CI165 — Análise de Algoritmos Iterativos

André Vignatti

Ordenação

Problema: ordenar um vetor em ordem crescente

Entrada: um vetor $A[1 \dots n]$

Saída: vetor A[1...n] rearranjado em ordem crescente

Vamos começar estudando o algoritmo de ordenação baseado no método de inserção.

Inserção em um vetor ordenado

- O subvetor A[1...j-1] está ordenado.
- Queremos inserir a chave = 38 = A[j] em A[1...j 1] de modo que no final tenhamos:

• Agora A[1...j] está ordenado.

Como fazer a inserção

1		chav	/e =	38	i	j				n
20	25	35	40	44	55	38	99	10	65	50
1				i		i				n
20	25	35	40	44		55	99	10	65	50
1			i			j				n
20	25	35	40		44	55	99	10	65	50
1		i				j				n
20	25	35		40	44	55	99	10	65	50
1		i				j				n
20	25	35	38	40	44	55	99	10	65	50

Ordenação por inserção

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
<i>chave</i> 10	20	25	35	38	40	44	55	99	<i>j</i>	65	<i>n</i> 50
	1 20 1	25	35	38	40	44	55	99	<i>j</i> 10	65	

Ordenação por inserção

1									j	n
10	20	25	35	38	40	44	55	99	65	50
1									j	n
10	20	25	35	38	40	44	55	65	99	50
1										j
10	20	25	35	38	40	44	55	65	99	50
1										j
10	20	25	35	38	40	44	50	55	65	99
	1 10 1 10	1 20 1 1 10 20 1 1	1 10 20 25 1 10 20 25 1	1 10 20 25 35 1 10 20 25 35 1	1 10 20 25 35 38 1 10 20 25 35 38 1	1 10 20 25 35 38 40 1 10 20 25 35 38 40 1	1 10 20 25 35 38 40 44 1 10 20 25 35 38 40 44 1	1 10 20 25 35 38 40 44 55 1 10 20 25 35 38 40 44 55 1	1 10 20 25 35 38 40 44 55 65 1 10 20 25 35 38 40 44 55 65	1

Ordena-Por-Inserção

Pseudo-código

```
ORDENA-POR-INSERÇÃO(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1..j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

Análise do algoritmo

O que é importante analisar ?

- Finitude: o algoritmo pára?
- Corretude: o algoritmo faz o que promete?
- Complexidade de tempo: quantas intruções são necessárias no pior caso para ordenar os n elementos?

O algoritmo pára

```
ORDENA-POR-INSERÇÃO(A, n)

1 para j \leftarrow 2 até n faça
...

4 i \leftarrow j - 1

5 enquanto i \ge 1 e A[i] > chave faça

6 ...

7 i \leftarrow i - 1

8 ...
```

No **enquanto** na linha 5 o valor de i diminui a cada iteração e o valor inicial é $i = j - 1 \ge 1$. Logo, a sua execução pára devido ao teste condicional $i \ge 1$.

O laço na linha 1 evidentemente pára (o contador j atingirá o valor n+1 após n-1 iterações).

Portanto, o algoritmo pára.

Ordena-Por-Inserção

```
ORDENA-POR-INSERÇÃO(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1..j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

O que falta fazer?

- Verificar se ele produz uma resposta correta.
- Analisar sua complexidade de tempo.

Invariante Principal

```
ORDENA-POR-INSERÇÃO(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1..j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

Invariante principal de ORDENA-POR-INSERÇÃO: (i1)

No começo de cada iteração j do laço **para** das linha 1–8, o subvetor A[1 ldot ... j-1] está ordenado.

Esboço da demonstração de corretude

(Isso é um **esboço**, não é a demonstração formal!)

- **1 Base**: com j = 2 o invariante simplesmente afirma que A[1...1] está ordenado, o que é evidente.
- Hipótese: Os elementos "anteriores" já estão ordenados.
- Passo: O algoritmo empurra os elementos maiores que a chave para seus lugares corretos e ela é colocada no espaço vazio.
- Uma demonstração formal exige invariantes auxiliares para o laço interno enquanto.
- Corretude do algoritmo: na última iteração, temos j = n + 1 e logo A[1...n] está ordenado com os elementos originais do vetor. Portanto, o algoritmo é correto.

Complexidade do algoritmo

Vamos determinar o tempo de execução (ou complexidade de tempo) de ORDENA-POR-INSERÇÃO em função do tamanho de entrada.

 Na ordenação: usar como tamanho de entrada a dimensão do vetor e ignorar os valores dos seus elementos (modelo RAM).

Complexidade de Tempo:

Complexidade de tempo é o número de instruções básicas (operações elementares ou primitivas) que executa a partir de uma entrada.

Exemplo: comparação e atribuição entre números ou variáveis numéricas, operações aritméticas, etc.

Vamos contar?

OF	RDENA-POR-INSERÇÃO(A, n)	Custo	# execuções
1 p	para $j \leftarrow 2$ até n faça	<i>C</i> ₁	?
2	$chave \leftarrow A[j]$	<i>c</i> ₂	?
3	⊳ Insere A[j] em A[1j – 1]	0	?
4	$i \leftarrow j - 1$	<i>C</i> ₄	?
5	enquanto $i \ge 1$ e $A[i] > \frac{chave}{c}$ faça	<i>C</i> ₅	?
6	$A[i+1] \leftarrow A[i]$	<i>c</i> ₆	?
7	$i \leftarrow i - 1$	C 7	?
8	$A[i+1] \leftarrow chave$	<i>C</i> ₈	?

A constante c_k representa o custo (tempo) de cada execução da linha k.

Denote por t_j o número de vezes que o teste no laço **enquanto** na linha 5 é feito para aquele valor de j.

Vamos contar?

OF	rdena-Por-Inserção(<i>A, n</i>)	Custo	Vezes
1 p	para $j \leftarrow 2$ até n faça	<i>C</i> ₁	n
2	$chave \leftarrow A[j]$	<i>c</i> ₂	<i>n</i> − 1
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	<i>n</i> − 1
4	$i \leftarrow j - 1$	<i>C</i> ₄	<i>n</i> − 1
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	<i>c</i> ₅	$\sum_{j=2}^{n} t_j$
6	$A[i+1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	c ₇	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	<u>n – 1</u>

A constante c_k representa o custo (tempo) de cada execução da linha k.

Denote por t_j o número de vezes que o teste no laço **enquanto** na linha 5 é feito para aquele valor de j.

Tempo de execução total

Logo, o tempo total de execução T(n) é a soma dos tempos de cada uma das linhas do algoritmo, ou seja:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Entradas de tamanho igual (i.e., mesmo valor de n), podem apresentar tempos de execução diferentes já que o valor de T(n) depende dos valores dos t_j .

Melhor caso

O melhor caso de Ordena-Por-Inserção ocorre quando o vetor A já está ordenado. Para $j=2,\ldots,n$ temos $A[i]\leq chave$ na linha 5 quando i=j-1. Assim, $t_j=1$ para $j=2,\ldots,n$. Logo,

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i .

Portanto, **no melhor caso**, o tempo de execução é uma **função linear** no **tamanho da entrada**.

Pior Caso

Quando o vetor A está em ordem decrescente, ocorre o pior caso para Ordena-Por-Inserção. Para inserir a *chave* em $A[1 \dots j-1]$, temos que compará-la com todos os elementos neste subvetor. Assim, $t_j = j$ para $j = 2, \dots, n$.

Lembre-se que:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

е

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}.$$

Pior caso – continuação

Temos então que

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right)$$

O tempo de execução no pior caso é da forma $an^2 + bn + c$ onde a, b, c são constantes que dependem apenas dos c_i .

Portanto, **no pior caso**, o tempo de execução é uma **função quadrática** no **tamanho da entrada**.

Complexidade assintótica de algoritmos

Como já dito, na maior parte desta disciplina, nos concentraremos na **análise de pior caso** e no **comportamento assintótico** dos algoritmos (instâncias de tamanho grande).

 O algoritmo tem como complexidade (de pior caso) uma função quadrática an² + bn + c, onde a, b, c são constantes que dependem apenas dos custos c_i.

O estudo assintótico "joga para debaixo do tapete" as constantes e termos de baixa ordem.

PERGUNTA:

Por que podemos fazer isso?

Análise assintótica de funções quadráticas

Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	3 <i>n</i> ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

Como se vê, $3n^2$ é o termo dominante quando n é grande.

De um modo geral, podemos nos concentrar nos termos dominantes e esquecer os demais.

Notação assintótica

- Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso ⊖(n²).
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) por algum polinômio da forma an²
 - existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma constante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.