WHAT IS CLAIMED IS:

1. A method of modulating the activity of a thyroid hormone receptor (TR) which comprises administering to a mammal in need thereof a compound of the formula:

wherein said compound fits spatially and preferentially into a TR ligand binding domain (TR LBD) and comprises the following substituents:

- (i) an R1-substituent comprising an anionic group that interacts with a side chain nitrogen atom of an arginine corresponding to a residue selected from the group consisting of Arg228, Arg262, and Arg266 of human TR- α , and Arg282, Arg316 and Arg320 of human TR- β , and wherein the anionic group is 1.7-4.0Å from the nitrogen atom;
- 17 (ii) an R2-substituent comprising a hydrophobic or hydrophilic group that fits
 18 spacially into the TR LBD;
 - (iii) an R3-substituent comprising a hydrophobic or hydrophilic group that interacts with a side chain atom of a serine, alanine or isoleucine corresponding to a residue selected from the group consisting of Ser260, Ala263 and Ile299 of human $TR-\alpha$, and Ser314, Ala317 and Ile352 of human $TR-\beta$, and wherein the hydrophobic or hydrophilic
- 23 group is 1.7-4.0Å from the side chain atom;

. 1	(iv) an R5-substituent comprising a hydrophobic or hydrophilic group that interacts
2	with a side chain atom of a phenylalanine or isoleucine corresponding to a residue selected
3	from the group consisiting of Phe2 8, Ile221 and Ile222 of human TR- α , and Phe272, Ile275
4	and Ile276 of human TR-β, and wherein the hydrophobic or hydrophilic group is 1.7-4.0Å
5	from the side chain atom;
6	(v) an R6-substituent comprising a hydrophobic or hydrophilic group that fits
7	spacially into the TR LBD;
-8	(vi) an X-substituent comprising a hydrophobic or hydrophilic group that interacts
9	with a side chain atom of a leucine corresponding to a residue selected from the group
H 0	consisting of Leu276 and Leu292 of human TR- α , and Leu 330 and Leu346 of human TR- β ,
11	and wherein the hydrophobic or hydrophilic group is 1.7-4.0Å from the side chain atom;
12	(vii) an R2'-substituent comprising a hydrophobic or hydrophilic group that fits
113 113	spacially into the TR LBD;
1 4	(viii) an R3'-substituent comprising a hydrophobic group that interacts with a side
<u>1</u> 5	chain atom of a phenylalamine, glycine or methionine corresponding to a residue selected
1 6	from the group consisting of Phe215, Gly290, and Met388 of human TR-α, and Phe269,
17	Gly344, Met442 of human TR-β, and wherein the hydrophobic group is 1.7-4.0Å from the
18	side chain atom;
19	(ix) an R4'-substituent comprising an hydrogen bond donor or acceptor group that
20	interacts with a side chain carbon or nitrogen atom of a histadine corresponding to residue
21	His381 of human TR- α , and His435 of human TR- β , and wherein the hydrogen bond donor
22	or acceptor group is 1.7-4.0Å from the side chain atom

1	(x) an R3'-substituent comprising a hydrophobic or hydrophilic group that fits
2	spacially into the TR LBD;
3	(xi) and R6'-substituent comprising a hydrophobic or hydrophilic group that fits
4	spacially into the TR LBD;
5	wherein said compound is other than a thyronine or thyronine-like compound
6	disclosed in a reference cited in Appendix I, and wherein the activity of said TR is
7	modulated.
8	
9	2. The method according to claim 1,
<u>.</u> 10	wherein \mathbf{R}_1 is
	-O-CH ₂ CO ₂ H, -NHCH ₂ CO ₂ H,
12	-CO ₂ H, -CH ₂ CO ₂ H, -CH ₂ CH ₂ CO ₂ H, -CH ₂ CH ₂ CO ₂ H,
	-CH ₂ CH(NH ₂)CO ₂ H, -CH ₂ CH[NHCOCHφ ₂]CO ₂ H, -CH ₂ CH[NHCO(CH ₂) ₁₅ CH ₃
1 4]CO ₂ H, -CH ₂ CH[NH-FMOC]CO ₂ H, -CH ₂ CH[NH-tBOC]CO ₂ H, or a carboxylate
14 15 16	connected to the ring with a 0 to 3 carbon linker,
16	
17	$-PO_3H_2$, $-CH_2PO_3H_2$, $-CH_2CH_2PO_3H_2$, $-CH_2CHNH_2PO_3H_2$,
18	-CH ₂ CH[NHCOCH ϕ_2]PO ₃ H ₂ , -CH ₂ CH[NHCO(CH ₂) ₁₅ CH ₃]PO ₃ H ₂ ,
19	-CH ₂ CH[NH-FMOC]PO ₃ H ₂ , -CH ₂ CH[NH-tBOC]PO ₃ H ₂ , or a phosphate or
20	phosphonate connected to the ring with a 0 to 3 carbon linker,
21	
22	-SO ₃ H, -CH ₂ SO ₃ H, -CH ₂ CH ₂ SO ₃ H, -CH ₂ CHNH ₂ SO ₃ H, -CH ₂ CH[NHCOCHφ ₂]SO ₃ H
23	-CH ₂ CH[NHCO(CH ₂) ₁₅ CH ₃]SO ₃ H, -CH ₂ CH[NH-FMOC]SO ₃ H, -CH ₂

1	CH[NH-tBOC]SO ₃ H, or a sulfate or sulfite connected to the ring with a 0 to 3 carbon
2	
3	-
4	or acts as the functional equivalent of CH ₂ CH(NH ₂)CO ₂ H of T3 in the molecular
5	recognition domain when bound to a TR, wherein said R ₁ can be optionally
6	substituted with an amine,
7	
8	wherein R_2 is
9	H, halogen, CF ₃ , OH, NH ₂ , SH, CH ₃ , -Et,
10	or acts as the functional equivalent of H in the molecular recognition domain when
10 11 12 12	bound to a TR,
113	wherein R_3 is
∏4 ∭	-H, halogen, -CF ₃ , -OH, -NH ₂ , -N ₃ , -SH, -CH ₃ , -Et,
14 15 16	or acts as the functional equivalent of I in the molecular recognition domain when
1 6	bound to a TR,
17	
18	wherein R_5 is
19	-H, halogen, -CF ₃ , -OH, -NH ₂ , -N ₃ , -SH, -CH ₃ , -Et, or acts as the functional
20	equivalent of I in the molecular recognition domain when bound to a TR, and R ₃ can
21	be identical to R ₅ ,
22	
23	wherein R ₆ is

	H, halogen, -CF ₃ , -OH, -NH ₂ , -SH, -CH ₃ , or acts as the functional equivalent of H
	in the molecular recognition domain when bound to a TR, and R_2 can be identical to
	R_6 ,
4	•
5	wherein R ₂ ' is
6	-H, halogen, -CF ₃ , -OH, -NH ₂ , -N ₃ , -SH, -CH ₃ , -Et, or acts as the functional
7	
8	
9	wherein R ₃ ' is any hydrophobic group, including
1 0	halogen, -CF ₃ , -SH, alkyl, aryl, 5- or 6-membered heterocyclie, cyano, or acts as the
10 11 12	functional equivalent of I in the molecular recognition domain when bound to a TR,
113	wherein R ₄ ' is
1 4	-H, halogen, -CF ₃ , -OH, -NH ₂ , NH ₃ , -N(CH ₃) ₃ , carboxylate, phosphonate, phosphate
15	or sulfate, -SH, -CH ₃ , -Et, or akyl, aryl or 5- or 6-membered heterocyclic aromatic
1 6	attached through urea or carbamate linkages to Q or N or S at the R₄' position, or
. 17	acts as the functional equivalent of OH in the molecular recognition domain when
18	bound to a TR,
19	
20	wherein R ₅ ' is
21	-H, -OH, -NH ₂ , -N(CH ₃) ₂ -SH -NH ₃ , -N(CH ₃) ₃ , carboxylate, phosphonate, phosphate,
22	sulfate, branched or straight chain alkyl having 1 to 9 carbons, substituted or
23	unsubstituted aryl, wherein said substituted aryl is substituted with halogen or 1 to 5

1	carbon alkyl and wherein said aryl is optionally connected to the ring by a -CH ₂ -,
2	aromatic heterocycle having 5 to 6 atoms, wherein said heterocycle may be substituted
3	with one or more groups selected from -OH, -NH ₂ , -SH, -NH ₃ , -N(CH ₃) ₃ ,
4	carboxylate, phosphonate, phosphate or sulfate, heteroalkyl, arylalkyl, heteroaryl
5	alkyl, polyaromatic, or polyheteroaromatic, wherein said R ₅ ' may be substituted with
6	polar or charged groups,
7	
8	wherein R ₆ ' is
9	-H, halogen, -CF ₃ , -OH, -NH ₂ , -SH, -CH ₃ , -Et, or acts as the functional equivalent of
⊒ 0	H in the molecular recognition domain when bound to a TR,
10 11 12	
12	wherein X is
13	O, S, SO ₂ , NH, NR ₇ , CH ₂ , CHR ₇ , CR ₇ R ₇ , wherein R ₇ is alkyl, aryl or 5- or
] 4	6-membered heterocyclic aromatic,
15 16	
1 6	and wherein said TR LBD ligand has an apparent Kd for binding TR LBD of 1 µM or less.
17	
18	3. The method of claim 2, wherein
19	R ₁ is carboxylate, phosphonate, phosphate or sulfite and is connected to the
20	ring with a 0 to 3 carbon linker,
21	R ₂ is H,
22	R_3 is -I, -Br, or -CH ₃ ,
23	R_5 is -I, -Br, or -CH ₃ ,

;	R ₆ is H,
2	R_2 ' is H ,
3	R ₃ ' is -I, -Br, -CH ₃ , -iPr, -phenyl, benzyl, or 5- or 6-membered ring
4	heterocycles,
5	R ₄ ' is -OH, -NH ₂ , and -SH,
6	R_5 ' is -H, -OH, -NH ₂ , -N(CH ₃) ₂ -SH -NH ₃ , -N(CH ₃) ₃ , carboxylate,
7	phosphonate, phosphate, sulfate, branched or straight chain alkyl having 1 to 9
8	carbons, substituted or unsubstituted aryl, wherein said substituted aryl is substituted
9	with halogen or 1 to 5 carbon alkyl and wherein said aryl is optionally connected to
10	the ring by a -CH ₂ -, aromatic heterocycle having 5 to 6 atoms, wherein said
10 11 12	heterocycle may be substituted with one or more groups selected from -OH, -NH ₂ ,
12	SH, -NH ₃ , -N(CH ₃) ₃ , carboxylate, phosphonate, phosphate or sulfate, heteroalkyl,
13	arylalkyl, heteroaryl alkyl, polyaromatic, or polyheteroaromatic, wherein said R_5
1 4	may be substituted with polar or charged groups, and
14 15 16	R ₆ ' is H.
16	
17	4. The method of claim 1, wherein said compound fits spatially and preferentiall
18	into TR LBD isoform α (TR- α).
19	
20	5. The method of claim 4, wherein said compound comprises an anionic group
21	that interacts with the side chain oxygen or carbon of a serine residue corresponding to
22	Ser277 of human TR- α , and wherein the anionic group is 1.7-4.0Å from the side chain atom

1	6. The method of claim 1, wherein said compound fits spatially and preferentially
2	
3	
	-
4	7. The method of claim 6, wherein said compound comprises an anionic group
5	
6	· · · · · · · · · · · · · · · · · · ·
	The side chain atom.
7	
8	8. A method for identifying a compound capable of selectively modulating the
. 9	activity of a thyroid hormone receptor (TR) isoform, said method comprising:
1 0	modeling test compounds that fit spacially and preferentially into a TR ligand
1 1	binding domain (TR LBD) isoform of interest using an atomic structural model of a TR LBD
12	isoform bound to a test compound,
13	screening said test compounds in a biological assay for TR isoform activity
	characterized by binding of a test compound to a TR LBD isoform, and
=15	identifying a test compound that selectively modulates the activity of a TR
☐ ☐6	isoform.
17	
18	9. The method of claim 8, wherein said compound is of the formula:
19	
20	R5 R6 R5 R6
21	b X B
22	
23	$R_3 R_2 R_3 R_2$
	21376296 112497 96.

1	which comprises the following substituents:
2	(i) an R1-substituent comprising an anionic group that interacts with a side chain
3	
4	Arg228, Arg262, and Arg266 of human TR- α , and Arg282, Arg316 and Arg320 of human
5	TR- β , and wherein the anionic group is 1.7-4.0Å from the nitrogen atom;
6	(ii) an R2-substituent comprising a hydrophobic or hydrophilic group that fits
7	spacially into the TR LBD;
8	(iii) an R3-substituent comprising a hydrophobic or hydrophilic group that
9	interacts with a side chain atom of a serine, alanine or isoleucine corresponding to a residue
10 0	selected from the group consisting of Ser260, Ala263 and Ile299 of human TR- α , and
11	Ser314, Ala317 and Ile352 of human TR-8, and wherein the hydrophobic or hydrophilic
12	group is 1.7-4.0Å from the side chain atom;
13 13	(iv) an R5-substituent comprising a hydrophobic or hydrophilic group that interacts
114 11	with a side chain atom of a phenylalanine or isoleucine corresponding to a residue selected
15 16	from the group consisiting of Phe218, Ile221 and Ile222 of human TR-α, and Phe272, Ile275
	and Ile276 of human TR- β , and wherein the hydrophobic or hydrophilic group is 1.7-4.0Å
17	from the side chain atom;
18	(v) an R6-substituent comprising a hydrophobic or hydrophilic group that fits
19	spacially into the TR LBD;
20	(vi) an X-substituent comprising a hydrophobic or hydrophilic group that interacts
21	with a side chain atom of a leucine corresponding to a residue selected from the group
2223	consisting of Leu276 and Leu292 of human TR- α , and Leu 330 and Leu346 of human TR- β ,
د2	and wherein the hydrophobic or hydrophilic group is 1.7-4.0Å from the side chain atom;

1	(VII) an R2'-substituent comprising a hydrophobic or hydrophilic group that fits
2	spacially into the TR LBD
3	(viii) an R3'-substituent comprising a hydrophobic group that interacts with a side
4	chain atom of a phenylalamine, glycine or methionine corresponding to a residue selected
5	from the group consisting of Phe215, Gly290, and Met388 of human TR- α , and Phe269,
6	Gly344, Met442 of human TR- β , and wherein the hydrophobic group is 1.7-4.0Å from the
7	side chain atom;
8	(ix) an R4'-substituent comprising an hydrogen bond donor or acceptor group that
9.	interacts with a side chain carbon or nitrogen atom of a histadine corresponding to residue
⊒ 0	His 381 of human TR- α , and His 435 of human TR- β , and wherein the hydrogen bond donor
1 1	or acceptor group is 1.7-4.0Å from the side chain atom;
12	(x) an R5'-substituent comprising a hydrophobic or hydrophilic group that fits
13	spacially into the TR LBD; and
]]4 ()]	(xi) and R6'-substituent comprising a hydrophobic or hydrophilic group that fits
□ 45	spacially into the TR LBD.
1 6	
17	10. The method according to claim 9,
18	wherein R_1 is
19	-O-CH ₂ CO ₂ H, -NHCH ₂ CO ₂ H,
20	-CO ₂ H, -CH ₂ CO ₂ H, -CH ₂ CO ₂ H, -CH ₂ CH ₂ CO ₂ H,
21	-CH ₂ CH(NH ₂)CO ₂ H, -CH ₂ CH[NHCOCH ϕ_2]CO ₂ H, -CH ₂ CH[NHCO(CH ₂) ₁₅ CH ₃
22]CO ₂ H, -CH ₂ CH[NH-FMOC]CO ₂ H, -CH ₂ CH[NH-tBOC]CO ₂ H, or a carboxylate
23	connected to the ring with a 0 to 3 carbon links

	1 -PO ₃ H ₂ , -CH ₂ PO ₃ H ₂ , -CH ₂ CH ₂ PO ₃ H ₂ , -CH ₂ CHNH ₂ PO ₃ H ₂ ,
	2 -CH ₂ CH[NHCOCH ϕ_2]PO ₃ H ₂ , -CH ₂ CH[NHCO(CH ₂) ₁₅ CH ₃]PO ₃ H ₂ ,
	-CH ₂ CH[NH-FMOC]PO ₃ H ₂ , -CH ₂ CH[NH-tBOC]PO ₃ H ₂ , or a phosphate or
4	
5	
6	-SO ₃ H, -CH ₂ SO ₃ H, -CH ₂ CH ₂ SO ₃ H, -CH ₂ CHNH ₂ SO ₃ H, -CH ₂ CH[NHCOCH ϕ_2]SO ₃ H,
7	
8	CH[NH-tBOC]SO3H, or a sulfate or sulfite connected to the ring with a 0 to 3 carbon
9	
[] 0	
111 12 13	or acts as the functional equivalent of CH ₂ CH(NH ₂)CO ₂ H of T3 in the molecular
12	recognition domain when bound to a TR, wherein said R ₁ can be optionally
13	substituted with an amine,
14 15 16	wherein R_2 is
1 6	H, halogen, CF ₃ , OH, NH ₂ , SH, CH ₃ , -Et,
17	or acts as the functional equivalent of H in the molecular recognition domain when
18	bound to a TR,
19	
20	wherein R_3 is
21	-H, halogen, -CF ₃ , -OH, -NH ₂ , -N ₃ , -SH, -CH ₃ , -Et,

bound to a TR,

22

23

or acts as the functional equivalent of I in the molecular recognition domain when

1	wherein R_5 is
2	-H, halogen, $-\langle F_3, -OH, -NH_2, -N_3, -SH, -CH_3, -Et, \text{ or acts as the functional} \rangle$
3	equivalent of I in the molecular recognition domain when bound to a TR, and R ₃ can
4	be identical to R_5 ,
5	
6	wherein R_6 is
7	-H, halogen, -CF ₃ , -OH, -NH ₂ , -SH, -CH ₃ , or acts as the functional equivalent of H
-8	in the molecular recognition domain when bound to a TR, and R ₂ can be identical to
9	R_{6} ,
1 0	
10 11 12	wherein R ₂ ' is
12	-H, halogen, -CF ₃ , -OH, -NH ₂ , -N ₃ , -SH, -CH ₃ , -Et, or acts as the functional
113 113	equivalent of H in the molecular recognition domain when bound to a TR,
1 4	
14 15 16	wherein R ₃ ' is any hydrophobic group, including
1 6	halogen, -CF ₃ , -SH, alkyl, aryl, 5 or 6-membered heterocyclie, cyano, or acts as the
17	functional equivalent of I in the molecular recognition domain when bound to a TR,
18	
19	wherein R ₄ ' is
20	-H, halogen, -CF ₃ , -OH, -NH ₂ , NH ₃ , -N(CH ₃) ₃ , carboxylate, phosphonate, phosphate
21	or sulfate, -SH, -CH ₃ , -Et, or akyl, aryl or 5- or 6-membered heterocyclic aromatic
22	attached through urea or carbamate linkages to O or N or S at the R ₄ ' position, or

	acts as the functional equivalent of OH in the molecular recognition domain when
	bound to a TR,
	3
	4 wherein R ₅ ' is
	-H, -OH, -NH ₂ , -N(CH ₃) ₂ -SH -NH ₃ , -N(CH ₃) ₃ , carboxylate, phosphonate, phosphote,
(sulfate, branched or straight chain alkyl having 1 to 9 carbons, substituted or
•	unsubstituted aryl, wherein said substituted aryl is substituted with halogen or 1 to 5
8	carbon alkyl and wherein said aryl is optionally connected to the ring by a -CH ₂ -,
9	aromatic heterocycle having 5 to 6 atoms, wherein said heterocycle may be substituted
10	with one or more groups selected from -OH, -NH ₂ , -SH, -NH ₃ , -N(CH ₃) ₃ ,
7 1	carboxylate, phosphonate, phosphate or sulfate, heteroalkyl, arylalkyl, heteroaryl
12	alkyl, polyaromatic, or polyheteroaromatic, wherein said R ₅ ' may be substituted with
10 11 12 13	polar or charged groups,
14	1
M Les	
	wherein R ₆ ' is
15 16	-H, halogen, -CF ₃ , -OH, -NH ₂ , -SH, -CH ₃ , -Et, or acts as the functional equivalent of
17	H in the molecular recognition domain when bound to a TR,
18	Visite to a 1K,
19	wherein X is
20	O, S, SO ₂ , NH, NR ₇ , CH ₂ , CHR ₇ , CR ₇ R ₇ , wherein R ₇ is alkyl, aryl or 5- or
21	6-membered heterocyclic aromatic,
22	· · · · · · · · · · · · · · · · · · ·
23	and wherein said TR LBD ligand has an apparent Kd for binding TR LBD of 1 μ M or less.

•	11. The method of claim 10, wherein
2	R_1 is carboxylate, phosphonate, phosphate or sulfite and is connected to the
3	ring with a 0 to 3 carbon linker,
4	R_2 is H ,
5	R_3 is -I, -Br, or -CH ₃ ,
6	R_5 is -I, -Br, or -CH ₃ ,
7	R_6 is H ,
8	R_2 ' is H ,
9	R ₃ ' is -I, -Br, -CH ₃ , -iPr, -phenyl, benzyl, or 5- or 6-membered ring
4 0	heterocycles,
10 11 12 12	R_4 ' is -OH, -NH ₂ , and -SH,
	R_5 ' is -H, -OH, -NH ₂ , -N(CH ₃) -SH -NH ₃ , -N(CH ₃) ₃ , carboxylate,
143 143	phosphonate, phosphate, sulfate, branched or straight chain alkyl having 1 to 9
1 4	carbons, substituted or unsubstituted aryl, wherein said substituted aryl is substituted
15 16	with halogen or 1 to 5 carbon alkyl and wherein said aryl is optionally connected to
16	the ring by a -CH ₂ -, aromatic heterocycle having 5 to 6 atoms, wherein said
17	heterocycle may be substituted with one or more groups selected from -OH, -NH ₂ , -
18	SH, -NH ₃ , -N(CH ₃) ₃ , carboxylate, phosphonate, phosphate or sulfate, heteroalkyl,
19	arylalkyl, heteroaryl alkyl, polyaromatic, or polyheteroaromatic, wherein said R_5 '
20	may be substituted with polar or charged groups, and
21	R ₆ ' is H.
22	

1	12. The method of claim 8, wherein said compound fits spatially and preferentially
2	into TR LBD isoform α (TR- α).
3	- · · · · · · · · · · · · · · · · · · ·
4	13. The method of claim 12, wherein said compound comprises an anionic group
. 5	that interacts with the side chain oxygen or carbon of a serine residue corresponding to
6	Ser277 of human TR- α , and wherein the anionic group is 1.7-4.0Å from the side chain atom.
7	
8	14. The method of claim 8, wherein said compound fits spatially and preferentially
9	into TR LBD isoform β (TR- β).
日0 日1 月1	
11	15. The method of claim 14, wherein said compound comprises an anionic group
12	that interacts with the side chain nitrogen of an arginine corresponding to Asn331 of human
113 113	TR- β , and the anionic group is 1.7-4.0Å from the side chain atom.
14 15 16	16. The method of claim 8, wherein said compound binds to a TR LBD isoform
1 6	with greater affinity than thyronine or triidothyronine.
17	
18	17. A method for identifying a thyroid hormone receptor (TR) agonist or
19	antagonist ligand, said method comprising the steps of:
20	providing the atomic coordinates of a TR ligand binding domain (TR LBD) to
21	a computerized modeling system;
22	modeling ligands which fit spacially into the TR LBD; and

	identifying in a biological assay for TR activity a ligand which increases or
	descreases the activity of said TR, whereby a TR agonist or antagonist is identified.
	A peptide, peptidomimetic or synthetic molecule identified by the method of
5	any one of claims 8 or 17, with the proviso that said molecule is other than a thyronine or
6	
7	,
8	19. A method of identifying a compound that selectively modulates the activity of
9	a thyroid hormone receptor (TR) compared to other nuclear hormone receptors, said method
10	comprising:
10 11 12	modeling compounds which fit spacially into a TR ligand binding domain (TR
12	LBD) using an atomic structural model of a TR LBD,
13	selecting a compound comprising conformationally constrained structural
14	features that interact with conformationally constrained residues of a TR LBD,
16	identifying in a biological assay for TR activity a compound that selectively
16	binds to a TR LBD compared to other nuclear receptors, whereby a compound that
17	selectively modulates a TR is identified
18	
19	20. The method of claim 19, wherein said conformationally constrained residues of
20	a TR LBD correspond to residues Met259, Leu276, Leu292, His381, Gly290, Ile221, and
21	Phe401 of human TR-α, and residues Met313, Leu330, Leu346, His435, Gly344, Ile275 and
22	Phe455 of human TR-β.
	l l

1	21. The method of claim 19, wherein said compounds are of the formula.
2	
3	R5 R6 R5 R6
4	\mathcal{L} \times \mathcal{L}
5	R_2 R_3 R_2
6	
7	
.8	which comprises the following substituents:
9	(i) an R1-substituent comprising an anionic group that interacts with a side chain
4 0	nitrogen atom of an arginine corresponding to a residue selected from the group consisting of
	Arg228, Arg262, and Arg266 of human TR α, and Arg282, Arg316 and Arg320 of human
12	TR- β , and wherein the anionic group is 1.7-4.0Å from the nitrogen atom;
113	(ii) an R2-substituent comprising a hydrophobic or hydrophilic group that fits
1 134 10	spacially into the TR LBD;
	(iii) an R3-substituent comprising a hydrophobic or hydrophilic group that
1 5	interacts with a side chain atom of a serine, alanine or isoleucine corresponding to a residue
17	selected from the group consisting of Ser260, Ala263 and Ile299 of human TR-α, and
18	Ser314, Ala317 and Ile352 of human TR-B, and wherein the hydrophobic or hydrophilic
19	group is 1.7-4.0Å from the side chain atom;
20	(iv) an R5-substituent comprising a hydrophobic or hydrophilic group that interacts
21	with a side chain atom of a phenylalanine or isoleucine corresponding to a residue selected
22	from the group consisting of Phe218, Ile221 and Ile222 of human TR- α , and Phe272, Ile275
	ı

1	and Ile276 of human TR- β , and wherein the hydrophobic or hydrophilic group is 1.7-4.0Å
2	from the side chain atom;
3	(v) an R6-substituent comprising a hydrophobic or hydrophilic group that fits
4	spacially into the TR LBD;
5	(vi) an X-substituent comprising a hydrophobic or hydrophilic group that interacts
6	with a side chain atom of a leucine corresponding to a residue selected from the group
7	consisting of Leu276 and Leu292 of human TR- α , and Leu 330 and Leu346 of human TR- β
8	and wherein the hydrophobic or hydrophilic group is 1.7-4.0Å from the side chain atom;
9	(vii) an R2'-substituent comprising a hydrophobic or hydrophilic group that fits
10	spacially into the TR LBD;
10 11 12 13	(viii) an R3'-substituent comprising a hydrophobic group that interacts with a side
12	chain atom of a phenylalanine, glycine or methionine corresponding to a residue selected
113	from the group consisting of Phe215, Gly290, and Met388 of human TR-α, and Phe269,
114 ID	Gly344, Met442 of human TR-\beta, and wherein the hydrophobic group is 1.7-4.0Å from the
±5 □	side chain atom;
1 6	(ix) an R4'-substituent comprising an hydrogen bond donor or acceptor group that
17	interacts with a side chain carbon or nitrogen atom of a histidine corresponding to residue
18	His381 of human TR- α , and His435 of human TR- β , and wherein the hydrogen bond donor
19	or acceptor group is 1.7-4.0Å from the side chain atom;
20	(x) an R5'-substituent comprising a hydrophobic or hydrophilic group that fits
21	spacially into the TR LBD; and
22	(xi) and R6'-substituent comprising a hydrophobic or hydrophilic group that fits
22	, , , , , , , , , , , , , , , , , , , ,

spacially into the TR LBD.

1	22. The method of claim 19, wherein said compound comprises:
2	(i) a cyclic carbon atom that interacts with a carbon and oxygen atom of a
3	methionine residue corresponding to Met259 of human TR- α , and Met313 of human TR- β ,
4	wherein the cyclic carbon is about 3.0 to 4.0Å from the carbon and oxygen atom of the
5	methionine;
6	(ii) a cyclic carbon atom that interacts with a carbon atom of a leucine residue
7	corresponding to Leu276 of human TR-α, and Leu330 of human TR-β, wherein the cyclic
8	carbon is about 3.0 to 4.0Å from the carbon atom of the leucine;
9	(iii) a cyclic carbon atom that interacts with a carbon atom of a leucine residue
⊒ 0	corresponding to Leu292 of human TR- α , and Leu346 of human TR- β , wherein the cyclic
11 12	carbon is about 3.0 to 4.0Å from the carbon atom of the leucine;
	(iv) a R3-substituent comprising an atom that interacts with a carbon atom of an
13	isoleucine residue corresponding to Ile221 of human TR- α , and Ile275 of human TR- β ,
<u>1</u> 4	wherein the R3-substituent atom is about 3.0 to 4.0Å from the carbon atom of the isoleucine
145	(v) a R3'-substituent comprising an atom that interacts with an oxygen atom of a
1 6	glycine residue corresponding to Gly290 of human $TR-\alpha$, and Gly344 of human $TR-\beta$,
17	wherein the R3'-substituent atom is about 3.0 to 4.0A from the carbon atom of the glycine;
18	and
19	(vi) a R4'-substituent comprising an atom selected from the group consisting of
20	oxygen and carbon that interacts with (a) a carbon and nitrogen atom of a histidine residue
21	corresponding to His381 of human TR- α , and His435 of human TR- β , wherein the R4'-
22	substituent atom is about 2.0 to 4.0Å from the carbon atom of the histidine; and (b) a carbon
23	atom of a phenylalanine residue corresponding to Phe401 of human TR-α, and human

1	Phe455 of TR- β , wherein said atom is about 3.0 to 4.0Å from the carbon atom of the
2	phenylalanine.
3	
4	23. The method according to claim 21,
5	wherein R ₁ is
6	-O-CH ₂ CO ₂ H, -NHCH ₂ CO ₂ H,
7	-CO ₂ H, -CH ₂ CO ₂ H, -CH ₂ CH ₂ CO ₂ H, -CH ₂ CH ₂ CO ₂ H,
8	-CH ₂ CH(NH ₂)CO ₂ H, -CH ₂ CH[NHCOCHφ ₂]CO ₂ H, -CH ₂ CH[NHCO(CH ₂) ₁₅ CH ₃
9]CO ₂ H, -CH ₂ CH[NH-FMOC]CO ₂ H, -CH ₂ CH[NH-tBOC]CO ₂ H, or a carboxylate
⊒ 0	connected to the ring with a 0 to 3 carbon linker,
11 12 13	
12	-PO ₃ H ₂ , -CH ₂ PO ₃ H ₂ , -CH ₂ CH ₂ PO ₃ H ₂ , -CH ₂ CHNH ₂ PO ₃ H ₂ ,
13	-CH ₂ CH[NHCOCH ϕ_2]PO ₃ H ₂ , -CH ₂ CH[NHCO(CH ₂) ₁₅ CH ₃]PO ₃ H ₂ ,
1 4	-CH ₂ CH[NH-FMOC]PO ₃ H ₂ , -CH ₂ CH[NH-tBOC]PO ₃ H ₂ , or a phosphate or
H5	phosphonate connected to the ring with a 0 to 3 carbon linker,
15 16	
17	-SO ₃ H, -CH ₂ SO ₃ H, -CH ₂ CH ₂ SO ₃ H, -CH ₂ CHNH ₂ SO ₃ H, -CH ₂ CH[NHCOCH ϕ_2]SO ₃ H,
18	-CH ₂ CH[NHCO(CH ₂) ₁₅ CH ₃]SO ₃ H, -CH ₂ CH[NH-FMOC]SO ₃ H, -CH ₂
19	CH[NH-tBOC]SO ₃ H, or a sulfate or sulfite connected to the ring with a 0 to 3 carbon

linker,

20

1	or acts as the functional equivalent of CH ₂ CH(NH ₂)CO ₂ H of T3 in the molecular
2	recognition domain when bound to a TR, wherein said R ₁ can be optionally
3	substituted with an amine,
4	
5	wherein R ₂ is
6	H, halogen, CF ₃ , OH, NH ₂ , SH, CH ₃ , -Et,
7	or acts as the functional equivalent of H in the molecular recognition domain when
8	bound to a TR,
9	
10 10	wherein R ₃ is
10 11 12	-H, halogen, -CF ₃ , -OH, -NH ₂ , -N ₃ , -SH, -CH ₃ , -Et,
12	or acts as the functional equivalent of I in the molecular recognition domain when
113	bound to a TR,
14	
1 5	wherein R_5 is
15 16	-H, halogen, -CF ₃ , -OH, -NH ₂ , -N ₃ , -SH, -CH ₃ , -E, or acts as the functional
17	equivalent of I in the molecular recognition domain when bound to a TR, and R ₃ can
18	be identical to R_5 ,
19	
20	wherein R ₆ is
21	-H, halogen, -CF ₃ , -OH, -NH ₂ , -SH, -CH ₃ , or acts as the functional equivalent of H
22	in the molecular recognition domain when bound to a TR, and R_2 can be identical to
23	R_6 ,

		_
	1 wherein R_2 is	
	2 -H, halogen, -CF ₃ , -C	OH , $-NH_2$, $-N_3$, $-SH$, $-CH_3$, $-Et$, or acts as the functional
	3 equivalent of H in the	molecular recognition domain when bound to a TR,
	4	Toogsintion domain when bound to a TR,
4	5 wherein R_3 is any hydrophob	ic group, including
6	6 halogen, -CF ₃ , -SH, al	kyl, aryl, 5- or 6-membered heterocycle, cyano, or acts as the
7	functional equivalent of	f I in the molecular recognition domain when bound to a TR,
.8		recognition domain when bound to a TR,
9	wherein R_4 ' is	
1 0	-H, halogen, -CF ₃ , -OH	, -NH ₂ , NH ₃ , -N(CH ₃) ₃ , carboxylate, phosphonate, phosphate
4 1	or sulfate, -SH, -CH ₃ , -	Et, or akyl, aryl or 5- or 6-membered heterocyclic aromatic
1 0	attached through urea or	carbamate linkages to O or N or S at the R ₄ ' position, or
	acts as the functional equ	ivalent of OH in the molecular recognition domain when
14	bound to a TR,	die molecular recognition domain when
15 15		
15 16	wherein R ₅ ' is	
17	-H, -OH, -NH ₂ , -N(CH ₃) ₂	-SH -NH ₃ , N(CH ₃) ₃ , carboxylate, phosphonate, phosphate,
18	sulfate, branched or straig	ht chain alkyl having 1 to 9 carbons, substituted or
19	unsubstituted aryl, whereir	said substituted aryl is substituted with halogen or 1 to 5
20	carbon alkyl and wherein s	aid aryl is optionally connected to the ring by a $-CH_2$ -,
21	aromatic heterocycle having	g 5 to 6 atoms, wherein said heterocycle may be substituted
22	with one or more groups se	lected from -OH, -NH, -SH, -NH ₃ , -N(CH ₃) ₃ ,
23	carboxylate, phosphonate, p	hosphate or sulfate, heteroalkyl, arylalkyl, heteroaryl
	·	. alylaikyl, neteroaryl

	alkyl, polyaromatic, or polyheteroaromatic, wherein said R ₅ ' may be substituted with
	2 polar or charged groups,
	3
	4 wherein R ₆ ' is
	5 -H, halogen, -CF ₃ , -OH, -NH ₂ , -SH, -CH ₃ , -Et, or acts as the functional equivalent of
	6 H in the molecular recognition domain when bound to a TR,
	7
	8 wherein X is
!	O, S, SO ₂ , NH, NR ₇ , CH ₂ , CHR ₇ , CR ₇ R ₇ , wherein R ₇ is alkyl, aryl or 5- or
1 (1)	6-membered heterocyclic aromatic,
	and wherein said TR LBD ligand has an apparent Kd for binding TR LBD of 1 μ M or less.
<u>4</u> 4	24. The method of claim 23, wherein
14 15	R ₁ is carboxylate, phosphonate, phosphate or sulfite and is connected to the
16	ring with a 0 to 3 carbon linker,
17	R_2 is H ,
18	R_3 is -I, -Br, or -CH ₃ ,
19	R_5 is -I, -Br, or -CH ₃ ,
20	R_6 is H ,
21	R_2 ' is H ,
22	R ₃ ' is -I, -Br, -CH ₃ , -iPr, -phenyl, benzyl, or 5- or 6-membered ring
23	heterocycles heterocycles

heterocycles,

1	R_4 ' is -OH, -NH $_7^1$, and -SH,
2	R_5 ' is -H, -OH, -NH ₂ , -N(CH ₃) ₂ -SH -NH ₃ , -N(CH ₃) ₃ , carboxylate,
3	phosphonate, phosphate, sulfate, branched or straight chain alkyl having 1 to 9
4	carbons, substituted or unsubstituted aryl, wherein said substituted aryl is substituted
5	with halogen or 1 to 5 carbon alkyl and wherein said aryl is optionally connected to
6	the ring by a -CH ₂ -, aromatic heterocycle having 5 to 6 atoms, wherein said
7	heterocycle may be substituted with one or more groups selected from -OH, -NH ₂ , -
8	SH, -NH ₃ , -N(CH ₃) ₃ , carboxylate, phosphonate, phosphate or sulfate, heteroalkyl,
9	arylalkyl, heteroaryl alkyl, polyaromatic, or polyheteroaromatic, wherein said R_5
<u>1</u> 0	may be substituted with polar or charged groups, and
131 131 131	R ₆ ' is H.
11 12 13	
13	25. The method of claim 19, wherein said compound fits spatially and
14	preferentially into TR LBD isoform α (TR- α).
14 12 145	
16	26. The method of claim 25 wherein said compound comprises an anionic group
17	that interacts with the side chair oxygen or carbon of a serine residue corresponding to
18	Ser 277 of human TR- α , and wherein the anionic group is 1.7-4.0Å from the side chain atom
19	
20	27. The method of claim 19, wherein said compound fits spatially and
21	preferentially into TR LBD isoform β (TR- β).
22	

1	28.	The method of claim 2	7, wherein said compound comprises an anionic group
2	that interacts	with the side chain nitro	gen of an arginine corresponding to Asn331 of human
3		1	0Å from the side chain atom.
4		-	
5	29.	The method of claim 19	9, wherein said compound binds to a TR LBD isoform
6	with greater at	ffinity than thyronine or	triiodothyronine.
7			
8	30.	The method of claim 1,	wherein said compound comprises a cyclic carbon
9	atom that inter-	acts with a carbon and o	oxygen atom of a methionine residue corresponding to
_10	Met259 of hum	nan TR- α , and Met3 3	of human TR- β , wherein the cyclic carbon is about 3.0
1 1 12		he carbon and oxygen a	
- 413 U	31.	The method of claim 30,	, wherein said cyclic carbon is inner ring carbon C11.
14 15 16	32. 1	The method of claim 1,	wherein said compound comprises a cyclic carbon
∃6		/ 1	of a leucine residue corresponding to Leu276 of
17		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R-&, wherein the cyclic carbon is about 3.0 to 4.0Å
18	from the carbon	atom of the leucine.	
19			
20	33. T	he method of claim 32,	wherein said cyclic carbon is selected from the group
21		ner ring carbons C7 and	
22			

1	34. The method of claim 1, wherein said compound comprises a cyclic carbon
2	atom that interacts with a carbon atom of a leucine residue corresponding to Leu292 of
3	human TR- α , and Leu346 of human TR- β , wherein the cyclic carbon is about 3.0 to 4.0Å
4	from the carbon atom of the leucine.
5	
6	35. The method of claim 34, wherein said cyclic carbon is selected from the group
7	consisting of outer ring carbons C6 and C8.
8	
9	36. The method of claim 1 wherein said R3-substituent comprises an atom that
_10	interacts with a carbon atom of an isoleucine residue corresponding to Ile221 of human TR-
10 1711 141	α , and Ile275 of human TR- β , wherein the R3-substituent atom is about 3.0 to 4.0Å from the
`12 ⊨	carbon atom of the isoleucine.
13	
	37. The method of claim 1, wherein said R3'-substituent comprises an atom that
直 直 5	interacts with an oxygen atom of a glycine residue corresponding to Gly290 of human $TR-\alpha$,
□ 6	and Gly344 of human TR-β, wherein the R3'-substituent atom is about 3.0 to 4.0Å from the
17	carbon atom of the glycine.
18	
19	38. The method of claim 1, wherein said R4'-substituent comprises an atom
20	selected from the group consisting of oxygen and carbon that interacts with a carbon and
21	nitrogen atom of a histidine residue corresponding to His381 of human TR-α, and His435 of
22	human TR- β , wherein the R4'-substituent atom is about 2.0 to 4.0Å from the carbon atom of
23	the histidine.

1	The method of claim 1, wherein said R4'-substituent comprises an oxygen
2	atom that interacts with a carbon atom of a phenylalanine residue corresponding to Phe401 of
3	
4	carbon atom of the phenylalanine.
5	
6	40. A method for identifying a thyroid hormone receptor (TR) agonist or
7	antagonist ligand that selectively modulates the activity of a TR compared to other nuclear
8	receptors, said method comprising the steps of:
9	providing the atomic coordinates of a TR ligand binding domain (TR LBD) to
<u>±</u> 0 ⊕	a computerized modeling system;
]1	modeling ligands which fit spacially into the TR LBD and which interact with
12	conformationally constrained residues of a TR LBD conserved among TR isoforms; and
1 3	identifying in a biological assay for TR activity a ligand which selectively
14	binds to said TR and increases or decreases the activity of said TR, whereby a TR agonist or
(I) 15	antagonist that selectively modulates the activity of a TR is identified.
I 6	
Julia!	41. A peptide, peptidomatic or synthetic molecule identified by the method of any
18	one of claims 19 or 40, with the proviso that said molecule is other than a thyronine or
19	thyronine-like compound disclosed in a reference cited in Appendix I.
20	
21	42. A machine-readable data storage medium, comprising a data storage material
22	encoded with machine readable data which, when using a machine programmed with
23	instructions for using said data, is capable of displaying a graphical three-dimensional

- 1 representation of a molecule or molecular complex for a thyroid hormone ligand binding
- 2 pocket comprising structure coordinates of TR- α amino acids corresponding to human TR- α
- 3 amino acids Met259, Leu276, and Ile221, or a homologue of said molecule or molecular
- 4 complex, wherein said homologue comprises a binding pocket that has a root mean square
- 5 deviation from the backbone atoms of said amino acids of not more than 1.5Å.

43. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecular complex for a thyroid hormone ligand binding pocket comprising structure coordinates of TR-α amino acids corresponding to human TR-α amino acids Leu292, His381, Gly290 and Phe401, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean

±4 ±5

16

17

18

19

44. The machine-readable storage medium according to any one of claims 42 or 43, wherein said binding pocket comprises structure coordinates of TR- α amino acids corresponding to human TR- α amino acids Mer259, Leu276, Leu292, His381, Gly290, Ile221 and Phe401.

square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

- 21 45. The machine-readable storage medium according to claim 44, wherein said
 22 binding pocket comprises structure coordinates of TR-α amino acids corresponding to human
- 23 TR- α amino acids Arg228, Arg262 and Arg266.

1	46. The machine-readable storage medium according to claim 44, wherein said
2	binding pocket comprises structure coordinates of TR-α amino acids corresponding to human
3	TR-α amino acids Ser260, Ala263 and Ile299.
4	
5	47. The machine-readable storage medium according to claim 44, wherein said
6	binding pocket comprises structure coordinates of TR-α amino acids corresponding to human
7	TR- α amino acids Phe218, Ile221 and Ile222.
8	
9	48. The machine-readable storage medium according to claim 44, wherein said
<u>1</u> 0	binding pocket comprises structure coordinates of TR-α amino acids corresponding to human
11 12 12	TR-α amino acids Phe215, Gly290 and Met388.
13	49. The machine-readable storage medium according to claim 44, wherein said
14 15	binding pocket comprises structure coordinates of a TR-α amino acid corresponding to
16	human TR-α amino acid Ser277.
□ 17	50. A machine-readable data storage medium, comprising a data storage material
18	encoded with machine readable data which, when using a machine programmed with
19	instructions for using said data, is capable of displaying a graphical three-dimensional
20	representation of a molecule or molecular complex for a thyroid hormone ligand binding
21	pocket comprising structure coordinates of TR- β amino acids corresponding to human TR- β
22	amino acids Met313. Leu330, and Ile275, or a homologue of said molecule or malecule.

1	complex, wherein said homologue comprises a binding pocket that has a root mean square
2	deviation from the backbone atoms of said amino acids of not more than 1.5Å.
3	
4	A machine-readable data storage medium, comprising a data storage material
5	encoded with machine readable data which, when using a machine programmed with
6	instructions for using said data, is capable of displaying a graphical three-dimensional
7	representation of a molecule or molecular complex for a thyroid hormone ligand binding
. 8	pocket comprising structure coordinates of TR-β amino acids corresponding to human TR-β
9	amino acids Leu346, His435, Gly344, and Phe455, or a homologue of said molecule or
⊒10	molecular complex, wherein said homologue comprises a binding pocket that has a root mean
型1 型1 过2	square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 4 3 U	52. The machine-readable data storage medium according to any one of claims 50
<u> 1</u> 4	or 51, wherein said binding pocket comprises structure coordinates of TR-β amino acids
<u>1</u> 5	corresponding to human TR-β amino acids Met313, Leu330, Leu346, His435, Gly344,
☐ ☐ ☐ 17	Ile275 and Phe455.
18	53. The machine-readable data storage medium according to claim 52, wherein
19	said binding pocket comprises structure coordinates of TR- β amino acids corresponding to

human TR- β amino acids Arg282, Arg316 and Arg320.

2	said binding pocket comprises structure coordinates of $TR-\beta$ amino acids corresponding to
3	human TR- β amino acids Ser314, Ala317 and Ile352.
4	-
5	55. The machine-readable data storage medium according to claim 52, wherein
6	said binding pocket comprises structure coordinates of TR-β amino acids corresponding to
7	human TR-β amino acids Phe272, Ile275 and Ile276.
8	
9	56. The machine-readable data storage medium according to claim 52, wherein
10	said binding pocket further comprises structure coordinates of TR-β amino acids
11 12 13	corresponding to human TR-β amino acids Phe269, Gly344 and Met442.
143 111	57. The machine-readable data storage medium according to claim 52, wherein
	said binding pocket comprises structure coordinates of a TR-\beta amino acid corresponding to
15	human TR-β amino acid Asn331.
14 15 16	
17	58. The machine-readable data storage medium according to claim 52, wherein
18	said molecule or molecular complex is defined by the set of structure coordinates selected
19	from the group consisting coordinates depicted in Appendix 3, 4, 5 and 6, or a homologue of
20	said molecule or molecular complex, said homologue having a root mean square deviation

The machine-readable data storage medium according to claim 52, wherein

21

22

54.

1

from the backbone atoms of said amino acids of not more than 1.5Å.

- 1 59. The machine-readable data storage medium according to claim 52, wherein
 - 2 said molecule or molecular complex is defined by the set of structure coordinates selected
 - 3 from the group consisting coordinates depicted in Appendix 7 and 8, or a homologue of said
 - 4 molecule or molecular complex, said homologue having a root mean square deviation from
 - 5 the backbone atoms of said amino acids of not more than 1.5Å.
 - encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates selected from the group consisting of coordinates depicted in Appendix 3, 4, 5, 6, 7 and 8; and said second set of data comprises an X-ray diffraction pattern of a molecule or molecular

complex.