Índice general

3.	Transformaciones lineales	2
	3.1. Núcleo e imagen de una transformación lineal	2

Capítulo 3

Transformaciones lineales

Ya sabemos cuándo una función T entre espacios vectoriales sobre un mismo cuerpo \mathbb{K} es una función lineal.

En el curso de Álgebra 1, cuando trabajamos con funciones, definimos el recorrido de una función y al trabajar con polinomios (que no son funciones lineales en general) vimos que cada polinomio de grado $n \in \mathbb{N}$ tiene exactamente n raíces. Esta semana la dedicaremos al estudio del recorrido y las raíces de transformaciones lineales. A diferencia de los polinomios, que tienen una cantidad finita de raíces, veremos que una transformación lineal tiene una o infinitas raíces.

Al recorrido de una transformación lineal le llamaremos imagen de la transformación lineal y al conjunto de sus raíces, núcleo.

3.1. Núcleo e imagen de una transformación lineal

Definición 3.1. Sea $T: U \longrightarrow V$ una transformación lineal. El **espacio nulo o núcleo de** T, que se representa mediante $\ker(T)$, es el conjunto de los elementos $u \in U$ para los cuales $T(u) = \theta_V$, es decir,

$$\ker(T) = \{ u \in U : T(u) = \theta_V \} \subseteq U.$$

Más adelante se demostrará que $\ker(T)$ es un subespacio vectorial de U.

La **imagen** de T, que se representa mediante $\operatorname{im}(T)$, es el conjunto de los elementos $v \in V$ para los que existe $u \in U$ tal que T(u) = v, es decir,

$$\operatorname{im}(T) = \{v \in V \ : \ \exists \, u \in U \ : \ T(u) = v\} = \{T(u) \ : \ u \in U\} \subseteq V.$$

Ejemplo 3.2. Calculemos el núcleo y la imagen de las siguientes aplicaciones lineales entre los espacios vectoriales dados.

1.
$$T_1: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T_1((x, y, z)^T) = (2x + 3y, 3y, 4x - 2y)^T$,

$$\ker(T_1) = \{(x, y, z)^T \in \mathbb{R}^3 : (2x + 3y, 3y, 4x - 2y)^T = (0, 0, 0)^T\},$$

$$= \{(x, y, z)^T \in \mathbb{R}^3 : x = y = 0\},$$

$$= \langle \{(0, 0, 1)^T\} \rangle.$$

Por otro lado (aunque más adelante veremos una forma más sencilla de calcular la imagen de aplicaciones lineales)

$$\operatorname{im}(T_1) = \{(u, v, w)^T \in \mathbb{R}^3 : \exists (x, y, z)^T \in \mathbb{R}^3 : (2x + 3y, 3y, 4x - 2y)^T = (u, v, w)^T \},$$

por tanto, im (T_1) está formada por los vectores $(u, v, w)^T \in \mathbb{R}^3$ para los que el sistema de ecuaciones

$$2x + 3y = u,$$
$$3y = v,$$
$$4x - 2y = w,$$

tiene solución. De la segunda ecuación podemos calcular el valor de $y = \frac{v}{3}$. Insertando este valor para y en la primera ecuación se tiene que 2x = u - v, es decir, $x = \frac{u - v}{2}$ y, por último, con estos valores de x e y la tercera ecuación también se satisface si y solo si

$$2(u-v) - \frac{2}{3}v = w \iff 6u - 8v - 3w = 0.$$

Así,

$$\operatorname{im}(T_1) = \left\{ (u, v, w)^T \in \mathbb{R}^3 : 6u - 8v - 3w = 0 \right\},$$

$$= \left\{ \left(u, v, 2u - \frac{8}{3}v \right)^T : u, v \in \mathbb{R} \right\},$$

$$= \left\langle \left\{ (1, 0, 2)^T, (0, 1, -8/3)^T \right\} \right\rangle.$$

2. $T_2: \mathbb{C} \longrightarrow \mathbb{R}^4 \ tal \ que$

$$T_2(a+ib) = \begin{pmatrix} a \\ b \\ -b \\ a \end{pmatrix}.$$

Ésta es una transformación lineal entre los espacios vectoriales reales \mathbb{C} y \mathbb{R}^4 .

$$\ker(T_2) = \left\{ z \in \mathbb{C} : T_2(z) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\} = \{0\}.$$

Además

$$\operatorname{im}(T_2) = \{(x, y, z, t)^T \in \mathbb{R}^4 : \exists z \in \mathbb{C} : T_2(z) = (x, y, z, t)^T \},$$

La imagen de T_2 está formada, por tanto, por los vectores $(x, y, z, t)^T$ para los que es posible encontrar $a + ib \in \mathbb{C}$, con $a, b \in \mathbb{R}$ de modo que

$$a = x,$$

$$b = y,$$

$$-b = z,$$

$$a = t.$$

Las ecuaciones anteriores tienen solución si y solo si y = -z y x = t. De este modo,

$$\operatorname{im}(T_2) = \left\{ (x, -z, z, x)^T \in \mathbb{R}^4 : x, z \in \mathbb{R} \right\} = \left\langle \left\{ (1, 0, 0, 1)^T, (0, -1, 1, 0)^T \right\} \right\rangle.$$

Más adelante veremos una manera sencilla de determinar la imagen de una transformación lineal.

3. La transformación nula entre los \mathbb{K} -e.v. U y V, $\Theta: U \to V$, es tal que

$$\ker(\Theta) = U, \quad \operatorname{im}(\Theta) = \{\theta_V\}.$$

4. La transformación identidad $id: U \to U$ tal que

$$\forall u \in U : id(u) = u$$

satisface

$$\ker(\mathrm{id}) = \{\theta_U\}, \quad \operatorname{im}(\mathrm{id}) = U.$$

El núcleo y la imagen de una transformación lineal $T:U\to V$ son s.e.v. de U y V respectivamente. Este resultado se demuestra en el siguiente lema.

Lema 3.3. Sean U y V e.v. sobre un mismo cuerpo \mathbb{K} . Sea $T:U\longrightarrow V$ una transformación lineal, entonces el conjunto $\ker(T)$ es subespacio vectorial de U y el conjunto $\operatorname{Im}(T)$ es s.e.v. de V.

Demostración. Demostremos primero que ker(T) es s.e.v. de U:

- 1. Dado que $T(\theta_U) = \theta_V$ se cumple que $\theta_U \in \ker(T)$.
- 2. Si $u, v \in \ker(T)$, entonces $T(u) = \theta_V$ y $T(v) = \theta_V$, pero entonces

$$T(u+v) = T(u) + T(v) = \theta_V + \theta_V = \theta_V \implies u+v \in \ker(T),$$

es decir, ker(T) es cerrado para la suma.

3. Por último, si $u \in \ker(T)$ y $\alpha \in \mathbb{K}$, entonces

$$T(\alpha u) = \alpha T(u) = \alpha \theta_V = \theta_V \implies \alpha u \in \ker(T),$$

es decir, ker(T) es cerrado para el producto.

Como $\theta_U \in \ker(T)$ y $\ker(T)$ es cerrado para la suma y el producto, se cumple que $\ker(T)$ es s.e.v. de U. La dimensión de este s.e.v. de U se denomina **nulidad de** T, y se representa mediante $\eta(T)$, como $\ker(T)$ es s.e.v. de U se cumple que

$$0 \le \eta(T) \le \dim(U)$$
.

Además $\ker(T) = \{\theta_U\}$ si y solo si $\eta(T)$ es igual a 0.

Demostremos ahora que im(T) es s.e.v. de V.

- 1. Dado que $T(\theta_U) = \theta_V$ se cumple que $\theta_V \in \text{im}(T)$.
- 2. Supongamos que $v, w \in V$ son elementos de $\operatorname{im}(T)$. Esto significa que es posible encontrar pre-imágenes para v y w en U, es decir, existen vectores $u_1, u_2 \in U$ tales que $T(u_1) = v$ y $T(u_2) = w$. Como T es lineal,

$$T(u_1 + u_2) = T(u_1) + T(u_2) = v + w,$$

esto indica que $v + w \in \text{im}(T)$ y im(T) es, por tanto, cerrado para la suma.

3. Por otro lado, si $v \in \text{im}(T)$ (existe $u \in U$ de modo que T(u) = v) y $\alpha \in \mathbb{K}$, entonces

$$T(\alpha u) = \alpha T(u) = \alpha v \implies \alpha v \in \operatorname{im}(T)$$

y im(T) es entonces cerrado para el producto.

Como $\theta_V \in \text{im}(T)$ y este conjunto es cerrado tanto para el producto como para la suma, se cumple que él es s.e.v. de V. Su dimensión, a la que llamamos rango de T y representamos por $\mathbf{r}(T)$ es tal que

$$0 \le r(T) \le \dim(V)$$
.

Además im(T) = V si y solo si r(T) = dim(V).

Ejemplo 3.4. En el ejemplo anterior se cumple que

- 1. $\eta(T_1) = 1, r(T_1) = 2,$
- 2. $\eta(T_2) = 0, r(T_2) = 2,$
- 3. $\eta(\Theta) = \dim(U), \ r(\Theta) = 0,$
- 4. $\eta(id) = 0$, r(id) = dim(U).

Antes mencionamos que más adelante veríamos una manera más sencilla de determinar la imagen de una transformación lineal. Esta manera más sencilla es la que da el siguiente lema.

Lema 3.5. Sean U y V e.v. sobre un mismo cuerpo \mathbb{K} . Sea además $T:U\to V$ una transformación lineal.

Si $\{u_1, \ldots, u_n\}$ es una base de U, entonces

$$\operatorname{im}(T) = \langle \{T(u_1), T(u_2), \dots, T(u_n)\} \rangle.$$

Demostración. Demostremos que im $(T) \subseteq \langle \{T(u_1), T(u_2), \dots, T(u_n)\} \rangle$.

Sea $v \in \text{im}(T)$. Entonces existe $u \in U$ tal que v = T(u). Si $\{u_1, \ldots, u_n\}$ es una base de U, existen (y son únicos) escalares $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tales que $u = \sum_{i=1}^n \alpha_i u_i$ y, por tanto,

$$v = T(u) = T\left(\sum_{i=1}^{n} \alpha_i u_i\right) = \sum_{i=1}^{n} \alpha_i T(u_i),$$

es decir, $v \in \langle \{T(u_1), T(u_2), \dots, T(u_n)\} \rangle$.

Además, como im(T) es un subespacio vectorial de V y los vectores $T(u_1), \ldots, T(u_n) \in \text{im}(T)$, también se cumple que

$$\langle \{T(u_1), T(u_2), \dots, T(u_n)\} \rangle \subseteq \operatorname{im}(T)$$

y, con ello, se tiene que

$$\operatorname{im}(T) = \langle \{T(u_1), T(u_2), \dots, T(u_n)\} \rangle.$$

Esto significa que $\dim(\operatorname{im}(T)) \leq n = \dim(U)$. Por tanto,

$$\dim(\operatorname{im}(T)) \le \min \left\{ \dim(U), \dim(V) \right\}.$$

Ejemplo 3.6. Volviendo al primer ejemplo de esta sección.

$$im(T_1) = \left\langle \left\{ T((1,0,0)^T), T((0,1,0)^T), T((0,0,1)^T) \right\} \right\rangle,$$

= $\left\langle \left\{ (2,0,4)^T, (3,3,-2)^T, (0,0,0)^T \right\} \right\rangle,$
= $\left\langle \left\{ (2,0,4)^T, (3,3,-2)^T \right\} \right\rangle$

y, por tanto, como ya notamos antes $r(T_1) = 2$.

Por otro lado, dado que $\{1,i\}$ es una base de $\mathbb C$ como e.v. real,

$$im(T_2) = \langle \{T_2(1), T_2(i)\} \rangle,$$

= $\langle \{(1, 0, 0, 1)^T, (0, 1, -1, 0)^T\} \rangle.$

Por último, si $\{u_1, u_2, \dots, u_n\}$ es una base de U, las transformaciones $\Theta: U \to V$ e id: $U \to U$ son tales que

$$\operatorname{im}(\Theta) = \{\theta_V\}, \quad \operatorname{im}(\operatorname{id}) = \langle \{u_1, u_2, \dots, u_n\} \rangle.$$

Ejemplo 3.7. Consideremos la función $P: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ definida por:

$$P(p) = (p(0), p'(0), p''(0))^{T}.$$

Calculemos su núcleo e imagen nulidad y rango.

$$\ker(P) = \{ p \in \mathcal{P}_2(\mathbb{R}) : (p(0), p'(0), p''(0)) = (0, 0, 0)^T \},$$

$$= \{ ax^2 + bx + c \in \mathcal{P}_2(\mathbb{R}) : (c, b, 2a)^T = (0, 0, 0)^T \}$$

$$= \{ \theta \}$$

Vemos entonces que $\eta(P) = 0$. Además, como $\{1, x, x^2\}$ es una base de $\mathcal{P}_2\mathbb{R}$),

$$im(P) = \langle \{(1,0,0)^T, (0,1,0)^T, (0,0,2)^T\} \rangle,$$

= \mathbb{R}^3

Vemos entonces que r(P) = 3.

El siguiente es uno de los lemas más importantes de este capítulo.

Lema 3.8. Sea $T: U \longrightarrow V$ una transformación lineal de un espacio vectorial U de dimensión n a un espacio vectorial V de dimensión m. Entonces se cumple

$$\dim(\operatorname{im}(T)) + \dim(\ker(T)) = n.$$

Demostración. Sean $\{u_1, \ldots, u_s\}$ una base de $\ker(T)$ y $\{v_1, \ldots, v_r\}$ una base de $\operatorname{im}(T)$. Denotemos por w_i , $i = 1, 2, \ldots, r$ a los vectores en U que satisfacen

$$T(w_i) = v_i, i = 1, 2, \dots, r.$$

Demostremos que $\{u_1, \ldots, u_s, w_1, w_2, \ldots, w_r\}$ es un generador para U.

Sea $u \in U$. Dado que $T(u) \in \operatorname{im}(T)$, existen escalares $\alpha_1, \ldots, \alpha_r$ tales que

$$T(u) = \sum_{i=1}^{r} \alpha_i v_i = \sum_{i=1}^{r} \alpha_i T(w_i) = T\left(\sum_{i=1}^{r} \alpha_i w_i\right).$$

Denotemos $w = \sum_{i=1}^{r} \alpha_i w_i$.

Entonces $T(u) - T(w) = \theta_V \Rightarrow T(u - w) = \theta_V \Rightarrow u - w \in \ker(T)$, es decir, existen escalares $\beta_1, \beta_2, \dots, \beta_s \in \mathbb{K}$ tales que $u - w = \sum_{i=1}^s \beta_i u_i$ y, por tanto,

$$u = w + \sum_{i=1}^{s} \beta_i u_i = \sum_{i=1}^{r} \alpha_i w_i + \sum_{i=1}^{s} \beta_i u_i.$$

Con esto se ha demostrado que $\{u_1, \ldots, u_s, w_1, \ldots, w_r\}$ es un conjunto generador de U.

Probemos ahora que $\{u_1, \ldots, u_s, w_1, \ldots, w_r\}$ es li. Supongamos que $\sum_{i=1}^s a_i u_i + \sum_{i=1}^r b_i w_i = \theta_U$.

Entonces

$$\theta_V = T\left(\sum_{i=1}^s a_i u_i + \sum_{i=1}^r b_i w_i\right) = \sum_{i=1}^r b_i T(w_i) = \sum_{i=1}^r b_i v_i.$$

Dado que $\{v_1, \ldots, v_r\}$ es li, la igualdad anterior se cumple si y solo si $b_1 = b_2 = \cdots = b_r = 0$ con lo que se tiene entonces que $\theta_U = \sum_{i=1}^s a_i u_i$. Dado que $\{u_1, \ldots, u_s\}$ es li, esta igualdad se cumple si y solo si $a_1 = a_2 = \cdots = a_s = 0$. Con esto hemos demostrado que $\{u_1, \ldots, u_s, w_1, \ldots, w_r\}$ es li.

Dado que $\{u_1, \ldots, u_s, w_1, \ldots, w_r\}$ es generador de U y es li, es una base de U, por tanto, se cumple que $\dim(U) = n = r + s = \dim(\operatorname{im}(T)) + \dim(\ker(T))$.

Ejemplo 3.9. Este lema simplifica nuestro trabajo en los ejemplos anteriores.

Dado que $\eta(T_1) = 1$, tiene que cumplirse $r(T_1) = 2$.

Dado que $\eta(T_2) = 0$, el rango de T_2 es 2.

Dado que la aplicación nula es tal que $\eta(\Theta) = dim(U)$, su rango es 0.

Dado que la aplicación identidad tiene nulidad cero, su rango es la dimensión de U.

En el ejemplo 3.7, después de comprobar que la nulidad de P es 0, podemos, gracias al lema anterior, concluir que su rango es 3 y, por tanto, su imagen es \mathbb{R}^3 .

Ejemplo 3.10. Construyamos aplicaciones lineales $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ y $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tales que

$$im(T) = \langle \{(2, -1, 0)^T, (-1, 2, 2)^T\} \rangle$$

y

$$\ker(L) = \langle \{(1,0,0)^T, (1,1,0)^T\} \rangle.$$

Si $\mathcal{B}_1 = \{u_1, u_2, u_3, u_4\}$ es una base de \mathbb{R}^4 , debemos definir T de modo que

$$\operatorname{im}(T) = \langle \{T(u_1), T(u_2), T(u_3), T(u_4)\} \rangle = \langle \{(2, -1, 0)^T, (-1, 2, 2)^T\} \rangle$$

Tomando, por ejemplo, a \mathcal{B}_1 como la base canónica de \mathbb{R}^4 y definiendo

$$T((1,0,0,0)^T) = (2,-1,0)^T,$$
 $T((0,1,0,0)^T) = (2,-1,0)^T,$
 $T((0,0,1,0)^T) = (-1,2,2)^T,$ $T((0,0,0,1)^T) = (-1,2,2)^T,$

la transformación lineal T satisface $\operatorname{im}(T) = \langle \{(2,-1,0)^T, (-1,2,2)^T\} \rangle$. ¿Cuál es el núcleo de T? Ésta no es la única forma de definir T, proponga otras transformaciones lineales de \mathbb{R}^4 en \mathbb{R}^3 cuya imagen coincida con la de esta transformación. ¿Tienen todas la misma nulidad? ¿Tienen todas el mismo núcleo?

Para definir a L de modo que $\ker(L) = \langle \{(1,0,0)^T, (1,1,0)^T\} \rangle$, podemos extender el conjunto dado, es decir, $\{(1,0,0)^T, (1,1,0)^T\}$, a una base de \mathbb{R}^3 . Esto se logra, por ejemplo, añadiendo el vector $(0,0,1)^T$. Definiendo

$$L((1,0,0)^T) = (0,0)^T$$
, $L((1,1,0)^T) = (0,0)^T$, $L((0,0,1)^T) = (1,1)^T$,

la transformación lineal L satisface la condición dada. ¿Cuál es la imagen de L? ¿Podíamos haber definido $L((0,0,1)^T) = (0,0)^T$? Proponga otras transformaciones lineales de \mathbb{R}^3 en \mathbb{R}^2 que tengan el mismo núcleo que L. ¿Tienen todas el mismo rango? ¿Tienen todas la misma imagen?