MULTIMEDIA		UNIVERSITY
------------	--	------------

STUDENT ID NO								

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

PCM0016 - CHEMISTRY

(All sections / Groups)

2 MARCH 2020 2.30 p.m – 4.30 p.m (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 4 pages only excluding the cover page.
- 2. Attempt ALL questions. Distribution of the marks for each question is given.
- 3. Please write all your answers in the answer booklet provided.

QUESTION 1 [20 MARKS]

(a) Given the equation below. Answer the following questions.

				- 1
CoCl₂·6H₂O	Reaction X	→	$CoCl_2$	

(i) Give the name of the reactant and product.

[1.5 marks]

(ii) Suggest what Reaction X is.

[1 mark]

- (b) 55 g of C₂H₂ is allowed to react with 86 g of hydrochloric acid to produce vinyl chloride, C₂H₃Cl. [Atomic mass: H = 1.0; C = 12.0; Cl = 35.5]
 - (i) Write a balanced chemical equation for the reaction.

[1 mark]

(ii) Identify the limiting reactant.

[2 marks]

(iii) Calculate the mass of the excess reactant left at t = final.

[1 mark]

- (c) If element M composes of two isotopes: ^{25}M and ^{26}M , and the relative atomic mass of M is 25.3, find the percentage abundance of each isotope. [1.5 marks]
- (d) At STP, a 30.26 g of a gas occupies 21.2 L. Find the molecular weight of the gas and predict the gas (with diatomic molecule).

 [The universal gas constant, R = 0.08206 L.atm/mol.K]

 [2 marks]
- (e) Figure shows three 2.0 L flasks, each at a pressure of 800 mmHg, contain He, Ne, and Ar.

- (i) Which flask contains the most atoms of gas? Briefly explain. [1 mark]
- (ii) If the He flask was heated and the Ar flask was cooled, determine which of the three flasks would be at the highest pressure. Explain briefly. [1 mark]
- (f) The standard enthalpy of formation of one mole of ethanol is -278 kJ. If the density of ethanol is 0.789 g/mL, calculate the heat energy released when 0.25 L of ethanol is formed. [Atomic mass: C = 12.0; H = 1.0; O = 16.0] [2 marks]

Continued...

(g) Determine ΔH_f^o for the formation of chlorine trifluoride:

$$ClF(g) + F_2(g) \rightarrow ClF_3(g)$$

$$\Delta H_f^o = ?$$

Given:

E	quations	ΔH_{rxn}^{o} (kJ)
a.	$2 \text{ OF}_2(g) \to O_2(g) + 2 \text{ F}_2(g)$	-49.4
ъ.	$2 \operatorname{ClF}(g) + \operatorname{O}_{2}(g) \rightarrow \operatorname{Cl}_{2}\operatorname{O}(g) + \operatorname{OF}_{2}(g)$	+205.6
c.	$2 \text{ ClF}_3(g) + 2 \text{ O}_2(g) \rightarrow \text{Cl}_2\text{O}(g) + 3 \text{ OF}_2(g)$	+266.7

[3 marks]

(h) The atomic and ionic radii of chlorine atom and chlorine ion are given below. Explain why the values are different.

[2 marks]

(i) State the group and period of an element that has maximum $3p^2$ electron arrangement. [1 mark]

QUESTION 2 [15 MARKS]

- (a) Given the set of quantum numbers for electrons in the orbital with highest energy for atom A are $(3, 2, 0, +\frac{1}{2})$, $(3, 2, 1, +\frac{1}{2})$ and $(3, 2, -1, +\frac{1}{2})$.
 - (i) Name the orbital of the electrons.

[0.5 mark]

(ii) Draw the electronic configuration of atom A.

[1.5 marks]

- (iii) If five electrons were removed form atom A, state the number of unpaired electrons. [0.5 mark]
- (b) (i) Draw the molecular geometry for I₃.

[1.5 marks]

(ii) How many lone pairs are there in I₃ molecule?

[0.5 mark]

(iii) State the molecular geometry for I₃ molecule.

[0.5 mark]

(c) The reaction below has a rate constant of $6.2 \times 10^{-5} \text{ s}^{-1}$ at 35 °C. Suppose that the initial concentration of $C_{12}H_{22}O_{11}$ in the solution is 0.40 M.

$$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 \text{ (glucose)} + C_6H_{12}O_6 \text{ (fructose)}$$

Continued...

[1.5 marks]

(i) What will the C₁₂H₂₂O₁₁ concentration be after 120 minutes?

(ii) How long will it take for $[C_{12}H_{22}O_{11}]$ to drop to 0.30 M?

[1 mark]

(d) The following are covalent molecules of different polarity. Determine if they are polar or non-polar and state the type of intermolecular forces between the molecules.

Molecule	Polarity	Intermolecular forces
(i) NH ₃		
(ii) Methane		

[2 marks]

- (e) Draw the orbital overlap of the hybridization of C₂H₄ (label all the bonds). [2.5 marks]
- (f) Derive an expression to show the relationship between K_c and K_p for the following gaseous reaction:

$$aA(g) + bB(g) \rightleftharpoons cC(g) + dD(g)$$

[3 marks]

QUESTION 3 [15 MARKS]

(a) Referring to the reaction below:

$$2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(g)$$

- (i) Predict what will happen to the concentration of H_2O if some amount of O_2 is added to the system. [0.5 mark]
- (ii) Predict the effect on the equilibrium system if a catalyst is added.

[0.5 mark]

(b) For the table below, answer (i), (ii), (iii), (iv), (v) and (vi).

Solution	pН	[H]	рОН	[OH ⁻]	Acidic, basic or neutral?
x	(i)	(ii)	9.8	•	(iii)
у	-	(iv)	(v)	4.3 x 10 ⁻⁷	(vi)

[3 marks]

- (c) Calculate the pOH of each of the following solutions. [Atomic mass: Co = 59.0; H = 1.0; O = 16.0; C = 12.0]
 - (i) A cobalt (II) hydroxide solution made from 7.06 x 10⁻³ g cobalt (II) hydroxide and enough water to make 2.0 L of solution. [1.5 marks]
 - (ii) 0.15 M CH₃COOH solution at 25 °C (K_a for CH₃COOH = 1.8 x 10⁻⁵) [2 marks]

Continued...

AFAO

(d) Determine the oxidising and reducing agents for the redox reaction:

$$Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

[2 marks]

(e) Determine the oxidation number of the underlined elements in the following ions:

<u>S</u> O ₄ ²⁻	H <u>C</u> O₃¯	<u>Mn</u> O ₄ ²⁻
(i)	(ii)	(iii)

[1.5 marks]

(f) Arrange the following species in order of increasing oxidizing strength and reducing strength:

$Zn^{2+} + 2e^{-} \rightarrow Zn$	$E^{\sigma} = -0.76 \text{ V}$
$I_2 + 2e^- \rightarrow 2I^-$	$E^{\sigma} = +0.54 \text{ V}$
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	$E^{o} = +1.00 \text{ V}$
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	$E^{o} = +0.77 \text{ V}$

[2 marks]

(g) Calculate the mass of copper deposited at the cathode if a current of 0.135 A flows through aqueous copper (II) sulfate for 30 minutes.

[Atomic mass: Copper = 63.5; Faraday constant = 96500 C/mol e]

[2 marks]

End of Paper

