Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG – LFA 2021/1 – H. Longo

(I - I de s

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (43 - 67 de 932)

Conjuntos regulares

▶ Um conjunto regular sobre um alfabeto Σ é definido como:

Base: \emptyset , $\{\varepsilon\}$ e $\{a\}$, para todo $a \in \Sigma$, são conjuntos regulares sobre Σ . Recursão: se X e Y são conjuntos regulares sobre Σ , então $X \cup Y$, XY e X^*

também são conjuntos regulares sobre Σ .

Fecho: X é um conjunto regular sobre Σ se pode ser obtido, a partir dos conjuntos regulares básicos, com a aplicação da recursão um número finito de vezes.

Linguagens e conjuntos regulares

- ▶ Todo autômato finito, com alfabeto Σ, aceita uma linguagem sobre Σ.
- A família de linguagens aceitas por autômatos consiste de conjuntos regulares sobre Σ:
 - 1. Todo conjunto regular é aceito por um NFA- ε .
 - 2. Toda linguagem aceita por um autômato é um conjunto regular.

NFA-e's

Lema 1.25

- ▶ Se $N = \langle \Sigma, S, s_0, \delta, F \rangle$ é um NFA- ε , então existe um NFA- ε equivalente $N' = \langle \Sigma, S \cup \{s_i, s_f\}, s_i, \delta', \{s_f\} \rangle$ tal que o respectivo diagrama de estados satisfaz:
 - 1. nenhum arco chega ao vértice s_i ($\delta'(s_i, \varepsilon) = s_0$),
 - 2. o único vértice final é o s_f ($\delta'(s_k, \varepsilon) = s_f$, $\forall s_k \in F$),
 - 3. nenhum arco sai do vértice s_f .

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (46 - 67 de 932)

Linguagens e conjuntos regulares

Lema 1.26

Todo conjunto regular é aceito por um NFA-ε.

Demonstração.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (47 - 67 de 932

Linguagens e conjuntos regulares

Lema 1.26

▶ Todo conjunto regular é aceito por um NFA- ε .

Demonstração.

lacktriangle Um conjunto regular sobre um alfabeto Σ é definido como:

Base: \emptyset , $\{\varepsilon\}$ e $\{a\}$, para todo $a \in \Sigma$, são conjuntos regulares sobre Σ .

Recursão: Se X e Y são conjuntos regulares sobre Σ , então $X \cup Y$, XY e X^* também são conjuntos regulares sobre Σ .

Fecho: X é um conjunto regular sobre Σ se pode ser obtido, a partir dos conjuntos regulares básicos, com a aplicação da recursão um número finito de vezes.

Linguagens e conjuntos regulares

Lema 1.26

Todo conjunto regular é aceito por um NFA-ε.

Demonstração.

- Conjuntos regulares são construídos a partir dos conjuntos básicos usando operações de união, concatenação e fecho de Kleene.
- Transições ε podem ser usadas para construir máquinas mais complexas a partir de outras máquinas já existentes.

Linguagens e conjuntos regulares

Lema 1.26

► Todo conjunto regular é aceito por um NFA-ε.

Demonstração.

► Base da definição de conjunto regular:

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (50 - 67 de 932)

Linguagens e conjuntos regulares

Lema 1.26

► Todo conjunto regular é aceito por um NFA-ε.

Demonstração.

▶ Sejam $\mathcal{L}(N_1)$ e $\mathcal{L}(N_2)$ conjuntos regulares aceitos pelos NFA- ε 's N_1 e N_2 , respectivamente:

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (51 - 67 de 932)

Linguagens e conjuntos regulares

Lema 1.26

ightharpoonup Todo conjunto regular é aceito por um NFA-arepsilon.

Demonstração.

 $\blacktriangleright \mathcal{L}(N_1) \cup \mathcal{L}(N_2)$:

Linguagens e conjuntos regulares

Lema 1.26

► Todo conjunto regular é aceito por um NFA-ε.

Demonstração.

 $ightharpoonup \mathcal{L}(N_1) \circ \mathcal{L}(N_2)$:

Linguagens e conjuntos regulares

Lema 1.26

► Todo conjunto regular é aceito por um NFA-ε.

Demonstração.

▶ $(\mathcal{L}(N_1))^*$:

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (54 - 67 de 932)

Linguagens e conjuntos regulares

Exemplo 1.27

▶ A técnica usada na demonstração do Lema 1.26 pode ser usada para construir um NFA- ε que aceite $(\{a\} \cup \{b\})^* \circ \{b\} \circ \{a\}$.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (55 - 67 de 932)

Linguagens e conjuntos regulares

Exemplo 1.27

- ▶ NFA- ε que aceita $(\{a\} \cup \{b\})^* \circ \{b\} \circ \{a\}$.
 - 1. Autômatos que aceitam $\{a\}$ e $\{b\}$:

Linguagens e conjuntos regulares

Exemplo 1.27

- ▶ NFA- ε que aceita $(\{a\} \cup \{b\})^* \circ \{b\} \circ \{a\}$
 - 2. Autômato que aceita $\{b\} \circ \{a\}$:

Linguagens e conjuntos regulares

Exemplo 1.27

- ▶ NFA- ε que aceita $(\{a\} \cup \{b\})^* \circ \{b\} \circ \{a\}$.
 - 3. Autômato que aceita $\{a\} \cup \{b\}$:

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (58 - 67 de 932)

Linguagens e conjuntos regulares

Exemplo 1.27

- ▶ NFA- ε que aceita $(\{a\} \cup \{b\})^* \circ \{b\} \circ \{a\}$.
 - 4. Autômato que aceita $(\{a\} \cup \{b\})^*$:

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (59 - 67 de 932)

Linguagens e conjuntos regulares

Exemplo 1.27

▶ NFA- ε que aceita $(\{a\} \cup \{b\})^* \circ \{b\} \circ \{a\}$:

Linguagens e conjuntos regulares

Exemplo 1.27

▶ NFA que aceita $(\{a\} \cup \{b\})^* \circ \{b\} \circ \{a\}$:

Fecho de linguagens regulares

Definição 1.28

- ▶ Uma linguagem \mathcal{L} , sobre um alfabeto Σ , é regular se \mathcal{L} é:
 - 1. definida por um conjunto regular (expressão) sobre Σ ;
 - 2. aceita por um DFA, NFA ou NFA- ε ; ou
 - 3. gerada por uma gramática regular.
- Uma família de linguagens é fechada sobre uma operação se a aplicação da operação a algum membro da família produz um membro da própria família.
- Formulações equivalentes de linguagens regulares podem ser usadas para provar propriedades de fecho da família de linguagens regulares.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (62 - 67 de 932

Fecho de linguagens regulares

Teorema 1.29

▶ Se \mathcal{L}_1 e \mathcal{L}_2 são duas linguagens regulares, então $\mathcal{L}_1 \cup \mathcal{L}_2$, $\mathcal{L}_1 \circ \mathcal{L}_2$ e \mathcal{L}_1^* são linguagens regulares.

Demonstração.

► A definição recursiva de conjuntos regulares estabelece o fecho para essas operações. Além disso, essas linguagens são aceitas por NFA- ε (veja o teorema correspondente).

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (63 - 67 de 932

Fecho de linguagens regulares

Teorema 1.30

ightharpoonup Se \mathcal{L} é uma linguagem regular, então a linguagem $\overline{\mathcal{L}}$ é regular.

Demonstração.

▶ Se \mathcal{L} é regular sobre o alfabeto Σ, então $\overline{\mathcal{L}} = \Sigma^* - \mathcal{L}$ também é regular. Um DFA que aceita a linguagem $\overline{\mathcal{L}}$ pode ser construído a partir de outro que aceita a linguagem \mathcal{L} .

Fecho de linguagens regulares

Teorema 1.31

▶ Se \mathcal{L}_1 e \mathcal{L}_2 são duas linguagens regulares, então a linguagem $\mathcal{L}_1 \cap \mathcal{L}_2$ é regular.

Demonstração.

- ▶ Pela lei de DeMorgan $\mathcal{L}_1 \cap \mathcal{L}_2 = \overline{\overline{\mathcal{L}_1} \cup \overline{\mathcal{L}_2}}$.
- ightharpoonup O lado direito da igualdade é regular já que é construído a partir de \mathcal{L}_1 e de \mathcal{L}_2 usando as operações de união e complementação.

Fecho de linguagens regulares

Exemplo 1.32

- $\mathcal{L}_1 = (a \cup b)^* aa(a \cup b)^*$: cadeias que contém aa.
- $\mathcal{L}_2 = (a \cup b)^* bb(a \cup b)^*$: cadeias que contém bb.
- \mathcal{L} : cadeias sobre $\{a,b\}$ que contêm aa e não contêm bb.
- ▶ $\mathcal{L} = \mathcal{L}_1 \cap \overline{\mathcal{L}_2}$ é regular.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (66 - 67 de 932)

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction.

Addison Wesley, 1994.

How To Prove It – A Structured Approach.

Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução à Teoria de Autômatos, Linguagens e Computação.

Languages and Machines – An Introduction to the Theory of Computer Science.

Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Introduction to the Theory of Computation.

PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (932 - 932 de 932)

Caracterização de conjuntos regulares

Teorema 1.33 (Kleene)

▶ Uma linguagem \mathcal{L} é aceita por um DFA com alfabeto Σ se, e somente se, \mathcal{L} é um conjunto regular sobre Σ .

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e conjuntos regulares (67 - 67 de 932)