Заняття 9. Напруженість електростатичного поля

Аудиторне заняття

- 1. [1.2] В центр квадрату, у кожній вершині якого знаходяться однакові заряди q=2 мкКл, вносять ще один заряд q. Якою повинна бути величина цього заряду, щоб система знаходилась у стані рівноваги? Чи буде ця рівновага стійкою?
- 2. [1.8] Два точкових заряди q_1 та $(-q_2)$ знаходяться на відстані d один від одного. Визначити напруженість та потенціал ϕ електричного поля, що створюється цими зарядами у точці, розташованій на відстані r_1 від заряду q_1 та на відстані r_2 від заряду $(-q_2)$.
- 3. [1.12] Визначити напруженість та потенціал електричного поля E, яке створюється рівномірно зарядженою сферою радіусом R, на відстані r від її центра. Загальний заряд кулі дорівнює Q.
- 4. [1.52] Двом концентричним тонким металевим сферам радіусами R_1 =10 см та R_2 =20 см надано електричні заряди Q_1 =3 мкКл та Q_2 =-12 мкКл відповідно? Визначити заряд q_1 внутрішньої сфери після її заземлення.
- 5. [1.27] Дві паралельні заряджені площини з густинами заряду $+\sigma_1$ і $-\sigma_2$ знаходяться на відстані d одна від одної. Вважаючи, що відстані L_1 і L_2 відомі (див.рис.), знайти напруженість E поля в точках A і B, а також різницю потенціалів $\Delta \phi$ між ними.

Домашнє завдання

- 1. [1.30] Дві однакові кульки, кожна масою, підвішено в одній точці на нитках довжиною l. Кульки мають однакові заряди. Кут між нитками 2α . Визначити заряди q кульок.
- 2. [1.10] У кожній вершині квадрата із стороною a, знаходяться однакові точкові заряди q. Знайти напруженість E і потенціал електростатичного поля ϕ в центрі квадрата.
- 3. [1.14] Знайти напруженість E електричного поля, що створюється нескінченно довгим циліндром радіусом R на відстані r від його осі, якщо циліндр заряджено: а) лише на поверхні з лінійною густиною заряду λ ; б) по всьому об'єму з об'ємною густиною заряду ρ . Розглянути випадки r < R та $r \ge R$.