The Entity Relationship Model

The Entity Relationship Model (ERM)

- Forms the basis of an entity relationship diagram (ERD)
 - Conceptual database as viewed by end user
 - Relational model is a logical design of databases
- The main components of a database:
 - Entities
 - Attributes
 - Relationships

Entities

- Object of interest to the end user
 - Refers to the entity set and not to a single entity occurrence
- ERM corresponds to a table—not to a row—in the relational environment
 - ERM refers to a table row as an entity instance or entity occurrence
- In Chen, Crow's Foot, and UML notations, an entity is represented by a rectangle that contains the entity's name
 - The entity name (a noun) is usually written in all capital letters

Attributes

- Characteristics of entities:
 - Required attribute: must have a value and cannot be left empty
 - Optional attribute: does not require a value and can be left empty
 - Attribute domain: set of possible values for a given attribute

Crow's Foot Model

- Entity identifier: one or more attributes that uniquely identify each entity instance (PK)
- Composite identifier: primary key composed of more than one attribute

Crow's Foot Model

- Simple attribute: attribute that cannot be subdivided
- Composite attribute: attribute that can be subdivided to yield additional attributes
- Single-valued attribute: attribute that has only a single value
- Multi-valued attributes: attributes that have many values

Attributes

- Requirements of multi-valued attributes
 - Create several new attributes, one for each component of the original multivalued attribute
 - Develop a new entity composed of the original multivalued attribute's components

- **Derived attribute**: attribute whose value is calculated from other attributes
 - Derived using an algorithm

Crow's Foot Model

Relationships, Connectivity, and Cardinality

- Association between entities that always operate in both directions
 - Participants: entities that participate in a relationship
- Connectivity: describes the relationship classification
 - Include 1:1, 1:M, and M:N
- Cardinality: expresses the minimum and maximum number of entity occurrences associated with one occurrence of related entity
 - In the ERD, cardinality is indicated by placing the appropriate numbers beside the entities, using the format (x, y)

ERD Cardinality

Existence Dependence

- Existence independence
 - Entity exists apart from all its related entities
 - Referred to as a strong entity or regular entity
- Existence dependence
 - Entity exists in the database only when it is associated with another related entity occurrence
 - Referred to as weak entity
 - Has a primary key that is partially or totally derived from parent entity in the relationship
 - Database designer determines whether an entity is weak → based on business rules

Relationship Strength

- Weak or Non-identifying relationships
 - Primary key of the related entity does not contain a primary key component of the parent entity
- Strong or Identifying relationships
 - Primary key of the related entity contains a primary key component of the parent entity

Relationship Participation

Optional participation

One entity occurrence does not require a corresponding entity occurrence in a particular

relationship

- Mandatory participation
 - One entity occurrence requires a corresponding entity occurrence in a particular relationship

Relationship Degree

- Indicates the number of entities or participants associated with a relationship
 - Unary relationship: association is maintained within a single entity
 - Binary relationship: two entities are associated
 - Ternary relationship: three entities are associated
 - Recursive relationship: relationship exists within a single entity type

Binary relationship

Ternary relationship (Conceptual)

Recursive Relationships

- Relationship can exist between occurrences of the same entity set
 - Naturally, such a condition is found within a unary relationship
 - Common in manufacturing industries
- One common pitfall when working with unary relationships is to confuse participation with referential integrity
 - Similar because they are both implemented through constraints on the same set of attributes

- Activities involved in building and ERD
 - Create a detailed narrative of the organization's description of operations
 - Identify business rules based on the descriptions
 - Identify main entities and relationships from the business rules
 - Develop the initial ERD
 - Identify the attributes and primary keys that adequately describe entities
 - Revise and review ERD

PROFESSOR SCHOOL DEPARTMENT
COURSE CLASS SEMESTER
STUDENT BUILDING ROOM

ENROLL (the associative entity between STUDENT and CLASS)

Database Design Challenges: Conflicting Goals

- Database designers must often make design compromises that are triggered by conflicting goals
 - Database design must conform to design standards
 - High processing speed may limit the number and complexity of logically desirable relationships
 - Complex information requirements (the extraction, transformation, and loading (ETL) process) may dictate data transformations, and they may expand the number of entities and attributes within the design.

Developing an ER Diagram (Review again)

- Activities involved in building and ERD
 - Create a detailed narrative of the organization's description of operations
 - Identify business rules based on the descriptions
 - Identify main entities and relationships from the business rules
 - Develop the initial ERD
 - Identify the attributes and primary keys that adequately describe entities
 - Revise and review ERD

PROFESSOR SCHOOL DEPARTMENT
COURSE CLASS SEMESTER
STUDENT BUILDING ROOM

ENROLL (the associative entity between STUDENT and CLASS)

Modeling Relationships (ER to Tables)

- An entity type is usually modeled as a relation.
- Relationships are usually modeled by having the tuples of one relation point to the tuples of another relation.
- One-to-one, one-to-many, and many-to-one relationships between two entities (relations) can be modeled directly with foreign keys.
- Many-to-many relationships are more of a problem.
 - Must introduce a new relation to model the many-to-many relationship.
 - This relation has foreign keys pointing to tuples in the associated relations (entities).

ER Diagram Common Errors

- An ER diagram is not a flow chart. An ER diagram trys to capture structure of data but not the decision logic behind a set of tasks.
- Every ER diagram contains at least one entity and some attributes. If relationships exist, relationship cardinalities should be modeled.
- Weak entity type must be related to at least one non-weak entity type. Be careful about the relationship cardinalities for such relationship.
- All entities must have keys, full or partial.

Practice Question 1

- Professors have an SSN, a name, an age, a rank, and a research specialty.
- Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending date, and a budget.
- Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S.or Ph.D.).
- Each project is managed by one professor (known as the project's principal investigator).
- Each project is worked on by one or more professors (known as the project's co-investigators).
- Professors can manage and/or work on multiple projects.
- Each project is worked on by one or more graduate students (known as the project's research assistants).
- When graduate students work on a project, a professor must supervise their work on the project. Graduate students can work on multiple projects, in which case they will have a (potentially different) supervisor for each one.
- Departments have a department number, a department name, and a main office.
- Departments have a professor (known as the chairman) who runs the department.
- Professors work in one or more departments, and for each department that they work in, a time percentage is associated with their job.
- Graduate students have one major department in which they are working on their degree.
- Each graduate student has another, more senior graduate student (known as a student advisor) who advises him or her on what courses to take

Practice Question 2

- Each bank can have multiple branches, and each branch can have multiple accounts and loans.
- Each bank has a unique number, name and address. Each branch as address and branch number.
- Each customer has account(s) in a bank branch and may get loan(s).
- Each account has a unique account number, type, and balance.
- Each loan has a unique loan number, type and amount.
- Each customer has SSN, Name, phone, address.

Enhanced ER Model

- In addition to ER model, EER includes the concepts of subclass and superclass
- Subclass: Specialization (top down)
 Generalization: (bottom up)
- Ex) Employee are grouped into secretary, engineer, manger, and technician
 These subgrouping is called subclass of the employee entity type
- Attribute inheritance: a member of a subclass inherits all the attributes of the entity
- Specialization: process of defining a set of subclasses of an entity type.

Specialization

- Ex) {Secretary, engineer} : specialization on the job type.
- Two constraints may apply to specialization
 - disjointness constraints (d): subclasses of the specialization must be disjoint
 - Otherwise (o) overlapped.
 - Completeness constraints: either total or partial
- Generalization is a reverse process of abstraction in which identify common features and generalize into a superclasses.

Basic notation for supertype/subtype notation

Different modeling tools may have different notation for the same modeling constructs.

Employee supertype with subtypes

Generalization to VEHICLE supertype

So we put the shared attributes in a supertype

Note: no subtype for motorcycle, since it has no unique attributes

