

Business Case: Prediction of Charged Off Loans

Applicant: Pedro Martinez

The Problem and Solution Proposal

- > Objective: design a model that predicts Charged Off Loans using LC's database
- > Solution Structure
 - > Exploratory Data Analysis
 - > Analysis and data cleaning (missing values, "o.h.e." on categorical variables)
 - > Feature Selection (Forward Selection, Gradient Boosted Weights and Regularization)
 - › Model Training
 - three models: Logistic Regression, Gradient Boosting, K-Nearest Neighbors
 - GridSearch for HyperParameters and Cross Validation for overfitting analysis
 - Performance analysis: Confusion Matrices and ROC Curves
 - > Model Testing
 - Performance analysis: Confusion Matrices and ROC Curve

Dataset

Train set: 887379 observations by 74 variables

Test set: 759338 observations by 72 variables

Columns with more than half of observations with missing values:

```
761351
mths_since_last_delinq
                                454312
mths_since_last_record
                                750326
mths_since_last_major_derog
                               665676
annual inc joint
                                886868
dti joint
                                886870
verification_status_joint
                                886868
open acc 6m
                                866007
open il 6m
                                866007
open_il_12m
                               866007
open_il_24m
                                866007
mths_since_rcnt_il
                                866569
total bal il
                                866007
il util
                                868762
open_rv_12m
                                866007
open rv 24m
                                866007
max bal bc
                                866007
all_util
                                866007
ing_fi
                                866007
total_cu_tl
                               866007
ing last 12m
                                866007
```

Exploratory Data Analysis

Exploratory Data Analysis (2)

Debt-to-Income

Exploratory Data Analysis (conclusion)

 Average Loan Rate for Charged-Off borrowers may show common higher cost:

(for Charged-Off and none's)

ChOff 0 1
home_ownership
ANY 14.2 NaN
MORTGAGE 12.8 15.9
NONE 14.3 15.3
OTHER 13.2 14.3
OWN 13.1 16.1
RENT 13.4 16.1

Avg Loan Rate per Home Ownership

 In summary, a preliminary analysis shows no noticeable common characteristics among Charged-Off Loan borrowers compared to others.

Feature Selection

Several selection techniques were performed

- > Regularization (for Logistic Regression): loan amount, interest rate, annual income, Debe-to-Income, delinquencies in the last 2 years, inquiries last 6 months, employment length, number of derogatory public records, number of open credit lines in the borrower's credit file.
- > Gradient Boosted Weights (for Gradient Boosting):

Logistic Regression

- Called logistic since it uses the Logit function $log_e\left(\frac{p}{1-p}\right)$
- The regression is in the form of

$$p = \left(\frac{1}{1 + e^{-\beta \cdot X}}\right)$$

where β is the coefficients matrix representing the log-odds for p =1 X is the feature or explanatory variables matrix p is the probability of the target variable being 1

Gradient Boosting

A gradient boosting tress is an ensemble learning technique which predicts in the form of an ensemble of decision trees where the results of the each base-learner are combined to generate the final estimate.

$\underline{\sf XGBoost\ Plot\ from\ Charged-Off\ Model:}$

K-Nearest Neighbor

Given a defined 'number of neighbors' (K), for every pair combination of features (e.g. X_1 and X_2), this model analyzes for each random observation the K-nearest points and identifies their class to then estimate the very class of it based on the distribution of their neighbors (i.e. conditional probability).

Model Training and Performance Comparison

Confusion Matrix

	Predicted Negative	Predicted Positive
Actual Negative	TRUE NEGATIVE	FALSE POSITIVE
Actual Positive	FALSE NEGATIVE	TRUE POSITIVE

	Predicted Negative	Predicted Positive
Actual Negative	1 - α	α
Actual Positive	β	1 - β

Results – Train set

Regularized Logistic Regression	Predicted No Charged-Off	Predicted <i>Charged-Off</i>
Actual No Charged-Off	841,201	143
Actual Charged-Off	45,935	71

Gradian Boosting	Predicted No Charged-Off	Predicted Charged-Off
Actual No Charged-Off	840,904	440
Actual Charged-Off	45,773	233

K-Nearest Neighbors	Predicted No Charged-Off	Predicted <i>Charged-Off</i>
Actual No Charged-Off	840,323	1,021
Actual Charged-Off	44,218	1,788

Results – Test set

Regularized Logistic Regression	Predicted No Charged-Off	Predicted <i>Charged-Off</i>
Actual No Charged-Off	715,350	14
Actual Charged-Off	43,618	0

Gradian Boosting	Predicted No Charged-Off	Predicted Charged-Off	
Actual No Charged-Off	715,054	310	
Actual Charged-Off	43,587	31	

K-Nearest Neighbors	Predicted No Charged-Off	Predicted Charged-Off
Actual No Charged-Off	713,791	1,573
Actual Charged-Off	43,520	98

Classification Report

- Precision: $\frac{TP}{(TP + FP)}$
- Recall: $\frac{TP}{(TP + FN)}$
- F1score: 2· precision · recall (precision + recall)
- High precision: Predicted most of Non-Charged Off Loans correctly
- High recall: Not many actual Charged Off Loans predicted as Non-Charged Off

Classification Report: Train and Test sets

TRAIN

TEST

REGULARIZED LOGISTIC REGRESSION				
	precision	recall	f1-score	support
No Charged-Off	0.95	1.00	0.97	841,344
Charged-Off	0.33	0.00	0.00	46,006
accuracy			0.9481	887,350
macro avg	0.64	0.50	0.49	887,350
weighted avg	0.92	0.95	0.92	887,350

REGULARIZED LOGISTIC REGRESSION				
	precision	recall	f1-score	support
No Charged-Off	0.94	1.00	0.97	715,364
Charged-Off	0.00	0.00	0.00	43,618
accuracy			0.9425	758,982
macro avg	0.47	0.50	0.49	758,982
weighted avg	0.89	0.94	0.91	758,982

<u>GRADIENT BOOSTING</u>				
	precision	recall	f1-score	support
No Charged-Off	0.95	1.00	0.97	841,344
Charged-Off	0.35	0.01	0.01	46,006
accuracy			0.9479	887,350
macro avg	0.65	0.50	0.49	887,350
weighted avg	0.92	0.95	0.92	887,350

GRADIENT BOOSTING				
	precision	recall	f1-score	support
No Charged-Off	0.94	1.00	0.97	715,364
Charged-Off	0.09	0.00	0.00	43,618
accuracy			0.9422	758,982
macro avg	0.52	0.50	0.49	758,982
weighted avg	0.89	0.94	0.91	758,982

<u>KNN</u>						
	precision	recall	f1-score	support		
No Charged-Off	0.95	1.00	0.97	841,344		
Charged-Off	0.64	0.04	0.07	46,006		
accuracy			0.9490	887,350		
macro avg	0.79	0.52	0.52	887,350		
weighted avg	0.93	0.95	0.93	887,350		

<u>KNN</u>						
	precision	recall	f1-score	support		
No Charged-Off	0.94	1.00	0.97	715,364		
Charged-Off	0.06	0.00	0.00	43,618		
accuracy			0.9406	758,982		
macro avg	0.50	0.50	0.49	758,982		
weighted avg	0.89	0.94	0.91	758,982		

conclusion 1: in terms of **Accuracy**, KNN model performs better in the Train set conclusion 2: in terms of **Accuracy**, Regularized Logistic Regression model performs better in the Test set

Further Improvement

- > Feature Engineering:
 - > Standardization
 - > Normalization
 - > log-changes
- > Outlier Analysis
- Other Classifying Models

Business Case: Prediction of Charged Off Loans

Applicant: Pedro Martinez