

Workbook

SADLER-OXFORD

Progress in Mathematics

$$10 - 1 = 9$$

Digitized by the Internet Archive
in 2023 with funding from
Kahle/Austin Foundation

<https://archive.org/details/progressinmathem0000samg>

Workbook

Progress in Mathematics

SADLIER-OXFORD

Catherine D. LeTourneau

with

Elinor R. Ford

Sadlier-Oxford

A Division of William H. Sadlier, Inc.

www.sadlier-oxford.com

Contributing Illustrators: Bernard Adnet, Sarah Beise, Mary Bono, Mircea Catusnu, Georgia Cawley, Lee Duggan, Dave Garbot, Bob Holt, Nathan Jarvis, Gary Johnson, Dave Jonason, Dean Macadam, P.T. Pie, Dirk Wunderlich

Copyright © 2014 by William H. Sadlier, Inc.

All rights reserved. This publication, or any part thereof, may not be reproduced in any form, or by any means, including electronic, photographic, or mechanical, or by any sound recording system, or by any device for storage and retrieval of information, without the written permission of the publisher.

Requests for permission to make copies of any part of the work should be mailed to:
Permissions Department
William H. Sadlier, Inc.
25 Broadway
New York, NY 10004-1010

 is a registered trademark of William H. Sadlier, Inc.

Printed in the United States of America.

ISBN 978-0-8215-5101-1

10 11 12 13 14 HESS 25 24 23 22 21

Contents

Numbers, Number Words, and Ordinals

Numbers 1 Through 4	1
Numbers 5 and 0	2
Numbers 6 Through 9	3
Numbers 10 Through 12	4
One Fewer, One More	5
C Order 0 Through 12	6
C Count On	7
Count Back	8
Before, Between, After	9
Compare	10
Ordinals 1st Through 10th	11
Ordinals: From Top or Bottom	12
C Problem-Solving Strategy:	
Act It Out	13
C Problem-Solving Applications:	
Mixed Strategies	14

Addition Strategies and Facts to 12

C Understanding Addition	15
C Addition Sentences	16
C Sums Through 6	17
C Related Addition Facts	18
C Sums of 7 and 8	19
C Sums of 9 and 10	20
C Sums of 11 and 12	21
Other Names for Numbers	22
C Number-Line Addition	23
C Add: Use Patterns	24
C Doubles	25
C Doubles + 1	26
C Add Three Numbers	27
C Addition Strategies with Three Addends	28
C Problem-Solving Strategy:	
Write a Number Sentence	29
C Problem-Solving Applications:	
Mixed Strategies	30

Subtraction Strategies and Facts to 12

C Understanding Subtraction	31
C Subtraction Sentences	32
C Subtract from 6 or Less	33
C All or Zero	34
C Subtract from 7 and 8	35
C Subtract from 9 and 10	36
C Subtract from 11 and 12	37
C Number-Line Subtraction	38
C Rules and Patterns	39
Related Subtraction Facts	40
C Relate Addition and Subtraction	41
C Check by Adding	42
C Fact Families	43
C Find Missing Addends	44
C Subtract to Compare	45
C Problem-Solving Strategy:	
Choose the Operation	46
C Problem-Solving Applications:	
Mixed Strategies	47

Data and Graphs

Venn Diagrams	48
C Tally Charts	49
C Picture Graphs	50
C Pictographs	51
C Bar Graphs	52
C Surveys	53
Range; Mode	54
Median	55
C Problem-Solving Strategy:	
Use a Graph	56
C Problem-Solving Applications:	
Mixed Strategies	57

Place Value to 100

● Tens and Ones	58
● Tens Through One Hundred	59
● Numbers 11 Through 19	60
● Numbers 20 Through 39	61
● Numbers 40 Through 59	62
● Numbers 60 Through 89	63
● Numbers 90 Through 100	64
Estimate Quantities	65
● Place Value of Digits;	
Expanded Form	66
● One Less, One More	67
● Identify Before, Between, After	68
● Compare Numbers	69
● Order Numbers	70
Hundred-Chart Patterns;	
10 Less, 10 More	71
Even and Odd	72
Count by 5s	73
Count by 2s	74
● Problem-Solving Strategy:	
Logical Reasoning	75
● Problem-Solving Applications:	
Mixed Strategies	76

Extending Addition and Subtraction Facts

● Sums Through 14	77
● Sums Through 16	78
● Sums Through 18	79
● Subtract from 13 and 14	80
● Subtract from 16 or Less	81
● Subtract from 18 or Less	82
● More Fact Families	83
● Three Addends	84
● Extending Facts to 20	85
● Missing Part of a Number Sentence	86
● Problem-Solving Strategy:	
Make a Table	87
● Problem-Solving Applications:	
Mixed Strategies	88

Geometry

● Open and Closed Figures; Sides and Corners	89
● Sorting Plane Figures	90
● Ways to Make Figures	91
● Solid Figures; Attributes of Solid Figures	92
Plane Figures on Solid Figures	93
● Graphing Attributes	94
Roll, Slide, and Stack	95
Slides and Flips	96
Slides and Turns	97
Pattern Rules	98
Give and Follow Directions	99
● Same Shape and Size	100
Symmetry	101
● Problem-Solving Strategy:	
Find/Use a Pattern	102
● Problem-Solving Applications:	
Mixed Strategies	103

Money and Time

● Nickels and Pennies	104
● Dimes and Pennies	105
● Quarters and Pennies	106
Count On by Dimes and Nickels	107
Count Mixed Coins	108
Equal Amounts	109
Spending Money	110
One Dollar	111
● Hour	112
● Half Hour	113
● Time Patterns	114
Elapsed Time	115
Estimate Time	116
Order Events	117
Ordinals to 31st	118
Calendar	119
● Problem-Solving Strategy:	
Logical Reasoning	120
● Problem-Solving Applications:	
Mixed Strategies	121

Measurement

C Length and Height:	
Nonstandard Units	122
Perimeter	123
C Compare Lengths.....	124
Inches	125
Feet	126
Capacity: Nonstandard Units.....	127
Cups, Pints, and Quarts.....	128
Weight: Nonstandard Units	129
Pounds.....	130
Centimeters.....	131
Liters.....	132
Kilograms.....	133
Temperature; Seasons.....	134
Choose a Measuring Tool.....	135
Problem-Solving Strategy:	
Make a Model	136
Problem-Solving Applications:	
Mixed Strategies	137

Add 2-Digit Numbers

C Add Tens and Dimes	138
C Add Ones and Tens	
Using Models.....	139
C Add Ones and Tens	
Without Models	140
C Add Money.....	141
C Add Ones or Tens	142
Nearest Ten	143
Estimate Sums	144
C Regroup Ones as Tens	
Using Models.....	145
C Regroup Ones as Tens	
Using a Chart.....	146
C Regroup Money	147
Problem-Solving Strategy:	
Guess and Test.....	148
Problem-Solving Applications:	
Mixed Strategies	149

Subtract 2-Digit Numbers

C Subtract Tens and Dimes	150
Subtract Ones and Tens	
Using Models.....	151
Subtract Ones and Tens	
Without Models	152
Subtract Money.....	153
C Subtract Ones or Tens	154
Estimate Differences	155
Regroup Tens as Ones	
Using Models.....	156
Regroup Tens as Ones	
Using a Chart.....	157
Regroup Dimes as Pennies	158
C Add and Subtract Mentally.....	159
C Balance Number Sentences.....	160
Missing Operations	161
Problem-Solving Strategy:	
Use More Than One Step	162
Problem-Solving Applications:	
Mixed Strategies	163

Fractions and Probability

C Equal Parts	164
C One Half, $\frac{1}{2}$.....	165
C One Third, $\frac{1}{3}$; One Fourth, $\frac{1}{4}$.....	166
Part of a Set.....	167
Certain, Possible, Impossible	168
More, Less, or Equally Likely	169
Arrangements.....	170
C Problem-Solving Strategy:	
Make a Model/Draw a Picture.....	171
Problem-Solving Applications:	
Mixed Strategies	172

Additional Common Core Contents

● Additional CCSS Lessons	173
● Practice for Additional CCSS Lessons.....	235
● Performance Tasks	266

Numbers 1 Through 4

Name _____

Numbers show how many.

1
one

2
two

3
three

4
four

How many bugs?

Write the number word and the number.

two 2

one 1

four 4

three 3

two 2

three 3

one 1

two 2

four 4

Numbers 5 and 0

Name _____

Sokeena 9-13-2021

5 five

0 zero

Write how many bugs.

Write the number word and the number.

Write the number word.

Draw dots for each number.

Numbers 6 Through 9

Name _____

6
six

8
eight

7
seven

9
nine

Write the number word and the number.

2.

3.

six

6

eight

8

nine

9

4.

5.

6.

seven

7

6

seven

7

7.

8.

9.

nine

8

7

eight

9

Numbers 10 Through 12

Name _____

10 ten

11 eleven

12 twelve

Write the number word and the number.

1.

2.

3.

ten

10

4.

nine

9

Write the number word.

5.

6.

7.

8.

10

9.

11

10.

12

One Fewer, One More

Name _____

3 is one fewer than 4 .

5 is one more than 4 .

Draw one more. Write the number.

1.

2.

3.

4.

X to show one fewer. Write the number.

5.

6.

7.

8.

Order 0 Through 12

Name _____

Write how many. Then order the numbers.

5

7

6

8

5, 6, 7, 8

10

9

12

11

9, 10, 11, 12

Write the missing numbers.

3. 4, 5, 6, 7

4. 8, 9, 10, 11

5. 2, 3, 4, 5

6. 0, 1, 2, 3

7. 9, 10, 11, 12

8. 6, 7, 8, 9

6 six

C Use with Lesson 1-7, pages 17–18 in the Student Book.
C Then go to Lesson 1-8, pages 19–20 in the Student Book.

Count On

Name _____

Count on. Write the missing numbers.

1.

2.

3.

4.

Count Back

Name _____

Count back. Write the missing numbers.

1.

2.

3.

4.

5.

8 eight

Use with Lesson 1-9, pages 21–22 in the Student Book.
Then go to Lesson 1-10, pages 23–24 in the Student Book.

Before, Between, After

Name _____

4 is just before 5

6 is just after 5

5 is between 4 and 6

1. Write the number that comes just before.

4, 5

3, 4

2, 3

7, 8

1, 2

8, 9

11, 12

9, 10

5, 6

10, 11

4, 1

6, 7

2. Write the number that comes just after.

8, 9

1, 2

9, 10

3, 4

5, 6

7, 8

10, 11

0, 1

11, 12

4, 5

2, 3

6, 7

3. Write the number that comes between.

8, 9, 10

7, 8, 9

1, 2, 3

5, 6, 7

0, 1, 2

6, 7, 8

2, 3, 4

3, 4, 5

Compare

Name _____

2 is less than 3
 $2 < 3$

3 is equal to 3
 $3 = 3$

4 is greater than 3
 $4 > 3$

Write $<$, $=$, or $>$.

1. $3 < 5$

2. $10 > 7$

3. $9 > 5$

4. $8 < 12$

5. $6 < 10$

6. $8 = 8$

7. $9 = 9$

8. $11 > 9$

9. $6 > 3$

10. twelve $>$ ten

11. seven $<$ eight

12. nine $<$ eleven

13. eight $>$ six

10 ten

Use with Lesson 1-11, pages 25–26 in the Student Book.
Then go to Lesson 1-12, pages 29–30 in the Student Book.

Ordinals 1st Through 10th

Name _____

I. Circle the position of each bug.

Ant	2nd	7th	3rd
Bee	2nd	5th	3rd
Caterpillar	4th	1st	10th
Caterpillar	9th	8th	4th
Butterfly	2nd	10th	6th

2. Color the box. Start at the left.

tenth

eighth

seventh

ninth

sixth

Ordinals: From Top or Bottom

Name _____

Look at the bugs on the tree.
Write the ordinal number for each bug.

1.

7th

2.

9th

3.

2nd

4.

5th

5.

3rd

6.

10th

7.

8th

8.

6th

9.

10th

10.

1st

10th
tenth

9th
ninth

8th
eighth

7th
seventh

6th
sixth

5th
fifth

4th
fourth

3rd
third

2nd
second

1st
first

Problem-Solving Strategy: Act It Out

Name _____

Read

Lee sees 5 .

Roland sees 2 more than Lee.

How many does Roland see?

Plan

Use and to act out the problem.

Write

Lee

Roland

(Count Roland's cubes.)

Roland sees 7 .

Check

Draw a picture to check.

Act it out.

1. Paula finds 7 .

Ricky finds one fewer than Paula.

How many does Ricky find?

Ricky finds 6 .

2. Iris catches 3 .

Fred catches 3 more than Iris.

How many does Fred catch? Fred catches 6 .

3. Bobby is fifth in line.

Mari is tenth in line.

How many children are between them?

4 children

4. Juan draws 12 .

Mary draws 2 fewer than Juan.

How many does Mary draw?

Mary draws 10 .

Problem-Solving Applications: Mixed Strategies

Name _____

Use a strategy you have learned.

1. Raul has a number between 5 and 10.
It is one fewer than 9.
What number does Raul have?

5, 7, 8, 9

Raul has number 8.

2. Jodi has 11 .
Rob has 1 more than Jodi.
How many does Rob have?

Rob has 12 .

3. Saul is third in line.
Enid is last in line.
There are 3 children between them.
What position is Enid in line?

Enid is 5th in line.

4. Jed caught 3 .
Sally caught 1 more than Jed.
How many did Sally catch?

Sally caught 4 .

Understanding Addition

Name _____

2

and

2

equals

4 in all.

Join to model each addition story.
Write the numbers.

1.

3

and

2

equals 5 in all.

2.

2

and

2

equals 4 in all.

3.

4

and

1

equals 5 in all.

4.

1

and

2

equals 3 in all.

Addition Sentences

Name _____

$$3 + 2 = 5$$

plus equals

$3 + 2 = 5$ is an addition sentence.

Add. Write each addition sentence.

$$\underline{4} + \underline{2} = \underline{6}$$

$$\underline{1} + \underline{4} = \underline{5}$$

$$\underline{3} + \underline{2} = \underline{5}$$

$$\underline{2} + \underline{1} = \underline{3}$$

$$\underline{1} + \underline{5} = \underline{6}$$

$$\underline{2} + \underline{3} = \underline{5}$$

$$\underline{3} + \underline{1} = \underline{4}$$

$$\underline{2} + \underline{3} = \underline{5}$$

Sums Through 6

Name _____

You can write an addition fact in two ways.

$$\begin{array}{r} 3 \text{ addend} \\ + 1 \text{ addend} \\ \hline 4 \text{ sum} \end{array}$$

$$\begin{array}{ccc} 3 & + & 1 = 4 \\ \text{addend} & \text{addend} & \text{sum} \end{array}$$

Add.

1.

$$\underline{3} + \underline{2} = \underline{5}$$

2.

$$0 + 4 = \underline{4}$$

3.

$$\underline{1} + \underline{2} = \underline{3}$$

4.

$$\underline{1} + \underline{1} = \underline{2}$$

5.

$$\begin{array}{r} + \\ 2 \\ \hline 2 \end{array}$$

6.

$$\begin{array}{r} + \\ 0 \\ \hline \end{array}$$

7.

$$\begin{array}{r} + \\ 5 \\ \hline \end{array}$$

8.

$$3 + 3 = \underline{6}$$

9.

$$2 + 4 = \underline{6}$$

Related Addition Facts

Name _____

Change the order of the addends and get the same sum.

Horizontal

$$\begin{array}{r} 3 + 1 = 4 \\ \cancel{\text{3}} \quad \cancel{\text{1}} \\ 1 + 3 = 4 \end{array}$$

Vertical

$$\begin{array}{r} 3 \\ + 1 \\ \hline 4 \end{array}$$

$$\begin{array}{r} 1 \\ + 3 \\ \hline 4 \end{array}$$

Add. Write the related addition fact.

$$\begin{array}{r} 3 \\ + 0 \\ \hline \end{array}$$

$$\begin{array}{r} 3 \\ + 3 \\ \hline \end{array}$$

$$\begin{array}{r} 5 \\ + 1 \\ \hline \end{array}$$

$$\begin{array}{r} 1 \\ + 2 \\ \hline \end{array}$$

$$\begin{array}{r} 1 \\ + 1 \\ \hline \end{array}$$

$$\begin{array}{r} 0 \\ + 6 \\ \hline \end{array}$$

$$\begin{array}{r} 0 \\ + 4 \\ \hline \end{array}$$

$$\begin{array}{r} 4 \\ + 0 \\ \hline \end{array}$$

$$\begin{array}{r} 2 \\ + 3 \\ \hline \end{array}$$

$$1 + 4 =$$

5

$$1 + 4 =$$

$$3 + 2 =$$

$$3 + 2 =$$

$$\underline{\quad} + \underline{\quad} = \underline{\quad}$$

Sums of 7 and 8

Name _____

$$\begin{array}{r} 6 \\ \text{part} \end{array} + \begin{array}{r} 2 \\ \text{part} \end{array} = \begin{array}{r} 8 \\ \text{whole} \end{array}$$

$$\begin{array}{r} 3 \\ + 4 \\ \hline 7 \end{array}$$

Find the sum. Draw and count to check.

1.

$$\begin{array}{r} 4 \\ + 3 \\ \hline 7 \end{array}$$

2.

$$\begin{array}{r} 4 \\ + 4 \\ \hline \end{array}$$

3.

$$\begin{array}{r} 1 \\ + 7 \\ \hline \end{array}$$

4.

$$\begin{array}{r} 3 \\ + 5 \\ \hline \end{array}$$

5.

$$\begin{array}{r} 2 \\ + 5 \\ \hline 7 \end{array}$$

6.

$$\begin{array}{r} 5 \\ + 3 \\ \hline \end{array}$$

7.

$$8 + 0 = \underline{8}$$

8.

$$1 + 6 = \underline{7}$$

9.

$$5 + 2 = \underline{7}$$

10.

$$3 + 4 = \underline{\quad}$$

11.

$$2 + 6 = \underline{\quad}$$

12.

$$6 + 1 = \underline{\quad}$$

Sums of 9 and 10

Name _____

$$\begin{array}{r} 6 \\ + 3 \\ \hline 9 \end{array}$$

$$\begin{array}{r} 8 \\ + 2 \\ \hline 10 \end{array}$$

Draw ● for the second addend.

Write the sum.

1.

$$7 + 2 = \underline{\quad 9 \quad}$$

$$4 + 6 = \underline{\quad 10 \quad}$$

$$2 + 8 = \underline{\quad 10 \quad}$$

2.

$$1 + 8 = \underline{\quad 9 \quad}$$

$$7 + 3 = \underline{\quad 10 \quad}$$

$$1 + 9 = \underline{\quad 10 \quad}$$

Find the sum. Use a and ● to check.

3.	$\begin{array}{r} 5 \\ + 4 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ + 7 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ + 5 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ + 5 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ + 6 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ + 1 \\ \hline \end{array}$
----	---	---	---	---	---	---

4.	$9 + 0 = \underline{\quad 9 \quad}$	$8 + 2 = \underline{\quad 10 \quad}$	$3 + 7 = \underline{\quad 10 \quad}$
----	-------------------------------------	--------------------------------------	--------------------------------------

5.	$6 + 4 = \underline{\quad 10 \quad}$	$7 + 3 = \underline{\quad 10 \quad}$	$6 + 3 = \underline{\quad 9 \quad}$
----	--------------------------------------	--------------------------------------	-------------------------------------

6.	$9 + 1 = \underline{\quad 10 \quad}$	$2 + 7 = \underline{\quad 9 \quad}$	$8 + 1 = \underline{\quad 9 \quad}$
----	--------------------------------------	-------------------------------------	-------------------------------------

Sums of 11 and 12

Name _____

$$\begin{array}{r} 5 \\ + 6 \\ \hline 11 \end{array}$$

$$\begin{array}{r} 7 \\ + 5 \\ \hline 12 \end{array}$$

Find the sum.

1.

$$6 + 6 = \underline{\quad 12 \quad}$$

$$8 + 3 = \underline{\quad \quad}$$

$$4 + 8 = \underline{\quad \quad}$$

2.

$$9 + 2 = \underline{\quad \quad}$$

$$5 + 7 = \underline{\quad \quad}$$

$$6 + 5 = \underline{\quad \quad}$$

Find the sum. Use a and to check.

$$\begin{array}{r} 4 \\ + 8 \\ \hline 12 \end{array}$$

$$\begin{array}{r} 4 \\ + 7 \\ \hline \end{array}$$

$$\begin{array}{r} 3 \\ + 9 \\ \hline \end{array}$$

$$\begin{array}{r} 9 \\ + 2 \\ \hline \end{array}$$

$$\begin{array}{r} 5 \\ + 7 \\ \hline \end{array}$$

$$\begin{array}{r} 2 \\ + 9 \\ \hline \end{array}$$

4.

$$8 + 4 = \underline{\quad 12 \quad}$$

$$6 + 5 = \underline{\quad 11 \quad}$$

$$7 + 4 = \underline{\quad 11 \quad}$$

5.

$$3 + 8 = \underline{\quad 11 \quad}$$

$$7 + 5 = \underline{\quad 12 \quad}$$

$$6 + 6 = \underline{\quad 12 \quad}$$

6.

$$9 + 3 = \underline{\quad 12 \quad}$$

$$5 + 6 = \underline{\quad 11 \quad}$$

$$9 + 2 = \underline{\quad 11 \quad}$$

7.

$$4 + 7 = \underline{\quad 11 \quad}$$

$$5 + 7 = \underline{\quad 12 \quad}$$

$$3 + 9 = \underline{\quad 12 \quad}$$

Other Names for Numbers

Name _____

$$5 = 3 + 2$$

$$5 = 2 + 3$$

$$5 = 1 + 4$$

Write two ways to show each number.

1.

$$5 = \underline{4} + \underline{1}$$

$$5 = \underline{2} + \underline{3}$$

2.

$$10 = \underline{5} + \underline{5}$$

$$10 = \underline{3} + \underline{7}$$

3.

$$8 = \underline{3} + \underline{5}$$

$$8 = \underline{4} + \underline{4}$$

4.

$$3 = \underline{1} + \underline{2}$$

$$3 = \underline{2} + \underline{1}$$

5.

$$9 = \underline{\quad} + \underline{\quad}$$

$$9 = \underline{5} + \underline{4}$$

6.

$$12 = \underline{\quad} + \underline{\quad}$$

$$12 = \underline{7} + \underline{5}$$

Number-Line Addition

Name _____

$$6 + 4 = ?$$

Go to 6.

Count on 4.

The number line shows $6 + 4 = 10$.

Write the addition sentence shown for each number line.

Add: Use Patterns

Name _____

Addition patterns can help you find sums.

Addend	Addend	Sum
3	1	4
4	1	5
5	1	6
6	1	7

Look for a pattern. Fill in the addition chart.

1.

Addend	Addend	Sum
4	0	4
4	1	5
4	2	6
4	3	7

2.

Addend	Addend	Sum
5	2	7
4	2	6
3	2	5
2	2	4

3.

Addend	Addend	Sum
4	0	4
5	0	5
6	0	6
7	0	7

4.

Addend	Addend	Sum
3	3	6
3	2	5
3	1	4
3	4	7

5.

Addend	Addend	Sum
6	6	12
6	5	11
6	4	10
	3	9

6.

Addend	Addend	Sum
0	4	4
1	4	5
2	4	6
	4	7

Doubles

Name _____

$$\begin{array}{r} 3 \text{ addend} \\ + 3 \text{ addend} \\ \hline 6 \text{ sum} \end{array}$$

$3 + 3 = 6$ is a doubles fact.

Write the doubles fact.

1.

$$\underline{6} + \underline{6} = \underline{12}$$

2.

$$\underline{2} + \underline{2} = \underline{4}$$

3.

$$\underline{4} + \underline{4} = \underline{8}$$

4.

$$\underline{5} + \underline{5} = \underline{10}$$

5.

$$\underline{3} + \underline{3} = \underline{6}$$

6.

$$\underline{1} + \underline{1} = \underline{2}$$

Find the sum.

$$\begin{array}{r} 5 \\ + 5 \\ \hline \end{array}$$

$$\begin{array}{r} 3 \\ + 3 \\ \hline \end{array}$$

$$\begin{array}{r} 2 \\ + 2 \\ \hline \end{array}$$

$$\begin{array}{r} 1 \\ + 1 \\ \hline \end{array}$$

$$\begin{array}{r} 4 \\ + 4 \\ \hline \end{array}$$

$$\begin{array}{r} 6 \\ + 6 \\ \hline \end{array}$$

Doubles Plus 1

Name _____

Use a doubles fact to add 1 + 2.

$1 + 1 = 2$

$1 + 2 = 3$

1 + 2 is 1 more than 1 + 1.

Find the sum.

1.

$3 + 3 = \underline{6}$

$3 + 4 = \underline{7}$

2.

$5 + 5 = \underline{10}$

$5 + 6 = \underline{11}$

3.

$2 + 2 = \underline{4}$

$2 + 3 = \underline{5}$

4.

$1 + 1 = \underline{2}$

$1 + 2 = \underline{3}$

5.

$$\begin{array}{r} 4 \\ + 4 \\ \hline 8 \end{array}$$

$$\begin{array}{r} 4 \\ + 5 \\ \hline 9 \end{array}$$

$$\begin{array}{r} 6. \quad 1 \\ + 1 \\ \hline 2 \end{array}$$

$$\begin{array}{r} 7. \quad 1 \\ + 2 \\ \hline 3 \end{array}$$

$$\begin{array}{r} 2 \\ + 3 \\ \hline 5 \end{array}$$

8.

$$\begin{array}{r} 3 \\ + 3 \\ \hline 6 \end{array}$$

$$\begin{array}{r} 3 \\ + 4 \\ \hline 7 \end{array}$$

$$\begin{array}{r} 9. \quad 0 \\ + 0 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 10. \quad 0 \\ + 1 \\ \hline 1 \end{array}$$

$$\begin{array}{r} 5 \\ + 5 \\ \hline 10 \end{array}$$

Add Three Numbers

Name _____

To add three numbers, group two addends.
Then add the third addend.

Add down.

$$\begin{array}{r} 2 \\ 4 \\ + 3 \\ \hline 9 \end{array}$$

Add up.

$$\begin{array}{r} 2 \\ 4 \\ + 3 \\ \hline 2 \\ + 7 \\ \hline 9 \end{array}$$

Add left to right.

$$2 + 4 + 3 = ?$$

$$\underline{6} + 3 = 9$$

Add right to left.

$$2 + 4 + 3 = ?$$

$$2 + \underline{7} = 9$$

Add. You can use to help.

1.
$$\begin{array}{r} 5 \\ 3 \\ + 3 \\ \hline \end{array}$$

$$\begin{array}{r} 5 \\ 6 \\ + 6 \\ \hline \end{array}$$

2.
$$\begin{array}{r} 3 \\ 1 \\ + 8 \\ \hline 12 \end{array}$$

$$\begin{array}{r} 4 \\ 8 \\ + 8 \\ \hline \end{array}$$

3.
$$\begin{array}{r} 2 \\ 2 \\ + 5 \\ \hline 9 \end{array}$$

$$\begin{array}{r} 4 \\ 9 \\ + 5 \\ \hline 9 \end{array}$$

4.
$$\begin{array}{r} 1 \\ 1 \\ + 9 \\ \hline \end{array}$$

$$\begin{array}{r} 1 \\ 1 \\ + 1 \\ \hline \end{array}$$

5.
$$\begin{array}{r} 3 \\ 2 \\ + 7 \\ \hline 12 \end{array}$$

$$\begin{array}{r} 7 \\ 7 \\ + 7 \\ \hline \end{array}$$

6.
$$\begin{array}{r} 2 \\ 1 \\ + 7 \\ \hline \end{array}$$

$$\begin{array}{r} 2 \\ 8 \\ + \underline{8} \\ \hline \end{array}$$

7.
$$\begin{array}{r} 3 \\ 1 \\ + 4 \\ \hline 8 \end{array}$$

$$\begin{array}{r} 3 \\ 5 \\ + 3 \\ \hline \end{array}$$

8.
$$\begin{array}{r} 3 \\ 4 \\ + 4 \\ \hline \end{array}$$

$$\begin{array}{r} 3 \\ 6 \\ + 6 \\ \hline \end{array}$$

9. $2 + 5 + 2 = ?$

$$\underline{7} + 2 = \underline{9}$$

10. $2 + 2 + 7 = ?$

$$2 + \underline{9} = \underline{11}$$

Addition Strategies with Three Addends

Name _____

Group doubles.

$$5 + 3 + 3 = ?$$

$$5 + \underline{6} = 11$$

Count on.

$$5 + 3 + 3 = ?$$

Start at 5.
Say 6, 7, 8.

$$\underline{8} + 3 = 11$$

Find the sum.

Circle the addends you add first.

1. $\underline{1} + \underline{1} + 6 = ?$

$$\underline{2} + \underline{6} = \underline{8}$$

2. $5 + \underline{3} + 2 = ?$

$$\underline{8} + \underline{1} = \underline{11}$$

3. $7 + \underline{2} + 2 = ?$

$$\underline{1} + \underline{2} = \underline{11}$$

4. $6 + 2 + 3 = ?$

$$\underline{8} + \underline{3} = \underline{11}$$

5. $3 + \underline{4} + 2 = ?$

$$\underline{7} + \underline{2} = \underline{9}$$

6. $3 + 5 + \underline{4} = ?$

$$\underline{8} + \underline{3} = \underline{11}$$

7. $1 + \underline{1} + 7 = ?$

$$\underline{1} + \underline{7} = \underline{9}$$

8. $4 + 2 + 4 = ?$

$$\underline{6} + \underline{4} = \underline{12}$$

9. $5 + \underline{1} + 5 = ?$

$$\underline{11} + \underline{5} = \underline{16}$$

10. $4 + \underline{5} + 3 = ?$

$$\underline{12} + \underline{3} = \underline{18}$$

11. $8 + \underline{1} + 1 = ?$

$$\underline{9} + \underline{1} = \underline{10}$$

12. $3 + \underline{3} + 6 = ?$

$$\underline{12} + \underline{6} = \underline{18}$$

Problem-Solving Strategy: Write a Number Sentence

Name _____

Read

Archie has 2 .

Millen has 6 more than Archie.

How many does Millen have?

Plan

Write a number sentence.

Write

$$\underline{2} + \underline{6} = \underline{8}$$

Millen has 8 .

Check

Change the order of the addends to check.

1. Buddy buys 7 .

Phyllis buys 2 more than Buddy.

$$\underline{7} + \underline{2} = \underline{9}$$

How many does Phyllis buy? Phyllis buys 1 .

2. Vinnie's mom brings 4 to the party.

Steve's dad brings 3 .

$$\underline{4} + \underline{3} = \underline{7}$$

How many do they bring in all? They bring 7 .

3. Billy picks 2 from his garden. His

sister Del picks 2 more than Billy.

$$\underline{2} + \underline{2} = \underline{4}$$

How many does Del pick?

Del picks 4 .

4. Erma puts 5 in her chili.

Paul puts only 1 in his chili.

$$\underline{5} + \underline{1} = \underline{6}$$

How many do they use in all?

They use 6 .

Problem-Solving Applications: Mixed Strategies

Name _____

Read → Plan → Write → Check

Use a strategy you have learned.

Strategy File

Act It Out

Draw a Picture

Write a Number Sentence

1. At the zoo, one cage has 2 . Another cage has 5 . How many are there in all?

There are 7 .

$$2 + 5 = 7$$

2. Kim sees 6 on a beach. Two more join them. How many are there in all?

There are 8 .

$$6 + 2 = 8$$

3. Ellis has 7 . His brother Percy has 1 . How many animals do they have in all? They have 8 animals in all.

4. On Monday, Ann sees 3 . On Tuesday, Todd sees as many as Ann saw. How many birds do they see in all? They see 6 birds in all.

5. Ray and Dora each catch 2 . Polly catches 1 . How many do they catch in all? They catch 5 in all.

Understanding Subtraction

Name _____

6 in all.

Take away 3 .

3 left.

Use to model each subtraction story.

Write the numbers.

1. in all.

Take away .

left.

2. in all.

Take away .

left.

3. in all.

Take away .

left.

4. in all.

Take away .

left.

Subtraction Sentences

Name _____

$5 - 2 = 3$ is a subtraction sentence.

$$\begin{array}{r} 5 \\ - \ 2 \\ \hline \text{minus} \quad \text>equals} \end{array}$$

A subtraction sentence uses the symbols – and =.

Subtract. Write each subtraction sentence.

1.

$$\underline{5} - \underline{3} = \underline{2}$$

2.

$$\underline{4} - \underline{\underline{\underline{\quad}}} = \underline{\underline{\underline{\quad}}}$$

3.

$$\underline{3} - \underline{\underline{\underline{\quad}}} = \underline{\underline{\underline{\quad}}}$$

4.

$$\underline{\underline{\underline{\quad}}} - \underline{\underline{\underline{\quad}}} = \underline{\underline{\underline{\quad}}}$$

5.

$$\underline{6} - \underline{\underline{\underline{\quad}}} = \underline{\underline{\underline{\quad}}}$$

6.

$$\underline{\underline{\underline{\quad}}} - \underline{\underline{\underline{\quad}}} = \underline{\underline{\underline{\quad}}}$$

Subtract from 6 or Less

Name _____

You can write subtraction facts in two ways.

$$\begin{array}{r} 4 \\ - 1 \\ \hline \end{array}$$

3 difference

$$4 - 1 = 3$$

difference

the number left

Find the difference.

1. $\begin{array}{r} 6 \\ - 1 \\ \hline 5 \end{array}$

$$6 - 1 = \underline{\quad}$$

2. $\begin{array}{r} 3 \\ - 3 \\ \hline \end{array}$

$$3 - 3 = \underline{\quad}$$

3. $\begin{array}{r} 5 \\ - 1 \\ \hline \end{array}$

$$5 - 1 = \underline{\quad}$$

4. $\begin{array}{r} 3 \\ - 2 \\ \hline \end{array}$

$$3 - 2 = \underline{\quad}$$

5.

$$4 - 4 = \underline{\quad}$$

6.

$$5 - 0 = \underline{\quad}$$

7.

$$3 - 1 = \underline{\quad}$$

8.

$$6 - 3 = \underline{\quad}$$

9.

$$6 - 5 = \underline{\quad}$$

10.

$$4 - 2 = \underline{\quad}$$

11.

$$\begin{array}{r} 3 \\ - 0 \\ \hline \end{array}$$

$$\begin{array}{r} 6 \\ - 2 \\ \hline \end{array}$$

$$\begin{array}{r} 2 \\ - 1 \\ \hline \end{array}$$

$$\begin{array}{r} 5 \\ - 3 \\ \hline \end{array}$$

$$\begin{array}{r} 6 \\ - 4 \\ \hline \end{array}$$

$$\begin{array}{r} 4 \\ - 3 \\ \hline \end{array}$$

All or Zero

Name _____

$$\begin{array}{r} 5 \\ - 5 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 5 \\ - 0 \\ \hline 5 \end{array}$$

$$\begin{array}{r} 5 \\ + 0 \\ \hline 5 \end{array}$$

Add or subtract.

$$\begin{array}{r} 4 \\ - 4 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 3 \\ + 0 \\ \hline 3 \end{array}$$

$$\begin{array}{r} 2 \\ - 0 \\ \hline 2 \end{array}$$

$$\begin{array}{r} 1 \\ - 1 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 6 \\ - 0 \\ \hline 6 \end{array}$$

$$\begin{array}{r} 1 \\ + 0 \\ \hline 1 \end{array}$$

$$\begin{array}{r} 2 \\ + 0 \\ \hline 2 \end{array}$$

$$\begin{array}{r} 4 \\ - 0 \\ \hline 4 \end{array}$$

$$\begin{array}{r} 3 \\ - 3 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 6 \\ + 0 \\ \hline 6 \end{array}$$

$$\begin{array}{r} 4 \\ + 0 \\ \hline 4 \end{array}$$

$$\begin{array}{r} 5 \\ + 0 \\ \hline 5 \end{array}$$

$$\begin{array}{r} 6 \\ - 6 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 0 \\ + 5 \\ \hline 5 \end{array}$$

$$\begin{array}{r} 3 \\ - 0 \\ \hline 3 \end{array}$$

$$16. \quad 2 - 2 = \underline{\quad}$$

$$17. \quad 1 - 0 = \underline{\quad}$$

Problem Solving Solve. Use a problem-solving strategy.

18. Jean brought 3 to the test. None of them got lost. How many does she have?

$$\underline{3} - \underline{0} = \underline{3}$$

19. Cissy has 6 on her desk. She gives them all to Rick. How many does she have left?

$$\underline{6} - \underline{6} = \underline{0}$$

Subtract from 7 and 8

Name _____

Ed has 7 . Three are red and some are green. How many apples are not red?

$$\begin{array}{r} 7 \text{ whole} \\ - 3 \text{ part} \\ \hline 4 \text{ part} \end{array}$$

$$\begin{array}{rcl} 7 & - & 3 = 4 \\ \text{whole} & - & \text{part} = \text{part} \end{array}$$

4 are not red.

Subtract.

$$\begin{array}{r} 1. \quad 7 \qquad \qquad 8 \qquad \qquad 7 \qquad \qquad 8 \qquad \qquad 7 \qquad \qquad 8 \\ - 1 \qquad - 4 \qquad - 2 \qquad - 2 \qquad - 4 \qquad - 7 \\ \hline 6 \qquad \qquad 4 \qquad \qquad 5 \qquad \qquad 6 \qquad \qquad 3 \qquad \qquad 1 \end{array}$$

$$\begin{array}{r} 2. \quad 8 \qquad \qquad 7 \qquad \qquad 7 \qquad \qquad 8 \qquad \qquad 8 \qquad \qquad 8 \\ - 8 \qquad - 7 \qquad - 5 \qquad - 3 \qquad - 5 \qquad - 0 \\ \hline 0 \qquad \qquad 0 \qquad \qquad 2 \qquad \qquad 5 \qquad \qquad 3 \qquad \qquad 8 \end{array}$$

$$\begin{array}{r} 3. \quad 7 \qquad \qquad 8 \qquad \qquad 7 \qquad \qquad 7 \qquad \qquad 8 \qquad \qquad 8 \\ - 3 \qquad - 6 \qquad - 6 \qquad - 0 \qquad - 1 \qquad - 4 \\ \hline 4 \qquad \qquad 2 \qquad \qquad 1 \qquad \qquad 7 \qquad \qquad 7 \qquad \qquad 4 \end{array}$$

$$\begin{array}{r} 4. \quad 7 - 7 = \underline{\quad 0 \quad} \quad 7 - 1 = \underline{\quad 6 \quad} \quad 8 - 5 = \underline{\quad 3 \quad} \end{array}$$

$$\begin{array}{r} 5. \quad 8 - 4 = \underline{\quad 4 \quad} \quad 7 - 4 = \underline{\quad 3 \quad} \quad 7 - 2 = \underline{\quad 5 \quad} \end{array}$$

Subtract from 9 and 10

Name _____

$$9 - 2 = 7$$

$$10 - 4 = 6$$

Circle the part taken away. Write the difference.

1.		2.	
	$10 - 6 = \underline{4}$		$10 - 3 = \underline{7}$
3.		4.	
	$9 - 8 = \underline{1}$		$9 - 0 = \underline{9}$

Subtract. Use a and to help.

5.	$\begin{array}{r} 9 \\ - 4 \\ \hline 5 \end{array}$	$\begin{array}{r} 10 \\ - 5 \\ \hline 5 \end{array}$	$\begin{array}{r} 9 \\ - 1 \\ \hline 8 \end{array}$	$\begin{array}{r} 10 \\ - 7 \\ \hline 3 \end{array}$	$\begin{array}{r} 9 \\ - 3 \\ \hline 6 \end{array}$	$\begin{array}{r} 10 \\ - 8 \\ \hline 2 \end{array}$
6.	$\begin{array}{r} 10 \\ - 6 \\ \hline 4 \end{array}$	$\begin{array}{r} 9 \\ - 6 \\ \hline 3 \end{array}$	$\begin{array}{r} 10 \\ - 1 \\ \hline 9 \end{array}$	$\begin{array}{r} 9 \\ - 2 \\ \hline 7 \end{array}$	$\begin{array}{r} 10 \\ - 0 \\ \hline 10 \end{array}$	$\begin{array}{r} 9 \\ - 5 \\ \hline 4 \end{array}$
7.	$\begin{array}{r} 10 \\ - 9 \\ \hline 1 \end{array}$	$\begin{array}{r} 9 \\ - 7 \\ \hline 2 \end{array}$	$\begin{array}{r} 10 \\ - 10 \\ \hline 0 \end{array}$	$\begin{array}{r} 10 \\ - 2 \\ \hline 8 \end{array}$	$\begin{array}{r} 9 \\ - 0 \\ \hline 9 \end{array}$	$\begin{array}{r} 9 \\ - 9 \\ \hline 0 \end{array}$

Subtract from 11 and 12

Name _____

$$11 - 4 = 7$$

$$12 - 4 = 8$$

Write the difference.

1.

$$12 - 3 = \underline{9}$$

2.

$$12 - 6 = \underline{6}$$

Subtract. Use a and ● to help.

3.	$\begin{array}{r} 12 \\ - 5 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 4 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 7 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 5 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ - 8 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 6 \\ \hline \end{array}$
----	--	--	--	--	--	--

4.	$\begin{array}{r} 12 \\ - 9 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ - 7 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 2 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 8 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 3 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ - 6 \\ \hline \end{array}$
----	--	--	--	--	--	--

5.	$\begin{array}{r} 12 \\ - 3 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 3 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 5 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ - 8 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 4 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ - 5 \\ \hline \end{array}$
----	--	--	--	--	--	--

6.	$\begin{array}{r} 11 \\ - 9 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ - 4 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 7 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ - 6 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 6 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ - 3 \\ \hline \end{array}$
----	--	--	--	--	--	--

Number-Line Subtraction

Name _____

$$12 - 6 = ?$$

Go to 12. Count back 6. The difference is 6.

$$12 - 6 = 6$$

Show how you count back to subtract. Write the difference.

1. $11 - 9 = \underline{2}$

2. $12 - 3 = \underline{9}$

3. $11 - 3 = \underline{8}$

4. $8 - 6 = \underline{2}$

Rules and Patterns

Name _____

Whole	Part Taken Away	Part Left
12	5	7
11	5	6
10	5	5

What is the pattern rule?

$$12 - 5 = 7$$

$$11 - 5 = 6$$

$$10 - 5 = 5$$

The pattern rule is $- 5$.

Fill in the subtraction chart. What is the pattern rule?

1.

Whole	Part Taken Away	Part Left
9	6	3
8	6	2
7	6	1

The pattern rule is $- 6$.

2.

Whole	Part Taken Away	Part Left
6	3	3
7	3	4
8	3	5

The pattern rule is $- 3$.

3.

Whole	Part Taken Away	Part Left
8	7	1
9	7	2
10	7	3

The pattern rule is $- 7$.

4.

Whole	Part Taken Away	Part Left
7	2	5
6	2	4
5	2	3

The pattern rule is $- 2$.

5.

Whole	Part Taken Away	Part Left
4	1	3
3	1	2
2	1	1

The pattern rule is $- 1$.

6.

Whole	Part Taken Away	Part Left
8	0	8
7	0	7
6	0	6

The pattern rule is $- 1$.

Related Subtraction Facts

Name _____

Related subtraction facts have the same numbers.
They can be written two ways.

Horizontal

$$7 - 3 = 4$$

$$7 - 4 = 3$$

Subtract. Write the related subtraction fact.

1.

$$\begin{array}{r} 5 \\ - 1 \\ \hline 4 \end{array}$$

2.

$$\begin{array}{r} 11 \\ - 6 \\ \hline 5 \end{array}$$

3.

$$\begin{array}{r} 9 \\ - 5 \\ \hline 4 \end{array}$$

4.

$$\begin{array}{r} 10 \\ - 4 \\ \hline 6 \end{array}$$

5.

$$\begin{array}{r} 12 \\ - 3 \\ \hline 9 \end{array}$$

6.

$$\begin{array}{r} 7 \\ - 0 \\ \hline 7 \end{array}$$

7.

$$\begin{array}{r} 3 \\ - 2 \\ \hline 1 \end{array}$$

8.

$$\begin{array}{r} 11 \\ - 7 \\ \hline 4 \end{array}$$

9.

$$\begin{array}{r} 8 \\ - 6 \\ \hline 2 \end{array}$$

10.

$$\begin{array}{r} 12 \\ - 8 \\ \hline 4 \end{array}$$

11.

$$\begin{array}{r} 7 \\ - 5 \\ \hline 2 \end{array}$$

12.

$$\begin{array}{r} 11 \\ - 8 \\ \hline 3 \end{array}$$

Relate Addition and Subtraction

Name _____

These are related addition and subtraction facts.
Both facts use the same numbers.

$$5 + 1 = 6$$

$$6 - 1 = 5$$

Add. Write the related subtraction fact.

1.

$$2 + 3 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

2.

$$3 + 3 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

3.

$$2 + 2 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

4.

$$1 + 3 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

5.

$$0 + 3 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

6.

$$4 + 2 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

7.

$$5 + 3 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

8.

$$6 + 3 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

9.

$$3 + 4 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

10.

$$5 + 4 = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

Check by Adding

Name _____

Subtract.

$6 - 3 = 3$

Add the parts to check.

$3 + 3 = 6$

Subtract. Then add to check your answer.

1. $7 - 2 = \underline{5}$

$\underline{5} + \underline{2} = \underline{7}$

2. $11 - 6 = \underline{5}$

$\underline{5} + \underline{6} = \underline{11}$

3. $8 - 4 = \underline{4}$

$\underline{4} + \underline{4} = \underline{8}$

4. $9 - 3 = \underline{6}$

$\underline{6} + \underline{3} = \underline{9}$

5.
$$\begin{array}{r} 10 \\ - 4 \\ \hline 6 \end{array}$$

6.
$$\begin{array}{r} 11 \\ - 4 \\ \hline 7 \end{array}$$

7.
$$\begin{array}{r} 12 \\ - 4 \\ \hline 8 \end{array}$$

8.
$$\begin{array}{r} 11 \\ - 8 \\ \hline 3 \end{array}$$

9.
$$\begin{array}{r} 12 \\ - 7 \\ \hline 5 \end{array}$$

10.
$$\begin{array}{r} 10 \\ - 8 \\ \hline 2 \end{array}$$

11.
$$\begin{array}{r} 9 \\ - 5 \\ \hline 4 \end{array}$$

12.
$$\begin{array}{r} 10 \\ - 7 \\ \hline 3 \end{array}$$

13.
$$\begin{array}{r} 12 \\ - 6 \\ \hline 6 \end{array}$$

Fact Families

Name _____

A fact family shows all the related facts for a set of numbers. This is the fact family for 3, 4, 7.

$$4 + 3 = 7$$

$$3 + 4 = 7$$

$$7 - 3 = 4$$

$$7 - 4 = 3$$

Write the fact families.

1.

$$2 + 4 = \underline{\quad}$$

$$\underline{4} + \underline{2} = \underline{\quad}$$

$$\underline{\quad} - \underline{4} = \underline{\quad}$$

$$\underline{\quad} - \underline{2} = \underline{\quad}$$

2.

$$3 + 5 = \underline{\quad}$$

$$\underline{3} + \underline{5} = \underline{\quad}$$

$$\underline{\quad} - \underline{5} = \underline{\quad}$$

$$\underline{\quad} - \underline{3} = \underline{\quad}$$

3.

$$\begin{array}{r} 3 \\ + 8 \\ \hline \end{array} + \underline{\quad} - \underline{\quad} - \underline{\quad}$$

4.

$$\begin{array}{r} 5 \\ + 7 \\ \hline \end{array} + \underline{\quad} - \underline{\quad} - \underline{\quad}$$

5.

$$\begin{array}{r} 6 \\ + 3 \\ \hline \end{array} + \underline{\quad} - \underline{\quad} - \underline{\quad}$$

6.

$$\begin{array}{r} 2 \\ + 6 \\ \hline \end{array} + \underline{\quad} - \underline{\quad} - \underline{\quad}$$

Find Missing Addends

Name _____

Use a subtraction fact to find the missing addend.

$$3 + ? = 6$$

$$6 - 3 = 3$$

The missing addend is 3.

$$\text{So } 3 + 3 = 6.$$

Use a subtraction fact to find the missing addend.

1. $7 + ? = 11$

$$\underline{11} - \underline{7} = \underline{4}$$

So $7 + \underline{4} = 11.$

2. $8 + ? = 10$

$$\underline{10} - \underline{8} = \underline{2}$$

So $8 + \underline{2} = 10.$

3. $? + 6 = 6$

$$\underline{6} - \underline{6} = \underline{0}$$

So $\underline{0} + 6 = 6.$

4. $5 + ? = 12$

$$\underline{12} - \underline{5} = \underline{7}$$

So $5 + \underline{7} = 12.$

5. $3 + ? = 8$

$$\underline{8} - \underline{3} = \underline{5}$$

So $3 + \underline{5} = 8.$

6. $2 + ? = 11$

$$\underline{11} - \underline{2} = \underline{9}$$

So $2 + \underline{9} = 11.$

7. $? + 2 = 9$

$$\underline{9} - \underline{2} = \underline{7}$$

So $\underline{7} + 2 = 9.$

8.

$?$	
$+ 3$	$- \quad$
$\underline{4}$	$\underline{\quad}$

$$\frac{+ 3}{\underline{4}}$$
$$\frac{+ 3}{\underline{4}}$$

9.

6	
$+ ?$	$- \quad$
$\underline{10}$	$\underline{\quad}$

$$\frac{+ ?}{\underline{10}}$$
$$\frac{- \quad}{\underline{6}}$$
$$\frac{+ 4}{\underline{10}}$$

Subtract to Compare

Name _____

Draw □ to compare. Then subtract to find the answer.

Rose has 9 .

Rose	9
Joy	6

Joy has 6 .

Who has more?

How many more?

$$9 - 6 = 3$$

Rose has 3 more .

Draw □ to compare. Then subtract.

1. Alex bought 4 .

Alex	4
Tia	8

Tia bought 8 .

Who bought
fewer ?

How many fewer?

$$\underline{8} - \underline{4} = \underline{4}$$

Alex bought 4 fewer .

2.

Ron has 4 .

Ron	4
Tom	7

Tom has 7 .

Who has
more ?

How many more?

$$\underline{7} - \underline{4} = \underline{3}$$

Tom has 3 more .

3.

Ted holds 6 .

Ted	6
Bryan	10

Bryan holds 10 .

Who holds
more ?

How many more?

$$\underline{10} - \underline{6} = \underline{4}$$

Bryan holds 4 more .

Problem-Solving Strategy: Choose the Operation

Name _____

Read Chen has 4 .

He finds 2 more .

How many does Chen have now?

Plan Act out the problem.

Choose: add subtract

$$\begin{array}{r} 4 \\ + 2 \\ \hline \end{array}$$

Write a number sentence.

Write

Chen has 6 now.

Check

Change the order of the addends to check.

1. Paul has 7 .

He gives 3 away.

How many does Paul have now?

add

subtract

$$\begin{array}{r} 7 \\ - 3 \\ \hline \end{array}$$

Paul has 4 now.

2. 6 are on Tai's desk.

Tai puts 3 more there.

How many are on Tai's desk then?

add

subtract

$$\begin{array}{r} 6 \\ + 3 \\ \hline \end{array}$$

9 are on Tai's desk.

3. John finds 1 in his desk

and 5 on the floor.

How many does John find in all?

add

subtract

$$\begin{array}{r} 1 \\ + 5 \\ \hline \end{array}$$

John finds 6 .

4. Alma sees 9 .

5 are taken away.

How many are left?

add

subtract

$$\begin{array}{r} 9 \\ - 5 \\ \hline \end{array}$$

There are 4 left.

Problem-Solving Applications: Mixed Strategies

Name _____

Read Plan Write Check

Use a strategy you have learned.

1. Lisa ate 3 yesterday.

She ate 4 today.

How many did Lisa eat in all?

Lisa ate 7 in all.

$$3 + 4 = 7$$

2. There are 9 on the closet shelf.

4 fall off the shelf.

How many are left?

There are 5 left.

$$9 - 4 = 5$$

3. Sandy wants to find 10 .

She found 8 yesterday.

How many more does she need to find?

Sandy needs to find 2 more .

$$10 - 8 = 2$$

4. Ben and Paula each buy 5 .

Karen buys 2 .

How many do they buy in all?

They buy 7 in all.

$$5 + 5 + 2 = 7$$

5. Josie is third in line in the lunch room.

Her friend Eva is 2 children behind Josie.

What position is Eva in line?

Eva is 5th in line.

$$3 + 2 = 5$$

Strategy File

Choose the Operation

Act It Out

Draw a Picture

Venn Diagrams

Name _____

You can use a Venn diagram to show how things are different and how they are alike.

These shapes are grey.

These shapes are large.

These shapes are grey and large.

Draw each shape inside the Venn diagram.

These shapes are large.

These shapes are grey.

These shapes are large and grey.

2.

These circles are small.

These circles are white.

These circles are small and white.

Tally Charts

Name _____

Tally the stickers.

Each I stands for 1.

Each **||||** stands for 5.

Number of Stickers		
Sticker	Tally	Number
		5
		3
		2

Tally to show how many of each toy dinosaur.

X each dinosaur as you make each tally.

1.

Toy Dinosaurs

		3
		5
		3

2. How many dinosaurs did you tally in all?

$$\underline{5} + \underline{4} = \underline{3} + \underline{2} = \underline{1}$$

3. How many more than did you tally?

$$\underline{5} - \underline{3} = \underline{2}$$

Picture Graphs

Name _____

Make a picture graph. Draw and color one picture for each shape.

Use the picture graph above.

1. Which key chain was the favorite of the fewest children? Circle it.

2. Which key chain was the favorite of the most children? Circle it.

3. How many more children like than ?

$$\underline{5} - \underline{2} = \underline{3}$$
 more

4. How many more children like than ?

$$\underline{5} - \underline{2} = \underline{3}$$
 more

5. How many fewer children like than ?

$$\underline{5} - \underline{2} = \underline{3}$$
 fewer

Pictographs

Name _____

A pictograph uses a symbol to show how many.

Draw 1 ☺ for each tally mark to complete the pictograph.

Mia's Toy Collection	
Toy	Tally

Use the pictograph above.

1. Which animal does Mia have the most of? Circle it.

2. Which animal does Mia have the fewest of? Circle it.

3. How many more than does Mia have?

$$\underline{4} - \underline{3} = \underline{1}$$
 more

4. How many toys does Mia have altogether?

$$\underline{1} + \underline{4} + \underline{3} = \underline{8}$$
 toys

Bar Graphs

Name _____

A bar graph uses bars to show how many.

Complete the bar graph from the tally chart.

Color 1 for each shape.

Shapes in a Picture	
Shape	Tally
■	
●	
□	
▲	

Use the bar graph above.

1. How many fewer ▲ are there than ■?

$$\underline{+} \quad \underline{-} = \underline{\quad}$$

2. How many more ▲ are there than ●?

$$\underline{-} \quad \underline{-} = \underline{\quad}$$

3. How many ■ and □ are there in all?

$$\underline{+} \quad \underline{=} \quad \underline{\quad}$$

4. Which shape is there the most of? Circle it.

5. Which shape is there the fewest of? Circle it.

6. How many ▲ and ■ are there in all?

$$\underline{+} \quad \underline{=} \quad \underline{\quad}$$

Surveys

Name _____

Survey people to collect information, or data, about what they like or think.

Ask 12 friends if they want to go to the river, the ocean, or the lake on their next vacation.

1. Complete the tally chart.

Make a tally mark for each answer.

2. Use your tally chart to make a bar graph.

Color 1 for each tally.

Favorite Vacation Place	
Place	Tally
River	
Ocean	
Lake	

Use the bar graph above.

3. Which place do your friends like best?

4. Which place do your friends like least?

5. How many like the lake or the river best?

_____ = 6

6. How many like the lake or the ocean best?

_____ = 11

Range; Mode

Name _____

Order these numbers: 6, 1, 9, 9, 4

1, 4, 6, 9, 9
least greatest

The range is the greatest number minus the least.

$$9 - 1 = 8 \leftarrow \text{range}$$

The range is 8.

9, 9, 4

1, 4, 6, 9, 9

The mode is the number that you see most often in a set of data.

The mode is 9.

Use the data below to answer questions 1 through 3.

5, 6, 9, 6, 11

I. Order the numbers. 5, 6, 7, 8, 9, 10

2. What is the range of the set of data?

$$\underline{\underline{11}} - \underline{\underline{5}} = \underline{\underline{6}}$$

3. What is the mode of the set of data?

Use the data below to answer questions 4 through 6.

6, 9, 8, 12, 8

4. Order the numbers. _____, _____, _____, _____, _____

5. What is the range of the set of data?

$$\underline{12} - 6 = 5$$

6. What is the mode of the set of data?

Median

Name _____

The median is the middle number in an ordered set of numbers.

12, 9, 7, 10, 11

To find the median, order the numbers.

7, 9, **10**, 11, 12

The median is 10.

Order the numbers. Circle the median.

George's Stickers	
	7
	12
	8
	3
	3

Sandy's Beads	
	3
	6
	11
	7
	2

3, —, 7, 8, 12

2, —, 6, 7, —

Kate's Ball Collection	
	10
	4
	3
	8
	5

Mr. Hoody's Tools	
	2
	4
	3
	8
	5

—, —, 5, 8, 11

—, —, 3, 5, —

Problem-Solving Strategy: Use a Graph

Name _____

If Gabe buys two more ,
how many will he have?

Use the graph. Count how many .
Write a number sentence.

Gabe has 4 .

Add 2 more.

$$4 + 2 = 6$$

Gabe will have 6 .

Draw a picture to
show how many .

Use the pictograph above to solve each problem.

1. How many fewer than
does Gabe have? Gabe has ____ fewer than .
2. If Gabe buys 3 more ,
how many will he have? Gabe will have ____ .
3. How many more than
does Gabe have? Gabe has ____ more than .

Problem-Solving Applications: Mixed Strategies

Name _____

Read Plan Write Check

Use a strategy you have learned.

Books Read During Vacation	
Jonah	✓ ✓ ✓ ✓
Ty	✓ ✓ ✓
Sammy	✓ ✓ ✓ ✓ ✓ ✓
Key: Each ✓ stands for 1 book.	

Use the graph above for problems 1–3.

1. Who read twice as many books as Ty?

Circle your answer.

Jonah

Sammy

2. How many books in all do Ty and Sammy read?

_____ books in all.

3. How many fewer books does Jonah read than Sammy?

_____ fewer books.

4. Emily has 3 _____ and 4 _____.

She also has 3 _____.

How many stuffed animals does Emily have in all?

Emily has _____ stuffed animals in all.

5. Tim has 8 _____.

Deb has 3 fewer _____ than Tim.

How many _____ does Deb have?

Deb has _____.

Strategy File

Act It Out

Draw a Picture

Use a Graph

Write a Number Sentence

Tens and Ones

Name _____

Make groups of 10 to find how many tens and ones.

2 groups of 10
and 4 more.

2 tens 4 ones

Circle groups of 10.

Write how many tens and ones.

2 tens 3 ones

2 tens 3 ones

2 tens 3 ones

1 ten 4 ones

1 ten 4 ones

1 tens 4 ones

— tens — one

— tens — ones

— ten — ones

Tens Through One Hundred

Name _____

You can use models to count by tens.

Write how many tens.

Write the number and the number word.

1.

3 tens = 30

thirty

2.

6 tens = 60

sixty

3.

5 tens = 50

fifty

4.

8 tens = 80

eighty

Write the number.

5.

2 tens = 20

6.

7 tens = 70

7.

3 tens = 30

8.

9 tens = 90

9.

1 ten = 10

10.

6 tens = 60

11.

4 tens = 40

12.

10 tens = 100

13.

9 tens = 90

14.

8 tens = 80

15.

5 tens = 50

16.

1 ten = 10

Numbers 11 Through 19

Name _____

Thirteen is 1 group of ten
and 3 ones.

eleven twelve thirteen fourteen fifteen
sixteen seventeen eighteen nineteen

1 ten 3 ones

13

thirteen

Write the number and the number word.

1.

17

2.

15

seventeen

fifteen

Write the number.

3. 1 ten 4 ones 14

4. 1 ten 8 ones 18

5. 1 ten 9 ones 19

6. 1 ten 1 one 11

7. 1 ten 6 ones 16

8. 1 ten 2 ones 12

9. 1 ten 3 ones 13

10. 1 ten 0 ones 10

11. 1 ten 5 ones 15

12. 1 ten 7 ones 17

Numbers 20 Through 39

Name _____

2 tens 7 ones
27
twenty-seven

3 tens 2 ones
32
thirty-two

Write how many.

1.

3 tens 0 ones

30

2.

4 tens 4 ones

24

3.

5 tens 8 ones

38

4.

2 tens 5 ones

25

5.

3 tens 1 one

31

6.

2 tens 8 ones

28

7.

2 tens 6 ones

36

8.

2 tens 3 ones

33

9.

2 tens 1 ones

29

Numbers 40 Through 59

Name _____

tens	ones

4 tens 2 ones

42

forty-two

tens	ones

5 tens 7 ones

57

fifty-seven

Write how many.

5 tens 1 one

51

fifty-one

5 tens 2 ones

forty-eight

5 tens 3 ones

forty

5 tens 4 ones

fifty-three

5 tens 5 ones

forty-four

5 tens 6 ones

fifty

5 tens 7 ones

forty-seven

5 tens 8 ones

forty-five

5 tens 9 ones

fifty-nine

Numbers 90 Through 100

Name _____

9 tens 5 ones
95
ninety-five

10 tens 0 ones
100
one hundred

Write how many.

9 tens 0 ones 9 tens 9 ones 1 tens 3 ones
90 99 13 ninety ninety-nine ninety-three

9 tens 2 ones 1 tens 6 ones 1 tens 8 ones
92 96 18 ninety-two ninety-six ninety-eight

1 tens 1 one 1 tens 7 ones 1 tens 4 ones
11 17 14 ninety-one ninety-seven ninety-four

Estimate Quantities

Name _____

Use the 10 to estimate, or make a good guess, about how many.

10 shells

about 20

about 30

About how many of each are there?
Circle your estimate.

1.

10 sand dollars

about 20
about 40

2.

10 shells

about 20
about 40

3.

10 shells

about 20
about 30

4.

10 shells

about 30
about 40

5.

10 sand dollars

about 20
about 30

6.

10 shells

about 20
about 40

Place Value of Digits; Expanded Form

Name _____

38

38 = 3 tens 8 ones

$30 + 8$ expanded form

Circle the value of the underlined digit.

1. 67

6

60

2. 53

5

50

3. 21

1

10

4. 98

8 80

5. 76

7 70

6. 19

9 90

7. 35

3 30

8. 44

4 40

9. 82

2 20

Write the number for each expanded form.

10.

$30 + 4 = \underline{\hspace{2cm}}$

11.

$90 + 5 = \underline{\hspace{2cm}}$

12.

$40 + 7 = \underline{\hspace{2cm}}$

13.

$70 + 8 = \underline{\hspace{2cm}}$

14.

$80 + 6 = \underline{\hspace{2cm}}$

15.

$60 + 9 = \underline{\hspace{2cm}}$

One Less, One More

Name _____

Count back 1 to find the number that is one less.

56 is one less than 57.

57

Count on 1 to find the number that is one more.

58 is one more than 57.

Count on 1.

Write the number that is 1 more.

1. 63, 64

2. 90, 91

3. 29, 30

4. 69, 70

5. 44, 45

6. 72, 73

Count back 1.

Write the number that is 1 less.

7. 71, 80

8. 38, 39

9. 85, 86

10. 89, 90

11. 19, 20

12. 56, 57

Count on or back. Write the number that is 1 less and the number that is 1 more.

13. 85, 96, 97

14. 37, 40, 34

15. 78, 79, 80

16. 68, 71, 65

17. 43, 46, 49

18. 52, 53, 54

Identify Before, Between, After

Name _____

22 is between 21 and 23.

21 is just before 22.

23 is just after 22.

Write the number that comes between.

Write the numbers that come
just before and just after.

Compare Numbers

Name _____

Compare 55 and 29.

55 has more tens.

55 is greater than 29.

$55 > 29$

Compare 63 and 67.

Both have 6 tens.

63 has fewer ones.

63 is less than 67.

$63 < 67$

Compare 18 and 18.

Both have 1 ten.

Both have 8 ones.

They are equal.

$18 = 18$

Compare. Write $<$, $=$, or $>$.

1. 21

31

2. 47

41

3. 22

19

4. 56

96

5. 74

47

6. 44

44

7. 81

81

8. 29

33

9. 65

66

10. 63

36

11. 58

95

12. 98

98

Write the numbers to show which is greater or less.

13.

37

73

 >

14.

85

83

 <

15.

51

49

 >

16.

62

26

 <

17.

39

37

 >

18.

44

54

 <

Order Numbers

Name _____

A number line can help you put numbers in order.

Write the missing numbers.

Hundred-Chart Patterns; 10 Less, 10 More

Name _____

- I. Complete the hundred chart.

1		3		5		7		9	
	12		14		16		18		20
21		23		25		27		29	
	32		34		36		38		40
41		43		45		47		49	
	52		54		56		58		60
61		63		65		67		69	
	72		74		76		78		80
81		83		85		87		89	
	92		94		96		98		100

Write the number that is 10 more or 10 less.

2. 66, 76

3. 19, 10

4. 50, 60

5. 8, 18

6. 71, 81

7. 34, 44

8. 14, 14

9. 100, 100

10. 53, 53

11. 71, 81

12. 35, 45

13. 42, 42

Even and Odd

Name _____

Make pairs to decide even or odd.

8 is an even number.
None are left over.

7 is an odd number.
One is left over.

Write the number in all. Circle pairs.
Is the number even or odd?

6 is even.

10 is even.

10 is even.

7 is odd.

3 is odd.

5 is odd.

12 is even.

6 is even.

Count by 5s

Name _____

- I. Count by 5s to complete the hundred chart.

1	2	3	4		6	7	8	9	
11	12	13	14	15	16	17	18	19	20
21	22	23	24		26	27	28	29	30
31	32	33	34	35	36	37	38	39	
41	42	43	44	45	46	47	48	49	50
51	52	53	54		56	57	58	59	60
61	62	63	64	65	66	67	68	69	6
71	72	73	74		76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94		96	97	98	99	

2. Color the count-by-5 numbers on the chart.

Count by 5s. Write the missing numbers.

3. 60, 65, 70, 75, 80, 85, 90, 95, 100

4. 25, 30, 35, 40, 45, 50, 55, 60, 65

5. 5, 10, 15, 20, 25, 30, 35, 40, 45

Count by 2s

Name _____

- I. Count by 2s to complete the hundred chart.

1		3	4	5		7	8	9	
11	12	13		15	16	17		19	20
21		23	24	25		27	28	29	
31	32	33		35	36	37		39	40
41		43		45		47	48	49	
51	52	53	54	55	56	57		59	60
61		63		65	66	67		69	
71	72	73	74	75		77	78	79	80
81		83	84	85	86	87	88	89	90
91	92	93	94	95		97		99	

2. Color the count-by-2 numbers on the chart.

Count by 2s. Write the missing numbers.

3. $70, 72, \underline{74}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, 84, \underline{\quad}$

4. $55, \underline{57}, \underline{\quad}, 61, \underline{\quad}, \underline{\quad}, 67, \underline{\quad}, \underline{\quad}$

5. $48, 46, \underline{\quad}, \underline{\quad}, 40, \underline{\quad}, \underline{\quad}, 34, \underline{\quad}$

Problem-Solving Strategy: Logical Reasoning

Name _____

Read

Ella spins and gets a number.
It is greater than 30.
It is less than 40.
It has 3 ones.
What number does Ella get?

Plan

Use clues to make a list
to help solve the problem.

Write

Which numbers on the
spinner are greater than 30?

33, 37, 41

Which of those numbers
are less than 40?

33, 37

Which of those numbers
has 3 ones?

33

Check

Does your answer match the clues?

- Mark spins and gets a number.
The number is greater than 10.
It is less than 20.
It has 1 one.
What number does Mark get?

Mark gets 11.

- Jules spins and gets a number.
The number is greater than 70.
It is less than 90.
It has no ones in the ones place.
What number does Jules get?

Jules gets 82.

Problem-Solving Applications: Mixed Strategies

Name _____

Read

Plan

Write

Check

Use a strategy you have learned.

Strategy File

Draw a Picture

Write a Number Sentence

Use Logical Reasoning

1. Marci writes a number between 30 and 40.
It has 9 ones.

What number does Marci write?

Marci writes 39.

2. Paula counts 9 in the store.

She counts a dozen .

How many more than does Paula count?

Paula counts 3 more .

3. Cleon writes three numbers between 6 and 20.

They are 1-digit numbers.

What numbers does Cleon write?

7, 8, 9

4. Ruth has 5 tens 4 ones.

Paul has 10 more than Ruth.

Di has 1 less than Paul.

What numbers do they have?

Ruth 54, Paul 64, Di 63

Sums Through 14

Name _____

$$8 + 5 = ?$$

Make 10.

$$8 + \underline{\hspace{2cm}} = 10$$

$$10 + \underline{\hspace{2cm}} = 13$$

$$\text{So } 8 + \underline{\hspace{2cm}} = 13.$$

Add.

1.

2.

$$9 + 5 = \underline{\hspace{2cm}}$$

$$8 + 6 = \underline{\hspace{2cm}}$$

3.

4.

$$7 + 7 = \underline{\hspace{2cm}}$$

$$9 + 4 = \underline{\hspace{2cm}}$$

5.

$$\begin{array}{r} 4 \\ + 9 \\ \hline 13 \end{array}$$

6.

$$\begin{array}{r} 5 \\ + 8 \\ \hline 13 \end{array}$$

7.

$$\begin{array}{r} 7 \\ + 7 \\ \hline \end{array}$$

8.

$$\begin{array}{r} 9 \\ + 4 \\ \hline \end{array}$$

9.

$$\begin{array}{r} 8 \\ + 5 \\ \hline \end{array}$$

10.

$$6 + 7 = \underline{\hspace{2cm}}$$

11.

$$7 + 6 = \underline{\hspace{2cm}}$$

12.

$$5 + 9 = \underline{\hspace{2cm}}$$

13.

$$8 + 6 = \underline{\hspace{2cm}}$$

14.

$$9 + 5 = \underline{\hspace{2cm}}$$

15.

$$5 + 8 = \underline{\hspace{2cm}}$$

Sums Through 16

Name _____

$6 + 9 = ?$

Model the addends.

Fill the ten-frame
to make 10.

$6 + 4 = 10$

$10 + 5 = 15$

So $6 + 9 = 15$.

Make 10. Then add.

$$\begin{array}{r} 9 \\ + 7 \\ \hline \end{array}$$

$$\begin{array}{r} 7 \\ + 9 \\ \hline \end{array}$$

$6 + 9 = \underline{\quad}$

$9 + 6 = \underline{\quad}$

5.

$$\begin{array}{r} 8 \\ + 8 \\ \hline \end{array}$$

6.

$$\begin{array}{r} 7 \\ + 8 \\ \hline \end{array}$$

7.

$$\begin{array}{r} 8 \\ + 7 \\ \hline \end{array}$$

8.

$$\begin{array}{r} 8 \\ + 5 \\ \hline \end{array}$$

9.

$$\begin{array}{r} 7 \\ + 6 \\ \hline \end{array}$$

10.

$9 + 7 = \underline{\quad}$

11.

$8 + 7 = \underline{\quad}$

12.

$6 + 7 = \underline{\quad}$

Sums Through 18

Name _____

$8 + 9 = ?$

$8 + 8 = 16$

8 + 9 is 1 more.

So $8 + 9 = 17$.

Make 10 to add.

$9 + 9 = ?$

$9 + 1 = 10$

$10 + 8 = 18$

So $9 + 9 = 18$.

Write the second addend. Then add.

$9 + \underline{6} = \underline{15}$

$8 + \underline{8} = \underline{16}$

$9 + \underline{9} = \underline{18}$

$9 + \underline{8} = \underline{17}$

Find the sum.

5. $\begin{array}{r} 8 \\ + 9 \\ \hline \end{array}$

6. $\begin{array}{r} 7 \\ + 9 \\ \hline \end{array}$

7. $\begin{array}{r} 8 \\ + 8 \\ \hline \end{array}$

8. $\begin{array}{r} 9 \\ + 9 \\ \hline \end{array}$

9. $\begin{array}{r} 6 \\ + 9 \\ \hline \end{array}$

10. $\begin{array}{r} 10 \\ + 5 \\ \hline \end{array}$

11.

$9 + 7 = \underline{16}$

12.

$5 + 9 = \underline{14}$

13.

$8 + 7 = \underline{15}$

14.

$7 + 7 = \underline{14}$

15.

$6 + 8 = \underline{14}$

16.

$9 + 9 = \underline{18}$

Subtract from 13 and 14

Name _____

$14 - 6 = ?$

Subtract. Add to check.

$$\begin{array}{r} 14 \\ - 6 \\ \hline 8 \end{array} \qquad \begin{array}{r} 8 \\ + 6 \\ \hline 14 \end{array}$$

$14 - 6 = 8$

Subtract. Add to check.

1.

$13 - 4 = \underline{\quad}$

$\underline{\quad} + \underline{\quad} = \underline{\quad}$

2.

$14 - 9 = \underline{\quad}$

$\underline{\quad} + \underline{\quad} = \underline{\quad}$

3.

$14 - 5 = \underline{\quad}$

$\underline{\quad} + \underline{\quad} = \underline{\quad}$

4.

$13 - 8 = \underline{\quad}$

$\underline{\quad} + \underline{\quad} = \underline{\quad}$

5.

$$\begin{array}{r} 13 \\ - 9 \\ \hline 4 \end{array}$$

6.

$$\begin{array}{r} 14 \\ - 7 \\ \hline 7 \end{array}$$

7.

$$\begin{array}{r} 14 \\ - 8 \\ \hline \end{array} + \boxed{\quad}$$

8.

$$\begin{array}{r} 13 \\ - 5 \\ \hline 8 \end{array} + \boxed{\quad} = \underline{\quad}$$

9.

$$\begin{array}{r} 13 \\ - 7 \\ \hline 6 \end{array} + \boxed{\quad} = \underline{\quad}$$

Subtract from 16 or Less

Name _____

$$16 - 7 = ?$$

$$16 - 7 = 9$$

Subtract. Circle the part taken away.

$$\begin{array}{r} 15 \\ - 9 \\ \hline \end{array}$$

$$\begin{array}{r} 14 \\ - 9 \\ \hline \end{array}$$

$$\begin{array}{r} 15 \\ - 7 \\ \hline \end{array}$$

$$\begin{array}{r} 16 \\ - 8 \\ \hline \end{array}$$

$$\begin{array}{r} 16 \\ - 9 \\ \hline \end{array}$$

$$\begin{array}{r} 15 \\ - 6 \\ \hline \end{array}$$

Find the difference. Use and to help.

$$\begin{array}{r} 14 \\ - 7 \\ \hline \end{array}$$

$$\begin{array}{r} 14 \\ - 6 \\ \hline \end{array}$$

$$\begin{array}{r} 15 \\ - 8 \\ \hline \end{array}$$

$$\begin{array}{r} 15 \\ - 7 \\ \hline \end{array}$$

$$\begin{array}{r} 16 \\ - 9 \\ \hline \end{array}$$

12.

$$16 - 7 = \underline{\quad}$$

13.

$$16 - 9 = \underline{\quad}$$

14.

$$16 - 8 = \underline{\quad}$$

Subtract from 18 or Less

Name _____

$18 - 9 = ?$

$18 - 9 = 9$

Subtract.

1. $\begin{array}{r} 15 \\ - 6 \\ \hline \end{array}$

2. $\begin{array}{r} 17 \\ - 9 \\ \hline \end{array}$

3. $\begin{array}{r} 17 \\ - 8 \\ \hline \end{array}$

4. $\begin{array}{r} 16 \\ - 9 \\ \hline \end{array}$

5. $\begin{array}{r} 18 \\ - 9 \\ \hline \end{array}$

6. $\begin{array}{r} 15 \\ - 9 \\ \hline \end{array}$

7. $\begin{array}{r} 16 \\ - 8 \\ \hline \end{array}$

8. $\begin{array}{r} 17 \\ - 9 \\ \hline \end{array}$

9. $\begin{array}{r} 16 \\ - 7 \\ \hline \end{array}$

10. $\begin{array}{r} 15 \\ - 8 \\ \hline \end{array}$

11. $17 - 8 = \underline{\quad}$

12. $16 - 9 = \underline{\quad}$

13. $15 - 7 = \underline{\quad}$

More Fact Families

Name _____

$$\begin{array}{rrr} 7 & 4 & 11 \\ + & - & = \end{array}$$

A fact family shows all the related facts.

$$\begin{array}{rrrcl} 7 & + & 4 & = & 11 \\ 4 & + & 7 & = & 11 \\ 11 & - & 4 & = & 7 \\ 11 & - & 7 & = & 4 \end{array}$$

Write each fact family.

1. 15 6 9

$$\begin{array}{r} 6 \\ + \\ 9 \end{array} = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 9 \\ + \\ 6 \end{array} = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 15 \\ - \\ 9 \end{array} = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 15 \\ - \\ 6 \end{array} = \underline{\hspace{2cm}}$$

2. 16 7 9

$$\begin{array}{r} 7 \\ + \\ 9 \end{array} = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 9 \\ + \\ 7 \end{array} = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 16 \\ - \\ 9 \end{array} = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 16 \\ - \\ 7 \end{array} = \underline{\hspace{2cm}}$$

3. 9 18

$$\begin{array}{r} 9 \\ + \\ 9 \end{array} = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 18 \\ - \\ 9 \end{array} = \underline{\hspace{2cm}}$$

4. 8 16

$$\begin{array}{r} 8 \\ + \\ 8 \end{array} = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 16 \\ - \\ 8 \end{array} = \underline{\hspace{2cm}}$$

5. 8
6

6. 8
9

Three Addends

Name _____

You can change the order to add.

Add down.

$$\begin{array}{r} 2 \\ 7 \\ + 5 \\ \hline 14 \end{array}$$

Add up.

$$\begin{array}{r} 5 \\ 3 \\ + 4 \\ \hline 12 \end{array}$$

Make 10.

$$\begin{array}{r} 7 \\ 1 \\ + 3 \\ \hline 11 \end{array}$$

Use doubles.

$$\begin{array}{r} 3 \\ 3 \\ + 2 \\ \hline 8 \end{array}$$

Add. Circle the numbers you add first.

1.

$$\begin{array}{r} 6 \\ 4 \\ + 2 \\ \hline 2 \end{array}$$

2.

$$\begin{array}{r} 3 \\ 6 \\ + 4 \\ \hline 3 \end{array}$$

3.

$$\begin{array}{r} 2 \\ 7 \\ + 5 \\ \hline 7 \end{array}$$

4.

$$\begin{array}{r} 7 \\ 3 \\ + 4 \\ \hline 1 \end{array}$$

5.

$$\begin{array}{r} 3 \\ 3 \\ + 6 \\ \hline 3 \end{array}$$

6.

$$\begin{array}{r} 1 \\ 8 \\ + 2 \\ \hline 1 \end{array}$$

7.

$$\begin{array}{r} 6 \\ 3 \\ + 2 \\ \hline 1 \end{array}$$

8.

$$\begin{array}{r} 9 \\ 3 \\ + 0 \\ \hline 3 \end{array}$$

9.

$$\begin{array}{r} 5 \\ 4 \\ + 4 \\ \hline 3 \end{array}$$

10.

$$7 + 0 + 8 = ?$$

$$\underline{7} + \underline{ } = \underline{ }$$

11.

$$4 + 5 + 1 = ?$$

$$\underline{ } + \underline{1} = \underline{ }$$

Extending Facts to 20

Name _____

$$9 + 10 = ?$$

Use a doubles fact.

$$9 + 9 = 18$$

10 is one more than 9.

$$\text{So } 9 + 10 = 19.$$

$$20 - 10 = ?$$

Take away 10.

$$20 - 10 = 10$$

Add or subtract.

1.

$$9 + 9 = \underline{\underline{18}}$$

2.

$$8 + 7 = \underline{\underline{15}}$$

3.

$$9 + 8 = \underline{\underline{17}}$$

4.

$$10 + 9 = \underline{\underline{\quad}}$$

5.

$$19 - 9 = \underline{\underline{10}}$$

6.

$$8 + 9 = \underline{\underline{\quad}}$$

7.

$$20 - 10 = \underline{\underline{\quad}}$$

8.

$$15 - 9 = \underline{\underline{6}}$$

9.

$$7 + 9 = \underline{\underline{16}}$$

10.

$$17 - 9 = \underline{\underline{8}}$$

11.

$$16 - 7 = \underline{\underline{9}}$$

12.

$$8 + 8 = \underline{\underline{\quad}}$$

13.

$$18$$

14.

$$17$$

15.

$$9$$

16.

$$8$$

17.

$$20$$

$$- 9$$

$$- 8$$

$$+ 6$$

$$+ 7$$

$$- 10$$

$$\underline{\underline{9}}$$

$$\underline{\underline{9}}$$

$$\underline{\underline{15}}$$

$$\underline{\underline{15}}$$

$$\underline{\underline{10}}$$

18.

$$7$$

19.

$$16$$

20.

$$10$$

21.

$$15$$

22.

$$10$$

$$+ 7$$

$$- 7$$

$$+ 10$$

$$- 8$$

$$+ 9$$

Missing Part of a Number Sentence

Name _____

$8 + ? = 12$

Count up.

$8 + ? = 12$

Count up from 8:
9, 10, 11, 12

$8 + 4 = 12$

Use a subtraction fact.

$8 + ? = 12$

$12 - 8 = 4$

$\text{So } 8 + 4 = 12.$

What number will make each number sentence true?
Use to help.

1.

$7 + \boxed{9} = 16$

2.

$8 + \boxed{5} = 13$

3.

$\boxed{7} + 4 = 11$

4.

$17 - \boxed{8} = 9$

5.

$\boxed{10} + 10 = 20$

6.

$14 - \boxed{9} = 5$

7.

$6 + \boxed{7} = 13$

8.

$\boxed{9} + 10 = 19$

9.

$\boxed{7} + 7 = 14$

10.

$17 - \boxed{9} = 8$

11.

$9 + \boxed{3} = 12$

12.

$\boxed{10} - 9 = 9$

13.

$11 - \boxed{8} = 3$

14.

$9 + \boxed{7} = 16$

Problem-Solving Strategy: Make a Table

Name _____

Read

Hans found 5 pairs of gloves in his closet.
One pair of gloves fits 10 fingers.
How many fingers fit in 5 pairs of gloves?

Plan

Name the facts you know.

- One pair of gloves fits 10 fingers.
- Hans has 5 pairs of gloves.

Make a table.

Write

Pairs of Gloves	1	2	3	4	5
Fingers	10	20	30	40	50

50 fingers fit in 5 pairs of gloves.

Check

Draw a picture. Did you find 50 fingers in all?

Make a table to solve each problem.

1. Manuel sees 6 bicycles in the store.

Each bicycle has 2 wheels.

How many wheels does Manuel see in all?

Bicycles	1	2	3	4	5	6
Wheels	2	4	6	8	10	12

_____ wheels
in all.

2. Mr. Hall hands out 5 bags of crackers.

Each bag has 5 crackers in it.

How many crackers does Mr. Hall hand out in all?

Bag	1	2	3	4	5
Crackers	5	10	15	20	25

_____ crackers in all.

Problem-Solving Applications: Mixed Strategies

Name _____

Strategy File

Draw a Picture
Choose the Operation
Make a Table

Use a strategy you have learned.

1. Each has 5 strings.

There are 7 .

How many strings are there in all?

There are 35 strings in all.

2. There are 14 in the aquarium.

There are 9 .

How many more than are in the aquarium?

There are 5 more .

3. June is 7th in line at the garage sale.

Polly is 2nd in line.

How many people are in line between June and Polly?

4 people are between June and Polly.

4. Jimmy spins and gets a number.

The number is greater than 40.

It is less than 51.

It has 7 ones.

What number does Jimmy get?

Jimmy gets 47.

Open and Closed Figures; Sides and Corners

Name _____

A closed flat figure is a plane figure.

An open figure is not a plane figure.

Draw to make each a closed figure.

Trace each figure.

Draw a • at each vertex.

Write how many sides and corners.

_____ sides

_____ corners

_____ sides

_____ corners

Sorting Plane Figures

Name _____

4 square corners

rectangle

square

0 square corners

triangle

circle

4 corners

trapezoid

Sort the figures.

Circle the figures that follow each rule.

Rule	Figures
1. 0 corners	
2. 3 corners and 3 sides	
3. 4 square corners and 4 sides	
4. 5 corners and 5 sides	
5. 1 square corner and 3 sides	
6. 4 corners and 4 sides	

Ways to Make Figures

Name _____

You can make a plane figure or take apart a plane figure using different shapes.

2 and 2 →

Use pattern blocks to make a new figure.

How many of each pattern block did you use?

1. Use to make a .

2. Use to make a .

3 / make 1 .

3 make 1 .

3. Use to make a .

4. Use to make a .

6 make 1 .

2 make 1 .

Draw lines to show how to make different shapes.

Use pattern blocks to help.

5. 2

6. 3

7. 6

C Use with Lesson 7-4, pages 303–304 in the Student Book.

C Then go to Lessons 7-5 and 7-6, pages 307–310 in the Student Book and Lesson 7-5A, pages 207–208 in this Workbook.

Solid Figures; Attributes of Solid Figures

Name _____

Solid figures are not flat.

face →

vertex (corner)

edge ←

flat surface

curved surface ←

Color the figures that have the same shape.

1.

rectangular
prism

2.

cylinder

3.

pyramid

What does the arrow point to?

Circle the correct math word.

4.

curved surface

vertex

5.

edge

face

6.

curved surface

flat surface

Plane Figures on Solid Figures

Name _____

The flat surfaces of solid figures
are shaped like plane figures.

Circle any solid figure with a flat surface that
matches the plane figure at the beginning of each row.

1.

2.

3.

Write **square**, **triangle**, or **circle**.

4. The face of a cube is a square.

5. Four faces of a pyramid are triangle.

6. Each flat surface of a cylinder is a circle.

7. The flat surface of a cone is a circle.

Graphing Attributes

Name _____

- I. Make a bar graph for each.

Color 1 box for each side on the plane figures.

2. Color 1 box for each corner on the solid figures.

3. Color 1 box for each face on the solid figures.

Roll, Slide, and Stack

Name _____

Solid figures can move in different ways.

A sphere has a curved surface.

A sphere can roll.

A rectangular prism has a flat surface.

A rectangular prism can slide.

A cylinder has flat surfaces on the top and bottom.

A cylinder can stack.

Circle solid figures to show if they roll, slide, or stack.

1.	roll						
2.	slide						
3.	stack						

4. Color each solid figure that both rolls and slides.

5. Color each solid figure that both stacks and rolls.

Slides and Flips

Name _____

Plane figures can move in different ways.

A slide moves a figure along a line.

slide

A flip turns a figure over.

flip

Model each slide or flip.

Trace the shape to show how it was moved.

1. Flip the □.

2. Slide the ♥.

3. Slide the ↗.

4. Flip the ▶.

Look for a slide pattern or a flip pattern.

Draw what is most likely to come next.

5.

6.

Slides and Turns

Name _____

A figure can slide to the right, left, up, or down.

A figure can turn around a point.

Model each slide or turn.

Trace the shape to show how it was moved.

1. Slide the

2. Turn the

3. Turn the

4. Slide the

Look for a slide pattern or a turn pattern.

Draw what is most likely to come next.

5.

6.

Pattern Rules

Name _____

This is a slide pattern.

This is a turn pattern.

This is a flip pattern.

Write **slide**, **turn**, or **flip** to describe each pattern.

Circle what comes next in each pattern.

1.

This is a slide pattern.

2.

This is a slide pattern.

3.

This is a turn pattern.

4.

This is a slide pattern.

Give and Follow Directions

Name _____

Where is the ?

To find out, start at 0.

Count across.

Count up.

The is 9 across
and 7 up.

Use the grid above.

Write the numbers to tell where each figure is.

	Figure	Across	Up
1.		4	3
2.		1	1
3.		8	1
4.		2	7

	Figure	Across	Up
5.			
6.			
7.			
8.			

Look at the grid. Circle the correct answer.

9. Is the to the right right left
or left of the ?
10. Is the above or below the ? above below

Same Shape and Size

Name _____

Both figures are triangles with the same shape.

The figures are the same size.
The sides match exactly.

These figures are the same shape and the same size.

Color the figures with the same shape and the same size.

1.

2.

3.

4.

Symmetry

Name _____

Shapes with symmetry have matching parts.

The fold line is the line of symmetry.

Look for a line of symmetry. Circle the shape that shows matching parts.

I.

2.

3.

4.

5.

6.

7.

8.

9.

10.

II.

Problem-Solving Strategy: Find/Use a Pattern

Name _____

Read

How can you show this pattern using numbers?

Plan

Look for a pattern rule.

Think of the parts that repeat.

The pattern rule is 1 circle, then 3 rectangles.

Show the same pattern with the numbers 1 and 3.

Write

1, 3, 1, 3, , 3

Check

Does your number pattern follow the same rule as the shape pattern?

Find a pattern. Show the same pattern using numbers.

Problem-Solving Applications: Mixed Strategies

Name _____

Use a strategy you have learned.

1. Bari makes a pattern with these shapes. Show the same pattern using numbers.

2. Bill spins and gets a number. The number is less than 100. It is more than 90. It has 3 ones. What number does Bill get?

Bill gets 93.

Use Logical Reasoning
Write a Number Sentence
Find/Use a Pattern

3. I can slide.
I cannot roll.
I have 6 faces.
What figure am I?
Circle your answer.

4. Dusty spends 8¢ on a . He pays with a dime. How much does Dusty have left?
Dusty has _____ left.

Nickels and Pennies

Name _____

Count on by 5s for nickels.

5¢

10¢

15¢

Count on by 1s for pennies.

16¢

17¢

18¢

Count on. Write how much.

1.

5¢

6¢

7¢

8¢

9¢

10¢

10¢

2.

¢

¢

¢

¢

¢

¢

3.

5¢

¢

¢

¢

¢

4.

¢

¢

¢

¢

¢

¢

Dimes and Pennies

Name _____

Count on by 10s for dimes. Count on by 1s for pennies.

10¢

20¢

30¢

31¢

32¢

33¢

Count on. Write how much.

1.

10¢

11¢

12¢

13¢

14¢

15¢

15¢

2.

16¢

17¢

18¢

19¢

20¢

21¢

3.

22¢

23¢

24¢

25¢

26¢

27¢

4.

28¢

29¢

30¢

31¢

32¢

33¢

Quarters and Pennies

Name _____

Count on by 1¢ from 25¢.

25¢, 26¢, 27¢, 28¢, 29¢

Count on. Write how much.

1.

25¢, 26¢, 27¢

28¢

2.

25¢, 26¢, 27¢, 28¢

29¢

3.

25¢, 26¢

27¢

4.

25¢, 26¢, 27¢, 28¢, 29¢, 30¢

31¢

Count On by Dimes and Nickels

Name _____

Sort like coins and
order from greatest
to least value.

Then count on.

10¢, 20¢, 30¢, 35¢, 40¢

Count on. Write how much.

1.

10¢, 20¢, 30¢, 35¢, 40¢, 45¢

2.

10¢, 20¢, 30¢, 35¢, 40¢, 45¢

3.

10¢, 20¢, 30¢, 40¢, 45¢, 50¢

4.

10¢, 20¢, 30¢, 40¢, 50¢, 60¢

Count Mixed Coins

Name _____

Sort like coins and
order from greatest
to least value.

Then count on.

25¢, 35¢, 45¢, 50¢, 51¢

Count on. Write how much.

1.

25¢, 35¢, 40¢, 41¢, 42¢, 43¢

2.

10¢, 20¢, 30¢, 40¢, 50¢, 60¢

3.

25¢, 30¢, 40¢, 50¢, 60¢

4.

25¢, 30¢, 40¢, 45¢, 50¢, 55¢

Equal Amounts

Name _____

5¢, 10¢, 15¢

10¢, 15¢

10¢, 11¢, 12¢, 13¢, 14¢, 15¢

Write each amount.

Circle the amounts that are equal.

1.

27¢

26¢

27¢

2.

12¢

21¢

21¢

3.

36¢

36¢

5¢

4.

15¢

15¢

15¢

Spending Money

Name _____

Is there enough money to buy a for 47¢?

$$43¢ < 47¢$$

25¢, 35¢, 40¢, 41¢, 42¢, 43¢

There is not enough money to buy the .

Write the amount you have. Draw or to tell if you have enough money to buy the toy.

1.

58¢

25¢, 35¢, 45¢, 55¢, 60¢

2.

46¢

25¢, 30¢, 35¢, 40¢, 37¢

3.

33¢

10¢, 20¢, 25¢, 35¢, 40¢

4.

57¢

25¢, 35¢, 45¢, 55¢, 56¢

One Dollar

Name _____

Skip count to show \$1.

one dollar = 100 cents
\$1 = 100¢

25¢, 50¢, 75¢, 100¢

Skip count. Circle to show \$1.

1.

2.

3.

4.

Read the time on each clock as 3 o'clock.

Write the time shown.

1.

_____ o'clock

2.

_____ o'clock

3.

_____ o'clock

4.

_____ o'clock

5.

_____ o'clock

6.

_____ o'clock

7.

_____ o'clock

8.

_____ o'clock

9.

_____ o'clock

10.

_____ o'clock

11.

_____ o'clock

12.

_____ o'clock

Half Hour

Name _____

There are 30 minutes in 1 half hour.

Read this time as:
4 thirty
half past 4
30 minutes after 4

Write the time
in two ways.

1.

half past

2.

 thirty

3.

 minutes after

4.

half past

5.

 thirty

6.

 minutes after

7.

half past

Time Patterns

Name _____

9:00

10:00

11:00

This is an hour pattern.

This is a half-hour pattern.

Write or draw to complete each time pattern.
Circle to show the type of pattern.

1.

half hour

2

o'clock

4

o'clock

5

o'clock

hour

2.

half hour

3

half hour

4

half hour

5

thirty

thirty

half past 12

hour

Elapsed Time

Name _____

9:30 to 10:30 is 1 hour.

Draw or write the time to show how long each activity takes. Circle how long.

1. Read a book.

Begin at
1:30.

End at
2:30.

1 half hour

I hour

2. Eat breakfast.

Begin at
5:30.

End at
6:30.

1 half hour

I hour

3. Eat dinner.

Begin at
6:30.

End at
7:00.

1 half hour

6:30

to

7:00

I hour

4. Do homework.

Begin at
4:00.

End at
5:00.

1 half hour

4:00

to

5:00

I hour

Estimate Time

Name _____

To estimate time means to tell about how long it takes to do something.

brush your teeth

about 1 minute

go to the dentist

about 1 hour

Color to show how long.

1. make a cake

about 1 minute

about 1 hour

2. take a picture

about 1 minute

about 1 hour

3. do a puzzle

about 1 minute

about 1 hour

4. do laundry

about 1 minute

about 1 hour

5. tie a shoe

about 1 minute

about 1 hour

6. open a present

about 1 minute

about 1 hour

Order Events

Name _____

Many events, or activities, happen in an order.

Write morning, afternoon, or evening to order these events.

1.

afternoon

evening

2.

3.

Ordinals to 31st

Name _____

Ten toys are on the shelf.

The ordinal of the next toy put on the shelf is 11th.

11th

12th

13th

14th

15th

16th

17th

18th

19th

20th

30th

29th

28th

27th

26th

25th

24th

23rd

22nd

21st

31st

Write the ordinal number for each toy.

1.

27th

2.

10th

3.

11th

4.

12th

5.

1st

6.

2nd

7.

3rd

8.

4th

9.

5th

10.

6th

11.

7th

12.

8th

Calendar

Name _____

November

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

Use the calendar above to answer each question.

1. The day November 1 falls on is Wednesday.
2. November has 30 days.
3. The date for the first Tuesday is 1.
4. November has 4 Mondays and 4 Thursdays.
5. One week after November 15 falls on a Wednesday.
6. The last day of November falls on a Thursday.
7. The day December 1 falls on is a Friday.

Problem-Solving Strategy: Logical Reasoning

Name _____

1 Read

Tom arrives at school at 8:30.
Jack arrives last.
Kate and Rachel arrive after Tom.
Who gets to school second?

2 Plan

Make a list. Put the facts in the order that they happen.

3 Write

When	Who
8:30	Tom
next	Kate and Rachel
last	Jack

Kate and Rachel get to school second.

4 Check

Read the problem again to be sure your facts are in the correct order.

Use logical reasoning to solve the problem.

I. Grandpa goes to sleep at 10:00.

Amy goes to bed before Grandpa.

Justin goes to bed after Grandpa.

Who goes to bed last?

When	Who
before Grandpa	Amy
10:00	Grandpa
after Grandpa	Justin

_____ goes to bed last.

Problem-Solving Applications: Mixed Strategies

Name _____

Read

Plan

Write

Check

Use a strategy you have learned.

1. Cora's shape has 6 corners.

Paula's shape has 3 sides.

Abbey's shape has 2 more corners than Paula's.

Circle Abbey's shape.

Strategy File

Logical Reasoning

Draw a Picture

Make a Table

Choose the Operation

2. Tamara is thinking of a number greater than 40.

It is an odd number.

It has more ones than tens.

What is Tamara's number?

37

49

51

32

Tamara's number is 49.

3. Anna is eighth in line.

Carl is 3 places behind her.

The man behind Carl is last in line.

What is Carl's position in line?

Carl is 11th in line.

4. Andrea has 6 .

Erika has 1 .

How much money do they have altogether?

They have 11 altogether.

Length and Height: Nonstandard Units

Name _____

Length is how long something is.
Height is how tall something is.

The is about 6 long.

Use to measure the length or height
of each picture.

1.

about 7

2.

about 10

3.

about 5

4.

about 2

5.

about 10

Inches

Name _____

Measure the length or height of each picture in inches.

5.

about
1 inch

6.

about
3 inches

Feet

Name _____

less than 1 foot

about 1 foot

more than 1 foot

Think about these real objects.

Estimate the length of each real object.

Circle the most reasonable estimate.

more than 1 foot

about 1 foot

less than 1 foot

more than 1 foot

about 1 foot

less than 1 foot

more than 1 foot

about 1 foot

less than 1 foot

more than 1 foot

about 1 foot

less than 1 foot

more than 1 foot

about 1 foot

less than 1 foot

more than 1 foot

about 1 foot

less than 1 foot

Capacity: Nonstandard Units

Name _____

Use a to estimate about how much each container holds.

about 1

about 10

about 60

Estimate about how many each real container holds.

1.

2 10

2.

5 50

3.

6 20

4.

4 40

5.

10 25

6.

2 10

Cups, Pints, and Quarts

Name _____

$$2 \text{ cups} = 1 \text{ pint}$$

$$2 \text{ pints} = 1 \text{ quart}$$

Circle which holds more.

1.

or

2.

or

3.

or

4.

or

Write how many.

5.

2

$$= \underline{\quad} \text{ cups}$$

6.

2

$$= \underline{\quad}$$

7.

8

$$= \underline{\quad}$$

8.

6

$$= \underline{\quad}$$

Weight: Nonstandard Units

Name _____

You can use and to weigh objects.

lighter

about 3

heavier

Compare the weight of these objects.

Circle the object that is heavier. \times the object that is lighter.

1.

2.

3.

4.

5.

6.

7.

8.

Pounds

Name _____

You can measure the weight of an object in pounds.

weighs 1 pound.

less than 1 pound

about 1 pound

more than 1 pound

Think about these real objects.

Circle about how much each object weighs.

1.

less than 1 pound

about 1 pound

more than 1 pound

2.

less than 1 pound

about 1 pound

more than 1 pound

3.

less than 1 pound

about 1 pound

more than 1 pound

4.

less than 1 pound

about 1 pound

more than 1 pound

5.

less than 1 pound

about 1 pound

more than 1 pound

6.

less than 1 pound

about 1 pound

more than 1 pound

Centimeters

Name _____

about 6 centimeters long

Use a centimeter ruler to measure the length of each picture.

1.

about
centimeters

2.

about
centimeters

3.

about
centimeters

Measure the height in centimeters.

4.

about
centimeters

5.

about
centimeters

6.

about
centimeters

Liters

Name _____

Use liters to measure about how much a container holds.

less than 1 liter

about 1 liter

more than 1 liter

Circle about how much each real container holds.

1.

less than 1 liter

about 1 liter

more than 1 liter

2.

less than 1 liter

about 1 liter

more than 1 liter

3.

less than 1 liter

about 1 liter

more than 1 liter

4.

less than 1 liter

about 1 liter

more than 1 liter

5.

less than 1 liter

about 1 liter

more than 1 liter

6.

less than 1 liter

about 1 liter

more than 1 liter

Kilograms

Name _____

You can measure how heavy an object is in kilograms.

less than 1 kilogram

about 1 kilogram

more than 1 kilogram

Circle about how heavy.

1.

less than 1 kilogram

about 1 kilogram

more than 1 kilogram

2.

less than 1 kilogram

about 1 kilogram

more than 1 kilogram

3.

less than 1 kilogram

about 1 kilogram

more than 1 kilogram

4.

less than 1 kilogram

about 1 kilogram

more than 1 kilogram

5.

less than 1 kilogram

about 1 kilogram

more than 1 kilogram

6.

less than 1 kilogram

about 1 kilogram

more than 1 kilogram

Temperature; Seasons

Name _____

cold

20°F

cool

50°F

hot

80°F

Read each thermometer. Write the temperature.

60 °F

30 °F

90 °F

4. Draw lines to match the season with the picture.

winter

spring

summer

fall

Choose a Measuring Tool

Name _____

Measures
how much
an object
holds

Measures how long or how tall

Measures how heavy

Measures how
hot or how cold

Circle the tool you would use to measure.

1. How much does it hold?

2. How hot is it?

3. How much does it weigh?

4. How long is it?

5. How much does it hold?

6. How much does it weigh?

Problem-Solving Strategy: Make a Model

Name _____

Read

How many square tiles
will cover this shape?

1 square tile

Plan

Make a model. Trace a real tile to help.

Make a model.

It takes 5 square tiles to cover this shape.

Check

Cover the shape with real tiles to check.

Use to solve the question.

I. How many square tiles will cover the shape?

_____ will cover this shape.

Problem-Solving Applications: Mixed Strategies

Name _____

Use a strategy you have learned.

1. Simon saves a every day for 10 days. How much does he save in all?

Find/Use a Pattern
Logical Reasoning
Draw a Picture
Make a Table

Simon saves 10 in all.

2. Tad writes five 2-digit numbers.

They are between 44 and 66.

They all have either 5 or 0 in the ones place.

What numbers does Tad write?

45, 50, 55, 60, 65

3. Find a pattern.

Write the same pattern using letters and numbers.

4. José has 7 dinner plates.

He breaks 3 plates at dinner.

How many plates does José have left?

José has 4 plates left.

Add Tens and Dimes

Name _____

$$\begin{array}{r}
 1 \text{ ten} & 10 \\
 + 3 \text{ tens} & + 30 \\
 \hline
 4 \text{ tens} & 40 \\
 \\
 4 \text{ tens} = & 40
 \end{array}$$

$$\begin{array}{r}
 1 \text{ dime} & 10\text{¢} \\
 + 3 \text{ dimes} & + 30\text{¢} \\
 \hline
 4 \text{ dimes} & 40\text{¢} \\
 \\
 4 \text{ dimes} = & 40\text{¢}
 \end{array}$$

Add. Use or to help.

1.

$$\begin{array}{r}
 6 \text{ dimes} \\
 + 2 \text{ dimes} \\
 \hline
 8 \text{ dimes}
 \end{array}$$

2.

$$\begin{array}{r}
 4 \text{ tens} \\
 + 3 \text{ tens} \\
 \hline
 \text{tens}
 \end{array}$$

3.

$$\begin{array}{r}
 5 \text{ tens} \\
 + 2 \text{ tens} \\
 \hline
 \text{tens}
 \end{array}$$

4.

$$\begin{array}{r}
 1 \text{ dime} \\
 + 4 \text{ dimes} \\
 \hline
 5 \text{ dimes}
 \end{array}$$

5.

$$\begin{array}{r}
 40 \\
 + 50 \\
 \hline
 90
 \end{array}$$

6.

$$\begin{array}{r}
 20 \\
 + 60 \\
 \hline
 80
 \end{array}$$

$$\begin{array}{r}
 80\text{¢} \\
 + 10\text{¢} \\
 \hline
 90\text{¢}
 \end{array}$$

9.

$$\begin{array}{r}
 20\text{¢} \\
 + 40\text{¢} \\
 \hline
 60\text{¢}
 \end{array}$$

10.

$$\begin{array}{r}
 70 \\
 + 20 \\
 \hline
 90
 \end{array}$$

$$\begin{array}{r}
 30\text{¢} \\
 + 10\text{¢} \\
 \hline
 40\text{¢}
 \end{array}$$

11.

$$\begin{array}{r}
 30 + 40 = \underline{\quad}
 \end{array}$$

12.

$$\begin{array}{r}
 10 + 70 = \underline{\quad}
 \end{array}$$

Add Ones and Tens Using Models

Name _____

$$38 + 21 = ?$$

Model the addends.

Add the ones. Then add the tens.

tens	ones

tens	ones
3	8
+	
2	1
	9

tens	ones
3	8
+	
2	1
	9

$$38 + 21 = 59$$

Add. Use and .

1.	tens	ones
	4	2
+	2	4
	6	6

	tens	ones

2.	tens	ones
	1	2
+	3	5
	4	7

	tens	ones

3.	tens	ones
	2	2
+	2	2
	4	4

	tens	ones

4.	tens	ones
	4	1
+	1	5
	5	6

	tens	ones

5.	tens	ones
	3	7
+	1	2
	4	9

	tens	ones

6.	tens	ones
	1	4
+	4	3
	5	7

	tens	ones

C Use with Lesson 10-2, pages 467–468 in the Student Book.

C Then go to Lesson 10-2A, pages 215–216 in this Workbook.

one hundred thirty-nine **139**

Add Ones and Tens Without Models

Name _____

Add the ones,
then add the tens.

$$\begin{array}{r} 13 \\ + 25 \\ \hline 38 \end{array}$$

Change the order of the
addends to check the sum.

$$\begin{array}{r} 13 \\ + 25 \\ \hline 38 \end{array} \quad \begin{array}{r} 25 \\ + 13 \\ \hline 38 \end{array}$$

Find the sum. Change the order to check.

1. $\begin{array}{r} 21 \\ + 56 \\ \hline \end{array}$

2. $\begin{array}{r} 73 \\ + 24 \\ \hline \end{array}$

3. $\begin{array}{r} 50 \\ + 39 \\ \hline \end{array}$

4. $\begin{array}{r} 22 \\ + 43 \\ \hline \end{array}$

5. $\begin{array}{r} 45 \\ + 12 \\ \hline \end{array}$

6. $\begin{array}{r} 34 \\ + 62 \\ \hline \end{array}$

7. $\begin{array}{r} 23 \\ + 13 \\ \hline \end{array}$

8. $\begin{array}{r} 47 \\ + 31 \\ \hline \end{array}$

9. $\begin{array}{r} 65 \\ + 24 \\ \hline \end{array}$

10. $\begin{array}{r} 81 \\ + 15 \\ \hline \end{array}$

11. $\begin{array}{r} 43 \\ + 42 \\ \hline \end{array}$

12. $\begin{array}{r} 66 \\ + 30 \\ \hline \end{array}$

13. $\begin{array}{r} 57 \\ + 40 \\ \hline \end{array}$

14. $\begin{array}{r} 64 \\ + 15 \\ \hline \end{array}$

15. $\begin{array}{r} 28 \\ + 70 \\ \hline \end{array}$

Add Money

Name _____

$$11\text{¢} + 21\text{¢} = ?$$

Model each amount.

dimes	pennies

Add the pennies. Add the dimes.

dimes	pennies
1	1
2	1
	2

dimes	pennies
1	1
2	1
	2

$$11\text{¢} + 21\text{¢} = 32\text{¢}$$

Use and to add.

1.

dimes	pennies
2	1
+	4
6	8

21¢
 $+47\text{¢}$
 $\underline{\hspace{4cm}}$
 68¢

2.

dimes	pennies
3	4
+	2

34¢
 $+25\text{¢}$
 $\underline{\hspace{4cm}}$

3. 56¢
 $\underline{+32\text{¢}}$

4. 76¢
 $\underline{+13\text{¢}}$

5. 43¢
 $\underline{+34\text{¢}}$

6. 42¢
 $\underline{+43\text{¢}}$

7. 39¢
 $\underline{+30\text{¢}}$

8. 15¢
 $\underline{+44\text{¢}}$

9. 24¢
 $\underline{+52\text{¢}}$

10. 82¢
 $\underline{+17\text{¢}}$

11. 33¢
 $\underline{+50\text{¢}}$

12. 62¢
 $\underline{+12\text{¢}}$

Add Ones or Tens

Name _____

$$52 + 2 = ?$$

Start at 52.

Count on 2 ones.

52, 53, 54

$$52 + 2 = 54$$

$$52 + 20 = ?$$

Start at 52.

Count on 2 tens.

52, 62, 72

$$52 + 20 = 72$$

Add. Count on by ones or by tens.

1. 38

$$\begin{array}{r} 38 \\ + 1 \\ \hline 39 \end{array}$$

$+ 10$

$$\begin{array}{r} 38 \\ + 10 \\ \hline 48 \end{array}$$

2. $\begin{array}{r} 11 \\ + 2 \\ \hline \end{array}$

$\begin{array}{r} 11 \\ + 20 \\ \hline \end{array}$

3. $\begin{array}{r} 24 \\ + 1 \\ \hline \end{array}$

$\begin{array}{r} 24 \\ + 10 \\ \hline \end{array}$

4. $\begin{array}{r} 62 \\ + 3 \\ \hline \end{array}$

$\begin{array}{r} 62 \\ + 30 \\ \hline \end{array}$

5. $\begin{array}{r} 45 \\ + 4 \\ \hline \end{array}$

$\begin{array}{r} 45 \\ + 40 \\ \hline \end{array}$

6. $\begin{array}{r} 57 \\ + 2 \\ \hline \end{array}$

$\begin{array}{r} 57 \\ + 20 \\ \hline \end{array}$

7. $63 + 20 =$ 83

8. $31 + 3 =$ 34

$63 + 2 =$ 65

$31 + 30 =$ 61

9. $37 + 2 =$ 39

10. $16 + 3 =$ 19

$37 + 20 =$ 57

$16 + 30 =$ 46

11. $24\text{¢} + 30\text{¢} =$ 54

12. $51\text{¢} + 1\text{¢} =$ 52

$24\text{¢} + 3\text{¢} =$ 27

$51\text{¢} + 10\text{¢} =$ 61

Nearest Ten

Name _____

Is 56 closer to 50 or 60?

To find the closer number, find the nearest ten.

56 is closer to 60.

Draw hops to find the nearest ten.

1. Is 73 closer to 70 or 80?

73 is closer to 70.

2. Is 68 closer to 60 or 70?

68 is closer to 70.

3. Is 24 closer to 20 or 30?

24 is closer to 20.

Estimate Sums

Name _____

Estimate the sum of $43 + 49$.

Find the nearest ten for each addend.

43 is closer to 40

49 is closer to 50

$43 + 49$ is about 90.

Then add
the nearest tens.

$$\begin{array}{r} 43 \rightarrow 40 \\ + 49 \rightarrow + 50 \\ \hline \text{about} \quad 90 \end{array}$$

estimate

Estimate the sum.

1. $22 \rightarrow$

$+ 41 \rightarrow +$

about

2. $39 \rightarrow$

$+ 32 \rightarrow +$

about

3. $76 \rightarrow$

$+ 12 \rightarrow +$

about

4. $57 \rightarrow$

$+ 17 \rightarrow +$

about

5. $28 \rightarrow$

$+ 62 \rightarrow +$

about

6. $54 \rightarrow$

$+ 23 \rightarrow +$

about

7. $11 \rightarrow$

$+ 81 \rightarrow +$

about

8. $16 \rightarrow$

$+ 71 \rightarrow +$

about

9. $14 \rightarrow$

$+ 58 \rightarrow +$

about

10. $42 \rightarrow$

$+ 53 \rightarrow +$

about

11. $19 \rightarrow$

$+ 36 \rightarrow +$

about

12. $46 \rightarrow$

$+ 37 \rightarrow +$

about

Regroup Ones as Tens Using Models

Name _____

Regroup 1 ten 17 ones.

Model 1 ten 17 ones.

Regroup 10 ones as 1 ten.

$$1 \text{ ten } 17 \text{ ones} = 2 \text{ tens } 7 \text{ ones}$$

Use and .

Regroup 10 ones as 1 ten.

$$3 \text{ tens } 14 \text{ ones} = \underline{\hspace{2cm}} \text{ tens } \underline{\hspace{2cm}} \text{ ones}$$

$$5 \text{ tens } 16 \text{ ones} = \underline{\hspace{2cm}} \text{ tens } \underline{\hspace{2cm}} \text{ ones}$$

$$6 \text{ tens } 19 \text{ ones} = \underline{\hspace{2cm}} \text{ tens } \underline{\hspace{2cm}} \text{ ones}$$

$$4 \text{ tens } 13 \text{ ones} = \underline{\hspace{2cm}} \text{ tens } \underline{\hspace{2cm}} \text{ ones}$$

Regroup Ones as Tens Using a Chart

Name _____

Add the ones. Regroup.

Add the tens.

$$10 \text{ ones} = 1 \text{ ten } 0 \text{ ones}$$

Find the sum.

1.

tens	ones
3	5
+	
2	6

2.

tens	ones
2	8
+	
3	7

3.

tens	ones
1	6
+	
3	5

4.

tens	ones
4	7
+	
3	8

5.

tens	ones
1	3
+	
2	1

6.

tens	ones
2	4
+	
2	7

Regroup Money

Name _____

$$23\text{¢} + 19\text{¢} = ?$$

Model the amounts.

Regroup. 10 pennies = 1 dime

Add the pennies.
Regroup 10 pennies
as 1 dime.
Add the dimes.

dimes	pennies
2	3
1	9
4	2

$$\begin{array}{r} & 23\text{¢} \\ + & 19\text{¢} \\ \hline & 42\text{¢} \end{array}$$

Use and to find the sum.

dimes	pennies
6	3
+	7
8	0

dimes	pennies
3	6
+	4
7	0

dimes	pennies
6	4
+	6
9	0

$$\begin{array}{r} 26\text{¢} \\ + 17\text{¢} \\ \hline 43 \end{array}$$

$$\begin{array}{r} 39\text{¢} \\ + 8\text{¢} \\ \hline 47 \end{array}$$

$$\begin{array}{r} 51\text{¢} \\ + 19\text{¢} \\ \hline 70 \end{array}$$

$$\begin{array}{r} 68\text{¢} \\ + 18\text{¢} \\ \hline 86 \end{array}$$

$$\begin{array}{r} 55\text{¢} \\ + 6\text{¢} \\ \hline 61 \end{array}$$

$$\begin{array}{r} 22\text{¢} \\ + 68\text{¢} \\ \hline 90 \end{array}$$

$$\begin{array}{r} 37\text{¢} \\ + 54\text{¢} \\ \hline 91 \end{array}$$

$$\begin{array}{r} 14\text{¢} \\ + 79\text{¢} \\ \hline 93 \end{array}$$

Problem-Solving Strategy: Guess and Test

Name _____

Khan needs 85¢ to buy a mango. 45¢ 65¢ 55¢
He finds some change in his pocket.
Now he needs 30¢ to buy a mango.
How much change does Khan find in his pocket?

Guess how much change Khan finds.

Test each guess.

$$\begin{array}{r} 45\text{¢} \\ + 30\text{¢} \\ \hline 75\text{¢} \end{array}$$

$$\begin{array}{r} 65\text{¢} \\ + 30\text{¢} \\ \hline 95\text{¢} \end{array}$$

$$\begin{array}{r} 55\text{¢} \\ + 30\text{¢} \\ \hline 85\text{¢} \end{array}$$

75¢ < 85¢ 95¢ > 85¢ 85¢ = 85¢
not enough too much ✓

Khan finds 55¢.

Use real coins to check.

Guess and test to find the answer.

1. Sarah has 5 .

Joanna has some, too.

Together they have 26 .

How many does

Joanna have?

$$\begin{array}{r} 1 \\ + 5 \\ \hline 6 \end{array} \quad \begin{array}{r} 1 \\ + 5 \\ \hline 10 \end{array} \quad \begin{array}{r} 21 \\ + 5 \\ \hline 26 \end{array}$$

Joanna has .

2. Diaz has 2 .

One costs 68¢.

How much more money ~~50~~ does Diaz need to buy one ?

48¢ 18¢ 58¢

Diaz needs .

Problem-Solving Applications: Mixed Strategies

Name _____

Use a strategy you have learned.

1. Sybil plants 10 flowers in a minute.
How many flowers does she
plant in 7 minutes?

Sybil plants 70 flowers in 7 minutes.

2. Hana has 3 dimes.
Her mom gives Hana
1 penny and 2 nickels.
How much money does Hana have then?

Hana has 31.

3. At the pool, 12 children use .
6 children use .
8 children use .
How many more children use than ?
4 more children use than .

4. The sum of two numbers is 16.
The difference between the
two numbers is 2.
What are the two numbers?

$$\begin{array}{r} 10 + 6 = 16 \\ 1 + 7 = 8 \end{array}$$

$$\begin{array}{r} 10 - 6 = 4 \\ 9 - 7 = 2 \end{array}$$

The numbers are 9 and 7.

Make a Table
Choose the Operation
Logical Reasoning

Subtract Tens and Dimes

Name _____

To subtract $50 - 30$,
think 5 tens – 3 tens.

$$\begin{array}{r} \text{5 tens} & 50 \\ -3 \text{ tens} & -30 \\ \hline \text{2 tens} & 20 \\ \text{2 tens} = & 20 \end{array}$$

To subtract $50\text{¢} - 30\text{¢}$,
think 5 dimes – 3 dimes.

$$\begin{array}{r} \text{5 dimes} & 50\text{¢} \\ -3 \text{ dimes} & -30\text{¢} \\ \hline \text{2 dimes} & 20\text{¢} \\ \text{2 dimes} = & 20\text{¢} \end{array}$$

Subtract. Use or to help.

1.

$$\begin{array}{r} \text{9 dimes} \\ -7 \text{ dimes} \\ \hline \text{2 dimes} \end{array}$$

2.

$$\begin{array}{r} \text{6 tens} \\ -2 \text{ tens} \\ \hline \text{4 tens} \end{array}$$

3.

$$\begin{array}{r} \text{4 tens} \\ -3 \text{ tens} \\ \hline \text{1 ten} \end{array}$$

4.

$$\begin{array}{r} \text{2 dimes} \\ -1 \text{ dime} \\ \hline \text{1 dime} \end{array}$$

5.

$$\begin{array}{r} 70 \\ -40 \\ \hline 30 \end{array}$$

$$\begin{array}{r} 80\text{¢} \\ -50\text{¢} \\ \hline \end{array}$$

$$\begin{array}{r} 90 \\ -80 \\ \hline \end{array}$$

$$\begin{array}{r} 50\text{¢} \\ -40\text{¢} \\ \hline \end{array}$$

9.

$$\begin{array}{r} 30 \\ -20 \\ \hline \end{array}$$

$$\begin{array}{r} 70 \\ -50 \\ \hline \end{array}$$

$$\begin{array}{r} 90\text{¢} \\ -50\text{¢} \\ \hline \end{array}$$

13.

$$60 - 40 = \underline{\quad}$$

14.

$$70\text{¢} - 30\text{¢} = \underline{\quad}$$

Subtract Ones and Tens Using Models

Name _____

$$47 - 12 = ?$$

Subtract the ones.

tens	ones
4	7
- 1	2
	5

Subtract the tens.

tens	ones
4	7
- 1	2
	3
	5

Circle the and you subtract.

Write the difference.

1.

tens	ones
3	4
- 2	3

2.

tens	ones
4	8
- 2	2
	6

3.

tens	ones
5	6
- 3	5
2	1

4.

tens	ones
2	8
- 1	3
1	5

5.

tens	ones
5	9
- 2	5
3	4

6.

tens	ones
3	5
- 1	4
2	1

Subtract Ones and Tens Without Models

Name _____

$$37 - 25 = ?$$

Subtract the ones,
then subtract the tens.

$$\begin{array}{r} 37 \\ - 25 \\ \hline 12 \end{array}$$

To check subtraction,
add the part taken away
to the difference.

$$\begin{array}{r} 12 \\ + 25 \\ \hline 37 \end{array}$$

Subtract. Check by adding.

1. $\begin{array}{r} 54 \\ - 13 \\ \hline \end{array}$

2. $\begin{array}{r} 79 \\ - 23 \\ \hline \end{array}$

3. $\begin{array}{r} 97 \\ - 67 \\ \hline \end{array}$

4. $\begin{array}{r} 67 \\ - 13 \\ \hline \end{array}$

5. $\begin{array}{r} 86 \\ - 52 \\ \hline \end{array}$

6. $\begin{array}{r} 77 \\ - 64 \\ \hline \end{array}$

7. $\begin{array}{r} 57 \\ - 30 \\ \hline \end{array}$

8. $\begin{array}{r} 32 \\ - 11 \\ \hline \end{array}$

9. $\begin{array}{r} 45 \\ - 24 \\ \hline \end{array}$

10. $\begin{array}{r} 94 \\ - 51 \\ \hline \end{array}$

11. $\begin{array}{r} 88 \\ - 46 \\ \hline \end{array}$

12. $\begin{array}{r} 55 \\ - 20 \\ \hline \end{array}$

Subtract Money

Name _____

$$21\text{¢} - 11\text{¢} = ?$$

Model the subtraction.

Subtract pennies. Subtract dimes.

dimes	pennies
2	1
-	-
	0

dimes	pennies
2	1
-	-
	0

$$21\text{¢} - 11\text{¢} = 10\text{¢}$$

Use and to subtract.

1.

dimes	pennies
4	5
- 2	1
<u>2</u>	<u>4</u>

45¢
 $\underline{-21\text{¢}}$
 24¢

2.

dimes	pennies
3	8
- 1	6
<u>2</u>	<u>2</u>

38¢
 $\underline{-16\text{¢}}$
 22¢

3. 46¢
 $\underline{-13\text{¢}}$

4. 87¢
 $\underline{-70\text{¢}}$

5. 68¢
 $\underline{-25\text{¢}}$

6. 95¢
 $\underline{-55\text{¢}}$

7. 58¢
 $\underline{-31\text{¢}}$

8. 66¢
 $\underline{-10\text{¢}}$

9. 57¢
 $\underline{-23\text{¢}}$

10. 98¢
 $\underline{-32\text{¢}}$

11. 25¢
 $\underline{-14\text{¢}}$

12. 76¢
 $\underline{-64\text{¢}}$

13. 97¢
 $\underline{-25\text{¢}}$

14. 38¢
 $\underline{-24\text{¢}}$

15. 48¢
 $\underline{-33\text{¢}}$

16. 95¢
 $\underline{-70\text{¢}}$

17. 67¢
 $\underline{-54\text{¢}}$

Subtract Ones or Tens

Name _____

$$55 - 3 = ?$$

Start at 55,
count back by 1s.

55, 54, 53, 52

$$55 - 3 = 52$$

$$55 - 30 = ?$$

Start at 55,
count back by 10s.

55, 45, 35, 25

$$55 - 30 = 25$$

Subtract mentally. Write the difference.

$$\begin{array}{r} 56 \\ - 4 \\ \hline 52 \end{array}$$

$$\begin{array}{r} 56 \\ - 40 \\ \hline 16 \end{array}$$

$$\begin{array}{r} 68 \\ - 3 \\ \hline 65 \end{array}$$

$$\begin{array}{r} 68 \\ - 30 \\ \hline 38 \end{array}$$

$$\begin{array}{r} 96 \\ - 30 \\ \hline 66 \end{array}$$

$$\begin{array}{r} 88 \\ - 10 \\ \hline 78 \end{array}$$

$$\begin{array}{r} 73 \\ - 2 \\ \hline 71 \end{array}$$

$$\begin{array}{r} 60 \\ - 1 \\ \hline 59 \end{array}$$

$$\begin{array}{r} 25 \\ - 20 \\ \hline 5 \end{array}$$

$$\begin{array}{r} 65 \\ - 4 \\ \hline 61 \end{array}$$

$$\begin{array}{r} 83 \\ - 30 \\ \hline 53 \end{array}$$

$$\begin{array}{r} 44 \\ - 2 \\ \hline 42 \end{array}$$

$$\begin{array}{r} 37 \\ - 1 \\ \hline 36 \end{array}$$

$$\begin{array}{r} 76 - 2 = 74 \\ 76 - 20 = 56 \end{array}$$

$$\begin{array}{r} 55 - 40 = 15 \\ 55 - 4 = 51 \end{array}$$

Estimate Differences

Name _____

Estimate the difference of $39 - 31$.

Find the nearest ten for each.

31 is closer to 30

39 is closer to 40

Then subtract.

$$\begin{array}{r} 39 \rightarrow 40 \\ - 31 \rightarrow - 30 \\ \hline \text{about } 10 \end{array}$$

estimate

$39 - 31$ is about 10.

Estimate the difference.

1. $68 \rightarrow$ $\underline{-24 \rightarrow -}$
about

2. $91 \rightarrow$ $\underline{-19 \rightarrow -}$
about

3. $56 \rightarrow$ $\underline{-48 \rightarrow -}$
about

4. $33 \rightarrow$ $\underline{-12 \rightarrow -}$
about

5. $76 \rightarrow$ $\underline{-61 \rightarrow -}$
about

6. $92 \rightarrow$ $\underline{-28 \rightarrow -}$
about

7. $41 \rightarrow$ $\underline{-38 \rightarrow -}$
about

8. $87 \rightarrow$ $\underline{-41 \rightarrow -}$
about

9. $49 \rightarrow$ $\underline{-23 \rightarrow -}$
about

10. $28 \rightarrow$ $\underline{-21 \rightarrow -}$
about

11. $62 \rightarrow$ $\underline{-47 \rightarrow -}$
about

12. $83 \rightarrow$ $\underline{-39 \rightarrow -}$
about

Regroup Tens as Ones Using Models

Name _____

Model 2 tens 2 ones.

Regroup 1 ten as 10 ones.

$$2 \text{ tens } 2 \text{ ones} = 1 \text{ ten } 12 \text{ ones}$$

Use _____ and ■ .

Regroup 1 ten as 10 ones.

$$3 \text{ tens } 5 \text{ ones} = \underline{\hspace{2cm}} \text{ tens } \underline{\hspace{2cm}} \text{ ones}$$

$$6 \text{ tens } 7 \text{ ones} = \underline{\hspace{2cm}} \text{ tens } \underline{\hspace{2cm}} \text{ ones}$$

$$5 \text{ tens } 3 \text{ ones} = \underline{\hspace{2cm}} \text{ tens } \underline{\hspace{2cm}} \text{ ones}$$

$$2 \text{ tens } 4 \text{ ones} = \underline{\hspace{2cm}} \text{ ten } \underline{\hspace{2cm}} \text{ ones}$$

$$1 \text{ ten } 5 \text{ ones} = \underline{\hspace{2cm}} \text{ tens } \underline{\hspace{2cm}} \text{ ones}$$

Regroup Tens as Ones Using a Chart

Name _____

There are not enough ones to subtract.

Regroup 1 ten as 10 ones.
Subtract. Begin with the ones.

tens	ones
3	4
- 1	5

tens	ones
2	14
3	4
- 1	5
	9

$$3 \text{ tens } 4 \text{ ones} = 2 \text{ tens } 14 \text{ ones}$$

Regroup 1 ten as 10 ones. Find the difference.
Circle the part you take away.

1.

tens	ones
6	3
- 2	6

2.

tens	ones
3	5
-	8

3.

tens	ones
4	1
- 2	5

4.

tens	ones
5	8
- 3	9

5.

tens	ones
7	6
- 2	8

6.

tens	ones
6	4
- 3	8

Regroup Dimes as Pennies

Name _____

$$42\text{¢} - 24\text{¢} = ?$$

Model 42¢. Regroup
1 dime as 10 pennies.

Use the pennies from your
regrouped dime to subtract the
pennies. Then subtract the dimes.

dimes	pennies
3	12
4	2
- 2	4
1	8

$$\begin{array}{r} 3 \ 12 \\ 4 \ 2 \\ - 2 \ 4 \\ \hline 1 \ 8 \end{array}$$

$$42\text{¢} - 24\text{¢} = 18\text{¢}$$

4 dimes 2 pennies = 3 dimes 12 pennies

Use and to find the difference.

1.	dimes	pennies
	5	1
-	2	7
	2	4

2.	dimes	pennies
	2	6
-	2	8
	2	2

3.	dimes	pennies
	6	4
-	5	9
	1	5

$$\begin{array}{r} 28\text{¢} \\ - 9\text{¢} \\ \hline 19\text{¢} \end{array}$$

$$\begin{array}{r} 92\text{¢} \\ - 65\text{¢} \\ \hline 27\text{¢} \end{array}$$

$$\begin{array}{r} 75\text{¢} \\ - 27\text{¢} \\ \hline 48\text{¢} \end{array}$$

$$\begin{array}{r} 33\text{¢} \\ - 29\text{¢} \\ \hline 4\text{¢} \end{array}$$

$$\begin{array}{r} 34\text{¢} \\ - 15\text{¢} \\ \hline 19\text{¢} \end{array}$$

$$\begin{array}{r} 84\text{¢} \\ - 36\text{¢} \\ \hline 48\text{¢} \end{array}$$

$$\begin{array}{r} 50\text{¢} \\ - 39\text{¢} \\ \hline 11\text{¢} \end{array}$$

$$\begin{array}{r} 51\text{¢} \\ - 48\text{¢} \\ \hline 3\text{¢} \end{array}$$

Add and Subtract Mentally

Name _____

Work from left to right.

Count back by 10s.
Start at 53.
43, 33, 23

$$53 - 30 + 3 = ?$$

$$23 + 3 = 26$$

Count on by 1s.
Start at 23.
24, 25, 26

Add and subtract mentally.

1. $55 + 40 - 3 = ?$

95 3 = 92

2. $38 - 2 + 40 = ?$

38 40 = 76

3. $45 - 20 - 1 = ?$

45 1 = 26

4. $17 + 30 - 3 = ?$

17 3 = 44

5. $95 - 10 + 2 = ?$

95 2 = 89

6. $58 + 10 - 3 = ?$

58 3 = 65

7. $68 + 30 - 2 = ?$

68 2 = 94

8. $22 - 20 + 1 = ?$

22 1 = 21

Balance Number Sentences

Name _____

First solve $13 - 7$.

Then find the missing number.

$$\begin{array}{rcl} \underline{13 - 7} & = & ? + 2 \\ \downarrow & & \downarrow \\ 6 & = & \underline{4 + 2} \\ & & \downarrow \\ 6 & = & 6 \end{array}$$

Make each side equal.
Circle the missing number.

1. $\underline{7 + 5} = 9 + ?$

$$\begin{array}{rcl} \underline{12} & = & 9 + \underline{3} \\ & & \downarrow \\ \underline{12} & = & 12 \end{array}$$

2. $? + 5 = \underline{2 + 12}$

$$\begin{array}{rcl} \underline{\quad} + 5 & = & \underline{12} \\ \downarrow & & \\ \underline{\quad} & = & \underline{\quad} \end{array}$$

3. $\underline{7 + 8} = 10 + ?$

$$\begin{array}{rcl} \underline{15} & = & 10 + \underline{\quad} \\ & & \downarrow \\ \underline{15} & = & \underline{\quad} \end{array}$$

4. $\underline{16 - 8} = ? + 8$

$$\begin{array}{rcl} \underline{8} & = & \underline{\quad} + 8 \\ & & \downarrow \\ \underline{\quad} & = & \underline{\quad} \end{array}$$

5. $\underline{8 + 5} = ? + 4$

$$\begin{array}{rcl} \underline{13} & = & \underline{\quad} + 4 \\ & & \downarrow \\ \underline{13} & = & \underline{\quad} \end{array}$$

6. $\underline{9 - 2} = 4 + ?$

$$\begin{array}{rcl} \underline{7} & = & 4 + \underline{\quad} \\ & & \downarrow \\ \underline{7} & = & \underline{\quad} \end{array}$$

7. $\underline{2 + 5} = ? + 3$

$$\begin{array}{rcl} \underline{7} & = & \underline{\quad} + 3 \\ & & \downarrow \\ \underline{7} & = & \underline{\quad} \end{array}$$

Missing Operations

Name _____

Guess and test to find the missing signs.

$9 (?) 5 (?) 4 = 8$

Try + and +.

$9 (+) 5 (+) 4 = 18$

$18 > 8$

Try - and -.

$9 (-) 5 (-) 4 = 0$

$0 < 8$

Try + and -.

$9 + 5 - 4 = 10$

$10 > 8$

Try - and +.

$9 - 5 + 4 = 8$

$8 = 8$

Write the missing signs.

1. $9 (?) 5 (?) 8 = 12$ 2. $12 (?) 10 (?) 2 = 4$

3. $5 (?) 3 (?) 9 = 17$ 4. $12 (?) 5 (?) 3 = 10$

5. $8 (?) 5 (?) 3 = 10$ 6. $13 (?) 9 (?) 8 = 12$

7. $3 (?) 7 (?) 2 = 12$ 8. $6 (?) 6 (?) 8 = 4$

9. $11 (?) 4 (?) 7 = 14$ 10. $7 (?) 8 (?) 8 = 7$

Problem-Solving Strategy: Use More Than One Step

Name _____

Lily has 75¢.

Tammy gives Lily 13¢.

Lily spends 65¢ on .

How much money does Lily have now?

Add to find how much Lily has before she buys .

Subtract the cost of from the amount Lily has.

$$\begin{array}{r} 75 \text{ ¢} \\ + 13 \text{ ¢} \\ \hline 88 \text{ ¢} \end{array}$$

$$\begin{array}{r} 88 \text{ ¢} \\ - 65 \text{ ¢} \\ \hline 23 \text{ ¢} \end{array}$$

Lily has 23¢ now.

Use real coins to check.

1. Fiona counts 40 in the garden.

Rudy counts 16 more than Fiona.

Fiona picks 10 for a bouquet.

How many are left in the garden?

46

are left in the garden.

2. Esther runs for 35 minutes.

Sy runs for 25 minutes.

Then Sy runs for 20 more minutes.

How much longer does

Sy run than Esther?

Sy runs _____ minutes longer than Esther.

Problem-Solving Applications: Mixed Strategies

Name _____

Use a strategy you have learned.

1. Yuki counts 24 ★.

Paul counts 15 more ★ than Yuki.

How many ★ does Paul count?

Paul counts 39 ★.

2. Mr. Diego needs 29 📜 for his students.

He has only 11 📜.

How many more 📜 does Mr. Diego need?

Mr. Diego needs 18 more 📜.

40

18

8

3. Gary has 76¢.

He spends a quarter.

Hans has 52¢.

How much more money does Gary
need to have as much as Hans?

Gary needs 13 to have as much as Hans.

4. Jason has 14 goldfish. His sister
Jessica buys him some more for his
birthday. Now Jason has 27 fish.
How many fish does Jessica buy?

Jessica buys 13 fish.

Strategy File

Choose the Operation
Guess and Test
Use More Than One Step

Equal Parts

Name _____

2 equal parts

2 parts not equal

Remember:
Equal parts are
the same size and
the same shape.

Circle the figure with equal parts.
Then write how many equal parts.

1.

2 equal parts

2.

3 equal parts

3.

1 equal parts

4.

3 equal parts

5.

2 equal parts

6.

2 equal parts

7.

4 equal parts

8.

2 equal parts

One Half, $\frac{1}{2}$

Name _____

2 equal parts
of a whole are
called halves

1 whole

1 of 2 equal parts
is $\frac{1}{2}$, or one half

Circle the shapes that show $\frac{1}{2}$.

X the shapes that do not show $\frac{1}{2}$.

Make halves. Color one half.

Write the fraction for the part you colored.

part colored
equal parts

part colored
equal parts

part colored
equal parts

One Third, $\frac{1}{3}$ One Fourth, $\frac{1}{4}$

Name _____

1 whole

1 of 3 equal parts
is $\frac{1}{3}$, or one third

1 of 4 equal parts
is $\frac{1}{4}$, or one fourth

Circle the shapes that show $\frac{1}{3}$.

X the shapes that do not show $\frac{1}{3}$.

Circle the shapes that show $\frac{1}{4}$.

X the shapes that do not show $\frac{1}{4}$.

Part of a Set

Name _____

What part of each set is shaded?

$\frac{1}{2}$ part shaded
 $\frac{2}{2}$ in all
 $\frac{1}{2}$ is shaded.

$\frac{1}{3}$ part shaded
 $\frac{3}{3}$ in all
 $\frac{1}{3}$ is shaded.

$\frac{1}{4}$ part shaded
 $\frac{4}{4}$ in all
 $\frac{1}{4}$ is shaded.

What part of each set is shaded?

Write the fraction.

Color one part of each set.

Write the fraction for the part you colored.

Certain, Possible, Impossible

Name _____

Without looking, is it certain, possible, or impossible to pick a black marble from each bowl?

certain

possible

impossible

Is it certain, possible, or impossible to pick the marble from each bowl? Circle the correct answer.

1. pick a

certain

possible

impossible

2. pick a

certain

possible

impossible

3. pick a

certain

possible

impossible

4. pick a

certain

possible

impossible

5. pick a

certain

possible

impossible

6. pick a

certain

possible

impossible

More, Less, or Equally Likely

Name _____

more likely to land
on grey than white

equally likely to land
on grey or white

less likely to land
on grey than white

Which color are you more likely to land on?

Write white, grey, or black.

1.

white

2.

black

3.

black

Which color are you less likely to land on?

4.

black

5.

white

6.

black

Which color are you more likely to pick?

7.

black

8.

grey

9.

grey

Arrangements

Name _____

I can dress 4 different ways with these clothes.

Color to show the different ways you can dress.

purple

blue

grey

white

You have 1 yellow, 1 red, and 1 blue bead.

How many different ways can you order the 3 beads? Color to show the different ways.

2.

Problem-Solving Strategy: Make a Model/Draw a Picture

Name _____

Maria has 4 T-shirts.
One of them is black.
The other three are white.
What fraction of Maria's T-shirts is black?

Make a model.

Use a square tile
for each part.

$\frac{1}{4}$ of Maria's shirts are black.

Draw a picture to check.

Make a model or draw a picture to solve.

1. There are 5 in Adam's desk.

4 are blue.

The other is black.

What fraction of the is black?

$\frac{1}{5}$ of the is black.

2. Tim has 9 in his bag.

8 are new.

1 is old.

What fraction of the are old?

$\frac{1}{9}$ is old.

3. An is divided in 2 equal parts.

One part falls on the floor.

What fraction of the falls on the floor?

$\frac{1}{2}$ of fall on the floor.

Problem-Solving Applications: Mixed Strategies

Name _____

Strategy File

- Make a Model/Draw a Picture
- Logical Reasoning
- Use More Than One Step

Use a strategy you have learned.

1. I have 5 coins. One coin is a penny.
I have the same number
of dimes as quarters.
How much money do I have?

I have ____.

2. Find each sum.

The sum of the
numbers inside the \triangle is ____.

The sum of the numbers not inside the \square is ____.

3. Penny's is 7 inches long.

Andrea's is 1 foot long.

How much longer is Andrea's ?

Andrea's is longer.

4. Adam, Trey, and Jen play 6 games of .

Adam wins 3 games. Trey wins 2 games.

Jen wins 1 game. What is the fraction
for the games Jen wins?

Jen wins $\frac{1}{6}$ of the games.

Additional CCSS Lessons

Pages 175–234 of this workbook have additional lessons with content based on the Common Core State Standards (CCSS). Each lesson has teaching and practice exercises. These lessons can also be found online at progressinmathematics.com. The bottom of the second page of every lesson directs you to another workbook page of more practice of the math taught in the lesson and also to the next *Progress in Mathematics* lesson.

Practice for Additional CCSS Lessons

Pages 236–265 have more practice of the math taught in the additional CCSS lessons. Doing these practice exercises will help you master the work of each additional CCSS lesson more quickly. The bottom of every practice page identifies the lesson that is being reviewed by the workbook exercises, and also identifies the next *Progress in Mathematics* lesson. Before starting a workbook page, read the title. If you need to review the work in that lesson, turn to the page in your workbook where it is taught.

Additional CCSS Lessons

Addition Strategies and Facts to 12

- Find Sums (2-2A) 175
- Equivalent Sums (2-13A) 177
- Solve Addition Word Problems (2-16A) 179
- Solve for Unknowns (2-17A) 181

Subtraction Strategies and Facts to 12

- Find Differences (3-4A) 183
- Think Addition to Subtract (3-11A) 185
- Use a Bar Model (3-12A) 187

Data and Graphs

- Data and Questions (4-7A) 189

Place Value to 100

- Numbers to 120 (5-7A) 191

Extending Addition and Subtraction Facts

- Properties of Operations (6-2A) 193
- Make 10 to Add (6-3A) 195
- Make 10 to Subtract (6-7A) 197
- True and False Sentences (6-10A) 199
- Add and Subtract to Compare (6-11A) 201

Geometry

- Reason with Shapes (7-2A) 203
- Ways to Make Plane Figures (7-3A) 205
- Ways to Make Solid Figures (7-5A) 207

Measurement

- Length of a Path (9-1A) 209
- Use Indirect Comparison (9-4A) 211
- Use a Ruler (9-4B) 213

Add 2-Digit Numbers

- Add Using Drawings (10-2A) 215
- Count On by Tens or Ones to Add (10-4A) 217
- Use Strategies to Add (10-5A) 219
- Add 2-Digit Numbers (10-5B) 221
- Bar Models and Addition Problems (10-10A) 223

Subtract 2-Digit Numbers

- Mental Math: Ten More or Ten Less (11-1A) 225
- Subtract Multiples of 10 (11-1B) 227
- Count Back by Tens or Ones to Subtract (11-4A) 229
- Bar Models and Subtraction Problems (11-9A) 231

Fractions and Probability

- Compare Fractions (12-4A) 233

Objective: To model and write addition sentences for putting together situations

Look at the picture.

Listen to the addition story.

Put together and to model the story.

$$3 + 2 = 5$$

There are 5 sheep on the farm.

Put together and to model each addition story.
Write the addition sentence.

1.

$$\underline{4} + \underline{1} = \underline{5}$$

2.

$$\underline{2} + \underline{2} = \underline{4}$$

3.

$$\underline{1} + \underline{3} = \underline{4}$$

4.

$$\underline{2} + \underline{3} = \underline{5}$$

Tank It Down

5. Tell an addition story to go with the model.

Name _____

Put together and to model each addition story.
Write the addition sentence.

6.

$$\underline{3} + \underline{2} = \underline{5}$$

7.

$$\underline{1} + \underline{1} = \underline{2}$$

8.

$$\underline{3} + \underline{1} = \underline{4}$$

9.

$$\underline{1} + \underline{2} = \underline{3}$$

10.

$$\underline{5} + \underline{1} = \underline{6}$$

11.

$$\underline{3} + \underline{3} = \underline{6}$$

Problem Solving

Solve. Use a strategy.

12. There are 4 big in the barn. There are 2 small in the barn. How many are in the barn?

$$\underline{4} + \underline{2} = \underline{6}$$

13. Tim has 1 green . Ann has 4 brown . How many do Tim and Ann have?

$$\underline{1} + \underline{4} = \underline{5}$$

Test Preparation

14. There is 1 pink in the park. There are 5 white in the park. Draw to show how many are in the park.

Objective: To use strategies to find equivalent sums

Use facts you know to help find sums.

Break apart one addend into an addition fact.

Then add the easier facts.

Add $4 + 5$.

- ① Break apart 5 to make a double for 4.

$$\begin{array}{r} 4 + 5 \\ 4 + 4 + 1 \end{array}$$

- ② Add the doubles.

$$\begin{array}{r} 4 + 4 + 1 \\ \hline 8 + 1 \end{array}$$

- ③ Then add 1 more.

$$8 + 1 = 9$$

So, $4 + 5 = 9$.

Break apart one addend into an addition fact.

Add the easier facts first. Find the sum.

You can use to help.

1. $3 + 4$

$$\begin{array}{r} 3 + 3 + 1 \\ \hline 6 + 1 = 7 \end{array}$$

So, $3 + 4 = 7$.

2. $7 + 5$

$$\begin{array}{r} 7 + 12 + 2 \\ \hline 12 + 2 = 14 \end{array}$$

So, $7 + 5 = 12$.

TAKE IT OVER

3. How does knowing $6 = 5 + 1$ help you solve $5 + 6$?

Name _____

Break apart one addend into an addition fact. Add the easier facts first. Find the sum. You can use to help.

4. $8 + 4 = ?$

$$\underline{8} + \underline{4} + \underline{0} = \underline{12}$$

5. $6 + 5 = ?$

$$\underline{6} + \underline{3} + \underline{3} = \underline{12}$$

6. $3 + 2 = ?$

$$\underline{3} + \underline{2} + \underline{1} = \underline{5}$$

7. $9 + 3 = ?$

$$\underline{9} + \underline{3} + \underline{1} = \underline{13}$$

8. $2 + 9 = ?$

$$\underline{3} + \underline{2} + \underline{1} = \underline{10}$$

9. $5 + 4 = ?$

$$\underline{4} + \underline{4} + \underline{1} = \underline{9}$$

10. $4 + 7 = ?$

$$\underline{3} + \underline{7} + \underline{1} = \underline{11}$$

11. $3 + 8 = ?$

$$\underline{2} + \underline{2} + \underline{1} = \underline{11}$$

Problem Solving

Solve. Use a strategy.

12. Juan has 4 . Mia has

1 more than Juan.

How many do Juan and Mia have in all?

13. Tilda has 2 . Jaime has

1 more than Tilda.

How many do they have in all?

What's the Error?

14. Jan added 3 and 4. What error did she make?

$$\begin{array}{r}
 3 + 4 \\
 3 + \boxed{3 + 1} \\
 \hline
 6
 \end{array}$$

So, $3 + 4 = 6$.

C For additional Practice, go to page 237 in this Workbook.

C Then go to Lesson 2-14, pages 81–82 in the Student Book.

Objective: To solve word problems with three addends

Marta has 2 .

Joe has 3 .

Ana has 1 .

How many do they have in all?

Draw a picture or use to solve.

$$2 + 3 + 1 = 6$$

They have 6 in all.

Draw a picture or use .

Write an addition sentence to solve.

1. Mike sees 5 .

Elena sees 2 .

Rita sees 5 .

$$\underline{5} + \underline{2} + \underline{5} = \underline{12}$$

How many do they see in all? They see in all.

2. There are 7 in the garden.

There are 2 in the yard.

There is 1 in the field.

$$\underline{7} + \underline{2} + \underline{1} = \underline{10}$$

How many are there in all? There are in all.

3. Describe how you added the numbers in exercise 1.

Problem Solving Draw a picture or use . Write an addition sentence to solve.

4. Sal has 4 blue and

2 red . He also has

2 gold .

How many

$$\underline{4} + \underline{2} + \underline{2} = \underline{8}$$

does Sal have in all?

Sal has in all.

5. Peter finds 3 .

Gene finds 1 .

Tess finds 6 .

How many

$$\underline{3} + \underline{1} + \underline{6} = \underline{10}$$

do they find in all?

They find in all.

6. Marc sees 4 hopping.

He sees 0 sleeping.

He sees 3 swimming.

How many

does Marc see in all?

Marc sees in all.

7. Theo has 8 .

Jen has 1 .

Steve has 2 .

How many pets do they

have in all?

They have pets in all.

Critical Thinking

8. Paul draws 4 .

Kim draws 3 .

Rob draws 1 more

than Kim.

How many

do they draw in all?

Explain how you found your answer.

Objective: To use models to solve addition problems with unknowns

You can draw ● to find numbers.

$$7 + \underline{\quad} = 10$$

The whole is 10.

Draw 7 to show one part.

The other part is 3.

$$7 + \underline{\quad} = 10$$

Solve. Draw ● to help.

1. Carla sees 9 at the park.

Then more come.

Now 12 are at the park.

How many more did Carla see?

Carla saw 3 more .

$$9 + \underline{\quad} = 12$$

2. Fran has some .

Al has 5 .

They have 9 in all.

How many does Fran have?

Fran has 4 .

$$\underline{\quad} + 5 = 9$$

THREE-DIM

3. Explain how you can find the missing part in addition if you know one part and the whole.

Name _____

Problem Solving

Solve. Draw ● to help.

4. Jack has 5 in one bowl.
 He has 7 in another bowl.
 How many are there in all?
 Jack has 12 .

$$5 + 7 = 12$$

5. Alicia sees some .
 She also sees 2 .
 She sees 11 cats in all.
 How many does she see?
 Alicia sees 9 .

$$9 + 2 = 11$$

6. Hugo has 1 .
 He buys 8 more .
 How many does he have now?
 Hugo has 9 now.

7. Jen has 10 in a box.
 Some are red.
 She has 5 brown .
 How many are red?
 Jen has 5 red .

Test Preparation

8. Ben has 3 .
 Sue also has some .
 They have 11 in all.
 How many does Sue have?

Explain how you found your answer.

Objective: To use models to solve subtraction problems with unknowns

You can draw to find unknown numbers.

$$6 - \underline{\quad} = 4$$

The whole is 6.

Draw 4 to show one part.

The other part is 2.
 $6 - \underline{2} = 4$

Solve. Draw to help.

1. Matt has 4 . He eats some .

Now Matt has 1 .

How many does Matt eat?

Matt eats 3 .

$$4 - \underline{3} = 1$$

2. Eva has 5 .

She gives 3 to Beth.

How many does Eva have now?

Eva has 2 .

$$5 - 3 = \underline{2}$$

Think It Over

3. Explain how you can find the unknown number in a subtraction problem if you know one part and the whole.

Problem Solving Solve. Draw ○ to help.

4. Teri has some . She gives 1 to Fred. Now Teri has 4 . How many did Teri have to start?

Teri had 5 to start.

$$\underline{5} - \underline{1} = \underline{4}$$

5. Marc has 6 . He uses 3 to make bread. How many does Marc have left?

Marc has 3 left.

$$6 - 3 = \underline{3}$$

6. There are 4 in a box. Ted takes 2 . How many are in the box now?

There are 2 in the box.

7. June has some . She gives Mimi 1 . Now June has 2 . How many did June have to start?

June had 3 to start.

Explain Your Reasoning

8. Emilio has 6 . He gives some to Lara. Emilio has no left. How many did Emilio give Lara? Explain how you solved the problem.

Objective: To use related addition and subtraction facts to subtract

Subtract $6 - 4$.

Use a related addition fact to help find the difference.

So, $6 - 4 = 2$.

Think.....

$$\begin{array}{l} ? + 4 = 6 \\ 2 + 4 = 6 \end{array}$$

Use a related addition fact to find the difference.

Write the addition fact you use.

Then write the difference.

1. $8 - 5 = ?$

3 + 5 = 8

$8 - 5 = 3$

2. $9 - 7 = ?$

2 + 7 = 9

$9 - 7 = 2$

3. ~~7~~ $- 3 = ?$

4 + 3 = 7

$7 - 3 = 4$

4. $11 - 8 = ?$

3 + 8 = 11

$11 - 8 = 3$

5. $10 - 6 = ?$

4 + 6 = 10

$10 - 6 = 4$

6. $12 - 3 = ?$

9 + 3 = 12

$12 - 3 = 9$

7. What addition fact can you use to solve $8 - 6$? Why?

8

Use a related addition fact to find the difference.
Write the addition fact you use.

8. $10 - 7 = \underline{3}$

$\underline{3} + \underline{3} = \underline{10}$

9. $6 - 5 = \underline{1}$

$\underline{1} + \underline{5} = \underline{6}$

10. $8 - 4 = \underline{4}$

$\underline{4} + \underline{4} = \underline{8}$

11. $5 - 3 = \underline{2}$

$\underline{2} + \underline{3} = \underline{5}$

12. $7 - 5 = \underline{2}$

$\underline{2} + \underline{2} = \underline{4}$

13. $11 - 6 = \underline{5}$

$\underline{5} + \underline{6} = \underline{11}$

14. $9 - 3 = \underline{6}$

$\underline{-3} + \underline{3} = \underline{0}$

15. $11 - 2 = \underline{9}$

$\underline{-2} + \underline{2} = \underline{0}$

16. $12 - 7 = \underline{5}$

$\underline{-7} + \underline{7} = \underline{0}$

Problem Solving

Solve. Use a strategy.

17. Lee has 3 fewer paperclips than Carla. Carla has 8 paperclips. How many paperclips does Lee have?

18. Metta has 12 paperclips. She gives some paperclips to Ed. Now she has 4 paperclips. How many paperclips did Metta give Ed?

Critical Thinking

19. Use the numbers in the box. Write related addition and subtraction facts.

$\underline{5} + \underline{4} = \underline{9}$

$\underline{9} - \underline{5} = \underline{4}$

5
9 4

Objective: To use bar models to solve addition and subtraction word problems

You can draw ● to solve.

Then write an addition or subtraction sentence.

Stefi has 8 .

She has 6 small .

The rest are big.

How many big does Stefie have?

Stefi has 2 big .

Draw 6 to show one part.

The other part is 2.

$$8 - 6 = 2$$

Solve. Draw ● to help.

Write an addition or subtraction sentence.

1. Justin has 3 blue . He has

7 red . How many does Justin have?

Justin has 10 .

$$\underline{3} + \underline{7} = \underline{10}$$

2. There are 9 L. Some of the L

are open. Five of the L are shut.

How many L are open?

5 L are open.

$$\underline{9} - \underline{5} = \underline{4}$$

3. What other number sentence could you use to solve problem 2?

Problem Solving Solve. Draw ● to help.

Solving Write an addition or subtraction sentence.

4. There are 6 • . Three • are red. The rest are green.
How many • are green?

3 • are green.

$$\underline{6} - \underline{\quad} = \underline{\quad}$$

5. Jamar has some small .

He has 5 big .

He has 12 in all. How many small does Jamar have?

Jamar has 7 small .

$$\underline{7} + \underline{\quad} = \underline{\quad}$$

6. There are 4 pink .

There are some blue .

There are 8 in all.

How many blue are there?

There are 4 blue .

7. Lucy has 11 .

She fills 5 with milk.

How many are empty?

are empty.

Critical Thinking

8. Jorge has 4 . He wants to put the into two cups. How many can he put in his red cup? How many can he put in his blue cup?
Explain how you decided.

Objective: To ask and answer questions about data in graphs and tally charts

You can ask questions about data in tally charts and graphs.

Think of questions you can answer by using the data in the bar graph.

- How many friends voted for ?
- How many more friends voted for than ?
- How many fewer friends voted for than ?
- How many friends voted in all?

How can I use
the bar graph to answer
the questions?

Use the bar graph to answer the questions.

1. How many more friends like 3 $-$ 2 = 1 than ?

2. How many fewer friends like 5 $-$ 3 = 2 than ?

3. How many friends in all voted for a favorite sport? 5 + 3 + 4 = 12

4. What is another question you could answer by reading the bar graph? What is a question that you could not answer?

Name _____

Use the tally chart to answer the questions.

Molly's Shape Blocks	
Shape	
Tally	
■	
□	
○	

5. How many fewer than does Molly have?

 = _____

6. How many shape blocks does Molly have in all? = _____

Problem Solving Use the graph for problems 7 and 8.

7. Will wants to draw the same number of and . How many more does he need to draw?

8. If Will draws another , how many will he have?

What's the Error?

9. Use the tally chart at the top of the page. John asks Molly how many more than she has. Molly says she has 8 more . What error did Molly make?

Objective: To count, read, and write numerals to 120 and represent a number of objects with a numeral

- You can write numbers 100 through 120 using one hundred, tens, and ones.

hundreds	tens	ones

1 hundred 1 ten 2 ones
112
one hundred twelve

- Count in order from 100 to 112.

Use the model to write how many.

1.

hundreds	tens	ones

1 hundred 0 tens 5 ones

105

2.

hundreds	tens	ones

1 hundred 1 ten 6 ones

116

TRY IT OUT

3. Count aloud from 100 to 120. Do you say more or fewer numbers when you count from 10 to 20?

Name _____

Use the model to write how many.

4.

hundreds	tens	ones

5.

hundreds	tens	ones

hundred ten ones

hundred tens ones

Count by ones. Write the missing numbers.

6. **7.** **8.**

Explain Your Reasoning

9. When you count by ones, what number comes after 120? Explain how you know. **118, 119, 120, ?**

Objective: To apply the properties of operations as strategies to add

When you change the order of the addends, the sum is the same.

If you know that
 $9 + 5 = 14$,

you also know that
 $5 + 9 = 14$.

If you know

7	
+ 3	
	10

you also know

3	
+ 7	
	10

Find the sum. Change the order of the addends.
Find the sum again.

$6 + 7 = \underline{13}$

$\underline{7} + \underline{6} = \underline{13}$

$\underline{5} + \underline{4} = \underline{13}$

$\underline{5} + \underline{4} = \underline{13}$

3. Explain why you can change the order of the addends without changing the sum.

Name _____

Find the sum.

Change the order of the addends.

Find the sum again.

Use a
and to help.

4. $4 + 7 = \underline{11}$

5. $6 + 9 = \underline{15}$

$\underline{7} + \underline{4} = \underline{11}$

$\underline{1} + \underline{6} = \underline{15}$

6. $8 + 5 = \underline{13}$

7. $7 + 8 = \underline{15}$

$\underline{5} + \underline{8} = \underline{13}$

$\underline{8} + \underline{7} = \underline{15}$

8. $9 + 4 = \underline{13}$

9. $8 + 6 = \underline{14}$

10. $9 + 3 = \underline{12}$

$\underline{+4} + \underline{9} = \underline{13}$

$\underline{+6} + \underline{8} = \underline{14}$

$\underline{+3} + \underline{9} = \underline{12}$

11. $7 + 9 = \underline{16}$

12. $6 + 5 = \underline{11}$

13. $3 + 8 = \underline{11}$

$\underline{+9} + \underline{7} = \underline{16}$

$\underline{+5} + \underline{6} = \underline{11}$

$\underline{+8} + \underline{3} = \underline{11}$

Problem Solving

Solve. Use a strategy.

14. June writes an addition sentence

with a sum of 16. When she changes
the order of the addends, her addition
sentences are exactly the same. What
addition sentences does Jane write?

$\underline{10} + \underline{6} = \underline{16}$

$\underline{15} + \underline{1} = \underline{16}$

Test Preparation

15. Write two addition sentences that use the _____ + _____ = _____
-
- same addends and have the same sum. _____ + _____ = _____

Objective: To make 10 to find equivalent sums

You can make 10 to help find sums.

Break apart one addend into two parts. ...Think.....

Make 10. Then find the sum.

Add: $9 + 6$

- ① Break apart 6 to make 10.

$$\begin{array}{r} 9 + 6 \\ \hline 9 + 1 + 5 \end{array}$$

- ② Add to make 10.

$$\begin{array}{r} 9 + 1 + 5 \\ \hline 10 + 5 \end{array}$$

- ③ Then add 5 more. $10 + 5 = 15$

So, $9 + 6 = 15$.

Break apart one addend into two parts.

Make 10. Then find the sum.

Use a and ● to help.

1. $8 + 5 = ?$

$$\begin{array}{r} 8 + 5 = ? \\ \hline 8 + 2 + 3 = ? \\ \hline \underline{10} + 3 = \underline{13} \end{array}$$

So, $8 + 5 = 13$.

2. $7 + 4 = ?$

$$\begin{array}{r} 7 + 4 = ? \\ \hline 7 + 3 + 1 = ? \\ \hline \underline{10} + 1 = \underline{11} \end{array}$$

So, $7 + 4 = 11$.

3. Explain how you would make 10 to find the sum for $8 + 4$.

Break apart one addend into two parts. Make
10. Find the sum. You can use ● to help.

4. $9 + 3 = ?$

7 + 1 + 2 = 12

5. $7 + 8 = ?$

5 + 2 + 8 = 15

6. $4 + 9 = ?$

4 + 3 + 5 = 13

7. $6 + 7 = ?$

3 + 3 + 7 = 13

8. $5 + 7 = ?$

5 + 2 + 2 = 9

9. $8 + 9 = ?$

4 + 4 + 9 = 17

10. $6 + 8 = ?$

3 + 3 + 3 = 14

11. $9 + 7 = ?$

2 + 5 + 9 = 16

Problem Solving

Solve. Use a strategy.

12. Mario has 5 .

Ella has 8 .

How many more

does Ella have than Mario?

13. Ms. Ruiz has 11 .

She sells some .

Now she has 4 left. How many

 does Ms. Ruiz sell?

What's the Error?

14. Luis added 9 and 5. What error did he make?

$$9 + 5$$

$$9 + \underline{1} + 3$$

$$10 + 3 = 13$$

$$\text{So, } 9 + 5 = 13$$

Objective: To make 10 to help with subtraction from numbers greater than 10

You can make 10 to help subtract.

- Break apart the number subtracted into two parts.
- Subtract one part from the whole to make 10.
- Then subtract the other part.

Subtract: $14 - 6$

- ① Start with 14.
 Break apart 6.
 Subtract 4
 to make 10.

- ② Then subtract
 2 more.

$$\begin{array}{r}
 14 - 6 \\
 14 - 4 - 2 \\
 \hline
 10 - 2 = 8
 \end{array}$$

So, $14 - 6 = 8$.

Subtract one part from the whole to make 10.

Then subtract the other part.

Use a and to help.

1. $15 - 9$

$$\begin{array}{r}
 15 - \underline{\quad} - \underline{\quad} \\
 \hline
 10 - \underline{\quad} = \underline{\quad}
 \end{array}$$

So, $15 - 9 = \underline{\quad}$.

2. $16 - 7$

$$\begin{array}{r}
 16 - \underline{\quad} - \underline{\quad} \\
 \hline
 10 - \underline{\quad} = \underline{\quad}
 \end{array}$$

So, $16 - 7 = \underline{\quad}$.

3. Explain how you would make 10 to find the difference of $14 - 9$.

Name _____

Subtract one part from the whole to make 10.
Then subtract the other part.

Use a and ● to help.

4. $17 - 8$

5. $13 - 9$

6. $15 - 7 = \textcircled{8}$

7. $16 - 8$

8. $18 - 9$

9. $14 - 7$

10. $13 - 6$

11. $13 - 8$

Problem Solving

Solve. Use a strategy.

12. Al has 6 fewer ● than

13. There were 17 ● in the store.

Jean. Jean has 15 ●.

Some ● were sold. Now

How many ● does

there are 9 ● in the store.

Al have?

How many ● were sold?

Critical Thinking14. Explain why you cannot make 10
to subtract $16 - 3$.

C For additional Practice, go to page 247 in this Workbook.
C Then go to Lesson 6-8, pages 273–274 in the Student Book.

Objective: To understand the meaning of the equals sign and to determine if an equation is true or false

A number sentence can be true or false.

- A number sentence is **true** when both sides of the equals sign make the same number.

= means
is the same as

A number sentence is **false** when both sides of the equals sign do not make the same number.

Is $7 + 6 = 13$ true or false? Is $14 - 8 = 7$ true or false?

Add to check.

$$7 + 6 = 13$$

Does $13 = 13$? Yes.

So, $7 + 6 = 13$ is true.

Subtract to check.

$$14 - 8 = 6$$

Does $6 = 7$? No.

So, $14 - 8 = 7$ is false.

Circle the number sentences that are true.

Cross out the number sentences that are false.

1. $13 = 8 + 5$

2. $10 - 6 = 3$

3. $15 = 15$

4. $14 - 5 = 10$

5. $3 - 1 = 10 - 8$

6. $1 + 4 = 4 + 1$

Time Out

7. How can you check if a number sentence is true or false?

Circle the number sentences that are true.

Cross out the number sentences that are false.

8. $10 = 7 + 3$

9. $9 + 5 = 16$

10. $3 + 7 = 5 + 5$

11. $4 + 0 = 13 - 9$

12. $7 + 8 = 15$

13. $20 - 10 = 5$

14. $18 = 18$

15. $17 = 1 + 7$

16. $4 + 3 + 4 = 11$

17. $16 - 7 = 15 - 6$

18. $19 = 9 + 10$

19. $8 - 3 = 3 + 8$

Problem Solving

Solve. Use a strategy.

20. Paulo has 9 big . He has the same number of small as big . How many does Paulo have in all?

$$\underline{\quad} \quad \underline{\quad} = \underline{\quad}$$

Paulo has 18 in all.

21. Allie has 11 toy .

Some are green.

Five are brown.

How many are green?

$$\underline{\quad} \quad \underline{\quad} = \underline{\quad}$$

6 are green.

Critical Thinking

Show two ways to make each number sentence true.

22. $9 + 9 = \underline{\quad}$

23. $6 + 3 + 4 = \underline{\quad}$

24. $\underline{\quad} = 7 - 7$

$9 + 9 = \underline{\quad}$

$6 + 3 + 4 = \underline{\quad}$

$\underline{\quad} = 7 - 7$

Objective: To use pictures and equations to solve comparison problems with the unknowns in any position

You can add and subtract to compare.

Greta has 13 toys.

Greta has 6 more toys than Sam.

How many toys does Sam have?

Sam has 7 toys.

Draw to compare. 6 more

$$13 - 6 = 7$$

Draw to compare. Then add or subtract to solve.

1. Amy has 9 stickers. Gina has 4 more stickers than Amy. How many stickers does Gina have?

$$\underline{9} + \underline{4} = \underline{13}$$

Gina has 13 stickers.

2. Floyd wins 14 tops. Sue wins 8 tops. How many fewer tops does Sue win?

$$\underline{14} - \underline{8} = \underline{6}$$

Sue wins 6 fewer tops.

Take It Away

3. Explain how subtraction can help you compare numbers.

Name _____

Problem Draw to compare.**Solving** Then add or subtract to solve.

4. Rob has 12 pens.

He has 7 more pens than Ally. How many pens does Ally have?

Rob	
Ally	

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

Ally has 5 pens.

5. Sally has 6 beads. Mae has

9 more beads than Sally. How many beads does Mae have?

Sally	
Mae	

$$\underline{\quad} + \underline{\quad} = \underline{\quad}$$

Mae has 15 beads.

6. Ben has 9 pens. Allen has 7 more pens than Ben. How many pens does Allen have?

16 pens

7. Jo sold 17 hats. She sold 10 fewer ribbons. How many ribbons did Jo sell?

7 ribbons

What's the Error?

8. Beth writes $10 - 7 = 3$ to solve this problem. She says Ely has 3 tops. What error did Beth make?

Kyle has 10 tops. He has 7 fewer tops than Ely. How many tops does Ely have?

Objective: To distinguish between attributes of plane figures and draw them based on defining attributes

Tim draws a figure. Circle the words that tell you that Tim draws a triangle.

3 sides white

3 corners small

The number of sides and the number of corners tell about the kind of figure.

The color and size do not.

Circle the words that tell about the kind of figure.

Then draw the figure.

1. pentagon

red

2. circle

0 corners

5 sides

small

3. square

big

4. triangle

green

4 corners

3 sides

Think It Over

5. Explain how you can tell if a figure is a rectangle.
Does the color or the size matter?

Circle the words that tell about the kind of figure.
Then draw the figure.

6. circle

gray

7. triangle

turned

0 sides

3 corners

8. rectangle

tall

9. pentagon

blue

4 sides

5 corners

Problem Solving

Solve. Use a strategy.

10. Marco draws a figure with fewer than 3 corners.

Lisa draws a figure with the same number of corners as a square.

Kayla draws a figure with 3 sides.

Which figure does each child draw?

II. Sally uses these clues to draw a plane figure.

- It is small.
- It has 5 sides.
- It is gray.

Circle Sally's figure.
Explain how you decided.

Objective: To compose two-dimensional shapes using triangles, rectangles, squares, and parts of circles

Step 1: Put together two plane figures to make a new figure.

Start with 2 quarter circles.

Make a half circle.

Step 2: Put together two of the new figure from step 1 to make other shapes.

Use 2 half circles.

Make a new shape.

- a. Draw lines to show how to use the plane figures to make a new figure. b. Draw to show how to use two of the new figure to make another shape.

1. a.

b.

2. a.

b.

3. Explain how to use 2 triangles to make a square.

- a.** Draw lines to show how to use the plane figures to make a new figure.
b. Draw to show how to use two of the new figure to make another shape.

4. a.**b.****5. a.****b.****6. a.****b.**

Problem Solving

Solve. Use a strategy.

7. Bria uses 2 \triangle to make a \square .

Then she uses 3 \square to make a hexagon.

Draw lines to show how Bria makes the hexagon.

Critical Thinking

8. Draw 4 shapes that could make this rectangle.

Objective: To compose three-dimensional figures using cubes, rectangular prisms, cones, and cylinders

Step 1: Put together two solid figures to make a new solid figure.

Step 2: Use the new figure from Step 1 to make other shapes.

- Use the two solid figures. Circle the new figure you can make.
- Use two of the new figure from a. Circle the shape you can make.

I. a.

I. b.

- Can you combine 2 cylinders to make a rectangular prism? Why or why not?

Name _____

- a. Use the two solid figures. Circle the new figure you can make.
- b. Use two of the new figure from a. Circle the shape you can make.

3. a.**3. b.**

Critical Thinking

4. Vin uses 3 cubes to make this figure.

Then he uses the figure to make other shapes.

- a. Circle the new figures Vin could make.

- b. Explain how Vin uses his figure with 3 cubes to make new figures.

Objective: To measure the distance along a two-segment path using nonstandard units

Distance is the length along a path.

Measure around the corner.

Put each paperclip end-to-end to measure.

There are 6 paperclips along the path.

The distance is about 6 paperclips.

Use paperclips to measure the distance along each path.

about 3 paperclips

about 4 paperclips

TRY IT OUT

3. Describe how to measure the distance along a path.

Name _____

Use to measure the distance along each path.

4.

about

5.

about

6.

about

7.

about

Problem Solving

Solve. Use a strategy.

8. Mara uses . She measures the distance around both sides and the bottom of the picture of the flower pot. What is the distance?

about

What's the Error?

9. Joel says the distance along the path is about 4 . What error did he make?

Objective: To compare the lengths of two objects indirectly by using a third object

You can compare the lengths of two objects by using another object.

Which is longer?

Use a .

Compare it to each object to decide.

longer

longer

is longer than .

is longer than .

So, is longer than .

Compare the length of each picture to a small .
Write **shorter** or **longer** to finish each sentence.

1. is shorter than .

2. is longer than .

3. is shorter than .

4. How can you compare the lengths of two objects that are not side by side?

Compare the length of each picture in the box to a small . Write **shorter** or **longer** to finish each sentence.

5. _____ is _____ than .

6. _____ is _____ than .

7. is _____ than .

Problem Solving

Solve. Use a strategy.

8. Mary is shorter than Bob.
Bob is shorter than Sam.
Is Sam taller than or shorter
than Mary?

Sam is Taller than
Mary.

9. Julio is taller than Elle.
Fran is shorter than Elle.
Who is the shortest?

Fran

Test Preparation

10. Compare each picture to a small .

Write **shorter** or **longer** to finish
each sentence.

a. The is _____ than the .

b. The is _____ than the .

Objective: To use a ruler with nonstandard units to measure length

► Make a ruler.

- 1 Line up small paper clips along a strip of paper.
- 2 Mark the paper at the end of each paper clip.
- 3 Number the marks. Each mark on the ruler means 1 unit.

► Use the marks on your ruler to measure small objects.

The peapod is about 2 units long.

Line up one end of the object with the end of your ruler.

Use your ruler to measure the length of each picture.

about 2 units

about 3 units

Handwriting

3. Explain how to use a ruler to find the length of an object.

Name _____

Use your ruler to measure the length of each picture.

4.

about 4 units

5.

about 1 units

6.

about 4 units

7.

about 3 units

Problem Solving

Solve. Use a strategy.

8. James draws a line that is 5 units long.

Sonia draws a line that is 2 units long.

Who draws the longer line? How much longer?

Use your ruler. Draw to solve.

James draws the longer line. It is 3 units longer.

Explain Your Reasoning

9. Cara and Andy made rulers. They measure a book. Cara says the book is 5 units long. Andy says it is 6 units long. Why are their answers different?

Cara

Andy

Objective: To add 2 two-digit numbers using drawings

The soccer team scored 26 goals last year.

This year they scored 31 goals. How many goals did the team score altogether in both years?

$$26 + 31 = ?$$

Draw the addends. Add the ones. Then add the tens.

tens	ones
2	6
+ 3	1

tens	ones
2	6
+ 3	1

tens	ones
2	6
+ 3	1
	7

The drawing shows a total of 5 tens and 7 ones.

The team scored 57 goals altogether in both years.

Add. Draw tens and ones to help.

1.

tens	ones
3	2
+ 2	4

tens	ones

2.

tens	ones
4	5
+ 1	3

tens	ones

3.

tens	ones
2	0
+ 2	7

tens	ones

4.

tens	ones
1	1
+ 6	8

tens	ones

5. Tell how you use drawings to help you add tens and ones.

Name _____

Add. Draw tens and ones to help.

6.

tens	ones
3	4
+	1
<hr/>	

tens	ones

7.

tens	ones
2	8
+	4
<hr/>	

tens	ones

8.

tens	ones
5	4
+	2
<hr/>	

tens	ones

9.

tens	ones
6	1
+	3
<hr/>	

tens	ones

Problem Solving

Solve. Use a strategy.

10. Mary has 23 stickers. Joe has 2 more stickers than Mary. How many stickers do they have in all?

45 stickers

11. Emily wins 38 tickets. Louis wins 7 fewer tickets than Emily. How many tickets do they win altogether?

84 tickets

Test Preparation

- 12a. Karen scores 21 points in a game. Debby scores 4 more points than Karen. How many points does Debby score?

25

- 12b. In the same game, Ani scores 3 more points than Debby. How many points does Ani score?

28

- 12c. How many points did the three girls score in all?

71

Objective: To count on by tens or ones from a two-digit number to add

You can count on to add.

What is 3 more than 26?

Start at 26.

$3 = 3 \text{ ones}$

Count on 3 ones.

$\begin{array}{c} +1 \\ 26, 27, 28, 29 \end{array}$

29 is 3 more than 26.

What is 30 more than 26?

Start at 26.

$30 = 3 \text{ tens}$

Count on 3 tens.

$\begin{array}{c} +10 \\ 26, 36, 46, 56 \end{array}$

56 is 30 more than 26.

Model each number. Count on by ones to find the number that is more.

1. 2 more than 17 2. 3 more than 24 3. 1 more than 45

19

27

46

Model each number. Count on by tens to find the number that is more.

4. 30 more than 28 5. 20 more than 15 6. 10 more than 37

58

35

47

Count On

7. Explain how to count on to find 30 more than 23.

Name _____

Count on by ones to find the number that is more.
Use and to check.

- 8.** 3 more than 52 **9.** 1 more than 74 **10.** 2 more than 85

- 11.** 1 more than 48 **12.** 4 more than 32 **13.** 3 more than 60

Count on by tens to find the number that is more.
Use and to check.

- 14.** 20 more than 41 **15.** 30 more than 54 **16.** 10 more than 89

- 17.** 40 more than 13 **18.** 20 more than 70 **19.** 30 more than 39

Problem Solving

Solve. Use a strategy.

- 20.** Paul sees 42 kites. Alicia sees 3 more kites than Paul sees. How many kites does Alicia see?

Alicia sees kites.

- 21.** Kayla jumps 11 times. She jumps 20 more times. Then she jumps 3 more times. How many times does Kayla jump in all?

Kayla jumps times.

What's the Error?

- 22.** Tia says that 3 more than 59 is 61. What error did she make?

Objective: To use strategies to add one-digit numbers or multiples of 10 to two-digit numbers

Use different strategies to add.

Count On to Add

$$30 + 28 = ?$$

❶ Change the order of the addends if you need to.

❷ Then count on by tens.

$$\begin{array}{r} 30 \\ + 28 \\ \hline ? \end{array} \quad \begin{array}{r} 28 \\ + 30 \\ \hline 58 \end{array}$$

$$30 + 28 = 58$$

$$28 + 30 = 58$$

Break Apart to Add

$$42 + 7 = ?$$

❶ Break apart one addend into tens and ones.

❷ Add the ones.

❸ Then add the tens.

$$\begin{array}{r} 42 \\ \rightarrow \\ + 7 \\ \hline ? \end{array} \quad \begin{array}{r} 40 \\ 2 \\ + 7 \\ \hline ? \end{array} \quad \begin{array}{r} 40 \\ 2 \\ + 7 \\ \hline ? \end{array} \quad \begin{array}{r} 40 \\ 9 \\ \hline 49 \end{array}$$

$$42 + 7 = 49$$

Count on to add.

$$\begin{array}{r} 1. \quad 20 \\ + 19 \\ \hline ? \end{array} \quad \begin{array}{r} 19 \\ + 20 \\ \hline 39 \end{array}$$

Break apart to add.

$$\begin{array}{r} 2. \quad 33 \\ + 5 \\ \hline \end{array} \quad \begin{array}{r} 30 \\ 3 \\ + 5 \\ \hline 38 \end{array}$$

Take It Further

3. Explain how you could add 52 and 6.

Name _____

Use a strategy to find the sum.

4.
$$\begin{array}{r} 30 \\ + 48 \\ \hline \end{array}$$

5.
$$\begin{array}{r} 20 \\ + 63 \\ \hline \end{array}$$

Think

Use these strategies:

- Count On to Add
- Break Apart to Add

6.
$$\begin{array}{r} 24 \\ + 5 \\ \hline \end{array}$$

7.
$$\begin{array}{r} 73 \\ + 6 \\ \hline \end{array}$$

8.
$$\begin{array}{r} 41 \\ + 7 \\ \hline \end{array}$$

9.
$$\begin{array}{r} 60 \\ + 16 \\ \hline \end{array}$$

10.
$$\begin{array}{r} 54 \\ + 5 \\ \hline \end{array}$$

11.
$$\begin{array}{r} 20 \\ + 59 \\ \hline \end{array}$$

12.
$$\begin{array}{r} 82 \\ + 6 \\ \hline \end{array}$$

13.
$$\begin{array}{r} 26 \\ + 12 \\ \hline \end{array}$$

14.
$$\begin{array}{r} 77 \\ + 2 \\ \hline \end{array}$$

Problem Solving

Solve. Use a strategy.

15. Elio has 3 dimes. He finds 19¢.

Now Elio has 49.

16. Jared has 23¢. Marta has 6 pennies.

Jared and Marta have 29.

Critical Thinking

17. Jan added to find $56 + 23 = 79$. She says that $23 + 56 = 80$. Which number sentence is false? How do you know?

Objective: To use strategies to add two 2-digit numbers

Use strategies to add. $25 + 32 = ?$

One Way to Add

- ① Break apart one addend into tens and ones.
- ② Count on by tens.
- ③ Count on by ones.

$$\begin{array}{r}
 & 25 \\
 25 & + 32 \\
 \hline
 & ? \quad ?
 \end{array}
 \quad
 \begin{array}{r}
 25 \\
 + 32 \\
 \hline
 57
 \end{array}$$

Diagram showing the breakdown of 25 into 30 and 5, and then adding 2 to get 55. Then adding 2 more to 55 to get 57.

So, $25 + 32 = 57$

Another Way to Add

- ① Break apart both addends into tens and ones.
- ② Add the tens.
- ③ Add the ones.
- ④ Add the sums.

$$\begin{array}{r}
 25 \rightarrow 20 + 5 \\
 + 32 \rightarrow + 30 + 2 \\
 \hline
 ? \quad \quad \quad 50 + 7 = 57
 \end{array}$$

Break apart one addend. Add.

1.

$$\begin{array}{r}
 46 \\
 + 17 \\
 \hline
 ? \quad ?
 \end{array}$$

Diagram showing 46 broken down into 40 and 6, and 17 broken down into 10 and 7. The tens column is shown as 40 + 10 = 50, and the ones column as 6 + 7 = 13.

Break apart both addends. Add.

2.

$$\begin{array}{r}
 61 \rightarrow 60 + 1 \\
 + 19 \\
 \hline
 ? \quad \quad \quad 70 + 10 = 80
 \end{array}$$

Diagram showing 61 broken down into 60 and 1, and 19 broken down into 10 and 9. The tens column is shown as 60 + 10 = 70, and the ones column as 1 + 9 = 10.

3. Explain two different ways to add 37 and 42.

$37 + 42 = ?$

Name _____

Use a strategy to find the sum.

4.
$$\begin{array}{r} 28 \\ + 14 \\ \hline \end{array}$$

5.
$$\begin{array}{r} 55 \\ + 23 \\ \hline \end{array}$$

6.
$$\begin{array}{r} 36 \\ + 24 \\ \hline \end{array}$$

7.
$$\begin{array}{r} 73 \\ + 13 \\ \hline \end{array}$$

8.
$$\begin{array}{r} 58 \\ + 31 \\ \hline \end{array}$$

9.
$$\begin{array}{r} 15 \\ + 49 \\ \hline \end{array}$$

10.
$$\begin{array}{r} 67 \\ + 24 \\ \hline \end{array}$$

11.
$$\begin{array}{r} 62 \\ + 16 \\ \hline \end{array}$$

12.
$$\begin{array}{r} 21 \\ + 63 \\ \hline \end{array}$$

Problem Solving

Solve. Use a strategy.

13. Alma has some party hats. 17 hats are pink. 15 hats are blue. How many hats does Alma have?
Alma has _____ party hats.
14. Jamal has 39 party stickers. Ed has 11 more stickers than Jamal. How many stickers does Ed have?
Ed has _____ party stickers.

Test Preparation

15. What is the missing addend?
Explain how you found the answer.

$$\begin{array}{r} 43 \\ + ? \\ \hline 90 \end{array}$$

Objective: To use bar models to solve addition problems with sums to 100

The team has 18 girls. The team has 17 boys.
How many children are on the team?

$$18 + 17 = ?$$

Use a bar model to help.
One part is 18.
The other part is 17.
Find the whole.

Add to solve.

$$\begin{array}{r}
 18 \\
 + 17 \\
 \hline
 35
 \end{array}$$

There are 35 children on the team.

Complete the bar model. Add to solve.

1. A store has 36 soccer balls.

The store has 12 more footballs than soccer balls. How many footballs does the store have?

48 footballs

2. Greg played for 45 minutes. Then he played for 25 minutes more. How many minutes did he play in all?

70 minutes

3. How can a bar model help you solve an addition problem?

Take It Over

Name _____

Problem Complete the bar model.
Solving Add to solve.

4. Marty scores 29 points in a computer game. His friend scores 21 points. How many points do they score in all?

50 points

5. Jay's team swims 23 laps. Ann's team swims 20 more laps than Jay's. How many laps does Ann's team swim?

43 laps

6. Ms. Ruiz sells some flags at the game. She sells 47 red flags. She sells 39 green flags. How many flags does Ms. Ruiz sell?

86 flags

7. Tom bowls 28 games. He bowls 8 fewer games than Angie. How many games does Angie bowl?

36 games

Critical Thinking

8. Joy bought a water bottle for 35¢. Now she has 58¢. How much money did she have to start? 23 ¢

Objective: To find mentally, without having to count, 10 more or 10 less

Ray writes a number 10 less than 42.

Liz writes a number 10 more than 42.

What numbers do Ray and Liz write?

Find the number that is
10 less than 42.

Start at 42.

Count back 10.

Find the number that is
10 more than 42.

Start at 42.

Count on 10.

32 is 10 less than 42.

Ray writes the number 32.

52 is 10 more than 42.

Liz writes the number 52.

Use mental math. Write the number that is 10 more.

1. 15 25

2. 31 41

3. 86 96

4. 53 63

Use mental math. Write the number that is 10 less.

5. 26 36

6. 67 67

7. 74 74

8. 71 80

9. Explain how you can find the number that is 10 less than 18.

Use mental math.

Write the number that is 10 less
and the number that is 10 more.

10. _____ 63 _____

11. _____ 45 _____

12. _____ 21 _____

13. _____ 34 _____

14. _____ 57 _____

15. _____ 82 _____

16. _____ 78 _____

17. _____ 10 _____

18. _____ 90 _____

Problem Solving

Solve. Use a strategy.

19. Derek has 23 balloons.
Tina has 10 fewer balloons
than Derek. How many
balloons does Tina have?

13 balloons

21. Ben made 29 hats. Sara
made 10 fewer hats than
Ben. Marco made 10 fewer
hats than Sara. How many
hats did Marco make?

18 hats

20. Leah buys 36 plates and
30 cups. Then she buys
10 more plates. How many
plates does Leah have?

66 plates

22. Julia has 12 red party
horns. She has 10 more
blue horns than red horns.
How many party horns does
Julia have in all?

22 party horns

Test Preparation

23. Write the number that is 10 more than 38. _____

Write the number that is 10 less than 84. _____

Objective: To subtract multiples of ten using the relationship between addition and subtraction

Mrs. Kim brings 50 apples to the school picnic. The children eat 30 apples.
How many apples are left?

Subtract: $50 - 30 = ?$

$$\begin{array}{r} 50 \\ - 30 \\ \hline ? \end{array} \quad \begin{array}{r} 20 \\ + 30 \\ \hline 50 \end{array} \quad \begin{array}{r} 50 \\ - 30 \\ \hline 20 \end{array}$$

...Think.....

$? + 30 = 50$
 $20 + 30 = 50$

So, $50 - 30 = 20$.

There are 20 apples left.

Use addition to find the difference.

Write the addition you use. Then write the difference.

1. $80 - 20 = ?$

$$\begin{array}{r} 60 \\ + 20 \\ \hline 80 \end{array}$$

$$80 - 20 = \underline{\hspace{2cm}}$$

2. $90 - 50 = ?$

$$\begin{array}{r} 40 \\ + 50 \\ \hline 90 \end{array}$$

$$90 - 50 = \underline{\hspace{2cm}}$$

3. $50 - 10 = ?$

$$\begin{array}{r} 40 \\ + 10 \\ \hline 50 \end{array}$$

4. $60 - 40 = ?$

$$\begin{array}{r} 50 \\ + 40 \\ \hline ? \end{array}$$

5. What addition sentence can you use to find $80 - 70$? Why?

Use addition to find the difference.

Write the addition you use. Then write the difference.

6. $50 - 40 = \underline{\quad}$

$$\underline{\quad} + \underline{\quad} = \underline{\quad}$$

7. $90 - 60 = \underline{\quad}$

$$\underline{30} + \underline{60} = \underline{90}$$

8. $60 - 20 = \underline{\quad}$

$$\underline{\quad} + \underline{\quad} = \underline{\quad}$$

9. $70 - 50 = \underline{\quad}$

$$\underline{20} + \underline{50} = \underline{70}$$

10. $80 - 30 = \underline{\quad}$

$$\underline{\quad} + \underline{\quad} = \underline{\quad}$$

11. $40 - 40 = \underline{\quad}$

$$\underline{0} + \underline{40} = \underline{40}$$

12. $70 - 30 = \underline{\quad}$

$$\underline{-30} + \underline{40} = \underline{10}$$

13. $80 - 10 = \underline{\quad}$

$$\underline{-10} + \underline{90} = \underline{80}$$

14. $90 - 70 = \underline{\quad}$

$$\underline{-70} + \underline{10} = \underline{20}$$

Problem Solving

Solve. Use a strategy.

15. Sam had 90 hats to sell. He sold some hats. Now he has 40 hats. How many hats did Sam sell?

50 hats

16. James bakes 80 muffins. He bakes 10 more muffins than June. How many muffins did June bake?

70 muffins

Test Preparation

17. What is the difference?

Write an addition sentence you can use to find the difference.

$$80 - 60 = \underline{20}$$

$$\underline{20} + \underline{60} = \underline{\quad}$$

Objective: To count back by tens or ones from a two-digit number

You can count back to subtract.

What is 3 less than 45?

Start at 45.

Count back 3 ones.

42 is 3 less than 45.

What is 30 less than 45?

Start at 45.

Count back 3 tens.

15 is 30 less than 45.

Model each number. Count back by ones to find the number that is less.

1. 2 less than 19

17

2. 3 less than 24

21

3. 1 less than 38

37

Model each number. Count back by tens to find the number that is less.

4. 30 less than 68

38

5. 20 less than 56

36

6. 10 less than 30

20

Talk It Over

7. Explain how to count back to find 20 less than 83.

Name _____

Count back by ones to find the number that is less.
Use and to check.

8. 3 less than 76

9. 2 less than 52

10. 4 less than 27

11. 3 less than 85

12. 1 less than 99

13. 4 less than 68

Count back by tens to find the number that is less.
Use and to check.

14. 20 less than 84

15. 10 less than 29

16. 40 less than 97

17. 30 less than 72

18. 40 less than 70

19. 20 less than 61

Problem Solving

Solve. Use a strategy.

20. Jean makes 3 fewer cards than Amad. Amad makes 28 cards. How many cards does Jean make?

Jean makes ____ cards.

21. Gavin uses two colors to make 36 hats. Some hats are blue. 20 hats are green. How many hats are blue?

____ hats are blue.

What's the Error?

22. Ava says that 40 less than 84 is 80.
What error did Ava make?

Objective: To use bar models to solve subtraction problems within 100

There are 56 balloons.
Some balloons pop.
Now there are 44 balloons.
How many balloons pop?

The whole is 56.

One part is 44.

You need to find
the other part.

Subtract to solve.

Subtract: $56 - 44 = ?$

12 balloons pop.

You can use a bar model
to help.

$$\begin{array}{r} 56 \\ - 44 \\ \hline 12 \end{array}$$

Use a bar model. Subtract to solve.

1. Emma makes 48 hats. Suki makes 23 fewer hats. How many hats does Suki make?

Suki makes 25 hats.

2. Judy has 70¢. She spends 50¢ on a toy. How much money does Judy have now?

Judy has 20 ¢ now.

3. How does the bar model help you know which number to subtract from?

Name _____

Problem Solving

Use a bar model. Subtract to solve.

4. Mr. Brown invites 62 friends to a party. 47 friends come to the party. How many friends do not come to the party?

15 friends do not come.

5. Gary has 75 toys for his party. He gives some away. Now he has 23 toys. How many toys does Gary give away?

Gary gives away 52 toys.

6. Angela has 97 party stickers. She has 21 more stickers than Frank. How many stickers does Frank have?

Frank has 76 stickers.

Explain Your Reasoning

7. Carl has 80¢. He buys a gift box. Does he have enough money to buy a card? Explain how you decided.

Objective: To compare one half, one third, and one fourth of the same whole

Tina and Eli have sheets of paper that are the same size. Tina folds her paper into fourths. She colors a quarter of her paper. Eli folds his paper into halves. He colors half of his paper.

One quarter
is the same as
one fourth.

Who colors the smaller part?

The paper with more equal parts has smaller parts.

$\frac{1}{4}$ is less than $\frac{1}{2}$.

Tina colors the smaller part.

Color to show each fraction. Compare the fractions.
Circle the fraction for the larger part.

1.

one half one fourth

2. one fourth

one third

3.

$\frac{1}{3}$

$\frac{1}{2}$

4.

$\frac{1}{2}$

$\frac{1}{4}$

5. Explain why one fourth of a pizza is smaller than one half of a pizza that is the same size.

Draw and color to show each fraction.
Compare the fractions.
Circle the fraction for the smaller part.

6. one fourth

one third

7.

one quarter one half

8. $\frac{1}{3}$ $\frac{1}{2}$ 9. $\frac{1}{2}$ $\frac{1}{4}$

Problem Solving

Solve. Use a strategy.

10. Two crackers are the same size. Eva eats one half of her cracker. Ray eats one third of his cracker. Who eats more?

Eva eats more.

11. Two apples are the same size. Seth eats one fourth of his apple. Kate eats one half of her apple. Who eats less?

_____ eats less.

What's the Error?

12. Will cuts a ribbon into 2 equal pieces. Lisa cuts the same size ribbon into 3 equal pieces. Lisa says her pieces are longer because 3 is greater than 2. What is Lisa's error?

Additional CCSS Practice

Addition Strategies and Facts to 12

- C** Find Sums (2-2A) 236
- C** Equivalent Sums (2-13A) 237
- C** Solve Addition Word Problems (2-16A) 238
- C** Solve for Unknowns (2-17A) 239

Subtraction Strategies and Facts to 12

- C** Find Differences (3-4A) 240
- C** Think Addition to Subtract (3-11A) 241
- C** Use a Bar Model (3-12A) 242

Data and Graphs

- C** Data and Questions (4-7A) 243

Place Value to 100

- C** Numbers to 120 (5-7A) 244

Extending Addition and Subtraction Facts

- C** Properties of Operations (6-2A) 245
- C** Make 10 to Add (6-3A) 246
- C** Make 10 to Subtract (6-7A) 247
- C** True and False Sentences (6-10A) 248
- C** Add and Subtract to Compare (6-11A) 249

Geometry

- C** Reason with Shapes (7-2A) 250
- C** Ways to Make Plane Figures (7-3A) 251
- C** Ways to Make Solid Figures (7-5A) 252

Measurement

- C** Length of a Path (9-1A) 253
- C** Use Indirect Comparison (9-4A) 254
- C** Use a Ruler (9-4B) 255

Add 2-Digit Numbers

- C** Add Using Drawings (10-2A) 256
- C** Count On by Tens or Ones to Add (10-4A) 257
- C** Use Strategies to Add (10-5A) 258
- C** Add 2-Digit Numbers (10-5B) 259
- C** Bar Models and Addition Problems (10-10A) 260

Subtract 2-Digit Numbers

- C** Mental Math: Ten More or Ten Less (11-1A) 261
- C** Subtract Multiples of 10 (11-1B) 262
- C** Count Back by Tens or Ones to Subtract (11-4A) 263
- C** Bar Models and Subtraction Problems (11-9A) 264

Fractions and Probability

- C** Compare Fractions (12-4A) 265

Find Sums

Name _____

Look at the picture.

Put together and to model a story.

$$2 + 4 = 6$$

There are 6 sheep in the pen.

Put together and to model each addition story.

Write the addition sentence.

$$\underline{3} + \underline{3} = \underline{6}$$

$$\underline{1} + \underline{2} = \underline{3}$$

$$\underline{1} + \underline{2} = \underline{3}$$

$$\underline{1} + \underline{2} = \underline{3}$$

$$\underline{1} + \underline{4} = \underline{5}$$

$$\underline{1} + \underline{3} = \underline{4}$$

Equivalent Sums

Name _____

Add: $5 + 6$

Break apart 6. → Next add the doubles. → Then add 1 more.

$$\begin{array}{r} 5 + \boxed{6} \\ 5 + 5 + 1 \end{array}$$

$$\begin{array}{r} 5 + 5 + 1 \\ \hline 10 + 1 \end{array}$$

$$\begin{array}{r} 10 + 1 = 11 \\ \text{So, } 5 + 6 = 11. \end{array}$$

Break apart one addend. Add an easy fact first.

Find the sum. You can use to help.

1. $4 + \boxed{5}$

$$\begin{array}{r} 4 + \boxed{5} \\ 4 + \boxed{4} + 1 \\ \hline \underline{\quad} + 1 = 9 \end{array}$$

So, $4 + 5 = \underline{\quad}$.

2. $2 + \boxed{3}$

$$\begin{array}{r} 2 + \boxed{3} \\ 2 + \boxed{2} + 1 \\ \hline \underline{\quad} + 1 = 5 \end{array}$$

So, $2 + 3 = \underline{\quad}$.

3. $3 + 4 = ?$

4. $4 + 8 = ?$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad} \quad \underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

5. $5 + 7 = ?$

6. $5 + 3 = ?$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad} \quad \underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

Solve Addition Word Problems

Name _____

Amy has 1 .

John has 2 .

Dee has 3 .

How many do they have in all?

$$1 + 2 + 3 = 6$$

They have 6 in all.

Draw a picture or use .

Write an addition sentence to solve.

1. There are 3 on a plant. $\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$

There are 4 on a rock. There are $\underline{\quad}$ in all.

There are 2 on the ground.

How many are there in all?

2. Fred finds 1 on a leaf.

Sue finds 5 on a stick. $\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$

Tim finds 1 under a rock. They find $\underline{\quad}$ in all.

How many do they find in all?

3. Beth counts 2 in the barn. Ron counts 6 eating seeds. Greg counts 3 in a bush. How many do they count in all?

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

They count $\underline{11}$ in all.

4. Pat sees 5 small . He sees 4 big . He also sees 1 very big . How many does Pat see in all?

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

Pat sees $\underline{10}$ in all.

Solve for Unknowns

Name _____

You can draw ● to find a missing number.

$$8 + \underline{\quad} = 11$$

$$8 + 3 = 11$$

Solve. Draw ● to help.

1. There are 4 sleeping.

Some are eating.

There are 7 in all.

How many are eating?

$$4 + \underline{3} = 7$$

There are 3 eating.

2. Steve puts some on the table.

He puts 5 on a chair.

Steve has 12 in all.

How many does Steve put on the table?

$$\underline{7} + 5 = 12$$

Steve puts 7 on the table.

3. Alex sees 6 one day.

He sees 2 the next day.

How many does Alex see?

Alex sees 8 .

4. There are 9 in a bowl.

Three of the are small.

The rest are big.

How many big are in the bowl?

There are 6 big .

Find Differences

Name _____

You can draw ● to find an unknown number.

$$6 - \underline{\quad} = 2$$

$$6 - \underline{4} = 2$$

Solve. Draw ● to help.

1. There are 5 ● on a table.

A bird eats some ●.

Now there are 3 ● on the table.

How many ● does the bird eat?

The bird eats 2 ●.

$$5 - \underline{2} = \underline{3}$$

2. Children are playing with some ●.

They put 4 ● in a box.

Now they have 2 ●.

How many ● did the children have to start?

The children had 6 ● to start.

$$\underline{6} - 4 = \underline{2}$$

3. Nancy has 4 ●.

She gives 1 ● to a friend.

How many ● does Nancy have left?

Nancy has 3 ● left.

Think Addition to Subtract

Name _____

You can use a related addition fact to help you find a difference.

Think:

$$10 - 3 = ?$$

$$\boxed{7 + 3 = 10}$$

$$\text{So, } 10 - 3 = 7.$$

Use a related addition fact to find the difference.

Write the addition fact you use.

Then write the difference.

1. $8 - 6 = ?$

$$\underline{8} + \underline{6} = \underline{14}$$

$$8 - 6 = \underline{2}$$

2. $12 - 5 = ?$

$$\underline{7} + \underline{5} = \underline{12}$$

$$12 - 5 = \underline{7}$$

3. 9

9

$$\begin{array}{r} - 4 \\ \hline ? \end{array} \quad \begin{array}{r} + \underline{4} \\ \hline \end{array} \quad \begin{array}{r} - 4 \\ \hline \end{array}$$

4. 6

6

$$\begin{array}{r} - 2 \\ \hline ? \end{array} \quad \begin{array}{r} + \underline{\quad} \\ \hline \end{array} \quad \begin{array}{r} - 2 \\ \hline \end{array}$$

5. $10 - 2 = \underline{8}$

$$\underline{\quad} + \underline{\quad} = \underline{10}$$

6. $7 - 4 = \underline{3}$

$$\underline{\quad} + \underline{\quad} = \underline{3}$$

7. 11

8. 6

9. 9

$$\begin{array}{r} - 7 \\ \hline \end{array}$$

$$\begin{array}{r} - 3 \\ \hline \end{array}$$

$$\begin{array}{r} - 8 \\ \hline \end{array} \quad \begin{array}{r} + \underline{\quad} \\ \hline \end{array}$$

Use a Bar Model

Name _____

Mike has 10 .

10

Some of the are green.

Seven are red.

How many green does Mike have?

$$10 - 7 = 3$$

Mike has 3 green .

Solve. Draw to help.

Write an addition or subtraction sentence.

1. There are 7 . Five of the are brown. The rest of the are white. How many white are there?

$$7 - \underline{\quad} = \underline{\quad}$$

 are white.

2. Jan has 6 red . She has 5 yellow . How many does Jan have?

Jan has 11 .

$$6 + \underline{\quad} = \underline{\quad}$$

Data and Questions

Name _____

You can answer questions about data in graphs.

How many friends voted for ?

2 friends voted for .

Use the bar graph to answer the questions.

1. How many fewer friends like than ?

$$\underline{5} - \underline{2} = \underline{3}$$

2. How many more friends like than ?

$$\underline{5} - \underline{2} = \underline{3}$$

3. How many fewer friends like than ?

$$\underline{5} - \underline{2} = \underline{3}$$

4. How many friends voted for a favorite sport?

$$\underline{5} + \underline{4} + \underline{2} = \underline{12}$$

5. One friend forgot to vote. Her favorite sport is . How many friends like now?

$$\underline{2} + \underline{1} = \underline{3}$$

6. Use the data in the graph. Write a question. Answer the question.

Numbers to 120

Name _____

hundreds	tens	ones
		<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>

1 hundred 0 tens 8 ones

108

one hundred eight

Use the model to write how many.

hundreds	tens	ones

1 hundred 1 ten 7 ones

17

hundreds	tens	ones

_____ hundred _____ ten _____ ones

ten

Count by ones. Write the missing numbers.

3.

4.

Properties of Operations

Name _____

When you change the order of the addends,
the sum is the same.

$$8 + 5 = 13$$

$$5 + 8 = 13$$

Find the sum. Change the order of the addends.
Find the sum again.

$$8 + 6 = 14$$

$$6 + 8 = 14$$

2. $7 + 5 = 12$

5 + 7 = 12

3. $7 + 8 = 15$

8 + 7 = 15

4. $8 + 3 = 11$

3 + 8 = 11

5. $4 + 6 = 10$

6 + 4 = 10

6. $3 + 9 = 12$

7. $6 + 7 = 13$

8. $9 + 7 = 16$

Make 10 to Add

Name _____

You can make 10 to help find sums.

Add: $9 + 4$

Break apart 4. →

Next add to
make 10. →

Then add 3 more.

$$\begin{array}{r} 9 + 4 \\ \quad \quad \quad | \\ 9 + 1 + 3 \end{array}$$

$$\begin{array}{r} 9 + 1 + 3 \\ \quad \quad \quad | \\ 10 + 3 \end{array}$$

$$10 + 3 = 13$$

$$\text{So, } 9 + 4 = 13.$$

Break apart one addend to make 10.

Then find the sum. You can use counters to help.

1. $8 + \underline{\quad 6 \quad} = ?$
 $8 + \underline{\quad 2 \quad} + 4 = ?$
 $\underline{10} + 4 = \underline{14}$

So, $8 + 6 = \underline{14}$.

2. $5 + \underline{\quad 7 \quad} = ?$
 $5 + \underline{\quad 5 \quad} + 2 = ?$
 $\underline{10} + 2 = \underline{12}$

So, $5 + 7 = \underline{12}$.

3. $9 + 8 = ?$
 $\underline{9} + \underline{1} + \underline{4} = \underline{14}$

4. $7 + 6 = ?$
 $\underline{7} + \underline{3} + \underline{3} = \underline{16}$

5. $7 + 9 = ?$
 $\underline{7} + \underline{3} + \underline{4} = \underline{16}$

6. $5 + 8 = ?$
 $\underline{5} + \underline{4} + \underline{4} = \underline{13}$

Make 10 to Subtract

Name _____

You can make 10 to help subtract.

Subtract: $14 - 6$

Break apart 6. →

Next subtract 4
to make 10. →

Then subtract
2 more.

$$14 - \begin{array}{c} 6 \\ / \quad \backslash \\ 14 - 4 - 2 \end{array}$$

$$14 - 4 - 2 \quad \begin{array}{c} 14 - 4 = 10 \\ \hline 10 - 2 \end{array}$$

$$10 - 2 = 8$$

$$\text{So, } 14 - 6 = 8.$$

Subtract one part from the whole to make 10.

Then subtract the other part.

1. $18 - 9$

$$18 - \underline{8} - \underline{1}$$

$$\underline{10} - \underline{1} = \underline{9}$$

So, $18 - 9 = \underline{9}$.

2. $13 - 7$

$$13 - \underline{3} - \underline{4}$$

$$\underline{10} - \underline{4} = \underline{6}$$

So, $13 - 7 = \underline{6}$.

3. $11 - 6$

$$11 - \underline{1} - \underline{5}$$

$$10 - \underline{5} = \underline{5}$$

4. $14 - 9$

$$14 - \underline{4} - \underline{5}$$

$$10 - \underline{5} = \underline{5}$$

5. $16 - 8$

$$16 - \underline{6} - \underline{2}$$

$$10 - \underline{2} = \underline{8}$$

6. $15 - 6$

$$15 - \underline{5} - \underline{1}$$

$$10 - \underline{1} = \underline{9}$$

True and False Sentences

Name _____

A number sentence can be true or false.

= means
is the same as

Is $7 + 6 = 13$ true or false? Is $14 - 8 = 7$ true or false?

Add $7 + 6$ to find out.

$$7 + 6 = 13$$

Does $13 = 13$? Yes.

$7 + 6$ is the same as 13.

So, $7 + 6 = 13$ is true.

Subtract $14 - 8$ to find out.

$$14 - 8 = 6$$

Does $6 = 7$? No.

$14 - 8$ is not the same as 7.

So, $14 - 8 = 7$ is false.

Circle the number sentences that are true.

Cross out the number sentences that are false.

1. $9 = 16 - 7$

2. $6 + 6 = 14$

3. $8 + 3 = 3 + 8$

4. $15 - 8 = 14 - 7$

5. $20 = 8 + 12$

6. $5 + 3 + 5 = 13$

7. $12 - 7 = 4$

8. $13 - 5 = 8$

9. $6 = 16 - 9$

10. $7 + 4 = 4 + 6$

11. $19 = 19$

12. $8 + 6 = 14$

13. $20 - 10 = 10$

14. $17 - 10 = 8$

15. $16 = 9 + 9$

16. $2 + 4 + 6 = 12$

17. $13 = 4 + 9$

18. $7 + 5 = 5 + 7$

Add and Subtract to Compare

Name _____

You can add or subtract to compare.

Lily has 6 red beads.
She has 5 more blue beads than red beads.
How many blue beads does Lily have?

$$6 + 5 = 11$$

Lily has 11 blue beads.

Draw to compare. Then add or subtract to solve.

1. Matt reads 7 books. Tom reads 15 books. How many more books does Tom read?

$$\underline{15} - \underline{7} = \underline{8}$$

Tom reads 8 more books.

2. Lisa buys 5 stamps. Ellen buys 9 more stamps than Lisa. How many stamps does Ellen buy?

$$\underline{5} + \underline{9} = \underline{14}$$

Ellen buys 14 stamps.

3. Joe has 12 brown socks. He has 4 fewer black socks. How many black socks does Joe have?

$$\underline{12} - \underline{4} = \underline{8}$$

Joe has 8 black socks.

Reason with Shapes

Name _____

The number of sides tells about the kind of figure.

The number of corners tells about the kind of figure.

3 sides

3 corners

Circle the words that tell about the kind of figure.

Then draw the figure.

1. rectangle

4 corners

yellow

3. circle

0 sides

big

5. square

short

4 sides

2. triangle

small

3 sides

4. pentagon

blue

5 corners

6. triangle

3 corners

tall

Ways to Make Plane Figures

Name _____

You can put together plane figures to make new plane figures.

Step 1

Step 2

- Draw a line to show how to use the plane figures to make a new figure.
- Draw a line to show how to use two of the new figures to make another shape.

1. a.

b.

2. a.

b.

3. a.

b.

Ways to Make Solid Figures

Name _____

You can put together solid figures to make new solid figures.

Step 1

Step 2

- Use the two solid figures. Circle the new figure you can make.
- Use two of the new figure from a. Circle the shape you can make.

1. a.

1. b.

2. a.

2. b.

Length of a Path

Name _____

Distance is the length along a path.

Place the end-to-end to measure.

The distance is about 5 .

Use to measure the distance along each path.

1.

about 3

2.

about 4

3.

about 4

4.

about 2

Use Indirect Comparison

Name _____

Use a to compare the lengths.

← longer

← longer

 is longer than .

 is longer than .

So, is longer than .

Compare the length of each picture to a small .
Write **shorter** or **longer** to finish each sentence.

1. is shorter than .

2. is longer than .

3. is longer than .

4. is longer than .

5. is longer than .

Use a Ruler

Name _____

Go to pages 213–214 in this Workbook. Use the ruler you made.

Use your ruler to measure the length of the _____.

Use your ruler to measure the length of each picture.

about 1 unit

about 1 units

about 3 units

about 1 units

about 2 units

about 4 units

Add Using Drawings

Name _____

$$62 + 13 = ?$$

Draw the addends.

tens	ones

$$62 + 13 = 75$$

Add the ones. Then add the tens.

+

tens	ones
6	
1	

↓

tens	ones
	2
	3
	5

Add. Draw tens and ones to help.

1.

tens	ones
4	2
3	3

+

tens	ones

2.

tens	ones
1	5
2	4

+

tens	ones

3.

tens	ones
3	6
5	0

+

tens	ones

4.

tens	ones
2	1
4	7

+

tens	ones

5.

tens	ones
1	3
1	4

+

tens	ones

6.

tens	ones
4	2
5	2

+

tens	ones

Count On by Tens or Ones to Add

Name _____

What is 3 more than 62?

What is 30 more than 62?

Start at 62. Count on 3 ones.

Start at 62. Count on 3 tens.

65 is 3 more than 62.

92 is 30 more than 62.

Count on by ones to find the number that is more.

Use and to check.

1. 4 more than 23 2. 1 more than 54 3. 2 more than 61

4. 3 more than 76

5. 5 more than 12

6. 2 more than 30

Count on by tens to find the number that is more.

Use and to check.

7. 40 more than 49 8. 10 more than 32 9. 20 more than 23

10. 30 more than 64

11. 50 more than 36

12. 40 more than 17

13. 10 more than 71

14. 30 more than 45

15. 20 more than 50

Use Strategies to Add

Name _____

You can use different strategies to add.

Count On to Add

Change the order of the addends if you need to.

$$\begin{array}{r} 30 \\ + 16 \\ \hline ? \end{array}$$
$$\begin{array}{r} 16 \\ + 30 \\ \hline 46 \end{array}$$

10 + 10 + 10
16, 26, 36, 46

Break Apart to Add

Break apart one addend into tens and ones.

$$\begin{array}{r} 42 \\ \rightarrow \\ + 5 \\ \hline ? \end{array}$$
$$\begin{array}{r} 2 \\ + 5 \\ \hline ? \end{array}$$
$$\begin{array}{r} 40 \\ 2 \\ + 5 \\ \hline ? \end{array}$$
$$+ 7 \quad 47$$

Use a strategy to find the sum.

1. 46

$$\begin{array}{r} + 3 \\ \hline 49 \end{array}$$

2. 30

$$\begin{array}{r} + 14 \\ \hline 44 \end{array}$$

3. 23

$$\begin{array}{r} + 5 \\ \hline 28 \end{array}$$

4. 60

$$\begin{array}{r} + 27 \\ \hline 87 \end{array}$$

5. 20

$$\begin{array}{r} + 32 \\ \hline 52 \end{array}$$

6. 71

$$\begin{array}{r} + 4 \\ \hline 75 \end{array}$$

7. 50

$$\begin{array}{r} + 18 \\ \hline 68 \end{array}$$

8. 91

$$\begin{array}{r} + 2 \\ \hline 93 \end{array}$$

9. 32

$$\begin{array}{r} + 7 \\ \hline 39 \end{array}$$

10. 24

$$\begin{array}{r} + 2 \\ \hline 26 \end{array}$$

11. 60

$$\begin{array}{r} + 21 \\ \hline 81 \end{array}$$

12. 40

$$\begin{array}{r} + 34 \\ \hline 74 \end{array}$$

Add 2-Digit Numbers

Name _____

You can use different strategies to add. $26 + 32 = ?$

One Way to Add

Break apart one addend into tens and ones.

$$\begin{array}{r} 26 \\ + 32 \\ \hline ? & ? & 58 \end{array}$$

Diagram showing the decomposition of 26 into 30 and 2, and then adding 30 and 2 to get 56, which is then added to 2 to get 58.

26
+ 32
 $\xrightarrow{\quad}$ 30 2
 $\xrightarrow{\quad}$ 56 + 2
 $\xrightarrow{\quad}$? ?
 \hline 58

Another Way to Add

Break apart both addends into tens and ones.

$$\begin{array}{r} 26 \rightarrow 20 + 6 \\ + 32 \rightarrow + 30 + 2 \\ \hline ? & 50 + 8 = 58 \end{array}$$

Use a strategy to find the sum.

1. 63
 $+ 25$
~~65~~

2. 21
 $+ 34$
~~55~~

3. 18
 $+ 51$
~~69~~

4. 32
 $+ 14$
~~46~~

5. 54
 $+ 43$
~~97~~

6. 45
 $+ 23$
~~68~~

7. 25
 $+ 22$
~~47~~

8. 12
 $+ 63$
~~75~~

9. 73
 $+ 23$
~~96~~

10. 18
 $+ 21$
~~39~~

11. 32
 $+ 37$
~~69~~

12. 44
 $+ 22$
~~66~~

Bar Models and Addition Problems

Name _____

Mr. Ray's class has 16 girls.

Mr. Ray's class has 15 boys.

How many children are
in Mr. Ray's class?

$$\begin{array}{r} 16 \\ + 15 \\ \hline \end{array}$$

There are 31 children in Mr. Ray's class.

Complete the bar model. Add to solve.

1. Kim planted 33 pumpkin seeds.

Then she planted 19 more pumpkin seeds. How many seeds did Kim plant in all?

_____ seeds

2. Mr. Tan cooked some hotdogs for a picnic. He cooked 28 beef hotdogs. He cooked 45 turkey hotdogs. How many hotdogs did Mr. Tan cook?

_____ hotdogs

3. Pedro has 47 car models. He has 14 fewer car models than his brother. How many car models does his brother have?

_____ car models

4. Beth read 64 pages of a book. Mary read 26 more pages than Beth. How many pages did Mary read?

_____ pages

Mental Math: Ten More or Ten Less

Name _____

What number is 10 less than 53?

What number is 10 more than 53?

Count back 10.

Count on 10.

43

53

63

43 is 10 less than 53.

63 is 10 more than 53.

Use mental math.

Write the number that is 10 less.

Then write the number that is 10 more.

1.

65

2.

49

3.

24

4.

5.

6.

37

81

50

7.

8.

9.

23

76

42

10.

11.

12.

54

30

17

13.

14.

15.

88

62

75

Subtract Multiples of 10

Name _____

You can use addition to help you subtract.

Subtract $70 - 30 = ?$

$$\begin{array}{r} 70 \\ - 30 \\ \hline ? \end{array}$$
$$\begin{array}{r} ? \\ + 30 \\ \hline 70 \end{array}$$
$$\begin{array}{r} 40 \\ + 30 \\ \hline 70 \end{array}$$
$$\begin{array}{r} 70 \\ - 30 \\ \hline 40 \end{array}$$

So, $70 - 30 = 40$.

Use addition to find the difference.

Write the addition you use. Then write the difference.

1. $60 - 10 =$ _____
_____ + _____ = _____

2. $80 - 40 =$ _____
_____ + _____ = _____

3. $40 - 30 =$ _____
_____ + _____ = _____

4. $50 - 20 =$ _____
_____ + _____ = _____

5. $70 - 40 =$ _____
_____ + _____ = _____

6. $90 - 30 =$ _____
_____ + _____ = _____

7. $80 - 60 =$ _____
_____ + _____ = _____

8. $90 - 40 =$ _____
_____ + _____ = _____

9. $60 - 60 =$ _____
_____ + _____ = _____

10. $50 - 40 =$ _____
_____ + _____ = _____

11. $70 - 10 =$ _____
_____ + _____ = _____

12. $40 - 20 =$ _____
_____ + _____ = _____

Count Back by Tens or Ones to Subtract

Name _____

What is 3 less than 59?

Start at 59.

Count back 3 ones.

56 is 3 less than 59.

What is 30 less than 59?

Start at 59.

Count back 3 tens.

29 is 30 less than 59.

Count back by ones to find the number that is less.

Use and to check.

1. 2 less than 65

2. 4 less than 28

3. 3 less than 37

4. 1 less than 52

5. 3 less than 46

6. 5 less than 77

Count back by tens to find the number that is less.

Use and to check.

7. 40 less than 98

8. 20 less than 55

9. 10 less than 29

10. 30 less than 64

11. 40 less than 93

12. 50 less than 92

13. 10 less than 77

14. 20 less than 80

15. 30 less than 48

Bar Models and Subtraction Problems

Name _____

There are 49 balloons.

Some balloons pop.

Now there are 36 balloons.

How many balloons pop?

13 balloons pop.

Use a bar model. Subtract to solve.

1. There are 64 cars in the school parking lot. Some cars drive away. Now there are 31 cars in the parking lot. How many cars drove away?

33 cars drove away.

2. Gabe has 38 crayons. Trish has 24 fewer crayons. How many crayons does Trish have?

Trish has 14 crayons.

3. Ms. Teller bakes 72 cookies. She gives some to friends. Now she has 42 cookies. How many cookies did Ms. Teller give to friends?

Ms. Teller gave 30 cookies to friends.

4. Chris has 87¢. He spends 62¢ on a sticker. How much money does Chris have now?

Chris has 25 ¢ now.

Compare Fractions

Name _____

The rectangles are the same size.
Which shaded part is smaller?

One quarter
is the same as
one fourth.

$\frac{1}{4}$ is less than $\frac{1}{2}$.

One quarter is smaller than one half.

Draw and color to show each fraction.
Circle the fraction for the larger part.

1.

one half

one fourth

2.

one fourth

one half

Draw and color to show each fraction.
Circle the fraction for the smaller part.

3.

$\frac{1}{3}$

4.

$\frac{1}{2}$

5.

one third

one quarter

6.

$\frac{1}{2}$

$\frac{1}{3}$

Dear Student,

Pages 268–282 of this workbook have Performance Tasks that let you show your understanding of the Common Core math taught in *Progress in Mathematics*.

Each performance task has five parts. The content of each part meets the Common Core State Standards (CCSS) for *Progress in Mathematics* lessons. The goal of each performance task is for you to apply critical thinking skills and various problem-solving strategies to the math content learned in the chapters. The Performance Tasks are useful tools for evaluating your understanding of Grade 1 math and the Common Core State Standards. You will find the Performance Tasks on the following pages.

Performance Task 1: Chapters 1–4 pages 268–272

Performance Task 2: Chapters 5–8 pages 273–277

Performance Task 3: Chapters 9–12 pages 278–282

Your teacher will use a rubric in the Teacher's Edition of this workbook to record your understanding of Common Core State Standards.

Performance Task Contents

C Performance Task 1	268
C Performance Task 2	273
C Performance Task 3	278

C Performance Task 1

The Great Marble Match

Name _____

I There is a big game at the park.

Six children are playing with .

Two more children join them.

Then 4 more children join them.

How many children are playing with ?

Here are some strategies you can use.

- Draw a picture.
 - Count on.
 - Write addition facts.
 - Make ten.

Show your work.

children are playing with .

C Performance Task 1

Lucy's Lost Marbles

Name _____

2 Lucy has 9 ●.

She loses some of them in the grass.

Now she has 5 ●.

How many ● does Lucy lose in the grass?

- Use the bar model.
- Write a subtraction sentence.
- Add to check your answer.
- Write your related addition sentence.

Show your work.

Lucy loses _____ ● in the grass.

C Performance Task I

Name _____

Peter's Puzzle

3 Peter has red and blue .

He has 10 in all.

At least 3 are blue.

How many blue could Peter have?

How many red could he have?

- Fill in the addition chart.
- Look for a pattern. Describe the pattern.
- Write an addition fact for each answer.
- Write a related subtraction fact for each addition fact.

Show your work.

Addend	Addend	Sum

The pattern is _____.

Peter could have _____ or _____ blue .

He could have _____ or _____ red .

C Performance Task 1

What a Game!

Name _____

4 Three children have marbles on the ground.

- Tally to show how many marbles of each kind.
- Make a pictograph from your tally chart.

How many more than are on the ground?

Show your work.

Kinds of Marbles		
Marble	Tally	Number

Kinds of Marbles		
Key : Each stands for 1 marble.		

There are _____ more than on the ground.

C Performance Task I

Name _____

The Final Tally

5 The Great Marble Match is over.
Children are walking home.
The tally chart shows how many
marbles some children have.

- Make a bar graph from the tally chart.
- Write some questions you can answer by reading the graph.
- Write a question comparing how many marbles two children have.
- Answer each question.
- Write a subtraction sentence for your comparing question.

Show your work.

Marble Collections	
Child	Tally
Lisa	
Bill	
Tim	
Sue	

C Performance Task 2

Super Stamp Collections

Name _____

I Many children collect .

Some children collect old .

Some children collect new .

You can collect from all over the world!

Derek has this many .

Rita has 59 .

- Write how many Derek has.

- Write the value of each digit in Derek's number of .

- Write Rita's number of in expanded form.

- Compare the numbers. Write <, =, or >.

Derek gives 10 of his to Rita.

Who has more now?

Show your work.

71 < 59

Rita has more now.

C Performance Task 2

Name _____

More Stamps for Sam

2 Sam has 5 .

His mom gives him 6 more .

Then his dad gives him 4 more .

How many does Sam have now?

Here are some strategies you can use.

- Draw a picture.
- Change the order of the addends.
- Make 10.
- Use a doubles fact.

Show your work.

Sam has 15 now.

C Performance Task 2

Stella Uses Stamps!

Name _____

3 Stella writes cards to send to friends.

She has 17 .

Stella puts 8 on the cards.

She mails the cards.

How many does Stella have now?

- Make 10 to subtract.
- Write a subtraction fact.
- Add to check your answer.
- Write the rest of the related facts in the fact family.

Show your work.

Stella has _____ now.

C Performance Task 2

Stamp Shapes

Name _____

4 Nick collects from many countries.

His are many colors.

His are many sizes.

The are shaped like plane figures.

Nick wants to make a bar graph.

The graph will show the kinds of plane figures in his stamp collection.

- Make a bar graph to show Nick's stamp collection.
- Write a question that can be answered by looking at the graph.
- Answer your question.

Show your work.

Plane Figures

C Performance Task 2

World Stamp Fair

Name _____

- 5 Meg is going to the Stamp Fair.
She will see old stamps.
She will see rare stamps.
Meg will see stamps that are worth
a lot of money!

The Stamp Fair starts at 1:00.
The clocks show when she sees the stamps.
Meg leaves the fair at half past 2.

- Write the time Meg sees each kind of stamp.
- Draw arrows to show the path Meg takes.
- Draw the hands on the clock to show when Meg leaves the fair.

Show your work.

Old Stamps

Rare Stamps

New Stamps

Meg leaves the fair at

C Performance Task 3

Green Hill Vegetable Stand

Name _____

I Fran's family lives on Green Hill Farm.

They have animals.

They grow and other vegetables.

They sell fresh vegetables at a stand.

Help Fran put and in boxes.

Use to measure.

- Compare the lengths of the vegetables in each group.
- Order the vegetables from shortest to longest.
- Write **1st**, **2nd**, and **3rd**.
- Then measure the boxes.
- Draw lines to show which two boxes Fran will use.

Show your work.

4

4

2

5

3

4

C Performance Task 3

Name _____

Peppers, Peppers, Everywhere!

2 The farm has a field of .

Fran picks every day.

On Tuesday, Fran picks 43 .

Then she picks 26 more .

On Wednesday, Fran picks 30 .

Then she picks 37 more .

On which day does Fran pick more ?

Here are some strategies you can use.

- Use and .
- Use an addition frame.
- Break apart the addends.
- Count on.

64 + 67 = 131

Show your work.

Tuesday

tens	ones
4	3
+ 2	6

tens	ones

Wednesday

tens	ones
+ 3	7

Fran picks more on Tuesday.

C Performance Task 3

How Much Money?

Name _____

3 Mr. Kane buys two .

Fran weighs the to find how much they cost.

The large costs 38¢.

The small costs 23¢.

How much do the cost in all?

Here are some strategies you can use.

- Use a bar model.
- Use an addition frame.
- Use and .
- Use and .
- Break apart the addends.

Show your work.

tens	ones
+	

The cost 61 in all.

C Performance Task 3

A Bean Problem

Name _____

4 A blue box has 80 .

Fran sells 50 from the blue box.

A green box has 60 .

Fran sells 40 from the green box.

Ms. Landers wants to buy 30 .

Which box of should Fran sell to her?

Here are some strategies you can use.

- Use or .
- Count back.
- Use addition.
- Use bar models.

Show your work.

<u>Blue</u>	<u>Green</u>
80	60
- 50	- 40
<u><u>30</u></u>	<u><u>20</u></u>

Fran should sell the Blue box of to Ms. Landers.

C Performance Task 3

Name _____

Two Breads

5 Fran makes a bread.

She also makes a bread.

The breads are the same size.

Fran cuts the bread into
4 equal parts.

She cuts the bread into 2 equal parts.

Wendy buys 1 part of the bread.

Theo buys 1 part of the bread.

Who buys more bread? Theo

How many parts of each bread are left?

• Show how Fran cuts the bread.

• Show how Fran cuts the bread.

• Color the parts that Fran sells.

Show your work.

3

1

Theo buys more bread.

3 parts of the bread are left.

1 part of the bread is left.

Workbook

Progress in **Mathematics**

Item No. 8871-5

88715

ISBN 978-0-8215-5101-1

