

Universidad de Concepción

FACULTAD DE CIENCIAS FISÍCAS Y MATEMÁTICAS

Laboratorio 4

Proyecto laboratorio termodinámica

Autores: Martina Contreras, Noemí De La Peña, Benjamín Opazo.

> Profesor: Juan Pablo Staforelli

> > Carrera: Ciencias fisícas

Ayudante: Fernanda Paz Vera

Noviembre 2022

Índice

1.	Introdución	2
2.	Marco teórico	2
3.	Materiales	4
4.	Procedimiento Experimental	5
5.	Análisis	6
6.	Conclusión	6

1. Introdución

- Conocer el funcionamiento de un osciloscopio.
- Concocer el funcionamiento de un generador de señales alternas.
- Aprender a medir voltaje y tiempo con osciloscopio.
- Comprobar experimentalmente las ecuaciones de carga y descarga de condensadores. Circuito RL
- Comprobar experimentalmente las ecuaciones de conexión y desconexión de bobinas de autoinducción. Circuito RC
- Obtener oscilaciones de carga y medir la mfrecuencia propia del sistema oscilante. Circuito RLC

2. Marco teórico

- 1. Características de ondas de voltaje y corriente alternas sinusoidales. Conmsideremos las siguientes definiciones:
 - $v(t) = V_m sin(wt)$: valor instantáneo de voltaje alterno sinusoidal,
 - $i(t) = I_m sin(wt)$: valor instantáneo de corriente alterna sinusoidal,
 - V_m : amplitud o valor máximo de la onda de voltaje,
 - I_m : amplitud o valor máximo de la onda de corriente,
 - $w = 2\pi f$,
 - $f = \frac{1}{T}$: frecuencia de oscilación,
 - *T*: período de la alternancia.

Para comparar valores de voltaje y corriente continuos con los correspondientes alternos se definen los llamados valores efectivos. El valor efectivo de un voltaje o una corriente alterna, resulta de igualar la energía eléctrica de corriente continua con la energía eléctrica de corriente alterna, cuando ambas se transforman en calor Q en una misma resistencia R. Si la comparación se efectúa durante un lapso de tiempo igual a un periodo T, se tendrá la igualdad:

$$Q_{cc}(R,T) = Q_{cA}(R,T)$$

Cantidades que se pueden expresar en términos del voltaje aplicado sobre R o de la corriente que circula por R. Así, para el primer caso, se tiene:

$$\frac{V^2}{R}T = \int_0^T \frac{v^2(t)}{R}dt \Rightarrow V = \left(\frac{1}{T}\int_0^T V_m^2 sin^2(wt)dt\right)^{1/2}$$

de donde $V = \frac{1}{2} \sqrt{2} V_m$: voltaje efectivo y para la corriente:

$$I^{2}RT = \int_{0}^{T} i^{2}(t)Rdt \Rightarrow I = \left(\frac{1}{T} \int_{0}^{T} I_{m}^{2} sin^{2}(wt)dt\right)^{1/2}$$

De donde $I = \frac{1}{2} \sqrt{2} I_m$: corriente efectiva.

Los instrumentos medidores de voltaje y corriente alternos están calibrados para medir valores efectivos.

- 2. Circuitos RC, RL, RLC en condición transitoria.
 - a) Circuito RC

Para el circuito de la figura 1 y a partir del instante (t = 0) de conexión de S en 1, estando C completamente cargado (q = 0), la ecuación diferencial y su solución para la carga q(t) se escriben

$$\frac{dq}{dt} + \frac{q}{RC} = \frac{V_0}{R} \Rightarrow q(t) = V_0 C (1 - e^{-\frac{t}{RC}})$$

de donde resultan los voltajes $v_C(t)$ en el condensador y $v_R(t)$ en el resistor, siguientes:

$$v_C(t) = \frac{q(t)}{C} = V_0(1 - e^{-\frac{t}{RC}})$$

$$v_R(t) = \frac{i(t)}{R} = R \frac{dq}{dt} = V_0 (1 - e^{-\frac{t}{RC}})$$

Cuando C ha alcanzado el estado estacionario $(t \to \infty)$, su carga ha llegado al valor $Q = V_0 C$. Se cambia ahora S a la posición 2 para efectuar la descarga de C. Al quedar excluida la fuente V_0 , lam ecuación diferencial y su solución, resultan ser:

$$\frac{dq}{dt} + \frac{q}{RC} = 0 \Rightarrow q(t) = V_0 C (1 - e^{-\frac{t}{RC}})$$

entonces:

$$v_C(t) = V_0 e^{-\frac{t}{RC}}$$

$$v_R(t) = -V_0 e^{-\frac{t}{RC}}$$

b) Circuito RL

En el circuito de la figura 2, al cerrar S en 1 se obtiene la ecuación diferencial para la conexión de L. La ecuación y su solución resultan:

$$\frac{di}{dt} + \frac{R}{L}i = \frac{V_0}{L} \Rightarrow i(t) = \frac{V_0}{R}(1 - e^{\frac{-R}{L}t})$$

desde donde:

$$v_L(t) = L\frac{di}{dt} = V_0 e^{-\frac{R}{L}t}$$

$$v_R(t) = i(t)R = V_0(1 - e^{-\frac{R}{L}t})$$

Al cambiar el interruptor S de 1 a 2, se inicia la etapa de desconexión de L, con ecuación diferencial y solución dadas por:

$$\frac{di}{dt} + \frac{Ri}{L} = 0 \Rightarrow i(t) = \frac{V_0}{R} e^{\frac{R}{L}t}$$

entonces:

$$v_L(t) = L\frac{di}{dt} = -V_0 e^{-\frac{R}{L}t}$$

$$v_R(t) = i(t)R = V_0 e^{-\frac{R}{L}t}$$

c) Circuito RLC En el circuito de la figura 3 (a), el condensador C se encuentra cargado con carga Q y la energía total $U_C = \frac{Q^2}{2C}$. Al cerrar el interruptor S. el condensador iniciará la descarga y con todo ello un proceso de intercamcio de energía entre C y L. La energía total distribuida en todo momento en L y en C, irá decreciendo debido a las pérdidas por efecto de calor disipado en R, todo lo cual se expresa por la ecuación:

$$\frac{d}{dt}\left(\frac{q^2}{2C} + \frac{Li^2}{2}\right) = -i^2R$$

que resulta en la ecuación diferencial:

$$L\frac{d^2}{dt^2}q + R\frac{dq}{dt} + \frac{q}{C} = 0$$

Figura 1: Circuito RC

Figura 2: Circuito RL

y su solución oscilatoria:

$$q(t) = Q^{-\frac{R}{2L}t}cos(w't + \phi),$$

con

$$w' = .\left(w^2 - \left(\frac{R}{2L}\right)^2\right)^{1/2}$$

y $w = \frac{1}{\sqrt{LC}}$, así el voltaje instantáneo en el condensador, $V_c(t)$, tiene la expresión:

$$V_c(t) = \frac{q(t)}{C} = \frac{Q^{-\frac{R}{2L}t}cos(w't + \phi)}{C}$$

que corresponde a una oscilación amortiguada exponencialmente.

3. Materiales

- 1 osciloscopio con 2 puntas de prueba,
- 1 generador de señal,
- 1 caja de resistencias décadas,
- 1 caja de condensadores décadas,
- 1 bobina de 600 vueltas,
- 1 transformador de 200/6volt,
- 6 conexiones.

Figura 3: Circuito RLC

4. Procedimiento Experimental

Parte 2: Circuitos RC, RL, RLC, en estado transitorio.

Circuito RC

- 1. Procedemos a realizar el montaje del circuito experimental de la figura 1 (b), en el cual R se asigna desde la caja resistencias décadas, por ej. $1K\Omega$; C se asigna desde la caja de condensadores décadas , por ej. $0.1\mu F$ y v_g corresponde a la señal de salida del generador, con forma rectangular y frecuencia apropiada, por ej. 1KHz.
- 2. Para observar v_e(t) (voltaje sobre el condensador), se conecta la punta activada CH1 del osciloscopio al punto c, del circuito; se regulan los controles de base de tiempo y niveles de ganancia, hasta observar en forma nítida la gráfica v_e(t)vst. Para efectos de comparar y observar relación causa-efecto se utiliza el segundo canal (CH2) del osciloscopio conectado directamente a la salida del generador de señal y así tener a la vista el voltaje v_g(t)vst que se está aplicando al circuito.
- 3. Mediante un manejo eficiente de los controles de barrido del osciloscopio y frecuencia del generador de señal se puede observar el efecto y significado de la constante de tiempo $\tau_C = RC$. Una vez hechos los ajustes y optimizada la visualización, se hacen las medidas.
- 4. Para observar $v_R(t)$ o voltaje en la resistencia, que en realidad es una muestra de cómo varía la corriente i(t) en la carga y en la descarga del condensador ya que $v_R(t) = i(t)R$, todo lo que hay que hacer es intercambiar las conexiones que van desde el circuito a la salida del generador de señal en a y b, de esta manera, un extremo de R quedará a tierra. Nos aseguramos que la punta activa de CH2 siga estando en la salida a del generador y la de CH1 en c.

Circuito RL.

- 1. Armamos el circuito de la figura (b,) donde del condensador (c) del circuito anterior se debe reemplazar por una bobina de (c)00 vueltas y autoinducción (c)1 = (c)2 (d)3 (d)4 (d)5 (d)6 (d)6 (d)7 (d)8 (d)9 (d)
- 2. Para efectos de control y buena visualización de $v_L(t)$ y $v_R(t)$, conviene ajustar R en 300 y usar frecuencia de 3KHz en el generador de señal. La mejor visualización se logra reajustando el control de frecuencia.
- 3. En lo que sigue, se repiten los pasos 2, 3 y 4 de la parte anterior, con la diferencia de que lo observado es ahora $v_L(t)$, en vez de $v_C(t)$ en 2, así como la constante de tiempo en 3 es ahora $\tau_L = L/R$.

Circuito RLC. Oscilaciones amortiguadas. Observación y medición.

- 1. Se arma el circuito de la figura $\frac{3}{2}(b)$ con $R = 200\Omega$, C = 0, $01\mu F$ y L = 9mH (bobina de 600 vueltas). Utilizamos solamente CH1 conectada en c para visualizar $v_C(t)$ donde se observarán las oscilaciones.
- 2. Medimos el período de las oscilaciones amortiguadas, T', para obtener $w' = \frac{2\pi}{T}$, esta se comparará con el valor teórico:

$$w' = \left(w^2 - \left(\frac{R}{2L}\right)^2\right)^{1/2}$$

5. Análisis

6. Conclusión

Referencias

- [1] Medidas de voltaje: Guía. (s. f.). NI. Recuperado 4 de noviembre de 2022, de https://www.ni.com/es-cl/support/documentation/supplemental/21/how-to-measure-voltage.html
- [2] Corriente eléctrica y materiales conductores. (2014, 5 septiembre). RedUSERS. https://www.redusers.com/noticias/corriente-electrica-y-materiales-conductores/
- [3] **D. Halliday; R. Resnick; K. S. Kane.** *Física Vol. 2.* (Cap.32), Compañía Editorial Continental, S.A. de C.V. 3° Edición, 1994
- [4] Circuito Eléctrico: Historia. (s. f.). Recuperado 4 de noviembre de 2022, de https://www.profesorenlinea.cl/mediosocial/Circuito_ElectricoHistoria.htm