0.1 Fritz & Wilke

0.1.1 Delayed Simulation Game

In this section we consider delayed simulation games and variants thereof on DPAs. This approach is based on the paper [] which considered the games for alternating parity automata. The DPAs we use are a special case of these APAs and therefore worth examining.

Definition 0.1.1. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, c)$ be a DPA. We define the *delayed simulation automaton* $\mathcal{A}_{de}(p, q) = (Q_{de}, \Sigma, (p, q, \checkmark), \delta_{de}, F_{de})$, which is a deterministic Büchi automaton, as follows.

- $Q_{\text{de}} = Q \times Q \times (\text{img}(c) \cup \{\checkmark\})$, i.e. the states are given as triples in which the first two components are states from \mathcal{A} and the third component is either a priority from \mathcal{A} or \checkmark .
- The alphabet remains Σ .
- The starting state is a triple (p, q, \checkmark) , where $p, q \in Q$ are parameters given to the automaton.
- $\delta_{\text{de}}((p,q,i),a) = (p',q',\gamma(i,c(p'),c(q')))$, where $p' = \delta(p,a)$, $q' = \delta(q,a)$, and γ is defined in detail below. The first two components behave like a regular product automaton.
- $F_{de} = Q \times Q \times \{\checkmark\}$.

 $\gamma: \mathbb{N} \times \mathbb{N} \times (\mathbb{N} \cup \{\checkmark\}) \to \mathbb{N} \cup \{\checkmark\}$ is the update function of the third component and defines the "obligations" as they are called in []. It is defined as

$$\gamma(i,j,\checkmark) = \begin{cases} \checkmark & \text{if } i \text{ and } j \text{ are odd and } i \leq j \\ \checkmark & \text{if } i \text{ and } j \text{ are even and } j \leq i \\ \checkmark & \text{if } i \text{ is odd and } j \text{ is even} \\ \min\{i,j\} & \text{else} \end{cases}$$

$$\gamma(i,j,k) = \begin{cases} \checkmark & \text{if } i \text{ and } j \text{ are odd and } i \leq k \text{ and } i \leq j \\ \checkmark & \text{if } i \text{ and } j \text{ are even and } j \leq k \text{ and } j \leq i \\ \checkmark & \text{if } i \text{ is odd and } j \text{ is even and } (i \leq k \text{ or } j \leq k) \\ \min\{i,j,k\} & \text{else} \end{cases}$$

Definition 0.1.2. Let \mathcal{A} be a DPA and let \mathcal{A}_{de} be the delayed simulation automaton of \mathcal{A} . We say that a state p de-simulates a state q if $L(\mathcal{A}_{de}(p,q)) = \Sigma^{\omega}$. In that case we write $p \leq_{de} q$. If also $q \leq_{de} p$ holds, we write $p \equiv_{de} q$.