

AZ-104

Administer
Intersite
Connectivity

About this course: Course Outline

Administer Intersite Connectivity Introduction

Configure VNet Peering

Configure VPN Gateway

Configure ExpressRoute and Virtual WAN

<u>Lab 05 - Implement Intersite Connectivity</u>

Configure VNet Peering

Configure VNet Peering Introduction

Determine VNet Peering Uses

Determine Gateway Transit and Connectivity Needs

Create VNet Peering

Determine Service Chaining Uses

Demonstration – VNet Peering

Summary and Resources

Determine VNet Peering Uses

- Two types of peering: Global and Regional
- Connects two Azure virtual networks you can peer across subscriptions and tenants
- Peered networks use the Azure backbone for privacy and isolation
- Easy to setup, seamless data transfer, and great performance

Determine Gateway Transit and Connectivity Needs

Gateway transit allows peered virtual networks to share the gateway and get access to resources

No VPN gateway is required in the peered virtual network

Default VNet peering provides full connectivity

IP address spaces of connected networks can't overlap

Create VNet Peering

1-to-2

2-to-1

VNet 1

This virtual network

Peering link name *

None (default)

Remote virtual network

Peering link name *

Allow virtual network access settings

Configure forwarded traffic settings

Traffic to remote virtual network ①

Allow (default)

Block all traffic to the remote virtual network

Traffic forwarded from remote virtual network ①

Allow (default)

Block traffic that originates from outside this virtual network

Virtual network gateway ①

Use this virtual network's gateway

Use the remote virtual network's gateway

Determine Service Chaining Uses

BGP

UDR

Leverage <u>user-defined routes</u> and service chaining to implement custom routing

Implement a VNet hub with a network virtual appliance or a VPN gateway

Service chaining enables you to direct traffic from one virtual network to a virtual appliance, or virtual network gateway, in a peered virtual network, through user-defined routes

Demonstration – VNet Peering

Configure VNet peering on the first virtual network

Configure a VPN gateway

Allow gateway transit

Confirm VNet peering on the second virtual network

Summary and Resources – Configure VNet Peering

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

<u>Distribute your services across Azure virtual networks and integrate them by using virtual network peering (Sandbox)</u>

A sandbox indicates a hands-on exercise.

Configure VPN Gateway

Configure VPN Gateway Introduction

- Determine VPN Gateway Uses
- © Create Site-to-Site Connections
- 🕡 Demonstration- VPN Gateway
 - Create the Gateway Subnet
 - Create the VPN Gateway
 - Determine Gateway SKU and Generation
 - Create the Local Network Gateway
 - Setup the On-premises VPN Device
 - Create the VPN Connection
- Determine High Availability Scenarios
- Summary and Resources

Determine VPN Gateway Uses

VNet-to-VNet connections connect Azure virtual networks – VNet peering or custom Point-to-Site (User VPN)
connections connect individual
devices to Azure virtual
networks

Site-to-Site connections connect on-premises datacenters to Azure virtual networks

Create Site-to-Site VPN Connections

Take time to carefully plan your network configuration

The on-premises part is necessary only if you are configuring Site-to-Site

Always verify and test your connections

Demonstration – VPN gateways

Explore the Gateway subnet blade

Explore the Connected Devices blade

Explore adding a virtual network gateway

Explore adding a connection between the virtual networks

Create the Gateway Subnet

When you create your gateway subnet, gateway VMs are deployed to the gateway subnet and configured with the required VPN gateway settings

The gateway subnet contains the IP addresses; if possible, use a CIDR block of /28 or /27

Never deploy other resources (for example, additional VMs) to the gateway subnet

Create the VPN Gateway

Most VPN Gateways are Route-based

Your choice of gateway SKU affects the number of connections you can have and the aggregate throughput benchmark

Associate the virtual network that includes the Gateway Subnet – need a public IP address

It can take up to 45 minutes to provision the VPN gateway

Determine Gateway SKU and Generation

Sampling of available SKUs

Gen	SKU	S2S/VNet-to- VNet Tunnels	P2S IKEv2 Connections	Throughput Benchmark
1	VpnGw1/Az	Max. 30	Max. 250	650 Mbps /
1	VpnGw2/Az	Max. 30	Max. 500	1.0 Gbps
2	VpnGw2/Az	Max. 30	Max. 500	1.25 Gbps
1	VpnGw3/Az	Max. 30	Max. 1000	1.25 Gbps
2	VpnGw3/Az	Max. 30	Max. 1000	2.5 Gbps
2	VpnGw4/Az	Max. 100	Max. 5000	5.0 Gbps
2	VpnGw5/Az	Max. 100	Max. 10000	10.0 Gbps

The Gateway SKU affects the connections and the throughput

Resizing is allowed within the generation

The Basic SKU (not shown) is legacy and should not be used

Create the Local Network Gateway

Reflects the on-premises network configuration

Give the site a name by which Azure can refer to it

Use a public IP address or FQDN for Local Network Gateway Endpoint

Specify the IP address prefixes that will be routed through the gateway to the VPN device

Create the On-premises VPN Device

Consult the list of supported VPN devices

A VPN device configuration script may be available

Remember the shared key for the Azure connection

Specify the public IP address of the VPN Gateway

Sampling of supported VPN devices

Vendor	Device Family		
Barracuda Networks, Inc.	Barracuda CloudGen Firewall		
Cisco	ASA, ASR, ISR		
Citrix	NetScaler MPX, SDX, VPX		
Juniper	SRX, J-Series, ISG, SSG		
F5	BIG-IP Series		
Palo Alto Networks	All devices running PAN-OS		

Create the VPN Connection

Once your VPN gateways is created and the onpremises device is configured, create a connection object

Configure a name for the connection and specify the type as Site-to-site (IPsec)

Select the VPN gateway and the Local Network Gateway

Enter the Shared key for the connection

Determine High Availability Scenarios

VPN gateways are deployed as two instances

Enable **active/active mode** for higher availability

Summary and Resources – Configure VPN Gateway

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Introduction to Azure VPN Gateway

<u>Connect your on-premises network to Azure with VPN Gateway</u> (Sandbox)

A sandbox indicates a hands-on exercise.

Configure ExpressRoute and Virtual WAN

Configure ExpressRoute and Virtual WAN Introduction

Determine ExpressRoute Uses

Determine ExpressRoute Capabilities

Coexist Site-to-Site and ExpressRoute

Compare Intersite Connection Options

Determine Virtual WAN Uses

Summary and Resources

Determine ExpressRoute Uses

Private connections
between your on-premises
network and Microsoft
datacenters

Connections do not go over the public Internet – Partner network Secure, reliable, low latency, high speed connections

Determine ExpressRoute Capabilities

Layer 3 connectivity with redundancy

Connectivity to all regions within a geography

Global connectivity with ExpressRoute premium add-on

Across on-premises connectivity with ExpressRoute Global Reach

Bandwidth options – 50 Mbps to 100 Gbps

Billing models – Unlimited, metered, premium

Coexist Site-to-Site and ExpressRoute

Use S2S VPN as a secure failover path for ExpressRoute

Use S2S VPNs to connect to sites that are not connected with ExpressRoute

Notice two VNet gateways for the same virtual network

Compare Intersite Connection Options

Connection	Azure services supported	Bandwidth	Protocols	Typical use case
Virtual network, point-to-site	Azure laaS services, Azure Virtual Machines	Based on the gateway SKU	Active/passive	Dev, test, and lab environments for cloud services and virtual machines
Virtual network, site-to-site	Azure laaS services, Azure Virtual Machines	Typically, <1 Gbps aggregate	Active/passive Active/active	Dev, test, and lab environments. Small-scale production workloads and virtual machines
ExpressRoute	Azure laaS and PaaS services, Microsoft 365 services	50 Mbps up to 100 Gbps	Active/active	Enterprise-class and mission-critical workloads. Big data solutions

Determine Virtual WAN Uses

Brings together S2S, P2S, and ExpressRoute

Integrated connectivity using a hub-and-spoke connectivity model

Connect virtual networks and workloads to the Azure hub automatically

Visualize the end-to-end flow within Azure

Two types: Basic and Standard

Summary and Resources – Configure ExpressRoute and Virtual WANs

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Introduction to Azure ExpressRoute
Design and implement Azure ExpressRoute
Introduction to Azure Virtual WAN

Lab 05 - Implement Intersite Connectivity

Lab 05 – Implement intersite connectivity

Lab scenario

Contoso has its datacenters in Boston, New York, and Seattle offices connected via a mesh wide-area network links, with full connectivity between them. You need to implement a lab environment that will reflect the topology of the Contoso's on-premises networks and verify its functionality

Objectives

Task 1:

Provision the lab environment

Task 2:

Configure local and global virtual network peering

Task 3:

Test intersite connectivity

Lab 05 – Architecture diagram

End of presentation

