Corrigés des exercices pour le contrôle 2 de chimie

1. Donner les molécules qui se forment à partir des couples d'ions suivants (charge des ions non donnée, attention à l'ordre des atomes dans la molécule).

Li/Cl

Li/O

Cl/Ca

0/Ca

Li/carbonate

Réponse: LiCl

Li₂O

CaCl₂

Ca₀

Li₂CO₃

2. Donner la réaction chimique équilibrée entre le couple suivant:

a. Li et l'eau

Réponse: $2 \operatorname{Li}(s) + 2 \operatorname{H}_2 O(l) \rightarrow 2 \operatorname{LiOH}(s) + \operatorname{H}_2(g)$

b. Al et S

Réponse: $2 \text{ Al}(s) + 3 \text{ S}(s) \rightarrow \text{Al}_2\text{S}_3(s)$

3. Classer les espèces des ensembles suivants selon l'ordre croissant de leur volume :

a.
$$Be^{2+} - K - Mg - Mg^{2+} - Na$$
 b. $O - O^{2-} - P^{3-} - S^{2-}$

b.
$$O - O^{2-} - P^{3-} - S^{2-}$$

Réponse : a.
$$Be^{2+} < Mg^{2+} < Mg < Na < K$$

b.
$$O < O^{2-} < S^{2-} < P^{3-}$$

4. Quelles sont les propriétés magnétiques (para- ou diamagnétique) du Ni, du Ni²⁺ et du Ni⁴⁺? Justifier les réponses à l'aide des cases quantiques et comparer l'intensité magnétique (sans calculs) des trois espèces avec explication.

 $[Ar]4s^2 3d^8$

Ni

2 électrons célibataires, para

3d

45

 Ni^{2+} 2 électrons célibataires, para

3*d*

4s

Ni⁴⁺

4 électrons célibataires, para

Comparaison et explication : Ni⁴⁺ avec ses 4 électrons célibataires a la plus grande intensité magnétique qui dépend du nombre d'électrons célibataires. Ni et Ni²⁺ ont 2 électrons célibataires chacun et une intensité magnétique comparable.

5. Donner la structure de Lewis du peroxyde d'hydrogène, H₂O₂, et du formaldéhyde, H₂CO:

Réponse :

$$c = 0$$

6. Donner le diagramme des orbitales moléculaires, l'ordre de liaison et les caractéristiques magnétiques du $[O_2]^-$.

L'ordre de liaison : (6 - 3) / 2 = 1.5

Caractéristiques magnétiques : 1 électron célibataire, donc paramagnétique.