《操作系统设计与实现》 第四章

2.在一个使用交换技术的系统中,按地址顺序排列的内存中的空闲块大小是10KB,4KB,20KB,18KB,7KB,9KB,12KB,15KB。对于连续的段请求:

a)12KB

b)10KB

c)9KB

使用最先匹配算法,哪个空闲块将被选中?对最佳匹配法、最坏匹配法和下次匹配法回答同样的问题。

匹配算法	a	b	С
最先匹配算法	20	10	18
最佳匹配算法	12	10	9
最坏匹配算法	20	18	15
下次匹配算法	20	18	9

6.使用图4.8中的页表,计算出下列虚拟地址所对应的物理地址:

a)20

b)4100

c)8300

图 4.8 虚拟地址与物理内存地址之间的映射关系存放在页表中

a.8192+20=8212

b.4100

c.24576+(8300-8192)=24684

11.一台32位地址的计算机使用了两级页表。虚拟地址被划分为三部分: 9位的顶级页表字段、11位的二级页表字段和页内偏移。请问页面的大小是多少? 在地址空间中总共有多少个页面?

页面大小为 $2^{12}=4KB$

页面数为 2^{20}

12.以下是一小段汇编语言程序(用文字来描述),用在一台页面大小为512字节的计算机上。该程序位于地址1020,它的栈指针位于8192(向0的方向增长)。请给出这个程序所产生的页面访问序列。假设每条指令占用4个字节(1个字),对指令和数据的访问都应该包含在访问序列之中。

将地址为6144的字装入寄存器0 把寄存器0压入栈中 调用起始地址为5120的函数,把返回地址入栈 5120把栈指针的值减去16 5124将实参与常量4进行比较 5126如果相等,跳转到5152

程序访问的页面号序列:

1 (指令), 12 (数据)

2 (指令), 15 (数据)

2 (指令), 15 (数据)

10 (指令)

10 (指令), 15 (数据)

10 (指令)

14.在一台计算机上,进程的地址空间有1024个页面,页表被保存在内存中。从页表中读取一个字的开销是500ns。为了减小开销,这台计算机使用了TLB,它能存放32对(虚拟页面号,物理页面号),查找时间为100ns。为了把页表的平均访问开销降到200ns,需要的TLB命中率是多少?

$$100\times x + 500\times (1-x) = 200$$

x = 75%

18.一台计算机有4个物理页面,每个页面的装入时间、最后访问时间、R位和M位如下所示(时间以时钟 节拍为单位):

页面	装入时间	最后访问时间	R	М
0	126	279	0	0
1	230	260	1	0
2	120	272	1	1
3	160	280	1	1

- a)NRU将替换哪个页面?
- b)FIFO将替换哪个页面?
- c)LRU将替换哪个页面?
- d)第二次机会算法将替换哪个页面?
- a.最近未使用,淘汰RM编号最小的页面,替换0

- b.先进先出,淘汰最早装入的页面,替换2
- c.最近最久未使用,淘汰最后访问时间最早的页面,替换1
- d.第二次机会寻找最老的页面2,由于R=1,给它第二次机会,替换0
- 23.一台小型计算机有4个物理页面。在第一个时钟节拍时R位是0111(页面0是0,其他是1)。在随后的时钟节拍,这个值分别是1011,1010,1101,0010,1010,1100和0001。如果使用老化算法,计数器的长度为8位,请给出在最后一个时钟节拍后,这4个计数器的值。

	0111	1011	1010	1101	0010	1010	1100	0001
页面0	00000000	10000000	11000000	11100000	01110000	10111000	11011100	01101110
页面1	10000000	01000000	00100000	10010000	01001000	00100100	10010010	01001001
页面2	10000000	11000000	11100000	01110000	10111000	11011100	01101110	00110111
页面3	10000000	11000000	01100000	10110000	01011000	00101100	00010110	10001011

在最后一个时钟节拍后,这4个计数器的值分别是:01101110、01001001、00110111、10001011。

- 24.在一个计算机系统上,磁盘的平均寻道时间为10ms,旋转时间为8ms,每道的容量为1MB。如果要把一个64KB的程序装入内存,这需要多长的时间?
- a)页面长度为2KB时。
- b)页面长度为4KB时。
- c)页面长度为64KB时。

假设页面随机地分布在磁盘上。

- a.页面总数为32,时间为 $32 \times (8+10) = 576ms$
- b.页面总数为16,时间为16 imes (8+10) = 288ms
- c.页面总数为1,时间为 $1 \times (8+10) = 18ms$
- 27.一台嵌入式计算机为每个进程提供了65536个字节的地址空间,并将它们划分为4096字节的页面。有一个程序,它的代码段为32768个字节、数据段为16386个字节、栈段为15870字节。请问,这个程序能被装入地址空间吗?如果页面大小为512字节,结果又如何?注意,在一个页面中,不能同时包含两个不同段的内容。

页面大小为4096字节时:

代码段8个页面,数据段5个页面,栈段4个页面。进程总页面数最多为16个

不能放入地址空间。

页面大小为512字节时:

代码段64个页面,数据段33个页面,栈段31个页面。进程总页面数最多为128个

正好能放入地址空间。

30.解释内碎片和外碎片的区别。哪一个发生在页式存储管理系统中?哪一个发生在段式管理系统中?

内碎片和外碎片是指在内存空间分配时可能出现的浪费现象。

内碎片是指已经被分配给某个进程的内存空间中,由于内存分配单位的固定大小而导致未能完全利用的空间。例如,如果一个进程需要分配 7KB 的内存,而内存分配单位为 8KB,则最终实际分配给这个进程的空间是 8KB,其中有 1KB 的空间无法被利用,这就是内碎片。

外碎片则是指空闲链表中无法被任何进程使用的未分配内存空间。例如,如果系统中存在很多小块的未分配内存空间,而没有足够大的空间可以分配给某个进程,那么这些小块的空间就会形成外碎片。

在页式存储管理系统中,主要发生内碎片,因为页(或帧)的大小是固定的,并且进程所需的内存空间大小可能不是页的整数倍,因此会导致一定量的内碎片。

在段式管理系统中,主要发生外碎片,因为段的大小可以动态调整,所以内碎片相对较少,而由于不同进程的段的大小不一定相同,并且段之间存在空隙,因此容易产生大量的外碎片。