Krivulje v prostoru

Pot in krivulja

<u>Pot</u> v \mathbb{R}^3 je zvezna preslikava $\vec{r}:I\to\mathbb{R}^3$, kjer je $I\subset\mathbb{R}$ (nek interval, npr. čas) Torej:

$$\vec{r} = \vec{r}(t) = (x(t), y(t), z(t)); t \in I$$

Sliko poti, torej $\vec{r}(I) \subset \mathbb{R}^3$, imenujemo <u>tir</u>.

Pot je **gladka**, če je $\vec{r} \in C^1(I)$.

<u>Gladka krivulja</u> v \mathbb{R}^3 je gladka pot $\vec{r}=(x,y,z)$: $I\to\mathbb{R}^3$, za katero velja $\vec{r}(t)\neq 0 \quad \forall t\in I$ Včasih pod pojmom »gladka krivulja« pojmujemo $\Gamma=\vec{r}(I)$ medtem ko \vec{r} rečemo **regularna parametrizacija** ($\vec{r}\in C^1(I)$. $\vec{r}\neq 0$ povsod). Vseh regularnih parametrizacij je neskončno mnogo. Med različnimi parametrizacijami bijektivno slikamo.

Ce sta $\vec{r}:I\to\Gamma$ in $\vec{\rho}:J\to\Gamma$ bijektivni, obstaja $h=\vec{\rho}^{-1}\circ\vec{r}:I\to J$ in ta preslikava je spet bijektivna, torej velja tudi $\vec{r}=\vec{\rho}\circ h$

Obrat: Vsaka bijekcija $\tilde{h}:J\to I$ razreda C^1 z $\tilde{h}\neq 0$ povsod, nam iz \vec{r} porodi novo regularno parametrizacijo $\vec{\rho}=\vec{r}\circ\tilde{h}$

Dolžina krivulje

Ce je \vec{r} : $[a,b] \to \mathbb{R}^3$ gladka krivulja, katere tir označimo z Γ . Tedaj dolžino Γ definiramo kot:

$$l(\Gamma) = \int_{a}^{b} |\vec{\dot{r}}(t)| dt$$

Ta definicija je »dobra« v smislu, da ni odvisna od izbire parametrizacije.

Izpeljava

Razdaljo med dvema točkama na krivulji, ki sta si dovolj blizu (npr. $\vec{r}(t_{j-1})$, $\vec{r}(t_j)$) lahko aproksimiramo z ravno daljico med njima:

$$\left|\vec{r}(t_j) - \vec{r}(t_{j-1})\right|$$

kar je pa po Lagrangeevem izreku približno enako:

$$|\vec{r}(t_i)||t_i-t_{i-1}|$$

Vse daljice lahko seštejemo skupaj:

$$\sum_{i} |\vec{r}(t_j)| |t_j - t_{j-1}|$$

kar pa je Riemannova vsota za $|\vec{r}(t)|$: $[a,b] \to [0,\infty)$, prirejena po delitvi $\{t_1,\ldots,t_n\}$

Dokaz neodvisnosti od parametrizacije

Naj bo $\vec{\rho}:J\to\Gamma$ neka druga regularna parametrizacija za Γ . Vemo, da lahko pisemo $\vec{\rho}=\vec{r}\circ h$ za neko C^1 preslikavo h med njima. Torej:

$$\int_{\alpha}^{\beta} |\vec{\rho}(\tau)| d\tau = \int_{\alpha}^{\beta} |\vec{r}(h(\tau))| |\dot{h}(\tau)| d\tau = \Big|_{h(\tau)=t} = \int_{a}^{b} |\vec{r}(t)| dt$$

Naravni parameter

»Risanje krivulje s hitrostjo konstante velikosti 1«

Za poljubno gladko krivuljo (z ali brez samopresečišč) definiramo naravni parameter s predpisom:

$$S(t) = \int_{a}^{t} |\vec{r}(\tau)| d\tau \quad ; \qquad \forall t \in [a, b]$$

Hkrati pa $s = S(t) \in [0, l(\gamma)]$. Tedaj za $\vec{\rho}(s) = \vec{r}(S^{-1}(s))$ velja $|\vec{\rho}| \equiv 1$.

Tangentni vektor

Vektorju $\frac{\vec{r}(t)}{|\vec{r}(t)|}$ pravimo <u>enotski tangentni</u> vektor na Γ v točki $\vec{r}(t)$. V naravni parametriziaciji je enak vektorju $\vec{\rho}'(s)$, kjer je s določen z enačbo $\vec{r}(t) = \vec{\rho}(s)$

Tangenta

Tangenta na Γ v tocki $\vec{r}(t)$ je premica v \mathbb{R}^3 , ki poteka skozi $\vec{r}(t)$ on je vzporedna $\vec{r}(t)$:

$$(x, y, z) = \vec{r}(t) + \lambda \vec{r}(t); \quad \lambda \in \mathbb{R}$$

Normalna ravnina

Normalna ravnina na krivuljo Γ v točki $\vec{r}(t)$ je ravnina v \mathbb{R}^3 , ki vsebuje $\vec{r}(t)$ in je pravokotna na $\vec{r}(t)$ oz. na tangento na Γ v tocki $\vec{r}(t)$:

$$\langle (x, y, z) - \vec{r}(t), \vec{r}(t) \rangle_{\mathbb{R}^3} = 0$$

Nekolinearnost točk na krivulji

Naj bo γ regularna C^2 parametrizacija neke krivulje v \mathbb{R}^3 . Za dano točko $t_0 \in \mathbb{R}$ privzemimo, da je:

$$v_0 = (\gamma' \times \gamma'')(t_0) \neq 0$$

Tedaj $\exists \delta > 0$ taksna, da $t_1, t_2 \in (t_0 - \delta, t_0 + \delta)$ tako, da so t_0, t_1, t_2 med seboj različne, so točke $\gamma(t_1), \gamma(t_2), \gamma(t_3)$ <u>nekolinearne</u>.

Dokaz (s protislovjem)

Denimo, da $\gamma(t_0)$, $\gamma(t_1)$, $\gamma(t_2)$ **niso** nekolinearne. Torej lezijo na premici $l=l(t_1,t_2)$. Recimo $t_0 < t_1 < t_2$. Ker $\gamma(t_i) - \gamma(t_0)$ lezi na premici l, je:

$$\langle \gamma(t_1) - \gamma(t_0), w \rangle = \langle \gamma(t_2) - \gamma(t_0), w \rangle = 0$$

Kjer je w iz ortogonalnega komplimenta $w \in l^{\perp} \setminus \{0\}$ (l^{\perp} je ravnina).

Ce definiramo:

$$f(t) = \langle \gamma(t) - \gamma(t_0), w \rangle$$

je
$$f(t_0) = f(t_1) = f(t_2) = 0$$

Sedaj lahko uporabimo Rolleov izrek, ki pove, da $\exists \xi_1, \xi_2 \in \mathbb{R}$: $t_0 < \xi_1 < t_1 < \xi_2 < t_2$ in $f'(\xi_1) = f'(\xi_2)$ oz.:

$$\langle \gamma'(\xi_1), w \rangle = \langle \gamma'(\xi_2), w \rangle = 0$$

In spet po Rolleovem izreku sledi:

$$\langle \gamma^{\prime\prime}(\xi_3),w\rangle=0$$

Ideja zaključka: Ker sta t_1, t_2 blizu t_0 , sta tudi $\gamma'(\xi_i)$ blizu $\gamma''(t_0)$ in $\gamma''(\xi_i)$ blizu $\gamma''(t_0)$

- $\Rightarrow w$ skoraj pravokoten na $\gamma'(t_0)$, $\gamma''(t_0)$
- $\Rightarrow w$ skoraj vzporeden z $\gamma'(t_0) \times \gamma''(t_0)$

Cela ravnina (kar w je) pa ne more biti v tako ozkem stozcu. Sledi protislovje.

Pritisniena ravnina

To je ravnina v \mathbb{R}^3 , ki se v dani točki krivulje »najbolje prilega«.

Ravnini skozi $T_0=\gamma(t_0)$ in z normalno $v_0=\dot{\gamma}(t_0)\times \ddot{\gamma}(t_0)$ pravimo **pritisnjena ravnina** za krivuljo γ v tocki T_0 .

Pritisnjena ravnina v t_0 je kot »limita« ravnin $\Pi(t_1,t_2)$. S tem je mišljeno da enotske normalne $n(t_1,t_2) = \frac{[\gamma(t_1)-\gamma(t_0)]\times[\gamma(t_2)-\gamma(t_0)]}{|[\gamma(t_1)-\gamma(t_0)]\times[\gamma(t_2)-\gamma(t_0)]|}$ na $\Pi(t_1,t_2)$ konvergirajo proti v_0 .

Enačba pritisnjene ravnine na krivuljo v točki $\gamma(t_0)$ je podana z mesanim produktom

$$(\vec{a}, \vec{b}, \vec{c}) = \langle \vec{a}, \vec{b} \times \vec{c} \rangle = \langle \vec{a} \times \vec{b}, \vec{c} \rangle \qquad ((x, y, z) - \vec{\gamma}(t_0), \vec{\gamma}(t_0), \vec{\gamma}(t_0)) = 0$$

Pritisnjena ravnina je enolično definirana če je $v_0 \neq 0$. Za to **ni** dovolj, da krivulja **ni** premica. Tudi pri drugih krivuljah se lahko zgodi. (Npr. $\gamma(t)=(t^3,t^4,t^5)$)

Ce je $\Pi = \Pi(t_0)$ pritisnjena ravnina za γ v točki $\gamma(t_0)$, tedaj velja:

$$d(y(t_0 + h), \Pi) = \sigma(h^2); \quad h \to 0$$

$$F(h) = \sigma(h^2) \Leftrightarrow \lim_{h \to a} \frac{F(h)}{h^2}$$

S tem je mišljeno, da funkcija pada hitrejše kot kvadratno oz., da je stik med $\gamma(t_0)$ in $\Pi(t_0)$ drugega reda: Tocke blizu pritisnjene ravnine so "kvadratično" blizu.

Spremljajoči (Frenet-Serretov) trieder

Če je $\vec{r} \times \vec{r} \neq 0$, vektorju $\frac{\vec{r} \times \vec{r}}{|\vec{r} \times \vec{r}|}$ pravimo <u>vektor binormale</u> (\vec{B}). Če je $\vec{T} = \frac{\vec{r}}{|\vec{r}|}$ <u>enotski tangentni vektor</u> pravimo vektorju $\vec{N} = \vec{B} \times \vec{T}$ <u>vektor glavne normale</u>. Ravnini, ki je pravokotna nanj pravimo <u>rektifikacijska ravnina (binormalna ravnina)</u>. Trojici ($\vec{T}, \vec{N}, \vec{B}$) pravimo spremljajoči (Frenet –Serretov) trieder.

$$\vec{T} = \frac{\vec{r}}{|\vec{r}|} \qquad \vec{B} = \frac{\vec{r} \times \vec{r}}{|\vec{r} \times \vec{r}|} \qquad \vec{N} = \frac{(\vec{r} \times \vec{r}) \times \vec{r}}{|(\vec{r} \times \vec{r}) \times \vec{r}|}$$

Vsi trije vektorji so enotski in med sabo pravokotni.

Pospešek v naravni parametrizaciji (prva Frenetova formula)

Naj bo $\vec{r}=\vec{r}(t), t\in [\alpha,\beta]$ regularna \mathcal{C}^2 parametrizacija za krivuljo Γ in $s=f(t)=\int_{\alpha}^t \left|\vec{r}(\tau)\right|d\tau$ pridruženi naravni parameter. Z $\vec{R}(s)=\vec{r}\left(f^{-1}(s)\right)$ (1) označimo novo parametrizacijo za Γ . Takrat velja:

i) Če je
$$F(s) = G(t) \left(= G(f^{-1}(s)) \right)$$
 potem je: $F'(s) = \frac{G'(t)}{|\vec{r}(t)|}$

ii)
$$\vec{R}'(s) = \frac{\vec{r}(t)}{|\vec{r}(t)|}$$

iii) $\vec{R}'' \perp \vec{R}'$ oz. se vec:

$$\vec{R}''(s) = \frac{(\vec{r} \times \vec{r}) \times \vec{r}}{|\vec{r}|^4} = \frac{|\vec{r} \times \vec{r}|}{|\vec{r}|^3} \cdot \frac{(\vec{r} \times \vec{r}) \times \vec{r}}{|(\vec{r} \times \vec{r}) \times \vec{r}|} = \kappa \vec{N}$$

Torej: Pospešek v naravni parametrizaciji kaze v smeri glavne normale, velikost pa je κ .

Dokaz

- i) Iz G(t) = F(f(t)) sledi $G'(t) = F'(f(t)) \cdot f'(t) = F'(s) \cdot |\vec{r}(t)|$
- ii) Točko i) uporabimo na (1)
- iii) Velja:

$$R''(s) = \frac{d}{ds}\vec{R}'(s) = \frac{d}{ds} \left[\frac{\vec{r}(t)}{|\vec{r}(t)|} \right] = \frac{\frac{d}{dt} \left(\frac{\vec{r}}{|\vec{r}|} \right)(t)}{|\vec{r}(t)|} = \frac{\frac{\vec{r}|\vec{r}| - \vec{r}|\vec{r}|'}{|\vec{r}|^2}}{|\vec{r}|}$$

Ker za vektor $v = \vec{r}$ velja $|\vec{r}| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$ je

$$\left|\vec{r}\right|' = \frac{1}{2} \langle \vec{v}, \vec{v} \rangle^{-\frac{1}{2}} \cdot \left(\langle \vec{v}, \vec{v} \rangle + \langle \vec{v}, \vec{v} \rangle \right) = \frac{\langle \vec{v}, \vec{v} \rangle}{|\vec{v}|} = \frac{\langle \vec{r}, \vec{r} \rangle}{|\vec{r}|}$$

Sledi:

$$\vec{R}^{"} = \frac{\left|\vec{r}\right|\vec{r} - \frac{\langle\vec{r},\vec{r}\rangle}{\left|\vec{r}\right|}\vec{r}}{\left|\vec{r}\right|^{3}} = \frac{\left|\vec{r}\right|^{2}\vec{r} - \langle\vec{r},\vec{r}\rangle\vec{r}}{\left|\vec{r}\right|^{4}} = \frac{\left(\vec{r}\times\vec{r}\right)\times\vec{r}}{\left|\vec{r}\right|^{4}}$$

Ker je $\vec{a} \times \vec{b} \perp \vec{a}$ je $\left| (\vec{a} \times \vec{b}) \times \vec{a} \right| = \left| \vec{a} \times \vec{b} \right| |\vec{a}| \sin \frac{\pi}{2}$. Torej:

$$R''(s) = \frac{\left| \left(\vec{r} \times \vec{r} \right) \times \vec{r} \right|}{\left| \vec{r} \right|^4} \cdot \frac{\left(\vec{r} \times \vec{r} \right) \times \vec{r}}{\left| \vec{r} \right|^4} = \kappa \vec{N}$$

Fleksijska ukrivljenost

Količini κ pravimo fleksijska ukrivljenost krivulje Γ v točki \vec{r} .

$$\kappa = \frac{\left|\vec{r} \times \vec{r}\right|}{\left|\vec{r}\right|^3}$$

Pritisnjena krožnica

Naj bodo γ , t_0 , v_0 , δ , t_0 , t_1 , t_2 definirani kot pri izreku o nekolinearnosti točk na krivulji. Tedaj:

- $\exists !$ Krožnica $K(t_0,t_1,t_2) \subset \mathbb{R}^3$, ki vsebuje $\gamma(t_0),\gamma(t_1),\gamma(t_2)$
- Ce označimo s $S(t_0,t_1,t_2)$ središče te krožnice, tedaj $\exists \ S(t_0) = \lim_{t_1,t_2 \to t_0} S(t_0,t_1,t_2)$
- Točka $S(t_0) \in \mathbb{R}^3$ lezi v pritisnjeni ravnini za Γ v točki $\gamma(t_0)$ in sicer na oddaljenosti (radij pritisnjene krožnice) $\rho = \frac{1}{\kappa}$ od točke $\gamma(t_0)$

Taksni krožnici pravimo **pritisnjena krožnica** za Γ v točki $\gamma(t_0)$.

Dokaz

Skozi tri nekolinearne točke obstaja krožnica. Definiramo $g:(t_0-\delta,t_0+\delta)\to [0,\infty)$ s predpisom:

$$g(t) = |\gamma(t) - S(t_0, t_1, t_2)|^2;$$
 $g(t_0) = g(t_1) = g(t_2) = R^2$

Po Rolleovem izreku:

$$\exists \xi_1, \xi_2 \in (t_0 - \delta, t_0 + \delta) : g'(\xi_1) = g'(\xi_2) = 0$$

$$\exists \xi_3 : g''(\xi_3) = 0$$

V limiti dobimo, kjer je $S = \lim_{t_1, t_2 \to t_0} S(t_0, t_1, t_2)$:

$$\begin{split} \langle \gamma'(t_0), \gamma(t_0) - S \rangle &= 0 \\ \langle \gamma''(t_0), \gamma(t_0) - S \rangle &= -|\gamma'(t_0)|^2 \end{split}$$

Točka S bo, ce obstaja, lezala v pritisnjeni ravnini, ki ima normalo $\gamma'(t_0) \times \gamma''(t_0)$, velja se tretja enačba:

$$\langle (\gamma' \times \gamma'')(t_0), \gamma(t_0) - S \rangle = 0$$

Ta sistem enačb ima enolično rešitev:

$$S(t_0) = \gamma(t_0) + \frac{1}{\kappa(t_0)} \cdot \frac{(\gamma' \times \gamma'') \times \gamma'}{|(\gamma' \times \gamma'') \times \gamma'|}(t_0) = \gamma + \frac{\vec{N}}{\kappa}$$

Sledi, da je polmer pritisnjenega kroga $1/\kappa$

Druga Frenetova formula (in por do torzijske ukrivljenosti)

Vemo, da $\vec{B}=\vec{T}\times\vec{N}\Rightarrow\vec{B}'=\vec{T}'\times\vec{N}+\vec{T}\times\vec{N}'$. Vemo da je $\vec{T}'\times\vec{N}=0$ saj je $\vec{T}'=\kappa\vec{N}$

$$\Rightarrow \vec{B}' \perp \vec{T}$$

Ker je
$$|\vec{B}| = 1$$
, je $0 = (|\vec{B}|^2)^2 = (\langle \vec{B}, \vec{B} \rangle)' = 2\langle \vec{B}', \vec{B} \rangle$
 $\Rightarrow \vec{B}' \perp \vec{B}$

Ker trojica $\{ \vec{T}, \vec{N}, \vec{B} \}$ tvori kompleten ortonormiran sistem v \mathbb{R}^3 sledi

$$\Rightarrow \vec{B}' \parallel \vec{N}$$

Zato lahko pišemo: $\vec{B}' = -\tau \vec{N}$

Torzijska ukrivljenost

Količini au pravimo <u>torzijska ukrivljenost</u> krivulje Γ v točki \vec{r} .

$$\tau = \frac{\vec{r} \cdot (\vec{r} \times \vec{r})}{\left| \vec{r} \times \vec{r} \right|^2}$$

Torej je τ merilo (lokalne) »tridimenzionalnosti« krivulje.

Velja: $\kappa = 0 \Leftrightarrow$ krivulja je premica

Regularna C^2 krivulja je **ravninska** $\Leftrightarrow \tau = 0$

Dokaz (da je krivulja ravninska $\Leftrightarrow \tau = 0$)

(⇒`

Privzemimo, da je Γ krivulja v $\mathbb{R}^2 \times \{0\}$. Torej je dana z: $\vec{r}(t) = (x(t), y(t), 0)$

$$\Rightarrow \vec{r} = (\dot{x}, \dot{y}, 0) \quad \vec{r} = (\ddot{x}, \ddot{y}, 0) \qquad \vec{r} \times \vec{r} = (0, 0, \dot{x}\ddot{y} - \ddot{x}\dot{y})$$

Torej lahko izračunamo:

$$\kappa = \frac{\left|\vec{r} \times \vec{r}\right|}{|\vec{r}|^3} = \frac{\left|\dot{x}\ddot{y} - \ddot{x}\dot{y}\right|}{\left|\dot{x}^2 + \dot{y}^2\right|^{\frac{3}{2}}} \quad \vec{B} = \frac{\vec{r} \times \vec{r}}{\left|\vec{r} \times \vec{r}\right|} = \left(0,0,\frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\left|\dot{x}\ddot{y} - \ddot{x}\dot{y}\right|}\right) \quad \vec{N} = \frac{\left(\vec{r} \times \vec{r}\right) \times \vec{r}}{\left|\left(\vec{r} \times \vec{r}\right) \times \vec{r}\right|}$$

Tu je $(\vec{r} \times \vec{r}) \times \vec{r} = (\dot{x}\ddot{y} - \ddot{x}\dot{y})(-\dot{y}, \dot{x}, 0)$. Hkrati pa je $\vec{B} = (0, 0, *)$, zato je $\vec{B}' = \tau \vec{N}$ mogoč le takrat, ko je $\tau = 0$.

(⇔)

Ce je $\tau \equiv 0$, je $\vec{B}' \equiv 0$, zato je $\vec{B} = konst$. in je pritisnjena ravnina ista v vseh točkah, kar pomeni da je krivulja ravninska.

Spremljajoči trieder v naravni parametrizaciji

Naj bo Γ regularna C^2 krivulja v \mathbb{R}^3 . V **naravni parametrizaciji** $\overrightarrow{
ho}$ je:

$$\vec{T} = \vec{\rho}'$$
 $\vec{N} = \frac{\vec{\rho}''}{|\vec{\rho}''|}$ $\vec{B} = \frac{\vec{\rho}' \times \vec{\rho}''}{|\vec{\rho}''|}$

Frenet-Serretove formule

Samo v naravni parametrizaciji:

$$\begin{bmatrix} \vec{T}' \\ \vec{N}' \\ \vec{R}' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \vec{T} \\ \vec{N} \\ \vec{R} \end{bmatrix} \quad \Rightarrow \vec{T}' = \kappa \vec{N} \quad \vec{N}' = -\kappa \vec{T} + \tau \vec{B} \quad \vec{B}' = -\tau \vec{N}$$

Orientacija

<u>Lokalna orientacija</u> (gladke, regularne) krivulje Γ brez samopresecisc v tocki $\gamma \in \Gamma$ je podana z izbiro enotskega tangentnega vektorja v točki γ

Globalna orientacija je podana z zvezno izbiro enotskih tangentnih vektorjev po vseh $\gamma \in \Gamma$ (torej z zvezno izbiro lokalne orientacije)

Vsaka (gladka, regularna, povezana) krivulja Γ brez samopresečišč ima globalno orientacijo oz. obstajata **točno dve** orientaciji.

Orientacija **odsekoma gladke** nesklenjene krivulje $\Gamma_1 \cup ... \cup \Gamma_m$ je določena tako, da je končna točka na Γ_i enaka začetni točki na Γ_{i+1}