

SSD1298 Application Note

240 RGB x 320 TFT LCD Controller Driver Integrated Power Circuit, Gate and Source Driver with built-in RAM

Prepared by: CY Ng

Ver 1: New release – 5 Dec 2007

Ver 2: Added PVI 2.6" and AUO 2.4" and VCI connection – 14 Dec 2007

Table of content

Capac	citor Function	2
1.1	AUO 2.8' Panel	4
1.1.1	AUO 2.8' initial code	5
1.1.2	AUO 2.8" panel gamma curve	7
1.2	AUO 2.4' Panel	8
1.2.1	AUO 2.4' initial code	9
1.2.2	AUO 2.4" panel gamma curve	11
1.3	CPT 2.4" Panel	12
1.2.1	CPT 2.4" initial code	13
1.2.1	CPT 2.4" panel gamma curve	15
1.3	CPT 3.2" Panel	16
1.3.1	CPT 3.2" initial code	17
1.3.2	CPT 3.2" panel gamma curve	19
1.4	LPL 2.4" Panel	20
1.4.1	LPL 2.4" initial code	21
1.4.2	LPL 2.4" panel gamma curve.	23
1.5	Wintek 2.4" Panel	24
1.5.1	Wintek 2.4" initial code	25
1.5.2	Wintek 2.4" panel gamma curve	27
1.6	Wintek 2.8" Panel	28
1.6.1	Wintek 2.8" Initial code	29
1.6.2	Wintek 2.8" panel gamma curve	31
1.7	Wintek 3.2" Panel	32
1.7.1	Wintek 3.2" Initial code	33
1.7.2	Wintek 3.2" panel gamma curve	35
1.8 PV	VI 2.6" Panel	36
1.8.1	PVI 2.6" Initial code	37
1.8.2	PVI 2.6" panel gamma curve	39

Capacitor Function

CYP/CYN capacitor is VCIX2 booster capacitor

CXP/CXN capacitor is VCIM booster

C1P/C1N and C2P/C2N capacitors are VGH booster. C1P/C1N is the primary booster.

C3P/C3N capacitor is VGL booster.

The voltage rating of C2P/C2N and C3P/C3N need to set up to 16V as VGH and VGL are over +/-10V.

C1P/C1N can be 10V rating since it is primary booster capacitor.

Recommend capacitor value and rating.

- 1. VCIX2 = 2.2uF/10V
- 2. C2P/C2N and C3P/C3N = 0.1uF / 16V.
- 3. CDUM0 (Pin 5-7) is a charge sharing pin. A 1uF capacitor connect to Vss can enable the charge sharing function. The current consumption can be reduced by 1mA at 2.8V operation
- 4. All other capacitors $1.0 uF \sim 2.2 uF$

Recommend connection in VCI pin

All VCI pins (P210-226) are suggested to connect together and provide power.

- all those VCI are power source for VCIX2, VGH and analog voltage.
- recommended connection can help to improve VCIX2 strength.

Application FPC Circuit

1.1 AUO 2.8' Panel

PS3 PS2 PS1 PS0	MODE
0010	16 Bit 8080 Parallel
0011	8 Bit 8080 Parallel
1010	18 Bit 8080 Parallel

1.1.1 AUO 2.8' initial code

```
void SSD1298 AUO28 Init(void)
{
// VCI=2.8V
//****** Reset LCD Driver *********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD RESET signal = 1;
delayms(50); // Delay 50 ms
//************ Start Initial Sequence ********//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
LCD_Send_SSD1298(0x0001, 0x333F); // Driver output control, RL=0;REV=1;GD=1;BGR=0;SM=0;TB=1
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//****** Power control setup *******//
LCD Send SSD1298(0x000C, 0x0007); // Adjust VCIX2 output voltage
LCD_Send_SSD1298(0x000D, 0x0006); // Set amplitude magnification of VLCD63
LCD_Send_SSD1298(0x000E, 0x3000); // Set alternating amplitude of VCOM
LCD Send SSD1298(0x001E, 0x00B8); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0x6A64); // Step-up factor/cycle setting
//************ Turn On display ***********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x4870); // Entry mode setup. 262K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//************ LCD driver AC setting *************//
LCD_Send_SSD1298(0x0025, 0x8000); // Frame freq control, 65Hz
LCD Send SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//*********** RAM position control ********//
LCD_Send_SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
```



```
LCD_Send_SSD1298(0x0030, 0x0000);
LCD_Send_SSD1298(0x0031, 0x0400);
LCD_Send_SSD1298(0x0032, 0x0205);
LCD_Send_SSD1298(0x0033, 0x0500);
LCD_Send_SSD1298(0x0034, 0x0103);
LCD_Send_SSD1298(0x0035, 0x0702);
LCD_Send_SSD1298(0x0036, 0x0707);
LCD_Send_SSD1298(0x0037, 0x0102);
LCD_Send_SSD1298(0x003A, 0x0F00);
LCD_Send_SSD1298(0x003B, 0x1100);
//************ Special command **********//
LCD_Send_SSD1298(0x0028, 0x0006); // Enable test command
LCD_Send_SSD1298(0x002F, 0x12EB); // RAM speed tuning
LCD_Send_SSD1298(0x0026, 0x7000); // Internal Bandgap strength
LCD_Send_SSD1298(0x0020, 0xB0E3); // Internal Vcom strength
LCD_Send_SSD1298(0x0027, 0x0044); // Internal Vcomh/VcomL timing
LCD_Send_SSD1298(0x002E, 0x7E45); // VCOM charge sharing time
LCD_Send_SSD1298(0x0022); // Write RAM data
}
```


1.1.2 AUO 2.8" panel gamma curve

1.2 AUO 2.4' Panel

PS3 PS2 PS1 PS0	MODE
0 0 1 0	16 Bit 8080 Parallel
0 0 1 1	8 Bit 8080 Parallel
1010	18 Bit 8080 Parallel

1.2.1 AUO 2.4' initial code

```
void SSD1298 AUO24 Init(void)
{
// VCI=2.8V
//****** Reset LCD Driver *********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD RESET signal = 1;
delayms(50); // Delay 50 ms
//************ Start Initial Sequence ********//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
LCD_Send_SSD1298(0x0001, 0x333F); // Driver output control, RL=0;REV=1;GD=1;BGR=0;SM=0;TB=1
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//****** Power control setup *******//
LCD Send SSD1298(0x000C, 0x0007); // Adjust VCIX2 output voltage
LCD_Send_SSD1298(0x000D, 0x0006); // Set amplitude magnification of VLCD63
LCD_Send_SSD1298(0x000E, 0x3000); // Set alternating amplitude of VCOM
LCD Send SSD1298(0x001E, 0x00B8); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0x6A64); // Step-up factor/cycle setting
//************ Turn On display ***********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x4870); // Entry mode setup. 262K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//************ LCD driver AC setting *************//
LCD_Send_SSD1298(0x0025, 0x8000); // Frame freq control, 65Hz
LCD Send SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//*********** RAM position control ********//
LCD_Send_SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
```



```
LCD_Send_SSD1298(0x0030, 0x0000);
LCD_Send_SSD1298(0x0031, 0x0300);
LCD_Send_SSD1298(0x0032, 0x0206);
LCD_Send_SSD1298(0x0033, 0x0400);
LCD_Send_SSD1298(0x0034, 0x0202);
LCD_Send_SSD1298(0x0035, 0x0703);
LCD_Send_SSD1298(0x0036, 0x0707);
LCD_Send_SSD1298(0x0037, 0x0101);
LCD_Send_SSD1298(0x003A, 0x0F00);
LCD_Send_SSD1298(0x003B, 0x1200);
//************ Special command **********//
LCD_Send_SSD1298(0x0028, 0x0006); // Enable test command
LCD_Send_SSD1298(0x002F, 0x12EB); // RAM speed tuning
LCD_Send_SSD1298(0x0026, 0x7000); // Internal Bandgap strength
LCD_Send_SSD1298(0x0020, 0xB0E3); // Internal Vcom strength
LCD_Send_SSD1298(0x0027, 0x0044); // Internal Vcomh/VcomL timing
LCD_Send_SSD1298(0x002E, 0x7E45); // VCOM charge sharing time
LCD_Send_SSD1298(0x0022); // Write RAM data
}
```


1.2.2 AUO 2.4" panel gamma curve

1.3 CPT 2.4" Panel

PS3 PS2 PS1 PS0	MODE
0010	16 Bit 8080 Parallel
0011	8 Bit 8080 Parallel
1010	18 Bit 8080 Parallel

1.2.1 CPT 2.4" initial code

```
void SSD1298_CPT24_Init(void)
{
// VCI=2.8V
//****** Reset LCD Driver *********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD RESET signal = 1;
delayms(50); // Delay 50 ms
//************ Start Initial Sequence ********//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
LCD_Send_SSD1298(0x0001, 0x333F); // Driver output control, RL=0;REV=1;GD=1;BGR=0;SM=0;TB=1
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//****** Power control setup *******//
LCD Send SSD1298(0x000C, 0x0007); // Adjust VCIX2 output voltage
LCD_Send_SSD1298(0x000D, 0x0006); // Set amplitude magnification of VLCD63
LCD_Send_SSD1298(0x000E, 0x3000); // Set alternating amplitude of VCOM
LCD Send SSD1298(0x001E, 0x00B8); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0x6A64); // Step-up factor/cycle setting
//******** Turn On display **********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x4870); // Entry mode setup. 262K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//************ LCD driver AC setting *************//
LCD_Send_SSD1298(0x0025, 0x8000); // Frame freq control, 65Hz
LCD Send SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//*********** RAM position control ********//
LCD_Send_SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
```



```
LCD_Send_SSD1298(0x0030, 0x0000);
LCD_Send_SSD1298(0x0031, 0x0400);
LCD_Send_SSD1298(0x0032, 0x0205);
LCD_Send_SSD1298(0x0033, 0x0500);
LCD_Send_SSD1298(0x0034, 0x0103);
LCD_Send_SSD1298(0x0035, 0x0702);
LCD_Send_SSD1298(0x0036, 0x0707);
LCD_Send_SSD1298(0x0037, 0x0102);
LCD_Send_SSD1298(0x003A, 0x0F00);
LCD_Send_SSD1298(0x003B, 0x1100);
//************ Special command **********//
LCD_Send_SSD1298(0x0028, 0x0006); // Enable test command
LCD_Send_SSD1298(0x002F, 0x12EB); // RAM speed tuning
LCD_Send_SSD1298(0x0026, 0x7000); // Internal Bandgap strength
LCD_Send_SSD1298(0x0020, 0xB0E3); // Internal Vcom strength
LCD_Send_SSD1298(0x0027, 0x0044); // Internal Vcomh/VcomL timing
LCD_Send_SSD1298(0x002E, 0x7E45); // VCOM charge sharing time
LCD_Send_SSD1298(0x0022); // Write RAM data
}
```


1.2.1 CPT 2.4" panel gamma curve

1.3 CPT 3.2" Panel

PS3 PS2 PS1 PS0	MODE
0 0 1 0	16 Bit 8080 Parallel
0 0 1 1	8 Bit 8080 Parallel
1010	18 Bit 8080 Parallel

1.3.1 CPT 3.2" initial code void SSD1298_CPT32_Init(void)

```
{
// VCI=2.8V
//************ Reset LCD Driver **********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD_RESET_signal = 1;
delayms(50); // Delay 50 ms
//*********** Start Initial Sequence *******//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
 LCD\_Send\_SSD1298 (0x0001,\ 0x333F); \ \textit{//}\ Driver\ output\ control}, \ RL=0; REV=1; GD=1; BGR=0; SM=0; TB=1, CD=1; BGR=0; CD=1; BGR=0; CD=1; BGR=0; CD=1; CD=
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//******* Power control setup ********//
LCD_Send_SSD1298(0x000C, 0x0007); // Adjust VCIX2 output voltage
LCD Send SSD1298(0x000D, 0x0006); // Set amplitude magnification of VLCD63
LCD_Send_SSD1298(0x000E, 0x3200); // Set alternating amplitude of VCOM
LCD_Send_SSD1298(0x001E, 0x00BB); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0x6A64); // Step-up factor/cycle setting
//******* Turn On display *********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x4870); // Entry mode setup. 262K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//****** LCD driver AC setting **********//
LCD_Send_SSD1298(0x0025, 0xE000); // Frame freq control, 65Hz
LCD_Send_SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//****** RAM position control *******//
LCD_Send_SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
LCD Send SSD1298(0x0030, 0x0000);
```



```
LCD_Send_SSD1298(0x0031, 0x0706);
LCD_Send_SSD1298(0x0032, 0x0206);
LCD_Send_SSD1298(0x0033, 0x0300);
LCD_Send_SSD1298(0x0034, 0x0002);
LCD_Send_SSD1298(0x0035, 0x0000);
LCD_Send_SSD1298(0x0036, 0x0707);
LCD_Send_SSD1298(0x0037, 0x0200);
LCD_Send_SSD1298(0x003A, 0x0908);
LCD_Send_SSD1298(0x003B, 0x0F0D);
//************* Special command **********//
LCD_Send_SSD1298(0x0028, 0x0006); // Enable test command
LCD_Send_SSD1298(0x002F, 0x12EB); // RAM speed tuning
LCD_Send_SSD1298(0x0026, 0x7000); // Internal Bandgap strength
LCD_Send_SSD1298(0x0020, 0xB0E3); // Internal Vcom strength
LCD_Send_SSD1298(0x0027, 0x0044); // Internal Vcomh/VcomL timing
LCD_Send_SSD1298(0x002E, 0x7E45); // VCOM charge sharing time
LCD_Send_SSD1298(0x0022); // Write RAM data
}
```


1.3.2 CPT 3.2" panel gamma curve

1.4 LPL 2.4" Panel

PS3 PS2 PS1 PS0	MODE
0 0 1 0	16 Bit 8080 Parallel
0 0 1 1	8 Bit 8080 Parallel
1010	18 Bit 8080 Parallel

1.4.1 LPL 2.4" initial code void SSD1298_LPL24_Init(void)

```
{
// VCI=2.8V
//************ Reset LCD Driver **********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD_RESET_signal = 1;
delayms(50); // Delay 50 ms
//*********** Start Initial Sequence *******//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
 LCD\_Send\_SSD1298 (0x0001,\ 0x033F); \ \textit{//}\ Driver\ output\ control}, \ RL=0; REV=1; GD=1; BGR=0; SM=0; TB=1, CD=1; BGR=0; CD=1; BGR=0; CD=1; BGR=0; CD=1; CD=
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//****** Power control setup ********//
LCD_Send_SSD1298(0x000C, 0x0007); // Adjust VCIX2 output voltage
LCD Send SSD1298(0x000D, 0x0006); // Set amplitude magnification of VLCD63
LCD_Send_SSD1298(0x000E, 0x3000); // Set alternating amplitude of VCOM
LCD_Send_SSD1298(0x001E, 0x00B8); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0x6A64); // Step-up factor/cycle setting
//******* Turn On display *********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x4870); // Entry mode setup. 262K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//****** LCD driver AC setting **********//
LCD_Send_SSD1298(0x0025, 0x8000); // Frame freq control, 65Hz
LCD_Send_SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//****** RAM position control *******//
LCD_Send_SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
LCD Send SSD1298(0x0030, 0x0000);
```



```
LCD_Send_SSD1298(0x0031, 0x0707);
LCD_Send_SSD1298(0x0032, 0x0707);
LCD_Send_SSD1298(0x0033, 0x0000);
LCD_Send_SSD1298(0x0034, 0x0000);
LCD_Send_SSD1298(0x0035, 0x0000);
LCD_Send_SSD1298(0x0036, 0x0707);
LCD_Send_SSD1298(0x0037, 0x0000);
LCD_Send_SSD1298(0x003A, 0x1A0F);
LCD_Send_SSD1298(0x003B, 0x1F00);
}
```


1.4.2 LPL 2.4" panel gamma curve

1.5 Wintek 2.4" Panel

PS3 PS2 PS1 PS0	MODE
0 0 1 0	16 Bit 8080 Parallel
0011	8 Bit 8080 Parallel
1010	18 Bit 8080 Parallel

1.5.1 Wintek 2.4" initial code

```
void SSD1298 Wintek24 Init(void)
{
// VCI=2.8V
//****** Reset LCD Driver *********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD RESET signal = 1;
delayms(50); // Delay 50 ms
//************ Start Initial Sequence ********//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
LCD_Send_SSD1298(0x0001, 0x3B3F); // Driver output control, RL=0;REV=1;GD=1;BGR=1;SM=0;TB=1
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//****** Power control setup *******//
LCD Send SSD1298(0x000C, 0x0004); // Adjust VCIX2 output voltage
LCD_Send_SSD1298(0x000D, 0x080C); // Set amplitude magnification of VLCD63
LCD_Send_SSD1298(0x000E, 0x2B00); // Set alternating amplitude of VCOM
LCD Send SSD1298(0x001E, 0x00B3); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0xA8A8); // Step-up factor/cycle setting
//******** Turn On display **********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x4870); // Entry mode setup. 262K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//************ LCD driver AC setting *************//
LCD_Send_SSD1298(0x0025, 0x8000); // Frame freq control, 65Hz
LCD Send SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//*********** RAM position control ********//
LCD_Send_SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
```



```
LCD_Send_SSD1298(0x0030, 0x0000);
LCD_Send_SSD1298(0x0031, 0x0400);
LCD_Send_SSD1298(0x0032, 0x0205);
LCD_Send_SSD1298(0x0033, 0x0500);
LCD_Send_SSD1298(0x0034, 0x0103);
LCD_Send_SSD1298(0x0035, 0x0702);
LCD_Send_SSD1298(0x0036, 0x0707);
LCD_Send_SSD1298(0x0037, 0x0102);
LCD_Send_SSD1298(0x003A, 0x0F00);
LCD_Send_SSD1298(0x003B, 0x1100);
//************ Special command **********//
LCD_Send_SSD1298(0x0028, 0x0006); // Enable test command
LCD_Send_SSD1298(0x002F, 0x12EB); // RAM speed tuning
LCD_Send_SSD1298(0x0026, 0x7000); // Internal Bandgap strength
LCD_Send_SSD1298(0x0020, 0xB0E3); // Internal Vcom strength
LCD_Send_SSD1298(0x0027, 0x0044); // Internal Vcomh/VcomL timing
LCD_Send_SSD1298(0x002E, 0x7E45); // VCOM charge sharing time
LCD_Send_SSD1298(0x0022); // Write RAM data
}
```


1.5.2 Wintek 2.4" panel gamma curve

1.6 Wintek 2.8" Panel

PS3 PS2 PS1 PS0	MODE
0010	16 Bit 8080 Parallel
0 0 1 1	8 Bit 8080 Parallel
1010	18 Bit 8080 Parallel

1.6.1 Wintek 2.8" Initial code void SSD1298_Wintek28_Init(void)

```
{
// VCI=2.8V
//************ Reset LCD Driver **********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD_RESET_signal = 1;
delayms(50); // Delay 50 ms
//******* Start Initial Sequence *******//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
LCD_Send_SSD1298(0x0001, 0x3B3F); // Driver output control, RL=0;REV=1;GD=1;BGR=0;SM=0;TB=1
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//****** Power control setup *******//
LCD_Send_SSD1298(0x000C, 0x0000); // Adjust VCIX2 output voltage
LCD_Send_SSD1298(0x000D, 0x080C); // Set amplitude magnification of VLCD63
LCD Send SSD1298(0x000E, 0x2B00); // Set alternating amplitude of VCOM
LCD_Send_SSD1298(0x001E, 0x00B3); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0xA8A4); // Step-up factor/cycle setting
//******** Turn On display *********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x4870); // Entry mode setup. 262K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//************ LCD driver AC setting *************//
LCD_Send_SSD1298(0x0025, 0x8000); // Frame freq control, 65Hz
LCD_Send_SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//************ RAM position control ********//
LCD Send SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
LCD_Send_SSD1298(0x0030, 0x0707);
LCD Send SSD1298(0x0031, 0x0204);
```



```
LCD_Send_SSD1298(0x0032, 0x0204);
LCD_Send_SSD1298(0x0033, 0x0502);
LCD_Send_SSD1298(0x0034, 0x0507);
LCD_Send_SSD1298(0x0035, 0x0204);
LCD_Send_SSD1298(0x0036, 0x0204);
LCD_Send_SSD1298(0x0037, 0x0502);
LCD_Send_SSD1298(0x003A, 0x0302);
LCD_Send_SSD1298(0x003B, 0x0302);
//************ Special command *********//
LCD_Send_SSD1298(0x0028, 0x0006); // Enable test command
LCD_Send_SSD1298(0x002F, 0x12EB); // RAM speed tuning
LCD_Send_SSD1298(0x0026, 0x7000); // Internal Bandgap strength
LCD_Send_SSD1298(0x0020, 0xB0E3); // Internal Vcom strength
LCD_Send_SSD1298(0x0027, 0x0044); // Internal Vcomh/VcomL timing
LCD_Send_SSD1298(0x002E, 0x7E45); // VCOM charge sharing time
LCD_Send_SSD1298(0x0022); // Write RAM data
}
```


1.6.2 Wintek 2.8" panel gamma curve

1.7 Wintek 3.2" Panel

1.7.1 Wintek 3.2" Initial code void SSD1298_Wintek28_Init(void)

```
{
// VCI=2.8V
//************ Reset LCD Driver **********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD_RESET_signal = 1;
delayms(50); // Delay 50 ms
//******* Start Initial Sequence *******//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
LCD_Send_SSD1298(0x0001, 0x3B3F); // Driver output control, RL=0;REV=1;GD=1;BGR=0;SM=0;TB=1
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//****** Power control setup *******//
LCD_Send_SSD1298(0x000C, 0x0004); // Adjust VCIX2 output voltage
LCD_Send_SSD1298(0x000D, 0x0000F); // Set amplitude magnification of VLCD63
LCD Send SSD1298(0x000E, 0x2B00); // Set alternating amplitude of VCOM
LCD_Send_SSD1298(0x001E, 0x00B5); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0xA8A4); // Step-up factor/cycle setting
//******** Turn On display *********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x6870); // Entry mode setup. 65K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//************ LCD driver AC setting *************//
LCD_Send_SSD1298(0x0025, 0x8000); // Frame freq control, 65Hz
LCD_Send_SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//************ RAM position control ********//
LCD Send SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
LCD_Send_SSD1298(0x0030, 0x0707);
LCD Send SSD1298(0x0031, 0x0204);
```



```
LCD_Send_SSD1298(0x0032, 0x0204);
LCD_Send_SSD1298(0x0033, 0x0105);
LCD_Send_SSD1298(0x0034, 0x0507);
LCD_Send_SSD1298(0x0035, 0x0204);
LCD_Send_SSD1298(0x0036, 0x0204);
LCD_Send_SSD1298(0x0037, 0x0500);
LCD_Send_SSD1298(0x003A, 0x0308);
LCD_Send_SSD1298(0x003B, 0x1002);
//************ Special command *********//
LCD_Send_SSD1298(0x0028, 0x0006); // Enable test command
LCD_Send_SSD1298(0x002F, 0x12EB); // RAM speed tuning
LCD_Send_SSD1298(0x0026, 0x7000); // Internal Bandgap strength
LCD_Send_SSD1298(0x0020, 0xB0E3); // Internal Vcom strength
LCD_Send_SSD1298(0x0027, 0x0044); // Internal Vcomh/VcomL timing
LCD_Send_SSD1298(0x002E, 0x7E45); // VCOM charge sharing time
LCD_Send_SSD1298(0x0022); // Write RAM data
}
```


1.7.2 Wintek 3.2" panel gamma curve

1.8 PVI 2.6" Panel

PS3 PS2 PS1 PS0	MODE
0010	16 Bit 8080 Parallel
0 0 1 1	8 Bit 8080 Parallel
1010	18 Bit 8080 Parallel

1.8.1 PVI 2.6" Initial code void SSD1298_PVI26_Init(void)

```
{
// VCI=2.8V
//************ Reset LCD Driver **********//
LCD_RESET_signal = 1;
delayms(1); // Delay 1ms
LCD_RESET_signal = 0;
delayms(10); // Delay 10ms // Reset duration
LCD_RESET_signal = 1;
delayms(50); // Delay 50 ms
//******* Start Initial Sequence *******//
LCD_Send_SSD1298(0x0000, 0x0001); // Start internal OSC.
LCD_Send_SSD1298(0x0001, 0x333F); // Driver output control, RL=0;REV=1;GD=1;BGR=0;SM=0;TB=1
LCD_Send_SSD1298(0x0002, 0x0600); // set 1 line inversion
//****** Power control setup *******//
LCD_Send_SSD1298(0x000C, 0x0007); // Adjust VCIX2 output voltage
LCD_Send_SSD1298(0x000D, 0x0006); // Set amplitude magnification of VLCD63
LCD Send SSD1298(0x000E, 0x3000); // Set alternating amplitude of VCOM
LCD_Send_SSD1298(0x001E, 0x00B8); // Set VcomH voltage
LCD_Send_SSD1298(0x0003, 0x6A64); // Step-up factor/cycle setting
//******** Turn On display *********//
LCD_Send_SSD1298(0x0010, 0x0000); // Sleep mode off.
delayms(30); // Wait 30mS
LCD_Send_SSD1298(0x0011, 0x4870); // Entry mode setup. 262K type B, take care on the data bus with 16it only
LCD_Send_SSD1298(0x0007, 0x0033); // Display ON
//******* LCD driver AC setting ***********//
LCD_Send_SSD1298(0x0025, 0x8000); // Frame freq control, 65Hz
LCD_Send_SSD1298(0x000B, 0x5308); // Frame cycle control, POR setting
//************ RAM position control ********//
LCD Send SSD1298(0x000F, 0x0000); // Gate scan position start at G0.
LCD_Send_SSD1298(0x0044, 0xEF00); // Horizontal RAM address position
LCD_Send_SSD1298(0x0045, 0x0000); // Vertical RAM address start position
LCD_Send_SSD1298(0x0046, 0x013F); // Vertical RAM address end position
// ----- Adjust the Gamma Curve -----//
LCD_Send_SSD1298(0x0030, 0x0000);
LCD Send SSD1298(0x0031, 0x0077);
```



```
LCD_Send_SSD1298(0x0032, 0x0007);
LCD_Send_SSD1298(0x0033, 0x0500);
LCD_Send_SSD1298(0x0034, 0x0005);
LCD_Send_SSD1298(0x0035, 0x0000);
LCD_Send_SSD1298(0x0036, 0x0707);
LCD_Send_SSD1298(0x0037, 0x0003);
LCD_Send_SSD1298(0x003A, 0x1400);
LCD_Send_SSD1298(0x003B, 0x1900);
//************ Special command *********//
LCD_Send_SSD1298(0x0028, 0x0006); // Enable test command
LCD_Send_SSD1298(0x002F, 0x12BE); // RAM speed tuning
LCD_Send_SSD1298(0x0026, 0x7000); // Internal Bandgap strength
LCD_Send_SSD1298(0x0020, 0xB0E3); // Internal Vcom strength
LCD_Send_SSD1298(0x0027, 0x0044); // Internal Vcomh/VcomL timing
LCD_Send_SSD1298(0x002E, 0x7E45); // VCOM charge sharing time
LCD_Send_SSD1298(0x0022); // Write RAM data
}
```


1.8.2 PVI 2.6" panel gamma curve

