Exam f.p.2024.spring

Discrete Mathematics

9th of May, 2024

1 Answer the following questions either True or False.

(a)	If \mathcal{A} and \mathcal{B} are sets, then $ \mathcal{A} \cup \mathcal{B} = \mathcal{A} + \mathcal{B} $.		
	○ True		
	○ False		
(b)	If a and b are odd, then $(\exists c \in \mathbb{Z})(c^2 = a^2 + b^2)$.		
	○ True		
	○ False		
(c)	If A and B are both finite, then $ A \setminus B = A - B $.		
	○ True		
	○ False		
(d)	(d) If this sentence is a proposition, then every countable set is fir		
	O True		
	○ False		
(e)	$2^{21} \equiv 1 \pmod{7}$.		
	○ True		
(0)	○ False		
(1)	This sentence implies $\forall x (\varnothing \subseteq x)$.		
	TrueFalse		
(~)			
(g)	$(\forall \mathcal{A} \in \mathbb{P}(\mathbb{N})) (\mathcal{A} \neq \varnothing \Rightarrow (\exists a \in \mathcal{A}) (\forall b \in \mathcal{A}) (a \leqslant b)).$		
	TrueFalse		
(h)	$\mathbb{Z}/n\mathbb{Z}$ is a <i>group</i> under <i>multiplication</i> for every $n \in \mathbb{N}_+$.		
(11)	\bigcirc True		
	○ False		
(i)	$\{(x,y) \in \mathbb{N} \times \mathbb{N} \mid y = \gcd(x,15)\}$ is a function.		
(-)	True		
	○ False		
(j)	$\forall x \forall y \forall z (x \setminus (y \cap z) = (x \setminus y) \cup (x \setminus z)).$		
٧,	○ True		
	O False		

2 Answer the following questions without proof.

(a) Compute gcd(386, 352).

(b) Find all $x \in \mathbb{Z}$ such that $4x + 6 \equiv 3 + 2x \pmod{9}$.

(c) Find all integer solutions to $3x^{49} + 3x + 2 \equiv 4 \pmod{7}$.

(d) List the elements of the following set using set-builder notation: $\Big\{x\in\mathbb{N}\ \Big|\ (\exists k\in\mathbb{Z})(xk=28)\ \land\ (\forall y\in\mathbb{N})\big(y\mid x\ \Rightarrow\ y\in\{1,x\}\big)\Big\}.$

(e) Provide an example of a transitive set x such that $x \notin \mathbb{N}$.

3 Answer the following questions without proof.

(a) Provide a surjection from $\{f \mid (\exists n \in \mathbb{N}) (f : n \to \{0,1\})\}$ to \mathbb{Z} .

(b) In how many different ways can the strings "fighting" and "irish" be scrambled and then concatenated together?

(c) Let $k \in \mathbb{N}$ such that $k \ge 3$. How many strings $s : k \to \{0, 1, ..., 9\}$ satisfy $(\exists i \in k) (s(i) = s(i+1) - 1 = s(i+2) - 2)$?

(d) Let $n \in \mathbb{N}_+$. How many binary strings b satisfy $|b| + \sum_{i=0}^{|b|-1} b(i) = n$?

(e) Let $n \in \mathbb{N}_+$. How many ways are there to move from the bottom-left square to the top-right square on an $n \times n$ chess board if you can only move to the right or up one square at-a-time?

Fig. 1: Two examples of valid paths from the bottom-left corner to the top-right corner on an 8×8 chessboard.

NAME:	NETID:

4 Any use of logical axioms, rules of inference, or theorems must be stated. You may not appeal to truth tables.

Prove $\neg(p \rightarrow q) \rightarrow p$ is a tautology for any propositions p and q.

- 5 You may rely on any theorems we have proven or studied.
 - 1. Give a recursive definition of the Fibonacci sequence $\mathcal{F}:\mathbb{N}\to\mathbb{N}.$

2. Show that $\mathcal{F}(n) < 2^n$ for all $n \in \mathbb{N}_+$.

NAME:	NETID:

6 You may rely on any theorems we have proven or studied.

Let $\mathfrak{F} \coloneqq \{\mathcal{F}(i) \mid i \in \mathbb{N}\}$ be the set of all Fibonacci numbers and observe $|\mathfrak{F}| = \aleph_0$. Show $\exists i, j \in \mathbb{N}$ such that $i \neq j$ and $\mathcal{F}(i) \equiv \mathcal{F}(j) \pmod{2024}$.

NAME:	NETID:	

7 You may rely on any theorems we have proven or studied.

Let $n \in \mathbb{N}_+$ and let $b: n \to \{0,1,\ldots,9\}$ be a decimal string representing a natural number k. Suppose the sum of the digits of b is divisible by 3. Prove that $3 \mid k$.

NAME:	NETID:

8 You may rely on any theorems we have proven or studied.

Show that there are uncountably many infinite hexadecimal strings.