LINEAR CONSTANT COEFFICIENT DIFFERENCE EQUATIONS

- LCCDEs CAN BE USED TO REPRESENT LTI SYSTEMS
- RECURSIVE/NONRECURSIVE FORMS
- FORWARD/BACKWARD SOLVABILITY
- THE SOLUTION OF LCCDEs
 - o Particular Solution, Homogeneous Solution: Complete Solution
- INITIAL REST ASSUMPTION AND LTI SYSTEMS
- FINDING THE IMPULSE RESPONSE FROM LCCDE

LCCDES CAN BE USED TO REPRESENT LTI SYSTEMS

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

$$y[n] + a_1y[n-1] + a_2y[n-2] = b_0x[n] + b_1x[n-1] + b_2x[n-2]$$

RECURSIVE/NONRECURSIVE FORMS

Ex: Accumulator

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

It can be represented as

$$y[n] = y[n-1] + x[n]$$

or

$$y[n] - y[n-1] = x[n]$$

Impulse response of accumulator is

$$h[n] = u[n]$$

Ex: Moving Average (MA) system

$$y[n] = \frac{1}{M+1} \sum_{k=0}^{M} x[n-k]$$

Impulse response

$$h[n] = \frac{1}{M+1}(u[n] - u[n - (M+1)])$$

Impulse response of MA system can also be written as

$$h[n] = \frac{1}{M+1} \left(\delta[n] - \delta[n - (M+1)] \right) * u[n]$$

This expression reminds us that MA system can be considered as the cascade of an *accumulator* and another system with impulse response

$$h[n] = \frac{1}{M+1} \left(\delta[n] - \delta[n - (M+1)] \right)$$

Therefore MA system can also be described by

⇒
$$y[n] - y[n-1] = \frac{1}{M+1} (x[n] - x[n-(M+1)])$$

"Less arithmetic operations in the implementation but recursion may cause numerical problems in finite precision."

FORWARD/BACKWARD SOLVABILITY

Given a set of boundary conditions, a difference equation can be solved <u>recursively</u> in forward and backward directions.

For example, let y[-1], y[-2], ..., y[-N] be specified

Forward recursive solution:

$$y[n] = -\sum_{k=1}^{N} \frac{a_k}{a_0} y[n-k] + \sum_{k=0}^{M} \frac{b_k}{a_0} x[n-k] \qquad n = 0,1, \dots$$

Backward recursive solution:

$$y[n-N] = -\sum_{k=0}^{N-1} \frac{a_k}{a_N} y[n-k] + \sum_{k=0}^{M} \frac{b_k}{a_N} x[n-k] \qquad n = 0, -1, -2, \dots$$

Ex:

$$y[n] = -\frac{1}{2}y[n-1] + x[n],$$
$$y[-1] = c$$
$$x[n] = K\delta[n]$$

Forward:

$$y[0] = -\frac{1}{2}c + K$$

$$y[1] = \frac{1}{4}c - \frac{1}{2}K$$

$$y[n] = \left(-\frac{1}{2}\right)^{n+1}c + \left(-\frac{1}{2}\right)^{n}K$$
hom. soln. particular soln.

Backward:

$$y[n-1] = -2y[n] + 2x[n]$$

$$y[-1] = c$$
$$y[-2] = -2c$$
$$\vdots$$

$$y[n] = \left(-\frac{1}{2}\right)^{n+1} c \qquad n \le -1$$

The general solution becomes $y[n] = \left(-\frac{1}{2}\right)^{n+1} c + \left(-\frac{1}{2}\right)^n K u[n]$

THE SOLUTION OF LCCDES

$$\sum_{k=0}^{N} a_k y [n-k] = \sum_{k=0}^{M} b_k x [n-k]$$

general solution = particular solution + homogeneous solution

$$y[n] = y_p[n] + y_h[n]$$

Particular solution: Given a particular input $x_p[n]$, particular solution $y_p[n]$ is any solution that satisfies the equation for this input.

Homogeneous solution: $y_h[n]$, satisfies $\sum_{k=0}^{N} a_k y_h[n-k] = 0$.

Homogeneous Solution

In general $y_h[n]$ is a weighted sum of z^n type signals where z is a(complex) constant.

$$\sum_{k=0}^{N} a_k z^{n-k} = 0$$

$$\sum_{k=0}^{N} a_k z^{-k} = 0$$

This equation has N roots, z_k , k=1,...,N.

So,

$$y_h[n] = \sum_{k=1}^N A_k z_k^n = 0$$

where A_k s can be determined according to the initial (auxiliary, boundary) conditions.

INITIAL REST ASSUMPTION AND LTI SYSTEMS

When a LCCDE is considered together with "initial rest" (zero initial conditions) assumption, the input-output (x[n]-y[n]) relationship becomes a *linear* and *time-invariant* one.

For nonzero initial conditions

- 1) Even if the input is zero, the output is nonzero → input-output relationship is nonlinear
- 2) If the input is shifted by n_0 , the output is not shifted by the same amount \rightarrow system is time-varying.

(For example, in the above example the solution for a shifted input is

$$y[n] = \left(-\frac{1}{2}\right)^{n+1} c + \left(-\frac{1}{2}\right)^{n-n_0} K u[n-n_0]$$

Therefore "A sytem described by a LCCDE is a LTI one if it is initially at rest, i.e. initial conditions are zero."

Note:

$$\sum_{k=0}^{N} a_{k} y [n-k] = \sum_{k=0}^{M} b_{k} x [n-k]$$

If N = 0,

$$y[n] = \sum_{k=0}^{M} \frac{b_k}{a_0} x[n-k]$$

no initial conditions are needed to solve.

Impulse response is

$$h[n] = \sum_{k=0}^{M} \left(\frac{b_k}{a_0}\right) \delta[n-k].$$

It is a FIR sytem.

Causality

Given a system described by a LCCDE together with initial rest assumption.

One cannot determine whether the system is causal or not. Causality must be specified separately.

Therefore we have to state something like " a causal/noncausal system described by the following LCCDE..."

FINDING THE IMPULSE RESPONSE FROM LCCDE

Problem Statement: Given the LCCDE describing a *causal LTI* system, find its impulse response.

Ex:

$$y[n] - ay[n-1] = x[n]$$

We take $x[n] = \delta[n]$

$$h[n] - ah[n-1] = \delta[n] \qquad h[-1] = 0$$

i) By recursion

$$h[0] = ah[-1] + \delta[0]$$
$$= 1$$

$$h[1] = ah[0] + \delta[1]$$
$$= a$$
.

 $h[n] = ah[n-1] + \delta[n]$ = a^n

$$\Rightarrow h[n] = a^n u[n]$$

ii) By finding the homogeneous solution

$$x[n] = \delta[n] \Rightarrow y[n] - ay[n-1] = 0, \quad n > 0$$

$$y[n] = Kz^n \,, \quad n > 0$$

$$Kz^{n} - aKz^{n-1} = 0$$
$$1 - az^{-1} = 0$$
$$z = a$$

$$y[n] = Ka^n, \quad n > 0$$

Since
$$h[0] = 1 \implies Ka^0 = K = 1$$

$$\Rightarrow h[n] = a^n \quad n > 0$$

Ex:
$$y[n]-ay[n-1] = x[n-1]$$

$$\Rightarrow h[n] = a^{n-1}u[n-1]$$

Ex:
$$y[n] - ay[n-1] = x[n] + x[n-1]$$

 $h[n] = a^n u[n] + a^{n-1} u[n-1]$
 $= \delta[n] + (1+a)a^{n-1} u[n-1]$

Ex: Causal system, homogeneous solution (repeated roots)

$$y[n] - \frac{1}{2}y[n-1] - \frac{1}{4}y[n-2] - \frac{1}{4}y[n-3] = x[n]$$

$$y_h[n] - \frac{1}{2}y_h[n-1] - \frac{1}{4}y_h[n-2] - \frac{1}{4}y_h[n-3] = 0$$

$$Kz^n \left(1 - \frac{1}{2}z^{-1} - \frac{1}{4}z^{-2} - \frac{1}{4}z^{-3}\right) = 0$$

$$y_h[n] - \frac{1}{2} y_h[n-1] - \frac{1}{4} y_h[n-2] - \frac{1}{4} y_h[n-3] = 0$$

$$Kz^{n}\left(1-\frac{1}{2}z^{-1}-\frac{1}{4}z^{-2}-\frac{1}{4}z^{-3}\right)=0$$

$$z_1 = \frac{1}{2}, \ z_2 = z_3 = \frac{1}{4}$$

$$y_h[n] = K_1 \frac{1}{2}^n u[n] + K_2 \frac{1}{4}^n u[n] + K_3 n \frac{1}{4}^n u[n]$$

Ex: Impulse response, previous example.

$$h[n] = K_1 \frac{1}{2}^n u[n] + K_2 \frac{1}{4}^n u[n] + K_3 n \frac{1}{4}^n u[n]$$

Find h[0], h[1], h[2], then find K_1 , K_2 , K_3 .

From

$$h[n] - \frac{1}{2}h[n-1] - \frac{1}{4}h[n-2] = \delta[n]$$
$$h[-1] = h[-2] = 0$$

$$\Rightarrow$$
 $h[0] = 1$ $h[1] = \frac{1}{2}$ $h[2] = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

 \Rightarrow

$$h[0] = K_1 + K_2 + K_3 = 1$$

$$h[1] = \frac{1}{2}K_1 + \frac{1}{4}K_2 + \frac{1}{4}K_3 = \frac{1}{2}$$

$$h[2] = \frac{1}{4}K_1 + \frac{1}{16}K_2 + \frac{1}{8}K_3 = \frac{1}{2}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{16} & \frac{1}{8} \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ K_3 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} K_1 \\ K_2 \\ K_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{1} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{16} & \frac{1}{8} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{1} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \\ 4 \end{bmatrix}$$

Exercise: Find the impulse response of the causal LTI system described by

$$y[n-1]-2y[n-2]=x[n-2]$$

Is it a stable system?

Exercise:

a) Write the difference equation that describes the LTI system with impulse response $h[n] = \left(\frac{2}{3}\right)^n u[n]$.

- b) Repeat part-a for $h[n] = \left(\frac{2}{3}\right)^{n-1} u[n-1]$
- c) Repeat part-a for $h[n] = -\left(\frac{2}{3}\right)^n u[-n-1]$

```
lccde.m
```

```
clear all
close all
% N = 2;
% a = [1 -1.5 -1];
N = 1;
a = [1 -0.5];
% M = 1;
% b = [1 -2];
M = 0;
b = [1];
y = zeros(1, max(N, M)); % initial conditions
x = zeros(1,1000);
x(max(N,M)+1)=1; % to find impulse response
% x = 2*(rand(1,1000)-0.5);
for n = max(N, M) + 1:30
    D = (-y(n-N:n-1)*transpose(fliplr(a(2:end))) + x(n-M:n)*transpose(fliplr(b))) / a(1);
    y = [y D];
end
stem(y)
1./roots(fliplr(a))
1./roots(fliplr(b))
```