Tutorial 4: PCA

Principal Component Analysis

TA: Paul-Edouard Sarlin patakiz@ethz.ch

Lossy vs Lossless compression

• Data $x \in A$ e.g. an image

- Compressor $f: A \rightarrow B$
- f(x) = compressed version such that size(f(x)) < size(x)
- $f^{-1}(f(x))$ = decoding of the compressed x
- Reconstruction error $E = ||x f^{-1}(f(x))||$

Lossless if
$$E = 0$$

Lossy PCA if $E \neq 0$ But good if E small enough

Principal Component Analysis - PCA

- Non-parametric method of extracting relevant information from data
- Orthogonal linear projection of high dimensional data onto low dimensional subspace

$$f(x) = Ux$$

Properties:

- 1. Reconstruct the data well: minimize error E
- 2. Maximize information: maximize the total variance of the encoding f(x)

How to calculate U?

- We have a collection of N data samples $x_i \in \mathbb{R}^D$
- We can fit a normal distribution $\mathcal{N}(\mu, \Sigma)$ to the data:

mean
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \Sigma = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T$$

- U = eigenmatrix of Σ , such that $\Sigma = U\Lambda U^T$ (orthogonal!)
- For PCA: U_K = first K eigenvectors of $\Sigma = [\mathbf{u}_1 \dots \mathbf{u}_K]$
- Then PCA($\mathbf{x_i}$) = $\mathbf{f}(\mathbf{x_i}) = U_K^T(\mathbf{x_i} \mu)$
- K principal components = directions with largest variance
- Large compression if $K \ll D$

Using SVD vs Eigendecomposition

- Let X be the D x N data matrix: $X = [x_1 ... x_N]$
- Let X be the centered data matrix $X = X \mu$
- Apply SVD: $\bar{X} = USV^T$ where $U^TU = I_D$ and $V^TV = I_N$

Institute of Visual Computing

- Thus $\Sigma = \bar{X}\bar{X}^T = USV^TVSU^T = US^2U^T$
- Thus we can compute PCA with either SVD or Eigendecomposition

- Now x_i = images of human faces
- $x_i \in \mathbb{R}^D$ with D = number of pixels = width x height

AT&T face database: 40 people, 10 expressions each

Compute:

• Mean $\mu \in \mathbb{R}^D$

• Covariance $\Sigma \in \mathbb{R}^{D \times D}$

Cannot visualize

• First 10 eigenvectors $u_{1:K}$ ordered by decreasing eigenvalues

• First 10 eigenvectors $u_{1:K}$ ordered by decreasing eigenvalues

PCA compression

- We have $D = 68 \times 56 = 3808$
- If K = 100 then each face is represented by only 100 values
- That's a 38x compression!

original

reconstructed

PCA compression

$$K = 50$$

$$K = 200$$

Application to Face Detection

George (s38)

Can you compute the x coordinate of George's head?

Application to Face Detection

George (s38)

Steps:

- Compute eigenfaces (use only the first 20 people)
- Compress each patch of the image using a sliding window
- Evaluate the compression error using SSD
- The patch with the lowest error is George!

Application to Face Detection

George (s38)

Exercise session

- https://github.com/Zador-Pataki/viscomp2024
- Execise:

https://colab.research.google.com/drive/1c29AJ6_Z HbFCsjqLeJaeKzMTAi0ADgUc?usp=sharing

