1) Which equation gives the output of the network shown below:

- $X = act(W^3 \times act(W^2 \times act(W^1 \times X)))$

- 2) Gradient Descent learning is based on the derivative of the which two factors:
 - Output and Error
 - Weight and Error
 - ☐ Input and Error
 - ☐ Input and Output
- 3) How is this derivative used to minimise the error?
 - The weights are adjusted in the opposite direction of the derivative
 - ☐ The weights are adjusted in the same direction of the derivative
 - The weights are adjusted according to the inverse of the derivative
 - ☐ The weights are adjusted according to the square of the derivative
- 4) Which of the following equations shows the concept for one step of a gradient-based training algorithm using the learning rate α , the trainable parameters $\boldsymbol{\theta}_t$ of at different time steps t and the gradient $\nabla_{\boldsymbol{\theta}_t}$:

5) In gradient-based training, what is the role of the learning rate α ?
☐ Helps minimise convergence effects when the input is small
Helps minimise divergence effects when the input is large
Helps maximise convergence effects when the input is small
☐ Helps maximise divergence effects when the input is large
6) The role of a cost function when training a deep learning model is to:
Provide a score reflecting model performance
☐ Decrease the generalisation errors
Determine the optimal complexity of the model
Determine the adequate amount of training data
7) Stacked linear networks represent:
☐ Negates the need to induce correlation between the input and the output
☐ A highly effective regularisation technique
☐ A computationally inexpensive version of a single layer linear network
A computationally expensive version of a single layer linear network
8) Which is the following is not a core property of an activation function
☐ Monotonic
□ Discrete
Nonlinear
Computational Efficient
9) The Sigmoid and Hyperbolic Tangent activation functions:
\square Both have a range of 0 to 1
\square Both have a range of -1 to 1
\square Have a range of 0 to 1 and -1 to 1 respectively
☐ Have a range of -1 to 1 and 0 to 1 respectively

10)	Whi	ch of the following mathematical operations is characteristic for backpropagation?
		Polynomial interpolation.
	\boxtimes	Chain rule of derivation.
		Integration by substitution.
		Higher order derivatives.
11)	Whi	ch equation gives the gradient with respect to W^1 in the network shown below?
		Input Hidden 1 Hidden 2 Output Loss $W^1 \longrightarrow act() \longrightarrow act() \longrightarrow act() \longrightarrow J \longrightarrow Error$
		$\frac{\partial Error}{\partial W^1} = \frac{\partial Error}{\partial X} \times \frac{\partial X}{\partial W^1}$
		$\frac{\partial Error}{\partial W^1} = \frac{\partial Error}{\partial Output} + \frac{\partial Output}{\partial W^1}$
		$\frac{\partial Error}{\partial W^1} = \frac{\partial Error}{\partial Output} + \frac{\partial Output}{\partial hidden^2} + \frac{\partial hidden^2}{\partial hidden^2} + \frac{\partial hidden^2}{\partial W^1}$
	\boxtimes	$\frac{\partial Error}{\partial W^1} = \frac{\partial Error}{\partial Output} \times \frac{\partial Output}{\partial hidden2} \times \frac{\partial hidden2}{\partial hidden1} \times \frac{\partial hidden1}{\partial W^1}$
12)	In w	eighted-based regularisation, what is the main advantage in ensure smaller weights?
		Reduce bias errors
	\boxtimes	Reduce the complexity of the model
		Improve training speed
		Reduce both bias and variance errors
13)	Wha	at is the main disadvantage of data augmentation as a regularisation strategy?
		Increased training time
		Larger mini-batch size
		Increased model complexity
	\boxtimes	Applying cross-class transformation
14)	Whi	ch of the following properties makes a signal less suitable for analysis with a CNN
		Similar patterns appear in different regions of the signal
	\boxtimes	The signal is sequential (time-dependent) in nature
		Key patterns can be much smaller than the whole signal
		Downsampling the signal does not change the key properties

15)	The	output of a convolutional kernel is found by doing which operation on the input signal:
	\boxtimes	Dot product
		Conventional Convolution
		Flipped Convolution
		Fully connected summation
16)	How	many learnable parameters are associated with a max pooling layer?
	\boxtimes	Zero
		One, the size of the pooling field
		Two, the size of the pooling field and the stride
		The same as size of the pooling field
17)	Wha	at is the role of the forget gate in a Long Short-Term Memory (LSTM) cell is to:
		Reset the previous hidden state value
	\boxtimes	Determine what old information should be thrown away or kept
		Determine what old information to throw away and what new information to add
		Learn when to forget all information and reset weights to identity matrix
18)	Whi	ch of the following statements is true :
		GRU and LSTM networks never overfit
		LSTM cells are less likely to overfit than GRUs
		GRU and LSTM networks are equally as likely to overfit
	\boxtimes	GRUs are less likely to overfit than LSTM cells
19)	Wha	at is the disadvantage of conventional sequence-to-sequence modelling
		They can only be used in combination with LSTM networks
		Only the final decoder state is used to initialise the encoder
	\boxtimes	Only the final encoder state is used to initialise the decoder
		The context vector increases the number of learnable parameters
20)		ch of the following options uses exploration as a learning strategy in a reward-based envinent?
		Supervised Learning
	\boxtimes	Reinforcement Learning
		Unsupervised Learning
		Semi-Supervised Learning