(19) SU (11) 1341161 A1

(51) 4 C 01 F 11/02, G 05 D 27/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 4021162/23-26
- (22) 06,01,86
- (46) 30.09.87. Бюл. № 36
- (72) Б.А.Топерман, Б.А.Шихов,
- Л.Г.Семке, В.В.Донской и В.К.Бейдин
- (53) 66.012-52(088.8)
- (56) Авторское свидетельство СССР № 606815, кл. С 01 D 7/18, 1976.

Шапорев В.П. и др. Производство гидроксида кальция. М.: НИИТЭХИМ, 1981, с. 52.

- (54) СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕ-НИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ГИДРОКСИДА КАЛЬШИЯ
- (57) Изобретение относится к автоматизации химико-технологических процессов, в частности к процессу получения гидроксида кальция в барабанном гидраторе, может быть использовано в химической промышленности и позво-

ляет повысить качество гидроксида кальция за счет стабилизации степени гидратации извести. Устройство, реализующее способ, содержит контур регулирования соотношения расходов извести и гидратирующей жидкости изменением расхода последней: датчик (Д) 8 извести, регулятор (Р) 9 расхода извести, Д 10 гидратирующей жидкости, Р 11 этой жидкости, блок 13 соотношения и клапан (К) на линии подачи жидкости в гидратор 3. На вход Р 11 расхода гидратирующей жидкости подают корректирующие сигналы: разность расходов гидроксида кальция (Д расходов 14, 15, 16, Р 18, 19, 20) на каждом из трех участков по длине классификатора 4 и расходу крупной фракции недопама (Д 17, Р 21) через соответствующие сумматоры 22-25. 1 нл.

40

50

55

Изобретение относится к автоматическому управлению химико-технологическими процессами и может быть использовано в химической промышленности при автоматизации процесса получения гидроксида кальция в барабанном гидраторе с классификатором в производстве соды аммиачным методом.

Цель изобретения - повышение качества гидроксида кальция за счет стабилизации степени гидратации извести.

На чертеже представлена принципиальная схема системы автоматическо- 15 го управления процессом получения гидроксида кальция, реализующая способ.

Установка для получения гидроксида кальция содержит бункер 1 для хранения извести, вибропитатель 2, барабанный гидратор 3, барабанный классификатор 4, выполненный заодно с барабанным гидратором 3, коллектор 5 гидратирующей жидкости, транспортер б для перемещения гидроксида кальция, транспортер 7 для перемещения крупной фракции недопала. Барабанный классификатор 4 условно разделен на п равных по длине участков. На чертеже показаны три участка, обозначенные римскими цифрами I, II и III.

Система автоматического управления, реализующая предлагаемый способ, включает датчик 8 и регулятор 9 расхода извести, датчик 10, регулятор 11 и регулирующий орган 12 расхода гидратирующей жидкости, блок 13 соотношения расходов извести и гидратирующей жидкости, датчики 14 - 16 расхода гидроксида кальция, расположенные соответственно под участками I, II и III классификатора 4, датчик 17 расхода крупной фракции недопала, регуляторы 18 - 20 расхода гидроксида 45 кальция на каждом участке классификатора 4 и регулятор 21 расхода крупной фракции недопала, сумматоры 22 - 25.

Для формирования регулирующих воздействий выход датчика 14 подключен к положительному входу сумматора 22, выход датчика 15 - к положительному входу сумматора 23 и отрицательному входу сумматора 22, а выхода датчика 16 - к положительному входу сумматора 24 и отрицательному входу сумматора 23.

Выход сумматора 22 связан с одним из входов регулятора 18, выход сумматора 23 - с одним из входов регулятора 19, а выход регулятора 19 - с вторым входом регулятора 18.

Выход сумматора 24 связан с входом регулятора 20, выход которого подключен на второй вход регулятора 19. Вы-10 ход датчика 17 расхода крупной фракции недопала связан с входом регулятора 21, выход которого подключен к одному из положительных входов сумматора 25. Второй положительный вход сумматора 25 связан с выходом блока 13 соотношения, а отрицательный вход сумматора 25 связан с выходом регулятора 18.

Выход датчика 8 одновременно связан с входом регулятора 9 и входом . блока 13 соотношения.

Заданное значение Р_{зме.1} расхода гидроксида кальция устанавливают на регуляторе 20, а заданное значение 25 Р_{за д. 2} расхода крупной фракции недопала устанавливают на регуляторе 21.

В способе реализуется следующий алгоритм управления (алгоритм функционирования регулятора 11 расхода гид-30 ратирующей жидкости):

$$P_{\text{bbix}} = K_{1}(P_{2} - P_{1}) + K_{2} \int_{0}^{\infty} (P_{2} - P_{1}) d\tau, \quad (1)$$

- сигнал на выходе регулягде тора 11 расхода гидратирующей жидкости;

К,,К, - коэффициенты настройки пропорциональной и изобромной составляющих регулятора 11 расхода гидратирующей жидкости;

Р₁ - сигнал на выходе сумматора 25;

Р, - сигнал на выходе датчика 10, пропорциональный расходу гидратирующей жидкости.

Р, - сигнал на выходе регулятоpa 18;

 P_{15} - сигнал на выходе регулятоpa 21;

С, - константа настройки сумматора 25.

$$P_3 = K'(P_5 - 0, 2) + 0, 2,$$
 (3)

где K' - коэффициент пропорциональности;

P₅ - сигнал на выходе датчика 8 массового расхода извести.

 $P_{4} = K_{3} (P_{6} - P_{7}) + C_{2}, \tag{4}$

где K₃ - коэффициент настройки регулятора 18;

> P_6 - сигнал на выходе сумматора 22;

P₇ - сигнал на выходе регулятора 19;

С₂ - константа настройки регуля-

Р₆ = Р₈ - Р₉ + С₃, (5) где Р₈ - сигнал на выходе датчика 14 массового расхода гидрокси- да кальция на первом по хо- ду выгрузки участке классификатора;

Р₉ - сигнал на выходе датчика 15 массового расхода гидрокси- да кальция на втором по хо- ду выгрузки участке классификатора;

С₃ - константа настройки сумматора 22.

 $P_7 = K_4 (P_{10} - P_{12}) + C_4,$ rge (6)

 $P_{10} = P_{9} - P_{11} + C_{5}$, (7) где P_{10} – сигнал на выходе суммато- ра 23;

Р_н - сигнал на выходе датчика 16 массового расхода гидрокси- да кальция на третьем по хо- 35 ду выгрузки участке класси-фикатора:

К₄ - коэффициент настройки регулятора 19;

С₄,С₅ - константы настроек соответственно регулятора 19 и сумматора 23.

 $P_{12} = K_{5}(P_{13} - P_{3\alpha A.1}) + C_{6},$ (8) где P_{12} — сигнал на выходе регулятора 20;

К₅ - коэффициент настройки регулятора 20;

 P_{n} - сигнал на выходе суммато- ра 24;

Р_{зма-1} - заданное значение расхода гидроксида кальция;

С, - константы настройки регу-лятора 20.

 $P_{13} = P_{11} + C_{1}$, (9) где C_{7} – константа настройки сумма- тора 24.

 $P_{15} = K_{\epsilon}(P_{14} - P_{30A.2}) + C_{8}$, (10) где K_{ϵ} – коэффициент настройки регулятора 21;

Р₁₄ - сигнал на выходе датчика 17 расхода крупной фракции недопала;

Р_{эмя 2} — заданное значение расхода крупной фракции недопала;

 C_8 - константа настройки регулятора 21.

Способ автоматического управления 10 процессом получения гидроксида кальция осуществляют следующим образом.

Известь загружают в бункер 1, откуда вибропитателем 2 дозируют в барабанный гидратор 3. Из коллектора 5 в гидратор 3 дозируют гидратирующую жидкость.

В установившенся режиме просев гидроксида кальция через отверстия в барабанном классификатере 4 происходит на первом по ходу выгрузки участке 1. Подмазывание отверстий классификатора 4 отсутствует. Расход гидроксида кальция, просенваемый на участке 1 классификатора 4, изме-25 ряют с помощью датчика 14. С датчиков 15 и 16 в данном случае поступают сигналы, соответствующие нулевым расходам. Выходной сигнал датчика 14, пропорциональный массовому расходу гидроксида кальция, а также выходные сигналы сумматора 22 и регулятора 18 постоянны. Выходной сигнал с датчика 17 крупной фракции недопала также постоянный. В установившемся режиме положение регулирующего органа 12 нензменно и на галение извести из коллектора 5 поступает постоянное количество гидратирующей жидкости.

При изменении режима гидратации, вследствие чего, например, происходит переувлажнение извести и, как следствие, повышение влажности гидроксида кальция, происходит некоторое подмазывание отверстий на участке 1 барабанного классификатора 4 и перераспределение части потока гидроксида кальция на участок II барабанного классификатора 4, а при более значительном переувлажнении часть гидроксида кальция просеивается на участке III барабанного классификатора 4.

Рассев гидроксида кальция через участки II и III по длине классифи-катора 4 фиксируют соответственно датчики 15 и 16. Через сумматоры 22, 23 и 24 и соответственно регуляторы 18, 19 и 20 осуществляется перенастройка задания регулятору 11, что вызывает корректировку расхода гид-

15

30

ратирующей жидкости и снижение влажности гидроксида кальция. Подмазывание классификатора прекращается и рассев гидроксида кальция происходит онять в пределах первого по ходу выгрузки участка классификатора 4.

В случае недоувлажнения извести уменьшается количество кондиционного гидроксида кальция (т.е. мелкой фрак- 10 ции) и увеличивается количество крупной фракции с размером частиц более 15 мм, не просеивающихся через отверстия в классификаторе 4. Увеличение количества крупной фракции недопала фиксирует датчик 17, по сигналу которого через регулятор 21 и сумматор 25 осуществляется перенастройка задания регулятору 11, в результате чего корректируется расход гидратирующей жидкости до значения, при котором происходит восстановление заданного значения расхода крупной фракции недопала.

Пример 1. В установившемся режиме расход исходных реагентов в гидратор (нагрузка на гидратор) составляет: 25000 кг/ч извести, содержащей 85% СаО и 15% нерастворимого остатка; 10657 кг/ч гидратирующей жидкости - слабой известковой суспензии, содержащей 5% CaO и 95% H₂O.

При этом в результате гидратации в установившемся режиме образуются 28432 кг/ч гидроксида кальция и 2525 кг/ч крупной фракции недопала.

При реализации предлагаемого способа автоматического управления на приборах пневматической ветви ГСП со стандартным унифицированным пневматическим сигналом нулевому сигналу соответствует давление воздуха $0,2 \text{ krc/cm}^2$, а максимальному - $1,0 \text{ krc/cm}^2$.

С учетом выбранных диапазонов измерения расходу гидроксида кальция 28432 кг/ч соответствует давление на выходе датчика 14 $P_{g} = 0.6$ кгс/см², а расходу крупной фракции недопала .2525 кг/ч - давление на выходе датчи- $\kappa a 17 P_{14} = 0,6 \kappa rc/cm^2$.

Когда весь образующийся гидроксид кальция проходит через отверстия на первом по ходу выгрузки участке классификатора 4, на выходе датчиков 14, 15, 16 и 17 появляются соответствующие сигналы:

 $P_8 = 0.6 \text{ krc/cm}^2$; $P_9 = 0.2 \text{ krc/cm}^2$; $P_{14} = 0,2 \text{ Krc/cm}^2 \text{ и } P_{14} = 0,6 \text{ Krc/cm}^2$.

Установим следующие значения сигналов, констант и настроек регуля-TOPOB:

 $P_5 = 0,6 \text{ krc/cm}^2; P_{3\alpha_{0.1}} = 0,6 \text{ krc/cm}^2;$ $K_3=0,5$; $K_4=0,4$; $K_5=0,3$; $C_1 = 0, 2 \text{ krc/cm}^2$; $C_2 = 0, 4 \text{ krc/cm}^2$; $C_3 = 0, 2 \text{ krc/cm}^2$; $C_4 = 0, 6 \text{ krc/cm}^2$; $C_5 = 0$ =0,2 $\kappa rc/cm^2$; $C_6=0,4 \kappa rc/cm^2$; $C_7 = 0,4 \text{ KFC/cM}^2$; K' = 0,5; $K_6 = 2$; $P_{3\alpha A,2} = 0,6 \text{ krc/cm}^2$; $C_8 = 0,6 \text{ krc/cm}^2$; $P_{14} = 0,6 \text{ krc/cm}^2$.

Расчетные значения сигналов в соответствии с алгоритмом:

 $P_6 = P_8 - P_9 + C_3 = 0,6-0,2+0,2=$ = $0,6 \text{ krc/cm}^2$; $P_{10} = P_{9} - P_{11} + C_{5} = 0, 2 - 0, 2 + 0, 2 =$

 $=0,2 \text{ krc/cm}^2$: $P_{13} = P_{11} + C_7 = 0,2+0,4=0,6 \text{ krc/cm}^2;$ $P_{12} = K_5 (P_{13} - P_{304.1}) + C_6 = 0,3(0,6-0,6) + 0,4 = 0,4 Krc/cm²;$

 $P_7 = K_4 (P_{10} - P_{12}) + C_4 = 0,4(0,2-0,4) +$ $+0.4=0.43 \text{ Krc/cM}^2$:

 $P_4 = K_3(P_6 - P_7) + C_2 = 0,5(0,6-0,48) + 0,4 =$ $25 = 0.46 \text{ krc/cm}^2$; $P_3 = K(P_5 - 0, 2) + 0, 2 = 0, 5(0, 6 - 0, 2) + 0, 2 =$

 $0,4 \text{ krc/cm}^2;$ $P_{1.5} = K_6 (P_{30.4.2} - P_{14}) + C_6 = 2 \cap (6-0.6) +$

 $+0,46=0,46 \text{ krc/cm}^2$. Тогда на выходе сумматора 25 формируется сигнал P_{\downarrow} :

 $P_1 = P_3 + P_{15} - P_4 + C_1 = 0,4+0,46+0,46+0,2=$ =0,6 кгс/см², который является сигналом задания регулятору 11 расхода гидратирующей жидкости. Регулирующий орган 12 занимает положение, которое соответствует расходу гидратирующей жидкости 10657 кг/ч.

Пример 2. Расход извести и гидратирующей жидкости в гидратор 3, а также значения сигналов, констант и настроек регуляторов аналогичны примеру 1.

В результате переувлажнения гидроксид кальция просеивается через отверстия на первом и втором по ходу выгрузки из гидратов 3 участках классификатора 4. Расход гидроксида кальция через первый участок классификатора 4 составляет 19902 кг/ч (70%), а через второй участок - 8530 кг/ч (30%).

На выходе датчиков 14, 15, 16 и 17 появляются сигналы:

 $P_{g} = 0,48 \text{ кгс/см}^{2}$; $P_{g} = 0,326 \text{ кгс/см}^{2}$; $P_{11} = 0,2 \text{ кгс/см}^{2}$ и $P_{14} = 0,6 \text{ кгс/см}^{2}$.

Расчетные значения сигналов в соответствии с алгоритмом:

20

 $P_6 = P_8 - P_g + C_3 = 0,48-0,326+0,2=$ =0,354 KPC/CM²;

 $P_{10} = P_9 - P_{11} + C_5 = 0,326 - 0,2 + 0,2 =$ $=0.326 \text{ krc/cm}^2$;

 $P_{13} = P_{11} + C_{2} = 0,2+0,4=0,6 \text{ krc/cm}^{2};$ $P_{12} = K_5(P_{13} - P_{304.1}) + C_6 = 0,3(0,6-0,6) +$

+0,4=0,4 krc/cm² $P_7 = K_4 (P_{10} - P_{12}) + C_4 = 0,4(0,326-0,4) +$

 $+10.6=0.57 \text{ Krc/cm}^2$;

 $P_4 = K_3(P_6 - P_7) + C_7 = 0,5(0,354 - 0,57) + C_7 = 0$ $+0,4=0,292 \text{ krc/cm}^2$;

 $P_3 = K(P_5 - 0, 2) + 0, 2 = 0, 5(0, 6 - 0, 2) + 0, 2 =$ $=0.4 \text{ KFC/CM}^2$;

 $P_{15} = K_6(P_{3\alpha A.2} - P_{14}) + C_8 = 2(0,6-0,6) +$ +0.46=0.46 Krc/cm².

На выходе сумматора 25 формируется сигнал Р задания регулятору 11 расхода гидратирующей жидкости.

 $P_1 = P_2 + P_{15} - P_4 + C_1 = 0,4+0,46+0,292+$ $+0,2=0,768 \text{ krc/cm}^2$.

Регулирующий орган 12 занимает положение, которое соответствует расходу гидратирующей жидкости 6182 кг/ч.

Пример 3. Расход извести и гидратирующей жидкости в гидратор 3, а также значения сигналов, констант и настроек регуляторов аналогичны примеру 1.

В результате переувлажнения гидроксид кальция просеивается через отверстия на первом, втором и третьем по ходу выгрузки из гидратора 3 участках классификатора 4. Расход гидроксида кальция через первый учас- 35 ток классификатора 4 составляет 17059 кг/ч (60%), через второй участок - 7108 кг/ч (25%) и через третий участок - 4265 кг/ч (15%).

На выходе датчиков 14, 15, 16 и 17.40 появляются сигналы:

 $P_{g}=0,44 \text{ krc/cm}^{2}; P_{g}=0,30 \text{ krc/cm}^{2};$ $P_{11} = 0,26 \text{ krc/cm}^2 \text{ и } P_{14} = 0,60 \text{ krc/cm}^2$.

Расчетные значения сигналов в соответствии с алгоритмом:

 $P_{k} = P_{k} - P_{9} + C_{4} = 0,44 - 0,3 + 0,2 =$ $=0,34 \text{ krc/cm}^2;$

 $P_{10} = P_{9} - P_{11} + C_{5} = 0,3-0,26+0,2=$

 $=0,36 \text{ krc/cm}^2;$ $P_{13} = P_{11} + C_{1} = 0,26 + 0,4 = 0,66 \text{ krc/cm}^{2};$

 $P_{12} = K_5(P_{13} - P_{30A.1}) + C_6 = 0, 3(0, 66 - 0, 6) +$ $+0,4=0,418 \text{ krc/cm}^2;$

 $P_7 = K_4(P_{10} - P_{11}) + C_4 = 0,4(0,36-0,418) +$ +0,6=0,57 krc/cm²;

 $P_4 = K_3(P_6 - P_7) + C_1 = 0,5(0,34-0,57) +$ $+0,4=0,285 \text{ krc/cm}^2;$

 $P_3 = K(P_5 - 0, 2) + 0, 2 = 0, 5(0, 6 - 0, 2) + 0$ $+0,2=0,4 \text{ krc/cm}^2;$

 $P_{15} = K_6 (P_{304.2} - P_{14}) + C_6 = 2(0,6-0,6) + 0,46=0,46 \text{ KPC/CM}^2$

На выходе сумматора 25 формируется сигнал P_1 задания регулятору 11 расхо-. да гидратирующей жидкости:

 $P_1 = P_3 + P_{15} - P_4 + C_1 = 0,4+0,46-0,285+$ $+0,2=0,775 \text{ krc/cm}^2$.

Регулирующий орган 12 занимает положение, которое соответствует расходу гидратирующей жидкости 5995 кг/ч.

Пример 4. Расход извести и гидратирующей жидкости в гидратор 3, а также значения сигналов, констант и настроек регуляторов аналогичны примеру 1.

В результате недоувлажнения извести уменьшается количество кондиционного гидроксида кальция и увеличивается количество крупной фракции недопала на выходе из классификатора 4. Весь образовавшийся гидроксид кальция в количестве 14216 кг/ч про-25 сеивается через отверстия на первом участке классификатора 4, количество крупной фракции недопала составляет 3156 кг/ч.

На выходе датчиков 14, 15, 16 и 17 появляются сигналы:

 $P_0 = 0.4 \text{ krc/cm}^2$; $P_4 = 0.2 \text{ krc/cm}^2$; $P_{11} = 0,2 \text{ krc/cm}^2 \text{ и } P_{14} = 0,7 \text{ krc/cm}^2.$

По аналогии с рассмотренными выше случаями в соответствии с алгоритмом расчетные значения сигналов следующие:

 $P_6 = P_8 - P_2 + C_3 = 0,4-0,2+0,2=$ $=0,4 \text{ krc/cm}^2;$

 $P_{10} = P_{9} - P_{11} + C_{5} = 0, 2 - 0, 2 + 0, 2 =$

 $=0,2 \text{ krc/cm}^2;$

 $P_{13} = P_{11} + C_{7} = 0,2+0,4=0,6 \text{ krc/cm}^2$: $P_{12} = K_5(P_{13}, -P_{304.1}) + C_6 = 0,3(0,6-0,6) +$ +0,4=0,4 krc/cm²;

 $P_7 = K_4(P_{10} - P_{11}) + C_4 = 0,4(0,2-0,4) +$

 $+0,6=0,52 \text{ krc/cm}^2;$

 $P_4 = K_3(P_6 - P_7) + C_2 = 0,5(0,4-0,52) + 0,4=$ $=0,34 \text{ krc/cm}^2;$

 $P_3 = K(P_5 - 0, 2) + 0, 2 = 0, 5(0, 6 - 0, 2) + 0, 2 =$ $=0,4 \text{ Krc/cm}^2$;

 $P_{15} = K_{6}(P_{3\alpha A \cdot 1} - P_{14}) + C_{8} = 2(0, 6 - 0, 7) +$ $+0,46=0,26 \text{ krc/cm}^2$.

На выходе из сумматора 25 формируется сигнал P_{i} задания регулятору 11 расхода гидратирующей жидкости:

 $P_1 = P_3 + P_{15} - P_4 + C_1 = 0,4+0,26-0,34+$ $+0,2=0,52 \text{ Krc/cm}^2$.

Регулирующий орган 12 занимает положение, которое соответствует расходу гидратирующей жидкости 12788 кг/ч.

Из приведенных примеров видно, что в зависимости от степени увлажнения извести гидратирующей жидкостью в системе автоматического управления происходит изменение сигнала Р, на выходе сумматора 25, в результате чего изменяется сигнал задания регулятору 11 расхода гидратирующей жидкости. Последний обрабатывает сигнал, который устанавливает регулирующий орган 12 в соответствующее положение, увеличивая или уменьшая подачу гидратирующей жидкости из коллектоpa 5.

В установившемся режиме (пример 1), когда расход гидратирующей жидкости соответствует заданному, сигнал Р, . равен 0,6 кгс/см² и регулирующий орган 12 занимает среднее положение, расход гидратирующей жидкости остается неизменным.

При перераспределении просеивания гидроксида кальция в результате его переувлажнения через первый и второй (пример 2), а также первый, второй и третий (пример 3) участки классификатора 4 сигнал Р, изменяется соответственно до 0,768 и 0,775 кгс/см², в результате чего регулирующий орган 12 прикрывает проходное сечение, при этом происходит соответствующее снижение расхода гидратирующей жидкости и, как следствие, снижается влажность гидроксида кальция.

В случае недоувлажнения извести и увеличения крупной фракции недопала (пример 4) выходной сигнал Р, уменьшается до $0,52 \text{ krc/cm}^2$, что при- $_{40}$ водит к большему открытию регулирующим органом 12 проходного сечения

и добавлению в гидратор гидратирующей жидкости, а следовательно, к последующему уменьшению крупной фракции недопала и увеличению кондиционного гидроксида кальция.

Предлагаемый способ автоматического управления процессом получения гидроксида кальция позволяет сузить диапазон степени гидратации извести до 78-85% против 65-93% по известному способу, обеспечивая тем самым повышение качества гидроксида кальция.

Формула изобретения

Способ автоматического управления процессом получения гидроксида кальция в установке, содержащей гидратор 20 и классификатор, включающий регулирование соотношения расходов извести и гидратирующей жидкости, подаваемых в гидратор, изменением расхода последней, отличающийся 25 тем, что, с целью повышения качества гидроксида кальция за счет стабилизации степени гидратации извести, дополнительно измеряют расход гидроксида кальция в нескольких, по меньшей мере в двух участках по длине классификатора и расход крупной фракции недопала на выходе классификатора, определяют разность расходов гидроксида кальция в соседних участках по длине классификатора и корректируют расход гидратирующей жидкости пропорционально расходу гидроксида кальция через первый участок, разности расходов гидроксида кальция в соседних участках и расходу крупной фракции недопала на выходе классификатора.

Составитель Т.Голеншина Техред А. Кравчук Корректор Л. Патай

Редактор Н. Киштулинец

Заказ 4397/29

Тираж 455

Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

35

Производственно-полиграфическое предприятие, г.Ужгород, ул.Проектная, 4