AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

 (original): Weldable component of structural steel, characterized in that its chemical composition comprises, by weight:

$$0.10\% \le C \le 0.22\%$$
 $0.50\% \le Si \le 1.50\%$
 $Al \le 0.9\%$
 $0\% \le Mn \le 3\%$
 $0\% \le Ni \le 5\%$
 $0\% \le Cr \le 4\%$
 $0\% \le Cu \le 1\%$
 $0\% \le Mo + W/2 \le 1.5\%$
 $0.0005\% \le B \le 0.010\%$
 $N \le 0.025\%$

optionally at least one element selected from V, Nb, Ta, S and Ca, at contents of less than 0.3%, and/or from Ti and Zr at contents of less than or equal to 0.5%, the remainder being iron and impurities resulting from the production operation, the contents of aluminium, boron, titanium and nitrogen, expressed in thousandths of %, of the composition also satisfying the following relationship:

$$B \geq \frac{1}{3} \times K + 0.5, \qquad (1)$$
with K = Min (I*; J*)
$$I^* = Max (0; I) \qquad and \qquad J^* = Max (0; J)$$

$$I = Min(N; N-0.29(Ti-5))$$

Preliminary Amendment
National Stage of PCT/FR2003/003361

J = Min
$$\left(N ; 0.5 \left(N - 0.52 Al + \sqrt{(N - 0.52 Al)^2 + 283} \right) \right)$$

the contents of silicon and aluminium of the composition also complying with the following conditions:

if
$$C > 0.145$$
, then $Si + AI < 0.95$

and whose structure is bainitic, martensitic or martensitic-bainitic and also comprises from 3 to 20% of residual austenite.

- 2. (original): Steel component according to claim 1, characterized in that its chemical composition also satisfies the following relationship:
 - $1.1\%Mn + 0.7\%Ni + 0.6\%Cr + 1.5(\%Mo + \%W/2) \ge 1$ (2)
- 3. (original): Steel component according to claim 2, characterized also in that its chemical composition satisfies the following relationship:
 - $1.1\%Mn + 0.7\%Ni + 0.6\%Cr + 1.5(\%Mo + \%W/2) \ge 2$ (2)
- 4. (currently amended): Steel component according to <u>claim 1,any one of claims 1 to</u> 3, characterized in that its chemical composition also satisfies the following relationship:

%Cr +
$$3($$
%Mo + %W/2 $)$ ≥ 1.8.

5. (original): Steel component according to claim 4, characterized in that its chemical composition also satisfies the following relationship:

$$%Cr + 3(%Mo + %W/2) \ge 2.0.$$

- 6. (currently amended): Method for manufacturing a weldable steel component according to claim 1,any one of claims 1 to 5, characterized in that
 - the component is austenitized by heating at a temperature of from Ac_3 to 1000°C, and it is then cooled to a temperature of less than or equal to 200°C, in such a manner that, at the core of the component, the rate of cooling between 800°C and 500°C is greater than or equal to the critical bainitic velocity,
 - optionally, tempering is effected at a temperature of less than or equal to Ac₁.

Preliminary Amendment National Stage of PCT/FR2003/003361

- 7. (original): Method according to claim 6, characterized in that, at the core of the component, the cooling rate between 500°C and a temperature of less than or equal to 200°C is from 0.07°C/s to 5°C/s.
- 8. (currently amended): Method according to <u>claim 6, claim 6 or 7</u>, characterized in that tempering is effected at a temperature of less than 300°C for a period of time of less than 10 hours, at the end of the cooling operation to a temperature of less than or equal to 200°C.
- 9. (currently amended): Method according to <u>claim 6 or 7</u>, characterized in that no tempering is carried out at the end of the cooling operation to a temperature of less than or equal to 200°C.
- 10. (currently amended): Method for manufacturing a weldable steel plate according to claim 1, any one of claims 1 to 5, the thickness of which is from 3 mm to 150 mm, characterized in that the plate is quenched, the cooling rate V_R at the core of the component between 800°C and 500°C and the composition of the steel being such that:
 - 1.1%Mn + 0.7%Ni+ 0.6%Cr + 1.5(%Mo + %W/2) + log $V_R \ge 5.5$.
- 11. (original): Method for manufacturing a weldable steel plate according to claim 10, the thickness of which is from 3 mm to 150 mm, characterized, in addition, in that the plate is quenched, the cooling rate V_R at the core of the component between 800°C and 500°C and the composition of the steel being such that:
 - 1.1%Mn + 0.7%Ni+ 0.6%Cr + 1.5(%Mo + %W/2) + log $V_R \ge 6$.