Calculus III Lecture 11

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Surfaces
 - Quadric Surfaces

2 Tangent Planes

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

- A surface S can be given in a number of ways.
 - Implicit form, as a level surface:

$$F(x,y,z)=0$$

• Explicit form, as a parametric surface:

• A partial case of the parametric surface is the graph surface:

$$z = f(x, y) \Longrightarrow \begin{vmatrix} x &= u \\ y &= v \\ z &= f(u, v) \end{vmatrix}$$

• A graph surface z = f(x, y) can be represented as a level surface:

$$z = f(x, y) \iff F(x, y, z) = 0$$
 for $F(x, y, z) = z - f(x, y)$.

Quadratic surfaces

The level sets for second degree polynomial functions

$$f(x, y, z) = Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J.$$

are called quadratic surfaces.

- At least one of the second-degree terms is required to be non-zero.
- The coefficients are allowed to be zero.

Canonical forms of quadratic surfaces.

Through rigid motions (translations and rotations) a quadratic surface can be reduced to one of the two canonical forms.

$$Ax^2 + By^2 + Cz^2 + D = 0,$$

 $(A, B, C) \neq (0, 0, 0)$. These quadratics posses central symmetry: if (x, y, z) belongs to the surface, so does (-x, -y, -z).

$$Ax^2 + By^2 + Iz = 0,$$

 $(A, B) \neq (0, 0), l \neq 0$. These quadratics do not posses central symmetry.

The canonical forms above are in addition split into sub-forms depending on the sign of A, B, C, D, I.

$Ax^2 + By^2 + Cz^2 + D = 0, A > 0, B > 0, C > 0, D > 0$

Consider the surface $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$

- Let A > 0, B > 0, C > 0, D > 0.
- Then the surface is the empty set.
- Example:

$$x^2 + 2y^2 + 3z^2 + 4 = 0.$$

$Ax^{2} + By^{2} + Cz^{2} + D = 0, A > 0, B > 0, C > 0, D > 0$

Consider the surface $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$

$$z = -3 - 2 - 1012$$
 The level curves are:

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$
$$= -\frac{5}{4}0\frac{3}{4}1\frac{3}{4}0$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set $A = \frac{1}{2}$, $B = \frac{1}{62}$, $C = \frac{1}{62}$.
- Surface becomes: $\left\{ (x,y,z) \left| \left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 + \left(\frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example: $\frac{1}{2}x^2 + \frac{1}{2}y^2 + \frac{z^2}{4} = 1$.
- Rewrite: $\frac{1}{2}x^2 + \frac{1}{2}y^2 = 1 \frac{z^2}{4}$.
- - None for z < 2 and z > 2.
 - Two points for $z=\pm 2$.
 - Ellipses for $z \in (-2, 2)$.
- Figure is called ellipsoid.

Todor Milev

$Ax^2 + By^2 + Cz^2 + D = 0, A > 0, B > 0, C < 0, D = 0$

$$z = \pm 3$$
$$\left(\frac{x}{2}\right)^2 + \left(\frac{y}{\sqrt{2}}\right)^2 =$$

$$\Rightarrow (x, y, z) \in \text{ellipse}$$

• Consider the surface $C = \left\{ (x, y, z) | \frac{x^2}{4} + \frac{y^2}{2} = z^2 \right\}$

- The level curves z = const are:
 - A point for z = 0.
 - Ellipses for $z \neq 0$.
- For y = 0:

- ullet \Rightarrow the ellipses are stacked along lines .
- ⇒ The figure is a ("two-piece") cone.

$Ax^2 + By^2 + Cz^2 + D = 0, A > 0, B > 0, C < 0, D < 0$

- Consider the surface $C = \left\{ (x, y, z) | \frac{x^2}{4} + \frac{y^2}{2} = z^2 + 1 \right\}$
- The level curves z = const are: Ellipses for all z. For y = 0:

- ullet \Rightarrow ellipses: stacked along hyperbolas.
- Figure called: one-sheet hyperboloid.

$Ax^2 + By^2 + Cz^2 + D = 0, \overline{A > 0, B > 0, C < 0, D > 0}$

- Consider the surface $C = \left\{ (x, y, z) | \frac{x^2}{4} + \frac{y^2}{2} = z^2 1 \right\}$
- When z = const: Two pts. for $z = \pm 1$. Ellipses for |z| > 1. When $\left(\frac{x}{2}\right)^2 = z^2 - 1$ $y = 0: \quad \frac{z^2 - \left(\frac{x}{2}\right)^2}{\left(z - \frac{x}{2}\right)\left(\frac{x}{2} + z\right)} = 1$ $\left(z-\frac{x}{2}\right) = \frac{1}{\left(\frac{x}{2}+z\right)}$
- ⇒ ellipses: stacked along hyperbolas.
- Figure called: two-sheet hyperboloid.

$Ax^2 + By^2 + Iz = 0, A > 0, B > 0, I \neq 0$

$$z=3$$

$$\left(\frac{x}{2}\right)^2 + \left(\frac{y}{\sqrt{2}}\right)^2 = 3$$

$$\Rightarrow$$
 $(x, y, z) \in$ ellipse

• The level curves z = const are: a point for z = 0; ellipses for z > 0. For y = 0: $\left(\frac{x}{2}\right)^2 = z$

- ⇒ ellipses: stacked along parabola.
- Surface name: paraboloid. If A ≠ B: elliptic paraboloid.
- What happens if we decrease B?

$Ax^2 + By^2 + Iz = 0, A > 0, B < 0, C = 0, I \neq 0$

Surface:
$$C = \left\{ (x, y, z) | \frac{x^2}{3} - \frac{y^2}{4} = z \right\}.$$

- Name: hyperbolić paraboloid.
- What happens if |B| decreases?

Summary: surfaces of form $Ax^2 + By^2 + Cz^2 + D = 0$

Α	В	С	D	$x = x_0$	$y = y_0$	$z = z_0$	Example	Name
> 0	> 0	> 0	> 0	empty	empty	empty	$x^2 + 2y^2 + 3z^2 + 4 = 0$	empty
> 0	> 0	> 0	= 0					
> 0	> 0	> 0	< 0	ellipse	ellipse	ellipse	$x^2 + 2y^2 + 3z^2 - 4 = 0$	Ellipsoid
> 0	> 0	= 0	> 0					
> 0	> 0	= 0	= 0					
> 0	> 0	= 0	< 0					
> 0	> 0	< 0	> 0					
> 0	> 0	< 0	= 0					
> 0	> 0	< 0	< 0					
> 0	= 0	= 0	> 0					
> 0	= 0	= 0	= 0					
> 0	= 0	= 0	< 0					

Fill in the rest of the table.

Quadratics $Ax^2 + By^2 + Iz = 0$ (no central symmetry)

$$Ax^2 + By^2 + Iz = 0$$

Α	В	$x = x_0$	$y = y_0$	$z = z_0$	Example	Name
> 0	> 0	parabola	parabola	ellipse, point, or empty	$x^2 + 2y^2 + 3z = 0$	Elliptic paraboloid
> 0	= 0					
> 0	< 0					

Fill in the rest of the table.

Tangent Plane

- Consider a surface S in space and a point P on the surface.
- How should we define the notion of "a plane tangent to S at P" so that it matches our geometric intuition?
- Intuitively, it should include all tangents at P to curves passing through P and contained in the surface.
- Therefore it should be the plane
 - passing through P;
 - parallel to the directions of all tangent vectors of curves passing through P and contained in the

Tangent Plane to a Graph Surface

- Graph surface z = f(x, y), point $P(x_0, y_0, z_0)$ on the surface.
- Call p(x) the curve given by f(x, y) by keeping y = y₀ constant; call q(y) the curve given by f(x, y) by keeping x = x₀ constant.

$$\mathbf{p}(x) = (x, y_0, f(x, y_0)) \qquad \mathbf{p}'(x_0) = (1, 0, f_x(x_0, y_0)) \mathbf{q}(y) = (x_0, y, f(x_0, y)) \qquad \mathbf{q}'(y_0) = (0, 1, f_y(x_0, y_0)) .$$

- Normal to tangent plane at $P: \mathbf{n} = \mathbf{p}'(x_0) \times \mathbf{q}'(y_0) = (1, 0, f_x(x_0, y_0)) \times (0, 1, f_y(x_0, y_0)) = (-f_x(x_0, y_0), -f_y(x_0, y_0), 1)$.
- Equation of tangent plane at $P(x_0, y_0, f(x_0, y_0))$: $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_0) = 0$ $-f_x(x_0, y_0)(x - x_0) - f_y(x_0, y_0)(y - y_0) + (z - f(x_0, y_0)) = 0$ $z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$.

- Let z = f(x, y) be a function and let (x_0, y_0) be a point such that f is differentiable in a small disk near (x_0, y_0) .
- The graph of f(x, y) is the surface $S = \{(x, y, f(x, y))\}.$
- Let (x, y) be a point in the domain of f. By the vertical line test there is exactly one point in S whose first two coordinates are x, y. This is the point (x, y, f(x, y)).
- Let $\mathbf{q}(t) = (x(t), y(t), z(t))$ be a curve lying in S such that $x(0) = x_0$ and $y(0) = y_0$.
- By the preceding remarks it follows that z(t) = f(x(t), y(t)).
- Then the tangent vector of $\mathbf{q}(t)$ at t = 0 is

$$\frac{d\mathbf{q}}{dt}_{|t=0} = \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{d}{dt}(f(x(t), y(t)))\right)_{|t=0}$$

$$= \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}\right)_{|t=0}$$

$$= \frac{dx}{dt}_{|t=0} \left(1, 0, \frac{\partial f}{\partial x}\right)_{|t=0} + \frac{dy}{dt}_{|t=0} \left(0, 1, \frac{\partial f}{\partial y}\right)_{|t=0}$$

2020

- $\mathbf{q}(t) = (x(t), y(t), z(t))$ smooth curve in $S = \{(x, y, f(x, y))\},$
- (x_0, y_0, z_0) point in S, $\mathbf{q}(0) = (x(0), y(0), z(0)) = (x_0, y_0, z_0)$.

$$\frac{d\mathbf{q}}{dt}_{|t=0} = \frac{dx}{dt}_{|t=0} \left(1, 0, \frac{\partial f}{\partial x}\right)_{|t=0} + \frac{dy}{dt}_{|t=0} \left(0, 1, \frac{\partial f}{\partial y}\right)_{|t=0}.$$

2020

• Recall the tangent (space) space plane at (x_0, y_0, z_0) was defined as the (space) space passing through (x_0, y_0, z_0) and spanned by the tangents of all curves lying in the surface and passing through (x_0, y_0, z_0) .

Corollary (Justification of tangent plane definition)

The tangent vector to any curve passing through (x_0, y_0, z_0) is a linear combination of the vectors $(1, 0, \frac{\partial f}{\partial x})$ and $(0, 1, \frac{\partial f}{\partial y})$.

Question

Can a given level surface be represented as a graph surface?

- Globally, level surfaces are cannot be represented as graph surfaces.
- Example: $x^2 + y^2 + z^2 = 1$: can't solve for z globally. Informally, $z = \pm \sqrt{1 x^2 y^2}$, however this is not a function if we can't decide on choice of + or -.
- Locally, with additional requirements, a level surface can be represented as graph surfaces.
 - Near P(0,0,1), the surface is the graph surface of $z = \sqrt{1 x^2 y^2}$.
 - Near P(1,0,0), the surface is not a graph surface w.r.t. to z.

- Let F(x, y, z)- function, let $P(x_0, y_0, z_0)$ point in the domain of F.
- Let $F(x_0, y_0, z_0) = k$.
- We say the level surface is a graph surface around P if there is a function z = f(x, y) such that:
 - f is defined on an open disk D around (x_0, y_0) ;
 - $f(x_0, y_0) = z_0$;
 - F(x, y, f(x, y)) = 0 for all (x, y) in the disk D.
- If the level surface is a graph surface, we say that the equation F(x, y, z) = k implicitly defines z = f(x, y) satisfying the condition $f(x_0, y_0) = z_0$.