Assignment 4

Web Science CS595 Name: Amara Naas

Answer to question 1

In the Python program $(q1_2.py)^1$ will extract all of the links from a selected 100^2 pages to other pages. For each URI it will create a text file of all of the outbound links from that page to other URIs including the main URI and save it in the files directory¹.

Answer to question 2

The same Python program (q1_2.py)¹ will create a single GraphViz "dot" file called gefiDoc.gv¹ of the resulting graph.

Answer to question 3

In this question I used Gephi and gefiDoc.gv¹ to visualize the graph as shown in figure 1. Also I find out that the most in-link was twitter.com as shown in figure 2 and the must out-link was finance.detik.com as shown in figure 3.

From this figures we can observe that many links have a very high out degree and very few have high in degree.

Also figure 4 shows graph of the HITS, figure 5 shows PageRank, figure 6 shows avg degree, figure 7 shows network diameter, and figure 8 shows connected components.

¹File uploaded to github

²Saved in res.txt

Figure 1: Gephi Graph of "dot" file

Figure 2: twitter.com in-degree

(a) No link to other finance.detik.com

(b) some links to other finance. detik.com

 $Figure \ 3: \ finance.detik.com \ out-degree$

Authority Distribution

(a) Authorities Distribution

Hubs Distribution

(b) Hubs Distribution

Figure 4: HITS

Figure 5: PageRank

(a) Degree Distribution

In-Degree Distribution

(b) In-degree Distribution

Out-Degree Distribution

(c) Out-degree Distribution

Figure 6: HITS

(a) Betweenness Centrality Distribution

Closeness Centrality Distribution

(b) Closeness Centrality Distribution

Eccentricity Distribution

(c) Eccentricity Distribution

Figure 7: Network Diameter

Figure 8: Connected Components