

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-24, 19-03-2018

Notice

Mid semester copy distribution will be on 20/03/2018.

For room number and section wise details please check the notice in Nalanda.

Summary of lecture 23

✓ Octahedral vs. tetrahedral splitting, CFSE comparison

✓ Crystal structure of spinel identification

In normal Spinel: $(A^{2+}[B_2^{3+}]O_4^{2-})$, In Inverse Spinel: $(B^{3+}[A^{2+}B^{3+}]O_4^{2-})$

Summary of lecture 23

Explanation of Crystal Structure of Spinels using CFT:

Spinels, AB₂O₄: A(II); B(III); O²⁻

In normal Spinel: $(A^{2+}[B_2^{3+}]O_4^{2-})$

A(II) occupy the tetrahedral sites

B(III) occupy the octahedral sites

In Inverse Spinel: $(B^{3+}[A^{2+}B^{3+}]O_4^{2-})$

A(II) occupy the Octahedral sites

B(III) occupy the Octahedral and Tetrahedral sites

Tetragonal distortion

Cube with an octahedron inside

Tetragonal system

Stability of a complex

Structure of coordination compounds are determined by two factors

- 1) Valence Shell Electron Pair Repulsions. These have to be minimized for a stable structure.
- 2) Repulsions between non-bonding d-electrons of the metal and the ligand electrons. These have also to be minimized.

- 1. All the six bond pairs are placed at similar positions then we get a <u>regular</u> octahedron (All bond lengths are same).
- 2. If the d-electrons in the metal are symmetrically placed w.r.t. an octahedral field.

Distortion of Oh complexes

- The six-coordinated complexes in which all the six distances between the ligand electron clouds and central metal ion are the same are said to be regular (i.e., symmetrical) octahedral complexes.
- > On the other hand, the six-coordinated complexes in which the distances are not equal are said to be distorted octahedral complexes.
- > Since their shape is changed (i.e., distorted) this is called distortion

Distortion: tetragonal elongation

Tetragonal complexes may be obtained by any of the following two ways:

(a) If the two trans ligands lying on the z-axis in an octahedron are moved away from the central metal cation so that their distance from the metal cation is slightly greater than it is for the other four ligands lying in the xy plane, we get a tetragonal structure.

 $[Cu(NH_3)_4(H_2O)_2]^{2+}$ has a natural distortion due to different kinds of bonding (Cu-N and Cu-O)

Distortion: tetragonal compression

(b) If the two trans ligands located at the z-axis are brought near the central metal cation so that their distance from the metal cation is smaller than it is for the other four ligands in the xy plane, we again get a tetragonal structure.

K₄CuF₆: the Cu²⁺ ion has two F⁻ at 1.95 Å and four at 2.08 Å

FeF₆⁴⁻: the Fe²⁺ ion has two F⁻ at 1.99 Å and four at 3.12 Å

Symmetrical electronic arrangements

Electronic configuration	t _{2g}	e _g	Nature of ligand field	Examples
d^0			Strong or weak	TiO ₂ , [TiF ₆] ²⁻
d^3	↑ ↑		Strong or weak	$[Cr(oxalate)_3]^{3-},$ $[Cr(H_2O)_6]^{3+}$
d^5	↑ ↑ ↑	↑ ↑	Weak	[MnF ₆] ⁴⁻ , [FeF ₆] ³⁻
d^6	$\begin{array}{ c c c c c }\hline \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ \hline \end{array}$		Strong	$[Fe(CN)_6]^{4-}$, $[Co(NH_3)_6]^{3+}$
d ⁸	$\begin{array}{ c c c c c }\hline \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ \hline \end{array}$	↑ ↑	Weak	$[NiF_6]^{4-}$, $[Ni(H_2O)_6]^{2+}$
d^{10}	$\begin{array}{ c c c c }\hline \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ \hline \end{array}$	$\uparrow\downarrow$ $\uparrow\downarrow$	Strong or weak	$[Zn(NH_3)_6]^{2+}, [Zn(H_2O)_6]^{2+}$

Asymmetrical electronic arrangements

Electronic configuration	t _{2g}	e _g	Nature of ligand field	Examples
d ¹	↑		HS or LS	
d^2	↑ ↑		HS or LS	
d ⁴	$\uparrow\downarrow$ \uparrow \uparrow		Strong field (LS)	
d ⁴	↑ ↑ ↑	↑	Weak field (HS)	Cr(II) and Mn(III)
d ⁷	$\begin{array}{ c c c c c }\hline \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ \hline \end{array}$	<u> </u>	Strong field (LS)	Co(II) and Ni(III)
d ⁹	↑↓ ↑↓ ↑ ↓	↑ ↑	Either strong or weak	Cu(II)

t_{2g} and e_g orbital filling

Symmetrical and unsymmetrical t_{2g} and e_g orbital

The t_{2g} and e_g orbital which are empty (t_{2g}^{0} and e_g^{0}), half-filled (t_{2g}^{3} and e_g^{2}) or completely filled (t_{2g}^{6} and e_g^{4}) are said to be symmetrical orbitals

Condition for distortion

No distortion condition: t_{2g} and e_g sets as symmetrical orbitals

Condition for slight distortion: When d-orbitals of the central metal ion of an octahedral complex have t_{2g} orbitals as unsymmetrical orbitals, there occurs slight distortion in the complex

Condition for strong distortion: When the e_g orbitals which point directly towards the ligands, are unsymmetrical i.e., contain 1, 3, or 2(only in LS complex) electrons, strong distortion

Asymmetrical d electron distribution

d⁷ weak field ——unsymmetrical but the distortion is minimal

This configuration is asymmetric in t_{2g} but symmetric in e_g ; asymmetric filling in t_{2g} produces only minimum distortion.

This explanation is true for d¹, d², d⁴ (strong), d⁵ (strong), d⁶ (weak) also.

Explanation for distortion

Consider the case $Ti^{2+} \rightarrow d^2 \rightarrow t_{2g}^2$

Explanation for distortion

If $\underline{t_{2g}}$ orbitals are asymmetrically filled then the distortion is minimum as these orbital point away from metal-ligand bonds.

If <u>e_g orbitals</u> are asymmetrically filled then the distortion is large as these orbital point <u>directly along the metal-ligand bonds</u>. The repulsions between different ligands will be different.

Explanation for distortion

In a symmetrically filled case both the e_g orbitals, d_{x-y}^{2} , d_z^{2} are both degenerate (of same energy).

However, if e_g orbitals are asymmetrically filled the degeneracy is no longer maintained. Then these d-electrons repel some ligands more than others and the octahedral environment becomes distorted. Degeneracy of e_g orbitals is destroyed (lifted).

Tetragonal elongation

If d_z^2 is filled and $d_x^2-_y^2$ is unoccupied (i.e., dz^2 is in lower energy compared to $d_x^2-_y^2$), ligands which are approaching through z direction will be repelled more;

Bond lengths along +z and -z directions increase.

This leads to tetragonal elongation.

Two long bonds

When we say d_z^2 is filled similarly to a smaller extent the d_{xz} and d_{yz} will be lowered compared to d_{xy} .

z elongation 2 long 4 short

Tetragonal compression

If d_{x-y}^{2} is filled ligands which are approaching through x, y direction will be repelled more; Bond lengths along +x, +y and -x, -y directions increase.

This leads to <u>tetragonal compression</u>.

When we say is d_{x-y}^{2} filled and d_{z}^{2} is unoccupied then it means that d_{x-y}^{2} is in lower energy compared to d_{z}^{2}

Similarly to a smaller extent the $\underline{d_{xy}}$ will be lowered compared to $\underline{d_{xz}}$ and $\underline{d_{vz}}$.

Jahn-Teller distortion

Discussed topics.....

- \checkmark Symmetric and asymmetric filling of t_{2g} and e_{g} orbitals
- ✓ Explanation for distortion
- ✓ Tetragonal elongation and compression

Distortion of Oh complexes (supporting slide)

Distorted octahedral complexes may be of the following three types:

- (a) Diagonally distorted octahedral complexes, which are obtained when the distortion of a regular octahedron takes place along a two-fold axis
- (b) Trigonally distorted octahedral complexes in which the distortion takes place along a three-fold axis
- (c) Tetragonally distorted octahedral complexes, which are also known as tetragonal complexes. These are obtained when the distortion of a regular octahedron takes place along a four fold axis