MA1200 CALCULUS AND BASIC LINEAR ALGEBRA I

LECTURE: CG1

Chapter 4
Trigonometric Functions
and Inverse Trigonometric Functions

Trigonometric Functions

In elementary trigonometry, the 3 basic trigonometric functions $(\sin\theta,\cos\theta,\tan\theta)$ are defined as the ratios of sides of a right-angled triangle, and the angles θ are restricted to acute angles, i.e. $0^{\circ} \le \theta < 90^{\circ}$

$$y = Opposite side$$

$$x = Adjacent side$$

$$r$$
 = Hypotenuse

By definition,
$$\sin \theta = \frac{opp.}{hyp.} = \frac{y}{r}$$
, $\cos \theta = \frac{adj.}{hyp.} = \frac{x}{r}$ and $\tan \theta = \frac{opp}{adj.}$

The special angles of sine, cosine and tangent are summarized below.

	30°	45°	60°
sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tan	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

The six trigonometric functions are sine, cosine, tangent, cosecant, secant and cotangent, which are written as sin, cos, tan, csc (or cosec), sec and cot, respectively.

They are defined as follows:

$$\sin \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x} , \text{ i.e. } \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\csc \theta = \frac{r}{y} , \text{ i.e. } \csc \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{r}{x} , \text{ i.e. } \sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{x}{y} , \text{ i.e. } \cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

The above results are also true when the point P lies in other quadrants.

- \triangleright P is a point in the xy-plane with Cartesian coordinates (x, y).
- \triangleright θ is the angle measured from the positive x-axis to the line OP in anticlockwise direction. (θ is positive if the angle is measured in anticlockwise direction; and it is negative if the angle is measured in clockwise direction.)
- $r = \sqrt{x^2 + y^2}$ (> 0) is the distance from the origin O to the point P.

The signs of x and y depend on the quadrant in which the point P lies.

By using the definitions of the six trigonometric functions and also the fact that r is always positive, the signs of the trigonometric functions can be deduced and the results are summarized by the CAST rule:

Sine & its reciprocal (cosecant) are positive. All others are negative.

Tangent & its reciprocal (cotangent) are positive. All others are negative.

Cosine & its reciprocal (secant) are positive. All others are negative.

III

Example 1

If $\cos \theta = \frac{2}{3}$ and θ is in Quadrant IV, find $\tan \theta$.

Solution

Since θ is in Quadrant IV, x must be positive and y must be <u>negative</u>.

 $\cos\theta=\frac{x}{r}$ is the ratio of x to r. Take x=2 and r=3. Then $y=\sqrt[3]{r^2-x^2}=-\sqrt{3^2-2^2}=-\sqrt{5}$.

Thus, $\tan \theta = \frac{y}{x} = \frac{-\sqrt{5}}{2}$.

Method 2:

Draw a right-angled triangle first.

$$\cos \Theta = \frac{2}{3}$$

$$\therefore \tan \theta < 0 \qquad \qquad \frac{S \mid A}{T \mid C}$$

$$\therefore \tan \theta = -\frac{\sqrt{5}}{2} + adj.$$

Chapter 4

If $\sin \theta = -\frac{3}{5}$ and $180^{\circ} < \theta < 270^{\circ}$, find $\sec \theta$ and $\cot \theta$.

Solution

Solution

Consider positive lengths first:

$$\therefore \sec \Theta = -\frac{5}{4} - \frac{5}{4} + adj.$$

& coto =
$$\frac{4}{3}$$
 = adj.

Remark: It we find $0 = \sin^{-1}(-\frac{3}{5}) \approx -36.87^{\circ}$ by using calculator, then $\sec \Theta = \frac{1}{\cos \Theta} = \frac{1}{0.8} = \frac{5}{4}$ Which is wrong!! Why?