МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

кафедра Общей Физики и Ядерного Синтеза

Лаборатория Механики и Молекулярной Физики

Вводная лабораторная работа

Определение ускорения свободного падения с помощью математического маятника

Студент: Сидоров И.И.	
Преподаватель: Иванов Д.А.	
К работе допущен:	
Работу выполнил:	
Дата выполнения работы:	
Работу сдал:	

Цель работы — ознакомление с методами измерения физических величин в лаборатории "Механики и молекулярной физики"; ознакомление с видами погрешностей физических величин и способами их определения; экспериментальное определение ускорения свободного падения на широте Москвы при помощи математического маятника с использованием формулы Г.Галилея.

Принципиальная схема установки

Математический маятник — массивный шарик, подвешенный на невесомой нерастяжимой нити, длина которой значительно больше его диаметра. Такой маятник совершает свободные колебания при отклонении из положения равновесия на малый угол $(5-6^{\circ})$. В ходе эксперимента измеряется время, за которое маятник совершает 10 полных колебаний.

<u>таблица 1</u>

Спецификация измерительных приборов

Наименование прибора	Предел измерения	Цена деления	Инструментальная погрешность
Секундомер	1800,0 с	0,1 c	0,1 c

Расчетная формула

$$g = 4\pi^2 \frac{LN^2}{t^2},$$

где L – длина нити подвеса маятника;

N — число периодов колебаний (10);

t — время совершения маятником N колебаний.

Данные установки

Длина нити подвеса маятника (до центра масс шара) L = 460 мм; $\Delta L = 0.5$ мм.

таблица 2

Измерение времени 10 колебаний маятника

№	t, c	$\left t_{i}-\overline{t}\right $, c	$ t_i-\bar{t} ^2$, c
1	13,62	0,022	0,000484
2	13,66	0,018	0,000324
3	13,61	0,032	0,001024
4	13,67	0,028	0,000784
5	13,65	0,008	0,000064
среднее	$\bar{t} = 13,642$		

Обработка результатов измерений

1. Абсолютная погрешность средств измерения (приборная погрешность) времени колебаний маятника:

$$\Delta t_{\rm np} = \Delta_{\rm II} = 0.01$$
 (c).

2. Случайная погрешность измерения времени колебаний маятника:

$$\Delta t_{\text{CJI}} = t_{P,n} \cdot \sqrt{\frac{\sum_{i=1}^{n} (t_i - \bar{t})^2}{n(n-1)}} =$$

$$= 2,776 \cdot \sqrt{\frac{0,000484 + 0,000324 + 0,001024 + 0,000784 + 0,000064}{5 \cdot (5-1)}} = 0,0321 \text{ (c)}.$$

3. Результирующая погрешность измерения времени колебаний маятника:

$$\Delta t = \sqrt{\Delta t_{\text{cm}}^2 + \Delta t_{\text{np}}^2} = \sqrt{0.01^2 + 0.0321^2} = 0.03362 \approx 0.03 \text{ (c)}.$$

4. Результат прямого измерения:

$$t = \bar{t} \pm \Delta t = 13,64 \pm 0,03$$
 (c).

5. Экспериментальное значение ускорения свободного падения:

$$\overline{g} = 4\pi^2 \frac{LN^2}{t^2} = 4.3,1416^2 \cdot \frac{0,46.100}{13,64^2} = 9,7609 \,(\text{m/c}^2).$$

6. Относительная погрешность косвенного измерения:

$$\delta_g = \sqrt{\delta_L^2 + 4\delta_t^2 + 4\delta_\pi^2} = \sqrt{\left(\frac{0.5}{460}\right)^2 + 4\left(\frac{0.03}{13.64}\right)^2 + 4\left(\frac{0.00005}{3.1416}\right)^2} = 0.00553$$

7. Абсолютная погрешность косвенного измерения:

$$\Delta_g = g \cdot \delta_g = 9,7609 \cdot 0,00553 = 0,0539 \approx 0,05 \text{ (m/c}^2).$$

8. Окончательный результат определения ускорения свободного падения:

$$g = \overline{g} \pm \Delta g = 9,75 \pm 0,05 \text{ (m/c}^2)$$