# Week2-Crystal Structure

ECE 695-O Semiconductor Transport Theory Fall 2018

Instructor: Byoung-Don Kong



#### Contents

- Crystal Structure
- Reciprocal Lattice
- Brillouin Zone



#### Crystal Structure

- Crystal highly ordered structure of atoms, molecules, or ions, that forms crystal lattice.
- Crystal Structure described in terms of a "lattice with a basis."
- Basis the group of atoms attached to every lattice point.

$$\mathbf{r}' = \mathbf{r} + u_1 \mathbf{a_1} + u_2 \mathbf{a_2} + u_3 \mathbf{a_3}$$

Crystal Translation Vector:  $\mathbf{T} = u_1 \mathbf{a_1} + u_2 \mathbf{a_2} + u_3 \mathbf{a_3}$ 

|   | Lattic | ce | + | Basis | = Crystal Structure  |
|---|--------|----|---|-------|----------------------|
| • | •      | •  | • |       | r                    |
| • | •      | •  | • |       | r                    |
| • | •      | •  | • |       | POHANG UNIVERSITY OF |

## Crystal Structure(2)

- **a**<sub>1</sub>, **a**<sub>2</sub>, and **a**<sub>3</sub>, are called <u>primitive vectors</u>, and are said to <u>generate or span</u> the lattice.
- The parallelepiped defined by primitive axes  $a_1$ ,  $a_2$ , and  $a_3$  are called a <u>primitive cell.</u>
- A primitive cell can be arbitrary as long as they fill the entire space without overlap.
- The primitive cell is not unique but contains only one lattice point per cell and is always a constant volume.

Here,  $a_i$ ,  $a_i'$ ,  $a_i''$  are all translation vectors but  $a_i'''$  is not.  $\rightarrow$ 



#### • Wigner-Seitz cell

- 1. Draw lines to connect a given lattice to all nearby lattice points
- 2. At the midpoint and normal to these lines, draw new lines or planes

The smallest volume enclosed in this way is the Wigner-Seitz primitive cell.



#### **Bravais Lattice**

- Bravais Lattice an infinite array of discrete points with an arrangement and orientation that appears exactly the same, from whichever of the points the array is viewed.
- A three-dimensional Bravais lattice consists of all points with position vector R of the form

$$R = n_1 \mathbf{a_1} + n_2 \mathbf{a_2} + n_3 \mathbf{a_3}.$$

- $a_1$ ,  $a_2$ , and  $a_3$ , are any three vectors not all in the same plane
- n<sub>1</sub>, n<sub>2</sub>, and n<sub>3</sub>, range through all integral values.

 Regarding the classification of Bravais lattice, refer Chapter 2.3 of Yu & Cardona or Chapter 7 of Solid State Physics by Ashcroft & Mermin



## Bravais Lattice(2)

- It is important that not only the arrangement, but also the orientation must appear the same from every point in a Bravais lattice.
- EX) 2D Honeycomb is not Bravais lattice
- There are 14 Bravais lattices.

Table 1 The 14 lattice types in three dimensions

| System       | Number of<br>lattices | Restrictions on conventional cell axes and angles                                                           |  |
|--------------|-----------------------|-------------------------------------------------------------------------------------------------------------|--|
|              |                       |                                                                                                             |  |
| Triclinie    |                       | $\begin{array}{c} a_1 \neq a_2 \neq a_3 \\ \alpha \neq \beta \neq \gamma \end{array} \qquad (e)$            |  |
| Monoclinic   | 2                     | $\begin{array}{c} a_1 \neq a_2 \neq a_3 \\ \alpha = \gamma = 90^{\circ} \neq \beta \end{array}  \text{(d)}$ |  |
| Orthorhombic | 4                     | $a_1 \neq a_2 \neq a_3  \alpha = \beta = \gamma = 90^{\circ} $ (C)                                          |  |
| Tetragonal   | 2                     | $\begin{array}{l} a_1 = a_2 \neq a_3 \\ \alpha = \beta = \gamma = 90^{\circ} \end{array}  \textbf{(b)}$     |  |
| Cubic        | 3                     | $a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 90^{\circ}  (a)$                                               |  |
| Trigonal     | 1.                    | $a_1 = a_2 = a_3$<br>$\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$ (f)                           |  |
| Hexagonal    |                       | $a_1 = a_2 \neq a_3$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$ (g)                               |  |





#### Important Bravais Lattices

- Simple cubic
  - Six nearest neighbors
  - OPrimitive Vectors:

$$\mathbf{a_1} = a\widehat{\mathbf{x}}, \ \mathbf{a_2} = a\widehat{\mathbf{y}}, \ \mathbf{a_3} = a\widehat{\mathbf{z}}$$

- Body-centered cubic
  - Eight nearest neighbors
  - OPrimitive Vectors:

$$\mathbf{a_1} = a\widehat{\mathbf{x}}, \ \mathbf{a_2} = a\widehat{\mathbf{y}}, \ \mathbf{a_3} = \frac{a}{2}(\widehat{\mathbf{x}} + \widehat{\mathbf{y}} + \widehat{\mathbf{z}})$$





$$\mathbf{a_1} = \frac{a}{2}(\widehat{\mathbf{y}} + \widehat{\mathbf{z}} - \widehat{\mathbf{x}}),$$

$$\mathbf{a_2} = \frac{a}{2}(\widehat{\mathbf{z}} + \widehat{\mathbf{x}} - \widehat{\mathbf{y}}),$$

$$\mathbf{a_3} = \frac{a}{2}(\widehat{\mathbf{x}} + \widehat{\mathbf{y}} - \widehat{\mathbf{z}}).$$
more symmetric





## Important Bravais Lattices(2)

- Face-centered Cubic
  - ○12 nearest neighbors
  - OPrimitive Vectors:

$$\mathbf{a_1} = \frac{a}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}}),$$

$$\mathbf{a_2} = \frac{a}{2}(\hat{\mathbf{z}} + \hat{\mathbf{x}}),$$

$$\mathbf{a_3} = \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}}).$$



- Simple Hexagonal
  - Stacking two-dimensional triangular net
  - OPrimitive Vectors:

$$\begin{aligned} \mathbf{a_1} &= a\widehat{\boldsymbol{x}}, \\ \mathbf{a_2} &= \frac{1}{2}\widehat{\boldsymbol{x}} + \frac{\sqrt{3}}{2}\widehat{\boldsymbol{y}}, \\ \mathbf{a_3} &= c\widehat{\boldsymbol{z}}. \end{aligned}$$



#### Important Crystals with Basis

#### Diamond

- Two interpenetrating fcc lattices displace by ¼ length of the body diagonal
- sp3 bonding (tetrahedral)
- o Diamond lattices: C, Si, Ge

$$\frac{a}{4}(\hat{x}+\hat{y}+\hat{x})$$



#### Zincblend

- o Diamond structure with two different atoms
- Nearest neighbors are different atoms
- o Zincblend lattices: GaAs, InP, InAs, ... most of III-V some II-VI (ZnS)





## Important Crystals with Basis(2)

- Hexagonal Closed Pack (hcp)
  - o Two interpenetrating hexagonal lattices displace by  $\frac{1}{3}a_1 + \frac{1}{3}a_2 + \frac{1}{2}a_3$
  - o Packing hard balls
  - There are other closed packed structure
     such as fcc(111). fcc is (...ABCABC...) stacking
     but hcp is (...ABAB...)



#### Wurtzite

- $\circ$  Two interpenetrating **hcp**s displaced by  $\frac{3}{8}a_3$
- GaN, GaP, ...





## Important Crystal with Basis(3)

- Hexagonal Closed Pack (hcp)
  - Two interpenetrating fccs displaced ½ length of the body diagonal
  - o LiF, LiCl,LiBr,NaCl,NaBr,...



Miller indices

$$\mathbf{r} = h\mathbf{a}_1 + k\mathbf{a}_2 + l\mathbf{a}_3$$

[hkl] : direction <hkl> : family of equivalent direction

- For planes
  - $\circ$  Find the intercepts on the axes in terms of the lattice constants  $a_1, a_2, a_3$ .
  - Take the reciprocals of these number and then reduce to three integers having the same ratio, usually the smallest three integers: (hkl) plane
  - {hkl}: family of equivalent planes



#### Reciprocal Lattice

- The set of all wave vectors **K** that yield plane waves with the periodicity of a given Bravais lattice.
  - $\circ e^{i \mathbf{K} \cdot \mathbf{r}} = e^{i \mathbf{K} \cdot (\mathbf{r} + \mathbf{R})}$  for all **R** and **r**.
  - **R** is Bravais lattice vector
  - $\circ$  Factoring out  $e^{i \mathbf{K} \cdot \mathbf{r}}$  gives  $e^{i \mathbf{K} \cdot \mathbf{R}} = 1$  and we have to find  $\mathbf{K}$  which satisfies this condition for any  $\mathbf{R}$ .
  - This is essentially the condition for a constructive interference at Bragg-von Laue formulation of X-ray diffraction by a crystal.



## Reciprocal Lattice(2)

- Construction of reciprocal lattice
  - $\circ$  When the direct lattice basis vectors are  $a_1, a_2, a_3$  , reciprocal lattice vectors are

$$\mathbf{b_1} = 2\pi \frac{\mathbf{a_2} \times \mathbf{a_3}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})}$$

$$\mathbf{b_2} = 2\pi \frac{\mathbf{a_3} \times \mathbf{a_1}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})}$$

$$\mathbf{b_3} = 2\pi \frac{\mathbf{a_1} \times \mathbf{a_2}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})}$$

- $\circ$  Orthonormal property:  $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$
- Proof
  - Any vector can be represented as

$$\mathbf{K} = k_1 \mathbf{b_1} + k_2 \mathbf{b_2} + k_3 \mathbf{b_3}.$$
  
( $k_1$ ,  $k_2$ , and  $k_3$  are real)



## Reciprocal Lattice(3)

#### • Proof(continued)

We can consider a direct lattice vector

$$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3.$$
 ( $n_1$ ,  $n_2$ , and  $n_3$  are integers)

$$\circ$$
To satisfy  $e^{i \mathbf{K} \cdot \mathbf{R}} = 1$ ,

$$\mathbf{K} \cdot \mathbf{R} = 2\pi m = 2\pi (n_1 k_1 + n_2 k_2 + n_3 k_3).$$
 (m is an integer)

 $\circ$ This gives  $m=n_1k_1+n_2k_2+n_3k_3$  and to satisfy this relation for any arbitrary chosen  $n_1$ ,  $n_2$ ,  $n_3$ ,

 $k_1$ ,  $k_2$ ,  $k_3$  must be integers.

$$\mathbf{K} = k_1 \mathbf{b_1} + k_2 \mathbf{b_2} + k_3 \mathbf{b_3}$$
.  
( $k_1$ ,  $k_2$ , and  $k_3$  range all the integers)



## Reciprocal Lattice(3)

- Direct Lattice Volume
- Reciprocal Lattice Volume

$$\Omega = \mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})$$

$$\Omega_{\mathbf{b}} = \mathbf{b_1} \cdot (\mathbf{b_2} \times \mathbf{b_3})$$

$$= \frac{(2\pi)^3}{2\pi}$$

1-D: 
$$a \leftrightarrow \frac{2\pi}{a}$$
  
2-D:  $A \leftrightarrow \frac{(2\pi)^2}{A}$   
: : :  $\Omega \leftrightarrow \frac{(2\pi)^n}{\Omega}$ 

2-D: 
$$A \leftrightarrow \frac{(2\pi)^2}{A}$$

$$\mathsf{n-D:} \quad \Omega \leftrightarrow \frac{(2\pi)^n}{\Omega}$$

Reciprocal lattice (is also simple cubic)

Simple Cubic

$$\mathbf{a_1} = a\widehat{\mathbf{x}}$$

$$\mathbf{a_2} = a\widehat{\mathbf{y}}$$

$$\mathbf{a_3} = a\widehat{\mathbf{z}}$$

$$\Omega = a^3$$

$$\mathbf{a_1} = \frac{2\pi}{a} \widehat{\mathbf{x}}$$

$$\mathbf{a_2} = \frac{2\pi}{a} \widehat{\mathbf{y}}$$

$$\mathbf{a_3} = \frac{2\pi}{a} \widehat{\mathbf{z}}$$

$$\Omega_{\mathbf{b}} = \left(\frac{2\pi}{a}\right)^3 = \frac{(2\pi)^3}{\Omega}$$

## Reciprocal Lattice(3)

• The face-centered cubic Bravais lattice with conventional cubic cell of side a has as its reciprocal a body-centered cubic lattice with conventional cubic cell of side  $4\pi/a$ .

$$\mathbf{a_1} = \frac{a}{2}(\widehat{\mathbf{y}} + \widehat{\mathbf{z}}), \qquad \mathbf{b_1} = \frac{4\pi}{a} \frac{1}{2}(\widehat{\mathbf{y}} + \widehat{\mathbf{z}} - \widehat{\mathbf{x}}),$$

$$\mathbf{a_2} = \frac{a}{2}(\widehat{\mathbf{z}} + \widehat{\mathbf{x}}), \qquad \mathbf{b_2} = \frac{4\pi}{a} \frac{1}{2}(\widehat{\mathbf{z}} + \widehat{\mathbf{x}} - \widehat{\mathbf{y}}),$$

$$\mathbf{a_3} = \frac{a}{2}(\widehat{\mathbf{x}} + \widehat{\mathbf{y}}). \qquad \mathbf{b_3} = \frac{4\pi}{a} \frac{1}{2}(\widehat{\mathbf{x}} + \widehat{\mathbf{y}} - \widehat{\mathbf{z}}).$$

• The body-centered cubic lattice with conventional cubic cell of side a has as its reciprocal a face-centered cubic lattice with conventional cubic cell of side  $4\pi/a$ .

Wigner-Seitz unit cell of fcc



Wigner-Seitz unit cell of bcc



#### Brillouin Zone

• A Wigner-Seitz primitive cell in the reciprocal lattice.



