

Introdução à Ciência da Computação - 113913

Lista de Exercícios 2 Condicionais

Observações:

- As listas de exercícios serão corrigidas por um **corretor automático**, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- As questões estão em **ordem de dificuldade**. Cada lista possui 7 exercícios, sendo 1 questão fácil, 3 ou 4 médias e 2 ou 3 difíceis.
- Assim como as listas, as provas devem ser feitas na versão Python 3 ou superior.
- Leia com atenção e faça exatamente o que está sendo pedido.

Questão A - Pares e Ímpares

Faça um programa que imprima na tela se um número lido do teclado é par ou ímpar. Se for par imprima também o próximo número par, caso contrário imprima o próximo ímpar.

Entrada

Apenas um inteiro.

Saída

A saída conterá duas linhas, uma informando se o número é par ou ímpar e outra mostrando o próximo par ou ímpar, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
9	2 é par
	4
2	3 é ímpar
3	5
-4	-4 é par
	-2

Tabela 1: Questão A

Questão B - Índice de Massa Corporal

Usando como dados de entrada altura h (em metros) e peso p (em quilos), elabore um programa que calcule o IMC (índice de massa corporal) do usuário, usando a fórmula:

$$IMC = \frac{p}{h^2}$$

Depois interprete e informe o resultado, da seguinte forma:

• Baixo peso: IMC abaixo de 18,5 kg/m^2

• Peso normal: IMC entre 18,5 e 24,9 kg/m^2

• Sobrepeso: IMC entre 24,9 e 29,9 kg/m^2

• Obesidade Grau I: IMC entre 29,9 e $34,9 \ kg/m^2$

• Obesidade Grau II: IMC entre $34.9 \text{ e } 39.9 \text{ } kg/m^2$

• Obesidade Grau III: IMC maior que 39,9 kg/m^2

Caso ele esteja acima da faixa de peso normal informe também o mínimo de quilos que serão necessários perder para chegar à faixa peso normal.

Entrada

Duas linhas de dados: peso (em kg) e altura (em metros).

Saída

Caso o usuário esteja na faixa Baixo peso ou Peso normal apenas imprima a mensagem informando o IMC e, na próxima linha, a sua classificação correspondente usando a tabela, conforme exemplo fornecido abaixo. Caso contrário, imprima também o peso **mínimo** necessário a se perder para chegar à faixa peso normal com 2 casas decimais após a vírgula.

Exemplo de Entrada	Exemplo de Saída
79	23.33
1.84	Peso normal
84.4	24.66
1.85	Peso normal
85	33.20
1.60	Obesidade grau I
	21.26

Tabela 2: Questão B

Questão C - Tipos de Triângulos

Leia 3 valores de ponto flutuante A, B e C e ordene-os de modo que A representa o maior dos 3 lados. A seguir, determine o tipo de triângulo que estes três lados formam, com base nos seguintes casos, sempre escrevendo uma mensagem adequada:

- Se $A \ge B + C$, apresente a mensagem: NAO FORMA TRIANGULO
- Se $A^2 = B^2 + C^2$, apresente a mensagem: **TRIANGULO RETANGULO**
- Se os três lados forem iguais, apresente a mensagem: TRIANGULO EQUILATERO
- Se apenas dois dos lados forem iguais, apresente a mensagem: TRIANGULO ISOSCELES
- Caso contrário, apresente a mensagem: TRIANGULO ACUTANGULO OU OBTUSANGULO

Entrada

A entrada contém 3 valores reais todos maiores que zero. Não terá como entrada um valor tal que o triângulo seja retângulo e isósceles ao mesmo tempo.

Saída

Imprima a classificação do triângulo.

Exemplo de Entrada	Exemplo de Saída
7.0	
5.0	TRIANGULO ISOSCELES
7.0	
6.0	
6.0	TRIANGULO EQUILATERO
6.0	
1.0	
3.0	NAO FORMA TRIANGULO
1.0	

Tabela 3: Questão C

Questão D - Ghost e a Escada

No caminho para encontrar Jon Snow em Dragonstone, o lobo Ghost enfrenta um problema: uma grande escada. Os degraus da escada são numeradas de 1 até infinito. Sendo um lobo esperto, Ghost decidiu calcular dois valores, o número de degraus percorridos com números pares e ímpares.

Você precisa checar se o número de passos em degraus pares e ímpares encontrados pelo Ghost estão corretos. Considere que ele não pula nenhum degrau e que ele sobe pelo menos o degrau de número 1.

Entrada

Em uma única linha são dados dois inteiros a, b ($0 \le a,b \le 100$), o número de passos pares e ímpares, respectivamente.

Saída

Em uma única linha, imprima "a b ok", se Ghost calculou corretamente os valores e "a b errados" caso contrário.

Nota

Lembre-se que para ler vários valores em uma mesma linha, use *input().split()*. Se o argumento de split for vazio, o separador das variáveis é um espaço em branco. Porém, input lê apenas strings do teclado, portanto você deverá converter as strings em floats. No exemplo a seguir, o usuário digita valores separados por um espaço em branco e aperta enter para enviá-los, então, o programa lê esses valores separados por espaços como strings (na ordem em que aparecem), guardados nas variáveis correspondentes e os converte para inteiros:

$$A, B = input().split()$$

 $A, B = [int(A), int(B)]$

Exemplo de Entrada	Exemplo de Saída
2 3	2 3 ok
3 1	3 1 errados
5 5	5 5 ok

Tabela 4: Questão D

Questão E - Calendário

Raphael quer fazer um calendário para o mês atual. Para isso, ele desenha um tabela aonde as colunas correspondem às semanas (uma semana são 7 dias consecutivos de Segunda até Domingo), linhas correspondem aos dias da semana, e as células contém datas. Por exemplo, o calendário para Janeiro de 2017 seria como na imagem abaixo:

	2	9	16	23	30
	3	10	17	24	31
	4	11	18	25	
	5	12	19	26	
	6	13	20	27	
	7	14	21	28	
1	8	15	22	29	

Raphael quer saber quantas colunas sua tabela deve ter, dado o mês e o dia da semana do primeiro dia do mês. Você pode fazer um programa para ajudá-lo, assumindo que o ano não é bissexto?

Entrada

A entrada consiste de uma única linha contendo dois inteiros m e d ($1 \le m \le 12, 1 \le d \le 7$), o número do mês e o dia da semana do primeiro dia do mês (1 é Segunda, 7 é Domingo).

Saída

Imprima um único inteiro: o número de colunas que a tabela terá. O primeiro exemplo corresponde a Janeiro de 2017, mostrado na figura acima.

Exemplo de Entrada	Exemplo de Saída
1 7	6
11	5
11 6	5

Tabela 5: Questão E

Questão F - O Jogo

Leia a hora inicial, minuto inicial, hora final e minuto final de um jogo. A seguir calcule a duração do jogo, considerando que o jogo pode acabar em um dia e terminar em outro, tendo uma duração máxima de 24 horas.

Entrada

Quatro números inteiros representando a hora de início e fim do jogo.

Saída

Mostre a seguinte mensagem: "O jogo durou XX hora(s) e YY minuto(s)."

Exemplo de Entrada	Exemplo de Saída
7 5 7 4	O jogo durou 23 hora(s) e 59 minuto(s).
7777	O jogo durou 24 hora(s) e 0 minuto(s).
7 10 8 9	O jogo durou 0 hora(s) e 59 minuto(s).

Tabela 6: Questão F

Questão G - A Mais Longa Subsequência Incomum

Uma subsequência de uma string é uma sequência de caracteres que aparece na mesma ordem da string. As ocorrências não precisam ser consecutivas, por exemplo, "ac", "bc", "abc" e "a" são subsequências da string "abc", enquanto as strings "abbc" e "acb" não são. A string vazia é subsequência de qualquer string. Qualquer string é subsequência dela mesmo.

Dada duas strings a e b, encontre o tamanho da maior subsequência incomum, que é a maior string que é subsequência de uma das duas e não é subsequência da outra.

Entrada

A primeira linha contém a string a e a segunda linha contém a string b. As duas strings não são vazias e são compostas apenas por letras minúsculas.

Saída

Se não houver nenhuma subsequência incomum, imprima "-1". Caso contrário imprima o tamanho da maior subsequência incomum de a e b.

Dica

Existe uma função em Python que retorna o tamanho de uma string qualquer dada como parâmetro.

Nota

No primeiro exemplo você pode escolher "defgh" da string b como a maior subsequência da string que não aparece como subsequência da string a.

Exemplo de Entrada	Exemplo de Saída
abcd	5
defgh	
a	-1
a	-1
aaaaaaaaacccccccc	20
aaaaaaaadddddddddd	20

Tabela 7: Questão G