Homework 1

 $\begin{array}{c} {\rm Miriam~Wagner} \\ {\rm 373045} \end{array}$

18. Mai 2018

I used for solving this exercise Matlab (with my own written code no packages). For the distance I used euclidian distance.

My clustering algorithm calculates for every Datavector the distances to every centroid and then checks which centroid is closed. The vector is add to the closest cluster. When all datavectors are put in a cluster the new cluster centroids are calculated.

My abort criterion is the change between the centroids. If they still change I will apply the algorithms again. Because of the computer accuracy I do not use 0, but 10^{-15} . I also let the algorithm stop after 3 rounds, but it is already would end after 4 rounds.

After the first round all data is clustered in cluster 2 and 3. I decided to let be the first centroid (-1000, -1000, -1000). Than it does not influence the result anymore. But two other options would be

- 1. Set the centroid to 0 or 1 or do not change it
- 2. random restart of just this or all cluster centroids

I also did the random restart, then I get an other clustering. the steps in between of the second version I did not write down here. The distances and centroids are for the first version.

Ta	belle 1: Distances first rou	
$\operatorname{distance_to_cluster_1}$	$distance_to_cluster_2$	$distance_to_cluster_3$
43000,00002	3000,002694	23000,00899
$35000,\!07642$	5000,486525	15000,09671
26888,00021	13112,00189	6888,039561
44000,00413	4000,028178	$24000,\!00035$
40000,00664	$20,\!15113235$	20000,002
47500,00003	7500,000631	$27500,\!00685$
31000,02992	9000,088284	11000,02773
45000,0265	$5000,\!212648$	$25000,\!02102$
37000,00023	3000,000006	17000,00789
$15000,\!23523$	$25000,\!12893$	5000,409169
45000,00443	5000,027278	$25000,\!00028$
42500,00031	2500,000209	$22500,\!00527$
44000,00319	4000,02221	24000,00046
43500,00003	3500,002355	$23500,\!00885$
$25000,\!03222$	15000,04597	$5000,\!051895$
40000,00014	7,034833476	$20000,\!01362$
$42200,\!02875$	2200,477885	$22200,\!02037$
41500,00014	$1500,\!016496$	$21500,\!01267$
33000,00058	7000,000319	13000,00815
47000,00118	7000,004581	$27000,\!0024$

Tabelle	3	Distances	second	round

distance_to_cluster_1	distance_to_cluster_2	
22116,19085	1753,037892	20704,03917
$28758,\!56529$	6247,302602	12704,04405
36006, 45169	14359,07461	$4592,\!203257$
21365,89781	2752,952894	$21704,\!01257$
$24510,\!81085$	1247,073587	17704,00916
18878,30691	6252,966011	$25204,\!03083$
32284,64122	10247,08985	8704,002232
$20652,\!19999$	$3753,\!0757$	$22704,\!00565$
27003,89625	4247,084395	$14704,\!04516$
47192,82789	26247,14247	7296,135236
20631,35796	3752,941811	$22704,\!00875$
$22505,\!10872$	1253,018169	$20204,\!03122$
$21367,\!51278$	2752,941595	$21704,\!01232$
21734,0764	2253,017414	21204,03843
37765,65939	16247,07449	2704,012108
24496,12265	1247,240632	$17704,\!05272$
22765,44019	953,4550448	19904,00236
$23287,\!55072$	$253,\!8360288$	19204,0486
30483,445	8247,069583	10704,05649
19220,80594	5752,946555	$24704,\!01792$

 $cluster = \{2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2\}$

Where the order of the vector is the order of the data. The second version has the following clustering:

clusterrandom = $\{2, 1, 3, 2, 2, 2, 1, 2, 1, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 1, 2\}$

I would choose the second version for the first, because you have higher chance of getting the clusters. But you do not know how many clusters to expect, so it could be that there are just 2 clusters. What other steps would include a preexamination to figure out how many clusters to expect. Also the centroids can be choose on basis of the given data.

Tabelle 4:	centroids seco	nd round
$\operatorname{centroid} _1$	$\operatorname{centroid}_2$	$\operatorname{centroid}_3$
-10000	8112,5	25528
-10000	7,029701813	15,1678105
-10000	21,4375	44,25

Tabelle 5 Distances t	hird	round
-----------------------	------	-------

distance to cluster 1	$\begin{array}{ccc} \text{distance to cluster } 2 \end{array}$	distance to cluster 3
$-{22116,19085}$	$-\frac{1}{1112,627498}$	$-\frac{18528,04545}{1}$
28758,56529	6887,73384	10528,0504
36006,45169	14999,51298	2416,39972
21365,89781	2112,51454	19528,01534
$24510,\!81085$	1887,5148	15528,01088
18878,30691	5612,522945	$23028,\!03511$
32284,64122	10887,53297	6528,001674
20652,19999	3112,67816	20528,00509
27003,89625	4887,517724	$12528,\!05539$
47192,82789	$26887,\!5854$	9472,102143
20631,35796	3112,502093	20528,01042
$22505,\!10872$	$612,\!6238331$	18028,03664
$21367,\!51278$	$2112,\!50014$	19528,0146
21734,0764	1612,589208	19028,04449
37765,65939	16887,51723	528,0438334
24496,12265	1887,603135	$15528,\!0622$
22765,44019	$314,\!2232448$	17728,00213
$23287,\!55072$	388,0020635	$17028,\!05672$
30483,445	8887,50778	8528,074443
19220,80594	5112,504053	22528,02049

 $\begin{array}{c|cccc} Tabelle & 6: centroids third round \\ centroid_1 & centroid_2 & centroid_3 \\ -10000 & 7520 & 23822,4 \\ -10000 & 7,497431933 & 12,1369984 \\ -10000 & 22,06666667 & 37,8 \\ \end{array}$

The process is built up like in the screenshot. After I imported the data I selected the attributes I am assigned to consider (**Select Attributes**). Then the numerical values are translated to binomial values, because this is needed for the association rules. (**Numerical to Binomial**) RapidMiner expectes a FrequentItemSet for the **Create Association Rule**, so before I could use that I also had to use **FP-growth**.

I would pick the rule {A_ACCEPTED, O_ACCEPTED} \Rightarrow {A_APPROVED} and {A_APPROVED} \Rightarrow {A_ACCEPTED, O_ACCEPTED}, because they have the highest lift, confidence and support. When you have a closer look you will see that the sets are probably of the rules have a back- and forth relationsip, so they are symmetric. It is an interesting behaviour. Such that you could summarize it in one rule.

Then you could look for the next best rules, where lift, support and confidence is the highest.

There is no better possibility to discover rules since the support will get lower and so it is not so meaningful as what we already discovered.

The process

first changes the numerical attribute TotalActivites to a nominal one by Generate Attributes and Select Attributes. The generating consideres the old TotalActivites and uses the rule that all data, where TotalActivites is lower or the same as 40 it is assigned to "Low", otherwise "High". The Set Role gives the new attribute role label, so RapidMiner knows what should have to be the outcome of the Decision Tree. Decision Tree generates the decision Tree. Then Apply Model for Performance checking. The output is then the model and the performance of the model on the data.

The resulting decision tree is

If you check the Confusionmatrix

ассигасу: 100.00%

	true Low	true High	class precision	
pred. Low	14	0	100.00%	
pred. High	0	6	100.00%	
class recall	100.00%	100.00%		

you see, that this decision tree classifys the data perfectly. So you can predict by just knowing the case duration the nominal outcome for total activities. If the case duration is higher, than also the total activities are high. This seems to be logical, if you have to do a lot this takes most of the times longer and otherwise around, if you do not need long you mostly did not do a lot of different things in the time.

For completeness I checked also what happens for different setting:

- 1. Changing case duration to nominal with high low (low, if caseduration <=1/6/15)
- 2. Changing case duration to nominal with high,low,middel ((low, if caseduration<=6, middel if 6<caseduration<=15,otherwise high))

The first case gives in all versions the same slightly different solution from the first one, but also it gets worse.

The second version again gives a tree just deciding with the case duration.

I also treid what happens without case duration, but decided that this is not helpful for the exercise, because we have the information. In my opinion it is like said above a dependency bewtween duration and activity.

1.

 $L1 = \left[\langle a, b, e, f \rangle, \langle a, b, e, c, d, b, f \rangle, \langle a, b, c, e, d, b, f \rangle, \langle a, b, c, d, e, b, f \rangle, \langle a, e, b, c, d, b, f \rangle \right]$ The α -Algorithm gives the following:

$$T_L = \{a, b, c, d, e, f\}$$

$$T_I = \{a\}$$

$$T_O = \{f\}$$

$$\begin{split} X_L &= \{(\{a\},\{b\}),(\{a\},\{e\}),(\{b\},\{c\}),(\{b\},\{f\}),(\{b\},\{f,c\}),(\{c\},\{d\}),(\{d\},\{b\}),(\{e\},\{f\}),\\ Y_L &= \{(\{a\},\{b\}),(\{a\},\{e\}),(\{d\},\{b\}),(\{c\},\{d\}),(\{b\},\{f,c\})\} \end{split}$$

This network is sound because:

- 1. safeness, places cannot hold multiple tokens at the same time.
- 2. **proper completion**, if the sink place is marked, all other places are empty
- 3. **option to complete**, it is always possible to reach the marking that marks just the sink place
- 4. **absence of dead parts**, for any transition there is a firing sequence enabling it.

All propertieres are fullfilled and can be checked by going through the network in all possible variations

2.

$$L2 = [\langle a, b, c, d \rangle, \langle a, c, b, d \rangle, \langle a, e, f, d \rangle, \langle a, e, g, d \rangle, \langle a, e, h, d \rangle]$$

The α -Algorithm gives the following:

$$T_L = \{a, b, c, d, e, f, g, h\}$$

$$T_I = \{a\}$$

$$T_O = \{d\}$$

	a	b	\mathbf{c}	d	e	f	g	h
a	#	\rightarrow	\rightarrow	#	\rightarrow	#	#	#
b	←	#		\rightarrow	#	#	#	#
$^{\mathrm{c}}$	←		#	\rightarrow	#	### ##################################	#	#
d	#	\leftarrow	\leftarrow	#	#	\leftarrow	\leftarrow	\leftarrow
e	←	#	#	#	#	\rightarrow	\rightarrow	\rightarrow
f	#	#	#	\rightarrow	\leftarrow	#	#	#
g	#	#	#	\rightarrow	\leftarrow	#	#	#
h	#	#	#	\rightarrow	\leftarrow	#	#	#

$$\begin{split} X_L &= \{(\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), \\ &\quad (\{c\}, \{d\}), (\{e\}, \{f\}), (\{e\}, \{g\}), (\{e\}, \{h\}), (\{e\}, \{f, g\}), (\{e\}, \{f, h\}), (\{e\}, \{g, h\}), (\{e\}, \{f, g, h\}), \\ &\quad (\{g\}, \{d\}), (\{h\}, \{d\}), (\{f\}, \{d\}), \\ &\quad (\{g, h\}, \{d\}), (\{g, f\}, \{d\}), (\{h, f\}, \{d\}), (\{g, f, h\}, \{d\}), \\ &\quad (\{g, b\}, \{d\}), (\{g, c\}, \{d\}), (\{h, b\}, \{d\}), (\{f, b\}, \{d\}), (\{f, c\}, \{d\}), \\ &\quad (\{g, f, b\}, \{d\}), (\{g, f, c\}, \{d\}), (\{g, b, h\}, \{d\}), (\{g, c, h\}, \{d\}), (\{f, c\}, \{d\}), \\ &\quad (\{g, f, h, b\}, \{d\}), (\{g, f, h, c\}, \{d\})\} \end{split}$$

$$Y_L &= \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{e\}, \{f, g, h\}), (\{g, f, h, b\}, \{d\}), (\{g, f, h, c\}, \{d\})\} \end{split}$$

This network is sound because:

- 1. safeness, places cannot hold multiple tokens at the same time.
- 2. **proper completion**, if the sink place is marked, all other places are empty
- 3. **option to complete**, it is always possible to reach the marking that marks just the sink place
- 4. **absence of dead parts**, for any transition there is a firing sequence enabling it.

All propertieres are fullfilled and can be checked by going through the network in all possible variations

3.

$$L3 = \left[\langle d, c, b, e, f \rangle, \langle a, e, f \rangle, \langle d, b, b, c, ef \rangle, \langle a, b, c, d, e, f \rangle, \langle b, d, a, c, f \rangle \right]$$

The α -Algorithm gives the following:

$$T_{L} = \{a, b, c, d, e, f\}$$

$$T_{I} = \{a, b, d\}$$

$$T_{O} = \{f\}$$

	a	b	\mathbf{c}	d	\mathbf{e}	f
a	#	\rightarrow	\rightarrow	←	\rightarrow	#
b	←				\rightarrow	#
\mathbf{c}	←		#		\rightarrow	\rightarrow
d	\rightarrow			#	→ → → + ←	#
e	←	\leftarrow	\leftarrow	\leftarrow	#	\rightarrow
f	#	#	\leftarrow	#	\leftarrow	#

$$\begin{split} X_L &= \{(\{a\},\{c\}),(\{a\},\{e\}),(\{c\},\{e\}),(\{c\},\{f\}),(\{e\},\{f\}),(\{d\},\{a\}),(\{d\},\{e\})\} \\ Y_L &= X_L \end{split}$$

This network is not sound because:

- 1. **safeness**, places cannot hold multiple tokens at the same time. That is true
- 2. **proper completion**, if the sink place is marked, all other places are empty. This is true following the definition.
- 3. **option to complete**, it is always possible to reach the marking that marks just the sink place. This is not true, because a never can be reached, since therefore start and d would have to fire. So it is not possible to enable e and than also not to reach the sink place.
- 4. **absence of dead parts**, for any transition there is a firing sequence enabling it. Same reason than above.

a)

The process has 150370 cases and 561470 events. Median number of events is 5. The average duration is 48.8 weeks.

b)

The loop tells us, that a part of all people had to pay at least two times. If you check the log data, you can see, that mostly it happens in the next 30 days. Maybe they had a plan how to pay over a few weeks or had to pay penaltys. It happen 4306 and for 4014 cases. So there are cases, where it happens more than one time. You also can see, that it happens at most 14 times.

c)

You can see that the distribution is going up and down a little bit, but there are 10 peaks to see where more happens. In the end activity gets lower and the distance between the 6th and 7th peak is higher than between the others. It is always around the typical paydays, so probably a lot of people then have the money to pay the fine.

The peakes are on: 06.04.2002 (Sa), 06.01.2003 (Mo), 05.01.2004 (Mo), 24.12.2004 (Fr), 20.02.2006 (Mo), 18.02.2007 (Su), 27.03.2009 (Fr), 08.10.2010 (Fr), 22.03.2012 (Thu), 19.04.2013 (Fr)

d)

There are 231 variants. The third most frequent variant has 20385 instances. It just contains the behaviour **create** and **send fine**. Nothing more happens there.

e)

It is just possible to 43% or 56%. The average case duration shorts to 45.2 weeks from 48.8 weeks and the median to 20.9 weeks from 28.3 weeks in both cases. So the most common cases are in average faster finished than all cases in average. The median is the instance in the middel. So if you write down all instances sorted, it is the middel one. The average is the sum of all instances divided by the number of instances. The average can change a lot for big or extree small oultiers. The median shows more a real duration in the middle of all instance durations.

 $\mathbf{f})$

In the first dotted chart you see when which case is active.

For interpreting the dot chart for the question c) I changed the y-axis to the event names so I can see when which events happening. I also zoomed in so

I can see the months of the years. Now you can check better the dates of the peaks.

You can see that **Send for Credit Collection** is strongly connected to the peakes to see in c).

Payment happens mostly always, but still it is a little bit bundled at the peaks. Furthermore I would say, that in disco it is more easy to see when peaks happen, but in prom better to see what is happen on the peak days.

\mathbf{g}

If you apply the alpha-algoirthm on the not filtered data you can not see so clear, that in the resulting chart the payment can happen always and also infinite often. It sounds weird, because you do not expect someone paying before he gets the fine, but looking at the data it happens.

h)

84days is the median for send fine. I chose the median, because then you get a better idea what happens most of the times. The biggest mean is 23.3 weeks between add penalty and payment.

What you also can see, is that after $60 \mathrm{days}$ always a penalty is added.