

All about Transformers

Aivalis Theodoros

22/09/2023

Al's History Timeline

Attention is All you need!

 Imports an attention mechanism to draw global dependencies between input and output sequences.[3]

Structure and Architecture

A Transformer model is composed of two blocks:

- Encoder (left)
- Decoder (right)

Each of parts can be used independently, depending on the task:

- Encoder-only models
- Decoder-only models
- Encoder-decoder models or sequence-to-sequence models. [4]

Attention Mechanism

"The attention function can be considered as a mapping between a query and a set of key-value pairs to an output."

Scaled Dot-Product Attention [5]

Multi-Head Attention [5] Linear Concat Scaled Dot-Product Attention Linear Linear $multihead(Q, K, V) = concat(head_1, ..., head_h) W^{O}$

Encoder Block

- Words as input to create numerical vectors (Embeddings).
- Positional Encoding for words with multiple meanings (depending of their position).
- Attention layer to create attention vectors (about the relations between the words).
- Feed-forward Neural Network (convert into an acceptable form for the next layer). [6]

Decoder Block

- Give outputs as decoder's input in order to learn.
- Create vectors from words in Embedding and Positional Encoding Part similar to the Encoder.
- Create attention vectors for every word to represent relations of every word in the sentence.
- Attention vector that combines vectors from both encoder and decoder blocks.
- Use a feed-forward layer to form it for a Linear layer where it expands the dimensions of the output.
- Softmax layer that transforms the input into a probability distribution. [6]

Application-Based Classification of Transformers

- Natural Language Processing (NLP)
 - Language Translation
 - Questioning Answering
 - Text Summarization & Generation
 - Natural Language Reasoning
- Computer Vision
 - Natural & Medical Image Processing
 - Image Generation & Segmentation
 - Image Classification
 - Object Detection
- Multi-Modal
- Audio/Speech
- Signal [7]

Applications of Transformers [7]

Popular Transformer Models

Transformer	BERT [8],[9],[10]	GPT-3 [8],[10],[11]	T-5 [8],[10],[12]
Main Uses	Questioning Answering, Text Classification, Text Generation, Sentiment Analysis	Natural Language Processing (NLP), Natural Language Generalization(NLG)	Language Translation, Question Answering
Popular Applications	Google Search (since 2020)	Chat-GPT, Dall-E	
Parameters	110 M(based) 340 M(large)	175 B	60 M to 11B
Training Time	1-130 min (fine-tuning on a GPU) 4 days on 4 Cloud TPUs (base) 4 days on 16 Cloud TPUs (large)	355 years on a single GPU (theoretically)	few days on Cloud TPUs

Challenges and Limitations

- Computational resources and memory to run and train.
- Large cost of deployment and scaling(especially on LLM's)
- Overfitting, generalization and robustness issues (noisy or incomplete data).
- Lack interpretability and explainability.
- Carbon footprint of transformer models. [13]

Possible solutions to consider

- Using pretrained models when they are available
- Fine-tuning vs Training from scratch
- Starting with small experiments and debugging
- Doing a review to choose hyperparameter ranges
- Random search vs Grid Search [4], [14]

Tool for estimate carbon footprint of your ML model. [14]

Fine-tune a pre-trained Transformer

- Load the model and the tokenizer
- Prepare Datasets (Train, Validate, Test)
- Compute metrics
- Combine everything in a trainer
- Start Training [10], [15]

```
[ ] from transformers import AutoTokenizer, AutoModelForSequenceClassification, DataCollatorWithPadding
    from torch.utils.data import DataLoader
    BASE MODEL = "camembert-base"
    LEARNING RATE = 2e-5
    MAX LENGTH = 256
    BATCH SIZE = 16
    EPOCHS = 20
    tokenizer = AutoTokenizer.from pretrained(BASE MODEL)
    model = AutoModelForSequenceClassification.from pretrained(BASE MODEL, id2label=id2label, label2id=label2id)
    import numpy as np
    from datasets import load metric
    metric = load metric("accuracy")
    def compute metrics(eval pred):
        logits, labels = eval pred
        predictions = np.argmax(logits, axis=-1)
        return metric.compute(predictions=predictions, references=labels)
[ ] from transformers import Trainer
    trainer = Trainer(
        model=model,
        args=training args.
        train dataset=ds["train"],
        eval dataset=ds["validation"],
        compute metrics=compute metrics
    trainer.train()
```

References

- 1. Al & Machine Learning Presentation Diagrams (PPT template)
- 2. 5 Top Most Powerful Transformer Models 2023 | Codementor
- 3. Attention Is All You Need, https://arxiv.org/pdf/1706.03762.pdf
- 4. How do Transformers work? Hugging Face NLP Course
- 5. The Transformer Attention Mechanism MachineLearningMastery.com
- 6. Transformer Neural Networks: A Step-by-Step Breakdown | Built In
- 7. A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks, https://arxiv.org/pdf/2306.07303.pdf
- 8. Top 9 Transformer Models | Saturn Cloud Blog
- 9. How does BERT work and what are the use cases of BERT? | by Shushant Pudasaini | Medium
- 10. Paransformers
- 11. What is GPT-3? Everything You Need to Know TechTarget
- 12. Exploring Google's T5 Text-To-Text Transformer Model | T5_transformer Weights & Biases
- 13. What are the current and future trends and directions of transformer models for AI?
- 14. Machine Learning CO2 Impact Calculator
- 15. Regression with Text Input Using BERT and Transformers | by La Javaness R&D