الصفحة 1 4	الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2009
<u> نا4</u>	الدورة الاستدراكية 2009 الموضوع

C:RS24

المركز الوطئى للتفويم والامتحاثات

9	المعامل:	الرياضيات	المادة:
4	مدة الإنجاز:	شعبة العلوم الرياضية (أ) و (ب)	الشعب (ة) أو المسلك:

يسمح استعمال الآلة الحاسبة

التمرين الأول: (3 نقط)

نذكر أن $\left(M_2\left(\mathbb{R}\right),+,ullet
ight)$ حلقة واحدية وحدتها المصفوفة $\left(M_2\left(\mathbb{R}\right),+, imes
ight)$ و أن $\left(M_2\left(\mathbb{R}\right),+, imes
ight)$ فضاء

متجهى حقيقى .

0,5

0,25

0,25

0.5

0,25

0,75

0,5

0,5

$$\left(a;b\right)\in IR^{2}$$
 حيث $M_{\left(a,b\right)}=\left(egin{matrix}a&b\\4b&a\end{matrix}
ight)$ حيث V لتكن V

. وحدد أساسا له $\left(M_2(\mathbb{R})\,,+,ullet\,
ight)$ وحدد أساسا له $\left(M_2(\mathbb{R})\,,+,ullet\,
ight)$

$$\left(M_{2}(\mathbb{R}), \times \right)$$
 بین آن V جزء مستقر من -2 0,25

. بين أن
$$(imes,+,+)$$
 حلقة واحدية تبادلية

$$M_{\left(\frac{1}{2},\frac{-1}{4}\right)} \times M_{\left(\frac{1}{2},\frac{1}{4}\right)}$$

ب) هل الحلقة
$$(imes,+,+)$$
جسم؟

$$(a,b)\in IR^2$$
 مع $X=egin{pmatrix} a & b \ 4b & a \end{pmatrix}:$ مع $X=X=X$ مع $X=X=X$ لتكن $X=X=X=X$

. حيث
$$O$$
 , هي المصفوفة المنعدمة $X^2 - 2aX + (a^2 - 4b^2)I = O$. بين أن $X^2 - 2aX + (a^2 - 4b^2)I = O$

$$a^2-4b^2\neq 0$$
 : نفترض أن

بين أن المصفوفة X تقبل مقلوبا في V ينبغي تحديده.

التمرين الثاني: (4 نقط)

$$(1-i)$$
 عددا عقدیا یخالف u

$$(iu-1-i)^2$$
 $= 1$

.
$$z$$
 المعادلة ذات المجهول z :

$$z^{2}-2(u+1-i)z+2u^{2}-4i=0$$

2) المستوى العقدي منسوب إلى معلم متعامد ممنظم ومباشر.

$$\Omega(2-2i)$$
 و $U(u)$ و $B((1-i)u+2)$ و $A((1+i)u-2i)$ نعتبر النقط

$$I$$
 أ ــ حدد لحق النقطة I منتصف القطعة I أم حدد متجهة الإزاحة I التي تحول النقطة I إلى النقطة I

$$R\left(A\right)=B$$
 بين أن $R\left(-\frac{\pi}{2}\right)$ بين أن R بين أن $R\left(A\right)=B$

موضوع الامتحان الوطني الموحد للبكالوريا 2009-الدورة الاستدراكية _ الصفحة عيات، الشعب (ة) أو المسلك: شعبة العلوم الرياضية (أ) و (ب)	مادة: الرياض
(AB) و (AB) متعامدان.	0,5
B وضبح طريقة لإنشاء النقطتين U وضبح طريقة لإنشاء النقطتين B	0,75
$(a \in \mathbb{R})$ حيث $u = a(1+i)-2i$ نضع (3	
a بدلالة م \overline{AU} و \overline{AB} بدلالة المتجهتين	0,5
ب) استنتج أن النقط A و B و U مستقيمية.	0,25
التمرين الثالث : (3 نقط)	
n عدد صحیح طبیعی اکبر او یساوی u . u_2 عدد صحیح طبیعی u_2 و u_3 u_3 عدد صنادیق u_2 و u_3 .	
الصندوق U_1 يحتوي على كرة حمراء واحدة و $\left(n-1 ight)$ كرة سوداء.	
الصندوق ${ m U}_2$ يحتوي على كرتين حمراوين و $({ m n}-2)$ كرة سوداء.	
الصندوق \overline{U}_3 يحتوي على ثلاث كرات حمراء و $(n-3)$ كرة سوداء.	
ا نعتبر التجربة العشوانية التالية: نختار عشوانيا صندُوقا من بين الصناديق الثلاثة ثم نسحب تأنيا كرتين من الصندوق الذي وقع عليه الاختيار.	
ليكن X المتغير العشواني الحقيقي الذي يساوي عدد الكرات الحمراء المسحوبة. 1-حدد قيم المتغير العشوائي X	0,25
$\frac{8}{3\mathrm{n}(\mathrm{n}-1)}$ يساوي $(\mathrm{X}=2)$ يساوي $(\mathrm{X}=2)$	0,75
$\frac{4(3n-7)}{3n(n-1)}$ بين أن احتمال الحدث $(X=1)$ يساوي	0,75
ج) استنتج قانون احتمال المتغير العشواني X	0,5
U_3 اننا حصلنا على كرتين حمر اوين، ما هو احتمال أن يكون السحب قد تم من الصندوق U_3	0,75
مسألة: (10 نقط)	
$g(x) = 2(1-e^{-x})-x$: بما يلي بي المعرفة على x المعرفة على x المعرفة على المعرفة على الما يلي المائغير الحقيقي x	
g ا \perp ادرس تغیرات الدالة g	0,5

ب _ ضع جدول تغيرات الدالة g

 \mathbb{R}^+ ب ــ ادرس إشارة g(x) على

 $\mathbb N$ من $1 \leq u_n < \alpha$ الكل n من -1

 $\mathbb N$ من $u_{n+1}-u_n=gig(u_nig)$ ب u_n لكل الم

 $]\ln 4, \ln 6[$ في المجال α في المجال g(x)=0 تقبل حلا وحيدا α

 $\mathbb N$ من $u_{n+1}=2\left(1-e^{-u_n}\right)$ و $u_0=1:$ المعرفة بما يلي المعرفة بما يلي (3

 $(\ln 3 \approx 1,1)$ $\ln 2 \approx 0,7$ (1 + 1)

0,5

0,5

0,5

0,5

0,25

الصفحة	Γ
3 /	l
/ 4	ŀ

موضوع الامتحان الوطني الموحد للبكالوريا 2009-الدورة الاستدراكية – مادة: الرياضيات، الشعب (ق) أو المسلك: شعبة العلوم الرياضية (أ) و (ب)

. تر ايدية قطعا
$$\left(u_{n}\right)_{n\geq0}$$
 ترايدية قطعا $-$

0,25

0,5

1

0,5

0.75

0,5

0,5

0,5

$$\lim_{n\to+\infty} u_n$$
 متقاربة ثم احسب د _ بين أن المنتالية $(u_n)_{n\geq0}$

$$f(x) = \frac{1-e^x}{x^2}$$
: بما يلي \mathbb{R}^*_+ بما يلي بالمتغير الحقيقي x المعرفة على \mathbb{R}^*_+ بما يلي f المنحنى الممثل للدالة f في معلم متعامد ممنظم f المنحنى الممثل للدالة f في معلم متعامد ممنظم المدالة f المنحنى الممثل الدالة f في معلم متعامد ممنظم المدالة f في معلم متعامد ممنظم المدالة المدالة f في معلم متعامد ممنظم المدالة f في معلم متعامد مدالة f في متعامد مدالة f في

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{x \to +\infty} f(x)$$
 (1)

$$f(\alpha) = \frac{1}{\alpha(\alpha-2)}$$
: 1 (2

$$f$$
 الدالة \mathbb{R}^*_+ ب بين أن $f'(x) = \frac{e^x g(x)}{x^3}$ ب بين أن $f'(x) = \frac{e^x g(x)}{x^3}$

$$(\alpha \approx 1,5)$$
 (ناخذ (3) (ناخذ (3)

: يما يلي المعرفة على $[0,+\infty[$ يما يلي يا المعرفة على F بما يلي $[0,+\infty[$

$$(\forall x > 0)$$
 $F(x) = \int_{x}^{2x} \frac{1 - e^{t}}{t^{2}} dt$ $f(0) = -\ln 2$

$$(\forall x > 0) \ F(x) = \frac{e^{2x} - 1}{2x} - \frac{e^{x} - 1}{x} - \int_{x}^{2x} \frac{e^{t}}{t} dt$$
 : باستعمال مكاملة بالأجزاء , بين أن (1

$$e^{x} \ln 2 \le \int_{x}^{2x} \frac{e^{t}}{t} dt \le e^{2x} \ln 2 :]0,+\infty[$$
 بين أن لكل x من x من x بين أن الكل x من x بين أن الكل x من x من x

. متصلة على اليمين في الصفر
$$F$$
 متصلة على اليمين في الصفر ج $\int_{0}^{2x} \frac{e^t}{t} dt$ ج $-$ احسب

$$F(x) \le \frac{1 - e^x}{2x}$$
 : $]0, +\infty[$ من $]0, +\infty[$ (2 0,25

$$\lim_{x \to +\infty} F(x) \quad -- \quad 0,25$$

$$(\forall x > 0) \ F'(x) = -\frac{1}{2} \left(\frac{e^x - 1}{x}\right)^2 : 0, +\infty$$
 و أن $[0, +\infty)$ عابلة للاشتقاق على $[0, +\infty)$ و أن $[0, +\infty)$

موضوع الامتحان الوطني الموحد للبكالوريا 2009-الدورة الاستدراكية – مادة: الرياضيات، الشعب (ق) أو المسلك: شعبة العلوم الرياضية (أ) و (ب)

 $[0,+\infty]$ من المجال $[0,+\infty]$ ا- ليكن [x]

بين أنه يوجد
$$C$$
 من المجال C بحيث: C بحيث: C بحيث C من المجال C من المجال عبين أنه يوجد التزايدات المنتهية مرتين)

0,25

$$-\frac{1}{2}e^{2x} \le \frac{F(x)-F(0)}{x} \le -\frac{1}{2}$$
 : $]0,+\infty[$ نم نم نم النبت أن لكل من $F_d'(0)=-\frac{1}{2}$ نم النبين في الصغر و أن $F_d'(0)=-\frac{1}{2}$ نم قابلة للاشتقاق على اليمين في الصغر و أن $F_d'(0)=-\frac{1}{2}$

0,25

0,75

راثانیے، بکالوریے

(الأستاذ: محير (لحسيسسا

تعميع (المنعاق (اوطنسي المورد للبكالوبسي 2009 (المرورة (المسترر البية 2009)

السَّمرين الأولى: (3 نَقْطِ)

.
$$I = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$
حلقة واحدية وحدتها المصفوفة $\left(\mathscr{M}_2(\mathbb{R}), +, imes
ight)$

ا فضاء متجهي حقيقي. فضاء متجهي حقيقي.
$$\mathscr{M}_2(\mathbb{R}),+,.$$

$$V = \left\{ egin{array}{ll} M_{(a,b)} = egin{pmatrix} a & b \ 4b & a \end{pmatrix} / (a,b) \in \mathbb{R}^2 \end{array}
ight\}$$
نضع

1. (*) لدينا :

$$.O=M_{\left(0,0
ight)}$$
الاینا: $V
eq V$ ، لأن $V
eq V$

$$V \subset \mathcal{M}_2(\mathbb{R}) \checkmark$$

ا لا عنصرین
$$\left(lpha,eta
ight)$$
 من M من M و لکل $\left(lpha,eta
ight)$ من $M_{\left(a,b
ight)}$ الدینا V

$$\alpha M_{\left(a,b\right)} + \beta M_{\left(c,d\right)} = \begin{pmatrix} \alpha a + \beta c & \alpha b + \beta d \\ 4\left(\alpha b + \beta d\right) & \alpha a + \beta c \end{pmatrix} = M_{\left(\alpha a + \beta c, \alpha b + \beta d\right)} \in V$$

ومنه فإن V فضاء متجهي جزئي من $(\mathscr{M}_2(\mathbb{R}),+,.)$

: حيث ،
$$M_{(a,b)} = \begin{pmatrix} a & b \\ 4b & a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix} = aI + bJ$$
 ، حيث ، $M_{(a,b)}$ من V من $M_{(a,b)}$

.
$$V$$
 اسرة مولدة للفضاء . $J=egin{pmatrix} 0 & 1 \ 4 & 0 \end{pmatrix}=M_{(0,4)}\in V$ و $I=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}=M_{(1,0)}\in V$

لكل
$$\left(I,J
ight)$$
 من $\left(I,J
ight)$. لاينا $\left(I,J
ight)$ من $\left(I,J
ight)$ من $\left(\alpha,\beta\right)$ السرة حرة $\left(\alpha,\beta\right)$ السرة حرة $\left(\alpha,\beta\right)$ السرة حرة الكل $\left(\alpha,\beta\right)$ من $\left(\alpha,\beta\right)$ السرة حرة الكل $\left(\alpha,\beta\right)$

$$(\dim V=2)$$
 في $(V,+,+,-)$ أساس للفضاء المتجهي الحقيقي $(V,+,+,-)$. وبالتالي فإن

: اليكن $M_{\left(c,d\right)}$ و $M_{\left(a,b\right)}$ عنصران من $M_{\left(a,b\right)}$.2

$$M_{(a,b)} \times M_{(c,d)} = \begin{pmatrix} a & b \\ 4b & a \end{pmatrix} \times \begin{pmatrix} c & d \\ 4d & c \end{pmatrix} = \begin{pmatrix} ac + 4bd & ad + bc \\ 4(ad + bc) & ac + 4bd \end{pmatrix} = M_{(ac + 4bd, ad + bc)} \in V$$

.
$$(\mathscr{M}_2(\mathbb{R}), \times)$$
اذن V جزء مستقر من

2. ب- لدينا:

رمرة تبادلية.
$$(V,+,.)$$
 خضاء متجهي حقيقي. إذن $(V,+,.)$ زمرة تبادلية.

،
$$(\mathscr{M}_2(\mathbb{R}), \times)$$
 حلقة ، إذن \times تجميعي وتوزيعي على $+$ في (\mathbb{R}) و بما أن V جزء مستقر من V حلقة ، إذن V تجميعي وتوزيعي على V فإن V خيميعي وتوزيعي على V خيميعي وتوزيعي على V

$$V$$
 هي وحدة الحلقة $I=M_{(1,0)}\in V$ و $M_2(\mathbb{R}),+, imes$ ابن I هي وحدة I \checkmark

$$W_{(ab)} \times M_{(ab)} \times M_{(ab)$$

$$\Delta' = (u+1-i)^2 - (2u^2-4i) = -u^2 + 2(1-i)u + 2i = (iu-1-i)^2$$
 إذن للمعادلة (*) حلين مختلفين هما : $z_1 = u+1-i+iu-1-i = \boxed{(1+i)u-2i}$: $z_2 = u+1-i-iu+1+i = \boxed{2+(1-i)u}$ وبالتالي فإن مجموعة حلول المعادلة (*) هي : $z_2 = u+1-i$, $z_1 = (1+i)u-2i$, $z_2 = (1+i)u-2i$, $z_2 = (1+i)u-2i$, $z_1 = (1+i)u-2i$

 $U\left(u
ight)$ و $B\left(\left(1-i
ight)u+2
ight)$ و $A\left(\left(1+i
ight)u-2i
ight)$ و ك. في المستوى العقدي المنسوب إلى معلم متعامد ممنظم ومباشر ، نعتبر النقط $\Omega(2-2i)$

. إذن لحق النقطة I هو : أ- لدينا I منتصف القطعة I

$$z_{I} = \frac{z_{A} + z_{B}}{2} = \frac{(1+i)u - 2i + (1-i)u + 2}{2} = \boxed{1-i + u}$$

: لدينا . \overrightarrow{u} التي تحول النقطة U إلى النقطة I . لنحدد لحق المتجهة \overrightarrow{u} الدينا :

.
$$\overrightarrow{u}(1,-1)$$
 : إذن $z_{\overrightarrow{u}}=z_I-z_U=1-i+u-u=\boxed{1-i}$

$$z'=e^{-irac{\pi}{2}}$$
ب- الكتابة العقدية للدوران $z'=e^{-irac{\pi}{2}}$ وزاويته $\left(-rac{\pi}{2}
ight)$ هي: $\Omega(2-2i)$ هي الذي مركزه $\Omega(2-2i)$

.
$$z' = -iz + 4$$
 يكافئ $z' = -iz + (1+i)(2-2i)$

$$.$$
 $\boxed{R(A)=B}$ وبما أن $-iz_A+4=-i\left(\left(1+i\right)u-2i\right)+4=\left(1-i\right)u+2=z_B$ وبما أن $-iz_A+4=-i\left(\left(1+i\right)u-2i\right)$

جــ لدينا
$$\Omega A = \Omega B$$
 و منه فإن $\Omega A = \Omega B$ و $\overline{\Omega A}, \overline{\Omega B}$ و $\overline{\Omega A}, \overline{\Omega B}$ و مثلث قائم $\overline{\Omega A}$. ومنه فإن $\overline{\Omega A}$

.
$$(\Omega I) \perp (AB)$$
 . (AB) . (AB) . الزاوية في Ω ولدينا I منتصف القطعة

:U انشاء النقطتين A و B انطلاقا من النقطة د-

.
$$\overrightarrow{UI}$$
 = \overrightarrow{u} : بحيث النقطة I بحيث ، $t\left(U\right)$ = I الدينا \checkmark

- بما أن $(\Omega I) \perp (AB)$ ، فإن النقطتين A و B تنتميان إلى المستقيم بما أن $(\Omega I) \perp (AB)$ المار من النقطة I و العمودي على المستقيم \checkmark
- بما أن ΩAB مثلث قائم الزاوية في Ω و I منتصف القطعة AB ، فإن I هو مركز الدائرة B المحيطة بالمثلث ΩAB بما أن ΩAB مثلث قائم الزاوية في ΩAB و ΩAB المستقيم ΩAB و الدائرة ΩAB مثلثا غير مباشر ΩAB Ω

 $:U\left(4+2i
ight)$ إنشاء الشكل في حالة

الدورة الاستدراكيث 2009 الأستاذ :

الامتحان الوني الموحد للبكالوريا

$$a \in \mathbb{R}$$
) حيث $u = a(1+i)-2i$: دنضع 3.

 \overline{AU} و \overline{AU} بدلالة \overline{AB} المتجهتين أ- انحدد الحقى المتجهتين

$$Aff(\overrightarrow{AB}) = z_B - z_A = (1-i)u + 2 - (1+i)u + 2i = 2(1-i)(a-1)$$

$$Aff(\overrightarrow{AU}) = z_U - z_A = a(1+i) - 2i - (1+i)u + 2i = (1-i)(a-2)$$

: ومنه فإن :
$$a \neq 1$$
 ، ومنه فإن : $a \neq 1$ ، ومنه فإن : $a \neq 1$ ، ومنه فإن : $a \neq 1$ ، ومنه فإن : $a \neq 1$

. وبالتالي فإن النقط
$$A$$
 و B و A وبالتالي فإن النقط $\overline{AU} = \frac{a-2}{2(a-1)} \overline{AB}$

التمريق الثالثي:

 $n \geq 4$ ليكن $n \in \mathbb{N}$ ليكن

نعتبر التجربة العشوائية التالية : نختار عشوائيا صندوقا من بين الصناديق الثلاثة، ثم نسحب تآنيا كرتين من الصندوق الذي وقع عليه الاختيار . ليكن X المتغير العشوائي الذي يساوي عدد الكرات الحمراء المسحوبة.

1. القيم التي يأخذها المتغير العشوائي هي 0 و 1 و 2 ولدينا مجموعة القيم كما يلي : $\{0,1,2\}=\{0,1,2\}$

 $.1 \leq i \leq 3$ ، حيث ، حيث U_i » : A_i : عتبر الأحداث التالية : .2

. Ω دينا A_2 و A_3 أحداث غير منسجمة مثنى مثنى واتحادها Ω ، فهي تكون تجزيئا للفضاء

حسب صيغة الاحتمالات الكلية ، لدينا :

$$p(X = 2) = p(A_1)p_{A_1}(X = 2) + p(A_2)p_{A_2}(X = 2) + p(A_3)p_{A_3}(X = 2)$$

$$= \frac{1}{3} \times 0 + \frac{1}{3} \times \frac{C_2^2}{C_n^2} + \frac{1}{3} \times \frac{C_3^2}{C_n^2}$$

$$p(X=2) = \frac{8}{3n(n-1)}$$

$$\begin{split} C_n^2 &= \frac{n \left(n - 1 \right)}{2} \; \; ; \; \; C_2^2 = 1 \; \; ; \; \; C_3^2 = 3 \\ p\left(X = 1 \right) &= p\left(A_1 \right) p_{A_1} \left(X = 1 \right) + p\left(A_2 \right) p_{A_2} \left(X = 1 \right) + p\left(A_3 \right) p_{A_3} \left(X = 1 \right) \\ &= \frac{1}{3} \times \frac{C_1^1 C_{n-1}^1}{C^2} \; + \; \frac{1}{3} \times \frac{C_2^1 C_{n-2}^1}{C^2} \; + \; \frac{1}{3} \times \frac{C_3^1 C_{n-3}^1}{C^2} \end{split}$$

$$p(X = 1) = \frac{4(3n-7)}{3n(n-1)}$$

$$C_n^2 = \frac{n(n-1)}{2}$$
; $C_{n-1}^1 = n-1$; $C_{n-2}^1 = n-2$; $C_1^1 = 1$; $C_2^1 = 2$; $C_3^1 = 3$

$$. p(X = 0) = 1 - p(X = 1) - p(X = 2) = 1 - \frac{8}{3n(n-1)} - \frac{4(3n-7)}{3n(n-1)} = \boxed{\frac{3n^2 - 15n + 20}{3n(n-1)}} : \frac{3n(n-1)}{3n(n-1)} = \frac{3n(n-1)}{3n(n$$

ومنه نستنتج قانون احتمال X كما يلي :

$x_k : X$ قيم	0	1	2
$p_k = p(X = x_k)$	$\frac{3n^2 - 15n + 20}{3n\left(n - 1\right)}$	$\frac{4(3n-7)}{3n(n-1)}$	$\frac{8}{3n(n-1)}$

. $p_{(X=2)}(A_3)$: هو U_3 هو نام من الصندوق و السحب قد تم من الصندوق و U_3 هو . 3

حسب صيغة الاحتمالات المركبة ، لدينا:

$$p(X = 2)p_{(X = 2)}(A_3) = p(A_3)p_{A_3}(X = 2) \implies \frac{8}{3n(n-1)}p_{(X = 2)}(A_3) = \frac{1}{3}\frac{C_3^2}{C_n^2}$$

$$\Rightarrow \boxed{p_{(X = 2)}(A_3) = \frac{3}{4}}$$

ا. لاينا : $\forall x \in \mathbb{R}^+$, $g\left(x\right) = 2\left(1 - e^{-x}\right) - x$: ا. لدينا

: ولدينا ،
$$g'(x) = 2(1-e^{-x})' - x' = 2e^{-x} - 1$$
 . دينا ، \mathbb{R}^+ من x من x من الدينا . 1

$$g'(x) = 0 \Leftrightarrow 2e^{-x} - 1 = 0 \Leftrightarrow e^{-x} = \frac{1}{2} \Leftrightarrow x = -\ln\left(\frac{1}{2}\right) \Leftrightarrow x = \ln 2$$

$$\forall x \in \lceil \ln 2, +\infty \rceil$$
 , $g'(x) \le 0$ و $\forall x \in \lceil 0, \ln 2 \rceil$, $g'(x) \ge 0$: إذن

ب- تغيرات الدالة g

: الإنن يا
$$\lim_{x \to +\infty} x = +\infty$$
 و $\lim_{x \to +\infty} e^{-x} = 0$ و يا $\lim_{x \to +\infty} e^{-x} = 0$ و يا $\lim_{x \to +\infty} g\left(x\right) = \lim_{x \to +\infty} 2\left(1 - e^{-x}\right) - x = -\infty$ الدينا

2. أ- بما أن
$$g$$
 دالة متصلة و تناقصية قطعا على المجال $\left[\ln 4, \ln 6\right]$ و $\left[\ln 4, \ln 2 pprox 2 \ln 2 pprox 0, 1\right]$ و

و
$$g\left(\ln 6\right) \times g\left(\ln 6\right) \times g\left(\ln 6\right) = \frac{5}{3} - \ln 6 = \frac{5}{3} - \ln 3 - \ln 2 \approx -0.14$$
 . $g\left(\ln 6\right) = \frac{5}{3} - \ln 3 - \ln 2 \approx -0.14$. $g\left(\ln 6\right) = \frac{5}{3} - \ln 3 - \ln 2 \approx -0.14$. $g\left(\ln 6\right) = \frac{5}{3} - \ln 3 - \ln 2 \approx -0.14$. $g\left(\ln 6\right) = \frac{5}{3} - \ln 3 - \ln 2 \approx -0.14$

 $\forall x \in \]0,\ln 2\]$, $\ln 2 \geq x > 0 \Rightarrow g\left(\overline{x}\right) > g\left(0\right) \Rightarrow g\left(x\right) > 0$. إذن $\cdot \left[0,\ln 2\right]$ بإذن $\cdot \left[0,\ln 2\right]$. $\cdot \left[0,\ln 2\right]$ و دالة تزايدية على المجال $\cdot \left[0,\ln 2\right]$. $\cdot \left[0,\ln 2\right]$ و $\cdot \left[$

$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2(1 - e^{-u_n}) , & n \in \mathbb{N} \end{cases}$$

أ- لدبنا:

 $.1\!=\!\ln e<\!\ln 4<\!\alpha$: لأن : $1\!\leq\!u_0<\!\alpha$: بذن : $u_0=\!1$ ، $n=\!0$ من أجل \checkmark

 $1 \leq u_{n+1} < \alpha$ ليكن $n \in \mathbb{N}$. نفترض أن $n \in \mathbb{N}$ ونبين أن $n \in \mathbb{N}$

$$1 \le u_n < \alpha \implies -\alpha < -u_n \le -1$$

$$\Rightarrow e^{-\alpha} < e^{-u_n} \le e^{-1}$$

$$\Rightarrow 1 - e^{-1} \le 1 - e^{-u_n} < 1 - e^{-\alpha}$$

$$\Rightarrow 2(1 - e^{-1}) \le 2(1 - e^{-u_n}) < 2(1 - e^{-\alpha})$$

$$\Rightarrow 1 \le u_{n+1} < \alpha$$

$$g\left(1\right) \ge 0 \Rightarrow 2\left(1-e^{-1}\right) \ge 1$$
 و $g\left(\alpha\right) = 0 \Rightarrow 2\left(1-e^{-\alpha}\right) - \alpha = 0 \Rightarrow \boxed{2\left(1-e^{-\alpha}\right) = \alpha}$. $\forall n \in \mathbb{N}$, $1 \le u_n < \alpha$ خلاصة : \checkmark

$$u_{n+1}-u_n=2\left(1-e^{-u_n}
ight)-u_n=g\left(u_n
ight)$$
 . لدينا . $n\in\mathbb{N}$

جـ- ليكن
$$n \in \mathbb{N}$$
 . لدينا : $u_n \in [1, \alpha[$. إذن $u_n \in [u_n] > 0$ ، ومنه فإن : $u_n \in [1, \alpha[$. وهذا يعني أن $u_n \in [1, \alpha[$ متتالية تزايدية.

د- لدينا :
$$(u_n)_{n\in\mathbb{N}}$$
 متتالية تزايدية ومكبورة بالعدد $lpha$. إذن $(u_n)_{n\in\mathbb{N}}$ متتالية متقاربة نهايتها u_n

: لدينا .
$$\forall x \in \mathbb{R}^+$$
 , $h(x) = 2(1 - e^{-x})$: نضع

.
$$\left[1,lpha\right]$$
 دالة متصلة على المجال h

: ومنه فإن :
$$\forall x \in [1,\alpha]$$
 ، ومنه فإن : $\forall x \in [1,\alpha]$ ، $h'(x) = 2(1-e^{-x})' = 2e^{-x} > 0$

$$.g(1) \ge 0 \Longrightarrow 1 \le h(1)$$
, $h(\alpha) = \alpha : \forall \cdot h([1,\alpha]) = [h(1),h(\alpha)] \subset [1,\alpha]$

$$u_0 = 1 \in [1, \alpha] \checkmark$$

$$.l$$
 متتالیة متقاربة نهایتها $\left(u_{n}\right)_{n\in\mathbb{N}}$

$$(x)=rac{1-e^x}{x^2}$$
: بما يلي \mathbb{R}_+^* بما يلي المتغير الحقيقي $(x)=rac{1-e^x}{x^2}$ المعرفة على $(x)=rac{1-e^x}{x^2}$

$$\lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty$$
 : لأن :
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1 - e^x}{x^2} = \lim_{x \to +\infty} \frac{e^x}{x^2} (e^{-x} - 1) = \boxed{-\infty}$$
 : حساب نهایات : 0

$$\lim_{x \to +\infty} e^{-x} = 0 \quad g$$

$$\lim_{x\to+\infty}e^{-x}=0 \lim_{x\to+\infty}\frac{e^x}{x^3}=+\infty : \text{ if } \lim_{x\to+\infty}\frac{f\left(x\right)}{x}=\lim_{x\to+\infty}\frac{1-e^x}{x^3}=\lim_{x\to+\infty}\frac{e^x}{x^3}\left(e^{-x}-1\right)=\boxed{-\infty}$$

: اِذْن
$$g\left(\alpha\right)=0 \Rightarrow 2\left(1-e^{-\alpha}\right)=\alpha \Rightarrow e^{\alpha}-1=\frac{\alpha}{2}e^{\alpha} \Rightarrow \left(1-\frac{\alpha}{2}\right)e^{\alpha}=1 \Rightarrow e^{\alpha}=\frac{2}{2-\alpha}$$
 . اِذْن $g\left(\alpha\right)=0 \Rightarrow 2\left(1-e^{-\alpha}\right)=\alpha \Rightarrow e^{\alpha}-1=\frac{\alpha}{2}e^{\alpha}$

$$f(\alpha) = \frac{1 - e^{\alpha}}{\alpha^2} = \frac{1 - \frac{2}{2 - \alpha}}{\alpha^2} = \frac{-\alpha}{\alpha^2 (2 - \alpha)} = \boxed{\frac{1}{\alpha (\alpha - 2)}}$$

$$f'(x) = \left(\frac{1 - e^x}{x^2}\right)' = \frac{-e^x x^2 - 2x \left(1 - e^x\right)}{x^2} = \frac{e^x \left(-x - 2\left(e^{-x} - 1\right)\right)}{x_3} = \frac{e^x g(x)}{x^3}$$

: ما يلي الدالة f على \mathbb{R}_+^* هي إشارة $g\left(x
ight)$ ، ومنه نستنتج جدول تغيرات الدالة وأثارة f

ااا. نعتبر الدالة العددية F المعرفة على المجال $[0,+\infty]$ بما يلي :

$$\begin{cases} F(x) = \int_{x}^{2x} \frac{1 - e^{t}}{t^{2}} dt , & x > 0 \\ F(0) = -\ln 2 \end{cases}$$

و $0,+\infty$ و المجال $v:t\mapsto \frac{-1}{t}$ و $u:t\mapsto 1-e^t$. الدينا $0,+\infty$ و المجال $0,+\infty$

: الدينا المكاملة بالأجزاء ، لدينا $v'\colon t\mapsto \frac{1}{t^2}$ و $u'\colon t\mapsto -e^t$ دالتان متصلتان على المجال $v'\colon t\mapsto e^t$

$$F(x) = \int_{x}^{2x} \frac{1 - e^{t}}{t^{2}} dt = \int_{x}^{2x} (1 - e^{t}) \left(-\frac{1}{t} \right)^{t} dt = \left[\frac{e^{t} - 1}{t} \right]_{x}^{2x} - \int_{x}^{2x} \frac{e^{t}}{t} dt$$

$$F(x) = \frac{e^{2x} - 1}{2x} - \frac{e^x - 1}{x} - \int_x^{2x} \frac{e^t}{t} dt$$

 $x \le t \le 2x \implies e^x \le e^t \le e^{2x} \implies \frac{e^x}{t} \le \frac{e^t}{t} \le \frac{e^{2x}}{t}$ بـ لكل x > 0 بـ لكل x > 0 لدينا .

$$e^{x} \ln 2 \le \int_{x}^{2x} \frac{e^{t}}{t} dt \le e^{2x} \ln 2$$
 : في $e^{x} \int_{x}^{2x} \frac{dt}{t} \le \int_{x}^{2x} \frac{e^{t}}{t} dt \le e^{2x} \int_{x}^{2x} \frac{dt}{t}$: في $e^{x} \int_{x}^{2x} \frac{dt}{t} \le \int_{x}^{2x} \frac{e^{t}}{t} dt \le e^{2x} \int_{x}^{2x} \frac{dt}{t}$

$$\int_{x}^{2x} \frac{dt}{t} = \left[\ln t\right]_{x}^{2x} = \ln\left(2x\right) - \ln x = \ln\left(\frac{2x}{x}\right) = \ln 2$$

 $\lim_{\substack{x \to 0 \\ x > 0}} e^x \ln 2 = \ln 2$ و $\lim_{\substack{x \to 0 \\ x > 0}} e^{2x} \ln 2 = \ln 2$ و $\forall x \in]0, +\infty[: e^x \ln 2 \le \int_x^{2x} \frac{e^t}{t} dt \le e^{2x} \ln 2$ جـ بما أن

$$\lim_{\substack{x \to 0 \\ x > 0}} \int_{x}^{2x} \frac{e^{t}}{t} dt = \ln 2$$
: فإن

: نأن
$$\lim_{\substack{x \to 0 \\ x > 0}} F\left(x\right) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{e^{2x} - 1}{2x} - \frac{e^x - 1}{x} - \int_x^{2x} \frac{e^t}{t} dt = -\ln 2 = F\left(0\right)$$
: استنتاج

$$\lim_{\substack{x \to 0 \\ x > 0}} \int_{x}^{2x} \frac{e^{t}}{t} dt = \ln 2 \int_{\substack{x \to 0 \\ x > 0}}^{\infty} \frac{e^{x} - 1}{x} = 1 \int_{\substack{x \to 0 \\ x > 0}}^{\infty} \frac{e^{2x} - 1}{2x} = 1$$

ومنه نستنتج أن F دالة متصلة على اليمين في الصفر .

: ادينا
$$t \in [x,2x]$$
 و $x > 0$ لدينا .

$$x \le t \le 2x \implies e^{x} \le e^{t} \le e^{2x}$$

$$\Rightarrow 1 - e^{t} \le 1 - e^{x}$$

$$\Rightarrow \frac{1 - e^{t}}{t^{2}} \le \frac{1 - e^{x}}{t^{2}}$$

$$\Rightarrow F(x) \le (1 - e^{x}) \int_{x}^{2x} \frac{dt}{t^{2}}$$

$$\Rightarrow F(x) \le (1 - e^{x}) \left[\frac{-1}{t} \right]_{x}^{2x}$$

$$\Rightarrow F(x) \leq \frac{1-e^x}{2x}$$

. $\forall x \in \left]0,+\infty\right[: F\left(x\right) \leq \frac{1-e^x}{2x}$ ومنه فإن :

: نِهُ اللهِ
$$\frac{1-e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2x} \left(e^{-x} - 1 \right) = -\infty$$
 و $\forall x \in \left] 0, +\infty \right[: F\left(x \right) \leq \frac{1-e^x}{2x}$ و 2.

$$\lim_{x \to +\infty} F(x) = \boxed{-\infty}$$
 : فإن $\lim_{x \to +\infty} e^{-x} = 0$ و $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$

: ولدينا ϕ على المجال ϕ على المجال ϕ . إذن فهي تقبل دالة أصلية ϕ على المجال ϕ على المجال ϕ . ولدينا ϕ . ولدينا ϕ .

$$\forall x \in \left]0,+\infty\right[: F\left(x\right) = \int_{x}^{2x} \frac{1-e^{t}}{t^{2}} dt = \left[\varphi(t)\right]_{x}^{2x} = \varphi(2x) - \varphi(x)$$

نعلم أن φ و $x\mapsto \varphi(2x)$ دالتان قابلتان للاشتقاق على المجال $0,+\infty$ ، إذن $x\mapsto 2x$ قابلة للاشتقاق على المجال $w:x\mapsto 2x$ وعليه فإن $x\mapsto 2x$ دالة قابلة للاشتقاق على المجال $x\mapsto 0$ ، ولكل x من المجال $x\mapsto 0$ ، لدينا :

$$F'(x) = \left(\varphi(2x) - \varphi(x)\right)' = \left(2x\right)'\varphi'(2x) - \varphi'(x) = 2\frac{1 - e^{2x}}{4x^2} - \frac{1 - e^x}{x^2}F'(x) = \boxed{-\frac{1}{2}\left(\frac{e^x - 1}{x}\right)^2}$$

x > 0. أ- ليكن 4

: المجال [0,x] وقابلة للاشتقاق على المجال [0,x] . حسب مبر هنة التزايدات المنتهية ، لدينا :

$$\exists \beta \in \left] 0, x \right[/ F(x) - F(0) = F'(\beta)(x - 0)$$

$$\exists \beta \in \left] 0, x \right[/ F(x) - F(0) = -\frac{1}{2} \left(\frac{e^{\beta} - 1}{\beta} \right) x : \beta \in \left[-\frac{1}{\beta} \right]$$

: المنتهية ، المجال [0,eta] وقابلة للاشتقاق على المجال [0,eta] . حسب مبر هنة التزايدات المنتهية ، لدينا

$$.\exists c \in \left]0,\beta\right[\text{ / } e^{\beta}-1=e^{c}\beta: \exists c \in \left]0,\beta\right[\text{ / } \exp\left(\beta\right)-\exp\left(0\right)=\exp'\left(c\right)\left(\beta-0\right)$$

$$\exists c \in \left]0,x\right[\ / \ F\left(x\right)-F\left(0\right) \ = \ -\frac{1}{2} \ x \ e^{2c}$$
 : وبالتالي فإن

ب- لدينا:

$$0 < c < x \Rightarrow 0 < 2c < 2x$$

$$\Rightarrow 1 < e^{2c} < e^{2x}$$

$$\Rightarrow -\frac{1}{2}e^{2x} < -\frac{1}{2}e^{2c} < -\frac{1}{2}$$

$$\Rightarrow -\frac{1}{2}e^{2x} < \frac{F(x) - F(0)}{x} < -\frac{1}{2}$$

$$\forall x \in \left]0,+\infty\right[: -\frac{1}{2}e^{2x} < \frac{F(x)-F(0)}{x} < -\frac{1}{2}$$
 : يَكْنَ

$$\lim_{\substack{x \to 0 \\ x > 0}} -\frac{1}{2} = -\frac{1}{2}$$
 و $\forall x \in]0,+\infty[: -\frac{1}{2}e^{2x} < \frac{F(x)-F(0)}{x} < -\frac{1}{2}: -\frac{1}{2}e^{2x} < \frac{F(x)-F(0)}{x} < -\frac{1}{2}$

$$\lim_{\substack{x \to 0 \ x > 0}} \frac{F(x) - F(0)}{x} = -\frac{1}{2} : فإن : \lim_{\substack{x \to 0 \ x > 0}} -\frac{1}{2}e^{2x} = -\frac{1}{2}$$

الدورة الاستدراكيث 2009

الامتحان الوني الموحد للبكالوريا

. $\left|F_d'\left(0
ight)=-rac{1}{2}
ight|$: وبالتالي فإن F دالة قابلة للاشتقاق على اليمين في الصفر ولدينا

إضافات:

ي
$$\forall x \in]0,+\infty[$$
 : $\frac{F(x)}{x} \leq \frac{1-e^x}{2x^2}$ ي $\lim_{x \to +\infty} F(x) = -\infty$: لينا $\lim_{x \to +\infty} e^{-x} = 0$ ي $\lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty$: $\lim_{x \to +\infty} \frac{1-e^x}{2x^2} = \lim_{x \to +\infty} \frac{e^x}{2x^2} (e^{-x} - 1) = -\infty$

إذن :
$$\infty - \frac{1}{x} \frac{F(x)}{x}$$
 . ومنه فإن المنحنى C_F يقبل فرعا شلجميا بجوار $\infty +$ اتجاهه محور الأراتيب.

: F جدول تغيرات الدالة #

х	0	+∞
F'(x)	$-\frac{1}{2}$	
F(x)	- ln 2	-∞

: \mathscr{C}_F إنشاء المنحنى 4

