

INFERÊNCIA ESTATÍSTICA E DATA MINING

 \triangle

AULA 03

O QUE JÁ SABEMOS FAZER?

- Padronizar os dados
- Normalizar os dados

NOÇÕES SOBRE AMOSTRAGEM

QUAL A DIFERENÇA POPULAÇÃO E AMOSTRA?

QUAL O TAMANHO IDEAL DE UMA AMOSTRA?

TAMANHO DA AMOSTRA - FÓRMULA DE YAMANE (1967)

A fórmula de Yamane é um método simples e amplamente utilizado para calcular o tamanho de amostra em pesquisas. Foi introduzida por Taro Yamane em 1967 e é especialmente útil para populações finitas.

- n = tamanho da amostra
- e = margem de erro (5%)
- N = tamanho da população

$$n = \frac{N}{1 + N(e)^2}$$


```
def tamanhoAmostra(e,N):
    n = (N / (1 + (N*(e**2))))
    return (n)
e_{-} = 0.05
N_{-} = 4000
```

print(tamanhoAmostra(e_, N_))

TIPOS DE AMOSTRAGEM

TIPOS DE AMOSTRAGEM PROBABILÍSTICA

- Amostragem aleatória simples:
 - Sem reposição;
 - Com reposição;
- Amostragem estratificada;
- Amostragem por conglomerados;
- Amostragem sistemática:
 - Estimador razão
 - Estimador regressão.

AMOSTRAGEM ALEATÓRIA SIMPLES SEM REPOSIÇÃO

0

AMOSTRAGEM ALEATÓRIA SIMPLES SEM REPOSIÇÃO

#amostra aleatória simples de 100 posições amostra = df.sample(100)

AMOSTRAGEM ALEATÓRIA SIMPLES COM REPOSIÇÃO

0

AMOSTRAGEM ALEATÓRIA SIMPLES COM REPOSIÇÃO

#amostra aleatória simples de 100 posições amostra = df.sample(100, replace=True)

AMOSTRAGEM ESTRATIFICADA

0

AMOSTRAGEM ESTRATIFICADA

- Usuários rede social no estado A 1 milhão
- Usuários rede social no estado B 2 milhões
- Usuários rede social no estado C 2 milhões

Quero calcular a média de seguidores dos usuários de uma rede social, observando os 3 estados. Como não ter um resultado tendencioso?

AMOSTRAGEM ESTRATIFICADA

```
from sklearn.model_selection import train_test_split
X = df.drop('cidade', axis=1)
y = df['cidade']
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, stratify=y)
```


AMOSTRAGEM POR CONGLOMERADOS (CLUSTER)

0

AMOSTRAGEM POR CONGLOMERADOS (CLUSTER)

- Mulheres cientistas de dados: 1000
- Homens cientistas de dados: 3000

Amostra 30% das mulheres atuantes na área de Ciência de Dados no Brasil

AMOSTRAGEM POR CONGLOMERADOS (CLUSTER)

```
import panda as pd
grupo = df.groupby('genero').apply(pd.DataFrame.sample,
frac=.3)
grupo[grupo.genero=='feminino']
```


AMOSTRAGEM SISTEMÁTICA

0

AMOSTRAGEM SISTEMÁTICA

```
import numpy as np
```

```
# Gerando um array que inicia em 0
# e termina em 12 com um intervalo de 3:
indices = np.arange(0,12,3)
df.loc[indices]
```


AMOSTRAGEM - RECAPITULANDO

0

Amostragem sistemática

Amostragem estratificada

Amostragem por conglomerado

公

Crie as seguintes amostras, a partir dos dados sobre o PROUNI:

- a) Amostra aleatória com repetição
- b) Amostra aleatória sem repetição
- c) Amostra estratificada (30% dos dados)

/TIPOS DE AMOSTRAGEM

- Amostragem por conveniência
- Amostragem por cota
- Amostragem snowball
- Amostragem Intencional
- Amostragem voluntária

AMOSTRAGEM - POR CONVENIÊNCIA

- Consiste em selecionar uma amostra da população que seja acessível;
- Representa uma maior facilidade operacional e baixo custo de amostragem
- Consequência: incapacidade de fazer afirmações gerais com rigor estatístico sobre a população.

AMOSTRAGEM - POR COTAS

- Versão não-probabilística da amostra estratificada
- Etapas:
 - Segmentação
 - Definição do tamanho das cotas
 - Seleção de participantes

- Amostragem bola de neve;
- Os indivíduos selecionados para serem estudados convidam novos participantes da sua rede de amigos e conhecidos;
- Usada em populações de baixa incidências e indivíduos de difícil acesso.
- Tipos:
 - Amostra linear
 - Amostra exponencial

AMOSTRAGEM INTENCIONAL

- A seleção é baseada no conhecimento sobre a população e o propósito do estudo;
- Conhecimento prévio da população.

AMOSTRAGEM VOLUNTÁRIA

Ocorre quando o componente da população se oferece voluntariamente para fazer parte da amostra.

ANÁLISE DE **COMPONENTES** PRINCIPAIS (PCA)

O QUE É PCA?

Técnica que usa princípios de álgebra linear para transformar variáveis, possivelmente correlacionadas, em um número menor de variáveis chamadas de Componentes Principais.

POR QUE USAR PCA?

- Redução de Dimensionalidade: Em conjuntos de dados com muitas variáveis, nem todas as variáveis são igualmente informativas. O PCA permite reduzir a dimensionalidade, retendo as características mais informativas.
- **Visualização:** Ao reduzir a dimensionalidade para 2 ou 3 componentes principais, os dados podem ser visualizados em um gráfico bidimensional ou tridimensional.
- Redução de Ruído: Ao manter apenas os componentes principais significativos, o PCA pode ajudar a filtrar o ruído.
- Descorrelacionar Recursos: Os componentes principais são ortogonais entre si, o que significa que eles são descorrelacionados.

0

ANÁLISE DE COMPONENTES PRINCIPAIS (PCA)

- Ajuda a extrair informações dos dados sem qualquer supervisão;
- Técnica de redução linear da dimensionalidade dos dados
- Objetivo: reduzir o número de variáveis significativas nos dados

COMO DIMINUIR A DIMENSIONALIDADE DOS DADOS?

Observando a variância dos dados de maneira maximizada.

VARIÂNCIA

- É a tendência dos valores de uma variável mudar em cada medição.
- Variáveis quantitativas e categóricas podem apresentar variância de valores.

COVARIÂNCIA

- Maneira de verificar se duas variáveis estão associadas entre si.
 - Ou seja, se elas variam conjuntamente.
- Mudanças numa variável corresponde em mudanças em outra variável.

COMO APLICAR O PCA?

PADRONIZAÇÃO DOS DADOS

É importante padronizar os dados (média zero e variância unitária) antes do PCA, especialmente se as variáveis têm escalas diferentes.

Rating	# of downloads	$\overline{}$	Rating feature ranges between 0-5
5	1383		
3	668		
2	763		
5	839		# of downloads ranges between 100-5000
1	342		" of downtodds ranges between 100 5000

PADRONIZAÇÃO DOS DADOS

from sklearn.preprocessing import StandardScaler

X_std = StandardScaler().fit_transform(X)

MATRIZ DE COVARIÂNCIA

Calcule a matriz de covariância dos dados padronizados.

A covariância sinaliza:

- O grau de dependência entre duas variáveis, que pode ser:
 - Covariância negativa: inversamente proporcionais;
 - Covariância positiva: diretamente proporcionais.

```
import numpy as np
# Forma 1
mean\_vec = np.mean(X\_std, axis=0)
cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) /
(X_std.shape[0]-1)
```


MATRIZ DE COVARIÂNCIA

import numpy as np

Forma 2

cov_mat = np.cov(X_std.T)

/MATRIZ DE COVARIÂNCIA

import numpy as np

Forma 3

 $cor_mat1 = np.corrcoef(X_std.T)$

AUTOVETORES E AUTOVALORES

São construções matemáticas que devem ser computados da matriz de covariância para determinar os componentes principais dos dados.

- Autovetores (eigenvectors):
 - o são esses vetores quando uma transformação linear é executada neles e suas direções não mudam;
- Autovalores (eigenvalues):
 - são as escalas desse autovetores

```
import numpy as np
```

```
cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
```

```
print('Autovetores \n%s' %eig_vecs)
print('\nAutovalores \n%s' %eig_vals)
```


 \triangle

CÁLCULO DOS PRINCIPAIS COMPONENTES

Agora os autovetores e autovalores são colocados em ordem decrescente para descobrir quais fatores são mais significantes.

- O autovalor mais significativo é o componente principal 1 (PC1)
- O 2o autovalor mais significativo é o componente principal 2 (PC2)

/CÁLCULO DOS PRINCIPAIS COMPONENTES

0

CÁLCULO DOS PRINCIPAIS COMPONENTES

from sklearn.decomposition import PCA

```
pca = PCA(n_components= 9)
principalComponents = pca.fit_transform(X_std)
```

print(pca.explained_variance_ratio_)

O último passo é o rearranjo dos dados originais com os componentes principais finais.

> Representam a informação máxima e mais significativa dos dados.

<u> </u>		
=		
	_	_

movield	title	genres		user	Id	movield	rating	timestamp	userId	movield	rating	timestam
1	Toy Story	Adventure	Animation	Childre	1	1		8.47E+08		1 1	5	8.47E+08
2	Jumanji (Adventure	Children	Fantasy	1	2		8.48E+08		1 2	3	8.48E+08
3	Grumpier	Comedy R	omance		1	10		8.48E+08		1 10	3	8.48E+08
4	Waiting to	Comedy D	rama Rom	ance	1	32		8.48E+08		1 32	4	8.48E+08
	Father of	and the second second			1	34		8.48E+08		1 34	4	8.48E+08
		Action Cri	-		1	47		8.48E+08		1 47	3	8.48E+08
		Comedy R			1	50		8.48E+08		1 50	4	8.48E+0
		Adventure	Children		1	62		8.48E+08		1 62	4	8.48E+0
_	Sudden D	7 (10/11/07/11			1	150		8.47E+08		1 150		8.47E+08
	and the second	Action Ad			1	153		8.47E+08		1 153		8.47E+08
		Comedy D		ance	1	160		8.48E+08		1 160	_	8.48E+0
		Comedy H			1	161		8.48E+08		1 161		
13	Balto (199	Adventure	Animation	Childre	-							8.48E+0
14	Nixon (19	Drama			- 1	165		8.47E+08		1 165	4	8.47E+08
15	Cutthroat	Action Ad	venture Ro	mance	1	185		8.48E+08		1 185	3	8.48E+0
		Crime Dra			1	208		8.48E+08		1 208	3	8.48E+0
17	Sense and	Drama Ron	mance		1	253		8.48E+08		1 253	3	8.48E+0
18	Four Roor	Comedy			1	265		8.48E+08		1 265	5	8.48E+0

0


```
model = PCA(n_components=9).fit(X_std)
X_pc = model.transform(X_std)
# número de componentes
n_pcs= model.components_.shape[0]
# recebe o índice das características mais importantes de
# cada componente (variável)
most_important = [np.abs(model.components_[i]).argmax() for
i in range(n_pcs)]
```


initial feature names = X.columns

```
#recebendo os nomes
most_important_names =
[initial_feature_names[most_important[i]] for i in
range(n_pcs)]
dic = {'PC{}'.format(i): most_important_names[i] for i in
range(n_pcs)}
```


build dataframe

listagemPCAs = pd.DataFrame(dic.items())

listagemPCAs

TESTE DE HIPÓTESES

O QUE É UMA HIPÓTESE?

O QUE É UMA HIPÓTESE?

Conjectura

Suposição que se faz sobre algo, que pode ser verdadeira ou falsa, fundamentando-se em evidências incompletas ou pressentimentos;

EXEMPLOS DE HIPÓTESES

- A produtividade média de cana de açúcar no estado da PB é de 2500 kg/ha;
- A proporção de peças defeituosas em uma unidade de fabricação é de 10%;
- A propaganda produz efeito positivo nas vendas;
- Métodos de ensino diferentes produzem resultados diferentes de aprendizagem;

QUAL É A DIFERENÇA DE HIPÓTESE E DO PROBLEMA A SER RESOLVIDO PELA

公

ANÁLISE DE DADOS?

QUAL É A DIFERENÇA DE HIPÓTESE E DO PROBLEMA A SER RESOLVIDO PELA ANÁLISE DE DADOS?

O problema é solucionado a partir da elaboração de diversas hipóteses.

QUAL É A DIFERENÇA DE HIPÓTESE E DO PROBLEMA A SER RESOLVIDO PELA ANÁLISE DE DADOS?

Problema:

Como aumentar as vendas do jogo God of War?

Hipóteses:

- Se dobrar a produção da mídia do jogo, as vendas irão aumentar 50%.
- Se baixar o preço pela metade, as vendas irão aumentar 50%.
- A propaganda produz efeito positivo nas vendas.
- Se promover um campeonato mundial, as vendas irão aumentar 100%.

ATIVIDADE 12 - << DESAFIO >>

Formule uma hipótese para os dados do PROUNI.

HIPÓTESE DE EXEMPLO

Problema:

Notas do prouni de instituições da Paraíba

Hipóteses:

A média de notas dos cursos de Bacharelado é igual a 593.89

Cursos de Bacharelado tem uma nota de prouni melhores que cursos de Licenciatura

Hipótese Hipótese Estatística

HIPÓTESE ESTATÍSTICA

Uma hipótese estatística, formalmente, é uma afirmação sobre alguma característica da população.

HIPÓTESE ESTATÍSTICA

Teste de hipótese é um procedimento estatístico capaz rejeitar ou não uma afirmação que representa uma igualdade sobre uma população (chamada de H0).

A decisão do teste é tomada com base na menor probabilidade tolerável de incorrer no erro tipo 1 (rejeitar H0, quando ela é verdadeira).

EXEMPLO A - CONTEXTUALIZAÇÃO

Imagine que houve uma votação sobre qual é o melhor jogo online de todos os tempos!

EXEMPLO A - CONTEXTUALIZAÇÃO

Imagine que os jogadores deram notas (0-10) para alguns jogos!

- A Counter Strike
- League of Legends
- Free Fire
- D FIFA

EXEMPLO A - CONTEXTUALIZAÇÃO

Problema:

Quero saber a popularidade do LOL entre seus jogadores (eles dariam notas para o jogo de 0 a 10)

user	nota	jogo
А	10	LOL
В	2	CS

EXEMPLO A

Hipótese: □LOL= 8

As notas do jogo LOL terão um comportamento parecido dos outros jogos. (média das notas de todos os jogos = 8)

Hipótese nula (H0): □LOL ≤ 8

O jogo LOL terá uma média de notas menor ou igual do que 8.

Hipótese alternativa (H1): □LOL > 8

O jogo LOL terá uma média de notas **maior do que 8.**

0

EXEMPLO A

Hipótese nula (H0): □LOL ≤ 8

O jogo LOL terá uma média de notas menor ou igual do que 8.

Hipótese alternativa (H1): □LOL > 8

O jogo LOL terá uma média de notas maior do que 8.

Como averiguar essa hipótese nula?

EXEMPLO A

Hipótese nula (H0): □LOL ≤ 8

O jogo LOL terá uma média de notas menor ou igual do que 8.

Hipótese alternativa (H1): □LOL > 8

O jogo LOL terá uma média de notas maior do que 8.

Como averiguar essa hipótese nula?

Teste t de Student (de uma amostra)

TESTE t DE STUDENT

- É um tipo de teste de hipótese útil na estatística quando é necessário comparar médias de dois grupos;
- É possível comparar uma média amostral com um valor hipotético ou com um valor alvo usando um teste t para uma amostra;
- Usado em amostras dependentes e independentes;

TESTE t DE STUDENT

0

from scipy import stats

stats.shapiro(df['LOL']) (0.9896655354387, 0.9876567575985) É normal!


```
from scipy import stats
stats.shapiro(df['LOL'])
```

```
stats.stats.ttest_1samp(df['LOL'],8, axis=0, equal_var=True)
(0.905009388923645, 0.24843823909759521)
```

Estatística t

p-valor

TESTE t DE STUDENT

```
from scipy import stats
stats.shapiro(df['LOL'])
```

```
stats.stats.ttest_1samp(df['LOL'],8, axis=0, equal_var=True)
(0.905009388923645, 0.24843823909759521)
```

Estatística t

p-valor > 0.05 = NÃO rejeita hipótese nula (o que você suspeitou estava correto)

EXEMPLO B - CONTEXTUALIZAÇÃO

Imagine que estamos observando o de tempo participação, por seção, no jogo God of War 4.

EXEMPLO B

Hipótese:

Jogadores homens passam mais tempo jogando God of War ininterruptamente do que jogadoras mulheres

 Gênero	Tempo
fem	234
masc	245
fem	142

jogadorx_masc	jogadorx_fem
233	245
234	165
190	60

Hipótese:

Jogadores homens passam mais tempo jogando God of War ininterruptamente do que jogadoras mulheres

Como você provaria assertivamente essa afirmação?

Hipótese nula (H0):

□HOMENS ≤ □MULHERES

Hipótese alternativa (H1):

□HOMENS > □MULHERES

 \triangle

Hipótese nula (H0):

□HOMENS ≤ □MULHERES

Hipótese alternativa (H1):

□HOMENS > □MULHERES

Como averiguar essa hipótese nula?

Hipótese nula (H0):

□HOMENS ≤ □MULHERES

Hipótese alternativa (H1):

☐HOMENS > ☐MULHERES

Como averiguar essa hipótese nula?

Teste t de Student (de duas amostras)

0

EXEMPLO B

from scipy import stats import matplotlib.pyplot as plt df[['jogadorx_masc', 'jogadorx_fem']].describe()

	jogadorx_masc	jogadorx_fem
count	120.00	120.00
mean	156.450000	151.358333
std	11.389845	14.177622
min	138.000000	125.000000
25%	147.000000	140.750000
50%	154.500000	149.500000
75%	164.000000	161.000000
max	185.000000	185.000000

	jogadorx_masc	jogadorx_fem
count	120.00	120.00
mean	156.450000	151.358333
std	11.389845	14.177622
min	138.000000	125.000000
25%	147.000000	140.750000
50%	154.500000	149.500000
75%	164.000000	161.000000
max	185.000000	185.000000

EXEMPLO B

```
from scipy import stats
import matplotlib.pyplot as plt
df[['jogadorx_masc', 'jogadorx_fem']].plot(kind='box')
```


EXEMPLO B

```
from scipy import stats
import matplotlib.pyplot as plt
stats.shapiro(df['jogadorx_masc'])
(0.9926842451095581, 0.7841846942901611)
                                         É NORMAL!
stats.shapiro(df['jogadorx_fem'])
(0.8384329442500341, 0.454324242455278)
```

```
from scipy import stats
import matplotlib.pyplot as plt
stats.ttest_rel(df['jogadorx_masc'], df['jogadorx_fem'])
```

Ttest_relResult(statistic=3.3371870510833657, pvalue=0.0011297914644840823)

0

INFERÊNCIA ESTATÍSTICA E DATA MINING

 \triangle

AULA 03

