

TK 74141/74142
 (51) Int. Cl. 6:
B 29 C 45/16
 B 29 C 45/06

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
 (10) **DE 197 33 667 A 1**

(21) Aktenzeichen: 197 33 667.1
 (22) Anmeldetag: 4. 8. 97
 (23) Offenlegungstag: 11. 2. 99

DE 197 33 667 A 1

(71) Anmelder:
 Ferromatik Milacron Maschinenbau GmbH, 79364
 Malterdingen, DE

(74) Vertreter:
 Brundert und Kollegen, 47279 Duisburg

(72) Erfinder:
 Nesch, Wolfgang, 77933 Lahr, DE
 (56) Entgegenhaltungen:
 DE 36 20 175 C2
 GB 23 00 142 A

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Vorrichtung zur Herstellung von Spritzgießartikeln aus mindestens zwei Kunststoffschnmelzen

(55) Die Erfindung betrifft eine Vorrichtung zur Herstellung von Spritzgießartikeln aus mindestens zwei Kunststoffschnmelzen, die zwischen einer feststehenden Formaufspannplatte und einer auf mindestens vier im wesentlichen horizontal verlaufenden Holmen verfahrbaren Formaufspannplatte eine relativ zu dieser ihrerseits verfahrbare und um eine senkrecht zur Längsachse der Holme ausgerichtete Drehachse verschwenkbare weitere Formaufspanneinrichtung aufweist, die auf mindestens zwei mit Abstand untereinander und relativ zur Drehachse parallel ausgerichteten Seitenflächen mit den Formhälften der Formaufspannplatten zusammenwirkende weitere Formhälfte tragt, wobei die weitere Formaufspanneinrichtung (8, 9, 18) aus zwei in einer im wesentlichen vertikal ausgerichteten Ebene mit Abstand übereinander angeordneten und jeweils an mindestens zwei in einer im wesentlichen horizontal ausgerichteten Ebene angeordneten Holmen (4, 5) geführten stabilen Trägerblöcken (8, 9) mit jeweils einem Gleit- oder Drehlager (23, 24) für die im wesentlichen vertikal ausgerichtete Drehachse (19, 20) eines prismaförmigen Formhälftenträgers (18), aus diesem der Aufnahme der weiteren Formhälfte (28, 29) dienenden Formhälftenträger (18) und aus mindestens zwei Antriebeinrichtungen zur Veränderung des jeweiligen relativen Abstands zwischen den Formaufspannplatten (3, 6) und jedem Trägerblock (8, 9) besteht.

197 33 667 A 1

miteinander fluchten. Zur Erleichterung der Schwenkbewegungen des Formhälftenträgers 18 ist im jeweiligen Fußbereich der Drehzapfen 19, 20 je ein Gleit- oder Drehlager 23, 24 bekannter Art angeordnet, das die dem jeweiligen Trägerblock 8, 9 unmittelbar gegenüberstehende Außenfläche des Formhälftenträgers 18 schonend abstützt. Darüber hinaus ist der in das Lager 21 des oberen Trägerblocks 8 eingreifende Drehzapfen 19 über ein Getriebe 25 an einen in unmittelbarem Nachbarschaft auf dem oberen Trägerblock 8 angeordneten Antriebsmotor 26 bekannter Art, beispielsweise einen Elektro- oder Hydromotor, angekoppelt, der im dargestellten – jedoch ebenfalls nicht zwangsläufigen – Fall mittels eines ihn steuernden Winkelcodierers 27 die Schwenkbewegungen des Formhälftenträgers 18 bewirkt.

Selbstverständlich können die vorgenannten Konstruktionselemente der Spritzgießmaschine auch durch jedes gleichwirkende Mittel bekannter Art ersetzt werden, so beispielsweise die quadratische oder rechteckige Platte durch einen beliebig geformten, zweckentsprechenden prismatischen Körper mit einer senkrecht zur Drehachse geschnittenen Querschnittsfläche in Form eines regelmäßigen oder auch unregelmäßigen geradzahligen oder ungradzahligen Vielecks, das nur ein oder mehrere Paare von parallel zueinander und zur Drehachse ausgerichteten Seitenflächen aufweisen muß, oder der auf dem oberen Trägerblock 8 angeordnete Antriebsmotor 26 durch einen solchen, der ohne Zwischenschaltung eines Getriebes 25 unmittelbar an den Drehzapfen 19 angekoppelt ist, oder aber durch eine – zusätzliche oder alternative – gleichartige Anordnung mit oder ohne Getriebe 25 an oder auf dem unteren Trägerblock 9. Ebenso kann der durch einen Winkelcodierer gesteuerte Antriebsmotor beispielsweise durch einen elektrischen Servomotor ersetzt werden. Auch lassen sich die Drehzapfen 19, 20 – oder eine an ihrer Stelle verwendete durchgehende Achse – derart gestalten, daß eine Teillänge von ihnen dauerhaft in den Lagern 21, 22 gehalten wird und nur mit vorgegebenem Längenanteil aus den Lagern 21, 22 herausragt, während am Formhälftenträger 18 nur entsprechend verkürzte Teilbereiche der Drehzapfen 19, 20 vorhanden sind die außerhalb der Lager 21, 22 mit den vorgenannten Längenanteilen mittels Kupplungsvorrichtungen bekannter Art form- und kraftschlüssig verbindbar und sicherbar sind.

Der Formhälftenträger 18 trägt und hält auf seinen beiden großen Flächen weitere Formhälften 28, 29, die auch als einfache Kerne ausgebildet sein können und die im zusammengefahrenen Zustand nach der entsprechenden Betätigung der Schließeinheit 7 mit den auf den Formaufspannplatten 3, 6 in bekannter Weise gehaltenen Formhälften 30, 31 vervollständigte Spritzgießformen 32, 33 ausbilden, die über Angußkanäle 34, 35 von je einer Plastifizier- und Einspritzeinheit 36, 37 (s. a. Fig. 2), die hier – da von bekannter Art – nur angedeutet sind, mit Kunststoffschmelzen beaufschlagt werden, wobei eine Spritzgießform 32, 33 grundsätzlich auch über mehrere – hier nicht explizit dargestellte – Angußkanäle von einer oder mehreren Plastifizier- und Einspritzeinheiten 36, 37 gleichzeitig oder unmittelbar nacheinander mit einer oder mehreren – dann normalerweise unterschiedlichen – Kunststoffschmelzen beaufschlagbar ist. Die Angußkanäle 34, 35 können dabei gegebenenfalls – was hier ebenfalls nicht explizit dargestellt ist – auch durch die verfahrbare Formaufspanplatte 6 oder den Formhälftenträger 18 verlaufen, bezüglich der Plastifizier- und Einspritzeinheiten 36, 37 wird hier im allgemeinen – mit Ausnahme der üblicherweise auf der den Spritzgießformen 32, 33 abgekehrten Seite der feststehenden Formaufspanplatte 3 installierten Plastifizier- und Einspritzeinheit 36 – vorausgesetzt, daß sie verfahrbar im Seitenbereich der Spritzgießmaschine vorge-

men 32, 33 an die jeweiligen Angußöffnungen 39 angelegt werden.

Die vorliegende Spritzgießmaschine ist dazu bestimmt, Spritzgießartikel aus mindestens zwei Kunststoffschmelzen 5 aufzubauen, die nicht durch gleichzeitiges oder unmittelbar nacheinander erfolgendes Einspritzen mehrerer Kunststoffschmelzen in eine einzige Spritzgießform zur Erzeugung sandwichartig aufgebauter Spritzgießartikel herstellbar sind. Zu diesem Zweck wird nach dem Zusammenfahren der Spritzgießformen 32, 33 beispielsweise in der rechts dargestellten Spritzgießform 32 nur ein verlorener Kern aus einer von der Plastifizier- und Einspritzeinheit 36 gelieferten Kunststoffschmelze gespritzt, während in der links dargestellten Spritzgießform 33 ein zuvor in der Spritzgießform 10 erzeugter verlorener Kern mit einer von der Plastifizier- und Einspritzeinheit 37 gelieferten Kunststoffschmelze vervollständigt wird. Danach werden die Formaufspannplatten 15 3, 6 und der Formhälftenträger 18 mittels der Schließeinheit 7 und der Antriebeinrichtungen 14, 15, 16, 17 auseinandergefahren, der Formhälftenträger 18 mittels des Antriebsmotors 20 um einen Winkel von 180° um seine im wesentlichen vertikal ausgerichtete Drehachse verschwenkt, der fertiggestellte Spritzgießartikel aus der Spritzgießform 33 an geeigneter Stelle seines Schwenkweges ausgestoßen und die 25 Spritzgießformen 32, 33 zur Wiederholung der vorgenannten Einspritzvorgänge wieder zusammengefahren. Bei Verwendung eines Formhälftenträgers 18 mit einer anderen Querschnittsfläche senkrecht zu seiner Drehachse als in der dargestellten Form vorausgesetzt, insbesondere einer als regelmäßiges geradzahliges Vieleck ausgestalteten Querschnittsfläche, lassen sich bei kleineren Schwenkschritten von beispielsweise 90° oder 60° um die Drehachse entweder in einem Maschinenzyklus mehrere Spritzgießartikel aus 30 zwei Kunststoffschmelzen oder auch ein oder einige wenige Spritzgießartikel aus mehr als zwei Kunststoffschmelzen 35 herstellen. Die Kunststoffschmelzen können dabei unterschiedliche Materialeigenschaften, unterschiedliche Farben oder unterschiedliche Eigenschaften ihrer Lichtdurchlässigkeit aufweisen, in bestimmten Fällen aber auch durchaus identisch sein, wenn die herzustellenden Spritzgießartikel zu ihrer Qualitätsverbesserung einen schrittweisen Herstellungsprozeß aus ein- und demselben Material nahelegen.

Für besonders schwere Formhälftenträger ist es empfehlenswert, den unteren Trägerblock 9 zusätzlich mittels Rollen und/oder Kufen 40 auf dem Maschinenbett 2 abzustützen. Außerdem kann der Formhälftenträger 18 noch mit Justierdornen 41 versehen sein, die mit entsprechenden Bohrungen in den von den Formaufspannplatten 3, 6 gehaltenen Formhälften 30, 31 wechselwirken, was selbstverständlich auch bei umgekehrter Anordnung dieser Einrichtungen durchführbar ist.

Die Fig. 2, in der bereits in Fig. 1 verwendete Bezugszeichen identische Konstruktionselemente wie dort bezeichneten, zeigt zusätzlich zur Fig. 1 die paarweise Anordnung der Holme 4, 5, die vollständige Anordnung der Antriebeinrichtungen 14, 15, 16, 17, den Verlauf des Angußkanals 35 mit der Angußöffnung 39 in der Formhälfte 31 einschließlich der – allerdings nur angedeuteten – Plastifizier- und Einspritzeinheit 37 sowie die Drehzapfen 19, 20 in den Lagern 21, 22, wobei die strichpunktiierten Linien neben dem Lager 21 in dem oberen Tragblock 8 symbolisch andeuten, daß dieses Lager 21 in Richtung auf eine der Formaufspannplatten 3, 6 geöffnet werden kann, um den Drehzapfen 19 und damit den gesamten Formhälftenträger 18 für eine Auswechslung mittels – nicht dargestelltem – Deckenkran oder einem entsprechenden Hilfsmittel freizugeben. Darüber hinaus verdeutlicht die Fig. 2 die Kopplung des Antriebsmotors

nerlei Aussagen über den erforderlichen Mechanismus getroffen werden, sofern der Abstand zwischen der Drehachse des Kernträgerkörpers und den Formaufspannplatten eine ausreichende Länge aufweist, als auch eine eindeutige Veränderung des relativen Abstandes zwischen Kernträgerkörper und verfahrbare - und damit zwangsläufig auch der feststehenden - Formaufspannplatte, erlaubt aber bei der üblichen Dimensionierung von Holmen der in Rede stehenden Art nur die Verwendung eines leichten und damit kleinen Kernträgerkörpers und demzufolge auch nur kleiner Formhälften, die auch nur die Herstellung von Spritzgießartikeln kleiner Dimensionen zuläßt. Wie bekannt, werden heutzutage aber auch eine Vielzahl von großdimensionierten - insbesondere großflächigen - Teilen, beispielsweise Stoßdämpfer, Armaturenbretter, Dachhimmel u. a. für Kraftfahrzeuge, aus Kunststoffschnmelzen gespritzt, können jedoch bei der Forderung nach einem Aufbau aus zwei oder mehr Kunststoffschnmelzen nur in aufwendigen mehrstufigen Spritzgießverfahren hergestellt werden.

Die zur Herstellung solcher Spritzgießartikel nach dem vorbeschriebenen Stand der Technik erforderlichen Spritzgießformen bzw. Formhälften und der zu deren Halterung erforderliche Kernträgerkörper würden aufgrund ihrer erforderlichen Masse zur Ausbildung der großvolumigen und/oder großflächigen Formhälften eine sehr kostenaufwendige Konstruktion der den Kernträgerkörper tragenden und verfahrenden zusätzlichen Holme einschließlich deren Führung in der verfahrbaren Formaufspannplatte und des auf der dem Kernträgerkörper abgekehrten Seite der verfahrbaren Formaufspannplatte zu installierenden Antriebs sowie eine wesentlich stabilere Auslegung der verfahrbaren Formaufspannplatte selbst, der zugehörigen Schließeinheit und letztlich des gesamten Maschinenrahmens erfordern, um zu verhindern, daß sich die den Kernträgerkörper tragenden Holme zumindest bei jedem Öffnungsvorgang der Spritzgießformen verbiegen und/oder ihre Lager in der verfahrbaren Formaufspannplatte verformen, so daß schon nach kurzer Zeit kein paßgerechtes Schließen der Spritzgießformen mehr durchführbar ist.

Abgesehen davon wäre unter solchen Voraussetzungen auch ein Auswechseln des Kernträgerkörpers, das in der in Rede stehenden Druckschrift zwar nirgends erwähnt, für einen flexiblen Einsatz einer Spritzgießmaschine der vorliegenden Art jedoch zumindest sehr wünschenswert ist, stets mit einem erheblichen Risiko verbunden, da die plötzliche Entlastung der zusätzlichen Holme beim Entformen eines Kernträgerkörpers oder auch die plötzliche Belastung beim Einsetzen eines Kernträgerkörpers in jedem Fall zu mehr oder weniger gedämpften Schwingungen der Holme führen würde, die sehr schnell Materialermüdungen, Haarrisse, Spannungsrißkorrosionen und ähnliche Materialfehler mit der Folge einer plötzlichen Bruchgefahr der Holme, verbunden mit einer erheblichen Unfallgefahr für das Bedienungspersonal, nach sich ziehen. Dabei wäre die Verwendbarkeit der in der DE 36 20 175 C2 offenbarten Spritzgießmaschine grundsätzlich auch für die Herstellung großvolumiger und/oder großflächiger Spritzgießartikel aus mindestens zwei Kunststoffschnmelzen attraktiv.

Aus diesem Grunde liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Spritzgießmaschine des beschriebenen Standes der Technik dahingehend zu verbessern, daß mit ihr auch großvolumige und/oder großflächige Spritzgießartikel, die aus mindestens zwei Kunststoffschnmelzen aufgebaut sind, in einem Maschinenzyklus herstellbar sind, wobei es jederzeit möglich ist, nicht nur einzelne Formhälften, sondern einen zwischen den üblichen Formaufspannplatten mit ihren Formhälften angeordneten, verfahrbaren

einfache Weise auszutauschen.

Die vorliegende Erfindung löst diese Aufgabe mit Hilfe der Gesamtheit der Merkmale des Patentanspruchs 1.

- Dabei erweist es sich als besonders vorteilhaft, daß die 5 weitere Formaufspanneinrichtung aus zwei in einer im wesentlichen vertikal ausgerichteten Ebene mit Abstand übereinander angeordneten und jeweils an mindestens zwei in einer im wesentlichen horizontal ausgerichteten Ebene angeordneten Holmen geführten stabilen Trägerblöcken, die 10 jeweils mit einem Lager für die im wesentlichen vertikal ausgerichtete Drehachse eines prismenförmigen Formhälftenträgers versehen sind, aus diesem der Aufnahme der weiteren Formhälften dienenden Formhälftenträger und aus mindestens zwei Antriebseinrichtungen, mittels derer der jeweilige relative Abstand zwischen den Formaufspannplatten 15 und jedem Trägerblock in Längsrichtung der Holme veränderbar ist, besteht, weil eine solche Anordnung eine stabile Halterung auch für einen verhältnismäßig großen und/oder schweren Formhälftenträger darstellt, und zwar unabhängig von der jeweiligen relativen Entfernung zwischen den Formaufspannplatten und dem Formhälftenträger, wobei diese Stabilität vorteilhafterweise noch dadurch erhöht werden kann, daß sich der dem Maschinenrahmen unmittelbar benachbarte - untere - Trägerblock mittels Rollen und/oder Kufen auf dem die unterhalb der Holme verlaufende Begrenzung des Maschinenrahmens bildenden Maschinenbett abstützt. Die Trennung der gesamten Formaufspanneinrichtung in zwei im wesentlichen horizontal angeordnete stabile Trägerblöcke, von denen jeder mit mindestens einer eigenen Antriebseinrichtung versehen ist, und einen mit einer im wesentlichen vertikal ausgerichteten Drehachse versehenen Formhälftenträger erweist sich darüber hinaus insbesondere bei einer erforderlichen Auswechslung des Formhälftenträgers als sehr vorteilhaft, da dann einerseits nur die 30 Masse des eigentlichen Formhälftenträgers bewegt werden muß und andererseits mittels der getrennten Antriebseinrichtungen für die Trägerblöcke eine exakte Einjustierung eines neu eingesetzten Formhälftenträgers ermöglicht wird, bevor diese Antriebseinrichtungen anschließend nur noch 35 synchron betrieben werden.

- Als vorteilhaft ist auch eine Ausführungsform der erfindungsgemäßen Vorrichtung anzusehen, bei der der Formhälftenträger senkrecht zu seiner Drehachse eine Querschnittsfläche in Form eines regelmäßigen geradzahligen Vielecks aufweist, wobei jede parallel zur Drehachse angeordnete Seitenfläche als Anschlagfläche für mindestens eine weitere Formhälfte verwendbar ist, da damit von vornherein eine große Flexibilität der einmal vorhandenen Spritzgießmaschine erreicht wird, insbesondere dann, wenn außerdem noch im zusammengefahrenen Zustand der mit Formhälften bestückten Formaufspannplatten und des mit weiteren Formhälften bestückten Formhälftenträgers an die von weiteren, nicht den Formaufspannplatten unmittelbar gegenüberstehenden Seitenflächen des Formhälftenträgers gehaltenen weiteren Formhälften zur Ausbildung zusätzlicher kompletter Spritzgießformen ergänzende Formhälften anlegbar sind, die von in jeweils vorgegebener Richtung verfahrbaren und jeweils mit mindestens einer zugehörigen Plastifizier- und Einspritzeinheit bestückten weiteren Formaufspannplatten getragen werden, womit in einem Maschinenzyklus entweder ein Spritzgießartikel aus mehr als zwei Kunststoffschnmelzen aufgebaut werden kann oder mehr als ein Spritzgießartikel aus jeweils mindestens zwei Kunststoffschnmelzen gleichzeitig hergestellt werden können.
- Bei einer anderen Ausführungsform der vorliegenden Vorrichtung ist es dagegen als sehr vorteilhaft anzusehen, daß der Formhälftenträger senkrecht zu seiner Drehachse

6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Formhälftenträger (18) senkrecht zu seiner Drehachse (19, 20) eine Querschnittsfläche in Form eines gestreckten Rechtecks aufweist, wobei nur die parallel zur Drehachse (19, 20) angeordneten und 5 die Längskanten des Rechtecks ausbildenden Seitenflächen als Anschlagflächen für jeweils mindestens eine weitere Formhälfte (28, 29) verwendet werden.

7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Formhälftenträger (18) 10 auf seinen den Trägerblöcken (8, 9) zugewandten Außenflächen mit kraftschlüssig oder einstückig mit ihm verbundenen und seine Drehachse (19, 20) verifizierenden Drehzapfen (19, 20) verbunden ist.

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Länge der Drehzapfen (19, 20) so bemessen ist, daß sie in die in den Trägerblöcken (8, 9) angeordneten Lager (21, 22) in hinreichendem Maße hineinragen, und daß mindestens eines der Lager (21, 22) in den Trägerblöcken (8, 9) in Richtung auf eine 20 der Formaufspannplatten (3, 6) zu öffnen und nach der Freigabe und/oder der Aufnahme eines Drehzapfens (19, 20) wieder zu schließen ist.

9. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Drehzapfen (19, 20) vor den Eingangsoffnungen der Lager (21, 22) enden, dort jedoch mittels Kupplungsvorrichtungen bekannter Art mit ständig in den Lagern (21, 22) gehaltenen und aus den Eingangsoffnungen der Lager (21, 22) stückweise herausstehenden weiteren Drehzapfen form- und/oder 30 kraftschlüssig verbindbar sind.

10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß mindestens einer der Drehzapfen (19, 20) direkt oder über ein Getriebe (25) mit einem an oder auf dem unmittelbar benachbarten Trägerblock (8, 9) angeordneten Antriebsmotor (26) verbunden ist.

11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der Antriebsmotor (26) ein Elektromotor bekannter Art ist.

12. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der Antriebsmotor (26) ein Hydromotor bekannter Art ist.

13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß jeder Antriebsmotor (26) 45 über einen Winkelcodierer (27) gesteuert wird.

14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die erwünschten Endstellungen der Schwenkbewegungen des Formhälftenträgers (18) um seine im wesentlichen vertikal ausgerichtete Drehachse (19, 20) mittels eines oder mehrerer Indexelemente (43) kontrolliert und fixiert werden.

15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß als Indexelement (43) ein an einem Trägerblock (8, 9) festgelegter hydraulisch betätigter Haltestift (44) verwendet wird, der jeweils mit einer komplementären Bohrung (45) in der dem ihn haltenden Trägerblock (8, 9) zugewandten Außenseite des Formhälftenträgers (18) zusammenwirkt.

16. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß als Indexelement (43) ein an einem Trägerblock (8, 9) festgelegter Haltestift verwendet wird, der mittels Federkraft eine rollbare Kugel auf die dem ihn haltenden Trägerblock (8, 9) zugewandten Außenseite des Formhälftenträgers (18) drückt, bei Erreichen 60 einer gewünschten Endstellung in eine vorgegebene Bohrung in der Außenseite eintaucht und mittels eines

17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die weiteren Formhälften (28, 29) am Formhälftenträger (18) auswechselbar befestigt sind.

18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die Befestigung der weiteren Formhälften (28, 29) am Formhälftenträger (18) mittels Schnellverschlüssen bekannter Art erfolgt.

19. Vorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Antriebseinheiten (14, 15, 16, 17) zur Veränderung des jeweiligen relativen Abstandes zwischen den Formaufspannplatten (3, 6) und jedem Trägerblock (8, 9) hydraulisch betätigte Kolben-Zylinder-Einheiten sind, die mit ihrem einen Endbereich kraftschlüssig mit der verfahrbaren Formaufspannplatte (6) und mit ihrem anderen Endbereich kraftschlüssig mit einem der Trägerblöcke (8, 9) verbunden und parallel zur Längsrichtung der Holme (4, 5) verfahrbar sind.

20. Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß einzelne oder alle Formhälften (31) an mindestens einer ihrer sich zwischen Anlagefläche und Trennebene erstreckenden Seitenflächen mindestens eine Eingangsöffnung (39) eines Angußkanals (35) zum Anschluß jeweils einer geeignet ausgerichteten und verfahrbaren Plastifizier- und Einspritzeinheit (37) aufweisen.

21. Vorrichtung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß der Formhälftenträger (18) an mindestens einer seiner parallel zu seiner Drehachse (19, 20) ausgerichteten Seitenflächen mindestens eine Eingangsöffnung eines Angußkanals zum Anschluß jeweils einer geeignet ausgerichteten und verfahrbaren Plastifizier- und Einspritzeinheit (37) aufweist, wobei jeder Angußkanal zur Beaufschlagung mindestens einer von dem Formhälftenträger (18) gehaltenen und im geschlossenen Zustand mit einer der auf einer der Formaufspannplatten (3, 6) befestigten Formhälften (30, 31) eine vollständige Spritzgießform ausbildenden weiteren Formhälften mit einer vorgegebenen Kunststoffschmelze dient.

Hierzu 2 Seite(n) Zeichnungen

sich insbesondere dann als vorteilhaft, wenn die in Rede stehende Vorrichtung aus betrieblichen Gründen zeitweise als einfache Einkomponenten-Spritzgießmaschine mit einem Standardwerkzeug verwendet werden soll, dessen zweite Formhälfte dann für eine Reihe von Spritzgießzyklen an einer vorgegebenen Seitenfläche des nunmehr unverschwenkbaren benutzten Formhälftenträgers festlegbar ist. In entsprechender Weise kann der Formhälftenträger – wenn aus betrieblichen Gründen wünschenswert oder erforderlich – mit der in Rede stehenden Anordnung in vorteilhafter Weise auch zeitweise als Mittelblock eines Etagenwerkzeugs bekannter Art zur Herstellung jeweils zweier gleicher oder unterschiedlicher Spritzgießartikel aus jeweils mindestens einer Kunststoffschnmelze verwendet werden.

Bei einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung ist es auch als vorteilhaft anzusehen, daß einzelne oder alle Formhälften an mindestens einer ihrer sich zwischen Anlagefläche und Trennebene erstreckenden Seitenflächen mindestens eine Eingangsoffnung eines Angußkanals zum Anschluß jeweils einer geeignet ausgerichteten und verfahrbaren Plastifizier- und Einspritzeinheit aufweisen, weil sich damit die Angußkanäle zwischen dem Düseausgang jeder – normalerweise mit Ausnahme der durch die feststehende Formaufspannplatte hindurchgeführten – Plastifizier- und Einspritzeinheit und dem jeweiligen Formnest einer Spritzgießform gegenüber dem vorgegebenen Stand der Technik wesentlich verkürzen lassen – jedenfalls dann, wenn die jeweilige Höhe der betroffenen Formhälften rein räumlich gesehen eine solche Anlage der Düse einer Plastifizier- und Einspritzeinheit zuläßt. Als entsprechend vorteilhaft erweist sich – zumindest in speziellen Anwendungsfällen – auch eine Weiterbildung der vorliegenden Vorrichtung, bei der der Formhälftenträger an mindestens einer seiner parallel zu seiner Drehachse ausgerichteten Seitenflächen mindestens eine Eingangsoffnung eines Angußkanals zum Anschluß jeweils einer geeignet ausgerichteten und verfahrbaren Plastifizier- und Einspritzeinheit aufweist, wobei jeder Angußkanal zur Beaufschlagung mindestens einer von dem Formhälftenträger gehaltenen und im geschlossenen Zustand mit einer der auf einer der Formaufspannplatten befestigten Formhälften eine vollständige Spritzgießform ausbildenden weiteren Formhälften mit einer vorgegebenen Kunststoffschnmelze dient, weil dies die Flexibilität der gesamten Vorrichtung deutlich erhöht, und zwar sowohl bezüglich der in jedem individuellen Fall möglichen Raumausnutzung als auch der Möglichkeit, das Formnest einer Spritzgießmaschine gegebenenfalls gleichzeitig oder unmittelbar aufeinander folgend mit mehr als einer Kunststoffschnmelze zu füllen.

Ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung ist in der Zeichnung dargestellt.

Es zeigen:

Fig. 1 Ausschnitt aus der Seitenansicht einer Spritzgießmaschine mit allen für die vorliegende Erfindung wesentlichen Bestandteilen einer solchen Vorrichtung in schematischer und teilweise durchbrochener Darstellung.

Fig. 2 Schnitt A-A aus Fig. 1 – in ebenfalls schematischer und teilweise durchbrochener Darstellung.

Die Fig. 1 zeigt einen Ausschnitt aus der Seitenansicht einer Spritzgießmaschine mit allen für die vorliegende Erfindung wesentlichen Bestandteilen einer solchen Maschine in schematischer und teilweise durchbrochener Darstellung. Demzufolge ist auf einem hier – da von bekannter Art – nur angedeuteten Maschinenrahmen 1, dessen oberer Randbereich als Maschinenbett 2 ausgebildet ist, eine feststehende Formaufspannplatte 3 aufgeständert und kraftschlüssig mit dem Maschinenrahmen 1 verbunden, die im vorliegenden

im wesentlichen horizontal ausgerichteten Holmen 4, 5 – von denen in der vorliegenden Zeichnung nur jeweils ein Holm 4, 5 jedes Paares sichtbar ist – hält. Die Paare von Holmen 4, 5 führen zu einer hier – da gleichfalls von bekannter Art – nicht explizit dargestellten Gegendruckplatte, die ebenfalls auf dem Maschinenrahmen 1 aufgeständert und kraftschlüssig mit diesem sowie mit den anderen Enden der Paare von Holmen 4, 5 verbunden ist. Auf den Holmen 4, 5 ist eine auf diesen verfahrbare Formaufspannplatte 6 in bekannter Art und Weise angeordnet, die mittels einer hier – da ebenfalls von bekannter Art – nur angedeuteten Schließeinheit 7, beispielsweise einer zwischen Gegendruckplatte und verfahrbarer Formaufspannplatte 6 angeordneten und wirksamen hydraulisch betätigten Kolben-Zylinder-Anordnung oder einem statt dessen von einer hydraulischen Kolben-Zylinder-Anordnung oder auch von einem Elektromotor über eine Ritzel-Zahnstangen-Anordnung betätigten Kniehebelmechanismus oder einer sonstigen als gleichwirkendes Mittel anzusehenden Antriebsvorrichtung, auf den Holmen 4, 5 verfahren wird.

Auf jedem Paar von Holmen 4, 5 ist außerdem zwischen den Formaufspannplatten 3, 6 je ein im wesentlichen horizontal ausgerichteter stabiler Trägerblock 8, 9 angeordnet, der die ihn tragenden Holme 4, 5 mit Führungsböhrungen 10, 11, 12, 13 – von denen hier nur die Führungsböhrungen 10, 12 sichtbar sind (vgl. Fig. 2) – umfaßt und mittels zweier – was jedoch nicht zwangsläufig und durch jede Anzahl von "mindestens einer" ersetztbar ist – Antriebseinrichtungen 14, 15, 16, 17 – von denen hier nur die Antriebseinrichtungen 14, 16 sichtbar sind (vgl. Fig. 2) – auf den ihn tragenden Holmen 4, 5 seinerseits relativ zu den Formaufspannplatten 3, 6 verfahrbar ist. Die Antriebseinrichtungen 14, 15, 16, 17 sind im dargestellten Fall hydraulisch betätigte Kolben-Zylinder-Anordnungen, die sowohl mit den verfahrbaren Formaufspannplatten 6 als auch mit dem jeweiligen Trägerblock 8, 9 – beispielsweise über Anschlagschalen 50, 51, 52, 53, 54, 55 bekannter Art, von denen die Anschlagschalen 54, 55 allerdings erst in Fig. 2 sichtbar sind – kraftschlüssig verbunden sind, wobei die hydraulisch betätigten Kolben-Zylinder-Anordnungen selbstverständlich einerseits auch durch jedes andere gleichwirkende Mittel, beispielsweise von Elektromotoren betätigtes Spindeltriebe oder Ritzel-Zahnstangen-Anordnungen, ersetztbar und andererseits auch nicht zwangsläufig an der verfahrbaren Formaufspannplatte 6, sondern statt dessen an der feststehenden Formaufspannplatte 3 oder unmittelbar am Maschinenrahmen 1 festlegbar sind, auch wenn es sich in der Vergangenheit, beispielsweise bei den Etagen-Spritzgießmaschinen, als zweckmäßig herausgestellt hat, die Steuerung eines zusätzlich zur verfahrbaren Formaufspannplatte 6 zu verschiebenden Bauteils einer Spritzgießmaschine so mit der Steuerung der verfahrbaren Formaufspannplatte 6 zu koordinieren, daß der Bewegungszustand der letzteren als primäre Bezugsgröße für die Bewegung des zusätzlichen Bauteils herangezogen wird.

Die Trägerblöcke 8, 9 halten im dargestellten – aber nicht zwangsläufigen – Fall einen als quadratische – oder gegebenenfalls auch rechteckige – Platte ausgebildeten und um eine im wesentlichen vertikal ausgerichtete und ein Paar der Schmalseiten der Platte durchstoßende Drehachse verschwenkbaren Formhälftenträger 18, der mittels in Fig. 2 dargestellter, kraftschlüssig mit der Platte verbundener und miteinander fluchtender Drehzapfen 19, 20 – die selbstverständlich auch durch eine durchgehende, ebenfalls kraftschlüssig mit dem plattenförmigen Körper des Formhälftenträger 18 verbundene Achse ersetzbar sind – mit in den Trägerblöcken 8, 9 derart angeordneten Lagen 21, 22 in Eingriff steht, daß diese bei Parallelstellung der Trägerblöcke 8,

Fig. 2

zusätzlich ein Indexelement 43, das zur zusätzlichen Festlegung der jeweiligen Endstellung der Schwenkbewegungen des Formhälftenträgers 18 und insbesondere auch zur Vermeidung von Driftbewegungen dieses Formhälftenträgers 18 bei abgeschaltetem Antriebsmotor 26 dient. Von dem Indexelement 43 ist hier vorausgesetzt, daß es sich um einen von einer am oberen Trägerblock 8 festgelegten hydraulisch betätigten Kolben-Zylinder-Anordnung verschiebbaren Haltestift 44 handelt, der mit entsprechenden Haltebohrungen 45 in der dem Trägerblock 8 unmittelbar gegenüberliegenden Außenfläche des Formhälftenträgers 18 wechselt wirkt. Selbstverständlich kann ein solches Indexelement auch durch jedes andere gleichwirkende Mittel ersetzt werden, beispielsweise durch eine bereits oben im Detail beschriebene elektromagnetisch entriegelbare Kugelrasteinrichtung. Im übrigen ist auch die dargestellte Anordnung der Holme 4, 5 nicht zwangsläufig, sondern kann selbstverständlich auch durch eine solche ersetzt werden, bei der der obere Trägerblock 8 oder der untere Trägerblock 9 oder beide jeweils durch mehr als zwei Holme 4, 5 getragen und abgestützt werden.

Selbstverständlich beschränkt sich das mit den vorstehenden Ausführungen nachgesuchte Patentbegehren nicht auf das dargestellte Ausführungsbeispiel, sondern betrifft alle von der Merkmalskombination des Patentanspruchs 1 erfaßten möglichen Ausführungsformen einer Vorrichtung zur Herstellung von Spritzgießartikeln aus mindestens zwei Kunststoffschmelzen.

Bezugszeichenliste

30

- 1 Maschinenrahmen
- 2 Maschinenbett
- 3 feststehende Formaufspannplatte
- 4, 5 Holme
- 6 verfahrbare Formaufspannplatte
- 7 Schließeinheit bekannter Art
- 8, 9 Trägerblöcke
- 10, 11, 12, 13 Führungsbohrungen
- 14, 15, 16, 17 Antriebeinrichtungen
- 18 Formhälftenträger
- 19, 20 Drehzapfen
- 21, 22 Lager
- 23, 24 Gleit- oder Drehlager
- 25 Getriebe
- 26 Antriebsmotor
- 27 Winkelcodierer
- 28, 29 weitere Formhälften
- 30, 31 Formhälften
- 32, 33 Spritzgießformen
- 34, 35 Angußkanäle
- 36, 37 Plastifizier- und Einspritzeinheiten
- 38, 39 Angußöffnungen
- 40 Rollen und/oder Kufen
- 41 Justierdorne
- 42 Bohrungen
- 43 Indexelement
- 44 Haltestift
- 45 Haltebohrungen
- 50, 51, 52, 53, 54, 55 Anschlaglaschen.

Patentansprüche

60

1. Vorrichtung zur Herstellung von Spritzgießartikeln aus mindestens zwei Kunststoffschmelzen, die zwischen einer ortsfest auf einem Maschinenrahmen installierten feststehenden Formaufspannplatte und einer auf mindestens vier zwischen der feststehenden Formaufspannplatte und einer ebenfalls ortsfest auf dem

geordneten, im wesentlichen horizontal verlaufenden Holmen verfahrbaren Formaufspannplatte eine relativ zu dieser ihrerseits verfahrbare und um eine senkrecht zur Längsachse der Holme ausgerichtete Drehachse verschwenkbare weitere Formaufspanneinrichtung aufweist, die auf mindestens zwei mit Abstand untereinander und relativ zur Drehachse parallel ausgerichteten Seitenflächen mit den Formhälften der Formaufspannplatten zusammenwirkende weitere Formhälften trägt, wobei jede der Formaufspannplatten mit mindestens einer Öffnung versehen ist, die den Anschluß jeweils einer Plastifizier- und Einspritzeinheit an jeden von einem oder mehreren Angußkanälen in den von den Formaufspannplatten gehaltenen Formhälften gestattet, dadurch gekennzeichnet, daß die weitere Formaufspanneinrichtung (8, 9, 18) aus zwei in einer im wesentlichen vertikal ausgerichteten Ebene mit Abstand übereinander angeordneten und jeweils an mindestens zwei in einer im wesentlichen horizontal ausgerichteten Ebene angeordneten Holmen (4, 5) geführten stabilen Trägerblöcken (8, 9), die jeweils mit einem Lager (21, 22) für die im wesentlichen vertikal ausgerichtete Drehachse (19, 20) eines prismenförmigen Formhälftenträgers (18) versehen sind, aus diesem der Aufnahme der weiteren Formhälften (28, 29) dienen den Formhälftenträger (18) und aus mindestens zwei Antriebeinrichtungen (14, 15, 16, 17), mittels derer der jeweilige relative Abstand zwischen den Formaufspannplatten (3, 6) und jedem Trägerblock (8, 9) in Längsrichtung der Holme (4, 5) veränderbar ist, besteht.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sich der dem Maschinenrahmen (1) unmittelbar benachbarte - untere - Trägerblock mittels Rollen und/oder Kufen (40) auf dem die unterhalb der Holme (4, 5) verlaufende Begrenzung des Maschinenrahmens (1) bildenden Maschinenbett (2) abstützt.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Formhälftenträger (18) senkrecht zu seiner Drehachse (19, 20) eine Querschnittsfläche in Form eines regelmäßigen geradzahligen Vierecks aufweist, wobei jede parallel zur Drehachse (19, 20) angeordnete Seitenfläche als Anschlagfläche für mindestens eine weitere Formhälfte (28, 29) verwendbar ist.

4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß im zusammengefahrenen Zustand der mit Formhälften (30, 31) bestückten Formaufspannplatten (3, 6) und des mit weiteren Formhälften (28, 29) bestückten Formhälftenträgers (18) an die von weiteren, nicht den Formaufspannplatten (3, 6) unmittelbar gegenüberstehenden Seitenflächen des Formhälftenträgers (18) gehaltenen weiteren Formhälften zur Ausbildung zusätzlicher kompletter Spritzgießformen ergänzende Formhälften anlegbar sind, die von in jeweils vorgegebener Richtung verfahrbaren und jeweils mit mindestens einer zugehörigen Plastifizier- und Einspritzeinheit bestückten weiteren Formaufspannplatten getragen werden.

5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Formhälftenträger (18) senkrecht zu seiner Drehachse (19, 20) eine Querschnittsfläche in Form eines unregelmäßigen geradzahligen Vielecks aufweist, wobei nur bestimmte Paare von untereinander und relativ zur Drehachse parallel angeordneten Seitenflächen als Anschlagflächen für jeweils mindestens eine weitere Formhälfte (28, 29) verwendet

Fig. 1