WWS 509 Generalized Linear Models: Precept 9 Ordered Logit Models

Kristin E. Bietsch

Office of Population Research, Princeton University

November 2012

Introducing the Data

For this precept, I have taken some data from an unnamed African country. Do not cite this data! The outcome of interest is where water is collected. The options I have limited us to are in the dwelling, in the yard, and in public. This might not be the perfect data, but for an introduction it will have to do. For the sake of simplicity, we are only using 2 predictor variables, if the household has electricity and if they share a toilet with another household.

Ordinal Logit Models

•	There is just equation
	- Therefore, it is more than a multinomial or a hierarchical logit model
•	We will be focusing on the distribution of the response
	 Look at if the response falls in the j-th category or
	If x_{ik} increases by one, then all transformed cumulative probabilities increase by
	 By focusing on the cumulative probabilities we can postulate a
•	Models can also be interpreted in terms of a variable.

Interpretation

- 1. What are two ways that we can interpret the coefficients?
- 2. Interpret having electricity on how close your water is to you.
- 3. Repeat this for sharing a toilet.
- 4. What proportion of respondents would you predict to be in each group of water access for those who do not have electricity but have their own toilet?
- 5. What about for those with electricity and their own toilet?
- 6. What about those with no electricity and who share a toilet?

Remember the other types of models?

Multinomial Logit Model

- 1. How does Stata know which group I want as the comparison group?
- 2. What is the odds ratio for a person with electricity of having water in the yard compared to in public in this model? Of in the house compared to in public?
- 3. Do you see anything interesting about toilets in this model?

Sequential Logit Model

- 1. How did I model this sequential model?
- 2. What is the odds for someone with electricity of having water on their property compared to someone with no electricity (and the same toilet status)? Of those people, what is the odds that it will be in their home?

WWS509 Precept 9 K.Bietsch

Appendices

Ordered Logit Output

. ologit water_source electricity share_toilet

```
Iteration 0: log likelihood = -1781.7256
Iteration 1: log likelihood = -1585.0625
Iteration 2: log likelihood = -1579.6235
Iteration 3: log likelihood = -1579.5854
Iteration 4: log likelihood = -1579.5854
```

Ordered logistic regression	Number of obs	=	1863
	LR chi2(2)	=	404.28
	Prob > chi2	=	0.0000
Log likelihood = -1579.5854	Pseudo R2	=	0.1135

water_source	Coef.	Std. Err.				Interval]
electricity share_toilet	1.881642 512978	.1096477 .0907311	17.16 -5.65	0.000	1.666736 6908077	2.096547 3351483
/cut1 /cut2	1.063665 1.666083	.1022085 .1061882			.8633398 1.457958	1.26399 1.874208

WWS509 Precept 9 K.Bietsch

Multinomial Logit Output

mlogit water_source electricity share_toilet, baseoutcome(1)

```
Iteration 0: log likelihood = -1781.7256
Iteration 1: log likelihood = -1584.5094
Iteration 2: log likelihood = -1577.2981
Iteration 3: log likelihood = -1577.2097
Iteration 4: log likelihood = -1577.2097
```

Multinomial logistic regression Number of obs = 1863 LR chi2(4) = 409.03 Prob > chi2 = 0.0000 Log likelihood = -1577.2097 Pseudo R2 = 0.1148

water_source	Coef.	Std. Err.	z	P> z		Interval]
Public	(base	outcome)				
Yard electricity share_toilet _cons	1.569986 0836952 -2.40183	.1729951 .0791802 .1558904	9.08 -1.06 -15.41	0.000 0.291 0.000	1.230922 2388856 -2.70737	1.909051 .0714952 -2.09629
Dwelling electricity share_toilet _cons	1	.1276683 .1062668 .1186425	15.88 -6.28 -11.92	0.000 0.000 0.000	1.777216 8754978 -1.646285	2.277667 4589397 -1.181215

WWS509 Precept 9 K.Bietsch

Sequential Logit Output

. logit water_on_property electricity share_toilet

Iteration 0: log likelihood = -1288.0245
Iteration 1: log likelihood = -1100.2359
Iteration 2: log likelihood = -1097.6342
Iteration 3: log likelihood = -1097.626
Iteration 4: log likelihood = -1097.626

Logistic regression Number of obs = 1863 LR chi2(2) = 380.80 Prob > chi2 = 0.0000 Log likelihood = -1097.626 Pseudo R2 = 0.1478

water_on_p~y					Interval]
electricity share_toilet	1.898086	.1115864 .0851962	17.01 -4.56	0.000	

. logit water_in_house electricity share_toilet if water_on_property

Iteration 0: log likelihood = -493.70116
Iteration 1: log likelihood = -484.94489
Iteration 2: log likelihood = -484.84404
Iteration 3: log likelihood = -484.84389
Iteration 4: log likelihood = -484.84389

water_in_h~e | Coef. Std. Err. z P>|z| [95% Conf. Interval]
electricity | .5400706 .1990827 2.71 0.007 .1498756 .9302655
share_toilet | -.2849154 .1006971 -2.83 0.005 -.482278 -.0875528
 _cons | .7796397 .1867697 4.17 0.000 .4135779 1.145702