Funktionen:

harmonische Schwingung: $y(t) = y_0 \cdot \sin(\omega \cdot t + \varphi_0)$

$$\omega_0 = 2\pi \cdot f_0 \qquad f_0 = \frac{1}{T_0}$$

periodisch, wenn: y(t) = y(t+T) mit $T = \frac{2\pi}{\omega}$

 $y(t) = (nachher - vorher) \cdot h(t \pm c)$ Erstes Mal mit Vorsatz (vorher)+

 $y(t) = \pm a \cdot f(\pm b \cdot t \pm c) \pm d$

 $y(t) = \pm a \cdot e^{\pm b \cdot t \pm c} \pm d$

 \pm = (+ normal) (- Spiegelung: Spiegelachse horizontal)

a = vertikale: (a>1 Streckung) (0<a<1 Stauchung)

 \pm = (+ normal) (- Spiegelung: Spiegelachse vertikal)

b = horizontale: (0<b<1 Dehnung) (b>1 Stauchung)

Ursprung!

c = horizontale Verschiebung (+ links) (- rechts)

d = vertikale Verschiebung (+ oben) (- unten)

Reihenfolge: $c \rightarrow b \rightarrow a \rightarrow d$

gerader Anteil: $x_g(t) = \frac{1}{2}(x(t) + x(-t))$

ungerader Anteil: $x_u(t) = \frac{1}{2}(x(t) - x(-t))$

mit Regel: $-f(alle\ Vorzeichen\ drehen)$

Kenngrößen von Signalen:

Extremwerte:

Maximum: $y_{max} = \max_{t} y(t)$

Supremum: $y_{sup} = \sup_{t} y(t)$ kleinste obere Schranke falls max eq exist.

 $Minimum: y_{min} = \min_{t} y(t)$

 ${\sf Infimum}: y_{inf} = \inf_t y(t)$ größte untere Schranke falls minimum * exist.

Mittelwerte: im Intervall [a, b] oder von T

Mittel/Gleichwert: $\bar{y} = \frac{1}{b-a} \int_a^b y(t) \cdot dt = \frac{1}{T} \int_0^T y(t) \cdot dt$

Gleichrichtwert: $|\bar{y}| = \frac{1}{b-a} \int_a^b |y(t)| \cdot dt = \frac{1}{T} \int_0^T |y(t)| \cdot dt$

Quadratisches Mittel oder Effektivwert:

$$y_{eff} = \sqrt{\frac{1}{b-a} \int_{a}^{b} (y(t))^{2} \cdot dt} = \sqrt{\frac{1}{T} \int_{0}^{T} (y(t))^{2} \cdot dt}$$

Energie eines Signals:

Reellen skalaren Signal: $E = \int_{-\infty}^{\infty} |y(t)|^2 \cdot dt$

Komplexes skalaren Signal: $E = \int_{-\infty}^{\infty} y^*(t) \cdot y(t) \cdot dt$

Vektorielles Signal: $E = \int_{-\infty}^{\infty} ||y(t)||^2 \cdot dt$ mit $||y(t)|| = \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}$

Energiesignal wenn: $E < \infty$; $\lim_{t \to +\infty} y(t) = 0$

Leistung eines Signals:

Durchschnittsleistung reellen skalaren: $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |y(t)|^2 \cdot dt$

Momentanleistung: $P(t) = \lim_{T \to 0} \frac{1}{2T} \int_{t-T}^{t+T} |y(\tau)|^2 d\tau = |y(t)|^2$

Leistungssignal wenn: $0 < P < \infty$

Taylor-Reihe:

$$f(t) = \sum_{k=0}^{\infty} \frac{f^{(k)}(t_0)}{k!} (t - t_0)^k$$

Delta-Distribution: $\int_{-\infty}^{\infty} \delta(t) \cdot f(t) \cdot dt = f(0)$

$$\int_{-\infty}^{\infty} \delta(t) \cdot dt = 1 \qquad \delta(-t) = \delta(t) \qquad \delta(ct) = \frac{1}{|c|} \delta(t)$$

$$\int_{-\infty}^{\infty} \delta(t-a)f(t)dt = f(a)$$

$$\int_{-\infty}^{\infty} \delta^{(n)}(t)f(t)dt = (-1)^n \cdot f^{(n)}(0)$$
Bei +a \(\frac{1}{2}\) -a
$$\int_{-\infty}^{t} \delta(\tau) \cdot d\tau = h(t)$$

$$\int_{-\infty}^{t} \delta(\tau - a)f(\tau)d\tau = f(a)h(t - a)$$

$$\frac{d}{dt}h(t) = \dot{h}(t) = \delta(t)$$
 $h(t) = Einheitssprung, Sprungfunktion$

$$\ddot{u}_{rampe}(t-t_0) = \dot{h}(t-t_0) = \delta(t-t_0)$$

Lineare zeitinvariante Diff.gleichung der Ordnung n

$$a_n y^{(n)}(t) + \dots + a_1 \dot{y}^{(n)}(t) + a_0 y^{(n)}(t) = b_0 u(t) + b_1 \dot{u}(t) + \dots + b_m u^{(m)}(t)$$

$$a_n y^{(n)}(t) + \dots + a_1 \dot{y}^{(n)}(t) a_0 y^{(n)}(t) = b_0 u(t - T_t) + \dots + b_m u^{(m)}(t - T_t)$$

Systemantwort LTI-Systems auf einen allgemeinen Eingang

$$y(t) = (g * u)(t) = \int_0^t g(t - \tau)u(\tau)d\tau$$

Eine Sprungfunktion kann man durch Ändern der Integrationsgrenze rauskürzen!

Die Faltung zweier abhängiger Funktionen ist definiert als:

$$(u*v)(t) = \int_{-\infty}^{\infty} u(\tau)v(t-\tau)d\tau$$

Graphische Option:

- 1. Spiegelung von $v\left(au
 ight)$ an vertikaler Achse, dann Verschiebung nach t
- 2. Punktweise Multiplikation dort wo beide Funktionen ≠ 0 sind
- 3. Integration über Zeit ergibt Faltung

(Bei Verschiebung steigt Fläche über der Überlappung)

Eigenschaften der Faltung:

Kommutativität: u * v = v * u

Assoziativität: (u * v) * w = u * (v * w)

Distributivität: u * (v + w) = (u * v) + (u * w)

Eigenschaftsüberprüfung: mit Funktion aus u(t) und y(t)

Überprüfung Homogenität: (Systemgleichung gilt für u und y)

Einsetzen von cy und cu statt y und u in Gleichung \rightarrow gilt es für $c \in \mathbb{R}$

Überprüfung Additivität: (Systemgleichung gilt für u1 y1 bzw. u2 y2)

Einsetzen von y1 + y2 und u1 + u2 statt y und u →gilt die Gleichung noch?

Überprüfung Zeitinvarianz: (Verhalten vom Startpunkt unabhängig)

Einsetzen von u(t - T) und y(t - T) statt u(t) und y(t)

Transformation: $\tau = t - T$ für beliebige $T \in \mathbb{R}$

Jedes weitere t in Gleichung durch $t = \tau + T$ ersetzen (nicht dt)

Überprüfung Kausalität: (keine Zukunftsvorhersage)

$$u(t) = \left\{ \begin{smallmatrix} \neq & 0 & t > 0 \\ = & 0 & t \leq 0 \end{smallmatrix} \right\} y(t) = \left\{ \begin{smallmatrix} \neq & 0 & t > 0 \\ = & 0 & t \leq 0 \end{smallmatrix} \right\}, \quad y_{(t)} = f(u_{(t+c)}) \text{ mit c} > 0$$

 $(v(t) = \dot{u}(t))$ ist akausal da schon bei t = 0 ein wert vorliegt)

Überprüfung Bibo-Stabilität: Zwei Möglichkeiten:

1.)
$$\int_{-\infty}^{\infty} |g(t)| \cdot dt < \infty$$

Option: den Graph im Diagramm betrachten → negative Flächen hochklappen und Betragsfläche ermitteln

2.)
$$|u_{(t)}| \le u_{max} < \infty \rightarrow |y_{(t)}| = |Gleichung| < \infty$$

 $|a \cdot b| = |a| \cdot |b|$; $|a + b| \le |a| + |b|$; $|a - b| \le |a| + |b|$

|Gleichung| sollte vollständig nach oben aufgedröselt werden

Beschränkte Eingabe führt zu beschränkter Ausgabe → keine unphysikalische Werte

Fourier Reihe

Die reelle Version der Fourier-Reihe von y(t) ist:

$$y(t) = \frac{a_o}{2} + \sum_{k=1}^{\infty} \left(\left(a_k \cos(k\omega_o t) \right) + \left(b_k \sin(k\omega_o t) \right) \right)$$

$$y(t) = \frac{a_0}{2} + a_1 \cos(1\omega_0 t) + a_2 \cos(2\omega_0 t) + a_3 \cos(3\omega_0 t) + \cdots$$
$$+b_1 \sin(1\omega_0 t) + b_2 \sin(2\omega_0 t) + b_3 \sin(3\omega_0 t) + \cdots$$

$$a_{k} = \frac{2}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} y(t) \cos(k\omega_{o}t) dt, \qquad k = 0, 1, 2, \dots$$

$$b_k = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} y(t) \sin(k\omega_0 t) dt, \qquad k = 1, 2, 3, ...$$

$$\omega_0 = \frac{2\pi}{T_0} = 2\pi f_0 \qquad f_0 = \frac{1}{T_0}$$

Wenn y(t) ungerade (Punksymmetrisch zum Ursprung) $\rightarrow a_k = 0$

Wenn y(t) gerade (Achsensymmetrisch) $\rightarrow b_k = 0$

Hilfreiche Beziehungen:

$$\sin(x)\cos(y) = \frac{1}{2}(\sin(x-y) + \sin(x+y)),$$

$$\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y)),$$

$$cos(x) cos(y) = \frac{1}{2} (cos(x - y) + cos(x + y))$$

 $\int \mathbf{u} \cdot \mathbf{v}' = [\mathbf{u} \cdot \mathbf{v}] - \int \mathbf{u}' \cdot \mathbf{v}$ mit \mathbf{u} als dem Einfacheren

$$a_0 = 2_{c0}$$
 ; $a_k = c_k + c_{-k}$; $b_k = j(c_k - c_{-k})$;

$$c_k = \frac{1}{2}(a_k - jb_k)$$
 ; $c_{-k} = \frac{1}{2}(a_k + jb_k)$

Resultierende Schwingungen:

$$y(t) = \frac{a_o}{2} + \sum_{k=1}^{\infty} A_k \cdot \cos(k\omega_o t + \varphi_k)$$

$$A_k = \sqrt{a_k^2 + b_k^2}$$
 $\varphi_k = -\arctan\left(\frac{b_k}{a_k}\right)$

Linienspektrum:

$$\omega_k = \frac{2\pi \cdot k}{T_0} \qquad f_k = \frac{k}{T_0}$$

Abstand der Frequenzlinien: $\Delta \omega = \omega_0 = \frac{2\pi}{T_0}$

Fourier-Transformation

Transformation: $Y(\omega) = \mathcal{F}[y(t)] = \int_{-\infty}^{\infty} y(t) \cdot e^{-j\omega t} dt$ von Zeitbereich in Frequenzbereich

Rücktransformation: $y(t) = \mathcal{F}^{-1}[Y(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(\omega) e^{j\omega t} d\omega$ von Frequenzbereich in Zeitbereich

Schreibweise: $y(t) \bigcirc \longrightarrow Y(\omega)$

Hilfreich: Funktionen in Abschnitte einteilen und Teile für y = 0 rauskürzen

Funktion y(t) gerade = reelles $Y(\omega)$, Funktion y(t) ungerade = auch imaginär!

Hilfreiche Beziehungen für Komplexe Zahlen:

$$e^{j\omega t} = \cos(\omega t) + \mathbf{j} \cdot \sin(\omega t)$$

$$\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2} \qquad \cos(b\omega + c) = \frac{1}{2} \cdot \left(e^{j\cdot(b\omega + c)} + e^{-j\cdot(b\omega + c)}\right) \qquad \sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$

$$Y(\omega) = \int_{-\infty}^{\infty} y(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} y(t)\cos(j\omega t) dt + j\left(-\int_{-\infty}^{\infty} y(t)\sin(j\omega t)dt\right)$$

$$=2\int_0^\infty y_g(t)\cos(j\omega t)\,dt+j\left(-2\int_0^\infty y_g(t)\sin(j\omega t)dt\right)$$

Wenn y(t) reell und gerade ist, dann ist $Y(\omega)$ reell und gerade

Wenn y(t) reell und ungerade ist, dann ist $Y(\omega)$ imaginär und ungerade

Weitere hilfreiche Beziehung: $\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} d\omega$ eine Rücktrafo

Rechenregeln:

Kategorie	Zeitbereich	Frequenzbereich
Basis-Korrespondenz	y(t)	$Y(\omega)$
Linearität	$c_1 y_1(t) + c_2 y_2(t)$	$c_1Y_1(\omega) + c_2Y_2(\omega)$
Verschiebung Zeitbereich	$y(t-a), \ a \in \mathbb{R}$	$Y(\omega) e^{-j a \omega}$
Verschiebung Frequenzbereich	$y(t) e^{\mathbf{j} a t}$	$Y(\omega - a), \ a \in \mathbb{R}$
Zeitskalierung	$y(at),\ a\neq 0, a\in \mathbb{R}$	$\frac{1}{ a }Y\left(\frac{\omega}{a}\right)$
Zeitumkehr	y(-t)	$Y(-\omega)$
Komplexe Konjugation	$y^*(t)$	$Y^*(-\omega)$
Symmetrie / Dualität	Y(t)	$2\pi y(-\omega)$
Gerade/ungerade	reell, gerade	reell, gerade
	reell, ungerade	imaginär, ungerade
	imaginär, gerade	imaginär, gerade
	imaginär, ungerade	reell, ungerade

Kategorie	Zeitbereich	Frequenzbereich
Erste Ableitung von \boldsymbol{y}	$\dot{y}(t)$	$j\omega Y(\omega)$
Zweite Ableitung von \boldsymbol{y}	$\ddot{y}(t)$	$(\mathrm{j}\omega)^2 Y(\omega) = -\omega^2 Y(\omega)$
$n\text{-te Ableitung von }y,n\in\mathbb{N}$	$y^{(n)}(t)$	$(\mathrm{j}\omega)^n Y(\omega)$
Erste Ableitung von Y	$-\mathrm{j}ty(t)$	$Y'(\omega)$
n-te Ableitung von Y	$(-\mathrm{j}t)^ny(t)$	$Y^{(n)}(\omega)$
Integration im Zeitbereich	$\int_{-\infty}^t y(\tau) \mathrm{d}\tau$	$\frac{Y(\omega)}{j\omega} + \pi Y(0)\delta(\omega)$
Faltung im Zeitbereich	$(y_1 * y_2)(t)$	$Y_1(\omega)Y_2(\omega)$
Multiplikation im Zeitbereich	$y_1(t) y_2(t)$	$\frac{1}{2\pi}(Y_1*Y_2)(\omega)$
Glättung Zeitbereich	$\frac{1}{2a} \int_{t-a}^{t+a} y(\tau) \mathrm{d}\tau$	$Y(\omega) \frac{\sin(\omega a)}{\omega a}$

Korrespondenzen:

Funktion	Zeitbereich	Frequenzbereich
Eins	1	$2\pi \delta(\omega)$
Konstante	c	$2\pi c \delta(\omega)$
Signum	sign(t)	$\frac{2}{j\omega}$
Einheitssprung	h(t)	$\frac{1}{i\omega} + \pi\delta(\omega)$
Einheitsimpuls	$\delta(t)$	1
Ableitung Einheitsimpuls	$\delta^{(n)}(t)$	$(j\omega)^n$
Impulsfolge/Dirac-Kamm	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T})$
Rechteck-Impuls	$rect(t)$ $(-\frac{1}{2} \le t \le \frac{1}{2})$	$\frac{2}{\omega} \sin \frac{\omega}{2} = \sin \frac{\omega}{2}$
	$rect(\frac{t}{2T}) (-T \le t \le T)$	$\frac{2}{\omega} \sin(\omega T) = 2T \sin(\omega T)$
Dreieck-Impuls	$tri(t)$ $(-1 \le t \le 1)$	$\frac{4}{\omega^2} \left(\sin(\frac{\omega}{2}) \right)^2 = \left(\sin(\frac{\omega}{2}) \right)^2$
	$\operatorname{tri}(\frac{t}{T}) (-T \le t \le T)$	$\frac{4}{2\pi} (\sin(\frac{\omega T}{2}))^2 = T (\sin(\frac{\omega T}{2}))$

Funktion	Zeitbereich	Frequenzbereich
Potenzfkt.	t^n	$2\pi j^n \delta^{(n)}(\omega)$
Inverse Potenzfkt.	$\frac{1}{t^n}$	$-\pi j \frac{(-j\omega)^{n-1}}{(n-1)!} \operatorname{sign}(\omega)$
NN.	$\frac{1}{t^2+a^2}$, $a > 0$	$\frac{\pi}{a}e^{-a \omega }$
Komplexe Exp.fkt.	e ^{jat}	$2\pi \delta(\omega - a)$
Abklingende Exp.fkt., $t \geq 0$	$e^{-at} h(t), a > 0$	$\frac{1}{\mathrm{j}\omega + a}$
Abklingende Potenzfkt.	$\tfrac{t^n}{n!}e^{-at}h(t),a>0,n\in\mathbb{N}$	$\frac{1}{(j\omega + a)^{n+1}}$
Exponential-Impuls	$e^{-a t }, a > 0$	$\frac{2a}{a^2 + \omega^2}$
NN.	$e^{-a t } \operatorname{sign}(t), \ a > 0$	$ \frac{\overline{a^2 + \omega^2}}{-j \frac{2\omega}{a^2 + \omega^2}} $
Gauß-Fkt.	e^{-at^2} , $a > 0$	$\sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$
	$\sqrt{\frac{\pi}{a}} e^{-\frac{t^2}{4a}}, a > 0$	$2\pi e^{-a\omega^2}$

Funktion	Zeitbereich	Frequenzbereich
Cosinus	$\cos(bt)$	$\pi \Big(\delta(\omega+b) + \delta(\omega-b) \Big)$
Sinus	$\sin(bt)$	$\pi j \left(\delta(\omega+b) - \delta(\omega-b)\right)$
Einseitiger Cosinus	$\cos(bt)h(t)$	$\tfrac{\pi}{2} \Big(\delta(\omega+b) + \delta(\omega-b) \Big) + \tfrac{\mathrm{j}\omega}{b^2 - \omega^2}$
Einseitiger Sinus	$\sin(bt)h(t)$	$\frac{\pi \mathrm{j}}{2} \Big(\delta(\omega + b) - \delta(\omega - b) \Big) + \frac{b}{b^2 - \omega^2}$
Abkling. Cosinus	$e^{-at}\cos(bt)h(t), a>0$	$\frac{\mathrm{j}\omega + a}{(\mathrm{j}\omega + a)^2 + b^2}$
Abkling. Sinus	$e^{-at}\sin(bt)h(t),\ a>0$	$\frac{b}{(\mathrm{j}\omega+a)^2+b^2}$
Wellenpaket	$\cos(at)\mathrm{rect}(\frac{t}{2T})$	$\frac{\sin((\omega + a)T)}{\omega + a} + \frac{\sin((\omega - a)T)}{\omega - a}$
Si-Fkt.	$si(bt) = \frac{sin(bt)}{bt}$	$\frac{\pi}{ b } \operatorname{rect}(\frac{\omega}{2b})$
Sinc-Fkt.	$\operatorname{sinc}(bt) = \frac{\sin(\pi bt)}{\pi bt}$	$\frac{1}{ b } \operatorname{rect}(\frac{\omega}{2\pi b})$

Theorem von Parseval

$$\int_{-\infty}^{\infty} |y(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(\omega)|^2 d\omega$$

Signalenergie

Energiedichtespektrum

Leckeffekt: (es gibt 2 Möglichkeiten zum Mildern)

- 1) längere Beobachtungsdauer anwenden
- 2) mit Gauß-Impuls e^{-at^2} multiplizieren

Differentialgleichung und Übertragungsfunktion

$$\begin{split} a_n y^{(n)}(t) + a_{n-1} y^{(n-1)}(t) + \cdots + a_1 \dot{y}(t) + a_0 y(t) \\ &= b_m y^{(m)}(t) + b_{m-1} u^{(m-1)}(t) + \cdots + b_1 \dot{u}(t) + b_0 u(t) \\ & \circ - \bullet \\ a_n (\mathrm{j} \omega)^n Y(\omega) + a_{n-1} (\mathrm{j} \omega)^{n-1} Y(\omega) + \cdots + a_1 \, \mathrm{j} \omega \, Y(\omega) + a_0 \, Y(\omega) \\ &= b_m (\mathrm{j} \omega)^m U(\omega) + b_{m-1} (\mathrm{j} \omega)^{m-1} U(\omega) + \cdots + b_1 \, \mathrm{j} \omega \, U(\omega) + b_0 \, U(\omega) \\ \mathrm{bzw}. \\ Y(\omega) = \underbrace{\frac{b_m (\mathrm{j} \omega)^m + b_{m-1} (\mathrm{j} \omega)^{m-1} + \cdots + b_1 \, \mathrm{j} \omega + b_0}{a_n (\mathrm{j} \omega)^n + a_{n-1} (\mathrm{j} \omega)^{n-1} + \cdots + a_1 \, \mathrm{j} \omega + a_0}}_{G(\omega)} U(\omega) = G(\mathrm{j} \omega) \, U(\omega) \end{split}$$

Harmonisches Eingangssignal

$$u(t) = \hat{u}\sin(\omega t + \varphi_u)$$

Systemantwort nach Abklingen von Übergangsbewegungen

$$y(t) \to A(\omega)\hat{u}\sin(\omega t + \varphi_u(\omega))$$

Frequenzgang

$$G(j\omega) = \mathcal{F}[g(t)] = A(\omega)e^{j\varphi(\omega)} = Re[G(j\omega)] + j \cdot Im[G(j\omega)]$$

Amplitudengang

$$A(\omega) = \left| \frac{\hat{y}(\omega)}{\hat{u}(\omega)} \right| = |G(j\omega)| = \sqrt{(Re[G(j\omega)])^2 + (Im[G(j\omega)])^2}$$

Phasengang

$$\varphi(\omega) = \varphi_y(\omega) - \varphi_u = argG(j\omega) = arctan \frac{Im[G(j\omega)]}{Re[G(j\omega)]}$$

Umrechnung der Verstärkung

$$A_{dB} = 20 \log_{10}(A)$$
 einheitslos \rightarrow dB

$$A = 10^{(A_{dB})/20}$$
 dB \rightarrow einheitslos

Laplace-Transformation

Transformation: $Y(s) = \mathcal{L}[y(t)] = \int_0^\infty y(t)e^{-st}dt$ mit Laplace-Variable $s = \sigma + j\omega \in \mathbb{C}$; $\sigma, \omega \in \mathbb{R}$

Rücktransformation: $y(t) = \mathcal{L}^{-1}[Y(s)] = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} Y(s)e^{st} ds$

Schreibweise: $y(t) \bigcirc --- Y(s)$

Kategorie	Zeitbereich	Frequenzbereich
Basis-Korrespondenz	y(t)	Y(s)
Linearität	$c_1 y_1(t) + c_2 y_2(t)$	$c_1 Y_1(s) + c_2 Y_2(s)$
Verschiebung Zeitbereich	$y(t-a), a \in \mathbb{R}, a \ge 0$	$Y(s)e^{-as}$
Verschiebung Frequenzbereich	$y(t)e^{-at}$	$Y(s+a), a \in \mathbb{C}$
Zeitskalierung	$y(at), \ a > 0, a \in \mathbb{R}$	$\frac{1}{a}Y\left(\frac{s}{a}\right)$
Cosinus-Multiplikation	$y(t) \cos(bt)$	$\frac{1}{2}\left(Y(s-\mathrm{j}b)+Y(s+\mathrm{j}b)\right)$
Sinus-Multiplikation	$y(t) \sin(bt)$	$\frac{1}{2j} \left(Y(s - jb) - Y(s + jb) \right)$
periodische Zeitfkt.	y(t) mit	$\bar{Y}(s)\frac{1}{1-\mathrm{e}^{-Ts}} \mathrm{mit}$
	$y(t) = y(t+T) \ \forall t$	$\bar{y}(t) = y(t)(h(t) - h(t - T))$

Kategorie	Zeitbereich	Laplace-Bereich
Erste Ableitung von \boldsymbol{y}	$\dot{y}(t)$	sY(s) - y(0)
Zweite Ableitung von \boldsymbol{y}	$\ddot{y}(t)$	$s^2Y(s) - sy(0) - \dot{y}(0)$
n-te Ableitung von y	$y^{(n)}(t)$	$s^{n}Y(s) - \sum_{k=0}^{n-1} s^{n-k-1}y^{(k)}(0)$
Erste Ableitung von Y	-t y(t)	Y'(s)
n-te Ableitung von Y	$(-t)^n y(t)$	$Y^{(n)}(s)$
Integration im Zeitbereich	$\int_0^t y(\tau) \mathrm{d}\tau$	$\frac{1}{s}Y(s)$
Faltung im Zeitbereich	$y_1(t) * y_2(t)$	$Y_1(s) Y_2(s)$
Mutliplikation im Zeitbereich	$y_1(t) y_2(t)$	$Y_1(s) * Y_2(s) = \frac{1}{2\pi j} \int_{c-i\infty}^{c+j\infty} Y_1(u) Y_2(s-u) du$

Grenzwertsätze:

Anfangswert:
$$\lim_{t\to 0+} y(t) = \lim_{s\to \infty} sY(s)$$

Endwert:
$$\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s)$$

Die Grenzwertsätze dürfen nur angewandt werden, wenn die Grenzwerte von y(t) jeweils existieren und endlich sind.

Pole, Nullstellen

LTI-Übertragungsfunktion:
$$G(s) = \frac{Z(s)}{N(s)}$$
 wenn = 0 dann Nullstelle wenn = 0 dann Polstelle

Systemantwort

Impulsantwort Y(s) = G(s)

$$\rightarrow y(t) = g(t) \rightarrow u(t) = \delta(t)$$

Sprungantwort $Y(s) = G(s) \frac{1}{s} \left(da \ U(s) = \frac{1}{s} \right)$

$$\to y(t) = \int_0^t g(\tau) \, d\tau \to u(t) = h(t)$$

Systemantwort Y(s) = G(s)U(s)

$$\rightarrow y(t) = g(t) \cdot u(t)$$

I) Entwicklungssatz nach Heaviside ("Zuhaltemethode")

 $y(t) = \sum_{i=1}^{n} \frac{Z(p_i)}{N'(p_i)} e^{p_i \cdot t}$ funktioniert nur wenn die Pole verschieden sind

II) Partialbruchzerlegung:

- 1.) Polstellen ermitteln mit (N(s) = 0)
- 2.) Nenner N(s) in ein Produkt zerlegen $N(s) = c (s-p_1)^{\alpha_1} (s-p_2)^{\alpha_2} \cdots (s-p_m)^{\alpha_m}$
- 3.) Wenn Zählergrad = Nennergrad → Zähler mit "0" addieren und einzeln durch Nenner teilen, sonst überspringen
- 4.) Schreibweise ändern

Wenn nur einfache Polstellen:

- $\bullet \quad \text{Wenn nur reelle Polstellen:} \qquad Y(s) = \frac{a_1}{s-p_1} + \frac{a_2}{s-p_2} + \dots + \frac{a_m}{s-p_m}$
- Wenn auch konjugiert-komplexe Polstellen: $Y(s) = \frac{a_1}{s q_1} + \frac{a_2}{s q_2} + \dots + \frac{b_1 s + c_1}{s^2 + d_1 s + e_1} + \frac{b_2 s + c_2}{s^2 + d_2 s + e_2} + \dots$

Wenn mehrfache Polstellen:

• Erster Teil relle Polstellen mit Häufigkeit α_i , zweiter Teil konjugiert komplexe Polstellen Häufigkeit β_i

$$\begin{split} Y(s) &= \frac{a_{11}}{s - q_1} + \frac{a_{12}}{(s - q_1)^2} + \dots + \frac{a_{1\alpha_1}}{(s - q_1)^{\alpha_1}} \\ &\quad + \frac{a_{21}}{s - q_2} + \frac{a_{22}}{(s - q_2)^2} + \dots + \frac{a_{2\alpha_2}}{(s - q_2)^{\alpha_2}} \\ &\quad + \dots \\ &\quad + \frac{b_{11}s + c_{11}}{s^2 + d_1s + e_1} + \frac{b_{12}s + c_{12}}{(s^2 + d_1s + e_1)^2} + \dots + \frac{b_{1\beta_1} + c_{1\beta_1}}{(s^2 + d_1s + e_1)^{\beta_1}} \\ &\quad + \frac{b_{21}s + c_{21}}{s^2 + d_2s + e_2} + \frac{b_{22}s + c_{22}}{(s^2 + d_2s + e_2)^2} + \dots + \frac{b_{2\beta_2} + c_{2\beta_2}}{(s^2 + d_2s + e_2)^{\beta_2}} \\ &\quad + \dots \end{split}$$

Ein komplexes Polpaar j,-j ist ein Term

Der Nenner hier entspricht dem Nenner Term des Paares

5.) Unbekannten im Zähler bestimmen

 $\delta = \frac{d}{2} \qquad \omega = \sqrt{e - \frac{d^2}{4}}$

- Durchmultiplizieren der Gleichung mit dem Nenner N(s)
- Reelle Polstellen einsetzen für s (Unbekannten vielleicht schon jetzt bestimmt)
- Sortieren der Gleichung (s³ ... s² ... s ...)
- Mittels Koeffizientenvergleiches die Unbekannten bestimmen

6.) Rücktransformation durchführen

- Errechneten Unbekannten einsetzen
- Korrespondenz-Tabelle für Umformung verwenden
- Konstanten wie zum Beispiel im Zähler werden einfach im Ergebnis angefügt
- Immer für $t \ge 0$?

Frequenzgang:

 $G(j\omega) = G(s)|_{s=j\omega}$ also bei der Laplace-Variablen wird $\sigma = 0$ uns somit ist $s = j\omega$

Von DGL zu Y(s): (G(s) ist ein Teil davon)

$$a \cdot \ddot{y}(t) + b \cdot \dot{y}(t) + c \cdot y(t) = z \cdot u(t)$$

- $\ddot{y}(t), \dot{y}(t), y(t), ...$ ersetzen durch Korrespondenz-Tabelle
- Anfangsbedingungen einsetzen und vereinfachen
- Äquivalent umformen Y(s) auf linker Seite, Rest auf rechter Seite

$$Y(s) = \frac{rechte\ Seite}{a \cdot s^2 + b \cdot s + c}$$

$$m\ddot{y}(t) + d\dot{y}(t) + ky(t) = u(t), y(0) = y_0, \dot{y}(0) = y_1$$

$$Y(s) = \frac{1}{ms^2 + ds + k}U(s) + \frac{my_0s + my_1 + dy_0}{ms^2 + ds + k}$$

Verständnisfragen:

Signal = Form von Nachricht/Info mit Bedeutung

System = Element das Funktionalitäten repräsentiert

Konkrete Beispiele für technisch genutzte Signale: z.B. Temperatur, Stromstärke, Sprache, Helligkeit eines Bildpunktes, Herzschlags Geräusch, Bitfolge, Motordrehzahl, Position eines Fahrzeugs

Klassifizierung eines Signals: kontinuierlich/diskret, analog/digital, periodisch/aperiodisch, deterministisch/zufällig, Art der Repräsentierung (Fkt./grafischer Kurvenverlauf/Folge)

Beispiele für dynamische Systeme: z.B. Fahrzeug, Flugzeug, Drohne, Satellit, Roboter, Strommessgerät, Temperaturfühler, Mobiltelefon, chemischer Reaktor, Wetter, Klima

Elemente eines Systems: Systemgrenze, Zustände, Parameter, Ausgänge, Eingänge, Modell, Anfangs- bzw. Randbedingungen

Systemtheorie: klausalen Zusammenhänge zwischen Eingängen und Ausgängen

Totzeit: der Eingang eines Systems wirkt sich erst nach Ablauf einer bestimmten Zeit (Totzeit) auf einen Ausgang aus (z.B. Förderband mit Kies, Dusche am Morgen oder Rohrleitung mit Wasser)

Basics:

Mitternachtsformel:
$$0 = ax^2 \cdot bx + c$$
 \rightarrow $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2a}$

$$e^{0} = 1$$

$$e^{\infty} = \infty$$

$$e^{-\infty}=0$$