Unveiling Sporulation:
Image Segmentation and
Tracking for Bacterial Cell
Analysis

Deep Learning

U-Net and Region Proposal Networks, 2020

CellSeg (Mask R-CNN), 2022

Cell segmentation and tracking

Deep Learning Library: A Python-based library for single-cell analysis using TensorFlow

- Cell segmentation in 2D and 3D
- Cell tracking.

Raw Image

Tracked Image

^{*} Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning, Noah F. Greenwald et al, 2022

^{*} Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments, David A. Van Valen et al. 2016

Mesmer algorithm

- A deep-learning-based method
- Whole-cell and nuclear segmentation
- ResNet50 backbone and Feature Pyramid Network

^{*} Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning, Noah F. Greenwald et al, 2022

Conv-nets

- Deep convolutional neural networks
- Handle both fluorescent and phase microscopy images
- Dimensionality Reduction

^{*} Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments, David A.

Van Valen et al, 2016

Result

Sporulation Zones

Gray value image and calculated conidia densities of sporulation zones, 2021

Conidia counting: Estimation of spore density on a surface, indicated by color gradients in the image
 Gray value correlation: The relationship between pixel intensity (gray levels) and conidia density

Visualization of coat formation during sporulation in Bacillus cereus, 2023

A fluorescence-based method for live visualization of coat formation during *Bacillus cereusn* sporulation, using dyes that bind to spore surface proteins.

Other papers

• High Resolution Analysis of Proteome Dynamics during Bacillus subtilis Sporulation, Zhiwei Tu et al, 2021

 Accurate identification of living Bacillus spores using laser tweezers Raman spectroscopy and deep learning, 2022

Live Cell Imaging and Outgrowth of Bacillus spores

- Creation of a tool called **SporeTracker** for automated analysis of spore germination and outgrowth.
- Development of a **closed air-containing chamber** for live microscopy of aerobic bacterial spores.

Live Cell Imaging and Outgrowth of Bacillus spores

- Heat stress (85°C for 10 min) delayed spore germination and decreased the proportion of spores that could grow
- SporeTracker allowed detailed tracking of phases from spore germination to vegetative growth, showing heterogeneity in the population.

Time-resolved images showing heterogeneous germination and outgrowth of B. subtilis 1A700 spores on minimal medium

Original article

Hyperspectral imaging and deep learning for detection and quantification of germination in *Bacillus cereus* spores

Aswathi Soni, 1 D Yash Dixit, 2 Gale Brightwell 3,3 & Marlon M. Reis 2*

- 1 Food System Integrity, AgResearch, Palmerston North, New Zealand
- 2 Food Informatics, AgResearch, Palmerston North, New Zealand
- 3 New Zealand Food Safety Science Research Centre, Palmerston North, New Zealand

(Received 16 December 2023; Accepted in revised form 19 February 2024)

Summary

Germination of *Bacillus cereus* spores followed by growth and replication of the vegetative cells in food can result in food poisoning and therefore significant economic and health impacts. This study explores a novel approach to detect and differentiate spores and germinated *B. cereus* cells using hyperspectral imaging (HSI) in combination with machine learning using three different germination triggers. HSI could successfully differentiate between dormant spores, germinated cells and structural controls (non-spores). The spectral data in the visible-near-infrared range are sensitive to unique structural and chemical characteristics specific to spores, setting them apart from their vegetative counterparts and non-biological controls. This non-destructive and robust approach shows significant potential for detection and assessment of the physiological state (dormant or germinated). Therefore, HSI is a potential method for the detection of germination in *B. cereus* spores and merits further research and validation.

Keywords Bacillus, DL/ML, food, imaging, pathogens, spectroscopy, spores.

Thank you

