Алгебра Лі І курс магістратура, 2 семестр

13 лютого 2024 р.

0.1Означення

Definition 0.1.1 Алгеброю Лі назвемо векторний простір L над полем F разом з білінійною формою $[\cdot,\cdot]$: $L\times L\to L$, що задовольняє таким умовам:

- $\begin{array}{ll} 1) & \forall x \in L: [x,x] = 0 \\ 2) & \forall x,y,z \in L: [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \end{array}$

Остання рівність схожа на тотожність Якобі із аналітичної геометрії.

Proposition 0.1.2 $\forall x \in L : [x, x] = 0 \iff \forall x, y \in L : [y, x] = -[x, y].$ За умовою, що $\operatorname{char}(F) \neq 2$.

Вправа: довести.

Proof.

 \Rightarrow Дано: [x,x]=0 для всіх $x\in L$. Оберемо довільні $x,y\in L$, тоді звідси [x+y,x+y]=0 за умовою. Зокрема за властивістю білінійної форми, [x,x] + [x,y] + [y,x] + [y,y] = 0. Таким чином, [y, x] = -[x, y].

 \sqsubseteq Дано: [y,x]=-[x,y] для всіх $x,y\in L$. Зокрема якщо y=x, то звідси [x,x]=-[x,x]. Таким $\overline{\text{чином}}$, 2[x,x]=0, але оскільки $\operatorname{char}(F)\neq 2$, то ми отримаємо [x,x]=0.

Example 0.1.3 Розглянемо векторний простір \mathbb{R}^3 . Тоді векторний добуток, що задається як $[\vec{x}, \vec{y}] =$ $(x_2y_3-x_3y_2,x_3y_1-x_1y_3,x_1y_2-x_2y_1)$, встановлює алгебру Лі. Інколи векторний добуток позначають $\vec{x} \wedge \vec{y}$, алгебру Лі позначають тут \mathbb{R}^3_{\wedge} .

Зрозуміло, що в цьому випадку $[\vec{x}, \vec{x}] = \vec{0}$, за наишм означенням.

Із курса аналітичної геометрії, ми доводили так звану формулу "бац мінус цаб". Завдяки неї, там же ми отримали тотожність Якобі, тобто $[\vec{x}, [\vec{y}, \vec{z}]] = [\vec{y}, [\vec{z}, \vec{x}]] + [\vec{z}, [\vec{x}, \vec{y}]] = \vec{0}$.

Example 0.1.4 Розглянемо множину $\mathfrak{gl}_n(F)$ – векторний простір всіх матриць $n \times n$, елементи яких над полем F, де білінійна форма визначається таким чином: [A, B] = AB - BA.

Тоді це утворює алгебру Лі. Вона має особливу назву – загальна лінійна алгебра Лі. [A, A] = O – це зрозуміло.

$$\begin{split} [A,[B,C]] + [B,[C,A]] + [C,[A,B]] &= [A,BC-CB] + [B,CA-AC] + [C,AB-BA] = \\ &= (A(BC-CB) - (BC-CB)A) + (B(CA-AC) - (CA-AC)B) + (C(AB-BA) - (AB-BA)C) = \\ &= ABC - ACB - BCA + CBA + BCA - BAC - CAB + ACB + CAB - CBA - ABC + BAC = O. \end{split}$$

Example 0.1.5 Розглянемо множину $\mathfrak{gl}(V)$ – векторний простір всіх лінійних відображень $V \to V$, де V – векторний простір над полем F. Білінійну форму визначимо аналогічно: [U,W] = UW - WU. Тоді це утворює алгебру Лі (аналогічним чином, що з матрицею). Це теж називають загальною лінійною алгеброю Лі.

0.2Підалгебра Лі, ідеал

Definition 0.2.1 Задано L – алгебра Лі та K – підпростір векторного простору L над F. Тоді K називається **підалгеброю** Π **і**, якщо

$$\forall x, y \in K : [x, y] \in K$$

Definition 0.2.2 Задано L – алгебра Лі та підалгебра Лі I. Тоді I називається **ідеалом**, якщо

$$\forall x \in L, \forall i \in I : [i, x] \in I$$

Це схоже на означення ідеала в кільці. Коротко можна записати як $[I,L] \subset I$. Оскільки нам відомо, що [x,y]=-[y,x] (при char $F\neq 2$), то нам не обов'язково визначати так звані ліві та праві ідеали.

Example 0.2.3 Розглянемо множину $\mathfrak{sl}(F) = \{A \in \mathfrak{gl}(F) \mid \operatorname{tr}(A) = 0\}$. Цілком зрозуміло, що $\mathfrak{sl}(F)$ буде підпростором векторного простору $\mathfrak{gl}(F)$. Але до того ж $\mathfrak{sl}(F)$ – підалгебра Лі.

Дійсно, нехай $A, B \in \mathfrak{sl}(F)$. Ми хочемо $[A, B] \in \mathfrak{sl}(F)$, тобто $AB - BA \in \mathfrak{sl}(F)$, для цього перевіримо слід цієї матриці. Справді,

$$tr(AB - BA) = tr(AB) + tr(-BA) = tr(AB) - tr(BA) = tr(AB) - tr(AB) = 0.$$

Зазначу хіба що: tr(AB) = tr(BA) легітимна рівність, бо все одно ми множимо матриці однієї розмірності.

Example 0.2.4 $\mathfrak{sl}_n(F)$ – ідеал $\mathfrak{gl}_n(F)$.

Example 0.2.5 $\mathfrak{b}_n(F)$ – множина верхньотрикутних матриць – теж підалгебра Лі $\mathfrak{gl}_n(F)$. При цьому при $n \geq 2$ простір $\mathfrak{b}_n(F)$ не буде ідеалом $\mathfrak{gl}_n(F)$.

Оберемо дві матриці
$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \in \mathfrak{b}_2(F)$$
 та $B = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix} \in \mathfrak{gl}_2(F)$. Якщо взяти

їхню білінійну форму, отримаємо
$$[A,B]=\begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & \dots & 0 \end{pmatrix} \notin \mathfrak{b}_n(F).$$

Example 0.2.6 $\mathfrak{n}_n(F)$ – множина строго верхньотрикутних матриць (тобто коли на головній діагоналі елементи нулеві) – ідеал $\mathfrak{b}_n(F)$.

Definition 0.2.7 Задано L – алгебра Лі.

Центром алгебри Лі називають таку множину:

$$Z(L) = \{ z \in L \mid [x, z] = 0, \forall x \in L \}$$

Proposition 0.2.8 Z(L) – ідеал L.

Proof.

Варто спочатку довести, що Z(L) буде підпростором L, але це просто.

Доведемо, що Z(L) буде підалгеброю Лі. Маємо $y_1, y_2 \in L$, тобто $[x, y_1] = 0, [x, y_2] = 0$ для всіх $x \in L$. Нам треба довести, що $[y_1, y_2] \in L$, тобто $[x, [y_1, y_2]] = 0$ для всіх $x \in L$.

За тотожністю Якобі, $[x, [y_1, y_2]] + [y_1, [y_2, x]] + [y_2, [x, y_1]] = 0$. Маючи умови вище, ми отримаємо $[x, [y_1, y_2]] + [y_1, 0] + [y_2, 0] = 0 \implies [x, [y_1, y_2]] = 0$.

Тепер доведемо, що Z(L) буде ідеалом. Маємо $y_1 \in Z(L)$ та $y_2 \in L$. Хочемо, щоб $[y_1, y_2] \in Z(L)$. За тотожністю Якобі, $[x, [y_1, y_2]] + [y_1, [y_2, x]] + [y_2, [y_1, x]] = 0$. Оскільки $y_1 \in Z(L)$, то звідси $[y_1, y_2] = 0$, а також $[y_1, [y_2, x]] = 0$. Разом отримали $[x, [y_1, y_2]] = 0$.

0.3 Гомоморфізм

Definition 0.3.1 Задані L_1, L_2 – дві алгебра Лі над одним полем F. Відображення $\varphi \colon L_1 \to L_2$ називається **гомоморфізмом**, якщо

$$arphi$$
 – лінійне відображення $orall x,y\in L_1: arphi([x,y]_{L_1})=[arphi(x),arphi(y)]_{L_2}$

Тут я підкреслив, що дужки Лі різні зліва та справа у рівності.

Definition 0.3.2 Гомоморфізм φ алгебри Лі L називається **ізоморфізмом**, якщо

 φ – бієктивне відображення