INSTRUCTION MANUAL

STEFAN'S CONSTANT KIT

Mobile: 9810681132
E-mail: mittalenterprises@bol.net.in

STEFAN'S CONSTANT KIT

INTRODUCTION

According to Stefan-Boltzmann's law the heat energy E_1 radiated per unit area per second by a body at T° Kelvin surrounded by another body at lower temperature T_0 ° Kelvin is directly proportional to the difference in fourth power of the absolute temperature i.e.

$$E_{1} \propto (T^{4} - T_{0}^{4})$$
or
$$E_{1} = \sigma \cdot (T^{4} - T_{0}^{4})$$

where σ is called Stefan's Constant. Its standard value is 5.67×10^{-8} W m⁻² K⁻⁴. If the area of surface is A, then the head energy radiated from the surface becomes

$$E_1 = \sigma \cdot A \cdot (T^4 - T_o^4) \qquad \dots (1)$$

THEORY

In this kit, the electric energy is used to heat up the two copper circular discs to a particular steady temperature T° K. The steady temperature is measured by thermometers placed in contact with the copper discs. As the steady temperature of the discs is larger than surrounding temperature T_o °K of the atmosphere, the disc will radiate heat energy which can be calculated by Stefans Boltzmann's Law or eqn. (1).

As the temperature of the discs reaches steady state, heat energy, E_1 , radiated by discs per second will be equal to the electrical energy, E_2 , consumed by heating element per second and is given by

$$E_2 = V \cdot I \qquad \dots (2)$$

where V = Potential difference across the heating element and

I = Current flowing in the heating element

From equations (1) & (2)

$$V \cdot I = \sigma \cdot A \cdot (T^4 - T_o^4)$$
or
$$\sigma = \frac{V \cdot I}{A \cdot (T^4 - T_o^4)} \qquad ...(3)$$

V and I can be measured with the help of Voltmeter and Ammeter installed in the kit. The steady temperature (T °K) of copper discs can be read from the thermometers and the area A of the disc can be calculated by measuring the radius of the disc.

By substituting the values of V, I, A, T and T_o in equation (3) one can calculate the Stefan's constant.

The features of the kit are:

- i) There is practically no loss of heat energy from heating element by conduction, convection or radiation. Therefore, entire heat energy of the heating element is transferred to discs.
- ii) As the efficiency of the heating element is nearly equal to one, almost entire electrical energy supplied to the heater will be converted into heat energy.

PROCEDURE

- i) Note down the surrounding room temperature (T °K) with the help of the thermometers.
- ii) Put ON the switch on the kit.
- iii) Place the discs horizontally on the table.
- iv) Connect the heating element of discs to the Kit terminals marked "H".
- v) Adjust with the help of potentiometer, the potential difference (V) and current (I) for heating element for proper reading in the meters.
- vi) Place the thermometers vertically in the holes provided in the discs.
- vii) Observe the readings of the thermometers till the readings become steady. Take the average of the readings.

- viii) The several sets of observations are taken by varying the potential difference (V) & current (I) with the help of potentiometer.
- ix) The area of the plate can be calculated by measuring the radius of the disc.

SAMPLE OBSERVATIONS

The area of the copper plates = 306.8056 sq. cm.

Least Count of Thermometer = 1 °C.

S.No.	Voltage	Current	Room Temp. T °K	Mean Temp. of Thermometers T °K
1	20	0.25	300	328
2	30	0.35	300	395
3	40	0.47	300	376
4	50	0.58	300	404

SAMPLE CALCULATIONS

$$\sigma = \frac{V \cdot I}{A \cdot (T^4 - T_o^4)} \text{ W cm}^{-2} \text{ K}^{-4}$$

$$\sigma = \frac{V \cdot I \times 10^7}{A \cdot (T^4 - T_o^4)} \text{ ergs cm}^{-2} \text{ sec}^{-1} \text{ K}^{-4}$$

Thus substituting values from table:

1)
$$\sigma = \frac{20 \times 0.25 \times 10^{7}}{306.8056 \cdot (328^{4} - 300^{4})}$$

$$= \frac{20 \times 0.25 \times 10^{7}}{306.8056 \times 3.482 \times 10^{9}}$$

$$= 4.679 \times 10^{-5} \text{ erg cm}^{-2} \text{ sec}^{-1} \text{ K}^{-4}$$
2)
$$\sigma = \frac{30 \times 0.35 \times 10^{7}}{306.8056 \cdot (345^{4} - 300^{4})}$$

$$= \frac{20 \times 0.35 \times 10^{7}}{306.8056 \times 6.072 \times 10^{9}}$$

$$= 5.637 \times 10^{-5} \text{ erg cm}^{-2} \text{ sec}^{-1} \text{ K}^{-4}$$
3)
$$\sigma = \frac{40 \times 0.47 \times 10^{7}}{306.8056 \times (376^{4} - 300^{4})}$$

$$= \frac{40 \times 0.47 \times 10^{7}}{306.8056 \times 11.892 \times 10^{9}}$$

$$= 5.141 \times 10^{-5} \text{ erg cm}^{-2} \text{ sec}^{-1} \text{ K}^{-4}$$
4)
$$\sigma = \frac{50 \times 0.58 \times 10^{7}}{306.8056 \cdot (404^{4} - 300^{4})}$$

$$= \frac{50 \times 0.58 \times 10^{7}}{306.8056 \times 11.802 \times 10^{9}}$$

$$= 5.223 \times 10^{-5} \text{ erg cm}^{-2} \text{ sec}^{-1} \text{ K}^{-4}$$
Average
$$\sigma = 5.17 \times 10^{-5} \text{ erg cm}^{-2} \text{ sec}^{-1} \text{ K}^{-4}$$

Note: All above measurements and readings varies from instrument to instrument due to change in dimensions.

- viii) The several sets of observations are taken by varying the potential difference (V) & current (I) with the help of potentiometer.
- ix) The area of the plate can be calculated by measuring the radius of the disc.

SAMPLE OBSERVATIONS

The area of the copper plates = 306.8056 sq. cm.

Least Count of Thermometer = 1 °C.

S.No.	Voltage	Current	Room Temp. T °K	Mean Temp. of Thermometers
1	20	0.25	300	328
2	30	0.35	300	395
3	40	0.47	300	376
4	50	0.58	300	404

RESULT

The value of Stefan's constant, with the help of the experiment is

$$\sigma = 5.17 \times 10^{-5} \text{ ergs cm}^{-2} \text{ sec}^{-1} \text{ K}^{-4}$$

Standard Value

$$=5.67 \times 10^{-5} \text{ ergs cm}^{-2} \text{ sec}^{-1} \text{ K}^{-4}$$

Percentage error = 8.8%

PRECAUTIONS

- The readings of thermometers are taken only as stated above. 1.
- All the fittings should be airtight. 2.

PARTS LIST

- 1. MAIN UNIT
- 2. HEATER PLATES
- 3. THERMOMETER (3 nos)
- CONNECTING WIRES 4.
- INSTRUCTION MANUAL 5.