Midterm III Study Guide and Review

Deepak Bastola

2022-11-11

Midterm III Study Guide

Format: In Class with open-ended questions.

One-sided Cheat-sheet allowed (A4 paper) and a basic calculator allowed.

- You may use a calculator
- You are not permitted to use a laptop or classroom computer.

Topics

- The exam covers various machine learning topics including k-nearest neighbor, k-means, decision trees and random forests (through Fri. 11/11)
- You will be tested on your conceptual understanding of the machine learning algorithms, the accuracy metrics, and the associated construction of the workflow in R that we have discussed in the class. I will not make you write extremely complicated code from scratch, but be prepared to write small chunks of code. Additional ways I could assess your understanding of R include (but are not limited to):
 - Identifying the error in written code.
 - Putting lines of code in order to complete a specified task.
 - Describing the output resulting from a code/code-chunk.

Sample Questions

Q1: Random Forest

The following example uses Carseats data from ISLR package to classify the amount of sales (High or Low) depending on certain number of features.

```
Carseats <- as tibble(Carseats) %>%
  mutate(High = factor(if_else(Sales <= 8, "No", "Yes"))) %>%
  select(-Sales)
glimpse(Carseats)
## Rows: 400
## Columns: 11
                <dbl> 138, 111, 113, 117, 141, 124, 115, 136, 132, 132, 121, 117~
## $ CompPrice
                <dbl> 73, 48, 35, 100, 64, 113, 105, 81, 110, 113, 78, 94, 35, 2~
## $ Income
## $ Advertising <dbl> 11, 16, 10, 4, 3, 13, 0, 15, 0, 0, 9, 4, 2, 11, 11, 5, 0, ~
## $ Population <dbl> 276, 260, 269, 466, 340, 501, 45, 425, 108, 131, 150, 503,~
## $ Price
                <dbl> 120, 83, 80, 97, 128, 72, 108, 120, 124, 124, 100, 94, 136~
## $ ShelveLoc
                <fct> Bad, Good, Medium, Medium, Bad, Bad, Medium, Good, Medium,~
## $ Age
                <dbl> 42, 65, 59, 55, 38, 78, 71, 67, 76, 76, 26, 50, 62, 53, 52~
## $ Education <dbl> 17, 10, 12, 14, 13, 16, 15, 10, 10, 17, 10, 13, 18, 18, 18~
## $ Urban
                <fct> Yes, Yes, Yes, Yes, Yes, No, Yes, Yes, No, No, No, Yes, Ye~
## $ US
                 <fct> Yes, Yes, Yes, Yes, No, Yes, No, Yes, No, Yes, Yes, Yes, N~
## $ High
                 <fct> Yes, Yes, Yes, No, No, Yes, No, Yes, No, No, Yes, Yes, No,~
```

(a) Roughly, how many observations are in the test and train datasets? Answer:

```
set.seed(1234)
Carseats_split <- initial_split(Carseats, prop = 0.75)
Carseats_train <- training(Carseats_split)
Carseats_test <- testing(Carseats_split)</pre>
```

(b) Why do we need to split the data into training and testing set? Explain. Answer:

```
Carseats_recipe <- recipe(High ~ ., data = Carseats_train) %>%
step_dummy(all_nominal(), -all_outcomes()) %>%
prep()
```

```
decision_tree_rpart_spec <- rand_forest(mtry = tune()) %>%
  set_engine('ranger', importance = "impurity") %>%
  set_mode('classification')
```

(c) Explain the role of tune() inside the model specification. Answer:

(d) The importance plot for this algorithm is shown below. Which two predictors are most important? Answer:


```
tree_last_fit <- final_tree_workflow %>% last_fit(Carseats_split)
tree_predictions <- tree_last_fit %>% collect_predictions()
conf_mat(tree_predictions, truth = High, estimate = .pred_class)
## Truth
```

```
## Prediction No Yes
## No 46 12
## Yes 10 32
```

(e) Calculate the accuracy metric of this algorithm based on the following confusion matrix. Accuracy:

Q2: K-nearest neighbor

Let's fit a K-nearest neighbor algorithm using Smarket dataset which has daily percentage returns for the S&P 500 stock index between 2001 and 2005.

```
set.seed(1234)
data_Smarket <- as_tibble(Smarket)</pre>
split <- initial_split(data_Smarket, strata = Direction, prop = 4/5)</pre>
Smarket_train <- training(split)</pre>
Smarket_test <- testing(split)</pre>
# glimpses of data
glimpse(Smarket_train)
## Rows: 999
## Columns: 9
## $ Year
               <dbl> 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, ~
               <dbl> 1.032, 1.392, -0.498, 0.546, 0.359, -0.623, 1.183, -0.865, 0~
## $ Lag1
               <dbl> 0.959, 0.213, 0.287, -0.562, -1.747, -0.841, -1.334, 1.183, ~
## $ Lag2
## $ Lag3
               <dbl> 0.381, 0.614, 1.303, 0.701, 0.546, -0.151, -0.623, -1.334, -~
## $ Lag4
               <dbl> -0.192, -0.623, 0.027, 0.680, -0.562, 0.359, -0.841, -0.623,~
               <dbl> -2.624, 1.032, -0.403, -0.189, 0.701, -1.747, -0.151, -0.841~
## $ Lag5
## $ Volume
               <dbl> 1.4112, 1.4450, 1.2580, 1.1188, 1.0130, 1.1072, 1.0391, 1.07~
## $ Today
               <dbl> -0.623, -0.403, -0.189, -1.747, -0.151, -1.334, -0.865, -0.2~
## $ Direction <fct> Down, Down, Down, Down, Down, Down, Down, Down, Down, ~
glimpse(Smarket_test)
## Rows: 251
## Columns: 9
## $ Year
               <dbl> 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, ~
               <dbl> 0.381, 0.614, 0.213, 0.287, 0.701, -0.562, -0.151, -0.841, -~
## $ Lag1
## $ Lag2
               <dbl> -0.192, -0.623, 0.614, 1.303, 0.680, 0.701, 0.359, -0.151, -~
## $ Lag3
               <dbl> -2.624, 1.032, -0.623, 0.027, -0.189, 0.680, -1.747, 0.359, ~
## $ Lag4
               <dbl> -1.055, 0.959, 1.032, -0.403, -0.498, -0.189, 0.546, -1.747,~
               <dbl> 5.010, 0.381, 0.959, 1.392, 0.287, -0.498, -0.562, 0.546, 0.~
## $ Lag5
               <dbl> 1.19130, 1.20570, 1.34910, 1.30900, 1.14980, 1.29530, 1.0596~
## $ Volume
## $ Today
               <dbl> 0.959, 0.213, 1.392, -0.498, -0.562, 0.546, -0.841, -0.623, ~
## $ Direction <fct> Up, Up, Up, Down, Down, Up, Down, Down, Up, Up, Up, Up, Up, -
```

a. Briefly describe what the above set of codes do. Why do we need to split the data into training and test set? *Answer:*

b. The following trained model is used to produce a data-frame of the actual and predicted Direction in the test dataset. Call this data-frame Smarket_results. What information does

Smarket_results contain? What is the dimension of this dataset? Explain. Answer:

```
Smarket_recipe <- recipe(Direction ~ Lag1 + Lag2 + Lag3 + Year + Volume,</pre>
                          data = Smarket_train) %>%
  step_center(all_predictors()) %>%
  step scale(all predictors()) %>%
 prep()
Smarket_knn_spec <- nearest_neighbor(mode = "classification",</pre>
                              engine = "kknn",
                              weight_func = "rectangular",
                              neighbors = 5)
Smarket_workflow <- workflow() %>%
  add_recipe(Smarket_recipe) %>%
  add_model(Smarket_knn_spec)
Smarket_fit <- fit(Smarket_workflow, data = Smarket_train)</pre>
test_features <- Smarket_test %% select(Direction, Lag1, Lag2, Lag3, Year, Volume)
nn1_pred3 <- predict(Smarket_fit, test_features, type = "raw")</pre>
Smarket_results <- Smarket_test %>%
  select(Direction) %>%
 bind_cols(predicted = nn1_pred3) %>% mutate(Direction = as.factor(Direction))
```

c. The following is a confusion matrix from the prediction results from b. Calculate by hand the sensitivity, specificity, accuracy, and positive predictive value of the classifier. *Answer:*

Q3 Miscellaneous

(a) Explain the difference between unsupervised learning and supervised learning. Answer:

(b) Is feature scaling required for the K-NN algorithm? Explain with proper justification. $Answer:$
(c) For two runs of K-Mean clustering is it expected to get same clustering results? Answer:
(d) Is it possible that assignment of observations to clusters does not change between successive iterations in K-Means? $Answer$:
(e) (True/False) Precision is a useful metric in cases where False Positive is a higher concern than False Negatives. Provide explanations as well. $Answer$:
(f) Explain how you can use total within cluster sum of squares to find the "best" choice of K in a K-means clustering algorithm. $Answer$:
(g) Briefly explain why do we preprocess data in k nearest neighbors algorithm. Answer:

(h) (Multiple Choice) Given the following models trained using K-NN, the model which could result in underfitting will most likely have the value of K as
1. 30 2. 5 3. 1
Answer:
(i) Does centroid initialization affect K-means algorithm? Explain your answer. Answer:
(j) Logistic regression is a machine learning algorithm that is used to predict the probability of a? Write your letter choice in the blank.
 (A) categorical independent variable (B) categorical dependent variable. (C) numerical dependent variable. (D) numerical independent variable.
Answer: