Similar to the list of things for the fundamental group and covering spaces, here is one for homology. I will update this from time to time with new information.

- 1) A Δ -complex structure on a space X is a collection of maps $\{\sigma_{\alpha}^n : \Delta^n \to X\}$ (where n depends on α) with each map meeting the following criteria:
 - $\circ \ \sigma_{\alpha}^{n} \ \text{restricted to the interior} \ \overset{\circ}{\Delta^{n}} \ \text{is an injective map.}$ $\circ \ \sigma_{\alpha}^{n}|_{[v_{0},\ldots,\hat{v}_{i},\ldots,v_{n}]} \ \text{is representable as some other} \ \sigma_{\beta}^{n-1}.$

 - A set $U \subseteq X$ is open if and only if $(\sigma_{\alpha}^n)^{-1}(U)$ is open.

The intuition for such requirements is as follows: 1) makes it so that Δ^n can be 'seen' within the space. 2) makes it so that the boundary map makes sense. 3) gives X the structure of a quotient of $\coprod_{\alpha} \Delta^n$.

- 2) $\Delta_n(X)$ is the free abelian group generated by σ_α^n . Elements look like $a_1\sigma_1^n + \ldots + a_m\sigma_m^n$ for $a_i \in \mathbb{Z}$.
- 3) We define the boundary map $\partial_n: C_n(X) \to C_{n-1}(X)$ by

$$\partial_n(\sigma^n) = \sum_{i=0}^n (-1)^i \sigma^n|_{[v_0, \dots, \hat{v}_i, \dots, v_n]}$$

4) This map implies that $\partial_n \circ \partial_{n+1} = 0$. Equivalently, $\ker(\partial_n) \supseteq \operatorname{im}(\partial_{n+1})$. Since both of these groups are subgroups of an abelian group, they are abelian, so every subgroup is normal. Therefore, we can define

$$H_n^{\Delta}(X) = \ker(\partial_n) / \operatorname{im}(\partial_{n+1})$$

We have computed the Homology groups of some low dimensional spaces using this property.

5) Not all spaces X are Δ -complexes. Therefore, we can extend this notion to the singular case. Instead of restricting our attention to σ in a Δ -complex structure, let $C_n(X)$ be the free abelian group generated by ALL maps $\sigma: \Delta^n \to X$. The same boundary map makes sense, so we can define

$$H_n(X) = \ker(\partial_n) / \operatorname{im}(\partial_{n+1})$$

where $\partial_n: C_n(X) \to C_{n-1}(X)$.

- 6) We showed that Homology breaks up as a direct sum over path connected components. Thus $H_0(X) = \mathbb{Z}^{\oplus (\# \text{ Path Components of X})}$, and that for a point, $H_i(pt) = 0$ for all i > 0.
- 7) We defined $H_i(X)$ to be exactly $H_i(X)$ when i > 0, but $H_0(X)/\mathbb{Z}$ when i = 0. Note that this quotient is via the identification with the image of a ϵ^{-1} .
- 8) A primary reason for liking Homology is the following:

Theorem 0.1 (Homotopy Invariance). If $f \simeq g: X \to Y$, then $f_* = g_*: H_i(X) \to Y$ $H_i(Y)$. Thus homotopy equivalent spaces have isomorphic homology.

An immediate consequence is that $\tilde{H}_i(X) = 0$ for all i if X is contractible.

9) A pair (X, A) is called a good pair if $A \subseteq X$ is a closed subset and $\exists U \supseteq A$ open deformation retracting to A. In this case we can naturally define maps $C_n(A) \to C_n(X) \to C_n(X/A)$ for every n. These induce a long exact sequence of homology:

$$\dots \xrightarrow{q_*} \tilde{H}_{n+1}(X/A) \xrightarrow{\delta} \tilde{H}_n(A) \xrightarrow{i_*} \tilde{H}_n(X) \xrightarrow{q_*} \tilde{H}_n(X/A) \xrightarrow{\delta} \tilde{H}_{n-1}(A) \xrightarrow{i_*} \dots$$

Note that $H_{-1}(X) = 0$ for any space X, so this terminates with

$$\dots \xrightarrow{\delta} \tilde{H}_0(A) \xrightarrow{i_*} \tilde{H}_0(X) \xrightarrow{q_*} \tilde{H}_0(X/A) \xrightarrow{\delta} 0$$

Often times we study finite dimensional spaces as well, so we can find the left most end to look like

$$0 \to \tilde{H}_m(A) \xrightarrow{i_*} \tilde{H}_m(X) \xrightarrow{q_*} \tilde{H}_m(X/A) \xrightarrow{\delta} \tilde{H}_{m-1}(A) \xrightarrow{i_*} \dots$$

where m is the dimension of X.

10) As with most things in topology, not all pairs are good (However, it can be shown CW pair \Rightarrow HEP pair \Rightarrow Good pair). Therefore we define $C_n(X, A)$ to be $C_n(X)/C_n(A)$. One can equivalently present this as the free abelian group generated by n-simplices in X with image outside of A (not entirely in A). This allows us to produce an exact sequence of complexes:

$$0 \longrightarrow C_n(A) \xrightarrow{\iota_\#} C_n(X) \xrightarrow{q} C_n(X, A) \longrightarrow 0$$

$$\downarrow \partial_n^A \qquad \qquad \downarrow \partial_n^X \qquad \qquad \downarrow \partial_n^{X,A}$$

$$0 \longrightarrow C_{n-1}(A) \xrightarrow{\iota_\#} C_{n-1}(X) \xrightarrow{q} C_{n-1}(X, A) \longrightarrow 0$$

Where all of the squares above commute, and the horizontal arrows form exact sequences. $\partial^{X,A}$ is just the restriction of ∂^X to the smaller generating set.

11) With this, next time we will construct a map going from $H_n(X, A) = \ker(\partial_n^{X, A}) / \operatorname{im}(\partial_{n+1}^{X, A})$ to $H_{n-1}(A)$ and form a LES

$$\dots \xrightarrow{q_*} H_{n+1}(X,A) \xrightarrow{\delta} \tilde{H}_n(A) \xrightarrow{i_*} \tilde{H}_n(X) \xrightarrow{q_*} H_n(X,A) \xrightarrow{\delta} \tilde{H}_{n-1}(A) \xrightarrow{i_*} \dots$$

We will the relate this back to the case of good pairs.

12) Next we can produce Excision:

Theorem 0.2. Let $Z \subseteq A \subseteq X$ with the property that the closure of Z is still contained in the interior of A: $\bar{Z} \subseteq A$. Then for every $n \geq 0$, the inclusion induces

$$i_*: H_n(X \setminus Z, A \setminus Z) \to H_n(X, A)$$

is an isomorphism of groups.

An equivalent formulation is as follows: If A, B are subsets of X such that $X = \stackrel{\circ}{A} \cup \stackrel{\circ}{B}$, then

$$i_*: H_n(B, A \cap B) \to H_n(X, A)$$

is an isomorphism.

You can go between the formulations by setting $B = X \setminus Z$ or $Z = X \setminus B$.

13) This allows to define a notion of local homology about a (closed) point (or more generally any closed subset A). Note that $C_n(X, X \setminus A)$ is generated by simplices $\sigma^n : \Delta^n \to X$ whose image is not entirely in A. If U is any open neighborhood of A, then excision implies

$$H_n(X, X \setminus A) = H_n(U, U \setminus A)$$

This is given by taking B = U and A = A in the second version of excision. Therefore, this object only depends on the structure of X near A. Sometimes it is denoted by

$$H_n^A(X) := H_n(X, X \setminus A)$$

It is useful for checking if $f: X \to Y$ is a local homeomorphism near a set A even though it may not be globally.

14) Utilizing excision again, we can show that for good pairs (X, A),

$$H_n(X,A) \cong H_n(X/A,A/A) \cong H_n(X/A,pt) \cong \tilde{H}_n(X/A)$$

Therefore, the LES above listed in 9 is exactly that listed in 11.

15) A corollary of the preceding statement is the case of the wedge sum: If (X_{α}, x_{α}) are good pairs, where $x_{\alpha} \in X$, then

$$\tilde{H}_n(\vee_{\alpha}X_{\alpha}) \cong H_n(\vee_{\alpha}X_{\alpha}, x) \cong H_n(\coprod_{\alpha}X, \coprod_{\alpha}X_{\alpha}) \cong \bigoplus_{\alpha}H_n(X_{\alpha}, x_{\alpha}) \cong \bigoplus_{\alpha}\tilde{H}_n(X_{\alpha})$$

Note that here the wedge sum is being taken with $x_{\alpha} \in X_{\alpha}$ being identified with $x_{\alpha'} \in X_{\alpha'}$.

- 16) Strong Invariance of Dimension: If $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ are open sets in the Euclidean topology, and $U \cong V$ are homeomorphic, then n = m.
- 17) The 5-lemma is stated as follows, and used to easily prove things in a LES are isomorphic.

Lemma 0.3. Consider the following diagram of groups and group homomorphisms (or more generally, objects and arrows in any Abelian category):

If this diagram is commutative, with exact rows, α is surjective, ϵ is injective, and β , δ are isomorphisms, then γ is an isomorphism.

18) A beautiful induction on dimension allows us to show that our two notions of Homology are equivalent:

Theorem 0.4. If (X, A) is a Δ -complex, then for all $n \geq 0$,

$$H_n^{\Delta}(X,A) \cong H_n(X,A)$$

Thus all the singular cycles are representable as standard cycles of simplices up to boundary.

19) Split Exact Sequences: A short exact sequence

$$0 \to H \stackrel{\iota}{\to} G \stackrel{q}{\to} G/H \to 0$$

is said to be **split** if one of the following equivalent conditions is met:

- i. $\exists \varphi : G \to H \text{ such that } \varphi \circ \iota = Id_H.$
- ii. $\exists \varphi : G/H \to G$ such that $q \circ \varphi = Id_{G/H}$.
- iii. $G \cong G/H \oplus H$.

A non-split sequence is $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$.

20) If $\exists r: X \to A$ a retraction, then the following sequence is split exact:

$$0 \to H_n(A) \to H_n(X) \to H_n(X,A) \to 0$$

In particular the connecting map $\delta: H_n(X,A) \to H_{n-1}(X,A)$ is 0.

21) **Meyer-Vietoris Sequence:** Similar to Van Kampen's Theorem, sometimes it's easier to work with smaller components of a space instead of the whole.

Theorem 0.5. If $A, B \subseteq X$ are sets whose interiors cover X, then the following sequence is exact:

$$\dots \to H_n(A \cap B) \to H_n(A) \oplus H_n(B) \to H_n(X) \to H_{n-1}(A \cap B) \to \dots$$

The first map is (i_*, j_*) , where i and j are the inclusions of $A \cap B$ into A, B respectively. Then the second map is the difference of the inclusion maps from A, B into X. The last is the connecting map δ .

22) If X is a path connected space, then

$$\pi_1(X)^{ab} \cong H_1(X)$$