UNIVERSIDADE FEDERAL DO RIO GRANDE – FURG CENTRO DE CIÊNCIAS COMPUTACIONAIS – C3

Disciplina: Sistemas Digitais Professor: Rafael B. Schvittz rafaelschvittz@furg.br

Lista de revisão do 1º bimestre

- 1. Considere a expressão lógica $x = (\overline{A} + B)(A + \overline{B})$, determine a tabela verdade desta função.
- 2. Considere a expressão lógica $x = \overline{A}BC(\overline{A+D})$, qual o valor de x para a condição A=0, B=1, C=1 e D=1?
- 3. Considere a expressão lógica $x = \overline{ABC}(\overline{D})$, qual o valor de x para a condição A=0, B=1, C=1 e D=1?
- 4. O que é uma representação canônica de uma função lógica? Cite que tipo de representação pode ser considerada canônica?
- 5. Construa o circuito lógico, em nível de portas lógicas da função x do exercício 1.
- 6. Construa o circuito lógico, em nível de portas lógicas da função x do exercício 2.
- 7. Construa o circuito lógico, em nível de portas lógicas da função x do exercício 3.
- 8. Prove que A + B.C = (A + B).(A + C)
- 9. Simplifique as expressões abaixo para que elas tenham somente variáveis simples invertidas
 - a. $\overline{A}\overline{B} + \overline{C}$
 - b. $\overline{(\overline{A}+C).(B+\overline{D})}$
 - c. $\overline{A} + \overline{B} + \overline{C}$
- 10. Para cada uma das expressões a seguir, construa o circuito em nível de portas lógicas usando somente AND, OR e INVERSOR.
 - a. $\overline{AB(C+D)}$
 - b. $(\overline{A+B+\overline{C}D\overline{E}}) + \overline{B}C\overline{D}$
- 11. Desenhe o diagrama de tempo da porta lógica abaixo, considerando o estímulo apresentado

12. Construa o circuito abaixo usando somente portas NAND

13. Obtenha a expressão booleana do circuito apresentado abaixo

- 14. Extraia a equação do circuito representado por $F(A, B) = \sum m(0, 1, 3)$.
- 15. Extraia a equação do circuito representado por $F(A, B, C) = \sum m(3, 5, 6, 7)$.
- 16. Extraia a equação do circuito representado por F(A, B, C) = ∏M(0, 1, 2, 4).
- 17. Simplifique, usando Mapas de Karnaugh os circuitos descritos abaixo
 - a. $F(A, B) = \sum m(0, 1, 3)$.
 - b. $F(A, B, C) = \sum m(0, 2, 4, 5, 6)$
 - c. $F(A, B, C) = \sum m(0, 2, 3, 4, 5, 6)$
 - d. $F(A, B, C, D) = \sum m(0, 2, 8, 10)$
 - e. $F(A, B, C, D) = \sum m(0, 1, 2, 3, 8, 9, 10, 11)$
 - f. $F(A, B, C, D) = \sum m(4, 5, 7, 8, 9, 11, 12, 15) + dc(13)$
- 18. Qual a diferença de uma família lógica estática e uma dinâmica?
- 19. Explique o funcionamento da família lógica dinâmica.
- 20. Como funciona a lógica de três estados? Explique e cite um exemplo de utilização.
- 21. Construa portas lógicas CMOS para as funções abaixo:
 - a. (\overline{ABC})
 - b. $(\overline{A + B + C})$
 - c. $(\overline{AB + CD})$
 - d. $\overline{A} + \overline{B}$
 - e. $(\overline{A}B + A\overline{B})$
 - f. $\overline{(A+B)(C+D)}$
 - g. ABC + \overline{D}
- 22. Explique o funcionamento do transistor PMOS e NMOS como chave, dado o valor aplicado ao terminal de gate.
- 23. O que é um atraso de propagação? Quando ele ocorre?
- 24. Construa uma porta lógica NOR de duas entradas e identifique todos os seus possíveis atrasos de propagação.
- 25. Não esqueça dos exercícios de fixação de nossas aulas, muitas questões daqui foram retiradas de lá:)

Bons estudos! ©