T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu , Pu Wang , Member, IEEE, Tao Lin, Min Deng, and Haifeng Li

Sistemas Urbanos Inteligentes

Dario Farren Spencer

8 de julio de 2021

Contenidos

- El Problema
- 2 Trabajos relacionados
- Metodología
- Experimentos
- Conclusiones

Predicción de Tráfico

La predicción de tráfico, precisa y en tiempo real, es una componente clave de un sistema de gestión de tráfico avanzado.

Problema importante

Permite:

- Realizar las actividades de planificación, gestión y control del tráfico.
- Detectar congestión.
- Limitar la entrada de vehículos anticipadamente.
- Proveer información para que los usuarios elijan rutas de viaje más adecuadas.

Problema desafiante

- Múltiples variables: flujo, velocidad, densidad.
- Complejas dependencias espaciales y temporales.

Predicción de Tráfico

Dependencia Espacial. Las variaciones de tráfico están dominadas por la estructura topológica de la red vial.

Figura: Ejemplo Dependencia Espacial

Dependencia espacial del tráfico

• El estado del tráfico aguas arriba afecta aguas abajo (efecto de transferencia) y vise versa (efecto de retroalimentación).

Predicción de Tráfico

Dependencia Temporal. El volumen de tráfico cambia dinámicamente con el tiempo.

Figura: Ejemplo Dependencia Temporal

Dependencia temporal del tráfico

• El volumen de tráfico actual depende del volumen de tráfico del periodo anterior, lo que se ve reflejado en la periodicidad y la tendencia.

Metodologías actuales: basadas en modelos y en datos

Principal limitación: no permiten capturar las características espaciales y temporales del problema.

Figura: Limitaciones metodologías actuales

Metodologías	Características	Tipos de modelo	Limitaciones
Basados en modelos	Explican las relaciones entre el volumen, velocidad y densidad de tráfico. Requieren modelar el sistema en base a conocimientos previos.	 Teoría de colas. Modelos de velocidad. Diagrama fundamental. 	No pueden describir con precisión las variaciones de los datos de tráfico en entornos complejos del mundo real.
Basados en datos	Infieren la tendencia de variación en función de la regularidad estadística de los datos.	 Valor medio. Modelos paramétricos: presuponen un función. Ej.: regresión, series de tiempo, etc. Modelos no paramétricos: aprenden patrones a partir de los datos. Ej.: redes neuronales 	Modelos paramétricos: dependen de supuesto modelo. Modelos no paramétricos: algunos solo consideran dependencia temporal. Los que consideran dependencia espacial, la mayoría se basa en CNN.

Para superar estas limitaciones, los autores proponen un nuevo método llamado red convolucional de grafos temporal (T-GCN).

Contribución

- El modelo T-GCN integra:
 - Red convolucional sobre grafos (GCN): permite capturar la estructura topológica de la red. Modelar la dependencia espacial.
 - Unidad recurrente cerrada (GRU): se utiliza para capturar el cambio dinámico de los datos de tráfico. Modelar la dependencia temporal.
- Los resultados muestran que no solo puede lograr una predicción a corto plazo, sino que también puede usarse en predicciones de tráfico a largo plazo.
- Los resultados sobre datos de tráfico muestran que este enfoque reduce el error de predicción en aproximadamente un 1,5 % -57,8 % en comparación con los métodos de referencia.

Modelación del Problema

Objetivo Modelo: Predecir el tráfico en un determinado periodo en función de información histórica.

Red de carreteras G

- G = (V, E): describe la estructura topológica de la red de carreteras.
- $V = \{v_1, v_2, ..., v_N\}$: Cada nodo en un carretera. N número de carreteras.
- E: conjunto de aristas.
- $A \in R^{N \times N}$: matriz de adyacencia que representa la conexión entre carreteras. Contiene elementos 0 y 1

Modelación del Problema

Matriz de características

- Cada nodo se encuentra caracterizado por una serie de tiempo de la información de tráfico.
- $X^{N \times P}$: matriz de características. P número de características (longitud de la serie de tiempo).
- X_{it}: velocidad en carretera i en el instante t.

El Modelo

- Aprendizaje de la función de mapeo (f) sobre la topología de la red (G) y la matriz de características (X) para calcular una secuencia (T) de información de tráfico futura.
- $[X_{t+1},...,X_{t+T}] = f(G;[X_{t-n},...,X_{t-1},X_t])$

Modelo General

El Modelo T-GCN está compuesta por dos GCN y GRU

Figura: Esquema general del modelo

Características

- Inputs: datos históricos de series de tiempo.
- GCN: captura la estructura topológica de la red (características espaciales).
- GRU: El cambio dinámico se obtiene mediante la transmisión de información entre las unidades (características temporales).
- Resultados: se obtienen de una capa totalmente conectada.

Modelo de dependencia espacial

Figura: Modelo GCN

Características

- El modelo construye un filtro en el dominio de Fourier.
- El filtro actúa sobre los nodos de un gráfico, capturando las características espaciales entre los nodos por su vecindad de primer orden.
- GCN se puede construye apilando múltiples capas convolucionales.

Modelo de dependencia espacial

El Modelo GCN se construye apilando múltiples capas convolucionales expresadas por:

$$H^{(l+1)} = \sigma(ilde{D}^{-1/2} ilde{\mathcal{A}} ilde{\mathcal{D}}^{-1/2}H^{(l)} heta^{(l)})$$

- $\tilde{A} = A + I_N$ con A: matriz de adyacencia y I_N : matriz identidad
- \tilde{D} : matriz de grados
- $H^{(I)}$: salida de la capa I
- $\theta^{(I)}$: parámetros de la capa I
- \bullet σ : función sigmoidea para un modelo no lineal

En esta investigación se elige un modelo GCN de 2 capas

Dependencia temporal

Figura: Arquitectura modelo GRU

Características

- La GRU obtiene la información de tráfico en el tiempo t tomando el estado oculto en el tiempo t-1 y la información de tráfico actual como entradas.
- Mientras captura la información del tráfico en el momento actual, el modelo conserva los cambios de tendencia de la información histórica.

Red convolucional de grafo temporal

Figura: Proceso general de predicción espacio-temporal

Características

- el lado izquierdo es el proceso de predicción del tráfico espacio-temporal
- el lado derecho muestra la estructura específica de una celda T-GCN.
 - h_{t-1} : la salida en el tiempo t-1
 - GC: proceso de convolución del grafo
 - u_t y r_t : actualizar la puerta y restablecer la puerta en el tiempo t
 - h_t : salida en el tiempo t.

Función pérdida

$$loss = \|Y_t - \hat{Y}_t\| + \lambda L_{reg}$$

- Y_t : velocidad real en t.
- \hat{Y}_t : velocidad estimada en t.
- λ : hiperparámetro.
- L_{reg} : término de regularización para evitar problemas de sobreajuste.

Descripción Datos

Se evalúa el rendimiento del modelo para predecir la velocidad de tráfico en dos conjuntos de datos: SZ-taxi y Los-loop.

SZ-taxi

- Contiene la trayectoria de taxi de Shenzhen desde el 1 de enero hasta el 31 de enero de 2015.
- Seleccionan 156 carreteras principales del distrito de Luohu como área de estudio.
- Los datos experimentales incluyen principalmente dos partes.
 - Matriz de adyacencia (156 * 156): describe la relación espacial entre carreteras.
 - Matriz de características: Cambios de velocidad a lo largo del tiempo en cada camino. Fila: carretera; Columna: velocidad de tráfico agregada cada 15 minutos.

Descripción Datos

Se evalúa el rendimiento del modelo para predecir la velocidad de tráfico en dos conjuntos de datos: SZ-taxi y Los-loop.

Los-loop

- Conjunto de datos recopilado de la carretera del condado de Los Ángeles mediante sensores.
- 207 sensores y su velocidad de tráfico desde el 1 de marzo hasta el 7 de marzo de 2012.
- Agregamos la velocidad del tráfico cada 5 minutos.
- Los datos experimentales incluyen
 - Matriz de adyacencia: calcula mediante la distancia entre sensores en las redes de tráfico.
 - Matriz de características: interpolación lineal para completar los valores faltantes.

Descripción Datos

Se evalúa el rendimiento del modelo para predecir la velocidad de tráfico en dos conjuntos de datos: SZ-taxi y Los-loop.

Procesamiento, Datos de entrenamiento y test

- Datos de entrada se normalizan al intervalo [0, 1].
- 80 % de los datos se utiliza como conjunto de entrenamiento y
- 20 % restante se utiliza como conjunto de prueba.
- Predicción de la velocidad del tráfico de los próximos 15 minutos, 30 minutos, 45 minutos y 60 minutos.

Métricas de Evaluación

Utilizan cinco métricas para evaluar el desempeño de predicción del modelo T-GCN:

Descripción Métricas

- RMSE: raíz del error cuadrático medio.
- MAE: error absoluto medio.
- Accuracy
- R²
- var: Puntaje de varianza explicada (Explained Variance Score)

Elección de los parámetros del modelo

Hiperparámetros

• Learning rate: 0.001

batch size: 32epochs: 5.000

• hiden units: [8, 16,32,64,100, 128]

Figura: Rendimiento del modelo con diferentes unidades ocultas (SZ-taxi)

(a) y (b): Datos de entrenamiento; (c) y (d): Datos de test

Resultados Experimentales

Métodos de referencia

- Modelo de promedio histórico (HA). Utiliza información de tráfico promedio en los períodos históricos como predicción.
- Modelo de media móvil integrado autorregresivo (ARIMA), ajusta un modelo paramétrico de serie de tiempo.
- Suport Vector Regression model (SVR), utiliza datos históricos para entrenar el modelo y obtiene la relación entre la entrada y la salida, y luego predice los datos de tráfico futuro mediante el modelo entrenado.
- Graph Convolutional Network model (GCN)
- Gated Recurrent Unit (GRU)

Resultados Experimentales

El modelo T-GCN obtiene el mejor rendimiento de predicción en casi todas las métricas de evaluación.

Figura: Rendimiento del modelo con diferentes unidades ocultas (SZ-taxi)

Т	Metric	SZ-taxi				Los-loop							
		HA	ARIMA	SVR	GCN	GRU	T-GCN	HA	ARIMA	SVR	GCN	GRU	T-GCN
15min	RMSE	4.2951	7.2406	4.1455	5.6596	3.9994	3.9265	7.4427	10.0439	6.0084	7.7922	5.2182	5.1264
	MAE	2.7815	4.9824	2.6233	4.2367	2.5955	2.7117	4.0145	7.6832	3.7285	5.3525	3.0602	3.1802
	Accuracy	0.7008	0.4463	0.7112	0.6107	0.7249	0.7299	0.8733	0.8275	0.8977	0.8673	0.9109	0.9127
	R^2	0.8307	*	0.8423	0.6654	0.8329	0.8541	0.7121	*	0.8123	0.6843	0.8576	0.8634
	var	0.8307	0.0035	0.8424	0.6655	0.8329	0.8541	0.7121	*	0.8146	0.6844	0.8577	0.8634
30min	RMSE	4.2951	6.7899	4.1628	5.6918	4.0942	3.9663	7.4427	9.3450	6.9588	8.3353	6.2802	6.0598
	MAE	2.7815	4.6765	2.6875	4.2647	2.6906	2.7410	4.0145	7.6891	3.7248	5.6118	3.6505	3.7466
	Accuracy	0.7008	0.3845	0.7100	0.6085	0.7184	0.7272	0.8733	0.8275	0.8815	0.8581	0.8931	0.8968
	R^2	0.8307	*	0.8410	0.6616	0.8249	0.8456	0.7121	*	0.7492	0.6402	0.7957	0.8098
	var	0.8307	0.0081	0.8413	0.6617	0.8250	0.8457	0.7121		0.7523	0.6404	0.7958	0.8100
45min	RMSE	4.2951	6.7852	4.1885	5.7142	4.1534	3.9859	7.4427	10.0508	7.7504	8.8036	7.0343	6.7065
	MAE	2.7815	4.6734	2,7359	4.2844	2.7743	2.7612	4.0145	7.6924	4.1288	5.9534	4.0915	4.1158
	Accuracy	0.7008	0.3847	0.7082	0.6069	0.7143	0.7258	0.8733	0.8273	0.8680	0.8500	0.8801	0.8857
	R^2	0.8307	*	0.8391	0.6589	0.8198	0.8441	0.7121	*	0.6899	0.5999	0.7446	0.7679
	var	0.8307	0.0087	0.8397	0.6590	0.8199	0.8441	0.7121	*	0.6947	0.6001	0.7451	0.7684
60min	RMSE	4.2951	6.7708	4.2156	5.7361	4.0747	4.0048	7.4427	10.0538	8.4388	9.2657	7.6621	7.2677
	MAE	2.7815	4.6655	2.7751	4.3034	2.7712	2.7889	4.0145	7.6952	4.5036	6.2892	4.5186	4.6021
	Accuracy	0.7008	0.3851	0.7063	0.6054	0.7197	0.7243	0.8733	0.8273	0.8562	0.8421	0.8694	0.8762
	R^2	0.8307	*	0.8370	0.6564	0.8266	0.8422	0.7121	*	0.6336	0.5583	0.6980	0.7283
	var	0.8307	0.0111	0.8379	0.6564	0.8267	0.8423	0.7121	*	0.5593	0.5593	0.6984	0.7290

Análisis de perturbaciones y robustez

T-GCN es un modelo robusto, debido el cambio en las métricas es pequeño sea cual sea la distribución del ruido.

Figura: Rendimiento del modelo con diferentes unidades ocultas (SZ-taxi)

Interpretación del modelo

El modelo T-GCN predice mal en mínimos / máximos locales

Figura: Rendimiento del modelo con diferentes unidades ocultas (SZ-taxi)

Conclusiones y comentarios

Conclusiones

- Se desarrolla un enfoque novedoso basado en redes neuronales para el pronóstico del tráfico, que combina el GCN y el GRU.
- Se utiliza una red de grafos para modelar la red de carreteras urbanas. Nodos representan carreteras. Arcos representan las relaciones de conexión entre carreteras y la información de tráfico se describe como el atributo de los nodos.
- El GCN captura la estructura topológica espacial del grafo. El modelo GRU captura el cambio dinámico de atributo de nodo para obtener la dependencia temporal.
- El modelo e evalúa en dos conjuntos de datos de tráfico reales y se compara con diversos modelos.
- El modelo T-GCN logra un mejor desempeño bajo diferentes horizontes de predicción.

Comentarios

- El modelo T-GCN no obtiene muchos mejores resultados que la GRU, por lo que la dependencia espacial modelada no tiene mucha incidencia.
- Sería interesante complementar la matriz de características con atributos contextuales.
- ¿Por qué no utilizaron dropout como mecanismo de regularización?
- Probar con una función multiproducto (velocidad, flujo, densidad)