Машинное обучение в экономике Машинное обучение в эконометрике

Потанин Богдан Станиславович

доцент, научный сотрудник, кандидат экономических наук

2023-2024

Введение

Основные рассматриваемые темы

- Методы оценивания параметров:
 - Ридж и Лассо регрессии.
 - Пост-Лассо.
 - Двойное машинное обучение.
- Базовые понятия:
 - Регуляризация.
 - Метод моментов.
 - Структурный параметр.
 - Функция шума.
 - Ортогональность по Нейману.
 - Кросс-фиттинг.
 - Эндогенность и неслучайный отбор.

Введение

Специфика эконометрчиеской проблематики

- Машинное обучение, как правило, применяется для прогнозирования различных характеристик распределения, таких как условные математические ожидания и вероятности.
- Обычно методы машинного обучения дают оценки, обладающие малым смещением и большой дисперсией, поскольку не накладывают структурных предпосылок (например, о линейности) на форму связи между переменными модели.
- В задаче прогнозирования эконометрические методы обычно демонстрируют преимущество на выборках малого и среднего объема, поскольку обладают структурой, позволяющей компенсировать недостаток данных реалистичными предположениями, снижающими дисперсию оценок.
- Однако, основной упор в эконометрическом анализе делается на оценивание параметров моделей, имеющих содержательную экономическую интерпретацию.
- Иногда исследователя интересуют не все, а лишь часть параметров модели, характеризующих связь между основными переменными модели. В таком случае можно объединить сильные стороны эконометрики (интерпретабельность) и машинного обучения (высокая точность прогнозирования).
- Основная идея часть модели, не представляющая содержательный интерес для исследователя, оценивается методами машинного обучения, а для оценивания структурных параметров применяются эконометрические методы анализа.

Регуляризация

Основная идея

- Проблема машинное обучение позволяет избегать допущения о линейной связи Y_i с X_i и T_i , тем самым снижая смещение оценок, но часто серьезно повышает дисперсию на малых выборках.
- Идея для того, чтобы снизить дисперсию оценок и избежать переобучения, пусть и ценой повышения смещения, можно воспользоваться регуляризацией.
- Одним из наиболее популярных подходов к регуляризации заключается в накладывании штрафов на параметры модели:

$$\underbrace{\mathsf{L}\left(Y,F(X;\theta)\right)}_{\text{функция потерь}} + \underbrace{\mathsf{penalty}\left(\theta\right)}_{\text{штраф}} \qquad \mathbf{мнимизируемый} \ \mathbf{функционал}$$

- Функция penalty (θ) накладывает **штраф** (penalty) за определенные, как правило **большие по модулю** значения элементов n_{θ} -мерного вектора параметров θ модели $F(X;\theta)$.
- Интуиция ограничение $\theta_i = 0$ обычно соответствует исключению параметра θ_i из модели, что приводит к ее упрощению. Регуляризация предлагает в качестве альтернативы накладывать штрафы, приводящие, образно говоря, к естественному отбору среди параметров, когда значительно отличными от 0 оказываются лишь те из них, что оказывают существенное влияние на качество модели.
- В роли параметров θ , например, могут выступать коэффициенты β в обычной линейной или логистической регрессии.

Регуляризация

Регуляризации с помощью Lp-норм

• В большинстве случае функция штрафа задается с помощью Lp-нормы:

penalty
$$(heta)=|| heta||_p^p=\sum_{i=1}^{n_ heta}\lambda_i| heta_i|^p$$
, где $\lambda_i>0$ и $p\in\{0,1,2,...\}$

ullet Случаи p=1 и p=2 являются наиболее популярными:

penalty
$$(heta)=\sum_{i=1}^{n_{ heta}}\lambda_i| heta_i|$$
 Лассо регуляризация penalty $(heta)=\sum_{i=1}^{n_{ heta}}\lambda_i heta_i^2$ Ридж регуляризация

- Чем больше значения констант λ_i , тем сильнее накладываемый штраф за большие по абсолютной величине значения параметров θ_i
- Подбор λ_i обычно осуществляется по аналогии с гиперпараметрами, например, с помощью кросс-валидации. Для простоты часто полагают $\lambda_i = \lambda$ для всех i.

Регуляризация

Стандартизация признаков

- Как правило величины коэффициентов θ тесно связаны с единицами измерения признаков X.
- Проблема единицы измерения признаков X влияют на величину штрафа λ , а значит и на оценки параметров θ .
- Решение привести признаки к сопоставимым единицам измерения, например, за счет стандартизации в форме деления на выборочное стандартное отклонение.
- Кроме того, часто стандартизация снижает сложность оптимизационной задачи, тем самым повышая скорость нахождение минимума методами численной оптимизации.

Лассо регрессия

- Даже сохраняя линейную форму связи $E(Y_i|X_i) = X_i\beta$, линейная регрессия может аппроксимировать очень сложные зависимости, за счет того, что X_i могут быть разнообразными функциями (например, полиномы и сплайны) от исходных данных.
- Чем больше функций от исходных данных включает исследователь, тем, как правило, ниже смещение, но выше дисперсия оценок параметров и прогнозов.
- Проблема при включении большого числа функций от исходных данных число оцениваемых коэффициентов β_i может оказаться чрезвычайно велико, что приведет к крайне большой дисперсии оценок.
- Решение воспользоваться, например, Лассо регуляризацией, минимизируя:

$$\sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \sum_{i=1}^{n_\beta} \lambda_i |\beta_i|$$

• Полезное свойство Лассо регуляризации – часто оценки коэффициентов при наименее значимых (с точки зрения вклада в прогностическое качество модели) регрессорах обнуляются $\hat{\beta}_i = 0$, что эквивалентно их исключению из модели.

Ридж регрессия

 Преимущество Ридж регуляризации в линейной регрессии заключается в возможности получения аналитических оценок коэффициентов и их характеристик:

$$\hat{eta} = \lambda \left(X^T X + \Lambda \right)^{-1} X^T Y$$
, где $\Lambda = \mathrm{diag} \left(\lambda, ..., \lambda \right)$ Е $\left(\hat{eta} | X \right) = \beta - \underbrace{\lambda \left(X^T X + \Lambda \right)^{-1} \beta}_{\mathsf{смещение}}$

$$\mathsf{Cov}\left(\hat{\beta}|X\right) = \left(X^TX + \Lambda\right)^{-1}X^T\mathsf{Cov}\left(\varepsilon|X\right)X\left(X^TX + \Lambda\right)^{-1}$$

- ullet Можно показать, что смещение увеличивается по мере роста штрафа $\lambda.$
- Производная $\operatorname{Cov}\left(\hat{\beta}|X\right)$ по λ является отрицательно определенной матрицей, поэтому увеличение штрафа приводит к уменьшению дисперсии оценок.
- Если случайные ошибки ε_i гетероскедастичны, то существует такая константа c, что при $\lambda \in (0,c)$ оценки Ридж регрессии более эффективны, чем МНК.

Соотношение смещения и дисперсии в Ридж регрессии в случае с одним регрессором

• Если в модели используется лишь один регрессор (без константы), то легко показать, что смещение возрастает вместе со штрафом λ :

$$\partial \operatorname{bias}\left(\hat{\beta}|X\right)/\partial \lambda = \partial \left|\lambda \beta / \left(\sum_{i=1}^{n} X_i^2 + \lambda\right)\right|/\partial \lambda = \left|\beta \sum_{i=1}^{n} X_i^2 / \left(\sum_{i=1}^{n} X_i^2 + \lambda\right)^2\right| > 0$$

• Поскольку $\operatorname{Cov}\left(\varepsilon|X\right)$ положительно определена, то дисперсия падает с ростом λ :

$$\partial \operatorname{Var}\left(\hat{\beta}|X\right)/\partial \lambda = \partial \left(X^{T}\operatorname{Cov}\left(\varepsilon|X\right)X/\left(\sum_{i=1}^{n}X_{i}^{2} + \lambda\right)^{2}\right)\partial \lambda =$$

$$= \underbrace{\left(-2/\left(\sum_{i=1}^{n}X_{i}^{2} + \lambda\right)^{3}\right)}_{c}\underbrace{X^{T}\operatorname{Cov}\left(\varepsilon|X\right)X}_{>0} < 0$$

- Напомним, что при Лассо регуляризации в линейных регрессионных моделях некоторые из коэффициентов β могут обращаться в 0.
- Проблема включение большого числа регрессоров с нулевыми коэффициентами может привести к снижению эффективности оценок вследствие серьезного смещения.
- Решение применить двухшаговую процедуру, на первом шаге которой оценивается Лассо регрессия, а на втором обычная МНК регрессия, в которой в качестве объясняющих переменных используются лишь те, при которых коэффициенты оказались отличными от нуля в Лассо регрессии.
- Поскольку МНК регрессия используется после Лассо, описанный метод именуется пост-Лассо.
- **Примечание** эффективность оценок пост-Лассо может быть ниже, чем у обычной Лассо регрессии, поскольку они обладают большей дисперсией.

Метод моментов

Повторение основ

- Рассмотрим i.i.d. выборку $X_1,...,X_n$ из распределения с параметром $\theta_0 \in R$ (по аналогии для векторов).
- Рассмотрим непрерывную по θ функцию $\psi(X_i,\theta)$, часто именуемую вкладом (score), такую, что θ_0 является единственным решением равенства:

$$E(\psi(X_i,\theta))=0$$

• Оценка $\hat{\theta}$, полученная из решения следующего равенства, является, при определенных условиях регулярности, состоятельной для параметра θ_0 и асимптотически нормальной:

$$\frac{1}{n}\sum_{i=1}^n\psi(X_i;\hat{\theta})=0$$

• Иногда из равенства $E(\psi(X_i,\theta_0))=0$ или некоторым иным образом можно выразить θ_0 как функцию от моментов, не зависящих от θ_0 :

$$\theta_0 = g(E(\psi_1(X_i)), ..., E(\psi_m(X_i))).$$

• В таком случае, при некоторых условиях регулярности, состоятельная и асимптотически нормальная оценка $\hat{\theta}$ параметра θ_0 может быть получена как:

$$\hat{ heta}=g(\hat{E}(\psi_1(X_i)),...,\hat{E}(\psi_m(X_i)))$$
, где $\hat{E}(\psi_k(X_i))=rac{1}{n}\sum_{i=1}^n\psi_k(X_i;\hat{ heta})\stackrel{p}{
ightarrow} E(\psi_k(X_i))$

• Если некоторые параметры функции ψ_k неизвестны, то иногда ее заменяют состоятельной оценкой $\hat{\psi}_k$, однако в таком случае изучение свойств оценки $\hat{\theta}$ оказывается нетривиальной задачей.

Пример с частично линейной регрессии

• Рассмотрим частично линейную модель:

$$Y_i = \alpha T_i + g(X_i) + \varepsilon_i$$
, где $(T_i, X_i, \varepsilon_i)$ i.i.d.

- ullet В качестве основного параметра интереса для исследователя выступает $lpha \in R.$
- ullet Введем стандартное допущение $\mathsf{E}\left(arepsilon_i|T_i,X_i
 ight)=0$, которое можно ослабить до $\mathsf{E}\left(\mathsf{Cov}\left(arepsilon_i,T_i|X_i
 ight)
 ight)=0$.
- Используя введенные допущения и закон чередующихся математических ожиданий можно показать, что:

$$\mathsf{E}\left[\psi
ight] = 0$$
, где $\psi(lpha, g_Y, g_T) = (Y_i - g_Y(X_i) - lpha\left[T_i - g_T(X_i)
ight]) (T_i - g_T(X_i))$ $g_Y(X_1) = \mathsf{E}\left(Y_i|X_i
ight), \ g_T(X_i) = \mathsf{E}\left(T_i|X_i
ight)$

Где аргумент (T_i, X_i, Y_i) функции ψ опущен для краткости и i может быть произвольным в силу i.i.d.

• Выражая α из равенства $E(\psi) = 0$ получаем:

$$\alpha = \frac{E((Y_i - g_Y(X_i))(T_i - g_T(X_i)))}{E((T_i - g_T(X_i))^2)} = \frac{E(\psi_1(X_i, Y_i, T_i; g_Y, g_T))}{E(\psi_2(X_i, T_i; g_T))}$$

• Следовательно, параметр α можно оценить двухшаговой процедурой, на первом шаге которой **методами** машинного обучения оцениваются функции шума $\hat{g}_Y(x) = \hat{E}(Y_i|X_i=x)$ и $\hat{g}_T(x) = \hat{E}(T_i|X_i=x)$, а на втором шаге – параметр α :

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} (Y_i - \hat{g}_Y(X_i)) (T_i - \hat{g}_T(X_i))}{\sum_{i=1}^{n} (T_i - \hat{g}_T(X_i))^2} = \frac{\sum_{i=1}^{n} \hat{\psi}_1(X_i, Y_i, T_i; g_Y, g_T)}{\sum_{i=1}^{n} \hat{\psi}_2(X_i, T_i; g_T)} = \frac{\sum_{i=1}^{n} \psi_1(X_i, Y_i, T_i; \hat{g}_Y, \hat{g}_T)}{\sum_{i=1}^{n} \psi_2(X_i, T_i; \hat{g}_T)}$$

Ортогональность по Нейману

- Проблема поскольку оценивание $\hat{\alpha}$ происходит в два шага, то смещение оценок $\hat{\mathbb{E}}(Y_i|X_i)$ и $\hat{\mathbb{E}}(T_i|X_i)$, часто возникающие вследствие использования регуляризации (regularization bias), может приводить к серьезному смещению $\hat{\alpha}$, так как $E(\psi(\alpha,\hat{g}_T,\hat{g}_Y)) \neq 0$.
- Решение частично данная проблема смягчается за счет формы функции ψ , удовлетворяющей условию ортогональности по Нейману:

$$\partial E\left(\psi\left(\alpha, g_Y(X_1) + q\underbrace{\left(\hat{g}_Y(X_1) - g_Y(X_1)\right)}_{\mathsf{CMEЩEHUE}}, g_T(X_1) + q\underbrace{\left(\hat{g}_T(X_1) - g_T(X_1)\right)}_{\mathsf{CMEЩEHUE}}\right)\right) / \partial q|_{q=0} = 0$$

• Интуиция – при небольших отклонениях оцененных условных математических ожиданий от истинных моментное тождество $E(\psi)=0$ продолжает соблюдаться с малой погрешностью:

$$\alpha \approx \frac{\mathsf{E}\left(\left(Y_{i} - \hat{g}_{Y}(X_{i})\right)\left(T_{i} - \hat{g}_{T}(X_{i})\right)\right)}{\mathsf{E}\left(\left(T_{i} - \hat{g}_{T}(X_{i})\right)^{2}\right)}$$

• Примечание - в работе (ссылка) приводятся полезные алгоритмы построения функций ψ , обладающих свойством ортогональности по Нейману. Например, ортогональной по Нейману будет также следующая функция:

$$\psi(\alpha, g, g_T) = (Y_1 - \alpha T_1 - g(X_1)) (T_1 - g_T(X_1))$$

Разбиение выборки

- Проблема даже несмотря на регуляризацию, многие методы машинного обучения склонны к переобучению (overfitting bias), из-за чего по крайней мере внутривыборочные оценки $Y_i \hat{g}_Y(X_i)$ и $T_i \hat{g}_T(X_i)$ могут существенно отклоняться от $Y_i g_Y(X_i)$ и $T_i g_T(X_i)$, тем самым снижая точность оценок второго шага.
- Решение применить разбиение выборки (sample splitting) на две части первая часть выборки используется на первом шаге, то есть для оценивания g_Y и g_T , а вторая на втором шаге для оценивания α с использованием полученных на первом шаге оценок \hat{g}_Y и \hat{g}_T .
- **Проблема** мы используем лишь по половине выборки для каждого из шагов, что может снижать эффективность наших оценок.
- Решение воспользоваться кросс-фиттингом.
- Обозначим через $\hat{g}_{Y}^{(1)}$, $\hat{g}_{T}^{(1)}$ и $\hat{g}_{Y}^{(2)}$, $\hat{g}_{T}^{(2)}$ оценки функций g_{Y} и g_{T} , полученные на первой и второй половинах выборки соответственно. То есть обе половины выборки поочередно используются на первом шаге.
- ullet Введем вспомогательную переменную q_i , такую, что $q_i=1$ если наблюдение i не вошло в первую половину выборки, и $q_i=2$ в противном случае.
- ullet Оценим \hat{lpha} таким образом, чтобы для каждого наблюдения i на втором шаге использовались оценки функций g_Y и g_T , которые были получены без использования i-го наблюдения:

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} \left(Y_i - \hat{g}_Y^{(q_i)}(X_i) \right) \left(T_i - \hat{g}_T^{(q_i)}(X_i) \right)}{\sum_{i=1}^{n} \left(T_i - \hat{g}_T^{(q_i)}(X_i) \right)^2}$$

Двойное машинное обучение (DML) Кросс-фиттинг

- **Проблема** использование лишь половины выборки может существенно снизить эффективность оценок функций g_Y и g_T .
- Решение реализовать кросс-фиттинг по аналогии с кросс-валидацией, разбив выборку на K (примерно) равных частей, где $\hat{g}_{Y}^{(k)}$ и $\hat{g}_{T}^{(k)}$ оцениваются на данных, не вошедших в k-ю из этих выборок (обычно K=5):

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} \left(Y_{i} - \hat{g}_{Y}^{(q_{i})}(X_{i}) \right) \left(T_{i} - \hat{g}_{T}^{(q_{i})}(X_{i}) \right)}{\sum_{i=1}^{n} \left(T_{i} - \hat{g}_{T}^{(q_{i})}(X_{i}) \right)^{2}}$$

Где $q_i = k$, если наблюдение i не вошло в k-ю выборку.

- **Проблема** результаты оценивания могут быть чувствительны к конкретному разбиению на K частей.
- Решение повторить кросс-фиттинг m раз и либо усреднить все полученные оценки, либо взять ту из них, что является выборочной медианой.

Резюме

- Описанный метод именуется **двойным машинным обучением** (DML), поскольку предполагает применение методов машинного обучения при оценивании функций \hat{g}_Y и \hat{g}_T , а также кросс-фиттинга.
- При достаточно слабых допущениях DML метод дает состоятельную и асимптотически нормальную оценку $\hat{\alpha}$.
- Идейно DML опирается на метод моментов, поскольку выражение, используемое для оценивания lpha, выводится из равенства $E(\psi)=0$.
- Проблема использование оценок \hat{g}_Y и \hat{g}_T вместо истинных значений g_Y и g_T может приводить к неточностям в оценивании $\hat{\alpha}$.
- ullet Решение кросс-фиттинг и подбор функции ψ , удовлетворяющей ортогональности по Нейману.
 - Ортогональность по Нейману позволяет сгладить смещение вследствие регуляризации.
 - Кросс-фиттинг помогает снизить смещение, обусловленное переобучением.
- Иногда кросс-фиттинг реализуется упрощенным образом параметр α оценивается на каждой из K подвыборок и полученный результат усредняется. Такой подход называется DML, а рассмотренный ранее DML2.
- Авторы метода рекомендуют применять DML2, особенно на малых выборках.

Двойное машинное обучение (DML) Эндогенность

- Проблема если T_i является эндогенной переменной, то $E(\varepsilon_i|T_i,X_i)\neq 0$, откуда $E(\psi)\neq 0$, что не позволяет оценить α описанным ранее способом.
- Решение найти инструментальную переменную Z_i (случай с несколькими инструментами рассматривается по аналогии), то есть такую, что $E(\varepsilon_i|X_i,Z_i)=0$ и $E(Cov(T_i,Z_i|X_i))\neq 0$. После этого рассмотреть такую ψ , что $E(\psi)=0$ и соблюдается ортогональность по Нейману, например:

$$\psi = (Y_i - g_{\mathsf{Z}}(X_i) - lpha \left(T_i - g_{\mathsf{T}}(X_i)
ight)) \left(Z_i - g_{\mathsf{Z}}(X_i)
ight)$$
, где $g_{\mathsf{Z}}(X_i) = E(Z_i|X_i)$

• По аналогии с предыдущим примером применив кросс-фиттинг получаем:

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} \left(Y_i - \hat{g}_Y^{(q_i)}(X_i) \right) \left(Z_i - \hat{g}_Z^{(q_i)}(X_i) \right)}{\sum_{i=1}^{n} \left(T_i - \hat{g}_T^{(q_i)}(X_i) \right) \left(Z_i - \hat{g}_Z^{(q_i)}(X_i) \right)}$$

Неслучайный отбор

• Наблюдаемость Y_i может зависеть от некоторого правила, например, запрлата Y_i наблюдается лишь для работающих $Z_i = 1$ индивидов и ненаблюдается для безработных $Z_i = 0$:

$$Y_i^* = \alpha T_i + g(X_i) + \varepsilon_i$$
 целевое уравнение $Z_i^* = r_1(W_i) + u_i$ уравнение отбора

$$Y_i = egin{cases} Y_i^*, ext{ если } Z_i = 1 \ ext{ ненаблюдаем, в противном случае} \end{cases}$$

$$Z_i = egin{cases} 1$$
, если $Z_i^* \geq 0 \ 0$, в противном случае

• Поскольку в данных мы наблюдаем лишь $(Y_i|Z_i=1)$, а не Y_i , то нарушается допущение о нулевом условном математическом ожидании случайной ошибки:

$$E(\varepsilon_i|X_i,Z_i=1)=E(\varepsilon_i|X_i,u_i\geq -r_1(W_i))=r(W_i) \implies E(Y_i|X_i,Z_i=1)=\alpha T_i+g(X_i)+r(W_i)$$

- Проблема функция $r(W_i)$ является пропущенной переменной, что приведет к несостоятельности DML оценки $\hat{\alpha}$.
- Решение если T_i не входит в W_i , то можно объединить переменные X_i и W_i , получив регрессионное уравнение, в котором α можно оценить DML методом:

$$Y_i = lpha T_i + g^*(X_i^*) + v_i$$
, где $g^*(X_i^*) = g(X_i) + r(W_i)$ и $X_i^* = (X_i, W_i)$

Несколько структурных параметров

• Проблема – иногда исследователю необходимо оценить не один, а сразу несколько структурных параметров a_j , где $j \in \{1,...,n_T\}$.

$$Y_i = \alpha_1 T_{1i} + \ldots + \alpha_{n_T} T_{n_T i} + g(X_i) + \varepsilon_i$$

- Например, параметры α_j могут отражать отдачу от различных уровней образования: базовый, бакалавриат и магистратура.
- Решение оценить каждый из параметров α_j поочередно, используя DML метод для следующего уравнения:

$$Y_i = \alpha_j T_{ji} + g_j(X_i, T_{1i}, ..., T_{(j-1)i}, T_{(j+1)i}, ..., T_{n_T i}) + \varepsilon_i$$

ullet Для тестирования гипотез о связи между параметрами $lpha_j$ можно применить бутстрап.