Polynomial Regression

Agenda.

- 1) Polynomial Regression
- 2) Generalisation & Occam's Raroz
- 3 Underfitting & Overfitting
- (4) Bias Variance Tradeoff

G.D Variants

Batch G.D

(i) iterates all data Prints gradients desivate

(1) iterate over 'K'=32 (1) gradients colocated
Butch Size duter Prints. Using 1 data Point.

2) 100%. Converge global minima

2) Sometimes Stucks in local minima.

3 Speed is Slow

Speed is moderate

Speed is v.fast

Which statement is true about mini-batch gradient descent?

58 users have participated

X	Α	It guarantees convergence to the global minima	36%
Ø	В	It may converge to a local minima due to the weight fluctuations	57%
X	С	It requires a very high learning rate.	2%
×	D	It is not suitable for large datasets(o))	5%

End Quiz Now

f.fi²

Does fr=fi² Course Mic?

linear comb. of other features.

$$f_2 = \alpha \cdot f_1 + \beta \rightarrow m \cdot c$$

$$f_2 = f_1 \times f_1 \rightarrow No \cdot m \cdot c$$

$$f_3 = f_1 \times f_1 \rightarrow No \cdot m \cdot c$$

$$f_4 = f_1^2 y$$

"Create Non-lineal Fatures"

liner det in higher Dim = Non-liner detain

What metric should be used during Polynomial Regression?

	77 users have participated	
Α	R-sq	13%
В	Adj R-sq	84%
С	Doesnt matter	1%
D	Use a different metric	1%
	С	A R-sq B Adj R-sq C Doesnt matter

End Quiz Now

MODEL MI Clearly MI model is not fitting well on both training and test data.

MODEL M2 M2 is performing great on training but only decent on testing.

Overcaptured the pattern due to noise.

 Imagine M2 as a student who studied hard bt instead of understanding better, just cramped the Q/A

MODEL M3 M2 is performing great on training but only decent on testing.

Balanced between overfitting & underfitting & underfitting

 Imagine M3 as a student who studied smartly and understood the concept.

To summarize,

If there are several ML model, Generalization states that:

 Always choose the models that learns and understand the data inside out so that it can make good predictions on unseen data.

OCCAM'S RAZOR

There is another rule that we follow while choosing best model.

"There are many solutions to the problem, always choose the simpler one"

Why is Occam's Razor important in machine learning?

70 users have participated

Α	It helps in selecting the model that fits the training data perfectly.
В	It encourages the use of complex models.
محر	It helps in avoiding overfitting by favoring simpler models.
D	It promotes the use of large datasets for training models.

End Quiz Now

Infroence.

Pipeline -

1. Polprocess. -> Encooling, Cet > Numer

2. Scaling

improve ortfitting

GDT momentum