policy_annual_premium	991
umbrella_limit	11
insured_zip	995
insured_sex	2
<pre>insured_education_level</pre>	7
<pre>insured_occupation</pre>	14
insured_hobbies	20
insured_relationship	6
capital-gains	338
capital-loss	354
incident_date	60
incident_type	4
collision_type	3
incident_severity	4
authorities_contacted	5
<pre>incident_state</pre>	7
incident_city	7
incident_location	1000
<pre>incident_hour_of_the_day</pre>	24
<pre>number_of_vehicles_involved</pre>	4
property_damage	2
bodily_injuries	3
witnesses	4
police_report_available	2
total_claim_amount	763
injury_claim	638
property_claim	626
vehicle_claim	726
auto_make	14
auto_model	39
auto_year	21
fraud_reported	2
_c39	1000
dtype: int64	

insured_se	umbrella_limit	policy_annual_premium	policy_deductable	policy_csl	age	$months_as_customer$	•
MAI	3000000	848.07	500	100/300	34	202	0
FEMAI	0	1291.70	2000	100/300	40	224	1
FEMAI	0	1104.50	2000	500/1000	45	241	2
MAI	0	954.16	1000	250/500	25	64	3
MAI	8000000	1337.28	2000	100/300	37	166	4
							•••
MAI	0	1356.64	2000	500/1000	32	95	995
FEMAI	4000000	1387.70	2000	100/300	42	205	996
MAI	0	1004.14	1000	100/300	25	41	997
FEMAI	0	1107.07	500	500/1000	35	137	998
FEMAI	0	1429.96	500	100/300	34	194	999

1000 rows × 27 columns

Out[14]:

```
In [41]: # checking pou multicolinéarité pour eviter des conclusions erronées

plt.figure(figsize = (18, 12))

corr = df.corr()
  mask = np.triu(np.ones_like(corr, dtype = bool))

sns.heatmap(data = corr, mask = mask, annot = True, fmt = '.2g', linewidth = 1)
  plt.show()
```


t[16]:	months	as customer	policy csl	policy deductable	policy_annual_premium	umbrella limit	insured sex	iı			
_	0	202	100/300	500	848.07	3000000	MALE				
	1	224	100/300	2000	1291.70	0	FEMALE				
	2	241	500/1000	2000	1104.50	0	FEMALE				
	3	64	250/500	1000	954.16	0	MALE				
	4	166	100/300	2000	1337.28	8000000	MALE				
	•••										
	995	95	500/1000	2000	1356.64	0	MALE				
,	996	205	100/300	2000	1387.70	4000000	FEMALE				
	997	41	100/300	1000	1004.14	0	MALE				
	998	137	500/1000	500	1107.07	0	FEMALE				
	999	194	100/300	500	1429.96	0	FEMALE				
1	000 rows × 2	25 columns									
[17]:	#separation	n du Label d	lu data-fr	rame							
	•	fraud_repor d_reported']		==1)							
	<pre>#Encodage des colonnes categoriels cat_df=X.select_dtypes(include=['object'])</pre>										
	<pre># affichage des valeurs uniques de chaque colonne for col in cat_df.columns: print(f"{col}: \n{cat_df[col].unique()}\n")</pre>										
	cat_df=pd.g	get_dummies(cat_df,dr	op_first=True)							

cat_df

```
policy_csl:
['100/300' '500/1000' '250/500']
insured_sex:
['MALE' 'FEMALE']
insured_education_level:
['JD' 'PhD' 'Masters' 'Associate' 'High School' 'MD' 'College']
insured_occupation:
['exec-managerial' 'sales' 'machine-op-inspct' 'prof-specialty'
 'craft-repair' 'adm-clerical' 'farming-fishing' 'tech-support'
 'other-service' 'transport-moving' 'priv-house-serv' 'armed-forces'
'protective-serv' 'handlers-cleaners']
insured_relationship:
['not-in-family' 'unmarried' 'husband' 'other-relative' 'wife' 'own-child']
incident_type:
['Vehicle Theft' 'Single Vehicle Collision' 'Multi-vehicle Collision'
'Parked Car']
collision_type:
['Front Collision' 'Side Collision' 'Rear Collision']
incident_severity:
['Minor Damage' 'Major Damage' 'Total Loss' 'Trivial Damage']
authorities contacted:
['None' 'Other' 'Police' 'Ambulance' 'Fire']
```

Out[19]: policy_csl_250/500 policy_csl_500/1000 insured_sex_MALE insured_education_level_College insured_education_

0	0	0	1	0
1	0	0	0	0
2	0	1	0	0
3	1	0	1	0
4	0	0	1	0
•••				
995	0	1	1	0
996	0	0	0	0
997	0	0	1	0
998	0	1	0	0
999	0	0	0	0

1000 rows × 39 columns

```
In [20]: # extraction des colonnes numeriques
    num_df = X.select_dtypes(include = ['int64'])
    num_df
```

Out[20]:		months_as_customer	policy_deductable	umbrella_limit	capital- gains	capital- loss	incident_hour_of_the_day	numb
-	0	202	500	3000000	31000	-30200	5	
	1	224	2000	0	0	-55600	21	
	2	241	2000	0	0	0	5	
	3	64	1000	0	53200	0	22	
	4	166	2000	8000000	27500	0	10	
	•••							
	995	95	2000	0	67800	-48600	21	
	996	205	2000	4000000	0	0	19	
	997	41	1000	0	35400	0	13	
	998	137	500	0	0	-45300	21	

0 67800 0

11

1000 rows × 14 columns

194

999

```
In [21]: #comibinaison des colonnes numerique et categoriels pour avoir une seule dataset

X = pd.concat([num_df, cat_df], axis = 1)

plotnumber = 1
plt.figure(figsize = (25, 20))
for col in X.columns:
    if plotnumber <= 24:
        ax = plt.subplot(5, 5, plotnumber)
        sns.histplot(X[col])
        plt.xlabel(col, fontsize = 15)

plotnumber += 1

plt.tight_layout()
plt.show()</pre>
```

500


```
insured_education_level_MD
                                          0.2 0.4 0.6 0.8 insured_education_level_Masters
                                                                    0.2 0.4 0.6 0.8 insured_education_level_PhD
                                                                                             0 0.2 0.4 0.6 0.8
insured_occupation_armed-forces
In [22]:
             #notre data est bien
             #verifions notre data est ce qu'elle contient des valeurs abberantes "outliers"
             plt.figure(figsize = (20, 15))
             plotnumber = 1
             for col in X.columns:
                  if plotnumber <= 24:</pre>
                       ax = plt.subplot(5, 5, plotnumber)
                       sns.boxplot(X[col])
                       plt.xlabel(col, fontsize = 15)
                  plotnumber += 1
             plt.tight_layout()
             plt.show()
```


In [23]: #Des valeurs aberrantes sont présentes dans certaines colonnes numériques.
#Nous mettrons à l'échelle les colonnes numériques ultérieurement.
"""splitting data"""

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)

X_train.head()
 X_test.head()
 y_train.head()
 y_train.head()
 y_test.head()
 num_df = X_train[['months_as_customer', 'policy_deductable', 'umbrella_limit','capital-gains', num_df

Out[23]:		months_as_customer	policy_deductable	umbrella_limit	capital- gains	capital- loss	incident_hour_of_the_day	numb
	38	431	2000	0	65700	0	4	
	377	7	1000	0	0	-45300	21	
	328	162	1000	0	30700	0	7	
	125	11	2000	0	56600	-45800	22	
	217	298	500	0	47800	0	17	
	•••							
	360	47	500	0	64800	-24300	23	
	417	475	500	0	67400	-83200	20	
	434	120	1000	0	77900	0	3	
	522	78	500	0	0	0	20	
	143	460	1000	4000000	0	0	20	

750 rows × 12 columns

```
In [24]: # Scaling des valeurs numerique dans otre dataset
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    scaled_data = scaler.fit_transform(num_df)

    scaled_num_df = pd.DataFrame(data = scaled_data, columns = num_df.columns, index = X_train.incscaled_num_df.head()

    X_train.drop(columns = scaled_num_df.columns, inplace = True)

    X_train = pd.concat([scaled_num_df, X_train], axis = 1)
    X_train
```

Out[24]:		months_as_customer	policy_deductable	umbrella_limit	capital- gains	capital- loss	incident_hour_of_the_day	nu
	38	1.921330	1.459624	-0.471306	1.458923	0.958487	-1.118478	
	377	-1.708106	-0.196530	-0.471306	-0.892070	-0.651741	1.338975	
	328	-0.381308	-0.196530	-0.471306	0.206491	0.958487	-0.684810	
	125	-1.673866	1.459624	-0.471306	1.133291	-0.669514	1.483531	
	217	0.782851	-1.024607	-0.471306	0.818394	0.958487	0.760750	
	•••							
	360	-1.365707	-1.024607	-0.471306	1.426718	0.094723	1.628087	
	417	2.297969	-1.024607	-0.471306	1.519756	-1.998929	1.194419	
	434	-0.740827	-0.196530	-0.471306	1.895485	0.958487	-1.263035	
	522	-1.100347	-1.024607	-0.471306	-0.892070	0.958487	1.194419	
	143	2.169570	-0.196530	1.287299	-0.892070	0.958487	1.194419	

750 rows × 53 columns

```
"""-----"""
In [42]:
         """SVM"""
         from sklearn.svm import SVC
         svc = SVC()
         svc.fit(X_train, y_train)
         y_pred = svc.predict(X_test)
         # accuracy_score, confusion_matrix and classification_report
         from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
         svc_train_acc = accuracy_score(y_train, svc.predict(X_train))
         svc_test_acc = accuracy_score(y_test, y_pred)
         print(f"Training accuracy of Support Vector Classifier is : {svc train acc}")
         print(f"Test accuracy of Support Vector Classifier is : {svc_test_acc}")
         print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
         #matrice de confusion
         from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
         cm = confusion_matrix(y_test, y_pred, labels=svc.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=svc.classes_)
         disp.plot()
         plt.show()
         #nous voyons que le model SVM classifier (SVC) n'a pas pu de bien classier les fraudes il nous
         Training accuracy of Support Vector Classifier is: 0.84
         Test accuracy of Support Vector Classifier is: 0.78
         [[195
                 0]
          [ 55
                 0]]
                                   recall f1-score
                       precision
                                                     support
                                     1.00
                                               0.88
                                                          195
                    Ν
                           0.78
                           0.00
                                     0.00
                                               0.00
                    Υ
                                                           55
                                               0.78
                                                          250
             accuracy
                           0.39
                                     0.50
                                               0.44
                                                          250
            macro avg
         weighted avg
                           0.61
                                     0.78
                                               0.68
                                                          250
```



```
In [27]:
         """KNN"""
In [43]:
         from sklearn.neighbors import KNeighborsClassifier
         knn = KNeighborsClassifier(n_neighbors = 30)
         knn.fit(X_train, y_train)
         y_pred = knn.predict(X_test)
         # accuracy_score, confusion_matrix and classification_report
         from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
         knn_train_acc = accuracy_score(y_train, knn.predict(X_train))
         knn_test_acc = accuracy_score(y_test, y_pred)
         print(f"Training accuracy of KNN is : {knn_train_acc}")
         print(f"Test accuracy of KNN is : {knn_test_acc}")
         print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
         #matrice de confusion
         from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
         cm = confusion_matrix(y_test, y_pred, labels=knn.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=knn.classes_)
         disp.plot()
         plt.show()
         #nous voyons que le model KNN aussi n'a pas pu de bien classier les fraudes il nous a classij
         Test accuracy of KNN is: 0.78
         [[195
                 01
          [ 55
                 0]]
                       precision
                                   recall f1-score
                                                      support
                           0.78
                                     1.00
                                               0.88
                                                          195
                    Ν
                    Υ
                           0.00
                                     0.00
                                               0.00
                                                           55
                                               0.78
                                                          250
             accuracy
            macro avg
                           0.39
                                     0.50
                                               0.44
                                                          250
                                                          250
         weighted avg
                           0.61
                                     0.78
                                               0.68
```



```
In [29]:
         """DT"""
In [44]:
         from sklearn.tree import DecisionTreeClassifier
         dtc = DecisionTreeClassifier()
         dtc.fit(X_train, y_train)
         y_pred = dtc.predict(X_test)
         # accuracy_score, confusion_matrix and classification_report
         from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
         dtc_train_acc = accuracy_score(y_train, dtc.predict(X_train))
         dtc test acc = accuracy score(y test, y pred)
         print(f"Training accuracy of Decision Tree is : {dtc_train_acc}")
         print(f"Test accuracy of Decision Tree is : {dtc_test_acc}")
         print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
         #matrice de confusion
         from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
         cm = confusion_matrix(y_test, y_pred, labels=dtc.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=dtc.classes_)
         disp.plot()
         plt.show()
         #pour le model DT n'a pas pu de bien classier les fraudes il nous a classifé des non fraud com
```

Test accuracy of Decision Tree is : 0.46 [[104 91] [44 11]] recall f1-score precision support Ν 0.70 0.53 0.61 195 55 Υ 0.11 0.20 0.14 accuracy 0.46 250 macro avg 0.41 0.37 0.37 250 weighted avg 0.57 0.46 0.50 250

Training accuracy of Decision Tree is : 1.0

In [31]:

```
"""RF"""
In [45]:
         from sklearn.ensemble import RandomForestClassifier
         rand_clf = RandomForestClassifier(criterion= 'entropy', max_depth= 10, max_features= 'sqrt', i
         rand_clf.fit(X_train, y_train)
         y_pred = rand_clf.predict(X_test)
         # accuracy score, confusion matrix and classification report
         from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
         rand_clf_train_acc = accuracy_score(y_train, rand_clf.predict(X_train))
         rand_clf_test_acc = accuracy_score(y_test, y_pred)
         print(f"Training accuracy of Random Forest is : {rand_clf_train_acc}")
         print(f"Test accuracy of Random Forest is : {rand_clf_test_acc}")
         print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
         #matrice de confusion
         from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
         cm = confusion_matrix(y_test, y_pred, labels=rand_clf.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=rand_clf.classes_)
         disp.plot()
         plt.show()
         #pour le model RF a été un peu de bien classier les fraudes il nous a classifé bien le non fi
         Training accuracy of Random Forest is: 0.976
         Test accuracy of Random Forest is : 0.796
         [[192
                 3]
          [ 48
                 7]]
                       precision
                                    recall f1-score
                                                        support
```

Ν 0.80 0.98 0.88 195 0.70 0.13 0.22 55 Υ 250 0.80 accuracy 0.56 0.55 macro avg 0.75 250


```
In [33]:
          """Stochastic Gradient Boosting (SGB)"""
In [53]:
         from sklearn.ensemble import GradientBoostingClassifier
         sgb = GradientBoostingClassifier(subsample = 0.90, max_features = 0.70)
         sgb.fit(X_train, y_train)
         # accuracy score, confusion matrix and classification report of stochastic gradient boosting
         sgb_acc = accuracy_score(y_test, sgb.predict(X_test))
         print(f"Training Accuracy of Stochastic Gradient Boosting is {accuracy_score(y_train, sgb.pre
         print(f"Test Accuracy of Stochastic Gradient Boosting is {sgb_acc} \n")
         print(f"Confusion Matrix :- \n{confusion_matrix(y_test, sgb.predict(X_test))}\n")
         print(f"Classification Report :- \n {classification_report(y_test, sgb.predict(X_test))}")
         #matrice de confusion
         from sklearn.metrics import confusion matrix, ConfusionMatrixDisplay
         cm = confusion_matrix(y_test, y_pred, labels=sgb.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=sgb.classes_)
         disp.plot()
         plt.show()
         #pour le model SGB il est come RF , il a été un peu de bien classier les fraudes il nous a cle
         Training Accuracy of Stochastic Gradient Boosting is 0.924
         Test Accuracy of Stochastic Gradient Boosting is 0.736
         Confusion Matrix :-
         [[172 23]
          [ 43 12]]
```

Classification Report :-

erassi reactor	precision	recall	f1-score	support
N	0.80	0.88	0.84	195
Υ	0.34	0.22	0.27	55
accuracy			0.74	250
macro avg	0.57	0.55	0.55	250
weighted avg	0.70	0.74	0.71	250


```
In [35]:
 In [ ]: #Voting Classifier
         from sklearn.ensemble import VotingClassifier
         classifiers = [('Support Vector Classifier', svc), ('KNN', knn), ('Decision Tree', dtc), ('R
                          ('SGB', sgb),]
         vc = VotingClassifier(estimators = classifiers)
         vc.fit(X_train, y_train)
         y_pred = vc.predict(X_test)
 In [ ]: # accuracy_score, confusion_matrix and classification_report
         vc_train_acc = accuracy_score(y_train, vc.predict(X_train))
         vc_test_acc = accuracy_score(y_test, y_pred)
         print(f"Training accuracy of Voting Classifier is : {vc_train_acc}")
         print(f"Test accuracy of Voting Classifier is : {vc_test_acc}")
         print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
         #matrice de confusion
         from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
         cm = confusion_matrix(y_test, y_pred, labels=vc.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=vc.classes_)
         disp.plot()
         plt.show()
```

```
In [58]: #Comparaiso des modèles
models = pd.DataFrame({
    'Model' : ['SVC', 'KNN', 'Decision Tree', 'Random Forest', 'SGB', 'Voting Classifier'],
    'Score' : [svc_test_acc, knn_test_acc, dtc_test_acc, rand_clf_test_acc, sgb_acc, vc_test_}))
models.sort_values(by = 'Score', ascending = False)
```

```
Out[58]:
                      Model Score
           3
               Random Forest
                              0.796
           0
                        SVC
                              0.780
           1
                       KNN
                              0.780
              Voting Classifier
                              0.780
                        SGB
                              0.736
                Decision Tree
                             0.460
```

```
In [59]: warnings.filterwarnings("ignore", category=DeprecationWarning)
import plotly.express as px
```

```
In [64]: px.bar(data_frame = models, x = 'Score', y = 'Model', color = 'Score', template = 'plotly_white
```

Models Comparaison

In []: