# Bayesian Optimization

## ML procedure

https://ichi.pro/ko/meosin-leoning-ui-yuhyeong-gwa-jeolcha-9596720397791

## Model Improvement (Model Tuning)

- Goal
  - Enhance the performance of the model
- Methods
  - Prepare and use more data: need cost
  - Try another (deep learning) model: very academic
  - Adjust hyperparameters: time consuming

## Hyperparameters

- Used for learning (training)
- Need to be set before training
  - Learning rate
  - Number of layers
  - Batch size
  - Optimizer: SGD, momentum, adam
  - Activation functions: sigmoid, tanh, ReLu

## Why tuning (optimizing) hyperparameter?

- Achieve high performance
- Reproducibility of published results
- Automatic tuning is required
- For non-expert users

Prof. Hyerim Bae (nroae@pusa

#### Searching parameters

What if we search all



```
model = KerasClassifier()

learning_rate = [0.001, 0.005, 0.01]
momentum = [0.9, 0.95, 0.97]

param_grid = dict(lr=learning_rate, m=momentum)

grid = GridSearchCV(model, param_grid)
grid.fit(X, Y)
```

Prof. Hyerim Bae (hrbae@pusan.

# Hyper parameter Tuning Method based on Sampling for Optimal LSTM model (2019)

- Hyperparameter List
  - Learning rate (constant)
  - Optimizer (categorical)
  - Activation function of output layer (categorical)
- 1. Searching Order and searching space
  - 1 Learning rate
    - : 0.01, 0.005, 0.001
  - Optimizer
    - : SGD, Adam
- 2. Do experiments with each combinations
  - For one combination, do n-th experiments
  - Sampling to get the distribution of combination

|           |      | Learning rate |        |        |  |
|-----------|------|---------------|--------|--------|--|
|           |      | 0.01          | 0.005  | 0.001  |  |
| Optimizer | SGD  | Comb.1        | Comb.2 | Comb.3 |  |
|           | Adam | Comb.4        | Comb.5 | Comb.6 |  |

# Hyper parameter Tuning Method based on Sampling for Optimal LSTM model (2019)

#### 3. Estimate a distribution of the combination

- Assume student t distribution
- Use the RMSE(performance measure) as sample of dist.

#### 4. Determine a criteria for selecting combinations

- Get set of means from the combination's distributions
- Determine a criteria as min value of the mean set





Net: Wikipedia(https://ko.wikipedia.org/wiki/%EC%8A%A4%ED%8A%9C%EB%8D%98%ED%8A%B8\_t\_%EB%B6%84%ED%8F%AC)

# Prof. Hyerim Bae (hrbae@]

# Hyper parameter Tuning Method based on Sampling for Optimal LSTM model (2019)

- 5. Select the combinations for next step
  - If the measure can exist under the criteria, use the combinations next step
  - Measure can exist = the probability is over the 10% (arbitrary prob.) =  $C_2$ ,  $C_5$



- 6. Consider one more hyperparameter
  - Activation function of output layer: Relu, tanh, sigmoid

|             |        | Activation function |         |         |
|-------------|--------|---------------------|---------|---------|
|             |        | Relu                | tanh    | sigmoid |
| Combination | Comb.2 | Comb2-1             | Comb2-2 | Comb2-3 |
|             | Comb.5 | Comb2-4             | Comb2-5 | Comb2-6 |

7. Repeat 2~6 until all hyperparameter is considered

# Hyper parameter Tuning Method based on Sampling for Optimal LSTM model (2019)

#### Performance

- RMSE is similar with Brute force
  - Success to find the best combination of hyperparameters
- The number of experiments is quite smaller than Brute force
  - More efficiency than Brute force to find the best solution







#### Optimizing hyperparameters

• Finding hyperparameter which optimizes the performance



# Black-box optimization

#### Features

- Objective function is unknown
- Cannot use gradient (differentiation)
- Costly



# Bayesian Optimization for hyper-parameter tuning

- Estimate f(x) from data
  - Using Bayes theorem
  - By Gaussian Process

#### **Bayes Rule**

$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{p(B|A)p(A)}{p(B)}$$

$$p(A_i|E) = \frac{p(E|A_i)p(A_i)}{P(E)} = \frac{p(E|A_i)p(A_i)}{\sum_i p(E|A_i)p(A_i)}$$



- Based on the definition of conditional probability
  - p(A<sub>i</sub>|E) is posterior probability given evidence E
  - p(A<sub>i</sub>) is the prior probability
  - $P(E|A_i)$  is the likelihood of the evidence given  $A_i$
  - p(E) is the preposterior probability of the evidence

#### Bayesian inference

#### • Let's see the rule again





man or woman?

#### p(man|long hair)





Source: https://brunch.co.kr/@chris-song/59

#### Bayesian optimization

■ "베이지안스럽게 최적화하기"

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$
Posterior

•  $P(Model|Data) \cong P(Data|Model) \times P(Model)$ 

for i=1,2,... do
estimate parameters from data
recommend next input
generate data from model and add
end for

bayes' theorem을 살펴보면

posterior ∝ likelihood × prior

이고

 $P(Model \mid Data) \propto P(Data \mid Model) \times P(Model)$ 

이 된다.

즉, 현재까지 얻어진 모델 (prior)과 추가적인 실험 정보 (likelihood)를 통해 데이터가 주어졌을 때의 모델(Posterior)을 추정해나가는 방식이며 알고리즘은 다음과 같다.

(몇가지 초기 입력-결과값 데이터가 주어졌을 때)

for t = 1, 2, ... do

- 1, 얻어진 데이터를 토대로 모델을 추정한다.
- 2. 추정된 모델을 토대로 '모델 추정에 가장 유용할만한' 다음 입력값을 추천한다.
- 3. 모델에 추천된 입력값을 넣어 결과값을 얻어내고, 이를 기존 데이터에 추가한다. end for

#### **Gaussian Process**

#### Gaussian Distribution

- Random variables
- Mean, Variance(Standard deviation)

#### Gaussian Process

- Gaussian distribution for a function
- Mean function:  $\mu(x)$
- Covariance function: k(x, x')



Sources: Florent Leclercq, "Bayesian optimization for likelihood-free cosmological inference"

#### **Gaussian Process Regression**

- In a regression function, y=f(x),
  - If  $x_1$  and  $x_2$  are similar,  $y_1$  and  $y_2$  are similar too.

$$y' = \sum_{i=1}^{N} w(x', x_i) y_i$$

- Weight w is represented as kernel, which can be learned
  - Single-variate:  $Y \sim N(\mu, \sigma)$
  - Multi-variate:  $Y \sim N(\mu, \Sigma)$

$$\boldsymbol{\Sigma} = \begin{bmatrix} K(X_1, X_1) & K(X_1, X_2) & \dots & K(X_1, X_N) \\ K(X_2, X_1) & K(X_2, X_2) & \dots & K(X_2, X_N) \\ \dots & \dots & \dots & \dots \\ K(X_N, X_1) & K(X_N, X_2) & \dots & K(X_N, X_N) \end{bmatrix}$$

- If  $\mu = 0$   $\mu(X') = K(X', \mathbf{X}) \mathbf{\Sigma}^{-1} \mathbf{Y}$   $\sigma^{2}(X') = K(X', X') - K(X', \mathbf{X}) \mathbf{\Sigma}^{-1} K(\mathbf{X}, X')$   $K(x_{i}, x_{i}) = \exp(-1/2 ||x_{i} - x_{i}||^{2})$ 



$$\begin{split} \begin{pmatrix} \boldsymbol{Y} \\ Y' \end{pmatrix} &\sim \mathcal{N} \bigg( \begin{pmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu}' \end{pmatrix}, \begin{bmatrix} \boldsymbol{\Sigma} & K(\boldsymbol{X}, X') \\ K(X', \boldsymbol{X}) & K(X', X') \end{bmatrix} \bigg) \\ & Y' | \boldsymbol{Y} \sim \mathcal{N} (\mu_{Y'|\boldsymbol{Y}}, \sigma_{Y'|\boldsymbol{Y}}) \\ & \mu_{Y'|\boldsymbol{Y}} = \boldsymbol{\mu}' + K(X', \boldsymbol{X}) \boldsymbol{\Sigma}^{-1} (\boldsymbol{Y} - \boldsymbol{\mu}), \\ & \sigma_{Y'|\boldsymbol{Y}} = K(X', X') - K(X', \boldsymbol{X}) \boldsymbol{\Sigma}^{-1} K(\boldsymbol{X}, X') \end{split}$$

#### **Training GP**

- If we do not know the model (parameter)
  - The model is known to be quadratic,

$$f \sim GP(m,k)$$

$$m(x)=ax^2+bx+c, \ \mathrm{and} k(x,x')=\sigma_y^2\exp(-rac{(x-x')^2}{sl^2})+\sigma_n^2\delta_{ii'}$$

여기서 파라미터  $\theta = \{a,b,c,\sigma_y,\sigma_n,l\}$  입니다. 최적화는 Log-likelihood를 사용합니다.

$$L = \log p(\mathbf{y}|\mathbf{x}, \theta) = -\frac{1}{2}\log|\Sigma| - \frac{1}{2}(\mathbf{y} - \mu)^T \Sigma^{-1}(\mathbf{y} - \mu) - \frac{n}{2}\log(2\pi)$$

이 식을 각 파라미터에 대해 편미분을 할 수 있습니다.

$$\frac{\partial L}{\partial \theta_m} = -(\mathbf{y} - \mu)^T \Sigma^{-1} \frac{\partial m}{\partial \theta_m}$$

$$\frac{\partial L}{\partial \theta_k} = \frac{1}{2} \mathrm{trace}(\Sigma^{-1} \frac{\partial \Sigma}{\partial \theta_k}) + \frac{1}{2} (\mathbf{y} - \mu)^T \frac{\partial \Sigma}{\partial \theta_k} \Sigma^{-1} \frac{\partial \Sigma}{\partial \theta_k} (\mathbf{y} - \mu)$$

여기서  $\theta_m, \theta_k$ 는 각각 mean, covariance에 대한 파라미터를 의미합니다. 이 파라미터들을 conjugate gradient 방법을 사용하여 최적화하고, 이 때 위의 세 식이 활용될 것입니다.

# **Exploitation vs. Exploration**

- Exploitation
  - 지금 탐색중인 곳을 더 면밀히 탐색
  - Risk of Local optima
- Exploration
  - 더 넓은 탐색





https://www.youtube.com/watch?v=PTxqPfG\_IXY&t=284s

# Acquisition function

- How to get the next data?
- Exploitation
  - High mean
- Exploration
  - High variance

## **Acquisition function**



```
for i = 1, 2, 3, ... do  find \ x_t \quad over \ GP : \ x_t = \textit{argmax} \ u(x | D_{t-1})  sample the objective function: y_t = f(x_t) + \varepsilon_t  augment data D_t = \{ D_{t-1}, \ (x_t, \ y_t) \} and update GP end for
```





\*) Kushner 1964

\*\*) https://arxiv.org/pdf/1012.2599.pdf

https://www.youtube.com/watch?v=PTxqPfG\_IXY&t=284s



\*) Mockus et al, 1978

$$argmax(\mu(x) + k \cdot \sigma(x))$$



\*) Srinivas et al, 2010, https://arxiv.org/pdf/0912.3995.pdf

https://www.youtube.com/watch?v=PTxqPfG\_IXY&t=284s

$$\mu(x^*) = k^T K^{-1} f_{1:t}$$

$$\sigma^2(x^*) = k(x^*, x^*) - k^T K^{-1} k$$

$$k(x_i, x_j) = \exp(-1/2||x_i - x_j||^2)$$

gp = GaussianProcessRegressor ( )
gp.fit (data)
mean, std = gp.predict (data\_new)

https://www.youtube.com/watch?v=PTxqPfG\_IXY&t=284s

```
for i in np.arange(10):
def expected_improvement (mean, std, max):
    z = (mean - max) / std
                                                            model.fit(X, y)
    return (mean-max)*norm.cdf(z) + std*norm.pdf(z)
def f(x):
                                                            xs = np.random.uniform(min_x, max_x, 10000)
    return x * np.sin(x)
                                                            mean, std = model.predict(xs.reshape(-1,1),
                                                        return_std=True)
min_x, max_x = -2, 10
                                                            acq = expected_improvement(mean, std, y.max())
                                                            x \text{ new} = xs[acq.argmax()]
X = np.random.uniform(min_x, max_x, 3).reshape(-
1,1)
                                                            y_new = f(x_new)
y = f(X).ravel()
                                                            X = np.append(X, np.array([x_new])).reshape(-1,1)
model = GaussianProcessRegressor(kernel=RBF(1.0))
                                                            y = np.append(y, np.array([y new]))
```

#### **Bayesian Optimization**

- Drawback
  - Time Consuming



## Acquision Function : Thompson Sampling

· 사후 분포를 기반으로 샘플링



https://www.youtube.com/watch?v=PTxqPfG\_IXY&t=284s

#### Performance of BO

#### Accuracy on Cifar-10 with Resnet



| Data<br>Augment | Model      | Random | BayesOpt | Baseline<br>(paper) |
|-----------------|------------|--------|----------|---------------------|
| 0               | Resnet-110 | 94.37  | 94.53    | 93.57               |
|                 | Resnet-56  | 94.37  | 94.28    | 93.03               |
| X               | Resnet-110 | 90.09  | 90.17    | _                   |
|                 | Resnet-56  | 90.01  | 90.07    | -                   |



Bayesian Search Max Accuracy Per Iteration Cifar-10, Resnet-56 (without data augmentation)



Bayesian Search Max Accuracy Per Iteration Cifar-10, Resnet-110 (without data augmentation)



https://www.youtube.com/watch?v=PTxqPfG\_IXY&t=284s

#### Reference

- https://www.youtube.com/watch?v=PTxqPfG\_1XY&t=284s
- https://aistory4u.tistory.com/entry/%EA%B0%80%EC%9A%B0%EC%8B%9C%EC%95%88-%ED%94%84%EB%A1%9C%EC%84%B8%EC%8A%A4-%ED%9A%8C%EA%B7%80