RNA – Redes Neurais Artificiais

Prof. Celso Camilo

Modelos de Neurônios Artificiais

- O Modelo de McCulloch & Pitts (1943)
 - O Cérebro como um Sistema Computacional
 - 5 Suposições Básicas
 - A atividade de um neurônio é um processo tudo ou nada.
 - Um certo número fixo (>1) de entradas devem ser excitadas dentro de um período de adição latente para excitar um neurônio.
 - O único atraso significativo é o atraso sináptico.
 - A atividade de qualquer sinapse inibitória previne absolutamente a excitação do neurônio.
 - A estrutura das interconexões não muda com o tempo.

- O PERCEPTRON : Frank Rosenblatt (1958)
 - "A conectividade desenvolvida nas redes biológicas contém um grande número aleatório de elementos".
 - No início, o Perceptron não é capaz de distinguir padrões e portanto ele é genérico.
 - Pode ser treinado.
 - Com o tempo foi-se notando que a capacidade de separabilidade era dependente de "certas condições de contorno" dos padrões de entrada.

O PERCEPTRON : Frank Rosenblatt (1958)

O PERCEPTRON : Frank Rosenblatt (1958)

EQUAÇÃO FUNDAMENTAL DO PERCEPTRON

w1.x1+w2.x2=θ ← EQUAÇÃO DE UMA RETA

O PERCEPTRON : Exemplo de uso

O PERCEPTRON : Exemplo de uso

ARQUITETURAS DE REDES NEURAIS ARTIFICIAIS

- 3 tipos básicos de arquiteturas de RNAs:
 - Feedforward de uma única camada
 - Feedforward de múltiplas camadas e
 - Redes recorrentes.

Rede *feedforward* com uma única camada de processamento

- Os neurônios da camada de entrada correspondem aos neurônios sensoriais que possibilitam a entrada de sinais na rede (não fazem processamento).
- Os neurônios da camada de saída fazem processamento.

- neurônio sensorial
- neurônio de processamento

Rede feedforward de Múltiplas Camadas

 Essas redes tem uma ou mais camadas intermediárias ou escondidas.

Rede feedforward de Múltiplas Camadas (cont.)

Seja W^k a matriz de pesos da camada k.

 w_{ij}^{k} corresponde ao peso da conexão do neurônio pós-sináptico i ao neurônio présináptico j na camada k.

REDES RECORRENTES (feedback)

Essas redes possuem pelo menos uma interconexão realimentando a saída de neurônios para outros neurônios da rede (conexão cíclica).

Exemplo: Rede de Hopfield

FASES DE UMA REDE NEURAL ARTIFICIAL

- Uma rede neural artificial pode se encontrar em duas fases:
- a primeira fase é a de aprendizagem, ou treinamento, em que a rede se encontra no processo de aprendizado, ajustando os parâmetros livres, para poder posteriormente desempenhar a função destinada; e
- a segunda fase é a de aplicação propriamente dita, na função para a qual ela foi destinada, como de classificação de padrões de vozes, imagens, etc.

Aprendizagem

O processo de aprendizagem implica na seguinte sequência de eventos:

- 1) a rede neural é estimulada por um ambiente
- 2) a rede neural sofre modificações nos seus parâmetros livres como resultado desta estimulação
- 3) a rede neural responde de uma maneira nova ao ambiente, devido as modificações ocorridas na sua estrutura interna

Modelos de Aprendizagem

Modelos de Aprendizagem

Os principais modelos (paradigmas) de aprendizagem são:

- 1) supervisionado;
- 2) não-supervisionado; e
- 3) com reforço.

SUPERVISIONADO

- Também conhecida com aprendizagem com professor, consiste em que o professor tenha o conhecimento do ambiente, e fornece o conjunto de exemplos de entrada-resposta desejada.
- Com esse conjunto, o treinamento é feito usando a regra de aprendizagem por correção de erro.

NÃO-SUPERVISIONADO

- Neste caso nao há um professor para supervisionar o processo de aprendizagem. Isso significa que não há exemplos rotulados da função a ser aprendida pela rede.
- Nesse modelo, também conhecido como auto-organizado, são dadas condições para realizar uma medida da representação que a rede deve aprender, e os parâmetros livres da rede são otimizados em relação a essa medida.
- Para a realização da aprendizagem não-supervisionada pode-se utilizar a regra de aprendizagem competitiva.

APRENDIZAGEM POR REFORÇO

- Pode ser visto como caso particular de aprendizagem supervisionada.
- A principal diferença entre o aprendizado supervisionado e o aprendizado por reforço é a medida de desempenho usada em cada um deles.
- No aprendizado supervisionado, a medida de desempenho é baseada no conjunto de respostas desejadas usando um critério de erro conhecido, enquanto que no aprendizado por reforço a única informação fornecida à rede é se uma determinada saída está correta ou não.
- A idéia básica tem origem em estudos experimentais sobre aprendizado dos animais. Quanto maior a satisfação obtida com uma certa experiência em um animal, maiores as chances dele aprender.

Algoritmos de Treinamento

Regra Hebb

 Idealizada por Hebb, a idéia básica é que se duas unidades são ativadas simultaneamente, suas interconexões tendem a se fortalecer. Se i recebe o sinal de saída de j, o peso Wij é modificado de acordo com :

$$\Delta W_{ij} = \lambda a_i a_j$$

 onde λ (lambda) é uma constante de proporcionalidade representando a taxa de aprendizado e ai e aj são ativações (ou saídas) das unidades i e j respectivamente. Alguns autores representam alternativamente a matriz Wij por Wji.

Regra Delta

 É uma variante da Regra de Hebb, introduzida por Widrow-Hoff. A diferença quanto a de Hebb é que possui uma saída desejada d_i.
 Assim, o peso será proporcional à saída.

Taxa Aprendizagem
$$w_{IJ} = w_{IJ} + \alpha (d_I - y_I) x_J$$

$$b_I = b_I + \alpha (d_I - y_I)$$

Perceptron - Treinamento

Se o perceptron dispara quando não deve disparar, diminua de cada peso (Wi) um número proporcional ao sinal de entrada;

Se o perceptron deixa de disparar quando deveria, aumente um número semelhante em cada Wi.

Perceptron – Exemplo (I)

Imaginemos um problema de classificação:

	COMPOSITO R	CIENTISTA
BACH	X	
BEETHOVEN	X	
EINSTEIN		X
KEPLER		X

Perceptron – Exemplo (II)

Primeiro, codificamos as informações em base binária:

COMPOSITOR	0
CIENTISTA	1

	N1	N2	SAÍDA
BACH	0	0	0
BEETHOVE N	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (III)

Os pesos começam todos com zero (Wb, W1, W2 = 0). O sinal do bias será sempre positivo (1).

	N1	N2	SAÍDA
BACH	0	0	0
BEETHOVE N	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (IV)

Escolhemos um valor para testar a rede.

A somatória (Σ) será: (Bias*Wb)+(N1*W1)+(N2*W2)

	N1	N2	SAÍDA	S
BACH	0	0	0	NA.4
BEETHOVE N	0	1	0	N1 W1:
EINSTEIN	1	0	1	
KEPLER	1	1	1	N2

Perceptron – Exemplo (V)

Para Kepler, teremos: (1 * 0) + (1 * 0) + (1 * 0) = 0. Ou seja, a saída foi 0, e a saída esperada era 1...:-/

	N1	N2	SAÍDA
BACH	0	0	0
BEETHOVE N	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (VI)

Temos que ajustar os pesos (W), usando a fórmula:

Wnovo = Wanterior +

(ValorErro * TaxaAprendizagem * SinalEntrada)

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (VII)

Para Wb: Wb novo = 0 + (1 * 1 * 1) = 1

Para W1: W1 novo = 0 + (1*1*1) = 1

Para W2: W2 novo = 0 + (1*1*1) = 1

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (VIII)

Então, escolhemos outro valor e repetimos o processo:

(Bias*Wb)+(N1*W1)+(N2*W2) =>
$$(4*4) + (0*4) + (4*4) = 2 (22.5 > 0) \text{ since}$$

$$(1*1) + (0*1) + (1*1) = 2$$
 (se $\Sigma > 0$, sinal saída = 1)

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (IX)

Novamente o sinal de saída esperado (0) não foi alcançado. Ou seja, é preciso corrigir os pesos.

ValorErrro = SinalEsperado – SinalGerado (0 -1 = -1)

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (X)

Para Wb: Wb novo = 1 + (-1 * 1 * 1) = 0

Para W1: W1 novo = 1 + (-1*0*1) = 1

Para W2: W2 novo = 1 + (-1*1*1) = 0

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (XI)

Seguimos com novo valor:

$$(Bias*Wb)+(N1*W1)+(N2*W2) =>$$

$$(1*0) + (1*1) + (0*0) = 1$$
 (se $\Sigma > 0$, sinal saída = 1)

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (XII)

Desta vez o sinal gerado (1) era o sinal esperado. Neste caso, não precisamos ajustar os pesos.

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (XII)

Testando para Bach, o sinal gerado também é correto:

(Bias*Wb)+(N1*W1)+(N2*W2) =>
$$(1*0) + (0*1) + (0*0) = 0$$

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptron – Exemplo (XIII)

Os pesos já funcionaram para 3 entradas, testando Kepler novamente:

(1*0) + (1*1) + (1*0) = 1 → Funciona! A rede aprendeu!

	N1	N2	SAÍD A
BACH	0	0	0
BEETHOV EN	0	1	0
EINSTEIN	1	0	1
KEPLER	1	1	1

Perceptrons – Prática 1

- Implemente o experimento anterior.

Questões:

- 1.O programa de treinamento funciona sempre ou depende da seqüência de valores informados durante o treinamento?
- 2.Qual o número máximo de interações para corrigir os pesos?

Perceptrons – Prática 2 (I)

Considere a seguinte base de treinamento, sobre o diagnóstico de Gripe x Resfriado:

	VÍRUS	BACTÉRIA	DOR CABEÇA	CORISA
GRIPE	1	0	1	1
RESFRIADO	0	1	0	1
GRIPE	1	0	1	0
RESFRIADO	0	1	1	1
GRIPE	0	0	1	1
RESFRIADO	0	0	0	1

Perceptrons – Prática 2 (II)

- Quantas iterações são necessárias para encontrar os pesos corretos da base de treinamento?
- 2) Qual é o resultado para outros valores?

	VÍRUS	BACTÉRIA	DOR CABEÇA	CORISA
?	1	1	1	1
?	1	0	0	0
?	0	1	0	0
?	0	1	1	1
?	1	0	0	1
?	0	0	0	0

3) O programa parece ter alguma inteligência? Como ele se comporta?

Perceptrons - Limitação

- Minsky e Papert: e se não for linear?
 - -XOR

X1	X2	X1 XOR X2
0	0	0
0	1	1
1	0	1
1	1	0

Perceptrons – Prática 3

Com o mesmo Perceptron da prática 1, teste a tabela XOR:

1)O programa consegue achar uma solução? Por quê?

Perceptrons Multicamadas(I)

 Resolvem problemas não lineares, mas introduz um sério problema de aprendizagem;

Perceptrons Multicamadas(II)

Uma solução para o problema XOR:

Perceptrons – Prática 4 (I)

VALENDO 2 PONTOS DA PARCIAL 2:

Crie seu perceptron, seguindo os seguintes passos:

 Crie uma base de conhecimento para treinamento. Sua base deve ter pelo menos 5 características, 4 resultados possíveis e 12 exemplos:

	Carac 1	Carac 2	Carac 3	Carac 4	Carac 5
RESULTADO A	1	1	1	1	1
RESULTADO B	1	0	0	0	0
RESULTADO C	0	1	0	0	1
RESULTADO D	0	1	1	1	0
RESULTADO B	1	0	0	1	1
Até a linha 12					

Perceptrons – Prática 4 (II)

- A base de conhecimento criada deve ser baseada em um problema concreto, ou seja, as características e resultados devem ter significado. Dica: características -> sintomas do problema, resultados -> soluções do problema;
- Implemente seu Perceptron em C++ (usando o programa da prática 2), de forma a alimentar a matriz de leitura com os exemplos da base de treinamento;
- 4. Verifique e responda:
 - a) Sua RNA conseguiu aprender os 12 elementos do treinamento? Eles são linearmente separáveis?;
 - b) Crie mais quatro exemplos e teste no seu programa. Quais eram o resultados esperados e o que a rede respondeu?
 - c) A RNA criada teria alguma utilidade prática? Por que?

Referências

- http://www.intelliwise.com/reports/info2001.htm
- http://www.ucs.louisiana.edu/%7Eisb9112/dept/phil341/wisai/WhatisAl.html
- http://www.cs.bham.ac.uk/%7Eaxs/courses/ai.html
- http://pt.wikipedia.org/wiki/Intelig%C3%AAncia_artificial
- http://pt.wikiquote.org/wiki/Intelig%C3%AAncia
- http://www.ucb.br/prg/professores/rogerio/FIA/fundia.html
- http://to-campos.planetaclix.pt/neural/hop.html
- http://codebetter.com/photos/greg_young/images/169874/320x394.aspx
- http://www.dcc.fc.up.pt/~jpp/cia/node54.html
- http://www.livinginternet.com/i/ii_ai.htm
- http://www.conpet.gov.br/ed/
- http://www.inbot.com.br/sete/
- http://alicebot.org
- http://www.cin.ufpe.br/~in1006/2003/AIParadigms.ppt
- http://www.stdwizard.org/
- http://expertise2go.com/webesie/
- http://www.din.uem.br/ia/neurais/>
- http://www.icmc.usp.br/~andre/research/neural/index.htm
- http://www.inf.unisinos.br/~osorio/neural.html
- Inteligência Artificial Elaine Rich e Kevin Knight 2ª edição

Funções de Transferência

$$F(X) = Sgn(X)$$

If
$$X \ge 0$$

Then
$$Y = 1$$

Else
$$Y = 0$$
 (ou -1)

ou

Then
$$Y = 1$$

Else
$$Y = 0$$
 (ou -1)

$$F(X) = Linear(X, Min, Max)$$

Then
$$Y = 0$$

If
$$X \ge Min$$
 and $X = Max$

Then
$$Y = X$$

Then
$$Y = 1$$

Obs.:
$$Y = X$$
 ou $Y = Normaliza(X)$

$$F(X) = Sigmoid(X)$$

Assimétrica

$$Y = \frac{1}{1 + Exp^{(-x)}}$$

Simétrica

$$Y = TanHip(X)$$