Numerical Integration of Non-Analytical Functions Using Area Estimates

$$\int_0^3 2 \exp(-x) \, dx = 2 \left[1 - \frac{1}{e^3} \right]$$

analytic: has an "anti-derivative"

$$\int_0^3 2\exp(-x^2) dx = \operatorname{erf}(3)\sqrt{\pi}$$

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-t^2) dt$$

non-analytic:

 $I(a,b) \equiv \int_a^b f(x) dx$

error function comes up so often, it is given a special name, but must be calculated numerically!

- = integral of f(x) over the interval $a \le x \le b$
- = area between the curve and the x-axis over the interval $a \le x \le b$
- ≈ **estimate** of area "under the curve"

Attempt 0 – "Order of Magnitude" Rule: Single Rectangle

https://commons.wikimedia.org/w/index.php?title=File:Integral_example.svg &oldid=463022361

Attempt 1 - Rectangle Rule: Many Rectangles ("Horizontal Tops")

https://commons.wikimedia.org/w/index.php?title=File:Integral_example.svg &oldid=463022361

Clicker: (30 s)

What is the area of the trapezoid to the right?

A: area of triangle + area of rectangle = $(y_1-y_2)^*h/2 + y_2^*h$

B: (average height of trapezoid)*(width of trapezoid) = $(y_1+y_2)*h/2$

C: A and B

D: not enough information if given

Clicker:

What is the area of the trapezoid to the right?

A: area of triangle + area of rectangle = $(y_1-y_2)^*h/2 + y_2^*h$

B: (average height of trapezoid)*(width of trapezoid) = $(y_1+y_2)*h/2$

C: A and B

D: not enough information if given

Attempt 2 - Trapezoid Rule: Many Trapezoids ("Sloped Linear Tops")

https://commons.wikimedia.org/w/index.php?title=File:Integral_example.svg &oldid=463022361

Python Code Example: Trapezoid Rule

```
1 # definition of the function
                                            I(a,b) \approx \frac{h}{2} \left| f(a) + f(b) + 2 \sum_{k=1}^{N-1} f(x_k) \right|
 2 # that needs to be integrated
 3 def f(x):
       return 3*x**2 + 2*x - 100
 6 # Number of trapezoids
                                                 N = Number of trapezoids
 7 N = 10
 8 # value of x at the left
                                                 h \equiv \frac{b-a}{N}
 9 # boundary of integral
10 a = 0.0
11 # value of x at the right
12 # boundary of integral
                                                 x_k = a + kh
13 b = 10.0
14 # x-interval of integration
15 # or equivalently width of trapezoid
16 h = (b-a)/N
17 # running total of the SUM,
18 # initialize with the sum of the first and last x-points
19 s = 0.5*(f(a) + f(b))
20
                                            I(0,10) = \int_{0}^{10} (3x^2 + 2x - 100) dx = 100
21 # recall that range goes
22 # from 1 to N-1 in this case
23 for k in range (1,N):
       s += f(a+k*h)
24
26 # the integral is sum of the individual trapezoid areas,
27 # don't forget to mulitply by h!
28 area = h*s
29 print ("area estimate = ",area)
area estimate = 105.0
```

Python Code Example: "Convergence"

y = % deviation from analytic solution vs. x = Number of trapezoids

Python Code Example: "Convergence"

y = % deviation from analytic solution vs. x = Number of trapezoids

Attempt 3 - Simpson's Rule: Many "Curved Parabolic Tops"

https://commons.wikimedia.org/w/index.php?title=File:Integral_example.svg&oldid= 463022361

https://commons.wikimedia.org/w/index.php?title=File:Simpsons_method_illustration.svg&oldid=505418410

Simpson's Rule:

Derivation for One Parabolic Segment

Goal: Approximate integral of f(x) for x=a...b with the integral of a parabola P(x) from x=a...b.

- 1. Approximate function f(x) with parabola $P(x) = A*x^2 + B*x + C$
- 2. How? **Choose** the coefficients A, B, and C such that :
 - P(a) = f(a)
 - P(m) = f(m=(b+a)/2)
 - P(b) = f(b)
- 3. Lots of algebra (3 equations and 3 unknowns)!
 - note that h = (b-a)/2
 - $A = [f(b) 2*f(m) + f(a)]/(2*h^2)$
 - B = [f(b) f(a)]/(2*h)
 - C = f(m)
- **4. Analytically** integrate P(x) from x=a...b to get:
 - $I(a,b) = (2/3)^*A^*h^3 + 2^*C^*h$
 - I(a,b) = (h/3)*[f(a) + 4*f(m) + f(b)]

For derivation: https://www.youtube.com/watch?v=7MoRzPObRf0

Clicker:

Simpson's Rule is the approximation of the integral of f(x) for x=a...b with the integral of a parabola $P(x) = A^*x^2 + B^*x + C$ from x=a...b.

- note that h = (b-a)/2
- $A = [f(b) 2*f(m) + f(a)]/(2*h^2)$
- B = [f(b) f(a)]/(2*h)
- C = f(m)

What are the geometrical interpretation of A, B, and C?

A: A is the **curvature** of f(x) and related to the second derivative of f(x)

B: B is the average slope of f(x) and related to the first derivative of f(x)

C: C is the central value of f(x)

D: all of the above

Clicker:

Simpson's Rule is the approximation of the integral of f(x) for x=a...b with the integral of a parabola $P(x) = A^*x^2 + B^*x + C$ from x=a...b.

- note that h = (b-a)/2
- $A = [f(b) 2*f(m) + f(a)]/(2*h^2)$
- B = [f(b) f(a)]/(2*h)
- C = f(m)

What are the geometrical interpretation of A, B, and C?

A: A is the **curvature** of f(x) and related to the second derivative of f(x)

B: B is the average slope of f(x) and related to the first derivative of f(x)

C: C is the central value of f(x)

D: all of the above

Simpson's Rule: Just Sum Up N (must be EVEN!) Parabolic Segments

$$I(a,b) \approx \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{k_{\text{odd}}=1}^{N-1} f(x_k) + 2 \sum_{k_{\text{even}}=2}^{N-2} f(x_k) \right]$$

$$N = \text{EVEN Number of parabolic segments}$$

$$h \equiv \frac{b-a}{N}$$

Python hint for generating even and odd integers:

range(1,10,2) will output = 1,3,5,7,9 range(2,10,2) will output = 2,4,6,8

Rectangle vs. Trapezoid vs. Simpson

property	Rectangle Rule (aka Midpoint Rule)	Trapezoid Rule	Simpson's Rule
shape	rectangle	trapezoid	parabolic segment
top	horizontal line	sloped line	curved line
takes into account	value	value slope	value slope curvature
related to	function	function first derivative	function first derivative second derivative
accuracy h = (b-a)/N	weirdly as good as trapezoid rule	okay, error scales like O(h³/N²)	surprisingly good, error scales as O(h ⁵ /N ⁴)

An example on integral calculus

Do the line integral:

Or use the Stoke's theorem:

$$\oint \vec{E} \cdot d\vec{l} = \int (\vec{\nabla}_{x} \vec{E}) \cdot d\vec{x} \qquad d\vec{x} = dx dy \hat{z} \qquad (\vec{\nabla}_{x} \vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{x}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{x} \vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{x}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{x} \vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x} \\
|\vec{\nabla}_{x} \vec{E}| = |\vec{x} \vec{E}|^{2} \int_{2xy}^{2y} dy dy dx = (\vec{E}) \cdot d\vec{x}$$