Fast Fourier Transform

- Decimation in Time

I.Nelson
SSN College of Engineering

Fast Fourier Transform (FFT)

Why FFT?

DFT	FFT
Multiplications – N ²	$(N/2)\log_2N$
Additions – N(N-1)	N log ₂ N

- Symmetry Property: $W_N^{k+(N/2)} = -W_N^k$
- Periodicity Property: $W_N^{k+N} = W_N^k$

Two types of FFT

- Decimation in Time
- Decimation in Frequency

Steps of radix – 2 DIT – FFT algorithm

- 1. The number of input samples $N=2^{M}$, where, M is an integer.
- 2. The input sequence is shuffled through bit reversal.
- 3. The number of stages in the flow graph is given by $M = log_2 N$.
- 4. Each stage consists of N/2 butterflies.
- 5. Inputs / Outputs for each butterfly are separated by 2^{m-1} samples, where m represents the stage index, i.e., for first stage m=1 and for second stage m=2 and so on.
- 6. The number of complex multiplications is given by $(N/2)\log_2 N$.
- 7. The number of complex additions is given by $Nlog_2N$.
- 8. The twiddle factor exponents are a function of the stage index m and is given by

$$K = Nt/2^m$$
; $t = 0, 1, 2, 3, \dots, 2^{m-1}-1$

- 9. The number of sets or sections of butterflies in each stage is given by the formula $2^{\text{M-m}}$.
- 10. The exponent repeat factor (ERF), which is the number of times the exponent sequence associated with m repeated is given by 2^{M-m}.

Problem1: Draw the Flow graph of 16 – point DIT – FFT.

Solution: Using the steps,

- 1. The Number of input samples, N = 16.
- 2. The input sequence is shuffled through bit reversal shown below and applied as input to the flow graph.
- 3. The number of stages $M = log_2 16 = 4$.
- 4. The number of butterflies per stage is N/2 = 8.
- 5. The inputs / outputs for each butterfly in stage m is separated by 2^{m-1} samples
 - Stage 1 Inputs / Outputs for each butterfly are separated by 1 sample.
 - Stage 2 Inputs / Outputs for each butterfly are separated by 2 samples.
 - Stage 3 Inputs / Outputs for each butterfly are separated by 4 samples.
 - Stage 4 Inputs / Outputs for each butterfly are separated by 8 samples.
- 6. The number of complex multiplications is given by $(N/2)\log_2 N = 8\log_2 16 = 32$
- 7. The number of complex additions is given by $16\log_2 16 = 64$.

8. The twiddle factor exponents for each stage are given by

$$K = Nt/2^m$$
; $t=0, 1, 2, 3, \dots, 2^{m-1}-1$

- For Stage 1 the exponent is 0.
- For Stage 2 the exponent are 0,4.
- For Stage 3 the exponent are 0,2,4,6.
- For Stage 4 the exponent are 0,1,2,3,4,5,6,7.
- 9. The number of sets or sections of butterflies in each stage is given by 2^{M-m}.
 - For Stage 1 the number of sets of butterflies are $2^{4-1} = 8$
 - For Stage 2 the number of sets of butterflies are $2^{4-2} = 4$
 - For Stage 3 the number of sets of butterflies are $2^{4-3} = 2$
 - For Stage 4 the number of sets of butterflies are $2^{4-4} = 1$
- 10. The exponent repeat factor (ERF), which is the number of times the exponent sequence associated with m is repeat is given by 2^{M-m}.
 - For Stage 1, ERF = 8
 - For Stage 2, ERF = 4
 - For Stage 2, ERF = 2
 - For Stage 2, ERF = 1

Index	Binary Representation	Bit reversed Order	Bit reversed index
0	0000	0000	0
1	0001	1000	8
2	0010	0100	4
3	0011	1100	12
4	0100	0010	2
5	0101	1010	10
6	0110	0110	6
7	0111	1110	14
8	1000	0001	1
9	1001	1001	9
10	1010	0101	5
11	1011	1101	13
12	1100	0011	3
13	1101	1011	11
14	1110	0111	7
15	1111	1111	15

Stage 1 Stage 2	Stage 3	Stage 4	X(0)
x(0)			
x(8)			/ X(1)
x(4)			/ X(2)
x(2)			X(3)
x(12)	$\times\!$		X(4)
x(10)	/XX\		X(5)
x(6)			X(6)
x(14)			X(7)
x(1-x)	_		\times X(8)
x(9)			X(9)
			X(10)
x(5)			X(11)
x(13)	$\times \times \times \rangle$		X(12)
x(3)	\times		
x(11)	$^{\prime}/\times$	V ///	X(13)
x(7)	// \ `	/ /	X(14)
x(15)			X(15)

Problem3: Find the DFT of a sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ using DIT algorithm.

Solution:

The twiddle factors associated with the flow graph are

$$\begin{split} W_8^{\ 0} &= 1 \\ W_8^{\ 1} &= e^{-j2\pi/8} = e^{-j\pi/4} = 0.707 - j0.707 \\ W_8^{\ 2} &= e^{-j4\pi/8} = e^{-j\pi/2} = -j \\ W_8^{\ 3} &= e^{-j6\pi/8} = e^{-j3\pi/4} = -0.707 - j0.707 \end{split}$$

Input	Output of Stage1	Output of Stage2	Output of Stage3
$\mathbf{x}(0) = 1$	1+4=5	5+5=10	10+10=20
x(4) = 4	1-4=-3	-3+(-j)*1=-3-j	(-3-j)+(0.707-j0.707)(-1-3j) = -5.828-j2.414
x(2) = 3	3+2=5	5-5=0	0
x(6) = 2	3-2=1	-3-(-j)*1=-3+j	(-3+j)+(-0.707-j0.707)(-1+3j) = -0.172-j0.414
x(1) = 2	2+3=5	5+5=10	10-10=0
x(5) = 3	2-3=-1	-1+(-j)*3=-1-3j	(-3-j)-(0.707-j0.707)(-1-3j) = -0.172+j0.414
x(3) = 4	4+1=5	5-5=0	0
x(7) = 1	4-1=3	-1-(-j)*3=-1+3j	(-3+j)-(-0.707-j0.707)(-1+3j) = -5.828+j2.414

 $X(k) = \{20, -5.828 - j2.414, 0, -0.172 - j0.414, 0, -0.172 - j0.414, 0, -5.828 + j2.414\}$

