Bayesian Statistics

Model Assessment

Nan Lin

Department of Mathematics

Washington University in St. Louis

Prediction

- Given a model and draws from the posterior distribution, we make prediction for future data points by simulating from the posterior predictive distribution.
- Consider making prediction for some future data point(s) \tilde{y} based on the observed data y, the posterior predictive distribution is then $p(\tilde{y}|y) = \int p(\tilde{y}|\theta,y)p(\theta|y)d\theta$
 - If we assume that \tilde{y} and y are conditionally independent given θ , then $p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta$
- Simulating from the posterior predictive distribution
 - 1. Sample m values of θ from the posterior distribution $p(\theta|y)$
 - 2. For each simulated value of θ , sample a \tilde{y} from $p(\tilde{y}|\theta)$

Model assessment by predictive checks

- Suppose that the data set contains some covariates, one may make predictions at
 - b the observed values of the covariates → assess model accuracy
 - \rightarrow or at some hypothetical values \rightarrow prediction the future

Posterior predictive checks

- \blacktriangleright Define a test statistic T that has power to diagnose violations of the assumption to be tested
 - Assume that a large value of T indicates violation
- ▶ Calculate T for the observed data y: T(y)
- ▶ Calculate $T(\tilde{y}|y)$ for each \tilde{y} drawn from the posterior predictive distribution
- ▶ Calculate the fraction of $T(\tilde{y}|y) > T(y)$. This is an estimate of the **posterior predictive p-value**.
 - If our posterior predictive p-value is close to 0 or 1 (say 0.05 or 0.95), then it suggests that our observed data has an extreme test statistic and that something in our model may be inadequate.

Possible Problems

- Choice of test statistic is very important.
 - Test statistic must be meaningful and pertinent to the assumption you want to test.
 - Test statistics often have low power
 - Test statistics should not be based on aspects of the data that are being explicitly modeled (for example, the mean of y in a linear model).
- If the model passes posterior predictive check, it does not necessarily mean there are no problems with the model.
 - Test statistic may have low power.
 - May be testing the wrong assumption.
- It is not always clear how to correct the incorrect model assumptions.

Example

- Model: Bayesian logistic regression with multivariate normal prior
 - $y_i|p_i \sim Bin(n_i, p_i)$ and $\log \frac{p_i}{1-p_i} = \mathbf{x}_i^T \boldsymbol{\beta}$
- Simulating from the posterior predictive distribution
 - Create model matrix of covariates X.
 - 2. Get linear predictors by multiplying X and our m draws from the posterior.
 - 3. Convert linear predictors into probabilities with the inverse logit function.
 - 4. Draw m samples of \tilde{y} from the binomial likelihood.
 - Output: a $n \times m$ matrix

Test statistic

- Suppose we want to check the assumption that no clustering effect within levels of a covariate x^*
- T_1 = the fraction of y's that take on the value of 1
 - Unclear what assumption are we testing.
 - The fraction of 1s is explicitly being modeled in the logit model.
 - The test will never show anything is wrong regardless of how bad our model is.
- ▶ T_2 = the variance of the number of 1s in each level of x^*
 - When clustering effect exists, the variance within clusters tends to be small

- $m{J}$ Assume modelling data as $\mathbf{y} = (y_1,...,y_n) \sim N(\mu,\sigma^2)$
- **9** Set priors on μ and σ^2
- **Parameters** Run WinBUGS and obtain samples: $\theta_t = \{\mu_t, \sigma_t^2\}, t = 1, \dots, M$
- **Proof.** For each sampled data point θ_t , replicate n data points: $y_{rep,i}^t \sim N(\mu_t, \sigma_t^2)$, $t = 1, \ldots, M$ and $i = 1, \ldots, n$.
- For each sampled value, (μ_t, σ_t^2) , we obtain M replicated data set $\mathbf{y}_{rep}^t = (y_{rep,1}^t, \dots, y_{rep,n}^t)$.
- Does our model represent our data adequately? Choose a discrepancy measure, say

$$T(\mathbf{y}; \theta) = \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\sigma^2}$$

Compute $T(\mathbf{y}, \theta_t)$ and the set of of $T(\mathbf{y}_{rep}^t, \theta_t)$ and obtain "Bayesian p-values":

$$P(T(\mathbf{y}_{rep}, \theta) > T(\mathbf{y}, \theta) | \mathbf{y}) = \frac{1}{M} \sum_{t=1}^{M} 1[T(\mathbf{y}_{rep}^{t}, \theta_{t}) > T(\mathbf{y}, \theta_{t})].$$

Cross validation

- Leave-one-out cross validation
- ▶ g-fold cross validation

Basic tools for model assessment

▶ Cross-validation residual: $r_i = y_i - E(y_i|\mathbf{y}_{(i)})$, where $\mathbf{y}_{(i)} = (y_1, ..., y_{i-1}, y_{i+1}, ..., y_n)^T$

- Outliers are indicated by large standardized residuals $d_i = r_i / \sqrt{Var(y_i|\mathbf{y}_{(i)})}$
- Conditional predictive ordinate (CPO):
- $p(y_i|\mathbf{y}_{(i)}) = \int p(y_i|\theta,\mathbf{y}_{(i)})p(\theta|\mathbf{y}_{(i)})d\theta$
 - \blacktriangleright Height of the conditional density at the observed value of y_i
 - \blacktriangleright Large values indicates good prediction of y_i

Approximate method

▶ Given Monte Carlo (MC) samples $\theta^{(g)} \sim p(\theta|y)$,

$$E(y_{i}|\mathbf{y}_{(i)}) = \int \int y_{i}f(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})dy_{i}d\boldsymbol{\theta}$$

$$= \int E(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})d\boldsymbol{\theta}$$

$$\approx \int E(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta}$$

$$\approx \frac{1}{G}\sum_{g=1}^{G}E(y_{i}|\boldsymbol{\theta}^{(g)}).$$

- Usually, the approximation works well unless the data set is small or y_i is an extreme outlier
- In practice, one can use the same $\{\theta^1, ..., \theta^G\}$ for calculating all $E(y_i|y_{(i)}), i=1,\ldots,n$

Approximate method

- To obtain the standardized residual $d_i = r_i / \sqrt{Var(y_i|\mathbf{y}_{(i)})}$, one can use a further approximation.
 - Compute $d_i^* = \frac{y_i E(y_i|\theta)}{\sqrt{Var(y_i|\theta)}}$
 - Then find $E(d_i^*|y)$, the posterior average of the ratio

Exact method

- Evaluate $E(y_i|y_{(i)})$ and $Var(y_i|y_{(i)})$ separately.
- For $Var(y_i|y_{(i)})$, use the fact that

$$Var(y_i|\mathbf{y}_{(i)}) = E(y_i^2|\mathbf{y}_{(i)}) - [E(y_i|\mathbf{y}_{(i)})]^2,$$

$$E(y_i^2|\mathbf{y}_{(i)}) = \int E(y_i^2|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})d\boldsymbol{\theta}$$

$$= \int \{Var(y_i|\boldsymbol{\theta}) + [E(y_i|\boldsymbol{\theta})]^2\}p(\boldsymbol{\theta}|\mathbf{y}_{(i)})d\boldsymbol{\theta}.$$

- For example, call the WinBUGS program n times, each time leaving one observation out
 - Use the R package BRugs

Example: stack loss data

- An oft-analyzed dataset, featuring the stack loss Y (ammonia escaping), and three covariates X_1 (air flow), X_2 (temperature), and X_3 (acid concentration).
- Linear regression with noninformative priors

$$Y_i \sim N(\beta_0 + \beta_1 z_{i1} + \beta_2 z_{i2} + \beta_3 z_{i3}, \tau),$$

- WinBUGS code and data for approximate method: www.biostat.umn.edu/~brad/data/stacks_BUGS.txt
- ▶ BRugs code and data for exact method: <u>www.biostat.umn.edu/~brad/software/BRugs</u>
 - an R program that organizes the dataset, contains all the BRugs commands, and summarizes the output
 - a piece of BUGS code that is sent by R to OpenBUGS

Approximate vs Exact results

	sresid		CPO	
obs	approx	exact	approx	exact
1	0.948	1.098	0.178	0.124
2	-0.566	-0.628	0.224	0.188
3	1.337	1.461	0.122	0.084
4	1.672	1.851	0.078	0.047
5	-0.504	-0.477	0.251	0.244
:	÷	÷	:	:
21	-2.126	-3.012	0.046	0.005

- Approximate residuals are too small, especially for the most outlying observations
- Approximate CPOs also tend to understate lack of fit