PASE - Proyecto Final

Aplicación de MCMC

Semestre 2021-1

Instrucciones: Aquí presentamos la base de la práctica a desarrollar como proyecto final. Es necesario agregar la sección introductoria del tema y contestar las preguntas listadas; sin embargo, pueden explorar modelos similares o ligeramente modificado y es opcional agregar preguntas, gráficas o ajustar los datos del modelo.

Considere un tablero de 8×8 ; una configuración del tablero es una asignación de colores (blanco y negro) en las casillas $(C:\{1,2,\ldots,64\} \to \{0,1\})$ y decimos que la configuración es aceptable si no hay dos cuadritos adyacentes de color negro (por ejemplo, un cuadrito genérico tiene 4 cuadritos adyacentes y cada esquina tiene dos cuadritos adyacentes).

Trabajaremos con el espacio de estados \mathcal{C} que reune a todas las configuraciones aceptables. Considere una caminata aleatoria $(X_n)_{n\geq 0}$ con espacio de estados en \mathcal{C} que satisface

- La configuración incial X_0 tiene todos los cuadritos blancos
- Dado que conocemos X_n , construimos X_{n+1} de la siguiente forma:
 - 1. Elige una casilla c uniformemente al azar y lanza una moneda justa
 - 2. Si la moneda sale águila entonces $X_{n+1} = X_n$
 - 3. Si la moneda sale sol entonces intercambiamos el color de la casilla c (de blanco a negro o viceversa) y, sólo si esto genera una configuración aceptable, ésta es la siguiente configuración X_{n+1} ;
 - 4. en otro caso hacemos $X_{n+1} = X_n$.

Se puede probar (parte de la introducción) que existe una única distribución estacionaria de la caminata $(X_n)_{n\geq 1}$ de modo que la distribución de X_n converge a la distribución uniforme en \mathcal{C} .

1 Preguntas

- 1. Simule la cadena de Markov y grafique las configuraciones obtenidas a los tiempos 10,50,100,800,1000 para 4 realizaciones distintas.
- 2. Defina C_n como el número de cuadritos negros en la configuración X_n y grafique los promedios de C_n para 500 simulaciones de la cadena de Markov.
- 3. En base a los resultados obtenidos, determine un tiempo de paro T, que puede ser aleatorio o determinista, para el cuál la configuración X_T tiene una distribución suficientemente cercana a la uniforme en el espacio de configuraciones C.