CS F351 Theory of Computation Tutorial-6

Note: * marked problems can be left to the students to try after the tutorial.

Problem 1 Prove that the following languages are not regular using Myhill-Nerode theorem.

1. $L_1 = \{ ss \mid s \in \{0,1\}^* \}$

Solution: Let $x = 0^k$ and $y = 0^m$ be two strings in Σ^* such that $k \neq m$. We can show that x and y are distinguishable with respect to L_1 i.e., $(x,y) \notin R_{L_1}$. For $z = 10^k 1$ we have $xz = 0^k 10^k \in L_1$, but $yz = 0^m 10^k 1 \notin L_1$ since $k \neq m$. Hence, R_{L_1} has infinite equivalence classes. Thus, L_1 is non-regular.

2. $L_2 = \{w \in \{0,1\}^* \mid w = w^R\}$

Solution: Let $x=0^k1$ and $y=0^m1$ be two strings in Σ^* such that $k\neq m$. We can show that x and y are distinguishable with respect to L_1 i.e., $(x,y)\notin R_{L_2}$. For $z=10^k$ we have $xz=0^k110^k\in L_2$, but $yz=0^m110^k\notin L_2$ since $k\neq m$. Hence, R_{L_2} has infinite equivalence classes. Thus, L_2 is non-regular.

3. (*) $L_3 = \{0^n 1^l \mid n \neq l\}$ over $\Sigma = \{0, 1\}$

Solution: Let $x = 0^k$ and $y = 0^m$ be two strings in Σ^* such that $k \neq m$. We can show that x and y are distinguishable with respect to L_3 i.e., $(x, y) \notin R_{L_3}$. For $z = 1^k$ we have $xz = 0^k 1^k \notin L_3$, but $yz = 0^m 1^k \in L_3$ since $k \neq m$. Hence, R_{L_3} has infinite equivalence classes. Thus, L_3 is non-regular.

Problem 2 Write regular grammars (right-linear grammars) for the following languages:

1. $L = \{w \in \{a, b\}^* \mid w \text{ has no } a' \text{s or has no } b' \text{s} \}.$

Solution: The productions of the grammar are:

- $S \rightarrow A \mid B$
- $A \rightarrow aA \mid \epsilon$
- $B \rightarrow bB \mid \epsilon$
- 2. $L = \{w \in \{a, b\}^* \mid w \text{ has at least one } a \text{ and at least one } b\}.$

Solution: The productions of the grammar are:

- $S \rightarrow aX \mid bY$
- $X \rightarrow aX \mid bZ$
- $Y \rightarrow aZ \mid bY$
- $Z \rightarrow aZ \mid bZ \mid \epsilon$.
- 3. (*) $L = \{w \in \{a, b\}^* \mid |w| \ge 2 \text{ and } w \text{ starts and ends with the same symbol}\}.$

Solution: The productions of the grammar are:

• $S \rightarrow aA \mid bB, A \rightarrow aA \mid bA \mid a$, and $B \rightarrow aB \mid bB \mid b$.

Problem 3 Find an equivalent NFA with ϵ -transitions for the following right-linear grammar:

1. $S \to aS$, $S \to bB$, $S \to cC$, $S \to \epsilon$ $B \to bB$, $B \to cC$, $B \to \epsilon$, $C \to cC$, and $C \to \epsilon$.

Solution: An equivalent NFA (with ϵ -transitions) $M = (Q, \Sigma, \delta, s, F)$ is as follows:

- (a) $Q = \{S, B, C, T\}$
- (b) $\Sigma = \{a, b, c\}$
- (c) s = S (start node)
- (d) $F = \{T\}$ and
- (e) δ is as follows:
 - $S \to aS$ gives

• $S \to bB$ gives

• $S \to cC$ gives

• $S \to \epsilon$ gives

• $B \to bB$ gives

• $B \to cC$ gives

• $B \to \epsilon$ gives

• $C \to cC$ gives

• Finally, $C \to \epsilon$ gives

2. (*) $S \to 0A, A \to 10A \text{ and } A \to \epsilon.$

Solution: We first modify the grammar such that the right hand side of each production contains exactly one terminal symbol.

Here, $A \rightarrow 10A$ can be replaced with $A \rightarrow 1B$ and $B \rightarrow 0A$.

Thus, the new grammar is:

- $S \rightarrow 0A$,
- $A \rightarrow 1B$,
- $B \to 0A$ and
- $\bullet \ \ A \to \epsilon.$

An equivalent NFA (with ϵ -transitions) $M=(Q,\Sigma,\delta,s,F)$ is as follows:

- (a) $Q = \{S, A, B, T\}$
- (b) $\Sigma = \{0, 1\}$
- (c) s = S (start node)
- (d) $F = \{T\}$ and
- (e) δ is as follows:
 - $S \to 0A$ gives

• $A \to 1B$ gives

• $B \to 0A$ gives

• Finally, $A \to \epsilon$ gives

Problem 4 Find a right linear grammar for the following DFA:

Solution: G = (V, T, P, S) where

- 1. $V = \{q_0, q_1, q_2, q_3, q_4\}$
- 2. $T = \{0, 1\}$
- 3. $S = q_0$ and
- 4. the set P of productions are given below:
 - $q_0 \to 0q_1$ (due to $\delta(q_0, 0) = q_1$)
 - $q_0 \rightarrow 1q_2$ (due to $\delta(q_0, 1) = q_2$)
 - $q_1 \rightarrow 0q_2$ (due to $\delta(q_1,0) = q_2$)
 - $q_1 \to 1q_3$ (due to $\delta(q_1, 1) = q_3$) and $q_1 \to 1$ since q_3 is a final state.
 - $q_2 \rightarrow 0q_2$ (due to $\delta(q_2,0) = q_2$)
 - $q_2 \to 1q_4$ (due to $\delta(q_2, 1) = q_4$) and $q_2 \to 1$ since q_4 is a final state.
 - $q_3 \to 0q_3$ (due to $\delta(q_3,0) = q_3$) and $q_3 \to 0$ since q_3 is a final state.
 - $q_3 \to 1q_3$ (due to $\delta(q_3, 1) = q_3$) and $q_3 \to 1$ since q_3 is a final state.
 - $q_4 \to 0q_4$ (due to $\delta(q_4,0) = q_4$) and $q_4 \to 0$ since q_4 is a final state.
 - $q_4 \to 1q_4$ (due to $\delta(q_4, 1) = q_4$) and $q_4 \to 1$ since q_4 is a final state.