第一章

1	在数据	居管理技	术的发展过	过程中,	经历了人	L管理阶段、	文件系
统	阶段和	口数据库	系统阶段。	在这几	个阶段中,	数据独立性	挂最高的
見	Α_	阶段。					

- A 数据库系统 B 文件系统
- C 人工管理 D 数据项管理
- 2 数据库的基本特点是 ₿ 。
- A 数据可以共享(或数据结构化);数据独立性;数据冗余大,易移植;统一管理和控制
- B 数据可以共享(或数据结构化);数据独立性;数据冗余小,易移植;统一管理和控制
- C 数据可以共享(或数据结构化);数据互换性;数据冗余大,易移植;统一管理和控制
- D 数据非结构化;数据独立性;数据冗余大,易移植;统一管理 和控制
- 3 数据管理方法主要有 D 。
- A 批处理和文件系统 B 文件系统和分布式系统
- C 分布式系统和批处理 D 数据库系统和文件系统
- 43 数据模型的三要素 D .
- A 外模式、模式和内模式 B 关系模型、层次模型和网状模型
- C 实体、属性和联系 D 数据结构、数据操纵和完整性约束

<mark>54_</mark> 层次模型、网状模型和关系模型的划分原则是 D				
A 记录长度 B 文件的大小				
C 联系的复杂程度 D 数据之间的联系				
<u>65</u> 数据模型用来表示实体间的联系,但不同的数据库管理系统				
支持不同的数据模型。在常用的数据模型中,不包括 <mark>B</mark>				
A 网状模型 B 链状模型				
C 层次模型 D 关系模型				
<mark>76</mark> 层次模型不能直接表示 C				
A 1:1 联系 B 1:n 联系				
C m:n 联系 D 可以表示实体间的上述三种联系				
8- <u>7_</u> 关系数据模型D				
A 只能表示实体间的 1:1 联系				
B 只能表示实体间的 1:n 联系				
C 只能表示实体间的 m:n 联系				
D 可以表示实体间的上述三种联系				
9-8_数据库的网状模型应满足的条件是A				
A 允许一个以上的结点无父结点,也允许一个结点有多个父结点				
B 必须有两个以上的结点				
C 有且仅有一个结点无父结点,其余结点都只有一个父结点				
D 每个结点有且仅有一个父结点				
10_9_在数据库的体系结构中,数据库存储结构的改变会引起内				
模式的改变。为使数据库的模式保持不变,从而不必修改应用程				

序,必须改变模式与内模式之间的映像,这样使数据库具有
C
A 数据独立性 B 逻辑独立性
C 物理独立性 D 操作独立性
11 _ <u>10</u> _在数据库系统中,通常用三级模式来描述数据库,其中
<mark>A</mark> 是用户与数据库的接口,是应用程序可见到的数据描述,
_ <mark>B</mark> 是对数据整体的_ <mark>D</mark> 的描述,而 C 描述了数据的
<mark>F</mark> 。
A 外模式 B 概念模式 C 内模式
D 逻辑结构 E 层次结构 F 物理结构
12 _ <u>11_</u> 数据管理系统(DBMS)是 C
A 一个完整的数据库应用系统 B 一组硬件 ### PMU
批注 [MU2]
C 一组系统软件
硬件,也有软件
13 - <u>12</u> 对于数据库系统,负责定义数据库内容,决定存储结构和
存储策略及安全授权等工作的是 C
A 应用程序开发人员 B 终端用户
C 数据库管理员 D 数据库管理系统的软件设计人员

第二章

1. 在第 59 页的图 2.3 所示的三个关系 Student, Course, SC 中, 将下列关系代数表达式用汉语表示出来。

$$\pi_{2,3}(S\infty(\pi_{1,2}(SC) \div \pi_1(C)))$$

2. 设有如图 2. 1 所示的两个关系 E1 和 E2, 其中 E2 是从 E1 中经过关系运算形成的结果,试给出该运算表达式。

E1

A	В	С
1	2	3
4	5	6
7	8	9

E2		
В	С	
5	6	
8	9	

带格式的:缩进:首行缩进: 4字符

经过的关系运算是

$$\pi_{2,3}(\sigma_{B>2}(E1))$$

$$\frac{\pi_{2,3}(\sigma_{B>2}(E1))}{\sigma_{B>2}(\pi_{2,3}(E1))}$$

3. 已知一个关系数据库的模式如下:

S(Sno, Sname, Scity)

P(Pno, Pname, Color, Weight)

J (Jno, Jname, Jcity)

SPJ (Sno, Pno, Jno, Qty)

其中,S表示供应商,它的各属性依次为供应商号、供应商名和 供应商所在城市: P表示零件,它的各属性依次为零件号、零件 名、零件颜色和零件重量: J表示工程,它的各属性依次为工程 号、工程名和工程所在城市;SPJ 表示供货关系,它的各属性依 次为供应商号、零件号、工程号和供货数量。

用关系代数表达式表示下面的查询要求: 找出向北京的供应 商购买重量大于30的零件的工程名。

答:对应的关系代数表达式为:

或

带格式的:缩进:首行缩进: 1.5 字符

带格式的:缩进:首行缩进: 2字

$\pi_{_{\mathrm{Iname}}}(SPJ_{\infty}\sigma_{\mathtt{Weight}})_{30}(P)$ $\infty\sigma_{\mathtt{Scity}}$, 北京(S) $\infty J)$

24. 设有学生课程数据库中包含如下关系:

S (Sno, Sname, Sex, SD, Age)

C(Cno, Cname, Term, Credit)

SC (Sno, Cno, Grade)

其中, S 为学生表,它的各属性依次为学号、姓名、性别、系别和年龄; C 为课程表,它的各属性依次为课程号、课程名、上课学期和学分; SC 为学生选课成绩表,它的各属性依次为学号、课程号和成绩。请用关系代数表达式查询如下问题:

- (1) 查询选修课程名为"数学"的学生学号和姓名。
- (2) 查询至少选修了课程号为"1"和"3"的学生学号。
- (3) 查询选修了课程号号为"操作系统"或"数据库"课程的学生学号和姓名。
- (4) 查询年龄在 18²0 之间(含 18 和 20)的女生的学号、姓名和年龄。
- (5) 查询选修了"数据库"课程的学生的学号、姓名和成绩。
- (6) 查询选修全部课程的学生姓名和所在的系。
- (7) 查询选修课程包括"1024"学生所学的课程的学生学号。
- (8) 查询不选修 "2"号课程的学生姓名和所在的系。

5. 设有如图所示关系 S, C 和 SC, 使用关系代数表达式表示下列 查询语句:

S

C

Sno	Sname	Sage	Ssex
1	李强	23	男
2	刘丽	22	女
3	张友	22	男

 Cno
 Cname
 Teacher

 k1
 C语言
 王华

 k5
 数据库原理
 程军

 k8
 编译原理
 程军

SC

Cno	Grade		
k1	83		
k1	85		
k1	92		
k5	90		
k5	84		
k8	80		
	k1 k1 k1 k5 k5		

(1)检索"程军"老师所授课程的课程号(Cno)和课程名(Cname)。

带格式的:缩进:首行缩进: 1 字 符

带格式的:缩进:首行缩进: 2 字符

- (2) 检索年龄大于 21 的男学生学号 (Sno) 和姓名 (Sname)
- (3)检索至少选修"程军"老师所授全部课程的学生姓名(Sname)
- (4) 检索"李强"同学不学课程的课程号(Cno)
- (5)检索至少选修两门课程的学生学号(Sno)
- (6)检索全部学生都选修的课程的课程号(Cno)和课程名(Cname)
- (7) 检索选修课程包含"程军"老师所授课程之一的学生学号 (Sno)
- (8) 检索选修课程号为 k1 和 k5 的学生学号(Sno)
- (9) 检索选修全部课程的学生姓名(Sname)
- (10)检索选修课程包含学号为 2 的学生所修课程的学生学号 (Sno)
- (11)检索选修课程名为 "c 语言"的学生学号(Sno)和姓名 (Sname)

第5章

1 已知关系模式 R 的全部属性集 U= {A, B, C, D, E, G} 及函数依赖集:

 $F=\{AB_{\rightarrow}C, C_{\rightarrow}A, BC_{\rightarrow}D, ACD_{\rightarrow}B, D_{\rightarrow}EG, BE_{\rightarrow}C, CG_{\rightarrow}BD, CE_{\rightarrow}AG\}$ 求属性集闭包(BD)[†]

解: 令 X={BD}, X(0)=BD, X(1)=BDEG, X(2)=BCDEG,

X(3)=ABCDEG, 故(BD) + =ABCDEG

2 设有函数依赖集 F={AB→CE, A→C, GP→B, EP→A, CDE→P,

HB→P, D→HG, ABC→PG}, 求与F等价的最小函数依赖集。

解: (1) 将 F 中各依赖的右部属性单一化:

$$F1 = \begin{bmatrix} AB \to C & HB \to P \\ AB \to E & D \to H \\ A \to C & D \to G \\ GP \to B & ABC \to P \\ EP \to A & ABC \to G \\ CDE \to P \end{bmatrix}$$

(2) 对于 $AB \rightarrow C$, 由于有 $A \rightarrow C$, 则为多余的函数依赖:

$$F2 = \begin{bmatrix} AB \rightarrow E & HB \rightarrow P \\ A \rightarrow C & D \rightarrow H \\ GP \rightarrow B & D \rightarrow G \\ EP \rightarrow A & ABC \rightarrow P \\ CDE \rightarrow P & ABC \rightarrow G \end{bmatrix}$$

(3) 通过分析, 没有多余的依赖, 则:

$$F3 = \begin{bmatrix} AB \rightarrow E & HB \rightarrow P \\ A \rightarrow C & D \rightarrow H \\ GP \rightarrow B & D \rightarrow G \\ EP \rightarrow A & ABC \rightarrow P \\ CDE \rightarrow P & ABC \rightarrow G \end{bmatrix}$$

3. 下表给出一数据集,请判断它是否可直接作为关系数据库中的关系,若不行,则改造成为尽可能好的并能作为关系数据库中关系的形式,同时说明进行这种改造的理由。

系名	课程名	教师名
计算机系	DB	李军,刘强
机械系	CAD	金山,宋海
造船系	CAM	王华
自控系	CTY	张红,曾键

解: 因为关系模式至少是 1NF 关系,即不包含重复组并且不存在 嵌套结构,给出的数据集显然不可直接作为关系数据库中的关系,改造为 1NF 的关系如下所示:

系名	课程名	教师名	
计算机系	DB	李军	
计算机系	DB	刘强	
机械系	CAD	金山	
机械系	CAD	末海	
造船系	CAM	王华	
自控系	CTY	张红	
自控系	CTY	曾键	

4 设有如下所示的关系 R:

课程名	教师名	教师地址
C1	马千里	D1
C2	于得水	D1
СЗ	余快	D2
C4	于得水	D1

- (1) 它为第几范式?为什么?
- (2) 是否存在删除操作异常?若存在,则说明是在什么情况下

发生?

- (3) 将它分解为高一级范式,分解后的关系如何解决分解前可能存在的删除操作异常问题。
- 解: (1) 它是 2NF。 因为 R 的候选码为课程名,而"课程名 \rightarrow 教师名", "教师名 \rightarrow 课程名"不成立,"教师名 \rightarrow 教师地址",即存在非主属性教师地址对候选码课程名的传递函数依赖,因此 R 不是 3NF,又因为不存在非主属性对候选码的部分函数依赖,所以是 2NF。
- (2) 存在。当删除某门课程时会删除不该删除的教师的有关信息。
 - (3) 分解为高一级范式如下所示:

R1

课程名	教师名
C1	马千里
C2	于得水
СЗ	余快
C4	于得水

R2

教师名	教师地址
马千里	D1
于得水	D1
余快	D2

分解后,若删除课程数据时,仅对关系R1操作,教师地址信息 在关系R2中仍然保留,不会丢失教师方面的信息。

4 设有如下所示的关系:

职工号	职工名	年龄	性别	单位号	单位名
E1	ZHAO	20	F	D3	CCC
E2	QIAN	25	M	D1	AAA
E3	SEN	38	M	D3	CCC
E4	LI	25	F	D3	CCC

试问 R 是否属于 3NF? 为什么? 若不是,它属于第几范式? 并如何规范化为 3NF?

解: R 不属于 3NF, 它是 2NF。

因为 R 的候选码为职工号和职工名,而职工号 \rightarrow 单位号,

单位号→职工号不成立,单位号→单位名,所以职工号→单位名,即存在非主属性单位名对候选码职工号的传递函数依赖,规范化后的关系子模式为如下所示的关系 R1 与 R2。

R1

职工号	职工名	年龄	性别	单位号
E1	ZHAO	20	F	D3
E2	QIAN	25	M	D1
E3	SEN	38	M	D3
E4	LI	25	F	D3

R2

单位号	单位名		
D3	CCC		
D1	AAA		

第6章

- 1 某大学实行学分制,学生可根据自己的情况选课。每名学生可同时选修多门课程,每门课程可由多位教师主讲;每位教师可讲授多门课程。其不完整的 E-R 图如图所示。
 - (1) 指出学生与课程的联系类型。
 - (2) 指出课程与教师的联系类型。
 - (3) 若每名学生有一位教师指导,每个教师指导多名学生,则学生与教师是何联系?
 - (4) 在原 E-R 图上补画教师与学生的联系,并完善 E-R 图。

2 假设要建立一个企业数据库,该企业有多个下属单位,每一单位有多个职工,一个职工仅隶属于一个单位,且一个职工仅在一个工程中工作,但一个工程中有很多职工参加工作,有多个供应商为各个工程供应不同设备。单位的属性有:单位名、电话。职工的属性有:职工号、姓名、性别。

设备的属性有:设备号、设备名、产地。供应商的属性有:姓名、电话。工程的属性有:工程名、地点。

请完成如下的处理:

- (1) 设计满足上述要求的 E-R 图。
- (2) 将该 E-R 图转换为等价的关系模式。
- (3) 根据你的理解,用下划线标明每个关系中的码。

答: (1) 满足要求的 E-R 图如图所示:

各实体的属性如下:

单位(单位名、电话)

职工(职工号、姓名、性别)

设备(设备名、设备号、产地)

供应商 (姓名、电话)

工程(工程名、地点)

(2) 转换后的关系模式如下:

单位(单位名、电话)

职工(<u>职工号、单位名、工程名</u>、姓名、性别)

设备(设备名、设备号、产地)

供应商(姓名、电话)

工程(工程名、地点)

供应(供应商姓名、工程名、设备名、数量)