Delaunay Triangulations and Voronoi Diagrams

Motivation: Spatial Interpolation, Nearest Neighbor Queries

Algorithmic Technique: Randomized Incremental Construction

Data Structures: Voronoi diagrams, Delaunay triangulations

height measurements

$$p = (p_x, p_y, p_z)$$

height measurements

$$p = (p_x, p_y, p_z)$$

projection

$$\pi(p) = (p_x, p_y, 0)$$

height measurements

$$p = (p_x, p_y, p_z)$$

projection

$$\pi(p) = (p_x, p_y, 0)$$

Question: How do we estimate the height at (x, y)?

Interpolation 1: assign height of nearest neighbor

Interpolation 1: assign height of nearest neighbor

height measurements

$$p = (p_x, p_y, p_z)$$

projection

$$\pi(p) = (p_x, p_y, 0)$$

Interpolation 1: assign height of nearest neighbor

Interpolation 2: triangulate & interpolate within triangles

height measurements

$$p = (p_x, p_y, p_z)$$

$$\pi(p) = (p_x, p_y, 0)$$

Motivation

Motivation

Motivation

for 2 points

for n points

$$P = \{p_1, p_2, \dots, p_n\}$$

•

•

Quiz

Are Voronoi cells convex?

A: yes

B: no

C: only if they are bounded

Quiz

Are Voronoi cells convex?

A: yes

B: no

C: only if they are bounded

Quiz

Are Voronoi cells convex?

A: yes for this lets have a closer look at cells

B: no

C: only if they are bounded

Let P be a set of points in the plane and $p, p', p'' \in P$.

Let P be a set of points in the plane and $p, p', p'' \in P$. Voronoi diagram:

Let P be a set of points in the plane and $p, p', p'' \in P$. Voronoi diagram:

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) =$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) =$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

intersection of convex sets \rightarrow cells are convex

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

$$\mathcal{V}(\{p,p'\}) =$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

$$\mathcal{V}(\{p,p'\}) = \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \ \forall q \neq p, p'\}$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

$$\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p, p'\}$$
$$= \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

$$\mathcal{V}(\{p,p'\}) = \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p,p'\}$$

= rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, i.e. without endpoints

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

$$\mathcal{V}(\{p,p'\}) = \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p,p'\}$$

= rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, i.e. without endpoints

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edge

$$\mathcal{V}(\{p,p'\}) = \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p,p'\}$$

= rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, i.e. without endpoints

$$\mathcal{V}(\{p, p', p''\}) =$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edge

$$\mathcal{V}(\{p,p'\}) = \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p,p'\}$$

= rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, i.e. without endpoints

$$\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$$

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

a subdivision

Voronoi edge

Let P be a set of points in the plane and $p, p', p'' \in P$.

Voronoi diagram:

Voronoi cell

Voronoi edge

a subdivision p' p'' p'' Vor(P)

Structure

If points in P are not all collinear, then ${
m Vor}(P)$ is connected

Structure

If points in P are not all collinear, then ${
m Vor}(P)$ is connected

Structure

If points in P are not all collinear, then ${
m Vor}(P)$ is connected

next: Complexity of Vor(P)

Complexity

How many sides can a single cell have?

A: 6

B: n/2

C: n-1

How many sides can a single cell have?

A: 6

B: n/2

C: n - 1

Complexity of a Cell

How many sides can a single cell have?

A cell may have up to n-1 sides

Complexity of a Cell

How many sides can a single cell have?

A cell may have up to n-1 sides

Can all cells have n-1 sides?

Complexity of a Cell

How many sides can a single cell have?

A cell may have up to n-1 sides

Can all cells have n-1 sides?

How many cells/edges/vertices may $\mathrm{Vor}(P)$ have?

$$5 - 7$$

$$5 - 7 + 4 = 2$$

$$(n_v + 1) - n_e + n = 2$$

Euler's formula for plane connected graphs: V-E+F=2

$$(n_v + 1) - n_e + n = 2$$

Handshaking lemma:

$$2n_e = \sum_v deg(v)$$

Euler's formula for plane connected graphs: V-E+F=2

$$(n_v + 1) - n_e + n = 2$$

Handshaking lemma:

$$2n_e = \sum_v deg(v)$$
 $\geq 3(n_v+1)$ (degree at least 3)

1.
$$(n_v + 1) - n_e + n = 2$$

2.
$$2n_e \ge 3(n_v + 1)$$

Which bounds does this imply on n_v and n_e (as tight as possible)?

A:
$$n_e \le n(n+1)/2, n_v \le n(n+1)/3$$

B:
$$n_e \le 3n - 6, n_v \le 2n - 5$$

C:
$$n_e = n_v = n$$

1.
$$(n_v + 1) - n_e + n = 2$$

2.
$$2n_e \ge 3(n_v + 1)$$

Which bounds does this imply on n_v and n_e (as tight as possible)?

A:
$$n_e \le n(n+1)/2, n_v \le n(n+1)/3$$

B:
$$n_e \le 3n - 6, n_v \le 2n - 5$$

C:
$$n_e = n_v = n$$

1.
$$(n_v + 1) - n_e + n = 2$$

2.
$$2n_e \ge 3(n_v + 1)$$

Which bounds does this imply on n_v and n_e (as tight as possible)?

Plug in 1. into 2.:

$$2n_e \ge 3(2 + n_e - n)$$

1.
$$(n_v + 1) - n_e + n = 2$$

2.
$$2n_e \ge 3(n_v + 1)$$

Which bounds does this imply on n_v and n_e (as tight as possible)?

Plug in 1. into 2.:

$$2n_e \ge 3(2 + n_e - n)$$

Re-order terms:

3.
$$n_e \le 3n - 6$$

1.
$$(n_v + 1) - n_e + n = 2$$

2.
$$2n_e \ge 3(n_v + 1)$$

Which bounds does this imply on n_v and n_e (as tight as possible)?

Plug in 1. into 2.:

$$2n_e \ge 3(2 + n_e - n)$$

Re-order terms:

3.
$$n_e \le 3n - 6$$

Plug in 3. into 1.:

$$n_v \leq 2n - 5$$

Voronoi Diagram Complexity

The Voronoi diagram of n points in the plane has at most

Delaunay Triangulations

Delaunay triangulation

Let Vor(P) be the Voronoi diagram of P.

Delaunay triangulation

Let Vor(P) be the Voronoi diagram of P.

Definition: The graph $\mathcal{G} = (P, E)$ with

$$E = \{(p,q) \mid \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ are adjacent}\}$$

is called the dual graph of Vor(P).

Delaunay triangulation

Let Vor(P) be the Voronoi diagram of P.

Definition: The graph $\mathcal{G} = (P, E)$ with

$$E = \{(p,q) \mid \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ are adjacent}\}$$

is called the dual graph of Vor(P).

Definition: The straight-line drawing of \mathcal{G} is called Delaunay graph $\mathcal{DG}(P)$.

 $\mathcal{DG}(P)$ has no crossing edges.

 $\mathcal{DG}(P)$ has no crossing edges.

Delaunay triangulation: add edges until all faces are triangles

 $\mathcal{DG}(P)$ has no crossing edges.

Delaunay triangulation: add edges until all faces are triangles

Characterization of Voronoi vertices/edges

Definition: Let q be a point. Define $C_P(q)$ as the largest disk with center q containing no points of P in its interior.

 $\star q$

Characterization of Voronoi vertices/edges

Definition: Let q be a point. Define $C_P(q)$ as the largest disk with center q containing no points of P in its interior.

Characterization of Voronoi vertices/edges

Definition: Let q be a point. Define $C_P(q)$ as the largest disk with center q containing no points of P in its interior.

Observation:

- A point q is a Voronoi vertex $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- The bisector $b(p_i, p_j)$ defines a Voronoi edge $\Leftrightarrow \exists q \in b(p_i, p_j)$ with $C_P(q) \cap P = \{p_i, p_j\}$.

Empty-circle property

Theorem about Voronoi diagrams:

- a point q is a Voronoi vertex $\Leftrightarrow |C_P(q) \cap P| \geq 3$,
- the bisector $b(p_i,p_j)$ defines a Voronoi edge $\Leftrightarrow \exists q \in b(p_i,p_j)$ with $C_P(q) \cap P = \{p_i,p_j\}$.

Empty-circle property

Theorem about Voronoi diagrams:

- a point q is a Voronoi vertex $\Leftrightarrow |C_P(q) \cap P| \geq 3$,
- the bisector $b(p_i,p_j)$ defines a Voronoi edge $\Leftrightarrow \exists q \in b(p_i,p_j)$ with $C_P(q) \cap P = \{p_i,p_j\}$.

Theorem: Let P be a set of points.

- points p,q,r are vertices of the same face in $\mathcal{DG}(P)\Leftrightarrow$ circle through p,q,r is empty,
- edge pq is in $\mathcal{DG}(P)$ \Leftrightarrow there is an empty circle $C_{p,q}$ through p and q.

Empty-circle property

Theorem about Voronoi diagrams:

- a point q is a Voronoi vertex $\Leftrightarrow |C_P(q) \cap P| \geq 3$,
- the bisector $b(p_i,p_j)$ defines a Voronoi edge $\Leftrightarrow \exists q \in b(p_i,p_j)$ with $C_P(q) \cap P = \{p_i,p_j\}$.

Theorem: Let P be a set of points.

- points p,q,r are vertices of the same face in $\mathcal{DG}(P)\Leftrightarrow$ circle through p,q,r is empty,
- edge pq is in $\mathcal{DG}(P)$
 - \Leftrightarrow there is an empty circle $C_{p,q}$ through p and q.

Corollary: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is a Delaunay triangulation \Leftrightarrow circumcircle of every triangle is empty.

How many triangles does a (Delaunay) triangulation of n points contain at most?

A:
$$2n/3 - 1$$

B:
$$2n - 5$$

C:
$$3n - 6$$

How many triangles does a (Delaunay) triangulation of n points contain at most?

A:
$$2n/3 - 1$$

B:
$$2n - 5$$

C:
$$3n - 6$$

How many triangles does a (Delaunay) triangulation of n points contain at most?

A:
$$2n/3 - 1$$

B:
$$2n-5$$
 = no. Voronoi vertices (or use Euler's formula)

C:
$$3n - 6$$

Angle-optimal Triangulations

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

Observations:

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

Observations:

all inner faces are triangles

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

Observations:

all inner faces are triangles

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

Observations:

- all inner faces are triangles
- outer face is complement of convex hull

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

Observations:

- all inner faces are triangles
- outer face is complement of convex hull

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

- all inner faces are triangles
- outer face is complement of convex hull

Theorem 1: Let P be a set of n non-collinear points and let h be the number of vertices of CH(P). Then every triangulation of P has t(n,h) triangles and e(n,h)edges.

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

Compute t(n, h) and e(n, h)!

Observations:

- all inner faces are triangles
- outer face is complement of convex hull

Theorem 1: Let P be a set of n non-collinear points and let h be the number of vertices of CH(P). Then every triangulation of P has t(n,h) triangles and e(n,h) edges.

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

```
Compute t(n,h) and e(n,h)!

Euler's formula for connected plane graphs:

# faces — # edges + # vertices = 2,

also counting the outer face.
```

Observations:

- all inner faces are triangles
- outer face is complement of convex hull

Theorem 1: Let P be a set of n non-collinear points and let h be the number of vertices of CH(P). Then every triangulation of P has t(n,h) triangles and e(n,h) edges.

Definition: A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal planar subdivision with vertex set P.

Observations:

- all inner faces are triangles
- outer face is complement of convex hull

Theorem 1: Let P be a set of n non-collinear points and let h be the number of vertices of CH(P). Then every triangulation of P has (2n-2-h) triangles and (3n-3-h) edges.

Motivation revisited

height measurements

$$p = (p_x, p_y, p_z)$$

Motivation revisited

height measurements

$$p = (p_x, p_y, p_z)$$

projection $\pi(p) = (p_x, p_y, 0)$

Interpolation 1: assign height of nearest neighbor

→ Voronoi diagrams

Motivation revisited

height measurements

$$p = (p_x, p_y, p_z)$$

projection
$$\pi(p) = (p_x, p_y, 0)$$

Interpolation 1: assign height of nearest neighbor

 \rightarrow Voronoi diagrams

Motivation revisited

Interpolation 2: triangulate & interpolate within triangles

Motivation revisited

height measurements

$$p = (p_x, p_y, p_z)$$

projection
$$\pi(p) = (p_x, p_y, 0)$$

Interpolation 2: triangulate & interpolate within triangles

Motivation revisited

height measurements

$$p = (p_x, p_y, p_z)$$

projectic n
$$\pi(p)=(p_x,p_y,0)$$

What is a 'good' triangulation?

Interpolation 2: triangulate & interpolate within triangles

Lets look at the interpolation along an edge:

Intuition: avoid 'thin' triangles!

Lets look at the interpolation along an edge:

Intuition: avoid 'thin' triangles!

or: maximize the smallest angle within triangles!

Angle-optimal triangulations

Definition: Let \mathcal{T} be a triangulation of P with m triangles and 3m vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$, where $\alpha_1, \dots, \alpha_{3m}$ are the angles of \mathcal{T} sorted by increasing value.

$$A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

Angle-optimal triangulations

Definition: Let \mathcal{T} be a triangulation of P with m triangles and 3m vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$, where $\alpha_1, \dots, \alpha_{3m}$ are the angles of \mathcal{T} sorted by increasing value.

• For two triangulations $\mathcal T$ and $\mathcal T'$ of P define order $A(\mathcal T)>A(\mathcal T')$ according to the lexicographical order.

$$A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Angle-optimal triangulations

Definition: Let \mathcal{T} be a triangulation of P with m triangles and 3m vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$, where $\alpha_1, \dots, \alpha_{3m}$ are the angles of \mathcal{T} sorted by increasing value.

- For two triangulations $\mathcal T$ and $\mathcal T'$ of P define order $A(\mathcal T)>A(\mathcal T')$ according to the lexicographical order.
- \mathcal{T} is angle optimal, if $A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

$$A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Definition: Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is illegal, if the smallest angle of the triangles incident to e can be increased by flipping e.

Observation: Let e be an illegal edge in \mathcal{T} and let $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$. Then $A(\mathcal{T}') > A(\mathcal{T})$.

How many edge flips are needed to remove all illegal edges?

A: 0

B: 2

How many edge flips are needed to remove all illegal edges?

A: 0

B: 2

How many edge flips are needed to remove all illegal edges?

A: 0

B: 2

How many edge flips are needed to remove all illegal edges?

A: 0

B: 2

How many edge flips are needed to remove all illegal edges?

A: 0

B: 2

C: 3

Next:

How can we check whether an edge is illegal without comparing angles?

Thales theorem

Theorem: If ab is a diameter, then the angle at any third point on the circle c is 90° .

Thales theorem

Theorem: If ab is a diameter, then the angle at any third point on the circle c is 90° .

Theorem: Let C be a circle, ℓ a line intersecting C in points a and b, and p,q,r,s points lying on the same side of ℓ . Suppose that p,q lie on C, r lies inside C, and s lies outside C. Then $\angle arb > \angle apb = \angle aqb > \angle asb$, where $\angle abc$ denotes the smaller angle defined by three points a,b,c.

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in $\mathcal T$ and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in $\mathcal T$ and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

$$\varphi_{pr} > \theta_{pr}$$

$$\varphi_{ps} > \theta_{ps}$$

$$\varphi_{rq} > \theta_{rq}$$

$$\varphi_{sq} > \theta_{sq}$$

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in \mathcal{T} and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \operatorname{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \not\in \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in \mathcal{T} and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \not\in \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in $\mathcal T$ and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in \mathcal{T} and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in \mathcal{T} and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Definition: A triangulation without illegal edges is called legal triangulation.

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in $\mathcal T$ and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Definition: A triangulation without illegal edges is called legal triangulation.

Are there legal triangulations?

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in $\mathcal T$ and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Definition: A triangulation without illegal edges is called legal triangulation.

- 1: **while** $\mathcal T$ has illegal edge e **do**
- 2: $\mathsf{flip}(\mathcal{T},e)$
- 3: return \mathcal{T}

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in $\mathcal T$ and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Definition: A triangulation without illegal edges is called legal triangulation.

1: while ${\mathcal T}$ has illegal edge e do

- 2: $flip(\mathcal{T}, e)$
- 3: return \mathcal{T}

Does the algorithm terminate?

Legal triangulations

Lemma 1: Let Δprq and Δpqs be two adjacent triangles in $\mathcal T$ and C the circumcircle of Δprq . Then:

$$\overline{pq}$$
 is illegal \Leftrightarrow $s \in \text{int}(C)$.

If p,q,r,s form a convex quadrilateral and $s \notin \partial C$, then either \overline{pq} or \overline{rs} is illegal.

Definition: A triangulation without illegal edges is called legal triangulation.

1: **while** $\mathcal T$ has illegal edge e **do**

2: $\mathsf{flip}(\mathcal{T},e)$

3: return \mathcal{T}

Does the algorithm terminate?

yes, since $A(\mathcal{T})$ increases and #triangulations is finite

Legal vs angle-optimal

We know: Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal?

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

Proof sketch:

"←" obvious, use

Lemma 1: Let Δpqr and Δprs be two adjacent triangles in \mathcal{T} and C the circumcircle of Δpqr . Then: \overline{pr} is illegal \Leftrightarrow $s \in \text{int}(C)$.

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

- suppose s is in the interior of circumcircle of $\triangle pqr$
- let \overline{pr} be the edge maximizing $\angle psr$

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

- suppose s is in the interior of circumcircle of $\triangle pqr$
- let \overline{pr} be the edge maximizing $\angle psr$

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

- suppose s is in the interior of circumcircle of $\triangle pqr$
- let \overline{pr} be the edge maximizing $\angle psr$
- consider t adjacent to p and r
- s also lies in circumcircle of $\triangle prt$

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

- suppose s is in the interior of circumcircle of $\triangle pqr$
- let \overline{pr} be the edge maximizing $\angle psr$
- consider t adjacent to p and r
- s also lies in circumcircle of $\triangle prt$
- Thales theorem: $\angle tsr > \angle psr$
- Contradiction to choice of \overline{pr}

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

Observation: If P is in general position, then the Delaunay triangulation of P is unique.

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

Observation: If P is in general position, then the Delaunay triangulation of P is unique.

⇒ legal triangulation unique

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

Observation: If P is in general position, then the Delaunay triangulation of P is unique.

 \Rightarrow legal triangulation unique

we know: \mathcal{T} angle optimal $\Rightarrow \mathcal{T}$ legal

Theorem: Let P be a set of points in \mathbb{R}^2 . A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.

Observation: If P is in general position, then the Delaunay triangulation of P is unique.

 \Rightarrow legal triangulation unique

we know: \mathcal{T} angle optimal $\Rightarrow \mathcal{T}$ legal

 \Rightarrow angle-optimal triangulation is $\mathcal{DG}(P)$!

In general position: legal \Leftrightarrow Delaunay \Leftrightarrow angle-optimal

Question: If points are not in general position, are Delaunay triangulations still angle optimal?

A: yes, but the proof is more complicated

B: no, but the smallest angle is still maximized

C: no, not even the smallest angle is maximized

In general position: legal ⇔ Delaunay ⇔ angle-optimal

Question: If points are not in general position, are Delaunay triangulations still angle optimal?

A: yes, but the proof is more complicated

B: no, but the smallest angle is still maximized

C: no, not even the smallest angle is maximized

In general position: legal ⇔ Delaunay ⇔ angle-optimal

Question: If points are not in general position, are Delaunay triangulations still angle optimal?

A: yes, but the proof is more complicated

B: no, but the smallest angle is still maximized

C: no, not even the smallest angle is maximized

If P not in general position, then the smallest angle in every triangulation of the "large" faces in $\mathcal{DG}(P)$ is the same. (proof uses Thales theorem)

Computing the Delaunay triangulation

Randomized Incremental Construction using Edge Flips

$\textbf{Algorithm} \ \mathsf{DelaunayTriangulation}(P)$

- 1: Initialize ${\mathcal T}$ as a large triangle $\triangle p_0 p_{-1} p_{-2}$ containing all points from P
- 2: Compute a random permutation of p_1, \ldots, p_n
- 3: for $r \leftarrow 1$ to n do
- 4: Insert (p_r, \mathcal{T})
- 5: Discard p_0 , p_{-1} and p_{-2} with all their incident edges p_0

Algorithm Insert (p_r, \mathcal{T})

- 1: find triangle $\in \mathcal{T}$ containing p_r
- 2: if p_r lies in $\triangle p_i p_j p_k$ then
- 3: add edges from p_r to p_i, p_j, p_k
- 4: LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathcal{T})$
- 5: LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathcal{T})$
- 6: LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$

Algorithm Insert (p_r, \mathcal{T})

- 1: find triangle $\in \mathcal{T}$ containing p_r
- 2: **if** p_r lies in $\triangle p_i p_j p_k$ then
- 3: add edges from p_r to p_i, p_j, p_k
- 4: LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathcal{T})$
- 5: LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathcal{T})$
- 6: LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$
- 7: **else** // p_r lies on edge $\overline{p_i p_j}$
- 8: add edges from p_r to p_l, p_k
- 9: LEGALIZEEDGE $(p_r, \overline{p_i p_l}, \mathcal{T})$
- 10: LEGALIZEEDGE $(p_r, \overline{p_l p_j}, \mathcal{T})$
- 11: LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathcal{T})$
- 12: LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$

Algorithm LegalizeEdge $(p_r,\overline{p_ip_j},\mathcal{T})$

- 1: if $\overline{p_ip_j}$ is illegal then // Edge flip
- 2: let $\triangle p_i p_j p_h$ be the adjacent triangle
- 3: replace $\overline{p_i p_j}$ by $\overline{p_r p_h}$
- 4: LEGALIZEEDGE $(p_r, \overline{p_j p_h}, \mathcal{T})$
- 5: LEGALIZEEDGE $(p_r, \overline{p_h p_i}, \mathcal{T})$

1. All edges inserted are legal

- 1. All edges inserted are legal
 - All edges inserted are adjacent to p_r .

- 1. All edges inserted are legal
 - All edges inserted are adjacent to p_r .

• All edges inserted are Delaunay edges.

- 1. All edges inserted are legal
 - All edges inserted are adjacent to p_r .

All edges inserted are Delaunay edges.

- 2. All other edges are legal
 - an edge can only be illegal if it is incident to a new triangle.

If $deg(p_r) = k$ after inserting p_r (not on an edge), how many triangles were created during the insertion process?

A: 3

B: *k*

C: 2k - 3

If $deg(p_r) = k$ after inserting p_r (not on an edge), how many triangles were created during the insertion process?

A: 3

B: *k*

C: 2k - 3

Computing the Delaunay triangulation

Search Structure and Analysis

Initialization

Choose p_0, p_{-1}, p_{-2} far enough away from P, such that they lie in none of the circles of P and such that P lies in their triangle.

Initialization

Better:

Treat p_0, p_{-1}, p_{-2} symbolically by modifying tests/predicates used for point location and testing illegal edges.

Build search structure for point location: directed acyclic graph with

- leaves: current triangles
- inner nodes: deleted triangles

Build search structure for point location: directed acyclic graph with

- leaves: current triangles
- inner nodes: deleted triangles

Build search structure for point location: directed acyclic graph with

leaves: current triangles

Build search structure for point location: directed acyclic graph with

• leaves: current triangles

Lemma: The expected number of triangles created is at most 9n + 1 = O(n).

Lemma: The expected number of triangles created is at most 9n + 1 = O(n).

Proof: How many triangles are created when p_r is inserted?

Lemma: The expected number of triangles created is at most 9n + 1 = O(n).

Proof: How many triangles are created when p_r is inserted?

Backwards analysis:

• every point in p_1, \ldots, p_r has the same probability 1/r to be the last point

Lemma: The expected number of triangles created is at most 9n + 1 = O(n).

Proof: How many triangles are created when p_r is inserted?

Backwards analysis:

- every point in p_1, \ldots, p_r has the same probability 1/r to be the last point
- expected degree of p_r is ≤ 6

Lemma: The expected number of triangles created is at most 9n + 1 = O(n).

Proof: How many triangles are created when p_r is inserted?

Backwards analysis:

- every point in p_1, \ldots, p_r has the same probability 1/r to be the last point
- expected degree of p_r is ≤ 6
- number of triangles created at p_r is $\leq 2(degree(p_r)) 3$

Lemma: The expected number of triangles created is at most 9n + 1 = O(n).

Proof: How many triangles are created when p_r is inserted?

Backwards analysis:

- every point in p_1, \ldots, p_r has the same probability 1/r to be the last point
- expected degree of p_r is ≤ 6
- number of triangles created at p_r is $\leq 2(degree(p_r)) 3$
- overall $\leq 2 \cdot 6 3 = 9$; plus 1 for the outer triangle

Lemma: The expected number of triangles created is at most 9n + 1 = O(n).

Lemma: The expected number of triangles which are visited in the search structure during the construction is $O(n \log n)$.

Proof in the book.

Lemma: The expected number of triangles created is at most 9n + 1 = O(n).

Lemma: The expected number of triangles which are visited in the search structure during the construction is $O(n \log n)$.

Theorem: The Delaunay triangulation of n points can be computed in $O(n \log n)$ expected time using randomized incremental construction.

How fast can we compute the Voronoi diagram of n points?

A: $\Theta(n)$ expected time

B: $\Theta(n \log n)$ expected time

C: $\Theta(n^2)$ expected time

How fast can we compute the Voronoi diagram of n points?

A: $\Theta(n)$ expected time

B: $\Theta(n \log n)$ expected time

C: $\Theta(n^2)$ expected time

We can compute the Voronoi diagram in ${\cal O}(n)$ time from the Delaunay triangulation

How fast can we compute the Voronoi diagram of n points?

A: $\Theta(n)$ expected time

B: $\Theta(n \log n)$ expected time

C: $\Theta(n^2)$ expected time

We can compute the Voronoi diagram in O(n) time from the Delaunay triangulation

With other algorithmic paradigms (divide&conquer, sweepline) we can compute Delaunay triangulations and Voronoi diagrams also deterministically in $\Theta(n \log n)$ time.

Summary

Theorem: The Delaunay triangulation of n points can be computed in $O(n \log n)$ expected time using randomized incremental construction.

Theorem: The Voronoi diagram of n points can be computed in $O(n \log n)$ expected time.

