

1

Digital Signatures

**OVERVIEW** 

May-22

Digital signatures

## The problem



- Alice and Bob share a secret key k
- Alice receives and decrypts a message which makes semantic sense
- Alice concludes that the message comes from Bob
  - Message origin authetication → message integrity
    - Beware, we know that ciphers are malleable!
    - · MDC / MAC do not change the reasoning

May-22 Digital signatures

3

## The problem



- The reasoning above works under the assumption of mutual trust
  - If a dispute arise, Alice cannot prove to a third party that Bob generated the message
- There are practical cases in which Alice and Bob wish to securely communicate but they don't trust each other
  - E.g.: e-commerce: customer and merchant have conflicting interests

May-22 Digital signatures 4

## The problem





- Provability/verifiability requirement
  - If a dispute arises an unbiased third party must be able to solve the dispute equitably, without requiring access to the signer's secret
- · Symmetric cryptography is of little help
  - Alice and Bob have the same knowledge and capabilities
- Public-key cryptography is the solution
  - Make it possible to distinguish the actions performed by who knows the private key

May-22 Digital signatures

5

## Digital signature scheme



- · A signature scheme is defined by three algorithms
- Key generation algorithm G
  - takes as input 1<sup>n</sup> and outputs (pubk, privk)
- Signature generation algorithm S
  - takes as input a private key privk and a message x and outputs a signature  $\sigma = S(privk, x)$
- Signature verification algorithm V
  - takes as input a public key pubk, a signature σ and (optionally) a message x and outputs True o False

May-22 Digital signatures 6



1

## Security model



- Threat model
  - Adaptive chosen-message attack
    - Assume the attacker can induce the sender to sign *messages of* the attacker's choice
    - The attacker knows the public key
  - Security goal: existential unforgeability
    - Attacker should be *unable* to forge valid signature on *any* message not signed by the sender

May-22

Digital signatures

8

## **Properties**



- Consistency Property
  - For all x and (pubk, privk), V(pubk, [x] S(privk, x)) = TRUE
- Security property (informal)
  - Even after observing signatures on multiple messages, an attacker should be unable to forge a valid signature on a new message

May-22 Digital signatures

9

#### Comments



- · Security property implies
  - Integrity
  - Verifiability
  - Non-repudiation
  - No confidentiality
    - Use a cipher (AES, 3DES,...) if confidentiality is a requirement

May-22

Digital signatures

10

# Algorithm families



- Integer factorization
  - RSA
- Discrete logarithm
  - ElGamal, DSA
- Elliptic curves
  - ECDSA

May-22

Digital signatures

11

11

Digital signatures

# NON-REPUDIATION VS AUTHENTICATION

May-22

Digital signatures

12

## Non-repudiation



 Non-repudiation prevents a signer from signing a document and subsequently being able to successfully deny having done so.

Digital signatures

May-22

13

13

### Non-repudiation vs authentication



- Authentication
  - Based on symmetric cryptography
  - Allows a party to convince itself or a mutually trusted party of the integrity/authenticity of a given message at a given time  $t_0$
- Non-repudiation
  - based on public-key cryptography
  - allows a party to convince others at any time  $t_1 \ge t_0$  of the integrity/authenticity of a given message at time  $t_0$

May-22 Digital signatures 14

## Dig sig vs non-repudiation



- Data origin authentication as provided by a digital signature is valid only while the secrecy of the signer's private key is maintained
- A threat that must be addressed is a signer who intentionally discloses his private key, and thereafter claims that a previously valid signature was forged
- This threat may be addressed by
  - Prevent direct access to the key
  - Use of a trusted timestamp agent
  - Use of a trusted notary agent

May-22 Digital signatures 1.

15



# **Trusted Notary Service**



- TNS generalize the TTS
- Trent certifies that a certain statement on the digital signature s is true at a certain time t0
- Examples of statements
  - Signature s exists at time t0
  - Signature s is valid at time t0
- Trent may certify the existence of a certain document
  - s = S(privKT, H(documents) | | timestamp)
  - Document remains secret
- Trent is trusted to verify the statement before issuing it

May-22 Digital signatures

17

**Digital Signatures** 

#### **COMPARISON TO MAC**

May-22

Digital signatures

18

## Digital signatures



- Provide integrity in the public-key setting
- Analogous to message authentication codes (MACs) but some key differences...

May-22 Digital signatures

19





21



## Comparison to MACs



- · Single shared key k
  - A client may forge the tag
  - Unfeasible if clients are not trusted
- Point-to-point key k<sub>i</sub>
  - Computing and network overhead
  - Prohibitive key management overhead
  - Unmanageable!

May-22

Digital signatures

23

23

# Comparison to MACs



- · Public verifiability
  - Dig Sig: anyone can verify the signature
  - MAC: Only a holder of the key can verify a MAC tag
- Transferability
  - Dig Sig can forward a signature to someone else
  - MAC cannot

%

May-22

Digital signatures

24

## Comparison to MACs



- Nonrepudiability
  - Signer cannot (easily) deny issuing a signature
    - · Crucial for legal application
    - Judge can verify signature using a copy of pK
  - MACs cannot provide this functionality
    - Without access to the key, no way to verify a tag
    - Even if receiver leaks key to judge, how can the judge verify the key is correct?
    - Even if the key is correct, receiver could have generated the tag!

May-22 Digital signatures 2

25

Digital signatures

### THE RSA SIGNATURE SCHEME

May-22 Digital signatures 26

## Plain RSA



- Key generation
  - (e, n) public key; (d, n) private key
- Signing operation
  - $-\sigma = x^d \mod n$
- Verification operation
  - Return (x ==  $\sigma^e \mod n$ )

May-22

Digital signatures

27

27

## **Properties**



- · Computational aspects
  - The same considerations as PKE
- Security
  - Algorithmic attacks
    - Factoring
  - Existential forgery
  - Malleability

May-22

Digital signatures

28

## **Existential forgery**



- Given public key (n, e), generate a valid signature for a random message x
  - Choose a signature σ
  - Compute  $x = \sigma^e \mod n$
  - Output x, σ
  - Message x is random and may have no application meaning.
  - However, this property is highly undesirable

May-22 Digital signatures 2

29

## Malleability



- Combine two signatures to obtain a third (existential forgery)
  - Exploit the homomorphic property of RSA
- The attack
  - Given  $\sigma_1 = x_1^d \mod n$
  - Given  $\sigma_2 = x_2^d \mod n$
  - Output  $\sigma_3 \equiv (\sigma_1 \cdot \sigma_2)$  mod n that is a valid signature of  $x_3 \equiv (x_1 \cdot x_2)$  mod n
    - PROOF.

$$x_3 = \sigma_3^e \equiv (\sigma_1 \cdot \sigma_2)^e \equiv \sigma_1^e \cdot \sigma_2^e \equiv x_1^{de} \cdot x_2^{ed} \equiv x_1 \cdot x_2 \mod n$$

May-22 Digital signatures 30

## **RSA Padding**



- Plain RSA is never used
  - Because of existential forgery and malleability,
- Padding
  - Padding allows only certain message formats
    - It must be difficult to choose a signature whose corresponding message has that format
  - Probabilistic Signature Scheme in PKCS#1
    - Encoding Method for Signature with Appendix (EMSA)

May-22 Digital signatures 31

31



Digital Signatures

# DIGITAL SIGNATURES VS HASH FUNCTIONS

May-22 Digital signatures 33

33

## Signing long messages



34

- · Consider RSA digsig
  - Message  $0 \le x < n$ 
    - E.g., n = 1024-3072 bits (128-384 bytes)
    - What if x > n?
    - An ECB-like approach is not recommended
      - 1. High-computational load (performance)
      - 2. Message overhead (performance)
      - 3. Block reordering and substitution (security)
- We would like to have a short signature for messages on any length

Digital signatures

The solution of this problem is hash functions

34

May-22

## Dig sig vs hash properties



- Hash functions properties
  - Pre-image resistance
  - Second pre-image resistance
  - Collision resistance
- These properties are crucial for digital signatures security

May-22

Digital signatures

35

35

## Dig sig vs hash properties



- Pre-image Resistance
  - Digital signature scheme based on (school-book) RSA
    - (n, d) is Alice's private key;
    - (n, e) is Alice's public key
    - $s = (H(x))^d \pmod{n}$
  - If H is not pre-image resistant, then existential forgery is possible
    - Select z < n
    - Compute y = ze (mod n)
    - Find x' such that H(x') = y (←)
    - Claim that z is the digital signature of m' Q.E.D

May-22

Digital signatures

36

## Dig sig vs hash properties



- 2<sup>nd</sup> preimage resistance
  - The protocol
    - Bob → Alice: x
    - Alice  $\rightarrow$  Bob: x, s = S(privK<sub>A</sub>, H(x))
  - If H is not 2nd-preimage resistant, the following attack is possible
    - An adversary (e.g., Alice herself) can determine a 2nd-preimage x' of x and then (←) and then
    - · claim that Alice has signed x' instead of x Q.E.D

May-22 Digital signatures

37

## Dig sig vs hash properties



- Collision-resistance
  - If H is not collision resistant, the following attack is possible
    - Alice chooses x and x' s.t. H(x) = H(x')
- **(←**)
  - computes s = S(privK<sub>A</sub>, H(x))
  - Sends (x, s) to Bob
  - later claims that she actually sent (x', s)

Q.E.D

May-22

Digital signatures

## Hash-and-Sign paradigm



- Given a signature scheme Σ = (G, S, V) for "short" messages of length n
- Given a Hash function H: {0, 1}\* → {0, 1}<sup>n</sup>
- Construct a signature scheme  $\Sigma' = (G, S', V')$  for messages of any length
  - $-\sigma = S'(privK, m) = S(privk, H(m))$
  - $V'(m, pubK, \sigma) = V(H(m), pubK, \sigma)$

May-22 Digital signatures 39

39

## Hash-and-sign paradigm



- THM. If  $\Sigma$  is secure and H is collision-resistant, then  $\Sigma'$  is secure
  - PROOF (by contradiction)
  - Assume that the sender authenticates  $m_1$ ,  $m_2$ ,...and manages to forge (m', σ'), m' ≠  $m_i$ , for all i
  - Let  $h_i = H(mi)$ . Then, we have two cases
    - If H(m') = h<sub>i</sub> for some i, then collision in H (contradiction)
    - If  $H(m') \neq hi$ , for all i, then forgery in  $\Sigma$  (contradiction)

May-22 Digital signatures 40

Digital signatures

#### RSA-BASED BLIND SIGNATURES

May-22 Digital signatures

41

# Blind signatures



- Intuition
  - In a blind signature scheme, the signer can't see what it is signig
- Unlinkabiliy
  - The signer is not able to link the signature to the act of signing

May-22

Digital signatures

42



43



# Blind signatures



- The protocol
  - Alice
    - Receive s'
    - Compute s ≡ s'·b⁻¹ (mod n)
       s is digital signature of s
- Proof

$$\begin{split} &-s'\cdot b^{\text{-}1}\equiv (x')^d\cdot b^{\text{-}1}\equiv (x\cdot b^e)^d\cdot b^{\text{-}1}\equiv x^d\cdot b^{\text{ed}}\cdot b^{\text{-}1}\equiv \\ &\equiv x^d\cdot b\cdot b^{\text{-}1}\equiv x^d\equiv s \text{ mod } n \end{split}$$
 QED

May-22

Digital signatures

45

45

# **Applications**



- · Privacy related applications
  - Digital cash (David Chaum, 1983)
  - Electronic voting

May-22

Digital signatures

46



47



## Double spending



- The protocol does not prevent
  - the customer from spending the digital coin multiple times
  - The merchant from depositing the digital coin multiple times
- Partial countermeasure
  - The issuer maintains the list of spent digital coins
    - Protect the bank from frauds
    - · Don't allow issuer to identify the fraudster

May-22 Digital signatures 4

49

## Double spending





- Purely criptographic solution based on
  - Secret splitting
  - Bit commitment
  - Cut-and-choose
- · Inefficient but great impulse to cryptography

May-22 Digital signatures 5

Digital Signatures

Digital signatures

#### THE ELGAMAL SIGNATURE SCHEME

May-22

Digital signatures

51

51

# Elgamal in a nutshell



- Invented in 1985
- Based on difficulty of discrete logarithm
- Digital signature operations are different from the cipher operations

May-22

Digital signatures

52

## Key generation



- Choose a large prime p
- Choose a primitive element α of (a subgroup of) Zp\*
- Choose a random number  $d \in \{2, 3, ..., p 2\}$
- Compute  $\beta = \alpha^d \mod p$
- pubK =  $(p, \alpha, \beta)$  is the public key and
- privK = d is the private key

May-22 Digital signatures

53

## Signature generation



- Message x
- Choose an ephemeral key  $k_E$  in  $\{0, 1, 2, p-2\}$  such that  $gcd(k_F, p-1) = 1$
- Compute the signature parameters
  - $r \equiv \alpha^{kE} \mod p$
  - $s \equiv (x d \cdot r)k_F^{-1} \bmod p 1$
  - (r, s) is the digital signature
- Send (x, (r, s))

May-22 Digital signatures 54

## Signature verification



May-22

- Verification of (x, (r, s))
- Compute  $t \equiv \beta^r \cdot r^s \mod p$
- If (t ≡ α<sup>x</sup> mod p) → valid signature;
   otherwise → invalid signature

May-22

Digital signatures

55

55

#### **Proof**



- 1. Let  $t \equiv \beta^r \cdot r^s \equiv (\alpha^d)^r (\alpha^{kE})^s \equiv \alpha^{d \cdot r + kE \cdot s} \mod p$
- 2. If  $\beta^r \cdot r^s \equiv \alpha^x \mod p$  then  $\alpha^x \equiv \alpha^{d \cdot r + kE \cdot s} \mod p$  [a]
- 3. According to Fermat's Little Theorem Eq.[a] holds if  $x \equiv d \cdot r + k_E \cdot s \mod p 1$
- 4. from which the construction of parameter  $s = (x d \cdot r)k_F^{-1} \mod p 1$

May-22

Digital signatures

56

## Computational aspects



- · Key generation
  - Generation of a large prime (1024 bits)
  - True random generator for the private key
  - Exponentiation by square-and-multiply
- Signature generation
  - | s | = | r | = | p | thus | x, (r, s) | = 3 | x | (msg expansion)
  - One exponentiation by square-and-multiply
  - One inverse k<sub>E</sub>-1 mod p by EEA (pre-computation)
- Signature verification
  - Two exponentiations by square-and-multiply
  - One multiplication

May-22

Digital signatures

57

57

## Security aspects



- · The verifier must have the correct public key
- The DLP must be intractable
- · Ephemeral key cannot be reused
  - If k<sub>E</sub> is reused the adversary can compute the private key d
    and impersonate the signer
- Existential forgery for a random message x unless it is hashed

May-22

Digital signatures

58

## Reuse of ephemeral key



- If the ephemeral key k<sub>E</sub> is reused, an attacker can easily compute the private key d
  - Proof
    - Message x<sub>1</sub> and x<sub>2</sub> and the reused ephemeral key k<sub>F</sub> reused
    - (x<sub>1</sub>, (s<sub>1</sub>, r)) and (x<sub>2</sub>, (s<sub>2</sub>, r)) where

Q.E.D.

May-22

Digital signatures

59

## **Existential Forgery Attack**



The attack Alice **Adversary** privK = d, pubK =  $(p, \alpha, \beta)$ <-----(p, α, β)------1. select i, j, s.t. gcd(j, p - 1) = 12. compute the signature  $r \equiv \alpha^i \cdot \beta^j \mod p$  $s \equiv -r \cdot j^{-1} \mod p - 1$ 3. compute the message  $x \equiv s \cdot i \mod p - 1$ verification <-----(x, (r, s))---- $t \equiv \beta^r \cdot r^s \mod p$  since  $t \equiv \alpha x \mod p \rightarrow \text{valid signature!}$ May-22 Digital signatures

## **Existential forgery**



Proof

$$\begin{split} \mathbf{t} &\equiv \beta^{\mathbf{r}} \cdot \mathbf{r}^{\mathbf{s}} \equiv (\alpha^{\mathbf{d}})^{\mathbf{r}} \cdot (\alpha^{\mathbf{i}} \cdot \beta^{\mathbf{j}})^{\mathbf{s}} \equiv (\alpha^{\mathbf{d}})^{\mathbf{r}} \cdot (\alpha^{\mathbf{i}} \cdot \alpha^{\mathbf{d} \cdot \mathbf{j}})^{\mathbf{s}} \equiv \alpha^{\mathbf{d} \cdot \mathbf{r}} \cdot (\alpha^{\mathbf{i} + \mathbf{d} \cdot \mathbf{j}})^{\mathbf{s}} \\ &\equiv \alpha^{\mathbf{d} \cdot \mathbf{r}} \cdot (\alpha^{\mathbf{i} + \mathbf{d} \cdot \mathbf{j}})^{\mathbf{s}} \equiv \alpha^{\mathbf{d} \cdot \mathbf{r}} \cdot \alpha^{(\mathbf{i} + \mathbf{d} \cdot \mathbf{j}) \cdot (-\mathbf{r} \cdot \mathbf{j}^{-1})} \equiv \\ &\equiv \alpha^{\mathbf{d} \cdot \mathbf{r}} \cdot \alpha^{-\mathbf{d} \cdot \mathbf{r}} \cdot \alpha^{-\mathbf{r} \cdot \mathbf{i} \cdot \mathbf{j}^{-1}} \equiv \alpha^{\mathbf{s} \cdot \mathbf{i}} \mod p \text{ [a]} \end{split}$$

- As the message was constructed as  $x\equiv s\cdot i \bmod p$  then equation [a]  $\alpha^{s\cdot i}\equiv \alpha^x \bmod p$  which is the condition to accept the signature as valid
- The adversay computes in step 3 the message x whose semantics (s) cannot control
- The attack is not feasible if the message is hashed  $-s \equiv (H(x) d \cdot r)k_F^{-1} \mod p 1$

May-22

Digital signatures

61

61

**Digital Signatures** 

# DIGITAL SIGNATURE ALGORITHM (DSA)

May-22

Digital signatures

62

#### Introduction



- The Elgamal scheme is rarely used in practice
- DSA is a more popular variant
  - It's a federal US government standard for digital signatures (DSS)
  - It was proposed by NIST
- · Advantages of DSA w.r.t. Elgamal
  - Signature is only 320 bits
  - Some attacks against to Elgamal are not applicable to DSA

May-22 Digital signatures 6

63

## **Key Generation**



- 1. Generate a prime p with  $2^{1023} .$
- 2. Find a prime divisor q of p-1 with  $2^{159} < q < 2^{160}$ .
- 3. Find an element  $\alpha$  with ord( $\alpha$ ) = q, i.e.,  $\alpha$  generates the subgroup with q elements.
- 4. Choose a random integer d with 0 < d < q.
- 5. Compute  $\beta \equiv \alpha^d \mod p$ .
- 6. The keys are now:
  - 1. pubK =  $(p,q,\alpha,\beta)$
  - 2. privK = (d)

May-22 Digital signatures 64

#### Central idea



- DSA uses two cyclic groups
  - Zp\*, the order of which has bit lenght 2014 bit
  - 160-bit subgroup of Zp\*
  - This setup yields shorter signatures
- Other combinations are possible

| _ | р    | q   | signature |
|---|------|-----|-----------|
| _ | 1024 | 160 | 320       |
| _ | 2048 | 224 | 448       |
| _ | 3072 | 256 | 512       |

May-22 Digital signatures

65

## Signature Generation



- 1. Choose an integer as random ephemeral key  $k_{\rm E}$  with  $0 < k_{\rm E} < q$ .
- 2. Compute  $r \equiv (\alpha^{kE} \mod p) \mod q$ .
- 3. Compute  $s \equiv (SHA(x) + d \cdot r)k_E^{-1} \mod q$ .
  - SHA-1(⋅) produces a 160-bit value
- 4. Digital signature is the pair (r, s)
  - 160 + 160 = 320 bit long

May-22 Digital signatures 66

## Signature Verification



- 1. Compute auxiliary value  $w \equiv s^{-1} \mod q$ .
- 2. Compute auxiliary value  $u_1 \equiv w \cdot SHA(x) \mod q$ .
- 3. Compute auxiliary value  $u_2 \equiv w \cdot r \mod q$ .
- 4. Compute  $v \equiv (\alpha^{u1} \cdot \beta^{u2} \mod p) \mod q$ .
- 5. The verification follows from:
  - 1. If  $v \equiv r \mod q \rightarrow valid signature$
  - 2. Otherwise → invalid signature

Digital signatures

67

May-22

#### **Proof**



68

 We show that a signature (r, s) satisfies the verification condition v ≡ r mod q.

- s ≡ (SHA(x)+d r) $k_E^{-1}$  mod q which is equivalent to  $k_E \equiv s^{-1}$  SHA(x)+d s<sup>-1</sup> r mod q.
- The right-hand side can be expressed in terms of the auxiliary values u1 and u2:  $k_E \equiv u_1+du_2 \mod q$ .
- We can raise α to either side of the equation if we reduce modulo p:  $\alpha^{kE}$  mod p ≡  $\alpha^{u1+d}$  u² mod p.

May-22 Digital signatures

#### **Proof**



- Since the public key value β was computed as  $β ≡ α^d \mod p$ , we can write:  $α^{kE} ≡ α^{u1} β^{u2} \mod p$ .
- We now reduce both sides of the equation modulo q:  $(\alpha^{kE} \mod p) \mod q \equiv (\alpha^{u1}\beta^{u2} \mod p) \mod q.$
- Since r was constructed as  $r \equiv (\alpha^{kE} \mod p) \mod q$  and  $v \equiv (\alpha^{u1}\beta^{u2} \mod p) \mod q$ ,
- this expression is identical to the condition for verifying a signature as valid:
  - $r \equiv v \mod q$ .

May-22

Digital signatures

69

69

## Computational aspects





- Key Generation
  - The most challenging phase
    - Find a  $Z_p^*$  with 1024-bit prime p and a subgroup in the range of  $2^{160}$ 
      - This condition is fulfilled if  $|Zp^*| = |p-1|$  has a prime factor q of 160 bit
  - General approch:
    - · To find q first and then p

May-22

Digital signatures

70

## Computational aspects

%



- Signing
  - Computing r requires exponentiation
    - Operands are on 1024 bit
    - Exponent q is on 160 bit
      - On average 160 + 80 = 240 SQs and MULTs
    - · Result is reduced mod q
    - Does not depend on x so can be precomputed
  - Computing s
    - Involve 160-bit operands
    - · The most costly operation is inverse

May-22

Digital signatures

71

71

## Computational aspects



- Verification
  - Computing the auxiliary parameters w,  $\rm u_1$  and  $\rm u_2$  involves 160-bit operands
  - This is relatively fast

May-22

Digital signatures

72

# Security



- We have to protect from two different DLPs
  - 1.  $d = log_{\alpha} \beta \mod p$ .
    - Index calcolus attack
      - Prime p must be on 1024 bits for 80-bit security level
  - 2.  $\alpha$  generates a subgroup of order q
    - Index calculus attack cannot be applied
    - Only generic DLP attacks can be used
      - Square-root attacks: Baby-step giant-step, Pollard's rho
      - Running time:  $\sqrt{q} = \sqrt{2^{160}} = 80$
- Vulerable to k<sub>E</sub> reuse
  - Analalogue to ElGamal

May-22 Digital signatures 73

73

May-22 Digital signatures 74