(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

. 1950 ENTER O CULTO CON 100 C

(43) International Publication Date 10 March 2005 (10.03.2005)

PCT

(10) International Publication Number WO 2005/022090 A2

(51) International Patent Classification7:

G01F

(21) International Application Number:

PCT/US2004/008345

(22) International Filing Date: 18 March 2004 (18.03.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/456,190

21 March 2003 (21.03.2003) U

- (71) Applicant (for all designated States except US): LOCK-HEED MARTIN CORPORATION [US/US]; 5600 Sand Lake Road, MP-186, Orlando, FL 32819-8907 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CHEN, Hai-Wen [US/US]; 3041 Rollman Road, Orlando, FL 32837 (US). OLSON, Teresa, L. [US/US]; 308 Forest Haven Drive, Winter Garden, FL 34787 (US). SUTHA, Surachai [US/US]; 122 Burrell Circle, Kissimmee, FL 34744 (US).
- (74) Agents: MUTTER, Michael, K. et al.; Birch, Stewart, Kolasch & Birch, LLP, P.O. Box 747, Falls Church, VA 22042 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TARGET DETECTION IMPROVEMENTS USING TEMPORAL INTEGRATIONS AND SPATIAL FUSION

(57) Abstract: A method for identifying potential targets as far away as possible is disclosed. In a simple background scene such as a blue sky, a target may be recognized from a relatively long distance, but for some high clutter situations such as mountains and cities, the detection ragne is severely reduced. The background clutter may also be non-stationary further complicating the detection of a target. To solve these problems, target detection (recognition) of the present invention is based upon temporal fusion (integration) of sensor data using pre-detection or post-detection integration techniques, instead of using the prior art technique of fusing data from only a single time frame. Also disclosed are double-thresholding and reversed-thresholding techniques which further enhance target detection and avoid the shortcomings of the traditional constant false alarm rate (CFAR) thresholding technique. The present invention further discloses improved spatial fusion techniques for target detection (recognition) employing multiple sensors instead of employing the more conventional single sensor techniques. If spatial fusion is implemented with more than three sensors, then target detection can be enhanced by also using post-detection techniques. Moreover, since the pre-detection and the post-detection technique are complementary to each other, a combination of these two integration techniques will further improve target detection (recognition) performance.