

Example 3.2.2 – A pin jointed frame, ABCDE carries a horizontal load of 10 kN at D as shown in Figure 1. The pinned joints A, B and C are fixed to a rigid base. The cross-sectional area of each member is 200 mm² and the material is steel for which Young's modulus is 200 GPa.

- a) State whether or not the truss is statically determinate and the degree of redundancy.
- b) Calculate the loads carried by each of the members.
- c) Calculate the horizontal deflection at *D*.
- d) State briefly how you would go about finding the horizontal deflection at E (no calculations are required for this case).

Figure 1: A plane pin-jointed truss structure.

Table 1: Application of the PSPE.

Member	Force F_i	Length L_i	$A_i E_i$ [kN]	$\frac{\partial F_i}{\partial X}$	$\frac{\partial F_i}{\partial Y}$	$F_i L_i \frac{\partial F_i}{\partial X}$ [kN·m]	$F_i L_i \frac{\partial F_i}{\partial Y}$ [kN·m]
AD	[kN]	[m]				[KIN-III]	[KIN-III]
AE							
BD							
BE							
CE							
DE							
						$\Sigma/AE = 0$	$\Sigma/AE = 0$

Table 2: Application of Castigliano's 2^{nd} theorem.

		11			
Member	Force	Length	$A_i E_i$	$rac{\partial F_i}{\partial Q}$	$F_i L_i \frac{\partial F_i}{\partial Q}$ [kN·m]
	F_{i}	L_{i}	[kN]	∂Q	$^{\prime}$ $^{\prime}$ ∂Q
	[kN]	[m]			[kN·m]
AD					
AE					
BD					
BE					
CE					
DE					
					$\Sigma/AE = u_D$