Trident: Interference Avoidance in Multi-reader Backscatter Network via Frequency-space Division

Yang Zou, Xin Na, Xiuzhen Guo, Yimiao Sun, Yuan He*

School of Software and BNRist, Tsinghua University

Interference in the multi-reader network

The backscattered signals from a tag are likely to reach another reader and induce undesired interference.

Avoid interference in the time domain

These methods avoid interference in the time domain, however, at the cost of the **network throughput**.

Trident

Enable the tag to avoid interference in the frequency-space domain.

Challenge

Challenge 1

How to select the strongest band with limited power?

Challenge 2

How to generate reflection signals in a specific band?

Challenge 3

How to control the reflection power in a dynamic channel?

Challenge

Challenge 1

How to select the strongest band with limited power?

Challenge 2

How to generate reflection signals in a specific band?

Challenge 3

How to control the reflection power in a dynamic channel?

Signal extraction

Innovation: avoid using baseband signals and instead perform the signal extraction <u>directly in the RF domain</u>.

Comb-line filter

Comb-line filter: extract the signal whose frequency is near the resonance point.

Comb-line filter

Voltage tuning comb-line filter: Adjust the bias voltage to extract signals in different bands.

Signal comparison

Two-step comparison: extract signals from two bands, store the detection voltage of the previous one and compare it with the next one.

Challenge

Challenge 1

How to select the strongest band with limited power?

Challenge 2

How to generate reflection signals in a specific band?

Challenge 3

How to control the reflection power in a dynamic channel?

Frequency-selective backscatter

Apply <u>distinct RF operations</u> to signals in different frequency bands to achieve the frequency-selective reflection.

Challenge

Challenge 1

How to select the strongest band with limited power?

Challenge 2

How to generate reflection signals in a specific band?

Challenge 3

How to control the reflection power in a dynamic channel?

Reflection power adjuster

Reflection power adjuster: Detect excessively strong excitation and select proper loads to control the reflection strength.

Implementation

Power consumption

Implementation	Power
PCB prototype	30mW
ASIC simulation	16μW

Overall performance

Trident demonstrates a throughput improvement of **2.28x-3.18x** across various numbers of tags and reporting rates compared to the TDMA method.

Overall performance

Trident is more suitable for dense deployment, with a performance gain of **3.33x** when distance of readers is shorter (1.4m).

Frequency selectivity of reflector

Settings:

- 1. set the operating frequency bands of the tag;
- 2. measure the strength of the backscattered signal received by the reader in different bands.

The out-of-band suppression is more than **18dB**, which demonstrates the good frequency selectivity of Trident's reflector.

Accuracy of band selection

Trident can identify the frequency band with the strongest excitation signal with the accuracy of **95.08**%.

Throughput increment by adjusting power

Throughput of the interfered tag

Throughput of the interfering tag

Power adjustment can alleviate the interference significantly, while causing negligible throughput loss.

Conclusion

- We propose **Trident**, a backscatter tag design which avoids interference in the multi-reader backscatter network via **frequency-space division** to enhance the throughput of the whole network.
- The key innovation is the exploration of the <u>direct RF signal processing</u> on the tag, enabling the **signal extraction** and **frequency-selective backscatter.**
- Trident demonstrates **throughput improvement of 2.28x-3.18x** compared to the traditional TDMA-based scheme, without consuming more energy.

Trident

Thank You!

