Analysing UK SARS-CoV-2 spike protein mutations via t-SNE paired with K-means clustering

Context & Aims

COVID-19 pandemic:

- 770,000,000 infections¹
- Estimated death toll: 18,000,000 –
 32,000,000²

Spike glycoprotein:

- Receptor binding motif (RBM)
 residues bind directly to ACE2³
- Receptor binding domain (RBD), two regions S1 & S2⁴

Infectivity:

- RBD/RBM mutations modulate infectivity⁵
- Examples: N501Y & D614G enhance affinity and stability changes⁶
- How many key mutations occur in these regions may infer infectivity?

Aims:

Gaps remain in our understanding of SARS-CoV-2 clustering patterns in the UK and extracting meaningful information from large-scale datasets

- 1. Divulge temporal and general trends
- 2. Identify which dimensionality reduction technique best pairs with K-means clustering regarding efficiency and cluster clarity
- 3. Reveal dominant clusters and explore their infectivity & potential lineage from their centroids

Dimensionality reduction PCA UMAP t-SNE Elbow method Cluster selection Lineage assignment

Key results

1. Efficiency comparison:

Techniques	Reduction time	Clustering time (seconds)	Efficiency increase compared to K-means alone
Principal Component Analysis (PCA)	1 hour 28 minutes	69.98	x4
t-distributed stochastic neighbour embedding (t-SNE)	4 minutes	3.60	X1000
Uniform Manifold Approximation and Projection (UMAP)	37 minutes	36	X9

2. 2D cluster visualisations:

Cluster

- 1
- 2
- 3
- 3
- 4
- 5
- 9
- 10

- 5NE dimpnsion 1

Good clustering
t-SNE

3 clusters from elbow method

3. Mutation profiling & lineages:

Cluster	Key mutations	Infectivity	Lineage	
I & II	L452R, P681R	Moderate	Delta	
	N501Y, D614G, E484A	High	Omicron	
4 T				

4. Temporal & General trends:

- 15,213 unique mutations
- Sequences accumulated mutations over time, 3

 (2020) to 65 (2024) → Muller's ratchet⁷
- Strong positive correlation, $\rho=0.895$, $p\ll0.001$

Conclusions and future work

- t-SNE paired with K-means most efficient & most clear cluster visualisation
- 3 major cluster groups, I & II likely share a common ancestor
- Cluster III highest proportion of RBD/RBM mutations, potentially the most infectious
- Cluster & mutation profiling can guide future vaccine development
- t-SNE assisted K-means clustering has the potential method to deal with large-scale SARS-CoV-2 datasets

Acknowledgements & References

(1) Estimated cumulative excess deaths during COVID-19 [Internet]. Our World Data. [cited 2025 Feb 4]. Available from: https://ourworldindata.org/grapher/excess-deaths-cumulative-economist-single-entity?focus=~Confirmed+deaths
 (2) COVID-19 cases [Internet]. datadot. [cited 2025 Feb 21]. Available from: https://data.who.int/dashboards/covid19/cases?n=c
 (3) Chen J, Wang R, Wang M, Wei G-W. Mutations strengthened SARS-CoV-2 infectivity. J Mol Biol [Internet]. 2020 Sep 4;432(19):5212–26. Available from: http://dx.doi.org/10.1016/j.jmb.2020.07.009
 (4) McCallum M, Walls AC, Bowen JE, Corti D, Veesler D. Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nat Struct Mol Biol [Internet]. 2020 Oct 4 [cited 2025 Feb 221:27(10):942.9. Available from: https://wwww.nature.com/octicles/co/11594.

(5) Wang R, Chen J, Gao K, Hozumi Y, Yin C, Wei G-W. Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants. Commun Biol [Internet]. 2021 Feb 15 [cited 2024 Oct 27];4(1):228. Available from: https://www.nature.com/articles/s42003-021-01754-6
(6) Liu Y, Liu J, Plante KS, Plante JA, Xie X, Zhang X, et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature [Internet]. 2022 Feb;602(7896):294–9. Available from: http://dx.doi.org/10.1038/s41586-021-04245-0
(7) Metzger JJ, Eule S. Distribution of the fittest individuals and the rate of Muller's ratchet in a model with overlapping generations. PLoS Comput Biol

[Internet]. 2013 Nov 7;9(11):e1003303. Available from