

Universidade Federal de Santa Catarina Centro Tecnológico de Joinville

Cálculo Vetorial

ExercÃcios Resolvidos

1 - Encontrar o trabalho realizado pelo campo $\vec{F}(x,y,z)=\frac{k}{x^2+y^2+z^2}(x\vec{i}+y\vec{j}+z\vec{k})$ ao longo da curva $\gamma(t)=(\cos t,\sin t,t)$

Resolução: Procuraremos f = f(x, y, z) tal que:

$$\frac{\partial f}{\partial x}(x,y,z) = \frac{k_x}{x^2 + y^2 + z^2} \tag{1}$$

$$\frac{\partial f}{\partial y}(x,y,z) = \frac{k_y}{x^2 + y^2 + z^2} \tag{2}$$

$$\frac{\partial f}{\partial z}(x,y,z) = \frac{k_z}{x^2 + y^2 + z^2} \tag{3}$$

Integrando (1) em rela \tilde{A} § \tilde{A} £o a x obtemos:

$$f(x, y, z) = \int \frac{k_x}{x\ddot{i}?' + y\ddot{i}?' + z\ddot{i}?' dx + \phi(y, z) = \frac{k}{2}\ln(x\ddot{i}?' + y\ddot{i}?' + z\ddot{i}?') + \phi(y, z),}$$

Portanto,

$$\frac{\partial f}{\partial y}(x,y,z) = \frac{k_y}{x\ddot{\mathbf{i}}?`+y\ddot{\mathbf{i}}?`+z\ddot{\mathbf{i}}?`+\frac{\partial \phi}{\partial y}(y,z) \stackrel{(2)}{=} \frac{k_y}{x\ddot{\mathbf{i}}?`+y\ddot{\mathbf{i}}?`+z\ddot{\mathbf{i}}?`} \stackrel{k_y}{\Longrightarrow} \frac{\partial \phi}{\partial y}(y,z) = 0 \Longrightarrow \phi(y,z) = \phi(z),$$

isto " $i^{\frac{1}{2}} \phi$ n" $i^{\frac{1}{2}}$ o depende de y. Calculando,

$$\frac{\partial f}{\partial z}(x,y,z) = \frac{k_z}{x\ddot{\mathbf{i}}?`+y\ddot{\mathbf{i}}?`+z\ddot{\mathbf{i}}?`+\frac{\partial \phi}{\partial z}(z) \stackrel{(3)}{=} \frac{k_z}{x\ddot{\mathbf{i}}?`+y\ddot{\mathbf{i}}?`+z\ddot{\mathbf{i}}?` \Longrightarrow \frac{\partial \phi}{\partial z}\phi(z) = 0 \Longrightarrow \phi(z) = C.}$$

isto
 $\ddot{\imath}_{c}^{1} \frac{1}{2} \phi$ tamb $\ddot{\imath}_{c}^{1} \frac{1}{2}$ m n
 $\ddot{\imath}_{c}^{1} \frac{1}{2}$ o depende de x,y,z.

Se tomarmos
$$\phi = 0$$
 temos $f(x, y, z) = \frac{k}{2} \ln(x\ddot{i}?' + y\ddot{i}?' + z\ddot{i}?') + \phi(y, z)$, portanto,

$$W = \int_{\gamma} \vec{F} \cdot d\vec{r} = f(1, 0, 2\pi) - f(1, 0, 0) = \frac{k}{2} \ln(1 + 4\pi \ddot{i}?')$$

2 - Mostre que a integral $\int_c (2y\ddot{i}?' - 12x\ddot{i}?'y\ddot{i}?') dx + (4xy - 9x^4y\ddot{i}?') dy \ddot{i}; \frac{1}{2}$ independente do caminho e calcule essa integral, sendo C qualquer caminho de (1,1) a (3,2). Solu $\ddot{i}; \frac{1}{2}\ddot{i}; \frac{1}{2}o$:

$$\int_{C} \overline{f} \, d\overline{r} = \int_{C} f_1 dx + f_2 dy$$

Em que:

$$\overline{f} = (f_1, f_2)$$

Nesse caso, $\overline{f}(x,y) = (2y\ddot{i}?' - 12x\ddot{i}?'y\ddot{i}?')\vec{i} + (4xy - 9x^4y\ddot{i}?')\vec{j}$, $D(\overline{f}) = \mathbb{R}\ddot{i}?'\ddot{i}\frac{1}{2}$ simplismente conexo (n \ddot{i} ; $\frac{1}{2}$ o tem buracos).

Verificando se o campo \overline{f} \ddot{i}_{c}^{1} conservativo:

$$\frac{\partial f_1}{\partial y} = 4y - 36x\ddot{i}''y\ddot{i}''; \quad \frac{\partial f_2}{\partial x} = 4y - 36x\ddot{i}''y\ddot{i}'';$$
$$\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x} \Rightarrow \overline{f} \ \ddot{i}'_{2} \text{ conservativo.}$$

Enti; $\frac{1}{2}$ o, existe uma funi; $\frac{1}{2}$ i; $\frac{1}{2}$ o $\phi(x,y)$, tal que $\Delta\phi(x,y) = \overline{f}(x,y)$.

Portanto, pelo Teorema 5.3, $\int_c (2y\ddot{\imath}?' - 12x\ddot{\imath}?'y\ddot{\imath}?') dx + (4xy - 9x^4y\ddot{\imath}?' dy \ddot{\imath}; \frac{1}{2} \text{ independente do caminho em } \mathbb{R}\ddot{\imath}?'$.

Vamos encontrar a fun $\ddot{i}_{\dot{c}}^{1}\ddot{i}_{\dot{c}}^{1}$ o $\phi(x,y)$ e usar o Teorema Fundamental para integrais de linha

$$\Delta\phi(x,y) = \overline{f}(x,y) \Rightarrow \frac{\partial\phi}{\partial x} = 2y\ddot{i}?' - 12x\ddot{i}?'y\ddot{i}?' e \frac{\partial\phi}{\partial y} = 4xy - 9x^4y\ddot{i}?'.$$

$$\frac{\partial\phi}{\partial x} = 2y\ddot{i}?' - 12x\ddot{i}?'y\ddot{i}?' \Rightarrow \phi(x,y) = \int (2y\ddot{i}?' - 12x\ddot{i}?'y\ddot{i}?') dx = 2y\ddot{i}?'x - 3x^4y\ddot{i}?' + c(y)$$

$$\frac{\partial\phi}{\partial y} = 4xy - 9x^4y\ddot{i}?' + c'(y) = 4xy - 9x^4y\ddot{i}?'.$$
Enti\(\frac{1}{2}\overline{0}\), \(c'(y) = 0\) e \(c(y) = k\) (constante). Assim: \(\phi(x,y) = (2y\ddot{i}?'x - 3x^4y^3) + k\) e
$$\int_c (2y\ddot{i}?' - 12x\ddot{i}?'y\ddot{i}?') dx + (4xy - 9x^4y\ddot{i}?') dy = \phi(3,2) - \phi(1,1) = 1920 + 1 = 1921.$$

 ${\bf 3}$ - Sejam $\gamma_1,\,\gamma_2$ e γ os seguintes caminhos ligando os pontos A(1,1)eB(2,4)

$$\gamma_1: x = 1 + t, y = 1 + 3t, 0 \le t \le 1$$
 (segmento de reta)
 $\gamma_2: x = t, y = t\ddot{i}?', 0 \le t \le 2$ (par $\ddot{i}; \frac{1}{2}$ bola)

e γ consiste do segmento horizontal, do ponto A(1,1) ao ponto C(2,1), seguido do seguimento vertical do ponto C(2,1) ao ponto B(2,4).

1 . Ao longo de γ_1 , temos

$$\int_{\gamma_1} y dx + 2x dy = \int_0^1 [(1+3t) + 2(1+t)3] dt = \int_0^1 (7+9t) dt = \frac{23}{2}.$$

2 . Sobre γ_2 , fazemos as substitui
i $\frac{1}{6}$ i $\frac{1}{2}$ ies $x=t,\,y=t$ i?', dx=dt e dy=2tdt e obtemos:

$$\int_{\gamma_2} y dx + 2x dy = \int_1^2 [t\ddot{i}?' + (2t)2t] dt = \int_1^2 5t\ddot{i}?' dt = \frac{35}{3}.$$

3 . A poligonal γ $\ddot{\imath}_{2}^{\frac{1}{2}}$ composta dos seguimentos γ_{3} e γ_{4} e observando que y=1, sobre γ_{3} e x=2, sobre γ_{4} , obtemos:

$$\int_{\gamma} y dy + 2x dy = \int_{\gamma_3} y dx + 2x dy + \int_{\gamma_4} y dx + 2x dy = \int_1^2 dx + \int_1^4 4 dy = 13.$$

- 4 Use o Teorema de Green para calcular a integral de linha ao longo da curva dada com orienta��o positiva.
 - (a) $\int_c \cos y dx + x\ddot{\imath}$; $\sin y dy$, $C \ddot{\imath}_{c} \frac{1}{2}$ o ret $\ddot{\imath}_{c} \frac{1}{2}$ ngulo com $v\ddot{\imath}_{c} \frac{1}{2}$ rtices (0,0), (5,0), (5,2) e (0,2)
 - (b) $\int_c (y+e^{\sqrt{x}})dx + (2x+\cos y\ddot{i}?')dy$, $C\ddot{i}_{2}^{\frac{1}{2}}$ o limite da regi $\ddot{i}_{2}^{\frac{1}{2}}$ o englobada pelas par $\ddot{i}_{2}^{\frac{1}{2}}$ bolas $y=x\ddot{i}?'$ e $x=y\ddot{i}?'$

Resoluï $\frac{1}{2}$ ï $\frac{1}{2}$ i $\frac{1}{2}$ o:

(a)

A regii; $\frac{1}{2}$ o D cercada por C i; $\frac{1}{2}$: $[0,5] \times [0,2]$, enti; $\frac{1}{2}$ o

$$\begin{split} \int_{c} \cos y \, dx + x \ddot{i} ? \sin y \, dy &= \iint_{D} \left[\frac{\partial}{\partial x} (x \ddot{i} ? \sin y) - \frac{\partial}{\partial y} (\cos y) \right] dA = \int_{0}^{5} \int_{0}^{2} \left[2x \sin y - (-\sin y) \right] dy \, dx \\ &= \int_{0}^{5} (2x+1) \, dx \, \int_{0}^{2} \sin y \, dy = \left[x \ddot{i} ? + x \right]_{0}^{5} \, \left[-\cos y \right]_{0}^{2} = 30(1-\cos 2) \end{split}$$

(b)

$$\int_{c} (y + e^{\sqrt{x}}) dx + (2x + \cos y\ddot{i}?') dy = \iint_{D} \left[\frac{\partial}{\partial x} (2x + \cos y\ddot{i}?') - \frac{\partial}{\partial y} (y + e^{\sqrt{x}}) \right] dA$$

$$= \int_{0}^{1} \int_{y\ddot{i}?'\sqrt{y}(2-1) dx dy = \int_{0}^{1} (y^{1/2} - y\ddot{i}?') dy = \frac{1}{3}$$

5 - Use o teorema de Green para calcular $\int_c \mathbf{F} \cdot d\mathbf{r}$ (Verifique a orientaï; $\frac{1}{2}$ ï; $\frac{1}{2}$ o da curva antes de aplicar o teorema).

- (a) $\mathbf{F}(x,y) = \langle y \cos x xy \sin x, xy + x \cos x \rangle$, C i; $\frac{1}{2}$ triangulo de (0,0) a (0,4) a (2,0) a (0,0)
- (b) $\mathbf{F}(x,y) = \langle e^{-x} + y^2, e^{-y} + x^2 \rangle$, C consiste no da curva $y = \cos x$ de $(-\frac{\pi}{2},0)$ a $(\frac{\pi}{2},0)$

Solu��o:

(a)

 $\mathbf{F}(x,y) = \langle y\cos x - xy\sin x, xy + x\cos x \rangle$ e a regii $\frac{1}{2}$ o D cercada por C i $\frac{1}{2}$ dada por: $\{(x,y) \mid 0 \le x \le 2, 0 \le y \le 4 - 2x\}$. C i $\frac{1}{2}$ percorrido no sentido hori $\frac{1}{2}$ rio, enti $\frac{1}{2}$ o -C fornece a orientai $\frac{1}{2}$ i $\frac{1}{2}$ o positiva.

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = -\int_{-C} (y \cos x - xy \sin x) \, dx + (xy + x \cos x) \, dy$$

$$= -\iint_{D} \left[\frac{\partial}{\partial x} (xy + x \cos x) - \frac{\partial}{\partial y} (y \cos x - xy \sin x) \right] dA$$

$$= -\iint_{D} (y - x \sin x + \cos x - \cos x + x \sin x) \, dA = -\int_{0}^{2} \int_{0}^{4-2x} y \, dy \, dx$$

$$= -\int_{0}^{2} \left[\frac{1}{2} y \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y=4-2x} \right]_{y=0}^{y=4-2x} dx = \int_{0}^{2} \frac{1}{2} (4 - 2x) \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y} \, dx = -\int_{0}^{2} (8 - 8x + 2x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y}) dx = -\left[8x - 4x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y} + \frac{2}{3} x dx \right]_{y=0}^{y=4-2x} dx = \int_{0}^{2} \frac{1}{2} (4 - 2x) \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y} \, dx = -\int_{0}^{2} (8 - 8x + 2x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y}) dx = -\left[8x - 4x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y} + \frac{2}{3} x dx \right]_{y=0}^{y=4-2x} dx = \int_{0}^{2} \frac{1}{2} (4 - 2x) \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y} \, dx = -\int_{0}^{2} (8 - 8x + 2x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y}) dx = -\left[8x - 4x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y} + \frac{2}{3} x dx \right]_{y=0}^{y=4-2x} dx = -\int_{0}^{2} \frac{1}{2} (4 - 2x) \ddot{\mathbf{j}}^{y} \, dx = -\int_{0}^{2} (8 - 8x + 2x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y}) dx = -\left[8x - 4x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y} + \frac{2}{3} x dx \right]_{y=0}^{y=4-2x} dx = -\int_{0}^{2} \frac{1}{2} (4 - 2x) \ddot{\mathbf{i}}^{y} \, dx = -\int_{0}^{2} (8 - 8x + 2x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y}) dx = -\left[8x - 4x \ddot{\mathbf{i}} \ddot{\mathbf{j}}^{y} + \frac{2}{3} x dx \right]_{y=0}^{y=4-2x} dx = -\int_{0}^{2} \frac{1}{2} (4 - 2x) \ddot{\mathbf{i}}^{y} \, dx = -\int_{0}^{2} (8 - 8x + 2x \ddot{\mathbf{i}}) \, d$$

(b)

 $\mathbf{F}(x,y) = \langle e^{-x} + y^2, e^{-y} + x^2 \rangle \text{ e a regiï}; \frac{1}{2} \text{o } D \text{ cercada por } C \text{ \"i}; \frac{1}{2} \text{ dada por: } (x,y) \mid -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \text{ , } 0 \leq y \leq \cos x.$ $C \text{ \"i}; \frac{1}{2} \text{ percorrido no sentido hor\"i}; \frac{1}{2} \text{rio, ent\"i}; \frac{1}{2} \text{o } -C \text{ fornece a orienta\"i}; \frac{1}{2} \text{\"i}; \frac{1}{2} \text{o positiva.}$

$$\begin{split} \int_{C} \mathbf{F} \cdot d\mathbf{r} &= -\int_{-C} (e^{-x} + y^{2}) \, dx + (e^{-y} + x^{2}) \, dy \\ &= -\iint_{D} \left[\frac{\partial}{\partial x} (e^{-y} + x^{2}) - \frac{\partial}{\partial y} (e^{-x} + y^{2}) \right] dA \\ &= -\int_{-\pi/2}^{\pi/2} \int_{0}^{\cos x} (2x - 2y) \, dy \, dx = -\int_{-\pi/2}^{\pi/2} \left[2xy - y\ddot{\mathbf{i}}?' \right]_{y=0}^{y=\cos x} \, dx \\ &= -\int_{-\pi/2}^{\pi/2} (2x\cos x - \cos^{2} x) \, dx = -\int_{-\pi/2}^{\pi/2} \left(2x\cos x - \frac{1}{2}(1 + \cos 2x) \right) \, dx \\ &= -\left[2x\sin x + 2\cos x - \frac{1}{2} \left(x + \frac{1}{2}\sin 2x \right) \right]_{-\pi/2}^{\pi/2} \left[integrar \ por \ partes \ no \ primeiro \ termo] \\ &= -\left(\pi - \frac{1}{4}\pi - \pi - \frac{1}{4}\pi \right) = \frac{1}{2}\pi \end{split}$$