

现代密码学

第十五讲 非线性序列2

信息与软件工程学院

第十五讲 非线性序列2

钟控序列生成器模型

· 钟控序列最基本的模型是用一个LFSR控制另外一个LFSR的移位时钟脉冲, 如图所示,一个最简单钟控序列生成器

- 假设LFSR1和LFSR2分别输出序列 $\{a_k\}$ 和 $\{b_k\}$, 其周期分别为 p_1 和 p_2 。
- · 当LFSR1输出1时,移位时钟脉冲通过与门使LFSR2进行一次移位,从而 生成下一位。
- · 当LFSR1输出0时,移位时钟脉冲无法通过与门影响LFSR2。因此LFSR2 重复输出前一位。

钟控序列的周期

• 假设LFSR1和LFSR2分别输出序列 $\{a_k\}$ 和 $\{b_k\}$,其周期分别为 p_1 和 p_2 。假设钟控序列 $\{c_k\}$ 的周期为p,可得如下关系:

•
$$p = \frac{p_1 p_2}{\gcd(w_1, p_2)}$$
, $\sharp + w_1 = \sum_{i=0}^{p_1-1} a_i$

- c_k 的一个周期至少是LFSR1和LFSR2同时回到初始状态的时刻
 - 显然当运行 $p_1 imes p_2$ 个节拍后两个LFSR必然回到初态,因此周期至多是 $p_1 imes p_2$
 - LFSR1运行一个周期,LFSR2运行 $w_1 = dt$ 拍, $d = \gcd(w_1, p_2)$
 - 则LFSR1运行 (p_2/d) 个周期后,LFSR2刚好运行 $dt \times p_2/d = tp_2$ 拍,即t个周期,于是两个LFSR都回到初态,这时运行了 $(p_2/d) \times p_1$ 个节拍

钟控序列的周期(续)

- 若 $\{a_k\}$ 和 $\{b_k\}$ 的极小特征多项式分别为GF(2)上的m和n次本原多项式 $f_1(\mathbf{x})$ 和 $f_2(\mathbf{x})$,且m|n。
- $\mathfrak{N}p_1=2^{m}-1, p_2=2^{n}-1$.
- 而 $w_1 = \lambda \{a_k\}$ 一个周期内1的个数,因此 $w_1 = 2^{m-1}$
- 故 $\gcd(w_1, p_2)=1$, 所以 $p=p_1p_2=(2^m-1)(2^n-1)$ 。

钟控序列的线性复杂度

- 可推导出 $\{c_k\}$ 的线性复杂度为 $n(2^m-1)$, 极小特征多项式为 $f_2(x^{2^m-1})$
 - 其对应的LFSR2的抽头每隔周期 p_1 =2m-1一个,这样,参与运算的每个抽头对应的状态的节奏相同,从而相当于对LFSR2序列进行每2m-1拍的抽样序列(不计由于LFSR1的0游程而产生的重复),这个序列只是LFSR2的平移和按照LFSR1中的0游程进行迟延,而抽头应该与LFSR2的节奏一致,所以其极小多项式和线性复杂度如上

钟控序列的例子

- 例: 设LFSR1为3级m序列生成器,其特征多项式为 $f_1(x)=1+x+x^3$ 。设初态为 $a_0=a_1=a_2=1$,于是输出序列为 $\{a_k\}=1,1,1,0,1,0,0,...$
- 又设LFSR2为3级m序列生成器,且记其状态向量为 σ_k ,则在上图的构造下 σ_k 的变化情况如下:
 - σ_0 , σ_1 , σ_2 , σ_3 , σ_3 , σ_4 , σ_4 , σ_4 ,
 - σ_5 , σ_6 , σ_0 , σ_0 , σ_1 , σ_1 , σ_1 ,
 - σ_2 , σ_3 , σ_4 , σ_4 , σ_5 , σ_5 , σ_5 ,
 - σ_6 , σ_0 , σ_1 , σ_1 , σ_2 , σ_2 , σ_2 ,
 - σ_0 , σ_1 , σ_2 , σ_2 , σ_3 , σ_3 , σ_3 ,
 - σ_4 , σ_5 , σ_6 , σ_6 , σ_0 , σ_0 , ...
- $\{c_k\}$ 的周期为 $(2^3-1)^2=49$,在它的一个周期内,每个 σ_k 恰好出现7次

例(续)

- 设 $f_2(x)=1+x^2+x^3$ 为LFSR2的特征多项式,且初态为 $b_0=b_1=b_2=1$,则 $\{b_k\}=1,1,1,0,0,1,0,1,1,1...$

 σ_0 , σ_1 , σ_2 , σ_3 , σ_3 , σ_4 , σ_4 , σ_4 ,

- σ_5 , σ_6 , σ_0 , σ_0 , σ_1 , σ_1 , σ_1 ,
- σ_2 , σ_3 , σ_4 , σ_4 , σ_5 , σ_5 , σ_5 ,
- σ_6 , σ_0 , σ_1 , σ_1 , σ_2 , σ_2 , σ_2 ,
- σ_0 , σ_1 , σ_2 , σ_2 , σ_3 , σ_3 , σ_3 ,
- σ_4 , σ_5 , σ_6 , σ_6 , σ_0 , σ_0 , ...

状态 (b ₃ ,b ₂ ,b ₁)			输出
σ_0 1	1	1	1
$\sigma_1 \; 0$	1	1	1
$\sigma_2 \; 0$	0	1	1
σ_3 1	0	0	0
σ_4 0	1	0	0
σ_5 1	0	1	1
σ_6 1	1	0	0

• $\{c_k\}$ 的极小特征多项式为 $1+x^{14}+x^{21}$, 其线性复杂度为 $3(2^3-1)=21$, 下图是其线性等价生成器。

感谢聆听! xynie@uestc.edu.cn