

Olympiade Francophone de Mathématiques

Cinquième édition 23 mars 2024

ÉPREUVE SENIOR : SOLUTIONS

Problème 1

Soient d et m deux entiers strictement positifs fixés. Pinocchio et Geppetto connaissent les valeurs de d et m, et jouent au jeu suivant. Tout d'abord, Pinocchio choisit un polynôme P de degré au plus d à coefficients dans \mathbb{Z} . Ensuite, Geppetto lui pose des questions de la forme « Quelle est la valeur de P(n)? », où $n \in \mathbb{Z}$. Pinocchio dit habituellement la vérité, mais il peut mentir jusqu'à m fois. Quel est, en fonction de d et m, le nombre minimal de questions que Geppetto devra poser pour être sûr de pouvoir déterminer P quelles que soient les réponses de Pinocchio?

 $Remarque: \mathbb{Z}$ désigne l'ensemble des entiers, quel que soit leur signe.

Solution

Le nombre minimal recherché est 2m + d + 1.

Montrons d'abord que Geppetto peut trouver P avec 2m+d+1 questions. Geppetto demande à Pinocchio la valeur de P(t) pour 2m+d+1 valeurs entières distinctes. Supposons par l'absurde qu'il existe deux polynômes distincts $P_1, P_2 \in \mathbb{Z}[x]$ de degré au plus d qui, chacun, ne passe pas par maximum m points (t, P(t)) donnés par Pinocchio. Il existe donc au moins d+1 de ces points par lesquels passent par P_1 et P_2 . Vu que ce sont deux polynômes de degré au plus d, cela implique que $P_1 = P_2$, d'où la contradiction voulue. Geppetto peut déterminer le polynôme P en essayant les $\binom{2m+d+1}{d+1}$ (d+1)-uples de points et, pour chacun d'entre eux, en calculant l'unique polynôme qui passe par ces points (polynôme de Lagrange) et en vérifiant qu'il passe bien par au moins m+d+1 de ces points.

Supposons maintenant que Geppetto puisse trouver le polynôme en posant seulement 2m + d questions. Dans ce cas, Pinocchio choisit un polynôme P de degré au plus d dans $\mathbb{Z}[x]$ (par exemple x^d). Il répond ensuite honnêtement aux d premières questions de Geppetto, et lui indique donc que P passe par les points $(a_1, P(a_1)), \ldots, (a_d, P(a_d))$. À ce stade, P est une potentielle solution pour Geppetto, mais aussi $Q = P + \prod_{i=1}^{d} (x - a_i)$. Pinocchio répond ensuite honnêtement aux m questions suivantes, et répond comme si le polynôme choisi était Q aux m dernières questions. Les deux polynômes P et Q sont donc valables aux yeux de Geppetto et il ne peut pas choisir le bon à coup sûr.

Problème 2

Étant donné un entier $n \ge 2$, soient \mathcal{P} et \mathcal{Q} deux ensembles chacun formé de n points de l'espace à trois dimensions. On suppose que les 2n points ainsi obtenus sont tous distincts. Démontrer que l'on peut ordonner les points de \mathcal{P} en une liste P_1, P_2, \ldots, P_n , et les points de \mathcal{Q} en une liste Q_1, Q_2, \ldots, Q_n de manière à ce que, pour tous les indices i et j, les boules de diamètres $[P_i Q_i]$ et $[P_j Q_j]$ aient au moins un point commun.

Remarque: La boule de diamètre [PQ] est l'ensemble des points situés sur la sphère de diamètre [PQ] et des points situés à l'intérieur de celle-ci.

Solution

La boule de diamètre [AX] a pour centre $\frac{A+X}{2}$ et rayon $\frac{\|A-X\|}{2}$. Cette boule intersecte la boule de diamètre [BY] si et seulement si la distance entre leurs centres est plus petite ou égale à la somme de leurs rayons, c'est à dire

$$\frac{\|A + X - B - Y\|}{2} \leqslant \frac{\|A - X\|}{2} + \frac{\|B - Y\|}{2}$$

ou encore

$$||A + X - B - Y|| \le ||A - X|| + ||B - Y||.$$

Si ceci n'est pas le cas, par l'inégalité triangulaire, on obtient

$$||A - Y|| + ||B - X|| \ge ||A + X - B - Y|| > ||A - X|| + ||B - Y||.$$

Considérons une numérotation de \mathcal{P} et \mathcal{Q} qui maximise $\sum_{i=1}^{n} \|P_i - Q_i\|$. Fixons maintenant deux indices $1 \leq i \neq j \leq n$. Si les boules de diamètres $[P_iQ_i]$ et $[P_jQ_j]$ ne s'intersectaient pas, nous devrions avoir $\|P_i - Q_j\| + \|P_j - Q_i\| > \|P_i - Q_i\| + \|P_j - Q_j\|$, ce qui contredirait la définition de la numérotation choisie.

Problème 3

Soient ABC un triangle dont tous les angles sont aigus, ω son cercle circonscrit, et O le centre de ω . La hauteur de ABC issue de A recoupe ω en un point D distinct de A, et le segment [AC] recoupe le cercle circonscrit à OCD en un point E distinct de E. Enfin, on note E le milieu du segment E. Démontrer que E est parallèle à E (E).

Solution 1

Soit B' le symétrique de B par rapport à O. Puisque O est le milieu de [BB'] et M est le milieu de [BE], nous savons que (OM)//(B'E). Il suffit donc de montrer que B', E et D sont alignés.

En utilisant les angles inscrits dans ω , nous savons que

$$\widehat{CDB'} = \widehat{CAB'} = \widehat{BAB'} - \widehat{BAC} = 90^{\circ} - \widehat{BAC}.$$

De plus, en utilisant les angles inscrits dans le cercle CEOD et les angles inscrits et au centre dans ω , nous avons

$$\widehat{CDE} = 180^{\circ} - \widehat{DEC} - \widehat{ACD}$$

$$= 180^{\circ} - \widehat{DOC} - \widehat{ACB} - \widehat{BCD}$$

$$= 180^{\circ} - 2\widehat{DAC} - \widehat{ACB} - \widehat{BAD}$$

$$= 180^{\circ} - 2(90^{\circ} - \widehat{ACB}) - \widehat{ACB} - (90^{\circ} - \widehat{ABC})$$

$$= \widehat{ACB} - 90^{\circ} + \widehat{ABC}$$

$$= 90^{\circ} - \widehat{BAC}.$$

Cela montre que $\widehat{CDB'} = \widehat{CDE}$ et donc D, E et B' sont alignés.

Solution 2

Soit P le deuxième point d'intersection du cercle OCD avec (BC).

On peut calculer

$$\widehat{DOP} = \widehat{DCP} = \widehat{DCB} = \widehat{DAB} = 90^{\circ} - \widehat{ABC} = 90^{\circ} - \frac{\widehat{AOC}}{2} = \widehat{OCA} = \widehat{OCE} = \widehat{ODE}$$

ce qui montre que (DE)//(OP). Il reste donc à montrer que $M \in (OP)$.

Comme dans la solution 1, nous pouvons montrer que $\widehat{CDE} = 90^{\circ} - \widehat{BAC}$. Dès lors,

$$\widehat{CPE} = \widehat{CDE} = 90^{\circ} - \widehat{BAC} = 90^{\circ} - \frac{\widehat{BOC}}{2} = \widehat{OBC}$$

prouvant que (PE)//(OB).

Puisque le triangle COD est isocèle, nous savons que

$$\widehat{AEO} = 180^{\circ} - \widehat{CEO} = \widehat{CDO} = \frac{180^{\circ} - \widehat{COD}}{2} = 90^{\circ} - \frac{\widehat{COD}}{2} = 90^{\circ} - \widehat{CAD} = \widehat{ACB}$$

ce qui prouve que (EO)//(BC). Le quadrilatère EOBP est donc un parallélogramme. Le milieu M de sa diagonale [EB] est donc sur l'autre diagonale [OP], concluant la preuve.

Solution 3

On montre que

$$\widehat{EDB} = \widehat{EDO} + \widehat{ODB} = \widehat{ECO} + 90^{\circ} - \widehat{DAB} = 90^{\circ} - \widehat{ABC} + 90^{\circ} - (90^{\circ} - \widehat{ABC}) = 90^{\circ}.$$

Comme M est le milieu de [EB], il est le milieu de l'hypoténuse du triangle rectangle EDB. Dès lors, MB = MD. De plus, comme O est le centre de ω , on a OB = OD. Ceci montre que OM est la médiatrice de [BD], ce qui implique $(OM) \perp (BD)$. Comme $(DE) \perp (BD)$, on a (DE)//(OM).

Problème 4

Soit p un nombre premier fixé. Trouver tous les entiers $n \ge 1$ satisfaisant la propriété suivante : On peut regrouper les diviseurs positifs de n deux par deux de manière à ce que, pour chaque couple (d, d') ainsi formé, les deux conditions suivantes soient satisfaites :

- d < d';
- p divise $\lfloor \frac{d'}{d} \rfloor$.

Remarque : On rappelle que, lorsque x est un réel, la notation $\lfloor x \rfloor$ désigne le plus grand entier inférieur ou égal à x. Par exemple, $|3| = |\pi| = |3,99| = 3$.

Solution

Appelons un entier n > 0 "bon" s'il a la propriété de l'énoncé. Clairement, si p ne divise pas n, alors n ne peut pas être bon car 1 ne peut être apparié avec aucun autre diviseur. De plus, si n est un carré parfait, il a un nombre impair de diviseurs et ne peut donc pas être bon.

Réciproquement, montrons que si n est divisible par p mais n'est pas un carré parfait, alors il est bon. On note $s = \nu_p(n) \ge 1$ la valuation p-adique de n.

Si s est impair, on pose s=2v+1. Si a_1,\ldots,a_k sont les diviseurs de $\frac{n}{p^s}$, alors les diviseurs de n de la forme p^xa_u où $0\leqslant x\leqslant s$ et $1\leqslant u\leqslant k$. On peut alors les apparier comme suit : $(p^{2i}a_u,p^{2i+1}a_u)$ avec $0\leqslant i\leqslant v$ et $1\leqslant u\leqslant k$.

Si s est pair, comme n n'est pas un carré parfait, il existe un nombre premier $q \neq p$ tel que $t = \nu_q(n) \geqslant 1$ est impair. On note s = 2v et t = 2w + 1. Les diviseurs de n sont de la forme $p^x q^y d$ où $0 \leqslant x \leqslant s, \ 0 \leqslant y \leqslant t$ et d est un diviseur de $\frac{n}{p^s q^t}$. Pour chaque tel d, on peut alors les apparier comme suit :

- $(p^{2i-1}q^{2j}d, p^{2i}q^{2j}d)$ avec $1 \le i \le v$ et $0 \le j \le w$;
- $(p^{2i}q^{2j+1}d, p^{2i+1}q^{2j+1}d)$ avec $0 \le i \le v-1$ et $0 \le j \le w$;
- $(q^{2j}d, p^sq^{2j+1}d)$ avec $0 \le j \le w$.