

Machine & Deep Learning

Pr Rahhal ERRATTAHI rahhal.errattahi@um6p.ma errattahi.r@ucd.ac.ma

Lecture 04
Kernel Methods

- Feature Maps
- Kernel trick
- Kernelization
- Kernelized SVMs
- Summary

- Feature Maps
- Kernel trick
- Kernelization
- Kernelized SVMs
- Summary

Limitations of linear models

Linear classifiers cannot deal with

- Non-linearly separable data
- Noisy data
- + this formulation only deals with vectorial data

Non-Linear Classifiers

- One solution: creating a net of simple linear classifiers (neurons): a Neural Network (problems: local minima; many parameters; heuristics needed to train; etc)
- Other solution: map data into a richer feature space including nonlinear features, then use a linear classifier

Feature Maps

Map data into a feature space where they are linearly separable

Feature Maps

- Linear models: $\hat{y} = W^T x + w_0 = \sum_{i=1}^P w_i \cdot x_i + w_0$
- When we cannot fit the data well, we can add non-linear transformations of the features
- Feature map (or basis expansion) $\phi: X \to \mathbb{R}^d$ $\hat{y} = W^T x \to \hat{y} = W^T \phi(x)$
 - E.g. Polynomial feature map: all polynomials up to degree d and all products

$$[1, x_1, \dots, x_p] \rightarrow [1, x_1, \dots, x_p, x_1^2, \dots, x_p^2, \dots, x_p^2, x_1x_2, \dots, x_{p-1}x_p]$$

Feature Maps: Ridge regression example

Add all polynomials x^d up to degree 10 and fit again: e.g. use sklearn *PolynomialFeatures*

Feature Maps: Ridge regression example

- You may need MANY dimensions to fit the data
 - Memory and computational cost
 - More weights to learn, more likely overfitting

Feature Maps: Linear SVM example

We can add a new feature by taking the squares of feature1 values

Feature Maps: Linear SVM example

 As a function of the original features, the decision boundary is now a polynomial as well

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_2^2$$

- Feature Maps
- Kernel trick
- Kernelization
- Kernelized SVMs
- Summary

Kernel trick

- Computations in explicit, high-dimensional feature maps are expensive
- Kernel trick is a way to use feature maps $\phi: \mathbb{R}^p \to \mathbb{R}^d$ with linear models but avoid (explicitly) doing the following:
 - represent weight vector $w \in \mathbb{R}^d$
 - compute $\phi(x)$ for any x
- For some feature maps, we can, however, compute distances between points cheaply
 - Without explicitly constructing the high-dimensional space at all

Kernel trick

- Example: quadratic feature map for $x = (x_1, ..., x_p)$ $\phi(x) = (x_1, ..., x_p, x_1^2, ..., x_p^2, \sqrt{2}x_1x_2, ..., \sqrt{2}x_{p-1}x_p)$
- A kernel function exists for this feature map to compute dot products $k_{quad}(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = x_i \cdot x_j + (x_i \cdot x_j)^2$
- Skip computation of $\phi(x_i)$ and $\phi(x_j)$ and compute $k_{quad}(x_i,x_j)$ directly

- Feature Maps
- Kernel trick
- Kernelization
- Kernelized SVMs
- Summary

Kernelization

- Kernel k corresponding to a feature map $\phi: k(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$
- Computes dot product between x_i , x_i in a high-dimensional space \mathcal{H}
 - Kernels are sometimes called *generalized dot products*
 - \mathcal{H} is called the *reproducing kernel Hilbert space* (RKHS)
- The dot product is a measure of the *similarity* between x_i , x_j
 - Hence, a kernel can be seen as a similarity measure for high-dimensional spaces
- If we have a loss function based on dot products x_i , x_j it can be kernelized
 - Simply replace the dot products with $k(x_i, x_j)$

Kernelization

Kernelization: Linear kernel

- Input space is same as output space: $X = \mathcal{H} = \mathbb{R}^d$
- Feature map $\phi(x) = x$
- Kernel: $k_{lenear}(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = x_i \cdot x_j$
- Geometrically, the dot product is the *projection* of x_j on hyperplane defined by x_i
 - Becomes larger if x_i and x_j are in the same 'direction'

Kernelization: Polynomial kernel

- If k_1 , k_2 are kernels, then λ . k_1 ($\lambda \ge 0$), $k_1 + k_2$, and k_1 . k_2 are also kernels
- The **polynomial kernel** (for degree $p \in \mathbb{N}$) reproduces the polynomial feature map

$$k_{poly}(x_i, x_j) = (\gamma(x_i, x_j) + c_0)^{p}$$

- γ is a scaling hyperparameter (default $\frac{1}{p}$)
- c_0 is a hyperparameter (default 1) to trade off influence of higher-order terms

Kernelization: RBF (Gaussian) kernel

• The Radial Basis Function (RBF) feature map is related to the Taylor series expansion of e^x

$$\Phi(x) = e^{-x^2/2\gamma^2} \Big[1, \sqrt{rac{1}{1!\gamma^2}} x, \sqrt{rac{1}{2!\gamma^4}} x^2, \sqrt{rac{1}{3!\gamma^6}} x^3, \dots \Big]^T$$

• RBF (or Gaussian) kernel with kernel width $\gamma \geq 0$:

$$k_{RBF}(x_i, x_j) = \exp(-\gamma \left| \left| x_i - x_j \right| \right|^2)$$

- Feature Maps
- Kernel trick
- Kernelization
- Kernelized SVMs
- Summary

 You can use SVMs with any kernel to learn non-linear decision boundaries

Tuning RBF SVMs:

- gamma (kernel width)
 - high values cause narrow Gaussians, more support vectors, overfitting
 - low values cause wide Gaussians, underfitting
- C (cost of margin violations)
 - high values punish margin violations, cause narrow margins, overfitting
 - low values cause wider margins, more support vectors, underfitting

- C and gamma always need to be tuned
 - Interacting regularizers. Find a good C, then finetune gamma
- SVMs expect all features to be approximately on the same scale
 - Data needs to be scaled beforehand
- Allow to learn complex decision boundaries, even with few features
 - Work well on both low- and high dimensional data
 - Especially good at small, high-dimensional data
- Hard to inspect, although support vectors can be inspected
- In sklearn, you can use SVC for classification with a range of kernels
 - SVR for regression

- Feature Maps
- Kernel trick
- Kernelization
- Kernelized SVMs
- Summary

Summary

- Feature maps $\phi(x)$ transform features to create a higher-dimensional space
 - Allows learning non-linear functions or boundaries, but very expensive/slow
- For some $\phi(x)$, we can compute dot products without constructing this space
 - Kernel trick: $k(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$
 - Kernel k (generalized dot product) is a measure of similarity between x_i and x_i
- There are many such kernels
 - Polynomial kernel
 - RBF (Gaussian) kernel
 - A kernel matrix can be precomputed using any similarity measure (e.g. for text, graphs,...)
- Any loss function where inputs appear only as dot products can be kernelized
 - E.g. Linear SVMs: simply replace the dot product with a kernel of choice

Lab 6 - Kernel Methods