14

CLAIMS

What is claimed is:

1	1. An optical transmission system comprising:
2	a plurality of optical signal transmitters for receiving RF signal inputs and
3	transmitting optical signals, wherein each optical signal produces optical signals having a
4	first characteristic wavelength;
5	a plurality of optical transmission lines coupled to said optical signal transmitters
6	and to at least one headend, said head end including at least one DWDM signal receiver;
7	said at least one DWDM signal receiver having a second characteristic
8	wavelength, said second characteristic wavelength corresponding to the first
9	characteristic wavelength of the optical signal transmitter;
10	an output from said at least one DWDM signal receiver;
11	at least one information signal line coupled to said output of said at least one
12	DWDM signal receiver; and
13	wherein there is no distribution hub operationally coupled between said plurality

- 1 2. The optical transmission system of claim 1, wherein said plurality of optical signal
- 2 transmitters produce a plurality of optical signals, and wherein said plurality of optical
- 3 signals are freely combined.
- 1 3. The optical transmission system of claim 1, wherein each optical signal
- 2 transmitter includes an upconverter.

US010689 10

of optical signal transmitters and said headend.

- 1 4. The optical transmission system of claim 3, wherein each upconverter is
- 2 characterized by a frequency band, and further wherein said frequency band is unique to
- 3 that said upconverter.
- 1 5. The optical transmission system of claim 3, wherein there is no overlap between
- 2 frequency bands corresponding to each of said upconverters.
- 1 6. The optical transmission system of claim 2, wherein said plurality of optical
- 2 signals are combined with a splitter/combiner apparatus.
- 1 7. The optical transmission system of claim 1, wherein the output from a first of said
- 2 at least one DWDM receivers and the output from a second of said at least one DWDM
- 3 receivers are signals having different wavelengths, and wherein said different
- 4 wavelengths do not converge.

14

1	8. A method of optically transmitting a signal comprising:
2	receiving a plurality of RF signal inputs;
3	transmitting a plurality of optical signals from at least one optical transmission
4	source on a plurality of optical transmission lines, wherein each optical signal has a first
5	characteristic wavelength;
6	coupling at least one of said optical transmission lines to at least one headend,
7	said headend including at least one DWDM signal receiver having a second characteristic
8	wavelength, said second characteristic wavelength corresponding to the first
9	characteristic wavelength of the optical signal transmitter;
10	transmitting an output from said at least one DWDM signal receiver;
11	coupling at least one information signal line to said output of said at least one
12	DWDM signal receiver; and
13	wherein no distribution hub is operationally coupled between said at least one of

- 1 9. The method of claim 8, wherein the step of receiving the plurality of RF signal
- 2 inputs includes receiving the plurality of RF signal inputs into a plurality of optical signal
- 3 transmitters.
- 1 10. The method of claim 8, further comprising the step of combining a plurality of
- 2 said optical transmission lines together at a location between the transmission source and
- 3 the headend.

US010689 12

said optical transmission lines and said headend.

- 1 11. The method of claim 8, further comprising the step of upconverting the plurality
- 2 of optical signals before the step of transmitting the plurality of optical signals from at
- 3 least one transmission source.

US010689

13

3

12.

1

2	a plurality of optical signal transmitters for receiving RF signal inputs and
3	transmitting optical signals, wherein each optical signal transmitter produces optical
4	signals having a first characteristic wavelength;
5	a plurality of transmission clusters, each transmission cluster comprising at least
6	one of said optical signal transmitters;
7	a plurality of optical transmission lines coupled to said optical signal transmitters
8	and to at least one headend, said head end including at least one DWDM signal receiver;
9	said at least one DWDM signal receiver having a second characteristic
10	wavelength, said second characteristic wavelength corresponding to the first
11	characteristic wavelength of the optical signal transmitter;
12	an output from said at least one DWDM signal receiver;
13	at least one information signal line coupled to said output of said at least one
14	DWDM signal receiver; and
15	wherein there is no distribution hub operationally coupled between said plurality
16	of optical signal transmitters and said headend.
1	13. The optical transmission system of claim 12, wherein said plurality of optical
2	signal transmitters produce a plurality of optical signals, and wherein said plurality of

An optical transmission system comprising:

US010689 14

optical signals are freely combined.

- 1 14. The optical transmission system of claim 12, wherein each optical signal
- 2 transmitter includes an upconverter.
- 1 15. The optical transmission system of claim 14, wherein each upconverter is
- 2 characterized by a frequency band, and further wherein said frequency band is unique to
- 3 that said upconverter.
- 1 16. The optical transmission system of claim 14, wherein there is no overlap
- between frequency bands corresponding to each of said upconverters.
- 1 17. The optical transmission system of claim 13, wherein said plurality of optical
- 2 signals are combined with a splitter/combiner apparatus.
- 1 18. The optical transmission system of claim 12, wherein said headend includes a
- 2 single receiver.
- 1 19. The optical transmission system of claim 12, wherein said headend includes a
- 2 plurality of receivers.
- 1 20. The optical transmission system of claim 12, wherein said headend includes at
- 2 least one dense wavelength division demultiplexer (DWDD) device.

US010689 15

- 1 21. The optical transmission system of claim 12, wherein the output from a first of
- 2 said at least one DWDM receivers and the output from a second of said at least one
- 3 DWDM receivers are signals having different wavelengths, and wherein said different
- 4 wavelengths do not converge.