Az optikai szálak

FV szálak felépítése, gyakorlati jelenségek

Egy kis történelem 1.

- 1930 Norman R. French szabadalma optikai távbeszélő rendszerre (merev üvegrudak kötege)
- 1950-es évek: 1-1,5m hosszú rendezett üvegszál köteg (orvosi diagnosztikai célokra)
- 1958: lézer
- 1960: Theodor H. Maiman használja a lézert először jeladóként, egyidejűleg kifejlesztik a vevőt is (fotodióda)

Történelem 2.

- 1966: Charles K. Kao & A.Hockham, Anglia, első használható üvegszál, 20dB/km csillapítás (addig 1000dB/km!)
- 1970: Corning Glass Művek (USA): csillapítás
 <20dB/km λ=633nm esetén (lépcsős profil)
- 1972: gradiens profilú 4dB/km
- 1973: első közcélú távbeszélő optikai kábel (USA)

Történelem 3.

- 1980-as évek eleje: első kábelszakaszok kompletten importálva (Magyar Posta)
- 1980-as évek végén kezd nagyon terjedni a hálózatban, NDK gyártmányok, multimódusú, gradiens indexű
- 1988: első önhordó optikai légkábel
 Esztergom és Dorog között középfeszültségű oszlopsoron

Az átvitel elve

- becsatoláshoz adó: Laser LED
 - szögre, síkokra vigyázni kell!
 - Fresnel-reflexió

- kicsatoláskor vevő:
 - lavina fotodióda (APD)
 - o PIN dióda

Laser LED vázlata

Laser LED

A félvezető anyaga: InGaAsP

Hullámhossz: 1100-1670nm (változik a vegyület arányában)

PIN dióda, mint vevő

- a sima p-n átmenet nem biztosít elég nagy hatásfokot
- szennyezetlen (intrinsic) réteg:
 - nő a p-n átmenet kiürített rétege
 - nő az elnyelt fény mennyisége
- Erősen lineáris működés, alacsony sötétáram, alacsonyabb zajszint, stabil karakterisztika

PIN vs. APD

Paraméter	PIN fotodióda	Lavina (Avalanche)
Anyag	Si, Ge(1310nm),	Szilícium, Germánium, InGaAs
	InGaAs (1310 & 1550nm)	
Sávszélesség	DC - 20GHz	DC - 20 GHz
Hullámhossz	600-1800 nm	600-1800 nm
Érzékenység	0.5 -1.0 A/W	0.5 - 100 A/W
Szükséges áramkörök	-	Nagy feszültség, Hőfok stabilizálás
Ár (tokozott+szál)	\$1 - \$500	\$100 - \$2,000
	Nincs áramerősítés => Alacsonyabb érzékenység Alacsony feszültség Kisebb zaj és sötétáram Könnyű használni Olcsóbb	Áramerősítés => Nagyobb érzékenység => gyengébb optikai jel detektálása Nagy meghajtó feszültség Nagyobb zaj, Nagyobb sötétáram Nagyobb hőmérséklet és előfeszítés érzékenység Drága

Az optikai szál

- Hengeres keresztmetszetű, dielektromos anyagból készült optikai hullámvezető.
- Az emberi haj átmérőjével összevethető átmérő
- Mag + héj együtt
- A mag törésmutatója nagyobb, mint a héjé, kb.
 1% a különbség.
- A törésmutató-különbség biztosítja a visszaverődést (bent marad a fény a szálban)

Fényvezető ér

Fényvezető szál + védelmek = fényvezető ér

- alapanyag: kvarcüveg (SiO₂)
- természetben: víztiszta hegyikristály
- optikailag és mechanikailag anizotróp (irányultságot mutat)
- természetes üvegek nem jók, mert fémoxic tartalmuk miatt nem jól vezetik a fényt
- átláthatóság: ablaküveg: 10cm < fototechnikai üveg 1m < optikai fényvezető szál: 100km!

Az üveg gyártása

- 1. SiO₂ gázfázisból való kiválasztása
- 2. Si tetrakolorid és klórgáz hozzáadásával törésmutató beállítása adalékolással (F, $\rm B_2O_3$ /bórtrioxid/ csökkenti, $\rm GeO_2$, vagy $\rm P_2O_5$ növeli
- 3. Az adalékolás sajnos hat a mechanikai tulajdonságokra és a csillapításra is.
- 4. Szennyeződés: pl. 10⁻⁴ térf.% Cu => +100dB/km csillapítás!, (800nm-en, feljebb még rosszabb...)

Az üveg csillapítása

Áthidalható távolság

Az átviteli hosszat két tényező befolyásolja:

- csillapítás
- diszperzió

Először a diszperzió volt a szűk keresztmetszet. A félvezető technikából vett trükkökkel kiderült, hogy tovább csökkenthető. Ezeket a szálakat eltolt diszperziójú szálaknak nevezik.

Csillapítás 1.

Csillapítás 2.

- a távolsággal exponenciálisan nő
- okok:
 - fény elnyelődése (abszorpció)
 - szóródások (Rayleigh, Mie, stb.)
 - Fresnel-reflexió
 - lesugárzás
- függ: T, λ, fényvezető anyaga

Elnyelődés

Az atom vagy molekula a beérkező fotont elnyeli, hatására magasabb energiájú állapotba kerül (az anyag melegszik).

- 1400nm körül OH ionok miatt helyi csúcs
- 1700nm felett rohamosan nő (ún. IR abszorpció)
- 10-20%-ra tehető a teljes csillapításból

Rayleigh-szórás

- hullámhossznál jelentősen kisebb hibákon szóródik szét a fény
- előre és hátra egyenlő mértékű
- 80-90%!
- OTDR!

Mie szórás

A szóró inhomogenitások mérete jóval nagyobb, mint a Rayleigh szórásnál. Szórási karakterisztikája is eltérő, (nő az előre és csökken a hátra szórás).

Diszperzió 1.

- a jel elemei különböző sebességgel terjednek
- 2. különböző késleltetéssel érkeznek
- 3. a négyszögjel jelleg "elkenődik"

Diszperzió 2.

Típusai

- módus [MD](multimódusnál)
- polarizációs mód [PMD] (EMH két síkja nem tud azonosan terjedni nem teljesen kör vezetőnél)
- kromatikus [CD]
 - hullámvezető (átlagos n hullámhossz függő eltérő mértékben koncentrálódik a jel a magba)
 - anyagi (n hullámhossz függő, a használt anyagra jellemzően)

Megoldások

- MD ellen: SM, vagy MM/Gl szál használata
- CD ellen: eltolt diszperziójú szálak haszálata
- PMD ellen: vagy a távolságot, vagy a jel frekvenciáját kell csökkenteni, mivel erre hat hátrányosan a kompenzációt még kutatják:
 - 2,5Gbps: 6400km
 - 40Gbps: 25km...

A módus

Azonos hullámhosszú, azonos fázisú fotonok együtthaladó csoportja.

Ha a fény hullámhosszát egy állandó értéken tartjuk, és lecsökkentjük az átmérit, az átvihető módusok száma lecsökken.

Szálak a gyakorlatban

Száltípus	Alkalmazási terület
Multi, lépcsős indexű	Adat, mérés, vezérléstechnika
Multi,gradiens indexű	LAN
Mono, lépcsős indexű	Távközlés

Másfelől...

Multimódusú, lépcsős indexű szál (MM-SI)

- magátmérő: 50 100µm
- teljes héjátmérő: 125 200µm
- numerikus apertúra: 0,24
- terjedő módusok száma: ~4000
- áthidalható távolság: n x 100m

Multimódusú, változó indexű szál (MM-GI)

- magátmérő: 50 100µm
- héjátmérő: 125 150µm
- numerikus apertúra: 0,2064
- maximális akceptanciaszög: 11,9 fok

MM - GI még...

Miért is jó?

A különböző módusok a magtól való távolság függvényében különböző sebességgel terjednek.

Amelyik közelebb fut a tengelyhez, rövidebb utat jár be, de nagyobb törésmutatójú részben.

Kívül hosszabb az út, de gyorsabban halad a fény! => kb. egyszerre ér a végére mindenki.

MM vs. SM (2.)

Meg is szüntethető a módusdiszperzió, ha a lépcsős szerkezet magját annyira lecsökkentjük, hogy csak egyetlen módus terjedhessen benne!

Egymódusú szál (SM)

- magátmérő: 10µm
- héjátmérő: 125 -150µm
- numerikus apertúra: 0,113
- maximális akceptanciaszög: 6,48 fok
- módustér(mag)átmérő: 10µm
- mag törésmutatója: 1,46

Összehasonlítás

Törésmutató-változás az optikai szál átmérője mentén

Ha összehasonlítjuk a SM szálakat a MM, akkor általánosan kijelenthető, hogy a monomódusú szálaknál kisebb a:

NA, akceptanciaszög, magátmérő

Ezért a SM szálaknál nehezebb a fényt becsatolni a szálba.