- Topic
 - Use what you have learned in this course to solve a problem of your choice.
 - ▶ We will release F22 slides of the remaining topics (see Blackboard → Project)
 - Probabilistic temporal models
 - Markov decision processes
 - Reinforcement learning
 - Machine learning

- Group
 - ▶ 1-5 people in each group
 - Good to have more ppl
 - You may use the Piazza "search for teammates" function
- Schedule
 - By late Dec: form groups
 - Early Jan: proposal presentation
 - Jan. 25-26 (Week 18): final presentation, report submission

- You are free to come up with your own topics, but:
 - choose topics/methods covered in this course
 - no need to make it too complicated
- Some possible topics
 - Build an agent to play a game (e.g., 2048, Five in a Row). Implement different methods (minimax? RL?) and compare their performance.
 - Formulate a real world problem (e.g., class arrangement) as CSP and solve it by implementing the methods taught in class.
 - Formulate a real world problem as a Bayesian net or a probabilistic temporal model (e.g., stock price, music). Implement probabilistic inference to solve it.
 - Implement different machine learning algorithms and compare their performance on multiple datasets.

- Grading
 - ▶ 15% of the total grade
 - Criteria
 - relevance to this course
 - > soundness, substance
 - quality of the report and presentation

Midterm Exam

- Time
 - in class (10:15-11:55am) on Nov. 22 (Wed)
- Location
 - ▶ 教学中心 101
 - Seat arrangement TBA
- Format
 - Closed-book. You can bring an A4-size cheat sheet and nothing else.
 - ▶ 10 multiple-choices, 4 problems
- Grade
 - 25% of the total grade
- ▶ 计算器 × 涂卡笔 ✓
- ► F2018 midterm exam paper is available at: Blackboard menu → Previous Exams

Midterm Review

Disclaimer

- ▶ Topics covered in this review may not appear in the exam.
- ▶ Topics not covered in this review may appear in the exam.

Search

- Definitions
 - State space, successor function, start/goal states
 - Completeness, optimality
- Tree search
 - Uninformed Search
 - ▶ DFS, BFS, UCS
 - Informed Search
 - Heuristic, admissible heuristic
 - Greedy, A*
- Graph Search
 - ▶ A* with consistent heuristic

Constraint Satisfaction Problems

- CSP
 - Find an assignment to a set of variables that satisfies a set of constraints
- Basic solution: backtracking search
- Speed-ups:
 - Filtering
 - Forward Checking, Arc Consistency
 - Ordering
 - Minimum Remaining Values, Least Constraining Value
 - Structure
 - Tree structured, Cutset conditioning
- Iterative min-conflicts (local search) is often effective in practice

Adversarial Search

- Adversarial Search
 - Game tree, Minimax
- Resource Limits
 - Depth-limited search
 - Limiting branching factor
- Game Tree Pruning (alpha-beta pruning)
 - \triangleright α : MAX's best option on path to root; prune if value of MIN $\leq \alpha$
 - β: MIN's best option on path to root; prune if value of MAX $\geq \beta$
- Uncertain Outcomes
 - Expectimax

Propositional logic

- Representation
 - Syntax
 - Proposition symbols, their compositions using connectives
 - Semantics
 - Each model specifies true/false for each proposition symbol
 - Rules for evaluating truth with connectives
- Inference
 - Resolution (for Conjunctive Normal Form)
- Concepts
 - Validity, satisfiability, entailment, proof, soundness, completeness, etc.

Propositional logic - Horn logic

- Representation
 - ▶ $P1 \land P2 \land P3 \dots \land Pn \rightarrow Q$
- Inference
 - Modus Ponens
 - Forward chaining
 - Backward chaining

First-order logic

- Syntax
 - Constant, predicate, function, variable, connective, quantifier (universal, existential), equality
 - Atomic sentence, term
- Semantics
 - A model contains: objects, relations, interpretation
- Inference
 - Propositionalization (universal/existential instantiation)
 - Unification
 - Forward/backward chaining
 - Resolution

Semantic web

▶ Not to be covered in the exam ☺

Bayesian networks

- Syntax
 - DAG + CPTs
- Semantics
 - Global semantics
 - Conditional independence semantics, Markov blanket
 - D-separation
- Markov networks
 - Undirected graph + potentials
 - Semantics

Bayesian networks: Inference

- Exact inference
 - Inference by enumeration
 - Variable elimination
 - Interleave join (pointwise product) and elimination (summing out)
 - Efficient inference on polytrees
- Approximation inference
 - Prior Sampling
 - Rejection Sampling
 - Likelihood Weighting
 - Gibbs Sampling

Probabilistic logic

▶ Not to be covered in the exam ☺

Good Luck!