* Name Origin:

Greek: tellus (the Earth).

* Sources:

Obtained as a by-product of copper and lead refining.

* Uses:

Used to improve the machining quality of metal products and to color glass and ceramics. Also used in thermoelectric devices, vulcanization of rubber, percussion caps, battery plate protectors and electrical resistors.

* Additional Notes:

Discovered by Muller von Reichenstein in 1782; named by Klaproth, who isolated it in 1798. Tellurium is occasionally found native, but is more often found as the telluride of gold (calaverite), and combined with other metals. It is recovered commercially from the anode muds produced during the electrolytic refining of blister copper. The U.S., Canada, Peru, and Japan are the largest Free World producers of the element. Crystalline tellurium has a silverywhite appearance, and when pure exhibits a metallic luster. It is brittle and easily pulverized. Amorphous tellurium is formed by precipitating tellurium from a solution of telluric or tellurous acid. Whether this form is truly amorphous, or made of minute crystals, is open to question. Tellurium is a ptype semiconductor, and shows greater conductivity in certain directions, depending on alignment of the atoms. Its conductivity increases slightly with exposure to light. It can be doped with silver, copper, gold, tin, or other elements. In air, tellurium burns with a greenish-blue flame, forming the dioxide. Molten tellurium corrodes iron, copper, and stainless steel. Tellurium and its compounds are probably toxic and should be handled with care. Workmen exposed to as little as 0.01 mg/m3 of air, or less, develop "tellurium breath," which has a garlic-like odor. Forty two isotopes and isomers of tellurium are known, with atomic masses ranging from 106 to 138. Natural tellurium consists of eight isotopes, two of which are radioactive with very long halflives. Tellurium improves the machinability of copper and stainless steel, and its addition to lead decreases the corrosive action of sulfuric acid on lead and improves its strength and hardness. Tellurium is used as a basic ingredient in blasting caps, and is added to cast iron for chill control. Tellurium is used in ceramics. Bismuth telluride has been used in thermoelectric devices.