

Prédire les émissions de CO2 et la consommation totale d'énergie de bâtiments non destinés à l'habitation à Seattle

Sommaire

- 1. Problématique
- 2. Etude du jeu de données
- 3. Description et analyse de certaines variables
- 4.Lien entre les variables
- 5. Modèles de prédiction
- 6.Conclusion sur la variable ENERGY STAR Score

1. Problématique

Emissions de CO2 et consommation totale d'énergie

- Relevés minutieux effectués en 2016
- Bâtiments non résidentiels à Seattle
- But des modèles proposés :
 - Prédire la consommation totale d'énergie et les émissions de CO2
 - Evaluer l'intérêt de l'<u>ENERGY STAR Score</u> pour la prédiction d'émissions (et la consommation d'énergie)

2. Etude du jeu de données

Etude préliminaire du fichier de données de la ville de Seattle en Open Source

Fichier source

- Nom du fichier : 2016_Building_Energy_Benchmarking.csv
- 3376 lignes (bâtiments) et 46 colonnes (variables)
- Pas de ligne/colonne dupliquée
- Une colonne entièrement vide : « Comments »

Colonnes « target »

- « SiteEnergyUse(kBtu) » : consommation d'énergie totale
- « TotalGHGEmissions » : émissions de CO2

Nettoyage

- Sélection de la catégorie « NonResidential » (non prise en compte de « Nonresidential COS » et « Nonresidential WA »
- Suppression de 2 bâtiments sans données sur énergie consommée, émissions de CO2, électricité, gaz

3.Description et analyse de certaines variables

Etude des variables

- Transformation de la colonne « YearBuilt » en « NumberOfYearsSinceConstruction »,
- Création d'une variable « energy_source » avec pour valeurs possibles : 'Electricity', 'Gaz', 'Electricity & Gaz', 'Source non connue' et suppression des variables 'Electricity(kWh)' et 'NaturalGas(therms)',
- Sélection des variables pertinentes pour l'étude : "NumberOfYearsSinceConstruction", "NumberofBuildings", "NumberofFloors", "PropertyGFAParking", "ENERGYSTARScore », "PrimaryPropertyType", "Neighborhood", 'energy_source',
- #target1 : "SiteEnergyUse(kBtu)" est la consommation totale d'énergie #target2 : "TotalGHGEmissions" est la quantité d'émission de CO2

Etude des ouliers pour quelques variables

□ Colonne « Outlier » : suppression des bâtiments « Low outlier » et « High outlier » (16) puis suppression de la colonne

- Colonnes
 - « SiteEnergyUse(kBtu) »,
 - « TotalGHGEmissions » et
 - « PropertyGFAParking » :

Pour chaque variable, les outliers sont des bureaux, hôtels, ou hôpitaux.
Pas de remarque particulière.

4.Lien entre les variables

Heatmap

1.0

- 0.8

- 0.6

0.4

0.2

0.0

On observe une corrélation certaine entre les 2 targets : consommation totale d'énergie (SiteEnergyUse(kBtu)) et émission de CO2 (TotalGHGEmissions)

Et <u>SiteEnergyUse(kBtu)</u>
avec:
NumberofBuildings,
NumberofFloors,
PropertyGFAParking,

et <u>TotalGHGEmissions</u> avec NumberofBuildings et NumberofFloors

11 sur 24

5. Modèles de prédiction

Traitements et modèles pour les 2 targets

Une variable comporte des valeurs manquantes : "ENERGYSTARScore »

GridSearchCV et **Pipeline** avec :

- ✓ Préprocessing :
 - ☐ Variables catégorielles : OneHotEncoder
 - ☐ Variables numériques : SimpleImputer(strategy='median') et StandardScaler
- ✓ Modèles :

	Consommation d'énergie	Émissions de CO2	
DummyRegressor()	ssor() strategy : ['mean', 'median'] strategy : ['mean', 'median']		
LinearRegression()	fit_intercept : [True, False] n_jobs : [None, -1]	fit_intercept : [True, False] n_jobs : [None, -1]	
Ridge()	alpha : [0,0.5,1]	alpha : [0,0.5,1]	
Lasso()	alpha : [0,0.5,1]	alpha : [0,0.5,1]	
RandomForestRegressor()	n_estimators : [100,110,120,150] random_state : [0, 42] max_features : [5,7,10]	m_state : [0, 42]	
KNeighborsRegressor()	(NeighborsRegressor()		
GradientBoostingRegressor() learning_rate : [0.086,0.087,0.088, 0.09] max_depth : [4,5,6,7] random_state : [0,42] max_features : [5,6,7] learning_rate : [0.086,0 max_depth : [4,5,6,7] random_state : [0,42] max_features : [5,6,7]		random_state : [0,42]	
SVR()	kernel: ('linear', 'rbf','poly') C: [1.5, 10] gamma: [1e-7, 1e-4] epsilon: [0.1,0.2,0.5,0.3]	kernel : ('linear', 'rbf','poly') C : [1.5, 10] gamma : [1e-7, 1e-4] epsilon : [0.1,0.2,0.5,0.3]	

Meilleurs Hyper paramètres pour: Consommation d'énergie

Remarque:
K-NN est en over-fitting

Modèle	Hyper paramètres	Score Train	Score test
DummyRegressor()	strategy : 'mean'	0.0	-1.2169
LinearRegression()	fit_intercept : False n_jobs : None	0.6215	0.3419
Ridge()	alpha : 0.5	0.6204	0.3465
Lasso()	alpha : 1	0.6215	0.3432
RandomForestRegressor()	max_features : 7 n_estimators : 120 random_state : 0	0.9397	0.4080
KNeighborsRegressor()	n_neighbors : 25 weights : 'distance'	0.9999	0.3506
GradientBoostingRegressor()	learning_rate : 0.086 max_depth : 7 max_features : 6 random_state : 42	0.9727	0.4238
SVR()	kernel : 'linear' C : 10 gamma : 1e-07 epsilon : 0.1	-0.0713	-0.0735

15 sur 24

Meilleurs Hyper paramètres pour: Emission de CO2

Modèle	Hyper paramètres	Score Train	Score test
DummyRegressor()	strategy : 'mean'	0.0	-0.0006
LinearRegression()	fit_intercept : False n_jobs : None	0.6385	0.3046
Ridge()	alpha : 0.5	0.6372	0.3183
Lasso()	alpha : 1	0.6358	0.3178
RandomForestRegressor()	max_features : 4 n_estimators : 150 random_state : 0	0.9467	0.5307
KNeighborsRegressor()	n_neighbors : 5	0.6635	0.4365
GradientBoostingRegressor()	learning_rate: 0.09 max_depth: 6 max_features: 6 random_state: 42	0.9759	0.5966
SVR()	kernel : 'linear' C : 10 gamma : 1e-07 epsilon : 0.2	0.0543	0.1324

Performances des validations croisées pour le meilleur modèle : Gradient Boosting (10 premiers résultats)

1) Consommation d'énergie

	mean_test_score	std_test_score	param_gbtlearning_rate	param_gbtmax_depth	param_gbtmax_features	param_gbtrandom_state
0	0.196031	0.740505	0.086	4	5	0
1	0.242458	0.730313	0.086	4	5	42
2	0.228552	0.788802	0.086	4	6	0
3	0.270883	0.533537	0.086	4	6	42
4	0.247276	0.633687	0.086	4	7	0
5	0.156181	0.953493	0.086	4	7	42
6	0.167648	0.726739	0.086	5	5	0
7	0.264776	0.642374	0.086	5	5	42
8	0.291310	0.596902	0.086	5	6	0
9	0.309816	0.484283	0.086	5	6	42

Visualisation performance Gradient Boosting sur consommation énergie totale

Performances des validations croisées pour le meilleur modèle : Gradient Boosting (8 premiers résultats) 2) Emissions de CO2

	mean_test_score	std_test_score	param_gbtlearning_rate	param_gbtmax_depth	param_gbtmax_features	param_gbtrandon
0	0.270476	0.732215	0.086	4	5	
1	0.240981	0.894434	0.086	4	5	
2	0.152697	0.960075	0.086	4	6	
3	0.310077	0.641670	0.086	4	6	
4	0.129507	1.004799	0.086	4	7	
5	0.246045	0.704796	0.086	4	7	
6	0.289149	0.721175	0.086	5	5	
7	0.306998	0.711313	0.086	5	5	

Visualisation performance Gradient Boosting sur émissions de CO2

6.Conclusion sur la variable ENERGY STAR Score

Feature Importance sur : 1) Consommation d'énergie totale

	features	importance
0	PrimaryPropertyType	0.293129
1	NumberofBuildings	0.272428
2	NumberofFloors	0.133927
3	Neighborhood	0.083701
4	${\bf Number Of Years Since Construction}$	0.071830
5	ENERGYSTARScore	0.063813
6	PropertyGFAParking	0.055882
7	energy_source	0.025290

Feature Importance sur : 2) Emissions de CO2

	features	importance
0	NumberofBuildings	0.366974
1	PrimaryPropertyType	0.240798
2	ENERGYSTARScore	0.102385
3	NumberofFloors	0.098595
4	Neighborhood	0.089300
5	NumberOfYearsSinceConstruction	0.061005
6	energy_source	0.021157
7	PropertyGFAParking	0.019786

SOURCE

- https://data.seattle.gov/dataset/2016-Building-Energy-Benchmarking/2bpz-gwpy