Regression Models - Automatic vs manual transmissions

chris-FR-GitHub 18 Décembre 2018

Synopsis

In this week project, we will explore a data set containing a collection of cars and try to determine if there is a difference between automatic and manual transmissions in term of MPG. (The code of this document is available on Github)

Data

The data used for this project is the mtcars (Motor Trend Car Road Tests) dataset. It contains **32** cars (rows) and **11** columns (**mpg**, **cyl**, **disp**, **hp**, **drat**, **wt**, **qsec**, **vs**, **am**, **gear**, **carb**). We will just convert AM and VS to factors.

```
mtcars$am <- factor(mtcars$am, levels = c(0, 1), labels = c("auto", "manual"))
mtcars$vs <- factor(mtcars$vs)</pre>
```

Exploratory analysis

The **str** and **summary** function results are in the appendix. The repartition automatic and manual is the following:

```
## count percentage
## auto 19 59.375
## manual 13 40.625
```

If we check the MPG value compared to the other column:

MPG is highly correlated to some features. The complete correlation plot is on appendix.

```
## cyl disp hp drat wt qsec gear carb
## -0.91 -0.91 -0.89 0.65 -0.89 0.47 0.54 -0.66
```

MPG vs AM

From the first graph, there seems to have a difference in MPG between the 2 transmissions.

```
t<- t.test( mpg~am, data = mtcars, alternative = "two.sided", paired = FALSE, var.equal = FALSE, conf.level = 0.95)
```

The p-value is **0.0014** and the 95% interval does not contains 0, so we can say that there is a difference in MPG between these 2 transmission types. if we create a model from this feature only:

Even if there is a difference between the 2 transmissions (manual having a **7.24** higher MPG), this feature only is not a very good predictor: the Adjusted R-squared value is **0.338**. Let's check if we can find a better model using the other features.

Feature selection using step

In the feature selection video, the **step** function was indroduced. We will try to use it to find a better model and see if the transmission is part of it.I used : http://www.stat.columbia.edu/~martin/W2024/R10.pdf as a starter code.

```
fit.null<-lm(mpg~1, data=mtcars)
fit.full<-lm(mpg~., data=mtcars)
# trying the 3 ways
step_fw <- step(fit.null, scope=list(lower=fit.null, upper=fit.full), direction="forward", trace=0)
step_bc <- step(fit.full, data=mtcars, direction="backward", trace=0)
step_bo <- step(fit.null, scope = list(upper=fit.full), data=mtcars, direction="both", trace=0)</pre>
```

formula	Adjusted R-squared
$mpg \sim wt + cyl + hp$ $mpg \sim wt + qsec + am$	0.826 0.834 0.826
	$mpg \sim wt + cyl + hp$

Conclusion

If we pick the backward step result as our final model: $\mathbf{mpg} \sim \mathbf{wt} + \mathbf{qsec} + \mathbf{am}$, Manual transmissions have a slightly better MPG (2.94) than the automatic ones (in the 1974's).

```
summary(step_bc)$coefficient
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.617781 6.9595930 1.381946 1.779152e-01
## wt -3.916504 0.7112016 -5.506882 6.952711e-06
## qsec 1.225886 0.2886696 4.246676 2.161737e-04
## ammanual 2.935837 1.4109045 2.080819 4.671551e-02
```

Appendix

Exploratory analysis

```
##
                      cyl
                                     disp
        mpg
                                                    hp
## Min. :10.40
                 Min. :4.000
                                Min. : 71.1
                                               Min. : 52.0
                                1st Qu.:120.8
  1st Qu.:15.43
                  1st Qu.:4.000
                                               1st Qu.: 96.5
##
   Median :19.20
                 Median :6.000
                                Median :196.3
                                               Median :123.0
##
## Mean :20.09
                 Mean :6.188
                                               Mean :146.7
                                Mean :230.7
                                               3rd Qu.:180.0
## 3rd Qu.:22.80
                  3rd Qu.:8.000
                                3rd Qu.:326.0
## Max. :33.90
                 Max. :8.000
                                Max. :472.0
                                               Max. :335.0
       drat
                                    qsec
##
                       wt
                                                   gear
        :2.760
## Min.
                 Min. :1.513
                                Min. :14.50
                                               Min. :3.000
## 1st Qu.:3.080
                 1st Qu.:2.581
                                1st Qu.:16.89
                                               1st Qu.:3.000
## Median :3.695
                 Median :3.325
                                Median :17.71
                                               Median :4.000
## Mean :3.597
                 Mean :3.217
                                Mean :17.85
                                               Mean :3.688
## 3rd Qu.:3.920
                  3rd Qu.:3.610
                                3rd Qu.:18.90
                                               3rd Qu.:4.000
## Max. :4.930
                 Max. :5.424
                                Max. :22.90
                                               Max. :5.000
##
       carb
## Min.
        :1.000
## 1st Qu.:2.000
## Median :2.000
## Mean :2.812
## 3rd Qu.:4.000
## Max. :8.000
```

Pair plot:

Corre-

lation plot:

library(corrplot)

corrplot 0.84 loaded

corrplot(correlations, method="circle")

