ME 599/699 Robot Modeling & Control Fall 2021

Velocities of Frames

Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

▶ We assign coordinates – aka rigid body pose – (d, R) to frame, relative to reference. $d \in \mathbb{R}^3$, $R \in SO(3)$

We assign coordinates – aka rigid body pose – (d, R) to frame, relative to reference. $d \in \mathbb{R}^3$, $R \in SO(3)$

▶ If the rigid body pose tells us where a frame is located, its position, what is the rate-of-change of the position?

▶ We assign coordinates – aka rigid body pose – (d, R) to frame, relative to reference. $d \in \mathbb{R}^3$, $R \in SO(3)$

- ► If the rigid body pose tells us where a frame is located, its position, what is the rate-of-change of the position?
- For a position vector in \mathbb{R}^n , we know that the rate of change of position is another vector in \mathbb{R}^n , called the **velocity**

- ▶ We assign coordinates aka rigid body pose (d, R) to frame, relative to reference. $d \in \mathbb{R}^3$, $R \in SO(3)$
- ▶ If the rigid body pose tells us where a frame is located, its position, what is the rate-of-change of the position?
- For a position vector in \mathbb{R}^n , we know that the rate of change of position is another vector in \mathbb{R}^n , called the **velocity**
- \blacktriangleright However, the coordinate (d, R) is not a vector!

Velocities in \mathbb{R}^n

ightharpoonup Given a time-varying position x(t), we define the velocity v as

$$v(t) = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h} \tag{1}$$

Velocities in \mathbb{R}^n

ightharpoonup Given a time-varying position x(t), we define the velocity v as

$$v(t) = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h} \tag{1}$$

► The <u>subtraction</u> and <u>division</u> operations make sense in a vector space

Velocities in \mathbb{R}^n

ightharpoonup Given a time-varying position x(t), we define the velocity v as

$$v(t) = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h} \tag{1}$$

- ► The subtraction and division operations make sense in a vector space
- ► However, if x belonged to a group, we can't define a derivative this way

• Given a time-varying orientation R(t) defined in a frame $\{0\}$.

- Given a time-varying orientation R(t) defined in a frame $\{0\}$.
- ▶ In infinitesmal time h, the orientation changes from R(t) to $R(t+h) \implies R(t+h) = \Delta R(h)R(t)$.

- Given a time-varying orientation R(t) defined in a frame $\{0\}$.
- ▶ In infinitesmal time h, the orientation changes from R(t) to $R(t+h) \implies R(t+h) = \Delta R(h)R(t)$.
- ▶ The rotation over h is $\Delta R(h) = R(t+h)R(t)^T$

- Given a time-varying orientation R(t) defined in a frame $\{0\}$.
- ▶ In infinitesmal time h, the orientation changes from R(t) to $R(t+h) \implies R(t+h) = \Delta R(h)R(t)$.
- ▶ The rotation over h is $\Delta R(h) = R(t+h)R(t)^T$
- ▶ The 'velocity' would require us to take the limit as $h \to 0$ of the ratio of $\Delta R(h)$ and some measure of the size of $\Delta R(h)$.

▶ It turns out that

$$\dot{R}(t) = SR$$

where S satisfies $S + S^T = 0$

It turns out that

$$\dot{R}(t) = SR, \label{eq:Ratio}$$
 where S satisfies $S + S^T = 0$

▶ *S* is a skew-symmetric matrix, and has the form

$$S = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix},$$

for any three numbers ω_1 , ω_2 , ω_3

It turns out that

$$\dot{R}(t) = SR,$$

where S satisfies $S + S^T = 0$

▶ S is a skew-symmetric matrix, and has the form

$$S = \left[egin{array}{cccc} 0 & -\omega_3 & \omega_2 \ \omega_3 & 0 & -\omega_1 \ -\omega_2 & \omega_1 & 0 \end{array}
ight],$$

for any three numbers ω_1 , ω_2 , ω_3

Physically, the vector $\omega = \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 \end{bmatrix}^T$ defines the instantaneous angular velocity in frame $\{0\}$

▶ There's a one-to-one relationship between a vector \mathbb{R}^3 and the set of 3×3 skew-symmetric matrices

- ▶ There's a one-to-one relationship between a vector \mathbb{R}^3 and the set of 3×3 skew-symmetric matrices
- ► Therefore, we can represent the rate of change of orientation using an angular velocity.

- ▶ There's a one-to-one relationship between a vector \mathbb{R}^3 and the set of 3 × 3 skew-symmetric matrices
- ► Therefore, we can represent the rate of change of orientation using an angular velocity.
- So, when a task is $x(t) = (d(t), R(t)) \in \mathbb{R}^3 \times SO(3)$, its velocity is

$$\xi \in \mathbb{R}^6 = \underbrace{\mathbb{R}^3}_{\text{linear velocity}} \times \underbrace{\mathbb{R}^3}_{\text{angular velocity}}$$

▶ Forward Kinematics provides x = f(q)

- Forward Kinematics provides x = f(q)
- ▶ The relationship between ξ and \dot{q} is linear:

$$\xi = J(q)\dot{q}$$

- Forward Kinematics provides x = f(q)
- ▶ The relationship between ξ and \dot{q} is linear:

$$\xi = J(q)\dot{q}$$

• When the orientation of x is given by a vector of three numbers α , then $n\xi = \dot{x}$, and the Jacobian is analytic, and given by $J_a(q) = \frac{\partial f}{\partial a}$.

- Forward Kinematics provides x = f(q)
- ▶ The relationship between ξ and \dot{q} is linear:

$$\xi = J(q)\dot{q}$$

- When the orientation of x is given by a vector of three numbers α , then $n\xi = \dot{x}$, and the Jacobian is analytic, and given by $J_a(q) = \frac{\partial f}{\partial a}$.
- \blacktriangleright When orientation is not three numbers, J(q) is geometric

- Forward Kinematics provides x = f(q)
- ▶ The relationship between ξ and \dot{q} is linear:

$$\xi = J(q)\dot{q}$$

- When the orientation of x is given by a vector of three numbers α , then $n\xi = \dot{x}$, and the Jacobian is analytic, and given by $J_a(q) = \frac{\partial f}{\partial a}$.
- ▶ When orientation is not three numbers, J(q) is geometric
- Columns of J(q) of geometric Jacobian are derived geometrically