可測基数ノート

でぃぐ 2023 年 3 月 2 日

概要

本稿は可測基数についてのノートである. 可測基数のかなり初歩的な話からはじめ, 超冪と初等 埋め込みという標準的な話題を扱い, 最後に応用として峻厳イデアルの存在の無矛盾性証明を行う.

目次

1	可測基数の初歩	1
2	正規フィルター	6
3	宇宙 V の超冪と初等埋め込み	7
4	ジェネリック超冪	13
5	峻厳イデアル	15

本稿の内容はほぼ Jech のテキスト [Jec06] を参考にしている.

1 可測基数の初歩

可測基数の研究は,Lebesgue 測度を \mathbb{R} の冪集合全体に拡張できるかという問から出発している.本節では ZFC にその命題を付け加えた公理系の無矛盾性が ZFC の無矛盾性を超えることを示す.

定義 1.1. S を無限集合とする. S 上の (一様かつ σ 加法的な確率) **測度**とは μ : $\mathcal{P}(S) \to [0,1]$ であって、次を満たすものである:

- (1) $\mu(\emptyset) = 0, \mu(S) = 1.$
- (2) $X \subseteq Y \subseteq S$ なら、 $\mu(X) \le \mu(Y)$.
- (3) (一様性) 任意の $s \in S$ について $\mu(\{s\}) = 0$.
- (4) $(\sigma$ 加法性) $X_n, n \in \omega$ が互いに素な S の部分集合たちであれば、

$$\mu\left(\bigcup_{n\in\omega}X_n\right) = \sum_{n\in\omega}\mu(X_n).$$

測度論で扱う測度は S 上のある σ 加法族を定義域とするものであったが,ここで扱う測度は定義域が $\mathcal{P}(S)$ なことに注意しよう.

定義 1.2. μ を S 上の測度とする. $A\subseteq S$ が原子であるとは, $\mu(A)>0$ かつ任意の $X\subseteq A$ に対して $\mu(X)=0$ または $\mu(X)=\mu(A)$ となるものである.原子が存在しない測度を原子なしの測度という.

定義 1.3. (1) 基数 κ が**可測基数**であるとは、 κ 上の κ 完備な非単項超フィルターが存在することを言う.

(2) 基数 κ が**実数値可測基数**であるとは、 κ 上の κ 加法的測度が存在することを言う.

S上の非単項超フィルターを考えることと,S上の値域が $\{0,1\}$ である (つまり,2 値である) 測度を考えることは同じである.

実際、非単項超フィルターUに対して

$$\mu(X) = \begin{cases} 1 & (X \in U) \\ 0 & (X \notin U) \end{cases}$$

で定義される測度を対応される写像と, 2値測度 μ に対して非単項超フィルター

$$U = \mu^{-1}\{1\}$$

を対応させる写像は互いの逆写像である.

また、この対応において、超フィルターが κ 完備なことと測度が κ 加法的なことが対応する. よって、可測基数は実数値可測基数である.

定義 1.4. 集合 S 上のイデアル I で σ 飽和的であるとは,I に属さない S の部分集合族で互いに素なものはどれも,族の濃度が可算であることを意味する.

S上の測度 μ から来るイデアル $I_{\mu}=\mu^{-1}\{0\}$ は必ず σ 飽和的である.なぜなら,A が I に属さない (すなわち μ の測度が正な) 部分集合の族で互いに素なものとしよう.このとき正の自然数 n に対して $\mu(A)>1/n$ を満たす $A\in A$ は n 個しかない.よって,A は有限集合の可算和であるから,たかだか可算濃度を持つ.

補題 1.5. 実数値可測基数 (および可測基数) は正則基数である.

証明. κ を実数値可測基数とする. κ 上の κ 完備な測度 μ を取る. κ が特異だとすると, κ の共終列 $\langle \lambda_i : i < \operatorname{cf}(\kappa) \rangle$ でおのおのの λ_i は κ 未満なものが取れる. 今, $\kappa = \bigcup_{i < \operatorname{cf}(\kappa)} \lambda_i$ である. 左辺 κ は測度 1 だが,右辺はおのおのの λ_i が測度 0 で,その $\operatorname{cf}(\kappa) < \kappa$ 個の和集合だから測度 0 である. 矛盾した. なお,ここで,おのおのの λ_i が測度 0 なのは,各 1 点集合が測度 0 で, λ_i はその $\lambda_i < \kappa$ 個の和集合として書けるからである.

補題 1.6. 可測基数は到達不能基数である.

証明. κ を可測基数とする.

 κ が正則なことは補題 1.5 で示した.

 κ の強極限性を示す.背理法で,ある $\lambda < \kappa$ について, $2^{\lambda} \ge \kappa$ だと仮定する.集合 $S \subseteq \{0,1\}^{\lambda}$ で $|S| = \kappa$ となるものを取る.集合 S 上の κ 完備な非単項超フィルター U を取る.各 $\alpha \in \lambda$ について集合 $X_{\alpha} \subseteq S$ を

でUに属する方とする. 集合Xを

$$X = \bigcap_{\alpha < \lambda} X_{\alpha}$$

で定めると $X \in U$ であるが、明らかに X は 1 点集合である.これは U の非単項性に矛盾.

補題 1.7. (1) κ を次を満たす最小の基数とする:非単項 σ 完備な超フィルターが存在する. U をそのような超フィルターの一つとする. このとき、U は κ 完備である.

- (2) κ を次を満たす最小の基数とする: κ 上の測度が存在する. μ をそのような測度とする. このとき測度 0 集合のイデアル I_{μ} は κ 完備である.
- (3) κ を次を満たす最小の基数とする: κ 上の σ 完備かつ σ 飽和的イデアルが存在する. I をそのようなイデアルとする. このとき I は κ 完備である.

証明. (1). U が κ 完備でないと仮定する. すると κ の分割 $\{X_\alpha:\alpha<\gamma\}$ があって, $\gamma<\kappa$ かつ各 X_α は U の意味で小さい. 関数 $f\colon\kappa\to\gamma$ を次で定める:

$$f(x) = \alpha \iff x \in X_{\alpha}$$
.

つまり,各入力 $x<\kappa$ について,x が何番目のピースに属しているかを返す関数である. γ 上の超フィルター D を

$$D = \{ Z \subseteq \gamma : f^{-1}(Z) \in U \}$$

で定める. U が σ 完備なので,D も σ 完備である.D は非単項でもある:なぜなら,各 $\alpha < \gamma$ について $f^{-1}\{\alpha\} = X_{\alpha} \notin U$ より $\alpha \notin D$ だからである.したがって,D は γ 上の単項 σ -完備な超フィルターだが, $\gamma < \kappa$ より,これは κ の最小性に矛盾.

(2). I_{μ} が κ 完備ではないと仮定する.すると測度 0 集合の族 $\{X_{\alpha}: \alpha<\gamma\}$ で, $\gamma<\kappa$ かつ,それらの和集合 $X=\bigcup_{\alpha<\gamma}X_{\alpha}$ は測度正なものがとれる. X_{α} たちは互いに素であると仮定しても良い. $f:X\to\gamma$ を

$$f(x) = \alpha \iff x \in X_{\alpha}$$

と定め、 γ 上の測度 ν を

$$\nu(Z) = \frac{\mu(f^{-1}(Z))}{\mu(X)}$$

と定める. ν は σ 加法的である. また, ν は一様である, なぜなら, 各 $\alpha<\gamma$ について $\nu(\{\alpha\})=\frac{\mu(X_{\alpha})}{\nu(X)}=0$ だからである. これは κ の最小性に反する.

 μ を集合 S 上の測度とし, I_{μ} を測度 0 集合のイデアルとすれば, μ が κ 加法的なら, I_{μ} が κ 完備なことは明らかである.逆も言える:

補題 1.8. μ を集合 S 上の測度とし, I_{μ} を測度 0 集合のイデアルとする.このとき,もし I_{μ} が κ 完備なら, μ は κ 加法的である.

証明. $\gamma < \kappa$ とし、 $\langle X_\alpha : \alpha < \gamma \rangle$ を互いに素な S の部分集合の族とする. X_α たちが互いに素なので、 そのうちたかだか可算個が正の測度を持つ. よって、

$$\{X_{\alpha} : \alpha < \gamma\} = \{Y_n : n \in \omega\} \cup \{Z_{\alpha} : \alpha < \gamma\}$$

と書くことができる. ここに各 Z_{α} は測度 0 集合. よって,

$$\mu(\bigcup_{\alpha < \gamma} X_{\alpha}) = \mu(\bigcup_{n \in \omega} Y_n) + \mu(\bigcup_{\alpha < \gamma} Z_{\alpha})$$

を得る. μ が σ 加法的なので,

$$\mu(\bigcup_{n\in\omega}Y_n)=\sum_{n\in\omega}\mu(Y_n)$$

である. また, I_{μ} が κ 完備なので,

$$\mu(\bigcup_{\alpha<\gamma} Z_{\alpha}) = 0$$

である. 以上より,

$$\mu(\bigcup_{\alpha < \gamma} X_{\alpha}) = \sum_{\alpha < \gamma} \mu(X_{\alpha})$$

を得る.

補題 1.9. (1) ある集合上の原子なしの測度が存在するとき, ある基数 $\kappa \leq 2^{\aleph_0}$ 上に測度が存在する.

(2) I を集合 S 上の σ 完備 σ 飽和的イデアルとする.このとき,ある $Z \subseteq S$ に対して $I \upharpoonright Z = \{X \subseteq Z: X \in I\}$ が極大イデアルであるか,または, σ 完備 σ 飽和的イデアルがある $\kappa \leq 2^{\aleph_0}$ 上に存在するかのどちらかが成り立つ.

証明. (1). μ をそのような測度とする. S の測度正な部分集合からなり,逆向きの包含関係で順序付けられた木 T を構成する. T の根は S である. 各 $X \in T$ について,X の測度正な集合への分割 $X = Y \cup Z, Y \cap Z = \emptyset$ を取り,この 2 つを X の直後の元とする. α が極限順序数のとき T の第 α レベルにはすべての共通部分 $X = \bigcap_{\xi < \alpha} X_{\xi}$ であって, $\langle X_{\xi} : \xi < \alpha \rangle$ は $T \upharpoonright \alpha$ の増大鎖で X_{ξ} は第 ξ レベルの元,X は測度正なものたちを置く.

T のどの枝も可算である:なぜなら、 $\langle X_{\xi}: \xi < \alpha \rangle$ が枝ならば、 $\langle X_{\xi} \setminus X_{\xi+1}: \xi < \alpha \rangle$ は測度正な集合の互いに素な族となるからである.

同様に、T のどのレベルも可算であることも分かる. よって、T はたかだか 2^{\aleph_0} 個の極大枝を持つ (各 $\alpha < \omega_1$ について高さ α の極大枝の個数はたかだか 2^{\aleph_0} . よってそれらの ω_1 個の和集合でたかだか 2^{\aleph_0} 個となる).

 $\{b_{\alpha}: \alpha<\kappa\}, \kappa\leq 2^{\aleph_0}$ をすべての極大枝 $b=\{X_{\xi}: \xi<\gamma\}$ であって, $\bigcap_{\xi<\gamma}X_{\xi}$ が非空なものの枚挙とする.各 $\alpha<\kappa$ について $Z_{\alpha}=\bigcap b_{\alpha}$ とおく. $\{Z_{\alpha}: \alpha<\kappa\}$ は S の測度 0 集合への分割となる(Z_{α} が測度 0 でないとすると,一個高さを上げることができ枝の極大性に反する;また,互いの異なる極大枝 b_{α} と b_{β} はどこかで枝分かれしているはずだから,後続ステップでの構成の仕方より, $X_{\alpha}\cap X_{\beta}=\emptyset$ を得る;覆っていることは $s\in S$ を任意に取るとき,s が入っている集合を根から追跡することにより,ある X_{α} に s が入っていることがわかるからよい). あとは $f\colon S\to\kappa$ を $f(x)=\alpha\iff x\in Z_{\alpha}$ とおき, κ 上の測度 ν を $\nu(Z)=\mu(f^{-1}(Z))$ とおけば, ν は一様な σ 加法的測度である.

系 1.10. κ が実数値可測基数ならば、 κ は可測基数か、 $\kappa \leq 2^{\aleph_0}$ である.より一般に、 κ が κ 完備 σ 飽和的イデアルを持つと、 κ は可測基数であるか、 $\kappa < 2^{\aleph_0}$ である.

証明. 補題 1.9 の証明より, μ が S 上の原子なしの測度なら,S のたかだか 2^{\aleph_0} 個への測度 0 個の分割が存在することがわかる.つまり, μ は $(2^{\aleph_0})^+$ 加法的ではない.したがって,原子なしの κ 加法的測度を κ が持つとき, $\kappa \leq 2^{\aleph_0}$ である(結論の否定を取ると, $\kappa \geq (2^{\aleph_0})^+$ だが,これと κ 加法性より $(2^{\aleph_0})^+$ 加法性が出るから).後半の主張も同様.

補題 1.9 の (1) の主張の結論には「原子なし」が含まれていなかったが,これは実際には「原子なし」と結論付けられる.なぜなら,原子があると κ は可測基数となるが,補題 1.6 より,それは $\kappa \leq 2^{\aleph_0}$ と相容れないからだ.

定義 1.11. (\aleph_1, \aleph_0) -Ulam 行列とは、 ω_1 の部分集合の族 $\langle A_{\alpha,n}: \alpha \in \omega_1, n \in \omega \rangle$ であって、次の 2 条件を満たすものである.

- (1) 各 $n \in \omega$ と異なる $\alpha, \beta \in \omega_1$ について $A_{\alpha,n} \cap A_{\beta,n} = \emptyset$ である.
- (2) 各 $\alpha \in \omega_1$ について,集合 $\omega_1 \setminus \bigcup_{n \in \omega} A_{\alpha,n}$ はたかだか可算集合である.

補題 1.12. (\aleph_1, \aleph_0) -Ulam 行列は存在する.

証明. 各 $\xi \in \omega_1$ に対して $f_{\xi}: \omega \to \omega_1$ を $\xi \subseteq \operatorname{ran}(f_{\xi})$ なるものとする. 集合 $A_{\alpha,n}$ を

$$\xi \in A_{\alpha,n} \iff f_{\xi}(n) = \alpha$$

と定める.

 $\xi \in A_{\alpha,n} \cap A_{\beta,n}$ なら $\alpha = f_{\xi}(n) = \beta$ となるので、Ulam 行列の条件 (1) が成り立っていることがわかる.

 $\alpha \in \omega_1$ とする. $\xi > \alpha$ に対して、 f_ξ の取り方より、 $f_\xi(n) = \alpha$ となる $n \in \omega$ が存在する. よって、

$$[\alpha+1,\omega_1)\subseteq\bigcup_{n\in\omega}A_{\alpha,n}$$

なので条件(2)も成り立っている.

演習問題 1.13. (\aleph_1, \aleph_0) -Ulam 行列の定義において、「各行は可算集合を除いてほとんど ω_1 を覆っている」という条件を「各行は ω_1 を (完全に) 覆っている」と変更したバージョンは存在しないことを示せ.

補題 1.14. ω_1 上の σ 完備 σ 飽和的イデアルは存在しない. 特に ω_1 上の測度は存在しない.

証明. そのようなイデアル I が存在したと仮定する.また, $\langle A_{\alpha,n}:\alpha\in\omega_1,n\in\omega\rangle$ を (\aleph_1,\aleph_0) -Ulam 行列とする.I の σ 完備性と Ulam 行列の条件 (2) より,各 α について自然数 n_α があって, $A_{\alpha,n}$ は I-正である.したがって,鳩の巣原理より, $W\subseteq\omega_1$, $|W|=\aleph_1$, $n\in\omega$ があって,すべての $\alpha\in W$ に ついて $n_\alpha=n$ である.すると $\{A_{\alpha,n}:\alpha\in W\}$ は互いに素(by Ulam 行列の条件 (1))な非可算な I-正集合の族となる.これは I の σ 飽和性に矛盾する.

以上の ω_1 を一般の後続基数に一般化できる. 証明は同様なので省略する.

定義と補題 1.15. λ を基数とする.

- (1) (λ^+, λ) -Ulam 行列とは, λ^+ の部分集合の族 $\langle A_{\alpha,\eta} : \alpha \in \lambda^+, \eta \in \lambda \rangle$ であって,次の 2 条件を満たすものである.
 - (a) 各 $\eta \in \lambda$ と異なる $\alpha, \beta \in \lambda^+$ について $A_{\alpha, \eta} \cap A_{\beta, \eta} = \emptyset$ である.
 - (b) 各 $\alpha \in \lambda^+$ について、集合 $\lambda^+ \setminus \bigcup_{\eta \in \lambda} A_{\alpha,\eta}$ は λ 以下の濃度を持つ.

- (2) (λ^+, λ) -Ulam 行列は存在する.
- (3) λ^+ 上の λ^+ 完備 σ 飽和的イデアルは存在しない.

系 1.16. 任意の実数値可測基数は、弱到達不能基数である.

証明. κ を実数値可測基数とする. 正則なことは補題 1.5 で示した. 後続基数でないことは, 定義と補題 1.15 から分かる. \Box

以上より次が結論付けられる:ZFC に「ある集合上の測度が存在する」という命題を加えた公理系の無矛盾性の強さは ZFC より真に強い. なぜなら「ある集合上の測度が存在する」からはその測度が原子ありかなしかに応じて、到達不能基数か弱到達不能基数のどちらかが出て、どちらも ZFC の無矛盾性を出すからである. これが Ulam が証明した定理である.

2 正規フィルター

 κ の部分集合の列 $(X_{\alpha}: \alpha < \kappa)$ についてその**対角共通部分** $\triangle_{\alpha < \kappa} X_{\alpha}$ というのは

$$\triangle_{\alpha < \kappa} X_{\alpha} = \{ \beta < \kappa : (\forall \alpha < \beta) (\beta \in X_{\alpha}) \}$$

で定まっていた. その双対概念として,

$$\underset{\alpha < \kappa}{\nabla} X_{\alpha} = \{ \beta < \kappa : (\exists \alpha < \beta)(\beta \in X_{\alpha}) \}$$

を対角和集合という.

フィルターが**正規**であるとは,それが対角共通部分を取る操作で閉じていることであった.イデアルが正規というのは双対フィルターが正規であること,すなわち対角和を取る操作で閉じていることを意味する. $f\colon X \to \kappa \ (X\subseteq \kappa)$ が**押し下げ関数**であるとは,任意の $\alpha \in X$ について $f(\alpha) < \alpha$ となることであった.

イデアル I に対して集合

$$I^+ = \{ A \subseteq \kappa : A \notin I \}$$

の元を I 正値集合ということにする.

補題 2.1. I を κ 上のイデアルとする. 次は同値.

- (1) I は正規.
- (2) 任意の I 正値集合 S_0 と任意の S_0 上の押し下げ関数 f に対して,I 正値集合 $S \subseteq S_0$ があって f は S 上定数.

証明. (1) ならば (2) は Fodor の補題の証明そのままである.

(2) ならば (1) を証明する. I の双対フィルターを F とする. $(X_{\alpha}: \alpha < \kappa)$ を F の元の列とする. $\triangle_{\alpha < \kappa} X_{\alpha} \not\in F$ だとする. $S = \kappa \setminus \triangle_{\alpha < \kappa} X_{\alpha}$ とおく. S は I 正値集合である. $f(\alpha)$ を $\xi < \alpha$ であって, $\alpha \not\in X_{\xi}$ なものとして定める (対角共通部分の定義より取れる). すると (2) より I 正値集合 $S' \subseteq S$ と $\gamma < \kappa$ がとれて,任意の $\alpha \in S'$ について $f(\alpha) = \gamma$. これは f の定義より $S' \cap X_{\gamma} = \varnothing$ を意味する. S' が I 正値集合で $X_{\gamma} \in F$ なのでこれは矛盾.

したがって、 κ 上の超フィルター U に対しては、U が正規であることと任意の押し下げ関数 $f: X \to \kappa, X \in U$ に対して、ある $Y \in U$ について f が Y 上で定数関数となることと同値である.

補題 2.2. κ を非可算正則基数とし,F を κ 上の正規フィルターで,任意の終切片 $\{\alpha: \alpha_0 < \alpha < \kappa\}$ を持っているものとする.するとすべての club 集合は F の元を持つ.したがって,F の元はすべて定常集合である.

証明. まず極限順序数全体 Lim_κ は F の元であることに注意する: $X_\alpha=\{\xi:\alpha+1<\xi<\kappa\}$ の対角 共通部分として書けるからである。C を club 集合とし, $C=\{a_\alpha:\alpha<\kappa\}$ を単調増加な枚挙とする。 $Y_\alpha=\{\xi:a_\alpha<\xi<\kappa\}$ とおくと $\mathrm{Lim}_\kappa\cap\triangle_{\alpha<\kappa}Y_\alpha\subseteq C$ を得る。なぜなら $\beta\in\mathrm{Lim}_\kappa\cap\triangle_{\alpha<\kappa}Y_\alpha$ とすると

$$\beta = \sup_{\alpha < \beta} a_{\alpha} \in C$$

であるからである.

定理 2.3. 任意の可測基数の上に正規超フィルターが存在する.

証明. U を κ 上の非単項 κ 完備超フィルターとする. $f, g \in \kappa^{\kappa}$ に対して,

$$f = g \iff \{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in U$$

という同値関係を入れる. また,

$$f <^* g \iff \{\alpha < \kappa : f(\alpha) < g(\alpha)\} \in U$$

という擬全順序関係を入れる.

無限下降列 $f_0>^*f_1>^*f_2>^*\dots$ は存在しない.実際,それがあれば $X_n=\{\alpha:f_n(\alpha)>f_{n+1}(\alpha))\}\in U$ だが,U が σ 完備なので, $X=\bigcap_{n\in\omega}X_n\in U$ であり,特に X は空でない. $\alpha\in X$ を一つ取ると,順序数の無限下降列 $f_0(\alpha)>f_1(\alpha)>f_2(\alpha)>\dots$ ができて矛盾である.

したがって、<* は擬整列順序である.

 $f:\kappa\to\kappa$ を次を満たす (この擬整列順序で) 最小の関数とする:任意の $\gamma<\kappa$ に対して, $\{\alpha:f(\alpha)>\gamma\}\in U$ である.このような f は少なくとも 1 つ存在する.たとえば対角関数 $d(\alpha)=\alpha$ は条件を満たす.

 $D = f(U) = \{X \subseteq \kappa : f^{-1}(X) \in U\}$ とおく. D が κ 上の正規超フィルターなことを示そう.

各 $\gamma < \kappa$ に対して, $f^{-1}\{\gamma\} \not\in U$ である($f^{-1}[\gamma+1,\kappa) \in U$ だから). よって, $\gamma \not\in D$ なので,D は非単項である.

D の正規性を示そう。h を $X \in D$ 上の押し下げ関数とする。h が D のあるメンバー上で定数なことを示さなければいけない。 $g \in \kappa^{\kappa}$ を $g(\alpha) = h(f(\alpha))$ で定義される関数とする。 $g(\alpha) < f(\alpha)$ がすべての $\alpha \in f^{-1}(X)$ で成り立つ。よって, $g <^* f$ である。f の最小性より,ある $\gamma < \kappa$ に対して $Y := \{\alpha : g(\alpha) = \gamma\} \in U$ となる。したがって,D の定義より $f(Y) \in D$ であり,また,h は f(Y) 上で定数 γ を取る。

3 宇宙 V の超冪と初等埋め込み

本節では、可測基数が存在すれば、内部モデルへの初等埋め込みが存在すること、逆に初等埋め込みがあれば可測基数があることを示す。また、可測基数の存在がV=Lと両立しないことを示す。

U を集合 S 上の超フィルターとする. $f,g:S\to V$ に対して次の二つの関係を定める:

$$f =^* g \iff \{x \in S : f(x) = g(x)\} \in U,$$

$$f \in^* g \iff \{x \in S : f(x) \in g(x)\} \in U.$$

S を定義域とする関数全体は真クラスをなすため、同値関係 =* のおのおのの同値類は真クラスになってしまう。そこで Scott のトリックを使って、次のように同値類のようなものを定義する。

$$[f] = \{g : f =^* g \land \neg(\exists h)(h = f \land \operatorname{rank} h < \operatorname{rank} g)\}$$

こうすると各 [f] は集合となる. $f,g:S\to V$ に対して, $[f]\in^*[g]\iff f\in^*g$ と定義する. これは well-defined である.

Ult = Ult $_U(V)$ をすべての [f] (ただし $f: S \to V$) 全体のなすクラスとする.構造 Ult = (Ult, \in *) を考える.これを宇宙 V の超冪という.通常のモデル理論におけるLos の定理は宇宙の超冪でも成り立つことが確認できる:

Ult
$$\models \varphi([f_1], \dots, [f_n]) \iff \{x \in S : \varphi(f_1(x), \dots, f_n(x))\} \in U.$$

ここに φ は集合論の論理式. 特に文を考えると, (V, \in) と (Ult, \in^*) が初等同値なことが分かる.

また、各 $a \in V$ に対して定数関数 $c_a : S \to V; c_a(x) = a$ を考えて、 $j(a) = [c_a]$ とおくと

Ult
$$\models \varphi(j(a_1), \dots, j(a_n)) \iff V \models \varphi(a_1, \dots, a_n)$$

を得る. つまり、モデル理論で使っていた用語を拝借すると、 $j: V \to Ult$ は**初等埋め込み**である.

超冪が well-founded である状況を考察する. set-like であることは常に成り立つ:つまり任意の f について

$$ext(f) = \{ [g] : g \in^* f \}$$

は常に集合である。なぜなら, $g \in f$ なる g を考えるとある h = g であってすべての $x \in S$ で $h(x) \in f(x)$ となるものをとれる。この h はランクが f 以下である。よって $\operatorname{rank}([g]) \leq \operatorname{rank}(f) + 1$ となるので, $\operatorname{ext}(f)$ は集合である。

補題 3.1. U が σ 完備な超フィルターなら, $(Ult, ∈^*)$ は well-founded である.

証明. Ult の無限 \in * 下降列がないことを示せば良い. もしあったとする: $[f_0] \ni$ * $[f_1] \in$ * \ni すると各 n について集合

$$X_n := \{ x \in S : f_{n+1}(x) \in f_n(x) \}$$

はUに属する.Uの σ 完備性より

$$X = \bigcap_{n \in \omega} X_n$$

も U に属し、特に空でない. そこから元 $x \in X$ を一つ取ると、

$$f_0(x) \ni f_1(x) \ni f_2(x) \ni \dots$$

П

となり、整楚性公理に反する.

Mostowski の崩壊定理は任意の well-founded モデルは推移的モデルと同型なことを主張しているのであった。よって,U が σ 完備なら,あるクラス M と同型なクラス写像 $\pi\colon (\mathrm{Ult},\in^*)\to (M,\in)$ が存在する。記号の乱用で $\pi([f])$ のことを単に [f] と書く。合成写像 $\pi\circ j$ の方がもとの j より重要であるため,これを単に j と書く。したがって,初等埋め込み $j\colon V\to M$ が得られる。

 α が順序数ならば $j(\alpha)$ も順序数であり、初等性と絶対性より $\alpha<\beta\iff j(\alpha)< j(\beta)$ を得る. したがって、任意の順序数について $\alpha\leq j(\alpha)$ を得る. したがって、順序数全体のクラス On は V と M の間で変わらない:On $V={\rm On}^M$. すなわち、M は V の内部モデルである.

初等性より j(0)=0 かつすべての $n\in\omega$ について $j(\alpha+1)=j(\alpha)+1$ であるので,すべての $n\in\omega$ について j(n)=n である. $j(\omega)=\omega$ は ω の定義可能性と絶対性より分かる.

定義 3.2. 内部モデルへの初等埋め込み $j: V \to M$ について,

$$\operatorname{crit}(j) = \min\{\alpha \in \operatorname{On} : \alpha < j(\alpha)\}\$$

とおき、jの**臨界点**と呼ぶ.

- 補題 3.3. (1) 内部モデルへの初等埋め込み $j\colon V\to M$ が非自明, すなわち $j\neq \mathrm{id}$ のとき, 臨界点 $\mathrm{crit}(j)$ は存在する.
 - (2) 可測基数 κ とその上の κ 完備非単項超フィルター U について U を使った超冪によって定まる初等埋め込み $j\colon V\to M$ について、その臨界点は κ である.

証明. (1) の証明. $j(x) \neq x$ なるランク最小の x を取る. $y \in x$ なら $\mathrm{rank}(y) < \mathrm{rank}(x)$ なので、x の ランク最小性より、y = j(y) を得る. よって、 $y = j(y) \in j(x)$ となる. したがって、 $x \subseteq j(x)$. したがって、 $j(x) \neq x$ であることと合わせると $z \in j(x) \setminus x$ がとれる. もし、 $\mathrm{rank}(j(x)) = \mathrm{rank}(x)$ なら $j(z) = z \in j(x)$ となるので、初等性より $z \in x$ を得て、矛盾. よって $\mathrm{rank}(j(x)) > \mathrm{rank}(x)$ である. 一方でランクの定義可能性と初等性と絶対性より $\mathrm{rank}(j(x)) = j(\mathrm{rank}(x))$ を得るので、 $j(\mathrm{rank}(x)) > \mathrm{rank}(x)$. したがって $\{\alpha \in \mathrm{On}: \alpha < j(\alpha)\}$ が空でないことが証明された.

(2) の証明. $\alpha < \kappa$ として $j(\alpha) = \alpha$ を示す。 α に関する超限帰納法で示すことにすれば,任意の $\beta < \alpha$ で $j(\beta) = \beta$ であることを仮定して良い。 $[f] \in j(\alpha)$ を取る。すると U の意味でほとんどすべて の $x \in S$ で $f(x) < \alpha$. ここで U の κ 完備性より,ある $\beta < \alpha$ が存在して,ほとんどすべての $x \in S$ で $f(x) = \beta$. よって $[f] \in j(\beta)$ である。帰納法の仮定より $[f] \in j(\beta) = \beta$ なので,これで $j(\alpha) = \alpha$ が示された。

次に $j(\kappa) > \kappa$ を示す。対角関数 $d(\alpha) = \alpha$ を考える。 $\{\alpha: d(\alpha) < \kappa\} = S \in U$ なので, $[d] < j(\kappa)$ である。次に $\kappa \leq [d]$ を示す。 $\beta < \kappa$ を任意にとる。 すると $\{\alpha: \beta < d(\alpha)\} = [\beta+1,\kappa] \in U$ なので, $j(\beta) < [d]$. $j(\beta) = \beta$ は証明済みなので $\beta < [d]$ を得る。これで $\kappa \leq [d]$ が示された。以上より, $\kappa \leq [d] < j(\kappa)$ である。

内部モデルへの初等埋め込み $j\colon V\to M$ は $j\neq \mathrm{id}$ なら全射ではない. なぜなら、 $\mathrm{crit}(j)$ が j の像ではないからである.

定理 3.4 (Scott). 可測基数が存在することと V = L は両立しない.

証明. 可測基数が存在し、かつ V=L だと仮定する. 最小の可測基数を κ とし、 κ 上の非単項 κ 完備 超フィルターを U とする. $j\colon V\to M$ を U から生じる初等埋め込みとする. 今、 V=L を仮定して いるので、L の内部モデルとしての最小性により M=V=L である.

 $V \models \kappa$ は最小の可測基数

$V \models j(\kappa)$ は最小の可測基数

である. よって, $j(\kappa) = \kappa$ とならないといけないが, これは $j(\kappa) > \kappa$ であったことに矛盾.

定理 3.5. $j:V\to M$ を非自明な初等埋め込みとする.このとき, $\mathrm{crit}(j)$ は可測基数である.特に非自明な初等埋め込みが存在するとき可測基数が存在する.

証明. $\kappa = \operatorname{crit}(j)$ とおく.

$$D = \{X \subseteq \kappa : \kappa \in j(X)\}$$

とおく. D が非単項 κ 完備超フィルターなことを示す.

主張: $\kappa \in D$.

証明: $\kappa < j(\kappa)$ なのでよい. //

主張: $\emptyset \notin D$.

証明: 初等性より $j(\varnothing)=\varnothing$ なのでよい. //

主張: D は共通部分で閉じている.

証明: $X,Y \in D$ とすると $\kappa \in j(X), j(Y)$. ところが初等性により $j(X \cap Y) = j(X) \cap j(Y)$ なので $\kappa \in j(X \cap Y)$. よって $X \cap Y \in D$.

主張: *D* は上に閉じている.

証明: $X \in D$ かつ $X \subseteq Y$ とする. すると初等性より $j(X) \subseteq j(Y)$ である. したがって, $\kappa \in j(X) \subseteq j(Y)$ を得るのでよい. //

主張: D は超フィルターである.

証明: $X \not\in D$ とすると $\kappa \not\in j(X)$. 初等性より $j(\kappa \setminus X) = j(\kappa) \setminus j(X)$ となり、右辺に κ が属しているため、 $\kappa \in j(\kappa \setminus X)$. つまり、 $\kappa \setminus X \in D$ である.

主張: D は非単項.

証明: $\alpha \in \kappa$ について $j(\{\alpha\}) = \{j(\alpha)\} = \{\alpha\}$ である。第一の等式は初等性,第二の等式は臨界点 κ の最小性による。この集合に κ は属さない. //

主張: D は κ 完備.

証明: $\bar{X}=\langle X_i:i<\gamma\rangle$ を D の元からなる列とする. ただし, $\gamma<\kappa$. 今,初等性により $j(\bar{X})=\langle j(X_i):i< j(\gamma)\rangle=\langle j(X_i):i<\gamma\rangle$ である. したがって,再び初等性により $\bigcap_{i<\gamma}j(X_i)=j(\bigcap_{i<\gamma}X_i)$ となる. しかし,仮定より左辺に κ が属しているため,右辺にも属する. よって, $\bigcap_{i<\gamma}X_i\in D$. // 以上で D が非単項 κ 完備超フィルターなことが示された.

定理 3.5 で作った超フィルターは正規である。 実際,初等埋め込み j により $D=\{X\subseteq\kappa:\kappa\in j(X)\}$ と定義された超フィルター D が正規なことを示そう。 f を $X\in D$ 上の押し下げ関数とすると D の定義より, $\kappa\in j(\{\alpha:f(\alpha)<\alpha\})$ なので, $j(f)(\kappa)<\kappa$ である。そこで $\gamma=j(f)(\kappa)$ とおく。このとき $\kappa\in j(\{\alpha:f(\alpha)=\gamma\})$ だから,再び D の定義より, $\{\alpha:f(\alpha)=\gamma\}\in D$ となる。よって,D は正規である。

正規性は次のように超冪の言葉で特徴づけられる.

補題 3.6. D を κ 上の非単項 κ 完備超フィルターとする. このとき次は同値.

- (1) D は正規.
- (2) $Ult_D(V)$ において $\kappa = [d]$. ここに d は対角関数.
- (3) $D = \{X \subseteq \kappa : \kappa \in j_D(X)\}.$

証明. (1) ならば (2) の証明. $\kappa \leq [d]$ は明らかなので, $[d] \leq \kappa$ を示す. $f \in {}^*$ d とすると f は押し下げ 関数である.よって,仮定 (1) よりある $\gamma < \kappa$ があって, $[f] = \gamma$.

(2) ならば (3) の証明. $X \subseteq \kappa$ とする.

$$X \in D \iff \{\alpha < \kappa : \alpha \in X\} \in D$$

 $\iff \{\alpha < \kappa : d(\alpha) \in X\} \in D$
 $\iff [d] \in j_D(X) \text{ (Loś の定理より)}$
 $\iff \kappa \in j_D(X) \text{ (仮定より)}$

より良い.

(3) ならば (1) の証明はこの補題の上の注意より従う.

次に, V から V への初等埋め込みは存在しないという Kunen の定理を証明する. そのために補題を用意する.

補題 3.7. λ を無限基数で $2^{\lambda} = \lambda^{\aleph_0}$ なるものとする.このとき関数 $F: \lambda^{\omega} \to \lambda$ が存在して,任意の $A \in [\lambda]^{\lambda}$ と $\gamma < \lambda$ について,ある $s \in A^{\omega}$ があって, $F(s) = \gamma$ である.

証明. $\langle (A_{\alpha}, \gamma_{\alpha}) : \alpha < 2^{\lambda} \rangle$ を $[\lambda]^{\lambda} \times \lambda$ の枚挙とする. α に関する帰納法で, λ^{ω} の元の列 $\langle s_{\alpha} : \alpha < 2^{\lambda} \rangle$ を次のように定める: α ステージにおいて, $s_{\alpha} \in [A_{\alpha}]^{\lambda}$ かつすべての $\beta < \alpha$ について $s_{\alpha} \neq s_{\beta}$ である. これは $|A_{\alpha}^{\omega}| = \lambda^{\omega} = 2^{\lambda} > |\beta|$ より取ることができる.各 $\alpha < 2^{\lambda}$ について $F(s_{\alpha}) = \gamma_{\alpha}$ と定める.列 $\langle s_{\alpha} : \alpha < 2^{\lambda} \rangle$ の中に現れない s については F(s) は何でもよい.

この F が条件を満たす.実際, $A \in [\lambda]^{\lambda}$ と $\gamma < \lambda$ をとると, ある $\alpha < 2^{\lambda}$ があって, $(A, \gamma) = (A_{\alpha}, \gamma_{\alpha})$ であり, $F(s_{\alpha}) = \gamma_{\alpha}$ となる.

定理 3.8 (Kunen). $j: V \to M$ が非自明 (すなわち $j \neq id$) な初等埋め込みとしたとき, $M \neq V$ である.

証明. $j: V \to V$ を非自明な初等埋め込みだとして矛盾を導く. $\kappa = \operatorname{crit}(j)$ とおくと κ は可測基数. $\kappa_0 = \kappa, \kappa_{n+1} = j(\kappa_n)$ (for $n \in \omega$) とおくと、どの κ_n も可測基数である. $\lambda = \sup_{n \in \omega} \kappa_n$ とおく. $j(\langle \kappa_n : n \in \omega \rangle) = \langle j(\kappa_n) : n \in \omega \rangle = \langle \kappa_{n+1} : n \in \omega \rangle$ だから $j(\lambda) = \lambda$ を得る. $G = \{j(\alpha) : \alpha < \lambda\}$ とおく.

 λ は可測基数の極限だから強極限である. さらに $\mathrm{cf}(\lambda) = \omega$ なので

$$2^{\lambda} = (2^{<\lambda})^{\mathrm{cf}(\lambda)}$$
 (これは一般的に成り立つ等式)
$$= \lambda^{\mathrm{cf}(\lambda)}$$
 (強極限性)
$$= \lambda^{\omega}$$

を得る。補題 3.7 により, $F: \lambda^\omega \to \lambda$ がとれて,すべての $A \in [\lambda]^\lambda$ について $F``A^\omega = \lambda$ である。j の 初等性と $j(\omega) = \omega$ と $j(\lambda) = \lambda$ により,j(F) も同じ性質を持つ。よって,上の G をここでの A に代入すると,ある $s \in G^\omega$ があって, $(jF)(s) = \kappa$ である.

G の定義より、s はある t: $\omega \to \lambda$ を使って、s(n) = j(t(n)) (for $n \in \omega$) と表わせる.よって s = j(t) である.したがって、 $\kappa = (jF)(s) = (jF)(jt) = j(F(t))$ である. κ は j の像ではないので、これは矛盾.

補題 3.9. U を κ 上の非単項 κ 完備超フィルターとし, $M=\mathrm{Ult}_U(V)$ とし, $j\colon V\to M$ を誘導される 初等埋め込みとする.このとき次が成り立つ.

- (1) $M^{\kappa} \subseteq M$. すなわち M は κ 列を取る操作で閉じている.
- (2) $U \notin M$.
- (3) $2^{\kappa} \le (2^{\kappa})^M < j(\kappa) < (2^{\kappa})^+$.
- (4) λ が極限順序数のとき、 $cf(\lambda) = \kappa$ ならば $j(\lambda) > \sup_{\alpha < \lambda} j(\alpha)$; $cf(\lambda) \neq \kappa$ ならば $j(\lambda) = \sup_{\alpha < \lambda} j(\alpha)$.
- (5) $\lambda > \kappa$ が強極限基数かつ $cf(\lambda) \neq \kappa$ ならば $j(\lambda) = \lambda$.

証明. (1) の証明. $\langle a_{\xi}: \xi < \kappa \rangle$ を M の元からなる κ 列とする. 各 $\xi < \kappa$ について g_{ξ} を元 a_{ξ} を表現する関数とする. h を元 κ を表現する関数とする.

関数 F で $[F] = \langle a_{\xi} : \xi < \kappa \rangle$ となるものを構成する. 各 $\alpha < \kappa$ について

$$F(\alpha) = \langle g_{\xi}(\alpha) : \xi < h(\alpha) \rangle$$

とおく.各 α について, $F(\alpha)$ は $h(\alpha)$ 列なので [F] は κ 列である. $\xi < \kappa$ とする.[F] の ξ 番目の項が a_{ξ} であることを示したい. $[h] > \xi$ なので,U の意味でほとんどすべての α で $\xi < h(\alpha)$ である.そのような α について, $F(\alpha)$ の ξ 番目の項は $g_{\xi}(\alpha)$ である.よってLos の定理により,[F] の ξ 番目が $[g_{\xi}]$ であることを得る $([c_{\xi}] = \xi$ に注意).

- (2) の証明. $U \in M$ と仮定する. 写像 $e: \kappa^{\kappa} \to j(\kappa)$ を e(f) = [f] で定める. (1) より $\kappa^{\kappa} = \kappa^{\kappa} \cap M = (\kappa^{\kappa})^{M} \in M$ に注意. また仮定 $U \in M$ があるので, $e \in M$ である. e は全射なので, $M \models |j(\kappa)| \leq 2^{\kappa}$ である. これは $j(\kappa)$ が M で到達不能基数なことに矛盾する.
 - (3) の証明. (1) より $\mathcal{P}(\kappa)^M = \mathcal{P}(\kappa)$ に注意する. よって $M \subseteq V$ より

 $\kappa < j(\kappa)$ であることと $j(\kappa)$ が M で到達不能基数なことから $(2^{\kappa})^M < j(\kappa)$ を得る.最後に, $j(\kappa)$ の元は κ から κ への関数で表現されることから $|j(\kappa)| \le \kappa^{\kappa} = 2^{\kappa}$.よって $j(\kappa) < 2^{\kappa}$.

なお、(3) の主張は $j(\kappa)$ が V では基数でないことを含意している.

(4) の証明. $\operatorname{cf}(\lambda) = \kappa$ として、 $\lambda = \sup_{\alpha < \kappa} \lambda_{\alpha}$ と書く、関数 f を $f(\alpha) = \lambda_{\alpha}$ とおく、すると Loś の定理より、任意の α について $j(\lambda_{\alpha}) < [f]$ であることと $[f] < j(\lambda)$ が分かる.したがって、 $\sup_{\alpha < \lambda} j(\alpha) \leq [f] < j(\lambda)$.

次に $\operatorname{cf}(\lambda) > \kappa$ として f を任意の κ から λ への関数とする.この f は共終でないので,ある $\alpha < \lambda$ があって $[f] < j(\alpha)$. $f: \kappa \to \lambda$ について [f] は $j(\lambda)$ の元すべてを動くのでこれで $j(\lambda) \leq \sup_{\alpha < \lambda} j(\alpha)$ が示された.逆向きの不等号は当たり前.

最後に $\operatorname{cf}(\lambda) < \kappa$ として, $\lambda = \sup_{\nu < \gamma} \lambda_{\nu} \ (\gamma = \operatorname{cf}(\lambda))$ と書く.すると任意の関数 $f : \kappa \to \lambda$ について $g : \kappa \to \gamma$ があって, $f(\alpha) \le \lambda_{g(\alpha)} \ (\text{for } \alpha < \kappa)$ となる.よって,U の κ 完備性よりある $\nu < \gamma$ について $[f] < j(\lambda_{\nu})$ となる.

(5) の証明. 各 $\alpha < \lambda$ について α 未満の順序数は関数 $f: \kappa \to \alpha$ によって表現されるので, $|j(\alpha)| \le |\alpha^{\kappa}| \le 2^{|\alpha|\kappa} < \lambda$ を得る. よって (4) より $j(\lambda) = \sup_{\alpha \le \lambda} j(\alpha) = \lambda$.

補題 3.10. κ を可測基数とする。もし $2^{\kappa} > \kappa^+$ ならば,どんな κ 上の正規 κ 完備非単項超フィルター D についても集合 $\{\alpha < \kappa : 2^{\alpha} > \alpha^+\}$ は D に属する。したがって,すべての基数 $\alpha < \kappa$ について $2^{\alpha} = \alpha^+$ ならば, $2^{\kappa} = \kappa^+$ である.

証明. D を κ 上の正規 κ 完備非単項超フィルターとし, $M=\mathrm{Ult}_D(V)$ とおく. もし, $\{\alpha<\kappa:2^{\alpha}=1\}$

 $\alpha^+\}\in D$ なら $[d]=\kappa$ とLoś の定理より $2^\kappa=\kappa^+$ in M を得る。ところが,補題 3.9 より $2^\kappa=(2^\kappa)^M$ かつ $\kappa^+=(\kappa^+)^M$ である。ここに κ^+ は集合 κ に入る整列順序の上限として書けることを使って, $2^\kappa=(2^\kappa)^M$ により $\kappa^+=(\kappa^+)^M$ を得る。よって,V で $2^\kappa=\kappa^+$ である。

4 ジェネリック超冪

本稿では可測基数を使わず、強制法によるジェネリックフィルターを使った超冪を考える.その応用として、Silverの定理を証明する.

 κ を非可算正則基数とし I を κ 上のイデアルとする. I 正値集合のなす半順序集合 (I^+,\subseteq) を考える:

$$I^+ = \{ X \subseteq \kappa : X \notin I \}.$$

 $G \in (V, P)$ ジェネリックフィルターとする.

以下の補題で M **超フィルター**というのは次を満たす $D \subset \mathcal{P}^M(\kappa)$ である:

- (1) $\varnothing \notin D, \kappa \in D$.
- (2) $X, Y \in D$ なら $X \cap Y \in D$.
- (3) $X \in D$ かつ $Y \in M$ で $X \subseteq Y$ ならば、 $Y \in D$.
- (4) $X \in M$ が $X \subseteq \kappa$ であるとき, $X \in D$ または $\kappa \setminus X \in D$.

補題 4.1. (1) G は κ 上の V 超フィルターで I の双対フィルターを拡大するものである.

- (2) V で I が κ 完備なら、G は κ 完備 V 超フィルターである.
- (3) I が正規ならば、G も正規である.

証明. (1) の証明. X が I の双対フィルターの元ならば, $\{Y \in I^+: Y \subseteq X\}$ は I^+ の稠密部分集合なので, $X \in G$ を得る. V 超フィルターなことの証明はやさしい.

- (2) の証明. $\{X_{\alpha}: \alpha<\gamma\}, \gamma<\kappa$ を V に属する κ の分割とする. すると $\{Y\in I^{+}: Y\subseteq X_{\alpha} \text{ (for some }\alpha<\gamma)\}$ は I^{+} の稠密部分集合である (by I の κ 完備性). したがって,ある X_{α} が G に属する.
- (3) の証明. $X \in G$ とし $f \in V$ を X 上の押し下げ関数とする. すると $\{Y \in I^+: f \text{ is constant on } Y\}$ は X の下で稠密である. よって f はある $Y \in G$ の上で定数である.

これから I は κ 上の κ 完備イデアルとし,全ての一点集合を含むものとする.すると G は κ 上の非単項 κ 完備 M 超フィルターである.V[G] で超冪 $\mathrm{Ult}_G(V)$ を考える.これを**ジェネリック超冪**という.これは ZFC のモデルだが,必ずしも well-founded ではない.

Loś の定理はジェネリック超冪でも成立する:

$$Ult_G(V) \models \varphi([f_1], \dots, [f_n]) \iff \{\alpha \in \kappa : \varphi(f_1(\alpha), \dots, f_n(\alpha))\} \in G.$$

ここに φ は集合論の論理式で, $f_1,\dots,f_n\in V$.特に初等埋め込み $j_G\colon V\to \mathrm{Ult}_G(V); j_G(x)=[c_x]$ を得る.

 $N=\mathrm{Ult}_G(V)$ とする。N の中の順序数全体 On^N は線形順序付けられたクラスだが,必ずしも整列しているとは言えない。しかし,次の補題は成り立つ。ここで, $x\in\mathrm{On}^N$ について $\{y\in\mathrm{On}^N:y<^Nx\}$ が順序型 α を持つとき,記号の乱用で $x=\alpha$ と書く.

補題 4.2. (1) 各 $\gamma < \kappa$ について、 $j(\gamma) = \gamma$. よって On^N は順序型 κ の始切片を持つ.

(2) I が正規ならば、 $x\in \operatorname{On}^N$ があって、 $x=\kappa$ である.実際、 $[d]=\kappa$ である.ただし d は対角 関数.

(3) $j(\kappa) \neq \kappa$.

証明. (1) の証明. $j \upharpoonright \gamma$ が (γ, \in) と $\{y \in \operatorname{On}^N : y <^N j(\gamma)\}, <^N \}$ の間の同型写像であることを示せばよい. $j \upharpoonright \gamma$ の値域が $\{y \in \operatorname{On}^N : y <^N j(\gamma)\}, <^N \}$ に含まれることは明らか. 順序保存性,単射性は j の初等性より明らか.

全射性を示す. $y\in \mathrm{On}^N$ で $y<^N j(\gamma)$ とする. $y=[f],f\in M,\mathrm{dom}(f)=\kappa$ なる f を取る. すると $[f]<^N j(\gamma)$ より

$$\{\alpha: f(\alpha) < \gamma\} \in G$$

だが、左辺は $\bigcup_{\beta<\gamma} \{\alpha: f(\alpha)=\beta\}$ と書けるため、G の κ 完備性により、ある $\beta<\kappa$ について $\{\alpha: f(\alpha)=\beta\} \in G$ である.よって、 $y=[f]=j(\beta)$.

(2) の証明. $j \upharpoonright \kappa$ が κ と $\{y \in \operatorname{On}^N : y <^N [d]\}$ の間の同型となることを示す. $j \upharpoonright \kappa$ の値域が $\{y \in \operatorname{On}^N : y <^N [d]\}$ に収まることは,各 $\alpha \in \kappa$ について $\langle \alpha, \alpha, \alpha, \ldots \rangle \in {}^*\langle 0, 1, 2, \ldots \rangle$ よりよい.順 序保存性,単射性は再び明らかである.

全射性を示す。 $[f] \in \operatorname{On}^N$ で $[f] <^N$ [d] なるものをとる。すると f はある G のメンバーの上で押し下げ関数である。G が正規なので,ある集合 $X \in G$ 上で f は定数関数である。その定数 $\alpha < \kappa$ について $j(\alpha) = [f]$ を得る。

(3) の証明. (2) の証明は全射性以外,正規性を使っていない.そこで $\operatorname{ran}(j \upharpoonright \kappa) \subseteq \{y \in \operatorname{On}^N: y <^N [d]\}$ は順序型 κ を持つ.よって, $\{y \in \operatorname{On}^N: y \le^N [d]\}$ は順序型 $\kappa+1$ の部分集合を持つ. $[d] < j(\kappa)$ であるため, $\{y \in \operatorname{On}^N: y <^N j(\kappa)\}$ も順序型 $\kappa+1$ の部分集合を持つ.よって,この集合 は順序型 κ を持つことはない.

定理 4.3 (Silver). κ を特異基数で $cf(\kappa) = \omega_1$ とする. また, すべての $\lambda < \kappa$ で $2^{\lambda} = \lambda^+$ と仮定する. このとき $2^{\kappa} = \kappa^+$.

証明. ($\operatorname{stat}_{\omega_1}$, \subseteq) を ω_1 の定常集合全体が包含関係で作る半順序集合とする. G を $(V, \operatorname{stat}_{\omega_1})$ ジェネリックフィルターとする. V[G] で議論する. G は ω_1^M 上の正規 σ 完備 M 超フィルターである. $(N, \varepsilon^N) = \operatorname{Ult}_G(V)$ をジェネリック超冪とし, $j: V \to N$ を誘導される初等埋め込みとする.

 $\langle \kappa_{\alpha}: \alpha < \omega_1 \rangle$ を V の中で単調増加連続な基数の列で κ に収束するものとする. e を N の中の基数 とし, $e(\alpha) = \kappa_{\alpha}$ で定められる関数によって表現されるものとする. e^+ を N の中での e の後続基数とする.

 $x \in N$ に対して $\mathrm{ext}(x) = \{y \in N : y \in \mathbb{R}^N \mid x\}$ とおく. これは V[G] の集合である. この定義より特に

$$\operatorname{ext}(\mathcal{P}^N(e)) = \{ x \in N : N \models \text{``} x \subseteq e\text{''} \}$$

である.

主張 A: $|\mathcal{P}^V(\kappa)| \leq |\operatorname{ext}(\mathcal{P}^N(e))|$.

証明: V の中の $X\subseteq \kappa$ について関数 f_X を $f_X(\alpha)=X\cap \kappa_\alpha$ $(\alpha\in\omega_1)$ と定める. f_X が表現する N の元は,N の中で e の部分集合である. また, $X\neq Y$ なら,関数 f_X と f_Y はゆくゆく異なるので,異なる N の元を表現する.

主張 B: $|\operatorname{ext}(\mathcal{P}^N(e))| = |\operatorname{ext}(e^+)|$.

証明: V で任意の α について $2^{\kappa_{\alpha}} = \kappa_{\alpha}^{+}$ であることから、Los の定理より、N で $2^{e} = e^{+}$ が成り立つ、つまり $F \in N$ がとれて、 $N \models F \colon 2^{e} \to e^{+}$ 全単射 となる。各 $x \in \text{ext}(\mathcal{P}^{N}(e))$ について $y \in N$ で $N \models y = F(x)$ となる元を割り当てる関数を $\tilde{F} \colon \text{ext}(\mathcal{P}^{N}(e)) \to \text{ext}(e^{+})$ とする.これは全単射であることが確認できるので、主張が示された. //

主張 C: 任意の $a \varepsilon^N e$ について, $\gamma < \omega_1^V$ が存在して, $a \varepsilon^N j(\kappa_\gamma)$ である.

証明: $a \in \mathbb{N}$ e を任意にとり,関数 f が a を表現するとする.このときある $X \in G$ があって,全ての $\alpha \in X$ で $f(\alpha) < \kappa_{\alpha}$ である.ここで極限順序数全体の集合は club なので G に属する.よって,上で取った X は全ての元が極限順序数だと仮定して良い.したがって,列 $\langle \kappa_{\alpha} : \alpha < \omega_{1} \rangle$ を連続で取っていたことから, $f(\alpha) < \kappa_{\gamma(\alpha)}$ が,ある $\gamma(\alpha) < \alpha$ について成り立つ. γ は押し下げ関数だから,ある $\gamma < \omega_{1}^{V}$ が存在して,ある $Y \in G$ について,任意の $\alpha \in Y$ で $f(\alpha) < \kappa_{\gamma}$ となる.つまり $a \in \mathbb{N}$ $f(\kappa_{\gamma})$ を得る.

主張 D: $|\operatorname{ext}(e)| \leq \kappa$.

証明: 各 $\gamma < \omega_1^V$ について, $|j(\kappa_\gamma)| \le |(\kappa_\gamma^{\aleph_1})^V| < \kappa$ である.第一の不等号は $j(\kappa_\gamma)$ の元というのは つねに κ_γ の元を値に取る ω_1 列で表現されるからである.よって,主張 C と合わせて, $|\mathrm{ext}(e)| \le \kappa$ を得る.

主張 E: $|ext(e^+)| < \kappa^+$.

証明: もし、 $x \in \mathbb{R}^N$ e^+ なら、N の中に x から e への単射があるから、主張 B と同じ方法によって、 $\operatorname{ext}(x)$ から $\operatorname{ext}(e)$ への単射を得る.したがって、 $\operatorname{ext}(e^+)$ は全順序集合で、どの始切片もサイズたかだか κ を持つので、 $\operatorname{ext}(e^+) \leq \kappa^+$ を得る([Jec06] の Exercise 5.3 を参照). //

主張 A, B, E を組み合わせると

$$|\mathcal{P}^V(\kappa)| \le |\operatorname{ext}(\mathcal{P}^N(e))| \le |\operatorname{ext}(e^+)| \le \kappa^+$$

を得る.これは V[G] での不等式である.ところが, $|P|=2^{\aleph_1}<\kappa$ であるため,chain condition により,V の全ての κ 以上の基数は V[G] でも基数である.よって

$$|\mathcal{P}^V(\kappa)|^V \le (\kappa^+)^V$$

を得る. これが欲しかった結論である.

5 峻厳イデアル

参考文献

[Jec06] Thomas Jech. Set Theory: The Third Millennium Edition, revised and expanded. Springer Monographs in Mathematics. Springer Berlin Heidelberg, 2006.

[新井 21] 新井敏康. **数学基礎論**. 東京大学出版会, 2021.