Junming DUAN

HUMBOLDT RESEARCH FELLOW

Room 03.017, Emil-Fischer-Straße 40, 97074 Würzburg, Germany

■ +49 931 31-82837 | ■ junming.duan@uni-wuerzburg.de | ★ junmingduan.github.io | ● 0000-0002-3532-9995

Academic Positions __

October 2023 – September 2025 Humboldt Research Fellow

Fakultät für Mathematik und Informatik, Universität Würzburg, Germany

Host Professor: Prof. Dr. Christian Klingenberg

September 2021 – September 2023 Postdoctoral Researcher

MCSS, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Mentor: Prof. Jan S. Hesthaven

Education ___

September 2016 - July 2021 Ph.D. in Computational Mathematics

Peking University, China

Entropy stable numerical methods for special relativistic (magneto)hydrodynamics

Advisor: Prof. Huazhong Tang

September 2012 - July 2016 B.Sc. in Information and Computing Science

Peking University, China

Research Interests ___

- Numerical methods for hyperbolic conservation laws
- Computational fluid dynamics
- High-order accurate numerical methods
- Structure-preserving methods
- Moving mesh methods
- Reduced-ordel modeling
- Data-driven methods and scientific machine learning

Research Publications ___

JOURNAL ARTICLES

- 1. **J.M. Duan*** and J.S. Hesthaven, Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems, accepted by *J. Comput. Phys.*, 2024. *arXiv:2303.02986*.
- 2. J. Wang, **J.M. Duan**, Z.W. Ma, and W. Zhang, An adaptive moving mesh finite difference scheme for tokamak magneto-hydrodynamic simulations, *Comput. Phys. Commun.*, 294: 108951, 2024.
- 3. Z.H. Zhang, **J.M. Duan***, and H.Z. Tang, High-order accurate well-balanced energy stable adaptive moving mesh finite difference schemes for the shallow water equations with non-flat bottom topography, **J. Comput. Phys.**, 492: 112451, 2023. *arXiv*:2303.06924.
- 4. S.T. Li, **J.M. Duan**, and H.Z. Tang, High-order accurate entropy stable adaptive moving mesh finite difference schemes for (multi-component) compressible Euler equations with the stiffened equation of state, **Comput. Methods Appl. Mech. Engrg.**, 399: 115311, 2022. *arXiv:2202.07989*.
- 5. **J.M. Duan** and H.Z. Tang, High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto)hydrodynamics, *J. Comput. Phys.*, 456: 111038, 2022. *arXiv:2107.12027*.
- 6. **J.M. Duan** and H.Z. Tang, An analytical solution of the isentropic vortex problem in the special relativistic magnetohydrodynamics, *J. Comput. Phys.*, 456: 110903, 2022. *arXiv:2107.01966*.
- 7. **J.M. Duan** and H.Z. Tang, High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics, *J. Comput. Phys.*, 431: 110136, 2021. *arXiv:2003.10081*.
- 8. **J.M. Duan** and H.Z. Tang, Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics, *J. Comput. Phys.*, 426: 109949, 2021. *arXiv:2007.12884*.

- 9. **J.M. Duan** and H.Z. Tang, High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics, *J. Comput. Phys.*, 421: 109731, 2020. *arXiv:1911.03825*.
- 10. **J.M. Duan** and H.Z. Tang, High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics, *Adv. Appl. Math. Mech.*, 12(1): 1-29, 2020. *arXiv:1905.06092*.
- 11. **J.M. Duan** and H.Z. Tang, An efficient ADER discontinuous Galerkin scheme for directly solving Hamilton-Jacobi equation, *J. Comput. Math.*, 38(1): 58-83, 2020. *arXiv:1901.10228*.
- 12. D. Ling, **J.M. Duan**, and H.Z. Tang, Physical-constraints-preserving Lagrangian finite volume schemes for one- and two-dimensional special relativistic hydrodynamics, *J. Comput. Phys.*, 396: 507-543, 2019. *arXiv:1901.10625*.
- 13. **J.M. Duan** and H.Z. Tang, A second-order accurate scheme for a kinetic equation of two-dimensional Vicsek swarming model, *Nat. Sci. J. Xiangtan Univ.*, 41(1): 1-14, 2019. (in Chinese)
- 14. **J.M. Duan**, Y.Y. Kuang, and H.Z. Tang, Model reduction of a two-dimensional kinetic swarming model by operator projections, *East Asian J. Appl. Math.*, 8(1): 151-180, 2018. *arXiv:1701.02888*.

PREPRINTS

- 15. Z.H. Zhang, H.Z. Tang, and **J.M. Duan***, High-order accurate well-balanced energy stable finite difference schemes for multi-layer shallow water equations on fixed and adaptive moving meshes, *in preparation*.
- 16. **J.M. Duan**, Q. Wang, and J.S. Hesthaven, Machine learning enhanced aerodynamic forces prediction based on sparse pressure sensor inputs, submitted to *AIAA J.*, 2023. *arXiv:2305.09199*.

July 2023
July 2021
December 2020
October 2020
August 2020
2019–2020
2012 2022
2018–2020
September 2019
September 2017
July 2016
July 01, 2023
June 19-21, 2023
June 07, 2023
June 05-06, 2023
November 17, 2022
August 22-26, 2022
June 27-29, 2022

Conferences & Talks (continued)	
Symposium on High-Fidelity Numerical Simulation of Fluid Problems, Peking University,	June 05-07, 2021
Beijing, China (Talk: Entropy stable schemes for RHD)	
Forum of Numerical Methods and Applications in Fluids, Xiangtan University, Xiangtan, China	December 11-13, 2020
(Talk: Entropy stable adaptive moving mesh schemes for RHD)	
Student Forum of Chinese Society of Industrial and Applied Mathematics, online (Talk: Entropy	November 14-15, 2020
stable adaptive moving mesh schemes for RHD)	
The National Mechanics Graduate Student Forum, Peking University, Beijing, China (Poster:	November 06-08, 2020
High-order entropy stable DG schemes for RMHD)	
Selection of Excellent Young Scholar's paper of Beijing Society of Computational Mathematics	, August 30, 2020
online (Talk: PCP Lagrangian scheme for RHD. The first prize.)	
Annual Meeting on High Resolution Method for Multi-Material Hydrodynamics of Science	November
Challenge Project, Xiamen University, Xiamen, China (Talk: PCP Lagrangian scheme for RHD)	29-December 01, 2019
Workshop on Numerical Methods for Complex Physical Problems, Nanjing University of	August 28-30, 2019
Aeronautics and Astronautics, Nanjing, China (<i>Talk: High-order entropy stable finite difference schemes for RHD</i>)	
The 12th National Annual Meeting of Computational Mathematics, Harbin, China (Talk:	July 31-August 04, 2019
High-order entropy stable finite difference schemes for RHD)	, , ,
Graduate Student Forum of Chinese Society of Industrial and Applied Mathematics, Academy	of June 22, 2019
Mathematics and System Science, Chinese Academy of Science, Beijing, China (Talk: PCP	•
Lagrangian scheme for RHD)	
Annual Meeting of Center for Applied Physics and Technology, Peking University, Beijing, China	December 13, 2018
(Talk: PCP Lagrangian scheme for RHD)	
Annual Meeting of Science Challenge Project, Jilin University, Changchun, China (Talk: PCP	November 17-19, 2018
Lagrangian scheme for RHD (with Dan Ling), selected as one of the five best posters)	
Beijing Seminar on Computational Fluid Dynamics, Beijing Institute of Applied Physics and	November 11, 2018
Computational Mathematics, Beijing, China (Talk: PCP Lagrangian scheme for RHD)	
Teaching Assistant	
Analysis III, École Polytechnique Fédérale de Lausanne	Fall 2022
Advanced Analysis I, École Polytechnique Fédérale de Lausanne	Fall 2021
Numerical Methods of Partial Differential Equations, Peking University	Fall 2019
Linear Algebra B, Peking University	Fall 2018
Advanced Algebra II, Peking University	Spring 2018
Linear Algebra B, Peking University	Fall 2017
Mathematical Modeling, Peking University	Spring 2017
Partial Differential Equations, Peking University	Fall 2016
Supervision	
Master thesis: Enhancing numerical simulations of hyperbolic conservation laws using entrop	y Fall, 2023
stable schemes and adaptive moving mesh method . Kovacic Bartul, EPFL, with Prof. Jan S.	
Hesthaven	
Semester project: Scalable implementation of high-order entropy stable finite difference	Fall, 2022
schemes. Kovacic Bartul, EPFL, with Prof. Jan S. Hesthaven	
Master thesis: High-order entropy stable discontinuous Galerkin schemes using artificial	Fall, 2022
viscosity. Jaugey Louis Vincent Marie, EPFL, with Prof. Jan S. Hesthaven	
Master thesis: Investigation of the aerosol evolution and delivery into the upper airway under	Fall, 2022
transient conditions. Zacchei Filippo, EPFL, with Prof. Jan S. Hesthaven	

Research Projects	
New Efficient Structure-Preserving Numerical Methods for the Multi-dimensional Euler Equations:	2023-2025
design efficient adaptive moving mesh methods and reduced-order models with structure	
preservation for solving the multi-dimensional Euler equations	
Supported by Alexander von Humboldt-Stiftung. Design and verification of numerical methods. Pl	
Sense Dynamics: construct precise surrogate models of transient nonlinear physical phenomena	2021-2022
related to aerodynamics	
Supported by Swiss Data Science Center. Design and verification of numerical simulations for a 3D drone.	
Pl: Dr. Doytchinov lordan	
High-Order Accurate Adaptive Moving Mesh Methods for Compressible Fluid Flows: design and	2021-2022
verification of high-order accurate adaptive moving mesh methods for solving the Euler and	
Navier-Stokes equations in 2D and 3D	
Supported by National Numerical Windtunnel Project. Design and verification of numerical methods. Pl:	
Prof. Huazhong Tang	
Computational Methods for the Interface and Elastoplastic Fracture in Fluid Mechanics: design and	2019-2020
verification of high-order accurate adaptive moving mesh methods for solving multi-material flows	
Supported by Science Challenge Project. Design and verification of moving mesh schemes for	
multi-component flows. PI: Prof. Huazhong Tang	
High-Order Accurate Robust Numerical Schemes for Multi-Material Implosion Hydrodynamics:	2016-2018
research on high-order accurate Lagrangian schemes for solving compressible hydrodynamics	
Supported by Science Challenge Project. Verification of high-order accurate Lagrangian schemes. Pl: Prof.	
Huazhong Tang	

Professional Services _

Refereeing: AMS Mathematical Reviews, Journal of Computational Physics, Journal of Computational and Applied Mathematics, Communications in Nonlinear Science and Numerical Simulation, International Journal for Numerical Methods in Engineering, East Asian Journal on Applied Mathematics, Communications in Computational Physics, Journal of Scientific Computing, International Journal of Computational Methods

Other Information ___

■ Skills: C, C++, MPI, Python, PyTorch, MATLAB, OpenFOAM, PETSc, Linux shell, Fortran, धा-X, . . .

References _____

Prof. Huazhong Tang

School of Mathematical Sciences
Peking University
Beijing, China

■ hztang@math.pku.edu.cn

Prof. Christian Klingenberg

Institute of Mathematics Julius-Maximilians-Universität Würzburg Würzburg, Germany

■ klingen@mathematik.uni-wuerzburg.de

Prof. Jan S. Hesthaven

Institute of Mathematics École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

■ jan.hesthaven@epfl.ch