Introduction to Machine Learning Feature Generation

Andres Mendez-Vazquez

June 14, 2020

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
 - Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
 - Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

What do we want?

What

• Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

What do we want?

What

• Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Our Approach

• We want to "squeeze" in a relatively small number of features, leading to a reduction of the necessary feature space dimension.

 Thus removing information redundancies - Usually produced and the measurement

What do we want?

What

• Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Our Approach

• We want to "squeeze" in a relatively small number of features, leading to a reduction of the necessary feature space dimension.

Properties

• Thus removing information redundancies - Usually produced and the measurement.

What Methods we will see?

Fisher Linear Discriminant

- Squeezing to the maximum.
- From Many to One Dimension

- Not so much squeezing
- You are willing to lose some information

What Methods we will see?

Fisher Linear Discriminant

- Squeezing to the maximum.
- 2 From Many to One Dimension

Principal Component Analysis

- Not so much squeezing
- 2 You are willing to lose some information

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
 - Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

nething No

However, moving and rotating the line around might result in an orientation for which the projected samples are well separated.

t is a discriminant analysis seeking directions that are efficient for discriminating binary classification problem.

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

Something Notable

However, moving and rotating the line around might result in an orientation for which the projected samples are well separated.

t is a discriminant analysis seeking directions that are efficient for discriminating binary classification problem.

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

Something Notable

However, moving and rotating the line around might result in an orientation for which the projected samples are well separated.

Fisher linear discriminant (FLD)

It is a discriminant analysis seeking directions that are efficient for discriminating binary classification problem.

Example

This is actually comming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have

- N d-dimensional samples $x_1, x_2, ..., x_N$
- N_i is the number of samples in class C_i for i=1,2.

$$y_i = oldsymbol{w}^T oldsymbol{x}_i$$

(1)

This is actually comming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

- N d-dimensional samples $x_1, x_2, ..., x_N$
- N_i is the number of samples in class C_i for i=1,2.

$$y_i = \boldsymbol{w}^T \boldsymbol{x}_i$$

This is actually comming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

- N d-dimensional samples $x_1, x_2, ..., x_N$
- N_i is the number of samples in class C_i for i=1,2.

Then, we ask for the projection of each x_i into the line by means of

$$y_i = \boldsymbol{w}^T \boldsymbol{x}_i \tag{1}$$

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
 - Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Use the mean of each Class

Then

Select $oldsymbol{w}$ such that class separation is maximized

- vvc their define the mean sa
- $m{0} \ C_2 \Rightarrow m{m}_2 = rac{1}{N_2} \sum_{i=1}^{N_2} m{x}_i$

Ok!!! This is giving us a mee

Thus, we want to maximize the distance the projected means

$$m_1 - m_2 = \boldsymbol{w}^T \left(\boldsymbol{m}_1 - \boldsymbol{m}_2 \right)$$

where $m_k = {m w}^T {m m}_k$ for k=1,2.

Use the mean of each Class

Then

Select $oldsymbol{w}$ such that class separation is maximized

We then define the mean sample for ecah class

- **1** $C_1 \Rightarrow m_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} x_i$
- $\mathbf{Q} \ C_2 \Rightarrow m_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_i$

Ok!!! This is giving us a measure of di

Thus, we want to maximize the distance the projected means

$$m_1-m_2=oldsymbol{w}^T\left(oldsymbol{m}_1-oldsymbol{m}_2
ight)$$

where $m_k = {m w}^T {m m}_k$ for k=1,2.

< □ > < □ > < □ > < □ > < □ > □ ≥ < □ > □ ≥

Use the mean of each Class

Then

Select w such that class separation is maximized

We then define the mean sample for ecah class

- **1** $C_1 \Rightarrow m_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} x_i$
- $C_2 \Rightarrow m_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_i$

Ok!!! This is giving us a measure of distance

Thus, we want to maximize the distance the projected means:

$$m_1 - m_2 = \boldsymbol{w}^T \left(\boldsymbol{m}_1 - \boldsymbol{m}_2 \right) \tag{2}$$

where $m_k = \boldsymbol{w}^T \boldsymbol{m}_k$ for k = 1, 2.

However

We could simply seek

$$\max \mathbf{w}^{T} (\mathbf{m}_{1} - \mathbf{m}_{2})$$

$$s.t. \sum_{i=1}^{d} w_{i} = 1$$

After all

We do not care about the magnitude of $oldsymbol{w}$.

However

We could simply seek

$$\max \mathbf{w}^{T} (\mathbf{m}_{1} - \mathbf{m}_{2})$$

$$s.t. \sum_{i=1}^{d} w_{i} = 1$$

$$s.t. \sum_{i=1}^{\infty} w_i = 1$$

After all

We do not care about the magnitude of w.

Example

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
 - Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Fixing the Problem

To obtain good separation of the projected data

The difference between the means should be large relative to some measure of the standard deviations for each class.

 $s_k^2 = \sum_{x_i \in C_k} (w^T x_i - m_k)^2 = \sum_{y_i = w^T x_i \in C_k} (y_i - m_k)^2$ (

 $s_1^2 + s_2^2 (4$

Fixing the Problem

To obtain good separation of the projected data

The difference between the means should be large relative to some measure of the standard deviations for each class.

We define a SCATTER measure (Based in the Sample Variance)

$$s_k^2 = \sum_{x_i \in C_k} (\mathbf{w}^T \mathbf{x}_i - m_k)^2 = \sum_{y_i = \mathbf{w}^T \mathbf{x}_i \in C_k} (y_i - m_k)^2$$
 (3)

Fixing the Problem

To obtain good separation of the projected data

The difference between the means should be large relative to some measure of the standard deviations for each class.

We define a SCATTER measure (Based in the Sample Variance)

$$s_k^2 = \sum_{\boldsymbol{x}_i \in C_k} (\boldsymbol{w}^T \boldsymbol{x}_i - m_k)^2 = \sum_{y_i = \boldsymbol{w}^T \boldsymbol{x}_i \in C_k} (y_i - m_k)^2$$
 (3)

We define then within-class variance for the whole data

$$s_1^2 + s_2^2$$
 (4)

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
 - Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Finally, a Cost Function

The between-class variance

$$(m_1 - m_2)^2 \tag{5}$$

ne His

within-class variance within-class variance

(6)

inall

$$J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2} \tag{7}$$

Finally, a Cost Function

The between-class variance

$$(m_1 - m_2)^2$$
 (5)

The Fisher criterion

between-class variance
within-class variance

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2} \tag{7}$$

Finally, a Cost Function

The between-class variance

$$(m_1 - m_2)^2 \tag{5}$$

The Fisher criterion

between-class variance within-class variance

(6)

Finally

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

(7)

We use a transformation to simplify our life

First

$$J(w) = \frac{\left(w^{T} m_{1} - w^{T} m_{2}\right)^{2}}{\sum_{y_{i} = w^{T} x_{i} \in C_{1}} (y_{i} - m_{k})^{2} + \sum_{y_{i} = w^{T} x_{i} \in C_{2}} (y_{i} - m_{k})^{2}}$$

Second

$$\left(w^Tm_1-w^Tm_2
ight)\left(w^Tm_1-w^Tm_2
ight)^{ op}$$

 $\sum\nolimits_{y_i = w^T x_i \in C_1} {\left({w^T x_i - m_k } \right)\left({w^T x_i - m_k } \right)^2} + \sum\nolimits_{y_i = w^T x_i \in C_2} {\left({w^T x_i - m_k } \right)^2}$

$$w^{T}\left(m_{1}-m_{2}
ight)\left(w^{T}\left(m_{1}-m_{2}
ight)
ight)^{T}$$

 $\sum\nolimits_{y_{i}=w^{T}x_{i}\in C_{1}}w^{T}\left(x_{i}-m_{1}\right)\left(w^{T}\left(x_{i}-m_{1}\right)\right)^{T}+\sum\nolimits_{y_{i}=w^{T}x_{i}\in C_{2}}w^{T}\left(x_{i}-m_{2}\right)^{\prime}$

We use a transformation to simplify our life

First

$$J(\mathbf{w}) = \frac{\left(\mathbf{w}^{T} \mathbf{m}_{1} - \mathbf{w}^{T} \mathbf{m}_{2}\right)^{2}}{\sum_{y_{i} = \mathbf{w}^{T} \mathbf{x}_{i} \in C_{1}} (y_{i} - m_{k})^{2} + \sum_{y_{i} = \mathbf{w}^{T} \mathbf{x}_{i} \in C_{2}} (y_{i} - m_{k})^{2}}$$

Second

$$= \frac{\left(\boldsymbol{w}^{T}\boldsymbol{m}_{1} - \boldsymbol{w}^{T}\boldsymbol{m}_{2}\right)\left(\boldsymbol{w}^{T}\boldsymbol{m}_{1} - \boldsymbol{w}^{T}\boldsymbol{m}_{2}\right)^{T}}{\sum_{y_{i}=\boldsymbol{w}^{T}\boldsymbol{x}_{i}\in C_{1}}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - \boldsymbol{m}_{k}\right)\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - \boldsymbol{m}_{k}\right)^{T} + \sum_{y_{i}=\boldsymbol{w}^{T}\boldsymbol{x}_{i}\in C_{2}}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - \boldsymbol{m}_{k}\right)\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - \boldsymbol{m}_{k}\right)^{T}}$$

 $w^{T}\left(m_{1}-m_{2}
ight)\left(w^{T}\left(m_{1}-m_{2}
ight)
ight)^{T}$

 $\sum\nolimits_{{y_i} = {w^T}{x_i} \in {C_1}} {{w^T}\left({{x_i} - {m_1}} \right)\left({{w^T}\left({{x_i} - {m_1}} \right)} \right)^T} + \sum\nolimits_{{y_i} = {w^T}{x_i} \in {C_2}} {{w^T}\left({{x_i} - {m_2}} \right)\left({{w^T}\left({{x_i} - {m_2}} \right)} \right)} + \sum\nolimits_{{y_i} = {w^T}{x_i} \in {C_2}} {{w^T}\left({{x_i} - {m_2}} \right)} \right)$

We use a transformation to simplify our life

First

$$J(w) = \frac{\left(w^{T} m_{1} - w^{T} m_{2}\right)^{2}}{\sum_{y_{i} = w^{T} x_{i} \in C_{1}} (y_{i} - m_{k})^{2} + \sum_{y_{i} = w^{T} x_{i} \in C_{2}} (y_{i} - m_{k})^{2}}$$

Second

$$= \frac{\left(\boldsymbol{w}^{T}\boldsymbol{m}_{1} - \boldsymbol{w}^{T}\boldsymbol{m}_{2}\right)\left(\boldsymbol{w}^{T}\boldsymbol{m}_{1} - \boldsymbol{w}^{T}\boldsymbol{m}_{2}\right)^{T}}{\sum_{y_{i}=\boldsymbol{w}^{T}\boldsymbol{x}_{i}\in C_{1}}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - m_{k}\right)\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - m_{k}\right)^{T} + \sum_{y_{i}=\boldsymbol{w}^{T}\boldsymbol{x}_{i}\in C_{2}}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - m_{k}\right)\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - m_{k}\right)^{T}}$$

Third

$$= \frac{\boldsymbol{w}^{T} \left(\boldsymbol{m}_{1} - \boldsymbol{m}_{2}\right) \left(\boldsymbol{w}^{T} \left(\boldsymbol{m}_{1} - \boldsymbol{m}_{2}\right)\right)^{T}}{\sum_{y_{i} = \boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{1}} \boldsymbol{w}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{m}_{1}\right) \left(\boldsymbol{w}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{m}_{1}\right)\right)^{T} + \sum_{y_{i} = \boldsymbol{w}^{T} \boldsymbol{x}_{i} \in C_{2}} \boldsymbol{w}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{m}_{2}\right) \left(\boldsymbol{w}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{m}_{2}\right)\right)^{T}}$$

Transformation

Fourth

$$=\frac{w^{T}\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{T}w}{\sum\nolimits_{y_{i}=\boldsymbol{w}^{T}\boldsymbol{x}_{i}\in C_{1}}w^{T}\left(\boldsymbol{x}_{i}-m_{1}\right)\left(\boldsymbol{x}_{i}-m_{1}\right)^{T}w+\sum\nolimits_{y_{i}=\boldsymbol{w}^{T}\boldsymbol{x}_{i}\in C_{2}}w^{T}\left(\boldsymbol{x}_{i}-m_{2}\right)\left(\boldsymbol{x}_{i}-m_{2}\right)^{T}w}$$

$$w^{\perp} (m_1 - m_2) (m_1 - m_2)^{\perp} w$$

$$w^T \left[\sum_{y_i = w^T x_i \in C_1} (x_i - m_1) (x_i - m_1)^T + \sum_{y_i = w^T x_i \in C_2} (x_i - m_2) (x_i - m_2)^T \right]$$

$$I(w) = \frac{w^T S_B w}{w^T S_- w} \tag{8}$$

Transformation

Fourth

$$=\frac{w^{T}\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{T}w}{\sum\nolimits_{y_{i}=w^{T}x_{i}\in C_{1}}w^{T}\left(x_{i}-m_{1}\right)\left(x_{i}-m_{1}\right)^{T}w+\sum\nolimits_{y_{i}=w^{T}x_{i}\in C_{2}}w^{T}\left(x_{i}-m_{2}\right)\left(x_{i}-m_{2}\right)^{T}w}$$

Fifth

$$-\frac{w^{T}\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{T}w}{w^{T}\left[\sum_{y_{i}=\boldsymbol{w}^{T}\boldsymbol{x}_{i}\in C_{1}}\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{1}\right)^{T}+\sum_{y_{i}=\boldsymbol{w}^{T}\boldsymbol{x}_{i}\in C_{2}}\left(\boldsymbol{x}_{i}-m_{2}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{m}_{2}\right)^{T}\right]w}$$

$$J(w) = \frac{w^T S_B w}{w^T S_{-w}} \tag{8}$$

Transformation

Fourth

$$=\frac{w^T\left(m_1-m_2\right)\left(m_1-m_2\right)^Tw}{\sum\nolimits_{y_i=w^Tx_i\in C_1}w^T\left(x_i-m_1\right)\left(x_i-m_1\right)^Tw+\sum\nolimits_{y_i=w^Tx_i\in C_2}w^T\left(x_i-m_2\right)\left(x_i-m_2\right)^Tw}$$

Fifth

$$\frac{w^{T}\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{T}w}{w^{T}\left[\sum_{y_{i}=w^{T}x_{i}\in C_{1}}\left(x_{i}-m_{1}\right)\left(x_{i}-m_{1}\right)^{T}+\sum_{y_{i}=w^{T}x_{i}\in C_{2}}\left(x_{i}-m_{2}\right)\left(x_{i}-m_{2}\right)^{T}\right]w}$$

Now Rename

$$J(w) = \frac{w^T S_B w}{w^T S_{m} w} \tag{8}$$

Thus

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \frac{d\left(\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}\right) \left(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w}\right)^{-1}}{d\boldsymbol{w}} = 0$$
 (9)

Lhen

$$\frac{dJ(w)}{dw} = (S_B w + S_B^T w) (w^T S_w w)^{-1} - (w^T S_B w) (w^T S_w w)^{-2} (S_w w + S_w^T w) = 0$$
(10)

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \frac{\boldsymbol{S}_B}{(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w})} - \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w} \boldsymbol{S}_w \boldsymbol{w}}{(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w})^2} = 0$$
(11)

Thus

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \frac{d\left(\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}\right) \left(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w}\right)^{-1}}{d\boldsymbol{w}} = 0$$
 (9)

Then

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \left(\boldsymbol{S}_{B}\boldsymbol{w} + \boldsymbol{S}_{B}^{T}\boldsymbol{w}\right)\left(\boldsymbol{w}^{T}\boldsymbol{S}_{w}\boldsymbol{w}\right)^{-1} - \left(\boldsymbol{w}^{T}\boldsymbol{S}_{B}\boldsymbol{w}\right)\left(\boldsymbol{w}^{T}\boldsymbol{S}_{w}\boldsymbol{w}\right)^{-2}\left(\boldsymbol{S}_{w}\boldsymbol{w} + \boldsymbol{S}_{w}^{T}\boldsymbol{w}\right) = 0$$
(10)

$$\frac{dJ(\mathbf{w})}{d\mathbf{w}} = \frac{S_B}{(\mathbf{w}^T S_w \mathbf{w})} - \frac{\mathbf{w}^T S_B \mathbf{w} S_w \mathbf{w}}{(\mathbf{w}^T S_w \mathbf{w})^2} = 0 \tag{11}$$

Thus

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \frac{d\left(\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}\right) \left(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w}\right)^{-1}}{d\boldsymbol{w}} = 0$$
 (9)

Then

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \left(\boldsymbol{S}_{B}\boldsymbol{w} + \boldsymbol{S}_{B}^{T}\boldsymbol{w}\right)\left(\boldsymbol{w}^{T}\boldsymbol{S}_{w}\boldsymbol{w}\right)^{-1} - \left(\boldsymbol{w}^{T}\boldsymbol{S}_{B}\boldsymbol{w}\right)\left(\boldsymbol{w}^{T}\boldsymbol{S}_{w}\boldsymbol{w}\right)^{-2}\left(\boldsymbol{S}_{w}\boldsymbol{w} + \boldsymbol{S}_{w}^{T}\boldsymbol{w}\right) = 0$$
(10)

Now because the symmetry in $oldsymbol{S}_B$ and $oldsymbol{S}_w$

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \frac{\boldsymbol{S}_B}{\left(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w}\right)} - \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w} \boldsymbol{S}_w \boldsymbol{w}}{\left(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w}\right)^2} = 0$$
(11)

Thus

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \frac{\boldsymbol{S}_B}{(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w})} - \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w} \boldsymbol{S}_w \boldsymbol{w}}{(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w})^2} = 0$$
(12)

Then

$$\left(w^{T}S_{w}w\right)S_{B}w = \left(w^{T}S_{B}w\right)S_{w}w \tag{13}$$

Thus

$$\frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} = \frac{\boldsymbol{S}_B}{(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w})} - \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w} \boldsymbol{S}_w \boldsymbol{w}}{(\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w})^2} = 0$$
(12)

Then

$$\left(\boldsymbol{w}^{T}\boldsymbol{S}_{w}\boldsymbol{w}\right)\boldsymbol{S}_{B}\boldsymbol{w} = \left(\boldsymbol{w}^{T}\boldsymbol{S}_{B}\boldsymbol{w}\right)\boldsymbol{S}_{w}\boldsymbol{w} \tag{13}$$

First

$$S_B w = (m_1 - m_2) (m_1 - m_2)^T w = \alpha (m_1 - m_2)$$
 (14)

Where $lpha = (m_1 - m_2)^+ \, w$ is a simple constantt

It means that $S_B w$ is always in the direction $m_1 - m_2!!!$

In additi

 $oldsymbol{w}^T oldsymbol{S}_w oldsymbol{w}$ and $oldsymbol{w}^T oldsymbol{S}_B oldsymbol{w}$ are constants

First

$$S_B w = (m_1 - m_2) (m_1 - m_2)^T w = \alpha (m_1 - m_2)$$
 (14)

Where $\alpha = (m{m}_1 - m{m}_2)^T m{w}$ is a simple constant

It means that $\boldsymbol{S}_B \boldsymbol{w}$ is always in the direction $\boldsymbol{m}_1 - \boldsymbol{m}_2!!!$

 $oldsymbol{w}^T oldsymbol{S}_w oldsymbol{w}$ and $oldsymbol{w}^T oldsymbol{S}_B oldsymbol{w}$ are constants

First

$$S_B w = (m_1 - m_2) (m_1 - m_2)^T w = \alpha (m_1 - m_2)$$
 (14)

Where $lpha = (m{m}_1 - m{m}_2)^T m{w}$ is a simple constant

It means that $S_B w$ is always in the direction $m_1 - m_2!!!$

In addition

 $\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w}$ and $\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}$ are constants

Finally

$$oldsymbol{S}_w oldsymbol{w} \propto (oldsymbol{m}_1 - oldsymbol{m}_2) \Rightarrow oldsymbol{w} \propto oldsymbol{S}_w^{-1} \left(oldsymbol{m}_1 - oldsymbol{m}_2
ight)$$

(15)

Finally

$$S_w \mathbf{w} \propto (\mathbf{m}_1 - \mathbf{m}_2) \Rightarrow \mathbf{w} \propto S_w^{-1} (\mathbf{m}_1 - \mathbf{m}_2)$$
 (15)

Once the data is transformed into y_i

• Use a threshold $y_0 \Rightarrow x \in C_1$ iff $y\left(x\right) \geq y_0$ or $x \in C_2$ iff $y\left(x\right) < y_0$

Finally

$$S_w \mathbf{w} \propto (\mathbf{m}_1 - \mathbf{m}_2) \Rightarrow \mathbf{w} \propto S_w^{-1} (\mathbf{m}_1 - \mathbf{m}_2)$$
 (15)

Once the data is transformed into y_i

- Use a threshold $y_0 \Rightarrow x \in C_1$ iff $y(x) \ge y_0$ or $x \in C_2$ iff $y(x) < y_0$
- Or ML with a Gussian can be used to classify the new transformed data using a Naive Bayes (Central Limit Theorem and $y = w^T x$ sum of random variables).

Please

Your Reading Material, it is about the Multiclass

4.1.6 Fisher's discriminant for multiple classes AT "Pattern Recognition" by Bishop

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Did you noticed?

That Rotations really do not exist

• Actually, they are mappings or projections in linear algebra

To obtain better features

 For example, Principal Components or Singular Value Decomposition's

Did you noticed?

That Rotations really do not exist

Actually, they are mappings or projections in linear algebra

Thus, Can we get more powerful mappings?

To obtain better features

 For example, Principal Components or Singular Value Decomposition's

Did you noticed?

That Rotations really do not exist

Actually, they are mappings or projections in linear algebra

Thus, Can we get more powerful mappings?

To obtain better features

Clearly... Yes

 For example, Principal Components or Singular Value Decomposition's

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Also Known as Karhunen-Loeve Transform

Setup

• Consider a data set of observations $\{x_n\}$ with n=1,2,...,N and $x_n \in R^d$.

Project data onto space with dimensionality $m < d \ (\mbox{We assume} \ m$ is given)

Also Known as Karhunen-Loeve Transform

Setup

• Consider a data set of observations $\{ {m x}_n \}$ with n=1,2,...,N and ${m x}_{m n} \in R^d.$

Goal

Project data onto space with dimensionality $m < d \mbox{ (We assume } m \mbox{ is given)}$

Dimensional Variance

Remember the Variance Sample in $\ensuremath{\mathbb{R}}$

$$VAR(X) = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}$$
 (16)

$$COV(x,y) = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y})}{N-1}$$
(17)

Dimensional Variance

Remember the Variance Sample in ${\mathbb R}$

$$VAR(X) = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}$$
 (16)

You can do the same in the case of two variables X and Y

$$COV(x,y) = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y})}{N-1}$$
(17)

Now, Define

Given the data

$$x_1, x_2, ..., x_N$$
 (18)

where x_i is a column vector

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{19}$$

$$x_1 - \overline{x}, x_2 - \overline{x}, ..., x_N - \overline{x}$$
 (20)

Now, Define

Given the data

$$x_1, x_2, ..., x_N$$
 (18)

where x_i is a column vector

Construct the sample mean

$$\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i \tag{19}$$

$$x_1 - \overline{x}, x_2 - \overline{x}, ..., x_N - \overline{x}$$
 (20)

Now, Define

Given the data

$$x_1, x_2, ..., x_N$$
 (18)

where x_i is a column vector

Construct the sample mean

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{19}$$

Center data

$$x_1 - \overline{x}, x_2 - \overline{x}, ..., x_N - \overline{x}$$
 (20)

Build the Sample Mean

The Covariance Matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
(21)

- The ijth value of S is equivalent to σ_{ij}^2
- The *ii*th value of S is equivalent to σ_{ii}^2 .

Build the Sample Mean

The Covariance Matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
 (21)

Properties

- The ijth value of S is equivalent to σ_{ij}^2 .
- ② The *ii*th value of S is equivalent to σ_{ii}^2 .

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Using S to Project Data

For this we use a u_1

ullet with $oldsymbol{u}_1^Toldsymbol{u}_1=1,$ an orthonormal vector

• What is the Sample Variance of the Projected Data?

Using S to Project Data

For this we use a $oldsymbol{u}_1$

• with $\boldsymbol{u}_1^T \boldsymbol{u}_1 = 1$, an orthonormal vector

Question

• What is the Sample Variance of the Projected Data?

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Thus we have

Variance of the projected data

$$\frac{1}{N-1} \sum_{i=1}^{N} \left[\boldsymbol{u}_{1} \boldsymbol{x}_{i} - \boldsymbol{u}_{1} \overline{\boldsymbol{x}} \right] = \boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1}$$
 (22)

$$\boldsymbol{u}_{1}^{T}S\boldsymbol{u}_{1} + \lambda_{1}\left(1 - \boldsymbol{u}_{1}^{T}\boldsymbol{u}_{1}\right) \tag{23}$$

Thus we have

Variance of the projected data

$$\frac{1}{N-1} \sum_{i=1}^{N} \left[\boldsymbol{u}_{1} \boldsymbol{x}_{i} - \boldsymbol{u}_{1} \overline{\boldsymbol{x}} \right] = \boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1}$$
 (22)

Use Lagrange Multipliers to Maximize

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 + \lambda_1 \left(1 - \boldsymbol{u}_1^T \boldsymbol{u}_1 \right) \tag{23}$$

Derive by \boldsymbol{u}_1

We get

$$S\boldsymbol{u}_1 = \lambda_1 \boldsymbol{u}_1 \tag{24}$$

Then

 u_1 is an eigenvector of S

If we left-multiply by a

$$(25)$$

Derive by \boldsymbol{u}_1

We get

$$S\boldsymbol{u}_1 = \lambda_1 \boldsymbol{u}_1 \tag{24}$$

Then

 \boldsymbol{u}_1 is an eigenvector of S.

$$u_1^T S u_1 = \lambda_1$$

(25)

Derive by \boldsymbol{u}_1

We get

$$S\boldsymbol{u}_1 = \lambda_1 \boldsymbol{u}_1 \tag{24}$$

Then

 u_1 is an eigenvector of S.

If we left-multiply by $oldsymbol{u}_1$

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 = \lambda_1$$

(25)

What about the second eigenvector $oldsymbol{u}_2$

We have the following optimization problem

$$\max \mathbf{u}_2^T S \mathbf{u}_2$$
s.t. $\mathbf{u}_2^T \mathbf{u}_2 = 1$
 $\mathbf{u}_2^T \mathbf{u}_1 = 0$

Lagrangian

$$L\left(\boldsymbol{u}_{2},\lambda_{1},\lambda_{2}\right)=\boldsymbol{u}_{2}^{T}S\boldsymbol{u}_{2}-\lambda_{1}\left(\boldsymbol{u}_{2}^{T}\boldsymbol{u}_{2}-1\right)-\lambda_{2}\left(\boldsymbol{u}_{2}^{T}\boldsymbol{u}_{1}-0\right)$$

What about the second eigenvector $oldsymbol{u}_2$

We have the following optimization problem

$$\max \ \mathbf{u}_2^T S \mathbf{u}_2$$
s.t.
$$\mathbf{u}_2^T \mathbf{u}_2 = 1$$

$$\mathbf{u}_2^T \mathbf{u}_1 = 0$$

Lagrangian

$$L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right) = \boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2} - \lambda_{1} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2} - 1\right) - \lambda_{2} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1} - 0\right)$$

Explanation

First the constrained minimization

• We want to to maximize $\boldsymbol{u}_2^T S \boldsymbol{u}_2$

Explanation

First the constrained minimization

ullet We want to to maximize $oldsymbol{u}_2^T S oldsymbol{u}_2$

Given that the second eigenvector is orthonormal

• We have then $\boldsymbol{u}_2^T\boldsymbol{u}_2=1$

ullet The covariance goes to zero $cov\left(u_1,u_2
ight)=u_2^TSu_1=u_2\lambda_1u_1=\lambda_1u_1^Tu_2=0$

Explanation

First the constrained minimization

ullet We want to to maximize $oldsymbol{u}_2^T S oldsymbol{u}_2$

Given that the second eigenvector is orthonormal

• We have then $\boldsymbol{u}_2^T\boldsymbol{u}_2=1$

Under orthonormal vectors

• The covariance goes to zero

$$cov(u_1, u_2) = u_2^T S u_1 = u_2 \lambda_1 u_1 = \lambda_1 u_1^T u_2 = 0$$

Meaning

The PCA's are perpendicular

$$L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right) = \boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2} - \lambda_{1} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2} - 1\right) - \lambda_{2} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1} - 0\right)$$

The the

$$\frac{\partial L(u_2, \lambda_1, \lambda_2)}{\partial u_2} = Su_2 - \lambda_1 u_2 - \lambda_2 u_1 = 0$$

Then, we left multiply u_1

$$oldsymbol{u}_1^T S oldsymbol{u}_2 - \lambda_1 oldsymbol{u}_1^T oldsymbol{u}_2 - \lambda_2 oldsymbol{u}_1^T oldsymbol{u}_1 = 0$$

Meaning

The PCA's are perpendicular

$$L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right) = \boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2} - \lambda_{1} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2} - 1\right) - \lambda_{2} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1} - 0\right)$$

The the derivative with respect to u_2

$$\frac{\partial L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right)}{\partial \boldsymbol{u}_{2}} = S\boldsymbol{u}_{2} - \lambda_{1}\boldsymbol{u}_{2} - \lambda_{2}\boldsymbol{u}_{1} = 0$$

Then, we left multiply

 $u_1^t S u_2 - \lambda_1 u_1^t u_2 - \lambda_2 u_1^t u_1 = 0$

Meaning

The PCA's are perpendicular

$$L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right) = \boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2} - \lambda_{1} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2} - 1\right) - \lambda_{2} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1} - 0\right)$$

The the derivative with respect to $oldsymbol{u}_2$

$$\frac{\partial L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right)}{\partial \boldsymbol{u}_{2}} = S\boldsymbol{u}_{2} - \lambda_{1}\boldsymbol{u}_{2} - \lambda_{2}\boldsymbol{u}_{1} = 0$$

Then, we left multiply u_1

$$\boldsymbol{u}_1^T S \boldsymbol{u}_2 - \lambda_1 \boldsymbol{u}_1^T \boldsymbol{u}_2 - \lambda_2 \boldsymbol{u}_1^T \boldsymbol{u}_1 = 0$$

Then, we have that

Something Notable

$$0 - 0 - \lambda_2 = 0$$

$$Su_2 - \lambda_2 u_2 = 0$$

ullet u_2 is the eigenvector of S with second largest eigenvalue λ_2 .

Then, we have that

Something Notable

$$0 - 0 - \lambda_2 = 0$$

We have

$$S\boldsymbol{u}_2 - \lambda_2 \boldsymbol{u}_2 = 0$$

ullet u_2 is the eigenvector of S with second largest eigenvalue λ_2

Then, we have that

Something Notable

$$0 - 0 - \lambda_2 = 0$$

We have

$$S\boldsymbol{u}_2 - \lambda_2 \boldsymbol{u}_2 = 0$$

Implying

• u_2 is the eigenvector of S with second largest eigenvalue λ_2 .

Thus

Variance will be the maximum when

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 = \lambda_1 \tag{26}$$

is set to the largest eigenvalue. Also know as the First Principal Component

It is possible for M-dimensional space to define M eigenvectors $u_1, u_2, ..., u_M$ of the data covariance S corresponding to $\lambda_1, \lambda_2, ..., \lambda_M$ that maximize the variance of the projected data.

- \bigcirc Full eigenvector decomposition $O(d^3)$
- \bigcirc Power Method $O(Md^2)$ "Golub and Van Loan. 1996)"
- Use the Expectation Maximization Algorithm

Thus

Variance will be the maximum when

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 = \lambda_1 \tag{26}$$

is set to the largest eigenvalue. Also know as the First Principal Component

By Induction

It is possible for M-dimensional space to define M eigenvectors $u_1, u_2, ..., u_M$ of the data covariance S corresponding to $\lambda_1, \lambda_2, ..., \lambda_M$ that maximize the variance of the projected data.

- \bigcirc Full eigenvector decomposition $O(d^3)$
- O Power Method $O\left(Md^2\right)$ "Golub and Van Loan, 1996)"
- Use the Expectation Maximization Algorithm

Thus

Variance will be the maximum when

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 = \lambda_1 \tag{26}$$

is set to the largest eigenvalue. Also know as the First Principal Component

By Induction

It is possible for M-dimensional space to define M eigenvectors $u_1, u_2, ..., u_M$ of the data covariance S corresponding to $\lambda_1, \lambda_2, ..., \lambda_M$ that maximize the variance of the projected data.

Computational Cost

- Full eigenvector decomposition $O\left(d^3\right)$
- 2 Power Method $O(Md^2)$ "Golub and Van Loan, 1996)"
- Use the Expectation Maximization Algorithm

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

We have the following steps

Determine covariance matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
(27)

$$S = U\Sigma U^T$$

ullet Eigenvalues in Σ and eigenvectors in the columns of U.

We have the following steps

Determine covariance matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
(27)

Generate the decomposition

$$S = U\Sigma U^T$$

ullet Eigenvalues in Σ and eigenvectors in the columns of U

We have the following steps

Determine covariance matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
(27)

Generate the decomposition

$$S = U\Sigma U^T$$

With

ullet Eigenvalues in Σ and eigenvectors in the columns of U.

Then

Project samples x_i into subspaces dim=k

$$z_i = U_K^T \boldsymbol{x}_i$$

ullet With U_k is a matrix with k columns

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Example

Example

Example

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

What happened with no-square matrices

We can still diagonalize it

Thus, we can obtain certain properties.

 $S^{-1}AS$

- They are usually not orthogonal
- There are not always enough eigenvectors.
- \bigcirc $Ax = \lambda x$ requires A to be square.

What happened with no-square matrices

We can still diagonalize it

Thus, we can obtain certain properties.

We want to avoid the problems with

$$S^{-1}AS$$

- They are usually not orthogonal.
- There are not always enough eigenvectors.
- \bigcirc $Ax = \lambda x$ requires A to be square.

What happened with no-square matrices

We can still diagonalize it

Thus, we can obtain certain properties.

We want to avoid the problems with

$$S^{-1}AS$$

The eigenvectors in S have three big problems

- They are usually not orthogonal.
- 2 There are not always enough eigenvectors.
- 3 $Ax = \lambda x$ requires A to be square.

Therefore, we can look at the following problem

We have a series of vectors

$$\{{m x}_1,{m x}_2,...,{m x}_d\}$$

$$\{oldsymbol{eta}_1, oldsymbol{eta}_2, ..., oldsymbol{eta}_d\}$$
 and $\{lpha_1, lpha_2, ..., lpha_d\}$

After all, we are looking at the possibility of using them for our roblem

Therefore, we can look at the following problem

We have a series of vectors

$$\{x_1, x_2, ..., x_d\}$$

Then imagine a set of projection vectors and differences

$$\{m{eta}_1, m{eta}_2, ..., m{eta}_d\}$$
 and $\{m{lpha}_1, m{lpha}_2, ..., m{lpha}_d\}$

 After all, we are looking at the possibility of using them for our problem

problem

Therefore, we can look at the following problem

We have a series of vectors

$$\{ {m x}_1, {m x}_2, ..., {m x}_d \}$$

Then imagine a set of projection vectors and differences

$$\{oldsymbol{eta}_1, oldsymbol{eta}_2, ..., oldsymbol{eta}_d\}$$
 and $\{oldsymbol{lpha}_1, oldsymbol{lpha}_2, ..., oldsymbol{lpha}_d\}$

We want to know a little bit of the relations between them

 After all, we are looking at the possibility of using them for our problem

Using the Hypotenuse

A little bit of Geometry, we get

Therefore

We have two possible quantities for each j

$$oldsymbol{lpha}_j^T oldsymbol{lpha}_j = oldsymbol{x}_j^T oldsymbol{x}_j - oldsymbol{a}_j^T oldsymbol{a}_j = oldsymbol{x}_j^T oldsymbol{x}_j - oldsymbol{lpha}_j^T oldsymbol{lpha}_j$$

$$\min \sum_{j=1}^{n} \boldsymbol{\alpha}_{j}^{T} \boldsymbol{\alpha}_{j}$$
 $\max \sum_{i=1}^{n} \boldsymbol{a}_{j}^{T} \boldsymbol{a}_{j}$

Therefore

We have two possible quantities for each j

$$oldsymbol{lpha}_j^T oldsymbol{lpha}_j = oldsymbol{x}_j^T oldsymbol{x}_j - oldsymbol{a}_j^T oldsymbol{a}_j \ oldsymbol{a}_j^T oldsymbol{a}_j = oldsymbol{x}_j^T oldsymbol{x}_j - oldsymbol{lpha}_j^T oldsymbol{lpha}_j$$

Then, we can minimize and maximize given that $oldsymbol{x}_i^Toldsymbol{x}_j$ is a constant

$$\min \sum_{j=1}^{n} \boldsymbol{lpha}_{j}^{T} \boldsymbol{lpha}_{j}$$

$$\max \sum_{j=1}^n \boldsymbol{a}_j^T \boldsymbol{a}_j$$

Actually this is know as the dual problem (Weak Duality)

An example of this

$$\min \mathbf{w}^T \mathbf{x}$$
$$s.t \mathbf{A} \mathbf{x} \leq \mathbf{b}$$
$$\mathbf{x} \geq 0$$

Ax + A'x = b

 $Aoldsymbol{x} + A'oldsymbol{x})_i
ightarrow y_i$ and $oldsymbol{x}' \geq 0$

Actually this is know as the dual problem (Weak Duality)

An example of this

$$\min \mathbf{w}^T \mathbf{x}$$
$$s.t \mathsf{A} \mathbf{x} \leq \mathbf{b}$$
$$\mathbf{x} \geq 0$$

Then, using what is know as slack variables

$$A\boldsymbol{x} + A'\boldsymbol{x} = b$$

 $(A {m x} + A' {m x})_i o y_i$ and ${m x}' \ge 0$

Actually this is know as the dual problem (Weak Duality)

An example of this

$$\min \mathbf{w}^T \mathbf{x}$$
$$s.t \mathsf{A} \mathbf{x} \leq \mathbf{b}$$
$$\mathbf{x} \geq 0$$

Then, using what is know as slack variables

$$A\boldsymbol{x} + A'\boldsymbol{x} = b$$

Each row lives in the column space, but the y_i lives in the column space

$$(A\boldsymbol{x} + A'\boldsymbol{x})_i \to y_i \text{ and } \boldsymbol{x}' \ge 0$$

Then, we have that

Example $\begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$

But in the row space their dimension is 2

Propertii

Then, we have that

Example

 $\begin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$

Element in the column space of dimensionality have three dimensions

• But in the row space their dimension is 2

Then, we have that

Example

 $\left[\begin{array}{cc}0&0\\0&1\\1&0\end{array}\right]$

Element in the column space of dimensionality have three dimensions

• But in the row space their dimension is 2

Properties

We have then

Stack such vectors that in the d-dimensional space

• In a matrix A of $n \times d$

$$A = \left[egin{array}{c} oldsymbol{a}_1^T \ oldsymbol{a}_2^T \ dots \ oldsymbol{a}_n^T \end{array}
ight]$$

The matrix works as a Projection

 We are looking for a unit vector v such that length of the projection is maximized.

We have then

Stack such vectors that in the d-dimensional space

• In a matrix A of $n \times d$

$$A = \left[\begin{array}{c} \boldsymbol{a}_1^T \\ \boldsymbol{a}_2^T \\ \vdots \\ \boldsymbol{a}_n^T \end{array} \right]$$

The matrix works as a Projection Matrix

ullet We are looking for a unit vector v such that length of the projection is maximized.

Why? Do you remember the Projection to a single vector p?

Definition of the projection under unitary vector

$$oldsymbol{p} = rac{oldsymbol{v}^Toldsymbol{a}_i}{oldsymbol{v}^Toldsymbol{v}}oldsymbol{v} = \left[oldsymbol{v}^Toldsymbol{a}_i
ight]oldsymbol{v}$$

$$\| \begin{bmatrix} \mathbf{v}^T \mathbf{a}_i \end{bmatrix} \mathbf{v} \| = \| \mathbf{v}^T \mathbf{a}_i \|$$

Why? Do you remember the Projection to a single vector p?

Definition of the projection under unitary vector

$$oldsymbol{p} = rac{oldsymbol{v}^Toldsymbol{a}_i}{oldsymbol{v}^Toldsymbol{v}}oldsymbol{v} = \left[oldsymbol{v}^Toldsymbol{a}_i
ight]oldsymbol{v}$$

Therefore the length of the projected vector is

$$\left\| \begin{bmatrix} oldsymbol{v}^T oldsymbol{a}_i \end{bmatrix} oldsymbol{v}
ight\| = \left| oldsymbol{v}^T oldsymbol{a}_i
ight|$$

Thus with a little bit of notation

$$Aoldsymbol{v} = \left[egin{array}{c} oldsymbol{a}_1^T \ oldsymbol{a}_2^T \ dots \ oldsymbol{a}_d^T \end{array}
ight] oldsymbol{v} = \left[egin{array}{c} oldsymbol{a}_1^T oldsymbol{v} \ oldsymbol{a}_2^T oldsymbol{v} \ dots \ oldsymbol{a}_d^T oldsymbol{v} \end{array}
ight]$$

Therefore

$$\left\|Aoldsymbol{v}
ight\| = \sqrt{\sum_{i=1}^d \left(oldsymbol{a}_i^Toldsymbol{v}
ight)^2}$$

Thus with a little bit of notation

$$Aoldsymbol{v} = \left[egin{align*} oldsymbol{a}_1^T \ oldsymbol{a}_2^T \ dots \ oldsymbol{a}_d^T \end{array}
ight] oldsymbol{v} = \left[egin{align*} oldsymbol{a}_1^T oldsymbol{v} \ oldsymbol{a}_2^T oldsymbol{v} \ dots \ oldsymbol{a}_d^T oldsymbol{v} \end{array}
ight]$$

Therefore

$$\|Aoldsymbol{v}\| = \sqrt{\sum_{i=1}^d \left(oldsymbol{a}_i^Toldsymbol{v}
ight)^2}$$

It is possible to ask to maximize the longitude of such vector (Singular Vector)

$$\boldsymbol{v}_1 = \arg\max_{\|\boldsymbol{v}\|=1} \|A\boldsymbol{v}\|$$

$$\sigma_1\left(A\right) = \|A\boldsymbol{v}_1\|$$

It is possible to ask to maximize the longitude of such vector (Singular Vector)

$$\boldsymbol{v}_1 = \arg\max_{\|\boldsymbol{v}\|=1} \|A\boldsymbol{v}\|$$

Then, we can define the following singular value

$$\sigma_1(A) = ||A\boldsymbol{v}_1||$$

This is known as

Definition

- The best-fit line problem describes the problem of finding the best line for a set of data points, where the quality of the line is measured by the sum of squared (perpendicular) distances of the points to the line.
 - ▶ Remember, we are looking at the dual problem....

- This can be transferred to higher dimensions: One can find the best-fit d-dimensional subspace, so the subspace which minimizes the sum of the squared distances of the points to the subspace.
- sum of the squared distances of the points to the subspace

This is known as

Definition

- The best-fit line problem describes the problem of finding the best line for a set of data points, where the quality of the line is measured by the sum of squared (perpendicular) distances of the points to the line.
 - Remember, we are looking at the dual problem....

Generalization

 This can be transferred to higher dimensions: One can find the best-fit d-dimensional subspace, so the subspace which minimizes the sum of the squared distances of the points to the subspace

Then, in a Greedy Fashion

The second singular vector $oldsymbol{v}_2$

$$\boldsymbol{v}_2 = \arg\max_{\boldsymbol{v} \perp \boldsymbol{v}_1, \|\boldsymbol{v}\| = 1} \|A\boldsymbol{v}\|$$

Them you go through t

Stop when we have found all the following vectors:

```
v_1, v_2, ..., v_r
```

As singular vectors ance

```
 \begin{aligned} & \max & & \|Av\| \\ & \boldsymbol{v} \perp \boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_r \\ & \|\boldsymbol{v}\| = 1 \end{aligned}
```

Then, in a Greedy Fashion

The second singular vector $oldsymbol{v}_2$

$$\boldsymbol{v}_2 = \arg\max_{\boldsymbol{v} \perp \boldsymbol{v}_1, \|\boldsymbol{v}\| = 1} \|A\boldsymbol{v}\|$$

Them you go through this process

• Stop when we have found all the following vectors:

$$v_1, v_2, ..., v_r$$

$$\begin{array}{c} \max \\ \boldsymbol{v} \perp \boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_r \\ \|\boldsymbol{v}\| = 1 \end{array}$$

Then, in a Greedy Fashion

The second singular vector $oldsymbol{v}_2$

$$v_2 = \arg\max_{v \perp v_1, ||v|| = 1} ||Av||$$

Them you go through this process

• Stop when we have found all the following vectors:

$$v_1, v_2, ..., v_r$$

As singular vectors and

$$\begin{array}{ccc} \arg & \max & \|A\boldsymbol{v}\| \\ \boldsymbol{v} \perp \boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_r & \\ \|\boldsymbol{v}\| = 1 & \end{array}$$

Proving that the strategy is good

Theorem

• Let A be an $n \times d$ matrix where $v_1, v_2, ..., v_r$ are the singular vectors defined above. For $1 \le k \le r$, let V_k be the subspace spanned by $v_1, v_2, ..., v_k$. Then for each k, V_k is the best-fit k-dimensional subspace for A.

Proof

For k=1

• What about k=2? Let W be a best-fit 2- dimensional subspace for A.

Proof

For k=1

• What about k=2? Let W be a best-fit 2- dimensional subspace for A.

For any basis w_1, w_2 of W

• $|Aw_1|^2 + |Aw_2|^2$ is the sum of the squared lengths of the projections of the rows of A to W.

Proof

For k=1

• What about k=2? Let W be a best-fit 2- dimensional subspace for A.

For any basis $\boldsymbol{w}_1, \boldsymbol{w}_2$ of W

• $|Aw_1|^2 + |Aw_2|^2$ is the sum of the squared lengths of the projections of the rows of A to W.

Now, choose a basis $oldsymbol{w}_1, oldsymbol{w}_2$ so that $oldsymbol{w}_2$ is perpendicular to $oldsymbol{v}_1$

ullet This can be a unit vector perpendicular to $oldsymbol{v}_1$ projection in W.

Do you remember $v_1 = \arg \max_{\|v\|=1} \|Av\|$?

Therefore

$$|Aoldsymbol{w}_1|^2 \leq |Aoldsymbol{v}_1|^2$$
 and $|Aoldsymbol{w}_2|^2 \leq |Aoldsymbol{v}_2|^2$

$$|Aw_1|^2 + |Aw_2|^2 \le |Av_1|^2 + |Av_2|^2$$

ullet V_k is at least as good as W and hence is optimal.

Do you remember $\mathbf{v}_1 = \arg \max_{\|\mathbf{v}\|=1} \|A\mathbf{v}\|$?

Therefore

$$|Aoldsymbol{w}_1|^2 \leq |Aoldsymbol{v}_1|^2$$
 and $|Aoldsymbol{w}_2|^2 \leq |Aoldsymbol{v}_2|^2$

Then

$$|Aw_1|^2 + |Aw_2|^2 \le |Av_1|^2 + |Av_2|^2$$

ullet V_k is at least as good as W and hence is optimal.

Do you remember $v_1 = \arg \max_{\|v\|=1} \|Av\|$?

Therefore

$$|Aoldsymbol{w}_1|^2 \leq |Aoldsymbol{v}_1|^2$$
 and $|Aoldsymbol{w}_2|^2 \leq |Aoldsymbol{v}_2|^2$

Then

$$|Aw_1|^2 + |Aw_2|^2 \le |Av_1|^2 + |Av_2|^2$$

In a similar way for k > 2

ullet V_k is at least as good as W and hence is optimal.

Remarks

Every Matrix has a singular value decomposition

$$A = U\Sigma V^T$$

When

ullet The columns of U are an orthonormal basis for the column space.

Remarks

Every Matrix has a singular value decomposition

$$A = U\Sigma V^T$$

Where

- ullet The columns of U are an orthonormal basis for the column space.
- ullet The columns of V are an orthonormal basis for the row space.

Remarks

Every Matrix has a singular value decomposition

$$A = U\Sigma V^T$$

Where

- ullet The columns of U are an orthonormal basis for the column space.
- ullet The columns of V are an orthonormal basis for the row space.
- The Σ is diagonal and the entries on its diagonal $\sigma_i = \Sigma_{ii}$ are positive real numbers, called the singular values of A.

Properties of the Singular Value Decomposition

First

The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A

$$A^TA = V\Sigma U^TU^T\Sigma V^T = V\Sigma^2 V^T$$

Properties of the Singular Value Decomposition

First

The eigenvalues of the symmetric matrix ${\cal A}^T{\cal A}$ are equal to the square of the singular values of ${\cal A}$

$$A^T A = V \Sigma U^T U^T \Sigma V^T = V \Sigma^2 V^T$$

Second

The rank of a matrix is equal to the number of non-zero singular values.

Outline

- Fisher Linear Discriminant
 - Introduction
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- 2 Principal Components and Singular Value Decomposition
 - Introduction
 - Principal Component Analysis AKA Karhunen-Loeve Transform
 - Projecting the Data
 - Lagrange Multipliers
 - The Process
 - Example
 - Singular Value Decomposition
 - Introduction
 - Image Compression

Singular Value Decomposition as Sums

The singular value decomposition can be viewed as a sum of rank 1 matrices

$$A = A_1 + A_2 + \dots + A_R (28)$$

$$u_1 A = U \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_R \end{pmatrix} V^T = \begin{pmatrix} u_1 & u_2 & \cdots & u_R \end{pmatrix} \begin{pmatrix} \sigma_1 v_1^T \\ \sigma_2 v_2^T \\ \vdots \\ \sigma_R v_R^T \end{pmatrix}$$

Singular Value Decomposition as Sums

The singular value decomposition can be viewed as a sum of rank 1 matrices

$$A = A_1 + A_2 + \dots + A_R (28)$$

Why?

$$\begin{aligned} \boldsymbol{u}_1 A &= U \left(\begin{array}{cccc} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_R \end{array} \right) \boldsymbol{V}^T = \left(\begin{array}{cccc} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \cdots & \boldsymbol{u}_R \end{array} \right) \left(\begin{array}{c} \sigma_1 \boldsymbol{v}_1^T \\ \sigma_2 \boldsymbol{v}_2^T \\ \vdots \\ \sigma_R \boldsymbol{v}_R^T \end{array} \right) \\ &= \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T + \cdots + \sigma_R \boldsymbol{u}_R \boldsymbol{v}_R^T \end{aligned}$$

Truncating the singular value decomposition allows us to represent the matrix with less parameters

Truncating the singular value decomposition allows us to represent the matrix with less parameters

For a 512×512

- Full Representation $512 \times 512 = 262,144$
- Rank 10 approximation $512 \times 10 + 10 + 10 \times 512 = 10,250$

Truncating the singular value decomposition allows us to represent the matrix with less parameters

For a 512×512

- Full Representation $512 \times 512 = 262,144$
- Rank 10 approximation $512 \times 10 + 10 + 10 \times 512 = 10,250$
- Rank 40 approximation $512 \times 40 + 40 + 40 \times 512 = 41,000$

Truncating the singular value decomposition allows us to represent the matrix with less parameters

For a 512×512

- Full Representation $512 \times 512 = 262,144$
- Rank 10 approximation $512 \times 10 + 10 + 10 \times 512 = 10,250$
- Rank 40 approximation $512 \times 40 + 40 + 40 \times 512 = 41,000$
- Rank 80 approximation $512 \times 80 + 80 + 80 \times 512 = 82,000$

