目 录

1	心形迹		1
		 性	
		 毫伏表	
	2.2	频率计(选配件)	4
	2.3	基准输出	4
	2.4	远控功能	4
	2.5	其它	5
3	面板说	{BFI	6
	3.1	前面板	6
	3.2	后面板介绍	11
4	使用证	光明	12
	4.1	测量前的工作	12
	4.2	电压输入通道测量	12
	4.3	频率输入通道测量	15
	4.4	系统设置	15
5		制	
	5.1	遥控操作前的准备工作	18
	5.2	命令格式说明	19
	5.3	命令简介	21
		命令详解	
6		影顶	
		出错处理	
		检修注意事项	
		常见问题解答	
7		单	
	7.1	仪器配件	29
	7.2	仪器选配件	29

1 概 述

SP2271 是一种新型的采用微处理器控制的智能化数字超高频毫 伏表/频率计,该仪器采用检波放大工作原理,能测量 9kHz~3000MHz 的正弦电压。测量电压范围 800 μVrms~10 Vrms、分辨率 1 μ V、准确度 优于+2%。

本仪器采用高亮度 VFD 显示,读数清晰、亮度高、寿命长,该机 具有频率响应良好、驻波系数小、灵敏度高、功耗低、体积小、重量 轻等特点。仪器能自动调零,测量电压时既可以选择自动量程也可以 选择手动测量量程,仪器带有 RS232 接口,可进行远程测量控制。

该仪器是生产车间和实验室超高频电压计量测试的必备仪器(如超高频标准信号源输出电压频响的计量测试)。该仪器测量的稳定性好、分辨率高、重复性好,可用于计量信号源输出电压的误差和稳定性,同时也能用于9kHz~3000MHz超高频电压计量工作传递标准,也可用于自动测试系统中测试高频电压。

该仪器可选配 9kHz~3000MHz 频率插件,使该机一机两用,可作为 9kHz~3000MHz 频率计使用。

该仪器按 GB6587.1-86"电子测量仪器环境试验总纲"的规定属于第 II 组仪器。(额定使用上限温度试验按 SJ2314-83 的 3.15 规定湿度为80%)。

2.1 毫伏表

2.1.1 测量电压的频率范围:射频探头: 9kHz~1200MHz

2G 同轴检波器 10kHz~2000MHz

3G 同轴检波器 10kHz~3000MHz

- **2.1.2** 测量电压的范围: 800 u Vrms~10Vrms, 50 Ω 负载
- 2.1.3 电压测量方式: 手动或自动
- 2.1.4 电压测量量程档为: 4mVrms/40mVrms/400mVrms/4Vrms/10Vrms
- **2.1.5** 测量 100kHz 电压的工作误差: (0~40℃)

电压范围	>10 mVrms~ 10Vrms	2mVrms ~ 10mVrms
工作识学	±(读数的 3%+6 个字)	±(读数的 3%+16 个字)
工作误差	典型值: ±2%	典型值: ±2%

- 注: 1 标准电压源的频率 100kHz
 - 2 波形要求: 正弦波, 失真度≤0.3%, 幅度误差≤±0.3%;
- **2.1.6** 测量电压的频率响应误差 (23℃±5℃)
 - (100kHz 为基准,500mVrms 电压值作为频率响应计量测试电压, 50Ω同轴终端精密负载)

2.1.6.1 射频探头的频率响应误差

频率范围	射频探头	
旦 .和	2.25V~10mVrms	10mV ~2mVrms
<u>量程</u>	(+20dBm~-27dBm)	(-27dBm~-41dBm)
100kHz~100MHz	±2%	±3%
9kHz ~200MHz	±4%	±5%
200MHz~300MHz	±5%	±6%
300MHz~500MHz	±7%	±8%
500MHz~1000MHz	±10%	±11%
1000MHz~1200MHz	±12%	±13%

2.1.6.2 同轴检波器的频率响应误差

频率范围	2GHz 同轴检波器	3GHz 同轴检波器
100kHz~100MHz	±3%	±3%
10kHz~200MHz	±4%	±4%
200MHz~600MHz	±7%	±7%
600MHz~1000MHz	±9%	±9%
1000MHz~1600MHz	±13%	±13%
1600MHz~2000MHz	±16%	±17%
2000MHz~2500MHz		±16%
2500MHz~3000MHz	_	±18%

2.1.7 射频探头插入 50 Ω 同轴三通 (50 Ω 负载)

 $10kHz{\sim}200MHz$, VSWR $\leq 1.35\,_{\circ}$

- 2.1.7.1 输入阻抗: ≥100kΩ
- 2.1.7.2 输入电压: ≤3pF

2.1.8 电压表的射频探头测量交流电压不允许超过 15Vrms, Vpc<50V。

2.2 频率计(选配件)

- 2.2.1 频率测量范围: 9kHz~1.5 GHz/2.5 GHz/3GHz
- 2.2.2 输入特性: 最小输入电压: 50mV

最大允许输入电压: 5V

输入阻抗: R > 500kΩ C < 30pF $(F \le 50$ MHz)

 $R>50\Omega$ (F > 50MHz)

耦合方式: AC

波形适应性: 正弦波

低通滤波器: 截止频率约 100kHz

带内衰减: ≤3dB

带外衰减: ≥30dB

- 2.2.3 测量时间: 100ms、1s 选择
- 2.2.4 显示位数: 六位 (Gate=100ms) 七位 (Gate=1s)
- 2.2.5 时基: 优于 5×10⁻⁵ (22℃±5℃)
- 2.2.6 测量误差: 时基误差±触发误差(信噪比优于 40dB 时触发误差小于 3‰)

2.3 基准输出

- 2.3.1 输出频率: ≈100kHz
- 2.3.2 输出幅度: 1Vrms, ±5‰
- 2.3.3 输出阻抗: 50Ω

2.4 远控功能

- 2.4.1 接口: RS232
- 2.4.2 远控功能
- 2.4.2.1 量程选择: 手动或自动
- 2.4.2.2 测量速率: 快/慢
- 2.4.2.3 查询测量结果
- 2.4.2.4 自动调零
- 2.4.2.5 自动校正
- 2.4.2.6 返回本地

2.5 其它

- 2.5.1 电源电压为 220V±10%, 频率为 50Hz±5%, 功耗约 35W。
- **2.5.2** 电压表的 MTBF 符合 SJ1889-8"电子测量仪器可靠性试验方案", 平均无故障工作时间 MTBF ≥ 20000 小时。
- 2.5.3 电压表的安全性能符合 GB4793-84 "电子测量仪器安全要求"。
- **2.5.4** 外形尺寸: 255×370×100 (mm)
- 2.5.5 仪器重量: 3.5kg

3.1 前面板

3.1.1 前面板指示灯介绍

序号	名 称	含 义	备 注
1	自动量程指示灯	处于自动量程状态时,该指示灯亮。 处于手动量程状态时,该指示灯灭。	1、测量电压时,频
2	系统指示灯	进入系统设置时,该指示灯亮。	率通道的相关功能 按键不起作用。
3	快速测量指示灯	电压快速测量时,该指示灯亮。	1XIX.1 VG1F/II.0
4	校正指示灯	校正测量误差时,该指示灯亮。	2、测量频率时,电
5	慢速测量指示灯	电压慢速测量时,该指示灯亮。	压通道的相关功能
6	调零指示灯	调零时,该指示灯亮。	按键不起作用。
7	测频低通指示灯	测频状态处于低通时,该指示灯亮	
8	高频测量指示灯	测频状态处于高频测量时,该指示灯亮	
9	测频通道指示灯	测量信号为频率输入通道信号时, 该指示灯亮	
10	4mV 档指示灯	处于手动量程、4mV档时,该指示灯亮	
11	4V 挡指示灯	处于手动量程、4V 档时,该指示灯亮	
12	400mV 挡指示灯	处于手动量程、400mV 档时,该指示灯亮	
13	40mV 挡指示灯	处于手动量程、40mV 档时,该指示灯亮	
14	10V 挡指示灯	处于手动量程、10V档时,该指示灯亮	
15	电压通道指示灯	测量信号为电压输入通道信号时, 该指示灯亮	
16	数值输入指示灯	处于数值输入状态时,该指示灯亮。	

3.1.2 按键简介

1) 自动量程键【自动】

按下该键, 进入自动量程状态, 自动量程指示灯亮。

2) 降量程键【▲】

按下该键,进入手动量程状态,自动量程指示灯灭。同时当前量 程降一档。

3) 升量程键【▼】

按下该键,进入手动量程状态,自动量程指示灯灭。同时当前量 程升一档。

4) 返回本地键【本地】

在远地状态下,"Rmt"标志亮,按下该键,进入本地状态,"Rmt"标志灭。

5) SHIFT 键【SHIFT】

基本功能:用来和其它键一起实现二次功能。按下【SHIFT】键后,显示屏右端的"s"标志亮。再按下其它键后,"s"标志灭。

6) 系统键【系统】

按下该键,进入系统功能设置状态,此时可以设置通讯接口、RS232 波特率、RS232 奇偶校验位、蜂鸣器开关状态等。

7) 校正键【校正】

在电压测量状态下,将基准输出接到电压输入,按下该键,校正电压测量误差。

8) 调零键【调零】

按下该键,进入调零状态,显示区显示"ZEROING"。 调零结束后,显示区显示电压测量值。

9) 电压快速测量键【快】

按下该键,进入电压快速测量状态,电压快速测量指示灯亮。

10) 电压慢速测量键【慢】

按下该键,进入电压慢速测量状态,电压慢速测量指示灯亮。

11) 电压通道键【电压】

按下该键, 仪器测量信号为电压输入通道信号, 电压通道指示灯 亮。此时, 频率测量的相关按键为无效按键。

12) 频率通道键【频率】

按下该键, 仪器测量信号为频率输入通道信号, 频率通道指示灯 亮。此时, 电压测量的相关按键为无效按键。

13) 高频测量键【频率>50MHz】

当被测频率大于 50MHz 时,按下该键,高频测量指示灯亮,进入 高频测量状态,再次按下该键,指示灯灭,取消高频测量状态。

14) 低通键【低通 100kHz】

当被测频率小于 100kHz 时,按下该键,低通测量指示灯亮,进入低通测量状态,再次按下该键,指示灯灭,关闭低通。

15) 闸门 100ms 键【闸门 0.1s】

按下该键,频率测量闸门为 100ms。

16) 闸门 1s 键【闸门 1s】

按下该键, 频率测量闸门为 1s。

17) 复位键【复位】

按下该键,恢复到开机状态。

18) 数字输入键【↑】【↓】【←】【→】【+/-】

用来对当前显示的参数进行修改。

19) 数据输入确认键【确认】

按下该键, 当前输入的数据确认并生效。

20) 4mV 档选择键【4mV】

按下该键, 电压则测量手动选择到 4mV 档。

21) 40mV 档选择键【40mV】

按下该键, 电压则测量手动选择到 40mV 档。

22) 400mV 档选择键【400mV】

按下该键, 电压则测量手动选择到 400mV 挡。

23) 4V 档选择键【4V】

按下该键, 电压则测量手动选择到 4V 挡。

24) 10V 档选择键【10V】

按下该键, 电压则测量手动选择到 10V 挡。

3.1.3 显示屏

电压测量时显示电压值, 频率测量时显示频率值, 以及显示必要 的提示符。

3.2 后面板介绍

- 电源输入 1)
- 2) USB 连接口(选配)
- 3) IEEE-488 连接口(选配)
- 4) RS232 连接口 (标配)

4 使用说明

4.1 测量前的工作

4.1.1 测量前的检查

先仔细检查电源电压是否符合本仪器的电压工作范围,确认无误后方可将电源线插入本仪器后面板的电源插座内。仔细检查测试系统电源情况,保证系统接地良好,仪器外壳和所有的外露金属均已接地。在与其它仪器相联时,各仪器间应无电位差。电压测量时应将电压输入通道航空插座推入电压测量头的航空插头。

4.1.2 仪器开机

开机时, 检波探头的输入信号应断开, 以保证初始化正常。

按下面板上的电源按钮,电源接通,仪器进入初始化,蜂鸣器先鸣响一声,然后点亮 VFD 显示屏和 LED 指示灯,显示仪器型号。初始化结束后进入电压测量状态,电压输入通道 LED 亮,自动量程 LED 亮。

4.2 电压输入通道测量

4.2.1 简介

仪器测量电压输入通道信号的电压。

如果仪器当前测量信号为电压输入通道信号,则"电压通道指示 灯"亮,否则按【电压】键选择测量信号为电压输入通道信号,此时 "电压通道指示灯"亮。

4.2.2 调零

在进行测量之前,需要对本仪器进行调零,以保证 20mVrms 以下 电压测量的准确性。

调零时,必须先将输入端信号夫掉(如果调零时输入端有信号输 入,则调零不能完成)。然后按下【调零】键,进入调零状态,显示屏 显示"ZEROING"。调零结束后,显示调零后的电压值(0.000mVrms)。

注: 在测量 4mVrms 以下的小信号时,最好在屏蔽空间内进行,以保证微小 信号测量的准确性。

4.2.3 校正

将检波探头信号输入端连接到基准输出,按下【校正】键,系统 将自动校正仪器测量偏差。

注: 关机或复位不保存校正值

4.2.4 量程选择

电压输入通道有自动量程有手动量程选择。

本仪器共有五个量程:

量程名称	电压范围	有效值显示形式
4mV	$0.8mV \sim 4.0mV $	3.000 mVrms

SP2271 型数字超高频毫伏表\频率计使用说明书

40mV	$3.6 mV \sim 40 mV$	30.00 mVrms
400mV	$36mV \sim 400mV$	300.0 mVrms
4V	$360 mV \sim 4.0 V$	3.000 Vrms
10V	3.6V ~ 10V	5.00 Vrms

测量时一般使用自动量程,这样可以保证仪器测量数据的准确。 使用手动量程时,如果输入电压大于当前量程的上限时,测量数据误差较大。

4.2.4.1 自动量程

按【自动】键,进入自动量程测量状态,此时自动量程指示灯亮。 自动量程时,仪器自动根据当前电压值换档。如果当前电压值大 于当前量程的上限,则升到上一个量程;如果当前电压值小于当前量 程的下限,则降到下一个量程。

4.2.4.2 手动量程

按【▲】和【▼】键或者量程选择键,进入手动量程测量状态, 此时自动量程指示灯灭,相应的量程档位指示灯亮。按【▲】键,将 当前量程向下降一档:按【▼】键,将当前量程向上升一档。

手动量程时,可以按照需要设置量程。如果输入电压大于当前量程的上限的 275%,则显示输入超载 "OVLD",此时小数点和显示单位不变。例如:当前量程为 400mV 档,如果输入电压大于 1100.0mV,则显示超载符号 "OV.LD mVRMS",此时小数点位置和显示单位和400mV 档量程保持一致。如果显示超载,为了不损坏仪器,手动时应

该向上升一个量程。

手动量程时,可以提高分辨率,也可以提高测量速度,但是如果 输入电压大干当前量程的上限时,测量数据误差较大。

4.2.5 测量速率

按【快】键,选择"快速"测量;按【慢】键,选择"慢速"测量。 共有两种测量速率,一种为"快速",一种为"慢速"。

慢速时测量速率为每秒2次,显示4位有效数字。快速时测量速 率为每秒 20 次,此时显示有效数字只有 3 位,最后一位始终显示为"o"。

4.3 频率输入通道测量

- 4.3.1 如果仪器当前测量状态为频率测量,则"频率通道指示灯"亮, 否则按【频率】键选择测量状态为频率测量,此时"频率通道指示灯" 亮。当仪器处于频率测量时,电压测量的相关功能无效。
- 4.3.2 当输入频率大于 50MHz,应该按【FREQ】键,则>50MHz 灯亮, 进入高频测量。
- 4.3.2 当测量频率低于 100KHz.时按下【LPF】键,可以提高测量精度

4.4 系统设置

4.4.1 简介

按【系统】键进入系统菜单进行系统参数设置。可以用【系统】 键改变系统功能,也可以用数字设置键的左右键改变系统功能。系统 参数设置后自动存入 EEPROM,关机后也不丢失。**系统参数设置完后** 按【电压】或者【频率】键进入电压或频率测量通道。

系统参数设置菜单能够实现以下功能:

- A、 设置 RS232 接口参数:
- B、设置蜂鸣器开关状态。

4.4.2 设置 RS232 接口参数

在系统参数设置状态下用【系统】键或用数字设置键的左右键进入 RS232 接口参数设置功能。RS232 接口参数包括波特率、数据位和校验位。

参 数	缺省设置	可选择的	设 置
软件握手信号	NONE	固定不可变	
波特率	9600	300、600、1200、2400、4800、	
		9600、19200 或 38400	
校验位	NONE	EVEN 或 ODD 注	NONE
数据位数	8 位	7位	8位
停止位	1位	固定不可变	

注: 当检验位为偶校验(EVEN)或奇校验(ODD)时,数据位为7位; 当无校验位时,数据位为8位。

4.4.2.1 RS232C 串行通信波特率设置

在系统参数设置状态下用【系统】键或用数字设置键的左右键进入 RS232 通信波特率设置功能。此时显示"BAUD XXXXX"(XXXXX 为波特率)。可以用数字设置键的上下键设置 RS232 通信波特率;设置

完成后按确认键后生效。RS232 通信波特率设置只能通过面板进行而 不能用遥控命令改变。

4.4.2.2 RS232C 串行通信校验位设置

在系统参数设置状态下用【系统】键或用数字设置键的左右键进 入 RS232 通信校验位设置功能。此时显示"PARITY N-8"(无校验)、 "PARITY O-7"(奇校验)和"PARITY E-7"(偶校验)。可以用数字 设置键的上下键设置 RS232 通信校验位: 设置完成后按确认键后生效。 RS232 通信校验位设置只能通过面板进行而不能用遥控命令改变。

4.4.3 设置蜂鸣器开关状态

在系统参数设置状态下用【系统】键或用数字设置键的左右键进 入蜂鸣器开关状态设置功能,此时显示为"BEEP ON"或"BEEP OFF"。 可以用数字设置键的上下键设置蜂鸣器开关状态:设置完成后按确认 键后生效。蜂鸣器开关状态设置只能通过面板进行而不能用遥控命令 改变。

5.1 遥控操作前的准备工作

在通信之前要设置 RS232 接口参数,该设置只能通过面板进行。

5.1.1 RS232 的通信格式

RS232 通信格式如下:

命令	帧尾
----	----

命令为 ASCII 码, 帧尾为 0x0A。

仪器接收到任何一条遥控命令即进入遥控状态,"Rmt"标志亮,此 时除【本地】键外其它按键都不起作用。按【本地】键使仪器返回本地 状态,"Rmt"标志灭。另外也可以通过回到本地状态命令使仪器回到本 地状态。

5.1.2 RS232 接口连接

RS232 接口插座为标准的 9 针插座, RS232 接口和计算机的连接 电缆接线图如下:

DB9 孔式插头

DB9 孔式插头

在通信之前要进行接口选择,并用连接电缆和计算机连接起来。注 意连接时应关闭仪器。

5.2 命令格式说明

命今格式如下:

主命令:子命令 参数

例:

命令分隔符 参数分隔符

命令格式为树状分层结构,可分为多个子系统,每个子系统由一个根命令和一个或数个层次子命令构成。每层命令之间用冒号(:)连接,最后一层子命令与参数之间以空格连接。

一般命令都包含查询命令。在最后一层子命令后直接加问号(?)即为此命令的查询命令。

命令可以用小写字母也可用大写字母,或者大小写混用。命令中 所有字符均为半角符号。

命令一般分为简写方式和完整方式。可以用简写方式,也可以用 完整方式,两者作用是一样的。在下面命令描述中,大写字母表式命 令的简写方式。

例如:命令 CALCulate,则 CALC 和 CALCULATE 都是可以接受的命令,即这两种的大、小写和大小混合写的形式都是正确的。其它的命令形式,如 CALCU、CALCULA等都产生出错信息。

在下面的说明中,参数放在{}中。

参数类型表:

参数类型	解释
<value></value>	数字,具体数字形式见相应命令详解。
<boolean></boolean>	表示开关参数。ON 或 OFF。查询时发回 ON 或 OFF。
<string></string>	字符串。具体见相应命令详解。
{FAST SLOW}	表示任选其一,或者 FAST,或者 SLOW。

5.3 命令简介

命令	参数形式	说明
*IDN?		只有查询命令,返回仪器的型号
*RST		无查询命令,复位仪器到初始状态
RANGe :AUTO	{4mV 40mV 400mV 4V 10V } { <boolean>}</boolean>	设置量程 设置自动量程
DETector :BANDwidth	{FAST SLOW}	测量速率
READ?		只有查询命令,返回当前测量结果
ZERO:AUTO	{ONCE}	自动调零设置与查询
SYSTEM	{LOCAL}	设置本机为本地状态
FREQuency		
:HF	{ <boolean>}</boolean>	设置高频测量开关
:LPF	{ <boolean>}</boolean>	设置低通滤波器开关
:GATE	{100mS 1S}	设置频率测量闸门时间
CHANnel	{VOLTage FREQuency}	设置和查询测量通道

5.4 命令详解

- 注: 1、所有返回值均以空格开始以 0x0A 结束;
 - 2、每次发送的指令的字符个数不得超过30个(含空格),若超过则仪器将不 再接受远程控制命令,需要重新开机才能恢复。

5.4.1 *IDN?

此命令只有查询命令, 查询仪器的识别代码。

查询返回: ASCII 字符串:

SP2271 返回: SAMPLE SP2271 MILLIVOLTMETER/FREQENCY COUNTER.。

5.4.2 *RST

复位命令,将仪器设定到初始状态。

此命令无查询命令。

5.4.3 RANGe 子命令系统

5.4.3.1 RANGe?

查询仪器的量程。

查询返回: ASCII 字符串 4mV|40mV|400mV|4V|10V。

5.4.3.2 RANGe {4mV|40mV|400mV|4V|10V}

设置仪器的量程。

返回: ASCII 字符串 4mV |40mV|400mV|4V|10V OK!

相关按键:【▲】键,【▼】键

5.4.3.3 RANGe: AUTO?

查询仪器的自动量程。

查询返回: ASCII 字符串。

- 1.自动量程: AUTO ON
- 2.手动量程: AUTO OFF

*RST 状态: ON

5.4.3.4 RANGe:AUTO {<Boolean>}

设置仪器的自动量程。

参数范围: ON 或 OFF。

返回: ASCII 字符串 AUTO ON OFF OK!

相关按键:【自动】键。

5.4.4 DETector 子命令系统

2.2.

5.4.4.1 DETector: BANDwidth?

查询仪器的测量速率。

查询返回: ASCII 字符串

- 1.快速测量: FAST
- 2. 慢速测量: SLOW

*RST 状态: SLOW。

5.4.4.2 DETector:BANDwidth {FAST|SLOW}

设置仪器的测量速率。

返回: ASCII 字符 FAST SLOW OK!

5.4.5 READ?

只有查询命令。查询仪器测量结果。

查询返回: ASCII 字符串

- 1. 电压测量: 小数点后 3 位数字,单位为 mVRMS。
- 2. 频率测量: 返回频率的实际测量值。

注意: 用远程控制读取频率测量值时,发送指令的速度过快会影响测量的精度。

5.4.6READ_SYNC?

仪器接收到该指令后,从新启动一次测量,测量完成后,返回该次测量的结果。该指令只能查询电压测量值。

5.4.7 ZERO:AUTO {ONCE}

5.4.7.1 ZERO: AUTO?

查询仪器调零状态。正在调零用 BEING 表示,调零结束用 OVER

23

表示。

查询返回: ASCII 字符串 BEING|OVER

5.4.7.2 ZERO: AUTO ONCE

控制仪器自动调零一次。

返回: ASCII 字符 ZERO OK!

相关按键:【调零】键。

5.4.8 SYSTEM {<LOCAL>}

设置仪器为本地状态。无查询命令。

相关按键:【返回本地】键。

5.4.9 FREQuency 子命令系统 (注:无频率计选购件时该子命令系统 无效)

5.4.9.1 FREQuency:HF {<Boolean>}

设置高频测量开关。

参数范围: ON 或 OFF

返回: ASCII 字符 HF ON OFF OK!

相关按键:【频率>50MHz】键。

5.4.9.2 FREQuency:LPF {<Boolean>}

设置低通滤波器开关。

参数范围: ON 或 OFF

返回: ASCII 字符 LPF ON OFF OK!

相关按键:【低通 100kHz】键。

5.4.9.3 FREQuency:GATE {100mS|1S}

设置频率测量闸门时间。

返回: GATE 100mS|1S OK!

相关按键:【闸门 0.1S】键、【闸门 1S】键。

5.4.10 CHANnel {VOLTage|FREQuecy} (注: 无频率计选购件时该子命令系统无效)

5.4.10.1 CHANnel?

查询仪器的测量通道。

查询返回: ASCII 字符串 CHANNEL VOLTAGE|FREQUENCY

5.4.10.2 CHANnel {VOLTage|FREQuecy}

设置仪器的测量通道。

返回: CHANNEL VOLT|FREQ OK!

相关按键:【电压】键、【频率】键。

5.4.11 CALIbrate

校准电压的测量误差。

返回: CALIBRATE OK!

相关按键:【校正】键。

5.4.12 错误返回

- 1. 发送命令错误时返回 COMMAND ERROR。
- 2. A. 仪器进行电压测量时,发送频率测量的相关指令则返回 CHANNEL ERROR。

- B. 仪器进行频率测量时,发送电压测量的相关指令则返回 CHANNEL ERROR.
- 3. 当仪器处于无计算功能测量状态时,发送计算功能(最大值/ 最小值/相对值)的相关指令时返回 FUNCTION ERROR。

6 注意 事顶

6.1 出错处理

仪器具有一定的出错处理能力。

- 仪器使用当前没有使用的按键时,将显示字符串"NO FUNCTION", 1 秒后回到当前功能。
- 仪器在一些非正常操作时,响"嘀""嘀"两声提示出错

6.2 检修注意事项

- 本仪器采用大规模 CMOS 集成电路和高速 TTL 电路等,为 防止意外损坏,修理时严禁使用两芯电源线的电烙铁。测试 仪器或其它设备的外壳应接地良好。
- 修理焊接时严禁带电操作。只要电源线插入本仪器,电源部件和晶振部分即开始工作,焊接时必须将本仪器的电源线拔去。
- 修理时,一般先排除外部故障和直观故障,如开路、短路或参数设置不合适等。其次测量机内各组电压是否正常。在各南京盛普仪器科技有限公司

组电压正常的情况下,检查有故障部分电路的静态工作点是 否正常,有无虚焊点。集成电路故障应在慎重判断后予以排 除。

- 检修时示波器探头或万用表表笔应接触在测试点上,不能碰及邻近各点,造成故障扩大化。
- 在不能确定故障原因的情况下,请及时与本公司的特约维修 点联系,以使故障得以及时排除。

6.3 常见问题解答

1、不能正确测量输入电压信号?

答: 仪器没有选择当前通道为电压通道,或当前处于系统设置状态。按【电压】键则仪器测量电压输入通道的电压信号。

2、 不能正常通信?

答:接口是否正常连接,仪器当前的接口选择和实际的接口是否一致,接口的设置是否一致。

3、系统功能设置不能保存或不起作用?

答:设置完成后没有按【确认】键。

7.1 仪器配件

SP2271 型数字超高频毫伏表\频率计	1 台
50Ω同轴精密负载 N50JR—2W	1 只
转接头 N/BNC-50JK	1 只
BNC 电缆线	1根
电源线	1根
RS232C 连接电缆	1根
RS232C 测试软件光盘	1 张
产品使用说明书	1本
产品合格证	1 张
0.5A/220V 保险丝(已装入电源插座内)	2 只

7.2 仪器选配件

□ 频率计	1件
□ 射频探头(配 1.2GHz 时用) , 同轴三通	各1只
□ 2G 同轴检波器(配 2GHz 时用)	1 只
□ 3G 同轴检波器(配 3GHz 时用)	1 只

盛普科技有限公司保留权利可随时变更本手册所提及的 硬件及软件而勿须事先声明