# **Preliminary Report**

James Mwakichako Manoj Kumar

### **Predicting 4th Month Churn Rate**

Number of Rows = 11925

### Class Distribution:



The skewness towards Non-Churners adversely affects precision

## Predicting 4th Month:

We used Jan-March 2014 for our analysis as this contained the most number of subscribers. We used decision tree and logistic regression models.

|                    | Actual Churners | Actual - Non Churners |
|--------------------|-----------------|-----------------------|
| Predicted Churners | 226             | 219                   |

| Predicted Non-<br>Churners | 55 | 4153 |
|----------------------------|----|------|
|                            |    |      |

Precision = 0.51 Recall = 0.8

Top 10 Most Important Features

Using the decision Tree model, below are the top 10 most important features.



## **Predicting Churn at Anytime**

We cleaned the whole database and used 75% for testing and the remaining 25% for testing to predicting churn.

Number of Rows = 133419

### **Class Distribution**



### **Confusion Matrix**

|                    | Actual Churners | Actual - Non Churners |
|--------------------|-----------------|-----------------------|
| Predicted Churners | 1323            | 1332                  |

| Predicted Non-<br>Churners | 168 | 30532 |
|----------------------------|-----|-------|
|                            |     |       |

Precision = 0.5 Recall = 0.89

### **Feature Importance**





#### **Further Work**

- Explore Cohort Analysis and Time Series models
- Talk to the team more on significance of some columns eg Hits\_Recency as this would impact how we impute missing values