Représentations paramétriques et équations cartésiennes

Exercice 1 Soit \mathcal{D} la droite passant par le point A et dirigée par le vecteur \overrightarrow{u} , donnés ci-dessus. Dans chacun des cas suivants, déterminer une représentation paramétrique de la droite \mathcal{D} et une autre point de cette droite.

- 1. A(-2;4;1) et $\overrightarrow{u}(3;2;1)$
- **2.** A(5;0;-4) et $\overrightarrow{u}(-2;4;3)$
- **3.** A(-7;8;2) et $\overrightarrow{u}(0;2;-3)$
- **4.** A(16;4;0) et $\overrightarrow{u}(-3;3;0)$

Exercice 2 Soient G(4; -6; -7) et F(8; -3; -5) deux points de l'espace. Déterminer une représentation paramétrique de la droite (FG).

Exercice 3 On considère une droite Δ dont une représentation paramétrique est :

$$\begin{cases} x = -1 + t \\ y = 7 - t \\ z = -11 - t \end{cases} \quad t \in \mathbb{R}$$

- 1. Justifier que les points A(-5;11;-7) et B(9;-3;-21) appartiennent à la droite Δ .
- **2.** Les points A et B sont-ils alignés avec le point C(-4;4;6) ?
- **3.** Que peut-on en déduire sur la position relative du point C et de la droite Δ ?

Exercice 4 On considère les droites Δ_1 et Δ_2 dont on donne respectivement pour chacune une représentation paramétrique :

$$\begin{cases} x = 3t - 6 \\ y = t \\ z = 4 \end{cases} \qquad t \in \mathbb{R} \quad \begin{cases} x = -3t' + 3 \\ y = 2t' - 3 \\ z = t' + 2 \end{cases} \qquad t' \in \mathbb{R}$$

- 1. Justifier que le point A(-3;1;4) appartient à chacune de ces deux droites.
- **2.** Que peut-on en déduire sur la position relative de Δ_1 et Δ_2 ?
- **3.** Ces deux droites sont-elles perpendiculaires? confondues?

Exercice 5 *On considère la droite* (*D*) *dont une représentation paramétrique est :*

$$\begin{cases} x = 4 - 3t \\ y = -1 + 2t \\ z = 3 + 2t \end{cases} \quad t \in \mathbb{R}$$

Le point B(4;-1;3) est-il le projeté orthogonal sur la droite (\mathfrak{D}) du point A(-1;0;1) ? Justifier.

TG 2022-2023

Exercice 6 On considère les plans définis par les équations cartésiennes suivantes :

$$(\mathcal{P}_1)$$
: $2x - 5y + z - 4 = 0$

$$(\mathscr{P}_2)$$
 : $x + 3y - z + 12 = 0$

$$(\mathcal{P}_3) : 8x - y + 5 = 0$$

$$(\mathscr{P}_4) : x-z=0$$

Déterminer les coordonnées d'un vecteur normal à chacun de ces plans.

Exercice 7 On considère le plan \mathcal{P} qui passe par le point A et donc le vecteur \overrightarrow{n} est un vecteur normal. Déterminer une équation cartésienne de \mathcal{P} dans chacun des cas suivants :

$$A(-2;4;1)$$
 \vec{n} (4;2;-1)
 $A(5;3;-2)$ \vec{n} (1;-3;5)
 $A(3;3;-5)$ \vec{n} (1;0;-1)

A(3;3;-5) $\overrightarrow{n}(0;-2;3)$

Exercice 8 *On considère les points* A(1;-1;4), B(2;-3;0) *et* C(2;-1;5).

- 1. Justifier que ces trois plans définissent bien un plan.
- **2.** Justifier que le vecteur \overrightarrow{n} (2;5; -2) est un vecteur normal à ce plan.
- **3.** En déduire une équation cartésienne du plan (ABC).

Exercice 9 On considère un plan \mathcal{P} d'équation cartésienne 5x - 3y + 2z = 0 ainsi que les points A(1;1;-1), $B\left(0;3;\frac{9}{2}\right)$ et C(4;0;-10).

Justifier que le plan (\mathcal{P}) *est le plan* (ABC).

Exercice 10 On considère le plan \mathcal{P} d'équation cartésienne -x+2y+2z-1=0 et le point A(1;1;1). Déterminer les coordonnées du projeté orthogonal du point A sur le plan \mathcal{P} .

Exercice 11 On considère le plan \mathcal{P} d'équation cartésienne 3x-5y+2z+1=0 et la droite Δ de représentation paramétrique :

$$\begin{cases} x = 2 - 2t \\ y = 5 - 3t \\ z = 2t \end{cases}$$

- **1.** *Justifier que la droite* Δ *et le plan* \mathcal{P} *ne sont pas parallèles.*
- **2.** Justifier qu'un point M(x; y; z) appartient à l'intersection de plan et de cette droite s'il existe $t \in \mathbb{R}$ tel que :

$$3(2-2t) - 5(5-3t) + 2(2t) + 1 = 0$$

TG 2022-2023

3. En déduire l'intersection entre le plan et la droite.

Exercice 12 L'espace est rapporté un repère orthonormal où l'on considère :

- les points A(2; -1; 0) B(1; 0; -3), C(6; 6; 1) et E(1; 2; 4);
- Le plan \mathcal{P} d'équation cartésienne 2x y z + 4 = 0.
- 1. a. Démontrer que le triangle ABC est rectangle en A.
 - **b.** Calculer le produit scalaire $\overrightarrow{BA} \cdot \overrightarrow{BC}$ puis les longueurs BA et BC.
 - c. En déduire la mesure en degrés de l'angle \widehat{ABC} arrondie au degré.
- **2.** a. Démontrer que le plan \mathcal{P} est parallèle au plan ABC.
 - b. En déduire une équation cartésienne du plan ABC.
 - **c.** Déterminer une représentation paramétrique de la droite \mathcal{D} orthogonale au plan ABC et passant par le point E.
 - **d.** Démontrer que le projeté orthogonal H du point E sur le plan ABC a pour coordonnées $\left(4;\frac{1}{2};\frac{5}{2}\right)$.
- **3.** On rappelle que le volume d'une pyramide est donné par $V = \frac{1}{3}\mathcal{B}h$ où \mathcal{B} désigne l'aire d'une base et h la hauteur de la pyramide associée à cette base.

Calculer l'aire du triangle ABC puis démontrer que le volume de la pyramide ABCE est égal à 16,5 unités de volume.

Exercice 13 L'espace est muni d'un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$. On considère :

- le point A(1; -1; -1);
- le plan \mathcal{P}_1 , d'équation : 5x + 2y + 4z = 17;
- le plan \mathcal{P}_2 d'équation : 10x + 14y + 3z = 19;
- la droite D de représentation paramétrique :

$$\begin{cases} x = 1+2t \\ y = -t \\ z = 3-2t \end{cases}$$
 où t décrit \mathbb{R} .

- **1.** Justifier que les plans \mathcal{P}_1 et \mathcal{P}_2 ne sont pas parallèles.
- **2.** Démontrer que \mathcal{D} est la droite d'intersection de \mathcal{P}_1 et \mathcal{P}_2 .
- **3.** a. Vérifier que A n'appartient pas à \mathcal{P}_1 .
 - **b.** Justifier que A n'appartient pas à \mathcal{D} .
- **4.** Pour tout réel t, on note M le point de \mathcal{D} de coordonnées (1+2t; -t; 3-2t). On considère alors la fonction f qui à tout réel t associe AM^2 , soit $f(t) = AM^2$.
 - **a.** Démontrer que pour tout réel t, on a: $f(t) = 9t^2 18t + 17$.

TG 2022-2023

- **b.** Démontrer que la distance AM est minimale lorsque M a pour coordonnées (3; -1; 1).
- **5.** On note H le point de coordonnées (3; -1; 1). Démontrer que la droite (AH) est perpendiculaire à \mathcal{D} .

Exercice 14 On considère un cube ABCDEFGH.

On appelle K le milieu du segment [BC].

On se place dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ et on considère le tétraèdre EFGK.

On rappelle que le volume d'un tétraèdre est donné par :

$$V = \frac{1}{3} \times \mathscr{B} \times h$$

où ${\mathcal B}$ désigne l'aire d'une base et h la hauteur relative à cette base.

- 1. Préciser les coordonnées des points E, F, G et K.
- **2.** Montrer que le vecteur $\overrightarrow{n} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$ est orthogonal au plan (EGK).
- **3.** Démontrer que le plan (EGK) admet pour équation cartésienne : 2x 2y + z 1 = 0.
- **4.** Déterminer une représentation paramétrique de la droite (d) orthogonale au plan (EGK) passant par F.
- **5.** Montrer que le projeté orthogonal L de F sur le plan (EGK) a pour coordonnées $(\frac{5}{9}; \frac{4}{9}; \frac{7}{9})$.
- **6.** Justifier que la longueur LF est égale à $\frac{2}{3}$.
- 7. Calculer l'aire du triangle EFG. En déduire que le volume du tétraèdre EFGK est égal à $\frac{1}{6}$.
- 8. Déduire des questions précédentes l'aire du triangle EGK.
- **9.** On considère les points P milieu du segment [EG], M milieu du segment [EK] et N milieu du segment[GK]. Déterminer le volume du tétraèdre FPMN.

4