Notes on Fluid Dynamics

December 29, 2023

Contents

1	Continuum mechanics	2
	1.1 Exercises	2

1 Continuum mechanics

1.1 Exercises

1.1

(B) Consider an unsteady one-dimensional flow where the density and velocity depend on x and t. A Galilean transformation into a new set of variables x', t' is given by the equation x = x' + Vt', t = t', where V is a constant velocity. For the moment let f = f(x,t) stand for a function that we wish to express in the x' - t' coordinate system. By careful use of the chain rules of calculus, find the expressions for $\partial f/\partial t'$ and $\partial f/\partial x'$. Next, consider the substantial derivatives of ρ and v, which are

$$\frac{\partial \rho'}{\partial t'} + v' \frac{\partial \rho'}{\partial x'},$$

$$\frac{\partial v'}{\partial t'} + v' \frac{\partial v'}{\partial x'},$$

Show that the substantial derivatives above have exactly the same mathematical form when transformed into the x-t coordinate system (note that $\rho' = \rho$ and v' = v - V).

Let's start with the chain rule to obtain the coordinate transformation for our partial derivatives. Since f = f(x,t) = f(x(x',t'),t(t')), the new partial derivatives will be

$$\frac{\partial f}{\partial t'} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t'} + \frac{\partial f}{\partial t} \frac{\partial t}{\partial t'}$$

Since $t=t',\,\partial t/\partial t'=1,$ and since $x=x'+Vt',\,\partial x/\partial t'=\partial_{t'}\left(x'+Vt'\right)=V.$ So

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} + V \frac{\partial f}{\partial x}$$

Similarly,

$$\frac{\partial f}{\partial x'} = \frac{\partial f}{\partial x} \frac{\partial x'}{\partial x'} + \frac{\partial f}{\partial t} \frac{\partial t'}{\partial x'} = \frac{\partial f}{\partial x}$$

The first simplification comes about because $\partial_{x'}x = \partial_{x'}(x'+Vt')$. The second because t does not depend on x'.

Now we can look at the substantial derivatives.

$$\begin{split} \frac{\partial \rho'}{\partial t'} + v' \frac{\partial \rho'}{\partial x'} &\to \frac{\partial \rho}{\partial t'} + (v - V) \frac{\partial \rho}{\partial x'} \\ &= \frac{\partial \rho}{\partial t} + V \frac{\partial \rho}{\partial x} + (v - V) \frac{\partial \rho}{\partial x} \\ &= \frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial x} \end{split}$$

And,

$$\begin{split} \frac{\partial v'}{\partial t'} + v' \frac{\partial v'}{\partial x'} &\to \frac{\partial (v - V)}{\partial t'} + (v - V) \frac{\partial (v - V)}{\partial x'} \\ &= \frac{\partial v}{\partial t} + V \frac{\partial v}{\partial x} + (v - V) \frac{\partial v}{\partial x} \\ &= \frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} \end{split}$$

So $\frac{D\rho}{Dt}$ and $\frac{Dv}{Dt}$ are both invariant under Galilean transformation.