

TRIGONOMETRY

Chapter 3

Razones trigonométricas de un ángulo en posición normal

TRIGONOMETRY

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

03. HelicoPractice

04. HelicoWorkshop

MOTIVATING STRATEGY

Resumen

HELICO THEORY

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

Donde:

> x : abscisa del punto P

> y : ordenada del punto P

> r : radio vector

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

Se define:

sen	cos	tan
y	X	y
r	r	X

csc	sec	cot
r	r	X
v	X	V V

α: ángulo en posición normal.

 \bigcirc

Problema 01

Problema 02

Problema 03

Problema 04

Problema 05

Problema 01

M

Del gráfico, complete los casilleros en blanco.

RESOLUCIÓN

Calculamos el radio vector:

$$r = \sqrt{x^2 + y^2}$$

sen	Cos	tan
y	\boldsymbol{x}	y
\overline{r}	\overline{r}	$\frac{\overline{x}}{x}$

$$r = \sqrt{(-5)^2 + (12)^2}$$

$$r = \sqrt{25 + 144}$$

$$r = \sqrt{169}$$

$$r = 13$$

Según el gráfico obtenemos:

$$\cos \beta = \frac{x}{r} = \frac{-5}{13} = -\frac{5}{13}$$

$$\tan \beta = \frac{y}{x} = \frac{12}{-5} = -\frac{12}{5}$$

Del gráfico, calcule senα

RECORDEMOS

$$r = \sqrt{x^2 + y^2}$$
Sen

RESOLUCIÓN

Calculamos el radio vector:

$$r = \sqrt{(-24)^2 + (7)^2}$$

$$r = \sqrt{576 + 49}$$

$$r = \sqrt{625}$$

$$r = 25$$

∴ senα =
$$\frac{7}{25}$$

Del gráfico efectué:

$$C = \sqrt{17} \operatorname{Cos} \varphi$$

$$A$$

$$(4; -1)$$

$$x$$

RECORDEMOS

$$r = \sqrt{x^2 + y^2}$$

$$\frac{\cos \frac{x}{x}}{x}$$

RESOLUCIÓN

Calculamos el radio vector:

$$r = \sqrt{(4)^2 + (-1)^2}$$

$$r = \sqrt{16 + 1}$$

$$r = \sqrt{17}$$

Efectuamos :

$$C = \sqrt{17}Cos\phi$$

$$C = \sqrt{17} \left(\frac{4}{\sqrt{17}} \right)$$

$$C = 4$$

Se tiene un helicóptero suspendido en el aire, al cual se le ubica en el segundo cuadrante con coordenadas (-5;12) como se muestra en el gráfico.

Calcule $V = sen\theta - cos\theta$

RECORDEMOS

$$> r = \sqrt{x^2 + y^2}$$

sen	Cos
y	X
r	r

RESOLUCIÓN

Calculamos el radio vector:

$$r = \sqrt{(-5)^2 + (12)^2}$$

$$r = \sqrt{25 + 144}$$

$$r = 13$$

Efectuamos:

$$V = sen\theta - cos\theta$$

$$V = \frac{12}{13} - \frac{(-5)}{13}$$

$$V = \frac{17}{13}$$

Un ingeniero al hacer las mediciones de la ubicación de un baño en una casa obtiene el siguiente gráfico. Si se quiere instalar una tubería que pase por los puntos A y B, calcule tana + cota.

RECORDEMOS

tan	cot
<u>y</u>	X
X	y

RESOLUCIÓN

❖ Del gráfico: B(4; -3)

$$x = 4$$

$$y = -3$$

Efectuamos :

$$F = \tan \alpha + \cot \alpha$$

$$\mathsf{F} = \frac{(-3)}{4} + \frac{4}{(-3)}$$

$$\mathsf{F} = \frac{9+16}{-12}$$

$$F = \frac{25}{-12} = -\frac{25}{12}$$

Problemas Propuestos

 \bigcirc

 \bigcirc

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

HELICO WORKSHOP

Problema 07

Del gráfico, complete los

casilleros en blanco.

$$sen \alpha =$$

Del gráfico, calcule cosβ

Del gráfico efectué:

$$B = \sqrt{13}sen\emptyset$$

N

Mario dio su examen final de trigonometría siendo su nota el valor de 5P.

Calcule la nota de Mario; si:

P =
$$-12\sqrt{8}$$
tanβ. senβ

Lucía realiza sus compras

los viernes de cada semana en un supermercado, en el cual gasta A soles cada viernes, ¿Cuánto gasta lucía en el mes de julio? Considere que el mes tiene 4 semanas.

 $A = 100\cos\beta.\tan\beta$

