welche bei bekannter Vergrößerung V sowie Bild- und Gegenstandsweiten g' und b' bezogen auf einen festen Punkt des Linsensystems, Aussagen über die Lage der Hauptachsen zulassen.

Abbildung 2: Strahlengänge verschiedener Linsen. [1]

schök wäre noch: (osen) Sammel/inse/miffe)...

4 Auswertung

4.1 Verifikation der Linsengleichung

Die Ergebnisse der ersten Messung sind in Tabelle 3 aufgetragen. Für die berechnete

Linse mit $\tilde{f} = 100 \mathrm{mm}$			Linse	Linse mit $\tilde{f} = 50 \mathrm{mm}$		
g_1/mm	b_1/mm	f_1/mm	g_2/mm	b_2/mm	f_2/mm	
120	525	$97,\!67$	60	270	49,1	
130	390	$97,\!50$	70	157	48,4	
140	319	97,30	80	121	48,2	
150	277	97,31	90	104	48,2	
160	251	97,71	100	92	47,9	
170	227	97,20	110	87	48,6	
180	204	$95,\!63$	120	80	48,0	
190	198	$96,\!96$	130	77	48,4	
200	192	$97,\!59$	140	75	48,8	
210	186	$98,\!64$	150	72	48,2	
220	177	98,09			10,0	

Abbildung 3: Messung der Bildweiten b_i bei festgelegter Gegenstandsweite g_i sowie die daraus berechneten Brennweiten nach der Linsengleichung.

Brennweite der Linsen ergeben sich Werte von

$$f_1 = (97.5 \pm 0.2) \,\mathrm{mm}$$
 (6)

$$f_2 = (48.4 \pm 0.1) \,\text{mm}.$$
 (7)

Das b-g-Diagramm 4 zeigt dadurch, dass sich die Linien auf einem kleinen, nahezu punkt-Punkt ungeführ abschäften ergebnisse an. Die Mittelwerte weichen von der Herstellerangabe um

$$\Delta f_1 = 2.5\%$$
 und $\Delta f_2 = 3.2\%$ (8)

ab. Daher ist für die verwendeten Linsen die Brennweite f über die Linsengleichung (1)verifizierbar.

4.2 Methode nach Bessel

Die Ergebnisse der Messung nach dem Bessel-Verfahren sind in Tabelle 1 aufgetragen. Für die Brennweiten ergeben sich Werte für die beiden Linsenpositionen von

$$f_{\text{Pos.1}} = (97 \pm 5) \,\text{mm} \quad \text{und} \quad f_{\text{Pos.2}} = (94 \pm 4) \,\text{mm}.$$
 (9)

Abstand	Linsenposition 1			Linsenposition 2		
e/ mm	g_1/mm	b_1/mm	f_1/mm	g_2/mm	b_2/mm	f_2/mm
450	144	306	97,9	142	308	97,2
500	134	366	98,1	135	365	98,6
550	127	423	97,7	127	423	97,7
600	122	478	97,2	123	477	97,8
650	119	531	97,2	120	530	97,8
700	118	482	127,7	117	583	97,4
750	116	734	60,2	115	735	59,4
800	114	688	97,8	116	688	99.1
850	114	736	98,7	114	736	98.7
900	113	787	98,8	113	788	98,4

 ${\bf Tabelle~1:}$ Messung der Projektionsweiten b_i und g_i bei festgelegtem Abstand enach Bessel; weißes Licht.

Die gemessene Brennweite weicht in Abhängigkeit von der Linsenposition geringfügig ab, die Schwankungen sind als statistische Fehler zu bewerten. Der Mittelwert

$$f = (96 \pm 3) \,\mathrm{mm}$$
 (10)

zeigt eine Abweichung von der Herstellerangabe von 4%.

Die Ergebnisse der Messung mit einfarbigem Licht sind in den Tabellen 2 und 3 aufgetragen. Die ermittelten Brennweiten in Abhängigkeit von der Linsenposition betragen

$$f_{\text{Rot, Pos.1}} = (115 \pm \cancel{y}) \,\text{mm}$$
 (11a)

$$f_{\text{Rot, Pos.1}} = (115 \pm 1) \text{ mm}$$
 (11a)
 $f_{\text{Rot, Pos.2}} = (114.1 \pm 0.7) \text{ mm}$ (11b)
 $f_{\text{Rot}} = (114.4 \pm 0.7) \text{ mm}$ (11c)

$$f_{\text{Rot}} = 114,4 \pm 0,7) \,\text{mm}$$
 (11c)

$$f_{\text{Blau, Pos.1}} = (98.2 \pm 0.2) \,\text{mm}$$
 (11d)

$$f_{\rm Blau,\ Pos.2} = (97.2 \pm 0.2)\,{\rm mm}$$
 (11e)

$$f_{\text{Blan}} = (97.7 \pm 0.2) \,\text{mm}$$
 (11f)

 $f_{\rm Blau} = (97.7 \pm 0.2) \, {\rm mm} \qquad \qquad (11f)$ und zeigen damit die Abhängigkeit der Brennweite von der Wellenlänge des Lichtes. Auch hier wird sichtbar, dass die errechneten Brennweiten von der Linsenposition abhängen; die Schwankungen sind aber als statistische Fehler zu bewerten.

4.3 Methode nach Abbe

Die Linearisierung der Gleichungen

$$\underline{g'}_{y_{\text{lin}}} = \underbrace{f}_{m_{\text{lin}}} \cdot \underbrace{\left(1 + \frac{1}{V}\right)}_{x_{\text{lin}}} + \underbrace{h}_{b_{\text{lin}}} \tag{12a}$$

$$\underline{b'}_{\text{lin}} = \underbrace{f}_{m_{\text{lin}}} \cdot \underbrace{(1+V)}_{x_{\text{lin}}} + \underbrace{h'}_{b_{\text{lin}}} \tag{12b}$$

mit den Werten der Tabelle 4 sind in Abbildung 5 und 6 dargestellt. Die Regression mithilfe der Formeln

$$\Delta = N \sum x^2 - \left(\sum x\right)^2,\tag{13a}$$

$$a_{\mathrm{Reg}} = \frac{N \sum x \cdot y - \sum x \cdot \sum y}{\Delta}, \tag{13b}$$

$$b_{\mathrm{Reg}} = \frac{\sum x^2 \cdot \sum y - \sum x \cdot \sum x \cdot y}{\varDelta}, \tag{13c}$$

$$\sigma_y = \sqrt{\frac{\sum{(y - a_{\rm Reg} \cdot x - b_{\rm Reg})^2}}{N - 2}}, \tag{13d}$$

$$\sigma_a = \sigma_y \sqrt{\frac{N}{\Delta}},\tag{13e}$$

$$\sigma_b = \sigma_y \sqrt{\frac{\sum x^2}{\Delta}} \tag{13f}$$

mit den in Gleichung (12b) definierten Abkürzungen und der Anzahl der Datenpaare N, ergibt

$$h_1 = (55 \pm 14) \,\mathrm{mm}$$
 $h_2 = (72 \pm 7) \,\mathrm{mm}$ (14)

$$h_1 = (55 \pm 14) \, \text{mm} \qquad h_2 = (72 \pm 7) \, \text{mm} \qquad (14)$$

$$\text{Such an genittetes } f \text{ angelen.} \qquad (15)$$

Abstand	Linsenposition 1			Linsenposition 2		
e/mm	$g_{1,\mathrm{r}}/\mathrm{mm}$	$b_{1,\mathrm{r}}/\;\mathrm{mm}$	$f_{1,\mathrm{r}}/\ \mathrm{mm}$	$g_{2,\mathrm{r}}/\ \mathrm{mm}$	$b_{2,\mathrm{r}}/\ \mathrm{mm}$	$f_{2,\mathrm{r}}/\mathrm{mm}$
500/1	urd 143 —	+-307	1,11,6	306	144	111,9
600	126	507 424	11/3,0	N 424	126	113,0
700	118	532	113,8	531	119	114,4
800/	117	633	1/16\8	636	117	115,8
90	115	735	/118, 2	739	111	115,5

Tabelle 2: Messung der Projektionsweiten b_i und g_i bei festgelegtem Abstand enach Bessel; rotes Licht.

Abstand	Linsenposition 1			Linsenposition 2		
e/mm	$g_{1,\mathrm{b}}/\mathrm{mm}$	$b_{1,\mathrm{b}}/\ \mathrm{mm}$	$f_{1,\mathrm{b}}/\ \mathrm{mm}$	$g_{2,\mathrm{b}}/\mathrm{mm}$	$b_{2,\mathrm{b}}/\ \mathrm{mm}$	$f_{2,\mathrm{b}}/\ \mathrm{mm}$
500	366	134	98,1	132	368	97,2
600	477	123	97,8	122	478	97,2
700%	582	118	98,1	116	584	96,8
80 0 '	684	116	99,1	114	686	97,8
90 a	788	112	98,1	111	789	97,3

Tabelle 3: Messung der Projektionssweiten b_i und g_i bei festgelegtem Abstand e nach Bessel; blaues Licht.

Linsensystem							
g'/mm	b'/ mm	B/mm	V/mm				
200	790	80	2,67				
250	551	44	1,47				
300	480	31	1,03				
350	416	25	0,83				
400	398	20	0,67				
450	380	17	0,57				
500	370	15	0,50				
550	346	13	0,43				
600	348	11	0,37				
650	336	11	0,37				

Tabelle 4: Messwerte zur Bestimmung der Brennweite des Linsensystems nach Abbe.

5 Diskussion

5.1 Fehlerdiskussion

Über die einzelnen Teile des Experimentes hinweg wird eine scharfe Abbildung des Gegenstandes "Perl L" gefordert. Die in Abschnitt 2 genannten Abbildungsfehler, insbesondere die in Abschnitt 4.2 bestätigte chromatische Abberation, erschweren das Finden der richtigen Projektionsweiten. Das exakte Bestimmen der Projektionsweiten ist ohne weitere Maßnahmen oder geräte-unterstützte Messung, etwa durch einen CCD-Chip, nicht möglich. Durch Bisektion kann die Größenordnung und die Umgebung von b und g bestimmt werden; dies weist sich als eine brauchbare Näherung. Im Abschnitt 4.1 wird die verhältnismäßig hohe Sicherheit in b und g besonders durch das Diagramm 4 erkennbar.

gut

5.2 Linsengleichung

Mit einer Abweichung von wenigen Prozent von der Herstellerangabe, konnte die Brennweite einer Linse mithilfe der Linsengleichung (1) berechnet werden. Die Messung bestätigt die Gültigkeit der Linsengleichung.

5.3 Methode nach Bessel

Die Methode von Bessel kann mit der konventionellen Methode über die Linse 1 verglichen werden.

Die Abweichung des Mittelwertes von der Herstellerangabe ist ein direktes Maß für die Fehleranfälligkeit der Methoden. Es ist erkennbar, dass die Methode nach BESSEL für die in diesem Experiment durchgeführte Bestimmung der konventionelle Methode unterlegen ist.

Außerdem werden der Abstand von Gegenstand und Schirm sowie die Differenz der Projektionslängen benötigt. Da diese in abgewandelter Form ebenfalls für die Referenzmethode gilt, kann bei der höheren Unsicherheit von statistischen Fehlern ausgegangen werden.

5.4 Methode nach Abbe

Die Standardabweichung der relativen Lage h und h' von den Hauptachsen zeigen mit 10% und 25% starke Unsicherheit an. Dass die Summe eines Linsensystems über die Summe der Brechkräfte D beschrieben werden kann, wird mit diesem Ergebnis nicht bestätigt.