



## **Model Development Phase Template**

| Date           | 16 June 2025                                                                 |
|----------------|------------------------------------------------------------------------------|
| Team Lead Name | Jayanth Srinivas Bommisetty                                                  |
| Project Title  | Sloan Digital Sky Survey (SDSS) galaxy classification using machine learning |
| Maximum Marks  | 6 Marks                                                                      |

## **Model Selection Report**

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

## **Model Selection Report:**

| Model                                               | Description     | Hyperparameters | Performance Metric (e.g., Accuracy, F1 Score) |          |          |              | 0 ,      |
|-----------------------------------------------------|-----------------|-----------------|-----------------------------------------------|----------|----------|--------------|----------|
|                                                     |                 |                 |                                               | accuracy | loss     | val_accuracy | val_loss |
|                                                     |                 |                 | 0                                             | 0.627667 | 2.358680 | 0.645968     | 1.210565 |
|                                                     |                 |                 | 1                                             | 0.684480 | 1.209981 | 0.585032     | 1.634703 |
|                                                     |                 |                 | 2                                             | 0.694304 | 1.133193 | 0.709917     | 1.050935 |
|                                                     |                 |                 | 3                                             | 0.713208 | 1.189432 | 0.727525     | 1.612369 |
|                                                     |                 |                 | 4                                             | 0.720651 | 1.065884 | 0.715477     | 1.020766 |
|                                                     |                 |                 | 5                                             | 0.734842 | 1.015147 | 0.726830     | 1.032038 |
|                                                     | Convolutional   |                 | 6                                             | 0.741540 | 0.979775 | 0.709685     | 1.091861 |
|                                                     | laware used for |                 | 7                                             | 0.752456 | 0.918784 | 0.731233     | 1.007552 |
| CNN layers used for feature extraction and training | feature         |                 | 8                                             | 0.764464 | 0.862766 | 0.762280     | 0.871927 |
|                                                     |                 | _               | 9                                             | 0.772204 | 0.805564 | 0.702271     | 1.028391 |
|                                                     |                 |                 | 10                                            | 0.778158 | 0.767598 | 0.776877     | 0.800327 |
|                                                     |                 |                 | 11                                            | 0.786841 | 0.730349 | 0.776182     | 0.792598 |
|                                                     | training        |                 | 12                                            | 0.791704 | 0.702501 | 0.781511     | 0.797190 |
|                                                     |                 |                 | 13                                            | 0.793540 | 0.693993 | 0.776877     | 0.794707 |
|                                                     |                 |                 | 14                                            | 0.801975 | 0.669766 | 0.749073     | 1.051305 |
|                                                     |                 |                 | 15                                            | 0.805150 | 0.655939 | 0.767377     | 0.900276 |
|                                                     |                 |                 | 16                                            | 0.808872 | 0.645367 | 0.771548     | 0.844698 |
|                                                     |                 |                 | 17                                            | 0.810311 | 0.634315 | 0.793559     | 0.740710 |
|                                                     |                 |                 | 18                                            | 0.815421 | 0.616893 | 0.787535     | 0.742540 |
|                                                     |                 |                 | 19                                            | 0.820581 | 0.612604 | 0.763438     | 0.815696 |





| VGG16 | Initializing VGG16 model with Imagenet | _ | accuracy: 0.6593 - loss: 25.6037 - val_accuracy: 0.7458 - val_loss: 5.3799 accuracy: 0.6849 - loss: 9,9770 - val_accuracy: 0.6504 - val_loss: 10,7695 accuracy: 0.7083 - loss: 12.2451 - val_accuracy: 0.6395 - val_loss: 20.4080 accuracy: 0.7315 - loss: 14.5729 - val_accuracy: 0.7057 - val_loss: 19.0062 accuracy: 0.7492 - loss: 17.1226 - val_accuracy: 0.6613 - val_loss: 24.4764 accuracy: 0.7791 - loss: 16.8684 - val_accuracy: 0.7639 - val_loss: 20.2850 accuracy: 0.7967 - loss: 18.3998 - val_accuracy: 0.7588 - val_loss: 24.2542 accuracy: 0.8094 - loss: 19.7980 - val_accuracy: 0.7247 - val_loss: 47.2809 accuracy: 0.8270 - loss: 20.9380 - val_accuracy: 0.7544 - val_loss: 39.9246 accuracy: 0.8348 - loss: 22.9380 - val_accuracy: 0.7544 - val_loss: 43.9116 |
|-------|----------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------|----------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|