EAE6029 - Econometria I Lista 2

Prof: Pedro Forquesato

Faculdade de Economia, Administração e Contabilidade Universidade de São Paulo

2023/1

Exercise list 2

Analytical problems

- 1. Let's analyze the following potential outcomes model: $h(0,u)=\alpha+\gamma_0W+u$ and $h(1,u)=\alpha+(1-W)\gamma^L+W\gamma^H+u$, where W is a dummy variable (a "type", let's say sex). What is the ATE? And ATT? And if W=1, what are the ATT and ATE? How would you identify γ^H and γ^L using a linear projection? Now consider the linear projection of Y=h(T,W;u) on T and W: $Y=\beta_0+\beta_1T+\beta_2W+e$. What does β_1 identify?
- 2. Consider a single variable model $Y=\beta X+e$ and $X\in\mathbb{R}$, and consider an IV estimator where $Z\in\{0,1\}$. Find a simple expression for the estimator in this context.
- 3. In the usual structural model $Y_1=Z_1'\beta_1+Y_2'\beta_2+e$ and $Y_2=Z'\Gamma+u$, Γ is $l\times k$, $l\geq k$, it is stated that a condition for identification is $\mathrm{rank}(\Gamma)=k$. Show that this is true. Correto: Gamma é 1/2 x 1/2 x 1/2 x 1/2 Correto: Gamma é 1/2 x 1/2 x 1/2 Correto: Gamma é 1/2 x 1/2 X 1/2 Correto: Gamma é 1/2 Cor
- 4. Take the linear model $Y=X'\beta+e$, with $\mathbb{E}[e|X]=0$, with $X\in\mathbb{R}$. Is $Z=(X,X^2)$ a valid instrument for β ? How does this differ from OLS? Rank(Gamma Barra) = k = k_1 + l_2
- 5. Consider a supply and demand as below, where Y is income and W wages. Discuss the conditions for its identification:

[S:]
$$Q = \alpha_S + \beta_S P + \gamma_1 Y + e_S$$

[D:] $Q = \alpha_D + \beta_D P + \gamma_2 W + e_D$

- 6. In the standard IV structural model $Y=X'\beta+e$ and $X=Z'\Gamma+u$, consider the usual control function $e=u'\eta+v$. Show (algebraically) that $\mathbb{E}[Xv]=0$.
- 7. Consider a IV structural model with a real-valued endogenous variable X, where $Y=\alpha+\beta_1X+\beta_2X^2+e$ and $X=\gamma_0+\gamma_1Z+u$, with $\mathbb{E}[e|Z]=0$. Is X^2 endogenous? If

we estimate an IV model with instruments $(1, Z, Z^2)$, under what conditions is the model identified?

- 8. In the standard structural model $Y_1=Z_1'\beta_1+Y_2'\beta_2+e$ and $Y_2=Z'\Gamma+u$, show that we can test the null $H_0:\beta_2=0$ only by the reduced form equation $Y_1=Z_1'\lambda_1+Z_2'\lambda_2+v$.
- 9. Consider two i.i.d. samples, one for men and other for women, and the regression $Y_l=X_l'\beta_l+e_l$, where l is men or women. Think X_l are endogenous, and we have valid instruments Z_l , l=1,2. Develop a statistic for the test $H_0:\beta_1=\beta_2$ and explain briefly how you would estimate it.

Computational/interpretative problems

For this list, we will use the AK1991.dta file provided by the textbook author. You should **provide the code** and the results *together*.

```
library(haven)
library(kableExtra)
library(knitr)

# setwd() <- this might help

# you can download the file directly in R, or just do it manually
# url <- "https://www.ssc.wisc.edu/~bhansen/econometrics/Econometrics%20Data.zip"
# download.file(url, "./econ_data.zip")
# unzip("./econ_data.zip")

ak1991 <- read_dta("./AK1991.dta")
knitr::kable(head(ak1991, 10))</pre>
```

ageq	edu	logwage	married	state	qob	black	smsa	yob	region
47.00	12	6.245846	1	1	1	1	1	1933	0
46.25	12	5.847161	1	48	4	1	1	1933	0
50.00	12	6.645516	1	2	1	1	1	1930	0
47.00	16	6.706133	1	22	1	1	1	1933	0
42.25	14	6.357876	1	42	4	1	1	1937	0
44.25	12	5.441835	1	5	4	1	1	1935	0
42.00	12	6.390660	1	42	1	1	1	1938	0

ageq	edu	logwage	married	state	qob	black	smsa	yob	region
50.00	12	4.607667	1	48	1	1	1	1930	0
40.50	12	6.553961	1	5	3	1	1	1939	0
43.75	7	7.017041	0	2	2	1	1	1936	0

Here we will take a look at Angrist and Krueger (1991) analysis of returns to education. As previously mentioned, there is a long tradition in economics (and econometrics) trying to identify the **Mincerian equation** of returns to schooling.

AK try to employ an instrumental variables strategy, instrumenting for education by time of birth, since compulsory schooling laws define a minimum age everyone must stay at school (usually 16 or 17).

- 1. Restrict the sample only to black. Run an OLS regression of log wages on education, urban and married, as well as dummies for year-of-birth, state-of-birth and region-of-residence (these dummies do not need to be reported).
- 2. Are the OLS estimates trust-worthy? Explain in detail, using examples. If useful, draw a DAG.
- 3. Now apply the 2SLS estimator, using as instruments quarter-of-birth times year-of-birth (30 instruments). Report the first stage, reduced form and 2SLS estimates.
- 4. Compare the results of 1 and 2. If we believe in the IV regression, what does it tell us about the OLS bias? Be detailed. If useful, draw a DAG.
- 5. Do an endogeneity test and an overidentification test. Discuss the results and interpret them precisely.
- 6. Estimate now the IV regression using the two-stage procedure discussed in class. Are the estimates the same? What about the estimated standard deviation of the estimator?
- 7. Now estimate the structural model using the control function approach. Again compare the results.
- 8. Are the instruments strong or weak? Be detailed and precise.
- 9. A common suggestion in these cases is to lower the number of instruments. Try using only quarter-of-birth (3 instruments). Which would you use in your own research? Be precise why.
- 10. In class we discussed how instruments identify the local average treatment effect (LATE). How does this affect the interpretation of the results? Explain in detail.
- 11. Angrist & Krueger (1991) control for region-of-residence and urban. Is there an argument why we might want to avoid these controls? What do you think?