1 Variables

2 root

	var	symbol	documentation	type	units	eqs
10	$F_{N,A}$	F	basic directed graph incidence matrix	network		
9	Δ	pulse	pulse of length time interval	frame		7
5	t^o	to	time zero	frame	s	3
7	Δt	t_interval	time interval	frame	s	5
4	t	t	time	frame	s	
6	t^e	te	time end	frame	s	4
1	#	value	numerical value	constant		
3	0	zero	numerical value zero	constant		2
8	0.5	onehalf	numerical one half	constant		6
2	1	one	numerical one	constant		1

3 physical

	var	symbol	documentation	type	units	eqs
14	r_{zN}	r_z	z-direction	frame	m	10
11	ℓ_N	1	length	frame	m	
12	r_{xN}	r_x	x-direction	frame	m	8
13	r_{yN}	r_y	y-direction	frame	$\mid m \mid$	9
15	V_N	V	fundamental state - volume	state	m^3	11
23	A_N	A	Helmholts energy	state	$kg m^2 s^{-2}$	17
18	$n_{N,S}$	n	fundamental state - molar mass	state	mol	
25	C_N	C	fundamental state - charge	state	As	
24	G_N	G	Gibbs free energy	state	$kg m^2 s^{-2}$	18
22	H_N	Н	Enthalpy	state	$kg m^2 s^{-2}$	15
17	S_N	S	fundamental state - entropy	state	$kg m^2 K^{-1} s^{-2}$	
16	U_N	U	fundamental state - internal energy	state	$kg m^2 s^{-2}$	
21	$\mu_{N,S}$	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	14
19	T_N	Т	temperature	effort	K	16
20	p_N	р	pressure	effort	$kg m^{-1} s^{-2}$	13
29	v_{zN}	v_z	velocity in z-direction	secondaryState	ms^{-1}	21
28	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	20
27	v_{xN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	19

4 material-macroscopic

	var	symbol	documentation	type	units	eqs
30	$-\lambda_S$	_Mm	link variable Mm to interface material »> macroscopic	get	$kgmol^{-1}$	22

5 Equations

6 Generic

no	equation	documentation	layer
1	1 := Instantiate(#, #)	numerical one	root
2	0 := Instantiate(#, #)	numerical value zero	root
3	$t^o := \operatorname{Instantiate}(t, 0)$	time zero	root
4	$t^e := \text{Instantiate}(t, \#)$	time end	root
5	$\Delta t := \operatorname{Instantiate}(t, \#)$	time interval	root
6	0.5 := Instantiate(#, #)	numerical one half	root
7	$\Delta := \operatorname{sign}(t - t^{o}) - \operatorname{sign}(t - (t^{o} - \Delta t))$	pulse of length time interval	root
8	$r_{xN} := \text{Instantiate}(\ell_N, \#)$	x-direction	physical
9	$r_{yN} := \text{Instantiate}(\ell_N, \#)$	y-direction	physical
10	$r_{zN} := \text{Instantiate}(\ell_N, \#)$	z-direction	physical
11	$V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}$	volume	physical
13	$p_N := \frac{\partial U_N}{\partial V_N}$	pressure	physical
14	$\mu_{N,S} := \frac{\partial U_N}{\partial n_{N,S}}$	chemical potential	physical
15	$H_N := U_N - p_N \cdot V_N$	Enthalpy	physical
16	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	physical
17	$A_N := U_N - T_N \cdot S_N$	Helmholts energy	physical

Continued on next page

no	equation	documentation	layer
18	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	physical
19	$v_{xN} := (t)^{-1} \cdot r_{xN}$	velocity in x-direction	physical
20	$v_{yN} := (t)^{-1} \cdot r_{yN}$	velocity in y-direction	physical
21	$v_{zN} := (t)^{-1} \cdot r_{zN}$	velocity in z-direction	physical

7 Interface Link Equation

no	equation	documentation	layer
22	$_{-}\lambda_{S}:=\lambda_{S}$	interface equation	material -> macro- scopic