Asymptotic Notations

Sahni: Page: 40, 41, 48 & 49

Cormen: Page: 45

Types of Time Functions

Input size n							
Time	Name	1	2	4	8	16	32
1	constant	1	1	1	1	1	1
$\log n$	logarithmic	0	1	2	3	4	5
n	linear	1	2	4	8	16	32
$n \log n$	log linear	0	2	8	24	64	160
n^2	quadratic	1	4	16	64	256	1024
n^3	cubic	1	8	64	512	4096	32768
2 ⁿ	exponential	2	4	16	256	65536	4294967296
n!	factorial	1	2	24	40326	2092278988000	26313×10^{33}

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n^n$$

Plot of Function Values

Asymptotic Notations: "O"

• O [Big "oh"]: The function f(n) = O(g(n))iff there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all n, $n \ge n_0$.

- Example: 3n + 2 = O(n)as $3n + 2 \le 4n$ for all $n \ge 2$
- Represents : Upper bound

"O" [Upper bound]: Practice

• The function f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all n, $n \ge n_0$.

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n^n$$
$$f(n) = 10n^2 + 4n + 2$$

Asymptotic Notations: "Ω"

• Ω [Omega]: The function $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \ge c \cdot g(n)$ for all n, $n \ge n_0$.

- Example: $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for all $n \ge 1$
- Represents : Lower bound

"Ω" [Lower bound]: Practice

• The function $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \ge c \cdot g(n)$ for all n, $n \ge n_0$.

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n^n$$
$$f(n) = 10n^2 + 4n + 2$$

Asymptotic Notations: "Θ"

• Θ [Theta]: The function $f(n) = \Theta(g(n))$ iff there exist positive constants c_1 , c_2 and n_0 such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n, n \ge n_0$.

- Example: $3n + 2 = \Theta(n)$ as $3n + 2 \le 4n$ and $3n + 2 \ge 3n$ for all $n \ge 2$
- Represents : Tight/Average bound

"Θ" [Average bound]: Practice

• The function $f(n) = \Theta(g(n))$ iff there exist positive constants c_1 , c_2 and n_0 such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for all n, $n \ge n_0$.

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n^n$$
$$f(n) = 10n^2 + 4n + 2$$

Home Work

$$f(n) = n!$$

Notations: At a glance

- O [Upper]: The function f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all n, $n \ge n_0$.
- Ω [Lower]: The function $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \ge c \cdot g(n)$ for all n, $n \ge n_0$.
- Θ [Tight / Average]: The function $f(n) = \Theta(g(n))$ iff there exist positive constants c_1 , c_2 and n_0 such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for all n, $n \ge n_0$.

