Funktionalanalysis 1

Übungsaufgaben zu:

"Lecture 03 - Der Satz von Baire"

- 03/1: Ein topologischer Raum heißt lokalkompakt, wenn jeder Punkt eine Umgebungsbasis aus kompakten Mengen besitzt. Zeige die folgende Version des Satzes von Baire: Sei (X, \mathcal{T}) ein lokalkompakter Hausdorff-Raum, und seien V_n , $n \in \mathbb{N}$, offene dichte Teilmengen von X. Dann ist auch $\bigcap_{n \in \mathbb{N}} V_n$ dicht in X
- 03/2: Sei $(X, \|.\|)$ ein Banachraum. Zeige, dass die Mächtigkeit einer algebraischen Basis von X als \mathbb{C} -Vektorraum entweder endlich oder überabzählbar ist.
 - $\mathit{Hinweis}.$ Zeige, dass ein linearer Teilraum $Y \subsetneq X$ keinen inneren Punkt hat.
- 03/3: Eine Menge heisst G_{δ} -Menge, wenn sie der abzählbare Durchschnitt offener Mengen ist. Zeige, dass der Durchschnitt von abzählbar vielen dichten G_{δ} -Mengen eines vollständigen metrischen Raumes wieder eine dichte G_{δ} -Menge ist.
- 03/4.*Sei $f: \mathbb{R} \to \mathbb{R}$. Zeige, dass die Menge aller Punkte $x \in \mathbb{R}$ an denen f stetig ist eine G_{δ} -Menge ist.
- 03/5:*Zeige, dass es keine Funktion $f: \mathbb{R} \to \mathbb{R}$ gibt die an allen rationalen Punkten stetig aber an allen irrationalen Punkten unstetig ist. Finde eine Funktion $f: \mathbb{R} \to \mathbb{R}$ die an allen irrationalen Punkten stetig aber an allen rationalen Punkten unstetig ist.

Hinweis. Ist die Teilmenge \mathbb{Q} von \mathbb{R} (welche ja dicht liegt) eine G_{δ} -Menge?