

TO - 92 BIPOLAR TRANSISTORS TRANSISTOR(NPN)

FEATURES

* Power dissipation

Pcm: 625mW(Tamb=25°C)

* Collector current

0.6 A Ісм:

* Collector-base voltage $V_{(BR)CBO}$: 75 V

* Operating and storage junction temperature range T_J,Tstg: -55°C to+150°C

MECHANICAL DATA

* Case: Molded plastic

* Epoxy: UL 94V-O rate flame retardant

* Lead: MIL-STD-202E method 208C guaranteed

* Mounting position: Any * Weight: 0.008 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

MAXIMUM RATINGES (@ $T_A = 25^{\circ}C$ unless otherwise noted)

RATINGS	SYMBOL	VALUE	UNITS
Max. Steady State Power Dissipation ⁽¹⁾ @TA=25°C Derate above 25°C	Pb	625	mW
Max. Operating Temperature Range	TJ	150	°C
Storage Temperature Range	Тѕтс	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (@ $T_A = 25^{\circ}C$ unless otherwise noted)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	
Thermal Resistance Junction to Ambient	R ĐA	-	-	200	°C/W	l

Notes: 1. Alumina=0.4*0.3*0.024in.99.5% alumina

2. "Fully ROHS Compliant", "100% Sn plating (Pb-free)".

2011-2

ELECTRICAL CHARACTERISTICS (@TA=25°C unless otherwise noted)

	Chatacteristic	Symbol	Min	Max	Unit
OFF CHARA	CTERISTICS	•	•		
Collector-Emi	tter Breakdown Voltage (I _C = 10mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector-Bas	e Breakdown Voltage (I _C = 10u Adc, I _E = 0)	V _{(BR)CBO}	75	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10u Adc, I _C = 0)		V _{(BR)EBO}	6.0	-	Vdc
Collector Cut	off Current (V _{CE} = 60Vdc,V _{EB(off)} = 3.0Vdc	I _{CEX}	-	0.01	uAdc
Collector Cut	off Current (V _{CB} = 60Vdc, I _E = 0)	1	-	0.01	
	$(V_{CB}= 60Vdc, I_{E}= 0, TA= 150^{\circ}C)$	ICBO	-	10	uAdc
Emitter Cutof	f Current (V _{EB} = 3.0Vdc, I _C = 0)	I _{EBO}	-	0.01	uAdc
Base Cutoff (Current (V _{CE} = 60Vdc, V _{EB(off)} = 3.0Vdc	I _{BL}	-	20	nAdc
ON CHARAC	TERISTICS				
DC Current G	ain (I _C = 10mAdc, V _{CE} = 10Vdc, TA= -55°C)		35	-	-
	(I _C = 500mAdc, V _{CE} = 10Vdc) (1)	hFE	40	-	
Collector-Emi	tter Saturation Voltage (1) (I _C = 150mAdc, I _B = 15mAdc)	1	-	0.3	.,,
	$(I_C = 500 \text{mAdc}, I_B = 50 \text{mAdc})$	V _{CE(sat)}	-	1.0	Vdc
Base-Emitter	Saturation Voltage (1) (I _C = 150mAdc, I _B = 15mAdc)		0.6	1.2	Vdc
	$(I_C = 500 \text{mAdc}, I_B = 50 \text{mAdc})$	V _{BE(sat)}	-	2.0	
SMALL-SIGN	IAL CHARACTERISTICS				
Current-Gain-	Bandwidth Product (2) (I _C = 20mAdc, V _{CE} = 20Vdc, f= 100MHz)	f _T	300	-	MHz
Input Capacit	ance (V _{EB} =0.5Vdc, I _C = 0, f= 1.0MHz)	C _{ibo}	-	25	pF
Input Impeda	nce (I _C = 1.0mAdc, V _{CE} =10Vdc, f=1.0kHz)	h _{ie}	2.0	8.0	kohms
	(I _C = 10mAdc, V _{CE} =10Vdc, f=1.0kHz)		0.25	1.25	
Voltage Feed	back Ratio (I_C = 1.0mAdc, V_{CE} = 10Vdc, f= 1.0kHz)	_	-	8.0	X 10 ⁻⁴
	$(I_C= 10 \text{mAdc}, V_{CE}=10 \text{Vdc}, f= 1.0 \text{kHz})$	h _{re}	-	4.0	X 10
Small-Signal	Current Gain (I _C = 1.0mAdc, V _{CE} = 10Vdc, f= 1.0kHz)	_	50	300	
	$(I_C = 10 \text{mAdc}, V_{CE} = 10 \text{Vdc}, f = 1.0 \text{kHz})$	h _{fe}	75	375	-
Output Admit	tance (I _C = 1.0mAdc, V _{CE} = 10Vdc, f= 1.0kHz)		5.0	35	
	$(I_C = 10 \text{mAdc}, V_{CE} = 10 \text{Vdc}, f = 1.0 \text{kHz})$	h _{oe}	25	200	umhos
Collector Bas	e Time Constant (I _E = 20mAdc, V _{CB} = 20Vdc, f= 31.8MHz)	rb,Cc	-	150	ps
Noise Figure	(I _C = 100u Adc, V _{CE} = 10Vdc, R _S = 1.0kohms , f= 1.0kHz)	NF	-	4.0	dB
SWITCHING	CHARACTERISTICS				
Delay Time	Time (Voc= 30Vdc Vo= 40= 0.5Vdc L= 450mAdc L= = 45mAdc)	t _d	-	10	n-
Rise Time	(V _{CC} = 30Vdc, V _{BE(off)} = -0.5Vdc, I _C = 150mAdc, I _{B1} = 15mAdc)	t _r	_	25	ns
Storage Time	0/ = 20Vd= 1 = 450=Ad= 1 = 1 = 450=Ad=	t _s	-	225	
Fall Time	(V _{CC} = 30Vdc, I _C = 150mAdc, I _{B1} = I _{B2} = 15mAdc)	t _f	-	60	ns
	l .	<u> </u>	<u> </u>	<u> </u>	<u>I</u>

NOTES: 1. Pulse Test: Pulse Width≤300ms,Duty Cycle≤2.0%
2. f_T is defined as the frequency at which |h_{fe}| extrapolates to unity

RATING AND CHARACTERISTICS CURVES (PN2222A)

Figure 1. DC Current Gain

Figure 2. Collector Saturation Region

500

300 200 $t_s = t_s - 1/8t_f$ $t_s = t_s - 1/8t_f$

Figure 4.Turn-Off Time

RATING AND CHARACTERISTICS CURVES (PN2222A)

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

