

Problemas resueltos en clase Independencia Lineal

Ángel Guale Álgebra Lineal Par. 3-5

Semana del 22 al 25 de Mayo

Problema 1.

Determine el valor de k para que el conjunto S sea linealmente dependiente, donde

$$S = \left\{ \left(\begin{array}{rr} -1 & 2 \\ 1 & 2 \end{array} \right), \left(\begin{array}{rr} 3 & -1 \\ -2 & 0 \end{array} \right), \left(\begin{array}{rr} -2 & 0 \\ 3 & 1 \end{array} \right), \left(\begin{array}{rr} 2k & 1 \\ -3 & k \end{array} \right) \right\}$$

Problema 2.

Demuestre:

Sea $S = \{v_1, v_2, \dots, v_n\}$ un subconjunto linealmente independiente de vectores del espacio vectorial V y sea x un vector de V que no puede ser expresado como una combinación lineal de los vectores de S, entonces $\{v_1, v_2, \dots, v_n, x\}$ también es linealmente independiente.

Problema 3.

Sea $p(x) = x^2 + 2x - 3$, $q(x) = 2x^2 - 3x + 4$, y $r(x) = ax^2 - 1$. El conjunto $\{p, q, r\}$ es linealmente dependiente si a = 2.

Problema 4.

Sean f1(x) = senx, $f2(x) = cos(x + \pi/6)$, and $f3(x) = sen(x - \pi/4)$ para $0 \le x \le 2\pi$. Muestre que $\{f1, f2, f3\}$ es linealmente dependiente.

Problema 5.

Sean a, b, c números reales distintos. Pruebe que los vectores $(1, 1, 1), (a, b, c), (a^2, b^2, c^2)$ forman un conjunto linealmente independiente en \mathbb{R}^3 .

Problema 6.

Califique las siguientes proposiciones como verdaderas o falsas, justifique su repuesta.

- a. Si V es un espacio vectorial con operaciones cualesquiera, entonces: (v')' = v para todo vector perteneciente a V. (v' = inverso aditivo de v)
- b. Sean W y H dos subespacios vectoriales de un espacio vectorial V. Si dimW = dimH, entonces W = H.
- c. Si A es una matriz de tamaño 3×5 , entonces $dimNu(A) \geq 2$.

Problema 7.

Sea la matriz A

$$A = \begin{pmatrix} 1 & 1 & 2 & 4 \\ 3 & c & 2 & 8 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$

Halle los posibles valores de c para que: dimIm(A) sea: 1, 2, 3 y 4. Justifique cada una de sus respuestas.

Problema 8.

Sea $V = \mathbb{R}^3$. Sean los conjuntos

$$W = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = (0, 0, 1) + (0, 1, 2) t; t \in \mathbb{R}\}$$
$$U = \{(u \in \mathbb{R}^2) / u = f(w); w \in W\}$$

Y sea la función f

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$f(x, y, z) = (4x - 2y, y + z)$$

Determine:

- a. Si f es una transformación lineal
- b. La representación gráfica de W
- c. La representación gráfica de U

Problema 9.

Sea $V = \mathcal{P}_2$. Sea el subconjunto H definido como

$$H = \{ p(x) \in \mathcal{P}_2/p'(0) + p''(0) = 0 \}$$

Determine si H es un subespacio vectorial, si lo es halle una base y dimensión de H.

Problema 10.

Considere el espacio vectorial real $V = \mathcal{P}_1$ con las operaciones

$$(a_1 + b_1 x) \oplus (a_2 + b_2 x) = (a_1 + a_2 + 4) + (b_1 + b_2 - 9)x$$

$$\forall \alpha \in \mathbb{R}$$
 $\alpha \odot (a + bx) = (\alpha a - 4 + 4\alpha) + (\alpha b + 9 - 9\alpha)x$

- a. Encuentre el vector nulo n_V de V y el vector inverso aditivo del vector u = 2 + 3x
- b. ¿Los vectores u = 2 + 3x y v = 4 + 6x constituyen una base para $V = \mathcal{P}_1$? Justifique su respuesta

Problema 11.

Sea la matriz

$$A = \left(\begin{array}{rrrr} 1 & -2 & 3 & -1 \\ -3 & 5 & 2 & 6 \\ 1 & -3 & 14 & 2 \end{array}\right)$$

- a. Encuentre una base y determine la dimensión de la Imagen de A.
- b. Usando la base del literal anterior, complete una base para el espacio \mathbb{R}^3 .
- c. Encuentre una base y determine la dimensión del Núcleo de A.

Problema 12.

Sean $B_1 = \{-5 + 9x, 6 - 6x + 5x^2, 2 - 7x - 4x^2\}$ y $B_2 = \{u_1, u_2, u_3\}$ bases del espacio vectorial $V = \mathcal{P}_2$. Sea la matriz de transición de la base B_1 a la base B_2

$$C = \begin{pmatrix} 0 & 1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$

- a. Encuentre los vectores de la base B_2
- b. Encuentre la matriz de cambio de base de B_2 a B_1
- c. Sea $v \in \mathcal{P}_2$ tal que $[v]_{B_2} = (3, -1, 2)$. Encuentre v y $[v]_{B_1}$

Problema 13.

Sea el espacio vectorial $V = \mathcal{M}_{2x2}$. Sean los subespacios de V

$$H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2x2}/c = b - a, d = a + 2b - c \right\}$$
$$W = gen \left\{ \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ -1 & 4 \end{pmatrix} \right\}$$

- a. Encuentre una base y determine la dimensión del subespacio ${\cal H} + {\cal W}$
- b. ¿Es directa la suma H + W? Justifique su respuesta
- c. ¿Es $H \cup W$ un subespacio de V? Justifique su respuesta

Problema 14.

Sea $V=C^1(I)$ el espacio vectorial de las funciones continuas en un intervalo I tal que tienen derivadas que son también continuas en dicho intervalo. Sean $f,g\in V$. Se define el Wronskiano de f y g para toda $x\in I$ como

$$W(f,g)(x) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix}$$

- a. Demuestre que si f y g son linealmente dependientes en I entonces el Wronskiano de f y g se anula en todo punto del intervalo I.
- b. Suponga que $f(x) = x^2$ y que g(x) = x|x|. Calcule el Wronskiano de estas funciones.
- c. ¿Son f y g linealmente dependientes o linealmente independientes en I = (-1, 1)?¿Qué ocurre si I = (0, 1)? Justifique sus respuestas.

3

Problema 15.

Defina "Transformación lineal" y demuestre que la función $T: \mathcal{P}_1 \to \mathbb{R}^3$ con regla de correspondencia

$$T(a+bx) = \begin{pmatrix} 5a+b\\b-3a\\2b \end{pmatrix}$$

Es una transformación lineal de \mathcal{P}_1 en \mathbb{R}^3 .

Problema 16.

Sea $V = C^1(\mathbb{R})$ el espacio vectorial de todas las funciones continuas en el conjunto de los reales \mathbb{R} , que poseen la primera derivada que es también continua en \mathbb{R} . Se definen los subconjuntos de V:

$$W = \{y(x) \in V/y'(x) + 2y(x) = 0\}$$

$$H = \{y(x) \in V/y'(x) + 2y(x) = x\}$$

- a. Determine si W y H son subespacios de V.
- b. Suponga que $\phi_1, \phi_2 \in H$ ¿Se puede afirmar que $\phi_1 \phi_2 \in W$?