

Università degli Studi di Milano CORSO DI LAUREA IN SCIENZE NATURALI

Corso di Biologia generale e ambientale con elementi di istologia

COMPONENTI CHIMICI DI CELLULE E TESSUTI

Citologia e Istologia – Capitolo 1

Anno accademico 2022-2023

COMPOSIZIONE CHIMICA DELLE CELLULE

ACIDI NUCLEICI

NUCLEOSIDI E NUCLEOTIDI

Gli acidi nucleici sono costituiti da monomeri chiamati NUCLEOTIDI (o NUCLEOSIDI MONOFOSFATO), ognuno dei quali consiste di:

- zucchero a 5 C (pentoso)
- base azotata
- gruppo fosfato uniti da legami covalenti.

La parte del nucleotide priva del gruppo fosfato è detta NUCLEOSIDE.

NUCLEOSIDI MONO-, DI- E TRIFOSFATO

NUCLEOSIDI E NUCLEOTIDI

Gli acidi nucleici sono costituiti da monomeri chiamati NUCLEOTIDI (o NUCLEOSIDI MONOFOSFATO), ognuno dei quali consiste di:

- zucchero a 5 C (pentoso)
- base azotata
- gruppo fosfato uniti da legami covalenti.

La parte del nucleotide priva del gruppo fosfato è detta NUCLEOSIDE.

I PENTOSI

 $C_5H_{10}O_5$

 $C_5H_{10}O_4$

strutture cicliche (ad anello)

I PENTOSI

strutture cicliche (ad anello)

LE BASI

Pirimidine

Purine

Il **DNA** è costituito da due filamenti che formano una struttura definita a doppia elica, con andamento destrorso.

Una molecola di DNA ha la forma di una scala a pioli elicoidale, in cui i montanti sono costituiti da zuccheri e gruppi fosfato e i pioli da coppie di quattro diverse basi azotate: adenina (A), timina (T), citosina (C) e guanina (G).

DESOSSIRIBOSIO

(o deossiribosio) zucchero a 5 atomi di carbonio (pentoso, aldoso)

LE BASI

Pirimidine

Il **DNA** è costituito da due filamenti che formano una struttura definita a doppia elica, con andamento destrorso.

Una molecola di DNA ha la forma di una scala a pioli elicoidale, in cui i montanti sono costituiti da zuccheri e gruppi fosfato e i pioli da coppie di quattro diverse basi azotate: adenina (A), timina (T), citosina (C) e guanina (G).

Purine

DESOSSIRIBOSIO

(pentoso, aldoso)

LE BASI AZOTATE PIRIMIDINICHE E PURINICHE

Pirimidine

DNA-RNA DNA RNA

Purine

DNA E RNA SONO POLIMERI DI NUCLEOTIDI

Gli acidi nucleici sono polimeri lineari di nucleotidi uniti tra loro da LEGAMI FOSFODIESTERE (o FOSFODIESTERICI.

Questi legami sono di tipo COVALENTE e vedono il gruppo fosfato in 5' di un nucleotide legarsi covalentemente allo zucchero del nucleotide adiacente al gruppo OH in 3'.

I gruppi fosfato uniscono il C in 5' di uno zucchero pentoso al C in 3' dello zucchero adiacente.

ACIDI NUCLEICI: STRUTTURA DI UN FILAMENTO DI DNA

I nucleotidi adiacenti nella catena polinucleotidica sono uniti da legami fosfodiesterici 3'-5'. I

I polinucleotide risultante ha una direzionalità intrinseca, con un'estremità 5' e un'estremità 3'.

Il susseguirsi delle basi azotate dei nucleotidi determina la sequenza degli acidi nucleici (es. GATC)

DNA

DNA

Entrambi gli acidi nucleici sono costituiti da polimeri lineari di nucleotidi uniti tra loro da legami fosfodiesterici, definiti così perché l'atomo di P è esterificato con due atomi di O presenti su ciascuno dei due zuccheri adiacenti), legami covalenti, costituiti da un gruppo fosfato unito allo zucchero che si lega covalentemente allo zucchero del nucleotide adiacente.

I gruppi fosfato uniscono C in 3' di uno zucchero pentoso (desossiribosio, nel caso del DNA) all'atomo di C in 5' dello zucchero adiacente. Quindi, i nucleotidi adiacenti nella catena polinucleotidica sono uniti da legami fosfodiesterici 3'-5'.

Il polinucleotide risultante ha una direzionalità intrinseca, con un' estremità 5', alla quale sporge il gruppo fosfato legato al C5 dello zucchero e un' estremità 3', alla quale sporge il gruppo –OH legato al C3 dello zucchero.

► DNA = FILAMENTI ANTIPARALLELI & COMPLEMENTARI

APPAIAMENTO DELLE BASI NEL DNA

Catene polinucleotidiche sono antiparallele (orientate in direzioni opposte) e complementari

Ogni filamento
polinucleotidico presenta
una polarità chimica, cioè
le due estremità della
catena sono chimicamente
diverse.

APPAIAMENTO DELLE BASI NEL DNA

Adenina - Timina (AT)

Citosina - Guanina (CG)

Un membro della coppia di basi è una purina (A o G), l'altro una pirimidina (T o C).

IL MODELLO A DOPPIA ELICA DEL DNA

DNA:

- elica a doppio filamento, con diametro costante
- destrorsa
- antiparallela
- appaiamento complementare delle basi azotate

le coppie AT e GC hanno la stessa lunghezza di legame.

APPAIAMENTO DELLE BASI NEL DNA

Filamenti antiparalleli e complementari:

leggendo la sequenza delle basi di un tratto di DNA è automaticamente possibile conoscere la sequenza del tratto nucleotidico complementare sull'altro filamento.

IL MODELLO A DOPPIA ELICA DEL DNA

0,34 nm = distanza tra le coppie di basi azotate
3,4 nm = ogni giro completo dell'elica = 10 paia di basi azotate

DNA

Nelle cellule umane le molecole di DNA sono costituite da centinaia di milioni di nucleotidi. I due filamenti della doppia elica del DNA sono uniti poiché la base A è accoppiata con la base T, mentre C è accoppiata con G. L'accoppiamento tra le basi è dovuto alla formazione di legami idrogeno: due legami idrogeno uniscono la coppia AT, tre legami a idrogeno uniscono la coppia CG. Inoltre, tra le coppie di basi impilate si formano interazioni di van der Waals.

COME RAPPRESENTARE IN BREVE UN TRATTO DI DNA

Sequenza delle basi del filamento 3'→5' o filamento principale

IL DNA DEGLI EUCARIOTI E' ORGANIZZATO IN CROMOSOMI

Cromosomi metafasici (o cromosomi mitotici) umani osservati al microscopio elettronico a scansione (SEM). Colori artificiali.

Polymerase Chain Reaction (PCR): Kary Mullis Nobel Prize in 1993

Scopo di questa metodica è produrre un elevato numero di copie di DNA.

I reagenti necessari sono:

- 1. DNA stampo
- 2. Primers che legano il DNA stampo
- 3. Deossiribonucleotidi trifosfato (dATP, dCTP, dGTP,dTTP)
- 4. DNA polimerasi
- Buffer acquoso a pH e concentrazione ionica ideale per polimerasi.

La reazione avviene in uno strumento chiamato termociclatore.

Polymerase Chain Reaction (PCR): Kary Mullis Nobel Prize in 1993

I reagenti necessari sono:

- 1. DNA stampo
- 2. Primers che legano il DNA stampo
- 3. Deossiribonucleotidi trifosfato (dATP, dCTP, dGTP,dTTP)
- 4. DNA polimerasi
- 5. Buffer acquoso a pH e concentrazione ionica ideale per polimerasi.

Polymerase Chain Reaction (PCR): Kary Mullis Nobel Prize in 1993

La PCR è una metodica che ripete cicli formati da passaggi ben specifici:

- 1. Denaturazione a 95° C: Innalzare la temperatura a 95° C porta il filamento di DNA a doppio filamento a denaturarsi e ad esporre i nucleotide (oltre a bloccare le reazioni del ciclo precedente)
- 2. Appaiamento a 54-60° C: Abbassando la temperature, i primers che legano il DNA stampo a livello della loro sequenza complementare e "segnalano" i punti sulla sequenza alla polimerasi
- 3. Allungamento a 72° C: Alla sua temperatura ottimale, la polimerasi comicia a lavorare sintetizzando a partire dall'estremità 5' e muovendosi verso l'estremità 3'. Grazie alla complementarietà delle basi, la polimerasi sintetizza una copia complementare per ogni singolo filamento.

Dopo 30-40 cicli di amplificazione, milioni di copie del nostro DNA d'interesse.

Polymerase Chain Reaction (PCR): Kary Mullis Nobel Prize in 1993

Polymerase Chain Reaction (PCR):

UTILIZZI DELLA PCR

La PCR può essere utilizzata per numerose finalità:

Medicina:

- Identificare le infezioni andando ad amplificare sequenze specifiche presenti solo nel genoma del patogeno d'interesse (es. AIDS o Helicobacterium pylori)
- Identificazione di mutazioni in specifici geni mediante amplificazione e sequenziamento
- Diagnosticare malattie ereditarie mediante amplificazione di sequenze specifiche presenti solo in un quadro clinico patologico

Medicina legale:

 Determinare l'impronta genetica a partire da tracce di sangue, saliva, capelli.

Ricerca scientifica:

 Clonaggio di porzioni di DNA (es. geni) per andare a isolarne la sequenza e utilizzare il frammento amplificato per ingenerizzare il DNA.

Studio di DNA antichi:

- Il DNA estratto da campioni biologici conservati (es. Mummie) può essere amplificato e studiato.
- Si possono confrontare i DNA antichi con quello della popolazione attuale per approfondire l'indagine evoluzionistica.

RNA

RNA

Estremità 3' OH

ribosio

[3] I'RNA NON forma una doppia elica (tranne che in alcuni virus), ma ha la struttura a singolo filamento. Sebbene a singolo filamento, le molecole di RNA spesso si ripiegano su se stesse, formando regioni a doppio filamento in seguito ad appaiamento complementare delle basi azotate, unite da legami idrogeno.

[4] Un'altra differenza tra DNA e RNA è che, mentre il DNA esegue una sola funzione (contenere l'informazione genetica) i diversi tipi di RNA (RNA messaggero, RNA transfer e RNA ribosomale) hanno funzioni differenti.

TRASCRIZIONE E TRADUZIONE

TRASCRIZIONE DEGLI RNA

UNITÀ DI TRASCRIZIONE

TRADUZIONE

TRASCRIZIONE E TRADUZIONE

TRASCRIZIONE DEGLI RNA

Sono trascritti **4 tipi di molecole di RNA**:

- 1. RNA messaggero (mRNA): un singolo filamento che contiene l'informazione per la sintesi di una proteina. Trasporta un messaggio genetico dal DNA al ribosoma dove avviene la sintesi proteica.
- 2. RNA di trasporto (tRNA) o trasferimento: un singolo filamento che si ripiega su se stesso. I tRNA fungono da "traduttori", in grado di tradurre la sequenza di basi dell'mRNA e trasportare l'appropriato amminoacido al ribosoma.
- 3. RNA ribosomale (rRNA): sono in forma globulare e formano i ribosomi.
- 4. microRNA (miRNA): piccoli RNA che regolano l'espressione genica nelle cellule eucariotiche.

La sintesi di RNA consiste nel copiare l'informazione contenuta in un tratto del DNA nell'RNA. Il processo è definito TRASCRIZIONE perché l'informazione, pur essendo trasferita a due diverse molecole rimane scritta nello stesso linguaggio: quello dei NUCLEOTIDI.

La relazione tra gene (tratto di DNA) e ordine lineare degli amminoacidi nelle catene polipeptidiche si basa su un CODICE GENETICO che serve per interpretare l'informazione genetica.

