

MACHINE LEARNING

Linear Models: Logistic Regression

Last Update: 27th October 2022

AL RAROOUNI LAR Munich

Prof. Dr. Shadi Albarqouni

Director of Computational Imaging Research Lab. (Albargouni Lab.) University Hopsital Bonn | University of Bonn | Helmholtz Munich

STRUCTURE

1. Logistic Regression

Definition

Logistic regression is a widely used discriminative classification model $p(y|\mathbf{x};\theta)$, where $\mathbf{x} \in \mathbb{R}^D$ is a fixed-dimensional input vector, $\mathbf{y} \in \{1,\ldots,C\}$ is the class label, and θ are the parameters.

if C=2, this is known as binary logistic regression, and if C>2, it is known as multinomial logistic regression, or alternatively, multiclass logistic regression.

©2022 Shadi Albarqouni

BINARY LOGISTIC REGRESSION

Example: classifying Iris flowers (Code)

Binary Logistic Regression | Sigmoid function | Linear classifier | Objective function

Given some inputs $x \in \mathcal{X}$ and a mapping function $f(\cdot)$ that predict a binary variable $y \in \{0,1\}$, the conditional probability distribution $p(y|x;\theta) = \mathrm{Ber}(y|f(x;\theta))$ where

 $p(y=1|x;\theta) = f(x;\theta) \triangleq \sigma(\mathbf{w}^T\mathbf{x} + b)$ $\sigma(a) = \frac{1}{1+e^{-a}}$ is the sigmoid function $a = \mathbf{w}^T\mathbf{x} + b$ is often called logits or pre-activation.

find \mathbf{w} and b for the given example.

HYPOTHESIS REPRESENTATION -- SIGMOID FUNCTION

 $Source: {\color{blue} https://commons.wikimedia.org/wiki/File: Sigmoid-function-2.svg}$

$$^{1}\sigma(\cdot) \triangleq sig(\cdot)$$
, and $a \triangleq t$

LINEAR CLASSIFIER-- DECISION BOUNDARY

$$\begin{split} f(\mathbf{x}) &= \mathbb{I}\left(p(y=1|\mathbf{x}) > p(y=0|\mathbf{x})\right) \\ &= \mathbb{I}\left(\log\frac{p(y=1|\mathbf{x})}{p(y=0|\mathbf{x})} > 0\right) \\ &= \mathbb{I}(a>0) \to \mathsf{Perceptron} \end{split}$$

The inner product $\langle \mathbf{w}, \mathbf{x} \rangle$ defines the hyperplane with a normal vector \mathbf{w} and offset b.

This plane $\mathbf{w}^T \mathbf{x} + b = 0$ is often called the decision boundary seperating the 3d space into two halfs.

We call the data to be linerally seperable if we can perfectly separate the training examples by such a ©2022 Shadi Alhamiin boundary.

$$a = \mathbf{w}^T \mathbf{x} + b \triangleq b + \sum_{d=1}^{D} w_d x_d$$

More about dot products: watch this YouTube Video

Linear classifier– Decision boundary

Example: Given the data points on the right hand side, what would be your optimal decision boundary to make the data lineraly seperable?

$$\sigma(a) = \sigma(w^T x + b)$$

$$a = b + \sum_{d=1}^{D} w_d x_d \triangleq b + w_1 x_1 + w_2 x_2 = 0$$

what happens if we have larger values of w?

LINEAR CLASSIFIER -- DECISION BOUNDARY

The vector ${\bf w}$ defines the orientation of the decision boundary, and its magnitude, $\|w\|_2 = \sqrt{\sum_{d=1}^D w_d^2}$ controls the steepness of the sigmoid, and hence the confidence of the predictions.

NONLINEAR CLASSIFIER

We can often make a problem linearly separable by preprocessing the inputs in a suitable way.

let $\phi(x)$ be a transformed version of the input feature vector.

suppose we use $\phi(x_1, x_2) = [1; x_1^2; x_2^2]$, and we let $w = [-R^2; 1; 1]$.

 $w^T\phi(x)=-R^2+x_1^2+x_2^2$, so the decision boundary (where $w^T\phi(x)=0$) defines a circle with radius R.

DEMO

©2022 Shadi Albarqouni 10

Maximum likelihood estimation (MLE)

It can be obtained by minimizing the Negative Log Likelihood as an objective function

$$\theta_{MLE} = \operatorname*{arg\,min}_{\theta} NLL(\theta)$$

The Negative Log Likelihood (NLL) for the binary classification is given by $NLL(\mathbf{w}) = -\frac{1}{N}\log\prod_{n=1}^{N}\underbrace{\mathrm{Ber}(y_n|f(\mathbf{x}_n;\mathbf{w}))}_{p(y_n|x_n;\theta)} \triangleq -\frac{1}{N}\log\prod_{n=1}^{N}\mathrm{Ber}(y_n|\mu_n)$ where

$$\mu_n = f(\mathbf{x}_n; \mathbf{w}) = \sigma(a_n)$$
 is the prediction $a_n = \mathbf{w}^T \mathbf{x}_n = \sum_{d=0}^{D} w_d x_{nd}$ is the logit, with bias $w_0 = b$ and $x_0 = 1$.

The NLL can be written as $NLL(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \mu_n + (1-y_n) \log (1-\mu_n)$

Machine Learning Logistic Regression

Maximum likelihood estimation (MLE)

MAXMAM INCLUDED ESTMANDING MLE $\frac{1}{4} \times \frac{1}{4} \times \frac{1$

$$\begin{split} &\mu_n = f(\mathbf{x}_n; \mathbf{w}) = g(a_n) \text{ is the prediction} \\ &a_n = \mathbf{w}^T \mathbf{x}_n = \sum_{d=0}^D w_d x_{nd} \text{ is the logit, with bias } u_0 = b \text{ and } x_0 = 1. \end{split}$$
 The NLL can be written as $NLL(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^N y_n \log y_n + (1-y_n) \log (1-\mu_n)$

Why Negative Log Likelihood? Indeed, why we need to take the Log? and why we need to take the negative?

What about other loss functions, e.g., Mean Squared Error?

Machine Learning Logistic Regression

Maximum likelihood estimation (MLE)

MAXMUM LIKELHOOD ESTIMATION (MLE)

Minimum likelihood estimation (MLE)

R can to obtained by minimizing the happine Log Lawbood as an objective function $\theta_{MLR} = \mu_{min} m N L (\theta)$ The higgatine Log Lawbood (ALL) for the binary dissolutiontion is given by $N L L (\mathbf{v}) = -\frac{1}{2} \log \prod_{i=1}^{N} \text{RET}(M_i(\mathbf{x}, \mathbf{w}))^{(i)} = \frac{1}{2} \log \prod_{i=1}^{N} \text{Ret}(M_i(\mathbf{x}, \mathbf{w}))^{(i)} = \frac{1}{2} \log \prod_{i=1}^{N} \text{Ret}(M_i(\mathbf{x}, \mathbf{w}))^{(i)}$ $\mu_{min} = \prod_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2} \log \prod_{j=1}^{N} \text{Let}(M_i(\mathbf{x}, \mathbf{w}))^{(i)}$ $\mu_{min} = \prod_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2} \log \prod_{j=1}^{N} \log \prod_{j=1}^{N} \frac{1}{2} \log \prod_{j=1}$

Given $\operatorname{Ber}(y|\theta) \triangleq \theta^y (1-\theta)^{1-y}$, the $\operatorname{NLL}(\mathbf{w}) = -\frac{1}{N} \log \prod_{n=1}^N \operatorname{Ber}(y_n|\mu_n)$, the objective function can be written as:

$$\begin{split} NLL(\mathbf{w}) &= -\frac{1}{N}\log\prod_{n=1}^{N}\mathrm{Ber}(y_n|\mu_n) \\ &= -\frac{1}{N}\log\prod_{n=1}^{N}\mu_n^{y_n}(1-\mu_n)^{1-y_n} \\ &= -\frac{1}{N}\sum_{n=1}^{N}\log\left[\mu_n^{y_n}(1-\mu_n)^{1-y_n}\right] \\ &= -\frac{1}{N}\sum_{n=1}^{N}\underbrace{y_n\log\mu_n + (1-y_n)\log(1-\mu_n)}_{\mathbb{H}_{ce}(y_n,\mu_n) \quad \text{is the binary cross entropy}} \end{split}$$

Given the objective function, we aim to find the MLE solution by computing the gradient and solving

$$\begin{split} g(\mathbf{w}) &= \nabla_{\mathbf{w}} NLL(\mathbf{w}) = 0 \\ \nabla_{\mathbf{w}} NLL(\mathbf{w}) &= \frac{1}{N} \sum_{n=1}^{N} (\mu_n - y_n) \mathbf{x}_n \\ \nabla_{\mathbf{w}} NLL(\mathbf{w}) &= \frac{1}{N} (\mathbf{1}_N^T (\mathrm{diag}(\mu - \mathbf{y}) \mathbf{X}))^T \text{ in a matrix form} \end{split}$$

To ensure the objective function is convex, we must prove the hessian is positive semi-definite;

$$\mathbf{H} = \nabla_w \nabla_w NLL(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mu_n (1 - \mu_n) x_n) x_n^T$$
$$\mathbf{H} = \frac{1}{N} \mathbf{X}^T \mathbf{S} \mathbf{X} \text{ in a matrix form where}$$

$$\mathbf{S} \triangleq \operatorname{diag}(\mu_1(1-\mu_1), \cdots, \mu_N(1-\mu_N))$$

It can be shown that for any non-zero vector, v;

$$\mathbf{v}^T \mathbf{H} \mathbf{v} = \mathbf{v}^T \mathbf{X}^T \mathbf{S} \mathbf{X} \mathbf{v} = (\mathbf{v}^T \mathbf{X}^T \mathbf{S}^{\frac{1}{2}}) (\mathbf{S}^{\frac{1}{2}} \mathbf{X} \mathbf{v}) = \|\mathbf{S}^{\frac{1}{2}} \mathbf{X} \mathbf{v}\|_2^2 > 0$$

Given the gradient $\frac{1}{N}(1_N^T(\operatorname{diag}(\mu-\mathbf{y})\mathbf{X}))^T$ and the hessian $\frac{1}{N}\mathbf{X}^T\mathbf{S}\mathbf{X}$ of the objective function, one can compute the stochastic gradient descent (Sec. 8.4) using

first-order method:

$$\begin{aligned} \boldsymbol{\omega}_{t+1} &= \boldsymbol{\omega}_t - \eta_t \mathbf{g}_t \triangleq \boldsymbol{\omega}_t - \eta_t \frac{1}{N} (\mathbf{1}_N^T (\mathsf{diag}(\boldsymbol{\mu}_t - \mathbf{y}) \mathbf{X}))^T \\ &\triangleq \boldsymbol{\omega}_t - \eta_t \frac{1}{N} \sum_{n=1}^N (\boldsymbol{\mu}_n - y_n) \mathbf{x_n} \end{aligned}$$

slow convergence, when gradient is small

1:
$$w \leftarrow 0$$
, $\eta \leftarrow 1$
2: repeat
3: for $n = 1$: N do
4: $a_n \leftarrow \omega^T \mathbf{x}_n$
5: $\mu_n \leftarrow \sigma(a_n)$
6: $e_n \leftarrow (\mu_n - y_n)$
7: end for
8: $\mathbf{E} \leftarrow diag(e_{1:N})$
9: $\omega \leftarrow \omega - \eta \frac{1}{N} \mathbf{X}^T \mathbf{E}$
10: until Converged

Given the gradient $\frac{1}{N}(1_N^T(\mathrm{diag}(\mu-\mathbf{y})\mathbf{X}))^T$ and the hessian $\frac{1}{N}\mathbf{X}^T\mathbf{S}\mathbf{X}$ of the objective function, one can compute the stochastic gradient descent (Sec. 8.4) using

second-order method:

$$\begin{aligned} \boldsymbol{\omega}_{t+1} &= \boldsymbol{\omega}_t - \eta_t \mathbf{H_t}^{-1} \mathbf{g}_t \triangleq \eta_t (\mathbf{X}^T \mathbf{S}_t \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S}_t \mathbf{z}_t \\ \text{where } \mathbf{z}_t \triangleq \mathbf{X} \boldsymbol{\omega}_t + \mathbf{S}_t^{-1} (\mathbf{y} - \boldsymbol{\mu}_t) \end{aligned}$$

It is often called Iteratively reweighted least squares (IRLS)

```
1: w \leftarrow 0, \eta \leftarrow 1
  2: repeat
              for n=1\cdot N do
 3.
                     a_n \leftarrow \omega^T \mathbf{x}_n
                     \mu_n \leftarrow \sigma(a_n)
                     s_n \leftarrow \mu_n (1 - \mu_n)
                     z_n \leftarrow a_n + \frac{y_n - \mu_n}{a}
  8:
              end for
              \mathbf{S} \leftarrow diag(s_{1:N})
              \omega \leftarrow \eta(\mathbf{X}^T\mathbf{S}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{S}\mathbf{z}
10:
11: until Converged
```

©2022 Shadi Albargouni 14

VISUALIZATION

step size 0.300 2.5 1.0 0.0 0.00 0.25 0.50 1.00 1.75 step size 0.500 2.0 0.5 0.0 -0.5 0.00 0.25 0.75 1.00 Play with the code

Source: https://towardsdatascience.com/ animations-of-logistic-regression-with-python-31f8c

©2022 Shadi Albarqouni 15

OVERFITTING

©2022 Shadi Albarqouni 16

MAXIMUM A POSTERIOR (MAP)

Maximum A Posterior (MAP)

It can be obtained by minimizing the Penalized Negative Log Likelihood as an objective function

$$\theta_{MAP} = \operatorname*{arg\,min}_{\theta} NLL(\theta) + \lambda \|\theta\|_{2}^{2}$$

where $\|\theta\|_2^2 = \sum_{d=1}^D w_d^2$ is the ℓ_2 -regularization or weight decay and λ is the regularization rate/parameter.

The Penalized Negative Log Likelihood (PNLL) is quite desirable to avoid overfitting. The gradient and hessian are given as:

$$\nabla_{\mathbf{w}} PNLL(\mathbf{w}) = \nabla_{\mathbf{w}} NLL(\mathbf{w}) + 2\lambda \mathbf{w}$$

$$\nabla_{\mathbf{w}} \nabla_{\mathbf{w}} PNLL(\mathbf{w}) = \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} NLL(\mathbf{w}) + 2\lambda \mathbf{I}$$

 \rightarrow Standarization (Sec. 10.2.8)!

MULTINOMINAL LOGISTIC REGRESSION

Definition

Multinominal logistic regression is a discriminative classification model $p(y|\mathbf{x};\theta) = Cat(y|\text{softmax}(W\mathbf{x}+\mathbf{b}))$, where $\mathbf{x} \in \mathbb{R}^D$ is a fixed-dimensional input vector, $\mathbf{y} \in \{1,\ldots,C\}$ is the class label with C>2, and $\theta=(W,\mathbf{b})$ are the parameters with W as the weight matrix of $C\times D$, and \mathbf{b} as the C-dimensional bias vector.

$$p(y_c|\mathbf{x};\theta) = \frac{e^{a_c}}{\sum_{c'=1}^{C} e^{a_{c'}}}$$

Since $\sum_{c=1}^{C} p(y_c|\mathbf{x};\theta) = 1$, one can ignore the weight vector w_C for the last class C, so the weight matrix W becomes of size $(C-1) \times D$.

When the labels are not mutually exclusive, then an input could have multiple output, i.e., multi-label classification, e.g, image tagging. In this particular case, $p(y_c|\mathbf{x};\theta) = \prod_{c=1}^C \text{Ber}(y_c|\sigma(\mathbf{w}_c^T\mathbf{x})).$

©2022 Shadi Albargouni 18

SUMMARY

	Binary logistic Regression	Multinominal logistic regression
Probability $p(y \mathbf{x};\theta)$	$Ber(y \sigma(w^Tx+b))$	$Cat(y_c softmax(w^Tx+b))$
Activation function $\sigma(\cdot)$	sigmoid	softmax
Cost function H_{ce}	$-[y\log\mu + (1-y)\log(1-\mu)]$	$-\sum_{c=1}^{C} y_c \log \mu_c$
Gradient	_	_
Hessian	_	_

DEMO

Questions