Gymnázium Evolution Jižní Město

Jakýsi úvod do matematické analýzy

Áďula vod Klepáčů

11. června 2024

Předmluva

Matematická analýza je věda o reálných číslech; tuším ovšem, že kolegové analytici mě za ono nedůstojně zjednodušující tvrzení rádi mít příliš nebudou. Snad mohou nicméně souhlasit, že v jejím jádru je pojem *nekonečna*. Nikoli nutně ve smyslu čísla, jež převyšuje všechna ostatní, ale spíše myšlenky, jež zaštiťuje přirozené jevy jako *okamžitá změna*, *blížení* či *kontinuum*.

O zrod matematické analýzy, jež zvláště v zámoří sluje též *kalkulus*, se bez pochyb podělili (nezávisle na sobě) Sir Isaac Newton a Gottfried Wilhelm Leibniz v 17. století po Kristu. Sir Isaac Newton se tou dobou zajímal o dráhy vesmírných těles a učinil dvě zásadní pozorování – zemská tíže působí na objekty zrychlením a zrychlení je *velikost okamžité změny* rychlosti. Potřeboval tedy metodu, jak onu velikost spočítat. Vynález takové metody po přirozeném zobecnění vede ihned na teorii tzv. *limit*, které právě tvoří srdce kalkulu. Pozoruhodné je, že Gottfried Leibniz, nejsa fyzik, dospěl ke stejným výsledkům zpytem geometrických vlastností křivek. V jistém přirozeném smyslu, který se zavazujeme rozkrýt, jsou totiž tečny *limitami* křivek. Ve sledu těchto rozdílů v přístupu obou vědců se v teoretické matematice dodnes, s mírnými úpravami, používá při studiu limit značení Leibnizovo, zatímco ve fyzice a diferenciální geometrii spíše Newtonovo.

Následující text je shrnutím – lingvistickým, vizuálním a didaktickým pozlacením – teorie limit. Hloubka i šíře této teorie ovšem přesáhla původní očekávání a kalkulus se stal součástí nespočtu matematických (samozřejmě i fyzikálních) odvětví bádání. První kapitola je věnována osvěžení nutných pojmů k pochopení textu. Pokračují pojednání o limitách posloupností a reálných číslech, limitách součtů, limitách funkcí a, konečně, derivacích. Tento sled není volen náhodně, nýbrž, kterak bude vidno, znalost předšedších kapitol je nutná k porozumění příchozích.

Jelikož se jedná o text průběžně doplňovaný a upravovaný, autor vyzývá čtenáře, by četli okem kritickým a myslí čistou, poskytovali připomínky a návrhy ke zlepšení.

Obsah

I	Reálné funkce	7
1	Taylorův polynom	ç

Část I Reálné funkce

Kapitola 1

Taylorův polynom

Tato kapitola se nachází v pracovní verzi. Neočekávejte obrázky, naopak očekávejte chyby a podivné formulace.

Polynomy jsou hezké funkce. Dají se donekonečna derivovat – všechny tyto derivace jsou navíc spojité – pomocí Hornerova schématu se snadno počítá jejich hodnota v daném bodě a stejně snadno se hledají jejich kořeny – body, kde jsou nulové. Není proto překvapivé, že se matematici již dlouho snaží aproximovat hodnoty nepolynomiálních funkcí (jako exp, log atd.) hodnotami polynomů. V této kapitole si ujasníme, co vlastně myslíme *aproximací*, jak jednu konkrétní sestrojit a (aspoň povrchově), k čemu je dobrá.

Definice 1.0.1 (Polynomiální funkce)

Řekneme, že funkce $f: \mathbb{R} \to \mathbb{R}$ je polynomiální, když existuje $n \in \mathbb{N}$ a koeficienty $a_i \in \mathbb{R}, i \le n$, takové, že

$$f(x) = \sum_{i=0}^{n} a_i x^i \quad \forall x \in \mathbb{R}.$$

Poznámka 1.0.2

Striktně vzato je rozdíl mezi polynomem a polynomiální funkcí. Polynom je formální výraz tvaru

$$\sum_{i=0}^{n} a_i x^i,$$

kde x je pouze symbol a nepředstavuje žádnou hodnotu. Polynomiální funkce je pak funkce, která vlastně dosazuje do nějakého polynomu za x číslo.

My však těchto rozdílů dbát nebudeme a slovy *polynom* i *polynomiální funkce* budeme mínit objekt z definice 1.0.1.

Co vlastně znamená *aproximovat* funkci? Funkci exp můžeme například na intervalu [0, 1] aproximovat číslem –69, ale intuice čtenářům, doufáme, napovídá, že toto není "dobrá" aproximace. Jistě nemůžeme obecně doufat v aproximaci funkce polynomem na celé její doméně; smysluplným však zdá sebe býti snažit se aproximovat na okolí zvoleného bodu.