Bases de Datos

Traducción de Diagramas Entidad-Relación a esquemas relacionales

De modelo Entidad-Relación a modelo relacional

modelo relacional: tablas esquema de relación en DER → tabla de BD

- cómo son los esquemas de modelo relacional
- 2. restricciones de integridad más comunes para ellos

Notación del modelo relacional

Ej.: En la Universidad tenenos instructores y cada uno tiene identificador, nombre, nombre de departamento y salario.... A1, A2, ..., An son atributos. R = (A1, A2, ..., An) es un esquema de relación **Ej.: Instructor = (ID, name, dept_name, salary)**

Ejemplo de relación en un modelo relacional

Notación de relaciones

```
conjuntos de dominios D1, D2, ... Dn
relación: tabla con columnas D1, D2, ... Dn
elemento t ∈ r: una tupla, una fila
Ej.: persona \subseteq string x integer x integer.
   tupla: ("Jorge Pérez", 51, 18003567)
nombres de relaciones con minúscula,
nombres de esquema con mayúscula.
```

Dominio de los atributos

conjunto de valores permitidos para cada atributo

tienen que ser atómicos (para poder hacer consultas)

El valor *null*

El valor especial *null* es un miembro de todo dominio, significa que el valor es desconocido o no existe Si para una tupla no tenemos el valor de un atributo por algún motivo, podemos poner *null* como valor para ese atributo.

Terminología

informal	formal
tabla	relación
encabezado de columna	atributo
valores posibles en una columna	dominio
fila	tupla
definición de tabla	esquema de relación
tabla poblada	estado de la relación

Definición de BD relacional

conjunto de esquemas de relación

- definimos los conceptos del problema mediante esquemas de relación,
- definimos los datos como tablas asociadas a esos esquemas,
- 3. podemos poblar las tablas, consultarlas y alterarlas.

Notación

```
relación: r, s, u, r1, r2, ...
esquema de relación: R, S, U, R1, R2, ...
Sea t \in r, r(R), A \in R, t[A] es el
valor de t en A.
Sea t \in r, r(R), t[i] es el valor de t
en el atributo i-ésimo de R.
```

Restricciones de integridad

Superclaves

Sea K ⊆ R , R esquema de relación; K es una superclave de R si los valores para K son suficientes para identificar una tupla única en cada posible relación r(R) Ej.: instructor(ID, name, dept name, salary) {ID} e {ID, name} son superclaves de instructor.

Claves candidatas y claves primarias

```
K es clave candidata, si K es mínima:
  para todo atributo de K, si se lo
  quito, K deja de ser superclave
Ejemplo: {ID} clave candidata de instructor
¡Atención! No confundir clave candidata
con superclave de cardinalidad mínima
```

Claves candidatas y claves primarias

Una de las claves candidatas es elegida para ser la clave primaria

```
Restricción de clave foránea (o de integridad referencial): el valor en una relación debe aparecer en otra.
```

Ejemplo:

instructor(ID, name, dept name, salary)

department(dept name, building, budget)

El valor de dept name en instructor debe aparecer en department

En otras palabras:

Los valores de uno o más atributos en una tupla de la relación referenciante aparecen en uno o más atributos de una tupla en la relación referenciada.

En otras palabras:

Los atributos referenciados en la relación referenciada suelen formar una clave primaria del esquema de la relación referenciada.

En otras palabras:
Generalizando aún más: los atributos
referenciados de la relación referenciada
suelen formar una clave candidata del
esquema de la relación referenciada.

Diagrama para BD universitaria

Diseño de una BD relacional

Un buen DER :D

Almacenar toda la información en una sola relación resulta en redundancia

Ej.: dos estudiantes con el mismo instructor

Necesidad de valores nulos

Ej.: representar un estudiante sin supervisor

Reglas de traducción de DER a tablas

necesitamos:

- Para cada entidad (CE) y relación (CR) hay un esquema relacional único
- Identificar claves primarias
- Identificar claves foráneas

Reglas de traducción de DER a tablas

se traduce a:

student(<u>ID</u>, name, tot_cred)

Regla 1: entidad fuerte, atributos simples

Una entidad (CE) fuerte sin atributos
compuestos ni multi-valorados se traduce
a un esquema relacional con los mismos
atributos
La clave primaria del CE se convierte en

La clave primaria del CE se convierte en la clave primaria del esquema relacional.

Regla 1: entidad fuerte, atributos simples

biblioteca(<u>nombre</u>, calle, número, ciudad)

Regla 2: entidad fuerte, atributos compuestos

Una entidad (CE) fuerte con atributos compuestos pero no multi-valorados se traduce a un esquema relacional con los mismos atributos simples. Cada valor del atributo compuesto se traduce a una tupla separada en la tabla del esquema

Regla 2: entidad fuerte, atributos compuestos

libro(título, <u>ISBN</u>, editorial, edición) libro-autor(<u>ISBN</u>, <u>autor</u>)

Regla 2: entidad fuerte, atributos compuestos

libro(título, <u>ISBN</u>, editorial, edición)

libro-autor(ISBN, autor)

For libro-autor foreign key ISBN

references libro

Bases de Datos 2022

Regla 3: atributos multivalorados

- Se representa el atributo multivalorado simple con un esquema separado, EM
- EM tiene como atributos la clave primaria de la entidad (CE) y el atributo en sí
- Todos los atributos son la clave primaria
- Restricción de clave foránea para referenciar la clave primaria de la entidad

Regla R1: relaciones varios a varios

Representamos una relación (CR) varios a varios con un esquema con atributos para las claves primarias de las dos entidades (CE) y los atributos simples de la relación

- la clave primaria es la unión de las claves primarias de las entidades

Regla R1: relaciones varios a varios

instructor(<u>ID</u>, name, salary, dept_name)

For instructor foreign key dept_name references department

Regla R2: relaciones uno a varios

Una relación (CR) varios a uno se representa agregando atributos extra en la entidad (CE) del lado varios, con la clave primaria del lado uno.

Regla R2: relaciones uno a varios

- La clave primaria de la relación es la clave primaria de la entidad del lado varios.
- Se crea una restricción de clave foránea de la relación que referencia a la clave primaria de la entidad del

lado varios.

Regla R2: relaciones uno a varios (observación)

Si la participación es parcial en el lado varios, aplicar la regla anterior puede resultar en valores nulos. Esto sucede cuando a una entidad del CE del lado varios no le corresponde ninguna entidad del CE del lado uno.

Regla R2: relaciones uno a varios (observación)

decano(DNI, nombre, nombreFacultad, universidad)

For decano foreign key nombreFacultad, universidad references facultad

Regla R2: relaciones uno a varios (observación)

facultad (<u>nombre, universidad,</u> DNI)

For facultad foreign key DNI references decano

Regla R3: uno a uno

Una relación (CR) uno a uno se representa agregando al esquema de una de las entidades la clave primaria de la otra

Regla R3: uno a uno

- La clave primaria de la relación puede ser la de cualquiera de las entidades
- Se crea restricción de clave foránea que referencia la clave primaria de la entidad que no se tomó de base para crear el esquema

Bases de Datos 2022

Regla R3: uno a uno

sección(ID, sec_id, semestre, año)

For sección foreign key ID references curso

Y cuando no hay reglas?

/THANKS!

/DO YOU HAVE ANY QUESTIONS?

youremail@freepik.com +91 620 421 838 yourwebsite.com

曲

> Please keep this slide for attribution

