Processamento Digital de Sinais

Notas de Aula

Análise Espectral Usando a DFT

Ricardo Tokio Higuti

Departamento de Engenharia Elétrica - FEIS - Unesp

Observação: Estas notas de aula estão baseadas no livro: "Discrete-Time Signal Processing", A.V. Oppenheim and R.W. Schafer, Prentice Hall, 1989/1999.

Análise Espectral 2

Análise Espectral Usando a DFT

Uma das principais aplicações da DFT é a análise do conteúdo de freq. de sinais (análise espectral)

Aplicações:

- Análise e síntese de sinais de voz
- Estudo de harmônicos em redes
- Medição de desvio de frequência (Doppler)

Para o uso da DFT na análise de sinais de tempo contínuo, deve-se considerar:

- Amostragem (qual freq. de amostragem usar?)
- DFT: para sinais de duração finita truncamento do sinal (quantos pontos usar?)
- Como relacionar as freq. analógicas (Hz) com as amostras (X[k])

Análise Espectral

- Filtro anti-aliasing: elimina/atenua componentes de freq. acima de $\Omega_s/2$ (ou $f_s/2$), para evitar sobreposição do espectro;
- Conversor C/D: é um conversor A/D, que amostra o sinal $x_c(t)$ a uma taxa de f_s amostras por segundo, e no qual devem ser consideradas suas características não-ideais (amostragem com retenção, número finito de bits);
- Truncamento ou janelamento: $v[n] = x[n] \cdot w[n]$, em que w[n] é uma função que limita a duração do sinal x[n], chamada de **janela**. Ela determina o comprimento do sinal a ser analisado (L), e pode fazer alguma modificação no formato do sinal original, no tempo e em freqüência.
- DFT: Calcula a DFT do sinal v[n], utilizando $N \geq L$ pontos para o cálculo:

$$V[k] = \sum_{n=0}^{L-1} v[n]e^{-j\frac{2\pi}{N}kn}, \quad k = 0, 1, ..., N-1$$

Análise Espectral 4

Análise Espectral

Relação Entre as Transformadas

Os vários parâmetros usados na análise espectral determinam a relação entre as freq. analógicas e as amostras da DFT. São eles:

- Freq. amostragem: $f_s = 1/T$
- ullet Número de pontos usado no cálculo da DFT: N

Relembrando alguns pontos importantes:

• Quando um sinal $x_c(t)$ é amostrado, obtendo-se o sinal x[n], tem-se que a DTFT de x[n], $X(e^{j\omega})$, está relacionada com o espectro do sinal de tempo contínuo amostrado, $X_s(j\Omega)$, pela relação de freqüências:

$$\omega = \Omega T = 2\pi f/f_s$$

• Em um sinal de tempo discreto de duração finita v[n], sua DFT, V[k], e sua DTFT, $V(e^{j\omega})$, estão relacionadas por:

$$V[k] = V(e^{j\omega})|_{\omega = \frac{2\pi}{N}k}, \qquad k = 0..N - 1$$

ou seja, a DFT é composta por N amostras da DTFT, equiespaçadas de $\Delta\omega=2\pi/N,$ entre $\omega=0$ e $2\pi.$

Daí, pode-se relacionar a amostra k da DFT com a freq. f, em Hertz:

$$\Delta\omega = 2\pi/N = \Delta\Omega T = 2\pi\Delta f/f_s$$

e portanto,

$$\Delta f = \frac{f_s}{N}$$

 $\acute{\rm e}$ o espaçamento equivalente entre as amostras do espectro do sinal de tempo contínuo, que $\acute{\rm e}$ amostrado nas freqüências

$$f_k = \frac{f_s}{N}k$$

Análise Espectral 6

Problemas e Limitações

Devido às operações realizadas sobre o sinal de tempo contínuo, os dados resultantes do cálculo da DFT podem não representar exatamente o espectro original. Esses efeitos devem ser levados em conta, para que não haja interpretações errôneas sobre o conteúdo de freq. do sinal sendo analisado.

Deve-se considerar:

- Aliasing (freq. amostragem)
- Efeito do janelamento (formato e comprimento da janela)
 - Vazamento espectral (Spectral Leakage)
- Número de pontos da DFT
 - Amostragem espectral

Amostragem do sinal

O sinal deve ser amostrado a uma taxa maior que duas vezes sua máxima freqüência. Por exemplo, para uma senóide com frequência f_0 amostrada a uma taxa f_s :

Análise Espectral 8

Efeito do Janelamento

O sinal x[n] sofre um truncamento, que é representado matematicamente por uma multiplicação por uma função w[n], chamada de **janela**:

$$v[n] = x[n] \cdot w[n] \stackrel{DTFT}{\longleftrightarrow} V(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$$

O efeito na freqüência é uma convolução periódica do espectro original com o espectro da janela. Há, portanto, mudanças no espectro original, e este efeito é chamado de **vazamento espectral** (spectral leakage), e depende do tipo de truncamento utilizado (formato e comprimento da janela w[n]).. Analisando o caso de uma senóide:

$$x[n] = A\cos(\omega_0 n + \theta_0) = \frac{A}{2}e^{j(\omega_0 n + \theta_0)} + \frac{A}{2}e^{-j(\omega_0 n + \theta_0)}$$

O espectro de x[n] é:

$$X(e^{j\omega}) = A\pi e^{j\theta_0} \delta(\omega - \omega_0) + A\pi e^{-j\theta_0} \delta(\omega + \omega_0), \quad |\omega| < \pi$$

O sinal truncado fica com o espectro:

$$V(e^{j\omega}) = \frac{A}{2}e^{j\theta_0}W(e^{j(\omega-\omega_0)}) + \frac{A}{2}e^{-j\theta_0}W(e^{j(\omega+\omega_0)})$$

Utilizando $A=1,\ \omega_0=\pi/4,\ \theta_0=0$ e uma janela retangular com comprimento L igual a 32 amostras, fica-se com as seguintes sequências e espectros de magnitude.

Vazamento Espectral

- Observando o espectro de $V(e^{j\omega})$, e comparando-o com o do sinal original $X(e^{j\omega})$, percebe-se que apareceram outras frequências devido ao truncamento, quando deveria ser observada apenas a frequência $\omega_0 = \pi/4$.
- Se o sinal tiver frequências próximas entre si, o efeito do vazamento espectral pode dificultar a identificação das mesmas.

Análise Espectral 10

Vazamento Espectral

Janelas

Existem diversas janelas, com diferentes características de formato, que acaba por influenciar no seu espectro. Os parâmetros principais são relacionados, no espectro da janela, a:

- Largura do lóbulo principal
- Nível de lóbulo lateral

O formato da janela modifica tanto a largura do lóbulo principal como o nível de lóbulo lateral, enquanto que o comprimento da janela altera somente a largura do lóbulo principal.

Análise Espectral 12

Janela de Kaiser

Vazamento Espectral - Efeito do Formato da Janela

Seja o sinal: $x[n] = \cos(0.25\pi n) + 2\cos(0.38\pi n)$. Utilizando janelas retangular e de Hamming, com L = 64 amostras, fica-se com:

Análise Espectral 14

Vazamento Espectral - Comprimento da Janela

Variando-se o comprimento da janela de Hamming (L=64 e L=32):

Amostragem Espectral

Deve-se lembrar que a DFT corresponde a amostras da DTFT:

$$V[k] = V(e^{j\omega})|_{\omega = \frac{2\pi}{N}k}, \qquad k = 0..N - 1$$

Análise Espectral 16

Amostragem Espectral

Variando o número de pontos da DFT (N), modifica-se o espaçamento entre amostras do espectro de $V(e^{j\omega})$.

Amostragem Espectral

Seja o sinal: $x[n]=\cos(0.25\pi n)+2\cos(0.50\pi n)$. Utilizando janela retangular com comprimento L=64 e variando-se o comprimento da DFT, fica-se com:

Análise Espectral 1

Relação entre as frequências

- Amostragem da DTFT: $\omega_k = \frac{2\pi}{N}k, \quad 0 \le k \le N-1$
- Amostragem do sinal: $\omega = \Omega T = \frac{2\pi f}{f_s}$
- Resolução na frequência: $\Delta \omega = \frac{2\pi}{N} = \Delta \Omega T = 2\pi \frac{\Delta f}{f_s}$
- Resolução na frequência f: $\Delta f = \frac{f_s}{N}$
- \bullet Relação entre frequências analógicas e as amostras k: $f_k = \frac{f_s}{N} k$

Exemplo: análise espectral

Os sinais a seguir representam a tensão e a corrente numa lâmpada fluorescente compacta. Os sinais foram amostrados por um osciloscópio digital com resolução vertical de 8 bits e frequência de amostragem igual a 5 kHz.

A idéia é analisar o sinal com diversos comprimentos L, janela retangular e de Hamming, e diferentes valores de N para o cálculo da DFT.

Análise Espectral 20

Exemplo: análise espectral (cont.)

Utilizando uma porção de sinal com L=512 amostras, e aplicando a DFT com N=512 pontos, e janelas retangular e de Hamming, têm-se os seguintes sinais no domínio da frequência:

21

Exemplo: análise espectral (cont.)

Utilizando uma porção de sinal com L=2048 amostras, e aplicando a DFT com N=4096 pontos, e janelas retangular e de Hamming, têm-se os seguintes sinais no domínio da frequência:

Análise Espectral 22

Exemplo: análise espectral (cont.)

Para ilustrar os efeitos do vazamento espectral e da amostragem espectral, as tabelas a seguir mostram as frequências e magnitudes das harmônicas em 60, 300 e 420 Hz, para os vários casos estudados.

Parâmetros		60 Hz		300 Hz		420 Hz	
		f [Hz]	A [dB]	f [Hz]	A [dB]	f [Hz]	A [dB]
L = 512	Hamming	58,6	0	302,7	-38,2	419,9	-41,3
N = 512	Retangular	58,6	0	293,0	-39,6	419,9	-45,3
L = 1024	Hamming	61,0	0	300,3	-37,5	419,9	-40,5
N = 2048	Retangular	61,0	0	297,9	-38,7	417,5	-42,9
L = 1024	Hamming	59,8	0	300,3	-37,7	419,9	-40,7
N = 4096	Retangular	59,8	0	299,7	-39,3	416,3	-43,5
L = 4096	Hamming	59,8	0	299,7	-37,3	419,9	-40,8
N = 8192	Retangular	59,8	0	299,7	-38,9	419,9	-41,2

Percebe-se que, dependendo do processamento, chega-se a diferentes valores de frequências e níveis de distorção devido às harmônicas de ordem superior.

Exemplo: análise espectral (cont.)

Analisando a forma de onda de corrente, chega-se ao seguinte espectro de magnitude.

- Observando o espectro, nota-se que há harmônicas de múltiplos ímpares da fundamental.
- Como o sinal é de alta frequência (pulsos rápidos), o espectro se estende a frequências superiores a 2500 Hz, causando *aliasing*.

Análise Espectral 24

Exemplo: análise espectral (cont.)

- Componente em A: aliasing da componente em $43 \times 60 = 2580$ Hz, que aparece em (5000-2580) = 2420 Hz.
- \bullet Componente em B: aliasing da componente em $45\times60=2700$ Hz, que aparece em (5000-2700)=2300 Hz.
- As magnitudes podem ter erros, caso ocorra sobreposição de uma raia em outra.

Espectrograma

• Análise Espectral com DFT: adequada para sinais cujo conteúdo de freqüência não varia com o tempo.

- Na prática: o conteúdo de freqüência do sinal pode variar com o tempo (voz).
- A análise espectral realizada sobre todo o sinal de uma só vez pode ocultar informações importantes da variação do conteúdo de freqüência ao longo do tempo.
- $\bullet \ \ Time-dependent \ Fourier \ transform, \ Short-time \ Fourier \ transform.$

Análise Espectral 26

Chirp

Seja um sinal cuja freq. varia com o tempo:

$$x[n] = \cos(\omega_0 n^2)$$

A freq. instantânea do sinal é $2\omega_0 n$. O sinal e a magnitude de sua DFT são:

Não se pode determinar como **variou** o conteúdo de freq. do sinal ao longo do tempo. Uma alternativa é fracionar o sinal e calcular várias DFTs para diferentes intevalos de tempo.

Espectrograma

Multiplica-se o sinal x[n] por uma janela w[n] e calcula-se a DTFT:

$$X[n,\lambda) = \sum_{m=-\infty}^{+\infty} x[n+m] \ w[m] \ e^{-j\lambda m}$$

Outra forma:

$$X[n,\lambda) = \sum_{m=-\infty}^{+\infty} x[m] \ w[n-m] \ e^{-j\lambda m}$$

Amostrando o espectro em N pontos equiespaçados e uma janela de comprimento $L\colon$

$$X[n,k] = X[n,2\pi k/N] = \sum_{m=0}^{L-1} x[n+m] \ w[m] \ e^{-j(2\pi/N)km}, \ k = 0..N-1$$
 ou

$$X[n,k] = X[n,2\pi k/N] = \sum_{m=n-L+1}^{n} x[m] \ w[n-m] \ e^{-j(2\pi/N)km}, \ k = 0..N-1$$

- A duração da janela é muito menor que a duração total do sinal
- A janela toma trechos do sinal ao longo do tempo
- Quanto mais estreita a janela, maior a resolução no tempo e menor em freq.
- $\bullet \ n$ é o deslocamento da janela em relação ao sinal
- ullet Para cada n tem-se uma DFT
- \bullet Não se pode ter uma boa resolução no tempo e em freq. ao mesmo tempo usando a DFT

Análise Espectral 28

Espectrograma

