Introduction to Manifold Theory

Homework 2

Nutan Nepal

September 29, 2022

1. Do Exercise 2.6 (show that for topological spaces X, Y, Z, the "rearrange-the-parentheses" map from $(X \times Y) \times Z$ to $X \times (Y \times Z)$ is a homeomorphism).

Let the function $f:(X\times Y)\times Z\to X\times (Y\times Z)$ be defined as

$$f((x,y),z) = f(x,(y,z))$$

where x, y and z are respective points of the topological spaces. We see that the map is clearly bijective and hence invertible.

Now, for each open set $U_x \times (U_y \times U_z)$, the preimage of f is given by $(U_x \times U_y) \times U_z$ which is open in $(X \times Y) \times Z$. Similarly, for each open set $(U_x \times U_y) \times U_z$, the preimage of f^{-1} is given by $U_x \times (U_y \times U_z)$ which is open in $X \times (Y \times Z)$. Hence f and f^{-1} are both continuous and the "rearrange the parentheses" map is homeomorphism.

2. Do Exercise 2.7 (show that the product topology and the usual topology on \mathbb{R}^n agree).

Suppose \mathscr{P} be the product topology and \mathscr{T} be the usual topology in \mathbb{R}^n . Let U be open in the product topology, then for all $x = (x_1, \ldots, x_n) \in U$ there exists open neighborhoods $U_i \in \mathbb{R}$ such that $x_i \in U_i$ and $U_1 \times \cdots \times U_n \subset U$. Then for all x_i , there exists an open interval $(x_i - \delta_i, x_i + \delta_i)$ for some $\delta_i > 0$. Let $\delta = \min\{\delta_i\}$ taken over all i from 1 to n. Clearly, $\delta > 0$ and $x \in B_{\delta}(x) \subset U_1 \times \cdots \times U_n \subset U$. This shows that $\mathscr{P} \subset \mathscr{T}$.

Now let U be open with respect to the usual topology. Then for all $x \in U$, there exists an open ball $B_{\delta}(x)$ containing x such that $B_{\delta}(x) \subset U$ for some $\delta > 0$. Let $\delta_i = \delta/\sqrt{2}$. Then each x_i is contained in the interval $U_i = (x_i - \delta_i, x_i + \delta_i)$ and we see that $B_{\delta}(x) \supset U_1 \times \cdots \times U_n$. Then $x \in U_1 \times \cdots \times U_n \subset B_{\delta}(x) \subset U$. Hence U is open in the product topology and $\mathscr{P} \supset \mathscr{T}$. So we see that the two topologies agree.

- 3. The following exercises are about the "line with two origins" of Example 2.44, which we will call X.
 - (a) Show that the construction in Example 2.44 defines a topology on X.

The construction in Example 2.44 is reproduced below:

Let \mathscr{B} be the set of subsets of X that have one of the following two forms:

- i. open intervals $(a, b) \subset \mathbb{R}$ (with a and b finite and a < b);
- ii. sets of the form $((a,b)\setminus 0)\cup \overline{0}$ whenever a<0< b.

Then we declare a subset U of X to be open if, for all $x \in U$, there exists a subset B of \mathscr{B} with $x \in B$ and $B \subset U$.

Let \mathcal{T} be the collection of open sets as defined above. We now show that it is a topology.

- a. Clearly, $\phi \in \mathcal{T}$ and also $X \in \mathcal{T}$.
- b. Let $A = \bigcup_i U_i$ be the union of arbitrary collection of indexed open sets. For all $x \in A$ then there exists a U_i such that $x \in U_i$. So, there exists a subset B of \mathscr{B} with $x \in B$ and $B \subset U_i \subset A$. Hence, A is open.
- c. Let $A = U_1 \cap U_2$ be the finite intersection of open sets of X. For any $x \in A$ we see that $x \in U_1$ and $x \in U_2$. Then there exists a subset B_1 of \mathscr{B} with $x \in B_1$ and $B_1 \subset U_1$ and there exists a subset B_2 of \mathscr{B} with $x \in B_2$ and $B_2 \subset U_2$. If $x \neq \bar{0}$ then the problem reduces to \mathbb{R} which implies that A is open. If $x = \bar{0}$ then we see that $B_1 \cap B_2$ is the intersection of open intervals and $\bar{0}$ which is again open in X.

Thus X is a topological space with the topology \mathscr{T} .

(b) Show that with this topology, X is locally homeomorphic to R.

For any point $x \neq \overline{0}$ in X, we observe that there is an open ball $(x - \delta, x + \delta)$ around x for some $\delta > 0$. Since any open intervals of \mathbb{R} are homeomorphic to \mathbb{R} itself, we see that X is locally homeomorphic \mathbb{R} for every point $x \neq \overline{0}$.

Now, when $x = \overline{0}$ we take $Y = (-\delta, 0) \cup (0, \delta) \cup \{\overline{0}\}$ and define a function $f : Y \to \mathbb{R}$ by $f(\overline{0}) = 0$ and $f(y) = \tan(\pi y/2\delta)$. We see that f is invertible, continuous and has a continuous inverse and hence is a homeomorphism. Thus, X is locally homeomorphic to \mathbb{R}

(c) Show that X is not Hausdorff.

For every $\epsilon > 0$, the neighborhood $N_{\epsilon}(0)$ of the point 0 intersects with the neighborhood around the point $\overline{0}$ non-trivially. So, X is not Hausdorff.