Ejercicios de Notación Científica para Médicos Veterinarios y Zootecnistas

1 Cálculo de Dosis de Medicamentos

En la medicina veterinaria, es común usar la notación científica para administrar dosis de medicamentos, especialmente cuando se trabajan con animales pequeños o cuando las cantidades son muy pequeñas.

Ejemplo 1: Dosis de medicamento

Si un medicamento se debe administrar en una dosis de 2×10^{-3} gramos por kilogramo de peso corporal, ¿cuál será la dosis para un perro que pesa 5×10^1 kilogramos?

Dosis =
$$2 \times 10^{-3} \times 5 \times 10^{1} = 1 \times 10^{-1}$$
 gramos

Ejercicios:

- 1. Si un gato pesa 4×10^1 kg, ¿cuál es la dosis de un medicamento que se administra en 3×10^{-2} gramos por kg?
- 2. Un caballo pesa 6×10^2 kg. ¿Cuál es la dosis de un medicamento que se debe administrar en 1×10^{-3} gramos por kg?
- 3. Un perro de 2×10^2 kg necesita una dosis de 4×10^{-1} gramos por kg. ¿Cuánto medicamento se le debe administrar?
- 4. Si un animal requiere 5×10^{-2} gramos por kilogramo y pesa 1×10^2 kg, ; cuál es la dosis total?
- 5. La dosis recomendada para un gato es 1×10^{-3} gramos por kg. Si el gato pesa 5×10^1 kg, ¿cuál es la dosis que se debe administrar?

2 Cálculo de Población Animal

La estimación de poblaciones animales en un área determinada a menudo se realiza usando la notación científica, especialmente cuando se trata de grandes números de animales.

Ejemplo 2: Estimación de población

Supongamos que una granja tiene 2×10^3 vacas, 1×10^4 cerdos, y 3×10^2 caballos. ¿Cuál es el total de animales en la granja?

Total de animales =
$$2 \times 10^3 + 1 \times 10^4 + 3 \times 10^2 = 1.23 \times 10^4$$

Ejercicios:

- 1. En un rancho hay 5×10^3 caballos, 3×10^4 ovejas, y 2×10^2 caballos. ¿Cuántos animales hay en total?
- 2. En un zoológico hay 7×10^2 tigres, 4×10^3 leones y 1×10^4 jirafas. ¿Cuál es la población total?
- 3. Una granja tiene 9×10^2 patos, 3×10^3 gallinas y 1×10^2 caballos. ¿Cuántos animales hay en total?
- 4. Un criadero tiene 1×10^4 conejos, 2×10^3 cerdos y 5×10^2 vacas. ¿Cuántos animales en total hay en el criadero?
- 5. En un parque hay 4×10^3 aves, 3×10^2 serpientes y 2×10^4 ranas. ¿Cuántos animales hay en total?

3 Análisis de Nutrientes en Alimentos para Animales

La notación científica también se utiliza para representar concentraciones de nutrientes o compuestos en alimentos, como proteínas o vitaminas, especialmente cuando estas concentraciones son muy bajas.

Ejemplo 3: Cálculo de concentración

Si un alimento para animales tiene una concentración de 5×10^{-3} gramos de proteína por gramo de alimento y un animal consume 2×10^2 gramos de alimento, ¿cuánta proteína ha consumido?

Proteína consumida =
$$5 \times 10^{-3} \times 2 \times 10^{2} = 1 \times 10^{0} = 1$$
 gramo

Ejercicios:

- 1. Un animal consume 4×10^2 gramos de alimento que contiene 6×10^{-2} gramos de proteína por gramo. ¿Cuánta proteína ha consumido?
- 2. Si un animal come 1×10^3 gramos de alimento y la concentración de vitamina A es 3×10^{-4} gramos por gramo de alimento, ¿cuánta vitamina A ha consumido?

- 3. Un animal ingiere 2×10^2 gramos de alimento con una concentración de 2×10^{-1} gramos de grasa por gramo. ¿Cuánta grasa consume?
- 4. Un ganado consume 5×10^2 gramos de alimento que tiene una concentración de 4×10^{-2} gramos de calcio por gramo. ¿Cuánto calcio han consumido?
- 5. Si un perro come 3×10^3 gramos de alimento que contiene 8×10^{-3} gramos de carbohidratos por gramo, ¿cuántos gramos de carbohidratos consume?

4 Cálculo de la Densidad Poblacional de Animales

En estudios de ecología y conservación animal, la notación científica se utiliza para calcular la densidad de una población de animales en un área dada.

Ejemplo 4: Cálculo de densidad poblacional

Si un área de 5×10^4 metros cuadrados tiene una población de 2×10^3 ciervos, ¿cuál es la densidad poblacional de ciervos?

Densidad poblacional =
$$\frac{2 \times 10^3}{5 \times 10^4} = 4 \times 10^{-2}$$
 ciervos por metro cuadrado

Ejercicios:

- 1. En un área de 1×10^5 metros cuadrados hay 5×10^4 conejos. ¿Cuál es la densidad de conejos?
- 2. En un bosque de 2×10^6 metros cuadrados hay 1×10^3 lobos. ¿Cuál es la densidad de lobos?
- 3. En una reserva de 4×10^5 metros cuadrados hay 8×10^3 tortugas. ¿Cuál es la densidad de tortugas?
- 4. Un área de 3×10^4 metros cuadrados tiene 1×10^3 venados. ¿Cuál es la densidad de venados?
- 5. En un espacio de 2×10^5 metros cuadrados hay 2×10^4 serpientes. ¿Cuál es la densidad de serpientes?