PROGRAMADOR UNIVERSITARIO LICENCIATURA EN INFORMÁTICA INGENIERÍA EN INFORMÁTICA

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

ARQUITECTURA Y ORGANIZACIÓN DE COMPUTADORAS TRABAJO PRÁCTICO № 6

Álgebra de Boole – Compuertas - Análisis de Circuitos

PROBLEMA 1

Conteste las siguientes preguntas:

- a) En sus palabras, explique la relación entre el sistema binario, lógica digital de dos niveles, y lógica positiva y lógica negativa.
- b) ¿Cuáles son las 3 funciones lógicas elementales? Haga un diagrama con su correspondiente tabla de verdad.
- c) ¿Explique las tres maneras de que uno puede representar un circuito lógico?

PROBLEMA 2

Diseñe la compuerta XOR con compuertas NOR de 2 entradas. Verifique la tabla de verdad usando Logisim.

PROBLEMA 3

Transforme las siguientes funciones booleanas a tablas de verdad y circuitos lógicos:

a)
$$f(A,B,C) = A^*/B^*/C + /A^*B^*/C + /A^*/B^*C + A^*B^*C$$

b)
$$f(A,B,C) = /A^*/B^*/C + A^*/B^*C$$

c)
$$f(A,B,C,D) = A*B*/C*D + A*/B*C*/D + /A*/B*/C*/D$$

PROBLEMA 4

En base a las siguientes funciones Booleanas realice lo indicado:

1.
$$f(A,B,C) = (/A * /B * C) + (/A * B * /C) + (A * /B * /C)$$

2.
$$f(A,B,C) = (/A * /B * /C) + (/A * /B * C) + (A * /B * /C) + (A * /B * C) + (A * B * /C)$$

3.
$$f(A,B,C) = (A+/B+/C) * (/A+B+/C) * (/A+/B+C) * (A+B+C)$$

4.
$$f(A,B,C,D) = (/A+B+/C+D) * (A+/B+C+/D) * (/A+/B+/C+/D)$$

- a) Escriba las correspondientes tablas de verdad y a partir de ellas dibuje los circuitos, usando las dos formas canónicas.
- b) Verifique los resultados de a) utilizando Logisim.

M. Sc. Ing. Ticiano J. Torres Peralta P.U. Pablo Rodríguez Rey Ing. Pablo G. Toledo

29/05/2024

PROGRAMADOR UNIVERSITARIO – LICENCIATURA EN INFORMÁTICA

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

ARQUITECTURA Y ORGANIZACIÓN DE COMPUTADORAS TRABAJO PRÁCTICO № 3

Álgebra de Boole - Compuertas - Análisis de Circuitos

PROBLEMA 5

Dados los siguientes circuitos lógicos, diagrame las tablas de verdad y realice su función booleana para las dos formas canónicas.

PROBLEMA 6

Encontrar la tabla de verdad, dibuje el circuito que, según su criterio, tengo la menor cantidad de componentes con suma de productos o productos de una suma para obtener la expresión booleana más simplificada de una función booleana de 4 variables que tome el valor 1 cuando el número expresado en binario por sus variables sea un número primo mayor que 3, y 0 en el resto de los casos. Expresar la función con la opción canónica correspondiente.

PROBLEMA 7

Encontrar la tabla de verdad, dibuje el circuito que, según su criterio, tengo la menor cantidad de componentes con suma de productos o productos de una suma para obtener la expresión booleana más simplificada de una función booleana de 4 variables que tome el valor 1 cuando el número expresado en binario por sus variables sea un número de la secuencia de Fibonacci, y 0 en el resto de los casos. Expresar la función con la opción canónica correspondiente.

PROGRAMADOR UNIVERSITARIO LICENCIATURA EN INFORMÁTICA INGENIERÍA EN INFORMÁTICA

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

ARQUITECTURA Y ORGANIZACIÓN DE COMPUTADORAS TRABAJO PRÁCTICO № 6

Álgebra de Boole - Compuertas - Análisis de Circuitos

PROBLEMA 8

Identifique a qué postulados de Huntington o propiedades corresponden los circuitos de cada apartado.

a)	A — F		A — F
b)	A F		
c)	A B C	\rightarrow	A C F
d)	A B	\rightarrow	A F
e)	A F		
f)	A B		

PROGRAMADOR UNIVERSITARIO - LICENCIATURA EN INFORMÁTICA

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

ARQUITECTURA Y ORGANIZACIÓN DE COMPUTADORAS TRABAJO PRÁCTICO Nº 3

Álgebra de Boole - Compuertas - Análisis de Circuitos

PROBLEMA 9

Transforme el siguiente circuito a su versión con compuertas NOR.

Α	В	O	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

PROGRAMADOR UNIVERSITARIO LICENCIATURA EN INFORMÁTICA INGENIERÍA EN INFORMÁTICA

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

ARQUITECTURA Y ORGANIZACIÓN DE COMPUTADORAS TRABAJO PRÁCTICO Nº 6

Álgebra de Boole - Compuertas - Análisis de Circuitos

PROBLEMA 10

De las siguientes tablas de verdad, realice el circuito más "óptimo" correspondiente y su función booleana.

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1