$e^{\pm}$ 

 $e^{\pm}$ 

"

 $e^{\pm}$ 

H

$$I(\gamma) = \frac{1}{4\pi d^2} \int N_E \frac{dI}{d\nu} dV dE = \frac{1}{4\pi d^2} \int N_E \frac{e^2 \nu}{3c^3} dV dE$$

d

 $N_E$ 

$$\mathcal{P}(E,r)$$

$$(\nu,\nu+d\nu)$$

$$B$$

$$\mathcal{P}(E,r) = \frac{dW}{dE} = \frac{1}{4\pi} \frac{e^3 B}{m_e} F(\nu/\nu_c)$$
$$F(x)$$
$$F(x) = x \int_x^\infty dx K_{5/3}(x)$$

$$\nu_s(E) = \frac{3eB}{4\pi m_e^3} E^2$$

F(x)

$$F(x) = \frac{8\pi}{9\sqrt{3}}\delta(x - 0.29)$$

$$\mathcal{P}(E,r) = \frac{2e^3B}{9m_e} \int \frac{d\mathcal{N}}{dE} \delta(f(E))$$

 $n_{DM}(r)$ 

$$\left(\frac{dN(E)}{dE}\right)_d(r) = c_1(E) \cdot n_{DM}(r)$$

$$c_1(E)$$

$$\left(\frac{dN(E)}{dE}\right)_a(r) = c_2(E)n_{DM}(r)^2$$

 $c_2(E)$ 

$$n_{NFW}(r) = \frac{\rho_s}{\frac{r}{r_s}(1 + \frac{r}{r_s})^2}$$

$$n_{NFW}(r) = \frac{1}{4\pi [log(1+C) - C/(1+C)]} \frac{M_{vir}}{r(1+\frac{r}{r_s})^2}$$



$$(\tfrac{dN(E)}{dE})_0(r)$$

$$\left(\frac{dN(E)}{dE}\right)_0(r)$$

$$\frac{dF(E)}{dE} = \frac{c}{4\pi} \frac{dN}{dE}$$

$$\frac{d\mathcal{N}(E)}{dE} = c_1(E) \int n_{DM}(r) dV$$

$$\frac{d\mathcal{N}(E)}{dE} = c_2(E) \int n_{DM}^2(r) dV$$

| E     | $E^3 dF/dE$                      | dF/dE                                  | $dN/dE _{\odot}$      |
|-------|----------------------------------|----------------------------------------|-----------------------|
| [GeV] | $[GeV^2/(m^2{\cdot}s{\cdot}sr)]$ | $[1/(GeV{\cdot}m^2{\cdot}s{\cdot}sr)]$ | $[1/(GeV{\cdot}m^3)]$ |
| 45    | 10                               | $1.1 \cdot 10^{-4}$                    | $4.6 \cdot 10^{-12}$  |
| 100   | 29                               | $2.9 \cdot 10^{-5}$                    | $1.2 \cdot 10^{-12}$  |
| 320   | 83                               | $2.5 \cdot 10^{-6}$                    | $1.1 \cdot 10^{-13}$  |
| 600   | 156                              | $7.2 \cdot 10^{-7}$                    | $3.0 \cdot 10^{-14}$  |
|       |                                  |                                        |                       |

| $\overline{E}$ | $C_1(E)$             | $C_2(E)$             | $\frac{\nu_s(E)}{3}, M31$ | $\frac{\nu_s(E)}{3}, SagDEG$ |
|----------------|----------------------|----------------------|---------------------------|------------------------------|
| [GeV]          | $[1/GeV^2]$          | $[m^3/GeV^3]$        | [Hz]                      | [Hz]                         |
| 45             | $1.5 \cdot 10^{-17}$ | $5.1 \cdot 10^{-23}$ | $4.4 \cdot 10^{10}$       | $1.1 \cdot 10^{10}$          |
| 100            | $4.0 \cdot 10^{-18}$ | $1.3 \cdot 10^{-23}$ | $2.2 \cdot 10^{11}$       | $5.4 \cdot 10^{10}$          |
| 320            | $3.6 \cdot 10^{-19}$ | $1.2 \cdot 10^{-24}$ | $2.2 \cdot 10^{12}$       | $5.5 \cdot 10^{11}$          |
| 600            | $9.9 \cdot 10^{-20}$ | $3.3 \cdot 10^{-25}$ | $7.8 \cdot 10^{12}$       | $1.9 \cdot 10^{12}$          |

| D         | 770kpc                     |
|-----------|----------------------------|
| $r_s$     | 8kpc                       |
| $ ho_s$   | $1.9 GeV/cm^3$             |
| $M_{vir}$ | $7\cdot 10^{11} M_{\odot}$ |
| C         | 22                         |
| B         | $4\mu G$                   |

| E     | $\nu$               | $\frac{d\mathcal{N}(E)}{dE}$ | $\frac{1}{4\pi D^2} \cdot \frac{d\mathcal{W}(E)}{d\nu}$ |
|-------|---------------------|------------------------------|---------------------------------------------------------|
| [GeV] | [Hz]                | [1/GeV]                      | [Jy]                                                    |
| 45    | $4.4 \cdot 10^{10}$ | $1.2{\cdot}10^{52}$          | $7.1 \cdot 10^{-5}$                                     |
| 100   | $2.2 \cdot 10^{11}$ | $3.1 \cdot 10^{51}$          | $1.8 \cdot 10^{-5}$                                     |
| 320   | $2.2 \cdot 10^{12}$ | $2.8 \cdot 10^{50}$          | $1.7 \cdot 10^{-6}$                                     |
| 600   | $7.8 \cdot 10^{12}$ | $7.6 \cdot 10^{49}$          | $4.5 \cdot 10^{-7}$                                     |

| $\overline{E}$ | ν                   | $\frac{d\mathcal{N}(E)}{dE}$ | $\frac{1}{4\pi D^2} \cdot \frac{d\mathcal{W}(E)}{d\nu}$ |
|----------------|---------------------|------------------------------|---------------------------------------------------------|
| [GeV]          | [Hz]                | [1/GeV]                      | [Jy]                                                    |
| 45             | $4.4 \cdot 10^{10}$ | $1.2 \cdot 10^{52}$          | $7.1 \cdot 10^{-5}$                                     |
| 100            | $2.2 \cdot 10^{11}$ | $2.9 \cdot 10^{51}$          | $1.7 \cdot 10^{-5}$                                     |
| 320            | $2.2 \cdot 10^{12}$ | $2.7 \cdot 10^{50}$          | $1.6 \cdot 10^{-6}$                                     |
| 600            | $7.8 \cdot 10^{12}$ | $7.4 \cdot 10^{49}$          | $4.4 \cdot 10^{-7}$                                     |

| D         | 24kpc            |
|-----------|------------------|
| $r_s$     | 0.62kpc          |
| $ ho_s$   | $5.2 GeV/cm^3$   |
| $M_{vir}$ | $10^8 M_{\odot}$ |
| B         | $1\mu G$         |

| E     | $\nu$               | $\frac{d\mathcal{N}(E)}{dE}$ | $\frac{1}{4\pi D^2} \cdot \frac{d\mathcal{W}(E)}{d\nu}$ |
|-------|---------------------|------------------------------|---------------------------------------------------------|
| [GeV] | [Hz]                | [1/GeV]                      | [Jy]                                                    |
| 45    | $1.1 \cdot 10^{10}$ | $1.7 \cdot 10^{48}$          | $1.0 \cdot 10^{-5}$                                     |
| 100   | $5.4{\cdot}10^{10}$ | $4.4 \cdot 10^{47}$          | $2.7 \cdot 10^{-6}$                                     |
| 320   | $5.5 \cdot 10^{11}$ | $4.0 \cdot 10^{46}$          | $2.4 \cdot 10^{-7}$                                     |
| 600   | $1.9 \cdot 10^{12}$ | $1.1 \cdot 10^{46}$          | $6.7 \cdot 10^{-8}$                                     |

| $\overline{E}$ | ν                   | $\frac{d\mathcal{N}(E)}{dE}$ | $\frac{1}{4\pi D^2} \cdot \frac{d\mathcal{W}(E)}{d\nu}$ |
|----------------|---------------------|------------------------------|---------------------------------------------------------|
| [GeV]          | [Hz]                | [1/GeV]                      | [Jy]                                                    |
| 45             | $1.1 \cdot 10^{10}$ | $4.0 \cdot 10^{49}$          | $2.4 \cdot 10^{-4}$                                     |
| 100            | $5.4 \cdot 10^{10}$ | $1.0 \cdot 10^{49}$          | $1.0 \cdot 10^{-5}$                                     |
| 320            | $5.5 \cdot 10^{11}$ | $9.4 \cdot 10^{47}$          | $9.4 \cdot 10^{-6}$                                     |
| 600            | $1.9 \cdot 10^{12}$ | $2.6 \cdot 10^{47}$          | $1.6 \cdot 10^{-6}$                                     |