Algorithme du pivot de Gauss

Vocabulaire des systèmes échelonnés

- *) Inconnue principale : associée à un des pivots $\pi_i \neq 0$
- *) Inconnue secondaire : pas associée à un pivot. Elle joue le rôle de paramètre.
- \star) Compatibilité : le système admet des solutions ssi on a 0 en face des lignes nulles.

Familles de vecteurs

Soit $\mathcal{F} = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p)$ une famille de vecteurs d'un espace vectoriel E.

- ightharpoonup Combinaisons linéaires de ${\cal F}$
 - Une **combinaison linéaire** de $\mathcal{F} = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p)$ est un vecteur \vec{v} qui s'écrit $\vec{v} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \dots + \lambda_p \vec{u}_p$, pour des coefficients $\lambda_1, \lambda_2, \dots, \lambda_p \in \mathbb{R}$.
 - ▶ Le sous-espace engendré par \mathcal{F} est l'ensemble des c.l. de \mathcal{F} . On note Vect(\mathcal{F}).
 - $\qquad \qquad \bullet \quad (\operatorname{dans} \, \mathbb{R}^n) \text{ La matrice de la famille s'écrit } A = \begin{bmatrix} \uparrow & \uparrow & & \uparrow \\ \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_p \\ \downarrow & \downarrow & & \downarrow \end{bmatrix}. \text{ Pour } X = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_p \end{bmatrix}$

le vecteur des coefficients, on a $\vec{v} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \ldots + \lambda_p \vec{u}_p = AX$.

- ▶ (In)dépendance linéaire
 - Une équation $\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \ldots + \lambda_p \vec{u}_p = \vec{0}$ s'appelle **relation de dépendance** linéaire Elle est **non-triviale** si l'un des λ_i est non nul.
 - ▶ Vocabulaire : fam. liée, libre, indépendance linéaire, vecteurs colinéaires, coplanaires.
 - $(dans \mathbb{R}^n)$ On trouve si \mathcal{F} est liée en résolvant $AX = \vec{0}$, pour A matrice de la famille.
 - ▶ Principe de la **complétion d'une famille libre** par un nouveau vecteur.

Sous-espaces vectoriels

Définition

Un sous-espace vectoriel F d'un espace vectoriel E est un sous-ensemble $F \subseteq E$ qui

- est non-vide et contient le vecteur nul : $\vec{0} \in F$ et qui
- est stable par combinaisons linéaires : $\forall \vec{u}, \vec{v} \in F, \ \forall \lambda, \mu \in \mathbb{R}$, on a $\lambda \vec{u} + \mu \vec{v} \in F$.

• Dans \mathbb{R}^n

Aller-retour entre deux présentations d'un sous-espace vectoriel de \mathbb{R}^n par l'alg. du pivot.

- \star) équations \leadsto base :
 - ▶ on échelonne le système d'équations
 - on exprime les inconnues principales en termes des inc. secondaires (paramètres)
 - on fait apparaître des vecteurs à droite (éq. tautologique pour les paramètres)
- \star) base \leadsto équations :
 - \triangleright on échelonne la matrice augmentée générique de la famille génératrice \mathcal{F}
 - les conditions de compatibilité donnent un système d'équations du sous-espace.