Dan McEldowney

Project 1 – Explore Weather Trends

- 1. Student is able to extract data from a database using SQL.
 - a. The SQL query used to extract the data is included.
 - b. The guery runs without error and pulls the intended data.
- 2. Student is able to manipulate data in a spreadsheet or similar tool.
 - a. Moving averages are calculated to be used in the line chart.
- 3. Student is able to create a clear data visualization.
 - a. A line chart is included in the submission.
 - b. The chart and its axes have titles, and there's a clear legend (if applicable).
- 4. Student is able to interpret a data visualization.
 - a. The student includes four observations about their provided data visualization.
 - b. The four observations are accurate.

Outline of Steps Taken

SQL Queries

Select city_data.year, city_data.city, city_data.avg_temp chi_avg_temp, global_data.avg_temp global_avg_temp

FROM city_data

JOIN global_data

ON global_data.year = city_data.year

AND city_data.city = 'Chicago'

Results were exported to CSV, where they were opened with Excel

Excel Data Analysis

Observations

- 1. Chicago has a higher average temperature than the global average over the historical period.
- 2. Temperature fluctuations in Chicago have been more drastic on a year-over-year basis than that of the Global temperatures. This result is expected due to the aggregated nature of global temperatures versus a small geographic subset that contributes to the global data.
- 3. While temperature fluctuations have been more drastic in Chicago, they generally follow the Global trends. This phenomena is particularly apparent from 1752 through 1848.
- 4. Both Chicago and Global average temperatures have been rising steadily from approximately 1830 through 2013