DCA0425 - Tópicos Especiais em Sistemas de Controle

Análise de Sistemas de Controle via Resposta em Frequência

Professor: Carlos Eduardo Trabuco Dórea, DSc

Sumário

1	Aná	Análise de Sistemas de Controle via Resposta em Frequência			
	•		Introd	ução	2
	1.2 Resposta em Frequência			2	
	1.3	Diagramas de Bode		4	
		1.3.1	Ganho	5	
		1.3.2	Termos integrais e derivativos	6	
		1.3.3	Termos de Primeira Ordem	7	
		1.3.4	Termos de Segunda Ordem	9	
		1.3.5	Diagramas Compostos	13	
		1.3.6	Sistemas de Fase Não-Mínima	16	
		1.3.7	Sistemas com Retardo	16	
	1.4				
	1.5	_	e de Estabilidade via Resposta em Frequência	18	
		1.5.1	O Critério de Estabilidade de Nyquist	18	
		1.5.2	Margens de Estabilidade	21	
	1.6			23	
		1.6.1	Sistemas de primeira ordem	23	
		1.6.2	Sistemas de segunda ordem	24	
		1.6.3	Especificações para Sistemas Gerais	26	
		1.6.4	Relação entre a resposta em frequência e erros de regime permanente	27	
2	Projeto de Sistemas de Controle via Resposta em Frequência			28	
	2.1	· · · · · · · · · · · · · · · · · · ·			
		2.1.1	Controladores em Avanço	28 28	
		2.1.2	Controladores em Atraso	30	
		2.1.3	Controladores em Avanço-Atraso	32	
	2.2 Projeto de Controladores da Família PID			32	
		2.2.1	Controlador Proporcional	32	
		2.2.2	Controlador PI	33	
		2.2.3	Controlador PD	34	
		2.2.4	Controlador PID	36	
A	Diag	ramas	Polares	38	

Capítulo 1

Análise de Sistemas de Controle via Resposta em Frequência

1.1 Introdução

Métodos de resposta em frequência para o projeto de controladores automáticos são ainda muito usados por uma série de razões, entre as quais podem ser citadas:

- O projeto é feito em cima das funções de transferência de malha aberta, o que os torna, em geral, mais simples do que outros métodos tais como os baseados no Lugar das Raízes;
- Maior facilidade para lidar com incertezas nos modelos dos processos;
- Maior facilidade para lidar com atrasos de transporte.

No entanto, tais métodos são mais efetivos em sistemas que são estáveis em malha aberta.

1.2 Resposta em Frequência

Denomina-se *resposta em frequência* de um sistema a seu comportamento em regime permanente quando excitado por entradas senoidais.

Considere-se um sistema linear, invariante no tempo, representado por uma função de transferência racional:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{B(s)}{A(s)},$$

sendo U(s) e Y(s) as Transformadas de Laplace dos sinais de entrada u(t) e de saída y(t), respectivamente. B(s) e A(s) são polinômios de coeficientes reais, de graus m e n, respectivamente, com $m \leq n$. As n raízes p_i , $i=1,\cdots,n$ do polinômico característico A(s) são os polos de G(s), enquanto as m raízes z_j , $j=1,\cdots,m$ são os polos de po

$$G(s) = \frac{b_m(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}.$$

Além disso, supõe-se que G(s) seja **estável** do ponto de vista entrada-saída (BIBO-estável), ou seja, que todos os polos p_i , $i=1,\cdots,n$ possuam parte real negativa.

Considere-se também a seguinte entrada senoidal e sua respectiva Transformada de Laplace:

$$u(t) = \operatorname{sen}(\omega t), \quad t \ge 0, \quad U(s) = \frac{\omega}{s^2 + \omega^2} = \frac{\omega}{(s - i\omega)(s + i\omega)},$$

sendo $j = \sqrt{-1}$.

Considerando condições iniciais nulas, a Transformada de Laplace da saída é então dada por:

$$Y(s) = G(s)U(s) = \frac{b_m(s - z_1)(s - z_2)\cdots(s - z_m)}{(s - p_1)(s - p_2)\cdots(s - p_n)} \frac{\omega}{s^2 + \omega^2}.$$

Sem perda de generalidade, supõe-se que todos os polos de G(s) sejam distintos. Dessa forma, a *Expansão em Frações Parciais* de Y(s) resulta em:

$$Y(s) = \frac{C_1}{s - p_1} + \frac{C_2}{s - p_2} + \dots + \frac{C_n}{s - p_n} + \frac{C_0}{s - j\omega} + \frac{\bar{C}_0}{s + j\omega}.$$

Assim, no domínio do tempo, a resposta y(t) é dada por:

$$y(t) = C_1 e^{p_1 t} + C_2 e^{p_2 t} + \dots + C_n e^{p_n t} + C_0 e^{j\omega t} + \bar{C}_0 e^{-j\omega t}.$$

Como G(s) foi suposta BIBO-estável, então todos os termos $e^{p_i t}$ tendem a 0 quanto $t \to \infty$. Dessa forma, a resposta em regime permanente à entrada senoidal é dada por:

$$y_{ss}(t) = C_0 e^{j\omega t} + \bar{C}_0 e^{-j\omega t}.$$

Os coeficientes C_0 e \bar{C}_0 são dados por:

$$C_0 = Y(s)(s-j\omega)|_{s=j\omega} = G(s)\frac{\omega}{(s+j\omega)}|_{s=j\omega} = \frac{G(j\omega)\omega}{j2\omega} = \frac{G(j\omega)}{j2},$$

$$\bar{C}_0 = Y(s)(s+j\omega)|_{s=-j\omega} = G(s)\frac{\omega}{(s-j\omega)}|_{s=-j\omega} = \frac{G(-j\omega)\omega}{-j2\omega} = \frac{G(-j\omega)\omega}{-j2}.$$

Na forma polar:

$$G(j\omega) = |G(j\omega)|e^{j\angle G(j\omega)}.$$

Como os coeficientes da expansão em frações parciais associados a raízes complexas conjugadas são também conjugados entre si, tem-se que:

$$G(-j\omega) = |G(j\omega)|e^{-j\angle G(j\omega)}$$

Dessa forma:

$$\begin{array}{lcl} y_{ss}(t) & = & \frac{G(j\omega)}{j2}e^{j\omega t} + \frac{G(-j\omega)}{-j2}e^{-j\omega t} = \frac{|G(j\omega)|e^{j\angle G(j\omega)}}{j2}e^{j\omega t} + \frac{|G(j\omega)|e^{-j\angle G(j\omega)}}{-j2}e^{-j\omega t} \\ & = & |G(j\omega)|\left[\frac{e^{j(\omega t + \angle G(j\omega))} - e^{-j(\omega t + \angle G(j\omega))}}{j2}\right] \end{array}$$

Enfim, a resposta em regime permanente à entrada senoidal é dada por:

$$y_{ss}(t) = |G(j\omega)| \operatorname{sen}(\omega t + \angle G(j\omega)).$$

Comentários:

- A reposta em regime permanente de um sistema linear BIBO-estável a uma entrada senoidal é também uma senoide, com a mesma frequência da entrada, com amplitude multiplicada por $|G(j\omega)|$ e defasada de um ângulo igual a $\angle G(j\omega)$.
- O comportamento do sistema em relação a entradas senoidais é completamente determinado pela função de transferência G(s), mas apenas para $s=j\omega$. Por esse motivo, a função $G(j\omega)$ é denominada **Resposta em Frequência** do sistema representado por G(s).

Exemplo 1.1 Consideremos um sistema representado por:

$$G(s) = \frac{4}{2s+1}.$$

Sua resposta em frequência é dada por:

$$G(j\omega) = \frac{4}{j2\omega + 1}.$$

O módulo e o ângulo de fase de $G(j\omega)$ são dados, respectivamente, por:

$$|G(j\omega)| = \frac{4}{\sqrt{1+4\omega^2}},$$

$$\angle G(j\omega) = -\arctan 2\omega.$$

Para sinais de entrada com frequências de 1, 5 e 10rad/s, tem-se que:

$$\begin{array}{lll} \omega = 1 {\rm rad/s} & |G(j\omega)| = 1,7889 & \angle G(j\omega) = -1,11 {\rm rad} = -63,4\,^{\circ} \\ \omega = 5 {\rm rad/s} & |G(j\omega)| = 0,39801 & \angle G(j\omega) = -1,47 {\rm rad} = -84,3\,^{\circ} \\ \omega = 10 {\rm rad/s} & |G(j\omega)| = 0,1975 & \angle G(j\omega) = -1,52 {\rm rad} = -87,1\,^{\circ} \end{array}.$$

Note-se que, caso se queira determinar o valor da defasagem em segundos, deve-se calcular:

$$t_d = \frac{-\angle G(j\omega)}{\omega},$$

 $com \angle G(j\omega)$ medida em radianos.

Por exemplo, para $\omega = 1$, a defasagem no tempo é dada por:

$$t_d = \frac{-\angle G(j1)}{1} = \arctan 2 = 1,11s.$$

As respostas desse sistema a senoides com essas frequências estão representadas na figura 1.1.

1.3 Diagramas de Bode

A Resposta em Frequência $G(j\omega)$ de um sistema linear invariante no tempo é uma função complexa da variável real ω . Dessa forma, não é possível representá-la em um único gráfico. A representação gráfica mais usada é conhecida como **Diagramas de Bode**, que representam o módulo e o ângulo de fase de $G(j\omega)$ em função de ω , em escala logarítmica. Tem como vantagem a possibilidade de se traçarem esboços de funções com grande número de polos e zeros a partir de termos mais simples de 1^a ou 2^a ordem.

Consideremos, assim, uma função de transferência racional dada por:

$$G(s) = \frac{b_m(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_m)},$$

com $m \le n$, cuja resposta em frequência é dada por:

$$G(j\omega) = \frac{b_m(j\omega - z_1)(j\omega - z_2)\cdots(j\omega - z_m)}{(j\omega - p_1)(j\omega - p_2)\cdots(j\omega - p_m)}.$$

O módulo de $G(j\omega)$ é dado por:

$$|G(j\omega)| = \frac{|b_m||j\omega - z_1||j\omega - z_2|\cdots|j\omega - z_m|}{|j\omega - p_1||j\omega - p_2|\cdots|j\omega - p_m|}.$$

Nos diagramas de Bode, o módulo é representado em decibeis:

$$|G(j\omega)|_{\mathrm{dB}} = 20 \log |G(j\omega)|.$$

Assim:

$$|G(j\omega)|_{\text{db}} = 20 \log \frac{|b_m||j\omega - z_1||j\omega - z_2| \cdots |j\omega - z_m|}{|j\omega - p_1||j\omega - p_2| \cdots |j\omega - p_m|}$$

$$= 20 \log |b_m| + 20 \log |j\omega - z_1| + 20 \log |j\omega - z_2| + \cdots + 20 \log |j\omega - z_m|$$

$$-20 \log |j\omega - p_1| - 20 \log |j\omega - p_2| - \cdots - 20 \log |j\omega - p_n|.$$

Figura 1.1: Resposta do sistema representado por $G(s) = \frac{4}{2s+1}$ a senoides de frequências 1, 5 e 10 rad/s.

O ângulo de fase é dado por:

$$\angle G(j\omega) = \angle \frac{b_m(j\omega - z_1)(j\omega - z_2) \cdots (j\omega - z_m)}{(j\omega - p_1)(j\omega - p_2) \cdots (j\omega - p_m)}
= \angle b_m + \angle (j\omega - z_1) + \angle (j\omega - z_2) + \cdots + \angle (j\omega - z_m)
-\angle (j\omega - p_1) - \angle (j\omega - p_2) - \cdots - \angle (j\omega - p_n).$$

Dessa forma, os diagramas de módulo, em decibeis e de fase podem ser obtidos a partir da soma dos diagramas dos termos mais simples. Além disso, a frequência ω é também representada em escala logarítmica, o que permite representar uma faixa de frequências muito maior do que se fosse utilizada uma escala linear.

Estudemos agora o traçado dos Diagramas de Bode dos termos elementares, usados na composição de diagramas de funções mais complexas:

1.3.1 Ganho

$$G(s) = K, \quad G(j\omega) = K.$$

$$|G(j\omega)| = |K|, \quad |G(j\omega)|_{dB} = 20 \log |K|.$$

$$\angle G(j\omega) = \begin{cases} 0 & \text{se } K \ge 0 \\ 180 & \text{se } K < 0 \end{cases}.$$

Exemplo 1.2

$$G(s) = 0, 1, \ G(j\omega) = 0, 1, \ |G(j\omega)|_{\mathrm{dB}} = 20\log 0, 1 = 20(-1) = -20\mathrm{dB}, \ \angle G(j\omega) = 0^{\circ}.$$

$$G(s) = -10, \ G(j\omega) = -10, \ |G(j\omega)|_{dB} = 20 \log 10 = 20(1) = 20 dB, \ \angle G(j\omega) = 180^{\circ}.$$

Os diagramas de Bode dessas duas funções estão representados na figura 1.2

Figura 1.2: Diagramas de Bode de G(s) = 0, 1 e G(s) = -10.

1.3.2 Termos integrais e derivativos

Termos integrais

$$G(s) = \frac{1}{s}, \ G(j\omega) = \frac{1}{j\omega}.$$

$$|G(j\omega)| = \frac{1}{\omega}, \ |G(j\omega)|_{dB} = 20\log\frac{1}{\omega} = -20\log\omega.$$

Dessa forma, o módulo cai $20 {\rm dB}$ a cada vez que a frequência angular ω é multiplicada por 10. A faixa que vai de uma frequência ω até 10ω é denominada de **década**. Assim, conclui-se que, em relação ao termo integral, o gráfico de $|G(j\omega)|_{dB}$ corresponde a uma **reta com inclinação de** $-20 {\rm dB}$ **por década**.

Faixas de frequência podem ser representadas também por intervalos conhecidos como oitavas. Uma oitava é o intervalo que vai de uma frequência ω até 2ω . Assim, para o termo integral, em uma oitava $|G(j\omega)|_{dB}$ cai de $20 \log 2 = 6,02$ dB. Assim, podes-se também dizer que o gráfico de $|G(j\omega)|_{dB}$ corresponde a uma **reta com inclinação de** -6dB por oitava.

Em relação ao ângulo de fase, verifica-se facilmente que:

$$\angle G(j\omega) = -90^{\circ}$$
.

Termos derivativos

$$G(s) = s, \ G(j\omega) = j\omega.$$

$$|G(j\omega)| = \omega, \ |G(j\omega)|_{dB} = 20 \log \omega.$$

Portanto, o gráfico de $|G(j\omega)|_{dB}$ corresponde a uma reta com inclinação de 20dB por década ou 6dB por oitava. Já em relação ao ângulo de fase:

$$\angle G(j\omega) = 90^{\circ}.$$

Conclui-se, assim, que os diagramas de Bode do termo derivativo podem ser obtidos rebatendo-se os diagramas do termo integral em relação ao eixo ω . Claramente, isto sempre ocorre quando um termo passa do numerador de G(s) para o denominador ou vice-versa.

Exemplo 1.3

$$G(s) = \frac{1}{s},$$

$$G(s) = s$$
.

Os diagramas de Bode dessas duas funções estão representados na figura 1.3

Figura 1.3: Diagramas de Bode de $G(s) = \frac{1}{s}$ e G(s) = s.

1.3.3 Termos de Primeira Ordem

Polo real

Consideremos inicialmente um sistema de primeira ordem, com um polo real igual a $\frac{-1}{x}$:

$$G(s) = \frac{1}{\tau s + 1}, \ \tau > 0, \ G(j\omega) = \frac{1}{j\tau\omega + 1}.$$

$$|G(j\omega)| = \frac{1}{\sqrt{(\tau\omega)^2 + 1}}, \ |G(j\omega)|_{dB} = 20\log\frac{1}{\sqrt{(\tau\omega)^2 + 1}} = -20\log((\tau\omega)^2 + 1)^{\frac{1}{2}} = -10\log((\tau\omega)^2 + 1).$$

Neste caso, o diagrama de $|G(j\omega)|_{dB}$ não tem uma forma tão simples quanto no caso do termo integral. No entanto, um diagrama aproximado pode ser traçado considerando-se o comportamento assintótico de $|G(j\omega)|_{dB}$.

Assíntota de baixa frequência: $\omega \ll \frac{1}{\tau} \Rightarrow |G(j\omega)|_{dB} \approx -10 \log 1 = 0 \text{dB} \Rightarrow \text{reta constante de 0dB};$

Assíntota de alta frequência: $\omega \gg \frac{1}{\tau} \Rightarrow |G(j\omega)|_{dB} \approx -10\log{(\tau\omega)^2} = -20\log{\tau\omega} = -20\log{\tau} - 20\log{\omega} \Rightarrow$ reta com inclinação de -20dB por década.

Note-se que as duas assíntotas se encontram na frequência $\omega_c = \frac{1}{\tau}$. Esta frequência é denominada **frequência** de corte de G(s). Nesta frequência:

$$|G(j\omega_c)|_{dB} = -20 \log 2^{\frac{1}{2}} = -10 \log 2 = -3,01 \text{dB}.$$

Por isso, de um modo geral, costuma-se definir a frequência de corte de um sistema como a frequência na qual $|G(j\omega_c)|_{dB}$ cai 3dB em relação ao módulo de baixa frequência.

Dessa forma, um diagrama de módulo aproximado consiste em traçar as duas assíntotas:

• 0dB para $\omega \leq \frac{1}{\tau}$;

Diagramas de Bode

Figura 1.4: Diagramas de Bode de $G(s) = \frac{1}{\frac{1}{2}s+1}$.

• reta com inclinação de -20 dB por década para $\omega \ge \frac{1}{\tau}$.

Nos diagramas da figura 1.4 pode-se verificar o quão boa é esta aproximação em baixas e altas frequências, sendo o maior erro igual a 3dB na frequência de corte.

Em relação ao ângulo de fase, verifica-se que:

$$\angle G(j\omega) = -\arctan \tau \omega.$$

Analisando o comportamento assintótico, tem-se que:

Assíntota de baixa frequência: $\omega \ll \frac{1}{\tau} \Rightarrow \angle G(j\omega) \approx 0$ °;

Assíntota de alta frequência: $\omega\gg\frac{1}{\tau}\Rightarrow\angle G(j\omega)\approx-90\,^{\circ}.$

Na frequência da corte:

$$\angle G(j\omega_c) = \arctan 1 = -45^{\circ}.$$

Um diagrama de fase aproximado pode ser obtido traçando-se duas assíntotas:

- 0° para $\omega \leq \frac{1}{\tau}$;
- -90° para $\omega \leq \frac{1}{\tau}$;

Nos diagramas da figura 1.4 pode-se verificar que essa aproximação é muito pobre, sobretudo nas frequências em torno da frequência de corte, servindo apenas para indicar uma tendência. Tendo em vista a disponibilidade de *softwares* de cálculo matemático que fornecem tais diagramas, praticamente não se justifica a busca de técnicas para traçado de diagramas aproximados mais precisos.

Exemplo 1.4

$$G(s) = \frac{1}{\frac{1}{2}s+1}.$$

Os diagramas de Bode dessa função estão representados na figura 1.4

Zero real

Consideremos agora um zero real igual a $\frac{-1}{\tau}$:

$$G(s) = \tau s + 1, \ \tau > 0, \ G(j\omega) = j\tau\omega + 1.$$

 $|G(j\omega)| = \sqrt{(\tau\omega)^2 + 1}, \ |G(j\omega)|_{dB} = 10\log((\tau\omega)^2 + 1).$

Como visto anteriormente, os diagramas de Bode desse termo podem ser obtidos rebatendo-se em relação ao eixo ω os diagramas relativos ao polo real vistos acima. Sendo assim:

Assíntota de baixa frequência: $\omega \ll \frac{1}{\tau} \Rightarrow |G(j\omega)|_{dB} \approx 0 \text{dB} \Rightarrow \text{reta constante de 0dB};$

Assíntota de alta frequência: $\omega \gg \frac{1}{\tau} \Rightarrow |G(j\omega)|_{dB} \approx 20 \log \tau + 20 \log \omega \Rightarrow$ reta com inclinação de 20dB por década.

A frequência de corte é também $\omega_c = \frac{1}{\tau}$, na qual:

$$|G(j\omega_c)|_{dB} = 20\log(2)^{\frac{1}{2}} = 3,01$$
dB.

Em relação ao ângulo de fase:

$$\angle G(j\omega) = \arctan \tau \omega.$$

Assíntota de baixa frequência: $\omega \ll \frac{1}{\tau} \Rightarrow \angle G(j\omega) \approx 0^{\circ}$;

Assíntota de alta frequência: $\omega\gg \frac{1}{\tau}\Rightarrow \angle G(j\omega)\approx 90\,^{\circ}.$

Na frequência da corte:

$$\angle G(j\omega_c) = \arctan 1 = 45^{\circ}.$$

Exemplo 1.5

$$G(s) = \frac{1}{2}s + 1.$$

Os diagramas de Bode dessa função estão representados na figura 1.5.

1.3.4 Termos de Segunda Ordem

Polos complexos conjugados

Considera-se um sistema de segunda ordem, com um par de polos complexos conjugados, da seguinte forma:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{1}{(\frac{s}{\omega_n})^2 + 2\xi(\frac{s}{\omega_n}) + 1}, \ \omega_n > 0, \ 0 \le \xi \le 1,$$

sendo ξ o coeficiente de amortecimento e ω_n a frequência natural não-amortecida de G(s).

Os polos de G(s) são dados por:

$$p_{1,2} = \frac{-2\xi\omega_n \pm \sqrt{4\xi^2\omega_n^2 - 4\omega_n^2}}{2} = -\xi\omega_n \pm j\sqrt{1 - \xi^2}\omega_n.$$

$$G(j\omega) = \frac{1}{(\frac{j\omega}{\omega_n})^2 + 2\xi(\frac{j\omega}{\omega_n}) + 1} = \frac{1}{1 - (\frac{\omega}{\omega_n})^2 + j2\xi\frac{\omega}{\omega_n}}.$$
(1.1)

Figura 1.5: Diagramas de Bode de $G(s) = \frac{1}{2}s + 1$.

O módulo de $G(j\omega)$ é dado por:

$$|G(j\omega)| = \frac{1}{\sqrt{(1 - (\frac{\omega}{\omega_n})^2)^2 + 4\xi^2(\frac{\omega}{\omega_n})^2}}.$$

$$|G(j\omega)|_{dB} = -20\log\sqrt{(1 - (\frac{\omega}{\omega_n})^2)^2 + 4\xi^2(\frac{\omega}{\omega_n})^2} = -10\log((1 - (\frac{\omega}{\omega_n})^2)^2 + 4\xi^2(\frac{\omega}{\omega_n})^2).$$

O comportamento assintótico de $|G(j\omega)|_{dB}$ é então:

Assíntota de baixa frequência: $\omega \ll \omega_n \Rightarrow |G(j\omega)|_{dB} \approx -10 \log 1 = 0 dB \Rightarrow$ reta constante de 0dB;

Assíntota de alta frequência:
$$\omega \gg \omega_n \Rightarrow |G(j\omega)|_{dB} \approx -10\log{(\frac{\omega}{\omega_n})^4} = -40\log{\frac{\omega}{\omega_n}} = -40\log{\omega} + 40\log{\omega_n}$$
 \Rightarrow reta com inclinação de -40 dB por década.

As duas assíntotas se encontram na frequência $\omega_c=\omega_n$, que é, neste caso, considerada a frequência de corte de G(s), mesmo não satisfazendo a regra de queda de 3dB. De fato:

$$|G(j\omega_n)|_{dB} = -10\log 4\xi^2 = -20\log 2\xi.$$

Um diagrama de módulo aproximado consiste, assim, em traçar as duas assíntotas:

- 0dB para $\omega \leq \omega_n$;
- reta com inclinação de -40 dB por década para $\omega \geq \omega_n$.

Diferentemente dos termos de primeira ordem, a transição dos diagramas de módulo na região da frequência de corte ω_n agora depende do coeficiente de amortecimento ξ , podendo, inclusive haver picos nestes diagramas. Analisemos, então, a existência de pontos de máximo na função $|G(j\omega)| = \frac{1}{\sqrt{(1-(\frac{\omega}{\omega_n})^2)^2+4\xi^2(\frac{\omega}{\omega_n})^2}}$. Claramente,

haverá um máximo do módulo se houver um mínimo do denominador, ou, melhor ainda, da função:

$$h(\omega) = (1 - (\frac{\omega}{\omega_n})^2)^2 + 4\xi^2(\frac{\omega}{\omega_n})^2.$$

Para que haja um ponto de mínimo $h(\omega)$ é necessário que sua primeira derivada seja nula em alguma frequência. Assim:

$$h'(\omega) = 4\frac{\omega}{\omega_n^2} \left(\frac{\omega^2}{\omega_n^2} - 1 + 2\xi^2 \right) = 0.$$

Há duas soluções para a equação acima:

• $\omega = 0$;

•
$$\omega = \omega_n \sqrt{1 - 2\xi^2}$$
, se $\xi \le \frac{1}{\sqrt{2}}$.

Analisemos então a frequência de interesse $\omega_r = \omega_n \sqrt{1-2\xi^2}$. A segunda derivada de h(.) é dada por:

$$h''(\omega) = \frac{4}{\omega_n^2} \left(3 \frac{\omega^2}{\omega_n^2} - 1 + 2\xi^2 \right).$$

$$h''(\omega_r) = \frac{4}{\omega_n^2} \left(3 \frac{\omega_n^2 (1 - 2\xi^2)}{\omega_n^2} - 1 + 2\xi^2 \right) = \frac{4}{\omega_n^2} \left(2 - 4\xi^2 \right) \ge 0 \text{ para } \xi \le \frac{1}{\sqrt{2}}.$$

Assim, ω_r é um ponto de mínimo de $h(\omega)$ e, consequentemente, um ponto de máximo de $|G(j\omega)|$. O valor do módulo na frequência ω_r é dado por:

$$M_r = |G(j\omega_r)| = \frac{1}{\sqrt{(1 - (1 - 2\xi^2))^2 + 4\xi^2(1 - 2\xi^2)}} = \frac{1}{\sqrt{4\xi^2 - 4\xi^4}} = \frac{1}{2\xi\sqrt{1 - \xi^2}}.$$

A frequência ω_r é denominada **frequência de ressonância** de G(s), enquanto o valor correspondente do módulo, M_r , é denominado **pico de ressonância**. Relembremos que a reposta em frequência de representa o comportamento em regime permanente da resposta de G(s) a uma entrada senoidal. Dessa forma, ω_r é a frequência da senoide de entrada que resulta na maior amplificação do módulo da senoide de saída. O valor dessa amplificação é dado, justamente, pelo pico de ressonância M_r .

Nos diagramas da figura 1.6 pode-se verificar que o pico de ressonância aumenta com a diminuição do coeficiente de amortecimento ξ .

Calculemos agora o ângulo de fase de $G(j\omega)$. A partir da equação (1.1), tem-se que:

$$\angle G(j\omega) = -\arctan\frac{2\xi\frac{\omega}{\omega_n}}{1 - (\frac{\omega}{\omega_n})^2}.$$

Analisando o comportamento assintótico, tem-se que:

Assíntota de baixa frequência: $\omega \ll \omega_n \Rightarrow \angle G(j\omega) \approx 0^\circ$;

Assíntota de alta frequência: $\omega \gg \omega_n \Rightarrow \angle G(j\omega) \approx -180^{\circ}$.

Na frequência da corte:

$$\angle G(j\omega_n) = \arctan 1 = -90^{\circ}.$$

Um diagrama de fase aproximado pode ser obtido traçando-se duas assíntotas:

- 0° para $\omega \leq \omega_n$;
- -180° para $\omega \leq \omega_n$;

Nos diagramas da figura 1.6 pode-se verificar que essa aproximação é pobre para valores de ξ mais próximos de 1 e melhor para valores de ξ mais próximos de 0.

Exemplo 1.6

$$G(s) = \frac{1}{s^2 + 2\xi s + 1}.$$

Note-se que, para essa função, $\omega_n = 1 rad/s$.

Os diagramas de Bode dessa função para ξ variando de 0,1 a 1,0 em intervalos de 0,1 estão representados na figura 1.6

Figura 1.6: Diagramas de Bode de $G(s) = \frac{1}{s^2 + 2\xi s + 1}$, com ξ variando de 0, 1 (azul) a 1, 0 (vermelho) em intervalos de 0, 1.

Zeros complexos conjugados

$$G(s) = \frac{s^2 + 2\xi\omega_n s + \omega_n^2}{\omega_n^2} = (\frac{s}{\omega_n})^2 + 2\xi(\frac{s}{\omega_n}) + 1, \ \omega_n > 0, \ 0 \le \xi \le 1.$$
$$|G(j\omega)| = \sqrt{(1 - (\frac{\omega}{\omega_n})^2)^2 + 4\xi^2(\frac{\omega}{\omega_n})^2}.$$
$$|G(j\omega)|_{dB} = 20\log\sqrt{(1 - (\frac{\omega}{\omega_n})^2)^2 + 4\xi^2(\frac{\omega}{\omega_n})^2} = 10\log\left((1 - (\frac{\omega}{\omega_n})^2)^2 + 4\xi^2(\frac{\omega}{\omega_n})^2\right).$$

Assíntota de baixa frequência: $\omega \ll \omega_n \Rightarrow |G(j\omega)|_{dB} \approx -10 \log 1 = 0 dB \Rightarrow$ reta constante de 0dB;

Assíntota de alta frequência: $\omega \gg \omega_n \Rightarrow |G(j\omega)|_{dB} \approx 40 \log \omega - 40 \log \omega_n \Rightarrow$ reta com inclinação de 40dB por década.

As duas assíntotas se encontram na frequência $\omega_c = \omega_n$. Um diagrama de módulo aproximado consiste em traçar as duas assíntotas:

- 0dB para $\omega \leq \omega_n$;
- reta com inclinação de 40dB por década para $\omega \geq \omega_n$.

O módulo atinge seu valor mínimo em $\omega_r = \omega_n \sqrt{1 - 2\xi^2}$, se $\xi \leq \frac{1}{\sqrt{2}}$, o qual é dado por $M_m = 2\xi \sqrt{1 - \xi^2}$. O ângulo de fase de $G(j\omega)$ é dado por:

$$\angle G(j\omega) = \arctan \frac{2\xi \frac{\omega}{\omega_n}}{1 - (\frac{\omega}{\omega_n})^2}.$$

Assíntota de baixa frequência: $\omega \ll \omega_n \Rightarrow \angle G(j\omega) \approx 0^\circ$;

Assíntota de alta frequência: $\omega \gg \omega_n \Rightarrow \angle G(j\omega) \approx 180^{\circ}$.

Exemplo 1.7

$$G(s) = s^2 + 1, 6s + 4.$$

Note-se que, para essa função, $\omega_n=2$ rad/s e $\xi=0,4$. Seus diagramas de Bode estão representados na figura 1.7

Figura 1.7: Diagramas de Bode de $G(s) = s^2 + 1, 6s + 4$.

1.3.5 Diagramas Compostos

Uma das razões para o sucesso do uso dos diagramas de Boda na análise de sistemas de controle via resposta em frequência reside na facilidade de se traçarem diagramas aproximados a partir daqueles de termos mais simples de primeira e segunda ordens. Tanto os diagramas de módulo quanto de fase podem ser obtidos a partir da soma dos diagramas de termos mais simples. Esta tarefa torna-se particularmente fácil se forem considerados os diagramas aproximados por suas assíntotas. Esta técnica será ilustrada através dos dois exemplos abaixo.

Exemplo 1.8

$$G(s) = \frac{4(s+1)}{(s+2)(s+4)}.$$

O primeiro passo é identificar os termos básicos (ganho, integrador/derivador, polos/zeros reais ou complexos) e escrevê-los na forma padrão.

Na função acima verifica-se a presença de dois polos e um zero reais e um ganho. Escrevendo os termos relativos aos polos e zeros reais na forma padrão, tem-se:

$$G(s) = \frac{4(s+1)}{2(\frac{s}{2}+1)4(\frac{s}{4}+1)} = \frac{0,5(s+1)}{(\frac{s}{2}+1)(\frac{s}{4}+1)}.$$

Identificam-se, em seguida, as frequências de corte associadas a cada termo:

 $\omega_1 = 1$ rad/s: frequência de corte associada ao zero $z_1 = -1$;

 $\omega_2 = 2$ rad/s: frequência de corte associada ao polo $p_1 = -2$;

 $\omega_3 = 4$ rad/s: frequência de corte associada ao polo $p_1 = -4$;

Os diagramas assintóticos de módulo e fase podem ser então compostos. Módulo $|G(j\omega)|$:

De 0 até ω_1 : ganho constante de $20 \log 0, 5 \approx -6 dB$;

De ω_1 até ω_2 : reta com inclinação de +20dB/década;

De ω_2 até ω_3 : reta com inclinação de 0dB/década;

De ω_3 até ∞ : reta com inclinação de -20dB/década;

Fase $\angle G(j\omega)$:

De 0 até ω_1 : 0°;

De ω_1 até ω_2 : $+90^\circ$;

De ω_2 até ω_3 : 0° ;

De ω_3 até ∞ : -90° .

Os diagramas de Bode de G(s) estão representados na figura 1.8.

(ap) espurious (be) espurious (control of the control of the contr

Bode Diagram

Figura 1.8: Diagramas de Bode de $G(s) = \frac{4(s+1)}{(s+2)(s+4)}$.

Frequency (rad/s)

10⁰

$$G(s) = \frac{0.04(s^2 + 0.01s + 1)}{s^2(s^2 + 0.04s + 4)}.$$

-90

10

Identificam-se: ganho, dois polos iguais a zero e um par de polos complexos conjugados iguais $a-0,04\pm j2$, com $\xi=0,005$ e $\omega_n=1$ rad/s, e um par de zeros complexos iguais $a-0,05\pm j1$, com $\xi=0,02$ e $\omega_n=2$ rad/s. O termo relativo aos zeros já se encontra na forma padrão. Reescrevendo o termo relativo aos polos, tem-se:

$$G(s) = \frac{0.04(s^2 + 0.01s + 1)}{4s^2((\frac{s}{2})^2 + 0.02(\frac{s}{2}) + 1)} = \frac{0.01(s^2 + 0.01s + 1)}{s^2((\frac{s}{2})^2 + 0.02(\frac{s}{2}) + 1)}.$$

Identificam-se, em seguida, as frequências de corte associadas a cada termo:

 $\omega_1 = 1$ rad/s: frequência de corte associada aos zeros complexos;

 $\omega_2 = 2rad/s$: frequência de corte associada aos polos complexos.

Os diagramas assintóticos de módulo e fase podem ser então compostos. $|G(j\omega)|$:

De $\omega = 0$ até ω_1 : reta com inclinação de -40dB/década (devido aos dois integradores), deslocada de $20 \log 0, 01 = -40$ dB (devido ao ganho de 0, 01);

De ω_1 até ω_2 : reta com inclinação de 0dB/década;

De ω_2 até ∞ : reta com inclinação de -40dB/década.

 $\angle G(j\omega)$:

De $\omega = 0$ até ω_1 : -180° ;

De ω_1 até ω_2 : 0° ;

De ω_2 até ∞ : -180° .

Os diagramas de Bode de G(s) estão representados na figura 1.9.

Figura 1.9: Diagramas de Bode de $G(s) = \frac{0.04(s^2 + 0.01s + 1)}{s^2(s^2 + 0.04s + 4)}$

1.3.6 Sistemas de Fase Não-Mínima

Consideremos os sistemas representadas pelas seguintes funções de transferência:

$$G_1(s) = \frac{s+1}{0, 1s+1}, \quad G_2(s) = \frac{s-1}{0, 1s+1},$$

cujas respostas em frequência são dadas por:

$$G_1(j\omega) = \frac{j\omega + 1}{j0, 1\omega + 1}, \quad G_2(j\omega) = \frac{-j\omega + 1}{j0, 1\omega + 1}.$$

Verifica-se facilmente que $G_1(j\omega)$ e $G_2(j\omega)$ posuem o mesmo módulo. O que as diferencia é o diagrama de fase, conforme pode ser visto na figura 1.10. Verifica-se que a fase de $G_2(j\omega)$ tem uma variação maior do que a de $G_1(j\omega)$. Pode ser demonstrado que, dentre todas as funções de transferência cujas respostas em frequência têm o mesmo módulo, aquela composta por polos e zeros com parte real não-positiva é a que apresenta a menor variação no diagrama de fase. Por esta razão, tais sistemas são ditos de **fase mínima**. Por oposição, sistemas com polos e/ou zeros com parte real positiva são ditos sistemas de **fase não-mínima**. Zeros com parte real positiva são, assim, denominados **zeros de fase não-mínima**.

Figura 1.10: Diagramas de Bode de $G(s)=\frac{s+1}{0,1s+1}$ (azul) e $G(s)=\frac{s-1}{0,1s+1}$ (verde).

1.3.7 Sistemas com Retardo

Muitos sistemas industriais apresentam um atraso entre o momento em que a entrada é aplicada pelo atuador e o momento em que o sistema começa a reagir. Tal atraso é conhecido na literatura como retardo, atraso de transporte, ou tempo morto.

Na representação por função de transferência, um retardo de L segundos é representado pelo seguinte termo:

$$e^{-Ls}$$

Dessa forma, um sistema de primeira ordem com retardo apresenta a seguinte função de transferência:

$$G(s) = \frac{e^{-Ls}}{\tau s + 1}.$$

Em termos da reposta em frequência, tem-se que:

$$|e^{-jL\omega}| = 1, \quad \angle e^{-jL\omega} = -L\omega.$$

Dessa forma, o módulo não é alterado, porém a fase cai linearmente com a frequência. Na figura 1.11 estão desenhados os diagramas de Bode de $G(s) = \frac{e^{-0,1s}}{s+1}$.

Figura 1.11: Diagramas de Bode de $G(s) = \frac{e^{-0.1s}}{s+1}$.

1.4 Diagramas Polares

O diagrama polar da resposta em frequência $G(j\omega)$ é o gráfico de $\mathrm{Im}\{G(j\omega)\}\times\mathrm{Re}\{G(j\omega)\}$, parametrizado em relação à frequência ω . Em outras palavras, para cada valor de ω , $G(j\omega)$ é calculado e o ponto correspondente é desenhado no plano complexo. Ao se realizar esse procedimento para todos os valores de ω variando de 0 a $+\infty$, obtém-se o diagrama polar.

Tais diagramas são usados basicamente para análise de estabilidade e de robustez em malha fechada de sistemas de controle. Para análise de estabilidade, costuma-se traçar também o diagrama correspondente a $\omega < 0$. Como $G(-j\omega)$ é o conjugado de $G(j\omega)$, a parte correspondente a $\omega < 0$ no diagrama é obtida rebatendo-se o diagrama de $\omega > 0$ em relação ao eixo real. O diagrama assim composto é também denominado **Diagrama de Nyquist**.

Diferentemente dos Diagramas de Bode, não há regras gerais e simples para se desenhar um esboço a partir de funções de transferência básicas. Desta forma, neste texto limitar-nos-emos a mostrar exemplos de diagramas, nas figuras de A.1 a A.6 ao fim do capítulo, no Apêndice.

Figura 1.12: Sistema a realimentação unitária.

1.5 Análise de Estabilidade via Resposta em Frequência

Consideremos o sistema de controle a realimentação unitária representado na figura 1.12. Sua função de transferência de malha fechada é dada por:

$$G_{mf}(s) = \frac{KG(s)}{1 + KG(s)}.$$

Deseja-se saber se esta função é estável, ou seja, se todos seus polos têm parte real negativa, mas usando apenas as informações de sua resposta em frequência.

Consideremos então a seguinte hipótese:

Hipótese 1.1 O sistema representado na figura 1.12 é estável para pequenos valores de K > 0 e pode tornar-se instável a partir de um valor limite $K_u > 0$.

Sistemas cuja função de transferência de malha aberta G(s) é estável, a menos, possivelmente, de um polo na origem ou de um par de polos no eixo imaginário, satisfazem a essa hipótese.

No valor limite, haveria então polos de malha fechada no eixo imaginário ($s = j\omega$). A equação característica do sistema, cujas raízes são os polos de mala fechada, é dada por:

$$1 + KG(s) = 0.$$

Dessa forma, no valor limite, ter-se-ia:

$$1 + K_n G(j\omega) = 0,$$

logo:

$$|K_uG(j\omega)| = 1, \quad \angle G(j\omega) = -180^{\circ}.$$

Definamos ω_f como a frequência na qual:

$$\angle G(j\omega_f) = -180^{\circ}$$
.

Assim, claramente, a condição para estabilidade em malha fechada de sistemas que satisfazem a Hipótese 1.1 seria:

$$|KG(j\omega_f)| < 1.$$

Em decibeis:

$$|KG(j\omega_f)|_{dB} < 0.$$

A estabilidade em malha fechada pode, neste caso, ser verificada diretamente dos diagramas de Bode, como pode ser visto na figura 1.13, que mostra os Diagramas de Bode de KG(s), com $G(s) = \frac{4}{s(s+2)^2}$, para valores de K que deixam o sistema, respectivamente, estável, na situação limite e instável.

No entanto, esta condição não é válida para sistemas que não satisfazem a Hipótese 1.1. Para o caso geral, deve-se usar o chamado critério de estabilidade de Nyquist.

1.5.1 O Critério de Estabilidade de Nyquist

Considere o sistema de controle a realimentação unitária representado na figura 1.12. Pode ser demonstrado que esse sistema é estável em malha fechada se, e somente se, o número de voltas que o diagrama de Nyquist de KG(s) dá em torno do ponto (-1,0) no sentido anti-horário for igual ao número de polos de G(s) no semi-plano direito.

Figura 1.13: Diagramas de Bode de $KG(s)=K\frac{4}{s(s+2)^2}$ para $K=1,\,K=4$ e K=8.

Exemplo 1.10 Considere um sistema para o qual:

$$G(s) = \frac{4}{s(s+2)^2}, \quad K = 1.$$

G(s) não possui nenhum polo no semi-plano direito, dessa forma, para que o sistema seja estável em malha fechada, o diagrama de Nyquist de $G(j\omega)$ não deve dar nenhuma volta em torno do ponto (-1,0).

O diagrama de Nyquist de $G(j\omega)$ está representado na figura 1.14. Observa-se claramente, que o ponto (-1,0) não é contornado. Desse forma, segundo o critério de Nyquist, o sistema é estável em malha fechada.

É importante poder determinar a estabilidade para um valor qualquer do ganho K. Para isto, note-se que $KG(j\omega)$ circundar (-1,0) é equivalente a $G(j\omega)$ circundar $(-\frac{1}{K},0)$. Desta forma, conclui-se que o sistema será estável se $(-\frac{1}{K},0)$ estiver à esquerda do ponto em que o diagrama de Nyquist cruza o eixo real negativo (o eixo real positivo corresponde a K<0 e não será levado em conta nesta análise). Este ponto de cruzamento, onde $\mathrm{Im}\{G(j\omega)\}=0$, é (-0,25,0). Desta forma, a condição para estabilidade torna-se:

$$-\frac{1}{K} < -0, 25 \ \Rightarrow \ 0 < K < 4.$$

Exemplo 1.11 Considere um sistema para o qual:

$$G(s) = \frac{s+4}{(s-2)(s+2)},$$

cujo Diagrama de Nyquist está representado na figura 1.15.

Figura 1.14: Diagrama de Nyquist para análise de estabilidade com $KG(s) = K\frac{4}{s(s+2)^2}$.

Figura 1.15: Diagrama de Nyquist para análise de estabilidade com $G(s) = \frac{s+4}{(s-2)(s+2)}$.

Agora há um polo de G(s) positivo. Dessa forma, para estabilidade em malha fechada, o Diagrama de Nyquist de $G(j\omega)$ deve dar uma volto no sentido anti-horário em torno do ponto $(-\frac{1}{K},0)$. Isto ocorre se:

$$-1<-\frac{1}{K}<0\ \Rightarrow\ K>1.$$

Exemplo 1.12 Considere um sistema para o qual:

$$G(s) = \frac{e^{-\frac{\pi}{4}s}}{s},$$

cujo Diagrama de Nyquist está representado na figura 1.16.

Como não há nehum polo de G(s) no semi-plano direito, para estabilidade em malha fechada, o Diagrama de Nyquist de $G(j\omega)$ não deve dar nenhuma volta em torno do ponto $(-\frac{1}{K},0)$. Pelo diagrama, isto ocorre se:

$$-\frac{1}{K} < -0,5 \implies 0 < K < 2.$$

Figura 1.16: Diagrama de Nyquist para análise de estabilidade com $G(s) = \frac{e^{-\frac{\pi}{4}s}}{s}$.

Ressalte-se que uma das vantagens da abordagem por resposta em frequência em relação a outras abordagens de análise e projeto de sistemas de controle é justamente poder analisar de forma exata sistemas com atraso de transporte.

Apesar da aparente dificuldade em se aplicar o critério de estabilidade de Nyquist, note-se que para sistemas que satisfazem à Hipótese 1.1, que compreendem funções de transferência de malha aberta sem polos no semiplano direito, a estabilidade é garantida se, e somente se, o diagrama não der nenhuma volta em torno do ponto crítico. Esta é a forma mais simples de aplicação do método, que será usada doravante.

Observe-se ainda que a distância do cruzamento do diagrama de Nyquist com o eixo real para o ponto crítico (-1,0) fornece uma informação valiosa para o projetista do sistema de controle: de quanto o ganho K pode ser aumentado sem que o sistema em malha fechada se torne instável. Tal medida nos dá uma informação sobre **margem de estabilidade**, que é formalizada na seção seguinte.

1.5.2 Margens de Estabilidade

Consideremos o sistema de controle representado na figura 1.12. Suponhamos também que o sistema em questão satifaz à Hipótese 1.1, ou seja, é estável para pequenos valores do ganho K e pode tornar-se instável a partir de um valor limite K_u .

Definição 1.1 A Margem de Ganho do sistema é dada por:

$$MG = \frac{1}{|KG(j\omega_f)|},$$

sendo ω_f a frequência de cruzamento de fase, definida por:

$$\angle G(j\omega_f) = -180^{\circ}$$
.

Verifica-se facilmente que sistemas que satifazem à Hipótese 1.1 são estáveis em malha fechada se $\mathrm{MG}>1$. Observa-se que a MG indica de quanto se pode aumentar o ganho K sem que o sistema se torne instável.

Costuma-se medir a MG em decibeis:

$$\mathrm{MG_{dB}} = 20\log\frac{1}{|KG(j\omega_f)|} = -20\log|KG(j\omega_f)|.$$

A condição de estabilidade é, neste caso, $MG_{dB} > 0$.

Definição 1.2 A Margem de Fase do sistema é dada por:

$$MF = 180^{\circ} + \angle G(j\omega_a),$$

sendo ω_g a frequência de cruzamento de ganho, definida por:

$$|KG(j\omega_q)| = 1.$$

Sistemas que satifazem à Hipótese 1.1 são estáveis em malha fechada se MF > 0. A Margem de Fase indica quanto se pode ter de atraso de fase sem que o sistema se torne instável.

Exemplo 1.13 Consideremos o sistema para o qual:

$$G(s) = \frac{2}{s(s+1)}, \quad K = 1.$$

$$G(j\omega) = \frac{2}{j\omega(j\omega+1)}.$$

$$|G(j\omega)| = \frac{2}{\omega\sqrt{\omega^2+1}}.$$

$$\angle G(j\omega) = -90^{\circ} - \arctan(\omega).$$

Note-se que $\angle G(j\omega) > -180^\circ$ para qualquer ω . Neste caso, não há frequência de cruzamento de fase e $\mathrm{MG} = \infty$. Dessa forma, o ganho K pode ser aumentado indefinidamente sem que o sistema se torne instável. Calculemos agora a frequência de cruzamento de ganho:

$$|G(j\omega_g)| = \frac{2}{\omega_g \sqrt{\omega_g^2 + 1}} = 1.$$

$$(\omega_g \sqrt{\omega_g^2 + 1})^2 = 4 \implies \omega_g^4 + \omega_g^2 - 4 = 0.$$

A solução real e positiva para esta equação é $\omega_g=1,25$ rad/s. Dessa forma:

$$MF = 180^{\circ} - 90^{\circ} - \arctan(1, 25) = 38, 7^{\circ} = 0,675 \text{ rad.}$$

O valor do retardo L que levaria o sistema ao ponto crítico é dado por:

$$L_u \omega_g = \text{MF} \quad \Rightarrow \quad L_u = \frac{0,675}{1,25} = 0,54\text{s}.$$

Assim, o sistema permanece estável para qualquer atraso inferior a 0,54s.

Exercício 1.1 Calcular MG e MF para o sistema representado por:

$$G(s) = \frac{5}{s(s+1)(s+2)}, \quad K = 1.$$

Exercício 1.2 Calcular MG e MF para o sistema representado por:

$$G(s) = \frac{e^{-Ls}}{s},$$

em função do ganho K e do retardo L. Em seguida, determinar os valores de L e K que mantêm o sistema estável em malha fechada.

1.6 Especificações da Resposta em Frequência e Relação com Resposta Temporal

O desempenho de um sistema de controle é, em geral, avaliado a partir da sua resposta temporal a sinais de referência típicos. Nesta seção serão analisadas as especificações mais importantes da resposta em frequência e como elas se relacionam com especificações no domínio do tempo.

As principais especificações no domínio da frequência são as seguintes:

Frequência de Ressonância (ω_r) e pico de ressonância (M_r): indicam a frequência da senoide de entrada (ω_r) que resulta na maior amplificação do amplitude na saída (M_r).

Frequência de corte e largura de faixa (ω_b) : a frequência de corte é a frequência na qual $|G(j\omega)|$ fica 3dB abaixo do valor de baixa frequência. Indica até que frequência da entrada o sistema responde de forma satisfatória. Uma vez que os sistemas de controle são geralmente projetados para atuar como filtros passabaixas, sua largura de faixa é o intervalo $[0, \omega_b]$.

Margem de Ganho (MG) e Margem de Fase (MF)

Ganho de baixa frequência (|G(0)|): indica a capacidade do sistema para rastrear sinais de referência (resposta em regime permanente).

1.6.1 Sistemas de primeira ordem

Nesse estudo, estamos interessados no comportamento dos sistemas em malha fechada estáveis que, no caso de sistemas de primeira ordem, têm a seguinte função de transferência:

$$G_{mf}(s) = \frac{1}{\tau s + 1}, \ \tau > 0.$$
 (1.2)

Como visto na seção 1.3.3, a resposta em frequência de $G_{mf}(s)$ não apresenta pico de ressonância. Além disso:

$$\omega_b = \frac{1}{\tau},$$

que é a frequência de corte.

Dessa forma, a largura de faixa é inversamente proporcional à constante de tempo τ . Ora, sabe-se que o tempo de acomodação da reposta ao degrau de sistemas de 1a. ordem é proporcional a τ . Considerando-se o critério de 2%, tem-se que $t_s=4\tau$. Conclui-se então que, quanto maior for a largura de faixa da resposta em frequência, menor será o tempo de resposta do sistema. Como será visto na sequência, trata-se de uma regra geral: quanto maior a largura de faixa, mais rápida tende ser a resposta no domínio do tempo.

As margens de ganho e de fase são medidas da malha fechada, mas que são calculadas a partir da função de transferência de malha aberta G(s). Neste caso, consideramos um sistema a realimentação unitária como aquele representado na figura 1.12, com K=1 e

$$G(s) = \frac{1}{\tau s}.$$

Pode ser verificado facilmente que a função de transferência de malha fechada é dada por (1.2).

A resposta em frequência de G(s) é dada por:

$$G(j\omega) = \frac{1}{j\tau\omega}.$$

Assim:

$$|G(j\omega)| = \frac{1}{\tau\omega}, \quad \angle G(j\omega) = -90^{\circ}.$$

Dessa forma, conclui-se facilmente que:

$$MG = \infty$$
, $MF = 90^{\circ}$.

Como são valores fixos, MG e MF não trazem indicações sobre o comportamento de um sistema de primeira ordem no domínio do tempo.

1.6.2 Sistemas de segunda ordem

Considera-se a seguinte forma padrão para sistemas de segunda ordem subamortecidos, sem zeros:

$$G_{mf}(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}, \quad 0 < \xi < 1, \omega_n > 0.$$
(1.3)

Como visto na seção 1.3.4, a resposta em frequência de $G_{mf}(s)$ apresenta pico de ressonância se $\xi < \frac{1}{\sqrt{2}}$. Neste caso:

$$\omega_r = \sqrt{1 - 2\xi^2} \omega_n, \quad M_r = \frac{1}{2\xi\sqrt{1 - \xi^2}}.$$

A partir dessas expressões, podem-se tirar as seguintes conclusões:

- 1. M_r só depende do coeficiente de amortecimento ξ , tal como a especificação de sobressinal máximo (*overshoot* M_p) da resposta ao degrau deste tipo de sistema. Dessa forma, há uma relação entre essas duas especificações. Na figura 1.17 é apresentado um gráfico comparativo de M_r e M_p em função de ξ . Verifica-se então que quanto maior for o pico de ressonância M_r , maior também será o *oveershoot* M_p .
- 2. A frequência natural amortecida do sistema (1.3), que é a frequência da senoide amortecida da resposta ao degrau é dada por $\omega_d = \sqrt{1-\xi^2}\omega_n$. Assim, para pequenos valores de ξ , $\omega_r \approx \omega_d$. O tempo de pico da resposta ao degrau é inversamente proporcional a ω_d . Dessa forma, quanto maior for ω_r , menor tende a ser o tempo de pico, o que implica uma resposta temporal mais rápida.

Figura 1.17: Pico de ressonância (vermelho) e *overshoot* (azul) em função de ξ .

Como $|G_{mf}(0)| = 1$, a frequência de corte ω_b é dada por:

$$|G_{mf}(j\omega_b)| = \frac{1}{\sqrt{2}}.$$

Assim:

$$\frac{1}{\sqrt{\left(1 - \frac{\omega_b^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega_b}{\omega_n}\right)^2}} = \frac{1}{\sqrt{2}}.$$

$$\left(1 - \frac{\omega_b^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega_b}{\omega_n}\right)^2 = 2.$$

Resolvendo essa equação chega-se à seguinte expressão:

$$\omega_b = \omega_n \sqrt{1 - 2\xi^2 + \sqrt{4\xi^4 - 4\xi^2 + 2}}$$

Figura 1.18: $\frac{\omega_b}{\omega_n}$ em função de ξ .

O gráfico de $\frac{\omega_b}{\omega_n} \times \xi$ é apresentado na figura 1.18. Verifica-se que há uma variação de 1,55 para $\xi=0$ até 0,64 para $\xi=1$. Costuma-se então usar a seguinte aproximação.

$$\omega_b \approx \omega_n$$
.

Deve-se ter em mente que não vale a pena usar as expressões exatas, visto que só são válidas para este sistema de segunda ordem específico. Muito mais valioso para o projetista é constatar que ω_b dá uma boa ideia do valor de ω_n . Sabendo-se que o tempo de subida da resposta ao degrau é aproximadamente inversamente proporcional a ω_n , pode-se concluir e estender esta conclusão a sistemas mais gerais: quanto maior for a largura de faixa da resposta em frequência, menor tende a ser o tempo de subida da resposta ao degrau.

Para o cálculo de MG e MF devemos considerar um sistema realimentado como o representado na figura 1.12, com K=1 e

$$G(s) = \frac{\omega_n^2}{s(s + 2\xi\omega_n)},$$

que resulta na função de transferência de malha fechada da equação (1.3). Sua resposta em frequência é dada por:

$$G(j\omega) = \frac{\omega_n^2}{j\omega(j\omega + 2\xi\omega_n)},$$
$$|G(j\omega)| = \frac{\omega_n^2}{\omega\sqrt{\omega^2 + 4\xi^2\omega_n^2}},$$
$$\angle G(j\omega) = -90^\circ - \arctan(\frac{\omega}{2\xi\omega_n}).$$

Como $\angle G(j\omega)>-180^\circ$ para qualquer ω , então $MG=\infty$. Dessa forma, MG não traz nenhuma informação útil nesse caso.

A frequência de cruzamento de ganho é dada por:

$$|G(j\omega_g)| = \frac{\omega_n^2}{\omega_g \sqrt{\omega_g^2 + 4\xi^2 \omega_n^2}} = 1,$$

$$\omega_g \sqrt{\omega_g^2 + 4\xi^2 \omega_n^2} = \omega_n^2,$$

$$\omega_g^4 + 4\xi^2 \omega_n^2 \omega_g^2 - \omega_n^4 = 0,$$

$$\omega_g = \omega_n \sqrt{\sqrt{4\xi^4 + 1} - 2\xi^2}.$$

Nessa frequência:

$$\angle G(j\omega_g) = -90^{\circ} - \arctan(\frac{\sqrt{\sqrt{4\xi^4 + 1} - 2\xi^2}}{2\xi}).$$

Logo:

$$MF = 180^{\circ} + \angle G(j\omega)_g = 90^{\circ} - \arctan(\frac{\sqrt{\sqrt{4\xi^4 + 1} - 2\xi^2}}{2\xi}) = \arctan(\frac{2\xi}{\sqrt{\sqrt{4\xi^4 + 1} - 2\xi^2}}).$$

Portanto, a MF depende apenas de ξ , tal como o pico de ressonância M_r e o *overshoot* da resposta ao degrau. Na figura 1.19 pode ser visto o gráfico de MF em função de ξ . Verifica-se que quanto maior for ξ , maior será MF

Figura 1.19: MF em graus em função de ξ .

e menor será o *overshoot*. Além disso, verifica-se que para $\xi \leq 0, 7$ a seguinte aproximação é válida:

$$MF \approx 100\xi$$
,

para MF medida em graus. Tal fórmula, extremamente simples, dá uma ideia da MF necessária para se obter um bom amortecimento da resposta temporal. Não é aceitável uma margem de fase menor do que 30°.

1.6.3 Especificações para Sistemas Gerais

Não é possível obter expressões das especificações para sistemas representados por funções de transferência gerais. No entanto, as expressões obtidas para sistemas de primeira e segunda ordens permitem traçar alguns paralelos entre a reposta em frequência e a resposta temporal:

- O pico de ressonância M_r é um indicador do amortecimento. Valores considerados satisfatórios são: 1, 0 ≤ M_r ≤ 1, 4 (0dB ≤ M_{rdB} ≤ 3dB).
- A frequência de corte (largura de faixa) ω_b é um indicativo da velocidade da resposta temporal. Quanto maior for a largura de faixa, menor tenderá a ser o tempo de subida da resposta temporal.
- MG e MF são indicativos da estabilidade relativa. MF está mais ligada ao amortecimento. Valores abaixo de 30° implicam resposta temporal muito oscilatória, com alto valor de *overshoot*. O mesmo é válido para MG menor do que 3dB.

1.6.4 Relação entre a resposta em frequência e erros de regime permanente

Para sistemas com realimentação unitária, as expressões do erro de regime permanente para entradas de referência do tipo degrau e rampa são as seguintes:

$$e_{ss} = \frac{1}{1+k_p}, \text{ sendo } k_p = \lim_{s \to 0} KG(s) \text{ (degrau)}.$$

$$e_{ss} = \frac{1}{k_v}, \text{ sendo } k_v = \lim_{s \to 0} sKG(s) \text{ (rampa)}.$$

Dessa forma, o erro de regime permanente é inversamente proporcional ao ganho de baixa frequência KG(0). Conclui-se, portanto, que o ganho de baixa frequência deve ser o maior possível para reduzir ou eliminar erros de rastreamento.

Capítulo 2

Projeto de Sistemas de Controle via Resposta em Frequência

Como visto no Capítulo anterior, é possível estimar características da resposta temporal de um sistema de controle a partir de sua resposta em frequência. Consideremos então o sistema de controle a realimentação unitária representado na figura 2.1:

Figura 2.1: Sistema a realimentação unitária.

O objetivo agora é projetar o controlador C(s) de modo que a reposta em frequência apresente:

- 1. Margens de ganho e de fase adequadas ($MG > 6 {\rm dB}, MF > 45^{\circ}$), implicando amortecimento adequado e robustez a variação de parâmetros da planta a controlar;
- 2. Pequeno pico de ressonância ($M_r < 3dB$) implicando também amortecimento adequado;
- 3. Largura de faixa adequada, em função da velocidade esperada da resposta;
- 4. Ganho de baixa frequência alto, para redução ou eliminação de erros de regime permanente.

Como também foi visto no capítulo anterior, tais especificações, exceto M_r , podem ser determinadas a partir da resposta em frequência (diagramas de Bode) de malha aberta. No caso do sistema representado acima, da resposta em frequência de C(s)G(s). Dessa forma, o projeto via resposta em frequência consiste em manipular C(s) de modo que os diagrama de Bode de C(s)G(s) apresentem as características desejadas.

2.1 Projeto de Controladores em Avanço e em Atraso

Apesar de não serem controladores muito populares, suas propriedades serão de utilidade para a compreensão do funcionamento em frequência dos controladores da família PID.

2.1.1 Controladores em Avanço

Os controladores em avanço possuem a seguinte função de transferência:

$$C(s) = K\frac{\alpha Ts + 1}{Ts + 1}, \text{ com } T > 0, \alpha > 1.$$

Basicamente, C(s) é composto de um ganho K, um zero $z=-\frac{1}{\alpha T}$ e um polo $p=-\frac{1}{T}$. A frequência de corte do zero é, portanto, menor do que a do polo. Na figura 2.2 são mostrados os diagramas de Bode de C(s), para K=1,T=0,1 e $\alpha=10$.

Figura 2.2: Diagramas de Bode do controlador em avanço.

Duas características se destacam:

- 1. A fase positiva, donde vem a denominação de controlador em avanço;
- 2. O ganho positivo em alta frequência.

A primeira característica é usada para se tentar aumentar a Margem de Fase do sistema. A segunda resulta claramente no aumento da largura de faixa, o que vai implicar uma resposta temporal mais rápida. No entanto, esta característica é ruim para as margens de estabilidade, pois a frequência de cruzamento de ganho é deslocada para uma região onde normalmente a fase é pequena, o que tende a baixar tando MG quanto MF. Portanto, é necessário sintonizar o controlador com cautela para aproveitar ao máximo suas boas características.

Calculemos então o pico de fase e o módulo de alta frequência:

$$C(j\omega) = K \frac{j\alpha T\omega + 1}{jT\omega + 1}.$$

$$\angle C(j\omega) = \phi(\omega) = \arctan(\alpha T\omega) - \arctan(T\omega).$$

$$\tan \phi(\omega) = \frac{\alpha T\omega - T\omega}{1 + \alpha T^2\omega^2}.$$

Pode ser demonstrado que o pico de fase ocorre no centro do intervalo entre as duas frequências de corte, em escala logarítmica. Assim:

$$\log \omega_m = 0.5(\log (\alpha T)^{-1} + \log (T)^{-1}) = 0.5(\log (\alpha T^2)^{-1}) = \log (\alpha T^2)^{-0.5}.$$

Assim:

$$\omega_m = \frac{1}{\sqrt{\alpha}T}.$$

Nessa frequência:

$$\tan \phi_m = \tan \phi(\omega_m) = \frac{\alpha - 1}{2\sqrt{\alpha}}.$$

Finalmente:

$$\operatorname{sen}(\phi_m) = \frac{\alpha - 1}{\alpha + 1},$$

$$\alpha = \frac{1 + \operatorname{sen}(\phi_m)}{1 - \operatorname{sen}(\phi_m)}.$$

Dessa forma, quanto maior for o valor de α , ou seja, a distância entre o polo e o zero do controlador, maior será o avanço de fase proporcionado. No entanto, note-se que o módulo de $C(j\omega)$ em alta frequência, sem levar em conta o ganho K, é dado por $20 \log \alpha$. Assim, quanto maior for o valor de α , maior será o deslocamento do cruzamento de ganho para as altas frequências, aumentando muito a largura de faixa e tendendo a diminuir a Margem de Fase.

Pode-se, então, estabelecer o seguinte procedimento para projeto de controladores em avanço, considerando como especificações apenas o erro de regime e_{ss} e a MF desejada (ϕ_F):

- 1. Determinar o ganho K de modo a satisfazer as especificações sobre e_{ss} ;
- 2. Determinar a MF inicial ϕ_I ;
- 3. Determinar o valor do avanço de fase necessário:

$$\phi_m = \phi_F - \phi_I + \theta.$$

sendo θ um ângulo adicionado para compensar a diminuição da fase pelo deslocamento do cruzamento de ganho. Tipicamente: $5^{\circ} \le \theta \le 12^{\circ}$.

- 4. Calcular $\alpha = \frac{1 + \operatorname{sen}(\phi_m)}{1 \operatorname{sen}(\phi_m)};$
- 5. Calcular a nova frequência de cruzamento de ganho ω_{g_F} . Como deseja-se que $\omega_{g_F}=\omega_m,\,\omega_{g_F}$ será a frequência na qual $|C(j\omega_{g_F})G(j\omega_{g_F})|=1$. Como, $\left|\frac{j\alpha T\omega_{g_F}+1}{jT\omega_{g_F}+1}\right|_{\mathrm{dB}}=10\log\alpha$, então $|KG(j\omega_{g_F})|_{\mathrm{dB}}=-10\log\alpha$.

Verificar se a especificação sobre MF é atendida. Se não, voltar ao passo 3, e aumentar o valor de θ .

6. Calcular:

$$T = \frac{1}{\omega_m \sqrt{\alpha}}.$$

Ressalte-se que, caso o avanço de fase necessário seja muito grande e G(s) apresente queda acentuada na fase em torno do cruzamento de ganho, pode não ser possível obter a MF desejada com um controlador em avanço.

Exercício 2.1 Considere um sistema a realimentação unitária cuja função de transferência do processo a controlar é dada por:

$$G(s) = \frac{1}{s(s+2)}.$$

Projetar um controlador em avanço C(s) de modo que:

- 1. o erro de rastreamento a um sinal de referência do tipo rampa seja menor do que 10%;
- 2. a Margem de Fase do sistema seja de, pelo menos, 60°.

2.1.2 Controladores em Atraso

Os controladores em atraso possuem a seguinte função de transferência:

$$C(s)=K\frac{\alpha Ts+1}{Ts+1},\ \mathrm{com}\ T>0, 0<\alpha<1.$$

Trata-se da mesma estrutura do controlador em avanço, porém agora a frequência de corte do zero é maior do que a do polo. Na figura 2.3 são mostrados os diagramas de Bode de C(s), para K=1, T=1 e $\alpha=0,1$.

Duas características se destacam:

- 1. A fase negativa, donde vem a denominação de controlador em atraso;
- 2. O ganho negativo em alta frequência.

Figura 2.3: Diagramas de Bode do controlador em atraso.

A fase negativa tenderia a diminuir a Margem de Fase do sistema, enquanto o ganho de alta frequência negativo teria o efeito oposto, já que traria o cruzamento de ganho para uma região onde a fase é geralmente maior. Uma sintonia adequada do controlador pode, assim, fazer com que as margens de estabilidade sejam aumentadas.

O ganho de alta frequência do controlador em atraso em decibeis é dado por $20\log\alpha$ e é negativo, já que $\alpha<1$. A ideia de projeto para se obter uma MF desejada é usá-lo para deslocar a frequência de cruzamento de ganho ω_g para um valor onde a fase de G(s) provê a margem desejada. Além disso, o polo e o zero do controlador devem ser escolhidos de modo que a fase negativa não interfira nessa margem. Pode-se, então, estabelecer o seguinte procedimento, considerando como especificações o erro de regime e_{ss} e a MF desejada (ϕ_F) :

- 1. Determinar o ganho K de modo a satisfazer as especificações sobre e_{ss} ;
- 2. Determinar a MF inicial ϕ_I ;
- 3. Caso $\phi_I < \phi_F$, determinar a frequência ω_{q_F} na qual:

$$180^{\circ} + \angle G(j\omega_{q_F}) = \phi_F + 6^{\circ}. \tag{2.1}$$

 ω_{g_F} será a nova frequência de cruzamento de ganho.

4. Determinar o valor de α que assegure que ω_{g_F} seja realmente a nova frequência de cruzamento de ganho:

$$|KG(j\omega_{g_F})|_{dB}=-20\log \alpha, \text{ ou}$$

$$\alpha=\frac{1}{|KG(j\omega_{g_F})|}.$$

5. Determinar o parâmetro T de modo que o zero de C(s) esteja uma década abaixo de ω_{g_F} :

$$T = \frac{10}{\alpha \omega_{gF}}.$$

Isto garante que o pico de fase negativo de C(s) não interfira na fase em ω_{q_F} .

O passo 3 justifica-se pelo fato de que a fase de C(s) na frequência $\omega = \frac{10}{\alpha T}$, correspondente ao zero de C(s), é dada por:

$$\angle C(j\frac{10}{\alpha T}) = \arctan(\alpha T \frac{10}{\alpha T}) - \arctan(T \frac{10}{\alpha T}) = \arctan(10) - \arctan(\frac{10}{\alpha}) = 84, 3^{\circ} - \arctan(\frac{10}{\alpha}).$$

Dessa forma, o atraso de fase máximo ($\alpha \to 0$) seria de $84, 3^{\circ} - 90^{\circ} = -5, 7^{\circ}$. Assim, os 6° adicionados no passo 3 garantem que a MF desejada será obtida, isso se houver frequência ω_{g_F} que satisfaça à equação (2.1).

Ressalte-se, finalmente, que, ao trazer o cruzamento de ganho para frequências mais baixas, o controlador em atraso claramente reduz a largura de faixa do sistema, o que resultará em uma resposta temporal mais lenta.

Exercício 2.2 Considere um sistema a realimentação unitária cuja função de transferência do processo a controlar é dada por:

$$G(s) = \frac{1}{s(s+2)}.$$

Projetar um controlador em atraso C(s) de modo que:

- 1. o erro de rastreamento a um sinal de referência do tipo rampa seja menor do que 10%;
- 2. a Margem de Fase do sistema seja de, pelo menos, 60°.

2.1.3 Controladores em Avanço-Atraso

Consistem em combinar as vantagens dos controladores em avanço e em atraso:

$$C(s) = K\frac{\alpha_1 T_1 s + 1}{T_1 s + 1} \frac{\alpha_2 T_2 s + 1}{T_2 s + 1}, \ \operatorname{com} T_1, T_2 > 0, \alpha_1 > 1, 0 < \alpha_2 < 1.$$

O avanço pode obter uma MF próxima da desejada, aumentando a largura de faixa. O atraso seria então usado para um pequeno ajuste da MF, reduzindo um pouco a largura de faixa obtida com o avanço. Dessa forma, a sequência de projeto seria: primeiro o avanço e, em seguida, o atraso.

Exercício 2.3 Considere um sistema a realimentação unitária cuja função de transferência do processo a controlar é dada por:

$$G(s) = \frac{1}{s(s+2)}.$$

Projetar um controlador em avanço-atraso C(s) de modo que:

- 1. o erro de rastreamento a um sinal de referência do tipo rampa seja menor do que 10%;
- 2. a Margem de Fase do sistema seja de, pelo menos, 60° .

2.2 Projeto de Controladores da Família PID

Será usada a seguinte formulação do controlador Proporcional-Integral-Derivativo (PID):

$$C(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right),$$

sendo K_p o ganho proporcional, T_i o tempo integral e T_d o tempo derivativo.

2.2.1 Controlador Proporcional

$$C(s) = K_p$$
.

Este controlador altera apenas o módulo da resposta em frequência, sendo capaz de:

- diminuir o erro de regime com o aumento de K_p ;
- aumentar MG e MF com a diminuição de K_p ;
- aumentar a largura de faixa com o aumento de K_p .

Observa-se claramente a limitação de tal controlador, que não é capaz de melhorar todas as especificações. A seguinte sequência permite projetar um controlador proporcional que garanta uma determinada Margem de Fase ϕ_F :

1. Determinar a frequência ω_{g_F} tal que:

$$180^{\circ} + \angle G(j\omega_{q_F}) = \phi_F. \tag{2.2}$$

2. Determinar K_p tal que $|K_pG(j\omega_{g_F})|=1$.

Claramente, este projeto só funciona se existir uma frequência ω_{g_F} que satisfaça à equação (2.2). Além disso, uma vez fixada a MF, não é possível ajustar o controlador para atender a outras especificações.

Exercício 2.4 Considere um sistema a realimentação unitária cuja função de transferência do processo a controlar é dada por:

$$G(s) = \frac{20}{s(s+2)}.$$

Projetar um controlador proporcional C(s) de modo que a Margem de Fase do sistema seja de, pelo menos, 60° .

2.2.2 Controlador PI

O controlador Proporcional-Integral possui a seguinte função de transferência:

$$C(s) = K_p \left(1 + \frac{1}{T_i s} \right).$$

Reescrevendo-a na forma padrão para traçado dos diagramas de Bode, tem-se:

$$C(s) = \frac{K_p}{T_i} \frac{T_i s + 1}{s}.$$

Na figura 2.4 são mostrados os diagramas de Bode de C(s), para $K_p=1$ e $T_i=1$.

Figura 2.4: Diagramas de Bode do controlador PI.

Duas características se destacam:

 O ganho infinito em baixa frequência, que é usado para eliminar erros de regime para referências do tipo degrau;

2. A fase negativa, que o aproxima do controlador em atraso.

Dessa forma, pode-se pensar em um projeto semelhante ao do controlador em atraso. Note-se, no entanto, que, agora, não seria mais necessário fixar o ganho K_p para reduzir erro de regime, visto que a ação integral já cumpre este papel. Pode-se, então, estabelecer o seguinte procedimento, considerando como especificação a MF desejada (ϕ_F) :

1. Determinar a frequência ω_{g_F} na qual:

$$180^{\circ} + \angle G(j\omega_{q_F}) = \phi_F + 6^{\circ}. \tag{2.3}$$

 ω_{g_F} será a nova frequência de cruzamento de ganho.

2. Colocar $\frac{1}{T_i}$, que é a frequência de corte associada ao zero de C(s), uma década abaixo de ω_{g_F} , de modo que a fase negativa de C(s) não interfira na fase em ω_{g_F} :

$$T_i = \frac{10}{\omega_{g_F}}.$$

3. Determinar K_p que assegure que ω_{g_F} seja realmente a nova frequência de cruzamento de ganho:

$$K_p = \frac{1}{|G(j\omega_{g_F})|},$$

já que o módulo de alta frequência de $C(j\omega)$ é igual a K_p .

A exemplo do controlador em atraso, ao trazer o cruzamento de ganho para frequências mais baixas, o controlador PI reduz a largura de faixa do sistema, o que resultará em uma resposta temporal mais lenta.

Exercício 2.5 Considere um sistema a realimentação unitária cuja função de transferência do processo a controlar é dada por:

$$G(s) = \frac{20}{s(s+2)}.$$

Projetar um controlador PI de modo que a Margem de Fase do sistema seja de, pelo menos, 60°.

2.2.3 Controlador PD

O controlador Proporcional-Derivativo possui a seguinte função de transferência:

$$C(s) = K_n (1 + T_d s).$$

Na figura 2.5 são mostrados os diagramas de Bode de C(s), para $K_p=1$ e $T_d=1$. Duas características se destacam:

- 1. O ganho infinito em alta frequência, o que faz com que aumente significativamente a largura de faixa;
- 2. A fase positiva, que o aproxima do controlador em avanço.

Esta função de transferência teórica não é realizável fisicamente, já que nenhum sistema real apresenta ganho que aumenta indefinidamente com a frequência. Uma função de transferência aproximada, mas realizável, incluiria um polo de módulo elevado, muito distante do zero, que não influenciaria nos cruzamentos de ganho e fase. Conclui-se, portanto, que um controlador PD real é um controlador em avanço.

Dessa forma, pode-se pensar em um projeto semelhante ao do controlador em avanço. No entanto, aqui será abordado um novo aspecto de projeto: obter uma MF desejada mantendo-se o cruzamento de ganho, o que provocaria pouca alteração na largura de faixa. Em princípio, pode parecer que aumentar a largura de faixa seja sempre alo desejável, já que resultaria em uma resposta temporal mais rápida. No entanto, uma largura de faixa muito grande traz, pelo menos, dois inconvenientes:

• Torna o sistema mais vulnerável a ruídos de alta frequência;

Figura 2.5: Diagramas de Bode do controlador PD.

• Aumenta muito o esforço de controle, podendo levar a saturação do atuador.

Pode-se, então, estabelecer o seguinte procedimento, considerando como especificação a MF desejada (ϕ_F) e a manutenção da mesma frequência de cruzamento de ganho:

- 1. Determinar a MF inicial ϕ_I e a respectiva frequência de cruzamento de ganho ω_g ;
- 2. Calcular T_d de modo a garantir o avanço de fase necessário em ω_q :

$$\angle C(j\omega_g) = \phi_F - \phi_I,$$

$$\arctan(\omega_g T_d) = \phi_F - \phi_I,$$

$$T_d = \frac{\tan(\phi_F - \phi_I)}{\omega_g}.$$

3. Calcular K_p de modo que ω_g permaneça realmente como frequência de cruzamento de ganho:

$$|K_p(1+j\omega_g T_d)G(j\omega_g)|=1,$$

$$K_p = \frac{1}{|(1 + j\omega_g T_d)G(j\omega_g)|}.$$

Note-se que, caso se queira aumentar a frequência de cruzamento de ganho ω_g , basta substituir este novo valor na sequência acima. A única condição é que o avanço de fase necessário nessa frequência seja menor do que 90° .

Exercício 2.6 Considere um sistema a realimentação unitária cuja função de transferência do processo a controlar é dada por:

$$G(s) = \frac{20}{s(s+2)}.$$

Projetar um controlador PD de modo que a Margem de Fase do sistema seja de, pelo menos, 60° e a frequência de cruzamento de ganho seja mantida.

2.2.4 Controlador PID

O controlador Proporcional-Derivativo possui a seguinte função de transferência:

$$C(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right),$$

que pode ser escrita da seguinte forma, que explicita seus polos e zeros:

$$C(s) = K_p T_d \frac{\left(s^2 + \frac{1}{T_d}s + \frac{1}{T_i T_d}\right)}{s}.$$

C(s) é então composto por dois zeros, livremente alocáveis no semi-plano esquerdo, e um polo na origem. Os formatos dos diagramas de Bode diferem em função da escolha de zeros reais ou complexos, apesar de esta última escolha ser pouco utilizada. Nas figuras 2.6 e 2.7 são mostrados os diagramas de Bode de C(s) nesses dois casos:

Figura 2.6: Diagramas de Bode do controlador PID com zeros reais $(K_p=1,T_i=1,25,T_d=0,2)$.

Figura 2.7: Diagramas de Bode do controlador PID com zeros complexos ($K_p = 1, T_i = 1, 6, T_d = 0, 625$).

Este controlador agrega as vantagens dos controladores PI e PD: elimina erros de regime para referências do tipo degrau devido ao polo na origem e melhora as características da resposta temporal podendo aumentar MG e MF e a largura de faixa. O projeto mantendo ω_g pode ser feito de forma semelhante ao do controlador PD. Antes disso, é necessário reescrever C(s) na forma padrão para traçado dos Diagramas de Bode. Limitar-nos-emos ao caso em que os zeros de C(s) são reais. Neste caso, C(s) pode ser escrita da seguinte forma:

$$C(s) = K \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{s}.$$

Pode ser deduzida facilmente a seguinte correspondência entre K, τ_1 e τ_2 e os parâmetros originais do controlador PID:

$$T_i = \tau_1 + \tau_2, \quad K_p = KT_i, \quad T_d = \frac{\tau_1 \tau_2}{T_i}.$$
 (2.4)

A sequência de passos para o projeto com manutenção de ω_g e obtenção de MF desejada ϕ_F é agora descrita:

- 1. Determinar a MF inicial ϕ_I e a respectiva frequência de cruzamento de ganho ω_g ;
- 2. Colocar $\frac{1}{\tau_1}$ uma década abaixo de ω_g :

$$\tau_1 = \frac{10}{\omega_g}.$$

3. Calcular τ_2 de modo a garantir o avanço de fase necessário em ω_q :

$$\angle C(j\omega_g) = \phi_F - \phi_I,$$

$$\arctan(\omega_g \tau_1) + \arctan(\omega_g \tau_2) - 90^\circ = \phi_F - \phi_I,$$

$$\tau_2 = \frac{\tan(\phi_F - \phi_I + 90^\circ - \arctan(\omega_g \tau_1))}{\omega_g}.$$

4. Calcular K de modo que ω_g permaneça realmente como frequência de cruzamento de ganho:

$$|K(1+j\omega_g\tau_1)(1+j\omega_g\tau_2)G(j\omega_g)| = 1,$$

$$K = \frac{1}{|(1+j\omega_g\tau_1)(1+j\omega_g\tau_2)G(j\omega_g)|}.$$

5. Calcular os parâmetros originais do controlador usando as fórmulas (2.4)

A exemplo do controlador PD, caso se queira aumentar a frequência de cruzamento de ganho ω_g , basta substituir este novo valor na sequência acima, desde que o avanço de fase necessário nessa frequência seja menor do que 90° .

Exercício 2.7 Considere um sistema a realimentação unitária cuja função de transferência do processo a controlar é dada por:

$$G(s) = \frac{20}{s(s+2)}.$$

Projetar um controlador PID C(s) de modo que a Margem de Fase do sistema seja de, pelo menos, 60° e a frequência de cruzamento de ganho seja mantida.

Apêndice A

Diagramas Polares

Figura A.1: Diagrama polar de $G(s) = \frac{1}{\frac{1}{2}s+1}$.

Figura A.2: Diagramas polares de $G(s)=\frac{1}{s^2+2\xi s+1}$, com $\xi=0,4$ (azul)e $\xi=0,9$ (verde). Percebe-se a ocorrência de pico de ressonância para $\xi=0,4$.

Figura A.3: Diagrama polar de $G(s)=\frac{1}{s(s+1)}$. Percebe-se que, na presença de um integrador em G(s), a parte imaginária de $G(j\omega)$ tende a infinito quando $\omega \to 0$.

Figura A.4: Diagrama polar de $G(s) = \frac{4(s+1)}{(s+2)(s+4)}$

Figura A.5: Diagrama polar de $G(s)=\frac{0.04(s^2+0.01s+1)}{s^2(s^2+0.04s+4)}$. Percebe-se que, na presença de dois integradores em G(s), a parte real de $G(j\omega)$ tende a $-\infty$ quando $\omega \to 0$.

Figura A.6: Diagrama polar de $G(s)=\frac{e^{-0.5s}}{s+1}$. Percebe-se que, na presença de retardo, o diagrama polar cruza os eixos real e imaginário infinitas vezes, tendendo a 0 quando $\omega\to\infty$. Isto é coerente com a queda linear do ângulo de fase de $G(j\omega)$ com a frequência, característica do termo de retardo. Isto pode ser ainda explicado pelo fato de que: $e^{-jL\omega}=\cos{(L\omega)}-j\sin{(L\omega)}$, o que explica os múltiplos pontos em que $\mathrm{Re}\{G(j\omega)\}=0$ e $\mathrm{Im}\{G(j\omega)\}=0$.

Referências Bibliográficas

- [1] Chen, C.T., "Analog & Digital Control System Design," Saunders College Pub., 1993.
- [2] Dorf, R.C. e R.H. Bishop, "Sistemas de Controle Modernos," LTC, 2001.
- [3] Franklin, G., J.D. Powell, A. Emami-Naeini, "Sistemas de Controle Para Engenharia," 6a. ed., Bookman, 2013.
- [4] Ogata, K. "Engenharia de Controle Moderno," 4a. edição, Pearson, Prentice-Hall, 2003.