

Title: The CRISP-DM methodology

Course: Data Mining

Instructor: Claudio Sartori

Master: Data Science and Business Analytics

Master: Artificial Intelligence and Innovation Management

Academic Year: 2024/2025

BOLOGNA BUSINESS SCHOOL

Alma Mater Studiorum Università di Bologna

• Can Data Mining be a push-button technology?

Can Data Mining be a push-button technology? No

- Can Data Mining be a push-button technology? No
- Data Mining is a process

- Can Data Mining be a push-button technology? No
- Data Mining is a process
- The process has steps and complex choices

- Can Data Mining be a push-button technology? No
- Data Mining is a process
- The process has steps and complex choices
- The standard defines the steps in a precise way

Benefits of a Standard Process Model I

- tools and skills
- methodology
- management
- process model

Benefits of a Standard Process Model II

Standardisation provides

- a common reference point for discussions
- a common understanding between the designers and the customers
- a basis for good engineering practice
- checklists
- clarity for expectations

The CRISP-DM methodology

From the problem to the application - https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

Business understanding

General attitude

- reformulate the problem in many ways, as necessary
- think about the scenario
- iterative refinement of problem formulation and scenario

Business understanding – to be determined - I

- Business Objectives
 - specific, action—oriented
 - example: Increase customer retention by identifying at-risk customers through churn prediction models
- Background Business Objectives
 - broader strategy, long-term aims
 - example: Become the market leader in customer satisfaction in the telecom industry

Business understanding – to be determined - II

Business Success Criteria – Examples

- 1. Sales increased by 10% after implementing a recommendation engine
- 2. Customer support costs reduced by 15% through chatbot implementation
- 3. Churn rate decreased from 20% to 15% over six months
- 4. Achieve a CSAT score above 90% after improving service delivery
- 5. Reduce time-to-decision for credit approvals from 3 days to 1 hour
- 6. Production line efficiency increased by 20% after predictive maintenance
- 7. Increase market share by 5% in a target region
- 8. Improve Net Promoter Score (NPS) by 8 points

Business understanding – Assess Situation

- Inventory of Resources
- Requirements, Assumptions, and Constraints
- Risks and Contingencies Terminology
- Costs and Benefits

Focus: Inventory of resources

Category	Examples					
Data Resources	Available datasets, databases, data warehouses,					
	data formats, data quality					
Human Resources	Data scientists, domain experts, business ana-					
	lysts, IT staff					
Computing Resources	Hardware (servers, GPUs), cloud services, stor-					
	age, network capacity					
Software Tools	Data mining tools (e.g., Python, R, SAS, Rapid-					
	Miner), database tools, BI tools					
Time & Budget	Project timelines, milestones, allocated budget					
Other Resources	Access to APIs, third-party data sources, docu-					
	mentation, previous models					

Focus: Requirements – examples

- The model must predict customer churn with at least 85% accuracy
- The system must integrate with an existing CRM platform
- Reports must be generated weekly for stakeholders

Focus: Assumptions – examples

- The available data covers all customer segments
- Historical data is representative of future trends
- Data privacy compliance (e.g., GDPR) will be maintained

Focus: Constraints – examples

- Limited budget or time (e.g., project must be completed in 4 weeks)
- Data cannot be transferred outside a specific region due to regulations
- Only open-source tools can be used

Data understanding

- which raw data are available?
 - they match rarely the problem needs
 - they are usually collected for different purposes (or for no purpose at all)
 - a customer database, a transaction database, and a marketing response database contain different information, may cover different intersecting populations, and may have varying degrees of reliability
- at which cost?
 - internal data are for free, external data may be not
 - interesting information may need to be collected with ad-hoc campaign
- possible forks in the project choices, according to the collected data

Data Understanding – Tasks

- Collect Initial Data
- Describe Data
- Explore Data
- Verify Data Quality

Data preparation

- some analysis technique may require data transformations
 - converting to tabular format
 - converting between data types
 - e.g. from numeric to symbolic and viceversa
- some transformation can improve the quality of the results
 - normalization, scaling, guessing missing data, cleaning wrong data
 - ...
- data leaks
 - it is the case for supervised cases: the information necessary for the decision is not available at the decision time
- this task is usually very expensive and time consuming

Data Preparation – Tasks

- Data Set Description
- Select Data
 - Rationale for Inclusion / Exclusion
- Clean Data
- Construct Data
- Integrate Data
- Format Data

All the preparation activities must be traced and documented

Modeling

Capture patterns hidden in data

Modeling – Tasks

- Select Modeling Technique
 - Modeling Technique
 - Modeling Assumptions
- Generate Test Design
 - Test Design
- Build Model
 - Parameter Settings
 - Models
 - Model Description
- Assess Model
 - Model Assessment
 - Revised Parameter Settings

Evaluation

- rigorous assessment of the results of the data mining process
- compare different choices on a *qualitative* and *quantitative* basis
- evaluate the confidence of the derived models
- estimate the expected impact on the business
 - e.g. how many wrong decisions can we expect? which will be the cost of wrong decisions?

Evaluation – Tasks

- Assessment of Data Mining results w.r.t Business Success Criteria
- Review Process
- Determine next steps
 - List of possible actions
 - Decisions

Deployment

The results of the DM process (i.e. the models) are used in software systems to obtain some return of investments

 e.g. in *churn* analysis the model for predicting likelihood of churn can be integrated with a package for churn management, for instance sending special offers to selected customers considered high-risk of churn

Deployment – Tasks

- Plan Deployment
 - Deployment Plan
- Plan Monitoring and Maintenance
 - Monitoring and Maintenance Plan
- Produce Final Report
 - Final Report Final Presentation
- Review Project
 - Experience Documentation

CRISP-DM: Phases vs Actors

Phase	Stakeholders	Business Analysts	Domain Experts	Data Engineers	Data Scientists	DevOps/Developers
Business Understanding	✓	✓	✓			
Data Understanding		✓	✓	✓		
Data Preparation				✓	✓	
Modeling					✓	
Evaluation	✓	✓			✓	
Deployment						/

Legend: ✓ = Actor involved in phase

Bibliography

- Shearer, C. (2000).
 The CRISP-DM model: The new blueprint for data mining.
 Journal of Data Warehousing, 5:13–22.
- Wirth, R. and Hipp, J. (2000).
 CRISP-DM: Towards a standard process model for data mining.
 Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining.

