1. Encuentre bases ortonormales para el espacio generado por cada conjunto de vectores dado usando el proceso de Gram-Schmidt. Verifique sus respuestas probando que el conjunto de vectores obtenido es ortonormal y que cada vector en el conjunto original es una combinación lineal del conjunto de vectores obtenido.

$$a) \left\{ \begin{pmatrix} -1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 3\\4\\0 \end{pmatrix} \right\}$$

$$\begin{array}{c}
 b) \left\{ \begin{pmatrix} 0 \\ -2 \\ -3 \\ -3 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \\ 0 \\ 0 \\ 5 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 4 \\ 1 \\ 3 \end{pmatrix} \right\}$$

$$c) \left\{ \begin{pmatrix} -1\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\3\\1 \end{pmatrix}, \begin{pmatrix} -1\\2\\-1\\4 \end{pmatrix} \right\}$$

d) Genere cuatro vectores aleatorios en \mathbb{R}^6

2. Encuentre una base ortonormal para

$$H = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \mid x - y + 3z + w = 0 \right\}$$

[Sugerencia: Primero encuentre una base para H hallando una base para las soluciones de $A\mathbf{x} = \mathbf{0}$, donde A = (1, -1, 3, 1), y después aplique el proceso de Gram-Schmidt.]

3. a) (Lápiz y papel) Suponga que $\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix}$ y $\mathbf{z} = \begin{pmatrix} -b \\ a \end{pmatrix}$. Suponga que $\mathbf{v}_1 = \frac{\mathbf{v}}{|\mathbf{v}|}$ y $\mathbf{v}_2 = \frac{\mathbf{z}}{|\mathbf{z}|}$. Demuestre que $\{\mathbf{v}_1, \mathbf{v}_2\}$ forma una base ortonormal en símbolo \mathbb{R}^2 siempre que a y b no sean ambas cero.

b) Para $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, forme \mathbf{v}_1 y \mathbf{v}_2 como en el inciso a). Sea $\mathbf{w} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$. Calcule \mathbf{p}_1 , el vector

proyección de \mathbf{w} sobre \mathbf{v}_1 , y \mathbf{p}_2 , el vector proyección de \mathbf{w} sobre \mathbf{v}_2 . Recuerde la geometría de una proyección usando el archivo prjtn.m. Utilice los comandos prjtn(w,v1) y prjtn(w,v2); el archivo se encuentra en la sección MATLAB 4.2 (en la pantalla de gráficos, \mathbf{w} tendrá etiqueta U y \mathbf{v}_1 o \mathbf{v}_2 etiqueta V).

c) Verifique que $w = p_1 + p_2 = (w \cdot v_1) v_1 + (w \cdot v_2) v_2$. Dé el comando lincomb (v1, v2, w).

(El archivo lincomb. m se encuentra en la sección MATLAB 4.1.)

Describa de qué manera se refleja la geometría de la proyección y de la combinación lineal en la gráfica que se presenta.

Precaución. La impresión directa de la pantalla NO conserva longitudes ni ángulos rectos.

Para verificar que los números desplegados en la pantalla de gráficas son $w \cdot v1$ y $w \cdot v2$, dé los comandos

format rat
w'*v1

w'*v2

d) Repita los incisos b) y c) para $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ y $\mathbf{w} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.

М