15_综合练习题目

背景信息

你的团队决定推出一款在线的音频分享平台(类似喜马拉雅),内部代号为「A平台」,核心功能包括音频的制作、管理和分享、互动等。经过讨论,团队划定了MVP(Minimum Viable Product,最简化可实行产品)的范围,决定完成MVP的开发、上线,及在苹果应用市场发布(MVP不包括安卓端)之后开始产品的试运营。

产品功能列表如下

功能id	产品功能	简单描述
产品01	通过微信扫码注册、登录	用户可通过微信扫一扫登录「A平台」。如用户为第一次登录,则创与微信id 绑定;如用户不是第一次登录,则读取用户相关信息
产品02	音频录制并直接上传	用户在「A平台」可以直接开始音频的录制,通过手机麦克风收音, 用户可以选择: 「丢弃」或「保存并上传」,上传后音频「仅自己可
产品03	本地音频上传	用户可以选择本地音频上传至「A平台」,上传后音频「仅自己可见
产品04	主播音频列表展示	用户可以浏览自己上传的音频,可以看到音频的可见性、播放量及点 论、分享等其他互动指标
产品05	主播音频可见性管理	用户可以对自己上传的音频进行可见性管理,包括「仅自己可见」、 所有用户」
产品06	主播音频删除	用户可以删除自己上传的音频,此时音频:在数据层软删除、在前端频列表中移除,用户从前端不可恢复该音频
产品07	公开音频列表展示	用户可以浏览所有「公开给所有用户」的音频,列表排序由「公开 法」决定
产品08	公开音频推荐算法	根据用户关注的主播、音频播放量、点赞等互动指标决定「公开音频排序逻辑
产品09	听音频	用户可以通过「公开音频列表」进入一个具体音频并播放
产品10	与具体音频互动	用户可以对一个具体音频点赞、评论、或分享给微信好友
产品11	关注、取消关注主播	用户可以在具体音频页面对音频主播进行关注、或取消关注的操作
产品12	已关注主播列表展示及管理	用户可以浏览自己已经关注的主播,并在该列表页对主播进行取消 作,取消后主播从该列表中消失

技术功能列表如下

功能id	技术功能	简单描述
技术01	持续集成、持续发布、自动 化单元测试框架建设	应用开源工具搭建好CI、CD、自动化单元测试框架及相关测试、预知 环境,使得
		• 提交至「feature 分支」的代码可以被自动发布至「测试环境」 化单元测试
		• 完成自动化单元测试的「feature 分支」被自动标记为「可以合刻
		● 每周
		。 运维人员把「可以合并」的「feature 分支」合并入「主分式至 至「预发布环境」
		。 测试人员在「预发布环境」对完成所有符合条件「feature 允 「主分支」进行回归测试
		。 运维人员把完成回归测试的「主分支」代码发布至「生产环:
技术02	MVP 整体测试	在提交至苹果应用市场之前对MVP 进行完整的回归测试

进度计划

团队经过讨论,识别出了这些功能之间的依赖

功能id	紧前活动	依赖关系类型
技术01	1	
技术02	产品02、产品05、产品06、产品10、产品12	FS
产品01	技术01	SS
产品02	产品01	FS
产品03	产品01	FS
产品04	产品03	SS
产品05	产品04	FS
产品06	产品04	FS
产品07	产品08	SS
产品08	产品01	FS

产品09	产品07	FS
产品10	产品09	FS
产品11	产品09	FS
产品12	产品11	FS

由于团队缺少类似项目的经验,团队邀请了一位有多款0-1 App 开发经验的专家,与团队一起估算了所有功能的持续时间

团队与专家首先将产品01作为典型产品功能进行了拆解和估算

活动id	活动简单描述	紧前活动	依赖关系类型	持续时间(天)	信
产品01-01	产品设计	/		1	1
产品01-02	技术设计	产品01-01	FS	1	1
产品01-03	后端开发	产品01-02	FS	1	1
产品01-04	iOS 端开发	产品01-02	FS	1	1
产品01-05	联调	产品01-03、 产品01-04	FS	1	1
产品01-06	合并代码并提交至「feature 分支」	产品01-05	FS	1	1

团队与专家认为其他产品功能的拆解和估算与产品01类似,于是得到下表

功能id	持续时间(天)	估计的工作量(人天)
产品01	5	6
产品02	5	6
产品03	5	6
产品04	5	6
产品05	5	6
产品06	5	6
产品07	5	6
产品08	5	6

产品09	5	6
产品10	5	6
产品11	5	6
产品12	5	6

团队与专家考虑到产品功能和技术功能的差别,故采用三点估算法来估算技术功能的持续时间,得到下表

功能id	最可能时间	最乐观时间	最悲观时间	估计的工作量(人:
技术01	3	2	7	3
技术02	8	6	10	16

问题

- 1. 团队在采用三点估算法时假设持续时间服从三角分布,两个技术功能的期望持续时间是? (10%)
- 2. 团队在估算活动持续时间时都用了哪些方法? (5%)
- 3. 以产品、技术功能为最小单元,不考虑每个功能内继续拆分的活动,试给出整个「A平台」MVP的
 - a. 项目进度网络图(使用紧前关系绘图法)(10%)
 - b. 给出关键路径(5%)
 - c. 给出项目最短工期(5%)

进度监控

项目于2022年11月1日正式开始,执行时不考虑任何资源、假期等因素。假设今天是2022年11月18日,项目经理小M 记录的进度跟进表如下

功能id	计划完成时间	实际完成时间	实际的工作量(人天)
产品01	2022年11月5日	2022年11月5日	5
产品02	2022年11月25日		
产品03	2022年11月15日	2022年11月17日	7
产品04	2022年11月15日	2022年11月14日	4
产品05	2022年11月25日		

产品06	2022年11月20日	2022年11月18日	4
产品07	2022年11月10日	2022年11月11日	6
产品08	2022年11月10日	2022年11月9日	4
产品09	2022年11月15日		
产品10	2022年11月20日		
产品11	2022年11月20日		
产品12	2022年11月25日		
技术01	2022年11月4日	2022年11月8日	8
技术02	2022年12月3日		

问题

- 1. 计算BAC及2022年11月18日时的PV、AC、EV(5%)
- 2. 计算SV、CV、SPI、CPI,说明项目的进度和成本偏差情况(5%)
- 3. 仍保持原目标不变(认为BAC 仍可行),计算TCPI,说明项目完成的难易情况(5%)
- 4. 仅考虑关键路径,计算关键路径上的SPI,再次说明项目的进度偏差情况(5%)

沟通、相关方管理

团队构成如下表

角色	角色职责	成员
产品经理	负责产品功能中的产品设计	小A、小B
iOS 端开发工程师	负责产品功能中的iOS 端开发、联调	小C、小D
后端开发工程师	负责产品功能中的后端开发、联调	小E、小F
技术专家	负责产品功能中的技术设计	小G、小H
测试工程师	负责技术功能中技术02	小/、小/
运维工程师	负责技术功能中技术01	/J\K
运营专员	负责试运营的工作	小し
项目经理	负责项目管理	/J\M
「A平台」业务负责人	整体负责「A平台」 的业务	\J\N

问题

- 1. 团队的沟通渠道(路径)有多少条? (10%)
- 2. 在团队对MVP 范围进行WBS 拆分时,产品经理小A 和运维工程师小K 就是否要拆分技术功能01 产生了分歧。小A 认为在MVP 阶段无需花时间和精力搭建较为稳定的CI、CD、自动化单元测试框架,应把主要资源投入到产品功能的开发和交付上;小K 则认为良好的运维基建是未来快速交付的基础,不应该计较前期可控的投入。项目经理小M 希望团队在项目开始之初,能对WBS 这样的基本问题达成共识。小M 想了几种做法
 - 。 去说服小A,运维基建是运维领域的专业话题,应以小K决策为准
 - 。 与小A、小K 一起讨论两种思路的利弊,并与更多项目成员一起决策
 - 。 去请业务负责人小N 直接决策
 - 支持小K 在项目之初开始框架搭建的工作,但去掉CI、CD 部分,仅搭建自动化单元测试框架以减少投入

试分析这些做法分别在使用什么冲突解决技巧?如果你是小M,你会倾向怎么做,为什么?如果失败了呢?第二选择是什么?为什么?(10%)

质量管理

1. 在项目的执行过程中,为了避免产品正式发布后,快速迭代时对「生产环境」不小心的破坏对用户实际使用产生影响,小I 和小K 合作设计了一个测试用例,故意破坏了「预发布环境」对团队进行环境恢复演练。但因为团队配合不熟练,没有在预定时间内完成恢复「预发布环境」,影响了产品10 的按时上线。这属于哪类质量成本?站在小M 的角度,你觉得这个成本值得的么?为什么?(5%)

产品运营

- 1. 站在小L的角度,结合产品所处的产品生命周期的阶段,试着列出一些试运营阶段会关注的数据指标与可以开展的工作(10%)
- 2. 小L 有X、Y 两个渠道为「A平台」获取新用户,为了做决策,小L 做了以下测算

策略	可能结果
仅使用渠道X	渠道费用100万元,一个月后60% 可能渠道效果较好,DAU 5000;另40% 可能渠道效果一般,DAU 1200
仅使用渠道Y	渠道费用50万元,一个月后60% 可能渠道效果较好,DAU 3000;另40% 可能渠道效果一般,DAU 1500
渠道X、Y组合使用	一个月后50% 可能组合效果较好,DAU 6000;另50% 可能组合效果一般,DAU 2000

假设按资本市场的评估,「平台A」的产品估值为100 * DAU * 10(元)。同时考虑渠道成本及一个月后的产品估值,试用决策树分析帮助小L 做决策选择获取新用户的策略(10%)