In the Claims

1	1. (currently amended) A method for reduced spatial resolution transcoding
2	of a compressed bitstream of a sequence of frames of a video signal,
3	comprising:
4	decoding the frames;
5	storing the decoded frames in a first frame buffer;
6	down-sampling, in a down-sampler, the decoded frames to a output
7	reduced resolution <u>frames</u> ;
8	storing the reduced resolution frames output by the down-sampler in a
9	second frame buffer;
10	motion compensating with reduced resolution motion vectors of the
11	stored reduced resolution frames; and
12	partially encoding the reduced resolution frames to produce a reduced
13	resolution compressed bitstream of the video.
1	2. (original) The method of claim 1 wherein the decoding further comprises:
2	variable length decoding of the bitstream to yield an output
3	comprising full-resolution motion vectors and quantized DCT coefficients
4	for each block in each frame;
5	inverse quantizing the quantized DCT coefficients for each block in
6	each frame;
7	applying an inverse DCT to the inverse quantized blocks of the
8	frames; and
9	motion compensating with full resolution motion vectors of the stored
10	decoded frames.

3. (currently amended) The method of claim 1 wherein the partial encoding 1 further comprises: 2 motion compensating with reduced resolution motion vectors of the 3 4 stored-reduced resolution frames; 5 applying a DCT to the motion compensated difference of the reduced 6 resolution frames; quantizing DCT blocks of the frames; and 7 variable length coding the quantized blocks of the frames. 8 4. (original) The method of claim 2 wherein the motion compensating during 1 2 the decoding further comprises: 3 adding a full resolution motion compensated prediction of a previous decoded frame to the current frame. 4 5. (original) The method of claim 3 wherein the motion compensating during 1 2 the partial encoding further comprises: subtracting a reduced resolution motion compensated prediction of a 3 4 previous reduced resolution frame from the current reduced resolution 5 frame. 6. (original) The method of claim 3 further comprising: 1 estimating the reduced resolution motion vectors from the reduced 2 resolution frames. 3

7. (original) The method of claim 2 further comprising: 1 mapping the full-resolution motion vectors to the reduced resolution 2 3 motion vectors from the variable length decoded frames. 8. (currently amended) A closed-loop transcoder for reduced spatial 1 2 resolution transcoding of a compressed bitstream of a sequence of frames of 3 a video signal, comprising: a decoder with motion compensation using full resolution motion 4 5 vectors stored in a first frame buffer to generate partial decoded frames from the compressed bitstream; 6 a down-conversion block to down-sample the decoded frames to 7 8 output reduced resolution frames with reduced resolution motion vectors; 9 and 10 a partial encoder with motion compensation using the reduced 11 resolution motion vectors stored in a second frame buffer to generate a reduced spatial resolution compressed bitstream of the video. 12