Thermodynamics

	Thermo - Heat (temperature) - Related to thermal energy
	Dynamic - Motion -> Related to mechanical energy
-)	Conversion of Thermal Energy to Mechanical Energy.
	Ex -> Steam Engine (Steam is used to move the train)
-)	Mechanical Energy to Thermal Energy (Rubbing of hands)
->	Thermodynamical system: - Croup of particles having some temperature
/	monthological de la Processa (poken) (Dillogent Japan Aphyanding
	рнезьиче and volume (Ex-Pressure cooker) (Different from sorvoundings
	Theymodynamical system - close 0000 > wall Souroundings - Other than the system 000 > thermodyna
\Rightarrow	
=)	Diathermic wall (Heat Upo allowed)
	walls: - Separates system from sorveundings walls - Diathermic wall (Heat flow allowed) Adiabatic wall (Heat flow not allowed)
	P
#	Thermodynamical Parameters
	Temperature, Heat (Internal Energy), Bressure, Volume
#	Thermodynamical Processes
(I)	[Isothermal process]: - Temperature remains constant (DT=0)
	(Heat dene ke board Pressure and valume change has but Temperature same make)
•	Walls - Diathermic
•	SINU DELOCESS EX > Melting, Boiling, Slow Compression.
0	Equation: PV = nRT = number of moles R = Gras constant
	PV = constant PV = RT (one male of gas)
	Pressure - Volume Indicator Diagram
	P Specific heat = $\frac{dQ}{dt}$ = $\frac{dQ}{dt}$
	Trotherma ear compression P & 1
	The thermal expansion $P \propto \frac{1}{V}$ dt
	\rightarrow
•	Work done in Isothermal Brocess T=constant
	W = force x Displacement
	(7.6
	= PXA X DL

Ago	on kisi system ko heat de to ya volume change hog ya state ya temperative change hoga (Internal Energy) ya	ye sab kuch hogo
	ja state ya temperativie change hoga (International John Company)	DATE
. '	dQ = dU + dW	PAGE
en aprose	Application of 1st law	
mperature and	In Isothermal Process :- (DT=0 and no state change	
houge!	10 - 40	
(a)	Province work done table my	Tratternal frame
•	Ludhani Ta hant di usse volume baard, la go	
(b)	da and du - ve hain -ve work done volume rans room	P2
	ko kam kanne ke liye jitna wonk korna pada utni heat nil	kaini kogi.
W= P-dV vd	To us respects Teathermal Compression.	Expansion the work
= P(find volume		Compression ve work
V (2)		
	$\therefore 0 = dU + dW \qquad \therefore dW = -dU$	
Advabatic expansion	work done the hai matlab expansion hug hai matl	ab volume
•	inviense hui. Adiabatic process mein bahan se kei heat no	1.5
	expansion kavane ke live system ki internal energy ka	
ndiabatic ,	aus jisti vajah se temperature kam ho gaya. Aur di	
•	Work done -ve hai mattab compression jisti vajah se	tomagneture
	badh gaya. Awn du tre ho gaga [du = (temperature) = final to	emperature - Initial temperature
	(Kinal temp > Initia	temp.)
\Rightarrow	When state changes	
(3)	Boiling process	
	100° Water -> 100° steam (DT=0)	
V	Agar I glass water to steam banaye to steam I glass se	zyada baneai
	kyunki expansion hoga. To work to hoga.	0
	$\Delta Q = \Delta U + \Delta U \qquad \Delta U = \Delta Q - \Delta W$	
(4)	Melting process	
	0°C ice -> 0° water	
	Melting mein expansion bahut kam hota isiliye work done bh	i neglialible hat he
	(DW ≈ D volume remains some)	J. S. Will ridg.
	$\Delta Q = \Delta U$	1
		1

Relation between cp and Cv Molar specific heat capacity do=ncdT-u) (a) If volume of the system remains constant (DV=0) . da=du +dw = da=dw+P.dv => da = dU (From ci) da=ncvdT) (cv = specific heat at constant valume) =) do = noudT (-ii) If pressure of the system remains constant (DP=0) da = do +dw => ncpdT = ncvdT +PdV (Exom as and ass) (-: PV = nRT =) - P. dV = nR. dT) ricport = ricy of + ri Rott Mayer's formula $C_p - C_V = R$ $C_p > C_V$ Cy chhata hai kyunki agar hum kisi system ko heat denge to sixty temperature badhega work done nati hoga kyunki volume constant hai. Co mein pressure constant hai matlab volume in crease hogi (expansion) jiski vajah se temperature kam ho jacrega uss temperature ko vaapis badhane ke lige aur heat deni padegi. Jiski vajah se Cp bada hai 5 males of oxygen gas heated at a constant valume from 10°c to 20°c. What will be the change in internal energy of the gas? $C_p = 8 \text{ cal } / \text{mol} / ^{\circ} C$ $R = 8.36 \text{ J/mol} / ^{\circ} C$ $= \frac{8.36}{4.18} = 2 \text{ cal / mol} / ^{\circ} C$ $C_V = C_p - R = 8 - 2 = 6 \text{ ral/mol/°C}$ a= ncvdT = 5 x 6 x (20°c-10°c) = 300 cal. A thermodynamic process is shown in figure. The pressure and volume cornes ponding to some points in the figure PA = 3×10 Pa VA = 2×10 m3 Pr = 8×10 Pa VB = 5×10-3 m3, In process AB, 600 J of heat is added to the system and in PHOCESS BC, 2007 of heat is added to the system. What is the change in internal energy? sol da = 600 + 200 = 800] dQ = dU + Anea under the curve $800 = dU + (8 \times 10^4) \times (3 \times 10^{-3})$ 800 = dU + 240 dU = 560 J AB - 400J BC - 100J What is the heat absorbed by system during AC Sal for whole process, DU=0 da = du + dw => da = dw = QAB + QBC + QAC = Ay (DABC) => 500 - QAC = 40 =) QAC = 460 J

->

(i)

Ü

(iii)