МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Фейгина Е. А.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — Вариант задания (сигнал)

3 Выполнение работы.

- 3.1 В соответсвии с рисунком и 11 вариантом задания были определены:
 - $U_{MAX} = 1,5 B$ и U_{MIN} : -1,5 B;
 - в соотвествии с заданием $U_{\text{огр}} = U_{\text{MAX}} = 1,5 \text{ B};$
 - в соотвествии с вариантом 11 f_{MIN} = 0,3 к Γ ц и f_{MAX} = 4,8 к Γ ц;
 - в соответсвии с заданием $\Delta_{\text{идоп}} = 0.25 \text{ B};$

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{MAX}-U_{MIN})/\Delta_{u_{JOI}}$. $N_{MIN}=3$ / 0.25=12

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 16$.

Было определено количество разрядов n в коде. $n = log_2 16 = 4$ бит.

Было расчитан шаг квантования по формуле $~\delta = U_{\text{O\GammaP}}/2^{\text{n}} = 1,5/2^4 = 0,09375$ В.

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой Fв, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\rm A} \!\! \leq \! 1/2F_{\rm B}$) должна удовлетворять условию $F_{\rm A} \!\! \geq \! 2F_{\rm B}$). $F_{\rm A} = F_{\rm MAX} * 2 = 9.6$ к $\Gamma_{\rm H}$

3.2 При частоте дескритизации 9,6 кГц длина одного отсчета будет равна $1000 \text{ мс} / 9600 \text{ гц} = 0,11 \text{мс} \rightarrow \text{количесвто отсчетов за 1мс будет равно 1мс} / 0,10 \text{мс} \approx 10 отсчетов, для 6мс количество отсчетов равняется 60. Точки UBX(t) на графике представлены на рисунке 2. Было определено Uвx(t), Uкв(t), <math>\Delta$ KB(t) и N. Результат представлен в таблице 1.

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔKB(t)	N	Двоичный код
1	1,00	1,03	-0,03	11	1011
2	0,93	0,94	-0,01	10	1010
3	0,76	0,84	-0,08	9	1001
4	0,55	0,56	-0,02	6	0110
5	0,31	0,38	-0,06	4	0100
6	0,06	0,09	-0,03	1	0001
7	0,19	0,28	-0,09	3	0011
8	0,38	0,47	-0,09	5	0101
9	0,50	0,56	-0,06	6	0110
10	0,55	0,56	-0,01	6	0110
11	0,51	0,56	-0,05	6	0110
12	0,38	0,47	-0,09	5	0101
13	0,19	0,19	0,00	2	0010
14	0,09	0,09	0,00	1	0001
15	0,37	0,38	0,00	4	0100
16	0,70	0,75	-0,05	8	1000
17	0,95	1,03	-0,08	11	1011
18	1,18	1,22	-0,04	13	1101
19	1,33	1,41	-0,07	14	1110
20	1,42	1,50	-0,08	15	1111
21	1,41	1,50	-0,09	15	1111
22	1,34	1,41	-0,06	14	1110
23	1,17	1,22	-0,05	13	1101

24	0,92	0,94	-0,02	10	1010
25	0,62	0,66	-0,03	7	0111
26	0,31	0,38	-0,06	4	0100
27	0,31	0,38	-0,06	4	0100
28	0,05	0,09	-0,04	1	0001
29	0,37	0,38	-0,01	4	0100
30	0,63	0,66	-0,02	7	0111
31	0,83	0,84	-0,01	9	1001
32	0,96	1,03	-0,07	11	1011
33	0,98	1,03	-0,05	11	1011
34	0,92	0,94	-0,02	10	1010
35	0,77	0,84	-0,07	9	1001
36	0,56	0,56	0,00	6	0110
37	0,32	0,38	-0,05	4	0100
38	0,06	0,09	-0,04	1	0001
39	0,17	0,19	-0,02	2	0010
40	0,36	0,38	-0,02	4	0100
41	0,51	0,56	-0,05	6	0110
42	0,57	0,66	-0,09	7	0111
43	0,55	0,56	-0,01	6	0110
44	0,48	0,56	-0,08	6	0110
45	0,31	0,38	-0,07	4	0100
46	0,08	0,09	-0,01	1	0001
47	0,17	0,19	-0,01	2	0010
48	0,49	0,56	-0,08	6	0110
49	0,78	0,84	-0,06	9	1001
50	1,04	1,13	-0,09	12	1100
51	1,23	1,31	-0,08	14	1110
52	1,36	1,41	-0,04	15	1111
53	1,40	1,41	0,00	15	1111
54	1,35	1,41	-0,06	15	1111
55	1,18	1,22	-0,04	13	1101
56	0,94	1,03	-0,09	11	1011
57	0,65	0,66	-0,01	7	0111
58	0,29	0,38	-0,08	4	0100
59	0,03	0,09	-0,06	1	0001
60	0,34	0,38	-0,04	4	0100

Рисунок 2 - Uвх(t)

3.3 В соответствии с вариантом задания кодовая последовательность была записана с помощью СМІ кода. Результат приведен на рисунке 3 — 10, а также в таблице 2.

Таблица 2 — СМІ код

Двоичный код	СМІ		
1011	11011100		
1010	11011101		
1001	11011000		
0110	10001101		

0100	10001001		
0001	10011000		
0011	10011100		
0101	10001000		
0110	10001101		
0110	10001101		
0110	10001101		
0101	10001000		
0010	10011101		
0001	10011000		
0100	10001001		
1000	11011001		
1011	11011100		
1101	11001000		
1110	11001101		
1111	11001100		
1111	11001100		
1110	11001101		
1101	11001000		
1010	11011101		
0111	10001100		
0100	10001001		
0100	10001001		
0001	10011000		
0100	10001001		
0111	10001100		
1001	11011000		
1011	11011100		
1011	11011100		
1010	11011101		
1001	11011000		
0110	10001101		
0100	10001001		
0001	10011000		
0010	10011101		
0100	10001001		
0110	10001101		
1			

0111	10001100		
0110	10001101		
0110	10001101		
0100	10001001		
0001	10011000		
0010	10011101		
0110	10001101		
1001	11011000		
1100	11001001		
1110	11001101		
1111	11001100		
1111	11001100		
1111	11001100		
1101	11001000		
1011	11011100		
0111	10001100		
0100	10001001		
0001	10011000		
0100	10001001		

Рисунок 3 — Коды с 1 по 8

Рисунок 4 — Коды с 9 по 16

Рисунок 5 — Коды с 17 по 24

Рисунок 6 — Коды с 25 по 32

Рисунок 7 — Коды с 33 по 40

Рисунок 8 — Коды с 41 по 48

Рисунок 9 — Коды с 49 по 54

Рисунок 10 — Коды с 55 по 60

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.