Medical Image Processing for Interventional Applications

Statistical Shape Models – Part 1

Online Course – Unit 44 Andreas Maier, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Statistical Shape Models

Introduction Overview of Methods Shape Representation

Summary

Take Home Messages Further Readings

Introduction

Segmentation is difficult in presence of noise and artifacts (e.g. streaks).

 \rightarrow Prior knowledge about the general shape of the organ is helpful.

Problem: Human anatomy is very different between different subjects.

 \rightarrow Description needs to be able to describe these variations.

Model-based methods

- Applied since 1990s successfully in 2-D
- Expansion to 3-D available and applied successfully
- Model describes expected shape and appearance
- Applied in a top-down approach in contrast to low-level methods
- Increased stability compared to low-level methods
- Single template models only useful in industrial applications (e.g., no variations expected)
- In medical applications → Variation needs to be modeled!

Other Approaches

Freely deformable models:

- Seminal snakes (smoothness + image fit)
- Deformable simplex mesh (template shape + image fit)
- \rightarrow Models can be adopted to specific shapes but do not allow to model variations.

Other Approaches

Freely deformable models:

- Seminal snakes (smoothness + image fit)
- Deformable simplex mesh (template shape + image fit)
- \rightarrow Models can be adopted to specific shapes but do not allow to model variations.

Level-sets (see also Cremers, Rousson, Deriche, 2007):

- Implicit shape representation with regional or edge-based features
- Learning-based methods can be integrated in the energy function.
- Distance maps do not form a linear space:
- \rightarrow They can lead to invalid shapes (in cases with too much variations in the training data).
- → Transformation into a different space is beneficial.

General Structure

- 1. Shape representation
- 2. Extraction of principal modes
- 3. Finding correspondences between shapes

Shape Representation

Input:

- Segmented volumetric images
- Surface meshes
- Any other shape representation that can be converted into one of the above (B-Spline, NURBS)

→ Representation is crucial for the resulting statistical shape model.

Landmarks and Meshes

- Simple, but very generic
- Fixed number *K* of points as a long vector:

$$m{x} = egin{pmatrix} x_1 \ y_1 \ z_1 \ dots \ x_K \ y_K \ z_K \end{pmatrix}$$

- Points are referred to as *landmarks*.
 (They do not need to be actual anatomical landmarks → *semi-landmarks*.)
- ullet If connectivity information available o mesh
- Landmarks only as a basis for a statistical shape model yield a point distribution model (PDM).

Other Models

- Medial models:
 - \bullet Use center lines and radii \to centerline points and vectors pointing to boundary
 - Called *m-rep* in 3-D
- Fourier surfaces: Composition of a certain topology from base shapes
- Spherical Harmonics: Composition of spheres to describe a closed surface
- NURBS: Non-uniform rational B-splines
- Wavelets, etc. ...

weight controls influence of control point

Figure 1: NURBS example

Topics

Statistical Shape Models Introduction Overview of Methods Shape Representation

Summary

Take Home Messages Further Readings

Take Home Messages

- Statistical shape models are used in a series of approaches to incorporate prior data into a segmentation algorithm.
- A large variety of methods has been researched which can be studied starting with the review of Heimann and Meinzer, 2009.
- Shape can be represented simply by so-called landmarks, for example, but there exist other elaborate models as well.

Further Readings

These review papers are a good start for learning more about the methods described in this unit:

- Tobias Heimann and Hans-Peter Meinzer. "Statistical Shape Models for 3D Medical Image Segmentation: A Review". In: *Medical Image Analysis* 13.4 (Aug. 2009), pp. 543–563. DOI: 10.1016/j.media.2009.05.004
- Daniel Cremers, Mikael Rousson, and Rachid Deriche. "A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape". In: International Journal of Computer Vision 72.2 (Apr. 2007), pp. 195–215. DOI: 10.1007/s11263-006-8711-1

They also contain lots of references for further reading.