Logistic Regression and Poisson Regression

Logistic Regression

Poisson Regressio

Model

Lecture 7

Logistic Regression and Poisson Regression

Reading: Faraway 2016 Chapters 2.1-2.5; 5.1; 8.1; ISLR 2021 Chapter 4.2; 4.3.1-4.3.4; 4.6

DSA 8020 Statistical Methods II

Whitney Huang Clemson University

Agenda

Logistic Regression and Poisson Regression

ogistic Regression

Poisson Regression

Generalized Linear Model

Logistic Regression

2 Poisson Regression

Generalized Linear Model

A Motivating Example: Horseshoe Crab Mating [Brockmann, 1996; Agresti, 2013]

sat	У	weight	width
8	1	3.05	28.3
0	0	1.55	22.5
9	1	2.30	26.0
0	0	2.10	24.8
4	1	2.60	26.0
0	0	2.10	23.8
0	0	2.35	26.5
0	0	1.90	24.7
0	0	1.95	23.7
0	0	2.15	25.6

Source: https://www.britannica.com/story/horseshoe-crab-a-key-player-in-ecology-medicine-and-more

We are going to use this dataset to illustrate logistic regression. The response variable is $y \in \{0,1\}$, indicates whether males cluster around the female

Logistic Regression and Poisson Regression

Logistic Hegression

aeneralized Line Model

Model Linear

Let $P(y=1) = \pi \in [0,1]$, and x be the predictor (e.g., weight in the previous example). In SLR we have

$$\pi(x) = \beta_0 + \beta_1 x,$$

which will lead to invalid estimate of π (i.e., > 1 or < 0).

Logistic Regression

$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \beta_0 + \beta_1 x.$$

- ullet $\log(\frac{\pi}{1-\pi})$: the log-odds or the logit
- $\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} \in (0, 1)$

Linear and Logistic Regression Fits of Horseshoe Crab Mating Data

Linear regression:

$$\hat{y}(x) = \hat{\beta}_0 + \hat{\beta}_1 x, \hat{\beta}_0 = -0.1449(0.1472), \hat{\beta}_1 = 0.3227(0.0588)$$

Logistic regression:

$$\hat{\pi}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x}}, \, \hat{\beta}_0 = -3.6947(0.8802), \, \hat{\beta}_1 = 1.8151(0.3767)$$

Logistic Regression and Poisson Regression

Logicus riogrocolori

Poisson Regression

Generalized Linear
Model

- If $\beta_1 = 0$, then $\pi(x) = e^{\beta_0}/(1 + e^{\beta_0})$ is a constant w.r.t x (i.e., $\pi = P(y = 1)$ does not depend on x)
- Logistic curve can be approximated at fixed x by straight line to describe rate of change: $\frac{d\pi(x)}{dx} = \beta_1 \pi(x) (1 \pi(x))$
- $\pi(-\beta_0/\beta_1) = 0.5$
- $1/\beta_1$ is approximately equal to the distance between the x values where $\pi(x) = 0.5$ and $\pi(x) = 0.75$ (or $\pi(x) = 0.25$)

Recall $\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \beta_0 + \beta_1 x$, we have the odds

$$\frac{\pi(x)}{1-\pi(x)} = \exp(\beta_0 + \beta_1 x).$$

If we increase x by 1 unit, the the odds becomes

$$\exp(\beta_0 + \beta_1(x+1)) = \exp(\beta_1) \times \exp(\beta_0 + \beta_1 x).$$

$$\Rightarrow \frac{\text{Odds at } x+1}{\text{Odds at } x} = \exp(\beta_1), \ \forall x$$

In the horseshoe crab example, we have

$$\hat{\beta}_1 = 1.8151 \Rightarrow e^{1.8151} = 6.14$$

 \Rightarrow Estimated odds of satellite multiply by 6.1 for 1 kg increase in weight.

$$\pi(x_i) = \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)}.$$

• **Likelihood function**: We can write the joint probability density of the data $\{x_i, y_i\}_{i=1}^n$ as

$$\prod_{i=1}^{n} \left[\frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \right]^{y_i} \left[\frac{1}{1 + \exp(\beta_0 + \beta_1 x_i)} \right]^{(1-y_i)}.$$

We treat this as a function of parameters (β_0, β_1) given data.

• **Maximum likelihood estimate**: The maximizer $\hat{\beta}_0, \hat{\beta}_1$ is the maximum likelihood estimate. This maximization (for logistic regression) can only be solved numerically.

Logistic Regression

Poisson Regression

Horseshoe Crab Logistic Regression Fit

- > logitFit <- glm(y ~ weight, data = crab, family = "binomial")</pre>
- > summary(logitFit)

Call:

 $glm(formula = y \sim weight, family = "binomial", data = crab)$

Deviance Residuals:

Min 1Q Median 3Q Max -2.1108 -1.0749 0.5426 0.9122 1.6285

Coefficients:

Signif. codes:

0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 195.74 on 171 degrees of freedom AIC: 199.74

Logistic Regression and Poisson Regression

Logistic Regression

Poisson Regression

odel

lodel

A 95% confidence interval of the parameter β_i is

$$\hat{\beta}_i \pm z_{0.025} \times \mathrm{SE}(\hat{\beta}_i), \quad i = 0, 1$$

Horseshoe Crab Example

A 95% (Wald) confidence interval of β_1 is

$$1.8151 \pm 1.96 \times 0.3767 = \begin{bmatrix} 1.077, 2.553 \end{bmatrix}$$

Therefore, a 95% CI of e^{β_1} , the multiplicative effect on odds of 1-unit increase in x, is

$$[e^{1.077}, e^{2.553}] = [2.94, 12.85]$$

Null and Alternative Hypotheses:

 $H_0: \beta_1=0 \Rightarrow y$ is independent of $x\Rightarrow \pi(x)$ is a constant $H_a: \beta_1\neq 0$

Test Statistics:

$$z_{obs} = \frac{\beta_1}{\text{SE}(\hat{\beta}_1)} = \frac{1.8151}{0.3767} = 4.819.$$

$$\Rightarrow p$$
-value = 1.45×10^{-6}

We have sufficient evidence that <code>weight</code> has positive effect on π , the probability of having satellite male horseshoe crabs

CLEMSEN UNIVERSITY

Logistic Hogression

Poisson Regression

Model

Diagnostic: Raw Residual Plot

The raw residual plot is not very informative because the response variable, y, only takes two possible values

Logistic Regression and Poisson Regression

Logistic Regression

Poisson Regression

Poisson Regressio

eneralized Linear odel

- Grouping the residuals into bins and calculating the average for each bin
- $\log\left(\frac{\hat{\pi}(x)}{1-\hat{\pi}(x)}\right)$ is plotted on the horizontal axis (rather than the $\hat{\pi}(x)$) to provide better spacing

y ~ weight + width

```
> logitFit2 <- glm(y ~ weight + width, data = crab, family = "binomial")
> step(logitFit2)
Start: AIC=198.89
```

Df Deviance AIC - weight 1 194.45 198.45 <none> 192.89 198.89

- width 1 195.74 199.74

Step: AIC=198.45 y ~ width

Df Deviance AIC <none> 194.45 198.45 - width 1 225.76 227.76

Call: $glm(formula = y \sim width, family = "binomial", data = crab)$

Coefficients:

(Intercept) width -12.3508 0.4972

Degrees of Freedom: 172 Total (i.e. Null); 171 Residual Null Deviance: 225.8

Residual Deviance: 194.5

AIC: 198.5

Count Data

Daily COVID-19 Cases in South Carolina

Source: The New York Times · About this data

Number of landfalling hurricanes per hurricane season

_ . _ _ .

Generalized Linear Model

So far we have talked about:

- Linear regression: $y = \beta_0 + \beta_1 x + \varepsilon$, $\varepsilon \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$
- Logistic Regression: $\log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x$, $\pi = P(Y = 1)$

Count data

- Counts typically have a right skewed distribution
- Counts are not necessarily binary

We can use Poisson Regression to model count data

If Y follow a Poisson distribution, then we have

$$P(Y = y) = \frac{e^{-\lambda}\lambda^{y}}{y!}, \quad y = 0, 1, 2, \dots,$$

where λ is the rate parameter that represents the event occurrence frequency

•
$$E(Y) = Var(Y) = \lambda \text{ if } Y \sim Pois(\lambda), \quad \lambda > 0$$

 A useful model to describe the probability of a given number of events occurring in a fixed interval of time or space

- (a): λ = 0.5: distribution gives highest probability to y = 0 and falls rapidly as y \uparrow
- (b): $\lambda = 2$: a skew distribution with longer tail on the right
- (c): λ = 5: distribution become more normally shaped

Flying-Bomb Hits on London During World War II [Clarke, 1946; Feller, 1950]

The City of London was divided into 576 small areas of one-quarter square kilometers each, and the number of areas hit exactly k times was counted. There were a total of 537 hits, so the average number of hits per area was $\frac{537}{576} = 0.9323$. The observed frequencies in the table below are remarkably close to a Poisson distribution with rate $\lambda = 0.9323$

Hits	0	1	2	3	4	5+
Observed	229	211	93	35	7	1
Expected	226.7	211.4	98.5	30.6	7.1	1.6

Logistic Regression and Poisson Regression

Poisson Regression

Generalized Linear Model

US Landfalling Hurricanes

Source: https://www.kaggle.com/gi0vanni/analysis-on-us-hurricane-landfalls

Logistic Regression and Poisson Regression

Logistic Regression

Poisson Regression

Generalized Linear Model

Number of US Landfalling Hurricanes Per Hurricane Season

Research question: Can the variation of the annual counts be explained by some environmental variable, e.g., Southern Oscillation Index (SOI)?

Logistic Regression and Poisson Regression

Logistic Regression

Generalized Linear

Some Potentially Relevant Predictors

Poisson Pogrossion

Generalized Linear
Model

- Southern Oscillation Index (SOI): an indicator of wind shear
- Sea Surface Temperature (SST): an indicator of oceanic heat content
- North Atlantic Oscillation (NAO): an indicator of steering flow
- Sunspot Number (SSN): an indicator of upper air temperature

Hurricane Count vs. Environmental Variables

Logistic Regression and Poisson Regression

Poisson Regression

-0.2 0.0 0.2 0.4 0.6

-0.4

7 6

4

3

2 1

0

Hurricane count 5

 $\log(\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$ $\Rightarrow y \sim \operatorname{Pois}(\lambda = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}))$

- Model the logarithm of the mean response as a linear combination of the predictors
- Parameter estimation is carry out using the maximum likelihood method
- Interpretation of $\beta's$: every one unit increase in x_j , given that the other predictors are held constant, the λ increases by a factor of $\exp(\beta_j)$

CLEMS N UNIVERSITY

Poisson Regression Model:

 $\log(\lambda_{ extsf{Count}}) \sim extsf{SOI} + extsf{NAO} + extsf{SST} + extsf{SSN}$

Table: Coefficients of the Poisson regression model.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0.5953	0.1033	5.76	0.0000
SOI	0.0619	0.0213	2.90	0.0037
NAO	-0.1666	0.0644	-2.59	0.0097
SST	0.2290	0.2553	0.90	0.3698
SSN	-0.0023	0.0014	-1.68	0.0928
-				

 \Rightarrow every one unit increase in SOI, the hurricane rate increases by a factor of $\exp(0.0619)$ = 1.0639 or 6.39%.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.8869	0.1876	10.06	0.0000
SOI	0.1139	0.0402	2.83	0.0053
NAO	-0.2929	0.1173	-2.50	0.0137
SST	0.4314	0.4930	0.88	0.3830
SSN	-0.0039	0.0024	-1.66	0.1000

If we use this fitted model to predict the mean hurricane count, say SOI = -3, NAO=3, SST = 0, SSN=250

This negative number does not make sense

Logistic Regression and Poisson Regression

--9.-..- . . - 9. - - - . . .

Poisson Regression

Jeneralized Linear
Model

Model Selection

```
> step(PoiFull)
Start: AIC=479.64
```

All ~ SOI + NAO + SST + SSN

Df Deviance AIC - SST 1 175.61 478.44

Step: AIC=478.44

All ~ SOI + NAO + SSN

Df Deviance AIC
<none> 175.61 478.44
- SSN 1 178.29 479.12
- NAO 1 183.57 484.41
- SOI 1 183.91 484.74

Call: glm(formula = All ~ SOI + NAO + SSN, family = "poisson", data = df)

Coefficients:

(Intercept) SOI NAO SSN 0.584957 0.061533 -0.177439 -0.002201

Degrees of Freedom: 144 Total (i.e. Null); 141 Residual

Null Deviance: 197.9

Residual Deviance: 175.6 AIC: 478.4

Logistic Regression and Poisson Regression

_ . _ _ .

Poisson Regression

Generalized Linear Model

$$y \sim N(\mu, \sigma^2), \quad \mu = \boldsymbol{X}^T \boldsymbol{\beta}$$

Bernoulli Linear Model:

$$y \sim \text{Bernoulli}(\pi), \quad \log(\frac{\pi}{1-\pi}) = \mathbf{X}^T \boldsymbol{\beta}$$

Poisson Linear Regression:

$$y \sim \text{Poisson}(\lambda), \quad \log \lambda = \mathbf{X}^T \boldsymbol{\beta}$$

These models fall into the family of generalized linear models [Nelder and Wedderburn (1972); McCullagh and Nelder (1989)] with the **distributional assumptions** (normal, Bernoulli, Poisson) and the **link functions** (identity, logit, and log)

Data and Data and the

Jeneralized Linear

These slides cover:

- Logistic Regression
- Poisson Regression

Both of which, as well as the linear regression models covered in the past 6 weeks, can be unified into a single framework of Generalized Linear Model

R functions to know:

- Logistic and Poisson Regressions: glm with family being "binomial" and "poisson", respectively
- Many lm utility functions can still be used; for example, predict can still be used for prediction, and step can still be used for model selection