

Mixed Integer Programming

Fani Boukouvala, Ph.D.

Assistant Professor

School of Chemical and Biomolecular Engineering

Mixed-Integer Formulations

Learning Objectives

- Construct a Mixed-Integer formulation from problem description
- Explain logical operators and their relationship with binary variables
- Make use of binary variables and constraints to represent choices

Mixed-Integer Formulations

Example: "Blending products including discrete batch sizes"

- Products: 1 and 2
- Each batch 2000 lbs
- Feedstocks: A, B, and C
- Unit 1 (capacity 8000 lb/day) produces product 1, requires 0.4lb of A and 0.6lb of B
- Unit 2 (capacity 10000 lb/day) produces product 2, requires 0.3lb of B and 0.7lb of C
- Only 6000 lb/day of B is available.

Mixed-Integer Formulations

Example: "Blending products including discrete batch sizes"

• Products: 1 and 2

Each batch 2000 lbs

Feedstocks: A, B, and C

Variables: Production volume (lb) x_1, x_2

Volume of feedstock (lb): f_A , f_B , f_C

Number of batches: y_1, y_2

Objective: Maximize Revenue (R)

Mixed-Integer Formulations

Example: "Blending products including discrete batch sizes"

Products: 1 and 2

Each batch 2000 lbs

Feedstocks: A, B, and C

- Unit 1 (capacity 8000 lb) produces product 1, requires 0.4 of A and 0.6 of B
- Unit 2 (capacity 10000 lb) produces product 2, requires 0.3 of B and 0.7 of C
- Only 6000 lb of B is available
- Net Revenue is given by following function: $R = 0.16x_1^{0.7} + 0.2x_2^{0.6}$

Variables:

Production volume (lb) x_1, x_2

Volume of feedstock (lb): f_A , f_B , f_C

Number of batches: y_1, y_2

Objective: Maximize Revenue (*R*)

Representing Choices in Design

Examples:

"You must choose a reactor"

"If you choose the reactor RA then you must choose one of separator B or C but not both" "If you choose this separator the feed must be liquid"

Flowsheet that contains ALL POSSIBLE alternatives: "Flowsheet SUPERSTRUCTURE"

Simple Constraints with Binary Variables

 $y_i = [0, 1]$ => zero OR one, no values in between. "Switch on/off"

"At least one of the set S must be chosen."

$$\sum_{i \in S} y_i \ge 1$$

"At most one of the set S must be chosen."

$$\sum_{i \in S} y_i \le 1$$

"Only one of the set S must be chosen."

$$\sum_{i \in S} y_i = 1?$$

"If Reactor A is chosen then its volume (V_A) must be between 5000L and 50,000L otherwise it is zero"

$$5000y_A \le V_A \le 50,000y_A$$

It can get very complex...

"Either one of {1,2,3,4} or one of {5,6,7,8} must be chosen but not one of both."

$$y + y + y + y + y = 1 - (y_5 + y_6 + y_7 + y_8)$$

Logical Operators:

(logical decisions you make every day, and that you will need to make for design)

\wedge	A۱	ND
	, , , ,	

- ee OR
- ⇒ IMPLIES
- $^{-}$ NOT
- ⊗ EXCLUSIVE OR*

$$(P_1 \vee P_2) \wedge (P_3 \vee P_4)$$

$$(P_1 \vee P_2) \Rightarrow P_3$$

P1 or P2 AND P3 or P4

P1 OR P2 IMPLIES P3

^{*}either one, but not both nor none

Logical Representation

How to translate the operators over variables into TRUE FALSE values

These logical representations can ALL be written as binary-based constraints!!!

Logical Representation as MILP

How to I capture these truth tables in MILP Constraints?

Use BINARY variables for the logical variables, y = 1 for TRUE and y = 0 for FALSE.

$$Y_1 \vee Y_2$$

$$y_1 + y_2 \ge 1$$

$$y_1$$
 or y_2 or both can be 1

$$Y_1 \otimes Y_2$$

$$y_1 + y_2 = 1$$

Only
$$y_1$$
 or y_2 can be 1

$$Y_1 \wedge Y_2$$

$$y_1 \ge 1$$

$$y_2 \ge 1$$

$$y_1 + y_2 \ge 2$$

 $y_1 = 1, y_2 = 1$

$$Y_1 \Longrightarrow Y_2$$

$$y_2 \ge y_1$$

$$y_2$$
 must be 1 if y_1 is 1

Example – word statement

"Reactor A selected implies Separator B or C must be selected."

Represent the choice of the Reactor A as $Y_A = \begin{cases} TRUE \\ FALSE \end{cases}$

Reactor A is selected

Define Y_B and Y_c similarly

$$Y_A \Longrightarrow (Y_B \lor Y_C)$$

Example - logical statement

How many total combinations of Y_A, Y_B, Y_C ? $\rightarrow 2^{no_vars} = 2^3 = 8$

$$Y_A = 0, Y_B = 0, Y_C = 0$$
 $Y_A = 1, Y_B = 1, Y_C = 0$ $Y_A = 0, Y_B = 0, Y_C = 1$ $Y_A = 0, Y_B = 1, Y_C = 1$ $Y_A = 0, Y_B = 0, Y_C = 1$ $Y_A = 1, Y_B = 0, Y_C = 1$

Example – MILP Constraint

- Mixed-Integer formulations are needed when a "choice" needs to be made, and many more
- Every logical statement can be represented by mathematical equations that are part of formulation
- Correct mathematical representation leads to solutions without enumeration

