

Welcome to

PES University

Ring Road Campus, Bengaluru

10 June 2020

PESU Center for Information Security, Forensics and Cyber Resilience

APPLIED CRYPTOGRAPHY

Lecture 8

Perfect secrecy

Can it be achieved!!!

Goal of secure encryption?

• How would you define what it means for encryption scheme (Gen, Enc, Dec) over message space \mathcal{M} to be secure?

 An encryption scheme(gen, Enc, Dec) with message space M is perfectly secret if and only if equation (a) holds for every m,m`∈ M and every c ∈ C

Perfect (adversarial) indistinguishability

- observing a ciphertext and then trying to guess which of two possible messages was encrypted
- An encryption scheme is perfectly indistinguishable if no adversary A can succeed with probability better than ½.

DEFINITION 2.5 Encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1\right] = \frac{1}{2}\,.$$

Probability distributions

- Let K be a random variable denoting the key
 - K ranges over K

- Fix some encryption scheme (Gen, Enc, Dec)
 - Gen defines a probability distribution for K:
 Pr[K = k] = Pr[Gen outputs key k]

Random variables M and K are independent

- If M={a,b,c,d}
- K={k1,k2,k3}
- P(a)=1/4 p(b)=3/10 p(c)=3/20 p(d)=3/10
- P(k1)=1/4 p(k2)=1/2 p(k3)=1/4
- And encryption table for M and k is given by

	a	b	С	d
144	3	4	2	1
K1 K2	3	1	4	2
КЗ	4	3	1	2

find probability that enc algorithm outputs 1

• Pr(c=1)=0.2625

3	4	2	1
3	1	4	2
4	3	1	2

P(a)=1/4 p(b)=3/10
p(c)=3/20 p(d)=3/10

•
$$Pr(c=3)=0.2625$$

• Pr(c=4)=0.2125

Example 2: when given plain text is = m what is the probability that ciphertext is c

• Pr(C=1 | M=a)

3	4	2	1
3	1	4	2
4	3	1	2

P(a)=1/4 p(b)=3/10
n(c)=3/20 n(d)=3/10

• Pr(C=4 | M=a)

Find the probability of message=m given the ciphertext is c

From bayes theorem

$$Pr(M=m \mid C=c) = Pr((C=c \mid M=m). Pr(M=m))/(pr(C=c))$$

3	4	2	1
3	1	4	2
4	3	1	2

P(a)=1/4 p(b)=3/10p(c)=3/20 p(d)=3/10

P(k1)=1/4 p(k2)=1/2 p(k3)=1/4

Next Class

Mandatory reading for the next class

https://www.cs.miami.edu/home/burt/learning/Csc609.011/ Perfect/

S Rajashree

Computer Science and Engineering

PES University, Bengaluru

10 June 2020