Universidade de Pernambuco - UPE Escola Politécnica de Pernambuco - POLI

Disciplina: Teoria da Informação - Prof $^{\underline{a}}$ Verusca Severo - 2020.2 $2^{\underline{o}}$ Lista de Exercícios

-Só serão aceitas as respostas com as devidas justificativas e/ou cálculos-

- 1. Considere um sistema descrito por duas variáveis aleatórias binárias, X e Y, tais que $P(X=0,Y=0)=\frac{1}{6},\ P(X=0,Y=1)=\frac{1}{6},\ P(X=1,Y=0)=\frac{2}{3}$ e P(X=1,Y=1)=0.
- (a) Calcule H(X);
- **(b)** Calcule H(Y);
- (c) Calcule H(X/Y);
- (d) Calcule H(Y/X);
- (e) Calcule H(X,Y);
- (f) Calcule I(X;Y) e I(Y;X);
- (g) Desenhe o diagrama de Venn com as quantidades obtidas.
- **2.** Considere um sistema descrito por duas variáveis aleatórias binárias, X e Y, tais que $X = \{x_1, x_2, x_3, x_4\}$ e $Y = \{y_1, y_2, y_3, y_4\}$ com distribuição de probabilidade conjunta $P(X = x_i, Y = y_i)$, para $1 \le i, j \le 4$, apresentada na tabela abaixo.

X	x_1	x_2	x_3	x_4
y_1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$
y_2	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{32}$
y_3	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
y_4	$\frac{1}{4}$	0	0	0

- (a) Calcule H(X);
- (b) Calcule H(Y);
- (c) Calcule H(X,Y);
- (d) Calcule H(X|Y);
- (e) Calcule H(Y|X);
- (f) Calcule I(X;Y) e I(Y;X).
- (g) Desenhe o diagrama de Venn com as quantidades obtidas.
- 3. Considere o experimento aleatório de jogar dois dados, em que um dos dados é da cor azul e o outro é branco. Suponha que os dados possuem cinco faces enumeradas de 1 a 5. Seja α o número de pontos obtidos no dado da cor azul e β o número de pontos obtidos no dado de cor branca. Seja $\gamma = |\alpha \beta|$ a subtração em módulo entre α e β .
- (a) Calcule $H(\alpha)$;
- **(b)** Calcule $H(\beta)$;
- (c) Calcule $H(\alpha, \beta)$;
- (d) Calcule $I(\alpha; \beta)$;
- (e) Desenhe o diagrama de Venn com as quantidades obtidas.
- (f) Calcule $H(\gamma)$.