概率论与数理统计

第三章 多维随机变量及其分布

§ 4 相互独立的随机变量

- ◆随机变量的相互独立性
- ◆二维随机变量的推广

一、相互独立的随机变量

1.定义

设F(x,y)及 $F_X(x)$, $F_Y(y)$ 分别是二维随机变量(X,Y)的分布函数及边缘分布函数. 若对于所有x,y 有

$$P\{X \le x, Y \le y\} = P\{X \le x\}P\{Y \le y\},$$
即
$$F(x,y) = F_X(x)F_Y(y),$$

则称随机变量 X 和 Y 是相互独立的.

2.说明

(1) 若离散型随机变量 (X,Y)的联合分布律为

$$P\{X=i,Y=j\}=p_{ij}, i,j=1,2,\cdots$$

X和Y相互独立

$$P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\},$$

即
$$p_{ij} = p_{i\bullet} \cdot p_{\bullet j}$$

(2) 设连续型随机变量 (X,Y)的联合概率密度为 f(x,y),边缘概率密度分别为 $f_X(x)$, $f_Y(y)$,则有

X和 Y相互独立 $\Leftrightarrow f(x,y) = f_X(x)f_Y(y)$.

(3)X 和 Y 相互独立,则 f(X) 和 g(Y)也相互独立.

例1 对于第一节例2中的随机变量 X和 Y,由于

$$f_X(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & \text{其他,} \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & \text{其他,} \end{cases}$

得

$$f(x,y) = f_X(x)f_Y(y),$$

因而X和Y是相互独立的.

例2 若X,Y具有联合分布率

YX	0	1	$P\{Y=j\}$
1	1/6	2 / 6	1/2
2	1/6	2 / 6	1/2
$P\{x=i\}$	1/3	2 / 3	1

则有
$$P{X=0,Y=1}=1/6=P{X=0}P{Y=1},$$
 $P{X=0,Y=2}=1/6=P{X=0}P{Y=2},$ $P{X=1,Y=1}=2/6=P{X=1}P{Y=1},$ $P{X=1,Y=2}=2/6=P{X=1}P{Y=2},$

考察二维正态随机变量 (X,Y).

$$f(x,y) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}}$$

$$\cdot \exp \left\{ \frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\},\,$$

$$f_X(x)f_Y(x) = \frac{1}{2\pi\sigma_1\sigma_2} \cdot \exp\left\{-\frac{1}{2}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}.$$

结论:

对于二维正态随机变量 (X,Y), X和Y相互独立的充要条件是参数 $\rho = 0$.

例3 一负责人到达办公室的时间均匀分布在8~12时,他的秘书到达办公室的时间均匀分布在7~9时, 设他们两人到达的时间相互独立,求他们到达办公室的时间相差不超过5分钟(1/12小时)的概率.

解 设 X 和 Y 分别是负责人和 他的秘书到达办公室的时间, 由假设 X 和 Y 的概率密度分别为

$$f_X(x) = \begin{cases} \frac{1}{4}, & 8 < x < 12, \\ 0, & \text{ i.e. } \end{cases} \qquad f_Y(y) = \begin{cases} \frac{1}{2}, & 7 < y < 9, \\ 0, & \text{ i.e. } \end{cases}$$

因为X,Y相互独立,故(X,Y)的概率密度为

$$f(x,y) = f_X(x)f_Y(y)$$

$$= \begin{cases} \frac{1}{8}, & 8 < x < 12,7 < y < 9, \\ 0, & 其他. \end{cases}$$

按题意需要求概率 $P\{|X-Y| \le 1/12\}$. 画出区域:

 $|x-y| \le 1/12$,以及长方形 [8 < x < 12;7 < y < 9],它们的公共部分是四边形 BCC'B',记为G.

显然仅当(X,Y)取值于G内,他们两人到达的时间相差才不超过1/12小时.因此,所求的概率为

$$P\{|X - Y| \le \frac{1}{12}\}$$

$$= \iint_G f(x, y) \, dx \, dy$$

$$= \frac{1}{8} \times (G \text{ 的面积}).$$

而 G的面积

=三角形ABC的面积 - 三角形 AB'C'的面积

$$= \frac{1}{2} \left(\frac{13}{12} \right)^2 - \frac{1}{2} \left(\frac{11}{12} \right)^2 = \frac{1}{6}.$$

于是
$$P\{|X-Y| \le \frac{1}{12}\} = \frac{1}{8} \times (G \text{ 的面积}) = \frac{1}{48}.$$

即负责人和他的秘书到 达办公室的时间相差不 超过5分钟的概率为 $\frac{1}{40}$.

二、二维随机变量的推广

1.分布函数

n 维随机变量 (X_1, X_2, \dots, X_n) 的分布函数定义为

$$F(x_1, x_2, \dots, x_n) = P\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\},$$
其中 x_1, x_2, \dots, x_n 为任意实数 .

2.概率密度函数

若存在非负函数 $f(x_1,x_2,\dots,x_n)$,使对于任意 实数 x_1,x_2,\dots,x_n 有

$$F(x_1,x_2,\cdots,x_n)$$

$$= \int_{-\infty}^{x_n} \int_{-\infty}^{x_{n-1}} \cdots \int_{-\infty}^{x_1} f(x_1, x_2, \cdots, x_n) dx_1 dx_2 \cdots dx_n,$$

则称 $f(x_1, x_2, \dots, x_n)$ 为 (X_1, X_2, \dots, X_n) 的概率密度函数.

3.边缘分布函数

设 (X_1, X_2, \dots, X_n) 的分布函数 $F(x_1, x_2, \dots, x_n)$ 为已知,则 (X_1, X_2, \dots, X_n) 的 $k(1 \le k < n)$ 维边缘分布函数就随之确定. 例如 (X_1, X_2, \dots, X_n) 关于 X_1 、关于 (X_1, X_2) 的边缘分布函数分别为

$$F_{X_1}(x_1) = F(x_1, \infty, \infty, \cdots, \infty)$$

$$F_{X_1,X_2}(x_1,x_2) = F(x_1,x_2,\infty,\infty,\infty,\cdots,\infty).$$

4.边缘概率密度函数

若 $f(x_1, x_2, \dots, x_n)$ 是 (X_1, X_2, \dots, X_n) 的概率 密度,则 (X_1, X_2, \dots, X_n) 关于 X_1 ,关于 (X_1, X_2) 的边缘概率密度分别为

$$f_{X_1}(x_1)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_n) dx_2 dx_3 \cdots dx_n,$$

$$f_{X_1, X_2}(x_1, x_2)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_n) dx_3 dx_4 \cdots dx_n.$$

同理可得 (X_1, X_2, \dots, X_n) 的 $k(1 \le k < n)$ 维边缘概率密度.

5. 相互独立性

若对于所有的 x_1, x_2, \dots, x_n 有

$$F(x_1,x_2,\dots,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\dots F_{X_n}(x_n),$$

则称 X_1, X_2, \dots, X_n 是相互独立的.

若对于所有的 $x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n$ 有

$$F(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n)$$

=
$$F_1(x_1, x_2, \dots, x_m) F_2(y_1, y_2, \dots, y_n)$$
.

其中 F_1, F_2, F 依次为随机变量 (X_1, X_2, \dots, X_m) 、

$$(Y_1, Y_2, \dots, Y_n)$$
 和 $(X_1, X_2, \dots, X_m, Y_1, Y_2, \dots, Y_n)$ 的分布

函数,则称随机变量 (X_1, \dots, X_m) 和 (Y_1, \dots, Y_n) 是相互独立的。

6.重要结论

定理 设 (X_1, X_2, \dots, X_m) 和 (Y_1, Y_2, \dots, Y_n) 相互独立,则 X_i $(i = 1, 2, \dots, m)$ 和 Y_j $(j = 1, 2, \dots, n)$ 相互独立.又若 h, g是连续函数,则 $h(X_1, X_2, \dots, X_m)$ 和 $g(Y_1, Y_2, \dots, Y_n)$ 相互独立.

小结

1. 若离散型随机变量 (X,Y)的联合分布律为 $P\{X=i,Y=j\}=p_{ij},i,j=1,2,\cdots$

X和Y相互独立⇔

$$P{X=x_i,Y=y_j}=P{X=x_i}P{Y=y_j}.$$

2. 设连续型随机变量 (X,Y) 的联合概率密度为 f(x,y), 边缘概率密度分别为 $f_{x}(x)$, $f_{y}(y)$, 则有

X和 Y相互独立 $\Leftrightarrow f(x,y) = f_X(x)f_Y(y)$.

3. X 和 Y 相互独立,则 f(X) 和 g(Y)也相互独立.

作业: 课后习题 18、20

练习:

1、已知 (X,Y) 的分布律为

(X,Y)	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)
D	1_	1	1	1_	α	В
I ij	6	9	18	3		

- (1) 求 α 与 β 应满足的条件;
- (2) 若 X 与 Y 相互独立,求 α 与 β 的值.

解 将 (X,Y) 的分布律改写为

X	1	2	3	$p_{i\bullet} = P\{X = x_i\}$
1	1	1	1	1
I	6	9	18	3
2	$\frac{1}{3}$	α	β	$\frac{1}{3} + \alpha + \beta$
$p_{\bullet j} = P\{Y = y_j\}$	$\frac{1}{2}$	$\frac{1}{9}+\alpha$	$\frac{1}{18}+\beta$	$\frac{2}{3}+\alpha+\beta$

(1)由分布律的性质知 $\alpha \ge 0, \beta \ge 0, \frac{2}{3} + \alpha + \beta = 1,$ 故 α 与 β 应满足的条件是: $\alpha \ge 0, \beta \ge 0$ 且 $\alpha + \beta = \frac{1}{3}.$

(2) 因为X与Y相互独立,所以有

$$p_{ij} = p_{i\bullet} \cdot p_{\bullet j}, (i = 1,2; j = 1,2,3)$$

特别有

$$p_{12} = p_{1\bullet} \cdot p_{\bullet 2} \Rightarrow \frac{1}{9} = \frac{1}{3} \left(\frac{1}{9} + \alpha \right) \Rightarrow \alpha = \frac{2}{9},$$

又
$$\alpha+\beta=\frac{1}{3}$$
, 得 $\beta=\frac{1}{9}$.

2、设随机变量 X和 Y相互独立,且 X 服从 $N(a,\sigma^2)$, Y 在 [-b,b] 上服从均匀分布,求 (X,Y) 的联合概率密度.

解 由于X与Y相互独立, 所以 $f(x,y) = f_X(x) \cdot f_Y(y)$

又
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}}, -\infty < x < \infty;$$

$$f_Y(y) = \begin{cases} \frac{1}{2b}, & -b \le y \le b, \\ 0, & 其他. \end{cases}$$

得
$$f(x,y) = \frac{1}{2b} \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}},$$
 其中 $-\infty < x < \infty, -b \le y \le b.$ 当 $|y| > b$ 时, $f(x,y) = 0.$

3、设两个独立的随机变量 X 与 Y 的分布律为

求随机变量 (X,Y) 的分布律.

解 因为X与Y相互独立,所以

$$P{X=x_i,Y=y_j}=P{X=x_i}P{Y=y_j}$$

$$P{X=1,Y=2}= P{X=1}P{Y=2}= 0.3 \times 0.6 = 0.18,$$

 $P{X=1,Y=4}= P{X=1}P{Y=4}= 0.3 \times 0.4 = 0.12,$
 $P{X=3,Y=2}= P{X=3}P{Y=2}= 0.7 \times 0.6 = 0.42,$

$$P{X=3,Y=4}=P{X=3}P{Y=4}=0.7\times0.4=0.28.$$

因此 (X,Y) 的联合分布律为

X^{Y}	2	4
1	0.18	0.12
3	0.42	0.28