Х24 — Нецентральные движения шара

А1^{0.40} Выразите компоненту скорости \vec{u}_A точки A через компоненту скорости \vec{u}_C центра шара, его угловую скорость $\vec{\omega}$, а также радиус-вектор \vec{r} в произвольный момент. Получите также производную по времени \vec{u}_A вектора \vec{u}_A . Ответ выразите через \vec{u}_C , $\vec{\omega}$ и \vec{r} .

Скорость точки А задаётся выражением:

$$\vec{v}_A = \vec{v}_C + \left[\vec{\omega} \times \vec{r}\right].$$

Поскольку вектор \vec{r} перпендикулярен плоскости стены, имеем:

Ответ:

$$\vec{u}_A = \vec{u}_C + \left[\vec{\omega} \times \vec{r} \right].$$

Поскольку стена плоская - вектор \vec{r} остаётся постоянным в процессе движения, поэтому после дифференцирования имеем:

Ответ:

$$\dot{\vec{u}}_A = \dot{\vec{u}}_C + \left[\dot{\vec{\omega}} \times \vec{r}\right].$$

A2^{0.60} Определите силу трения \vec{F}_0 , действующую на шар в начальный момент контакта со стеной. Ответ выразите через \vec{e}_x , \vec{e}_z , α , μ и силу нормальной реакции стены N_0 в начальный момент.

В начальный момент имеем:

$$\vec{u}_C(0) = v \sin \alpha \vec{e}_x \qquad \left[\vec{\omega}(0) \times \vec{r} \right] = -v \cos \alpha \vec{e}_z \Rightarrow \vec{u}_A(0) = v \left(\sin \alpha \vec{e}_x - \cos \alpha \vec{e}_z \right).$$

Обратим внимание, что вектор $(\sin \alpha \vec{e}_x - \cos \alpha \vec{e}_z)$ является единичным. Сила трения \vec{F} равна по модулю μN и направлена противоположно компоненте скорости \vec{u}_A , поэтому:

$$\vec{F} = -rac{\vec{u}_A}{|\vec{u}_A|} \cdot \mu N,$$

или же:

Ответ:

$$\vec{F} = \mu N(\cos\alpha\vec{e}_z - \sin\alpha\vec{e}_x).$$

АЗ^{1.00} Докажите, что производная по времени \vec{u}_A компоненты скорости \vec{u}_A связана с силой трения \vec{F} соотношением:

$$\dot{\vec{u}}_A = \frac{7\vec{F}}{2m}.$$

Данный факт можно использовать далее, даже если вы не смогли его доказать.

Из теоремы о движении центра масс для шара следует:

$$m\dot{\vec{u}}_C = \vec{F}$$
.

Пусть $I=2mR^2/5$ - момент инерции однородного шара относительно диаметра. Поскольку шар сферически симметричен, его момент импульса \vec{L}_C относительно центра масс составляет:

$$\vec{L}_C = I\vec{\omega}$$
.

с Страница 1 из 9 ≈ ∞

Запишем основное уравнение динамики вращательного движения относительно центра масс шара:

$$\frac{d\vec{L}_C}{dt} = I\dot{\vec{\omega}} = \vec{M} = [\vec{r} \times \vec{F}].$$

Умножая векторно слева на \vec{r} , получим:

$$I[\vec{r} \times \dot{\vec{\omega}}] = [\vec{r} \times [\vec{r} \times \vec{F}]] = \vec{r}(\vec{r} \cdot \vec{F}) - r^2 \vec{F} = -r^2 \vec{F} \Rightarrow \vec{F} = \frac{I[\dot{\vec{\omega}} \times \vec{r}]}{r^2}.$$

В последнем переходе мы учли, что $\vec{r} \perp \vec{F}$. Воспользуемся результатом пункта A1:

$$\dot{\vec{u}}_A = \dot{\vec{u}}_C + \left[\dot{\vec{\omega}} \times \vec{r}\right] = \frac{\vec{F}}{m} + \frac{\vec{F}r^2}{I} = \frac{7\vec{F}}{2m}.$$

А4^{0.50} Определите компоненту скорости \vec{u}_{AK} сразу после соударения, считая, что шар проскальзывает по стенке в течение всего времени соударения. Ответ выразите через v, α , μ , \vec{e}_x и \vec{e}_z . При каком максимальном значении коэффициента трения μ_{max} проскальзывание не прекращается в течение всего времени соударения? Ответ выразите через α .

Вектор силы трения \vec{F} направлен против компоненты скорости \vec{u}_A и сонаправлен с производной компоненты скорости \vec{u}_A . Из этого следует, что направления \vec{u}_A и \vec{F} сохраняются в процессе соударения. Тогда из пункта АЗ имеем:

$$\frac{du_A}{dt} = -\frac{7F}{2m} = -\frac{7\mu N}{2m} \Rightarrow u_{AK} - u_A(0) = u_{AK} - v = -\frac{7\mu}{2m} \int_0^t Ndt.$$

До соударения компонента скорости центра шара $v_{Cy}(0)$ равна $-v\cos\alpha$. Поскольку удар упругий, сразу после соударения компонента скорости центра шара v_{Cy} равна $v\cos\alpha$. Тогда для импульса силы реакции N имеем:

$$\int_{0}^{t} Ndt = \Delta p_{y} = 2mv \cos \alpha.$$

Таким образом:

$$u_{A\kappa} = v(1 - 7\mu\cos\alpha),$$

Проскальзывание не прекращается, если $u_{A\kappa} \geq 0$, что приводит к следующему ограничению на μ :

$$\mu \leq \frac{1}{7\cos\alpha}.$$

Если же $\mu \ge 1/(7\cos\alpha)$, то $u_{AK} = 0$. Окончательно:

Ответ:

$$\vec{u}_{A_{\mathrm{K}}} = \begin{cases} v(1-7\mu\cos\alpha)(\sin\alpha\vec{e}_{\scriptscriptstyle X}-\cos\alpha\vec{e}_{\scriptscriptstyle Z}) & \text{при} \quad \mu \leq \frac{1}{7\cos\alpha} \\ 0 & \text{при} \quad \mu \geq \frac{1}{7\cos\alpha} \end{cases}$$

А5^{0.60} При $\mu < \mu_{max}$ определите скорость центра шара \vec{v}_{CK} , а также под каким углом β к горизонту она направлена сразу после соударения. Ответы выразите через v, α , μ , \vec{e}_x , \vec{e}_y и \vec{e}_z .

Для угла β имеем:

$$\beta = \arctan \frac{v_{Cz}}{\sqrt{v_{Cx}^2 + v_{Cy}^2}}.$$

страница 2 из 9 ≈ ∞

После удара вектор скорости центра шара составляет:

$$\vec{v}_C = v \cos \alpha \vec{e}_v + \vec{u}_C$$
.

Для \vec{u}_C имеем:

$$\vec{u}_C = \vec{u}_C(0) + \int_0^t \frac{\vec{F}dt}{m} = v \sin \alpha \vec{e}_x + \frac{2(\vec{u}_A - \vec{u}_A(0))}{7}$$

При $\mu \le 1/(7\cos\alpha)$ имеем:

$$\vec{u}_C = v \sin \alpha \vec{e}_x - \frac{2}{7} \cdot 7\mu v \cos \alpha (\sin \alpha \vec{e}_x - \cos \alpha \vec{e}_z) = v \sin \alpha (1 - 2\mu \cos \alpha) \vec{e}_x + 2\mu v \cos^2 \alpha \vec{e}_z.$$

Таким образом:

$$\vec{v}_C = v \sin \alpha (1 - 2\mu \cos \alpha) \vec{e}_x + v \cos \alpha \vec{e}_y + 2\mu v \cos^2 \alpha \vec{e}_z,$$

или же:

$$\beta = \arctan \frac{2\mu \cos^2 \alpha}{\sqrt{\cos^2 \alpha + \sin^2 \alpha (1 - 2\mu \cos \alpha)^2}}.$$

Если же $\mu \geq 1/(7\cos\alpha)$ - $\vec{u}_A=0$. Тогда:

$$\vec{u}_C = v \sin \alpha \vec{e}_x - \frac{2v(\sin \alpha \vec{e}_x - \cos \alpha \vec{e}_z)}{7} = \frac{5v \sin \alpha \vec{e}_x}{7} + \frac{2v \cos \alpha \vec{e}_z}{7}.$$

Таким образом:

$$\vec{v}_C = \frac{5v \sin \alpha \vec{e}_x}{7} + v \cos \alpha \vec{e}_y + \frac{2v \cos \alpha \vec{e}_z}{7},$$

или же:

$$\beta = \arctan \frac{2\cos\alpha}{\sqrt{(5\sin\alpha)^2 + (7\cos\alpha)^2}}.$$

Окончательно:

Ответ:

$$\beta = \begin{cases} \arctan \frac{2\mu \cos^2 \alpha}{\sqrt{\cos^2 \alpha + \sin^2 \alpha (1 - 2\mu \cos \alpha)^2}} & \text{при} \quad \mu \leq \frac{1}{7 \cos \alpha} \\ \arctan \frac{2 \cos \alpha}{\sqrt{(5 \sin \alpha)^2 + (7 \cos \alpha)^2}} & \text{при} \quad \mu \geq \frac{1}{7 \cos \alpha} \end{cases}$$

А6^{0.40} При $\mu < \mu_{max}$ определите координаты x_C , y_C центра шара в момент его падения на стол. Ответы выразите через v, g, μ и α .

Шар упадёт на поверхность стола через время t, равное:

$$t=\frac{2v_{Cz}}{g}.$$

Тогда для координат x_C и y_C имеем:

$$x_C = v_{Cx}t = \frac{2v_{Cx}v_{Cz}}{g} \qquad y_C = v_{Cy}t = \frac{2v_{Cy}v_{Cz}}{g}.$$

Подставляя v_{Cx}, v_{Cy} и v_{Cz} при разных значениях μ , получим:

Ответ:

$$x_C = \begin{cases} \frac{4\mu v^2 \cos^2 \alpha \sin \alpha (1 - 2\mu \cos \alpha)}{g} & \text{при} \quad \mu \leq \frac{1}{7\cos \alpha} \\ \frac{10v^2 \sin 2\alpha}{49g} & \text{при} \quad \mu \geq \frac{1}{7\cos \alpha} \end{cases}$$

Ответ:

$$y_C = egin{cases} rac{4\mu v^2 \cos^3 lpha}{g} & ext{при} & \mu \leq rac{1}{7\cos lpha} \ rac{4v^2 \cos^2 lpha}{7g} & ext{при} & \mu \geq rac{1}{7\cos lpha} \end{cases}$$

А7^{1.00} При произвольных значениях μ определите количество теплоты Q, выделившееся в процессе соударения шара со стенкой. Ответ выразите через m, v, μ и α .
Примечание: явное вычисление работы силы трения существенно упростит решение задачи.

Для мощности P_F силы трения имеем:

$$P_F = \vec{F} \cdot \vec{u}_A = rac{2m\vec{u}_A \cdot \dot{\vec{u}}_A}{7}.$$

Тогда для количества теплоты Q имеем:

$$Q = -\int_{0}^{t} P_{F} dt = \int_{u_{AK}}^{u_{A}(0)} \frac{2mu_{A}\dot{u}_{A}}{7} = \frac{m(u_{A}^{2}(0) - u_{AK}^{2})}{7}.$$

Учитывая, что $u_A(0) = v$, а также выражение для $u_{AK}(\mu)$, получим:

Ответ:

$$Q = \begin{cases} mv^2(2\mu\cos\alpha - 7\mu^2\cos^2\alpha) & \text{при} \quad \mu \le \frac{1}{7\cos\alpha} \\ \frac{mv^2}{7} & \text{при} \quad \mu \ge \frac{1}{7\cos\alpha} \end{cases}$$

В1^{0.20} Определите компоненты вектора скорости центра шара v_{φ} и v_{z} в цилиндрической системе координат. Ответы выразите через r, $\dot{\varphi}$ и \dot{z} .

Радиус-вектор \vec{r}_{C} центра шара можно представить в следующей форме:

$$\vec{r}_C = r\vec{e}_r + z\vec{e}_z.$$

Дифференцируя:

$$\vec{v}_C = \frac{d\vec{r}_C}{dt} = r\dot{\vec{e}}_r + \dot{z}\vec{e}_z = r\dot{\phi}\vec{e}_{\phi} + \dot{z}\vec{e}_z.$$

Таким образом:

Ответ:

$$v_{\varphi} = r\dot{\varphi}$$
 $v_{z} = \dot{z}$

B2^{0.30} Определите компоненты вектора ускорения центра шара a_r , a_{φ} и a_z в цилиндрической системе координат. Ответы выразите через r, v_{φ} , \dot{v}_{φ} и \dot{v}_z .

Продифференцируем вектор скорости по времени:

$$\vec{a}_C = \frac{d\vec{v}_C}{dt} = v_\varphi \dot{\vec{e}}_\varphi + \dot{v}_\varphi \vec{e}_\varphi + \dot{v}_z \vec{e}_z = -v_\varphi \dot{\varphi} \vec{e}_r + \dot{v}_\varphi \vec{e}_\varphi + \dot{v}_z \vec{e}_z.$$

Учитывая, что $v_{\varphi} = r\dot{\varphi}$, получим:

Ответ:

$$a_r = -\frac{v_{\varphi}^2}{r}$$
 $a_{\varphi} = \dot{v}_{\varphi}$ $a_z = \dot{v}_z$.

B3^{0.40} Из условия отсутствия проскальзывания определите компоненты угловой скорости шара ω_{φ} и ω_{z} в цилиндрической системе координат. Ответы выразите через r, v_{φ} и v_{z} .

Для скорости точки А шара, в которой он контактирует с краем стола, имеем:

$$\vec{v}_A = \vec{v}_C + \left[\vec{\omega} \times \overrightarrow{CA} \right],$$

где \overrightarrow{CA} - вектор, проведённый от центра C шара в точку A. Запишем условие равенства нулю скорости точки A шара, в которой он контактирует с краем стола:

$$v_{A\varphi} = v_{\varphi} - \omega_z r$$
 $v_{Az} = v_z + \omega_{\varphi} r$.

Таким образом:

Ответ:

$$\omega_Z = \frac{v_{\varphi}}{r}$$
 $\omega_{\varphi} = -\frac{v_Z}{r}$.

С1^{0.80} Определите компоненту силу трения $F_{\varphi}(\varphi)$, действующую на шар, а также компоненту ускорения $a_{\varphi}(\varphi)$ его центра. Ответы выразите через массу шара m, g и φ .

Запишем теорему о движении центра масс для шара в проекции на ось, направленную вдоль вектора e_{σ} :

$$ma_{\varphi} = F_{\varphi} + mg \sin \varphi$$
.

Запишем уравнение динамики вращательного движения относительно оси z, проходящей через центр шара:

$$I_C \varepsilon_Z = I_C \dot{\omega}_Z = -r F_{\varphi}$$
.

Поскольку $\dot{\omega}_z = \dot{v}_{\varphi}/r = a_{\varphi}/r$, после деления уравнений получим:

$$\frac{mr^2}{I_C} = -\frac{F_{\varphi} + mg\sin\varphi}{F_{\varphi}},$$

откуда:

Ответ:

$$F_{\varphi} = -\frac{mg\sin\varphi}{1+mr^2/I_C} = -\frac{2mg\sin\varphi}{7}.$$

Исключая F_{φ} , получим:

Ответ:

$$a_{\varphi} = \frac{mgr^2\sin\varphi}{I_C + mr^2} = \frac{5g\sin\varphi}{7}.$$

с Страница 5 из 9 ≈

 $C2^{0.50}$

Получите зависимость $v_{\varphi}(\varphi)$. Ответ выразите через v, g, r, α и φ .

Умножая выражение для v_{ϕ} и учитывая, что $v_{\phi}=r\dot{\phi}$, получим:

$$a_{\varphi}v_{\varphi} = v_{\varphi}\dot{v}_{\varphi} = \frac{5gv_{\varphi}\sin\varphi}{7} = \frac{5gr\sin\varphi\dot{\varphi}}{7}.$$

Проинтегрируем полученное выражение по времени:

Таким образом:

Ответ:

$$v_{\varphi} = \sqrt{v^2 \cos^2 \alpha + \frac{10gr(1 - \cos \varphi)}{7}}.$$

С3 $^{0.20}$ При каком условии шар не отрывается от стола в момент, когда нижняя точка шара достигает его края? Запишите это условие через v, g, r и α . Во всех дальнейших пунктах считайте, что это условие выполняется.

Для силы реакции N в момент, когда нижняя точка шара достигает края стола, для силы реакции N имеем:

$$N = mg - \frac{mv^2 \cos^2 \alpha}{r}.$$

Отрыва нет при условии $N \ge 0$, поэтому:

Ответ:

$$v\cos\alpha \leq \sqrt{gr}$$
.

 $\mathbf{C4^{0.50}}$ Определите угол ϕ_1 в момент о

Определите угол $arphi_1$ в момент отрыва шара от стола. Ответ выразите через v,g,r и lpha.

В момент отрыва шара от стола N=0, поэтому имеем:

$$N = mg\cos\varphi_1 - \frac{mv_{\varphi_1}^2}{r}.$$

Приравняем два выражения для v_{φ}^2 :

$$v_{\varphi_1}^2 = gr\cos\varphi_1 = v^2\cos^2\alpha + \frac{10gr(1-\cos\varphi_1)}{7}.$$

Таким образом:

$$\cos \varphi_1 = \frac{10gr + 7v^2 \cos^2 \alpha}{17gr},$$

откуда для ϕ_1 находим:

Ответ:

$$\varphi_1 = \arccos\left(\frac{10}{17} + \frac{7v^2\cos^2\alpha}{17gr}\right).$$

с Страница 6 из 9 ≈ ∞

 $\mathbf{D1^{0.50}}$ Выразите кинетическую энергию шара E_k через $m, v_{\varphi}, v_z, \omega_r$ и r.

Воспользуемся теоремой Кёнига: $mv^2 = I_0 \omega^2 = mv^2 = I_0 \omega^2 = I_0 \omega^2$

$$E_k = \frac{mv_C^2}{2} + \frac{I_C\omega^2}{2} = \frac{mv_\phi^2}{2} + \frac{mv_z^2}{2} + \frac{I_C\omega_r^2}{2} + \frac{I_C\omega_\phi^2}{2} + \frac{I_C\omega_z^2}{2}.$$

Подставляя ω_{φ} и ω_{z} , получим:

Ответ:

$$E_k = \left(m + \frac{I_C}{r^2}\right) \frac{v_{\varphi}^2}{2} + \left(m + \frac{I_C}{r^2}\right) \frac{v_z^2}{2} + \frac{I_C \omega_r^2}{2} = \frac{7m(v_{\varphi}^2 + v_z^2)}{10} + \frac{mr^2 \omega_r^2}{5}.$$

D2^{0.60} Запишите для шара закон сохранения механической энергии. Комбинируя его с результатом пункта C2, покажите, что величины ω_r и v_z связаны соотношением:

$$1 = \frac{\omega_r^2}{A^2} + \frac{v_z^2}{B^2},$$

где A,B>0 - постоянные коэффициенты. Определите A и B. Ответы выразите через v,r и α .

Закон сохранения энергии выглядит следующим образом:

$$E_k = \frac{7m(v_{\varphi}^2 + v_z^2)}{10} + \frac{mr^2\omega_r^2}{5} = E_{k0} + A_{\text{TSDK}} = \frac{7mv^2}{10} + mgr(1 - \cos\varphi).$$

откуда:

$$v_{\varphi}^2 = v^2 + \frac{10gr(1 - \cos\varphi)}{7} - v_z^2 - \frac{2\omega_r^2 r^2}{7}.$$

Подставляя зависимость $v_{arphi}^2(arphi)$, получим:

$$v^2 \cos^2 \alpha + \frac{10gr(1 - \cos \varphi)}{7} = v^2 + \frac{10gr(1 - \cos \varphi)}{7} - v_z^2 - \frac{2\omega_r^2 r^2}{7},$$

откуда:

$$v_z^2 + \frac{2\omega_r^2 r^2}{7} = v^2 \sin^2 \alpha \Rightarrow 1 = \frac{v_z^2}{v^2 \sin^2 \alpha} + \frac{2\omega_r^2 r^2}{7v^2 \sin^2 \alpha}$$

Для А и В имеем:

Ответ:

$$A = \sqrt{\frac{7}{2} \frac{v \sin \alpha}{r}} \qquad B = v \sin \alpha.$$

 $\mathbf{D3^{0.50}}$ Вектор углового ускорения $ec{arepsilon}$ шара может быть представлен в виде:

$$\vec{\varepsilon} = \varepsilon_r \vec{e}_r + \varepsilon_{\varphi} \vec{e}_{\varphi} + \varepsilon_z \vec{e}_z.$$

Используя уравнение динамики вращательного движения относительно центра шара, покажите, что $\varepsilon_r=0$. Используя полученное равенство, выразите $\dot{\omega}_r$ через $\dot{\varphi}, v_z$ и r.

Из уравнения динамики вращательного движения относительно центра шара имеем:

$$\frac{d\vec{L}_C}{dt} = I\vec{\varepsilon} = \left[\overrightarrow{CA} \times \left(\vec{F} + \vec{N}\right)\right].$$

с Страница 7 из 9 ≈ ∞

Поскольку $\vec{N} \parallel \overrightarrow{CA}$, имеем:

$$I\vec{\varepsilon} = \left[\overrightarrow{CA} \times \vec{F}\right].$$

Ответ: Поскольку $\vec{\varepsilon} \perp \overrightarrow{CA}$, компонента углового ускорения $\varepsilon_r = 0$.

Воспользуемся выражением для углового ускорения в цилиндрической системе координат:

$$\varepsilon_r = \dot{\omega}_r - \dot{\varphi}\omega_{\varphi} = 0$$
,

откуда:

Ответ:

$$\dot{\omega}_r = -\frac{\dot{\varphi}v_z}{r}$$
.

D4^{1.20} Комбинируя результаты пунктов D2 и D3, получите зависимости $\omega_r(\varphi)$ и $v_z(\varphi)$. Ответы выразите через v, α, r и φ .

Воспользуемся результатом пункта В4:

$$\dot{\omega}_r = -\frac{\dot{\varphi}v_z}{r}.$$

Выражая v_z и подставляя в уравнение, полученное в предыдущем пункте, находим:

$$1 = \frac{\omega_r^2}{A^2} + \frac{r^2 \dot{\omega}_r^2}{B^2 \dot{\varphi}^2}.$$

Обратим внимание, что это уравнение с разделяющимися переменными ω_r и φ :

$$d\varphi = -\frac{r}{B} \frac{d\omega_r}{\sqrt{1 - \frac{\omega_r^2}{A^2}}}.$$

Здесь мы учли, что $\dot{\omega}_r < 0$, а значит и $\omega_r < 0$. Вводя переменную $t = \omega_r / A$ и интегрируя, находим:

$$\varphi = -\frac{rA}{B} \int_{0}^{t(\varphi)} \frac{dt}{\sqrt{1-t^2}} = -\frac{rA}{B} \arcsin t \Big|_{0}^{t(\varphi)} \Rightarrow t(\varphi) = -\sin\left(\frac{B\varphi}{rA}\right),$$

или же:

$$\omega_r(\varphi) = -A \sin\left(\frac{B\varphi}{rA}\right).$$

Подставляя $t(\varphi)$ в уравнение, связывающее v_z и ω_r , находим:

$$\frac{v_z^2}{B^2} = 1 - t^2 = \cos^2\left(\frac{B\varphi}{rA}\right),\,$$

или же:

$$v_z = B \cos\left(\frac{B\varphi}{rA}\right),\,$$

поскольку $v_z(0)>0$. Окончательно:

Ответ:

$$\omega_r(\varphi) = -\sqrt{\frac{7}{2}} \frac{v \sin \alpha}{r} \sin \left(\sqrt{\frac{2}{7}} \varphi \right) \qquad v_z = v \sin \alpha \cos \left(\sqrt{\frac{2}{7}} \varphi \right).$$

с Страница 8 из 9 ≈ ∞

D5^{0.80} Рассмотрим предельный переход, когда угол $\alpha \to \pi/2$, т.е движение шара до контакта с краем стола происходит практически параллельно ему. Определите проекцию скорости v_z центра шара, а также проекцию его угловой скорости ω_y на ось y, направленную вертикально вниз, в момент отрыва шара от стола. Ответы выразите через v и r. Все численные коэффициенты в ответе должны быть аналитическими, а не приближёнными!

При $\alpha = \pi/2$ для φ_1 имеем:

$$\varphi_1 = \arccos\left(\frac{10}{17}\right).$$

Ответ: Тогда для скорости v_z находим:

$$v_z = v \cos\left(\sqrt{\frac{2}{7}} \arccos\left(\frac{10}{17}\right)\right).$$

Проекция угловой скорости шара на ось у, направленную вертикально вниз, равна:

$$\omega_y = \omega_\varphi \sin \varphi_1 - \omega_r \cos \varphi_1.$$

Подставляя ω_r , ω_{φ} , получим:

$$\omega_y = \frac{v}{r} \left(\sqrt{\frac{7}{2}} \cos \varphi_1 \sin \left(\sqrt{\frac{2}{7}} \varphi_1 \right) - \sin \varphi_1 \cos \left(\sqrt{\frac{2}{7}} \varphi_1 \right) \right).$$

После подстановки φ_1 находим:

Ответ:

$$\omega_{y} = \frac{v}{r} \left(\sqrt{\frac{7}{2}} \frac{10}{17} \sin \left(\sqrt{\frac{2}{7}} \arccos \left(\frac{10}{17} \right) \right) - \frac{\sqrt{189}}{17} \cos \left(\sqrt{\frac{2}{7}} \arccos \left(\frac{10}{17} \right) \right) \right).$$