

Generative Multi-View Human Action Recognition

Lichen Wang¹, Zhengming Ding², Zhiqiang Tao¹, Yunyu Liu¹, and Yun Fu¹ wanglichenxj@gmail.com ¹Northeastern University, ²Indiana University-Purdue University Indianapolis

Introduction

Multi-view Action Recognition

- Input: Multi-view action sequence (e.g., RGB + Depth)
- Output: Action prediction results

Concept of multi-view human action recognition

Challenges

- Heterogeneous (significantly different) multi-view feature domains (e.g., RGB and depth, RGB and electronic signal)
- Incomplete/missing view sequences (e.g., only one view is available)
- Inconsistent view-specific prediction (e.g., RGB and depth have different prediction results)

Motivations

- Obtain more distinctive feature representations
- Explore cross-view feature relations
- Explore the multi-view prediction results in high-level label space

Our model

Three modules are proposed for solving the challenges

- **View-specific encoders**
- Seek distinctive action representations in subspaces
- Label information + triplet loss objective

Cross-view Adversarial Generation

- Increase cross-view representation diversity
- Enhance model robustness
- Address missing/incomplete view sequences

View Correlation Discovery Network

- View-specific initial classification is firstly obtained
- Pair-wise label correlation matrix is generated
- VCDN fully explore the latent high-level label correlation for higher performance

$$L_{G_1d} = -E_{z \sim p_z(z)} \log \left(1 - D_1 \left(G_1(z | E_1(X_{tr}^1)) \right) \right)$$

$$L_{G_1s} = E_{z \sim p_z(z)} \left(\| G_1(z | E_1(X_{tr}^1)) - E_2(X_{tr}^2) \|_F^2 \right)$$

$$L_{D_1} = E_{X \sim p_X(X)} \log D_1 \left(E_2(X_{tr}^2) \right)$$

$$+ E_{z \sim p_z(z)} \log \left(1 - D_1 \left(G_1(z | E_1(X_{tr}^1)) \right) \right)$$

$$L_{C_{1g}} = ||Y_{tr} - C_1(G_2(z|E_2(X_{tr}^2)))||_F^2$$

$$L_{C_{2g}} = ||Y_{tr} - C_2(G_1(z|E_1(X_{tr}^1)))||_F^2$$

$$L_{C_{VCDN}} = \sum_{i=1}^{n_{tr}} ||y_i - C_{VCDN}(y_{tr_i}^2 \cdot y_{tr_i}^{1\top})||_2^2$$

Framework of our generative multi-view human action recognition

Single-view & multi-view action classification

Method	RGB	$R \rightarrow D$	Depth	D→R	R+D	Method	RGB	$R \rightarrow D$	Depth	$D\rightarrow R$	R+D	Method	RGB	$R \rightarrow D$	Depth	D→R	R+D
LSR	67.59	69.17	45.45	37.73	68.77	LSR	96.46	97.17	47.63	42.51	97.17	LSR	65.02	65.43	82.30	48.56	77.36
SVM [36]	69.44	68.53	34.92	34.33	72.72	SVM [36]	96.09	96.80	45.39	45.13	96.80	SVM [36]	66.11	70.24	78.92	78.18	83.47
VLAD [14]	71.54	-	-	-	-	VLAD [14]	97.17	-	-	-	-	VLAD [14]	67.13	-	-	-	-
TSN [51]	71.01	-	-	-	-	TSN [51]	97.31	-	-	-	-	TSN [51]	67.85	-	-	-	-
WDMM [1]	-	-	46.58	-	-	WDMM [1]	-	-	66.41	-	-	WDMM [1]	_	-	81.05	-	-
AMGL [30]	69.17	71.54	39.92	35.96	68.53	AMGL [30]	96.46	97.11	30.03	29.96	94.70	AMGL [30]	64.61	59.05	72.84	67.33	74.89
MLAN [29]	67.19	67.19	33.28	33.61	66.64	MLAN [29]	96.05	96.10	41.48	41.25	96.46	MLAN [29]	67.91	67.91	72.96	72.83	76.13
PM-GANs [49]	_	71.36	-	49.01	-	PM-GANs [49]	-	96.76	-	66.84	-	PM-GANs [49]	-	68.72	-	76.02	-
Ours	-	73.53	-	50.35	76.28	Ours	-	98.23	-	68.32	98.94	Ours	-	69.72	-	83.48	88.72

UWA dataset

MHAD dataset

UWA MHAD DHA

DHA dataset

Ablation study

Intentionally remove or modify the View Correlation Discovery Network

Setting	UWA	MHAD	DI
$RGB\text{-}C_1$	69.18	96.42	68
Depth- C_2	45.28	63.05	79
RGBD-Fea-En-Con	68.78	96.82	70
RGBD-Fea-Ori-Con	69.22	97.32	70
RGBD-Lab-Con	70.38	96.28	80
RGBD-Lab-Ave	71.84	97.56	83
RGBD-Lab-Wei	71.15	97.17	83
RGBD-VCDN (Ours)	74.07	98.06	84

Performance with different label fusion strategies

Performance with different label fusion strategies

Performance with different label fusion strategies

The performance with and without the generative model

t-SNE visualization of real and generated samples

Experiments

- Conventional multi-view action recognition setting.
- Single-view action recognition setting, where another view is considered as missing view which is generated by cross-view generation strategy.
- Ablation study for cross-view generation module and view correlation discovery module

Conclusion

We proposed three modules to address the challenges of multi-view human action recognition. View-specific encoder learns distinctive action representations. Crossview generation extend the representation distributions. View correlation discovery network explore the high-level correlations in label space. All modules are trained simultaneously to achieve the best performance.