山地研究(SHANDI YANJIU)=MOUNTAIN RESEARCH,1998,16(1):77~79

超声波泥位计的研制和应用效果

杨仁文

(中国科学院东川泥石流观测研究站 成都 610041)

提 要 介绍了超声波泥位计的研制过程、技术指标及用 UL-3 型超声波泥位计在蒋家 沟泥石流观测中的应用效果.

关键词 超声波泥位计 研制 应用效果

长期以来,泥石流观测一直是到现场直接观测.不仅观测者要面临泥石流卷走的危险,而且观测结果可靠性和准确性差.泥石流流速快、冲击力大,采用其它任何一种直接接触法来量测都是十分困难的.而取得准确可靠的第一手资料,不仅是研究泥石流基本的重要环节,同时也是揭示这一自然灾害内在规律的必备条件.对推动泥石流学科发展起着十分重要的作用.泥位是泥石流研究的基本要素之一.基于此,我们研制了半自动的 UL-2 和 UL-3 型超声波泥位观测计,并将其与人工观测进行了对比研究.

1 超声波泥位计的原理与研制过程

1.1 原理

我们知道,当声波在均匀介质中以一定速度传播而遇到不同介质的界面时,声波将由界面反射.由声波反射时间的差异可推断其距离.超声波泥位计就是根据超声波回声测距这一原理提出来的.当沟床断面相对稳定时,泥石流流量同泥深(泥位)成正比关系,所以泥深既能客观地反映泥石流规模的大小,也能反映泥石流可能危害的程度.泥石流未发生时,仪器测得的是沟床表面高程(常数),一旦有泥石流通过,仪器测得的数据就是泥石流体的表面高程.用沟床表面高程减去泥石流体表面高程,就是泥石流流动时的泥深.

1.2 研制过程

开始我们利用一台测水深的超声波测深仪试测泥石流泥深. 初试结果表明基本可行,但精度较差. 以后与上海长宁区科协等有关科研单位一起,共同设计、研制了我国首台专为测泥石流的 UL-2 型超声波泥位计. 为了验证该仪器的效能,首先在室内利用木板作界面,用皮尺量测距离,进行设定距离为5~1m 的几组试验. 当木板与仪器距离分别为5,4,3,2,1m 时,仪器显示的读数分别为5.01~4.99,4.02~3.97,3.01~2.98,2.01~1.99,1.01~0.99. 此实验显示,当改变量测高度时,仪器反应灵敏,其误差值在±5%内.量测距离愈短,其精度愈高. 此后又发展了 UL-3 型超声波泥位计. 将此装置搬到蒋家沟并进行了长期野外实验观测,达到了预期的要求,获得了初步成功.

收稿日期:1997-12-10.

1.3 UL-3 超声波泥位计的技术指标

最大量程 10m

精度 ±1%

盲区 1m

分辨率 1cm

输出信号 0~10mA

显示方式 3.5 位 led 数码

环境温度 0~40℃

连续工作时间 可长期工作

电源电压 Ac220V±5V

功率≤20VA

收发器到显示器距离 <500m (高速采样>5 次/s)

>3km(低速采样<2 次/s)

声光报警 当泥位超过设定值时即发声光报警信号

2 超声波泥位计的操作方法和应用效果

2.1 操作方法

将收发器装在测点附近(测量时只需将其探头悬挂在观测断面的垂索上),主机放置室内. 接通 220V 电源后,仪器便输出 0~10mA 标准信号,监测泥石流泥位的变化. 0~10mA 信号输入数显仪,数显仪将信号转为数字信号,即可直读泥位值. 若将信号送入电脑,就能以电脑进行采样、储存和处理,自动出现泥石流流体的曲线变化图与相应的时间同步记录,为校核泥石流的原始观测数据打下了基础.

2.2 应用效果

超声波泥位计不仅能自动观测泥石流的龙头高度变化、泥位变化和沟道冲淤变化,而且还实现了通过泥石流泥位变化自动报警.该仪器从投入使用至今,已经观测到上百次(阵)泥石流的流态变化,自动记录了大量的数据.经受了强日照、暴雨、大风等天气变化的检验,工作性能良好.所获得的资料与人工观测的资料相比,其观测的精度及准确性,都大大超过人工观测(表 1、2).同时也保证了科技人员和仪器设备的安全.该仪器是蒋家沟主要观测仪器之一,实践证明,该仪器对研究泥石流的运动规律和预防有相当大的作用及推广价值.

从表 1 和表 2 可以看出,除特殊情况外(如有飞溅的小石块),超声波泥位计的观测精度大大高于人工观测.特别是对阵性泥石流,人工观测误差更大.与超声波泥位计观测值比较,误差最大值可达 58%(见表 1);但对于连续泥石流而言.人工与仪器的观测值之间的误差相对要小得多(见表 2),其最大误差仅为 36.7%.

该仪器不足之处是与其它观测项目如泥石流流速观测等还不同步,这有待于进一步的改进.

表 1 UL-3 型超声波泥位计观测记录与人工观测结果对比*(1997-8-28 阵性泥石流)

Table 1 Mud depth Comparison between supersonic mud meter and manual observation (Gust flow, on Aug. 28,1997) 探头贩始高度,7.59m

Original sensor height: 7.59m

时间 h. m. s.	探头实测 高度 m	仪器测泥 位高度 m	人工估 測高度 m	误差%
17:53:26	6. 99	0. 60	0.40	33
17:54:37	6. 93	0. 66	0.40	43
17:55:00	6.96	0. 63	0.40	39
17:56:48	6. 79	0. 80	0.40	50
17:58:42	6.66	0. 93	0.50	46
17:58:43	6.77	0.82	0.50	39
17:59:21	6.60	0. 99	0.50	49
17:59:30	6.76	0. 83	0.50	38
18:00:37	6.40	1.19	0.80	33
18:00:38	6. 39	1. 20	0.80	33
18:00:42	6. 55	1. 04	0.80	23
18:00:49	6.62	0. 97	0.80	17
18:01:10	6. 67	0. 92	0.80	13
18:01:51	6.71	0. 88	0.50	43
18:02:05	6.65	0. 94	0.70	25
18:02:32	5. 73	1.86	1.50	14
18:02:33	6. 23	1. 36	1.10	11
18:02:37	6.40	1. 19	0.80	32
18:02:44	6.56	1.03	0.80	22
18:03:43	6.66	0. 93	0.70	24
18:04:00	6.64	0. 95	0.80	15
18:04:29	5. 47	2. 12▲	0.80	
18:04:30	5. 81	1.78▲	0.80	
18:04:31	6. 02	1.56▲	0.80	
18:04:32	6. 19	1.40▲	0.80	
18:04:35	6. 34	1. 27	0.80	58
18:04:41	6. 51	1. 08	0. 80	25

^{*} 表 1 和表 2 资料均由中国科学院东川泥石流 观测研究站提供.

表 2 UL-3 型超声波泥位计观测记录与人工观测结果对比*(1997-6-25 连续泥石流)

Table 2 Mud depth Comparison between supersonic mud meter and manual observation (Continuons flow on June 25, 1997)

探头原始高度: 5.40m Original sensor height: 5.4m

Original sensor height; 5.					
时间 h. m. s	探头实测 高度 m	仪器測泥 位高度 m	人工估 测高度 m	误差%	
18:19:49	4.61	0. 79	0.80	0.0	
18:19:50	4.56	0.84	0.80	4.8	
18:19:51	4.62	0.78	0.80	-2. 5	
18:19:54	4. 56	0.84	0.80	4. 8	
18:20:13	4.65	0. 75	0.70	6. 7	
18:20:16	4.65	0.75	0.70	6.7	
18:20:18	4. 60	0.80	0.70	12.5	
18:20:24	4. 55	0. 85	0.80	5.9	
18:20:27	4.62	0. 78	0.70	10.2	
18:20:28	4.56	0. 84	0.70	16.6	
18:20:31	4. 61	0. 79	0.70	11.5	
18:20:35	4.56	0.84	0.70	16.6	
18:20:38	4.62	0. 78	0.70	10.2	
18:20:39	4.73	0. 67	0.50	25. 4	
18 : 20 : 40	4. 69	0.71	0.50	29.6	
18:20:41	4. 63	0. 77	0.50	35. 1	
18:20:42	4. 57	0.83	0.70	15.7	
18 : 20 : 45	4.64	0.76	0.50	34. 2	
18:20:45	4.74	0.66	0.50	24. 2	
18:20:46	4.65	0. 75	0.50	33. 3	
18:20:48	4. 73	0. 67	0.50	25. 4	
18:20:49	4. 58	0. 82	0.70	14.6	
18:20:54	4.66	0.74	0.50	32. 4	
18:20:54	4.76	0.63	0.50	20.6	
18:20:55	4.67	0. 73	0.50	31.5	
18:20:55	4.61	0. 79	0.50	36. 7	
18:20:57	4. 69	0.71	0.50	29.6	

DEVELOPMENT AND APPLICATION OF SUPERSONIC MUD METER

Yang Renwen

(Dongchuan Debris Flow Observation and Research Station Chinese Academy of Sciences Chengdu 610041)

[▲] 有飞溅的小石块.