| CS2001- Data Structures | Week 01

Muhammad Rafi September 06, 2021

Agenda

- Introduction to Course & Conduct
 - Description
 - Objective
 - Learning Outcomes
 - □ Grading Scheme
 - □ Textbook
- Data Vs. Information Vs. Knowledge Vs. Wisdom
- Abstract Data Types
- Algorithm + Data Structures = Program
- Man vs. Machine
- Conclusion

Course Description

- Data Structures is a core course in Computer Science curriculum.
- It is an essential building block for solving applied problems with computers.
- The course will introduce the fundamentals of data structures and will provide thorough understanding of how to systematically organize data inside a computer system.

Course Description

- The course discusses basic memory management for efficiently solving problems on both time and space requirements.
- A variety of data structures will be discussed theoretically, their efficient implementations and application cases will also be discussed.
- The student will learn abstraction, encapsulation and structures for efficiently processing information in a variety of scenarios.

Course Objectives

- To understand the design of fundamental data structures and algorithms for problem solving through computer system.
- To study the tradeoff choices in the design and implementation of data structures
- To provide a rigorous "hands-on" experience with implementing different data structures in a high-level programming language
- To analyze time/space tradeoff for different solutions to the same problem.

| Learning Outcomes

- Student will be able to learn and understand basic/advanced data structures
- Student will be able to perform analysis of data structures choices for any real-world application.
- Student will learn the tradeoff with different choices of data structures
- Student will be able to write computer solutions for efficiently store, retrieve manipulate and update the data stored inside computers.

Grading Scheme

Programming Assignments
Quizzes
Midterm Exam
Class Project
Final Exam
50%

Textbook & References

Leading Text in CS

 Strengthen your understanding of data structures and their algorithms for the foundation you need to successfully design, implement and maintain virtually any software system

Some Good References

Some Good References

Programming Assignments

- There will be 3 programming assignments, each assignment may contains 2-4 problems.
- These programming assignments will be on provided with sample input/output test cases.
- The assignments are for individual, plagiarism will not be tolerated.
- You need to access the platform with your nu mail IDs.
- There may be more hidden test-cases for the problems.

Programming Assignments

- Deadline and Penalty
 - Deadline is mentioned for each Programming Assignment (Usually 2 weeks time)
 - After the deadline there will be a penalty of 25% if the assignment submitted after first 48 hours, for each 48 hours it reduced to 25% hence there will be no marks after 8 days.
 - Marks are only given if the submission passed plagiarism check and manual check.
 - Plagiarism cases may be awarded an F grade.

Quizzes

- There will be 4-5 quizzes all surprise quizzes
- Best n-1 will be counted
- Weightage 05 %

Midterm Exam

- Two midterm exams one hour each as per policy.
- Weight 10% each

Final Exam

- There will be a 3 hours exam as per policy.
- Weightage 50%

Class Participation

- Very important instrument for creating an impact.
- I appreciate questioning...
- Weightage 5%

Class Projects

- There will be a class project -You can have 2-3 members- members allow within sections.
- Weightage 10%
- The "Theme" for CS201- Data Structures class project is "Data Structures for Large Datasets"
- We will have 3-4 BOF meeting during the course for the class projects.
- Class project call and schedule will be announced on slate later.

Class Projects

- Call for class project
 - You need to submit a proposal mentioning team members name, project title and a brief description about the project. (1 mark for each submitted proposal)
 - □ Class Project Demos 2 marks
 - □ Code review 2 marks
 - □ Idea and completion 4 marks
 - □ Project report 1 mark

Weekly Plan		
Session	Topics	Chapters
	Course Overview, Introduction to Course & Conduct,	
	Grading Scheme, Text Book, Quizzes, Assignments	
2	C++ Language Specification & OOP	Chapter 1
3	C++ Language Specification & OOP	
	Recursion - 1	Chapter 5
5	Recursion - 2	
5	Recursion - 3	
7	C++ Dynamic Memory Management	
}	Arrays (1D) – Dynamic Safe Arrays	
)	Arrays (2D)	
10	Different Type of Arrays	
1	Node and List (Singly Linked List)	Chapter 3
12	Some utility functions of List (Singly Linked List)	
13	List (Circular Linked List)	
4	List (Doubly Linked List)	
15	Elementary Sorting Techniques -1	Chapter 9
16	Midterm I – Exam	

7	Elementary Sorting Techniques -2	Chapter 9
8	Advanced Sorting	
9	Searching	
0	Stack -1	Chapter 4
1	Stack - 2	
2	Stack – application	
3	Queues + Priority Queues	
4	Queue Application	
5 6	Неар	
6	Trees – BT, BST, MWT 1	Chapter 6-7
7	Trees – BT, BST, MWT 2	
8	Trees – BT, BST, MWT 3	
9	Trees – BT, BST, MWT 4	
0	Hashing - 1	Chapter 10
1	Hashing - 2	
2	Graphs - 1	Chapter 8
3	Graphs Traversals- 1	
4	Graphs Traversals- 2	
5	Weighted Graphs	
6	Graph Algorithms	

Consultancy Hours

Consultancy Hours:

Monday: 2-4 PM in my office – prior appointment required Thursday: 2-4 PM in my office – prior appointment required Friday: 8-9am at café informal (individual + groups)- this will not be regular, I will announce it on slate but it will be more often.

Contact me

email: muhammad<dot>rafi@nu<dot>edu<dot>pk

Office: 111-128-128 ext: 222

Cell: 0300-2326840

Data vs. Information vs. Knowledge

Data

- □ Raw facts
- Data in electronic form is easy to retrieve, manipulate, fused and remember(recall).
- Data is not always in a shape to facilitate information and knowledge
- Information
 - Interplay with data in context
- Knowledge
 - Some actionable information for ROI

Information vs. Knowledge vs. Wisdom

- Wisdom
 - □ Related to the interplay of knowledge and apply some deductive reasoning.
 - □ The power to make things happen.

Information vs. Knowledge vs. Wisdom

- Data unprocessed facts, obtained via receptors/instruments
- Information Processed data, structured data with context (Increases understanding)
- Knowledge ability to use information, strategic use to achieve certain objectives.
- Wisdom ability to select best possible objective using knowledge (make to happen)

| Abstract Data Types (ADT)

- ADTs are a theoretical concept in computer science.
- An abstract data type (ADT) is basically a logical description or a specification of components of the data and the operations that are allowed, that is independent of the implementation.

Definition – Data Structures

- Logical and formal abstract way to represent and store data in such a way that it will quickly available for processing within the application context.
- It is an organized collection of data which perform a set of operations effectively on the data. These set of operations are formally related to an idea of specific processing related to problem solving.

Definition – Algorithm

- An algorithm is a fancy to-do list for a computer. Algorithms take in zero or more inputs and give back one or more outputs.
- You explicitly need to tell a computer to perform each step that eventually transform some input into a desire output. It should be finite set of instruction.

| Algorithm+ Data Structures = Program

- This was title of a very good book by Niklaus Wirth
- Half of the problem is selecting the right data structures and half of the problem is to select right algorithm.

Man Vs. Machine

- Computation -Processing
- Memory
- Abilities
 - Sequential vs. Parallel
 - Optimized vs. Satisfier
 - □ Algorithmic vs. Non-Algorithmic

Conclusion

- Data structures and algorithm are integral parts of problem solving through computer.
- Human and computer ways of solving problems are different.
- Data, Information, Knowledge and wisdom are distinguishable concepts for representation.