TITLE

Johannes Hahn

May 26, 2018

1 Some categorial flavour to algebraic notions

1.1 **Definition** (Projective and injective objects):

 $P \in Ob(A)$ is called projective iff for every epimorphism $B \twoheadrightarrow A$ and every morphism $P \to A$ there is a morphism $P \to B$ making the triangle commutative.

Dually $I \in Ob(A)$ is called injective iff for every monomorphism $A \hookrightarrow B$ and every morphism $A \to I$ there is a morphism $B \to I$ making the triangle commutative.

1.2: In both cases, the morphisms need not be unique and in many cases they aren't.

2 Some homological algebra

2.1 Definition (Chain complexes):

Let A be an additive category. A chain complex (A_*, ∂) is a pair consisting of a graded object $A_* \in A^{\mathbb{N}}$ and a morphism $\partial: A \to A$ of degree -1, i.e. $\partial_n: A_n \to A_{n-1}$, such that $\partial \circ \partial = 0$.

The category of chain complexes is denoted Ch(A).

2.2 Definition (Homology):

Let A be an abelian category and $A_* \in Ch(A)$ a chain complex. Then its homology is defined to be the graded object $H_n := \underbrace{\ker(\partial_n)}_{=:Z_n} / \underbrace{\operatorname{im}(\partial_{n+1})}_{=:B_n}$.

2.1 Mapping cone

2.3 Definition:

Let $f:(A_*,\partial^A)\to (B_*,\partial^B)$ be a chain-map. The mapping cone $C(f)=(C(f)_*,\partial^{C(f)})$ is the chain complex given by

$$C(f)_n := A_{n-1} \oplus B_n$$
 and $\partial_n^{C(f)} := \begin{pmatrix} -\partial_{n-1}^A & 0 \\ -f_{n-1} & \partial_n^B \end{pmatrix}$

2.4 Lemma (Mapping cones vs. quasi-isomorphisms):

Let $f: (A_*, \partial^A) \to (B_*, \partial^B)$ be a chain-map.

- a.) $0 \to B \stackrel{i}{\hookrightarrow} C(f) \stackrel{q}{\longrightarrow} A[-1] \to 0$ is a short exact sequence of chain complexes.
- b.) The induced long exact sequence in homology

$$\cdots \to H_{n+1}(B) \xrightarrow{i_*} H_{n+1}(C(f)) \xrightarrow{q_*} \underbrace{H_{n+1}(A[-1])}_{=H_n(A)} \xrightarrow{\delta} H_n(B) \to H_n(C(f)) \to \cdots$$

has f_* as connecting morphism δ .

c.) f quasi-isomorphism $\iff C(f)$ is acylic.

2.5 Lemma (Mapping cones vs. chain homotopy):

Let $f:(A_*,\partial^A)\to(B_*,\partial^B)$ be a chain-map.

- a.) f is a homotopy-equivalence $\iff C(f)$ is contractible.
- b.) TFAE:
 - i.) f is null-homotopic.
 - ii.) f factorises through $A \hookrightarrow C(\mathrm{id}_A)$.
 - iii.) f factorises through a contractible complex.
 - iv.) The short exact sequence $0 \to B \hookrightarrow C(f) \to A \to 0$ splits.

Proof. a. A map

$$H := \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} : \begin{array}{ccc} A_{n-1} & & A_n \\ \oplus & \to & \oplus \\ B_n & & B_{n+1} \end{array}$$

is a homotopy $\mathrm{id}_{C(f)}\simeq 0$ iff $H\partial^{C(f)}+\partial^{C(f)}H=\mathrm{id},$ that is iff

$$-\begin{pmatrix} \alpha \partial + \beta f + \partial \alpha & -\beta \partial + \partial \beta \\ \gamma \partial + \delta f + f \alpha - \partial \gamma & -\delta \partial + f \beta - \partial \delta \end{pmatrix} = \begin{pmatrix} \mathrm{id} & 0 \\ 0 & \mathrm{id} \end{pmatrix}$$

i.e. iff $\beta: B \to A$ is a chain-map, $-\alpha$ is a homotopy id $\simeq (-\beta)f$, δ is homotopy id $\simeq f(-\beta)$ and γ is some map satisfying the last equation.

This already proves one direction: If $C(f) \simeq 0$, then $f(-\beta) \simeq \operatorname{id}$ and $(-\beta)f \simeq \operatorname{id}$ so that $A \simeq B$.

2

Conversely, if $f(-\beta) \simeq \operatorname{id}$ and $(-\beta)f \simeq \operatorname{id}$ via homotopies δ and $-\alpha$ respectively, then setting $\gamma := 0$ for the moment, we instead get a homotopy \tilde{H} of 0 with $\psi := \begin{pmatrix} \operatorname{id} & 0 \\ \delta f + f\alpha & \operatorname{id} \end{pmatrix}$ which is obviously an isomorphism on the level of modules. ψ is in fact a chain map:

$$\partial^{C(f)}\psi - \psi \partial^{C(f)} = \begin{pmatrix} 0 & 0 \\ \partial \delta f + \partial f \alpha + \delta f \partial + f \alpha \partial & 0 \end{pmatrix}$$

This is zero because

$$\partial \delta f + \delta f \partial = \partial \delta f + \delta \partial f = (-\operatorname{id} + f \beta) f$$

and

$$\partial f\alpha + f\alpha\partial = f\partial\alpha + f\alpha\partial = f(\mathrm{id} - \beta f)$$

Therefore $H := \psi^{-1}\tilde{H}$ is a homotopy $0 \simeq \mathrm{id}_{C(f)}$ so that C(f) is contractible as claimed. b. i. \iff iii. is trivial. We show i. \iff iii.: f factorises over the inclusion $A \hookrightarrow C(\mathrm{id}_A), a \mapsto (0, a)$ iff there is a chain-map

$$(h_{n-1}, f_n): \begin{array}{c} A_{n-1} \\ \oplus \\ A_n \end{array} \to B_n$$

And for a family $(h_n : A_n \to B_{n+1})$ to induce such a chain map $C(\mathrm{id}_A) \to B$ is equivalent to $\partial^B h = -h\partial^A - f$, i.e. to h being a homotopy $f \simeq 0$. i. \iff iv.: $B \hookrightarrow C(f)$ splits iff there is a chain map

$$(r, \mathrm{id}): \begin{array}{c} A_{n-1} \\ \oplus \\ B_n \end{array} \to B_n$$

And for a family $(r_n: A_n \to B_{n+1})$ to induce such a chain map $C(f) \to B$ is equivalent to $\partial r = -r\partial - f$, i.e. to r being a homotopy $f \simeq 0$.

2.2 Replacing objects and complexes by projective or injective resolutions 2.6 Lemma:

Chain maps between projectives / acyclic complexes are unique up to homotopy:

- a.) Homology: If $C_* \in Ch^-(A)$ is acyclic and $P_* \in Ch^-(Proj(A))$ all morphisms $P_* \to C_*$ are null-homotopic.
- b.) Cohomology: If $C^* \in Ch^+(A)$ is acyclic and $I^* \in Ch^+(Inj(A))$ all morphisms $C^* \to I^*$ are null-homotopic.

Proof. Let $\alpha, \beta: P_* \to C_*$ be two chain maps. Inductively we construct a homotopy $h: P_* \to C_*[1]$ between the two.

We begin with setting $h_n := 0$ for all n < 0. First step is to construct h_0 . Since C is exact, $C_1 \to C_0$ is epi so that $\alpha_0 - \beta_0$ lifts to some $h_0 : P_0 \to C_1$ by projectivity, so that $\partial_1 h_0 + \partial_0 = \alpha_0 - \beta_0$ is satisfied.

If h_0, \ldots, h_{n-1} are already known and a partial homotopy, then

$$\partial_n(\alpha_n - \beta_n) = (\alpha_{n-1} - \beta_{n-1})\partial_n$$
$$= (\partial_n h_{n-1} + h_{n-2}\partial_{n-1})\partial_n$$
$$= \partial_n h_{n-1}\partial_n$$

So that $\partial(\alpha_n - \beta_n - h_{n-1}\partial_n) = 0$. Therefore $\alpha_n - \beta_n - h_{n-1}\partial_n$ maps into $Z_n(C)$ which equals $B_n(C) = \operatorname{im}(\partial_{n+1})$ by exactness. By projectivity, we can find h_n so that

$$\alpha_n - \beta_n - h_{n-1}\partial_n = \partial_{n+1}h_n$$

is satisfied which proves the lemma.

2.7 Corollary (Fundamental lemma of homological algebra):

"Objects can be replaced by their projective or injective resolutions"

- a.) Homology: Assume that A has enough projectives and that a projective resolution has been fixed for every object.
 - Any $f: A \to B$ extends to a chain map between the augmented complexes

$$P_*(A) \longrightarrow A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

 ϕ is unique up to homotopy.

In particular: $A \xrightarrow{P_*} K^-(Proj(A))$ is a well-defined functor with $H_0 \circ P_* \cong \mathrm{id}_A$.

b.) Cohomology: Assume that A has enough injectives and that a injective resolution has been fixed for every object.

Any $f: A \to B$ extends to a chain map between the augmented complexes

$$0 \longrightarrow A \longrightarrow I^*(A)$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

 ϕ is unique up to homotopy.

In particular: $A \xrightarrow{I^*} K^+(Inj(A))$ is a well-defined functor with $H_0 \circ I^* \cong id_A$.

As a consequence, projective and injective resolutions are unique up to homotopy equivalence.

Proof. Uniqueness up to homotopy follows from the lemma. We only have to show existence. Again, we work inductively:

We set $P_{-1}(A) := A$, $\phi_{-1} := f$, and $P_{-1}(B) := B$ for notational convenience. If ϕ_{n-1} is already constructed, then

$$P_{n}(A) \xrightarrow{\partial} P_{n-1}(A) \qquad P_{n}(A) \xrightarrow{\partial} P_{n-1}(A) \xrightarrow{\partial} P_{n-2}(A)$$

$$\downarrow^{\phi_{n-1}} \qquad = \qquad \downarrow^{\phi_{n-2}} = 0$$

$$P_{n-1}(B) \xrightarrow{\partial} P_{n-2}(B) \qquad P_{n-2}(B)$$

Therefore $\phi_{n-1} \circ \partial_n : P_n(A) \to P_{n-1}(B)$ maps into $Z_{n-1}(P_*(B))$ which equals $B_{n-1}(P_*(B)) = \operatorname{im}(\partial_n)$ by exactness. By projectivity, we get a lift $\phi_n : P_n(A) \to P_n(B)$.

2.8 Lemma (Horseshoe lemma):

" P_* and I^* are exact"

a.) Homology: Every diagram

$$\begin{array}{ccc}
P_*(A) & P_*(C) \\
\downarrow & \downarrow \\
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 \\
\downarrow & \downarrow \\
0 & 0
\end{array}$$

with exact first row and projective resolutions in the columns can be extended with some projective resolution $P_*(B) \to B \to 0$ to a diagram

$$0 \to P_*(A) \to P_*(B) \to P_*(C) \to 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \qquad 0 \qquad 0$$

in which all rows are exact.

b.) Cohomology: Every diagram

with exact first row and injective resolutions in the columns can be extended with some injective resolution $0 \to B \to I^*(B)$ to a diagram

$$0 \qquad 0 \qquad 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \rightarrow I^*(A) \rightarrow I^*(B) \rightarrow I^*(C) \rightarrow 0$$

in which all rows are exact.

Proof. Set $A_{-1} := A$ and $A_n := P_n(A)$, $C_{-1} := C$ and $C_n := P_n(C)$ as well as $B_{-1} := B$. Then define $P_n(B) := B_n := A_n \oplus C_n$.

For the vertical maps consider

$$0 \longrightarrow A_{n} \longrightarrow A_{n} \oplus C_{n} \longrightarrow C_{n} \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

We define $g: A_n \oplus C_n \to B_{n-1}$ separately on the two components. Define $g: A_n \oplus 0 \to B_{n-1}$ to be the composition $A_n \to A_{n-1} \to B_{n-1}$.

The map $g:0\oplus C_n\to B_{n-1}$ we choose in two steps. First choose $h:C_n\to B_{n-1}$ to make the triangle on the right side commute. Then

d.h. $\partial h(C_n) \subseteq A_{n-2}$ because the (n-2)th row is exact and of course $\partial \partial h = 0$ so that $\partial h(C_n) \subseteq Z_{n-2}(A_*) = B_{n-2}(A_*)$ by exactness of A_* . Using projectivity once again, we can lift ∂h to $f: C_n \to A_{n-1}$ and finally define $g: 0 \oplus C_n \to B_{n-1}$ as h-f. Note that $\overline{g(c_n)} = \partial c_n$ still holds because $\operatorname{im}(f) \subseteq \ker(B_{n-1} \to C_{n-1})$.

This ensures $\partial g = 0$ which proves that the middle column is a(n incomplete) complex. We still have to show exactness. So let $b_{n-1} \in B_{n-1}$ with $\partial b_{n-1} = 0$.

Then its image $c_{n-1} = \overline{b_{n-1}}$ also satisfies $\partial c_{n-1} = 0$ so that a c_n exists with $c_{n-1} = \partial c_n$ by exactness of C_* . Then $\overline{b_{n-1}} - g(0 \oplus c_n) = c_{n-1} - \partial c_n = 0$ so that $b_{n-1} - g(0 \oplus c_n) \in \ker(B_{n-1} \to C_{n-1})$ which is $\operatorname{im}(A_{n-1} \to B_{n-1})$ by exactness of the (n-1)th row so that $b_{n-1} - g(0 \oplus c_n) = a_{n-1}$. Then $0 = 0 - 0 = \partial b_{n-1} - \partial g(0 \oplus c_n) = \partial a_{n-1}$ so that $a_{n-1} = \partial a_n = g(a_n \oplus 0)$. That shows $b_{n-1} = g(a_n \oplus c_n)$.

2.9 Corollary:

"Complexes can be replaces by double complexes of projectives/injectives"

a.) Homology: For every $K_* \in Ch(A)$ exists a commutative double complex $P_{*,*}$ and maps $P_{n,*} \to K_n$ such that

 $P_{*,n} \to K_n \to 0$ is a projective resolution.

b.) Cohomology: For every $K^* \in Ch(A)$

exists a commutative double complex $I^{*,*}$ and maps $K^n \to I^{n,*} \to K^n$ such

that $0 \to K^n \to I^{n,*} \to K^n \to 0$ is an injective resolution.

Proof. Consider the short exact sequences

$$0 \to Z_n \to K_n \to B_{n-1} \to 0$$

and choose projective resolutions $P''_{n,*} \to Z_n \to 0$ and $P'_{n,*} \to B_n \to 0$. Apply the horseshoe lemma to obtain a projective resolution $P_{n,*} \to K_n \to 0$ fitting in the exact sequence.

Now apply the fundamental lemma of homological algebra to get a chain-map $P'_{n,*} \to P''_{n-1,*}$ that extends the canonical map $B_{n-1} \to Z_{n-1}$ and let $P_{n,*} \to P_{n-1,*}$ be the composition $P_{n,*} \to P'_{n,*} \to P''_{n-1,*} \hookrightarrow P_{n-1,*}$. Since $P' \to P \to P''$ are short exact sequences, we obtain a commutative double complex in this way.

2.10 Theorem:

"Complexes can be replaced by projective / injective resolutions"

- a.) Homology: For any bounded above complex $K_* \in Ch^-(A)$ there is a $P_* \in Ch^-(Proj(A))$ and a quasi-isomorphism $P_* \to K_*$.
- b.) Cohomology: For any bounded below complex $K^* \in Ch^+(A)$ there is a $I^* \in Ch^+(Inj(A))$ and a quasi-isomorphism $K^* \to I^*$.

Proof. Take the total complex of $P_{*,*}$ in the previous statement.

3 Derived functors

3.1 (The Problem): Given a right-exact functor $F: A \to B$, and exact sequence

$$0 \to A \to B \to C \to 0$$

gives a exact sequence

$$F(A) \to F(B) \to F(C) \to 0$$

We want to find functors L_nF and natural transformations δ_n (natural w.r.t. the short exact sequence) such that this sequence extends to a long exact sequence

$$\cdots \to L_2F(C) \xrightarrow{\delta_2} L_1F(A) \to L_1F(B) \to L_1F(C) \xrightarrow{\delta_1} \underbrace{F(A)}_{=L_0F(A)} \to \underbrace{F(B)}_{L_0F(B)} \to \underbrace{F(C)}_{=0} \to 0$$

And similarly for left-exact functors.

Of course, we want the universal solution to this problem.

3.2 Definition (δ -Functors & Derived functors):

A family $(F_n, \delta_n)_{n \in \mathbb{N}}$ of functors $A \xrightarrow{F_n} B$ and natural transformations $F_n(C) \xrightarrow{\delta_n} F_{n-1}(A)$ for every short exact sequence $0 \to A \to B \to C \to 0$ that transforms such short exact sequences into long exact sequences as above is called a (homological) δ -functor.

A morphism of δ -functors is a family (t_n) of natural transformations $F_n \xrightarrow{t_n} G_n$ which induces morphisms between the long exact sequences, i.e. $t_n \delta_n^F = \delta_n^G t_n$.

Cohomological δ -Functors (F^n, δ^n) are analogously defined for left-exact functors.

3.3 **Definition** (Universal δ -functors and derived functors):

Let $F: A \to B$ be right-exact. A δ -functor (F_n, δ_n) is called the universal δ -functor extending F or left derived functor of F if there is an iso $F_0 \xrightarrow{\tau} F$ and $((F_n, \delta_n), \tau)$ is the final object in the category of all such δ -functors.

Similarly the right derived functor of a left exact F is defined as an initial object in the appropriate category of cohomological δ -functors with fixed iso $F \xrightarrow{\tau} F^0$.

3.4 Lemma (Extending natural transformations):

Let (F_n, δ_n) , $(\tilde{F}, \tilde{\delta}_n)$ be two δ -functors $A \to B$.

a.) Homology: Assume $F_n(P) = 0$ for all $n \le 1$ and all $P \in Proj(A)$.

Then every $\tilde{F} \xrightarrow{t_0} F$ extends uniquely to a family of natural transformations $\tilde{F}_n \xrightarrow{t_n} F_n$ which induces a morphism between the long exact sequences.

b.) Cohomology: Assume $F^n(I) = 0$ for all $n \le 1$ and all $I \in Inj(A)$.

Then every $F \xrightarrow{t_0} \tilde{F}$ extends uniquely to a family of natural transformations $F^n \xrightarrow{t^n} \tilde{F}^n$ which induces a morphism between the long exact sequences.

Proof. Assume that unique transformations t_0, \ldots, t_{n-1} have already been constructed. Fix $C \in A$ and choose a short exact $0 \to K \xrightarrow{j} P \xrightarrow{q} C \to 0$ with P projective. Then

$$\cdots \longrightarrow \tilde{F}_n(P) \longrightarrow \tilde{F}_n(C) \xrightarrow{\tilde{\delta}_n} \tilde{F}_{n-1}(K) \longrightarrow \tilde{F}_{n-1}(P) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow t_{n-1} \qquad \downarrow t_{n-1}$$

$$\cdots \longrightarrow \underbrace{F_n(P)}_{=0} \longrightarrow F_n(C) \xrightarrow{\tilde{\delta}_n} F_{n-1}(K) \longrightarrow F_{n-1}(P) \longrightarrow \cdots$$

It follows that $F_n(C) \xrightarrow{\delta_n} \ker(F_{n-1}(j))$ and since t_{n-1} is natural, there is a unique $t_n : \tilde{F}_n(C) \to F_n(C)$ that makes the square commute. This t_n does not depend on the choice of K and P by Schanuel's lemma.

Naturality of t_n follows from a simple diagram chase using naturality of δ_n and δ_n , naturality of t_{n-1} and that $F_n(A) \to F_{n-1}(K)$ is mono.

It remains to show that t_n commutes with the deltas for an arbitrary short exact $0 \to A \to B \to C \to 0$. This also follows from a simple diagram chase.

3.5 Theorem (Derived functors exist.):

Let $F: A \to B$ be right / left exact functor.

- a.) Homology:
 - i.) If A has enough projectives, then F has a left derived functor.
 - ii.) $L_i F(P) = 0$ for all projectives P and all i > 0.
 - iii.) Deriving is a functor L_i : $\operatorname{\mathsf{Fun}}_{\mathrm{r.e.}}(\mathsf{A},\mathsf{B}) \to \operatorname{\mathsf{Fun}}_{\mathrm{add}}(\mathsf{A},\mathsf{B}).$
- b.) Cohomology:
 - i.) If A has enough injectives, then F has a right derived functor.
 - ii.) $R^i F(I) = 0$ for all injectives I and all i > 0.
 - iii.) Deriving is a functor R^i $\operatorname{\mathsf{Fun}}_{\operatorname{l.e.}}(\mathsf{A},\mathsf{B}) \to \operatorname{\mathsf{Fun}}_{\operatorname{\mathsf{add}}}(\mathsf{A},\mathsf{B}).$

Proof. Existence: Define $L_nF := H_n \circ P_*$. Note that this does not depend on the choice of the projective resolutions P_* because all choices are homotopy equivalent and homology forgets homotopy. Note that $L_iF(P) = 0$ for P projective and i > 0 because $0 \to P \xrightarrow{\mathrm{id}} P \to 0$ is a projective resolution of P.

Horseshoe lemma implies that every short exact sequence

$$0 \to A \to B \to C \to 0$$

lifts to exact sequence $0 \to P_*(A) \to P_*(B) \to P_*(C) \to 0$ which implies a long exact sequence in homology. Therefore $LF = (L_i F, \delta_i)$ is a δ -functor extending F.

We still have to show universality. Let $((\tilde{F}_n, \tilde{\delta}_n), \tilde{\tau})$ be another δ -functor extending F. The above lemma shows that there is a unique morphism of δ -functors $t : \tilde{F} \to F$ which extends $t_0 := \tau^{-1} \circ \tilde{\tau}$.

It also proves functoriality of deriving.

3.6: Projective / injective resolutions work for all functors to construct derived functors. With a bit more care one can make also resolutions work that consist of more general "F-acyclic" objects.

4 Examples

4.1 Example (Snake lemma):

Taking kernels is a left-exact functor $A^{*\to *}\to Ab$. Its right derived functor is the cokernel in degree 1 and zero further up.

Dually taking cokernels is right-exact and its left derived functor is the kernel in degree 1 and zero everywhere else.

This is a manifestation of the snake lemma.

4.2 Example (Sheaf (co)homology):

Sheaf cohomology $H^*(X, \mathcal{F})$ is the right derived functor of the global section functor $\Gamma: Sh(X) \to \mathsf{Ab}$.

4.3 Example (DeRham cohomology):

 $H^*_{\mathrm{dR}}(M)$ is Sheaf cohomology of the sheaf $\Omega^0(M)$ of locally constant functions $M \to \mathbb{R}$.

4.4 Example (Singular cohomology):

 $H_{\text{sing}}^*(X;G)$ is sheaf cohomology of the sheaf $\underline{G}_X \in Sh(X)$ of locally constant G-valued functions.

4.5 Example (Étale cohomology):

Étale cohomology is the Sheaf cohomology for sheafs on the étale site, i.e. the right derived functor of global sections $\mathsf{Sh}_{et}(X) \to \mathsf{Ab}$.

4.6 Example (Ext and Tor):

$$\operatorname{Ext}_{A}^{i}(M,N) := (R^{i} \operatorname{Hom}_{A}(M,-))(N).$$

$$\operatorname{Tor}_{i}^{A}(M,N) := (L_{i}M \otimes_{A} -)(N) = (L_{i} - \otimes_{A}N)(M).$$

4.7 Example (Group (co)homology):

 $H_*(G, M)$ is the left derived functor of the functor of coinvariants $k \otimes_{kG} -$, i.e. it is $Tor_*^{kG}(k, M)$.

 $H_k^*(G,-)$ is the right derived functor of the functor of fixed points $(-)^G = \operatorname{Hom}_{kG}(k,-)$, i.e. it is $\operatorname{Ext}_{kG}^*(k,M)$.

4.8 Example (Hochschild (co)homology):

Let $A^e := A \otimes_k A^{op}$ be the enveloping algebra of the k-algebra A.

 $HH_n(A,M) := Tor_n^{A^e}(A,M)$, i.e. it is the left derived functor of the functors of coinvariant $M/[A,M] = A \otimes_{A^e} M : (A,A) - \mathsf{Bimod} \to \mathsf{Ab}$.

 $HH^n(A,M) := Ext_{A^e}^N(A,M)$, i.e. the right derived functor of invariants $Z(M) := \operatorname{Hom}_{A^e}(A,M) : (A,A) - \operatorname{Bimod} \to \operatorname{Ab}$.

4.9 Example (Lie-algebra (co)homology):

 $H_n(\mathfrak{g}, M) := Tor_n^{U(\mathfrak{g})}(k, M)$, i.e. left derived of taking coinvariants. $H^n(\mathfrak{g}, M) := Ext_{U(\mathfrak{g})}^n(k, M)$, i.e. right derived of taking invariants.

5 The derived category and total derived functors

5.1 Theorem:

Let $p_A^?: K^?(A) \to D^?(A)$ be the projection functor from the homotopy category onto the derived category.

The total left/right derived functor of $F: A \to B$ is the "best approximation" of $K^{\pm}(F): K^{\pm}(A) \to K^{\pm}(B)$ on the level of derived categories, i.e. it fits into the diagram

$$K^{\pm}(\mathsf{A}) \xrightarrow{K(F)} K^{\pm}(\mathsf{B})$$

$$\downarrow^{p_{\mathsf{A}}^{\pm}} \qquad \qquad \downarrow^{p_{\mathsf{B}}^{\pm}}$$

$$D^{\pm}(\mathsf{A}) \xrightarrow{RF} D^{\pm}(\mathsf{B})$$

5.2: In this situation LF / RF is also both the left and right Kan-extension of $Q_B \circ K(F)$ along the localisation p_A . Concretely: LF fits into a diagram

which is commutative up to natural isomorphism $p_{\mathsf{B}} \circ K(F) \xrightarrow{\cong} LF \circ p_{\mathsf{A}}$ such that for every other functor $D^{-}(\mathsf{A}) \xrightarrow{G} D^{-}(\mathsf{B})$ every natural transformation $G \circ p_{\mathsf{A}} \xrightarrow{f} p_{\mathsf{B}} \circ K(F)$ factors uniquely through this iso.

Therefore some authors define LF of any additive functor F as the right Kan extension $Ran_{p_{\mathsf{A}}^-}(p_{\mathsf{B}}^-\circ K(F))$ and RF as the left Kan extension $Lan_{p_{\mathsf{A}}^+}(p_{\mathsf{B}}^+\circ K(F))$. In this situation however, LF and RF do in general not extend F.