

Discovering Functional Dependencies in Hidden Data using Approximate Formal Concept

Md. Abdullah Al Mamun

ID# mm1610594

Special Topic in Computing

Department of Computer Science & Engineering

Qatar University

Outline

- Introduction
- Objectives
- Background
- Related Works
- Methodology
- Experiment
- Result and Discussion
- Conclusion

Introduction

Analyzing uncertain data is a challenging problem

Data are rapidly increasing which complicates the analysis process

Data reduction techniques handling uncertainty are highly required

Display mostly related dataset to the users

Objective

- Conceptually reduce uncertain formatted data without losing dependencies between different attributes with respect to the original dataset
- Reduction method based on Formal Concept Analysis Theory (FCA) are proposed:
 - Approximate data reduction without loosing functional dependencies (FD)
- To what extent the reduced dataset is preserving or even improving the functional dependency of a hidden database.

Background-Galois Connection

- Galois connection is a main notion in FCA used to extract implications
- Crisp Galois Connection operators R and Q are defined as:

$$A^R = \{m \mid \forall g, g \in A: (g, m) \in I\}, B^Q = \{g \mid \forall m, m \in B: (g, m) \in I\}$$

■ Where $A \subseteq G$ and $B \subseteq M$

■ Example B A ^R (B ^Q)					
Preying Flying Bird Mammal					
Lion 1 0 0 1					
	$g \rightarrow Bird$				
BQ					
Hare 0 0 0 1					
Ostrich 0 0 1 0					

Discovery FD in Hidden DB using AFC

Selected Related Works

Functional Dependency Discovery

o Papenbrock, Thorsten, et al. "Functional dependency discovery: An experimental evaluation of seven algorithms." Proceedings of the VLDB Endowment 8.10 (2015): 1082-1093.

Reduction

- o Elloumi, Samir, et al. "A multi-level conceptual data reduction approach based on the Lukasiewicz implication." Information Sciences 163.4 (2004): 253-262.
- o Rezk, Eman, et al. "Uncertain training data set conceptual reduction: A machine learning perspective." Fuzzy Systems (FUZZ-IEEE), 2016 IEEE International Conference on. IEEE, 2016.

Methods – 7 Algorithms

The most cited and most important algorithm for functional dependency discovery

The Tane algorithm by Huhtala et al.

■ FUN by Novelli and Cic-chetti

Traverses the attribute lattice level-wise bottom-up and applies partition refinement techniques to find functional dependencies.

■ FD Mine by Yao et al

Like Tane and Fun, Fd Mine traverses the attribute lattice level-wise bottom-up using stripped partitions and partition intersections to discover functional dependencies.

Cont.

DFD by Abedjan et al
 It models the search space as a lattice of attribute combinations.

 Dep-Miner by Lopes et al Infers all minimal functional dependencies from sets of attributes that have same values in certain tuples.

 FastFDs by Wyss et al Improvement of Dep-Miner.

FDEP by Flach and Savnik
 Approach that is neither based on candidate generation nor on attribute set analysis.

New Approach

Approximate Formal Context Reduction (AFC): combining two research results gave rise of a new approach for data reduction without loss of functional dependencies

- Lukasiewicz data reduction algorithm applied for binary formal contexts [Elloumi et al 2004]
- Characterizing functional dependencies with formal concept analysis [Baixeries et al 2014]

Process Steps

Transform Data to Approximate FC

Data transformed using similarity based pairwise comparison between tuples

$$Similarity = 1 - \frac{|n_1 - n_2|}{Max(n_1, n_2)}$$

Discovery FD in Hidden DB using AFC

• In the example, DBI is transformed to approximate FC with similarity threshold 0.7

>Similarity(T₁, T₂)(a)=1-
$$\frac{|1-4|}{Max(1,4)}$$
= 0.25
>Similarity(T₁, T₂)(b)=1- $\frac{|3-2|}{Max(3,2)}$ = 0.67

Similarity(
$$T_1$$
, T_2)(b)=1- $\frac{|3-2|}{Max(3.2)}$ = 0.67

>Similarity(
$$T_1$$
, T_2)(c)=1- $\frac{|4-5|}{Max(4,5)}$ = 0.80

$$ightharpoonup$$
 Similarity(T₁, T₂)(d)=1- $\frac{|1-4|}{Max(1.4)}$ = 0.25

Id	а	b	С	d
T ₁	1	3	4	1
T_2	4	2	5	4
T ₃	1	4	4	2
T ₄	1	3	4	3

		а	b	С	d
	(T ₁ , T ₂)	0	0	1	0
Ī	(T ₁ , T ₃)	1	1	1	0
	(T_1, T_4)	1	1	1	0
	(T_2, T_3)	0	0	1	0
	(T_2, T_4)	0	0	1	1
	(T_3, T_4)	1	1	1	0
ĺ	(T ₁ , T ₁)	1	1	1	1

Reduce FC

- The context is reduced using crisp incremental Lukasiewicz reduction (LR)
 - It works on packages of FC objects to avoid waiting the whole FC generation

 It preserves FC implications that are equivalent to initial DB functional dependency

Crisp Incremental Lukasiewicz Data Reduction Algorithm

Input: Binary relation R, precision level $\delta = 1$

Output: Reduced relation RD

Begin

Initialize RD to R

For each object x in the domain of the remaining context RD, we do the following steps:

- 1. Find the set of properties P_X verifying object x
- 2. Find the set A of objects verifying the required values for the properties of $x(P_X)$ at precision level δ
- 3. Let $S_x = A \{x\}$, if the objects in S_x satisfy the same properties P_X at level δ then remove x from RD

End for

End

Example

• Choosing $\delta = 0.7$ at X=O1

	Α	В	С
01	0.2	0.3	0.4
O2	0.5	0.7	1.0
O3	0.1	0.2	0.4
O4	0.4	0.3	1.0
O5	0.1	0.2	0.7
O6	0.2	1.0	0.4

	Α	В	C
01	0.2	0.3	0.4
O2	0.5	0.7	1.0
O3	0.1	0.2	0.4
04	0.4	0.3	1.0
O5	0.1	0.2	0.7
O6	0.2	1.0	0.4

 $A={O2} \delta = 0.7$ Lukasiewicz Implication: min (1,1-a+b)

- A=min(1,1-0.2+0.5)=min(1,1.3)=1>0.7
- B=min(1,1-0.3+0.7)=min(1,1.4)=1 > 0.7
- C= min(1,1-0.4+1)=min(1,1.6)=1 > 0.7
- The three properties of O2 verified O1 at the δ level
- Add O2 to the set of objects that verified O1 properties)
- A={O2}
- Now moving to O3

	A	В	С
01	0.2	0.3	0.4
02	0.5	0.7	1.0
03	0.1	0.2	0.4
04	0.4	0.3	1.0
05	0.1	0.2	0.7
06	0.2	1.0	0.4

 $A={O2} \delta = 0.7$ Lukasiewicz Implication: min (1,1-a+b)

- A=min(1,1-0.2+0.1)=min(1,0.9)=0.9 > 0.7
- B=min(1,1-0.3+0.2)=min(1,0.9)=0.9 > 0.7
- C= min(1,1-0.4+0.4)=min(1,1)=1 > 0.7
- The three properties of O3 verified O1 at δ level=0.7
- Add O3 to the set of objects that verified O1 properties
- A={O2,O3}
- Now moving to O4

	Α	ВВ	C
01	0.2	0.3	0.4
02	0.5	0.7	1.0
O3	0.1	0.2	0.4
04	0.4	0.3	1.0
O5	0.1	0.2	0.7
O6	0.2	1.0	0.4

A= $\{02,03\}$ δ =0.7 Lukasiewicz Implication: min $\{1,1-a+b\}$

- A=min(1,1-0.2+0.4)=min(1,1.2)=1
- B=min(1,1-0.3+0.3)=min(1,1)=1
- C = min(1,1-0.4+1.0) = min(1,1.6) = 1
- The three properties of O4 implied O1 at $oldsymbol{\delta}$ level
- Add O4 to the set of objects that verified O1 properties
- A={O2,O3,<mark>O4</mark>}
- Now moving to O5

	A	В	С
01	0.2	0.3	0.4
02	0.5	0.7	1.0
03	0.1	0.2	0.4
04	0.4	0.3	1.0
O5	0.1	0.2	0.7
06	0.2	1.0	0.4

A= $\{02,03,04\}$ δ =0.7 Lukasiewicz Implication: min $\{1,1-a+b\}$

- A=min(1,1-0.2+0.1)=min(1,0.9)=0.9
- B=min(1,1-0.3+0.2)=min(1,0.9)=0.9
- C = min(1,1-0.4+0.7) = min(1,1.3) = 1
- The three properties of O5 implied O1 at δ level
- Add O5 to the set of objects that implied (verified O1 properties)
- A={O2,O3,O4,O5}
- Now moving to O6

	A	ВВ	c
01	0.2	0.3	0.4
02	0.5	0.7	1.0
03	0.1	0.2	0.4
04	0.4	0.3	1.0
O5	0.1	0.2	0.7
O6	0.2	1.0	0.4

 $A=\{02,03,04,05\}$ **\delta=0.7** Lukasiewicz Implication: min (1,1-a+b)

- A=min(1,1-0.2+0.2)=min(1,1)=1
- B=min(1,1-0.3+1.0)=min(1,1.7)=1
- C = min(1,1-0.4+0.4) = min(1,1) = 1
- The three properties of O6 verified O1 at δ level
- Add O6 to the set of objects that verified O1 properties
- A={O2,O3,O4,O5,O6}

Getting the Minimum along A

	А	В	С
O2	0.5	0.7	1.0
O3	0.1	0.2	0.4
O4	0.4	0.3	1.0
O5	0.1	0.3	0.7
O6	0.2	1.0	0.4

	Α	В	С
01	0.2	0.3	0.4
MINIMUM	0.1	0.2	0.4

• So $f(A) = \{A/0.1, B/0.2, C/0.4\}$

Getting the Minimum along A

	Α	В	С
01	0.2	0.3	0.4
MINIMUM	0.1	0.2	0.4

 $f(A) = \{A/0.1, B/0.2, C/0.4\} \delta = 0.7$ Lukasiewicz Implication: min (1,1-a+b)

- $= A=\min(1,1-0.1+0.2)=\min(1,1.1)=1>0.7$
- B=min(1,1-0.2+0.3)=min(1,1.1)=1 > 0.7
- C= min(1,1-0.4+0.4)=min(1,1)=1 > 0.7
- The three properties of f(A) verified O1 at δ level
- So O1 can be removed normally with no change of Knowledge

Cont.

- Moving to the next Object O2
- Same **δ**=0.7

	Α	В	С	
02	0.5	0.7	1.0	
O 3	0.1	0.2	0.4	
04	0.4	0.3	1.0	
O5	0.1	0.2	0.7	
O 6	0.2	1.0	0.4	

Experimentation

- Dataset:
- Abalone: The Abalone dataset contains the physical measurements of abalones, which are large, edible sea snails.
 - 4177 rows and 9 columns.
 - The columns include 1 categorical predictor (sex),
 - 7 continuous predictors
 - Length, Diameter, Height, Whole weight, Shucked weight, Viscera weight, Shell weight
- Tools: Java, Metanome, ConexExp
- Experimentation is also done for the DB: ncvoter and OLX

Results and Discussion

DB Name	Column	Row	25%	FD	50%	FD	75%	FD	100%	FD
Abalone	9	4177	56	50	64	50	65	54	66	59
ncvoter	19	1000	78	3752	113	4023	160	4035	174	4133
OLX	7	118	33	101	42	116	57	117	59	119

Conclusion

- Proposed AFC preserved the functional dependency
- Reduced FC done without losing any information
- Discovering Functional dependency is possible even if database is hidden

Acknowledgement

I would like to thank

- o Dr. Ali Jaoua and his research team
- Especially Eng. Fahad Islam (RA)

for their kind support.

Thank You!