ĐỀ THI THỬ TRẮC NGHIỆM ĐẠI SỐ GIỮA KÌ- 2 Thời gian: 40'

Câu 1 (CĐ 1-SP 1-ĐA b) Hai mệnh đề nào sau đây tương đương logic?

$[a] A \to B \text{ và } B \to A$	[b] $\overline{A \leftrightarrow B}$ và $\overline{A} \leftrightarrow B$
$[c](A \rightarrow B) \rightarrow C \text{ và } A \rightarrow (B \rightarrow C)$	[d] $A \wedge (B \vee C)$ và $(A \vee B) \wedge C$

Câu 2 (CĐ 1-SP 1-ĐA a)

Cho A, B, C là ba tập hợp bất kì. Khẳng định nào sau đây là đúng:

$[a] A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$	[b] $A \cap (B \setminus C) = (A \cap B) \setminus (A \cup C)$
$[c] A \cap (B \setminus C) = (A \cup B) \setminus (A \cup C)$	$[d] A \cap (B \setminus C) = (A \cup B) \setminus (A \cap C)$

Câu 3 (CĐ 2-SP 2-ĐA c) Cho $f(x) = \frac{1}{x}$ và $g(x) = \frac{2x}{1+x^2}$. Khi đó:

$[a] (g \circ f)(x) = x+1$	$[b] (g \circ f)(x) = \frac{2x}{1+x}$
$[c] (g \circ f)(x) = \frac{2x}{1+x^2}$	[d] $(g \circ f)(x) = \frac{2x^2}{1+x^2}$

Câu 4 (CĐ 2-SP 2-ĐA d) Cho ánh xạ $f: X \to Y, y = f(x), f$ không là đơn ánh. Khẳng định nào sau đây là **sai** ?

[a] $f(A \cup B) = f(A) \cup f(B) \ \forall A, B \subset X$	$[b] f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ $\forall A, B \subset Y$
[c] $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) \ \forall A, B \subset Y$	[d] $f(A \cap B) = f(A) \cap f(B) \ \forall A, B \subset X$

Câu 5 (CĐ 3-SP 2-ĐA b) Dạng *chính tắc* của số phức $z = \frac{1-i}{(1+i)^2}$ là

[a] $\frac{1}{2} - \frac{1}{2}i$	$[b] -\frac{1}{2} - \frac{1}{2}i$
$[c] \frac{1}{2} + \frac{1}{2}i$	$[\mathbf{d}] - \frac{1}{2} + \frac{1}{2}i$

Câu 6 (CĐ 3-SP 2-ĐA b) Các nghiệm của phương trình $z^5 = \frac{64}{z}$ là

[a] $\sqrt{2}-2$, $\sqrt{2}+2$, -2i, 2i	[b] -2, 2, -2i, 2i
[c] $\sqrt{2}$ -2, 2, -2i, $\sqrt{2}$ +2i	[d] -2 , 2, $\sqrt{2}$ $-2i$, $\sqrt{2}$ $+2i$

Câu 7 (CĐ 3-SP 2-ĐA d) Tính chất nào sau đây của số phức là đúng?

$\boxed{[a] z_1 + z_2 ^2 + z_1 - z_2 ^2 > 2(z_1 ^2 + z_2 ^2)}$	$ [b] z_1+z_2 ^2+ z_1-z_2 ^2<2(z_1 ^2+ z_2 ^2)$
$[c] z_1 + z_2 ^2 + z_1 - z_2 ^2 = 2(z_1 ^2 - z_2 ^2)$	$ [d] z_1 + z_2 ^2 + z_1 - z_2 ^2 = 2(z_1 ^2 + z_2 ^2)$

Câu 8 (CĐ 4-SP 2-ĐA d) Cho A là ma trận kích thước $m \times n$, B là ma trận kích thước $p \times n$, với m, n, p là các số nguyên dương đôi một khác nhau. Phép nhân ma trận nào sau đây là thực hiện được?

$[a] B^t.A$	[b] A ^t .B
$[c] B^t.A^t$	[d] $A.B^t$

Câu 9 (CĐ 4-SP4 -ĐAc) Giả sử $A = \begin{pmatrix} 4 & 1 \\ 4 & 5 \end{pmatrix}$ và $B = \begin{pmatrix} 2 & 9 \\ -1 & 19 \end{pmatrix}$. Ma trận X thỏa mãn AX = 2X + B là

$$\begin{bmatrix} a \end{bmatrix} X = \begin{pmatrix} \frac{7}{2} & -4 \\ -5 & 1 \end{pmatrix}$$

$$\begin{bmatrix} b \end{bmatrix} X = \begin{pmatrix} \frac{7}{2} & 4 \\ -5 & -1 \end{pmatrix}$$

$$\begin{bmatrix} c \end{bmatrix} X = \begin{pmatrix} \frac{7}{2} & 4 \\ -5 & 1 \end{pmatrix}$$

$$\begin{bmatrix} d \end{bmatrix} X = \begin{pmatrix} -\frac{7}{2} & 4 \\ -5 & 1 \end{pmatrix}$$

Câu 10 (CĐ 5-SP4 -ĐAa) Cho $A = \begin{bmatrix} 1 & 2-i & 3+i \\ 2+i & 0 & -i \\ 3-i & i & i \end{bmatrix}$. Khi đó: det A bằng

[a] -11- 5i	[b] -11+ 5i
[c] 11+ 5i	[d] 11- 5i

Câu 11 (CĐ 6-SP1 -ĐAd) Cho một hệ phương trình tuyến tính gồm 2010 phương trình và 2010 ẩn số. Khả năng nào sau đây là *không thể xảy ra*?

[a] Hệ phương trình vô nghiệm	[b] Hệ phương trình có nghiệm duy
	nhất
[c] Hệ phương trình có vô số nghiệm	[d] Hệ phương trình có đúng 2
	nghiệm phân biệt

Câu 12 (CĐ 6-SP1 -ĐAa) Cho một hệ phương trình tuyến tính *thuần nhất* gồm 2010 phương trình và 2011 ẩn số. Khả năng nào sau đây là *không thể xảy ra*?

[a] Hệ phương trình có nghiệm duy	[b] Hệ phương trình có vô số nghiệm
nhất	phụ thuộc vào một tham số
[c] Hệ phương trình có vô số nghiệm	[d] Hệ phương trình vô nghiệm
phụ thuộc vào hai tham số	

Câu 13 (CĐ 6-SP2 -ĐAa) Cho ma trận $P = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$. Hạng của ma trận

P là:

[a] 2	[b] 3
[c] 4	[d] 1

Câu 14 (CĐ 6-SP4 -ĐAc) Cho hệ phương trình $\begin{cases} x_1 + x_2 + x_3 = 1 \\ 2x_1 + mx_2 + x_3 = 2 \\ 3x_1 + mx_2 + (m+1)x_3 = 5 \end{cases}$. Tìm

m để hệ phương trình có nghiệm duy nhất?

[a]
$$m \neq \frac{-3+\sqrt{5}}{2}$$
, $m \neq \frac{-3-\sqrt{5}}{2}$ [b] $m \neq \frac{-3+\sqrt{5}}{2}$, $m \neq \frac{3+\sqrt{5}}{2}$ [c] $m \neq \frac{3+\sqrt{5}}{2}$, $m \neq \frac{3-\sqrt{5}}{2}$ [d] Không có giá trị m cần tìm

Câu 15 (CĐ 1-SP 1-ĐA b) Hai mệnh đề nào sau đây tương đương logic?

[a]
$$A \to B \text{ và } B \to A$$
 [b] $A \leftrightarrow B \text{ và } (A \land B) \lor (\overline{A} \land \overline{B})$

$ [c] (A \to B) \to C \text{ và } A \to (B \to C) $	[d] $A \wedge (B \vee C)$ và $(A \vee B) \wedge C$
---	--

Câu 16 (CĐ 1-SP 1-ĐA a)

Cho A, B, C là ba tập hợp bất kì. Khẳng định nào sau đây là đúng:

[a] $(A \setminus B) \setminus C = A \setminus (B \cup C)$	[b] $A \cap (B \setminus C) = (A \cap B) \setminus (A \cup C)$
$[c] A \cap (B \setminus C) = (A \cup B) \setminus (A \cup C)$	$[d] A \cap (B \setminus C) = (A \cup B) \setminus (A \cap C)$

Câu 17 (CĐ 2-SP 2-ĐA c) Cho các ánh xạ $f: E \to F, g: F \to G$. Nếu f, g là toàn ánh khẳng định nào sau đây luôn *đúng*?

[a] $g \circ f$ là đơn ánh	[b] $g \circ f$ là song ánh
[c] $g \circ f$ là toàn ánh	[d] $g \circ f$ không là toàn ánh

Câu 18 (CĐ 2-SP 2-ĐAd) Cho ánh xạ $f: X \to Y, y = f(x), f$ không là đơn ánh. Khẳng định nào sau đây là *sai* ?

[a] $f(A \cap B) \subset f(A) \cap f(B) \ \forall A, B \subset X$	$ \begin{bmatrix} b \end{bmatrix} f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \\ \forall A, B \subset Y $
$[c] f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B) \forall A, B \subset Y$	$ \begin{array}{ c c } \hline [d] \\ f(A) \cap f(B) \subset f(A \cap B) \ \forall A, B \subset X \end{array} $

Câu 19 (CĐ 3-SP 2-ĐA b) Dạng *chính tắc* của số phức $z = \frac{(1+i)^{21}}{(1-i)^{13}}$ là

[a] -16 <i>i</i>	[b] 16 <i>i</i>
[c] 1+16 <i>i</i>	[d] 1–16 <i>i</i>

Câu 20 (CĐ 3-SP 2-ĐA b) Các nghiệm của phương trình $z^6 = \frac{256}{\overline{z^2}}$ là

[a] $\sqrt{2}-2$, $\sqrt{2}+2$, -2i, 2i	[b] -2, 2, -2i, 2i
[c] $\sqrt{2}$ -2, 2, -2i, $\sqrt{2}$ +2i	[d] -2 , 2, $\sqrt{2}$ $-2i$, $\sqrt{2}$ $+2i$

Câu 21 (CĐ 3-SP 2-ĐA d) Cho $z_1 \in \mathbb{C}, |z_1| = 2010$. Khi đó với mọi

$$z_2 \in \mathbb{C}, z_2 \neq z_1$$
 thì giá trị của $\left| \frac{z_1 - z_2}{2010^2 - \overline{z_1} z_2} \right|$ là

[a] 0	[b] 2010
[c] 2011	[d] $\frac{1}{2010}$

Câu 22 (CĐ 4-SP 2-ĐA b) Cho *A*, *B* là các ma trận vuông cấp n. Đẳng thức nào sau đây là *sai* ?

$[a](AB)^t = B^t A^t \ \forall A, B$	$[b](AB)^n = A^n B^n \ \forall A, B$
$[c](AB)^{-1} = B^{-1}A^{-1} \ \forall A, B$	$[d](A+B)^t = B^t + A^t \ \forall A, B$

Câu 23 (CĐ 4-SP4 -ĐAc) Giả sử
$$A = \begin{pmatrix} 5 & 1 \\ 3 & 7 \end{pmatrix}$$
 và $B = \begin{pmatrix} 3 & -1 \\ 5 & 6 \end{pmatrix}$. Ma trận X

thỏa mãn AX = 3X + B là

[a]
$$X = \begin{pmatrix} -\frac{7}{5} & -2\\ \frac{1}{5} & 3 \end{pmatrix}$$
 [b] $X = \begin{pmatrix} \frac{7}{5} & -2\\ \frac{1}{5} & -3 \end{pmatrix}$ [c] $X = \begin{pmatrix} \frac{7}{5} & -2\\ \frac{1}{5} & 3 \end{pmatrix}$ [d] $X = \begin{pmatrix} \frac{7}{5} & -2\\ -\frac{1}{5} & 3 \end{pmatrix}$

Câu 24 (CĐ 5-SP4 -ĐAa) Cho
$$A = \begin{bmatrix} 1 & 1 & \varepsilon \\ 1 & 1 & \varepsilon^2 \\ \varepsilon^2 & \varepsilon & 1 \end{bmatrix}$$
, trong đó $\varepsilon = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$.

Khi đó det A bằng

[a] 1	[b] 2
[c] 3	[d] 4

Câu 25 (CĐ 6-SP1 -ĐAd) Cho một hệ phương trình tuyến tính gồm n phương trình và n ẩn số. Khả năng nào sau đây là *không thể xảy ra*?

[a] Hệ phương trình vô nghiệm [b] Hệ phương trình có nghiệm duy

	nhất
[c] Hệ phương trình có vô số nghiệm	[d] Hệ phương trình có đúng 2 nghiêm phân biệt

Câu 26 (CĐ 6-SP1 -ĐAd) Cho một hệ phương trình tuyến tính *thuần nhất* gồm n+1 phương trình và n ẩn số. Khả năng nào sau đây là *không thể xảy* ra?

[a] Hệ phương trình có nghiệm duy	[b] Hệ phương trình có vô số nghiệm
nhất	phụ thuộc vào một tham số
[c] Hệ phương trình có vô số nghiệm	[d] Hệ phương trình đúng 2 nghiệm
phụ thuộc vào hai tham số	phân biệt

Câu 27 (CĐ 6-SP2 -ĐAa) Cho ma trận $P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & -2 \end{pmatrix}$. Hạng của ma trận

P là:

[a] 2	[b] 3
[c] 4	[d] 1

Câu 28 (CĐ 6-SP4 -ĐAc) Cho hệ phương trình $\begin{cases} x_1 + 2x_2 + x_3 = 3 \\ 2x_1 + mx_2 + mx_3 = 5 \\ 3x_1 + 5x_2 + (m+2)x_3 = 7 \end{cases}$ giá trị nào của m thì hệ phương trình có nghiệm duy nhất?

[a] $m \neq -2 + \sqrt{2}, m \neq -2 - \sqrt{2}$	[b] $m \neq -2 + \sqrt{2}, m \neq 2 - \sqrt{2}$
[c] $m \neq 2 + \sqrt{2}, m \neq 2 - \sqrt{2}$	[d] Không có giá trị m cần tìm