Admin

- Two in-person midterms:
 - This Thursday
 - AND next Tuesday
- Please Bring your ONECARD
- If you are auditing mark `Audit' at the top of your test
- No discussing the midterm under any circumstances

The midterm

- · Closed book: no cheatsheet, no electronic devices
- Test designed to take 50 mins, you have 90
- Always best to explain your answers and show all your steps:
 - What does that mean?
- If you write two answers—one wrong and one right—you get zero on the question
- Tuesday's midterm != Thursday's midterm

Review Practice Midterm

Course Content Review

What is Reinforcement Learning?

- Agent-oriented learning—learning by interacting with an environment to achieve a goal
- Learning by trial and error, with only delayed evaluative feedback (reward)
 - the kind of machine learning like natural learning (animals)
 - learning that can tell for itself when it is right or wrong

The RL Interface

The interaction generates a stream of experience!

Finite Markov Decision Processes

- Environment may be unknown, stochastic and complex
 - we formalize this with the language of MDPs
- An RL problem is a finite MDP if:
 - the set of states, actions, and rewards are finite
 - there is a transition function that describes the probabilities of all possible next state S', and reward R
 - the state satisfies the Markov Property

The dynamics of an MDP

$$p(s', r \mid s, a)$$

$$p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \to [0, 1]$$

$$\sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) = 1, \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$

Remembering earlier states would not improve predictions about the future

The goal of life: more reward

- The agent's objective is to maximize future total reward
- The scalar return: $G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots$
- But, the agent's interaction may never end, so we discount rewards far into the future

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots + \gamma^{k-1} R_{t+k} + \dots$$

$$= \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$
 Finite as long as $0 \le \gamma < 1$ and rewards are bounded

 In each state, the agent should choose the action that results in the highest return, in expectation—why the expectation?

Policies

Deterministic policy

$$\pi(s) = a$$

State	Action
S ₀	a ₁
S ₁	a ₀
S ₂	ao

Policies

• Stochastic policy:

$$\pi(a \mid s)$$

- where $\sum_{a \in \mathscr{A}(s)} \pi(a \mid s) = 1$
- and $\pi(a|s) \geq 0$

Action-value functions

 An action-value function says how good it is to be in a state, take an action, and thereafter follow a policy:

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots \mid S_t = s, A_t = a \right]$$

time

Optimal Polices

• A policy π_{\star} is optimal if it maximizes the action-value function:

$$q_{\pi_{\star}}(s,a) \doteq \max_{\pi} q_{\pi}(s,a) = q_{\star}(s,a)$$

$$\forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$

- Thus all optimal policies share the same optimal value function
- Given the optimal value function, it is easy to act optimally:

$$\pi_{\star}(s) = \arg\max_{a} q_{\star}(s, a)$$
 "greedification"

- we say that the optimal policy is greedy with respect to the optimal value function
- There is always at least one deterministic optimal policy

GridWorld Example

Selt-test: C1M3

 Is the following policy valid for this MDP (i.e. does if fit our definition of a policy): Choose left for five steps, then right for five steps, then left for five steps, and so on? Explain your answer.

Difference between v and q

 "Why does the lower golf example (figure 3.3) which is supposed to be optimal have a -2 field over most of the green, where the above example with the putter has that area marked as only -1? Isn't q*() supposed to be optimal? There should be no areas where q*() has a worse result than v putt, right?"

Figure 3.3: A golf example: the state-value function for putting (upper) and the optimal action-value function for using the driver (lower). ■

We can only directly solve small MDPs

Dynamic programming

$$V(S_t) \leftarrow E_{\pi} \Big[R_{t+1} + \gamma V(S_{t+1}) \Big] = \sum_{a} \pi(a|S_t) \sum_{s',r} p(s',r|S_t,a) [r + \gamma V(s')]$$

Simple Monte Carlo

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in A(s), arbitrarily
```

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

$$S \leftarrow S'$$

until S is terminal

error term

Self-test

- What is the target policy for Q-learning?
- What can the behavior policy be?

Self-test

- What is the target policy for Q-learning?
 - Answer: Q-learning learns about the greedy policy (which eventually becomes π*), while following a different policy (e.g., ε-greedy). That is off-policy, but there are no importance sampling corrections!
- What can the behavior policy be?

Bootstrapping: key idea in Q-learning and all temporal-difference (TD) learning

You might think we need a complete trajectory of rewards to estimate values

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots \mid S_t = s, A_t = a \right]$$

- We don't have to wait!
- Lets use q_{π} (next-state,next-action) as a replacement for R_{t+2} + γR_{t+3} +

use Q-learning's estimate in its update

Q-learning update is based on the Bellman optimality equation:

$$q_{\star}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \max_{a'} q_{\star}(S_{t+1}, a') \mid S_t = s, A_t = a \right]$$
Q-learning's target for $Q(S_t, A_t)$

Bellman equations

 Define a relationship between the value of a state and the value of its possible successor states

$$q_{\pi}(s,a) = \sum_{s'} \sum_{r} p(s',r|s,a) \left[r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s',a') \right]$$

- There are Bellman Equations for v_π, v*, and q*
- Classical Dynamic Programming algorithms (planning), compute value functions and optimal policies using Bellman Equations, given p (the model)
- Many algorithms in RL, like Q-learning, can be seen as approximately solving the Bellman Equation with samples from the environment (model-free)

Key characteristics of RL

- Evaluative feedback (reward)
- Delayed consequences
- Must associate different actions with different situations
- Online and Incremental learning
- Need for trial and error, to explore as well as exploit
- Non-stationarity

Characteristics of solution/alg

The Exploration-Exploitation dilemma

- You cannot choose the action with the max value every time
 - what if your estimates of qπ are wrong?
 - you must try all the actions...an infinite number of times, in each state!
- But, you can't explore all the time
- You must balance exploiting (picking what you think is the best), and exploring (refining your estimates)

How does Q-learning handle exploration?

Choose actions in any way, perhaps based on Q, such that all actions are taken in all states (infinitely often in the limit)

e.g., ε-greedy: dithering or undirected exploration

- optimistic initial values
- R-max, MBIE (require models)

$$A_t = \operatorname{argmax} Q(S_t, a)$$
 $A_t = \operatorname{Random action}$

$$A_t$$
 = Random action

Self-test: Exploration in MC

- Why did we talk about exploring starts in MC when estimating action-values, but not when estimating state values?
- Can we use state-values for control in MC, like we did in DP?

Terminology Review

- TD methods we have learned about are **tabular**, **one-step**, **model-free** learning algorithms
- **Tabular:** we store the value function in a table. One entry in the table per value, so each value is stored independently of the others. We are implicitly assuming the state-space (\mathcal{S}) is small
- One-step: we update a single state or state-action value on each time-step. Only the value of Q(S,A) from S -- A --->S',R. We never update more than one value per learning step
- Model-free: we don't assume access to or make use of a model of the world. All learning is driven by sample experience. Data generated by the agent interacting with the environment

Tabular Dyna-Q

Terminology Review

- **Model:** a model of the environment. Anything that can predict how the environment will respond to the agent's actions: M(S,A) --->S',R
- Planning: the computational process that takes the model as input and produces or improves the policy
- Sample Model: a model that can produce a possible next state and reward, in agreement with the underlying transition probabilities of the world. We need not store all the probabilities to do this (think about epsilon-greedy)
- Simulate: sample a transition from the model. Given an S and A, ask the model for a possible next state
 S' and reward R
- Simulated Experience: samples generated by a sample model. Like dreaming or imagining things that could happen
- Real Experience: the states, actions, and rewards that are produced when an agent interacts with the real world.
- Search Control: the computational process that selects the state and action in the planning loop

Now how do we do this with approximation'	Now	how	do	we	do	this	with	ap	prox	imat	tion	17
---	-----	-----	----	----	----	------	------	----	------	------	------	----

The need for approximation

- In real world problems, tables of values would become intractably large
 - sometimes the state-space is too large (e.g., Go)
 - sometimes the state-space is continuous
- Instead using tables for our value functions, we will use parameterized functions
- Frame learning these approximate value functions as a supervised learning problem:
 - new challenge balancing Generalisation and Discrimination

Function approximation

• Represent the action-value function by a parameterized function with parameters $\mathbf{w} \in \mathbb{R}^n$

$$\hat{q}(s, a, \mathbf{w}) \approx q_{\star}(s, a)$$

- The approximator could be a NN, with the weights being the parameters of the network
 - or simply a linear weighting of fixed features
- For large applications, it is important that all computations scale linearly with the number of parameters

The Mean Squared Value Error Objective

Question: Why didn't we use the Value Error in the tabular setting?

Broadness of generalization

Direction of generalization

How Optimism Interacts with Generalization

Approximating q_{π} with an NN

Generalization: Updates to One State Affect the Value of Other States

State	Action	Q
s_1	T	-4
s_2	F	-2
<i>S</i> ₃	F	2
S_4	F	-107
S_5	F	4

Discrimination: The ability to make the value of two states different

Categorizing methods based on Generalization and Discrimination

Semi-gradient Q-learning

- There is an obvious generalization of Q-learning to function approximation (Watkins 1989)
- Consider the following objective function:

$$\mathscr{L}(\mathbf{w}) = \mathbb{E}\left[\left(R_{t+1} + \gamma \max_{a} \hat{q}(S_{t+1}, a, \mathbf{w}) - \hat{q}(S_{t}, A_{t}, \mathbf{w})\right)^{2}\right]$$

- and the update used in Q-learning with function approximation

$$\Delta \mathbf{w} = \alpha \left(R_{t+1} + \gamma \max_{a} \hat{q}(S_{t+1}, a, \mathbf{w}_{t}) - \hat{q}(S_{t}, A_{t}, \mathbf{w}_{t}) \right) \frac{\partial \hat{q}(S_{t}, A_{t}, \mathbf{w}_{t})}{\mathbf{w}_{t}}$$

 The target here depends on the w. It's like we ignored the gradient of the value of the next state

The dimensions of RL

- Problems
 - Prediction and control
 - MDPs, Contextual-DP, Contextual Bandits, and simple Bandits
- Solutions
 - Bootstrapping and Monte Carlo (unified by eligibility traces)
 - Tabular and function approximation
 - On-policy and off-policy
 - Model-based and model-free
 - Value-based and policy-based
 - Primitive actions and temporal abstraction

C3M4: Policy Gradient

- I will not test you on average reward, nor on policy gradient
- I am skipping this in the review