Lecture 14: Support Vector Machines (Kumar Chapter 8)

CS 167: Machine Learning

Support Vector Machines

Let's stop and look at some different decision surfaces on the white board.

CS 167: Machine Learning

L14: Support Vector Machines

2 / 13

Support Vector Machine Idea

Support Vector Machine Idea:

We want the separating hyperplane with the *maximum* possible *distance* to the nearest positive and negative data points

 d_+ and d_- are referred to as the *margin*

Some Notation

We sometimes might write our inputs and weights as vectors

$$X = x_1, x_2, \ldots, x_n$$

$$W = w_1, w_2, \dots w_n$$

The dot product of these two vectors is

$$W \cdot X = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$

So then the equation of a hyperplane would be

$$W \cdot X + w_0$$

CS 167: Machine Learning L14: Support Vector Machines 3 / 13 CS 167: Machine Learning L14: Support Vector Machines 4 / 13

Hey, this is a lot like Perceptrons

For a training example X_i , t_i (attributes X_i , target function t_i) With a Perceptron unit,

$$W \cdot X_i + w_0 > 0, \quad t_i = +1$$

 $W \cdot X_i + w_0 < 0, \quad t_i = -1$

For SVM, we can choose W and w_0 so that

$$W \cdot X_i + w_0 \ge +1, \quad t_i = +1$$

 $W \cdot X_i + w_0 < -1, \quad t_i = -1$

or rewriting it as one line:

$$t_i(W\cdot X_i+w_0)-1\geq 0$$

CS 167: Machine Learning

L14: Support Vector Machines

5 / 13

CS 167: Machine Learning

L14: Support Vector Machines

6 / 13

Distance between training points and hyperplane

Π: the hyperplane separator

 X_+ : closest training example on the positive side

 X_{Π} : point on hyperplane closest to X_{+}

SO

$$W \cdot X_+ + w_0 = 1$$

$$W\cdot X_{\Pi}+w_0=0$$

and we can then show that

$$d_+ = X_+ - X_\Pi = \frac{1}{\|W\|}$$

similarly,
$$d_-=rac{1}{\|W\|}$$

 $\Pi \qquad \begin{array}{c} X + \stackrel{\triangle}{\longrightarrow} \stackrel{\triangle}{\longrightarrow}$

Do we want ||W|| to be big or small?

Norms

Recall our hyperplane:

$$W \cdot X + w_0$$

The W vector is normal (perpendicular) to the hyperplane

It's norm/length is

$$||W|| = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2}$$

The resulting optimization problem

That leaves us with the following optimization problem:

Minimize $\frac{1}{2}||W||^2$ (squaring to get rid of the nasty square root)

subject to the constraints

$$t_1(W\cdot X_1+w_0)-1\geq 0$$

$$t_2(W \cdot X_2 + w_0) - 1 \ge 0$$

$$t_3(W \cdot X_3 + w_0) - 1 \ge 0$$

$$t_N(W\cdot X_N+w_0)-1\geq 0$$

for all N training examples

There's a whole field of mathematics/computer-science dedicated to solving *optimization problems*, and this one is actually *difficult* because of the quadratic terms - even after we get rid of that square root

Training and Prediction

We end up introducing some α_i multipliers so that

$$W = \sum_{i=1}^{N} \alpha_i t_i X_i$$

and transform to a *dual form* that looks like this: Maximize (in α_i)

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j (X_i \cdot X_j)$$

s.t.

$$\alpha_i \geq 0, \qquad \sum_{i=1}^N \alpha_i t_i = 0$$

And our predictor is:

$$h(X) = sign\left(\sum_{i=1}^{N_s} t_i \alpha_i (X \cdot X_i) + w_0\right)$$

(and lpha is 0 for non-support vectors, so you don't have to keep those ones)

CS 167: Machine Learning

L14: Support Vector Machines

9 / 13

Kernel Tricks

Do we have to explicitly come up with the new features for kernel tricks ourselves? No

We replace the dot product in our training and prediction algorithms with a *kernel function* K(X, Y) and work implicitly in the remapped space: Maximize (in α_i)

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,i} \alpha_i \alpha_j t_i t_j \mathcal{K}(X_i, X_j)$$

s.t.

$$\alpha_i \geq 0, \qquad \sum_{i=1}^N \alpha_i t_i = 0$$

And our predictor is:

$$h(X) = sign\left(\sum_{i=1}^{N_s} t_i \alpha_i K(X, X_i) + w_0\right)$$

CS 167: Machine Learning

L14: Support Vector Machines

10 / 13

Some common kernels

Polynomial:

$$K(X, Y) = (X \cdot Y + r)^d$$
 (for d , r constants)

Gaussian radial basis function:

$$K(X, Y) = \exp(-\gamma ||X - Y||^2)$$
 (for $\gamma > 0$)

Hyperbolic tangent (or sigmoid):

$$K(X, Y) = \tanh(\gamma X \cdot Y + r)$$
 (for $\gamma > 0$, $r < 0$)

Softening the margin

If kernel still doesn't separate, you can add in *slack* variables to all this that *soften* the margin. End up basically bounding α_i s by constant C: Maximize (in α_i)

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j K(X_i, X_j)$$

s.t.

$$0 \le \alpha_i \le C$$
, $\sum_{i=1}^N \alpha_i t_i = 0$

Large C: more consistent with training set

Small C: smoother decision boundary

CS 167: Machine Learning L14: Support Vector Machines 11 / 13 CS 167: Machine Learning L14: Support Vector Machines 12 / 13

Exercise

Determine the answer to these questions:

- Does scikit-learn have a support vector machine classifier?
- If so, can I tweak the value of C?
- If so, which kernels are supported?
- If any, which is the default?
- If so, can I create my own custom kernel?
- If so, can I tweak the values of γ , d, r, etc.?

Exercises:

- How does the linear kernel (i.e., just dot product) do with the iris data?
- Does it work well for the quadratic kernel (i.e., polynomial kernel with $d=2,\ r=1$)?
- How about on the LFW data set?

CS 167: Machine Learning

L14: Support Vector Machines

13 / 13