

SECURITY BEYOND THE LIBRARIES

software security fundamentals

Eoin Woods
Endava
@eoinwoodz

INTRODUCTION

INTRODUCTION

- · Security is a difficult thing to achieve
- · Development teams often start with technologies
 - "SSL" "Spring Security" "SSO" "OAuth" "FindBugs" "Fortify" "Tripwire"
- This is completely the wrong way around
 - · need to understand your risks before finding solutions
- In this talk we discuss how to base security on risks

CAVEATS

- This talk is introductory in nature
 - some things aren't talked about & some things are just introduced
- Talk is for system developers not security engineers
 - subtleties are skipped, some things simplified to their essentials
 - you still probably need a security specialist
- Don't talk much about technologies or coding practice

INTRODUCING SECURITY

THE NEED FOR SECURITY

- · We need systems that are dependable in spite of
 - Malice, Error and Mischance
 - People are sometimes bad, stupid or just unlucky
- System security attempts to mitigate these situations
- Anything of value may attract unwelcome attention
 - Theft, Fraud, Destruction, Disruption

THE NEED FOR SECURITY

- Why do we care about these factors?
- Each of them implies a loss of some sort
 - Time
 - Money
 - Privacy
 - Reputation
 - Advantage

THINKING POINT

What risks of loss are there in your system?

think beyond money and personal data ...

WHAT IS SECURITY?

- Security is the business of managing risks
 - Security is a type of insurance
 - Balances cost and effort against risk of loss
- Some basic terminology
 - resources things of value that (may) need protection
 - principals (or actors) people ("entities") interacting with the system
 - policies the rules to control access to the resources
 - threats the reason that the rules may be broken

WHAT IS SECURITY?

- Security is multi-dimensional
 - People
 - Users, administrators, security experts (and ... attackers)
 - Process
 - Design, operation, control, monitoring, ...
 - Technology
 - What to apply, how to use it, how to integrate it
- · Remember: you're as secure as your weakest link

"Security is not a product -- it's a process" — Bruce Schneier

RISKS, THREATS AND ATTACKS

- Vulnerability = a weakness in a security mechanism
- Threat = Vulnerability + Attacker + Motivation
- Attack = when the attacker puts a plan into action
- Risk = threat x likelihood x impact

KEY SECURITY REQUIREMENTS

Confidentiality (or Privacy)	Prevent unauthorised access to information
Integrity	Prevent tampering or destruction
Availability	Prevent disruption to users of systems
Accountability (or "Non-Repudiation")	Know who does what, when

SECURING SYSTEMS

SECURING A SYSTEM

MODELLING THE SYSTEM AND ENVIRONMENT

RESOURCES - IDENTIFY VALUE

- What is **valuable** is often self-evident
 - client information ... damaging if lost
 - but what is of value for an external attacker? (e.g. configuration files?)
- · Operations as well as data
 - viewing a payment might be fine ... releasing one probably not!
- May require fine-grained consideration
 - HR data work phone numbers vs home address

POLICY - DEFINE CONTROLS

- · Security policy is a security specification
 - controls and guarantees needed in the system
 - WHO will use the system? (principals)
 - WHAT will they work on? (resource types)
 - and WHAT may they do? (actions on resources)

SECURITY POLICY

	Clients	Orders	Refunds <= £100	Refunds > £100
Onshore Service Agents	Create, View, Modify (Un)Suspend	All	Create, View, Authorise	View
Offshore Service Agents	View, (Un)Suspend	View, Cancel	View	View
Supervisors	All	All	All	Create, View, Cancel
Finance	View	View	View, Authorise	All

THREAT MODELLING

- Threat is a possible breach in security policy
 - System/process/people may (will) have vulnerabilities
 - Attackers have motivation and goals
 - Threat is an attacker exploiting a vulnerability
- Identifying threats is a key part of security design
 - threats are where you focus your security effort
 - threat modelling is the key activity

THREAT MODELLING

A procedure for optimising security by identifying **objectives** and **vulnerabilities**, and then defining **countermeasures** to prevent, or mitigate the effects of, threats to the system — OWASP

- Identify the real risks to focus security effort
- A technique all developers can be familiar with

THREAT MODELLING

- Who might attack your system?
- What is their goal?
- Which vulnerabilities might they exploit?

FINDING THREATS - STRIDE

Spoofing	Pretending to be someone that you're not
Tampering	Changing information you shouldn't
Repudiation	Being able to deny performing an action
Information Disclosure	Getting access to information illicitly
Denial of Service	Preventing a service being offered
Elevation of Privilege	Gaining privileges you shouldn't have

CAPTURETHREAT MODEL

	25	26
Threat Type	Tampering	Spoofing
Component	WebUI	WebUI
Threat	Javascript tampering in browser, altering order data	WebUI user spoofing session ID for other user account
OPR-5543 - Add validation and unit tests for incoming order		OPR-5547 - Regenerate session ID and recheck on every request

THINKING POINT

Can you identify a couple of threats in your environment?

who might attack? why? what vulnerability might allow this? what mitigations can you use?

EXPLORING ATTACKS: ATTACKT ATT

Attacker: Professional hacker

Goal: Obtain customer credit card details

Attack: Extract details from the system database.

- 1. Access the database directly
 - I. Crack/guess database passwords
 - 2. Crack/guess OS passwords to bypass db security
 - 3. Exploit a known vulnerability in the database software
- 2. Access the details via a DBA
 - I. Bribe a database administrator (DBA)
 - 2. Social engineering to trick DBA into revealing details
- 3.

COMPARE THREATS - DREAD MODEL

```
    Risk = Damage (|..|0) +
    Reproducibility (|..|0) +
    Exploitability (|..|0) +
    Affected Users (|..|0) +
    Discoverability (|..|0)
```

- Sum values and divide by 5 for the DREAD rating
 - https://www.owasp.org/index.php/Threat_Risk_Modeling
 - Can be criticised for lack of consistency but still a useful process

DREAD MODEL EXAMPLE

Suppose a threat where ...

• damage limited to individual users => 5/10

• is reproducible with a browser => 10/10

• **needs** malware for the exploit => 5/10

• affects many but not all users => 5/10

• and can be **discovered** easily => 10/10

• DREAD value = (5+10+5+5+10)/5 = 7/10

a useful process ... but thinking is still required!

LIBRARIES FOR KNOWN PROBLEMS

- OWASP Top 10 list
 - https://www.owasp.org/index.php/
 Category:OWASP_Top_Ten_Project
- WASC threat classification
 - http://projects.webappsec.org/f/WASC-TC-v2_0.pdf
- Mitre's CAPEC & CWE
 - Common Attack Pattern Enumeration & Classification
 - Common Weaknesses Enumeration

SECURITY ABUSE CASES

ABUSE CASE EXAMPLE

Abuse Case:	Spoofing Authorisation via Valid Authentication
Threat:	The misuser steals an authorisation token and attempts to use it via a valid (other) authenticated identity
Preconditions:	I) The misuser has a valid means of user authentication (e.g. username/password).2) The misuser has a stolen user authorisation token.
Actions:	 The system shall request the user's identity and authentication. The misuser authenticates himself correctly. The system shall identify and authenticate the user. The misuser attempts to authorise using the stolen token. The system rejects the authorisation attempt, audits the event, terminates the session and locks the user account.
Postconditions:	 The system shall have identified and authenticated the misuser The system shall have prevented the misuser from stealing another user's means of authorisation.

MINISE THE ATTACK SURFACE

- Attack surface: the potentially vulnerable system interfaces
 - smaller attack surface = less to attack and secure
- OWASP definition:
 - all channels into and out of the system
 - the code securing those channels
 - data of value within the application (security & domain)
 - the code securing this data

THINKING POINT

How would you reduce the attack surface for your system?

input and output "channels" code securing channels data items of value code securing data items

SECURITY COUNTERMEASURES

- · Once risks prioritised then implement mitigations
- · Some are well known and relatively straightforward
 - e.g. use of role based access control
- Some are more complex but well known
 - e.g. XSS or SQL injection require input validation
- Some need custom solutions
 - e.g. attacks based on organisation structure

Remember people, process and technology!

INCIDENT RESPONSE

- Despite security a system may breached
- Need a plan for what you do when it happens
 - · an incident response plan
 - · an incident response team

- Broader than just technical
 - technical, management, legal & communications
- A plan allowing a clear, logical, risk driven response
 - analysis, mitigation, evidence, communication, lessons
- Practice your response

SECURE IMPLEMENTATION

- Secure design is useless if implemented insecurely
 - secure implementation outside the scope of this talk
- · Secure implementation can be complicated
 - requires knowledge and care
 - relatively specialist task
- Static analysis and expert code review
 - FxCop, FindBugs, CodeAnalysis, Coverity, Fortify, . . .
 - OWASP code review guidelines, Oracle Java security guidelines

TOP SECURITY CODING ERRORS

- Not thoroughly validating input
- Injection attack vulnerabilities
- Insecure randomness
- Using custom cryptography

- Insecure logging
- Careless exception handling
- Lack of security testing

TESTING AND VERIFICATION

- As a software quality security needs to be tested
 - security testing largely outside the scope of this talk
- Wide range of security validation activities:
 - static analysis of code
 - functional testing of security features
 - penetration / known vulnerability / fuzz testing
 - manual system security review
 - threat mitigation tests
- Risk driven approach needed to maximise Rol
 - Consider third party assistance

SUMMARY

SUMMARY

- We've looked how to improve system security
 - · we need to be risk and principle driven
- Security requires: People, Process and Technology
 - the weakest of the three is your security level
- Security needs to be designed in
 - its very difficult and expensive to add later

SUMMARY

- · Be guided by risks not security technologies
 - threat risk models (STRIDE and DREAD); attack trees
- Get the experts involved for significant risks
 - and never invent your own security technology!

SUMMARY (II)

Never stop asking "why?" and "what if?"

critically important security questions!

Thank you for your attention

Questions?

Eoin Woods
Endava
eoin.woods@endava.com
@eoinwoodz

