49

4.2 Granica i ciągłość funkcji

Definicja 4.1. Liczbę g nazywamy granicą funkcji f(P) w punkcie P_0 , jeżeli dla każdego ciągu punktów $\{P_n\}$, $P_n \in \mathbb{Z}$, zbieżnego do P_0 , ciąg $\{f(P_n)\}$ jest zbieżny do g

$$\lim_{P \to P_0} f(P) = g.$$

Dla funkcji dwóch zmiennych granice w punkcie (x_0, y_0) zapisujemy w postaci

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = g.$$

Tak zdefiniowana granica nazywa się granicą podwójną.

Dla funkcji dwóch zmiennych można zdefiniować granice iterowane

$$\lim_{x \to x_0} \left[\lim_{y \to y_0} f(x, y) \right] \qquad \text{i} \qquad \lim_{y \to y_0} \left[\lim_{x \to x_0} f(x, y) \right].$$

Istnienie granicy podwójnej w P_0 nie jest niezależne od istnienia granic iterowanych. Granica podwójna może nie istnieć mimo, że istnieją granice iterowane w P_0 . Ponadto granice iterowane mogą być różne w P_0 .

Definicja 4.2. Funkcja f(P) jest ciągła w punkcie P_0 , jeżeli

$$\lim_{P \to P_0} f(P) = f(P_0).$$