PERENCANAAN PONDASI TIANG PANCANG DALAM BERBAGAI BENTUK

TIANG PADA GEDUNG RUMAH SAKIT MITRA KELUARGA DEPOK

Erni

Jurusan Teknik Sipil Fakultas Tekik Sipil dan Perencanaan, Universitas Gunadarma

ABSTRAKSI

Proyek Pembangunan Rumah Sakit Mitra Keluarga Depok terdiri dari 1 semibasement dan 5 lantai. Pada perencanaan pondasi tiang pancang digunakan berbagai bentuk tiang yaitu bulat dengan diameter 30 cm, 40 cm, 50 cm dan 60 cm, tiang persegi dengan menggunakan dimensi 35x35 cm, 40x40 cm, 45x45 cm dan 50x50 cm, sedangkan untuk bentuk tiang segitiga menggunakan dimensi 26x26x26 cm, 28x28x28 cm, 30x30x30 cm dan 32x32x32 cm. Tujuan perencanaan ini adalah untuk mendapatkan pondasi tiang pancang yang aman, ekonomis dan efisien. Pada perhitungan perencanaan pondasi tiang pancang digunakan metode yang sesuai dengan jenis tanah setiap lapisan tanah. Untuk perhitungan daya dukung ujung tiang digunakan metode Mayerhoff dan Janbu sedangkan perhitungan daya dukung selimut digunakan metode Reese & Wright dan Thomlinson (α). Perhitungan penurunan tiang tunggal digunakan metode semi empiris dan penurunan kelompok tiang menggunakan metode Vesic. Dari hasil perhitungan perencanaan pondasi tiang pancang yang ekonomis dan efisien dapat dipilih tiang dengan bentuk bulat diameter 60 cm. Hal ini dilihat berdasarkan hasil penurunan tanahnya sebesar 0,0226 m dengan daya dukung ultimate sebesar 2476,283 kN, dengan jumlah tiang sebanyak 215 tiang dan estimasi biaya pondasi sebesar Rp. 1.121.229.816

Kata kunci: Tiang pancang, penurunan, biaya pondasi.

PENDAHULUAN

Proyek pembangunan Rumah Sakit Mitra Keluarga Depok terdiri dari 1 semibasement dan 5 lantai. Dalam pembangunan Rumah Sakit tersebut maka diperlukan perencanaan struktur atas (*up structure*) dan struktur bawah (*sub structure*). Pada penulisan ini dibahas tentang perencanaan pondasi tiang pancang dalam berbagai bentuk tiang dan diameter tiang yang ada dipabrikasi.

Tujuan dari penulisan ini adalah menghitung pembebanan pada gedung Rumah Sakit Mitra Keluarga Depok, menentukan dimensi dan kedalaman pondasi, menghitung daya dukung aksial dan lateral pondasi, menghitung penurunan pondasi, menghitung dan menentukan dimensi *pile cap* dan menghitung biaya pondasi tiang pancang.

Dalam penulisan ini, penulis membatasi masalah tentang menghitung pembebanan struktur atas berdasarkan Peraturan Pembebanan Indonesia Untuk Gedung tahun 1983, menghitung perencanaan pondasi tiang pancang dengan menggunakan bentuk tiang bulat dengan diameter 30 cm, 40 cm, 50 cm dan 60 cm. Untuk bentuk tiang persegi menggunakan dimensi 35x35 cm, 40x40 cm, 45x45 cm dan 50x50 cm. Dan untuk tiang segitiga menggunakan dimensi 26x26x26 cm, 28x28x28 cm, 30x30x30 cm, dan

32x32x32 cm dan tidak merencanakan penulangan pondasi tiang pancang, karena tiang pancang merupakan pabrikasi.

Lokasi perencanaan berada di Jalan Margonda Raya no 54 Depok. Batas lokasi proyek tersebut adalah sebelah utara kantor FORKABI Depok, sebelah selatan Polres Depok, sebelah timur Ruko ITC Depok dan sebelah barat pemukiman Warga Sukmajaya.

LANDASAN TEORI

Pembebanan

Beban yang bekerja pada struktur bangunan dapat dikelompokkan berdasarkan arah kerjanya, beban yang bekerja pada struktur suatu bangunan dapat dibagi menjadi 2 (dua), yaitu:

1. Beban Vertikal (Gravitasi)

a. Beban Mati atau Dead Load (DL)

Beban mati adalah berat dari semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaian-penyelesaian, mesin-mesin serta peralatan tetap yang merupakan bagian yang tidak terpisahkan dari gedung itu. Beban mati merupakan berat sendiri dari bahan-bahan bangunan penting dan dari beberapa komponen gedung yang harus ditinjau didalam menentukan beban mati dari suatu gedung.

b. Beban Hidup atau Live Load (LL)

Beban hidup adalah semua beban yang terjadi akibat penghunian atau penggunaan suatu gedung dan kedalamnya termasuk beban-beban pada lantai yang berasal dari barang-barang yang dapat berpindah, mesin-mesin serta peralatan yang tidak merupakan bagian yang tidak terpisahkan dari gedung dan dapat diganti selama masa hidup dari gedung itu, sehingga mengakibatkan perubahan dalam pembebanan lantai dan atap tersebut.

2. Beban Horisontal (Lateral)

a. Beban Gempa atau Earthquake (E)

Beban gempa adalah semua beban statik ekwivalen yang bekerja pada gedung atau bagian gedung yang menirukan pengaruh dari gerakan tanah akibat gempa itu. Perhitungan beban gempa berdasarkan Pedoman Perencanaan Ketahanan Gempa Untuk Rumah dan Gedung 1987 adalah:

$$T \cdot 0.060 H_{\checkmark}^{3}$$

$$V = C \cdot I \cdot K \cdot W_{t}$$

$$Wi hi$$

$$F i \qquad V$$

$$Wi hi$$

Dimana:

T = Waktu getar alami

H = Tinggi bangunan (m)

V = Gaya geser dasar bangunan rencana (kN)

W_t= Kombinasi dari beban mati dan beban hidup vertikal yang direduksi (kN)

C = Koefisien gempa dasar

I = Faktor keutamaan struktur

K= Faktorjenis struktur

 F_i = Beban gempa horisontal (kN)

W_i = Berat total dengan kombinasi (kN)

hi = Tinggi lantai (m)

b. Beban Angin atau Wind Load (W)

Beban angin adalah semua beban yang bekerja pada gedung atau bagian gedung yang disebabkan oleh selisih dalam tekanan udara.

Analisa Struktur

Hasil perhitungan pembebanan yang meliputi perhitungan beban mati, beban hidup, beban gempa, dan beban angin dihitung dengan bantuan program SAP 2000 dan memasukkan kombinasi beban sesuai dengan SKSNI T-15-1991-03.

Perencanaan Pondasi Tiang Pancang

Daya Dukung Aksial

Pada dasarnya pondasi tiang harus mampu menahan beban struktur atas dan meneruskan beban tersebut ke tanah dengan 2 (dua) mekanisme yaitu gesekan selimut tiang dan tahanan ujung tiang.

Daya Dukung Ujung Tiang (Op)

1. Metode Mayerhoff, untuk tanah berbutir kasar:

$$Q_p = A_p \times q' \times N_q'$$
 Bila L_q' ; maka nilai $Q_p = A_p \cdot q' \cdot N_q'$; maka nilai $Q_p > Q_p$ syarat $= A_p \cdot q' \cdot N_q' > A_p \cdot 5N_q'$. tan φ

; maka nilai
$$Q_p > Q_p$$
 syarat = A_p , q' , $N_q' > A_p$, $5N_q'$, tan q

Bila *Le*

BB

Dimana:

 $A_p = Luas$ penampang ujung tiang (m²)

 N_q ' = Faktor daya dukung yang sudah disesuaikan berdasarkan tabel Mayerhoff

q' = Tegangan vertikal efektif (kN/m²)

 $\varphi = \text{Sudut geser dalam} (^{\circ})$

L = Panjang tiang (m)

B = Lebar tiang (m)

= Diketahui dari grafik dengan mengetahui nilai φ

Gambar 1. Nilai $\frac{Le}{B}$ Dengan Sudut Geser Dalam

Gambar 2. Faktor Daya Dukung Ijin Dengan Sudut Geser Dalam

2. Metode Janbu, untuk tanah berbutir kasar :

 $Q_p = A_p (c \cdot N_c' + q' \cdot N_q')$

Dimana:

c = Kohesi tanah (kN/m^2)

 N_{c} ', N_{q} ' = Faktor daya dukung ujung tiang berdasarkan tabel Janbu

Gambar 3. Faktor Daya Dukung Ijin Dengan Sudut Geser

Dalam

Daya Dukung Selimut Tiang (Q_s)

1. Metode Reese & Wright

Untuk tanah berbutir kasar gesekan selimut tiang dapat diambil dari grafik berdasarkan nilai NSPT sedangkan untuk tanah berbutir halus dapat dihitung dengan menggunakan rumus :

 $f = a \cdot c$

 $Q_s = f x L x p$

Dimana :

f = Gesekan selimut tiang (kN/m²)

a = Faktor koreksi (hasil penelitian Reese faktor koreksi dapat diambil sebesar 0,55)

L = Panjang tiang (m)

p = Keliling penampang tiang (m)

Gambar 4. Gesekan Selimut Tiang Dengan NSPT

2. Metode Thomlinson (α)

Untuk tanah berbutir halus nilai gesekan selimut tiang (f) adalah:

$$f = a \cdot c$$

Untuk tanah berbutir kasar nilai gesekan selimut tiang (f) adalah :

 $f = K \cdot a' \cdot tan \ddot{o}$

 $K = 1 - \sin(p)$

 $a' = \Sigma (y.H)$

ö = ,

3

 $Q_s = A_s$. f

Dimana:

 $A_s = Luas selimut tiang (m^2)$

a = Konstanta (dari grafik harga a terhadap harga c)

K = Ko = Koefisien dari tekanan lateral

a' = Tegangan efektif (kN/m²)

 $y = Berat isi tanah (kN/m^3)$

H = Kedalaman tanah (m)

Gambar 3. Faktor Daya Dukung Ijin Dengan Sudut Geser Dalam

Gbr. 4.12. Variasi Harga a terhadap Harga Co

Gambar 5. Hubungan nilai α dan c

Daya Dukung Ultimate Tiang Tunggal (Qu)

Daya dukung ultimate tiang tunggal merupakan gabungan antara kapasitas ujung tiang tunggal (Q_p) dan kapasitas selimut tiang tunggal (Q_s) .

$$Q_u = Q_p + \sum Q_s$$

Daya Dukung Ijin (Qijin)

Daya dukung ijin tiang diperoleh dari daya dukung ultimit dibagi dengan faktor aman (FK).

$$O_{ijin} = \frac{Qu}{FK}$$

Jumlah Tiang Pondasi (n)

Jumlah tiang pondasi merupakan banyaknya tiang dalam memikul beban per kolom. Banyaknya tiang pondasi dapat diperoleh dari beban yang dipikul pondasi (P) dibagi dengan daya dukung ijin pondasi.

$$n = \frac{P}{Oiiin}$$

Daya Dukung Ultimate Tiang Kelompok (ΣQ_u)

Daya dukung kelompok tiang

$$\sum Q_{\rm u} = m.n(Q_{\rm p} + Q_{\rm s})$$

Daya dukung blok tiang berukuran L x Bg x D

$$\sum Q_u = L_g \times B_g \times C \times N_c + \left[\sum 2(L_g + B_g) \times C \times \Delta L\right]$$

Dimana

m = Jumlah tiang pada deretan baris

n = Jumlah tiang pada deretan kolom

 $L_g = Panjang kelompok tiang (m)$

 $B_{\text{\tiny B}} = \text{Lebar kelompok tiang (m)}$

Efisiensi Kelompok Tiang (Eg)

Efisiensi kelompok tiang untuk tanah pasir atau granuler adalah kurang dari 1.

$$E_{g} = \frac{Qu}{nxQu}$$

Penurunan

Penurunan Pondasi Tiang Tunggal (S), untuk tanah berbutir kasar : Metode Semi Empiris

Karena penurunan dipengaruhi mekanisme pengalihan beban, maka penyelesaian untuk perhitungan penurunan hanya bersifat pendekatan.

$$S = S_{s} + S_{p} + S_{ps}$$

$$Qp ... Qs xL$$

$$S_{s} = ApxEp$$

$$S_{p} = \frac{CpxQp}{Dxq_{p}}$$

$$S_{ps} = \begin{cases} x & y & Iws \\ PxL & Es \end{cases}$$

$$I_{ws} = 2.0,3.5 \int LD$$
Dimana:

 S_s = Penurunan akibat deformasi axial tiang tunggal (m)

 S_p = Penurunan akibat beban pada ujung tiang (m)

 S_{ps} = Penurunan akibat beban pada sepanjang tiang (m)

L = Panjang tiang (m)

 $A_p = Luas penampang (m)$

 $E_p = Modolus elastis tiang (kN/m²)$

 C_p = Koefisien empiris Vesic

qP = Daya dukung berat ujung tiang (kN/m²)

D = Diameter tiang pancang (m)

 $Q_{ws} = Kapasitas selimut tiang (kN)$

P = Keliling tiang (m)

 $v_s = Angka poisson tanah$

 $E_s = Modulus elastis tanah (kN/m²)$

Iws = Faktor pengaruh

Penurunan Pondasi Tiang Kelompok (Sg), untuk tanah berbutir kasar : Metode Vesic

Metode vesic pada penurunan pondasi tiang kelompok digunakan pada tanah pasir dengan perhitungan penurunan tiang tunggal yang dikali dengan akar lebar kelompok tiang dibagi dengan diameter pondasi.

$$Sg = S\sqrt{\frac{Bg}{D}}$$

Daya Dukung Lateral

Daya Dukung Lateral Tiang Tunggal

Pada perhitungan daya dukung lateral menggunakan metode Poulus. Berdasarkan hasil penelitian Poulus, defleksi maksimum terjadi pada permukaan tanah. Defleksi tersebut diakibatkan adanya beban horisontal dan momen yang terjadi pada kepala tiang.

$$K_{N} = \frac{ExI}{pp} 5$$

$$n_{h} \stackrel{T}{Ip} \qquad 4$$

$$x \stackrel{X}{I} \stackrel{X}{I} \stackrel{D}{Ip} \qquad 4$$

$$\rho = \frac{H}{p} \stackrel{P}{I} \stackrel{P}{I} \stackrel{F}{Ip} \qquad K$$

$$M_{f} = K$$

$$xI'_{\tilde{n}}$$

Dimana:

 $K_N = Faktor fleksibilitas tiang$

 $I_p = Momen inersia tiang$

 $n_h = Modulus variasi (kN/m^3)$

 ρ = Faktor fleksibilitas tiang

H = Beban lateral pada kepala tiang (kN)

I'pF= Faktor pengaruuh elastis yang mempengaruhi defleksi akibat beban horisontal dan momen

M_F = Momen yang terjadi untuk kondisi kepala tiang terjepit (kNm)

K = Konstanta yang terdapat dari grafik

Daya Dukung Lateral Kelompok Tiang

$$\mathbf{H}_{\mathbf{G}} = {{}_{\Sigma}}^{n} H_{j}$$

Dimana: Hg = Beban lateral kelompok tiang (kN)

 H_i = Beban lateral tiang tunggal (kN)

 H_G = Beban lateral pada kepala tiang (kN)

n = Jumlah tiang

Dimensi Dan Penulangan Pile Cap

Perencanaan jumlah tiang dalam kelompok sebaiknya disusun secara sistematis atau bentuk geometrinya tertata baik. Hal ini ditujukan agar tegangan yang terjadi pada pelat beton tidak terlalu besar. Perencanaan pile cap harus dibuat cukup besar dan aman. Tebal pile cap harus ditentukan sedemikian rupa agar dapat memenuhi ketentuan SKSNI T-15-1991-03, yaitu :

$$V = \underbrace{\frac{2}{\sqrt{f_c}b_o}}_{c} \cdot \frac{1}{\sqrt{f_c}b_o} \cdot$$

 $\begin{array}{c} b_o - 2x (b) \\ h_{i} (2xd) \end{array}$

Memilih tegangan tanah terbesar yang terjadi akibat V_u dan M_u , yaitu :

$$\frac{V}{A_n} \cdot \frac{M^u}{W}$$

$$egr \min \frac{A_n}{A_n} \cdot \frac{W}{W}$$

Menentukan momen pondasi:
$$M_u = \frac{1}{2} \cdot w_u \cdot l^2$$

Menentukan rasio tulangan balance dan rasio tulangan maksimum sesuai dengan, yaitu:

 $P_{\text{maks}} = 0.75. \text{ Pb}$

Menentukan rasio tulangan minimum, yaitu

$$P_{\min} = \frac{1,4}{f_y}$$

Menentukan luas tulangan:

As = P.b.d

Dimana:

 $V_u = Gaya$ geser terfaktor pada penampang (kN)

 V_c = Tegangan geser ijin beton (kN)

 β_c = Rasio sisi panjang terhadap sisi pendek penampang kolom

f'_c = Kuat tekan beton yang disyaratkan (Mpa)

 b_o = Perimeter, yaitu keliling penampang yang terdapat tegangan geser sedemikian hingga penampang dianggap terletak pada jarak d terhadap sisi kolom.

d = Tebal efektif *pile cap*

METODE PERENCANAAN

Tahapan perencanaan pondasi tiang pancang merupakan tahapan perhitungan secara manual dengan menggunakan beberapa metode sesuai dengan peraturan-peraturan yang telah ditetapkan. Tahapan perhitungan dimulai dengan perhitungan pembebanan, penentuan dimensi tiang, perhitungan daya dukung tiang, perhitungan jumlah tiang pondasi, penentuan dimensi dan penulangan *pile cap*. Berikut ini diagram alir

perencanaan pondasi tiang pancang dan perencanaan $pile\ cap$:

Diagram alir (flowchart) perencanaan pondasi:

Gambar 6. Diagram Perencanaan Pondasi

Diagram alir perencanaan pile cap:

Gambar 7. Diagram Perencanaan Dimensi dan Tulangan Pile Cap

DATA PERENCANAAN

Pada perencanaan pondasi data-data yang diperlukan adalah data struktur atas bangunan dan data hasil penyelidikan tanah. Data struktur atas bangunan yang digunakan adalah denah dan detail struktur atas dan data pembebanan bangunan, sedangkan data hasil penyelidikan tanah yang digunakan adalah pengujian tanah di lapangan dan pengujian di laboratorium.

Data Struktur Atas:

Fungsi bangunan: Rumah Sakit

Jumlah lantai : 5 lantai dan 1 semi basement.

Pondasi yang digunakan:

Bulat dengan diameter 30 cm, 40 cm, 50 cm dan 60 cm.

Persegi menggunakan dimensi 35x35 cm, 40x40 cm, 45x45 cm dan 50x50 cm.

Segitiga menggunakan dimensi 26x26x26 cm, 28x28x28 cm, 30x30x30 cm, dan 32x32x32 cm.

Tinggi bangunan

a. Roof : 4 m
b. Lantai 4 : 4 m
c. Lantai 3 : 4 m
d. Lantai 2 : 4 m
e. Lantai 1 : 5 m
f. Semi basement : 3,5 m

Data Penyelidikan Tanah :Data penyelidikan tanah di lapangan

	DB1	S3 DB2	DB3
0 2 m 3 m		Silt	$c = 0 p = 0 y_t = 1,64 / 3$
5 m 7		Clayey Silt Clayey Silt	$c = 0 p = 0 y_t = 1,68 \text{ t/m}^3$ $c = 0 p = 0 y_t = 1,63 \text{ t/m}^3$
m 9		Silty Clay	$c = 0.18 \text{ Kg/cm}^2$ p = 10 $y_t = 1.55 \text{ t/m}^3$
m 11		Clayey Silt	$c = 0.12 \text{ Kg/cm}^2$ p = 22 $y_t = 1.48 \text{ t/m}^3$
m 19		Sand Sand	$c = 0.14 \text{ Kg/cm}^2$ p = 26 $y_t = 1.45 \text{ t/m}^3$
m 30	20 m	Tanah Keras	Tanah Keras
m		Sand	22 m
	0	30m 37,5 m	60 m

Gambar 8. Penampang Tanah

Data penyelidikan tanah di laboratorium Tabel 1. Ringkasan Hasil Laboratorium

BORING NUMBER			DB3					
Kedala	ıman		10 15	20 25	50.55	70 75	9,0 - 9,5	110 115
Keterangan	Simbol	Satuan	1,0 - 1,5	3,0 - 3,5	5,0 - 5,5	7,0 - 7,5	9,0 - 9,5	11,0 - 11,5
Specific Gravity	G_{s}	-	2,61	2,57	2,53	2,58	2,63	2,62
Water Content	$\omega_{\rm n}$	%	57,61	50,39	52,24	62,54	86,17	64,16
Wet Density	γ_t	t/m ³	1,64	1,68	1,63	1,55	1,48	1,45
Void Ratio	e	-	1,51	1,31	1,36	1,70	2,31	1,98
Degree Saturation	S _r	%	99,60	99,23	97,03	94,84	98,28	85,09
Cohesion	С	Kg/cm ²	F	R	7/2	0,18	0,12	0,14
Angle of Internal Friction	ø				V	10	22	26

PERHITUNGAN PERENCANAAN PONDASI TIANG PANCANG

1. Perhitungan pembebanan, dengan menghitung beban mati, beban hidup, beban gempa, dan beban angin.

Tabel 2. Beban Per Kolom

No	Kolom	Beban Total Kolom (kN)	Kolom	Beban Total Kolom (kN)
1	1C	49,400	8B	2593,552
2	1D	82,968	8C	2720,816
3	1E	535,588	8D	2730,043
4	1F	496,038	8E	2336,994
5	1G	302,642	8F	1607,091
6	1H	176,182	8G	1644,529
7	2B	463,799	8H	800,007
8	2C	1266,345	9A	496,984
9	2D	1499,710	9B	2317,860
10	2E	1615,003	9C	2730,636
11	2F	1677,033	9D	2698,197
12	2G	986,352	9E	2282,178
13	2H	676,676	9F	1590,368
14	3B	825,516	9G	1648,558
15	3C	2087,474	9H	801,599
16	3D	2351,171	10B	1818,935
17	3E	2089,262	10C	2742,144
18	3F	2599,793	10D	2761,699
19	3G	1700,682	10E	2454,567
20	3H	1094,329	10F	1591,734
21	4B	848,911	10G	1698,182

No	Kolom	Beban Total Kolom (kN)	Kolom	Beban Total Kolom (kN)
22	4C	2062,344	10H	802,397
23	4D	2286,292	11B	1755,162
24	4E	2007,095	11C	2809,476
25	4F	2372,751	11D	2786,568
26	4G	1463,349	11E	2554,986
27	4H	1045,738	11F	1579,490
28	5B	1052,316	11 G	1734,241
29	5C	2503,677	11H	797,683
30	5D	2980,786	12B	1829,126
31	5E	3264,810	12C	2888,505
32	5F	3542,551	12D	2794,342
33	5G	1890,845	12E	2566,754
34	5H	1312,814	12F	1642,655
35	6A	447,185	12G	1805,616
36	6B	2018,124	12H	829,900
37	6C	2817,323	13B	1329,659
38	6D	3220,436	13C	2056,930
39	6E	3323,407	13D	2140,647
40	6F	3649,640	13E	1901,353
41	6G	2062,109	13F	1211,191
42	6H	1508,029	13G	1262,288
43	7A	879,212	13H	599 ,5 67
44	7B	2623,403	14B	458,832
45	7C	2784,584	14C	675,980
46	7D	2931,093	14D	815,981
47	7E	3056,482	14E	333,642
48	7F	3263,070	14F	251,078
49	7G	1802,322	14G	270,399
50	7H	1146,472	14H	147,515
51	8A	879,803		

2. Hasil perhitungan daya dukung ujung tiang dengan menggunakan metode Mayerhoff dan metode Janbu sedangkan untuk daya dukung selimut tiang menggunakan metode Reese & Wright dan metode Thomlinson (α), yaitu:

Tabel 3 Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Bulat Ø 0,30 m

$Q_{p}\left(kN\right)$ $Q_{s}\left(kN\right)$	Mayerhoff 253,810 kN	Janbu's 190,003 kN
Reese & Wright 730,521 kN	984,331	920,524
Thomlinson (α) 237,599 kN	491,409	427,601

Sumber: Perhitungan

Tabel 4. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Bulat Ø 0,40 m

$Q_{p}(kN)$	Mayerhoff 451,218 kN	Janbu's 337,782 kN
Reese & Wright 974,028 kN	1425,246	1311,8 10
Thomlinson (α) 316,798 kN	768,016	654,580

Sumber: Perhitungan

Tabel 5. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Bulat Ø 0,50 m

Q _p (kN)	Mayerhoff 705,028 kN	Janbu's 527,785 kN
Reese & Wright 1217,535 kN	1922,563	1745,320
Thomlinson (α) 394,127 kN	1099,155	921,912

Sumber: Perhitungan

Tabel 6. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Bulat Ø 0,60 m

$Q_{p}\left(kN\right)$ $Q_{s}\left(kN\right)$	Mayerhoff 1015,241 kN	Janbu's 760,010 kN
Reese & Wright 1461,042 kN	2476,283	222 1,052
Thomlinson (α) 472,953 kN	1488,193	1232,963

Tabel 7. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Persegi

$Q_p(kN)$	0,35 x 0,35 m Mayerhoff 440,081 kN	Janbu's 329,445 kN
Reese & Wright 1085,700 kN	1525,781	1415, 145
Thomlinson (α) 351,451 kN	791,532	680,896

Sumber: Perhitungan

Tabel 8. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Persegi $0.40 \times 0.40 \ \mathrm{m}$

$Q_{p}(\mathbf{k}\mathbf{N})$ $Q_{s}(\mathbf{k}\mathbf{N})$	Mayerhoff 574,800 kN	Janbu's 430,296 kN
Reese & Wright 1240,800 kN	1815,600	1671,096
Thomlinson (α) 401,658 kN	976,458	831,954

Sumber: Perhitungan

Tabel 9. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Persegi

	0,45 x 0,45 m	
$Q_{p}(kN)$	Mayerhoff	Janbu's
$Q_s(kN)$	727,481 kN	544,593 kN
Reese & Wright 1395,900 kN	2 123,381	1940,493
Thomlinson (α) 451,866 kN	1179,347	996,459

Sumber: Perhitungan

Tabel 10. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Persegi $0{,}50 \ge 0{,}50 \bmod m$

Q _p (kN)	Mayerhoff <u>898,125 kN</u>	Janbu's 672,338 kN
Reese & Wright 1551,000 kN	2449,125	2223,338
Thomlinson (α) 502,073 kN	1400,198	1174,411

Tabel 11. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Segitiga 0,26 x 0,26 x 0,26 m

$Q_{p}(kN)$ $Q_{s}(kN)$	Mayerhoff 121,427 kN	Janbu's 90,900 kN
Reese & Wright 604,890 kN	726,317	695,790
Thomlinson (α) 195,808 kN	317,235	286,708

Sumber: Perhitungan

Tabel 12. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Segitiga $0.28 \times 0.28 \times 0.28 \,\mathrm{m}$

$Q_{p}(kN)$	Mayerhoff	Janbu's				
Q_s (kN)	140,826 kN	105,423 kN				
Reese & Wright 651,420 kN	792,246	756,843				
Thomlinson (α) 210,871 kN	351,697	316,294				

Sumber: Perhitungan

Tabel 13. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Segitiga $0.30 \times 0.30 \times 0.30 \,\mathrm{m}$

$Q_{p}(kN)$	Mayerhoff 161,663 kN	Janbu's 121,021 kN
Reese & Wright 697,950 kN	859,613	818,971
Thomlinson (α) 225,933 kN	387,595	346,954

Sumber: Perhitungan

Tabel 14. Daya Dukung Ultimate Tiang Tunggal Bentuk Tiang Segitiga $0.32 \times 0.32 \times 0.32 \text{ m}$

$Q_{\rm p}(kN)$	Mayerhoff 183,936 kN	Janbu's 137,695 kN
Reese & Wright 744,480 kN	928,416	882,175
Thomlinson (α) 240,995 kN	424,931	378,690

3. Perhitungan daya dukung ijin dengan menggunakan faktor keamanan (FK) 3

Tabel 15. Daya Dukung Jjin Bentuk Tiang Bulat

Ø (m)	Q _u (kN)		FK	Qijin	(kN)
	984,331	920,524	3	328,110	306,841
0.30	491,409	427,601	3	163,803	142,534
	1425,246	1311,810	3	475,082	437,270
0.40	768,016	654,581	3	256,005	218,194
	1922,563	1745,320	3	640,854	581,773
0.50	1099,155	921,912	3	366,385	307,304
	2476,283	2221,052	3	825,428	740,351
0.60	1488,193	12 3 2,963	3	496,064	410,988

Sumber: Perhitungan

Tabel 16. Daya Dukung Jjin Bentuk Tiang Persegi

Dimensi (m)	Q _u (Q _u (kN)		Qijin	(kN)
	1525,781	1415,145	3	508,594	471,715
0.35×0.35	791,532	680,896	3	263,844	226,965
	1815,600	1671,096	3	605,200	557,032
0.40×0.40	976,458	831,954	3	325,486	277,318
\\ .	2123,381	1940,493	3	707,794	646,831
0.45 x 0.45	1179,347	996,459	3	393,116	332,153
	2449,125	2223,338	3	816,375	741,113
0.50 x 0.50	1400,198	1174,410	3	466,733	391,470

Sumber: Perhitungan

Tabel 17. Daya Dukung Jjin Bentuk Tiang Segitiga

Dimensi (m)	Q _u (kN)		FK	Qijin (kN)	
	726,317	695,790	3	242,106	231,930
0.26 x 0.26 x 0.26	317,235	286,708	3	105,745	95,569
	792,246	756,843	3	264,082	252,281
0.28 x 0.28 x 0.28	351,697	316,293	3	117,232	105,431
	859,613	818,971	3	286,538	272,990
0.30 x 0.30 x 0.30	387,595	346,954	3	129,198	115,651
	928,416	882,175	3	309,472	294,058
0 32 x 0 32 x 0 32	424,931	378,690	3	141,644	126,230

4. Hasil perhitungan jumlah tiang terbanyak dalam *pile cap* : Tabel 18. Jumlah Tian

Bentuk Tiang	Dimensi (m)	JumlahTiang Terbanyak Dalam <i>Pile Cap</i> (Tiang)		
	0,30	11		
Bulat	0,40	8		
	0,50	6		
	0,60	4		
	0,35 x 0,35	7		
Persegi	0,40 x 0,40	6		
	0,45 x 0,45	5		
	0,50 x 0,50	4		
	0,26 x 0,26 x 0,26	15		
Segitiga	0,28 x 0,28 x 0,28	14		
	$0,30 \times 0,30 \times 0,30$	13		
	$0,32 \times 0,32 \times 0,32$	12		

Sumber: Perhitungan

5. Hasil perhitungan penurunan tiang tunggal dengan menggunakan metode Semi Empiris

Tabel 19. Penurunan Pondasi Tiang Tunggal

Bentuk Tiang	Dimensi (m)	$S_{s}(m)$	S _p (m)	_{Sps} (m)	S (m)
	0,30	0,3000	0,0077	0,0071	0,0018
Bulat	0,40	0,0066	0,0094	0,0022	0,0182
`	0,50	0,0059	0,0118	0,0026	0,0203
	0,60	0,0054	0,0141	0,0030	0,0226
	0,35 x 0,35	0,007 1	0,0105	0,0020	0,0196
Persegi	0,40 x 0,40	0,0066	0,0 120	0,0022	0,0208
	0,45 x 0,45	0,0062	0,0135	0,0024	0,0221
	0,50 x 0,50	0,0059	0,0150	0,0026	0,0235
	0,26 x 0,26 x 0,26	0,0110	0,0039	0,0016	0,0166
Segitiga	0,28 x 0,28 x 0,28	0,0105	0,0042	0,0017	0,0164
	0,30 x 0,30 x 0,30	0,0100	0,0045	0,0018	0,0163
	0,32 x 0,32 x 0,32	0,0096	0,0048	0,0019	0,0163

6. Hasil perhitungan daya dukung lateral tiang tunggal dengan menggunakan metode Poulus :

Tabel 20. Daya Dukung Lateral Tiang Tunggal

Bentuk	Dimensi	Daya Dukung	Momen Maksimum
Tiang	(m)	Lateral (kN)	(kNm)
	0,30	10,384	12,967
	0,40	11,625	16,130
Rulat	0,50	12,137	21,330
	0,60	13,043	32,092
	0,35 x 0,35	10,858	15,066
	0,40 x 0,40	11,163	18,999
Perceoi	0,45 x 0,45	11,753	19,786
	$0,50 \times 0,50$	16,298	35,578
	0,26 x 0,26 x 0,26	10,235	11,834
Seci tica	$0,28 \times 0,28 \times 0,28$	10,537	12,281
	0,30 x 0,30 x 0,30	10,695	12,663
	0,32 x 0,32 x <mark>0</mark> ,32	11,040	13,276

Sumber: Perhitungan

GUNA

REKAPITULASI HASIL PERHITUNGAN PONDASI TIANG PANCANG
Berdasarkan hasil perhitungan perencanaan pondasi tiang pancang dengan berbagai bentuk tiang dan diameter, maka didapatkan nilai-nilai sebagai berikut:

Tabel 21. Hasil Perhitungan Pondasi Tiang Pancan

TIANG	DIMENSI	DAYA DUKUNG	JUMLAH TOTAL	PENURUNAN	TEBAL	TULANGAN	MOMEN	BIAYA PONDASI
HANG	(m)	ULTIMATE (kN)	TIANG	(m)	PILE CAP (m)	PILE CAP	(kNm)	(Rp)
Bulat	0,30	984,331	532	0,0018	0,700	Ø18-100	12,967	1.921.828.666
	0,40	1425,246	371	0,0182	0,700	Ø19-100	16,130	1.510.723.404
	0,50	1922,563	279	0,0203	0,700	Ø20-100	21,330	1.311.630.587
	0,60	2476,283	215	0,0226	0,700	Ø20-150	32,092	1.121.229.816
Persegi	0,35 x 0,35	1525,781	346	0,0196	0,700	Ø18-100	15,066	1.926.443.485
	$0,40 \times 0,40$	1815,600	292	0,0208	0,700	Ø19-100	18,999	1.727.297.261
	0,45 x 0,45	2123,381	253	0,0221	0,700	Ø19-100	19,786	1.676.795.849
	$0,50 \times 0,50$	2449,125	219	0,0235	0,700	Ø20-100	35,578	1.556.558.355
Segitiga	0,26 x 0,26 x 0,26	726,317	723	0,0166	0,700	Ø16-100	11,834	3.150.060.923
	0,28 x 0,28 x 0,28	792,246	665	0,0164	0,700	Ø16-100	12,281	3.032.686.441
	$0,30 \times 0,30 \times 0,30$	859,613	614	0,0163	0,700	Ø18-100	12,663	3.031.260.123
	0,32 x 0,32 x 0,32	928,416	567	0,0163	0,700	Ø18-100	13,276	2.818.456.300

KESIMPULAN DAN SARAN

KESIMPULAN

Berdasarkan hasil perhitungan perencanaan pondasi tiang pancang secara manual dengan menggunakan berbagai macam bentuk pondasi tiang pancang yaitu tiang bulat, persegi dan segitiga. Maka direkomendasikan atau dipilih pondasi tiang pancang dengan bentuk tiang bulat diameter 60 cm. Hal ini dapat dilihat berdasarkan sebagai berikut :

- 1. Hasil perhitungan penurunan pondasi tiang pancang bentuk bulat diameter 60 cm didapatkan penurunan sebesar 0,022 6 m. Penurunan ini masih dalam batas aman karena dalam perencanaan pondasi tiang pancang sekecil mungkin didapatkan hasil penurunan, sehingga dalam perencanaan pondasi dapat mencegah kerusakan yang serius yang dapat mempengaruhi struktur bangunan.
- 2. Berdasarkan hasil perhitungan daya dukung ultimate tiang, untuk tiang bulat diameter 60 cm yaitu 2476,283 kN, tiang persegi dimensi 50x50 cm yaitu 2449,125 kN dan untuk tiang segitiga 35x35x35 yaitu 928,416 kN.
- 3. Berdasarkan perhitungan jumlah tiang maka hasil jumlah tiang bulat diameter 60 cm yaitu 215 tiang, hasil ini lebih sedikit bila dibandingkan dengan tiang persegi dimensi 50x50 cm yaitu 219 tiang dan segitiga dimensi 35x35x35 cm yaitu 567 tiang. Adapun persentase tiang bulat diameter 60 cm yaitu 1,826% dari jumlah tiang persegi diameter 50x50 cm, sedangkan persentase tiang bulat 60 cm berdasarkan segitiga diameter 3 5x3 5x3 5 cm sebesar 62,081%.
- 4. Dari hasil estimasi biaya pondasi tiang pancang dengan berbagai bentuk tiang maka didapatkan biaya pondasi tiang pancang bentuk tiang bulat dengan diameter 60 cm yaitu Rp. 1.121.229.815,639. Biaya tiang bulat diameter 60 cm lebih murah bila dibandingkan dengan biaya tiang pancang bentuk tiang lainnya. Hal ini disebabkan oleh semakin besar diameter tiang maka semakin sedikit jumlah tiang yang dihasilkan sehingga lebih efisien dan ekonomis dalam biaya pondasi tiang pancang.

SARAN

Berdasarkan perencanaan pondasi tiang pancang yang telah dilakukan, penulis dapat memberikan saran, yaitu :

- 1. Dalam perencanaan pondasi tiang pancang sebaiknya menggunakan beberapa bentuk tiang pancang dengan diameter yang ada di pabrikasi. Hal ini untuk mengetahui perbandingan daya dukung tiang, penurunan yang terjadi dan biaya pondasi tiang pancang.
- 2. Untuk melakukan perencanaan pondasi tiang pancang sebaiknya setelah melakukan perhitungan dilakukan test terhadap tiang pancang tersebut untuk mengetahui nilai penurunan, apakah sesuai dengan perhitungan dan keadaan yang sebenarnya di lapangan.

DAFTAR PUSTAKA

- 1. Direktorat Penyelidikan Masalah Bangunan, 1983, *Peraturan Pembebanan Indonesia Untuk Gedung*, Yayasan Lembaga Penyelidikan Masalah Bangunan, Bandung.
- 2. Djajaputra Aziz, Poulus, H.G., dan Rahardjo P. Paulus, 2000, *Manual Pondasi Tiang*, Universitas Katholik Parahyangan, Bandung.
- 3. Hadihardaja, Joetata, 1997, *Rekayasa Fundasi II Fundasi Dangkal dan Dalam*, Universitas Gunadarma, Jakarta.
- 4. Hardiyatmo, Hary Christady., 1996, *Teknik Pondasi 1*, Gramedia Pustaka Utama, Jakarta
- 5. Hardiyatmo, Hary Christady., 2002, *Teknik Pondasi* 2, Edisi Kedua. UGM, Yogyakarta.
- 6. M. Das Braja, 1995, Mekanika Tanah, Jilid 1. Erlangga, Jakarta.
- 7. Sosrodarsono Suryono, 2000, *Mekanika Tanah dan Teknik Pondasi*, PT. Prad**nya** Paramita, Jakarta.
- 8. Sudarmoko, 1994, Perancangan dan Analisis Kolom Beton Bertulang (mengacu SK SNI-T-15-1991-03), Universitas Gajah Mada, Yogyakarta.
- 9. Poulus, H.G dan E. H. Davis., 1980, Pile Poundation.

