Another Example Proof From Class

Show:
$$\neg(p \land q) \rightarrow \neg r \equiv (\neg p \rightarrow \neg r) \land (\neg q \rightarrow \neg r)$$

p	q	r	$(p \land q)$	$\neg(p \land q)$	$\neg r$	$\neg (p \land q) \rightarrow \neg r$
T	T	T	T	F	F	T
T	T	F	T	F	T	T
T	F	T	F	T	F	F
T	F	F	F	T	T	T
F	T	T	F	T	F	F
F	T	F	F	T	T	T
F	F	T	F	T	F	F
F	F	F	F	T	T	T

p	q	r	$\neg p$	$\neg q$	$\neg r$	$(\neg p \rightarrow \neg r)$	$(\neg q \rightarrow \neg r)$	$(\neg p \to \neg r) \land (\neg q \to \neg r)$
T	T	T	F	F	F	T	T	T
T	T	F	F	F	T	T	T	T
T	F	T	F	T	F	T	F	F
T	F	F	F	T	T	T	T	T
F	T	T	T	F	F	F	T	F
F	T	F	T	F	T	T	T	T
F	F	T	T	T	F	F	F	F
F	F	F	T	T	T	T	T	T

Using a truth table we see that these two compound propositions are logically equivalent.

Using a replacement style proof we get

LHS:
$$\neg(p \land q) \rightarrow \neg r$$

 $\equiv \neg \neg(p \land q) \lor \neg r$ (by definition of implication)
 $\equiv (p \land q) \lor \neg r$ (by double negation)
 $\equiv \neg r \lor (p \land q)$ (by commutative)
 $\equiv (\neg r \lor p) \land (\neg r \lor q)$ (by distributive)
 $\equiv (p \lor \neg r) \land (q \lor \neg r)$ (by commutative)

$$\equiv (\neg \neg p \lor \neg r) \land (\neg \neg q \lor \neg r) \qquad \text{(by double Negation)}$$
RHS:
$$\equiv (p \rightarrow \neg r) \land (q \rightarrow \neg r) \qquad \text{(by def of implication)}$$