Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,
информационн	ые технологии»

Практическое занятие №5 «Проверка гипотез»

ДИСЦИПЛИНА: «Методы обработки информации»

Выполнил: студент гр. ИУК4-72Б		_ (_	Сафронов Н.С.
	(подпись)		(Ф.И.О.)
Проверил:		_ (_	Никитенко У.В.
	(подпись)		(Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защиты):			
- Балльна	ая оценка:		
- Оценка	:		

Постановка задачи

Пусть проверяется простая гипотеза относительно параметра распределения H_0 : $\theta = \theta_0$, с заданным уровнем значимости α .

Для нескольких альтернативных гипотез H1: $\theta = \theta_{1i}$, при $\theta_{1i} = \theta_0 + i\Delta(i=1,2,3,4,5)$. Построить графики мощности критерия значимости, если используется выборка (выборка из ПЗ-2):

- 1. объема $k_1 = 25$ (любые 25 значений из заданной выборки);
- 2. объема $k_2 = N$ (полный объем исходной выборки) Используя полученные результаты, построить таблицы "Ошибка II рода и мощность для нескольких альтернативных гипотез с объемом выборки k_i и α " и графики функций мощности критерия для случая 1 и 2.

Ход выполнения практического задания

За нулевую гипотезу будем брать среднее значение выборки Уровень значимости a=0.1.

Формула, используемая для вычисления статистики критерия:

$$g = \sqrt{N} * \frac{\bar{x} - a}{\sigma}$$

Значение параметра распределения	Мощность критерия	Ошибка II рода
0.07203605945274881	0.5	0.5
1.3220360594527487	1.0	0.0
2.5720360594527487	1.0	0.0
3.8220360594527487	1.0	0.0
5.072036059452749	1.0	0.0

Рисунок 1 – Ошибки II рода и мощность критерия для полной выборки

Рисунок 2 – График мощности критерия значимости для полной выборки

Значение параметра распределения	Мощность критерия	Ошибка II рода
0.2859853994457233	 0.5	0.5
1.5359853994457233	0.9999999592368856	4.0763114439457127e-6
2.7859853994457233	0.99999999999565	4.3520742565306136e-1
4.035985399445723	1.0	0.0
5.285985399445723	1.0	0.0

Рисунок 3 – Ошибки II рода и мощность критерия для малой выборки $({\sf N}=25)$

Рисунок 4 – График мощности критерия значимости для малой выборки (N = 25)

приложения

Листинг программы

```
import argparse
import csv
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from prettytable import PrettyTable
def read points(path: str) -> list[str]:
   points = []
    with open(path, newline='') as file:
        reader = csv.reader(file, delimiter=' ', quotechar='|')
        for row in reader:
            points.append(float(''.join(row)))
    return points
def solve(points: list[float]):
    alpha = 0.1
    sample size = len(points)
    sample mean = np.mean(points)
    sample std = np.std(points)
    null hypothesis mean = sample mean
    t statistics = stats.ttest 1samp(points, sample mean)
    p value = 2 * (1 - stats.t.cdf(np.abs(t statistics),
df=sample size - 1))
    alternative hypothesis means =
np.linspace(null hypothesis mean, null hypothesis mean + 5, 5)
    power values = np.array([
        1 - stats.t.cdf((null hypothesis mean - alt mean) /
(sample std / np.sqrt(sample size)), df=sample size - 1)
        for alt mean in alternative hypothesis means
    ])
    plt.figure()
   plt.plot(alternative hypothesis means, power values,
label='Мощность критерия')
    plt.xlabel('Значение альтернативной гипотезы')
    plt.ylabel('Мощность критерия')
    plt.title('График мощности критерия')
   plt.axhline(alpha, color='red', label=f'$\\alpha =
{alpha}$')
   plt.ylim(0, 1.1)
```

```
plt.legend()
   plt.show()
   table = PrettyTable()
    table.add_column('Значение параметра распределения',
alternative hypothesis means)
    table.add column('Мощность теста', power values)
    table.add column('Ошибка II рода', 1 - power values)
   print(table)
if __name__ == '__main__':
   parser = argparse.ArgumentParser()
   parser.add argument('-file')
   args = parser.parse args()
   file = args.file or './data/Test14.csv'
   points = read_points(file)
   print('Полный объём исходных данных:')
   solve(points)
   points = np.random.choice(points, 25)
   print('Любые 25 значений из заданной выборки:')
    solve(points)
```