

목차

- •기획 목표
- *데이터 수집, 정제
 - •분석 모델링
 - •시각화
- 결론, 보완 사항

현황 파악 통계

import matplotlib.pylab as plt

현황 파악 통계

import matplotlib.pylab as plt

현황 파악 통계

import matplotlib.pylab as plt

<u>니즈 파악 – 네이버 지식인 질문</u>

- ◎ 충치인가요? 아프진 않은데 찍어보니깐 너무 까매서 불안하네요....ㅜㅜ 충치인가요? 혹시 심각한가요? 비용은 얼마정도 드나요?
 - ◎ 어금니 사이에 충치인지 궁금합니다 아프지도 않고 시리지도 않은데 전에 어금니에 충치가 나여 봤더니 어금니 사이에도 검은색이 있더라구요 이게 초기 어...
- ◎ 충치치료 질문드립니다. 충치가 많으면...다른 이빨에도 충치가 옮기나요?
 - 사랑니 발치 후 어금니 옆 충치 ... 옆면에서 충치가 보인다고 합니다. 충치 진행은 어금니 표면부터 신경까지의 거리를 1이라 했을... 신경치료를 하면 치아에 ...
- ◎ 앞니 충치 치과치료 앞니에 이정도 크기의 충치가 생겼는데 치료하는 비용이 어느정도 들까요? 충치가 많이 진행된 상태인가요??

질문 내용 워드클라우드 시각화

from bs4 import BeautifulSoup | from wordcloud import WordCloud

질문 내용 워드클라우드 시각화

분석 방향 설정

CNN 이미지 분류

치아 사진을 바탕으로 충치인지 판단하는 시스템 구현

Folium 지도시각화

충치일 경우, 거주지 근처 우수 치과 추천

이미지 학습, 검증에 이용한 데이터

데이터 준비 과정

from bs4 import BeautifulSoup | from selenium import webdriver | import urllib.request as req

네이버, 구글 이미지 스크래핑

정상치아, 충치 이미지 수집

데이터 정제 작업

주제와 맞지 않는 데이터 삭제

이미지 당 한 개의 이를 나타내도록 이미지 편집

데이터 준비 과정

from bs4 import BeautifulSoup | from selenium import webdriver | import urllib.request as req

네이버, 구글 이미지 스크래핑

정상치아, 충치 이미지 수집

데이터 정제 작업

주제와 맞지 않는 데이터 삭제

이미지 당 한 개의 이를 나타내도록 이미지 편집

데이터 준비 과정

from bs4 import BeautifulSoup | from selenium import webdriver | import urllib.request as req

정제 후 이미지 데이터

총 722개

학습데이터 **577**개

검증데이터 145개

이미지 RGB 변환

from PIL import Image from tensorflow.keras.preprocessing.image import ImageDataGenerator

```
plt.subplot(1,3,1)
plt.imshow(\times[50][:,:,0])
plt.subplot(1,3,2)
plt.imshow(\times[50][:,:,1])
plt.subplot(1,3,3)
plt.imshow(\times[50][:,:,2]);
20
                     20
                                          20
40
                     40
60
                                                          50
         25
                              25
                50
                                     50
```

CNN 모델 형성 input_size : (64, 64)

from tensorflow.keras.layers import Conv2D, MaxPool2D, Input, Flatten, Dense, Dropout | from keras.preprocessing.image import img_to_array, load_img, array_to_img

입력층

```
model_cnn64 = Sequential()
model_cnn64.add(Conv2D(filters=32,kernel_size=(3,3),strides=(1,1),padding='same',input_shape=(64,64,3),activation='relu'))
model_cnn64.add(MaxPool2D(pool_size=(2,2)))

model_cnn64.add(Conv2D(filters=64, kernel_size=(3,3),strides=(1,1),padding='same',activation='relu'))
model_cnn64.add(MaxPool2D(pool_size=(2,2)))

model_cnn64.add(Conv2D(filters=64, kernel_size=(3,3),strides=(1,1),padding='same',activation='relu'))
model_cnn64.add(MaxPool2D(pool_size=(2,2)))

model_cnn64.add(Flatten())
model_cnn64.add(Dense(512,activation='relu'))
model_cnn64.add(Dense(512,activation='relu'))
model_cnn64.add(Dense(2,activation='softmax'))
model_cnn64.add(Dense(2,activation='softmax'))
model_cnn64.summary()
```

은닉층

Accuracy, Loss 도출 input_size: (64, 64)

0|0|X| Input_size (64,64) Learning_rate:
0.001
Epochs:
20

Batch_size:

32

Train Accuracy 최대값:

0.970537245273590

Test Accuracy 최대값:

0.889655172824859

Train loss 최소값:

0.097569189965724

Test loss 최소값:

0.305091440677642

CNN 모델 형성 input_size : (128, 128)

from tensorflow.keras.layers import Conv2D, MaxPool2D, Input, Flatten, Dense, Dropout | from keras.preprocessing.image import img_to_array, load_img, array_to_img

입력층

```
model_cnn128 = Sequential()
model_cnn128.add(Conv2D(filters=32,kernel_size=(3,3),strides=(1,1),padding='same',input_shape=(128,128,3),activation='relu'))
model_cnn128.add(MaxPool2D(pool_size=(2,2)))
model_cnn128.add(Conv2D(filters=64, kernel_size=(3,3),strides=(1,1),padding='same',activation='relu'))
model_cnn128.add(MaxPool2D(pool_size=(2,2)))
model_cnn128.add(Conv2D(filters=64, kernel_size=(3,3),strides=(1,1),padding='same',activation='relu'))
model_cnn128.add(MaxPool2D(pool_size=(2,2)))
model_cnn128.add(Flatten())
model_cnn128.add(Dense(512,activation='relu'))
model_cnn128.add(Dense(5,activation='relu'))
model_cnn128.add(Dense(2,activation='softmax'))
model_cnn128.summary()
```

은닉층

Accuracy, Loss 도출 input_size: (128, 128)

0|□|ス| Input_size (128,128) Learning_rate:
0.001
Epochs:
20

Batch_size:

32

Train Accuracy 최대값:

0.963604867458343

Test Accuracy 최대값:

0,944827556610107

Train loss 최소값:

0.1039920821785926

Test loss 최소값:

0.1726340055465698

CNN 모델 형성 input_size : (224, 224)

from tensorflow.keras.layers import Conv2D, MaxPool2D, Input, Flatten, Dense, Dropout | from keras.preprocessing.image import img_to_array, load_img, array_to_img

입력층

```
model_cnn224 = Sequential()
model_cnn224.add(Conv2D(filters=32,kernel_size=(3,3),strides=(1,1),padding='same',input_shape=(224,224,3),activation='relu'))
model_cnn224.add(MaxPool2D(pool_size=(2,2)))
model_cnn224.add(Conv2D(filters=64, kernel_size=(3,3),strides=(1,1),padding='same',activation='relu'))
model_cnn224.add(MaxPool2D(pool_size=(2,2)))
model_cnn224.add(Conv2D(filters=64, kernel_size=(3,3),strides=(1,1),padding='same',activation='relu'))
model_cnn224.add(MaxPool2D(pool_size=(2,2)))
model_cnn224.add(MaxPool2D(pool_size=(2,2)))
model_cnn224.add(Dense(512,activation='relu'))
model_cnn224.add(Dense(512,activation='relu'))
model_cnn224.add(Dense(2,activation='softmax'))
model_cnn224.add(Dense(2,activation='softmax'))
model_cnn224.summary()
```

은닉층

Accuracy, Loss 도출 input_size:(224, 224)

0|□|ズ| Input_size (224,224) Learning_rate:
0.001
Epochs:
20
Batch_size:

32

0.890814542770385
Test Accuracy 최대값:
0.8551723957061768
Train loss 최소값:
0.2855668663978576
Test loss 최소값:
0.35221111774444458

Accuracy 出교

Input_size 128 * 128 모델 선택

0|□|ス| Input_size (128,128) Learning_rate: 0.001

Epochs:

20

Batch_size:

32

BEST Train Accuracy 최대값

0.963604867458343

Test Accuracy 최대값:

0.944827556610107

Train loss 최소값:

0.1039920821785926

Test loss 최소값:

0.1726340055465698

의사회원 | 회사소개 | 인재채용

리뷰쓰기

가격정보 ▼

건강정보

가 본 사람들의 솔직한 병원 후기

인증된 리뷰 393,315개

회원 수 1,348,027명 의사 수 91,988명

출처: https://www.modoodoc.com/

from bs4 import BeautifulSoup | import urllib.request as req

치과 선정 기준

- 서울시 소재 한정
- ・ 리뷰 평점 8.0 이상
- 의원급

좌표(위도, 경도) 정보

GeocodingTool64 프로그램 이용 주소 바탕으로 위도, 경도 정보 획득

from bs4 import BeautifulSoup | import urllib.request as req

치과 선정 기준

- 서울시 소재 한정
- ・ 리뷰 평점 8.0 이상
- 의원급

좌표(위도, 경도) 정보

GeocodingTool64 프로그램 이용 주소 바탕으로 위도, 경도 정보 획득

치과 위치 지도 시각화

Import folium

결론, 보완 사항

- 충치 판단과 치과 추천 니즈 충족 가능성 높음
- ・ 높은 정확도(약 95%)의 이미지 분류 모델 구현

- 사진을 찍은 후 하나의 이만 나타나도록 편집해야 하는 번거로움 존재
- 지방의 치과도 반영할 수 있도록 데이터 확보 필요
- 웹, 앱에서 실질적으로 활용할 수 있도록 프로그래밍 필요

