離散最適化基礎論 第1回 幾何的被覆問題とは?

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2017年10月6日

最終更新: 2017年 10月 10日 20:10

主題

離散最適化のトピックの1つとして<mark>幾何的被覆問題</mark>を取り上げ、 その<mark>数理</mark>的側面と計算的側面の双方を意識して講義する

なぜ講義で取り扱う?

- ▶ 「離散最適化」と「計算幾何学」の接点として重要な役割を 果たしているから
- ▶ 様々なアルゴリズム設計技法・解析技法を紹介できるから
- ▶ 応用が多いから

スケジュール 前半 (予定)

1 幾何的被覆問題とは?	(10/6)
★ 国内出張のため休み	(10/13)
2 最小包囲円問題 (1):基本的な性質	(10/20)
③ 最小包囲円問題 (2): 乱択アルゴリズム	(10/27)
★ 文化の日のため休み	(11/3)
4 クラスタリング (1): <i>k</i> -センター	(11/10)
5 幾何ハイパーグラフ (1): VC 次元	(11/17)
★ 調布祭 のため 休み	(11/24)
$oldsymbol{6}$ 幾何ハイパーグラフ $(2):arepsilon$ ネット	(12/1)

スケジュール 後半 (予定)

	(10 /0)
7 幾何的被覆問題 (1):線形計画法の利用	(12/8)
8 幾何的被覆問題 (2):シフト法	(12/15)
g 幾何的被覆問題 (3):局所探索法	(12/22)
🔟 幾何的被覆問題 (4):局所探索法の解析	(1/5)
⋆ センター試験準備 のため 休み	(1/12)
💵 幾何ハイパーグラフ (3) : $arepsilon$ ネット定理の証明	(1/19)
$leve{1}$ 幾何アレンジメント (1) :合併複雑度と $arepsilon$ ネット	(1/26)
○ 幾何アレンジメント (2):合併複雑度の例	(2/2)
14 最近のトピック	(2/9)
15 期末試験	(2/16?)

注意:予定の変更もありうる

教員

- ▶ 岡本 吉央 (おかもと よしお)
- ▶ 居室:西4号館2階206号室
- E-mail : okamotoy@uec.ac.jp
- Web : http://dopal.cs.uec.ac.jp/okamotoy/

講義資料

- Web: http://dopal.cs.uec.ac.jp/okamotoy/lect/2017/geomcover/
- ▶ 注意:資料の印刷等は各学生が自ら行う
- ▶ 講義当日の昼 12 時までに、ここに置かれる
- ▶ Twitter (@okamoto7yoshio):置かれたことを知らせる tweet

http://dopal.cs.uec.ac.jp/okamotoy/lect/2017/geomcover/

- ▶ スライド
- ▶ 印刷用スライド:8枚のスライドを1ページに収めたもの
- ▶ 演習問題

「印刷用スライド」と「演習問題」は各自印刷して持参すると便利

授業の進め方

講義 (80分)

- ▶ スライドと板書で進める
- ▶ スライドのコピーに重要事項のメモを取る

演習 (10分)

- ▶ 演習問題に取り組む
- ▶ 不明な点は教員に質問する

退室 (0分) ←重要

- ▶ コメント (授業の感想, 質問など) を紙に書いて提出する (匿名可)
- ▶ コメントとそれに対する回答は (匿名で) 講義ページに掲載される
- オフィスアワー:金曜5限(岡本居室)
 - ▶ 質問など
 - ▶ ただし,いないときもあるので注意 (注意:情報数理工学セミナー)

演習問題

演習問題の進め方

- ▶ 授業のおわり 10 分は演習問題を解く時間
- ▶ 残った演習問題は復習・試験対策用
- ▶ 注意:「模範解答」のようなものは存在しない

演習問題の種類

- ▶ 復習問題:講義で取り上げた内容を反復
- ▶ 補足問題:講義で省略した内容を補足
- ▶ 追加問題:講義の内容に追加
- ▶ 発展問題:少し難しい (かもしれない)

レポートの提出

- ▶ 演習問題の答案をレポートとして提出してもよい
- ▶ レポートには提出締切がある (各回にて指定)
- ▶ レポートは採点されない (成績に勘案されない)
- ▶ レポートにはコメントがつけられて、返却される
 - ▶ 返却された内容については、再提出ができる (再提出締切は原則なし)
 - ▶ 再提出には最初に提出したレポートも添付する

期末試験のみによる

- ▶ 出題形式
 - ▶ 演習問題と同じ形式の問題を6題出題する
 - ▶ その中の3題以上は演習問題として提示されたものと同一である (ただし、「発展」として提示された演習問題は出題されない)
 - ▶ 全問に解答する
- ▶ 配点:1題20点満点,計120点満点
- ▶ 成績において、100点以上は100点で打ち切り
- ▶ 時間:90分(おそらく)
- ▶ 持ち込み: A4 用紙 1 枚分 (裏表自筆書き込み) のみ可

教科書・参考書

教科書

▶ 指定しない

全般的な参考書

- ▶ M. de Berg, O. Cheong, M. Overmars, and M. van Kreveld, Computational Geometry: Algorithms and Applications, Springer, 2008. (邦訳あり)
- ▶ J. Matoušek, Lectures on Discrete Geometry, Springer, 2002. (邦訳あり)
- ▶ S. Har-Peled, Geometric Approximation Algorithms, AMS, 2011.

その他,研究論文

この講義の約束

- ▶ 私語はしない (ただし、演習時間の相談は積極的に OK)
- ▶ 携帯電話はマナーモードにする
- ▶ この講義と関係のないことを (主に電子機器で) しない
- ▶ 音を立てて睡眠しない

約束が守られない場合は退席してもらう場合あり

- ① 幾何的被覆問題の例
- 2 ハイパーグラフと被覆問題
- ③ 幾何的被覆問題とは?
- 4 近似アルゴリズム
- ⑤ 今日のまとめ と 次回の予告

幾何的被覆問題の例 (1)

幾何的被覆問題の例 (1)

平面上にいくつかの点といくつかの単位円が与えられたとき 単位円を選んで,点をすべて覆いたい 選ばれる単位円の数を最も少なくするにはどうすればよいか?

幾何的被覆問題の例 (1)

幾何的被覆問題の例 (1)

平面上にいくつかの点といくつかの単位円が与えられたとき 単位円を選んで,点をすべて覆いたい 選ばれる単位円の数を最も少なくするにはどうすればよいか?

幾何的被覆問題の例 (1)

幾何的被覆問題の例 (1)

平面上にいくつかの点といくつかの単位円が与えられたとき 単位円を選んで、点をすべて覆いたい 選ばれる単位円の数を最も少なくするにはどうすればよいか?

幾何的被覆問題の例 (2)

幾何的被覆問題の例 (2)

平面上にいくつか点が与えられたとき いくつかの直線によって,点をすべて覆いたい 用いる直線の数を最も少なくするにはどうすればよいか?

幾何的被覆問題の例 (2)

幾何的被覆問題の例 (2)

平面上にいくつか点が与えられたとき いくつかの直線によって,点をすべて覆いたい 用いる直線の数を最も少なくするにはどうすればよいか?

- 幾何的被覆問題の例
- 2 ハイパーグラフと被覆問題
- ③ 幾何的被覆問題とは?
- 4 近似アルゴリズム
- ⑤ 今日のまとめ と 次回の予告

ハイパーグラフ

被覆問題 (covering problem) で与えられるものはハイパーグラフ

定義:ハイパーグラフ (hypergraph)

Nイパーグラフとは、次を満たす順序対 H = (V, E)

- ▶ Vは (有限) 集合
 - 限) 集合
- $ightharpoonup E \subseteq 2^V$

(Hの辺集合)

(Hの頂点集合)

- 例:H=(V,E)
 - $V = \{1, 2, 3, 4, 5\}$
 - $E = \{\{1,2,3\},\{1,3,5\},\{1,4\},\{2,4,5\}\}$
- 2

• 3

計算幾何·離散幾何では<mark>領域空間</mark> (range space) と呼ばれることもある

ハイパーグラフ

被覆問題 (covering problem) で与えられるものはハイパーグラフ

定義:ハイパーグラフ (hypergraph)

ハイパーグラフとは、次を満たす順序対 H = (V, E)

▶ Vは (有限)集合

(Hの頂点集合)

 $ightharpoonup E \subseteq 2^V$

(Hの辺集合)

- 例:H=(V,E)
 - $V = \{1, 2, 3, 4, 5\}$
 - $E = \{\{1,2,3\},\{1,3,5\},\{1,4\},\{2,4,5\}\}$

計算幾何·離散幾何では領域空間 (range space) と呼ばれることもある

被覆問題 (covering problem) と言ったら、次のような設定の問題

入力として与えられるもの

▶ ハイパーグラフ H = (V, E)

被覆問題 (2)

被覆問題 (covering problem) と言ったら,次のような設定の問題

出力したいもの

 E の部分集合 E' で、V の要素をすべて被覆するもの (任意の v_i ∈ V に対して、ある e_j ∈ E' が存在して、v_i ∈ e_j)

被覆問題 (3)

被覆問題 (covering problem) と言ったら、次のような設定の問題

目的

▶ |E'| の最小化

被覆問題 (3)

被覆問題 (covering problem) と言ったら、次のような設定の問題

目的

▶ |E'| の最小化

幾何的被覆問題の例 (1) 再掲

幾何的被覆問題の例 (1)

平面上にいくつかの点といくつかの単位円が与えられたとき 単位円を選んで、点をすべて覆いたい 選ばれる単位円の数を最も少なくするにはどうすればよいか?

幾何的被覆問題の例 (1) 被覆問題としての定式化

被覆問題としての定式化

- $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$
- \triangleright $E = \{e_1, e_2, e_3, e_4\}$
- $ightharpoonup e_1 = \{v_1, v_2\}, \ e_2 = \{v_1, v_3, v_4\}, \ e_3 = \{v_3, v_4\}, \ e_4 = \{v_4, v_5, v_6\}$

幾何的被覆問題の例 (1) 被覆問題としての定式化

被覆問題としての定式化

- $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$
- \triangleright $E = \{e_1, e_2, e_3, e_4\}$
- $ightharpoonup e_1 = \{v_1, v_2\}, \ e_2 = \{v_1, v_3, v_4\}, \ e_3 = \{v_3, v_4\}, \ e_4 = \{v_4, v_5, v_6\}$

幾何的被覆問題の例 (1) 被覆問題としての定式化 (続き)

被覆問題としての定式化:最適解と最適値

- $E = \{e_1, e_2, e_3, e_4\}$
- $ightharpoonup e_1 = \{v_1, v_2\}, \ e_2 = \{v_1, v_3, v_4\}, \ e_3 = \{v_3, v_4\}, \ e_4 = \{v_4, v_5, v_6\}$
- ▶ $E' = \{e_1, e_2, e_4\}$ は<mark>最適解</mark>で,3 が最適値

幾何的被覆問題の例 (1) 被覆問題としての定式化 (続き 2)

被覆問題としての定式化:最適解と最適値

- \triangleright $E = \{e_1, e_2, e_3, e_4\}$
- $ightharpoonup e_1 = \{v_1, v_2\}, \ e_2 = \{v_1, v_3, v_4\}, \ e_3 = \{v_3, v_4\}, \ e_4 = \{v_4, v_5, v_6\}$
- $F' = \{e_1, e_3, e_4\}$ も最適解で、3 が最適値

違う幾何配置が同じハイパーグラフを与えることもある

→ ハイパーグラフは幾何配置の「組合せ構造」に着目している

幾何的被覆問題の例 (2) 再掲

幾何的被覆問題の例 (2)

平面上にいくつか点が与えられたとき いくつかの直線によって、点をすべて覆いたい 用いる直線の数を最も少なくするにはどうすればよいか?

幾何的被覆問題の例 (2) 再掲

幾何的被覆問題の例 (2)

平面上にいくつか点が与えられたとき いくつかの直線によって,点をすべて覆いたい 用いる直線の数を最も少なくするにはどうすればよいか?

幾何的被覆問題の例 (2):被覆問題としての定式化

ポイント

2 点を通る直線のみを考えれば十分である (点が n 個あるとき,そのような直線の数は $O(n^2)$)

幾何的被覆問題の例 (2):被覆問題としての定式化 (続き)

被覆問題としての定式化

- $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}, E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}$
- ▶ $e_1 = \{v_1, v_2, v_3\}, e_2 = \{v_3, v_4, v_5\}, e_3 = \{v_1, v_5, v_6\}, e_4 = \{v_1, v_4, v_7\}, e_5 = \{v_2, v_5, v_7\}, e_6 = \{v_3, v_6, v_7\}, e_7 = \{v_2, v_4\}, e_8 = \{v_2, v_6\}, e_9 = \{v_4, v_6\}$

- 幾何的被覆問題の例
- 2 ハイパーグラフと被覆問題
- ③ 幾何的被覆問題とは?
- 4 近似アルゴリズム
- ⑤ 今日のまとめ と 次回の予告

離散型単位円被覆問題 (discrete unit disk cover problem)

入力

- ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ightharpoons 平面上の単位円の集合 $\mathcal{D} = \{D_1, D_2, \ldots, D_m\}$

出力

▶ 単位円の集合 $\mathcal{D}' \subseteq \mathcal{D}$ で次を満たすもの $(\mathcal{D}'$ が P を被覆する) 任意の $p \in P$ に対して、ある $D \in \mathcal{D}'$ が存在して、 $p \in D$

目的

▶ |D'| の最小化

離散型単位円被覆問題 (discrete unit disk cover problem)

入力

- ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ightharpoons 平面上の単位円の集合 $\mathcal{D} = \{D_1, D_2, \dots, D_m\}$

被覆問題として定式化するためのハイパーグラフ H = (V, E) を考えると

- ► *V* = *P*
- \triangleright $E = \{D \cap P \mid D \in \mathcal{D}\}$

離散型単位円被覆問題 (discrete unit disk cover problem)

入力

- ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ightharpoons 平面上の単位円の集合 $\mathcal{D}=\{D_1,D_2,\ldots,D_m\}$

名称に関する補足

- ▶ 単位円被覆:被覆に用いる図形が単位円である
- ▶ 離散型:被覆に用いる単位円の有限集合が与えられている

連続型直線被覆問題

連続型直線被覆問題 (continuous line cover problem)

入力

ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

出力

■ 直線の集合 L' で次を満たすもの (L' が P を被覆する)

任意の $p \in P$ に対して,ある $\ell \in L'$ が存在して, $p \in \ell$

目的

▶ |L'| の最小化

•

•

• • •

離散型直線被覆問題

離散型直線被覆問題 (discrete line cover problem)

入力

- ▶ 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ▶ 平面上の直線の集合 $L = \{\ell_1, \ell_2, \dots, \ell_m\}$

出力

▶ 直線の集合 L' ⊂ L で次を満たすもの (L' が P を被覆する) 任意の $p \in P$ に対して,ある $\ell \in L'$ が存在して, $p \in \ell$

目的

▶ |L'| の最小化

離散型直線被覆問題:ハイパーグラフだと見なすと

離散型直線被覆問題 (discrete line cover problem)

入力

- ▶ 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ightharpoonup 平面上の直線の集合 $L=\{\ell_1,\ell_2,\ldots,\ell_m\}$

被覆問題として定式化するためのハイパーグラフ H = (V, E) を考えると

- V = P
- \triangleright $E = \{D \cap \ell \mid \ell \in L\}$

連続型直線被覆問題 (continuous line cover problem)

入力

- ▶ 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ▶ このとき,直線の集合 Lとして,次を考える

▶ すると,

Pを入力とする 連続型直線被覆問題の = 最適値 P, L を入力とする 離散型直線被覆問題の 最適値

- ▶ $\sharp \, t$, $|L| = O(n^2)$
- ▶ つまり、離散型が効率よく解ければ、連続型も効率よく解ける
- ▶ (連続型直線被覆問題は、離散型直線被覆問題に多項式時間で帰着可)

連続型直線被覆問題:名称に関する補足

連続型直線被覆問題 (continuous line cover problem)

入力

ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

名称に関する補足

▶ 直線被覆:被覆に用いる図形が直線である

▶ 連続型:被覆に用いる直線の集合が与えられていない

(用いる直線に制限がない)

連続型から離散型への変換:注意

「離散化」といっても、適切なものは場合による

直線被覆問題に適した離散化

直線被覆問題に適さない離散化

質問

なぜ、右側のような離散化は直線被覆問題に適さないのか?

連続型から離散型への変換:注意

「離散化」といっても、適切なものは場合による

直線被覆問題に適した離散化

直線被覆問題に適さない離散化

質問

なぜ、右側のような離散化は直線被覆問題に適さないのか?

連続型単位円被覆問題

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

出力

▶ 単位円の集合 \mathcal{D}' で次を満たすもの (\mathcal{D}' が P を被覆する) 任意の $p \in P$ に対して、ある $D \in \mathcal{D}'$ が存在して、 $p \in D$

目的

▶ |𝒯'| の最小化

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

出力

▶ 単位円の集合 \mathcal{D}' で次を満たすもの (\mathcal{D}' が P を被覆する) 任意の $p \in P$ に対して、ある $D \in \mathcal{D}'$ が存在して、 $p \in D$

目的

▶ |𝒯'| の最小化

連続型単位円被覆問題 (continuous unit disk cover problem)

▶ 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

連続型直線被覆問題を離散型直線被覆問題と見なす

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

連続型直線被覆問題を離散型直線被覆問題と見なす

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

▶ 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

連続型直線被覆問題を離散型直線被覆問題と見なす

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

▶ 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

連続型直線被覆問題を離散型直線被覆問題と見なす (続)

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

- ightharpoonup 平面上の点集合 $P=\{p_1,p_2,\ldots,p_n\}$
- ▶ このとき、単位円の集合 D として、次を考える

$$\mathcal{D} = \{D \mid D \text{ d } P \text{ o } 2 \text{ 点を通る単位円} \} \cup \{D \mid D \text{ d } P \text{ o } \text{ の点を中心とする単位円} \}$$

連続型直線被覆問題を離散型直線被覆問題と見なす (続)

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

- ightharpoonup 平面上の点集合 $P=\{p_1,p_2,\ldots,p_n\}$
- ▶ このとき、単位円の集合 D として、次を考える

$$\mathcal{D} = \{D \mid D \text{ d } P \text{ o } 2 \text{ 点を通る単位円} \} \cup \{D \mid D \text{ d } P \text{ o } \text{ の点を中心とする単位円} \}$$

▶ すると,

P を入力とする 連続型単位円被覆問題の 最適値 P, D を入力とする 離散型単位円被覆問題の 最適値

- \mathfrak{st} , $|\mathcal{D}| = O(n^2)$
- ▶ つまり、離散型が効率よく解ければ、連続型も効率よく解ける

離散型単位円横断問題 (discrete unit disk transversal problem)

入力

- ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ightharpoons 平面上の単位円の集合 $\mathcal{D} = \{D_1, D_2, \dots, D_m\}$

「横断問題」も「被覆問題」と見なすことができる (続)

離散型単位円横断問題 (discrete unit disk transversal problem)

出力

ト 点集合 $P' \subseteq P$ で次を満たすもの (P' が \mathcal{D} を横断する) 任意の $D \in \mathcal{D}$ に対して,ある $p \in P'$ が存在して, $p \in D$

「横断問題」も「被覆問題」と見なすことができる (続2)

離散型単位円横断問題 (discrete unit disk transversal problem)

目的

▶ |P'| の最小化

離散型単位円横断問題 (discrete unit disk transversal problem)

入力

- ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ightharpoons 平面上の単位円の集合 $\mathcal{D}=\{D_1,D_2,\ldots,D_m\}$

被覆問題として定式化するためのハイパーグラフ H = (V, E) を考えると

- $V = \mathcal{D}$
- ▶ $E = \{p \$ を含む単位円の集合 $\subseteq \mathcal{D} \mid p \in P\}$

離散型単位円横断問題 (discrete unit disk transversal problem)

入力

- ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$
- ightharpoons 平面上の単位円の集合 $\mathcal{D}=\{D_1,D_2,\ldots,D_m\}$

被覆問題として定式化するためのハイパーグラフ H = (V, E) を考えると

- $V = \mathcal{D}$
- ▶ $E = \{p \$ を含む単位円の集合 $\subseteq \mathcal{D} \mid p \in P\}$

監視問題

監視問題 (美術館問題) も被覆問題として定式化できる

美術館問題 (art gallery problem)

入力

▶ (穴があってもよい) 多角形 G

(G は無限集合)

監視問題

監視問題 (美術館問題) も被覆問題として定式化できる

美術館問題 (art gallery problem)

出力

ト 点集合 $P' \subseteq G$ で次を満たすもの (P' が G を監視する) 任意の $p \in G$ に対して,ある $p' \in P'$ が存在して,p' から p が見える

美術館問題 (art gallery problem)

出力

ト 点集合 $P' \subseteq G$ で次を満たすもの (P' が G を監視する) 任意の $p \in G$ に対して、ある $p' \in P'$ が存在して、p' から p が見える

美術館問題 (art gallery problem)

出力

ト 点集合 $P' \subseteq G$ で次を満たすもの (P' が G を監視する) 任意の $p \in G$ に対して,ある $p' \in P'$ が存在して,p' から p が見える

美術館問題 (art gallery problem)

出力

ト 点集合 $P' \subseteq G$ で次を満たすもの (P') が G を監視する) 任意の $p \in G$ に対して、ある $p' \in P'$ が存在して、p' から p が見える

美術館問題 (art gallery problem)

出力

ト 点集合 $P' \subseteq G$ で次を満たすもの (P') が G を監視する) 任意の $p \in G$ に対して、ある $p' \in P'$ が存在して、p' から p が見える

監視問題

監視問題 (美術館問題) も被覆問題として定式化できる

美術館問題 (art gallery problem)

目的

▶ |P'| の最小化

監視問題

監視問題 (美術館問題) も被覆問題として定式化できる

美術館問題 (art gallery problem)

入力

▶ (穴があってもよい) 多角形 G

(G は無限集合)

被覆問題として定式化するためのハイパーグラフ H = (V, E) を考えると

- ► *V* = *G*
- ▶ $E = \{p \text{ から見える点の集合} \subseteq G \mid p \in G\}$

注意: V も E も無限集合

- ① 幾何的被覆問題の例
- 2 ハイパーグラフと被覆問題
- ③ 幾何的被覆問題とは?
- 4 近似アルゴリズム
- ⑤ 今日のまとめ と 次回の予告

幾何的被覆問題を解くためのアルゴリズム?

幾何的被覆問題の例を見てきた

- ▶ 単位円被覆問題
- ▶ 直線被覆問題
- ▶ 単位円横断問題
- ▶ 美術館問題

どれも「最小化」問題

(離散型/連続型)

(離散型/連続型)

(離散型)

(連続型)

質問

どのように解けるのか? どれくらい効率よく解けるのか?

幾何的被覆問題を解くためのアルゴリズム?: 残念なお知らせ

幾何的被覆問題の例を見てきた

- ▶ 単位円被覆問題
- ▶ 直線被覆問題
- ▶ 単位円横断問題
- ▶ 美術館問題

どれも「最小化」問題

(離散型/連続型)

(離散型/連続型)

(離散型)

(連続型)

質問に対する解答の1つ

幾何的被覆問題は NP 困難になりがち

上に挙げた問題はどれも NP 困難 (効率よく解けないと思われている)

NP 困難問題に対するアプローチ

NP 困難問題に対して

効率よく最適解を計算することは難しい (難しそう)

NP 困難問題に対する典型的なアプローチ

- ▶ 「効率性」を犠牲にして、「最適解計算」に固執する
 - ▶ → 厳密アルゴリズム (exact algorithms)
- ▶ 「最適解計算」を犠牲にして、「効率性」に固執する
 - ▶ → 近似アルゴリズム (approximation algorithms)

この講義の主眼は近似アルゴリズム

	効率性	最適解計算
厳密アルゴリズム	犠牲	固執
近似アルゴリズム	固執	犠牲

近似アルゴリズム

 $\alpha \geq 1$ とする

定義: α 近似解

最小化問題に対する α 近似解とは、その問題に対する解 X で

最適値 \leq X に対する目的関数値 \leq $\alpha \cdot$ 最適値

を満たすもののこと (この α のことを近似比と呼ぶことがある)

定義: α 近似アルゴリズム

最小化問題に対する α 近似アルゴリズムとは、 必ず α 近似解を出力するアルゴリズムのこと

アイディア

 α 近似解がよい近似 \iff α が小さい

つまり、 α が小さい近似アルゴリズムを設計することが目的

ハイパーグラフについて知られていること

ハイパーグラフ H = (V, E) に対する被覆問題を考える

よく知られた事実 (定理)

H = (V, E) に対する被覆問題には,

多項式時間 $1+\ln n$ 近似アルゴリズムが存在する (ただし, n=|V|)

つまり、ほとんどの幾何的被覆問題は同じ近似比で解ける

よいこと:万能であること

このアルゴリズムから どんな幾何的被覆問題にも $1 + \ln n$ 近似解が得られる

悪いこと:大きな近似比

近似比 1 + ln n が大きすぎる (n に関して単調増加)

目標: この「悪いこと」を改善したい

この講義では、いくつかの技法を見る(予定である)

- ▶ 離散型単位円被覆問題:多項式時間 O(1) 近似アルゴリズム
 - (Brönnimann, Goodrich '95)
 - → アルゴリズム:線形計画法の利用 利点:他の図形にも広く応用可能
- ▶ 連続型単位円被覆問題:多項式時間 1 + ε 近似アルゴリズム

(Hochbaum, Maass '85)

- → アルゴリズム:シフト法
 - 利点:他の問題にも広く応用可能
- ▶ |離散型単位円被覆問題:多項式時間 1 + ε 近似アルゴリズム

(Mustafa, Ray '10)

- → アルゴリズム:局所探索法
 - 利点:単純

その他にも関連する話題に触れる

- 幾何的被覆問題の例
- ② ハイパーグラフと被覆問題
- 3 幾何的被覆問題とは?
- 4 近似アルゴリズム
- ⑤ 今日のまとめ と 次回の予告

今日のまとめ

重要概念

- ▶ ハイパーグラフと被覆問題
- ▶ 幾何的被覆問題 (離散型と連続型),連続型の離散化
- ▶ 近似アルゴリズム

次回予告

連続型円被覆問題

(自明?)

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

- 幾何的被覆問題の例
- 2 ハイパーグラフと被覆問題
- ③ 幾何的被覆問題とは?
- 4 近似アルゴリズム
- ⑤ 今日のまとめ と 次回の予告