Base case: when n=0, $CHM)^n=1$, I+nx=1, therefore $CHM)^n\geqslant Hnx$ Inductive Hypothesis: Assume that $CHM)^k\geqslant HKM$, for some value of n=K, where $K\in N$. Inductive Step: For n=KH. $CHM)^k$ CHM $\supset CHMM$ CHMM $\supset CHMM$ $\supset CHMM$

By induction, we could prove its correctness.

Base case: For n=1, $\alpha_1=1$, $3^{(27)}=9$, thus $\alpha_1 \leq 3^{(27)}$ Inductive Hypothesis: Assume that $\alpha_1 \leq 3^{(27)}$ for n=k, where $k \neq 1_{n+1}$ Inductive Step: for n=k+1 $\alpha_2 \leq 3 \leq 3^{(27)}$ = $3 \cdot 3^{(27)} = 3 \cdot 3^{(27)} = 3 \cdot 3^{(27)}$ while $3^{(27)} = 3 \cdot 3^{(27)} = 3 \cdot 3^{(27)} = 3 \cdot 3^{(27)}$.

Base Onse: For n=1 $\alpha_1=1$, $3(2^{n-1})=3$, thus $\alpha_n \in 3^{(2^{n}+1)}$ Inductive Hypothesis: Assume that $\alpha_n \in 3^{(2^{n}-1)}$ for n=k where $k \ni 1$ Inductive Step: For n=k+1, $\alpha_{k+1}=3\alpha_k^2 \le 3$. $3^{(2^{n}-1)}=3^{(2^{n}-1)}$

For every $n \ni 1$, we have $2^n - 1 \le 2^n$ and therefore $3^{2^n - 1} \le 3^{2^n}$. This means that our modified hypothesis which we proved in part (b) does indeed imply what we wanted to prove in part (a).

Base case: When n=1, $1=1\times2^{\circ}$

Inductive Hypothesis: Assume that the statement is true for all 14 msn, where n is

arbitrary,

Now, we need to consider n+1, if n+1 is divisible by 2, then we can apply our inductive hypothesis to (n+1)/2 and use its representation to express n+1 in the desired form.

 $(n+1)/2 = Gc2^k + Gc_1 - 2^k + ... + G_1 - 2^k + G_2^2$ $n+1 = Gc2^k + Gc_1 - 2^k + ... + G_1 - 2^k + G_2^2 + G_2^2 + G_2^2$ If n+1 is odd, then n is even, $n = Gc2^k + Gc_1 - 2^{k-1} + ... + G_1 - 2^k + G_2^2 + G_2^2$

Therefore, the statement is true.

It's easy to prove that all the numbers are integers.

Base Case: when n=3, Fs=F1tFz=2, the claim is correct.

Inductive Hypothesis: Assume that, F3x is even

for n=3x+3

F3K+3 = F3K+2 + F3K+1 = F3K + F3K+1 + F3K+1 = F3K + 2 F3K+1

Since, Fax is even and 2 Fox+1 is even, Fax+3 is even. Therefore, the statement is true.