Problemset 3

Daniel Bestard, Michael Cameron, Hans-Peter Höllwirth, Akhil Lohia March 7, 2017

1 Inventory Control with Forecasts

2 Inventory Pooling

We want to compare the optimal expected cost between a decentralized and a pooled inventory system with n locations. Let the demand at each location i be independently, normally distributed with mean μ and variance σ^2 , i.e. $D_1,...D_N \stackrel{iid}{\sim} N(\mu,\sigma^2)$. Then $\sum_{i=1}^N D_i \stackrel{d}{=} \sqrt{n}D_1 + \mu(n-\sqrt{n})$.

Let h and b denote the inventory holding cost and backorder cost, respectively. We already know that if $G(Q^*) = \mathbb{E}_D[h(Q^* - D)_+ + b(D - Q^*)_+]$ denotes the optimal expected cost for each location (with optimal order quantity $Q^* = \inf \left\{ Q \ge 0 : \mathbb{P}\left(D_1 \le Q\right) \ge \frac{b}{b+h} \right\}$), then the optimal expected cost in the decentralized inventory system is

$$G_D(Q^*) = \sum_{i=1}^{N} G(Q^*) = nG(Q^*)$$

To find the optimal expected cost in the pooled inventory system $G_P(Q_P^*)$, we first need to determine the optimal order quantity Q_P^* under this system.

$$Q_P^* = \inf \left\{ Q \ge 0 : \mathbb{P} \left(\sum_{i=1}^N D_i \le Q \right) \ge \frac{b}{b+h} \right\}$$

$$= \inf \left\{ Q \ge 0 : \mathbb{P} \left(\sqrt{n} D_1 + \mu(n - \sqrt{n}) \le Q \right) \ge \frac{b}{b+h} \right\}$$

$$= \inf \left\{ \sqrt{n} X + \mu(n - \sqrt{n}) \ge 0 : \mathbb{P} \left(D_1 \le X \right) \ge \frac{b}{b+h} \right\}$$

$$= \sqrt{n} \inf \left\{ X \ge 0 : \mathbb{P} \left(D_1 \le X \right) \ge \frac{b}{b+h} \right\} + \mu(n - \sqrt{n})$$

$$= \sqrt{n} Q^* + \mu(n - \sqrt{n})$$

With this we can now determine optimal expected cost in the pooled inventory system $G_P(Q_P^*)$:

$$\begin{split} G_P(Q_P^*) &= \mathbb{E}_{\{D\}} \left[h(Q_P^* - \sum_{i=1}^N D_i)_+ + b(\sum_{i=1}^N D_i - Q_P^*)_+ \right] \\ &= \mathbb{E}_{\{D\}} \left[h((\sqrt{n}Q^* + \mu(n - \sqrt{n})) - (\sqrt{n}D_1 + \mu(n - \sqrt{n})))_+ \right. \\ &+ b((\sqrt{n}D_1 + \mu(n - \sqrt{n})) - (\sqrt{n}Q^* + \mu(n - \sqrt{n})))_+ \right] \\ &= \mathbb{E}_{\{D\}} \left[h(\sqrt{n}Q^* - \sqrt{n}D_1)_+ + b(\sqrt{n}D_1 - \sqrt{n}Q^*)_+ \right] \\ &= \sqrt{n} \cdot \mathbb{E}_{\{D\}} \left[h(Q^* - D_1)_+ + b(D_1 - Q^*)_+ \right] \\ &= \sqrt{n}G(Q^*) \end{split}$$

It follows that

$$\frac{G_D(Q^*)}{G_P(Q_P^*)} = \frac{nG(Q^*)}{\sqrt{n}G(Q^*)} = \frac{n}{\sqrt{n}} = \sqrt{n}$$

This result means that the expected optimal cost of the decentralized system is \sqrt{n} -times as large as the expected optimal cost of the pooled inventory system under the given assumptions.

3 An Investment Problem

We want to find the optimal investment strategy in a situation where the investor can make N sequential investment decisions, each resulting in one of two possible outcomes: Either (1) the invested money doubles (with probability 1/2 , or (2) the invested money

is lost (with probability 1 - p).

Let x_k denote the wealth at time k (initial wealth x_0), let $u_k \in U_k(x_k) = [0, x_k]$ be the investment (decision) at time k and let

$$w_k(u_k) = \begin{cases} 2u_k & \text{with probability } p \\ 0 & \text{with probability } (1-p) \end{cases}$$

be the outcome of the investment at time k.

First, note that the state transition has the following form:

$$x_{k+1} = f(x_k, u_k, w_k) = x_k - u_k + w_k = \begin{cases} x_k + u_k & \text{with probability } p \\ x_k - u_k & \text{with probability } (1 - p) \end{cases}$$

The DP algorithm has the form (note that we can consider the logarithm of the investor's wealth after the N^{th} investment as the objective function without changing the optimal strategy):

$$J_N(x_N) = \ln(x_N)$$

$$J_k(x_k) = \max_{u_k \in U_k(x_k)} \mathbb{E}_{w_k} \left[J_{k+1}(x_{k+1}) \right]$$

$$= \max_{u_k \in U_k(x_k)} \left[p J_{k+1}(x_k + u_k) + (1 - p) J_{k+1}(x_k - u_k) \right]$$

We want to find the strategy that yields the maximum expected wealth at time N, given initial wealth x_0 : $J_0(x_0)$.

First, consider the optimal strategy for a one-period investment horizon, i.e. $J_0(x_0) = J_{N-1}(x_{N-1}) = \max_{u_k \in U_k(x_k)} \left[p \ln(x_k + u_k) + (1-p) \ln(x_k - u_k) \right]$. We can find the optimal investment strategy u_{N-1}^* using first-order conditions:

$$\frac{\partial}{\partial u_{N-1}} J_{N-1}(x_{N-1}) = 0$$

$$\frac{\partial}{\partial u_{N-1}} \left[p \ln(x_{N-1} + u_{N-1}) + (1-p) \ln(x_{N-1} - u_{N-1}) \right] = 0$$

$$\frac{p}{x_{N-1} + u_{N-1}^*} - \frac{1-p}{x_{N-1} - u_{N-1}^*} = 0$$

$$p(x_{N-1} - u_{N-1}^*) = (1-p)(x_{N-1} + u_{N-1}^*)$$

$$u_{N-1}^* = (2p-1)x_{N-1}$$

It follows that $J_{N-1}(x_{N-1})$ has the form:

$$\begin{split} J_{N-1}(x_{N-1}) &= \max_{u_{N-1}} \mathbb{E}_{w_{N-1}} \left[\ln J_N(x_N) \right] \\ &= \max_{u_{N-1}} \left[p \ln(x_{N-1} + u_{N-1}) + (1-p) \ln(x_{N-1} - u_{N-1}) \right] \\ &= p \ln(x_{N-1} + (2p-1)x_{N-1}) + (1-p) \ln(x_{N-1} - (2p-1)x_{N-1}) \\ &= p \ln(2p \cdot x_{N-1}) + (1-p) \ln((2-2p) \cdot x_{N-1}) \\ &= p \ln(2p) + \ln(x_{N-1}) + (1-p) \ln(2-2p) + \ln(x_{N-1}) \\ &= p \ln(2p) - p \ln(2-2p) + \ln(2-2p) + \ln(x_{N-1}) \\ &= A_{N-1} + \ln(x_{N-1}) \end{split}$$

where $A_{N-1} = p \ln(2p) - p \ln(2-2p) + \ln(2-2p)$ is independent of x_{N-1} . We see that $J_{N-1}(x_{N-1})$ contains the term $\ln(x_{N-1})$ and so the optimal strategy (known as "Kelly strategy") generalizes to all k = 0, 1, ..., (N-1) in the multi-period problem:

$$u_k^* = (2p - 1)x_k$$

and therefore $J_k(x_k) = A_k + \ln(x_k)$ for some A_K independent of x_k .

4 Asset Selling with Maintenance Cost

5 Scheduling Problem