Darboux theorem for homogeneous

Contact forms

Summer School on Geometry, Dynamics & Field Theory 2025

Asier López-Gordon, joint mork mith Janusz Grabonski Intitute of Mathematics, Polish Academy of Sciences

- There are several situations in geometry and physics in Which a (N, 72, 72, R, ...) grading appears:
 - * The algebra of differential forms with the wedge product.
 - * The spin of partides.
 - * Intensive/extensive Variables in thermodynamics
 - * Symplectisation / Poissonisation of contact/Jacobi mfolds.
 - * Supormanifolds
 - * Higher tangent bundles

Why homogeneity?

Theorem (Euler): Let
$$f:\mathbb{R}^n \to \mathbb{R}$$
 be a differentiable function. The following statements are equivalent:

i) f is K -homogeneous $(K \in \mathcal{H})$, namely
$$f(t \times 1, ..., t \times n) = t^K f(x', ..., x^n) \quad \forall t \in \mathbb{R} \setminus 301.$$

ii)
$$f$$
 is a solution of the PDE
$$K \cdot f = \sum_{i=1}^{n} x^{i} \frac{\partial f}{\partial x^{i}}$$

In other words, homogeneous functions are eigenfunctions of

$$X = \sum_{i=1}^{m} x^{i} \partial_{x^{i}} . \tag{*}$$

In particular, linear = 1-homogeneous

We can extend this idea to manifolds by considering a vector field X that is locally of the form (*) in some coords.

Def: A Vector field ∇ on a manifold M is called a Weight Vector field if in a neighbourhood of ellery point of M there are local coordinates (x^a) such that

$$V = \sum_{\alpha=1}^{n} W_{\alpha} \times^{\alpha} Z_{\alpha}$$

where $W_a = deg(x^a) \in \mathbb{R}$ is called the meight of x^a . Such coordinates are called <u>homogeneous</u> coordinates.

The pair (M, ∇) is called a homogeneity manifold.

Def.: Let (M, V) be a homogeneity manifold.

A tensor field A on M is called w-homogeneous $(W \in \mathbb{R})$ if $\mathcal{L} A = w \cdot A .$

Examples of homogeneity manifolds

* A Vector bundle $T: E \longrightarrow M$ and the Euler Vector field ∇_E (the generator of homotheties on the fibers). In bundle coords., $T: (X^i, y^a) \longmapsto (x^i)$, $\nabla_E = \sum_a y^a \ \partial_y a$.

 * An exact symplectic manifold $(M, \omega = d\theta)$ with a Liouville vector field ∇ , i.e. $\mathcal{L}_{\nabla} \omega = \omega.$

* Weight Vector fields with non-integer Weights appear in BH thormodynamics

L. F. Belgierno, "Quasi-homogeneous thermodynamics and Black holes", J. Math. Phys. 44, 1089 (2003)

Set (M, ∇) be a homogeneity mfold. There are two different situations on an open subset. $(1 \le M)$

$$*$$
 $\nabla |_{U} \neq 0$

$$* \exists x \in U \quad s.t. \quad \nabla(x_o) = 0.$$

Remark: Any nowhere-vanishing vector field $X \in \mathcal{X}(M)$ is a weight vector field. However, its weights are not canonical.

Indeed, since X is nowhere zero, \exists local coords. (x^a) such that $X = \partial_{X^i}$. For any $\partial_i W_1, \ldots, W_n \mathcal{H} = \mathbb{R}$ with $W_i \neq 0$, we can def. a new system of coords.

$$y'=e^{W_iX'}, \qquad y^i=e^{W_iX'}x^i, \quad 2 \leq i \leq n$$

so that

$$X = \sum_{\alpha=1}^{n} W_{\alpha} y^{\alpha} \partial_{y\alpha}, i.e. \qquad deg (y\alpha) = W_{\alpha}.$$

On the other hand, in a neighbourhood of any point at which a weight wester field wanishes, its weights are cononical.

Proposition (Grabowska & Grabowski, 2024): VEX(M) is a Weight

Vector field on M iff $T_{X_o}X$ is diagonal $\forall X_o \in M$ s.t. $\nabla(x_o) = 0$.

Let (x^a) be a system of homog, coords around x_0 i.e.

 $\nabla = \sum_{\alpha} w_{\alpha} x^{\alpha} \partial_{x^{\alpha}}$, with $\Gamma := \{w_{1}, \dots, w_{n}\} \subset \mathbb{R}$.

Then, any other system of homog. Coords. around X_0 has weights in Γ .

Homogeneous Poincaré Lemma (brabowska & brabowski, '24):

Let (M, ∇) be a homogeneity mfold. Let $W \in \mathfrak{L}^K(M)$ be a λ -homogeneous K-form (K > 0). In a nbh. of $X_0 \in M$ \exists λ -homog. (K-1)-form A 5.t. dA = W if one of the following conditions holds:

i)
$$V(x_o) = 0$$

ii)
$$\nabla(x_0) \neq 0$$
 and $K > 1$,

$$\tilde{n}i) \forall (x_0) \neq 0, \quad k=1 \text{ and } w \neq 0.$$

In the cases i) and ii), it is possible to additionally choose on α s.t. $\alpha(x_0)=0$.

Dorboux theorem for homogeneous symplectic forms (626'24)

Let (M, ∇) be a homogeneity mfold, and let ω be a λ -homog. Symplectic form on M. Then, around every $x_0 \in M$ $s.t. \nabla(x_0)=0$, there is a system of homog. Coords. (q^s, p_i) such that

$$\omega = \sum_{i} dp_{i} \wedge dq^{i}, \qquad \nabla = \sum_{i} \left(w_{qi} q^{i} \partial_{qi} + w_{pi} p_{i} \partial_{pi} \right).$$

Idea of the proof:

1) (Graded) linear algebra
$$\longrightarrow$$
 \exists graded basis (ea) of $T_{X_o} M s.t.$ $\omega(x_o) = \sum_i e_{i+n}^* \wedge e_i^*$.

2) Choose (homogeneous) Coords.
$$(\bar{q}^i, \bar{p}_i)$$
 5.t. $d\bar{q}^i(x_o) = e_i^*, d\bar{p}_i(x_o) = e_{i+n}^*.$

3) Def.
$$\omega_o := d\bar{p}_i \wedge d\bar{q}^i$$
, so that $\omega_o(x_o) = \omega(x_o)$, and $\omega_t = (1-t) \omega_o + t\omega_i$, $t \in [0,1]$, so that $\omega = \omega_i$
4) Mosor's trick: Obtain a smooth isotopy $\bar{\Phi}_t$, s.t. $\bar{\Phi}_t^* \omega_t = \omega_o$ and $(\bar{\Phi}_t^-)_* \nabla = \nabla$.

 $\omega = \omega_i = (\bar{\Phi}_i^{-1})^* \omega_o = \sum_i d(\bar{p}_i \circ \bar{\Phi}_t^{-1}) \wedge d(\bar{q}^i \circ \bar{\Phi}_t^{-1})$.

Homogeneous straightening lemma (Grabowski & LG):

Set (M, ∇) be a homogeneity mfold, and let $X \in \mathcal{H}(M)$ be a $(-\lambda)$ - homogeneous vector field. Assume that $\nabla(X_0) = 0$ and $X(X_0) \neq 0$ at $X_0 \in M$. Then, in a neighbourhood of X_0 , there is a chart of homog. Coords. $(U, 2, y^i)$ such that

$$X = \partial_z$$
, $\nabla = \lambda_z \partial_z + \sum_i W_i y^i \partial_{yi}$.

Sketch of the proof: Set (v, x^a) so a chart of homog. Coords. Around X_0 , i.e., $V = \sum_a w_a x^a \partial_{x^a}$. Since $X(x_0) \neq 0$, not all $X(x^a)$ can wonish. We loog, assume that $X(x') \neq 0$ on V.

The hyporsurface $S = \{x' = 0\} \subset U$ is a homogeneous submanifold (i.e., $V|_S$ is tangent to S) and it is transverse to X

$$(S, \nabla_S)$$
 is a homog mfold not \exists coords, (y^i) s.t. $\nabla = \sum_i w_i y^i \partial_y i$.

As in the proof of the standard straightening lemma, these coords, induce coords (z, y^i) in a neighbourhood of X_0 and X_0 are the standard straightening lemma, these coords, induce X_0 and X_0 are X_0 and X_0 and X_0 are X_0 and X_0 and X_0 are X_0 are X_0 and X_0 are X_0 and X_0 are X_0 and X_0 are X_0 are X_0 are X_0 and X_0 are X_0 are X_0 are X_0 are X_0 are X_0 are X_0 and X_0 are X_0

These Coords. are homog. Indeed,

$$[X,V] = \lambda X \Rightarrow TF_{-t}^{X} \circ V \circ F_{t}^{X} = V + \lambda t$$

In particular,

$$\nabla(z,y^i) = \nabla(o,y^i) + \lambda z \times (o,y^i) = \nabla_s(y^i) + \lambda z \times (o,y^i)$$

Def.: A <u>contact distribution</u> is a corank-one distribution C = TM which is maximally non-integrable, that is, the skew-symmetric bilinear map $P : C \times_{H} C \longrightarrow TM/C$, V(X,Y) = V(IX,Y), with $Y:TM \longrightarrow TM/C$ the natural projection is non-integrable.

Locally, $C = \ker \eta$, where η is a (local) oneform such that $\eta \wedge (d\eta)^{\eta}$ is nowhere zero (dim M = 2n + 1). Def.: A (global) one-form γ on a mfold. $M^{2n+1}s.t.$ $\gamma \sim (d\gamma)^n$ is a volume form is called a <u>contact form.</u>

The Reeb Vector field $R \in \mathcal{H}(M)$ is uniquely determined by $R \in \mathcal{H}(M)$ $R \in$

Remark: A contact form is never unique. Indeed, Korn = $\ker(f\eta)$ \forall nowhere—uanishing $f \in C^{\infty}(M)$.

Dorboux theorem for homogeneous contact forms (Grabouski, Sg)

Set (M, ∇) be a homogeneity mfold, and let η be a λ -homog. contact form on M. Then, in a neighbourhood of each point $x_0 \in M$ s.t. $\nabla(x_0) = 0$, there exists a system of homog. Coords. (q^i, p_i, z) s.t.

$$\gamma = dz + \sum_{i} p_{i} dq^{i},$$

$$\nabla = \sum_{i} \left(w_{q_{i}} q^{i} \partial_{q_{i}} + k_{p_{i}} p_{i} \partial_{p_{i}} \right) + \lambda z \partial_{z}.$$

Sketch of the proof:

- 1) The Reeb V.f. R is nowhere—Unishing and (-1)—homogeneous. Hence, \exists Coords. (\bar{z}, y^a) around x_0 s.t. $R=2\bar{z}$. Then, $L_{2\bar{z}} \gamma = 1$ and $L_{2\bar{z}} d\gamma = 0 \Rightarrow \gamma = d\bar{z} + \sum_a A_a(y) dy^a$.
- Consider the hypersurpose $S = \{ \overline{z} = 0 \}$. It is a homogeneous Subminifold (i.e. $\nabla_S = \nabla_S$ is tangent to S) and $W = \Delta \eta_S$ is a λ -homog symplectic form. By the Darboux theorem for homog, symp forms, \overline{f} coords. $(4^i, p_i)$ around $X_0 \in S$ S, t. $W = \sum_{s \in S} dp_s \wedge dq_s$.

3) Note that dy does not depend on $\frac{1}{2}$. Thus, locally, $dy = \sum_{i} dp_{i} \wedge dq^{i}$.

Thorefore, $\Delta := \sum_{\alpha} A_{\alpha} dy^{\alpha} - \sum_{i} p_{i} dy^{i}$ is a closed $\lambda - homog$.

one-form.

4) By the Homog. Poincaré lemma, x = df With f a λ -homog. function 5.t. $f(x_0) = 0$.

 $Z = \overline{Z} + f$

Def.: Let (M, ∇) be a homog mfold. A (a) distribution D = TM (resp. $D = T^*M$) is called <u>homogeneous</u> if the (a) tangent lift $d_{-}\nabla$ (resp. $d_{-}*\nabla$) is tangent to D.

Conjecture: A homogeneous (co) distribution is locally generated by homogeneous Vector fields (resp. one-forms).

We know this is true if 7 is IN-graded and complete.

^{* &}quot;Conjecture" is my pretentious may of saying "mork in progress".

Note D is endowed with a double homogeneity structure ∇ and $\nabla_{TM}|_{D}$, $\left[\nabla, \nabla_{TM}\right] = o$ (compatible) with $\nabla_{TM} = \sum_{i} v^{i} \partial_{vi}$ the Euler Wester field of TM.

If ∇ is \mathbb{N} -graded and complete, then D can be colored by an atlas of bi-homogeneous coords. (i.e., filered coords. W.r.t. $D \longrightarrow M$ and homog. W.r.t. ∇)

[Grabowski & Rotkiewicz, 2011]

In the associated local trivialisation, these coords. provide homog. Vector fields (one-forms) generating D.

Homogeneous Frobenius theorem (byrabowski & LG):

Let (M, ∇) be a homog mfold, and let D by an involutive distribution of runk K which is locally generated by homog vector fields. Around every $X_0 \in M$ s.t. $\nabla(X_0) = 0$ \exists homog. chart $(V, X', ..., X^n)$ such that

$$D|_{U} = \langle \partial_{x'}, \dots, \partial_{xK} \rangle$$

and the slices

$$N = \{ x^{K+1} = const., \dots, x^n = const. \} \subset U$$

are integral submanifolds.

Def: A presymplectic form ω on M is a closed 2-form of constant rank. Its characteristic distribution is given by $C_{\omega} = \ker \omega.$

Theorem (Darboux): Around every point of M, there are local Coords. $(4^i, p_i, 2^a)$ 5.t.

$$\omega = \sum_{i} dp_{i} \wedge dq^{i} \qquad (*)$$

Problem: If (M,V) is a homog. myold. and W is homog., Can We find homog. Coords. (q^i,p_i, z^c) in which W has the form (X)?

If our conjecture is true, the answer is YES.

Def: A one-form W on a mfold. M^{m} is said to have * odd class $2S+1 \le m$ at $X \in M$ if $W \wedge (dW)^{S}(X) \neq 0$ & $(dW)^{S+1}(X) = 0$.

* even class $2s+2 \le m$ at x if $w \wedge (dw)^{5}(x) \neq 0$ & $(dw)^{5+1}(x) \neq 0$ & $(dw)^{5+1}(x) = 0$.

Theorem (Dorsow): In a sufficiently small neighbourhood of X where W has constant class, there are coords. (4°, pi, Za) s.t.

 $\omega = dz^{o} + \sum_{i=1}^{5} p_{i} dz^{i}$ (odd) (**) $\omega = \sum_{i=1}^{5+1} p_{i} dz^{i}$ (even) (***)

Problem: If (M,V) is a homog mpold and W is homog, an We find homog. Coords. (q^i,p_i,z^a) in which W has the form (XX) or (XXX)?

Future mork

- * Extending our results to supermanifolds.
- * Bi-homogeneity: ∇_1 , ∇_2 s.t. $[\nabla_1$, $\nabla_2] = 0$.
- * Homogeneous multisymplectic forms
- * Applications to Pfaffian systems/exterior differential systems

 Les Studying differential eys as ideals generated by

 differential forms

References

J. Grabowski and M. Rotkiemicz, "Graded bundles and homogeneity structures", J. Geom. Phys. 62 (2012)

K. Grabowska, J. Grabowski and Z. Ravanpak, "VB-structures and generalizations", Ann. Global. Anal. Geom. 62, 1 (2022)

K. Grabowska and J. Grabowski, "Homogeneity supermanifolds and homogeneous Dorboux theorem", 2024, arXiv: 2411.00537

Thank you for your attention!

Feel free to contact me at alopez-gordon a impan. pl
These slides are available at alopez gordon. Xy Z