Notes on the accuracy and stability of naive summation

S. G. Johnson, MIT Course 18.335

Created Fall 2019; updated February 7, 2020

1 Summation: Order matters

Consider the summation function $f(x) = \sum_{i=1}^{n} x_i$ for vectors $x \in \mathbb{R}^n$ or $x \in \mathbb{F}^n$ (*n* real numbers). When we implement an approximate version $\tilde{f}(x)$ of this sum on a computer, using \oplus (floating-point addition) rather than + (exact addition), there are many possible algorithms, and different algorithms will have different roundoff errors.

A key fact to remember is that \oplus is commutative but *not associative*. In particular, consider $\frac{1}{\epsilon_{\text{machine}}^2} + \frac{-1}{\epsilon_{\text{machine}}^2} + 1 = 1$. In floating-point arithmetic, we can parenthesize (associate) this sum in two different ways to obtain two different results :

$$\underbrace{\left(\frac{1}{\epsilon_{\text{machine}}^2} \oplus \frac{-1}{\epsilon_{\text{machine}}^2}\right)}_{=0} \oplus 1 = 1,$$

$$\frac{1}{\epsilon_{\text{machine}}^2} \oplus \underbrace{\left(\frac{-1}{\epsilon_{\text{machine}}^2} \oplus 1\right)}_{=-1/\epsilon_{\text{machine}}^2} = 0.$$

In these notes, we will analyze the most obvious possible algorithm for $\tilde{f}(x)$: "naive" left-to-right summation. Later, we will see that there are often better ways to compute f(x). A much more complete analysis of many summation algorithms can be found in Higham (1993) [1].

2 Naive summation

In pseudocode, the most obvious algorithm for summation of n floating-point inputs $x \in \mathbb{F}^n$ is to simply sum the terms in order from left to right:

$$\begin{array}{l} \operatorname{sum} = 0 \\ \operatorname{for} \ i = 1 \ \operatorname{to} \ n \\ \operatorname{sum} = \operatorname{sum} + x_i \\ f(x) = \operatorname{sum} \end{array}$$

For analysis, it is a bit more convenient to define the process inductively:

$$s_0 = 0$$

 $s_k = s_{k-1} + x_k \text{ for } 0 < k \le n,$

with $f(x) = s_n$. (The intermediate values s_k are known as "partial" sums.) When we implement this in floating-point arithmetic, we get the function $\tilde{f}(x) = \tilde{s}_n$, where $\tilde{s}_k = \tilde{s}_{k-1} \oplus x_k$, with \oplus denoting (correctly rounded) floating-point addition.

3 An upper bound on the error

We can easily prove the following upper bound on the errors accumulated by the naive floating-poing sum:

$$|\tilde{f}(x) - f(x)| \le n\epsilon_{\text{machine}} \sum_{i=1}^{n} |x_i| + O(\epsilon_{\text{machine}}^2).$$
 (1)

This means that the *relative error* in the sum is bounded above by

$$\frac{|\tilde{f}(x) - f(x)|}{|f(x)|} \le nO(\epsilon_{\text{machine}}) \left[\frac{\sum_{i=1}^{n} |x_i|}{|\sum_{i=1}^{n} x_i|} \right].$$

The $[\cdots]$ factor is what we will eventually call the **condition number** of the summation problem, a term that we we will define precisely later in 18.335. In the special case of summing *nonnegative* values $x_i \geq 0$, the $[\cdots]$ term is = 1, and we find that the relative error grows **at worst linearly** with the problem size n.

To prove this, we first prove the lemma:

$$\tilde{f}(x) = \sum_{i=1}^{n} x_i \prod_{k=i}^{n} (1 + \epsilon_k),$$
(2)

where $\epsilon_1 = 0$ and the other ϵ_k satisfy $|\epsilon_k| \le \epsilon_{\text{machine}}$, by induction on n.

- For n=1, it is trivial with $\epsilon_1=0$.
- Now for the inductive step. Suppose $\tilde{s}_{n-1} = \sum_{i=1}^{n-1} x_i \prod_{k=i}^{n-1} (1 + \epsilon_k)$. Then $\tilde{s}_n = \tilde{s}_{n-1} \oplus x_n = (\tilde{s}_{n-1} + x_n)(1 + \epsilon_n)$ where $|\epsilon_n| < \epsilon_{\text{machine}}$ is guaranteed by floating-point addition. The result follows by inspection: the previous terms are all multiplied by $(1 + \epsilon_n)$, and we add a new term $x_n(1 + \epsilon_n)$.

Given lemma. (2), let us multiply out the terms:

$$(1 + \epsilon_i) \cdots (1 + \epsilon_n) = 1 + \sum_{k=i}^{n} \epsilon_k + (\text{products of } \epsilon) = 1 + \delta_i,$$
 (3)

where the products of ϵ_k terms are $O(\epsilon_{\text{machine}}^2)$, and hence

$$|\delta_i| \le \sum_{k=i}^n |\epsilon_k| + O(\epsilon_{\text{machine}}^2) \le n\epsilon_{\text{machine}} + O(\epsilon_{\text{machine}}^2).$$
 (4)

Now we have: $\tilde{f}(x) = f(x) + (x_1 + x_2)\delta_2 + \sum_{i=3}^n x_i \delta_i$, and hence (by the triangle inequality):

$$|\tilde{f}(x) - f(x)| \le |x_1| |\delta_2| + \sum_{i=2}^n |x_i| |\delta_i|.$$

Hence we obtain eq. (1) from the $|\delta_i|$ bound above.

Note: This does not correspond to a proof of forwards stability (defined soon in 18.335), since we have only shown that $|\tilde{f}(x) - f(x)| = ||x|| O(\epsilon_{\text{machine}})$, which is different from $|\tilde{f}(x) - f(x)| = ||f(x)| O(\epsilon_{\text{machine}})$ unless all the x_i are ≥ 0 ! Note that our $O(\epsilon_{\text{machine}})$ in eq. (1) is uniformly convergent in x, however (that is, the coefficient of $\epsilon_{\text{machine}}$ is independent of x, although it depends on n).

4 Average errors

In fact, the analysis above is typically too pessimistic, because the individual errors ϵ_k are typically of different signs, and in particular can usually be though of as random numbers, because the last few digits of typical inputs x_i are often random noise and IEEE arithmetic rounds-to-nearest by default. For independent random ϵ_k , since δ_i is the sum of (n-i+1) random variables with variance $\sim \epsilon_{\text{machine}}$ and zero mean, it follows from the usual properties of **random walks** that the mean $|\delta_i|$ has magnitude $\sim \sqrt{n-i+1}O(\epsilon_{\text{machine}}) \leq \sqrt{n}O(\epsilon_{\text{machine}})$. Hence we typically expect

root mean square
$$|\tilde{f}(x) - f(x)| = O\left(\sqrt{n}\epsilon_{\text{machine}} \sum_{i=1}^{n} |x_i|\right)$$
,

i.e. rms errors that grow $\sim \sqrt{n}$.

This sounds good, but in fact there are summation algorithms that do **much better**. The algorithm for Julia's built-in **sum** function, for example, is **pairwise summation**, which has $O(\log n)$ worst-case and $O(\sqrt{\log n})$ average-case errors [1], while having about the same performance as naive summation.

5 Backwards stability

We can easily adapt the error analysis above into a proof of **backwards stability** of naive summation. To be backwards stable, we must find a vector $\tilde{x} \in \mathbb{R}^n$ such that $\tilde{f}(x) = f(\tilde{x})$, and also \tilde{x} is "close" to x in the sense that $\|\tilde{x} - x\| = \|x\| O(\epsilon_{\text{machine}})$ in some norm $\|\cdot\|$. We do this in two steps. First, we construct \tilde{x} such that $\tilde{f}(x) = f(\tilde{x})$, and then we show that it is close to x.

A possible \tilde{x} follows immediately from lemma. (2) and eq. (3):

$$\tilde{x}_i = x_i \prod_{k=i}^n (1 + \epsilon_k) = x_i (1 + \delta_i).$$

Eq. (2) tells us that $\sum_i \tilde{x}_i = f(\tilde{x})$ is equal to our naive floating-point sum $\tilde{f}(x)$ as desired.

Then, we can use eq. (4) to show that $\|\tilde{x} - x\|$ is small. As we shall shortly see in 18.335 (Trefethen ch. 14), it turns out that we can choose any norm that we wish for proving stability (stability in one norm implies stability in *every* norm), and in this problem it is convenient to choose the L_1 norm $\|x\|_1 = \sum_{i=1}^n |x_i|$. In this norm, we immediately find

$$\|\tilde{x} - x\|_1 = \sum_{i=1}^n |x_i \delta_i| \le \|x\|_1 n\epsilon_{\text{machine}} + O(\epsilon_{\text{machine}}^2) = \|x\|_1 O(\epsilon_{\text{machine}}).$$

Note that the "constant" factor n in the $O(\epsilon_{\text{machine}})$ is independent of x (as is required for backwards stability), though it depends on n.

5.1 Regarding ||x|| versus $||\tilde{x}||$

It doesn't matter whether we use $\|x\|$ or $\|\tilde{x}\|$ on the right-hand/denominator for the definition of backwards stability (or stability), since by the triangle inequality $\|x\| = \|\tilde{x} + (x - \tilde{x})\| \le \|\tilde{x}\| + \|\tilde{x} - x\| = \|\tilde{x}\| + \|x\|O(\epsilon_{\text{machine}})$. In particular, it follows that:

$$\|\tilde{x} - x\| = \|x\|O(\epsilon_{\text{machine}}) \Longleftrightarrow \|\tilde{x} - x\| = \|\tilde{x}\|O(\epsilon_{\text{machine}})$$

in any norm.

5.2 Regarding inputs in \mathbb{R} versus \mathbb{F}

In the beginning, we assumed that x was in \mathbb{F}^n , i.e. that the inputs are already floating point numbers. Almost the same proof applies if x is in \mathbb{R}^n and we first compute fl(x) (rounding x to the nearest floating-point values) before summing. In particular, lemma (2) is replaced with

$$\tilde{f}(x) = \sum_{i=1}^{n} f(x_i) \prod_{k=i}^{n} (1 + \epsilon_k) = \sum_{i=1}^{n} x_i (1 + \epsilon) \prod_{k=i}^{n} (1 + \epsilon_k),$$

so that there is merely an extra $(1 + \epsilon)$ term. This ϵ is added to the relative error δ_i in (3), and eq. (4) is replaced by $|\delta_i| \leq (n+1)\epsilon_{\text{machine}} + O(\epsilon_{\text{machine}}^2)$. Changing n to n+1 in this coefficient makes no difference to our conclusions above.

References

[1] Nicholas J. Higham, "The accuracy of floating point summation," SIAM Journal on Scientific Computing 14, pp. 783–799 (1993).