

Motivation & Background

Data-driven frame for improved vessel tracking

Results

Conclusion

Retina Images

Retina of diabetic patient

Tortuous vessels
Hemorrhage and micro-aneurysms

Healthy retina

Tracking in Orientation Scores

Track vessel from one of the red arrows to the blue arrow

Jumps to another vessel

Tracking in Orientation Scores

Tracking in Orientation Scores

Track vessel from one of the red arrows to the blue arrow

Jumps to another vessel

- Create a 3D image representation based on the 2D image (in space of positions and orientations)
- Perform tracking on
 3D image (in orientation scores)
- Project the tracking results onto the 2D image

Orientation Scores

Space of positions and orientations: $\mathbb{M}_2 \coloneqq \mathbb{R}^2 \rtimes S^1$ where $S^1 \equiv \mathbb{R}/(2\pi\mathbb{Z})$

$$(\mathbf{x}, \theta) \in \mathbb{M}_2$$
 where $\mathbf{x} \in \mathbb{R}^2$ and $\theta \in S^1$

Group product given by

$$(\mathbf{x}_1, R_{\theta_1}) \cdot (\mathbf{x}_2, R_{\theta_2}) = (\mathbf{x}_1 + R_{\theta_1} \mathbf{x}_2, R_{\theta_1} R_{\theta_2})$$

Invertible orientation score transform

$$W_{\psi} f(\mathbf{x}, \theta) = \int_{\mathbb{R}^2} \overline{\psi \left(R_{\theta}^{-1} (\mathbf{y} - \mathbf{x}) \right)} f(\mathbf{y}) d\mathbf{y}$$

Convolution with rotating and translating wavelet ψ

orientation score

Left Invariant Frame and Metric Tensor Field Model

Image

Left Invariant Derivatives in Orientation Scores

Left invariant frame

$$\begin{cases} \mathcal{A}_1 = \cos\theta \,\,\partial_x + \sin\theta \,\,\partial_y \\ \mathcal{A}_2 = -\sin\theta \,\,\partial_x + \cos\theta \,\,\partial_y \\ \mathcal{A}_3 = \partial_\theta \end{cases}$$

Dual left invariant frame

$$\begin{cases} \omega^1 = \cos\theta \, dx + \sin\theta \, dy \\ \omega^2 = -\sin\theta \, dx + \cos\theta \, dy \\ \omega^3 = d\theta \end{cases}$$

Relation frame and its dual

$$\langle \omega^i, \mathcal{A}_j \rangle = \delta^i_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Vessel Tracking

Objective: Find shortest path between point \mathbf{p}_S and \mathbf{p} in \mathbb{M}_2

Find minimizing curve γ with distance

$$d_{\mathcal{G}}(\mathbf{p}_{S}, \mathbf{p}) \coloneqq \min_{\substack{\gamma \in \text{Lip}([0,1], \mathbb{M}_{2}) \\ \gamma(0) = \mathbf{p}_{S} \\ \gamma(1) = \mathbf{p}}} \int_{0}^{1} \|\dot{\gamma}(t)\| \, \mathrm{d}t$$

induced by metric tensor field \mathcal{G}

$$\|\dot{\gamma}(t)\|^2 = \mathcal{G}_{\gamma(t)} \left(\dot{\gamma}(t), \dot{\gamma}(t)\right)$$

Vectors aligned to vessel structure have smaller norms compared to random other vectors

Computing shortest curves

1. Compute a viscosity solution U to the eikonal PDE

$$\begin{cases} \|\text{grad } U\| = 1 \\ U(\mathbf{p}_S) = 0 \end{cases}$$

U denotes the distance to the point \mathbf{p}_S

$$U(\cdot) = d_{\mathcal{G}}(\mathbf{p}_S, \cdot)$$

Computed U using Fast Marching approach

2. Compute the shortest path γ using steepest descent on U starting from end point ${\bf p}$

Wavefronts

Compute a viscosity solution U to the eikonal PDE

$$\begin{cases} \|\text{grad } U\| = 1 \\ U(\mathbf{p}_S) = 0 \end{cases}$$

 $\it U$ denotes the distance to the point ${f p}_S$

$$U(\cdot) = d_{\mathcal{G}}(\mathbf{p}_S, \cdot)$$

Interpretation: Level sets ↔ Wavefronts propagated by viscous fluid

Important: wavefronts do not pass through each other!

Visualization: projected level curves by

minimizing over orientations

Left Invariant Metric Tensor Field Model

Standard Riemannian shortest paths in \mathbb{R}^2

Sub-Riemannian shortest paths in SE(2)

Orientation Scores and Left Invariant Frame

No perfect alignment of A_1 and line structure

Possibly steering in wrong direction

Only spatial alignment

Solution to Short-Comings: New Geometrical Model

- Old model: diagonal with left invariant frame
- New model: not diagonal with left invariant frame
 - Metric tensor field locally aligned with lifted blood vessel
 - Also known as Data-Driven Left Invariant Frame
 - Fitted to image data

Left invariant frame

Data-driven left invariant frame

Motivation & Background

Data-driven frame for improved vessel tracking

Results

Conclusion

Equivariance

Metric tensor field is data-driven left invariant if

roto-translation of the input image

yields

geodesics that are rotated and translated accordingly.

In other words:

$$\mathcal{G}_{\mathbf{p}}^{U}(\dot{\mathbf{p}},\dot{\mathbf{p}}) = \mathcal{G}_{g\mathbf{p}}^{\mathcal{L}_{g}U}((L_{g})_{*}\dot{\mathbf{p}},(L_{g})_{*}\dot{\mathbf{p}})$$

Metric Tensor Fields

$$\mathcal{G}_{\mathbf{p}}\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right) = \mathcal{C}^{2}\left(\xi^{2}\left(\omega^{1}\otimes\omega^{1}+\zeta^{-2}\omega^{2}\otimes\omega^{2}\right)+\omega^{3}\otimes\omega^{3}\right)\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right)$$

$$\mathbf{Cost\ function}\qquad \mathcal{C}(\mathbf{p})\in\left(\delta,1\right] \qquad \mathbf{Anisotropy\ parameter}\qquad \zeta\in\left(0,1\right] \qquad \mathbf{Dual\ left\ invariant\ frame}$$

$$\mathbf{Weighting\ parameter}\qquad \xi\qquad \mathbf{Forward\ gear\ parameter}\qquad \epsilon\in\left[0,1\right) \qquad \{\omega^{1},\omega^{2},\omega^{3}\}$$

$$(a)_{-}=\min\{0,a\}$$

$$\mathcal{F}\left(\mathbf{p},\dot{\mathbf{p}}\right)^{2}=\mathcal{C}^{2}\left(\xi^{2}\left(\omega^{1}\otimes\omega^{1}+\left(\epsilon^{-2}-1\right)\left(\omega^{1}\otimes\omega^{1}\right)_{-}+\zeta^{-2}\omega^{2}\otimes\omega^{2}\right)+\omega^{3}\otimes\omega^{3}\right)\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right)$$

Metric Tensor Fields

$$\mathcal{G}_{\mathbf{p}}\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right) = \mathcal{C}^{2}\left(\xi^{2}\left(\omega^{1}\otimes\omega^{1} + \zeta^{-2}\omega^{2}\otimes\omega^{2}\right) + \omega^{3}\otimes\omega^{3}\right)\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right)$$

Dual left invariant frame

$$\{\omega^1,\omega^2,\omega^3\}$$

$$\mathcal{F}\left(\mathbf{p},\dot{\mathbf{p}}\right)^{2} = \mathcal{C}^{2}\left(\boldsymbol{\xi}^{2}\left(\omega^{1}\otimes\omega^{1} + \left(\boldsymbol{\epsilon}^{-2} - 1\right)\left(\omega^{1}\otimes\omega^{1}\right)_{-} + \zeta^{-2}\omega^{2}\otimes\omega^{2}\right) + \omega^{3}\otimes\omega^{3}\right)\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right)$$

$$(a)_{-}=\min\{0,a\}$$

 $\lambda \in (0,\infty)$

$$\left\{\omega_U^1,\omega_U^2,\omega_U^3\right\}$$

$$\left| \mathcal{F}^{U}\left(\mathbf{p},\dot{\mathbf{p}}\right) \right|^{2} = \left| \mathcal{F}\left(\mathbf{p},\dot{\mathbf{p}}\right) \right|^{2} + \mathcal{C}^{2} \lambda \frac{\left\| HU|_{\mathbf{p}}(\cdot,\dot{\mathbf{p}}) \right\|_{*}^{2}}{\max_{\dot{\mathbf{q}}} \left\| HU|_{\mathbf{p}}(\cdot,\dot{\mathbf{q}}) \right\|_{*}^{2}}$$

Metric Tensor Fields

$$\mathcal{G}_{\mathbf{p}}\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right) = \mathcal{C}^{2}\left(\xi^{2}\left(\omega^{1}\otimes\omega^{1} + \zeta^{-2}\omega^{2}\otimes\omega^{2}\right) + \omega^{3}\otimes\omega^{3}\right)\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right)$$

Dual left invariant frame

$$\{\omega^1,\omega^2,\omega^3\}$$

$$\mathcal{F}\left(\mathbf{p},\dot{\mathbf{p}}\right)^{2} = \mathcal{C}^{2}\left(\boldsymbol{\xi}^{2}\left(\omega^{1}\otimes\omega^{1} + \left(\boldsymbol{\epsilon}^{-2} - 1\right)\left(\omega^{1}\otimes\omega^{1}\right)_{-} + \boldsymbol{\zeta}^{-2}\omega^{2}\otimes\omega^{2}\right) + \omega^{3}\otimes\omega^{3}\right)\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right)$$

$$(a)_{-} = \min\{0, a\}$$

$$\mathcal{G}_{\mathbf{p}}^{U}\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right) = \mathcal{G}_{\mathbf{p}}\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right) + \mathcal{C}^{2} \frac{\left\|\left.HU\right|_{\mathbf{p}}\left(\cdot,\dot{\mathbf{p}}\right)\right\|_{*}^{2}}{\max_{\dot{\mathbf{q}}}\left\|\left.HU\right|_{\mathbf{p}}\left(\cdot,\dot{\mathbf{q}}\right)\right\|_{*}^{2}} = \mathcal{C}^{2}\left(a_{1}\omega_{U}^{1}\otimes\omega_{U}^{1} + a_{2}\omega_{U}^{2}\otimes\omega_{U}^{2} + a_{3}\omega_{U}^{3}\otimes\omega_{U}^{3}\right)\left(\dot{\mathbf{p}},\dot{\mathbf{p}}\right)$$

$$\left|\mathcal{F}^{U}\left(\mathbf{p},\dot{\mathbf{p}}\right)\right|^{2} = \left|\mathcal{F}\left(\mathbf{p},\dot{\mathbf{p}}\right)\right|^{2} + \frac{\mathcal{C}^{2}\lambda}{\max_{\dot{\mathbf{q}}}\left\|HU|_{\mathbf{p}}(\cdot,\dot{\mathbf{q}})\right\|_{*}^{2}}$$

Dual data-driven frame

$$\left\{\omega_U^1,\omega_U^2,\omega_U^3\right\}$$

Straight vs. short curves for Left Invariant Framework

Left Invariant

Frame

$$\{\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3\}$$

with dual

$$\left\{\omega^1,\omega^2,\omega^3\right\}$$

Connection:

$$\nabla^{[+]} = \sum_{i,k=1}^{3} \left(\omega^{i} \otimes \left(\mathcal{A}_{i} \circ \omega^{k} \right) + \sum_{j=1}^{3} \left(\omega^{i} \otimes \omega^{j} \right) c_{ij}^{k} \right) \mathcal{A}_{k}$$

Straight curves – parallel velocity

$$\nabla_{\dot{\gamma}}\dot{\gamma}=0$$

Short curves – parallel momentum

$$\begin{cases} (\nabla)_{\dot{\gamma}}^* \lambda = 0 \\ \mathcal{G}\dot{\gamma} = \lambda \end{cases}$$

Straight vs. short curves for Data-Driven Left Invariant Framework

Left Invariant

Frame

$$\{\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3\}$$

with dual

$$\left\{\omega^1,\omega^2,\omega^3\right\}$$

Connection:

$$\nabla^{[+]} = \sum_{i,k=1}^{3} \left(\omega^{i} \otimes \left(\mathcal{A}_{i} \circ \omega^{k} \right) + \sum_{j=1}^{3} \left(\omega^{i} \otimes \omega^{j} \right) c_{ij}^{k} \right) \mathcal{A}_{k}$$

Straight curves – parallel velocity

$$\nabla_{\dot{\gamma}}\dot{\gamma}=0$$

Data-Driven Left Invariant

Frame

$$\left\{ \mathcal{A}_{1}^{U},\mathcal{A}_{2}^{U},\mathcal{A}_{3}^{U}
ight\}$$

with dual

$$\left\{\omega_U^1,\omega_U^2,\omega_U^3\right\}$$

Connection:

$$\nabla^{U} = \sum_{i,k=1}^{3} \left(\omega_{U}^{i} \otimes \left(\mathcal{A}_{i}^{U} \circ \omega_{U}^{k} \right) + \sum_{j=1}^{3} \left(\omega_{U}^{i} \otimes \omega_{U}^{j} \right) \tilde{c}_{ij}^{k} \right) \mathcal{A}_{k}^{U}$$

Short curves – parallel momentum

$$\begin{cases} (\nabla)_{\dot{\gamma}}^* \lambda = 0 \\ \mathcal{G}\dot{\gamma} = \lambda \end{cases}$$

New theorem

 $[\mathcal{A}_i^U, \mathcal{A}_i^U] = \tilde{c}_{ii}^k(\cdot) \mathcal{A}_k^U$

Calculating Geodesics via Steepest Descent on the Distance Map

Theorem 1 The shortest curve $\gamma:[0,1] \to \mathbb{M}_2$ with $\gamma(0) = \mathbf{p}$ and $\gamma(1) = \mathbf{p}_0$ can be computed by steepest descent tracking on distance map $W(\mathbf{p}) = d_{\mathcal{F}^U}(\mathbf{p}, \mathbf{p}_0)$

$$\gamma(t) := \gamma_{\mathbf{p}, \mathbf{p}_0}^U(t) = Exp_{\mathbf{p}}(t \, v(W)), \qquad t \in [0, 1], \tag{1}$$

where Exp integrates the following vector field on \mathbb{M}_2 : $v(W) := -W(\mathbf{p})\nabla_{\mathcal{F}^U}W$ and where W is the viscosity solution of the eikonal PDE system

$$\begin{cases} \mathcal{F}_{U}^{*}(\mathbf{p}, dW(\mathbf{p})) = 1 & \mathbf{p} \in \mathbb{M}_{2}, \\ W(\mathbf{p}_{0}) = 0, \end{cases}$$
 (2)

assuming \mathbf{p} is neither a 1st Maxwell-point nor a conjugate point, with dual Finsler function $\mathcal{F}_{U}^{*}(\mathbf{p}, \hat{\mathbf{p}}) := \max\{\langle \hat{\mathbf{p}}, \dot{\mathbf{p}} \rangle | \dot{\mathbf{p}} \in T_{\mathbf{p}}(\mathbb{M}_{2}) \text{ with } \mathcal{F}^{U}(\mathbf{p}, \dot{\mathbf{p}}) \leq 1\}$. As v(W) is data-driven left invariant, the geodesics carry the symmetry

$$\gamma_{g,\mathbf{p},g,\mathbf{p}_0}^{\mathcal{L}_g U}(t) = g \, \gamma_{\mathbf{p},\mathbf{p}_0}^U(t) \text{ for all } g \in SE(2), \mathbf{p}, \mathbf{p}_0 \in \mathbb{M}_2, t \in [0,1].$$
 (3)

New theorem

Straight vs. short curves

Exponential curvesStraight lines

Left invariant frame with $\xi = 1, \zeta = 1/8$

Data-driven left invariant frame with $\lambda=100$

Control sets

$$B_{\mathcal{G}}(\mathbf{p}) = \{ \dot{\mathbf{p}} \in T_{\mathbf{p}}(\mathbb{M}_2) | G_{\mathbf{p}}(\dot{\mathbf{p}}, \dot{\mathbf{p}}) \leq 1 \}$$

Motivation & Background

Data-driven frame for improved vessel tracking

Results

Conclusion

Experimental Setting: Track from red to blue arrow

Isotropic left invariant frame, $\zeta = 1$

Wavefronts do not follow vessel structure

Anisotropic left invariant frame, $\zeta = 0.125$

Wavefronts do not follow vessel structure

Data-driven left invariant frame, $\zeta = 0.125$, $\lambda = 100$

Wavefronts follow vessel structure

Tracking Vessels in Vessel Tree

Experimental setting

Tracking Vessels in Vessel Tree in Two Steps

cost function

Geodesics Tracking of Vascular Trees

Tracking Vessels in Vessel Tree

Experimental setting

Tracking Vessels in Vessel Tree

Data-driven left invariant frame $\lambda = 100$

Occasionally runs into trouble at crossings

Solution: Mixed data-driven left invariant frame: Left invariant frame at crossings, data-driven left invariant frame otherwise ($\lambda = 100$)

Shows correct behavior at crossings

Motivation & Background

Data-driven frame for improved vessel tracking

Results

Conclusion

Conclusion

- Model corresponding with the data-driven frame, relying on data-driven
 Cartan connection
 - 1. Better adaptation for curvature
- Theorem:
 - Geodesics (parallel momentum w.r.t data-driven Cartan-connection) can still be found with steepest descent
 - 2. Geodesics have appropriate equivariant behavior
- Tracking of complete vascular tree from a single distance map gives good results

