EXAM CHEAT SHEET (PART II)

I. HYPOTHESIS TESTING

Null Hypothesis (H_0) : Always involves "=" sign.

Alternative Hypothesis (H_1) : "<", ">" or " \neq ".

One-Tailed Test: H_1 involves "<" or ">".

Two-Tailed Test: H_1 involves " \neq "".

Rejection Region: Reject H_0 if falling in this range.

p-value: Reject H_0 if p-value is very small.

Type I Error (α): Reject H_0 when it is true.

Type II Error (β): Fail to reject H_0 when it is false.

Significance Level: $\alpha = P(\text{Type I Error})$

Testing
$$\mu$$
 (σ^2 known): $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$

Testing
$$\mu$$
 (σ^2 unknown): $T = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$ (Df. = $n-1$)

Testing Population Proportion
$$p$$
: $Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$

II. COMPARING TWO POPULATIONS

Paired Samples:
$$T = \frac{\bar{X}_D - \mu_D}{s_D/\sqrt{n}}$$

Independent Samples:

Testing $\mu_1 - \mu_2$ (σ_1^2 , σ_2^2 known):

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Testing $\mu_1 - \mu_2$ (σ_1^2 , σ_2^2 unknown):

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
 (Df. = $n_1 + n_2 - 2$)

Pooled Sample Variance:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Testing
$$\sigma_1^2 = \sigma_2^2$$
: $F = \frac{s_1^2}{s_2^2} (s_1^2 > s_2^2)$

RR.:
$$F > F_{\frac{\alpha}{2},n_1-1,n_2-1}$$

Testing
$$p_1 - p_2 = D_0$$
: $Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$

Testing
$$p_1 - p_2 = 0$$
: $Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$

Combined Proportion:
$$\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$$

III. ANALYSIS OF VARIANCE (ANOVA)

A. One-Way ANOVA

Hypotheses: $\mu_1 = \mu_2 = \cdots = \mu_k$ (k levels)

ANOVA Table:

	Sum Sq.	Df.	Mean Sq.
Factor	$SST = \sum_{j=1}^{k} n_{j} (\bar{Y}_{j} - \bar{Y})^{2}$	k-1	$MST = \frac{SST}{k-1}$
Error	$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_j)^2$	n-k	$MSE = \frac{SSE}{n-k}$
Total	$SS_{\text{Total}} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (Y_{ij} - \bar{Y})^2$	n-1	
	·		

Test Statistic: $F = \frac{MST}{MSE}$ (RR.: $F > F_{\alpha,k-1,n-k}$)

B. Two-Way ANOVA

Main Effects Hypotheses: Population means at different levels of *a factor* are all equal.

Interaction Hypotheses: There is no *interaction* between factors.

Interaction: Two factors *interact* when the effect of one factor on the response variable is altered by the level of the other factor.

Complete Factorial Experiment: There are data collected for all treatments.

Balanced Experiment: Number of observations for each treatment (also called *replicates*) are the same.

ANOVA Table:

	Sum Sq.	Df.	Mean Sq.
Factor A	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$
Factor B	SS_B	b-1	$MS_B = \frac{SS_B}{b-1}$
Interaction	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$
Error	SSE	n-ab	$MSE = \frac{SSE}{n-ab}$
Total	SS(Total)	n-1	

Test Statistics:

$$\begin{split} F_A &= \frac{MS_A}{MSE} \text{ (RR.: } F_A > F_{\alpha,a-1,n-ab}) \\ F_B &= \frac{MS_B}{MSE} \text{ (RR.: } F_B > F_{\alpha,b-1,n-ab}) \\ F_{AB} &= \frac{MS_{AB}}{MSE} \text{ (RR.: } F_{AB} > F_{\alpha,(a-1)(b-1),n-ab}) \end{split}$$

IV. CHI-SQUARED TEST

Goodness-of-Fit Test:

$$\chi^2 = \sum_i^k \frac{(f_i - e_i)^2}{e_i} \text{ (RR.: } \chi^2 > \chi^2_{\alpha,k-1})$$

Test of Contingency Table:

$$\chi^2 = \sum_{i}^{r} \sum_{j}^{c} \frac{(f_{ij} - e_{ij})^2}{e_{ij}} \text{ (RR.: } \chi^2 > \chi^2_{\alpha,(r-1)(c-1)})$$

$$e_{ij} = \frac{i^{\text{th}} \text{ row total} \times j^{\text{th}} \text{ column total}}{\text{sample size}}$$

V. LINEAR REGRESSION

A. Simple Linear Regression

Regression Model: $Y = \beta_0 + \beta_1 X + \epsilon$

Model Assumption: $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$

Errors ϵ_i are assumed to be: (i) normally distributed; (ii) with mean equal to 0; (iii) with constant variance σ_{ϵ}^2 regardless of X; (iv) independent with each other.

Fitted Model: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$

Parameter Estimation:

$$\hat{\beta}_1 = \frac{s_{XY}}{s_Y^2}, \ \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Residual: $e_i = Y_i - \hat{Y}_i$

ANOVA Table for Regression:

	Sum Sq.	Df.	Mean Sq.
	$SSR = \sum_{i}^{n} (\hat{Y}_{i} - \bar{Y})^{2}$		
Residual	$SSE = \sum_{i}^{n} (Y_i - \hat{Y}_i)^2$	n-2	$MSE = \frac{SSE}{n-2}$
Total	$SS_{\text{Total}} = \sum_{i}^{n} (Y_i - \bar{Y})^2$	n-1	

Testing Overall Significance: $\beta_1 = 0$ or $\rho = 0$

Testing
$$\beta_1 = c$$
: $T = \frac{\hat{\beta}_1 - c}{s_{\hat{\beta}_1}}$ (Df. = $n - 2$)

$$s_{\hat{\beta}_1} = \sqrt{\frac{\frac{1}{n-2} \sum_{i}^{n} e_i^2}{(n-1)s_X^2}} = \frac{s_{\epsilon}}{\sqrt{(n-1)s_X^2}}$$

Testing
$$\beta_0 = c$$
: $T = \frac{\hat{\beta}_0 - c}{s_{\hat{\beta}_0}}$ (Df. $= n - 2$)
$$s_{\hat{\beta}_0} = s_{\hat{\beta}_1} \times \sqrt{\frac{\sum_{i=1}^n X_i^2}{n}}$$

Testing
$$\rho = 0$$
: $T = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ (Df. = $n-2$)

Coefficient of Determination:

$$R^2 = \frac{s_{XY}^2}{s_X^2 s_Y^2} = \frac{SSR}{SS(\text{Total})}$$

Estimating
$$\sigma_{\epsilon}$$
: $s_{\epsilon} = \sqrt{\frac{\sum_{i}^{n} e_{i}^{2}}{n-2}} = \sqrt{\frac{SSE}{n-2}}$

Point Estimation: $\hat{y}_q = \hat{\beta}_0 + \hat{\beta}_1 x_q$

Prediction Interval for expected (or particular) value:

$$\hat{y}_g \pm t_{\frac{\alpha}{2}, n-2} \times s_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x_g - \bar{X})^2}{(n-1)s_X^2} + 1}$$

B. Multiple Linear Regression

Regression Model: $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \epsilon$

Fitted Model: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots + \hat{\beta}_k X_k$

ANOVA Table for Regression:

	Sum Sq.	Df.	Mean Sq.
Regression	$SSR = \sum_{i}^{n} (\hat{Y}_{i} - \bar{Y})^{2}$	k	$MSR = \frac{SSR}{k}$
Residual	$SSE = \sum_{i}^{n} (Y_i - \hat{Y}_i)^2$	n-k-1	$MSE = \frac{SSE}{n-k-1}$
Total	$SS_{\text{Total}} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$	n-1	

Testing Overall Significance: $\beta_1 = \beta_2 = \cdots = \beta_k = 0$

Test Statistic: $F = \frac{MSR}{MSE} \; (\text{RR.:} \; F > F_{\alpha,k,n-k-1})$

Testing Individual Coefficient Parameters: $\beta_j = c$

Interpretation: All other independent variables being considered, X_j has a significant linear relationship with Y.

Test Statistic:
$$T = \frac{\hat{\beta}_j - c}{s_{\hat{\beta}_j}}$$
 (Df. = $n - k - 1$)

Estimating
$$\sigma_{\epsilon}$$
: $s_{\epsilon} = \sqrt{\frac{\sum_{i}^{n} e_{i}^{2}}{n-k-1}}$

Multiple
$$R^2$$
: $R^2 = \frac{SSR}{SS(\text{Total})}$

$$\mbox{Adjusted R^2: } R_{adj}^2 = 1 - \frac{(n-1)(1-R^2)}{n-k-1} = 1 - \frac{\frac{SSE}{n-k-1}}{\frac{SS(\text{Total})}{n-k-1}}$$

Multicollinearity: Independent variables are correlated with each other.

Interaction Model: $Y = \beta_0 + \beta_1 X + \beta_2 Y + \beta_3 (X \times Y) + \epsilon$