Wolkite University Mathematics Department

Applied Mathematics III

Worksheet 4

- 1. Suppose $\int_C (4x+3)ds = 12\pi$, where C is a circle centered at the origin. Find the radius of C.
- 2. Evaluate

(a)
$$\int_C 2xyz\ ds$$
, where C is parameterized by $r(t) = e^t i + e^{-t} j + \sqrt{2}tk$, for $0 \le t \le 1$.

(b)
$$\int_C (y^2i + z^2j + x^2k) dr$$
, where C the helix $r(t) = 3\cos ti + 3\sin tj + 2tk$, $0 \le t \le 8\pi$

(c)
$$\int_{(2,3,0)}^{(0,1,2)} (ze^{xz} dx + dy + xe^{xz} dz)$$

(d)
$$\int_C yzdx - xzdy + xydz$$
, where $C: r(t) = e^t i + e^{3t} j + e^{-t} k$, $0 \le t \le 1$

- 3. Using Green's theorem evaluate $\int_C y^2 dx + x dy$, where C is
 - (a) the square with vertices (0,0), (2,0), (2,2), (0,2).
 - (b) the circle of radius 1 centered at the origin.
 - (c) the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ parametrized by $x = a \cos t$ and $y = b \sin t$.
- 4. Using Green's theorem, evaluate
 - (a) $\int_C (5 xy y^2) dx + (x^2 2xy) dy$, where C is the boundary of a square with vertices (0,0), (2,0), (2,2) and (0,2) oriented counter clockwise.
 - (b) $\int_C -3x^2ydx + 3xy^2dy$, where C is the boundary of the region in the first quadrant bounded between the coordinate axes and the circle $x^2 + y^2 = 4$.
 - (c) $\int_C (e^x \ln y 4xy) dx + \frac{e^x}{y} dy$, where C is the boundary of the region bounded above by $y = 3 x^2$ and below by $y = x^4 + 1$.
 - (d) $\int_C (x^3 x^2y)dx + xy^2dy$, where C is the boundary of the region between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$.

Worksheet 4 Page 2 of 2

5. Find the flux of a vector field F across the surface where Σ , where F(x,y,z) = xi + yj + 4zk and Σ is the portion of the cone $z^2 = x^2 + y^2$ between the planes z = 1 and z = 2 oriented by upward normal.

- 6. Evaluate $\int_{c} F dr$
 - (a) $F(x, y, z) = (3x^2 + 6y)i 14yzj + 20xz^2k$ and $C: r(t) = ti + t^2j + t^3k$, 0 < t < 1
 - (b) $F(x, y, z) = xi + y^2j + zk$ over the triangle determined by the plane x + y + z = 1, and the coordinate planes.
- 7. Using Stokes's theorem evaluate $\int_C F.dr$, where
 - (a) F(x, y, z) = (z, x, y), S defined by $z = 4 x^2 y^2$, $z \ge 0$.
 - (b) $F(x,y,z) = (x^2 + y)i + yzj + (x z^2)k$ and S is the triangle defined by the plane 2x + y + 2z = 2 and $x, y, z \ge 0$
 - (c) F(x, y, z) = (-y, x, x) and the surface is the part of the paraboloid $z = x^2 + y^2$ inside the cylinder $x^2 + y^2 = 4$.
 - (d) $F(x, y, z) = (x y, x + z, z^2)$ and the surface is the part of the cone $z^2 = x^2 + y^2$ between the planes z = 0 and z = 1.
- 8. Using the Divergence theorem evaluate $\iint_{\Sigma} F.n \ d\sigma$, where
 - (a) F(x,y,z) = (yz,xz,xy) over the cube centered at the origin and sides of length 2.
 - (b) F(x,y,z) = (x+y,y+z,x+z) over the surface bounded by the paraboloid $z = 4 x^2 y^2$ and the disc of radius 2 centered at the origin in the xy plane.
 - (c) F(x, y, z) = (x, y, z) over the surface bounding the region enclosed by the paraboloid $z = x^2 + y^2$, the cylinder $x^2 + y^2 = 9$ and the plane z = 0.
- 9. Evaluate $\int_{S} 3x dy dz + 2y dx dz 5z dx dy$, where S is a smooth surface bounding an arbitrary volume V.