Работа 4.2.2

Интерферометр Жамена

Балдин Виктор

Цель работы: ознакомление с техникой интерференционных измерений показателей преломления газов с помощью интерферометра Жамена.

В работе используются: интерферометр Жамена; газовая кювета; осветитель; зрительная труба; сильфон; баллон с углекислым газом; манометр; краны.

Описание работы

Интерферометр Жамена позволяет посчитать разность хода лучей в двух газовых кюветах, путем измерения количества полос m, на которое сместится интерференционная картина при изменении макропараметров системы (таких, как давление или состав газа)

$$\Delta = m\lambda$$
.

Поскольку разность хода и коэффициент преломления n напрямую связаны, из полученных данных можно получить изменение n

$$\delta n = \frac{\Delta}{l} = \frac{m\lambda}{l},$$

где l – длина газовой кюветы.

Рис. 1. Экспериментальная установка

Результаты и измерения

9-10 Зависимость Δ от ΔP для воздуха

Измерим разность хода через смещение полос от давления P воздуха. Во время измерений смещение нулевой полосы Δ_0 при нулевом давлении заметно менялась, из-за чего для каждого значения давления мы записывали не только показания микрометрового винта в конце измерений z_0 , но и в конце z_1 .

ΔP , к Πa	z_0 , MM	Δ_0 , MKM	z_1 , MM	Δ_1 , MKM	Δ , mkm
9.0	16.95	3.2	18.20	5.5	2.3
6.0	17.40	4.1	18.25	5.6	1.5
4.0	17.10	3.5	17.65	4.6	1.0
2.0	18.04	5.3	18.35	5.8	0.5
0.0	17.65	4.6	17.65	4.6	0.0
-2.5	19.03	6.9	18.63	6.3	-0.6
-5.0	19.19	7.1	18.48	6.0	-1.1
-7.5	19.82	8.0	18.53	6.1	-1.9
-10.0	20.21	8.5	18.53	6.1	-2.4

$$\Delta(\Delta P)=0.5$$
 κΠα, $\Delta z_0=\Delta z_1=0.01$ мм, $\Delta(\Delta_0)=\Delta(\Delta_1)=0.3$ мкм, $\Delta(\Delta)=0.4$ мкм

Известно, что

$$\Delta = \frac{2\pi\alpha l}{kT}\Delta P.$$

Из графика можно найти, что

$$\frac{\Delta}{\Delta P} = (0.25 \pm 0.04) \frac{\text{HM}}{\Pi \text{a}}.$$

Если подставить условия ($T=298.45\,\mathrm{K}, l=0.1\,\mathrm{m}$), то можно получить поляризуемость молекулы азота

$$\alpha = (1.7 \pm 0.30) \cdot 10^{-30} \,\mathrm{m}^3.$$

Табличное значение поляризуемости молекулы азота равна

$$\alpha_0 = 1.734 \cdot 10^{-30} \, \mathrm{m}^3$$

что соответствует нашим наблюдениям.

Если считать молекулу азота малым металическим шариком, то ее поляризацию можно выразить через радиус как

$$\alpha = 4\pi r^3$$

что дает нам значение радиуса

$$r \approx 0.5 \mathring{A}$$
.

Это значение совпадает в порядке с табличным

$$r \approx 0.15 \mathring{A}$$
.

11-14 Сравнение показателей преломления воздуха и углекислого газа при атмосферном давлении

Измерим разность δn от времени для смеси углекислого газа с воздухом. Здесь $\lambda=650$ нм.

t, \min	z, mm	$\delta n, 10^{-5}$
0	17.96	5.1
1.0	17.91	5.0
2.0	17.80	4.8
3.0	17.75	4.8
4.0	17.72	4.7
5.0	17.67	4.6
6.0	17.68	4.6
7.0	17.63	4.5
8.0	17.59	4.5
9.0	17.54	4.4
10.0	17.53	4.4
11.0	17.49	4.3
12.0	17.45	4.2
13.0	17.41	4.1
14.0	17.34	4.0
15.0	17.35	4.0

 $\Delta z = 0.01 \, \text{mm}, \Delta \delta n = 0.4 \cdot 10^{-5}$

Как видно, происходит утечка углекислого газа.

Вывод

Мы научились исследовать макро и микропараметры системы через эффекты волновой оптики. С помощью интерферометра Жамена мы получили зависимость коэффициента преломления от давления у воздуха и вывели численные значения для молекул азота

$$r \approx 0.5 \mathring{A}$$
,

$$\alpha = (1.7 \pm 0.30) \cdot 10^{-30} \,\mathrm{m}^3.$$

Эти численные значения совпали с табличными данными

$$r \approx 0.15 \mathring{A}$$
,

$$\alpha_0 = 1.734 \cdot 10^{-30} \,\mathrm{m}^3.$$

Также мы получили свидетельство наличия протечки углекислого газа через изменение показателя преломления.