

Administration et optimisation des bases de données ID1-S2 2021/2022

Mohamed CHERRADI

Introduction aux Bases de données

Définition

 Une base de données est un ensemble cohérent de données structurées et enregistrées dans un support informatique.

Le but:

- Capitaliser les données pour répondre à un besoin spécifique.
- Faciliter la gestion des données.
- Offrir une vue claire et simple d'une multitude de données liées entre elles.

Modèles de base de données

- Une BD est organisée selon un modèle de données.
- Les modèles les plus connus:
 - Modèle hiérarchique (Années 60)
 - Modèle réseau (Années 70)
 - Modèle relationnel (Années 80)

Modèle hiérarchique

Les données sont organisées de manière arborescente.

Accessible uniquement à partir de la racine.

 Chaque enregistrement n'a qu'un seul possesseur (relation père-fils).

Inconvénients

- Manque de standardisation.
- Accès fastidieux.
- Ne supporte pas les relations N-N <u>Exemple</u>;
- Un client peut avoir plusieurs comptes dans plusieurs agences.

Modèle réseau

- Similaire au modèle hiérarchique;
- Permet l'association d'un enregistrement à plusieurs parents; (représentation naturelle des liens).
- Réduit la répétition de données;
- Flexible;

Inconvénients

- Système complexe;
- Difficile à construire et supporter;
- Associations complexes ardues.

Modèle relationnel

- Introduit par <u>Edgar Frank Codd</u> de IBM en 1970.
- Repose sur des principes mathématiques.
- Organisation de données dans des tables bidimensionnelles: Relations.
- **Concepts de base:**
- Attribut.
- Domaine.
- Relation (table).
- Tuple.

Attributs: correspondent aux caractéristiques ou propriétés des faits;

Exemples: nom_etudiant, prenom_etudiant.

Modèle relationnel (2)

 Domaine: correspond à l'ensemble des valeurs possibles d'un attribut.

```
Exemple: prix_produit ]0,5000], ville {Fès, Rabat,..}
```

Relation: est un ensemble d'attributs qui définissent un fait.
(Un étudiant possède un nom, un prénom, CNE...).

Exemple: Etudiant(CNE, nom, prenom, date_naissance).

Tuple (n-uplet): ensemble des valeurs des attributs.
Correspondant à un enregistrement d'une entité.

CNE	Nom	Prénom	Date_naissance
E1	Karimi	Karim	15/12/1990
E2	Dupont	Alain	01/04/1991

Modèle relationnel (3)

Clé d'une relation (clé primaire)

- Ensemble minimum d'attributs permettant de distinguer un enregistrement par rapport à tous les autres.
- Chaque table doit avoir une clé primaire.

Exemple:

Etudiant(<u>CNE</u>, Nom, Prénom, Date_naissance)

CNE	Nom	Prénom	Date_naissance
E1	Karimi	Karim	15/12/1990
E2	Dupont	Alain	01/04/1991

Etudiant
CNE
Nom
Prénom
Date_naissance

Modèle relationnel (4)

Clé étrangère:

• Fait référence à la clé primaire d'une autre table.

Exemple:

- Classe(<u>Code_classe</u>, nom).
- Etudiant(<u>CNE</u>, Nom, Prénom, Date_naissance, #Code_classe)

CNE	Nom	Prénom	Date_naissance	Code_classe
E1	Karimi	Karim	15/12/1990	C2
E2	Dupont	Alain	01/04/1991	C2

Modèle relationnel (5)

Schéma d'une relation

- Composé du nom de la relation et de la liste de ses attributs.
- Les attributs clés étant soulignés.

Exemple:

- Etudiant(<u>CNE</u>, Nom, Prénom, Date_naissance)
- Une base de données relationnelle est un ensemble de schémas relationnels.

Schéma	Etudiant				
Schema	CNE	Nom	Prénom	Date_naissance	Code_classe
	E1	Karimi	Karim	15/12/1990	C2
Enregistrements	E2	Dupont	Alain	01/04/1991	C2
Į		-			

Modèle relationnel (6)

Normalisation

Permet de définir formellement la qualité des tables au regard des problèmes:

- Suppression des problèmes de mise à jour.
- Elimination des redondances.

			Cours		
ld_prof	Nom_prof	ld_matière	Intitulé_mat	CNE	Nom_etud
P1	Iraqi	M1	SI	E1	Karimi
P2	Iraqi	M1	SI	E2	Dupont
P2	Iraqi	M1	SI	E3	Chirak
P1	Hamdaoui	M2	BD	E1	Karimi
P2	Hamdaoui	M2	BD	E2	Dupont
P2	Hamdaoui	M2	BD	E3	Chirak

Système de gestion de base de données

Définition:

 Collection de logiciel permettant de créer, de gérer et d'interroger des bases de données.

Objectifs:

- Supporter les concepts définis au niveau du modèle de données.
- Rendre transparent le partage des données entre différents utilisateurs/programmes.
- Assurer la confidentialité des données.

Système de gestion de base de données (2)

- Assurer le respect des règles de cohérence définies sur les données.
- Etre résistant aux pannes.
- Posséder une capacité de stockage élevée.
- Fournir un langage d'accès au données (SQL)

Exemples:

Oracle, Mysql, SQL Server, ...

Langage SQL

Structured Query Language

Langage intuitif et complet de gestion de bases de données relationnelles (définir, manipuler et récupérer des données).

Conçu par **IBM** dans les années 70.

Il est devenu le langage Standard des SGBDR: Mysql, Oracle, DB2, SQL Server...

Langage SQL (2)

Requête	Type langage	Définition (commandes)
SELECT	LRD: Langage de récupération de données	récupérer des données contenues dans une ou plusieurs tables de la base
INSERT, UPDATE, DELETE, MERGE (Ins ou Up)	LMD: Langage de manipulation de données	Modifier les données de la base.
CREATE, ALTER, DROP, RENAME, TRUNCATE (sup. don. de tab.)	LDD: langage de définition de données	modifier la structure de la base.
COMMIT, ROLLBACK, SAVEPOINT	Ordre de contrôle de transaction	Administrer les changements effectués par les commandes DML
GRANT, REVOKE	LCD: Langage de contrôle des données	contrôler les accès utilisateur à la base de données.

1-16

Ordre Select

L'ordre SELECT possède trois capacités :

Sélection : Sélection d'une ou plusieurs ligne(s).

Projection: Sélection d'une ou plusieurs colonne(s).

 Jointure : Sélection de deux colonnes dans deux tables différentes, créant ainsi une relation entre les données des

deux colonnes.

Règles générales

Les requêtes SQL:

- Se terminent par les caractères "; ".
- Ne sont pas sensibles à la casse,
- Peuvent être écrites sur une ou plusieurs lignes.
- Les mots clés ne peuvent pas être abrégés.
- Les différentes clauses sont placées sur les lignes différentes pour plus de visibilité.
- Les mots clés sont mis en majuscule, les autres noms tels que les noms de tables ou de colonnes sont mis en minuscule.

Ordre Select (Projection)

 L'ordre SELECT sert à extraire les données de la base de données:

Syntaxe: SELECT Attribut_1 AS alias_1, ..., Atrribut_n AS Alias_n FROM table;

- 1. On peut mettre une étoile * pour demander tous les attributs.
- 2. Attribuer des entêtes aux colonnes

Exercice:

Soit la relation **Etudiant** (CIN, Nom, Prénom, Age, Adresse, Tel)

- 1. Afficher tous les enregistrements de la relation Etudiant.
- 2. Afficher les noms, les prénoms et âges de tous les étudiants.
- 3. Afficher les CIN des étudiants dans une colonne nommée Code

Opérateurs arithmétiques

 Utilisés pour effectuer les opérations sur les dates et les nombres.

Opérateur	Description
*	Multiplier
/	Diviser
+	Additionner
-	Soustraire

Priorités des opérateurs: *, /, +, -

- Les opérateurs de même priorité sont évalués de gauche à droite.
- Les parenthèses peuvent être utilisées pour clarifier les calculs et modifier l'ordre d'évaluation;

Opérateurs arithmétiques (2)

Exercice:

Soit la relation Employé(Id, nom, prénom, salaire)

Afficher les noms, prénoms et salaires+500 de l'ensemble des employés

Opérateurs de concaténation

Concaténer des colonnes ou des chaînes de caractères.

Syntaxe:

<u>SELECT concat (Attribut_1, Attribut_2) FROM table;</u>

Exercice

Afficher les noms et prénoms des étudiants dans une seule colonne et nommer la "nom_prenom"

Elimination des doublons

Syntaxe:

SELECT DISTINCT liste_attributs FROM table;

Exercice

Soit la relation Etudiant(CIN, nom, prenom, age, ville).
Afficher les villes des étudiants sans doublon.