	Отчет по лабораторной работе № 22 по курсу Алгоритмы и структуры данных						
	Студент группы <u>M8O-103Б-22 Киселев Артём Олегович</u> , № по списку <u>10</u> Контакты www, e-mail, icq, skype jonajmail@gmail.com						
	Работа выполнена: 11.03.2023 г.						
	Преподаватель: доцент каф. 806 Никулин С.П.						
	Входной контроль знаний с оценкой						
	Отчет сдан « 11 » марта 2023г., итоговая оценка						
	Подпись преподавателя						
1.	Тема: Издательская система TEX						
_							
2.	Цель работы: Научиться пользоваться издательской системой ТЕХ						
3.	Задание (<i>вариант № 10</i>): Сверстать в ТЕХ 26-27 страницы книги по математике.						
4.	Оборудование (лабораторное): ЭВМ, процессор, имя узла сети с ОП Мб, НМД Мб. Терминал адрес Принтер Другие устройства						
	Оборудование ПЭВМ студента, если использовалось: Процессор Ryzen 3 3200u 2.6GHz _ с ОП 8 ГБ _ НМД SSD 256 ГБ, HDD 1000 ГБ Монитор Встроенный 1920х1080 Другие устройства Touchpad Synaptics						
5.	Программное обеспечение (лабораторное): Операционная система семейства, наименование версия интерпретатор команд версия						
	Система программирования версия						
	Редактор текстов версия						
	Прикладные системы и программы						
	Программное обеспечение ЭВМ студента, если использовалось: Операционная система семейства UNIX , наименование Ubuntu версия 22.04.1 интерпретатор команд bash версия 5.1.16						

Система программирования С	версия ТЕХ			
Редактор текстов Overleaf	версия 28.2			
Утилиты операционной системы				
Прикладные системы и программы				
Местонахождение и имена файлов программ и данных на домашнем компьютере				
	-			
-				

6. Идея, метод, алгоритм решение задачи (в формах: словесной, псевдокода, графической [блок-схема, диаграмма, рисунок, таблица] или формальные спецификации с пред- и постусловиями)

TeX — система компьютерной вёрстки, разработанная американским профессором информатики Дональдом Кнутом в целях создания компьютерной типографии.

7.	Сценарий выполнения работы (план работы, первоначальный текст программы в черновике [можно на отдельном листе] и тесты либо соображения по тестированию)
	1) Ознакомиться с системой ТЕХ 2) Сверстать в ТЕХ заданные согласно варианту страницы книги 3) Сделать протокол 4) Сделать отчёт
	Пункты 1-7 отчета составляются строго до начала лабораторной работы. Допущен к выполнению работы. Подпись преподавателя

8. Распечатка протокола (подклеить листинг окончательного варианта программы с тестовыми примерами, подписанный преподавателем)

```
\documentclass[12pt]{article}
\usepackage{amsmath,amsthm,amssymb}
\usepackage{mathtext}
\usepackage[T1,T2A]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[english,russian]{babel}
\label{linespread} \
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{}
\fancyfoot[L]{\thepage}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\usepackage{graphicx} % Required for inserting images
\title{lab22}
\author{AOKiselev}
\date{March 2023}
\begin{document}
4) Дифференциальное уравнение 1-го порядка, разрешённое относительно производной,
может определяться как уравнение, приводящееся к следующему виду:
    y^\prime = f(x)\varphi(y).\eqno(5.6)
Очевидно, что это частный случай уравнения (5.1), представляемый в форме (f(x)\operatorname{varphi}(y)dx - dy = 0.) Разделение переменных в нём проводится так же, как в уравнении (5.1), умножением обеих частей на
\(\dfrac{1}{\varphi(y)}\)
 что в результате и приводит к разделению переменных \(\dfrac{dy}{\varphi(y)} = f(x)dx\).
Далее решение проводится по аналогии с решением уравнения (5.1) или его преобразованного вида (5.2).
Рассмотрим теперь следующее дифференциальное уравнение:
    y^\pm = f(ax + by + c). eqno(5.7)
\1
Это уравнение может быть приведено к уравнению с разделяющимися переменными вида (5.1)
или (5.6) с помощью невырожденной 	ext{tit}\{подстановки\} (замены) переменных
\begin{equation*}
     \begin{cases}
         u = ax + by + c; \
         x = x
     \end{cases}
     или\quad
     \begin{cases}
         u = ax + by;\\
x = x.
     \end{cases}
\end{equation*}
Действительно, если применить первый вариант такой подстановки к уравнению (5.7), оно приводится к виду \(\dfrac{u^\prime - a}{b} = f(u)\) (так как \(u^\prime = a + by^\prime\)) или \(du - (a+bf(u))dx = 0\), т.е. к виду (5.1)
\text{textbf}(\text{Пример.}) Решить дифференциальное уравнение (y^{\text{prime}} = 5x + y - 7.)
\textbf{\textit{Решение.}} Применяем подстановку
\(\begin {cases}
u = 5\bar{x} + y -7, \
x = x
\end{cases}
(/
(u^\mathrm{prime} = 5 + y^\mathrm{prime},)
\setcounter{page}{26}
\newpage
\noindent
(y^prime = u^prime - 5), (u^prime - 5 = u), (u^prime = y + 5), ((dfrac{du}{u + 5} = dx)),
(\ln u + 5) = x + \ln C),
\( u + 5 = Ce^x\) и, проведя обратную замену, имеем \( 5x + y - 2 = Ce^x\), \(y = Ce^x - 5x + 2\). Так как решение уравнения ("делителя") \(u + 5 = 0\) или \(u = -5\) входит в полученное решение \(u + 5 = Ce^x\) при \(C = 0\), окончательным
ответом для решения данного уравнения является (y = Ce^x - 5x + 2).
     \paragraph{\textit{\S6. Однородные уравнения и приводящиеся к ним}}
\end{center}
```

Функция \(M(x,y)\) называется \textbf{однородной функцией} относительно своих аргументов, если для любого значения \(t\) выполняется тождественно следующее равенство: \(M(tx, ty) \equiv t^m M(x, y)\). Показатель \textit{m} степени \textit{t} в этом равенстве называется \textit{измерением} или \textit{степенью однородности} однородной функции относительно своих аргументов.

Дифференциальное уравнение 1-го порядка, разрешённое относительно производной и \textit{saпиcaнное} в виде [M(x, y)dx + N(x, y)dy = 0, eqno(6.1)] называется \textbf{однородным уравнением}, если функции \(M(x, y)\) и \(N(x, y)\) являются \textit{однородными функциями одинаковой степени однородности} относительно своих аргументов.

\textbf{\textit{Замечание}}. Можно сформулировать и два других определения однородного уравнения, эквивалентных данному определению, которыми можно пользоваться при интегрировании однородных уравнений. Это следующие определения:

1) Дифференциальное уравнение \(y^\prime = f(x, y)\) называется \textit{однородным уравнением},
если функция \(f(x, y)\) является \textit{однородной функцией нулевой степени однородности} относительно своих аргументов.
Очевидно, это определение легко следует из данного определения
\pagestyle{fancy}
\fancyfoot[R]{\thepage}
\renewcommand{\headrulewidth}{Opt}
\renewcommand{\footrulewidth}{Opt}
\newpage

\end{document}

4) Дифференциальное уравнение 1-го порядка, разрешённое относительно производной, может определяться как уравнение, приводящееся к следующему виду:

$$y' = f(x)\varphi(y). \tag{5.6}$$

Очевидно, что это частный случай уравнения (5.1), представляемый в форме $f(x)\varphi(y)dx-dy=0$. Разделение переменных в нём проводится так же, как в уравнении (5.1), умножением обеих частей на $\frac{1}{\varphi(y)}$, что в результате и приводит к разделению переменных $\frac{dy}{\varphi(y)}=f(x)dx$. Далее решение проводится по аналогии с решением уравнения (5.1) или его преобразованного вида (5.2).

Рассмотрим теперь следующее дифференциальное уравнение:

$$y' = f(ax + by + c). (5.7)$$

Это уравнение может быть приведено к уравнению с разделяющимися переменными вида (5.1) или (5.6) с помощью невырожденной $nodcma-noe\kappa u$ (замены) переменных

$$\begin{cases} u = ax + by + c; \\ x = x \end{cases} \quad \text{или} \quad \begin{cases} u = ax + by; \\ x = x. \end{cases}$$

Действительно, если применить первый вариант такой подстановки к уравнению (5.7), оно приводится к виду $\frac{u'-a}{b}=f(u)$ (так как u'=a+by') или du-(a+bf(u))dx=0, т.е. к виду (5.1)

Пример. Решить дифференциальное уравнение y' = 5x + y - 7.

Решение. Применяем подстановку $\begin{cases} u = 5x + y - 7, \\ x = x, \end{cases}$ u' = 5 + y',

 $y'=u'-5,\,u'-5=u,\,u'=y+5,\,\dfrac{du}{u+5}=dx,\,\ln(u+5)=x+\ln C,\,u+5=Ce^x$ и, проведя обратную замену, имеем $5x+y-2=Ce^x,\,y=Ce^x-5x+2.$ Так как решение уравнения ("делителя") u+5=0 или u=-5 входит в полученное решение $u+5=Ce^x$ при C=0, окончательным ответом для решения данного уравнения является $y=Ce^x-5x+2.$

$\S 6.$ Однородные уравнения и приводящиеся κ ним

Функция M(x,y) называется **однородной функцией** относительно своих аргументов, если для любого значения t выполняется тождественно следующее равенство: $M(tx,ty) \equiv t^m M(x,y)$. Показатель m степени t в этом равенстве называется измерением или степенью однородности однородной функции относительно своих аргументов.

Дифференциальное уравнение 1-го порядка, разрешённое относительно производной и *записанное* в виде

$$M(x,y)dx + N(x,y)dy = 0, (6.1)$$

называется однородным уравнением, если функции M(x,y) и N(x,y) являются однородными функциями одинаковой степени однородности относительно своих аргументов.

Замечание. Можно сформулировать и два других определения однородного уравнения, эквивалентных данному определению, которыми можно пользоваться при интегрировании однородных уравнений. Это следующие определения:

1) Дифференциальное уравнение y'=f(x,y) называется однородным уравнением, если функция f(x,y) является однородной функцией нулевой степени однородности относительно своих аргументов. Очевидно, это определение легко следует из данного определения

9.	Дневник отладки должен содержать дату и время сеансов отладки и основные события (ошибки в сценарии
	и программе, нестандартные ситуации) и краткие комментарии к ним. В дневнике отладки приводятся сведения об
	использовании ЭВМ, существенном участии преподавателя и других лиц в написании и отладке программы.

№	Лаб. или дом.	Дата	Время	Событие	Действие по исправлению	Пр
			по существ		v	
				ты я научился пол цы из книги по ма	ьзоваться издательской систематике.	гемои
Нед	очёты пр	и выпо	олнении з	задания могут быт	ъ устранены следующим обр	азом:

	$\cap \mathcal{N}$
Подпись студента	740