FCC RF Test Report

APPLICANT : Gillon UK LLC

EQUIPMENT: HDMI Digital Media Receiver

MODEL NAME : LDC9WZ

FCC ID : 2ALBL-1731

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION: (NII) Unlicensed National Information Infrastructure

The testing was completed on May 14, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 1 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

1190

Report No.: FR730732-04

TABLE OF CONTENTS

RE'	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	B. RADIATED SPURIOUS EMISSION C. RADIATED SPURIOUS EMISSION PLOTS	
	1.1	Applicant	5
	1.2	Product Feature of Equipment Under Test	5
	1.3	Product Specification of Equipment Under Test	6
	1.4	Modification of EUT	8
	1.5	Testing Location	9
	1.6	Applicable Standards	9
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	10
	2.1	Carrier Frequency and Channel	10
	2.2	Test Mode	11
	2.3	Connection Diagram of Test System	13
	2.4		
	2.5	EUT Operation Test Setup	13
	2.6	·	
3	TEST	RESULT	14
	3.1	26dB & 99% Occupied Bandwidth Measurement	14
	3.2	Maximum Conducted Output Power Measurement	16
	3.3		
	3.4		
	3.5	Antenna Requirements	25
4	LIST	OF MEASURING EQUIPMENT	26
5	UNCE	ERTAINTY OF EVALUATION	27
ΑP	PENDI	IX A. CONDUCTED TEST RESULTS	
AP	PENDI	IX B. RADIATED SPURIOUS EMISSION	
ΑP	PENDI	IX C. RADIATED SPURIOUS EMISSION PLOTS	
AP	PENDI	IX D. DUTY CYCLE PLOTS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 2 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No. : FR730732-04

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR730732-04	Rev. 01	Initial issue of report	May 21, 2018

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 3 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No. : FR730732-04

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result
3.1	2.1049 & 15.403(i)	26dB & 99% Bandwidth	-	Pass
3.2	15.407(a)	Maximum Conducted Output Power	≤ 24 dBm	Pass
3.3	15.407(a)	Power Spectral Density	≤ 11 dBm	Pass
3.4	15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	Pass
-	15.207	AC Conducted Emission	15.207(a)	Not Required
-	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Not Required
3.5	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass

Note:

- 1. Not required means after assessing, test items are not necessary to carry out. which is covered by previous report
- 2. This is a variant report by adding band 2 and 3. All the test cases were performed on original report which can be referred to Sporton Report Number FR730732-01D. Based on the original report, the test cases were verified.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 4 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

1 General Description

1.1 Applicant

Gillon UK LLC

106 E. Sixth Street, Suite 900, Austin, Texas 78701

1.2 Product Feature of Equipment Under Test

Product Feature				
Equipment HDMI Digital Media Receiver				
Model Name	LDC9WZ			
FCC ID	2ALBL-1731			
	WLAN 11b/g/n HT20			
EUT supports Radios application	WLAN 11a/n HT20/HT40			
EOT Supports Radios application	WLAN 11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 5 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No.: FR730732-04

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification				
Sta	5260 MHz ~ 5320 MHz			
Tx/Rx Frequency Range	5500 MHz ~ 5720 MHz			
	<5260 MHz ~ 5320 MHz>			
	<ant. 1=""></ant.>			
	802.11a : 11.37 dBm / 0.0137 W			
	802.11n HT20 : 11.40 dBm / 0.0138 W			
	802.11n HT40 : 11.40 dBm / 0.0138 W			
	802.11ac VHT20: 11.38 dBm / 0.0137 W			
	802.11ac VHT40: 11.38 dBm / 0.0137 W			
	802.11ac VHT80: 9.52 dBm / 0.009 W			
	<ant. 2=""></ant.>			
	802.11a: 11.40 dBm / 0.0138 W			
	802.11n HT20 : 11.41 dBm / 0.0138 W			
	802.11n HT40 : 11.47 dBm / 0.014 W			
	802.11ac VHT20: 11.39 dBm / 0.0138 W			
	802.11ac VHT40: 11.39 dBm / 0.0138 W			
	802.11ac VHT80: 11.08 dBm / 0.0128 W			
	MIMO <ant. 1+2=""></ant.>			
	802.11a: 14.44 dBm / 0.0278 W			
	802.11n HT20 : 14.45 dBm / 0.0279 W			
	802.11n HT40 : 14.48 dBm / 0.0281 W			
	802.11ac VHT20: 14.43 dBm / 0.0277 W			
	802.11ac VHT40: 14.41 dBm / 0.0276 W			
Maximum Output Power to	802.11ac VHT80: 13.27 dBm / 0.0212 W			
Antenna	<5500 MHz ~ 5720 MHz >			
	<ant. 1=""></ant.>			
	802.11a: 11.24 dBm / 0.0133 W			
	802.11n HT20 : 11.38 dBm / 0.0137 W			
	802.11n HT40 : 11.42 dBm / 0.0139 W 802.11ac VHT20: 11.26 dBm / 0.0134 W			
	802.11ac VHT20: 11.26 dBiii / 0.0134 W			
	802.11ac VHT80: 11.39 dBm / 0.0138 W			
	<ant. 2=""></ant.>			
	802.11a : 11.37 dBm / 0.0137 W			
	802.11n HT20 : 11.42 dBm / 0.0139 W			
	802.11n HT40 : 11.44 dBm / 0.0139 W			
	802.11ac VHT20: 11.40 dBm / 0.0138 W			
	802.11ac VHT40: 11.35 dBm / 0.0136 W			
	802.11ac VHT80: 11.36 dBm / 0.0137 W			
	MIMO <ant. 1+2=""></ant.>			
	802.11a : 14.46 dBm / 0.0279 W			
	802.11n HT20 : 14.46 dBm / 0.0279 W			
	802.11n HT40 : 14.47 dBm / 0.028 W			
	802.11ac VHT20: 14.42 dBm / 0.0277 W			
	802.11ac VHT40: 14.43 dBm / 0.0277 W			
	802.11ac VHT80: 14.40 dBm / 0.0275 W			

 SPORTON INTERNATIONAL INC.
 Page Number
 : 6 of 27

 TEL: 886-3-327-3456
 Report Issued Date
 : May 21, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2ALBL-1731

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No. : FR730732-04

99% Occupied Bandwidth

Standards-related Product Specification
<5260 MHz ~ 5320 MHz>
<Ant. 1>

802.11a : 18.50 MHz 802.11n HT20 : 19.20 MHz 802.11n HT40 : 36.70 MHz 802.11ac VHT80 : 75.84 MHz

<Ant. 2>

802.11a: 18.35 MHz 802.11n HT20: 19.05 MHz 802.11n HT40: 36.80 MHz 802.11ac VHT80: 75.96 MHz

MIMO <Ant. 1>

802.11a: 19.45 MHz

802.11n HT20 : 19.00 MHz 802.11n HT40 : 36.80 MHz 802.11ac VHT80 : 75.84 MHz

MIMO <Ant. 2>

802.11a: 18.15 MHz 802.11n HT20: 19.10 MHz 802.11n HT40: 36.80 MHz 802.11ac VHT80: 75.84 MHz

<5500 MHz ~ 5720 MHz>

<Ant. 1>

802.11a: 18.45 MHz

802.11n HT20 : 19.15 MHz 802.11n HT40 : 36.80 MHz 802.11ac VHT80 : 75.96 MHz

<Ant. 2>

802.11a: 18.40 MHz 802.11n HT20: 19.15 MHz 802.11n HT40: 36.70 MHz 802.11ac VHT80: 75.96 MHz

MIMO <Ant. 1>

802.11a: 18.55 MHz 802.11n HT20: 19.10 MHz 802.11n HT40: 36.90 MHz 802.11ac VHT80: 75.96 MHz

MIMO <Ant. 2>

802.11a: 18.45 MHz 802.11n HT20: 19.00 MHz 802.11n HT40: 36.80 MHz 802.11ac VHT80: 75.96 MHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 7 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

Stan	dards-related Prod	uct Specification			
	<ant. 1=""></ant.>				
	<5260 MHz ~ 5320 MHz>				
	Fixed Internal Ante	enna with gain 4.18	3 dBi		
	<5500 MHz ~ 5720) MHz >			
Automore Tomor (Octor	Fixed Internal Ante	enna with gain 5.32	? dBi		
Antenna Type / Gain	<ant. 2=""></ant.>				
	<5260 MHz ~ 5320 MHz>				
	Fixed Internal Antenna with gain 5.70 dBi				
	<5500 MHz ~ 5720 MHz >				
	Fixed Internal Antenna with gain 6.23 dBi				
Time of Madulation	802.11a/n : OFDM	(BPSK / QPSK / 1	SK / QPSK / 16QAM / 64QAM)		
Type of Modulation	802.11ac : OFDM	(BPSK / QPSK / 16	6QAM / 64QAM / 2	56QAM)	
		Ant. 1	Ant. 2		
	802.11 a/n/ac	V	\ \/		
Antenna Function Description	802.11 a/n/ac	V	V		
	MIMO	V	V		
	IVIIIVIO				

Note: MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 8 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Report No.: FR730732-04

: 9 of 27

Test Site SPORTON INTERNATIONAL INC.		
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,	
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.	
rest Site Location	TEL: +886-3-327-3456	
	FAX: +886-3-328-4978	
Took Site No	Sporton Site No.	
Test Site No.	TH05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,		
Test Site Location	Taoyuan City, Taiwan (R.O.C.)		
rest Site Location	TEL: +886-3-327-0868		
	FAX: +886-3-327-0855		
Took Site No	Sporton Site No.		
Test Site No.	03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: May 21, 2018

FAX: 886-3-328-4978 : Rev. 01 Report Version

FCC ID: 2ALBL-1731 Report Template No.: BU5-FR15EWL AC MA Version 2.0

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5250-5350 MHz Band 2	54*	5270	62*	5310
(U-NII-2A)	56	5280	64	5320
(3 : 2/1)	58#	5290		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5470-5725 MHz	104	5520	132	5660
Band 3 (U-NII-2C)	106#	5530	134*	5670
(5 1411 25)	108	5540	136	5680
	110*	5550	140	5700

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	118*	5590	124	5620
TDWR Channel	120	5600	126*	5630
	122#	5610	128	5640

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
Ctraddla Channal	138#	5690	144	5720
Straddle Channel	142*	5710		

Note:

1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.

2. The above Frequency and Channel in "#" were 802.11ac VHT80.

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 10 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Single Antenna

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20 (Covered by HT20)	MCS0
802.11ac VHT40 (Covered by HT40)	MCS0
802.11ac VHT80	MCS0

MIMO Antenna

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20 (Covered by HT20)	MCS0
802.11ac VHT40 (Covered by HT40)	MCS0
802.11ac VHT80	MCS0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 11 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No. : FR730732-04

	Ch #	Band II:5250-5350 MHz	Band III:5470-5725MHz		
	Ch. #	802.11 a	802.11a		
L	. Low 52		100		
M	Middle	60	116		
Н	H High 64		140		
	Straddle	-	144		

	Ch. #	Band II:5250-5350 MHz	Band III:5470-5725MHz		
	Cn. #	802.11n HT20	802.11n HT20		
L	Low 52		100		
М	Middle 60		116		
Н	High 64		140		
5	Straddle	-	144		

	Ch. #	Band II:5250-5350 MHz	Band III:5470-5725MHz
	Cn. #	802.11n HT40	802.11n HT40
L	Low	54	102
M	Middle -		110
Н	High 62		134
5	Straddle	-	142

	Ch #	Band II:5250-5350 MHz	Band III:5470-5725MHz		
	Ch. #	802.11ac VHT80	802.11ac VHT80		
L	Low	-	106		
М	Middle	58	122		
Н	High	-	-		
5	Straddle	-	138		

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 12 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
Notebook-40	Lenovo	E335	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "CMD" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 4.2 + 10 = 14.2 (dB)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 13 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and set the Video bandwidth (VBW) $\geq 3 * RBW$.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 14 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 15 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For the 5.25–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission

Report No.: FR730732-04

bandwidth in megahertz.

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules

v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for

the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to

show compliance.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall

be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in

order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules

v02r01.

Method PM (Measurement using an RF average power meter):

1. Measurement is performed using a wideband RF power meter.

2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum

power control level.

3. Measure the average power of the transmitter, and the average power is corrected with duty

factor, $10 \log(1/x)$, where x is the duty cycle.

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules

v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for

the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to

show compliance.

Report Issued Date: May 21, 2018
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 16 of 27

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 17 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No. : FR730732-04

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For the 5.25–5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

Report No.: FR730732-04

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- · Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 18 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

Report No.: FR730732-04

 For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Note: Average Power Density (dB) = Measured value+ Duty Factor

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 19 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.4.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731

Page Number : 20 of 27 Report Issued Date: May 21, 2018

Report No.: FR730732-04

: Rev. 01 Report Version

(3) KDB789033 D02 v02r01 G)2)c)

(i) Section 15.407(b)(1) to (b)(3) specify the unwanted emission limits for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted

Report No.: FR730732-04

bands are subject to a peak emission limit of -27 dBm/MHz.3

(ii) Section 15.407(b)(4) specifies the unwanted emission limit for the U-NII-3 band. A band

emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are in terms of a

Peak detector. An alternative to the band emissions mask is specified in Section

15.407(b)(4)(ii). The alternative limits are based on the highest antenna gain specified in the

filing. There are also marketing and importation restrictions for the devices using the

alternative limit.4

Note 3: An out-of-band emission that complies with both the average and peak limits of

Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.

Note 4: Only devices with antenna gains of 10 dBi or less may be approved using the

emission limits specified in Section 15.247(d) till March 2, 2018; all other devices operating in

this band must use the mask specified in Section 15.407(b)(4)(i).

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Page Number : 21 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

3.4.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
Section G) Unwanted emissions measurement.

Report No.: FR730732-04

- (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456

FAX: 886-3-328-4978

FCC ID: 2ALBL-1731

Repo

Report Version : Rev. 01
Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report Issued Date: May 21, 2018

: 22 of 27

Page Number

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 23 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 24 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

3.5 Antenna Requirements

3.5.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR730732-04

3.5.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.5.3 Antenna Gain

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(NANT/NSS=1) dB.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT \leq 4.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain GANT is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

<cdd modes<="" th=""><th>></th><th>~</th><th></th><th></th><th></th><th></th></cdd>	>	~				
			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant. 1	Ant. 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band II	4.18	5.70	5.70	7.98	0.00	1.98
Band III	5.32	6.23	6.23	8.80	0.23	2.80

Power limit reduction = Composite gain - 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 25 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	0932001	N/A	Sep. 26, 2017	Apr. 28, 2018 ~ May 12, 2018	Sep. 25, 2018	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	0846202	300MHz~40GHz	Sep. 26, 2017	Apr. 28, 2018 ~ May 12, 2018	Sep. 25, 2018	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101067	9kHz ~ 30GHz	Nov. 13, 2017	Apr. 28, 2018 ~ May 12, 2018	Nov. 12, 2018	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC1300484	N/A	Mar. 01, 2018	Apr. 28, 2018 ~ May 12, 2018	Feb. 28, 2019	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Nov. 10, 2017	May 04, 2018 ~ May 14, 2018	Nov. 09, 2018	Radiation (03CH13-HY)
Filter	Wainwright	WLKS1200- 8SS	SN3	1.2G Low Pass	Nov. 21, 2017	May 04, 2018 ~ May 14, 2018	Nov. 20, 2018	Radiation (03CH13-HY)
Filter	Woken	WHKX8-527 2.5-6750-18 000-40ST	SN2	6.75G Highpass	Jul. 17, 2017	May 04, 2018 ~ May 14, 2018	Jul. 16, 2018	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Jan. 19, 2018	May 04, 2018 ~ May 14, 2018	Jan. 18, 2020	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D&0080 0N1D01N-06	40103&07	30MHz to 1GHz	Jan. 10, 2018	May 04, 2018 ~ May 14, 2018	Jan. 09, 2019	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz ~ 18GHz	Jun. 15, 2017	May 04, 2018 ~ May 14, 2018	Jun. 14, 2018	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-001 01800-30-10 P	1590074	1GHz~18GHz	May 22, 2017	May 04, 2018 ~ May 14, 2018	May 21, 2018	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY5327014 7	1GHz~26.5GHz	Feb. 02, 2018	May 04, 2018 ~ May 14, 2018	Feb. 01, 2019	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY5537052 6	10Hz~44GHz	Mar. 15, 2018	May 04, 2018 ~ May 14, 2018	Mar. 14, 2019	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500 -B	N/A	1m~4m	N/A	May 04, 2018 ~ May 14, 2018	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	May 04, 2018 ~ May 14, 2018	N/A	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA91705 84	18GHz- 40GHz	Nov. 27, 2017	May 04, 2018 ~ May 14, 2018	Nov. 26, 2018	Radiation (03CH13-HY)
EMI Test Receiver	Agilent	N9038A(MX E)	MY5329005 3	20Hz to 26.5GHz	Jan. 16, 2018	May 04, 2018 ~ May 14, 2018	Jan. 15, 2019	Radiation (03CH13-HY)
Preamplifier	MITEQ	TTA 1840-35-HG	1871923	18GHz ~ 40GHz	Jul.18, 2017	May 04, 2018 ~ May 14, 2018	Jul.17, 2018	Radiation (03CH13-HY)
Software	AUDIX	E3 6.2009-8-24 c	RK-001124	N/A	N/A	May 04, 2018 ~ May 14, 2018	N/A	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M-18G	Jan. 22, 2018	May 04, 2018 ~ May 14, 2018	Jan. 21, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	335041/4	30M-18G	Jan. 22, 2018	May 04, 2018 ~ May 14, 2018	Jan. 21, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30M~18GHz	Jan. 22, 2018	May 04, 2018 ~ May 14, 2018	Jan. 21, 2019	Radiation (03CH13-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 26 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No. : FR730732-04

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	EA
of 95% (U = 2Uc(y))	5.4

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	43
of 95% (U = 2Uc(y))	4.3

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBL-1731 Page Number : 27 of 27
Report Issued Date : May 21, 2018
Report Version : Rev. 01

Report No.: FR730732-04

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Luffy Lin	Temperature:	21~25	°C
Test Date:	2018/4/28 ~ 2018/05/12	Relative Humidity:	51~54	%

TEST RESULTS DATA 26dB and 99% OBW

								Band	II							
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Band	9% width Hz)	Band	dB width Hz)	Band Powe	99% width r Limit Bm)	Band EIRP	99% lwidth Limit Bm)	Band Powe	26dB lwidth r Limit Bm)	Note	
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	52	5260	18.30	18.35	23.00	23.00	23.62	23.64	29.62	29.64	23.98	23.98		
11a	6Mbps	1	60	5300	18.25	18.35	23.00	22.90	23.61	23.64	29.61	29.64	23.98	23.98		
11a	6Mbps	1	64	5320	18.50	18.30	23.10	23.10	23.67	23.62	29.67	29.62	23.98	23.98		
HT20	MCS0	1	52	5260	19.20	19.00	23.30	23.54	23.83	23.79	29.83	29.79	23.98	23.98		
HT20	MCS0	1	60	5300	19.20	19.05	23.30	23.67	23.83	23.80	29.83	29.80	23.98	23.98		
HT20	MCS0	1	64	5320	19.10	19.05	23.18	23.30	23.81	23.80	29.81	29.80	23.98	23.98		
HT40	MCS0	1	54	5270	36.70	36.80	41.40	41.22	23.98	23.98	30.00	30.00	23.98	23.98		
HT40	MCS0	1	62	5310	36.70	36.70	41.70	41.40	23.98	23.98	30.00	30.00	23.98	23.98		
VHT80	MCS0	1	58	5290	75.84	75.96	82.24	83.06	23.98	23.98	30.00	30.00	23.98	23.98		
11a	6Mbps	2	52	5260	19.45	18.10	23.44	22.76	23.	.58	29.	.58	23	.98		
11a	6Mbps	2	60	5300	18.20	18.15	22.90	22.90	23.	.59	29.	.59	23	.98		
11a	6Mbps	2	64	5320	18.30	18.05	22.90	22.93	23.	.56	29.	.56	23	.98		
HT20	MCS0	2	52	5260	18.95	18.90	23.39	23.00	23.	.76	29.	.76	23	.98		
HT20	MCS0	2	60	5300	19.00	19.10	23.30	23.25	23.	.79	29.	.79	23	.98		
HT20	MCS0	2	64	5320	18.95	18.90	23.33	23.00			29.	.76	23	.98		
HT40	MCS0	2	54	5270	36.70	36.80	41.76	41.04	23.98		30.	.00	23	.98		
HT40	MCS0	2	62	5310	36.80	36.80	41.58	41.22	23.	.98	30.	.00	23	.98		
VHT80	MCS0	2	58	5290	75.84	75.84	82.24	81.92	23.98		30.00		30.00 23.98		.98	

TEST RESULTS DATA Average Power Table

								FCC Ba	nd II						
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)		uty etor B)		Average conducte Power (dBm)		Cond Powe	CC ucted r Limit Bm)	_	G Bi)	EIRP Power Limit (dBm)	Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	(' '	
11a	6Mbps	1	52	5260	0.32	0.29	11.20	11.21		23.98	23.98	4.18	5.70	26.99	Pass
11a	6Mbps	1	60	5300	0.32	0.29	11.34	11.24		23.98	23.98	4.18	5.70	26.99	Pass
11a	6Mbps	1	64	5320	0.32	0.29	11.37	11.40		23.98	23.98	4.18	5.70	26.99	Pass
HT20	MCS0	1	52	5260	0.35	0.31	11.30	11.31		23.98	23.98	4.18	5.70	26.99	Pass
HT20	MCS0	1	60	5300	0.35	0.31	11.31	11.27		23.98	23.98	4.18	5.70	26.99	Pass
HT20	MCS0	1	64	5320	0.35	0.31	11.40	11.41		23.98	23.98	4.18	5.70	26.99	Pass
HT40	MCS0	1	54	5270	0.62	0.62	11.27	11.30		23.98	23.98	4.18	5.70	26.99	Pass
HT40	MCS0	1	62	5310	0.62	0.62	11.40	11.47		23.98	23.98	4.18	5.70	26.99	Pass
VHT20	MCS0	1	52	5260	0.34	0.34	11.18	11.28		23.98 23.98		4.18	5.70	26.99	Pass
VHT20	MCS0	1	60	5300	0.34	0.34	11.27	11.30		23.98 23.98		4.18	5.70	26.99	Pass
VHT20	MCS0	1	64	5320	0.34	0.34	11.38	11.39		23.98	23.98	4.18	5.70	26.99	Pass
VHT40	MCS0	1	54	5270	0.62	0.65	11.23	11.23		23.98	23.98	4.18	5.70	26.99	Pass
VHT40	MCS0	1	62	5310	0.62	0.65	11.38	11.39		23.98	23.98	4.18	5.70	26.99	Pass
VHT80	MCS0	1	58	5290	1.16	1.18	9.52	11.08		23.98	23.98	4.18 5.70		26.99	Pass
11a	6Mbps	2	52	5260	0.29	0.32	10.83	11.76	14.33	23.	98	5.7	70	26.99	Pass
11a	6Mbps	2	60	5300	0.29	0.32	10.96	11.77	14.40	23.	.98	5.7	70	26.99	Pass
11a	6Mbps	2	64	5320	0.29	0.32	10.94	11.87	14.44	23.	.98	5.7	70	26.99	Pass
HT20	MCS0	2	52	5260	0.35	0.34	11.03	11.66	14.37	23.	.98	5.7	70	26.99	Pass
HT20	MCS0	2	60	5300	0.35	0.34	11.05	11.70	14.40	23.	.98	5.7	70	26.99	Pass
HT20	MCS0	2	64	5320	0.35	0.34	11.10	11.75	14.45	23.	.98	5.7	70	26.99	Pass
HT40	MCS0	2	54	5270	0.62	0.62	10.94	11.64	14.32	23.	.98	5.7	70	26.99	Pass
HT40	MCS0	2	62	5310	0.62	0.62	11.03	11.87	14.48	23.	.98	5.7	70	26.99	Pass
VHT20	MCS0	2	52	5260	0.34	0.34	11.11	11.52	14.33	23.	.98	5.7	70	26.99	Pass
VHT20	MCS0	2	60	5300	0.34	0.34	11.01	11.59	14.32			5.7	70	26.99	Pass
VHT20	MCS0	2	64	5320	0.34	0.34	11.15	11.67	14.43			5.7	70	26.99	Pass
VHT40	MCS0	2	54	5270	0.60	0.62	10.83	11.70	14.30	23.	.98	5.7	70	26.99	Pass
VHT40	MCS0	2	62	5310	0.60	0.62	11.04	11.73	14.41	23.	.98	5.7	70	26.99	Pass
VHT80	MCS0	2	58	5290	1.20	1.20	9.83	10.66	13.27 23.98				70	26.99	Pass

TEST RESULTS DATA Power Spectral Density

								Band	II					
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)		uty ctor B)		Average Power Density IBm/MH		Lir	rage SD mit /MHz)	D (di	G Bi)	Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	52	5260	0.32	0.29	-1.24	-1.40		11.00	11.00	4.18	5.70	Pass
11a	6Mbps	1	60	5300	0.32	0.29	-1.21	-1.36		11.00	11.00	4.18	5.70	Pass
11a	6Mbps	1	64	5320	0.32	0.29	-1.13	-1.11		11.00	11.00	4.18	5.70	Pass
HT20	MCS0	1	52	5260	0.35	0.31	-1.42	-1.43		11.00	11.00	4.18	5.70	Pass
HT20	MCS0	1	60	5300	0.35	0.31	-1.45 -1.26			11.00	11.00	4.18	5.70	Pass
HT20	MCS0	1	64	5320	0.35	0.31	-1.47 -1.25			11.00	11.00	4.18	5.70	Pass
HT40	MCS0	1	54	5270	0.62	0.62	-4.00	-3.86		11.00	11.00	4.18	5.70	Pass
HT40	MCS0	1	62	5310	0.62	0.62	-4.16	-3.86		11.00	11.00	4.18	5.70	Pass
VHT80	MCS0	1	58	5290	1.16	1.18	-8.13	-7.23		11.00	11.00	4.18	5.70	Pass
11a	6Mbps	2	52	5260	0.29	0.32			2.61	9.0	02	7.9	98	Pass
11a	6Mbps	2	60	5300	0.29	0.32			2.36	9.0	02	7.9	98	Pass
11a	6Mbps	2	64	5320	0.29	0.32			2.37	9.0	02	7.9	98	Pass
HT20	MCS0	2	52	5260	0.35	0.34			2.53	9.0	02	7.9	98	Pass
HT20	MCS0	2	60	5300	0.35	0.34			2.35	9.0	02	7.9	98	Pass
HT20	MCS0	2	64	5320	0.35	0.34			2.28	9.0	02	7.9	98	Pass
HT40	MCS0	2	54	5270	0.62	0.62			-1.01	9.0	02	7.9	98	Pass
HT40	MCS0	2	62	5310	0.62	0.62			-1.11	9.0	02	7.9	98	Pass
VHT80	MCS0	2	58	5290	1.20	1.20			-5.12	9.0	02	7.9	98	Pass

TEST RESULTS DATA 26dB and 99% OBW

					Band III											
								Band	Ш							
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Band In U-1	9% Iwidth NII 2C Hz)	Band In U-I	dB Iwidth NII 2C Hz)	Band Powe	99% Iwidth r Limit Bm)	Band EIRP	99% Iwidth Limit Bm)	Band Powe	26dB Iwidth r Limit Bm)	Bandw Stra	dB vidth for addle annel Hz)
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2
11a	6Mbps	1	100	5500	18.45	18.40	23.00	23.10	23.66	23.65	29.66	29.65	23.98	23.98		
11a	6Mbps		116	5580	18.30	18.30	23.00	23.10	23.62	23.62	29.62	29.62	23.98	23.98		
11a	6Mbps	1	140	5700	18.35	18.40	23.10	23.00	23.64	23.65	29.64	29.65	23.98	23.98		
11a	6Mbps	1	144	5720	14.40	14.45	16.55	16.50	22.58	22.60	28.58	28.60	23.19	23.17	3.16	3.15
HT20	MCS0	1	100	5500	19.05	19.15	23.33	23.50	23.80	23.82	29.80	29.82	23.98	23.98		
HT20	MCS0	1	116	5580	19.10	19.05	23.43	23.30	23.81	23.80	29.81	29.80	23.98	23.98		
HT20	MCS0	1	140	5700	19.15	19.00	23.40	23.30	23.82	23.79	29.82	29.79	23.98	23.98		
HT20	MCS0	1	144	5720	14.55	14.75	16.84	16.80	22.63	22.69	28.63	28.69	23.26	23.25	3.75	3.74
HT40	MCS0	1	102	5510	36.80	36.70	41.40	41.64	23.98	23.98	30.00	30.00	23.98	23.98		
HT40	MCS0	1	110	5550	36.70	36.60	41.22	41.76	23.98	23.98	30.00	30.00	23.98	23.98		
HT40	MCS0	1	134	5670	36.70	36.70	41.58	41.40	23.98	23.98	30.00	30.00	23.98	23.98		
HT40	MCS0	1	142	5710	33.40	33.50	35.79	35.88	23.98	23.98	30.00	30.00	23.98	23.98	3.06	3.09
VHT80	MCS0	1	106	5530	75.96	75.96	82.88	82.56	23.98	23.98	30.00	30.00	23.98	23.98		
VHT80	MCS0	1	122	5610	75.96	75.96	82.56	82.24	23.98	23.98	30.00	30.00	23.98	23.98		
VHT80	MCS0	1	138	5690	73.16	73.28	76.28	76.84	23.98	23.98	30.00	30.00	23.98	23.98	2.54	2.54
11a	6Mbps	2	100	5500	18.55	18.10	22.90	23.00	23	.58	29.	.58	23	.98		
11a	6Mbps	2	116	5580	18.25	18.15	22.93	23.00	23	.59	29.	.59	23	.98		
11a	6Mbps	2	140	5700	18.25	18.45	23.00	22.90	23	.61	29.	.61	23	.98		
11a	6Mbps	2	144	5720	14.25	14.25	16.55	16.35	22	.54	28.	.54	23	.14	3.05	3.05
HT20	MCS0	2	100	5500	18.95	19.00	23.30	23.10	23	.78	29.	.78	23	.98		
HT20	MCS0	2	116	5580	18.90	18.95	23.40	23.10	23	.76	29.	.76	23	.98		
HT20	MCS0	2	140	5700	19.10	18.90	23.20	23.10	23	.76	29.	.76	23	.98		
HT20	MCS0	2	144	5720	14.60	14.55	16.60	16.85	22	.63	28.	.63	23	.20	3.75	3.75
HT40	MCS0	2	102	5510	36.80	36.70	41.58	41.30	23	.98	30.	.00	23	.98		
HT40	MCS0	2	110	5550	36.70	36.80	41.31	41.04	23	.98	30.	.00	23	.98		
HT40	MCS0	2	134	5670	36.90	36.70	41.40	41.04	23	.98	30.	.00	23	.98		
HT40	MCS0	2	142	5710	33.50	33.50	35.79	35.70	23	.98	30.	.00	23	.98	3.11	3.1
VHT80	MCS0	2	106	5530	75.96	75.84	82.24	81.92	23	.98	30.	.00	23	.98		
	MCS0	2	122	5610	75.84	75.96	82.24	81.60	23		30.			.98		
VHT80	MCS0	2	138	5690	73.16	73.16	76.66	75.96	23	.98	30.	.00	23	.98	2.55	2.6

TEST RESULTS DATA Average Power Table

							ı	FCC Ba	nd III						
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		uty ctor B)	С	Average conducte Power (dBm) Ant 2		Cond Powe	CC ucted r Limit Bm)	(d	G Bi)	EIRP Power Limit (dBm)	Pass/Fail
44.	ON Allers		400	5500			Ant 1		SUM			Ant 1		00.00	D
11a	6Mbps	1	100	5500	0.32	0.29	11.24	11.37		23.98	23.75	5.32	6.23	26.99	Pass
11a 11a	6Mbps 6Mbps	1	116 140	5580 5700	0.32	0.29	11.16 11.20	11.12 11.22		23.98	23.75	5.32	6.23	26.99 26.99	Pass Pass
11a	6Mbps	1	144	5720	0.32	0.29	11.14	11.24		23.90	22.94	5.32	6.23	26.99	Pass
HT20	MCS0	1	100	5500	0.35	0.29	11.38	11.42		23.19	23.75	5.32	6.23	26.99	Pass
HT20	MCS0	1	116	5580	0.35	0.31	11.26	11.29		23.98	23.75	5.32	6.23	26.99	Pass
HT20	MCS0	1	140	5700	0.35	0.31	11.33	11.36		23.98	23.75	5.32	6.23	26.99	Pass
HT20	MCS0	1	144	5720	0.35	0.31	11.24	11.29		23.26	23.02	5.32	6.23	26.99	Pass
HT40	MCS0	1	102	5510	0.62	0.62	11.42	11.44		23.98	23.75	5.32	6.23	26.99	Pass
HT40	MCS0	1	110	5550	0.62	0.62	11.37	11.35		23.98	23.75	5.32	6.23	26.99	Pass
HT40	MCS0	1	134	5670	0.62	0.62	11.30	11.27		23.98	23.75	5.32	6.23	26.99	Pass
HT40	MCS0	1	142	5710	0.62	0.62	11.22	11.29		23.98	23.75	5.32	6.23	26.99	Pass
VHT20		1	100	5500	0.34	0.34	11.26	11.40		23.98	23.75	5.32	6.23	26.99	Pass
VHT20		1	116	5580	0.34	0.34	11.20	11.32		23.98	23.75	5.32	6.23	26.99	Pass
	MCS0	1	140	5700	0.34	0.34	11.25	11.30		23.98	23.75	5.32	6.23	26.99	Pass
VHT20		1	144	5720	0.34	0.34	11.20	11.26		23.98	23.75	5.32	6.23	26.99	Pass
	MCS0	1	102	5510	0.62	0.65	11.39	11.35		23.98	23.75	5.32	6.23	26.99	Pass
	MCS0	1	110	5550	0.62	0.65	11.30	11.28		23.98	23.75	5.32	6.23	26.99	Pass
	MCS0	1	134	5670	0.62	0.65	11.28	11.22		23.98	23.75	5.32	6.23	26.99	Pass
	MCS0	1	142	5710	0.62	0.65	11.20	11.25		23.98	23.75	5.32	6.23	26.99	Pass
VHT80	MCS0	1	106	5530	1.16	1.18	9.81	9.89		23.98	23.75	5.32	6.23	26.99	Pass
VHT80		1	122	5610	1.16	1.18	11.22	11.36		23.98	23.75	5.32	6.23	26.99	Pass
VHT80		1	138	5690	1.16	1.18	11.14	11.22		23.98	23.75	5.32	6.23	26.99	Pass
11a	6Mbps	2	100	5500	0.29	0.32	10.95	11.89	14.46	23.	.75	6.2	23	26.99	Pass
11a	6Mbps	2	116	5580	0.29	0.32	10.61	11.67	14.19	23.	.75	6.2	23	26.99	Pass
11a	6Mbps	2	140	5700	0.29	0.32	10.61	11.85	14.29	23.	.75	6.2	23	26.99	Pass
11a	6Mbps	2	144	5720	0.29	0.32	10.81	11.86	14.38	22.	.91	6.2	23	26.99	Pass
HT20	MCS0	2	100	5500	0.35	0.34	10.98	11.87	14.46	23.	.75	6.2	23	26.99	Pass
HT20	MCS0	2	116	5580	0.35	0.34	10.90	11.85	14.41	23.	.75	6.2	23	26.99	Pass
HT20	MCS0	2	140	5700	0.35	0.34	10.70	11.97	14.39	23.	.75	6.2	23	26.99	Pass
HT20	MCS0	2	144	5720	0.35	0.34	10.87	11.93	14.44	22.	.97	6.2	23	26.99	Pass
HT40	MCS0	2	102	5510	0.62	0.62	10.90	11.96	14.47	23.		6.2		26.99	Pass
HT40	MCS0	2	110	5550	0.62	0.62	10.88	11.92	14.44	23.	.75	6.2	23	26.99	Pass
HT40		2	134	5670	0.62	0.62	10.70	11.90	14.35	23.		6.2		26.99	Pass
HT40	MCS0	2	142	5710	0.62	0.62	10.55	12.01	14.35	23.		6.2		26.99	Pass
	MCS0	2	100	5500	0.34	0.34	10.96	11.82	14.42	23.	.75	6.2	23	26.99	Pass
	MCS0	2	116	5580	0.34	0.34	10.94	11.78	14.39	23.		6.2		26.99	Pass
	MCS0		140	5700	0.34	0.34	10.86	11.77	14.35	23.		6.2		26.99	Pass
	MCS0	2	144	5720	0.34	0.34	10.80	11.79	14.33	23.		6.2		26.99	Pass
	MCS0	2	102	5510	0.60	0.62	10.83	11.94	14.43	3 23.75		6.2		26.99	Pass
	MCS0	2	110	5550	0.60	0.62	10.82	11.92	14.41	23.		6.2		26.99	Pass
	MCS0	2	134	5670	0.60	0.62	10.58	11.85	14.27	23.		6.2		26.99	Pass
	MCS0	2	142	5710	0.60	0.62	10.51	11.95	14.30	23.		6.2		26.99	Pass
	MCS0		106	5530	1.20	1.20	9.31	10.43	12.91	23.		6.2		26.99	Pass
	MCS0	_	122	5610	1.20	1.20	10.93	11.82	14.40	23.		6.2		26.99	Pass
VHT80	MCS0	2	138	5690	1.20	1.20	10.66	11.76	14.25	23.	./5	6.2	23	26.99	Pass

VHT80 | MCS0 | 2 | 138 | 5690 | 1.20 | 1.20 | 10.66 | 11.76 | 14.

Note: The above Frequency and Channel in "*" were straddle channel.

TEST RESULTS DATA Power Spectral Density

								Band	III					
Mod.	Data Rate	N TX	CH.	Freq. (MHz)	Fac	uty ctor B)		Average Power Density Bm/MH		PS	rage SD mit /MHz)	_	G Bi)	Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	100	5500	0.32	0.29	-0.62	-0.48		11.00	10.77	5.32	6.23	Pass
11a	6Mbps	1	116	5580	0.32	0.29	-0.49	-0.42		11.00	10.77	5.32	6.23	Pass
11a	6Mbps	1	140	5700	0.32	0.29	-1.18	-1.08		11.00	10.77	5.32	6.23	Pass
11a	6Mbps	1	144	5720	0.32	0.29	-1.32	-0.81		11.00	10.77	5.32	6.23	Pass
HT20	MCS0	1	100	5500	0.35	0.31	-0.54	-0.81		11.00	10.77	5.32	6.23	Pass
HT20	MCS0	1	116	5580	0.35	0.31	-0.58	-0.47		11.00	10.77	5.32	6.23	Pass
HT20	MCS0	1	140	5700	0.35	0.31	-0.92	-1.02		11.00	10.77	5.32	6.23	Pass
HT20	MCS0	1	144	5720	0.35	0.31	-1.03	-1.35		11.00	10.77	5.32	6.23	Pass
HT40	MCS0	1	102	5510	0.62	0.62	-3.29	-3.64		11.00	10.77	5.32	6.23	Pass
HT40	MCS0	1	110	5550	0.62	0.62	-3.34	-3.66		11.00	10.77	5.32	6.23	Pass
HT40	MCS0	1	134	5670	0.62	0.62	-3.77	-3.88		11.00	10.77	5.32	6.23	Pass
HT40	MCS0	1	142	5710	0.62	0.62	-3.99	-4.08		11.00	10.77	5.32	6.23	Pass
VHT80	MCS0	1	106	5530	1.16	1.18	-7.37	-7.05		11.00	10.77	5.32	6.23	Pass
VHT80	MCS0	1	122	5610	1.16	1.18	-6.18	-6.38		11.00	10.77	5.32	6.23	Pass
VHT80	MCS0	1	138	5690	1.16	1.18	-6.94	-6.61		11.00	10.77	5.32	6.23	Pass
11a	6Mbps	2	100	5500	0.29	0.32			3.72	8.2	20	8.8	30	Pass
11a	6Mbps	2	116	5580	0.29	0.32			4.15	8.2	20	8.8	30	Pass
11a	6Mbps	2	140	5700	0.29	0.32			3.17	8.2	20	8.8	30	Pass
11a	6Mbps	2	144	5720	0.29	0.32			3.27	8.2	20	8.8	30	Pass
HT20	MCS0	2	100	5500	0.35	0.34			3.40	8.2	20	8.8	30	Pass
HT20	MCS0	2	116	5580	0.35	0.34			4.03	8.2	20	8.8	30	Pass
HT20	MCS0	2	140	5700	0.35	0.34			3.28	8.2	20	8.8	30	Pass
HT20	MCS0	2	144	5720	0.35	0.34			3.12	8.2	20	8.8	30	Pass
HT40	MCS0	2	102	5510	0.62	0.62			0.41	8.2	20	8.8	30	Pass
HT40	MCS0	2	110	5550	0.62	0.62			0.68	8.2	20	8.8	30	Pass
HT40	MCS0	2	134	5670	0.62	0.62			0.13	8.2	20	8.8	30	Pass
HT40	MCS0	2	142	5710	0.62	0.62			-0.30	8.2	20	8.8	30	Pass
VHT80		2	106	5530	1.20	1.20			-4.05	8.2		8.8	30	Pass
VHT80		2	122	5610	1.20	1.20			-2.37	8.2	20	8.8	30	Pass
VHT80	MCS0	2	138	5690	1.20	1.20			-3.11	8.2	20	8.8	30	Pass

Appendix B. Radiated Spurious Emission

Test Engineer :	Alox Ihong Fu Chan and Wilson Wu	Temperature :	24.8~25.0°C
Test Engineer .	Alex Jheng , Fu Chen, and Wilson Wu	Relative Humidity :	50~52%

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.		, .	j 	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5004.08	52.44	-21.56	74	42.16	31.82	7.99	29.53	101	320	Р	Н
		5071.74	42.64	-11.36	54	32.2	31.9	8.08	29.54	101	320	Α	Н
	*	5260	107.3	-	-	96.48	32.12	8.26	29.56	101	320	Р	Н
	*	5260	99.71	-	-	88.89	32.12	8.26	29.56	101	320	Α	Н
000 44 -		5442	51.67	-22.33	74	40.52	32.32	8.41	29.58	101	320	Р	Н
802.11a		5365.44	42.65	-11.35	54	31.68	32.24	8.3	29.57	101	320	Α	Н
CH 52 5260MHz		5141.44	51.97	-22.03	74	41.39	31.98	8.15	29.55	387	254	Р	V
3200WIFI2		5084.32	42.63	-11.37	54	32.19	31.9	8.08	29.54	387	254	Α	V
	*	5260	102.52	-	-	91.7	32.12	8.26	29.56	387	254	Р	٧
	*	5260	94.92	-	-	84.1	32.12	8.26	29.56	387	254	Α	V
		5369.28	51.14	-22.86	74	40.17	32.24	8.3	29.57	387	254	Р	٧
		5454.72	41.9	-12.1	54	30.69	32.34	8.46	29.59	387	254	Α	٧
		5108.12	52.3	-21.7	74	41.77	31.94	8.13	29.54	144	320	Р	Н
		5068.68	42.78	-11.22	54	32.38	31.88	8.06	29.54	144	320	Α	Н
	*	5300	106.83	-	-	95.97	32.16	8.27	29.57	144	320	Р	Н
	*	5300	99.3	-	-	88.44	32.16	8.27	29.57	144	320	Α	Н
		5353.68	53.27	-20.73	74	42.33	32.22	8.29	29.57	144	320	Р	Н
802.11a		5352.24	44.67	-9.33	54	33.73	32.22	8.29	29.57	144	320	Α	Н
CH 60 5300MHz		5070.38	51.69	-22.31	74	41.29	31.88	8.06	29.54	400	230	Р	٧
3300WIF12		5082.62	42.59	-11.41	54	32.15	31.9	8.08	29.54	400	230	Α	٧
	*	5300	102.98	-	-	92.12	32.16	8.27	29.57	400	230	Р	V
	*	5300	95.33	-	-	84.47	32.16	8.27	29.57	400	230	Α	V
		5453.52	51.28	-22.72	74	40.07	32.34	8.46	29.59	400	230	Р	V
		5458.56	41.99	-12.01	54	30.78	32.34	8.46	29.59	400	230	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Report No. : FR730732-04

	*	5320	107.3	-	-	96.41	32.18	8.28	29.57	119	321	Р	Н
	*	5320	99.81	-	-	88.92	32.18	8.28	29.57	119	321	Α	Н
		5350.88	56.05	-17.95	74	45.11	32.22	8.29	29.57	119	321	Р	Н
802.11a		5353.28	45.59	-8.41	54	34.65	32.22	8.29	29.57	119	321	Α	Н
CH 64 5320MHz	*	5320	102.5	-	-	91.61	32.18	8.28	29.57	398	230	Р	V
3320WII 12	*	* 5320 94.98 84.09 32.18 8.28 29.57 398											
		5440	53.4	-20.6	74	42.25	32.32	8.41	29.58	398	230	Р	V
		5352.16	42.33	-11.67	54	31.39	32.22	8.29	29.57	398	230	Α	V
Remark	1. No	o other spurious	found.										
	2. Al	l results are PA	SS against I	Peak and	Average lin	nit line.							

Band 2 5250~5350MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.	
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)	
802.11a CH 52 5260MHz		10520	47.45	-20.75	68.2	52.53	39.52	12.39	56.99	100	0	Р	Н	
		15780	45.39	-28.61	74	49.33	37.68	14.71	56.33	100	0	Р	Н	
		10520	48.1	-20.1	68.2	53.18	39.52	12.39	56.99	100	0	Р	V	
		15780	44.74	-29.26	74	48.68	37.68	14.71	56.33	100	0	Р	V	
802.11a CH 60 5300MHz		10600	46.48	-27.52	74	51.37	39.62	12.41	56.92	100	0	Р	Н	
		15900	44.56	-29.44	74	48.68	37.37	14.77	56.26	100	0	Р	Н	
		10600	46.64	-27.36	74	51.53	39.62	12.41	56.92	100	0	Р	٧	
		15900	45.25	-28.75	74	49.37	37.37	14.77	56.26	100	0	Р	V	
802.11a CH 64 5320MHz		10640	47.66	-26.34	74	52.47	39.67	12.41	56.89	100	0	Р	Н	
		15960	45.23	-28.77	74	49.48	37.19	14.78	56.22	100	0	Р	Н	
		10640	47.26	-26.74	74	52.07	39.67	12.41	56.89	100	0	Р	V	
		15960	45.71	-28.29	74	49.96	37.19	14.78	56.22	100	0	Р	٧	
Remark		No other spurious found.												
	2. A	. All results are PASS against Peak and Average limit line.												

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Report No. : FR730732-04

Report No. : FR730732-04

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5116.62	52.27	-21.73	74	41.74	31.94	8.13	29.54	110	320	Р	Н
		5079.56	42.62	-11.38	54	32.18	31.9	8.08	29.54	110	320	Α	Н
	*	5260	107.18	-	-	96.36	32.12	8.26	29.56	110	320	Р	Н
	*	5260	99.61	-	-	88.79	32.12	8.26	29.56	110	320	Α	Н
802.11n		5428.8	52.79	-21.21	74	41.69	32.32	8.36	29.58	110	320	Р	Н
HT20		5376.72	42.7	-11.3	54	31.74	32.24	8.3	29.58	110	320	Α	Н
CH 52		5087.04	52.49	-21.51	74	42.05	31.9	8.08	29.54	383	253	Р	٧
5260MHz		5094.18	42.46	-11.54	54	31.98	31.92	8.1	29.54	383	253	Α	<
	*	5260	102.44	-	-	91.62	32.12	8.26	29.56	383	253	Р	<
	*	5260	94.91	-	-	84.09	32.12	8.26	29.56	383	253	Α	٧
		5362.32	51.28	-22.72	74	40.31	32.24	8.3	29.57	383	253	Р	٧
		5455.44	42.03	-11.97	54	30.82	32.34	8.46	29.59	383	253	Α	٧
		5116.62	51.92	-22.08	74	41.39	31.94	8.13	29.54	108	321	Р	Н
		5078.2	42.53	-11.47	54	32.09	31.9	8.08	29.54	108	321	Α	Н
	*	5300	106.54	-	-	95.68	32.16	8.27	29.57	108	321	Р	Н
	*	5300	99.23	-	-	88.37	32.16	8.27	29.57	108	321	Α	Н
802.11n		5359.92	52.29	-21.71	74	41.34	32.22	8.3	29.57	108	321	Р	Н
HT20		5350.32	44.69	-9.31	54	33.75	32.22	8.29	29.57	108	321	Α	Н
CH 60		5024.14	51.27	-22.73	74	40.95	31.84	8.01	29.53	400	230	Р	V
5300MHz		5082.96	42.49	-11.51	54	32.05	31.9	8.08	29.54	400	230	Α	V
	*	5300	102.54	-	-	91.68	32.16	8.27	29.57	400	230	Р	V
	*	5300	95.25	-	-	84.39	32.16	8.27	29.57	400	230	Α	V
		5406.96	50	-24	74	38.99	32.28	8.31	29.58	400	230	Р	V
		5459.52	41.96	-12.04	54	30.75	32.34	8.46	29.59	400	230	Α	V

SPORTON INTERNATIONAL INC. Page Number : B3 of B62

	*	5320	106.43	-	-	95.54	32.18	8.28	29.57	100	319	Р	Н
	*	5320	98.61	-	-	87.72	32.18	8.28	29.57	100	319	Α	Н
802.11n		5352.32	52.74	-21.26	74	41.8	32.22	8.29	29.57	100	319	Р	Н
HT20		5361.76	44.65	-9.35	54	33.68	32.24	8.3	29.57	100	319	Α	Н
CH 64	*	5320	102.03	-	-	91.14	32.18	8.28	29.57	337	222	Р	V
5320MHz	*	5320	93.75	-	-	82.86	32.18	8.28	29.57	337	222	Α	V
		5452.8	51.65	-22.35	74	40.44	32.34	8.46	29.59	337	222	Р	V
		5353.12	42.06	-11.94	54	31.12	32.22	8.29	29.57	337	222	Α	V
Remark	1. No	o other spurious	found.									•	
	2. Al	l results are PA	SS against F	Peak and	Average lin	nit line.							

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
802.11n		10520	47.8	-20.4	68.2	52.88	39.52	12.39	56.99	100	0	Р	Н
HT20		15780	44.53	-29.47	74	48.47	37.68	14.71	56.33	100	0	Р	Н
CH 52		10520	47.32	-20.88	68.2	52.4	39.52	12.39	56.99	100	0	Р	V
5260MHz		15780	45.37	-28.63	74	49.31	37.68	14.71	56.33	100	0	Р	V
802.11n		10600	47.35	-26.65	74	52.24	39.62	12.41	56.92	100	0	Р	Н
HT20		15900	44.29	-29.71	74	48.41	37.37	14.77	56.26	100	0	Р	Н
CH 60		10600	46.65	-27.35	74	51.54	39.62	12.41	56.92	100	0	Р	V
5300MHz		15900	44.69	-29.31	74	48.81	37.37	14.77	56.26	100	0	Р	V
802.11n		10640	46.89	-27.11	74	51.7	39.67	12.41	56.89	100	0	Р	Н
HT20		15960	45.91	-28.09	74	50.16	37.19	14.78	56.22	100	0	Р	Н
CH 64		10640	46.63	-27.37	74	51.44	39.67	12.41	56.89	100	0	Р	V
5320MHz		15960	45.39	-28.61	74	49.64	37.19	14.78	56.22	100	0	Р	V
Remark	1. N	o other spurious	s found.	1		1	,		1	1	1	1	1
	2. A	ll results are PA	SS against F	Peak and	Average lim	it line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		5021.42	52.68	-21.32	74	42.36	31.84	8.01	29.53	100	0	Р	Н
		5085.34	43.47	-10.53	54	33.03	31.9	8.08	29.54	100	0	Α	Н
	*	5270	103	-	-	92.17	32.12	8.27	29.56	100	0	Р	Н
	*	5270	95.72	-	-	84.89	32.12	8.27	29.56	100	0	Α	Н
802.11n		5357.52	52.22	-21.78	74	41.28	32.22	8.29	29.57	100	0	Р	Н
HT40		5351.28	43.94	-10.06	54	33	32.22	8.29	29.57	100	0	Α	Н
CH 54		5087.04	51.77	-22.23	74	41.33	31.9	8.08	29.54	364	230	Р	V
5270MHz		5054.06	43.37	-10.63	54	32.99	31.86	8.06	29.54	364	230	Α	V
	*	5270	98.71	-	-	87.88	32.12	8.27	29.56	364	230	Р	V
	*	5270	91.35	-	-	80.52	32.12	8.27	29.56	364	230	Α	V
		5447.52	50.86	-23.14	74	39.69	32.34	8.41	29.58	364	230	Р	V
		5460	42.73	-11.27	54	31.52	32.34	8.46	29.59	364	230	Α	V
		5070.72	51.87	-22.13	74	41.45	31.88	8.08	29.54	118	359	Р	Н
		5116.28	43.43	-10.57	54	32.9	31.94	8.13	29.54	118	359	Α	Н
	*	5310	103.21	-	-	92.32	32.18	8.28	29.57	118	359	Р	Н
	*	5310	95.83	-	-	84.94	32.18	8.28	29.57	118	359	Α	Н
802.11n		5352.24	58.69	-15.31	74	47.75	32.22	8.29	29.57	118	359	Р	Н
HT40		5351.04	50.83	-3.17	54	39.89	32.22	8.29	29.57	118	359	Α	Н
CH 62		5042.5	51.17	-22.83	74	40.81	31.86	8.04	29.54	400	226	Р	V
5310MHz		5002.04	43.25	-10.75	54	32.99	31.8	7.99	29.53	400	226	Α	V
	*	5310	99.44	-	-	88.55	32.18	8.28	29.57	400	226	Р	V
	*	5310	91.92	-	-	81.03	32.18	8.28	29.57	400	226	Α	V
		5353.92	52.21	-21.79	74	41.27	32.22	8.29	29.57	400	226	Р	V
		5350.08	45.03	-8.97	54	34.09	32.22	8.29	29.57	400	226	Α	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		10540	47.35	-20.85	68.2	52.39	39.54	12.39	56.97	100	0	Р	Н
HT40		15810	46.4	-27.6	74	50.39	37.59	14.73	56.31	100	0	Р	Н
CH 54		10540	46.74	-21.46	68.2	51.78	39.54	12.39	56.97	100	0	Р	٧
5270MHz		15810	45.6	-28.4	74	49.59	37.59	14.73	56.31	100	0	Р	V
802.11n		10620	46.91	-27.09	74	51.76	39.64	12.41	56.9	100	0	Р	Н
HT40		15930	44.42	-29.58	74	48.6	37.28	14.78	56.24	100	0	Р	Н
CH 62		10620	46.69	-27.31	74	51.54	39.64	12.41	56.9	100	0	Р	V
5310MHz		15930	44.88	-29.12	74	49.06	37.28	14.78	56.24	100	0	Р	٧

Remark

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B6 of B62

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5115.94	53.62	-20.38	74	43.09	31.94	8.13	29.54	116	318	Р	Н
		5123.42	45.05	-8.95	54	34.51	31.96	8.13	29.55	116	318	Α	Н
	*	5290	98.69	-	-	87.84	32.14	8.27	29.56	116	318	Р	Н
	*	5290	91.93	-	-	81.08	32.14	8.27	29.56	116	318	Α	Н
802.11ac		5353.92	57.79	-16.21	74	46.85	32.22	8.29	29.57	116	318	Р	Н
VHT80		5350.32	50.85	-3.15	54	39.91	32.22	8.29	29.57	116	318	Α	Н
CH 58		5105.74	52.71	-21.29	74	42.21	31.94	8.1	29.54	400	248	Р	V
5290MHz		5062.22	45	-9	54	34.6	31.88	8.06	29.54	400	248	Α	V
	*	5290	95.49	-	-	84.64	32.14	8.27	29.56	400	248	Р	V
	*	5290	88.66	-	-	77.81	32.14	8.27	29.56	400	248	Α	V
		5351.52	52.86	-21.14	74	41.92	32.22	8.29	29.57	400	248	Р	V
		5353.44	46.09	-7.91	54	35.15	32.22	8.29	29.57	400	248	Α	V
Remark	1. No	other spurious	s found.	1	1					ı	1	•	
	2. All	results are PA	SS against F	Peak and	Average lim	it line.							

Band 2 5250~5350MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		10580	47.36	-20.84	68.2	52.29	39.6	12.4	56.93	100	0	Р	Н
VHT80		15870	45.38	-28.62	74	49.49	37.41	14.75	56.27	100	0	Р	Н
CH 58		10580	47.82	-20.38	68.2	52.75	39.6	12.4	56.93	100	0	Р	V
5290MHz		15870	45.33	-28.67	74	49.44	37.41	14.75	56.27	100	0	Р	V
	1. No	other spurious	s found.		1	1	1		1				
Remark	2. All	results are PA	SS against F	eak and	Average lim	it line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B7 of B62

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5450.48	53.93	-20.07	74	42.72	32.34	8.46	29.59	102	357	Р	Н
		5470	54.65	-13.55	68.2	43.37	32.36	8.51	29.59	102	357	Р	Н
		5459.76	44.33	-9.67	54	33.12	32.34	8.46	29.59	102	357	Α	Н
000 44 -	*	5500	105.62	-	-	94.25	32.4	8.56	29.59	102	357	Р	Н
802.11a CH 100	*	5500	98.06	-	-	86.69	32.4	8.56	29.59	102	357	Α	Н
5500MHz		5428.4	51.53	-22.47	74	40.45	32.3	8.36	29.58	371	220	Р	V
3300WII 12		5469.84	52.27	-15.93	68.2	40.99	32.36	8.51	29.59	371	220	Р	V
		5459.6	42.8	-11.2	54	31.59	32.34	8.46	29.59	371	220	Α	V
	*	5500	100.99	-	-	89.62	32.4	8.56	29.59	371	220	Р	V
	*	5500	93.42	-	-	82.05	32.4	8.56	29.59	371	220	Α	٧
		5392.96	51.15	-22.85	74	40.17	32.26	8.3	29.58	100	358	Р	Н
		5469.28	49.7	-18.5	68.2	38.42	32.36	8.51	29.59	100	358	Р	Н
		5445.28	42.58	-11.42	54	31.43	32.32	8.41	29.58	100	358	Α	Н
	*	5580	106.91	-	-	95.27	32.47	8.8	29.63	100	358	Р	Н
	*	5580	99.25	-	-	87.61	32.47	8.8	29.63	100	358	Α	Н
802.11a		5752.4	51.92	-16.28	68.2	40.14	32.66	8.81	29.69	100	358	Р	Н
CH 116 5580MHz		5447.92	50.99	-23.01	74	39.82	32.34	8.41	29.58	400	226	Р	V
3360WIF12		5466.64	51.38	-16.82	68.2	40.1	32.36	8.51	29.59	400	226	Р	V
		5456.32	42.01	-11.99	54	30.8	32.34	8.46	29.59	400	226	Α	V
	*	5580	102.38	-	-	90.74	32.47	8.8	29.63	400	226	Р	V
	*	5580	94.57	-	-	82.93	32.47	8.8	29.63	400	226	Α	V
		5756.495	51.3	-16.9	68.2	39.54	32.66	8.81	29.71	400	226	Р	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B8 of B62

	*	5700	407.07			05.00	22.50	0.00	20.67	400	20	Р	
		5700	107.67	-	-	95.93	32.59	8.82	29.67	100	20	Р	Н
	*	5700	100.18	-	-	88.44	32.59	8.82	29.67	100	20	Α	Н
802.11a CH 140		5725.8	55.78	-12.42	68.2	44.02	32.62	8.82	29.68	100	20	Р	Н
5700MHz	*	5700	102.57	-	-	90.83	32.59	8.82	29.67	400	228	Р	V
	*	5700	94.91	-	-	83.17	32.59	8.82	29.67	400	228	Α	V
		5730.84	52.98	-15.22	68.2	41.23	32.62	8.82	29.69	400	228	Р	V
Remark		o other spurious		Peak and	Average lim	it line.							

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
		11000	47.93	-26.07	74	51.92	40.1	12.51	56.6	100	0	Р	Н
802.11a		16500	46.6	-21.6	68.2	49.08	38.3	14.92	55.7	100	0	Р	Н
CH 100		11000	46.96	-27.04	74	50.95	40.1	12.51	56.6	100	0	Р	V
5500MHz		16500	46.25	-21.95	68.2	48.73	38.3	14.92	55.7	100	0	Р	V
		11160	47.83	-26.17	74	51.74	40.03	12.59	56.53	100	0	Р	Н
802.11a		16740	46.63	-21.57	68.2	48.35	39.12	14.96	55.8	100	0	Р	Н
CH 116		11160	47.56	-26.44	74	51.47	40.03	12.59	56.53	100	0	Р	V
5580MHz		16740	46.62	-21.58	68.2	48.34	39.12	14.96	55.8	100	0	Р	V
		11400	47.44	-26.56	74	51.22	39.94	12.72	56.44	100	0	Р	Н
802.11a		17100	48.49	-19.71	68.2	49.25	40.24	15.06	56.06	100	0	Р	Н
CH 140		11400	47.74	-26.26	74	51.52	39.94	12.72	56.44	100	0	Р	V
5700MHz		17100	48.6	-19.6	68.2	49.36	40.24	15.06	56.06	100	0	Р	V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B9 of B62

Report No. : FR730732-04

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5458.32	54.76	-19.24	74	43.55	32.34	8.46	29.59	100	357	Р	Н
		5461.2	54.5	-13.7	68.2	43.29	32.34	8.46	29.59	100	357	Р	Н
		5460	44.39	-9.61	54	33.18	32.34	8.46	29.59	100	357	Α	Н
802.11n	*	5500	105.59	-	-	94.22	32.4	8.56	29.59	100	357	Р	Н
HT20	*	5500	97.98	-	-	86.61	32.4	8.56	29.59	100	357	Α	Н
CH 100		5431.92	51.09	-22.91	74	39.94	32.32	8.41	29.58	371	222	Р	V
5500MHz		5464.56	51.28	-16.92	68.2	40.05	32.36	8.46	29.59	371	222	Р	V
		5457.04	42.47	-11.53	54	31.26	32.34	8.46	29.59	371	222	Α	V
	*	5500	101.44	-	-	90.07	32.4	8.56	29.59	371	222	Р	V
	*	5500	93.82	-	-	82.45	32.4	8.56	29.59	371	222	Α	V
		5459.68	52.35	-21.65	74	41.14	32.34	8.46	29.59	100	19	Р	Н
		5466.16	50.94	-17.26	68.2	39.66	32.36	8.51	29.59	100	19	Р	H
		5459.68	42.31	-11.69	54	31.1	32.34	8.46	29.59	100	19	Α	Н
	*	5580	107.13	-	-	95.49	32.47	8.8	29.63	100	19	Р	Н
802.11n	*	5580	99.26	-	-	87.62	32.47	8.8	29.63	100	19	Α	Н
HT20		5753.975	51.39	-16.81	68.2	39.61	32.66	8.81	29.69	100	19	Р	Н
CH 116		5430.4	51.81	-22.19	74	40.66	32.32	8.41	29.58	400	224	Р	V
5580MHz		5467.12	51.4	-16.8	68.2	40.12	32.36	8.51	29.59	400	224	Р	V
		5459.92	42.08	-11.92	54	30.87	32.34	8.46	29.59	400	224	А	V
	*	5580	102.47	-	-	90.83	32.47	8.8	29.63	400	224	Р	V
	*	5580	94.41	-	-	82.77	32.47	8.8	29.63	400	224	Α	V
		5749.565	51.4	-16.8	68.2	39.64	32.64	8.81	29.69	400	224	Р	V

SPORTON INTERNATIONAL INC. Page Number : B10 of B62

	*	5700	108.1	-	-	96.36	32.59	8.82	29.67	100	20	Р	Н
802.11n	*	5700	99.72	-	-	87.98	32.59	8.82	29.67	100	20	Α	Н
HT20		5736.92	55.77	-12.43	68.2	44.01	32.64	8.81	29.69	100	20	Р	Н
CH 140	*	5700	102.07	-	-	90.33	32.59	8.82	29.67	400	228	Р	V
5700MHz	*	5700	94.53	-	-	82.79	32.59	8.82	29.67	400	228	Α	V
		5728.84	52.98	-15.22	68.2	41.22	32.62	8.82	29.68	400	228	Р	V
Remark		o other spurious		Peak and	Average lim	nit line.							

Report No. : FR730732-04

Band 3 - 5470~5725MHz WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
802.11n		11000	48.13	-25.87	74	52.12	40.1	12.51	56.6	100	0	Р	Н
HT20		16500	46.92	-21.28	68.2	49.4	38.3	14.92	55.7	100	0	Р	Н
CH 100		11000	46.94	-27.06	74	50.93	40.1	12.51	56.6	100	0	Р	V
5500MHz		16500	46.14	-22.06	68.2	48.62	38.3	14.92	55.7	100	0	Р	V
802.11n		11160	47.74	-26.26	74	51.65	40.03	12.59	56.53	100	0	Р	Н
HT20		16740	46.31	-21.89	68.2	48.03	39.12	14.96	55.8	100	0	Р	Н
CH 116		11160	46.99	-27.01	74	50.9	40.03	12.59	56.53	100	0	Р	V
5580MHz		16740	47.03	-21.17	68.2	48.75	39.12	14.96	55.8	100	0	Р	V
802.11n		11400	48.33	-25.67	74	52.11	39.94	12.72	56.44	100	0	Р	Н
HT20		17100	48.2	-20	68.2	48.96	40.24	15.06	56.06	100	0	Р	Н
CH 140		11400	47.25	-26.75	74	51.03	39.94	12.72	56.44	100	0	Р	V
5700MHz		17100	48.96	-19.24	68.2	49.72	40.24	15.06	56.06	100	0	Р	V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC. Page Number : B11 of B62

Band 3 - 5470~5725MHz

Report No. : FR730732-04

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		5445.52	56.64	-17.36	74	45.47	32.34	8.41	29.58	100	323	Р	Н
		5469.28	62.9	-5.3	68.2	51.62	32.36	8.51	29.59	100	323	Р	Н
		5459.68	48.41	-5.59	54	37.2	32.34	8.46	29.59	100	323	Α	Н
	*	5510	104.58	-	-	93.18	32.4	8.6	29.6	100	323	Р	Н
802.11n	*	5510	95.65	-	-	84.25	32.4	8.6	29.6	100	323	Α	Н
HT40		5736.65	50.79	-17.41	68.2	39.03	32.64	8.81	29.69	100	323	Р	Н
CH 102		5459.68	52.49	-21.51	74	41.28	32.34	8.46	29.59	388	225	Р	<
5510MHz		5469.52	54.72	-13.48	68.2	43.44	32.36	8.51	29.59	388	225	Р	٧
		5458.96	43.7	-10.3	54	32.49	32.34	8.46	29.59	388	225	Α	٧
	*	5510	99.72	-	-	88.32	32.4	8.6	29.6	388	225	Р	٧
	*	5510	91.45	-	-	80.05	32.4	8.6	29.6	388	225	Α	٧
		5764.055	51.33	-16.87	68.2	39.57	32.66	8.81	29.71	388	225	Р	٧
		5456.56	50.45	-23.55	74	39.24	32.34	8.46	29.59	100	323	Р	П
		5466.88	52.04	-16.16	68.2	40.76	32.36	8.51	29.59	100	323	Р	Н
		5459.92	43.41	-10.59	54	32.2	32.34	8.46	29.59	100	323	Α	П
	*	5550	105.09	-	-	93.55	32.45	8.7	29.61	100	323	Р	Η
802.11n	*	5550	95.74	-	-	84.2	32.45	8.7	29.61	100	323	Α	Н
HT40		5737.28	50.89	-17.31	68.2	39.13	32.64	8.81	29.69	100	323	Р	Н
CH 110		5443.6	50.05	-23.95	74	38.9	32.32	8.41	29.58	380	227	Р	V
5550MHz		5465.2	49.08	-19.12	68.2	37.85	32.36	8.46	29.59	380	227	Р	V
		5450.56	42.55	-11.45	54	31.34	32.34	8.46	29.59	380	227	Α	V
	*	5550	100.77	-	-	89.23	32.45	8.7	29.61	380	227	Р	V
	*	5550	91.99	-	-	80.45	32.45	8.7	29.61	380	227	Α	V
		5738.225	51.68	-16.52	68.2	39.92	32.64	8.81	29.69	380	227	Р	V

SPORTON INTERNATIONAL INC. Page Number : B12 of B62

	1		1					_		i			
		5378	51.27	-22.73	74	40.29	32.26	8.3	29.58	100	20	Р	Н
		5469.35	50.27	-17.93	68.2	38.99	32.36	8.51	29.59	100	20	Р	Н
		5457.45	42.64	-11.36	54	31.43	32.34	8.46	29.59	100	20	Α	Н
	*	5670	104.76	-	-	93.02	32.57	8.83	29.66	100	20	Р	Н
802.11n	*	5670	97.07	-	-	85.33	32.57	8.83	29.66	100	20	Α	Н
HT40		5745.47	54.03	-14.17	68.2	42.27	32.64	8.81	29.69	100	20	Р	Н
CH 134		5446.25	51.03	-22.97	74	39.86	32.34	8.41	29.58	366	231	Р	V
5670MHz		5469.7	49.57	-18.63	68.2	38.29	32.36	8.51	29.59	366	231	Р	V
		5458.15	42.3	-11.7	54	31.09	32.34	8.46	29.59	366	231	Α	V
	*	5670	99.68	-	-	87.94	32.57	8.83	29.66	366	231	Р	V
	*	5670	92.12	-	-	80.38	32.57	8.83	29.66	366	231	Α	V
		5761.535	51.07	-17.13	68.2	39.31	32.66	8.81	29.71	366	231	Р	V
Domort	1. N	o other spurious	s found.				1		1	1	1	1	
Remark	2. A	ll results are PA	SS against	Peak and	Average lim	nit line.							

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11020	47.01	-26.99	74	50.98	40.09	12.53	56.59	100	0	Р	Н
HT40		16530	46.59	-21.61	68.2	48.96	38.42	14.92	55.71	100	0	Р	Н
CH 102		11020	46.91	-27.09	74	50.88	40.09	12.53	56.59	100	0	Р	V
5510MHz		16530	47.12	-21.08	68.2	49.49	38.42	14.92	55.71	100	0	Р	V
802.11n		11100	47.38	-26.62	74	51.32	40.06	12.56	56.56	100	0	Р	Н
HT40		16650	46.11	-22.09	68.2	48.09	38.83	14.95	55.76	100	0	Р	Н
CH 110		11100	47.73	-26.27	74	51.67	40.06	12.56	56.56	100	0	Р	V
5550MHz		16650	46.9	-21.3	68.2	48.88	38.83	14.95	55.76	100	0	Р	V
802.11n		11340	46.92	-27.08	74	50.74	39.97	12.68	56.47	100	0	Р	Н
HT40		17010	48.01	-20.19	68.2	48.88	40.04	15.02	55.93	100	0	Р	Н
CH 134		11340	47.22	-26.78	74	51.04	39.97	12.68	56.47	100	0	Р	V
5670MHz		17010	48.84	-19.36	68.2	49.71	40.04	15.02	55.93	100	0	Р	٧
Remark		o other spurious		l		1			1	I	l	1	1

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 3 - 5470~5725MHz

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5459.68	57.62	-16.38	74	46.41	32.34	8.46	29.59	100	322	Р	Н
		5469.04	57.84	-10.36	68.2	46.56	32.36	8.51	29.59	100	322	Р	Н
		5432.56	49.84	-4.16	54	38.69	32.32	8.41	29.58	100	322	Α	Н
	*	5530	100.35	-	-	88.89	32.42	8.65	29.61	100	322	Р	Н
802.11ac	*	5530	92.91	-	-	81.45	32.42	8.65	29.61	100	322	Α	Н
VHT80		5754.92	51.58	-16.62	68.2	39.8	32.66	8.81	29.69	100	322	Р	Н
CH 106		5449.6	52.68	-21.32	74	41.46	32.34	8.46	29.58	385	226	Р	V
5530MHz		5463.28	52.4	-15.8	68.2	41.17	32.36	8.46	29.59	385	226	Р	V
		5432.32	46.98	-7.02	54	35.83	32.32	8.41	29.58	385	226	Α	V
	*	5530	95.8	-	-	84.34	32.42	8.65	29.61	385	226	Р	V
	*	5530	88.27	-	-	76.81	32.42	8.65	29.61	385	226	Α	V
		5733.185	51.37	-16.83	68.2	39.62	32.62	8.82	29.69	385	226	Р	V
		5446	51.27	-22.73	74	40.1	32.34	8.41	29.58	100	323	Р	Н
		5461.84	51.86	-16.34	68.2	40.65	32.34	8.46	29.59	100	323	Р	Н
		5459.2	44.85	-9.15	54	33.64	32.34	8.46	29.59	100	323	Α	Н
	*	5610	100.99	-	-	89.28	32.5	8.85	29.64	100	323	Р	Н
802.11ac	*	5610	93.64	-	-	81.93	32.5	8.85	29.64	100	323	Α	Н
VHT80		5730.35	54.96	-13.24	68.2	43.21	32.62	8.82	29.69	100	323	Р	Н
CH 122		5431.36	51.61	-22.39	74	40.46	32.32	8.41	29.58	371	227	Р	V
5610MHz		5463.28	51.34	-16.86	68.2	40.11	32.36	8.46	29.59	371	227	Р	V
		5458.72	43.88	-10.12	54	32.67	32.34	8.46	29.59	371	227	Α	V
	*	5610	96.71	-	-	85	32.5	8.85	29.64	371	227	Р	V
	*	5610	89.28	-	-	77.57	32.5	8.85	29.64	371	227	Α	V
		5747.675	51.85	-16.35	68.2	40.09	32.64	8.81	29.69	371	227	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B14 of B62

Report No. : FR730732-04

: B15 of B62

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11060	48.19	-25.81	74	52.14	40.07	12.55	56.57	100	0	Р	Н
VHT80		16590	46.8	-21.4	68.2	49.01	38.59	14.93	55.73	100	0	Р	Н
CH 106		11060	47.24	-26.76	74	51.19	40.07	12.55	56.57	100	0	Р	٧
5530MHz		16590	46.33	-21.87	68.2	48.54	38.59	14.93	55.73	100	0	Р	٧
802.11ac		11220	46.64	-27.36	74	50.51	40.01	12.63	56.51	100	0	Р	Н
VHT80		16830	47.29	-20.91	68.2	48.72	39.41	14.99	55.83	100	0	Р	Н
CH 122		11220	47.31	-26.69	74	51.18	40.01	12.63	56.51	100	0	Р	٧
5610MHz		16830	47.22	-20.98	68.2	48.65	39.41	14.99	55.83	100	0	Р	٧

Remark

SPORTON INTERNATIONAL INC. Page Number

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	(H/V)
-		5437.75	50.79	-23.21	74	39.64	32.32	8.41	29.58	127	358	P	Η
		5466.22	50.85	-17.35	68.2	39.57	32.36	8.51	29.59	127	358	Р	Н
		5457.64	42.41	-11.59	54	31.2	32.34	8.46	29.59	127	358	Α	Н
	*	5720	107.82	-	-	96.06	32.62	8.82	29.68	127	358	Р	Н
	*	5720	100.47	-	-	88.71	32.62	8.82	29.68	127	358	Α	Н
802.11a CH 144		5910.75	52.07	-16.13	68.2	40.13	32.81	8.9	29.77	127	358	Р	Н
5720MHz		5445.16	51.15	-22.85	74	40	32.32	8.41	29.58	355	223	Р	V
37 20 WIT 12		5464.66	49.65	-18.55	68.2	38.42	32.36	8.46	29.59	355	223	Р	V
		5456.86	41.89	-12.11	54	30.68	32.34	8.46	29.59	355	223	Α	V
	*	5720	103.19	-	-	91.43	32.62	8.82	29.68	355	223	Р	V
	*	5720	95.67	-	-	83.91	32.62	8.82	29.68	355	223	Α	V
		5928.5	52.91	-15.29	68.2	40.94	32.83	8.91	29.77	355	223	Р	V
Remark	1. No	other spurious	s found.										
. tomark	2. All	results are PA	SS against F	Peak and	l Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		11440	48.3	-25.7	74	52.08	39.93	12.72	56.43	100	0	Р	Н
802.11a		17160	50.11	-18.09	68.2	50.81	40.4	15.07	56.17	100	0	Р	Н
CH 144 5720MHz		11440	47.91	-26.09	74	51.69	39.93	12.72	56.43	100	0	Р	V
3/20WITZ		17160	49.07	-19.13	68.2	49.77	40.4	15.07	56.17	100	0	Р	V

Remark

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B16 of B62

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5459.98	50.68	-23.32	74	39.47	32.34	8.46	29.59	114	358	Р	Н
		5463.1	50.03	-18.17	68.2	38.8	32.36	8.46	29.59	114	358	Р	Н
		5456.08	42.04	-11.96	54	30.83	32.34	8.46	29.59	114	358	Α	Н
	*	5720	107.9	-	-	96.14	32.62	8.82	29.68	114	358	Р	Н
802.11n	*	5720	100.11	-	-	88.35	32.62	8.82	29.68	114	358	Α	Н
HT20		5937.75	51.57	-16.63	68.2	39.59	32.83	8.93	29.78	114	358	Р	Н
CH 144		5457.64	50.7	-23.3	74	39.49	32.34	8.46	29.59	354	223	Р	٧
5720MHz		5469.34	49.77	-18.43	68.2	38.49	32.36	8.51	29.59	354	223	Р	V
		5455.3	41.96	-12.04	54	30.75	32.34	8.46	29.59	354	223	Α	V
	*	5720	102.72	-	-	90.96	32.62	8.82	29.68	354	223	Р	٧
	*	5720	95.23	-	-	83.47	32.62	8.82	29.68	354	223	Α	٧
		5868.5	52.75	-15.45	68.2	40.87	32.76	8.87	29.75	354	223	Р	٧
Remark		o other spurious		Peak and	l Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
802.11n		11440	48.16	-25.84	74	51.94	39.93	12.72	56.43	100	0	Р	Н
HT20		17160	48.7	-19.5	68.2	49.4	40.4	15.07	56.17	100	0	Р	Н
CH 144		11440	47.03	-26.97	74	50.81	39.93	12.72	56.43	100	0	Р	V
5720MHz		17160	50.62	-17.58	68.2	51.32	40.4	15.07	56.17	100	0	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B17 of B62

Band 3 - Straddle Channel

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5456.08	50.97	-23.03	74	39.76	32.34	8.46	29.59	100	358	Р	Н
		5464.66	49.6	-18.6	68.2	38.37	32.36	8.46	29.59	100	358	Р	Н
		5456.86	42.67	-11.33	54	31.46	32.34	8.46	29.59	100	358	Α	Н
	*	5710	104.84	-	-	93.09	32.61	8.82	29.68	100	358	Р	Н
802.11n	*	5710	97.53	-	-	85.78	32.61	8.82	29.68	100	358	Α	Н
HT40		5852.25	51.69	-16.51	68.2	39.84	32.74	8.85	29.74	100	358	Р	Н
CH 142		5364.43	49.61	-24.39	74	38.64	32.24	8.3	29.57	375	223	Р	V
5710MHz		5464.66	49.48	-18.72	68.2	38.25	32.36	8.46	29.59	375	223	Р	V
		5457.25	42.38	-11.62	54	31.17	32.34	8.46	29.59	375	223	Α	V
	*	5710	100.05	-	-	88.3	32.61	8.82	29.68	375	223	Р	V
	*	5710	92.62	-	-	80.87	32.61	8.82	29.68	375	223	Α	V
		5927.5	51.67	-16.53	68.2	39.7	32.83	8.91	29.77	375	223	Р	V
Remark		o other spurious		Peak and	l Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11420	48.8	-25.2	74	52.59	39.93	12.71	56.43	100	0	Р	Н
HT40		17130	49.32	-18.88	68.2	50.03	40.32	15.08	56.11	100	0	Р	Н
CH 142		11420	48.15	-25.85	74	51.94	39.93	12.71	56.43	100	0	Р	V
5710MHz		17130	49.25	-18.95	68.2	49.96	40.32	15.08	56.11	100	0	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B18 of B62

Band 3 - Straddle Channel

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5439.31	52.07	-21.93	74	40.92	32.32	8.41	29.58	128	14	Р	Н
		5463.1	51.77	-16.43	68.2	40.54	32.36	8.46	29.59	128	14	Р	Н
		5455.69	44.65	-9.35	54	33.44	32.34	8.46	29.59	128	14	Α	Н
	*	5690	102.53	-	-	90.78	32.59	8.83	29.67	128	14	Р	Н
802.11ac	*	5690	95.25	-	-	83.5	32.59	8.83	29.67	128	14	Α	Н
VHT80		5867.5	53.11	-15.09	68.2	41.23	32.76	8.87	29.75	128	14	Р	Н
CH 138		5447.5	51.45	-22.55	74	40.28	32.34	8.41	29.58	340	224	Р	V
5690MHz		5468.95	51.3	-16.9	68.2	40.02	32.36	8.51	29.59	340	224	Р	V
		5452.96	44.04	-9.96	54	32.83	32.34	8.46	29.59	340	224	Α	V
	*	5690	97.28	-	-	85.53	32.59	8.83	29.67	340	224	Р	V
	*	5690	89.98	-	-	78.23	32.59	8.83	29.67	340	224	Α	V
		5870.5	52.54	-15.66	68.2	40.66	32.76	8.87	29.75	340	224	Р	V
Remark		o other spurious		Peak and	l Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11380	46.81	-27.19	74	50.6	39.95	12.71	56.45	100	0	Р	Н
VHT80		17070	48.71	-19.49	68.2	49.52	40.16	15.04	56.01	100	0	Р	Н
CH 138		11380	46.96	-27.04	74	50.75	39.95	12.71	56.45	100	0	Р	V
5690MHz		17070	48.65	-19.55	68.2	49.46	40.16	15.04	56.01	100	0	Р	V
Remark		other spurious		Peak and	Average lim	it line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz

WIFI 802.11ac VHT80 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		44.85	33.07	-6.93	40	47.56	16.84	1	32.33	-	-	Р	Н
		119.91	33.76	-9.74	43.5	47.34	17.33	1.38	32.29	-	-	Р	Н
		238.17	40.48	-5.52	46	53.57	17.18	1.95	32.22	100	0	Р	Н
		404.3	34.68	-11.32	46	42.34	22.03	2.46	32.15	-	-	Р	Н
		724.2	32.36	-13.64	46	34.04	27.25	3.2	32.13	-	-	Р	Н
802.11ac		888.7	32.53	-13.47	46	31.54	29	3.55	31.56	-	-	Р	Н
VHT80 LF		31.35	26.24	-13.76	40	33.83	23.96	0.79	32.34	-	-	Р	V
LF		61.05	27.24	-12.76	40	46.46	12.05	1.04	32.31	-	-	Р	V
		239.25	31.93	-14.07	46	44.92	17.28	1.95	32.22	-	-	Р	V
		738.9	29.99	-16.01	46	31.06	27.83	3.2	32.1	-	-	Р	V
		849.5	32.25	-13.75	46	31.45	29.03	3.52	31.75	-	-	Р	V
		946.8	33.99	-12.01	46	30.92	30.44	3.71	31.08	100	0	Р	V
Remark		o other spurious		mit line.									

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.		, .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5002.04	51.33	-22.67	74	41.07	31.8	7.99	29.53	100	227	Р	Н
		5102.68	44.01	-9.99	54	33.53	31.92	8.1	29.54	100	227	Α	Н
	*	5260	106.26	-	-	95.44	32.12	8.26	29.56	100	227	Р	Н
	*	5260	98.77	-	-	87.95	32.12	8.26	29.56	100	227	Α	Н
000 44 -		5424.24	52.47	-21.53	74	41.39	32.3	8.36	29.58	100	227	Р	Н
802.11a		5421.12	45.3	-8.7	54	34.22	32.3	8.36	29.58	100	227	Α	Н
CH 52 5260MHz		5038.76	51.77	-22.23	74	41.4	31.86	8.04	29.53	393	37	Р	V
3200WII 12		5105.74	43.23	-10.77	54	32.73	31.94	8.1	29.54	393	37	Α	٧
	*	5260	102.54	-	-	91.72	32.12	8.26	29.56	393	37	Р	٧
	*	5260	95.13	-	-	84.31	32.12	8.26	29.56	393	37	Α	V
		5427.6	50.62	-23.38	74	39.54	32.3	8.36	29.58	393	37	Р	٧
		5414.16	43.57	-10.43	54	32.49	32.3	8.36	29.58	393	37	Α	٧
		5141.44	52.45	-21.55	74	41.87	31.98	8.15	29.55	100	227	Р	Н
		5137.7	44.06	-9.94	54	33.5	31.96	8.15	29.55	100	227	Α	П
	*	5300	105.91	-	-	95.05	32.16	8.27	29.57	100	227	Р	Н
	*	5300	98.29	-	-	87.43	32.16	8.27	29.57	100	227	Α	Н
000 44		5459.04	54.65	-19.35	74	43.44	32.34	8.46	29.59	100	227	Р	П
802.11a CH 60		5458.8	45.24	-8.76	54	34.03	32.34	8.46	29.59	100	227	Α	П
5300MHz		5063.24	50.68	-23.32	74	40.28	31.88	8.06	29.54	388	38	Р	٧
3300WII 12		5137.02	43.23	-10.77	54	32.67	31.96	8.15	29.55	388	38	Α	V
	*	5300	102.43	-	-	91.57	32.16	8.27	29.57	388	38	Р	V
	*	5300	94.78	-	-	83.92	32.16	8.27	29.57	388	38	Α	V
		5455.44	50.98	-23.02	74	39.77	32.34	8.46	29.59	388	38	Р	V
		5458.08	43.39	-10.61	54	32.18	32.34	8.46	29.59	388	38	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B21 of B62

	*	5320	105.89	-	-	95	32.18	8.28	29.57	104	221	Р	Н
	*	5320	98.47	-	-	87.58	32.18	8.28	29.57	104	221	Α	Н
		5370.56	52.18	-21.82	74	41.21	32.24	8.3	29.57	104	221	Р	Н
802.11a		5350.24	44.37	-9.63	54	33.43	32.22	8.29	29.57	104	221	Α	Н
CH 64 5320MHz	*	5320	102.55	1	1	91.66	32.18	8.28	29.57	383	36	Р	V
JJZUWII IZ	*	5320	94.9	-	•	84.01	32.18	8.28	29.57	383	36	Α	٧
		5432.32	51.43	-22.57	74	40.28	32.32	8.41	29.58	383	36	Р	٧
		5352.64	42.23	-11.77	54	31.29	32.22	8.29	29.57	383	36	Α	٧
Remark		o other spurious		Peak and	Average lim	nit line.							

WIFI 802.11a (Harmonic @ 3m)

			Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	F01.
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
10520	47.99	-20.21	68.2	53.07	39.52	12.39	56.99	100	0	Р	Н
15780	44.12	-29.88	74	48.06	37.68	14.71	56.33	100	0	Р	Η
10520	47.38	-20.82	68.2	52.46	39.52	12.39	56.99	100	0	Р	>
15780	45.27	-28.73	74	49.21	37.68	14.71	56.33	100	0	Р	٧
10600	46.4	-27.6	74	51.29	39.62	12.41	56.92	100	0	Р	Η
15900	44.65	-29.35	74	48.77	37.37	14.77	56.26	100	0	Р	Η
10600	47.03	-26.97	74	51.92	39.62	12.41	56.92	100	0	Р	٧
15900	44.67	-29.33	74	48.79	37.37	14.77	56.26	100	0	Р	٧
10640	46.47	-27.53	74	51.28	39.67	12.41	56.89	100	0	Р	Н
15960	46.15	-27.85	74	50.4	37.19	14.78	56.22	100	0	Р	Н
10640	46.97	-27.03	74	51.78	39.67	12.41	56.89	100	0	Р	٧
15960	45	-29	74	49.25	37.19	14.78	56.22	100	0	Р	V
	10520 15780 10520 15780 10600 15900 10600 15900 10640 15960 10640	10520 47.99 15780 44.12 10520 47.38 15780 45.27 10600 46.4 15900 44.65 10600 47.03 15900 44.67 10640 46.47 15960 46.15 10640 46.97	(MHz) (dBμV/m) (dB) 10520 47.99 -20.21 15780 44.12 -29.88 10520 47.38 -20.82 15780 45.27 -28.73 10600 46.4 -27.6 15900 44.65 -29.35 10600 47.03 -26.97 15900 44.67 -29.33 10640 46.47 -27.53 15960 46.15 -27.85 10640 46.97 -27.03	(MHz) (dBμV/m) (dB) (dBμV/m) 10520 47.99 -20.21 68.2 15780 44.12 -29.88 74 10520 47.38 -20.82 68.2 15780 45.27 -28.73 74 10600 46.4 -27.6 74 15900 44.65 -29.35 74 15900 44.67 -29.33 74 10640 46.47 -27.53 74 15960 46.15 -27.85 74 10640 46.97 -27.03 74	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 10520 47.99 -20.21 68.2 53.07 15780 44.12 -29.88 74 48.06 10520 47.38 -20.82 68.2 52.46 15780 45.27 -28.73 74 49.21 10600 46.4 -27.6 74 51.29 15900 44.65 -29.35 74 48.77 10600 47.03 -26.97 74 51.92 15900 44.67 -29.33 74 48.79 10640 46.47 -27.53 74 51.28 15960 46.15 -27.85 74 50.4 10640 46.97 -27.03 74 51.78	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dBμν) 10520 47.99 -20.21 68.2 53.07 39.52 15780 44.12 -29.88 74 48.06 37.68 10520 47.38 -20.82 68.2 52.46 39.52 15780 45.27 -28.73 74 49.21 37.68 10600 46.4 -27.6 74 51.29 39.62 15900 44.65 -29.35 74 48.77 37.37 10600 47.03 -26.97 74 51.92 39.62 15900 44.67 -29.33 74 48.79 37.37 10640 46.47 -27.53 74 51.28 39.67 15960 46.15 -27.85 74 50.4 37.19 10640 46.97 -27.03 74 51.78 39.67	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) 10520 47.99 -20.21 68.2 53.07 39.52 12.39 15780 44.12 -29.88 74 48.06 37.68 14.71 10520 47.38 -20.82 68.2 52.46 39.52 12.39 15780 45.27 -28.73 74 49.21 37.68 14.71 10600 46.4 -27.6 74 51.29 39.62 12.41 15900 44.65 -29.35 74 48.77 37.37 14.77 10600 47.03 -26.97 74 51.92 39.62 12.41 15900 44.67 -29.33 74 48.79 37.37 14.77 10640 46.47 -27.53 74 51.28 39.67 12.41 15960 46.15 -27.85 74 50.4 37.19 14.78 10640 46.97 -27.0	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) 10520 47.99 -20.21 68.2 53.07 39.52 12.39 56.99 15780 44.12 -29.88 74 48.06 37.68 14.71 56.33 10520 47.38 -20.82 68.2 52.46 39.52 12.39 56.99 15780 45.27 -28.73 74 49.21 37.68 14.71 56.33 10600 46.4 -27.6 74 51.29 39.62 12.41 56.92 15900 44.65 -29.35 74 48.77 37.37 14.77 56.26 15900 44.67 -29.33 74 48.79 37.37 14.77 56.26 10640 46.47 -27.53 74 51.28 39.67 12.41 56.89 15960 46.15 -27.85 74 50.4 37.19 14.78 56.22 1064	(MHz) (dBμV/m) (dB μV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) 10520 47.99 -20.21 68.2 53.07 39.52 12.39 56.99 100 15780 44.12 -29.88 74 48.06 37.68 14.71 56.33 100 10520 47.38 -20.82 68.2 52.46 39.52 12.39 56.99 100 15780 45.27 -28.73 74 49.21 37.68 14.71 56.33 100 10600 46.4 -27.6 74 51.29 39.62 12.41 56.92 100 15900 44.65 -29.35 74 48.77 37.37 14.77 56.26 100 15900 44.67 -29.33 74 48.79 37.37 14.77 56.26 100 10640 46.47 -27.53 74 51.28 39.67 12.41 56.89 100 15960 <td>(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dBμ/m) (dB) (dB) (cm) (deg) 10520 47.99 -20.21 68.2 53.07 39.52 12.39 56.99 100 0 15780 44.12 -29.88 74 48.06 37.68 14.71 56.33 100 0 15780 45.27 -28.73 74 49.21 37.68 14.71 56.33 100 0 10600 46.4 -27.6 74 51.29 39.62 12.41 56.92 100 0 15900 44.65 -29.35 74 48.77 37.37 14.77 56.26 100 0 15900 44.67 -29.33 74 48.79 37.37 14.77 56.26 100 0 15900 44.67 -29.33 74 48.79 37.37 14.77 56.26 100 0 15960 46.15 -27.85 74</td> <td>(MHz) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/A) 10520 47.99 -20.21 68.2 53.07 39.52 12.39 56.99 100 0 P 15780 44.12 -29.88 74 48.06 37.68 14.71 56.33 100 0 P 10520 47.38 -20.82 68.2 52.46 39.52 12.39 56.99 100 0 P 15780 45.27 -28.73 74 49.21 37.68 14.71 56.33 100 0 P 10600 46.4 -27.6 74 51.29 39.62 12.41 56.92 100 0 P 10600 47.03 -26.97 74 51.92 39.62 12.41 56.92 100 0 P 15900 44.67 -29.33 74 48.79 37.37 14.77 56.26 100 0<!--</td--></td>	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dBμ/m) (dB) (dB) (cm) (deg) 10520 47.99 -20.21 68.2 53.07 39.52 12.39 56.99 100 0 15780 44.12 -29.88 74 48.06 37.68 14.71 56.33 100 0 15780 45.27 -28.73 74 49.21 37.68 14.71 56.33 100 0 10600 46.4 -27.6 74 51.29 39.62 12.41 56.92 100 0 15900 44.65 -29.35 74 48.77 37.37 14.77 56.26 100 0 15900 44.67 -29.33 74 48.79 37.37 14.77 56.26 100 0 15900 44.67 -29.33 74 48.79 37.37 14.77 56.26 100 0 15960 46.15 -27.85 74	(MHz) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/A) 10520 47.99 -20.21 68.2 53.07 39.52 12.39 56.99 100 0 P 15780 44.12 -29.88 74 48.06 37.68 14.71 56.33 100 0 P 10520 47.38 -20.82 68.2 52.46 39.52 12.39 56.99 100 0 P 15780 45.27 -28.73 74 49.21 37.68 14.71 56.33 100 0 P 10600 46.4 -27.6 74 51.29 39.62 12.41 56.92 100 0 P 10600 47.03 -26.97 74 51.92 39.62 12.41 56.92 100 0 P 15900 44.67 -29.33 74 48.79 37.37 14.77 56.26 100 0 </td

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No. : FR730732-04

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	` '	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5042.5	51.28	-22.72	74	40.92	31.86	8.04	29.54	100	220	Р	Н
		5103.02	43.79	-10.21	54	33.31	31.92	8.1	29.54	100	220	Α	Н
	*	5260	106.24	-	-	95.42	32.12	8.26	29.56	100	220	Р	Н
	*	5260	98.71	-	-	87.89	32.12	8.26	29.56	100	220	Α	Н
802.11n		5417.76	53.26	-20.74	74	42.18	32.3	8.36	29.58	100	220	Р	Н
HT20		5422.8	45.77	-8.23	54	34.69	32.3	8.36	29.58	100	220	Α	Н
CH 52		5116.62	51.41	-22.59	74	40.88	31.94	8.13	29.54	394	36	Р	V
5260MHz		5105.4	43.42	-10.58	54	32.94	31.92	8.1	29.54	394	36	Α	V
	*	5260	102.57	-	-	91.75	32.12	8.26	29.56	394	36	Р	V
	*	5260	94.99	-	-	84.17	32.12	8.26	29.56	394	36	Α	V
		5421.36	51.26	-22.74	74	40.18	32.3	8.36	29.58	394	36	Р	V
		5412.48	43.26	-10.74	54	32.18	32.3	8.36	29.58	394	36	Α	V
		5135.32	51.71	-22.29	74	41.15	31.96	8.15	29.55	100	220	Р	Н
		5146.88	44.1	-9.9	54	33.5	31.98	8.17	29.55	100	220	Α	Н
	*	5300	106.47	-	-	95.61	32.16	8.27	29.57	100	220	Р	Н
	*	5300	98.18	-	-	87.32	32.16	8.27	29.57	100	220	Α	Н
802.11n		5456.4	53.52	-20.48	74	42.31	32.34	8.46	29.59	100	220	Р	Н
HT20		5458.56	44.96	-9.04	54	33.75	32.34	8.46	29.59	100	220	Α	Н
CH 60		5133.28	52.04	-21.96	74	41.48	31.96	8.15	29.55	386	38	Р	V
5300MHz		5143.48	43.08	-10.92	54	32.48	31.98	8.17	29.55	386	38	Α	V
	*	5300	102.75	-	-	91.89	32.16	8.27	29.57	386	38	Р	V
	*	5300	94.72	-	-	83.86	32.16	8.27	29.57	386	38	Α	V
		5454.24	53.24	-20.76	74	42.03	32.34	8.46	29.59	386	38	Р	V
		5457.12	43.55	-10.45	54	32.34	32.34	8.46	29.59	386	38	Α	V

SPORTON INTERNATIONAL INC. Page Number : B23 of B62

	*	5320	105.5	-	-	94.61	32.18	8.28	29.57	104	220	Р	Н
	*	5320	98.18	-	-	87.29	32.18	8.28	29.57	104	220	Α	Н
802.11n		5357.12	53.16	-20.84	74	42.22	32.22	8.29	29.57	104	220	Р	Н
HT20		5350.56	44.16	-9.84	54	33.22	32.22	8.29	29.57	104	220	Α	Н
CH 64	*	5320	101.81	-	-	90.92	32.18	8.28	29.57	383	37	Р	V
5320MHz	*	5320	94.39	-	-	83.5	32.18	8.28	29.57	383	37	Α	V
		5440.96	50.96	-23.04	74	39.81	32.32	8.41	29.58	383	37	Р	V
		5453.92	42.02	-11.98	54	30.81	32.34	8.46	29.59	383	37	Α	V
Remark		o other spurious		Peak and	Average lim	nit line.							

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		10520	46.94	-21.26	68.2	52.02	39.52	12.39	56.99	100	0	Р	Н
HT20		15780	45.06	-28.94	74	49	37.68	14.71	56.33	100	0	Р	Н
CH 52		10520	47.86	-20.34	68.2	52.94	39.52	12.39	56.99	100	0	Р	V
5260MHz		15780	45.02	-28.98	74	48.96	37.68	14.71	56.33	100	0	Р	V
802.11n		10600	48.56	-25.44	74	53.45	39.62	12.41	56.92	100	0	Р	Н
HT20		15900	45.65	-28.35	74	49.77	37.37	14.77	56.26	100	0	Р	Н
CH 60		10600	47.2	-26.8	74	52.09	39.62	12.41	56.92	100	0	Р	V
5300MHz		15900	45.38	-28.62	74	49.5	37.37	14.77	56.26	100	0	Р	V
802.11n		10640	47.22	-26.78	74	52.03	39.67	12.41	56.89	100	0	Р	Н
HT20		15960	45.68	-28.32	74	49.93	37.19	14.78	56.22	100	0	Р	Н
CH 64		10640	46.82	-27.18	74	51.63	39.67	12.41	56.89	100	0	Р	V
5320MHz		15965	44.35	-29.65	74	48.59	37.19	14.79	56.22	100	0	Р	٧

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B24 of B62

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		5108.8	51.55	-22.45	74	41.02	31.94	8.13	29.54	100	220	Р	Н
		5097.24	43.75	-10.25	54	33.27	31.92	8.1	29.54	100	220	Α	Н
	*	5270	103.22	-	-	92.39	32.12	8.27	29.56	100	220	Р	Н
	*	5270	96.25	-	-	85.42	32.12	8.27	29.56	100	220	Α	Н
802.11n		5437.44	52.45	-21.55	74	41.3	32.32	8.41	29.58	100	220	Р	Н
HT40		5428.32	45.03	-8.97	54	33.95	32.3	8.36	29.58	100	220	Α	Н
CH 54		5042.5	50.96	-23.04	74	40.6	31.86	8.04	29.54	391	38	Р	V
5270MHz		5122.4	43.7	-10.3	54	33.18	31.94	8.13	29.55	391	38	Α	V
	*	5270	99.61	-	-	88.78	32.12	8.27	29.56	391	38	Р	V
	*	5270	92.78	-	-	81.95	32.12	8.27	29.56	391	38	Α	V
		5428.32	50.92	-23.08	74	39.84	32.3	8.36	29.58	391	38	Р	V
		5433.84	43.37	-10.63	54	32.22	32.32	8.41	29.58	391	38	Α	V
		5121.04	51.32	-22.68	74	40.8	31.94	8.13	29.55	100	225	Р	Н
		5134.3	44.3	-9.7	54	33.74	31.96	8.15	29.55	100	225	Α	Н
	*	5310	103.82	-	-	92.93	32.18	8.28	29.57	100	225	Р	Н
	*	5310	96.35	-	-	85.46	32.18	8.28	29.57	100	225	Α	Н
802.11n		5355.36	58.02	-15.98	74	47.08	32.22	8.29	29.57	100	225	Р	Н
HT40		5354.16	48.56	-5.44	54	37.62	32.22	8.29	29.57	100	225	Α	Н
CH 62		5078.2	52.44	-21.56	74	42	31.9	8.08	29.54	384	37	Р	V
5310MHz		5132.6	43.72	-10.28	54	33.16	31.96	8.15	29.55	384	37	Α	V
	*	5310	100.56	-	-	89.67	32.18	8.28	29.57	384	37	Р	V
	*	5310	92.66	-	-	81.77	32.18	8.28	29.57	384	37	Α	V
		5354.64	53.32	-20.68	74	42.38	32.22	8.29	29.57	384	37	Р	V
		5354.64	45.26	-8.74	54	34.32	32.22	8.29	29.57	384	37	Α	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		10540	47.1	-21.1	68.2	52.14	39.54	12.39	56.97	100	0	Р	Н
HT40		15810	45.51	-28.49	74	49.5	37.59	14.73	56.31	100	0	Р	Н
CH 54		10540	46.88	-21.32	68.2	51.92	39.54	12.39	56.97	100	0	Р	V
5270MHz		15810	46.11	-27.89	74	50.1	37.59	14.73	56.31	100	0	Р	V
802.11n		10620	47.82	-26.18	74	52.67	39.64	12.41	56.9	100	0	Р	Н
HT40		15930	45.46	-28.54	74	49.64	37.28	14.78	56.24	100	0	Р	Н
CH 62		10620	47.68	-26.32	74	52.53	39.64	12.41	56.9	100	0	Р	V
5310MHz		15930	45.34	-28.66	74	49.52	37.28	14.78	56.24	100	0	Р	V

Remark

I. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B26 of B62

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5139.06	52.5	-21.5	74	41.94	31.96	8.15	29.55	112	194	Р	Н
		5149.94	46.83	-7.17	54	36.23	31.98	8.17	29.55	112	194	Α	Н
	*	5290	100	-	-	89.15	32.14	8.27	29.56	112	194	Р	Н
	*	5290	93.26	-	-	82.41	32.14	8.27	29.56	112	194	Α	Н
802.11ac		5363.52	56.16	-17.84	74	45.19	32.24	8.3	29.57	112	194	Р	Н
VHT80		5387.52	50.45	-3.55	54	39.47	32.26	8.3	29.58	112	194	Р	Н
CH 58		5066.3	51.34	-22.66	74	40.94	31.88	8.06	29.54	386	81	Р	٧
5290MHz		5096.22	45.56	-8.44	54	35.08	31.92	8.1	29.54	386	81	Α	٧
	*	5290	96.92	-	-	86.07	32.14	8.27	29.56	386	81	Р	V
	*	5290	89.81	-	-	78.96	32.14	8.27	29.56	386	81	Α	٧
		5391.12	52.83	-21.17	74	41.85	32.26	8.3	29.58	386	81	Р	٧
		5387.52	47.24	-6.76	54	36.26	32.26	8.3	29.58	386	81	Α	V
Remark		o other spurious		Peak and	Average lim	it line.			,			,	,

Band 2 5250~5350MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		10580	46.86	-21.34	68.2	51.79	39.6	12.4	56.93	100	0	Р	Н
VHT80		15870	45.05	-28.95	74	49.16	37.41	14.75	56.27	100	0	Р	Н
CH 58		10580	48.21	-19.99	68.2	53.14	39.6	12.4	56.93	100	0	Р	V
5290MHz		15870	45.57	-28.43	74	49.68	37.41	14.75	56.27	100	0	Р	٧
Remark		o other spurious		Peak and	Average lim	it line.			,	,	-		

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5457.84	52.57	-21.43	74	41.36	32.34	8.46	29.59	100	214	Р	Н
		5467.92	52.04	-16.16	68.2	40.76	32.36	8.51	29.59	100	214	Р	Н
		5459.28	44.01	-9.99	54	32.8	32.34	8.46	29.59	100	214	Α	Н
802.11a	*	5500	105.28	-	-	93.91	32.4	8.56	29.59	100	214	Р	Н
CH 100	*	5500	97.79	-	-	86.42	32.4	8.56	29.59	100	214	Α	Н
5500MHz		5418.96	50.48	-23.52	74	39.4	32.3	8.36	29.58	396	38	Р	V
3300M112		5466.32	52.36	-15.84	68.2	41.08	32.36	8.51	29.59	396	38	Р	V
		5459.76	42.28	-11.72	54	31.07	32.34	8.46	29.59	396	38	Α	V
	*	5506	101.07	-	-	89.67	32.4	8.6	29.6	396	38	Р	V
	*	5506	93.78	-	-	82.38	32.4	8.6	29.6	396	38	Α	V
		5416	53.84	-20.16	74	42.76	32.3	8.36	29.58	135	210	Р	Н
		5461.36	51.18	-17.02	68.2	39.97	32.34	8.46	29.59	135	210	Р	Τ
		5423.92	44.64	-9.36	54	33.56	32.3	8.36	29.58	135	210	Α	H
	*	5580	106.84	-	-	95.2	32.47	8.8	29.63	135	210	Р	Н
44	*	5580	99.25	-	-	87.61	32.47	8.8	29.63	135	210	Α	Н
802.11a		5738.855	52.28	-15.92	68.2	40.52	32.64	8.81	29.69	135	210	Р	Н
CH 116 5580MHz		5425.84	51.35	-22.65	74	40.27	32.3	8.36	29.58	399	295	Р	V
3300WII 12		5462.8	51.4	-16.8	68.2	40.17	32.36	8.46	29.59	399	295	Р	٧
		5424.64	42.82	-11.18	54	31.74	32.3	8.36	29.58	399	295	Α	V
	*	5580	102.2	-	-	90.56	32.47	8.8	29.63	399	295	Р	V
	*	5580	94.65	-	-	83.01	32.47	8.8	29.63	399	295	Α	٧
		5738.54	53.31	-14.89	68.2	41.55	32.64	8.81	29.69	399	295	Р	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B28 of B62

	*	5700	107.79	-	-	96.05	32.59	8.82	29.67	100	207	Р	Н
	*	5700	100.22	-	-	88.48	32.59	8.82	29.67	100	207	Α	Н
802.11a CH 140		5726.76	56.71	-11.49	68.2	44.95	32.62	8.82	29.68	100	207	Р	Н
5700MHz	*	5700	102.86	-	-	91.12	32.59	8.82	29.67	400	293	Р	V
370011112	*	5700	95.22	-	-	83.48	32.59	8.82	29.67	400	293	Α	V
		5740.12	53.9	-14.3	68.2	42.14	32.64	8.81	29.69	400	293	Р	V
Remark		o other spurious I results are PA		Peak and	Average lim	nit line.							

Report No. : FR730732-04

Band 3 - 5470~5725MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		11000	48.74	-25.26	74	52.73	40.1	12.51	56.6	100	0	Р	Н
802.11a CH 100		16500	46.55	-21.65	68.2	49.03	38.3	14.92	55.7	100	0	Р	Н
5500MHz		11000	47.79	-26.21	74	51.78	40.1	12.51	56.6	100	0	Р	V
5500WITZ		16500	46.74	-21.46	68.2	49.22	38.3	14.92	55.7	100	0	Р	V
		11160	48.34	-25.66	74	52.25	40.03	12.59	56.53	100	0	Р	Н
802.11a		16740	47.52	-20.68	68.2	49.24	39.12	14.96	55.8	100	0	Р	Н
CH 116		11160	49.16	-24.84	74	53.07	40.03	12.59	56.53	100	0	Р	V
5580MHz		16740	46.73	-21.47	68.2	48.45	39.12	14.96	55.8	100	0	Р	V
		11400	47.66	-26.34	74	51.44	39.94	12.72	56.44	100	0	Р	Н
802.11a		17100	48.81	-19.39	68.2	49.57	40.24	15.06	56.06	100	0	Р	Н
CH 140		11400	48.09	-25.91	74	51.87	39.94	12.72	56.44	100	0	Р	V
5700MHz		17100	48.23	-19.97	68.2	48.99	40.24	15.06	56.06	100	0	Р	V

Remark

- No other spurious found.
- All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC. Page Number : B29 of B62

Report No. : FR730732-04

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5445.2	54.06	-19.94	74	42.91	32.32	8.41	29.58	100	213	Р	Н
		5467.76	55.27	-12.93	68.2	43.99	32.36	8.51	29.59	100	213	Р	Н
		5458.8	44.46	-9.54	54	33.25	32.34	8.46	29.59	100	213	Α	Н
802.11n	*	5500	106.03	-	-	94.66	32.4	8.56	29.59	100	213	Р	Н
HT20	*	5500	98.46	-	-	87.09	32.4	8.56	29.59	100	213	Α	Н
CH 100		5458.64	52.88	-21.12	74	41.67	32.34	8.46	29.59	397	37	Р	V
5500MHz		5461.52	53.23	-14.97	68.2	42.02	32.34	8.46	29.59	397	37	Р	V
		5459.92	42.65	-11.35	54	31.44	32.34	8.46	29.59	397	37	Α	V
	*	5500	102.24	-	-	90.87	32.4	8.56	29.59	397	37	Р	V
	*	5500	94.16	-	-	82.79	32.4	8.56	29.59	397	37	Α	V
		5415.76	53.38	-20.62	74	42.3	32.3	8.36	29.58	100	211	Р	Н
		5460.4	51.47	-16.73	68.2	40.26	32.34	8.46	29.59	100	211	Р	H
		5415.76	44.78	-9.22	54	33.7	32.3	8.36	29.58	100	211	Α	Н
	*	5580	106.48	-	-	94.84	32.47	8.8	29.63	100	211	Р	Н
802.11n	*	5580	98.82	-	-	87.18	32.47	8.8	29.63	100	211	Α	Н
HT20		5742.32	53.02	-15.18	68.2	41.26	32.64	8.81	29.69	100	211	Р	Н
CH 116		5422.48	52.42	-21.58	74	41.34	32.3	8.36	29.58	399	296	Р	V
5580MHz		5461.36	52.1	-16.1	68.2	40.89	32.34	8.46	29.59	399	296	Р	V
		5421.52	42.55	-11.45	54	31.47	32.3	8.36	29.58	399	296	Α	V
	*	5580	101.9	-	-	90.26	32.47	8.8	29.63	399	296	Р	V
	*	5580	94.7	-	-	83.06	32.47	8.8	29.63	399	296	Α	V
		5739.17	51.63	-16.57	68.2	39.87	32.64	8.81	29.69	399	296	Р	V

SPORTON INTERNATIONAL INC. Page Number : B30 of B62

	*	5700	107.47	-	-	95.73	32.59	8.82	29.67	100	235	Р	Н
802.11n	*	5700	99.63	-	-	87.89	32.59	8.82	29.67	100	235	Α	Н
HT20		5732.28	54.68	-13.52	68.2	42.93	32.62	8.82	29.69	100	235	Р	Н
CH 140	*	5700	102.51	-	-	90.77	32.59	8.82	29.67	400	298	Р	V
5700MHz	*	5700	95.02	-	-	83.28	32.59	8.82	29.67	400	298	Α	V
		5735.48	54.91	-13.29	68.2	43.15	32.64	8.81	29.69	400	298	Р	٧
Remark		o other spurious		Peak and	Average lim	nit line.							

Report No. : FR730732-04

Band 3 - 5470~5725MHz WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
802.11n		11000	48.67	-25.33	74	52.66	40.1	12.51	56.6	100	0	Р	Н
HT20		16500	45.83	-22.37	68.2	48.31	38.3	14.92	55.7	100	0	Р	Н
CH 100		11000	48.84	-25.16	74	52.83	40.1	12.51	56.6	100	0	Р	V
5500MHz		16500	46.14	-22.06	68.2	48.62	38.3	14.92	55.7	100	0	Р	V
802.11n		11160	48.41	-25.59	74	52.32	40.03	12.59	56.53	100	0	Р	Н
HT20		16740	47.12	-21.08	68.2	48.84	39.12	14.96	55.8	100	0	Р	Н
CH 116		11160	47.78	-26.22	74	51.69	40.03	12.59	56.53	100	0	Р	V
5580MHz		16740	47.23	-20.97	68.2	48.95	39.12	14.96	55.8	100	0	Р	V
802.11n		11400	48.04	-25.96	74	51.82	39.94	12.72	56.44	100	0	Р	Н
HT20		17100	49.44	-18.76	68.2	50.2	40.24	15.06	56.06	100	0	Р	Н
CH 140		11400	48.94	-25.06	74	52.72	39.94	12.72	56.44	100	0	Р	V
5700MHz		17100	48.71	-19.49	68.2	49.47	40.24	15.06	56.06	100	0	Р	V

Remark

- No other spurious found.
- All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC. : B31 of B62 Page Number

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5459.68	56.25	-17.75	74	45.04	32.34	8.46	29.59	100	211	Р	Н
		5468.56	61.47	-6.73	68.2	50.19	32.36	8.51	29.59	100	211	Р	Н
		5459.92	48.37	-5.63	54	37.16	32.34	8.46	29.59	100	211	Α	Н
	*	5510	103.05	-	-	91.65	32.4	8.6	29.6	100	211	Р	Н
802.11n	*	5510	95.59	-	-	84.19	32.4	8.6	29.6	100	211	Α	Н
HT40		5752.4	51.27	-16.93	68.2	39.49	32.66	8.81	29.69	100	211	Р	Н
CH 102		5459.44	52.73	-21.27	74	41.52	32.34	8.46	29.59	396	38	Р	V
5510MHz		5466.64	55.98	-12.22	68.2	44.7	32.36	8.51	29.59	396	38	Р	V
		5459.68	44.26	-9.74	54	33.05	32.34	8.46	29.59	396	38	Α	V
	*	5510	99.44	-	-	88.04	32.4	8.6	29.6	396	38	Р	V
	*	5510	91.96	-	-	80.56	32.4	8.6	29.6	396	38	Α	V
		5759.96	52.18	-16.02	68.2	40.42	32.66	8.81	29.71	396	38	Р	V
		5401.36	53.94	-20.06	74	42.93	32.28	8.31	29.58	100	211	Р	Н
		5461.6	52.45	-15.75	68.2	41.24	32.34	8.46	29.59	100	211	Р	Н
		5401.36	43.65	-10.35	54	32.64	32.28	8.31	29.58	100	211	Α	Н
	*	5550	103.89	-	-	92.35	32.45	8.7	29.61	100	211	Р	Н
802.11n	*	5550	96.39	-	-	84.85	32.45	8.7	29.61	100	211	Α	Н
HT40		5739.485	51.76	-16.44	68.2	40	32.64	8.81	29.69	100	211	Р	Н
CH 110		5408.56	51.81	-22.19	74	40.8	32.28	8.31	29.58	400	295	Р	V
5550MHz		5468.56	50.76	-17.44	68.2	39.48	32.36	8.51	29.59	400	295	Р	V
		5452.96	42.71	-11.29	54	31.5	32.34	8.46	29.59	400	295	Α	V
	*	5550	98.14	-	-	86.6	32.45	8.7	29.61	400	295	Р	٧
	*	5550	90.58	-	-	79.04	32.45	8.7	29.61	400	295	Α	٧
		5764.37	51.04	-17.16	68.2	39.28	32.66	8.81	29.71	400	295	Р	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B32 of B62

		5388.5	51.95	-22.05	74	40.97	32.26	8.3	29.58	100	209	Р	Н
		5465.15	51.32	-16.88	68.2	40.09	32.36	8.46	29.59	100	209	Р	Н
		5436.1	42.82	-11.18	54	31.67	32.32	8.41	29.58	100	209	Α	Н
	*	5670	104.21	-	-	92.47	32.57	8.83	29.66	100	209	Р	Н
802.11n	*	5670	96.94	-	-	85.2	32.57	8.83	29.66	100	209	Α	Н
HT40		5729.405	52.97	-15.23	68.2	41.21	32.62	8.82	29.68	100	209	Р	Н
CH 134		5410.55	51.22	-22.78	74	40.21	32.28	8.31	29.58	400	252	Р	V
5670MHz		5460.95	50.13	-18.07	68.2	38.92	32.34	8.46	29.59	400	252	Р	V
		5452.2	42.8	-11.2	54	31.59	32.34	8.46	29.59	400	252	Α	V
	*	5670	98.09	-	-	86.35	32.57	8.83	29.66	400	252	Р	V
	*	5670	90.89	-	-	79.15	32.57	8.83	29.66	400	252	Α	V
		5738.855	51.7	-16.5	68.2	39.94	32.64	8.81	29.69	400	252	Р	V
Remark		o other spurious I results are PA	s found.							1			

Band 3 - 5470~5725MHz WIFI 802.11n HT40 (Harmonic @ 3m)

						•		•					
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11020	47.95	-26.05	74	51.92	40.09	12.53	56.59	100	0	Р	Н
HT40		16530	45.92	-22.28	68.2	48.29	38.42	14.92	55.71	100	0	Р	Н
CH 102		11020	48.8	-25.2	74	52.77	40.09	12.53	56.59	100	0	Р	V
5510MHz		16530	46.87	-21.33	68.2	49.24	38.42	14.92	55.71	100	0	Р	٧
802.11n		11100	47.84	-26.16	74	51.78	40.06	12.56	56.56	100	0	Р	Н
HT40		16650	45.91	-22.29	68.2	47.89	38.83	14.95	55.76	100	0	Р	Н
CH 110		11100	46.99	-27.01	74	50.93	40.06	12.56	56.56	100	0	Р	V
5550MHz		16650	46.26	-21.94	68.2	48.24	38.83	14.95	55.76	100	0	Р	V
802.11n		11340	47.32	-26.68	74	51.14	39.97	12.68	56.47	100	0	Р	Н
HT40		17010	48.79	-19.41	68.2	49.66	40.04	15.02	55.93	100	0	Р	Н
CH 134		11340	46.74	-27.26	74	50.56	39.97	12.68	56.47	100	0	Р	V
5670MHz		17010	47.23	-20.97	68.2	48.1	40.04	15.02	55.93	100	0	Р	V
Remark	1. No	other spurious	s found.										
	2. All	results are PA	SS against F	eak and	Average lim	it line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		5458.48	56.7	-17.3	74	45.49	32.34	8.46	29.59	100	197	Р	Н
		5462.8	57.27	-10.93	68.2	46.04	32.36	8.46	29.59	100	197	Р	Н
		5437.6	50.55	-3.45	54	39.4	32.32	8.41	29.58	100	197	Α	Н
	*	5530	99.88	-	-	88.42	32.42	8.65	29.61	100	197	Р	Н
802.11ac	*	5530	92.58	-	-	81.12	32.42	8.65	29.61	100	197	Α	Н
VHT80		5730.98	51.44	-16.76	68.2	39.69	32.62	8.82	29.69	100	197	Р	Н
CH 106		5426.32	53.68	-20.32	74	42.6	32.3	8.36	29.58	376	27	Р	V
5530MHz		5466.88	54.71	-13.49	68.2	43.43	32.36	8.51	29.59	376	27	Р	V
		5433.52	47.26	-6.74	54	36.11	32.32	8.41	29.58	376	27	Α	V
	*	5530	98.07	-	-	86.61	32.42	8.65	29.61	376	27	Р	V
	*	5530	90.58	-	-	79.12	32.42	8.65	29.61	376	27	Α	V
		5732.24	52.04	-16.16	68.2	40.29	32.62	8.82	29.69	376	27	Р	V
		5456.08	53.86	-20.14	74	42.65	32.34	8.46	29.59	105	233	Р	Н
		5461.84	53.72	-14.48	68.2	42.51	32.34	8.46	29.59	105	233	Р	Н
		5458.96	46.67	-7.33	54	35.46	32.34	8.46	29.59	105	233	Α	Н
	*	5610	100.94	-	-	89.23	32.5	8.85	29.64	105	233	Р	Н
802.11ac	*	5610	93.08	-	-	81.37	32.5	8.85	29.64	105	233	Α	Н
VHT80		5738.855	54.43	-13.77	68.2	42.67	32.64	8.81	29.69	105	233	Р	Н
CH 122		5456.08	53.88	-20.12	74	42.67	32.34	8.46	29.59	400	58	Р	V
5610MHz		5469.04	52.5	-15.7	68.2	41.22	32.36	8.51	29.59	400	58	Р	V
		5455.36	44.87	-9.13	54	33.66	32.34	8.46	29.59	400	58	Α	V
	*	5610	96.77	-	-	85.06	32.5	8.85	29.64	400	58	Р	V
	*	5610	89.41	-	-	77.7	32.5	8.85	29.64	400	58	Α	V
		5738.225	51.57	-16.63	68.2	39.81	32.64	8.81	29.69	400	58	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B34 of B62

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11060	47.68	-26.32	74	51.63	40.07	12.55	56.57	100	0	Р	Н
VHT80		16590	46.24	-21.96	68.2	48.45	38.59	14.93	55.73	100	0	Р	Н
CH 106		11060	47.24	-26.76	74	51.19	40.07	12.55	56.57	100	0	Р	٧
5530MHz		16590	46.04	-22.16	68.2	48.25	38.59	14.93	55.73	100	0	Р	V
802.11ac		11220	47.39	-26.61	74	51.26	40.01	12.63	56.51	100	0	Р	Н
VHT80		16830	46.66	-21.54	68.2	48.09	39.41	14.99	55.83	100	0	Р	Н
CH 122		11220	47.06	-26.94	74	50.93	40.01	12.63	56.51	100	0	Р	V
5610MHz		16830	47.6	-20.6	68.2	49.03	39.41	14.99	55.83	100	0	Р	٧

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B35 of B62

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5445.16	52.02	-21.98	74	40.87	32.32	8.41	29.58	100	234	Р	Н
		5467	50.37	-17.83	68.2	39.09	32.36	8.51	29.59	100	234	Р	Н
		5458.42	41.93	-12.07	54	30.72	32.34	8.46	29.59	100	234	Α	Н
	*	5720	106.88	-	-	95.12	32.62	8.82	29.68	100	234	Р	Н
	*	5720	99.31	-	-	87.55	32.62	8.82	29.68	100	234	Α	Н
802.11a		5883	52.03	-16.17	68.2	40.12	32.78	8.88	29.75	100	234	Р	Н
CH 144 5720MHz		5381.98	50.5	-23.5	74	39.52	32.26	8.3	29.58	379	34	Р	V
37 ZUWITIZ		5468.56	50.1	-18.1	68.2	38.82	32.36	8.51	29.59	379	34	Р	V
		5455.3	41.79	-12.21	54	30.58	32.34	8.46	29.59	379	34	Α	V
	*	5720	102.12	-	-	90.36	32.62	8.82	29.68	379	34	Р	V
	*	5720	94.68	-	-	82.92	32.62	8.82	29.68	379	34	Α	V
		5910.5	51.81	-16.39	68.2	39.87	32.81	8.9	29.77	379	34	Р	V
Remark	1. No	other spurious	s found.									•	
iveillai K	2. All	results are PA	SS against F	Peak and	Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		11440	47.61	-26.39	74	51.39	39.93	12.72	56.43	100	0	Р	Н
802.11a		17160	48.73	-19.47	68.2	49.43	40.4	15.07	56.17	100	0	Р	Н
CH 144 5720MHz		11440	48.98	-25.02	74	52.76	39.93	12.72	56.43	100	0	Р	V
3/2UNITZ		17160	49.14	-19.06	68.2	49.84	40.4	15.07	56.17	100	0	Р	V

Remark

- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B36 of B62

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5444.38	51.29	-22.71	74	40.14	32.32	8.41	29.58	100	236	Р	Н
		5467	49.56	-18.64	68.2	38.28	32.36	8.51	29.59	100	236	Р	Н
		5459.2	42.1	-11.9	54	30.89	32.34	8.46	29.59	100	236	Α	Н
	*	5720	107.03	-	-	95.27	32.62	8.82	29.68	100	236	Р	Н
802.11n	*	5720	99.04	-	-	87.28	32.62	8.82	29.68	100	236	Α	Н
HT20		5875.5	52.8	-15.4	68.2	40.9	32.78	8.87	29.75	100	236	Р	Н
CH 144		5437.75	50.39	-23.61	74	39.24	32.32	8.41	29.58	380	34	Р	V
5720MHz		5460.76	49.77	-18.43	68.2	38.56	32.34	8.46	29.59	380	34	Р	V
		5457.64	41.84	-12.16	54	30.63	32.34	8.46	29.59	380	34	Α	٧
	*	5720	102.66	-	-	90.9	32.62	8.82	29.68	380	34	Р	٧
	*	5720	94.17	-	-	82.41	32.62	8.82	29.68	380	34	Α	٧
		5877	51.14	-17.06	68.2	39.24	32.78	8.87	29.75	380	34	Р	V
Remark		o other spurious		Peak and	l Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
802.11n		11440	47.85	-26.15	74	51.63	39.93	12.72	56.43	100	0	Р	Н
HT20		17160	48.97	-19.23	68.2	49.67	40.4	15.07	56.17	100	0	Р	Н
CH 144		11440	47.44	-26.56	74	51.22	39.93	12.72	56.43	100	0	Р	V
5720MHz		17160	49.9	-18.3	68.2	50.6	40.4	15.07	56.17	100	0	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B37 of B62

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5435.02	50.95	-23.05	74	39.8	32.32	8.41	29.58	100	213	Р	Н
		5466.61	50.45	-17.75	68.2	39.17	32.36	8.51	29.59	100	213	Р	Н
		5454.91	42.97	-11.03	54	31.76	32.34	8.46	29.59	100	213	Α	Н
802.11n	*	5710	104.59	-	-	92.84	32.61	8.82	29.68	100	213	Р	Н
	*	5710	97.15	-	-	85.4	32.61	8.82	29.68	100	213	Α	Н
HT40		5861.75	52.53	-15.67	68.2	40.65	32.76	8.87	29.75	100	213	Р	Н
CH 142		5440.09	50.37	-23.63	74	39.22	32.32	8.41	29.58	400	36	Р	٧
5710MHz		5462.32	48.82	-19.38	68.2	37.61	32.34	8.46	29.59	400	36	Р	V
		5458.42	42.5	-11.5	54	31.29	32.34	8.46	29.59	400	36	Α	V
	*	5710	98.79	-	-	87.04	32.61	8.82	29.68	400	36	Р	٧
	*	5710	91.64	-	-	79.89	32.61	8.82	29.68	400	36	Α	٧
		5871.25	52.06	-16.14	68.2	40.16	32.78	8.87	29.75	400	36	Р	V
Remark		o other spurious		eak and	l Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11420	47.24	-26.76	74	51.03	39.93	12.71	56.43	100	0	Р	Н
HT40		17130	48.9	-19.3	68.2	49.61	40.32	15.08	56.11	100	0	Р	Н
CH 142		11420	47.84	-26.16	74	51.63	39.93	12.71	56.43	100	0	Р	V
5710MHz		17130	49.71	-18.49	68.2	50.42	40.32	15.08	56.11	100	0	Р	V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B38 of B62

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5400.7	52.74	-21.26	74	41.73	32.28	8.31	29.58	101	215	Р	Н
		5467.78	51.79	-16.41	68.2	40.51	32.36	8.51	29.59	101	215	Р	Н
		5456.86	44.52	-9.48	54	33.31	32.34	8.46	29.59	101	215	Α	Н
	*	5690	103.28	-	-	91.53	32.59	8.83	29.67	101	215	Р	Н
802.11ac	*	5690	95.37	-	-	83.62	32.59	8.83	29.67	101	215	Α	Н
VHT80		5909.2	53.01	-15.19	68.2	41.07	32.81	8.9	29.77	101	215	Р	Н
CH 138		5426.05	51.29	-22.71	74	40.21	32.3	8.36	29.58	397	302	Р	٧
5690MHz		5463.1	50.76	-17.44	68.2	39.53	32.36	8.46	29.59	397	302	Р	٧
		5457.64	44.77	-9.23	54	33.56	32.34	8.46	29.59	397	302	Α	٧
	*	5690	97.84	-	-	86.09	32.59	8.83	29.67	397	302	Р	٧
	*	5690	90.89	-	-	79.14	32.59	8.83	29.67	397	302	Α	V
		5923.6	52.82	-15.38	68.2	40.85	32.83	8.91	29.77	397	302	Р	٧
Remark		o other spurious		Peak and	l Average lim	it line.			,		,	,	

Band 3 - Straddle Channel

WIFI 802.11ac VHT80 (Harmonic @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	11380	47.33	-26.67	74	51.12	39.95	12.71	56.45	100	0	Р	Н
	17070	48.89	-19.31	68.2	49.7	40.16	15.04	56.01	100	0	Р	Н
	11380	47.17	-26.83	74	50.96	39.95	12.71	56.45	100	0	Р	٧
	17070	49.37	-18.83	68.2	50.18	40.16	15.04	56.01	100	0	Р	V
	Note	(MHz) 11380 17070 11380	(MHz) (dBμV/m) 11380 47.33 17070 48.89 11380 47.17	(MHz) (dBμV/m) (dB) 11380 47.33 -26.67 17070 48.89 -19.31 11380 47.17 -26.83	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) 11380 47.33 -26.67 74 17070 48.89 -19.31 68.2 11380 47.17 -26.83 74	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV/m) 11380 47.33 -26.67 74 51.12 17070 48.89 -19.31 68.2 49.7 11380 47.17 -26.83 74 50.96	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) 11380 47.33 -26.67 74 51.12 39.95 17070 48.89 -19.31 68.2 49.7 40.16 11380 47.17 -26.83 74 50.96 39.95	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB/m) 11380 47.33 -26.67 74 51.12 39.95 12.71 17070 48.89 -19.31 68.2 49.7 40.16 15.04 11380 47.17 -26.83 74 50.96 39.95 12.71	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) 11380 47.33 -26.67 74 51.12 39.95 12.71 56.45 17070 48.89 -19.31 68.2 49.7 40.16 15.04 56.01 11380 47.17 -26.83 74 50.96 39.95 12.71 56.45	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 11380 47.33 -26.67 74 51.12 39.95 12.71 56.45 100 17070 48.89 -19.31 68.2 49.7 40.16 15.04 56.01 100 11380 47.17 -26.83 74 50.96 39.95 12.71 56.45 100	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (deg) 11380 47.33 -26.67 74 51.12 39.95 12.71 56.45 100 0 17070 48.89 -19.31 68.2 49.7 40.16 15.04 56.01 100 0 11380 47.17 -26.83 74 50.96 39.95 12.71 56.45 100 0	(MHz) Limit (dBμV/m) Limit (dBμV/m) Level (dBμV) Factor (dBμV) Loss (dB) Factor (dB) Pos (dB) Avg. (deg) (P/A) 11380 47.33 -26.67 74 51.12 39.95 12.71 56.45 100 0 P 17070 48.89 -19.31 68.2 49.7 40.16 15.04 56.01 100 0 P 11380 47.17 -26.83 74 50.96 39.95 12.71 56.45 100 0 P

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B39 of B62

Emission below 1GHz

WIFI 802.11ac VHT80 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
		94.26	31.22	-12.28	43.5	46.71	15.46	1.34	32.29	-	-	Р	Н
		119.91	33.71	-9.79	43.5	47.29	17.33	1.38	32.29	-	-	Р	Н
		238.17	40.23	-5.77	46	53.32	17.18	1.95	32.22	100	0	Р	Н
		300.7	29.13	-16.87	46	39.85	19.31	2.1	32.13	-	-	Р	Н
		407.8	34.47	-11.53	46	42.02	22.14	2.46	32.15	-	-	Р	Н
802.11av		720	32.24	-13.76	46	34.14	27.06	3.17	32.13	-	-	Р	Н
VHT80 LF		35.4	25.38	-14.62	40	35.17	21.75	0.79	32.33	-	-	Р	V
LF		59.7	27.74	-12.26	40	46.93	12.06	1.06	32.31	-	-	Р	V
		239.25	33.33	-12.67	46	46.32	17.28	1.95	32.22	-	-	Р	V
		720	29.28	-16.72	46	31.18	27.06	3.17	32.13	-	-	Р	V
		857.9	31.67	-14.33	46	30.76	29.1	3.52	31.71	-	-	Р	V
		953.1	33.95	-12.05	46	30.46	30.81	3.71	31.03	100	0	Р	V
Remark		o other spurious		mit line.									

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5003.4	51.15	-22.85	74	40.89	31.8	7.99	29.53	100	321	Р	Н
		5093.84	42.51	-11.49	54	32.03	31.92	8.1	29.54	100	321	Α	Н
	*	5260	107.98	-	-	97.16	32.12	8.26	29.56	100	321	Р	Н
	*	5260	100.73	-	-	89.91	32.12	8.26	29.56	100	321	Α	Н
		5458.8	51.31	-22.69	74	40.1	32.34	8.46	29.59	100	321	Р	Н
802.11a		5413.2	43.9	-10.1	54	32.82	32.3	8.36	29.58	100	321	Α	Н
CH 52		5003.06	51.51	-22.49	74	41.25	31.8	7.99	29.53	400	253	Р	V
5260MHz		5104.72	42.57	-11.43	54	32.09	31.92	8.1	29.54	400	253	Α	V
	*	5260	106.44	-	-	95.62	32.12	8.26	29.56	400	253	Р	V
	*	5260	99.05	-	-	88.23	32.12	8.26	29.56	400	253	Α	V
		5447.04	50.92	-23.08	74	39.75	32.34	8.41	29.58	400	253	Р	V
		5414.16	43.71	-10.29	54	32.63	32.3	8.36	29.58	400	253	Α	V
		5080.24	51.23	-22.77	74	40.79	31.9	8.08	29.54	100	319	Р	Н
		5047.94	42.59	-11.41	54	32.23	31.86	8.04	29.54	100	319	Α	Н
	*	5300	108.38	-	-	97.52	32.16	8.27	29.57	100	319	Р	Н
	*	5300	100.92	-	-	90.06	32.16	8.27	29.57	100	319	Α	Н
		5403.36	53.29	-20.71	74	42.28	32.28	8.31	29.58	100	319	Р	Н
802.11a		5351.52	44.39	-9.61	54	33.45	32.22	8.29	29.57	100	319	Α	Н
CH 60 5300MHz		5009.86	50.79	-23.21	74	40.51	31.82	7.99	29.53	397	250	Р	V
3300WIF12		5018.7	42.54	-11.46	54	32.24	31.82	8.01	29.53	397	250	Α	V
	*	5300	106.08	-	-	95.22	32.16	8.27	29.57	397	250	Р	V
	*	5300	99.47	-	-	88.61	32.16	8.27	29.57	397	250	Α	V
		5451.84	50.8	-23.2	74	39.59	32.34	8.46	29.59	397	250	Р	V
		5454	43.49	-10.51	54	32.28	32.34	8.46	29.59	397	250	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B41 of B62

	*	5320	108.54	-	-	97.65	32.18	8.28	29.57	100	316	Р	Н
	*	5320	101.39	-	-	90.5	32.18	8.28	29.57	100	316	Α	Н
		5366.56	53.88	-20.12	74	42.91	32.24	8.3	29.57	100	316	Р	Н
802.11a		5350.56	45.36	-8.64	54	34.42	32.22	8.29	29.57	100	316	Α	Н
CH 64 5320MHz	*	5320	106.42	1	ı	95.53	32.18	8.28	29.57	394	248	Р	٧
3320WII 12	*	5320	99.35	-	-	88.46	32.18	8.28	29.57	394	248	Α	V
		5354.72	52.81	-21.19	74	41.87	32.22	8.29	29.57	394	248	Р	٧
		5350.08	43.28	-10.72	54	32.34	32.22	8.29	29.57	394	248	Α	٧
Remark		o other spurious		Peak and	Average lim	iit line.							

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		10520	47.07	-21.13	68.2	52.15	39.52	12.39	56.99	100	0	Р	Н
802.11a		15780	45.3	-28.7	74	49.24	37.68	14.71	56.33	100	0	Р	Н
CH 52		10520	46.95	-21.25	68.2	52.03	39.52	12.39	56.99	100	0	Р	V
5260MHz		15780	46.9	-27.1	74	50.84	37.68	14.71	56.33	100	0	Р	V
		10600	47.76	-26.24	74	52.65	39.62	12.41	56.92	100	0	Р	Н
802.11a		15900	44.94	-29.06	74	49.06	37.37	14.77	56.26	100	0	Р	Н
CH 60 5300MHz		10600	48.4	-25.6	74	53.29	39.62	12.41	56.92	100	0	Р	V
3300WII 12		15900	44.88	-29.12	74	49	37.37	14.77	56.26	100	0	Р	V
000.44		10640	46.78	-27.22	74	51.59	39.67	12.41	56.89	100	0	Р	Н
802.11a		15960	43.99	-30.01	74	48.24	37.19	14.78	56.22	100	0	Р	Н
CH 64 5320MHz		10640	46.52	-27.48	74	51.33	39.67	12.41	56.89	100	0	Р	V
332UIVIMZ		15960	43.34	-30.66	74	47.59	37.19	14.78	56.22	100	0	Р	V

SPORTON INTERNATIONAL INC.

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No. : FR730732-04

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5082.62	51.66	-22.34	74	41.22	31.9	8.08	29.54	100	316	Р	Н
		5057.8	42.67	-11.33	54	32.27	31.88	8.06	29.54	100	316	Α	Н
	*	5260	107.86	-	-	97.04	32.12	8.26	29.56	100	316	Р	Н
	*	5260	100.25	-	-	89.43	32.12	8.26	29.56	100	316	Α	Н
802.11n		5438.88	51.62	-22.38	74	40.47	32.32	8.41	29.58	100	316	Р	Н
HT20		5418.72	43.45	-10.55	54	32.37	32.3	8.36	29.58	100	316	Α	Н
CH 52		5139.06	51.38	-22.62	74	40.82	31.96	8.15	29.55	400	250	Р	V
5260MHz		5108.46	42.5	-11.5	54	31.97	31.94	8.13	29.54	400	250	Α	V
	*	5260	105.58	-	-	94.76	32.12	8.26	29.56	400	250	Р	V
	*	5260	98.01	-	-	87.19	32.12	8.26	29.56	400	250	Α	V
		5415.6	51.33	-22.67	74	40.25	32.3	8.36	29.58	400	250	Р	<
		5415.84	43.35	-10.65	54	32.27	32.3	8.36	29.58	400	250	Α	٧
		5060.18	51.34	-22.66	74	40.94	31.88	8.06	29.54	100	319	Р	Η
		5061.2	42.43	-11.57	54	32.03	31.88	8.06	29.54	100	319	Α	Н
	*	5300	107.1	-	-	96.24	32.16	8.27	29.57	100	319	Р	Н
	*	5300	99.83	-	-	88.97	32.16	8.27	29.57	100	319	Α	Н
802.11n		5356.08	53.5	-20.5	74	42.56	32.22	8.29	29.57	100	319	Р	Н
HT20		5350.8	44.34	-9.66	54	33.4	32.22	8.29	29.57	100	319	Α	Н
CH 60		5045.9	51.38	-22.62	74	41.02	31.86	8.04	29.54	394	247	Р	V
5300MHz		5037.4	42.29	-11.71	54	31.94	31.84	8.04	29.53	394	247	Α	V
	*	5300	105.62	-	-	94.76	32.16	8.27	29.57	394	247	Р	V
	*	5300	97.98	-	-	87.12	32.16	8.27	29.57	394	247	Α	V
		5456.88	52	-22	74	40.79	32.34	8.46	29.59	394	247	Р	V
		5454.24	43.46	-10.54	54	32.25	32.34	8.46	29.59	394	247	Α	V

SPORTON INTERNATIONAL INC. Page Number : B43 of B62

	*	5320	106.52	-	-	95.63	32.18	8.28	29.57	100	314	Р	Н
	*	5320	99.6	-	-	88.71	32.18	8.28	29.57	100	314	Α	Н
802.11n		5350.4	52.55	-21.45	74	41.61	32.22	8.29	29.57	100	314	Р	Н
HT20		5351.52	44.64	-9.36	54	33.7	32.22	8.29	29.57	100	314	Α	Н
CH 64	*	5320	105.38	-	-	94.49	32.18	8.28	29.57	393	250	Р	V
5320MHz	*	5320	98.07	-	-	87.18	32.18	8.28	29.57	393	250	Α	V
		5457.6	51.46	-22.54	74	40.25	32.34	8.46	29.59	393	250	Р	V
		5350.72	43.17	-10.83	54	32.23	32.22	8.29	29.57	393	250	Α	٧
Remark		o other spurious		Peak and	Average lim	nit line.							

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		10520	46.81	-21.39	68.2	51.89	39.52	12.39	56.99	100	0	Р	Н
HT20		15780	44.64	-29.36	74	48.58	37.68	14.71	56.33	100	0	Р	Н
CH 52		10520	46.91	-21.29	68.2	51.99	39.52	12.39	56.99	100	0	Р	٧
5260MHz		15780	45.04	-28.96	74	48.98	37.68	14.71	56.33	100	0	Р	V
802.11n		10600	47.83	-26.17	74	52.72	39.62	12.41	56.92	100	0	Р	Н
HT20		15900	46.7	-27.3	74	50.82	37.37	14.77	56.26	100	0	Р	Н
CH 60		10600	47.24	-26.76	74	52.13	39.62	12.41	56.92	100	0	Р	V
5300MHz		15900	45.45	-28.55	74	49.57	37.37	14.77	56.26	100	0	Р	V
802.11n		10640	47.37	-26.63	74	52.18	39.67	12.41	56.89	100	0	Р	Н
HT20		15960	44.75	-29.25	74	49	37.19	14.78	56.22	100	0	Р	Н
CH 64		10640	46.85	-27.15	74	51.66	39.67	12.41	56.89	100	0	Р	V
5320MHz		15960	44.02	-29.98	74	48.27	37.19	14.78	56.22	100	0	Р	V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B44 of B62

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	` '	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5028.56	50.1	-23.9	74	39.78	31.84	8.01	29.53	100	317	Р	Н
		5094.52	43.47	-10.53	54	32.99	31.92	8.1	29.54	100	317	Α	Н
	*	5270	104.48	-	-	93.65	32.12	8.27	29.56	100	317	Р	Н
	*	5270	97.06	-	-	86.23	32.12	8.27	29.56	100	317	Α	Н
802.11n		5456.4	51.56	-22.44	74	40.35	32.34	8.46	29.59	100	317	Р	Н
HT40		5351.28	43.8	-10.2	54	32.86	32.22	8.29	29.57	100	317	Α	Н
CH 54		5030.94	51.1	-22.9	74	40.78	31.84	8.01	29.53	400	252	Р	V
5270MHz		5112.88	42.86	-11.14	54	32.33	31.94	8.13	29.54	400	252	Α	V
	*	5270	102.07	-	-	91.24	32.12	8.27	29.56	400	252	Р	V
	*	5270	95.05	-	-	84.22	32.12	8.27	29.56	400	252	Α	V
		5408.4	49.98	-24.02	74	38.97	32.28	8.31	29.58	400	252	Р	V
		5417.28	42.79	-11.21	54	31.71	32.3	8.36	29.58	400	252	Α	V
		5113.22	51.67	-22.33	74	41.14	31.94	8.13	29.54	100	318	Р	Н
		5063.58	42.91	-11.09	54	32.51	31.88	8.06	29.54	100	318	Α	Н
	*	5310	104.41	-	-	93.52	32.18	8.28	29.57	100	318	Р	Н
	*	5310	96.91	-	-	86.02	32.18	8.28	29.57	100	318	Α	Н
802.11n		5353.92	59	-15	74	48.06	32.22	8.29	29.57	100	318	Р	Н
HT40		5351.52	50.9	-3.1	54	39.96	32.22	8.29	29.57	100	318	Α	Н
CH 62		5068	52.66	-21.34	74	42.26	31.88	8.06	29.54	394	245	Р	V
5310MHz		5046.24	42.76	-11.24	54	32.4	31.86	8.04	29.54	394	245	Α	V
	*	5310	101.41	-	-	90.52	32.18	8.28	29.57	394	245	Р	V
	*	5310	94.67	-	-	83.78	32.18	8.28	29.57	394	245	Α	V
		5353.92	55.25	-18.75	74	44.31	32.22	8.29	29.57	394	245	Р	V
		5351.04	47.99	-6.01	54	37.05	32.22	8.29	29.57	394	245	Α	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B45 of B62

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		10540	46.96	-21.24	68.2	52	39.54	12.39	56.97	100	0	Р	Н
HT40		15810	45.01	-28.99	74	49	37.59	14.73	56.31	100	0	Р	Н
CH 54		10540	46.98	-21.22	68.2	52.02	39.54	12.39	56.97	100	0	Р	٧
5270MHz		15810	44.37	-29.63	74	48.36	37.59	14.73	56.31	100	0	Р	V
802.11n		10620	47.39	-26.61	74	52.24	39.64	12.41	56.9	100	0	Р	Н
HT40		15930	45.09	-28.91	74	49.27	37.28	14.78	56.24	100	0	Р	Н
CH 62		10620	47.31	-26.69	74	52.16	39.64	12.41	56.9	100	0	Р	٧
5310MHz		15930	45	-29	74	49.18	37.28	14.78	56.24	100	0	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B46 of B62

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5081.26	52.97	-21.03	74	42.53	31.9	8.08	29.54	109	191	Р	Н
		5044.2	45.62	-8.38	54	35.26	31.86	8.04	29.54	109	191	Α	Н
	*	5290	101.2	-	-	90.35	32.14	8.27	29.56	109	191	Р	Н
	*	5290	94.33	-	-	83.48	32.14	8.27	29.56	109	191	Α	Н
802.11ac		5372.88	56.18	-17.82	74	45.21	32.24	8.3	29.57	109	191	Р	Н
VHT80		5387.28	50.88	-3.12	54	39.9	32.26	8.3	29.58	109	191	Α	Н
CH 58		5026.86	53.01	-20.99	74	42.69	31.84	8.01	29.53	398	247	Р	٧
5290MHz		5063.92	44.97	-9.03	54	34.57	31.88	8.06	29.54	398	247	Α	٧
	*	5290	98.27	-	-	87.42	32.14	8.27	29.56	398	247	Р	٧
	*	5290	91	-	-	80.15	32.14	8.27	29.56	398	247	Α	٧
		5374.32	54.67	-19.33	74	43.71	32.24	8.3	29.58	398	247	Р	٧
		5371.2	46.74	-7.26	54	35.77	32.24	8.3	29.57	398	247	Α	٧
Remark		o other spurious		Peak and	Average lim	it line.				1	1	ı	,

Band 2 5250~5350MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
802.11ac		10580	47.11	-21.09	68.2	52.04	39.6	12.4	56.93	100	0	Р	Н
VHT80		15870	44.12	-29.88	74	48.23	37.41	14.75	56.27	100	0	Р	Н
CH 58		10580	47.5	-20.7	68.2	52.43	39.6	12.4	56.93	100	0	Р	V
5290MHz		15870	45.36	-28.64	74	49.47	37.41	14.75	56.27	100	0	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B47 of B62

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.		(NA 11)	(15)(()	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(110.0
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5457.04	55.49	-18.51	74	44.28	32.34	8.46	29.59	101	226	Р	Н
		5465.68	55.96	-12.24	68.2	44.73	32.36	8.46	29.59	101	226	Р	Н
		5459.6	45	-9	54	33.79	32.34	8.46	29.59	101	226	Α	Н
	*	5500	108.61	-	-	97.24	32.4	8.56	29.59	101	226	Р	Н
902 44 6	*	5500	101.03	-	-	89.66	32.4	8.56	29.59	101	226	Α	Н
802.11a													Н
CH 100 5500MHz		5444.4	52.45	-21.55	74	41.3	32.32	8.41	29.58	388	247	Р	V
3300WITZ		5469.04	52.97	-15.23	68.2	41.69	32.36	8.51	29.59	388	247	Р	V
		5457.68	42.97	-11.03	54	31.76	32.34	8.46	29.59	388	247	Α	V
	*	5500	105.47	-	-	94.1	32.4	8.56	29.59	388	247	Р	٧
	*	5500	98.52	-	-	87.15	32.4	8.56	29.59	388	247	Α	٧
													٧
		5424.64	52.64	-21.36	74	41.56	32.3	8.36	29.58	117	198	Р	Н
		5469.52	51.53	-16.67	68.2	40.25	32.36	8.51	29.59	117	198	Р	Н
		5413.84	44.53	-9.47	54	33.45	32.3	8.36	29.58	117	198	Α	Н
	*	5580	108.87	-	-	97.23	32.47	8.8	29.63	117	198	Р	Н
44	*	5580	101.47	-	-	89.83	32.47	8.8	29.63	117	198	Α	Н
802.11a CH 116		5746.415	53.4	-14.8	68.2	41.64	32.64	8.81	29.69	117	198	Р	П
5580MHz		5443.36	51.16	-22.84	74	40.01	32.32	8.41	29.58	400	296	Р	V
3300WII 12		5463.52	51.27	-16.93	68.2	40.04	32.36	8.46	29.59	400	296	Р	٧
		5424.4	42.92	-11.08	54	31.84	32.3	8.36	29.58	400	296	Α	٧
	*	5580	106.39	-	-	94.75	32.47	8.8	29.63	400	296	Р	٧
	*	5580	99.04	-	-	87.4	32.47	8.8	29.63	400	296	Α	V
		5728.775	52.84	-15.36	68.2	41.08	32.62	8.82	29.68	400	296	Р	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B48 of B62

	*	5700	109.87	-	-	98.13	32.59	8.82	29.67	102	200	Р	Н
	*	5700	102.65	-	-	90.91	32.59	8.82	29.67	102	200	Α	Н
802.11a		5728.6	56.59	-11.61	68.2	44.83	32.62	8.82	29.68	102	200	Р	Н
CH 140 5700MHz	*	5700	106.2	-	-	94.46	32.59	8.82	29.67	398	255	Р	٧
3700WH2	*	5700	98.9	-	-	87.16	32.59	8.82	29.67	398	255	Α	٧
		5728.04	54.13	-14.07	68.2	42.37	32.62	8.82	29.68	398	255	Р	V
Remark		o other spurious		Peak and	Average lim	nit line.							

Report No. : FR730732-04

: B49 of B62

Band 3 - 5470~5725MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V
902 44 6		11000	48.4	-25.6	74	52.39	40.1	12.51	56.6	100	0	Р	Н
802.11a CH 100		16500	44.8	-23.4	68.2	47.28	38.3	14.92	55.7	100	0	Р	Н
5500MHz		11000	48.68	-25.32	74	52.67	40.1	12.51	56.6	100	0	Р	V
3300M112		16500	44.44	-23.76	68.2	46.92	38.3	14.92	55.7	100	0	Р	V
000.44		11160	46.65	-27.35	74	50.56	40.03	12.59	56.53	100	0	Р	Н
802.11a CH 116		16740	46.85	-21.35	68.2	48.57	39.12	14.96	55.8	100	0	Р	Н
5580MHz		11160	48.15	-25.85	74	52.06	40.03	12.59	56.53	100	0	Р	V
3300W112		16740	45.01	-23.19	68.2	46.73	39.12	14.96	55.8	100	0	Р	V
000.44		11400	48.69	-25.31	74	52.47	39.94	12.72	56.44	100	0	Р	Н
802.11a		17100	48.25	-19.95	68.2	49.01	40.24	15.06	56.06	100	0	Р	Н
CH 140 5700MHz		11400	49.59	-24.41	74	53.37	39.94	12.72	56.44	100	0	Р	V
37 OUNITZ		17100	49.51	-18.69	68.2	50.27	40.24	15.06	56.06	100	0	Р	V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC. Page Number

Report No. : FR730732-04

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5450.8	54.21	-19.79	74	43	32.34	8.46	29.59	116	319	Р	Н
		5461.68	56.06	-12.14	68.2	44.85	32.34	8.46	29.59	116	319	Р	Н
		5459.44	44.87	-9.13	54	33.66	32.34	8.46	29.59	116	319	Α	Н
802.11n	*	5500	107.1	-	-	95.73	32.4	8.56	29.59	116	319	Р	Н
HT20	*	5500	100.07	-	-	88.7	32.4	8.56	29.59	116	319	Α	I
CH 100		5428.4	51.81	-22.19	74	40.73	32.3	8.36	29.58	398	45	Р	V
5500MHz		5468.56	52.59	-15.61	68.2	41.31	32.36	8.51	29.59	398	45	Р	V
		5459.76	42.95	-11.05	54	31.74	32.34	8.46	29.59	398	45	Α	V
	*	5500	103.47	-	-	92.1	32.4	8.56	29.59	398	45	Р	V
	*	5500	95.9	-	-	84.53	32.4	8.56	29.59	398	45	А	V
		5416.72	53.52	-20.48	74	42.44	32.3	8.36	29.58	123	200	Р	Н
		5469.28	50.79	-17.41	68.2	39.51	32.36	8.51	29.59	123	200	Р	Н
		5417.2	44.75	-9.25	54	33.67	32.3	8.36	29.58	123	200	Α	Н
	*	5580	107.89	-	-	96.25	32.47	8.8	29.63	123	200	Р	Н
802.11n	*	5580	100.91	-	-	89.27	32.47	8.8	29.63	123	200	А	Н
HT20		5732.24	53.5	-14.7	68.2	41.75	32.62	8.82	29.69	123	200	Р	Н
CH 116		5420.8	51.51	-22.49	74	40.43	32.3	8.36	29.58	400	295	Р	V
5580MHz		5469.28	51.28	-16.92	68.2	40	32.36	8.51	29.59	400	295	Р	V
		5427.76	43.07	-10.93	54	31.99	32.3	8.36	29.58	400	295	Α	V
	*	5580	105.66	-	-	94.02	32.47	8.8	29.63	400	295	Р	V
	*	5580	98.63	-	-	86.99	32.47	8.8	29.63	400	295	Α	V
		5745.785	51.76	-16.44	68.2	40	32.64	8.81	29.69	400	295	Р	V

SPORTON INTERNATIONAL INC. Page Number : B50 of B62

	*	5700	109.02	-	-	97.28	32.59	8.82	29.67	101	200	Р	Н
802.11n	*	5700	101.74	-	-	90	32.59	8.82	29.67	101	200	Α	Н
HT20		5728.04	55.46	-12.74	68.2	43.7	32.62	8.82	29.68	101	200	Р	Н
CH 140	*	5700	105.72	-	-	93.98	32.59	8.82	29.67	399	257	Р	٧
5700MHz	*	5700	98.21	-	-	86.47	32.59	8.82	29.67	399	257	Α	V
		5729.56	54.45	-13.75	68.2	42.69	32.62	8.82	29.68	399	257	Р	V
Remark		o other spurious		Peak and	Average lim	it line.							

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
802.11n		11000	48.36	-25.64	74	52.35	40.1	12.51	56.6	100	0	Р	Н
HT20		16500	47.28	-20.92	68.2	49.76	38.3	14.92	55.7	100	0	Р	Н
CH 100		11000	47.66	-26.34	74	51.65	40.1	12.51	56.6	100	0	Р	V
5500MHz		16500	45.63	-22.57	68.2	48.11	38.3	14.92	55.7	100	0	Р	V
802.11n		11160	48.52	-25.48	74	52.43	40.03	12.59	56.53	100	0	Р	Н
HT20		16740	45.33	-22.87	68.2	47.05	39.12	14.96	55.8	100	0	Р	Н
CH 116		11160	47.48	-26.52	74	51.39	40.03	12.59	56.53	100	0	Р	V
5580MHz		16740	45.7	-22.5	68.2	47.42	39.12	14.96	55.8	100	0	Р	V
802.11n		11400	48.62	-25.38	74	52.4	39.94	12.72	56.44	100	0	Р	Н
HT20		17100	48.29	-19.91	68.2	49.05	40.24	15.06	56.06	100	0	Р	Н
CH 140		11400	48.57	-25.43	74	52.35	39.94	12.72	56.44	100	0	Р	V
5700MHz		17100	48.24	-19.96	68.2	49	40.24	15.06	56.06	100	0	Р	V
Remark		o other spurious		eak and	l Average lim	it line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 3 - 5470~5725MHz

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5459.2	59.18	-14.82	74	47.97	32.34	8.46	29.59	100	320	Р	Н
		5469.76	65.01	-3.19	68.2	53.73	32.36	8.51	29.59	100	320	Р	Н
		5459.44	50.89	-3.11	54	39.68	32.34	8.46	29.59	100	320	Α	Н
	*	5510	105.32	-	-	93.92	32.4	8.6	29.6	100	320	Р	Н
802.11n	*	5510	98.13	-	-	86.73	32.4	8.6	29.6	100	320	Α	Н
HT40		5747.045	51.49	-16.71	68.2	39.73	32.64	8.81	29.69	100	320	Р	Н
CH 102		5458.48	53.26	-20.74	74	42.05	32.34	8.46	29.59	381	247	Р	V
5510MHz		5469.28	62.07	-6.13	68.2	50.79	32.36	8.51	29.59	381	247	Р	V
		5459.92	47.37	-6.63	54	36.16	32.34	8.46	29.59	381	247	Α	V
	*	5510	102.38	-	-	90.98	32.4	8.6	29.6	381	247	Р	V
	*	5510	94.89	-	-	83.49	32.4	8.6	29.6	381	247	Α	V
		5726.57	51.82	-16.38	68.2	40.06	32.62	8.82	29.68	381	247	Р	V
		5458.48	52.58	-21.42	74	41.37	32.34	8.46	29.59	100	323	Р	Н
		5462.32	51.04	-17.16	68.2	39.83	32.34	8.46	29.59	100	323	Р	Н
		5453.92	43.41	-10.59	54	32.2	32.34	8.46	29.59	100	323	Α	Н
	*	5550	106.3	-	-	94.76	32.45	8.7	29.61	100	323	Р	Н
802.11n	*	5550	98.29	-	-	86.75	32.45	8.7	29.61	100	323	Α	Н
HT40		5740.115	50.67	-17.53	68.2	38.91	32.64	8.81	29.69	100	323	Р	Н
CH 110		5431.36	51.66	-22.34	74	40.51	32.32	8.41	29.58	399	237	Р	V
5550MHz		5469.04	50.43	-17.77	68.2	39.15	32.36	8.51	29.59	399	237	Р	V
		5456.8	43.03	-10.97	54	31.82	32.34	8.46	29.59	399	237	Α	V
	*	5550	103.93	-	-	92.39	32.45	8.7	29.61	399	237	Р	V
	*	5550	95.3	-	-	83.76	32.45	8.7	29.61	399	237	Α	٧
		5735.705	50.86	-17.34	68.2	39.1	32.64	8.81	29.69	399	237	Р	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B52 of B62

		5439.25	51.55	-22.45	74	40.4	32.32	8.41	29.58	100	323	Р	Н
		5467.95	50.08	-18.12	68.2	38.8	32.36	8.51	29.59	100	323	Р	Н
		5459.9	43.03	-10.97	54	31.82	32.34	8.46	29.59	100	323	Α	Н
	*	5670	105.61	-	-	93.87	32.57	8.83	29.66	100	323	Р	Н
802.11n	*	5670	98	-	-	86.26	32.57	8.83	29.66	100	323	Α	Н
HT40		5726.57	54.26	-13.94	68.2	42.5	32.62	8.82	29.68	100	323	Р	Н
CH 134		5446.6	50.32	-23.68	74	39.15	32.34	8.41	29.58	399	242	Р	٧
5670MHz		5460.25	51.26	-16.94	68.2	40.05	32.34	8.46	29.59	399	242	Р	V
		5439.6	42.76	-11.24	54	31.61	32.32	8.41	29.58	399	242	Α	V
	*	5670	102.59	-	-	90.85	32.57	8.83	29.66	399	242	Р	V
	*	5670	95.25	-	-	83.51	32.57	8.83	29.66	399	242	Α	٧
		5733.815	51.78	-16.42	68.2	40.03	32.62	8.82	29.69	399	242	Р	٧
Domark	1. N	lo other spurious	s found.										
Remark	2. A	III results are PA	SS against I	Peak and	Average lim	it line.							

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11020	47.24	-26.76	74	51.21	40.09	12.53	56.59	100	0	Р	Н
HT40		16530	44.93	-23.27	68.2	47.3	38.42	14.92	55.71	100	0	Р	Н
CH 102		11020	47.95	-26.05	74	51.92	40.09	12.53	56.59	100	0	Р	V
5510MHz		16530	45.17	-23.03	68.2	47.54	38.42	14.92	55.71	100	0	Р	V
802.11n		11100	47.73	-26.27	74	51.67	40.06	12.56	56.56	100	0	Р	Н
HT40		16650	45.91	-22.29	68.2	47.89	38.83	14.95	55.76	100	0	Р	Н
CH 110		11100	47.2	-26.8	74	51.14	40.06	12.56	56.56	100	0	Р	V
5550MHz		16650	46.31	-21.89	68.2	48.29	38.83	14.95	55.76	100	0	Р	V
802.11n		11340	47.56	-26.44	74	51.38	39.97	12.68	56.47	100	0	Р	Н
HT40		17010	47.38	-20.82	68.2	48.25	40.04	15.02	55.93	100	0	Р	Н
CH 134		11340	48.29	-25.71	74	52.11	39.97	12.68	56.47	100	0	Р	V
5670MHz		17010	47.37	-20.83	68.2	48.24	40.04	15.02	55.93	100	0	Р	V
Remark	1. No	o other spurious	s found.										

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		5453.44	57.85	-16.15	74	46.64	32.34	8.46	29.59	106	194	Р	Н
		5466.16	58.25	-9.95	68.2	46.97	32.36	8.51	29.59	106	194	Р	Н
		5458.48	50.95	-3.05	54	39.74	32.34	8.46	29.59	106	194	Р	Н
	*	5530	101.8	-	-	90.34	32.42	8.65	29.61	106	194	Р	Н
802.11ac	*	5530	93.91	-	-	82.45	32.42	8.65	29.61	106	194	Α	Н
VHT80		5742.32	52.16	-16.04	68.2	40.4	32.64	8.81	29.69	106	194	Р	Н
CH 106		5455.12	53.65	-20.35	74	42.44	32.34	8.46	29.59	400	262	Р	V
5530MHz		5463.04	54.44	-13.76	68.2	43.21	32.36	8.46	29.59	400	262	Р	V
		5454.64	46.79	-7.21	54	35.58	32.34	8.46	29.59	400	262	Α	V
	*	5530	96.7	-	-	85.24	32.42	8.65	29.61	400	262	Р	V
	*	5530	89.85	-	-	78.39	32.42	8.65	29.61	400	262	Α	V
		5760.275	51.39	-16.81	68.2	39.63	32.66	8.81	29.71	400	262	Р	V
		5453.44	52.52	-21.48	74	41.31	32.34	8.46	29.59	102	196	Р	Н
		5460.4	53.03	-15.17	68.2	41.82	32.34	8.46	29.59	102	196	Р	Н
		5458.96	46.12	-7.88	54	34.91	32.34	8.46	29.59	102	196	Α	Н
	*	5610	103.34	-	-	91.63	32.5	8.85	29.64	102	196	Р	Н
802.11ac	*	5610	96.06	-	-	84.35	32.5	8.85	29.64	102	196	Α	Н
VHT80		5735.705	53.33	-14.87	68.2	41.57	32.64	8.81	29.69	102	196	Р	Н
CH 122		5434.24	51.89	-22.11	74	40.74	32.32	8.41	29.58	399	295	Р	V
5610MHz		5460.88	51.43	-16.77	68.2	40.22	32.34	8.46	29.59	399	295	Р	V
		5458.96	45.03	-8.97	54	33.82	32.34	8.46	29.59	399	295	Α	V
	*	5610	99.34	-	-	87.63	32.5	8.85	29.64	399	295	Р	V
	*	5610	92.24	-	-	80.53	32.5	8.85	29.64	399	295	Α	V
		5757.44	52.28	-15.92	68.2	40.52	32.66	8.81	29.71	399	295	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B54 of B62

Report No. : FR730732-04

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
802.11ac		11060	46.82	-27.18	74	50.77	40.07	12.55	56.57	100	0	Р	Н
VHT80		16590	46.86	-21.34	68.2	49.07	38.59	14.93	55.73	100	0	Р	Н
CH 106		11060	48.75	-25.25	74	52.7	40.07	12.55	56.57	100	0	Р	V
5530MHz		16590	47.41	-20.79	68.2	49.62	38.59	14.93	55.73	100	0	Р	V
802.11ac		11220	46.9	-27.1	74	50.77	40.01	12.63	56.51	100	0	Р	Н
VHT80		16830	47.34	-20.86	68.2	48.77	39.41	14.99	55.83	100	0	Р	Н
CH 122		11220	47.14	-26.86	74	51.01	40.01	12.63	56.51	100	0	Р	V
5610MHz		16830	47.14	-21.06	68.2	48.57	39.41	14.99	55.83	100	0	Р	V

Remark

SPORTON INTERNATIONAL INC. Page Number : B55 of B62

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 3 - Straddle Channel

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5397.19	51.56	-22.44	74	40.55	32.28	8.31	29.58	100	215	Р	Н
		5462.32	50.22	-17.98	68.2	39.01	32.34	8.46	29.59	100	215	Р	Η
		5459.2	42.53	-11.47	54	31.32	32.34	8.46	29.59	100	215	Α	Н
	*	5720	109.5	-	-	97.74	32.62	8.82	29.68	100	215	Р	Н
	*	5720	101.71	-	-	89.95	32.62	8.82	29.68	100	215	Α	Н
802.11a		5881.75	53.05	-15.15	68.2	41.14	32.78	8.88	29.75	100	215	Р	Н
CH 144 5720MHz		5442.82	51.6	-22.4	74	40.45	32.32	8.41	29.58	377	35	Р	٧
37 ZUWITIZ		5462.71	51.48	-16.72	68.2	40.25	32.36	8.46	29.59	377	35	Р	٧
		5456.08	41.92	-12.08	54	30.71	32.34	8.46	29.59	377	35	Α	٧
	*	5720	104.6	-	-	92.84	32.62	8.82	29.68	377	35	Р	٧
	*	5720	96.93	-	-	85.17	32.62	8.82	29.68	377	35	Α	V
		5937	52.42	-15.78	68.2	40.44	32.83	8.93	29.78	377	35	Р	٧
Remark		o other spurious		Peak and	l Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		11440	49.25	-24.75	74	53.03	39.93	12.72	56.43	100	0	Р	Н
802.11a		17160	49.15	-19.05	68.2	49.85	40.4	15.07	56.17	100	0	Р	Н
CH 144		11440	49.82	-24.18	74	53.6	39.93	12.72	56.43	100	0	Р	V
5720MHz		17160	49.92	-18.28	68.2	50.62	40.4	15.07	56.17	100	0	Р	V

Remark

- No other spurious found.
- All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B56 of B62

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5454.13	51.43	-22.57	74	40.22	32.34	8.46	29.59	100	213	Р	Н
		5466.22	51.18	-17.02	68.2	39.9	32.36	8.51	29.59	100	213	Р	Н
		5457.64	42.35	-11.65	54	31.14	32.34	8.46	29.59	100	213	Α	Н
	*	5720	108.75	-	-	96.99	32.62	8.82	29.68	100	213	Р	Н
802.11n	*	5720	101.25	-	-	89.49	32.62	8.82	29.68	100	213	Α	Н
HT20		5888.25	52.1	-16.1	68.2	40.18	32.8	8.88	29.76	100	213	Р	Н
CH 144		5459.98	50.5	-23.5	74	39.29	32.34	8.46	29.59	398	41	Р	٧
5720MHz		5460.37	50.69	-17.51	68.2	39.48	32.34	8.46	29.59	398	41	Р	V
		5458.03	42.05	-11.95	54	30.84	32.34	8.46	29.59	398	41	Α	٧
	*	5720	104.86	-	-	93.1	32.62	8.82	29.68	398	41	Р	٧
	*	5720	97.04	-	-	85.28	32.62	8.82	29.68	398	41	Α	٧
		5857	51.78	-16.42	68.2	39.91	32.76	8.85	29.74	398	41	Р	٧
Remark		o other spurious		Peak and	l Average lim	it line.	,		,		,	,	

WIFI 802.11n HT20 (Harmonic @ 3m)

Band 3 - Straddle Channel

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
802.11n		11440	47.98	-26.02	74	51.76	39.93	12.72	56.43	100	0	Р	Н
HT20		17160	50.01	-18.19	68.2	50.71	40.4	15.07	56.17	100	0	Р	Н
CH 144		11440	48.82	-25.18	74	52.6	39.93	12.72	56.43	100	0	Р	V
5720MHz		17160	48.55	-19.65	68.2	49.25	40.4	15.07	56.17	100	0	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI Ant.	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Pos	Peak Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5394.07	50.7	-23.3	74	39.71	32.26	8.31	29.58	100	209	Р	Н
		5466.22	48.96	-19.24	68.2	37.68	32.36	8.51	29.59	100	209	Р	Н
		5456.86	43.18	-10.82	54	31.97	32.34	8.46	29.59	100	209	Α	Н
	*	5710	106.42	-	-	94.67	32.61	8.82	29.68	100	209	Р	Н
802.11n	*	5710	98.77	-	-	87.02	32.61	8.82	29.68	100	209	Α	Н
HT40		5946.5	53.48	-14.72	68.2	41.48	32.85	8.93	29.78	100	209	Р	Н
CH 142		5458.03	50.63	-23.37	74	39.42	32.34	8.46	29.59	393	88	Р	V
5710MHz		5459.98	50.36	-23.64	74	39.15	32.34	8.46	29.59	393	88	Р	٧
		5452.57	42.57	-11.43	54	31.36	32.34	8.46	29.59	393	88	Α	٧
	*	5710	101.01	-	-	89.26	32.61	8.82	29.68	393	88	Р	٧
	*	5710	93.98	-	-	82.23	32.61	8.82	29.68	393	88	Α	٧
		5898.75	52.18	-16.02	68.2	40.24	32.8	8.9	29.76	393	88	Р	٧
Remark		o other spurious		Peak and	l Average lim	it line.							

Band 3 - Straddle Channel

WIFI 802.11n HT40 (Harmonic @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	, .		Limit	Line	Level	Factor	Loss	Factor	Pos			
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	11420	47.11	-26.89	74	50.9	39.93	12.71	56.43	100	0	Р	Н
	17130	48.99	-19.21	68.2	49.7	40.32	15.08	56.11	100	0	Р	Н
	11420	47.31	-26.69	74	51.1	39.93	12.71	56.43	100	0	Р	V
	17130	49.29	-18.91	68.2	50	40.32	15.08	56.11	100	0	Р	V
	Note	(MHz) 11420 17130 11420	(MHz) (dBμV/m) 11420 47.11 17130 48.99 11420 47.31	(MHz) (dBμV/m) (dB) 11420 47.11 -26.89 17130 48.99 -19.21 11420 47.31 -26.69	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) 11420 47.11 -26.89 74 17130 48.99 -19.21 68.2 11420 47.31 -26.69 74	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV/m) 11420 47.11 -26.89 74 50.9 17130 48.99 -19.21 68.2 49.7 11420 47.31 -26.69 74 51.1	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) 11420 47.11 -26.89 74 50.9 39.93 17130 48.99 -19.21 68.2 49.7 40.32 11420 47.31 -26.69 74 51.1 39.93	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) 11420 47.11 -26.89 74 50.9 39.93 12.71 17130 48.99 -19.21 68.2 49.7 40.32 15.08 11420 47.31 -26.69 74 51.1 39.93 12.71	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) 11420 47.11 -26.89 74 50.9 39.93 12.71 56.43 17130 48.99 -19.21 68.2 49.7 40.32 15.08 56.11 11420 47.31 -26.69 74 51.1 39.93 12.71 56.43	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 11420 47.11 -26.89 74 50.9 39.93 12.71 56.43 100 17130 48.99 -19.21 68.2 49.7 40.32 15.08 56.11 100 11420 47.31 -26.69 74 51.1 39.93 12.71 56.43 100	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) Pos (deg) 11420 47.11 -26.89 74 50.9 39.93 12.71 56.43 100 0 17130 48.99 -19.21 68.2 49.7 40.32 15.08 56.11 100 0 11420 47.31 -26.69 74 51.1 39.93 12.71 56.43 100 0	(MHz) Limit (dBμV/m) Limit (dB) Level (dBμV/m) Factor (dBμV) Loss (dB) Factor (dB) Pos (cm) Avg. (deg) (P/A) 11420 47.11 -26.89 74 50.9 39.93 12.71 56.43 100 0 P 17130 48.99 -19.21 68.2 49.7 40.32 15.08 56.11 100 0 P 11420 47.31 -26.69 74 51.1 39.93 12.71 56.43 100 0 P

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B58 of B62

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5456.47	52.7	-21.3	74	41.49	32.34	8.46	29.59	100	190	Р	Н
		5466.22	52.73	-15.47	68.2	41.45	32.36	8.51	29.59	100	190	Р	Н
		5457.25	44.74	-9.26	54	33.53	32.34	8.46	29.59	100	190	Α	Н
	*	5690	104.35	-	-	92.6	32.59	8.83	29.67	100	190	Р	Н
802.11ac	*	5690	96.85	-	-	85.1	32.59	8.83	29.67	100	190	Α	Н
VHT80		5874.4	54	-14.2	68.2	42.1	32.78	8.87	29.75	100	190	Р	Н
CH 138		5433.85	51.69	-22.31	74	40.54	32.32	8.41	29.58	396	260	Р	V
5690MHz		5463.88	51.16	-17.04	68.2	39.93	32.36	8.46	29.59	396	260	Р	V
		5456.47	44.39	-9.61	54	33.18	32.34	8.46	29.59	396	260	Α	V
	*	5690	101.96	-	-	90.21	32.59	8.83	29.67	396	260	Р	V
	*	5690	94.69	-	-	82.94	32.59	8.83	29.67	396	260	Α	V
		5888.2	52.61	-15.59	68.2	40.69	32.8	8.88	29.76	396	260	Р	V
Remark		o other spurious		Peak and	l Average lim	it line.			,			·	,

Band 3 - Straddle Channel

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
802.11ac		11380	46.45	-27.55	74	50.24	39.95	12.71	56.45	100	0	Р	Н
VHT80		17070	49.33	-18.87	68.2	50.14	40.16	15.04	56.01	100	0	Р	Н
CH 138		11380	47.07	-26.93	74	50.86	39.95	12.71	56.45	100	0	Р	V
5690MHz		17070	49.32	-18.88	68.2	50.13	40.16	15.04	56.01	100	0	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B59 of B62

Emission below 1GHz

WIFI 802.11ac VHT80 (LF @ 3m)

WIFI Ant.	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Pos	Peak Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		119.91	33.64	-9.86	43.5	47.22	17.33	1.38	32.29	-	-	Р	Н
		216.03	33.43	-12.57	46	48.67	15.21	1.8	32.25	-	-	Р	Н
		235.74	38.91	-7.09	46	52.38	16.87	1.88	32.22	100	0	Р	Н
		400.1	34.14	-11.86	46	41.96	21.87	2.46	32.15	-	-	Р	Н
000 11		716.5	32.4	-13.6	46	34.39	26.98	3.17	32.14	-	-	Р	Н
802.11ac		836.9	34.83	-11.17	46	34.33	28.82	3.49	31.81	-	-	Р	Н
VHT80 LF		33.51	32.8	-7.2	40	41.66	22.69	0.79	32.34	100	0	Р	٧
L 1		61.59	28.56	-11.44	40	47.78	12.05	1.04	32.31	-	-	Р	٧
		240.06	33.24	-12.76	46	46.09	17.41	1.95	32.21	-	-	Р	V
		436.5	29.3	-16.7	46	35.97	22.94	2.56	32.17	-	-	Р	V
		645.8	29.41	-16.59	46	32.12	26.42	3.06	32.19	-	-	Р	V
		836.2	36.06	-9.94	46	35.62	28.77	3.49	31.82	-	-	Р	V
Remark		o other spurious		mit line.									

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Note symbol

Report No. : FR730732-04

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL INC. Page Number : B61 of B62

A calculation example for radiated spurious emission is shown as below:

Report No.: FR730732-04

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level($dB\mu V$) Preamp Factor(dB)
- 3. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $=43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC. Page Number : B62 of B62