Dominant Current Account Drivers

Lukas Boer¹ Jaewoo Lee¹ Mingzuo Sun²

¹Research Department, International Monetary Fund ²Department of Economics, Johns Hopkins University

November 12, 2023

Motivation

The current account is pivotal in international economics and politics:

- Mercantilism and trade policies
- Predictor of financial crises
- Global imbalances and tensions

What are the dominant shocks that drive current account movements?

- Exports vs. Imports
- ► Savings vs. Investment
- Outflows vs. Inflows

Our Approach

- Exploit an 'agnostic' SVAR-based approach to uncover the statistical comovements associated with surprise changes in the current account.
 - Expenditure switching not dominant in the short run.
 - Reduced expenditure in the short to medium term
 - Some country heterogeneity.
- Build a DSGE model to discern the dominant current account driver obtained from the SVAR.
 - A distinct role taken by a foreign demand shock to domestic goods.
- Compare the empirical and the model-implied results.
 - Dominant CA shocks as foreign demand shocks to domestic goods and assets.
 - High correlation between the SVAR-revealed shocks and the model-implied shocks.

Our Contribution

▶ Identify the dominant CA shock (at business cycle frequency and over the long run) for three countries with a max-share SVAR identification.

Angeletos et al. 2020; Chahrour et al. 2021; Miyamoto et al. 2023

▶ Relate the dominant CA shocks to typical structural shocks in DSGE models via a comparison of impulse responses, forecast error variance decompositions and shock series.

Adolfson et al. 2007; Bergin 2006, Kim and Lee 2015; Itskhoki and Mukhin 2021

Provide evidence that at business cycle frequencies the current account is not determined by a self-correcting exchange rate adjustment.

Outline

Appendix

Introduction **Empirics** Model Estimation Quantitative Results

Empirics

Max-Share SVAR

- ▶ Identify one dominant shock that is the largest contributor to the volatility of a single variable at a particular frequency (Faust, 1998; Uhlig, 2003; Angeletos et al., 2020).
- Structural VAR $\mathbf{B}_0\mathbf{y}_t = \mathbf{b} + \mathbf{B}_1\mathbf{y}_{t-1} + ... + \mathbf{B}_p\mathbf{y}_{t-p} + \varepsilon_t$ where the structural shocks are related to the reduced-form residuals as $\mathbf{u}_t = \mathbf{B}_0^{-1}\varepsilon_t$
- ▶ Interest in the structural impact multiplier matrix \mathbf{B}_0^{-1}
- Rewrite it as $\mathbf{B}_0^{-1} = \mathbf{\Sigma}_{u,tr} \mathbf{Q}$ where $\mathbf{\Sigma}_{u,tr}$ denotes the unique lower triangular Cholesky matrix with non-negative diagonal coefficients of $\mathbf{\Sigma}_u$ and \mathbf{Q} an orthogonal matrix, i.e., $\mathbf{Q}\mathbf{Q}' = I$ and $\mathbf{Q}^{-1} = \mathbf{Q}'$
- lacktriangle Relation between structural shocks and reduced-form residuals $oldsymbol{u}_t = oldsymbol{\Sigma}_{u,tr} oldsymbol{Q} arepsilon_t$

Max-Share SVAR cont'd

- Max-share identification: Leverage the Q matrix: pick column q from Q which relates to the structural shock that is the dominant driver of the current account balance at the business cycle frequency (6-32 quarters) or in the long run (80-∞ quarters).
- ightharpoonup Reduced-form VAR in MA representation: $\mathbf{y_t} = \mathbf{B}(\mathbf{L})\mathbf{u}_t$
- Insert for u_t : $y_t = B(L)\Sigma_{u,tr}Q\varepsilon_t = \Gamma(L)\varepsilon_t$ where $\Gamma(L)$ represents the IRFs of the variables to the structural shocks
- Maxmize contribution in frequency domain, by taking the integral of the spectral density $f_X(y) = \frac{1}{2\pi} C(e^{-iw}) QQ' C(e^{-iw})'$ which gives the volatility of y, where $C(L) = B(L) \Sigma_{u,tr}$.
- ► The column vector *q* that corresponds to the dominant shock is the eigenvector associated with the largest eigenvalue of the integral of the spectral density

Data

- Country of Interest:
 - US, Germany, or the UK
 - A trade-weighted aggregate of G6 economies (Engel 2016).
- Quarterly macroeconomic data:
 - Current account to GDP ratio.
 - Nominal exchange rate (increase indicates domestic currency depreciation).
 - Domestic real consumption and investment.
 - Foreign real consumption and investment.
 - Consumer price index differential.
 - Interest rate differential (1-year deposit rate).
 - Domestic total factor productivity (TFP).
- ► Sample Period:
 - Main: 1975:Q1 2022:Q3.
 - With TFP for Germany & UK: 1991:Q1 2019:Q4.

US dominant CA shock at business cycle frequency

US dominant long-run CA shock

Germany: dominant CA shock at business cycle frequency

UK: dominant CA shock at business cycle frequency

Model

Overview

- ► A New Keynesian model (Itskhoki and Mukhin 2021)
 - ullet ∞ period representative agent model
 - Open economy with two goods: home (H) and foreign (F)
 - Segmented international bond markets
 - Production function with working capital and intermediaries
 - Calvo sticky prices
- Shocks
 - Productivity shock
 - Monetary policy shock
 - Capital flow shock
 - Domestic demand shock
 - Foreign demand shock
 - Import price shock

Households

- ▶ Period utility: $\left(\frac{C_t^{1-\sigma}-1}{1-\sigma}-\frac{N_t^{1+\varphi}}{1+\varphi}\right)\frac{\Omega_t}{\Omega_t}$
- ▶ Borrow and save in local currency bonds
- Invest in work capital
- ▶ The domestic demand shifter Ω_t :

$$\log (\Omega_t) = \rho_{\Omega} \log (\Omega_{t-1}) + \epsilon_{\Omega,t}$$
$$\epsilon_{\Omega,t} \sim iid (0, \sigma_{\Omega}^2)$$

Exports

► Foreign demand for Home goods:

$$Y_{Ht}^* \equiv C_{Ht}^* + Z_{Ht}^* + X_{Ft} = \gamma \left(\mathcal{P}_{Ht}^* \right)^{-\epsilon} \frac{\mathsf{AD}_t^*}{\mathsf{C}_t^*}$$

 γ : the weight of Home goods in Foreign final goods.

 $\mathcal{P}_{Ht}^* = \frac{P_{Ht}^*}{P_*^*}$: the relative price of Home goods to Foreign final goods.

▶ The aggregate foreign demand AD_t^* , :

$$\begin{split} &\log\left(AD_{t}^{*}\right) - \log\left(AD_{SS}^{*}\right) = \rho_{AD^{*}}\left(\log\left(AD_{t-1}^{*}\right) - \log\left(AD_{SS}^{*}\right)\right) + \epsilon_{AD^{*},t} \\ &\epsilon_{AD^{*},t} \sim \operatorname{iid}\left(0,\sigma_{AD^{*}}^{2}\right) \end{split}$$

Import Price

- \triangleright $\mathcal{P}_{Ft} \equiv \frac{P_{Ft}}{P_t}$: the relative price of foreign goods relative to Home final goods
- ► For the US,

$$\mathcal{P}_{Ft} = \alpha \xi_t + (1 - \alpha) \mathcal{Q}_t$$

• ξ_t : The exogenous component of the import price

$$\log(\xi_t) = \rho_{\xi} \log(\xi_{t-1}) + \epsilon_{\xi,t}$$
$$\epsilon_{\xi,t} \sim iid(0, \sigma_{\xi}^2)$$

- $Q_t \equiv \frac{P_t^* \mathcal{E}_t}{P_t}$: the real exchange rate
- $ightharpoonup \alpha = 0$ for the UK and Germany.

Other Blocks

▶ The production function is $Y_t = \left(e^{a_t}K_t^{\vartheta}L_t^{1-\vartheta}\right)^{1-\phi}X_t^{\phi}$, with the TFP a_t :

$$a_t =
ho_a a_{t-1} + \epsilon_{a,t}, \quad \epsilon_{a,t} \sim iid\left(0, \sigma_a^2\right)$$

The modified UIP condition is $i_t - i_t^* - E_t \Delta e_{t+1} = \psi_t - \chi b_t$, with the noise trader's demand ψ_t :

$$\psi_t = \rho_{\psi} \psi_{t-1} + \epsilon_{\psi,t}, \quad \epsilon_{\psi,t} \sim iid(0, \sigma_{\psi}^2)$$

The monetary policy rule is $i_t = \rho_m i_{t-1} + (1 - \rho_m) \phi_\pi \pi_t + v_t$, with the nominal interest rate innovation v_t :

$$v_t = \rho_v v_{t-1} + \epsilon_{v,t}, \quad \epsilon_{v,t} \sim iid(0, \sigma_v^2)$$

Intricate Current Account Determination

The current account surplus, or the net export, is given by

$$nx_t = \gamma (y_{Ht}^* - y_{Ft} - s_t) \tag{1}$$

where s_t is the log-deviation of the **terms of trade** $\frac{P_{Ft}}{P_{Ht}^*\mathcal{E}_t}$.

(1) can translate into

$$nx_t = \gamma \left(\underbrace{-(\epsilon - 1)p_{Ht}^* + \alpha(\epsilon - 1)\log(\xi_t) + (\epsilon(1 - \alpha) + \alpha)q_t}_{\text{expenditure switching}} + \underbrace{\log(\frac{AD_t^*}{AD_t})}_{\text{expenditure changing}} \right)$$

 AD_t (AD_t^*) is the sum of consumption, working capital investment, and intermediate good input for Home (Foreign).

Estimation

Calibration

Parameter	Meaning	Value	Source
β	Subjective discount factor	0.99	Conventional value
ϵ	Demand elasticity between Home and Foreign goods	1.5	Conventional value
$\frac{1}{\varphi}$	Macro Frisch elasticity	1	Conventional value
$\overset{\leftrightarrow}{\phi}$	Share of intermediate goods	0.5	Conventional value
θ	Capital share in the effective labor-capital combination	0.3	Conventional value
δ	Depreciation rate	0.02	Conventional value
κ	Parameter in the adjustment cost function	6.8	Conventional value
λ	Probability that firms cannot adjust their prices	0.75	Conventional value
χ	Stationarity parameter in the modified UIP condition	0.001	Itskhoki and Mukhin 2021

Note: These parameters are calibrated based on micro and macro data and align with values widely accepted in the international macroeconomics literature.

Bayesian Estimation

Parameters	Prior Mean	Post. Mean	Mode	90% HPD	Interval	Prior	Prior stdev
α	0.500	0.4633	0.4723	[0.3152,	0.5975]	Beta	0.1000
γ	0.070	0.0228	0.0240	[0.0165,	0.0290]	Beta	0.0200
ϕ_{π}	2.150	1.8935	1.8767	[1.7304,	2.0523	Norm	0.1000
$ ho_a$	0.600	0.9406	0.9426	[0.9242,	0.9579]	Beta	0.1000
$ ho_{\psi}$	0.600	0.8992	0.9049	[0.8686,	0.9300]	Beta	0.1000
$ ho_{AD^*}$	0.600	0.8935	0.9085	[0.8472,	0.9384]	Beta	0.1000
$ ho_m$	0.600	0.4448	0.4448	[0.3774,	0.5105]	Beta	0.1000
$ ho_v$	0.600	0.1754	0.1724	[0.1268,	0.2187	Beta	0.1000
$ ho_\Omega$	0.600	0.5346	0.5348	[0.4530,	0.6134]	Beta	0.1000
$ ho_{\xi}$	0.600	0.7236	0.7255	[0.6898,	0.7587]	Beta	0.1000
$std(\epsilon_a)$	0.010	0.0114	0.0111	[0.0100,	0.0127	Invg	\mathbf{Inf}
$std(\epsilon_{\psi})$	0.005	0.0049	0.0046	[0.0034,	0.0062]	Invg	\mathbf{Inf}
$std(\epsilon_{AD^*})$	0.100	0.1851	0.1718	[0.1382,	0.2261]	Invg	\mathbf{Inf}
$std(\epsilon_v)$	0.010	0.0045	0.0044	[0.0040,	0.0050]	Invg	\mathbf{Inf}
$std(\epsilon_\Omega)$	0.010	0.0183	0.0182	[0.0168,	0.0199]	Invg	\mathbf{Inf}
$std(\epsilon_{\xi})$	0.100	0.3291	0.2833	[0.1908,	0.4658]	Invg	Inf

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.

Quantitative Results

Impulse-Responses: Foreign Demand Shock

Impulse-Responses: Capital Flow Shock

Impulse-Responses: Import Price Shock

Impulse-Responses: TFP Shock

Impulse-Responses: Monetary Policy Shock

Impulse-Responses: Domestic Demand Shock

Forecast Error Variance Decomposition

Dominant CA Shock and Model Shocks

Loadings of Various Shocks onto the Dominant CA Shock

	110	5.5				
	US	DE	UK			
VARIABLES	Dominant CA	Dominant CA	Dominant CA			
TFP	0.0792	-0.0551	-0.0110			
	(0.0658)	(0.0430)	(0.0649)			
capital flow	0.477***	0.343***	0.113**			
	(0.0610)	(0.0340)	(0.0542)			
foreign demand	0.852***	0.845***	0.847***			
	(0.0614)	(0.0336)	(0.104)			
domestic demand	-0.0547	-0.230***	-0.0464			
	(0.0664)	(0.0461)	(0.0654)			
monetary policy	0.0861	-0.0544	-0.00855			
	(0.118)	(0.0454)	(0.0776)			
import price	0.407***	,	, ,			
	(0.111)					
Observations	` 187 [^]	187	187			
R-squared	0.642	0.826	0.711			
Debugt standard surers in populations *** = <0.01 ** = <0.05 * = <0.0						

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Empirical to Model Shock Series Comparision: US

Conclusion

Conclusion

- ▶ We document the statistical properties of the dominant drivers of the current account at business cycle frequency and over the long run for 3 countries
- ► We interpret the empirical evidence using an open-economy DSGE model with financial frictions
- ► At business cycle frequencies the current account is mainly driven by foreign demand with some role for capital flow shocks
- Over the long run we observe expenditure switching where the current account improves while the exchange rate depreciates

Appendix

US dominant CA shock at business cycle frequency: FEVD

US dominant CA shock in the long run: FEVD

US dominant CA shock at business cycle frequency: Exports and Imports

US dominant net exports shock at business cycle frequency

30

30 35

25 30 35

US dominant income balance shock at business cycle frequency

US dominant CA shock at business cycle frequency: Real ex. rate

US dominant CA shock at business cycle frequency: Nom. eff. ex. rate

US dominant exchange rate shock at business cycle frequency

Germany: dominant CA shock at business cycle frequency w/ TFP

Germany: dominant CA shock at business cycle frequency: FEVD

Germany: dominant CA shock at business cycle frequency w/o TFP 1991-2019

UK: dominant CA shock at business cycle frequency w/ TFP

UK: dominant CA shock at business cycle frequency: FEVD

UK: dominant CA shock at business cycle frequency w/o TFP 1991-2019

Impulse-Responses for UK: Foreign Demand Shock

Impulse-Responses for UK: Capital Flow Shock

Impulse-Responses for Germany: Foreign Demand Shock

Impulse-Responses for Germany: Capital Flow Shock

Impulse-Responses for Germany: Domestic Demand Shock

FEVD: UK & Germany

Historical Decomposition: US

Empirical to Model Shock Series Comparision: Germany

Empirical to Model Shock Series Comparision: UK

References

- Adolfson, M., Laséen, S., Lindé, J., and Villani, M. (2007). Bayesian estimation of an open economy dsge model with incomplete pass-through. *Journal of International Economics*, 72(2):481–511.
- Angeletos, G.-M., Collard, F., and Dellas, H. (2020). Business-cycle anatomy. *American Economic Review*, 110(10):3030–70.
- Bergin, P. R. (2006). How well can the new open economy macroeconomics explain the exchange rate and current account? *Journal of International Money and Finance*, 25:675–701.
- Chahrour, R., Cormun, V., Leo, P. D., Guerron-Quintana, P., and Valchev, R. (2021). Exchange rate disconnect revisited. Boston College Working Papers in Economics 1041, Boston College Department of Economics.
- Engel, C. (2016). Exchange rates, interest rates, and the risk premium. *American Economic Review*, 106(2):436–74.
- Itskhoki, O. and Mukhin, D. (2021). Exchange rate disconnect in general equilibrium. *Journal of Political Economy*, 129(8):000–000.
- Kim, S. and Lee, J. (2015). International macroecoomic fluctuations. *Macroeconomic Dynamics*, 19:1509–39.
- Miyamoto, W., Nguyen, T. L., and Oh, H. (2023). In Search of Dominant Drivers of the Real Exchange Rate. *The Review of Economics and Statistics*, pages 1–50.