Brownian Motion and Stochastic Calculus

最終更新: 2022年10月11日

<u>注意</u>: 記述の正確性は保証しません. ややこしいことになりたくないので, 本文の引用は最小限にしています. ? マークは不明/自信なし/要復習を意味しています.

確率論の復習[1]

確率空間を作る

- 抽象空間 Ω^{*1} と σ -field*2 $\mathcal{F} \subset \mathcal{P}(\Omega)$ の組 (Ω, \mathcal{F}) を 可測空間 という.
- 可測空間 (Ω, \mathcal{F}) 上の測度*3で $P(\Omega) = 1$ をみたすものを **確率測度** という.
- \bullet (Ω, \mathcal{F}, P) を 確率空間 という. \mathcal{F} は確率を測ることができる事象の集まり. 情報量とみなせる.

測度0集合に関する用語

- 事象 $A \in \mathcal{F}$ が P(A) = 1 をみたすとき, A が **ほとんど確実に** 起こるといい, A a.s. とかく.
- (Ω, \mathcal{F}, P) が 完備 とは、零集合の部分集合がすべて可測のときにいう.
- (Ω, \mathcal{F}, P) からその完備な拡張である 完備化 $(\Omega, \tilde{\mathcal{F}}, \tilde{P})$ を構成できる.

確率変数

- (Ω, \mathcal{F}, P) : 確率空間, (S, \mathcal{S}) : 可測空間. $X = X(\omega)$ が \mathcal{S} -値確率変数 であるとは, $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ が可測写像である*4ときにいう.
- 写像 X が確率変数であることと同値な条件としては $\forall a \in \mathbb{R}, \{X < a\} \in \mathcal{F}$ などがある*5.
- X が確率変数になるような最小限の \mathcal{F} が作れる: $\mathcal{F} = \mathcal{F}_X := \{X^{-1}(A); A \in \mathcal{S}\}$ とすればよい. \mathcal{F}_X を 確率 変数 X が生成する σ -field といい, $\sigma(X)$ とかく.

分布

- 確率変数 X の 分布, distribution とは $P_X(A) = P(X^{-1}(A))$ によって定義される (S, S) 上の確率測度 P_X のことをいう.*6
- μ を $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ 上の確率測度とするとき, $F(x):=F_{\mu}(x)=\mu((-\infty,x]), x\in\mathbb{R}$ を μ の 分布関数 という.
- ullet X を確率変数とするとき、その分布 P_X の分布関数 F_X を X の分布関数 という. つまり $F_X(x)=P(X\leq x), x\in\mathbb{R}$ である.

^{*1} ただの集合. なんの構造ももたない.

 $^{^{*2}}$ 3 条件: (1) $\Omega \in \mathcal{F}.$ (2) 補集合で閉じている. (3) 加算和で閉じている.

 $^{^{*3}}$ σ -additivity: A_n たちが互いに交わらないとき $P(\cup_n A_n) = \sum_n P(A_n)$ をみたす $P: \mathcal{F} \to [0,\infty]$ を**測度**というのだった.

 $^{^{*4}}$ S に属する集合の逆像が F に属する.

 $^{^{*5}}$ $\{X \leq a\}$ は基本的な事象であり、 当然その確率が定義されることが望まれる。確率が定義できるためには、それは $\mathcal F$ に属さねばならない。確率変数とは、そのような望ましい性質をもつ関数である。

^{*6} 確率変数の分布に着目するという立場からいえば、確率空間のとりかたには任意性がある. Ω 自身がそれほど重要で積極的な意味をもつわけではない: 確率空間 Ω を区間 (0,1) にとりかえて、同じ分布をもつように確率変数を再構成することが可能である.

期待値

• 期待値 $E[X]=\int_{\Omega}X(\omega)P(d\omega)^{*7}$. 事象 A 上に限るとき $E[X,A]:=\int_{A}X(\omega)P(d\omega)=E[X\cdot 1_{A}]$.

不等式

- Chebyshev $P(|X| > \epsilon) \leq \frac{1}{\epsilon^p} E[|X|^p]$.
- Jensen $\psi : \mathbb{R} \to \mathbb{R}$: 下に凸. $\psi(E[X]) \leq E[\psi(X)]$.
- Schwarz Hölder で p = q = 2 とおく.

期待値と極限操作の交換

- Lebesgue's convergence theorem $X_n \to X(a.s.)$ かつ非負確率変数 Y で可積分なものが存在し $\forall n, |X_n| \leq Y$ をみたすならば $\lim_n E[X_n] = E[X]$.
- monotone convergence theorem $0 \le X_1 \le X_2 \cdots$ かつ $X_n \to X(a.s.)$ ならば $\lim_n E[X_n] = E[X]$.
- Fatou's lemma $X_n \ge 0$ ならば $E[\liminf_n X_n] \le \liminf_n E[X_n]$.

いろいろな収束

- 1. a.s. convergence $X_n(\omega) \to X(\omega)$ a.s. $\supset \sharp \ \mathcal{P}(\lim_n X_n = X) = 1$.
- 2. convergence in probability 任意の $\epsilon > 0$ に対して $\lim_n P(|X_n X| > \epsilon) = 0$.
- 3. convergence in the mean of order $p \not \ge 1$ に対し $\lim_n E[|X_n X^p|] = 0$.
- 4. convergence in law/distribution 任意の $f \in C_b(\mathbb{R})$ に対して $\lim_n E[f(X_n)] = E[f(X)]^{*8}$.
- $1 \implies 2,3 \implies 2,2 \implies 4$. **一様可積分** というを導入すると逆向きの矢印が成り立つようになったりする.

1 Martingales, Stopping Times, and Filtrations

- \blacksquare 2,10 (def.1.3 \Longrightarrow def.1.1 \Longrightarrow def.1.2 がなりたつこと)
 - $1.3 \implies 1.1$: 任意の $s \in [0,\infty)$ に対し明らかに $P[X_t = Y_t; \forall t \in [0,\infty)] \leq P[X_s = Y_s]$ がなりたつから, $P[X_t = Y_t; \forall t \in [0,\infty)] = 1 \implies \forall t \in [0,\infty), P[X_t = Y_t] = 1$, つまり $1.3 \implies 1.1$.
 - 1.1 ⇒ 1.2: 不等式 $|P[(X_{t_1},\ldots,X_{t_n})\in A]-P[(Y_{t_1},\ldots,Y_{t_n})\in A]|\leq 2P[(X_{t_1},\ldots,X_{t_n})\neq (Y_{t_1},\ldots,Y_{t_n})]$ を示す. 1.1 を仮定して不等式を用いれば、 $|P[(X_{t_1},\ldots,X_{t_n})\in A]-P[(Y_{t_1},\ldots,Y_{t_n})\in A]|\leq 2P[(X_{t_1},\ldots,X_{t_n})\neq (Y_{t_1},\ldots,Y_{t_n})]\leq \sum_{i=1}^n P(X_{t_i}\neq Y_{t_i})=0$ から 1.2 を得る.では不等式を示す. $\mathbf{X}=(X_{t_1},\ldots,X_{t_n}), \mathbf{Y}=(Y_{t_1},\ldots,Y_{t_n})$ とおく.

$$\begin{aligned} |P[\mathbf{X} \in A] - P[\mathbf{Y} \in A]| &= |P[(\mathbf{X} \in A) \cap (\mathbf{X} = \mathbf{Y})] + P[(\mathbf{X} \in A) \cap (\mathbf{X} \neq \mathbf{Y})] \\ &- P[(\mathbf{Y} \in A) \cap (\mathbf{X} = \mathbf{Y})]| - P[(\mathbf{Y} \in A) \cap (\mathbf{X} \neq \mathbf{Y})]| \\ &= |P[(\mathbf{X} \in A) \cap (\mathbf{X} \neq \mathbf{Y})] - P[(\mathbf{Y} \in A) \cap (\mathbf{X} \neq \mathbf{Y})]| \\ &\leq P[(\mathbf{X} \in A) \cap (\mathbf{X} \neq \mathbf{Y})] + P[(\mathbf{Y} \in A) \cap (\mathbf{X} \neq \mathbf{Y})] \\ &\leq 2P[\mathbf{X} \neq \mathbf{Y}] \end{aligned}$$

^{*7} 可積分のとき

 $^{^{*8}(}X_n), X$ の分布のみによって定まる概念だから、これらは必ずしも同一の確率空間で定義されている必要はない.

より示された. 他の導出法については [2] を参照.

参考文献

- [1] 確率論, 舟木直久(朝倉書店, 2004)
- $[2] \ \mathtt{https://math.stackexchange.com/questions/1613202/if-one-stochastic-process-is-a-modification-of-anomaly of the above the stacked of the stacked of$