Белорусский государственный университет Факультет прикладной математики и информатики

Лабораторная работа №5,6,7,8 Вариант 8 Проблема собственных значений

Выполнил:

Студент 2 курса 7 группы ПМ ФПМИ

Шевцов Евгений

Преподаватель:

Будник Анатолий Михайлович

Описание метода Крылова нахождения собственного многочлена

Построим систему векторов $c^{(n+1)}$ следующим образом: возьмём вектор $c^{(0)} = (1, 0, ..., 0)^T$, остальные векторы системы найдём по формуле $c^{(k+1)} = Bc^{(k)}$, $k = \overline{0, n-1}$. Получив n+1 векторов с учётом, что матрица имеет размерность n, можем разложить последний вектор по базису из первых n векторов. Таким образом, получим систему:

$$\begin{cases} q_1c_1^{(n-1)} + \dots + q_nc_1^{(0)} = c_1^{(n)} \\ \dots \\ q_1c_n^{(n-1)} + \dots + q_nc_n^{(0)} = c_n^{(n)} \end{cases}$$

Решив которую методом Гаусса (что было и сделано в программе) мы получим q_1, \ldots, q_n , которые совпадают с коэффициентом характеристического многочлена $\lambda^n - p_1 \lambda^{n-1} - \ldots - p_n$, корни которого являются собственными значениями.

Для проверки найденных коэффициентов вычислим корни многочлена с помощью программы Wolfram Alpha. Подставив найденные собственные значения в многочлен, мы получим невязку:

$$\varphi_i = P(\lambda_i)$$

Описание метода Данилевского нахождения системы собственных векторов

В методе Данилевского исходная матрица подобными преобразованиями приводится к нормальной форме Фробениуса. Таким образом, преобразование примет вид $\Phi = S^{-1}BS$.

Для нахождения матрицы S рассмотрим матрицы, с помощью которых B приводится к $H\Phi\Phi$. Для этого на каждом шаге k матрица B умножается справа на M_{n-k} =

а слева на на матрицу M_{n-k}^{-1} , равную:

Таким образом $S = M_{n-1}*...*M_1$ (в программе произведение происходило параллельно преобразованию матрицы B).

В итоге первая строка матрицы В будет состоять из коэффициентов характеристического многочлена матрицы. Используя найденные собственные значения методом Крылова (коэффициенты получатся аналогичными, т.к. оба методы являются точными, значит, можно взять и их) строим вектор $y_i = (\lambda_i^{n-1}, \lambda_i^{n-2}, ..., 1)$ и находим собственный вектор для і-го собственного значения по формуле:

$$x_i = \sum_{j=1}^n s_{ij} y_j, i = \overline{1, n}$$

B матричном виде: x = Sy.

і-й компонент невязки же считаем по формуле:

$$r_i = Bx_i - \lambda_i x_i, i = \overline{1, n}$$

Описание итерационного метода вращений (Якоби) нахождение спектра и системы собственных векторов

Для данного метода используется преобразования вращения вида $T_{kl}^T A T_{kl}$, последовательность которых стремится к диагональной матрице, состоящей из собственных значений. Последовательное же произведение матриц T_{kl} даст нам матрицу, столбцы которых образуют систему собственных векторов.

Распишем одну итерацию.

Вначале находится максимальный по модулю <u>недиагональный</u> элемент b_{kl} . В программе это делается в самой итерации. Далее идёт подсчёт $tg2\phi = \frac{2b_{kl}}{b_{kk} - b_{ll}}$. Затем находятся элементы матрицы вращения:

$$cos\varphi = \sqrt{\frac{1}{2}(1 + \frac{1}{\sqrt{1 + tg^2\varphi}})}, \qquad sin\varphi = \sqrt{\frac{1}{2}(1 - \frac{1}{\sqrt{1 + tg^2\varphi}})}$$

Матрица вращения при этом принимает вид:

Далее происходит ранее упомянутое преобразование подобия и последовательное произведение T_{kl} до тех пор, пока не выполнится условие:

$$\sum_{i,j=1,i\neq j}^{n} b_{ij}^{2} < \varepsilon$$

По условию $\varepsilon = 10^{-5}$.

Описание степенного метода нахождения минимального собственного значения

Для нахождения <u>минимального</u> собственного значения будем использовать вариацию степенного метода — метод обратных итераций. Для него нам требуется найти обратную матрицу для матрицы В. В программе это сделано методом Гаусса, реализованного в первой лабораторной.

Далее берётся произвольный вектор $y^{(0)}$ (в программе взят вектор $(1, ..., 1)^T$) в качестве начального. На k-й итерации формула выглядит следующим образом:

$$y^{(k+1)} = B^{-1}y^{(k)}$$

Приближение собственных значений вычисляется как среднее арифметическое отношения координат $y^{(k+1)}$ и $y^{(k)}$, т.е. по формуле:

$$\lambda_k = \sum_{i=1}^n \frac{y_i^{k+1}}{y_i^k}$$

Данный процесс выполняем, пока $|\lambda_k - \lambda_{k+1}| > \epsilon$. В конце получим максимальное собственное значение B^{-1} . Возведя его в -1 степень, получим минимальное собственное значение B.

Собственным вектором же будет являться $y^{(k+1)}$.

Листинг

Общие функции:

```
#include <iostream>
#include <vector>
#include <iomanip>
std::vector<std::vector<double>> transpositionMatrix(std::vector<std::vector<double>> M)
    for (int i = 0; i < 4; ++i) {
        for (int j = i + 1; j < 5; ++j) {
            std::swap(M[i][j], M[j][i]);
    }
    return M;
}
std::vector<std::vector<double>> multMatrix(const std::vector<std::vector<double>> M1,
const std::vector<std::vector<double>> M2) {
    std::vector<std::vector<double>> M3 = {
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      {0.0, 0.0, 0.0, 0.0, 0.0} };
    for (int i = 0; i < 5; ++i) {
        for (int j = 0; j < 5; ++j) {
            for (int k = 0; k < 5; ++k) {
                M3[i][j] += M1[i][k] * M2[k][j];
            }
        }
    return M3;
}
std::vector<double> multVec(const std::vector<std::vector<double>> M, const
std::vector<double> f) {
    std::vector<double> b = { 0., 0., 0., 0., 0. };
    for (int i = 0; i < 5; ++i) {
        for (int j = 0; j < 5; ++j) {
            b[i] += M[i][j] * f[j];
    }
    return b;
}
double getLambda(const std::vector<double> f1, const std::vector<double> f2) {
   double res = 0.;
    for (int i = 0; i < 5; ++i) {
        res += f1[i]/ f2[i];
    }
    return res / 5.;
}
std::vector<double> normV(std::vector<double> f) {
    double max = 0;
    for (int i = 0; i < 5; ++i) {
```

```
if (abs(f[i]) > abs(max)) {
            max = f[i];
   for (int i = 0; i < 5; ++i) {
        f[i] /= max;
   return f;
}
//Для Якоби
double getEps(std::vector<std::vector<double>> M) {
   double eps = 0.;
   for (int i = 0; i < 5; ++i) {
        for (int j = 0; j < 5; ++j) {
            if (i == j) {
                continue;
            eps += pow(M[i][j], 2);
        }
   }
   return sqrt(eps);
}
//Для степенного
double getEps(double lk, double lk1) {
   return abs(lk - lk1);
}
Метод Крылова
std::vector<std::vector<double>> A_Result = multMatrix(A, transpositionMatrix(A));
   std::vector<std::vector<double>> C;
   C.push_back({1., 0., 0., 0., 0.});
   for (int i = 0; i < 5; ++i) {
        std::vector<double> Ck = multVec(A_Result, C[i]);
        C.push_back(Ck);
   }
   std::vector<std::vector<double>> C_result = {
       {C[4][0], C[3][0], C[2][0], C[1][0], C[0][0], C[5][0]},
      {C[4][1], C[3][1], C[2][1], C[1][1], C[0][1], C[5][1]},
      {C[4][2], C[3][2], C[2][2], C[1][2], C[0][2], C[5][2]},
      {C[4][3], C[3][3], C[2][3], C[1][3], C[0][3], C[5][3]},
      {C[4][4], C[3][4], C[2][4], C[1][4], C[0][4], C[5][4]} };
   for (int i = 0; i < 4; ++i) {
        for (int j = i + 1; j < 5; ++j) {
            for (int k = i + 1; k < 6; ++k) {
                C_result[j][k] -= C_result[j][i] / C_result[i][i] * C_result[i][k];
        for (int j = i + 1; j < 5; ++j) {
            C_result[j][i] = 0.;
        }
    }
   std::vector<double> answer = { 0., 0., 0., 0., 0. };
   for (int k = 4; k >= 0; --k) {
```

```
for (int j = k + 1; j < 5; ++j) {
            sum += C_result[k][j] * answer[j];
        answer[k] = (C_result[k][5] - sum) / C_result[k][k];
Метод Данилевского
std::vector<std::vector<double>> F = multMatrix(A, transpositionMatrix(A));
    std::vector<std::vector<double>> S = {
      {1.0, 0.0, 0.0, 0.0, 0.0},
      \{0.0, 1.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 1.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 1.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 1.0\}\};
    for (int i = 3; i >= 0; --i) {
        std::vector<std::vector<double>> M = {
      \{1.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 1.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 1.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 1.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 1.0\}\};
        std::vector<std::vector<double>> M1 = {
      \{1.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 1.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 1.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 1.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 1.0\}\};
        for (int j = 0; j < 5; ++j) {
            M1[i][j] = F[i + 1][j];
            if (i != j) {
                M[i][j] = -F[i + 1][j] / F[i + 1][i];
        M[i][i] = 1 / F[i + 1][i];
        F = multMatrix(M1, multMatrix(F, M));
        S = multMatrix(S, M);
    std::vector<double> lambda = { 0.23075, 0.31026, 0.691624, 0.936767, 1.17864 };
Метод Якоби (Итерационный метод вращений)
std::vector<std::vector<double>> M = multMatrix(A, transpositionMatrix(A));
    const double EPS = 0.00001;
    int counter = 0;
    std::vector<std::vector<double>> resultT = {
      \{1.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 1.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 1.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 1.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 1.0\}\};
    while (getEps(M) > EPS) {
        counter++;
        double max = 0;
        int maxI = 0;
        int maxJ = 0;
```

double sum = 0;

```
for (int i = 0; i < 5; ++i) {
             for (int j = 0; j < 5; ++j) {
                 if (i == j) {
                     continue;
                 }
                 else {
                     if (abs(M[i][j]) > abs(max)) {
                         max = M[i][j];
                          maxI = i;
                          maxJ = j;
                     }
                 }
            }
        }
        double tg = 2 * max / (M[maxI][maxI] - M[maxJ][maxJ]);
        double cos = sqrt((1 + 1 / sqrt(1 + pow(tg, 2))) / 2);
        double sin = sqrt(1 - pow(cos, 2));
        std::vector<std::vector<double>> T = {
      \{1.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 1.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 1.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 1.0, 0.0\},\
      {0.0, 0.0, 0.0, 0.0, 1.0} };
        T[maxI][maxI] = cos;
        T[maxJ][maxJ] = cos;
        T[maxI][maxJ] = -sin;
        T[maxJ][maxI] = sin;
        M = multMatrix(transpositionMatrix(T), multMatrix(M, T));
        resultT = multMatrix(resultT, T);
    }
Степенной метод
const double EPS = 0.00001;
    std::vector<std::vector<double>> A1 = {
        {1.67953, 0.291252, 0.513653, 0.32638, -0.737916}, {0.291252, 3.87842, 0.500924, 0.384012, -0.280008},
        \{0.513653, 0.500924, 1.5147, 0.051476, -0.903941\},
        {-0.32638, 0.384012, 0.051476, 1.24609, 0.169331},
        \{-0.737916, -0.280008, -0.903941, 0.169331, 2.59987\}\};
    std::vector<double> y = {1, 1, 1, 1, 1};
    double l = 1;
    double 11 = 0;
    while (getEps(l, l1) > EPS) {
        std::vector<double> y1 = multVec(A1, y);
        1 = 11;
        11 = getLambda(y1, y);
        y = normV(y1);
    11 = 1 / 11;
```

Полученные значения

Метод Крылова

======qk==============================							
	3.34804	-4.1574	2.35346	-0.596922	0.0546702		
Lambda (Wolfram)							
	0.23075	0.31026	0.691624	0.936767	1.17864		
NeuralNeural							
-8.64646e-08 -1.36861e-07 -5.50732e-07 -9.25458e-07 -1.41092e-06							

Метод Данилевского

=========	======E	igenvector 1 ===	=========	========				
0.31500			0.0705505	-0.494602				
0.51500	, ,	0.554505	0.0703303	0.434002				
======================================								
2.78663e-0	6 -8.95657e-06	-4.04476e-06	-1.49191e-05	-5.55112e-16				
======================================								
-0.53908		-0.442089	0.321697	1				
-0.33900	J 0.010029	-0.442009	0.321097	1				
	======N							
4.41085e-0	6 -1.4177e-05	-6.40228e-06	-2.36149e-05	-4.996e-16				
	======E:	igenvector 3						
	1 0.154419			0.578349				
	1 0.134419	-0.250572	-0.924330	0.376343				
	======N							
1.77493e-0	5 -5.70485e-05	-2.57629e-05	-9.50267e-05	-3.66374e-15				
	======E:	igenvector 4 ===						
0.68585		_		0.772926				
0.00000	2 -0.20091	1	0.034090	0.772920				
	======N							
2.98262e-0	5 -9.5865e-05	-4.32924e-05	-0.000159684	-5.77316e-15				
======================================								
-0.69935				0.312977				
-0.09955	1 0.0420404	1	-0.077002	0.3129//				
	======N							
4.54721e-0	5 -0.000146153	-6.60021e-05	-0.000243449	1.11022e-15				
3.3480	4 -4.1574	2.35346	-0.596922	0.0546702				
	1 0		0	0				
	0 1	0	0	0				
	U I	V	0	Ø				
2 22624 4	c 7 22000 4C	4	2 44702- 46	2 42274 - 47				
2.23631e-1		1		2.13371e-17				
	6 -7.32909e-16 0 0	1 0	-2.44792e-16 1	2.13371e-17 0				

Метод Якоби (Итерационный метод вращений)

```
0.230754 2.45423e-15 7.47038e-10 1.14321e-07 -1.70207e-12
7.47038e-10 -1.83295e-07 1.17865 1.27333e-10 1.11101e-14
1.14321e-07 -5.08078e-12 1.27333e-10 0.310252 8.34482e-07
-1.70207e-12 -1.57556e-10 1.11101e-14 8.34482e-07 0.936732
7.46503e-08 5.48773e-07 1.58873e-06 1.35807e-07 9.33777e-07
0.395011 0.0705305 -0.494646
-----Neural vector 1 ------
 -4.13718e-08
       6.2159e-08 -3.31613e-08 2.40594e-08 7.62631e-08
0.154291 -0.298909
                   -0.924219
8.35411e-08 -5.04462e-09 -1.19257e-07 1.04787e-07 -3.72854e-08
-0.699413 0.0420193
                1 -0.877321 0.312975
-1.21052e-07 -1.91802e-08 3.58344e-08 1.11643e-07 -6.94844e-08
1
-3.66721e-07 4.88846e-08 -5.28213e-07 -4.26705e-07 -3.33868e-07
0.686289
       -0.289065
                   0.854679
------5
 -2.99616e-07 4.53564e-07 -2.45585e-07 1.78824e-07 5.555e-07
103
```

Степенной метод

	Min lambda0.230265							
0.315612	1	==Eigenvector==== 0.395623		-0.494783	-=-			
======================================								

Вывод

В точных методах Крылова и Данилевского были найдены коэффициенты характеристического многочлена. Однако ни тот, ни другой метод не находит его корни, следовательно, они искались «за пределами» данных методов, а именно: с помощью WolframAlpha, что привело к погрешностям вычислений, т.к. данная программа выдаёт значения с определённой точностью. Таким образом, несмотря на то, что эти методы являются точными, мы имеем погрешность корней порядка 10^{-6} (и там, и там будет погрешность одна и та же, т.к. коэффициенты по итогу многочленов получились одинаковыми). Аналогичная причина погрешности получена в нахождении собственных векторов (вплоть до 10^{-4}). Также следует заметить, что нормальная форма Фробениуса была найдена с небольшой (порядка 10^{-16}) погрешностью, связанной с округлениями в вычислениях.

Если бы точные значения вычислялись без погрешности программы, то их погрешность была бы связана на прямую с погрешностью найденных коэффициентов. В случае метода Крылова (напомню: там решается система методом Гаусса) систему можно было бы решить с помощью выбора главного элемента по матрице, а т.ж. ортогональными методами, не влияющие на обусловленность системы, с целью нахождения более точных коэффициентов. В случае метода Данилевского преобразования подобия сильно ухудшают число обусловленности матрицы, что также может сказаться на дальнейшем поиске собственных значений и векторов этим методом.

В методе Якоби, который является итерационным, собственные значения и вектора найдены с погрешностью порядка 10^{-6} . В случае с собственными векторами у нас получились более точные значения в связи с использованием не точных решений из WolframAlpha и возможных погрешностях при вычислениях. При этом в методе Якоби не накапливается погрешность, т.к. каждый новый процесс нивелирует погрешность старого.

В степенном методе изначально находилась обратная матрица В, что сопровождалось накоплением ошибок, т.к. находилась она методом Гаусса. Метод так же является итерационным, но используется для нахождения максимального (с помощью B^{-1} — минимального) собственного значения и соответствующего ему вектора. Собственное значение совпадает с точностью до 10^{-4} . Аналогичная ситуация и с собственным вектором, соответствующего этому собственному значению.

Погрешность метода Якоби и степенного связана с различным условием выхода из итерационного процесса (в случае Якоби — сумма диагональных элементов $< \varepsilon$, в случае степенного — модуль разность искомого собственного значения на соседних шагах $< \varepsilon$). Несмотря на это, из-за округлений в вычислениях собственных значений у точных методов погрешность получилась, вообще говоря, меньше, чем в точных.

Для сравнения собственных векторов они нормировались по кубической норме. Значения их координат во всех методах совпадали с точность 10^{-4} .