

12 Must Know GenAl Terms

Created by Brij Kishore Pandey

LLM

Large Language Model

Advanced Al systems trained on vast text datasets to understand and generate human-like text, serving as the foundation for modern conversational Al and content generation.

Transformers

Transformer Architecture

Revolutionary neural network architecture using self-attention mechanisms to process sequential data, enabling breakthrough capabilities in language understanding and generation.

Prompt Engineering

Al Instruction Design

Strategic formulation of inputs to Al models to achieve desired outputs, combining precise instructions, context, and constraints for optimal results.

Fine-tuning

Model Specialization

Process of adapting pre-trained AI models to specific tasks or domains by training on specialized datasets, enhancing performance for targeted applications.

Embeddings

Vector Representations

Numerical representations of text, images, or data in high-dimensional space, enabling semantic search, similarity comparisons, and efficient Al processing.

RAG

Retrieval Augmented Generation

Technique combining knowledge retrieval with text generation to produce accurate, factual responses by accessing external information sources during generation.

Tokens

Text Units

Fundamental units of text processing in Al models, representing words, subwords, or characters, determining model capacity and processing limitations.

Hallucination

Al Fabrication

Phenomenon where Al models generate plausible but factually incorrect information, a key challenge in ensuring reliable Al outputs.

Zero-shot

Zero-shot Learning

Al capability to perform tasks without specific training examples, using general knowledge to understand and execute new instructions.

Chain-of-Thought

Reasoning Process

Prompting technique encouraging Al models to break down complex problems into step-by-step reasoning, improving accuracy and explainability.

Context Window

Maximum amount of text an Al model can process in a single interaction, affecting its ability to maintain coherence and reference information.

Temperature

Randomness Parameter

Control parameter affecting the randomness and creativity of AI outputs, balancing between deterministic responses and creative variations.

Popular Models For

Machine Learning

Machine Learning Algorithms

(Every data scientist must know)

Machine Learning Time Complexity

DataInterview.com

T: Number of trees

I: Number of iterations p: Number of features m: Number of components h: Number of hidden units

ML Algorithms		Training Time	Inference Time
Linear Regression		$O(np^2 + p^3)$	O(p)
Logistic Regression		$O(np^2 + p^3)$	O(p)
Naive Bayes	$P(A B) = \frac{P(B A)P(A)}{P(B)}$	O(np)	O(p)
Decision Tree		Avg: O(T•nlog n) Worst: O(n ²)	Avg: O(T•nlog n) Worst: O(n)
Random Forest		O(T•nlog n)	O(T•log n)
Gradient Boosted Trees		O(T•nlog n)	O(T•log n)
Principal Component	PC2	$O(np^2 + p^3)$	0(pm)
K-Nearest Neighbor		0(1)	O(np)
K-Means		O(I•k•n•p)	O(k•p)
Dense Neural Networks	W Output (0) Histology (F) Histology (F)	O(I•n•p•h)	O(p•h)

