

<u>Course</u> > <u>Final exam</u> > <u>Final Exam</u> > Problem 4

Problem 4

(a)

2/2 points (graded)

Let $X_1,\ldots,X_n\stackrel{i.i.d.}{\sim} \mathsf{Ber}\,(p)$ for some $p\in(0,1)$. Which of the following is the maximum likelihood estimator \hat{p} for p?

 $\circ X_1$

$$egin{array}{c} n \ \overline{\sum_{i=1}^n X_i} \end{array}$$

Is the maximum likelihood estimator for p unbiased?

Yes

No

Solution:

Note that the likelihood of X_1,\dots,X_n is

$$L\left(X_{1},\ldots,X_{n}|p
ight)=(1-p)^{\sum_{i=1}^{n}X_{i}}(p)^{n-\sum_{i=1}^{n}X_{i}}.$$

Now note that the log-likelihood is

$$\ell\left(p
ight) = \sum_{i=1}^{n} X_{i} \log\left(1-p
ight) + n - \sum_{i=1}^{n} X_{i} \log\left(p
ight).$$

Setting $\ell'\left(p\right)=0$ it follows that

$$\hat{p} = rac{\sum_{i=1}^n x_i}{n}.$$

Note that

$$\ell''(p) < 0$$
 Concave

so the maximum is unique.

You have used 1 of 3 attempts

Answers are displayed within the problem

(b)

2/2 points (graded)

Compute the bias of the estimator \hat{p} $(1-\hat{p})$ for p (1-p).

There exists a constant C such that $C\hat{p}$ $(1-\hat{p})$ is unbiased. Compute C.

STANDARD NOTATION

Correction Note: May 23 An earlier version of the problem statement asked for the bias of the estimator \hat{p} $(1-\hat{p})$ for p (1-p), but in the prompt to the answer box, the word "bias" was missing.

Solution:

Note that

$$\mathbb{E}\left[rac{\sum_{i=1}^n x_i}{n}igg(1-rac{\sum_{i=1}^n x_i}{n}igg)
ight]=p-\mathbb{E}\left[\left(rac{\sum_{i=1}^n x_i}{n}
ight)^2
ight].$$

To compute the second term note that by symmetry it is the same as

$$\mathbb{E}\left[\left(rac{\sum_{i=1}^{n}x_i}{n}
ight)^2
ight] = rac{n\left(n-1
ight)\mathbb{E}\left[x_1x_2
ight] + n\mathbb{E}\left[x_1^2
ight]}{n^2} = rac{p^2\left(n-1
ight) + p}{n}.$$

Thus

$$\mathbb{E}\left[\hat{p}\left(1-\hat{p}
ight)
ight]-p\left(1-p
ight)=rac{-\left(p-p^2
ight)}{n}.$$

Next, we write that

$$\mathbb{E}\left[\hat{p}\left(1-\hat{p}
ight)
ight] = rac{\left(n-1
ight)p\left(1-p
ight)}{n}$$

and the result follows.

Submit

You have used 1 of 3 attempts

2/2 points (graded)

Which of the following methods can be used to show that $\hat{p}~(1-\hat{p}~)$ is asymptotically normal?

- Central Limit Theorem
- Theorem on MLE
- Delta Method along with the Central Limit Theorem

What is the asymptotic variance of \hat{p} $(1 - \hat{p})$? (Express your answer as a function of p only.)

✓ Answer: p*(1-p)*(1-2*p)^2

$$(1-2\cdot p)^2\cdot p\cdot (1-p)$$

STANDARD NOTATION

Solution:

If one know that a random variable y is asymptotically normal then generally one uses the Delta method to prove that f(y) is also asymptotically normal.

Note that by we apply the Delta Method to \hat{p} for the function $f(x)=x\,(1-x)$. Note that f'(x)=1-2x so it follows that

$$\sqrt(n)\left(\hat{p}\left(1-\hat{p}
ight)-p\left(1-p
ight)
ight)
ightarrow\mathcal{N}\left(0,p\left(1-p
ight)\left(1-2p
ight)^{2}
ight).$$

Therefore the asymptotic variance is $p\left(1-p\right)\left(1-2p\right)^{2}$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

(d)

0/1 point (graded)

Using the plug-in method determine A>0 such $[\hat{p}(1-\hat{p})(1-A),\hat{p}(1-\hat{p})(1+A)]$ is a confidence interval for p(1-p) with asymptotic level 95%. Note that A should only depend on p and p.

(Enter **hatp** for \hat{p} . If applicable, enter **Phi(z)** for the cdf $\Phi(z)$ of a normal variable Z, **q(alpha)** for the quantile q_{α} for any numerical value α . Recall the convention in this course that $\mathbf{P}(Z \leq q_{\alpha}) = 1 - \alpha$ for $Z \sim \mathcal{N}(0,1)$.)

Solution:

Note that

$$\sqrt(n)\left(\hat{p}\left(1-\hat{p}
ight)-p\left(1-p
ight)
ight)
ightarrow\mathcal{N}\left(0,p\left(1-p
ight)\left(1-2p
ight)^{2}
ight).$$

Thus $p\left(1-p
ight)$ is in

$$[\hat{p}\left(1-\hat{p}\right)-\frac{1.96\sqrt{p\left(1-p\right)\left(1-2p\right)^{2}}}{\sqrt{n}},\hat{p}\left(1-\hat{p}\right)+\frac{1.96\sqrt{p\left(1-p\right)\left(1-2p\right)^{2}}}{\sqrt{n}}]$$

with probability 95% asymptotically and using the plug-in method we can replace the above with

$$[\hat{p}\left(1-\hat{p}
ight) - rac{1.96\sqrt{\hat{p}\left(1-\hat{p}
ight)\left(1-2\hat{p}
ight)^{2}}}{\sqrt{n}},\hat{p}\left(1-\hat{p}
ight) + rac{1.96\sqrt{\hat{p}\left(1-\hat{p}
ight)\left(1-2\hat{p}
ight)^{2}}}{\sqrt{n}}]\,.$$

This gives A equal to $\frac{1.96\sqrt{\left(1-2\hat{p}\right)^2}}{\sqrt{n\hat{p}\left(1-\hat{p}\right)}}.$

Submit

You have used 2 of 3 attempts

Answers are displayed within the problem

Error and Bug Reports/Technical Issues

Topic: Final exam: Final Exam / Problem 4

Show Discussion

© All Rights Reserved