techa: 1-oct-2012

_			
<u></u>	Source	Quote	Maturity
+	LIBOR	0.15	02/10/2012
+		0.21	05/11/2012
1		0.36	03/01/2013
	Futures	99.68	20/03/2013
+		99.67	19/06/2013
+		99.65	18/09/2013
		99.64	18/12/2013
		99.62	19/03/2014
+	Swap	0.36	03/10/20147
+		0.43	05/10/2015
		0.56	03/10/2016
		0.75	03/10/2017
+		1.17	03/10/2019
+		1.68	03/10/2022
		2.19	04/10/2027
		2.40	04/10/2032
	1		

03/10/2042

500N (overnight) Cotiención: 100.(2-Feo (Ti, Tix)) 99.68 = 100[1-F] $f = 1 - \frac{99.68}{100} = 0.0032$

Libor: Tasas capon cero que pagan a un plazo desinido

Convención: Simple ACT/360

$$D(t_0, S_1) = 1$$

$$\frac{1}{1 + (0.15\%) \cdot (\frac{1}{360})} \tau(t_0, S_1)$$

En nuestro ejemplo, la fecha de Fixing para el primer futuro será $T_1 = 19/12/2012$ t 1/10/2012 19/12/2012 20/p3/2013 d Por qué la feche de fixing es d Resulta que este contrato tiene como es pecificación que le distancie entre la techa de pago y la fecha de tixing es de 3 meses. Convención $R(t,T_1,T_2) = 100(1-F(t,T_1,T_2))$ Sabemos que $F(t,T_1,T_2) = \left(\frac{D(t,T_1)}{D(t,T_2)} - 1\right) \cdot \frac{1}{T}$ Ja conocemo F(+,T,T2)=0.0032 d'Cómo obtengo D(t, T,), D(t, T2)? $0.0032 = \left[\frac{D(t,T_1)}{D(t,T_2)} - 1\right] \cdot \frac{360}{91}, \quad ACT$

Entonces si conocemas
$$D(t, S_2)$$
 y $D(t, S_1)$, produces estima $D(t, T_1)$ mediante una interpolación lag - lineal.

(Recordenos que $J = J_0 + \frac{U_1 - J_0}{X_1 - X_0}(X - X_0)$)

 $\Rightarrow X_0 = S_2$, $X_1 = S_3$
 $J_0 = log(D(t, S_2))$ $J_1 = log(D(t, S_3))$
 $\Rightarrow Dado$ que $X = T_1$
 $\Rightarrow J = log(D(t, T_1)) (\Rightarrow D(t, T_1) = C_1$
 $\Rightarrow J = log(D(t, T_1)) (\Rightarrow D(t, T_1) = C_2$
 $\Rightarrow El volor de D(t, T_1) = 0.9996$
 $\Rightarrow Dado$ este factor de descuento, podemos calcula $D(t, T_2)$
 $\Rightarrow D(t, T_1) = 0.9996$
 $\Rightarrow P_{are}$ calcula $D(t, T_1) = 0.9996$
 $\Rightarrow P_{are}$ calcula $D(t, T_2)$:

 $\Rightarrow D(t, T_2) = 0.0032 \begin{bmatrix} 911 \\ 360 \end{bmatrix} + 1 \begin{bmatrix} 0.9996 \\ 360 \end{bmatrix}$

- B.9987920982

$$D(t, T_3)$$

 $F(t, T_2, T_3)$
 $I - \frac{Q(t, T_2, T_3)}{100}$

$$f(t, T_2, T_3) = \left[\frac{D(t, T_1)}{D(t, T_3)} - 1\right] \cdot \frac{1}{2}$$

$$D(t,T_3) = [1 + TF(t,T_2,T_3)] \cdot D(t,t_2)$$

$$D(t,T_2) \quad y = [1 + TF(t,T_2,T_3)] \cdot D(t,t_2)$$

$$D(t,T_2) \quad y = [1 + TF(t,T_2,T_3)] \cdot D(t,t_2)$$

$$T_3 = [1 + TF(t,T_2,T_3)] \cdot D(t,t_2)$$

$$D(t,T_i) = [1+\tau F(t,T_{i-1},T_i]D(t,T_{i-1})$$

 $pare i = 2,3,4,...$

Para i=1, tenemos que asumir un supresto de interpolación.