Optimal Sparse Kernel Learning for Hyperspectral Anomaly Detection

Zhimin Peng ¹, Prudhvi Gurram ², Hessung Kwon ², Wotao Yin ¹

 $^1\mathrm{Comp.}$ and Applied Math, Rice University, Houston, TX, 77005 $^2\mathrm{U.S.}$ Army Research Lab, Adelphi, Maryland, 20783

June 18, 2013

Anomalies are patterns in data that do not conform to a well defined notion of normal behavior.

Anomalies of hyperspectral images

normal behavior \Leftrightarrow background hyperspectral anomalies \Leftrightarrow observations deviate from the background.

Support vector data description

- one of most efficient anomaly detectors (D. Tax, R. Duin [2004])
- learns the support or boundary of the background normalcy data
- minimize the radius of enclosing hypersphere

Model:

$$\min_{\mathbf{a},R,\xi_i} L(\mathbf{a},R) = R^2 + C \cdot \sum_i \xi_i$$
s.t. $\|\mathbf{x}_i - \mathbf{a}\|^2 \leqslant R^2 + \xi_i$
 $\xi_i \geqslant 0, \quad \forall i = 1, 2, \dots, N.$

Dual problem:

$$\begin{aligned} \max_{\alpha} \ L(\alpha_i) &= \sum_i \alpha_i \langle \mathbf{x}_i, \mathbf{x}_i \rangle - \sum_{i,j} \alpha_i \alpha_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \\ \text{s.t. } 0 \leqslant \alpha_i \leqslant C \\ \sum_i \alpha_i &= 1 \end{aligned}$$

- if $\alpha_i^* = 0$, \mathbf{x}_i is inside the hypersphere;
- if $\alpha_i^* = C$, \mathbf{x}_i is outside the hypersphere;
- if $0 < \alpha_i^* < C$, \mathbf{x}_i is a support vector.

center:
$$\mathbf{a} = \sum_i \alpha_i^* \mathbf{x}_i$$

radius:
$$R^2 = \frac{1}{N_b} \sum_{k=1}^{N_b} \|\mathbf{x}_k - \mathbf{a}\|^2$$

5

Kernel based SVDD

- linear SVDD fails in non-spherical boundary in the input space
- kernel functions map input space to high dimensional feature space
- learns the boundary of the background normalcy data in high dimensional feature space

Model:

$$\min_{\mathbf{a},R,\xi_i} L(\mathbf{a},R) = R^2 + C \cdot \sum_i \xi_i$$

s.t.
$$\|\Phi(\mathbf{x}_i) - \mathbf{a}\|^2 \leqslant R^2 + \xi_i$$

 $\xi_i \geqslant 0, \quad \forall i = 1, 2, ..., N.$

Dual problem

$$\max \ L(\alpha_i) = \sum_i \alpha_i k(x_i, x_i) - \sum_{i,j} \alpha_i \alpha_j k(x_i, x_j)$$

s.t.
$$0 \leqslant \alpha_i \leqslant C$$
, $\forall i = 1, 2, ..., N$.
$$\sum_{i} \alpha_i = 1$$

where
$$k(x, y) = \langle \Phi(x), \Phi(y) \rangle$$

Data description:

Center:
$$\mathbf{a} = \sum_{i} \alpha_{i}^{*} \Phi(x_{i})$$

Radius:
$$R^2 = \frac{1}{N_b} \sum_{k=1}^{N_b} \|\Phi(x_k) - a\|^2$$

overfitting!

input space:

feature space:

Optimal sparse kernel learning (OSKLAD)

$$\begin{aligned} & \min_{\boldsymbol{d}} \min_{\boldsymbol{R}, \boldsymbol{\xi}_i, \boldsymbol{a}} R^2 + C \cdot \sum_{i=1}^N \boldsymbol{\xi}_i \\ & \text{subject to } \| \boldsymbol{\Phi}(\tilde{\mathbf{x}}_i) - \boldsymbol{a} \|^2 \leqslant R^2 + \boldsymbol{\xi}_i \\ & \boldsymbol{\xi}_i \geqslant 0 \\ & \tilde{\mathbf{x}}_i = \mathbf{x}_i \odot \mathbf{d}, \ i = 1, 2, ..., N \end{aligned}$$
 where $\mathbf{d} \in \mathbb{D} = \{ \mathbf{d} | d_j \in \{0, 1\}, \sum_{j=1}^M d_j = B \}.$

Dual problem:

$$\begin{aligned} & \min_{\mathbf{d}} \max_{\alpha} \ S(\alpha, \mathbf{d}) \\ & \text{subject to} \ \sum_{i=1}^{N} \alpha_i = 1 \\ & 0 \leqslant \alpha_i \leqslant C \\ & \tilde{\mathbf{x}}_i = \mathbf{x}_i \odot \mathbf{d}, \ i = 1, 2, ..., N \end{aligned}$$

where
$$S(\alpha, \mathbf{d}) = \sum_{i=1}^{N} \alpha_i k(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_i) - \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j k(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j)$$

- Mixed Integer Programming (MIP)
- # of possible $\mathbf{d} = \begin{pmatrix} M \\ B \end{pmatrix}$
- if M = 150, B = 75, # of possible $\mathbf{d} \simeq 9.28 \times 10^{43}$
- ullet NP-complete o Hard to solve!

Algorithm

$min \rightleftharpoons max$

$$\max_{\alpha_i} \min_{\mathbf{d}} S(\alpha, \mathbf{d})$$

s.t.
$$\sum_{i=1}^{N} \alpha_i = 1$$
$$0 \leqslant \alpha_i \leqslant C$$

 $\tilde{\mathbf{x}}_i = \mathbf{x}_i \odot \mathbf{d}$

QCLP

Introduce slack variable t:

$$\max_{\alpha,t} t$$
s.t.
$$\sum_{i=1}^{N} \alpha_i = 1$$

$$0 \leqslant \alpha_i \leqslant C$$

$$t \leqslant S(\alpha, \mathbf{d}), \ \mathbf{d} \in \mathbb{D}$$

where
$$\mathbb{D} = \{\mathbf{d} | d_j \in \{0,1\}, \sum_{i=1}^M d_j = B\}$$

Lagrange with respect to t is: $L(t, \mu) = t + \sum \mu_l(S(\alpha, \mathbf{d}^l) - t)$.

Setting
$$\frac{\partial L}{\partial t} = 0$$

$$\begin{aligned} \max_{\alpha} \min_{\mu} & \sum_{l=1}^{p} \mu_{l} S(\alpha, \mathbf{d}^{l}) \\ \text{subject to} & \sum_{i=1}^{N} \alpha_{i} = 1 \\ & 0 \leqslant \alpha_{i} \leqslant \textit{C} \text{ for } i = 1, 2..., \textit{N} \\ & \sum_{l=1}^{p} \mu_{l} = 1 \\ & \mu_{l} \geqslant 0 \text{ for } l = 1, 2..., \textit{p} \end{aligned}$$

- solved by the existing algorithm SKAD;^[1]
- a large number of kernels → Inefficient to solve!

- quadratic constraints: $t \leqslant S(\alpha, \mathbf{d})$ where $\mathbf{d} \in \mathbb{D}$;
- only a pool of sparse feature subsets is needed;
- find the most violated d by solving:

$$\min_{\mathbf{d}} S(\alpha, \mathbf{d})$$

subject to
$$\sum_{i=1}^p d_i = B$$
 $\mathbf{d} \in \mathbb{D}$

• If linear kernel $k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$ is used, then we have

$$S(\alpha, \mathbf{d}) = \sum_{j=1}^{M} d_j c_j$$

where
$$c_j = \sum_{i=1}^N \alpha_i x_{ij}^2 + (\sum_{i=1}^N \alpha_i x_{ij})^2$$

• If $k(\mathbf{x}, \mathbf{y}) = \exp(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2})$, use empirical kernel map.

Empirical kernel feature space

empirical kernel map:

$$\Phi_N : \mathbb{R}^M \to \mathbb{R}^N$$
, where $x \mapsto (k(\mathbf{x}_1, \mathbf{x}), ..., k(\mathbf{x}_N, \mathbf{x}))^T$

"whitening" empirical kernel map

$$\Phi_N^{\omega}: \mathbf{x} \mapsto K^{-\frac{1}{2}}(k(\mathbf{x}_1, \mathbf{x}), ..., k(\mathbf{x}_N, \mathbf{x}))^T$$

which satisfy

$$k(\mathbf{x}_i, \mathbf{x}_i) = \langle \Phi_N^{\omega}(\mathbf{x}_i), \Phi_N^{\omega}(\mathbf{x}_i) \rangle$$

benefit: find a N-dimensional feature space associate with a given kernel $k(\cdot, \cdot)$.

Results

(a) SVDD - linear kernel

(c) OSKLAD - linear kernel

(b) SVDD - RBF kernel

(d) OSKLAD – EKFS

(a) SVDD – linear kernel

(c) OSKLAD - linear kernel

(b) SVDD - RBF kernel

(d) OSKLAD - EKFS

Conclusions:

- a novel framework for anomaly detection;
- features are optimally selected in nonlinear feature space.

Future work:

- local spectral anomaly detection;
- parallelize OSKLAD.