## $\mathrm{EE}531$ - Turma $\mathrm S$

## Familizarização com instrumentos de medida

Laboratório de Eletrônica Básica I - Segundo Semestre de 2010

Professor: José Cândido Silveira Santos Filho

RAQUEL MAYUMI KAWAMOTO RA: 086003 TIAGO CHEDRAOUI SILVA RA: 082941

20 de agosto de 2010

Para este experimento inicial da disciplina de laboratório de eletrônica básica I, tem-se como objetivo a familiarização dos alunos com os diversos instrumentos que serão utilizados ao longo do curso. Estas ferramentas são a fonte de alimentação dual, um gerador de funções e um osciloscópio digital. Para este presente experimento utilizam-se ainda um protoboard, dois resistores de  $100k\Omega$  e dois capacitores de 100pF.

## Parte Experimental

1. Para esta parte inicial do experimento, a saída do gerador de funções é conectada ao canal 1 do osciloscópio. O gerador é ajustado para produzir um sinal de tensão com sua forma de onda triangular, com amplitude  $10V_{pp}$ , com offset de 0V e frequência de 10kHz.

Com o recurso *cursor* do osciloscópio, foi medida a amplitude de pico-a-pico, o período, o tempo de subida e o tempo de descida do sinal de tensão. Tais dados encontram-se na tabela 1.



Figura 1: Medição do tempo de subida

Tabela 1: Dados experimentais obtidos através do recurso cursor

| Descrição             | Valor      |
|-----------------------|------------|
| Amplitude pico-a-pico | 9,8V       |
| Período               | $100\mu s$ |
| Tempo de subida       | $40\mu s$  |
| Tempo de descida      | $40\mu s$  |

Para comparar as componentes contínuas e variáveis de um sinal, é possível configurar o canal tanto para medidas a.c, no qual o sinal é filtrado de forma a obter somente a componente variável do sinal, quanto para c.c, no qual o sinal contém tanto a componente variável quanto contínua. Utilizando ambas as configurações, não se constatou grandes diferenças entre os sinais, ou seja, a componente contínua do sinal é pequena.

Além disso, ao alterar a tensão de offset para 1 volt, a componente contínua do sinal de entrada aumentou 2 volts, e ao alterar para -1 volt, a componente contínua do sinal de entrada diminui 2 volts.

Em seguida, as mesmas medidas para as características da tabela 1 foram refeitas, porém usando-se o recurso *measure*, além de também ser necessário medir o valor médio e o valor RMS (ambos os valores obtidos também com o recurso *measure*). Tais dados encontram-se na tabela 2. Os valores obtidos

Tabela 2: Dados experimentais obtidos através do recurso measure

| Descrição             | Valor               |
|-----------------------|---------------------|
| Amplitude pico-a-pico | 9,92V               |
| Período               | $100\mu s$          |
| Tempo de subida       | $42\mu s$           |
| Tempo de descida      | $42\mu s$           |
| $V_{avg}$             | $-57,1~\mathrm{mV}$ |
| $V_{rms}$             | $2,\!88V$           |

através do recurso *cursor* com os dos obtidos com o do recurso *measure* são valores bem semelhantes e próximos um do outro, com a diferença de que os dados adquiridos com o *cursor* são menos precisos do que os do medidos com o *measure*.

2. Para a segunda parte do experimento, calcula-se, através da equação 1,

$$f_c = \frac{1}{2\pi RC} \tag{1}$$

a frequência de corte para cada filtro do circuito esquemático da figura 2, na qual o circuito à esquerda da fonte de sinal é um filtro passa-altas com constante de tempo simples (CTS), e à direita da fonte é um circuito passa-baixas, também CTS. Assim, obtém-se para os circuitos uma frequência de corte equivalente a 15,92 KHz.



Figura 2: Filtros CTS

3. Para a parte três, foi montado, no protoboard, o circuito da figura 2. Inicialmente, a onda triangular foi substituída por uma onda senoidal de amplitude  $10V_{pp}$ , offset de 0V e frequência de 16kHz. Este sinal foi aplicado ao nó 1 do circuito. Sendo assim, efetuaram-se as medidas necessárias, completando a tabela 3 (tabela de medidas de filtro CTS).



Figura 3: Sinal no nó 3

Tabela 3: Medidas do filtro CTS

| Nó                    | 1                  | 2       | 3         |
|-----------------------|--------------------|---------|-----------|
| Amplitude pico-a-pico | 9,92V              | 6,28V   | $6,\!48V$ |
| Valor médio           | $2,40 \mathrm{mV}$ | -13,5mV | -12,7 mV  |
| Valor RMS             | $3,\!56V$          | 2,26V   | 2,32V     |
| Valor máximo          | 4,96V              | 3,12V   | $3,\!24V$ |
| Valor mínimo          | -4,96V             | -3,16V  | -3.24V    |

4. Em seguida, aplicando-se um sinal senoidal de amplitude  $10V_{pp}$ , um offset de 0V e variando-se a frequência segundo a tabela 4, obtiveram-se os dados contidos na mesma tabela (tabela 4). Em baixas frequências, a fase no nó 2 aumenta sendo o seu máximo, para os casos considerados, de  $90^{\circ}$ . Já o nó 3 apresenta uma diminuição na fase. Para a mínima frequencia considerada, sua fase é de  $0^{\circ}$ . Aumentando-se a frequência, a fase do nó 2 relativa ao nó 1 diminui e, para a máxima frequencia, ela atinge uma fase mínima de  $0^{\circ}$ . Diferentemente a este nó, a fase relativa do nó 3 em relação ao nó 1 aumenta – em módulo – atingindo  $90^{\circ}$  para a frequencia de 1MHz. Com relação a variação na frequência de entrada  $V_{in}$ , quando há um aumento em sua frequência, a amplitude (pico a pico) do nó 2 aumenta, enquanto que a do nó 3 diminui.

Tabela 4: Medidas realizadas variando-se a frequência do sinal

| Nó | frequência            | 100 Hz            | 1kHz              | 10kHz         | 16kHz         | 100kHz        | 1MHz              |
|----|-----------------------|-------------------|-------------------|---------------|---------------|---------------|-------------------|
| 1  | Amplitude pico-a-pico | 10,2V             | 10,2V             | 10,2V         | 10,2V         | 10,2V         | 10,2V             |
| 2  | Amplitude pico-a-pico | $100 \mathrm{mV}$ | $656 \mathrm{mV}$ | 4,8V          | 6,24V         | 8,40V         | $8,\!48V$         |
|    | Ganho em dB           | -40,17            | -23,83            | -6,55         | -4,27         | -1,69         | -1,60             |
|    | Fase relativa ao nó 1 | 90°               | 86°               | 56°           | 41°           | 7°            | 0°                |
| 3  | Amplitude pico-a-pico | 10,4v             | 9,8V              | 7,76V         | 6,32V         | 1,42V         | $180 \mathrm{mV}$ |
|    | Ganho em dB           | 0,17              | -0,35             | -2,37         | -4,16         | -17,13        | -35,07            |
|    | Fase relativa ao nó 1 | 0°                | $-3^{\circ}$      | $-36^{\circ}$ | $-46^{\circ}$ | $-72^{\circ}$ | $-90^{\circ}$     |

Obteve-se, a partir dos dados, os gráficos de fase e magnitude dos sinais nos nós 2 e 3 (ver folhas mono-log anexadas ao relatório).

Comparando-os aos gráficos teóricos (figuras 4 e 5), apesar de existirem alguns pontos que diferem levemente do teórico, percebe-se uma semelhança no comportamento tanto para a fase quanto para magnitude de ambos os filtros.



Figura 4: Gráficos teóricos de um Filtro CTS Passa Baixa



Figura 5: Gráficos teóricos Filtro CTS Passa Alta

5. Ao comparar um circuito passa-baixa com um passa-alta, determina-se que a diferença de fase, independentemente da frequência, vale 90°. Portanto, quando o valor do sinal em um circuito estiver em seu máximo, o outro estará no zero. Assim, ao realizar uma diferença nas medidas da tensão diferencial entre o nó 2 e o nó 3, deve-se obter uma senóide cujo valor de pico seja equivalente ao maior dos picos entre as ondas no nós 2 e 3. Como o valor pico-a-pico do nó 2 vale 4,80V e no nó 3 7,76V, o valor pico a pico da onda resultante da diferença entre elas possuiria valor de 7,76V.

Contudo, conforme a figura 6, a diferença de fase obtida é um pouco maior que 90°. Consequentemente, a senóide resultante possui um valor tensão de pico a pico de 9,12V, que é maior que o esperado. Isso ocorre, pois ao aumentar a diferença de fases, enquanto uma onda estiver no seu máximo, a outra estará em um ponto cujo valor de magnitude seja negativo, e enquanto uma estiver no seu mínimo a outra está em um ponto cujo valor de magnitude seja positivo. Assim, ao realizar a diferença entre esse valores obtemos, em módulo, um valor maior de tensão que o máximo ou mínimo das ondas.



Figura 6: Medida da tensão diferencial entre os nós 2 e 3