Laboratoire

Classe: INF2	Labo no : 04	Exceptions
--------------	---------------------	------------

But

- Classes génériques Vecteur et Matrice
- Utilisation des exceptions

A faire

Développer dans des fichiers séparés distincts deux classes génériques « Vecteur » (vector<T>) et « Matrice » (Vecteur<T>) permettant la gestion de données quelconques.

Fonctionnalités demandées

Vecteur

Vecteur(n)	Constructeur avec la taille <i>n</i> initiale	
Vecteur(vector <t>)</t>	Constructeur sur la base d'un vector	
operateur <<	affiche le contenu au format [a, b,]	
at(n)	Accès à l'élément en position n (lecteur et écriture)	
size()	Retourne la taille actuelle	
resize(taille)	Redimensionne le vecteur	
somme()	Retourne la somme des éléments contenus	
Operateur * (valeur)	Multiplie chaque élément par <i>valeur</i> et retour le	
	vecteur correspondant	
	ex : v * [a, b, c] => [v*a, v*b, v*c]	
Operateur * (vecteur)	Multiplie chaque élément entre eux et retourne le	
	vecteur correspondant	
	$[a, b, c] * [d, e, f] \Rightarrow [a*d, b*e, c*f]$	
Operateur + (vecteur)	Retourne un vecteur correspondant à l'addition de	
	chacun des éléments	
	$ex : [a, b, c] + [d, e, f] \Rightarrow [a+d, b+e, c+f]$	
Operateur - (vecteur)	Retourne un vecteur correspondant à la soustraction de	
	chacun des éléments	
	ex : [a, b, c] - [d, e, f] => [a-d, b-e, c-f]	

Laboratoire

Matrice

1111111111		
Matrice()	Constructeur par défaut	
Matrice(l)	Matrice de <i>l</i> lignes et 0 colonne	
Matrice(l, c)	Matrice de <i>l</i> lignes et <i>c</i> colonnes	
operateur <<	affiche le contenu au format [[a, b][c, d],]	
at(n)	Accès au vecteur en position n (lecteur et écriture)	
size()	Retourne la taille actuelle (nbre de lignes)	
resize(l)	Redimensionne le vecteur à <i>l</i> lignes	
resize(l, c)	Redimensionne le vecteur à <i>l</i> lignes et <i>c</i> colonnes	
estVide()	Indique que la matrice ne contient aucune valeur	
estCarree()	Indique que la matrice est carrée.	
	Par convention une matrice vide est carrée	
estReguliere()	Indique que toutes les lignes ont la même longueur.	
	Par convention une matrice vide est régulière	
sommeLigne()	Retourne un vecteur contenant la somme de chaque	
	ligne	
sommeColonne()	Retourne un vecteur contenant la somme de chaque	
	colonne	
sommeDiagonaleGD()	Retourne la somme des valeurs de la diagonale	
	Gauche-Droite	
sommeDiagonaleDG()	•	
	Gauche	
Operateur * (valeur)	Retourne la matrice dont tous les éléments ont été	
	multipliés par <i>valeur</i> .	
	Ex : n * [[a], [b, c]] => [[n*a], [n*b, n*c]]	
Operateur * (matrice)	Retourne une matrice dont tous les éléments ont été	
	multipliés par les éléments correspondants.	
	L'opération est possible seulement si les matrices ont	
	strictement la même forme.	
	Ex: $[[a], [b, c]] * [[g], [h, i]] = [[a*g], [b*h, c*i]]$	
Operateur + (matrice)	Retourne une matrice dont tous les éléments ont été	
	additionnés avec les éléments correspondants.	
	L'opération est possible seulement si les matrices ont	
	strictement la même forme.	
	[Ex : [[a], [b, c]] + [[g], [h, i]] = [[a+g], [b+h, c+i]]	

Laboratoire

Intégrer dans ce développement des exceptions qui seront traitées par l'appelant (main) de sorte à fournir un message parlant du problème rencontré.

Pour vous aider, consulter les exceptions liées aux méthodes des *vector* que vous utilisez pour déterminer ce qui pourrait se passer. En plus d'un message clair, les messages d'exception doivent être pré-fixés « Vecteur » ou « Matrice » selon la provenance.

Créer un programme de test afin de démontrer le bon fonctionnement de ces deux classes. Les tests des cas particuliers selon, au besoin, en commentaire.

