

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO							
Disciplina:				Código da Disciplina:			
Vetores, Curvas e Superfícies				EFB110			
Course:				<u> </u>			
Vectors, Curves and Surfaces							
Materia:							
Vectores, Curvas y Superficies							
Periodicidade: Anual	Carga horária total:	80	Carga horária seman	al: 02 - 00 - 00			
Curso/Habilitação/Ênfase:	•		Série:	Período:			
Formação Básica			1	Noturno			
Formação Básica			1	Diurno			
Engenharia			1	Noturno			
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação			
Eloiza Gomes		Bacharel em Ma	atemática	Doutor			
Professores:		Titulação - Graduaç	ção	Pós-Graduação			
Eloiza Gomes		Bacharel em Matemática		Doutor			
Juliana Martins Philot		Bacharel em Matemática		Mestre			
Vitor Alex Oliveira Alves		Engenheiro Eletricista Doutor		Doutor			
OBJE	TIVOS - Conhec	imentos, Habili	dades, e Atitudes				

Conhecimentos:

- C1: Parametrização de Curvas no espaço bi dimensional: reta, circunferência e secções cônicas
- C2: Vetores nos espaços bi e tridimensional: propriedades e produtos
- C3: Geometria Analítica no espaço tridimensional: retas e planos
- C4: Superfícies Quádricas
- C5: Parametrização de Curvas no espaço tri dimensional
- C6: Funções de várias vaiáveis: definição e representação gráfica
- C7: vetor gradiente, plano tangente e reta normal à superfície
- C8: Derivadas parciais: definição, representação geométrica e aplicações.
- C9: Derivadas direcionais e gradiente: definição, interpretação geométrica e aplicações.

Habilidades:

- H1: Leitura e compreensão de textos
- H2: Modelagem vetorial
- H4: Manejo algébrico dos modelos vetoriais
- H5: Utilização de software para construção de gráficos e realização de
- cálculos envolvidos nesta disciplina
- H6: Visão espacial
- H7: Práticas de estudo e pesquisa
- H8: Trabalho em equipe

Atitudes:

A1: Responsabilidade pelo seu processo de aprendizagem.

2020-EFB110 página 1 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

A2: Enfrentar problemas e desafios.

A3: Curiosidade teórica e da aplicação dos conceitos ensinados.

A4: Respeito com os docentes, os colegas discentes e os funcionários do Instituto.

EMENTA

Definição de curvas em espaços bi e tridimensionais. Equações cartesianas e parametrização de curvas em espaços bidimensionais, com ênfase em retas, circunferências e cônicas. Vetores no espaço geométrico bi e tridimensional: definição, adição, multiplicação por escalar e propriedades. Produto escalar, projeções e produto vetorial. Retas e planos em espaços tridimensionais: equações, posições relativas, ângulos e distâncias, aplicações a problemas geométricos. Superfícies cilíndricas e esféricas: definição e posições relativas a retas e planos. Superfícies Quádricas. Parametrização de curvas em espaços tridimensionais como intersecção de superfícies cilíndricas, esféricas e quádricas. Funções de duas variáveis reais: definição, representação gráfica e curvas de nível. Vetor gradiente, planos tangentes e retas normais a superfícies. Derivadas parciais: definição e interpretação geométrica. Derivada direcional.

SYLLABUS

Curve definition in two and three-dimensional spaces. Cartesian equations and parameterization of curves in two-dimensional spaces, with emphasis on straight circumferences conics. Geometric Vectors and in definition, three-dimensional spaces: sum, scalar multiplication and properties. Dot product, projections and cross product. Lines and planes in three-dimensional spaces: equations, relative positions, angles and distances. Applications in geometric problems. Cylindrical and spherical surfaces: definition and positions relative to lines and planes. Quadric surfaces. Parameterization of curves in three-dimensional spaces as intersection of cylindrical, spherical and quadratic surfaces. Functions of several real variables: definition, graphical representation and curves level. Gradient vector, tangent planes and normal lines to the surface. Partial derivatives: definition, geometric interpretation and applications.

TEMARIO

Definición de curvas en el espacio Geométrico bi y tridimensional. Ecuaciones cartesianas y parametrización de curvas en espacios bidimensionales, con énfasis en líneas rectas, circunferencias y cónicas. Vectores en el espacio Geométrico bi y tridimensional: definición, adición, multiplicación por escalar y propiedades. Producto escalar, proyecciones y producto vectorial. Retas y planos: ecuaciones, posiciones relativas, ángulos y distancias. Aplicaciones a problemas geométricos. Superficies cilíndricas y esféricas: definición y posiciones relativas а líneas У planos. Superficies cuadráticas. Parametrización de curvas en espacios tridimensionales como intersección de superficies cilíndricas, esféricas y cuadráticas. Funciones de varias variables reales: definición, representación gráfica, curvas de nivel. Vector gradiente, planos tangentes y rectos normales a la superfície. Derivadas parciales: definición, interpretación geométrica y aplicaciones.

2020-EFB110 página 2 de 10

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Sala de aula invertida
- Jigsaw

METODOLOGIA DIDÁTICA

Utiliza-se, na maioria das aulas, técnicas de aprendizagem ativa:

- Flipped Classroom
- Blended Learning
- Jigsaw
- Peer Instruction

Tais momentos serão desenvolvidos em salas com a possibilidade de acesso à internet e mobilidade para o trabalho em grupo.

Vídeo-aulas com a explicação da teoria abordada na disciplina e discussão de exercícios estarão disponíveis para os alunos.

As aulas expositivas proporcionarão aos estudantes a socialização dos conceitos discutidos nas atividades.

O ambiente de aprendizagem virtual Moodlerooms será o portal em que os alunos poderão acessar todo o material da disciplina, realizar tarefas e discutir com alunos e professores

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- Trigonometria básica.
- Geometria analítica no plano: retas e circunferências.
- Compreensão e interpretação de textos.
- Capacidade de expressão oral e escrita.
- Resolução de sistemas de equações lineares.

CONTRIBUIÇÃO DA DISCIPLINA

- 1. Estabelecer as noções básicas do Cálculo Vetorial;
- 2. Compreender fundamentos, aplicações e procedimentos da Geometria Analítica;
- 3. Estimular a criatividade na geração e previsão de soluções;
- 4. Estimular os alunos a tomar conhecimento de suas potencialidades e fazê-los mirar para além do ano letivo e da própria graduação;
- 5. Desenvolver nos alunos o hábito do estudo contínuo e organizado.

2020-EFB110 página 3 de 10

BIBLIOGRAFIA

Bibliografia Básica:

BOULOS, Paulo; CAMARGO, Ivan de. Geometria analítica: um tratamento vetorial. 3. ed. São Paulo, SP: Pearson/Prentice Hall, 2005. 543 p. ISBN 8587918915.

STEWART, James. Cálculo. MORETTI, Antônio Carlos (Trad.). 6. ed. São Paulo: Pioneira Thomson Learning, c2010. v. 2. 542 p. ISBN 9788522106615.

WINTERLE, Paulo. Vetores e geometria analítica. São Paulo, SP: Makron Books, 2000. 232 p. ISBN 85-346-1109-2.

Bibliografia Complementar:

ANTON, Howard. Cálculo: um novo horizonte. Trad. de Cyro de Carvalho Patarra e Márcia Tamanaha. 6. ed. Porto Alegre, RS: Bookman, 2000. v. 2. ISBN 85-7307-652-6.

BALDIN, Yuriko Yamamoto; FURUYA, Yolanda K. Saito. Geometria analítica para todos e atividades com Octave e GeoGebra. São Carlos, SP: EDUFSCAR, 2011. 493 p. ISBN 9788576002499.

BOSCAINO, Eloiza Gomes; MACHADO, Trajano Couto. Vetores e geometria analítica: secções cônicas. São Caetano do Sul, SP: CEUN-EEM, s.d. 17 p.

LARSON, Ron; HOSTETLER, Robert P; EDWARDS, Bruce H. Cálculo. 8. ed. São Paulo: McGraw-Hill, 2006. v. 2. 625 p. ISBN 8586804827.

THOMAS JR., George B. Cálculo. Tradução de Alfredo Alves de Farias. Rio de Janeiro, RJ: Ao Livro Técnico, 1965. v. 2. 426 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 0, 2 \quad k_2: 0, 2 \quad k_3: 0, 3 \quad k_4: 0, 3$

Peso de MP(k_p): 0,6 Peso de MT(k_p): 0,4

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Trabalhos:

A cada bimestre, serão propostas atividades, denotados por Mi,realizados no Moodlerooms e, em sala de aula, denotados por Ai, em que serão propostas questões que deverão ser resolvidas pelos estudantes. Haverá também, a cada

2020-EFB110 página 4 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

bimestre, uma nota Mpi referente à participação em todas as atividades desenvolvidas no moodlerooms (frequência, atividades propostas pelo tutor, etc.)

- Em cada bimestre, a média de trabalhos realizados será calculada a partir de:

1o. Bimestre: T1 = 0,3.A1+0,4.M1+0,3.Mp1

20. Bimestre: T2 = 0,15.A2+0,15.A3+0,4.M2+0,3.Mp2

3o. Bimestre: T3 = 0,15.A4+0,15.A5+0,4.M3+0,3.Mp3

4o. Bimestre: T4 = 0,3.A6+0,4.M4+0,3.Mp4

- Será oferecido um trabalho de reposição das atividades Ai, realizado na semana destinada à Prova Substitutiva no final do ano letivo, que substituirá uma única ausência à avaliação e versará sobre o conteúdo ano. Este trabalho aplica-se apenas aos alunos que perderam uma ou mais atividades Ai programadas durante o ano. No caso de falta a mais de uma atividade, a nota obtida será lançada na posição que melhor favoreça ao aluno.

A aplicação dos trabalhos Ai e Mi seguirá o cronograma de cada bimestre, disponível na página da disciplina na Plataforma Moodlerooms.

- A média final de trabalhos será obtida por: MT = =0,2.T1 + 0,2.T2 + 0,3.T3 + 0,3.T4

Provas:

A cada semestre haverá uma prova presencial e individual. As provas semestrais P1 e P2 versarão sobre o conteúdo visto em cada semestre. Vale salientar que os conteúdos desenvolvidos na disciplina são concatenados e sequenciais.

Será oferecida uma Prova Substitutiva, PS, no final do ano. A nota da prova PS substitui a menor dentre as notas das provas P1 e

P2, ou a média entre essas notas, de acordo com a situação que melhor favorece o aluno. A prova PS versará sobre o conteúdo do ano. A aplicação das provas seguirá o calendário oficial da Escola.

A média de provas MP é calculada segundo a expressão MP = (2*P1 + 3*P2)/5.

- A média final será obtida por:

MF = 0,6*MP+0,4*MT

Se MF for maior ou igual a 6,0(seis) o aluno está aprovado.

2020-EFB110 página 5 de 10

OUTRAS INFORMAÇÕES
O desenvolvimento das atividades desta disciplina compõe um processo de
aprendizagem onde você será tratado com respeito. São bem-vindos indivíduos de
todas as idades, origens, crenças, etnias, gêneros, identidades de gênero,
expressões de gênero, origens nacionais, afiliações religiosas, orientações
sexuais, outras diferenças visíveis e não visíveis. Espera-se que todos os
matriculados nesta disciplina contribuam para um ambiente respeitoso, acolhedor
e inclusivo para todos.

2020-EFB110 página 6 de 10

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA GeoGebra Wolfram Alpha Symbolab

2020-EFB110 página 7 de 10

APROVAÇÕES

Prof.(a) Eloiza Gomes Responsável pela Disciplina

Prof.(a) Angelo Sebastiao Zanini Coordenador do Curso de Engenharia de Computação

Prof.(a) Cassia Silveira de Assis Coordenador(a) do Curso de Engenharia Civil

Prof.(a) David Garcia Penof Coordenador do Curso de Engenharia de Produção

Prof.(a) Eliana Paula Ribeiro Coordenador(a) do Curso de Engenharia de Alimentos

Prof.(a) Fernando Silveira Madani Coordenador(a) do Curso de Eng. de Controle e Automação

Prof.(a) Hector Alexandre Chaves Gil Coordenador(a) do Ciclo Básico

Prof.(a) Luciano Gonçalves Ribeiro Coordenador(a) do Curso de Engenharia Química

Prof.(a) Susana Marraccini Giampietri Lebrao Coordenadora do Curso de Engenharia Mecânica

Data de Aprovação:

2020-EFB110 página 8 de 10

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 T	Programa de Recepção e Integração dos Calouros (PRINT)	91% a
		100%
2 T	Apresentação do curso - atividade de auto avaliação - Presencial.	41% a 60%
	Vídeos: apresentação da disciplina e definição de curvas R2 e R3	
	- Ambiente Virtual de Aprendizagem - AVA	
3 T	Parametrização de curvas no R2 - reta e circunferência -	41% a 60%
	Presencial.Introdução aos vetores: mesa de forças, ideia	
	intuitiva - AVA	
4 T	Parametrização de curvas no R2 - elipse, hipérbole e parábola -	41% a 60%
	Parte 01 - Presencial. Vetores: definição, soma, subtração,	
	multiplicação por escalar - AVA	
5 T	Parametrização de curvas no R2 - elipse, hipérbole e parábola -	41% a 60%
	Parte 02 - Presencial. Vetores: definição, soma, subtração,	
	multiplicação por escalar - AVA	
6 Т	Atividades (A1) sobre parametrização de curvas no R2 -	41% a 60%
	Laboratório de informática - Presencial.Vetores: combinação	
	linear, paralelismo e coplanaridade - AVA	
7 T	Fechamento do bimestreVetores: coordenadas de vetores R2 e R3 -	41% a 60%
	AVA	
8 T	Semana de Prova	0
9 T	Semana de ProvaAtividade (M1)- AVA	91% a
		100%
10 T	Estudo da reta em espaço tridimensional: equações -	41% a 60%
	Presencial.Vetores: produto escalar - AVA	
11 T	Atividade (A2) de vetores e reta - Laboratório de informática -	91% a
	Presencial. Vetores: produto escalar - AVA	100%
12 T	Posição relativa entre retas - Presencial.Projeção Ortogonal -	41% a 60%
	AVA	
13 Т	Distância entre retas reversas - PresencialProduto Vetorial (AVA)	41% a 60%
13 Т	Distância entre retas reversas - Presencial.Produto Vetorial -	41% a 60%
	AVA	
14 T	Primeiras ideias sobre plano - Presencial.Produto Vetorial - AVA	41% a 60%
15 T	Semana de Inovação Mauá - Smile	0
15 T	Semana de Inovação Mauá - Smile	91% a
	,	100%
16 Т	Equações e posições relativas do plano - Presencial.Produto	41% a 60%
	Vetorial - AVA	
17 Т	Atividade (A3) de plano e produtos - Presencial.Atividade (M2) -	91% a
- / -	AVA	100%
18 Т	Fechamento do bimestre - Presencial e AVA	61% a 90%
19 T	Prova semestral - P1	0
20 т	Prova semestral - Pl	0
20 T 21 T	Prova semestral - P1 Revisão do assuntos abordados no primeiro semestre	0

2020-EFB110 página 9 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

23 Т	Prova Substitutiva	0		
24 T	Superfície Esféricas - primeiras ideias e equação -	41%	a	 60%
	Presencial.Superfícies Quádricas - Definição, elipsoide - AVA			
25 Т	Atividade (A4) - Superfície Esféricas, reta e plano -	91%	a	
	Presencial.Superfícies Quádricas - Hiperboloides - AVA	100%		
26 Т	Superfícies cilíndricas e parametrização de curvas geradas por	41%	a	 60%
	essas superfícies e um plano - Presencial.Superfícies Quádricas -			
	Paraboloides e Cônica - AVA			
27 Т	Parametrização de curvas geradas por intersecção de superfícies -	41%	a	 60%
	Presencial.Esboço de sólidos - AVA			
28 T	Atividade (A5) - Superfícies - PresencialAtividade (M3) - AVA	91%	a	
		100%		
29 Т	Revisão do assuntos abordados anteriormente	0		
30 T	Semana de Prova	0		
31 T	Funções de duas e três variáveis: definição, domínio, imagem e	41%	a	
	representação gráfica - Presencial.Curvas de nível - AVA			
32 T	Plano tangente, reta normal e definição de derivada - Laboratório	91%	a	
	de informática - Parte 01 - Presencial.Representação gráfica -	100%		
	AVA			
33 Т	Plano tangente, reta normal e definição de derivada - Parte 02 -	41%	a	
	Presencial.Exercícios de derivada parcial - AVA			
34 T	Plano tangente, reta normal e definição de derivada - Parte 02 -	41%	a	60%
	Presencial.Exercícios de derivada parcial - AVA			
35 T	Atividade (A6) - Plano tangente, reta normal e definição de	41%	a	60%
	derivada - Presencial. Exercícios de derivada parcial - AVA			
36 T	Derivada direcional e vetor gradiente - Parte 01 -	41%	a	60%
	Presencial.Exercícios de plano tangente - AVA			
37 Т	Derivada direcional e vetor gradiente - Parte 02 -	41%	a	60%
	Presencial.Exercícios de derivada direcional e atividade (M4) -			
	AVA			
38 Т	Prova semestral - P2	0		
39 Т	Prova semestral - P2	0		
40 T	Revisão para PS	0		
41 T	Prova Substitutiva - PS	0		
Legenda	: T = Teoria, E = Exercício, L = Laboratório			

2020-EFB110 página 10 de 10