

Aufgaben zu Riemannsche Flächen - WS 2025/26

2. Blatt - Abgabe 29.10, Übung 30.10

Aufgabe 4: Wir betrachten die konstante Garbe, wie in der Vorlesung definiert. Genauer: Sei A eine abelsche Gruppe. Wir definieren die konstante Garbe (mit Werten in A) durch

$$A: U \mapsto A(U) := \{f: U \to A \mid f \text{ stetig}\},\$$

wobei A die diskrete Topologie trägt, d.h. $\forall a \in A : \{a\} \subset A$ offen.

- i) Beschreibe die Schnitte dieser Garbe. Wieso heißt diese Garbe konstante Garbe?
- ii) Zeige, dass für die Halme \underline{A}_x bei $x \in X$ kanonisch $\underline{A}_x \cong A$ gilt.

Aufgabe 5: Seien \mathcal{F} und \mathcal{G} Garben auf einem topologischen Raum X und $\alpha: \mathcal{F} \to \mathcal{G}$ ein Garbenmorphismus. Zeige, dass die Zuordnung

$$\ker \alpha : U \mapsto \ker \alpha(U) : \mathcal{F}(U) \to \mathcal{G}(U)$$

eine Garbe definiert, die wir mit $\ker \alpha$ bezeichnen.

Aufgabe 6: Sei X eine Riemannsche Fläche. Zeige, dass

$$\underline{2\pi i \mathbb{Z}} = \ker \Big(\exp : \mathcal{O}_X \to \mathcal{O}_X^{\times} \Big)$$

gilt, wobei \exp der durch $\exp(f)=e^f$ induzierte Garbenmorphismus sei und $2\pi i\mathbb{Z}$ die konstante Garbe mit Werten in der abelschen Gruppe $2\pi i\mathbb{Z}$ ist.

Aufgabe 7: Vervollständige das Nicht-Beispiel der Vorlesung: Für $X=\mathbb{C}$ ist die Prägarbe

$$\mathcal{P}: U \mapsto \left(\text{Bild}\left(\frac{d}{dz}: \mathcal{O}_X(U) \to \mathcal{O}_X(U)\right) \right)$$

keine Garbe.