CS 70 Discrete Mathematics and Probability Theory Fall 2024 Rao, Hug

Natural Induction on Inequality

Prove that if $n \in \mathbb{N}$ and x > 0, then $(1+x)^n \ge 1 + nx$.

For n=1, 1+x2 1+x trunally true Indution on n, we want to prave CIHDEH B+1)X then CITX) CITX) n = I+nx+x => (tx)"+x(1+x)" = x+ 1+nx by induction hypotheus, c1+x)">PA+1, while x(1+x)">X Is true as citx) 21 for x ocdivoion by x) thus citx mt 2 1+ (n+1)x by induction, the statement holds Make It Stronger

Suppose that the sequence $a_1, a_2, ...$ is defined by $a_1 = 1$ and $a_{n+1} = 3a_n^2$ for $n \ge 1$. We want to prove that

$$a_n \le 3^{(2^n)}$$

for every positive integer n.

Note 3

(a) Suppose that we want to prove this statement using induction. Can we let our inductive hypothesis be simply $a_n \leq 3^{(2^n)}$? Attempt an induction proof with this hypothesis to show why this does not work.

Base a = 1 ≤ 3 = 9 Industion Step | nolds for $a_1 \le 3^n$, $a_{n+1} = 3a_n^n$ and indust on it $a_n = 3^{2^n}$. $3a_n^2 = 3^{2^{n+1}} = 3^{2^n}$. Thus industrion hypothesis too week

(b) Try to instead prove the statement
$$a_n \leq 3^{(2^n-1)}$$
 using induction.
Base: $a_1 = 1 \leq 3^{n-1} = 3^{n-1}$

Indult: $a_1 \leq 3^{(n-1)}$, $a_{n+1} = 3a_n^{n-1} \leq 3 \cdot 3^{n-1} = 3^{n-1}$

While $3^{(n-1)} \leq 3^{(n-1)}$, $a_{n+1} \leq 3^{(n-1)} \leq 3 \cdot 3^{(n-1)}$ thus the statement true.

(c) Why does the hypothesis in part (b) imply the overall claim?

Binary Numbers

Note 3

Prove that every positive integer n can be written in binary. In other words, prove that for any positive integer n, we can write

$$n = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + c_0 \cdot 2^0$$

for some $k \in \mathbb{N}$ and $c_i \in \{0,1\}$ for all $i \leq k$.

Fibonacci for Home

Note 3

Recall, the Fibonacci numbers, defined recursively as

$$F_1 = 1$$
, $F_2 = 1$, and $F_n = F_{n-2} + F_{n-1}$.

Prove that every third Fibonacci number is even. For example, $F_3 = 2$ is even and $F_6 = 8$ is even.

Base established

As covery third atablished, for $n \notin 3k$, $k \in 0$.

Fight = Fight Fix-1. Fight = Fix+Fix+1

Fix+1 NFixe has some odd twity.
Thus Fixks must be even
Conclude