NEURO DATA ANALYSIS IN PYTHON (NEU 365P)

Prof. Alexander Huth 8/26/2020

NEURO DATA ANALYSIS IN PYTHON

SYLLABUS

- * The syllabus appears as README.md on the course github site https://github.com/alexhuth/ndap-fa2020
- * You can also find the syllabus on Canvas

FORMAT

- * We will meet MWF 11am-12pm
- * Meetings will be a combination of:
 - * Lectures
 - * Demonstrations (you watch me try to write flawless code live)
 - * Labs (your turn!)

FORMAT

- * Slides will be posted on the course github page before class begins
- * For demos and labs the relevant code will also be posted on github prior to class
- * https://github.com/alexhuth/ndap-fa2020

ZOOM ETIQUETTE

- * Every lecture will be recorded & posted on canvas for those who can't attend
- * Please keep yourselves on *Audio Mute* an unless you intend to speak
 - * You can share video or not, up to you
- * If you want to ask or answer a question, please use the "Raise Hand" button "

GRADED MATERIAL

- * 6 homeworks (60% of grade)
- * take-home final exam (30% of grade)
- * class participation (10% of grade)

GRADED MATERIAL

- * Re: class participation
 - * If you regularly won't be able to attend synchronous class meetings, please email me and we can work something out

NECESSITIES

- * For this class, you will need frequent access to a computer that can run Python
 - * This computer need not be fast or new
 - * But it will need to run a standard OS
 (MacOS, Windows, or Linux), not a mobile
 OS (Android, iOS)
- * Please email me if this is an issue for you, and we will find a solution!

PROFESSOR

- * Me! Alex Huth
- * Office hours: MW 1:30-3:00pm @ zoom
 - * (may change, stay posted)

TA

- * Ria Paul
- * Office hours: TBD @ zoom

OTHER MATERIALS

- * Two free (!) books
 - * https://www.inferentialthinking.com/
 - * https://jakevdp.github.io/
 PythonDataScienceHandbook/

BACKGROUND

* What do you need to know for this class? (not that much don't worry about it)

TOPICS

- * What are you going to learn in this class?
 - * My goal is to supply you with a basic toolkit for computationally analyzing neuroscience data
 - * (A lot of these tools also work for nonneuroscience data)

TOPICS

- * What are you going to learn in this class?
 - * Python (numpy, matplotlib, etc.)
 - * Statistical methods (bootstraps)
 - * Data visualization
 - * Timeseries analysis (spectrogram, filtering)
 - * (Un/)Supervised learning methods (regression, clustering, etc.)

TOPICS

- * And you'll be using these tools to analyze neuroscience data such as
 - * Spiking neural data
 - * fMRI data
 - * (maybe) EEG data

THAT'S ALL!