Задача А. Плохая подстрока

 Имя входного файла:
 badsubs.in

 Имя выходного файла:
 badsubs.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

Найдите, сколько существует строк заданной длины n, состоящих только из символов 'a', 'b' и 'c', и не содержащих подстроки "ab".

Формат входных данных

Во входном файле задано n ($0 \le n \le 22$).

Формат выходных данных

Выведите количество таких строк.

Примеры

badsubs.in	badsubs.out
0	1
3	21
11	46368

Задача В. Кирпичи

 Имя входного файла:
 bricks.in

 Имя выходного файла:
 bricks.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

Дано бесконечное количество кирпичей двух цветов — красного и синего. Красные кирпичи имеют длину 2 дециметра, а синие — 3 дециметра. Сколько различных способов выложить ряд из кирпичей длины n дециметров? Способы считаются различными, если на каком-то одинаковом расстоянии от начала ряда в них лежат кирпичи разного цвета.

Формат входных данных

В первой строке входного файла задано целое число $n\ (0\leqslant n\leqslant 80).$

Формат выходных данных

В первой строке выходного файла выведите одно число — количество способов выложить ряд из кирпичей длины n дециметров.

Примеры

bricks.in	bricks.out
2	1
6	2

Задача С. Один козёл

 Имя входного файла:
 goat.in

 Имя выходного файла:
 goat.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

Лишь один козёл остался в живых после истории с кровной местью. Он успешно пересёк болото, но теперь он хочет вернуться домой. Для этого ему придется пересечь болото опять! Посчитайте число последовательностей ходов, которые приводят к его смерти, а также число последовательностей ходов, которые приводят к его успешному возвращению домой.

Козёл начинает свое движение из клетки (1,1) и может увеличить одну или обе своих координаты на единицу (т. е. передвинуться вниз, вправо или по диагонали вниз-вправо). Болото представляет собой прямоугольную доску $m \times n$, некоторые квадраты которой покрыты непроходимой трясиной. Если козёл попадает на квадрат с трясиной, он тут же тонет в болоте и умирает. Дом козла находится в клетке (m,n), после того, как козел встанет на эту клетку, он считается выжившим и успешно достигшим своего дома.

Болото со всех сторон ограничено лесом, поэтому козёл не может выйти за пределы прямоугольника $m \times n$.

Формат входных данных

Входной файл состоит из одного или нескольких наборов входных данных. Каждый набор начинается строкой, содержащих три целых числа m, n и k $(1 \leqslant m, n \leqslant 25, 0 \leqslant k \leqslant mn-2)$. Следующие k строчек содержат координаты клеток, покрытых трясиной. Гарантируется, что клетки (1,1) и (m,n) трясиной не покрыты. Имейте в виду, что каждая строка во входном файле завершается переводом строки, а первый тест совпадает с тестом из примера!

Формат выходных данных

В выходном файле должно содержаться два числа для каждого из наборов входных данных. Первое число — количество корректных последовательностей ходов козла, приводящих к его смерти; второе — количество последовательностей, которые приводят к тому, что козёл успешно вернулся домой живым.

Пример

goat.in	goat.out
2 2 1	1 2
1 2	2 1
2 2 2	
1 2	
2 1	

Задача D. Зайчик

 Имя входного файла:
 lepus.in

 Имя выходного файла:
 lepus.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

Зайчик прыгает по прямой просеке, для удобства разделённой на n клеток. Клетки пронумерованы по порядку натуральными числами от 1 до n. Некоторые клетки заболочены: если зайчик прыгнет на такую клетку, ему несдобровать. Некоторые другие клетки просеки поросли вкусной зелёной травой: прыгнув на такую клетку, зайчик сможет отдохнуть и подкрепиться.

Зайчик начинает свой путь из клетки с номером 1 и хочет попасть в клетку с номером n, по пути ни разу не провалившись в болото и скушав как можно больше вкусной зелёной травы. Конструктивные особенности зайчика таковы, что из клетки с номером k он может прыгнуть лишь в клетки с номерами $k+1,\ k+3$ и k+5.

Выясните, какое максимальное количество клеток с травой сможет посетить зайчик на своём пути.

Формат входных данных

В первой строке входного файла задано число n—количество клеток ($2 \le n \le 1000$). Вторая строка состоит из n символов; i-ый символ соответствует i-ой клетке просеки. Символ 'w' обозначает болото, символ '"'—зелёную траву, а символ '.' соответствует клетке без каких-либо особенностей. Гарантируется, что первая и последняя клетки не содержат болот и травы.

Формат выходных данных

В первой строке выходного файла выведите одно число — максимальное количество клеток с травой, которые зайчик сможет посетить на своём пути. Если зайчику не удастся оказаться в клетке с номером n, выведите -1.

Примеры

lepus.in	lepus.out
4	2
."".	
5	0
.w"	
9	-1
.www.www.	

Задача Е. Деньги

 Имя входного файла:
 money.in

 Имя выходного файла:
 money.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

У вас имеется неограниченное количество монеток N заданных достоинств. Вам требуется определить, можно ли с их помощью разменять заданные K сумм денег.

Формат входных данных

В первой строке число N, далее во второй строке N чисел, задающих достоинства монеток. В третьей строке число K, далее в четвёртой K чисел, определяющих размеры сумм. Все числа во входном файле натуральны и не превосходят 1000.

Формат выходных данных

В единственной строке K чисел — для каждой суммы 0, если её разменять нельзя и 1, если можно.

Пример

money.in	money.out
2	1 1 0 1 1
3 5	
5	
3 6 7 11 12	

Задача F. Грибы

Имя входного файла: mushroom.in Имя выходного файла: mushroom.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Маша решила навестить свою бабушку. Она взяла с собой две корзинки — одну с пирожками, а другую — пустую, для грибов, которые она хочет собрать по пути.

Для того, чтобы попасть к бабушке, Маше необходимо пройти через лес, который представляет собой прямоугольник размером $m \times n$, в некоторых клетках которого растут деревья, а в некоторых — грибы. Маша выходит из клетки (1,1) и идёт к бабушке в деревню, расположенную в клетке (m,n). Каждым своим ходом Маша может пойти вправо или вниз (т. е. увеличить одну и только одну из своих координат на 1), если в клетке, в которой она после этого окажется, не стоит дерево. Если в обеих клетках и справа, и снизу, находятся деревья, то Маша считается заблудившейся.

Вам необходимо по данному лесу выяснить, может ли Маша дойти до бабушки, не заблудившись, и если может, то посчитать максимальное количество грибов, которое она может при этом собрать.

Формат входных данных

В первой строке входного файла находятся четыре числа $m, n, g, t \ (2 \le m, n \le 100, 0 \le g, t \le g + t \le mn - 2)$. В следующих g строках расположены по два числа в каждой — x и y-координаты i-го гриба. За ними следуют t строк с описаниями деревьев в аналогичном формате. Ни в какой клетке не может расти больше одного гриба, гриб и дерево одновременно, или больше одного дерева. Кроме того, в клетках (1,1) и (m,n) ничего не растёт.

Формат выходных данных

Если Маша может дойти до бабушки, то в первой строке выходного файла необходимо выдать максимальное количество грибов, которое она сможет при этом собрать, а в последующих m+n-1 строках нужно выдать координаты клеток, последовательно посещаемых Машей в формате x_i y_i , для пути, на котором достигается максимальное количество грибов. Если таких путей несколько, то разрешается выдавать любой из этих путей.

В противном случае в выходной файл должно быть выведено единственное число -1.

Примеры

имеры	
mushroom.in	mushroom.out
4 4 3 2	2
1 4	1 1
2 3	1 2
4 3	1 3
2 2	2 3
3 4	3 3
	4 3
	4 4
2 2 0 2	-1
1 2	
2 1	

Задача G. Гвоздики

Имя входного файла:	nails.in
Имя выходного файла:	nails.out
Ограничение по времени:	2 секунды
Ограничение по памяти:	256 мебибайт

На прямой дощечке вбиты гвоздики. Любые два гвоздика можно соединить ниточкой. Требуется соединить какие-то пары гвоздиков ниточками так, чтобы к каждому гвоздику была привязана хотя бы одна ниточка, а суммарная длина всех ниточек была минимальна.

Формат входных данных

В первой строке входного файла записано число N- количество гвоздиков ($2 \le N \le 100$). В следующей строке записано N чисел—координаты всех гвоздиков (неотрицательные целые числа, не превосходящие $10\,000$).

Формат выходных данных

В выходной файл нужно вывести единственное число — минимальную суммарную длину всех ниточек.

Пример

nails.in	nails.out
5	6
4 10 0 12 2	

Задача Н. Три единицы

 Имя входного файла:
 ones.in

 Имя выходного файла:
 ones.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

Требуется найти количество последовательностей заданной длины из нулей и единиц, в которых не встречается трёх единиц подряд.

Формат входных данных

Входной файл содержит одно натуральное число n—длину последовательностей $(1 \le n \le 10^5)$.

Формат выходных данных

В выходной файл выведите количество последовательностей по модулю 12345.

Примеры

ones.in	ones.out
1	2
4	13

Задача І. Кролик

 Имя входного файла:
 rabbit.in

 Имя выходного файла:
 rabbit.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

Как и зайчик, кролик прыгает по прямой просеке, для удобства разделённой на n клеток. Клетки пронумерованы по порядку натуральными числами от 1 до n. Некоторые клетки заболочены: прыгать в них кролик боится. Некоторые другие клетки просеки поросли вкусной зелёной травой: прыгнув на такую клетку, кролик прихватит с собой пучок травы.

Кролик начинает свой путь из клетки с номером 1 и хочет попасть в клетку с номером n, по пути ни разу не провалившись в болото. Конструктивные особенности кролика таковы, что из клетки с номером k он может прыгнуть лишь в клетки с номерами $k+2,\ k+3$ и k+6.

Поскольку в клетке с номером n кролика ждёт его крольчиха, главное для него — ока- двигаться вниз влево или вниз вправо. Начало спуска — в самой высокой точке горы, конец заться там как можно быстрее, то есть сделав как можно меньше прыжков. Если маршрутов с минимальным количеством прыжков несколько, кролик предпочтёт тот из них, на котором он посетит как можно больше клеток с травой. Если и таких маршрутов несколько, кролика устроит любой из них.

По данной карте просеки найдите оптимальный маршрут для кролика.

Формат входных данных

В первой строке входного файла задано число n — количество клеток ($2 \le n \le 1000$). Вторая строка состоит из n символов: i-ый символ соответствует i-ой клетке просеки. Символ 'w' обозначает болото, символ '"' — зелёную траву, а символ '.' соответствует клетке без каких-либо особенностей. Гарантируется, что первая и последняя клетки не содержат болот и травы.

Формат выходных данных

В первой строке выходного файла выведите через пробел два числа — минимальное количество прыжков k, за которое кролик может попасть из первой клетки просеки в последнюю, и максимальное количество клеток с травой t, которые он при этом сможет посетить. Во второй строке выведите через пробел k+1 число — номера клеток, которые должен посетить кролик, в порядке их посещения.

Если кролику не удастся оказаться в клетке с номером n, выведите в выходной файл одно число -1.

Примеры

F		
rabbit.in	rabbit.out	
4	1 0	
."".	1 4	
5	2 1	
.w"	1 3 5	
9	-1	
.www.www.		

Задача Ј. Спуск с горы

Имя входного файла: slalom.in Имя выходного файла: slalom.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

В одном из горнолыжных курортов Италии проводятся соревнования по горнолыжному спуску. Каждому спортсмену предстоит скатиться с горы на лыжах. На любом этапе спуска участник получает определённое число очков. После прохождения трассы очки суммируются. Участник, набирающий наибольшее количество очков, выигрывает. Гора представляет собой треугольник, в качестве элементов которого выступают целые числа — очки за прохождение этапа. На каждом уровне спортсмену предоставляется выбор —

в одной из самых низких.

Требуется найти максимальное количество очков, которое может набрать спортсмен.

Формат входных данных

Во входном файле содержится целое число n—число этапов ($1 \le n \le 100$), далее nстрок, каждая из которых характеризует свой уровень. В строке с номером i содержится ровно i целых чисел: a_1, a_2, \ldots, a_i (-100 $\leq a_k \leq$ 100, $1 \leq k \leq i$) — количество очков в каждой из позиций.

Формат выходных данных

В результирующем файле должно находиться искомое целое число.

Пример

slalom.in	slalom.out
4	20
1	
4 3	
5 6 7	
8 9 0 9	

Задача К. Плавные числа

Имя входного файла: smooth.in Имя выходного файла: smooth.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Назовем натуральное число плавным, если разность любых двух его соседних цифр не превосходит по модулю единицы. Вам необходимо определить количество N-значных плавных чисел.

Формат входных данных

В единственной строке входного файла одно число N ($1 \le N \le 20$).

Формат выходных данных

Вывести одно число — искомое количество.

Пример

smooth.in	smooth.out
1	9