ASSIGNMENT 7: EIGENVALUES AND EIGENVECTORS MA 106: LINEAR ALGEBRA: SPRING 2023

Tutorial Problems

(1) Let u be a unit vector in \mathbb{R}^n . Define $H = I - 2uu^t$. Find all the eigenvalues and eigenvectors of H. Find a geometric interpretation of $T_H : \mathbb{R}^n \to \mathbb{R}^n$ given by $T_H(v) = Hv$ for all $v \in \mathbb{R}^n$.

Solution: Note that H is a real symmetric matrix, since $H^t = I - (2uu^t)^t = I - 2uu^t$. Thus it is diagonalizable. Now $H(u) = u - 2uu^t u = -u$. Hence u is an eigenvector for the eigenvalue -1. If $v \perp u$ then $H(v) = v - 2uu^t v = v$. Thus all the nonzero vectors in the space $P = u^{\perp} = \{v \in \mathbb{R}^n \mid u \perp v\}$ are eigenvectors with eigenvalue 1. Since dim P = n - 1, a basis of P along with u is a basis of eigenvectors for H. In fact H is a reflection with respect to the hyperplane P.

(2) If $A, A' \in \mathbb{F}^{n \times n}$ are **similar**, i.e. $A' = P^{-1}AP$ for some invertible $n \times n$ matrix $P \in \mathbb{F}^{n \times n}$. Show that (a) A and A' have same eigenvalues (b) if \mathbf{v} is an eigenvector of A then $P^{-1}\mathbf{v}$ is an eigenvector of A'.

Solution: For a nonzero vector \mathbf{v} we have $P^{-1}\mathbf{v} \neq 0$. Now $A\mathbf{v} = \lambda \mathbf{v}$ iff $P^{-1}AP(P^{-1}\mathbf{v}) = \lambda P^{-1}\mathbf{v}$. This proves both (i) and (ii).

(3) Let A be n × n matrix. Prove that (i) 0 is an eigenvalue of A if and only if A is singular.
(ii) if λ is an eigenvalue of A then it is also an eigenvalue of A^t (where A^t denotes the transpose of A). (iii) If x is an eigenvector of A corresponding to λ then x need not be an eigenvector of A^t corresponding to λ.

Solution: (i) 0 is an eigenvalue iff 0 is a root of the characteristic polynomial $\chi_A(\lambda) = \det(A - \lambda I)$. Putting $\lambda = 0$, we get $\det A = 0$. This implies that A is singular.

(ii) $\chi_A(\lambda) = \det(A - \lambda I) = \det(A - \lambda)^t = \det(A^t - \lambda I) = \chi_{A^t}(\lambda)$. Since the eigenvalues are nothing but roots of the characteristic polynomial, the conclusion follows.

(iii) Take $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. The eigenvalues are $\pm i$. Corresponding to the eigenvalue i we have $(1,i)^t$ is an eigenvector for A but not for A^t .

(4) Show that the map $T: C^{\infty}[0,1] \to C^{\infty}[0,1]$ given by $T(f)(x) = \int_0^x f(t)dt$ has no eigenvalue while every real number is an eigenvalue of $T(f)(x) = \frac{df(x)}{dx}$.

Solution: If T has an eigenvector f with eigenvalue α then $T(f) = \int_0^x f(t)dt = \alpha f(x)$. By the fundamental theorem of Calculus, $f(x) = \alpha f(x)$. As f(x) is nonzero, $\alpha = 1$. But then

f'(x) = f(x) For all x. Hence $f(x) = e^x$. But $T(e^x) = e^x - 1 \neq e^x$. If $T(f)(x) = \frac{df(x)}{dx}$ then $T(e^{rx}) = re^{rx}$ for all $r \in \mathbb{R}$. Thus every real number is an eigenvalue of T.

(5) Let $A \in \mathbb{C}^{n \times n}$ and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a complex polynomial of degree n.. Suppose that λ is an eigenvalue of A. Show that $f(\lambda)$ is an eigenvalue of f(A). Find all the eigenvalues of f(A).

Solution: Let Au = zu for a nonzero vector u and a complex number z. Then f(A)u = f(z)u. Thus f(z) is an eigenvalue of f(A) with u as an eigenvector. Conversely, if z is an eigenvalue of f(A) with eigenvector u then f(A)u = zu. Consider the complex polynomial f(x)-z. Let z_1, z_2, \ldots, z_n be all the roots of f(x)-z. Then $f(x)-z=a_n(x-z_1)\ldots(x-z_n)$. Hence $f(A)-zI=a_n\prod_{i=1}^n(A-z_iI)$. Take determinant on both sides to get $\det(f(A)-zI)=0$ and d(A)=1. Hence d(A)=1. Hence d(A)=1. Hence d(A)=1.

(6) Find the characteristic polynomial, eigen spaces and their dimensions of the matrix J_n which is the $n \times n$ matrix with each of its entry equal to 1. Is J_n diagonalisable?

Solution: Note that J_n is a real symmetric matrix. Thus it is diagonalizable. As J_n is a rank one matrix, $det J_n = 0$. Hence 0 is an eigenvalue of J_n . The eigenspace E_0 is the solution vectors of the equation $x_1 + \ldots + x_n = 0$. Thus the dim $E_0 = n - 1$. Hence the algebraic multiplicity of 0 is n - 1. Note that $J_n((1, 1, \ldots, 1)^t = n(1, 1, \ldots, 1)^t$. Hence n is an eigenvalue of J_n . It follows that $\chi_{J_n}(x) = x^{n-1}(x-n)$.

(7) Let $\{u,v\}$ be an orthonormal basis of \mathbb{R}^2 . Let $A=uv^t$. Find all the eigenvalues of A.

Solution: Let $w \perp v$. Then $Aw = uv^t w = 0$. So E_0 contains the 1-dimensional subspace v^{\perp} . If $u = (a, b)^t$ and $v = (c, d)^t$ then $\operatorname{tr} A = ac + bd = 0$. Hence the only eigenvalue of A is 0.

- (8) Let A be a square matrix. Prove the following statements.
 - (i) The eigenvalues of A are real if A is Hermitian or real symmetric.
 - (ii) The eigenvalues of A are either 0 or purely imaginary if A is skew Hermitian.
 - (iii) The eigenvalues of A are of modulus equal to 1, if A is unitary.
 - (iv) A^tA has only non negative eigenvalues, if A is real.

Solution: Let $\mu \in \mathbb{K}$, $\mathbf{v} \neq 0$ be such that $A\mathbf{v} = \mu \mathbf{v}$.

- (i) Suppose A is hermitian, i.e., $A = A^*$. Then $\mu \|\mathbf{v}\|^2 = \mu(\mathbf{v}^*\mathbf{v}) = \mathbf{v}^*(\mu\mathbf{v}) = \mathbf{v}^*(A\mathbf{v}) = (\mathbf{v}^*A^*)\mathbf{v} = (A\mathbf{v})^*\mathbf{v} = \bar{\mu}\mathbf{v}^*\mathbf{v} = \bar{\mu}\|\mathbf{v}\|^2$. Hence $\mu = \bar{\mu}$ and so, μ is real. Since a real symmetric matrix is hermitian, the second case follows.
- (ii) In the above proof, if A were skew hermitian, we get $\mu \|\mathbf{v}\|^2 = -\bar{\mu} \|\mathbf{v}\|^2$. Hence $\mu = -\bar{\mu}$ which means $\mu = 0$ or purely imaginary.
- (iii) Since A is unitary, $\langle \mathbf{v}, \mathbf{v} \rangle = \langle A\mathbf{v}, A\mathbf{v} \rangle = \langle \mu \mathbf{v}, \mu \mathbf{v} \rangle = \mu \bar{\mu} \langle \mathbf{v}, \mathbf{v} \rangle$ which means that

$$|\mu|^2 = \mu \bar{\mu} = 1.$$

- (iv) Take $\mathbf{v} = \sum_{i=1}^{n} \mathbf{e}_i$. If A_i denotes the columns of A then it follows that $A\mathbf{v} = \sum_{i=1}^{n} A_i = \mathbf{v}$ (since A is Markov). This shows that 1 is an eigenvalue of A.
- (v) Since $A^t A$ is real symmetric, its eigenvalues are real. Let $A^t A \mathbf{u} = \lambda \mathbf{u}$. Then $\lambda \|\mathbf{u}\|^2 = \lambda \mathbf{u}^t \mathbf{u} = \mathbf{u}^t (\lambda \mathbf{u}) = \mathbf{u}^t (A^t A \mathbf{u}) = (\mathbf{u}^t A^t) A \mathbf{u} = (A \mathbf{u})^t (A \mathbf{u}) = \|A \mathbf{u}\|^2$. Therefore $\lambda \geq 0$.
- (9) A self-adjoint matrix A, i.e. $A^* = A$, is called **positive definite** if $\langle A x, x \rangle > 0$ for all nonzero $x \in \mathbb{C}^n$. Show that a self-adjoint matrix is positive definite if and only if all eigenvalues of A are positive.

Solution: A real symmetric matrix is congruent to a diagonal matrix. Since congruence does not change the positivity (check this), and since the eigenvalues are the diagonal entries of the diagonal form, the result follows.

(10) Let A be a self-adjoint matrix. If $\langle Ax, x \rangle = 0$ for all $x \in \mathbb{C}^n$, then show that A = O. Deduce that if $||Ax|| = ||A^*x||$ for all $x \in \mathbb{C}^n$, then A is a normal matrix, and if ||Ax|| = ||x|| for all $x \in \mathbb{C}^n$, then A is a unitary matrix.

Solution: Since A is self-adjoint, $A^* = A$ and A has an orthonormal basis of eigenvectors. Let u be a unit eigenvector with eigenvalue a. As a is real, $\langle Au, u \rangle = u^*au = a = 0$. Thus all eigenvalues are zero. Thus A = 0. Now let $||Ax|| = ||A^*x||$ for all $x \in \mathbb{C}^n$. Therefore, $x^*A^*Ax = x^*AA^*x$. Since A^*A , AA^* are self-adjoint, so is there difference. Hence $x^*(A^*A - AA^*)x = 0$ for all x. Hence $AA^* = A^*A$. Thus A is normal. Now let ||Ax|| = ||x|| for all x. This means that $x^*A^*Ax = x^*x$. Hence $x^*(AA^* - I)x = 0$ for all x. But $AA^* - I$ is self-adjoint. Hence $AA^* = I$. Thus A is unitary.

- (11) Let a be a nonzero real number and $A = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$.
 - (a) Find an orthonormal set of eigenvectors of A.
 - (b) Find a unitary matrix C such that $C^{-1}AC$ is a diagonal matrix.
 - (c) Prove: there is no real orthogonal matrix C such that $C^{-1}AC$ is a diagonal matrix.

Solution: (a) The characteristic polynomial of A is $f(x) = x^2 + a^2$. Hence $x = \pm ia$. If $u = (x, y)^t$ is an eigenvector for the eigenvalue ia then $A(x, y)^t = (ya, -ax)^t = (iax, iay)^t$. Thus $(i, 1)^t$ is an eigenvector for the eigenvalue ia Similarly, $(1, i)^t$ is an eigenvector for the eigenvalue -ia.

(b) The columns of the unitary matrix C consists of unit eigenvectors for the eigenvalues. Hence $C = \begin{bmatrix} i/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & i/\sqrt{2} \end{bmatrix}$.

(12) Let C be the locus of the equation $ax^2 + bxy + cy^2 + dx + ey + f = 0$. Using eigenvalues of the symmetric matrix A so that $ax^2 + bxy + cy^2 = [x \ y]A[x \ y]^t$, show that C is ellipse, hyperbola or parabola according as the discriminant $4ac - b^2$ is positive, negative or zero.

Practice Problems

(13) Examine whether the following matrices can be diagonalised. If yes, find P such that

$$P^{-1}AP$$
 is diagonal. $ox(i)\begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix} ox(ii)\begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} ox(iii)\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & -1 & 3 \end{bmatrix}$

Solution: (i) Let us find out the eigenvalues and their algebraic and geometric multiplicities. Here $\chi_A(\lambda) = \det(A - \lambda I) = (\lambda - 4)^2$. This means that 4 is the only eigenvalue and it has algebraic multiplicity = 2. Now consider the matrix A - 4I and see that its rank is 1. This means its nullity is 1 which is equal to the geometric multiplicity of the eigenvalue 4. Since these two multiplicities do not match, we conclude that A cannot be diagonalised. (ii) The eigenvalues are 3, 1, -1 corresponding to which we have eigen vectors $\mathbf{v}_1 = (1, 0, 0)^t$,

(ii) The eigenvalues are 3, 1, -1 corresponding to which we have eigen vectors $\mathbf{v}_1 = (1, 0, 0)^t$, $\mathbf{v}_2 = (0, 1/\sqrt{2}, 1/\sqrt{2})^t$ and $\mathbf{v}_3 = (0, -1/\sqrt{2}, 1/\sqrt{2})^t$. Therefore, by putting them side by side, we get a matrix $P = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ which is as required.

(iii) This is a lower triangular matrix and hence the eigenvalues are the diagonal entries. Corresponding eigenvectors are respectively $(1, -1, -1)^t$, $(0, 1, 1)^t$, $(0, 0, 1)^t$. Hence

$$P = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 1 \end{array} \right].$$

(iv) In this case we have $\chi_A(\lambda) = (\lambda - 3)(\lambda - 1)(\lambda + 1)(\lambda - 1/2)$. Therefore all the eigenvalues are distinct. Therefore, the matrix is diagonalizable. We now proceed to find the eigenvectors corresponding to these eigenvalues, which we denote by $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ respectively. $\underline{\lambda} = 3$: The form of the matrix immediately gives that $A\mathbf{e}_1 = 3\mathbf{e}_1$. Hence $\mathbf{u} = \mathbf{e}_1$ is an eigenvector for $\lambda = 3$.

 $\underline{\lambda = 1}$: We want to solve $A\mathbf{v} = \mathbf{v}$. This is easily seen to have a solution $\mathbf{v} = (-3, 2, 2, 0)^t$. $\underline{\lambda = -1}$: Here we have to solve for $A\mathbf{w} = -\mathbf{w}$. It follows that $w_2 = w_4 = 0$ and $4w_1 + 2w_2 + w_3 = 0$. Therefore $\mathbf{w} = (1, 0, -4, 0)^t$ is a solution.

 $\lambda = -1/2$: This time we have to solve

$$\begin{bmatrix} 5/2 & 2 & 1 & 0 \\ 0 & 1/2 & 0 & 1 \\ 0 & 2 & -3/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 0.$$

Check that $\mathbf{x} = (-8, 6, 8, 3)^t$ is a solution. Thus a transformation matrix is obtained by writing these four eigen vectors side by side as columns. $P = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}]$. Check that AP = PD where D = oxdiag(3, 1, -1, 1/2). (Observe that in each of the above three cases, there are plenty of choices for P.)

(14) Prove that (a) the trace of $A \in \mathbb{C}^{n \times n}$ is equal to the sum of its eigenvalues. (b) the determinant of A is equal to the product of its eigenvalues.

Solution: (a) Let $f(x) = \det(xI - A) = (x - a_1)(x - a_2) \dots (x - a_n)$ for some $a_i \in \mathbb{C}$ for all $I = 1, 2, \dots, n$. Equate the coefficient of $-x^{n-1}$ to get that the trace of A is the sum of all the roots of f(x).

- (b) Put x = 0 to see that $\det A = \prod_{j=1}^{n} a_j$.
- (15) Let $V = \mathbb{R}^{2\times 2}$. Let $T: V \to V$ be defined by $T(A) = A^t$. Find the eigenvalues and eigenvectors of T.

Solution: Let A be a nonzero matrix and $r \in R$ so that $T(A) = A^t = rA$. Hence $A = rA^t = r^2A$. As A is nonzero, r = 1, -1. The nonzero symmetric matrices are the eigenvectors with eigenvalue 1 and the nonzero skew-symmetric matrices are the eigenvectors with eigenvalue -1.

- (16) Let A be a 2×2 real matrix and $p_A(x)$ be its characteristic polynomial. Show that $p_A(A) = 0$. This is called the Cayley-Hamilton Theorem. It is valid for all square matrices.
- (17) Find a nonzero matrix so that $N^3 = 0$. Find all the eigenvalues of N. Show that N cannot be symmetric.

Solution: If a is an eigenvalue of N then $a^3 = 0$. Thus a = 0. If N is symmetric then there exists an invertible matrix A so that $A^1NA = oxdiag(0, 0, ..., 0)$. Hence N = 0. This is a contradiction. Hence N is not symmetric.

(18) Let an $n \times n$ matrix B have n distinct eigenvalues. Show that every $n \times n$ matrix A such that AB = BA, is diagonalizable.

Solution: Let AB = BA. Let $B\mathbf{v} = \lambda \mathbf{v}$. Then $B(A\mathbf{v}) = AB\mathbf{v} = \lambda A\mathbf{v}$. This implies that $A\mathbf{v} \in E_B(\lambda)$, the eigenspace of B corresponding to λ . Now if B has distinct eigenvalues λ_i then this means that each $E_B(\lambda_i)$ is one dimensional. Let it be spanned by \mathbf{v}_i say. Then we have $A\mathbf{v}_i = \mu_i \mathbf{v}_i$ for each i. Therefore, with respect to the basis $\{\mathbf{v}_i : 1 \leq i \leq n\}$ both B and A are diagonal.

(19) From the unit vector $u = \frac{1}{6}(1, 1, 3, 5)^t$ construct the rank one projection matrix $P = uu^t$. (a) Show that u is an eigenvector with eigenvalue 1. (b) Show that if $v \perp u$ then Pv = 0. Show that the only eigenvalues of P are 0, 1. What are their algebraic and geometric multiplicities? Is P diagonalizable?

Solution: Note that $P(u) = uu^t u = u$. Hence u is an eigenvector with eigenvalue 1. Let $v \perp u$. Then $P(v) = uu^t v = 0$. Thus all nonzero vectors in the subspace u^{\perp} are eigenvectors

with eigenvalue 0. As P is symmetric, it is diagonalizable. Hence the algebraic multiplicity of 0 is at least n-1 and that of 1 is at least one. But dim $E_0 + \dim E_1 = n$. Hence P has no other eigenvalue. Thus the characteristic polynomial of P is $x^{n-1}(x-1)$.

(20) If A is a real skew-Hermitian matrix, prove that I + A and I - A are nonsingular, i.e. invertible and $(I - A)(I + A)^{-1}$ is orthogonal.

Solution: Let r be an eigenvalue of A with eigenvector u. Then

$$\langle Au, u \rangle = \langle ru, u \rangle = \bar{r}\langle u, u \rangle = \langle u, A^*u \rangle = \langle u, -Au \rangle = -r\langle u, u \rangle.$$

Thus $\bar{r} = -r$. Hence r is purely imaginary. The eigenvalues of I + A are for the form 1 + rwhere r is an eigenvalue of A. Hence all the eigenvalues of = I + A are nonzero. Similarly all eigenvalues of I-A are also nonzero. Thus I+A and I-A are invertible. Since I+Aand I-A commute with each other, I+A and $(I-A)^{-1}$ also commute with each other. The matrix $(I+A)(I-A)^{-1}$ is orthogonal as

$$(I+A)(I-A)^{-1}((I+A)(I-A)^{-1})^t = (I+A)(I-A)^{-1}((I-A)^t)^{-1}(I+A^t)$$
$$= (I+A)(I-A)^{-1}(I+A)^{-1}(I-A) = I.$$

- (21) Find the values of c for which the graph of 2xy 4x + 7y + c = 0 is a pair of lines.
- (22) Prove that the eigenvectors of a Hermitian (or real symmetric) matrix corresponding to distinct eigenvalues are orthogonal.

Solution: See the lecture slides.

(23) By a symmetric quadratic form Q of n variables we mean a homogeneous degree 2 polynomial in n variables, say $Q(x) = \sum_{i \leq j} \alpha_{ij} x_i x_j$. Given a quadratic form Q we associate a symmetric matrix $A_Q = (a_{ij})$ to it by taking $a_{ii} = \alpha_{ii}$ and $a_{ij} = \alpha_{ij}/2, i \neq j$. Show that $Q(x) = xA_Qx^t$, where $x = (x_1, \dots, x_n)$. Write down the associated matrix or the quadratic form from the given data below:

(a)
$$Q_1(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^3$$
; (b) $Q_2(x, y) = xy$.

(c)
$$Q_3(x, y, z) = xy + yz + zx$$
; (d) $Q_4(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$.

(c)
$$Q_3(x, y, z) = xy + yz + zx;$$
 (d) $Q_4(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2.$
(e)
$$\begin{bmatrix} 3 & 2 & 2 \\ 2 & -5 & 4 \\ 2 & 4 & 1 \end{bmatrix}$$
 (f)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: (a)
$$A_1 = \text{diag } (1, 2, 3);$$
 (b) $A_2 = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix}.$

(c)
$$\begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
.

(e)
$$3x^2 - 5y^2 + z^2 + 4xy + 4xz + 8yz$$
 (f) $x^2 + y^2 + z^2$.

- (24) Transform the following quadratic equations to a diagonal form and find out what conics they represent:
 - (a) $41x_1^2 24x_1x_2 + 34x_2^2 = 0$
 - (b) $9x_1^2 6x_1x_2 + x_2^2 = 40$;
 - (c) $91x^2 24xy + 84y^2 = 25$
 - (d) $4xy + 3y^2 = 10$.

Solution: (a) $\begin{bmatrix} 41 & -12 \\ -12 & 34 \end{bmatrix}$. Eigen values are: 25, 50. Transformation matrix is $\begin{bmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{bmatrix}$. The principal axis form is $25x_1^2 + 50x_2^2 = 0$; this is a degenerate ellipse.

(b)
$$\begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}$$
; eigenvalues are: 0, 10. The transformation matrix is $\frac{1}{\sqrt{10}}\begin{bmatrix} 1/& -3 \\ 3 & 1 \end{bmatrix}$. The p.a. form is: $10y^2 = 40$ which represents a pair of parallel lines.

(c) The matrix here is $\begin{bmatrix} 91 & -12 \\ -12 & 84 \end{bmatrix}$ with eigenvalues 75, 100. The transformation matrix

- is $\frac{1}{5}\begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$. The p.a. form is $3x^2 + 4y^2 = 1$ which is an ellipse.
- (d) $\begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$. The eigen values are: 4, -1. The p.a. form is: $4x_1^1 x_2^2 = 10$ which is a

hyperbola. The transformation matrix is $\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$.

(25) Let A be a real symmetric matrix with only one eigenvalue 1. Show that A = I.

Solution: Since a real symmetric matrix is orthogonally diagonalizable, the eigenspace $E_0 = \mathbb{R}^n$ if A is an $n \times n$ matrix. Thus $Ae_j = e_j$ for all j. This means A = I.

(26) Find all the eigenvalues of a nilpotent matrix A. When is A is diagonalizable?

Solution: If r is an eigenvalue of A then r^m is an eigenvalue of A^m for all m. As A is nilpotent there is an n so that $A^n = o$. Thus r = 0. If A were diagonalizable, there is an invertible matrix P so that $P^{-1}AP = D = 0$. Hence A = 0.

(27) Find all 2×2 orthogonal and skew-symmetric matrices. Also find their eigenvalues.

Solution: Let A be such a matrix. Then $I = A^t A = -A^2$. Hence $A^2 + I = 0$. if r is an eigenvalue of A then $r^2 + 1 = 0$. Thus i, -i are the eigenvalues of A. Let D = oxdiag(i, -i). Since A has diagonal entries 0, it follows that

$$A = \pm \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right].$$

(28) Does there exist a 3×3 matrix which is orthogonal and skew symmetric?

Solution: No. For a skew symmetric matrix A, we have

$$\det A = \det A^t = \det (-A) = (-1)^n \det A.$$

Thus if n is odd, then det A = 0. On the other hand for any orthogonal matrix the determinant is ± 1 .

(29) Prove that if a square complex matrix is unitary and and Hermitian then $A^2 = I$.

Solution: If A is unitary then its eigenvalues have absolute value 1. As A is also Hermitian, its eigenvalues are real. Hence ± 1 are the only eigenvalues of A. But $A = PDP^t$ where the entries of the diagonal matrix are ± 1 and P is unitary. Hence $A^2 = PDP^PDP^t = I$.

(30) Let A be a normal matrix and U be unitary. Prove that U^*AU is normal.

Solution: Hint: Use the facts: $UU^* = I$ and $AA^* = A^*A$.

(31) Given an orthogonal matrix A, with -1 as an eigenvalue of multiplicity k then $\det A = (-1)^k$.

Solution: If z is an eigenvalue of A then so is \bar{z} . Moreover |z|=1. Therefore det $A=(-1)^k$.

(32) If the equation $ax^2 + bxy + cy^2 = 1$ represents an ellipse, prove that the area of the region it bounds is $2\pi/\sqrt{4ac-b^2}$.

Solution: Let $A=\begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$. Then the equation of the ellipse is given by $[x,y]A\begin{bmatrix} x \\ y \end{bmatrix}=1$. Let λ,μ be the eigenvalues of A. Then $\lambda\mu=\det A=ac-b^2/4$. The equation in the diagonal form is $\lambda x^2+\mu y^2=1$. Hence the lengths of the axes are $1/\sqrt{\lambda}$ and $1/\sqrt{\mu}$. Using calculus we have

$$Area = 4 \int_0^{1/\sqrt{\lambda}} y dx = 4 \int_0^{1/\sqrt{\lambda}} \sqrt{\frac{1 - \lambda x^2}{\mu}} dx.$$

Now substitute $\sqrt{\lambda}x = \sin \theta$.