

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A01N 51/00, 47/40 // (A01N 51/00, 63:02, 63:00) (A01N 47/40, 63:02, 63:00)		A1	(11) International Publication Number: WO 99/35913 (43) International Publication Date: 22 July 1999 (22.07.99)
(21) International Application Number:	PCT/EP99/00183	(81) Designated States:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	14 January 1999 (14.01.99)	(20) Priority Data:	
80/98 706/98	16 January 1998 (16.01.98) 25 March 1998 (25.03.98)	CH CH	
(71) Applicant (<i>for all designated States except AT US</i>): NOVARTIS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).	(71) Applicant (<i>for AT only</i>): NOVARTIS-ERFINDUNGEN VERWALTUNGSGESELLSCHAFT MBH [AT/AT]; Brunner Strasse 59, A-1235 Vienna (AT).	(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): LEE, Bruce [AU/DE]; Schwarzwaldstrasse 34b, D-79189 Bad Krozingen (DE). SUTTER, Marius [CH/CH]; Margarethenstrasse 75, CH-4102 Binningen (CH). BUHOLZER, Hubert [CH/CH]; Bruderholzrain 42e, CH-4102 Binningen (CH).	(74) Agent: BECKER, Konrad; Novartis AG, Patent- und Markenabteilung, Lichtstrasse 35, CH-4002 Basel (CH).

(54) Title: USE OF NEONICODINOIDS ON TRANSGENIC PLANTS

(57) Abstract

There is now described a method of controlling pests with nitroimino- or nitroguanidino-compounds; more specifically a method of controlling pests in and on transgenic crops of useful plants, such as, for example, in crops of maize, cereals, soya beans, tomatoes, cotton, potatoes, rice and mustard, with a nitroimino- or nitroguanidino-compound, especially with thiamethoxam, characterized in that a pestical composition comprising a nitroimino- or nitroguanidino- compound in free form or in agrochemically useful salt form and at least one auxiliary is applied to the pests or their environment, in particular to the crop plant itself.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon			PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

USE OF NEONICODINOIDS ON TRANSGENIC PLANTS

The present invention relates to a method of controlling pests with a nitroimino- or nitroguanidino-compound, especially thiamethoxam; more specifically to a novel method of controlling pests in and on transgenic crops of useful plants with a nitroimino- or nitroguanidino-compound.

Certain pest control methods are proposed in the literature. However, these methods are not fully satisfactory in the field of pest control, which is why there is a demand for providing further methods for controlling and combating pests, in particular insects and representatives of the order Acarina, or for protecting plants, especially crop plants. This object is achieved according to the invention by providing the present method.

The present invention therefore relates to a method of controlling pests in crops of transgenic useful plants, such as, for example, in crops of maize, cereals, soya beans, tomatoes, cotton, potatoes, rice and mustard, characterized in that a pesticidal composition comprising a nitroimino- or nitroguanidino-compound, especially thiamethoxam, imidacloprid, Ti-435 or thiacloprid in free form or in agrochemically useful salt form and at least one auxiliary is applied to the pests or their environment, in particular to the crop plant itself; to the use of the composition in question and to propagation material of transgenic plants which has been treated with it.

Surprisingly, it has now emerged that the use of a nitroimino- or nitroguanidino-compound compound for controlling pests on transgenic useful plants which contain - for instance - one or more genes expressing a pesticidally, particularly insecticidally, acaricidally, nematocidally or fugicidally active ingredient, or which are tolerant against herbicides or resistant against the attack of fungi, has a synergistic effect. It is highly surprising that the use of a nitroimino- or nitroguanidino-compound in combination with a transgenic plant exceeds the additive effect, to be expected in principle, on the pests to be controlled and thus extends the range of action of the nitroimino- or nitroguanidino-compound and of the active principle expressed by the transgenic plant in particular in two respects:

In particular, it has been found, surprisingly, that within the scope of invention the pesticidal activity of a nitroimino- or nitroguanidino-compound in combination with the effect expressed by the transgenic useful plant, is not only additive in comparison with the pesticidal activities of the nitroimino- or nitroguanidino-compound alone and of the

transgenic crop plant alone, as can generally be expected, but that a synergistic effect is present. The term "synergistic", however, is in no way to be understood in this connection as being restricted to the pesticidal activity, but the term also refers to other advantageous properties of the method according to the invention compared with the nitroimino- or nitroguanidino-compound and the transgenic useful plant alone. Examples of such advantageous properties which may be mentioned are: extension of the pesticidal spectrum of action to other pests, for example to resistant strains; reduction in the application rate of the nitroimino- or nitroguanidino-compound, or sufficient control of the pests with the aid of the compositions according to the invention even at an application rate of the nitroimino- or nitroguanidino-compound alone and the transgenic useful plant alone are entirely ineffective; enhanced crop safety; improved quality of produce such as higher content of nutrient or oil, better fiber quality, enhanced shelf life, reduced content of toxic products such as mycotoxins, reduced content of residues or unfavorable constituents of any kind or better digestability; improved tolerance to unfavorable temperatures, draughts or salt content of water; enhanced assimilation rates such as nutrient uptake, water uptake and photosynthesis; favorable crop properties such as altered leaf area, reduced vegetative growth, increased yields, favorable seed shape/seed thickness or germination properties, altered colonization by saprophytes or epiphytes, reduction of senescence, improved phytoalexin production, improved or accelerated ripening, flower set increase, reduced boll fall and shattering, better attraction to beneficials and predators, increased pollination, reduced attraction to birds; or other advantages known to those skilled in the art.

Nitroimino- and nitroguanidino-compounds, such as thiamethoxam (5-(2-Chlorothiazol-5-ylmethyl)-3-methyl-4-nitroimino-perhydro-1,3,5-oxadiazin), are known from EP-A-0'580'553. Within the scope of invention thiamethoxam is preferred.

Also preferred within the scope of invention is imidacloprid of the formula

British Crop Protection Council, London, page 591;

also preferred is Thiacloprid of the formula

, known from

EP-A-235'725;

also preferred is the compound of the formula

, known as

Ti-435 (Clothiamidin) from EP-A-376'279

The agrochemically compatible salts of the nitroimino- or nitroguanidino-compounds are, for example, acid addition salts of inorganic and organic acids, in particular of hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, malonic acid, toluenesulfonic acid or benzoic acid. Preferred within the scope of the present invention is a composition known per se which comprises, as active ingredient, thiamethoxam and imidacloprid, each in the free form, especially thiamethoxam.

The transgenic plants used according to the invention are plants, or propagation material thereof, which are transformed by means of recombinant DNA technology in such a way that they are - for instance - capable of synthesizing selectively acting toxins as are known, for example, from toxin-producing invertebrates, especially of the phylum Arthropoda, as can be obtained from *Bacillus thuringiensis* strains; or as are known from plants, such as lectins; or in the alternative capable of expressing a herbicidal or fungicidal resistance. Examples of such toxins, or transgenic plants which are capable of synthesizing such toxins, have been disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529 and EP-A-451 878 and are incorporated by reference in the present application.

The methods for generating such transgenic plants are widely known to those skilled in the art and described, for example, in the publications mentioned above.

The toxins which can be expressed by such transgenic plants include, for example, toxins, such as proteins which have insecticidal properties and which are expressed by transgenic plants, for example *Bacillus cereus* proteins or *Bacillus popilliae* proteins; or *Bacillus thuringiensis* endotoxins (B.t.), such as CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIa, CryIIB2 or CytA; VIP1; VIP2; VIP3; or insecticidal proteins of bacteria colonising nematodes like *Photorhabdus* spp or *Xenorhabdus* spp such as *Photorhabdus luminescens*, *Xenorhabdus nematophilus* etc.; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize RIP, abrin, luffin, saporin or bryodin; plant lectins such as pea lectins, barley lectins or snowdrop lectins; or agglutinins; toxins produced by animals, such as scorpion toxins, spider venoms, wasp venoms and other insect-specific neurotoxins; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdysteroid UDP-glycosyl transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA reductase, ion channel blockers such as sodium and calcium, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.

Examples of known transgenic plants which comprise one or more genes which encode insecticidal resistance and express one or more toxins are the following: KnockOut® (maize), YieldGard® (maize); NuCOTN 33B® (cotton), Bollgard® (cotton), NewLeaf® (potatoes), NatureGard® and Protecta®.

The following tables comprise further examples of targets and principles and crop phenotypes of transgenic crops which show tolerance against pests mainly insects, mites, nematodes, virus, bacteria and diseases or are tolerant to specific herbicides or classes of herbicides.

Table A1: Crop: Maize

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylbenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotriione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1	Xenobiotics and herbicides such as Sulfonylureas
Dimboia biosynthesis (Bx1 gene)	<i>Helminthosporium turicum</i> , <i>Rhopalosiphum maydis</i> , <i>Diplodia maydis</i> , <i>Ostrinia nubilalis</i> , lepidoptera sp. plant pathogens eg. fusarium, alternaria, sclerotina
CMIII (small basic maize seed peptide)	plant pathogens eg. fusarium, alternaria, sclerotina, rhizoctonia, chaetomium, phycomyces
Corn- SAFP (zeamatin)	Cochliobulus plant pathogens
Hm1 gene	plant pathogens
Chitinases	plant pathogens
Glucanases	plant pathogens
Coat proteins	viruses such as maize dwarf mosaic

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	virus, maize chlorotic dwarf virus lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. spodoptera frugiperda, corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils
3- Hydroxysteroid oxidase	lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. spodoptera frugiperda, corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils
Peroxidase	lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. spodoptera frugiperda, corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor (LAPI)	lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. spodoptera frugiperda, corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils
Limonene synthase	corn rootworms
Lectines	lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. spodoptera frugiperda, corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Protease Inhibitors eg. cystatin, patatin, virgiferin, CPTI	weevils, corn rootworm
ribosome inactivating protein	lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. <i>spodoptera frugiperda</i> , corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils
maize 5C9 polypeptide	lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. <i>spodoptera frugiperda</i> , corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils
HMG-CoA reductase	lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. <i>spodoptera frugiperda</i> , corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils

Table A2: Crop Wheat

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1	Xenobiotics and herbicides such as Sulfonylureas
Antifungal polypeptide AlyAFP	plant pathogens eg septoria and fusarioum
glucose oxidase	plant pathogens eg. fusarium, septoria
pyrrolnitrin synthesis genes	plant pathogens eg. fusarium, septoria
serine/threonine kinases	plant pathogens eg. fusarium, septoria and other diseases
Hypersensitive response eliciting polypeptide	plant pathogens eg. fusarium, septoria and other diseases
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	plant pathogens
Glucanases	plant pathogens
double stranded ribonuclease	viruses such as BYDV and MSMV
Coat proteins	viruses such as BYDV and MSMV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, coleoptera, diptera,

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	nematodes,
3- Hydroxysteroid oxidase	lepidoptera, coleoptera, diptera, nematodes,
Peroxidase	lepidoptera, coleoptera, diptera, nematodes,
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, coleoptera, diptera, nematodes,
Lectines	lepidoptera, coleoptera, diptera, nematodes, aphids
Protease Inhibitors eg. cystatin, patatin, virgiferin, CPTI	lepidoptera, coleoptera, diptera, nematodes, aphids
ribosome inactivating protein	lepidoptera, coleoptera, diptera, nematodes, aphids
HMG-CoA reductase	lepidoptera, coleoptera, diptera, nematodes, eg. <i>ostrinia nubilalis</i> , <i>heliothis zea</i> , armyworms eg. <i>spodoptera frugiperda</i> , corn rootworms, <i>sesamia</i> sp., black cutworm, asian corn borer, weevils

Table A3: Crop Barley

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1	Xenobiotics and herbicides such as Sulfonylureas
Antifungal polypeptide AlyAFP	plant pathogens eg septoria and fusarioum
glucose oxidase	plant pathogens eg. fusarium, septoria
pyrrolnitrin synthesis genes	plant pathogens eg. fusarium, septoria
serine/threonine kinases	plant pathogens eg. fusarium, septoria and other diseases
Hypersensitive response eliciting polypeptide	plant pathogens eg. fusarium, septoria and other diseases
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	plant pathogens
Glucanases	plant pathogens
double stranded ribonuclease	viruses such as BYDV and MSMV
Coat proteins	viruses such as BYDV and MSMV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, coleoptera, diptera,

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	nematodes,
3-Hydroxysteroid oxidase	lepidoptera, coleoptera, diptera, nematodes,
Peroxidase	lepidoptera, coleoptera, diptera, nematodes,
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, coleoptera, diptera, nematodes,
Lectines	lepidoptera, coleoptera, diptera, nematodes, aphids
Protease Inhibitors eg. cystatin, patatin, virgiferin, CPTI	lepidoptera, coleoptera, diptera, nematodes, aphids
ribosome inactivating protein	lepidoptera, coleoptera, diptera, nematodes, aphids
HMG-CoA reductase	lepidoptera, coleoptera, diptera, nematodes, aphids

Table A4: Crop Rice

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothrin acetyl transferase	Phosphinothrin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1	Xenobiotics and herbicides such as Sulfonylureas
Antifungal polypeptide AlyA	plant pathogens
glucose oxidase	plant pathogens
pyrrolnitrin synthesis genes	plant pathogens
serine/threonine kinases	plant pathogens
Phenylalanine ammonia lyase (PAL)	plant pathogens eg bacterial leaf blight and rice blast, inducible
phytoalexins	plant pathogens eg bacterial leaf blight and rice blast
B-1,3-glucanase antisense	plant pathogens eg bacterial leaf blight and rice blast
receptor kinase	plant pathogens eg bacterial leaf blight and rice blast
Hypersensitive response eliciting polypeptide	plant pathogens
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	plant pathogens eg bacterial leaf blight and rice blast
Glucanases	plant pathogens

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
double stranded ribonuclease	viruses such as BYDV and MSMV
Coat proteins	viruses such as BYDV and MSMV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera eg. stemborer, coleoptera eg
Bacillus cereus toxins, Photorabdus and	rice water weevil, diptera, rice hoppers
Xenorhabdus toxins	eg brown rice hopper
3-Hydroxysteroid oxidase	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
Peroxidase	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
Lectines	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
Protease Inhibitors,	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
ribosome inactivating protein	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
HMG-CoA reductase	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper

Table A5: Crop Soya

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
---	-------------------------------

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidoxylbenzoates, Pthalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenoplylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
oxalate oxidase	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
glucose oxidase	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
pyrrolnitrin synthesis genes	bacterial and fungal pathogens such as

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
serine/threonine kinases	fusarium, sclerotinia, stemrot bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
phytoalexins	plant pathogens eg bacterial leaf blight and rice blast
B-1,3-glucanase antisense	plant pathogens eg bacterial leaf blight and rice blast
receptor kinase	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
Hypersensitive response eliciting polypeptide	plant pathogens
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
Glucanases	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
double stranded ribonuclease	viruses such as BPMV and SbMV
Coat proteins	viruses such as BYDV and MSMV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, coleoptera, aphids
Bacillus cereus toxins, Photorabdus and	
Xenorhabdus toxins	
3- Hydroxysteroid oxidase	lepidoptera, coleoptera, aphids
Peroxidase	lepidoptera, coleoptera, aphids
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, coleoptera, aphids
Lectines	lepidoptera, coleoptera, aphids
Protease Inhibitors eg virgiferin	lepidoptera, coleoptera, aphids

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
ribosome inactivating protein	lepidoptera, coleoptera, aphids
HMG-CoA reductase	lepidoptera, coleoptera, aphids
Barnase	nematodes eg root knot nematodes and cyst nematodes
Cyst nematode hatching stimulus	cyst nematodes
Antifeeding principles	nematodes eg root knot nematodes and cyst nematodes

Table A6: Crop Potatoes

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylxybenzoates, Phthalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Glypnosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	blackspot bruise
Metallothionein	bacterial and fungal pathogens such as phytophtora
Ribonuclease	Phytophtora, Verticillium, Rhizoctonia
Antifungal polypeptide AlyAPP	bacterial and fungal pathogens such as phytophtora
oxalate oxidase	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia
glucose oxidase	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia
pyrrolnitrin synthesis genes	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia
serine/threonine kinases	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia
Cecropin B	bacteria such as corynebacterium sepedonicum, Erwinia carotovora
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia
phytoalexins	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia
B-1,3-glucanase antisense	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia
receptor kinase	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Hypersensitive response eliciting polypeptide	bacterial and fungal pathogens such as Phytophthora, Verticillium, Rhizoctonia
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	bacterial and fungal pathogens such as Phytophthora, Verticillium, Rhizoctonia
Barnase	bacterial and fungal pathogens such as Phytophthora, Verticillium, Rhizoctonia
Disease resistance response gene 49	bacterial and fungal pathogens such as Phytophthora, Verticillium,
trans aldolase antisense	Phytophthora, Verticillium, Rhizoctonia
Glucanases	blackspots
double stranded ribonuclease	bacterial and fungal pathogens such as Phytophthora, Verticillium, Rhizoctonia
Coat proteins	viruses such as PLRV, PVY and TRV
17kDa or 60 kDa protein	viruses such as PLRV, PVY and TRV
Nuclear inclusion proteins eg. a or b	viruses such as PLRV, PVY and TRV
Pseudoubiquitin	viruses such as PLRV, PVY and TRV
Replicase	viruses such as PLRV, PVY and TRV
Bacillus thuringiensis toxins, VIP 3,	coleoptera eg colorado potato beetle,
Bacillus cereus toxins, Photorabdus and	aphids
Xenorhabdus toxins	
3- Hydroxysteroid oxidase	coleoptera eg colorado potato beetle,
Peroxidase	aphids
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	coleoptera eg colorado potato beetle,
stilbene synthase	aphids

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Lectines	coleoptera eg colorado potato beetle, aphids
Protease Inhibitors eg cystatin, patatin	coleoptera eg colorado potato beetle, aphids
ribosome inactivating protein	coleoptera eg colorado potato beetle, aphids
HMG-CoA reductase	coleoptera eg colorado potato beetle, aphids
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
Antifeeding principles	nematodes eg root knot nematodes and cyst nematodes

Table A7: Crop Tomatoes

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidoxylbenzoates, Pthalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Nitrilase	catabolism 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenoplylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	blackspot bruise
Metallothionein	bacterial and fungal pathogens such as phytophtora
Ribonuclease	Phytophtora, Verticillium, Rhizoctonia
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
oxalate oxidase	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
glucose oxidase	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
pyrrolnitrin synthesis genes	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
serine/threonine kinases	etc. bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
Cecropin B	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	leaf mould
Osmotin	alternaria solani
Alpha Hordothionin	bacteria
Systemin	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot,
Polygalacturonase inhibitors	powdery mildew, crown rot, leaf mould etc.
Prf regulatory gene	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot,
I2 Fusarium resistance locus	powdery mildew, crown rot, leaf mould etc.
phytoalexins	fusarium
	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot,
	powdery mildew, crown rot, leaf mould etc.

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
B-1,3-glucanase antisense	etc. bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
receptor kinase	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
Hypersensitive response eliciting polypeptide	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
Barnase	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
Glucanases	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc.
double stranded ribonuclease	viruses such as PLRV, PVY and ToMoV
Coat proteins	viruses such as PLRV, PVY and ToMoV
17kDa or 60 kDa protein	viruses such as PLRV, PVY and ToMoV
Nuclear inclusion proteins eg. a or b or	viruses such as PLRV, PVY and ToMoV

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Nucleoprotein	TRV
Pseudoubiquitin	viruses such as PLRV, PVY and ToMoV
Replicase	viruses such as PLRV, PVY and ToMoV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera eg heliothis, whiteflies
Bacillus cereus toxins, Photorabdus and	aphids
Xenorhabdus toxins	
3- Hydroxysteroid oxidase	lepidoptera eg heliothis, whiteflies aphids
Peroxidase	lepidoptera eg heliothis, whiteflies aphids
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera eg heliothis, whiteflies aphids
Lectines	lepidoptera eg heliothis, whiteflies aphids
Protease Inhibitors eg cystatin, patatin	lepidoptera eg heliothis, whiteflies aphids
ribosome inactivating protein	lepidoptera eg heliothis, whiteflies aphids
stilbene synthase	lepidoptera eg heliothis, whiteflies aphids
HMG-CoA reductase	lepidoptera eg heliothis, whiteflies aphids
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
Antifeeding principles	nematodes eg root knot nematodes and cyst nematodes

Table A8: Crop Peppers

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones,

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
AcetylCoA Carboxylase (ACCase)	Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzenonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial and fungal pathogens
Metallothionein	bacterial and fungal pathogens
Ribonuclease	bacterial and fungal pathogens
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens
oxalate oxidase	bacterial and fungal pathogens
glucose oxidase	bacterial and fungal pathogens
pyrrolnitrin synthesis genes	bacterial and fungal pathogens

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
serine/threonine kinases	bacterial and fungal pathogens
Cecropin B	bacterial and fungal pathogens rot, leaf mould etc.
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial and fungal pathogens
Osmotin	bacterial and fungal pathogens
Alpha Hordothionin	bacterial and fungal pathogens
Systemin	bacterial and fungal pathogens
Polygalacturonase inhibitors	bacterial and fungal pathogens
Prf regulatory gene	bacterial and fungal pathogens
I2 Fusarium resistance locus	fusarium
phytoalexins	bacterial and fungal pathogens
B-1,3-glucanase antisense	bacterial and fungal pathogens
receptor kinase	bacterial and fungal pathogens
Hypersensitive response eliciting polypeptide	bacterial and fungal pathogens
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	bacterial and fungal pathogens
Barnase	bacterial and fungal pathogens
Glucanases	bacterial and fungal pathogens
double stranded ribonuclease	viruses such as CMV, TEV
Coat proteins	viruses such as CMV, TEV
17kDa or 60 kDa protein	viruses such as CMV, TEV
Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses such as CMV, TEV
Pseudoubiquitin	viruses such as CMV, TEV
Replicase	viruses such as CMV, TEV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, whiteflies aphids
Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
3- Hydroxysteroid oxidase	lepidoptera, whiteflies aphids
Peroxidase	lepidoptera, whiteflies aphids
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, whiteflies aphids
Lectines	lepidoptera, whiteflies aphids
Protease Inhibitors eg cystatin, patatin ribosome inactivating protein	lepidoptera, whiteflies aphids
stilbene synthase	lepidoptera, whiteflies aphids
HMG-CoA reductase	lepidoptera, whiteflies aphids
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
Antifeeding principles	nematodes eg root knot nematodes and cyst nematodes

Table A9: Crop Grapes

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothrin acetyl transferase	Phosphinothrinicin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Nitrilase	catabolism 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial and fungal pathogens like Botrytis and powdery mildew
Metallothionein	bacterial and fungal pathogens like Botrytis and powdery mildew
Ribonuclease	bacterial and fungal pathogens like Botrytis and powdery mildew
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens like Botrytis and powdery mildew
oxalate oxidase	bacterial and fungal pathogens like Botrytis and powdery mildew
glucose oxidase	bacterial and fungal pathogens like Botrytis and powdery mildew
pyrroloquinolinic acid synthesis genes	bacterial and fungal pathogens like Botrytis and powdery mildew
serine/threonine kinases	bacterial and fungal pathogens like Botrytis and powdery mildew
Cecropin B	bacterial and fungal pathogens like Botrytis and powdery mildew
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens like Botrytis and powdery mildew
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial and fungal pathogens like

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Osmotin	Botrytis and powdery mildew bacterial and fungal pathogens like
Alpha Hordothionin	Botrytis and powdery mildew bacterial and fungal pathogens like
Systemin	Botrytis and powdery mildew bacterial and fungal pathogens like
Polygalacturonase inhibitors	Botrytis and powdery mildew bacterial and fungal pathogens like
Prf regulatory gene	Botrytis and powdery mildew bacterial and fungal pathogens like
phytoalexins	Botrytis and powdery mildew bacterial and fungal pathogens like
B-1,3-glucanase antisense	Botrytis and powdery mildew bacterial and fungal pathogens like
receptor kinase	bacterial and fungal pathogens like
Hypersensitive response eliciting polypeptide	Botrytis and powdery mildew bacterial and fungal pathogens like
Systemic acquires resistance (SAR) genes	Botrytis and powdery mildew viral, bacterial, fungal, nematodal pathogens
Chitinases	bacterial and fungal pathogens like
Barnase	Botrytis and powdery mildew bacterial and fungal pathogens like
Glucanases	Botrytis and powdery mildew bacterial and fungal pathogens like
double stranded ribonuclease	viruses
Coat proteins	viruses
17kDa or 60 kDa protein	viruses
Nuclear inclusion proteins eg. a or b or	viruses

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Nucleoprotein	
Pseudoubiquitin	viruses
Replicase	viruses
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, aphids
Bacillus cereus toxins, Photorabdus and	
Xenorhabdus toxins	
3- Hydroxysteroid oxidase	lepidoptera, aphids
Peroxidase	lepidoptera, aphids
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids
Lectines	lepidoptera, aphids
Protease Inhibitors eg cystatin, patatin	lepidoptera, aphids
ribosome inactivating protein	lepidoptera, aphids
stilbene synthase	lepidoptera, aphids, diseases
HMG-CoA reductase	lepidoptera, aphids
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes or general diseases
CBI	root knot nematodes
Antifeeding principles	nematodes eg root knot nematodes or root cyst nematodes

Table A10: crop Oil Seed rape

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidoxylbenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Phosphinothrin acetyl transferase	mesotrione or sulcotrione
O-Methyl transferase	Phosphinothrin
Glutamine synthetase	altered lignin levels
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia
Metallothionein	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia
Ribonuclease	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia
Antifungal polypeptide AlyAAPP	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia
oxalate oxidase	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia
glucose oxidase	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia
pyrrolinotrin synthesis genes	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
serine/threonine kinases	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Cecropin B	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Cf genes eg. Cf 9 Cf5 Cf4-Cf2	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Osmotin	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Alpha Hordothionin	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Systemin	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Polygalacturonase inhibitors	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Prf regulatory gene	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
phytoalexins	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
B-1,3-glucanase antisense	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
receptor kinase	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Hypersensitive response eliciting polypeptide	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> , <i>Sclerotinia</i>
Barnase	bacterial and fungal pathogens like <i>Cylindrosporium</i> , <i>Phoma</i> ,

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Glucanases	Sclerotinia, nematodes bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia
double stranded ribonuclease	viruses
Coat proteins	viruses
17kDa or 60 kDa protein	viruses
Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses
Pseudoubiquitin	viruses
Replicase	viruses
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, aphids
Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	
3- Hydroxysteroid oxidase	lepidoptera, aphids
Peroxidase	lepidoptera, aphids
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids
Lectines	lepidoptera, aphids
Protease Inhibitors eg cystatin, patatin, CPTI	lepidoptera, aphids
ribosome inactivating protein	lepidoptera, aphids
stilbene synthase	lepidoptera, aphids, diseases
HMG-CoA reductase	lepidoptera, aphids
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes

Table A11: Crop Brassica vegetable (cabbage, brussel sprouts, broccoli etc.)

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines,
	Pyrimidyloxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxafutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides,
	phenylpyrazoles, pyridin derivatives,
	phenoplylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial and fungal pathogens
Metallothionein	bacterial and fungal pathogens
Ribonuclease	bacterial and fungal pathogens
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens
oxalate oxidase	bacterial and fungal pathogens
glucose oxidase	bacterial and fungal pathogens

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
pyrrolnitrin synthesis genes	bacterial and fungal pathogens
serine/threonine kinases	bacterial and fungal pathogens
Cecropin B	bacterial and fungal pathogens
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial and fungal pathogens
Osmotin	bacterial and fungal pathogens
Alpha Hordothionin	bacterial and fungal pathogens
Systemin	bacterial and fungal pathogens
Polygalacturonase inhibitors	bacterial and fungal pathogens
Prf regulatory gene	bacterial and fungal pathogens
phytoalexins	bacterial and fungal pathogens
B-1,3-glucanase antisense	bacterial and fungal pathogens
receptor kinase	bacterial and fungal pathogens
Hypersensitive response eliciting polypeptide	bacterial and fungal pathogens
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Chitinases	bacterial and fungal pathogens
Barnase	bacterial and fungal pathogens
Glucanases	bacterial and fungal pathogens
double stranded ribonuclease	viruses
Coat proteins	viruses
17kDa or 60 kDa protein	viruses
Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses
Pseudoubiquitin	viruses
Replicase	viruses
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, aphids
Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	
3-Hydroxysteroid oxidase	lepidoptera, aphids
Peroxidase	lepidoptera, aphids

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids
Lectines	lepidoptera, aphids
Protease Inhibitors eg cystatin, patatin, CPTI	lepidoptera, aphids
ribosome inactivating protein	lepidoptera, aphids
stilbene synthase	lepidoptera, aphids, diseases
HMG-CoA reductase	lepidoptera, aphids
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes

Table A12 : Crop Pome fruits eg apples, pears

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylxybenzoates, Phthalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothrin acetyl transferase	Phosphinothrin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and

Effectuated target or expressed principle(s)	Crop phenotype / Tolerance to
Nitrilase	catabolism 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial and fungal pathogens like apple scab or fireblight
Metallothionein	bacterial and fungal pathogens like apple scab or fireblight
Ribonuclease	bacterial and fungal pathogens like apple scab or fireblight
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens like apple scab or fireblight
oxalate oxidase	bacterial and fungal pathogens like apple scab or fireblight
glucose oxidase	bacterial and fungal pathogens like apple scab or fireblight
pyrrolinotrin synthesis genes	bacterial and fungal pathogens like apple scab or fireblight
serine/threonine kinases	bacterial and fungal pathogens like apple scab or fireblight
Cecropin B	bacterial and fungal pathogens like apple scab or fireblight
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens like apple scab or fireblight
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial and fungal pathogens like

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Osmotin	apple scab or fireblight bacterial and fungal pathogens like apple scab or fireblight
Alpha Hordothionin	bacterial and fungal pathogens like apple scab or fireblight
Systemin	bacterial and fungal pathogens like apple scab or fireblight
Polygalacturonase inhibitors	bacterial and fungal pathogens like apple scab or fireblight
Prf regulatory gene	bacterial and fungal pathogens like apple scab or fireblight
phytoalexins	bacterial and fungal pathogens like apple scab or fireblight
B-1,3-glucanase antisense	bacterial and fungal pathogens like apple scab or fireblight
receptor kinase	bacterial and fungal pathogens like apple scab or fireblight
Hypersensitive response eliciting polypeptide	bacterial and fungal pathogens like apple scab or fireblight
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Lytic protein	bacterial and fungal pathogens like apple scab or fireblight
Lysozym	bacterial and fungal pathogens like apple scab or fireblight
Chitinases	bacterial and fungal pathogens like apple scab or fireblight
Barnase	bacterial and fungal pathogens like apple scab or fireblight
Glucanases	bacterial and fungal pathogens like apple scab or fireblight

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
double stranded ribonuclease	viruses
Coat proteins	viruses
17kDa or 60 kDa protein	viruses
Nuclear inclusion proteins eg. a or b or	viruses
Nucleoprotein	
Pseudoubiquitin	viruses
Replicase	viruses
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, aphids, mites
Bacillus cereus toxins, Photobacter and	
Xenorhabdus toxins	
3-Hydroxysteroid oxidase	lepidoptera, aphids, mites
Peroxidase	lepidoptera, aphids, mites
Aminopeptidase inhibitors eg. Leucine	lepidoptera, aphids, mites
aminopeptidase inhibitor	
Lectines	lepidoptera, aphids, mites
Protease Inhibitors eg cystatin, patatin,	lepidoptera, aphids , mites
CPTI	
ribosome inactivating protein	lepidoptera, aphids, mites
stilbene synthase	lepidoptera, aphids, diseases, mites
HMG-CoA reductase	lepidoptera, aphids, mites
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a	nematodes eg root knot nematodes, root
nematode feeding site	cyst nematodes

Table A13: Crop Melons

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines,

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
AcetylCoA Carboxylase (ACCase)	Pyrimidyloxybenzoates, Phthalides Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase O-Methyl transferase	Phosphinothricin altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonyleureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens like phytophtora
Metallothionein	bacterial or fungal pathogens like phytophtora
Ribonuclease	bacterial or fungal pathogens like phytophtora
Antifungal polypeptide AlyAFP	bacterial or fungal pathogens like phytophtora

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
oxalate oxidase	bacterial or fungal pathogens like phytophtora
glucose oxidase	bacterial or fungal pathogens like phytophtora
pyrroinitrin synthesis genes	bacterial or fungal pathogens like phytophtora
serine/threonine kinases	bacterial or fungal pathogens like phytophtora
Cecropin B	bacterial or fungal pathogens like phytophtora
Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens like phytophtora
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or fungal pathogens like phytophtora
Osmotin	bacterial or fungal pathogens like phytophtora
Alpha Hordothionin	bacterial or fungal pathogens like phytophtora
Systemin	bacterial or fungal pathogens like phytophtora
Polygalacturonase inhibitors	bacterial or fungal pathogens like phytophtora
Prf regulatory gene	bacterial or fungal pathogens like phytophtora
phytoalexins	bacterial or fungal pathogens like phytophtora
B-1,3-glucanase antisense	bacterial or fungal pathogens like phytophtora
receptor kinase	bacterial or fungal pathogens like phytophtora
Hypersensitive response eliciting polypeptide	bacterial or fungal pathogens like phytophtora

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Lytic protein	bacterial or fungal pathogens like phytophthora
Lysozyme	bacterial or fungal pathogens like phytophthora
Chitinases	bacterial or fungal pathogens like phytophthora
Barnase	bacterial or fungal pathogens like phytophthora
Glucanases	bacterial or fungal pathogens like phytophthora
double stranded ribonuclease	viruses as CMV,, PRSV, WMV2, SMV, ZYMV
Coat proteins	viruses as CMV,, PRSV, WMV2, SMV, ZYMV
17kDa or 60 kDa protein	viruses as CMV,, PRSV, WMV2, SMV, ZYMV
Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses as CMV,, PRSV, WMV2, SMV, ZYMV
Pseudoubiquitin	viruses as CMV,, PRSV, WMV2, SMV, ZYMV
Replicase	viruses as CMV,, PRSV, WMV2, SMV, ZYMV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, aphids, mites
Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	
3- Hydroxysteroid oxidase	lepidoptera, aphids, mites, whitefly
Peroxidase	lepidoptera, aphids, mites, whitefly
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids, mites, whitefly

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Lectines	lepidoptera, aphids, mites, whitefly
Protease Inhibitors eg cystatin, patatin, CPTI, virgiferin	lepidoptera, aphids, mites, whitefly
ribosome inactivating protein	lepidoptera, aphids, mites, whitefly
stilbene synthase	lepidoptera, aphids, mites, whitefly
HMG-CoA reductase	lepidoptera, aphids, mites, whitefly
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes

Table A14: Crop Banana

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyoxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	as Bromoxynil and loxinyl Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens
Metallothionein	bacterial or fungal pathogens
Ribonuclease	bacterial or fungal pathogens
Antifungal polypeptide AlyAFP	bacterial or fungal pathogens
oxalate oxidase	bacterial or fungal pathogens
glucose oxidase	bacterial or fungal pathogens
pyrrolnitrin synthesis genes	bacterial or fungal pathogens
serine/threonine kinases	bacterial or fungal pathogens
Cecropin B	bacterial or fungal pathogens
Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or fungal pathogens
Osmotin	bacterial or fungal pathogens
Alpha Hordothionin	bacterial or fungal pathogens
Systemin	bacterial or fungal pathogens
Polygalacturonase inhibitors	bacterial or fungal pathogens
Prf regulatory gene	bacterial or fungal pathogens
phytoalexins	bacterial or fungal pathogens
B-1,3-glucanase antisense	bacterial or fungal pathogens
receptor kinase	bacterial or fungal pathogens
Hypersensitive response eliciting polypeptide	bacterial or fungal pathogens
Systemic acquires resistance (SAR)	viral, bacterial, fungal, nematodal

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
genes	pathogens
Lytic protein	bacterial or fungal pathogens
Lysozyme	bacterial or fungal pathogens
Chitinases	bacterial or fungal pathogens
Barnase	bacterial or fungal pathogens
Glucanases	bacterial or fungal pathogens
double stranded ribonuclease	viruses as Banana bunchy top virus (BBTV)
Coat proteins	viruses as Banana bunchy top virus (BBTV)
17kDa or 60 kDa protein	viruses as Banana bunchy top virus (BBTV)
Nuclear inclusion proteins eg. a or b or	viruses as Banana bunchy top virus (BBTV)
Nucleoprotein	viruses as Banana bunchy top virus (BBTV)
Pseudoubiquitin	viruses as Banana bunchy top virus (BBTV)
Replicase	viruses as Banana bunchy top virus (BBTV)
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, aphids, mites, nematodes
Bacillus cereus toxins, Photorabdus and	
Xenorhabdus toxins	
3-Hydroxysteroid oxidase	lepidoptera, aphids, mites, nematodes
Peroxidase	lepidoptera, aphids, mites, nematodes
Aminopeptidase inhibitors eg. Leucine	lepidoptera, aphids, mites, nematodes
aminopeptidase inhibitor	
Lectines	lepidoptera, aphids, mites, nematodes
Protease Inhibitors eg cystatin, patatin,	lepidoptera, aphids, mites, nematodes
CPTI, virgiferin	
ribosome inactivating protein	lepidoptera, aphids, mites, nematodes
stilbene synthase	lepidoptera, aphids, mites, nematodes
HMG-CoA reductase	lepidoptera, aphids, mites, nematodes
Cyst nematode hatching stimulus	cyst nematodes

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Barnase	nematodes eg root knot nematodes and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes

Table A 15: Crop Cotton

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothrin acetyl transferase	Phosphinothrin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens
Metallothionein	bacterial or fungal pathogens
Ribonuclease	bacterial or fungal pathogens
Antifungal polypeptide AlyAFP	bacterial or fungal pathogens
oxalate oxidase	bacterial or fungal pathogens
glucose oxidase	bacterial or fungal pathogens
pyrrolnitrin synthesis genes	bacterial or fungal pathogens
serine/threonine kinases	bacterial or fungal pathogens
Cecropin B	bacterial or fungal pathogens
Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or fungal pathogens
Osmotin	bacterial or fungal pathogens
Alpha Hordothionin	bacterial or fungal pathogens
Systemin	bacterial or fungal pathogens
Polygalacturonase inhibitors	bacterial or fungal pathogens
Prf regulatory gene	bacterial or fungal pathogens
phytoalexins	bacterial or fungal pathogens
B-1,3-glucanase antisense	bacterial or fungal pathogens
receptor kinase	bacterial or fungal pathogens
Hypersensitive response eliciting polypeptide	bacterial or fungal pathogens
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Lytic protein	bacterial or fungal pathogens
Lysozym	bacterial or fungal pathogens
Chitinases	bacterial or fungal pathogens
Barnase	bacterial or fungal pathogens
Glucanases	bacterial or fungal pathogens
double stranded ribonuclease	viruses as wound tumor virus (WTV)

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Coat proteins	viruses as wound tumor virus (WTV)
17kDa or 60 kDa protein	viruses as wound tumor virus (WTV)
Nuclear inclusion proteins eg. a or b or	viruses as wound tumor virus (WTV)
Nucleoprotein	
Pseudoubiquitin	viruses as wound tumor virus (WTV)
Replicase	viruses as wound tumor virus (WTV)
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, aphids, mites, nematodes,
Bacillus cereus toxins, Photorabdus and	whitefly
Xenorhabdus toxins	
3-Hydroxysteroid oxidase	lepidoptera, aphids, mites, nematodes, whitefly
Peroxidase	lepidoptera, aphids, mites, nematodes, whitefly
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids, mites, nematodes, whitefly
Lectines	lepidoptera, aphids, mites, nematodes, whitefly
Protease Inhibitors eg cystatin, patatin, CPTI, virgiferin	lepidoptera, aphids, mites, nematodes, whitefly
ribosome inactivating protein	lepidoptera, aphids, mites, nematodes, whitefly
stilbene synthase	lepidoptera, aphids, mites, nematodes, whitefly
HMG-CoA reductase	lepidoptera, aphids, mites, nematodes, whitefly
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes

Table A 16: Crop Sugarcane

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidoxylbenzoates, Phthalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoachlortol, Triones such as mesotriione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenoplylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens
Metallothionein	bacterial or fungal pathogens
Ribonuclease	bacterial or fungal pathogens
Antifungal polypeptide AlyAFP	bacterial or fungal pathogens

Effected target or expressed principle(s)	Crop phenotype / Tolerance to bacterial or fungal pathogens
oxalate oxidase	bacterial or fungal pathogens
glucose oxidase	bacterial or fungal pathogens
pyrrolnitrin synthesis genes	bacterial or fungal pathogens
serine/threonine kinases	bacterial or fungal pathogens
Cecropin B	bacterial or fungal pathogens
Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or fungal pathogens
Osmotin	bacterial or fungal pathogens
Alpha Hordothionin	bacterial or fungal pathogens
Systemin	bacterial or fungal pathogens
Polygalacturonase inhibitors	bacterial or fungal pathogens
Prf regulatory gene	bacterial or fungal pathogens
phytoalexins	bacterial or fungal pathogens
B-1,3-glucanase antisense	bacterial or fungal pathogens
receptor kinase	bacterial or fungal pathogens
Hypersensitive response eliciting polypeptide	bacterial or fungal pathogens
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Lytic protein	bacterial or fungal pathogens
Lysozym	bacterial or fungal pathogens eg clavibacter
Chitinases	bacterial or fungal pathogens
Barnase	bacterial or fungal pathogens
Glucanases	bacterial or fungal pathogens
double stranded ribonuclease	viruses as SCMV, SrMV
Coat proteins	viruses as SCMV, SrMV
17kDa or 60 kDa protein	viruses as SCMV, SrMV
Nuclear inclusion proteins eg. a or b or	viruses as SCMV, SrMV
Nucleoprotein	viruses as SCMV, SrMV
Pseudoubiquitin	viruses as SCMV, SrMV
Replicase	viruses as SCMV, SrMV

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
3- Hydroxysteroid oxidase	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
Peroxidase	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
Lectines	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
Protease Inhibitors eg cystatin, patatin, CPTI, virgiferin	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
ribosome inactivating protein	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
stilbene synthase	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
HMG-CoA reductase	lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes

Table A 17: Crop Sunflower

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones,

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
AcetylCoA Carboxylase (ACCase)	Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase O-Methyl transferase	Phosphinothricin altered lignin levels
Glutamine synthetase Adenylosuccinate Lyase (ADSL)	Glufosinate, Bialaphos Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase Anthranilate Synthase	Inhibitors of adenylosuccinate synthesis Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase Protoporphyrinogen oxidase (PROTOX)	Glyphosate or sulfosate Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens
Metallothionein Ribonuclease	bacterial or fungal pathogens bacterial or fungal pathogens
Antifungal polypeptide AlyAFP oxalate oxidase	bacterial or fungal pathogens bacterial or fungal pathogens eg sclerotinia
glucose oxidase	bacterial or fungal pathogens

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
pyrroline synthesis genes	bacterial or fungal pathogens
serine/threonine kinases	bacterial or fungal pathogens
Cecropin B	bacterial or fungal pathogens
Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or fungal pathogens
Osmotin	bacterial or fungal pathogens
Alpha Hordothionin	bacterial or fungal pathogens
Systemin	bacterial or fungal pathogens
Polygalacturonase inhibitors	bacterial or fungal pathogens
Prf regulatory gene	bacterial or fungal pathogens
phytoalexins	bacterial or fungal pathogens
B-1,3-glucanase antisense	bacterial or fungal pathogens
receptor kinase	bacterial or fungal pathogens
Hypersensitive response eliciting polypeptide	bacterial or fungal pathogens
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Lytic protein	bacterial or fungal pathogens
Lysozyme	bacterial or fungal pathogens
Chitinases	bacterial or fungal pathogens
Barnase	bacterial or fungal pathogens
Glucanases	bacterial or fungal pathogens
double stranded ribonuclease	viruses as CMV, TMV
Coat proteins	viruses as CMV, TMV
17kDa or 60 kDa protein	viruses as CMV, TMV
Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses as CMV, TMV
Pseudoubiquitin	viruses as CMV, TMV
Replicase	viruses as CMV, TMV
Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	lepidoptera, aphids, mites, nematodes, whitefly, beetles

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
3- Hydroxysteroid oxidase	lepidoptera, aphids, mites, nematodes, whitefly, beetles
Peroxidase	lepidoptera, aphids, mites, nematodes, whitefly, beetles
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids, mites, nematodes, whitefly, beetles
Lectines	lepidoptera, aphids, mites, nematodes, whitefly, beetles
Protease Inhibitors eg cystatin, patatin, CPTI, virgiferin	lepidoptera, aphids, mites, nematodes, whitefly, beetles
ribosome inactivating protein	lepidoptera, aphids, mites, nematodes, whitefly, beetles
stilbene synthase	lepidoptera, aphids, mites, nematodes, whitefly, beetles
HMG-CoA reductase	lepidoptera, aphids, mites, nematodes, whitefly, beetles
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes

Table A 18: Crop Sugarbeet, Beet root

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidylbenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids,

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
	cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxynil
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens
Metallothionein	bacterial or fungal pathogens
Ribonuclease	bacterial or fungal pathogens
Antifungal polypeptide AlyAFP	bacterial or fungal pathogens
oxalate oxidase	bacterial or fungal pathogens eg sclerotinia
glucose oxidase	bacterial or fungal pathogens
pyrrolnitrin synthesis genes	bacterial or fungal pathogens
serine/threonine kinases	bacterial or fungal pathogens
Cecropin B	bacterial or fungal pathogens

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or fungal pathogens
Osmotin	bacterial or fungal pathogens
Alpha Hordothionin	bacterial or fungal pathogens
Systemin	bacterial or fungal pathogens
Polygalacturonase inhibitors	bacterial or fungal pathogens
Prf regulatory gene	bacterial or fungal pathogens
phytoalexins	bacterial or fungal pathogens
B-1,3-glucanase antisense	bacterial or fungal pathogens
AX + WIN proteins	bacterial or fungal pathogens like Cercospora beticola
receptor kinase	bacterial or fungal pathogens
Hypersensitive response eliciting polypeptide	bacterial or fungal pathogens
Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Lytic protein	bacterial or fungal pathogens
Lysozym	bacterial or fungal pathogens
Chitinases	bacterial or fungal pathogens
Barnase	bacterial or fungal pathogens
Glucanases	bacterial or fungal pathogens
double stranded ribonuclease	viruses as BNYVV
Coat proteins	viruses as BNYVV
17kDa or 60 kDa protein	viruses as BNYVV
Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses as BNYVV
Pseudoubiquitin	viruses as BNYVV
Replicase	viruses as BNYVV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, aphids, mites, nematodes,
Bacillus cereus toxins, Photorabdus and	whitefly, beetles, rootflies
Xenorhabdus toxins	
3- Hydroxysteroid oxidase	lepidoptera, aphids, mites, nematodes,

Effected target or expressed principle(s)	Crop phenotype / Tolerance to
Peroxidase	whitefly, beetles, rootflies lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies
Lectines	lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies
Protease Inhibitors eg cystatin, patatin, CPTI, virgiferin	lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies
ribosome inactivating protein	lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies
stilbene synthase	lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies
HMG-CoA reductase	lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies
Cyst nematode hatching stimulus	cyst nematodes
Barnase	nematodes eg root knot nematodes and cyst nematodes
Beet cyst nematode resistance locus	cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes

The abovementioned animal pests which can be controlled by the method according to the invention include, for example, insects, representatives of the order acarina and representatives of the class nematoda; especially

from the order Lepidoptera *Acleris* spp., *Adoxophyes* spp., especially *Adoxophyes reticulana*; *Aegeria* spp., *Agrotis* spp., especially *Agrotis spinifera*; *Alabama argillaceae*, *Amylois* spp., *Anticarsia gemmatalis*, *Archips* spp., *Argyrotaenia* spp., *Autographa* spp., *Busseola fusca*, *Cadra cautella*, *Carposina nippensis*, *Chilo* spp., *Choristoneura* spp., *Clyisia ambiguella*, *Cnaphalocrocis* spp., *Cnephiasia* spp., *Cochylis* spp., *Coleophora* spp., *Crocidolomia binotata*, *Cryptophlebia leucotreta*, *Cydia* spp., especially *Cydia pomonella*;

Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., especially E. Khüniella; Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., especially H. Virescens und H. zea; Hellula undalis, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesiaspp., Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Operophtera spp., Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Pectinophora spp.. Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodopteralittoralis, Synanthesdon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni and Yponomeuta spp.; from the order Coleoptera, for example Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp., Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Oryzaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. and Trogoderma spp.;

from the order Orthoptera, for example Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. and Schistocerca spp.;

from the order Isoptera, for example Reticulitermes spp.;

from the order Psocoptera, for example Liposcelis spp.;

from the order Anoplura, for example Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.;

from the order Mallophaga, for example Damalinea spp. and Trichodectes spp.;

from the order Thysanoptera, for example Frankliniella spp., Hercinothrips spp., Taeniothrips spp., Thrips palmi, Thrips tabaci and Scirtothrips aurantii;

from the order Heteroptera, for example Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp. Eurygaster spp. Leptocoris spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotinophara spp. and Triatoma spp.;

from the order Homoptera, for example Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella aurantii, Aphididae, Aphis craccivora, A. fabae, A. gosypii; Aspidiotus spp., Bemisia tabaci, Ceroplaste spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma lanigerum, Erythroneura spp., Gascardia

spp., *Laodelphax* spp., *Lecanium corni*, *Lepidosaphes* spp., *Macrosiphus* spp., *Myzus* spp., especially *M.persicae*; *Nephrotettix* spp., especially *N. cincticeps*; *Nilaparvata* spp., especially *N. lugens*; *Paratoria* spp., *Pemphigus* spp., *Planococcus* spp., *Pseudaulacaspis* spp., *Pseudococcus* spp., especially *P. Fragilis*, *P. citriculus* and *P. comstocki*; *Psylla* spp., especially *P. pyri*; *Pulvinaria aethiopica*, *Quadraspidiotus* spp., *Rhopalosiphum* spp., *Saissetia* spp., *Scaphoideus* spp., *Schizaphis* spp., *Sitobion* spp., *Trialeurodes vaporariorum*, *Trioza erytreae* and *Unaspis citri*;

from the order Hymenoptera, for example *Acromyrmex*, *Atta* spp., *Cephus* spp., *Diprion* spp., *Diprionidae*, *Gilpinia polytoma*, *Hoplocampa* spp., *Lasius* spp., *Monomorium pharaonis*, *Neodiprion* spp., *Solenopsis* spp. and *Vespa* spp.;

from the order Diptera, for example *Aedes* spp., *Antherigona soccata*, *Bibio hortulanus*, *Calliphora erythrocephala*, *Ceratitis* spp., *Chrysomyia* spp., *Culex* spp., *Cuterebra* spp., *Dacus* spp., *Drosophila melanogaster*, *Fannia* spp., *Gastrophilus* spp., *Glossina* spp., *Hypoderma* spp., *Hippobosca* spp., *Liriomyza* spp., *Lucilia* spp., *Melanagromyza* spp., *Musca* spp., *Oestrus* spp., *Orseolia* spp., *Oscinella frit*, *Pegomyia hyoscyami*, *Phorbia* spp., *Rhagoletis pomonella*, *Sciara* spp., *Stomoxyx* spp., *Tabanus* spp., *Tannia* spp. and *Tipula* spp.;

from the order Siphonaptera, for example *Ceratophyllus* spp. and *Xenopsylla cheopis*;

from the order Thysanura, for example *Lepisma saccharina* and

from the order Acarina, for example *Acarus siro*, *Aceria sheldoni*; *Aculus* spp., especially *A. schlechtendali*; *Amblyomma* spp., *Argas* spp., *Boophilus* spp., *Brevipalpus* spp., especially *B. californicus* and *B. phoenicis*; *Bryobia praetiosa*, *Calipitrimerus* spp., *Chorioptes* spp., *Dermanyssus gallinae*, *Eotetranychus* spp., especially *E. carpini* and *E. orientalis*; *Eriophyes* spp., especially *E. vitis*; *Hyalomma* spp., *Ixodes* spp., *Oligonychus pratensis*, *Ornithodoros* spp., *Panonychus* spp., especially *P. ulmi* and *P. citri*; *Phyllocoptrus* spp., especially *P. oleivora*; *Polyphagotarsonemus* spp., especially *P. latus*; *Psoroptes* spp., *Rhipicephalus* spp., *Rhizoglyphus* spp., *Sarcoptes* spp., *Tarsonemus* spp. and *Tetranychus* spp., in particular *T. urticae*, *T. cinnabarinus* and *T. Kanzawai*;

representatives of the class *Nematoda*;

(1) nematodes selected from the group consisting of root knot nematodes, cyst-forming nematodes, stem eelworms and foliar nematodes;

(2) nematodes selected from the group consisting of *Anguina* spp.; *Aphelenchoides* spp.; *Ditylenchus* spp.; *Globodera* spp., for example *Globodera rostochiensis*; *Heterodera* spp., for example *Heterodera avenae*, *Heterodera glycines*, *Heterodera schachtii* or *Heterodera trifolii*; *Longidorus* spp.; *Meloidogyne* spp., for example *Meloidogyne incognita* or *Meloidogyne javanica*; *Pratylenchus*, for example *Pratylenchus neglectans* or *Pratylenchus penetrans*; *Radopholus* spp., for example *Radopholus similis*; *Trichodorus* spp.; *Tylenchulus*, for example *Tylenchulus semipenetrans*; and *Xiphinema* spp.; or

(3) nematodes selected from the group consisting of *Heterodera* spp., for example *Heterodera glycines*; and *Meloidogyne* spp., for example *Meloidogyne incognita*.

The method according to the invention allows pests of the abovementioned type to be controlled, i.e. contained or destroyed, which occur, in particular, on transgenic plants, mainly useful plants and ornamentals in agriculture, in horticulture and in forests, or on parts, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, the protection against these pests in some cases even extending to plant parts which form at a later point in time.

The method according to the invention can be employed advantageously for controlling pests in rice, cereals such as maize or sorghum; in fruit, for example stone fruit, pome fruit and soft fruit such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries and blackberries; in legumes such as beans, lentils, peas or soya beans; in oil crops such as oilseed rape, mustard, poppies, olives, sunflowers, coconuts, castor-oil plants, cacao or peanuts; in the marrow family such as pumpkins, cucumbers or melons; in fibre plants such as cotton, flax, hemp or jute; in citrus fruit such as oranges, lemons, grapefruit or tangerines; in vegetables such as spinach, lettuce, asparagus, cabbage species, carrots, onions, tomatoes, potatoes, beet or capsicum; in the laurel family such as avocado, *Cinnamomum* or camphor; or in tobacco, nuts, coffee, egg plants, sugar cane, tea, pepper, grapevines, hops, the banana family, latex plants or ornamentals, mainly in maize, rice, cereals, soya beans, tomatoes, cotton, potatoes, sugar beet, rice and mustard; in particular in cotton, rice, soya beans, potatoes and maize.

It has emerged that the method according to the invention is valuable preventatively and/or curatively in the field of pest control even at low use concentrations of the pesticidal composition and that a very favourable biocidal spectrum is achieved thereby. Combined with a favourable compatibility of the composition employed with warm-blooded species,

fish and plants, the method according to the invention can be employed against all or individual developmental stages of normally-sensitive, but also of normally-resistant, animal pests such as insects and representatives of the order Acarina, depending on the species of the transgenic crop plant to be protected from attack by pests. The insecticidal and/or acaricidal effect of the method according to the invention may become apparent directly, i.e. in a destruction of the pests which occurs immediately or only after some time has elapsed, for example, during ecdysis, or indirectly, for example as a reduced oviposition and/or hatching rate, the good action corresponding to a destruction rate (mortality) of at least 40 to 50%.

Depending on the intended aims and the prevailing circumstances, the pesticides within the scope of invention, which are known per se, are emulsifiable concentrates, suspension concentrates, directly sprayable or dilutable solutions, spreadable pastes, dilute emulsions, wettable powders, soluble powders, dispersible powders, wettable powders, dusts, granules or encapsulations in polymeric substances which comprise a nitroimino- or nitroguanidino-compound.

The active ingredients are employed in these compositions together with at least one of the auxiliaries conventionally used in art of formulation, such as extenders, for example solvents or solid carriers, or such as surface-active compounds (surfactants).

Formulation auxiliaries which are used are, for example, solid carriers, solvents, stabilizers, "slow release" auxiliaries, colourants and, if appropriate, surface-active substances (surfactants). Suitable carriers and auxiliaries are all those substances which are conventionally used for crop protection products. Suitable auxiliaries such as solvents, solid carriers, surface-active compounds, non-ionic surfactants, cationic surfactants, anionic surfactants and other auxiliaries in the compositions employed according to the invention are, for example, those which have been described in EP-A-736 252.

These compositions for controlling pests can be formulated, for example, as wettable powders, dusts, granules, solutions, emulsifiable concentrates, emulsions, suspension concentrates or aerosols. For example, the compositions are of the type described in EP-A-736 252.

The action of the compositions within the scope of invention which comprise a nitroimino- or nitroguanidino-compound can be extended substantially and adapted to prevailing circumstances by adding other insecticidally, acaricidally and/or fungicidally active

ingredients. Suitable examples of added active ingredients are representatives of the following classes of active ingredients: organophosphorous compounds, nitrophenols and derivatives, formamidines, ureas, carbamates, pyrethroids, chlorinated hydrocarbons; especially preferred components in mixtures are, for example, abamectin, emamectin, spinosad, pymetrozine, fenoxy carb, Ti-435, fipronil, pyriproxyfen, diazinon or diafenthiuron.

As a rule, the compositions within the scope of invention comprise 0.1 to 99%, in particular 0.1 to 95 %, of a nitroimino- or nitroguanidino-compound and 1 to 99.9 %, in particular 5 to 99.9 %, of - at least - one solid or liquid auxiliary, it being possible, as a rule, for 0 to 25 %, in particular 0.1 to 20 %, of the compositions to be surfactants (% in each case meaning per cent by weight). While concentrated compositions are more preferred as commercial products, the end user will, as a rule, use dilute compositions which have considerably lower concentrations of active ingredient.

The compositions according to the invention may also comprise other solid or liquid auxiliaries, such as stabilisers, for example epoxidized or unepoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya bean oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, and also fertilizers or other active ingredients for achieving specific effects, for example, bactericides, fungicides, nematicides, molluscicides or herbicides.

The compositions according to the invention are produced in a known manner, for example prior to mixing with the auxiliary/auxiliaries by grinding, screening and/or compressing the active ingredient, for example to give a particular particle size, and by intimately mixing and/or grinding the active ingredient with the auxiliary/auxiliaries.

The method according to the invention for controlling pests of the abovementioned type is carried out in a manner known per se to those skilled in the art, depending on the intended aims and prevailing circumstances, that is to say by spraying, wetting, atomizing, dusting, brushing on, seed dressing, scattering or pouring of the composition. Typical use concentrations are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm of active ingredient. The application rate may vary within wide ranges and depends on the soil constitution, the type of application (foliar application; seed dressing; application in the seed furrow), the transgenic crop plant, the pest to be controlled, the climatic circumstances prevailing in each case, and other factors determined by the type of application, timing of application and target crop. The application rates per hectare are generally 1 to 2000 g of

nitroimino- or nitroguanidino-compound per hectare, in particular 10 to 1000 g/ha, preferably 10 to 500 g/ha, especially preferably 10 to 200 g/ha.

A preferred type of application in the field of crop protection within the scope of invention is application to the foliage of the plants (foliar application), it being possible to adapt frequency and rate of application to the risk of infestation with the pest in question.

However, the active ingredient may also enter into the plants via the root system (systemic action), by drenching the site of the plants with a liquid composition or by incorporating the active ingredient in solid form into the site of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules may be metered into the flooded paddy field.

The compositions according to invention are also suitable for protecting propagation material of transgenic plants, for example seed, such as fruits, tubers or kernels, or plant cuttings, from animal pests, in particular insects and representatives of the order Acarina. The propagation material can be treated with the composition prior to application, for example, seed being dressed prior to sowing. The active ingredient may also be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by coating them with a solid composition. The composition may also be applied to the site of application when applying the propagation material, for example into the seed furrow during sowing. These treatment methods for plant propagation material and the plant propagation material treated thus are a further subject of the invention.

Examples of formulations of nitroimino- or nitroguanidino-compounds which can be used in the method according to the invention, for instance solutions, granules, dusts, sprayable powders, emulsion concentrates, coated granules and suspension concentrates, are of the type as has been described in, for example, EP-A-580 553, Examples F1 to F10.

Biological examples

Table B

The following abbreviations are used in the table:

Active Principle of transgenic plant: AP

Photorhabdus luminescens: PL

Xenorhabdus nematophilus: XN

Proteinase Inhibitors: Plnh.

Plant lectins PLec.

Agglutinins: Aggl.

3-Hydroxysteroid oxidase: HO

Cholesteroloxidase: CO

Chitinase: CH

Glucanase: GL

Stilbensynthase SS

Table B:

	AP	Control of		AP	Control of
B.1	CryIA(a)	Adoxophyes spp.	B.18	CryIA(a)	Ostrinia nubilalis
B.2	CryIA(a)	Agrotis spp.	B.19	CryIA(a)	Pandemis spp.
B.3	CryIA(a)	Alabama argillaceae	B.20	CryIA(a)	Pectinophora gossyp.
B.4	CryIA(a)	Anticarsia gemmatalis	B.21	CryIA(a)	Phyloconistis citrella
B.5	CryIA(a)	Chilo spp.	B.22	CryIA(a)	Pieris spp.
B.6	CryIA(a)	Clytia ambiguella	B.23	CryIA(a)	Plutella xylostella
B.7	CryIA(a)	Crocidolomia binotalis	B.24	CryIA(a)	Scirpophaga spp.
B.8	CryIA(a)	Cydia spp.	B.25	CryIA(a)	Sesamia spp.
B.9	CryIA(a)	Diparopsis castanea	B.26	CryIA(a)	Sparganothis spp.
B.10	CryIA(a)	Earias spp.	B.27	CryIA(a)	Spodoptera spp.
B.11	CryIA(a)	Ephestia spp.	B.28	CryIA(a)	Tortrix spp.
B.12	CryIA(a)	Heliothis spp.	B.29	CryIA(a)	Trichoplusia ni
B.13	CryIA(a)	Hellula undalis	B.30	CryIA(a)	Agriotes spp.
B.14	CryIA(a)	Keiferia lycopersicella	B.31	CryIA(a)	Anthonomus grandis
B.15	CryIA(a)	Leucoptera scitella	B.32	CryIA(a)	Curculio spp.
B.16	CryIA(a)	Lithocollethis spp.	B.33	CryIA(a)	Diabrotica balteata
B.17	CryIA(a)	Lobesia botrana	B.34	CryIA(a)	Leptinotarsa spp.
			B.35	CryIA(a)	Lissorhoptrus spp.
			B.36	CryIA(a)	Otiorhynchus spp.
			B.37	CryIA(a)	Aleurothrixus spp.

	AP	Control of		AP	Control of
B.38	CryIA(a)	Aleyrodes spp.	B.69	CryIA(b)	argillaceae
B.39	CryIA(a)	Aonidiella spp.	B.70	CryIA(b)	Anticarsia
B.40	CryIA(a)	Aphididae spp.	B.71	CryIA(b)	gemmaialis
B.41	CryIA(a)	Aphis spp.	B.72	CryIA(b)	Chilo spp.
B.42	CryIA(a)	Bemisia tabaci	B.73	CryIA(b)	Clysia ambiguella
B.43	CryIA(a)	Empoasca spp.	B.74	CryIA(b)	Crocidolomia
B.44	CryIA(a)	Mycus spp.	B.75	CryIA(b)	binotalis
B.45	CryIA(a)	Nephrotettix spp.	B.76	CryIA(b)	Cydia spp.
B.46	CryIA(a)	Nilaparvata spp.	B.77	CryIA(b)	Diparopsis
B.47	CryIA(a)	Pseudococcus spp.	B.78	CryIA(b)	castanea
B.48	CryIA(a)	Psylla spp.	B.79	CryIA(b)	Earias spp.
B.49	CryIA(a)	Quadrastriptotus spp.	B.80	CryIA(b)	Ephestia spp.
B.50	CryIA(a)	Schizaphis spp.	B.81	CryIA(b)	Heliothis spp.
B.51	CryIA(a)	Trialeurodes spp.	B.82	CryIA(b)	Hellula undalis
B.52	CryIA(a)	Lyriomyza spp.	B.83	CryIA(b)	Keiferia
B.53	CryIA(a)	Oscinella spp.	B.84	CryIA(b)	lycopersicella
B.54	CryIA(a)	Phorbia spp.	B.85	CryIA(b)	Leucoptera scitella
B.55	CryIA(a)	Frankliniella spp.	B.86	CryIA(b)	Lithocollethis spp.
B.56	CryIA(a)	Thrips spp.	B.87	CryIA(b)	Lobesia botrana
B.57	CryIA(a)	Scirtothrips aurantii	B.88	CryIA(b)	Ostrinia nubilalis
B.58	CryIA(a)	Aceria spp.	B.89	CryIA(b)	Pandemis spp.
B.59	CryIA(a)	Aculus spp.	B.90	CryIA(b)	Pectinophora
B.60	CryIA(a)	Brevipalpus spp.	B.91	CryIA(b)	gossyp.
B.61	CryIA(a)	Panonychus spp.	B.92	CryIA(b)	Phylloconistis citrella
B.62	CryIA(a)	Phyllocoptruta spp.	B.93	CryIA(b)	Pieris spp.
B.63	CryIA(a)	Tetranychus spp.	B.94	CryIA(b)	Plutella xylostella
B.64	CryIA(a)	Heterodera spp.			Scirpophaga spp.
B.65	CryIA(a)	Meloidogyne spp.			Sesamia spp.
B.66	CryIA(b)	Adoxophyes spp.			Sparganothis spp.
B.67	CryIA(b)	Agrotis spp.			Spodoptera spp.
B.68	CryIA(b)	Alabama			Tortrix spp.
					Trichoplusia ni

	AP	Control of		AP	Control of
B.95	CryIA(b)	<i>Agriotes</i> spp.	B.125	CryIA(b)	<i>Brevipalpus</i> spp.
B.96	CryIA(b)	<i>Anthonomus</i> <i>grandis</i>	B.126	CryIA(b)	<i>Panonychus</i> spp.
B.97	CryIA(b)	<i>Curculio</i> spp.	B.127	CryIA(b)	<i>Phyllocoptruta</i> spp.
B.98	CryIA(b)	<i>Diabrotica</i> <i>balteata</i>	B.128	CryIA(b)	<i>Tetranychus</i> spp.
B.99	CryIA(b)	<i>Leptinotarsa</i> spp.	B.129	CryIA(b)	<i>Heterodera</i> spp.
B.100	CryIA(b)	<i>Lissorhoptrus</i> spp.	B.130	CryIA(b)	<i>Meloidogyne</i> spp.
B.101	CryIA(b)	<i>Otiorhynchus</i> spp.	B.131	CryIA(c)	<i>Adoxophyes</i> spp.
B.102	CryIA(b)	<i>Aleurothrixus</i> spp.	B.132	CryIA(c)	<i>Agrotis</i> spp.
B.103	CryIA(b)	<i>Aleyrodes</i> spp.	B.133	CryIA(c)	<i>Alabama</i> argillaceae
B.104	CryIA(b)	<i>Aonidiella</i> spp.	B.134	CryIA(c)	<i>Anticarsia</i> <i>gemmatalis</i>
B.105	CryIA(b)	<i>Aphididae</i> spp.	B.135	CryIA(c)	<i>Chilo</i> spp.
B.106	CryIA(b)	<i>Aphis</i> spp.	B.136	CryIA(c)	<i>Clysia</i> <i>ambiguella</i>
B.107	CryIA(b)	<i>Bemisia</i> <i>tabaci</i>	B.137	CryIA(c)	<i>Crocidolomia</i> <i>binotalis</i>
B.108	CryIA(b)	<i>Empoasca</i> spp.	B.138	CryIA(c)	<i>Cydia</i> spp.
B.109	CryIA(b)	<i>Mycus</i> spp.	B.139	CryIA(c)	<i>Diparopsis</i> <i>castanea</i>
B.110	CryIA(b)	<i>Nephrotettix</i> spp.	B.140	CryIA(c)	<i>Earias</i> spp.
B.111	CryIA(b)	<i>Nilaparvata</i> spp.	B.141	CryIA(c)	<i>Ephestia</i> spp.
B.112	CryIA(b)	<i>Pseudococcus</i> spp.	B.142	CryIA(c)	<i>Heliothis</i> spp.
B.113	CryIA(b)	<i>Psylla</i> spp.	B.143	CryIA(c)	<i>Hellula</i> <i>undalis</i>
B.114	CryIA(b)	<i>Quadraspidiotus</i> spp.	B.144	CryIA(c)	<i>Keiferia</i> <i>lycopersicella</i>
B.115	CryIA(b)	<i>Schizaphis</i> spp.	B.145	CryIA(c)	<i>Leucoptera</i> <i>scitella</i>
B.116	CryIA(b)	<i>Trialeurodes</i> spp.	B.146	CryIA(c)	<i>Lithocollethis</i> spp.
B.117	CryIA(b)	<i>Lyriomyza</i> spp.	B.147	CryIA(c)	<i>Lobesia</i> <i>botrana</i>
B.118	CryIA(b)	<i>Oscinella</i> spp.	B.148	CryIA(c)	<i>Ostrinia</i> <i>nubilalis</i>
B.119	CryIA(b)	<i>Phorbia</i> spp.	B.149	CryIA(c)	<i>Pandemis</i> spp.
B.120	CryIA(b)	<i>Frankliniella</i> spp.	B.150	CryIA(c)	<i>Pectinophora</i> <i>gossypiella</i> .
B.121	CryIA(b)	<i>Thrips</i> spp.			
B.122	CryIA(b)	<i>Scirtothrips</i> <i>aurantii</i>			
B.123	CryIA(b)	<i>Aceria</i> spp.			
B.124	CryIA(b)	<i>Aculus</i> spp.			

	AP	Control of		AP	Control of
B.151	CryIA(c)	<i>Phylloconistis citrella</i>	B.181	CryIA(c)	<i>Trialeurodes spp.</i>
B.152	CryIA(c)	<i>Pieris spp.</i>	B.182	CryIA(c)	<i>Lyriomyza spp.</i>
B.153	CryIA(c)	<i>Plutella xylostella</i>	B.183	CryIA(c)	<i>Oscinella spp.</i>
B.154	CryIA(c)	<i>Scirpophaga spp.</i>	B.184	CryIA(c)	<i>Phorbia spp.</i>
B.155	CryIA(c)	<i>Sesamia spp.</i>	B.185	CryIA(c)	<i>Frankliniella spp.</i>
B.156	CryIA(c)	<i>Sparganothis spp.</i>	B.186	CryIA(c)	<i>Thrips spp.</i>
B.157	CryIA(c)	<i>Spodoptera spp.</i>	B.187	CryIA(c)	<i>Scirtothrips aurantii</i>
B.158	CryIA(c)	<i>Tortrix spp.</i>	B.188	CryIA(c)	<i>Aceria spp.</i>
B.159	CryIA(c)	<i>Trichoplusia ni</i>	B.189	CryIA(c)	<i>Aculus spp.</i>
B.160	CryIA(c)	<i>Agriotes spp.</i>	B.190	CryIA(c)	<i>Brevipalpus spp.</i>
B.161	CryIA(c)	<i>Anthonomus grandis</i>	B.191	CryIA(c)	<i>Panonychus spp.</i>
B.162	CryIA(c)	<i>Curculio spp.</i>	B.192	CryIA(c)	<i>Phyllocoptruta spp.</i>
B.163	CryIA(c)	<i>Diabrotica balteata</i>	B.193	CryIA(c)	<i>Tetranychus spp.</i>
B.164	CryIA(c)	<i>Leptinotarsa spp.</i>	B.194	CryIA(c)	<i>Heterodera spp.</i>
B.165	CryIA(c)	<i>Lissorhoptrus spp.</i>	B.195	CryIA(c)	<i>Meloidogyne spp.</i>
B.166	CryIA(c)	<i>Otiorhynchus spp.</i>	B.196	CryIIA	<i>Adoxophyes spp.</i>
B.167	CryIA(c)	<i>Aleurothrixus spp.</i>	B.197	CryIIA	<i>Agrotis spp.</i>
B.168	CryIA(c)	<i>Aleyrodes spp.</i>	B.198	CryIIA	<i>Alabama argillaceae</i>
B.169	CryIA(c)	<i>Aonidiella spp.</i>	B.199	CryIIA	<i>Anticarsia gemmatalis</i>
B.170	CryIA(c)	<i>Aphididae spp.</i>	B.200	CryIIA	<i>Chilo spp.</i>
B.171	CryIA(c)	<i>Aphis spp.</i>	B.201	CryIIA	<i>Clysia ambiguella</i>
B.172	CryIA(c)	<i>Bemisia tabaci</i>	B.202	CryIIA	<i>Crocidolomia binotalis</i>
B.173	CryIA(c)	<i>Empoasca spp.</i>	B.203	CryIIA	<i>Cydia spp.</i>
B.174	CryIA(c)	<i>Mycus spp.</i>	B.204	CryIIA	<i>Diparopsis castanea</i>
B.175	CryIA(c)	<i>Nephrotettix spp.</i>	B.205	CryIIA	<i>Earias spp.</i>
B.176	CryIA(c)	<i>Nilaparvata spp.</i>	B.206	CryIIA	<i>Ephestia spp.</i>
B.177	CryIA(c)	<i>Pseudococcus spp.</i>	B.207	CryIIA	<i>Heliothis spp.</i>
B.178	CryIA(c)	<i>Psylla spp.</i>	B.208	CryIIA	<i>Helula undalis</i>
B.179	CryIA(c)	<i>Quadraspidiotus spp.</i>			
B.180	CryIA(c)	<i>Schizaphis spp.</i>			

	AP	Control of		AP	Control of
B.209	CryIIA	<i>Keiferia</i> <i>lycopersicella</i>	B.238	CryIIA	<i>Empoasca spp.</i>
B.210	CryIIA	<i>Leucoptera scitella</i>	B.239	CryIIA	<i>Mycus spp.</i>
B.211	CryIIA	<i>Lithocollethis spp.</i>	B.240	CryIIA	<i>Nephrotettix spp.</i>
B.212	CryIIA	<i>Lobesia botana</i>	B.241	CryIIA	<i>Nilaparvata spp.</i>
B.213	CryIIA	<i>Ostrinia nubilalis</i>	B.242	CryIIA	<i>Pseudococcus spp.</i>
B.214	CryIIA	<i>Pandemis spp.</i>	B.243	CryIIA	<i>Psylla spp.</i>
B.215	CryIIA	<i>Pectinophora</i> gossyp.	B.244	CryIIA	<i>Quadraspidiotus</i> spp.
B.216	CryIIA	<i>Phylloconistis citrella</i>	B.245	CryIIA	<i>Schizaphis spp.</i>
B.217	CryIIA	<i>Pieris spp.</i>	B.246	CryIIA	<i>Trialeurodes spp.</i>
B.218	CryIIA	<i>Plutella xylostella</i>	B.247	CryIIA	<i>Lyriomyza spp.</i>
B.219	CryIIA	<i>Scirpophaga spp.</i>	B.248	CryIIA	<i>Oscinella spp.</i>
B.220	CryIIA	<i>Sesamia spp.</i>	B.249	CryIIA	<i>Phorbia spp.</i>
B.221	CryIIA	<i>Sparganothis spp.</i>	B.250	CryIIA	<i>Frankliniella spp.</i>
B.222	CryIIA	<i>Spodoptera spp.</i>	B.251	CryIIA	<i>Thrips spp.</i>
B.223	CryIIA	<i>Tortrix spp.</i>	B.252	CryIIA	<i>Scirtothrips aurantii</i>
B.224	CryIIA	<i>Trichoplusia ni</i>	B.253	CryIIA	<i>Aceria spp.</i>
B.225	CryIIA	<i>Agriotes spp.</i>	B.254	CryIIA	<i>Aculus spp.</i>
B.226	CryIIA	<i>Anthonomus</i> grandis	B.255	CryIIA	<i>Brevipalpus spp.</i>
B.227	CryIIA	<i>Curculio spp.</i>	B.256	CryIIA	<i>Panonychus spp.</i>
B.228	CryIIA	<i>Diabrotica balteata</i>	B.257	CryIIA	<i>Phyllocoptuta spp.</i>
B.229	CryIIA	<i>Leptinotarsa spp.</i>	B.258	CryIIA	<i>Tetranychus spp.</i>
B.230	CryIIA	<i>Lissorhoptrus spp.</i>	B.259	CryIIA	<i>Heterodera spp.</i>
B.231	CryIIA	<i>Otiorhynchus spp.</i>	B.260	CryIIA	<i>Meloidogyne spp.</i>
B.232	CryIIA	<i>Aleurothrixus spp.</i>	B.261	CryIIIA	<i>Adoxophyes spp.</i>
B.233	CryIIA	<i>Aleyrodes spp.</i>	B.262	CryIIIA	<i>Agrotis spp.</i>
B.234	CryIIA	<i>Aonidiella spp.</i>	B.263	CryIIIA	<i>Alabama</i> argillaceae
B.235	CryIIA	<i>Aphididae spp.</i>	B.264	CryIIIA	<i>Anticarsia</i> gummatalis
B.236	CryIIA	<i>Aphis spp.</i>	B.265	CryIIIA	<i>Chilo spp.</i>
B.237	CryIIA	<i>Bemisia tabaci</i>	B.266	CryIIIA	<i>Clysia ambigua</i>

	AP	Control of		AP	Control of
B.267	CryIIIA	<i>Crocidolomia binotalis</i>	B.294	CryIIIA	<i>Leptinotarsa spp.</i>
B.268	CryIIIA	<i>Cydia spp.</i>	B.295	CryIIIA	<i>Lissorhoptrus spp.</i>
B.269	CryIIIA	<i>Diparopsis castanea</i>	B.296	CryIIIA	<i>Otiorhynchus spp.</i>
B.270	CryIIIA	<i>Earias spp.</i>	B.297	CryIIIA	<i>Aleurothrixus spp.</i>
B.271	CryIIIA	<i>Ephestia spp.</i>	B.298	CryIIIA	<i>Aleyrodes spp.</i>
B.272	CryIIIA	<i>Heliothis spp.</i>	B.299	CryIIIA	<i>Aonidiella spp.</i>
B.273	CryIIIA	<i>Hellula undalis</i>	B.300	CryIIIA	<i>Aphididae spp.</i>
B.274	CryIIIA	<i>Keiferia lycopersicella</i>	B.301	CryIIIA	<i>Aphis spp.</i>
B.275	CryIIIA	<i>Leucoptera scitella</i>	B.302	CryIIIA	<i>Bemisia tabaci</i>
B.276	CryIIIA	<i>Lithocollethis spp.</i>	B.303	CryIIIA	<i>Empoasca spp.</i>
B.277	CryIIIA	<i>Lobesia botrana</i>	B.304	CryIIIA	<i>Mycus spp.</i>
B.278	CryIIIA	<i>Ostrinia nubilalis</i>	B.305	CryIIIA	<i>Nephrotettix spp.</i>
B.279	CryIIIA	<i>Pandemis spp.</i>	B.306	CryIIIA	<i>Nilaparvata spp.</i>
B.280	CryIIIA	<i>Pectinophora gossyp.</i>	B.307	CryIIIA	<i>Pseudococcus spp.</i>
B.281	CryIIIA	<i>Phylloconistis citrella</i>	B.308	CryIIIA	<i>Psylla spp.</i>
B.282	CryIIIA	<i>Pieris spp.</i>	B.309	CryIIIA	<i>Quadrastriodus spp.</i>
B.283	CryIIIA	<i>Plutella xylostella</i>	B.310	CryIIIA	<i>Schizaphis spp.</i>
B.284	CryIIIA	<i>Scirpophaga spp.</i>	B.311	CryIIIA	<i>Trialeurodes spp.</i>
B.285	CryIIIA	<i>Sesamia spp.</i>	B.312	CryIIIA	<i>Lyriomyza spp.</i>
B.286	CryIIIA	<i>Sparganothis spp.</i>	B.313	CryIIIA	<i>Oscinella spp.</i>
B.287	CryIIIA	<i>Spodoptera spp.</i>	B.314	CryIIIA	<i>Phorbia spp.</i>
B.288	CryIIIA	<i>Tortrix spp.</i>	B.315	CryIIIA	<i>Frankliniella spp.</i>
B.289	CryIIIA	<i>Trichoplusia ni</i>	B.316	CryIIIA	<i>Thrips spp.</i>
B.290	CryIIIA	<i>Agriotes spp.</i>	B.317	CryIIIA	<i>Scirtothrips aurantii</i>
B.291	CryIIIA	<i>Anthonomus grandis</i>	B.318	CryIIIA	<i>Aceria spp.</i>
B.292	CryIIIA	<i>Curculio spp.</i>	B.319	CryIIIA	<i>Aculus spp.</i>
B.293	CryIIIA	<i>Diabrotica balteata</i>	B.320	CryIIIA	<i>Brevipalpus spp.</i>
			B.321	CryIIIA	<i>Panonychus spp.</i>
			B.322	CryIIIA	<i>Phyllocoptuta spp.</i>
			B.323	CryIIIA	<i>Tetranychus spp.</i>
			B.324	CryIIIA	<i>Heterodera spp.</i>

	AP	Control of		AP	Control of
B.325	CryIIIA	Meloidogyne spp.	B.351	CryIIB2	Sparganothis spp.
B.326	CryIIB2	Adoxophyes spp.	B.352	CryIIB2	Spodoptera spp.
B.327	CryIIB2	Agrotis spp.	B.353	CryIIB2	Tortrix spp.
B.328	CryIIB2	Alabama argillaceae	B.354	CryIIB2	Trichoplusia ni
B.329	CryIIB2	Anticarsia gemmaialis	B.355	CryIIB2	Agriotes spp.
B.330	CryIIB2	Chilo spp.	B.356	CryIIB2	Anthonomus grandis
B.331	CryIIB2	Clytia ambiguella	B.357	CryIIB2	Curculio spp.
B.332	CryIIB2	Crocidolomia binotalis	B.358	CryIIB2	Diabrotica balteata
B.333	CryIIB2	Cydia spp.	B.359	CryIIB2	Leptinotarsa spp.
B.334	CryIIB2	Diparopsis castanea	B.360	CryIIB2	Lissorhoptrus spp.
B.335	CryIIB2	Earias spp.	B.361	CryIIB2	Otiorhynchus spp.
B.336	CryIIB2	Ephestia spp.	B.362	CryIIB2	Aleurothrixus spp.
B.337	CryIIB2	Heliothis spp.	B.363	CryIIB2	Aleyrodes spp.
B.338	CryIIB2	Hellula undalis	B.364	CryIIB2	Aonidiella spp.
B.339	CryIIB2	Keiferia lycopersicella	B.365	CryIIB2	Aphididae spp.
B.340	CryIIB2	Leucoptera scitella	B.366	CryIIB2	Aphis spp.
B.341	CryIIB2	Lithocollethis spp.	B.367	CryIIB2	Bemisia tabaci
B.342	CryIIB2	Lobesia botrana	B.368	CryIIB2	Empoasca spp.
B.343	CryIIB2	Ostrinia nubilalis	B.369	CryIIB2	Mycus spp.
B.344	CryIIB2	Pandemis spp.	B.370	CryIIB2	Nephrotettix spp.
B.345	CryIIB2	Pectinophora gossyp.	B.371	CryIIB2	Nilaparvata spp.
B.346	CryIIB2	Phylloconistis citrella	B.372	CryIIB2	Pseudococcus spp.
B.347	CryIIB2	Pieris spp.	B.373	CryIIB2	Psylla spp.
B.348	CryIIB2	Plutella xylostella	B.374	CryIIB2	Quadrapsidiotus spp.
B.349	CryIIB2	Scirpophaga spp.	B.375	CryIIB2	Schizaphis spp.
B.350	CryIIB2	Sesamia spp.	B.376	CryIIB2	Trialeurodes spp.
			B.377	CryIIB2	Lyriomyza spp.
			B.378	CryIIB2	Oscinella spp.
			B.379	CryIIB2	Phorbia spp.
			B.380	CryIIB2	Frankliniella spp.

	AP	Control of		AP	Control of
B.381	CryIIB2	Thrips spp.	B.408	CytA	Ostrinia nubilalis
B.382	CryIIB2	Scirtothrips aurantii	B.409	CytA	Pandemis spp.
B.383	CryIIB2	Aceria spp.	B.410	CytA	Pectinophora gossyp.
B.384	CryIIB2	Aculus spp.	B.411	CytA	Phyllocoptis citrella
B.385	CryIIB2	Brevipalpus spp.	B.412	CytA	Pieris spp.
B.386	CryIIB2	Panonychus spp.	B.413	CytA	Plutella xylostella
B.387	CryIIB2	Phyllocoptruta spp.	B.414	CytA	Scirpophaga spp.
B.388	CryIIB2	Tetranychus spp.	B.415	CytA	Sesamia spp.
B.389	CryIIB2	Heterodera spp.	B.416	CytA	Sparganothis spp.
B.390	CryIIB2	Meloidogyne spp.	B.417	CytA	Spodoptera spp.
B.391	CytA	Adoxophyes spp.	B.418	CytA	Tortrix spp.
B.392	CytA	Agrotis spp.	B.419	CytA	Trichoplusia ni
B.393	CytA	Alabama argillaceae	B.420	CytA	Agriotes spp.
B.394	CytA	Anticarsia gemmatalis	B.421	CytA	Anthonomus grandis
B.395	CytA	Chilo spp.	B.422	CytA	Curculio spp.
B.396	CytA	Clytia ambiguella	B.423	CytA	Diabrotica balteata
B.397	CytA	Crocidolomia binotalis	B.424	CytA	Leptinotarsa spp.
B.398	CytA	Cydia spp.	B.425	CytA	Lissorhoptrus spp.
B.399	CytA	Diparopsis castanea	B.426	CytA	Otiorhynchus spp.
B.400	CytA	Earias spp.	B.427	CytA	Aleurothrixus spp.
B.401	CytA	Ephestia spp.	B.428	CytA	Aleyrodes spp.
B.402	CytA	Heliothis spp.	B.429	CytA	Aonidiella spp.
B.403	CytA	Hellula undalis	B.430	CytA	Aphididae spp.
B.404	CytA	Keiferia lycopersicella	B.431	CytA	Aphis spp.
B.405	CytA	Leucoptera scitella	B.432	CytA	Bemisia tabaci
B.406	CytA	Lithocollethis spp.	B.433	CytA	Empoasca spp.
B.407	CytA	Lobesia botrana	B.434	CytA	Mycus spp.
			B.435	CytA	Nephrotettix spp.
			B.436	CytA	Nilaparvata spp.
			B.437	CytA	Pseudococcus spp.

	AP	Control of		AP	Control of
B.438	CytA	Psylla spp.	B.465	VIP3	Earias spp.
B.439	CytA	Quadraspidiotus spp.	B.466	VIP3	Ephestia spp.
B.440	CytA	Schizaphis spp.	B.467	VIP3	Heliothis spp.
B.441	CytA	Trialeurodes spp.	B.468	VIP3	Hellula undalis
B.442	CytA	Lyriomyza spp.	B.469	VIP3	Keiferia lycopersicella
B.443	CytA	Oscinella spp.	B.470	VIP3	Leucoptera scitella
B.444	CytA	Phorbia spp.	B.471	VIP3	Lithocollethis spp.
B.445	CytA	Frankliniella spp.	B.472	VIP3	Lobesia botrana
B.446	CytA	Thrips spp.	B.473	VIP3	Ostrinia nubilalis
B.447	CytA	Scirtothrips aurantii	B.474	VIP3	Pandemis spp.
B.448	CytA	Aceria spp.	B.475	VIP3	Pectinophora gossyp.
B.449	CytA	Aculus spp.	B.476	VIP3	Phylloconistis citrella
B.450	CytA	Brevipalpus spp.	B.477	VIP3	Pieris spp.
B.451	CytA	Panonychus spp.	B.478	VIP3	Plutella xylostella
B.452	CytA	Phyllocoptruta spp.	B.479	VIP3	Scirpophaga spp.
B.453	CytA	Tetranychus spp.	B.480	VIP3	Sesamia spp.
B.454	CytA	Heterodera spp.	B.481	VIP3	Sparganothis spp.
B.455	CytA	Meloidogyne spp.	B.482	VIP3	Spodoptera spp.
B.456	VIP3	Adoxophyes spp.	B.483	VIP3	Tortrix spp.
B.457	VIP3	Agrotis spp.	B.484	VIP3	Trichoplusia ni
B.458	VIP3	Alabama argillaceae	B.485	VIP3	Agriotes spp.
B.459	VIP3	Anticarsia gemmatalis	B.486	VIP3	Anthonomus grandis
B.460	VIP3	Chilo spp.	B.487	VIP3	Curculio spp.
B.461	VIP3	Clysia ambiguella	B.488	VIP3	Diabrotica balteata
B.462	VIP3	Crocidolomia binotalis	B.489	VIP3	Leptinotarsa spp.
B.463	VIP3	Cydia spp.	B.490	VIP3	Lissorhoptrus spp.
B.464	VIP3	Diparopsis castanea	B.491	VIP3	Otiorhynchus spp.
			B.492	VIP3	Aleurothrixus spp.
			B.493	VIP3	Aleyrodes spp.

	AP	Control of		AP	Control of
B.494	VIP3	<i>Aonidiella</i> spp.	B.524	GL	<i>Anticarsia gemmatalis</i>
B.495	VIP3	<i>Aphididae</i> spp.	B.525	GL	<i>Chilo</i> spp.
B.496	VIP3	<i>Aphis</i> spp.	B.526	GL	<i>Clysia ambiguella</i>
B.497	VIP3	<i>Bemisia tabaci</i>	B.527	GL	<i>Crocidolomia binotalis</i>
B.498	VIP3	<i>Empoasca</i> spp.	B.528	GL	<i>Cydia</i> spp.
B.499	VIP3	<i>Mycus</i> spp.	B.529	GL	<i>Diparopsis castanea</i>
B.500	VIP3	<i>Nephrotettix</i> spp.	B.530	GL	<i>Earias</i> spp.
B.501	VIP3	<i>Nilaparvata</i> spp.	B.531	GL	<i>Ephestia</i> spp.
B.502	VIP3	<i>Pseudococcus</i> spp.	B.532	GL	<i>Heliothis</i> spp.
B.503	VIP3	<i>Psylla</i> spp.	B.533	GL	<i>Hellula undalis</i>
B.504	VIP3	<i>Quadraspidiotus</i> spp.	B.534	GL	<i>Keiferia lycopersicella</i>
B.505	VIP3	<i>Schizaphis</i> spp.	B.535	GL	<i>Leucoptera scitella</i>
B.506	VIP3	<i>Trialeurodes</i> spp.	B.536	GL	<i>Lithocollethis</i> spp.
B.507	VIP3	<i>Lyriomyza</i> spp.	B.537	GL	<i>Lobesia botrana</i>
B.508	VIP3	<i>Oscinella</i> spp.	B.538	GL	<i>Ostrinia nubilalis</i>
B.509	VIP3	<i>Phorbia</i> spp.	B.539	GL	<i>Pandemis</i> spp.
B.510	VIP3	<i>Frankliniella</i> spp.	B.540	GL	<i>Pectinophora gossyp.</i>
B.511	VIP3	<i>Thrips</i> spp.	B.541	GL	<i>Phylloconistis citrella</i>
B.512	VIP3	<i>Scirtothrips aurantii</i>	B.542	GL	<i>Pieris</i> spp.
B.513	VIP3	<i>Aceria</i> spp.	B.543	GL	<i>Plutella xylostella</i>
B.514	VIP3	<i>Aculus</i> spp.	B.544	GL	<i>Scirpophaga</i> spp.
B.515	VIP3	<i>Brevipalpus</i> spp.	B.545	GL	<i>Sesamia</i> spp.
B.516	VIP3	<i>Panonychus</i> spp.	B.546	GL	<i>Sparganothis</i> spp.
B.517	VIP3	<i>Phyllocoptuta</i> spp.	B.547	GL	<i>Spodoptera</i> spp.
B.518	VIP3	<i>Tetranychus</i> spp.	B.548	GL	<i>Tortrix</i> spp.
B.519	VIP3	<i>Heterodera</i> spp.	B.549	GL	<i>Trichoplusia ni</i>
B.520	VIP3	<i>Meloidogyne</i> spp.	B.550	GL	<i>Agriotes</i> spp.
B.521	GL	<i>Adoxophyes</i> spp.			
B.522	GL	<i>Agrotis</i> spp.			
B.523	GL	<i>Alabama</i> <i>argillaceae</i>			

	AP	Control of		AP	Control of
B.551	GL	Anthonomus grandis	B.581	GL	Panonychus spp.
B.552	GL	Curculio spp.	B.582	GL	Phyllocoptruta spp.
B.553	GL	Diabrotica balteata	B.583	GL	Tetranychus spp.
B.554	GL	Leptinotarsa spp.	B.584	GL	Heterodera spp.
B.555	GL	Lissorhoptrus spp.	B.585	GL	Meloidogyne spp.
B.556	GL	Otiorhynchus spp.	B.586	PL	Adoxophyes spp.
B.557	GL	Aleurothrixus spp.	B.587	PL	Agrotis spp.
B.558	GL	Aleyrodes spp.	B.588	PL	Alabama argillaceae
B.559	GL	Aonidiella spp.	B.589	PL	Anticarsia
B.560	GL	Aphididae spp.			gemmaialis
B.561	GL	Aphis spp.	B.590	PL	Chilo spp.
B.562	GL	Bemisia tabaci	B.591	PL	Clydia ambiguaella
B.563	GL	Empoasca spp.	B.592	PL	Crocidolomia
B.564	GL	Mycus spp.			binotalis
B.565	GL	Nephrotettix spp.	B.593	PL	Cydia spp.
B.566	GL	Nilaparvata spp.	B.594	PL	Diparopsis
B.567	GL	Pseudococcus spp.			castanea
B.568	GL	Psylla spp.	B.595	PL	Earias spp.
B.569	GL	Quadraspidiotus spp.	B.596	PL	Ephestia spp.
B.570	GL	Schizaphis spp.	B.597	PL	Heliothis spp.
B.571	GL	Trialeurodes spp.	B.598	PL	Hellula undalis
B.572	GL	Lyriomyza spp.	B.599	PL	Keiferia
B.573	GL	Oscinella spp.	B.600	PL	lycopersicella
B.574	GL	Phorbia spp.	B.601	PL	Leucoptera scitella
B.575	GL	Frankliniella spp.	B.602	PL	Lithocollethis spp.
B.576	GL	Thrips spp.	B.603	PL	Lobesia botrana
B.577	GL	Scirtothrips aurantii	B.604	PL	Ostrinia nubilalis
B.578	GL	Aceria spp.	B.605	PL	Pandemis spp.
B.579	GL	Aculus spp.			Pectinophora gossyp.
B.580	GL	Brevipalpus spp.	B.606	PL	Phylloconistis citrella

	AP	Control of		AP	Control of
B.607	PL	<i>Pieris</i> spp.	B.637	PL	<i>Lyriomyza</i> spp.
B.608	PL	<i>Plutella xylostella</i>	B.638	PL	<i>Oscinella</i> spp.
B.609	PL	<i>Scirpophaga</i> spp.	B.639	PL	<i>Phorbia</i> spp.
B.610	PL	<i>Sesamia</i> spp.	B.640	PL	<i>Frankliniella</i> spp.
B.611	PL	<i>Sparganothis</i> spp.	B.641	PL	<i>Thrips</i> spp.
B.612	PL	<i>Spodoptera</i> spp.	B.642	PL	<i>Scirtothrips aurantii</i>
B.613	PL	<i>Tortrix</i> spp.	B.643	PL	<i>Aceria</i> spp.
B.614	PL	<i>Trichoplusia ni</i>	B.644	PL	<i>Aculus</i> spp.
B.615	PL	<i>Agriotes</i> spp.	B.645	PL	<i>Brevipalpus</i> spp.
B.616	PL	<i>Anthonomus</i> grandis	B.646	PL	<i>Panonychus</i> spp.
B.617	PL	<i>Curculio</i> spp.	B.647	PL	<i>Phyllocoptrusa</i> spp.
B.618	PL	<i>Diabrotica balteata</i>	B.648	PL	<i>Tetranychus</i> spp.
B.619	PL	<i>Leptinotarsa</i> spp.	B.649	PL	<i>Heterodera</i> spp.
B.620	PL	<i>Lissorhoptrus</i> spp.	B.650	PL	<i>Meloidogyne</i> spp.
B.621	PL	<i>Otiorhynchus</i> spp.	B.651	XN	<i>Adoxophyes</i> spp.
B.622	PL	<i>Aleurothrixus</i> spp.	B.652	XN	<i>Agrotis</i> spp.
B.623	PL	<i>Aleyrodes</i> spp.	B.653	XN	<i>Alabama</i> argillaceae
B.624	PL	<i>Aonidiella</i> spp.	B.654	XN	<i>Anticarsia</i> gummatalis
B.625	PL	<i>Aphididae</i> spp.	B.655	XN	<i>Chilo</i> spp.
B.626	PL	<i>Aphis</i> spp.	B.656	XN	<i>Clydia ambigua</i> ella
B.627	PL	<i>Bemisia tabaci</i>	B.657	XN	<i>Crocidolomia</i> binotalis
B.628	PL	<i>Empoasca</i> spp.	B.658	XN	<i>Cydia</i> spp.
B.629	PL	<i>Mycus</i> spp.	B.659	XN	<i>Diparopsis</i> castanea
B.630	PL	<i>Nephrotettix</i> spp.	B.660	XN	<i>Earias</i> spp.
B.631	PL	<i>Nilaparvata</i> spp.	B.661	XN	<i>Ephestia</i> spp.
B.632	PL	<i>Pseudococcus</i> spp.	B.662	XN	<i>Heliothis</i> spp.
B.633	PL	<i>Psylla</i> spp.	B.663	XN	<i>Hellula undalis</i>
B.634	PL	<i>Quadrastripiotus</i> spp.	B.664	XN	<i>Keiferia</i>
B.635	PL	<i>Schizaphis</i> spp.			
B.636	PL	<i>Trialeurodes</i> spp.			

	AP	Control of		AP	Control of
		lycopersicella	B.694	XN	Mycus spp.
B.665	XN	Leucoptera scitella	B.695	XN	Nephrotettix spp.
B.666	XN	Lithocollethis spp.	B.696	XN	Nilaparvata spp.
B.667	XN	Lobesia botrana	B.697	XN	Pseudococcus spp.
B.668	XN	Ostrinia nubilalis	B.698	XN	Psylla spp.
B.669	XN	Pandemis spp.	B.699	XN	Quadrastriodus spp.
B.670	XN	Pectinophora gossyp.	B.700	XN	Schizaphis spp.
B.671	XN	Phylloconistis citrella	B.701	XN	Trialeurodes spp.
B.672	XN	Pieris spp.	B.702	XN	Lyriomyza spp.
B.673	XN	Plutella xylostella	B.703	XN	Oscinella spp.
B.674	XN	Scirpophaga spp.	B.704	XN	Phorbia spp.
B.675	XN	Sesamia spp.	B.705	XN	Frankliniella spp.
B.676	XN	Sparganothis spp.	B.706	XN	Thrips spp.
B.677	XN	Spodoptera spp.	B.707	XN	Scirtothrips aurantii
B.678	XN	Tortrix spp.	B.708	XN	Aceria spp.
B.679	XN	Trichoplusia ni	B.709	XN	Aculus spp.
B.680	XN	Agriotes spp.	B.710	XN	Brevipalpus spp.
B.681	XN	Anthonomus grandis	B.711	XN	Panonychus spp.
B.682	XN	Curculio spp.	B.712	XN	Phyllocoptruta spp.
B.683	XN	Diabrotica balteata	B.713	XN	Tetranychus spp.
B.684	XN	Leptinotarsa spp.	B.714	XN	Heterodera spp.
B.685	XN	Lissorhoptrus spp.	B.715	XN	Meloidogyne spp.
B.686	XN	Otiorhynchus spp.	B.716	Plnh.	Adoxophyes spp.
B.687	XN	Aleurothrixus spp.	B.717	Plnh.	Agrotis spp.
B.688	XN	Aleyrodes spp.	B.718	Plnh.	Alabama argillaceae
B.689	XN	Aonidiella spp.	B.719	Plnh.	Anticarsia gemmatalis
B.690	XN	Aphididae spp.			
B.691	XN	Aphis spp.	B.720	Plnh.	Chilo spp.
B.692	XN	Bemisia tabaci	B.721	Plnh.	Clytia ambigua
B.693	XN	Empoasca spp.	B.722	Plnh.	Crocidiolomia

	AP	Control of		AP	Control of
B.723	Plnh.	<i>binotalis</i>	B.750	Plnh.	<i>Lissorhoptrus</i> spp.
		<i>Cydia</i> spp.	B.751	Plnh.	<i>Otiorhynchus</i> spp.
B.724	Plnh.	<i>Diparopsis</i>	B.752	Plnh.	<i>Aleurothrixus</i> spp.
		<i>castanea</i>	B.753	Plnh.	<i>Aleyrodes</i> spp.
B.725	Plnh.	<i>Earias</i> spp.	B.754	Plnh.	<i>Aonidiella</i> spp.
B.726	Plnh.	<i>Ephestia</i> spp.	B.755	Plnh.	<i>Aphididae</i> spp.
B.727	Plnh.	<i>Heliothis</i> spp.	B.756	Plnh.	<i>Aphis</i> spp.
B.728	Plnh.	<i>Hellula undalis</i>	B.757	Plnh.	<i>Bemisia tabaci</i>
B.729	Plnh.	<i>Keiferia</i>	B.758	Plnh.	<i>Empoasca</i> spp.
		<i>lycopersicella</i>	B.759	Plnh.	<i>Mycus</i> spp.
B.730	Plnh.	<i>Leucoptera scitella</i>	B.760	Plnh.	<i>Nephrotettix</i> spp.
B.731	Plnh.	<i>Lithocollethis</i> spp.	B.761	Plnh.	<i>Nilaparvata</i> spp.
B.732	Plnh.	<i>Lobesia botrana</i>	B.762	Plnh.	<i>Pseudococcus</i> spp.
B.733	Plnh.	<i>Ostrinia nubilalis</i>	B.763	Plnh.	<i>Psylla</i> spp.
B.734	Plnh.	<i>Pandemis</i> spp.	B.764	Plnh.	<i>Quadrapsidiotus</i>
B.735	Plnh.	<i>Pectinophora</i>			spp.
		<i>gossyp.</i>	B.765	Plnh.	<i>Schizaphis</i> spp.
B.736	Plnh.	<i>Phylloconistis citrella</i>	B.766	Plnh.	<i>Trialeurodes</i> spp.
B.737	Plnh.	<i>Pieris</i> spp.	B.767	Plnh.	<i>Lyriomyza</i> spp.
B.738	Plnh.	<i>Plutella xylostella</i>	B.768	Plnh.	<i>Oscinella</i> spp.
B.739	Plnh.	<i>Scirpophaga</i> spp.	B.769	Plnh.	<i>Phorbia</i> spp.
B.740	Plnh.	<i>Sesamia</i> spp.	B.770	Plnh.	<i>Frankliniella</i> spp.
B.741	Plnh.	<i>Sparganothis</i> spp.	B.771	Plnh.	<i>Thrips</i> spp.
B.742	Plnh.	<i>Spodoptera</i> spp.	B.772	Plnh.	<i>Scirtothrips aurantii</i>
B.743	Plnh.	<i>Tortrix</i> spp.	B.773	Plnh.	<i>Aceria</i> spp.
B.744	Plnh.	<i>Trichoplusia ni</i>	B.774	Plnh.	<i>Aculus</i> spp.
B.745	Plnh.	<i>Agriotes</i> spp.	B.775	Plnh.	<i>Brevipalpus</i> spp.
B.746	Plnh.	<i>Anthonomus</i>	B.776	Plnh.	<i>Panonychus</i> spp.
		<i>grandis</i>	B.777	Plnh.	<i>Phyllocoptuta</i> spp.
B.747	Plnh.	<i>Curculio</i> spp.	B.778	Plnh.	<i>Tetranychus</i> spp.
B.748	Plnh.	<i>Diabrotica balteata</i>	B.779	Plnh.	<i>Heterodera</i> spp.
B.749	Plnh.	<i>Leptinotarsa</i> spp.	B.780	Plnh.	<i>Meloidogyne</i> spp.

	AP	Control of		AP	Control of
B.781	PLec.	<i>Adoxophyes</i> spp.	B.807	PLec.	<i>Spodoptera</i> spp.
B.782	PLec.	<i>Agrotis</i> spp.	B.808	PLec.	<i>Tortrix</i> spp.
B.783	PLec.	<i>Alabama</i> <i>argillaceae</i>	B.809	PLec.	<i>Trichoplusia ni</i>
B.784	PLec.	<i>Anticarsia</i> <i>gemmaialis</i>	B.810	PLec.	<i>Agriotes</i> spp.
			B.811	PLec.	<i>Anthonomus</i> <i>grandis</i>
B.785	PLec.	<i>Chilo</i> spp.	B.812	PLec.	<i>Curculio</i> spp.
B.786	PLec.	<i>Clytia ambigua</i> ella	B.813	PLec.	<i>Diabrotica balteata</i>
B.787	PLec.	<i>Crocidiolomia</i> <i>binotalis</i>	B.814	PLec.	<i>Leptinotarsa</i> spp.
B.788	PLec.	<i>Cydia</i> spp.	B.815	PLec.	<i>Lissorhoptrus</i> spp.
B.789	PLec.	<i>Diparopsis</i> <i>castanea</i>	B.816	PLec.	<i>Otiorhynchus</i> spp.
B.790	PLec.	<i>Earias</i> spp.	B.817	PLec.	<i>Aleurothrixus</i> spp.
B.791	PLec.	<i>Ephestia</i> spp.	B.818	PLec.	<i>Aleyrodes</i> spp.
B.792	PLec.	<i>Heliothis</i> spp.	B.819	PLec.	<i>Aonidiella</i> spp.
B.793	PLec.	<i>Hellula undalis</i>	B.820	PLec.	<i>Aphididae</i> spp.
B.794	PLec.	<i>Keiferia</i> <i>lycopersicella</i>	B.821	PLec.	<i>Aphis</i> spp.
B.795	PLec.	<i>Leucoptera scitella</i>	B.822	PLec.	<i>Bemisia tabaci</i>
B.796	PLec.	<i>Lithocollethis</i> spp.	B.823	PLec.	<i>Empoasca</i> spp.
B.797	PLec.	<i>Lobesia botrana</i>	B.824	PLec.	<i>Mycus</i> spp.
B.798	PLec.	<i>Ostrinia nubilalis</i>	B.825	PLec.	<i>Nephrotettix</i> spp.
B.799	PLec.	<i>Pandemis</i> spp.	B.826	PLec.	<i>Nilaparvata</i> spp.
B.800	PLec.	<i>Pectinophora</i> <i>gossyp.</i>	B.827	PLec.	<i>Pseudococcus</i> spp.
B.801	PLec.	<i>Phylloconistis citrella</i>	B.828	PLec.	<i>Psylla</i> spp.
B.802	PLec.	<i>Pieris</i> spp.	B.829	PLec.	<i>Quadrastriptotus</i> spp.
B.803	PLec.	<i>Plutella xylostella</i>	B.830	PLec.	<i>Schizaphis</i> spp.
B.804	PLec.	<i>Scirpophaga</i> spp.	B.831	PLec.	<i>Trialeurodes</i> spp.
B.805	PLec.	<i>Sesamia</i> spp.	B.832	PLec.	<i>Lyriomyza</i> spp.
B.806	PLec.	<i>Sparganothis</i> spp.	B.833	PLec.	<i>Oscinella</i> spp.
			B.834	PLec.	<i>Phorbia</i> spp.
			B.835	PLec.	<i>Frankliniella</i> spp.
			B.836	PLec.	<i>Thrips</i> spp.

	AP	Control of		AP	Control of
B.837	PLec.	<i>Scirtothrips aurantii</i>	B.864	Aggl.	<i>Pandemis spp.</i>
B.838	PLec.	<i>Aceria spp.</i>	B.865	Aggl.	<i>Pectinophora</i>
B.839	PLec.	<i>Aculus spp.</i>			<i>gossyp.</i>
B.840	PLec.	<i>Brevipalpus spp.</i>	B.866	Aggl.	<i>Phyllocnistis citrella</i>
B.841	PLec.	<i>Panonychus spp.</i>	B.867	Aggl.	<i>Pieris spp.</i>
B.842	PLec.	<i>Phyllocoptes spp.</i>	B.868	Aggl.	<i>Plutella xylostella</i>
B.843	PLec.	<i>Tetranychus spp.</i>	B.869	Aggl.	<i>Scirpophaga spp.</i>
B.844	PLec.	<i>Heterodera spp.</i>	B.870	Aggl.	<i>Sesamia spp.</i>
B.845	PLec.	<i>Meloidogyne spp.</i>	B.871	Aggl.	<i>Sparganothis spp.</i>
B.846	Aggl.	<i>Adoxophyes spp.</i>	B.872	Aggl.	<i>Spodoptera spp.</i>
B.847	Aggl.	<i>Agrotis spp.</i>	B.873	Aggl.	<i>Tortrix spp.</i>
B.848	Aggl.	<i>Alabama</i>	B.874	Aggl.	<i>Trichoplusia ni</i>
		<i>argillaceae</i>	B.875	Aggl.	<i>Agriotes spp.</i>
B.849	Aggl.	<i>Anticarsia</i>	B.876	Aggl.	<i>Anthonomus</i>
		<i>gemmaialis</i>			<i>grandis</i>
B.850	Aggl.	<i>Chilo spp.</i>	B.877	Aggl.	<i>Curculio spp.</i>
B.851	Aggl.	<i>Clytia ambiguella</i>	B.878	Aggl.	<i>Diabrotica balteata</i>
B.852	Aggl.	<i>Crocidolomia</i>	B.879	Aggl.	<i>Leptinotarsa spp.</i>
		<i>binotalis</i>	B.880	Aggl.	<i>Lissorhoptrus spp.</i>
B.853	Aggl.	<i>Cydia spp.</i>	B.881	Aggl.	<i>Otiorhynchus spp.</i>
B.854	Aggl.	<i>Diparopsis</i>	B.882	Aggl.	<i>Aleurothrixus spp.</i>
		<i>castanea</i>	B.883	Aggl.	<i>Aleyrodes spp.</i>
B.855	Aggl.	<i>Earias spp.</i>	B.884	Aggl.	<i>Aonidiella spp.</i>
B.856	Aggl.	<i>Ephestia spp.</i>	B.885	Aggl.	<i>Aphididae spp.</i>
B.857	Aggl.	<i>Heliothis spp.</i>	B.886	Aggl.	<i>Aphis spp.</i>
B.858	Aggl.	<i>Hellula undalis</i>	B.887	Aggl.	<i>Bemisia tabaci</i>
B.859	Aggl.	<i>Keiferia</i>	B.888	Aggl.	<i>Empoasca spp.</i>
		<i>lycopersicella</i>	B.889	Aggl.	<i>Mycus spp.</i>
B.860	Aggl.	<i>Leucoptera scitella</i>	B.890	Aggl.	<i>Nephrotettix spp.</i>
B.861	Aggl.	<i>Lithocollethis spp.</i>	B.891	Aggl.	<i>Nilaparvata spp.</i>
B.862	Aggl.	<i>Lobesia botrana</i>	B.892	Aggl.	<i>Pseudococcus spp.</i>
B.863	Aggl.	<i>Ostrinia nubilalis</i>	B.893	Aggl.	<i>Psylla spp.</i>

	AP	Control of		AP	Control of
B.894	Aggl.	<i>Quadrastriodus</i> <i>spp.</i>	B.921	CO	<i>Ephestia spp.</i>
B.895	Aggl.	<i>Schizaphis spp.</i>	B.922	CO	<i>Heliothis spp.</i>
B.896	Aggl.	<i>Trialeurodes spp.</i>	B.923	CO	<i>Hellula undalis</i>
B.897	Aggl.	<i>Lyriomyza spp.</i>	B.924	CO	<i>Keiferia</i> <i>lycopersicella</i>
B.898	Aggl.	<i>Oscinella spp.</i>	B.925	CO	<i>Leucoptera scitella</i>
B.899	Aggl.	<i>Phorbia spp.</i>	B.926	CO	<i>Lithocollethis spp.</i>
B.900	Aggl.	<i>Frankliniella spp.</i>	B.927	CO	<i>Lobesia botrana</i>
B.901	Aggl.	<i>Thrips spp.</i>	B.928	CO	<i>Ostrinia nubilalis</i>
B.902	Aggl.	<i>Scirtothrips aurantii</i>	B.929	CO	<i>Pandemis spp.</i>
B.903	Aggl.	<i>Aceria spp.</i>	B.930	CO	<i>Pectinophora</i> <i>gossyp.</i>
B.904	Aggl.	<i>Aculus spp.</i>	B.931	CO	<i>Phylloconistis citrella</i>
B.905	Aggl.	<i>Brevipalpus spp.</i>	B.932	CO	<i>Pieris spp.</i>
B.906	Aggl.	<i>Panonychus spp.</i>	B.933	CO	<i>Plutella xylostella</i>
B.907	Aggl.	<i>Phyllocoptuta spp.</i>	B.934	CO	<i>Scirpophaga spp.</i>
B.908	Aggl.	<i>Tetranychus spp.</i>	B.935	CO	<i>Sesamia spp.</i>
B.909	Aggl.	<i>Heterodera spp.</i>	B.936	CO	<i>Sparganothis spp.</i>
B.910	Aggl.	<i>Meloidogyne spp.</i>	B.937	CO	<i>Spodoptera spp.</i>
B.911	CO	<i>Adoxophyes spp.</i>	B.938	CO	<i>Tortrix spp.</i>
B.912	CO	<i>Agrotis spp.</i>	B.939	CO	<i>Trichoplusia ni</i>
B.913	CO	<i>Alabama</i> <i>argillaceae</i>	B.940	CO	<i>Agriotes spp.</i>
B.914	CO	<i>Anticarsia</i> <i>gemmaialis</i>	B.941	CO	<i>Anthonomus</i> <i>grandis</i>
B.915	CO	<i>Chilo spp.</i>	B.942	CO	<i>Curculio spp.</i>
B.916	CO	<i>Clysia ambiguella</i>	B.943	CO	<i>Diabrotica balteata</i>
B.917	CO	<i>Crocidolomia</i> <i>binotata</i>	B.944	CO	<i>Leptinotarsa spp.</i>
B.918	CO	<i>Cydia spp.</i>	B.945	CO	<i>Lissorhoptrus spp.</i>
B.919	CO	<i>Diparopsis</i> <i>castanea</i>	B.946	CO	<i>Otiorhynchus spp.</i>
B.920	CO	<i>Earias spp.</i>	B.947	CO	<i>Aleurothrixus spp.</i>
			B.948	CO	<i>Aleyrodes spp.</i>
			B.949	CO	<i>Aonidiella spp.</i>

	AP	Control of		AP	Control of
B.950	CO	Aphididae spp.			gemmatalis
B.951	CO	Aphis spp.	B.980	CH	Chilo spp.
B.952	CO	Bemisia tabaci	B.981	CH	Clydia ambiguaella
B.953	CO	Empoasca spp.	B.982	CH	Crocidolomia
B.954	CO	Mycus spp.			binotalis
B.955	CO	Nephrotettix spp.	B.983	CH	Cydia spp.
B.956	CO	Nilaparvata spp.	B.984	CH	Diparopsis
B.957	CO	Pseudococcus spp.			castanea
B.958	CO	Psylla spp.	B.985	CH	Earias spp.
B.959	CO	Quadrastriodus spp.	B.986	CH	Ephestia spp.
B.960	CO	Schizaphis spp.	B.987	CH	Heliothis spp.
B.961	CO	Trialeurodes spp.	B.988	CH	Hellula undalis
B.962	CO	Lyriomyza spp.	B.989	CH	Keiferia
B.963	CO	Oscinella spp.	B.990	CH	lycopersicella
B.964	CO	Phorbia spp.	B.991	CH	Leucoptera scitella
B.965	CO	Frankliniella spp.	B.992	CH	Lithocollethis spp.
B.966	CO	Thrips spp.	B.993	CH	Lobesia botrana
B.967	CO	Scirtothrips aurantii	B.994	CH	Ostrinia nubilalis
B.968	CO	Aceria spp.	B.995	CH	Pandemis spp.
B.969	CO	Aculus spp.			Pectinophora
B.970	CO	Brevipalpus spp.	B.996	CH	gossyp.
B.971	CO	Panonychus spp.	B.997	CH	Phylloconistis citrella
B.972	CO	Phyllocoptuta spp.	B.998	CH	Pieris spp.
B.973	CO	Tetranychus spp.	B.999	CH	Plutella xylostella
B.974	CO	Heterodera spp.	B.1000	CH	Scirpophaga spp.
B.975	CO	Meloidogyne spp.	B.1001	CH	Sesamia spp.
B.976	CH	Adoxophyes spp.	B.1002	CH	Sparganothis spp.
B.977	CH	Agrotis spp.	B.1003	CH	Spodoptera spp.
B.978	CH	Alabama argillaceae	B.1004	CH	Tortrix spp.
B.979	CH	Anticarsia	B.1005	CH	Trichoplusia ni
			B.1006	CH	Agriotes spp.
					Anthonomus

	AP	Control of		AP	Control of
		grandis	B.1037	CH	Phyllocoptuta spp.
B.1007	CH	Curculio spp.	B.1038	CH	Tetranychus spp.
B.1008	CH	Diabrotica balteata	B.1039	CH	Heterodera spp.
B.1009	CH	Leptinotarsa spp.	B.1040	CH	Meloidogyne spp.
B.1010	CH	Lissorhoptrus spp.	B.1041	SS	Adoxophyes spp.
B.1011	CH	Otiorhynchos spp.	B.1042	SS	Agrotis spp.
B.1012	CH	Aleurothrixus spp.	B.1043	SS	Alabama
B.1013	CH	Aleyrodes spp.			argillaceae
B.1014	CH	Aonidiella spp.	B.1044	SS	Anticarsia
B.1015	CH	Aphididae spp.			gemmaialis
B.1016	CH	Aphis spp.	B.1045	SS	Chilo spp.
B.1017	CH	Bemisia tabaci	B.1046	SS	Clydia ambiguaella
B.1018	CH	Empoasca spp.	B.1047	SS	Crocidolomia
B.1019	CH	Mycus spp.			binotalis
B.1020	CH	Nephrotettix spp.	B.1048	SS	Cydia spp.
B.1021	CH	Nilaparvata spp.	B.1049	SS	Diparopsis
B.1022	CH	Pseudococcus spp.			castanea
B.1023	CH	Psylla spp.	B.1050	SS	Earias spp.
B.1024	CH	Quadraspidiotus	B.1051	SS	Ephestia spp.
		spp.	B.1052	SS	Heliothis spp.
B.1025	CH	Schizaphis spp.	B.1053	SS	Hellula undalis
B.1026	CH	Trialeurodes spp.	B.1054	SS	Keiferia
B.1027	CH	Lyriomyza spp.			lycopersicella
B.1028	CH	Oscinella spp.	B.1055	SS	Leucoptera scitella
B.1029	CH	Phorbia spp.	B.1056	SS	Lithocollethis spp.
B.1030	CH	Frankliniella spp.	B.1057	SS	Lobesia botrana
B.1031	CH	Thrips spp.	B.1058	SS	Ostrinia nubilalis
B.1032	CH	Scirtothrips aurantii	B.1059	SS	Pandemis spp.
B.1033	CH	Aceria spp.	B.1060	SS	Pectinophora
B.1034	CH	Aculus spp.			gossyp.
B.1035	CH	Brevipalpus spp.	B.1061	SS	Phyllocnistis citrella
B.1036	CH	Panonychus spp.	B.1062	SS	Pieris spp.

	AP	Control of		AP	Control of
B.1063	SS	<i>Plutella xylostella</i>	B.1093	SS	<i>Oscinella spp.</i>
B.1064	SS	<i>Scirpophaga spp.</i>	B.1094	SS	<i>Phorbia spp.</i>
B.1065	SS	<i>Sesamia spp.</i>	B.1095	SS	<i>Frankliniella spp.</i>
B.1066	SS	<i>Sparganothis spp.</i>	B.1096	SS	<i>Thrips spp.</i>
B.1067	SS	<i>Spodoptera spp.</i>	B.1097	SS	<i>Scirtothrips aurantii</i>
B.1068	SS	<i>Tortrix spp.</i>	B.1098	SS	<i>Aceria spp.</i>
B.1069	SS	<i>Trichoplusia ni</i>	B.1099	SS	<i>Aculus spp.</i>
B.1070	SS	<i>Agriotes spp.</i>	B.1100	SS	<i>Brevipalpus spp.</i>
B.1071	SS	<i>Anthonomus grandis</i>	B.1101	SS	<i>Panonychus spp.</i>
B.1072	SS	<i>Curculio spp.</i>	B.1102	SS	<i>Phyllocoptuta spp.</i>
B.1073	SS	<i>Diabrotica balteata</i>	B.1103	SS	<i>Tetranychus spp.</i>
B.1074	SS	<i>Leptinotarsa spp.</i>	B.1104	SS	<i>Heterodera spp.</i>
B.1075	SS	<i>Lissorhoptrus spp.</i>	B.1105	SS	<i>Meloidogyne spp.</i>
B.1076	SS	<i>Otiorhynchus spp.</i>	B.1106	HO	<i>Adoxophyes spp.</i>
B.1077	SS	<i>Aleurothrixus spp.</i>	B.1107	HO	<i>Agrotis spp.</i>
B.1078	SS	<i>Aleyrodes spp.</i>	B.1108	HO	<i>Alabama argillaceae</i>
B.1079	SS	<i>Aonidiella spp.</i>	B.1109	HO	<i>Anticarsia gummatalis</i>
B.1080	SS	<i>Aphididae spp.</i>	B.1110	HO	<i>Chilo spp.</i>
B.1081	SS	<i>Aphis spp.</i>	B.1111	HO	<i>Clysia ambiguella</i>
B.1082	SS	<i>Bemisia tabaci</i>	B.1112	HO	<i>Crocidolomia binotalis</i>
B.1083	SS	<i>Empoasca spp.</i>	B.1113	HO	<i>Cydia spp.</i>
B.1084	SS	<i>Mycus spp.</i>	B.1114	HO	<i>Diparopsis castanea</i>
B.1085	SS	<i>Nephrotettix spp.</i>	B.1115	HO	<i>Earias spp.</i>
B.1086	SS	<i>Nilaparvata spp.</i>	B.1116	HO	<i>Ephestia spp.</i>
B.1087	SS	<i>Pseudococcus spp.</i>	B.1117	HO	<i>Heliothis spp.</i>
B.1088	SS	<i>Psylla spp.</i>	B.1118	HO	<i>Hellula undalis</i>
B.1089	SS	<i>Quadraspidiotus spp.</i>	B.1119	HO	<i>Keiferia lycopersicella</i>
B.1090	SS	<i>Schizaphis spp.</i>			
B.1091	SS	<i>Trialeurodes spp.</i>			
B.1092	SS	<i>Lyriomyza spp.</i>			

	AP	Control of		AP	Control of
B.1120	HO	<i>Leucoptera scitella</i>	B.1145	HO	<i>Aphididae</i> spp.
B.1121	HO	<i>Lithocollethis</i> spp.	B.1146	HO	<i>Aphis</i> spp.
B.1122	HO	<i>Lobesia botrana</i>	B.1147	HO	<i>Bemisia tabaci</i>
B.1123	HO	<i>Ostrinia nubilalis</i>	B.1148	HO	<i>Empoasca</i> spp.
B.1124	HO	<i>Pandemis</i> spp.	B.1149	HO	<i>Mycus</i> spp.
B.1125	HO	<i>Pectinophora</i> <i>gossypiella</i>	B.1150	HO	<i>Nephrotettix</i> spp.
B.1126	HO	<i>Phylloconistis citrella</i>	B.1151	HO	<i>Nilaparvata</i> spp.
B.1127	HO	<i>Pieris</i> spp.	B.1152	HO	<i>Pseudococcus</i> spp.
B.1128	HO	<i>Plutella xylostella</i>	B.1153	HO	<i>Psylla</i> spp.
B.1129	HO	<i>Scirpophaga</i> spp.	B.1154	HO	<i>Quadraspidiotus</i> spp.
B.1130	HO	<i>Sesamia</i> spp.	B.1155	HO	<i>Schizaphis</i> spp.
B.1131	HO	<i>Sparganothis</i> spp.	B.1156	HO	<i>Trialeurodes</i> spp.
B.1132	HO	<i>Spodoptera</i> spp.	B.1157	HO	<i>Lyriomyza</i> spp.
B.1133	HO	<i>Tortrix</i> spp.	B.1158	HO	<i>Oscinella</i> spp.
B.1134	HO	<i>Trichoplusia ni</i>	B.1159	HO	<i>Phorbia</i> spp.
B.1135	HO	<i>Agriotes</i> spp.	B.1160	HO	<i>Frankliniella</i> spp.
B.1136	HO	<i>Anthonomus</i> <i>grandis</i>	B.1161	HO	<i>Thrips</i> spp.
B.1137	HO	<i>Curculio</i> spp.	B.1162	HO	<i>Scirtothrips aurantii</i>
B.1138	HO	<i>Diabrotica balteata</i>	B.1163	HO	<i>Aceria</i> spp.
B.1139	HO	<i>Leptinotarsa</i> spp.	B.1164	HO	<i>Aculus</i> spp.
B.1140	HO	<i>Lissorhoptrus</i> spp.	B.1165	HO	<i>Brevipalpus</i> spp.
B.1141	HO	<i>Otiorhynchus</i> spp.	B.1166	HO	<i>Panonychus</i> spp.
B.1142	HO	<i>Aleurothrixus</i> spp.	B.1167	HO	<i>Phyllocoptruta</i> spp.
B.1143	HO	<i>Aleyrodes</i> spp.	B.1168	HO	<i>Tetranychus</i> spp.
B.1144	HO	<i>Aonidiella</i> spp.	B.1169	HO	<i>Heterodera</i> spp.
			B.1170	HO	<i>Meloidogyne</i> spp.

Biological Examples

Table 1: A method of controlling pests comprising the application of thiamethoxam to transgenic cotton, wherein the combination of the active principle expressed by the

transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 2: A method of controlling pests comprising the application of thiamethoxam to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 3: A method of controlling pests comprising the application of thiamethoxam to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 4: A method of controlling pests comprising the application of thiamethoxam to transgenic brassica, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 5: A method of controlling pests comprising the application of thiamethoxam to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 6: A method of controlling pests comprising the application of thiamethoxam to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 7: A method of controlling pests comprising the application of thiamethoxam to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 8: A method of controlling pests comprising the application of thiamethoxam to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 9: A method of controlling pests comprising the application of thiamethoxam to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 10: A method of controlling pests comprising the application of thiamethoxam to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 11: A method of controlling pests comprising the application of thiamethoxam to transgenic citrus trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 12: A method of controlling pests comprising the application of thiamethoxam to transgenic pome fruit trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 13: A method of controlling pests comprising the application of thiamethoxam to transgenic peppers, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 14: A method of controlling pests comprising the application of imidacloprid to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 15: A method of controlling pests comprising the application of imidacloprid to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 16: A method of controlling pests comprising the application of imidacloprid to transgenic potatoes, wherein the combination of the active principle expressed by the

transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 17: A method of controlling pests comprising the application of imidacloprid to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 18: A method of controlling pests comprising the application of imidacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 19: A method of controlling pests comprising the application of imidacloprid to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 20: A method of controlling pests comprising the application of imidacloprid to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 21: A method of controlling pests comprising the application of imidacloprid to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 22: A method of controlling pests comprising the application of imidacloprid to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 23: A method of controlling pests comprising the application of imidacloprid to transgenic orange trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 24: A method of controlling pests comprising the application of imidacloprid to transgenic pome fruit, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 25: A method of controlling pests comprising the application of imidacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 26: A method of controlling pests comprising the application of imidacloprid to transgenic peppers, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 27: A method of controlling pests comprising the application of Ti-435 to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 28: A method of controlling pests comprising the application of Ti-435 to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 29: A method of controlling pests comprising the application of Ti-435 to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 30: A method of controlling pests comprising the application of Ti-435 to transgenic brassica, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 31: A method of controlling pests comprising the application of Ti-435 to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant

and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 32: A method of controlling pests comprising the application of Ti-435 to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 33: A method of controlling pests comprising the application of Ti-435 to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 34: A method of controlling pests comprising the application of Ti-435 to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 35: A method of controlling pests comprising the application of Ti-435 to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 36: A method of controlling pests comprising the application of Ti-435 to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 37: A method of controlling pests comprising the application of Ti-435 to transgenic citrus trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 38: A method of controlling pests comprising the application of Ti-435 to transgenic pome fruit trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 39: A method of controlling pests comprising the application of thiacloprid to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 40: A method of controlling pests comprising the application of thiacloprid to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 41: A method of controlling pests comprising the application of thiacloprid to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 42: A method of controlling pests comprising the application of thiacloprid to transgenic brassica, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 43: A method of controlling pests comprising the application of thiacloprid to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 44: A method of controlling pests comprising the application of thiacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 45: A method of controlling pests comprising the application of thiacloprid to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 46: A method of controlling pests comprising the application of thiacloprid to transgenic maize, wherein the combination of the active principle expressed by the

transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 47: A method of controlling pests comprising the application of thiacloprid to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 48: A method of controlling pests comprising the application of thiacloprid to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table C:

Abbreviations:

Acetyl-COA Carboxylase: ACCase

Acetolactate Synthase: ALS

Hydroxyphenylpyruvat dioxygenase: HPPD

Inhibition of protein synthesis: IPS

Hormone mimic: HO

Glutamine Synthetase: GS

Protoporphyrinogen oxidase: PROTOX

5-Enolpyruvyl-3-Phosphoshikimate Synthase: EPSPS

	Principle	Tolerant to	Crop
C.1	ALS	Sulfonylureas etc.***	Cotton
C.2	ALS	Sulfonylureas etc. ***	Rice
C.3	ALS	Sulfonylureas etc. ***	Brassica
C.4	ALS	Sulfonylureas etc. ***	Potatoes
C.5	ALS	Sulfonylureas etc. ***	Tomatoes
C.6	ALS	Sulfonylureas etc. ***	Cucurbits
C.7	ALS	Sulfonylureas etc. ***	Soybeans
C.8	ALS	Sulfonylureas etc. ***	Maize
C.9	ALS	Sulfonylureas etc. ***	Wheat
C.10	ALS	Sulfonylureas etc. ***	pome fruit

	Principle	Tolerant to	Crop
C.11	ALS	Sulfonylureas etc. ***	stone fruit
C.12	ALS	Sulfonylureas etc. ***	citrus
C.13	ACCase	+++	Cotton
C.14	ACCase	+++	Rice
C.15	ACCase	+++	Brassica
C.16	ACCase	+++	Potatoes
C.17	ACCase	+++	Tomatoes
C.18	ACCase	+++	Cucurbits
C.19	ACCase	+++	Soybeans
C.20	ACCase	+++	Maize
C.21	ACCase	+++	Wheat
C.22	ACCase	+++	pome fruit
C.23	ACCase	+++	stone fruit
C.24	ACCase	+++	citrus
C.25	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Cotton
C.26	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Rice
C.27	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Brassica
C.28	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Potatoes
C.29	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Tomatoes
C.30	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Cucurbits
C.31	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Soybeans
C.32	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Maize
C.33	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Wheat
C.34	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	pome fruit
C.35	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	stone fruit
C.36	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	citrus
C.37	Nitrilase	Bromoxynil, Ioxynil	Cotton
C.38	Nitrilase	Bromoxynil, Ioxynil	Rice
C.39	Nitrilase	Bromoxynil, Ioxynil	Brassica
C.40	Nitrilase	Bromoxynil, Ioxynil	Potatoes
C.41	Nitrilase	Bromoxynil, Ioxynil	Tomatoes
C.42	Nitrilase	Bromoxynil, Ioxynil	Cucurbits

	Principle	Tolerant to	Crop
C.43	Nitrilase	Bromoxynil, loxynil	Soybeans
C.44	Nitrilase	Bromoxynil, loxynil	Maize
C.45	Nitrilase	Bromoxynil, loxynil	Wheat
C.46	Nitrilase	Bromoxynil, loxynil	pome fruit
C.47	Nitrilase	Bromoxynil, loxynil	stone fruit
C.48	Nitrilase	Bromoxynil, loxynil	citrus
C.49	IPS	Chloroactanilides &&&	Cotton
C.50	IPS	Chloroactanilides &&&	Rice
C.51	IPS	Chloroactanilide &&&s	Brassica
C.52	IPS	Chloroactanilides &&&	Potatoes
C.53	IPS	Chloroactanilides &&&	Tomatoes
C.54	IPS	Chloroactanilides &&&	Cucurbits
C.55	IPS	Chloroactanilides &&&	Soybeans
C.56	IPS	Chloroactanilides &&&	Maize
C.57	IPS	Chloroactanilides &&&	Wheat
C.58	IPS	Chloroactanilides &&&	pome fruit
C.59	IPS	Chloroactanilides &&&	stone fruit
C.60	IPS	Chloroactanilides &&&	citrus
C.61	HOM	2,4-D, Mecoprop-P	Cotton
C.62	HOM	2,4-D, Mecoprop-P	Rice
C.63	HOM	2,4-D, Mecoprop-P	Brassica
C.64	HOM	2,4-D, Mecoprop-P	Potatoes
C.65	HOM	2,4-D, Mecoprop-P	Tomatoes
C.66	HOM	2,4-D, Mecoprop-P	Cucurbits
C.67	HOM	2,4-D, Mecoprop-P	Soybeans
C.68	HOM	2,4-D, Mecoprop-P	Maize
C.69	HOM	2,4-D, Mecoprop-P	Wheat
C.70	HOM	2,4-D, Mecoprop-P	pome fruit
C.71	HOM	2,4-D, Mecoprop-P	stone fruit
C.72	HOM	2,4-D, Mecoprop-P	citrus
C.73	PROTOX	Protox inhibitors ///	Cotton
C.74	PROTOX	Protox inhibitors ///	Rice

	Principle	Tolerant to	Crop
C.75	PROTOX	Protox inhibitors ///	Brassica
C.76	PROTOX	Protox inhibitors ///	Potatoes
C.77	PROTOX	Protox inhibitors ///	Tomatoes
C.78	PROTOX	Protox inhibitors ///	Cucurbits
C.79	PROTOX	Protox inhibitors ///	Soybeans
C.80	PROTOX	Protox inhibitors ///	Maize
C.81	PROTOX	Protox inhibitors ///	Wheat
C.82	PROTOX	Protox inhibitors ///	pome fruit
C.83	PROTOX	Protox inhibitors ///	stone fruit
C.84	PROTOX	Protox inhibitors ///	citrus
C.85	EPSPS	Glyphosate and /or Sulphosate	Cotton
C.86	EPSPS	Glyphosate and /or Sulphosate	Rice
C.87	EPSPS	Glyphosate and /or Sulphosate	Brassica
C.88	EPSPS	Glyphosate and /or Sulphosate	Potatoes
C.89	EPSPS	Glyphosate and /or Sulphosate	Tomatoes
C.90	EPSPS	Glyphosate and /or Sulphosate	Cucurbits
C.91	EPSPS	Glyphosate and /or Sulphosate	Soybeans
C.92	EPSPS	Glyphosate and /or Sulphosate	Maize
C.93	EPSPS	Glyphosate and /or Sulphosate	Wheat
C.94	EPSPS	Glyphosate and /or Sulphosate	pome fruit
C.95	EPSPS	Glyphosate and /or Sulphosate	stone fruit
C.96	EPSPS	Glyphosate and /or Sulphosate	citrus
C.97	GS	Gluphosinate and /or Bialaphos	Cotton
C.98	GS	Gluphosinate and /or Bialaphos	Rice
C.99	GS	Gluphosinate and /or Bialaphos	Brassica
C.100	GS	Gluphosinate and /or Bialaphos	Potatoes
C.101	GS	Gluphosinate and /or Bialaphos	Tomatoes
C.102	GS	Gluphosinate and /or Bialaphos	Cucurbits
C.103	GS	Gluphosinate and /or Bialaphos	Soybeans
C.104	GS	Gluphosinate and /or Bialaphos	Maize
C.105	GS	Gluphosinate and /or Bialaphos	Wheat
C.106	GS	Gluphosinate and /or Bialaphos	pome fruit

	Principle	Tolerant to	Crop
C.107	GS	Gluphosinate and /or Bialaphos	stone fruit
C.108	GS	Gluphosinate and /or Bialaphos	citrus

*** Included are Sulfonyleureas, Imidazolinones, Triazolopyrimidines, Dimethoxypyrimidines and N-Acylsulfonamides:

Sulfonyleureas such as Chlorsulfuron, Chlorimuron, Ethametsulfuron, Metsulfuron, Primisulfuron, Prosulfuron, Triasulfuron, Cinosulfuron, Trifusulfuron, Oxasulfuron, Bensulfuron, Tribenuron, ACC 322140, Fluzasulfuron, Ethoxysulfuron, Fluzasdulfuron, Nicosulfuron, Rimsulfuron, Thifensulfuron, Pyrazosulfuron, Clopyrasulfuron, NC 330, Azimsulfuron, Imazosulfuron, Sulfosulfuron, Amidosulfuron, Flupyralsulfuron, CGA 362622

Imidazolinones such as Imazamethabenz, Imazaquin, Imazamethypyr, Imazethapyr, Imazapyr and Imazamox;

Triazolopyrimidines such as DE 511, Flumetsulam and Chloransulam;

Dimethoxypyrimidines such as Pyri thiobac, Pyriminobac, Bispyribac and Pyribenzoxim.

+++ Tolerant to Diclofop-methyl, Fluazifop-P-butyl, Haloxyfop-P-methyl, Haloxyfop-P-ethyl, Quizalafop-P-ethyl , clodinafop propargyl, fenoxaprop - -ethyl, - Tepraloxydim, Alloxydim, Sethoxydim, Cycloxydim, Cloproxydim, Tralkoxydim, Butoxydim, Caloxydim, Clefoxydim, Clethodim.

&&& Chloroacetanilides such as Alachlor Acetochlor, Dimethenamid

/// Protox inhibitors: For instance diphenyethers such as Acifluorfen, Aclonifen, Bifenox, Chlornitrofen, Ethoxyfen, Fluoroglycofen, Fomesafen, Lactofen, Oxyfluorfen; Imides such as Azafenidin, Carfentrazone-ethyl, Cinidon-ethyl, Flumiclorac-pentyl, Flumioxazin, Fluthiacet-methyl, Oxadiargyl, Oxadiaxon, Pentoza zone, Sulfentrazone, Imides and others,such as Flumipropyn, Flupropacil, Nipyrapclofen and Thidiazimin; and further Fluazolate and Pyraflufen-ethyl

Biological Examples

Table 49: A method of controlling representatives of the genus Adoxophyes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the

combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 50: A method of controlling representatives of the genus *Agrotis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 51: A method of controlling *Alabama argillaceae* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 52: A method of controlling *Anticarsia gemmatalis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 53: A method of controlling representatives of the genus *Chilo* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 54: A method of controlling *Clysia ambiguella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 55: A method of controlling representatives of the genus *Cnephalocrocis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 56: A method of controlling *Crocidolomia binotalis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 57: A method of controlling representatives of the genus *Cydia* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 58: A method of controlling *Diparopsis castanea* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 59: A method of controlling representatives of the genus *Earias* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 60: A method of controlling representatives of the genus *Ephestia* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 61: A method of controlling representatives of the genus *Heliothis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 62: A method of controlling *Hellula undalis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 63: A method of controlling *Keiferia lycopersicella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 64: A method of controlling *Leucoptera scitella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the

active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 65: A method of controlling representatives of the genus *Lithocollethis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 66: A method of controlling *Lobesia botrana* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 67: A method of controlling *Ostrinia nubilalis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 68: A method of controlling representatives of the genus *Pandemis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 69: A method of controlling *Pectinophora gossypiella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 70: A method of controlling *Phyllocoptes citrella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 71: A method of controlling representatives of the genus *Pieris* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 72: A method of controlling *Plutella xylostella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 73: A method of controlling representatives of the genus *Scirphophaga* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 74: A method of controlling representatives of the genus *Sesamia* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 75: A method of controlling representatives of the genus *Sparganothis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 76: A method of controlling representatives of the genus *Spodoptera* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 77: A method of controlling representatives of the genus *Tortrix* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 78: A method of controlling *Trichoplusia ni* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 79: A method of controlling representatives of the genus *Agriotes* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the

combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 80: A method of controlling *Anthonomus grandis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 81: A method of controlling representatives of the genus *Curculio* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 82: A method of controlling *Diabrotica balteata* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 83: A method of controlling representatives of the genus *Leptinotarsa* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 84: A method of controlling representatives of the genus *Lissorhoptrus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 85: A method of controlling representatives of the genus *Otiorhynchus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 86: A method of controlling representatives of the genus *Aleurothrixus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 87: A method of controlling representatives of the genus Aleyrodes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 88: A method of controlling representatives of the genus Aonidiella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 89: A method of controlling representatives of the family Aphididae comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 90: A method of controlling representatives of the genus Aphis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 91: A method of controlling Bemisia tabaci comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 92: A method of controlling representatives of the genus Empoasca comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 93: A method of controlling representatives of the genus Mycus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 94: A method of controlling representatives of the genus Nephrotettix comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the

combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 95: A method of controlling representatives of the genus Nilaparvata comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 96: A method of controlling representatives of the genus Pseudococcus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 97: A method of controlling representatives of the genus Psylla comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 98: A method of controlling representatives of the genus Quadraspidiotus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 99: A method of controlling representatives of the genus Schizaphis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 100: A method of controlling representatives of the genus Trialeurodes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 101: A method of controlling representatives of the genus Lyriomyza comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 102: A method of controlling representatives of the genus Oscinella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 103: A method of controlling representatives of the genus Phorbia comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 104: A method of controlling representatives of the genus Frankliniella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 105: A method of controlling representatives of the genus Thrips comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 106: A method of controlling Scirtothrips aurantii comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 107: A method of controlling representatives of the genus Aceria comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 108: A method of controlling representatives of the genus Aculus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 109: A method of controlling representatives of the genus Brevipalpus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the

combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 110: A method of controlling representatives of the genus *Panonychus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 111: A method of controlling representatives of the genus *Phyllocoptrus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 112: A method of controlling representatives of the genus *Tetranychus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 113: A method of controlling representatives of the genus *Heterodera* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 114: A method of controlling representatives of the genus *Meloidogyne* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 115: A method of controlling *Mamestra brassica* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 116: A method of controlling representatives of the genus *Adoxophyes* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 117: A method of controlling representatives of the genus *Agrotis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 118: A method of controlling *Alabama argillaceae* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 119: A method of controlling *Anticarsia gemmatalis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 120: A method of controlling representatives of the genus *Chilo* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 121: A method of controlling *Clysia ambiguella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 122: A method of controlling representatives of the genus *Cnephocrocis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 123: A method of controlling *Crocidolomia binotalis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 124: A method of controlling representatives of the genus *Cydia* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the

combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 125: A method of controlling Diparopsis castanea comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 126: A method of controlling representatives of the genus Earias comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 127: A method of controlling representatives of the genus Ephestia comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 128: A method of controlling representatives of the genus Heliothis of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 129: A method of controlling Hellula undalis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 130: A method of controlling Keiferia lycopersicella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 131: A method of controlling Leucoptera scitella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 132: A method of controlling representatives of the genus *Lithoclellis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 133: A method of controlling *Lobesia botrana* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 134: A method of controlling *Ostrinia nubilalis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 135: A method of controlling representatives of the genus *Pandemis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 136: A method of controlling *Pectinophora gossypiella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 137: A method of controlling *Phyllocnistis citrella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 138: A method of controlling representatives of the genus *Pieris* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 139: A method of controlling *Plutella xylostella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the

active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 140: A method of controlling representatives of the genus *Scirpophaga* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 141: A method of controlling representatives of the genus *Sesamia* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 142: A method of controlling representatives of the genus *Sparganothis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 143: A method of controlling representatives of the genus *Spodoptera* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 144: A method of controlling representatives of the genus *Tortrix* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 145: A method of controlling *Trichoplusia ni* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 146: A method of controlling representatives of the genus *Agriotes* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 147: A method of controlling *Anthonomus grandis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 148: A method of controlling representatives of the genus *Curculio* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 149: A method of controlling *Diabrotica balteata* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 150: A method of controlling representatives of the genus *Leptinotarsa* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 151: A method of controlling representatives of the genus *Lissorhoptrus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 152: A method of controlling representatives of the genus *Otiorhynchus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 153: A method of controlling representatives of the genus *Aleurothrixus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 154: A method of controlling representatives of the genus *Aleyrodes* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the

combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 155: A method of controlling representatives of the genus Aonidiella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 156: A method of controlling representatives of the family Aphididae comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 157: A method of controlling representatives of the genus Aphis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 158: A method of controlling Bemisia tabaci comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 159: A method of controlling representatives of the genus Emoasca comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 160: A method of controlling representatives of the genus Mycus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 161: A method of controlling representatives of the genus Nephrotettix comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 162: A method of controlling representatives of the genus *Nilaparvata* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 163: A method of controlling representatives of the genus *Pseudococcus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 164: A method of controlling representatives of the genus *Psylla* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 165: A method of controlling representatives of the genus *Quadrastripiotus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 166: A method of controlling representatives of the genus *Schizaphis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 167: A method of controlling representatives of the genus *Trialeurodes* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 168: A method of controlling representatives of the genus *Lyriomyza* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 169: A method of controlling representatives of the genus *Oscinella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the

combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 170: A method of controlling representatives of the genus *Phorbia* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 171: A method of controlling representatives of the genus *Frankliniella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 172: A method of controlling representatives of the genus *Thrips* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 173: A method of controlling *Scirtothrips aurantii* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 174: A method of controlling representatives of the genus *Aceria* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 175: A method of controlling representatives of the genus *Aculus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 176: A method of controlling representatives of the genus *Brevipalpus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 177: A method of controlling representatives of the genus *Panonychus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 178: A method of controlling representatives of the genus *Phyllocoptuta* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 179: A method of controlling representatives of the genus *Tetranychus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 180: A method of controlling representatives of the genus *Heterodera* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 181: A method of controlling representatives of the genus *Meloidogyne* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 182: A method of controlling representatives of the genus *Adoxophyes* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 183: A method of controlling representatives of the genus *Agrotis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 184: A method of controlling *Alabama argillaceae* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle

expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 185: A method of controlling *Anticarsia gemmatalis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 186: A method of controlling representatives of the genus *Chilo* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 187: A method of controlling *Clysia ambiguella* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 188: A method of controlling *Crocidolomia binotalis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 189: A method of controlling representatives of the genus *Cydia* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 190: A method of controlling *Diparopsis castanea* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 191: A method of controlling representatives of the genus *Earias* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 192: A method of controlling representatives of the genus *Ephestia* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 193: A method of controlling representatives of the genus *Heliothis* of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 194: A method of controlling *Hellula undalis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 195: A method of controlling *Keiferia lycopersicella* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 196: A method of controlling *Leucoptera scitella* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 197: A method of controlling representatives of the genus *Lithocollethis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 198: A method of controlling *Lobesia botrana* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 199: A method of controlling *Ostrinia nubilalis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle

expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 200: A method of controlling representatives of the genus Pandemis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 201: A method of controlling Pectinophora gossypiella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 202: A method of controlling Phyloconistis citrella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 203: A method of controlling representatives of the genus Pieris comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 204: A method of controlling Plutella xylostella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 205: A method of controlling representatives of the genus Scirpophaga comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 206: A method of controlling representatives of the genus Sesamia comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 207: A method of controlling representatives of the genus *Sparganothis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 208: A method of controlling representatives of the genus *Spodoptera* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 209: A method of controlling representatives of the genus *Tortrix* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 210: A method of controlling *Trichoplusia ni* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 211: A method of controlling representatives of the genus *Agriotes* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 212: A method of controlling *Anthonomus grandis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 213: A method of controlling representatives of the genus *Curculio* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 214: A method of controlling *Diabrotica balteata* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle

expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 215: A method of controlling representatives of the genus *Leptinotarsa* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 216: A method of controlling representatives of the genus *Lissorhoptrus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 217: A method of controlling representatives of the genus *Otiorhynchus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 218: A method of controlling representatives of the genus *Aleurothrixus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 219: A method of controlling representatives of the genus *Aleyrodes* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 220: A method of controlling representatives of the genus *Aonidiella* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 221: A method of controlling representatives of the family *Aphididae* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 222: A method of controlling representatives of the genus *Aphis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 223: A method of controlling *Bemisia tabaci* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 224: A method of controlling representatives of the genus *Empoasca* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 225: A method of controlling representatives of the genus *Mycus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 226: A method of controlling representatives of the genus *Nephrotettix* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 227: A method of controlling representatives of the genus *Nilaparvata* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 228: A method of controlling representatives of the genus *Pseudococcus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 229: A method of controlling representatives of the genus *Psylla* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of

the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 230: A method of controlling representatives of the genus *Quadraspidiotus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 231: A method of controlling representatives of the genus *Schizaphis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 232: A method of controlling representatives of the genus *Trialeurodes* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 233: A method of controlling representatives of the genus *Lyriomyza* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 234: A method of controlling representatives of the genus *Oscinella* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 235: A method of controlling representatives of the genus *Phorbia* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 236: A method of controlling representatives of the genus *Frankliniella* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 237: A method of controlling representatives of the genus *Thrips* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 238: A method of controlling *Scirtothrips aurantii* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 239: A method of controlling representatives of the genus *Aceria* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 240: A method of controlling representatives of the genus *Aculus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 241: A method of controlling representatives of the genus *Brevipalpus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 242: A method of controlling representatives of the genus *Panonychus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 243: A method of controlling representatives of the genus *Phyllocoptera* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 244: A method of controlling representatives of the genus *Tetranychus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination

of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 245: A method of controlling representatives of the genus *Heterodera* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 246: A method of controlling representatives of the genus *Meloidogyne* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 247: A method of controlling *Mamestra brassica* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Example B1: Action against *Anthonomus grandis* adults, *Spodoptera littoralis* or *Heliothis virescens*

Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of imidacloprid respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult *Anthonomus grandis*, 10 *Spodoptera littoralis* larvae or 10 *Heliothis virescens* larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising imidacloprid and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior to the control on the non-transgenic plant.

Example B2: Action against *Anthonomus grandis* adults, *Spodoptera littoralis* or *Heliothis virescens*

Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of thiamethoxam respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult *Anthonomus grandis*, 10 *Spodoptera littoralis* larvae or 10 *Heliothis virescens* larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising thiamethoxam and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively. In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B3: Action against *Anthonomus grandis* adults, *Spodoptera littoralis* or *Heliothis virescens*

Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of Ti-435 respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult *Anthonomus grandis*, 10 *Spodoptera littoralis* larvae or 10 *Heliothis virescens* larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising Ti-435 and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B4: Action against *Anthonomus grandis* adults, *Spodoptera littoralis* or *Heliothis virescens*

Young transgenic cotton plants which express the δ-endotoxin Cryla(c) are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of Ti-435 respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult *Anthonomus grandis*, 10 *Spodoptera littoralis* larvae or 10 *Heliothis virescens* larvae

respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising Ti-435 and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B5: Action against *Anthonomus grandis* adults, *Spodoptera littoralis* or *Heliothis virescens*

Young transgenic cotton plants which express the δ-endotoxin CryIa(c) are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of thiamethoxam respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult *Anthonomus grandis*, 10 *Spodoptera littoralis* larvae or 10 *Heliothis virescens* larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising thiamethoxam and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B6: Action against *Anthonomus grandis* adults, *Spodoptera littoralis* or *Heliothis virescens*

Young transgenic cotton plants which express the δ-endotoxin CryIa(c) are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of imidacloprid respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult *Anthonomus grandis*, 10 *Spodoptera littoralis* larvae or 10 *Heliothis virescens* larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants

which have been treated with an emulsion spray mixture comprising imidacloprid conventional CryIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B7: Action against Ostrinia nubilalis, Spodoptera spp. or Heliothis spp.

A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or Heliothis, are sprayed with an aqueous emulsion spray mixture comprising 200, 100, 50, 10, 5, 1ppm of Ti-435. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b).

Improved control of Ostrinia nubilalis, Spodoptera spp. or Heliothis is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B8: Action against Ostrinia nubilalis, Spodoptera spp. or Heliothis spp.

A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or Heliothis, are sprayed with an aqueous emulsion spray mixture comprising 200, 100, 50, 10, 5, 1ppm of thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b).

Improved control of Ostrinia nubilalis, Spodoptera spp. or Heliothis is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B9: Action against Ostrinia nubilalis, Spodoptera spp. or Heliothis spp.

A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or Heliothis, are sprayed with an aqueous emulsion spray mixture

comprising 200, 100, 50, 10, 5, 1 ppm of imidacloprid. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b).

Improved control of Ostrinia nubilalis, Spodoptera spp. or Heliothis spp. is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B10: Action against Diabrotica balteata

A plot (a) planted with maize seedlings cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize are sprayed with an aqueous emulsion of a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the endotoxin expressed by KnockOut®. After the spray coating has dried on, the seedlings are populated with 10 Diabrotica balteata larvae in the second stage and transferred to a plastic container. The test is evaluated 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b).

Improved control of Diabrotica balteata is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B11: Action against Aphis gossypii

Cotton seedlings on a plot (a) expressing the δ-endotoxin CryIla on a plot (a) and conventional cotton seedlings on a plot (b) are infected with Aphis gossypi and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIla. The seedlings of plot (a) and (b) are then incubated at 20°C. The test is evaluated after 3 and 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Aphis gossypii is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B12: Action against *Frankliniella occidentalis*

Cotton seedlings expressing the δ -endotoxin CryIIa on a plot (a) and conventional cotton seedlings on a plot (b) are infected with *Frankliniella occidentalis* and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ -endotoxin CryIIa. The seedlings of plot (a) and (b) are then incubated at 20°C. The test is evaluated after 3 and 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of *Frankliniella occidentalis* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B13: Action against *Aphis gossypii*

Cotton seedlings expressing the δ -endotoxin CryIA(c) on a plot (a) and conventional cotton seedlings on a plot (b) are infected with *Aphis gossypii* and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ -endotoxin CryIIa. The seedlings of plot (a) and (b) are then incubated at 20°C. The test is evaluated after 3 and 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of *Aphis gossypii* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B14: Action against *Frankliniella occidentalis*

Cotton seedlings expressing the δ -endotoxin CryIa(c) on a plot (a) and conventional cotton seedlings on a plot (b) are infected with *Frankliniella occidentalis* and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ -endotoxin CryIa(c). The seedlings of plot (a) and (b) are then incubated at 20°C. The test is evaluated after 3 and 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of

Frankliniella occidentalis is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B15: Action against Nephrotettix cincticeps

Rice plants on a plot (a) expressing the δ -endotoxin CryIA(b) and conventional rice plants on a plot (b) are sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ -endotoxin CryIA(b). After the spray coating has dried on, the plants are infected with Nephrotettix cincticeps of the 2nd and 3rd stages. The seedlings of plot (a) and (b) are then incubated at 20°C. The test is evaluated after 21 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nephrotettix cincticeps is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B16: Action against Nephrotettix cincticeps (systemic)

Rice plants expressing the δ -endotoxin CryIa(b) are planted in a in pot (A) and conventional ice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is placed in a pot containing 400 ppm thiamethoxam and 400 ppm of the δ -endotoxin CryI(b). The plants are subsequently infected with Nephrotettix cincticeps larvae of the second and third stage. The test is evaluated after 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of Nephrotettix cincticeps is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%.

Example B17: Action against Nilaparvata lugens

Rice plants on a plot (a) expressing the δ -endotoxin CryIA(b) and conventional rice plants on a plot (b) are infected with Nilaparvata lugens, subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ -endotoxin CryIA(b). The seedlings of plot (a) and (b) are then incubated at 20°C. The test is evaluated after 21 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nilaparvata lugens is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B18: Action against Nilaparvata lugens (systemic)

Rice plants expressing the δ-endotoxin CryIA(b) are planted in a in pot (A) and conventional rice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is place in a pot copntaining 400 ppm thiamethoxam and 400 ppm of the δ-endotoxin CryIA(b). The plants are subsequently infected with Nilaparvata lugens larvae of the second and third stage. The test is evaluated after 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of Nephrotettix cincticeps is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%.

Example B19: Action against Nephrotettix cincticeps

Rice plants on a plot (a) expressing the δ-endotoxin CryIA(c) and conventional rice plants on a plot (b) are sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIA(c). After the spray coating has dried on, the plants are infected with Nephrotettix cincticeps of the 2nd and 3rd stages. The seedlings of plot (a) and (b) are then incubated at 20°C. The test is evaluated after 21 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nephrotettix cincticeps is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B20: Action against Nephrotettix cincticeps (systemic)

Rice plants expressing the δ-endotoxin CryIa(c) are planted in a in pot (A) and conventional ice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is placed in a pot containing 400 ppm thiamethoxam and 400 ppm of the δ-endotoxin CryI(c). The plants are subsequently infected with

Nephotettix cincticeps larvae of the second and third stage. The test is evaluated after 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of *Nephotettix cincticeps* is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%.

Example B21: Action against *Nilaparvata lugens*

Rice plants on a plot (a) expressing the δ-endotoxin CryIA(c) and conventional rice plants on a plot (b) are infected with *Nilaparvata lugens*, subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIA(c). The seedlings of plot (a) and (b) are then incubated at 20°C. The test is evaluated after 21 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of *Nilaparvata lugens* is observed on the plants of plot (a), while plot (b) shows a control level of not over 0%.

Example B22: Action against *Nilaparvata lugens* (systemic)

Rice plants expressing the δ-endotoxin CryIA(c) are planted in a in pot (A) and conventional rice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is place in a pot copntaining 400 ppm thiamethoxam and 400 ppm of the δ-endotoxin CryIA(c). The plants are subsequently infected with *Nilaparvata lugens* larvae of the second and third stage. The test is evaluated after 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of *Nephotettix cincticeps* is observed on the plants of pot (A), while pot (B) shows a control level of not over 60 %.

Patent claims:

1. Method of controlling pests in crops of transgenic useful plants, characterized in that a pesticidal composition comprising a nitroimino- or nitroguanidino-compound in free form or in agrochemically useful salt form as active ingredient and at least one auxiliary is applied to the pests or their environment.
2. Method according to claim 1, characterized in that thiamethoxam is employed.
3. Method according to claim 1, characterized in that imidacloprid is employed.
4. Method according to claim 1, characterized in that the transgenic plant is treated.
5. Method according to any one of claims 1 to 4, characterized in that the transgenic crop of useful plants is maize.
6. Method according to any one of claims 1 to 4, characterized in that the transgenic crop of useful plants is soya beans.
7. Method according to claim 4, characterized in that the propagation material of the transgenic useful plant is treated.

INTERNATIONAL SEARCH REPORT

Inte .onal Application No

PCT/EP 99/00183

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 A01N51/00 A01N47/40 // (A01N51/00, 63:02, 63:00), (A01N47/40, 63:02, 63:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 97 45017 A (UNIROYAL CHEM CO INC) 4 December 1997 see page 1, line 4 - line 9 see page 2, line 13 - line 17 see page 3, line 9 - page 5, line 10 see page 7, line 9 - line 18 see page 9, line 10 - line 21 ---	1-7
Y	WO 96 28023 A (ABBOTT LAB) 19 September 1996 see page 1, paragraph 1 see page 3, paragraph 3 see page 11, paragraph 3 ---	1-7
Y	EP 0 677 247 A (BAYER AG) 18 October 1995 see page 2, line 25 - page 9, line 33 ---	1-7 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

14 May 1999

27/05/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Lamers, W

INTERNATIONAL SEARCH REPORT

Inte. onal Application No

PCT/EP 99/00183

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 97 40691 A (CIBA GEIGY AG ;SENN ROBERT (CH); MAIENFISCH PETER (CH); WYSS PETER) 6 November 1997 see page 1, paragraph 3 see page 2, line 13 - line 14 see page 4, paragraph 7 see page 9, line 10 ---	1,2
Y	WO 97 40692 A (CIBA GEIGY AG ;SENN ROBERT (CH); MAIENFISCH PETER (CH); WYSS PETER) 6 November 1997 see page 1, paragraph 3 see page 2, line 21 - line 23 see page 9, paragraph 2 - paragraph 4 see page 13, line 27 ---	1,2
X	DATABASE CABA STN-International STN-accession no. 1998:103569, C.T.ALLEN ET AL.: "Evaluation of insecticides and combinations for cotton aphid control in southeastern Arkansas" XP002102501 see abstract & SPECIAL REPORT - AGRICULTURAL EXPERIMENT STATION, DIVISION OF AGRICULTURE, UNIVERSITY OF ARKANSAS, no. 183, 1997, pages 169-172, ---	1,3,4
X	DATABASE CABA STN-International STN-accession no. 1998:68711, W.P.SCOTT ET AL.: "Influence of early season treatments on insect populations and yield in Bollgard (96 BG- 1) and Sure Grow 501 cotton varieties" XP002102502 see abstract & 1997 PROCEEDINGS BELTWIDE COTTON CONFERENCES, NEW ORLEANS, LA, USA JANUARY 6-10, 1997, vol. 2, 1997, pages 892-895, ---	1,3,4
X	DATABASE CABA STN-International STN-accession no. 1998:167903, D.D.HARDEE ET AL.: "Influence of timing of sprays for cotton aphid (Homoptera: Aphididae) on cotton yield" XP002102503 see abstract & 1998 PROCEEDINGS BELTWIDE COTTON CONFERENCES, SAN DIEGO, CALIFORNIA, USA, 5-9 JANUARY 1998, vol. 2, 1998, pages 1061-1064, ---	1,3,4

INTERNATIONAL SEARCH REPORT

Inte	onal Application No
PCT/EP 99/00183	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 129, no. 16, 19 October 1998 Columbus, Ohio, US; abstract no. 199293, J.A.HOPKINS ET AL.: "Selection of supplemental insecticides for pest control in BT cotton and non-Bt cotton" XP002102499 see abstract & PROC. - BELTWIDE COTTON CONF. 5-9 JANUARY 1998, no. 2, 1998, pages 1213-1217, ---	1,3,4
X	DATABASE CROPU STN-International STN-accession no. 97-89894, J.T.REED ET AL.: "Efficacy of various insecticides against tarnished plant bugs in cotton (field trial), 1996" XP002102504 see abstract & ARTHROPOD MANAGE.TESTS, vol. 22, 1997, page 266 ---	1,3,4
X	DATABASE CROPU STN-International STN-accession no. 97-89879, J.H.FIFE ET AL.: "Efficacy of selected insecticides against cotton aphids on BT cotton, 1996" XP002102505 see abstract & ARTHROPOD MANAGE.TESTS, vol. 22, 1997, pages 251-252, ---	1,3,4
X	DATABASE CROPU STN-International STN-accession no. 96-89639, G.BURRIS ET AL.: "Evaluations of square damage on bollgard (Bt) cotton, 1995" XP002102506 see abstract & ARTHROPOD MANAGE.TESTS, vol. 21, 1996, pages 422-423, ---	1,3,4
X	DATABASE CROPU STN-International STN-accession no. 96-87648, R.A.SURANYI ET AL.: "Control of Colorado potato beetle on potato, 1995" XP002102507 see abstract & ARTHROPOD MANAGE.TESTS, vol. 21, 1996, pages 171-172, ---	1,3,4
	-/--	

INTERNATIONAL SEARCH REPORT

Inte onal Application No

PCT/EP 99/00183

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>CHEMICAL ABSTRACTS, vol. 127, no. 8, 25 August 1997 Columbus, Ohio, US; abstract no. 105569, J.T.RUSCOE ET AL.: "Efficacy and duration of early season insecticides on transgenic Bt cotton" XP002102500 see abstract & PROC. - BELTWIDE COTTON CONF., vol. 2, 1997, pages 888-891, -----</p>	1,3,4
P,X	<p>DATABASE CROPU STN-International STN-accession no. 98-87243, C.A.LONTINE ET AL.: "Control of green peach aphid on potato, 1997" XP002102508 see abstract & ARTHROPOD MANAGE.TESTS, vol. 23, 1998, page 127 -----</p>	1,3,4

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/00183

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9745017 A	04-12-1997	AU	3220697 A	05-01-1998
WO 9628023 A	19-09-1996	AU	5309596 A	02-10-1996
EP 0677247 A	18-10-1995	DE	4412834 A	19-10-1995
		BR	9501569 A	14-11-1995
		CA	2146822 A	15-10-1995
		CN	1112392 A	29-11-1995
		JP	7285818 A	31-10-1995
		ZA	9503065 A	05-01-1996
WO 9740691 A	06-11-1997	AU	2387797 A	19-11-1997
		CA	2251877 A	06-11-1997
WO 9740692 A	06-11-1997	AU	2699297 A	19-11-1997
		CA	2251914 A	06-11-1997
		EP	0900024 A	10-03-1999