Problems in Linear Algebra

CONTENTS

1	The Straight Line		
	1.1	Point	1
	1.2	Line	1
	1.3	Example	5
	1.4	Exercises	7

11A-511 11B-C11 B

Fig. 1.1.7

1 The Straight Line

1.1 Point

1. The *inner product* of \mathbf{P} and \mathbf{Q} is defined as

$$\mathbf{P}^T \mathbf{Q} = p_1 q_1 + p_2 q_2 \tag{1.1.1}$$

2. The *norm* of a vector

$$\mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \tag{1.1.2}$$

is defined as

$$\|\mathbf{P}\| = \sqrt{p_1^2 + p_2^2} \tag{1.1.2}$$

3. The *length* of *PQ* is defined as

$$\|\mathbf{P} - \mathbf{Q}\| \tag{1.1.3}$$

4. The direction vector of the line PQ is defined

$$\mathbf{P} - \mathbf{Q} = \begin{pmatrix} p_1 - q_1 \\ p_2 - q_2 \end{pmatrix} \tag{1.1.4}$$

5. The point dividing PQ in the ratio k:1 is

$$\mathbf{R} = \frac{k\mathbf{P} + \mathbf{Q}}{k+1} \tag{1.1.5}$$

6. The area of $\triangle PQR$ is the determinant

$$\begin{vmatrix} 1 & 1 & 1 \\ \mathbf{P} & \mathbf{O} & \mathbf{R} \end{vmatrix} \tag{1.1.6}$$

7. Orthogonality: See Fig. 1.1.7. In $\triangle ABC, AB \perp$ BC. Show that

$$(\mathbf{A} - \mathbf{B})^T (\mathbf{B} - \mathbf{C}) = 0 \tag{1.1.7}$$

Solution: Using Baudhayana's theorem,

which can be simplified to obtain (1.1.7).

8. Let x be any point on AB in Fi.g 1.1.7. Show that

$$(\mathbf{x} - \mathbf{A})^T (\mathbf{B} - \mathbf{C}) = 0 \tag{1.1.8}$$

9. If \mathbf{x}, \mathbf{y} are any two points on AB, show that

$$(\mathbf{x} - \mathbf{y})^T (\mathbf{B} - \mathbf{C}) = 0 \tag{1.1.9}$$

1. The points $\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ are as shown in Fig. 1.2.1. Find the equation of OA.

Solution: Let $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be any point on OA.

Then, using similar triangles,

1.2 Line

$$\frac{x_2}{x_1} = \frac{a_2}{a_1} = m \tag{1.2.1.1}$$

$$\implies x_2 = mx_1 \tag{1.2.1.2}$$

Fig. 1.2.1

Fig. 1.2.2

where m is known as the slope of the line. Thus, the equation of the line is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ mx_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ m \end{pmatrix} = x_1 \mathbf{m} \tag{1.2.1.3}$$

In general, the above equation is written as

$$\mathbf{x} = \lambda \mathbf{m}, \tag{1.2.1.4}$$

where **m** is the direction vector of the line.

2. Find the equation of AB in Fig. 1.2.2

Solution: From Fig. 1.2.2,

$$\frac{x_2 - a_2}{x_1 - a_1} = \frac{b_2 - a_2}{b_1 - a_1} = m \tag{1.2.2.1}$$

$$\implies x_2 = mx_1 + a_2 - ma_1$$
 (1.2.2.2)

From (1.2.2.2),

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ mx_1 + a_2 - ma_1 \end{pmatrix}$$
 (1.2.2.3)

$$= \mathbf{A} + (x_1 - a_1) \begin{pmatrix} 1 \\ m \end{pmatrix}$$
 (1.2.2.4)

$$= \mathbf{A} + \lambda \mathbf{m} \tag{1.2.2.5}$$

Fig. 1.2.5

- 3. *Translation:* If the line shifts from the origin by **A**, (1.2.2.5) is obtained from (1.2.1.4) by adding **A**.
- 4. Find the length of **A** in Fig. 1.2.1 **Solution:** Using Baudhayana's theorem, the length of the vector **A** is defined as

$$\|\mathbf{A}\| = OA = \sqrt{a_1^2 + a_2^2} = \sqrt{\mathbf{A}^T \mathbf{A}}.$$
 (1.2.4.1)

Also, from (1.2.1.4),

$$\|\mathbf{A}\| = \lambda \sqrt{1 + m^2} \tag{1.2.4.2}$$

Note that λ is the variable that determines the length of **A**, since m is constant for all points on the line.

5. Find A - B. Solution: See Fig. 1.2.5. From (1.2.2.5), for some λ ,

$$\mathbf{B} = \mathbf{A} + \lambda \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.2.5.1}$$

$$\implies \mathbf{A} - \mathbf{B} = -\lambda \begin{pmatrix} 1 \\ m \end{pmatrix}, \tag{1.2.5.2}$$

A - B is marked in Fig. 1.2.5.

- 6. Show that $AB = ||\mathbf{A} \mathbf{B}||$
- 7. Show that the equation of AB is

$$\mathbf{x} = \mathbf{A} + \lambda \left(\mathbf{B} - \mathbf{A} \right) \tag{1.2.7.1}$$

8. The *normal* to the vector **m** is defined as

$$\mathbf{n}^T \mathbf{m} = 0 \tag{1.2.8.1}$$

$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m} \tag{1.2.8.2}$$

9. From (1.2.7.1), the equation of a line can also

be expressed as

$$\mathbf{n}^{T}\mathbf{x} = \mathbf{n}^{T}\mathbf{A} + \lambda \mathbf{n}^{T} (\mathbf{B} - \mathbf{A}) \qquad (1.2.9.1)$$

$$\implies \mathbf{n}^T \mathbf{x} = c \tag{1.2.9.2}$$

10. The unit vectors on the x and y axis are defined

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \tag{1.2.10.1}$$

$$\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{1.2.10.2}$$

11. If a be the *intercept* of the line

$$\mathbf{n}^T \mathbf{x} = c \tag{1.2.11.1}$$

on the x-axis, then $\begin{pmatrix} a \\ 0 \end{pmatrix}$ is a point on the line. Thus,

$$\mathbf{n}^T \begin{pmatrix} a \\ 0 \end{pmatrix} = c \tag{1.2.11.2}$$

$$\implies a = \frac{c}{\mathbf{n}^T \mathbf{e}_1} \tag{1.2.11.3}$$

12. The rotation matrix is defined as

$$\mathbf{Q} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{1.2.12}$$

where θ is anti-clockwise.

13.

$$\mathbf{Q}^T \mathbf{Q} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I} \tag{1.2.13}$$

where **I** is the *identity matrix*. The rotation matrix **Q** is also an *orthogonal matrix*.

14. Find the equation of line L in Fig. 1.2.14. **Solution:** The equation of the x-axis is

$$\mathbf{x} = \lambda \mathbf{e}_1 \tag{1.2.14.1}$$

Translation by p units along the y-axis results in

$$L_0: \mathbf{x} = \lambda \mathbf{e}_1 + p\mathbf{e}_2$$
 (1.2.14.2)

Rotation by $90^{\circ} - \alpha$ in the anti-clockwise direction yields

$$L: \mathbf{x} = \mathbf{Q} \{ \lambda \mathbf{e}_1 + p \mathbf{e}_2 \}$$
 (1.2.14.3)

$$= \lambda \mathbf{Q} \mathbf{e}_1 + p \mathbf{Q} \mathbf{e}_2 \qquad (1.2.14.4)$$

Fig. 1.2.14

where

$$\mathbf{Q} = \begin{pmatrix} \cos(\alpha - 90) & -\sin(\alpha - 90) \\ \sin(\alpha - 90) & \cos(\alpha - 90) \end{pmatrix} (1.2.14.5)$$
$$= \begin{pmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{pmatrix} (1.2.14.6)$$

$$= \begin{pmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{pmatrix} \tag{1.2.14.6}$$

From (1.2.14.4)

L:
$$\mathbf{e}_2^T \mathbf{Q}^T \mathbf{x} = \lambda \mathbf{e}_2^T \mathbf{Q}^T \mathbf{Q} \mathbf{e}_1 + p \mathbf{e}_2^T \mathbf{Q}^T \mathbf{Q} \mathbf{e}_2$$

= $\lambda \mathbf{e}_2^T \mathbf{e}_1 + p \mathbf{e}_2^T \mathbf{e}_2$ (1.2.14.7)

resulting in

$$L: (\cos \alpha \sin \alpha) \mathbf{x} = p \qquad (1.2.14.8)$$

15. Show that the distance from the orgin to the line

$$\mathbf{n}^T \mathbf{x} = c \tag{1.2.15.1}$$

is

$$p = \frac{c}{\|n\|} \tag{1.2.15.2}$$

16. Show that the point of intersection of two lines

$$\mathbf{n}_1^T \mathbf{x} = c_1 \tag{1.2.16.1}$$

$$\mathbf{n}_2^T \mathbf{x} = c_2 \tag{1.2.16.2}$$

is given by

$$\mathbf{x} = \left(\mathbf{N}^T\right)^{-1} \mathbf{c} \tag{1.2.16.3}$$

where

$$\mathbf{N} = \begin{pmatrix} \mathbf{n}_1 & \mathbf{n}_2 \end{pmatrix} \tag{1.2.16.4}$$

17. The angle between two lines is given by

$$\cos^{-1} \frac{\mathbf{n}_1^T \mathbf{n}_2}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|}$$
 (1.2.17.1)

18. Show that the distance of a point \mathbf{x}_0 from the line

$$L: \quad \mathbf{n}^T \mathbf{x} = c \tag{1.2.18.1}$$

is

$$\frac{\left|\mathbf{n}^{T}\mathbf{x}_{0}-c\right|}{\left\|\mathbf{n}\right\|}\tag{1.2.18.2}$$

Solution: Let the equation of the line be

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{1.2.18.3}$$

where

$$\mathbf{n}^T \mathbf{A} = c, \mathbf{n}^T \mathbf{m} = 0 \tag{1.2.18.4}$$

If \mathbf{x}_0 is translated to the origin, the equation of the line L becomes

$$\mathbf{x} = \mathbf{A} - \mathbf{x}_0 + \lambda \mathbf{m} \tag{1.2.18.5}$$

$$\implies \mathbf{n}^T \mathbf{x} = c - \mathbf{n}^T \mathbf{x}_0 \tag{1.2.18.6}$$

From (1.2.15.2), (1.2.18.4) is obtained.

19. Show that

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(1.2.19.1)

can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.2.19.2}$$

where

$$\mathbf{V} = \mathbf{V}^T \tag{1.2.19.3}$$

$$\mathbf{u} = \begin{pmatrix} d & e \end{pmatrix} \tag{1.2.19.4}$$

20. Pair of straight lines: (1.2.19.2) represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \tag{1.2.20.1}$$

Two intersecting lines are obtained if

$$|\mathbf{V}| < 0$$
 (1.2.20.2)

21. In Fig. 1.2.21, let

$$\frac{AB}{BC} = \frac{\|\mathbf{A} - \mathbf{B}\|}{\|\mathbf{B} - \mathbf{C}\|} = k. \tag{1.2.21.1}$$

Show that

$$\frac{\mathbf{A} + k\mathbf{C}}{k+1} = \mathbf{B}.\tag{1.2.21.2}$$

Solution: From (1.2.2.5),

$$\mathbf{B} = \mathbf{A} + \lambda_1 \mathbf{m}$$

$$\mathbf{B} = \mathbf{C} - \lambda_2 \mathbf{m}$$
(1.2.21.3)

$$\implies \frac{\|\mathbf{A} - \mathbf{B}\|}{\|\mathbf{B} - \mathbf{C}\|} = \frac{\lambda_1}{\lambda_2} = k \tag{1.2.21.4}$$

and
$$\frac{\mathbf{B} - \mathbf{A}}{\lambda_1} = \frac{\mathbf{C} - \mathbf{B}}{\lambda_2} = \mathbf{m}$$
, (1.2.21.5)

from (1.2.21.1). Using (1.2.21.4) and (1.2.21.5),

$$\mathbf{A} - \mathbf{B} = k \left(\mathbf{B} - \mathbf{C} \right) \tag{1.2.21.6}$$

resulting in (1.2.21.2)

22. If **A** and **B** are linearly independent,

$$k_1 \mathbf{A} + k_2 \mathbf{B} = 0 \implies k_1 = k_2 = 0 \quad (1.2.22.1)$$

23. Show that **D** lies inside $\triangle ABC$ iff

$$\mathbf{D} = \lambda_1 \mathbf{A} + \lambda_2 \mathbf{B} + \lambda_3 \mathbf{C} \tag{1.2.23.1}$$

such that

$$0 \le \lambda_1, \lambda_2, \lambda_3 \le 1,$$
 (1.2.23.2)

$$0 \le \lambda_1 + \lambda_2 + \lambda_3 \le 1, \tag{1.2.23.3}$$

24. Show that the equation of the angle bisectors of the lines

$$\mathbf{n}_1^T \mathbf{x} = c_1 \tag{1.2.24.1}$$

$$\mathbf{n}_2^T \mathbf{x} = c_2 \tag{1.2.24.2}$$

is

$$\frac{\mathbf{n}_{1}^{T}\mathbf{x} - c_{1}}{\|\mathbf{n}_{1}\|} = \pm \frac{\mathbf{n}_{2}^{T}\mathbf{x} - c_{2}}{\|\mathbf{n}_{2}\|}$$
(1.2.24.3)

25. Find the equation of a line passing through the

Fig. 1.2.21

Fig. 1.2.26

intersection of the lines

$$\mathbf{n}_1^T \mathbf{x} = c_1 \tag{1.2.25.1}$$

$$\mathbf{n}_2^T \mathbf{x} = c_2 \tag{1.2.25.2}$$

and passing through the point **p**.

Solution: The intersection of the lines is

$$\mathbf{x} = \mathbf{N}^{-T}\mathbf{c} \tag{1.2.25.3}$$

where

$$\mathbf{N} = \begin{pmatrix} \mathbf{n}_1 & \mathbf{n}_2 \end{pmatrix} \tag{1.2.25.4}$$

$$\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \tag{1.2.25.5}$$

Thus, the equation of the desired line is

$$\mathbf{x} = \mathbf{p} + \lambda \left(\mathbf{N}^{-T} \mathbf{c} - \mathbf{p} \right) \quad (1.2.25.6)$$

$$\implies \mathbf{N}^T \mathbf{x} = \mathbf{N}^T \mathbf{p} + \lambda (\mathbf{c} - \mathbf{N}^T \mathbf{p}) \quad (1.2.25.7)$$

resulting in

$$(\mathbf{c} - \mathbf{N}^T \mathbf{p})^T \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{N}^T \mathbf{x}$$

$$= (\mathbf{c} - \mathbf{N}^T \mathbf{p})^T \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{N}^T \mathbf{p}$$
 (1.2.25.8)

26. Find **R**, the *reflection* of **P** about the line

$$L: \quad \mathbf{n}^T \mathbf{x} = c \tag{1.2.26.1}$$

Solution: Since \mathbf{R} is the reflection of \mathbf{P} and \mathbf{Q} lies on L, \mathbf{Q} bisects PR. This leads to the following equations Hence,

$$2Q = P + R (1.2.26.2)$$

$$\mathbf{n}^T \mathbf{O} = c \tag{1.2.26.3}$$

$$\mathbf{m}^T \mathbf{R} = \mathbf{m}^T \mathbf{P} \tag{1.2.26.4}$$

where **m** is the direction vector of L. From

(1.2.26.2) and (1.2.26.3),

$$\mathbf{n}^T \mathbf{R} = 2c - \mathbf{n}^T \mathbf{P} \tag{1.2.26.5}$$

From (1.2.26.5) and (1.2.26.4),

$$(\mathbf{m} \ \mathbf{n})^T \mathbf{R} = (\mathbf{m} \ -\mathbf{n})^T \mathbf{P} + \begin{pmatrix} 0 \\ 2c \end{pmatrix}$$
 (1.2.26.6)

Letting

$$\mathbf{V} = \begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix} \tag{1.2.26.7}$$

with the condition that \mathbf{m} , \mathbf{n} are orthonormal, i.e.

$$\mathbf{V}^T \mathbf{V} = \mathbf{I} \tag{1.2.26.8}$$

Noting that

$$\begin{pmatrix} \mathbf{m} & -\mathbf{n} \end{pmatrix} = \begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1.2.26.9)$$

(1.2.26.6) can be expressed as

$$\mathbf{V}^{T}\mathbf{R} = \begin{bmatrix} \mathbf{V} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}^{T} \mathbf{P} + \begin{pmatrix} 0 \\ 2c \end{pmatrix} \quad (1.2.26.10)$$

$$\implies \mathbf{R} = \begin{bmatrix} \mathbf{V} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{V}^{-1} \end{bmatrix}^T \mathbf{P} + \mathbf{V} \begin{pmatrix} 0 \\ 2c \end{pmatrix}$$
(1.2.26.11)

$$= \mathbf{V} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{V}^T \mathbf{P} + 2c\mathbf{n} \quad (1.2.26.12)$$

27. Show that, for any **m**, **n**, the reflection is also given by

$$\frac{\mathbf{R}}{2} = \frac{\mathbf{m}\mathbf{m}^T - \mathbf{n}\mathbf{n}^T}{\mathbf{m}^T \mathbf{m} + \mathbf{n}^T \mathbf{n}} \mathbf{P} + c \frac{\mathbf{n}}{\|\mathbf{n}\|^2}$$
(1.2.27.1)

1.3 Example

1. In $\triangle ABC$,

$$\mathbf{A} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{1.3.1}$$

and the equations of the medians through ${\bf B}$ and ${\bf C}$ are respectively

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 5 \tag{1.3.1}$$

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 4 \tag{1.3.1}$$

Find the area of $\triangle ABC$.

Solution: The centroid O is the solution of (1.3.1),(1.3.1) and is obtained as the solution

of the matrix equation

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$
 (1.3.1)

which can be solved using the augmented matrix as follows.

$$\begin{pmatrix} 1 & 1 & 5 \\ 1 & 0 & 4 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 1 & 5 \\ 0 & 1 & 1 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \end{pmatrix} \quad (1.3.1)$$

Thus.

$$\mathbf{O} = \begin{pmatrix} 4\\1 \end{pmatrix} \tag{1.3.1}$$

Let AD be the median through **A**. Then,

$$\frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} = \mathbf{O} \tag{1.3.1}$$

$$\implies \mathbf{B} + \mathbf{C} = 3\mathbf{O} - \mathbf{A} = \begin{pmatrix} 11 \\ 1 \end{pmatrix} \qquad (1.3.1)$$

$$\implies \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{B} + \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{C} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 11 \\ 1 \end{pmatrix}$$
(1.3.1)

From (1.3.1) and (1.3.1),

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{B} = 5 \tag{1.3.1}$$

$$\implies 5 + \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{C} = 12 \tag{1.3.1}$$

$$\implies \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{C} = 7 \tag{1.3.1}$$

From (1.3.1) and (1.3.1), \mathbb{C} can be obtained by solving

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{C} = \begin{pmatrix} 7 \\ 4 \end{pmatrix} \tag{1.3.1}$$

using the augmented matrix as

$$\begin{pmatrix} 1 & 1 & 7 \\ 1 & 0 & 4 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 1 & 1 & 7 \\ 0 & 1 & 3 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 3 \end{pmatrix} \quad (1.3.1)$$

$$\implies \mathbf{C} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \tag{1.3.1}$$

From (1.3.1),

$$\mathbf{B} = \begin{pmatrix} 11\\1 \end{pmatrix} - \begin{pmatrix} 4\\3 \end{pmatrix} = \begin{pmatrix} 7\\-2 \end{pmatrix} \tag{1.3.1}$$

Thus,

$$\frac{1}{2} \begin{vmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \\ 1 & 1 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 7 & 4 \\ 2 & -2 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 9 \quad (1.3.1)$$

2. Summarize all the above computations through

Fig. 1.3.2

a Python script and plot $\triangle ABC$.

Solution:

https://github.com/gadepall/ school/raw/master/linalg/2D/ manual/codes/triang.py

- 3. Find the coordinates of **D**, **E** and **F** of the mid points of AB, BC and CA respectively for ΔABC .
- 4. Find the equations of AD, BE and CF.
- 5. Find the point of intersection of AD and CF.
- 6. Verify that **O** is the point of intersection of *BE*, *CF* as well as
- 7. Graphically show that the medians of $\triangle ABC$ meet at the centroid.
- 8. In $\triangle ABC$, Let **P** be a point on *BC* such that $AP \perp BC$. Then AP is defined to be an *altitude* of $\triangle ABC$.
- 9. Find the equation of AP.

Solution: The normal vector of AP is $\mathbf{B} - \mathbf{C}$. From (??), the equation of AP is

$$(\mathbf{B} - \mathbf{C})^T (\mathbf{x} - \mathbf{A}) = 0 \quad (1.3.9)$$

$$\implies$$
 $(-3 \ 4)\mathbf{x} = -(-3 \ 4)\binom{2}{2} = -2 \ (1.3.9)$

10. Find the equation of the altitude *BQ*. **Solution:** The desired equation is

$$(\mathbf{C} - \mathbf{A})^T (\mathbf{x} - \mathbf{B}) = 0 \qquad (1.3.10)$$

$$\implies \begin{pmatrix} 6 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 6 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = 9 \qquad (1.3.10)$$

11. Find the equation of the altitude CR.

12. Find the point of intersection of *AP* and *BQ*. **Solution:** (1.3.9) and (1.3.10) can be stacked together into the matrix equation

$$\begin{pmatrix} -3 & 4 \\ 6 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -2 \\ 9 \end{pmatrix} \tag{1.3.12}$$

The following code computes the point of intersection.

https://raw.githubusercontent. com/gadepall/school/master/ linalg/2D/python_2d/codes/ orthocentre.py

- 13. Find the point of intersection of and *BQ* and *CR*. Comment.
- 14. Find **P**

Solution: The following code finds the required points.

https://raw.githubusercontent. com/gadepall/school/master/ linalg/2D/python_2d/codes/ alt_foot.py

- 15. Find **Q** and **R**.
- 16. Draw *AP*, *BQ* and *CR* and verify that they meet at a point **H**.

Solution: The following code plots the altitudes in Fig. ??

https://raw.githubusercontent. com/gadepall/school/master/ linalg/2D/python_2d/codes/ alt draw.py

1.4 Exercises

1. A straight line through the origin **O** meets the lines

$$(4 \ 3)\mathbf{x} = 10 \tag{1.4.1}$$

$$(8 6)x + 5 = 0 (1.4.1)$$

at **A** and **B** respectively. Find the ratio in which **O** divides *AB*.

Solution: Let

$$\mathbf{n} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \tag{1.4.1}$$

Then (1.4.1) can be expressed as

$$\mathbf{n}^T \mathbf{x} = 10 \tag{1.4.1}$$

$$2\mathbf{n}^T\mathbf{x} = -5\tag{1.4.1}$$

and since **A**, **B** satisfy (1.4.1) respectively,

$$\mathbf{n}^T \mathbf{A} = 10 \tag{1.4.1}$$

$$2\mathbf{n}^T\mathbf{B} = -5\tag{1.4.1}$$

Let **O** divide the segment AB in the ratio k:1. Then

$$\mathbf{O} = \frac{k\mathbf{B} + \mathbf{A}}{k+1} \tag{1.4.1}$$

$$\mathbf{C} \mathbf{O} = \mathbf{0}, \tag{1.4.1}$$

$$\mathbf{A} = -k\mathbf{B} \tag{1.4.1}$$

Substituting in (1.4.1), and simplifying,

$$\mathbf{n}^T \mathbf{B} = \frac{10}{-k} \tag{1.4.1}$$

$$\mathbf{n}^T \mathbf{B} = \frac{-5}{2} \tag{1.4.1}$$

resulting in

$$\frac{10}{-k} = \frac{-5}{2} \implies k = 4 \tag{1.4.1}$$

2. The point

$$\mathbf{P} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{1.4.2}$$

is translated parallel to the line

$$L: (1 -1)\mathbf{x} = 4 \tag{1.4.2}$$

by $d = 2\sqrt{3}$ units. If the new point **Q** lies in the third quadrant, then find the equation of the line passing through **Q** and perpendicular to *L*. **Solution:** From (1.4.2), the direction vector of *L* is

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.4.2}$$

Thus,

$$\mathbf{Q} = \mathbf{P} + \lambda \mathbf{m} \tag{1.4.2}$$

However,

$$PQ = d \tag{1.4.2}$$

$$\implies ||\mathbf{P} - \mathbf{Q}|| = |\lambda| ||\mathbf{m}|| = d \tag{1.4.2}$$

$$\implies \lambda = \pm \frac{d}{\|\mathbf{m}\|} = \pm \sqrt{6} \qquad (1.4.2)$$

$$||\mathbf{m}|| = \sqrt{\mathbf{m}^T \mathbf{m}} = \sqrt{2}$$
 (1.4.2)

from (1.4.2). Since **Q** lies in the third quadrant, from (1.4.2) and (1.4.2),

$$\mathbf{Q} = \begin{pmatrix} 2\\1 \end{pmatrix} - \sqrt{6} \begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 2 - \sqrt{6}\\1 - \sqrt{6} \end{pmatrix} \tag{1.4.2}$$

The equation of the desired line is then obtained as

$$\mathbf{m}^T \left(\mathbf{x} - \mathbf{Q} \right) = 0 \tag{1.4.2}$$

$$(1 \quad 1)\mathbf{x} = 3 - 2\sqrt{6} \tag{1.4.2}$$

3. Two sides of a rhombus are along the lines

$$AB: (1 -1)\mathbf{x} + 1 = 0$$
 (1.4.3)

$$AD: (7 -1)\mathbf{x} - 5 = 0.$$
 (1.4.3)

If its diagonals intersect at

$$\mathbf{P} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, \tag{1.4.3}$$

find its vertices.

Solution: From (1.4.3) and (1.4.3),

$$\begin{pmatrix} 1 & -1 \\ 7 & -1 \end{pmatrix} \mathbf{A} = \begin{pmatrix} -1 \\ 5 \end{pmatrix} \tag{1.4.3}$$

By row reducing the augmented matrix

$$\begin{pmatrix} 1 & -1 & -1 \\ 7 & -1 & 5 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 6 & 12 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \implies \mathbf{A} = \begin{pmatrix} 1 \\ 2 \end{pmatrix},$$

$$(1.4.3)$$

Since diagonals of a rhombus bisect each other,

$$\mathbf{P} = \frac{\mathbf{A} + \mathbf{C}}{2}$$

$$\mathbf{C} = 2\mathbf{P} - \mathbf{A} = \begin{pmatrix} -3 \\ -6 \end{pmatrix}$$
(1.4.3)

$$\therefore AD \parallel BC,$$

$$BC : (7 -1)(\mathbf{x} - \mathbf{C}) = 0$$

$$\implies (7 -1)\mathbf{x} = -15 \qquad (1.4.3)$$

From (1.4.3) and (1.4.3),

$$\begin{pmatrix} 7 & -1 \\ 1 & -1 \end{pmatrix} \mathbf{B} = \begin{pmatrix} -15 \\ -1 \end{pmatrix} \tag{1.4.3}$$

resulting in the augmented matrix

$$\begin{pmatrix} 7 & -1 & -15 \\ 1 & -1 & -1 \end{pmatrix} \leftrightarrow \begin{pmatrix} 7 & -1 & -15 \\ 0 & 3 & -4 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 3 & 0 & -7 \\ 0 & 3 & -4 \end{pmatrix} \implies \mathbf{B} = -\frac{1}{3} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \quad (1.4.3)$$

$$\therefore AB \parallel CD$$
,

$$CD: (1 -1)(\mathbf{x} - \mathbf{C}) = 0$$

 $\implies (1 -1)\mathbf{x} = 3$ (1.4.3)

From (1.4.3) and (1.4.3),

$$\begin{pmatrix} 7 & -1 \\ 1 & -1 \end{pmatrix} \mathbf{D} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} \tag{1.4.3}$$

resulting in the augmented matrix

$$\begin{pmatrix} 7 & -1 & 5 \\ 1 & -1 & 3 \end{pmatrix} \leftrightarrow \begin{pmatrix} 7 & -1 & 5 \\ 0 & 3 & -8 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & -8 \end{pmatrix} \implies \mathbf{D} = \frac{1}{3} \begin{pmatrix} 1 \\ -8 \end{pmatrix} \quad (1.4.3)$$

4. Let *k* be an integer such that the triangle with vertices

$$\mathbf{A} = \begin{pmatrix} k \\ -3k \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 5 \\ k \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -k \\ 2 \end{pmatrix}$$
 (1.4.4)

has area 28. Find the orthocentre of this triangle.

Solution: Let \mathbf{m}_1 be the direction vector of BC. Then,

$$\mathbf{m}_1 = \begin{pmatrix} 5+k\\ k-2 \end{pmatrix}, \tag{1.4.4}$$

If AD be an altitude, its equation can be obtained as

$$\mathbf{m}_{1}^{T}(\mathbf{x} - \mathbf{A}) = 0 \tag{1.4.4}$$

Similarly, considering the side AC the equation of the altitude BE is

$$\mathbf{m}_2^T (\mathbf{x} - \mathbf{B}) = 0 \tag{1.4.4}$$

where

$$\mathbf{m}_2 = \begin{pmatrix} 2k \\ -2 - 3k \end{pmatrix}, \tag{1.4.4}$$

The orthocentre is obtained by solving (1.4.4)

and (1.4.4) using the matrix equation

$$\begin{pmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{pmatrix}^T \mathbf{x} = \begin{pmatrix} \mathbf{m}_1^T \mathbf{A} \\ \mathbf{m}_2^T \mathbf{B} \end{pmatrix}$$
 (1.4.4)

which can be expressed using (1.4.4), (1.4.4), (1.4.4) and (1.4.4) as

$${5+k \quad k-2 \choose 2k \quad -2-3k} \mathbf{x} = {k^2 + 5k + 6k - 3k^2 \choose 10k - 2k - 3k^2}$$

$$= k {11 - 4k \choose 8 - 3k}$$
 (1.4.4)

From (1.4.4), using the expression for the area of triangle,

$$\begin{vmatrix} k & 5 & -k \\ -3k & k & 2 \\ 1 & 1 & 1 \end{vmatrix} = 56$$

$$\implies \begin{vmatrix} k & 5 - k & -2k \\ -3k & 4k & 2 + 3k \\ 1 & 0 & 0 \end{vmatrix} = 56 \quad (1.4.4)$$

resulting in

$$(5-k)(2+3k) + 8k^2 = 56$$
 (1.4.4)

$$\implies 5k^2 + 13k - 46 = 0 \tag{1.4.4}$$

or,
$$k = 2, -\frac{23}{5}$$
 (1.4.4)

Substituting the above in (1.4.4) and solving yields the orthocentre.

5. If an equilateral triangle, having centroid at the origin, has a side along the line

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 2, \tag{1.4.5}$$

then find the area of this triangle. Also draw the equilateral triangle and two medians to verify your results.

Solution: Let the vertices be **A**, **B**, **C**. From the given information,

$$\frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} = \mathbf{0}$$

$$\implies \mathbf{A} + \mathbf{B} + \mathbf{C} = \mathbf{0} \qquad (1.4.5)$$

If AB be the line in (1.4.5), the equation of CF, where

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} \tag{1.4.5}$$

is

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = 0 \tag{1.4.5}$$

since CF passes through the origin and $CF \perp AB$. From (1.4.5) and (1.4.5),

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \mathbf{F} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \tag{1.4.5}$$

Forming the augmented matrix,

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \implies \mathbf{F} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(1.4.5)$$

From (1.4.5),

$$\mathbf{C} = -(\mathbf{A} + \mathbf{B}) = -2\mathbf{F} = -2\begin{pmatrix} 1\\1 \end{pmatrix}$$
 (1.4.5)

after substituting from (1.4.5). Thus,

$$CF = \|\mathbf{C} - \mathbf{F}\| = 3\sqrt{2}$$
 (1.4.5)

$$\implies AB = CF \frac{2}{\sqrt{3}} = 2\sqrt{6} \tag{1.4.5}$$

and the area of the triangle is

$$\frac{1}{2}AB \times CF = 6\sqrt{3} \tag{1.4.5}$$

6. A square, of each side 2, lies above the *x*-axis and has one vertex at the origin. If one of the sides passing through the origin makes an angle 30° with the positive direction of the *x*-axis, then find the sum of the *x*-coordinates of the vertices of the square.

Solution: Consider the square ABCD with $A = \mathbf{0}$, AB = 2 such that \mathbf{B} and \mathbf{D} lie on the x and y-axis respectively. Then

$$\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D} = 4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.4.6}$$

Multiplying (1.4.6) with the rotation matrix

$$\mathbf{T} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \tag{1.4.6}$$

$$\mathbf{T}(\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D}) = 4 \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= 4 \begin{pmatrix} \cos \theta - \sin \theta \\ \cos \theta + \sin \theta \end{pmatrix} (1.4.6)$$

$$\implies (1 \quad 0) \mathbf{T} (\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D})$$
$$= 4 (\cos \theta - \sin \theta) = 2 (\sqrt{3} - 1) \quad (1.4.6)$$

for $\theta = 30^{\circ}$. Draw the square with sides on the axis as well as the rotated square in the same graph to verify your result.