PLACEMENT PREDICTION

By: Sakshi Neeraj

This is a study of publicly accessible data regarding on-campus placement of applicants depending on characteristics such as high school graduation percentage and domain of specialisation.

Dataset for practical- https://www.kaggle.com/benroshan/factors-affecting-campus-placement <a href="https://www.kaggle.com/benroshan/factors-affecting-campus-placem

In [1]:

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
```

Importing the dataset

In [2]:

```
data=pd.read_csv("Placement_Data_Full_Class.csv")
```

In [3]:

```
data.describe()
```

Out[3]:

	sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
count	215.000000	215.000000	215.000000	215.000000	215.000000	215.000000	148.000000
mean	108.000000	67.303395	66.333163	66.370186	72.100558	62.278186	288655.405405
std	62.209324	10.827205	10.897509	7.358743	13.275956	5.833385	93457.452420
min	1.000000	40.890000	37.000000	50.000000	50.000000	51.210000	200000.000000
25%	54.500000	60.600000	60.900000	61.000000	60.000000	57.945000	240000.000000
50%	108.000000	67.000000	65.000000	66.000000	71.000000	62.000000	265000.000000
75%	161.500000	75.700000	73.000000	72.000000	83.500000	66.255000	300000.000000
max	215.000000	89.400000	97.700000	91.000000	98.000000	77.890000	940000.000000

In [4]:

```
data.describe(include="all")
```

Out[4]:

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	
count	215.000000	215	215.000000	215	215.000000	215	215	215.000000	
unique	NaN	2	NaN	2	NaN	2	3	NaN	
top	NaN	М	NaN	Central	NaN	Others	Commerce	NaN	С
freq	NaN	139	NaN	116	NaN	131	113	NaN	
mean	108.000000	NaN	67.303395	NaN	66.333163	NaN	NaN	66.370186	
std	62.209324	NaN	10.827205	NaN	10.897509	NaN	NaN	7.358743	
min	1.000000	NaN	40.890000	NaN	37.000000	NaN	NaN	50.000000	
25%	54.500000	NaN	60.600000	NaN	60.900000	NaN	NaN	61.000000	
50%	108.000000	NaN	67.000000	NaN	65.000000	NaN	NaN	66.000000	
75%	161.500000	NaN	75.700000	NaN	73.000000	NaN	NaN	72.000000	
max	215.000000	NaN	89.400000	NaN	97.700000	NaN	NaN	91.000000	

In [5]:

```
print(data.shape)
print(data.head())
```

```
(215, 15)
   sl_no gender
                           ssc_b hsc_p
                                           hsc_b
                                                             degree_p \
                                                      hsc_s
                 ssc_p
0
       1
              Μ
                 67.00
                         Others
                                  91.00
                                          Others
                                                  Commerce
                                                                58.00
       2
                 79.33
                                 78.33
                                                                77.48
1
              Μ
                        Central
                                          Others
                                                    Science
2
       3
              Μ
                 65.00
                        Central 68.00
                                         Central
                                                       Arts
                                                                64.00
3
                 56.00
       4
              Μ
                        Central
                                 52.00
                                         Central
                                                    Science
                                                                52.00
4
       5
                 85.80
                        Central
                                 73.60
                                                                73.30
              Μ
                                         Central
                                                  Commerce
    degree_t workex
                     etest_p specialisation
                                              mba_p
                                                          status
                                                                    salary
    Sci&Tech
                         55.0
                                              58.80
0
                 No
                                      Mkt&HR
                                                          Placed
                                                                  270000.0
    Sci&Tech
                         86.5
                                     Mkt&Fin
                                              66.28
                                                          Placed
                                                                  200000.0
1
                Yes
2
   Comm&Mgmt
                 No
                         75.0
                                     Mkt&Fin
                                              57.80
                                                          Placed
                                                                  250000.0
3
                                              59.43
                                                     Not Placed
    Sci&Tech
                 No
                         66.0
                                      Mkt&HR
                                                                       NaN
4
  Comm&Mgmt
                 No
                         96.8
                                     Mkt&Fin
                                              55.50
                                                          Placed
                                                                  425000.0
```

Handling missing values

```
In [6]:
```

```
data.isnull()
```

Out[6]:

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p
0	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False Fa		False	False
4	False	False	False	False	False	False	False	False	False	False	False
210	False	False	False	False	False	False	False	False	False	False	False
211	False	False	False	False	False	False	False	False	False	False	False
212	False	False	False	False	False	False	False	False	False	False	False
213	False	False	False	False	False	False	False	False	False	False	False
214	False	False	False	False	False	False	False	False	False	False	False

215 rows × 15 columns

In [7]:

```
data.isnull().sum()
```

Out[7]:

sl_no	0
gender	0
ssc_p	0
ssc_b	0
hsc_p	0
hsc_b	0
hsc_s	0
degree_p	0
degree_t	0
workex	0
etest_p	0
specialisation	0
mba_p	0
status	0
salary	67
dtype: int64	

Replacing null salaries by 0

In [8]:

```
data['salary'].fillna(value=0 , inplace = True )
```

```
In [9]:
```

```
data.isnull()
```

Out[9]:

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p
0	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False
3	False	False False		False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False
210	False	False	False	False	False	False	False	False	False	False	False
211	False	False	False	False	False	False	False	False	False	False	False
212	False	False	False	False	False	False	False	False	False	False	False
213	False	False	False	False	False	False	False	False	False	False	False
214	False	False	False	False	False	False	False	False	False	False	False
215 rows × 15 columns											

In [10]:

```
data.isnull().sum()
```

Out[10]:

```
sl_no
                   0
gender
                   0
ssc_p
                   0
ssc_b
                   0
                   0
hsc_p
                   0
hsc_b
                   0
hsc_s
                   0
degree_p
degree_t
                   0
                   0
workex
                   0
etest_p
specialisation
                   0
                   0
mba_p
                   0
status
                   0
salary
dtype: int64
```

In [11]:

```
data.drop(['sl_no','ssc_b','hsc_b'], axis = 1 , inplace = True)
```

In [12]:

```
print(data.head())
  gender
         ssc_p
                          hsc_s
                                 degree_p
                                            degree_t workex
                                                             etest_p \
                hsc_p
0
      Μ
         67.00 91.00
                       Commerce
                                    58.00
                                            Sci&Tech
                                                         No
                                                                55.0
                78.33
                                    77.48
                                            Sci&Tech
                                                        Yes
                                                                86.5
1
      Μ
         79.33
                        Science
2
      М
         65.00
                68.00
                           Arts
                                    64.00 Comm&Mgmt
                                                         No
                                                                75.0
3
         56.00
                52.00
                        Science
                                    52.00
                                            Sci&Tech
                                                         No
                                                                66.0
4
      M 85.80 73.60 Commerce
                                    73.30
                                           Comm&Mgmt
                                                                96.8
                                                         No
  specialisation mba_p
                            status
                                      salary
0
         Mkt&HR
                 58.80
                            Placed 270000.0
        Mkt&Fin 66.28
                            Placed
                                    200000.0
1
2
        Mkt&Fin 57.80
                            Placed
                                    250000.0
3
         Mkt&HR 59.43
                        Not Placed
                                         0.0
4
        Mkt&Fin 55.50
                            Placed 425000.0
```

Encoding

In [13]:

```
columns= ['gender','hsc_s','degree_t','workex','specialisation','status']
label_encoder = LabelEncoder()
for column in columns:
    data[column]= label_encoder.fit_transform(data[column])
data.head()
```

Out[13]:

	gender	ssc_p	hsc_p	hsc_s	degree_p	degree_t	workex	etest_p	specialisation	mba_p
0	1	67.00	91.00	1	58.00	2	0	55.0	1	58.80
1	1	79.33	78.33	2	77.48	2	1	86.5	0	66.28
2	1	65.00	68.00	0	64.00	0	0	75.0	0	57.80
3	1	56.00	52.00	2	52.00	2	0	66.0	1	59.43
4	1	85.80	73.60	1	73.30	0	0	96.8	0	55.50
4										•

Outlier detection

In [14]:

```
plt.figure(figsize = (15,10))

ax = plt.subplot(221)
plt.boxplot(data['ssc_p'])
ax.set_title('Secondary School Percentage')

ax = plt.subplot(222)
plt.boxplot(data['hsc_p'])
ax.set_title('Higher secondary Percentage')

ax = plt.subplot(223)
plt.boxplot(data['degree_p'])
ax.set_title('UG Percentage')

ax = plt.subplot(224)
plt.boxplot(data['etest_p'])
ax.set_title('Employability Percentage')
```

Out[14]:

Text(0.5, 1.0, 'Employability Percentage')


```
In [15]:
```

```
Q1 = data['hsc_p'].quantile(0.25)
Q3 = data['hsc_p'].quantile(0.75)
IQR = Q3 - Q1
filter = (data['hsc_p'] >= Q1 - 1.5 * IQR) & (data['hsc_p'] <= Q3 + 1.5*IQR)
data_filtered = data.loc[filter]
plt.boxplot(data_filtered['hsc_p'])</pre>
```

Out[15]:

Visualisation

In [16]:

```
plt.figure(figsize = (15,7))
plt.subplot(231)
ax = sns.countplot(x= 'gender' , data = data)
plt.subplot(232)
ax = sns.countplot(x= 'hsc_s' , data = data)
plt.subplot(233)
ax = sns.countplot(x= 'degree_t' , data = data)
plt.subplot(234)
ax = sns.countplot(x= 'specialisation' , data = data)
plt.subplot(235)
ax = sns.countplot(x= 'workex' , data = data)
plt.subplot(236)
ax = sns.countplot(x= 'status' , data = data)
```


Normalization

In [17]:

```
from sklearn.model_selection import train_test_split
x=data.iloc[:,0:10]
y=data.iloc[:,10]
x_train, x_test,y_train,y_test = train_test_split(x,y,test_size=.2,random_state=0)
# data normalization with sklearn
from sklearn.preprocessing import MinMaxScaler
import numpy as np
norm = MinMaxScaler().fit(x_train.iloc[:, np.r_[1,2,4,7,9]])
train_norm=norm.transform(x_train.iloc[:, np.r_[1,2,4,7,9]])
test_norm=norm.transform(x_test.iloc[:, np.r_[1,2,4,7,9]])
```

```
In [18]:
```

```
x training = pd.DataFrame()
x_training['0']=x_train.iloc[:,0]
x_training['1']=pd.DataFrame(train_norm).iloc[:,0]
x_training['2']=pd.DataFrame(train_norm).iloc[:,1]
x_training['3']=x_train.iloc[:,3]
x_training['4']=pd.DataFrame(train_norm).iloc[:,2]
x_training['5']=x_train.iloc[:,5]
x_training['6']=x_train.iloc[:,6]
x_training['7']=pd.DataFrame(train_norm).iloc[:,3]
x_training['8']=x_train.iloc[:,8]
x_training['9']=pd.DataFrame(train_norm).iloc[:,4]
print(x_training)
     0
                         2
                                      4
                                         5
                                            6
                                                       7
                                                         8
                                                                    9
                                               0.128125
16
     1
       0.231620
                 0.620428
                            1
                               0.241463
                                         0
                                            1
                                                            0.553973
135
     0
       0.956625
                  0.378913
                            2
                               0.571463
                                         0
                                            0
                                               0.208333
                                                         1
                                                            0.377811
122
     0 0.457818
                  0.411862
                               0.243902
                                            1
                                               0.270833
                                                            0.043853
                            0
                                         0
                                                         0
22
     0
       0.219258
                  0.280066
                            2
                               0.268293
                                         2
                                            0
                                               0.208333
                                                         1
                                                            0.353448
       0.653004
                  0.356837 1
                               0.195122 0
                                            1
                                               0.125000
                                                         1
                                                            0.378186
80
     0
                       . . . . . .
                  0.593081
                                                             0.228636
67
     1
        0.609629
                           1
                               0.365854
                                         0
                                            0
                                               0.416667
                                                         0
                           1
192
     1
             NaN
                       NaN
                                    NaN
                                         0
                                            1
                                                     NaN
                                                         0
                                                                  NaN
117
     1
       0.306007
                  0.494234 2
                               0.341463
                                         2 0
                                               0.208333
                                                         0
                                                            0.602324
       0.240946
47
                  0.296540 1
                                         0 1
                                               0.187500
                                                            0.507121
                               0.153659
     1
                                                         0
172 1
             NaN
                       NaN 1
                                    NaN
                                         0
                                            0
                                                    NaN
                                                         1
                                                                  NaN
[172 rows x 10 columns]
In [19]:
print(x_training.isnull().sum()* 100 / len(x_training))
0
      0.000000
     20.930233
1
2
     20.930233
```

In [20]:

Even when the percentage of null values is less than 40%, we are not imputing the values

In [21]:

```
print(x_training.index[x_training.isnull().any(1)].tolist())
x_training.dropna(axis=0,inplace=True)
print(x_training)
[197, 173, 179, 187, 194, 210, 188, 200, 206, 208, 191, 182, 205, 212, 196,
213, 201, 183, 178, 199, 184, 214, 186, 176, 189, 180, 177, 175, 207, 202, 1
74, 204, 193, 195, 192, 172]
                                         5
                                                         8
               1
                                            6
16
     1
       0.231620
                  0.620428
                            1
                               0.241463
                                         0
                                            1
                                               0.128125
                                                         0
                                                            0.553973
                                         0
                                                         1
135
    0
       0.956625
                  0.378913
                           2
                               0.571463
                                            0
                                               0.208333
                                                            0.377811
```

0.411862 0 122 0 0.457818 0.243902 0 1 0.270833 0 0.043853 0.268293 0.208333 22 0.219258 0.280066 2 0 0.353448 0 2 1 80 0 0.653004 0.356837 1 0.195122 0 1 0.125000 1 0.378186 9 0.934071 0.263591 1 1.000000 0 0 0.194167 0.693403 1 0 103 1 0.333767 0.425535 2 0.238780 2 1 0.208333 1 0.227886 1 0.609629 0.593081 1 0.365854 0 0 0.416667 0 0.228636 67 117 1 0.306007 0.494234 2 0.341463 2 0 0.208333 0 0.602324 47 0.240946 0.296540 1 0.153659 0 1 0.187500 0 0.507121

[136 rows x 10 columns]

In [22]:

y_training=y_train.drop([197, 173, 179, 187, 194, 210, 188, 200, 206, 208, 191, 182, 205, 2
213, 201, 183, 178, 199, 184, 214, 186, 176, 189, 180, 177, 175, 207, 202, 174, 204, 193, 1
print(y_training)

16 1 135 1 122 1 22 1 80 1 9 0 1 103 1 67 117 1 47 1 Name: status, Length: 136, dtype: int32

In [23]:

```
x testing = pd.DataFrame()
x_testing['0']=x_test.iloc[:,0]
x_testing['1']=pd.DataFrame(test_norm).iloc[:,0]
x_testing['2']=pd.DataFrame(test_norm).iloc[:,1]
x_testing['3']=x_test.iloc[:,3]
x_testing['4']=pd.DataFrame(test_norm).iloc[:,2]
x_testing['5']=x_test.iloc[:,5]
x_testing['6']=x_test.iloc[:,6]
x_testing['7']=pd.DataFrame(test_norm).iloc[:,3]
x_testing['8']=x_test.iloc[:,8]
x_testing['9']=pd.DataFrame(test_norm).iloc[:,4]
print(x_testing)
     0
                1
                           2
                             3
                                        4
                                           5
                                               6
                                                             8
                                                                        9
                                                         7
198
     0
             NaN
                        NaN
                             1
                                      NaN
                                           1
                                               0
                                                       NaN
                                                             1
                                                                     NaN
37
                                 0.243902
                                           2
     0
        0.262633
                   0.428336
                              2
                                               0
                                                  0.416667
                                                             1
                                                                0.074588
89
     0
             NaN
                        NaN
                             2
                                      NaN
                                           2
                                               1
                                                       NaN
                                                             1
                                                                     NaN
168
     0
             NaN
                        NaN
                             1
                                      NaN
                                           0
                                               1
                                                       NaN
                                                             1
                                                                     NaN
171
     1
             NaN
                        NaN
                             1
                                      NaN
                                           0
                                               1
                                                       NaN
                                                             0
                                                                     NaN
75
     0
             NaN
                        NaN
                             1
                                      NaN
                                           0
                                               0
                                                       NaN
                                                             1
                                                                     NaN
     0
                        NaN
                             2
                                      NaN
                                           0
                                              1
                                                                     NaN
96
             NaN
                                                       NaN
                                                             0
137
             NaN
                        NaN
                                      NaN
                                               0
                                                                     NaN
     1
                             1
                                           0
                                                       NaN
                                                             1
        0.392756
                                                  0.500000
                                                                0.591829
5
     1
                   0.411862
                             2
                                 0.670732
                                           2
                                               1
                                                             0
83
     1
             NaN
                        NaN
                             2
                                      NaN
                                           2
                                               1
                                                       NaN
                                                             0
                                                                     NaN
55
     1
             NaN
                        NaN
                             2
                                      NaN
                                               0
                                                       NaN
                                                             1
                                                                     NaN
                                           0
145
     1
             NaN
                        NaN
                             2
                                      NaN
                                           2
                                               0
                                                       NaN
                                                             1
                                                                     NaN
160
     1
             NaN
                        NaN
                             2
                                      NaN
                                           2
                                               1
                                                       NaN
                                                             1
                                                                     NaN
112
     1
             NaN
                        NaN
                             1
                                      NaN
                                           0
                                               0
                                                       NaN
                                                             1
                                                                     NaN
74
     1
             NaN
                        NaN
                             1
                                      NaN
                                           0
                                               0
                                                       NaN
                                                             0
                                                                     NaN
203
     1
             NaN
                        NaN
                             1
                                      NaN
                                           0
                                               0
                                                       NaN
                                                             1
                                                                     NaN
126
     0
             NaN
                        NaN
                             2
                                      NaN
                                           2
                                               1
                                                       NaN
                                                             0
                                                                     NaN
        1.000000
                   0.609555
                                 0.365854
                                           0
                                               0
                                                  0.520833
                                                                0.790105
12
     0
                             2
                                                             1
In [24]:
print(x_testing.isnull().sum()* 100 / len(x_testing))
0
      0.00000
1
     83.72093
2
     83.72093
3
      0.00000
```

```
0 0.00000

1 83.72093

2 83.72093

3 0.00000

4 83.72093

5 0.00000

6 0.00000

7 83.72093

8 0.00000

9 83.72093

dtype: float64
```

```
In [25]:
print(x_testing.index[x_testing.isnull().any(1)].tolist())
x_testing.dropna(axis=0,inplace=True)
print(x_testing)
[198, 89, 168, 171, 75, 96, 137, 83, 55, 145, 160, 112, 74, 203, 126, 153, 1
58, 169, 141, 209, 190, 144, 185, 86, 71, 63, 143, 97, 136, 162, 154, 90, 21
1, 106, 181, 139]
                        2 3
                                        5
                                           6
                                                     7
                                                        8
37
    0
      0.262633
                0.428336
                           2 0.243902
                                        2
                                           0
                                              0.416667
                                                        1
                                                           0.074588
                          2 0.670732
                                        2 1
    1 0.392756 0.411862
5
                                             0.500000
                                                        0
                                                           0.591829
12
    0
      1.000000 0.609555 2 0.365854
                                        0
                                           0 0.520833
                                                        1
                                                           0.790105
       0.175884 0.362438
18
    0
                           1
                             0.365854
                                        0
                                           0 0.750000
                                                        1
                                                           0.422414
    0 0.320755
                0.400824
                           1
                             0.167561
                                        0
                                           1 0.333333
                                                        0
                                                           0.265742
15
                                        2 1 0.125000
7
    1 0.566255 0.428336
                          2 0.536585
                                                        0
                                                           0.344828
    0 0.642160 0.420099 2 0.268293 0 1 0.914792 0
33
                                                           0.667916
In [26]:
y_testing=y_test.drop([198, 89, 168, 171, 75, 96, 137, 83, 55, 145, 160, 112, 74, 203, 126,
print(y_testing)
37
      1
5
      0
12
      0
18
      0
15
      1
7
      1
33
      1
Name: status, dtype: int32
Prediction using Logistic Regression
In [27]:
from sklearn.linear_model import LogisticRegression
LR = LogisticRegression()
LR.fit(x_training, y_training)
LR.score(x_testing, y_testing)
Out[27]:
0.7142857142857143
In [28]:
a=[[1,70,91,0,60,2,0,70,1,58.80]]
LR.predict(a)
C:\Users\SAKSHI NEERAJ\anaconda3\lib\site-packages\sklearn\base.py:450: User
Warning: X does not have valid feature names, but LogisticRegression was fit
ted with feature names
```

array([1])

Out[28]:

warnings.warn(

In [29]:

```
from sklearn.metrics import confusion_matrix
print(LR.predict(x_testing))
print(confusion_matrix(y_testing,LR.predict(x_testing)))
```

```
[1 1 1 0 1 1 1]
[[1 2]
[0 4]]
```