STATISTIC STATISTIC

RICARDO

 $\begin{array}{c} \textbf{Departamento de mathemática y física, FIMGC USNCH} \\ \textbf{\textit{E-mail}: ricardomallqui@gmail.com} \\ \textbf{URL: www.fractales.com} \end{array}$

Statadistica pata artistas Ricardo Michel Mallqui Baños

Un libro basado en codigo asymptote LaTeX y pstricks

Bibliografia.

Incluye Indice.

1. Geometry, Differential. 2. Curves. 3. Surfaces.

Todos los derechos reservados. Ninguna parte de esto libro puede ser reproducido en cualquier forma, o por cualquier medio, sin permiso por escrito del editor.

Departmento de mathemática y física, FIMGC USNCH

 $E ext{-}mail:$ ricardomallqui@gmail.com

URL: www.fractales.com

Índice general

Ín	dice general	I
Li	sta de figuras	II
Li	sta de tablas	III
Pr	resentación	v
Ι	Estadística descriptiva	VI
1.	Preliminares	1
	1.1. Conceptos básicos	1
	1.1.1. Variables estadísticas	1
	1.2. Organización de datos en tablas de frecuencias	2
	1.2.1. Distribución de frecuencias	2
	1.2.2. Distribución de frecuencias continuas	4
	1.3. Gráficos estadísticos	4
	1.3.1. Histograma de frecuencias	4
	1.3.2. Gráficos circulares	4
	1.3.3. Diagrama de barras	4
2.	Medidas estadísticas de variables cuantitativas	6
	2.1. Medidas de tendencia central	6
	2.1.1. Media	6
	2.1.2. Mediana	6
	2.1.3. Moda	6
	2.2. Medidas de dispersión	6
	2.3. Medidas de variacion	6
3.	Varaibles estadisticas bidimensionales	7
II	Cálculo de probabilidades	10
4.	www	12

III Estadística inferencial	13
5. Distribuciones muestrales	14
Referencias	15
Índices	15
A. Sistemas de coordenadas	т

Lista de figuras

	Histograma de frecuencias													
	Circular													
1.3.	Diagrama de barras													5
1.4.	Meadiana	•		•		•								5
3.1.	wwwww													7
3.2.	wwwww . ,													8
3.3.	www.ww. $(x, \frac{f(x)+g(x)}{2})$	w	ww	7	•									9
5.1.	Normal													14

Lista de tablas

1.1.	. Combinaciones de los tres segmentos de la secci	ion aurea	2
2.1.	. Combinaciones de los tres segmentos de la secci	ion aurea	6
3.1.	. Combinaciones de los tres segmentos de la secci	on aurea	ç

Presentación

 $\underline{\text{Double underlined text}} \ \underline{\text{Double underlined text}} \ \underline{\text{Slanted underlined}} \ \underline{\text{SMALL CAPS UNDERLINED}}$

Parte I Estadística descriptiva

Preliminares

1.1. Conceptos básicos

Definición 1.1 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

Definición 1.2 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

Definición 1.3 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

Definición 1.4 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

Definición 1.5 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

1.1.1. Variables estadísticas

Definición 1.6 (Variables cuantitativas) Una variable estadística es una característica que puede fluctuar y cuya variación es susceptible de adoptar diferentes valores, los cuales pueden medirse u observarse. Las variables adquieren valor cuando se relacionan con otras variables, es decir, si forman parte de una hipótesis o de una teoría. Existen dos clases de variables: Cualitativas y cuantitativas.

- Cualitativas. Son aquellas variables que están propensos a ser nominadas textualmente.
 - a) Nominales. Son características que simplemente nominan y están propensos a ser jerarquizados u ordenados tales como: El estado civil (soltero, casado, divorciado, viudo), Religión (católica, evangélico, judío, etc).
 - b) Ordinales. Son características que que si están propensos a ser jerarquizados tales como: Nivel de instrucción (inicial, primaria, secundaria, superior).

- 2. cuantitativas. Son aquellas variables que están propensos a ser medidas mediante números ya sean números enteros o reales.
 - a) Discretas. Aquellas que solo son medidos mediante números enteros por ejemplo: Número de hijos, número de habitaciones.
 - b) Continuas. Aquellas que solo son medidos mediante números reales es decir este incluye a los números racionales e irracionales. Estatura, volumen, peso.

1.2. Organización de datos en tablas de frecuencias

1.2.1. Distribución de frecuencias

El uso de tablas de distribución de frecuencias y gráficas como un medio para presentar la información de un conjunto de datos de forma resumida. En grados anteriores ya se ha trabajado con gráficas para variables cuantitativas discretas, por lo que esta será la primera vez que el estudiante trabajará con gráficas que son adecuadas para presentar información de variables cuantitativas continuas.

Definición 1.7 La tabulación es un proceso en el cual los datos son ordenados en grupos llamados clases para un análisis más eficaz de estos, los datos podrían estar clasificados mediante una variable cualitativa o cuantitativa en el caso de las variables cualitativas Y_i , se considera la siguiente Tabla ??

En el caso de variables cuantitativas ademas si los datos son muy variados, que para se clasificados adecuadamente, necesitan generarse particiones de longitudes semejantes entonces se utiliza el siguiente proceso; el número de las particiones r se consideran de acuerdo a tres criterios.

- 1. Criterio del investigador r no puede ser más de 20 ni menos de 5
- 2. $r = \sqrt{n}$ donde n es el número de datos
- 3. La regla de Starges que consiste en considerar la fórmula $r=3,322 \cdot \log_{10} n$ Una vez establecido el número de particiones se procede a generar los límites laterales de cada una de las particiones, sea L la longitud de todo el conjunto es decir $L=x_{\rm max}-x_{\rm min}$ entonces la longitud de las particiones o amplitud interválica se obtiene con $l=\frac{L}{r}$

Cuadro 1.1: Combinaciones de los tres segmentos de la seccion aurea.

Y_i	f_i	F_{i}	F_i*	h_i	H_i	H_i	$h_i\%$	$H_i \%$	$H_i * \%$
2	1	1.00	20.00	0.05	0.05	0.0025	0.25	0.25	0.2500
3	2	3.00	19.00		0.15	0.0050	0.50	0.50	0.7500
4	5	8.00	17.00	0.25	0.40	0.0125	1.25	1.25	2.0000

Continúa en la proxima página

Cuadro 1.1 - continua de la página anterior

Y_i	f_i	F_{i}	F_i*	h_i	H_i	H_i	$h_i \%$	$H_i \%$	$H_i * \%$
5	7	15.00	12.00	0.35	0.75	0.0175	1.75	1.75	3.7500
6	4	19.00	5.00	0.20	0.95	0.0100	1.00	1.00	4.7500
7	1	20.00	1.00	0.05	1.00	0.0025	0.25	0.25	5.0000
	20						5		

Tenga en cuenta que n es el número de datos, es decir $n = f_1 + f_2 + \ldots + f_r = \sum_{i=1}^r$ donde f_i es número de datos en la partición X_i , una de las r particiones del conjunto total de datos.

- 1. Las frecuencias absolutas f_i indican el número de datos con la característica X_i .
- 2. Las frecuencias absolutas acumuladas menor que F_i obedecen a la fórmula

$$F_m = f_1 + f_2 + \ldots + f_m = \sum_{i=1}^m f_i$$

3. Las frecuencias absolutas acumuladas mayor que F_i^* obedecen a la fórmula

$$F_m^* = f_m + f_{m+1} + \dots + f_r$$

$$= \sum_{i=m}^r f_i$$

$$= n - \sum_{i=1}^{m-1} f_i$$

$$= n - (f_1 + f_2 + \dots + f_{m-1})$$

4. Las frecuencias absolutas relativas obedecen a la fórmula

$$h_m = \frac{f_m}{n}$$

5. Las frecuencias absolutas relativas menor que obedecen a la fórmula

$$H_m = \frac{f_m}{n}$$

6. Las frecuencias absolutas relativas mayor que obedecen a la fórmula

$$H_m^* = \frac{F_m}{n}$$

- 7. Las frecuencias absolutas relativas porcentuales obedecen a la fórmula $h_i\,\% = 100 \cdot h_i$
- 8. Las frecuencias absolutas relativas menor que porcentuales obedecen a la fórmula $H_i \% = 100 \cdot H_i$
- 9. Las frecuencias absolutas relativas mayor que porcentuales obedecen a la fórmula $H_i^* \% = 100 \cdot H_i^*$
- 10. Y_i marca de clase o punto medio de la clase i

1.2.2. Distribución de frecuencias continuas

1.3. Gráficos estadísticos

1.3.1. Histograma de frecuencias

Figura 1.1: Histograma de frecuencias

1.3.2. Gráficos circulares

Figura 1.2: Circular

1.3.3. Diagrama de barras

Figura 1.3: Diagrama de barras

Figura 1.4: Meadiana

Medidas estadísticas de variables cuantitativas

2.1. Medidas de tendencia central

Son aquellas medidas que buscan un dato representivo central de un conjunto de datos tales como la media, la moda y la mediana.

Definición 2.1 (Datos agrupados y no agrupados) La principal diferencia entre los datos agrupados y los no agrupados es que los agrupados están clasificados según un criterio y los no agrupados se encuentran en el mismo formato que cuando se recopilaron.

Cuadro 2.1: Combinaciones de los tres segmentos de la seccion aurea.

Clase	Y_i	f_i	F_{i}		$H_i^* \%$
$[y_1, y_2)$	y_1	f_1			$H_1^*\%$
$[y_2,y_3)$	y_2	f_2			$H_1^*\%$
$[y_3,y_4)$	y_3	f_3		• • •	$H_1^*\%$
:	:	:			:
$[y_{r-1}, y_r]$					$H_1^*\%$

- 2.1.1. Media
- 2.1.2. Mediana
- 2.1.3. Moda
- 2.2. Medidas de dispersión
- 2.3. Medidas de variación

Varaibles estadisticas bidimensionales

Figura 3.1: wwwwww

When we put (vertically) large expressions inside of parentheses (or brackets, or curly braces, etc.), the parentheses don't resize to fit the expression and

Figura 3.2: wwwwww

instead remain relatively small. For instance,

$$f(x) = \pi(\frac{\sqrt{x}}{x-1})$$

comes out as

When we put (vertically) large expressions inside of parentheses (or brackets, or curly braces, etc.), the parentheses don't resize to fit the expression and instead remain relatively small. For instance,

$$f(x) = \pi(\frac{\sqrt{x}}{x-1})$$

comes out as

When we put (vertically) large expressions inside of parentheses (or brackets, or curly braces, etc.), the parentheses don't resize to fit the expression and instead remain relatively small. For instance,

$$f(x) = \pi(\frac{\sqrt{x}}{x-1})$$

comes out as

Figura 3.3: f(x)wwww $\left(x,\frac{f(x)+g(x)}{2}\right)$ www

Cuadro 3.1: Combinaciones de los tres segmentos de la seccion aurea.

Y_i	f_i	F_i	F_i*	h_i	H_i	H_i	$h_i\%$	$H_i \%$	$H_i * \%$
2	1	1.0000	20.0000	0.0500	0.0500	0.0025	0.2500	0.2500	0.2500
3	2	3.0000	19.0000		0.1500	0.0050	0.5000	0.5000	0.7500
4	5	8.0000	17.0000	0.2500	0.4000	0.0125	1.2500	1.2500	2.0000
5	7	15.0000	12.0000	0.3500	0.7500	0.0175	1.7500	1.7500	3.7500
6	4	19.0000	5.0000	0.2000	0.9500	0.0100	1.0000	1.0000	4.7500
7	1	20.0000	1.0000		1.0000	0.0025	0.2500	0.2500	5.0000
	20						5		

Parte II Cálculo de probabilidades

wwww

Comentario 3.1 (title) wwwwwwwwwwwwwwwwwwww

Proposición 3.2.1 (title) wwwwwwwwwwwwww

 $\mathbf{w}\mathbf{w}\mathbf{w}$

Parte III Estadística inferencial

Distribuciones muestrales

Figura 5.1: Normal

(Hilbert y Cohn-Vossen, 2020). "Geometry and the Imagination" this environment shares the counter of the previously defined thm environment. (Gutiérrez, 2015) (Gallego, Cid, Brito, y Rojas, 2020)

Referencias

- Gallego, J. C., Cid, C. D. V., Brito, J. G., y Rojas, A. V. (2020). Introducción a las técnicas de investigación social. (Google-Books-ID: 3HGUDAAAQBAJ)
- Gutiérrez, S. J. (2015). Competencia matemática y mediación del aprendizaje, en estudiantes de la escuela de formación profesional de educación primaria, unsch 2015, (tesis de maestría). UNSCH, Ayacucho. Descargado de http://repositorio.unsch.edu.pe/handle/UNSCH/1357
- Hilbert, D., y Cohn-Vossen, S. (2020). Geometry and the imagination. American Mathematical Society. Descargado de https://books.google.com.pe/books?id=5y1tzgEACAAJ

Índice alfabético

```
frecuencias absolutas, 3 frecuencias absolutas acumuladas menor que, 3 frecuencias absolutas relativas, 3 frecuencias absolutas relativas menor que, 3 www, 14 wwww, 14 wwww, 14 wwww3, 14 wwww, 14 wwww, 14
```

Apéndice A

Sistemas de coordenadas