Université de Ngaoundéré Faculté des Sciences Département de Mathématiques-Informatique Année academique 2019/2020 UE Algèbre linéaire Code: MAT 112 Dr Wankap Nono Parcours MA Durée: 2h

Rattrapage Contrôle continu semestre 2, 2019/2020

Exercice 1

Démontrer que l'ensemble $F = \{ \begin{pmatrix} a & b \\ c & d+b \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a+b+2c+-3d=0 \}$ est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ dont on précisera une base et la dimension.

Exercice 2

Soit g une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 , telle que sa représentation matricielle (dans la base canonique) soit donnée par la matrice suivante : $A = \begin{pmatrix} 3 & 2 & 6 \\ 2 & 1 & 4 \\ -2 & 0 & -3 \end{pmatrix}$

- 1. Calculer le polynome caractéristique de A.
- 2. Déterminer les valeurs propres de A.
- 3. Déterminer les sous espaces propres de g.
- 4. En déduire que g est-elle diagonalisable?
- 5. Dans la suite on cherche à calculer A^n pour $n \in \mathbb{N}$.
 - (a) Soit $P(X) = (X+1)(X-1)^2$. Montrer que P(A) = 0.
 - (b) Pour tout $n \in \mathbb{N}$, on effectue la division Euclidienne de X^n par P(X). Le reste étant un polynome de degré 2, il existe des coefficients réels a_n , b_n , c_n et un polynome Q(X) tels que

$$X^n = P(X)Q(X) + a_nX^2 + b_nX + c_n$$

Montre qu'on a le système d'équations $\begin{cases} a_n - b_n + c_n = (-1)^n \\ a_n + b_n + c_n = 1 \\ 2a_n + b_n = n \end{cases}$

- (c) En déduire les coefficient a_n , b_n et c_n .
- (d) En déduire une expression de A^n en fonction de n.

Exercice 3

Soient $\mathbb{R}_2[X]$ l'espace vectoriel réel des polynôme de degré inférieur ou égal à 2 et $g: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ une application définie par

$$g(P)(X) = P(X) + (X - 1)P'(X) + (X^{2} - X + 1)P''(X)$$

- 1. Montrer que g est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer ker(g) et Im(g).
- 3. On considère les polynômes q_1 , q_2 et q_3 définis par $q_1(X)=1$, $q_2(X)=1-X$ et $q_3=(1-X)^2$.
 - (a) Montrer que $\mathcal{B} = \{q_1, q_2, q_3\}$ est une base de $\mathbb{R}_2[X]$.
 - (b) Ecrire la matrice A de g dans la base \mathcal{B}
- 4. Ecrire la matrice de passage P de la base canonique $\mathcal{B}_c = \{1, X, X^2\}$ à la base \mathcal{B} .
- 5. En déduire la matrice B de g dans la base canonique de $\mathbb{R}_2[X]$.