CPSC 340: Machine Learning and Data Mining

Mark Schmidt
University of British Columbia, Fall 2016
www.cs.ubc.ca/~schmidtm/Courses/340-F16

Big Data Phenomenon

- We are collecting and storing data at an unprecedented rate.
- Examples:
 - News articles and blog posts.
 - YouTube, Facebook, and WWW.
 - Credit cards transactions and Amazon purchases.
 - Gene expression data and protein interaction assays.
 - Maps and satellite data.
 - Large hadron collider and surveying the sky.
 - Phone call records and speech recognition results.
 - Video game worlds and user actions.

Big Data Phenomenon

- What do you do with all this data?
 - Too much data to search through it manually.
- But there is valuable information in the data.
 - How can we use it for fun, profit, and/or the greater good?

 Data mining and machine learning are key tools we use to make sense of large datasets.

Data Mining

Automatically extract useful knowledge from large datasets.

Usually, to help with human decision making.

Machine Learning

 Using computer to automatically detect patterns in data and use these to make predictions or decisions.

- Most useful when:
 - Don't have a human expert.
 - Humans can't explain patterns.
 - Problem is too complicated.

Data Mining vs. Machine Learning

- DM and ML are very similar:
 - Data mining often viewed as closer to databases.
 - Machine learning often viewed as closer AI.

- Both are similar to statistics:
 - Less emphasis on 'correct' models and more focus on computation.

Spam filtering:

Credit card fraud detection:

Product recommendation:

Transaction Date	▼ Posted Date	Transaction Details	Debit	Credit
Aug. 27, 2015	Aug. 28, 2015	BEAN AROUND THE WORLD VANCOUVER, BC	\$10.95	

\$62.82 Prime

全章章章章 28

\$91.66 \Prime

Hardcover

Foundations of

Page 1 of 20

>

Motion capture:

Machine translation:

• Speech recognition:

• Face detection:

• Object detection:

• Sports analytics:

Personal Assistants:

Medical imaging:

Self-driving cars:

• Scene completion:

• Image annotation:

a cat is sitting on a toilet seat logprob: -7.79

a display case filled with lots of different types of donuts logprob: -7.78

a group of people sitting at a table with wine glasses logprob: -6.71

• Inceptionism, mimicking art styles:

• Fast physics-based animation:

Mimicking art style in <u>video</u>.

Beating human Go masters:

• Summary:

There is a lot you can do with a bit of statistics and a lot data/computation.

- But, you should not use these methods blindly:
 - The future may not be like the past.
 - Associations do not imply causality.

Outline

- 1) Intro to Machine Learning and Data Mining:
- 2) Course Administrivia
- 3) Course Overview

Reasons NOT to take this class

- For many people, this course is a LOT of work.
 - Some people spend tens of hours per assignment.

- Compared to typical CS classes, there is a lot more math:
 - Requires linear algebra, probability, and multivariate calculus.
 - Course is harder this year because of new calculus requirement.
- Compared to non-CS classes, there is a lot more CS:
 - This is not a class about running other people's software packages.
 - You are going to make/modify implementations of methods.

Webpage, Piazza, Office Hours, Tutorials

- Course homepage:
 - www.cs.ubc.ca/~schmidtm/Courses/340-F16
- Piazza for assignment/course questions:
 - piazza.com/ubc.ca/winterterm12015/cpsc340
- Office hours:
 - Time and location TBA (I'll update this slide and the website).
 - Or by appointment.
- Optional weekly tutorials:
 - Start in second week of class (September 12).
 - Mondays 4-5 and 5-6, Tuesdays 4:30-5:30, and Wednesdays 9-10.
 - Cover mix of tutorial material and exercises to help with assignments.
 - You must be registered in a tutorial section to stay enrolled.

The Teaching Assistants (are outstanding)

Reza Babanezhad

Alireza Shafaei

• Tian Qi (Ricky) Chen

Moumita Roy Tora

• Issam Laradji

Nasim Zolaktaf

Robbie Rolin

Zainab Zolaktaf

Waiting List and Auditing

- The SSC currently lists this class as full at 160 students.
- But the room supports 188 students (possibly more)
- We're going to start registering people from the waiting list.
 - Being on the waiting list is the only way to get registered:
 - https://www.cs.ubc.ca/students/undergrad/courses/waitlists
 - You might be registered without being notified, be sure to check!
- Because the room is full, we may not have seats for auditors.
 - If there is space, I'll describe (light) auditing requirements then.

Textbooks

- No required textbook.
- I'll post relevant sections out of these books as optional readings:
 - Artificial Intelligence: A Modern Approach (Rusell & Norvig).
 - Introduction to Data Mining (Tan et al.).
 - The Elements of Statistical Learning (Hastie et al.).
 - Machine Learning: A Probabilistic Perspective (Murphy).
- List of related courses on the webpage, or you can use Google.

Assignments

- 6 Assignments worth 25% of final grade:
 - Written portion and Matlab programming.
 - Submitted as a PDF file using the Handin program.
 - You can have up to 4 total "late classes":
 - For example, if assignment is due on Wednesday:
 - Handing it in before Wednesday class is 0 late classes.
 - Handing it in before Friday class is 1 late classes.
 - Handing it in before Monday class is 2 late classes.
 - Handing it in before Wednesday class is 3 late classes.
 - You will get a mark of 0 on an assignment if you:
 - Use more than 3 late classes on the assignment.
 - Exceed 4 late classes across all assignments.

Getting Help

- There are many sources of help on the assignments:
 - Weekly tutorials, office hours, Piazza, other students.
- If you do not have access to Matlab:
 - Ask for a CS guest account.
 - Purchase Matlab through the bookstore or online.
 - Use the free alternative Octave.
 - Let me know about any Octave incompatibilities in the assignments.
 - Julia might work, too.
- You can work in groups and use any source, but:
 - Hand in your own homework.
 - Acknowledge all sources, including webpages and other students.

Midterm and Final

- Midterm details:
 - 30% of final grade
 - In class, date TBA (I will update this slide).
 - Closed book, two-page double-sided 'cheat sheet'.
- No 'tricks' or 'surprises':
 - Given a list of things you need to know how to do.
 - Mostly minor variants on assignment questions.
- If you miss the exam, see me with doctor's note or relevant documentation.
- Final will follow same format:
 - 45% of final grade.
 - Cumulative.

Lecture Style and Lecture Slides

- The course we will cover a lot of topics:
 - Some topics will not be covered in much depth.
 - But we'll go into depth on a few key recurring issues.
 - To keep things sane, I'll give you a list of topics to know for the midterm/final.
 - It can be better to know many methods than learning only a few in detail:
 - I'll explain why when we discuss the "best" machine learning algorithm.
 - Some class time will be devoted to important ideas that you won't be tested on.
- All class material will be available online or on Piazza.
 - I'll try to post topics/readings before each class.
 - After class, I'll post annotated/updated slides.
 - Do not record without permission.
- In early October, we'll do an unnofficial instructor evaluation:
 - Will let me adapt lecture/assignment/tutorial style.

Outline

- 1) Intro to Machine Learning and Data Mining:
- Course Administrivia
- 3) Course Overview

Course Outline

- Next class discusses data exploration, cleaning, and preprocessing.
- After that, the remaining lectures focus on the six topics:
 - 1) Supervised Learning.
 - 2) Unsupervised learning.
 - 3) Linear prediction.
 - 4) Latent-factor models.
 - 5) Deep learning.
 - 6) Density estimation.

Supervised Learning

- Classification:
 - Given an object, assign it to predefined 'classes'.
- Examples:
 - Spam filtering.
 - Body part recognition.

Unsupervised Learning

Clustering:

- Find groups of `similar' items in data.
- Examples:
 - Are there subtypes of tumors?
 - Are there high-crime hotspots?
- Outlier detection:
 - Finding data that doesn't belong.
- Association rules:
 - Finding items frequently 'bought together'.

Transaction Date	▼ Posted Date	Transaction Details	Debit	Credit
Aug. 27, 2015	Aug. 28, 2015	BEAN AROUND THE WORLD VANCOUVER, BC	\$10.95	

Linear Prediction

- Regression:
 - Predicting continuous-valued outputs.
- Working with very high-dimensional data.

Latent-Factor Models

- Principal component analysis and friends:
 - Low-dimensional representations.
 - Decomposing objects into "parts".
 - Visualizing high-dimensional data.
- Collaborative filtering:
 - Predicting user ratings of items.

Customers Who Bought This Item Also Bought

Pattern Recognition and Machine Learning (Information Science and... Christopher Bishop

Hardcover

Page 1 of 20

Foundations of Machine
Learning (Adaptive
Computation and...
> Mehryar Mohri

KLAY THOMPSON

Deep Learning

 Neural networks: Brain-inspired ML when you have a lot of data/computation but don't know what is relevant.

Density Estimation

Density estimation:

- Modeling the probability of a complex event happening.
- Modeling dependencies over time.

Photo I took in the UK on the way home from the "Optimization and Big Data" workshop:

