DOCKET NO.: 267546US3PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Yoshihaya IMAMURA, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/JP03/12372 INTERNATIONAL FILING DATE: September 26, 2003

FOR: METHOD FOR MANUFACTURING CYLINDRICAL RING WITH BEAD AND METAL

MOLD USED FOR THE METHOD

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY	APPLICATION NO	DAY/MONTH/YEAR	
Japan	2002-283953	27 September 2002	
Japan	2003-165732	10 June 2003	

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/JP03/12372. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted, OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Registration No. 34,423

C. Irvin McClelland
Attorney of Record
Registration No. 21,124
Surinder Sachar

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03) and Rega

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

To:

KAJI, Yoshiyuki 5-14-22, Nishinakajima Yodogawa-ku Osaka-shi Osaka 532-0011 Japan

Date of mailing (day/month/year) 09 January 2004 (09.01.2004)			
Applicant's or agent's file reference FP-30	IMPORTANT NOTIFICATION		
International application No. PCT/JP2003/012372	International filing date (day/month/year) 26 September 2003 (26.09.2003)		
International publication date (day/month/year) Not yet published	Priority date (day/month/year) 27 September 2002 (27.09.2002)		
Applicant			

KABUSHIKI KAISHA KOBE SEIKO SHO et al

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

<u>Priority date</u>	Priority application No.	Country or regional Office or PCT receiving Office	<u>Date of receipt</u> of priority document	
27 Sept 2002 (27.09.2002) 10 June 2003 (10.06.2003)	2002-283953 2003-165732	JP JP	19 Dece 2003 (19.12.2003) 19 Dece 2003 (19.12.2003)	

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Michiyo TSUKADA (Fax 338 7010)

Telephone No. (41-22) 338 8450

Facsimile No. (41-22) 338.70.10

006043214

31.10.03

本 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月10日 RECEIVED

PC:

19 DEC 2003

WIPO

願 番 Application Number:

特願2003-165732

[ST. 10/C]:

[JP2003-165732]

出 人 Applicant(s):

株式会社神戸製鋼所

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年12月 8日

【書類名】 特許顯

【整理番号】 KS03017

【提出日】 平成15年 6月10日

【あて先】 特許庁長官 殿

【国際特許分類】 B21D 26/14

B21D 53/26

B60C 17/04

【発明の名称】 ビード付き円筒形リングの製造方法及びビード付き円筒

形リング

【請求項の数】 43

【発明者】

【住所又は居所】 神奈川県藤沢市宮前字裏河内100番1 株式会社神戸

製鋼所 藤沢事業所内

【氏名】 今村 美速

【発明者】

【住所又は居所】 神奈川県藤沢市宮前字裏河内100番1 株式会社神戸

製鋼所 藤沢事業所内

【氏名】 江口 法孝

【発明者】

【住所又は居所】 東京都品川区北品川5丁目9番12号 株式会社神戸製

鋼所 東京本社内

【氏名】 櫻井 健夫

【発明者】

【住所又は居所】 東京都品川区北品川5丁目9番12号 株式会社神戸製

鋼所 東京本社内

【氏名】 谷本 博

【特許出願人】

【識別番号】 000001199

【氏名又は名称】 株式会社神戸製鋼所

【識別番号】

100100974

【弁理士】

【氏名又は名称】 香本 薫

【先の出願に基づく優先権主張】

【出願番号】

特願2002-283953

【出願日】

平成14年 9月27日

【手数料の表示】

【予納台帳番号】

052397

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9700550

【プルーフの要否】

要

明細書

【発明の名称】 ビード付き円筒形リングの製造方法及びビード付き円筒形

リング

【特許請求の範囲】

閉じた金属製の円筒形素材リングの外周側に、内面側が成形 【請求項1】 面とされ該成形面の周方向に沿ってビード成形用の溝部が形成された金型を配置 し、前記円筒形素材リングの内周側に電磁成形用コイルを配置し、その状態で前 記電磁成形用コイルに瞬間大電流を流し、前記円筒形素材リングを拡径して前記 成形用金型の成形面に押し付け、該成形面に対応した形状に電磁成形することを 特徴とするビード付き円筒形リングの製造方法。

【請求項2】 前記金型の成形面が、軸方向の中心位置における軸方向に垂 直な平面を対称面として実質的に面対称であることを特徴とする請求項1に記載 されたビード付き円筒形リングの製造方法。

【請求項3】 前記円筒形素材リングの軸方向の中心位置を前記金型の軸方 向の中心位置に一致させることを特徴とする請求項2に記載されたビード付き円 筒形リングの製造方法。

前記金型の成形面は、軸方向の中心位置の内径が最も小さく 【請求項4】 、そこでは前記円筒形素材リングの外周面と前記金型の成形面が接していること を特徴とする請求項2又は3に記載されたビード付き円筒形リングの製造方法。

【請求項5】 閉じた金属製の円筒形素材リングの内周側に、外面側が成形 面とされ該成形面の周方向に沿ってビード成形用の突条が形成された金型を配置 し、前記円筒形素材リングの外周側に電磁成形用コイルを配置し、その状態で前 記電磁成形用コイルに瞬間大電流を流し、前記円筒形素材リングを縮径して前記 成形用金型の成形面に押し付け、該成形面に対応した形状に電磁成形することを 特徴とするビード付き円筒形リングの製造方法。

【請求項6】 前記金型の成形面が軸方向の中心位置における軸方向に垂直 な平面を対称面として実質的に面対称であることを特徴とする請求項5に記載さ れたビード付き円筒形リングの製造方法。

【請求項7】 前記円筒形素材リングの軸方向の中心位置を前記金型の軸方

向の中心位置に一致させることを特徴とする請求項6に記載されたビード付き円 筒形リングの製造方法。

【請求項8】 前記金型の成形面の前記突条の両側に周方向に沿って溝部が 形成されていることを特徴とする請求項5~7のいずれかに記載されたビード付 き円筒形リングの製造方法。

【請求項9】 前記円筒形素材リングは、その周壁に多数の穴が形成されていることを特徴とする請求項1~8のいずれかに記載されたビード付き円筒形リングの製造方法。

【請求項10】 前記多数の穴が電磁成形時に溝部外から溝部内に流入する 箇所に円周方向に沿って形成されていることを特徴とする請求項9に記載された ビード付き円筒形リングの製造方法。

【請求項11】 前記多数の穴が軸方向両端部に円周方向に沿って形成されていることを特徴とする請求項9に記載されたビード付き円筒形リングの製造方法。

【請求項12】 前記金型の成形面の最も内径の小さい箇所に周方向に沿って多数の突起が形成され、前記円筒形素材リングには前記突起に対応する箇所に円周方向に沿って多数の穴が形成され、金型が前記円筒形素材リングの外周側に配置されたとき、前記突起が前記穴にはめ込まれることを特徴とする請求項1~4のいずれかに記載されたビード付き円筒形リングの製造方法。

【請求項13】 前記突起は前記金型の成形面の軸方向の中心位置で、成形面の隣接する溝部と溝部の間に形成され、かつ前記穴は前記円筒形素材リングの軸方向の中心位置に形成されていることを特徴とする請求項12に記載されたビード付き円筒形リングの製造方法。

【請求項14】 前記金型の成形面の最も外径の大きい箇所に円周方向に沿って多数の突起が形成され、前記円筒形素材リングには前記突起に対応する箇所に円周方向に沿って多数の穴が形成され、金型が前記円筒形素材リングの内周側に配置されたとき、前記突起が前記穴にはめ込まれることを特徴とする請求項5~8のいずれかに記載されたビード付き円筒形リングの製造方法。

【請求項15】 前記突起は前記金型の成形面の軸方向の中心位置で、成形

面の突条に形成され、かつ前記穴は前記円筒形素材リングの軸方向の中心位置に 形成されていることを特徴とする請求項14に記載されたビード付き円筒形リングの製造方法。

【請求項16】 前記円筒形素材リングは、圧延板材又は押出板材をリング 状に曲げ加工し、端部を接合したものであるか、螺旋状に巻いて継ぎ目を接合し たものであることを特徴とする請求項1~15のいずれかに記載されたビード付 き円筒形リングの製造方法。

【請求項17】 電磁成形後にビード付き円筒形リングを切断して円周方向に切り離すことを特徴とする請求項 $1\sim16$ のいずれかに記載されたビード付き円筒形リングの製造方法。

【請求項18】 切り離した箇所を再び接合して、閉じたビード付き円筒形リングにすることを特徴とする請求項17に記載されたビード付き円筒形リングの製造方法。

【請求項19】 前記ビード付き円筒形リングがランフラットタイヤの補強リング用であることを特徴とする請求項1~18のいずれかに記載されたビード付き円筒形リングの製造方法。

【請求項20】 内面側がリング状の成形面とされ、該成形面の周方向に沿ってビード成形用の溝部が形成された電磁成形用金型であり、該金型は前記溝部において軸方向に分割された複数個の分割金型からなり、該分割金型同士が軸方向に隙間を置いて配置されていることを特徴とするビード付き円筒形リングの電磁成形用金型。

【請求項21】 外面側がリング状の成形面とされ、該成形面の周方向に沿ってビード成形用の突条とその両側に溝部が形成された電磁成形用金型であり、該金型は前記溝部において軸方向に分割された複数個の分割金型からなり、該分割金型同士が軸方向に隙間を置いて配置されていることを特徴とするビード付き円筒形リングの電磁成形用金型。

【請求項22】 内面側がリング状の成形面とされ、該成形面の周方向に沿ってビード成形用の溝部が形成され、さらに前記成形面の最も内径の小さい箇所に位置決め用の突起が周方向に沿って多数個形成されていることを特徴とするビ

ード付き円筒形リングの電磁成形用金型。

【請求項23】 外面側がリング状の成形面とされ、該成形面の周方向に沿ってビード成形用の突条が形成され、さらに前記成形面の最も外径の大きい箇所に位置決め用の突起が周方向に沿って多数個形成されていることを特徴とするビード付き円筒形リングの電磁成形用金型。

【請求項24】 前記金型の成形面が軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称であることを特徴とする請求項20~23のいずれかに記載されたビード付き円筒形リングの電磁成形用金型。

【請求項25】 電磁成形により成形されたビードを周方向に沿って有することを特徴とする金属製のビード付き円筒形リング。

【請求項26】 ビード付き円筒形リングが、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称であることを特徴とする請求項25に記載されたビード付き円筒形リング。

【請求項27】 前記ビードが円筒形リングの拡径により成形されたものであることを特徴とする請求項25又は26に記載されたビード付き円筒形リング。

【請求項28】 軸方向の中心位置の径が最も小さく、そこでは拡径が実質的に行われてなく、前記中心位置の両側に前記ビードが形成されていることを特徴とする請求項27に記載されたビード付き円筒形リング。

【請求項29】 前記ビードが円筒形リングの縮径により成形されたものであることを特徴とする請求項25又は26に記載されたビード付き円筒形リング。

【請求項30】 前記ビードの両側に周方向に沿って溝部が形成されている ことを特徴とする請求項29に記載されたビード付き円筒形リング

【請求項31】 周壁に多数の穴が形成されていることを特徴とする請求項25~30のいずれかに記載されたビード付き円筒形リング。

【請求項32】 軸方向両端部に円周方向に沿って多数の穴が形成されていることを特徴とする請求項31に記載されたビード付き円筒形リング。

【請求項33】 軸方向両端部に円周方向に沿って多数の穴が形成され、そ

の一部又は全部が軸方向両端部に形成されたビード上に位置していることを特徴 とする請求項27又は28に記載されたビード付き円筒形リング。

【請求項.3 4】 軸方向両端部に円周方向に沿って多数の穴が形成され、その一部又は全部が軸方向両端部に形成された前記溝部上に位置していることを特徴とする請求項30に記載されたビード付き円筒形リング。

【請求項35】 径が最も小さい箇所に円周方向に沿って多数の穴が形成されていることを特徴とする請求項27又は28に記載されたビード付き円筒形リング。

【請求項36】 径が最も大きい箇所に円周方向に沿って多数の穴が形成されていることを特徴とする請求項29又は30に記載されたビード付き円筒形リング。

【請求項37】 軸方向に平行又は斜めに形成された接合部を周壁に有する円筒形リングに、前記ビードが形成されていることを特徴とする請求項25~36のいずれかに記載されたビード付き円筒形リング。

【請求項38】 切断されて円周方向に切り離されていることを特徴とする 請求項25~37のいずれかに記載されたビード付き円筒形リング。

【請求項39】 切断部が再び接合されていることを特徴とする請求項38 に記載されたビード付き円筒形リング。

【請求項40】 ランフラットタイヤの補強リング用であることを特徴とする請求項25~39のいずれかに記載されたビード付き円筒形リング。

【請求項41】 矩形のアルミニウム合金板に多数の穴が形成されていることを特徴とするビード付き円筒形リングの電磁成形用アルミニウム合金板。

【請求項42】 前記多数の穴が長辺側両縁近傍に前記長辺に沿って形成されていることを特徴とする請求項41に記載されたビード付き円筒形リングの電磁成形用アルミニウム合金板。

【請求項43】 前記多数の穴が長辺側両縁の中間部に前記長辺に沿って形成されていることを特徴とする請求項41に記載されたビード付き円筒形リング用アルミニウム合金板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えばランフラットタイヤの補強リング等として利用できるビード付き円筒形リングの製造方法、及びその方法により製造されるビード付き円筒形リング、並びにその方法に使用するアルミニウム合金板に関する。

[0002]

【従来の技術】

ランフラットタイヤとは、自動車のタイヤがパンクして空気圧が完全に失われた状態でも、一定の距離を走ることができるようにしたタイヤである。例えば下記特許文献1に記載されているのは、その1つの方式であり、タイヤの中のリムの外周部に金属製の補強リング又は支持リングと呼ばれる中子を設置し、パンクによってひしゃげたタイヤをこの補強リングで支え、一定距離の走行を確保している。

[0003]

【特許文献1】 特表2001-519279号公報

[0004]

この種の補強リングは、前記特許文献1に記載されているように、外周方向に 膨出したビード(コブ状の突起又は段差部のようなもの)を周方向に複数個有す る。この補強リングの製造方法として、これまで下記の方法が提案されている。

①平らな板をロール曲げして円筒形とし、端部を溶接接合して円筒形リングを 形成し、これにハイドロフォーム (バルジ成形) といわれる張出成形を加え、外 周方向に膨出したビードを周方向に形成する。

②平らな板をロール曲げして円筒形とし、端部を溶接接合して円筒形リングを 形成し、これにスピニング(へら絞り)加工を加え、拡径して膨出したビードを 形成するか、部分的に縮径することにより縮径しなかった箇所を外周方向に膨出 したビードとして残す。

③平らな板をプレス成形して縦方向にビード付け加工された板を成形し、又は 断面がビード付け加工された板を押し出しにより成形し、これを曲げ加工(ロール又はプレス等により)して端部を溶接接合する。

[0005]

しかし、上記①の方法は、設備が大がかりとなるため初期投資がかさみ、かつ加圧媒体(水、油など)の管理が煩わしいという欠点がある。②の方法は、サイクルタイムが長く、生産性が悪いという欠点がある。③の方法は、ビード形成後に曲げ加工を行うので曲げ加工の精度が悪いという欠点がある。④の方法は、③と同じく、曲げ加工の精度が悪いという欠点がある。

[0006]

【発明が解決しようとする課題】

本発明は、従来の補強リングの製造方法の問題点に鑑みてなされたもので、精度が高い補強リング及び類似のビード付き円筒形リングを、低コストで、かつ高い生産性のもとで製造することを目的とする。

[0007]

【課題を解決するための手段】

本発明に係るビード付き円筒形リングの製造方法は、閉じた金属製の円筒形素材リングの外周側に、内面側が成形面とされ該成形面の周方向に沿ってビード成形用の溝部が形成された金型を配置し、前記円筒形素材リングの内周側に電磁成形用コイルを配置し、その状態で前記電磁成形用コイルに瞬間大電流を流し、前記円筒形素材リングを拡径して前記成形用金型の成形面に押し付け、該成形面に対応した形状に電磁成形することを特徴とする。なお、本発明においてビードとは、円筒形リングの外径方向に突出する突条を意味する。

[0008]

また、本発明に係るビード付き円筒形リングの別の製造方法は、閉じた金属製の円筒形素材リングの内周側に、外面側が成形面とされ該成形面の周方向に沿ってビード成形用の突条が形成された金型を配置し、前記円筒形素材リングの外周側に電磁成形用コイルを配置し、その状態で前記電磁成形用コイルに瞬間大電流を流し、前記円筒形素材リングを縮径して前記成形用金型の成形面に押し付け、該成形面に対応した形状に電磁成形することを特徴とする。この場合、前記金型

の成形面の前記突条の両側に、必要に応じて周方向に沿った溝部を形成する。 前記両方法は、ランフラットタイヤの補強リングの製造に適している。

なお、電磁成形自体は、コイルに瞬間的に大電流を流して強力な磁界を作り、その中に置いた被成形体(導体)に発生する渦電流と磁界の相互作用で成形する方法であり、例えば特開平6-312226号公報、特開平9-166111号公報及び特開昭58-4601号公報等に記載されているように公知技術である。瞬間大電流とは、例えば10kA以上のレベルの電流値である。

[0009]

前記両製造方法において、前記金型の成形面が、軸方向の中心位置における軸方向に垂直な平面を対称面として面対称であることが望ましい。さらに、前記円筒形素材リングの軸方向の中心位置を前記金型の成形面の軸方向の中心位置に合わせることが望ましい。円筒形素材リングが電磁成形により拡径又は縮径して成形されるとき、軸方向長さが短縮するが(成形面の溝部に材料が引き込まれるため)、上記のような成形面にすることにより、円筒形素材リングのより均等な短縮及び成形が行われる可能性が高まるからである。なお、金型の成形面の軸方向と円筒形素材リングの軸方向は一致させる。

さらに、拡径による場合、前記金型の成形面の軸方向の中心位置の内径を最も小さく設定し、かつ当該箇所において前記円筒形素材リングの外周面と前記金型の成形面が接するように設定すると、円筒形素材リングは成形時に前記箇所において位置決めされた形になり、より均等な成形が実現される。逆に縮径による場合、前記金型の成形面の軸方向の中心位置の外径を最も大きく設定し、かつ当該箇所において前記円筒形素材リングの内周面と前記金型の成形面が接するように設定すればよい。いずれの場合も、金型の成形面の軸方向の中心位置と円筒形素材リングの軸方向の中心位置を一致させることが望ましい。

[0010]

前記製造方法において、円筒形素材リングの素材としては、導電性の良好な銅 又は銅合金若しくはアルミニウム又はアルミニウム合金が望ましい。また、素材 の質別は、いずれも焼鈍材(アルミニウム又はアルミニウム合金であれば、JI SH0001に規定されるO材)が導電率が良好であり、また、熱間上がり材(

[0011]

前記製造方法において、電磁成形に供される前記円筒形素材リングとして、圧延板材又は押出板材をリング状に曲げ加工し、端部を接合したもの、あるいは円筒形断面に押し出し、それを所定長さ(押出軸方向の長さ)に切断したものが利用できる。

押出板材の場合、断面の肉厚を任意に設定することができるため、電磁成形により拡径又は縮径したとき薄肉化する箇所(拡径する場合はビードが形成される 箇所及びその近傍、縮径する場合はビードの両側の溝部が形成される箇所及びそ の近傍)を予め比較的肉厚としておけば、電磁成形後のビード付き円筒リングの 肉厚を均一化することができる。

[0012]

また、圧延板材又は押出板材をスパイラル管を製造する要領で螺旋状に巻き、その継ぎ目を接合したものを円筒形素材リングとして利用することもできる。この場合、長尺のスパイラル管を製造し、これを円筒形素材リングとして必要な長さに切断してもよい。

溶接により円筒形リングを形成する場合、重ね溶接では板の重なり部分にどう しても微小な隙間ができ、電磁成形時にそこにスパークが発生して正常な電磁成 形を妨げるおそれがあるため、重なり部分ができない突合せ溶接が望ましい。

溶接方法として抵抗溶接、ミグ溶接、レーザ溶接、FSW(摩擦撹拌溶接)等、各種方法を利用することができ、突合せ継手の開先形状としても各種形状が利用できるが、全周にわたり均一な厚みとすることが望ましく、特に接合後、接合部の肉厚が薄くなるのは望ましくない。逆に、余盛が余りに多い場合はそれを切除する必要がある。このため、余盛りが少ないレーザ溶接が好適である。

[0013]

前記円筒形素材リングは、その周壁に多数の穴を形成したものを用いることが

できる。この穴は周壁に規則的に配置されていることが望ましく、周壁に多数の穴を形成することにより、ビード付き円筒形リングの軽量化を図ることができる。 周壁のほぼ全面に規則的に穴を形成した円筒形素材リングであれば、軽量化の効果が高い。この種の円筒形素材リングとして、例えばパンチングメタルをリング状に曲げ加工して端部を接合したもの、あるいは螺旋状に巻いて継ぎ目を溶接したものが挙げられる。

また、円筒形素材リングに形成された穴は、成形後のビード付き円筒形リングにおいて他部材との連結に利用できる。例えばランフラットタイヤの補強リングであれば、該補強リングの軸方向両端に樹脂を取り付ける(前記特許文献1参照)が、この際に前記穴に樹脂が入り込み、前記補強リングと樹脂の連結がより確実に行われる。

[0014]

電磁成形時には、円筒形素材リングの材料が金型の成形面の溝部に押し込まれ、それに伴い、円筒形素材リングの材料が金型の成形面に沿って軸方向に移動し、このとき金型の成形面と円筒形素材リングの間に強い摩擦抵抗が生じる。前記円筒形素材リングに多数の穴を形成することにより、電磁成形時に接触する金型と円筒形素材リングの接触面積を減らしその間の摩擦抵抗を低減して、金型の成形面の溝部外から溝部内への材料の流入をスムーズとし、より精度の高い成形を行うことができる。特に、円筒形素材リングの周壁のうち電磁成形時に金型の成形面の溝部外から溝部内に流入する箇所に、円周方向に沿って多数の穴を形成しておくことが有効である。この箇所は、一般には円筒形素材リングの軸方向両端部である。

[0015]

円筒形素材リングに形成した穴は、電磁成形時の位置決め用穴として利用することもできる。電磁成形による拡径によってビード付き円筒形リングを成形する場合、金型の成形面の最も内径の小さい箇所に周方向に沿って多数の突起を形成し、前記円筒形素材リングには前記突起に対応する箇所に円周方向に沿って多数の穴を形成し、金型を前記円筒形素材リングの外周側に配置したとき、前記突起が前記穴にはめ込まれるようにする。この場合、前記突起は前記金型の成形面の

軸方向の中心位置で、前記成形面の隣接する溝部と溝部の間に形成され、かつ前 記穴は前記円筒形素材リングの軸方向の中心位置に形成されるのが望ましい。

電磁成形による縮径によってビード付き円筒形リングを成形する場合、金型の成形面の最も外径の大きい箇所に周方向に沿って多数の突起を形成し、前記円筒形リングには前記突起に対応する箇所に円周方向に沿って多数の穴を形成し、金型を前記円筒形リングの内周側に配置したとき、前記突起が前記穴にはめ込まれるようにする。この場合、前記突起は前記金型の成形面の軸方向の中心位置で、前記成形面の突条に形成され、かつ前記穴は前記円筒形素材リングの軸方向の中心位置に形成されるのが望ましい。

これにより金型内に円筒形素材リングが正確に位置決めされ、電磁成形時にも、この位置決め用穴の位置では円筒形素材リングの材料の軸方向移動が生じない

[0016]

前記製造方法を実施するための電磁成形用金型として、内面側がリング状の成形面とされ、該成形面の周方向に沿ってビード成形用の溝部が形成された電磁成形用金型、又は外面側がリング状の成形面とされ、該成形面の周方向に沿ってビード成形用の突条が形成され(必要に応じて該突条の両側にさらに溝部が形成された)電磁成形用金型が用いられる。電磁成形は数100μsec前後のごく短時間で成形が完了するため、成形時に金型と円筒形素材リングの隙間に存在するエアが逃げるヒマがなく、特に前記溝部において金型とそこに押し付けられる材料との間に閉じ込められて高圧化し、その高圧エアが前記溝部において材料が成形面に押し付けられるのを妨げ、電磁成形後のビード表面に凹みが形成されるなどの問題がある。従って、前記溝部にはエア抜きのための穴又はスリットを形成しておくことが望ましい。

[0017]

さらに望ましい金型構造は、内面側がリング状の成形面とされ、該成形面の周 方向に沿ってビード成形用の溝部が形成された電磁成形用金型の場合、前記溝部 において軸方向に分割された複数個の分割金型からなり、該分割金型同士が軸方 向に隙間を置いて配置されている。外面側がリング状の成形面とされ、該成形面

の周方向に沿ってビード成形用の突条とその両側に溝部が形成された電磁成形用 金型の場合、前記溝部において軸方向に分割された複数個の分割金型からなり、 該分割金型同士が軸方向に隙間を置いて配置されている。これにより、前記金型 は溝部に全周に渡るスリットが形成されることになり、前記凹みの問題が完全に 解消される。なお、軸方向とは、いうまでもなく金型の成形面(及び円筒形素材 リング)の軸方向を意味する。

[0018]

円筒形素材リングに形成した穴を電磁成形時の位置決め用穴として用いる場合の電磁成形用金型は、電磁成形が拡径の場合は、内面側がリング状の成形面とされ、該成形面の周方向に沿ってビード成形用の溝部が形成され、さらに前記成形面の最も内径の小さい箇所に位置決め用の突起が周方向に沿って多数個形成されている。一方、電磁成形が縮径の場合は、外面側がリング状の成形面とされ、該成形面の周方向に沿ってビード成形用の突条が形成され、さらに前記成形面の最も外径の大きい箇所に位置決め用の突起が周方向に沿って多数個形成されている。

[0019]

以上説明した製造方法により、ビードを周方向に有する金属製のビード付き円 筒形リングを製造することができる。このビード付き円筒形リングは、軸方向の 中心位置における軸方向に垂直な平面を対称面として面対称であることが成形上 望ましく、ビードは必要に応じて1つ又は複数個形成することができる。また、 このビード付き円筒形リングの典型的なものは、実質的な回転体として認識する ことができる(側壁に穴を形成したものは厳密な意味では回転体といえないが、 円筒形リングの輪郭をみれば回転体とみなしても差し支えない)。しかし、全体 形状がビード付き円筒形リングとして認識できる範囲内において、回転体から多 少ずれた形状も本発明に含まれる。

[0020]

電磁成形は、ごく短時間に被加工物に繰り返し負荷がかかる特性を有するので、形状凍結性が優れ(スプリングバックが少ない)、ビード付き円筒形リングを高精度で成形することができ、真円度を精密に出しやすい。特に放射状に拡径し

て成形する場合、縮径して成形する場合より高い真円度を実現できる。また、電磁成形が上記特性を有するため、従来の加工方法に比べて加工硬化が大きく、ビード(特にビード頂部)は加工硬化により強化される。一方、ランフラットタイヤの補強リングは高い真円度が必要で、かつ踏面(タイヤを介して接地する部分)がビード頂部になるため、真円度が高くビードが強化された(つまり拡径により電磁成形された)ビード付き円筒形リングは、前記補強リングとして特に適する。なお、ランフラットタイヤの補強リングとして、板厚3mm以下のアルミニウム又はアルミニウム合金が用いられる。

前記ビード付き円筒形リングは、素材として円筒形の押出材を用いた場合は接合部がないが、通常は少なくとも1箇所の接合部、望ましくは突合せ溶接による接合部を有する。この接合部は、軸方向に平行又は斜めに形成される。

[0021]

なお、電磁成形(拡径、縮径)によりビード付き円筒形リングを成形した後、 仮に寸法精度が不十分であるとき、当該ビード付き円筒形リングに例えばロール 矯正等の矯正工程を施し、ビード等、各部の寸法精度を向上させることができる 。また、電磁成形を複数回繰り返すことによって寸法精度を向上させることもで きる。この場合、電磁成形(拡径)を行った後、電磁成形(縮径)を行い、又は その逆の順で行うこと、あるいは拡径又は縮径の同種の電磁成形を複数回繰り返 して行うことも可能である。いずれの場合も、2回目以降の電磁成形は矯正の意 味をもつ。

[0022]

そのほか、電磁成形(拡径、縮径)において、ビード付き円筒形リングの複数 個取り(一度に複数個のビード付き円筒形リングを成形)を行うこともできる。この場合、金型はビード付き円筒形リングに対応する成形面を軸方向に複数組有する必要があり、電磁成形用コイル体もそれに対応する軸方向長さをもたなくてはならない。この場合、金型のビード付き円筒形リングに対応する各成形面の間に円形の切断刃を配置することにより、電磁成形と同時に各ビード付き円筒形リングに分離することが可能である。

複数個取りを行う場合において、ビード付き円筒形リングを電磁成形金型内で

[0023]

さらに、電磁成形により成形したビード付き円筒形リングは、必要に応じて、 切断して円周方向に切り離すことができる。切断の方向は、例えばビード付き円 筒形リングの軸方向に平行又は前記軸方向に対し斜めが望ましい。このビード付き円筒形リングは切り離した箇所(切れ目)を通して2つをはめ合わせることが できるので、保管や運搬の際に占有スペースが小さくなる利点がある。また、このビード付き円筒形リングは、必要に応じて、切り離した箇所を接合して再び閉じたリングにすることができる。接合を溶接により行う場合、突き合わせ溶接が 望ましく、特に余盛りが少ないレーザ溶接が好適である

[0024]

【発明の実施の形態】

以下、図1~図25を参照して、本発明に係るビード付き円筒形リングの製造 方法及びそれにより製造されたビード付き円筒形リングについて具体的に説明す る。

図1に示す円筒形素材リング1は、例えばアルミニウム合金板を曲げ加工し、 端部を突合せ溶接したものである。2は突合せ接合による接合部である。

図3は、この円筒形素材リング1を電磁成形(拡径)する方法を示すもので、図3(a)において、円筒形素材リング1の外周側に、内面側が成形面とされ該成形面の円周方向に沿ってビード成形用の溝部3~5が形成された金型6が配置され、円筒形素材リング1の内周側に電磁成形用コイル体7が配置されている。この金型6の成形面は実質的に回転面をなし(後述する穴11が形成されていること等もあり厳密な意味では回転面ではないが、成形面の機能として実質的に回転面とみなして差し支えない)、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。また、金型6の成形面の軸方向の中心位置と円筒形素材リング1の軸方向の中心位置は一致させている。円筒形素材リング1の外周面と金型6の内周面の間、及び円筒形素材リング1の内周面と電磁成形用コイル体7の間には若干の隙間が形成されている。

金型6は導電率の低い金属、例えばステンレス鋼等からなるのが望ましい。金属以外の材料、例えば繊維強化プラスチックやベークライトなどの導電性のない構造材を用いることもできる。金型6の成形面に形成された各溝部3~5は開口を半径方向内側に向けて互いに波形に連なり、溝部3、5の端部はそれぞれ成形面の端部平行部8、9に連なっている。また、各溝部3~5の底部には、エア抜き用の穴11が円周方向に沿って多数形成されている。この穴11は円周方向に長く形成されたスリットでもよい。電磁成形用コイル体7は、電気絶縁体内に成形用コイル7aが埋め込まれたものである。

図3 (a) の状態で電磁成形用コイル体7に瞬間大電流を流すと、円筒形素材リング1に磁気反発力が生じ、円筒形素材リング1は瞬間的に拡径して金型6の成形面に押し付けられ、図3 (b) に示すように、当該成形面に沿った形状に成形され、軸方向両端に短い平行部12、13とその間で半径方向外側に膨出する円周方向の3つのビード14~16 (各ビード14~16 は波形に連なっている)からなるビード付き円筒形リング17となる(詳細な形状は図2を参照)。このビード付き円筒形リング17は実質的な回転体であり、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。電磁成形に伴い円筒形素材リング1の材料は前記溝部3~5内に引き込まれ、その結果、ビード付き円筒形リング17の軸方向幅は、円筒形素材リング1の軸方向幅より小さくなっている。

なお、成形後、金型6からビード付き円筒形リング17が取り出せるように、 金型6は円周方向に分割された複数個の分割片(図4の分割金型25を構成する 分割片25a、25bを参照)からなっている。

[0026]

図4は、軸方向に分割された複数個の分割金型からなる金型構造の例である。この金型21は、内面側が成形面とされ該成形面の周方向に沿ってビード成形用の溝部22~24が形成されたもので、該溝部22~24において軸方向に分割された複数個のリング状の分割金型25~28からなり、各分割金型25~28はリング状のスペーサ29~31を介して配置され、その結果、隣接する分割金

型25~28間には隙間32~34が形成される。

また、分割金型25 (分割金型26~28も同じであるが)は、円周方向に分割された複数個の分割片25a、25b (場合によっては2個以上の分割片)からなり、これらがボルト35及び係止片36により連結され分割金型25を構成している。

なお、図4において、37は分割金型25~28を固定するボルト、38はナットである。

[0027]

この金型21において、各分割金型25~28にはそれぞれ溝部22~24の一部を構成する湾曲した成形面が形成され、当該成形面が中央部(溝部22~24を構成している。すなわち、溝部22は隣接する分割金型25、26の湾曲した成形面と中央部の隙間32から構成され、溝部23は隣接する分割金型26、27の湾曲した成形面と中央部の隙間33から構成され、溝部24は隣接する分割金型27、28の湾曲した成形面と中央部の隙間34から構成される。金型21の成形面は実質的に回転面をなし、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。隙間32~34は各溝部22~24の全周にわたって存在し、電磁成形時にはエア抜き用のスリットとして機能する。

[0028]

この金型21の内面側に、金型21の成形面の軸方向の中心位置と円筒形素材リングの軸方向の中心位置が一致するように該円筒形素材リングを配置し、さらにその内面側に電磁成形用コイル体を配置して、電磁成形を行うと、図1及び図3を参照して説明したと同様に、円筒形素材リングは瞬間的に拡径して金型21(分割金型25~28)の成形面に押し付けられ、該成形面に沿った形状に成形され、一方、隙間32~34(溝部22~24の底部)では、円筒形素材リングは加えられる負荷に応じて自由変形する。つまり、ビード付き円筒リングのビードの頂部はこの隙間32~34(溝部22~24の底部)において成形される。前記隙間32~34の幅を適正に設定することにより、エア抜きを支障なく行い、かつこの隙間32~34において、該隙間32~34を挟んで隣接する分割金

型の成形面を外挿した曲線(図4 (c)の仮想線E参照)にほぼ沿った形状に変形させることができる。得られたビード付き円筒形リングは実質的に回転体であり、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。

[0029]

図5は、円筒形素材リング1を電磁成形(縮径)する方法を示すもので、図5 (a)において、円筒形素材リング1の内周側に、外面側が成形面とされ該成形面の円周方向に沿ってビード成形用の突条41、42が形成され、その両側に溝部43a~43cが形成された金型44が配置され、円筒形素材リング1の外周側に電磁成形用コイル体45が配置されている。円筒形素材リング1の内周面と金型44の外周面の間、及び円筒形素材リング1の外周面と電磁成形用コイル体45の間には若干の隙間が形成されている。

[0030]

金型44の成形面に形成された各突条41、42は半径方向外側を向き、各溝部43a~43cは開口を半径方向外側に向け、これらの突条41、42及び溝部43a~43cは互いに波形に連なり、溝部43a、43cの端部はそれぞれ成形面の端部平行部46、47に連なっている。金型44の成形面は実質的に回転面をなし、かつ軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。また、金型44の成形面の軸方向の中心位置と円筒形素材リング1の軸方向の中心位置は一致させている。なお、各溝部43a~43cの底部には、図3と同様にエア抜き用の穴又はスリット48が形成されている。

$[0\ 0\ 3\ 1]$

図5 (a) の状態で電磁成形用コイル体45に瞬間大電流を流すと、円筒形素材リング1に磁気反発力が生じ、円筒形素材リング1は瞬間的に縮径して金型44の成形面に押し付けられ、図5(b)に示すように、当該成形面に沿った形状に成形され、端部に短い平行部51、52とその間で半径方向外側に突出する円周方向の2つのビード53、54(その両側には溝部55a~55cが形成され、各ビード53、54と波形に連なっている)からなるビード付き円筒形リング56となる。このビード付き円筒形リング56は実質的に回転体であり、軸方向

の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。 電磁成形に伴い円筒形素材リング1の材料は前記溝部43a~43c内に引き込まれ、その結果、ビード付き円筒形リング56の軸方向幅は、円筒形素材リング1の軸方向幅より小さくなっている。

なお、成形後、金型44からビード付き円筒形リング54が取り出せるように、金型44は円周方向に分割された複数個の分割片からなっている。

[0032]

図6は、電磁成形(拡径、縮径)後のビード付き円筒形リング57の寸法精度を向上させるためのロール矯正方法を示すものである。例えば、エア抜きが不十分でビードに凹みが発生するとき、あるいは図4に示すタイプの金型を用いて電磁成形し、自由変形したビードの頂部の精度が劣るときなどに行うとよい。

ビード付き円筒形リング57を、外形が要求される精度に仕上げられた内側ロール58及び外側ロール59、59の間に挟み、内側ロール58の押し込み量を調整し、かつ各ロールを回転してロール矯正を行う。

[0033]

図7は、電磁成形(拡径)後のビード付き円筒形リング61の寸法精度を向上させるため、さらに電磁成形(縮径)を行う矯正方法を示すものである。エア抜きが不十分でビードに凹みが発生するとき、あるいは図4に示すタイプの金型を用いて電磁成形し、自由変形したビードの頂部の精度が劣るときなどに行うとよい。この場合、ビード付き円筒形リング61は最終形状よりやや拡径状態に成形されている。

[0034]

図7 (a) に示すように、予め電磁成形(拡径)されたビード付き円筒形リング61の内周側に、外面側が前記最終形状に対応する成形面とされ該成形面の円周方向に沿って矯正用の突部62~64が形成された金型65が配置され、ビード付き円筒形リング61の外周側に電磁成形用コイル体66が配置されている。金型65の成形面は実質的に回転面をなす。67はエア抜きのための穴又はスリットである。また、金型65はこれまでの金型と同様、円周方向に分割された複数個の分割片からなっている。

その状態で電磁成形用コイル66に瞬間大電流が流されると、図7 (b) に示すように、図5で説明したと同様に電磁成形(縮径)が行われ、ビード付き円筒形リング61は金型65の成形面に沿った形状に成形、すなわち矯正され、寸法精度の高いビード付き円筒形リング69となる。

[0035]

図8は電磁成形を繰り返すことにより、寸法精度の高いビード付き円筒形リングを得ようとしたものである。

まず、図8(a)に示すように、円筒形素材リング1の外周側に、内面側が成形面とされ該成形面の円周方向に沿ってビード成形用の溝部71~73が形成された金型74が配置され、円筒形素材リング1の内周側に電磁成形用コイル体75が配置される。金型74の成形面は実質的に回転面をなす。各溝部71~73の底部にはエア抜き用の穴又はスリット76が円周方向に沿って多数形成されている。また、金型74は円周方向に分割された複数個の分割片からなっている。

[0036]

図8 (a) の状態で電磁成形用コイル体75に瞬間大電流を流すと、円筒形素材リング1は瞬間的に拡径して金型74の成形面に押し付けられる。ただし、このとき電磁成形用コイル体75に与えられる電気エネルギー、すなわち円筒形素材リング1に生じる磁気反発力は、図8 (b) に示すように、該円筒形リング1を金型74の成形面(特に溝部71~73)に十分沿った形状に成形するほど大きくないように設定されている。すなわち、円筒形素材リング1は溝部71~73に引き込まれて膨出するが、成形後のビード付き円筒形リング77と金型74の成形面(特に溝部71~73)との間には隙間が積極的に残されている。そのため、仮にエア抜きが不十分で当該隙間にエアが閉じ込められたとしても、極度の高圧とならず、凹みの問題が軽減されている。

[0037]

続いて、図8(c)に示すように、もう一度電磁成形を行い、今度はビード付き円筒形リング77を金型74の成形面(特に溝部71~73)に沿った形状、すなわち最終形状に成形する。この成形は一種の矯正ということもできる。

この例では、コイル径が大きくされた電磁成形用コイル体78を用いて、より

なお、この例では、同じ金型74を用いて2段階成形を行ったが、別の金型(予成形用金型と仕上げ金型)を用いることもできる。その場合、1回目の成形で 予成形金型の成形面に沿った形状に成形してもよい。

[0038]

る。

図9は、複数個(この例では2個)分のビード付き円筒形リングを一度に成形する方法を示すものである。2個分の長さの円筒形素材リング81の外周側に、内面側が成形面とされた金型82が配置され、円筒形素材リング81の内周側に電磁成形用コイル体83が配置されている。前記金型82の成形面には、円周方向に沿ってビード成形用の溝部84~86が形成され、かつその溝部84~86が軸方向に並んで2組形成され、その中間位置には内向きに円形の切断刃87が形成されている。各溝部84~86の底部にはエア抜き用の穴又はスリット88が円周方向に沿って多数形成されている。また、金型82は円周方向に分割された複数個の分割片からなっている。

図9の状態で電磁成形用コイル体83に瞬間大電流を流すと、円筒形素材リング81に磁気反発力が生じ、円筒形素材リング1は瞬間的に拡径して金型82の成形面に押し付けられ、当該成形面に沿った形状に成形され、同時に切断刃により中間位置で分離される。これにより、図3(b)に示すビード付き円筒形リング17と同じものを2つ同時に成形できる。

[0039]

図9に示す金型82において切断刃87がない場合、ビード付き円筒形リング が複数個連なったビード付き円筒形リングが形成される。

図10は、このように複数個(2個)のビード付き円筒形リングが連なったビード付き円筒形リング91の寸法精度を向上させ同時に複数個(2個)に分離す

るためのロール矯正切断方法を示すものである。ロール矯正は基本的に図6の方法と同じ考え方であるが、この場合、内側ロール92の中間位置に円形の切断刃93が形成され、外側ロール94、94の対応箇所に切断刃93の受け刃95が形成されている。ビード付き円筒形リング91を、内側ロール93及び外側ロール94、94の間に挟み、各ロールを回転しかつ内側ロール93を押し込んで、ロール矯正及び切断を行う。

[0040]

図11は円筒形素材リング101を示すもので、その周壁の全面に多数の穴102が形成されている。この円筒形素材リング101は、穴102が碁盤目状に規則的に形成された矩形状の金属板(例えばアルミニウム合金板)、すなわちパンチングメタルを円筒状に巻き曲げ、端部を溶接等により接合して得ることができる。

円筒形素材リング101を例えば図3に示す金型6及び電磁成形用コイル7を用いて電磁成形すると、より軽量なビード付き円筒形リングを成形することができる。なお、円筒形素材リング101の周壁には多数の穴102が全面に形成されているため、金型6等に形成されたエア抜き用の穴やスリット、金型21(図4参照)に形成されたエア抜き用の隙間が不要である。

[0041]

図12は円筒形素材リング103を示すもので、多数の穴102が軸方向両端部の周壁に円周方向に沿って左右対称的に形成されている。これらの穴102は、軸方向各端部において周壁上を一周する2つの穴列(外側の列が102a、内側の列が102b)を構成し、各穴列102a、102bにおいて各穴102は等間隔に配置されている。この円筒形素材リング103は、多数の穴102が各長辺側端縁近傍に該長辺に平行に2列に形成された矩形状の金属板(例えばアルミニウム合金板)を円筒状に巻き曲げ、端部を溶接等により接合して得ることができる。

[0042]

この円筒形素材リング103を使用した電磁成形方法を図13に示す。図13 (a)において、円筒形素材リング103の外周側に、内面側が成形面とされ該

成形面の円周方向に沿ってビード成形用の溝部104,105が形成された金型106(金型6と同様に円周方向に分割された複数個の分割片からなる)が配置され、円筒形素材リング103の内周側に電磁成形用コイル体107が配置されている。この金型106の成形面は実質的に回転面をなし、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。また、金型106の成形面の軸方向の中心位置と円筒形素材リング103の軸方向の中心位置は一致させている。

[0043]

図13(a)の状態で電磁成形用コイル体107に瞬間大電流を流すと、円筒形素材リング103に磁気反発力が生じ、円筒形素材リング103は瞬間的に拡径して金型106の成形面に押し付けられ、図13(b)に示すように、当該成形面に沿った形状に成形され、軸方向両端に短い平行部108、109とその間で半径方向外側に膨出する円周方向の2つのビード111、112(両ビード11、112は波形に連なっている)からなるビード付き円筒形リング113となる。このビード付き円筒形リング113は実質的に回転体であり(穴102が形成されていること等もあり、厳密な意味では回転体といえないが、円筒形リングの輪郭をみれば実質的に回転体とみて差し支えない)、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。

[0044]

電磁成形に伴い円筒形素材リング103の材料が前記溝部104、105内に押し込まれ、その結果、前記溝部104、105より軸方向外側に位置していた円筒形素材リング103の端部の材料が、前記溝部104、105内に流入する。成形前は円筒形素材リング103の穴102は両方の穴列(穴列102a、102b)とも、金型106の成形面の溝部104、105より外側に位置していたが、円筒形素材リング103の端部の材料が該溝部104、105内に流入するのに伴い、穴列102bが溝部104、105内に位置するようになっている。すなわち、ビード付き円筒形リング113において、軸方向内側の穴列102bはビード111、112上に位置し、軸方向外側の穴列102aは平行部108、109とビード111、112の境界付近に位置している。

円筒形素材リング103の端部が金型106の端部平行部から溝部104、105に流入するとき、穴が形成されていない円筒形リング1等に比べて、穴102が形成されている分、金型106の成形面と円筒形リング103の接触面積が減って両者間の摩擦抵抗が低減され、その結果、円筒形リング103の溝部104、105への流入がスムーズになり、精度よく電磁成形を行うことができる。なお、この効果は前記円筒形リング101の成形の場合も、同様に得ることができる。

[0045]

図14は円筒形素材リング115を示すもので、軸方向の中央位置に円周方向に沿って多数の穴102が1列に等間隔で形成されている。この円筒形リング素材115は多数の穴102が1列に形成された矩形状の金属板(例えばアルミニウム合金板)を円筒状に巻き曲げ、端部を溶接等により接合して得ることができる。

この円筒形素材リング115を使用した電磁成形方法を図15に示す。図15 (a)において、円筒形素材リング115の外周側に配置された金型116(金型6と同様に円周方向に分割された複数個の分割片からなる)は、内面側が成形面とされ該成形面の円周方向に沿ってビード成形用の溝部117,118が形成され、溝部117,118の中間部119が内径側に突出して、内径が最も小さくなっているその頂点に突起121が周方向に沿って等間隔で形成されている。この金型116の成形面は実質的に回転面(突起121が形成されていること等もあり厳密な意味では回転面ではないが、成形面の機能として実質的に回転面とみなして差し支えない)をなし、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。

金型116の隣接する突起121同士の間隔と円筒形素材リング115の隣接する穴102同士の間隔は同じとされ、かつ、円筒形素材リング115の周囲に金型116を配置したとき、前記中間部119の頂点の内径が円筒形素材リング115の外形とほぼ同じで、突起121が穴102にはめ込まれ、かつ前記中間部119の頂点において金型116の成形面と円筒形素材リング115の外周面が接触している。

[0046]

図15(a)の状態で電磁成形用コイル体122に瞬間大電流を流すと、円筒形素材リング115に磁気反発力が生じ、円筒形素材リング115は瞬間的に拡径して金型116の成形面に押し付けられ、図15(b)に示すように、当該成形面に沿った形状に成形され、軸方向両端に短い平行部123、124とその間で半径方向外側に膨出する円周方向の2つのビード125、126(両ビード125、126は波形に連なっている)からなるビード付き円筒形リング127となる。このビード付き円筒形リング127は実質的に回転体であり、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。

金型116の突起121を円筒形素材リング115の穴102にはめ込むことで、円筒形素材リング115が金型116内に正確に位置決めされ、電磁成形時にも、円筒形素材リング115の中央部では材料の軸方向移動が生じないため、成形が精度よく行われる。

[0047]

円筒形素材リング115を電磁成形により縮径する場合(金型は円筒形リング115の内側に配置される)、円筒形素材リング115の穴102にはまる突起は、金型の成形面の外径が最も大きくなっている箇所に形成される。その突起は前記金型116と同様に、軸方向の中央位置に形成することが望ましい。また、円筒形素材リング115の内側に金型を配置したとき、前記成形面の外径が円筒形素材リング115の内径とほぼ同じとされる。

なお、円筒形素材リング101でも、円周方向に形成した穴102 (特に中央 又はその近傍の穴列)を位置決めに利用することが可能である。

[0048]

図16は円筒形素材リング131を示すもので、軸方向両端部に円周方向に沿って多数の穴102が1列に等間隔で形成されている。この円筒形素材リング131を図13に示す金型106を用いて電磁成形して得たのが、図17(a)に示すビード付き円筒形リング132(実線部分)である。図17(a)に仮想線で示すように、このビード付き円筒形リング132の軸方向両端部に樹脂133を溶融して取り付けると、図17(b)に示すように樹脂133が穴102に入

り込み、ビード付き円筒形リング132と樹脂133が強固に連結される。

なお、この効果は円筒形リング101、103を使用した場合でも、同様に得ることができる。

[0049]

図18(a)、(b)は、電磁成形により成形したビード付き円筒形リングを切断して、円周方向に切り離したものである。切断の方向は、軸方向に平行(a)及び前記軸方向に対し斜め(b)とされている。このビード付き円筒形リング134、135は、それぞれ切り離した箇所(切れ目136、137)を通して2つをはめ合わせることができる。

このビード付き円筒形リング134、135は、必要に応じて、切り離した箇所を溶接等により接合して再び閉じたリングにすることができる。溶接により接合(溶接部138、139)したビード付き円筒形リング134、135を図19(a)、(b)に示す。

ビード付き円筒形リング134、135は、円周方向に切り離した状態(図18参照)、あるいは再び接合した状態(図19参照)のいずれで使用してもよいが、用途によっては軸方向に対して斜めに切断することが望ましい場合がある。例えばビード付き円筒形リングをランフラットタイヤの補強リングとして用いる場合、斜めに切断したビード付き円筒形リング135において切れ目137又は溶接部139の円周方向長さt1を、接地面の円周方向幅t0より大きくしておけば、比較的強度の弱い前記切れ目137又は溶接部139に一度に全車重がかからない。

[0050]

多数の穴が形成されたビード付き円筒形リングを円周方向に切り離し、その後 再び接合する場合、前記穴102を接合に利用することができる。これを、ビー ド付き円筒形リング132を例に説明する。

図20はビード付き円筒形リング132を円周方向に切り離した後、端部を一部重ね合わせ、リベット141により接合したものである。リベット141は重ね合わせた穴102を貫通し、端部を接合する。

図21はビード付き円筒形リング132を円周方向に切り離した後、端部を一

部重ね合わせ、そこを溶融した樹脂142で結合したものである。樹脂142は 重ね合わせた穴102内に入り込んで固化し、端部を接合する。

図22はビード付き円筒形リング132を円周方向に切り離した後、切れ目143を開けた状態とし、そこを溶融した樹脂144で結合したものである。樹脂144は端部の穴102内に入り込んで固化し、端部を接合する。この場合、切れ目143を閉じた状態として樹脂144で結合してもよい。

[0051]

多数の穴が形成されたビード付き円筒形リングを円周方向に切り離す場合において、特に切断線を軸方向に対し斜めに形成する場合、多数の穴102の配置は、図23(a)に示す碁盤目状配置(図11のビード付き円筒形リング101参照)より、図23(b)に示す千鳥配置(隣接する穴列において穴102の位置が円周方向に半ピッチ分ずれている)の方が望ましいときがある。これは、図23(a)、(b)に示すように、多数の穴102によって構成される斜めの穴列をみた場合、穴列同士の間隔は、碁盤目状配置のとき(h1)より千鳥配置のとき(h2)の方が、広くとれる(h2>h1)からである。これにより、千鳥配置の方が切断しやすく、かつ再び接合する場合は溶接もしやすくなる。

[0052]

図24は前記金型106に類似する金型156(金型6と同様に円周方向に分割された複数個の分割片からなる)を用いて、円筒形素材リング1を電磁成形する方法を示すものである。金型156は内面側が成形面とされ該成形面の円周方向に沿ってビード成形用の溝部151、152が形成され、両溝部151、152の中間部153が内径側に突出し、該中間部153において成形面の内径が最も小さくなっている。この金型156の成形面は実質的に回転面をなし、金型156の軸方向の中央位置における軸方向に垂直な平面を対称面として実質的に面対称である。

図24(a)に示すように、金型106の内側に円筒形素材リング1が配置され、さらにその内周側に電磁成形用コイル体157が配置されている。円筒形素材リング1の外径と金型106の中間部153の内径はほぼ同じ程度で、該中間部153において金型156の成形面と円筒形素材リング1の外周面が接してい

る。また、金型156の成形面の軸方向の中心位置と円筒形素材リング1の軸方向の中心位置は一致させている。

[0053]

図24(a)の状態で電磁成形用コイル体157に瞬間大電流を流すと、円筒形素材リング1に磁気反発力が生じ、円筒形素材リング1は瞬間的に拡径して金型156の成形面に押し付けられ、図24(b)に示すように、当該成形面に沿った形状に成形され、軸方向両端に短い平行部158、159とその間で半径方向外側に膨出する円周方向の2つのビード161、162(両ビード161、162は小径部163により略波形に連なっている)からなるビード付き円筒形リング164となる。このビード付き円筒形リング164は実質的に回転体であり、軸方向の中心位置における軸方向に垂直な平面を対称面として実質的に面対称である。

この方法の場合、円筒形素材リング1の軸方向中央位置が、金型156の成形面の最も内径が小さくなっている中間部153の位置(前記成形面の軸方向中央位置)において、位置決めされた形になるため、より均等な成形が実現できる。

[0054]

図25(a)~(d)は円筒形素材リングの製造方法を示すもので、(a)に示す円筒形素材リング171は、先に示した円筒形素材リング1とは、突き合わせ接合による接合部(溶接ビード)172が軸方向に対して斜めに形成されている点で異なる。接合部172が斜めであることにより、円筒形素材171の周方向の重量バランスが、接合部2が軸方向に対して平行に形成された円筒形素材1より改善される。

図25(b)に示す円筒形素材リング173は、圧延板材を螺旋状に巻いて継ぎ目を接合したもので、接合部(溶接ビード)174が円筒をちょうど1周している。この円筒形素材リング173は接合部が長くなるが、周方向の重量バランスが優れている。

図25 (c)は、圧延板材を螺旋状に巻いて継ぎ目を接合し、予めスパイラル チューブを製造し、これを所定長さに切断して(切断位置を仮想線で示す)、個 々の円筒形素材リング173を製造する方法を示す。

[0055]

【実施例】

アルミニウム合金板から図1に示すと同様の円筒形素材リングを成形し、これ を電磁成形してビード付き円筒形リングを製造した。

素材のアルミニウム合金板は押出板(6061-F材)であり、これを3本ロールを用いたロール曲げ成形により、押出方向がロール曲げの送り方向になるようにして円筒形に成形し、端部を突合せ溶接した(接合部はリングの中心軸方向に平行)。円筒形リングは厚さ2.2 mm、内径494 mm、軸方向幅222 mであった。溶接はレーザ溶接とミグ溶接を、レーザ溶接は、出力40kW、速度3 m/分、ワイヤA5356 WY、 ϕ 1.2 mm、送給速度4 m/分、雰囲気Ar100%、供給量251/分の条件で行い、ミグ溶接は、電流80A、電圧18 V、ワイヤA5356 WY、 ϕ 1.2 mm、送給速度60 c m/分、雰囲気Ar100%、供給量151/分の条件で行った。

[0056]

続いて、この円筒形素材リングを図4に示すと同様の金型及び電磁成形用コイル体を用いて電磁成形(拡径)した。金型の成形面の最小直径(両端の平行部の直径)504mm、電磁成形用コイル体の直径490mm、電磁成形用コイル体の磁場安定化領域(ほぼ同じ磁束密度が得られる領域)の長さ250mmであり、円筒形リングはこの磁場安定化領域の中心に配置され、投入エネルギーは45kJであった。

図2に電磁成形されたビード付き円筒形リングを示す。いずれの溶接方法のものも、内径500mm、外径570mm、端部厚さ2mm、軸方向幅192mmとなり、ビードには凹みがなく金型の成形面に沿った形状に成形されていた。

[0057]

【発明の効果】

本発明によれば、電磁成形により精度が高いビード付き円筒形リングを、低コストで、かつ高い生産性のもとで製造することができる。また、拡径により成形したビード付き円筒形リングは、特にランフラットタイヤの補強リング用として優れた特性を有する。

【図面の簡単な説明】

- 【図1】 電磁成形前の円筒形素材リングの側面図(a)及び正面図(b)である。
- 【図2】 電磁成形後のビード付き円筒形リングの断面図(a)、側面図(b)及び正面図(c)である。
- 【図3】 電磁成形によるビード付き円筒形リングの製造方法を説明するもので、成形前の断面図(a)及び成形後の断面図(b)である。
- 【図4】 電磁成形用金型の金型構造の一例を示す側面図(a)、断面図(b)及びその一部拡大図(c)である。
- 【図5】 電磁成形によるビード付き円筒形リングの製造方法を説明するもので、成形前の断面図(a)及び成形後の断面図(b)である。
- 【図6】 ビード付き円筒形リングの矯正方法を示すもので、側面断面図(a)及び正面断面図(b)である。
- 【図7】 ビード付き円筒形リングの矯正方法を示すもので、矯正前の断面図(a)及び矯正後の断面図(b)である。
- 【図8】 ビード付き円筒形リングの多段階成形法を示すもので、成形前の断面図(a)、1段成形後の断面図(b)及び2段成形後の断面図(c)である。
- 【図9】 ビード付き円筒形リングの複数個取り成形方法を示す断面図である。
- 【図10】 複数個連接したビード付き円筒形リングの分離及び矯正方法を示すもので、側面断面図(a)及び正面断面図(b)である。
 - 【図11】 本発明に使用する他の円筒形素材リングの正面図である。
 - 【図12】 本発明に使用するさらに他の円筒形素材リングの正面図である

- 【図13】 その円筒形素材リングを使用したビード付き円筒形リングの製造方法を説明するもので、成形前の断面図(a)及び成形後の断面図(b)である。
- 【図14】 本発明に使用するさらに他の円筒形素材リングの正面図である。
- 【図15】 その円筒形素材リングを使用したビード付き円筒形リングの製造方法を説明するもので、成形前の断面図(a)及び成形後の断面図(b)である。
- 【図16】 本発明に使用するさらに他の円筒形素材リングの正面図である。
- 【図17】 その円筒形素材リングを使用して成形したビード付き円筒形リングの正面図(a)及び樹脂結合後の様子を説明する断面図(b)である。
- 【図18】 円周方向に切り離したビード付き円筒形リングの斜視図である。
- 【図19】 切り離し後、再び溶接により接合したビード付き円筒形リングの斜視図である。
- 【図20】 切り離し後、再びリベットにより接合したビード付き円筒形リングの側面図(a)及びそのA-A断面図(b)である。
- 【図21】 切り離し後、再び樹脂により接合したビード付き円筒形リングの側面図(a)及びそのA-A断面図(b)である。
- 【図22】 切り離し後、再び樹脂により接合したビード付き円筒形リングの側面図(a)及びそのA-A断面図(b)である。
- 【図23】 多数の穴が形成されたビード付き円筒形リングを円周方向に切り離すとき、穴の配置と穴列同士の間隔について説明する模式図である。
- 【図24】 電磁成形によるビード付き円筒形リングの製造方法を説明する もので、成形前の断面図(a)及び成形後の断面図(b)である。
 - 【図25】 円筒形素材リングの製造方法を説明する図である。

【符号の説明】

1、81、101、103、115、131 円筒形素材リング

3~5, 22~24, 41~43, 71~73, 84~86, 104~105

、117~118、ビード成形用の溝部

6、21、44、74、82、106、116 金型

7、45、66、75、78、83、107、122 電磁成形用コイル体

14~16、53~55、111~112、125~126 ビード

17, 56, 57, 61, 69, 77, 79, 91, 113, 127, 132

、134、135、 ビード付き円筒形リング

25~28 金型21を構成する分割金型

32~34 隙間

62~64 矯正用の凸部

65 矯正用の金型

58、59、92、94矯正ロール

87、93 切断刃

102 穴

121 突起

【図1】

【図5】

[図12]

【図13】

【図19】

【図22】

【要約】

【課題】 精度が高いランフラットタイヤの補強リングを、低コストで、かつ高い生産性のもとで製造する。

【解決手段】 アルミニウム合金製の円筒形リング1の外周側に、内面側が成形面とされ該成形面に周方向に沿ってビード成形用の溝部3~5が形成された金型6を配置し、円筒形リング1の内周側に電磁成形用コイル体7を配置する。その状態で電磁成形用コイル体7に瞬間大電流を流し、円筒形リング1を拡径して成形用金型6の成形面に押し付け、該成形面に対応した形状に電磁成形する。両端の平行部12、13と、その間で周方向に沿って外径側に膨出するビード14~16からなる補強リング17が得られる。

【選択図】 図3

認定・付加情報

特許出願の番号 特願2003-165732

受付番号 50300971899

書類名 特許願

担当官 第三担当上席 0092

作成日 平成15年 6月13日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000001199

【住所又は居所】 兵庫県神戸市中央区脇浜町二丁目10番26号

【氏名又は名称】 株式会社神戸製鋼所

【代理人】 申請人

【識別番号】 100100974

【住所又は居所】 岡山県岡山市浜3丁目10番1号 ディアステー

ジ操山307号

【氏名又は名称】 香本 薫

特願2003-165732

出願人履歴情報

識別番号

[000001199]

1. 変更年月日 [変更理由]

2002年 3月 6日 住所変更

住 所

兵庫県神戸市中央区脇浜町二丁目10番26号

氏 名 株式会社神戸製鋼所