

Design and Optimization of Low-Dropout Voltage Regulator Using Relational Graph Neural Network and Reinforcement Learning in

Open-Source SKY130 Process

Department of Electrical and Computer Engineering, University of Toronto

Zonghao Li, Anthony Chan Carusone {zonghao.li, tony.chan.carusone}@isl.utoronto.ca

Overview

Objectives

- ☐ In analog IC design, sizing circuit components for a given circuit to meet specifications can be challenging.
- ☐ Reinforcement learning (RL) has been introduced as an alternative approach to optimize analog circuits.
- ☐ In the domain of ML, reproducibility is crucial. However, commercial PDKs come with NDA, no public access to the dataset. In addition, trained RL agents cannot be publicized, exacerbate their reusability.
- ☐ We demonstrate the use of relational graph convolutional network (RGCN) and reinforcement learning (RL) to optimize analog LDOs using the open-source SKY130 PDK.

Relational Graph Convolutional Network (RGCN)

- ☐ Recently, using graph neural network (GNN) as the function approximator is getting popular, such as graph convolutional neural network (GCN).
- ☐ We explore applying a heterogeneous GNN called relational graph convolutional neural network (RGCN).
- ☐ A big difference between homogeneous and heterogeneous GNN is the latter allows different edge types.
- ☐ As an example, we could categorize a circuit net based on the signals they are carrying: AC and DC signals.

Low-Dropout (LDO) Regulator

Results

Table I: Optimization Results

			V _{drop} (mV)	I _L	PSRR(dB)			PM	I_q
		(V)			≤ 10kHz	≤ 1MHz	≥ 1MHz		(µA)
Specs.		1.8	≤ 200	[10µA, 10mA]	≤ −30	≤ −20	≤ -5	≥ 60°	≤ 200
LD O1	$I_{L,min}$	1.83	170	[10µA, 10mA]	-29.3	-22	-25.75	54.4 °	175.32
	$I_{L,max}$	1.8	200		-34	-23.2	-0.32	61°	
LD O2	$I_{L,min}$	1.86	140	[10µA, 10mA]	-53.53	-25.2	-25.86	61.2	398 (≤ 400)
	$I_{L,max}$	1.81	190		-44.1	-20	-0.9	78.2	

Conclusion

- ☐ We have demonstrated an open-source RL framework for designing and optimizing vanilla LDO circuits in the open-source SKY130 process.
- ☐ We believe that our proposed framework can be generalized to other analog circuits.
- ☐ In the future, we plan to expand our model to include post-layout simulation.
- ☐ By leveraging the ability of transfer learning, we will explore how the trained RL agent could be applied to other technology nodes.
- ☐ Linked to the GitHub: https://github.com/ChrisZonghaoLi/sky130_ldo_