Numerical Methods

Lev Leontev

February 2, 2023

Contents

1.	. Introduction																1													
	1.1	Taylor series																												1

Numerical Methods Introduction

1. Introduction

Definition 1.1 (Numerical Methods). Numerical Methods are algorithmic approaches to numerically solve mathematical problems. We use it often it is hard/difficult/impossible to solve analytically.

1.1 Taylor series

Given a function $f: \mathbb{R} \to \mathbb{R}$ (that is hard to evaluate for some $x \in \mathbb{R}$), but f and $f^{(n)}$ are known for a value c, which is close to x. Can we use this information to approximate f(x)?

We know values for $\cos^{(n)}(0)$.

$$\begin{cases} f(0) = \cos(0) = 1\\ f'(0) = -\sin(0) = 0\\ f''(0) = -\cos(0) = -1 \end{cases}$$
 for $c = 0$

Can we get $\cos(0.1)$ from this?

Definition 1.2 (Taylor series). Let $f : \mathbb{R} \to \mathbb{R}$, differentiable infinitely many times at $c \in \mathbb{R}$. So we have $f^{(k)}(c)$, $k = 1, 2, \ldots$ Then the Taylor series of f at c is:

$$f(x) \approx f(c) + \frac{f(c)}{1!}(x-c)^1 + \frac{f''(c)}{2!}(x-c)^2 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}}{k!}(x-c)^k$$

Remark. Taylor series is a power series.

Remark. For c=0 also known as Maclaurin series

Remark. A power series has an interval/radius of convergence. You can only evaluate the series if $x \in \text{interval}$ of convergence.

Example 1. What is the Taylor series for $f(x) = e^x$ at c = 0? We have $f^{(k)}(x) = e^x$, so $f^{(k)}(0) = 1$. Thus:

$$\sum_{k=0}^{\infty} \frac{1}{k!} x^k$$

and the radius of convergence is ∞ .

I.e. for any $x \in \mathbb{R}$:

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

For an algorithm we need a finite amount of terms. For example,

$$e^x \approx \frac{1}{0!}x^0 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 = 1 + x + \frac{x^2}{2}$$

This is a polynomial!

Example 2. Let's calculate Taylor series of a polynomial.

$$f(x) = 4x^2 + 5x + 7, \ c = 2$$

 $f(2) = 33, \ f'(2) = 8x + 5 \Big|_{x=2} = 21, \ f''(2) = 8$

Numerical Methods Introduction

Taylor series:

$$33 + 21(x - 2) + \frac{8}{2}(x - 2)^2 = 4x^2 + 5x + 7 = f(x)$$

Taylor series of a polynomial is itself.

Theorem 1.1 (Taylor theorem). Let $f \in C^{n+1}([a,b])$ (i.e. f is (n+1)-times continuously differentiable). Then for any $x \in [a,b]$ we have that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^k + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} (x-c)^{n+1}$$

where ξ_x is a point that depends on x and which is between

The first sum is called truncated Taylor series, the error is called the remainder.

Chapter #1 2 of 2 Author: Lev Leontev