PAKET 10

PELATIHAN ONLINE

po.alcindonesia.co.id

2019

SMA MATEMATIKA

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

PEMBAHASAN PAKET 10

- 1. Jika a,b,c,d,e merupakan bilangan asli dengan a<2b,b<3c,c<4d,d<5e dan e<100, maka nilai maksimum dari a adalah ...
 - a. 11478
 - b. 11487
 - c. 11748
 - d. 11847

Solusi:

$$e \le 99 \Rightarrow d < 495$$

 $d \le 494 \Rightarrow c < 1976$
 $c \le 1975 \Rightarrow b < 5925$
 $b \le 5924 \Rightarrow a < 11848$

Jadi, nilai maksimum a adalah 11847

2. Banyaknya permutasi $(a_1, a_2 \dots, a_8)$ dari $(1,2,\dots,8)$ yang memenuhi $|a_1-1|=|a_2-2|=\dots=|a_8-8|$

adalah

- a. 1
- b. 2
- c. 3
- d. 4

Solusi:

Secara jelas diperoleh bahwa untuk $a_i=i$ benar, dengan $i=1,2,\ldots,8$ Lemma : Nilai yang memenuhi $|a_i-i|$ adalah pembagi positif i terbesar yang lebih kecil dari i

Banyaknya pembagi positif yang lebih kecil dari 8 ada 3 bilangan, yaitu 1, 2 dan 4. Maka banyak permutasi yang memenuhi ada 1+3=4 Dapat dituliskan :

- Untuk $|a_i i| = 0 \rightarrow (a_1, a_2, ..., a_8) = (1,2,3,...,8)$
- Untuk $|a_i i| = 1 \rightarrow (a_1, a_2, ..., a_8) = (2,1,4,3, ... 7,8)$
- Untuk $|a_i i| = 2 \rightarrow (a_1, a_2, ..., a_8) = (3,4,1,2,7,8,5,6)$
- Untuk $|a_i i| = 4 \rightarrow (a_1, a_2, ..., a_8) = (5,6,7,8,1,2,3,4)$
- 3. Untuk setiap bilangan real a, didefinisikan f(a) sebagai nilai maksimal dari

$$\left|\sin x + \frac{2}{3 + \sin x} + a\right|$$

Nilai minimum dari f(a) adalah

Solusi:

f(a) adalah nilai maksimum dari $\left|\sin x + \frac{2}{3+\sin x} + a\right|$ untuk $a \in R$ $-1 \le sinx \le 1$

Misalkan t = 3 + sinx maka $2 \le t \le 4$

$$\left| \sin x + \frac{2}{3 + \sin x} + a \right| = \left| t + \frac{2}{t} + a - 3 \right|$$

Dengan $3 \le t + \frac{2}{t} \le \frac{9}{2}$ sehingga $0 \le t + \frac{2}{t} - 3 \le \frac{3}{2}$

Untuk
$$a \ge -\frac{3}{4}$$
 maka $f(a) = \left| a + \frac{3}{2} \right| = a + \frac{3}{2}$

Karena linier maka $a + \frac{3}{2}$ minimum ketika $a = -\frac{3}{4}$

Untuk
$$a \le -\frac{3}{4}$$
 maka $f(a) = |a+0| = -a$

Karena linier maka -a minimum ketika $a=-\frac{3}{4}$

∴ Jadi, nilai minimum
$$f(a)$$
 adalah $-\frac{3}{4}$

- 4. Rudi membuat bilangan asli dua digit. Probabilitas bahwa kedua digit bilangan tersebut merupakan bilangan prima dan bilangan tersebut bersisa 3 jika dibagi 7 adalah ...
 - a. $\frac{2}{45}$

 - b. $\frac{1}{45}$ c. $\frac{4}{45}$ d. $\frac{3}{45}$

Solusi:

Misalkan bilangan yang dibuat Rudi adalah 10a + b. Diketahui bahwa

$$10a + b \equiv 3 \mod 7 \Leftrightarrow 3a + b \equiv 3 \mod 7$$

karena $a, b \in \{2, 3, 5, 7\}$ maka tinggal dibagi kasus

- a=2, diperoleh $6+b\equiv 3\ mod\ 7\iff b\equiv 4\ mod\ 7$. Tidak ada nilai b yang memenuhi.
- a = 3, diperoleh $9 + b \equiv 3 \mod 7 \Leftrightarrow b \equiv 1 \mod 7$. Tidak ada nilai b yang memenuhi.
- a = 5, diperoleh 15 + $b \equiv 3 \mod 7 \Leftrightarrow b \equiv 2 \mod 7$. Diperoleh b = 2.

• a=7, diperoleh $21+b\equiv 3\ mod\ 7\Leftrightarrow b\equiv 3\ mod\ 7$. Diperoleh b=3.

Jadi, ada dua bilangan yang memiliki sifat kedua digit penyusunnya berupa bilangan prima dan bilangan tersebut bersisa 3 jika dibagi 7 yaitu 52 dan 73. Sehingga peluangnya adalah $\frac{2}{90} = \frac{1}{45}$

- 5. Diberikan segitiga tumpul ABC di titik B. Misalkan D dan E berturut-turut pertengahan segmen AB dan AC. Misalkan pula bahwa F titik pada segmen BC sehingga $\angle BFE=90^\circ$, dan G titik pada segmen DE sehingga $\angle BGE=90^\circ$. Jika titik-titik A, G dan F terletak pada satu garis lurus, maka nilai dari $\frac{BF}{CF}$ adalah ...
 - a. $\frac{1}{2}$
 - b. 1
 - c. $\frac{1}{4}$
 - d. $\frac{2}{3}$

Solusi:

$$\frac{BF}{CF} = \frac{2x}{2y} = \frac{x}{y}$$

Karena y = 2x, maka:

$$\frac{BF}{CF} = \frac{x}{y} = \frac{x}{2x} = \frac{1}{2}$$

- 6. Banyaknya faktor bulat positif dari 2015 adalah
 - a. 3
 - b. 6
 - c. 8
 - d. 10

Solusi:

 $2015 = 5 \cdot 13 \cdot 31$

Banyaknya faktor positif = $2 \cdot 2 \cdot 2 = 8$

- : Jadi, banyaknya faktor bulat positif dari 2015 adalah 8.
- 7. Pada segitiga ABC, titik M terletak pada BC sehingga AB = 7, AM = 3, BM = 5 dan MC = 6. Panjang AC adalah ...
 - a. $3\sqrt{3}$
 - b. $2\sqrt{3}$
 - c. 1
 - d. 2

Solusi:

Dengan dalil Stewart diperoleh

$$AB^2 \times MC + AC^2 \times BM = AM^2 \times BC + BC \times BM \times MC$$

$$\Leftrightarrow$$
 49 × 6 + AC^2 × 5 = 9 × 11 + 11 × 5 × 6

$$\Leftrightarrow 5AC^2 = 135$$

$$\Leftrightarrow AC = 3\sqrt{3}$$

8. Diketahui bilangan real positif a dan b memenuhi persamaan

$$a^4 + a^2b^2 + b^4 = 6$$
 dan $a^2 + ab + b^2 = 4$

Nilai dari a - b adalah

a.
$$\frac{\sqrt{21}}{2}$$

b. $\frac{\sqrt{2}}{2}$
c. $\frac{1}{2}$

b.
$$\frac{\sqrt{2}}{2}$$

c.
$$\frac{1}{2}$$

d.
$$\frac{\sqrt{2}}{4}$$

Solusi:

$$a^4 + a^2b^2 + b^4 = 6$$

$$a^2 + ab + b^2 = 4$$

$$a^4 + b^4 + a^2b^2 + 2a^2b^2 + 2ab(a^2 + b^2) = 4^2$$

$$2a^2b^2 + 2ab(4 - ab) = 10$$

$$8ab = 10$$

Misalkan
$$y = ab > 0$$

$$ab = \frac{5}{4}$$

$$(a+b)^2 = a^2 + b^2 + ab + ab = 4 + \frac{5}{4} = \frac{21}{4}$$

$$a - b = \sqrt{(a+b)^2 - 4ab} = \sqrt{\frac{21}{4} - 4\left(\frac{5}{4}\right)} = \sqrt{\frac{1}{4}} = \frac{\sqrt{2}}{2}$$

$$\therefore$$
 Jadi, nilai $a-b$ adalah $\frac{\sqrt{2}}{2}$

- 9. Diberikan a dan b bilangan real dengan $\sqrt{a}-\sqrt{b}=20$. Nilai maksimum dari a-5b dicapai ketika a bernilai ...
 - a. 500
 - b. 25
 - c. 625
 - d. 125

Solusi:

$$\sqrt{a}-\sqrt{b}=20 \Rightarrow a=b+40\sqrt{b}+400$$
, sehingga $a-5b=b+40\sqrt{b}+400-5b=-4\big(\sqrt{b}-5\big)^2+500$ Oleh karena itu, nilai maksimum dari $a-5b$ adalah 500, dicapai ketika $a=625$ dan $b=25$

- 10. Masing-masing kotak pada papan catur berukuran 3 × 3 dilabeli dengan satu angka, yaitu 1, 2, atau 3. Banyaknya penomoran yang mungkin sehingga jumlah angka pada masing-masing baris dan masing-masing kolom habis dibagi oleh 3 adalah
 - a. 27
 - b. 45
 - c. 81
 - d. 63

Solusi:

Misalkan bilangan-bilangan pada baris pertama adalah a, b dan c. Pada baris kedua adalah d, e, f dan baris ketiga g, h, i.

Jika a = b maka agar memenuhi a + b + c habis dibagi 3 maka a = b = c.

Jika a \neq b maka agar memenuhi a + b + c habis dibagi 3 maka a, b, c semuanya berbeda dengan a, b, c \in {1, 2, 3}.

Maka masing-masing ada 3 kemungkinan untuk nilai a dan b. Nilai c menyesuaikan sehingga hanya ada 1 kemungkinan.

Maka masing-masing ada 3 kemungkinan untuk nilai d dan e. Nilai f menyesuaikan sehingga hanya ada 1 kemungkinan.

Jelas nilai g, h, i hanya menyesuaikan dengan bilangan-bilangan di atasnya. Jadi, masing-masing hanya ada 1 kemungkinan.

Cukup membuktikan bahwa jika a + b + c, d + e + f, a + d + g, b + e + h dan c + f + i masing-masing habis dibagi 3 maka g + h + i juga habis dibagi 3.

$$g = 3k - a - d$$
, $h = 3m - b - e dan i = 3n - c - f$

$$g + h + i = 3(k + m + n) - (a + b + c) - (d + e + f)$$
 yang habis dibagi 3.

Jadi, banyaknya kemungkinan yang memenuhi ada 3 x 3 x 3 x 3 = 81.

: Jadi, banyaknya penomoran yang memenuhi adalah 81.