MACHINE LEARNING IN HIGH ENERGY PHYSICS PRACTICAL CLASS #2

EXPECTATION-MAXIMIZATION (EM)

after 1 step

after 15 step

K-MEANS AND EM

EXPECTATION-MAXIMIZATION (EM)

ROC CURVE AND MEASUREMENT OF QUALITY

The classifier's output in binary classification is real variable

These distributions have same roc-curve:

ROC CURVE

- Contains important information: all possible combinations of signal and background efficiencies you may achieve by setting threshold
- Particular values of thresholds (and initial pdfs) don't matter,
 ROC curve doesn't contain this information
- ROC curve = information about order of events:

```
ssbsb... bbsbb
```

 Comparison of algorithms should be based on information from ROC curve

TERMINOLOGY AND CONVENTIONS

- fpr = background efficiency = b
- tpr = signal efficiency = s

ROC AUC (AREA UNDER THE ROC CURVE)

$$ROC\ AUC = P(x < y)$$

where x, y are predictions of random background and signal events.

COMPARISON OF MULTIDIMENSIONAL DISTRIBUTIONS

- Usually 1d/2d distributions are compared
- But multidimensional data has much more complex

COMPARISON OF MULTIDIENSIONAL DISTRIBUTIONS

 ROC AUC is good as statistics to test whether classifier can distinguish your datasets

• Significance? Use U-test!

Which classifier is better for triggers? (they have same ROC AUC)

Usage of specific metrics: Punzy, AMS, tpr at fixed fpr

P-P PLOT, COMPARISON OF DISTRIBUTIONS

AMS VS CUT

$$AMS^{2} = 2\left((s+b)\log(1+\frac{s}{b}) - s\right)$$

Check that your metrics is stable (on subsets of test dataset) (cut-based metrics require much more events).

WP-based metrics are unstable and require much more events https://indico.cern.ch/event/316800/material/slides/0.pdf
Kaggle discussion on regularized AMS

KNN DEMONSTRATION

DECISION TREES: IDEA

DECISION TREES

DECISION TREES

PURITY OF NODE

How to select best split?

Let p_0 , p_1 be portions of signal and background in leaf

- Error: $Q = \frac{1}{N} \sum_{i=1}^{N} I[y_i \neq \tilde{y}_i]$
- Gini Index: $Q = p_0 p_1$
- Entropy: $Q = -p_0 \log(p_0) p_1 \log(p_1)$

SPLITTING CRITERION

Gain = NQ - N'Q' - N''Q''where N, N', N'' are number of training samples in tree and subtrees, N, N', N'' are node purities respectively

HANDLING OF MISSING VALUES

Predict by both subtrees and use prior probabilities

MULTICLASSIFICATION WITH DECISION TREE

OVERFITTING VS OVERFITTING

Overfitting in regression (by polynomials)

OVERFITTING VS OVERFITTING

OVERFITTING VS OVERFITTING

- The situation when model is too complex is called overfitting
- When the quality of prediction on train dataset is much better then on test is called overfitting too.

OVERFITTING VS OVERFITTING VS OVERFITTING

OVERFITTING VS OVERFITTING VS OVERFITTING

OVERFITTING VS OVERFITTING VS OVERFITTING

DECISION TREE IS UNSTABLE TO SMALL VARIATIONS IN TRAINING SET

DECISION TREE

- Simple
- Does not need any distance or kernel

But

- tends to overfit
- nonoptimal decision rule
- produces very different classification rules
- has many variations (CART, ID3 and C4.5 standards)

REGRESSION WITH TREES

Uses greedy minimization of MSE / MAE

CATEGORICAL FEATURES

If there is no meaningful ordering in data (i.e. particle type, origin of particle, decay), tree and linear models will not be able to use this feature normally.

One-hot encoding trick:

