18.781 PROBLEM SET 9

JOHN WANG

1. Problem 1

Problem 1.1. Recall that $x = [a_0, \ldots, a_{n-1}, x_n] = \frac{x_n p_{n-1} + p_{n-2}}{x_n q_{n-1} + q_{n-2}}$. Show that $x - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_{n-1}(x_n q_{n-1} + q_{n-2})}$. Use this to show that the convergents p_n/q_n indeed converge to x, and even and odd-numbered convergents lie on opposite sides of x.

Solution We know that the following is true, using the fact that $x = [a_0, \ldots, a_{n-1}, x_n]$:

$$(1.1) x - \frac{p_{n-1}}{q_{n-1}} = \frac{x_n p_{n-1} + p_{n-2}}{x_n q_{n-1} + q_{n-2}} - \frac{x_n p_{n-1} + p_{n-2}}{x_n q_{n-1} + q_{n-2}}$$

(1.1)
$$x - \frac{p_{n-1}}{q_{n-1}} = \frac{x_n p_{n-1} + p_{n-2}}{x_n q_{n-1} + q_{n-2}} - \frac{x_n p_{n-1} + p_{n-2}}{x_n q_{n-1} + q_{n-2}}$$
(1.2)
$$= \frac{x_n q_{n-1} p_{n-1} + p_{n-2} q_{n-1} - x_n q_{n-1} p_{n-1} - p_{n-1} q_{n-2}}{(x_n q_{n-1} q_{n-2}) q_{n-1}}$$
(1.3)
$$= \frac{p_{n-2} q_{n-1} - p_{n-1} q_{n-2}}{(x_n q_{n-1} + q_{n-2}) q_{n-1}}$$

$$= \frac{p_{n-2}q_{n-1} - p_{n-1}q_{n-2}}{(x_nq_{n-1} + q_{n-2})q_{n-1}}$$

Also, we know that from a theorem proven in class, that $\frac{p_{k-1}}{q_{k-1}} - \frac{p_k}{q_k} = \frac{(-1)^k}{q_{k-1}q_k}$. This implies that $p_{k-1}q_k - p_kq_{k-1} = (-1)^k$. Equivalently, setting k = n-1, we see that $p_{n-2}q_{n-1} - p_{n-1}q_{n-2} = (-1)^{n-1}$. This shows

(1.4)
$$x - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_{n-1}(x_n q_{n-1} + q_{n-2})}$$

Now recall $q_n = a_n q_{n-1} + q_{n-2}$, and that $a_n > 0$ for all $n \in \mathbb{N}$. Moreover, since q_{-1} and q_{-2} are both non-negative, we see that q_n increases monotonically as $n \to \infty$. This means that the RHS of the equation goes to zero as $n \to \infty$ because q_{n-1} and q_{n-2} both converge to ∞ and $n \to \infty$. Moreover, we see that p_{n-1}/q_{n-1} changes signs because $q_n > 0$ and $x_n > 0$ for all $n \in \mathbb{N}$, but $(-1)^{n-1}$ changes sign with odd and even numbered convergents. \square

2. Problem 2

Problem 2.1. It follows from the above problem that $|x-p_n/q_n| < 1/(q_nq_{n+1})$ and that $|xq_n-p_n| < 1/q_{n+1}$. Show that $|xq_n-p_n| > 1/q_{n+2}$ and therefore that $|x-\frac{p_{n+1}}{q_{n+1}}| < |x-\frac{p_n}{q_n}|$.

Solution First we note that based on the fact that $x = [a_0, \ldots, a_{n-1}, x_n]$ and $x_{n+1} < a_{n+1} + 1$, we can obtain the following inequalities:

(2.1)
$$x - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n(x_{n+1}q_n + q_{n-1})} > \frac{(-1)^n}{q_n((a_{n+1} + 1)q_n + q_{n-1})}$$

$$(2.2) xq_n - p_n = \frac{(-1)^n}{q_n + q_{n+1}}$$

The last line uses the fact that $q_{n+1} = a_{n+1}q_n + q_{n-1}$ using the recursive definition of q_n . Moreover, we know that $q_n + q_{n+1} < q_{n+2}$ because $a_{n+2} > 0$. This implies the following:

$$|xq_n - p_n| > \frac{1}{q_{n+2}}$$

Which is the first part of what we wanted to prove. We know that $|x - \frac{p_{n+1}}{q_{n+1}}| < \frac{1}{q_{n+1}q_{n+2}}$ by the first inequality mentioned in the beginning of the problem. This implies, since $q_n < q_{n+1}$ that $|x - \frac{p_{n+1}}{q_{n+1}}| < \frac{1}{q_nq_{n+2}}$. Moreover, we have already shown that $|xq_n - p_n| > 1/q_{n+2}$. This implies that

$$\left| x - \frac{p_{n+1}}{q_{n+1}} \right| < \frac{1}{q_{n+1}q_{n+2}} < \frac{1}{q_nq_{n+2}} < \left| x - \frac{p_n}{q_n} \right|$$

Which is what we wanted to show. \square

2 JOHN WANG

3. Problem 3

Problem 3.1. Let $n \ge 1$. Show that if a/b is a rational number, with a, b integers and b positive, such that $|bx - a| < |q_n x - p_n|$, then $b \ge q_{n+1}$.

Solution First, we note that we can write the vector (a, b) as an integer linear combination of (p_n, q_n) and (p_{n+1}, q_{n+1}) . Thus, we need to find integer coefficients α and β such that $a = \alpha p_n + \beta p_{n+1}$ and $b = \alpha q_n + \beta q_{n+1}$. In other words, we must solve the following matrix equations:

$$\begin{bmatrix} p_n & p_{n+1} \\ q_n & q_{n+1} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

We know from a theorem proven in class that the determinant can be given by:

(3.2)
$$\begin{vmatrix} p_n & p_{n+1} \\ q_n & q_{n+1} \end{vmatrix} = (-1)^{n+1} \neq 0$$

This shows that we have solutions $\alpha = (-1)^{n+1}(aq_{n+1} - bp_{n+1})$ and $\beta = (-1)^{n+1}(bp_n - aq_n)$ to the equations. Next, we shall show that α and β have differing signs. First suppose that $\beta < 0$. Then we know that $b = \alpha q_n + \beta q_{n+1}$ so that $\alpha q_n = b - \beta q_{n+1} > 0$. Since $q_n > 0$, we know that $\alpha > 0$. Now suppose that $\beta \ge 0$. Then we know that $b < q_{n+1}$ so that $aq_n = b - \beta q_{n+1} < 0$. This implies that $aq_n < 0$. Therefore, we must have opposite signs for $aq_n < 0$.

Moreover, we know that $x - \frac{p_n}{q_n}$ and $x - \frac{p_{n+1}}{q_{n+1}}$ must have different signs from a theorem in class, which implies that $q_n x - p_n$ and $q_{n+1} x - p_{n+1}$ have different signs as well. This means, due to the opposite signs, that we can write:

$$|bx - a| = |(\alpha q_n + \beta q_{n+1})x - (\alpha p_n + \beta p_{n+1})|$$

$$= |\alpha||q_n x - p_n| + |\beta||q_{n+1} x - p_{n+1}|$$

Since we know by hypothesis that $|bx - a| < |q_n x - p_n|$, and we know that α and β are integers, we must have $\alpha = 0$. This implies that $0 = (-1)^{n+1}(aq_{n+1} - bp_{n+1})$ which further implies that $aq_{n+1} = bp_{n+1}$. Since we know that $gcd(q_{n+1}, p_{n+1}) = 1$ by a theorem shown in class, we must have $q_{n+1}|b$. This implies that $b \ge q_{n+1}$. This completes the proof. \square

Problem 3.2. Check that problem 3.1 implies that $|x - a/b| \ge |x - p_n/q_n|$ for every $1 \le b \le q_n$, i.e. p_n/q_n is a best approximation to x among rational numbers with denominators less than or equal to q_n .

Solution We know from the above that if $b \le q_n$, then we must have $|bx - a| \ge |q_n x - p_n|$. This follows because otherwise, we would have $|bx - a| < |q_n x - p_n|$, which would imply $b \ge q_{n+1}$. This would contradiction $b < q_n$ because $q_n < q_{n+1}$. This shows the following:

$$(3.5) b \left| x - \frac{a}{b} \right| \ge q_n \left| x - \frac{p_n}{q_n} \right|$$

$$\left| x - \frac{a}{b} \right| \ge \frac{q_n}{b} \left| x - \frac{p_n}{q_n} \right|$$

$$\left| x - \frac{a}{b} \right| \ge \left| x - \frac{p_n}{q_n} \right|$$

Where the last line follows because $b \leq q_n$ implies that $q_n/b \geq 1$. This completes the proof. \square

4. Problem 4

Problem 4.1. If a/b is a rational approximation to x as above (a, b integers, b positive), such that $|x - \frac{a}{b}| < \frac{1}{2b^2}$, then show that a/b must be a convergent of the simple continued fraction of x.

Solution We can suppose g = gcd(a,b) = 1, otherwise we could reqrite the problem so that $|x - \frac{a/g}{b/g}| < \frac{1}{2(b/g)^2}$. Now, let $\frac{p_n}{q_n}$ be the convergents of x and suppose by contradiction that a/b is not a convergent of x. Then we know that there exists an n such that $q_n \le b < q_{n+1}$ since the sequence $\{q_n\}$ increases monotonically. Thus, we see from the previous theorem that $|xb - a| \ge |xq_n - p_n|$. Therefore, we find:

$$|xq_n - p_n| \le |xb - a| < \frac{1}{2b}$$

$$\left| x - \frac{p_n}{q_n} \right| < \frac{1}{2bq_n}$$

18.781 PROBLEM SET 9

Since we know that $\frac{a}{b} \neq \frac{p_n}{q_n}$ and that $bp_n - aq_n$ is an integer by virtue of a, b, p_n, q_n all being integers, we find that the following is true:

$$\frac{1}{bq_n} \le \frac{|bp_n - aq_n|}{bq_n}$$

$$(4.4) \qquad \qquad = \left| \frac{p_n}{q_n} - \frac{a}{b} \right|$$

$$(4.5) \leq \left| x - \frac{a}{b} \right| + \left| x - \frac{p_n}{q_n} \right|$$

$$< \frac{1}{2bq_n} + \frac{1}{2b^2}$$

$$= \frac{1}{2b} \left(\frac{b + q_n}{q_n b} \right)$$

This implies that $2b < b + q_n$ or that $b < q_n$. However, this is a contradiction due to the previous problem which showed that $b \ge q_{n+1}$. \square

5. Problem 5

Problem 5.1. Let $\phi = (1 + \sqrt{5})/2$ be the golden ratio, and let $\kappa > \sqrt{5}$. Show that there are only finitely many rational numbers p/q such that $|\phi - \frac{p}{q}| < \frac{1}{\kappa q^2}$.

Solution We showed in class that the continued fraction expansion of $\phi = (1 + \sqrt{5})/2$ is given by $[1,1,1,\ldots]$. We see then that $p_n = a_n p_{n-1} + p_{n-2} = p_{n-1} + p_{n-2}$ and that $q_n = a_n q_{n-1} + q_{n-2} = q_{n-1} + q_{n-2}$ are the numerator and denominator of the convergents. We can show inductively that $q_n = p_{n-1}$. Clearly it holds for n = 1 because $q_1 = 1$ and $p_0 = 1$. Now, suppose this for all integers less than or equal to n. We see that $q_{n+1} = q_n + q_{n-1}$ by the recurrence. Using the induction hypothesis, we find $q_{n+1} = p_{n-1} + p_{n-2} = p_n$, which completes the induction step. Therefore, we find:

(5.1)
$$\lim_{n \to \infty} \frac{q_{n-1}}{q_n} = \lim_{n \to \infty} \frac{q_{n-1}}{p_{n-1}} = \frac{1}{\phi} = \frac{2}{1 + \sqrt{5}}$$

We can simplify the above expression by multiplying by the conjugate to obtain $\frac{2}{1+\sqrt{5}}\frac{\sqrt{5}-1}{\sqrt{5}-1} = \frac{\sqrt{5}-1}{2}$. We can then obtain the expression:

(5.2)
$$\lim_{n \to \infty} \phi_n + \frac{q_{n-1}}{q_n} = \frac{\sqrt{5} + 1}{2} + \frac{\sqrt{5} - 1}{2} = \sqrt{5}$$

This shows us that for $\kappa > \sqrt{5}$, we can only have $\phi_{n+1} + q_{n+1}/q_n > \kappa$ for a finite number of values of n. We know the following as well:

(5.3)
$$\left| \phi - \frac{p_n}{q_n} \right| = \frac{1}{q_n(\phi_{n+1}q_n + q_{n-1})} = \frac{1}{q_n^2(\phi_{n+1} + q_{n-1}/q_n)}$$

Which uses a fact proven in problem 1 on this problem set. Thus, we see that there are only a finite number of values n such that $|\phi - \frac{p_n}{q_n}| < \frac{1}{\kappa q_n^2}$. Using the previous problem, we see that all rational numbers p/q satisfying the inequality $|\phi - \frac{p}{q}| < \frac{1}{\kappa q^2}$ must be a convergent of p/q. However, we have just shown that there are finitely many convergents that satisfy this property, so therefore, there are a finite number of rational numbers that satisfy the property. \square

6. Problem 6

Let p be a prime congruent to 1 (mod 4) and suppose u is an integer such that $u^2 \equiv -1 \pmod{p}$.

Problem 6.1. Write the rational number $u/p = [a_0, a_1, \ldots, a_n]$ and let i be the largest integer such that $q_i \leq \sqrt{p}$. Show that $|p_i/q_i - u/p| < 1/(q_i\sqrt{p})$ and therefore that $|p_ip - uq_i| < \sqrt{p}$.

Solution First notice that if $|p_i/q_i - u/p| < 1/(q_i\sqrt{p})$, then we can multiply both sides by q_i and p to obtain $|p_ip - uq_i| < \sqrt{p}$. Thus, we only need to show that $|p_i/q_i - u/p| < 1/(q_i\sqrt{p})$, and the proof will be complete.

4 JOHN WANG

Now, let us first make some observations. We know that the sequence $\{q_i\}$ is increasing as $i \to \infty$. This means that $q_i < q_k$ whenever i < k. Moreover, we know from problem 1 in this problem set, that the following holds where p_i/q_i are convergents to u/p:

(6.1)
$$\left| \frac{u}{p} - \frac{p_i}{q_i} \right| = \frac{1}{q_i(a_{i+1}q_i + q_{i-1})}$$

Thus, in order for us to show that $|p_i/q_i - u/p| < 1/(q_i\sqrt{p})$, we need to show that $a_{i+1}q_i + q_{i-1} > \sqrt{p}$. However, we know that i is the largest integer such that $q_i \leq \sqrt{p}$. Since q_i increases as i increases, this implies that for all k > 0, we know that $q_{i+k} > \sqrt{p}$. Therefore, we know that $q_{i+1} = a_{i+1}q_i + q_{i-1} > \sqrt{p}$. This completes what we wanted to show, and finishes the proof. \square

Problem 6.2. Letting $x = q_i$ and $y = p_i p - u q_i$, show that $0 < x^2 + y^2 < 2p$ and that $x^2 + y^2 \equiv 0 \pmod{p}$. Conclude that $p = x^2 + y^2$.

Solution First, we know that $x^2+y^2=q_i^2+(p_ip-uq_i)^2=q_i^2+p_i^2p^2-2p_ipuq_i+u^2q_i^2$. Regrouping terms, we find $x^2+y^2=q_i^2(u_i^2+1)+p_i^2p^2-2p_ipuq_i$. Since we know that $u^2\equiv -1\pmod{p}$, we find that $q_i^2(u_i^2+1)\equiv 0\pmod{p}$. Moreover, we know that $p(pp_i^2-2p_iuq_i)\equiv 0\pmod{p}$. This implies that $x^2+y^2\equiv 0\pmod{p}$. Next, we want to show that $0< x^2+y^2<2p$. This follows because $x=q_i$ so that $x^2=q_i^2\leq (\sqrt{p})^2=p$ by the hypothesis that $q_i\leq \sqrt{p}$. Next, we know from the previous problem that $|y|=|p_ip-uq_i|<\sqrt{p}$, which implies that $y^2<(\sqrt{p})^2=p$. This shows that $x^2+y^2< p+p=2p$. Moreover, we know that x,y>0 because $q_i\in \mathbb{Z}$ so that $x^2>0$. Thus, we see that $0< x^2+y^2<2p$.

The first fact, that $x^2 + y^2 \equiv 0 \pmod{p}$ implies that $x^2 + y^2 = kp$ for some $k \geq 1$. However, since we know that $0 < x^2 + y^2 < 2p$, we know that k < 2 as well. This forces k = 1, which shows that $p = x^2 + y^2$, which is what we wanted. \square

7. Problem 7

Problem 7.1. Let d be a positive non-square integer. For which positive integers c does the quadratic irrational $([\sqrt{d}] + \sqrt{d})/c$ have a purely periodic expansion?

Solution By a theorem proven in class, an irrational number x has a purely periodic expansion if and only if $x \ge 1$ and $-1 < \bar{x} < 0$. For $x = ([\sqrt{d}] + \sqrt{d})/c$, these two conditions imply that $[\sqrt{d}] + \sqrt{d} \ge c$ and that $-1 < \bar{x} < 0$. This corresponds to:

$$(7.1) -1 < \bar{x} = \frac{[\sqrt{d}] - \sqrt{d}}{c} < 0$$

Where $\bar{x} = (\sqrt{d} - \sqrt{d})/c$ since \sqrt{d}/c is the only irrational part of x. This implies:

$$(7.2) -c < -\sqrt{d} + [\sqrt{d}] < 0$$

However, we know that $[\sqrt{d}] \leq \sqrt{d} < [\sqrt{d}] + 1$ which implies that $-1 < [\sqrt{d}] - \sqrt{d} < 0$. This, the second condition shows that $c \geq 1$ must hold. Putting the two conditions together, we find that all positive integers c such that:

$$(7.3) 1 \le c \le \lceil \sqrt{d} \rceil + \sqrt{d}$$

will allow x to have a purely periodic expansion. \square

8. Problem 8

Let x be an irrational real number.

Problem 8.1. Given any positive integer N, show that there is a rational number p/q with $p, q \in \mathbb{Z}$ and $1 \le q \le N$ such that $|x - \frac{p}{q}| < \frac{1}{q(N+1)}$.

Solution Let us examine the fractional parts of the rational numbers ix as i ranges from 0 through N. Let $\{0, \{1x\}, \{2x\}, \dots, \{Nx\}, 1\}$ be the set of fractional parts of numbers, where $\{kx\} = kx - [kx]$ denotes the fractional part of kx. Note we have also included 0 and 1 in the above set.

Now, we see that at least one of the N+1 intervals [k/(N+1),(k+1)/(N+1)) in [0,1] has two elements from the above set using the pigeonhole principle, since there are N+2 elements for N+1 intervals. If 1 or 0 is one of these two elements, then $\{kx\}$ is the other element and we can choose $p \leq N$ and q = k. This would give $|kx-p| \leq \frac{1}{n+1}$.

Otherwise, we must have $0 \le |\{kx\} - \{lx\}| \le \frac{1}{N+1}$. Writing this out, we obtain:

(8.1)
$$\frac{1}{N+1} \ge |kx - [kx] - lx + [lx]|$$

$$(8.2) = |x(k-l) + [lx] - [kx]|$$

Now set k-l=q and [lx]-[kx]=p and we obtain $|xq-p|<\frac{1}{N+1}$ which implies that $|x-\frac{p}{q}|<\frac{1}{q(N+1)}$, which is what we wanted to show. \square

Problem 8.2. Use part (a) to show that there are infinitely many rational numbers p/q such that $|x-p/q| < 1/q^2$.

Solution Suppose not by contradiction and let $S = \{p_1/q_1, p_2/q_2, \dots, p_r/q_r\}$ be the set of all rational numbers that satisfy $|x - p_i/q_i| < 1/q_i^2$. Since the set is finite, we can choose N large enough so that $\frac{1}{q_i(N+1)} < |x - p_i/q_i|$ for all $i \in \{1, 2, \dots r\}$. We know from the previous part that there exists a rational number p/q with $p, q \in \mathbb{Z}$ and $1 \le q \le N$ such that $|x - \frac{p}{q}| < \frac{1}{q(N+1)}$. This shows that $|x - \frac{p}{q}| < \frac{1}{q(N+1)} < \frac{1}{q^2}$ because q < N+1. Yet, we know that $p/q \notin S$ because we have shown that $\frac{1}{q_i(N+1)} < |x - p_i/q_i|$ for all $p_i/q_i \in S$. This is a contradiction, so there must be infinitely many rational numbers that satisfy $|x - p/q| < 1/q^2$. \square

9. Problem 9

Let m be a positive integer and let x have continued fraction $[m, m, m, \ldots]$.

Problem 9.1. Compute the value of x.

Solution We know that x can be expanded out to $m + \frac{1}{x_1}$ where $x_1 = [m, m, m, \ldots]$. Thus, we see that $x_1 = x$. This means that we can write the expression $x = m + \frac{1}{x}$. We obtain the quadratic equation $x^2 - mx - 1 = 0$. Solving for x, we find:

(9.1)
$$x = \frac{m \pm \sqrt{m^2 + 4}}{2}$$

However, since $m - \sqrt{m^2 + 4} < 0$ for all $m \ge 1$, we know that $x = (m - \sqrt{m^2 + 4})/2$ will be negative. If we restrict ourselves to positive values of x, we find that we must have $x = \frac{m + \sqrt{m^2 + 4}}{2}$. \square

Problem 9.2. Let p_n/q_n be the nth convergent to x. Write down and solve a linear reucrence with constant coefficients for p_n and q_n , and thereby calculate an explicit formula for p_n/q_n .

Solution We know from the recurrences for the convergents that $p_n = mp_{n-1} + p_{n-2}$. This means we have the recurrence $p_n - mp_{n-1} - p_{n-2} = 0$ with the characteristic polynomial of $\lambda^2 - m\lambda - 1 = 0$. The roots of the polynomial are given by:

$$\lambda = \frac{m \pm \sqrt{m^2 + 4}}{2}$$

The recurrence for q_n is the same, so we find that we have the following expressions for p_n and q_n :

(9.3)
$$p_n = c_1 \left(\frac{m + \sqrt{m^2 + 4}}{2} \right)^n + c_2 \left(\frac{m - \sqrt{m^2 + 4}}{2} \right)^2$$

$$(9.4) q_n = c_3 \left(\frac{m + \sqrt{m^2 + 4}}{2}\right)^n + c_4 \left(\frac{m - \sqrt{m^2 + 4}}{2}\right)^2$$

Since we know the starting conditions for the recurrences are $p_0 = m$, $p_1 = m^2 + 1$ and $q_0 = 1$, $q_1 = m$, we can solve for c_1, c_2, c_3 , and c_4 by substituting for n = 0 and n = 1. We find that the constants are given by:

(9.5)
$$c_1, c_2 = \frac{m}{2} \pm \frac{1}{2} \sqrt{\frac{m^4 + 4m^2 + 4}{m^2 + 4}}$$

$$(9.6) c_3, c_4 = \frac{m^2 \pm m\sqrt{m^2 + 4} + 4}{2(m^2 + 4)}$$

To obtain a closed form expression for the convergents, simply take p_n/q_n where the formulas for p_n and q_n are given as above. \square

6 JOHN WANG

10. Problem 10

Recall the AM-GM inequality: $\frac{r_1+r_2+\ldots+r_n}{n} \geq \sqrt[n]{r_1\ldots r_n}$ for positive real numbers r_1,\ldots,r_n . We proved it for n=2.

Problem 10.1. Prove the inequality for $n = 2^k$ any power of 2.

Solution We will proceed by induction. First we have shown that the AM-GM inequality holds when n=2 by a proof given in class. Now suppose that it holds for all powers of 2 such up to $n=2^k$. We shall show it holds for $n=2^{k+1}$. We shall group the elements r_1,\ldots,r_n into two groups:

(10.1)
$$\frac{r_1 + r_2 + \ldots + r_{2^{k+1}}}{2^{k+1}} = \frac{1}{2} \left(\frac{r_1 + \ldots + r_{2^k}}{2^k} + \frac{r_{2^k+1} + \ldots + r_{2^{k+1}}}{2^k} \right)$$

$$(10.2) \geq \frac{1}{2} \left(\sqrt[2^k]{r_1 \dots r_{2^k}} + \sqrt[2^k]{r_{2^k+1} \dots r_{2^{k+1}}} \right)$$

We can again use the AM-GM inequality, this time for the case of n=2 and we find:

$$\frac{r_1 + r_2 + \ldots + r_{2^{k+1}}}{2^{k+1}} \ge \sqrt{\sqrt[2^k]{r_1 \ldots r_{2^k}}} \sqrt[2^k]{r_{2^k+1} \ldots r_{2^{k+1}}}$$

$$= \sqrt[2^{k+1}]{r_1 r_2 \dots r_{2^{k+1}}}$$

This completes the induction step and finishes the proof. \Box

Problem 10.2. Prove the inequality for any n, by choosing a k such that $2^{k-1} < n \le 2^k$ and applying the inequality from part (a) to the 2^k numbers $r_1, \ldots, r_n, r, r, \ldots, r$ where r is chosen appropriately.

Solution Let us set $r = \frac{r_1 + \dots + r_n}{n}$ and $2^k = m$ where $2^{k-1} < n \le 2^k$. Then know the following is true:

(10.5)
$$r = \frac{r_1 + \ldots + r_n}{n} = \frac{(r_1 + \ldots + r_n) \frac{m}{n}}{m}$$

(10.6)
$$= \frac{(r_1 + \ldots + r_n)\frac{m-n}{n} + (r_1 + \ldots + r_n)}{m}$$

(10.7)
$$= \frac{(m-n)r + (r_1 + \ldots + r_n)}{m}$$

$$= \frac{r_1 + \ldots + r_n + r + r + r}{m}$$

$$(10.9) \qquad \geq \sqrt[m]{r^{m-n}r_1 \ldots r_n}$$

$$(10.8) \qquad = \frac{r_1 + \ldots + r_n + r \ldots + r}{r_n + r \ldots + r}$$

$$(10.9) \geq \sqrt[m]{r^{m-n}r_1\dots r_n}$$

Where we have used the AM-GM inequality for $m=2^k$ in the last line. Now, we see that $r\geq \sqrt[m]{r_1\dots r_n}r^{1-n/m}$. This expression simplifies to $r^{n/m}\geq \sqrt[m]{r_1\dots r_n}$. Exponentiating both sides to the mth power, then taking the nth root of both sides, we find that $r \geq \sqrt[n]{r_1 \dots r_n}$ which is what we wanted to