Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка системы управления наземными измерительными средствами

Выполнил:

Руководитель:

Консультант:

Швец А.А., гр. 7303

Романенко С.А., к.т.н., доцент

Калишенко Е.Л., ст. преп. каф. МОЭВМ

Актуальность работы

В рамках работы рассматривается проблема централизованного управления измерительными средствами в ходе проведения опытно-испытательных работ.

Актуальность работы обусловлена необходимостью снижения уровня затрат на эксплуатацию и обслуживание удаленных измерительных пунктов, а также требований к квалификации и количественному составу персонала на ИП.

Цель и задачи

Цель: разработать систему управления измерительными средствами в ходе проведения опытно-испытательных работ.

Задачи:

- Определить основные сценарии работы системы
- Выбрать технологии протоколов обмена данными
- Разработать архитектуру взаимодействия автоматизированного пункта управления и измерительных средств
- Разработать средство формирования заданий и протестировать его

Сценарии работы системы

Общий алгоритм работы системы включает в себя последовательное выполнение следующих действий:

- Настройка пуска и заданий для ИС
- Настройка ИС
- Калибровка и проверка получаемой информации
- Согласование старта измерений
- Измерения со сбором необходимой информации
- Завершение сеанса работы

Таким образом, всевозможные задачи, которые могут возникнуть в системе, относятся к одному из двух этапов: формирование заданий на сеанс измерений (ФЗСИ) и процесс дистанционного управления (ДУ).

Выбор технологий

На основе проведенного обзора аналогов среди языков описания абстрактного синтаксиса данных и их кодогенераторов из выбранных для сравнения инструментов (ASN.1, Google Protocol Buffers, Apache Thrift) были выбраны следующие инструменты:

- Google Protocol Buffers (язык описания)
- Google Protocol Buffer compiler (стандартный кодогенератор)

Для проведения модульного тестирования написанного программного кода был выбран фреймворк GoogleTest, значительно опережающий своего единственного большого конкурента CppUnit.

Выбор технологий (2)

Для реализации автоматизированного создания и разбора задания на сеанс измерений содержимое задания должно быть четко регламентировано и структурировано с помощью одного из языков разметки.

В качестве языка разметки был выбран язык XML и его язык описания структуры данных XML Schema. Среди его главных преимуществ можно выделить простой синтаксис и большое количество библиотек для обработки данных, хранящихся в формате XML. Для создания оконных форм был выбран фреймворк Qt, который поддерживает разбор файлов типа XML.

Архитектура

Архитектура (2)

Прототип интерфейса ПК ФЗСИ

Апробация работы

• На текущий момент разрабатываемая система используется в процессе доработки проекта «АИП» компании АО «НИЦ СПб ЭТУ» перед серийной поставкой изделия. Программный код находится в локальном репозитории организации, доступ к которому не может быть предоставлен по причине конфиденциальности частного проекта.

Заключение

В ходе разработки системы управления измерительными средствами были выполнены следующие работы

- Рассмотрены технологии обмена данными, проведен обзор предметной области и выбор необходимых протоколов обмена данными
- Исследованы принципы и проблемы организации дистанционного управления
- Определены основные сценарии работы разрабатываемой системы
- Спроектирована архитектура разрабатываемой системы
- Разработан прототип средства формирования заданий
- Проведено тестирование разработанного прототипа

В дальнейшем предполагается провести доработку существующей системы с целью объединить ее компоненты – ПК ФЗСИ, ПК ДУ – и автоматизировать процесс проведения сеанса измерений.

Диаграммы потоков данных

Схема работы ПК ФЗСИ

Диаграммы потоков данных (2)

Схема работы ПК ДУ

