การทดลองที่ 2 วงจรบวก และการออกแบบวงจรเบื้องต้น

วัตถุประสงค์

- 1. นักศึกษาสามารถต่อวงจรบวกขนาด 1 บิตจาก Gate พื้นฐานได้
- 2. นักศึกษาสามารถออกแบบวงจรเพื่อให้ทำงานได้ตามต้องการได้
- 3. นักศึกษาสามารถใช้ IC สำหรับวงจรบวกสำเร็จรูปได้

ทฤษฏี

วงจรบวก

เราสามารถแบ่งวงจรบวกออกได้เป็น 2 แบบคือ Half Adder และ Full Adder

วงจร Half Adder คือ วงจรบวกซึ่งมี 2 อินพุทคือ A และ B มีเอาท์พุท 2 เอาท์พุทคือผลรวม (Sum)และตัวทด (Carry) วงจรจะบวก A และ B ไปตามกฎการบวกเลขฐานสองและเอาท์พุทเป็นผลรวมและ ตัวทด

อินพุท		เอาท์พุท		
A	В	Sum	Carry Out	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

รูปที่ 2.1 บล็อคไดอะแกรมและตารางค่าความจริงของ Half Adder

อย่างไรก็ตามวงจร Half Adder มีความสามารถในการบวก 2 อินพุท ส่วนวงจรฟูลแอดเดอร์ จะบวก ได้ 3 อินพุท คือตัวตั้ง (A), ตัวบวก (B) และ ตัวทดเข้า (C_{in}) จากการบวกในหลักที่ตรงกันก่อน และเอาท์พุทมี ผลรวม (Sum) และ ตัวทดออก (C_{out}) ตารางความจริงตามกฎการบวกเลขฐานสองดังรูปที่ 2.2 แสดง บล็อกไดอะแกรมและตารางความจริงของวงจรฟูลแอดเดอร์ผลรวมของลอจิก 1 แต่ละครั้งจำนวนทั้งหมด ของลอจิก 1 บนอินพุท A, B และตัวทดเข้าเป็นคี่จะคล้ายกับการเกิดพาริตีคู่

รูปที่ 2.2 บล็อคไคอะแกรมและตารางค่าความจริงของ Full Adder

ตารางที่ 2.1 เป็นรายการของไอซีวงจรฟูลแอดเดอร์ขนาด 4 บิตภายในวงจรจะมีองค์ประกอบที่ เพียงพอสำหรับ ไอซี 7483 เป็นการบวกเลขไบนารี่ขนาด 4 บิต 2 จำนวนคือ $\mathbf{A}_4 - \mathbf{A}_1$ เป็นตัวตั้ง และ $\mathbf{B}_4 - \mathbf{B}_1$ เป็นตัวทดเข้า (\mathbf{C}_{in}) , ผลรวม $\mathbf{\Sigma}_4 - \mathbf{\Sigma}_1$ และตัวทดออก ($\mathbf{C}_{\mathrm{out}}$) แสดงรูปที่ 2.3 ตัวทด \mathbf{C}_1 , \mathbf{C}_2 , \mathbf{C}_3 จะอยู่ภายในไม่ ปรากฏบนขาของ ตัวไอซี

ตารางที่ 2.1 ตัวอย่างของไอซีวงจรบวก

DEVICE NO.	FAMILY	DESCRIPTION
7483	TTL	4-bit binary adder with fast carry
74C83	CMOS	4-bit binary adder with fast caary
4008	CMOS	4-bit full adder with fast carry

รูปที่ 2.3 อินพุท และเอาท์พุท 4-บิตของวงจรฟูลแอดเดอร์

รูปที่ 2.4 แผนผังการต่อขาของ IC เบอร์ 7483

รูปที่ 2.5 ลอจิกไคอะแกรมของ 7483

การออกแบบวงจรเบื้องต้น

การออกแบบวงจรดิจตอลเป็นวิธีการนำอุปกรณ์ทางดิจตอลมาประกอบกันเพื่อให้ได้ผลการทำงาน เป็นไปตามที่ต้องการ โคยมีขั้นตอนการทำงานคังต่อปนี้

- 1. จากโจทย์ (ความต้องการ) เขียนตารางความจริง (truth table)
 - หาจำนวน Input / Output
 - หาความสัมพันธ์ระหว่าง Input / Output ในทุกกรณีเขียนตารางความจริง
- 2. เขียนสมการบูลลืน
 - ใช้วิธีการ Sum of product / Product of sum
- 3. ลครูปสมการให้สั้นลง (เพื่อลคจำนวนเกท)
 - ใช้วิธีการ Boolean Algebra / Karnaugh Map
 - หรือเปลี่ยนรูปสมการไปตามชนิดของเกทที่มีใช้
- 4. เขียนวงจรเกทจากสมการที่ได้

อุปกรณ์สำหรับการทดลอง

- IC เบอร์ 7404 Hex Inverter จำนวน 1 ตัว
- 2. IC เบอร์ 7408 Quadruple 2 Input Positive-AND Gate จำนวน 1 ตัว
- 3. IC เบอร์ 7432 Quadruple 2-Input Positive-OR Gate จำนวน 1 ตัว
- 4. IC เบอร์ 7483 Single 4-Bit Binary Full Adder (Look Ahead Carry) จำนวน 1 ตัว
- 5. IC เบอร์ 7486 Quadruple 2 Input Exclusive-OR Gate จำนวน 1 ตัว

การทดลองที่ 2.1

ให้นักศึกษาออกแบบและต่อวงจร Half Adder จำนวน 1 บิตโดยใช้ IC ของ Gate พื้นฐานที่ ประกอบด้วย Exclusive-OR และ AND Gate

1. เขียนตารางค่าความจริง

อินพุท		เอาท์พุท			
A	В	Sum	Carry Out		
0	0				
0	1				
1	0				
1	1				

2. เขียนสมการตรรกะ

3. เขียนวงจรที่ออกแบบ

4. ต่อรูปวงจรตามที่ออกแบบ

การทดลองที่ 2.2

ให้นักศึกษาออกแบบและต่อวงจร Full Adder จำนวน 1 บิต โดยใช้ IC ของ Gate พื้นฐาน

1. เขียนตารางค่าความจริง

อินพุท			เอาท์พุท		
A	В	Carry In	Sum	Carry Out	
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

2. Yn Sum of Product (SOP)

3. ลดรูปสมการตรรกะ

4. เขียนวงจรที่ออกแบบ

5. ต่อรูปวงจรตามที่ออกแบบ

การทดลองที่ 2.3 ให้นักศึกษาต่อวงจรบวกจาก IC เบอร์ 7483 พร้อมบันทึกผลจากอินพุทที่ป้อนให้

				INPUT						(OUTPU'	Γ	
A_4	A_3	A_2	A_1	B_4	B_3	B_{2}	\mathbf{B}_{1}	C_0	\sum_4	\sum_3	\sum_{2}	\sum_{1}	C ₄
1	1	1	1	0	0	0	0	1					
1	1	1	0	0	0	0	1	0					
1	0	1	1	0	1	0	0	1					
1	0	1	0	0	1	0	1	0					
0	1	1	1	1	0	0	0	1					
0	1	1	0	1	0	0	1	0					
0	0	1	1	1	1	0	0	1					
0	0	1	0	1	1	0	1	0					

การทดลองที่ 2.4 ให้นักศึกษาออกแบบและต่อวงจรเพื่อให้ได้ผลลัพธ์ตามตารางค่าความจริงที่กำหนด

Input			Output		
A	В	С	X	Y	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	0	1	
0	1	1	0	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

1. หา Sum of Product (SOP)

	4
2	ลดรปสมการตรรกะ
∠.	ยเมริกยุทุกเรเเรา

3. เขียนวงจรที่ออกแบบ

ต่อรูปวงจรตามที่ออกแบบ 5.

คำถามท้ายการทดลอง

1. เขียนตารางความจริง และลอจิกไดอะแกรมของวงจร Half-Adder และ Full-Adder จากเกท พื้นฐาน พร้อมแสคงเบอร์ไอซีและหมายเลขของขาสัญญาณที่ใช้งาน

2. เขียนวงจรบวกเลข 8 bit โคยใช้ IC 7483 (แสคงภาพต่อ Input, Output และ ต่อสายไฟบนไอซี พอสังเขป

3. เขียนวงจรลบเลข 4 บิท แบบ 1's complement โคยใช้ใอซีเบอร์ 7483 และเกทพื้นฐาน (วงจรที่ ออกแบบทำงานเป็นวงจรลบเลขเท่านั้น)