Rozwiązywanie gier

Wybrane problemy algorytmiczne i technologiczne, seminarium

Michał Krakowiak

Gdańsk, 05.11.2019

- Wstęp
 - Zawartość
 - Tło historyczne
 - Definicja gry

- Wstęp
 - Zawartość
 - Tło historyczne
 - Definicja gry
- Klasyfikacja rozwiązań
 - Przegląd
 - Mocne
 - Kółko i krzyżyk
 - Nim
 - Słabe
 - Warcaby
 - Szachy Gardnera 5x5

- Ultra słabe
 - Hex
 - Go

- Wstep
 - Zawartość
 - Tło historyczne
 - Definicja gry
- Klasyfikacja rozwiązań
 - Przegląd
 - Mocne
 - Kółko i krzyżyk
 - Nim
 - Słabe
 - Warcaby
 - Szachy Gardnera 5x5

- Ultra słabe
 - Hex
 - Go
- Szachy
 - Minimax
 - Heurystyki
 - Negamax
 - Funkcja oceniająca
 - Alfa-Beta Pruning
 - Monte Carlo tree search
 - Null move
 - Killer heuristic

- Wstep
 - Zawartość
 - Tło historyczne
 - Definicja gry
- Mlasyfikacja rozwiązań
 - Przegląd
 - Mocne
 - Kółko i krzyżyk
 - Nim
 - Słabe
 - Warcaby
 - Szachy Gardnera 5x5

- Ultra słabe
 - Hex
 - Go
- Szachy
 - Minimax
 - Heurystyki
 - Negamax
 - Funkcja oceniająca
 - Alfa-Beta Pruning
 - Monte Carlo tree search
 - Null move
 - Killer heuristic
- Literatura

Tło historyczne

Rysunek: John Nash

Rysunek: Claude Shannon

Czym jest gra?

Definicja

Gra jest opisem strategicznej interakcji, która narzuca ograniczenia na udział graczy oraz akcje jakie mogą podjąć [2].

Właściwości rozważanych gier:

Udział tylko dwóch graczy

- Udział tylko dwóch graczy
- Gracze wykonują ruchy naprzemiennie

- Udział tylko dwóch graczy
- Gracze wykonują ruchy naprzemiennie
- Przebieg nie zależy od czynników losowych

- Udział tylko dwóch graczy
- Gracze wykonują ruchy naprzemiennie
- Przebieg nie zależy od czynników losowych
- Gracze posiadają pełną wiedzę o stanie gry

- Udział tylko dwóch graczy
- Gracze wykonują ruchy naprzemiennie
- Przebieg nie zależy od czynników losowych
- Gracze posiadają pełną wiedzę o stanie gry
- Gra kończy się po skończonej liczbie ruchów

- Udział tylko dwóch graczy
- Gracze wykonują ruchy naprzemiennie
- Przebieg nie zależy od czynników losowych
- Gracze posiadają pełną wiedzę o stanie gry
- Gra kończy się po skończonej liczbie ruchów
- Wygrywa gracz, który wykona ostatni ruch

Mocne

Klasyfikacja rozwiązań

- Mocne
- Słabe

Klasyfikacja rozwiązań

- Mocne
- Słabe
- Ultra słabe

Rozwiązania mocne

 Jest znany algorytm pozwalający uzyskać optymalne ruchy z każdej pozycji (nawet jeżeli, któryś z graczy popełnił błąd)

Rozwiązania mocne

- Jest znany algorytm pozwalający uzyskać optymalne ruchy z każdej pozycji (nawet jeżeli, któryś z graczy popełnił błąd)
- Częste wykorzystanie metod siłowych

Rozwiązania mocne

- Jest znany algorytm pozwalający uzyskać optymalne ruchy z każdej pozycji (nawet jeżeli, któryś z graczy popełnił błąd)
- Częste wykorzystanie metod siłowych
- Dowód może nie być pomocny w zrozumieniu powodów dlaczego dana gra jest rozwiązywalna

• Gra jest trywialna, ze względu na niewielkie drzewo gry

Rysunek: Kółko i krzyżyk

- Gra jest trywialna, ze względu na niewielkie drzewo gry
- Teoretyczna liczba stanów to $3^9 = 19683$

Rysunek: Kółko i krzyżyk

- Gra jest trywialna, ze względu na niewielkie drzewo gry
- Teoretyczna liczba stanów to $3^9 = 19683$
- Nie każdy stan jest możliwy

- Gra jest trywialna, ze względu na niewielkie drzewo gry
- Teoretyczna liczba stanów to $3^9 = 19683$
- Nie każdy stan jest możliwy
- Niektóre stany są tożsame

Χ	Χ	Χ
0	0	0

- Gra jest trywialna, ze względu na niewielkie drzewo gry
- Teoretyczna liczba stanów to $3^9 = 19683$
- Nie każdy stan jest możliwy
- Niektóre stany są tożsame

Χ	Χ	Х
0	0	0

		0
X	Χ	0

X	Χ	0
		0

- Gra jest trywialna, ze względu na niewielkie drzewo gry
- Teoretyczna liczba stanów to $3^9 = 19683$
- Nie każdy stan jest możliwy
- Niektóre stany są tożsame

Χ	Χ	Χ
0	0	0

- Gra jest trywialna, ze względu na niewielkie drzewo gry
- Teoretyczna liczba stanów to $3^9 = 19683$
- Nie każdy stan jest możliwy
- Niektóre stany są tożsame
- W rezultacie jest tylko 765 różnych stanów [1]

Χ	Χ	Х
0	0	0

		0
X	Χ	0

Χ	Χ	0
		0

Rysunek: Optymalna gra dla X

Rysunek: Optymalna gra dla O

Matematyczna gra strategiczna

Rysunek: Przykładowa rozgrywka w nim

- Matematyczna gra strategiczna
- Gracze zabierają elementy ze stosów

Rysunek: Przykładowa rozgrywka w nim

- Matematyczna gra strategiczna
- Gracze zabierają elementy ze stosów
- W czasie ruchu gracz bierze dowolną niezerową liczbę elementów

Rysunek: Przykładowa rozgrywka w nim

- Matematyczna gra strategiczna
- Gracze zabierają elementy ze stosów
- W czasie ruchu gracz bierze dowolną niezerową liczbę elementów
- W jednym ruchu można zabrać elementy z tylko jednego stosu

Rysunek: Przykładowa rozgrywka w nim

- Matematyczna gra strategiczna
- Gracze zabierają elementy ze stosów
- W czasie ruchu gracz bierze dowolną niezerową liczbę elementów
- W jednym ruchu można zabrać elementy z tylko jednego stosu
- W klasycznej wersji wygrywa gracz, który zabierze ostatni element

Rysunek: Przykładowa rozgrywka w nim

Nim - strategia

Nim - strategia

- Kombinatoryczna teoria gier definiuje działanie tzw. *nimsumy*: $x \oplus y$
- Działanie jest także znane jako alternatywa wykluczająca, czyli xor

Nim - strategia

- Kombinatoryczna teoria gier definiuje działanie tzw. nimsumy: $x \oplus y$
- Działanie jest także znane jako alternatywa wykluczająca, czyli xor
- $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

<u>Nim</u> - strategia

- Kombinatoryczna teoria gier definiuje działanie tzw. *nimsumy*: $x \oplus y$
- Działanie jest także znane jako alternatywa wykluczająca, czyli xor
- $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
- $a \oplus b = b \oplus a$

<u>Nim</u> - strategia

- Kombinatoryczna teoria gier definiuje działanie tzw. *nimsumy*: $x \oplus y$
- Działanie jest także znane jako alternatywa wykluczająca, czyli xor
- $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
- $a \oplus b = b \oplus a$
- \bullet $0 \oplus a = a$

- Kombinatoryczna teoria gier definiuje działanie tzw. nimsumy: $x \oplus y$
- Działanie jest także znane jako *alternatywa wykluczająca*, czyli xor
- $\bullet \ (a \oplus b) \oplus c = a \oplus (b \oplus c)$
- $a \oplus b = b \oplus a$
- $\bullet \ 0 \oplus a = a$
- $a \oplus a = 0$

Twierdzenie

Gracz rozpoczynający ma wygrywającą strategię wtedy i tylko wtedy, gdy nimsuma rozmiarów stosów jest niezerowa. W przeciwnym razie drugi gracz posiada strategię wygrywającą.

• x_i - ilość elementów przed wykonaniem ruchu na *i*-tym stosie

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na *i*-tym stosie

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na *i*-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = 0 \oplus t$

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na *i*-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = 0 \oplus t$
- $t = (s \oplus s) \oplus t$

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na *i*-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = 0 \oplus t$
- $t = (s \oplus s) \oplus t$
- $t = s \oplus (s \oplus t)$

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = 0 \oplus t$
- $t = (s \oplus s) \oplus t$
- $t = s \oplus (s \oplus t)$
- $t = s \oplus (x_1 \oplus ... \oplus x_n) \oplus (y_1 \oplus ... \oplus y_n)$

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = 0 \oplus t$
- $t = (s \oplus s) \oplus t$
- $t = s \oplus (s \oplus t)$
- $t = s \oplus (x_1 \oplus ... \oplus x_n) \oplus (y_1 \oplus ... \oplus y_n)$
- $t = s \oplus (x_1 \oplus y_1) \oplus ... \oplus (x_n \oplus y_n)$

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = 0 \oplus t$
- $t = (s \oplus s) \oplus t$
- $t = s \oplus (s \oplus t)$
- $t = s \oplus (x_1 \oplus ... \oplus x_n) \oplus (y_1 \oplus ... \oplus y_n)$
- $t = s \oplus (x_1 \oplus y_1) \oplus ... \oplus (x_n \oplus y_n)$
- $t = s \oplus 0 \oplus ... \oplus 0 \oplus (x_k \oplus y_n) \oplus 0 \oplus ... \oplus 0$

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na *i*-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = 0 \oplus t$
- $t = (s \oplus s) \oplus t$
- $t = s \oplus (s \oplus t)$
- $t = s \oplus (x_1 \oplus ... \oplus x_n) \oplus (y_1 \oplus ... \oplus y_n)$
- $t = s \oplus (x_1 \oplus y_1) \oplus ... \oplus (x_n \oplus y_n)$
- $t = s \oplus 0 \oplus ... \oplus 0 \oplus (x_k \oplus y_n) \oplus 0 \oplus ... \oplus 0$
- $t = s \oplus x_k \oplus y_k$

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus y_k$

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus y_k$
- Jeżeli s = 0, gracz wykonujący ruch przegrywa

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus y_k$
- Jeżeli s = 0, gracz wykonujący ruch przegrywa
- Jeżeli nie ma już możliwych ruchów, gra się skończyła i gracz już przegrał

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus y_k$
- Jeżeli s = 0, gracz wykonujący ruch przegrywa
- Jeżeli nie ma już możliwych ruchów, gra się skończyła i gracz już przegrał
- Każdy możliwy ruch sprawia, że $t = x_k \oplus y_k \neq 0$

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus y_k$
- Jeżeli s = 0, gracz wykonujący ruch przegrywa
- Jeżeli nie ma już możliwych ruchów, gra się skończyła i gracz już przegrał
- Każdy możliwy ruch sprawia, że $t = x_k \oplus y_k \neq 0$
- $x_k \oplus y_k \neq 0$, ponieważ gracz musi pobrać niezerową liczbę elementów

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus v_k$

<u>Nim</u> - strategia

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus v_k$
- Jeżeli $s \neq 0$, to możliwe jest wykonanie takiego ruchu, że t=0, gracz wykonujący ruch wygrywa

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus y_k$
- Jeżeli $s \neq 0$, to możliwe jest wykonanie takiego ruchu, że t = 0, gracz wykonujący ruch wygrywa
- Żeby t = 0, to $y_k = s \oplus x_k$

- x_i ilość elementów przed wykonaniem ruchu na *i*-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- $t = s \oplus x_k \oplus y_k$
- Jeżeli s ≠ 0, to możliwe jest wykonanie takiego ruchu, że t = 0, gracz wykonujący ruch wygrywa
- Żeby t = 0, to $y_k = s \oplus x_k$
- $t = s \oplus x_k \oplus (s \oplus x_k) = 0$

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$

<u>Nim</u> - strategia

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na *i*-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- Strategia wygrywająca polega na zdejmowaniu elementów w taki sposób, aby zaszło t = 0

- x_i ilość elementów przed wykonaniem ruchu na i-tym stosie
- y_i ilość elementów po wykonaniu ruchu na i-tym stosie
- Niech $s = x_1 \oplus ... \oplus x_n$
- Niech $t = y_1 \oplus ... \oplus y_n$
- Strategia wygrywająca polega na zdejmowaniu elementów w taki sposób, aby zaszło t=0
- Taki ruch jest możliwy wtedy i tylko wtedy, gdy $s \neq 0$

 Jest znany algorytm, który pozwala jednemu z graczy utrzymać zwycięstwo lub remis od początku gry, niezależnie od ruchów przeciwnika

Rozwiązania słabe

- Jest znany algorytm, który pozwala jednemu z graczy utrzymać zwycięstwo lub remis od początku gry, niezależnie od ruchów przeciwnika
- Dzięki podanemu algorytmowi uzyskano przynajmniej jedną optymalną grę oraz podano dowód, że każdy ruch jest optymalny dla gracza, który go wykonuje

Warcaby

• Chinook - program komputerowy rozwijany w latach 1989 - 2007

Rysunek: Warcaby

Chinook - program komputerowy

rozwijany w latach 1989 - 2007

 19.07.2007 w magazynie Science twórcy opublikowali swój dowód, że w przypadku, gdy żaden z graczy nie popełni błędu partia kończy się remisem

Rysunek: Warcaby

Chinook - program komputerowy

rozwijany w latach 1989 - 2007

- 19.07.2007 w magazynie Science twórcy opublikowali swój dowód, że w przypadku, gdy żaden z graczy nie popełni błędu partia kończy się remisem
- Baza danych końcówek o liczbie pionów ≤ 10 , **237 GB**

Rysunek: Warcaby

Warcaby

- Chinook program komputerowy rozwijany w latach 1989 - 2007
- 19.07.2007 w magazynie Science twórcy opublikowali swój dowód, że w przypadku, gdy żaden z graczy nie popełni błędu partia kończy się remisem
- Baza danych końcówek o liczbie pionów < 10, **237 GB**
- Baza danych przechowuje wynik gry dla danej pozycji, jest wykorzystywana do analizy wstecz (retrograde)
- Drugi komponent: algorytm przeszukiwania wprzód (alphabeta)

Rysunek: Warcaby

Szachy Gardnera 5x5

• Udowodniono remis, przy optymalnej grze obu graczy [5]

Rysunek: Startowe ułożenie w szachach Gardnera 5x5

Szachy Gardnera 5x5

4.1 White moves b4

1 b4 cxb4 (2 \blacksquare b3 d4 \sharp 17 \sharp ₀, 2 \blacksquare xb4 xxb4 \sharp 21 \sharp ₀, 2 c4 bxc4 \sharp 15 \sharp ₀ the b4 c4 pawn duo is too strong, 2 xd4 bxc3 \sharp 20 \sharp ₀, 2 c4 bxc3 \sharp 25 \sharp ₀)

- [1|1] 2 d4 bxc3 (3 dxe5+ #17#5., 3 e4 #9#5., 3 f4 #10#5., 3 **E**b3 #17#5., 3 **E**b4 #12#5., 3 **E**xb5 #12#5., 3 **E**xb5 #12#5., 3 **E**xb5 #7#5.)
- 3 &xc3 b4 (4 e4 dxe4 #19#5, 4 f4 exf4 #30#5,4 \(\tilde{\Omega}\)xb4 \(\tilde{\Omega}\)xb5 \(\tilde{\Omega}\)xb
 - [1]1.1] 4 dxe5+ ±xe5 (5 e4 ±13±, 5 f4 ±15±, 5 ≡b3 ±15±, 5 ⊙xb4 ±22±, 5 ⊙d4 ±10±, 5 ≡d3 ±15±, 5 ≡d3 ±15±, 5 ±d4 ±10±, 5 ≡d3 ±15±, 5 ±d4 ±29±, 5 ±xe5+ ±xe5 ±30±.)
 - 5 **≅**×b4 **≅**×b4
 - $\begin{array}{l} \textbf{(6 e4 \sharp 9\sharp_0, 6 f4 \sharp 9\sharp_0, 6 \triangleq b2 \sharp 8\sharp_0, 6 \triangleq d2 \sharp 10\sharp_0, 6 \triangleq d4 \sharp 9\sharp_0, 6 \triangleq xe5 + \sharp 51?\sharp_0, 6 \textcircled{x}b4 \sharp 27\sharp_0, 6 \textcircled{x}d4 \sharp 12\sharp_0, 6 \textcircled{w}d2 \sharp 11\sharp_0, 6 \textcircled{w}d3 \sharp 20\sharp_0, 6 \textcircled{w}e4 \sharp 6\sharp_0, 6 \textcircled{w}b5 \sharp 7\sharp_0)} \end{array}$
 - 6 **≜×b4 ②×b4** (7 **e4**#7♯₀, 7 **②d4**#14♯₀, 7 **豐b5**♯9♯₀, 7 **豐c4**♯6♯₀, 7 **豐d3**♯6♯₀, 7 **豐d2**♯17♯⋄)
 - * [1]1.1] 7 f4 \$c3 (8 e4 \$85., 8 \$\tilde{c}\$ 1335., 8 \$\tilde{c}\$ \$\tilde{c}\$ 155., 8 \$\tilde{c}\$ 455., 8 \$\tilde{c}\$ 455., 8 \$\tilde{c}\$ 255., 9 \$\tilde{c}\$ 255., 9
 - * [1|1.1.2] 7 2xb4 d4 = the only move to avoid ... dxe3+ and the liquidation of all pawns is 8 e3 2b3 9 2d5+ 2e6 10 exf5+ 2xd5 11 f4 2e3+ 12 2xe3 dxe3+ 13 2xe3.
 - $= [1|1.2] \ 4 \ \Xi b3 \ f4 \ (5 \ e4 \ \sharp 19\sharp_{\circ}, 5 \ \Xi b2 \ \sharp 33\sharp_{\circ}, 5 \ \Xi xb4 \ \sharp 27\sharp_{\circ}, 5 \ \&xb4 \ \sharp 22\sharp_{\circ}, 5 \ \textcircled{2}xb4 \ \sharp 27\sharp_{\circ}, 5 \ \textcircled{2}b5 \ \sharp 10\sharp_{\circ}, 5 \ \textcircled{2}c4 \ \sharp 8\sharp_{\circ}, 5 \ \textcircled{2}d2 \ \sharp 20\sharp_{\circ})$

Rysunek: Fragment rozwiązania szachów 5x5

 Udowodniono, że gracz wygrywa/przegrywa/remisuje ze startowej pozycji, jeżeli wszyscy grają optymalnie

Rozwiązania ultra słabe

- Udowodniono, że gracz wygrywa/przegrywa/remisuje ze startowej pozycji, jeżeli wszyscy grają optymalnie
- Przeprowadzony dowód może być niekonstruktywny

Rozwiązania ultra słabe

- Udowodniono, że gracz wygrywa/przegrywa/remisuje ze startowej pozycji, jeżeli wszyscy grają optymalnie
- Przeprowadzony dowód może być niekonstruktywny
- Nie jest wymagane określenie żadnego z ruchów optymalnej gry

• Tradycyjnie rozgrywana na planszy w kształcie rombu 11x11

Rysunek: Rozgrywka w hex

- Tradycyjnie rozgrywana na planszy w kształcie rombu 11x11
- Gracze dysponują kamieniami o odmiennych kolorach

Rysunek: Rozgrywka w hex

Hex

- Tradycyjnie rozgrywana na planszy w kształcie rombu 11x11
- Gracze dysponują kamieniami o odmiennych kolorach
- Gracze układają kamienie na wolnych polach

Rysunek: Rozgrywka w hex

- Tradycyjnie rozgrywana na planszy w kształcie rombu 11x11
- Gracze dysponują kamieniami o odmiennych kolorach
- Gracze układają kamienie na wolnych polach
- Wygrywa ten, który utworzy nieprzerwany ciąg łączący boki planszy własnego koloru

Rysunek: Rozgrywka w hex

- Dowod Joilla Nasila

Twierdzenie

Pierwszy gracz ma strategię wygrywającą

Lemat

Dodatkowy lub losowy element Twojego koloru nie może Ci zaszkodzić

Hex - Dowód Johna Nasha

Twierdzenie

Pierwszy gracz ma strategię wygrywającą

Lemat

Dodatkowy lub losowy element Twojego koloru nie może Ci zaszkodzić

Lemat

Hex nie może zakończyć się remisem

Hex - Dowód Johna Nasha

Twierdzenie

Pierwszy gracz ma strategię wygrywająca

Lemat

Dodatkowy lub losowy element Twojego koloru nie może Ci zaszkodzić

Lemat

Hex nie może zakończyć się remisem

Dowód.

Mamy dwóch graczy A i B, A zaczyna. Załóżmy, że B ma strategię wygrywającą. A może zagrać w losowe miejsce. Teraz A jest efektywnym drugim graczem i może grać strategią wygrywającą [6].

Przedstawiony dowód korzystający z kradzieży strategii, może być zastosowany do każdej symetrycznej gry, w której posiadanie dodatkowego elementu na planszy (lub dodatkowego ruchu) nie szkodzi danemu graczowi.

• Tylko wersja gry bez komi

Rysunek: Goban

- Tylko wersja gry bez komi
- Komi to wyrównanie punktowe dla drugiego gracza

Rysunek: Goban

- Tylko wersja gry bez komi
- Komi to wyrównanie punktowe dla drugiego gracza
- Dowód korzysta z kradzieży strategii

Rysunek: Goban

- Tylko wersja gry bez komi
- Komi to wyrównanie punktowe dla drugiego gracza
- Dowód korzysta z kradzieży strategii
- W Go można pasować

Rysunek: Goban

- Tylko wersja gry bez komi
- Komi to wyrównanie punktowe dla drugiego gracza
- Dowód korzysta z kradzieży strategii
- W Go można pasować
- Jeżeli białe mają strategię wygrywającą, czarne mogą ją ukraść pasując już na początku gry

Rysunek: Goban

- Tylko wersja gry bez komi
- Komi to wyrównanie punktowe dla drugiego gracza
- Dowód korzysta z kradzieży strategii
- W Go można pasować
- Jeżeli białe mają strategię wygrywającą, czarne mogą ją ukraść pasując już na początku gry
- W rezultacie czarne mogą wygrać lub zremisować przy optymalnej grze

Rysunek: Goban

ullet 10^{120} możliwych wariantów

Rysunek: Szachy klasyczne

- ullet 10^{120} możliwych wariantów
- Rozwiązane częściowo

Szachy .0000000000

Rysunek: Szachy klasyczne

- \bullet 10^{120} możliwych wariantów
- Rozwiązane częściowo
- Znane są rozwiązania mocne dla wszystkich końcówek liczących od 3 do 7 bierek (wliczając obu króli)

Rysunek: Szachy klasyczne

- \bullet 10^{120} możliwych wariantów
- Rozwiązane częściowo
- Znane są rozwiązania mocne dla wszystkich końcówek liczących od 3 do 7 bierek (wliczając obu króli)
- Osiągnięto to dzięki bazie danych końcówek i analizie retrograde

Rysunek: Szachy klasyczne

Minimiax

Rysunek: Przykładowy minimax

Minimax

```
Function minimax(node, depth, maximizingPlayer):
    if depth = 0 or node is a terminal node then
        return heuristic value of node
    end
    if maximizingPlayer then
        value \leftarrow -\infty
        foreach child in node do
            value \leftarrow \max(\text{value, minimax}(\text{child, depth } -1, \text{False}))
        end
        return value
    else
        value \leftarrow \infty
        foreach child in node do
            value \leftarrow min(value, minimax(child, depth -1, True))
        end
        return value
    end
end
```

Heurystyki

Definicja

Heurystyka to metoda znajdowania rozwiązań, dla której nie ma gwarancji znalezienia rozwiązania optymalnego, a często nawet prawidłowego. Rozwiązań tych używa się np. wtedy, gdy pełny algorytm jest z przyczyn technicznych zbyt kosztowny lub gdy jest nieznany.

Szachy 0000000000

Negamax

• Pewne uproszczenie klasycznego minimaxa

Negamax

- Pewne uproszczenie klasycznego minimaxa
- Wykorzystuje własność gier o zerowej sumie

Negam<u>ax</u>

- Pewne uproszczenie klasycznego minimaxa
- Wykorzystuje własność gier o zerowej sumie
- $\max(a, b) = -\min(-a, -b)$

Negamax

- Pewne uproszczenie klasycznego minimaxa
- Wykorzystuje własność gier o zerowej sumie
- $\bullet \ \max(a,b) = -\min(-a,-b)$

```
Function negamax(node, depth, color):

if depth = 0 or node is a terminal node then

return color · heuristic value of node
end
value \leftarrow -\infty
foreach child in node do

value \leftarrow \max(\text{value, minimax(child, depth } -1, -\text{color)})
end
return value
```

Ocena stanu węzła w drzewie gry

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników
- Nie ma analitycznego ani teoretycznego modelu dla nierozwiązanych gier

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników
- Nie ma analitycznego ani teoretycznego modelu dla nierozwiązanych gier
- Decyduje podejście empiryczne

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników
- Nie ma analitycznego ani teoretycznego modelu dla nierozwiązanych gier
- Decyduje podejście empiryczne
- Przykładowa funkcja dla szachów:

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników
- Nie ma analitycznego ani teoretycznego modelu dla nierozwiązanych gier
- Decyduje podejście empiryczne
- Przykładowa funkcja dla szachów:

$$f(x) = c_1 \cdot \text{ wartość figur}$$

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników
- Nie ma analitycznego ani teoretycznego modelu dla nierozwiązanych gier
- Decyduje podejście empiryczne
- Przykładowa funkcja dla szachów:

 $f(x) = c_1 \cdot \text{wartość figur } + c_2 \cdot \text{bezpieczeństwo króla}$

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników
- Nie ma analitycznego ani teoretycznego modelu dla nierozwiązanych gier
- Decyduje podejście empiryczne
- Przykładowa funkcja dla szachów:

 $f(x) = c_1 \cdot \text{wartość figur } + c_2 \cdot \text{bezpieczeństwo króla } + c_3 \cdot \text{kontrola}$

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników
- Nie ma analitycznego ani teoretycznego modelu dla nierozwiązanych gier
- Decyduje podejście empiryczne
- Przykładowa funkcja dla szachów:
- $f(x) = c_1 \cdot \text{wartość figur} + c_2 \cdot \text{bezpieczeństwo króla} + c_3 \cdot \text{kontrola} + \dots$

Funkcja oceniająca

- Ocena stanu węzła w drzewie gry
- Ogólne podejście: kombinacja liniowa ważonych czynników
- Nie ma analitycznego ani teoretycznego modelu dla nierozwiązanych gier
- Decyduje podejście empiryczne
- Przykładowa funkcja dla szachów:
- $f(x) = c_1 \cdot \text{ wartość figur } + c_2 \cdot \text{ bezpieczeństwo króla } + c_3 \cdot \text{ kontrola } + \dots$ Współczynniki c; są pewnymi wagami i mogą się zmieniać zależnie od fazy gry.

Alfa-Beta Pruning

Alfa-Beta Pruning

```
Function alphabeta(node, depth, \alpha, \beta, maximizingPlayer):
    if depth = 0 or node is a terminal node then
         return heuristic value of node
    end
    if maximizingPlayer then
         value \leftarrow -\infty
         foreach child in node do
             value \leftarrow max(value, alphabeta(child, depth -1, \alpha, \beta, False))
             \alpha \leftarrow \max(\alpha, \text{ value})
             if \alpha > \beta then break
         end
         return value
    else
         value \leftarrow +\infty
         foreach child in node do
             value \leftarrow min(value, alphabeta(child, depth -1, \alpha, \beta, True))
             \beta \leftarrow \min(\beta, \text{ value})
             if \alpha \geq \beta then break
         end
         return value
    end
end
```

Selekcja - Wybór liścia w drzewie gry

Rysunek: Monte Carlo tree search

- Selekcja Wybór liścia w drzewie gry
- Ekspansja Utworzenie węzła potomnego jeżeli liść nie kończy gry

Rysunek: Monte Carlo tree search

- Selekcja Wybór liścia w drzewie gry
- Ekspansja Utworzenie węzła potomnego jeżeli liść nie kończy gry
- Symulacja rozegranie losowej gry z wybranego węzła

Rysunek: Monte Carlo tree search

- Selekcja Wybór liścia w drzewie gry
- Ekspansja Utworzenie węzła potomnego jeżeli liść nie kończy gry
- Symulacja rozegranie losowej gry z wybranego węzła
- Propagacja wsteczna aktualizacja informacji w węzłach na podstawie wyniku rozegranej gry

Rysunek: Monte Carlo tree search

Szachy 0000000000

Null move

• Ruch zerowy, czyli pasowanie

Szachy 0000000000

- Ruch zerowy, czyli pasowanie
- W szachach jest niedozwolony

- Ruch zerowy, czyli pasowanie
- W szachach jest niedozwolony
- Założenie: zrzeczenie się ruchu jest gorsze niż wykonanie dowolnego legalnego ruchu

- Ruch zerowy, czyli pasowanie
- W szachach jest niedozwolony
- Założenie: zrzeczenie się ruchu jest gorsze niż wykonanie dowolnego legalnego ruchu
- Wykorzystywane w poszukiwaniu zagrożeń

- Ruch zerowy, czyli pasowanie
- W szachach jest niedozwolony
- Założenie: zrzeczenie się ruchu jest gorsze niż wykonanie dowolnego legalnego ruchu
- Wykorzystywane w poszukiwaniu zagrożeń
- Może powodować błędy np. będąc szachu

Autorka: Barbara Liskov

Szachy

Killer heuristic

- Autorka: Barbara Liskov
- Tylko niewielka liczba ruchów diametralnie zmienia sytuację

Killer heuristic

- Autorka: Barbara Liskov
- Tylko niewielka liczba ruchów diametralnie zmienia sytuację
- Założenie: jeżeli ruch tworzy odcięcie (zabójczy ruch), to prawdopodobnie wytworzy je też w podobnej sytuacji

Killer heuristic

- Autorka: Barbara Liskov
- Tylko niewielka liczba ruchów diametralnie zmienia sytuację
- Założenie: jeżeli ruch tworzy odcięcie (zabójczy ruch), to prawdopodobnie wytworzy je też w podobnej sytuacji
- Aby przyśpieszyć odcięcie algorytm rozpoczyna szukanie od zapisanych zabójczych ruchów

Literatura

- Anurag Bhatt, Pratul Varshney, Kalyanmoy Deb, Indian Institute of Technology Kanpur, Evolution of No-loss Strategies for the Game of Tic-Tac-Toe, https://www.iitk.ac.in/kangal/papers/k2007002.pdf (data dostępu: 28.10.2019)
- Martin J. Osborne, Ariel Rubinstein, The MIT Press, A course in Game Theory, 1994
- Andrey Kurenkov, A 'Brief' History of Game AI Up To AlphaGo, https://www.andreykurenkov.com/writing/ai/a-brief-history-of-game-ai/ (data dostępu: 26.10.2019)
- Wikipedia, Solved game, https://en.wikipedia.org/wiki/Solved_game (data dostępu: 26.10.2019)
- Mehdi Mhalla, Frédéric Prost, Gardner's Minichess Variant is solved, https://arxiv.org/pdf/1307.7118.pdf (data dostępu: 27.10.2019)
- Hex, SP.269, Spring 2011 http://web.mit.edu/sp.268/www/hex-notes.pdf (data dostępu 03.11.2019)