ME 658 HW3

Problem 1 Do 2.5 in McLean Note heading angle: $\chi = \beta + \psi$ A: side slip, y: yaw angle find the modes (evalues only)

The lateral motion of the aircraft FOXIROT-2 is to be considered. Its rudder is not

	Derive the corresponding state and output of interest are heading angle, $\lambda,$ and change in
En End 17.	

	(Y ₄ *	≂	0.0043	N'5, =	0.2	
3.	} L'84	Ξ.	9.0	N '∠ . ≈	-2.6	
	۲,	ž	1,95	° YL		
,						

	i = A)	x + Bu						,				
	131	١	/ Y,	0	-1	٥/٧,	0)	()3 \	١	10	Y V	١
Χ =	þ	\	L' _B	Ľp	Ľ	0	0	P		/ L'SA	L' 50	8,
	Ì		Λ' _{)?}	N' D	<i>Ν</i> ′ _Γ	0	0	1	+	N'SA	N'sa	(SR
	Ø		Ô	i	tanto	0	0	Ø		ő	Ö	
	ĺΨ		0	0	1	0	0/	\ Y /		0	0	

B.2.6 FOXTROT - A twin-engined, jet fighter/bomber aircraft

Parameter		Fligh	t condition	
	1	2	3	4
Height (m)	S.L.	10 650	10 650	13 700
Mach no.	0.206	0.9	1.2	2.15
$U_0 \text{ (m s}^{-1})$	70	265	350	650
q̃(N m ⁻²)	2 997	13 550	24 090	48 070
α ₀ (degrees)	11.7	2.6	1.6	1.4
γ ₀ (degrees)	0	0	0	0

Lateral Motion

Stability		Flight	condition	
derivative	1	2	3	4
Y_{β}	- 21.1	- 80.6	- 176.0	- 277.0
$L'_{\rm B}$	-10.4	-18.3	-14.1	- 8.67
L_p^r	-1.43	-1.24	-1.38	-1.08
L_r^{γ}	0.929	0.395	0.318	0.22
N'_{B}	1.44	4.97	12.3	8.37
N_p'	-0.026	-0.0504	-0.038	0.015
N_r^r	-0.215	-0.238	- 0.4	-0.275
Y_8^*	-0.004	-0.0007	-0.0009	-0.0005
Y *A	0.0053	0.0043	0.004	0.0026
$L_{\delta_{A}}^{rR}$	2.74	9.0	10.9	5.35
$L_{\delta_{R}}^{'A}$	0.7	1.95	3.0	2.6
$N_{8}^{'R}$	0.42	0.2	0.67	0.36
$N_{\delta_R}^{\prime A}$	- 0.67	- 2.6	- 3.2	-1.86

State equation?

Output equation for heading angle 2= B+ 4 y=(x+Dn -> D=0, y=(10001) Output equation for Change in Voll angle $\emptyset = P$ $y = (x + D_4 \rightarrow D = 0, y = (0 | 0 0 0)$ Modes (eigenvalues): $\lambda_1 = 0.0$ $\lambda_2 = -1.4761$ $\lambda_3 = -0.0114$ λ_{4,5} = -0.1473 ± 2.293 Problem 2 Change accordingly the C, D-matrices of Problem 1 and do 2.6 in McLean. For exercise 2.5 derive the corresponding transfer function relating, $a_{y_{eg}}$, to From the notes: aying = You By + You by Therefore, the output equation should have $C = (V_0)S_0, O_0, O_0$ From MATLAB: $\frac{(615)}{(515)} = \frac{4272 \, s^3 - 1150 s^2 - 1755 s}{5^5 + 1.782 \, s^4 + 5.73 \, s^3 + 7.46 \, s^2 + 0.049 s}$

