Géométrie discrète

III. Triangulation 2D

Christophe Fiorio

LIRMM UMR CNRS-UM

Master Imagina

1/28

Modèles géométriques discrets

2 Enveloppe convexe

3 Triangulation

De l'espace euclidien à un espace combinatoire

Modèle géométrique discret

Problématique

Comment manipuler un espace continu algorithmiquement?

De l'espace euclidien à un espace combinatoire

Modèle géométrique discret

Problématique

Comment manipuler un espace continu algorithmiquement?

Une solution

Une solution est de subdiviser un espace en cellules bien identifiées afin d'obtenir un espace discret combinatoire plus facilement manipulable algorithmiquement.

4/28

Définir des modèles géométriques discrets :

- droites, plans, . . ., discrets
- enveloppe convexe d'un ensemble de points → polygones convexes
- Diagrammes de Voronoï
- Triangulation

Modèle géométrique discre-

- 2D : Delaunay
- 3D : Delaunay ou Marching Cube

Soit un ensemble de points $\mathcal{P}=\{p_1,\ldots,p_n\}\subset\mathbb{R}^2$, l'enveloppe convexe de \mathcal{P} est définie par :

$$\begin{array}{ll} \textit{conv}\left(\mathcal{P}\right) & = & \left\{\sum_{i}^{n}\lambda_{i}p_{i},\lambda_{i}\geq0,\sum_{i}^{n}\lambda_{i}p_{i}=1\right\} \\ & = & \left\{\text{ar\^{e}tes}\left[p_{i}p_{j}\right]\text{ telles que tous les points de }\mathcal{P}\text{ sont}\right\} \\ & \left\{\text{dans un m\^{e}me demi-plan limit\'{e} par}\left(p_{i}p_{j}\right)\right\} \end{array}$$

entrée : un ensemble $\mathcal P$ de n points du plan

sortie : la liste ordonnée des points de l'enveloppe convexe

 $conv(\mathcal{P})$

• La borne inférieure : $\Omega(n \log n)$

entrée : un ensemble $\mathcal P$ de n points du plan

sortie : la liste ordonnée des points de l'enveloppe convexe

 $conv(\mathcal{P})$

• La borne inférieure : $\Omega(n \log n)$

• La borne supérieure : algorithme naïf en $O(n^3)$

Complexité de $O(n \log n)$

8/28

Le problème avec l'algorithme de Graham est qu'il ne s'étend pas à la dimension supérieure car il est basé sur un ordre de parcours.

questions : à quelle complexité doit-on s'attendre ? $\Omega(n \log n)$ est elle atteignable ?

Le nombre de sommets, arêtes et faces vérifient :

$$s - a + f = 2$$

Formule d'Euler
$$\Rightarrow n - a + f > 2$$

Incidence arêtes-facettes : $2a \ge 3f \Longrightarrow \left\{ \begin{array}{l} a \le 3n-6 \\ f \le 2n-4 \end{array} \right.$ avec égalité quand toutes les facettes sont des triangles.

- complexité combinatoire : O(n)
- complexité algorithmique : O(n log n)?

Réponse : oui mais nécessite un algorithme probabiliste

Solution plus simple: un algorithme incrémental

L'algorithme de construction de l'enveloppe convexe peut se schématiser ainsi :

- ① Soit \mathcal{P} un ensemble de n points de \mathbb{R}^3 dont on cherche l'enveloppe convexe
- Soit B l'enveloppe convexe déjà calculée
- 3 pour chaque $p_i \in \mathcal{P} \setminus \mathcal{B}$
 - Soit σ_i(B) l'ensemble des facettes de B visibles de p_i, c'est à dire dont le plan support sépare B de p_i
 - Soit η_i , appelé *horizon*, l'ensemble des arêtes partagées par les facettes de $\sigma_i(\mathcal{B})$ et de $\mathcal{B} \setminus \sigma_i(\mathcal{B})$
 - supprimer les facettes appartenant à $\sigma_i(\mathcal{B})$
 - créer de nouvelles facettes $[p_i, g], \forall g \in \eta_i$
 - créer les nouvelles adjacences

Complexité

proportionnelle au nombre de facettes créées et supprimées, c'est à dire au nombre de facette des $\sigma_i(\mathcal{B})$.

×

 \times

×

L'algorithme de construction de l'enveloppe convexe dans un plan peut donc s'écrire :

- 1 Trier les points p_i par abscisses, puis ordonnées croissantes
- 2 Construire un premier polygone avec les 3 premiers points p_1, p_2, p_3
- ③ pour chaque p_i ∈ P \ { p_1 , p_2 , p_3 }
 - Soit \mathcal{B} l'ensemble des points de l'enveloppe convexe courante visible de p_i , et p_{i_1} et p_{i_k} les points extrémaux de cet ensemble
 - créer 2 nouvelles arêtes $[p_{i_1}, p_i]$ et $[p_{i_k}, p_i]$
 - supprimer les arêtes $[p_{i_1}, p_{i_2}], \dots, [p_{i_{k-1}}, p_{i_k}].$

- 1 Le dernier point rajouté est visible du nouveau point. On le marque comme visible.
- ② Étant donné le dernier point p_j marqué comme visible, et le point p_k suivant p_j sur l'enveloppe convexe, il suffit de comparer les orientations couples de vecteurs (p_i, p_j) et (p_i, p_k) avec celle du couple de vecteurs $(0, p_i)$ et $(0, p_k)$.
- 3 Elles doivent être opposées si p_k est visible.

orientations opposées $\Rightarrow p_k$ visible

mêmes orientations $\Rightarrow p_k$ non visible

Le produit mixte permet de calculer le volume signé du polyèdre engendré par les vecteurs du produit.

En 3D, le produit mixte s'écrit : $[\vec{u}, \vec{v}, \vec{w}] = \vec{u}.\vec{v} \wedge \vec{w}$

$$[\vec{u},\vec{v},\vec{w}] = \textit{det}\left(\vec{u},\vec{v},\vec{w}\right) = \left| \begin{array}{ccc} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{array} \right|$$

$$det\left(\vec{u},\vec{v},\vec{w}\right) = x_{u}y_{v}z_{w} + x_{v}y_{w}z_{u} + x_{w}u_{u}z_{v} - x_{u}y_{w}z_{v} - x_{v}y_{u}z_{w} - x_{w}y_{v}z_{v}$$

En 2D, le déterminant $det(\vec{u}, \vec{v})$ est donné par l'expression

$$\left|\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array}\right| = x_u y_v - x_v y_u$$

- la valeur = le volume du parallélépipède
- le signe = l'orientation

2D : signe de l'angle orienté

3D : positif si le parallélépidède peut être obtenu par déformation du cube unité sans jamais l'applatir

Dans notre cas.

$$\textit{det}\left(\overrightarrow{0p_k},\overrightarrow{0p_j}\right)\times\textit{det}\left(\overrightarrow{p_ip_k},\overrightarrow{p_ip_j}\right)<0\Rightarrow \text{orientations opposées}$$

- ① Soit \mathcal{P} un ensemble de n points de \mathbb{R}^3 dont on cherche l'enveloppe convexe
- ② Soit $\mathcal B$ l'enveloppe convexe déjà calculée
- ③ pour chaque p_i ∈ $P \setminus B$
 - Soit σ_i(B) l'ensemble des facettes de B visibles de p_i, c'est à dire dont le plan support sépare B de p_i
 - Soit η_i , appelé *horizon*, l'ensemble des arêtes partagées par les facettes de $\sigma_i(\mathcal{B})$ et de $\mathcal{B} \setminus \sigma_i(\mathcal{B})$
 - supprimer les facettes appartenant à $\sigma_i(\mathcal{B})$
 - créer de nouvelles facettes $[p_i, g], \forall g \in \eta_i$
 - créer les nouvelles adjacences

Points clefs de l'algorithme :

- nombre de facette de $\sigma_i(\mathcal{B})$ (facettes visibles)
- ullet localiser rapidement les facettes de l'horizon η_i

Points clefs de l'algorithme :

- nombre de facette de $\sigma_i(\mathcal{B})$ (facettes visibles)
- localiser rapidement les facettes de l'horizon η_i

Complexité:

- théorème [McMullen 1971] : l'enveloppe convexe de n points en dimension d a $\Theta\left(n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$ faces
- # facettes de $\eta_i = O\left(i^{\left\lfloor \frac{d-1}{2} \right\rfloor}\right)$
- localiser rapidement : trier et partir de p_{i-1}
- Complexité de l'algorithme : $O(n \log n) + O\left(\sum_{i=1}^{n} i^{\left\lfloor \frac{d-1}{2} \right\rfloor}\right)$ $O\left(n\log n + n^{\left\lfloor \frac{d+1}{2} \right\rfloor}\right)$

Optimale pour *d* paire et quadratique pour d = 3

Triangulation

Soit \mathcal{P} un ensemble de n points du plan, on appelle *Triangulation* de \mathcal{P} un ensemble maximal de d simplexes tel que deux simplexes ne s'intersectent pas ou s'intersectent selon une face commune; l'union des simplexes doit être égale à l'enveloppe convexe de \mathcal{P}

Définition (triangulation)

Soit \mathcal{P} un ensemble de n points du plan, on appelle *Triangulation* de \mathcal{P} un ensemble maximal de d simplexes tel que deux simplexes ne s'intersectent pas ou s'intersectent selon une face commune; l'union des simplexes doit être égale à l'enveloppe convexe de \mathcal{P}

Pour calculer une triangulation, il suffit d'appliquer l'algorithme incrémental de calcul d'enveloppe convexe sans effacer les facettes de l'*horizon* à chaque étape.

8

8

La triangulation ainsi obtenue n'est pas « régulière » et certains triangles sont très « plats »