Analyse asymptotique

Je me souviens	
Exercices	
Exercices et résultats classiques à connaître	
Un équivalent par encadrement	
Le DL de $\tan(x)$	
Exercices du CCINP	
Exercices	
Petits problèmes d'entrainement	

Je me souviens

- 1. C'est quoi, l'analyse asymptotique?
- 2. Ca veut dire quoi, négligeable?
- 3. C'est quoi, un o(1)?
- 4. Ca veut dire quoi, dominé?
- 5. C'est quoi, un O(1)?
- 6. On peut faire des opérations sur les petit o? sur les grand O?
- 7. Ca veut dire quoi, équivalent?
- 8. Est-ce que c'est une relation d'équivalence?
- 9. On peut faire des opérations sur les équivalents?
- 10. Y a-t-il des équivalents usuels?
- 11. À quoi servent les équivalents?
- 12. Qu'est ce qui se cache derrière l'argument souvent avancé de « croissances comparées »?
- 13. C'est quoi, un développement limité en 0?
- 14. Est-ce qu'un DL donne un équivalent ? un équivalent donne un DL?
- 15. Quels sont les DL que l'on doit connaître?
- 16. Opérations sur les DL?
- 17. C'est quoi, un développement limité en a?
- 18. C'est quoi, un développement asymptotique?
- 19. Au voisinage de $n \to +\infty$, $\left(1 + \frac{1}{n}\right)^n \sim ?$
- 20. Donner un exemple de suites telles que $u_n \sim v_n$ mais $e^{u_n} \not\sim e^{v_n}$.
- 21. Est-ce qu'on a toujours $u_{n+1} \sim n$?

Exercices et résultats classiques à connaître

Un équivalent par encadrement

62.1

Soit $(u_n)_n$ une suite réelle décroissante telle que :

$$u_{n+1} + u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$$

Déterminer un équivalent simple de u_n .

Le DL de tan(x)

62.2

(a) Former le développement limité à l'ordre 3 en 0 de :

$$\tan x = \frac{\sin x}{\cos x}$$

(b) Prolonger ce développement limité à l'ordre 5 en exploitant :

$$\tan(\operatorname{Arctan} x) = x$$

(c) Prolonger ce développement limité à l'ordre 7 en exploitant :

$$\tan'(x) = 1 + \tan^2(x)$$

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang.

1. Prouver que si $u_n \sim v_n$ alors u_n et v_n sont de même signe à partir d'un certain rang.

1. Prouver que, au voisinage de $+\infty$:

$$\pi\sqrt{n^2 + n + 1} = n\pi + \frac{\pi}{2} + \alpha \frac{\pi}{n} + O\left(\frac{1}{n^2}\right)$$

où α est un réel que l'on déterminera.

Exercices

62.5

Écrire plus simplement les expressions suivantes :

- (a) $o(2n) 2o((-1)^n n)$
- (b) $n \ln n + o(n+1) + o(n^2)$
- (c) 2o(n)O(n) nO(n).

62.6

Calculer la limite des expressions suivantes $(\alpha \in \mathbb{R})$:

(a)
$$n\left(\left(1+\frac{1}{n}\right)^8-1\right)$$

(c)
$$\left(1 + \frac{\alpha}{n}\right)^n$$

62.7

Déterminer un équivalent simple de :

- (a) $\ln n + 2n 1$
- (b) $\frac{(1+\ln n)(3n^2+1)}{\sqrt{n^2+2n}}$
- (c) $\frac{1}{n-1} \frac{1}{n+1}$
- (d) $\sqrt{n+1} + \sqrt{n-1}$
- (e) $\ln(2n^3+1)$
- (f) $\ln\left(1+\frac{1}{n}\right)$
- (g) $n \sin\left(\frac{1}{n^2}\right)$
- (h) $\ln(n+1) \ln(n-1)$
- (i) $(n+1)^n$

62.8

Déterminer un équivalent de :

- (a) $\ln(\operatorname{ch}(x))$ en 0
- (b) $\ln(1+x) x \text{ en } 0$
- (c) $\ln\left(\cos\left(\frac{1}{n}\right)\right)$
- (d) $\ln\left(\frac{n-\ln n}{n+\ln n}\right)$

Déterminer la limite de :

(e)
$$\left(1 + \frac{x}{n}\right)^n$$
 pour $x \in \mathbb{R}$ fixé

62.9

- (a) Déterminer le développement limité en 0 à l'ordre 3 de $\operatorname{Arctan}(\mathbf{e}^x)$.
- (b) Quelle est l'allure de la courbe correspondante au voisinage du point d'abscisse 0?

62.10

Calculer la limite de :

(a)
$$\frac{\ln x}{x-1}$$
 en 1

(b)
$$\frac{e^{2x} - e^x}{x}$$
 en 0

(c)
$$\frac{1}{\sin^2 x} - \frac{1}{x^2}$$
 en 0

(d)
$$\left(\cos\frac{1}{x}\right)^{x^2}$$
 en $+\infty$

(e)
$$(3.2^{\frac{1}{x}} - 2.3^{\frac{1}{x}})^x$$
 en $+\infty$

62.11

Déterminer le développement asymptotique à trois termes des expressions suivantes :

- (a) $\sqrt{n^2+1}$
- (b) $\sqrt[n]{n}$
- (c) $(1+\frac{1}{n})^n$

62.12

- (a) Déterminer le développement asymptotique à trois termes en $+\infty$ de $x \operatorname{Arctan}(x)$.
- (b) Quelle est l'allure de la courbe correspondante, au voisinage de $x \to +\infty$?

Petits problèmes d'entrainement

62.13

On considère l'application définie sur \mathbb{R}^* par :

$$f(x) = 1 + x^2 \sin\frac{1}{x}$$

- (a) Montrer que f se prolonge en une fonction dérivable sur \mathbb{R} .
- (b) Est-ce que la dérivée de f admet un développement limité en 0?

62.14 **£**1

Soit $f: [0,1] \to \mathbb{R}$, avec $f(1) \neq 0$. On pose:

$$I_n = \int_0^1 t^n f(t) \, \mathrm{d}t$$

Déterminer un équivalent simple de I_n en supposant :

- (a) f de classe C^1 ;
- (b) f continue.

62.15

Pour $n \in \mathbb{N}^*$, on définit le polynôme :

$$P_n = X(X-1)\dots(X-n)$$

- (a) Montrer que le polynôme P'_n possède une unique racine dans l'intervalle]0,1[. On la note x_n .
- (b) Étudier la monotonie de la suite $(x_n)_{n\geqslant 1}$.
- (c) Former la décomposition en éléments simples de la fraction rationnelle :

$$F_n = \frac{P_n'}{P_n}$$

(d) Déterminer un équivalent de x_n .

62.16

Déterminer le développement asymptotique :

- (a) à 2 termes de $u_n = \frac{1}{n + \sin n}$
- (b) à 3 termes de $v_n = (n+1)\ln(n) n\ln(n+1)$

62.17

Pour $n \in \mathbb{N}$, on considère l'équation d'inconnue $x \in \mathbb{R}_+$:

$$x + \sqrt[3]{x} = n$$

- (a) Montrer que cette équation possède une unique solution x_n .
- (b) Déterminer la limite, puis un équivalent simple de $(x_n)_n$.
- (c) Donner un développement asymptotique à trois termes de $(x_n)_n$.

62.18

Pour $n \in \mathbb{N}$, on considère l'équation d'inconnue $x \in \mathbb{R}_+^*$:

$$x^n \ln x = 1$$

- (a) Montrer que cette équation possède une unique solution x_n , et que $x_n > 1$.
- (b) Montrer que $(x_n)_n$ est décroissante, et déterminer sa limite.

Pour $n \in \mathbb{N}^*$, on pose $y_n = x_n - 1$.

(c) Justifier que $ny_n \sim -\ln y_n$ et en déduire un équivalent de y_n .