

16 748 JSC-16478 -

JUL 3 0 1980

Lyndon B. Johnson Space Center

Houston, Texas 77058

CR-160772

STS-2
SAIL NON-AVIONICS SUBSYSTEMS
MATH MODEL REQUIREMENTS

Job Order 22-109 Contract NAS 9-15800

N80-30369

(JSC-16748) STS-2 SAIL NON-AVIONICS SUBSYSTEMS MATH MODEL REQUIREMENTS (Lockheed Engineering and Management) 484 P

CSCL 228

CSCL 228

Unclas G3/16 30951

Prepared By

Lockheed Engineering and Management Services Company, Inc.
Houston, Texas

For

SHUTTLE AVIONICS INTEGRATION DIVISION

July 1980

JSC-16478

STS-2 SAIL NON-AVIONICS SUBSYSTEMS MATH MODEL REQUIREMENTS

Job Order 22-109

PREPARED BY

Principal Engin

Systems Integration Section Systems Engineering Department,625-21 R. W. Herold, Principal Engineer

Systems Integration Section

Systems Engineering Department,625-21

APPROVED BY

Supervisor

Systems Integration Section

J. D. Overton, Chief

SAIL Operations Branch, EF2

Systems Engineering Department,625-21 SHUTTLE AVIONICS INTEGRATION DIVISION

Prepared By

Lockheed Engineering and Management Services Company, Inc.

Houston Texas

For

SHUTTLE AVIONICS INTEGRATION DIVISION

MATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS

Jt. 1980

SAIL NON-AVIONICS MATH MODEL CHANGE STATUS

SCR/ESCR NUMBER	DATE	MODEL/ Page(S)	CHANGE SUMMARY
			==

ACKNOWLEDGEMENT

The SAIL non-avionics math model requirements contained in the appendices of this report resulted from the combined efforts of Lockheed Engineering and Management Services Company, Inc. (R. W. Herold and W. P. Bennett) and Rockwell/Downey (C. D. McPhail et. al.). These requirements are those baselined by the SAIL Change Control Panel.

CONTENTS

Section	on	Page
I.	INTRODUCTION	1
II.	PURPOSE	1
III.	DISCUSSION	4
APPEN	DIX	
A.	APU/Hydraulics Math Model Requirements	A-1
B.	Vent Doors Math Model Requirements	B-1
C.	Umbilical Doors Math Model Requirements	C-1
D.	ET Sep Pyros Math Model Requirements	D-1
E.	MPS Plumbing Math Model Requirements	E-1
F.	Fuel Cell/Cryo Math Model Requirements	F-1
G.	Atmosphere Revitalization/H20 Loops Math Model Requirements	G-1
н.	Atmosphere Revitalization/PCS-Airlock Math Model Requirements	H-1
I.	Active Thermal Control Math Model Requirements	I-1
J.	Smoke Detection Math Model Requirements	J-1
K.	Water/Waste Management Math Model Requirements	K-1
L.	RCS/OMS (DFI) Math Model Requirements	L-1
	TABLES	
Table		Page
I.	NON-AVIONICS MATH MODEL APPLICATIONS	2
	FIGURES	
Figure	2	Page
1.	SAIL Non-Avionics simulators functional interfaces	3

I. INTRODUCTION

The SAIL non-avionics math models are required to support verification of the Ascent Ops 1 Avionics Configuration, On-Orbit Ops 2 Avionics Configuration, Entry Ops 3 Configuration, and the Backup Flight System. The non-avionics subsystems math models resident in the GTS and/or the STS and their application to testing each of the Ops configurations are summarized in Table I. The STS math models, with the exception of the RCS/OMS model, are implemented in the Ground Standard Interface Unit (GSIU) and interface with the flight critical MDMs, Development Flight Instrumentation (DFI) MDM and Operational Instrumentation (0I) MDMs via Signal Termination Modules (STMs). The RCS/OMS model output static parameter is implemented via Test Language in the Display and Control Module (DCM). The STS math models output only those measurements that are acquired by the flight software or are required for dedicated displays. Operational Instrumentation and Development Flight Instrumentation measurements that are downlinked only are not provided by the math models.

The GTS math models simulate only those subsystems, or portions of subsystems, that interface with the flight critical data bus and that are required to support GN&C testing. All instrumentation measurements nominally nannelized in the OI MDMs and DFI MDMs are static parameters loaded in the GTS Non-avionics Simulator (NAS) and are outputted directly to the PCM Master Unit. The NAS will provide all OI and DFI parameters to be downlinked during OFT 1 flight. Functional interfaces of the STS and GTS non-avionics simulator are shown in figure 1.

II. PURPOSE

The purpose of this report is to provide a single source document for consistently controlling approved changes to the non-avionics math models. When changes are approved, change pages will be released and a change status page will accompany each change release. The change status page should be incorporated behind the signature page and will provide a history of all changes to this JSC report. The form of this change sheet is provided in the specified location of this document.

TABLE I.- NON-AVIONICS MATH MODEL APPLICATIONS

			PRIMARY			
MATH MODEL	IMPLEMENTATION REQUIREMENT	ASCENT OPS 1	ON-ORBIT OPS 2 GNC SM	ENTRY OPS 3	BFS GNC SM	SA
APU/ HYDRAULICS	STS / GTS	`	* *	^	`	` `
VENT DOORS	615	`	`	`>	`	
UMBILICAL DOORS	GTS	>			>	
ET SEP PYROS	GTS	`			>	
MPS PLUMBING	STS/GTS	`			>	
FUEL CELL/CRYO	STS		`			``
ATMOS REVITALIZATION/H20	STS		>			`
ATMOS REVITALIZATION/PCS- AIRLOCK	STS		`			>
ACTIVE THERMAL CONTROL	STS ·		`	•		`
SMOKE DETECTION SYSTEM	STS		`			`
WATER/WASTE MGMT	STS		`			`
RCS/OMS (DFI)	STS		`			`

SHUTTLE TEST STATION

Figure 1.- SAIL Non-Avionics Simulators Interfaces.

DOWNLINK

III. DISCUSSION

The baselined SAIL non-avionics math model requirements are provided in Appendix A through L. Future approved SCR's will be identified on the Change Status Sheet which will be released with the revised math model pages and the title page (revision number change) for incorporation in this report.

APPENDIX A APU/HYDRAULICS MATH MODEL REQUIREMENTS

TABLE OF CONTENTS

Secti	on	Page
1.0	INTRODUCTION	A-4
	1.1 SHUTTLE TEST STATION (STS)	A-4
	1.2 GN&C TEST STATION (GTS)	A-5
	STS	
2.0	DETAILED REQUIREMENTS	A-7
	2.1 FUNCTIONAL CHARACTERISTICS	A-7
	2.1.1 APU	A-7
	2.1.2 HYD	A-7
	2.1.3 INPUT/OUTPUT	A-11
	2.2 DCM UPLINK	A-11
	2.3 INITIALIZATION REQUIREMENTS	A-12
	2.4 TERMINATION REQUIREMENTS	A-12
	2.5 UNIQUE REQUIREMENTS	A-13
	2.5.1 i = 1, 2, 3	A-13
	2.5.2 $\alpha = i + 3$, $\gamma = i - 1$	A-13
	2.5.3 K = 1, 2, 3	A-13
	2.5.4 TURBINE SPEED (V46Roi35A>O)=(APU i RUN MODE)	A-13
	2.5.5 APU TURBINE OVERSPEED OR UNDERSPEED CONDITIONS	A-14
	2.5.6 BFS MEASUREMENTS	A-15
	2.5.7 APU HEATER THERMAL SWITCHES	A-16
	2.6 ANALOG MEASUREMENTS	A-17
	2.6.1 POLYNOMIAL CONVERSION METHOD	A-17
	2.6.2 RANGE LIMIT CONVERSION METHOD	A- 20

Secti	on	Page
3.0	LOGIC FLOW DIAGRAMS	A- 22
4.0	TABLES	A-40
	4.1 INPUT STIMULI LIST	A-40
	4.2 OUTPUT MEASUREMENT LIST	A-46
5.0	STS REFERENCES	A-51
	GTS	
12.0	GTS DETAILED REQUIREMENTS	A-63
	12.1 GTS FUNCTIONAL CHARACTERISTICS	A-53
	12.2 NAS UPLINK REQUIREMENTS	A-63
	12.3 GTS INITIALIZATION REQUIREMENTS	A-53
	12.4 GTS TERMINATION REQUIREMENTS	A-65
	12.5 GTS UNIQUE REQUIREMENTS	A-65
13.0	GTS LOGIC FLOW DIAGRAMS	A-66
14.0	GTS INPUT/OUTPUT TABLES	A-68
	14.1 TABLE 14.1 - INPUT STIMULI	A-69
	14.2 TABLE 14.2 - OUTPUT MEASUREMENTS	A-70
	14.3 NAS CRT DISPLAY	A-71
15.0	DEEEDENCES	۵-72

FIGURES

Section	n			Page
FIGURE	1	STS	S SYSTEM DATA FLOW	A-8
FIGURE	2	APU	SUBSYSTEM SCHEMATIC	A-9
FIGURE	3	HYD	SUBSYSTEM SCHEMATIC	A-10
FIGURE	4	GTS	S SYSTEM DATA FLOW	A-64
FIGURE	5	NΔS	CRT DISPLAY	A-72

1.0 INTRODUCTION

The Shuttle Avionics Integration Laboratory (SAIL) consists of a Shuttle Test Station (STS) and a GN&C Test Station (GTS). Both of these test stations use math models to simulate many of the shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the shuttle's avionic systems. The non-avionic models are needed to supply data for on-board software processing, to drive cockpit displays, and to respond to shuttle commands, whether they be from the cockpit switches or from the General Purpose Computers (GPC's).

Because the STS and the GTS are configured differently, the non-avionic math models needed to support each test station are shown below:

Non-Avionic Math Model	STS	GTS	
APU/Hydraulics	*	•	
Main Propulsion System	•	•	
RCS/OMS	*		
Fuel Cell/Cryogenics	*		
ATMOS Revital/Water Loops	*		
ATMOS Revital/Press Control - Airlock	•		
Active Thermal Control .	•		
Smoke Detection	*		
Water/Waste Mgt.	*		
ET/ORB FWD SEP PYROS		*	
ET UMB COUT Door/Latch		*	
Vent Doors		*	

Where the same math model is needed is both test stations, the math model requirements document is divided into a STS section and a GTS section, so that unique test station requirements may be identified.

1.1 SHUTTLE TEST STATION (STS)

When the TOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models

are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when off-nominal conditions are desired. To simplify the models and ease the processing load on supporting test equipment, the model requirements define nominal conditions only. Further, analog values for output parameters change in step fashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs. This allows the DCM operator to adjust output parameter values as needed to satisfy various mission phases.

When the model is activated, it shall check the input stimuli and shall provide appropriate output measurement values. It is preferred that the model provide output data when the input stimuli changes. Bus activity is then minimal during those mission phases when the stimuli remains constant. However, the GSIU operating system may require a cyclic model program in which case the model output rate shall be once per second.

1.2 GN&C TEST STATION (GTS)

To simplify the models and ease the processing load on supporting test equipment, the model requirements specify nominal conditions only. Analog values for output parameters change when input values dictate a change, or when the test operator manually sets parameter values. Because GTS has an incomplete set of cockpit switches, some switch inputs used in STS must be entered in GTS by the simulator operator. This method allows the use of the same logic for STS and GTS.

STS SECTION

-2.0 DETAILED REQUIREMENTS

This model simulates those functions of the Auxiliary Power Unit (APU) and the Hydraulics (HYD) subsystems that are in the Orbiter. To simplify the model, only those subsystem functions needed to support testing of the Shuttle avionics system are provided.

The model receives stimuli from one source, the flight system via the Signal Termination Module (STM); the model provides output parameter values to the flight system via the STM. Figure 1 illustrates the data flow in and out of the model. Tables 1 and 2 list the input stimuli and output measurements.

Internal to the model is considerable "cross-talk" between the APU and the HYD areas. An attempt was made to keep these two areas separate for modular simplicity. The "cross-talk" involved here is transparent to the user and requires no special conditioning.

2.1 FUNCTIONAL CHARACTERISTICS

2.1.1 APU

The APU subsystem consists of three APU packages providing the mechanical power necessary to drive the main hydraulic pumps. Inputs from the flight system (FS) drive the model to simulate a dedicated control unit for each APU, which will maintain the selected speed and, in the event of the limiting conditions being exceeded, will automatically shut the unit down. Override control is provided by a crew switch. The APU turbine drives the gearbox which in turn drives the main hydraulic pump. Figure 2 is a functional diagram of the APU system.

2.1.2 HYD

The hydraulic pump is driven by the APU, and the speed is dependent upon whether input stimuli is selected to Normal or High speed mode. Hydraulic power is supplied to aerosurface controls (elevons, rudder, body flap, and speedbrake), landing gear, wheel brakes, and nosewheel steering. Figure 3 is a functional diagram of the HYD system.

Hydraulic fluid must be cooled during main pump operation; and, therefore, the model simulates a water boiler which removes heat from the system fluid.

When the APU's are shut down (idle), a circulation pump maintains fluid circulation to prevent freezing.

A reservoir and nitrogen pressurized accumulator are also a part of the system, and the model simulates these I/O parameters also.

The hydraulic subsystem incorporates functional redundancy. This redundancy is obtained by switching valves which provide the capability for any one of the subsystems connected to the switching valves to supply the function in the event of failure of the other connected subsystems.

INPUT /OUTPUT DATA FLOW

FIGURE 1

Figure 2.- Auxiliary power unit block diagram.

Figure 3.- Hydraulic system (typical for systems 1, 2, and 3).

· 2.1.3 Input/Output

All inputs to the model are from the FS addressable at the STM. These stimuli are acted upon immediately at model execution without regard to time, and conditions are simulated in a step function manner. For example: APU fuel will always be shown as maximum quantity (pressure) and will not be depleted with time. Any time dependent inputs must be up-linked from the TOC-DCM as an abnormality (or parameter value change) in accordance with the GSIU Operating System.

For the sake of simplicity, the model will do no fault detection of stimuli, but will act upon it as received from the FS. Therefore, any fault insertion must include changes to all affected parameters in order to obtain a realistic response from the model.

All subsystem output is simulated by the model in accordance with stimuli from the FS. All measurements are made available to Systems Management (SM) and Fault Detection and Annunciation (FDA) as required.

The stimuli identification numbers used are coded to provide the following information at the SAIL flight cable/GSE/C70-1140 cable set interface.

Exceptions to this code are those stimuli with a letter for the connector number where the connector number is unknown. Also the stimuli which comes from the DCM instead of the flight cable do not agree with this code. Signal Termination Module (STM) addresses for both stimuli and measurements are yet to be defined.

2.2 DCM UPLINK

The only values passed from the DCM will be those which involve output suppression and fault insertion in accordance with the GSIU Operating System and are not a part of this document.

2.3 INITIALIZATION REQUIREMENTS

Refer to Table 2 entitled "Measurement Output from APU/HYD Model" for initialization requirements.

2.4 TERMINATION REQUIREMENTS

None.

2.5 UNIQUE REQUIREMENTS

There exists a requirement for some measurements within the model to reflect a nominal, Hi/Low, and off condition. The condition is determined by (a) the system running normally, (b) the system being idle, but the circulation pumps running, and (c) all functions in an off mode. There is also the requirement for the model to be capable of functioning in a triple-redundant mode.

In order to best show these requirements, the following criteria were set up and are used throughout this document.

. 2.5.1 1 = 1.2.3

Where (i) represents the system; APU1, APU2, or APU3, respectively.

2.5.2 $\alpha = 1 + 3, \gamma = 1 - 1$

These relationships were established for simplicity and ease of representing logic flow diagrams within this requirements package.

 \cdot 2.5.3 K = 1, 2, 3

Where (K) represents the condition existing for the system, ie:

1 = Nominal Mode

2 = Circulation Pumps On

3 = Idle Mode

The value K is then used to find the correct measurement value needed to reflect the proper conditions. These measurement values will be found in Table 2 entitled, "Measurement Output from APU/HYD Model".

NOTE: The flow diagrams refer to the value tables in the following manner:

MEAS. = Value (K)

Where MEAS. is the output measurement.

VALUE is one of three possible values for that particular MEAS.

(K) is a pointer that shows which of the three values is applied.

EXAMPLE: V58T0101A = VALUE(2) = 40°F

2.5.4 TURBINE SPEED (V46R0135A)>0 = APU i RUN MODE TURBINE SPEED (V46R0135A)<0 = APU i IDLE MODE

2.5.5 APU Turbine Overspeed or Underspeed Conditions

As described in paragraph 2.1.3, the model simulates nominal conditions only, and when off-nominal conditions are required they must be entered by the operator at the DCM console. Such is the case when simulating APU turbine overspeed or underspeed, except the model output inhibit function at the DCM is not necessary. The six DCM input commands listed in table I will cause the appropriate output measurements to change, thereby simulating an overspeed or underspeed condition. When the DCM commands are zero, nominal conditions are produced by the model.

2.5.6 BFS MEASUREMENTS

The hydraulic measurements listed in the following table are used by the Back-up Flight System (BFS). These measurements are processed differently than the ones listed in paragraph 2.5.6. The MDM input voltage for the BFS measurements must be converted to Flight System (FS) counts before the polynomial equation defined in paragraph 2.5.6 may be used. The conversion to FS counts must take into account two factors:

- One factor is that 5 volts into the MDM is equal to 500 FS counts, or 100 counts per volt.
- The second factor is that the BFS software shifts the FS count value by 64.

Consequently, the voltage provided by the STM to the input of the MDM must be multiplied by (100) and by (64), before the polynomial equation in paragraph 2.5.6 may be used for BFS calculations.

EXAMPLE:

MDM INPUT VOLTAGE FOR V58
$$^{+}$$
0830A = 2.6 VDC
2.6 X 100 X 64 = 16640 = X
EU = A_1 X + A_0 = 0.01171875 (16640) + (-75)
EU = 120

MEAS	Т	0	С		BFS	MEAS COEFFICE	ENTS	FLIGHT
MML#	GS I U E U	GSIU COUNTS	MDM IN- PUT VDC	A ₃	A ₂	A ₁	A _O	SYSTEM EU
V58T0830A	120	532	2.60			0.01171875	-75	120
880A	126	548	2.68				1	126
930A	132	565	2.76					132
9807.	138	581	2.84					138
V57T0014A	144	597	2.92					144
♦ 18A	150	614	3.00				•	150
				!		•		

2.5.7 APU HEATER THERMAL SWITCHES

Certain APU heaters are controlled by thermal switches in the APU controller. For simplification of the APU math model, the operation of the thermal switches and the cycling of heater temperatures are not simulated, but instead the thermal switches are simulated closed and heater temperatures are a function of heater power only. The control logic for the thermal switches resides in the flight system Load Controller Assembly (LCA) hardware; therefore, the APU math model must send "thermal switch on" signals to the LCA. The CA then transmits a heater power signal to the APU math model whenever the power switch is "ON". Since the thermal switch signals to the LCA: The math model do not have MML ID numbers, pseudo numbers have been assigned, reference Table 2 - pages A-45 and A-46.

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOMIAL CONVERSION METHOD

The scaling polynomial equation used by the flight system is defined in the SM FSSR. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1 x + A_2 x^2 + A_3 x^3$$

where: FS_{EU} = flight system engineering units

X = flight system input voltage

 A_0 , A_1 , A_2 , A_3 = scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{EU}) to GSIU counts. This procedure may be used to calculate GSIU count values for fault insertion at the DCM.

Example:

For measurement no. V63R1100A, convert FS_{FH} value = 2288 to GSIU counts.

Step 1:

In the SM FSSR, look up the measurement no. (V63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units, range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{FII} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^{2} + 12.246X^{3}$$
so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VDC.

It is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.846 r' led to the nearest integer.

However, in the example being worked, X is define the x and X = 3.846 VDC.

Step 4:

Now to convert X VDC to GSIU counts, evaluate the following equation which shows the relationship between X and GSIU counts:

GSIU counts =
$$\left[X \left(\frac{1023}{K}\right)\right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

GSIU counts =
$$\left[3.846 \left(\frac{1023}{5}\right)\right]$$
. rounded to the nearest integer

Therefore, GSIU counts = 787 counts.

Note that since GSIU counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU} , when the reverse calculations are made during test operations, as the following shows:

X = GSIU counts
$$\left(\frac{K}{1023}\right)$$

X = 787 X $\left(\frac{5}{1023}\right)$
SO X = 3.846529

And

FS_{EU} =
$$443.167 + 851.956x - 143.904x^2 + 12.246x^3$$

FS_{EU} = $443.167 + 851.956(3.848) - 143.904(3.848)^2 + 12.246 (3.848)^3$
FS_{EU} = 2288.017

Hence when 787 GSIU counts is inserted for measurement no. V63R1100A, a value of 2288.017 ${\rm FS}_{\rm FH}$ will result.

2.6.2 RANGE LIMIT CONVERSION METHOD

Several analog measurements in this model are calculated according to the range limit conversion method, instead of the polynomial conversion method as described in Section 2.6.1 of this document. The form of the scaling equation for these cases is given as follows:

$$FS_{EU}$$
 = Low + $GSIU_{CTS}$ (High - Low)

where: FS_{EU} = flight system engineering units

 $GSIU_{CTS}$ = $GSIU$ math model count values

Low = Range low limit

High = Range high limit

The following table shows a sample data value for each measurement which requires this type of calculation. The measurement I.D. is shown along with high and low values for the parameter range. The FS column shows the data value in flight system engineering units calculated from the GSIU counts marked CTS in the table. These measurements are marked with an asterisk (*) in the Output Measurement List marked as Table 2 in Section 4.2 of this document.

MEASUREMENT ID	RANGE LOW	RANGE HIGH	FS	CTS
V46T918UA	0	+1500	419	286
V46T9280A	0	+1500	479	327
V46T9380A	0	+1500	540	368
V46T9132A	-100	+500	56	266
V46T9270A	0	+250	86	352
V46T9513A	-75	+300	69	393
V58P0114C	0	+4000	3022	773
V58P0214C	0	+4000	3124	799
V58P0314C	0	+4000	3226	825
V58P0116C	0	+4000	3300	844
V58P0216C	0	+4000	3402	870
V58P0316C	0	+4000	3152	806

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 ${\rm FS}_{\rm EU}$ which is equivalent to 534 ${\rm GSIU}_{\rm CTS}$ shown outside the box.

ORIGINAL PAGE IN OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

4.0 TABLES

4.1 INPUL STAMULI LIST

Table 1 lists input stimuli to the APU/HYD model in terms of ID numbers, nomenclature, stimuli source, address and range of measurement.

STIMULI INPUT TO :/HYD MODEL- TABLE 1

TK/LN HTRS B SYSTEM 1 V46K0109E TK/LN HTRS B SYSTEM 1 V46K0109E TK/LN HTRS B SYSTEM 2 V46K0209E TK/LN HTRS B SYSTEM 2 V46K0209E TK/LN HTRS A SYSTEM 3 V46K0303E TK/LN HTRS A SYSTEM 3 V46K0116E LUBE OIL LN HTRS - A AUTO SYSTEM 1 V46K0117E LUBE OIL LN HTRS - B AUTO SYSTEM 2 V46K0217E LUBE OIL LN HTRS - B AUTO SYSTEM 2 V46K0217E LUBE OIL LN HTRS - B AUTO SYSTEM 3 V46K0317E FUEL ISOL. VLVA SYSTEM 2 V46K0218E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	IDENTIFICATION	ICATION	NOMENCLATURE	SOURCE	ST	STATES/24:35	133
## ## ## ## ## ## ## ## ## ## ## ## ##						14	UNITS
K50SP423 TK/LN HTRS B SYSTEM 1 V46K0109E FLI System K50SP474 TK/LN HTRS B SYSTEM 2 V46K0209E FLI System K50SP427 TK/LN HTRS B SYSTEM 3 V46K0209E FLI System K50SP441 TK/LN HTRS A SYSTEM 1 V46K0103E FK50SP441 K50SP443 TK/LN HTRS A SYSTEM 1 V46K0103E FK50SP456 K50SP454 TK/LN HTRS A SYSTEM 3 V46K0203E FK50SP505 LUBE 01L LN HTRS - A AUTO SYSTEM 1 V46K0117E FK50SP506 LUBE 01L LN HTRS - B AUTO SYSTEM 1 V46K0117E FK50SP501 K50SP910-B FUEL 100L. LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP910-B FUEL 100L. VLVA SYSTEM 1 V46K0121E K50P9910-B FUEL 150L. VLVA SYSTEM 1 V46K0218E K50P9910-B FUEL 150L. VLVA SYSTEM 2 V46K0221E K50P9910-B FUEL 150L. VLVA SYSTEM 2 V46K021BE K50P9910-B FUEL 150L. VLVA SYSTEM 2 V46K021BE K50P9910-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0119E K50P991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 1 V46K0219E K50P991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E K50P9922-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E			-APU-				
K50SP474 TK/LN HTRS B SYSTEM 2 V46K0209E K50SP471 TK/LN HTRS B SYSTEM 3 V46K0309E K50SP471 TK/LN HTRS A SYSTEM 1 V46K0103E K50SP493 TK/LN HTRS A SYSTEM 1 V46K0103E K50SP455 TK/LN HTRS A SYSTEM 2 V46K0203E K50SP456 LUBE OIL LN HTRS - A AUTO SYSTEM 1 V46K0116E K50SP566 LUBE OIL LN HTRS - A AUTO SYSTEM 2 V46K0216E K50SP566 LUBE OIL LN HTRS - A AUTO SYSTEM 3 V46K0316E K50SP561 LUBE OIL LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP561 LUBE OIL LN HTRS - B AUTO SYSTEM 2 V46K0217E K50SP561 LUBE OIL LN HTRS - B AUTO SYSTEM 3 V46K0317E K50SP910-B FUEL ISOL. VLVA SYSTEM 2 V46K0221E K50SP910-B FUEL ISOL. VLVA SYSTEM 3 V46K0318E K50SP931-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0318E K50SP931-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0319E K50SP931-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50SP932-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50SP932-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50SP4;	23	TK/LN HTRS B SYSTEM 1 V46K0109E	FLT System	с —	_	STATE
K50SP527 TX/LN HTRS B SYSTEM 3 V46K0309E K50SP441 TX/LN HTRS A SYSTEM 1 V46K0103E K50SP493 TX/LN HTRS A SYSTEM 2 V46K0203E K50SP452 LUBE 01L LN HTRS - A AUTO SYSTEM 1 V46K0116E K50SP505 LUBE 01L LN HTRS - A AUTO SYSTEM 2 V46K0216E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 3 V46K0316E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 3 V46K0217E K50P9910-B FUEL ISOL. VLVA SYSTEM 1 V46K017E K50P9910-B FUEL ISOL. VLVA SYSTEM 2 V46K021E K50P991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K031BE K50P991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K031BE K50P9912-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K031BE K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K505P4	74	TK/LN HTRS B SYSTEM 2 V46K0209E		0		
K50SP441 TK/LN HTRS A SYSTEM 1 V46K0103E K50SP493 TK/LN HTRS A SYSTEM 2 V46K0203E K50SP455 TK/LN HTRS A SYSTEM 3 V46K0303E K50SP505 LUBE 01L LN HTRS - A AUTO SYSTEM 1 V46K0116E K50SP506 LUBE 01L LN HTRS - A AUTO SYSTEM 2 V46K0216E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 2 V46K0217E K50P9910-B FUEL ISOL. VLVA SYSTEM 1 V46K0121E K50P9910-B FUEL ISOL. VLVA SYSTEM 1 V46K021E K50P991-B FUEL ISOL. VLVA SYSTEM 2 V46K021E K50P991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K031BE K50P991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K031BE K50P991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K031BE K50P991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K031BE K50P991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K031BE	K50SP5	.57	TK/LN HTRS B SYSTEM 3 V46K0309E		°	_	
K50SP493 TK/LN HTRS A SYSTEM 2 V46K0203E K50SP455 TK/LN HTRS A SYSTEM 3 V46K0303E K50SP505 LUBE OIL LN HTRS - A AUTO SYSTEM 1 V46K0116E K50SP505 LUBE OIL LN HTRS - A AUTO SYSTEM 2 V46K0216E K50SP510 LUBE OIL LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP510 LUBE OIL LN HTRS - B AUTO SYSTEM 2 V46K0217E K50P9910-B FUEL ISOL. VLVA SYSTEM 1 V46K0121E K50P9910-B FUEL ISOL. VLVA SYSTEM 2 V46K021E K50P991-B FUEL ISOL. VLVA SYSTEM 3 V46K021E K50P991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K021BE K50P991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K031BE K50P991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K031BE K50P991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K021BE K50P991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50P991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50SP4	41	TK/LN HTRS A SYSTEM 1 V46K0103E		0		
K5GSP545 TK/LN HTRS A SYSTEM 3 V46K0303E K5GSP452 LUBE OIL LN HTRS - A AUTO SYSTEM 1 V46K0116E K5GSP565 LUBE OIL LN HTRS - A AUTO SYSTEM 2 V46K0216E K5GSP457 LUBE OIL LN HTRS - B AUTO SYSTEM 3 V46K0317E K5GSP510 LUBE OIL LN HTRS - B AUTO SYSTEM 1 V46K0117E K5GSP510 LUBE OIL LN HTRS - B AUTO SYSTEM 2 V46K0217E K5GP9910-B FUEL ISOL. VLVA SYSTEM 1 V46K0121E K5GP991-B FUEL ISOL. VLVA SYSTEM 2 V46K0221E K5GP991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E K5GP991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0218E K5GP991-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E K5GP9922-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E K5GP9932-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K5GP9932-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50SP4	93	TK/LN HTRS A SYSTEM 2 V46K0203E			-	
K50SP452 LUBE 01L LN HTRS - A AUTO SYSTEM 1 V46K0116E K50SP505 LUBE 01L LN HTRS - A AUTO SYSTEM 2 V46K0216E K50SP556 LUBE 01L LN HTRS - A AUTO SYSTEM 3 V46K0316E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 2 V46K0217E K50SP910-B FUEL ISOL. VLVA SYSTEM 1 V46K0121E K50P9920-B FUEL ISOL. VLVA SYSTEM 1 V46K0121E K50P9911-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E K50P9912-B GG/FU. PUMP HTRS - A AUTO SYSTEM 2 V46K0219E K50P9912-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0319E K50P9922-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E K50P9922-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50P9922-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	KSOSPS	45	TK/LN HTRS A SYSTEM 3 V46K0303E		•	_	
K50SP505 LUBE 01L LN HTRS - A AUTO SYSTEM 2 V46K0216E K50SP556 LUBE 01L LN HTRS - A AUTO SYSTEM 3 V46K0317E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 2 V46K0217E K50P9910-B FUEL ISOL. VLVA SYSTEM 1 V46K0121E K50P9920-B FUEL ISOL. VLVA SYSTEM 2 V46K0221E K50P9911-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E K50P9912-B GG/FU. PUMP HTRS - A AUTO SYSTEM 2 V46K0218E K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50SP4	52	_		0		
K50SP556 LUBE 01L LN HTRS - A AUTO SYSTEM 3 V46K0316E K50SP457 LUBE 01L LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 2 V46K0217E K50P9310-B FUEL ISOL. VLVA SYSTEM 1 V46K0121E K50P9310-B FUEL ISOL. VLVA SYSTEM 2 V46K0221E K50P931-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E K50P9931-B GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0218E K50P9912-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0119E K50P9922-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E K50P9932-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E K50P9932-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	KSOSPSI	905	8		•		
K50SP457 LUBE 01L LN HTRS - B AUTO SYSTEM 1 V46K0117E K50SP510 LUBE 01L LN HTRS - B AUTO SYSTEM 2 V46K0217E K50SP561 LUBE 01L LN HTRS - B AUTO SYSTEM 3 V46K0317E K50P9910-B FUEL 1SOL. VLVA SYSTEM 1 V46K0121E K50P9920-B FUEL 1SOL. VLVA SYSTEM 2 V46K0221E K50P9911-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E K50P991-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0119E K50P9912-B GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0119E K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E K50P9912-B GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E K50P9932-B GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E		95	OIL LN HTRS - A AUTO SYSTEM 3	سند و د د	•	_	
LUBE OIL LN HTRS - B AUTO SYSTEM 2 V46K0217E LUBE OIL LN HTRS - B AUTO SYSTEM 3 V46K0317E FUEL ISOL. VLVA SYSTEM 1 V46K0121E FUEL ISOL. VLVA SYSTEM 2 V46K0221E FUEL ISOL. VLVA SYSTEM 2 V46K0221E GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E		22	OIL LN HTRS - B AUTO SYSTEM 1		0		
LUBE OIL LN HTRS - B AUTO SYSTEM 3 V46K0317E FUEL ISOL. VLVA SYSTEM 1 V46K0121E FUEL ISOL. VLVA SYSTEM 2 V46K0221E FUEL ISOL. VLVA SYSTEM 2 V46K0321E GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E GG/FU. PUMP HTRS - A AUTO SYSTEM 2 V46K0218E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	1 K50SP5	01:	OIL LN HTRS - B AUTO SYSTEM 2		0	_	,
FUEL ISOL. VLVA SYSTEM 1 V46K0121E FUEL ISOL. VLVA SYSTEM 2 V46K0221E FUEL ISOL. VLVA SYSTEM 3 V46K0321E GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0318E GG/FU. PUMP HTRS - B AUTO SYSTEM 1 V46K0119E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	KSOSPS	19	OIL LN HTRS - B AUTO SYSTEM 3		0	_	
FUEL ISOL. VLVA SYSTEM 2 V46K0221E FUEL ISOL. VLVA SYSTEM 3 V46K0321E GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0318E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0119E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50P99	10-B	FUEL ISOL. VLVA SYSTEM 1 V46K0121E		0		
FUEL ISOL. VLVA SYSTEM 3 V46K0321E GG/FU. PUMP HTRS - A AUTO SYSTEM 2 V46K0218E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0318E GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0119E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50P99%	20-B	FUEL ISOL. VLVA SYSTEM 2 V46K0221E	•	0	_	
GG/FU. PUMP HTRS - A AUTO SYSTEM 1 V46K0118E GG/FU. PUMP HTRS - A AUTO SYSTEM 2 V46K0218E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0318E GG/FU. PUMP HTRS - B AUTO SYSTEM 1 V46K0119E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50p99;	30-B	FUEL ISOL. VLVA SYSTEM 3 V46K0321E		0		
GG/FU. PUMP HTRS - A AUTO SYSTEM 2 V46K0218E GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0318E GG/FU. PUMP HTRS - B AUTO SYSTEM 1 V46K0119E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0319E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50P99	9-11			0	<u></u>	
GG/FU. PUMP HTRS - A AUTO SYSTEM 3 V46K0318E GG/FU. PUMP HTRS - B AUTO SYSTEM 1 V46K0119E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50P99	121-B	PUMP HTRS - A AUTO SYSTEM 2		0		
GG/FU. PUMP HTRS - B AUTO SYSTEM 1 V46K0119E GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50P99.	131-B	PUMP HTRS - A AUTO SYSTEM 3		0	_	
GG/FU. PUMP HTRS - B AUTO SYSTEM 2 V46K0219E GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50P99	112-8	PUMP HTRS - B AUTO SYSTEM 1		0		
GG/FU. PUMP HTRS - B AUTO SYSTEM 3 V46K0319E	K50P99	122-B	PUMP HTRS - B AUTO SYSTEM	→	0		}
	K50P99.	32-B	PUMP HTRS - B AUTO SYSTEM		0	_	STATE
							-

STIMULI INPUT TO __/HYD MODEL - TABLE 1

<u> </u>	IDENTIFICATION	NOMENCLATURE	SOURCE	ST/	STATES/RAHGE	GE GE
_	NONDEN		`	70	HI	113.11
		-APU CONTINUED-				
	K54P107-C	APU CNTRL POWER A - SYSTEM 1 V46K0124E	FLT SYSTEM	0	-	STAT
	K55P107-C	APU CNTRL POWER A - SYSTEM 2 V46K0224E		0	-	
	K56P107-C	APU CNTRL POWER A - SYSTEM 3 V46K0324E	*****	0		
	K54P106-C	APU CNTRL POWER B - SYSTEM 1 V46K0144E	<u> </u>	0	 4	
	K55P106-C	APU CNTRL POWER B - SYSTEM 2 V46K0244E		0	~	
	K56P106-C	APU CNTRL POWER B - SYSTEM 3 V46K0344E	•	0	-	
	K54P106-R	APU CNTRL - START/RUN CMD A SYSTEM 1 V46K0126E		0	-	
	K55P106-R	APU CNTRL - START/RUN CMD A SYSTEM 2 V46K0226E		0	-	•
A-4	K56P106-R	APU CNTRL - START/RUN CMD A SYSTEM 3 V46K0326E		,0	-	
	K54P107-R	APU CNTRL - START/RUN CMD B SYSTEM 1 V46K0146E		0	-	-
	K55P107-R	APU CNTRL - START/RUN CMD B SYSTEM 2 V46K0246E		0		
	K56P107-R	APU CNTRL - START/RUN CMD B SYSTEM 3 V46K0346E		0	-	
	K54P106-S	APU CNTRL - START ORIDE/RUN CMD A SYSTEM 1 V46K0127E,	•	0	~	
	K55P106-S	APU CNTRL - START ORIDE/RUN CMD A SYSTEM 2 V46K0227E	•	0	_	
	K56P106-S	APU CNTRL - START ORIDE/RUN CMD A SYSTEM 3 V46K0327E		0		
	K54P107-S	APU CNTRL - START ORIDE/RUN CMD B SYSTEM 1 V46K0147E	•	0	-	
	K55P107-S	APU CNTRL - START ORIDE/RUN CMD B SYSTEM 2 V46K0247E		0	-	
	K56P107-S	APU CNTRL - START ORIDE/RUN CMD B SYSTEM 3 V46K0327E	-	0	-	
,	K54P106-J	AUTO SHUTDOWN INHIBIT A SYSTEM 1 AND 3 V46K0097E		0	—	
	K55P106-J	AUTO SHUTDOWN INHIBIT B SYSTEM 1 AND 2 V46K0098E	-	0	~	٠.
	K56P106-J	AUTO SHUTDOWN INHIBIT C SYSTEM 2 AND 3 V46K0099E		0	-	STA.
1						-

FRAG 1 = least significant (right most) bit.

STIMULI INPUT TO("U/HYD NODEL - TABLE 1

IDENTIFICATION	NOMENCLATURE	SOURCE	ST	STATES/RAMSE	33
NUMBER			10	НI	10:175
K54P106-E	SPEED SELECT HI - CMD A SYSTEM 1 V46K0129E	FLT. SYS.	0	1	STATE
K55P106-E	SPEED SELECT HI - CMD A SYSTEM 2 V46K0229E		0	-	
K56P106-E	SPEED SELECT HI - CMD A SYSTEM 3 V46K0329E		0		
K54P107-E	SPEED SELECT HI - CMD B SYSTEM 1 V46K0149E		0	-	
K55P107-E	SPECD SELECT HI - CMD B SYSTEM 2 V46K0249E	•	0	-	
K56P107-E	SPEED SELECT HI - CMD B SYSTEM 3 V46K0349E		0	-	
K50P9909-A	APU 1 FUEL ISO VLV B OPN V46KC 14E	•	0		
K50P9919-A	APU 2 FUEL ISO VLV B OPN V46K0214E		0	-	
K50P9929-A	APU 3 FUEL ISO VLV B OPN V46K0314E		0	-	
051	TURBINE OVERSPEED CMD - SYS 1	DCM	0	7	
082	TURBINE OVERSPEED CMD - SYS 2		0	,-4	
053	TURBINE OVERSPEED CMD - SYS 3		0	-	· · ·
USI	TURBINE UNDERSPEED CMD - SYS 1		0	7	<u> </u>
ns2	TURBINE UNDERSPEED CMD - SYS 2		0	-	
usa	TURBINE UNDERSPEED CMD - SYS 3	•	0	~·	STATE
			_		

A-43

STIMULI INPUT TO 'U/HYD MODEL-TABLE 1

K50PP1-E1 CIRC.1 PUMP SYSTEM 1 V58K0138E		IDENTIFICATION NUMBER	NOMENCLATURE	SOURCE	STA	STATES/RA::GE	35
K50PP1-E1 CIRC.: PUMP SYSTEM 1 V98K0138E -HVD- FLT SYSTEM 0 1 K50PP3-E1 CIRC.: PUMP SYSTEM 2 V58K0238E 0 1 K50PP3-E1 CIRC.: PUMP SYSTEM 3 V58K0170E 0 1 K50P9004-1 MM. PUMP DEPR. ON SYSTEM 3 V58K0270E 0 1 K50P9006-1 MM. PUMP DEPR. ON SYSTEM 3 V58K0270E 0 0 K50P9006-1 MM. PUMP DEPR. ON SYSTEM 3 V58K0270E 0 0 K50P9006-1 MM. PUMP DEPR. ON SYSTEM 3 V58K039IE 0 0 K50P9006-2 LG ISLN VLV CLOSED SYSTEM 1 V58K019E 0 0 K50P9008-C LG ISLN VLV OPEN SYSTEM 2 V58K039E 0 0 K50P9008-A LG ISLN VLV OPEN SYSTEM 1 V58K134E 0 0 K50P308-A ME/TVC SPLY VLV OPEN SYSTEM 1 V58K133E 0 0 K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 1 V58K133E 0 0 K50P30-C ME/TVC SPLY VLV OPEN SYSTEM 2 V58K133E 0 0 K50P30-C ME/TVC SPLY VLV OPEN SYSTEM 3 V58K133E 0 0 K50P30-C ME/TVC SPLY VLV OLOSED S	_				1	H	UNITS
K50P92-E1 CIRC: PUMP SYSTEM 2 VS8K0238E 0 1 K50P93-E1 CIRC: PUMP SYSTEM 3 VS8K0170E 0 1 K50P9004-1 Min. PUMP DEPR. ON SYSTEM 1 VS8K0170E 0 1 K50P9006-1 Min. PUMP DEPR. ON SYSTEM 2 VS8K0270E 0 1 K50P9006-1 Min. PUMP DEPR. ON SYSTEM 2 VS8K0370E 0 1 K50P9006-1 LG ISLN VLV CLOSED SYSTEM 2 VS8K0391E 0 1 K50P9008-C LG ISLN VLV CLOSED SYSTEM 1 VS8K0191E 0 1 K50P9008-C LG ISLN VLV CLOSED SYSTEM 2 VS8K0295E 0 0 K50P9008-C LG ISLN VLV OPEN SYSTEM 1 VS8K0395E 0 0 K50P9008-A LG ISLN VLV OPEN SYSTEM 2 VS8K1334E 0 0 K50P30-A LG ISLN VLV OPEN SYSTEM 1 VS8K1334E 0 0 K50P30-A LG ISLN VLV OPEN SYSTEM 1 VS8K1334E 0 0 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 1 VS8K1334E 0 0 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 2 VS8K1335E 0 0 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 3 VS8K0343E 0 <td></td> <td>K50PP1-E1</td> <td></td> <td>EIT SYSTEM</td> <td>0</td> <td>-</td> <td>STATE</td>		K50PP1-E1		EIT SYSTEM	0	-	STATE
K50P93-E1 CIRC. Pump SYSTEM 3 V58K0338E 0 1 -K50P9004-1 MN. Pump DEPR. ON SYSTEM 1 V58K0170E 0 1 -K50P9006-1 MN. Pump DEPR. ON SYSTEM 2 V88K0270E 0 1 -K50P9006-1 MN. Pump DEPR. ON SYSTEM 3 V88K0391E 0 1 -K50P9006-1 LG ISLN VLV CLOSED SYSTEM 3 V58K0391E 0 1 -K50P9007-C LG ISLN VLV CLOSED SYSTEM 3 V58K0391E 0 1 -K50P9009-C LG ISLN VLV OPEN SYSTEM 3 V58K039E 0 0 -K50P9009-A LG ISLN VLV OPEN SYSTEM 3 V58K134E 0 1 -K50P309-A LG ISLN VLV OPEN SYSTEM 3 V58K134E 0 0 -K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 3 V58K134E 0 0 -K50P3-A ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1334E 0 0 -K50P3-A ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1334E 0 0 -K50P3-C ME/TVC SPLY VLV GLOSED SYSTEM 3 V58K1334E 0 0 -K50P90-C ME/TVC SPLY VLV GLOSED SYSTEM 3 V58K134E 0 0 -K50P90-C ME/TVC SPLY VLV GLOSED SYSTEM 3 V58K0349E		K50PP2-E1	CIRC: PUMP SYSTEM 2 V58K0238E		0	_	
MI. PUMP DEPR. ON SYSTEM 1 V58K0170E MI. PUMP DEPR. ON SYSTEM 2 V58K0270E MI. PUMP DEPR. ON SYSTEM 3 V58K0370E LG ISLN VLV CLOSED SYSTEM 1 V58K0191E LG ISLN VLV OPEN SYSTEM 1 V58K0195E LG ISLN VLV OPEN SYSTEM 3 V58K0295E LG ISLN VLV OPEN SYSTEM 1 V58K0195E LG ISLN VLV OPEN SYSTEM 1 V58K134E ME/TVC SPLY VLV OPEN SYSTEM 2 V58K1334E ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1335E ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K0349E ME/TVC SPLY VLV CLOSED SYSTEM 2 V58K0349E ME/TVC SPLY NLV CLOSED SYSTEM 3 V58K0349E ME/TVC SPLY NLY CLOSED SYSTEM 3 V58K0349E		K50PP3-E1	CIRC. PUMP SYSTEM 3 V58K0338E		0	_	
K50P9005-1 Mri. PUMP DEPR. ON SYSTEM 2 V58K0270E 0 1 K50P9006-1 Mri. PUMP DEPR. ON SYSTEM 1 V58K0370E 0 1 K50P9007-C LG ISLN VLV CLOSED SYSTEM 1 V58K0391E 0 1 K50P9008-C LG ISLN VLV CLOSED SYSTEM 2 V58K0291E 0 1 K50P9008-C LG ISLN VLV OPEN SYSTEM 3 V58K0391E 0 1 K50P9009-A LG ISLN VLV OPEN SYSTEM 1 V58K134E 0 1 K50P30-A LG ISLN VLV OPEN SYSTEM 1 V58K134E 0 1 K50P30-A Mc/TVC SPLY VLV OPEN SYSTEM 2 V58K1334E 0 1 K50P30-C Mc/TVC SPLY VLV OPEN SYSTEM 3 V58K1335E 0 1 K50P30-C Mc/TVC SPLY VLV CLOSED SYSTEM 1 V58K1335E 0 1 K50P30-C Mc/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E 0 1 K50P9022-A Mc/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E 0 1 K50P9022-A Hc/O SBLY CNTLR PMR/HTR A SYSTEM 2 V58K0249E 0 0 K50P9028-A Hc/O BLR CNTLR PMR/HTR A SYSTEM 2 V58K0349E 0 0		•K50P9004-1	MN. PUMP DEPR. ON SYSTEM 1 V58K0170E	•	0	· <u>~</u>	
K50P9006-1 MN. PUMP DEPR. ON SYSTEM 3 V58K0370E 0 1 K50P9007-C LG ISLN VLV CLOSED SYSTEM 1 V58K0391E 0 1 K50P9008-C LG ISLN VLV CLOSED SYSTEM 2 V58K0291E 0 1 K50P9009-C LG ISLN VLV OPEN SYSTEM 1 V58K0195E 0 1 K50P9008-A LG ISLN VLV OPEN SYSTEM 2 V58K029E 0 1 K50P3008-A LG ISLN VLV OPEN SYSTEM 2 V58K1334E 0 1 K50P3009-A LG ISLN VLV OPEN SYSTEM 2 V58K1334E 0 1 K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 2 V58K1334E 0 1 K50P30-A ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E 0 1 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1135E 0 1 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1335E 0 1 K50P90-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K0149E 0 1 K50P9022-A H ₂ O BLR CMTLR PMR/HTR A SYSTEM 2 V58K0249E V 0 1 K50P9028-A H ₂ O BLR CMTLR PMR/HTR A SYSTEM 3 V58K0349E V 0 1		K50P9005-1	MN. PUMP DEPR. ON SYSTEM 2 V58K0270E	•	0	_	·
K50P9007-C LG ISLN VLV CLOSED SYSTEM 1 VS8K0191E 0 1 K50P9008-C LG ISLN VLV CLOSED SYSTEM 2 VS8K0291E 0 1 K50P9009-C LG ISLN VLV CLOSED SYSTEM 1 V58K0195E 0 1 L5DP9009-A LG ISLN VLV OPEN SYSTEM 2 V58K0295E 0 1 K50P9009-A LG ISLN VLV OPEN SYSTEM 2 V58K0395E 0 1 K50P3009-A LG ISLN VLV OPEN SYSTEM 3 V58K0395E 0 1 K50P3009-A LG ISLN VLV OPEN SYSTEM 1 V58K134E 0 1 K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 2 V58K1234E 0 1 K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 1 V58K1134E 0 1 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1134E 0 1 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1133E 0 1 K50P90-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K0149E 0 1 K50P90-C ME/TVC SPLY VLV CLOSED SYSTEM 2 V58K0249E 0 1 K50P9028-A H ₂ O BLR CNTLR PMR/HTR A SYSTEM 2 V58K0349E 0 1 K50P9034-A H ₂ O BLR CNTLR PMR/HTR A SYSTEM 3 V58K0349E 0 1		K50P9006-1	MN. PUMP DEPR. ON SYSTEM 3 V58K0370E		0	_	
K50P9008-C LG ISLN VLV CLOSED SYSTEM 2 V58K0291E .0 1 K50P9009-C LG ISLN VLV CLOSED SYSTEM 3 V58K0391E .0 1 K50P9009-A LG ISLN VLV OPEN SYSTEM 1 V58K0195E .0 1 K50P9009-A LG ISLN VLV OPEN SYSTEM 2 V58K0295E .0 1 K50P9009-A LG ISLN VLV OPEN SYSTEM 3 V58K0395E .0 1 K50P30-A LG ISLN VLV OPEN SYSTEM 3 V58K134E .0 1 K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1334E .0 1 K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1335E .0 1 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1135E .0 1 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K0139E .0 1 K50P9022-A H20 BLR CNTLR PMR/HTR A SYSTEM 2 V58K0249E .0 1 K50P9028-A H20 BLR CNTLR PMR/HTR A SYSTEM 3 V58K0349E .0 1		K50P9007-C	LG ISLN VLV CLOSED SYSTEM 1 V58K0191E		0	_	
K50P9009-C LG ISLN VLV CLOSED SYSTEM 3 V58K0391E 0 1 K50P9007-A LG ISLN VLV OPEN SYSTEM 1 V58K0195E 0 1 L50P9008-A LG ISLN VLV OPEN SYSTEM 2 V58K0295E 0 1 K50P9009-A LG ISLN VLV OPEN SYSTEM 3 V58K0134E 0 1 K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 1 V58K1334E 0 1 K50P40-A ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1334E 0 1 K50P39-C ME/TVC SPLY VLV OLOSED SYSTEM 1 V58K1335E 0 1 K50P40-A ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E 0 1 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1335E 0 1 K50P9022-A H20 BLR CNTLR PMR/HTR A SYSTEM 2 V58K0249E V 0 1 K50P9028-A H20 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E V 0 1		K50P9008-C	LG ISLN VLV CLOSED SYSTEM 2 V58K0291E		o,	-	
K50P9007-A LG ISLN VLV OPEN SYSTEM 1 V58K0195E 0 1 L50P9008-A LG ISLN VLV OPEN SYSTEM 2 V58K0295E 0 1 K50P9009-A LG ISLN VLV OPEN SYSTEM 1 V58K1134E 0 1 K50P38-A ME/TVC SPLY VLV OPEN SYSTEM 1 V58K1134E 0 1 K50P39-A ME/TVC SPLY VLV OPEN SYSTEM 2 V58K1234E 0 1 K50P39-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1335E 0 1 K50P30-C ME/TVC SPLY VLV CLOSED SYSTEM 2 V58K1235E 0 1 K50P9022-A H ₂ O BLR CNTLR PMR/HTR A SYSTEM 1 V58K0149E 0 1 K50P9028-A H ₂ O BLR CNTLR PMR/HTR A SYSTEM 3 V58K0349E V 0 1 K50P9034-A H ₂ O BLR CNTLR PMR/HTR A SYSTEM 3 V58K0349E V 0 1	_	K50P9009-C	LG ISLN VLV CLOSED SYSTEM 3 V58K0391E		,.O	_	
LG ISLN VLV OPEN SYSTEM 2 V58K0295E 0 1 K50P9009-A LG ISLN VLV OPEN SYSTEM 3 V58K0395E 0 1 K50P30-A ME/TVC SPLY VLV OPEN SYSTEM 1 V58K1134E 0 1 K50P39-A ME/TVC SPLY VLV OPEN SYSTEM 2 V58K1234E 0 1 K50P40-A ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1334E 0 1 K50P39-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K135E 0 1 K50P39-C ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1335E 0 1 K50P9022-A H20 BLR CNTLR PWR/HTR A SYSTEM 1 V58K0149E 0 1 K50P9028-A H20 BLR CNTLR PWR/HTR A SYSTEM 2 V58K0349E V 0 1 K50P9034-A H20 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E V 0 1	A-4	K50P9007-A	ISLN VLV OPEN SYSTEM 1 V58		0	-	
-A LG ISLN VLV OPEN SYSTEM 3 V58K0395E ME/TVC SPLY VLV OPEN SYSTEM 1 V58K1134E ME/TVC SPLY VLV OPEN SYSTEM 2 V58K1234E ME/TVC SPLY VLV OPEN SYSTEM 3 V58K1334E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K0149E -A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 2 V58K0249E -A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E -A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E -A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E -A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E	14	1,50P9008-A	LG ISLN VLV OPEN SYSTEM 2 V58K0295E		0		
ME/TVC SPLY VLV OPEN SYSTEM 1 V58K1134E 0 1 ME/TVC SPLY VLV OPEN SYSTEM 2 V58K1234E 0 1 ME/TVC SPLY VLV, OPEN SYSTEM 3 V58K1334E 0 1 ME/TVC SPLY VLV, CLOSED SYSTEM 1 V58K1135E 0 1 ME/TVC SPLY VLV CLOSED SYSTEM 2 V58K1335E 0 1 ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K0149E 0 1 A H20 BLR CNTLR PWR/HTR A SYSTEM 2 V58K0249E V 0 1 A H20 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E V 0 1 A H20 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E V 0 1		K50P9009-A	LG ISLN VLV OPEN SYSTEM 3 V58K0395E		0	,	
ME/TVC SPLY VLV OPEN SYSTEM 2 V58K1334E ME/TVC SPLY VLV, OPEN SYSTEM 3 V58K1334E ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1135E ME/TVC SPLY VLV CLOSED SYSTEM 2 V58K1235E ME/TVC SPLY VLV CLOSED SYSTEM 2 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K0149E A P ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 2 V58K0249E A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E A N ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E O 1		K50P38-A			0	_	
ME/TVC SPLY VLV, OPEN SYSTEM 3 V58K1334E ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K135E ME/TVC SPLY VLV CLOSED SYSTEM 2 V58K1235E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K0149E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K0249E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K0349E ME/TVC SPLY VLV CLOSED SYST		K50P39-A			0	~	
ME/TVC SPLY VLV CLOSED SYSTEM 1 V58K1135E ME/TVC SPLY VLV CLOSED SYSTEM 2 V58K1235E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K0149E H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 2 V58K0249E V M ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E O 1		K50P40-A		•	0	_	~
HZ/TVC SPLY VLV CLOSEP SYSTEM 2 V58K1235E ME/TVC SPLY VLV CLOSED SYSTEM 3 V58K1335E HZO BLR CNTLR PWR/HTR A SYSTEM 1 V58K0149E HZO BLR CNTLR PWR/HTR A SYSTEM 2 V58K0249E HZO BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E O 1		K50P38-C	•		0	_	
-A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E -A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 2 V58K0249E -A H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E 0 1		K50P39-C			0	_	
H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 1 V58K0149E V V V V V V D 1 H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E O 1		K50P40-C	_		0	_	
H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 2 V58K0249E H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E 0 1		K50P9022-A	H20 BLR CNTLR PWR/HTR A SYSTEM 1 V58K0149E	•	0	_	,
H ₂ 0 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E		K50P9028-A	H20 BLR CNTLR PWR/HTR A SYSTEM 2 V58K0249E	->	0	_	->
		K50P9034-A	H20 BLR CNTLR PWR/HTR A SYSTEM 3 V58K0349E	,	0		STATE

STIMULI INPUT TO JAND HODEL- TABLE

IDENTIFICATION	NOMENCLATURE	SOURCE	ST	STATES/24%SE	35.
			07	HI	U:17-S
	-HYD- Continued				
K50P9025-A	HO BLR CNTLR PWR/HTR B SYSTEM 1 V58K0150E	FLT SYSTEM	0	_	STATE
K50P9031-A	HO BLR CNTLR PWR/HTR B SYSTEM 2 V58K0250E	-1	0	_	
K50P9037-A	HO BLR CNTLR PWR/HTR B SYSTEM 3 V58K0350E	•	0	·	
K50P9024-4	H ₂ O BLR CNTLR A ENABLE SYSTEM 1 V58K0151E		0	 -	
K50P9030-4	HO BLR CNTLR A ENABLE SYSTEM 2 V58K0251E		0	_	
K5CP9036-4	HO BLR CNTIR A ENABLE SYSTEM 3 V58K0351E		0	,	
K50P9027-4	H-0 BLR CNTLR B ENABLE SYSTEM 1 V58K0152E	~	0	-	
K50P9033-4	H ₂ 0 BLR CNTLR B ENABLE SYSTEM 2 V58K0252E		<u>.</u>	·	
K50P9039-4	H-0 BLR CNTLR B ENABLE SYSTEM 3 V58K0352E	>	0		>
K50P9001-C	AC BUS 18 PUR HYD RESY QTY #1	FLT SYSTEM	0	~	STATE
K50P9002-C	AC BUS 2B PWR HYD RESV QTY #2	FLT SYSTEM	0	-	STATE
K50P9003-C	AC BUS 3B PWR HYD RESV QTY #3	FLT SYSTEM	0	-	STATE
	OR! OF				·
	IGINA 1º00				
	L PAR QU				
	GE IS				
£					

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

MEASUREMENT CUTPUT FROM APU/HYD MODEL - TABLE 2

I. D. V46P0100A V46P0200A V46P0300A FUEL V46T0102A TK. SI V46T0302A TK. SI V46T0302A TK. SI V46T0304A FUEL V46T0304A FUEL	MEASUREMENT NAME	1.0.		VALUE 1	7	VALUE Z	Z=X	VALUE 3	χ. *	
	PEASUREMENT NAME			(ROMINAL)		(HI/LOM)		\Vrr,		1111115
		FS	CIS	ES	\$13	FS	CTS	FS	CTS	
	- APU -									
	FUEL TK. PRESS SYSTEM 1	340	693	340	969	AM		340	969	PSIA
	FUEL TK. PRESS SYSTEM 2	335	685	335	685	NA NA	مرسور	335	1889	PSIA
	FUEL TK. PRESS SYSTEM 3	346	708	346	7.08	NA		346	708	PSIA
	TK. SURFACE TEMP SYSTEM 1	56	360	99	360	NA		47	303	L
	TK. SURFACE TEMP SYSTEM 2	64	411	64	411	NA		47	303	.
	TK. SURFACE TEMP SYSTEM 3	48	309	48	309	AN		47	303	u.
	FUEL LN TEMP NO. 2 SYSTEM 1	80	331	80	331	AN A		47	196	L .
	FUEL LN TEMP NO. 2 SYSTEM 2	06	372	06	372	¥		47	196	ıL.
13113	FUEL LN TMEP NO. 2 SYSTEM 3	105	434	105	434	Ą		47	196	4
- 0.	TK OUT PRESS SYSTEM 1	330	675	330	675	NA		330	675	PSIA
V46P0205A FUEL	TK OUT PRESS SYSTEM 2	335	685	335	685	¥		335	685	PSIA
	TK OUT PRESS SYSTEM 3	338	692	338	692	A.		338	692	PSIA
V46T0108A FUEL I	LN TEMP NO. 1 SYSTEM 1	85	352	82	352	¥		48	201	L
V46T0208A FUEL L	LN TEMP NO. 1 SYSTEM 2	92	331	95	381	¥		20	503	ŭ.
V46T0308A FUEL 1	LN TEMP NO. 1 SYSTEM 3	86	405	86	405	NA N		52	217	<u>u.</u> 0
V46T0112A FUEL F	PUMP DISCHARGE TEMP SYSTEM 1	157.6	409	157.6	409	¥		8	158	ų.
	PUMP DISCHARGE TEMP SYSTEM 2	153	397	153	397	Ą.		09	158	4
V46T0312A FUEL F	PUMP DISCHARGE TEMP SYSTEM 3	142	368	142	368	\$		09	158	.
V46X0115E FUEL	ISOL. VALVE POS. SYSTEM 1	0	0							STATE
V46X0215E FUEL 1	FUEL ISOL. VALVE POS. SYSTEM 2	0	0							STATE
V46X0315E FUEL 1	FUEL ISOL. VALVE POS. SYSTEM 3	0	0							STATE
			7		7					

MEASUREMENT OUTPUT FROM APU/HYD MODEL - TABLE 2

MEASUREMENT		1.0.		VALUE 1	<u>.</u>	VALUE 2	K=2	VALUE 3	κ #3	
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS FS	CTS	FS	CTS	UNITS
	APU Continued									
V46T0122A	G.G. BED TEMP. SYSTEM 1	325	999	325	999	Ą.		160	327	٥٤
V46T0222A	G.G. BED TEMP. SYSTEM 2	210	430	210	430			160	327	م ا
V46T0322A	G.G. BED TEMP. SYSTEM 3	300	614	300	614	~		160	327	٠,
V46X0125E	APU "READY" SYSTEM 1	0	0					•		STATE
V46X0225E	APU "READY" SYSTEM 2	0	0							STATE
V46X0325E	APU "READY" SYSTEM 3	0	0				•			STATE
V46T0128A	APU 1 FUEL LINE TEMP NO. 3	156	405	156	405	Ą		70	184	DEGF
V46T0228A	APU 2 FUEL LINE TEMP NO. 3	160	415	160	415			70	184	DEGF
V46T0328A	APU 3 FUEL LINE TEMP NO. 3	164	426	164	426			70	184	DEGF
V46T0130A	APU I FUEL TANK SURF TEMP AT HTR	87	663	87	663			20	503	DEGF
V46T0230A	APU 2 FUEL TANK SURF TEMP AT HTR	95	969	95	969		_	20	509	DEGF
V4CT0330A	APU 3 FUEL TANK SURF TEMP AT HTR	102	724	102	724	>		90	509	DEGF
V46X0134E	APU 1 FUEL ISOL VALVE B POSITION	0	0							STATE
V46X0234E	APU 2 FUEL ISOL VALVE B POSITION	0	0						•	STATE
V46X0334E	APU 3 FUEL ISOL VALVE B POSITION	0	0							STATE
V46R0135A	TURBINE SPEED SYSTEM 1	0	0	83.5	512	113	692	0	0	PCT
V46R0235A	TURBINE SPEED SYSTEM 2	0	0	100.2	614	113	692	0	0	PCT
V46R0335A	TURBINE SPEED SYSTEM 3	0	0	96.86	593	113	692	0	0	PCT
V46T0140A	TURBINE E.G. TEMP. NO. 2 SYSTEM 1	631	421	631	421	N N		41	23	٩.
V46T0240A	TURBINE E.G. TEMP. NO. 2 SYSTEM 2	749	501	749	501	¥		41	23	٩.
V46T0340A	TURBINE E.G. TEMP. NO. 2 SYSTEM 3	1199	908	1199	908	AN A		41	23	4
						L	1	T	7	

MEASUREMENT OUTPUT FROM APU/HYD MODEL - TABLE 2

MEASUREMENT		1.0.		VALUE 1 (MOMINAL	K•1	VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	K=3	INITA
1. 0.	MEASUREMENT NAME	FS	CIS	FS	213	FS	CTS	FS	CTS	51710
V46T0142A	TURBINE E.G. TEMP. NO. 1 SYSTEM 1	601	401	601	401	Ą.		41	23	.
V46T0242A	TURBINE E.G. TEMP. NO. 1 SYSTEM 2	006	604	006	604			41	23	•
V46T0342A	TURBINE E.G. TEMF. NO. 1 SYSTEM 3	1051	902	1051	90/			41	23	•
V46T0150A	G.B. LUBE OIL RTN. TEMP. SYSTEM 1	145	303	145	303			20	108	ř.
V46T0250A	G.B. LUBE OIL RTN. TEMP. SYSTEM 2	140	293	140	293			20	108	٠ ج
V46T0350A	. SYSTEM 3	225	466	225	466			. 50	108	٩.
V45P0151A	6.8. GN, PRESS SYSTEM 1	25	851	25	851			25	851	PSIA
V46P0251A	12 <u>(</u>	20	685	20	685			50	685	PSIA
V46P0351A	G.B. GN, PRESS SYSTEM 3	15	509	15	509			15	509	PSIA
V46P0152A	LIT	20	170	20	170			20	170	PSIA
V46P0252A	Y	40	137	40	137			40	137	PSIA
V46PC352A	APIJ 3 GN2 BOTTLE PRESS	45	153	45	153			45	153	PSIA
V46P0153A	G.B. LUBE OIL OUT. PRESS. SYSTEM 1	9/	389	92	389			30	153	PSIA
V46P0253A	G.B. LUBE OIL OUT. PRESS. SYSTEM 2	78	399	78	399			30	153	PSIA
V46P0353A	G.B. LUBE OIL OUT. PRESS. SYSTEM 3	8	415	81	415			30	153	PSIA
V46T0154A	G.B. LUBE OIL OUT. TEMP. SYSTEM 1	. 081	466	180	466			.09	158	و
V46T0254A	G.B. LUBE OIL OUT. TEMP. SYSTEM 2	172	446	172	446			09	158	٥.
V46T0354A	G.B. LUBE OIL OUT. TEMP. SYSTEM 3	168	436	168	436			09	158	ı.
V46T0161A	G.B. BRING. TEMP. NO. 1 SYSTEM 1	2C0	415	200	415			20	108	.
V46T0261A	G.B. BRING. TEMP. NO. 1 SYSTEM 2	190	395	190	395			20	108	٩.
V46T0361A	G.B. BRING. TEMP. NO. 1 SYSTEM 3	56 0	538	260	538			20	108	٩.
V46X0165E	TURBINE OVERSPEED (1 = overspeed) SYSTEM 1	0	0			>				STATE

MEASUREMENT OUTPUT FROM APU/HYD MODEL - TABLE 2

		•					ı	- 1		1
MEASUREMENT		1.6.		VALUE 1 (ROMINAL	<u>.</u>	VALUE 2 (HI/LOW)	¥=2	VALUE 3 (OFF)	× 3	191776
I. D.	MEASUREMENT NAME	FS	CIS	ES	CTS	FS	CTS	FS	CIS	61:10
V46X0265E	TURBINE OVERSPEED (1 = overspeed) SYSTEM 2	0	0							STATE
V46X0365E	TURBINE OVERSPEED (1 = overspeed) SYSTEM 3	0	0							STATE
V46X0166E	TURBINE UNDERSPEED (1 = underspeed) SYSTEM 1	0	O							STATE
V46X0266E	TURBINE UNDERSPEED (1 = underspeed) SYSTEM 2	0	0							STATE
V46X0366E	TURBINE UNDERSPEED (1 = underspeed) SYSTEM 3	0	0						•	STATE
746T0183A	FUEL TEST LN. TEMP. 1 SYSTEM 1		274	99	274	Ą.		. 20	209	u.
V46T0283A	FUEL TEST LN. TEMP. 1 SYSTEM 2	63	262	63	262			20	209	u.
:46T0383A	FUEL TEST LN. TEMP. 1 SYSTEM 3	74	307	74	307			20	503	, L
V46T0184A	FUEL TEST LN. TEMP. 2 SYSTEM 1	150	618	150	618			יי	558	· L
V46T0284A	FUEL TEST LN. TEMP. 2 SYSTEM 2	135	557	135	557			22	229	er.
V46T0384A	FUEL TEST LN. TEMP. 2 SYSTEM 3	130	536	130	536			55	229	e F
V46T0186A	FUEL PUMP DRAIN LN. TEMP. 1 SYSTEM 1	09	250	09	250			20	509	٠,
V46T0286A	FUEL PUMP DRAIN LN. TEMP. 1 SYSTEM 2	55	229	55	229			20	508	ų.
746T0386A	FUEL PUMP DRAIN LN. TEMP. 1 SYSTEM 3	52	217	.25	217			20	503	٠ ٤
V46P0190A	APU 1 FUEL PUMP DRAIN LINE PRESS 1	13	264	13	264			13	264	PSIA
V46P0290A	APU 2 FUEL PUMP DRAIN LINE PRESS 1	23	469	23	469			23	469	PSIA
V46P0390A	APU 3 FUEL PUMP DRAIN LINE PRESS 1	10	205	0-	202	>		10	205	PSIA
					•					
					_					
					ľ					

MEASUREMENT OUTPUT FROM APU/HYD MODEL - TABLE 2

MEASUREMENT		1.0.		VALUE 1 (ROMINAL)	<u>.</u>	VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	¥ ₩	191776
1. D.	MEASUREMENT NAME	FS	CIS	ES	SES	FS	CTS	П	CIS	CHILIS
V46T01928	API 1 FII DIIMD TEMD	185	- L	185	385	VA.	-	ŭ	139	0
		-	000	3	}			3		-
V46T0292A	APU 2 FU PUMP TEMP		366	176	366			67	143	4
V46T0392A	APU 3 FU PUMP TEMP	-	262	125	262			69	147	ŭ.
V46T0193A	APU 1PUMP H20 LINE TEMP - PRI		393	<u></u>	393			43	276	.
V46T0293A	APU 2 PUMP H20 LINE TEMP - PRI		430	- 79	430			45	291	٠,
V46T0393A	APU 3 PUMP H20 LINE TEMP - PRI		299	88	299			47	497	Į.
V46T0194A	APU 1 PUMP H20 LINE TEMP - SEC		629	6	6/9			51	514	اد
V46T0294A	APU 2 PUMP H20 LINE TEMP - SEC	-	692	94	692			53	522	<u>ه</u> ۲
V46T0394A	APU 3 PUMP H20 LINE TEMP - SEC		712	66	712			22	532	. LL
V46T0501A	H20 LINE TEMP 1		340	48	340			41	321	о _F
V46T0502A	H20 LINE TEMP 2		354	53	354	_		43	327	٩Ł
V46T0503A	H20 LINE TEMP 3	28	368	28	368			45	331	٠ ٤
V46T9158A	APU 1 FU VLV TEMP		276	120	276			71	162	٩.
V46T9258A	APU 2 FU VLV TEMP		264 (115	264	-		73	166	ų.
V46T9358A	APU 3 FU VLV TEMP		252	110	252			75	172	٥Ł
* V46T9180A	APU 1 INJECTOR TUBE TEMP		286	419	286			130	89	٥F
* V46T9280A	APU 2 INJECTOR TUBE TEMP	179	327	479	327			135	92	٠,
* V46T9380A	APU 3 INJECTOR BUTE TEMP	540	368	540	368			141	96	٥٤
* V46T9132A	APU 1 CAVITY DRAIN LINE TEMP	56	266	26	997			49	254	پ
* V46T9270A	APU 2 FU PUMP DRAIN LINE TEMP	98	352	98	352			22	233	4
* V46T9513A	APU 3 CAVITY DRAIN LINE TEMP	69	393	69	393	>	·	29	366	4
										
			1		+		7			

* NOTE: This measurement uses the range limit conversion method of calculating ${\sf FS}_{\sf EU}$ from ${\sf GSIU}_{\sf CTS}$ as discussed in Section 2.6.2.

MEASUREMENT OUTPUT FROM APUZHYD MODEL - TABLE 2

MEASIIREMENT				VALUE 1	₹ 1	VALUE 2	K=2	VALUE 3	K=3	
			7	(ROMINAL		(H1/L0₩)		(0FF)		UNITS
1. U.	MEASUKEMENI NAME	FS	CIS	FS	CIS	FS	CTS	FS	CTS	
FP1A	FUEL PUMP 1A THERMO									STATE
FP18	FUEL PUMP 18 THERMO		_							STATE
FP2A	FUEL PUMP 2A THERMO									STATE
FP28	FUEL PUMP 28 THERMO	-1								STATE
FP3A	FUEL PUMP 3A THERMO	 ·	-						•	STATE
FP38	FUEL PUMP 3B THERMO		-					•		STATE
AT1A	APU 1 TANK A THERMO		,1				•			STATE
AFIA	APU F/LINE A THERMO	.	,i							STATE
AOIA	APU O/LINE A THERMO	~ 4	-							STATE
ASIA	APU SER LINE A THERMO	-								STATE
AT18	APU TANK B THERMO	,	-							STATE
AF1B	APU F/LINE 3 THERMO									STATE
A01B	APU O/LINE B THERMO								-	STATE
AS18	APU SER LINE B THERMO	<u></u>								STATE
AT2A	APU 2 TANK A THERMO								•	STATE
AF2A	APU F/LINE A THERMO	-	-							STATE
A02A	APU O/LINE A THERMO	,	-							STATE
ASSA	APU SER LINE A THERMO									STATE
AT2B	APU TANK B THERMO	-	_							STATE
AF28	APU F/LINE B THERMO		-							STATE
A02B	APU O/LINE B THERMO				-	-				STATE
AS2B	APU SER LINE B THERMO	~-	-		-			-		STATE
AT3A	APU 3 TANK A THERMO	ç=4	-							STATE
			1							

MEASUREMENT OUTPUT FROM APU/HYD MODEL - TABLE 2

MEASUREMENT		1.6.		VALUE 1 (ROMINAL)	K=1	VALUE 2 (HI/LOW)	K-2	VALUE 3 (OFF)	K=3	IIIITA
I. D.	MEASUREMENT NAME	FS	CIS	ES	범	FS	CTS	FS	CTS	Citio
AF3A	APU F/LINE A THERMO		-							STATE
A03A	APU O/LINE A THERMO		-							STATE
AS3A	APU SER LINE A THERMO	-	, —1							STATE
AT3B	APU TANK B THERMO	,i	,i							STATE
AF3B	APU F/LINE B THERMO	-	~				-		•	STATE
A03B	APU O/LINE B THERMO		-					•		STATE
AS3B	APU SER LINE B THERMO	-	-							STATE
661A	PUMP/GG HTR	-	-		- 					STATE
6618	PUMP/GG HTR		-							STATE
G62A	PUMP/GG HTR		7			-				STATE
6628	PUMP/G_ HTR						-			STATE
GG3A	PUMP/GG HTR		-							STATE
6638	PUMP/GG HTR	F	, 1							STATE
			•						•	
2000										
			i							
					ŀ					

MEASUREMENT GUTPUT FROM APU/HYD MODEL - TABLE 2

VEACUDENCE		٠		VALUE 1	2	VALUE 2	5.5	VALUE 3	K=X	
MEASUKEMEN		1.5.		(NOM INAL		(HI/LOW)		(0FF)	2	IIIITS
I. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	СТЅ	FS	CTS	61110
V58T0101A	-HYD- RESVR FLUID TEMP. SYSTEM I	120	536	120	536	40	319	35	305	ñ.
V58T0201A	RESVR FLUID TEMP. SYSTEN ?	124.2	548	1242	548	40	319	35	305	٩.
V58T0301A	RESVR FLUID TEMP. SYSTEM 3	117	528	117	528	40	319	35	305	u. °
V58Q0102A	RESVR FLUID VOLUME SYSTEM 1	28	593	53	593	58	593	28	593	PCT
V58Q0202A	RESVR FLUID VOLUME SYSTEM 2	62	634	29	634	95	634	29	634	PCT
V58Q0302A	RESVR FLUID VOLUME SYSTEM 3	89	969	89	969	89	969	89	969	PCT
V58P0104A	HO BLR GN, REG. OUT. PRESS. SYSTEM 1	0	Û,	52	342	52	342	25	342	PSIA
V58P0204A	HO BLR GN REG. OUT. PRESS. SYSTEM 2	0	0	82	383	28	363	28	383	PSIA
V58P0304A	HO BLR GN REG. OUT. PRESS. SYSTEM 3	0	0	27	368	27	368	27	368	PSIA
V58T0105A	HO BLR GN TK. TEMP. SYSTEM 1	31.44	0	70.04	278	70.04	278	70.04	278	ų,
V58T0205A	HO BLR GN TK. TEMP. SYSTEM 2	31.44	0	103.05	589	103.05	589	103.05	539	ı.
V58T0305A	HO BLR GN TK. TEMP. SYSTEM 3	31.44	0	106.94	919	106.94	616	106.94	919	٠ •
*V5EP0114A	SUPPLY PRESS. A SYSTEM 1	3022	773	3022 751	773 192	375	96	78	20	PSIA
*V5&P0214C	SUPPLY PRESS. A SYSTEM 2	3124	662	3124 751	799 192	375	96	78	70	PSIA
V53P0314C	SUPPLY PRESS. A SYSTEM 3	3226	825	3226 751	825 192	375	96	78	20	PSIA
V58P0115C	SUPPLY PRESS. B SYSTEM 1	3200	818	3200 752	818 192	376	96	8	20	PSIA
V58P0215C	SUPPLY PRESS. B SYSTEM 2	3000	792	3000 752	767 192	376	96	80	20	PSIA
			7		7		7			

* $^{\rm MOTE:}$ This measurement uses the range limit conversion method of calculating FS $_{\rm EU}$ from GSIU $_{\rm CTS}$ as discussed in Section 2.6.2.

MEASUREMENT CUTPUT FROM APU/HYD MODEL - TABLE 2

MEASUREMENT		1.6.		VALUE 1	K=1	VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	K#3	111115
1. D.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CIS	FS	CTS	
V58P0315C	SUPPLY PRESS B SYSTEM 3	2896	741	2896 752	741	376	96	80	20	PSIA
*V58P0116C	HYD SYS 1 SUPPLY PRESS C	3300	844	3300	192	375	96	78	20	PSIA
*V58P0216C	HYD SYS 2 SUPPLY PRESS C GOTING	3402	870	3402 751	870 192	375	96	78	20	PSIA
*V58P0316C	HYD SYS 3 SUPPLY PRESS C DATE	3152	908	3152 751	806 192	375	96	. 78	20	PSIA
	JAL STATE OF THE S	102	487	102	487	102	487	35	305	DEGF
V5810120A	ITY	06	454	06	454	06	454	35	305	DEGF
V581 (V22 UA	•	81	430	81	430	81	430	35	305	DEGF
V5810320A	CIEC DIME DECK CYCTEM 1	20	63	20	63	374	479	8	102	PSIA
V58PUI3/A	CIRC. FURL DIME DRESS SYSTEM 2	54	70	54	70	374	479	08	102	PSIA
V56F0237A	CIRC. TOTAL FACTOR STORY S	61	78	61	78	374	479	80	102	PSIA
V58PU337A	CIRC. FOIL FACES. STREET S	2471	722	2471	722	2471	722	2471	722	PSIA
V58P014/A	H20 BLK. MM2 IN: FML33 SISIE! I	2429	710	2429	710	2429	710	2429	710	PSIA
V58P02478	H20 BLK. GNZ IN. FRESS SISIEN E	2513	735	2513	735	2513	735	2513	735	PSIA
V58P034/A	120 DER. GIZ IN: INCOS SISIES SI	141	593	141	593	30	291	30	291	DEGF
V5810157A	HID STS I EN INDO ELEVACE NOT EN IN TMP	132	569	132	569	30	291	30	ر62	DEGF
V581025/A	213 2 LN	147	610	147	610	30	291	30	29	DEGF
V5810159A	HTD 515 I KH INDD CLCV ACT NIN CH III.	78	421	78	421	30	291	93	291	DEGF
V5810359A	THE STATE AND CASTEM 1	31.44	0	100.08	8 567	55.89	152	55.89	152	4
VSSIDIBLA	120 BLK: IN. (EMF. 3/3/EM.)	31.44	0	105.03	603	55.89	152	55.89	152	۴
W107019CA	120 per 11. 12. 12. 12. 12. 12. 12. 12. 12. 12.									
					١		_			

This measurement uses the range limit conversion method of calculating FS_{EU} from GSIU_{CTS} as discussed in Section 2.6.2. *NOTE:

(MEASUREMENT OUTPUT FROM APUZHYD MODEL - TABLE 2

		•								
MEASUREMENT		1.0.		VALUE 1 (NOMINAL)	₹ (VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	₹	0.00
I. 0.	MEASUREMENT NAME	FS	CIS	ES	CTS	FS	CTS	FS	CTS	SITIO
V58T0361A	HO BLR. TK. TEMP. SYSTEM 3	31.44	0	110.01	636	55.89	152	55.89	152	J٥
V58T0162A	H ₂ 0 BLR. TEMP. NO. 1 SYSTEM 1	29.96	0	82.00	405	55.86	159	55.86	159	4
V58T0262A	H ₂ 0 BLR. TEMP. NO. 1 SYSTEM 2	29.96	0	76.90	352	55.86	159	55.86	159	٠,
V58T0362A	H20 BLR. TEMP. NO. 1 SYSTEM 3	29.96	0	71.00	262	55.86	159	55.86	159	ه ا
V58T0163A	H ₂ 0 BLR. TEMP. NO. 2 SYSTEM 1	29.96	0	104.95	610	55.86	159	55.86	159	٥.
V58T0263A	H20 BLR. TEMP. NO. 2 SYSTEM 2	29.96	0	95.98	539	55.86	159	. 55.86	159	٥ اد
V58T0363A	H20 BLR. TEMP. NO. 2 SYSTEM 3	29.96	0	86.03	446	55.86	159	55.86	159	٥ ا
V58T0165A	H ₂ 0 BLR. VENT TEMP. NO. 1 SYSTEM 1	150	454	150	454	122	0	122	9	9.
V58T0265A	HO BLR. VENT TEMP. NO. 1 SYSTEM 2	153	503	153	503	122	0	122	0	٥F
V58T0365A	H20 BLR. VENT TEMP. NO. 1 SYSTEM 3	160	618	160	618	122	0	122	C	9.
V58T0166A	H20 BLR. VENT TEMP. NO. 2 SYSTEM 1	155	536	155	536	122	0	122	0	٠ ٤
V58T0266A	H20 BLR. VENT TEMP. NO. 2 SYSTEM 2	157	699	157	569	122	0	122	ဂ	4
V58T0366A	H20 BLR. VENT TEMP. NO. 2 SYSTEM 3	165	869	165	869	122	0	122	Û	<u>ب</u>
V58X0181E	H20 BLR. BYPASS CL. IND. SYSTEM 1	0	0	÷	Н	0	0	0	Ç	STATE
V58X0281E	H20 BLR. BYPASS CL. IND. SYSTEM 2	0	0	-	-	0	0	0	.ဂ	STATE
V58X0381E	H20 BLR. BYPASS CL. IND. SYSTEM 3	. 0	0			0	0	0	O	STATE
V58X0182E	H20 BLR. OK SYSTEM 1	0	0							STATE
V58X0282E	HO BLR. OK SYSTEM 2	0	0							STATE
V58X0382E	H20 BLR. OK SYSTEM 3	0	0							STATE
			7]					

(MEASUREMENT OUTPUT FROM APUZHYD MODEL - TABLE 2

				VALUE 1	Z.	VALUE 2	7-2	VALUE 2	7-2	
MEASUREMENT		I.C.		(NOMINAL)	(HI/LOM)			2	IRITS
I. D.	MEASUREMENT NAME	FS	CIS	FS	CIS	FS	CTS	FS	CTS	
V58X0190E	LDG. GR. ISLN. VLV. CL. IND. SYSTEM 1	0	0							STATE
V58X0290E	LDG. GR. ISLN. VLV. CL. IND. SYSTEM 2	0	0	-						STATE
V58X0390E	LDG. GR. ISLN. VLV. CL. IND. SYSTEM 3	0	0							STATE
V58T0198A	HYD SYS 1 RSB RETURN LINE TEMP	136.2	581	136.2	581	30	291	30	291	DEGF
V58T0298A	HYD SYS 2 RSB RETURN LINE TEMP	69	397	69	397	30	291	30	291	DEGF
V58T0398A	HYD SYS 3 RSB RETURN LINE TEMP	63	381	63	381	30	291	30	291	DEGF
V58T0288A	HYD SYS 2 BODY FLAP RTN LINE TEMP	75	413	75	413	30	291	30	291	DEGF
V58T0388A	HYD SYS 3 BODY FLAP RTN LINE TEMP	99	389	99	389	30	291	30	291	DEGE
V58T0296A	HYD SYS 2 RH BRAKE VLV RTN LN TMP	72	405	72	405	30	291	30	291	DEGF
V58X0800E	LH INBD ELVN ACTR. SW. VLV. ACTV. POSN.	0	0							STATE
V58X0801E	LH INBD ELVN ACTR. SW. VLV. PS2 POSN.	0	0							STATE
V58T0833A	LH INBD ELVN SW. VALVE LN TEMP.	40	319	40	319	30	291	30	162	4
V58T0841A	LH OTBD BRAKE SW. VALVE LN TEMP.	22	364	22	364	30	291	30	291	ا
V58T0842A	LH INBO BRAKE SW. VALVE LN TEMP.	54	356	54	356	30	291	30	291	٠ ٢
V58T0845A	RH OTBD BRAKE SW. VALVE LN TEMP.	51	348	51	348	30	291	30	291	u.
V58T0846A	RH INBD BRAKE SW. VALVE LN TEMP.	48	340	48	340	30	291	30	291	<u>۴</u>
V58X0850E	LH OTBD ELVN ACTR. SW. VLV. ACTV. POSN.	0	0							STATE
V58X0851E	LH OTBD ELVN ACTR. SW. VLV. PS2 POSN.	0	0							STATE
V58T0883A	LH OTBD ELVN SW. VALVE LN TEMP.	45	331	45	331	30	291	30	291	.
										
			1							

MEASUREMENT OUTPUT FROM APU/HYD MODEL - TABLE 2

MEASUREMENT		1.C.		VALUE 1 (ROMINAL	K=1	VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	K=3	INITS
I. 0.	MEASUREMENT NAME	FS	CIS	FS	CIS	FS	CTS	FS	CTS	
V58X0900E	RH INBD ELVN ACTR. SW. VLV. ACTV. POSN.	0	0							STATE
V58X0201E	RH INBD ELVN ACTR. SW. VLV. PS2 POSN.	0	0			-				STATE
V58T0933E	RH INBD ELVN SW. VALVE LN TEMP.	42	323	42	323	30	291	30	291	٠ ٦
V58X0950E	RH OTBD ELVN ACTR. SW. VLV. ACTV. POSN	0	0							STATE
V58X0951E	RH OTBD ELVN ACTR. SW. VLV. PS2 POSN	0	0						•	STATE
V58T0983A	RH OTBO ELVN SW. VALVE LN TEMP.	39	315	39	315	30	291	30	291	٠ ۲
V58X1000E	RDR/SPDBK SW. VLV ACTV. POSN.	0	0							STATE
V58X1001E	ROR/SPOBK SW VLV. PS2 POSN.	0	0							STATE
V58T1006A	RUDDER SW. VALVE LN TEMP. A	36	307	33	307	30	291	30	291	<u>د</u> ه
V58X1136E	HYD SYS I ME/TVC SPLY VLV OPN IND	0	0	•						STATE
V58T1143A	MID FUSLG. RTN. LN TEMP A	33	299	33	299.	30	291	30	291	1 4-
V58X1236E	HYD SYS 2 ME/TVC SPLY VLV OPN IND	0	0							STATE
V58X1336E	HYD SYS 3 ME/TVC SPLY VLV OPN IND	0	0							STATE
V58P9116A	HYD SYS 1 GN2 ACCUMULATOR PRESS	2560	655	2560	655	2560	655	2560	655	PSIA
V58P9216A	HID SYS 2 GNZ ACCUMULATOR PRESS	2400	614	2400	614	2400	614	2400	614	PSIA
V58P9316A	HYD SYS 3 GNZ ACCUMULATOR PRESS	260C	999	2600	999	2500	999	2600	999	PSIA
المارين الماري										
					ŀ					

MEACUREMENT OUTPUT FROM APU/HYD MODEL - TABLE 2

MEASUREMENT		1.0.		VALUE 1	1 ×	VALUE 2	K=2	VALUE 3	K=3	
I. D.	MEASUREMENT NAME	FS	CIS	FS	CIS	FS	CTS	FS	CTS	URITS
V58T9133A	HYD SYS 1 FLUID HTR INLET TMP	108	503	108	503	20	401	70	104	DEGF
V58T9233A	HYD SYS 2 FLUID HTR INLET TMP	125	550	125	550	20	401	70	<u>4</u> ວາ ່	DEGF
V58T9333A		170	673	170	673 (20	401	70	401	DEGF
V58T9141A	HYD SYS I CIRC PUMP OUTLET TEMP	112.2	516	112.2	516	20	401	20	401	DEGF
V58T9242A	HYD SYS 2 CIRC PUMP OUTLET TEMP	127.2	557	127.2	557	70	401	70	401	DEGF
V5819342A	HYD SYS 3 CIRC PUMP OUTLET TEMP	165	629	165	629	70	401	70	401	DEGF
V58T9144A	HYD SYS 1 RETURN LINE RSB TMP	93	462	93	462	30	291	30	162	DEGF
V58T9244A	HYD SYS 2 RETURN LINE RSB TMP	117	528	117	528	30	291	30	291	DEGF
V58T9344A	HYD SYS 3 RETURN LINE RSB TMP	175	687	175	687	30	291	30	291	DEGF
V58T9160A	HYD SYS I RTN LN BODY FLAP TMP	66	479	ŭ.	479	30	291	30	162	DEGF
V58T9165A	HYD SYS 2 RTN LN R OTBD ELEV ACT TEMP	85	442	82	442	30	291	30	162	DEGF
V58T9178A	HYU SYS 1 RTN LN LMG UPLK ACT TMP	22	282	22	282,	30	162	30	162	DEGF
V58T9183A	HYD SYS 1 NLG UPLK ACT LIME TMP	24	274	24	274	30	291	30	162	DEGF
V58T9186A	HYD SYS 1 RTN LN NLG TEMP 3	87	445	87	446	30	291	30	162	DEGF
V58T9189A	HYD SYS I RTN LN RMG UPLK ACT TMP	21	566	21	566	30	297	30	162	DEGF
V58T9190A	HYD SYS I RTN LN RMG ORIFICE TMP	18	25	18	258	30	291	30	162	DEGF
y58T9194A	HYD SYS 1 RTN LN R BRK SW VLV TMP	96	471	96	471	30	291	30	162	DEGF
V58T9236A	SYS 2	115	524	115	524	30	291	30	291	DEGF
V58T9261A	HYD SYS 1 RTN LN L OTBD ELEV ACT	84	438	٧x	438	30	291	30	162	DEGF
V58T9262A		144	602	144	602	30	291	30	291	DEGF
V58T9263A	HYD SYS 2 LH BRAKE VLV RTN LN TMP	30	291	30	162	30	167	30	162	DEGF
V58T9264A	HYD SYS 2 RH BRAKE SW VLV RTN LN TMP	30	291	30	162	30	162	30	291	DEGF
V58T9349A	HYD SYS 3 PTN LN BODY FLAP TMP	160.2	647	160.2	647	30	791	30	ופ2	DEGF
		_	1		7					

MEASUREMENT OUTPUT FROM APU/HVD MODEL - TABLE 2

MEASUREMENT		1.0.		VALUE 1 (ROMINAL	11 ×	VALUE 2 (HI/LOW)	K=2	VALUE 3	K≖3	
1. D.	MEASUREMENT NAME	FS	CTS	FS	CES	FS	CE	FS	CTS	STIE
V58T9351A	HYD SYS 3 RH BRAKE VLV RTN LN TMP	30	291	30	291	30	291	30	.291	DEGF
V58T9352A	HYD SYS 3 LH BRAKE VLV RTN LN TMP	30	291	30	162	30	291	30	נ62	DEGF
V58T9361A	HYD SYS 3 RTN LN L OTBD ELEV ACT TMP	156	634	156	634	30	291	10	237	DEGF
									•	
V58T0830A	HYD SYS LH IMDU ELEV ACT	120	532		•					DEGF
V58T0880A.	HYD SYS 'H OTBD ELEV ACT	126	548							DEGF
V-9T0930A	HYD SYS , NBD ELEV ACT	132	565							DEGF
V58T° 380A	HYD SYS ; OTBD ELEV ACT	138	581			-				DEGF
V57T0014A	RUDDER/SPEEDBRAKE PDU	144	265							DEGF
V57T0018A	30DY FLAP PDU	150	614							DEGF
							T		•	
								_		
			<u> </u>							
					ŀ					

5.0 STS REFERENCES:

- a) LA-B-10100-1/JSC-11174, Space Shuttle Systems Handbook OV-102
- b) LEC-9510, Orbiter 102 Simulation Requirements for SMFS/APU-HYD
- c) LEC-6992 Rev. A, Space Shuttle APU Controller Study
- d) LEC-Memo # 77-2109-055, GSIU Math Model Requirements for APU/HYD
- e) VS70-580102, Hydraulic Control Subsystem Schematic
- f) VS70-460102, Auxiliary Power Unit Schematic
- g) VL70-000137G, Hydraulic Subsystem, Orbiter MCR1750 Baseline Schematic
- h) ICD-3-1603-5, Section 2 and Section 3.8

GTS SECTION

12.0 GTS DETAILED REQUIREMENTS

This model simulates the functions of the Auxiliary Power Unit (APU) and the Hydraulics (HYD) subsystems in the Orbiter. Only those flight critical functions of the APU/HYD subsystems that are addressed to the Orbiter's General Purpose Computers (GPC's) are contained in these math model requirements, namely, the hydraulic pump output pressures. This permits the use of a much simplified model which contains only those functions necessary to support GN&C testing.

APU/HYD measurements, together with measurements from other subsystems, that are addressed to the O/I PCM master unit are provided from a table of static values which is not a part of this requirements document. The tabulated values are changeable within their specified ranges by the operator at the Non-Avionics Simulator console, when performing System Management tests with O/I parameters.

Figure 4 illustrates the data flow in and out of the APU/HYD model for the GN&C Test Station.

Tables 14.1 and 14.2 list the input stimuli and the output measurements for the GTS APU/HYD model.

12.1 GTS FUNCTIONAL CHARACTERISTICS

The APU/HYD subsystem consists of three APU's which indomently drive three main hydraulic pumps. Inputs from the NAS console simula : cockpit commands to turn each of the three systems ON or OFF.

12.2 NAS UPLINK REQUIREMENTS

In addition to the three ON/OFF commands simulating cockpit commands to the three APU's, the operator at the NAS console has the ability to change the value of any output parameter in the model.

12.3 GTS INITIALIZATION REQUIREMENTS

The initial conditions shall be as listed in Table 14.2.

12.4 GTS TERMINATION REQUIREMENTS

None.

12.5 GTS UNIQUE REQUIREMENTS

None.

13.0 GTS LOGIC FLOW DIAGRAMS

14.0 GTS INPUT/OUTPUT TABLES

STIMULI INPUT TO (J/HYD MODEL-TABLE 14.1

.		1 -				···										-
	:UNITS	STATE	STATE	STATE												
STATES/22:05					•									 -		
TATES	H	-				~							,			
S	2	0	0	0												
 									_		,	-	 			_
		S	<u>.</u> אר	e Se												
SOURCE		om NA	S NA	From NAS Console												
		ŭ.	F	Ę												
																,
		i														·
		I														
															,	
TURE																
NOMENCLATURE																
Š			_	_												
		APU 1 START/RUN CMD	APU 2 STARTZRUN CMD	APU 3 START/RUN CMD												
		RT/RU	RTZRU	RT/RU												
		1 STA	2 STA	3 STA												
		APU	APU	APU												
NO.																
FICAT		36E	39Z	26E												
IDENTIFICATION		V46K0126E	V46K0226E	V46k0326E												
	_	<i></i> -	<i>-</i>	<i></i>			,	A-69								

N
- TABLE 14.2
, u
됞
2
•
APU/HYD MODEL
Ĭ
¥
5
AP
FROM
F
절
OUTPUT
_
E
MEASUREMENT
2
AS
뿔

!										
MEASUREMENT		1.6.		VALUE 1 (NOMINAL	K=1	VALUE 2 (HI/LOW)	K=2	VALUE 3 (OFF)	K=3	STIM
1. 0.	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	
*V58P0114C	SIDDIA DRESS A SYSTEM 1			2950						PSIA
+V. CORO314C) C		2070						
~ V 28F UZ 14C		o		0/67						
*V58P0314C	SLIPPLY PRESS. A SYSTEM 3	0		2990						
V58P0115C	SUPPLY PRESS. B SYSTEM 1	0		2950						<u> </u>
V58P0215C	SUPPLY PRESS. B SYSTEM 2	0		2970						
V58P0315C	SUPPLY PRESS. B SYSTEM 3	0		2990						
*V58P0116C	HYD SYS 1 SUPPLY PRESS C	0		2950						
*V58P0216C	HYD SYS 2 SUPPLY PRESS C	0		2970						
*V58P0316C	HYD SYS 3 SUPPLY PRESS C	0		2990						FSIA
									•	
*NOTE: Thi	This measurement uses the range limit conversion method as discussed in Section 2.6.2.	of	calcul	calculating FS _{EU}		from GSIU _{CTS}	_			
<i>^</i>										

14.3 NAS CRT DISPLAY

Figure 5 shows the format of the NAS CRT of which APU/HYD is a part.

ORIGINAL PAGE IS OF POOR QUALITY

PART CONTINUES OF THE		200 000 0000000000000000000000000000000	X X X X X X X		7	٠,))	EP.	P. C.	<u></u>		READY	Œ	70 K		NNSTG.		MNSTG						3. 4.AV	
JING TABULATE EXECUTE	FGRTRAN STATEMENT	ELD CGWWFNTS 13 36 37 38 36 31 42 43 44 45 46 47 48 49 50 51 42 53 54 55 55 67 56 75 75 75 75 75 75 75 75 75 75 75 75 75		MPS X-E-MS	2950 KITOOX LHZ I KE	50 KI KI TO IX LHZ	50 . , KI, 102X, LHZ, 3, R	4	3	10 KI152X LØ2 3 KE	0	I I I I I I I I I VEIXXX E-I RE	אבאאא' ' ' ' '	90 , VE3XXX E-3	9.90	25X MPS -	12,25x MPS 2,2	11111111 KI325X MPS 3		1				LETTERS IQUGZC, SYMBOLS 1.1+	L DATA SKOULD BE PER MODEL LOGIC.
FORTRAN	FORTRA	C. C. A. T. C. 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2			5690114C NYD SUP PRESS A SUS 1	OIISC, HYD SUP PRESS 8	58 PO 11 6C, HYD, SUP, PRESS, C, SYS, 1,		PRESS A	SC HYD SUP PRESS 8 SY	SUP PRESS C SYS		HYD SUP PRESS A	SUP PRESS B SUS	5620316C HVD 50P, PRESS C, S45 3,		P V P S S T S S P S S S S S S S S S S S S S		ET/ORB SEPN ARM	69138 ET/GRB SEPN FIRE	TEV TOTAB ET ORB PYS A VELT			: VYRITE NUMBERS 10	NOTE: DATA BLOCKS ALL SHOWN FOR (HI) CMD SIGNALS. ACTUAL

FIGURE 5

I OF PURAL PROPERTY.

15.0 REFERENCES

VS70460102 - Auxiliary Power Unit Schematic

VS70580102 - Hydraulic Control Subsystem Schematic

GNCTS-02 - GNCTS Crew Station to GTS ICD

GNCTS-06 - GTS Non-Avionics Simulator ICD

LEC Memo No. 78-GNC-260-NAS CRT Formats by N. Bauer

APPENDIX B VENT DOORS MATH MODEL REQUIREMENTS

TABLE OF CONTENTS

SECT	I ON	PAGE
1.0	INTRODUCTION	B-2
2.0	DETAILED REQUIREMENTS	B-4
2.1	FUNCTIONAL CHARACTERISTICS	B-4
2.2	NAS UPLINK REQUIREMENTS	B-4
2.3	INITIALIZATION REQUIREMENTS	B-4
2.4	TERMINATION REQUIREMENTS	B- 4
2.5	UNIQUE REQUIREMENTS	B-4
3.0	LOGIC FLOW DIAGRAMS	B-5
4.0	INPUT/OUTPUT TABLES	B-22
4.1	INPUT TABLE	B-23
4.2	OUTPUT TABLE	B-27
4.3	NAS CRT DISPLAYS	B-31
5.0	REFERENCES	B-38
FIGUI	of C	
FIGU		B-3

1.0 INTRODUCTION

The GN & C Test Station (GTS) uses math models to simulate many of the Shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shuttle's "avionic" systems. The "non-avionic" models are needed to supply data for on-board software processin, and to respond to Shuttle commands, whether they be from cockpit switches, the General Purpose Computers (GPC's) or the Non-Avionic Simulator (NAS) console. Figure I provides the Flight System/NAS data flow.

FIGURE 1 - FLIGHT SYSTEM/NAS DATA FLOW

2.0 DETAILED REQUIREMENTS

2.1 FUNCTIONAL CHARACTERISTICS

This model simulates those functions of the vent doors in the Orbiter, namely: OPEN, CLOSE, and PURGE. The vent doors permit equalization of pressures between the ambient and the unpressurized areas within the Orbiter during ascent and descent. The PURGE function expels toxic or explosive gas mixtures that may accumulate within the unpressurized areas.

2.2 NAS UPLINK REQUIREMENTS

The NAS console operator has the capability to override any math model output value with a value entered at the console. This permits the use of off-nominal data entries to test limit checking software.

2.3 INITIALIZATION REQUIREMENTS

When the math model begins running in the MODCOMP computer, the output data values shall be as defined in Table 4.2 - Initial Conditions, until altered by commands from the Flight System or the NAS console.

2.4 TERMINATION REQUIREMENTS

None.

2.5 UNIQUE REQUIREMENTS

None.

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For exa le, the box on the right hand below,

shows that V45P110CA is set equal to 626 FS_{EU} which is equivalent to 534 $GSIU_{CTS}$ shown outside the box.

4.0 INPUT/OUTPUT TABLES

STATES/RANGE	LO HI UNITS	O STATE	
	ADDRESS	FROM F.S.	
	NOMENCLATIJRE	LFT FWD 18.2 ACT/81 OPEN 1A CMD LFT FWD 18.2 ACT/81 OPEN 1B CMD LFT FWD 18.2 ACT/81 CLOSE 1A CMD LFT FWD 18.2 ACT/81 CLOSE 1B CMD LFT FWD 18.2 ACT/81 CLOSE 1B CMD LFT FWD 18.2 ACT/82 OPEN 2A CMD LFT FWD 18.2 ACT/82 OPEN 2A CMD LFT FWD 18.2 ACT/82 OPEN 2B CMD LFT FWD 18.2 ACT/82 OPEN 2A CMD LFT FWD 18.2 ACT/82 OPEN 2B CMD LFT FWD 18.2 ACT/82 OPEN 2B CMD LFT FWD 18.2 ACT/81 OPEN 1B CMD RT FWD 18.2 ACT/81 OPEN 1B CMD RT FWD 18.2 ACT/81 OPEN 2A CMD RT FWD 18.2 ACT/81 OPEN 2A CMD RT FWD 18.2 ACT/81 OPEN 2A CMD RT FWD 18.2 ACT/82 OPEN 2A CMD LFT PLB/WING 3ACT/82 OPEN 2A CMD LFT PLB/WING 3ACT/81 OPEN 1A CMD LFT PLB/WING 3ACT/81 OPEN 1A CMD LFT PLB/WING 3ACT/81 CLOSE 1B CMD LFT PLB/WING 3ACT/81 CLOSE 1A CMD LFT PLB/WING 3ACT/81 CLOSE 1B CMD LFT PLB/WING 3ACT/81 CLOSE 1B CMD LFT PLB/WING 3ACT/81 CLOSE 1B CMD	
IDENTIFICATION	NUMBER	V59K3050X V59K3051X V59K3000X V59K3001X V59K3100X V59K3010X V59K3011X V59K3011X V59K3011X V59K4000X V59K4001X V59K4001X V59K4001X V59K4101X V59K4011X V59K4011X V59K4011X V59K4011X V59K4011X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X V59K3260X	

TABLE 4.1 - INPUT STIMULI (CONTINUED)

GE	UNITS	STATE
STATES/RANGE	Ī	~
S	97	>>0
90000	AUUKESS	FROM F.S.
rditte ionmon	MOMENTEATORE	RT PLB/WING 3ACT/B1 OPEN 1A CMD RT PLB/WING 3ACT/B1 OPEN 1B CMD RT PLB/WING 3ACT/B1 CLOSE 1A CMD RT PLB/WING 3ACT/B1 CLOSE 1B CMD RT PLB/WING 3ACT/B2 OPEN 2B CMD RT PLB/WING 3ACT/B2 OPEN 2B CMD RT PLB/WING 3ACT/B2 OPEN 2B CMD RT PLB/WING 3ACT/B2 CLOSE 2A CMD RT PLB/WING 3ACT/B2 CLOSE 1B CMD LFT PLB/WING 4&7 ACT/B1 OPEN 1B CMD LFT PLB/WING 4&7 ACT/B1 CLOSE 1B CMD LFT PLB/WING 4&7 ACT/B1 CLOSE 1B CMD LFT PLB/WING 4&7 ACT/B2 OPEN 2A CMD RT PLB/WING 4&7 ACT/B2 CLOSE 2B CMD RT PLB/WING 4&7 ACT/B2 CLOSE 1B CMD LFT PLB/WING 5ACT/B1 OPEN 1B CMD LFT PLB/WING 5ACT/B1 CLOSE 1A CMD LFT PLB/WING 5ACT/B1 CLOSE 2B CMD LFT PLB/WING 5ACT/B1 CLOSE 2B CMD LFT PLB/WING 5ACT/B2 OPEN 2A CMD LFT PLB/WING 5ACT/B2 CLOSE 2B CMD
IDENTIFICATION	NUMBER	V59K4250X V59K4251X V59K4201X V59K4201X V59K4261X V59K4210X V59K4211X V59K4211X V59K3301X V59K3311X V59K3311X V59K3311X V59K3311X V59K3360X V59K3360X V59K3360X V59K3360X V59K360X V59K360X V59K360X V59K3460X V59K3460X V59K3460X V59K3460X V59K3460X V59K3461X V59K3461X V59K3461X V59K3461X V59K3460X V59K3460X

TABLE 4.1 - INPUT STIMULI (CONTINUED)

IDENTIFICATION			S	STATES/RANGE	بيا
	NOMENCLATURE	ADDRESS	70	Ŧ	UNITS
RT PLB/WING	ING SACT/B2 OPEN 2A CMD	FROM F.S.	0	ı	STATE
RT PL3/WING	5ACT/B2 OPEN 2B (
_	5ACT/B2 CLOSE 2A				
	5ACT/B2 CL0SE 28			-	
	SACT/B1 OPEN 1A				·
RT PLB/WING	5ACT/B1			 -	
	5ACT/B1				_
	5ACT/B1 CLOSE 1B				
T AFT	GACT/RI OPFN 1A C				
AF	GACT/RI OPEN 18				
AFF	6ACT/B1 CLOSE 1A				_
AFT	6ACT/B1 CLOSE 1B				
H	6ACT/	-			
AFT	6ACT/B1				
LFT AFT	6ACT/B1 PURGE 2-1				
LFT AFT	6ACT/B1				_
AFT	6ACT/B2 OPEN				
r AFT	6ACT/B2		_	-	
I AFT	6ACT/82 CLOSE 2				
AFT	6ACT/B2 CL0SE 2				
AFT	6ACT/B2 PURGE 1				
AFT	6ACT/B2 PUNGE 1	_			
AFT	6ACT/B2 PURGE 2				
T AFT	8 6ACT/B2 PURGE 2		-	-	
	6ACT/B1 OPEN 1A				
	6ACT/B1				
KT AFT P	6ACT/B1				
AFT	6ACT/BI CLOSE 1B CM			_	
AFT	6ACT/B1 PURGE 1-IA				
. AFT	'B1 PURGE 1-				
AFT	6ACT/B1 PURGE 2-2A	>	>	>	>
RT AFT P	PLB 6ACT/B1 PURGE 2-2B CMD	FROM F.S.	0		STATE
	·				
					_

TABLE 4.1 - INPUT STIMULI (CONTINUED)

	UN175	STATE	
STATES/RANGE	IΗ	> -	
S	0٦	o > o	
	ADDRESS	FROM F.S.	
	NOMENCLATURE	RT AFT PLB 6ACT/P. OPEN 2A CMD RT AFT PLB 6ACT/B2 OPEN 2B CMD RT AFT PLB 6ACT/B2 CLOSE 2A CMD RT AFT PLB 6ACT/B2 CLOSE 2B CMD RT AFT PLB 6ACT/B2 PURGE 1-2A CMD RT AFT PLB 6ACT/B2 PURGE 1-2A CMD RT AFT PLB 6ACT/B2 PURGE 2-2B CMD RT AFT PLB 6ACT/B2 PURGE 2-2B CMD LFT AFT VENT 8&9 ACT/B1 OPEN 1A CMD LFT AFT VENT 8&9 ACT/B1 OPEN 1B CMD LFT AFT VENT 8&9 ACT/B1 CLOSE 1B CMD LFT AFT VENT 8&9 ACT/B1 PURGE 1A CMD LFT AFT VENT 8&9 ACT/B1 PURGE 1A CMD LFT AFT VENT 8&9 ACT/B1 PURGE 1A CMD LFT AFT VENT 8&9 ACT/B1 OPEN 2A CMD LFT AFT VENT 8&9 ACT/B1 OPEN 2B CMD LFT AFT VENT 8&9 ACT/B2 PURGE 2B CMD LFT AFT VENT 8&9 ACT/B2 PURGE 2B CMD RT AFT VENT 8&9 ACT/B1 CLOSE 1B CMD RT AFT VENT 8&9 ACT/B1 CLOSE 1B CMD RT AFT VENT 8&9 ACT/B1 CLOSE 1B CMD RT AFT VENT 8&9 ACT/B1 PURGE 1A CMD RT AFT VENT 8&9 ACT/B1 PURGE 1A CMD RT AFT VENT 8&9 ACT/B1 PURGE 1A CMD RT AFT VENT 8&9 ACT/B1 CLOSE 1B CMD RT AFT VENT 8&9 ACT/B1 CLOSE 1B CMD RT AFT VENT 8&9 ACT/B1 CLOSE 1B CMD RT AFT VENT 8&9 ACT/B1 CLOSE 2B CMD RT AFT VENT 8&9 ACT/B2 CLOSE 2A CMD RT AFT VENT 8&9 ACT/B2 CLOSE 2A CMD RT AFT VENT 8&9 ACT/B2 CLOSE 2B CMD RT AFT VENT 8&9 ACT/B2 PURGE 2B CMD	
IDENTIFICATION	NUMBER	V59K4560X V59K4561X V59K4511X V59K4511X V59K4611X V59K4711X V59K3800X V59K3800X V59K3801X V59K3801X V59K3861X V59K3861X V59K3811X V59K4861X V59K4861X V59K4861X V59K4861X V59K4861X V59K4811X V59K4811X V59K4811X V59K4811X V59K4811X V59K4811X	

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

UNITS CTS VALUE • CTS VALUE 2 CTS MEASUREMENT OUTPUT FROM VENT DOORS MODEL - TABLE 2 VALUE .: :: FS CLOSE PURGE LFT AFT VENT 889 ACT/B1 CLOSE LFT AFT VENT 889 ACT/B1 OPEN LFT AFT PLB 6ACT/B1 PURGE 1 LFT AFT PLB 6ACT/B2 PURGE 1 RT AFT PLB 6ACT/B1 PURGE 1 RT AFT PLB 6ACT/B2 PURGE 2 RT AFT PLB 6ACT/B2 PURGE 1 LFT AFT PLB 6ACT/B2 PURGE LFT AFT PLB 6ACT/81 PURGE LFT AFT PLB 6ACT/B1 CLOSE LFT AFT PLB 6ACT/B2 CLOSE RT AFT PLB 6ACT/B1 PURGE RT AFT PLB 6ACT/B1 CLOSE RT AFT PLB 6ACT/B2 CLOSE LFT AFT PLB 6ACT/B2 OPEN AFT PLB 6ACT/B1 OPEN LFT AFT VENT 889 ACT/B1 LFT AFT VENT 889 ACT/B2 LFT AFT VENT 889 ACT/82 LFT AFT VENT 889 ACT/82 RT AFT PLB 6ACT/B2 OPEN RT AFT PLB 6ACT/81 OPEN MEASUREMENT NAME F MEASUREMEN' Y59X3715X V59X4515X V59X4715X V59X3805X V59X3815X V59X3505X 759X3515X V59X3615X V59X4555X V59X4505X V59X4605X V59X4705X V59X4565X V59X4615X V59X3855X V59X3865X V59X3915X V59X3555X V59X3605X V59X3565X V59X3905X 759X3705X I. D.

STATE

B-23

STATE

MEASUREMENT OUTPUT FROM VENT DOORS MODEL - TABLE 2

18 R1 R1	MEASUREMENT NAME					VALUE 2	_		~	INITE
RT RT		FS	CIS	FS	CES	FS	CTS	FS	CTS	CITIO
RT	VENT 849 ACT/81 OPEN	0	0	~			, .			STĄTE
R	VENT 849 ACT/B1 CLOSE		-	0	0					
\ -	VENT 889 ACT/B1 PURSE	0	0	-					 , · -	
VS9X4865X RI AFT. VE	AFT VENT 889 ACT/B2 OPEN.	0	0	.	-					
V59X4815X RT AFT VE	VENT 889 ACT/B2 CLOSE	⊷	7	0	0					
13.X4915X RT AFT VE	VENT 889 ACT/B2 PURGE	0	0							, _ · -
V59X4055X RT FWD 182	1&2 ACT/B1 OPEN	0	0		_	Managara da Sala da Sa				
V59X4005X RT FWD 182	182 ACT/B1 CLOSE	-		0	0					
V59X4105X RT FWD 182	1&2 ACT/B1 PURGE	0	0	7						
V59X4065X RT FWD 18.	1&2 ACT/B2 OPEN	0	0	-	_					,
V59X4015X RT FWD 182	182 ACT/B2 CLOSE	-	-	0	0					
V59X4115X RT FWD 1&2	FWD 182 ACT/82 PURGE	0	0		_					
V59X3055X LFT FWD 18	FWD 182 ACT/81 OPEN	0	0		I					
V59X3005X LFT FWD 18	FWD 182 ACT/B1 CLOSE	,		c	0					
V59X3105X LFT FWD 18	FWD 182 ACT/81 PURGE	0	0	-						
V59X3065X LFT FWD 18	FWD 182 ACT/B2 GPEN	0	0		-		-			
V59X3015X LFT FWD 18	FWD 182 ACT/B2 CLOSE		~-1	0	0					
V59X3115X LFT FWD 18	FWD 182 ACT/B2 PURGE	0	0	-		-				
V59X3Z55X LFT PLB/W	PLB/WING 3ACT/B1 OPEN	0	0	_						
V59X3205X LFT PLB/W	PLB/WING 3ACT/81 CLOSE	~		0	0					
V59X3265X LFT PLB/W	LFT PLB/WING 3ACT/B2 OPEN	0	0	-						
V59X3Z15X LFT PLB/W	LFT PLB/WING 3ACT/B2 CLOSE	-		0	0					~
V59X4255X RT PLB/WIR	PLB/WING 3ACT/B1 OPEN	0	0	1	-1					STATE

MEASUREMENT OUTPUT FROM VENT DOORS MODEL-TABLE 2

MEASUREMENT		1.0.	•	VALUE 1	 .	VALUE	2	VALUE	3	
I. D.	MEASUREMENT NAME	FS	CIS	FS	CIS	FS	CTS	FS	CTS	CMIIS
V59X4205X	RT PLB/WING 3ACT/B1 CLOSE	r-4		0	0		, ·			STĄTE
759X4265X	RT PLB/WING 3ACT/B2 OPEN	0	0		<u></u>					
V59X4215X	RT PLB/WING 3ACT/B2 CLOSE			0	0					
V59x3355X	LFT PLB/WING 487 ACT/B1 OPEN	0	0	-						
V59X3305X	LFT PLB/WING 4&7 ACT/B1 CLOSE			0	0					
759X3365X	LFT PLB/WING 487 ACT/B2 OPEN	0	0	7	-					
V59X3315X	LFT PLB/WING 4&7 ACT/B2 CLOSE	—	-	0	0					
VE9Y4355X	RT PLB/WING 4&7 ACT/B1 OPEN	0	0	-						
V59X4305X	RT PLB/WING 487 ACT/B1 CLOSE	,i		0	0					
V59X4365X	RT PLB/WING 487 ACT/B2 OPEN	0	0	-						
V59X4315X	RT PLB/WING 487 ACT/B2 CLOSE	-		0	0					
V59X3455X	LFT PLB/WING 5ACT/B1 OPEN	0	0	г	~					
V59X3405X	LFT PLB/WING 5ACT/B1 CLOSE		~	0	0					
V59X3465X	LFT PLB/WING 5ACT/B2 OPEN	0	0	-						
V59X3415X	LFT PLB/WING 5ACT/B2 CLOSE	,I	-	0	0					
V59X4455X	RT PLB/WING 5ACT/B1 OPEN	0	0	r-4						
V59X4405X	RT PLB/WING 5ACT/B1 CLOSE	⊶	_	0	0					
V59X4465X	RT PLB/WING 5ACT/B2 OPEN	0	0							- ;-
V59X4415X	RT PLB/WING SACT/B2 CLOSE	-	-	0	0					STATE
				,						
										
										7

4.3 NAS CRT DISPLAYS

		10EHTHEATION 73 -4 15 78	1.		××·××		-	,			1	-		-			-	-	-	1	1 1 1	1 1		111111	11 1111		1 1 1	11111	11111
PORTRANT	DATE.	HOENT.		19 67. 63 63 6.			2000	MARK		Ø	8	8	0	-	PURGE	PURGE			-	-	9	1 1 1 1 1	11111	11111	11111	1 1 1 1 1	11111	1 1 1 1 1	11111
PORTRAN SATEMENT PORTRAN SAT				1	N		4	a	+	,				1 1 1 1 1	4	-4	+	PG 24	P.C. 2B.	PGIND	Pazno,	, , , , , , ,	11111	****	11111	11111	111111		
Park		Execute		CCWWT	4 9		K3050X	KK3051X	111111	X 30 60 X	KK 30 61 X	X 30 55 X	4X,30,65X		K3100X	K K 3 40 1 K	11111	-	*X3,41,4X	X370,5X	X31,15		1 1 1 1 1 1 1		111111	111111	111111		1 1 1 1 1 1
C. L. A. C. C. S. E. B. K. A. L. L. K. L. L. K. A. L. L. K. L. L. L. K. A. L. L. L. K. A. L.		_		45 66 67 48 49 50 5					11111	1 1 1 1 1	* 1 1 1 1	21112	1 1 1	-		7 7 7 7 7	1 1 1 1 1		11111	1 1 1 1 1 1	1 1 1	' 'd'	, d	111111	111111	111111	111111	111111	111111
C. L. A. C. C. S. E. B. K. A. L. L. K. L. L. K. A. L. L. K. L. L. L. K. A. L. L. L. K. A. L.	FAP CODING	TABULATE	RAN STATEMENT	39 32 40 4: 42 43 46	5/3	1 1 1 1 1 1 1	1 -	Γ		٧	_	_		+	7	1 1 1 1 1 1	٢	9	1.1	1 1	1			111111	111111	1111111	11111	111111	111111
A CLEAD A SECONTAINS A SECONTAI	FORTRAM		FORT	۽	1		4	P.G	+	PG	2	P.Q.T	P.G.		L'H'AD		'\ 5 '	ָר'. כרי		7,2,	7.5	ב'ר <u>י</u>	J	111111	11111	1 1 1 1 1	11111	11111	1 1 1 1 1 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ACBI		VARIABLE FIELD	1 1 1 1 1 1 1			1.5	1 7	Į,	7	X410	*×411		-	-	, K300(*K300		, K30,1		X300		1.1.1.1.1.1.1	11111	1-11111	1	1 1 1 1 1 1 1 1	111111
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PUNCH		6 19 19 21 22 23 24	1/2		85E	ØSE,	1 1 1 1 1	2,5€	α≎ E, ιιι	∀S∈ Ω	ZSED	1 1 1 1 1	2	2	11111	111112	2.1	EN.ED.	ENED	11111	1 1 1 1 1	31111	11111	1 1 1 1 1	11111	11111	11111
_			MTHERTICH	OFERATION .	RT FWD		4.4	18	1 1 1	1	4	4	1	-	4.4	1.8	1111	-	-		-	1			1111111	111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	PECCEAN VACCO	2 40 -	#-	٠. ا	1 7	-	0 C O X	X:1:0				OC.SIX	N LOX		050x	× 1,6	+-					1111	1 1 1 1 1	1 1 1 1 1		1 1 1 1 1 1 1	1 1 1 1 1 1 1		11111

PPOCRAM			FORTRAN	Fortran-fap coding	2146	
78 C3000		Puco	- velley	TABULATE	EXECUTE TO THE TOTAL TOT	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
STATE VENT	CONTINUATION		FOR	FORTRAN STATEMENT		-
10:4:10	: ا	2 18 18 20 21 22 24 24	OPERATION : VARIABLE FIELD : VARIABLE FIELD : 12 13 38 35 36 15 36 40 40 41 42 43 46 47 48 49 50 51 52	39 39 40 41 42 43 44 45 45 47 48 49 5	COMMENTS 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
593	Ŀ	6 9 m	RT PLB	/w/c 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1 PUB/WG 4	× × · ×
-						
x320,0X	CL 1A	85E	X420X	A CLØSE	K3300X CL 1A CLESE	1
*KBBO LX	CC 18	CLØSE	*K420,1%, CC	8 6 6 8 6	*K3301X CL 18 CLØSE	1
-	+		+ 1 1 1 1 1 1 1 1			-
X O T REX	ר א א טרי	ØSE.	4210 X CL		3,10 X CL	
4.K321.1.X	CL 28	CLØSE	KK421,1X, CL 3B	ופ כרמיבייי	מר שם כום	-
メダウスドメ	CHUD	MSED	4 YOUX CL		BOSK CLEND CL	
*X3215X	CLHND	Z SED,	*X 42 1,5 X, CL IND		PX3315X CLIND CLESED	-
	-		111111			
X D B G X	8	EN. 1111	X4230X, 8P	A BEN	184 1A	-
*K3251X	8.1.8	N. 1	*K4251X, 8P.	18 OPEN	*K3351X 90 15 8762	
	+_	11111		1 1 1 1 1 1 1 1 1 1 1 1	* 1 1 1	
x 3360 X		7 7 7 3	K4260X 89 2A	•	3,60X GP ZA BP	
本不らとのコメ	9 P 2 B	7 1 1 1 7	*X4261X		40 28	-
X32KKX	SPIND	BOEZ RD	X 2 2 X	D BRENED	Z	
* × 32 6 5 X	SP. TAD	CPENED,	*X 4 2 6 5 X 9 P T N		PX3365X, GPIND GPENED	-
						4
			1 1 1 1 1 1 1 1 1 1 1 1 1			4
						-
	111111111	4 1 1 1 1 1				1
						4
		4114114				1
						1 1
	44444444	******				4
15C Fere 244 (Dec 65)	(5)	NOTE: WRIT	C NUMBERS 10	, LETTERS IQUGZC,	3, SYNBOLS /+	; ;

•	PROCRAM	1			•	Fortram-fap coding	CODING		PATE	1
_	VB 030CD	\ <u>\</u>		***************************************				•	PACE OF	1
L_	280	٠ د		Purch	A A A A A A A A A A A A A A A A A A A	<u>-</u>	TABULATE	execute	IDENTIFICA":ON	Γ.
E	STATEMENT	MENT P	CONTINUATION	1104		FORTRAN	FORTRAN STATEMENT			-
<u> </u>	LOCATION	ō	1	4 15/16 17 18 19 20 21	VARIABLE FIELD 22 23 24 25 26 27 28 29 30 31 32 33	FIELD 28 29 30 31 32 33 34 35 36 [37 38 39	40 41 42 43 44 45 46 47 49 49 50 51	COMMENTS 82 53 54 *: '-6 57 58 79 60 61 67	* 1 * C. C1 A. 63 64 63 64 64 63 .3 11 .	7
	75	59479	1 7			m/87'd'	, WG , 5, 1, 1, 1, 1	RT PLB/WG	XX:XX	××:
	×	3 0.0 X	X CL 1A	Ĺ	X34.00X	בר דש	בר'מ'S'E' ' ' '	K4400X CL	נימ	-
×	# K	30.1	X CL TB	0,0	3401×	C. L. 1.8	CLØSE	#K4401X CL. 1	B CLUSE	-
	:		+	l	-	+		+	-	-
<u> </u>	×	3.1.0.X	J	A CLOSE	X34.10 X	C. 2A	CL856	X44-10 X CL XA	A CLØSE	
*	₹ ¥	3 1.1 X	J	1	* X 3 4 1 1 X	GC 128	CLBSE	が は して こって ショ	B CLØSE	
<u> </u>	×	30'SX	Ū	١ .	34 0 5 X	CHILIP	CLESED	X4409X CLIND	-	
*	* × 4	31.5×			* X 34 1 5 X	CLIND	CLOSED	*X44 L9X CLIND	D CLESED	
					7 1 7 1 7	1				
1-	Ý	3 50 X	48	BPEN	K3450X	BP 1A	BPEN	K4350X 84 1	AGPEN	
灰	××	351×	4	i	*K3451X	B.P. 1.B.	BPEN	4K4351X, 6P. 1	B. BPEN	
	-		+		1111	+	1111111			
	-	X 0.7 €	1 1		34 60 X	96.2A	GPEN		ABPRN	-
×		36.1×	:	B BPEN,		86.98	BPEN]	2 W W	-
	~	355×			×	BOLIND	S. PELED.	4355× 804	2000	4
×	+	36.5	X GIF Z'ND			BP IND.	B.P.C.NED.	** + 3 6 6 × , Ø P K N	D GPENED.	
	•				, , , , , , , , , ,					-
					1111111111	1 1 1 1 1				
Ľ						111111	*********			
						111111	1111111111		111111111	111
	-			11111111	1 4 4 4 4 4 4 4 4 4	11111				111
		•	1111			11111				
			1111		, , , , , , , , , , ,	11111			111111111	1
			4 1 1 1	1,111111111	, , , , , , , , , , , ,	11111	111111111			111
35	Fote	(I,M 34g) 906 040g 35f	(1,41)	NOTE: WRIT	WRITE NUMBERS		10, LET TERS 10 UG / C, SYNIBAS	C, SYNBOLS /		₹ 2

•	PROCRAM			FORTRAN	FORTRAN-FAP CODING			1
J	COOED BY			-		-	PAGE	
L	- 08 C		Paro	VERIFY	TABULATE	EXECUTE	MENTIFICATION.	
Ε.	STA EMENT	61 CONTINUATION		FOR	FORTRAN STATEMENT			-
1:	· †.	1:	OPERATION I VARIABLE	: FIELD 28 29 30 31 32 33 34	35 36 17 38 39 40 41 42 43 44 45 46 47 48 49 50	COMMENTS 51 52 51 54 55 56 57 58 59 60 61 62 63 54 65 65	C	328275.0
1	15900.6	` -	T P.B. 6	1 1	r PLB 6, 1, 1	1 7	XXXX	××
Ŀ								
1_	K3500X	OX CL 1A	CLØSE	43600× CL	1A CLØSE	4500X CL 1A CL	BSE	
.2	XJOSCX	1.x C 1.8	CLØ SE	#K3601X CC	18, CLØSE,	*K4.501x, CL. 18, CL	350	-
<u> </u>	-	-	-	-		+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-
	K3510	0 7 A	CLØSE	K3610X	AA CCOSE	1 K4 510X GC 2A CLS	Ø SE	
*	XX35 1.1X	28	CLØSE	※K3611× CC	_	128 CL	ZSE	-
	X3505X	CLIND	CLØSED	3607X	7	X4505X CLEND CL	#SED	-
×	~	CLHND	CLUSED	*X3615X CTH NO.	֟֟֟ ֡֓֞֞֓	* x 4 5 15 X CLI NO CL	Ø 5E D	
1	1	1					-	-
1-	K3550X	8	2008	9	ABPEN	K4550X BP LA BPEN	EN	-
×	X3551	,	2 0 0 8	* KBCS1X BP	B P P P	P. 1.B	EN	
		 +		-		* T T T T T T T T T T T T T T T T T T T	11111	1
	X3560X	Ø	SPEZ		ZA BED	4560× BP 24 BP		,
*	K3561X	96 28	OPEN	8	8	4561× 8+ 28 9+	E N	
Ľ	X3555X	OPTAD	BP ENED	X3655X BP	TND BPENED	X 45.55X APTIND GP	ENED	
8	X3565X	ONINO,	OPENED.	#X3665X 00 IN	ID, C LENED	4565X BPIND BP	ENED	-
	1111						1111111	4
	- 1 1 1	111111						1
			111111111	1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			414411	1
		-					111111	1 1 1
								4
	1 1 1 1		* * * * * * * * * * * * *					4
	1 1 1		*********				111111	1
	1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1,11,11	1
ž.	SC furm 244 (Boc 65)	Dec 63)	NOTE: WRIT	RITE MUMBERS	10, LET FERS TOUGHO, SYNINGS	C, SYNRA'S A.A		5

TABLATA PURGE 1 K 3 8 9 1 K 3	- 1	IDENTIFICATION TO 12 13		20 60 61 62 63 64 65 65 65 67 69 69 77 7	××: ××: ××	A PURCE	4 18 PURKE	-	1 -	26, 90	GIND PURGE	GIND PURGE								1 4 1 4 4 4 4 1 4 1 4 1 4 1				
PG 1 1 A P U R G L 1 A P U R G C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			MENT	COMMENTS 53 54 55, 16, 57 58	LFA	SE KUROOK	#K340,1X		5.E	S.E	X 39 05 X	5ED . * X 39.15X P		2	N	N	N	N.E.D	NED	 		11111111111111111111		
	FORTRAN-FAP CODING		FORTRAN STATE			1800X CL 14 CL	801x CL 18	+	3810x CC 78 CC	38,11X, CH 38, CH	580 5X	38.15x , CLIND, CL	-	50x 00 1A	3851X, 0P, 18	3860x 00 2A	3861X 9P 28 8	38,55X, QP, I'N, D, B	3,8,6,5,K, ,QP,IN,D, B.P					
		PUNO!	- CONTINUATION	9	_	PGLLA	PG 11B PURG	+	PG 12 A	, 6 G 1 2 B,	PEHND	PGIND		PGZIA PURGE	まりすいも おててりも	PURGE	PURGE	PGIND, PURGE,	PGIND, PURGE,	 			 	

PROCRAM	İ	FORTRAN-PAP CODING	AP CODING	DATE
CODED BY				PAGE Of
×	Para	VERIFY	TABULATE EXECUTE	IDENTIFICATION
STATEMENT OF CONTINUATION		FORTR	FORTRAN STATEMENT	
	15/16/17 18 19 20 21 22 23 30		LE FIELD 27 33 34 35 36 177 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 59 50 61 62 63 64 65 66 67 65 67 73 71	COMMENTS 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 63 71 7.
Ŀ	AFT 8/9		8/8	
-	ן -		1	
7		K4900X PG 10	PURGE,	
XK480.1X CL 18	1 1	*K4901X, PG 18	S. PURGE,	
+				
TO X OT	CLØSE	A K 4 9.1.0 X . P.6, 12A	PURGE,	** ************
X		85' '94' 'X'TT' b7'4'	3 PURGE	
SSX CLI		X4905X PGH	0	
VX 4815X CLT NO		*X4915X PGIND	عه	
			T T T T T T T T T T T T T T T T T T T	
	PPEN			
	MAPEN	1 1 1 1 7 5 5 7 6 6 5 6 6		
+	111111	1,1111111111		
۵.	OP.E.N.			
بيا	SPEN			
1855X ØP.I	CAPENED .	,,,,,,,,,,,,,,,		
XX4865X BPIND	BPENED .			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111111			
				,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
15C Form 244 (Dac 65)	NOTE: WRITE	NUMBERS 10,	LETTERS 10 UGZC, SYNBOLS	KS /

- 5.0 REFERENCES
- 5.1 LEC Memo No. 78-GNC-254, NAS Functional Logic by N. Bauer, 8/18/78
- 5.2 LEC Mcmo No. 78-GNC-260, NAS CRT Formats by N. Bauer, 8/30/78
- **5.3** ICD-GNCTS-06, dated 8/2/78

APPENDIX C

ET UMBILICAL DOORS
NAS MATH MODEL REQUIREMENTS

TABLE OF CONTENTS

SECT	ION	PAGE
1.0	INTRODUCTION	C-2
2.0	DETAILED REQUIREMENTS	C-4
2.1	FUNCTIONAL CHARACTERISTICS	C-4
2.2	NAS UPLINK REQUIREMENTS	C-4
2.3	INITIALIZATION REQUIREMENTS	C-4
2.4	TERMINATION REQUIREMENTS	C- 4
2.5	'INIQUE REQUIREMENTS	C-4
3.0	LOGIC FLOW DIAGRAMS	C-5
4.0	INPUT/OUTPUT TABLES	C-12
4.1	INPUT TABLE	C-13
4.2	OUTPUT TABLE	C-15
4.3	NAS CRT DISPLAYS	C-17
5.0	REFERENCES	C-20
FIGU	RES	
FIGU	RE 1 - FLIGHT SYSTEM/NAS DATA FLOW	C-3

1.0 INTRODUCTION

The GN&C Test Station (GTS) uses math models to simulate many of the Shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shuttle's "avionic" systems. The "non-avionic" models are needed to supply data for on-board software processing and to respond to Shuttle commands, whether they be from cockpit switches, the General Purpose Computers (GPC's) or the Non-Avionic Simulator (NAS) console. Figure 1 provides the Flight System/NAS data flow.

FLIGHT SY'S TEM - NAS -NAS I/F -- CONSOLE NON-AVIONIC SIMULATOR (NAS) NAS NAS I/F FLI GHT SYSTEM

FIGURE 1 - FLIGHT SYSTEM NAS DATA FLOW

2.0 DETAILED REQUIREMENTS

2.1 FUNCTIONAL CHARACTERISTICS

This model simulates the functions of the ET Umbilical Doors, namely: OPEN, CLOSED, LATCHED, RELEASED, LOCKED, and STOWED. The doors seal Orbiter umbilical penetrations following ET separation to ensure a unified heat shield for entry.

2.2 NAS UPLINK REQUIREMENTS

The NAS console operator has the capability to override any math model output value with a value entered at the console. This permits the use of off-nominal data entries to test limit checking software.

2.3 INITIALIZATION REQUIREMENTS

When the math model begins running in the MODCOMP computer, the output data values shall be as defined in Table 4.2-Initial Conditions, until altered by commands from the Flight System or the NAS console.

2.4 TERMINATION REQUIREMENTS

None

2.5 UNIQUE REQUIREMENTS

None

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 F3 $_{\hbox{EU}}$ which is equivalent to 534 $\hbox{GSIU}_{\hbox{CTS}}$ shown outside the box.

				• •
				•
• • •				
		• • •		A 16 49 6 7 7 18 18 18 18 18 18 18 18 18 18 18 18 18
				A MAN TO A M
				
		LEET	UMB CLOSEC	UT DOOR
				•
BE	GIN		`	
	Y			
	Į	-		
CMD I CLS	3100X			
	Y			
. 1 () b (N			
CMD 2 CLS	<u> </u>			
	3105x			
	IN .		1 1 2	:
V56K	3000E		1	
	IN P			
	<u> </u>			-
/V56K	30056			
	<u> </u>		; ! '	
	N			
	<u> </u>	WEL H 3010 NE 1	WE(Y 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1
	LOOR	V56x3010 x= 1 V56x3015 x= 1	V56x3010x=0 V56x3015x=0	DOOR
	OPEN	V56x3110x=0	V56X3110X= 1	CLOSED
<u> </u>		V56X3115X= 0	VS6X3IIEX= 1	
	· · · · · · · · · · · · · · · · · · ·			
	1	1 1		
	<u> </u>	·		
				
	· · · · · · · · · · · · · · · · · · ·	OR	IGINAT DAGE	
		OF	POOR QUALITY	, ,
			A =	
		-		
, and a company of the second			rapidation of the terminal and the second section of the secti	• [
		C-5		Taglik (Marris ayık di vayışlarını y. g. yılınını

4.0 INPUT/OUTPUT TABLES

TABLE 4.1 - INPUT STIMULI

	<u> </u>			_				_					_			_		_									_							-					
سا	I UNITS	STATE	-	_										_																								>	STATE
STATES/RANGE	물	-	• •					_											-		a. 1774									_							L-1	→	-
ST	2	6	-							_																			·									→	
	ADDRESS	EDAN E C																-		→	FROM NAS			_			- →	FROM F.S.	FROM NAS				FDOW WAS					_ _	FROM F. S.
	NOMENCLATURE	ET IMP DOND LATER 1 CTOLL CHO 1A	DOOD LATER 2 STOR		UND DOOR LAICH I SIGM CIND	UMB DOOR LATCH 1 STOW CMD 2	ET UMB DOOR LATCH 1 LOCK CMD 1A	TIME DOOP LATCH 1 LOCK CMD		DOOK LAICH - LOCK CAD	FT UMB DOOR LATCH 1 LOCK CMD 2B	2 51	I UMD MOTO C HOTA I GOOD IMILE	THE COOR LATER 2 STOR CHO	UND TOOK LAICH 2 SION CHO	UMB DOOK LAICH 2 SIOW CMD	UMB DOOR LATCH 2 LOCK CMD	ET UMB DOOR LATCH 2 LOCK CMD 1B	ET UMB DOOR LATCH 2 LOCK CMD 2A	LATCH 2 LOCK CMD	ET LEFT UMB CLOSEOUT DOOR OPEN CMD 1	I FET LIMB CLOSEOUT DOOR OPEN	LEFT UMB CLOSEOUT DOOR CLOSE	FT UMB CLOSEOUT DOOR CLOSE	T UMB CLOSEOUT DOOR	CLOSEOUT DOOR		ET LEFT UMB CLOSEOUT DOOR LATCH CMD 28	I UMB CLOSEOUT DOOR RELEASE	T UMB CLOSEOUT DOOR RELEASE CMD 1	T UMB CLOSEOUT DOOR	CLUSEUUI DUUK KELEASE CHU	LIMB CLUSEOUT BOOK OFFIN	UMB CLUSEUUI DOOR OFEN	DICHT HAR CLOSEDUIT DOOR CLOSE	UNIN CLOSECUL DOOR LATCH	RIGHT UMB CLOSEOUT DOOR LATCH	RIGHT UMB CLOSEOUT DOOR LATCH CMD 2	DICHT HIME CLOSECULT DOOR LATCH CMD
IDENTIFICATION	NUMBER	VSEK1200X	VSGK1201Y	×0.001.000	VOORICION	V56K1211X	V56K1250X	VSGK1251X	X10212000	VS6K Z6UA	V55K1261X	V56K1300X	V56K1301X	X10012001	VOISINGA VECKIOINA	VSOKISIIX	V56K1350X	V56K1351X	V56K1360X	V56K7361X	V56K3000E	V56K3005F	V56K3100X	V56K3105X	V56K3500X	V56K3510X	V56K3520X	V56K3530X	V56K3600E	V56K3610E	· V56K3620E	V50K303UE	VOOKAOOEE	VS64003E	V56K4105X	V56K4500X	V56K4510X	V56K4520X	VSEKASON

TABLE 4.1 - INPUT STIMULI (CONTINUED)

iE	UNITS	STATE STATE	
STATES/RANGE	IH	>-	
SI	10	∘→ ∘	
337004	AUUKESS	FROM NAS	
	NUMENCLAIORE	ET RIGHT UMB CLOSEOUT DOOR RELEASE CMD 1A ET RIGHT UMB CLOSEOUT DOOR RELEASE CMD 1B ET RIGHT UMB CLOSEOUT DOOR RELEASE CMD 2A ET RIGHT UMB CLOSEOUT DOOR RELEASE CMD 2B	
IDENTIFICATION	NUMBER	V56K4600E V56K4610E V56K4620E V56K4630E	

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model out, uts along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

STATE STATE UNITS CTS VALUE FS CTS ~ VALUE FS MEASUREMENT OUTPUT FROM ET UMB MODEL - TABLE 2 VALUE 0 0 0 FS CTS 0 0 0 0 0 0 1.C 5 RELEASED 2 RELEASED 1 CLOSEOUT DOOR RELEASED 1 DOOR LATCHED 2 CLOSEOUT DOOR LATCHED 2 DOOR LATCHED 1 CLOSEOUT DOOR LATCHED 1 RELEASED CLOSED 2 LF UMB CLOSEOUT DOOR CLOSED 1 DOOR CLOSED 1 CLOSED CLOSEOUT DOOR OPEN 2 LF UMB CLUSEOUT DOOR OPEN 1 LF UMB CLOSEOUT DOUR OPEN 2 **DOOR OPEN 1** DOOR LATCH 1 STOWED 2 DOOR LATCH 1 LOCKED 1 ET UMB DOOR LATCH 2 LOCKED 2 UMB DOOR LATCH 2 LOCKED 1 1 STOWED DOOR LATCH 2 STOWED DOOR LATCH 1 LOCKED DOOR LATCH 2 STOWED DOOR D00R **DOOR** DOOR MEASUREMENT NAME CLOSEOUT CLOSEOUT CLOSEOUT CLOSEOUT CLOSEOUT CLOSEOUT CLOSEOUT CLOSEOUT CLOSEOUT DOOR LATCH OMB OMB <u>8</u>8 OMB UMB SE SE S S LF UMB LF UMB LF UMB LF UMB LF UMB SWB RT UMB UMB SE SE **BB** UMB NB MB RT RT R RT 2 2 R П П E П П Н П ET Е 13 딥 ᆸ П П П П ET ET 딥 П V56X4660X V56X1365X V56X3010X V56X3015X V56X3110X V56X3550X V56X3560X V56X3650X V56X3660X V56X4015X V56X4110X V56X4650X MEASUREMEN V56X1205X V56X1215X V56X1255X V56X1265X V56X1305X V56X1315X V56X1355X V56X3115X V56X4010X V56X4115X V56X4550X V56X456UX I: 0.

4.3 NAS CRT DISPLAYS

#K4350 K C C C K 3				FOR TRANSPAP COOMS	770
PRINCE		PAG.	VERIFY	TABULATE	EXECUTE TO ENTIFICE
1	-		FORT	RAM STATEMENT	
DR CC, CC LC LC R R R R R R R R R	-:	VARIAL A. 17 18 19 29 21 27 21 24 25 25	1. E FIELD	19 79 69 41 42 61 44 45 46 47 49 49 1	COMMENTS 9 51 52 53 54 55 55 55 55 56 55 65 67 67 65 57 63 50 50 50 50 50 50 50 50 50 50 50 50 50
DR CL LCH 1					
DR CL LCH 1	7				
LK 18 LØCK	ָר ט	-CH 1.	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7		
LK 1A LGCK	-				* * * * * * * * * * * * * * * * * * * *
LK 18	1 K		K1350X LK 1		* * * * * * * * * * * * * * * * * * * *
K 2 A LØCK	1 X	1 1 1	1351X	<u>ر</u>	, , , , , , , , , , , , , , , , , , , ,
K 2 A LØCK	+_				
LK 1	OX LK 2A		4	<u>.</u>	
LK T L D	L X 2 B	7 7	K1361X LK 2	פרמכא	
CKEUD CBCKED	CKIND	1 7 7	` —'	ם רפיעבם בי רפיעבם	
STW18 STØW ** K1300× STW14 STØ ** TW18 STØW ** K1310× STW18 STØ ** STW18 STØW ** K1310× STW18 STØ ** STEND STØWED ** K1305× STEND STØ ** STEND STØWED ** K1305× STEND STØ	5x LKIND	1	1365X L	רשני	
STW1A STØW	7-1-1-1-1				
STW18 STØW	STWIA	1111	300x STW	5	
STW2A STWW K1310X STW2A STW2A STW2A STW2A STW2B STW2B STW2B STW2B STW2B STW2B STW2B STRWD STRWD STRWD STRWD STRWD STRWD STRWD STRW	STWIB	1111	301X STW	5.1	
STW2A STW2A STW2A STW2A STW2A STW2A STW2A STW2B STW2B STW2B STEW2B STEW2B STEW2	+		+		* * * * * * * * * * * * * * * * * * * *
STW2B STØWED X 1305X STW2B STØ STEND STØWED X 1305X STEND STØ STEND STØWED WX1315X STEND STØ	STW2A	1111	بر دو	A STAW	
STEND STØWED. X1305X STEND STØ STEND STØWED. *X1315X STEND STØ	ST878	۲.	311x STW2	B STAR	
STEND STØWED. #X1315X, ST	STHED	١.	305X STX	510	
	STIND	H	13,15x, ST	D STRWED	
		1 1 1 1 1			
	111111111111	11111111	1 1111111		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* * * * * * * * * * * * * * *	

HORES DATA BLOCKS ALL SHOWN FOR (MI) CMD SIGNALS. ACTUAL BATA SHOWD BE PER MODEL LOGIC. (4-LUGICAL OR)

PROCRAM			FORTRAN-F	FORTRAM-PAP CODING	•	ı
A 9300		ō Z	VERIFY	TABULATE	ENEOUT	DENTIFICATION
ויצעוותואו	CONTINUATION			FORTRAN STATEMENT		
LOCATION	1	OPERATION : VARIABL			COMMENTS	
112 3 4 5 6 7	2	15,16 17 18 19 20 21 22 23 24		36 39 40 41 42 43 44 45 46 67 46 49 5	20 22 30 31 32 31 34 35 36 37 30 30 40 41 42 43 44 45 46 47 40 49 50 51 72 51 54 52 57 50 50 70 70 70 70 70 70 70 70 70 70 70 70 70	
U.56 D.LR					*******************	* * : * * * *
	4	COUT DR	AC 7.0 8.0 7. J. P. R.	RS	RT UMB CAUT DR	- 1 - 1 - 1 - 1
		H.				4 1 1 1 1 1 1
X 0 0 1 6 X	4 C. 4	כרמפב	KYBD BP LRD	SP.E.N.	96 12 ' 4' 7' 6' 6' 4' ' C'	E
	+		30 LOX OPT	8	***	1
K3 10 5 X	ָר' 'א' '	C L & S E	MAR XSTOP	1		6. 1. 1.
×31103	CLIND	CLØSED	4010X 89104	D. B.P.C. R.	HAD CL	60
7X3115X	CLEND	CLØSED,	MIZ 4 B	D. GOCN.	AX4 LISK CLEND CLES	£ D
						1 1 1 1 1 1 1
X3500X	L'Y LA	LATCH	KYBD GP LRD	RELEASE.	4 SOOK LH 1	T.
*X3510X	I	CATCH	lī	L RELEASED	#K4810X CH 18 CATC	C
			3660X	L RELEASED.	• • • •	1 1 1 1 1
K352CX	C LH 2A	CATCH	* K46 50 X REL	RECEASED	K+ 5 20 X LH 2A LATO	*
女 大 よ り い い 、 大	T.	LATCH	*K4660X REC	RELEASED,	*K4530X LH 28 LATC	
X O S S D X	L	LATCHED			CHHN	KED
*X3560X	C LHIND	LATCHED			AXA BEOX, LHIND, LATC	X € O
	, , , , , ,					
						11111111
						+1+1+1
	, , , , , , ,	1111111111				1
	, , , , , , ,					
1 1 1						441
	, 4 4 4 4 4	* * * * * * * * * * *		***********		4111111
		***********				40:1000
155 form 244 (Doc 65)		NOTE: WRIT	E NUMBERS 10	LETTERS IPUGNO, SYNDA'S	1, SYNBOLS /1.	*

5.0 REFERENCES

- 5.1 LEC MEMO NO. 78-GNC-254, NAS Functional Logic by N. Bauer, 8/18/78
- 5.2 LEC MEMO NO. 78-GNC-260, NAS CRT Formats by N. Bauer, 8/30/78
- 5.3 ICD-GNCTS-06, TABLES 3-5,3-6,3-7,3-8, dated 8/2/78

APPENDIX D ET SEP PYROS MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion	Page
1.	INTRODUCTION	D-2
2.	DETAILED REQUIREMENTS	D-4
	2.1 FUNCTIONAL CHARACTERISTICS	D-4
	2.2 NAS UPLINK REQUIREMENTS	D-4
	2.3 INITIALIZATION REQUIREMENTS	D-4
	2.4 TERMINATION REQUIREMENTS	D-4
	2.5 UNIQUE REQUIREMENTS	D-4
	2.6 ANALOG MEASUREMENTS	D-5
3.	LOGIC FLOW DIAGRAMS	D-8
4.	INPUT/OUTPUT TABLES	D-10
	4.1 INPUT STIMULI	D-11
	4.2 OUTPUT MEASUREMENTS	D-12
	4.3 NAS CRT DISPLAYS	D-14
5.	REFERENCES	D-16
	FIGURES	
Fig	ure	Page
1	FLIGHT SYSTEM/NAS DATA FLOW	D-3

1.0 INTRODUCTION

The GN&C Test Station (GTS) uses math models to simulate many of the Shuttle systems for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shuttle's "avionic" systems. The "non-avionic" models are needed to supply data for on-board software processing and to respond to Shuttle commands, whether they be from cockpit switches, the General Purpose Computers (GPC's) or the Non-Avionic Simulator (NAS) console. Figure 1 provides the Flight System/NAS adata flow.

FIGURE 1 - FLIGHT SYSTEM /NAS DATA FLOW

2.0 DETAILED REQUIREMENTS

2.1 FUNCTIONAL CHARACTERISTICS

This model simulates the functions of the ET/Orbiter Forward Separation Pyro, namely: ARM and FIRE. The rear separation pyros are not part of this model because they exist in the Mission Events Controller (MEC) in the Flight System.

2.2 NAS UPLINK REQUIREMENTS

The NAS console operator has the capability to override any math model output value with a value entered at the console. This permits the use of off-nominal data entries to test limit checking software.

2.3 INITIALIZATION REQUIREMENTS

When the math model begins running in the MODCOMP computer, the output data values shall be as defined in Table 4.2 - Inital Conditions, until altered by commands from the Flight System or the NAS console.

2.4 TERMINATION REQUIREMENTS

None.

2.5 UNIQUE REQUIREMENTS

None.

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOMIAL CONVERSION METHOD

NONE

2.6.2 RANGE LIMIT CONVERSION METHOD

Several analog measurements in this model are calculated according to the range limit conversion method, instead of the polynomial conversion method as described in Section 2.6.1 of this document. The form of the scaling equation for these cases is given as follows:

$$FS_{EU} = Low + \frac{GSIU_{CTS}}{1023}$$
 (High - Low)

where: $FS_{EU} = flight$ system engineering units

 $GSIU_{CTS} = GSIU$ math model count values

Low = Range low limit

High = Range high limit

The following table shows a sample data value for each measurement which requires this type of calculation. The measurement I.D. is shown along with high and low values for the parameter range. The FS column shows the data value in flight system engineering units calculated from the GSIU counts marked CTS in the table. These measurements are marked with an asterisk (*) in the Output Measurement List marked as Table 2 in Section 4.2 of this document.

MEASUREMENT ID	RANGE LOW	RANGE HIGH	FS	стѕ
V76V7079B	0	5	0	0

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 $7\mathrm{S}_{EU}$ which is equivalent to 534 $\mathrm{GSIU}_{\mathrm{CTS}}$ shown outside the box.

NOTE: Pyro math model output of Pyro System A is also routed to the BFS to satisfy Pyro System B interface with the BFS.

4.0 INPUT/OUTPUT TAGLES

TABLE 4.1 - INPUT STIMULI

IDENTIFICATION	BALLY LONGMON			STATE	STATES/RANGE
NUMBER	and an analysis	ADDRESS	1.0	нİ	UNITS
V76к69 09В	ET/ORB FWD SEP ARM CMD	FROM FLT SYS (MEC)	0	-	STATE
V76K6913B	ET/ORB FWD SEP FIRE 1 CMD	FRUM FLT SYS	0		STATE
•		() J	•		
	•				······································
٠					
•		•			

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

MEASUREMENT OUTPUT FROM ET SEP MODEL - TABLE 2

MCACIDEMEN				VALUE 1	E	VALUE 2	K=2	VALUE 3	K*3	
TEASUREMEN		1.6.		(NOMINAL)		(HI/LOM)		(OFF)		INITS
I. D.	MEASUREMENT NAME	FS	CTS	FS	STS	FS	CTS	FS	CTS	
		((٤
~V/6V/U/9B	EL/OFE TWO FIC SEP A CAP VOLI	>	>	റ	1023					3
					•					
					•					
	ORIO OF F									
	GINAL P.								•	
	AGE IS									
			ľ				-			

*NOTE: This measurement uses the range limit conversion method of calculating ${
m FS}_{EU}$ from ${
m GSIU}_{
m CTS}$ as discussed in section 2.6.2.

4.3 NAS CRT DISPLAYS

£	-			i	PORTRA	PORTRAN-PAP COOMS			l
B L				505	VERNY	TABULATE	CHOM	PARK VV.	J٢
Ŀ	\$ 4. 2. 5		CONTINUA"10H		10	FORTRAN STATEMENT			
•	160474		DF 24. C4	_	AJLE F.ELD 14.27.20.27.30.31.32.33.34.35.35.	117 29 19 40 4: 42 41 44 65 45	VAR ALLE 7.510 1 25 25 26 20 31 32 32 32 32 33 34 35 VIDS 38 39 40 40 45 45 40 40 50 51 51 11 11 11 11 11 11 11 11 11 11 11	61 42 43 41 67 54 67 14 69 3 , 21	
'n	1 29182	1 7						××××	××
\cdot	1			1/44.K	AP. 9, 5.75		X SAW	- E - MS	<u> </u>
-]	j	<u> </u>							-
-]	ر م	5000	マド マンファー	SUP PRESS	S	29.50	K1700X CH	2 1 REPL	Ŀ
_]	2	2800	1150 AK	O SUP PRESS B	4	29.50	X V X	2 2 REPU	
	1	- :		1	1 4 1 1 4 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4		X1.700X	2 3 REPL	
1	ر م	0	214C X	SUPLPRESS	5,48	05.95	K17,50X, LO	2 1 REPE	
	2	5800	21.5C . X+	S.U.P. PRESS B		2,9,5,0	KIJSIK LO	2 2 REPL	
1	1		4 - 4 - 4 - 4	11111	44 4 4 4 1 4 4 4		K1752X LO	2 3 REPL	
	2	56003	0 × ×	SCP + 20.	548.3	2950			
-]	2	9	۵ ۲	w.	1,5,45,3,	111,129,50	- 'VE'IXXX E	READY	
							N RXXX V	-2 READY	<u> </u>
	1		, , , , , , , ,	PYRET	SEP	1111111	M)		- -
		-					-		Ŀ
			0	9 B ET / CRB SE	P.A. A. A.	ARM	K1.125x RP	S TONY - S	
	1		16K691	38 ET/KRB SE	PATR	FIRE	SAW XSCCIX	NY C	
	•		7.6770.79	9.8, ET/SRB P/	C A VOLT	0'*'5'	X L S D S X	S 3 MNSTG	
	4		1 1 1 1 1 1 1 1			1111111			
	1		1 1 1 1	* * * * * * * * * * * * *	, , , , , , , , , ,	* * * * * * * * * * * * * * * * * * * *			
-1	4			1111111111]
Ŀ	1		فيتمينينا			11111111			1
-1		-		* * * * * * * * * * *		*******			1
]	1		111111111						
	4			*********		*******	************		* * * *]
-			فممديه يدا			11111111			1 1
138	156 form 344 (Dec 63)	100	(5)	NOTE: WRITE	E NUMBERS 10	LETTERS	IBUGZG, SYMBOLS /		

5.0 REFERENCES

- 5.1 LEC MEMO No. 78-GNC-254, NAS Functional Logic, by N. Bauer, 8/18/78
- 5.2 LEC MEMO No. 78-GNC-260, NAS CRT Formats, by N. Bauer, 8/30/78
- 5.3 ICD-GNCTS-06, Table 3-9, MEC/NAS Interface Data Sheet, 8/2/78

APPENDIX E MPS PLUMBING MATH MODEL REQUIREMENTS

TABLE OF CONTENTS

Secti	<u>on</u>	Page
1.0	INTRODUCTION	E-3
1.1	SHUTTLE TEST STATION (STS)	E-3
1.2	GN & C TEST STATION (GTS)	E-4
	STS	
2.0	STS DETAILED REQUIREMENTS	E-5
2.1	STS FUNCTIONAL CHARACTERISTICS	E-5
2.2	DCM UPLINK REQUIREMENTS	E-6
2.3	STS INITIALIZATION REQUIREMENTS	E-10
2.4	STS TERMINATION REQUIREMENTS	E-10
2.5	STS UNIQUE REQUIREMENTS	E-10
2.6	ANALOG MEASUREMENTS	E-12
3.0	LOGIC FLOW DIAGRAMS	E-15
4.0	STS INPUT/OUTPUT TABLES	E-36
4.1	STS INPUT TABLE	E-37
4.2	STS OUTPUT TABLE	E-41
5.0	STS REFERENCES	E-47
	GTS	
12.0	GTS DETAILED REQUIREMENTS	E-48
12.1	GTS FUNCTIONAL CHARACTERISTICS	E-48
12.2	NAS UPLINK REQUIREMENTS	E-50
12.3	GTS INITIALIZATION REQUIREMENTS	E-50
12.4	GTS TERMINATION REQUIREMENTS	E-50
12.5	GTS UNIQUE REQUIREMENTS	E-50
13.0	GTS LOGIC FLOW DIAGRAMS	E-53
14.0	GTS INPUT/OUTPUT TABLES	E-89
14.1	GTS INPUT TABLE	E-90
14.2	GTS OUTPUT TABLE	E-98
14.3	NAS CRT DISPLAY	E-108
15.0	GTS REFERENCES.	E-104

		<u>Page</u>
FIGURE 1 STS SYSTEM DATA FLOW	•	E-7
FIGURE 2 SUBSYSTEM SCHEMATIC	•	E-8
FIGURE 2A MPS HELIUM SYSTEM SCHEMATIC	•	E-9
FIGURE 3 GTS SYSTEM DATA FLOW	•	E-49
FIGURE 4 NAS CRT DISPLAY FORMAT	•	E-103

1.0 INTRODUCTION

The Shuttle Avionics Integration Laboratory (SAIL) consists of a Shuttle Test Station (STS) and a GN & C Test Station (GTS). Both of these test stations use math models to simulate many of the Shuttle systems, for which hardware has not been provided. A group of these models are termed "non-avionic" models since they do not simulate the Shuttle's avionic systems. The non-avionic models are needed to supply data for on-board software processing, to drive cockpit displays, and to respond to Shuttle commands, whether they be from the cockpit switches or from the General Purpose Computers (GPC's).

Because the CTS and the GTS are configured differently, the non-avionic math models needed to support each test station are shown below.

Non-Avionic Math Model										<u>S1</u>	<u>rs</u>							<u>GTS</u>
APU/Hydraulics										1	t						•	*
Main Propulsion System				•						1	ŀ	•				•	•	*
RCS/OMS			•	•			•	•	•	4	t							
Fuel Cell/Cryogenics .			•	•	•	•	•	•	•	4	t							
ATMOS Revital/Water Loo																		
ATMOS Revital/Press Con																		
Active Thermal Control																		
Smoke Detection	•	•	•	•	•		٠	٠	•	1	k							
Water/Waste Mgt																		
ET/ORB FWD Sep Pyros .																		*
ET UMB Cout Door/Latch	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	*
Vent Doors		•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	*

Where the same math model is needed in both test stations, the math model requirements document is divided into a STS section and a GTS section, so that unique test station requirements may be identified.

1.1 SHUTTLE TEST STATION (STS)

When the TOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when off-nominal conditions are desired. To simplify the model and ease the processing load on supporting

test equipment, the model requirements define nominal conditions only. Further, analog values for output parameters change in step fashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs. This allows the DCM operator to adjust output parameter values as needed to satisfy various mission phases.

When the model is activated, it shall check the input stimuli and shall provide appropriate output measurement values. It is preferred that the model provide output data when the input stimuli changes. Bus activity is then minimal during those mission phases when the stimuli remains constant. However, the GSIU operating system may require a cyclic model program in which case the model output rate shall be once per second.

1.2 GN & C TEST STATION (GTS)

To simplify the models and ease the processing load on supporting test equipment, the model requirements specify nominal conditions only. Analog values for output parameters change when input values dictate a change, or when the test operator manually sets parameter values. Because GTS has an incomplete set of cockpit switches, some switch inputs used in STS must be entered in GTS by the simulator operator. This method allows the use of the same logic for STS and GTS.

2.0 STS DETAILED REQUIREMENTS

2.1 STS FUNCTIONAL CHARACTERISTICS

This model simulates those functions of the Main Propulsion System (MPS) components that are in the Orbiter, namely valve positions, system pressures, and system temperatures. To simplify the model, only those component functions needed to support testing of the Shuttle Avionics System are provided.

The model receives stimuli from three sources: (1) the Flight System via the Signal Termination Module (STM); (2) the Marshall Mated Elements Simulator (MMES); and (3) the Test Operations Center (TOC) Display and Control Module (DCM). The GSIU model transmits parameter values to the Flight System and the MMES via the STM. Figure 1 illustrates the data flow in and out of the model. Tables 1 and 2 list the input stimuli and the output measurements, respectively.

One of the stimuli comes from the MMES and is the low level LO2 signal which is used to determine the states of the LO2 Engine Cut-Off (ECO) sensors in the LO2 Feed Manifold, (reference logic flow chart routine 11). The ECO sensor data is transmitted to the Flight System. The MMES also transmits LO2 and LH2 tank ullage pressures to the STM but these measurements are not used in the model. They are available to the TOC DCM for monitoring during testing.

Four of the stimuli come from the TOC DCM. The helium supply pressures (HE1, HE2, HE3, and HE4) from the DCM are provided by test language and are used to establish the pressure levels in the helium system, (reference logic flow chart routine 1) These pressures are transmitted to the Flight System as well as used in the model to determine if pneumatic valves can or cannot be activated.

The remaining stimuli come from the Flight System and are used to control the valves in the model. The valve in the model are of three types: normally open, normally closed, and latching. The normally open valve remains open unless there is pneumatic pressure and a close command present in which case the valve closes. The normally closed valve remains closed unless there is pneumatic pressure and an open command present in which case the valve opens. The latching valve remains in either the open or close state depending on its

last command, unless there is pneumatic pressure and a command for it to go to its opposite state. These three types of valve actions are shown in the logic flow chart routines titles, Normally Open Valve Routine (NOVR), Normally Closed Valve Routine (NCVR), and Latching Valve Routine (LVR).

The model generates three engines ready for firing discretes (one per engine) which are transmitted to the MMES as a valve status signal prior to engine firing, (reference logic flow chart routine 15).

The stimuli identification numbers used are coded to provide the following information at the SAIL flight cable/GSE/C7U-1140 cable set interface.

Exceptions to this code are those stimuli with a letter for the connector number where the connector number is unknown. Also the stimuli which comes from the DCM instead of the flight cable do not agree with this code.

Figure 2 and 2A are simplified schematics of the Orbiter portion of the MrS and are included in this requirements document for reference.

2.2 DCM UPLINK

A mission phase dependent variable in the Orbiter portion of the MPS is helium supply pressure. To avoid complexity in the GSIU model, the change of helium pressure to account for the operation of pneumatic valves and engine purging was not incorporated into the flowchart logic. Instead, it is intended that the DCM test language transmit new pressure values to the GSIU model at appropriate times to be specified in the TCP. A suggested set of pressure values for a nominal mission are as follows:

PHASE	PRESSURE VALUE (PSIA)
Prelaunch	2,000
Launch	4,u00
Orbit	1,500
Reentry	1,000
Landing	500
	E- د

... FIGURE 2 E-8

Accounting for pressure usage during the mission is more for data realism than to satisfy avionics test requirements. The helium supply pressure might just as well remain fixed at 4,000 psia.

2.3 STS INITIALIZATION REQUIREMENTS

The initial conditions column in the measurements table indicates the state of the model prior to configuring for LH2 and LO2 fill operations and is for reference only. The output measurement values of the model shall reflect the state of the input stimuli when the model is made active.

2.4 STS TERMINATION REQUIREMENTS

None.

2.5 STS UNIQUE REQUIREMENTS

2.5.1 Timers

Two timers called "COUNTER" and "KOUNTER" are used in the LO2 and LH2 manifold pressure subroutines (nos. I2 and I3), respectively. The timers provide a delay before manifold pressures are set to zero. This simulates the time interval during which 20 psig helium pressure is forcing residual liquid propellants out of the manifolds following external tank separation.

2.5.2 Flags

Flags or pseudos that are used for purposes internal to the model are defined as follows:

D - Indicates valve position for the designated valve in the LVR, NCVR, ari NOVR subroutines.

A,B- Indicate valve stimuli for the designated valve in the LvR, NCVR, and NOVR subroutines.

DI thru DI3 - Indicates the latching valve position for:

DI - LO2 Feed Disconnect Valve

D2 - LH2 Feed Disconnect Valve

D3 - LH2 Recirculation Disconnect Valve

Da - LO2 Outboard Fill and Drain Valve

05 - LU2 Inboard Fill and Drain Valve

D6 - LH2 Outboard Fill and Drain Valve

D7 - LH2 Inboard Fill and Drain Valve

D8 - Engine 1 LO2 Prevalve

D9 - Engine 2 LOZ Prevalve

D10 - Engine 3 L02 Prevalve

D11 - Engine 1 LH2 Prevalve

D12 - Engine 2 LH2 Prevalve

D13 - Engine 3 LH2 Prevalve

2.5.3 MPS Propellant Dump Signals

Following Main Engine Cut-Off or External Tank separation, an LO2 signal, an LH2 signal, and an RTLS signal are needed by the Vehicle Dynamics Math Models to compute the changes in vehicle forces and mass properties while MPS residual propellants are discharged overboard. The three signals are generated in the MPS math model and are identified as follows:

LO2 DUMP SIGNAL
LH2DP LH2 DUMP SIGNAL
RTLSDP RTLS DUMP SIGNAL

A state of (1) indicates a dump is in progress. These signals will be sensed by application software in the TOC DCM and will be transmitted to the VDS math models via TICM.

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOMIAL CONVERSION METHOD

NONE

2.6.2 RANGE LIMIT CONVERSION METHOD

Several analog measurements in this model are calculated according to the range limit conversion method, instead of the polynomial conversion method as described in Section. 2.6.1 of this document. The form of the scaling equation for these cases is given as follows:

$$FS_{EU}$$
 = Low + $GSIU_{CTS}$ (High - Low)

where: FS_{EU} = flight system engineering units

 $GSIU_{CTS}$ = $GSIU$ math model count values

Low = Range low limit

High = Range high limit

The following table shows a sample data value for each measurement which requires this type of calculation. The measurement I.D. is shown along with high and low values for the parameter range. The FS column shows the data value in flight system engineering units calculated from the GSIU counts marked CTS in the table. These measurements are marked with an asterisk (*) in the Output Measurement List marked as Table 2 in Section 4.2 of this document.

MEASUREMENT ID	RANGE LOW	RANGE HIGH	FS	стѕ
V41P1100C	0	200	0	0
V41T1101C	-430	-405	-423	286
V41R1115A	0	20000	11183	572
V41P1130C	0	300	0	0
V41T1131C	-305	-255	-290	307
V41P1150C	0	5000	4198	859
V41PJ154C	0	1000	752	769
V41P1200C	0	200	0	0
V41T1201C	-430	-405	-419	450
V41R1215A	0	20000	11202	573
V41P1230C	0	300	0	0
V41T1231C	-305	-255	-286	389
V41P1250C	0	5000	3998	818
V41P1254C	0	1000	754	77'1
V41P1300C	0	200	0	0
V41T1301C	-430	-405	-413	696
V41R1315A	0	20000	11222	57 4
V41P1330C	0	300	0	0
V41T1331C	-305	-255	-279	532
V41P1350C	0	5000	4101	839
V41P1354C	0	1000	756	77 3
V41T1428A	-430	-405	-428	82
V41P1433C	0	100	55	563
V41T1528A	-305	-255	-298	143
V41P1533C	0	300	155	529
V41P1600A	0	5000	4052	829
V41P1605A	0	1000	758	77 5

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 ${\rm FS}_{\rm EU}$ which is equivalent to 534 ${\rm GSIU}_{\rm CTS}$ shown outside the box.

PHEU HE PRESS

EI HE PRESS

ER HE PRESS

E3 HE PRESS

E3 HE PRESS

ENGINE INLET PRESSURES

4.0 INPUT STIMULI/OUTPUT MEASUREMENT TABLES

PRECEDING PAGE BLANK NOT FILME

4.1 STS INPUT TABLE

STIMULI INPUT TO "1 ,ODEL - TABLE 4.1

ENG 1 LH2 PRE-VLV OPEN ENG 1 LH2 PRE-VLV CLOSE ENG 2 LH2 PRE-VLV CLOSE ENG 3 LH2 PRE-VLV CLOSE ENG 3 LH2 PRE-VLV CLOSE ENG 3 LH2 PRE-VLV CLOSE ENG 3 LH2 PRE-VLV CLOSE ENG 3 LH2 PRE-VLV CLOSE ENG 3 LH2 PRE-VLV CLOSE ENG 1 LO2 PRE-VLV CLOSE ENG 1 LO2 PRE-VLV OPEN ENG 2 LO2 PRE-VLV OPEN ENG 3 LO2 PRE-VLV CLOSE ENG 3 LO2 PRE-VLV CLOSE ENG 3 LO2 PRE-VLV CLOSE ENG 4 LO2 PRE-VLV CLOSE ENG 5 LO2 PRE-VLV CLOSE ENG 5 LO2 PRE-VLV CLOSE ENG 6 LO2 PRE-VLV CLOSE ENG 7 LO2 PRE-VLV CLOSE LH2 PRE-VLV CLOSE LH2 PRE-VLV CLOSE LO2 POGO ACCUM VLV 2 CLOSE LO2 OVBD BLEED VLV CLOSE LO2 OVBD BLEED VLV CLOSE LO2 OVBD BLEED VLV CLOSE LO2 OVBD FILL VLV OPEN LO2 OVBD FILL VLV OPEN LO2 INBD FILL VLV OPEN LH2 INBD FILL VLV CLOSE LH2 INBD FILL VLV CLOSE LH2 OTBD FILL VLV CLOSE LH2 INBD FILL VLV CLOSE LH2 INBD FILL VLV OPEN LH2 INBD FILL VLV CLOSE LH2 FEED RTLS OTBD VLV OPEN LH2 FEED BLSC VLV CLOSE LH2 FEED BLSC VLV CLOSE LH2 FEED DLSC VLV OPEN LH2 FEED DLSC VLV CLOSE LH2 FEED LSC VLV CLOSE LH2 FEED		IDENTIFICATION NIMBER	NOMENCLATURE	SOURCE	ST	STATES/RANGE	پير ا
KSOP700-A KSOP701-A KSOP701-A KSOP701-A KSOP701-A KSOP701-A ENG 1 LH2 PRE-VLV CLOSE KSOP701-A ENG 2 LH2 PRE-VLV CLOSE KSOP704-A ENG 2 LH2 PRE-VLV CLOSE KSOP704-A ENG 2 LH2 PRE-VLV CLOSE KSOP704-A ENG 3 LH2 PRE-VLV CLOSE KSOP704-A ENG 1 LOZ PRE-VLV OPEN KSOP710-A ENG 1 LOZ PRE-VLV OPEN KSOP710-A ENG 1 LOZ PRE-VLV OPEN KSOP710-A ENG 1 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 2 LOZ PRE-VLV OPEN KSOP711-A ENG 3 LOZ PRE-VLV ENG 3 LOZ PRE-	_		(V41K)		10	HI	UNITS
KSOP701-A ENG 1.147 PRE-VLV CLOSE KSOP704-A ENG 2.147 PRE-VLV CLOSE KSOP704-A ENG 2.147 PRE-VLV CLOSE KSOP704-A ENG 2.147 PRE-VLV CLOSE KSOP707-A ENG 2.147 PRE-VLV CLOSE KSOP707-A ENG 1.102 PRE-VLV CLOSE KSOP707-A ENG 1.02 PRE-VLV CLOSE KSOP710-A ENG 1.02 PRE-VLV CLOSE KSOP710-A ENG 1.02 PRE-VLV CLOSE KSOP710-A ENG 2.102 PRE-VLV CLOSE KSOP711-A ENG 2.102 PRE-VLV CLOSE KSOP711-A ENG 3.102 PRE-VLV CLOSE KSOP711-A		S0P700-	1 LH2 PRE-VLV OPEN		0	1	STATE
KSOP703-A ENG 2 LH2 PRE-VLV CLOSE KSOP706-A ENG 3 LH2 PRE-VLV CLOSE KSOP706-A ENG 3 LH2 PRE-VLV CLOSE KSOP706-A ENG 3 LH2 PRE-VLV CLOSE KSOP706-A ENG 3 LH2 PRE-VLV CLOSE KSOP701-A ENG 1 LO2 PRE-VLV OPEN KSOP701-A ENG 1 LO2 PRE-VLV OPEN KSOP701-A ENG 1 LO2 PRE-VLV OPEN KSOP713-A ENG 1 LO2 PRE-VLV OPEN KSOP713-A ENG 3 LO2 PRE-VLV OPEN KSOP713-A ENG 3 LO2 PRE-VLV OPEN KSOP713-A ENG 3 LO2 PRE-VLV OPEN KSOP713-A ENG 3 LO2 PRE-VLV OPEN KSOP713-A ENG 3 LO2 PRE-VLV OPEN KSOP713-A ENG 3 LO2 PRE-VLV OPEN KSOP713-A ENG 3 LO2 PRE-VLV OPEN KSOP713-A LO2 OPED FILL VLV OPEN KSOP73-A LO2 OPED FILL VLV OPEN KSOP74-A LH2 INBD FILL VLV OPEN KSOP74-A LH2 INBD FILL VLV OPEN KSOP74-A LH2 INBD FILL VLV OPEN KSOP74-A LH2 PEED FILL VLV OPEN KSOP74-A		50P701-	1 LH2 PRE-VLV CLOSE		-		
KSOPP04-A		50P703-	2 LH2 PRE-VLV OPEN	•	•	4	· •
KS0P706-A ENG 3 LH2 PRE-VLV OPEN		50P704-	2 LH2 PRE-VLV CLOSE				-
KS0P707-A		50P706-	3 LH2 PRE-VLV OPEN				
KSOP710-A KSOP710-A KSOP710-A KSOP710-A KSOP711-A ENG 1 LO2 PRE-VLV CLOSE KSOP711-A ENG 2 LO2 PRE-VLV CLOSE KSOP711-A ENG 2 LO2 PRE-VLV CLOSE KSOP711-A ENG 3 LO2 PRE-VLV CLOSE KSOP710-A LO2 POGO ACCUM VLV 2 CLOSE KSOP720-A LO2 POGO ACCUM VLV 2 CLOSE KSOP731-A LO2 OTBD FILL VLV OPEN KSOP731-A LO2 OTBD FILL VLV OPEN KSOP730-A LO2 INBD FILL VLV OPEN KSOP730-A LO3 INBD FILL VLV OPEN KSOP750-A LO3 INBD FILL VLV OPEN LO3 INBD LO3 INBD FILL VLV OPEN LO3 INBD FILL VLV OPEN LO3 INBD FILL		50P707-	3 LH2 PRE-VLV CLOSE				
KSOP710-A		50P709-	1 LO2 PRE-VLV OPEN	-			
KSOP712-A		50P710-	1 LO2 PRE-VLV CLOSE				
KSOP713-A		50P712-	2 LO2 PRE-VLV OPEN				
KSOP715-A		50P713-	2 LO2 PRE-VLV CLOSE	•			
KSOP716-A		50P715-	3 LO2 PRE-VLV OPEN		_		
KSOP721-A		S0P716-	3 LO2 PRE-VLV CLOSE	-			
KSOP729-A	_	50P721-	2 RECIRC PUMP VLV OPEN				
KSOP731-A LO2 POGO ACCUM VLV 2 CLOSE KSOP733-A LO2 OVBD BLEED VLV CLOSE KSOP735-A LO2 OVBD FILL VLV CLOSE KSOP735-A LO2 OVBD FILL VLV CLOSE LO2 INBD FILL VLV CLOSE KSOP737-A LO2 INBD FILL VLV CLOSE LO2 INBD FILL VLV CLOSE KSOP738-A LO2 INBD FILL VLV OPEN KSOP740-A LH2 OVBD FILL VLV CLOSE KSOP745-A LH2 OVB FILL VLV CLOSE KSOP745-A LH2 OVB FILL VLV CLOSE KSOP746-A LH2 FEED RTLS INBD VLV OPEN KSOP750-A LH2 FEED RTLS INBD VLV OPEN KSOP750-A LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED DISC VLV OPEN LH2 FEED LL L L L L L L L L L L L L L L L L L		50P729-	2 POGO ACCUM VLV 1 CLOSE				
KSOP733-A		50P731-	2 POGO ACCUM VLV 2 CLOSE (-			·
KSOP734-A		50P733-	2 OVBD BLEED VLV CLOSE (
SOP735-A LD2 OTBD FILL VLV CLOSE (1515X) 400 SOP737-A LO2 INBD FILL VLV CLOSE (1512X) 400 SOP738-A LO2 INBD FILL VLV CLOSE (1411X) 400 SOP740-A LH2 TOPPING VLV OPEN (1401X) MOAD LH2 INBD FILL VLV CLOSE (1412X) MOAD LH2 INBD FILL VLV CLOSE (1391X) PA LH2 OTBD FILL VLV OPEN (1913X) ATPS SOP745-A LH2 FEED RTLS OTBD VLV OPEN (1913X) AG SOP746-A LH2 FEED RTLS INBD VLV OPEN (1923X) AG SOP750-A LH2 FEED RTLS INBD VLV OPEN (1521X) AG LH2 FEED BTSC VLV OPEN (1521X) AG LH2 FEED DISC VLV OPEN (1524X) AG LH2 FEED DISC VLV OPEN (1413X) AG LH2 FEED DISC VLV OPEN (1413X) AG LH2 FEED DISC VLV OPEN (1413X) AG	_	50P734-	2 OTBD FILL VLV OPEN (
50P737-A LOZ INBD FILL VLV OPEN S0P738-A LOZ INBD FILL VLV CLOSE (1411x) delia LH2 INBD FILL VLV OPEN LH2 INBD FILL VLV OPEN LH2 INBD FILL VLV CLOSE S0P745-A LH2 INBD FILL VLV OPEN (1412x) S0P745-A LH2 INBD FILL VLV CLOSE S0P746-A LH2 FEED RTLS OTBD VLV OPEN (1913x) LH2 FEED RTLS INBD VLV OPEN (1913x) LH2 FEED RTLS INBD VLV CLOSE S0P750-A LH2 FEED DISC VLV OPEN (1521x) LOZ FEED DISC VLV OPEN (1521x) LH2 FEED DISC VLV OPEN (1521x) LH2 FEED DISC VLV OPEN (1413x) RS (1413x) A LH2 FEED DISC VLV OPEN (1413x) RS (1411x) A LH2 FEED DISC VLV OPEN (1411x) RS (1411x) A LH2 FEED DISC VLV OPEN (1411x) RS (1411x) A LH2 FEED DISC VLV OPEN (1411x) RS (1411x) A LH2 FEED DISC VLV OPEN (1411x) RS (1411x) A LH2 FEED DISC VLV OPEN (1411x) LH2 FEED DISC VLV OPEN (1411x)		S0P735-	2 OTBD FILL VLV CLOSE (1515X)				
SOP738-A LO2 INBD FILL VLV CLOSE (1512X) July CLOSE (1411X) July CLOSE SOP740-A LH2 TOPPING VLV OPEN (1401X) July OPEN (1401X) July OPEN SOP742-A LH2 INBD FILL VLV OPEN (1912X) July OPEN (1913X) July OPEN SOP745-A LH2 OFBD FILL VLV OPEN (1913X) July OPEN (1913X) July OPEN SOP746-A LH2 FEED RTLS INBD VLV OPEN (1923X) July OPEN (1947X) SOP750-A LH2 RELIEF SHUT-OFF VLV CLOSE (1447X) (1521X) SOP754-A LU2 FEED DISC VLV CLOSE (1521X) LO2 FEED DISC VLV CLOSE (1524X) SOP750-A LU2 FEED DISC VLV CLOSE (1413X) LU2 FEED DISC VLV CLOSE (1524X) SOP750-A LH2 FEED DISC VLV CLOSE (1413X)		50P737-	2 INBD FILL VLV OPEN (1501X)				
50P740-A LH2 TOPPING VLV OPEN (1411X) 0.00 50P742-A LH2 INBD FILL VLV OPEN (1401X) 3.00 50P743-A LH2 INBD FILL VLV CLOSE (1412X) 3.00 50P745-A LH2 OTBD FILL VLV OPEN (1933X) APA 50P745-A LH2 FEBD RTLS OTBD VLV OPEN (1913X) APA 50P748-A LH2 FEBD RTLS INBD VLV OPEN (1923X) ASI 50P750-A LH2 FEBD RTLS INBD VLV OPEN (1923X) ASI 50P752-A LH2 RELIEF SHUT-OFF VLV CLOSE (1447X) 50P754-A LL2 FEBD DISC VLV CLOSE (1521X) 50P756-A LL2 FEBD DISC VLV CLOSE (1524X) 50P757-A LL2 FEBD DISC VLV CLOSE (1413X)		50P738-	2 INBD FILL VLV CLOSE (1512X)				
SOP742-A LH2 INBD FILL VLV OPEN SOP743-A LH2 INBD FILL VLV CLOSE SOP745-A LH2 INBD FILL VLV CLOSE SOP745-A LH2 OTBD FILL VLV OPEN SOP746-A LH2 OTBD FILL VLV CLOSE SOP746-A LH2 FEED RTLS OTBD VLV OPEN SOP750-A LH2 FEED RTLS INBD VLV OPEN SOP750-A LH2 FEED RTLS INBD VLV OPEN SOP750-A LH2 RELIEF SHUT-OFF VLV CLOSE SOP750-A LH2 RELIEF SHUT-OFF VLV CLOSE SOP750-A LH2 FEED DISC VLV CLOSE SOP750-A LH2 FEED DISC VLV CLOSE SOP750-A LH2 FEED DISC VLV CLOSE SOP760-A LH2 FEED DISC VLV C		50P740-	2 TOPPING VLV OPEN (1411X)	<u> </u>			
50P743-A LH2 INBD FILL VLV CLOSE (1913) OTB 50P745-A LH2 OTBD FILL VLV OPEN (1393X) OTB 50P746-A LH2 OTBD FILL VLV CLOSE (1913X) OTB 50P746-A LH2 FEED RTLS OTBD VLV OPEN (1923X) ASI 50P750-A LH2 FEED RTLS INBD VLV OPEN (1923X) ASI 50P750-A LH2 RELIEF SHUT-OFF VLV CLOSE (1447X) 50P754-A LH2 RELIEF SHUT-OFF VLV CLOSE (1447X) 50P754-A LH2 RELIEF SHUT-OFF VLV CLOSE (1524X) 50P754-A LH2 FEED DISC VLV OPEN (1524X) 50P754-A LH2 FEED DISC VLV CLOSE (1413X) 50P756-A LH2 FEED DISC VLV CLOSE (1413X)		50P742-	2 INBD FILL VLV OPEN (1401X) M				
SOP745-A LH2 OTBD FILL VLV OPEN (1393X) SOP746-A LH2 OTBD FILL VLV CLOSE (1913X) LH2 FEED RTLS OTBD VLV OPEN (1923X) SOP750-A LH2 FEED RTLS INBD VLV OPEN (1923X) LO2 RELIEF SHUT-OFF VLV CLOSE (1547X) SOP752-A LH2 RELIEF SHUT-OFF VLV CLOSE (1521X) LO2 FEED DISC VLV OPEN (1521X) SOP756-A LH2 FEED DISC VLV CLOSE (1524X) LH2 FEED DISC VLV CLOSE (1413X) FFS COP760-A LH2 FEED DISC VLV CLOSE (1416X)		S0P743-	INBD FILL VLV CLOSE (1412X)		•		
SOP746-A LH2 OTBD FILL VLV CLOSE SOP748-A LH2 FEED RTLS OTBD VLV OPEN (1913X) LH2 FEED RTLS INBD VLV OPEN (1923X) LH2 FEED RTLS INBD VLV OPEN (1923X) LH2 RELIEF SHUT-OFF VLV CLOSE (1547X) SOP752-A LH2 RELIEF SHUT-OFF VLV CLOSE (1521X) SOP754-A LO2 FEED DISC VLV CLOSE (1521X) SOP755-A LH2 FEED DISC VLV CLOSE (1413X) SOP760-A LH2 FEED DISC VLV CLOSE (1416X) RS 1 ST		S0P745-	2 OTBD FILL VLV OPEN (1391X) 7	-			
SOP748-A LHZ FEED RTLS OTBD VLV OPEN (1923X) 50P750-A LHZ FEED RTLS INBD VLV OPEN (1923X) 50P750-A LO2 RELIEF SHUT-OFF VLV CLOSE (1447X) 50P754-A LO2 FEED DISC VLV OPEN (1521X) 50P756-A LO2 FEED DISC VLV CLOSE (1524X) 50P759-A LHZ FEED DISC VLV OPEN (1413X) 50P760-A LHZ FEED DISC VLV CLOSE (1413X) 50P760-A LHZ FEED DISC VLV CLOSE (1416X)		S0P746-	2 OTBD FILL VLV CLOSE (1393X) P				
50P750-A LH2 FEED RTLS INBD VLV OPEN 1923X 454 50P752-A LO2 RELIEF SHUT-OFF VLV CLOSE (1447X) 50P754-A LH2 RELIEF SHUT-OFF VLV CLOSE (1447X) 50P756-A LO2 FEED DISC VLV OPEN 50P757-A LO2 FEED DISC VLV CLOSE (1413X) 50P759-A LH2 FEED DISC VLV CLOSE (1413X) 50P760-A LH2 FEED DISC VLV CLOSE (1416X)		50P748-	Z FEED RTLS OTBD VLV OPEN (1913A)				·
SOP752-A LO2 RELIEF SHUT-OFF VLV CLOSE (194/X) SOP754-A LH2 RELIEF SHUT-OFF VLV CLOSE (1447X) SOP756-A LO2 FEED DISC VLV OPEN (1521X) SOP757-A LO2 FEED DISC VLV CLOSE (1524X) SOP759-A LH2 FEED DISC VLV OPEN (1413X) SOP760-A LH2 FEED DISC VLV CLOSE.		50P750-	2 FEED RTLS INBD VLV OPEN (1923) K				
50P754-A LH2 RELIEF SHUT-OFF VLV CLOSE (1447X) 50P756-A LO2 FEED DISC VLV OPEN (1524X) 50P757-A LO2 FEED DISC VLV CLOSE (1524X) 50P759-A LH2 FEED DISC VLV OPEN (1413X) 50P760-A LH2 FEED DISC VLV CLOSE (1416X)		50P752-	2 RELIEF SHUT-OFF VLV CLOSE (1	•			
50P756-A LO2 FEED DISC VLV OPEN (1521x) 50P757-A LO2 FEED DISC VLV CLOSE (1524x) 50P759-A LH2 FEED DISC VLV OPEN (1413x) 50P760-A LH2 FEED DISC VLV CLOSE. (1416x)		50P754-	Z RELIEF SHUT-OFF VLV CLOSE (1				
50P757-A LO2 FEED DISC VLV CLOSE (1524x)		50P756-	2 FEED DISC VLV OPEN (1	•			
SOP759-A LH2 FEED DISC VLV OPEN (1413X) SOP760-A LH2 FEED DISC VLV CLOSE. (1416X) FS V CLOSE THIS FEED DISC VLV CLOSE.		S0P757-	Z FEED DISC VLV CLOSE (1	>			-~-
SOP760-A LH2 FEED DISC VLV CLOSE. (1416x) FS 0 1 SI		S0P759-	Z FEED DISC VLV OPEN (1	-	-	- ,	
		S0P760-	2 FEED DISC VLV CLOSE. (1	FS	0		STATE

STIMULI INPUT TO S MODEL - TABLE 4.1

LH2 LH2 LH2 LH2 ENC A A A B ENC ENC ENC ENC ENC ENC ENC ENC ENC ENC	(V41K		9		
50P762-A LH2 50P763-A LH2 50P766-A ENC 50P767-A ENC 50P769-A ENC 50P770-A ENC 50P771-A ENC	Mido WW Data Data		3	Ħ	UNITS
50P763-A LH2 50P766-A ENC 50P767-A ENC 50P769-A ENC 50P770-A ENC 50P771-A ENC	CIRC DISC VEV OFFN	FS	0		STATE
50P766-A 50P767-A 50P768-A 50P769-A 50P770-A 50P771-A 50P772-A ENG	CIRC DISC VLV CLOSE			~	
50P768-A ENG 50P769-A ENG 50P770-A ENG 50P771-A ENG	SITERCONNECT "OUT" VLV				
50P769-A ENG 50P770-A ENG 50P771-A ENG 50P772-A ENG	SUPPLY ISOL VLV 2 OPEN (1				
\$0P770-A ENG \$0P771-A ENG \$0P772-A ENG	INTERCONNECT "OUT" VLV OPEN (1				
50P771-A ENG 50P772-A ENG	SUPPLY ISOL VLV 1 OPEN (1				
S0P772-A ENG	VLV 2 OPEN (1				
0.000 A . X - CCCC	UT" VLV OPEN(1				
30P774-A ENG	3 HE SUPPLY ISOL VLV I OPEN (1355X)	-			
50P775-A PNE	LV 1 OPEN (1				
S0P776-A PNE	LV 2 OPEN (1				
K50P779-A LH2	VLV 1 OPEN (1				
50P780-A LH2	VLV 2 OPEN (1				
KSGF781-A LO2	VLV 1 OPEN (1				
50P782-A LO2	VLV 2 OPEN (1				
50P787-1 GN2	- ENG				
50P788-1 CH2	FLOW CONTROL VLV - ENG 2				
301709-1 0n2 500700-A 0715	CONTROL VLV - ENG 5				
50P791-A RTLS	RESS VLV			 .	
S0P792-1 G02	CONTROL VLV - ENG 1	-			
50P793-1 G02	CONTROL VLV -				
S0P794-1 G02	CONTROL VLV - ENG 3	-			_
S0P795-A LH2	DINT BLEED VLV	FS		••····································	
1 PNEU	SUPPLY PRES	OPR		0005	PSIA
HE2 ENG 1	E SUPPLY PRES	****			
ENG ENG	SUPPLY PRE	-	-	- 000	757
ENG	SUPPLY PRES	7. 2.			V31A

STIMULI INPUT TO'S ..ODEL - TABLE 4.1

IDENTIFICATION NUMBER	NOMENCLATURE	(V41K)	SOURCE	15 03	STATES/RANGE U	GE UNITS
K50P86-A K50P87-A K50P88-A K50P89-A	E1 HE INTERCONNECT "IN" VLV OPN E2 HE INTERCONNECT "IN" VLV OPN E3 HE INTERCONNECT "IN" VLV OPN E2 HE PNEU XOVR VLV OPN	(1162x) (1262x) (1362x) (1613x)	· FLT SYS	°	>	STATE
F_40						
		-				
			•			

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

N	
TABLE	
ı	į
MODEL	
MPS	
FROM	
OUTPUT	
MEASUREMENT	
~	•

MEASUREMENT		1.0.		VALUE 1		VALUE	2	VALUE	က	27.1
I. D.	MEASUREMENT NAME	FS	CTS	ES	CIS	FS	CTS	FS	CTS	CHINO
*V41P1100C	ENG 1 LH2 INLET PRESS	0	0	12 52	61 266	17	87	22	113	PSIA
* V41T1101C	ENG 1 LH2 INLET TEMP	-423	286	-405	1023					DEGF
V41X1104X	ENG 1 LH2 PRE-VLV OPEN - A	-:	1	0	0					STATE
V41X1105E	ENG 1 LH2 PRE-VLV CLOSED	0	0	-	<u></u>					STATE
V41X1106X	ENG 1 LH2 PRE-VLV OPEN - B		П	0	0					STATE
V41X1109E	ENG 1 LH2 RECIRC VLV OPEN	-	~	0	0					STATE
V41X1110E	ENG 1 LH2 RECIRC VLV CLOSED	0	C	-						STATE
* V41R1115A	ENG 1 L' RECIRC PUMP SPEED	11183	572	0	0					RPM
* V41P1130C	ENG 1 LOZ INLET PRESS	0	0	17	28	123	419	152	518	PSIA
* V41T1131C	ENG 1 LO2 INLET TEMP	-290	307	-255	1023					DEGF
V41X1134X	ENG 1 LO2 PRE-VLV OPEN		П	0	0					STATE
V41X1135E	ENG 1 LO2 PRE-VLV CLOSED	0	0	-	-					STATE
*V41P1150C	ENG 1 HE SUPPLY PRESS	4198	859							PSIA
*V41P1154C	ENG 1 HE REG OUT PRESS	752	692	22	23					PSIG
* V41P1200C	ENG 2 LHZ INLET PRESS	0	0	14 54	72 276	, 19	97	24	123	PSIA
* V41T1201C	ENG 2 LH2 INLET TEMP	-419	450	-405	1023					DEGF
V41X1204X	ENG 2 LH2 PRE-VLV OPEN - A		-	0	0					STATE
V41X1205E	ENG 2 LH2 PRE-VLV CLOSED	0	0	-	-					STATE
V41X1206X	ENG 2 LH2 PRE-VLV OPEN - B	~		0	0					STATE
V41X1209E	ENG 2 LH2 RECIRC VLV OPEN	-1	-	0	0					STATE
V41X1210E	ENG 2 LH2 RECIRC VL! CLOSED	0	0	.						STATE

This measurement uses the range limit conversion method of calculating ${\sf FS}_{\sf EU}$ from ${\sf GSIU}_{\sf CTS}$ as discussed in Section 2.6.2. *NOTE:

MEASUKEMEN		ن 		VALUE 1		VALUE	7	VALUE	~	MITTO
I. 0	MEASUREMENT NAME	FS	CIS	ES	CIS	FS	CTS	FS	CTS	CITYO
*V41R1215A	ENG 2 LH2 RECIRC VLV PUMP SPEED	11202	573	0	0					₽ PM
*V41P1230C	ENG 2 LO2 INLET PRESS	0	0	15 154	52 528	19	65	150	512	PSIA
*V41T1231C	ENG 2-102 INLET TEMP	-286	389	-255	1023					DEGF
V41X1234X	ENG 2 LO2 PRE-VLV OPEN	-	~	0	0					STATE
V41X1235E	ENG 2 LO2 PRE-VLV CLOSED	0	0	7	-					STATE
*V41P1250C	ENG 2 HE SUPPLY PRESS	3998	818							PSIA
*V41P1254C	ENG 2 HE REG OUT PRESS	754	771	24	25					PSIG
*V41P1300C	ENG 3 LH2 INLET PRESS	0	0	26	133	16 56	288	21	107	PSIA
*V41T1301C	ENG 3 LH2 INLET TEMP	-413	969	-405	1023					DEGF
V41X1304X	ENG 3 LH2 PRE-VLV OPEN - A	-	r=1	0	0					STATE
V41X1305E	ENG 3 LH2 PRE-VLV CLOSED	0	0	,4			_			STATE
V41X1306X	ENG 3 LH2 PRE-VLV OPEN - B 動物	-	—	0	0					STATE
V41X1309E	ENG 3 LH2 RECIRC VLV OPEN	-	-	0	0	•				STATE
V41X1310E	ENG 3 LH2 RECIRC VLV CLOSED 30 EV	0	0	-	-	-				STATE
*V41R1315A	ENG 3 LH2 RECIRC PUMP SPEED & T	11222	574	0	0					RPM
₩41P1330C	ENG 3 LO2 INLET PRESS ALITY AL	0	0	39	133	19 156	65 532	21 174	72 593	PSIA
*V41T1331C	ENG 3 LOZ INLET TEMP	-279	532	-255	1023					DEGF
V41X1334X	ENG 3 LO2 PRE-VLV OPEN		~	0	0	-				STATE
V41X1335E	ENG 3 LO2 PRE-VLV CLOSED	0	0		r=4					STATE
]					

MODEL - TABLE 2

MEASUREMENT OUTPUT FROM MPS

This measurement uses the $r_{\rm eng}$ e limit conversion method of calculating FS $_{EU}$ from GSIU $_{\rm CTS}$ as discussed in section 2.6.2. *NUTE:

MEASUREMENT		1.C.		VALUE 1		VALUE	8	YALUE	<u>س</u>	
I. D.	MEASUREMENT NAME	FS	CTS	FS	SIS	FS	CTS	FS	CTS	UNITS
*V41P1350C	ENG 3 HE SUPPLY PRESS	4101	839						_	PSIA
*741P1354C	ENG 3 HE REG OUT PRESS	756	773	56	27					PSIG
V41X1388E	LH2 OTBD FILL VLV OPEN	0	0		F-1					STATE
V41X1389X	LH2 OTBD FILL VLV CLOSED	←	7	0	0					STATE
V41X1409E	LH2 INBD FILL VLV OPEN	0	0	1	~					STATE
741X1410X	LH2 INBO FILL VLV CLOSED		~	0	0					STATE
. V41X1419E	LH2 RECIRC DISC VLV OPEN	+-1	7	0	0					STATE
* V41T1428A	LH2 FEED MANIFOLD DISC TEMP	-428	82	-405	1023					DEGF
V41X1429X	LHZ FEED DISC VLV OPEN	H	-	0	0					STATE
V41X1430X	LH2 FEED DISC VLV CLOSED - A	0	0		-					STATE
*V41P1433C	LHZ ENG MANIFOLD PRESS	55	563	15 0	153	20	205	52	256	PSIA
V41X1434X	LHZ FEED DISC VLV CLOSED - B	0	0	-						STATE
V41X1442E	LH2 FEED LINE RLF SHUT-OFF VLV CLOSED	0	0	-	~-1					STATE
V41X1453E	LH2 TOPPING VLV OPEN		-	0	0					STATE
V41X1456X	LH2 TOPPING VLV CLOSED	0	0		-					STATE
V41X1468E	LH2 HI POINT BLEED VLV OPEN	→	<u>~</u>	0	0					STATE
V41X1469E	LH2 HI POINT BLEED VLV CLOSED	0	0		-					STATE
V41X1509X	LO2 INBD FILL VLV CLOSED	1		0	0					STATE
V41X1510E	LOZ INBD FILL VLV OPEN	0	0	,1	r-4					STATE
V41X1513E	LOZ OTBO FILL VLV OPEN	0	0	~ 1	-					STATE
V41X1514X	LO2 OTBD FILL VLV CLOSED	←	_	0	0					STATE
*V41T1528A	LO2 FEED MANIFOLD DISC TEMP	-298	143	-255	1023					DEGF
			1		1					

MODEL - TABLE 2

MEASUREMENT OUTPUT FROM MPS

*NOTE: This measurement uses the range limit conversion method of calculating FS $_{\rm EU}$ from GSIU $_{\rm CTS}$ as discussed in section 2.6.2.

	MEASUREMENT OUTPUT FROM	MPS M	DEL .	MODEL - TABLE 2						
MEASUREMENT		I.C.		VALUE 1		VALUE	2	VALUE	м	11
I. D.	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	CITAD
V41X1529X	LO2 FEED DISC VLV OPEN	,- -1		0	0					STATE
V41X1530X	LO2 FEED DISC VLV CLOSED - A	0	0	 1	-		-			STATE
*V41P1533C	LOZ ENG MANIFOLD PRESS	155	529	20	89	0	0			PSIA
V41X1534X	LOZ FEED DISC VLV CLOSED - B	0	0	-	-					STATE
V41X1542E	LO2 FEED LIKE RLF SHUT-OFF VLV CLOSED	0	0	-	r-4					STATE
V41X1580X	LO2 OVBD BLEED VLV CLOSED - A		~	0	0					STATE
V41X1581X	LOZ OVBD BLEED VLV CLOSED - B	-	Н	0	0					STATE
V41X1587E	LO2 OVBD BLEED VLV OPEN	0	0	-		-				STATE
*V41P1600A	PNEU VLV HE SUPPLY PRESS	4052	829							PSIA
*V41P1605A	PNEU HE REG OUT PRESS	758	775	. 82	29					PSIG
V41X1811X	LO2 ACCUM RECIRC VLV 1 OPEN	-	-	0	0					STATE
V41X1818E	LOZ ACCUM RECIRC VLV 1 CLOSED	0	0		-					STATE
V41X1821X	LO2 ACCUM RECIRC VLV 2 OPEN	~1		0	0					STATE
V41X1828E	LO2 ACCUM RECIRC VLV 2 CLOSED	0	0		-					STATE
V41X1919X	LH2 RTLS OTBD DRAIN VLV 'LOSE'	-	-	0	0					STATE
V41X1929X	LH2 RTLS INBD DRAIN VLV CLOSED	-	~	0	0					STATE
VGH1	ENG 1 GHZ FLOW CONTROL VLV POSN - LO	0	0	t	-	-				STATE
VGHZ	ENG 2 GH2 FLOW CONTROL VLV POSN - LO	0	0		-					STATE
VGH3	ENG 3 GHZ FLOW CONTROL VLV POSN - LO	0	0	1			· · · · · · · · · · · · · · · · · · ·			STATE

This measurement uses the range limit conversion method of calculating ${\sf FS}_{EU}$ from ${\sf GSIU}_{{\it CTS}}$ as discussed in section 2.6.2. *NOTE:

	STIMI	2110	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	
Ì	ю	CTS										
	VALUE	FS										
	2	CTS										
	VALUE	FS										
		CIS			1	~	~		-	~	~	
MODEL - TABLE 2	VALUE 1	ES	-			7	-	,- 4	-		.	
DEL -	.;	CTS	0	0	0	0	0	0	0	0	0	
PIPS MOD	I.C.	FS	0	0	0	0	0	0	0	0	0	
MEASUREMENT OUTPUT FROM		MEASL. EMENT NAME	ENG 1 GOZ FLOW CONTROL VLV POSN - LO	ENG 2 GOZ FLOW CONTROL VLV POSN - LO	ENG 3 GOZ FLOW CONTROL VLV POSN - LO	ENG 1.PLUMBING READY DISCRETE	ENG 2 PLUMBING READY DISCRETE	ENG 3 PLUMBING READY DISCRETE	LOZ DUMP SIGNAL	LH2 DUMP SIGNAL	RTLS DUMP SIGNAL	
	MEASUREMENT	I. D.	VG01	7302	VG03	E .	VE2	E3	LOZDP	LHZDP	RTLSDP	

- 5.0 STS REFERENCES
- 5.1 VS70-415001, MAIN PROPULSION SYSTEM SCHEMATIC
- 5.2 382-240-CDM/76-062, ROCKWELL PRELIMINARY REQUIREMENTS
- 5.3 382-240-CDM/76-064, PRELIMINARY REQUIREMENTS UPDATE
- 5.4 LEC-7827, MPS SIMULATION REQUIREMENTS
- 5.5 SD76-SH-0026, MPS DUMP SEQUENCE (LT EL C FSSR)

12.0 GTS DETAILED REQUIREMENTS

12.1 GTS FUNCTIONAL CHARACTERISTICS

This model simulates those functions of the Main Propulsion System (MPS) components that are in the Orbiter, namely valve positions, system pressures, and system temperatures. To simplify the model, only those component functions needed to support testing of the Shuttle Avienics System are provided.

The mode! receives stimuli from three sources: (1) the flight System; (2) the Marshall Mated Elements Simulator (MMES); and (3) the Non-Avionics Simulator (MAS) Console. The model transmits parameter values to the Flight System and the MMES. Figure 3 illustrates the data flow in and out of the model. Tables 14.1 and 14.2 list the input stimuli and the output measurements, respectively.

The model generates three engines ready for firing discretes (one per engine) which are transmitted to the MMES as a valve status signal prior to engine firing, (reference logic flow chart routine 15).

The GTS math model is the same as the STS math model except for differences brought about by test station differences.

- A front end program has been added to the GTS math model which converts the multiple input stimuli used in GTS into the singular input stimuli used in STS.
- The External Tank (LT) flow control valve stimuli, which the Flight Control System sends to the math model in STS, is not available in GTS and is replaced by ET LU2 and LH2 ullage pressures from the MMES. A change to the GTS logic flow diagrams was necessary to process the ullage pressure signals.
- A new subroutine called Engine Prevalve Routine (EPR) was added to the GTS math model to accommodate the Mainstage stimuli provided by the Flight System in GTS. The Mainstage stimuli prevent closing of the engine prevalves while the engine is ignited.

FIGURE 3 - GTS SYSTEM DATA FLOW

12.2 NAS UPLINK

A mission phase dependent variable in the Orbiter portion of the MPS is helium supply pressure. To avoid complexity in the GSIU model, the change of helium pressure to account for the operation of pneumatic valves and engine purging was not incorporated into the flowchart logic. Instead, it is intended that the NAS operator transmit new pressure values to the model at appropriate times to be specified in the TCP. A suggested set of pressure values for a nominal mission are as follows:

PHASE	PRESSURE VALUE (PSIA)
Prelaunch	2,000
Launch	4,000
Orbit	1,500
Reentry	1,000
Landing	500

Accounting for pressure usage during the mission is more for data realism than to satisfy avionics test requirements. The helium supply pressure might just as well remain fixed at 4,000 psia.

Discrete stimulus K50P721-A snall be generated by the Non-Avionic Simulator (NAS) console operator to simulate a ground command to the LH2 RECIRC PUMPS during prelaunch checkout. In STS this signal comes from the flight system.

12.3 GTS INITIALIZATION REQUIREMENTS

The initial conditions column in the stimuli/measurements table indicates the state of the model prior to configuring for LH2 and LO2 fill operations and is for reference only. The output measurement values of the model shall reflect the state of the input stimuli when the model is made active.

12.4 GTS TERMINATION REQUIREMENTS

None.

12.5 GTS UNIQUE REQUIREMENTS

12.5.1 Timers

Two timers called "COUNTER" and "KOUNTER" are used in the LO2 and LH2 manifold pressure subroutine (nos. 12 and 13), respectively. The timers provide a delay before manifold pressures are set to zero. This

simulates the time interval during which 20 psig helium pressure is forcing residual liquid propellants out of the manifolds following external tank separation.

12.5.2 Flags

Flags or pseudos that are used for purposes internal to the model are defined as follows:

- D Indicates valve position for the designated valve in the LVR, NCVR, and NOVR subroutines.
- A,B- Indicate valve stimuli for the designated valve in the LVR, NCVR, and NOVR subroutines.
- D1 thru D13 Indicates the latching valve position for:
 - D1 LO2 Feed Disconnect Valve
 - D2 LH2 Feed Disconnect Valve
 - D3 LH2 Recirculation Disconnect Valve
 - D4 LO2 Outboard Fill and Drain Valve
 - 05 LO2 Inboard Fill and Drain Valve
 - D6 LH2 Outboard Fill and Drain Valve
 - D7 LH2 Inboard Fill and Drain Valve
 - D8 Engine 1 LO2 Prevalve
 - D9 Engine 2 LO2 Prevalve
 - D10 Engine 3 L02 Prevalve
 - D11 Engine 1 LHZ Prevalve
 - D12 Engine 2 LH2 Prevalve
 - D13 Engine 3 LH2 Prevalve

12.5.3 DISCRETE STIMULI

The following discrete stimuli from the Flight System are not used in the GTS logic flow diagrams but are to be displayed to the NAS console operator for monitoring:

NOMINAL NUMBER	NOMENCLATURE
V41K1700X	REPLACE LH2 ULLAGE PRESS XDCR # 1
V41 K1701X	REPLACE LH2 ULLAGE PRESS XDCR # 2
V41K1702X	REPLACE LH2 ULLAGE PRESS XDCR # 3
V41k1750X	REPLACE LO2 ULLAGE PRESS XDCR # 1
V41K1751X	REPLACE LO2 ULLAGE PRESS XDCR # 2
V41K1752X	REPLACE LO2 ULLAGE PRESS XDCR # 3

12.5.4 MPS PROPELLANT DUMP SIGNALS

Following Main Engine Cut-Off or External Tank separation, an LO2 signal, an LH2 signal, and an RTLS signal are needed by the Vehicle Dynamics Math Models to compute the changes in vehicle forces and mass properties while MPS residual propellants are discharged overboard. The three signals are generated in the MPS math model and are identified as follows:

LO2DP LO2 DUMP SIGNAL
LH2DP LH2 DUMP SIGNAL
RT SDP RTLS DUMP SIGNAL

A state of (1) indicates a dump is in progress.

13.0 GTS LOGIC FLOW DIAGRAMS

ENGINE PREVALVE ROUTINE (EPR)

ORIGINAL PAGE IS
OF POOR QUALITY

PHEU HE PRESS

EI HE PRESS

EI HE PRESS

ORIGINAL PAGE IS

ER HE PRESS K50P 770A EX ISOL K50PTTIA 2 HE3 >750 K50187A PNEU SPLY. HE1 >750 N EIIC VLY OUT K50P766A

ER HE PRESS

E3 HE PRESS

E3 HE PRESS

14.0 INPUT STIMULI/OUTPUT MEASUREMENT TABLES

PRECEDING PAGE BLANK NOT FILM

14.1 GTS INPUT TABLE

STIMULI INPUT TO ! . "ODEL - TABLE 14.1

	IDENTIFICATION	NOMENC! ATHRE	SOURCE	STA	STATES/RANGE	e E
	NUMBER			2	Ŧ	UNITS
	_	1 LH2 PRE-VLV OPN CMD	FLT SYS	0	_	STATE
		1 LH2 PRE-VLV OFN CMD				
	_	1 L'42 PRE-				
	_	1 LHZ PRE-VLV OPN CMD				
	Ξ	1 LH2 PRE-VLV OPN CMD				
	Ξ	1 LH2 PRE-VLV OPN CMD				
	_	1 LH2 PRE-VLV CLS CMD				
	Ξ	1 LH2 PRE-VLV CLS CMD				
	=	1 LH2 PRE-VLV CLS CMD				
	ΙXΙ	1 LH2 JRE-VLV CLS CMD				
		1 Lh2 PRE-VLV CLS CND				
	741K1124E	1 LHZ PRE-VLY CLS CMD				
	K	1 MAINSTAGE				
	K	1 MAINSTA				
.	_	1 LOZ "FE-VLV OPN CP				
E-1	_	1 LO2 PRE-VLV OPN CP				
91		1 LUZ PRE-VLV UPN CM				
•	Ξ	1 LUZ PRE-VLV UPN CM	-			
	Ξ	1 LOZ PRE-VLV OPN CM	•			
	V41K1138E	ENG 1 LOZ PRE-VLV OPN CMD C				
		1 LOZ PRE-VLV CLS CM				
		1 LOZ PRE-VLV CLS CM				
	Ξ	1 LOZ PRE-VLV CLS CM				
	Ξ;	1 1 2 PRE-VLV CLS CA	_			
	25	1 LOZ FRE-VLV CLS CP		_		
	= =	THE ISOL VIV TOPN				
	\overline{z}	I HE ISOL VLV 2 OPN CMD				
	\equiv	1 HE ISOL VLV 2 OPN				
	Ξ	1 HE ISOL VLV 1 CLS				
	Ξ	1 HE ISOL VLV 2 CLS	⇒	>	>	>
	Ξ	ISOL VLV 2 CLS	FLT SYS	.0	, - -	STATE
_						

STIMULI, INRUT, TO, "PS, MODEL -, TABLE 14:1

### 120 Find 2 Lie Pre-VLV OPH CHO A A A A STATESTOR ENG 2 Lie Pre-VLV OPH CHO A A A A STATESTOR ENG 2 Lie Pre-VLV OPH CHO B ENG 2 Lie Pre-VLV OPH CHO B ENG 2 Lie Pre-VLV OPH CHO B ENG 2 Lie Pre-VLV OPH CHO B ENG 2 Lie Pre-VLV OPH CHO B ENG 2 Lie Pre-VLV OPH CHO B ENG 2 Lie Pre-VLV OPH CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV OPH CHO C ENG 2 Lie Pre-VLV OPH CHO C ENG 2 Lie Pre-VLV OPH CHO B ENG 2 Lie Pre-VLV OPH CHO C ENG 2 Lie Pre-VLV OPH CHO C ENG 2 Lie Pre-VLV OPH CHO C ENG 2 Lie Pre-VLV OPH CHO C ENG 2 Lie Pre-VLV OPH CHO C ENG 2 Lie Pre-VLV OPH CHO C ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO B ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Pre-VLV CLS CHO C ENG 2 Lie Fisol VLV 2 CNC C C C C C C C C C C C C C C C C C		IDENTIFICATION	NOMENCLATURE	SOURCE	ST	STATES/RANGE	gg
FIT FIT		NUMBER		-		표	UNITS
VAIKT219E		41K1	2 LH2 PRE-VLV OPN CMD		0	,	STATE
VAIKTOZOK ENG 2 LH2 PRE-VL V OPN CND B VAIKTOZOK ENG 2 LH2 PRE-VL V OPN CND C VAIKTOZOK ENG 2 LH2 PRE-VL V OPN CND C VAIKTOZOK ENG 2 LH2 PRE-VL V CLS CND A VAIKTOZOK ENG 2 LH2 PRE-VL V CLS CND B VAIKTOZOK ENG 2 LH2 PRE-VL V CLS CND B VAIKTOZOK ENG 2 LH2 PRE-VL V CLS CND B VAIKTOZOK ENG 2 LH2 PRE-VL V CLS CND B VAIKTOZOK ENG 2 LH2 PRE-VL V CLS CND B VAIKTOZOK ENG 2 LH2 PRE-VL OPN CND A VAIKTOZOK ENG 2 LU2 PRE-VL OPN CND A VAIKTOZOK ENG 2 LO2 PRE-VL OPN CND C VAIKTOZOK ENG 2 LO2 PRE-VL OPN CND C VAIKTOZOK ENG 2 LO2 PRE-VL OPN CND C VAIKTOZOK ENG 2 LO2 PRE-VL OPN CND C VAIKTOZOK ENG 2 LO2 PRE-VL OPN CND C VAIKTOZOK ENG 2 LO2 PRE-VL OPN CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND A VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND A VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND A VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND A VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C CLS CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C VAIKTOZOK ENG 2 LO2 PRE-VL C C CND C C CND C C CND C C CND C C CND C C CND C C C CND C C C C		Ξ	2 LHZ PRE-VLV OPN CMD			_	
VAIKIZZUE ENG 2 LHZ PRE-VIV OPN CMO C VAIKIZZUE ENG 2 LHZ PRE-VIV OPN CMO C VAIKIZZUE ENG 2 LHZ PRE-VIV OPN CMO C VAIKIZZUE ENG 2 LHZ PRE-VIV CLS CMO A VAIKIZZUE ENG 2 LHZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LHZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LHZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LHZ PRE-VIV CLS CMO C VAIKIZZUE ENG 2 LHZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LHZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV OPN CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV OPN CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV OPN CMO C VAIKIZZUE ENG 2 LOZ PRE-VIV OPN CMO C VAIKIZZUE ENG 2 LOZ PRE-VIV CLS CMO A VAIKIZZUE ENG 2 LOZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LOZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LUZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LUZ PRE-VIV CLS CMO B VAIKIZZUE ENG 2 LE ISOL VIV 2 CON CMO B VAIKIZZUE ENG 2 HE ISOL VIV 2 CLS CMO A VAIKIZGUE ENG 2 LOS CMO A VAIKIZGUE ENG 2 LOS CMO A VA		\mathbf{Z}	2 LH2 PRE-LLY OPN CMD				
VAINT221X ENG 2 LH2 PRE-VLV OPN CMD C VAINT221E ENG 2 LH2 PRE-VLV CLS CMD A VAINT222X ENG 2 LH2 PRE-VLV CLS CMD A VAINT223X ENG 2 LH2 PRE-VLV CLS CMD B ENG 2 LH2 PRE-VLV CLS CMD B VAINT224E ENG 2 LH2 PRE-VLV CLS CMD C VAINT224E ENG 2 LH2 PRE-VLV CLS CMD C VAINT224E ENG 2 LH2 PRE-VLV CLS CMD C VAINT224E ENG 2 LH2 PRE-VLV CLS CMD C VAINT225X ENG 2 LU2 PRE-VLV OPN CMD A VAINT236E ENG 2 LO2 PRE-VLV OPN CMD B VAINT237X ENG 2 LO2 PRE-VLV OPN CMD C VAINT237X ENG 2 LO2 PRE-VLV OPN CMD C VAINT238E ENG 2 LO2 PRE-VLV OPN CMD C VAINT239E ENG 2 LO2 PRE-VLV OPN CMD C VAINT239E ENG 2 LO2 PRE-VLV CLS CMD C VAINT236E ENG 2 LO2 PRE-VLV CLS CMD C VAINT255E ENG 2 LO2 PRE-VLV CLS CMD C VAINT255E ENG 2 LO2 PRE-VLV CLS CMD C VAINT256E ENG 2 LE ISOL VLV 2 OPN CMD A VAINT256E ENG 2 HE ISOL VLV 2 CLS CMD C VAINT266E ENG 2 HE ISOL VLV 2 CLS CMD C VAINT267E ENG 2 HE ISOL VLV		\mathbf{z}	2 LH2 PRE-VLV OPN CMD		-		
VAIK1221E ENG 2 LH2 PRE-VLV OPR CMD A VAIK1222E ENG 2 LH2 PRE-VLV CLS CMD A VAIK1222E ENG 2 LH2 PRE-VLV CLS CMD B VAIK1223E ENG 2 LH2 PRE-VLV CLS CMD B VAIK1224X ENG 2 LH2 PRE-VLV CLS CMD B VAIK1224X ENG 2 LH2 PRE-VLV CLS CMD CMD CMD CMD CMD CMD CMD CMD CMD CMD		$\overline{\mathbf{z}}$	2 LHZ PRE-VLV OPN CMD				
V41K1222X V41K1222X V41K1222X V41K1222X V41K1222X V41K1222X V41K1222X V41K1222X V41K1222X V41K1223X ENG 2 LH2 PRE-VLV CLS CMD 8 V41K1223X ENG 2 LH2 PRE-VLV CLS CMD 6 V41K1223X ENG 2 LH2 PRE-VLV CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CLS CMD CMD CLS CMD CMD CMD CMD CMD CMD CMD CMD CMD CMD		\Box	2 LH2 PRE-VLV OPN CMU				
VATIK 1222E	-	Ξ	2 LHZ PRE-VLV CLS CMD				
VATRIZZAY VATRIZZAY VATRIZZAY ENG Z LHZ PRE-VLV CLS CMO B VATRIZZAE ENG Z LHZ PRE-VLV CLS CMO C VATRIZZAE ENG Z LHZ PRE-VLV CLS CMO C VATRIZZAE ENG Z LHZ PRE-VLV CLS CMO C VATRIZZAE ENG Z LUZ PRE-VLV CLS CMO B VATRIZZAE ENG Z LUZ PRE-VLV OPN CMD B VATRIZZAE ENG Z LUZ PRE-VLV OPN CMD B VATRIZZAE ENG Z LUZ PRE-VLV OPN CMD C VATRIZZAE ENG Z LUZ PRE-VLV CLS CMD B VATRIZZAE ENG Z LUZ PRE-VLV CLS CMD C VATRIZZAE ENG Z LUZ PRE		\mathbf{z}	2 LHZ PRE-VLV CLS CMD				
V41K1223E V41K1224 V41K1224 V41K1224 ENG 2 LH2 PRE-VLV CLS CMO C V41K1225 V41K1225 ENG 2 LH2 PRE-VLV CLS CMO C V41K1225 ENG 2 LH2 PRE-VLV CLS CMO C V41K1225 ENG 2 LOZ PRE-VLV OPN CMO A V41K1237 ENG 2 LOZ PRE-VLV OPN CMO B V41K1237 ENG 2 LOZ PRE-VLV OPN CMO C V41K1238 ENG 2 LOZ PRE-VLV OPN CMO C V41K1239 ENG 2 LOZ PRE-VLV OPN CMO C V41K1239 ENG 2 LOZ PRE-VLV CLS CMO A V41K1240 ENG 2 LOZ PRE-VLV CLS CMO B V41K1240 ENG 2 LOZ PRE-VLV CLS CMO B V41K1256 ENG 2 LOZ PRE-VLV CLS CMO C V41K1256 ENG 2 LOZ PRE-VLV CLS CMO B V41K1256 ENG 2 LOZ PRE-VLV CLS CMO C V41K1256 ENG 2 LE ISOL VLV 2 CNO CMO C V41K1256 ENG 2 HE ISOL VLV 2 CLS CMO C V41K1265 ENG 2 HE ISOL VLV 2 CLS CMO C V41K1267 ENG 2 LOZ PRE-VLV CLS CMO C V41K1267 ENG 2 LOZ PRE-VLV CLS CMO C V41K1267 ENG 2 LOZ PRE-VLV CLS CMO C V41	=	Ζ'	Z LHZ PRE-VLV CLS CMD		-		
V41K1224X ENG 2 LH2 PRE-TLV CLS CMD C V41K1224X ENG 2 LH2 PRE-TLV CLS CMD C V41K1226X ENG 2 LH2 PRE-TLV CLS CMD B V41K1236X ENG 2 LO2 PRE-TLV OPN CMD B V41K1237X ENG 2 LO2 PRE-TLV OPN CMD B V41K1237X ENG 2 LO2 PRE-TLV OPN CMD B V41K1238X ENG 2 LO2 PRE-TLV OPN CMD C V41K1238X ENG 2 LO2 PRE-TLV OPN CMD C V41K1239X ENG 2 LO2 PRE-TLV OPN CMD C V41K1239Y ENG 2 LO2 PRE-TLV CLS CMD A V41K1239Y ENG 2 LO2 PRE-TLV CLS CMD B V41K1241Y ENG 2 LO2 PRE-TLV CLS CMD C V41K1256E ENG 2 LO2 PRE-TLV CLS CMD C V41K1256E ENG 2 LO2 PRE-TLV CLS CMD C V41K1256E ENG 2 LE ISOL VLV 2 OPN CMD C V41K1256E ENG 2 HE ISOL VLV 2 OPN CMD B V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1267E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1267E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1267E ENG 2 HE ISOL VLV 2 CLS CMD A	==		Z LHZ PRE-VLV CLS CMD				
V41K1224E ENG-2 LAZ V41K1225X ENG-2 MAINSTAGE CMD A V41K1225X ENG-2 MAINSTAGE CMD A V41K1236X ENG-2 LOZ PRE-VLV OPN CMD A V41K1237X ENG-2 LOZ PRE-VLV OPN CMD B V41K1237X ENG-2 LOZ PRE-VLV OPN CMD C V41K1238X ENG-2 LOZ PRE-VLV OPN CMD C V41K1238X ENG-2 LOZ PRE-VLV OPN CMD C V41K1238X ENG-2 LOZ PRE-VLV OPN CMD C V41K1239X ENG-2 LOZ PRE-VLV CLS CMD A V41K1239X ENG-2 LOZ PRE-VLV CLS CMD A V41K1240C ENG-2 LOZ PRE-VLV CLS CMD B ENG-2 LOZ PRE-VLV CLS CMD B V41K1240C ENG-2 LOZ PRE-VLV CLS CMD C V41K1241X ENG-2 LOZ PRE-VLV CLS CMD C V41K1241X ENG-2 LOZ PRE-VLV CLS CMD C V41K1241C ENG-2 LOZ PRE-VLV CLS CMD C V41K125C ENG-2 LOZ PRE-VLV CLS CMD C CMD C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIND-VIVIN C FIN	==		Z LHZ PRE-VLV CLS CMD				
V41K1225X ENG 2 MAINSTAGE CMD A V41K1226X ENG 2 MAINSTAGE CMD B V41K1236X ENG 2 LOZ PRE-VLV OPN CMD A V41K1236X ENG 2 LOZ PRE-VLV OPN CMD B V41K1237X ENG 2 LOZ PRE-VLV OPN CMD B V41K1237X ENG 2 LOZ PRE-VLV OPN CMD C V41K1238X ENG 2 LOZ PRE-VLV OPN CMD C V41K1238X ENG 2 LOZ PRE-VLV OPN CMD C V41K1239E ENG 2 LOZ PRE-VLV OPN CMD A V41K1239E ENG 2 LOZ PRE-VLV CLS CMD A V41K1239E ENG 2 LOZ PRE-VLV CLS CMD B V41K1240X ENG 2 LOZ PRE-VLV CLS CMD C V41K1241X ENG 2 LOZ PRE-VLV CLS CMD C V41K1241X ENG 2 LOZ PRE-VLV CLS CMD C V41K1255E ENG 2 LOZ PRE-VLV CLS CMD C V41K1255E ENG 2 LOZ PRE-VLV CLS CMD C V41K1255E ENG 2 LOZ PRE-VLV CLS CMD C V41K1255E ENG 2 LOZ PRE-VLV CLS CMD C V41K1255E ENG 2 LE ISOL VLV 2 CLS CMD A V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1267E ENG	-=	\overline{z}	Z LHZ PRE-VLV CLS CMU			-	
V41K1226X ENG 2 MAINS TAGE CMD 8 V41K1236X ENG 2 LO2 PRE-VLV OPN CMD A V41K1236X ENG 2 LO2 PRE-VLV OPN CMD B V41K1237X ENG 2 LO2 PRE-VLV OPN CMD B V41K1237X ENG 2 LO2 PRE-VLV OPN CMD CMD CMD CMD CMD CMD CMD CMD CMD CMD		$\mathbf{\nabla}$	2 MAINSTAGE CM	<u></u>	-	-	
V41K1236X ENG 2 LO2 PRE-VLV OPN CMD A V41K1236X ENG 2 LO2 PRE-VLV OPN CMD B V41K1237X ENG 2 LO2 PRE-VLV OPN CMD B V41K1237X ENG 2 LO2 PRE-VLV OPN CMD C V41K1238X ENG 2 LO2 PRE-VLV OPN CMD C V41K1238X ENG 2 LO2 PRE-VLV OPN CMD C V41K1238X ENG 2 LO2 PRE-VLV CLS CMD A V41K1239Y ENG 2 LO2 PRE-VLV CLS CMD A V41K1239Y ENG 2 LO2 PRE-VLV CLS CMD B V41K1240Y ENG 2 LO2 PRE-VLV CLS CMD B V41K1241X ENG 2 LO2 PRE-VLV CLS CMD C V41K1241X ENG 2 LO2 PRE-VLV CLS CMD C V41K1241X ENG 2 LO2 PRE-VLV CLS CMD C V41K1255E ENG 2 HE ISOL VLV 2 OPN CMD B V41K1255E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1267E ENG 2 HE ISOL VLV 2 CLS CMD B	===	V41K1226X	2 MAINSTAGE CMD B				
V4TK1236E ENG Z LO2 PRE-VLV OPN CMD A V4TK1237X ENG Z LO2 PRE-VLV OPN CMD B V4TK1237Y ENG Z LO2 PRE-VLV OPN CMD B V4TK1238X ENG Z LO2 PRE-VLV OPN CMD C V4TK1238Y ENG Z LO2 PRE-VLV OPN CMD C V4TK1239X ENG Z LO2 PRE-VLV CLS CMD A V4TK1239Y ENG Z LO2 PRE-VLV CLS CMD B V4TK1239E ENG Z LO2 PRE-VLV CLS CMD B V4TK1240E ENG Z LO2 PRE-VLV CLS CMD B V4TK1240E ENG Z LO2 PRE-VLV CLS CMD C V4TK1241X ENG Z LO2 PRE-VLV CLS CMD C V4TK1241E ENG Z LO2 PRE-VLV CLS CMD C V4TK1241E ENG Z LO2 PRE-VLV CLS CMD C V4TK1255E ENG Z HE ISOL VLV Z OPN CMD A V4TK1256E ENG Z HE ISOL VLV Z CLS CMD A V4TK1265E ENG Z HE ISOL VLV Z CLS CMD A V4TK1265E ENG Z HE ISOL VLV Z CLS CMD A V4TK1267E ENG Z HE ISOL VLV Z CLS CMD A	=	V41:K1236X	2 LOZ PRE-VLV OPN CM	,			
V41K1237X ENG 2 LOZ PRE-VLV OPN CMD B V41K1237E ENG 2 LOZ PRE-VLV OPN CMD B V41K1238X ENG 2 LOZ PRE-VLV OPN CMD C V41K1238X ENG 2 LOZ PRE-VLV OPN CMD C V41K1239X ENG 2 LOZ PRE-VLV CLS CMD A V41K1239Y ENG 2 LOZ PRE-VLV CLS CMD B V41K1240X ENG 2 LOZ PRE-VLV CLS CMD B V41K1240X ENG 2 LOZ PRE-VLV CLS CMD C V41K1241X ENG 2 LOZ PRE-VLV CLS CMD C V41K1241X ENG 2 LOZ PRE-VLV CLS CMD C V41K1255E ENG 2 HE ISOL VLV 2 OPN CMD B V41K1255E ENG 2 HE ISOL VLV 2 OPN CMD B V41K1255E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD B V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD B V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD B V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD B	E-	V4TK1236E	Z LOZ PRE-VLV OPN CM	: 3			_
V41K1237E ENG 2 LO2 PRE-VLV OPH CMD B V41K1238X ENG 2 LO2 PRE-VLV OPH CMD C V41K1238X ENG 2 LO2 PRE-VLV OPH CMD C V41K1239X ENG 2 LO2 PRE-VLV CLS CMD A V41K1239Y ENG 2 LO2 PRE-VLV CLS CMD A V41K1239E ENG 2 LO2 PRE-VLV CLS CMD B V41K1240X ENG 2 LO2 PRE-VLV CLS CMD B V41K1240X ENG 2 LO2 PRE-VLV CLS CMD C V41K1241X ENG 2 LO2 PRE-VLV CLS CMD C V41K1241X ENG 2 LO2 PRE-VLV CLS CMD C V41K1255E ENG 2 LO2 PRE-VLV CLS CMD C V41K1255E ENG 2 HE ISOL VLV 2 OPN CMD A V41K1255E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1265E ENG 2 HE ISOL VLV 2 CLS CMD A V41K1267E ENG 2 HE ISOL VLV 2 CLS CMD A	.92	V41K1237X	2 LOZ PRE-VLV OPN CM				
K1238X ENG 2 LO2 PRE-VLV OPN CMD C K1238E ENG 2 LO2 PRE-VLV CLS CMD A K1239X ENG 2 LO2 PRE-VLV CLS CMD A K1240X ENG 2 LO2 PRE-VLV CLS CMD B K1240X ENG 2 LO2 PRE-VLV CLS CMD B K1240X ENG 2 LO2 PRE-VLV CLS CMD B K1240X ENG 2 LO2 PRE-VLV CLS CMD C K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1255E ENG 2 HE ISOL VLV 2 OPN CMD A K1256E ENG 2 HE ISOL VLV 2 OPN CMD B K1256E ENG 2 HE ISOL VLV 2 CLS CMD A K1256E ENG 2 HE ISOL VLV 2 CLS CMD A K1266E ENG 2 HE ISOL VLV 2 CLS CMD A K1266E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD A)	741K1237E	2' LOZ PRE-VLV OPN CM				
K1238E K1239X K1239X K1239X ENG 2 LO2 PRE-VLV CLS CMD A K1240X ENG 2 LO2 PRE-VLV CLS CMD A K1240X ENG 2 LO2 PRE-VLV CLS CMD B K1240E ENG 2 LO2 PRE-VLV CLS CMD B K1240E ENG 2 LO2 PRE-VLV CLS CMD B K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1255E ENG 2 LO2 PRE-VLV CLS CMD C K1256E ENG 2 LO2 PRE-VLV CLS CMD C K1256F ENG 2 LO2 PRE-VLV CLS CMD C K1256F ENG 2 LO2 PRE-VLV CLS CMD C K1256F ENG 2 LO2 PRE-VLV CLS CMD C K1266F ENG 2 LO2 PRE-VLV CLS CMD C K1267F ENG 2 LO2 PRE-VLV CLS CMD C FINANCIAL C FINANCIAL C		\mathbf{z}	2 LOZ PRE-VLV OPN CMD C	_			
K1239X ENG 2 LO2 PRE-VLV CLS CMD A K1239E ENG 2 LO2 PRE-VLV CLS CMD A K1240X ENG 2 LO2 PRE-VLV CLS CMD B K1240E ENG 2 LO2 PRE-VLV CLS CMD B K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1241E ENG 2 LO2 PRE-VLV CLS CMD C K1255E ENG 2 HE ISOL VLV 1 OPN CMD C K1255E ENG 2 HE ISOL VLV 2 OPN CMD B K1257E ENG 2 HE ISOL VLV 2 CLS CMD A K1265E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD A		\mathbf{z}	2 LOZ PRE-VLV OPN CMD C.	-			
K1239E ENG 2 LO2 PRE-VLV CLS CMD A K1240X ENG 2 LO2 PRE-VLV CLS CMD B K1240E ENG 2 LO2 PRE-VLV CLS CMD B K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1241E ENG 2 LO2 PRE-VLV CLS CMD C K1255E ENG 2 HE ISOL VLV 1 OPN CMD A K1255E ENG 2 HE ISOL VLV 2 OPN CMD B K1256E ENG 2 HE ISOL VLV 2 CLS CMD A K1265E ENG 2 HE ISOL VLV 2 CLS CMD A K1265E ENG 2 HE ISOL VLV 2 CLS CMD A K1265E ENG 2 HE ISOL VLV 2 CLS CMD A K1265E ENG 2 HE ISOL VLV 2 CLS CMD A		\mathbf{z}	2 LOZ PRE-VLV CLS CMD A	no affi			
K1240X ENG 2 LO2 PRE-VLV CLS CMD 8 K1240E ENG 2 LO2 PRE-VLV CLS CMD C K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1241E ENG 2 LO2 PRE-VLV CLS CMD C K1255E ENG 2 HE ISOL VLV 2 OPN CMD A K1255E ENG 2 HE ISOL VLV 2 OPN CMD B K1255E ENG 2 HE ISOL VLV 2 OPN CMD B K1265E ENG 2 HE ISOL VLV 2 CMD B K1265E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD B		\mathbf{Z}	2 LO2 PRE-VLV CLS CMD A		• •	-	
K1240E K1241X LNG 2 LO2 PRE-VLV CLS CMD B K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1241E ENG 2 LO2 PRE-VLV CLS CMD C K1255E ENG 2 LE ISOL VLV 1 OPN CMD A K1255E ENG 2 HE ISOL VLV 2 OPN CMD B K1255E ENG 2 HE ISOL VLV 2 OPN CMD B K1265E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD B		$\overline{\mathbf{z}}$	2 LOZ PRE-VLV CLS CMD 8			• •	
K1241X ENG 2 LO2 PRE-VLV CLS CMD C K1241E ENG 2 LO2 PRE-VLV CLS CMD C K1255E ENG 2 HE ISOL VLV 1 OPN CMD K1256E ENG 2 HE ISOL VLV 2 OPN CMD A K1257E ENG 2 HE ISOL VLV 2 OPN CMD B K1265E ENG 2 HE ISOL VLV 2 CMD B K1265E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD B		\mathbf{Z}	2 LOZ PRE-VĽV CLS CMD B	•			
K1251E ENG 2 LO2 PRE-VLV CLS CMD C K1255E ENG 2 HE ISOL VLV 1 OPN CMD K1256E ENG 2 HE ISOL VLV 2 OPN CMD A K1257E ENG 2 HE ISOL VLV 2 OPN CMD B K1265E ENG 2 HE ISOL VLV 2 CMD B K1265E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD B		$\mathbf{\nabla}$	2 LOZ PRE-VLV CLS CMD C		_		
K1255E ENG 2 HE ISOL VLY 1 OPN CMD K1256E ENG 2 HE ISOL VLY 2 OPN CMD A K1257E ENG 2 HE ISOL VLY 2 OPN CMD B K1265E ENG 2 HE ISOL VLY 2 CLS CMD K1266E ENG 2 HE ISOL VLY 2 CLS CMD A K1267E ENG 2 HE ISOL VLY 2 CLS CMD B		\mathbf{z}	2 LOZ PRE-VLY CLS CMD C			_	
K1256E ENG 2 HE ISOL VLV 2 OPN CMD A. C. C. ENG 2 HE ISOL VLV 2 OPN CMD B. ENG 2 HE ISOL VLV 2 CMD B. ENG 2 HE ISOL VLV 2 CLS CMD A. C.		\mathbf{z}	Z'HE ISOL VLY 1 OPN CMD				
K1257E ENG 2 HE ISOL VLV 2 OPN CMD B. K1265E ENG 2 HE ISOL VLV 2 CLS CMD K1266E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD B.		\mathbf{Z}	2 HE ISOL VLV 2 OPN CMU A,			=	<u>.</u>
K1265E ENG 2 HE ISOL VLV 1 CLS CMD A K1266E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD B		\mathbf{z}	2 HE ISOL VLV 2 OPN CMD B.	-			
K1267E ENG 2 HE ISOL VLV 2 CLS CMD A K1267E ENG 2 HE ISOL VLV 2 CLS CMD B		$\overline{\mathbf{x}}$	2 HE ISOL VLV I CLS	<u> </u>			-:
TK1267E ENG 2 HE ISOL VLV 2 CLS CMD B.		$\mathbf{\nabla}$	2 HE ISOL VLV 2 CLS CMD		>	>	>
		云	2 HE ISOL VLV 2 CLS CMD	•	0	,	STATE
	<u>. </u>						
	_				_		

	IDENTIFICATION	NOMENCLATURE	SOURCE	STATES/RA::GE
	Mar were			LO HI UNITS
	<u> </u>	3 LH2 PRE-VLV OPN CMD	FLT SYS	1 0
	V41K1319E	ENG 3 LH2 PRE-VLV OPN CMD A		STATE
	⊻.	3 LH2 PRE-VLV OPN CMD		
	<u>×</u>	3 LH2 PRE-VLV OPN CMD		
	×	3 LH2 PRE-VLV OPN CMD	-	
	×	3 LH2 PRE-VLV GPN CMD	-	
-	2	3 LH2 PRE-VLY CLS CMD		
	7	3 LHZ PRE-VLV CLS CMD		
	2	3 LH2 PRE-VLV CLS CMD		
	<u>×</u>	LH2 PRE-VLV CLS CMD		
	<u>`</u>	3 LHZ PRE-VLV CLS CMD	•	
•	100	3 E/2 P4E-7LV CLS C/D		
	`~	3 19/11/STAGE CM		
	ζ.	3 MAINSTAGE CM		
E	`.	3 LOZ PRE-VLV OPN CM		
٦-	V41K1336E	3 LOZ PRE-VLV OPN CM		
3	`.	3 LOZ PRE-VLV OPH CM		
	741K1337E	NG 3 LGZ PPE-VLV OPN CF		
	V41K1338X	3 LOZ PRE-VLV OPN CM		
	V41K1338E	LO2 PRE-VLV OPN CM		
	V41K1339X	3 LOZ PRE-VLV CLS CM		
		3 LO2 PPE-VLV CLS UM		
	$\overline{}$	3 LUZ PRE-YLY CLS CM		
		3 LO2 PRE-VLV CLS CM		
•		3 LO2 PKE-VLV		
		3 LUZ PRE-VLV CLS CM		
	_ '	3 HE ISOL VLV 1 OPN CMD		
	_	3 HE ISOL VLV 2 OPN		
-	∇	HE ISOL VLV 2 OPN CMD		
	4]K]	3 HE ISOL VLV 1 CLS		
	5	3 HE ISOL VLV 2 CLS C		
	, :	HE 3 HE ISOL YLY 2 CLS CMD	_}	_
	2	ורר ארא	~	
	V41v 391E	OTBO FILL VLV OPM	FLT SYS	
_				. JAINIE.

STIMULI INPUT TO ""S MODEL - TABLE 14.1

SOURCE STATES/RANGE	
NOMENCLATURE	LHZ OTBD FILL VLV CLS CMD LHZ OTBD FILL VLV CLS CMD LHZ INBD FILL VLV OPN CMU A LHZ INBD FILL VLV OPN CMU A LHZ INBD FILL VLV OPN CMD B LHZ INBD FILL VLV OPN CMD B LHZ INBD FILL VLV OPN CMD LHZ INBD FILL VLV CLS CMD LHZ INBD FILL VLV CLS CMD LHZ FEED DISC VLV OPN CMD B LHZ FEED DISC VLV OPN CMD CMD CHZ LHZ FEED DISC VLV OPN CMD CMD CHZ LHZ FEED DISC VLV OPN CMD CMD CHZ LHZ FEED DISC VLV CLS CMD CMD LHZ FEED DISC VLV CLS CMD CMD LHZ FEED DISC VLV CLS CMD CMD LHZ FEED DISC VLV CLS CMD CMD LHZ FEED DISC VLV CLS CMD CMD LHZ FEED INE REPRESS VLV I OPN CMD LHZ MAITF REPRESS VLV I OPN CMD LHZ MAITF REPRESS VLV I OPN CMD LHZ MAITF REPRESS VLV I OPN CMD LHZ FEED INE RLF S/O VLV CLS CMD A LHZ FEED INE RLF S/O VLV CLS CMD A LUZ FEED INE RLF S/O VLV CLS CMD A LUZ INBD FILL VLV OPN CMD A LOZ INBD FILL VLV OPN CMD LOZ OTBD FILL VLV OPN CMD
IDENTIFICATION NUMBER	V41K1393X V41K1393E V41K1401X V41K1401E V41K1411X V41K1412X V41K1413X V41K1413X V41K1413X V41K1413X V41K1413X V41K1413X V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1431E V41K1501X V41K1501X V41K1501X V41K1501X V41K1512E V41K1515E V41K1515E

	IDENTIFICATION	NOMENCLATURE	SOURCE	ST	STATES/RAHGE	35
				10	1H	U-11TS
	V41K1521X	LOZ FEED DISC VLV OPN CMD A	FLT,SYS	0~		STATE
	V41K1523X	FFFO DISC VLV OPN CMD				
	V41K1524X	FEED DISC VLV CLS CMD				
	V41K1525X	DISC VLV CLS				
	V41K1526X	FEED DISC VLV CLS CMD C				
	V41K1531E	MANIF REPRESS VLV 1 CLS				
	V41K1535X	MANIF REPRESS VLV 1 OPN				
	V41K1535E	MANIF REPRESS VLV 1 UPN				
	V41K1543F	SS VLV Z UPN CMU				
	V41K1547X	FEEDLINE ALT 3/0 VLV OFN CHD		•		
	V41K1547E	FEFFI THE RIF S/O VIV CLS CHD		-		
	V41K1548X	FEEDLINE RIF S/O VLV CL				
	V41K1584X	V CLS CMD A				
-9	V41K1585X	OVBD BLEED VLV CLS (
	741K1586X	OVBD BLEED VLV CLS				
	V41K10U/E	2				 -
	V41K1609E	HE ISOL PNEU VLV 1/2 CLS CMD				
	VA17/17/V				-	
	V41K1613E	PNEU XOVR NO. 2 OPN CMD				
	V41K1619E	ONE I SUC ON GROWING				
		7 CL3				
	V41K1700X V41K1701X	REPLACE LH2 ULLAGE PRESS #1 XDCR REPLACE LH2 ULLAGE PRESS #2 XDCR	FLT SYS	> °	> -	STATE
						
	7		,	,		-

STIMULI INPUT TO . S MODEL - TABLE 14.1

REPLACE LUZ ULLAGE PRESS #3 XDCR REPLACE LOZ ULLAGE PRESS #3 XDCR REPLACE LOZ ULLAGE PRESS #2 XDCR REPLACE LOZ ULLAGE PRESS #2 XDCR REPLACE LOZ ULLAGE PRESS #2 XDCR REPLACE LOZ ULLAGE PRESS #3 XDCR REPLACE LOZ ULLAGE PRESS #3 XDCR REPLACE LOZ ULLAGE PRESS #3 XDCR REPLACE LOZ ULLAGE PRESS #3 XDCR REPLACE LOZ ULLAGE PRESS #3 XDCR LOZ ACCUM RECIRC VLV 1 CLS CMD A LOZ ACCUM RECIRC VLV 2 CLS CMD A LOZ ACCUM RECIRC VLV 2 CLS CMD A LOZ ACCUM RECIRC VLV 2 CLS CMD A LOZ ACCUM RECIRC VLV 2 CLS CMD A LOZ ACCUM RECIRC VLV 2 CDR CMD A LUZ RILS MAN REPRESS VLV 2 OPN CMD B LHZ RILS MAN REPRESS VLV 2 OPN CMD B LHZ RILS MAN REPRESS VLV 2 OPN CMD B LHZ RILS OTBD D/V OPN CMD C LHZ RILS SMB D/V OPN CMD C LHZ RILS INBD D/V OPN CMD C LHZ RECIRC PUMP VLV OPN CMD C LHZ RECIRC PUMP VLV OPN CMD C LHZ RECIRC PUMP VLV OPN CMD C LHZ RIL PRESS CONSOLE O ONSOLE O	IDENTIFICATION	NOMENCLATURE	SOURCE	ST	STATES/RANGE	35
VATIVIDOZA REPLACE LUE LILGE PRESS #3 XOCR FLT 5YS 0 VATIVISOA REPLACE LOZ ULLAGE PRESS #3 XOCR 10 LLAGE PRESS *4 XOCR 10 LL	NUMBER			•	HI	UNITS
VATIVISTIX REPLACE LOZ ULLAGE PRESS #2 XDCR VATIVISTIX REPLACE LOZ ULLAGE PRESS #2 XDCR VATIVISTIX LOZ ACCUM RECIRC VLV 1 CLS CM0 B VATIVISTIX LOZ ACCUM RECIRC VLV 2 CLS CM0 B VATIVISTIX LOZ ACCUM RECIRC VLV 2 CLS CM0 B VATIVISTIX LOZ ACCUM RECIRC VLV 2 CLS CM0 B VATIVISTIX LOZ ACCUM RECIRC VLV 2 CLS CM0 B VATIVISTIX LOZ ACCUM RECIRC VLV 2 CLS CM0 B VATIVISTIX LOZ ACCUM RECIRCS VLV 2 CDN CM0 A VATIVISTIX LOZ ACCUM RECIRCS VLV 2 CDN CM0 A VATIVISTIX LOZ ACCUM RECIRCS VLV 2 CDN CM0 B VATIVISTIX LOZ ACCUM RECIRCS VLV 2 CDN CM0 B VATIVISTIAN LOZ RECIRC VLV CDN CM0 B VATIVISTIAN LOZ RECIRC VLV CDN CM0 B VATIVISTIAN LOZ RECIRC VLV CDN CM0 B VATIVISTIAN LOZ RECIRC VLV CDN CM0 CM0 CM0 A VATIVISTIAN LOZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS REGONOLE REGONOLE NAS CONSOLE REGONOLE NAS CONSOLE REGONOLE NAS CONSOLE	V41K1702X	LH2 ULLAGE PRESS #3 XD	FLT SYS	0-	- -	STATE
VATK 1752X REPLAGE LOW ULLGE PRESS #3 XOCR VATK 1815X LOZ ACCUM RECIRC VLV 1 CLS CM0 A VATK 1815X LOZ ACCUM RECIRC VLV 2 CLS CM0 A VATK 1825X LOZ ACCUM RECIRC VLV 2 CLS CM0 A VATK 1825X LOZ ACCUM RECIRC VLV 2 CLS CM0 A VATK 1825X LOZ ACCUM RECIRC VLV 2 CLS CM0 A VATK 1825X LOZ ACCUM RECIRC VLV 2 CDN CM0 A VATK 1826X LUZ RTLS MAN REPRESS VLV 1 OPN CM0 A VATK 1905X LUZ RTLS MAN REPRESS VLV 2 OPN CM0 B VATK 1903X LUZ RTLS TOND DAY OPN CM0 B VATK 1913X LUZ RTLS TOND DAY OPN CM0 B VATK 1923X LUZ RTLS TIND DAY OPN CM0 B VATK 1923X LUZ RTLS TIND DAY OPN CM0 B VATK 1923X LUZ RTLS TIND DAY OPN CM0 B VATK 1923X LUZ RTLS TIND DAY OPN CM0 CM0 CMD CMD CMD CMD CMD CMD CMD CMD CMD CMD	_	LOZ ULLAGE PRESS #2 XD				
V41X1815X LO2 ACCUM RECIRC VLV 1 CLS CMD A V41X1825X LO2 ACCUM RECIRC VLV 2 CLS CMD B V41X1825X LO2 ACCUM RECIRC VLV 2 CLS CMD B V41X1825X LO2 ACCUM RECIRC VLV 2 CLS CMD B V41X1805X LH2 RTL5 WAN REPRESS VLV 2 OPN CMD A V41X1905X LH2 RTL5 WAN REPRESS VLV 2 OPN CMD B V41X1905X LH2 RTL5 WAN REPRESS VLV 2 OPN CMD B V41X1905X LH2 RTL5 WAN REPRESS VLV 2 OPN CMD B V41X1913X LH2 RTLS OTBD D/V OPN CMD B V41X1913X LH2 RTLS OTBD D/V OPN CMD C V41X1915X LH2 RTLS OTBD D/V OPN CMD C V41X1915X LH2 RTLS SWD D/V OPN CMD C V41X1915X LH2 RTLS SWD D/V OPN CMD C V41X1915X LH2 RTLS SWD D/V OPN CMD C V41X1925X LH2 RTLS SWD D/V OPN CMD B V41X1925X LH2 RTLS SWD D/V OPN CMD B V41X1925X LH2 RTLS SWD D/V OPN CMD B V41X1925X LH2 RTLS SWD D/V OPN CMD C V41X1925X LH2 RTLS SWD D/V OPN CMD B V41X1925X LH2 RTLS SWD D/V OPN CMD B V41X1925X LH2 RTLS SWD D/V OPN CMD C WAS CONSOLE O K50P721-A LH2 RT ST BLEED VLV OPN CMD CMD C K50P721-A LH2 RT PT BLEED VLV OPN CMD C WAS CONSOLE O WAS CONSOLE	V41K1752X	LO2 ULLAGE PRESS #3 XD				
V41X1825	V41K1815X	ACCUM RECIRC VLV 1 CLS CMD				
VATK 1825X LOZ ACCHA RECRES VLV 2 CHS CMB 8 VATK 1825X LOZ ACCHA RECRES VLV 1 OPN CMD A VATK 1905X LHZ RTLS MAN REPRESS VLV 1 OPN CMD B VATK 1906X LHZ RTLS MAN REPRESS VLV 1 OPN CMD B VATK 1907X LHZ RTLS MAN REPRESS VLV 2 OPN CMD B VATK 1907X LHZ RTLS OTBD D/V OPN CMD A VATK 1913X LHZ RTLS OTBD D/V OPN CMD B VATK 1915X LHZ RTLS TINBD D/V OPN CMD CMD CMD B VATK 1923X LHZ RTLS TINBD D/V OPN CMD CMD CMD CMD CMD CMD CMD CMD CMD CMD	V41K1616A	ACCUM RECIRC VLV I CLS CMD ACCUM PECTOC VLV 9 CLS CMD				
V41K1905X LHZ RTLS MAN REPRESS VLV 1 OPN CMD A V41K1905X LHZ RTLS MAN REPRESS VLV 2 OPN CMD A V41K1906X LHZ RTLS MAN REPRESS VLV 2 OPN CMD B V41K1906X LHZ RTLS MAN REPRESS VLV 2 OPN CMD B V41K1903X LHZ RTLS OTBD D/V OPN CMD B V41K1903X V41K190X V41K19	V41K1826x	ACCOM RECIRC VIV 2 CLS CAD				
V41K1906X LHZ RTLS MAN REPRESS VLV 2 OPN CMD A V41K1906X V41K1907X LHZ RTLS MAN REPRESS VLV 1 OPN CMD B V41K1907X V41K1903X LHZ RTLS MAN REPRESS VLV 2 OPN CMD B V41K1913X V41K1913X LHZ RTLS MAN REPRESS VLV 2 OPN CMD B V41K1913X V41K1915X LHZ RTLS MAN REPRESS VLV 2 OPN CMD B V41K191X V41K1915X LHZ RTLS MAN REPRESS VLV 2 OPN CMD B V41K191X V41K192X LHZ RTLS MBD D/V OPN CMD B V41K192X V41K192X LHZ RTLS MBD D/V OPN CMD B V41K192X LHZ RTLS MBD D/V OPN CMD CMD CMD CMD CMD CMD CMD CMS CMSOLE MAS CONSOLE HE1 ENG 1 HE SUPPLY PRESS CMSOLE MAS CONSOLE HE2 ENG 3 HE SUPPLY PRESS CMSOLE MAS CONSOLE K50P732-A LHZ HI PT BLEED VLV OPN CMD MAS CONSOLE O	V41K1905X	RTLS MAN REPRESS VLV 1 OPN CMD				
V41K1907X	V41K1906X	RTLS MAN REPRESS VLV 2 OPN CMD	•			
V41K1908X	V41K1907X	RTLS MAN REPRESS VLV 1 OPN CMD				
V41K1913X	V41K1908X	RTLS MAN REPRESS VLV 2 OPN CMD				
VATE 14	V41K1913X	RTLS OTBD D/V OPN CMD			-	
V41K1915X	_	KILS OIBU D/V OPN CMD				
VATISTIANS LHZ RILS INBU D/V ONN CMD B VATISTIANS		RTLS OTBD D/V OPN CMD				
LHZ RILS INDD D/V OPH CMD C LHZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS RMES RMES 12 RMES 12 RMES 13 RMES 14 RMES 15 RMES 16 RMES 17 RMES 18 RMES 18 RMES 19 RMES 10 RMES 10 RMES 10 RMES 11 RMES 11 RMES 12 RMES 13 RMES 14 RMES 15 RMES 16 RMES 17 RMES 18 RMES 19 RMES 10 RMES		RILS INBU D/V OPN CAD	->	->	->	<u>-</u> >
LHZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS ENG 1 HE SUPPLY PRESS ENG 2 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS LHZ RECIRC PUMP VLV OPN CMD NAS CONSOLE O NAS CONSOLE O NAS CONSOLE O NAS CONSOLE O	7417.324A	RILS INSU U/V OFN CHU	× 1 1 × × × × × × × × × × × × × × × × ×	> >	>	STATE
LHZ TANK ULLAGE PRESS LOZ TANK ULLAGE PRESS FIG 2 HE SUPPLY PRESS FIG 2 HE SUPPLY PRESS FIG 3 HE SUPPLY PRESS FIG 3 HE SUPPLY PRESS FIG 3 HE SUPPLY PRESS FIG 3 HE SUPPLY PRESS FIG 4 HE SUPPLY PRESS FIG 5 HE SUPPLY PRESS FIG 5 HE SUPPLY PRESS FIG 6 HAS CONSOLE FIG 7 HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD					• •	
PWEU HE SUPPLY PRESS ENG 1 HE SUPPLY PRESS ENG 2 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 0 NAS CONSOLE 0 LHZ RECIRC PUMP VLV OPN CMD LHZ PLEED VLV OPN CMD .	L02 L02	TANK ULLAGE TANK ULLAGE	AMES MMES	21	42	PSIG
ENG 1 HE SUPPLY PRESS ENG 2 HE SUPPLY PRESS ENG 2 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS LHZ RECIRC PUMP VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD .					-	
ENG 1 HE SUPPLY PRESS ENG 2 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS LHZ RECIRC PUMP VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD .	HEI	HE SUPPLY		0	2000	PSIA
ENG 2 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS ENG 3 HE SUPPLY PRESS LH2 RECIRC PUMP VLV OPN CMD LH2 HI PT BLEED VLV OPN CMD .	HE2	1 HE SUPPL		-	2000	PS PS
LHZ HI PT BLEED VLV OPN CMD LHZ HI PT BLEED VLV OPN CMD .	HE3	2 HE SUPPL				PATA
LHZ HI PT BLEED VLV OPN CMD .	7500303	S HE SUPPLY PRESS		> <	3-	STATE
	K50P795-A	HI PT BLEED VLV OPN		· o		STATE
			•			

	IDENTIFICATION	- NOWENC! ATURE	SOURCE	
	RUMBER			5_1, 1, 01
<u> </u>	V41K1155X	ISOL VLV 1 OPN CMD	FLT, SYS	0 1 57.87.8
	V41K1156X V41K1157X			
	V41K1162X	1 HE INTERCONNECT "IN" VLV OPN CMD		
	741K1162E	INTERCONNECT "IN" VLV OF		-
<u>.</u>	V41K1163X	THE INTERCONNECT "IN" VLV OPN CMD		
	741K1163E	OPN CMO B		
	V41K1106A	HE INTERCONNECT OUT MEY ON CHO	-	
	7-1	HE THITERCONNICT "OUT" VLV OPN		
	747.612556	2 HE ISOL VLV 1 OPRI		
	¥.;;	ISOL VLV 2 OPN		
	V418125/X	Z HE ISOL VLV Z OPN CMU B		
=	7	Z HE INTERCONNECT "IN" VLV OPN	-	
8		2 HE INTERCONNECT "IN" VLV OPN CAD		
-9	7.	A HE INTERCONTECT TINT VEV OFN		
97	₹ 5	2 HE INTERCONNECT "IN" VLV OPN CFU		
	25	A DE TITERCOLINECT COT VEV OFN CHO		
	V41K1Z68E V41K1269E	2 HE INTERCONNECT TOUT VEV OFN 2 HE INTERCONNECT "OUT" VIV OPN		
- ;:	V41K1355X	3 HE ISOL VLV 1 OPN CMD	_	
	V41.(1356X	3 HE ISOL VLV 2 OPN CMD		-
		3 HE ISOL VLV 2 OPN CMD B		
	411	3 HE INTERCONNECT "IN" VLV OPN CMD		
	V41r 1362E	3 HE INTERCONNECT "IN"		
-	V41K1363A V41K1363E	3 HE INTERCONNECT "IN" VIV OPN CMD		
		3 HE INTERCONNECT "OUT" VLV OPN CMD		
		3 HE INTERCONNECT "OUT" VI		
	V41K1369E	3 HE INTERCONNECT "OUT" VLV OPN CMD	>	
	V41K1408E	TOPPING VLV CLS CMD	KYBD	
	_	HZ MANIF REPRESS NO. 2 CL		
		MANIF REPRESS NO. 2 CL	>; >;	· -
	V4171607X	PUBLICATIVE TSOL VIV 2.0P CMD	FLT SYS	
-				

14.2 GTS OUTPUT TABLE

MEASUREMENT OUTPUT FROM MPS MODEL - TABLE 14.2

1P1100C 1T1101C 1X1104X	NCMENCLATURE	DESTINATION		STATE	STATES/P.Y.E	
41P1100C 41T1101C 41X1104X			70	IH	1.0.	C::1TS
41X1104X	ENG 1 LH2 INLET PRESS	FS	0	200		VISd
41X1104X	1 LH2 INL		-430		-423	い形の形
	1 LH2 PRE		0	~		
1105E	1 LH2 PRE		0		0	
- X9	1 LH2 PRE		0	~	_	
36.	1 LH2 RECIRC VLV OPE		0	_		
1110E	1 LH2 RECIRC VLV CLOS	-, - -	0		0	STATE
1115A	1 LHZ RECIRC PUMP S		0	0	11200	
41P1130C	1 LO2 INLET PRESS	•	0	30		LSIA
41T1131C	G 1 LO2 INL		-305	S	-290	Pran
41X1134X	1 LO2 PRE-VLV OPE)	p-4	~	
41X1135E	1 LO2 PRE-		C			日はいたい
41P1150C	1 HE SUPPI		0	00	4000	
41P1154C	1 HE REG (0	O	S	5151
41P1200C	2 LH2 INLE		0	20	0	PSIA
1201C	2 LH2 INL		-430	0	-423	り上で下
1X1204X	2 LH2 PRE-	-	•	-		
11X1205E	2 LH2 PRE-VLV CLC		0	—	0	STATE
41X1206X	2 LH2 PRE-VLV OPE		0	1	~	
41X1209E	2 LH2 RECIRC VLV OPEN		0	~	~	
41X1210E	2 LH2 RECIRC		0	r=1		
41R1215A	2 LH2 RECIRC VLV PUMP		0	12000	11200	
41P1230C	2 LO2 INLET		0	300		PSIA
41T1231C	2 LO2 INLET TEMP		-305	V	-290	
41.X1234X	2 LOZ PRE-VLV OPEN		0		 - ←	STATE
417175E.	LOZ PRE-VLV CLO		0	- 0		<u> </u>
41 P 1 Z 5 U C	2 HE SUPPLY PRESS		0	0000	3 0 0 0	PSIA
41F1254C	Z HE REG OUT	•	0	1000	n	psig
41F1500C	S S LHZ INLET		1	007	•	PSIA
4111501C ·	5 S LHZ INLET TEMP		-430	-405	574-	ft.
41X1304X	3 LHZ PRE-VLV OPE		0	r-1 ·	~	STATE
41A1505E	LHZ PKE-VL		0	٠ 4 ،	> ·	i
	S LHZ PRE-VLV OPE	T.	0			<u>_</u>

STRIE/PROTE	-305 12000 11200 RFN:
DESTINATION	₹
NOMENCLATURE	ENG 3 LH2 RECIRC VLV OPEN ENG 3 LH2 RECIRC VLV CLOSED ENG 3 LH2 RECIRC VLV CLOSED ENG 3 LO2 INLET PRESS ENG 3 LO2 INLET TEMP ENG 3 LO2 INLET TEMP ENG 3 LO2 PRE-VLV CLOSED ENG 3 LO2 PRE-VLV OPEN ENG 3 LO2 PRE-VLV OPEN ENG 3 HE SUPPLY PRESS LH2 OTBD FILL VLV OPEN LH2 OTBD FILL VLV OPEN LH2 OTBD FILL VLV CLOSED LH2 INBD FILL VLV CLOSED LH2 INBD FILL VLV CLOSED LH2 INBD FILL VLV CLOSED LH2 END DISC VLV OPEN LH2 FEED DISC VLV CLOSED LH2 FEED DISC VLV CLOSED LH2 FEED DISC VLV CLOSED LH2 FEED DISC VLV CLOSED LH2 FEED DISC VLV CLOSED LH2 FEED DISC VLV CLOSED LH2 FEED DISC VLV CLOSED LH2 FEED DISC VLV CLOSED LO2 INBD FILL VLV OPEN LH2 TOPPING VLV CLOSED LO2 INBD FILL VLV OPEN LO2 OTBD FILL VLV OPEN LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO2 FEED DISC VLV CLOSED LO3 FEED LINE RLF SHUT-OFF VLV CLOSED
IDENTIFICATION RUMBER	V41X1309E V41X1310E V41R1315A V41P1330C V41X1331C V41X13335 V41X13335 V41X13335 V41X13335 V41X13335 V41X1409E V41X1409E V41X1409E V41X1409E V41X1409E V41X1409E V41X1409E V41X1409E V41X1409E V41X150E V41X1510E V41X1510E V41X1513E V41X1533X V41X1533X V41X1533X

MEASUREMENT OUTPUT OF PS PROSEL - TAPLE 14.2

IDENTIFICATION	NOMENCI ATIIRE	DESTINATION			30 17 37 3	
NUMBER			2	Ħ	1.C.	t:::s
			(•	•	
141580	OVBD BLEED VLV	FS -	-	-1 r	⊸ •	f-
4 1 X 1 5 8 7	OVED BLEED VIV OPEN	,	0			3.T. TE
1P1600	PNEU VLV HE SUPPLY		0	2000	4000	, , , ,
1X1811	ACCUM RECIRC VLV		0	,		STATE
1X1818 1X1818	ACCUM RECIRC VLV 1		0 0	p=4 p	0,	177
V41X18Z1X	LOS ACCUM RECIRC VLV 2 OPEN		-		- C	STATE
1919	RTLS OTBD DRAIN VLV	-	0	1) F-1	. • T.
1929	RTLS INBD DRAIN VLV CLOSED	FS	0	Н,	7	F -
THUL	1 GH2 FLOW CONTROL VLV POSN -	MMES	o		0	17.
2832	2 GHZ FLOW CONTROL VLV POSN = 3 GH2 FLOW CONTROL VIV BOSN =		-	-1	-	7 1
VG01	1 GO2 FLOW CONTROL VLV POSN -		0	-	0	111
VG02	FLOW CONTROL		0		0	17.1
1503	3 GOZ FLOW CONTROL VLV POSN -		-	-1 F	00	7:
VEZ	2 PLUMBING READY	-	-		0	 - -
VE3	BING READY DISCRE	MMES	0		0	H .:
1605	U HE REG OUT PRESS	FS	0	1000	750	10
	LH2 HI POINT BLEED VLV OPEN	ST S	00			STATE
428	FEED MANIFOLD DISC	SE	-430	-405	~	7 12
1528	FEED MANIFOLD	SH.	-305	-255	-250	C
L02DP	LO2 DUMP SIGNAL	o c		•		
LH2DP .	CUMP	50 2	00	- ~	-	STATE
		FDS	<u> </u>	, -	C:) TATE
1					:	•

14.3 NAS CRT DISPLAY

Figure 4 depicts the NAS CRT display format of which MPS math model parameters are a part. The format is specified in this document to aid in implementing the MPS NAS program.

	TABULATE EXECUTE	FORTRAN STATEMENT	COWN WTS 38 39 43 45 45 45 45 45 45 45 45 51 52 51 52 51 54 55 51 56 52 51 54 55 51 51 51 51 51 51 51 51 51 51	**	MPS, X-E-MS	SORCE KISOOK LHZ I GE DE	NO KITO IX LITY 2 RE	1 1 1 1	11,750X LO2 1 RE	17.51X LOZ 2 RE	29 50 KI752X LOZ 3 REPL	29.50 VEIXXX E-1 READY	VEZXXX E-Z READ	VE3XXX E-3 READY	RM , , , , , , , , , , , , , , , , , , ,	MPS 2 NAST	, K1,32,5X, MPS,				
NAS CRT	CCDED BY VERIFY COLOR	F STATE FINT CONTINUATION			2/2 U48/44	SAN POFCE	BPOLSC HYD SUP PRESS		A, S,45,	58 PO 21 50 . X40	SUP PRESS A SUS	58 P 0 3 1 SC X 4 C SUP			0,98, ET, / ØRB SEP,N. AR	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	79,8, ET				

15.0 GTS REFERENCES

- 15.1 VS70-415001, MAIN PROPULSION SYSTEM SCHEMATIC
- 15.2 382-240-CDM/76-062, ROCKWELL PRELIMINARY REQUIREMENTS
- 15.3 382-240-CDM/76-064, PRELIMINARY REQUIREMENTS UPDATE
- 15.4 LEC-7827, MPS SIMULATION REQUIREMENTS
- 15.5 SD76-SH-0026, MPS DUMP SEQUENCE (LEVEL C FSSR)
- 15.6 GNCTS-02 GNCTS CREW STATION TO GTS (ALL ELEMENTS) ICD
- 15.7 GNCTS-06 GTS/NON-AVIONICS SIMULATOR ICD

APPENDIX F FUEL CELL/CRYO MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion	Page
1.	INTRODUCTION	F-3
2.	DETAILED REQUIREMENTS	F-4
	2.1 FUNCTIONAL CHARACTERISTICS	F-4
	2.1.1 FUEL CELL/CRYOGENICS SYSTEM	F-4
	2.1.2 MODEL FUNCTION	F-4
	2.1.3 INPUT/OUTPUT	F-8
	2.2 <u>DCM UPLINK</u>	F-8
	2.3 INITIALIZATION REQUIREMENTS	F-8
	2.4 TERMINATION REQUIREMENTS	F-8
	2.5 UNIQUE REQUIREMENTS	F-9
	2.5.1 INTERNAL VARIABLES	F-9
	2.6 ANALOG MEASUREMENTS	F-10
	2.6.1 POLYNOMIAL CONVERSION METHOD	F-10
	2.6.2 RANGE LIMIT CONVERSION METHOD	F-13
3.	LOGIC FLOW DIAGRAMS	F-14
4.	TABLES	F-44
	4.1 INPUT STIMULI LIST	F-45
	4.2 OUTPUT MEASUREMENTS LIST	F-50
5.	REFERENCES	F-55

CONTENTS

FIGURES

Figure		Page
1.	INPUT/OUTPUT DATA FLOW	f-5
2.	FUEL CELL/CRYO SUBSYSTEM SCHEMATIC	. F-6

1.0 INTRODUCTION

Math models are used to simulate many of the Shuttle systems for which hardware does not exist in SAIL. A group of these models are termed non-avionics models since they do not simulate avionic equipment. The non-avionics models are needed to provide responses to cockpit switches, to drive cockpit displays, and to supply data for on-board software processing. The following list of non-avionic models will operate within the Test Operations Center (TOC) Ground Standard Interface Unit (GSIU).

- Main Propulsion System (Orbiter Portion)
- APU/Hydraulic
- Active Thermal Control
- Atmosphere Revitalization System (H2O Loops and PCS/Airlock)
- Fuel Cell/Cryogenics
- Smoke Detection
- Water/Waste Management

When the TOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when off-nominal conditions are desired. To simplify the models and ease the processing load on supporting test equipment, the model requirements define nominal conditions only. Further, analog values for output parameters change in step fashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs. This allows the DCM operator to adjust output parameter values as needed to satisfy various mission phases.

When the model is activated, it shall check the input stimuli and shall provide appropriate output measurement values. It is preferred that the model provide output data when the input stimuli corress. Bus activity is then minimal during those mission phases when to simuli remains constant. However, the GSIU operating system may require a cyclic model program in which case the model output rate shall be once per second.

2.0 DETAILED REQUIREMENTS

This model simulates the Orbiter Fuel Cell/Cryogenics System (FC/CRYO) by representing the stimulus/response relationships which exist at the power and signal interfaces between the Orbiter Avionics System and the FC/CRYO. The model has been simplified by including only those output signals which are needed to support the type of testing which will be accomplished in the Shuttle Avionics Integration Laboratory (SAIL).

The model receives stimuli from two sources (see Figure 1).

- 1) The Flight System (FS) via the Signal Termination Module (STM).
- 2) The Test Operations Center (TOC) Display and Control Module (DCM) via test language.

The model output parameters go to the FS via the STM. Tables 1 and 2 list the input and output parameters respectively. The three stimuli which come from the DCM are used to inform the model when the fuel cells are on line and providing electrical power to the FS.

2.1 FUNCTIONAL CHARACTERISTICS

2.1.1 Fuel Cell/Cryogenics System

The FC/CRYO system provides the Orbiter with electrical power and can be divided into two major systems, 1) the fuel cell power plants where reactants are converted into electrical energy, and 2) the reactant storage and distribution system where reactants are stored in a cryogenic state, then heated to a gas and supplied to the fuel cell power plants. Gaseous oxygen is also provided for the Environmental Control and Life Support System (ECLSS) as well as potable water, a by-product of the fuel cell energy reaction. Figure 2 is a simplified schematic of the FC/CRYO system. The wiring details of hydrogen and oxygen tank 4 was not available when the FC/CRYO math model requirements were written. Consequently only tanks 1, 2 and 3 are simulated in the math model, and tank 4 is shown in dashed lines in figure 2 for reference purposes. There are three fuel cells although Figure 2 shows only one for clarity. Each fuel cell has a water coolant loop to transport heat from heat exchangers. To improve the performance of the fuel cells, purge valves are provided to flush impurities overboard. The purge operation may be performed manually or automatically by the GPC but must be initiated by the crew. Each fuel cell has a power rating of 2 to 7 KW continouous duty, or 12 KW peak duty for not more than 15 minutes. Output voltage is 28 to 32 volts DC.

2.1.2 Model Function

In preparing the requirements for the non-avionics system math models, the following ground rules were observed:

- Output all measurements addressed to flight critical MDM's.
- Output those measurement used in dedicated displays, systems management, or caution and warning.

INPUT OUTPUT DATA FLOW

FIGURE 1

FUEL CELL / CRYO SUBSYSTEM SCHEMATIC

- Output those measurements needed for operation by other systems.
- Output those measurements needed during pre-launch operations, starting at T-20 minutes.
- Respond to stimuli inputs in a discrete manner (no timed transients simulating pressure or temperature build-up and decay, for example).
- Do not account for depletion of expendables during a mission.

These ground rules are intended to simplify the math models without compromising the avionics testing in SAIL. Where required, specific ground rules may be waived.

In the FC/CRYO model, the delay on start-up, while heaters reach operating temperatures, is not simulated. Temperatures will jump immediately to their nominal values. Data values remain fixed until altered by a change in input stimuli.

Since fuel cell substitutes are actually providing the vehicle power during SAIL tests, it is necessary that the DCM operator signal the FC/CRYO model when a particular fuel cell is supposed to be supplying power. This allows the proper 02 and H2 flow rates to be determined. The actual current flowing in the vehicle busses is not visible to the math model, so when a fuel cell is simulating supplying power, the 02 and H2 flow rates provided by the model will be either at their maximum or minimum value, depending on whether or not a purge is in progress. This prevents vehicle software from calculating an erroneous position for the 02 and H2 purge valves. There is no position indication measurement on the purge valves so flight software monitors the total reactant flow (provided by the model) and subtracts a calculated amount based on the current in the bus (provided by the fuel cell substitutes). This difference will then indicate the purge valve is open or closed.

The heaters in the 02 and H2 cryogenic tanks are controlled by a three position switch: 1-Off, 2-AUTO, 3-ON, and by a heater controller. The math model does not know the position of the switch. The math model will see only power or no power to the heaters as provided by the heater controller. Using a tank pressure value that is less than the low limit will cause the heater controller to provide power whenever the switch is in AUTO or ON. When no power is supplied the switch will be assumed OFF and the tank pressure value will then reflect a heaters OFF condition.

2.1.3 Input/Output

The stimuli identification for those stimuli which have their sources at the flight system via the STM are coded in terms reference Avionics Test Article (ATA) interface connector and pin number according to the following format.

Those stimuli which are uplinked to the model from the DCM are given unique alphanumeric variable names. The model output parameters whose destinations are the flight system via the STM are identified by their Master Measurement List measurements.

2.2 DCM UPLINK

Three stimuli are uplinked to the FC/CRYO math model from the DCM, one for each fuel cell. These stimuli let the math model know when a fuel cell is or is not providing power to the vehicle, so that proper O2 and H2 flow rates may be determined. Refer to Table 1. Faults are simulated by inhibiting the model output for the affected measurement(s) and uplinking the off-nominal value(s) from the DCM to the STM. The exact manner in which this is accomplished is covered in documentation for the GSIU Operating System.

2.3 INITIALIZATION REQUIREMENTS

All model outputs are functions of the inputs alone and need not be initialized since values will be calculated by the model in its first cycle. The initial condition column in Table 2 is for reference only.

2.4 TERMINATION REQUIREMENTS

None.

2.5 UNIQUE REQUIREMENTS

2.5.1 INTERNAL VARIABLES

		STATE	
NAME	<u>FUNCTION</u>	<u>o</u>	1
FLAG	Indicates the state of O2 pressure on the fuel cell coolant accumulator.	PRESS LO	PRESS OK
0P	Indicates the state of 02 pressure at fuel cell 3 supply valve inlet.	PRESS LO	PRESS OK
HP	Indicates the state of H2 pressure at fuel cell 3 supply valve inlet.	PRESS LO	PRESS OK
A	Represents an OPEN command in the Latching Valve Routine (LVR).	OFF	ON
В	Represents a CLOSE command in the Latching Valve Routine (LVR).	OFF	ON
V	Indicates the valve position in the Latching Valve Routine (LVR).	CLSD	OPN 4
٧٦	O2 GSE supply valve position.	OPN	CLSD
V2	H2 GSE supply valve position.	OPN	CLSD
V3	O2 isolation valve 1.	CLSD	OPN
V4	02 isolation valve 2.	CLSD	OPN
V 5	H2 isolation valve 1.	CLSD	OPN
V6	H2 isolation valve 2.	CLSD	OPN
V7	O2 ECLSS supply valve 1.	CLSD	OPN
87	O2 ECLSS supply valve 2.	CLSD	OPN
V9	FC 1 02 reactant supply valve.	CLSD	OPN
V10	FC 1 H2 reactant supply valve.	CLSD	OPN
V11	FC 2 02 reactant supply valve.	CLSD	OPN
V12	FC 2 H2 reactant supply valve.	CLSD	OPN
V13	FC 3 02 reactant supply valve.	CLSD	OPN
V14	FC 3 H2 reactant supply valve.	CLSD	OPN

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOMIAL CONVERSION METHOD

The scaling polynomial equation used by the flight system is defined in the SM FSSR. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

where: FS_{EU} = flight system engineering units

X = flight system input voltage

 A_0 , A_1 , A_2 , A_3 = scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{FII}) to GSIU counts. This procedure may be used to calculate GSIU count values for fault insertion at the DCM.

Example:

For measurement no. V63R1100A, convert FS_{FII} value = 2288 to GSIU counts.

Step 1:

In the SM FSSR, look up the measurement no. (V63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units. range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{EII} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^2 + 12.246X^3$$

so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VDC.

It is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.846 rounded to the nearest integer.

However, in the example being worked, X is defined as VDC and X = 3.846 VDC.

Step 4:

Now to convert X VDC to GSIU counts, evaluate the following equation which shows the relationship between X and GSIU counts:

GSIU counts =
$$\left[X \left(\frac{1023}{K}\right)\right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

GSIU counts =
$$\left[3.846 \left(\frac{1023}{5}\right)\right]$$
, rounded to the nearest integer

Therefore, GSIU counts = 787 counts.

Note that since GSIU counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU} , when the reverse calculations are made during test operations, as the rcllowing shows:

X = GSIU counts
$$\left(\frac{K}{1023}\right)$$

X = 787 X $\left(\frac{5}{1023}\right)$
S0 X = 3.846529
And
FS_{EU} = 443.167 + 851.956X - 143.904X² + 12.246X³
FS_{EU} = 443.167 + 851.956(3.848) - 143.904(3.848)² + 12.246 (3.848)
FS_{EU} = 2288.017

Hence when 787 GSIU counts is inserted for measurement no. V63R:100A, a value of 2288.017 ${\rm FS}_{\rm FII}$ will result.

2.6.2 RANGE LIMIT CONVERSION METHOD

NONE.

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 FS $_{\hbox{\footnotesize EU}}$ which is equivalent to 534 $\hbox{\footnotesize GSIU}_{\hbox{\footnotesize CTS}}$ shown outside the box.

CRYO H2 TANK I

CRYD HR TANK ROUTINE

CRYO H2 TANK 3 ROUTINE

FUEL CELL 1
ROUTINE
(PART 3A)

FUEL CELL 2 ROUTINE (PART 3A)

FUEL CELL 3 ROUTINE (PART 3A)

FUEL CELL ROUTINE (PART 5)

PURGE HEATERS ROUTINE

MEASUREMENT OUTPUT FROM FC/CRYO MODEL - TABLE 2

		I.C.		VALUE 1		VALUE	2	VALUE	ო	
1. 3.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	СТЅ	SITIO
V45T0345A	FC 3 COOLANT RETURN TEMP	97	401	155	369					DEGF
V45P3347A	FC 3 COOLANT PRESS	62	634	16	164	32	327	64	657	PSIA
V45R0360A	FC 3 02 FLOW	0.836	0	2.90	329	5.37	546			LB/HR
, V45R0370A	FC 3 H2 FLOW	0.063	0	0.48	517	1.23	785			LB/HR
V45T0381A	FC 3 PRODUCT H20 LINE TEMP	59	246	114	471					DEGF
1, V45X0410E	FC 1 H20 CONDITION	0	0	.	- -1					STATE
V45T0412A	FC 1 H20 RELIEF VLV TEMP	62	258	103	426					DEGF
V45X0420E	FC 2 CONDITION	0	0	-	-					STATE
V45T0422A	FC 2 H20 RELIEF VLV TEMP	64	266	105	434		<u> </u>			DEGF
V45X0430E	FC 3 H20 CONDITION	0	0	,4	7					STATE
V45T0432A	FC 3 H20 RELIEF VLV TEMP	99	274	107	445					DEGF
V45T0450A	H20 RELIEF LINE TEMP	62	258	109	450					DEGF
V45T0455A	H20 RELIEF NOZZLE TEMP A	111	254	250	575					DEGF
V45T0456A	H20 RELIEF NOZZLE TEMP B	114	262	254	585					DEGF
V45T0600A	FC 02 VENT LINE TEMP	125	325	275	708					DEGF
V45T0699A	FC HZ VENT LINE TEMP 1	128	333	280	722					DEGF
V45T0700A	FC H2. VENT LINE TEMP 2	131	327	278	716					DEGF
V45X1080E	PRSD 02 ECS PRI SUPPLY VLV - OPEN	7	-	0	0	-				STATE
. V45X1083E	PRSD 02 ECS SEC SUPPLY VLV - OPEN	-		0	0					STATE
V45P1100A	PRSD 02 TANK 1 PRESS	979	534	516	44 0					PSIA
V45T1: 01A	PRSD 02 TANK 1 FLUID TEMP	-35	442	-162	295					DEGF
an de la des										
marrie son d					••••					· · · · · · · · ·

TABLE 1 - STIMULI INP/" TO FUEL CELL/CRYO MODEL

	UNITS	STATE				->	STATE	STATE	STATE	STATE					STATE	STATE	STATE	STATE					STATE	STATE
STATES/RANGE	HI				<u>-</u>	-					_				,		,-	_	<i></i>	_		 -		
STAT	C;	0	•	0	0	0	•	0	 o	0		0		0	0	•	0	0		•	0		0	0
	-		•																	 -	-			
SOURCE		FS																				•	+	FS
OS																								
NOMENCLATURE		FC 1 STOP A/STOP B	FC 1 START-Ly HTR INHIBIT	FC 1 02 PURGE VLV OPEN	FC 1 H2 PURGE VLY OPEN	FC 1 K7 PUMP CHECK	FC 1 START	FC 1 RELAY POWER	FC 1 COOLANT PUMP PHASE A	FC 2 STOP A/STOP B	FC 2 START-UP HTR INHIBIT	FC 2 02 PURGE VLV OPEN	FC 2 H2 PURGE VLV OPEN	FC 2 K7 PUMP CHECK	FC 2 START	FC 2 RELAY POWER	FC 2 COOLANT PUMP PHASE A	FC 3 STOP A/STOP B	FC 3 START-UP HTR INHIBIT	FC 3 02 PURGE VLV OPEN	FC 3 H2 PURGE VLV OPEN	FC 3 K7 PUMP CHECK	FC 3 START	FC 3 RELAY POHER
IDENTIFICATION NUMBER		K40P862-B	K40P862-C	K40P862-D	K40P862-E	K40P862-F	K40P862-M	K40P862-V	K40P664-A	K10P872-8	K40P872-C	K40P872-D	K40P872-E	K40P872-F	K40P872-M	K40P872-V	K40P874-A	K40P882-B	K40P882-C	K40P882-D	K40P882-E	K40P382-F	K40P882-M	K40P882-V

TABLE 1 - Continued.

IDENTIFICATION	NOMENCLATURE	SOURCE	ST	STATES/RANGE	GE :
NUMBER			07	IH	UNITS
K40P884-A	FC3 COOLANT PUMP PHASE A	FS	0	_	STATE
K40P9811-B	H2 TANK 1 HTR A POWER	- tur-uni	0	_	STATE
K40P9812-A	H2 TANK 1 HTR B POWER		0	_	STATE
K40P9813-A	H2 TANK 1 QTY CHECK SIGNAL		0	_	STATE
K40P9831-A	02 TANK 2 HTR A1 POWER	•	0	_	STATE
K40P9831-C	02 TANK 2 HTR A2 POWER		0	_	STATE
K40P 9832-A	02 TANK 2 HTR B1 POWER	•	0	_	STATE
K40P9832-C	02 TANK 2 HTR B2 POWER		0	_	STATE
K40P9833-A	02 TANK 2 QTY CHECK SIGNAL		0	_	STATE
K40P9841-B	H2 TANK 2 HTR A POWER		0	_	STATE
K40P9842-A	H2 TANK 2 HTR B POWER		0	_	STATE
K40P9843-A	H2 TANK 2 QTY CHECK SIGNAL		0	_	STATE
K40P9851-A	02 TANK 1 HTR A1 POWER		0	_	STATE
K40P9851-C	02 TANK 1 HTR A2 POWER		0	<u>, </u>	STATE
K40P9852-A	02 TANK 1 HTR B1 POWER		0	_	STATE
K40P9852-C	02 TANK 1 HTR B2 POWER		0	_	STATE
K40P9853-A	02 TANK 1 QTY CHECK SIGNAL		0	_	STATE
K40P9869-1	02 GSE SUPPLY VLV OPEN		0	-	
K40P9869-2	02 GSE SUPPLY VLV CLOSE		0	_	
K40P9870-1	H2 GSE SUPPLY VLV OPEN	•	0	_	•
K40P9870-2	HZ GSE SUPPLY VLV CLOSE	FS	0	_	STATE
					1

TABLE 1 - Cq inued.

K40P9871-1 OZ WANIFOLD 1 VLV OPEN FS 0 1 K40P9871-2 OZ WANIFOLD 1 VLV CLOSE 0 1 K40P9872-1 OZ WANIFOLD 2 VLV OPEN 0 1 K40P9872-2 OZ WANIFOLD 2 VLV OLOSE 0 1 K40P9873-2 HZ WANIFOLD 1 VLV OPEN 0 1 K40P9874-1 HZ WANIFOLD 2 VLV OPEN 0 1 K40P9874-2 HZ WANIFOLD 2 VLV OPEN 0 1 K40P9875-3 HZ WANIFOLD 2 VLV OPEN 0 1 K40P9875-4 HZ WANIFOLD 2 VLV OPEN 0 1 K40P9875-5 ECLSS OZ SUPPLY VLV J CLOSE 0 1 K40P9875-7 ECLSS OZ SUPPLY VLV J CLOSE FC 1 0 1 K40P9875-7 ECLSS OZ SUPPLY VLV J CLOSE FC 1 0 1 K40P9875-7 CZ SUPPLY VLV OPEN - FC 1 0 1 K40P9877-7 OZ SUPPLY VLV OPEN - FC 1 0 1 K40P9877-7 OZ SUPPLY VLV OPEN - FC 2 0 0 1 K40P9877-7 OZ SUPPLY VLV OPEN - FC 2 0 0 0 0 K40P		IDENTIFICATION NUMBER	NOMENCLATURE	SOURCE	ST	STATES/RANGE	<u> </u>
(40P987)-1 02 MANTFOLD 1 VLV OPEN (40P987)-2 02 MANTFOLD 2 VLV OPEN (40P9872-2) 02 MANTFOLD 2 VLV OPEN (40P9872-2) 02 MANTFOLD 2 VLV CLOSE (40P9873-3) H2 MANTFOLD 2 VLV CLOSE (40P9874-1) H2 MANTFOLD 2 VLV CLOSE (40P9875-1) H2 MANTFOLD 2 VLV CLOSE (40P9875-2) ECLS SO SUPPLY VLV 1 OPEN (40P9875-2) ECLS SO SUPPLY VLV 1 OPEN (40P9875-2) ECLS SO SUPPLY VLV 2 OPEN (40P9876-1) ECLS SO SUPPLY VLV 2 CLOSE (40P9877-2) GC SUPPLY VLV 2 CLOSE (40P9877-2) QC SUPPLY VLV QOEN - FC 1 (40P9877-2) QC SUPPLY VLV QOEN - FC 1 (40P9877-2) QC SUPPLY VLV QOEN - FC 1 (40P9877-3) QC SUPPLY VLV QOEN - FC 2 (40P9877-4) QC SUPPLY VLV QOEN - FC 2 (40P9877-2) QC SUPPLY VLV QOEN - FC 2 (40P9887-3) QC SUPPLY VLV QOEN - FC 2 (40P9880-2) H2 SUPPLY VLV QOEN - FC 2 (40P9881-1) QC SUPPLY VLV CLOSE - FC 3 (40P9881-1) QC SUPPLY VLV CLOSE - FC 3					2	1H	UNITS
K40P9871-2 K40P9872-1 K40P9872-2 K40P9873-1 K40P9874-1 K40P9874-1 K40P9875-1 K40P9875-1 K40P9876-1 K40P9876-1 K40P9876-1 K40P9876-2 K40P9877-2 K40P9877-2 K40P9877-2 K40P9879-1 K40P9879-1 K40P9879-2 K40P9880-1 K40P9880-1 K40P9880-1 K40P9881-2		K40P9871-1		FS	0	-	STATE
K40P9872-1 K40P9873-1 K40P9873-1 K40P9873-2 K40P9874-2 K40P9875-1 K40P9875-1 K40P9875-1 K40P9875-2 K40P9877-2 K40P9877-2 K40P9877-2 K40P9879-2 K40P9879-2 K40P9880-1 K40P9880-1 K40P9880-1 K40P9880-1 K40P9881-2		K40P9871-2	02 MANIFOLD 1 VLV CLCSE		0	_	
K40P9872-2 K40P9873-1 K40P9873-2 K40P9874-1 K40P9875-1 K40P9875-1 K40P9875-2 K40P9876-2 K40P9877-1 K40P9877-2 K40P9877-1 K40P9879-2 K40P9879-2 K40P9880-1 K40P9880-1 K40P9880-1 K40P9880-1 K40P9880-1 K40P9881-2		K40P9872-1	02 MANIFOLD 2 VLV OPEN		0	_	
K40P9873-1 K40P9874-1 K40P9874-2 K40P9875-1 K40P9875-1 K40P9876-1 K40P9876-2 K40P9877-1 K40P9877-1 K40P9877-2 K40P9879-1 K40P9879-2 K40P9880-1 K40P9880-1 K40P9880-1 K40P9881-2		K40P9872-2	02 MANIFOLD 2 VLV CLOSE		0	_	
K40P9873-2 K40P9874-1 K40P9875-1 K40P9875-2 K40P9876-1 K40P9876-2 K40P9877-1 K40P9877-1 K40P9879-1 K40P9879-2 K40P9880-1 K40P9880-1 K40P9880-1 K40P9880-2 K40P9881-2		K40P9873-1			0	_	
K40P9874-1 K40P9875-1 K40P9875-2 K40P9876-1 K40P9876-2 K40P9877-2 K40P9877-2 K40P9879-2 K40P9879-2 K40P9880-1 K40P9880-1 K40P9880-1 K40P9880-1		K40P9873-2			0	-	
K40P9874-2 K40P9875-1 K40P9875-2 K40P9876-2 K40P9877-1 K40P9877-2 K40P9877-2 K40P9879-1 K40P9879-2 K40P9879-2 K40P9880-1 K40P9880-1 K40P9881-2		K40P9874-1	H2 MANIFOLD 2 VLV OPEN		0	~	_
K40P9875-1 K40P9876-1 K40P9876-2 K40P9877-2 K40P9878-1 K40P9878-2 K40P9879-1 K40P9880-1 K40P9880-1 K40P9880-1 K40P9881-2		K40P9874-2	HZ MANIFOLD 2 VLV CLOSE		0		
K40P9875-2 K40P9876-1 K40P9877-1 K40P9877-2 K40P9878-1 K40P9878-2 K40P9879-2 K40P9880-1 K40P9880-1 K40P9880-1 K40P9881-2		K40P9875-1	ECLSS 02 SUPPLY VLV 1 OPEN		0	_	
K40P9876-1 K40P9877-1 K40P9877-2 K40P9878-1 K40P9879-2 K40P9879-2 K40P9880-1 K40P9880-1 K40P9881-2	F-4	K40P9875-2	ECLSS 02 SUPPLY VLV 1 CLOSE		0	_	
	47	K40P9876-1	ECLSS 02 SUPPLY VLV 2 OPEN		0	_	
O2 SUPPLY VLV H2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV H2 SUPPLY VLV H2 SUPPLY VLV O2 SUPPLY VLV		K40P9876-2	ECLSS 02 SUPPLY VLV 2 CLOSE		0	_	
O2 SUPPLY VLV H2 SUPPLY VLV O2 SUPPLY VLV H2 SUPPLY VLV H2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV		K40P9877-1	02 SUPPLY VLV OPEN - FC 1		0	- -	
H2 SUPPLY VLV O2 SUPPLY VLV H2 SUPPLY VLV H2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV		K40P9877-2	02 SUPPLY VLV CLOSE - FC 1		0	_	
HZ SUPPLY VLV O2 SUPPLY VLV HZ SUPPLY VLV HZ SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV		K40P9878-1	SUPPLY		0	_	
O2 SUPPLY VLV H2 SUPPLY VLV H2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV		K40P9878-2	H2 SUPPLY VLV CLOSE - FC 1		0	_	
O2 SUPPLY VLV H2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV		K40P9879-1	02 SUPPLY VLV OPEN - FC 2		0	_	
H2 SUPPLY VLV O2 SUPPLY VLV O2 SUPPLY VLV		K40P9879-2			0	_	
HZ SUPPLY VLV 02 SUPPLY VLV 02 SUPPLY VLV		K40P9880-1			0	_	
05 05		K40P988U-2	SUPPLY VLV		0	- -	
05		K40P9881-1	02 SUPPLY VLV OPEN - FC 3		0	-	_ -
		K40P9881-2		FS	0	_	STATE

TABLE 1 - Qed.

if INTTS	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE
STATES/RANGE	-	_	-	,-		_	,	- -	_	-		_		~		-4
STA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOURCE	FS via STM				- -	FS via STM	. DCM	DCM	DCM	FS via STM	FS via STM	FS via STM	FS via STM	FS via STM	FS via STM	FS via STM
NOMENCLATURE	HZ SUPPLY VLV OPEN - FC 3	HZ SUPPLY VLV CLOSE - FC 3	H2/02 PURGE HTRS - MAN B	H2/02 PURGE HTRS - MAN A	H2/02 PURGE HTRS - GPC A	H2/02 PURGE HTRS - GPC B	FC 1 LOAD ON/OFF	FC 2 LOAD ON/OFF	FC 3 LOAD ON/OFF	02 TANK 1 QTY XDCR PWR (ESS BUS 2CA)	OZ TANK 2 QTY XDCR PWR (ESS BUS 1BC)	H2 TANK 1 QTY XDCR PWR (ESS BUS 2CA)	H2 TANK 2 QTY XDCR PWR (ESS BUS 1BC)	FLO XDCR PWR - FC 1 (MN'A)	FLO XDCR PWR - FC 2 (MN B)	FLO XDCR PWR - FC 3 (MN C)
IDENTIFICATION NUMBER	K40P9882-1	K40P9882-2	K40TB11-KC	K40TB12-KC	K40TB100-KC	K40TB101-KC		12	. L3	ස් K40P9853-W	K40P9833-W	. K4CP9813-W	K40P9843-W	K40P863-12	K40P873-12	K40P883-12

STIMULI INPUT TO (:/CRYO MODEL - TABLE 1

/RANGE	I UNITS	I STATE									<u></u>	 	<u> </u>		 	 	·		 						
STATES/RANGE	LO HI	0	_ _	0	_	_ _	_ _		_	0	0			<u>-</u>		 			 						lender av en en en en en el de la proposition en
SOURCE	·	S.					•			>	-								٠	٠	•	•	•	•	•
NOMENCLATURE		02 TANK 3 HTR A1 PWR	02 TANK 3 HTR A2 PWR	02 TANK 3 HTR B1 PWR	02 TANK 3 HTR B2 PWR	02 TANK 3 QTY CHECK SIGNAL	02 TANK 3 QTY XDCR PWR (ESS BUS 3AB)	A PWR	H2 TANK 3 HTR B PWR	H2 TANK 3 QTY CHECK SIGNAL	H2 TANK 3 QTY XDCR PWR (ESS BUS 3AB)														
IDENTIFICATION	NOTIFIER	KJ5-A	KJ5-C	KJ6-A	KJ6-C	K40P9520-A	K40P9520-W	KJ3-A	KJ4-A	K40P9547-A	K40P9547-W		,												

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

MEASUREMENT OUTPUT FROM FC/CRYO MODEL - TABLE 2

			1.0.		VALUE 1		VALUE	2	VALUE	м	HMTTC
FC I READY FC I STACK COOLANT OUT TEMP FC I CONDENSER EXIT TEMP FC I COOLANT PUNP STATUS FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT RETURN TEMP FC I COOLANT RETURN TEMP FC I COOLANT RETURN TEMP FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT PRESS FC I COOLANT PRESS FC I READY FC I READY FC I COOLANT PRESS FC I READY FC I READY FC I COOLANT PRESS FC I C COOLANT PRESS FC I C COOLANT PRESS FC I C COOLANT PRESS FC I C C C C C C C C C C C C C C C C C C		MEASUREMENT NAME	FS	CIS	ES	SE	FS	CTS	FS	CTS	611130
FC 1 STACK COOLANT OUT TEMP 110 509 198 749 76 76 76 76 76 76 76 76 76 76 76 76 76 76 77 77 78	V45X0105E	FC 1 READY	0	0	-	~					STATE
FC I CONDENSER EXIT TEMP 105 434 156 642 FC I COOLANT PUMP STAUS 0 1 1 1 FC I COOLANT RETURN TEMP 95 393 151 622 FC I COOLANT RETURN TEMP 0.0836 0 2.86 325 5.31 542 FC I OZ FLOM 0.0836 0 2.86 326 5.31 542 FC I OZ PLOM 0.0836 0 2.86 326 1.20 776 FC I OZ PLOM 0.0836 0 0 1 1 1 1 FC I OZ PLOM 0.0836 0 0 1 1 1 1 1 FC I OZ PLOM 0.0836 0 0 1 <	V45T0120A	FC 1 STACK COOLANT OUT TEMP	110	509	198	749					DEGF
FC I COOLANT PUMP STATUS 0 0 1 2 2 2 2 <td>V45T0130A</td> <td>FC 1 CONDENSER EXIT TEMP</td> <td>105</td> <td>434</td> <td>156</td> <td>545</td> <td></td> <td></td> <td></td> <td></td> <td>DEGF</td>	V45T0130A	FC 1 CONDENSER EXIT TEMP	105	434	156	545					DEGF
FC 1 COOLANT RETURN TEMP 95 393 151 622 62 634 15 153 307 58 593 FC 1 COOLANT PRESS 60 614 15 153 307 58 593 FC 1 OZ FLOW 0.0836 0 2.86 325 1.20 .776 776 FC 1 HZ FLOW 0 0 1 1 1 .776 .776 FC 2 READY 0 0 1 1 1 .776 .776 FC 2 READY 0 0 1 1 1 .777 .776 FC 2 STACK COOLANT OUT TEMP 0 0 1 1 .2 .2 .2 .1 .1 .1 .1 .1 .1 .1 .2 .2 .2	V45X0143E	FC 1 COOLANT PUMP STATUS	0	0	-	-					STATE
FC 1 COOLANT PRESS 60 614 15 153 30 307 58 593 FC 1 OZ FLOW 0.0836 0 2.86 326 5.31 542 593 576 578 578 593 578 578 578 578 593 578 <td>V45T0145A</td> <td>FC 1 COOLANT RETURN TEMP</td> <td>95</td> <td>393</td> <td>151</td> <td>622</td> <td></td> <td></td> <td></td> <td></td> <td>DEGF</td>	V45T0145A	FC 1 COOLANT RETURN TEMP	95	393	151	622					DEGF
FC 1 02 FLOM 0.836 0 2.86 325 5.31 542 FC 1 HZ FLOW 0.063 0 0.50 529 1.20 778 FC 1 PRODUCT HZO LINE TEMP 0 0 1 1 1 1 FC 2 READY 108 503 201 757 1 1 FC 2 CONDENSER EXIT TEMP 103 426 158 651 1 1 FC 2 CONDENT PUMP STATUS 0 0 1 1 1 1 1 FC 2 COLDANT PUMP STATUS 0 0 1	V45P0147A	FC 1 COOLANT PRESS	09	614	15	153	30	307	28	593	PSIA
FC 1 HZ FLOW 0.063 0 0.050 529 1.20 776 776 FC 1 PRODUCT HZO LINE TEMP 55 229 110 454 1.20 776 776 FC 2 READY 0 1	V45R0160A	FC 1 02 FLOW	0.836	0	2.86	325	5.31	545			LB/HR
FC 1 PRODUCT H20 LINE TEMP 55 229 110 454 9 1 1 9 1	V45R0170A	FC 1 H2 FLOW	0.063	0	0.50		1.20	.778			LB/HR
FC 2 READY 0 1	V45T0181A	_	55	529	110	454					DEGF
FC 2 STACK COOLANT OUT TEMP 108 503 201 757 9 757 9 103 426 158 651 9 1 </td <td>V45X0205E</td> <td>FC 2 READY</td> <td>0</td> <td>0</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>STATE</td>	V45X0205E	FC 2 READY	0	0	-						STATE
FC 2 CONDENSER EXIT TEMP 103 426 158 651 9 1 <	V45T0220A	FC 2 STACK COOLANT OUT TEMP	108	503	201	757					DEGF
FC 2 COOLANT PUMP STATUS 0 1 <td>V45T0230A</td> <td>FC 2 CONDENSER EXIT TEMP</td> <td>103</td> <td>426</td> <td>158</td> <td>651</td> <td></td> <td></td> <td></td> <td></td> <td>DEGF</td>	V45T0230A	FC 2 CONDENSER EXIT TEMP	103	426	158	651					DEGF
FC 2 COOLANT RETURN TEMP 92 381 153 630 836 630 614 FC 2 COOLANT PRESS 58 593 14 143 28 286 60 614 FC 2 COOLANT PRESS 0.063 0 2.88 327 5.34 544 614 FC 2 PRODUCT HZO LINE TEMP 57 237 112 462 783 783 FC 3 REALY 0 0 1 1 1 1 FC 3 STACK COOLANT OUT TEMP 112 516 204 765 765 765 FC 3 CONDENSER EXIT TEMP 107 442 162 667 7 7 FC 3 COOLANT PUMP STATUS 0 0 1 1 1 1	V45X0243E	FC 2 COOLANT PUMP STATUS	0	0		-1					STATE
FC 2 COOLANT PRESS 58 593 14 143 28 286 60 614 FC 2 OZ FLOM 0.836 0 2.88 327 5.34 544 614 FC 2 H2 FLOM 0.063 0 0.49 523 1.22 783 783 FC 2 H2 FLOM 57 237 112 462 783 783 783 FC 3 REALY 0 0 1	V45T0245A	FC 2 COOLANT RETURN TEMP	92	381	153	630					DEGF
FC 2 02 FLOW 0.836 0 2.88 327 5.34 544 FC 2 H2 FLOW 0.063 0 0.49 523 1.22 783 FC 2 PRODUCT H20 LINE TEMP 57 237 112 462 783 FC 3 REALY 0 0 1 1 1 FC 3 STACK COOLANT OUT TEMP 112 516 204 765 765 FC 3 CONDENSER EXIT TEMP 107 442 162 667 7 FC 3 COOLANT PUMP STATUS 0 0 1 1 1	V45P0247A	FC 2 COOLANT PRESS	28	593	14	143	58	286	9	614	PSIA
FC 2 H2 FLOW 0.063 0 0.063 0 0.49 523 1.22 783 FC 2 PRODUCT H20 LINE TEMP 57 237 112 462 765 11 1 FC 3 STACK COOLANT OUT TEMP 112 516 204 765<	V45R0260A	FC 2 02 FLOW	0.836	0	2.88		5.34	544			LB/HR
FC 2 PRODUCT H20 LINE TEMP 57 237 112 462 FC 3 REALY 0 0 1 1 FC 3 STACK COOLANT OUT TEMP 112 516 204 765 FC 3 CONDENSER EXIT TEMP 107 442 162 667 FC 3 COOLANT PUMP STATUS 0 0 1 1	V45R0270A		0.063	0	0.49	523	1.22	783	-		LB/HR
FC 3 REALY 0 0 1 1 FC 3 STACK COOLANT OUT TEMP 112 516 204 765 FC 3 CONDENSER EXIT TEMP 107 442 162 667 FC 3 COOLANT PUMP STATUS 0 0 1 1	V45T0281A	FC 2 PRODUCT H20 LINE TEMP	22	237	112	462					DEGF
FC 3 STACK COOLANT OUT TEMP 112 516 204 765 FC 3 CONDENSER EXIT TEMP 107 442 162 667 FC 3 COOLANT PUMP STATUS 0 0 1 1	V45X0305E	FC 3 REALY	0	0	- -	-			_		STATE
FC 3 CONDENSER EXIT TEMP 107 442 162 667 FC 3 COOLANT PUMP STATUS 0 0 1 1	V45T0320A	FC 3 STACK COOLANT OUT TEMP	112	516		765					DEGF
FC 3 COOLANT PUMP STATUS 0 0 1 1 1	V45TC ~30A	FC 3 CONDENSER EXIT TEMP	107	442	162	299					DEGF
	V45X0343E	FC 3 COOLANT PUMP STATUS	0	0	-	7					STATE
						 -					

MEASUREMENT OUTPUT FROM FC/CRYO MODEL - TABLE 2

		I.C.		VALUE 1		VALUE	2	VALUE	3	INTTC
I. D.	MEASUREMENT NAME	FS	CIS	FS	CIS	FS	CTS	FS	CTS	01113
V45T0345A	FC 3 COOLANT RETURN TEMP	97	401	155	389					DEGF
V45P0347A	FC 3 COOLANT PRESS	62	634	16	164	32	327	64	657	PSIA
V45R0360A	FC 3 02 FLOW	0.836	Ó	2.90	329	5.37	546			LB/HR
V45R0370A	FC 3 H2 FLOW	0.063	0	0.48	517	1.23	785			LB/HR
V45T0381A	FC 3 PRODUCT H20 LINE TEMP	59	246	114	471					DEGF
V45X0410E	FC 1 H20 CONDITION	0	0	-	-					STATE
V45T0412A	FC 1 H20 RELIEF VLV TEMP	62	258	103	426					DEGF
V45X0420E	FC 2 CONDITION	0	0	7						STATE
V45T0422A	FC 2 H20 RELIEF VLV TEMP	64	266	105	434					DEGF
V45X0430E	FC 3 H20 CONDITION	0	0	1						STATE
V45T0432A	FC 3 H20 RELIEF VLV TEMP	99	274	107	442					DEGF
V45T0450A	H20 RELIEF LINE TEMP	62	258	109	450					DEGF
V45T0455A	H20 RELIEF NOZZLE TEMP A	111	254	250	575					DEGF
V45T0456A	H20 RELIEF NOZZLE TEMP B	114	292	254	585					DEGF
V45T0600A	FC 02 VENT LINE TEMP	125	325	275	708					DEGF
V45T0699A	FC H2 VENT LINE TEMP 1	128	333	280	722					DEGF
V45T0700A	FC H2. VENT LINE TEMP 2	131	327	278	716					DEGF
V45X1080E	PRSD 02 ECS PRI SUPPLY VLV - OPEN	~	-	0	0					STATE
V45X1083E	PRSD 02 ECS SEC SUPPLY VLV - OPEN	-	<u>~</u>	0	0					STATE
V45P1100A	PRSD 02 TANK 1 PRESS	979	534	516	440					PSIA
V45T1101A	PRSD 02 TANK 1 FLUID TEMP	-35	442	-162	295					DEGF

MEASUREMENT OUTPUT FROM FC/CRYO MODEL - TABLE 2

		•								
MEASUREMENT		1.6.		VALUE 1 (NOMINAL	* (VALUE 2 (HI/LOM)	K=2	VALUE 3 (OFF)	K=3	ST 181
1. 0.	MEASUREMENT NAME	FS	CIS	FS	CIS	FS	CTS	FS	CTS	2115
V45Q1105A	PRSD 02 TANK 1 QUANTITY	30	331	104	1023	0	51			PCNT
V45T1107A	PRSD 02 TANK 1 HTR ASSY 1 TEMP	-107	358	-166	291					DEGF
V45T1109A	PRSD 02 TANK 1 HTR ASSY 2 TEMP	-139	321	-167	288					DEGF
V45P1110A	PRSD 02 TANK 1 HTR CONTROL PRESS	750	481	517	4					PSIA
V45P1140A	PRSD 02 MANIF 1 PRESS	799	681	194	166				•	PSIA
V45X1141E	PRSD 02 MANIF 1 ISOL VLV - OPEN	,-1	Н	0	0					STATE
V45P1145A	PRSD 02 MANIF 2 PRESS	811	692	185	158					PSIA
V45X1146E	PRSD 02 MANIF 2 ISOL VLV - OPEN		,	0	0					STATE
V45X1150E	PRSD FC 1 02 REAC VLV - OPEN 30		~	0	0					STATE
V45X1155E	PRSD FC 2 02 REAC VLV - OPEN COLD	-	-	0	0					STATE
V45X1160E	PRSD FC 3 02 REAC VLV - OPEN 3C T	-	7	0	0					STATE
V45X1195E	PRSD 02 GSE SUPPLY VLV - CLSD CO CO	0	0	7	~1					STATE
V45P1200A	PRSD 02 TANK 2 PRESS	929	545	518	442					PSIA
V45T1201A	PRSD 02 TANK 2 FLUID TEMP	-26	452	-160	297				•	DEGF
V45Q1205A	PRSD 02 TANK 2 QUANTITY	40	426	104	1023	0	51		•	PCNT
V45T1207A	PRSD 02 TANK 2 HTR ASSY 1 TEMP	-116	348	-162	295					DEGF
V45T1209A	PRSD 02 TANK 2 HTR ASSY 2 TEMP	-148	311	-167	288					DEGF
V45P1210A	PRSD 02 TANK 2 HTR CONTROL PRESS	260	501	518	9					PSIA
V45P1300A	PRSD 02 TANK 3 PRESS	646	550	521	444					PSIA
V45T1301A	PRSD 02 TANK 3 FLUID TEMP	-17	462	-159	299					DEGF
V4501305A	PRSD 02 TANK 3 QUANTITY	20	518	104	ادداؤ	0	51			PCNT
V45T1307A	PRSD 02 TANK 3 HTR ASSY 1 TEMP	.125	338	-166	•					DEGF
V45T1309A	PRSD 02 TANK 3 HTR ASSY 2 TEMP	-157	301	-169	2.86					DEGF
					•					

MEASUREMENT OUTPUT FROM FC/CRYO MODEL - TABLE 2

MEASUREMENT		1.C.		VALUE 1	¥ _	VALUE 2	K=2	VALUE 3	K=3	
I. D.	MEASUREMENT NAME	2	Ę	2011) ř	FS FS	CTS	101	716	UNITS
			•	3	3				2	
V45P1310A	PRSD 02 TANK 3 HTR CONTROL PRESS	770	525	520	10					PSIA
V45P2100A	PRSD H2 TANK 1 PRESS	220	563	145	370					PSIA
V45T2101A	PRSD H2 TANK 1 FLUID TEMP	-100	366	-286	151					DEGF
V45Q2105A	PRSD H2 TANK 1 QUANTITY	35	374	105	1023	0	51			PCNT
V45T2107A	PRSD H2 TANK 1 HTR ASSY TEMP	-70	401	-289	147				•	DEGF
V45P2110A	PRSD H2 TANK 1 HTR CONTROL PRESS	260	735	148	18			•		PSIA
V45P2140A	PRSD H2 MANIF 1 PRESS	190	487	142	364					PSIA
V45X2141E	PRSD H2 MANIF 1 ISOL VLV - OPEN	-	~	0	0					STATE
V45P2145A	PRSD H2 MAN.F 2 PRESS	194	497	147	376					PSIA
V45X2146E	PRSD H2 MANIF 2 ISOL VLV - OPEN		-	0	0					STATE
V45X2150E	PRSD FC 1 H2 REAC VLV - OPEN		7	0	0					STATE
V45X2155E	PRSD FC 2 H2 REAC VLV - OPEN		-	0	0					STATE
V45X2160E	PRSD FC 3 H2 REAC VLV - OPEN	4		0	0					STATE
V45X2195E	PRSD H2 GSE SUPPLY VLV - CLSD	0	0		~					STATE
V45P2200A	PRSD H2 TANK 2 PRESS	230	589	150	385				•	PSIA
V45T2201A	PRSD H2 TANK 2 FLUID TEMP	-91	376	-291	145					DEGF
V45Q2205A	PRSD H2 TANK 2 QUANTITY	45	469	105	1023	0	51			PCNT
V45T2207A	PRSD H2 TANK 2 HTR ASSY TEMP	09-	413	-295	141					DEGF
V45P2210A	PRSD H2 TANK 2 HTR CONTROL PRESS	270	800	151	39					PSIA
V45P: 300A	PRSD H2 TANK 3 PRESS	240	614	149	381					PSIA
V45T≥391%	PRSN H2 TANK 3 FLUID TEMP	-83	387	-288						DEGF
745023005		25	561		1023	0	51			PCNT
745723673 V45P2310A	PROGRAM FOR THE ASSY TEMP PROGRAM FOR THE COMPONE PRESS	-51 280	424	-293 150	변 3 당 2 당 2	 				DEGF PSIA

5.0 REFERENCES

- 1. LA-8-10100-1/JSC-11174, Space Shuttle Systems Handbook 0V-102
- 2. VS70-450102, Schematic Diagram Fuel Cells
- 3. VS70-450202, Schematic Diagram Cryo Subsystem
- 4. ICD-3-1603-05, Section 3.5, Interface Control Document for Fuel Cell & Cryo Controls
- 5. SD76-SH-0027, Functional Subsystem Software Requirements (FSSR-6)
- 6. SD72-SH-0104-1, System Definition Manual, paragraph 5.0, Fuel Cell/Cryogenic System
- 7. LEC-9485, Orbiter 102 Subsystem Simulation Requirements

APPENDIX G ATMOSPHERE REVITALIZATION/H20 MATH MODEL REQUIREMENTS

ACKNOWLEDGEMENTS:

The mathematical model flow chart appearing in Section 3 was based on one . . prepared by Rockwell/Downey, California and provided the basic information from which this requirements document was prepared.

TABLE OF CONTENTS

Sect	tion	Page
1.	INTRODUCTION	G-3
2.	DETAILED REQUIREMENTS	G-5
	2.1 FUNCTIONAL CHARACTERISTICS	G-5
	2.1.1 ARS/H ₂ 0 LOOPS SUBSYSTEM	G-5
	2.1.2 INPUT/OUTPUT	G-9
	2.2 <u>DCM UPLINK</u>	G-10
	2.3 INITIALIZATION	G- 10
	2.4 TERMINATION REQUIREMENTS	6-11
	2.5 UNIQUE REQUIREMENTS	6-11
	2.6 ANALOG MEASUREMENTS	G-1 2
	2.6.1 POLYNOMIAL CONVERSION METHOD	G- 12
	2.6.2 RANGE LIMIT CONVERSION METHOD	G-15
3.	LOGIC FLOW DIAGRAMS	G-17
4.	TABLES	G-31
	4.1 INPUT STIMULI LIST	G- 31
	4.2 OUTPUT MEASUREMENT LIST	G-34
5.	REFERENCES	G-3/
	FIGURES	
Figi	ure	Page
2-1	Input/output data flow	G- (,
2-2	ARS - Water coolant loops - Orbiter 102	G- /

1. INTRODUCTION

Math models are used to simulate many of the Shuttle systems for which hardward does not exist in SAIL. A group of these models are termed non-avionic models since they do not simulate avionic equipment. The non-avionic models are needed to provide responses to cockpit switches, to drive cockpit displays, and to supply data for on-board software processing. The following list of non-avionic models will operate within the Test Operations Center (TOC) Ground Standard Interface Unit (GSIU).

- Main Propulsion System (Orbiter Portion)
- APU/Hydraulic
- Active Thermal Control
- Atmosphere Revitalization System (H20 Loops and PCS/Airlock)
- Fuel Cell/Cryogenics
- Smoke Detection/Fire Suppression
- Water/Waste Management

When the TOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when off-nominal conditions are desired. To simplify the models and ease the processing load on supporting test equipment, the model requirements define nominal conditions only. Further, analog values for output parameters change in step fashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs. This allows the DCM operator to adjust output parameter values.

When the model is activated, it shall check the input stimuli and shall provide appropriate output measurement values. It is preferred that the model provide output data when the input stimuli change. Bus activity is then minimal during those mission phases when the stimuli remain constant. However, the GSIU operating system may require a cyclic model program in which case the model output rate shall be once per second.

ORIGINAL PAGE IS OF POOR QUALITY

2. DETAILED REQUIREMENTS

This model simulates those functions of the ARS/H₂O Loops Subsystem that are in the Orbiter. To simplify the model, only those subsystem functions needed to support testing of the Shuttle avionics system are provided.

The model receives stimuli from one source, the flight system via the Signal Termination Module (STM); the model provides output parameter values to the flight system via the STM. Figure 2-1 illustrates the data flow in and out of the model. Tables 2-1 and 2-2 list the input stimuli and output measurements. Figure 2-2 illustrates the general functioning of the ARS/H₂O Loops Subsystem.

2.1 FUNCTIONAL CHARACTERISTICS

2.1.1 ARS WATER COOLANT LOOPS

Thermal control within the cabin area and the avionics bays (1, 2, and 3)

is accomplished by two parallel water coolant loops. For OV-102, both water coolant loops will be operated simultaneously during launch and entry. During orbital operations, only one water coolant loop will be operated. The water coolant loops (fig. 2-2) remove crew and equipment generated heat, and transport it to the active thermal control subsystem (ATCS) interchanger for heat rejection. Each coolant loop is identical with the exception that the primary loop contains two parallel mounted pumps and a shuttle check valve, while the secondary has only one pump and no shuttle check valve.

As depicted in figure 2-2 water flow leaving the pump first passes through a shuttle check valve (primary coolant loop only) to prevent flow around the inactive pump. On leaving the valve, the water coolant encounters a relief device. After this, the water coolant enters the silver ion generated (SIG) water chiller which cools fuel cell water to allow the water management subsystem SIG to provide proper water purification. From the SIG water coolant divides into two different paths.

Figure 2-1.- Input/output data flow

Figure 2-2.— ARS \sim water coolant loops - Orbite 102.

- o One path provides water coolant to the cabin (MDM) avionics coldplates to pick up heat generated by the MDM's. From the coldplates, the flow divides into two parallel paths. One path directs water coolant through avionics bay 3A heat exchanger to absorb heat generated by various avionics equipment and then through the avionics bay coldplates. The second path provides water coolant to avionics bay 3B coldplates. From this point, the water coolant merges with coolant exiting bay 3A into a single path.
- o The second path divides into two parallel paths, thus entering in-cabin avionics bays 1 and 2. In these avionics bays, the water coolant flows through the avionics bay heat exchanger, and then the avionics bay cold-plates. The water coolant leaving avionics bay 1 coldplates enters the hatch coolant loop, and the water coolant exiting avionics bay 2 enters the forward and overhead windows coolant loops. After leaving the hatch and windows, the water coolant merges with coolant exiting bays 3A and 3B into a single path.

Downstream of this point, the water coolant encounters the DFI coldplates and then the water bypass valve line. The bypass valve can be either automatically or manually controlled. In the auto mode, the bypass valve controls the water temperature in the water coolant pump package to $63 \pm 2.5^{\circ}$ F by bypassing coolant around the water/freon interchanger. For different phases of the mission, the bypass valve will be controlled as follows:

- o Launch and Entry The bypass valve will be driven manually to the full flow through interchanger position, then the valve will be left in the manual mode.
- o Orbital The bypass valve will be manually set to a predetermined position to match the required freon flow through the interchanger.

The water coolant that is bypassed around the interchanger then passes through the main loop filter. Downstream of the filter is the loop accumulator which maintains a constant pump inlet pressure and compensates for

thermal expansion and contraction of the coolant loop. From here, the water coolant returns to the pump for recirculation. The water coolant not bypassed continues through the interchanger for heat rejection. After this, the water coolant travels through the liquid cooling garment (LCG) heat exchanger, whose function is to supply chilled water to the airlock support subsystem for crewmen LCG cooling prior to EVA. From the LCG heat exchanger, the water coolant passes through a water chiller to cool water for crewman consumption. Then the water coolant goes through a check valve and the cabin condensing heat exchanger whose function is to remove sensible and latent heat from the cabin atmosphere. After leaving the cabin condensing heat exchanger, the water coolant is directed to the IMU heat exchanger where heat is absorbed by a convective conductive process. From the IMU heat exchanger, the water coolant returns to the coolant pump and accumulator assembly.

2.1.2 INPUT/OUTPUT

All inputs to the model are from the FS addressable at the STM. These stimuli are acted upon immediately at model execution without regard to time, and conditions are simulated in a step function manner. Any time-dependent inputs must be up-linked from the TOC-DCM as an abnormality (or parameter value change) in accordance with the GSIU Operating System.

For the sake of simplicity, the model will do no fault detection of stimuli, but will act upon it as received from the FS. Therefore, any fault insertion must include changes to all affected parameters in order to obtain a realistic response from the model.

All subsystem output is simulated by the model in accordance with stimuli from the FS. All measurements are made available to Systems Management (SM) and Fault Detection and Annunciation (FDA) as required.

The stimuli identification numbers used are coded to provide the following information at the SAIL flight cable/GSE/C70-1140 cable set interface.

Exceptions to this code are those stimuli with a letter for the connector number where the connector number is unknown. Also, the stimuli which comes from the DCM instead of the flight cable do not agree with this code. Signal Termination Module (STM) addresses for both stimuli and measurements are yet to be defined.

2.2. DCM UPLINK

The only values passed from the DCM will be those which involve output suppression and fault insertion in accordance with the GSIU Operating System and are not a part of this document.

2.3 INITIALIZATION

Measurements will be initialized with the values found in the IC (Initial Condition) column of Table 2. Stimuli will be initialized as follows:

STIMULI	INITIAL VALUE
K90P27-1	1
K90P33-1	1
K90P22-1	ì
K90P5-1	1
K90P6-1	1
K90P14-1	1
K90P9-1	1
K90P19-1	1
K90P43-1	1
K81P155-1	1

STIMULI	INITIAL VALUE	
T1 T2 R1 R2	38 38 300 300	Air other stimuli will be initialized to 0.
L1 = 1 L2 = 1	1	

2.4 TERMINATION REQUIREMENTS

None.

2.5 UNIQUE REQUIREMENTS

The following internal variables were introduced into the logic to facilitate computations.

T₁ - Cabin H_x in TEMP - LOOP 1

T2 - Cabin Hx in TEMP - LOOP 2

R₁ - H₂O INTCHGR flow rate - LOOP 1

 R_2 - H_2 0 INTCHGR flow rate - LOOP 2

F1 - Internal logic flag

T_c - Cabin TEMP

11 - Internal counter

L2 - Internal counter

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOMIAL CONVERSION METHOD

The scaling polynomial equation used by the flight system is defined in the SM FSSR. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1 x + A_2 x^2 + A_3 x^3$$

where: FS_{EU} = flight system engineering units

X = flight system input voltage

 A_0 , A_1 , A_2 , A_3 = scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{EU}) to GSIU counts. This procedure may be used to calculate GSIU count values for fault insertion at the DCM.

Example:

For measurement no. V63R1100A, convert FS_{FH} value = 2288 to GSIU counts.

Step 1:

In the SM FSSR, look up the measurement no. (V63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units, range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{FII} = A_0 + A_1X + A_2X^2 + A_3X^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^{2} + 12.246X^{3}$$

so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VDC.

It is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.846 rounded to the nearest integer.

However, in the example being worked, X is defined as VDC and X = 3.846 VDC.

Step 4:

Now to convert X VDC to GSIU counts, evaluate the following equation which shows the relationship between X and GSIU counts:

GSIU counts =
$$\left[X \left(\frac{1023}{K} \right) \right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

GSIU counts =
$$\left[3.846 \left(\frac{1023}{5}\right)\right]$$
, rounded to the nearest integer

Therefore, GSIU counts = 787 counts.

Note that since GSIU counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU} , when the reverse calculations are made during test operations, as the following shows:

$$X = 3SIU counts \left(\frac{K}{1023}\right)$$

$$X = 787 X \left(\frac{5}{1023}\right)$$

$$S0 X = 3.846529$$
And
$$FS_{EU} = 443.167 + 851.956X - 143.904X^2 + 12.246X^3$$

$$FS_{EU} = 443.157 + 851.956(3.848) - 143.904(3.848)^2 + 12.246 (3.848)^3$$

$$FS_{EU} = 2288.017$$

Hence when 78, GSIU counts is inserted for measurement no. V63R1100A, a value of 2288.017 ${\rm FS}_{\rm EH}$ will result.

2.6.2 RANGE LIMIT CONVERSION METHOD

Several analog measurements in this model are calculated according to the range limit conversion method, instead of the polynomial conversion method as described in Section 2.6.1 of this document. The form of the scaling equation for these cases is given as follows:

$$FS_{EU}$$
 = Low + $GSIU_{CTS}$ (High - Low)
where: FS_{EU} = flight system engineering units
 $GSIU_{CTS}$ = $GSIU$ math model count values
Low = Range low limit
High = Range high limit

The following table shows a sample data value for each measurement which requires this type of calculation. The measurement I.D. is shown along with high and low values for the parameter range. The FS column shows the data value in flight system engineering units calculated from the GSIU counts marked CTS in the table. These measurements are marked with an asterisk (*) in the Output Measurement List marked as Table 2 in Section 4.2 of this document.

MEASUREMENT ID	RANGE LOW	RANGE HIGH	FS	CTS
V61P2540A	0	30	5.2	177
V61Q2551A	0	100	51	522
V61H2612A	0	100	2	20
V61H2712A	0	100	95	972

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 FS $_{\hbox{EU}}$ which is equivalent to 534 $\hbox{GSIU}_{\hbox{CTS}}$ shown outside the box.

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 lists input stimuli to the ARS/H₂0 Loops model in terms of ID numbers, nomenclature, stimuli source, address, and range of parameter.

TABLE 2-1.- STIMULI ("UT TO ARS-H20 LOOPS

IDENTIFICATION	NOMENCLATURE		SOURCE	ST	STATES/RANGE	SE SE
NORDER				97	1H	UNITS
V61K2120E	CABIN TEMP. CNTRL - LOOP 1 ON	K90P27-7	FS vfa STM	0	-	STATE
V61K2121E	CABIN TEMP. CNTRL - LOOP 2 ON	K90P33-7		<u> </u>	_	
V61K2450E	HUMIDITY SEPARATOR A ON	K90P39-1	-	0		
V61K2455E	HUMIDITY SEPARATOR B ON	K90P41-1		0	 -)
V61K2566A	CABIN TEMP SELECTOR - LOOP 1	K90P31-4		<u> </u>	7.5	voc.
V61K2567A	CABIN TEMP SELECTOR - LOOP 2	K90P37-4		•	7.5	VDC
V61K2585E	CABIN FAN A ON	K90P18-A	•	•	_	STATE
V61K2590E	CABIN FAN B ON	K90P20-A		•	_	
V61K2601E	H ₂ 0 PUMP A - LOOP 1 ON	K90P13-1	-	• —	_	
V61K2606E	H ₂ 0 PUMP B - LOOP 1 ON	K90P15-1		<u> </u>	_	
V61K2701E	H ₂ 0 PUMP - LOOP 2 ON	K90P23-1			_	
V61K2747E	H ₂ 0 BYPASS MNL-INCR - LOOP 1	K90P17-1		•		
V61K2748E	H ₂ 0 BYPASS MNL-DECR - LOOP 1	K90P17-3		•	_	
V61K2770E	AV. BAY 1 FAN A ON	K90P1-1		<u> </u>	_	
V61K2775E	AV. BAY 1 FAN B ON	K90P3-1		.0	_	
V61K2780E	AV. BAY 2 FAN A ON	K90P2-1		<u> </u>	_	
V61K2785E	AV. BAY 2 FAN B ON	K90P4-1		0	_	
V61K2790E	AV. BAY 3 FAN A ON	K90P10-1	- 10g - 10g - 10g	<u> </u>	_	
V61K2795E	AV. BAY 3 FAN B ON	K90P12-1		<u> </u>	_	-
V61K2847E	H20 BYPASS MNL-INCR - LOOP 2	K90P25-1	•	•	_	
V61K2848E	H20 BYPASS MNL-DECR - LOOP 2	K90P25-3		•	~	1
			•		. •	>
				-		

TABLE 2-1. intinued.

V61K2849E IMU FAN A V61K285E IMU FAN B V61K285E IMU FAN CABIN TEM N/A CABIN TEM N/A INTCHGR FI N/A INTCHGR FI	₹ 8	•				JINICO/ NATION
K2852E K2855E K2855E	≪ ∞			9	HI	1::175
K2852E K2855E	~	K81P157-1	FS via STM	0	-	STATE
K2855E		K81P158-1		•	_	
	U	K81P159-1	j	<u> </u>	_	
	CABIN TEMP. CNTRLR 1 PWR	K90P27-1	PNL L4-Cb 117	0	_	
	CABIN TEMP. CNTRLR 2 PWR '	K90P33-1	PNL L4-CB 119	0	_	
	INTCHGR FLOW - H20 LOOP 1 PWR	K90P96-F	PNL 014-CB 35	0		
	INTCHGR'FLON - HO LOOP 2 PWR	K90P95-F	PNL 015-CB-35	•	_	
N/A AV. BAY	AV. BAY 1 S/C POWER	K90P5-1	PNL L4-CB-127	•	_	
AV.	BAY 2 S/C POWER	K90P6-1	PNL L4-CB-118	0	-	
N/A AV.	BAY 3 S/C POWER	K90P14-1	PNL L4-CB 120	<u> </u>		
É N/A, H20 BYPAS	SS CNTRLR - PRI	K90b9-1	PNL L4-CB 121	•	,- -	
N/A H20 BYPAS	HO BYPASS CNTRLR - SEC.	K90P19-1	PNL L4-CB 93	0	_	
N/A IMU FAN S	IMU FAN S/C POWER	K81P155-1	PNL L4-CB 81	•	_	
<u> </u>	CABIN AIR S/C POWER	K90P22-1	PNL L4-CB 94	0	_	
N/A HUMIDITY	HUMIDITY SEP S/C POWER	K90P43-1	PNL L4-CB 80	0	_	
N/A IMU FAN AP POWER	AP POWER	K80P32-F	FS VIA STM	0	-	→
				. <u>.</u>		····
				<u> </u>		
			•	· · · · · · · · · · · · · · · · · · ·		
		•		•		·

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

TABLE 2
L
긆
AE
F-
ŧ
_
Įų,
8
Ξ
AR/H,0 MODEL
~
Ξ
ωŽ
4
~
Ō
FROM
_
5
ᅙ
5
0
MEASUREMENT OUTPUT
Z
Ξ
띶
5
S
Ü
3.

	ONTIS		MMHG	PERCENT	DEG.F	PSID	STATE		-		PSIA	PSIA	PERCENT	PERCENT	DEG.F.	DEG.F.	PSIO	DEG.F.	PSID	DEG.F.	PSID	DEG. F.	DEG.F.	
3	CTS				546											546							170	
VALUE	FS				80	_						-		•		8							47	
2	CTS		259	1023	374						170			972		387		358		358		358	102	
VALUE	FS		7.6	100	92						52			95		99		90		80		80	41	
	CTS		0	0	716	207	~-	,i	-	~	0	12	100	0	0	0	121	0	0	0	80	0	217	
VALUE 1	FS		0	0	32 95	0.2	-1	-	1		0	0	0	0	45	32	0.12	45	0	45	0	45	32	;
	CTS		177	525	440	0	0	0	0	0	419	473	491	82	102	409	0	297	121	526	151	512	137	
I.C.	FS		5.2	51	70.7	0	0	0	0	0	61.5	18	20	2	55	89	0	74	0.13	20	0.14	95	44.06	
	MEASUREMENT NAME	 	CO ₂ PARTIAL PRESSURE		CABIN TEMP.	CABIN FAN DELTA PRESSURE	HUMIDITY SEP A SPEED	HUMIDITY SEP 8 SPEED	CABIN TEMP CTL FULL HX-LOOP 1	CABIN TEMP CTL FULL HX-LOOP 2	H ₂ 0 PUMP OUT PRESS - PRI	HO PUMP IN PRESS-PRI	HOO ACCUM QTY-PRI	HOO BYPASS VLV. POSPRI	CABIN HX OUT TEMP.	H ₂ O PUMP OUT TEMLOOP 1	AV. BAY 1 DELTA PRESS.	AV. BAY I OUT AIR TEMP.	AV. BAY 2 DELTA PRESS.	AV. BAY 2 OUT AIR TEMP.	AV. BAY 3 DELTA PRESS.	AV. BAY 3 OUT AIR TEMP.	CABIN HX IN, TEMPLOOP 1	
"EASURENEM	I. D.		461P2540A	₩6102551A	V61T2552A	V61P2556A	V61X2557E	V61X2558E	V61X2573E	V61X2577E	V61P2600A	V61P2605A	V6102610A	W61H2612A	V61T2635A	V61T2640A	V61P2642A	V61T2645A	V61P2647A	V61T2650A	4 V61P2658A	V6172551A	V61T2563A	, , , , , , , , , , , , , , , , , , ,

-

This measurement less the range limit conversion method of calculating ${\sf FS}_{\sf EU}$ from ${\it OSIU}_{\sf CTS}$ as discussed in sector (2.5%*NOTE:

MEASUREMENT OUTPUT FROM AR/H20 MODEL - TABLE 2

**EASURE 1ENT		1.0.		VALUE 1		VALUE	2	VALUE	က	11117
I. D.	MEASURENENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	51315
V61T2665A	CABIN HX IN. TEMPLOOP 2	47.12	172	32 53	0 239	43	125	51	217	DEG.F.
V61P2700A	HO PUMP OUT PRESS-SEC.	53	354	1.3	0	25	162			PSIA
V61P2705A	HO PUMP IN. PRESS-SEC.	16	419	0	10					PSIA
V61Q2710A	H20 ACCUM. QTY-SEC.	25	509	0	100					PERCENT
*V61H2712A	H ₂ 0 BYPASS VLV. POSSEC	98	972	0	0	ည	51			PERCENT
V61R2722A	H ₂ 0 INTCHGR. FLOW - LOOP 2		276	4.5	0	260	223	761	338	ЬРН
V61T2724A	HO INTCHGR. OUT TEMPLOOP 2		512	41	430	49	593			DEG.F.
V61T2740A	H ₂ 0 PUMP OUT TEMP - LOOP 2	77	512	32	0	72	454	8	546	DEG.F.
V61R2742A	HO INTCHGR. FLOW - LOOP 1	118	0	260	179	601	199	700	251	PPH
V61T2744A	H ₂ 0 INTCHGR. OUT TEMP LOOP 1	20	614	46	532	54	969			DEG.F.
V61X2860E	IMU FAN A SPEED	0	0	-	~					STATE
V61X2861E	INU FAN B SPEED	0	0	-	~					
V61X2862E	IMU FAN C SPEED	0	0		-					
V61P2869A	IMU FAN DP	4.2	614	0	0					INCHES
•										7
						-				
										
					-					

*NOTE: This measurement uses the range limit conversion method of calculating ${\sf FS}_{\sf EU}$ from ${\sf GSIU}_{\sf CTS}$ as discussed in section 2.6.2.

5. REFERENCES

LA-B-10100-1/JSC-11174-Space Shuttle Systems Handbook OV-102

Schematic Diagram Atmospheric Revitalization Subsystem VS70-610102 (5/20/77)

Interface Control Document 3-1603-05

Orbiter 102 Subsystem Simulation Requirements for ECLSS - LEC-9485

APPENDIX H ATMOSPHERE REVITALIZATION/PCS MATH MODEL REQUIREMENTS

CONTENTS

Sec	tion	Page
1.	INTRODUCTION	H-3
2.	DETAILED REQUIREMENTS	H-5
	2.1 FUNCTIONAL CHARACTERISTICS	H - 5
	2.1.1 MODEL FUNCTION	H - 9
	2.1.2 INPUT/OUTPUT	н-10
	2.2 DCM UPLINK	H-10
	2.3 INITIALIZATION REQUIREMENTS	H-1.
	2.4 TERMINATION REQUIREMENTS	H-11
	2.5 <u>UNIQUE REQUIREMENTS</u>	H-11
	2.6 ANALOG MEASUREMENTS	H-12
	2.6.1 POLYNOMIAL CONVERSION METHOD	H-12
	2.6.2 RANGE LIMIT CONVERSION METHOD	H-15
3.	LOGIC FLOW DIAGRAMS	H-17
4.	TABLES	H-35
5.	REFERENCES	H-43

CONTENTS

TABLES

Tab	le	Page
1	STIMULI INPUTS TO ARS/PCS MODEL	H-36
1A	STIMULI TO MML CORRELATION	H-38
2	MEASUREMENT OUTPUTS FROM ARS/PCS MODEL	H-40
	FIGURES	
Fig	ure	
1	Input/Output Data Flow	H-6
2	ATMOS Pressure and Control System Simplified Schematic	H-7
3	AIRLOCK SIMPLIFIED SCHEMATIC	H-8

1.0 INTRODUCTION:

Math models are used to simulate many of the Shuttle systems for which hardware does not exist in SAIL. A group of these models are termed non-avionics models since they do not simulate avionic equipment. The non-avionics models are needed to provide responses to cockpit switches, to drive cockpit displays, and to supply data for on-board software processing. The following list of non-avionic models will operate within the Test Operations Center (TOC) Ground Standard Interface Unit (GS20).

- Main Propulsion System (Orbiter Portion)
- APU/Hydraulic System
- Active Thermal Control System
- Atmosphere Revitalization H₂O Loops and Atmos Circ System
- Atmosphere Revitalization Pressurization and Control System/Airlock
- Fuel Cell/Cryogenics System
- Smoke Detection System
- Water/Waste Management System

When the TOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when off-nominal conditions are desired. To simplify the models and ease the processing load on supporting test ectipment, the model requirements define nominal conditions only. Further, and a values for output parameters change in step tashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs.

This allows the DCM operator to adjust output parameter values as needed to satisfy various mission phases.

When the model is activated, it shall check the input stimuli and shall provide appropriate output measurement values. It is preferred that the model provide output data when the input stimuli changes. Bus activity is then minimal during those mission phases when the stimuli remains constant. However, the GSIU operating system may require a cyclic model program in which case the model output rate shall oe once per second.

2.0 DETAILED REQUIREMENTS

This model simulates the Orbiter Atmosphere Revitalization/Pressurization and Control-Airlock System (AR/PCS-Airlock) by representing the stimulus/response relationships which exist at the power and signal interfaces between the Orbiter Avionics System and the AR/PCS-Airlock. The Model has been simplified by including only those output signals which are needed to support the type of testing which will be accomplished in the Shuttle Avionics Integration Laboratory (SAIL).

The model receives stimuli from two sources (see Figure 1).

- 1) The Flight System (FS) via the Signal Termination Module (STM).
- 2) The Test Operations Center (TOC) Display and Control Module (DCM) via test language.

The model output parameters go to the FS via the STM. Tables 1 and 2 list the input and output parameters respectively. The eight stimuli which come from the DCM are used to inform the model when the position of manually operated cockpit valves are changed.

2.1 FUNCTIONAL CHARACTERISTICS

The AR/PCS provides the Orbiter with a pressurized atmosphere of oxygen and nitrogen, and supplies nitrogen for pressurization of the Orbiters' potable and waste water system. Two lines from the Fuel Cell/Cryogenic System (FC/CRYO) supply oxygen to the AR/PCS, which are backed up by an emergency oxygen tank in the AR/PCS. Four nitrogen tanks in the AR/PCS supply the necessary nitrogen. For reliability, two independent systems control the atmosphere and water pressurization, with crossover valves providing additional reliability. Figure 2 and figure 3 are simplified schematics if the AR/PCS and airlock, respectively, showing the various tanks, regulators, and valves.

INPUT / OUTPUT DATA FLOW

FIGURE 1

2.1.1 MODEL FUNCTION

In preparing the requirements for the non-avionic system math models, the following ground rules were observed:

- Output all measurements addressed to flight critical MDM's.
- Output those measurements used in dedicated displays, systems management, or caution and warning.
- Output those measurements needed for operation by other systems.
- Output those measurements needed during pre-launch operations, starting at T-20 minutes.
- Respond to stimuli inputs in a discrete manner (no timed transients simulating pressure or temperature build-up and decay, for example).
- Do not account for depletion of expendables during a mission.

These ground rules are intended to simplify the math models without compromising the avionics testing in SAIL. Where required, specific ground rules may be waived.

In the AR/PCS-Airlock math model, the OPEN or CLOSED position of the manual values must be er ared from the DCM by the test operator when cockpit valves as changed, so that the AP/PCS-Airlock math model will generate realistic data.

Fixed values are provided for the pressure and temperature of the oxygen and nitrogen tanks.—Tank quantities, as calculated by the flight system GPC based on tank pressures and temperatures, will remain unchanged unless different pressure and temperature values are sent from the DCM in TOC while the math model's output for these parameters is inhibited.

The AR/PCS math model is dependent upon the FC/CRYO math model for oxygen supply data. The FC/CRYO math model therefore must be operating when using the AR/PCS math model. The W/WMS math model likewise is dependent

upon the AR/PCS math model for nitrogen supply data. Therefore the AR/PCS model must be operating when using the W/WMS model. The AR/PCS math model incorporates the functions of the Airlock (A/L) subsystem. All required A/L parameters are included in this document.

2.1.2 INPUT/OUTPUT

The stimuli identification for those stimuli which have their sources at the flight system via the STM are coded in terms reference Avionics Test Article (ATA) interface connector and pin number according to the following format.

The stimuli which are uplinked to the model from the DCM are given unique alphanumeric variable names. The model output parameters whose destinations are the flight system via the STM are identified by their Master Measurement List measurements.

2.2 DCM UPLINK

Ten stimuli are uplined to the AR/PCS-Airlock math model in the GSIU from the TOC DCM. These stimuli let the math model know when a manual valve in the AR/PCS-Airlock has been opened or closed by the crew, so that proper data values may be generated by the math model. These stimuli are listed in Table 1.

Faults are simulated by inhibiting the model output for the affected measurement(s) and uplinking the off-nominal value(s) from the DCM to the STM. The exact manner in which this is accomplished is covered in documentation for the GSIU Operating System.

2.3 INITIALIZATION REQUIREMENTS

V64P0101A = 14.4

2.4 TERMINATION REQUIREMENTS

NONE

2.5 UNIQUE REQUIREMENTS

The math model uses three internal variables (A, B, and V) in a subroutine called Latching Valve Routine (LVR). A and B represent the state of CLOSE and OPEN stimuli, respectively, to a valve. V represents the OPENED or CLOSED state of the valve based on A and B values.

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOMIAL CONVERSION METHOD

The scaling polynomial equation used by the flight system is defined in the SM FSSR. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1 x + A_2 x^2 + A_3 x^3$$

where: FS_{EU} = flight system engineering units

X = flight system input voltage

 A_0 , A_1 , A_2 , A_3 = scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{EU}) to GSIU counts. This procedure may be used to calculate GSIU count values for fault insertion at the DCM.

Example:

For measurement no. V63R1100A, convert FS_{FII} value = 2288 to GSIU counts.

Step 1:

In the SM FSSR, look up the measurement no. (V63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units, range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{EU} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^{2} + 12.246X^{3}$$
so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VLC.

It is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.846 rounded to the nearest integer.

However, in the example being worked, X is defined as VDC and X = 3.846 VDC.

Step 4:

Now to convert X VDC to GSIU counts, evaluate the following equation which shows the relationship between X and GSIU counts:

GSIU counts =
$$\left[X \left(\frac{1023}{K}\right)\right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

GSIV counts =
$$\left[3.846 \left(\frac{1023}{5}\right)\right]$$
, rounded to the nearest integer

Therefore, GSIU counts = 787 counts.

Note that since GSIU counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU} , when the reverse calculations are made during test operations, as the following shows:

$$X = GSIU counts \left(\frac{K}{1023}\right)$$

$$X = 787 \ X \left(\frac{5}{1023}\right)$$

$$SO \ X = 3.846529$$
And
$$FS_{EU} = 443.167 + 851.956X - 143.904X^2 + 12.246X^3$$

$$FS_{EU} = 443.167 + 851.956(3.848) - 143.904(3.848)^2 + 12.246 (3.848)^3$$

$$FS_{EU} = 2288.017$$

Hence when 787 GSIU counts is inserted for measurement no. V63R1100A, a value of 2288.017 $FS_{\rm FH}$ will result.

2.6.2 RANGE LIMIT CONVERSION METHOD

Several analog measurements in this model are calculated according to the range limit conversion method, instead of the polynomial conversion method as described in Section 2.6.1 of this document. The form of the scaling equation for these cases is given as follows:

The following table shows a sample data value for each measurement which requires this type of calculation. The measurement I.D. is shown along with high and low values for the parameter range. The FS column shows the data value in flight system engineering units calculated from the GSIU counts marked CTS in the table. These measurements are marked with an asterisk (*) in the Output Measurement List marked as Table 2 in Section 4.2 of this document.

MEASUREMENT ID	RANGE LOW	RANGE HIGH	FS	CTS
V64P0201A	0	40	16	409
V64P0202A	0	1500	760	518

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 ${\rm FS}_{\rm EU}$ which is equivalent to 534 ${\rm GSIU}_{\rm CTS}$ shown outside the box.

02 PRESSURES

3 To **9**.

OR PRESSURES

3 To 9 .

Oz PRESSURES

O2 PRESSURES

3 to 9.

NA PRESSURES
AND FLOWS

(b) To (4)

N2 PRESSURES AND FLOWS

(10) To (4)

EMERGENCY CABIN PRESS,

L PRESS RATE OF CHANGE

ORIGINAL PAGE IS OF POOR QUALITY

4.0 TABLES

TABLE 1 - STIMULI INF S TO ARS/PCS MODEL

IDENTIFICATION NUMBER	NOMENCLATURE	SOURCE	ST	STATES/RANGE	30.5
			רס	IH	icaits
K80P25-10	Cabin RLF VLV A CMD-Close	FLT SYS	0	-	State
K80P25-12	RLF VLV A	-1	0	· ·	State
K80F20-10	KLF VLV B		<u> </u>	, 	State
K80P26-12	RLF VLV B CMD-Enable	-	o 		State
K80P27-29	02/N2 Cont VLV SYS 1-Open, Auto	-	0		State
K80P27-30	_ 		<u> </u>		State
K80P28-29	02/N2 Cont VLV SYS 2-Open, Auto	-	0		State
K80P28-30	WR VLV		<u> </u>	_	State
K80P30-10	Vent VLV		0	_	State
K80P30-12	VLV CMD-C	_	0	,	State
K80P31-10	Vent ISOL VLV	-	0		State
K80P31-12	bin Vent ISOL VLV	_	0	_	State
K80P33-3	SYS 1 REG Inlet	—	<u> </u>	_	State
K80P33-5	SYS 1 REG 1	-	0	 -	State
K80P33-9	SYS 1 SPLY	—	0	_	State
1 K 33-11	SYS		0		State
- K80r34-5	EMER	—	0	_	State
K80P34-11	SYS	—	0	_	State
K80P34-1/	SYS 2		0	<u></u>	State
K80F34-32	באנג באנגע באנגע	FLT SYS	<u> </u>	— ,	State
K80P34-34	SYS		<u> </u>		State
K8UP34-36	SYS Z SPLY CMD-Upen		0	,	State
7	Cabin Reg. Inlet VLV CMD-		0	r (State
200	2 Cabin Keg. Injet VLV CMU-		-	, 	State
7 0 0 0	2 HZO INK REG INIET VLV CMU		-		State
1104	2 MZU INK KEG. INIE		-	- ,	State
	02 REG INIEC VLV		-	-,	State
200) V Š		-	 ,	State
) AE	ACVR VLV CT		0	- ,	State
MVG COST	u		<u> </u>	r	State
0 5 5 5	A/L DEFRESSORIZATION VALVE OFEN		> (-,	State
KROD27_37	A/L EQUALIZATION VALVE OFEN		>	-,	State
K80028-37	A TALSS SENSON FWN PAN DOS		>	<u>-</u> -	State
K80P29-22	M BUS	FI 7 CVC	>	<u>.</u>	State
		010	Ņ	-	21010

STIMULI INPUT TO A., PCS MODEL - TABLE 9

IDENTIFICATION NIMBER	CATION	NOMENCLATURE	DESTINATION	ST	STATES/RANGE	<u>g</u>
3	2			10	HI	UNIT
KAW82D	P6-5	EMU 1 WASTE H20 VLV - OPEN	FLT SYS	0	~	STATI
KAW82D	1-9d	EMU 1 WASTE H20 VLV - CLOSED	FLT SYS	0	_	STAT
KAW82D	P4-13	EMU 1 H20 SUPPLY VLV - OPEN	FLT SYS	0	_	STATI
KAW82D	P4-11	EMU 1 H20 SUPPLY VLV - CLOSED	· FLT SYS	0		STATI
KAW82D	P6-8	EMU 2 WASTE H20 VLV - OPEN	FLT SYS	0	-	STATE
KAW8.2D	D-94	EMU 2 WASTE H20 VLV - CLOSED	FLT SYS	0	~	STATE
KAW82D	P5-13	EMU 2 H20 SUPPLY VLV - OPEN	FLT SYS	0	-	STATE
KAW82D	P5-11	EMU 2 H20 SUPPLY VLV - CLOSED	FLT SYS	0		STATE
·	:					

TABLE 1-A - STIMULI TO MML CORRELATION

	7E	
ION : MAL , NUMBER	V61K2133E V61K2133E V61K2137E V61K2370/7 V61K2370/7 V61K2200E V61K2000E V61K2000E V61K2304E V61K2304E V61K2304E V61K2318E V61K2318E V61K2318E V61K2318E V61K2318E V61K2318E V61K2318E V61K2318E V61K2318E V61K2318E V61K2318E	V64K0500E V64K0501E V64K0511E V64K0511E V64K0521E V64K0521E V64K0531E V64K0531E
IDENTIFICATION NUMBER	K80P25-12 K80P26-12 K80P27-29 K80P27-29 K80P27-30 K80P27-30 K80P30-10 K80P31-10 K80P31-12 K80P33-3 K80P33-11 K80P34-5 K80P34-17 K80P34-17 K80P34-17 K80P34-17	KAW82D P6-S KAW82D P6-T KAW82D P4-11 KAW82D P6-B KAW82D P6-C KAW82D P6-C KAW82D P6-C
	AR/PCS	A/L

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

~
TABLE 2
ı
MODEL
AP/PCS
FROM
OUTPUT
MEASUREMENT

			Ì							
*EASURE**E**		1.0.		VALUE 1		VALUE	2	VALUE	3	STINI
I. D.	MED TO BEMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	
VELYDAY	NO SYS 1 Sep Injet VI 3-00en		-	0	0					STATE
E. MOXION	NO CYC 3 Supply VI V=Open			0	0					STATE
VELY2328F	no sys 2 Red Inlet VLV-Open	0	0	-	~					STATE
V61X2372E	02/N2 CNTLR VLV-SYS 1 Open			0	0					STATE
V61X2377F	02/N2 CNTIR VLV-SYS 2 Open	0	0		-					STATE
V61R2401A	Cabin Press Rate of Change	0	460							PSI/MIN
V61P2405A	Cabin Press	14	732	0	9	00	419			PSIA
V6172406A	SYS 1 N2 Tank 1 Temp	-12	256							DEGF
V61T2407A	SYS 1 N2 Tank 2 Temp	-7	276							DEGF
V61T2408A	SYS 2 N2 Tank 1 Temp	-10	264							DEGF
V61T2409A	SYS 2 N2 Tank 2 Temp	5	284	•						DEGF
V61P2410A	SYS 2 NZ 200 PSI Press	0	0	228	771					PSIA
V61X2415E	NZ SYS 1 Reg Inlet VLV-Closed	0	0	1	~					STATE
V61X2416E	N2 SYS 1 Supply VLV-Closed	0	0	7						STATE
V61X2420E	N2 SYS 2 Reg Inlet VLV-Closed	-		0	0					STATE
V61X2421E	N2 SYS 2 Supply VLV-Closed		-	0	0					STATE
V61P2511A	02 Partial Press-A	3.1	632	0	0					PSIA
V61P2513A	02 Partial Press-8	3.2	653	0	٠,					PSIA
V61P2515A	02 Partial Press-C	3.3	.675	0	0					PSIA
V61R2553A	SYS 1 N2 Flowrate	2.7	612	0	٧.	4.45	1003			LB/HR
V61R2554A	SYS 2 N2 Flowrate	0	ω	2.8	632	4.35	20°2			LB/HR
•										
									-	

MEASUREMENT OUTPUT FROM AR/PCS MODEL - TABLE 2

V61X2005E Cabin Vent ISOL VLV-CLOSED V61X2025E Cabin Vent ISOL VLV-OPEN V61X2045E Cabin Vent VLV-CLOSED V61X2045E Cabin Vent VLV-CLOSED V61X2045E Cabin Vent VLV-OPEN V61X2105A SYS 1 02 Flowrate V61X2130E Cabin Press RLF VLV A-Enabled V61X2135E Cabin Press RLF VLV B-CLOSED V61X2136E Cabin Press RLF VLV B-ENABLED V61X2136E Cabin Press RLF VLV B-ENABLED V61X2163E CABIN Press V61X2163E CABIN PRESS V61X2165A SYS 2 02 Flowrate	OSED CLOSED CLOSED CLOSED	FS 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CTS 1	ES	J. L.	1	77.	FS	1	CHINO
	OSED CLOSED CLOSED CLOSED	1 0 0 0 0 0 1	~ C	 -	7	F5			21	
	CLOSED CLOSED CLOSED	0 1 2.5 66 0		0	0					STATE
	CLOSED Enabled CLOSED	1 2.5 66 0 0	<u> </u>	1	,I					STATE
	CLOSED Enabled CLOSED	0 66 0 1	-	0	0					STATE
	CLOSED Enabled CLOSED	2.5 66 0 1	0							STATE
	CLOSED Enabled CLOSED	0 1 0	265	0	œ	4.5	1015			LB/HR
	CLOSED Enabled CLOSED	0 11 0	221	1.15	0					PSIA
	Enabled CLOSED	- 0	0		-					STATE
	CLOSED	0		0	0					STATE
		_	0		<u>~</u>					STATE
	ENABLED	-	-	0	0					STATE
	2	2058	579	•						PSIA
		0	0	-	-					STATE
		-		0	0					STATE
		297	203	0	0					PSIA
		0	80	2.6	591	4.4	992			LB/HR
-		0	4	69	237					PSIA
V61T2216A EMER 02 Tank Temp		-20	223							DEGF
V61P2301A SYS 1 N2 Supply Press		1562	450							PSIA
V61P2307A SYS 1 N2 17 PSI Press		15	763	0.06	0					PSIG
V61P2309A SYS 2 N2 Supply Press	Ĩ	1091	458							PSIA
V61P2310A SYS 1 NZ 200 PSI Press		224	782	0	16					PSIA
V61P2311A SYS 2 N2 17 PSI Press		0	8	17	872					PSIG
V61X2319E N2 SYS 2 Supply VLV-Open	eu	0	0			Marie Paris	-			STATE

MEASUREMENT OUTPUT FROM AR/PCS MODEL - TABLE 2

. EASURE 'EAT		1.0.		VALUE 1		VALUE	2	VALUE	m	
I. D.	MENSUREMENT NAME	FS	CTS	FS	CTS	FS	crs	FS	crs	UNITS
	-AIRLOCK-									
V64FULLIA	AIRLOCK DIFFERENTIAL PRESS	14.4	88	-10	256	0.08	514			PSID
₩64P0201A	EVESS HZO SUPPLY PRESS	16	409							PSIG
*V64P0202A	EVLSS 02 SUPPLY PRESS	760	518	295	201	0	0		•	PSIA
V64X3505E	EMU 1 H20 WASTE-OPEN	0	0	r=4						STATE
V64X0515E	EMU 1 H20 SUPPLY-OPEN	0	0	-	<i></i> 1					STATE
V64X0525E	EMU 2 H20 WASTEOPEN	0	0	-	~					STATE
V6440535E	EMU 2 H20 SUPPLY-OPEN	0	0	-	<u>~</u>					STATE
			1	•						
*NOTE: Th	This measurement uses the range limit conversion discussed in Section 2.6.2.	of of o	alcul	calculating FS _{EU} from GSIU _{CTS}	n 4	GSTUCTS	as			

SE STOUTER od of calculating rate

11-42

5.0 REFERENCES

LA-B-10100-1/JSC-11174, Space Shuttle Systems Handbook OV-102. VS70-610202, Schematic Diagram-Atmosphere Revitalization/P:essure Control System.

ICD-3-1603-05, Section 3.3, Interface Control Documents for Atmosphere Revitalization Subsystem.

SD76-SH-0027, Functional Subsystam Software Requirements (FSSR-6). LEC Memo #77-2109-060, GSIU Math Model Requirements. Shuttle Operational Data Book, Section 4.6, ECLSS.

- PIRN #126 To ICD-3-1603-05.

APPENDIX I ACTIVE THERMAL CONTROL MATH MODEL REQUIREMENTS

TABLE OF CONTENTS

Sec	tion	Page
1.	INTRODUCTION	I-2
2.	DETAILED REQUIREMENTS	I-3
	2.1 FUNCTIONAL CHARACTERISTICS	I-3
	2.1.1 Active Thermal Control System	I-3
	2.1.2 Model Function	<u> .</u> -2
	2.1.3 Input/Output	I-5
	2.2 DCM UPLINK REQUIREMENTS	I-5
	2.3 INITIALIZATION REQUIREMENTS	I-8
	2.4 TERMINATION REQUIREMENTS	L -3
	2.5 UNIQUE REQUIREMENTS	1-8
	2.6 ANALOG MEASUREMENTS	I-9
	2.6.1 Polynomial Conversion Method	I-9
	2.6.2 Range Limit Conversion Method	I-12
3.	LOGIC FLOW DIAGRAMS	I- 14
4.	TABLES	I- 24
	4.1 TABLE 1 - INPUT STIMULI LIST	1-25
	4.2 TABLE 2 - OUTPUT MEASUREMENTS LIST	I- 27
5.	REFERENCES	I- 36
FIG	BURES	
FIG	SURE 1 - SYSTEM DATA FLOW	I- 4
FIG	SURE 2 - ATCS SCHEMATIC	I- 6

1.0 INTRODUCTION

Math models are used to simulate many of the Shuttle systems for which hardware does not exist in SAIL. A group of these models are termed non-avionics models since they do not simulate avionic equipment. The non-avionics models are needed to provide responses to cockpit switches, to drive cockpit displays, and to supply data for on-board software processing. The following list of non-avionic models will operate within the Test Operations Center (TOC) Ground Standard Interface Unit (GSIU).

- Main Propulsion System (Orbiter Portion)
- APU/Hydraulic
- Active Thermal Control
- Atmosphere Revitalization System H₂0 Loops
- Fuel Cell/Cryogenics
- Atmosphere Revitalization/Pressure Control System (With Airlock)
- Smoke Detection/Fire Suppression
- Water/Waste Management

when the TOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when off-nominal conditions are desired. To simplify the models and ease the processing load on supporting test equipment, the model requirements define nominal conditions only. Further, analog values for output parameters change in step fashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs. This allows the DCM operator to adjust output parameter values as needed to satisfy various mission phases.

When the model is activated, it shall check the input stimuli and shall provide appropriate output measurement values. It is preferred that the model provide output data when the input stimuli changes. Bus activity is then minimal during those mission phases when the stimuli remains constant. However, the GSIU operating system may require a cyclic model program in which case the model output rate shall be once per second.

2.0 DETAILED REQUIREMENTS

This model simulates the Orbiter Active Thermal Control System (ATCS) by representing the stimulus/response relationships which exist at the power and signal interfaces between the Orbiter Avionics System and the ATCS. The model has been simplified by including only those output signals which are needed to support the type of testing which will be accomplished in the Shuttle Avionics Integration Laboratory (SAIL).

The model receives stimuli from two sources (see figure 1):

The Flight System (FS) via the Signal Termination Module (STM).
 The TOC DCM.

The model output parameters to the flight system via the STM and in addition transmits error flags back to the DCM. Tables 1 and 2 list the input and output parameters respectively. The four stimuli which come from the DCM are used to inform the model of the mission phase which is being simulated. This mode of implementation permits realistic model responses while avoiding an overly complex model. The ten error flags which are transmitted to the DCM are used to indicate that the model has received conflicting stimuli.

2.1 FUNCTIONAL CHARACTERISTICS

2.1.1 Active Thermal Control System

The ATCS transports thermal energy in the unpressurize area of the Orbiter, provides temperature control of selected onboa.d equipment and rejects excess heat overboard. The ATCS consists of two freon 21 coolant loops which flow in parallel through similar components, and have redundant centrifugal pumps. The ATCS cools the water coolant loops through an interchanger, heats the Crbiter's hydraulic fluid and crew compartment cryogenic makeup oxygen, and transports the heat generated by the payload, fuel cell power plants, and various cold plate electronics. The ATCS rejects the excess heat overboard during different phases of the mission by means of its radiator subsystem, flash evaporators, ammonia boiler, and GSE heat exchanger. During on-orbit operations, whenever the payload bay doors are opened, heat is rejected to space by the radiator subsystem with the flash evaporator subsystem on standby to provide supplemental cooling when needed. Whenever the payload bay doors are closed, heat is rejected by the flash evaporator subsystem. The flash evaporator also provides cooling above 140,000 feet during ascent and above 100,000 feet during entry. The ammonia boiler system provides cooling during entry starting at 100,000 feet and continuing for 15 minutes after landing. The GSE heat exchanger provides thermal control during ground operations; no overboard heat rejection is provided during the period from lift-off until the vehicle reaches 140,000 feet

INPUT / OUTPUT DATA FLOW

FIGURE 1

2.1.2 Model Function

The model generates values for quantity, flow, temperature, pressure, and valve positions for each of the two freon coolant loops. The values are dependent upon input stimuli from the flight system via the LTM and upon mission phase indicators uplinked from the DCM. A static set of nominal values are generated for the flash evaporator heater temperatures and for the parameters from the ammonia boiler supply tanks. These static values are sufficient to meet test objectives and they greatly simplify the model.

Referring to the schematic of the ATCS, figure 2, the flowchart starts at the flow proportioning valves and progresses around the coolant loops in a clockwise manner, ending at the flash exporator. Once a complete cycle has been made and values have been assigned to the output parameters, the values are transmitted to the flight system via the STM.

2.1.3 Input/Output

The stimuli identification for those stimuli which have their sources at the flight system via the STM are coded in terms reference Avionics Test Article (ATA) interface connector and pin number according to the following format.

Those stimuli which are uplinked to the model from the DCM are given unique alphanumeric variable names. The model output parameters whose destinations are the flight system via the STM are identified by their Master Measurement List measurements. Any error flags which are downlinked to the DCM are given unique alphanumeric variable names.

2.2 DCM UPLINK

Mission phase flags for the ATCS model are uplinked from the DCM by the test operator to assure that the model response is appropriate for the mission phase/segment or Orbiter configuration being simulated. The following definitions explain the mission phase flags:

- GSE When equal to one, ground support equipment provides cooling for the ATCS. Zero indicates no ground cooling.
- P1 When equal to one, the payload doors are open and the radiator panel for ATCS loop one is deployed. Zero indicates the loop one radiator panel is not deployed and cannot provide cooling.
- P2 When equal to one, the payload doors are open and the radiator panel for ATCS loop two is deployed. Zero indicates the loop two radiator panel is not deployed and cannot provide cooling.

Appropriate values for the mission flags in each mission phase are tabulated below:

		FLAGS	
PHASE	GSE (b)	PΊ	P2
Prelaunch	1	0	0
Ascent to 140K	0	0	0
Ascent above 140K	0	0	0
On-Orbit	0	(a)	(a)
Entry above 100K	0	0	0
Entry below 100K	0	0	0
Landing +15 minutes	1	0	0

- (a) Value of flag depends on Orbit configuration.(b) Briefly setting GSE to one during phase transitions will prevent transient ala:ms for V63T12O7A and V63T14O7A.

Faults are simulated by inhibiting the model output for the affected measurement(s) and uplinking the off-nominal value(s) from the DCM. The exact manner in which this is accomplished is covered in documentation for the GSIU Operating System.

2.3 INITIALIZATION REQUIREMENTS

All model outputs are functions of the inputs alone and need not be initialized since values will be calculated by the model in its first cycle. The initial condition column in table 2 represents the ATCS in a ready for launch configuration and is for reference only.

2.4 TERMINATION REQUIREMENTS

None

2.5 UNIQUE REQUIREMENTS

2.5.1 Internal Variables -

The model uses four internal variables to determine the values of output parameters.

IO#	DESCRIPTIONS
FLO 1	A discrete which represents loop I flow through the radiator (1), or flow bypassing the radiator (0).
FLO 2	A discrete which represents loop 2 flow through the radiator (1), or flow bypassing, the radiator (0).
Tì	An analog which represents loop 1 radiator outlet temperature.
T2	An analog which represents loop 2 radiator outlet temperature.

2.6 ANALOG MEASUREMENTS

Value. shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOMIAL CONVERSION METHOD

The scaling polynomial equation used by the flight system is defined in the SM FSSR. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1 x + A_2 x^2 + A_3 x^3$$

where: FS_{FII} = flight system engineering units

X = flight system input voltage

 A_0 , A_1 , A_2 , A_3 = scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{EU}) to GSIU counts. This procedure may be used to calculate GSIU count values for fault insertion at the DCM.

Example:

For measurement no. V63R1100A, convert FS_{FII} value = 2288 to GSIU counts.

Step 1:

In the SM FSSR, look up the measurement no. (V63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units, range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{EU} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^2 + 12.246X^3$$

so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VDC.

it is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.846 rounded to the nearest integer.

However, in the example being worked, X is defined as VDC and X = 3.846 VDC.

Step 4:

Now to convert X VDC to GSIU counts, evaluate the following equation which shows the relationship between X and GSIU counts:

GSIU counts =
$$\left[X \left(\frac{1023}{K}\right)\right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

GSIU counts =
$$\left[3.846 \left(\frac{1023}{5}\right)\right]$$
, rounded to the nearest integ

Therefore, GSIU counts = 787 counts.

 $FS_{EU} = 2288.017$

Note that since GSIU counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU} , when the reverse calculations are made during test operations, as the following shows:

X = GSIU counts
$$\left(\frac{K}{1023}\right)$$

X = 787 X $\left(\frac{5}{1023}\right)$
S0 X = 3.846529
And
FS_{EU} = 443.167 + 851.956X - 143.904X² + 12.246X³
FS_{EU} = 443.167 + 851.956(3.848) - 143.904(3.848)² + 12.246 (3.848)³

Hence when 787 GSIU counts is inserted for measurement no. V63R1100A, a value of 2288.017 FS $_{\hbox{EU}}$ will result.

2.6.2 RANGE LIMIT CONVERSION METHOD

Several analog measurements in this model are calculated according to the range limit conversion method, instead of the polynomial conversion method as described in Section 2.6.1 of this document. The form of the scaling equation for these cases is given as follows:

$$FS_{EU} = Low + GSIU_{CTS}$$
 (High - Low)

where: $FS_{EU} = flight$ system engineering units

 $GSIU_{CTS} = GSIU$ math model count values

Low = Range low limit

High = Range high limit

The following table shows a sample data value for each measurement which requires this type of calculation. The measurement I.D. is shown along with high and low values for the parameter range. The FS column shows the data value in flight system engineering units calculated from the GSIU counts marked CTS in the table. These measurements are marked with an asterisk (*) in the Output Measurement List marked as Table 2 in Section 4.2 of this document.

MEASUREMENT ID	RANGE LOW	RANGE HIGH	FS	CTS
V63T1180A	- 75	175	65	573
V63T1188A	-75	175	70	59 3
V63P1196A	0	600	450	76 7
V63P1197A	0	600	475	81 0

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system angineering units (FS_{EU}) while the corresponding GSIU count value is listed; this box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 FS $_{\hbox{EU}}$ which is equivalent to 534 $\hbox{GSIU}_{\hbox{CTS}}$ shown outside the box.

4.0 TABLES

LOOP I RADIATOR FLOW

(CONTROLLER A)

LOOP 2 RADIATOR FLOW (CONTROLLER 8 CONT ANTO K4089384 - K = 1 HI TEMP SELECTED K40P9384-E E 1 41 DEGF 59 DEGF 270 FAULT DETECTED k40?9384 -E 1 BYP YLY SW K40P9384 -K POR ON - 1 K4029384 -M = (WE YLY AYB NAM OT k40p9384 - K BYP CMD E | 10009384-P **= 1** RAD CMD FLOW FLBZ = THRU RAD K40P9384 -N = 1 えんり こかん K4019384 - 1 = 1 FLØ2 = K40P93B4-N

I-20

		•
	(/7)	a car a car car car a secondo a de car car
	(13)	g, all alga nitali is assident the this and
		a s a s maximum namen a capa anno anno a s a s a s
• • • • • • •		
	V6371208A = 100.7	739
	V43T1209A = 80	514
u gunde que depois de un décrité des que en la com-	V63T/408A = 109	820 DFI MEAS.
to the contract of the contrac	V6371409A = 96	616 ADDED BY
• • • • • •	V63T1801A = 160	415 Rev. A
pango grang ang ang ang pangangangangangan kanang kanangan dalam d	Y63T1802A = 164	446
The same of the sa		•
magners of the second magnetic second	1637 1821 A = 156	405
and the second s	16371870A = 85	546
	163T1871A = 69	511
	V43T1872A = 86	552
	V63T1873A = 90	577
	V63T1874A = 87	559
to the the terms of the terms o	V63 T1875A = 91	513
The second secon	V637 1876A = 88	565
		591
	V63T1890A = 256	661
A substance of the second seco	V63R9159A = 420	878
and the contract of the second		
annesses in the contract of th	· · ·	
The second secon		
To the second se	(RETURN)	
•		
The state of the s		
		
		The state of the s
a a suit a company granders and the suit and a suit as a constant and a		
		j. Danimaja majama — amagalarun diranggal selapinah da selapinah da selapinah mengalanggan penganggan da selapinah
	· · · · · · · · · · · · · · · · · · ·	·
	•	n an agus an ar an great training destructions of the agus desired in the second of Massach in America Accordance and an accordance and accor
		and the grade of the state of t
		and a contract of the second demonstration of the second of a proper districts on the contract of the second of th
مهاه مسومت المسجد	tone in the second state with the second of the second second of	to the grant was a suggestion and the supplementary to the supplementary of the supplementary
	1-23	

4.0 TABLES

TABLE 1 - STIMULUS OUT TO ATCS MODEL

	UNITS	STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE	STATE STATE STATE STATE STATE
INGE			NANANA
STATES/RANGE	国		
STAI	2	000000000000000000000000000000000000000	
RESS	L CHANNEL		
STM ADD	כפרר		
	SOURCE	TE TE TE TE TE TE TE TE TE TE TE TE TE T	ORIGNAL PAGE IS OF POOR QUALITY
	NOMENCLATURE	SH EVAP PRI A CONT CMD ISH EVAP PRI A HI LOAD BISH EVAP PRI B CONT CMD ISH EVAP PRI B HI LOAD BISH EVAP SEC CONT CMD ISH EVAP SEC CONT CMD ISH EVAP SEC CONT CMD ISH EVAP SEC CONT A (SEC/ON) BOILER CONT B (SEC/ON) BOILER CONT B (SEC/ON) BOILER CONT B (SEC/ON) BOILER ISOL VLV (SYS A SIG COND A PWR ON CMD ISH EVAP I PWR ON CMD ISH EVAP I PWR ON CMD ISH EVAP CONT VLV AUTO BISH CONT	FCL 2 BYP VLV (MAN/CONT A AUTO) FCL 2 RAD TEMP CONT A PWR ON CM FCL 2 RAD MAN BYPASS A CMD FCL 2 RAD TEMP CONT VLV AUTO B FCL 2 RAD TEMP CONT AUTO A-FAUL FCL 2 RAD TEMP CONT B-HI TEMP C
IDENTIFICACION	NUMBER	K50P831-A K50P831-A K50P832-A K50P832-A K50P861-J K50P861-J K50P861-J K50P861-J K50P862-A K50P862-A K50P862-A K50P862-A K50P862-B K40P9333-1 K40P9336-1 K40P9336-1 K40P9351-1 K40P9351-1 K40P9383-A K40P9383-A	K40P9383-K K40P9383-M K40P9383-N K40P9383-P K40P9384-A K40P9384-E

TABLE 1 - STIMULUS INPUT' . ATCS MODEL

IDENTIFICATION			STM ADDRESS	LESS	STATE	STATES/RANGE	
NUMBER	NOMENCLATURE	SOURCE	CELL	CHANNEL	07	HI	UNIT
K40P9384-K	FCL 2 BYP VLV (MAN/CONT B AUTO) CMD	S.			0.0	ء سم	STATE
K40P9384-N	2 RAD MAN FLOW B CMD	ı çı) C	- ,	STATE
K40P9384-P	2 RAD MAN BYPASS B CMD	Š			. 0	. ,	STATE
K40P9385-A	1 RAD TEMP CONT VLV AUTO A CMD	S			0	-	STATE
K4JP9385-C	1 RAD TEMP CONT AUTO B-FAULT DET A	٠			0	<u> </u>	STATE
K40P9385-E	FCL 1 KAD 1EMP CON! A - HI 1EMP CMO	~ ·				, ,-	STATE
K40P9385-M	1 RAD TEMP CONT A PWR ON CMD	. v			> C		STATE
K40P9385-N	1 RAD MAN FLOW A CMD	ň			0		STATE
K40P9385-P	1 RAD MAN BYPASS A CMD	Ş			0		STATE
K40P9386-A	1 RAD TEMP CONT VLV AUTO B CHO	Š			0	<u></u>	STATE
K40P9386-C	TEMP CONT AUTO A-FAULT DET B	Š			0	,	STATE
K40P9380-E	I KAD IEMP CONI B-HI IEMP CAD	אָי אָ			0	-	STATI
K40P9386-M	TEMP CONT B PUR ON CAD	o k			o c	<i>-</i>	STATE
K40P9386-N	1 RAD MAN FLOW B CMD	ı Vi) C		STATE
K40P9386-P	1 RAD MAN BYPASS B CMD	Ş			0	- ,	STATE
GSE	COOLING FLAG	. ъ			0		STATE
P1 P2	FLAG	W W			00		STATE
)	•	
		•					
					•		
			-				
and to Make and							
					•		
•							••••

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is tabeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU cours value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

N
ш
닒
⋜
TABLE 2
ŧ
MODEL
₫
Σ
Ü
ATCS
FROM
8
Ĭ.
⋛
DUTPUT
3
Ξ
MEASUREMEN'
ξ
3
ಸ್ತ
⋖
w

MEASUREMENT		1.0.	 -	VALUE 1		VALUE	2	VALUE	m	
1. 0.	MEASUREMENT NAME	FS	CIS	FS	13	FS	CTS	FS	CTS	CHIS
V63R1100A	FCL 1 INTER H-X FLOWRATE	2288	787	443	0	1488	328			1b/hr
V63R1103A	FCL 1 PYI O H-X FLUWRATE	701	321	180	0	1152	759			1b/hr
V63R1105A	FCL 1 COLDPLATE NETWORK FLOWRATE	348	728	0	10					1b/hr
V63Q1130A	FCL 1 ACCUMULATOR QUANTITY	8	581	0	92					PCNT
*V63T1180A	NH3 SYS A TANK TEMP	65	573							DEGF
*V63T1188A	NH3 SYS B TANK TEMP	20	593							DEGF
*V63P1196A	NH3 SYS A TANK PRESS	450	767			-				PSIA
*V63P1197A	NH3 SYS B TANK PRESS	475	810							PSIA
V63T1207A	FCL 1 EVAP OUT TEMP.	32	155	86 80	231	45 34	286	58 58	642	DEGF
V63T1208A	FCL 1 RAD OUTLET TEMP	100.7	739	35	194	36	207	37	219	DEGF
V63T1209A	FCL 1 RAD INLET TEMP	88	514							DEGF
V63X1222E	FCL 1 RAD BYP VLV POSN-RAD	0	0	-	~			-		STATE
V63X1223E	FCL 1 RAD BYP VLV POSN-BYP	-		0	0					STATE
V63X1230E	FCL 1 FLO PROP VLV POSN-INTER H-X			0	0					STATE
V63X1231E	FCL 1 FLO PROP VLV POSN-PYLO H-X	0	0	-	~					STATE
V63R1300A	FCL 2 INTER H-X FLOWRATE	2341	825	443	0	1540	350			1b/hr
V63R1303A	FCL 2 PYLD H-X FLOWRATE	729	342	180	0	1178	798			1b/hr
V63R1305A	FCL 2 COLDPLATE NETWORK FLOWRATE	356	745	0	51	-				1b/hr
V63Q1330A	FCL 2 ACCUMULATOR QUANTITY	92	622	0	95					PCNT
VE3T1407A	FCL 2 EVAP OUT TEMP	33	168	39 41	246 270	35	297	71	657 501	DEGF
V63T1408A	FCL 2 RAP OUTLET TEMP	109	820	34	183	98	207	37	219	DEGF
			1							

*NOTE: This measurement uses the range limit conversion method of calculating ${\sf FS}_{\sf EII}$ from ${\sf GSIU}_{\sf CTS}$ as discussed in vertion 2.5.2.

MEASUREMENT OUTPUT FROM ATCS MODEL - TABLE 2

ပဲ <u> </u>
6 61 F FS CTS FS 6 61 F 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 415 0 0 0 1 426 0 0 0 1 426 0 0 0 1 405 0 0 0 1 546 0 0 0 1 552 0 0 0 1 583 0 0 0 1 583 0 0 0 1 581 0 0 0 1 591 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""></t<>
692 415 426 708 395 405 571 559 583 565 591 389
0 1 1 0 692 415 426 708 395 405 571 572 573 563 563 591
1 0 692 415 426 708 395 405 571 572 573 583 583 583 583
1 0 692 415 426 708 395 405 571 572 577 583 565 591
·····
_
/2 299
256 661
420 878

5.0 REFERENCES:

- a) LA-B-10100-1/JSC-11174, space Shuttle Systems Handbook OV-102.
- b) VS70-630102, Schematic Diagram Active Thermal Control System.
- c) ICD-3-1603-05, Section 3.4, Interface Control Document for ATCS.
- d) SD76-SH-0027, Functional Subsystem Software Requirements (FSSR-6).
- e) LEC-9485, Orbiter 102 Subsystem Simulation Requirements.
- f) PIRN 0084 / PIRN 0091
- g) MCR 5445

APPENDIX J SHOKE DETECTION MATH MODEL REQUIREMENTS

TABLE OF CONTENTS

Sec	tion	Page
1.	INTRODUCTION	J-2
2.	DETAILED REQUIREMENTS	J-3
	2.1 FUNCTIONAL CHARACTERISTICS	J-3
	2.1.1 Smoke Detection Subsystem (SDS)	J-3
	2.1.2 Input/Output	J-6
	2.2 <u>DC4 UPLINK</u>	J - 6
	2.3 INITIALIZATION REQUIREMENTS	J - 6
	2.4 TERMINATION REQUIREMENTS	J-7
	2.5 UNIQUE REQUIREMENTS	J-7
	2.5.1 Concentration Values	J-7
	2.6 ANALOG MEASUREMENTS	J-8
	2.6.1 Polynomial Conversion Method	J-8
	2.6.2 Range Limit Conversion Method	J-11
3.	LOGIC FLOW DIAGRAMS	J-12
4.	TABLES	J-23
	4.1 TABLE 1 - INPUT STIMULI LIST	J-23
	4.2 TABLE 2 - OUTPUT MEASUREMENT LIST	J-2 5
	FIGURES	
Fig	ure	Page
1	I/O FLOW	J-4
2	FUNCTIONAL DIAGRAM.	J-5

1.0 INTRODUCTION

Math models are used to simulate many of the Shuttle systems for which hardware does not exist in SAIL. A group of these models are termed non-avionic models since they do not simulate avionics equipment. The non-avionic models are needed to provide responses to cockpit switches, to drive cockpit displays, and to supply data for on-board software processing. The following list of non-avionic models will operate within the Test Operations Center (TOC) Ground Standard Interface Unit (GSIU).

- o Main Propulsion System (Orbiter Portion)
- o APU/Hydraulic
- o Active Thermal Control
- o Atmosphere Revitalization (H2O Loops and PCS-Airlock)
- o Fuel Cell/Cryogenics
- o Smoke Detection
- o Water/Waste Management

When the TOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when off-nominal conditions are desired. To simplify the model and ease the processing load on supporting test equipment, the model requirements define nominal conditions only. Further, analog values for output parameters change in step fashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs. This allows the DCM operator to adjust output parameter values as needed to satisfy various mission phases.

When the model is activated, it shall check the input stimuli and shall provide appropriate output measurement values. It is preferred that the model provide output data when the input stimuli change. Bus activity is then minimal during those mission phases when the stimuli remain constant. However, the GSIU operating system may require a cyclic model program in which case the model output rate shall be once per second.

2.0 DETAILED REQUIREMENTS

The model simulates those functions of the Smoke Detection (SD) subsystem in the Oribter. To simplify the model, only those subsystem functions needed to support testing of the Shuttle avionics system are provided.

The model receives stimuli from two different sources, the flight system (FS) and the Display Control Module (DCM) via the Signal Termination Module (STM). The model provides output parameter values to the FS via the STM. Figure 1 illustrates the data flow in and out of the model. Tables 1 and 2 list the impact stimuli and output measurements.

,2.1 FUNCTIONAL CHARACTERISTICS

2.1.1 Smoke Detection System (SDS)

The SDS consists of several detector head (detector) assemblies. Each detector head shall sense any significant increase in the gaseous or particulate products of combustion or decomposition within the cabin or avionics bays. The logic device shall use the input and send a signal to appropriate warning lights on the detection and fire suppression control panel. The detector shall be designed to provide a warning during the incipient stage (the starting phase or pre-smoke stage) of a potential fire condition to permit certain cabin or avionics system evaluation and troubleshooting prior to an overheat condition or outbreak of an open flame. A functional diagram is provided in Figure 2.

- A. The detector function is to sense a predetermined concentration or rate of increase of concentration of gaseous or particulate products of combustion or decomposition and then, through a built-in logic unit, send a signal to the smoke detection and fire suppression control panel. The signal turns on the "smoke warning" light for the affected area.
- B. The crew, alerted by this warning may monitor the concentration 1 el and start a systematic investigation of the equipment in the afficted area and take appropriate action.
- C. When the smoke (incipient fire) condition exists, the "reset" button on the panel may be pressed to verify the smoke condition. If the incipient fire condition has been corrected, the "smoke warning" Light will remain off. The detector is now ready to sense a new incipient fire. In the event that the smoke or incipient fire condition still exists, the warning light will come on again. The concentration level may be monitored to verify if the level is increasing or decreasing during the trouble-shooting period.
- D. The detector can be interrogated in flight or on ground for an electrical operability check, by depressing a "circuit-test" button on the panel.

INPUT / OUTPUT DATA FLOW

FIGURE 1

ORIGINAL PAGE IS OF POOR QUALITY

2.1.2 Input/Output

All inputs to the model are from the FS (addressable at the STM), and from the DCM uplink. These stimuli are acted upon immediately at model execution without regard to time, and conditions are simulated in a step function manner.

For the sake of simplicity, the model will do no fault detection of stimuli, but will act upon it as received from the FS. Therefore, any fault insertion must include changes to all affected parameters in order to obtain a realistic response from the model.

All subsystem output is simulated by the model in accordance with stimuli from the FS. All measurements are made available to Systems Management (SM) and Fault Detection and Annunciation (FDS) as required.

The stimuli identification numbers used are coded to provide the following information at the SAIL flight cable/GSE/C70-1140 cable set interface.

Ķ	5	0	P	X	X	<u>X</u>	-	X							
••	•	.*	•					_	-	PIN	NUN	IBER	(FL	IGHT	CABLE)
•	•			-		_			- 1	CONI	NECT	OR	NUMB	ER	
	4		_		_				- 1	ARE	A DE	SIG	NATO	R	
_									_ :	STI	1UL I	DE	SIGN	ATOR	

Exceptions to this code are those stimuli with a letter for the connector number where the connector number is unknown. Also the stimuli which comes from the DCM instead of the flight cable do not agree with this code. Signal Termination Module (STM) addresses for both stimuli and measurements are yet to be defined.

2.2 DCM UPLINK

The value which represents the concentration of smoke sensed by a detector will be input to the model by using PARAMS, via DCM uplink. The capability will exist to provide one value per detector.

The only other values to be passed from the DCM will be those which involve output suppression and fault insertion in accordance with the GSIU Operating System and are not a part of this document.

2.3 INITIALIZATION REQUIREMENTS

The following parameters will be initialized as shown below:

- o CLOSE CIRCUIT BREAKERS 6 & 7 on PANEL 016
- , o CLOSE CIRCUIT BREAKERS 7 & 8 on PANEL 014
- o CLOSE CIRCUIT BREAKER 7 on PANEL 015
- o Parameters should be initialized as indicated in Table 2.

2.4 TERMINATION REQUIREMENTS

NONE

2.5 UNIQUE REQUIREMENTS

2.5.1 SMOKE CONCENTRATION VALUES

Particle concentration values are input to the model via the DCM uplink. Once set from the DCM, they remain constant until another value is uplinked. The DCM utility program 'PARAMS' will be used for the uplink.

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOMIAL CONVERSION METHOD

The scaling polynomial equation used by the flight system is defined in the SM FSSR. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1 X A_2 X^2 + A_3 X^3$$

where: FS_{EU} = flight system engineering units

X = flight system input voltage

 A_0 , A_1 , A_2 , A_3 = scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{EU}) to GSIU counts. This procedure may be used to calculate GSIU count values for fault insertion at the DCM.

Example:

For measurement no. V63R1100A, convert FS_{EU} value = 2288 to GSIU counts.

Step 1:

In the SM FSSR, look up the measurement no. (V63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units, range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{EU} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^{2} + 12.246X^{3}$$
so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VDC.

It is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.846 rounded to the nearest integer.

However, in the example being worked, X is defined as VDC and X = 3.846 VDC.

Step 4:

Now to convert X VDC to GSIU counts, evaluate the following equation which shows the relationship between X and GSIU counts:

GSIU counts =
$$\left[X \left(\frac{1023}{K}\right)\right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

GSIU counts =
$$\left[3.846 \left(\frac{1023}{5}\right)\right]$$
, rounded to the nearest integer

Therefore, GSIU counts = 787 counts.

Note that since GSIU counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU} , when the reverse calculations are made during test operations, as the following shows:

X = GSIU counts
$$\left(\frac{K}{1023}\right)$$

X = 787 X $\left(\frac{5}{1023}\right)$
S0 X = 3.846529
And
FS_{EU} = 443.167 + 851.956X - 143.904X² + 12.246X³
FS_{EU} = 443.167 + 851.956(3.848) - 143.904(3.848)² + 12.246 (3.848)³
FS_{EU} = 2288.017

Hence when 787 GSIU counts is inserted for measurement no. V63R1100A, \cdot value of 2288.017 FS $_{\rm EU}$ will result.

2.6.2 PANGE LIMIT CONVERSION METHOD

NONE.

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIU count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 FS $_{\mbox{EU}}$ which is equivalent to 534 GSIU $_{\mbox{CTS}}$ shown outside the box.

	• (1A) · • · · ·	• • •
	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •
**************************************		* * * * * * * * * * * * * * * * * * *
1A .CBON	N	4
	K81P120-4=1	
IA_CIRCUIT TEST ON	. У	
	K81P120-8 = 1	
	<u> </u>	
1A CONC LEVEL	N.	
	V62Q0618A ≥7.5 780	
	\rightarrow \downarrow \uparrow	:
SET LA ALARM		
	Y62 X O 62 OE = [
	\	
	(2A)	
+++++++++++++++++++++++++++++++++++++++		
+++++++++++++++++++++++++++++++++++++++	╶╏┊┋ ┪╃╃╏╁┼╂╂╫╂╂╂╂╂┼┼	
		· · · · · · · · · · · · · · · · · · ·
	ORIGINA.	
	OF POOR PAGE IS	
		• 1 1 1
		
- 	▗ ┊ ┊ ┧╋┡╂╂┇╬╁╂╂╂╫	
	┷╌╼╁╌┈┟┷╁╶╁╸╅╶┼╶┦╌╣╴╏╌╏╼╏╴╟╺┱╸╽┄╏╌	
	▗ ╫╫╫	
		
		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l La companya de la co	

. _-

.4.0 TABLES

4.1 INPUT STIMULI LIST

Table 1 lists input stimuli to the SDS model in terms of ID numbers, nomenclature, stimuli source, address and range of measurement.

TABLE 1 - STIMULI INPUT TO SDS MODEL

SEPTION	<u></u>	IDENTIFICATION		NOMENCL STURE	SOURCE	ST	STATES/RANGE	IGE
SIPTO-8	_					10	1H	UNITS
S2P108-8 BAY 2/DETECTOR A VGZKOBOZE S3P63-B SAV 3/DETECTOR A SMOKE DETECTION S109739-B LEFT FLT DECK CIRCUIT TEST A S00739-B CA8IN CIRCUIT TEST A S00739-B SAV 3/DETECTOR B VGZKOBOGE S2P109-B SAV 3/DETECTOR B VGZKOB1SE - SMOKE S2P108-7 SAV 3/DETECTOR B S4P4-B SAV 3/DETECTOR B S4P4-B SAV 3/DETECTOR B VGZKOB1SE SAV 3/DETECTOR B SA	~	31P120-8	BAY 1/DETECTOR A .		FS VIA STM	0	_	STATE
83P63-8 BAY 3/DETECTOR A SWOKE DETECTION 30P139-8 LEFT FLT DECK CIRCUIT TEST A 0 1 1 1 1 1 1 1 1 1	~	82P108-8	BAY 2/DETECTOR A	V62K0802F	•	0	_	
30P139-8 LEFT FLT DECK LINCUIT LEST A 90P28-8 CABIN 20P28-8 CABIN 20P28-8 SAOKE DETECTION SAPOKE DETECTION		83P63-8	BAY 3/DETECTOR A	SMOKE DETECTION		0	-	
90P28-8 CABIN		30P139-8	LEFT FLT DECK	CIRCUIL IEST A		0		
SPP121-8 BAY 1/DETECTOR B SANCE DETECTION SPP109-8 SAY 2/DETECTOR B SANCE DETECTION SP64-8 SAY 2/DETECTOR B SANCE DETECTION SP54-8 SAY 3/DETECTOR B V62K0815E - SMOKE SP63-7 SAP 3/DETECTOR A SACK0816E SANCE DETECTION RESET BA/3 A SAP64-7 BAY 3/DETECTOR A SANCE DETECTION RESET SANCE DETECTIO		90P28-8	CABIN .	•	•	0	_	
SPORE DETECTOR B SNOKE DETECTION SPOKE DETECTION SPORE DET		81P121-8	BAY 1/DETECTOR B	V62K0806F	•	0		
83P64-8 BAY 3/DETECTOR B CIRCUIT TEST B 0 1 81P121-7 BAY 1/DETECTOR B V62K0815E - SMOKE S3P63-7 BAY 3/DETECTOR A S4K0K DETECTION RESET 18/3A 0 1 83P64-7 BAY 3/DETECTOR A S4K0K DETECTION RESET S4K1 S4K	~	82P109-8		SMOKE DETECTION		• —	,	
SP122-8 RIGHT LT DECK SP0122-8 RIGHT LT DECK SP022-8 SP022-7 SAY 1/DETECTOR B V62K0815E - SMOKE SP63-7 SAY 3/DETECTOR B V62K0816E S2P108-7 SAY 2/DETECTOR A SBY 2/DETECTOR A SBY 2/DETECTOR A SBY 2/DETECTOR A SBY 2/DETECTOR B SBY 2/DETECTOR B SWOKE DETECTION RESET SBY 1/DETECTOR B SWOKE DETECTION RESET SAY 1/DETECTOR B SWOK	_	33P64-8	BAY 3/DETECTOR B	CIRCUIT TEST B	·	0	,_	
BAY 1/DETECTOR B V6ZK0815E - SMOKE BAY 3/DETECTOR A DETECTION RESET 18/3A BAY 3/DETECTOR B V6ZK0816E BAY 2/DETECTOR A SMOKE DETECTION RESET LEFT FLT DECK 38/ZA/L&R FLT.D. RIGHT FLT DECK 38/ZA/L&R FLT.D. BAY 1/DETECTOR A V6ZK0817E BAY 1/DETECTOR B SMOKE DETECTION RESET CABIN FS VIA STM		30P122-8	RIGHT LT DECK			0		
BAY 3/DETECTOR A DETECTION RESET 18/3A BAY 3/DETECTOR BAY 2/DETECTOR A V62K0816E BAY 2/DETECTOR A SMOKE DETECTION RESET LEFT FLT DECK 38/2A/L&R FLT.D. RIGHT FLT DECK 38/2A/L&R FLT.D. BAY 1/DETECTOR A V62K0817E BAY 2/DETECTOR B SMOKE DETECTION RESET CABIN FS VIA STM	~	81P121-7	BAY 1/DETECTOR B			0	_	
BAY 3/DETECTOR B V62K0816E BAY 2/DETECTOR A SMOKE DETECTION RESET LEFT FLT DECK 38/2A/L&R FLT.D. RIGHT FLT DECK 38/2A/L&R FLT.D. BAY 1/DETECTOR A V62K0817E BAY 2/DETECTOR B SMOKE DETECTION RESET CABIN FS VIA STM	~	33P63-7	BAY 3/DETECTOR A			0	_	
BAY 2/DETECTOR A SMOKE DETECTION RESET LEFT FLT DECK RIGHT FLT DECK RIGHT FLT DECK RIGHT FLT DECK BAY 1/DETECTOR A SMOKE DETECTION RESET CABIN FS VIA STM 0 1 CABIN	~	33P64-7	BAY. 3/DETECTOR B	. v62k0816F		0		
LEFT FLT DECK 38/2A/L&R FLT. D. RIGHT FLT DECK BAY 1/DETECTOR A V62KD817E BAY 2/DETECTOR B SMOKE DETECTION RESET CABIN FS VIA STM O 1 FS VIA STM O 1		32P108-7	BAY 2/DETECTOR A	SMOKE DETECTION RESET		0		
BAY 1/DETECTOR A V62K0817E BAY 2/DETECTOR B SWOKE DETECTION RESET CABIN FS VIA STM O 1 FS VIA STM		30P139-7	LEFT FLT DECK			0		·
BAY 1/DETECTOR A V62K0817E BAY 2/DETECTOR B SMOKE DETECTION RESET CABIN FS VIA STM O 1 FS VIA STM O 1		30P122-7	RIGHT FLT DECK			0	_	
BAY 2/DETECTOR B SMOKE DETECTION RESET CABIN CABIN O 1 FS VIA STM O 1	~	31P120-7	BAY 1/DETECTOR A .	1 V62K0817F		0	_	
CABIN FS VIA STM 0 1		32P109-7	BAY 2/DETECTOR B	SMOKE DETECTION RESET		0		-
		30P28-7	CABIN .	J 1A/2B/CABIN	FS VIA STM	0		STATE
					•			
								·
		•						

TABLE 1 - STIMULI INPUT TO SDS MODEL

TOCHTICTORTON					
IDER IFICALION NUMBER	NOMENCLATURE	SOURCE		STATES/RANGE	(GE
			23	Ē	SILIN
30P139-4	LEFT FLT. DECK MN A PWR PANEL 014/CB7	FS VIA STM	•		STATE
30P122-4	RT FLT. DECK MN A PWR PANEL 014/CB7		0	_	
90P28-4	CABIN MN C PWR	•	•	,	
81P120-4	THE 1/DETECTOR A MN C PWR	•	0	_	
82P1.3-4	PANEL 016/CR7		0		
82P108-4	BAY 2/DETECTOR A MN A FWR PANEL 014/CB8		0	_	
83P64-4	BAY 3/DETECTOR B MN A PWR PANEL 014/CB8	<u> </u>	0	_	
83P63-4	PAY "/DETECTOR A MN B PWR PAKEL 015/CB7		0	_	
81P121-4	BAY 1/DETECTOR B MN B PWR PANEL 015/CB7	FS VIA STM	0	-	STATE
		•	•		
•					

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

	2 L % ;q. (61710	MG/M3	MG/M ³	MG/M ³	₩6/M ³	MG/M ³	MG/M3	STATE							>	STATE	•				
	က	CTS																				
	VALUE	FS																				
	2	CTS																			_	
	VALUE	FS																				
	******	CIS	···········						~	~	-	-		~	-	,-	,					
- TABLE 2	VALUE 1	FS							~	~		-	-		-	-						
SUS MODEL -		CTS	620	299	6 98	723	743	760	0	0	0	0	0	0	0	0	0			 		7
	1.0.	FS	0.71	1.00	1.29	1.60	1.91	2.20	0	0	C	0	0	0	0	0	0			 **************************************	· · · · · · · · · · · · · · · · · · ·	
MEASUREMENT OUTPUT FROM		ME JUREMENT NAME	SMOKE DET. CONC. A AV. BAY 2	SMOKE DET. CONC. B. AV. BAY 2	SMOKE DET.	SMOKE DET. CONC. B AV.	SMOKE DET. CONC. A AV. BAY 3	SMOKE DET. CONC. B AV.	LH FLT DECK SM DET SIG	RH FLT DECK SM DET SIG	SM DET SIG CABIN	SM DET SIG 1A	SM DET SIG 2A	SM DET SIG 3A	SM DET SIG 18	SM DET SIG 28	SM DET SIG 38					
		.: .:	V6200608A	V6200609A	V6200618A	V6200619A	V6200628A	V6200629A	V62X0606E	V62X0607E	V62X0596E	V62X0620E	V62X0610E	V62X0630E	V62X0621E	V62X0611E	V62X0631E					

APPLICABLE DOCUMENTS

- 1) VS70-620102, Smoke Detection Schematic
- 2) LEC-9361, Smoke Detection Subsystem Simulation Software Specification
- 3) ICD-3-1603-05, Section 3.10
- 4) Functional Subsystem Software Requirements Manual Part A, Revision D (SD76-SH-0027D)

APPENDIX K WATER/WASTE MANAGEMENT MATH MODEL REQUIREMENTS

TABLE OF CONTENTS

Sec	tion	Page
1.	INTRODUCTION	K-2
2.	DETAILED REQUIREMENTS	K-4
	2.1 FUNCTIONAL CHARACTERISTICS	K-4
	2.1.1 WATER MANAGEMENT SUBSYSTEM	K-4
	2.1.2 WASTE MANAGEMENT SUBSYSTEM	K-3
	2.1.3 INPUT/OUTPUT	K-8
	2.2 DCM UPLINK	K-9
	2.3 INITIALIZATION	K-9
	2.4 TERMINATION REQUIREMENTS	K-9
	2.5 UNIQUE REQUIREMENTS	K-9
	2.6 ANALOG MEASUREMENTS	K-10
	2.6.1 POLYNOMIAL CONVERSION METHOD	K-10
	2.6.2 RANGE LIMIT CONVERSION METHOD	K-13
3.	LOGIC FLOW DIAGRAMS	K-14
4.	TABLES	K-25
	4.1 INPUT STIMULI LIST	K-25
	4.2 OUTPUT MEASUREMENT LIST	K-31
5.	REFERENCES	K-35
	FIGURES	
Fig	ure	Page
2-1	INPUT/OUTPUT DATA FLOW	K-5
2-2	WATER/WASTE MANAGEMENT SUBSYSTEM	K-6
2-3	WASTE MANAGEMENT SUBSYSTEM - WASTE COLLECTOR	K-7

1. INTRODUCTION

Math models are used to simulate many of the Shuttle systems for which hardware does not exist in SAIL. A group of these models are termed non-avionic models since they do not simulate avionic equipment. The non-avionic models are needed to provide responses to cockpit switches, to drive cockpit displays, and to supply data for on-board software processing. The following list of non-avionic models will operate within the Test Operations Center (TOC) Ground Standard Interface Unit (GSIU).

- Main Propulsion System (Orbiter Portion)
- APU/Hydraulic
- Active Thermal Control
- Atmosphere Revitalization System/H₂O Loops
- Fuel Cell/Cryogenics
- Smoke Detection
- Water/Waste Management
- Atmosphere Revitalization/Pressure Control System (with AIRLOCK) When the TOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when offnominal conditions are desired. To simplify the models and ease the processing load on supporting test equipment, the model requirements define nominal conditions only. Further, analog values for output parameters change in step fashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs. This allows the DCM operator to adjust output parameter values as needed to satisfy various mission phases.

When the model is activated, it shall check the input stimuli and shall provide appropriate output measurement values. It is preferred that the model provide output data when the input stimuli change. Bus activity is then minimal during those mission phases when the stimuli remain constant. However, the GSIU operating system may require a cyclic model program in which case the model output rate shall be once per second.

2. DETAILED REQUIREMENTS

This model simulates those functions of the Water/Waste Management (W/WMS) subsystem that are in the Orbiter. To simplify the model, only those subsystem functions needed to support testing of the Shuttle avionics system are provided.

The model receives stimuli from one source, the flight system via the Signal Termination Module (STM); the model provides output parameter values to the flight system via the STM. Figure 2-1 illustrates the data flow in and out of the model. Tables 2-1 and 2-2 list the input stimuli and output measurements. Figures 2-2 and 2-3 illustrate the general functioning of the W/WMS Subsystem.

2.1 FUNCTIONAL CHRACTERISTICS

2.1.1 WATER MANAGEMENT SUBSYSTEM

The water management subsystem performs the primary functions of supplying potable water to the crew for metabolic consumption, to the ATCS flash evaporators for vehicle thermal control purposes, and to the airlock support subsystem for recharging the extravehicular life support system. The water management subsystem achieves these objectives by collecting and processing water produced at a rate of approximately 0.8 pound per kwhr by the Orbiter fuel cells before distributing the water to the various sources.

After the water is properly treated, the potable water is stored in four tanks containing metallic bellows. The water is expelled from the tank by nitrogen gas supplied at approximately 10 psig by the atmospheric revitalization pressure control subsystem (ARPCS) or in contingency conditions by cabin atmospheric pressure. Should the fuel cell production rates exceed the water usage requirements and storage capability, the water management subsystem provides the capability to dump the excess potable water overboard.

INPUT OUTPUT DATA FLOW

FIGURE 2-1

POOR QUALITY

WASTE HANDEMENT SUBSYSTEM - MISTE COLLECTOR

K-7

2.1.2 WASTE MANAGEMENT SUBSYSTEM

The waste management subsystem provides for collecting, treating, and storing fecal, urine, cabin humidity condensate, personal hygiene, and airlock waste water. To accomplish these tasks, the waste management subsystem employs a waste collection system which handles solid and liquid wastes separately.

Solid wastes, such as fecal material and toilet paper, are collected in a commode or fecal collection system. Fecal material is directed into the collector by air flow and the air is passed through a bacteria filter before returning to the cabin. The fecal material entering the collector is impinged on the inside surface of the collector by a slinger device. The waste material is vacuum dried for reduction of mass and bacteria control. In the event the commode malfunctions, a backup fecal collection system is provided. The backup system consists of using fecal collection bags.

Liquid wastes are collected by a urine/waste water collection system which is comprised primarily of a urinal collector, water separators and waste storage tanks. The urinal collector, used in conjunction with a fan/water separator, collects and transfers the urine into the waste storage tanks.

2.1.3 INPUT/OUTPUT

All inputs to the model are from the FS addressable at the STM. These stimuli are acted upon immediately at model execution without regard to time, and conditions are simulated in a step function manner. Any time dependent inputs must be up-linked from the TOC-DCM as an abnormality (or parameter value change) in accordance with the GSIU Operating System.

For the sake of simplicity, the model will do no fault detection of stimuli, but will act upon it as received from the FS. Therefore, any fault insertion must include changes to all affected parameters in order to obtain a realistic response from the model.

All subsystem output is simulated by the model in accordance with stimuli from the FS. All measurements are made available to Systems Management (SM) and Fault Detection and Annunciation (FCA) as required.

The stimuli identification numbers used are coded to provide the following information at the SAIL flight cable/GSE/C70-1140 cable set interface.

Exceptions to this code are those stimuli with a letter for the connector number where the connector number is unknown. Also, the stimuli which comes from the DCM instead of the flight cable do not agree with this code. Signal Termination Module (STM) addresses for both stimuli and measurements are yet to be defined.

2.2 DCM UPLINK

The only values passed from the DCM will be those which involve output suppression and fault insertion in accordance with the GSIU Operating System and are not a part of this document.

2.3 INITIALIZATION

Parameters will be initialized with the values found in the IC (Initial Condition) column of Table 2.

2.4 TERMINATION REQUIREMENTS

NONE

2.5 UNIQUE REQUIREMENTS

NONE

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VDC inputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation cone later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA), and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the caling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conver method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.6.1 POLYNOM.AL COMVERSION METHOD

The scaling polynomial equation used by the flight system is defined the SM FSSR. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1 x + A_2 x^2 + A_3 x^3$$

where: FS_{EU} = flight system engineering units

X = fiight system input voltage

 A_0 , A_1 , A_2 , A_3 = scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{EU}) to GSIU counts. This procedure may be used to calculate GSIU count values for fault insertion at the DCM.

Example:

For measu ement no. V63R1100A, convert FS_{FU} value = 2288 to GSIU counts.

Step 1:

In the SM FSSR, look up the measurement no. (V63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units, range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{EU} = A_0 + A_1 x + A_2 x^2 + A_3 x^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^{2} + 12.246X^{3}$$
so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VDC.

It is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.866 rounded to the nearest integer.

However, in the example being worked, X is defined as VDC and X = 3.846 VDC.

Step 4:

Now to convert X VDC to GSIU counts, evaluate the following equation which shows the relationship between X and GSIU counts:

GSIU counts =
$$\left[X \left(\frac{1023}{K}\right)\right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

GSIU counts =
$$\left[3.846 \left(\frac{1023}{5}\right)\right]$$
, rounded to the nearest integer

Therefore, GSIU counts = 787 counts.

Note that since GSIU counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU}, when the reverse calculations are made during test operations, as the following shows:

X = GSIU counts
$$\left(\frac{K}{1023}\right)$$

X = 787 X $\left(\frac{5}{1023}\right)$
S0 X = 3.846529
And
FS_{EU} = 443.167 + 851.956X - 143.904X² + 12.246X³
FS_{EU} = 443.167 + 851.956(3.848) - 143.904(3.848)² + 12.246 (3.848)³
FS_{EU} = 2288.017

Hence when 787 GSIU counts is inserted for measurement no. V53R1100A, a value of 2288.017 ${\rm FS}_{\rm FH}$ will result.

2.6.2 RANGE LIMIT CONVERSION METHOD

NONE.

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIV count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 FS_{EU} which is equivalent to 534 $GSIU_{CTS}$ shown outside the box.

`. . .

...

4. TABLES

4.1 INPUT STIMULI LIST

Table 1 lists input stimuli to the W/MMS model in terms of ID numbers, nomenclature, stimuli source, and range of parameter.

STIMULI INPUT TO /WMS) MODEL-TABLE 2-1

	NOMENCLATURE	SOURCE	ST	STATES/RANGE	SE UNITS
SEC FLASH EVA	SEC FLASH EVAP, SUPPLY OPEN	FS VIA STM	0		STATE
SEC FLASH EVA 90P412-11	SEC FLASH EVAP, SUPPLY CLOSE 90P412-11	FS VIA STM	•·	-	STATE
N2 REG PRESS 80P27-18	80P27-18	AR/PCS MODEL	0	50	P16
	ORIGINAL PAGE IS OF POOR QUALITY				

STIMULI INPUT TO , MMS , MODEL-TABLE 2-1 (continued)

IDENTIFICATION		SOURCE		ST S/RANGE	GE
NUMBER	MOTERICATIONS		07	≢	UNITS
V62K0401E	POT. H20 TK A INLET VLV OPEN	FS VIA STM	0	-	STATE
V62K0402E	POT. H20 TK A INLET VLV CLOSE	FS VIA STM	• ·		STATE
V62K0405E	POT. H20 TK A OUTLET VLV OPEN	FS VIA STM	۰.	_	STATE
V62K0406E	POT. H_2^0 TK A OUTLET VLV CLOSE 90P462-11	FS VIA STM	0	· -	STATE
V62K0421E	POT. H ₂ O TK B INLET VLV OPEN 90P403-13	FS VIA STM	•	- -	STATE
V62K0422E	POT. H ₂ 0 TK B INLET VLV CLOSE 90P403-11	FS VIA STM	0	,	STATE
V62K0425E	POT. H ₂ 0 TK B OUTLET VLV OPEN 90P404-13	FS VIA STM	•	-	STATE
V62K0426E	POT. H ₂ 0 TK B OUTLET VLV CLOSE 90P404-11	FS VIA STM	0		STATE
					
			•		

STIMULI INPUT TO 1/WMS) MODEL-TABLE 2-1

NGE	UNITS	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	STATE	
STATES/RANGE	IH	_	-	- ,	- -	_	,-	_	-		
ST.	10	0	0	•	C	.	0	0		0	
SOURCE		FS VIA STM	FS VIA STM	FS VIA STM	FS VIA STM	FS VIA STM	FS VIA STM	FS VIA STM	FS VIA STM	FS VIA STM	
NOMENCLATURE		POT. H ₂ 0 DUMP ISLN VLV OPEN 90P411-13	POT. H ₂ 0 DUMP ISLN VLV CLOSE	POT. H ₂ 0 DUMP VLV OPEN 40P98-13	POT. H ₂ 0 DUMP VLV CLOSE	WASTE H ₂ 0 DUMP ISLN VLV OPEN 90P415-13	WASTE H ₂ 0 DUMP ISLN VLV CLOSE 90P415-11	WASTE H ₂ O DUMP VLV OPEN 9GP99-13	WASTE H ₂ 0 DUMP VLV CLOSE	WASTE H20 DUMP NOZZLE -40SP182	
IDENTIFICATION	NUXBER	V62K0450E	V62K0452E	V62K0460E	V62K0462E	V62K053DE	V62K0531E	V62K0535E	V62K0536E	V62KÓ541E	
<u> </u>		1				K-23			····		

STIMULI INPUT TO .../WMS) MODEL-TABLE 2-1

FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE FS VIA STM 0 1 STATE
VIA STM 0 1 1
VIA STM 0 1 1
VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 VIA STW 0 1 VIA STW 0
VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1 VIA STW 0 1
VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1
VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1
VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1
VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1
VIA STM 0 1 VIA STM 0 1 VIA STM 0 1 VIA STM 0 1
VIA STM 0 1 VIA STM 0 1 VIA STM 0 1
VIA STM 0 1 VIA STM 0 1
VIA STM 0 1 VIA STM 0 1 VIA STM 0 1
VIA STM 0 1
VIA STM 0 1
0
•

STIMULI INPUT T (W/WMS) MODEL-TABLE 2-1

L	IDENTIFICATION					
	NUMBER	NOMENCLATURE	SOURCE	10	SIAIES/KANCE	UNITS
	V62K0770E	POT. H ₂ 0 TK C INLET VLV OPEN 90P405-13	FS VIA STM	0	-	STATE
	V62K0771E	POT. H ₂ O TK C INLET VLV CLOSE 90P405-11	FS VIA STM	0	- -	STATE
	V62K0774E	РОТ. H ₂ O TK C OUTLET VLV OPEN 90P406-13	FS VIA STM	· ·	-	STATE
	V62K0775E	POT. H ₂ 0 TK C OUTLET VLV CLOSE 90P406-11	FS VIA STM	o´´	. -	STATE
K-30	V62K1000E '	POT. H ₂ 0 XOVR VLV OPEN 90P413-13	FS VÍA STM		•	STATE
	V62K1002E	POT. H ₂ 0 XOVR VLV CLOSE 90P413-11	FS VIA STM	6	_	STATE
-	V62K1100E	GALLEY SUPPLY VLV OPEN 90P409-13	FS VIA STM	•	_	STATE
	V62K11D2E	GALLEY SUPPLY VCV CLOSE	FS VIA STM	0	,	STATE
	N/A	40 SP185 PRI F. 7	FS VIA STM	٥,	1	STATE
	N/A	•	FS VIA STM	0	_	STATE
_						

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

MEASUREMENT OUTPUT FROM W/WMS MODEL - TABLE 2

1. D. MEA V62X0203E SEC FLASH V62X0204E SEC FLASH		1.0.	 	VALUE 1	سىيە ھىسبىك	VALUE	7	VALUE	દ	STIMI
	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	Simo
	SEC FLASH EVAP SUPPLY OPEN IND	0	0	pure	-					STATE
_	SEC FLASH EVAP SUPPLY CLOSE IND		~	0	0					STATE
V62X0403E POT. H ₂ 0	POT. H ₂ 0 TK A INLET VLV OPEN IND	0	0	-	-					STATE
V62X0404E POT. H20	TK A INLET VLV CLOSE IND			0	0					STATE
V62X0407E POT. H ₂ 0	POT. HO TK A OUTLET VLV OPEN IND	0	0	~	 1		•			STATE
V62X0408E POT. H ₂ 0	TK A OUTLET VLV CLOSE IND			0	0					STATE
V62Q0410A POT. H20	TK A QTY	91	894	30	360	66	964			PCT
	DUMP LINE TEMP	90.2	636	30	49	70	440		<u>.</u>	DEGF
V6200420A POT. H20 .	TK B QTY	81	908	10	184	66	964	_		PCT
V62X0423E POT. H20 .	TK B INLET VLV OPEN IND	0	0	-	~					STATE
V62X0424E POT. H20	TK B INLET VLV CLOSE IND			0	0					STATE
$ V62X0427E P0T. H_2^0 $	TK B OUTLET VLV OPEN IND	0	0	-	~					STATE
V62X0429E P0T. H ₂ 0	TK B OUTLET VLV CLOSE IND		→	0	0					STATE
V62P0430A POT. H20	STORAGE INLET PRESS.	35	716							PSIA
V62T0439A POT. H20	DUMP NOZZLE TEMP. B.	150.8	391							DEGF
V62T0440A POT. H20	DUMP NOZZLE TEMP	154.8	401							DEGF
V62X0455E POT. H20	DUMP ISOL VLV OPEN IND	0	0	-	<u></u>					STATE
V62X0456E POT. H20	DUMP ISOL VLV CLOSE IND	-		0	0					STATE
V62X0465E POT. H20	POT. HO DUMP VLV OPEN IND.	0	0	-	~					STATE
V62X0466E POT. H20	POT. H ₂ O DUMP VLV CLOSE IND.	-	-	0	0					STATE
V62P0500A WASTE/POT	WASTE/POT. HO LIQUID PRESS	19.0	487	0	0					PSIG
V62T0519A WASTE H20	WASTE H ₂ O DUMP NOZZLE TEMP. B.	144	374	30	82					DEGF
V62T0520A WASTE H20	WASTE H20 DUMP NOZZLE TEMP.	148	385	30	85					DEGF

MEASUREMENT OUTPUT FROM W/WMS MODEL - TABLE 2

MEASUREMENT		I.C.		VALUE 1		VALUE	2	VALUE	m)
1. D.	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	CHEO
V62X0533E	WASTE H,O DUMP ISOL VLV OPEN IND	0	0	-	-					STATE
V62X0534E	WASTE HO DUMP ISOL VLV CLOSED IND	1		0	0					STATE
V62X0538E	WASTE HO DUMP VLV CPEN IND	0	0	-	~					STATE
V62X0539E	WASTE HO DUMP VLV CLOSED IND	1		0	0					STATE
V62Q0540A	WASTE HO TK 1 QTY	84	833	0	96					PCT
V62Q0544A	POT. TK D OR WASTE TK 2 QTY.	83	822	10	184	66	964			PCT
V62Q0548A	POT. HO TK C QTY	82	814	20	534	85	841			PCT
V62T0551A	VACUUM VENT TEMP	136.2	581	30	291					DEGF
V62X0566E	WASTE H ₂ O TK 1 DRAIN OPEN IND	0	0	-	7					STATE
V62X0567E	POT. TK_D OR WASTE TK 2 OUT. VLV OPEN IND	0	0	-	-					STATE
V62X0568E	POT. H20 TK C OUTLET VLV OPEN IND	0	0	-	1					STATE
V62X0570E	WASTE TK 1 INLET VLV OPEN IND	0	0	H						STATE
V62X0571E	POT. TK D OR WASTE TK 2 INLET VLV OPEN IND	0	0							STATE
V62X0572E	POT H20 TK C INLET VLV OPEN IND	0	0	-	7					STATE
V62T0578A	WASTE HO DUMP LINE TEMP	73.4	473	30	49	70	440			DEGF
V62X0580E	WASTE TK 1 DRAIN VLV CLOSE IND		~	0	0					STATE
V62X0581E	MASTE H ₂ 0 TK 2 OUTLET VLV CLOSE IND	~	-	0	0					STATE
V62X0582E	POT. HO TK C OUTLET VLV CLOSE IND	-	-	0	0					STATE
V62X0583E	WASTE TK 1 INLET VLV CLOSE IND	1	_	0	0					STATE
V62X0584E	POT. TK D OR WASTE TK 2 INLET VLV CLOSE IND	.	~	0	0					STATE

MEASUREMENT JUTPUT FROM W/WMS MODEL - TABLE 2

MEASUREMENT		1.0.		VALUE 1		VALUE	2	VALUE	3	STIMI
I. D.	MEASUREMENT NAME	FS	CTS	FS	CIS	FS	CTS	FS	CTS	CLINO
V62X0585E	POT. H ₂ 0 TK C INLET VLV CLOSE IND	, -	-	0	0					STATE
· 2X1005E	POT. H ₂ 0 XOVR VLV OPEN IND	0	0		~					STATE
	POT. H,O XOVR VLV CLOSE IND	-	-	0	0					STATE
	POT. HO GALLEY SUPPLY VLV OPEN IND	0	0	-						STATE
	POT. H,O GALLEY SUPPLY VLV CLOSE IND	-	-	0	0		 -			STATE
	POT. H ₂ O TANK E QTY	88	841							PERCENT
V62Q9160A	POT. H20 TANK F QTY.	86	849		:		-			PERCENT
					•					
			-							
المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع										
المستوالية المستوالية المستوالية المستوالية المستوالية المستوالية المستوالية المستوالية المستوالية المستوالية										
										
		-								

5. REFERENCES

- a) LA-B-10100-1/JSC-11174 Space Shuttle Systems Handbook 0V-102
- b) Potable Water Storage OV-102 Space Shuttle Dwg. 6.4 (6-15-77)
- c) Waste Management OV-102 Space Shuttle Dwg. 6.5 (6-1-77)
- d) Schematic Diagram Waste Mgm't Subsystem Dwg. VS70-620202 (8-24-77)
- e) Schematic Diagram Water Mgm't Subsystem Dwg. VS70-620302 (7-26-77)
- f) ICD-3-1603-5, Section 3.7

APPENDIX L RCS/OMS MATH MODEL REQUIREMENTS

TACLE OF CONTENTS

Section		Page
1. INTRODUCTION		L-2
2. DETAILED REQUIREMENTS	. •	L-3
2.1 Functional Characteristics		L-3
2.1.2 INPUT/OUTPUT	. •	L-3
2.2 DCM Uplink		L-3
2.3 Initialization	. •	L-3
2.4 Termination Requirements	•	L-3
2.5 Unique Requirements	. •	L-3
2.6 Analog Measurements		L-5
2.6.1 Polynomial Conversion Method	• •	L-5
2.6.2 Range Limit Conversion Method	• •	L-8
3. LOGIC FLOW DIAGRAMS		L-9
4. TABLES	• •	L-11
4.1 Input Stimuli		L-11
4.2 Output Measurement List		L-12
5. REFERENCES	• •	L-15
FIGURES		
Figure		Page
2-1 INPUT/OUTPUT DATA FLOW		1 -4

1. INTRODUCTION

Math models are used to simulate many of the Shuttle systems for which hardware does not exist in SAIL. A group of these models are termed non-avionic models since they do not simulate avionic equipment. The non-avionic models are needed to provide responses to cockpit switches, to drive cockpit displays, and to supply data for on-board software processing. The following list of non-avionic models will operate within the Test Operations Center (TOC) Ground Standard Interface Unit (GSIU).

- Main Propulsion System (Orbiter Portion)
- APU/Hydraulic
- Active Thermal Control
- • Atmosphere Revitalization System
 - Fuel Cell/Cryogenics
 - Smoke Detection
 - Water/Waste Management
 - Reaction Control System/Orbiter Maneuvering System (RCS/OMS)

When the IOC Display and Control Module (DCM) operator depresses the "SYS LOAD" key, the model programs, which are stored on the Fixed Head Disk in the DCM, are automatically loaded into the GSIU. The models are then activated and terminated by DCM test language statements. While the models are operating in the GSIU, the DCM operator is able to inhibit one, all, or any combination of model outputs with test language statements. This provides the DCM operator with control of output parameter values when off-nominal conditions are desired. To simplify the models and ease the processing load on supporting test equipment, the model requirements define nominal conditions only. Further, analog values for output parameters change in step fashion when responding to inputs, except when specific change rates for particular parameters are required. The DCM operator is also able to alter the value that the model uses to generate parameter outputs. This allows the DCM operator to adjust output parameter values as needed to satisfy various mission phases.

2. DETAILED REQUIREMENTS

The RCS/OMS model is a Rockwell application requirement implemented via Test Language in the DCM. This model outputs those DFI parameters not found in the avionics model. The model receives input from one source, the DCM. The model provides output parameter values to the flight system via the STM. Figure 2-1 illustrates the data flow in and out of the model. Table 2-1 lists the output measurements.

2.1 Functional Characteristics

This RCS/OMS model is a special case function to provide the Developmental Flight Instrumentation (DFI) measurements found in Table 1 to the flight system. These instrumentation measurements could not be output by the RCS/OMS Vehicle Dynamics model because of the absense of a hardware interface.

This model, therefore, does none of the RCS/OMS logic functions. It merely outputs the aforementioned measurements as static values.

2.1.2 INPUT/OUTPUT

Any time-dependent inputs must be up-linked from the TOC-DCM as an abnormality (or parameter value change) in accordance with the GSIU Operating System.

For the sake of simplicity, the model will do no fault detection of stimuli. Therefore, any fault insertion must include changes to all affected parameters in order to obtain a realistic response from the model.

2.2 DCM Uplink

The only values passed from the DCM will be those which involve output suppression and fault insertion in accordance with the GSIU Operating System and are not a part of this document.

2.3 Initialization

Parameters will be initialized with the values found in the IC (Initial Condition) column of Table 1.

2.4 Termination Requirements

None.

2.5 Unique Requirements

This model has no input requirements except those from the DCM (see section 2.2 above).

INPUT JOUTPUT DATA FLOW FIGURE 2-1

2.6 ANALOG MEASUREMENTS

Values shown in the math model flowcharts are in GSIU counts for all analog measurements. The math model values are seen by the flight system as 0 to 5 VOC imputs. The flight system then converts these input voltages to engineering units using one of the two types of scaling equations discussed in Sections 2.6.1 and 2.6.2. The GSIU math model count values (or the count values entered at the DCM by the test operator) must consider the scaling computation done later by the flight software, so that correct flight system engineering unit values are obtained for fault detection and annunciation (FDA) and for cockpit displays. The following two sections, 2.6.1 and 2.6.2, describe the scaling equations which apply to this model. Section 2.6.1 describes the scaling equation for measurements which require the polynomial conversion method. Section 2.6.2 describes the scaling equation for measurements which require the range limit conversion method which was used on STS-1.

2.E.1 POLYNOMIAL CONVERSION METHOD

The scaling polynomial equation used by the flight system is defined in the SM . SSR. The general form of the equation is given as follows:

$$FS_{EU} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

where: FS_{EU} = flight system engineering units

X = flight system input voltage

 A_0 , A_1 , A_2 , A_3 = scaling polynomial coefficients

The following example shows the step by step procedure for converting analog measurements from flight system engineering units (FS_{EU}) to GSIU counts. This procedure may be used to calculate GSIU count values for fault insertion at the DCM.

Example:

For measurement no. V63R1100A, convert FS_{FII} value = 2288 to GSIU counts.

Step 1:

In the SM FSSR, look up the measurement no. (Y63R1100A) within the "SMM Data Requirements - Subsystems Displays" table. The measurement no. will appear on two consecutive pages as follows: page A will show engineering units, range low value and range high value, while page B will show the scaling polynomial coefficients (labelled A_0 , A_1 , A_2 , A_3) followed by curve order, independent variable, and STS flight no. The values on page B will be of prime interest to do this example conversion, and will be referred to in the following discussion.

Step 2:

The coefficients will be used in the scaling polynomial:

$$FS_{EU} = A_0 + A_1 X + A_2 X^2 + A_3 X^3$$

Solve the following scaling polynomial for X:

$$2288 = 443.167 + 851.956X - 143.904X^{2} + 12.246X^{3}$$
so X = 3.846469

Step 3:

Notice the independent variable column labelled IND VR equals 2 for measurement no. V63R1100A. The 2 specifies that the independent variable X of the scaling polynomial is defined on a range of 0 to 5 VDC. So X = 3.846 VDC.

It is of interest to note that if IND VR had been equal to 0, X would have been defined on a range of 0 to 1023 PCM integer counts in which case X would be equal to 4 PCM counts, i.e. 3.846 rounded to the nearest integer.

However, in the example being worked, X is defined as VDC and X = 3.846 VDC.

Step 4:

Now to convert X VDC to GSIU counts, evaluate the following equation which shows the relationship between X and GSIU counts:

GSIU counts =
$$\left[X \left(\frac{1023}{K}\right)\right]$$
, rounded to the nearest integer where K = 5, for X defined as VDC (IND VR = 2) and K = 500, for X defined as PCM counts (IND VR = 0).

For the example, evaluate:

GSIU counts =
$$3.846 \left(\frac{1023}{5}\right)$$
, rounded to the nearest integer

Therefore, GSIU counts = 787 counts.

Note that since GSIU counts are always rounded to the nearest integer, small changes will possibly occur in the values of X and consequently FS_{EU} , when the reverse calculations are made during test operations, as the following shows:

$$X = GSIU counts \left(\frac{K}{1023}\right)$$

$$X = 787 \ X \left(\frac{5}{1023}\right)$$

$$S0 \ X = 3.846529$$
And
$$FS_{EU} = 443.167 + 851.956X - 143.904X^2 + 12.246X^3$$

$$FS_{EU} = 443.167 + 851.956(3.848) - 143.904(3.848)^2 + 12.246 (3.848)^3$$

$$FS_{EU} = 2288.017$$

Hence when 787 GSIU counts is inserted for measurement no. V63R1100A, a value of 2288.017 FS_{EU} will result.

2.6.2 RANGE LIMIT CONVERSION METHOD NONE.

3.0 LOGIC FLOW DIAGRAMS

The logic flow diagram is made up of interconnected lines, boxes, decisions, and offpage connectors. Notice that where analog measurements are listed in boxes and decisions, the value inside the box is in flight system engineering units (FS_{EU}) while the corresponding GSIII count value is listed outside the box. For example, the box on the right hand below,

shows that V45P1100A is set equal to 626 ${\rm FS}_{\rm EU}$ which is equivalent to 534 ${\rm GSIU}_{\rm CTS}$ shown outside the box.

RCS/OMS FLOW DIAGRAM

- 4. TABLES
- 4.1 INPUT STIMULI

NONE

4.2 OUTPUT MEASUREMENT LIST

Table 2 lists all model outputs along with the initial condition value for the output. Measurement I.D. and Measurement Name precede pairs of numeric columns. The first of each pair is labeled FS indicating flight system engineering units. The second of each pair is labeled CTS indicating the GSIU count value corresponding to the FS value. I.C. indicates initial condition values. VALUE 1 typically indicates nominal values. VALUE 2 and VALUE 3 columns indicate off nominal conditions.

MEASUREMENT GUTPUT FROM RCS/OMS MODEL - TABLE 2

								,		
MEASUREMENT		1.0.		VALUE 1		VALUE 2		VALUE 3		
I. D.	MEASUREMENT NAME	FS	CIS	FS	CTS	FS	CTS	FS	CTS	URITS
	- RCS -									
V42T2305A	RCS-L AFT HSG THERM SW TEMP 2	104.0	732							DEGF
V42T3305A	RCS-R AFT HSG THERM SW TEMP 2	105.0	737							DEGF
V42T9044A	FRCS FU TK FILL MANIF LOC 2 THERMO	98.22	630							DEGF
V42T9045A	FRCS OX TK FILL MANIF LOC 2 THERMO	29.2	989						•	DEGF
V42T9432A	RCS-L OX/HE TEST PORT LN. TEMP	106.23	681					•		DEGF
V42T9442A	RCS-L OX TK OTBO UPR SKIN TEMP	45.41	293							DEGF
V42T9449A	RCS-L OX VLV TEMP Y WEB OTBD	108.15	694							DEGF
V42T9561A	RCS-R OX/HE TEST PORT LN. TEMP	107.2	687							DEGF
	- CMS -									
V43T4709A	OMS-L POD RCS PRESS PAL SURT TEMP 1	58.21	374							DEGF
V43T4706A	OMS-L POD GSE SERVICE PNL TEMP	78.2	323							DEGF
V43T4707A	OMS-L POD ENG SERVICE PNL TEMP	74.22	477							DEGF
V43T4710A	OMS-L POD RCS PRESS PNL SUPT TEMP 2	60.2	552							DEGF
V43T4711A	OMS-L POD RCS HSG VERNIER CMPT TEMP 2	111.2	458		-				•	DEGF
V43T4718A	OMS-L POD OX/HE TEST PORT FIG TEMP 2	82.1	642							DEGF
V43T5710A	OMS-R POD RCS PRESS PNL SUPT TEMP 2	61.2	557							DEGF
V43T5711A	OMS-R POD RCS HSG VERNIER CMPT TEMP 2	112.2	462							DEGF
V43T5718A	OMS-R POD OX/HE TEST PORT FTG TEMP 2	83.1	647							DEGF
V43T6234A	OMS BHD FU HI PT BLEED LN TEMP	94.0	692							DEGF
V43T6235A	OMS BHD OX HI PT BLEED LN TEMP	95.0	969							DEGF
V43T6236A	OMS-AFT FUSLG LO PT OX DRN LN TEMP-L	90.22	579	•						DEGF
V43T6237A	OMS-AFT FUSLG LO PT OX DRN LN TEMP-R	91.18	585							DEGF
			1		1					

- TABLE 2	
RCS/OMS MODEL	
FOF	
MEASUR	

MEASUREMENT		1.0		VALUE 1		VALUE 2		VALUE 3		
1. 0.	MEASUREMENT NAME	FS	CTS	FS	CTS	FS	CTS	FS	<u> </u>	UNITS
V43T6238A	OMS-AFT FU HI PT BLEED LN TEMP	92.0	683							DEGF
V43T6239A	OMS-AFT OX HI PT BLEED LN TEMP	93.0	687							DEGF
V43T6240A	OMS-AFT FULSG XFD FU FLX LN-L TEMP	88.30	267							DEGF
V43T6241A	OMS-AFT FULSG XFD FU FLX LN-R TEMP	89.26	573							DEGF
V43T6242A	OMS-AFT FUSLG OX LN CTR TEMP	87.34	561						•	DEGF
V43T6243A	OMS-AFT FUSLG OX XFD LINE L TEMP	85.42	548					•		DFSF
V43T6244A	OMS-AFT FUSLG OX XFD LINE R TE. P	86.38	554							DEGF
V43T9002A	CMS-L POD OX ISLN VLV TEMP	50.21	323							DEGF
V43T9290A	OMS-R XFD/POD OX COUPLING TEMP	56.29	362							DEGF
V43T9459A	OMS-L E. COVER THERMOSTAT TEMP	72.29	464		-					DEGF
V43T9464A	OMS-L FU/HE TEST PORT LN. TEMP	\$	651	1						DEGF
V43T9467A	OMS-L OXIDIZER DRAIN LN. TEMP	99	277		-					DEGF
V43T9470A	OMS-L CX FLG TEMP POD/ORBR INTFC	55.33	356							DEGF
V43T9471A	OMS-L FU FLG TEMP POD/ORBR INTFC	57.25	368							DEGF
V43T9551A	OMS-R OXIDIZER DRAIN LN. TEMP.	. 29	581		-,					DEGF
V43T9553A	OMS-R ENG COVER THERMOSTAT TEMP.	73.26	471							DEGF
										
			70-0.							···
			••••							
		-								
					-					
		1	1		1					

5. REFERENCES

- a) Rockwell Internal Letter No. 382-460-JTK-/8-012 subject; Justification for Adding a DFI MDM (DCO2) to SAIL in Support of Mission Profile Tests.
- b) Interface Revision Notice (IRN) P0084.
- c) Interface Revision Notice (IRN) P0094.