Data & Web Mining

K-NN Classifier

- Cosa succede per k che tende a infinito?
 - a. La predizione non è definita
 - b. L'algoritmo non termina
 - c. La predizione è la classe maggioritaria del dataset
- c: k tendente a infinito implica selezionare tutte le istanze del dataset per la predizione

K-NN Classifier

- Cosa fa il classificatore a tempo di training?
 - a. Costruisce un albero di decisione
 - b. Niente
 - c. Memorizza il Training Set (possibilmente indicizzandolo)

c: per questo motivo viene classificato come Lazy Learner

K-NN Classifier

- Che impatto ha la "scala" (min/max) delle features?
 - a. Se le features sono su scala diversa la predizione è sicuramente sbagliata
 - b. Il calcolo della distanza è dominato dalla features con range [min-max] maggiore
 - c. Dipende dalla misura di distanza
 - d. Nessun impatto
- b, ma possiamo considerare come vera anche c perchè la misura di distanza potrebbe essere insensibile alla scala

- Che impatto ha la "scala" (min/max) delle features?
 - a. Se le features sono su scala diversa la predizione è sicuramente sbagliata
 - b. Il calcolo della distanza è dominato dalla features con range [min-max] maggiore
 - c. Dipende dalla misura di distanza
 - d. Nessun impatto
- d. il miglior partizionamento D_L e D_R non dipende dalla scala

• Perchè "binary"?

- a. Perché possono gestire solo problemi di classificazione binaria: vero/falso, giallo/blu, cerchio/quadrato
- b. Perché ogni nodo può avere 2 figli
- c. Perché ogni nodo può analizzare solo due features

b.

- Quante features possono essere coinvolte nel predicato di un nodo?
 - a. Solo 1 features
 - b. Solo 2 features
 - c. Solo 1 se numerico, più di una se categorico
 - d. Dipende da _____

d: dipende dalla nostra implementazione

- Qual è la profondità massima?
 - a. Non si può dire, perchè?
 - b. Pari al numero di features
 - c. Pari al numero di istanze
 - d. Pari al prodotto tra numero di features e numero di istanze

• c: perché ciascuna foglia deve avere almeno un'istanza

- Nel caso di variabile categorica con N valori distinti possibili, quali affermazioni sono vere?
 - a. Ci sono N modi diversi di creare uno Split binario
 - b. Ci sono 2^N modi diversi di creare uno Split binario
 - c. Ci sono 2^{N-1} modi diversi di creare uno Split binario
 - d. Ci sono 2^{N-1} -1 modi diversi di creare uno Split binario
- d: perchè i sottoinsiemi di N valori distinti sono 2^N , ma metà di questi sono complementare ed equivalenti (se la feature assume i valori ABCD, $x \in \{A\}$ è equivalente a $x \in \{BCD\}$), e infine lo split $x \in \{\}$ non è valido.