测度与概率 Notes

Liu Fuzhou

2025年2月3日

前言

以前其实也看过这个主题的书,结果后来都忘了.看来做一些有形的笔记是很有必要的.不需要特别详细,提纲挈领即可.

主要参考文献:

1. 近代概率引论: 测度、鞅和随机微分方程. 袁震东. 科学出版社, 1991.

Liu Fuzhou 2025 年 2 月 3 日

目录

第一章	测度论														1
1.1	σ -代数与测度]

第一章 测度论

1.1 σ -代数与测度

首先比较重要的概念就是集列的上极限与下极限. 集列 $\{A_n\}_{n\in\mathbb{N}}$ 的上极限就是落到其中无限多个集合的元素所做成的集合,也即 $\limsup_{n\to\infty}A_n=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k$. 下极限就是除去有限多个集合后,落到所有集中的元素所做成的集合,也即 $\liminf_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k$. 换言之也即"最终落到集列" A_n 中的那些元素之全体. 显然,下限集中的元素也都落到上限集之中,也即 $\liminf A_n \subset \limsup A_n$. 如果集列 A_n 的上限集与下限集相等,那么就说集列 A_n 收敛,并称 $A=\liminf A_n=\limsup A_n$ 的上限集为 A_n 的极限. 这个极限是关于集合包含的偏序关系说的. 与实数的情况类似,有单调集列的收敛定理: 如果 A_n 个是单调递增的,那么 $\limsup A_n$ 类似地,如果 A_n 是单调递减的,那么 $\limsup A_n$ 是单调递减的,那么 $\limsup A_n$.

例 1.1.1. 设 $\{A_n\}_{n\in\mathbb{N}}$ 为单调减少集列. 证明

$$A_1 = \sum_{n=1}^{\infty} (A_n - A_{n+1}) + \bigcap_{n=1}^{\infty} A_n$$

证明. 首先, 右边的每个集合都含于 A_1 . 因此右边含于 A_1 . 其次, 若 $x \in A_1$ 且 $x \notin \bigcap_{n=1}^{\infty} A_n$, 则 $x \in \sum_{n=1}^{\infty} (A_n - A_{n-1})$ 且 $x \notin \bigcap_{n=1}^{\infty} A_n$. 因此 A_1 也是单调递减的. 最后, 若 $x \in \bigcap_{n=1}^{\infty} A_n$, 则存在某个 n > 1, 使得 $x \notin A_n$. 令 n_0 为最小的这种 n, 那么就有 $x \notin A_{n_0}$, $x \in A_{n_{0-1}}$. 于是就有 $x \in \sum_{n=1}^{\infty} (A_n - A_{n-1})$. 这就证明了 $A_1 \subset \sum_{n=1}^{\infty} (A_n - A_{n+1}) + \bigcap_{n=1}^{\infty} A_n$.