BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SỬ PHẠM KỸ THUẬT THÀNH PHÓ HÒ CHÍ MINH

BÁO CÁO TỔNG KẾT ĐỀ TÀI KH&CN CẤP TRƯỜNG TRỌNG ĐIỂM

TỐI UU HÓA CÁC THÔNG SỐ MỰC IN NANO AG NHẰM ỨNG DỤNG TRONG IN PHUN

Mã số: T2013 - 196

Chủ nhiệm đề tài: GV – ThS. Nguyễn Thành Phương

Tp. Hồ Chí Minh, tháng 11/2013

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH

BÁO CÁO TỔNG KẾT ĐỀ TÀI KH&CN CẤP TRƯỜNG

TỐI ƯU HÓA CÁC THÔNG SỐ MỰC IN NANO Ag NHẰM ỨNG DỤNG TRONG IN PHUN

Mãsố: T2013 - 196

Chunhiệm đề tài: GV - ThS. Nguyễn Thành Phương

TP. HCM, 11 – 2013

MỤC LỤC

DANI	H MỤC HÌNH ẢNH	3
DANI	H MỤC BẢNG	5
CÁC	CHỮ VIẾT TẮT	6
	DÀU	
	ONG 1. TỔNG QUAN VỀ MỰC IN DẪN ĐIỆN	
1.1.	Tổ ng quan về mực in dẫn điện	9
1.2.	Hóa học mực in dẫn điện	14
1.2.1.	Thành phần mực in dẫn điện	15
1.2.2.	Sự tương tác của mực in với vật liệu nền	16
1.3.	Các tính chất của mực in dẫn điện	17
1.3.1.	Tính lưu biến	17
1.3.2.	Mật độ	20
1.3.3.	Độ xốp	20
1.4.	Một vài tính chất khác của lớp mực dẫn điện sau khi in	20
1.4.1.	Quá trình nung kết	20
1.4.2.	Xác định điện trở	21
1.4.3.	Tính chống xước	23
1.5.	Tổng quan về các phương pháp tổng hợp hạt nano Ag	23
1.5.1.	Phương pháp từ dưới lên (bottom – up)	23
1.5.2.	Tổng hợp các hạt nano Ag bằng phương pháp polyol	24
1.5.2.	1. Cơ chế phản ứng	25
1.5.2.	2. Cơ chế ổn định hạt Ag của PVP	25
1.5.2.	3. Các yếu tố ảnh hưởng tới chất lượng hạt nano Ag	26
1.6.	Tổ ng quan về công nghệ in phun	27
1.6.1.	In phun nhiệt	28
1.6.2.	In phun áp điện	29

1.7.	Một vài ứng dụng của công nghệ in phun trong in mạch điện tử	30
1.7.1.	Úng dụng cho dòng sản phẩm bậc thấp	30
1.7.2.	ứng dụng cho dòng sản phẩm bậc cao	31
CHU	ONG 2. CÁC PHƯƠNG PHÁP PHÂN TÍCH	32
2.1.	Phổ hấp thụ	32
2.2.	Phương pháp chụp ảnh hiển vi điện tử truyền qua	33
2.3.	Đo độ nhớt	35
2.4.	Nhiễu xạ tia X	35
2.5.	Đo điện trở bề mặt	38
CHU	ƠNG 3. QUY TRÌNH THỰC NGHIỆM VÀ BIỆN LUẬN KẾT QUẢ	39
3.1.	Tổng hợp hạt nano Ag	39
3.1.1.	Hóa chất	39
3.1.2.	Dụng cụ	39
3.2.	Quy trình thực nghiệm	40
3.2.1.	Khảo sát các yếu tố ảnh hưởng đến chất lượng hạt nano Ag	40
3.2.1.	1. Tối ưu hóa lượng chất khử	40
3.2.1.2	2. Thay đổi thời gian khuấy	42
3.2.2.	Khảo sát phổ nhiễu xạ tia X	44
3.2.3.	Khảo sát độ nhớt của dung dịch nano Ag	45
3.2.4.	Khảo sát ảnh hưởng của nhiệt độ nung đến điện trở	46
CHƯ	ƠNG 4.KẾT LUẬN VÀ HƯỚNG PHÁT TRIỀN	47
4.1. K	ết luận	47
4.2. H	wớng phát triển	47
ТАТТ	JÊU THAM KHẢO	48

DANH MỤC HÌNH ẢNH

Hình 1.1. Mực in nano Ag thương mại và một vài thông số đặc trưng	9
Hình 1.2. Một vài ứng dụng của mực in phun nano Ag trong in mạch điện từ	r10
Hình 1.3. Các bước chính của công nghệ in phun nhằm tạo ra các sản phẩm	đơn giản
	11
Hình 1.4. Đo sức căng bề mặt bằng phương pháp vòng Du Nouy	18
Hình 1.5. Bề mặt hình thái học của các hạt nano Ag sau khi nung	21
Hình 1.6 . Sự phụ thuộc của điện trở vào nhiệt độ nung của màng Ag được tạ phương pháp in phun	
Hình 1.7. Kiểm tra độ chống xước của dây dẫn điện được in bằng in phun	
Hình 1.8. Sơ đồ phân hủy nhiệt để tạo các hạt nano Ag với chất bao là axit b	oéo24
Hình 1.9. Công thức cấu tạo của PVP	25
Hình 1.10. Cơ chế ổn định hạt nano Ag của PVP	26
Hình 1.11. Sự hình thành giọt mực trong in phun nhiệt	28
Hình 1.12. Sự hình thành giọt mực trong in phun áp điện	29
Hình 1.13. Úng dụng của in phun trong in các mạch điện tử đơn giản, (a) in	các đường
dây dẫn cho các đèn LED, (b) bản in có IC điều khiển	31
Hình 1.14. Công nghệ in phun bằng mực dẫn điện nano Ag có thể được in c	ác đường
dây dẫn trên các linh kiện điện tử	31
Hình 2.1. Sơ đồ nguyên lý đo phổ UV – Vis	32
Hình 2.2. Cấu tạo của kính hiển vi điện tử truyền qua	34

theocông thức $\gamma = \frac{BF}{4\pi R}$, với F lực trên vòng gây ra sự đứt gãy dung dịch chất lỏng cần đo; R là bán kính của vòng; B là hệ số hiệu chỉnh liên quan tới hình dạng của mặt khum hình thành trên vòng.

Phương pháp khối lượng giọt đơn giản hơn nhiều so với phương pháp Du Nouy và không cần các thiết bị chuyên biệt (hình 1.4). Phương pháp này cho độ chính xác có thể chấp nhận được và vì thế chúng được sử dụng phổ biến trong khảo sát sức căng bề mặt. Quy trình của phương pháp này là hình thành các giọt chất lỏng tại đầu của một ống, và sau đó cho các giọt chất lỏng này rơi xuống một bình chứa đến khi đủ để khối lượng của mỗi giọt được xác định một cách chính xác. Sức căng bề mặt sau đó được tính theo công thức $=\frac{mgf}{2\pi r}$, với m là khối lượng của mỗi giọt nước, g là hằng số trọng lực, flà hệ số hiệu chỉnh, và r là bán kính của ống.

1.3.1.2. Độ nhớt

Độ nhớt cũng là một thông số quan trọng của mực in phun. Độ nhớt là một phép đo chống lại sự chảy của một chất lỏng, nó được mô tả như một lực ma sát nội của một chất lỏng di chuyển. Một chất lỏng có độ nhớt thấp thì chảy một cách dễ dàng bởi vì sự tương tác phân tử của nó ítnên ma sát di chuyển của nó rất ít.

Sức căng bề mặt có giá trị từ 25-70 mN/m và độ nhớt Newton có giá trị từ 1-30 mPa là phù hợp nhất cho công nghệ in phun. Hầu hết các mực dẫn thương mại có sức căng bề mặt và độ nhớt vượt mức cho phép và vì thế sẽ không hình thành được các giọt nhỏ có kích thước trong khoảng 30-100 µm khi sử dụng công nghệ in phun [5]. Bảng 1.4 cho thấy các thông số đặc trưng của mực sử dụng trong công nghệ in phun.

Độ nhớt và sức căng bề mặt là hai tính chất quan trọng nhất của mực in nói chung. Kích thước hạt, độ phân tán kích thước và sự bền vững của các hạt nano kim

