

Blacktown Boys' High School 2022

HSC Trial Examination

Mathematics Extension 1

General **Instructions**

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions 11–14, show all relevant mathematical reasoning and/or calculations

Total marks: Section I – 10 marks (pages 3–7)

70

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II – 60 marks (pages 8–14)

- Attempt Questions 11–14
- Allow about 1 hour and 45 minutes for this section

STUDENT NAME:				

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2022 Higher School Certificate Examination.

Section I

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1–10. Only the multiple choice answer sheet will be marked.

- 1 Three women and three men are to be seated around a circular table. In how many ways can this be done if the men and women must alternate?
 - A. $3! \times 2!$
 - B. $2! \times 2!$
 - C. 5!
 - D. 6!
- 2 Consider the slope field below:

What is the possible differential equation for the slope field?

- A. $\frac{dy}{dx} = -\frac{x}{2}$
- B. $\frac{dy}{dx} = -\frac{y}{2}$
- C. $\frac{dy}{dx} = \frac{x}{2}$
- D. $\frac{dy}{dx} = \frac{y}{2}$

A coin is biased such that the probability of a head on any toss is 0.69. Which expression states the probability of a head appearing twice on this coin if this coin is tossed 50 times?

A.
$$\binom{50}{2} \times 0.31^2 \times 0.69^{48}$$

B.
$$50 \times 0.31^2 \times 0.69^{48}$$

C.
$$\binom{50}{2} \times 0.69^2 \times 0.31^{48}$$

D.
$$50 \times 0.69^2 \times 0.31^{48}$$

4 The polynomial $4x^4 - 2x^3 + 9x - 10$ has zeroes α , β , γ , and δ . What is the value of $\alpha\beta\gamma\delta(\alpha + \beta + \gamma + \delta)$?

A.
$$\frac{5}{4}$$

B.
$$-\frac{5}{4}$$

C.
$$\frac{9}{4}$$

D.
$$-\frac{9}{4}$$

5 Which expression is equal to $\int \cos^2 4x \, dx$?

$$A. \qquad \frac{x}{2} + \frac{\sin 8x}{16} + C$$

$$B. \qquad \frac{x}{2} - \frac{\sin 8x}{16} + C$$

$$C. \qquad \frac{x}{2} - \frac{\sin 4x}{16} + C$$

$$D. \qquad \frac{x}{2} + \frac{\sin 4x}{16} + C$$

- A committee of 3 students is to be chosen from a group consisting of 5 students who are girls and 4 students who are boys. What is the probability that 2 boys will be selected?
 - A. $\frac{1}{84}$
 - B. $\frac{5}{84}$
 - C. $\frac{1}{14}$
 - D. $\frac{5}{14}$
- 7 What is the vector projection of $p = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ onto $q = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$?
 - A. i+j
 - B. $\frac{56}{100}i + \frac{42}{75}j$
 - C. $\frac{56}{25}i + \frac{42}{25}j$
 - D. 56i + 42j

8 The graph of $y = \cos^{-1} x$ is shown below:

Which of the following is the graph of $y = 2 \cos^{-1}(x - 1)$?

A.

В.

C.

D.

- Jacob draws a vector from the origin to the point A(2, -4). Then, he draws another vector 2i + 3j from the point A, ending in point B. How far is point B from the origin?
 - A. $\sqrt{15}$ units
 - B. $\sqrt{16}$ units
 - C. $\sqrt{17}$ units
 - D. $\sqrt{19}$ units
- The graph of y = f(x) is shown below:

What is the domain and range of $y = f^{-1}(x)$?

- A. Domain: all real xRange: [-1,1]
- B. Domain: [-1,1] Range: all real y
- C. Domain: [-1,1] Range: [-1,1]
- D. Domain: all real *x* Range: all real *y*

End of Section 1 Examination continues on the next page

Section II

60 Marks

Attempt Questions 11-14

Start each question in a SEPARATE booklet. Extra writing booklets are available.

For Questions 11–14, your responses should all include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

a) i) Differentiate
$$y = 3x \sin^{-1}(2x)$$

ii) Evaluate
$$\int_0^{\frac{1}{3}} \frac{-1}{\sqrt{\frac{1}{9} - x^2}} dx$$

b) Solve
$$\frac{-x}{2x+1} \le \frac{1}{4}$$

c) Given that
$$X \sim B(n, p)$$
, $\mu = 3$, and $\sigma^2 = 2$, evaluate:

$$ii)$$
 n

d) Solve
$$3 \sin 2x = \cos x$$
, for $0 \le x \le 2\pi$. 2
Round your answers to 2 decimal places where necessary.

e) Use the substitution
$$u = x^3$$
 to evaluate
$$\int_0^1 x^2 e^{x^3} dx$$

Question 12 (15 marks)

a) Consider $\triangle ABC$ below where $\overrightarrow{AB} = \underbrace{c}_{\sim}$, $\overrightarrow{BC} = \underbrace{a}_{\sim}$, $\overrightarrow{AC} = \underbrace{b}_{\sim}$, and $\angle ABC = 90^{\circ}$.

Let M be the midpoint of AC.

i) Explain why
$$\overrightarrow{MB} = c - \frac{b}{2}$$

- ii) Find an expression for \overrightarrow{MC} in terms of \underbrace{a}_{c} , \underbrace{b}_{c} , and \underbrace{c}_{c} .
- b) i) Express $\sqrt{3} \sin x \cos x$ in the form $R \sin(x \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - ii) Hence, solve $\sqrt{3} \sin x \cos x = 1$, for $0 \le x \le 2\pi$.
- c) The graph of y = f(x) is shown below:

Sketch:

$$y = \frac{1}{f(x)}$$

ii)
$$y = \sqrt{f(x)}$$

d) Prove, using vectors, that the diagonals of a parallelogram bisect each other.

2

3

e) A restaurant knows that 33% of customers will order a take-away meal after dining in the restaurant.

In one particular week, the restaurant took 600 bookings.

Using the normal distribution table below, determine the probability that 200 will order a take-away meal after dining in the restaurant.

	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0	0.004	0.008	0.012	0.016	0.02	0.024	0.028	0.032	0.036
0.1	0.04	0.044	0.048	0.052	0.056	0.06	0.064	0.068	0.071	0.075
0.2	0.079	0.083	0.087	0.091	0.095	0.099	0.103	0.106	0.11	0.114
0.3	0.118	0.122	0.126	0.129	0.133	0.137	0.141	0.144	0.148	0.152
0.4	0.155	0.159	0.163	0.166	0.17	0.174	0.177	0.181	0.184	0.188
0.5	0.192	0.195	0.199	0.202	0.205	0.209	0.212	0.216	0.219	0.222

Question 13 (15 marks)

a) A large cylindrical tank is leaking. The volume, V, of water left in the tank at any given time, t, is given by

$$\frac{dV}{dt} = -k\sqrt{V}$$

where k is a constant.

i) Find the general solution of the differential equation above.

2

ii) The tank initially holds 100 litres of water and is leaking at a constant rate of 5L/min. How long will it take for the tank to be empty?

2

b) Part of the graph of $y = x^2 - 3x$ is shown below. A line is drawn through the point T(-1, 4) such that this line intersects the parabola again at the point (3, 0), as shown below:

i) Show that the equation of the line through T(-1, 4) and (3, 0) is x + y - 3 = 0.

2

1

ii) The shaded region in the diagram above is rotated about the x-axis. Calculate the exact volume of the solid formed.

2

- c) i) Show that $\frac{\sin \theta + \sin 3\theta + \sin 5\theta}{\cos \theta + \cos 3\theta + \cos 5\theta} = \tan 3\theta$
 - ii) Hence, solve $\frac{\sin \theta + \sin 3\theta + \sin 5\theta}{\cos \theta + \cos 3\theta + \cos 5\theta} = 1, \text{ for } 0 \le \theta \le 2\pi.$
- d) A coin is tossed 30 times.

2

Let *X* be the number of heads. Find the probability that the number of heads is within one standard deviation of the mean using the binomial distribution. Round off your answer to 3 decimal places.

BBHS 2022 HSC Mathematics Extension 1 Trial Examination

- e) i) Show that $\sec(2\sin^{-1}(x))$ can be expressed as $\frac{1}{1-2x^2}$
 - ii) Hence, or otherwise, solve $sec(2 sin^{-1}(x)) = -2$.

Question 14 (15 marks)

- a) i) Prove that n + 1 is a factor of $P(n) = 4n^3 + 18n^2 + 23n + 9$.
 - ii) Hence, use mathematical induction to prove that for all integers $n \ge 1$, $1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2n+1)(2n-1) = \frac{n(4n^2 + 6n 1)}{3}$
- b) The diagram below shows a chord of length x from the centre of the circle.

The radius of the circle has length r and the chord subtends an angle of 2θ at the centre of the circle.

- i) Show that the shaded area is $A = r^2(\theta \sin \theta \cos \theta)$.
- ii) Explain why $\frac{dA}{dt} = \frac{dA}{d\theta} \times \frac{d\theta}{dx} \times \frac{dx}{dt}$
- iii) If the radius is 2 units, how quickly is the shaded area, A, changing if $\frac{dx}{dt} = \sqrt{3} \quad \text{when } x = 1?$

Question 14 continues on the next page

c) Marine biologists decided to investigate the amount of algae in a pond.

On 1st January 2022, the population of algae in the pond was 1000. One marine biologist suggested the following mathematical model:

$$\frac{da}{dt} = -7.6 + \frac{1}{10}a(40 - a)$$

where a is the population of algae in the pond after time t years.

i) Show that the differential equation above can be expressed as

$$\frac{da}{dt} = -\frac{1}{10}(a-2)(a-38)$$

1

1

ii) Given that 3

$$\frac{-1}{(a-2)(a-38)} = \frac{1}{36(a-2)} - \frac{1}{36(a-38)}$$
 (Do NOT prove this.)
Using this result, show that
$$t = \frac{5}{18} \log_e \left| \frac{481(a-2)}{499(a-38)} \right|$$

iii) In how many months will the pond be empty of algae?

End of Examination

2022 Year 12 Mathematics Extension 1 Trial				
	Sample Solutions and Marking Criteri	a		
Section 1				
Q1	A	1 Mark Correct Answer		
	One man/woman is fixed in any one seat.	COTTCC Allswei		
	∴ 2 men/women are remaining (can be seated in 2! ways).			
	Remaining people can be seated in 3! Ways			
	∴ Total number of ways = 3! × 2!			
Q2	D	1 Mark		
	When $y > 0$, $\frac{dy}{dx} > 0$	Correct Answer		
	Only option D satisfies this.			
Q3	С	1 Mark		
	n = 50	Correct Answer		
	p = 0.69			
	q = 0.31			
	$P(2 heads) = {50 \choose 2} \times 0.69^2 \times 0.31^{48}$			
Q4	В	1 Mark Correct Answer		
	$\alpha + \beta + \gamma + \delta = -\frac{-2}{4} = \frac{1}{2}$	Correct/Miswer		
	$\alpha\beta\gamma\delta = -\frac{10}{4} = -\frac{5}{2}$			
	$\therefore \alpha\beta\gamma\delta(\alpha+\beta+\gamma+\delta) = -\frac{5}{2} \times \frac{1}{2} = -\frac{5}{4}$			
Q5	A	1 Mark Correct Answer		
	$\int \cos^2 4x dx = \frac{1}{2} \int (1 + \cos 8x) dx$	Correct Allswer		
	$\int \cos^2 4x dx = \frac{1}{2} \left(x + \frac{\sin 8x}{2} \right) + C$			
	$\int \cos^2 4x dx = \frac{x}{2} + \frac{\sin 8x}{16} + C$			
Q6	D	1 Mark		
	$P(2 \ boys) = \frac{\binom{4}{2} \times \binom{5}{1}}{\binom{9}{3}} = \frac{5}{14}$	Correct Answer		

C $proi_{-a} \mathbf{p} = \frac{\mathbf{p} \cdot \mathbf{q}}{\mathbf{p}} \times \mathbf{q}$	1 Mark Correct Answer
$proj{\mathbf{q}} \mathbf{p} = \frac{5 \times 4 + (-2) \times 3}{4^2 + 3^2} \times (4\mathbf{i} + 3\mathbf{j})$	
$proj{q} \mathbf{p} = \frac{14}{25} \times (4\mathbf{i} + 3\mathbf{j})$	
$proj{\boldsymbol{q}} \boldsymbol{p} = \frac{56}{25} \boldsymbol{i} + \frac{42}{25} \boldsymbol{j}$	
A	1 Mark
Option B is the graph of $y = 2\cos^{-1} x$.	Correct Answer
Option C is the graph of $y = \sin^{-1}(x - 1)$.	
Option D is the graph of $y = \sin^{-1} x$.	
C $\overrightarrow{OB} = \sqrt{4^2 + (-1)^2}$ $\overrightarrow{OB} = \sqrt{16 + 1}$ $\overrightarrow{OB} = \sqrt{17}$	1 Mark Correct Answer
For $y = f(x)$, the domain is all real x and the range is $[-1,1]$. For $y = f^{-1}(x)$, the domain and range of $y = f(x)$ interchange.	1 Mark Correct Answer
	$proj_{-q} p = \frac{p \cdot q}{q \cdot q} \times q$ $proj_{-q} p = \frac{5 \times 4 + (-2) \times 3}{4^2 + 3^2} \times (4i + 3j)$ $proj_{-q} p = \frac{14}{25} \times (4i + 3j)$ $proj_{-q} p = \frac{56}{25}i + \frac{42}{25}j$ A Option B is the graph of $y = 2\cos^{-1}x$. Option C is the graph of $y = \sin^{-1}(x - 1)$. Option D is the graph of $y = \sin^{-1}x$. C C 1 1 1 1 1 1 1 1 1 1

Section 2		
Section 2		
Q11a(i)	$y = 3x \sin^{-1}(2x)$	2 Marks
	$\frac{dy}{dx} = 3x \frac{2}{\sqrt{1 - 4x^2}} + 3\sin^{-1}(2x)$	Correct solution
	$\frac{1}{dx} = 3x \frac{1}{\sqrt{1 - 4x^2}} + 3\sin^{-1}(2x)$	
	dv = 6x	1 Mark
	$\frac{dy}{dx} = \frac{6x}{\sqrt{1 - 4x^2}} + 3\sin^{-1}(2x)$	Demonstrates that
	VI 12	
		$\frac{d}{dx}(\sin^{-1}(2x)) = \frac{2}{\sqrt{1 - 4x^2}}$
Q11a(ii)	$r^{\frac{1}{2}} - 1$ $r^{\frac{1}{2}} - 1$	2 Marks
	$\int_0^{\frac{1}{3}} \frac{-1}{\sqrt{1 - 9x^2}} dx = -\int_0^{\frac{1}{3}} \frac{1}{\sqrt{\frac{1}{9} - x^2}} dx$	Correct solution
	$\int_{0}^{3} \sqrt{1-9x^2}$ $\int_{0}^{3} \sqrt{\frac{1}{9}-x^2}$	
	$rac{1}{3}$ -1 $\frac{1}{2}$	1 Mark
	$\int_{0}^{\frac{1}{3}} \frac{-1}{\sqrt{1-9x^{2}}} dx = -\left[\sin^{-1} 3x\right]_{0}^{\frac{1}{3}}$	Demonstrates that
	1	1 1
	$\int_{0}^{\frac{1}{3}} \frac{-1}{\sqrt{1-9x^2}} dx = -(\sin^{-1} 1 - \sin^{-1} 0)$	$\int_{0}^{\frac{1}{3}} \frac{-1}{\sqrt{1-9x^2}} dx = -\left[\sin^{-1} 3x\right]_{0}^{\frac{1}{3}}$
	$\int_{0}^{2} \sqrt{1-9x^{2}} dx = (3111 - 1)^{-3111} dy$	V() VI JX
	$c^{\frac{1}{2}}$ 1 σ	
	$\int_{0}^{\frac{1}{3}} \frac{-1}{\sqrt{1-9x^{2}}} dx = -\frac{\pi}{2}$	
Q11b	$-\frac{x}{2x+1} \le \frac{1}{4}$	3 Marks
		Correct solution
	$x \neq -\frac{1}{2}$	
	-x 1	2 Marks
	$4 \times (2x+1)^2 \times \frac{-x}{2x+1} \le \frac{1}{4} \times (2x+1)^2 \times 4$	Demonstrates that
	$-4x(2x+1) \le (2x+1)^2$	$x \neq -\frac{1}{2}$
	$(2x+1)^2 + 4x(2x+1) \ge 0$	AND
	$(2x+1)(2x+1+4x) \ge 0$	$(2x+1)(6x+1) \ge 0$
	$(2x+1)(6x+1) \ge 0$	
	$^{\prime\prime\prime\prime\prime\prime\prime\prime\prime}$	1 Mark
	$=$ $^{\prime\prime}///////\lambda$	Demonstrates that
	1	1
	$V_{ij} = V_{ij} = V$	$x \neq -\frac{1}{2}$
	V_{i}	AND
	'///////λ	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Multiplies both sides by
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$(2x+1)^2$
	//////////////////////////////////////	
	1	
	$-\frac{1}{2}$ $-\frac{1}{6}$	
	Solution: $x < -\frac{1}{2}, x \ge -\frac{1}{6}$	

Q11c(i)	$\mu = np$	2 Marks
	$3 = np \dots (1)$	Correct solution
	$\sigma^2 = npq$	
	2 = npq (2)	1 Mark Demonstrates either $3 = np$
	Sub. (1) into (2)	and $2 = npq$
	2 = 3q	
	$q = \frac{2}{3}$	
	$p = 1 - \frac{2}{3} = \frac{1}{3}$	
Q11c(ii)	3 = np	1 Mark
	Sub. $p = \frac{1}{3}$	Correct answer
	$3 = n \times \frac{1}{3}$	
	n = 9	
Q11d	$3\sin 2x = \cos x, 0 \le x \le 2\pi$	2 Marks
	$3(2\sin x\cos x) = \cos x$	Correct solution
	$6\sin x\cos x = \cos x$	
	$6\sin x\cos x - \cos x = 0$	1 Mark
	$\cos x \left(6\sin x - 1\right) = 0$	Demonstrates that $3 \sin 2x = \cos x$
		can be expressed as
	$\cos x = 0 \text{ or } \sin x = \frac{1}{6}$	$6\sin x\cos x = \cos x$ and
	$x = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \text{ or } 0.17 \text{ or } 2.97 \text{ (to 2 d. p.)}$	finds one set of correct solutions
Q11e	Let $u = x^3$	3 Marks Correct solution
	$\frac{du}{dx} = 3x^2$	Correct solution
	$du = 3x^2 dx$	2 Marks
	$x^2 dx = \frac{du}{3}$	Correct integration in terms of u
	When $x = 1$, $u = 1^3 = 1$	
	When $x = 0$, $u = 0^3 = 0$	1 Mark Demonstrates either
	$\int_0^1 x^2 e^{x^3} dx = \frac{1}{3} \int_0^1 e^u du$	$x^2 dx = \frac{du}{3}$
	$\int_0^1 x^2 e^{x^3} dx = \frac{1}{3} [e^u]_0^1$	OR
		When $x = 1$, $u = 1^3 = 1$
	$\int_0^1 x^2 e^{x^3} dx = \frac{1}{3} (e^1 - e^0)$	When $x = 0$, $u = 0^3 = 0$

	_ a1	1
	$\int_0^1 x^2 e^{x^3} dx = \frac{1}{3} (e - 1)$	
Q12a(i)	We know that $\overrightarrow{AB} = \overset{c}{\underset{\sim}{C}}$.	1 Mark Correct explanation
	Since M is the midpoint of \overrightarrow{AC} , then $\overrightarrow{AM} = \frac{b}{2}$	
	$\overrightarrow{MA} = -\frac{b}{2}$	
	$\overrightarrow{MB} = \overrightarrow{MA} + \overrightarrow{AB}$	
	$\overrightarrow{MB} = -\frac{\overset{b}{\sim}}{\overset{\sim}{2}} + \overset{c}{\sim}$	
	$\overrightarrow{MB} = \overset{c}{\sim} - \frac{\overset{b}{\sim}}{2}$, as required	
Q12a(ii)	$\overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{BC}$	1 Mark Correct answer
	$\overrightarrow{MC} = \overset{c}{c} - \frac{\overset{b}{2}}{\overset{\sim}{2}} + \overset{a}{\overset{\sim}{\sim}}$	correct unswer
Q12b(i)	$\sqrt{3}\sin x - \cos x = R\sin(x - \alpha)$	2 Marks
	$\sqrt{3}\sin x - \cos x = R\sin x \cos \alpha - R\cos x \sin \alpha$	Correct solution
	Equate coefficients of $\sin x$ and $\cos x$	1 Mark
	$R\cos\alpha=\sqrt{3}(1)$	Evaluates either
	$R\sin\alpha=1(2)$	$\alpha = \frac{\pi}{6}$
	(2) ÷ (1)	OR
	$\tan \alpha = \frac{1}{\sqrt{3}}$	R=2
	$\alpha = \frac{\pi}{6}$	
	$(2)^2 + (1)^2 = 1$	
	$R^2 \sin^2 \alpha + R^2 \cos^2 \alpha = 1^2 + \sqrt{3}^2$	
	$R^2(\sin^2\alpha + \cos^2\alpha) = 4$	
	$R^2 = 4$	
	R=2	
	$\sqrt{3}\sin x - \cos x = 2\sin\left(x - \frac{\pi}{6}\right)$	
Q12b(ii)	$\sqrt{3}\sin x - \cos x = 1, 0 \le x \le 2\pi$	2 Marks Correct solution
	$2\sin\left(x-\frac{\pi}{6}\right)=1$	Correct Solution
	$\sin\left(x - \frac{\pi}{6}\right) = \frac{1}{2}$	

		T
	$ \overrightarrow{DB} = -b + a$	
	$\overrightarrow{DB} = \overset{a}{\underset{\sim}{}} - \overset{b}{\underset{\sim}{}}$	
	From (1),	
	$\overrightarrow{AO} = x\overrightarrow{AC} = x(\underbrace{a} + \underbrace{b}) \text{ and } \overrightarrow{OB} = y\overrightarrow{DB} = y(\underbrace{a} - \underbrace{b})$	
	Now,	
	$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$	
	a = xa + xb + ya - yb	
	a = (x+y)a + (x-y)b	
	Equate coefficients of $\overset{a}{\underset{\sim}{\sim}}$ and $\overset{b}{\underset{\sim}{\sim}}$	
	x + y = 1	
	x - y = 0	
	By inspection, $x = y = \frac{1}{2}$	
	$\overrightarrow{AO} = \frac{1}{2}\overrightarrow{AC}$	
	$\overrightarrow{OB} = \frac{1}{2} \overrightarrow{DB}$	
	Hence, the diagonals of a parallelogram bisect each other, as required.	
Q12e	p = 0.33	3 Marks Correct solution
	q = 0.67	Correct solution
	$\mu = np = 600 \times 0.33 = 198$	2 Marks
	$\sigma^2 = npq = 600 \times 0.33 \times 0.67 = 132.66$	Finds the correct z score
	$\sigma = \sqrt{132.66} = 11.5178 \dots$	
	$z = \frac{x - \mu}{\sigma} = \frac{200 - 198}{11.5178} = 0.173644$	1 Mark Evaluates either $\mu=198$ or
	Using the table, this equates to 0.068	$\sigma = \sqrt{132.66}$
	Probability is 6.8%	
Q13a(i)	$\frac{dV}{dt} = -k\sqrt{V}$	2 Marks
	$\frac{dV}{dt} = -k\sqrt{V}$ $\frac{1}{\sqrt{V}}dV = -kdt$	Correct solution
	$\frac{1}{\sqrt{V}}dV = -kdt$	1 Mark
	$V^{-\frac{1}{2}}dV = -kdt$	Demonstrates that
		$\frac{dV}{dt} = -k\sqrt{V}$
	<u> </u>	<u> </u>

	$\int V^{-\frac{1}{2}} dV = -k \int dt$	derives to
	$2V^{\frac{1}{2}} = -kt + C$	$\frac{1}{\sqrt{V}}dV = -kdt$
	$2\sqrt{V} = C - kt$	
	$\sqrt{V} = C - \frac{k}{2}t$	
	$V = \left(C - \frac{k}{2}t\right)^2$	
Q13a(ii)	$V = \left(C - \frac{k}{2}t\right)^2$	2 Marks Correct solution
	When $t = 0$, $V = 100$	
	$100 = \left(C - \frac{k}{2} \times 0\right)^2$	1 Mark Derives equation for V i.e.
	$100 = C^2$	$V = \left(10 - \frac{1}{4}t\right)^2$
	$C = \pm 10$	$V = \left(10 - \frac{1}{4}t\right)$
	Our equations are $V = \left(10 - \frac{k}{2}t\right)^2$ and $V = \left(-10 - \frac{k}{2}t\right)^2$	
	When $\frac{dV}{dt} = -5$, $V = 100$	
	$-5 = -k\sqrt{100}$	
	$k = \frac{1}{2}$	
	Our equations are $V=\left(10-\frac{1}{4}t\right)^2$ and $V=\left(-10-\frac{k}{4}t\right)^2$	
	Sub $V=0$ into both equations above	
	$0 = \left(10 - \frac{1}{4}t\right)^2$ and $0 = \left(-10 - \frac{k}{4}t\right)^2$	
	Solving the equation gives $t=\pm 40$	
	But $t > 0$ only.	
	It would take 40 minutes.	
Q13b(i)	$m = \frac{4-0}{-1-3} = \frac{4}{-4} = -1$	1 Mark Correct proof
	The equation of the line	demonstrating all steps logically
	$y - y_1 = m(x - x_1)$	iogically
	y - 0 = -(x - 3)	
	y = -x + 3	
	x + y - 3 = 0, as required	

Q13b(ii)	,	2 Marks
	$V = \pi \int_{a}^{b} y^2 dx$	Correct solution
	$\frac{1}{12} \left(\frac{3}{12} \right) \left(\frac{3}{12$	
	$V = \pi \int_{-1}^{3} ((3-x)^2 - (x^2 - 3x)^2) dx$	1 Mark
	$V = \pi \int_{-1}^{3} (9 + x^2 - 6x - x^4 + 6x^3 - 9x^2) dx$	Demonstrates the volume of the solid of revolution is given by
	$V = \pi \int_{-1}^{3} (-x^4 + 6x^3 - 8x^2 - 6x + 9) dx$	$V = \pi \int_{-1}^{3} ((3-x)^2 - (x^2 - 3x)^2) dx$
	$V = \pi \left[-\frac{x^5}{5} + \frac{3x^4}{2} - \frac{8x^3}{3} - 3x^2 + 9x \right]_{-1}^{3}$	
	$V = \pi \left(\frac{9}{10} + \frac{229}{30}\right)$	
	$V = \frac{128\pi}{15} u^3$	
Q13c(i)	$LHS = \frac{\sin \theta + \sin 3\theta + \sin 5\theta}{\cos \theta + \cos 3\theta + \cos 5\theta}$	2 Marks
		Correct proof
	$LHS = \frac{(\sin \theta + \sin 5\theta) + \sin 3\theta}{(\cos \theta + \cos 5\theta) + \cos 3\theta}$	4.44
	$LHS = \frac{2\sin\left(\frac{5\theta + \theta}{2}\right)\cos\left(\frac{5\theta - \theta}{2}\right) + \sin 3\theta}{2\cos\left(\frac{5\theta + \theta}{2}\right)\cos\left(\frac{5\theta - \theta}{2}\right) + \cos 3\theta}$	1 Mark Uses sums to products formula to demonstrate that
	$LHS = \frac{2\sin 3\theta\cos 2\theta + \sin 3\theta}{2\cos 3\theta\cos 2\theta + \cos 3\theta}$	$LHS = \frac{2\sin 3\theta \cos 2\theta + \sin 3\theta}{2\cos 3\theta \cos 2\theta + \cos 3\theta}$
	$LHS = \frac{\sin 3\theta (2\cos 2\theta + 1)}{\cos 3\theta (2\cos 2\theta + 1)}$	
	$LHS = \frac{\sin 3\theta}{\cos 3\theta}$	
	$LHS = \tan 3\theta$	
	LHS = RHS	
Q13c(ii)	$\frac{\sin\theta + \sin 3\theta + \sin 5\theta}{\cos\theta + \cos 3\theta + \cos 5\theta} = 1, 0 \le \theta \le 2\pi$	1 Mark All answers correct
	$\tan 3\theta = 1$	
	$3\theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}, \frac{17\pi}{4}, \frac{21\pi}{4}$	
	$\theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{3\pi}{4}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{7\pi}{4}$	
Q13d	$\mu = np = 30 \times \frac{1}{2} = 15$	2 Marks Correct solution
	$\sigma^2 = npq = 30 \times \frac{1}{2} \times \frac{1}{2} = 7.5$	

	$\sigma = \sqrt{7.5}$	1 Mark Demonstrates that
	$P(\mu - \sigma \le X \le \mu + \sigma) = P(12.261 \le X \le 17.739)$	$P(\mu - \sigma \le X \le \mu + \sigma)$
	$P(\mu - \sigma \le X \le \mu + \sigma) = P(X = 13, 14, 15, 16, 17)$	$= P(12.261 \le X)$ ≤ 17.739
	$P(\mu - \sigma \le X \le \mu + \sigma)$ (30) (1) 30 (30) (1) 30 (30) (1) 30	≤ 17.739)
	$= {30 \choose 13} \left(\frac{1}{2}\right)^{30} + {30 \choose 14} \left(\frac{1}{2}\right)^{30} + {30 \choose 15} \left(\frac{1}{2}\right)^{30} + {30 \choose 16} \left(\frac{1}{2}\right)^{30} + {30 \choose 17} \left($	
	$(\mu - \sigma \le X \le \mu + \sigma) \approx 0.638$	
Q13e(i)	Let $\alpha = \sin^{-1} x$	1 Mark
	$\sin \alpha = x$	Correct proof demonstrating all steps
	$\sec(2\sin^{-1}(x)) = \sec 2\alpha$	logically
	$\sec(2\sin^{-1}(x)) = \frac{1}{\cos 2\alpha}$	
	$\sec(2\sin^{-1}(x)) = \frac{1}{1 - 2\sin^2\alpha}$	
	$\sec(2\sin^{-1}(x)) = \frac{1}{1 - 2x^2}, \text{ as required}$	
Q13e(ii)	$\sec(2\sin^{-1}(x)) = -2$	2 Marks Correct solution
	$\frac{1}{1-2x^2} = -2$	Correct solution
	$1 - 2x^2 = -\frac{1}{2}$	1 Mark Demonstrates that
	$2x^2 = \frac{3}{2}$	$\frac{1}{1-2x^2} = -2$
	$x^2 = \frac{3}{4}$	
	$x = \pm \frac{\sqrt{3}}{2}$	
Q14a(i)	$P(n) = 4n^3 + 18n^2 + 23n + 9$	1 Mark
	$P(-1) = 4 \times (-1)^3 + 18 \times (-1)^2 + 23 \times (-1) + 9$	Correct proof demonstrating all steps
	P(-1) = -4 + 18 - 23 + 9	logically
	P(-1) = 0	
	n+1 is a factor of $P(n)$	
Q14a(ii)	When $n=1$,	3 Marks
	$LHS = 1 \times 3 = 3$	Correct solution
	$RHS = \frac{1(4 \times 1^2 + 6 \times 1 - 1)}{3} = 3 = LHS$	

The statement is true for n = 1.

Assume the statement is true for n=k, where k is an integer $k\geq 1$

$$1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2k+1)(2k-1) = \frac{k(4k^2 + 6k - 1)}{3}$$

Prove the statement is true for n = k + 1

$$1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2k+1)(2k-1) + (2k+3)(2k+1)$$
$$= \frac{(k+1)(4k^2 + 14k + 9)}{3}$$

Proof:

$$LHS = 1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2k+1)(2k-1) + (2k+3)(2k+1)$$

$$LHS = \frac{k(4k^2 + 6k - 1)}{3} + (2k+3)(2k+1)$$

$$LHS = \frac{k(4k^2 + 6k - 1) + 3(2k+3)(2k+1)}{3}$$

$$LHS = \frac{4k^3 + 6k^2 - k + 3(4k^2 + 8k + 3)}{3}$$

$$LHS = \frac{4k^3 + 6k^2 - k + 12k^2 + 24k + 9}{3}$$

$$LHS = \frac{4k^3 + 18k^2 + 23k + 9}{3}$$

Let
$$P(k) = 4k^3 + 18k^2 + 23k + 9$$

From part (i), k + 1 is a factor of P(k)

Now,

$$k+1 = \frac{4k^{2} + 14k + 9}{4k^{3} + 18k^{2} + 23k + 9}$$

$$-\frac{4k^{3} + 4k^{2}}{14k^{2} + 23k + 9}$$

$$-\frac{14k^{2} + 14k}{9k + 9}$$

$$-\frac{9k + 9}{0}$$

$$LHS = \frac{4k^3 + 18k^2 + 23k + 9}{3}$$

2 Marks

Proves the statement is true for n=1 and demonstrates that for n=k+1,

$$LHS = \frac{4k^3 + 18k^2 + 23k + 9}{3}$$

1 Mark Proves the statement is true for n=1

		T
	$LHS = \frac{(k+1)(4k^2 + 14k + 9)}{3}$	
	LHS = RHS	
	Hence, by mathematical induction, the statement is true for all integers	
	$n \ge 1$.	
Q14b(i)	$A_{shaded} = A_{sector} - A_{triangle}$	2 Marks
	$A_{sector} = \frac{1}{2}r^2\theta$	Correct proof demonstrating all steps logically
	$A_{sector} = \frac{1}{2}r^2 \times 2\theta$	
	$A_{sector} = r^2 \theta$	1 Mark Demonstrates either
	$A_{triangle} = \frac{1}{2} \times \text{base} \times \text{height}$	$A_{sector} = \theta r^2$
	height = x	OR
	-x	$A_{triangle} = r^2 \sin \theta \cos \theta$
	Using Pythagoras' theorem in the triangle above,	
	height of triangle = $\sqrt{r^2 - x^2}$	
	So, base = $2 \times \sqrt{r^2 - x^2}$	
	Now,	
	$\sin\theta = \frac{\sqrt{r^2 - x^2}}{r}$	
	$\therefore \sqrt{r^2 - x^2} = r \sin \theta$	
	$\therefore base = 2r \sin \theta$	
	Also,	
	$\cos\theta = \frac{x}{r}$	
	$x = r \cos \theta$	
	$\therefore \text{ height} = r \cos \theta$	
	So,	
	$A_{triangle} = \frac{1}{2} \times 2r \sin \theta \times r \cos \theta$	

	$A_{triangle} = r^2 \sin \theta \cos \theta$	
	Hence,	
	$A_{shaded} = \theta r^2 - r^2 \sin \theta \cos \theta$	
	$A_{shaded} = r^2(\theta - \sin\theta\cos\theta)$	
Q14b(ii)	$\frac{dA}{dt}$ is the change in area over time.	1 Mark Correct explanation
	The shaded area, A , is dependent on the value of θ ; therefore, the change in the shaded area, A , changes with the value of θ , i.e., $\frac{dA}{d\theta}$.	Correct explanation
	As θ changes, so does the value of x ; therefore, the change in the value of θ changes with the value of x , i.e., $\frac{d\theta}{dx}$.	
	All of these changes happen over time, i.e., $\frac{dx}{dt}$.	
	As a result, the change in the shaded area, A , is dependent on the changes of the values of θ , x , and t , i.e., $\frac{dA}{dt} = \frac{dA}{d\theta} \times \frac{d\theta}{dx} \times \frac{dx}{dt}$.	
Q14b(iii)	$\frac{dA}{dt} = \frac{dA}{d\theta} \times \frac{d\theta}{dx} \times \frac{dx}{dt}$	3 Marks Correct solution
	$\frac{dx}{dt} = \sqrt{3}$	2 Marks Evaluates
	When $x = 1$, $\theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$	$\frac{dA}{d\theta} = 6$
	Now,	AND
	$A = r^2(\theta - \sin\theta\cos\theta)$	$\frac{d\theta}{dx} = -\frac{1}{\sqrt{3}}$
	$A = r^2\theta - r^2\sin\theta\cos\theta$	$\frac{1}{dx} - \frac{1}{\sqrt{3}}$
	$\frac{dA}{d\theta} = r^2 - (-r^2 \sin^2 \theta + r^2 \cos^2 \theta)$	1 Mark
	$\frac{dA}{d\theta} = r^2 - (r^2 \cos^2 \theta - r^2 \sin^2 \theta)$	Evaluates either dA
	$\frac{dA}{d\theta} = r^2 - \left(r^2(\cos^2\theta - \sin^2\theta)\right)$	$\frac{dA}{d\theta} = 6$ OR
	Sub $r=2$ and $\theta=\frac{\pi}{3}$	$\frac{d\theta}{dx} = -\frac{1}{\sqrt{3}}$
	$\frac{dA}{d\theta} = 2^2 - \left(2^2 \left(\cos^2\left(\frac{\pi}{3}\right) - \sin^2\left(\frac{\pi}{3}\right)\right)\right)$	$dx \sqrt{3}$
	$\frac{dA}{d\theta} = 4 - \left(4\left(\frac{1}{4} - \frac{3}{4}\right)\right)$	
	$\frac{dA}{d\theta} = 4 - (1 - 3)$	
	$\frac{dA}{d\theta} = 4 + 2 = 6$	
	Now,	
	12	

	$\theta = \cos^{-1}\left(\frac{x}{2}\right)$	
	$\frac{d\theta}{dx} = \frac{-\frac{1}{2}}{\sqrt{1 - \frac{x^2}{4}}}$	
	Sub $x = 1$	
	$\frac{d\theta}{dx} = \frac{-\frac{1}{2}}{\sqrt{1 - \frac{1^2}{4}}}$	
	$\frac{d\theta}{dx} = -\frac{1}{\sqrt{3}}$	
	So,	
	$\frac{dA}{dt} = 6 \times -\frac{1}{\sqrt{3}} \times \sqrt{3} = -6$	
	The shaded area, A , is decreasing at 6 units/time.	
Q14c(i)	$-\frac{1}{10}(a-2)(a-38) = -\frac{1}{10}(a^2 - 40a + 76)$	1 Mark Correct proof demonstrating all steps
	$-\frac{1}{10}(a-2)(a-38) = -\frac{a^2}{10} + 4a - 7.6$	Ç ,
	$-\frac{1}{10}(a-2)(a-38) = 4a - \frac{a^2}{10} - 7.6$	
	$-\frac{1}{10}(a-2)(a-38) = \frac{1}{10}a(40-a) - 7.6$	
	$-\frac{1}{10}(a-2)(a-38) = -7.6 + \frac{1}{10}a(40-a)$	
Q14c(ii)	$\frac{da}{dt} = -7.6 + \frac{1}{10}a(40 - a)$	3 Marks
		Correct proof demonstrating all steps
	$\frac{da}{dt} = -\frac{1}{10}(a-2)(a-38)$	logically
	$-\frac{1}{(a-2)(a-38)}da = \frac{1}{10}dt$	2 Marks
	$\left(\frac{1}{36(a-2)} - \frac{1}{36(a-38)}\right)da = \frac{1}{10}dt$	Demonstrates $\frac{1}{36}\log_e a-2 $
	$\int \left(\frac{1}{36(a-2)} - \frac{1}{36(a-38)}\right) da = \int \frac{1}{10} dt$	$-\frac{1}{36}\log_e a-38 $
	$\int \frac{1}{36(a-2)} da - \int \frac{1}{36(a-38)} da = \frac{1}{10} \int dt$	$= \frac{t}{10} + C$ AND
	$\left \frac{1}{36} \log_e a - 2 - \frac{1}{36} \log_e a - 38 = \frac{t}{10} + C$	correct value of <i>C</i>

		$\frac{1}{36}\log_e\left \frac{a-2}{a-38}\right = \frac{t}{10} + C$	$\frac{1}{36}\log_e\left(\frac{998}{962}\right) = C$
		Sub $t=0$ and $a=1000$	
		$\frac{1}{36}\log_e\left \frac{1000-2}{1000-38}\right = \frac{0}{10} + C$	1 Mark Demonstrates that
		$\frac{1}{36}\log_e\left(\frac{998}{962}\right) = C$	$\frac{1}{36}\log_e a-2 $
		$\frac{1}{36}\log_e\left(\frac{499}{481}\right) = C$	$-\frac{1}{36}\log_e a - 38 = \frac{t}{10} + C$
		$\frac{1}{36}\log_e\left \frac{a-2}{a-38}\right = \frac{t}{10} + \frac{1}{36}\log_e\left(\frac{499}{481}\right)$	10
		$\frac{1}{36}\log_e\left \frac{a-2}{a-38}\right - \frac{1}{36}\log_e\left(\frac{499}{481}\right) = \frac{t}{10}$	
		$\frac{1}{36}\log_e\left \frac{481(a-2)}{499(a-38)}\right = \frac{t}{10}$	
		$\left. \frac{10}{36} \log_e \left \frac{481(a-2)}{499(a-38)} \right = t$	
		$t = \frac{5}{18} \log_e \left \frac{481(a-2)}{499(a-38)} \right $	
Q1	L4c(iii)	$t = \frac{5}{18} \log_e \left \frac{481(a-2)}{499(a-38)} \right $	1 Mark Correct answer
		$Sub\ a=0$	
		$t = \frac{5}{18} \log_e \left \frac{481(0-2)}{499(0-38)} \right $	
		$t = 0.8281 \dots \text{ years}$	
		$t = 9.937 \dots months$	
		$t \approx 10 \text{ months}$	
		It will take approximately 10 months.	
		11 /	