

modules over decomposable rings

Canonical name ModulesOverDecomposableRings

Date of creation 2013-03-22 18:50:05 Last modified on 2013-03-22 18:50:05

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130)

Entry type Theorem
Classification msc 20-00
Classification msc 16-00
Classification msc 13-00

Let R_1, R_2 be two, nontrivial, unital rings and $R = R_1 \oplus R_2$. If M_1 is a R_1 -module and M_2 is a R_2 -module, then obviously $M_1 \oplus M_2$ is a R-module via $(r,s) \cdot (m_1, m_2) = (r \cdot m_1, s \cdot m_2)$. We will show that every R-module can be obtain in this way.

Proposition. If M is a R-module, then there exist submodules $M_1, M_2 \subseteq M$ such that $M = M_1 \oplus M_2$ and for any $r \in R_1$, $s \in R_2$, $m_1 \in M_1$ and $m_2 \in M_2$ we have

$$(r,s) \cdot m_1 = (r,0) \cdot m_1 \quad (r,s) \cdot m_2 = (0,s) \cdot m_2,$$

i.e. ring action on M_1 (respectively M_2) does not depend on R_2 (respectively R_1).

Proof. Let $e = (1,0) \in R$ and $f = (0,1) \in R$. Of course both e, f are idempotents and (1,1) = e + f. Moreover ef = fe = 0 and e, f are central, i.e. $e, f \in \{c \in R \mid \forall_{x \in R} \ cx = xc\}$. We will use e, f to construct submodules M_1, M_2 . More precisely, let $M_1 = eM$ and $M_2 = fM$. Because e, f are central, then it is clear that both M_1 and M_2 are submodules. We will show that $M_1 + M_2 = M$. Indeed, let $m \in M$. Then we have

$$m = (1,1) \cdot m = (e+f) \cdot m = e \cdot m + f \cdot m.$$

Thus $M_1 + M_2 = M$. Furthermore, assume that $m \in M_1 \cap M_2$. Then there exist $m_1, m_2 \in M$ such that

$$e \cdot m_1 = m = f \cdot m_2$$

and therefore

$$e \cdot m_1 - f \cdot m_2 = 0.$$

Now, after multiplying both sides by e we obtain that

$$0 = (ee) \cdot m_1 - (ef) \cdot m_2 = e \cdot m_1 - 0 \cdot m_2 = e \cdot m_1 = m,$$

thus $M_1 \cap M_2 = 0$. This shows that $M = M_1 \oplus M_2$. To finish the proof, we need to show that the ring action on M_1 does not depend on R_2 (the other case is analogous). But this is clear, since for any $(r, s) \in R$ and $m \in M$ we have

$$(r,s)\cdot(e\cdot m) = ((r,s)(1,0))\cdot m = (r,0)\cdot m = ((r,0)(1,0))\cdot m = (r,0)\cdot(e\cdot m).$$

This completes the proof. \square