Big Data Computing

Written test 07/06/2018
(SOLUTIONS of EXERCISES)

Problema. Let P be a set of N bicolored points from a metric space, partitioned into k clusters C_1, C_2, \ldots, C_k . Each point $x \in P$ is initially represented by the key-value pair $(\mathrm{ID}_x, (x, i_x, \gamma_x))$, where ID_x is a distinct key in [0, N-1], i_x is the index of the cluster which x belongs to, and $\gamma_x \in \{0, 1\}$ is the color of x.

- 1. Design an efficient 2-round MapReduce algorithm that for each cluster C_i checks whether all points of C_i have the same color. The output of the algorithm must be the k pairs (i, b_i) , with $1 \le i \le k$, where $b_i = -1$ if C_i contains points of different colors, otherwise b_i is the color common to all points of C_i .
- 2. Analyze the local and aggregate space required by your algorithm.

N.B. For full score, your algorithm must require o(N) local space and O(N) aggregate space.

Soluzione.

1. The 2-round MapReduce algorithm is the following.

Round 1:

- Map phase: map each pair $(ID_x, (x, i_x, \gamma_x))$, into the intermediate pair $(ID_x \mod \sqrt{N}, (x, i_x, \gamma_x))$ (for simplicity, assume that \sqrt{N} is an integer).
- Reduce phase: for each key ℓ independently, with $0 \leq \ell < \sqrt{N}$, gather all intermediate pairs with key ℓ and let P_{ℓ} be the subset of points represented by these pairs. For every cluster C_i such that $C_i \cap P_{\ell} \neq \emptyset$ produce the pair $(i, b_i(\ell))$, where i is the key and $b_i(\ell) = -1$, if $C_i \cap P_{\ell}$ contains points of different colors, otherwise $b_i(\ell)$ is the color common to all points of $C_i \cap P_{\ell}$.

Round 2:

- *Map phase*: identity mapping.
- Reduce phase: for each $1 \le i \le k$ independently, gather the at most \sqrt{N} pairs $(i, b_i(\ell))$, and return (i, b_i) $b_i = 0$ if all $b_i(\ell)$'s are $0, b_i = 1$ if all $b_i(\ell)$'s are 1, and $b_i = -1$ in all other cases.
- 2. In Round 1, there are at most \sqrt{N} input pairs mapped to the same key ℓ , hence to the same reducer, while in the reduce phase of Round 2 at most \sqrt{N} pairs are gathered for each i. Therefore, the required local space is $M_L = \Theta\left(\sqrt{N}\right)$. Also, the total number of pairs produced by the map and reduce phases of Round 1 are $\Theta\left(N\right)$. Therefore, the required aggregate space is $M_A = \Theta\left(\sqrt{N}\right)$.

Problema. Let T be a dataset of N transactions over a set I of d items and suppose that every itemset $X \subseteq I$ is closed (i.e., every superset $Y \supset X$ has smaller support). Let X_1, X_2, \ldots be the sequence of itemsets by nonincreasing support, including the empty itemset (X_1) which has support 1. For a given K > 1, let $S = \operatorname{Supp}_T(X_K)$ and $S' = \operatorname{Supp}_T(X_{K+1})$ and assume that 1 > S > S' > 0.

- 1. Show that for every itemset X_j of support s' (hence, $j \ge K + 1$), and for every item $a \in X_j$, the itemset $X_j \{a\}$ belongs to $\{X_1, X_2, \dots, X_K\}$.
- 2. Derive an upper bound to the number of itemsets of support exactly s' and, from this, an upper bound to the number of Top-(K+1) frequent itemsets. (**Hint:** note that the previous point implies that any itemset of support s' is obtained by adding an item to some X_i with $1 \le i \le K$.)

Soluzione.

- 1. Since every itemset is closed, we have that $\operatorname{Supp}_T(X_j \{a\}) > \operatorname{Supp}_T(X_j)$, therefore $\operatorname{Supp}_T(X_j \{a\}) > s'$ which implies that $\operatorname{Supp}_T(X_j \{a\}) \geq s$. Since $\{X_1, \ldots, X_K\}$ are all itemsets of support $\geq s$, the itemset $X_j \{a\}$ must be one of them.
- 2. Since each X_i , with $1 \le i \le K$, induces at most d itemsets of support s', this implies that the itemsets of support exactly s' are at most dK. Clearly, the $Top_{-}(K+1)$ frequent itemsets are all itemsets of support $\ge s'$, that is, all itemsets of support $\ge s$ plus those of support exactly s', which are at most K + dK = (d+1)K.