Claims

1. A compound of formula (I)

$$L-N \xrightarrow{OR^5} CH_2-N-C \xrightarrow{R^4} R^3 \quad (I),$$

)

a stereochemically isomeric form thereof, an N-oxide form thereof, or a pharmaceutically acceptable acid or base addition salt thereof, wherein

-R¹-R²- is a bivalent radical of formula

10 -O-CH₂-O-(a-1),-O-CH₂-CH₂-(a-2),-O-CH₂-CH₂-O-(a-3),-O-CH₂-CH₂-CH₂-(a-4),-O-CH₂-CH₂-CH₂-O-(a-5),15 -O-CH₂-CH₂-CH₂-CH₂-(a-6),-O-CH₂-CH₂-CH₂-CH₂-O-(a-7),-O-CH₂-CH₂-CH₂-CH₂-CH₂-(a-8),

wherein in said bivalent radicals optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C_{1-6} alkyl or hydroxy,

20 R^3 is C_{1-6} alkyl, C_{1-6} alkyloxy, or halo;

R⁴ is hydrogen or halo;

provided that when R^3 and R^4 are both halo, then the bivalent radical- R^1 - R^2 - is of formula (a-5);

- R^5 is hydrogen or C_{1-6} alkyl, and the -OR⁵ radical is situated at the 3- or 4-position of the piperidine moiety;
- L is hydrogen, or L is a radical of formula

-Alk-R⁶ (b-1), -Alk-X-R⁷ (b-2), -Alk-Y-C(=O)-R⁹ (b-3), or -Alk-Z-C(=O)-NR¹¹R¹² (b-4),

30

25

wherein each Alk is C₁₋₁₂alkanediyl; and

R⁶ is hydrogen; hydroxy; cyano; C₃₋₆cycloalkyl; C₁₋₆alkylsulfonylamino; aryl or Het;

 R^7 is C_{1-6} alkyl; C_{1-6} alkyl substituted with hydroxy; C_{3-6} cycloalkyl; aryl or Het;

5

10

25

30

- X is O, S, SO₂ or NR⁸; said R⁸ being hydrogen or C_{1-6} alkyl;
- R⁹ is hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, hydroxy or aryl;
- Y is a direct bond, or NR^{10} wherein R^{10} is hydrogen or C_{1-6} alkyl;
- Z is a direct bond, O, S, or NR^{10} wherein R^{10} is hydrogen or C_{1-6} alkyl;
- R^{11} and R^{12} each independently are hydrogen, C_{1-6} alkyl, C_{3-6} cycloalkyl, or R^{11} and R^{12} combined with the nitrogen atom bearing R^{11} and R^{12} may form a pyrrolidinyl, piperidinyl, piperazinyl or 4-morpholinyl ring both being optionally substituted with C_{1-6} alkyl;
 - aryl represents unsubstituted phenyl or phenyl substituted with 1, 2 or 3 substituents each independently selected from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, C_{1-6} alkylcarbonyl, nitro, trifluoromethyl, amino, aminocarbonyl, and aminosulfonyl; and
- Het is furanyl; furanyl substituted with C₁₋₆alkyl or halo;
 tetrahydrofuranyl; tetrahydrofuranyl substituted with C₁₋₆alkyl;
 dioxolanyl; dioxolanyl substituted with C₁₋₆alkyl;
 dioxanyl; dioxanyl substituted with C₁₋₆alkyl;
 tetrahydropyranyl; tetrahydropyranyl substituted with C₁₋₆alkyl;
 2,3-dihydro-2-oxo-1H-imidazolyl; 2,3-dihydro-2-oxo-1H-imidazolyl
 substituted with one or two substituents each independently selected from halo, or C₁₋₆alkyl;
 - pyrrolidinyl; pyrrolidinyl substituted with one or two substituents each independently selected from halo, hydroxy, or C_{1-6} alkyl; pyridinyl; pyridinyl substituted with one or two substituents each independently selected from halo, hydroxy, C_{1-6} alkyl; pyrimidinyl; pyrimidinyl substituted with one or two substituents each independently selected from halo, hydroxy, or C_{1-6} alkyl; pyridazinyl; pyridazinyl substituted with one or two substituents each independently selected from hydroxy, C_{1-6} alkyloxy, C_{1-6} alkyl or halo; pyrazinyl; pyrazinyl substituted with one ore two substituents each

independently selected from hydroxy, C_{1-6} alkyloxy, C_{1-6} alkyl or halo.

- 2. A compound as claimed in claim 1 wherein the -OR⁵ radical is situated at the 3-position of the piperidine moiety having the trans configuration.
- 35 3. A compound as claimed in claim 2 wherein the absolute configuration of said piperidine moiety is (3S, 4S).

5

15

30

- 4. A compound as claimed in any of claims 1 to 3 wherein -R¹-R²- is a radical of formula (a-5), R³ is chloro and R⁴ is chloro.
- 5. A compound as claimed in any of claims 1 to 3 wherein -R¹-R²- is a radical of formula (a-5), R³ is chloro and R⁴ is bromo.
- 6. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound according to any of claims 1 to 5.
- 7. A process for preparing a pharmaceutical composition according to claim 6 wherein a therapeutically active amount of a compound according to any of claims 1 to 5 is intimately mixed with a pharmaceutically acceptable carrier.
 - 8. A compound according to any of claims 1 to 5 for use as a medicine.
 - 9. A compound of formula (III)

wherein

-R¹-R²- is a bivalent radical of formula

wherein in said bivalent radicals optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C_{1-6} alkyl or hydroxy;

- R^3 is C_{1-6} alkyl, C_{1-6} alkyloxy, or halo; and
- 25 R⁴ is hydrogen or halo.
 - 10. A process for preparing a compound of formula (I) wherein
 - a) an intermediate of formula (II) is reacted with an carboxylic acid derivative of formula (III) or a reactive functional derivative thereof;

5

10

15

20

25

b) an intermediate of formula (IV) is N-alkylated with a compound of formula (I-a), defined as a compound of formula (I) wherein L represents hydrogen, in a reaction-inert solvent and, optionally in the presence of a suitable base, thereby yielding compounds of formula (I-b), defined as compounds of formula (I) wherein L is other than hydrogen;

c) an appropriate ketone or aldehyde intermediate of formula L'=O (V), said L'=O being a compound of formula L-H, wherein two geminal hydrogen atoms in the C₁₋₁₂alkanediyl moiety are replaced by =O, is reacted with a compound of formula (I-a), thereby yielding compounds of formula (I-b);

$$L = O + H - N - C + C + H - N - C + R^{4}$$

$$(I-a) \qquad R^{1} - R^{2}$$

$$(I-b)$$

wherein in the above reaction schemes the radicals -R¹-R²-, R³, R⁴ and R⁵ are as defined in claim 1 and W is an appropriate leaving group;

d) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into a pharmaceutically acceptable acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.