WHAT IS CLAIMED IS:

1	1. A method for processing integrated circuit devices, the method
2	comprising:
3	providing a monitor wafer, the monitor wafer comprising a silicon material;
4	introducing a plurality of particles within a depth of the silicon material,
5	whereupon the plurality of particles have a reduced activation energy within the silicon
6	material;
7	subjecting the monitor wafer including the plurality of particles into a rapid
8	thermal anneal process;
9	applying the rapid thermal anneal process at a first state including a first
10	temperature, the first temperature being within a range defined as a low temperature range
11	the low temperature range being less than 650 Degrees Celsius;
12	removing the monitor wafer;
13	measuring a sheet resistivity of the monitor wafer;
14	determining the first temperature within a tolerance of less than 2 percent
15	across the monitor wafer; and
16	operating the rapid thermal process using a plurality of production wafers if
17	the first temperature is within a tolerance of a specification temperature.
1	2. The method of claim 1 wherein the introducing of particles
2	comprising:
3	implanting silicon bearing impurities into the silicon material to cause the
4	silicon material to be in an amorphous state; and
5	implanting boron bearing impurities into the silicon material, whereupon th
6	boron bearing impurities are free from activation as applied to the silicon material.
	11
1	3. The method of claim 2 wherein the silicon bearing impurities are
2	implanted using a dose of 1 X 10 ¹⁴ atoms/cm ² .
1	4. The method of claim 2 wherein the boron bearing impurities are
2	implanted using a dose of 3.5 X 10 ¹⁵ atoms/cm ² .
۷	implanted using a dose of 3.5 % to atomorphi.
1	5. The method of claim 1 wherein the first temperature is less than 650
2	Degrees Celsius.

I	6. The method of claim I wherein the first temperature is less than 330
2	Degrees Celsius.
1	7. The method of claim 1 wherein the silicon material is in an amorphous
2	state upon deposition.
1	8. The method of claim 1 wherein the sheet resistivity is provided in a
1 2	separate tool.
2	separate tool.
1	9. The method of claim 1 wherein the operating of the production wafers
2	occurs for 24 hours.
1	10. The method of claim 1 wherein the monitor wafer is characterized by a
2	temperature sensitivity of at least 1 Ohms per Degree Celsius.
1	11. A method for processing integrated circuit devices, the method
2	comprising:
3	providing a monitor wafer, the monitor wafer comprising a silicon material
4	having a thickness to a predetermined depth;
5	implanting silicon bearing impurities into the silicon material to cause the
6	silicon material to be in an amorphous state within a portion of the thickness of the silicon
7	material;
8	implanting boron bearing impurities into the silicon material within at least the
9	portion of thickness in the amorphous state, whereupon the boron bearing impurities are free
10	from activation as applied to the silicon material and have a reduced activation energy within
11	the silicon material;
12	subjecting the monitor wafer including the silicon bearing impurities and
13	boron bearing impurities into a rapid thermal anneal process;
14	applying the rapid thermal anneal process at a first state including a first
15	temperature to activate a portion of the boron bearing impurities, the first temperature being
16	within a range defined as a low temperature range, the low temperature range being less than
17	650 Degrees Celsius;
18	removing the monitor wafer;
19	measuring a sheet resistivity of the monitor wafer;

determining the first temperature within a tolerance of less than 2 percent 20 21 across the monitor wafer; and operating the rapid thermal process using a plurality of production wafers if 22 the first temperature is within a tolerance of a specification temperature. 23 The method of claim 11 wherein the activated boron bearing impurities 12. 1 2 influence the sheet resistivity. 13. The method of claim 11 wherein the monitor wafer comprising the 1 boron bearing impurities and the silicon bearing impurities are characterized by a temperature 2 sensitivity of at least 1 Ohms per Degree Celsius. 3 The method of claim 11 wherein the range being less than 550 Degrees 1 14. 2 Celsius. The method of claim 11 wherein the silicon bearing impurities are 1 15. implanted using a dose of 1 X 10¹⁴ atoms/cm². 2 16. The method of claim 11 wherein the boron bearing impurities are 1 implanted using a dose of 3.5 X 10¹⁵ atoms/cm². 2 17. The method of claim 11 wherein the tolerance of the temperature 1 2 specification is less than 1 percent across the monitor wafer. 18. The method of claim 11 wherein the plurality of production wafers is 1 2 at least 100 wafers. The method of claim 11 wherein the monitor wafer is a silicon wafer. 19. 1 The method of claim 11 further comprising storing the monitor wafer 1 20. 2 after the boron implanting and silicon implanting.