Numerical search methods for dense sphere packings in higher dimensions

Yoav Kallus

Santa Fe Institute

UC Davis Mathematical Physics and Probability Seminar April 5, 2017

From Hilbert's 18th Problem

"How can one arrange most densely in space an infinite number of equal solids of a given form, e.g., **spheres** with given radii or **regular tetrahedra** with given edges, that is, how can one so fit them together that the ratio of the filled to the unfilled space may be as large as possible?" (emphasis added)

Packing tetrahedra can get weird

Densest known packing for $d \le 36$

Recently solved in d = 8,24, still open for all other d > 3.

Densest known packing for $d \leq 36$

Replica symmetry breaking solution of the hard sphere glass transition for $d \to \infty$

 $\phi_{th} \sim d2^{-d}$, $\phi_{GCP} \sim d \log(d) 2^{-d}$, $\phi_{\text{opt}} \sim ?$

Replica symmetry breaking solution of the hard sphere glass transition for $d \to \infty$

$$\phi_{th} \sim d2^{-d}$$
,
 $\phi_{GCP} \sim d \log(d)2^{-d}$,
 $\phi_{\text{opt}} \sim ?$

Minkowski: $\phi_{\rm opt} \gtrsim 2^{-d}$; others: $\phi_{\rm opt} \gtrsim d2^{-d}$ for all d, and

 $\phi_{\mathrm{opt}} \gtrsim d \log(\log d) 2^{-d}$ for some subseq. $d \to \infty$.

Kabatiansky–Levenshtein: $\phi_{\rm opt} \leq 2^{-0.5990d}$

Bravais lattice is densest known packing in 26 out of first 36 dimensions.

Packings with fixed number of translational orbits

$$\lim_{m\to\infty}\phi_{d,m}=\phi_d$$

Enumeration of locally optimal lattices

Lattice: $\Lambda = \{A\mathbf{n} : \mathbf{n} \in \mathbb{Z}^d\}$, $A \sim d \times d$. Let $G = A^T A$, then Λ has packing radius ≥ 1 if $\mathbf{n}^T G \mathbf{n} \geq 2$ for all $\mathbf{n} \in \mathbb{Z}^d$. det G is quasiconcave.

Also, invariant under $G \mapsto UGU^T$ when $U \in GL_n(\mathbb{Z})$.

Results of enumeration

What breaks for m = 2?

But constraint rank G = d is nonlinear.

Double lattice: $\Lambda = \{A\mathbf{n} : \mathbf{n} \in \mathbb{Z}^d \times \{0,1\}\}, \ A \sim d \times (d+1).$ Let $G = A^T A$, then Λ has packing radius ≥ 1 if $\mathbf{n}^T G \mathbf{n} \geq 2$ for all $\mathbf{n} \in \mathbb{Z}^d \times \{-1,0,1\}.$ det $G_{1...d,1...d}$ is quasiconcave.

Weird things can happen: $D_9 \cup (D_9 + (\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, t))$ is locally optimal for all t (because D_9 by itself is already locally optimal).

Enumeration of double-lattices (m = 2)

Let
$$\mathcal{R} = \{G \in \operatorname{Sym}^d : \mathbf{n}^T G \mathbf{n} \geq 2 \text{ for all } \mathbf{n} \in \mathbb{Z}^d \times \{-1, 0, 1\}.$$

Let $\mathcal{R}_0 = \{G \in \mathcal{R} : \operatorname{rank} G = d\}.$

Then local optima of det $G_{1...d,1...d}$ within \mathcal{R}_0 either (1) lie on edges of \mathcal{R} , or (2) are two translates of a lattice that is already locally optimal.

Results of enumeration (m = 2)

Thermodynamically sampling lattices

Densest known lattice recovered in some runs for $d \le 20$ Can easily be extended to m > 1.

K, Phys. Rev. E 87, 063307 (2013)

Lattice RCP

Pair correlations and quasicontacts

K, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Contact force distribution

K, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)