

AD-A082 130

TELEDYNE BROWN ENGINEERING HUNTSVILLE AL OPTICAL SYS--ETC F/6 20/13

THERMAL RESPONSE MODEL: MBALL, (U)

SEP 79 W E SMITH

MM-SO-9-79-893

DASG60-79-C-0050

NL

UNCLASSIFIED

100
400
800

END
DATE
FILED
4-80
DTIC

MN-SD-9-79-893

HL A 082130

LEVEL #
2

MN-SD-9-79-893

THERMAL RESPONSE MODEL: MBALL

September 1979

DTIC
ELECTED
S MAR 12 1980
D
A

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

DMC FILE COPY

TELEDYNE
BROWN ENGINEERING

Cummings Research Park • Huntsville, Alabama 35807

79 11 15 170

LETTER OF TRANSMITTAL MSE79-BMDATC-4735

TO: Director
Ballistic Missile Defense
Advanced Technology Center
P. O. Box 1500
Huntsville, Alabama 35807

Attn: Max Hardwick, ATC-D

FROM: Optical Systems Department
Systems Division
Teledyne Brown Engineering
Cummings Research Park
Huntsville, Alabama 35807

SUBJECT: Transmittal of MBALL

DATE: 7 November 1979

To enable more faithful signature calculations of decoy target concepts applicable to the Optical Discrimination Program, TBE has developed a modification (MBALL) to the Optical Signatures Code (OSC). This modification supercedes all previous versions.

The following is a list of materials to be distributed as specified on the attached page:

- MBALL manual
- OSC Listing (including MBALL in EXOHEAT)
- A short description of the new 6-degree-of-freedom modification to the trajectory program BALLIS
- Update decks of MBALL and the 6-degree-of-freedom option for the OSC VI cycle.

If you have any questions concerning the above, contact the undersigned at 205-532-1355.

Warren Smith

LETTER OF TRANSMITTAL MSE79-BMDATC-4735

Enclosures:

Director
Ballistic Missile Defense
Advanced Technology Center
P. O. Box 1500
Huntsville, Alabama 35807

Letter of Transmittal
Manual

Attn: Max Hardwick, ATC-D

Ballistic Missile Defense System
Command
P. O. Box 1500
Huntsville, Alabama 35807

Letter of Transmittal

Attn: BMDSC-C

Defense Technical Information
Center
Cameron Station
Alexandria, Virginia 22314

Letter of Transmittal
Manual (2)

McDonnell Douglas Corporation
5301 Bolsa Avenue
Huntington Beach, California 92647

Letter of Transmittal

H.
Attn: W. Herdman
H. Ginell

MIT Lincoln Laboratory
P. O. Box 73
Lexington, Massachusetts 02173

Letter of Transmittal
Manual
Listing
Card Decks

Attn: Wade Kornegay

Nichols Research Corporation
7910 South Memorial Parkway
Suite A
Huntsville, Alabama 35802

Letter of Transmittal
Manual
Listing
Card Decks

Attn: C. Horgen

Sandia Laboratories
P. O. Box 5800
Albuquerque, New Mexico 87185

Letter of Transmittal
Manual
Listing
Card Decks

Attn: Bruce Bulmer

BALLIS EXO 6DOF ANALYTIC SOLUTION

Insert into OSC VII Basic Manual:

BALLIS 6DOF ADDITION: IKIND = 4

In order to save computer time for exoatmospheric 6 degree of freedom trajectories where two moments of inertia are equal, an analytic solution to Euler's equations with no external torques has been developed. Such a solution is valid for axi-symmetric bodies above the top of BALLIS's atmosphere ($\sim 10^6$ feet). The rationale for this modification is to reduce the computer time required by BALLIS. The same input is required for this option as for option: IKIND = 3, IKIND6 = 0. The option is accessed by inputting IKIND as 4 on Card 4A. Cards 4B, 5 and 6 are also required.

Insert into Table 4-11 Basic Manual:

IKIND

.....

=4 Exo-axisymmetric 6DOF Analytic Solution
Cards 5 and 6 required.

14) MN-SD-9-79-893

(6) THERMAL RESPONSE MODEL: MBALL

By

W. E. / Smith

September 1979

Sponsored By

BALLISTIC MISSILE DEFENSE ADVANCED TECHNOLOGY CENTER
DEPARTMENT OF THE ARMY
HUNTSVILLE, ALABAMA

Prepared By

OPTICAL SYSTEMS DEPARTMENT
SYSTEMS DIVISION
TELEDYNE BROWN ENGINEERING
HUNTSVILLE, ALABAMA

409 877

ABSTRACT

MBALL is a subroutine of EXOHEAT for surface temperature calculations for convex objects of light to intermediate thermal mass (in-depth heat conduction is not important). It includes surface conduction and internal radiative coupling between stations, using the natural fluxes (Sun, albedo, earthshine) calculated in EXOHEAT. MBALL must be used with the OSC VI BASIC option.

APPROVED BY:

J. V. Beaupre
Manager
Optical Signature Analysis Section

N. A. Passino
Deputy Manager
Optical Systems Department

TABLE OF CONTENTS

	Page
1. INTRODUCTION	1-1
1.1 MBALL Overview	1-1
1.2 MBALL Capabilities	1-1
2. FUNCTIONAL ANALYSIS	2-1
3. THEORY	3-1
3.1 Heat Equation	3-1
3.2 Solution of the Heat Equation	3-21
3.3 Open Surface Option	3-24
4. INPUT SPECIFICATIONS	4-1
4.1 Disc Utilization	4-1
4.2 Card Input	4-1
4.3 Accessing MBALL in the BASIC Option	4-9
5. EXAMPLES	5-1
5.1 Water-Jacketed Balloon	5-1
5.2 Replica	5-13
6. HINTS AND DIAGNOSTICS	6-1
7. REFERENCES	7-1

Accession For

NTIS GENIUS
DOD Test
Uncontrolled
J. A. Johnson
Litter Drift
FBI

A

LIST OF ILLUSTRATIONS

Figure	Title	Page
1-1	OSC VI Program Structure	1-2
2-1	Exoheat Program Structure	2-2
3-1	Target, Solar, Earth Geometry	3-6
3-2	Nosecap Geometry	3-8
3-3	Station Normals (Exterior)	3-9
3-4	Target Geometry	3-10
3-5	Nosecap Polar Angles	3-11
3-6	Radiation Exchange Geometry	3-12
3-7	Internal Radiation Geometry	3-15
3-8	Conduction Geometry	3-17
4-1	Specific Heat and Enthalpy of Water	4-8
5-1	Balloon Example Input	5-2
5-2	Balloon Example Output	5-6
5-3	Replica Geometry	5-14
5-4	Replica Example Input	5-15
5-5	Replica Example Output	5-16

LIST OF TABLES

Table	Title	Page
1-1	MBALL Capabilities	1-3
3-1	Attitude Averages for Incidence Factors: $\hat{G}(\hat{n}, \hat{s}) =$ $\hat{n} \cdot \hat{s} \hat{\theta}(\hat{n} \cdot \hat{s})$	3-7
4-1	EXOHEAT (with MBALL) Disc Files	4-1
4-2	RVSNT Input Summary	4-2
4-3	EXOHEAT (with MBALL) Card Input Summary	4-4
4-4	OSC Thermophysical Property Code Words	4-9
4-5	Modeling the Heat of Fusion of Water	4-9
5-1	ρ , c_p , k for Water and Teflon	5-5

1. INTRODUCTION

1.1 MBALL OVERVIEW

Subroutine MBALL was developed to provide target surface temperatures in an exoatmospheric environment for balloon and replica shapes of light to intermediate thermal mass. These temperatures are used by the Optical Signatures Code (OSC) (Ref. 1) to generate long wavelength infrared (LWIR) signatures for threat discrimination analysis. It is necessary that vehicle geometry, deployment, and external flux information be supplied by the OSC VI to MBALL, which performs temperature calculations for thermally light objects.

The OSC execution sequence is shown in Figure 1-1. MBALL is located in the EXO/ENDO thermal response block as a subroutine of EXOHEAT.

1.2 MBALL CAPABILITIES

Table 1-1 is a summary of MBALL's capabilities. For each point of the vehicle surface at which temperatures are calculated, MBALL uses averages of in-depth material properties (assuming a layered skin of different materials) and computes an average temperature as if the skin were made up of one homogeneous material. This temperature is then assigned to the surface of the vehicle for signature generation.

FIGURE 1-1. OSC VI PROGRAM STRUCTURE

TABLE 1-1. MBALL CAPABILITIES

Targets	<ul style="list-style-type: none"> ● Thin to Intermediate Thermal Mass ● Replica or Balloon Shapes
Thermal Fluxes	<ul style="list-style-type: none"> ● Solar ● Albedo ● Earthshine ● Molecular <p style="text-align: right;">From EXOHEAT Subroutine (EXOENV)</p>
Station Coupling	<ul style="list-style-type: none"> ● Internal Radiation ● Thermal Conduction: Longitudinal and Transverse
Thermal Response	<ul style="list-style-type: none"> ● Phase Change Capability ● Thermal Properties Updated with Temperature
Data Base	<ul style="list-style-type: none"> ● Earthshine Data: Models Based on NIMBUS Observations (Ref. 2)/LOWTRAN4 Calculations ● Thermophysical Properties: OSC ● Thermophysical/Chemical Data Base: OSC
Options	<ul style="list-style-type: none"> ● Radiative Equilibrium (Thermal Mass = 0) ● Open Surfaces

2. FUNCTIONAL ANALYSIS

Target surface temperatures are determined in the OSC by EXOHEAT for exoatmospheric conditions (greater than 400 kft) or by RVTEMP for endoatmospheric conditions (less than 400 kft). These programs need target position, velocity, and deployment information as a function of trajectory time to compute the temperatures. This information is supplied by BALLIS or by the user. The temperatures are then used by BIDIREC to generate radiometric signatures, with material optical properties supplied by SELECT. BALLIS, EXOHEAT, RVTEMP, SELECT, and BIDIREC are all contained in the OSC and are called by the OSC program BASIC\$, depending on the user input.

MBALL is a subroutine of EXOHEAT and replaces EXOHEAT in-depth temperature calculations (i.e., replaces Subroutine EXOTMP) for objects of light to intermediate thermal mass. Heat flux calculations are performed in EXOHEAT (Subroutine EXOENV) for a given ballistic trajectory and vehicle geometry to determine external heating rates (from Sun, albedo, and Earth emission) and these are passed to MBALL, bypassing EXOHEAT's temperature subprograms. The vehicle geometry required by MBALL is computed in RVSNTH, a subroutine of BASIC\$. Previously, RVSNTH was used only with the endoatmospheric heating routine, RVTEMP, but has been modified to supply MBALL with the necessary parameters. RVSNTH does not calculate SELECT or BIDIREC data when MBALL is called, however, so the inputs to SELECT and BIDIREC must be supplied by the user. The calculations that determine the external heating fluxes are described in the EXOHEAT manual (Ref. 3) (written before the MBALL option existed). Reference 1 contains the input to SELECT and BIDIREC. Figure 2-1 shows the EXOHEAT program flow. A description of how MBALL is called in the BASIC option is in Section 4.

FIGURE 2-1. EXOHEAT PROGRAM STRUCTURE

3. THEORY

3.1 HEAT EQUATION

The heat equation expressing the time rate of change of temperature T at any point in a material of density ρ , thermal conductivity k , and specific heat c_p , with an internal energy source density S , can be written:

$$\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \vec{\nabla T}) + S \quad (3-1)$$

where the term $k\vec{\nabla}T$ can be thought of as an energy density, whose divergence gives an energy source density. The term $\vec{\nabla}T$ is the spatial gradient of the temperature.

In MBALL, the thermally light skin of a replica or balloon shape is modeled by dividing it into N pieces defined by the user, where each piece has associated with it an outer surface, an inner surface, and up to four surfaces that adjoin adjacent pieces. The outer surface communicates with the external environment via radiative coupling, the inner surface communicates with the other interior surfaces in the same manner, and the adjoining surfaces communicate through heat conduction. Each piece also has an associated density, specific heat, and thermal conductivity. The values chosen for these quantities for a given piece, say the j th piece, are an appropriate average of the exact values taken over the volume of the piece. By integrating Equation 3-1 over the j th piece with this point in mind (the subscript j refers to average values), one obtains:

$$\int_{V_j} \rho_j c_{pj} \frac{\partial T_j}{\partial t} dV_j = \int_{\substack{\text{Areas} \\ \text{Bounding } V_j}} (k \vec{\nabla}T) \cdot \hat{n}_j dA_j \quad (3-2)$$

where \hat{n}_j is a unit normal pointing out of surface dA_j of piece j , and $S = 0$; i.e., the assumption is made that no independent sources of energy (batteries and wires) exist in the skin of our model. Because the

material quantities are averages, they can be taken as constant over the volume of integration. The area integral can be resolved into its component parts:

$$\rho_j c_{pj} V_j \frac{\partial T_j}{\partial t} = \int_{A_j \text{ outer surface}} (\vec{kV}T) \cdot \hat{n}_j dA_j + \int_{A_j \text{ inner surface}} (\vec{kV}T) \cdot \hat{n}_j dA_j \\ + \int_{A_j \text{ adjoining surfaces}} (\vec{kV}T) \cdot \hat{n}_j dA_j . \quad (3-3)$$

The boundary conditions for the outside and inside surfaces of the jth piece can be written as follows, where the jth piece is assumed to radiate as a greybody with temperature T_j and emissivity ϵ_j :

$$\hat{n}_j \cdot \vec{kV}T = -\epsilon_j \sigma T_j^4 + Q_{ext,j} \text{ (outside)} \quad (3-4)$$

$$\hat{n}'_j \cdot \vec{kV}T = -\epsilon'_j \sigma T_j^4 + Q_{int,j} \text{ (inside)} \quad (3-5)$$

where prime marks denote internal normals and emissivities, and σ is the Stefan-Boltzmann constant. $Q_{ext,j}$ is the average power/area incident on the exterior of piece j and is due to the external environment. $Q_{int,j}$ is the average power/area striking the interior of piece j and is due to the other radiating pieces.

Substituting Equations 3-4 and 3-5 into Equation 3-3 for the appropriate surface integrals yields:

$$\rho_j c_{pj} V_j \frac{\partial T_j}{\partial t} = \int_{A_j \text{ outer}} (Q_{ext,j} - \epsilon_j \sigma T_j^4) dA_j \\ + \int_{A_j \text{ inner}} (Q_{int,j} - \epsilon'_j \sigma T_j^4) dA_j + \int_{A_j: \text{ adjoining}} (\vec{kV}T) \cdot \hat{n}_j dA_j . \quad (3-6)$$

Because these are averages, and assuming $A_{outer} = A_{inner}$
(thin skin):

$$\rho_j c_{pj} V_j \frac{\partial T_j}{\partial t} = Q_{ext,j} A_j + Q_{int,j} A_j - (\epsilon_j + \epsilon'_j) \sigma T_j^4 A_j + \sum_{\substack{\text{adjoining} \\ \text{areas}}} A_{\text{adjoining}} k_{eff} \frac{T_{\text{adjoining}} - T_j}{\Delta X_{j:\text{adjoining}}} \quad (3-7)$$

where the conduction integral of Equation 3-6 has been approximated by a sum over all adjoining surfaces of the piece j. The terms $A_{\text{adjoining}}$, k_{eff} , $T_{\text{adjoining}}$, and $\Delta X_{j:\text{adjoining}}$ refer to the contact area between piece j and its neighbor, a properly averaged thermal conductivity between piece j and its neighbor (discussed below), the average temperature of the adjoining piece, and the distance between the centers of j and its neighbor, respectively.

It is convenient to rewrite Equation 3-7 in the following way to simplify the bookkeeping:

$$\rho_j c_{pj} V_j \frac{\partial T_j}{\partial t} = Q_{ext,j} A_j + \sum_i M_{ij} T_i + \sum_i K_{ij} T_i \quad (3-8)$$

where the matrices M_{ij} and K_{ij} contain the radiation and conduction terms, respectively, which are discussed in detail below. The sums are over all pieces, including the jth.

Because of the need to model materials that have rapidly changing specific heats as a function of temperature (i.e., water near 0°C), it is necessary to generalize the left-hand side of Equation 3-8:

$$\rho_j c_{pj} V_j \frac{\partial T_j}{\partial t} \longrightarrow \rho_j V_j \frac{\partial}{\partial t} \int_{T_{0j}}^{T_j} c_{pj}(T'_j) dT'_j \quad (3-9)$$

where T_{oj} is the initial temperature of piece j , and T_j is the temperature after some time t . Thus, the equation solved for T_j by MBALL can be written:

$$\rho_j V_j \frac{\partial}{\partial T} \int_{T_{oj}}^{T_j} c_{pj} (T_j'') dT_j'' = Q_{ext,j} A_j + \sum_i M_{ij} T_i^4 + \sum_i K_{ij} T_i . \quad (3-10)$$

The linearization of the left- and right-hand sides necessary for an iterative solution for T_j is described in detail in Section 3.

3.1.1 External Sources

There are four natural external sources of radiation considered: sunshine, albedo, earthshine, and molecular collisional heating. These parameters are calculated in EXOHEAT and are passed to MBALL. Reference 3 contains a complete discussion of these quantities.

- Sunshine - A solar exoatmospheric irradiance of 1353 W/m² is assumed. The Sun position is input in one of three ways:
 - ▲ Subsolar point input: latitude and longitude
 - ▲ Subsolar point calculated from month, day, GMT
 - ▲ Subsolar point calculated from month, day, local (24-hour) time at a given longitude
- Albedo - The reflectivity (α) of the sunlit Earth is assumed to be 0.4. The albedo radiance of a sunlit element of the Earth is

$$N_a = \frac{\alpha S \cos \theta}{\pi} \quad (3-11)$$

where S is the solar constant and θ is the angle between the Earth normal and the direction to the Sun.

- Earthshine - Six Earth radiance maps are available to EXOHEAT, corresponding to day/night conditions for winter, summer, and equinox. Each map corresponds to a 5- by 5-deg latitude, longitude grid. The seasons are determined by the month, and Sun position determines the time of day. Reference 2 contains a magnetic tape appendix containing earthshine data. The earthshine map may be modified with NAMELIST/SOLAR input (Ref. 3, p. 6)
- Molecular - At altitudes below 10^6 ft, a molecular collisional heating flux is used of the value

$$Q_{\text{air}} = \frac{1}{2} \rho_{\text{air}} V^3 (\hat{n} \cdot \hat{v}) \quad (3-12)$$

where ρ_{air} is the air density and V is the velocity of the target.

The effect that the above contributions have on the energy incident on a given area element of the target depends on the geometry of the Sun, Earth, and target configuration, and where the area element is located on the target. Only the flux component normal to the area element is considered. Reference 3 contains a detailed description of how this problem is treated. Figure 3-1 shows the geometry.

EXOHEAT has the option of calculating three different flux averaging methods (Table 3-1):

- Instantaneous - Energy incident on a given target element is that which is determined by the instantaneous geometry (i.e., position of the Sun and Earth, and location of the element on the target)
- Roll-Averaged - Energy incident on a given target element is the normalized average of the energy the element would see through a full revolution about the target longitudinal axis; therefore, all elements lying in a ring centered on the body axis experience the same incident energy.
- 4π Average - Incident energy is the normalized average of the energy that the element would see through a "tumble" over 4π steradians. All elements on the target receive the same incident energy.

FIGURE 3-1. TARGET, SOLAR, EARTH GEOMETRY

TABLE 3-1. ATTITUDE AVERAGES FOR INCIDENCE FACTORS:
 $G(\hat{n}, \hat{s}) = \hat{n} \cdot \hat{s} \theta(\hat{n} \cdot \hat{s})$

MODE*	$\langle G \rangle$	COMMENT
1	G	Not averaged. Instantaneous heat flux calculation
2	$\frac{1}{2\pi} \int_0^{2\pi} d\beta G$	Roll averaged
3	$\frac{1}{4\pi} \int d\Omega(\hat{s}) G = \frac{1}{4}$	4π average: fast random tumbling

*Input parameter

MBALL has the capability of treating transverse as well as longitudinal heat conduction as described below, so mode 1, instantaneous heating rate, is necessary to make use of this ability.

3.1.2 Internal Sources, Vehicle Geometry, Radiation Matrix

MBALL considers radiative coupling between the inner surfaces of a replica or balloon shape. It is possible to model a completely closed structure, or one in which the baseplate has been removed (see Section 3.3). No internal source of energy, such as batteries or wires, are included.

The user has the choice of modeling either a balloon (sphere) or an axially symmetric replica that can have a spherical nosecap, up to three frusta, and a flat baseplate. It is necessary to input the length of the nosecap such that it meets the first frustum tangentially (Figure 3-2). The surface area of the vehicle can be divided into as many as 50 pieces, called stations, where each station has an outer and inner surface normal, an initial temperature, an average thickness,

R_1 = RADIUS OF NOSECAP
 L_1 = LENGTH OF NOSECAP
 Q = CONE ANGLE OF FIRST FRUSTUM
 $L_1 = R_1 (1 - \sin Q)$

FIGURE 3-2. NOSECAP GEOMETRY

specific heat, thermal conductivity, solar absorptance, outside emissivity, inside emissivity, and density defined by the user. All stations on the nose section (nose, frustum, and base are sections) have the same areas, which are calculated by the program RVSNTH. The orientation of the outer normal of each station is defined by the angle it makes with the z axis (looking toward the nose) and the roll angle ϕ (Figure 3-3). The running length, RL , distance from the nose along the axis z, and the distance from the axis, r , of the center of the station are calculated in RVSNTH (Figure 3-4). The polar and azimuthal angles are input by the user to EXOHEAT to determine the external heating rates. The polar angles for the normals on the frusta and base are chosen to agree with their respective slopes, but the choice for the polar angles on the spherical nose stations should be done such that all nose stations have equal areas (Figure 3-5). This ensures a consistent treatment of external and internal radiation in EXOHEAT and MBALL. The roll angle ϕ is measured counterclockwise from the vehicle x axis, looking from the nose to the base (Figure 3-3).

THIS EXAMPLE HAS 7 LONGITUDINAL BY 4 AZIMUTHAL = 28 STATIONS TOTAL

NUMBERING OF STATIONS
 INCREASES LONGITUINALLY:

ϕ_1 :	STATION 1-7
ϕ_2	8-14
ϕ_3	15-21
ϕ_4	22-28

VEHICLE AS VIEWED FROM THE FRONT

FIGURE 3-3. STATION NORMALS (EXTERIOR)

r_i^* : DISTANCE FROM AXIS (ft)

z_i^* : DISTANCE FROM NOSE (ft)

RL_i^* : RUNNING LENGTH (ft)

A_i^* : STATION AREA (ft^2)

t_i : THICKNESS (THK) (ft)

*CALCULATED IN RVSNT

NOTE: θ_i IS NOT PASSED TO EXOHEAT BY RVSNT, AND MUST BE CALCULATED BY THE USER FOR EXOHEAT INPUT, SEE FIGURE 3-5.

FIGURE 3-4. TARGET GEOMETRY

FIGURE 3-5. NOSECAP POLAR ANGLES

The stations can be distributed over the sections as desired, with the only restriction being that the number of roll angles times the number of polar angles be less than or equal to 50. Thus, it is possible to have 50 longitudinal stations along a single ϕ , or 50 azimuthal stations at a single longitudinal position.

There is a small ambiguity in the term "station" as used in the RVSNT input. There, it means the number of stations on a given section, assuming only a single roll angle. The program automatically multiplies this by the number of roll angles to get the correct number of stations on the section.

The balloon is handled similarly to the replica, keeping in mind the criteria of equal areas for the determination of the polar angles.

Section 4 describes the input to RVSNT and EXOHEAT.

The radiation matrix, M_{ij} , will now be derived. The power, d^4P , incident on an area dA_j from a blackbody source of area dA_i can be written as (see Figure 3-6):

FIGURE 3-6. RADIATION EXCHANGE GEOMETRY

$$d^4P_j = \frac{\epsilon_j \sigma T_i^4}{\pi} \frac{\cos \alpha_i \cos \alpha_j}{|\vec{r}_{ij}|^2} dA_i dA_j \quad (3-13)$$

where

- α_i, α_j - the angles the normals to dA_i, dA_j make with \hat{r}_{ij} , the vector pointing from dA_i to dA_j
- ϵ_j - the emissivity of the piece j
- T_i - the temperature of the source
- σ - the Stefan-Boltzmann constant.

The source surface over which Equation 3-13 is integrated is the interior surface of the replica or balloon model, which has been divided into N stations as described previously. Because the temperature and internal emissivity, ϵ' , of each station are average values over the station, the integral of Equation 3-13 over the entire inner surface (excluding $\vec{r}_{ij} = 0$) can be written as a sum over each station surface with ϵ' , T outside the integral, which results in:

$$\frac{d^2 P_j}{dA_j} = \epsilon_j \sigma \sum_i g_{ij}^{BB} T_i^4 \quad (3-14)$$

where g^{BB} , the blackbody radiation exchange matrix, is given by

$$g_{ij}^{BB} = \frac{1}{\pi} \int dA_i \cos \alpha_i \cos \alpha_j / |\vec{r}_{ij}|^2 . \quad (3-15)$$

To take into account the fact that the sources on the interior are not blackbodies, one replaces g^{BB} in Equation 3-14 by

$$g^T = [g^{BB^T} (1 - \rho' g^{BB^T}) \epsilon'] \quad (3-16)$$

where g is the true radiation exchange matrix and superscript T stands for "transposed". The reflectivity ρ' is given by $\rho' = 1 - \epsilon'$.

For a closed surface, one has

$$\sum_i g_{ij} = \sum_i g_{ij}^{BB} = 1. \quad (3-17)$$

Holes/open surfaces are correctly treated by setting $\epsilon'_i = p'_i = 0$ for the surfaces transparent to radiation in the calculation of g . Equation 3-17 no longer applies to g if some surfaces are transparent.

The total power incident on A_j is approximated by

$$P_j = \epsilon'_j A_j \sigma \sum_i g_{ij} T_i^4. \quad (3-18)$$

The key to the calculation of g is, by Equation 3-16, the calculation of g_{ji}^{BB} . The calculation of g_{ji}^{BB} is accomplished by the subdivision of A_j into η longitudinal strips with center positions \vec{r}_{mj} , and a numerical integration is performed:

$$g_{ji}^{BB} = \frac{A_j}{\pi \eta} \sum_{m=1}^{\eta} \cos \alpha_{(j,m)} \cos \alpha_{(i,m)} / |\vec{r}_{mj}|^2. \quad (3-19)$$

To ensure that no serious errors result from this numerical procedure, Equation 3-17 is imposed on g^{BB} .

Excluding external sources for the moment, the total radiation flux into A_j is the amount incident from the interior minus the internal and external emission of A_j :

$$P_j \text{ TOTAL} = \left[-\sigma(\epsilon_j + \epsilon'_j) T_j^4 + \sigma \sum_i \epsilon'_j T_i^4 g_{ij} \right] \cdot A_j \quad (3-20)$$

which can be written as:

$$P_j \text{ TOTAL} = \sum_i M_{ij} T_i^4 \quad (3-21)$$

FIGURE 3-7. INTERNAL RADIATION GEOMETRY

where

$$M_{ij} = \left[-\sigma(\epsilon_j + \epsilon_j') \delta_{ij} + \sigma \sum_i \epsilon'_j g_{ij} \right] \cdot A_j \quad (3-22)$$

with $\delta_{ij} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$.

The term g_{ii} , the "self contribution", can be understood as a correction to the energy radiated away internally by a curved piece. One edge of the piece radiates back toward the opposite edge, thus reducing the total outward energy flow.

3.1.3 Conduction Matrix

Equation 3-7 expressed the conduction integral of Equation 3-6 as a sum over adjoining areas of the jth piece:

$$\int_{A_j: \text{adjoining}} (\vec{k} \nabla T) \cdot \hat{\eta}_j dA_j + \sum_{\text{adjoining}} A_{\text{adjoining}} \cdot k_{\text{eff}} \frac{T_{\text{adjoining}} - T_j}{\Delta X_{j:\text{adjoining}}} \quad (3-23)$$

where all terms are defined below Equation 3-7. This sum can be expanded into its component terms by keeping in mind how the target surface has been divided:

$$\begin{aligned} \sum_{\text{adjoining}} A_{\text{adjoining}} k_{\text{eff}} \frac{T_{\text{adjoining}} - T_j}{\Delta X_{j:\text{adjoining}}} &= \frac{A_{(\ell-)} k_{\text{eff}}(j-\theta, j) (T_{j-\theta} - T_j)}{\Delta X_{j-\theta, j}} \\ &+ \frac{A_{(\ell+)} k_{\text{eff}}(j+\theta, j) (T_{j+\theta} - T_j)}{\Delta X_{j+\theta, j}} \\ &+ \frac{A_{(T-)} k_{\text{eff}}(j-\phi, j) (T_{j-\phi} - T_j)}{\Delta X_{j-\phi, j}} \\ &+ \frac{A_{(T+)} k_{\text{eff}}(j+\phi, j) (T_{j+\phi} - T_j)}{\Delta X_{j+\phi, j}} \end{aligned} \quad (3-24)$$

where $j \pm \theta$, $j \pm \phi$ label the pieces adjacent to the jth piece, in the longitudinal and azimuthal directions, respectively (see Figure 3-8). The remaining terms are defined as:

$$A_{(\ell \pm)} = \Delta\phi \left(\frac{r_j + r_{j \pm \theta}}{2} \right) \left(\frac{t_j + t_{j \pm \theta}}{2} \right) \quad (3-25a)$$

FIGURE 3-8. CONDUCTION GEOMETRY

where

$$\Delta\phi = \frac{1}{2} (\phi_j + \phi_{j+\theta}) - \frac{1}{2} (\phi_j + \phi_{j-\theta}) \quad (3-25b)$$

$$A_{(T\pm)} = \left[\left(\frac{RL_{j+\theta} + RL_j}{2} \right) - \left(\frac{RL_j + RL_{j-\theta}}{2} \right) \right] \left(\frac{t_j + t_{j+\theta}}{2} \right) \quad (3-25c)$$

$$\Delta X_{j\pm\theta, j} = \pm (RL_{j\pm\theta} - RL_j) \quad (3-25d)$$

$$\Delta X_{j\pm\theta, j} = |\phi_{j\pm\theta} - \phi_j| \left(\frac{r_j + r_{j\pm\theta}}{2} \right) \quad (3-25e)$$

$$k_{eff}(n, \xi) = \frac{2}{\frac{1}{k_n} + \frac{1}{k_\xi}} \quad \text{where } n, \xi = j, j\pm\theta, j\pm\phi \quad (3-25f)$$

and where r , ϕ , t , RL are defined in Figure 3-4.

By defining longitudinal and transverse conduction coefficients of the form:

$$\alpha_{j\pm\theta} = \frac{A_{(\ell\pm)} k_{eff}(j\pm\theta, j)}{\Delta X_{j\pm\theta, j}} \quad (3-26a)$$

$$\beta_{j\pm\phi} = \frac{A_{(T\pm)} k_{eff}(j\pm\phi, j)}{\Delta X_{j\pm\phi, j}} \quad (3-26b)$$

Equation 3-24 can be written as:

$$\sum_{\text{adjoining}} A_{\text{adjoining}} k_{eff} \frac{T_{\text{adjoining}} - T_j}{\Delta X_{j:\text{adjoining}}} = \alpha_{j-\theta} T_{j-\theta} + \alpha_{j+\theta} T_{j+\theta} + \beta_{j-\phi} T_{j-\phi} + \beta_{j+\phi} T_{j+\phi} - T_j (\alpha_{j-\theta} + \alpha_{j+\theta} + \beta_{j-\phi} + \beta_{j+\phi}). \quad (3-27)$$

Thus, by defining a conduction matrix of the form

$$k_{ij} = \begin{bmatrix} -(a_{1+0} + a_{1-0} + a_{1-1}) & a_{1+0} & 0 & \dots & a_{1+0} & 0 & 0 & \dots & a_{1-0} & 0 & 0 & 0 \\ a_{1+0} & -(a_{1+0} + a_{2+0} + a_{2-0}) & a_{2+0} & \dots & 0 & a_{2+0} & 0 & \dots & 0 & a_{2-0} & 0 & 0 \\ 0 & a_{2+0} & -(a_{2+0} + a_{3+0} + a_{3-0}) & \dots & 0 & 0 & a_{3+0} & \dots & 0 & 0 & a_{3-0} & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

(3-28)

The sum (including $i = j$) $\sum k_{ij} T_i$ will contain all conduction terms associated with the j th piece, so that Equation 3-27 can be written as:

$$\sum_{\text{adjoining}} A_{\text{adjoining}} k_{\text{eff}} \frac{T_{\text{adjoining}} - T_j}{\Delta X_{j:\text{adjoining}}} = \sum_i K_{ij} T_i. \quad (3-29)$$

MBALL updates the K_{ij} with the changing temperatures of the stations through the thermal conductivity k_{eff} , which is, in general, a function of the temperature.

Because the end pieces, i.e., the first nose piece or the last baseplate piece, have only one longitudinal conduction contribution, the appropriate elements of the matrix K_{ij} are set to zero.

3.1.4 Thermal Mass

The left side of Equation 3-10 can be written as:

$$\rho_j V_j \frac{d}{dt} \int_{T_{0j}}^{T_j} c_{pj}(T'') dT'' = \int_{T_{0j}}^{T_j} m_j dT_j'' \quad (3-30)$$

where $m_j = \rho_j V_j c_{pj}$ is defined as the thermal mass of the j th piece, and is, in general, a function of the temperature because it contains the specific heat. If the vehicle being modeled has a skin structure, i.e., if it is built up of layers of materials with different densities

and thermal properties, an appropriate average of these quantities must be made over all of the layers, because only a lumped thermal mass is treated in MBALL for each station. Equations 3-31 through 3-33 give the average density, specific heat, and thermal conductivity that are necessary:

$$\bar{\rho}_j = \sum_k \frac{\rho_{j,k} \Delta x_{j,k}}{\sum_k \Delta x_{j,k}} \quad (3-31)$$

$$\bar{c}_{pj} = \frac{\sum_k \rho_{j,k} \Delta x_{j,k} c_{pj,k}}{\sum_k \rho_{j,k} \Delta x_{j,k}} \quad (3-32)$$

$$\bar{k}_j = \frac{\sum_k \Delta x_{j,k} k_{j,k}}{\sum_k \Delta x_{j,k}} \quad (3-33)$$

where $\Delta x_{j,k}$, $\rho_{j,k}$, $c_{pj,k}$, and $k_{j,k}$ are the thickness, density, specific heat, and thermal conductivity, respectively, of the k th layer of piece j . Because the specific heat and thermal conductivity are input by the user for different temperatures, an appropriate \bar{c}_{pj} and \bar{k}_j should be input for each temperature. The temperature calculated for the j th piece by MBALL is the average temperature over the thickness of the skin. Rapidly varying specific heats are accounted for in the solution of the heat equation described in the next section.

The option exists to set the thermal mass to zero (BALL = 2) for thin skins, in which case the temperature of each station is solved for assuming radiative equilibrium:

$$(\epsilon_j + \epsilon_j') \sigma T_j^4 = Q_{ext,j} + Q_{int,j} \quad (3-34)$$

where $Q_{ext,j}$, $Q_{int,j}$ are the external and internal power per unit area, respectively, incident on the j th piece.

3.2 SOLUTION OF THE HEAT EQUATION

3.2.1 Linearization

For numerical calculations, it is necessary to linearize both the left- and right-hand side of Equation 3-10. Proceeding with the left-hand side first:

$$\frac{\partial}{\partial t} \int_{T_{0j}}^{T_j} m_j(T_j'') dT_j'' \rightarrow \frac{m_j(T_j')(T_j - T_j')}{\Delta t} + \frac{1}{\Delta t} \int_{T_{0j}}^{T_j'} m_j(T'') dT'' \quad (3-35)$$

where Δt is the time step, T_{0j} is the initial temperature of piece j , and T_j' is an estimated value for the new temperature T_j after the time Δt . The determination of Δt and T' is discussed below. Because the temperature change is being sought over a finite interval Δt , it is appropriate to replace the instantaneous value of the right-hand side of Equation 3-10 by a value averaged over the interval:

$$Q_{ext,j}(t) A_j + \sum_i (M_{ij} T_i^4 + K_{ij} T_i) \rightarrow Q_{ext,j}(t + \frac{\Delta t}{2}) A_j + \sum_i (M_{ij} \bar{T}_i^4 + K_{ij} \bar{T}_i) \quad (3-36)$$

where \bar{T}_i , the average temperature, is given by $\bar{T}_i = 1/2 (T_{oi} + T_i)$, with T_{oi} , T_i the old and new temperature of the i th piece, respectively, and the external flux $Q_{ext,j}$ is interpolated to the midpoint of the time interval. The \bar{T}_i^4 term can be linearized in the following way: expanding T_i^4 in a Taylor's expansion about an estimated final temperature T_i' :

$$T_i^4 = T_i'^4 + 4 T_i'^3 (T_i - T_i') \quad (3-37)$$

and substituting this expression for T_i in \bar{T}_i^4 yields (after a further approximation):

$$\bar{T}_i^4 \rightarrow \left[\frac{1}{2} (T_i' + T_{oi}) \right]^4 + 2 \left[\frac{1}{2} (T_i' + T_{oi}) \right]^3 \cdot (T_i - T_i') .$$

(3-38)

Defining the term $\bar{T}_i' = \frac{1}{2} (T_i' + T_{oi})$ for convenience, the full linearized heat equation can be written:

$$\begin{aligned} \frac{m_j (T_j') (T_j - T_j')}{\Delta t} + \frac{1}{\Delta t} \int_{T_{oj}}^{T_j'} m_j(T'') dT'' &= Q_{ext,j} \left(t + \frac{\Delta t}{2} \right) A_j \\ &+ \sum_i \left\{ M_{ij} \left[\bar{T}_i'^4 + 2 \bar{T}_i'^3 (T_i - T_i') \right] \right. \\ &\quad \left. + \frac{k_{ij}}{2} (T_{oi} + T_i) \right\} \end{aligned} \quad (3-39)$$

If the terms in Equation 3-39 are grouped to isolate T_j , the following equation results:

$$\sum_i c_{ij} T_i = B_j \quad (3-40)$$

where

$$c_{ij} = \begin{cases} \frac{m_j (T_j')}{\Delta t} - 2 M_{jj} \bar{T}_j'^3 - \frac{1}{2} k_{jj} & \text{for } i = j \\ - (2 M_{ij} \bar{T}_i'^3 + \frac{1}{2} k_{ij}) & \text{for } i \neq j \end{cases} \quad (3-41)$$

and

$$B_j = Q_{ext,j} \left(t + \frac{\Delta t}{2} \right) A_j + \frac{m_j(T_j') T_j'}{\Delta t} - \frac{1}{\Delta t} \int_{T_{0j}}^{T_j'} m_j dT \\ + \sum_i \left[M_{ij} (\bar{T}_i^4 - 2\bar{T}_i^3 \cdot T_i') + \frac{K_{ij}}{2} T_{oi} \right].$$

Equation 3-40 is solved for the T_j by matrix inversion, and if the T_j are within one-half of one percent of the estimated T_j' , the T_j are the new temperatures. Otherwise, the T_j become the estimated temperatures T_j' and Equation 3-40 is evaluated again for T_j . This process is repeated until the T_j are found.

3.2.2 Estimation of Δt , T'

It is important that the diagonals of the matrix c_{ij} be greater than zero, so that the time development is stable. Choosing the time step, Δt , such that

$$\Delta t < \frac{m_j (T_{0j})}{2M_{jj} T_{0j}^3 + 1/2 K_{jj}} \quad (3-43)$$

guarantees that the c_{ii} are all positive.

The estimated temperature, T_j' , is found by solving the heat equation with the right-hand side approximated by an expansion about the initial temperature T_{0j} :

$$\int_{T_{0j}}^{T_j'} m_j dT = \Delta t \left\{ \sum_i \left[M_{ij} T_{oi}^4 + K_{ij} T_{oi} + Q \left(t + \frac{\Delta t}{2} \right) A_j \right] \right. \\ \left. + (4 M_{jj} T_{0j}^3 + K_{jj}) (T_j' - T_{0j}) \right\}. \quad (3-44)$$

T_j' is then used to compute the specific heat at T_j' , $c_{pj}(T_j')$, and the time step is checked to ensure that

$$\Delta t < \frac{m_j(T_j')}{4 M_{jj} T_{oj}^3 + K_{jj}} . \quad (3-45)$$

If the time step does not satisfy Equation 3-45, a smaller step is chosen, and a new value for T_j' is found from Equation 3-44. This process is repeated until Δt is found to satisfy Equation 3-45. The time between trajectory points at which the temperatures are desired is used as the time step if this time is smaller than that defined by Equation 3-45.

3.3 OPEN SURFACE OPTION

It is possible to remove any station (more than one station may be removed) from the replica or balloon shape to simulate an open surface (hole) at that station. This is accomplished by setting the initial temperature of the station equal to 0°R on material property card 6.1 (Table 4-3). The conductivity and radiative coupling of any open station to the rest of the vehicle is set equal to zero. Any external fluxes entering the vehicle through the open station are neglected, however, so the percentage of open surface to total vehicle surface should be small to minimize the error in determining the true flux on an interior surface. Thus the total number of removed stations should be small.

An average temperature is assigned to an open surface for signature calculations in BIDIREC. This average temperature is representative of the internal energy that is passing through the hole from the interior. The average temperature of the missing station, \bar{T}_{open} , is found by evaluating:

$$\bar{\epsilon} \bar{T}_{open}^4 = \sum_i \epsilon_i' g_{i,open} T_i^4 \quad (3-46)$$

Because this is an approximation, the internal emissivities, ϵ_i' , are assumed to be about the same, and they cancel with the average emissivity, $\bar{\epsilon}$. The $g_{i,open}$ term is the geometric factor for the i th surface as seen by the open surface.

4. INPUT SPECIFICATIONS

4.1 DISC UTILIZATION

MBALL requires the disc files used in EXOHEAT for its operation. Table 4-1 summarizes the necessary tapes and their utilization.

The thermophysical data (15) may be input by the user. The trajectory data (7) and earthshine data (4) must be input in the BASIC option. Note, however, that the user can supply trajectory data to tape 7 by using the trajectory card input option (Ref. 1).

TABLE 4-1. EXOHEAT (WITH MBALL) DISC FILES

DEVICE/ TAPE	UTILIZATION	ORIGIN
4	Earthshine Data	OSC Data Base
7	Trajectory Data	BALLIS/BASIC
15	Thermophysical Data	OSC Data Base
16	Temperature	MBALL
23	Vehicle Geometry	RVSNTB/BASIC

4.2 CARD INPUT

The MBALL card input consists of two parts: RVSNTB input and EXOHEAT input.

RVSNTB calculates the necessary geometrical parameters for MBALL from a modest user input (for both replica and balloon shapes). The user must be careful, however, to enter the nosecap polar angles [THET(I)] in the EXOHEAT input that are calculated by RVSNTB (see Figure 3-5) because RVSNTB does not pass them to EXOHEAT. RVSNTB input is displayed in Table 4-2.

TABLE 4-2. RVSNT INPUT SUMMARY

CARD COLUMN	VARIABLE	FORMAT	UNITS	DESCRIPTION
FIRST CARD: TITLE (FORMAT 3A4)				
1-12	(NTI(I), I = 1,3)	3A4		RV title
SECOND CARD: UNIT DESIGNATOR (FORMAT I3)				
1-3	FLAG	I3		Designates what units of length the input is in: = 1, ft = 3, cm = 2, in. = 4, m
THIRD CARD: NOSECAP (FORMAT I5, 5X, 2F10.4, I5)				
1-5	N	I5		Number of stations on nose cap
11-20	R1	F10.4	(FLAG)	Nosecap radius (or balloon radius)
21-30	L1	F10.4	(FLAG)	Length of nosecap*† (or balloon diameter)
31-35	KROL	I5		Number of azimuthal divisions
FOURTH CARD: FRUSTA CONTROL (FORMAT I5, 5X, F10.4)				
1-5	MN	I5		Number of frusta (3 maximum)
11-20	Q	F10.4	deg	Cone angle of first frustum
FRUSTRA CARDS: (ONE PER FRUSTUM) (FORMAT I5, 5X, 2F10.4)				
1-5	N	I5		Number of stations on frustum
11-20	Q	F10.4	deg	Cone angle
21-30	L1	F10.4	(FLAG)	Length of frustum
BASE CARD (FORMAT F5.0)				
1-5	AN	F5.0		Number of stations on base

*See Figure 3-2 for replica.

†If balloon shape is desired, L1 = 2 × R1 and the third card is the last RVSNT card.

The first card contains the user's title (up to 12 letters). The second card defines the units in which the target dimensions are input (these are changed internally to feet for MBALL). The nosecap information is input on the third card: N, the number of stations refers to the number of longitudinal stations along a single running length of the nosecap. The total number of nosecap stations is KROL X N. For a replica shape, the nosecap must fit tangentially to the first frustum, so that L1 is computed by the user according to Figure 3-2. If a balloon shape is desired (i.e., sphere), the user should set L1 equal to twice R1. RVSNT bypasses the frustum calculations when $L1 = 2 \times R1$, so the nosecap card is the last RVSNT card when a balloon shape is desired. For the replica shape, the next card sets the number of frusta and defines the first cone angle, and this card is followed by a card for each frustum. Again, the total number of stations on each frustum is $N \times KROL$. Finally, the base card contains the number of longitudinal stations on the base (in F format), to be multiplied by KROL to get the total number of base stations.

EXOHEAT input is shown in Table 4-3. The first card is the NAMELIST/SOLAR data. This defines the earthshine mission map. The format for this card is (note the leading blank denoted by the b):

```
b$SOLAR ITYP = ...,$
```

with the variables separated by commas. A \$ ends the namelist.

The next card set defines all station normals by their azimuthal and polar angles. The polar angles, THET(I), should agree with those calculated by RVSNT (see Figure 3-5).

Card 3.1 determines the external flux averaging mode (see Table 3-1). MODE = 1 allows the full use of MBALL's capability for azimuthal, as well as longitudinal, heat conduction. In MODE = 2 (roll average), all azimuthal stations experience the same roll averaged external fluxes. Azimuthal conduction can still be important in this case, however, if adjacent stations have different thermal masses or thermal properties.

TABLE 4-3. EXOHEAT (WITH MBALL) CARD INPUT SUMMARY

NATURAL ENVIRONMENT SPECIFICATION	
NAMELIST/SOLAR	
VARIABLE	DESCRIPTION
ITYPE	Sun position option = 1 - Subsolar latitude and longitude (SLAT, SLON) input = 2 - Subsolar point calculated from MONTH, IDAY, HOUR, where HOUR is GMT time = 3 - Subsolar point calculated from MONTH, IDAY, HOUR, ELG, where HOUR is local Sun time at longitude ELG
SLAT	Sun latitude (deg)
SLON	Sun longitude
MONTH	Month of year - 1 to 12
IDAY	Day of month - 1 to 30
HOUR	24 hr time (1:15 p.m. ~ 13.25)
ELG	Reference longitude for local time (deg)
IPRINT	Earthshine map printing option = 0 - Do not print earthshine radiances ≠ 0 - Print earthshine map
ICLD	Cloud cover option = 0,1 - Average seasonal geographic earthshine = 2 - Cloudy radiance reduction = 3 - Clear radiance enhancement = 4 - Statistical - random geographical variation between clear and cloudy = 5* - Clear and cloudy sections are positioned over the Earth = 6* - Same as ICLD = 5, but different albedos are used for water, land, vegetation, snow, and ice on the Earth's surface.

*See Table 4-20, Reference 1.

TABLE 4-3 - Continued

BODY SHAPE			
CARD	PARAMETER	FORMAT	DESCRIPTION
2.1	KROL	I5	Numbers of azimuthal divisions
2.2	(ROLL(I), I=1, KROL)	8F10.5	Azimuthal angle (deg)
2.3	KTHET	I5	Number of polar angles
2.4	(THET(I), I=1, KTHET)	8F10.5	Polar angles (deg)*
FLUX AVERAGING MODE			
3.1	MODE	I5	= 1 - Instantaneous = 2 - Roll averaged fluxes = 3 - Spherical averaged fluxes
BALLOON OPTION			
NAMELIST/IBALL			
VARIABLE	DESCRIPTION		
BALL [†]	= 2 - Radiative equilibrium = 3 - Thermal mass used		
CONDUCTION SPECIFICATION			
CARD	PARAMETER	FORMAT	DESCRIPTION
5.1	COND FLAG	(5X,L5, F5.2)	T = Conduction F = No conduction 0 = Thermal prop. updated with time 1 = Thermal prop. not updated

*Nosecap THET(I) should agree with polar angles calculated in RVSNTM (see Figure 3-5).

[†]BALL must equal 2 or 3 for MBALL to be called.

TABLE 4-3 - Concluded

MATERIAL PROPERTY SPECIFICATION			
(One card for each station)		The station index for the Mth roll angle and Nth polar angle is $I = (M-1) \cdot KTHET + N$	
CARD	PARAMETER	FORMAT	DESCRIPTION
6.1	JMAT	(I10, 2F10.5)	Material identification code word >200 - data taken from OSC data base <200 data taken from card sets composed of card types 7.1 and 7.2
	THK		Material thickness (ft)
	TOLD		Initial temperature* ($^{\circ}$ R)
If some of JMATS are less than 200 material property data will be input on these cards			
7.1	NCP	(I5, 7F10.2)	Number of temperatures and number of 7.2 cards
	DENS		Density (lb/ft^2)
	E0		Outside emissivity
	EI		Inside emissivity
	AL		Absorptance
7.2	TEMP	(3E12.5)	Temperature ($^{\circ}$ R)
	CP		Specific heat ($\text{Btu}/\text{lb}/^{\circ}\text{R}$)
	TCON		Thermal conductivity ($\text{Btu}/\text{ft}/^{\circ}\text{R}/\text{sec}$)

*TOLD = 0 for an open surface

The next card is NAMELIST/IBALL input. If BALL = 2, a zero thermal mass is assumed for all of the stations, and Equation 3-34 is solved for the temperatures. BALL = 3 uses the complete thermal mass solution of Section 3. BALL must equal two or three for MBALL to be called. The format for this namelist is:

```
b$IBALL    BALL = 2(or 3)      $
```

Card 5.1 chooses the two options: conduction on/off, and thermal properties updated/not updated with time.

Card set 6 defines the material, thickness, and initial temperature of each station (one card per station). An open station is flagged by setting its initial temperature equal to 0. If JMAT is greater than 200, the thermophysical properties are taken from the OSC data base. Table 4-4 contains the OSC thermophysical property code words. If JMAT is less than or equal to 200, the thermophysical properties must follow card set 6. If a station is built up of layers of different materials, an appropriate average of their thermophysical properties over the thickness of the skin should be input in card set 7 (see Equations 3-31 through 3-33). Card set 7 is read whenever a JMAT less than or equal to 200 is encountered that is different from the previous station's JMAT.

To model a phase change, the specific heat can be thought of as a spiked function of the temperature, as is shown in Figure 4-1(a). The enthalpy, or energy content per unit mass of the station material, is the area under curve (a), and is shown in (b). The area of the shaded spike of curve (a) corresponds to the heat of fusion or heat of vaporization of a unit mass of material. In the case of water, this area would correspond to about 144 Btu/lb for the heat of fusion. Table 4-5 is a tabulation of the curve of Figure 4-1(a). Note that the width of the spike was chosen to be 1°R, but a smaller width may be chosen if the c_p is increased so that the area under the spike remains 144 Btu/lb.

(a)

(b)

FIGURE 4-1. SPECIFIC HEAT AND ENTHALPY OF WATER

TABLE 4-4. OSC THERMOPHYSICAL PROPERTY CODE WORDS

CODE WORD	MATERIAL
201	Carbon phenolic
202	Graphite
203	Silica phenolic, asbestos phenolic
204	Fused silica
205	Teflon
206	Porous stainless steel
207	Aluminum
208	Beryllium

TABLE 4-5. MODELING THE HEAT OF FUSION OF WATER

TEMPERATURE ($^{\circ}$ R)	c_p (Btu/lb/ $^{\circ}$ R)
480.00	0.5 (approx.)
491.49	0.5 (approx.)
491.50	144.5
492.50	145.0
492.51	1.0 (approx.)
500.00	1.0 (approx.)

4.3 ACCESSING MBALL IN THE BASIC OPTION

MBALL is accessed in the BASIC option (note that Reference 1 and 3 do not contain MBALL) if the BASIC parameters HEATRV = EXOHEAT and TARGSYN = YES (this calls RVSNT). References 1 and 3 state that RVSNT should not be used with EXOHEAT, but this has been changed with the addition of MBALL. To compute signatures from the MBALL temperatures, input is necessary for SELECT and BIDIREC, because the modified RVSNT program does not compute the necessary parameters to these programs. Reference 1 describes SELECT and BIDIREC input.

5. EXAMPLES

5.1 WATER-JACKETED BALLOON

The first example (Figure 5-1) demonstrates the modeling of a water-jacketed balloon 1 m in radius consisting of an outer and inner skin of 1/32-in. teflon, supporting a 1/8-in. layer of water. It is necessary to average the density, specific heats, and thermal conductivities of the water and teflon over the layers of the balloon. The balloon's surface is divided into 36 stations of equal area. Table 5-1 shows the values chosen to represent the specific heat of water to model the phase change at 492 °R, and the specific heat of teflon. Also shown are the respective thermal conductivities. The averages used in the inputs were determined from Equations 3-31 through 3-33.

Trajectory cards have been input to place the balloon over the north pole with the axis of the balloon parallel to the axis of the Earth. The Sun is at 0° longitude and 0° latitude. The initial temperature of the entire balloon is 500 °R. Even though SELECT and BIDIREC input is present, the output from these programs is suppressed.

The MBALL output (Figure 5-2), following the average fluxes from the Sun, Earth, and molecular heating from EXOHEAT, is as follows for each station (units are in feet): the station area, perpendicular and parallel components of the station normal with respect to the vehicle axis, distance from the axis (r), distance along the axis (z), running length, and thermal mass (Btu/°R). The terms RAD and COND give an estimate of the initial radiation and conduction flow, respectively, involving the particular station. TMTP is the estimated time step Δt given by dividing the thermal mass TMASS by the sum of RAD and COND (this is one-half the Δt of Equation 3-43). ALF, EOUT, and EIN are the solar absorptivity and outside and inside emissivities, respectively. The temperatures (°R) are then output for each station.

CARD	1	11	21	31	41	51	61	71
1	BASIC							
2	TF2J	CARDS	SLATE	SOLAT	MATER	CALC	SIGMA	CALC
3	TFGL_YN	VCS						
4	7							
5	5.	9.						
6	11.	15.						
7	15.	24.						
8	31							
10	6.	3261.771	3.335.021	3281.8	2000.	90.		
11	12.	3261.771	3.335.021	3281.8	2000.	90.		
12	18.	3261.771	3.335.021	3281.8	2000.	90.		
13	24.	3261.771	3.335.021	3281.8	2000.	90.		
14	30.	3261.771	3.335.021	3281.8	2000.	90.		
15	36.	3261.771	3.335.021	3281.8	2000.	90.		
16	42.	3261.771	3.335.021	3281.8	2000.	90.		
17	48.	3261.771	3.335.021	3281.8	2000.	90.		
18	54.	3261.771	3.335.021	3281.8	2000.	90.		
19	60.	3261.771	3.335.021	3281.8	2000.	90.		
21	66.	3261.771	3.335.021	3281.8	2000.	90.		
21	72.	3261.771	3.335.021	3281.8	2000.	90.		
22	78.	3261.771	3.335.021	3281.8	2000.	90.		
23	84.	3261.771	3.335.021	3281.8	2000.	90.		
24	90.	3261.771	3.335.021	3281.8	2000.	90.		
25	96.	3261.771	3.335.021	3281.8	2000.	90.		
26	102.	3261.771	3.335.021	3281.8	2000.	90.		
27	108.	3261.771	3.335.021	3281.8	2000.	90.		
28	114.	3261.771	3.335.021	3281.8	2000.	90.		
29	120.	3261.771	3.335.021	3281.8	2000.	90.		
30	126.	3261.771	3.335.021	3281.8	2000.	90.		
31	132.	3261.771	3.335.021	3281.8	2000.	90.		
32	138.	3261.771	3.335.021	3281.8	2000.	90.		
33	144.	3261.771	3.335.021	3281.8	2000.	90.		
34	150.	3261.771	3.335.021	3281.8	2000.	90.		
35	156.	3261.771	3.335.021	3281.8	2000.	90.		
36	162.	3261.771	3.335.021	3281.8	2000.	90.		
37	168.	3261.771	3.335.021	3281.8	2000.	90.		
38	174.	3261.771	3.335.021	3281.8	2000.	90.		
39	180.	3261.771	3.335.021	3281.8	2000.	90.		
40	MEALL							
41	3							
42	6	100.	200.	6				
43	ICOLAF	ITYPE=1,SLAT=	,SLUN=	,MONTH=9,IDATE=15,IPRINT=4,ICLJ=3	\$			
44	?							
45	3.	60.	100.	100.	240.	300.		
46	6.							
47	37.56	60.	0.04	94.52	120.	146.44		
48	1							
49	SI(BALL BALL=3..?							
50	F	T						

CARD	1	11	21	31	41	51	61	71

FIGURE 5-1. BALLOON EXAMPLE INPUT

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

CAFID	1	11	21	31	41	51	61	71
51		190 .0156	500.					
52		190 .0156	500.					
53		190 .0156	500.					
54		190 .0156	500.					
55		190 .0156	500.					
56		190 .0156	500.					
57		190 .0156	500.					
58		190 .0156	500.					
59		190 .0156	500.					
60		190 .0156	500.					
61		190 .0156	500.					
62		190 .0156	500.					
63		190 .0156	500.					
64		190 .0156	500.					
65		190 .0156	500.					
66		190 .0156	500.					
67		190 .0156	500.					
68		190 .0156	500.					
69		190 .0156	500.					
70		190 .0156	500.					
71		190 .0156	500.					
72		190 .0156	500.					
73		190 .0156	500.					
74		190 .0156	500.					
75		190 .0156	500.					
76		190 .0156	500.					
77		190 .0156	500.					
78		190 .0156	500.					
79		190 .0156	500.					
80		190 .0156	500.					
81		190 .0156	500.					
82		190 .0156	500.					
83		190 .0156	500.					
84		190 .0156	500.					
85		190 .0156	500.					
86		190 .0156	500.					
87	6	86.6	.9	.9	.2			
88		491.00	.353	.132				
89		491.49	.362	.165				
90		491.50	38.791	.165				
91		492.50	39.030	.165				
92		492.51	.530	.165				
93		500.00	.610	.167				
94	1	1	1	0				
95	FJ3098	11						
96	FQ30340	11						
97	6	1	1	1	2	1		
98	3	1	4	1	3			
99		1	5	1	7	1		
100		8	1	9	1	10		

CAFID	1	11	21	31	41	51	61	71
-------	---	----	----	----	----	----	----	----

FIGURE 5-1 - Continued

THIS PAGE IS REST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

C#FD	1	11	21	31	41	51	61	71
101		1	11	1	12	1		
103		13	1	14	1	15		
104		1	15	1	17	1		
105		18	1	19	1	20		
106		1	21	1	22	1		
107		23	1	24	1	25		
108		1	26	1	27	1		
109		28	1	29	1	30		
110		1	31	1	32	1		
111		33	1	34	1	35		
112	5	.349	24.09	0.	43.19	60.		
113	5	.349	55.35	0.	22.34	60.		
114	5	.349	61.25	0.	13.47	60.		
115	5	.349	99.74	0.	13.47	60.		
116	5	.349	12.64	1.	22.34	60.		
117	5	.349	155.91	0.	43.19	60.		
118	5	.349	24.09	60.	43.19	60.		
119	5	.349	52.35	60.	22.34	60.		
120	5	.349	61.25	60.	13.47	60.		
121	5	.349	99.74	60.	13.47	60.		
122	5	.349	121.64	60.	22.34	60.		
123	5	.349	155.91	60.	43.19	60.		
124	5	.349	24.09	120.	43.19	60.		
125	5	.349	55.35	120.	22.34	60.		
126	5	.349	61.25	120.	13.47	60.		
127	5	.349	99.74	120.	13.47	60.		
128	5	.349	121.64	120.	22.34	60.		
129	5	.349	155.91	120.	43.19	60.		
130	5	.349	24.09	180.	43.19	60.		
131	5	.349	52.35	180.	22.34	60.		
132	5	.349	61.25	180.	13.47	60.		
133	5	.349	99.74	180.	13.47	60.		
134	5	.349	121.64	180.	22.34	60.		
135	5	.349	155.91	180.	43.19	60.		
136	5	.349	24.09	240.	43.19	60.		
137	5	.349	55.35	240.	22.34	60.		
138	5	.349	61.25	240.	13.47	60.		
139	5	.349	99.74	240.	13.47	60.		
140	5	.349	121.64	240.	22.34	60.		
141	5	.349	155.91	240.	43.19	60.		
142	5	.349	24.09	300.	43.19	60.		
143	5	.349	55.35	300.	22.34	60.		
144	5	.349	61.25	300.	13.47	60.		
145	5	.349	99.74	300.	13.47	60.		
146	5	.349	121.64	300.	22.34	60.		
147	5	.349	155.91	300.	43.19	60.		
148	TGAST REFLET=1., MT=3., L=1., NR=10, NC=10 S							

C#FD	1	11	21	31	41	51	61	71
------	---	----	----	----	----	----	----	----

FIGURE 5-1 - Concluded

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

TABLE 5-1. ρ , c_p , k FOR WATER AND TEFLON

	ρ (1b/ft ³)	c_p Btu/1b/°R)	k Btu/ft/°R/sec)	T(°R)
Water (1/8-in. Thick)	62.4	0.5	0.323	480.00
	62.4	0.5	0.329	491.49
	62.4	144.5	0.329	491.50
	62.4	145.0	0.329	492.50
	62.4	1.0	0.329	492.51
	62.4	1.0	0.334	500.00
Teflon (1/16-in. Thick Total)	135.0	0.229	0.414×10^{-4}	480.00
	135.0	0.234	0.414×10^{-4}	491.49
	135.0	0.234	0.414×10^{-4}	491.50
	135.0	0.234	0.414×10^{-4}	492.50
	135.0	0.234	0.414×10^{-4}	492.51
	135.0	0.238	0.415×10^{-4}	500.00

PROGRAM BASIC

TRANSFECTORY DATA WILL BE INPUT VIA CARDS

FROM HEAT WILL CALCULATE THERMAL DATA

SELECT WILL PROVIDE DIRECTED WITH OPTICAL PROPERTIES DATA

ANALYFC WILL CALCULATE TARGET SIGNATURE DATA

NO NATURAL PLUME, OR NUCLEAR BACKGROUNDF DATA WILL BE INPUT OR CALCULATED

NO OFFAXIS CALCULATIONS WILL BE MADE

NO SENSOK MODEL CALCULATIONS WILL BE MADE

TARGET SYNTHESIS PERFORMED

NORMAND = 3

LAMBDA INCREMENT WAS NOT INPUT. DEFAULTED TO .01

LWAVE	191	LAMINC = .10 - 1E+10				
.504000E+01	.510600E+01	.520000E+01	.530000E+01	.540000E+01	.550000E+01	.570000E+01
.580000E+01	.590000E+01	.600000E+01	.610000E+01	.620000E+01	.630000E+01	.650000E+01
.660000E+01	.670000E+01	.680000E+01	.690000E+01	.700000E+01	.710000E+01	.730000E+01
.740000E+01	.750000E+01	.760000E+01	.770000E+01	.780000E+01	.790000E+01	.810000E+01
.820000E+01	.830000E+01	.840000E+01	.850000E+01	.860000E+01	.870000E+01	.890000E+01
.900000E+01	.910000E+01	.920000E+01	.930000E+01	.940000E+01	.950000E+01	.970000E+01
.980000E+01	.990000E+01	.100000E+02	.101000E+02	.102000E+02	.103000E+02	.105000E+02
.106000E+02	.107000E+02	.108000E+02	.109000E+02	.110000E+02	.111000E+02	.113000E+02
.114000E+02	.115000E+02	.116000E+02	.117000E+02	.118000E+02	.119000E+02	.121000E+02
.122000E+02	.123000E+02	.124000E+02	.125000E+02	.126000E+02	.128000E+02	.129000E+02
.131000E+02	.132000E+02	.132000E+02	.133000E+02	.134000E+02	.135000E+02	.137000E+02
.138000E+02	.139000E+02	.140000E+02	.141000E+02	.142000E+02	.143000E+02	.145000E+02
.146000E+02	.147000E+02	.148000E+02	.149000E+02	.150000E+02	.151000E+02	.153000E+02
.154000E+02	.155000E+02	.156000E+02	.157000E+02	.158000E+02	.160000E+02	.161000E+02
.162000E+02	.163000E+02	.164000E+02	.165000E+02	.166000E+02	.167000E+02	.169000E+02
.171000E+02	.172000E+02	.173000E+02	.174000E+02	.175000E+02	.177000E+02	.179000E+02
.183000E+02	.185000E+02	.186000E+02	.187000E+02	.188000E+02	.189000E+02	.190000E+02
.186000E+02	.187000E+02	.188000E+02	.189000E+02	.190000E+02	.191000E+02	.193000E+02
.194000E+02	.195000E+02	.196000E+02	.197000E+02	.198000E+02	.199000E+02	.201000E+02
.202000E+02	.203000E+02	.204000E+02	.205000E+02	.206000E+02	.207000E+02	.209000E+02
.210000E+02	.211000E+02	.212000E+02	.213000E+02	.214000E+02	.215000E+02	.217000E+02
.214000E+02	.215000E+02	.216000E+02	.217000E+02	.218000E+02	.220000E+02	.224000E+02
.226000E+02	.227000E+02	.228000E+02	.229000E+02	.230000E+02	.231000E+02	.233000E+02
.227000E+02	.228000E+02	.229000E+02	.230000E+02	.231000E+02	.232000E+02	.234000E+02

FIGURE 5-2. BALLOON EXAMPLE OUTPUT

MODE	1	(1=INST.FLUX, 2=ROLL-AVGEN FLUX)
MONTH	9	
DAY	5	
GMT	0.00	0.00
SUN-LAT,LNG	0.00	0.00
ATIM. ANGLES	9.00	60.00
POLAR ANGLES	33.56	66.00
EXOCHEAR		
PIECES	36	
ATIM. DIVISIONS	5	
LONG. DIVISIONS	6	

TIME	CONDITION	AVERAGE FLUXES -- W / (M ² · SR)	
		SUN / ALBEDO	EARTH
6.00000	SUNLT	344.9613	54.42691
12.000	SUNLT	344.9610	54.42691
18.000	SUNLT	344.9610	54.42691
24.000	SUNLT	344.9610	54.42691
30.000	SUNLT	344.9610	54.42691
36.000	SUNLT	344.9610	54.42691
42.000	SUNLT	344.9610	54.42691
48.000	SUNLT	344.9610	54.42691
54.000	SUNLT	344.9610	54.42691
60.000	SUNLT	344.9610	54.42691
66.000	SUNLT	344.9610	54.42691
72.000	SUNLT	344.9610	54.42691
78.000	SUNLT	344.9610	54.42691
84.000	SUNLT	344.9610	54.42691
90.000	SUNLT	344.9610	54.42691
96.000	SUNLT	344.9610	54.42691
102.000	SUNLT	344.9610	54.42691
108.000	SUNLT	344.9610	54.42691
114.000	SUNLT	344.9610	54.42691
120.000	SUNLT	344.9610	54.42691
126.000	SUNLT	344.9610	54.42691
132.000	SUNLT	344.9610	54.42691
138.000	SUNLT	344.9610	54.42691
144.000	SUNLT	344.9610	54.42691
150.000	SUNLT	344.9610	54.42691
156.000	SUNLT	344.9610	54.42691
162.000	SUNLT	344.9610	54.42691
168.000	SUNLT	344.9610	54.42691
174.000	SUNLT	344.9610	54.42691
180.000	SUNLT	344.9610	54.42691

THIS PAGE IS FOR QUALITY PRACTICAS
FROM CORTA ESTABLISHED TO DDC

EIN									
ENUT					ELF				
STAT AREA	PAC	FAUTS	EIN	TUNL TH	CONJ	TR-10	PAO	TRASS	ELF
1	3.76	.553	.033	1.81	.547	1.92	2.05	115F-01	.901
2	3.76	.466	.833	2.4	1.64	3.44	3.05	115F-02	.901
3	3.76	.765	.157	1.57	2.73	4.62	1.05	115F-02	.901
4	3.76	.986	.167	3.23	3.63	5.74	3.05	115F-02	.901
5	3.75	.565	.167	2.51	2.81	5.87	3.05	115F-02	.901
6	3.76	.553	.033	1.61	6.01	6.39	3.05	115F-02	.901
7	3.76	.553	.033	1.81	.547	1.92	3.15	115F-02	.901
8	3.76	.465	.502	2.46	1.64	3.44	3.05	115F-02	.901
9	3.76	.486	.167	1.23	2.73	4.61	3.05	115F-02	.901
10	3.75	.985	.167	3.23	3.63	5.74	3.15	115F-02	.901
11	3.76	.966	-.540	2.84	4.92	6.87	3.05	115F-02	.901
12	3.75	.553	-.033	1.81	6.01	6.39	3.05	115F-02	.901
13	3.76	.553	-.033	1.81	.547	1.92	3.05	115F-02	.901
14	3.75	.466	.502	2.46	1.64	3.44	3.05	115F-02	.901
15	3.76	.595	.167	1.23	2.73	4.61	3.05	115F-02	.901
16	3.76	.986	.167	3.23	3.63	5.74	3.05	115F-02	.901
17	3.76	.866	-.546	2.84	4.92	6.87	3.05	115F-02	.901
18	3.75	.553	-.033	1.81	6.01	6.39	3.05	115F-02	.901
19	3.76	.553	-.033	1.81	.547	1.92	3.05	115F-02	.901
20	3.76	.466	.502	2.46	1.64	3.44	3.05	115F-02	.901
21	3.76	.985	.167	1.23	2.73	4.61	3.05	115F-02	.901
22	3.76	.986	.167	3.23	3.63	5.74	3.05	115F-02	.901
23	3.75	.466	-.546	2.84	4.92	6.87	3.05	115F-02	.901
24	3.76	.553	-.033	1.81	6.01	6.39	3.05	115F-02	.901
25	3.76	.553	-.033	1.81	.547	1.92	3.05	115F-02	.901
26	3.76	.466	.502	2.46	1.64	3.44	3.05	115F-02	.901
27	3.75	.985	.167	1.23	2.73	4.61	3.05	115F-02	.901
28	3.76	.986	.167	3.23	3.63	5.74	3.05	115F-02	.901
29	3.76	.466	-.546	2.84	4.92	6.87	3.05	115F-02	.901
30	3.76	.553	-.033	1.81	6.01	6.39	3.05	115F-02	.901
31	3.75	.553	-.033	1.81	.547	1.92	3.05	115F-02	.901
32	3.76	.466	.502	2.46	1.64	3.44	3.05	115F-02	.901
33	3.75	.985	.167	1.23	2.73	4.61	3.05	115F-02	.901
34	3.76	.986	.167	3.23	3.63	5.74	3.05	115F-02	.901
35	3.76	.466	-.546	2.84	4.92	6.87	3.05	115F-02	.901
36	3.76	.553	-.033	1.81	6.01	6.39	3.05	115F-02	.901

FIGURE 5-2 - Continued

STAT APPENDIX

5-8

**100% FROM THE BEST QUALITY PRACTICABLE
FROM COPY REVISED TO DDC**

三
卷之三

506.122
492.095

FIGURE 5-2 - Continued

FIGURE 5-2 = Continued

TEMP
MAX
MIN

56 J-269
221.005

FIGURE 5-2 - Continued

三
卷

566-125
492.0125

THIS PAGE IS THE QUALITY PRACTICABLE
FROM COPIER FURNISHED TO DDC

FIGURE 5-2 = Concluded

5.2 REPLICA

This example consists of a biconic shape with a tangentially fitting spherical nosecap that is divided into 24 stations, eight longitudinal by three azimuthal. The nose is made of silicon phenolic that tapers from 0.3 in. for the first two nose stations (along a single longitudinal ray) to 0.2 in. for the third nose station. The first frustum has two stations, each consisting of a 0.1-in. aluminum structure covered by a 0.1-in. thickness of silicon phenolic. The second frustum contains two stations with a 0.1-in.-thick aluminum structure covered by 0.05 in. of silicon phenolic. The base has one station of material structured similar to that of the first frustum. The dimensions of the replica are shown in Figure 5-3. Note that whenever the material identification code word JMAT of card 6.1 changes, card set 7 must be input. The nose is completely silicon phenolic (JMAT = 203), and the numbers JMAT = 180 and JMAT = 190 have been arbitrarily assigned to the aluminum and silicon phenolic combinations. Equations 3-31 through 3-33 were used to compute the average values of ρ , c_p , and k that are input. Figure 5-4 and 5-5 show the input and output, respectively, for this example.

FIGURE 5-3. REPLICA GEOMETRY

```

1 11 21 51 61 71
2 10.4 CALC WARR EXPWAT RATE: CALC SIRWA RAC
3 TACSYN YES
4 3
5 5. 9.
6 11. 15.
7 18. 24.
8
9 SMALL
10 3 2.07 14.42 3
11 2 15.6
12 2 15.7 5.01
13 2 16.7 1.01
14 1.01
15 1.01
16 1.01
17 PV EXA4LL 11.0 2 1.0 15.0
18 FV-USC4 300. 1 161.115 59.814 46.597 216.40 -2.137
19 1. 150. 161.115
20 Ga-neg4
21 54.957 -90.491
22 F4U
23
24 EXIT
25 $SALAR,TYPE=1,SLATE=0,SMCUTTH=0,POWDAV=1,RTCTn=3
26
27 . 120. 24.
28 28.78 50.99 67.51 75.0
29
30
31 $7.99 ALL DALLAS. $
32 F 7
33 233.250 50.0
34 263.250 50.0
35 263.367 50.0
36 197.167 50.0
37 193.367 50.0
38 183.0125 50.0
39 164.0125 50.0
40 194.167 50.0
41 203.0250 50.0
42 233.0250 50.0
43 263.0167 50.0
44 497.0167 50.0
45 191.0167 50.0
46 184.0125 50.0
47 193.0125 50.0
48 194.0167 50.0
49 233.0250 50.0
50 233.0250 50.0

```

FIGURE 5-4. REPLICA EXAMPLE INPUT

Call No.	1	11	21	31	41	51	61	71
51	257	.167	507					
52	190	.167	567					
53	191	.167	567					
54	180	.125	547					
55	180	.125	547					
56	191	.167	567					
57	4	139,r	75					
58	44,r		179					
59	51,r		274					
60	51,r		221					
61	74,r		274					
62	4	151,r,3	75					
63	44,r		193					
64	54,r		213					
65	61,r		216					
66	71,r		226					
67	4	139,r,6	75					
68	44,r		179					
69	51,r		274					
70	61,r		221					
71	71,r		273					
72	4	139,r,6	75					
73	44,r		178					
74	52,r		274					
75	61,r		221					
76	71,r		273					
77	4	150,r,3	75					
78	44,r		194					
79	54,r		225					
80	61,r		216					
81	71,r		226					
82	4	139,r,6	75					
83	44,r		174					
84	52,r		274					
85	61,r		221					
86	71,r		273					
87	4	139,r,6	75					
88	44,r		178					
89	50,r		216					
90	60,r		221					
91	71,r		223					
92	4	150,r,7	75					
93	44,r		193					
94	52,r		224					
95	60,r		215					
96	70,r		216					
97	4	139,r	75					
98	44,r		178					
99	50,r		216					
100	60,r		221					
	1	11	21	31	41	51	61	71

FIGURE 5-4 - Continued

USAGE OF DATA-TRANS...

Car 0	1	11	21	31	41	51	61	71
1-1	*	*	*	*	*	*	*	*
			2121	1121	1121	1121	1121	1121
Car 1	1	11	21	31	41	51	61	71
*	*	*	*	*	*	*	*	*

FIGURE 5-4 - Concluded

PROGRAM BASIC

3BALLS WILL CALCULATE TRAJECTORY DATA
 EXOHEAT WILL CALCULATE THERMAL DATA
 SELECT WILL PROVIDE STOREDC MATH OPTICAL PROPERTIES DATA
 QMIREC WILL CALCULATE TARGET SIGNATURE DATA
 NO NATURAL, PLUME, OR NUCLEAR BACKGROUND DATA WILL BE INPUT OR CALCULATED
 NO JEFFAKIS CALCULATIONS WILL BE MADE
 NO SENSOP MODEL CALCULATIONS WILL BE MADE
 TARGET SYNTHESIS PERFORMED

WARNING = 3

LAMBDA INCREMENT WAS NOT INPUT. DEFAULTED TO 6.1

LWAVE = 191	LAMINC = *1E4*E+00	LAMINC = *5E4*E+01	LAMINC = *5E5*E+01	LAMINC = *5E6*E+01
*50000E+01	*51000E+01	*52000E+01	*53000E+01	*54000E+01
*54000E+01	*59000UF+01	*60000UF+01	*61000F+01	*62000F+01
*65000CE+01	*67000CE+01	*68000LE+01	*69000CE+01	*70000CE+01
*75000LE+01	*75000LE+01	*76000CE+01	*76000CE+01	*76000CE+01
*82000CE+01	*83000CE+01	*84000CE+01	*85000CE+01	*86000CE+01
*90000CE+01	*92000E+01	*93000E+01	*94000E+01	*95000E+01
*97000E+01	*98000E+01	*10000E+02	*10200E+02	*10400E+02
*10600E+02	*10700E+02	*10800E+02	*10900E+02	*11000E+02
*11600E+02	*11700E+02	*11800E+02	*11900E+02	*12000E+02
*12200E+02	*12300E+02	*12400E+02	*12500E+02	*12600E+02
*13000E+02	*13100E+02	*13200E+02	*13300E+02	*13400E+02
*13800E+02	*13900E+02	*14000E+02	*14100E+02	*14200E+02
*14600E+02	*14700E+02	*14800E+02	*14900E+02	*15000E+02
*15400E+02	*15500E+02	*15600E+02	*15700E+02	*15800E+02
*16200E+02	*16300E+02	*16400E+02	*16500E+02	*16600E+02
*17000E+02	*17100E+02	*17200E+02	*17300E+02	*17400E+02
*17800E+02	*17900E+02	*18000E+02	*18100E+02	*18200E+02
*18600E+02	*18700E+02	*18800E+02	*18900E+02	*19000E+02
*19400F+02	*19500F+02	*19600F+02	*19700F+02	*19800F+02
*20200E+02	*20300E+02	*20400E+02	*20500E+02	*20600E+02
*21600E+02	*21700E+02	*21800E+02	*21900E+02	*22000E+02
*22600E+02	*22700E+02	*22800E+02	*22900E+02	*23000E+02
*23400E+02	*23500E+02	*23600E+02	*23700E+02	*23800E+02

WAVELENGTH FORM

5.4E4 WTCRMS IN Q.7.61 W.CRN.

FIGURE 5-5. REPLICA EXAMPLE OUTPUT

INV EXAMPLE		FLIGHT STARTS AT		J-30 SECONDS AND PRACTICALLY IN		1100 FEET OF		15,000 FEET		22,000 FEET		27,000 FEET	
		000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	
RV-0SC4	380.00	1	0	59.00	59.00	84.00	84.00	216.00	216.00	22.00	22.00	-2.16	
RV-0SC4	1500.00	116.00	116.00	59.00	59.00	84.00	84.00	216.00	216.00	22.00	22.00	-2.16	
EV-0SC4	0.00	0	0	59.00	59.00	84.00	84.00	216.00	216.00	22.00	22.00	-2.16	
EV-0SC4	0.00	0	0	59.00	59.00	84.00	84.00	216.00	216.00	22.00	22.00	-2.16	
EVG	0.00	0	0	0	0	0	0	0	0	0	0	0	
EVG	0.00	0	0	0	0	0	0	0	0	0	0	0	
2 Targets Initialized		Alt-MFT		Lat		Long		Vel-FIRS		Ent.Ang Course		Range-KFT	
10 Sec Time		Alt-MFT		Lat		Long		Vel-FIRS		Ent.Ang Course		Range-KFT	
EV-0SC4	0.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	22.000	22.000	357.000	357.000	46.000	
RV-0SC4	0.00	1160.115	59.0004	04.5007	2.00.500	2.00.500	2.00.500	267.000	267.000	41.393	41.393	46.000	
EV-0SC4	30.00	5940.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	212.000	212.000	267.000	267.000	46.000	
RV-0SC4	30.00	1390.099	51.0007	04.0002	2.00.000	2.00.000	2.00.000	252.000	252.000	41.417	41.417	46.000	
EV-0SC4	60.00	5940.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	206.000	206.000	258.000	258.000	46.000	
RV-0SC4	60.00	1626.495	52.0006	04.3007	2.00.300	2.00.300	2.00.300	253.000	253.000	41.400	41.400	46.000	
EV-0SC4	90.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	204.000	204.000	253.000	253.000	46.000	
RV-0SC4	90.00	1845.339	54.0000	04.3007	2.00.300	2.00.300	2.00.300	253.000	253.000	41.400	41.400	46.000	
EV-0SC4	120.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	198.000	198.000	253.000	253.000	46.000	
RV-0SC4	120.00	2050.660	50.0007	04.1001	2.00.100	2.00.100	2.00.100	249.000	249.000	41.400	41.400	46.000	
EV-0SC4	150.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	192.000	192.000	253.000	253.000	46.000	
RV-0SC4	150.00	2250.522	67.0000	04.0003	2.00.000	2.00.000	2.00.000	244.000	244.000	41.400	41.400	46.000	
EV-0SC4	180.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	186.000	186.000	253.000	253.000	46.000	
RV-0SC4	180.00	2446.941	68.0000	04.0003	2.00.000	2.00.000	2.00.000	239.000	239.000	41.400	41.400	46.000	
EV-0SC4	210.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	180.000	180.000	253.000	253.000	46.000	
RV-0SC4	210.00	2625.964	71.0006	03.9012	1.90.000	1.90.000	1.90.000	235.000	235.000	41.400	41.400	46.000	
EV-0SC4	240.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	174.000	174.000	253.000	253.000	46.000	
RV-0SC4	240.00	2797.632	71.3007	03.9021	1.90.000	1.90.000	1.90.000	230.000	230.000	41.400	41.400	46.000	
EV-0SC4	270.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	168.000	168.000	253.000	253.000	46.000	
RV-0SC4	270.00	2959.942	72.0009	03.8003	1.90.000	1.90.000	1.90.000	225.000	225.000	41.400	41.400	46.000	
EV-0SC4	300.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	162.000	162.000	253.000	253.000	46.000	
RV-0SC4	300.00	3113.052	74.0003	03.7005	1.90.000	1.90.000	1.90.000	221.000	221.000	41.400	41.400	46.000	
EV-0SC4	330.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	158.000	158.000	253.000	253.000	46.000	
RV-0SC4	330.00	3256.040	75.0002	03.6007	1.90.000	1.90.000	1.90.000	216.000	216.000	41.400	41.400	46.000	
EV-0SC4	360.00	5900.910	54.0857	-0.00.601	0.0007	0.0010	0.0007	154.000	154.000	253.000	253.000	46.000	
RV-0SC4	360.00	3600.910	76.0001	03.5007	1.90.000	1.90.000	1.90.000	216.000	216.000	41.400	41.400	46.000	

FIGURE 5-5 - Continued

FIGURE 5-5 - Continued

RV-0SC4	368.00	3391.566	760.636	63.316	14780.424	13.414	3580.97	211520.623	-38.673	359.445	31.33	87.74	54.76	
G3-0SC4	390.00	5016.916	54.057	-98.481	295290.475	12.011	350.011	236720.216	-29.842	359.511	24.97	87.95	51.11	
RV-0SC4	392.00	3516.946	77.915	83.272	18241.746	0.510	350.247	236720.216	-29.842	359.511	24.97	87.95	51.11	
G3-0SC4	421.00	5080.910	54.057	-98.481	18241.746	11.691	350.500	236720.216	-29.842	359.511	24.97	87.95	51.11	
RV-0SC4	429.00	1613.249	79.142	83.157	18241.746	11.691	350.414	236720.216	-29.842	359.511	24.97	87.95	51.11	
G3-0SC4	458.00	5980.910	54.057	-98.481	19244.460	10.819	350.585	13703.965	-28.348	359.628	27.10	88.33	62.88	
RV-0SC4	459.00	3746.440	36.437	83.305	19244.460	10.819	350.712	13715.499	-27.676	359.674	27.10	88.52	64.31	
G3-0SC4	470.00	5080.910	54.057	-98.481	19119.572	0.011	350.011	13715.499	-27.676	359.674	27.10	88.52	64.31	
RV-0SC4	470.00	2836.547	41.682	82.851	19119.572	0.011	350.011	13715.499	-27.676	359.674	27.10	88.52	64.31	
G3-0SC4	510.00	5080.910	54.057	-98.481	18241.746	0.010	350.011	14726.656	-26.083	350.772	24.24	90.77	65.76	
RV-0SC4	510.00	1927.504	92.917	83.533	18241.746	0.010	350.011	14726.656	-26.083	350.772	24.24	90.77	65.76	
G3-0SC4	540.00	5980.910	54.057	-98.481	17044.767	6.010	350.011	19236.973	-26.317	150.761	22.78	88.94	67.20	
RV-0SC4	540.00	4007.666	94.164	83.361	17044.767	6.010	350.011	19236.973	-26.317	150.761	22.78	88.94	67.20	
G3-0SC4	574.00	5080.910	54.057	-98.481	17814.667	6.010	350.011	17734.130	-25.674	359.792	21.26	89.16	69.75	
RV-0SC4	574.00	4278.605	52.364	83.167	17814.667	6.010	350.011	17734.130	-25.674	359.792	21.26	89.16	69.75	
G3-0SC4	601.00	5080.910	54.057	-98.481	17736.092	0.011	350.011	17234.712	-25.667	359.817	19.71	90.74	70.30	
RV-0SC4	600.00	6140.618	46.577	83.474	17736.092	0.011	350.011	17234.712	-25.667	359.817	19.71	90.74	70.30	
G3-0SC4	630.00	5980.910	54.057	-98.481	17658.963	0.000	350.011	15732.383	-24.486	359.834	18.13	89.62	71.86	
RV-0SC4	630.00	4193.632	97.786	84.127	17658.963	0.000	350.011	15732.383	-24.486	359.834	18.13	89.62	71.86	
G3-0SC4	660.00	5980.910	54.057	-98.481	17613.254	4.014	350.011	15227.262	-23.938	359.843	16.51	89.96	75.49	
RV-0SC4	660.00	4237.694	94.945	86.755	17613.254	4.014	350.011	15227.262	-23.938	359.843	16.51	89.96	75.49	
G3-0SC4	698.00	5980.910	54.057	-98.481	17568.937	6.016	350.011	15427.443	-22.956	359.855	13.17	90.36	76.93	
RV-0SC4	698.00	4227.646	99.791	236.172	17568.937	6.016	350.011	15427.443	-22.956	359.855	13.17	90.36	76.93	
G3-0SC4	720.00	3980.910	54.057	-98.481	17535.991	6.010	350.011	176.443	-22.956	359.855	13.17	90.36	76.93	
RV-0SC4	720.00	4298.971	98.612	257.774	17535.991	6.010	350.011	176.443	-22.956	359.855	13.17	90.36	76.93	
G3-0SC4	753.00	5980.910	54.057	-98.481	17514.402	1.012	350.011	177.281	-22.525	359.916	11.45	91.63	78.57	
RV-0SC4	753.00	4316.214	37.419	259.721	17514.402	1.012	350.011	177.281	-22.525	359.916	11.45	91.63	78.57	
G3-0SC4	780.00	5980.910	54.057	-98.481	1750.415	0.011	350.011	179.735	-22.146	359.786	9.619	95.91	90.35	
RV-0SC4	780.00	4324.506	45.227	259.825	1750.415	0.011	350.011	179.735	-22.146	359.786	9.619	95.91	90.35	
G3-0SC4	811.00	5980.910	54.057	-98.481	1750.525	-0.555	350.011	179.686	13650.413	-21.916	359.743	7.05	91.19	A2.19
RV-0SC4	811.00	4323.606	95.034	260.029	1750.525	-0.555	350.011	179.686	13650.413	-21.916	359.743	7.05	91.19	A2.19
G3-0SC4	840.00	5980.910	54.057	-98.481	17517.655	-1.529	350.011	179.416	13110.1.9	-21.549	359.697	5.9	91.49	A4.9
RV-0SC4	840.00	4316.325	93.541	260.13	17517.655	-1.529	350.011	179.416	13110.1.9	-21.549	359.697	5.9	91.49	A4.9

FIGURE 5-5 - Continued

EXPHAT

24 DEGREES
3 ATM. DIVISIONS
8 LONG. DIVISIONS

A74. ANGLES

	0.00	126.00	246.00						
POLAR ANGLES	24.74	58.99	67.51	73.00	76.00	67.00	60.00	19.00	

MODE 1 (1=TNST,FLUX, 2=ROLL-AVRED FLUX)

MONTH 8

DAY 1st

GMT 0.00

SUN-LAT,LNG 6.00 0.00

TIME	CONDITION	AVERAGE FLUXES -- W/(M ²)		MOLECULAR
		SUNVALREDO	EARTH	
30.0000E	SUNLIT	348.6558	128.7528	0.
60.0000E	SUNLIT	348.5368	126.6460	0.
90.0000E	SUNLIT	348.4320	114.1127	0.
120.0000E	SUNLIT	348.3318	108.1425	0.
150.0000E	SUNLIT	348.2341	102.9933	0.
180.0000E	SUNLIT	348.1297	98.17172	0.
210.0000E	SUNLIT	348.1234	93.69156	0.
240.0000E	SUNLIT	347.9122	89.46573	0.
270.0000E	SUNLIT	347.7941	85.84116	0.
300.0000E	SUNLIT	347.6683	81.56494	0.
330.0000E	SUNLIT	347.5425	78.5927	0.
360.0000E	SUNLIT	347.4137	78.24114	0.
390.0000E	SUNLIT	347.2815	76.16533	0.
420.0000E	SUNLIT	347.1512	74.53495	0.
450.0000E	SUNLIT	347.1161	72.93991	0.
480.0000E	SUNLIT	346.8767	71.10149	0.
510.0000E	SUNLIT	346.7342	69.97556	0.
540.0000E	SUNLIT	346.5976	69.09332	0.
570.0000E	SUNLIT	346.4458	67.93349	0.
600.0000E	SUNLIT	346.2975	67.18211	0.
630.0000E	SUNLIT	346.1443	66.66744	0.
660.0000E	SUNLIT	346.1013	66.16748	0.
690.0000E	SUNLIT	346.8664	65.78464	0.
720.0000E	SUNLIT	345.7052	64.71912	0.
750.0000E	SUNLIT	345.3639	65.26899	0.
780.0000E	SUNLIT	345.2271	65.11285	0.
810.0000E	SUNLIT	345.1555	64.9722	0.
840.0000E	SUNLIT	344.8723	64.75417	0.
870.0000E	SUNLIT	344.6619	65.7251	0.
900.0000E	SUNLIT	344.4688	65.31422	0.
930.0000E	SUNLIT	344.2884	65.58016	0.
960.0000E	SUNLIT	344.0878	66.16755	0.
990.0000E	SUNLIT	343.8754	66.68854	0.
1020.0000E	SUNLIT	343.6627	67.59173	0.
1050.0000E	SUNLIT	343.4481	68.42413	0.
1080.0000E	SUNLIT	343.2294	69.33975	0.
1110.0000E	SUNLIT	343.1142	71.37516	0.
1140.0000E	SUNLIT	342.7743	71.85412	0.
1170.0000E	SUNLIT	342.5274	73.15459	0.
1200.0000E	SUNLIT	342.2778	74.72723	0.
1230.0000E	SUNLIT	342.0177	76.39432	0.
1260.0000E	SUNLIT	341.7548	74.76244	0.
1290.0000E	SUNLIT	341.4791	71.32214	0.
1320.0000E	SUNLIT	341.1988	70.11873	0.
1350.0000E	SUNLIT	340.9063	66.14510	0.
1380.0000E	SUNLIT	340.6124	69.66132	0.
1410.0000E	SUNLIT	340.3191	72.07471	0.
1440.0000E	SUNLIT	340.0174	76.24317	0.
1470.0000E	SUNLIT	339.7077	79.59559	0.
		339.4169	1.2.2723	0.
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				
BASELINE SILICA PHENOLIC (QUARTZ PHENOLIC) (30 PERCENT PHENOLIC RESIN)				

FIGURE 5-5 - Continued

5-21

QUALITY PRACTICABLE
EQUIPMENT AND MATERIALS

STAT	APEA	PERP	RADIUS	7ED	RUNLTH	TRASS	?AD	?CND	EIN	EOUT
1	.223	.876	.716	.81E-01	.33	.11E	.981E-04	.58E-05	.125E+04	.55J
2	.223	.629	.51F	.263	.58E	.120	.981E-04	.339E-04	.119E+04	.75G
3	.223	.924	.392	.405	.60F	.773	.667E-01	.131E-04	.78E-	.75G
4	.747	.966	.259	.732	.70F	.11	.981E-04	.208E-03	.44E-	.75G
5	.887	.966	.259	.812	.1.22	.62	.24AE-03	.423E-03	.44E-	.260
6	.375	.466	.59J	.645	.1.55	.47	.135E-03	.149E-02	.252	.260
7	.142	.666	.5JL	.772	.1.72	.16	.116E-03	.274E-02	.51.9	.260
8	1.24	-30.8E-09	-1.3J	.547	1.86	2.8	.116E-03	.231E-02	.67.6	.200
9	.223	.481	.876	.316	.81F-01	.330	.981E-04	.580E-05	.125E+04	.56G
10	.223	.777	.629	.51U	.263	.804	.110	.981E-04	.199E-04	.119E+04
11	.223	.924	.392	.362	.605	.773	.46E-01	.981E-04	.331E-04	.75G
12	.747	.966	.259	.70C	.70C	.11	.367	.230E-03	.623E-03	.75G
13	.447	.966	.259	.P12	1.22	.62	.437	.24AE-03	.14AE-02	.260
14	.375	.866	.51F	.945	1.55	.97	.147	.106E-03	.274E-02	.75G
15	.412	.866	.51L	.1.64	1.72	2.16	.152	.116E-03	.231E-02	.75G
16	1.24	-30.8E-09	-1.06	.543	1.80	2.80	.6.9	.680E-03	.590E-	.200
17	.223	.641	.876	.316	.81E-01	.330	.136	.981E-04	.580E-05	.125E+04
18	.223	.777	.629	.51L	.263	.584	.137	.981E-04	.199E-04	.75G
19	.223	.924	.392	.666	.465	.773	.467E-01	.981E-04	.131E-04	.75G
20	.747	.866	.259	.70C	.732	1.11	.367	.228E-03	.423E-03	.56G
21	.487	.966	.259	.832	1.22	.62	.437	.248E-03	.149E-02	.252
22	.375	.865	.50L	.945	1.55	1.97	.147	.066E-03	.274E-02	.51.9
23	.412	.966	.50C	1.04	1.72	2.16	.162	.116E-03	.231E-02	.75G
24	1.24	-30.8E-09	-1.30	.543	1.84	2.80	.669	.352E-03	.690E-03	.56G

TIME DEVELOPMENT OF TEMPERATURES

LONGITUDINAL CONDUCTION TREATED --

OPEN HEAD SURFACE --

MR MTX INV--

147

THIS PAGE IS DRAFT QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

FIGURE 5-5 - Continued

1
 TEMPS
 MAX 571.271
 MIN 472.652
 1. 123456789:123456789:123456789:123456789:123456789:123456789:123456789:
 2. .
 3. 3456689
 4. 634789
 5. 9047000
 6. 124433
 7. 150705
 8. 184482
 9. 214457
 10. 244486
 11. 274499
 12. 304496
 13. 334497
 14. 364498
 15. 394499
 16. 424499
 17. 454499
 18. 484499
 19. 514499
 20. 544499
 21. 574499
 22. 604499
 23. 634499
 24. 664499
 25. 694499
 26. 724499
 27. 754499
 28. 784499
 29. 814499
 30. 844499
 31. 874499
 32. 904499
 33. 934499
 34. 964499
 35. 994499
 36. 1024499
 37. 1054499
 38. 1084499
 39. 1114499
 40. 1144499
 41. 1174499
 42. 1204499
 43. 1234499
 44. 1264499
 45. 1294499
 46. 1324499
 47. 1354499
 48. 1384499
 49. 1414499
 50. 1444499
 51. 1474499
 52. 1504499
 53. 1534499
 54. 1564499
 55. 1594499
 56. 1624499
 57. 1654499
 58. 1684499
 59. 1714499
 60. 1744499
 61. 1774499
 62. 1804499
 63. 1834499
 64. 1864499
 65. 1894499
 66. 1924499
 67. 1954499
 68. 1984499
 69. 2014499
 70. 2044499
 71. 2074499
 72. 2104499
 73. 2134499
 74. 2164499
 75. 2194499
 76. 2224499
 77. 2254499
 78. 2284499
 79. 2314499
 80. 2344499
 81. 2374499
 82. 2404499
 83. 2434499
 84. 2464499
 85. 2494499
 86. 2524499
 87. 2554499
 88. 2584499
 89. 2614499
 90. 2644499
 91. 2674499
 92. 2704499
 93. 2734499
 94. 2764499
 95. 2794499
 96. 2824499
 97. 2854499
 98. 2884499
 99. 2914499
 100. 2944499
 101. 2974499
 102. 3004499
 103. 3034499
 104. 3064499
 105. 3094499
 106. 3124499
 107. 3154499
 108. 3184499
 109. 3214499
 110. 3244499
 111. 3274499
 112. 3304499
 113. 3334499
 114. 3364499
 115. 3394499
 116. 3424499
 117. 3454499
 118. 3484499
 119. 3514499
 120. 3544499
 121. 3574499
 122. 3604499
 123. 3634499
 124. 3664499
 125. 3694499
 126. 3724499
 127. 3754499
 128. 3784499
 129. 3814499
 130. 3844499
 131. 3874499
 132. 3904499
 133. 3934499
 134. 3964499
 135. 3994499
 136. 4024499
 137. 4054499
 138. 4084499
 139. 4114499
 140. 4144499
 141. 4174499
 142. 4204499
 143. 4234499
 144. 4264499
 145. 4294499
 146. 4324499
 147. 4354499
 148. 4384499
 149. 4414499
 150. 4444499
 151. 4474499
 152. 4504499
 153. 4534499
 154. 4564499
 155. 4594499
 156. 4624499
 157. 4654499
 158. 4684499
 159. 4714499
 160. 4744499
 161. 4774499
 162. 4804499
 163. 4834499
 164. 4864499
 165. 4894499
 166. 4924499
 167. 4954499
 168. 4984499
 169. 5014499
 170. 5044499
 171. 5074499
 172. 5104499
 173. 5134499
 174. 5164499
 175. 5194499
 176. 5224499
 177. 5254499
 178. 5284499
 179. 5314499
 180. 5344499
 181. 5374499
 182. 5404499
 183. 5434499
 184. 5464499
 185. 5494499
 186. 5524499
 187. 5554499
 188. 5584499
 189. 5614499
 190. 5644499
 191. 5674499
 192. 5704499
 193. 5734499
 194. 5764499
 195. 5794499
 196. 5824499
 197. 5854499
 198. 5884499
 199. 5914499
 200. 5944499
 201. 5974499
 202. 6004499
 203. 6034499
 204. 6064499
 205. 6094499
 206. 6124499
 207. 6154499
 208. 6184499
 209. 6214499
 210. 6244499
 211. 6274499
 212. 6304499
 213. 6334499
 214. 6364499
 215. 6394499
 216. 6424499
 217. 6454499
 218. 6484499
 219. 6514499
 220. 6544499
 221. 6574499
 222. 6604499
 223. 6634499
 224. 6664499
 225. 6694499
 226. 6724499
 227. 6754499
 228. 6784499
 229. 6814499
 230. 6844499
 231. 6874499
 232. 6904499
 233. 6934499
 234. 6964499
 235. 6994499
 236. 7024499
 237. 7054499
 238. 7084499
 239. 7114499
 240. 7144499
 241. 7174499
 242. 7204499
 243. 7234499
 244. 7264499
 245. 7294499
 246. 7324499
 247. 7354499
 248. 7384499
 249. 7414499
 250. 7444499
 251. 7474499
 252. 7504499
 253. 7534499
 254. 7564499
 255. 7594499
 256. 7624499
 257. 7654499
 258. 7684499
 259. 7714499
 260. 7744499
 261. 7774499
 262. 7804499
 263. 7834499
 264. 7864499
 265. 7894499
 266. 7924499
 267. 7954499
 268. 7984499
 269. 8014499
 270. 8044499
 271. 8074499
 272. 8104499
 273. 8134499
 274. 8164499
 275. 8194499
 276. 8224499
 277. 8254499
 278. 8284499
 279. 8314499
 280. 8344499
 281. 8374499
 282. 8404499
 283. 8434499
 284. 8464499
 285. 8494499
 286. 8524499
 287. 8554499
 288. 8584499
 289. 8614499
 290. 8644499
 291. 8674499
 292. 8704499
 293. 8734499
 294. 8764499
 295. 8794499
 296. 8824499
 297. 8854499
 298. 8884499
 299. 8914499
 300. 8944499
 301. 8974499
 302. 9004499
 303. 9034499
 304. 9064499
 305. 9094499
 306. 9124499
 307. 9154499
 308. 9184499
 309. 9214499
 310. 9244499
 311. 9274499
 312. 9304499
 313. 9334499
 314. 9364499
 315. 9394499
 316. 9424499
 317. 9454499
 318. 9484499
 319. 9514499
 320. 9544499
 321. 9574499
 322. 9604499
 323. 9634499
 324. 9664499
 325. 9694499
 326. 9724499
 327. 9754499
 328. 9784499
 329. 9814499
 330. 9844499
 331. 9874499
 332. 9904499
 333. 9934499
 334. 9964499
 335. 9994499
 336. 1004499
 337. 1004499
 338. 1004499
 339. 1004499
 340. 1004499
 341. 1004499
 342. 1004499
 343. 1004499
 344. 1004499
 345. 1004499
 346. 1004499
 347. 1004499
 348. 1004499
 349. 1004499
 350. 1004499
 351. 1004499
 352. 1004499
 353. 1004499
 354. 1004499
 355. 1004499
 356. 1004499
 357. 1004499
 358. 1004499
 359. 1004499
 360. 1004499
 361. 1004499
 362. 1004499
 363. 1004499
 364. 1004499
 365. 1004499
 366. 1004499
 367. 1004499
 368. 1004499
 369. 1004499
 370. 1004499
 371. 1004499
 372. 1004499
 373. 1004499
 374. 1004499
 375. 1004499
 376. 1004499
 377. 1004499
 378. 1004499
 379. 1004499
 380. 1004499
 381. 1004499
 382. 1004499
 383. 1004499
 384. 1004499
 385. 1004499
 386. 1004499
 387. 1004499
 388. 1004499
 389. 1004499
 390. 1004499
 391. 1004499
 392. 1004499
 393. 1004499
 394. 1004499
 395. 1004499
 396. 1004499
 397. 1004499
 398. 1004499
 399. 1004499
 400. 1004499
 401. 1004499
 402. 1004499
 403. 1004499
 404. 1004499
 405. 1004499
 406. 1004499
 407. 1004499
 408. 1004499
 409. 1004499
 410. 1004499
 411. 1004499
 412. 1004499
 413. 1004499
 414. 1004499
 415. 1004499
 416. 1004499
 417. 1004499
 418. 1004499
 419. 1004499
 420. 1004499
 421. 1004499
 422. 1004499
 423. 1004499
 424. 1004499
 425. 1004499
 426. 1004499
 427. 1004499
 428. 1004499
 429. 1004499
 430. 1004499
 431. 1004499
 432. 1004499
 433. 1004499
 434. 1004499
 435. 1004499
 436. 1004499
 437. 1004499
 438. 1004499
 439. 1004499
 440. 1004499
 441. 1004499
 442. 1004499
 443. 1004499
 444. 1004499
 445. 1004499
 446. 1004499
 447. 1004499
 448. 1004499
 449. 1004499
 450. 1004499
 451. 1004499
 452. 1004499
 453. 1004499
 454. 1004499
 455. 1004499
 456. 1004499
 457. 1004499
 458. 1004499
 459. 1004499
 460. 1004499
 461. 1004499
 462. 1004499
 463. 1004499
 464. 1004499
 465. 1004499
 466. 1004499
 467. 1004499
 468. 1004499
 469. 1004499
 470. 1004499
 471. 1004499
 472. 1004499
 473. 1004499
 474. 1004499
 475. 1004499
 476. 1004499
 477. 1004499
 478. 1004499
 479. 1004499
 480. 1004499
 481. 1004499
 482. 1004499
 483. 1004499
 484. 1004499
 485. 1004499
 486. 1004499
 487. 1004499
 488. 1004499
 489. 1004499
 490. 1004499
 491. 1004499
 492. 1004499
 493. 1004499
 494. 1004499
 495. 1004499
 496. 1004499
 497. 1004499
 498. 1004499
 499. 1004499
 500. 1004499
 501. 1004499
 502. 1004499
 503. 1004499
 504. 1004499
 505. 1004499
 506. 1004499
 507. 1004499
 508. 1004499
 509. 1004499
 510. 1004499
 511. 1004499
 512. 1004499
 513. 1004499
 514. 1004499
 515. 1004499
 516. 1004499
 517. 1004499
 518. 1004499
 519. 1004499
 520. 1004499
 521. 1004499
 522. 1004499
 523. 1004499
 524. 1004499
 525. 1004499
 526. 1004499
 527. 1004499
 528. 1004499
 529. 1004499
 530. 1004499
 531. 1004499
 532. 1004499
 533. 1004499
 534. 1004499
 535. 1004499
 536. 1004499
 537. 1004499
 538. 1004499
 539. 1004499
 540. 1004499
 541. 1004499
 542. 1004499
 543. 1004499
 544. 1004499
 545. 1004499
 546. 1004499
 547. 1004499
 548. 1004499
 549. 1004499
 550. 1004499
 551. 1004499
 552. 1004499
 553. 1004499
 554. 1004499
 555. 1004499
 556. 1004499
 557. 1004499
 558. 1004499
 559. 1004499
 560. 1004499
 561. 1004499
 562. 1004499
 563. 1004499
 564. 1004499
 565. 1004499
 566. 1004499
 567. 1004499
 568. 1004499
 569. 1004499
 570. 1004499
 571. 1004499
 572. 1004499
 573. 1004499
 574. 1004499
 575. 1004499
 576. 1004499
 577. 1004499
 578. 1004499
 579. 1004499
 580. 1004499
 581. 1004499
 582. 1004499
 583. 1004499
 584. 1004499
 585. 1004499
 586. 1004499
 587. 1004499
 588. 1004499
 589. 1004499
 590. 1004499
 591. 1004499
 592. 1004499
 593. 1004499
 594. 1004499
 595. 1004499
 596. 1004499
 597. 1004499
 598. 1004499
 599. 1004499
 600. 1004499
 601. 1004499
 602. 1004499
 603. 1004499
 604. 1004499
 605. 1004499
 606. 1004499
 607. 1004499
 608. 1004499
 609. 1004499
 610. 1004499
 611. 1004499
 612. 1004499
 613. 1004499
 614. 1004499
 615. 1004499
 616. 1004499
 617. 1004499
 618. 1004499
 619. 1004499
 620. 1004499
 621. 1004499
 622. 1004499
 623. 1004499
 624. 1004499
 625. 1004499
 626. 1004499
 627. 1004499
 628. 1004499
 629. 1004499
 630. 1004499
 631. 1004499
 632. 1004499
 633. 1004499
 634. 1004499
 635. 1004499
 636. 1004499
 637. 1004499
 638. 1004499
 639. 1004499
 640. 1004499
 641. 1004499
 642. 1004499
 643. 1004499
 644. 1004499
 645. 1004499
 646. 1004499
 647. 1004499
 648. 1004499
 649. 1004499
 650. 1004499
 651. 1004499
 652. 1004499
 653. 1004499
 654. 1004499
 655. 1004499
 656. 1004499
 657. 1004499
 658. 1004499
 659. 1004499
 660. 1004499
 661. 1004499
 662. 1004499
 663. 1004499
 664. 1004499
 665. 1004499
 666. 1004499
 667. 1004499
 668. 1004499
 669. 1004499
 670. 1004499
 671. 1004499
 672. 1004499
 673. 1004499
 674. 1004499
 675. 1004499
 676. 1004499
 677. 1004499
 678. 1004499
 679. 1004499
 680. 1004499
 681. 1004499
 682. 1004499
 683. 1004499
 684. 1004499
 685. 1004499
 686. 1004499
 687. 1004499
 688. 1004499
 689. 1004499
 690. 1004499
 691. 1004499
 692. 1004499
 693. 1004499
 694. 1004499
 695. 1004499
 696. 1004499
 697. 1004499
 698. 1004499
 699. 1004499
 700. 1004499
 701. 1004499
 702. 1004499
 703. 1004499
 704. 1004499
 705. 1004499
 706. 1004499
 707. 1004499
 708. 1004499
 709. 10

21
TEMES
MAX 571.272
MIN 472.653

STATE	11	12	13	14	15	16	17	18	19	20
Ala.	549,419	546,141	546,011	546,011	546,011	546,011	546,011	546,011	546,011	546,011
Ala., cont.	528,446	528,733	528,733	528,733	528,733	528,733	528,733	528,733	528,733	528,733
Ala., cont.	526,465	527,582	527,582	527,582	527,582	527,582	527,582	527,582	527,582	527,582
Ala., cont.	522,446	526,367	526,245	526,245	526,245	526,245	526,245	526,245	526,245	526,245
Ala., cont.	520,465	523,076	523,151	523,151	523,151	523,151	523,151	523,151	523,151	523,151
Ala., cont.	518,465	522,923	522,756	522,756	522,756	522,756	522,756	522,756	522,756	522,756
Ala., cont.	516,465	523,032	523,727	523,727	523,727	523,727	523,727	523,727	523,727	523,727
Ala., cont.	514,465	523,452	524,452	524,452	524,452	524,452	524,452	524,452	524,452	524,452
Ala., cont.	512,465	524,457	524,197	524,197	524,197	524,197	524,197	524,197	524,197	524,197
Ala., cont.	510,465	524,274	524,017	524,017	524,017	524,017	524,017	524,017	524,017	524,017
Ala., cont.	508,465	524,542	525,455	525,455	525,455	525,455	525,455	525,455	525,455	525,455
Ala., cont.	506,465	525,127	527,855	527,855	527,855	527,855	527,855	527,855	527,855	527,855
Ala., cont.	504,465	523,723	522,743	522,187	522,187	522,187	522,187	522,187	522,187	522,187
Ala., cont.	502,465	527,346	526,545	526,297	526,297	526,297	526,297	526,297	526,297	526,297
Ala., cont.	500,465	526,497	526,397	526,777	526,777	526,777	526,777	526,777	526,777	526,777
Ala., cont.	498,465	526,263	522,633	522,459	522,459	522,459	522,459	522,459	522,459	522,459
Ala., cont.	496,465	519,476	522,147	521,466	521,466	521,466	521,466	521,466	521,466	521,466
Ala., cont.	494,465	517,395	521,416	521,416	521,416	521,416	521,416	521,416	521,416	521,416
Ala., cont.	492,465	515,843	519,353	519,199	519,199	519,199	519,199	519,199	519,199	519,199
Ala., cont.	490,465	514,426	518,602	518,703	518,703	518,703	518,703	518,703	518,703	518,703
Ala., cont.	488,465	513,429	517,464	517,137	517,137	517,137	517,137	517,137	517,137	517,137
Ala., cont.	486,465	512,259	516,613	516,961	516,961	516,961	516,961	516,961	516,961	516,961
Ala., cont.	484,465	511,115	515,749	514,920	514,920	514,920	514,920	514,920	514,920	514,920
Ala., cont.	482,465	509,904	514,524	512,917	512,917	512,917	512,917	512,917	512,917	512,917
Ala., cont.	480,465	510,495	513,463	512,425	512,425	512,425	512,425	512,425	512,425	512,425
Ala., cont.	478,465	507,437	512,666	511,954	511,235	511,235	511,235	511,235	511,235	511,235
Ala., cont.	476,465	506,790	511,324	511,316	511,316	511,316	511,316	511,316	511,316	511,316
Ala., cont.	474,465	505,764	511,313	510,379	510,466	510,466	510,466	510,466	510,466	510,466
Ala., cont.	472,465	504,703	504,417	509,171	509,171	509,171	509,171	509,171	509,171	509,171
Ala., cont.	470,465	503,424	509,224	508,224	508,224	508,224	508,224	508,224	508,224	508,224
Ala., cont.	468,465	502,484	508,362	507,461	507,461	507,461	507,461	507,461	507,461	507,461
Ala., cont.	466,465	501,465	507,443	504,420	506,462	506,462	506,462	506,462	506,462	506,462
Ala., cont.	464,465	501,834	506,759	505,759	505,759	505,759	505,759	505,759	505,759	505,759
Ala., cont.	462,465	500,465	505,464	504,463	505,116	505,116	505,116	505,116	505,116	505,116
Ala., cont.	460,465	499,598	515,114	508,147	503,431	504,465	504,465	504,465	504,465	504,465
Ala., cont.	458,465	498,529	516,512	516,421	512,233	513,376	513,376	513,376	513,376	513,376
Ala., cont.	456,465	497,613	513,626	522,741	524,532	524,532	524,532	524,532	524,532	524,532
Ala., cont.	454,465	497,446	512,923	511,904	511,773	512,441	512,441	512,441	512,441	512,441
Ala., cont.	452,465	496,336	512,214	505,711	511,127	511,127	511,127	511,127	511,127	511,127
Ala., cont.	450,465	495,461	515,151	504,457	512,426	511,274	511,274	511,274	511,274	511,274
Ala., cont.	448,465	494,373	506,727	501,119	501,119	501,119	501,119	501,119	501,119	501,119
Ala., cont.	446,465	493,339	501,287	499,473	511,081	511,081	511,081	511,081	511,081	511,081
Ala., cont.	444,465	492,715	498,694	498,426	508,037	509,501	509,501	509,501	509,501	509,501
Ala., cont.	442,465	491,166	498,124	496,273	498,421	499,351	499,351	499,351	499,351	499,351
Ala., cont.	440,465	492,438	498,594	497,740	497,474	498,566	513,374	498,566	513,374	513,374
Ala., cont.	438,465	491,135	498,048	497,257	497,481	498,319	502,623	502,623	502,623	502,623
Ala., cont.	436,465	491,567	497,063	496,742	497,146	497,648	502,234	502,234	502,234	502,234
Ala., cont.	434,465	491,231	497,144	496,742	496,636	497,252	501,141	502,547	501,540	514,078
Ala., cont.	432,465	490,837	496,724	495,927	492,243	496,480	501,484	521,681	511,687	575,177
Ala., cont.	430,465	490,477	496,323	495,549	495,493	496,493	520,225	520,427	511,411	577,171
Ala., cont.	428,465	492,154	495,986	495,192	495,671	491,309	496,707	520,417	520,407	577,171

FIGURE 5-5 - Continued

21
TELEGRAMS
MAY 571-271
MIN 472-653

NAME/STAT	21	22	23	24
6.***	503.036	544.150	546.221	546.416
33.***	501.345	504.630	501.571	519.557
586.***	500.456	503.345	502.855	513.152
46.***	500.707	504.500	503.057	517.205
126.***	505.703	506.500	506.401	516.101
150.***	507.822	506.500	505.620	515.500
150.***	504.150	507.421	506.270	514.537
180.***	500.835	508.489	506.815	514.113
240.***	507.222	508.857	507.216	513.747
270.***	501.119	509.422	507.678	512.684
300.***	501.988	504.957	507.950	512.916
310.***	502.776	500.466	498.264	531.150
360.***	493.893	501.791	506.411	517.715
360.***	504.175	501.144	504.577	531.198
420.***	505.797	505.445	508.708	529.516
420.***	505.369	501.953	506.816	524.931
480.***	505.495	501.929	508.876	528.776
510.***	506.379	502.123	504.923	527.941
540.***	506.226	502.296	506.951	527.324
570.***	507.239	502.433	506.942	526.826
630.***	507.416	502.555	506.959	526.342
630.***	497.865	502.689	506.948	495.477
680.***	504.247	501.764	504.921	535.429
690.***	505.495	502.021	508.749	529.496
720.***	500.851	502.890	504.953	524.573
750.***	500.126	502.964	506.810	524.164
780.***	509.362	502.994	509.772	523.768
810.***	509.434	503.046	508.723	523.374
860.***	509.862	503.485	506.685	523.015
870.***	506.597	503.327	506.646	522.646
900.***	506.232	502.167	506.466	522.246
930.***	506.391	503.210	506.576	521.953
940.***	506.575	505.255	506.560	521.622
950.***	506.757	503.324	506.537	521.111
1020.***	506.939	505.334	506.519	520.666
1050.***	501.120	506.334	506.514	521.486
1080.***	501.120	503.395	506.525	521.370
1110.***	501.492	502.584	506.525	521.746
1140.***	501.667	503.679	506.577	520.794
1150.***	501.667	503.763	506.622	519.517
1180.***	502.138	503.893	506.586	519.226
1190.***	502.138	504.877	506.586	519.194
1200.***	502.138	504.877	506.756	519.064
1260.***	502.503	505.169	506.864	518.666
1290.***	502.816	505.365	506.964	518.206
1320.***	503.047	506.551	506.975	518.123
1350.***	503.376	506.766	506.945	517.555
1360.***	503.679	506.992	506.933	517.586
1410.***	501.299	505.226	506.506	517.322
1440.***	500.320	505.588	506.708	517.162
1470.***	500.320	505.795	506.716	516.842

EMP E XONCAT

FIGURE 5-5 - Concluded

6. HINTS AND DIAGNOSTICS

1. To call MBALL, it is necessary that: HEATRV = EXOHEAT
TARGSYN = YES
BALL = 2 or 3 (in NAMELIST/
IBALL)
2. If the removal of a piece (creation of a hole) is desired:
 - a. The initial temperature of the piece is input as 0.
 - b. The external flux entering the interior is neglected, so the number of stations removed should be small.
3. For a skin that consists of layers of different materials, the appropriate averages of the material properties should be input (see Equations 3-31 through 3-33) in card set 7 (Table 4-3).
4. If, for any reason, it is necessary to model a station with an outside emissivity equal to zero (this piece thus has no radiative communication with the external environment) the outside emissivity on card 7.1 (Table 4-3) should be set to a small number, but not zero. This is because the external emissivity is set equal to zero internally for an open station (when TOLD = 0) and is used as the flag for that open station in the calculations, so that any outside emissivity equal to zero would be interpreted as an open station.

7. REFERENCES

1. E. K. Stewart, "Optical Signatures Code, Volume I - Basic Option", Sixth Distribution, Teledyne Brown Engineering, March 1979
2. H. Rose, D. Anding, R. R. Kauth, and J. Walker, "Handbook of Albedo and Earthshine", Environmental Research Institute of Michigan, University of Michigan, Ann Arbor, Michigan, June 1973, 190201-1-T
3. J. V. Beaupre, "Optical Signatures Code, Volume II - Exoatmospheric Thermal Response Model: EXOHEAT", Fifth Distribution, Teledyne Brown Engineering, December 1977