1. kolokvij iz Moderne fizike 1

15. december 2017

čas reševanja 90 minut

- 1. Elektron v neskončni potencialni jami širine 0,4 nm opisuje valovna funkcija $\psi = 4i\psi_2 + 3\psi_3$, ki je linearna kombinacija prvega in drugega vzbujenega stanja. Normiraj valovno funkcijo ψ in poišči ortogonalno stanje ψ_{\perp} , sestavljenega iz ψ_2 in ψ_3 . Izračunaj pričakovano vrednost energije za obe stanji.
- 2. Najmanj kolikšno energijo morajo imeti visoko
energijski kozmični anti-nevtrini $\overline{\nu}$, da na kozmičnem nevtrinskem ozadju
 $C\nu B$ s temperaturo $T_{C\nu B}=1,95$ K tvorijo delec
 Z z maso $M_Zc^2=90$ GeV preko reakcije

$$\overline{\nu} + \nu_{C\nu B} \to Z$$
?

Kinetična energija nevtrinov s temperaturo $T_{C\nu B}$ je enaka $T_{\nu}=\frac{3}{2}k\,T_{C\nu B}$, kjer je $k=9\times 10^{-5}~{\rm eV/K}$. Za maso nevtrina vzemi $m_{\nu}c^2=0{,}05~{\rm eV}$.

- 3. Na razdalji 130 milijonov svetlobnih let je združitev dveh nevtronskih zvezd sprožilo signal gravitacijskih valov s frekvenco 50 Hz in gama žarkov z energijo 200 keV, izmerjeno na Zemlji. S kolikšno hitrostjo in v katero smer se premika sistem zvezd, če je bila energija izsevanega fotona 100 keV? S kolikšno hitrostjo bi morala potovati vesoljska ladja, ki odpotuje po prejemu signala, da bi do zvezd prišla v 130000 letih, merjeno na ladji? Kolikšno frekvenco gravitacijskih valov bi zaznali na ladji? Predpostavi, da se obe valovanji širita z v=c na zveznici z Zemljo.
- 4. S pomočjo načela nedoločenosti oceni za koliko se nedoločenost lege δx ter energija E osnovnega stanja elektrona, ki se nahaja v sinusnem potencialu

$$V = \frac{1}{2}ka^2\sin^2(x/a)$$

razlikuje od nedoločenosti lege δx_0 ter energije E_0 osnovnega stanja elektrona v harmonskem potencialu $V_0 = \frac{1}{2}kx^2$, kjer je $k = 50\,\mathrm{eV/nm^2}$ in $a = 0,4\,\mathrm{nm}$. Namig: Izračunaj najprej nedoločenost lege δx_0 ter energijo E_0 in išči rešitev za sinusni potencial z nastavkom $\delta x = \delta x_0 + \delta$ ter $E = E_0 + \Delta$ in privzemi, da je popravek majhen.