

education

Department:
Education
North West Provincial Government
REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

Stanmor phy GRADE 12

PHYSICAL SCIENCES: PHYSICS P1

JUNE 2025

MARKS: 150

TIME: 3 hours

Stanmorephysics.com

This question paper consists of 14 pages and 3 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your name on the ANSWER BOOK.
- This question paper consists of 10 questions. Answer ALL the questions in the ANSWER BOOK.
- Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- Leave ONE line open between two sub questions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g.1.11 F

- 1.1 Which ONE of the following situations best describes the concept of inertia?
 - A A bicycle comes to a stop when brakes are applied.
 - B A soccer ball that remains still until kicked.
 - C A child runs into a wall and falls backward.
 - D A satellite orbiting the earth.

(2)

(2)

(2)

- 1.2 Which ONE of the following statements is true regarding Newton's second law?
 - A It applies only to objects at rest.
 - B It describes how velocity is affected by mass and force.
 - C It indicates that the force and acceleration are inversely proportional.
 - D It quantifies how the net force acting on an object affects its motion.
- 1.3 A ball has a mass of 0,30 kg. It moves horizontally with a velocity of 3.0 m.s⁻¹ in the direction shown. The ball hits a wall and rebounds with a horizontal velocity of 2.0 m.s⁻¹.

What is the change in momentum of the ball? Physics.com

- A 0.3 kg.m.s⁻¹ left
- B 1.5 kg.m.s⁻¹ right
- C 1.5 kg.m.s⁻¹ left
- D 5.0 kg.m.s⁻¹ right

1.4 A toy train with the mass of 75 g moving backward at a constant speed, on a horizontal track, collides with a stationary toy cart with the mass of 50 g and moves together as shown in the diagram below.

How will the impulse on the toy train compare to the impulse of the toy cart during collision?

- Equal to, but in the opposite direction.
- More than, but in the opposite direction. В
- C Equal to, but in the same direction.
- D More than, but in the same direction.
- (2)
- 1.5 A ball is thrown vertically upwards at initial velocity of V_i and acceleration a till it reaches its maximum height y, it returns to the thrower's hand with a final velocity of V_f . The quantities V_i , V_f , a and y are related by expression:

$$V_{f^2} = V_{i^2} + 2ay$$

UPWARDS motion is taken as POSITIVE.

Which ONE of the following conditions apply to the formula?

Α	a is negative	V _i is positive and V _f is negative	
В	a is positive	V _i is negative and V _f is negative	
С	a is negative	V _i is positive and V _f is positive	
D	a is negative	V _i is negative and V _f is negative	(2)

- 1.6 Which ONE of the following physical quantities is equal to the product of the force and average velocity?
 - Average acceleration Α
 - В Work
 - C Average power
 - D (2)Energy

1.7 Two boys are pulling two identical objects at the same CONSTANT SPEED up two different inclines, X and Y, with different gradients, but equal height. Ignore the effect of friction.

The magnitude of the force exerted by each of the boys, parallel to the incline, and the work done by the gravitational force of each can be compared as follows:

	MAGNITUDE OF FORCE	WORK DONE BY GRAVITATIONAL FORCE	
А	Fx < Fy	Wx > Wy	7
В	Fx > Fy	Wx > Wy	7
С	Fx < Fy	Wx = Wy	
D [Fx > Fy	Wx = Wy	(2)

1.8 A train is moving towards a stationary listener. The train sounds its horn. What are the correct changes in frequency and wavelength as heard by the listener?

	Frequency	Wavelength	
Α	Higher	Shorter	
В	Higher	Longer	
С	Lower	Shorter	
D	Lower	Longer	(2

1.9 A team of hunters are researching about the movement of lions in the forest. They plan to calculate the speed of a lion using Doppler effect. The lion roars while moving towards the hunters who are in stationary car.

Which ONE of the following equations will be used by the hunters to calculate the speed of the lion?

Α	B •	
$f_L = 1 + \frac{V_L}{V_S} f_S$	$f_L = \frac{V_L}{V + V_s} f_S$	
С	D	
$f_L = \frac{V + V_L}{V} f_S$	Stanmoreph Sic V & Vs fs	(2

1.10 A source of sound with frequency of 1 000 Hz is moving with a constant velocity of 20 m.s⁻¹ towards a stationery listener.

The ratio of frequency observed by stationary listener to the frequency of the source is ... (Speed of sound is 340 m.s⁻¹).

- A 17:16
- B 16:17
- C 1:1
- D 17:18

(2) **[20]**

QUESTION 2 (Start on a new page.)

A bakkie with a mass of 900 kg, pulls a trailer with a mass of 150 kg, over a level road in a westerly direction as shown in the diagram below. The engine of the bakkie exerts a force of 8 000 N. The frictional force on the bakkie is 1 800 N and that on the trailer is 300 N.

- 2.1 State Newton's Second Law of Motion in words. (2)
- 2.2 Draw a labelled free-body diagram for all the forces on the bakkie. (5)
- 2.3 Calculate the acceleration that the system experiences. (5)
- 2.4 The mass of the trailer is now decreased.

How will this change the *net force* and the *acceleration* of the system?

Choose from INCREASE, DECREASE or REMAINS THE SAME. (2)
[14]

(2)

(2)

QUESTION 3 (Start on a new page.)

A crate with a mass of 25 kg is at REST on an inclined plane that forms an angle of 30° to the horizontal.

- 3.1 Define the term frictional force.
- 3.2 Draw a labelled force diagram of all the forces acting on crate. (3)
- 3.3 Calculate the component of the weight of the crate parallel to the plane. (3)
- 3.4 Suppose the coefficient of static friction between the surfaces of the crate and the slope is 0,6. Determine the angle of inclination that results in a maximum static friction force.
- 3.5 How does an increase in the angle of incline affect the frictional force acting on the crate? (3)

 [13]

QUESTION 4 (Start on a new page.)

A car with a mass of 650 kg travels at a velocity of 60 km.h⁻¹ on a straight horizontal road and crashes the back of a truck with a mass of 1 000 kg that is travelling in the same direction at 8,33 m.s⁻¹. Immediately after the collision, the truck travels at 10 m.s⁻¹ in the original direction of motion. (Ignore the effect of friction.)

- 4.1 State the *principle* of conservation of linear momentum.
- 4.2 Calculate:
 - 4.2.1 The speed of the car immediately after the collision.
 - 4.2.2 The total kinetic energy of the system both before and after the collision and conclude whether the collision is elastic or inelastic. (6)
- 4.3 During collision, the car and the truck exert forces on each other.

Name and state Newton's Law of Motion that relates the magnitudes of forces that the car and the truck exert on each other.

(3) **[16]**

(2)

(5)

QUESTION 5 (Start on a new page.)

The picture below shows a basketball player that shoots a 650 g basketball. The net force acting on the ball increases linearly from 0 N to 22 N during the first 0,15 s while it is in contact with his hand. During the next 0,25 s the net force decreases linearly to 0 N.

5.1 Define the term *impulse*. (2)5.2 Draw a graph of net force acting on the ball as a function of time. (2)5.3 Use the graph in QUESTION 5.2 to calculate: 5.3.1 The magnitude of impulse provided to the basketball. (3)5.3.2 The speed of basketball when it leaves the hand of the shooter. (4)5.4 How would the ball's speed be affected if the same impulse was provided to a ball with less mass? Write only INCREASE, DECREASE or REMAINS THE SAME. (1) 5.5 Give a reason for the answer in question 5.4. (2)[14]

QUESTION 6 (Start on a new page.)

The following velocity-time graph below shows the motion of a ball that is thrown upwards. It reaches a maximum height, falls back to the ground and then bounces up again.

- 6.1 What sign (POSITIVE or NEGATIVE) was chosen for the upwards motion? (1)
- 6.2 Calculate:
 - 6.2.1 The slope of the graph between t = 2 s and t = 3 s. (3)
 - 6.2.2 Which physical quantity does the slope in 6.2.1 represent? (2)
- 6.3 Use the graph to determine the velocity at which:
 - 6.3.1 The ball was thrown upwards. (3)
 - 6.3.2 The ball hit the ground. (2)
 - 6.3.3 The ball left the ground after it bounced. (2)
- 6.4 Describe the position of the ball at:

6.4.1
$$t = 0.5 s$$
 (1)

$$6.4.2 t = 1 s$$
 (1)

6.4.3
$$t = 3 s$$
 (1)

6.5 WITHOUT THE USE OF ANY EQUATION OF MOTION, determine the height above the ground from which the ball was initially thrown.

(4) **[20]**

QUESTION 7 (Start on a new page.)

Ball **X** is thrown vertically upwards. At the same time ball **Y** was dropped downwards from a height of 30 m above the ground.

7.1 Define the term Projectile rephysics.com

(2)

(1)

- 7.2 What will the velocity of ball **X** at its maximum height be?
- 7.3 At what velocity must **X** be thrown to reach a maximum height of 30 m above the ground? (4)
- 7.4 Calculate the time that it will take for the two balls to pass each other? (7)
- 7.5 On the same set of axes, draw the position-time graphs for the motion of ball **X** and ball **Y**.

Clearly indicate the following on the graph:

- For ball Y, from the moment it was dropped until it reached the ground.
- For ball X, from the moment it was projected till it reached the maximum height.
- Use the ground as zero position.
- Label the graphs X and Y.
 [3]

QUESTION 8 (Start on a new page.)

At Gold Reef City Park, a train toy of mass 120 kg travels without propulsion along a track as shown in the diagram below. It starts from rest at point **A** and travels past points **B** and **C**. Section **ABC** is FRICTIONLESS. The train continues to point **D** and then up to point **E**.

- 8.1 State the principle of conservation of mechanical energy. (2)
- 8.2 Calculate the speed of the toy train as it moves past point **C**. (4)
- 8.3 At point **C** the toy train's velocity is 10,84 m.s⁻¹. Going through the ROUGH section **CDE** its speed decreased by 90% by the time it reaches point **E**.

Calculate the amount of heat generated during this part of the ride due to friction between the track and the wheels of the train. (4)

[10]

QUESTION 9 (Start on a new page.)

A loaded bakkie travels up a slope as indicated below. The total mass of the bakkie and the load is 1 750 kg. It is driven at a CONSTANT VELOCITY of 20 m·s⁻¹ and travels for 570 m up to the top of the slope, 55 m above the ground level.

The work done by friction is 5.84×10^6 J.

- 9.1 Define the term *non-conservative force*. (2)
- 9.2 Calculate the applied force by the engine of the bakkie, as it is moving up the incline. (5)
- 9.3 What was the net force on the bakkie at a point halfway up the slope? (1)
- 9.4 In another scenario the empty bakkie, with a mass of 1100 kg, travels down the slope and accelerates from 20 m.s⁻¹ at the top of the slope, to 25 m.s⁻¹, at the bottom of the slope. The average frictional force is 6,44 x 10³ N.
 - Calculate the work done by the engine while the bakkie is accelerating. (5) [13]

QUESTION 10 (Start on a new page.)

A fire engine travelling at constant velocity of 30 m.s⁻¹ approaches a stationary listener with its siren emitting a frequency of 458 Hz. The listener hears a change in pitch as the train approaches him, passes him and moves away from him.

- 10.1 Name the phenomenon that explains the change in pitch heard by the listener. (1)
- 10.2 Calculate the frequency of the sound that the listener hears while the fire engine is approaching him. Use the speed of sound in air as 340 m.s⁻¹. (4)
- 10.3 How will the frequency heard by the listener change as the fire engine passes and moves away from the listener?
 - Write down only INCREASE, DECREASE or REMAINS THE SAME. (1)
- 10.4 How will the frequency heard by the fire engine driver compare to that of sound waves emitted by the fire engine siren? Write only GREATER THAN, EQUALS TO or LESS THAN.
 - Give a reason for the answer. (2)
- 10.5 Mention THREE practical applications for the above mentioned phenomenon across different fields. (3)
- 10.6 How does the above mentioned phenomenon provide evidence for the expansion of the universe?

TOTAL: 150

(2) **[13]**

DATA FOR PHYSICALSCIENCES GRADE 12 PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 1 (FISIKA)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m·s ⁻²
Universal gravitational constant Universele gravitasiekonstante	G	6,67 x 10 ⁻¹¹ N·m ² ·kg ⁻²
Radius of the Earth Radius van die Aarde	Re	6,38 x 10 ⁶ m
Mass of the Earth Stanmorephysic Massa van die Aarde	M _E	5,98 x 10 ²⁴ kg
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m·s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J·s
Coulomb's constant Coulomb se konstante	k	9,0 x 10 ⁹ N·m ² ·C ⁻²
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_1 = v_1 + a \Delta t$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \text{ or/of } \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$v_{i}^{2} = v_{i}^{2} + 2a\Delta x \text{ or/of } v_{i}^{2} = v_{i}^{2} + 2a\Delta y$	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t$ or/of $\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t$

FORCE/KRAG

F _{net} = ma	p=mv
$f_s^{\text{max}} = \mu_s N$	$f_k = \mu_k N$
$F_{net}\Delta t = \Delta p$ $\Delta p = mv_r - mv_i$	w=mg
$F = G \frac{m_1 m_2}{d^2}$ or/of $F = G \frac{m_1 m_2}{r^2}$	$ong = G\frac{M}{d^2}$ or/of $g = G\frac{M}{r^2}$

WORK, ENERGY AND POWER/ARBEID, ENERGIE EN DRYWING

$W = F\Delta x \cos \theta$	U=mgh	or/of	$E_p = mgh$
$K = \frac{1}{2}mv^2$ or/of $E_k = \frac{1}{2}mv^2$	$W_{net} = \Delta K$	or/of	$W_{net} = \Delta E_k$
2 2 2 2	$\Delta K = K_f - K_i$	or/of	$\Delta E_k = E_{kl} - E_{kl}$
$W_{nc} = \Delta K + \Delta U \text{ or/of } W_{nc} = \Delta E_k + \Delta E_p$	$P = \frac{W}{\Delta t}$		
P _{ave} = Fv _{ave} / P _{gernid} = Fv _{gernid}			

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$
$f_L = \frac{v \pm v_L}{v \pm v_s} f_s$ or/of $f_L = \frac{v \pm v_L}{v \pm v_b} f_b$	$E = hf or/of E = \frac{hc}{\lambda}$
$E = W_0 + E_{k(max)}$ or/of $E = W_0 + K_{max}$ $E = hf$ and $W_0 = hf_0$ and $E_{k(max)} = \frac{1}{2}$	
$E = W_0 + E_{k(maks)}$ of $E = W_0 + K_{maks}$ was $E = hf$ en $W_0 = hf_0$ en $E_{k(maks)} = \frac{1}{2}mv$	

ELECTROSTATICS/ELEKTROSTATIKA

$F = \frac{kQ_1Q_2}{r^2}$	$E = \frac{kQ}{r^2}$
$V = \frac{W}{q}$	$E = \frac{F}{q}$
$n = \frac{Q}{e}$ or/of $n = \frac{Q}{q_e}$	

ELECTRIC CIRCUITS/ELEKTRIESE STROOMBANE

VIET THE PROPERTY OF THE PROPE	
$R = \frac{V}{I}$	emf (ε) = I(R + r) emk (ε) = I(R + r)
$R_s = R_1 + R_2 +$ $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} +$ Stanmore physics. c	om q = I\(\Delta\text{t}\)
W = Vq	$P = \frac{W}{\Delta t}$
$W = VI\Delta t$ $W = I^2R\Delta t$	P = VI
$W = \frac{V^2 \Delta t}{R}$	$P = I^{2}R$ $P = \frac{V^{2}}{R}$

ALTERNATING CURRENT/WISSELSTROOM

I _{max}	,	, I _{maks}	$\mathbf{P}_{\text{ave}} = \mathbf{V}_{\text{ms}} \mathbf{I}_{\text{ms}}$	1	$P_{gemiddeld} {=} V_{wgk} I_{wgk}$
$I_{\rm rms} = \frac{1}{\sqrt{2}}$	1	$I_{\text{wgk}} = \frac{1}{\sqrt{2}}$	$P_{ave} = I_{ms}^2 R$	1	${\rm P}_{\rm gemiddeld}{\rm =I}_{\rm wgk}^2{\rm R}$
$V_{rms} = \frac{V_{max}}{\sqrt{2}}$	1	$V_{wgk} = \frac{V_{maks}}{\sqrt{2}}$	$P_{ave} = \frac{V_{mis}^2}{V_{mis}^2}$	1	$P = \frac{V_{wgk}^2}{V_{wgk}}$

Downloaded from Stanmorephysics.com

education

Department:
Education
North West Provincial Government
REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT/
PROVINSIALE ASSESSERING

Stanmorephysics.com

GRADE/GRAAD 12

PHYSICAL SCIENCES: PHYSICS (P1)
FISIESE WETENSKAPPE: FISIKA (V1)
JUNE/JUNIE 2025
FINAL MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 144

These marking guidelines consist of 15 pages. Hierdie nasienrigyne bestaan uit 15 bladsye.

QUESTION 1/VRAAG 1

100	В√√		(2)
1.2	D 11		(2)
1.3	C VV		(2)
1.4	A √√		(2)
1.5	A √√	and the second	(2)
1.6	C 🗸		(2)
1.7	C 🗸		(2)
1.8	A √√		(2)
1.9	D 🗸	Stanmorephysics.com	(2)
1.10	A √√		(2) [20]

Downloaded from Stanmorephysics.com

QUESTION 2/VRAAG 2

2.1

Marking criteria

If any of the underlined key words/phrases in the **correct context** is omitted deduct 1 mark. /Indien enige van die onderstreepte word/frases nie in die korrekte konteks is

When a net force acts on an object, the object will accelerate in the direction of the force \(\sqrt{a} \) and the acceleration is directly proportional to the force and inversely proportional to the mass of the object. \(\sqrt{Wanneer 'n netto krag op 'n voorwerp inwerk, sal die voorwerp versnel in die rigting van die krag en die versnelling is direk eweredig aan die krag en omgekeerd eweredig aan die massa van die voorwerp.

2.2

(2)

NOTE/NOTA

If force — diagram/ Indien 'n kragtediagram (5/5)

Accept th	ne following symbols: Aanvaar die volgende simbole	
F _N ✓	F _N / N/Normal force/Normaalkrag	
T 🗸	F _T /Tension/Spanning	
Fg 🗸	w /mg/weight/gravitational force/gravitasiekrag	
f 🗸	Fk/f/Ff /Force of friction/kinetic frictional force/kinetiese wrywingskrag	
Fa√	FE/FA/F/Applied force/Toegepaste krag	

NOTES/NOTA

- Mark awarded for label and arrow. / Punte toegeken vir benoemimg en pyltjie.
- Do not penalise for the length of arrows. / Moet nie penaliseer vir die lengte van die pyltjies nie.
- Any other additional force(s)/ Enige ekstra kragte: Max 4/5
- If everything is correct, but no arrows. / Alles korrek maar geen pyle: Max 4/5

2.3 2.3.1 Fnet = ma}_ (Direction of motion as +/Rigting van beweging as +) Car / Kar Any one/ enige een $-T - f_k + F_E = ma$ -T – 1800 + 8000 = 900a ✓ -T = 900a - 6200/.....(1) Trailer_ $T - f_k = ma$ T - 300 = 150aSubstituting (1) and (2) T - 300 = 150a-(900a - 6200) - 300 = 150a ✓ Stanmorephya = 5,6 m.s⁻² left √ (5)

2.4 Increase ✓ ✓ (2)[14]

QUESTION 3/VRAAG 3

3.1

Marking criteria

If any of the underlined key words/phrases in the **correct context** is omitted deduct 1 mark. /Indien enige van die onderstreepte word/frases nie in die korrekte konteks is.

The force that opposes the motion of an object and which acts parallel to the surface. \checkmark / Die krag wat die geneigdheid vir beweging van 'n stielstaande voorwerp reletief / parallel tot die oppervlak teenstaan.

(2)

3.2

NOTE/NOTA

Freebody – diagram / vryliggamdiagram (3/3)

Accept the following symbols: Aanvaar die volgende simbole		
F _N √	F _N / N /Normal force/Normaalkrag	
f√	F _k /f/F _f /Force of friction/kinetic frictional force/kinetiese wrywingskrag	
Fg √	w /mg/weight/gravitational force/gravitasiekrag	

NOTES/NOTA

- Mark awarded for label <u>and</u> arrow. / Punte toegeken vir benoemimg en pyltjie.
- Do not penalise for the length of arrows. / Moet nie penaliseer vir die lengte van die pyltjies nie.
- Any other additional force(s)/ Enige ekstra kragte: Max 2/3
- If everything is correct, but no arrows. / Alles korrek maar geen pyle; Max 2/3

3.3

 $F_{gll} = F_g \sin \theta$ any one/enige een $= (25) (9,8) \sin 30^{\circ} \checkmark$ $= 122,5 \text{ N} \checkmark$

(3)

3.4	OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
1	tan θ = μ _s	Fg _{II} = f
4	= 0,6	$mg sin\theta = \mu_s N$
- Ir	$\theta = \tan^{-1}(0,6) \checkmark$	$\mu_s = mg \sin \theta / mg \cos \theta$
E	θ = 30,96° ✓	$\theta = \tan^{-1}(0,6) \checkmark$
	nnt	Starmor 0 = 30,96° ✓

(2)

Frictional force decreases VV. Frictional force is directly proportional the normal force/ As the normal force decreases with an increase in the angle of inclination frictional force will also decrease. \(\text{/Wrywingskrag neem af. Wrywingskrag is direk} \) eweredig aan normaalkrag/indien die hoek van die helling groter word, sal normaalkrag en wrywingskrag verminder.

(3)

[13]

QUESTION 4 /VRAAG 4

4.1 Marking criteria

If any of the underlined key words/phrases in the **correct context** is omitted deduct 1 mark. /Indien enige van die onderstreepte word/frases nie in die korrekte konteks is.

In an <u>isolated/ closed system</u> the <u>total</u> (linear) <u>momentum is conserved/</u>
remains constant. $\checkmark \checkmark$ In 'n <u>geslote sisteem</u> bly die <u>totale momentum</u>
behoue/konstant.

(2)

4.2

4.2.1

$$\Sigma p_i = \Sigma p_f$$
 Any one \sqrt{Enige} een mvic + mvit = mvfc + mvft
(650) (16,67) $\sqrt{+(1000)(8,33)} \sqrt{=(650)(vfc)+(1000)(10)} \sqrt{V_{fc}=14,10 \text{ m.s}^{-1}}$ to the right $\sqrt{/}$ na regs

4.2.2 POSITIVE MARKING FROM QUESTION 4.2.1. POSITIEWE NASIEN VANAF VRAAG 4.2.1.

If system approached is used $(\frac{1}{2}mv_{ic}^2 + \frac{1}{2}mv_{it}^2 = \frac{1}{2}mv_{fc}^2 + \frac{1}{2}mv_{ft}^2)$ **NOTE:** Award marks for only the formula and conclusion. (2/6)

Before collision/Voor botsing

$$\frac{1}{2}$$
mv_{ic}² + $\frac{1}{2}$ mv_{it}² \checkmark
 $\frac{1}{2}$ (650) (16,67)² + $\frac{1}{2}$ (1000) (8,33)² \checkmark
90313,89+34694,45
125008,34 J \checkmark

After collision/Na botsing

$$\frac{1}{2}$$
mv_{fc}² + $\frac{1}{2}$ mv_{ft}²
 $\frac{1}{2}$ (650) (14,10)² + $\frac{1}{2}$ (1000) (10)² \checkmark
64613,25+50 000
114 613,25 J \checkmark
12500,34 J \neq 114 613,25 J

∴ Inelastic √/Onelasies
(6)

4.3 Newton's third law. √/Newton se derde wet

When the car and the truck collide, the force that the car exerts on the truck is equal in magnitude \checkmark but opposite in direction to the force that the car exerts on the truck. \checkmark /Wanneer die kar en die trok bots, sal die krag wat die kar op die trok uitoefen net so groot wees as die krag wat die trok op die kar uitoefen, maar in teenoorgestelde rigting.

(3) **[16]**

QUESTION 5 /VRAAG 5

5.1 The product of the resultant/ net force acting on an object and the time the net force act on an object. $\sqrt{|D|}$ Die produk van die resultant/netto krag op die voorwerp en die tyd wat die netto krag op die voorwerp uitgeoefen is.

(2)

5.2

Marking criteria/ Nasienkriteria

Shape. \/ Vorm

Both axis with S.I units. <a>I Beide asse met SI eenhede.

(2)

5.3

5.3.1

OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
$F_{net}.\Delta t = Area under graph$	F _{net} .∆t = 22 x 0.4 √
/Area onder die grafiek	= 8,8/2 ✓
= $\frac{1}{2}$ x b x h \checkmark	F _{net} .∆t = 4,4 N.s ✓
= ½ x 0,4 x 22 ✓	
$F_{\text{net}}.\Delta t = 4.4 \text{ N.s} \checkmark$	

(3)

5.3.2

POSITIVE MARKING FROM QUESTION 5.3.1/POSITIEWE NASIEN

Fnet Δ t = Δ p Fnet Δ t = m (vf - vi) \int any one $\sqrt{enige een}$ 4,4 $\sqrt{=0,65 (vf - 0)}$ $\sqrt{enige een}$ vf = 6,77 m.s⁻¹ \sqrt{enige}

(4)

5.4 Increase. \(\square \tau \) Toeneem

(1)

5.5 There must be an increase in change of velocity, to maintain a constant impulse when mass decreases. ✓ ✓/Daar moet 'n toename in die verandering van snelheid wees om 'n konstante impuls te behou as die massa afneem

(2) [14]

QUESTION 6 /VRAAG 6

Negative.
√/ Negatief (1) 6.2.1 Gradient= v₂- v₁ ✓ $= 0 - (-9.8) \checkmark$ 3 - 2 $= 9.8 \text{ (m.s}^{-1}) \checkmark$ (3)6.2.2 (Gravitational) acceleration. \(\frac{1}{3} \) (Gravitasie) versnelling. (2)6.3 6.3.1 OPTION 1 Gradient= v2- v1 V $9,8 = 14.7 - v_1 \checkmark 2 - 0$ $v_1 = -4.9 \text{ m.s}^{-1}$ ∴ $v_1 = 4.9 \text{ m.s}^{-1} \text{ upwards} \sqrt{\text{opwaarts}}$ **OPTION 2** $v_f = v_i + a\Delta t \checkmark$ $14,7 = v_i + (9,8)(2) \checkmark$ $v_i = -4.9 \text{ m.s}^{-1}$ $v_i = 4.9 \text{ m.s}^{-1} \text{ upwards} \sqrt{\text{lopwaarts}}$ (3)6.3.2 14,7 m.s⁻¹ ✓ downwards. ✓/ afwaarts (2)6.3.3 9,8 m.s⁻¹ ✓ upwards. ✓/ opwaarts (2)6.4 6.4.1 Removed (1) 6.4.2 Removed (1) 6.4.3 Maximum height after the first bounce. ✓ (1)

6.5

Removed

anmorephysics.com

(4)

[14]

(2)

QUESTION 7 /VRAAG 7

- An object which has been given an initial velocity and moves under the influence of gravitational force only. \(\sqrt{\influence} 'n Voorwerp wat 'n beginsnelhei gegee is en dan beweeg slegs onder die invloed van gravitasiekrag
- 0 m.s⁻¹ (1)

OPTION 1/OPSIE 1 (Upwards as positive)/ Opwaarts as positief	OPTION 2/OPSIE 2 (Downwards as positive)/ Af as positief	
$v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $(0)^2 = (v_i)^2 + 2(-9.8)(30) \checkmark$ $v_i = 24,25 \text{ m.s}^{-1} \checkmark \text{upwards} \checkmark / \text{ opwaarts}$	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $v_f^2 = (0)^2 + 2(9.8)(30) \checkmark$ $V_f = 24,25 \text{ m.s}^{-1} \checkmark \text{ downwards} \checkmark / afwaarts}$	
OPTION 3 /OPSIE 3 (Upwards as positive)/ Opwaarts as positief	OPTION 4/OPSIE 4 (Downwards as positive)/ Af as positief	
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$ $-30 = (0) \Delta t + \frac{1}{2} (-9.8) \Delta t^2$ $-30 = 0 - 4.9 \Delta t^2$ $\Delta t = 2.47 \text{ Both } \sqrt{ A bei}$ $v_f = v_i + a \Delta t$ $v_f = (0) + (-9.8) (2.47) \checkmark$ $v_f = \frac{24.21 \text{ m.s}^{-1} \text{ downwards}}{\sqrt{ A bei}}$ Afwaarts	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$ $30 = (0) \Delta t + \frac{1}{2} (9,8) \Delta t^2$ $30 = 0 + 4,9 \Delta t^2$ $\Delta t = 2,47 \text{ s}$ Both \sqrt{Albei} $v_f = v_i + a \Delta t$ $(0) = v_i + (9,8) (2,47) \checkmark$ $v_f = -24,21 \text{ m.s}^{-1}$ $v_f = \frac{24,21 \text{ m.s}^{-1} \text{ upwards}}{\text{opwaarts}} \sqrt{Albei}$	

(4)

7.4 POSITIVE MARKING FROM QUESTION 7.3./POSITIEWE NASIEN

Ball/Bal X

$$\Delta y_x = y_f - y_i$$
$$= y_f - 0$$
$$\Delta y_x = y_{fx}$$

Ball/Bal X

$$\Delta y_x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$
= (24,25) (\Delta t) + \frac{1}{2} (-9,8) \Delta t^2 \sqrt{}
= 24,25 \Delta t - 4,9 \Delta t^2 \dots \dots 1

$$y_{fx} = y_{fy}$$

 $\Delta y_y = \Delta y_x + 30$
 $24,25 \Delta t - 4,9 \Delta t^2 = -4,9 \Delta t^2 + 30 \checkmark$
 $24,25 \Delta t = 30$
 $\Delta t = 1.24 \text{ s} \checkmark$

Ball/Bal Y

$$\Delta y_y = y_f - y_i$$

$$= y_f - 30$$

$$\Delta y_y = y_f - 30$$

$$\Delta y_y + 30 = y_{fy}$$

Ball/Bal Y

(7)

Marking criteria/Nasienkriteria		
Note: 1 shape labelled (3/3) and No shape labelled (1/3)		
Shape for ball X/Vorm van bal X	✓	
Shape for ball Y/Vorm van bal Y	✓	
Both axis with S.I units /Beide asse met S.I eenhede	✓	

(3)

[17]

QUESTION 8 /VRAAG 8

8.1 The mechanical energy in an isolated system remains constant. \checkmark / /Die totale meganiese energie bly konstant in 'n geïsoleerde sisteem. (2)

8.2

 $(120)(9,8)(8) + \frac{1}{2}(120)(0)^{2} \checkmark = (120)(9,8)(2) - \frac{1}{2}(120)v_{c}^{2} \checkmark$

$$9408 = 2352 + 60 \text{ v}_c^2$$

 $\text{v}_c = 10,84 \text{ m.s}^{-1} \checkmark$

(4)

8.3 POSITIVE MARKING FROM QUESTION 8.2. / POSITIEWE NASIEN

Option 1/Opsie 1

$$W_{nc} = \Delta E_k + \Delta E_{panmore physics.com}$$

$$W_f = (\frac{1}{2}mv^2 - \frac{1}{2}mv^2) + (mghf - mghi)$$
 Any one \sqrt{Enige} een

$$W_f = (\frac{1}{2}(120)(1,1)^2 - \frac{1}{2}(120)(10,84)^2) \checkmark + ((120)(9,8)(5) - (120)(9,8)(2)) \checkmark$$

$$W_f = -6977,74 + 3528$$

$$W_f = -3449,74 J \checkmark$$

Accept range/Aanvaar: between/tussen (3449 J – 3456 J)

Option 2/Opsie 2

$$E_{\text{mechA}} = E_p + E_k$$

= mgh +½mv_f² Any one $\sqrt{E_{\text{nige een}}}$

 $= (120)(9,8)(5) + \frac{1}{2}(120)(1,1)^2 \checkmark$

= 5952.6 J

$$E_{mechA} = mgh$$

= (120)(9,8)(8)

 $= 9408 J \checkmark$

Heat generated/Hitte gegenereer = 9408 – 5952,6 = 3455,4 J ✓

Accept range/Aanvaar: between/tussen (3449 J – 3456 J)

(4) [10]

QUESTION 9 /VRAAG 9

(2)

9.1 Marking criteria

If any of the underlined key words/phrases in the **correct context** is omitted deduct 1 mark. / Indien enige van die onderstreepte word/frases nie in die korrekte konteks is nie, trek 1 punt af

A force for which the work done in moving an object between two points depends on the path taken. \(\sqrt{'}\' n \) krag waarvoor die arbeid verrig om 'n voorwerk tussen twee punte te beweeg, afhanklik is van die roete wat gevolg word.

9.2 Option 1/ Opsie 1

 $W_{nc} = \Delta E_k + \Delta E_p$ $W_A + W_f = (\frac{1}{2} \frac{mv_f^2 - \frac{1}{2} mv_i^2}{mv_i^2}) + (\frac{mgh_f - mgh_i}{mgh_f})$ Any one \checkmark / Enige

 $W_A + (-5,85 \times 10^6) = (0) + (1750)(9,8)(55) \checkmark$ $W_A = 943250 + 5,84 \times 10^6$ $W_A = 6783250 J$

 $W_A = F_A \Delta x \cos \theta \checkmark$

6 783 250 = F_A (570) \cos (0) \checkmark

 $F_A = 11900,44 \text{ N} \checkmark$

Accept range: between (11 900,42 N - 11 900,45 N)

Option 2

 $W_f = f \Delta x \cos \theta \checkmark$

 $-5.84 \times 10^6 = f(570) \cos(180)$

f = 10245,61 J

F_{net} = ma
F_{net} = 0
-f - F_{gII} + F_A = 0 Any one
$$\checkmark$$
/Enige een
-f - (1750) (9,8) sin θ + FA = 0
- (10245,61) - (1750) (9,8) ($\frac{55}{570}$) + F_A = 0 \checkmark
F_A = 11 900, 43 N \checkmark

Accept range: between (11 900,42 N - 11 900,45 N)

9.3 Fnet = 0 N V THOT EPHYSICS.COM

(5) (1)

9.4 OPTION 1 / OPSIE 1

$$\begin{aligned} W_{\text{nc}} &= \Delta E_k + \Delta E_p \\ W_A + W_f &= (\frac{1}{2} \text{mv}_f^2 - \frac{1}{2} \text{mv}_i^2) + (\text{mgh}_f - \text{mgh}_i) \end{aligned} \quad \text{Any one } \checkmark$$

$$W_A + \underbrace{(6,44 \times 10^3) (570) \cos (180)}_{\text{VA}} \checkmark = \underbrace{\frac{1}{2} (1 \ 100)(25^2 - 20^2)}_{\text{VA}} \checkmark + \underbrace{(1 \ 100)(9,8)(0 - 55)}_{\text{VA}} \checkmark$$

$$W_A = 3 \ 670 \ 800 - 592 \ 900 + 123 \ 750$$

$$W_A = 3 \ 201 \ 650 \ \text{J} \checkmark$$

OPTION 2 / OPSIE 2

$$\begin{aligned} W_{\text{Net}} &= \Delta E_k \\ W_{\text{A}} + W_{\text{f}} + W_{\text{Fgll}} &= (\frac{1}{2}\text{mv}_{\text{f}}^2 - \frac{1}{2}\text{mv}_{\text{i}}^2) \\ W_{\text{A}} + f \, \Delta x \cos \theta + \text{mg} \sin \theta \, \Delta x \cos \theta &= (\frac{1}{2}\text{mv}_{\text{f}}^2 - \frac{1}{2}\text{mv}_{\text{i}}^2) \end{aligned} \end{aligned} \quad \text{Any one } \checkmark$$

$$W_{\text{A}} + \underbrace{(6,44 \times 10^3)}_{\text{C}} \underbrace{(570)}_{\text{C}} \cos \underbrace{(180)}_{\text{C}} \checkmark + \underbrace{(1\ 100)}_{\text{C}} \underbrace{(9,8)}_{\text{570}} \underbrace{(9,8)}_{\text{5$$

(5)[13]

Downloaded from Stanmorephysics.com

QUESTION 10 /VRAAG 10

10.1 <u>Doppler effect</u>. √/Doppler effek (1)

$$10.2 \quad f_L = \frac{v \pm v_L}{f_S} \int ds$$
 (4)

 $v \pm v_{S} = \frac{340}{340-30} \checkmark (458) \checkmark$

 $fL = 502,32 \, Hz \sqrt{}$

10.3 Decrease √/ Afneem (1)

- 10.4 Equal to \(//Gelyk aan \)
 - The velocity of the fire engine driver relative to the fire engine siren is zero. OR /Die snelheid van de brandweerman relatief tot die brandweerwa is nul
 - The fire engine driver has the same velocity as the fire engine. ✓
 OR/ Die brandweerman beweeg teen dieselfde snelheid as die brandweerwa.
 - There is no relative motion between the fire engine driver and the fire engine. ✓/ Daar is geen relatiewe beweging tussen die brandweerwa en die brandweerman nie. (2)
- Use of ultrasound for measuring the rate of blood flow. √/Gebruik ultraklank om bloedvloei te meet
 - Use of ultrasound to measure the heartbeat of a foetus. √/Gebruik ultrank om die hartklop van die fetus te meet
 - To detect weather by analysing doppler shift of radar waves. (3) \(\sqrt{Weervoorspelling deur die annalise van die dopplerskuif van radargolwe.} \) (Any other correct answers).
- 10.6 When light from a distant star or galaxy is observed to have shifted towards the red end of the spectrum. √√/Wanneer lig van 'n verafgeleë ster of sterrestelsel waargeneem word en daar vind rooiverskuiwing van die spektrum plaas.

[13]

TOTAL/ TOTAAL: 150