Data Science Course Overview

Risa Myers Christopher Jermaine Marmar Orooji

Rice University

Welcome!

Please fill out the Introductions questionnaire

Welcome!

- Introductions
- Course objectives
- Syllabus / logistics
- Tools

Introductions!

I am

- Risa Myers
- She, Her, Hers
- Assistant Teaching Professor
- rbm2@rice.edu
- Duncan Hall 2062

Course objectives

- Understand the challenges and opportunities involved in using "big" data
- Become familiar with modern machine learning tools used with "big" data
- Be able to implement machine learning algorithms using these tools
- Develop basic skills in querying relational databases and processing data within a relational database
- Be familiar with the theoretical basis and underlying research that motivated the systems and models discussed in class
- Be familiar with storage infrastructure and programming models of large-scale computing

This class is about data science

- Extraction of actionable knowledge from large volumes of data
 - Encompasses methods from:
 - Computer science
 - Statistics
 - Optimization/Applied Math
 - Data Science also encompasses
 - Domain knowledge
 - Communication skills
 - Data management

What is "Big Data"

- Broad, general term
- Refers to tools & techniques for extracting knowledge from massive & complex datasets
- Term appeared in late 90s
- Typically considered data too large to fit in memory of an expensive server machine
 - 5GB in 2002, a couple of terabytes in 2018

"Big Data" historical example

- IBM IMS was a big data system decades years ago!
 - President Kennedy challenged the nation to send an American to Moon
 - Rockwell won the bid to build Saturn V rocket
 - Rockwell needed an automated system to keep track of millions of rocket parts and materials
 - IBM designed IMS in 1966
- Over time, IBM IMS expanded to adapt to exponential increase in data
- Now, IBM IMS can
 - Process more than 50 billion transactions a day
 - Manage 15 million GB of data

The V's of "big" data

- Primary characteristics 3 Vs
 - 1 Volume
 - 2 Variety
 - 3 Velocity
- Additional characteristics more Vs
 - 4 Veracity
 - 5 Variability
 - 6 Visualization
 - 7 Vulnerability
 - 8 Value
 - 9

"Big" data – Volume

- Quantity of data
- Scale varies over time
 - Couple of Gigabytes in 2002
 - Couple of Terabytes in 2018
 - Now, Petabytes/Exabytes
- Example
 - In 2018, global mobile data traffic was 19 EB/month (19 billion GB/month)

"Big" data - Variety

- 2 Type of data
- Beyond structured data
- Examples
 - Text
 - Image
 - Audio
 - Video
 - Social media

"Big" data - Velocity

- 3 Speed of data generation/processing
- High rate of data generation
- Real-time data processing
- Examples
 - Facebook ~600 TB of data per day
 - Google ~3.5 billion searches per day
 - Real-time processing: ad display for each search query
 - Credit card transactions in US ~108 million transactions per day
 - Real-time processing: fraud detection

"Big" data - More Vs

- 4 Veracity quality of data
 - Contains missing values, invalid entries, wrong formats, ...
- 5 Variability changes in quality and / or content over time
 - Due to inconsistent sources
- 6 Visualization difficult to create a meaningful visualization
 - Some approaches data clustering, parallel coordinates, use of tree maps
- 7 Vulnerability data breaches
 - May 2016, 167 million LinkedIn accounts & 360 million MySpace users were hacked
- 8 Value utility of data
 - Deriving valuable, actionable knowledge

Course scope

- Volume datasets that are too large to be stored in the memory of a single computer
- Variety Text & numeric data

Examples of Data Science Tasks

- Given a huge set of per-customer sales data, build a model to predict customer "churn"
- Given a large graph of Medicare payout data, find suspicious (potentially fraudulent) referral patterns
- Given a set of EMR data, find previously unknown side effects (ex: Vioxx and heart disease)
- Given data from an online learning tool find markers that are an early sign of later academic achievement problems
- Many, many more!

What's involved

- You need advanced models to solve challenging prediction/analysis tasks
- You need computer systems that can scale those models to the largest data sets
- You need computer tools that make it easy to implement complicated models

How will we manage and use the Big Data?

- We need tools for manipulating large data sets
- Tools for scalable, distributed computation
- Specifically, we'll learn about:
 - SQL databases
 - Python programming (NumPy, pandas)
 - Distributed file systems
 - The MapReduce paradigm
 - Spark (distributed Big Data manipulation software)

As such, this class...

- Will introduce modern data management software...
 - Relational database systems and SQL
 - Distributed computing frameworks such as Hadoop and Spark
- Will look at approaches to analyzing big data sets...
 - Vectorized programming
 - Data preparation using Pandas
- Assignments will focus on implementing algorithms for analyzing big data and manipulating data with tools

Motivations

- Relational Databases
 - Ubiquitous
 - Scalable & secure
 - Well established storage and retrieval model
 - Foundational for big data systems
- Vectorized Programming
 - Efficient coding
 - Operating on volumes of data concurrently

- Distributed Computing
 - Necessary for data that can't fit in memory
 - Required to process big data in "reasonable" time
- Machine Learning
 - Inferring Information, Knowledge, and Wisdom from the data

Skills you need to succeed in this class

- Should be a reasonable programmer
 - Comfortable with Python
 - One analytical assignment
 - Two assignments use SQL (no knowledge assumed)
 - Remaining assignments use Python
- Attention to details: Submit your homework correctly and on time!!!
- Engage! There is a lot of active learning in this class. Come to class! Participate

Who are you?

Survey results

More skills you need to take this class

- Some background in probability/statistics
 - Common distributions (e.g. Gaussian)
 - Expected value
 - Variance, covariance
 - Norms (e.g. L_1, L_2)

Course norms

- If you don't understand something, say something... you're likely not the only one
- No stupid questions
- We may repeat lectures
- We may adapt assignments
- We may go over some basics that, depending on your background, might be review
- If an assignment is taking too long, speak up! Get help! There may be some knowledge gaps we need to fill

RICE 2:

What about overlap with other classes?

- COMP 643 Big Data
 - Online version of COMP 553
 - Has a database course prerequisite
 - Assumes declarative SQL experience
 - Covers a little more (e.g. Spark streaming)
- COMP 330/543 Tools & Models Data science
 - COMP 543 includes more models and theory and some different tools (no pandas, yes TensorFlow)
 - Both assume more familiarity with computing platforms
- COMP 430/533 Introduction to Database Systems
 - Superset of the database material covered here

Tools

- Google Colab colab.research.google.com
- Colab / Jupyter Notebooks
- Amazon Web Services
- Relational DataBase Management System PostrgreSQL
- pandas
- NumPy
- Hadoop Distributed File System
- Spark

Wrap up

- How can we use what we learned today?
- What do we know now that we didn't know before?