NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON

Faglig kontakt under eksamen:

Navn: Bojana Gajić

Tlf.: 92490623

EKSAMEN I EMNE TTT4110 INFORMASJONS- OG SIGNALTEORI

Dato: tirsdag 8. juni 2010

Tid: kl. 9:00 - 13:00

Hjelpemidler: D–Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

INFORMASJON

- Eksamen består av 4 oppgaver. Maksimalt antall poeng for hver deloppgave er angitt i parentes. Det er 38 poeng totalt.
- Noen viktige formler finnes i vedlegget.
- Alle svar skal begrunnes og fremgangsmåten må komme tydelig fram.
- Faglærer vil gå rundt to ganger, første gang ca. kl. 10 og andre gang ca. kl. 12.
- Sensurfrist er 3 uker etter eksamensdato.

Lykke til!

Oppgave 1 (1+2+4=7)

Gitt følgende tidsdiskret signal

$$x(n) = \begin{cases} 2 & n = 0 \\ 1 & n = \pm 1 \\ 0 & \text{ellers.} \end{cases}$$

- 1a) Skisser x(n) og forklar hvorfor signalet har et reelt spektrum.
- **1b)** Vis at spekteret til x(n) er gitt ved

$$X(\omega) = 2 + 2\cos\omega,$$

og skisser det for $\omega \in [-2\pi, 2\pi]$.

1c) Gitt

$$z(n) = \sum_{l=-\infty}^{\infty} x(n-4l)$$

Skisser z(n).

Finn spekteret til z(n) og skisser det som funksjon av $\omega \in [-2\pi, 2\pi]$.

Hva er sammenhengen mellom spektrene til x(n) og z(n)?

Oppgave 2 (2+2+2+4=10)

Figur 1 viser et analogt filter.

Figur 1:

- 2a) Finn en differensialligning som beskriver sammenheng mellom inngangsspenningen x(t) og utgangsspenningen y(t) vha. filterkomponenter R_1 , R_2 og C.
- 2b) Vis at frekvensresponsen til filteret er gitt ved

$$H(\Omega) = \frac{1}{j\Omega R_1 C + \frac{R_1}{R_2} + 1}.$$

- **2c)** Finn impulsesponsen til filteret.
- 2d) Finn filterets respons på inngangssignalet

$$x(t) = 4 + 2\sqrt{2}\cos(1000t + \pi/4)$$

gitt at
$$R_1 = R_2 = 2 k\Omega$$
 og $C = 1 \mu F$.

Oppgave 3 (4+3=7)

Gitt et analogt signal

$$x_a(t) = \cos(2\pi F_1 t) + 3\cos(2\pi F_2 t)$$

der $F_1 = 1$ kHz og $F_1 = 3$ kHz.

Signalet punktprøves med en ideell A/D-omformer før det blir rekonstruert med en ideell D/A-omformer slik figur 2 viser.

Figur 2: Punktprøving og rekonstruksjon

- **3a)** Skisser spektrene til signalene $x_a(t)$, x(n) og $\hat{x}_a(t)$ som en funksjon av fysisk frekvens $F \in [-2F_s, 2F_s]$ gitt at samplingsfrekvensen er $F_s = 5$ kHz. Er punktprøvingsteoremet oppfylt? Begrunn svaret.
- **3b)** Anta nå at et antialiasingfilter er brukt før A/D-omformeren.

Spesifiser kravene til antialiasingfilteret.

Skisser spektrene til signalene x(n) og $\hat{x}_a(t)$ som en funksjon av $F \in [-2F_s, 2F_s]$ når antialiasingfilteret er brukt.

Oppgave 4 (1+3+2+2+4+2=14)

Figuren under viser sannsynlighetstetthetsfunksjonen til et tidsdiskret signal x(n). Signalet skal kvantiseres med en uniform kvantiserer med 8 nivåer slik at ingen overstyringsstøy oppstår.

Figur 3:

- **4a)** Bestem desisjonsgrenser og representasjonsverdier til kvantisereren slik at kvantiseringsfeileffekten blir minst mulig.
- 4b) Finn verdien til kvantiseringsfeileffekten og beregn SNR.
- **4c)** Finn entropien til det kvantiserte signalet.

Vi ønsker å representere det kvantiserte signalet med en binær kode ved å tilordne et kodeord til hver representasjonsverdi. Anta at signalet har uavhengige punktprøver.

- **4d)** Finn det laveste antall bit per punktprøve som må brukes hvis alle kodeordene skal være like lange. Begrunn svaret og foreslå en slik kode.
- **4e)** Forklar prinsippet for design av en kode med lavere gjennomsnittlige kodeordslengde enn i forrige deloppgave.

Foreslå en slik entydig dekodbar kode og finn den gjennomsnittlige kodeordslengden. Er det mulig å finne en kode med enda lavere gjennomsnittlig kodeordlengde? Begrunn svaret.

4f) Det kvantiserte signalet skal overføres over en kommunikasjonskanal med hvit Gaussisk støy. Kapasiteten til en slik kanal er gitt ved

$$C = \frac{1}{2} \log_2 \left(1 + \frac{P}{\sigma_N^2} \right) \frac{\text{bit}}{\text{kanalsymbol}}.$$

Anta videre at kanalsymbolene genereres med samme hastighet som kildesymbolene. Finn nødvendig SNR slik at signalet skal kunne overføres feilfritt.

Some useful formulas in signal processing

Analog signals and systems

Fourier series (for signals with period T_0)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\frac{2\pi k}{T_0}t}$$

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\frac{2\pi k}{T_0}t} dt$$

$$\frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$

Fourier transform and its inverse:

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega)e^{j\Omega t}d\Omega$$

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)|^2 d\Omega$$

Laplace transform:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

Electrical components

Resistor: v(t) = Ri(t)

Capacitor: $i(t) = C \frac{dv(t)}{dt}$

Inductor: $v(t) = L \frac{di(t)}{dt}$

Discrete signals and systems

Fourier series (for signals with period N)

$$x(n) = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi k}{N}n}$$

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k}{N}n}$$

$$\frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 = \sum_{k=0}^{N-1} |c_k|^2$$

Fourier transform and its inverse:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$x(n) = \frac{1}{2\pi} \int_{2\pi} X(\omega)e^{j\omega n} d\omega$$

$$\sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\omega)|^2 d\omega$$

z-transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Discrete Fourier transform (DFT) of length N

$$X_N(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi k}{N}n}, k \in [0, N-1]$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_N(k)e^{j\frac{2\pi k}{N}n}, n \in [0, N-1]$$

Table 11-2: Basic Fourier transform pairs.

Table of Fourier Transform Pairs		
Time-Domain: $x(t)$	Frequency-Domain: X(jω)	
$e^{-at}u(t) (a>0)$	$\frac{1}{a+j\omega}$	
$e^{bt}u(-t) (b>0)$	$\frac{1}{b-j\omega}$	
$u(t+\frac{1}{2}T)-u(t-\frac{1}{2}T)$	$\frac{\sin(\omega T/2)}{\omega/2}$	
$\frac{\sin(\omega_b t)}{\pi t}$	$[u(\omega+\omega_b)-u(\omega-\omega_b)]$	
$\delta(t)$	1	
$\delta(t-t_d)$	$e^{-j\omega t_d}$	
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
1	$2\pi\delta(\omega)$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$A\cos(\omega_0 t + \phi)$	$\pi A e^{j\phi} \delta(\omega - \omega_0) + \pi A e^{-j\phi} \delta(\omega + \omega_0)$	
$\cos(\omega_0 t)$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$	
$\sin(\omega_0 t)$	$-j\pi\delta(\omega-\omega_0)+j\pi\delta(\omega+\omega_0)$	
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$\sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$	
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi}{T}k)$	

Table 11-3: Basic Fourier transform properties.

Table of Fourier Transform Properties		
Property Name	Time-Domain: x(t)	Frequency-Domain: $X(j\omega)$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(j\omega) + bX_2(j\omega)$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time-Reversal	x(-t)	$X(-j\omega)$
Scaling	x(at)	$\frac{1}{ a }X(j(\omega/a))$
Delay	$x(t-t_d)$	$e^{-j\omega t_d}\hat{X}(j\omega)$
Modulation	$x(t)e^{j\omega_0t}$	$X(j(\omega-\omega_0))$
Modulation	$x(t)\cos(\omega_0 t)$	$\frac{1}{2}X(j(\omega-\omega_0)) + \frac{1}{2}X(j(\omega+\omega_0))$
Differentiation	$\frac{d^k x(t)}{dt^k}$	$(j\omega)^k X(j\omega)$
Convolution	x(t) * h(t)	$X(j\omega)H(j\omega)$
Multiplication	x(t)p(t)	$\frac{1}{2\pi}X(j\omega)*P(j\omega)$

Den imaginære enheten i er definert slik at $i^2 = -1$. Med $a \log b$ Imaginære og komplekse tall

reelle tall kalles:

z = ib et imaginært tall,

 $z^* = a - ib$ det tilhørende konjugerte komplekse tall. z = a + ib et komplekst tall

a kalles realdelen $(a = \text{Re}\,z)$, b imaginærdelen $(b = \text{Im}\,z)$.

$$z_1 \pm z_2 = (a_1 \pm a_2) + i(b_1 \pm b_2)$$

 $z_2 \cdot z_3 = (a_2 a_3 - b_4 b_2) + i(a_3 b_3 + a_3 b_4)$

$$z_{1} + z_{2} = (a_{1} + a_{2}) + i(a_{1} + a_{2})$$

$$z_{1} \cdot z_{2} = (a_{1}a_{2} - b_{1}b_{2}) + i(a_{1}b_{2} + a_{2}b_{1})$$

$$\frac{z_{1}}{z_{2}} = \frac{a_{1}a_{2} + b_{1}b_{2}}{a_{2}^{2} + b_{2}^{2}} + i\frac{a_{2}b_{1} - a_{1}b_{2}}{a_{2}^{2} + b_{2}^{2}}$$

$$z \cdot z^* = (a + ib)(a - ib) = a^2 + b^2 = |z|^2$$

Med
$$a = r \cos \varphi$$
, $b = r \sin \varphi$, $r = \sqrt{a^2 + b^2}$ folger:
 $z = a + ib = r(\cos \varphi + i \sin \varphi)$, $= r e^{i\varphi}$
 $z^* = a - ib = r(\cos \varphi - i \sin \varphi)$. $= r e^{-i\varphi}$

$$r=|z|$$
 kalles absolutiverdien, $\varphi=\arg z$ argumentet til z , og tilsvarende er: $r=|z^*|, -\varphi=\arg z^*$.

4) La f(x) og g(x) være deriverbare funskjoner av variablen x. Følgende regneregler gjelder

$$\frac{d}{dx} (f(x) \pm g(x)) = \frac{d}{dx} f(x) \pm \frac{d}{dx} g(x)$$

$$\frac{d}{dx} (f(x)g(x)) = g(x) \frac{d}{dx} f(x) + f(x) \frac{d}{dx} g(x)$$

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$$

2) Dersom y = f(u) og u = g(x) er deriverbare i passende områder,

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = f'(u)g'(x).$$

Spesielle derivasjonsformler

$$\frac{da}{dx} = 0, \qquad a = \text{konst} \qquad \frac{dx}{dx} = 0$$

$$\frac{dx^{n}}{dx} = nx^{n-1}, \qquad \frac{dx}{dx} = 1$$

$$\frac{da^{n}}{dx} = a^{n} \ln a, \qquad \frac{de^{n}}{dx} = e^{n} \qquad \frac{d \ln x}{dx} = \frac{1}{x}$$

$d\cos x = -\sin x$

$$\frac{d\sin x}{dx} = \cos x$$

Trigonometriske funskjoner

De trigonometriske funksjonene kan defineres ved

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\frac{-ix}{-} \cos x = \frac{e^{ix} + e^{-ix}}{2}$$

Relasjoner mellom trigonometriske funksjoner

$$\sin^2 x + \cos^2 x = 1 \qquad \tan x =$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x \qquad \cos\left(x + \frac{\pi}{2}\right)$$

$$x = 1 \tan x = \frac{\sin x}{\cos x} = \frac{1}{\cot x}$$

$$= \cos x \cos \left(x + \frac{\pi}{2}\right) = -\sin x$$

$$\sin(-x) = -\sin x \qquad \cos(-x) = +\cos x$$

$$\cot(-x) = -\cot x$$

tan(-x) = -tan x

Addisjonsteoremer:

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

 $cos(x \pm y) = cos x cos y \mp sin x sin y$

 $\cos\frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}}$

Ubestemte integraler

$$\int \left(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n\right) dx = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \dots + \frac{a_n}{n+1} x^{n+1} + C$$

$$\int e^{\lambda x} dx = \frac{1}{\lambda} e^{\lambda x} + C \qquad \int \sin x \, dx = -\cos x + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C \qquad \int \cos x \, dx = \sin x + C$$

Bestemte integraler

$$\int f(x)dx = F(x) + C \implies \int f(x)dx = F(b) - F(a)$$

$$\int \int f(x)dx = -\int \int f(x)dx$$

$$\int \int \int f(x) \pm g(x) dx = \int \int f(x)dx \pm \int \int f(x)dx$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$\int_{c}^{b} u dv = u(b)v(b) - u(a)v(a) - \int_{c}^{b} v du$$

Funksjoner av det dobbelte argument:

 $\sin 2x = 2 \sin x \cos x$

Geometriske summer

 $\cos 2x = \cos^2 x - \sin^2 x$

 $\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$

 $\cos x + \cos y = 2\cos \frac{x+y}{2}\cos \frac{x-y}{2}$

 $\sin x \pm \sin y = 2 \sin \frac{x \pm y}{2} \cos \frac{x \mp y}{2}$

Sum og differens av funksjoner

$$\sum_{k=1}^{n} q^{k-1} = \frac{1-q^n}{1-q} \qquad \sum_{k=1}^{\infty} q^{k-1} = \frac{1}{1-q}$$

Kvadratiske ligninger

Funksjoner av det halve argument:

 $\sin\frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}}$

 $2\cos nx\cos mx = \cos(n-m)x + \cos(n+m)x$

 $2 \sin nx \cos mx = \sin(n-m)x + \sin(n+m)x$

 $2 \sin nx \sin mx = \cos(n - m)x - \cos(n + m)x$

Produkt av funksjoner

En annengradsligning med en ukjent kan skrives:

$$ax^2 + bx + c = 0$$
 $(a \ne 0)$.

Den har to løsninger x_1 og x_2 :

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}.$$