

FIG 1. Target platforms for the invention

Student(*SID,Sname, major) Class(*CID, Cname, Time,

room)

Student_class(*SID,*CID) Old way - Use Student_class to model relationship

Student(*SID, Sname, major, CIDBS)

Class(*CID, Cname, Time, room, SIDBS)

New way - Use BITSETs CIDBS and SIDBS to model relationship

igure 2. Old-New schema for modeling relationships

Figure 3. An example of inference of product-category associations for documents.

Old way 401

PARENTCHILDASSOCIATIONS(CHILDID BIGINT, PARENTID BIGINT) CATEGORYDOCUMENTASSOCIATIONS(CATEGORYID BIGINT, DOCUMENT (DOCUMENTID BIGINT) CATEGORY(CATEGORYID BIGINT) DOCUMENTID BIGINT)

402

New way

CATEGORY(CATEGORYID BIGINT, BSDOCUMENT BITSET, **BSPARENT BITSET, BSCHILD BITSET)** DOCUMENT(DOCUMENTID BIGINT) Figure 4: Old/New way to represent categories

NOR Rules: Input All FALSE => Output TRUE

Input TRUE Expressions	ANDISEmpty evaluates to FALSE	returns FALSE NOR Rules
Input FALSE Expressions + Optional	ANDEquals evaluates to TRUE	returns TRUE NOR Rules

OR Rules: Input All FALSE => Output FALSE

ies to FALSE returns TRUE OR Rules	s to TRUE returns FALSE OR Rules
Input TRUE Expressions ANDISEmpty evaluates to FALSE	Input FALSE Expressions + ANDEquals evaluates to TRUE Optional

NAND Rules: Input All TRUE => Output FALSE

returns FALSE NAND Rules	returns TRUE NAND Rules	
returns FAL	returns TRU	
I ANDEquals evaluates to TRUE	ANDISEmpty evaluates to FALSE	
Input TRUE Expressions + Optional	Input FALSE Rules	

AND Rules: Input All TRUE => Output TRUE

	returns TRUE AND Rules	returns FALSE AND Rules
	returns	returns
110L	ANDEquals evaluates to TRUE	ANDISEmpty evaluates to FALSE
AND HOLES: HIPPUR ALL HOLE = COUPUL HOLE	Input TRUE Expressions + Optional	Input FALSE Expressions

Figure 5: Boolean Expression Evaluation with BITSETs