Assignment 5 MAT 347

Q5: The maximum order of an element of $C_m \times C_n$ is lcm(n, m), since if g generates C_m and h generates C_n , we have that (g, h) generates $C_m \times C_n$. The order of this element must be both a multiple of n and m, so the largest it can be is lcm(n, m). We now claim that

$$C_m \times C_n \cong C_{lcm(m,n)} \times C_{gcd(m,n)}.$$

First note that from basic number theory we have that $m \cdot n = lcm(m, n) \cdot gcd(m, n)$. Hence these groups must have the same order. We will construct an injective homeomorphism between them and conclude that they are isomorphic. Note that for every element $([x]_m, [y]_n)$ we can find some integer a so that $[a]_m = [x]_m$ and $[a]_n = [y]_n$. Define $\varphi : C_m \times C_n \to C_{lcm(m,n)} \times C_{gcd(m,n)}$ by

$$\varphi([a]_m, [a]_n) = ([a]_{lcm(m,n)}, [a]_{acd(m,n)}).$$

Note that from properties of integers mod n, we have that φ is a homeomorphism. We claim that this is an injective mapping. First suppose that for some $(x,y) \in C_m \times C_n$, we have that $\varphi(x,y) = (0,0)$. Find a $b \in \mathbb{Z}$ so that $[b]_m = [x]_m$ and $[b]_n = [y]_n$. We have that $\varphi(b,b) = (0,0)$. We have that b|nk,lm for some $k,l \in \mathbb{Z}$ and so $[b]_m = [b]_n = e$. Hence (x,y) = (e,e) and φ is an isomorphism. It is clear from elementary number theory that $\gcd(n,m)|lcm(n,m)$. We now claim that if for any r,s with s|r, and $C_m \times C_n \cong C_r \times C_s$ we must have that r = lcm(m,n) and $r = \gcd(m,n)$. Note that we must have that $r \cdot s = m \cdot n$, furthermore $\gcd(m,n) = \gcd(r,s)$ and lcm(r,s) = kcm(m,n). If s|r. This uniquely determines s,r as r = lcm(m,n) from number theory.