| Name: Inde                                                            | ex No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name:                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| School                                                                | 04 , 4, 09 p."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Signature:School:                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 545/1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHEMISTRY                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Paper 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| July/Aug.2022                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 ½ hours                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UGANDA TEACHERS' EDUCATION CONSUL                                     | T (TITEC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OGAMIA TEACHERS, PHOCATION CONSUL                                     | 1 (UXDC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Uganda Certificate of Education                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHEMISTRY                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Paper 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 hour 30 minutes                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tizout 50 illinoiso                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INSTRUCTIONS TO CANDIDATES:                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This paper consists of 50 objective type questions.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Answer ALL questions.                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Answer ALL questions.                                                 | The state of the s |
| You are required to write the correct answer; A, B, C or D in the box | provided on the right hand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| side of each question.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Do not use pencil.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Farreri                                                             | The state of the s |
| 3. q.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| For Examiners' Use Only                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

© 2022 UTEC Mock Examinations

Turn Over



## SECTION A

| 1  | Which one of the following substances does not change its mass when heated?               |         |  |  |  |
|----|-------------------------------------------------------------------------------------------|---------|--|--|--|
| 1. | A. Hydrated sodium carbonate                                                              |         |  |  |  |
|    | B. Anhydrous sosdium carbonate                                                            |         |  |  |  |
|    | C. Calcium carbonate                                                                      | .:      |  |  |  |
|    | D. Copper (II) carbonate                                                                  |         |  |  |  |
|    |                                                                                           |         |  |  |  |
| 2. | The full symbol of an atom of an element X is 16X. The charge on an ion of X is           | ,       |  |  |  |
| ۷. | A. X <sup>2+</sup>                                                                        |         |  |  |  |
|    | B. <i>X</i> <sup>2-</sup>                                                                 | 1       |  |  |  |
|    | C. X <sup>-</sup>                                                                         |         |  |  |  |
|    | D. X <sup>+</sup>                                                                         |         |  |  |  |
|    |                                                                                           |         |  |  |  |
| 3. | Which one of the following salts will not form a precipitate with lead (II) ions solu     | ution?  |  |  |  |
|    | A. Potassium carbonate                                                                    |         |  |  |  |
|    | B. Potassium chloride                                                                     |         |  |  |  |
|    | C. Potassium nitrate                                                                      |         |  |  |  |
|    | D. Potassium sulphate                                                                     |         |  |  |  |
|    |                                                                                           |         |  |  |  |
| 4. | Which one of the following molecular formulae is that of an alkane?                       |         |  |  |  |
|    | A. $C_3H_8$                                                                               |         |  |  |  |
|    | B. $C_2H_2$                                                                               |         |  |  |  |
|    | C. $C_2H_4$                                                                               |         |  |  |  |
|    | D. $C_3H_6$                                                                               |         |  |  |  |
|    |                                                                                           |         |  |  |  |
| 5. | Hydrogen chloride reacts with ammonia according to the following;                         |         |  |  |  |
|    | Equation: $NH_3(g) + HCl_{(g)} \longrightarrow NH_4Cl_{(s)}$                              |         |  |  |  |
|    | The mass of ammonium chloride formed when excess ammonia is reacted with 0                |         |  |  |  |
|    | of hydrogen chloride at room temperature. (One mole of a gas occupies 24dm <sup>3</sup> a | it room |  |  |  |
|    | temperature. $N = 14$ , $H = 1$ , $C1 = 35.5$ ).                                          |         |  |  |  |
|    | A. $\frac{0.65 \times 24}{53.5}$                                                          |         |  |  |  |
|    | $B = \frac{53.5 \times 0.65}{1}$                                                          |         |  |  |  |
|    | 0.65 x 24                                                                                 |         |  |  |  |
|    | 50.5                                                                                      |         |  |  |  |
|    | D. $\frac{0.65 \times 50.5}{24}$                                                          | Ţ       |  |  |  |
|    |                                                                                           |         |  |  |  |

| 6. | Which one of the following salts will dissolve in water to form an at A. $(NH_4)SO_4$                               | cidic solution?                         |
|----|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|    | B. $Na_2CO_3$                                                                                                       |                                         |
|    | C. CH <sub>3</sub> COONa                                                                                            |                                         |
|    | D. $K_2CO_3$                                                                                                        |                                         |
| 7. | Which one of the following nitrates will decompose when heated                                                      | to give a metal oxide                   |
|    | when strongly heated?                                                                                               |                                         |
|    | A. Silver nitrate                                                                                                   |                                         |
|    | B. Sodium nitrate                                                                                                   |                                         |
|    | C. Calcium nitrate                                                                                                  |                                         |
|    | D. Mercury (II) nitrate                                                                                             |                                         |
| 3. | Which one of the following mixtures can be separated by fractional of A. Iron (III) chloride and lead (II) chloride | erystallization?                        |
|    | B. Iron and sulphur                                                                                                 |                                         |
|    | C. Potassium nitrate and sodium nitrate                                                                             |                                         |
|    | D. Sugar and sand                                                                                                   | 2.30                                    |
|    |                                                                                                                     | * S <sub>2</sub> 2.                     |
| ). | A gas was bubbled through water of the PH 7.0, the pH changed to 10                                                 | 0.0. The gas is:                        |
|    | A. NO <sub>2</sub>                                                                                                  | <b>6</b>                                |
|    | B. $NH_3$                                                                                                           |                                         |
|    | C. $CO_2$                                                                                                           |                                         |
|    | D. HCl                                                                                                              |                                         |
|    |                                                                                                                     |                                         |
| 0. | When 3.2g of a solid was heated, 450cm <sup>3</sup> of a gas was produced at                                        | s.t.p and a residue of                  |
|    | 1.2g was left. The molecular mass of the gas is given by? (1 mole                                                   | of the gas occupies                     |
|    | 22.4 litres at s.t.p)                                                                                               | San |
|    | A. $\left(\frac{22.4 \times 3.5}{0.45}\right) \dot{g}$                                                              |                                         |
|    | B. $\left(\frac{22.4 \times 1.2}{0.45}\right) g$                                                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   |
|    | C. $\left(\frac{22.4 \times 2.0}{0.45}\right) g$                                                                    | ×                                       |
|    | D. $\left(\frac{22.4}{0.45 \times 3.2}\right) g$                                                                    |                                         |
|    |                                                                                                                     |                                         |

| 11. | Beginning with the least reactive, the order of reactivity of the following metals with water is;  A. Copper   iron   magnesium   potassium  C. Sodium   magnesium   lead   copper  D. Magnesium   sodium   copper   lead   copper   lead                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12. | Which one of the following pair of substances consist of weak electrolytes only?  A. Aqueous ammonia and dilute ethanoic acid  B. Sodium hydroxide solution and carbonic acid  C. Potassium hydroxide solution and dilute ethanoic acid  D. Sodium hydroxide solution and dilute sulphuric acid |
| 13. | Which one of the following metals can displace iron metal from an aqueous solution of its salt?                                                                                                                                                                                                 |
|     | A. Copper B. Silver C. Lead D. Magnesium                                                                                                                                                                                                                                                        |
| 14. | Which one of the following substance is formed at the anode during electrolysis of copper (II) sulphate solution using graphite anode?  A. Copper metal  B. Oxygen gas  C. Hydrogen gas  D. Copper (II) ions                                                                                    |
| 15. | The atomic numbers of elements W, X, Y and Z are 17, 19, 20 and 18 respectively. Which one of the following elements shows similar properties as an element with atomic number 12?                                                                                                              |
|     | A. W B. X C. Y D. Z                                                                                                                                                                                                                                                                             |

When 60cm3 of air was passed over heated copper 44cm3 of gas remained. The percentage 16. of oxygen that reacted with copper is;

A. 
$$\left(\frac{44 \times 100}{104}\right)\%$$

B. 
$$\left(\frac{(60-44) \times 100}{60}\right)\%$$
  
C.  $\left(\frac{(60-44) \times 100}{104}\right)$ 

C. 
$$\left(\frac{(60-44) \times 104}{104}\right)$$

D. 
$$\left(\frac{44 \times 100}{60}\right)\%$$

Which one of the following gases is produced when manganese (IV) oxide is heated with 17. concentrated hydrochloric acid?

- A. Chlorine
- B. Hydrogen chloride
- C. Sulphur dioxide
- D. Oxygen gas

Which one of the following ions react with lead (II) nitrate to form a yellow precipitate? 18.

- A. C1-
- B. Br~
- C. 1-
- D. SO42-

Curve Y in the graph below shows the variation in the volume of carbon dioxide with 19. time when calcium carbonate is reacted with excess dilute hydrochloric acid at room temperature.

Volume of carbon dioxide gas



To obtain curve X, one would keep all the conditions the same except;

- A. Reduce the temperature
- B. Reduce the concentration of the acid
- Reduce the particle size of calcium carbonate
- D. Increase pressure

| 20. | The atomic number of an element Z is 15. The electronic configuration of the ion of                                                                                       | Z is: |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | A. 2:8:2                                                                                                                                                                  |       |
|     | В. 2:8                                                                                                                                                                    |       |
|     | C. 2:8:3                                                                                                                                                                  |       |
|     | D. 2:8:8                                                                                                                                                                  |       |
|     |                                                                                                                                                                           |       |
| 21. | Which one of the following substances is used to dry ammonia gas?                                                                                                         |       |
|     | A. Anhydrous calcium chloride                                                                                                                                             | ·     |
|     | B. Concentrated sulphuric acid                                                                                                                                            |       |
|     | C. Calcium oxide                                                                                                                                                          | L     |
|     | D. Calcium hydroxide                                                                                                                                                      |       |
|     |                                                                                                                                                                           |       |
| 22. | The best method that can be used to separate a mixture of methanol and ethanol is;                                                                                        |       |
|     | A. Crystallization                                                                                                                                                        |       |
| ,   | B. Filtration                                                                                                                                                             |       |
|     | C. Decantation                                                                                                                                                            |       |
|     | D. Fractional distillation                                                                                                                                                |       |
|     | •.                                                                                                                                                                        |       |
| 23. | Which one of the following pairs of ions consists of ions that react with aqueous among to form precipitates that dissolve in excess ammonia?  A. $Zn^{2+}$ and $Cu^{2+}$ |       |
|     | B. $Zn^{2+}$ and $Mg^{2+}$                                                                                                                                                | 11    |
|     | C. $Ca^{2+}$ and $Pb^{2+}$                                                                                                                                                |       |
|     | D. $Fe^{2+}$ and $Fe^{3+}$                                                                                                                                                |       |
| 4.  | Which one of the following equations represents a reduction reaction?  A. $Cl_{2(g)} + 2e \longrightarrow 2Cl^{-}(g)$                                                     |       |
|     | B. $20^{2-}(g) \longrightarrow O_{2(g)} + 4\bar{e}$                                                                                                                       |       |
|     | C. $2Br^{-}(aq) - 2e \longrightarrow Br_{2}(l)$                                                                                                                           |       |
|     | D. $Fe^{2+} \longrightarrow Fe^{3+} + e$                                                                                                                                  |       |
|     | $E = \frac{1}{16} + e$                                                                                                                                                    |       |
| 5.  | During the manufact                                                                                                                                                       | •,    |
|     | During the manufacture of ammonia by the haber process, nitrogen combines                                                                                                 | with  |
|     | y and to form animoma gas according to the following equation:                                                                                                            |       |
|     | $\frac{N_2 + 3H_2}{\text{Which are a fell}} = \frac{2NH_3}{CH} \qquad \Delta H = -305 \text{ KJmol}^{-1}$                                                                 |       |
|     | Which one of the following conditions would favour maximum yield of ammonia.                                                                                              |       |
|     | Bir temperature and mgn pressure                                                                                                                                          |       |
|     | B. Low temperature and high pressure                                                                                                                                      |       |
|     | C. High temperature and low pressure                                                                                                                                      |       |
|     | D. Low temperature and low pressure                                                                                                                                       |       |

| 26. | 12.5cm <sup>3</sup> of dilute hydrochlori  | e acid reacted completely with tration of the acid in moles per | litre is;         | potassiam                              |
|-----|--------------------------------------------|-----------------------------------------------------------------|-------------------|----------------------------------------|
|     | A. 0.4M                                    |                                                                 |                   |                                        |
|     | B. 0.2M                                    |                                                                 |                   |                                        |
|     | C. 0.1M                                    |                                                                 |                   |                                        |
|     | D. 0.8M                                    |                                                                 |                   |                                        |
|     |                                            |                                                                 |                   |                                        |
| 27. | Which one of the following gas             | ses is collected using down ward                                | d displacement of | air?                                   |
|     | A. Hydrogen chloride gas                   | •                                                               |                   | ,                                      |
|     | B. Hydrogen gas                            | 4                                                               |                   |                                        |
|     | C. Sulphur dioxide                         | •                                                               |                   |                                        |
|     | D. Chlorine                                | i e e                                                           |                   |                                        |
|     |                                            |                                                                 |                   |                                        |
| 28. | The substance that undergoes p             | hysical change when heated is;                                  |                   |                                        |
|     | A. Sulphur                                 | ·                                                               |                   |                                        |
|     | B. Iodine                                  |                                                                 |                   |                                        |
|     | C. Carbon                                  |                                                                 |                   | <u> </u>                               |
|     | D. Phosphorous                             |                                                                 |                   |                                        |
|     | •                                          |                                                                 |                   | • •                                    |
| 29. | Which one of the following                 | substances is manufactured                                      | by electrolysis o | of sodium                              |
|     | chloride?                                  |                                                                 |                   | patrus contributoriosis contributorios |
|     | A. Sodium sulphate                         |                                                                 |                   |                                        |
|     | B. Sodium carbonate                        |                                                                 |                   |                                        |
|     | C. Sodium nitrate                          | :                                                               |                   |                                        |
|     | D. Sodium hydroxide                        |                                                                 |                   |                                        |
|     | · · · · · · · · · · · · · · · · · · ·      |                                                                 | • .               | ,<br>                                  |
| 30. | Ethanol burns in oxygen accord             |                                                                 |                   |                                        |
|     | $C_2H_5OH_{(l)} + 3O_2(g)$ ——              | $\rightarrow$ $2CO_2(g) + 3H_2O_{(l)} \Delta$                   | H = -1370  KI     | $mol^{-1}$                             |
|     | Calculate the amount of heat               |                                                                 |                   |                                        |
|     | combustion of ethanol ( $C = 12$ )         |                                                                 | 5-11 10 4004 101  | compicio                               |
|     | A. 642.2 KJ                                | , ,                                                             |                   |                                        |
| *   | B. 1340.2 <i>KJ</i>                        |                                                                 |                   |                                        |
|     | C. 1284.4 <i>KJ</i>                        |                                                                 |                   |                                        |
|     | D. 1926.6 <i>KJ</i>                        |                                                                 |                   | r i i i je                             |
|     | D. 1720.0Kj                                |                                                                 | •                 |                                        |
| 31. | Which one of the following is              | 41                                                              |                   |                                        |
|     | Which one of the following is bleaches it; | the gas that turns moist blue                                   | e litmus to red a | and finally                            |
|     |                                            |                                                                 |                   |                                        |
|     | A. Sulphur trioxide                        |                                                                 |                   |                                        |
|     | B. Sulphur dioxide                         |                                                                 |                   |                                        |
|     | C. Carbon monoxide                         |                                                                 |                   |                                        |
|     | D. Nitrogen dioxide                        |                                                                 |                   |                                        |

The percentage of water of crystallization in hydrated sodium carbonate, 32.

$$Na_2CO_3.10H_2O$$
 is  $(Na_2CO_3 = 106, O = 16, H = 1)$ 

- A.  $\left(\frac{286}{106} \times 100\right)\%$
- B.  $\left(\frac{106}{180} \times 100\right)\%$ C.  $\left(\frac{180}{286} \times 100\right)\%$
- D.  $\left(\frac{180}{106} \times 100\right)\%$

Which one of the following equations represents a reaction that takes place at the anode 33. during electrolysis of copper (II) sulphate solution using copper anode?

- A.  $Cu^{2+}(aq) + 2e \longrightarrow Cu(s)$
- B.  $4\bar{O}H(aq) \longrightarrow 2H_2O(l) + O_2(g) + 4e$
- C.  $2H^{+}(aq) + 2e \longrightarrow H_{2}(g)$
- D.  $Cu(s) \longrightarrow Cu^{2+}(aq) + 2e$

An oxide of metal, Y contains 13.4% oxygen. The empirical formula of the oxide is (O = 34. 16, Y = 207)

- A. *YO*<sub>2</sub>
- B. Y<sub>2</sub>0
- C.  $Y_2O_3$
- D. *YO*

The numbers of protons, neutrons and electrons in some particles are shown in the Table 35. below:

| Particle | Protons     | Neutrons | Electrons |
|----------|-------------|----------|-----------|
| P        | <i>)</i> 11 | 12       | 10        |
| Q        | 12          | 12       | 10        |
| R        | 17          | 20       | 17        |
| T        | 17          | 18       | 18        |

Which one of the following particles represents an anion?

- A. T
- B. P
- C. Q.
- D. R

| 36. | The concentration of hydrogen ions in a solution made by dissolving 10g of phosphoric acid to make one litre of solution $(H_3PO_4 = 98)$ .                                                                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | A. $\frac{10}{08} \ mol \ l^{-1}$                                                                                                                                                                                                                                                                                       |
|     | B. $\left(\frac{10 \times 3}{98}\right) \mod l^{-1}$                                                                                                                                                                                                                                                                    |
|     | C. $\left(\frac{10}{98 \times 3}\right) \mod l^{-1}$                                                                                                                                                                                                                                                                    |
|     | D. $\left(\frac{98}{10 \times 3}\right) mol \ l^{-1}$                                                                                                                                                                                                                                                                   |
| 37. | Which one of the following will be the colour of the residue when carbon monoxide is                                                                                                                                                                                                                                    |
| 51. | passed over heated lead (II) oxide?                                                                                                                                                                                                                                                                                     |
|     | A. Orange when hot and yellow on cooling                                                                                                                                                                                                                                                                                |
|     | B. Yellow when hot and white on cooling                                                                                                                                                                                                                                                                                 |
|     | C. Grey solid                                                                                                                                                                                                                                                                                                           |
|     | D. White solid                                                                                                                                                                                                                                                                                                          |
| 38. | Copper (II) oxide is reduced by dry ammonia according to copper equation;<br>$3CuO_{(s)} + 2NH_3(g) \longrightarrow 3Cu_{(s)} + 3H_2O(i) + N_2(g)$<br>What volume of ammonia is required to reduce 8.0g of copper (II) oxide at room temperature (one mole of a gas at room temperature occupies 24000cm <sup>3</sup> , |
|     | Cu = 64, O = 16).<br>(8x2x24000)                                                                                                                                                                                                                                                                                        |
|     | A. $\left(\frac{8 \times 2 \times 24000}{80 \times 3}\right) cm^3$                                                                                                                                                                                                                                                      |
|     | B. $\left(\frac{8 \times 3 \times 24000}{80 \times 2}\right) cm^3$                                                                                                                                                                                                                                                      |
|     | C. $\left(\frac{80 \times 3 \times 24000}{8 \times 2}\right) cm^3$                                                                                                                                                                                                                                                      |
|     | D. $\left(\frac{80 \times 2 \times 24000}{8 \times 3}\right) cm^3$                                                                                                                                                                                                                                                      |
|     | $\begin{pmatrix} 8x3 \end{pmatrix}$                                                                                                                                                                                                                                                                                     |
| 39. | Which one of the following is an example of a gas which acts as a reducing agent?                                                                                                                                                                                                                                       |
|     | A. Oxygen                                                                                                                                                                                                                                                                                                               |
|     | B. Carbon dioxide                                                                                                                                                                                                                                                                                                       |
|     | C. Chlorine                                                                                                                                                                                                                                                                                                             |
|     | D. Hydrogen                                                                                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                                                                                                         |
|     |                                                                                                                                                                                                                                                                                                                         |

40. The metal that can react with water at room temperature is;

- A. Calcium
- B. Zinc
- C. Iron
- D. Magnesium

Each of the questions 41 to 45 consists of an assertion (statement) on the left hand side and a reason on the right hand side.

## Select:

- If both the assertion and the reason are true statements and the reason in a correct A. explanation of the assertion.
- If both the assertion and the reason are true statements but the reason is not a correct B. explanation of the assertion.
- If the assertion is true but the reason is not a correct statement. С.
- If the assertion is not correct but the reason is a correct statement. D.

## INSTRUCTIONS TO CANDIDATES

| Assertion    | Reason                                     |
|--------------|--------------------------------------------|
| A. True      | True (reason is a correct explanation)     |
| B. True      | True (reason is not a correct explanation) |
| C. True      | Incorrect                                  |
| D. Incorrect | Correct                                    |

| 41. | Lead (II) hydroxide is soluble in excess sodium hydroxide solution. | BECAUSE | Lead (II) hydroxide is amphoteric.                |
|-----|---------------------------------------------------------------------|---------|---------------------------------------------------|
| 42. | Concentrated sulphure acid is used to dry ammonia gas.              | BECAUSE | Concentrated sulphuric acid is hygroscopic.       |
| 43  | Non metals are oxidizing agents.                                    | BECAUSE | They gain electrons from metals during reactions. |
| 44. | Dry oxygen gas is collected using a gas syringe.                    | BECAUSE | It is a neutral gas.                              |
| 45. | Ionic compounds conduct electricity in solid state.                 | BECAUSE | Contains cations and anions                       |

In each of the questions 46 to 50 one or more of the answers given may be correct. Read each restion carefully and then indicate the correct answer according to the following:

- A. If 1, 2 and 3 only are correct
- B. If 1 and 3 only are correct
- C. If 2 and 4 only are correct
- D. If 4 only is correct

| 46.      |                       | the following nitr                        | ate(s) will  | decompose | on heatir   | ng to form | i denitrog | gen oxide |  |
|----------|-----------------------|-------------------------------------------|--------------|-----------|-------------|------------|------------|-----------|--|
|          | (N <sub>2</sub> O)?   | *Lucks                                    |              |           |             |            |            |           |  |
|          | 1. Potassium          | initrate                                  |              |           |             |            |            |           |  |
|          | 2. Magnesiu           | m nitrate                                 |              |           |             |            |            |           |  |
|          | 3. Sodium n           | itrate                                    |              |           |             |            |            |           |  |
|          | 4. Ammoniu            |                                           |              |           |             |            |            |           |  |
| 47.      | Which one of          | f the following of                        | ations for   | ms a pred | ipitate so  | oluble in  | excess     | ammonia   |  |
|          | solution?             |                                           |              |           | •           |            |            |           |  |
|          | 1. $Zn^{2+}$          |                                           |              |           |             |            |            |           |  |
|          | 2. $Mg^{2+}$          |                                           |              |           |             |            |            |           |  |
|          | 3. $Cu^{2+}$          |                                           |              |           |             |            |            |           |  |
|          | 4. $Pb^{2+}$          |                                           |              |           |             |            |            |           |  |
|          | William sin(s)        | af tha mirtura ha                         | 10,,,,,,,,,, | congreted | by filtrati | on?        |            |           |  |
| 18.      | •                     | of the mixtures be<br>loride and potassit |              | separateu | by man      | J11:       |            |           |  |
|          |                       | -                                         |              | hamata    |             |            |            |           |  |
|          |                       | chloride and copp                         |              | oonate    |             |            |            |           |  |
|          |                       | n chloride and zine                       |              |           |             |            |            |           |  |
|          | 4. Lead (II) m        | itrate and lead (II)                      | carponate.   |           |             |            |            |           |  |
| 9.       | Oxidation is a        | reaction in which.                        |              |           |             |            |            |           |  |
|          | 1. Hydrogen i         | s removed from a                          | substance    |           |             |            |            |           |  |
|          | ž.                    | added to a substan                        |              |           |             |            |            |           |  |
|          |                       | lost from a substa                        |              |           |             |            |            | L         |  |
|          |                       | removed from a su                         |              |           |             |            |            |           |  |
| _        |                       |                                           |              |           |             |            |            |           |  |
| 0.       |                       | structure of eleme                        |              | 1         | as shown    | in Table   | below:     |           |  |
|          | Element               | Electronic conf                           | iguration    |           |             |            |            |           |  |
|          | Р                     | 2:8:2                                     |              |           |             |            |            |           |  |
|          | Q                     | 2:8:7                                     |              |           |             |            |            |           |  |
|          | R                     | 2:8:6                                     |              | ,         |             |            |            |           |  |
| <u>.</u> | S                     | 2:8:1                                     |              |           |             |            |            |           |  |
|          | 1. P and Q 2. P and R | f the following                           | pairs of     | elements  | will cor    | nbine to   | form       | covalent  |  |
|          | 3. R and S            |                                           |              |           |             |            |            |           |  |
|          | 4. Q and R            |                                           |              |           |             |            |            |           |  |
|          |                       |                                           | END          | )         |             |            |            |           |  |