MSYS®

Ansoft HFSS Antenna Design Kit

Overview of HFSS Antenna Design Kit

- GUI-based wizard tool
 - Automates geometry creation, solution setup, and post-processing reports for 50 common antenna elements
 - Assists in learning to use HFSS for antenna design
- Parametric antenna geometry
 - Easily modify parameters in HFSS after generating initial model
 - Facilitates parametric sweeps and optimizations
- Synthesis feature for each antenna
 - Automatically generates physical dimensions for desired frequency
 - Provides starting point for new designs

Available Antenna Types

Planar Dipole

Wire Dipole

Rectangular Patch

Elliptical Patch

Pyramidal Horn

E-plane Sectoral Horn

H-plane Sectoral Horn

Conical Horn

Circular Waveguide

Rectangular Waveguide

Archimedean Spiral

Log-Spiral

Sinuous Spiral

Available Antenna Types (cont)

Conical Archimedean Spiral

Conical Log-Spiral

Conical Sinuous Spiral

Vivaldi (Tapered Slot)

Stepped Vivaldi

Log-Periodic **Toothed**

Log-Periodic **Toothed Trapezoidal**

PIFA with **Shorting Strip**

PIFA with Shorting Pin

PIFA

Discone

Linear Taper Slot

Rounded Bowtie

Bowtie

Bicone

© 2007 ANSYS, Inc. All rights reserved.

Available Antenna Types (cont)

© 2007 ANSYS, Inc. All rights reserved. 5

Available Antenna Types (cont)

WLAN Ceramic Chip Antenna

WLAN Dual Band Slot Antenna

Quasi Yagi Element

Quasi Yagi 2x1 Array

UHF Probe

Slot Feed Patch

CPW Bowtie

Common Applications for Each Antenna Type

Antenna Type	Common Applications
Dipole	Communication systems, consumer electronics, WLAN, RFID, biomedical
Patch	Consumer electronics, mobile handsets, phased arrays, GPS
Horn	Reflector feeds, gain standards for antenna measurements, EMC/EMI tests, communication systems, radar, direction finding (DF), mm-wave systems
Waveguides	Phased arrays, radar, high power systems, reflector feeds, circularly polarized systems
Planar spirals	Wideband systems, multi-function apertures, electronic warfare, UWB, reflector feeds, telemetry, direction finding, missile guidance
Conical spirals	Wideband systems, circularly polarized systems, aerospace systems, EMI/EMC testing, DF systems
Vivaldi	Phased arrays, radar, wideband systems, multi-function apertures, electronic warfare, UWB
Log-periodic	Wideband systems, reflector feeds, UWB
PIFA	Consumer electronics, mobile handsets, medical devices, WLAN, Bluetooth
Bowtie	Phased arrays, radar, wideband systems, RFID, UWB, GPR
Bicone/discone	Wideband systems, electronic warfare, EMC tests, beacons, UWB

Using HFSS Antenna Design Kit

- Select desired antenna type from tree structure
- Enter necessary antenna parameters
 - Units and solution frequency
 - Physical dimensions for element and feed
 - Choice of absorbing boundary condition (ABC) or perfectly matched layer (PML) for outer boundary of HFSS model
- Alternatively, synthesize parameters from desired operating frequency
- Select Create Model to invoke HFSS

Antenna Synthesis Option

- Creates physical characteristics from desired operating frequency or operating band
 - Based on general design guidelines found in common textbooks
- It is not possible to synthesize the "best" design based on frequency alone
 - Depends upon additional parameters such as size, gain, beamwidth, bandwidth, materials, etc.
 - Synthesized antenna should be viewed as one possible starting point for actual design process
- Parameterized models allow for automated optimizations

frequency for narrowband antennas

Synthesis based on frequency band for wideband antennas

Example HFSS Model Created by Antenna Design Kit

Import Custom Antennas

- Custom Antenna can be added to ADK user interface
- Custom library files created in directory
 ADK_InstalationDirectory>\Custom_Library
 - *.adk Project File
 - *.ant Parameter File, this file contains a list of all parameters that will be shown in ADK User Interface. Lines can be removed to keep them from displaying in ADK.
 - *.jpg Design Image, image can be replace with any custom image. Maximum resolution is 250x475 pixels
- If multiple designs exists in project you will be prompted to choose which design you wish to include
- Custom library can be exported to other users by copying all files located in Custom_Library directory and pasting them into Custom_Library directory on any other machine.

Results of Example HFSS Model

- Reports automatically generated by ADK
- Antenna performance generally evaluated using input impedance and far-field radiation patterns
 - Antenna must be well-matched to impedance of feed circuit
 - Antenna must spatially distribute input power in desired direction(s)

Input Impedance

3D Radiation Pattern

Return Loss

2D Pattern Cuts

Design Ready for Automated Optimization

All antenna parameters available for Optimetrics analysis

Integrate Antenna Design Kit with HFSS ANSYS

- Antenna Design Kit can be added as an external tool to be launched from within HFSS
- To add as External Tool
 - Choose the menu **Tools** → **External Tools**
 - Select Add to create a new External Tool
 - Specify Menu Text, Command and Initial Directory (replace InstallationDirectory with actual installation directory)
- Antenna Design Kit can now be run from the menu
 - **Tools** → **Antenna Design Kit**

© 2007 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

Antenna Design Kit Documentation ANSYS

- Complete description of parameters necessary for each antenna
- Design references for each antenna
- HFSS results for nominal antenna. parameters
 - Input impedance and far-field patterns
- Best practices for antenna design using **HFSS**

HFSS Antenna Design Kit Summary ANSYS

- Automates model creation for variety of common antennas
 - Resonant and wideband antennas
 - 3D and planar antennas
 - Creates ready-to-solve designs!
- Synthesis feature provides example design for desired operating frequency or bandwidth
- Help documentation describes all parameters for each antenna
- Possible to include additional antennas in future versions

