②. 3. 5 电流-电压转换器如图题 2. 3. 5 所示。设光探测仪的输出电流作为运放的输入电流 i_* ;信号内阻 $R_{*i}\gg R_{i}$,试证明输出电压 $v_*=-i_*R_{i}$,求输入电阻 R_{i} 和输出电阻 R_{*i} ;(2) 当 $i_*=0.5$ mA, $R_{*i}=10$ k Ω , $R_{$

图题 2.3.5

解: 11)由Rsi >> Ri,可能 $is = i_1 = i$ $\therefore V_0 = -iR = -isR$

由M=Up=0 研犯,Ri=0 由超想资级可知,ro=0,则 Ro=0

(2) $i_s = i_1 = i = 0.5 \text{ mA}$ $v_0 = -i_s R = -5V$ $A_r = \frac{v_0}{i_s} = \frac{-5V}{0.5 \text{ mA}} = -10 \text{ kg}$

(2.4.4) INA2128 型仪用放大器电路如图题 2.4.4 所示,其中 R_1 是外接电阻。 (1) 它的输入于扰电压 V_c =

 $V(\hat{a}\hat{m})$,输入信号 $v_{i1} = -v_{i2} = 0$. 04sin ωt V,输入端电压 $v_1 = (V_C + 0$. 04sin $\omega t)$ V , $v_2 = (V_C - 0$. 04sin $\omega t)$ V , 当 $R_1 = 1$ Ω 以 Ω 时,求出 v_3 、 v_4 、 v_3 $-v_4$ 和 v_6 的电压值;(2)当输入电压 $V_{id} = V_1 - V_2 = 0$. 018 66 V 时,要求 $V_0 = -5$ V,求此时外接电阻 R_1 的阻值。

##: (1)
$$V_A = V_1$$
, $V_B = V_2$: $i \varrho_1 = \frac{V_A - V_B}{P_1} = 0.08 \text{ sinwt mA} = i \varrho_2$

: $V_3 - V_4 = i \varrho_1 \cdot (P_1 + 2P_2) = 4.08 \text{ sinwt } V$
 $V_3 = V_A + i \varrho_2 \cdot P_2 = 1 + 0.04 \text{ sinwt} + 2 \text{ sinwt} \quad (V) = 1 + 2.04 \text{ sinwt} \quad (V)$
 $V_4 = V_B - i \varrho_1 \cdot P_2 = 1 - 2.04 \text{ sinwt} \quad (V)$

**Expression of the content of the c

(2)
$$VAB = V_1 - V_2 = 0.01866V$$

 $V_3 - V_4 = \frac{VAB}{P_1} \cdot CP_1 + 2P_2$
是一级产品处理的人式话: $V_6 = -\frac{P_4}{P_3} \cdot \frac{P_4 + 2P_2}{P_1} \cdot VAB$
 $HAP_2 = 25 KD \cdot P_3 = P_4 = 40 kD \cdot V_6 = -5V$, $V_{AB} = 0.01866V$
學 $P_1 \approx 187.52$

: $V_{01} = V_{01} = -3V$, $V_{02} = V_{02} = 4V$

我腾地原现计算:

①以二0时、为标记等电路

$$\therefore V_0' = -\frac{\cancel{k_3}}{\cancel{\rho_1}} \cdot V_{01} - \frac{\cancel{k_3}}{\cancel{\rho_2}} \cdot V_{02} = -1V$$

D V1=12=0 B₹, 161=162=0

$$\frac{V_0^2 - V_{02}}{\rho_3} = \frac{V_{02}}{\rho_1} + \frac{V_{02}}{\rho_2}$$

$$\frac{V_0''}{\rho_2} = (1 + \frac{\rho_3}{\rho_2} + \frac{\rho_3}{\rho_2}) \cdot V_{02} = 3V_{02}$$

$$\sqrt[4]{P_5} = \frac{3 - \nu_B}{P_4} = \frac{3}{P_5} = 2V$$

(養加得: い= い+ い"= 5V

$$: \frac{1/6(5)}{V_i(5)} = -\frac{1}{(P_i + \frac{1}{5C_1})(\frac{1}{P_2} + 5C_2)} = -\frac{SC_1P_2}{(SC_1P_i + 1)(HP_2SC_2)}$$

(2) :
$$P_1 = P_2 = P$$
, $C_1 = C_2 = C$: $\frac{V_0(S)}{V_1(S)} = -\frac{SPC}{(HSPC)^2}$

②
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{$

$$= \frac{\sqrt{w_{H}}}{4+(w_{H})^{2}} - \frac{2}{4+(w_{H})^{2}}$$

2.4.16 电路如图题 2.4.16a 所示。设运放是理想的,电容器 C 上的初始电压为零,即 $v_c(0)=0,v_n=-0.1$ V,v_n 是幅值为±3 V,周期 T=2 s 的矩形波。(1)求出 v_{01},v_{02} 和 v_0 的表达式;(2)当输入电压 v_{11},v_{12} 如图题 2.4.16b所示时,试画出 v_0 的波形。

解: (1) A,组成反相运转略, A,组成积分电路, A,组成反相求和电路。

$$V_{01} = -\frac{p_{21}}{p_{1}} \cdot V_{21} = 0.3V$$

$$V_{02} = -\frac{1}{p_{2}C} \int_{0}^{t} V_{12} dt = -\frac{1}{(0)} \int_{0}^{t} V_{22} dt \quad (V)$$

$$V_{0} = -\frac{p_{22}}{p_{22}} \cdot V_{12} + \frac{p_{23}}{p_{23}} \cdot V_{23} + \frac{p_{23}}{p_{23}} \cdot V$$

 $V_0 = -\frac{\rho_{23}}{\rho_2} \cdot v_{01} - \frac{\rho_{23}}{\rho_{44}} \cdot v_{02} = -0.3 + \frac{1}{10} \int_0^t v_{21} dt (v)$

(2) 当t20时, 16=-0.3V

当t=1s时,
$$\int_0^t V_{32} dt = \int_0^t 3 dt = 3$$

$$V_0 = -0.3 + \frac{1}{10} \times 3 (V) = 0 V$$

当t=25时,
$$\int_0^t V_{12} dt = \int_0^t 3 dt + \int_1^1 -3 dt = 0$$

·画的Vo的流形:

补充题(设计题)

LM324是一种内含4个运放的集成电路芯片。现有两片LM324和若干种电阻(电阻值在1K $\Omega\sim1M\Omega$)。试用它们设计一个电路,实现以下运算 $\nu_0=2\nu_1+3\nu_2-4\nu_3-5\nu_4$,同时要求对应每个信号的输入电阻不小于 $1M\Omega$ 。(画出电路原理图,并给出设计过程)

由于此近年即有加法又有减法,且放大器仅有2个. 故思考年用二级反相求和放式,正是为两级加进运算的结果, 是是为一级运车的结果,

故先这等这等25岁、美线新车3岁与42岁。 由省行信号的输入电阻不小于1/MS2,而单阻值仅有1KD251MD22间中国。 故输入电阻需多个电阻组查。

Vo = - Vo1 -413-51/4 = 21/+31/2-41/3-51/4.