Принятые обозначения

⇒	определение
•	начало решения задачи
•	конец решения задачи
N	множество натуральных чисел
Z	множество целых чисел
\mathbb{R}	множество действительных чисел
\mathbb{R}^2	действительная плоскость
\mathbb{R}^3	действительное трехмерное пространство
C	множество комплексных чисел
U	объединение множеств
Ω	пересечение множеств
$A \subset B$	A — подмножество множества B ($A \neq B$)
$A \subseteq B$	A — подмножество множества B
A	любой, для любого
3	найдется, существует

Домашнее задание

Найти линейные комбинации матриц:

1.1.36.
$$3A - 2B, A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}.$$

1.1.37.
$$2B - 5A$$
, $A = \begin{pmatrix} 0 & 2 & 4 \\ -6 & 4 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 5 & 10 \\ -15 & 10 & 0 \end{pmatrix}$.

1.1.38.
$$A - \lambda E, A = \begin{pmatrix} 2 & 3 \\ 3 & -2 \end{pmatrix}.$$

1.1.39.
$$4A - 7B$$
, $A = \begin{pmatrix} 1 & -2 & 5 & 3 \\ 2 & 0 & -3 & 1 \\ 5 & -1 & 0 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 2 & 7 & -5 \\ -8 & 1 & 3 & 0 \\ 4 & 2 & -2 & 5 \end{pmatrix}$.

1.1.40.
$$5A - 3B + 2C$$
, $A = \begin{pmatrix} 1 & -2 & 0 \\ 3 & 5 & 1 \\ -1 & 2 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 1 & -2 \\ -3 & 2 & 7 \\ 4 & 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -5 & 3 & 1 \\ 2 & 0 & 5 \\ 6 & 4 & 2 \end{pmatrix}$.

Найти произведения матриц АВ и ВА (если это возможно):

1.1.41.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}.$$

1.1.42.
$$A = \begin{pmatrix} 1 & -2 & 3 & 0 \end{pmatrix}, B = \begin{pmatrix} 5 \\ -3 \\ -4 \\ 1 \end{pmatrix}.$$

1.1.43.
$$A = \begin{pmatrix} 2 & 0 & 3 \\ -1 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} -4 \\ -3 \\ 5 \end{pmatrix}.$$

1.1.44.
$$A = \begin{pmatrix} 3 & 5 & -1 \\ 2 & -2 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ -3 & 0 \\ 5 & 1 \end{pmatrix}.$$

1.1.45.
$$A = \begin{pmatrix} -2 & 3 & 1 \\ 5 & 4 & 0 \\ 2 & -1 & -5 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 & -3 \\ 0 & -3 & 1 \\ 4 & -4 & 5 \end{pmatrix}.$$

Найти произведения матриц $(AB) \cdot C$ и $A \cdot (BC)$:

1.1.46.
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix}, C = \begin{pmatrix} 3 & -1 \\ 2 & 3 \end{pmatrix}.$$

1.1.47.
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} -5 & 3 \\ 2 & -1 \end{pmatrix}, C = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}.$$

1.1.48.
$$A = \begin{pmatrix} 1 & -3 \end{pmatrix}, B = \begin{pmatrix} -3 & 2 & 0 \\ -2 & 5 & -1 \end{pmatrix}, C = \begin{pmatrix} -2 & 4 & -3 & 0 \\ 0 & 2 & 5 & -2 \\ 3 & -1 & 2 & 4 \end{pmatrix}.$$

1.1.49.
$$A = \begin{pmatrix} -5 & 0 & 3 \\ 4 & 1 & -1 \\ 2 & -3 & 2 \\ 1 & 5 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ -2 & 1 \\ 4 & 3 \end{pmatrix}, C = \begin{pmatrix} -2 \\ 3 \end{pmatrix}.$$

Hайти матрицу A^n :

1.1.50.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
. **1.1.51.** $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

1.1.52.
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

Найти значение матричного многочлена f(A):

1.1.53.
$$f(x) = 2x^2 - 3x + 1, A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

1.1.54.
$$f(x) = 3x^2 + 2x + 5, A = \begin{pmatrix} 2 & -3 \\ 0 & 4 \end{pmatrix}$$

1.1.55.
$$f(x) = 2x^3 - x^2 + 3, A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$
.

1.1.56.
$$f(x) = 4x^3 - 2x^2 + 3x - 2, A = \begin{pmatrix} -2 & 3 \\ 1 & 0 \end{pmatrix}.$$

1.1.57.
$$f(x) = x^2 - 3x + 2, A = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 2 & 1 \\ 3 & -3 & 2 \end{pmatrix}.$$

1.1.58.
$$f(x) = 3x^2 + 5x - 2, A = \begin{pmatrix} 2 & 3 & -3 \\ 0 & 1 & 4 \\ 5 & -2 & 1 \end{pmatrix}.$$

1.1.59.
$$f(x) = x^3 - x^2 + 5, A = \begin{pmatrix} 1 & 0 & 1 \\ 3 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

1.1.60.
$$f(x) = 2x^3 - x^2 + 3x - 2, A = \begin{pmatrix} 2 & -3 & 4 \\ 0 & 5 & -1 \\ -2 & -1 & 3 \end{pmatrix}.$$

Проверить, коммутируют ли матрицы А и В:

1.1.61.
$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}.$$

1.1.62.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}, B = \begin{pmatrix} -5 & 3 \\ 2 & -1 \end{pmatrix}.$$

1.1.63.
$$A = \begin{pmatrix} 2 & -3 \\ 4 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & -2 \\ -4 & 3 \end{pmatrix}.$$

1.1.64.
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 2 & 5 \\ 4 & -2 & 7 \end{pmatrix}, B = \begin{pmatrix} -2 & 1 & 0 \\ -3 & -2 & 5 \\ -4 & 2 & -7 \end{pmatrix}.$$

1.1.65.
$$A = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \delta \end{pmatrix}, \ B = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}.$$

1.1.66.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 & -3 \\ -4 & 5 & -6 \\ -7 & 8 & -9 \end{pmatrix}.$$

1.1.67.
$$A = \begin{pmatrix} 1 & 2 & -3 & 4 \\ 5 & -6 & 7 & 8 \\ -9 & 0 & 1 & 2 \\ 3 & 4 & 5 & -6 \end{pmatrix}, B = \begin{pmatrix} -6 & 5 & 4 & 3 \\ 2 & 1 & 0 & -9 \\ 8 & 7 & -6 & 5 \\ 4 & -3 & 2 & 1 \end{pmatrix}.$$

1.1.68.
$$A = \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}, B = \begin{pmatrix} 7 & -6 & 1 \\ -5 & 3 & 1 \\ 6 & -3 & -3 \end{pmatrix}.$$

Hайти матрицу A^T :

1.1.69.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
. **1.1.70.** $A = \begin{pmatrix} 1 & -2 & 0 \\ 3 & 5 & -7 \\ -4 & 1 & 2 \end{pmatrix}$.

1.1.71.
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$$
.

Hаtimu произвеdения матриц AA^T и A^TA :

1.1.72.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
. **1.1.73.** $A = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$.

1.1.74.
$$A = \begin{pmatrix} 1 & -2 & 0 \\ 3 & 5 & -7 \\ -4 & 1 & 2 \end{pmatrix}$$
. **1.1.75.** $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$.

1.1.76.
$$A = \begin{pmatrix} 0 & 0 & -3 \\ 0 & 2 & 0 \\ 5 & 0 & 0 \end{pmatrix}$$
. **1.1.77.** $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

Привести матрицу А к ступенчатому виду:

1.1.78.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
. **1.1.79.** $A = \begin{pmatrix} 2 & -1 & 5 \\ 1 & 1 & 3 \\ 1 & -5 & 1 \end{pmatrix}$.

1.1.80.
$$A = \begin{pmatrix} 1 & -2 & 3 & 1 \\ 3 & 2 & -4 & 2 \\ 5 & -2 & 2 & 4 \end{pmatrix}$$
. **1.1.81.** $A = \begin{pmatrix} 1 & 2 & 3 & -1 & 8 \\ 2 & -1 & -4 & 3 & 1 \\ 4 & -7 & -18 & 11 & -13 \\ 3 & 1 & -1 & 2 & 9 \end{pmatrix}$.

1.1.82.
$$A = \begin{pmatrix} 1 & -1 & 5 & -3 & 4 \\ 1 & 2 & -7 & 0 & 7 \\ 2 & -1 & 2 & 3 & -11 \\ 1 & 0 & 1 & -2 & 5 \end{pmatrix}$$
. **1.1.83.** $A = \begin{pmatrix} 1 & 1 & -1 & 0 & 4 \\ 3 & -1 & -7 & -4 & 7 \\ 7 & -1 & -15 & -8 & -11 \\ 1 & -1 & -3 & -2 & 5 \end{pmatrix}$.

1.1.84.
$$A = \begin{pmatrix} 1 & 5 & 3 & -10 \\ 3 & -1 & 1 & 10 \\ 2 & 1 & -1 & 0 \\ 7 & 10 & 6 & -10 \end{pmatrix}$$
. **1.1.85.** $A = \begin{pmatrix} 1 & 1 & -1 \\ 8 & 3 & -6 \\ -4 & -1 & 3 \end{pmatrix}$.

1.1.86.
$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 3 & -1 & 2 & 2 \\ 2 & 5 & -1 & 0 \\ 1 & -1 & 0 & 2 \end{pmatrix}$$
. 1.1.87. $A = \begin{pmatrix} 1 & 0 & 2 & -1 & 3 \\ 3 & -2 & 0 & -4 & 7 \\ 2 & 2 & 10 & -1 & 8 \\ 1 & -2 & -4 & 5 & 2 \end{pmatrix}$.