1149908_1.TXT SEQUENCE LISTING

<110>	The Government of the United States of America, as represented by the Secretary, Department of Health and Human Services, Office of Technology Transfer, National Institutes of Health Becerra, S. Patricia Notari, Luigi Laborda, Jorge Martinez, Julio Escribano													
<120>	PEDF-R RECEPTOR AND USES													
<130>	NIHA-0238													
<140> <141>	10/566,540													
<150> <151>	PCT/US2004/025560 2004-08-05													
<150> <151>														
<150> <151>	US 60/493,713 2003-08-07													
<160>	35													
<170>	PatentIn version 3.5													
<210> <211> <212> <213>														
<400> ggcacg	1 gaggg cggccccagt cagacgcagg cagccccaaa gcctgaacag gcagggccag	60												
acccag	gcttc ttcgcctccg ccagcgggga ccccgagcta gagccgcagc gggacctgcc	120												
cggccc	ccgg ctccagcgag cgagcggcga gcaggcggct cacagaggcc tggccgccca	180												
cggaac	ccgg ggcccggcgg ccgccgccgc gatgtttccc cgcgagaaga cgtggaacat	240												
ctcgtt	ccgcg ggctgcggct tcctcggcgt ctactacgtc ggcgtggcct cctgcctccg	300												
cgagca	acgcg cccttcctgg tggccaacgc cacgcacatc tacggcgcct cggccggggc	360												
gctcac	eggcc acggcgctgg tcaccggggt ctgcctgggt gaggctggtg ccaagttcat	420												
tgaggt	atct aaagaggccc ggaagcggtt cctgggcccc ctgcacccct ccttcaacct	480												
ggtaaa	agatc atccgcagtt tcctgctgaa ggtcctgcct gctgatagcc atgagcatgc	540												
cagtgg	ggcgc ctgggcatct ccctgacccg cgtgtcagac ggcgagaatg tcattatatc	600												
ccactt	ccaac tccaaggacg agctcatcca ggccaatgtc tgcagcggtt tcatccccgt	660												
gtactg	stggg ctcatccctc cctccctcca gggggtgcgc tacgtggatg gtggcatttc	720												
agacaa	acctg ccactctatg agcttaagaa caccatcaca gtgtccccct tctcgggcga	780												

1149908_1.TXT 840 gagtgacatc tgtccgcagg acagctccac caacatccac gagctgcggg tcaccaacac 900 cagcatccag ttcaacctgc gcaacctcta ccgcctctcc aaggccctct tcccgccgga 960 gcccctggtg ctgcgagaga tgtgcaagca gggataccgg gatggcctgc gctttctgca 1020 gcggaacggc ctcctgaacc ggcccaaccc cttgctggcg ttgccccccg cccgcccca 1080 cggcccagag gacaaggacc aggcagtgga gagcgcccaa gcggaggatt actcgcagct gccgggagaa gatcacatcc tggagcacct gcccgcccgg ctcaatgagg ccctgctgga 1140 ggcctgcgtg gagcccacgg acctgctgac caccctctcc aacatgctgc ctgtgcgtct 1200 1260 ggccacggcc atgatggtgc cctacacgct gccgctggag agcgctctgt ccttcaccat 1320 ccgcttgctg gagtggctgc ccgacgttcc cgaggacatc cggtggatga aggagcagac 1380 gggcagcatc tgccagtacc tggtgatgcg cgccaagagg aagctgggca ggcacctgcc 1440 ctccaggctg ccggagcagg tggagctgcg ccgcgtccag tcgctgccgt ccgtgccgct 1500 gtcctgcgcc gcctacagag aggcactgcc cggctggatg cgcaacaacc tctcgctggg 1560 ggacgcgctg gccaagtggg aggagtgcca gcgccagctg ctgctcggcc tcttctgcac 1620 caacgtggcc ttcccgcccg aagctctgcg catgcgcgca cccgccgacc cggctcccgc 1680 ccccgcggac ccagcatccc cgcagcacca gctggccggg cctgcccct tgctgagcac 1740 ccctgctccc gaggcccggc ccgtgatcgg ggccctgggg ctgtgagacc ccgaccctct 1800 cgaggaaccc tgcctgagac gcctccatta ccactgcgca gtgagatgag gggactcaca 1860 gttgccaaga ggggtctttg ccgtgggccc cctcgccagc cactcaccag ctgcatgcac 1920 tgagagggga ggtttccaca cccctcccct gggccgctga ggccccgcgc acctgtgcct 1980 taatcttccc tcccctgtgc tgcccgagca cctcccccgc ccctttactc ctgagaactt 2040 tgcagctgcc cttccctccc cgtttttcat ggcctgctga aatatgtgtg tgaagaatta 2100 2122 aaaaaaaaa aaaaaaaaaa aa <210> 1515 <211> DNA Homo sapiens <400> 60 atgtttcccc gcgagaagac gtggaacatc tcgttcgcgg gctgcggctt cctcggcgtc 120 tactacgtcg gcgtggcctc ctgcctccgc gagcacgcgc ccttcctggt ggccaacgcc 180 acgcacatct acggcgcctc ggccggggcg ctcacggcca cggcgctggt caccggggtc

tgcctgggtg aggctggtgc caagttcatt gaggtatcta aagaggcccg gaagcggttc

ctgggccccc tgcacccctc cttcaacctg gtaaagatca tccgcagttt cctgctgaag

240

300

gtcctgcctg	ctgatagcca	tgagcatgcc	agtgggcgcc	tgggcatctc	cctgacccgc	360
gtgtcagacg	gcgagaatgt	cattatatcc	cacttcaact	ccaaggacga	gctcatccag	420
gccaatgtct	gcagcggttt	catccccgtg	tactgtgggc	tcatccctcc	ctccctccag	480
ggggtgcgct	acgtggatgg	tggcatttca	gacaacctgc	cactctatga	gcttaagaac	540
accatcacag	tgtccccctt	ctcgggcgag	agtgacatct	gtccgcagga	cagctccacc	600
aacatccacg	agctgcgggt	caccaacacc	agcatccagt	tcaacctgcg	caacctctac	660
cgcctctcca	aggccctctt	cccgccggag	cccctggtgc	tgcgagagat	gtgcaagcag	720
ggataccggg	atggcctgcg	ctttctgcag	cggaacggcc	tcctgaaccg	gcccaacccc	780
ttgctggcgt	tgcccccgc	ccgccccac	ggcccagagg	acaaggacca	ggcagtggag	840
agcgcccaag	cggaggatta	ctcgcagctg	ccgggagaag	atcacatcct	ggagcacctg	900
cccgcccggc	tcaatgaggc	cctgctggag	gcctgcgtgg	agcccacgga	cctgctgacc	960
accctctcca	acatgctgcc	tgtgcgtctg	gccacggcca	tgatggtgcc	ctacacgctg	1020
ccgctggaga	gcgctctgtc	cttcaccatc	cgcttgctgg	agtggctgcc	cgacgttccc	1080
gaggacatcc	ggtggatgaa	ggagcagacg	ggcagcatct	gccagtacct	ggtgatgcgc	1140
gccaagagga	agctgggcag	gcacctgccc	tccaggctgc	cggagcaggt	ggagctgcgc	1200
cgcgtccagt	cgctgccgtc	cgtgccgctg	tcctgcgccg	cctacagaga	ggcactgccc	1260
ggctggatgc	gcaacaacct	ctcgctgggg	gacgcgctgg	ccaagtggga	ggagtgccag	1320
cgccagctgc	tgctcggcct	cttctgcacc	aacgtggcct	tcccgcccga	agctctgcgc	1380
atgcgcgcac	ccgccgaccc	ggctcccgcc	cccgcggacc	cagcatcccc	gcagcaccag	1440
ctggccgggc	ctgccccctt	gctgagcacc	cctgctcccg	aggcccggcc	cgtgatcggg	1500
gccctggggc	tgtga					1515

<210> 3

<211> 504 <212> PRT

<213> Homo sapiens

<400> 3

Met Phe Pro Arg Glu Lys Thr Trp Asn Ile Ser Phe Ala Gly Cys Gly $10 \ 15$

Phe Leu Gly Val Tyr Tyr Val Gly Val Ala Ser Cys Leu Arg Glu His 20 25 30

Ala Pro Phe Leu Val Ala Asn Ala Thr His Ile Tyr Gly Ala Ser Ala 35 40 45

Gly Ala Leu Thr Ala Thr Ala Leu Val Thr Gly Val Cys Leu Gly Glu Page 3 Ala Gly Ala Lys Phe Ile Glu Val Ser Lys Glu Ala Arg Lys Arg Phe 65 70 75 80 Leu Gly Pro Leu His Pro Ser Phe Asn Leu Val Lys Ile Ile Arg Ser 85 90 95 Phe Leu Lys Val Leu Pro Ala Asp Ser His Glu His Ala Ser Gly 100 105 110 Arg Leu Gly Ile Ser Leu Thr Arg Val Ser Asp Gly Glu Asn Val Ile 115 120 125 Ile Ser His Phe Asn Ser Lys Asp Glu Leu Ile Gln Ala Asn Val Cys 130 140 Ser Gly Phe Ile Pro Val Tyr Cys Gly Leu Ile Pro Pro Ser Leu Gln Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu Pro Leu Tyr Glu Leu Lys Asn Thr Ile Thr Val Ser Pro Phe Ser Gly Glu Ser Asp 180 Ile Cys Pro Gln Asp Ser Ser Thr Asn Ile His Glu Leu Arg Val Thr 195 200 Asn Thr Ser Ile Gln Phe Asn Leu Arg Asn Leu Tyr Arg Leu Ser Lys 210 220210 Ala Leu Phe Pro Pro Glu Pro Leu Val Leu Arg Glu Met Cys Lys Gln 225 235 240 Gly Tyr Arg Asp Gly Leu Arg Phe Leu Gln Arg Asn Gly Leu Leu Asn 245 250 255 Arg Pro Asn Pro Leu Leu Ala Leu Pro Pro Ala Arg Pro His Gly Pro Glu Asp Lys Asp Gln Ala Val Glu Ser Ala Gln Ala Glu Asp Tyr Ser 275 280 285 Gln Leu Pro Gly Glu Asp His Ile Leu Glu His Leu Pro Ala Arg Leu

55

1149908 1 TYT

									エエサン	300_	エ・ 1 へ	1			
Asn 305	Glu	Ala	Leu	Leu	Glu 310	Ala	Cys	Val	Glu	Pro 315	Thr	Asp	Leu	Leu	Thr 320

Thr Leu Ser Asn Met Leu Pro Val Arg Leu Ala Thr Ala Met Met Val

Pro Tyr Thr Leu Pro Leu Glu Ser Ala Leu Ser Phe Thr Ile Arg Leu

Leu Glu Trp Leu Pro Asp Val Pro Glu Asp Ile Arg Trp Met Lys Glu 355 360 365

Gln Thr Gly Ser Ile Cys Gln Tyr Leu Val Met Arg Ala Lys Arg Lys 370 380

Leu Gly Arg His Leu Pro Ser Arg Leu Pro Glu Gln Val Glu Leu Arg 385 390 395 400

Arg Val Gln Ser Leu Pro Ser Val Pro Leu Ser Cys Ala Ala Tyr Arg

Glu Ala Leu Pro Gly Trp Met Arg Asn Asn Leu Ser Leu Gly Asp Ala 420 425 430

Leu Ala Lys Trp Glu Glu Cys Gln Arg Gln Leu Leu Gly Leu Phe 435 440 445

Thr Asn Val Ala Phe Pro Pro Glu Ala Leu Arg Met Arg Ala Pro 450 460

Ala Asp Pro Ala Pro Ala Pro Ala Asp Pro Ala Ser Pro Gln His Gln 465 470 475 480

Leu Ala Gly Pro Ala Pro Leu Leu Ser Thr Pro Ala Pro Glu Ala Arg

Pro Val Ile Gly Ala Leu Gly Leu 500

<210>

404

<212> DNA Homo sapiens

<400> 60 cageggaaeg geeteetgaa eeggeecaae eeettgetgg egttgeeee egeeegeeee 120 cacggcccag aggacaagga ccaggcagtg gagagcgccc aagcggagga ttactcgcag 180 ctgccgggag aagatcacat cctggagcac ctgcccgccc ggctcaatga ggccctgctg Page 5

gaggcctgcg	tggagcccac	ggacctgctg	accaccctct	ccaacatgct	gcctgtgcgt	240
ctggccacgg	ccatgatggt	gccctacacg	ctgccgctgg	agagcgctct	gtccttcacc	300
atccgcttgc	tggagtggct	gcccgacgtt	cccgaggaca	tccggtggat	gaaggagcag	360
acgggcagca	tctgccagta	cctggtgatg	cgcgccaaga	ggaa		404

- <210> 5 <211> 134
- <211> 134 <212> PRT
- <213> Homo sapiens

<400> 5

Gln Arg Asn Gly Leu Leu Asn Arg Pro Asn Pro Leu Leu Ala Leu Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Ala Arg Pro His Gly Pro Glu Asp Lys Asp Gln Ala Val Glu Ser 20 25 30

Ala Gln Ala Glu Asp Tyr Ser Gln Leu Pro Gly Glu Asp His Ile Leu 35 40 45

Glu His Leu Pro Ala Arg Leu Asn Glu Ala Leu Leu Glu Ala Cys Val 50 55 60

Glu Pro Thr Asp Leu Leu Thr Thr Leu Ser Asn Met Leu Pro Val Arg 75 80

Leu Ala Thr Ala Met Met Val Pro Tyr Thr Leu Pro Leu Glu Ser Ala 85 90 95

Leu Ser Phe Thr Ile Arg Leu Leu Glu Trp Leu Pro Asp Val Pro Glu 100 105 110

Asp Ile Arg Trp Met Lys Glu Gln Thr Gly Ser Ile Cys Gln Tyr Leu 115 120 125

Val Met Arg Ala Lys Arg 130

- <210> 6
- <211> 29
- <212> DNA
- <213> Artificial

<220>

<223> Primer 1 for the construction of p12

<400> 6

caccatgcag cggaacggcc tcctgaacc

<210> <211> <212> <213>	7 25 DNA Artificial	
<220> <223>	Primer 2 for the construction of p12	
<400> ctagtto	7 cctc ttggcgcgca tcacc	25
<210> <211> <212> <213>	8 22 DNA Artificial	
<220> <223>	Primer 3 for the construction of p12	
<400> gttcct	8 cttg gcgcgcatca cc	22
<210> <211> <212> <213>	9 25 DNA Artificial	
<220> <223>	Primer 11 for the construction of R1 expression vectors	
<400> ccacat	9 gttt ccccgcgaga agacg	25
<211> <212>	10 25 DNA Artificial	
<220> <223>	Primer 12 for the construction of R1 expression vectors	
<400> ctacage	10 cccc agggccccga tcacg	25
<211> <212>	11 22 DNA Artificial	
<220> <223>	Primer 13 for the construction of R1 expression vectors	
<400> cagccc	11 cagg gccccgatca cg	22
<210>	12	

<211> 1965 <212> DNA

<213> Mus musculus

<400> 12 60 ggagacccca aggtatcgag actgcgggac ccactgcccg caggacatcg agtcacgatg 120 ttcccgaggg agaccaagtg gaacatctca ttcgctggct gcggcttcct cggggtctac 180 cacattggcg tggcctcctg cctccgtgag cacgcgccct tcctggtggc caacgccact 240 cacatctacg gagcctcggc aggggcgctc accgccacag cgctggtcac tggggcctgc 300 ctgggtgaag caggtgccaa cattattgag gtgtccaagg aggcccggaa gcggttcctg ggtcctctgc atccctcctt caacctggtg aagaccatcc gtggctgtct actaaagacc 360 420 ctgcctgctg attgccatga gcgcgccaat ggacgcctgg gcatctccct gactcgtgtt 480 tcagacggag agaacgtcat catatcccac tttagctcca aggatgagct catccaggcc aatgtctgca gcacatttat cccggtgtac tgtggcctca ttcctcctac cctccaaggg 540 600 gtgcgctatg tggatggcgg catttcagac aacttgccac tttatgagct gaagaatacc 660 atcacagtgt ccccattctc aggcgagagt gacatctgcc ctcaggacag ctccaccaac 720 atccacgage ttegegteae caacaccage atccagttea acettegeaa tetetacege 780 ctctcgaagg ctctcttccc gccagagccc atggtcctcc gagagatgtg caaacagggc 840 tacagagatg gacttcgatt ccttaggagg aatggcctac tgaaccaacc caaccctttg 900 ctggcactgc ccccagttgt cccccaggaa gaggatgcag aggaagctgc tgtggtggag 960 gagagggctg gagaggagga tcaattgcag ccttatagaa aagatcgaat tctagagcac 1020 ctgcctgcca gactcaatga ggccctgctg gaggcctgtg tggaaccaaa ggacctgatg 1080 accaccettt ccaacatget accagtgege etggeaacgg ccatgatggt gecetataet 1140 ctgccgctgg agagtgcagt gtccttcacc atccgcttgt tggagtggct gcctgatgtc 1200 cctgaagata tccggtggat gaaagagcag acgggtagca tctgccagta tctggtgatg 1260 agggccaaga ggaaattggg tgaccatctg ccttccagac tgtctgagca ggtggaactg cgacgtgccc agtctctgcc ctctgtgcca ctgtcttgcg ccacctacag tgaggcccta 1320 cccaactggg tacgaaacaa cctctcactg ggggacgcgc tggccaagtg ggaagaatgc 1380 1440 cagcgtcagc tactgctggg tctcttctgc accaatgtgg ccttcccgcc ggatgccttg cgcatgcgcg cacctgccag ccccactgcc gcagatcctg ccaccccaca ggatccacct 1500 1560 ggcctcccgc cttgctgaga atcaccattc ccacatcgcc cggctaccag ccaagctcca 1620 agttgtcctg ccccactaag aggagccccg gggtggaaca agatcctgtc tgccccggct 1680 ctcccctta catgctgtgg aatgaggaca taggaccctg cacagctgca agtgggcttt 1740 cgatgtgaaa cctttcacca gccactcact atgctactcc tggtggggag ggatggggag

1149908_1.TXT tcgccctccc ccggagccca cagagccctc ccccgtcacg tcacctgtgc cttactcctg 1800 1860 cccaccacct tttcagtgca gggtcagtct taagaactcc acatctgctg ctgctccctg 1920 gtgtccaagt ttccttgcag agtgtgtgaa gaattattta tttttgccaa agcagatcta 1965 ataaaagcca cagctcagct tctgccttcc tcacttctgc atgct <210> 13 <211> 1461 DNA Mus musculus <400> 13 atgttcccga gggagaccaa gtggaacatc tcattcgctg gctgcggctt cctcggggtc 60 120 taccacattg gcgtggcctc ctgcctccgt gagcacgcgc ccttcctggt ggccaacgcc 180 actcacatct acggagcctc ggcaggggcg ctcaccgcca cagcgctggt cactggggcc tgcctgggtg aagcaggtgc caacattatt gaggtgtcca aggaggcccg gaagcggttc 240 300 ctgggtcctc tgcatccctc cttcaacctg gtgaagacca tccgtggctg tctactaaag 360 accetgeetg etgattgeea tgagegegee aatggaegee tgggeatete cetgaetegt 420 gtttcagacg gagagaacgt catcatatcc cactttagct ccaaggatga gctcatccag 480 gccaatgtct gcagcacatt tatcccggtg tactgtggcc tcattcctcc taccctccaa 540 ggggtgcgct atgtggatgg cggcatttca gacaacttgc cactttatga gctgaagaat 600 accatcacag tgtccccatt ctcaggcgag agtgacatct gccctcagga cagctccacc 660 aacatccacg agcttcgcgt caccaacacc agcatccagt tcaaccttcg caatctctac 720 cgcctctcga aggctctctt cccgccagag cccatggtcc tccgagagat gtgcaaacag 780 ggctacagag atggacttcg attccttagg aggaatggcc tactgaacca acccaaccct 840 ttgctggcac tgcccccagt tgtcccccag gaagaggatg cagaggaagc tgctgtggtg 900 gaggagaggg ctggagagga ggatcaattg cagccttata gaaaagatcg aattctagag 960 cacctgcctg ccagactcaa tgaggccctg ctggaggcct gtgtggaacc aaaggacctg atgaccaccc tttccaacat gctaccagtg cgcctggcaa cggccatgat ggtgccctat 1020 1080 actctgccgc tggagagtgc agtgtccttc accatccgct tgttggagtg gctgcctgat 1140 gtccctgaag atatccggtg gatgaaagag cagacgggta gcatctgcca gtatctggtg 1200 atgagggcca agaggaaatt gggtgaccat ctgccttcca gactgtctga gcaggtggaa 1260 ctgcgacgtg cccagtctct gccctctgtg ccactgtctt gcgccaccta cagtgaggcc 1320 ctacccaact gggtacgaaa caacctctca ctgggggacg cgctggccaa gtgggaagaa 1380 tgccagcgtc agctactgct gggtctcttc tgcaccaatg tggccttccc gccggatgcc 1440 ttgcgcatgc gcgcacctgc cagccccact gccgcagatc ctgccacccc acaggatcca

<210> 14

<211> 486

<212> PRT <213> Mus musculus

<400> 14

Met Phe Pro Arg Glu Thr Lys Trp Asn Ile Ser Phe Ala Gly Cys Gly 10 15

Phe Leu Gly Val Tyr His Ile Gly Val Ala Ser Cys Leu Arg Glu His 20 25 30

Ala Pro Phe Leu Val Ala Asn Ala Thr His Ile Tyr Gly Ala Ser Ala 35 40 45

Gly Ala Leu Thr Ala Thr Ala Leu Val Thr Gly Ala Cys Leu Gly Glu 50 60

Ala Gly Ala Asn Ile Ile Glu Val Ser Lys Glu Ala Arg Lys Arg Phe 65 70 75 80

Leu Gly Pro Leu His Pro Ser Phe Asn Leu Val Lys Thr Ile Arg Gly 85 90 95

Cys Leu Leu Lys Thr Leu Pro Ala Asp Cys His Glu Arg Ala Asn Gly 100 105 110

Arg Leu Gly Ile Ser Leu Thr Arg Val Ser Asp Gly Glu Asn Val Ile 115 120 125

Ile Ser His Phe Ser Ser Lys Asp Glu Leu Ile Gln Ala Asn Val Cys 130 135 140

Ser Thr Phe Ile Pro Val Tyr Cys Gly Leu Ile Pro Pro Thr Leu Gln 145 150 155 160

Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu Pro Leu Tyr 165 170 175

Glu Leu Lys Asn Thr Ile Thr Val Ser Pro Phe Ser Gly Glu Ser Asp 180 185 190

Ile Cys Pro Gln Asp Ser Ser Thr Asn Ile His Glu Leu Arg Val Thr 195 200 205

Asn Thr Ser Ile Gln Phe Asn Leu Arg Asn Leu Tyr Arg Leu Ser Lys Page 10 215

Ala Leu Phe Pro Pro Glu Pro Met Val Leu Arg Glu Met Cys Lys Gln 225 230 235 240 Gly Tyr Arg Asp Gly Leu Arg Phe Leu Arg Arg Asn Gly Leu Leu Asn 245 250 255 Gln Pro Asn Pro Leu Leu Ala Leu Pro Pro Val Val Pro Gln Glu Glu Asp Ala Glu Glu Ala Ala Val Val Glu Glu Arg Ala Gly Glu Glu Asp 275 280 285 Gln Leu Gln Pro Tyr Arg Lys Asp Arg Ile Leu Glu His Leu Pro Ala 290 295 300 Arg Leu Asn Glu Ala Leu Leu Glu Ala Cys Val Glu Pro Lys Asp Leu Met Thr Thr Leu Ser Asn Met Leu Pro Val Arg Leu Ala Thr Ala Met Met Val Pro Tyr Thr Leu Pro Leu Glu Ser Ala Val Ser Phe Thr Ile 350 Arg Leu Leu Glu Trp Leu Pro Asp Val Pro Glu Asp Ile Arg Trp Met Lys Glu Gln Thr Gly Ser Ile Cys Gln Tyr Leu Val Met Arg Ala Lys 370 380 Arg Lys Leu Gly Asp His Leu Pro Ser Arg Leu Ser Glu Gln Val Glu 385 390 395 Leu Arg Arg Ala Gln Ser Leu Pro Ser Val Pro Leu Ser Cys Ala Thr 405 410 415 Tyr Ser Glu Ala Leu Pro Asn Trp Val Arg Asn Asn Leu Ser Leu Gly Asp Ala Leu Ala Lys Trp Glu Glu Cys Gln Arg Gln Leu Leu Gly Leu Phe Cys Thr Asn Val Ala Phe Pro Pro Asp Ala Leu Arg Met Arg

1149908_1.TXT
Ala Pro Ala Ser Pro Thr Ala Ala Asp Pro Ala Thr Pro Gln Asp Pro
465 470 475 480

Pro Gly Leu Pro Pro Cys 485

<210> 15 <211> 1533 <212> DNA <213> Rattus sp.

<400> 15						
	cccggcacag	cgtctccgcc	tccgccggcg	gggaccccag	gttatcaaga	60
ctgcgggacc	cactgcccgc	aggacgtcta	atcacgatgt	tcccaaggga	gaccaagtgg	120
aacatctcgt	tcgctggctg	cggcttcctc	ggggtctacc	acattggagt	ggcctcctgc	180
ctccgtgagc	acgcgccctt	cctggtggcc	aacgccactc	acatctacgg	agcctcggca	240
ggggcgctta	ccgccacagc	gctggtcact	ggggcctgcc	tgggcgaagc	gggtgccaac	300
attattgagg	tgtccaagga	ggctcggaag	cggttcctgg	gtcccctgca	ccctccttc	360
aacctggtaa	agaccatccg	tggttgtcta	ctgaagaccc	tgcctgctga	ttgccacacg	420
cgtgccagcg	gacgcctggg	catctccctg	actcgagttt	cggatggaga	gaatgtcatc	480
atatcgcact	ttagctccaa	ggatgagctt	atccaggcca	atgtttgcag	cacttttatc	540
cctgtgtact	gtggcctcat	tcctcctacc	cttcaagggg	tgcgctatgt	ggatggcggc	600
atttcagaca	acttgccact	ttatgagctg	aagaatacca	tcacagtgtc	cccattctca	660
ggcgagagtg	acatctgccc	acaagacagc	tccaccaaca	tccacgaact	tcgtatcacc	720
aacaccagca	tccaattcaa	cctgcgcaat	ctctaccgcc	tctcgaaggc	tctcttcccg	780
ccagagccca	tggttctccg	agagatgtgc	aaacagggct	accgagatgg	acttcgattc	840
cttaggagga	atggcctact	gaaccaaccc	aaccctttgc	tggcactgcc	cccggttgtc	900
ccccaggaag	aggatgcaga	ggaagctgcc	gtgactgagg	agaggactgg	aggggaggat	960
cggattctag	agcacctgcc	tgccagactc	aacgaggccc	tgctggaggc	ctgtgtggaa	1020
ccgaaagacc	tgatgaccac	cctttccaac	atgctgccag	tgcgcctggc	cactgccatg	1080
atggtaccct	atactctgcc	actggagagc	gcagtgtcct	tcaccatccg	tttgttggag	1140
tggctgcctg	atgtccctga	ggatatccgg	tggatgaagg	agcagacagg	tagcatctgc	1200
cagtatctgg	tgatgagggc	caagaggaaa	ttgggtgacc	atctaccttc	cagactgtct	1260
gagcaggtgg	agctgcggcg	tgcccagtct	ctgccgtctg	tgccactgtc	ttgcgccacc	1320
tacagtgagg	cactgcccaa	ctgggtacga	aacaacctct	cactggggga	cgcgctggcc	1380
aagtgggaag	aatgccagcg	tcagctactg	ctgggtctct	tctgcaccaa	tgtggccttc	1440
ccgcctgatg	ccttgcgcat	gcgcgcacct	gccagcccca Page	ccgccacaga 12	tcctgccacc	1500

ccacaggatc catctggcct cccaccttgc tga	1533
<210> 16 <211> 1437 <212> DNA <213> Rattus sp.	
<400> 16 atgttcccaa gggagaccaa gtggaacatc tcgttcgctg gctgcggctt cctcggggt	c 60
taccacattg gagtggcctc ctgcctccgt gagcacgcgc ccttcctggt ggccaacgc	120
actcacatct acggagcctc ggcaggggcg cttaccgcca cagcgctggt cactggggc	
tgcctgggcg aagcgggtgc caacattatt gaggtgtcca aggaggctcg gaagcggtto	240
ctgggtcccc tgcacccctc cttcaacctg gtaaagacca tccgtggttg tctactgaa	g 300
accctgcctg ctgattgcca cacgcgtgcc agcggacgcc tgggcatctc cctgactcg	a 360
gtttcggatg gagagaatgt catcatatcg cactttagct ccaaggatga gcttatcca	g 420
gccaatgttt gcagcacttt tatccctgtg tactgtggcc tcattcctcc tacccttca	a 480
ggggtgcgct atgtggatgg cggcatttca gacaacttgc cactttatga gctgaagaa	t 540
accatcacag tgtccccatt ctcaggcgag agtgacatct gcccacaaga cagctccac	600
aacatccacg aacttcgtat caccaacacc agcatccaat tcaacctgcg caatctcta	660
cgcctctcga aggctctctt cccgccagag cccatggttc tccgagagat gtgcaaaca	g 720
ggctaccgag atggacttcg attccttagg aggaatggcc tactgaacca acccaaccc	t 780
ttgctggcac tgcccccggt tgtcccccag gaagaggatg cagaggaagc tgccgtgac	t 840
gaggagagga ctggagggga ggatcggatt ctagagcacc tgcctgccag actcaacga	g 900
gccctgctgg aggcctgtgt ggaaccgaaa gacctgatga ccaccctttc caacatgct	g 960
ccagtgcgcc tggccactgc catgatggta ccctatactc tgccactgga gagcgcagtg	g 1020
tccttcacca tccgtttgtt ggagtggctg cctgatgtcc ctgaggatat ccggtggatg	g 1080
aaggagcaga caggtagcat ctgccagtat ctggtgatga gggccaagag gaaattggg	1140
gaccatctac cttccagact gtctgagcag gtggagctgc ggcgtgccca gtctctgcc	g 1200
tctgtgccac tgtcttgcgc cacctacagt gaggcactgc ccaactgggt acgaaacaa	1260
ctctcactgg gggacgcgct ggccaagtgg gaagaatgcc agcgtcagct actgctggg	t 1320
ctcttctgca ccaatgtggc cttcccgcct gatgccttgc gcatgcgcgc acctgccag	1380
cccaccgcca cagatcctgc caccccacag gatccatctg gcctcccacc ttgctga	1437
<210> 17	

<210> 1/ <211> 478 <212> PRT <213> Rattus sp.

<400> 17

Met Phe Pro Arg Glu Thr Lys Trp Asn Ile Ser Phe Ala Gly Cys Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Leu Gly Val Tyr His Ile Gly Val Ala Ser Cys Leu Arg Glu His 20 25 30

Ala Pro Phe Leu Val Ala Asn Ala Thr His Ile Tyr Gly Ala Ser Ala 35 40 45

Gly Ala Leu Thr Ala Thr Ala Leu Val Thr Gly Ala Cys Leu Gly Glu 50 60

Ala Gly Ala Asn Ile Ile Glu Val Ser Lys Glu Ala Arg Lys Arg Phe 65 70 75 80

Leu Gly Pro Leu His Pro Ser Phe Asn Leu Val Lys Thr Ile Arg Gly 85 90 95

Cys Leu Leu Lys Thr Leu Pro Ala Asp Cys His Thr Arg Ala Ser Gly $100 \hspace{1cm} 105 \hspace{1cm} 110$

Arg Leu Gly Ile Ser Leu Thr Arg Val Ser Asp Gly Glu Asn Val Ile 115 120 125

Ile Ser His Phe Ser Ser Lys Asp Glu Leu Ile Gln Ala Asn Val Cys 130 140

Ser Thr Phe Ile Pro Val Tyr Cys Gly Leu Ile Pro Pro Thr Leu Gln 145 150 155 160

Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu Pro Leu Tyr 165 170 175

Glu Leu Lys Asn Thr Ile Thr Val Ser Pro Phe Ser Gly Glu Ser Asp 180 185 190

Ile Cys Pro Gln Asp Ser Ser Thr Asn Ile His Glu Leu Arg Ile Thr 195 200 205

Asn Thr Ser Ile Gln Phe Asn Leu Arg Asn Leu Tyr Arg Leu Ser Lys 210 220

Ala Leu Phe Pro Pro Glu Pro Met Val Leu Arg Glu Met Cys Lys Gln 225 230 235 240

Gly	Tyr	Arg	Asp	Gly 245	Leu	Arg	Phe		1149 Arg 250				Leu	Leu 255	Asn
Gln	Pro	Asn	Pro 260	Leu	Leu	Ala	Leu	Pro 265	Pro	Val	Val	Pro	Gln 270	Glu	Glu
Asp .	Ala	Glu 275	Glu	Ala	Ala	Val	Thr 280	Glu	Glu	Arg	Thr	Gly 285	Gly	Glu	Asp
Arg	Ile 290	Leu	Glu	His	Leu	Pro 295	Ala	Arg	Leu	Asn	Glu 300	Ala	Leu	Leu	Glu
Ala 305	Cys	Val	Glu	Pro	Lys 310	Asp	Leu	Met	Thr	Thr 315	Leu	Ser	Asn	Met	Leu 320
Pro '	Val	Arg	Leu	Ala 325	Thr	Ala	Met	Met	Val 330	Pro	Tyr	Thr	Leu	Pro 335	Leu
Glu	Ser	Ala	Val 340	Ser	Phe	Thr	Ile	Arg 345	Leu	Leu	Glu	Trp	Leu 350	Pro	Asp
Val	Pro	G1u 355	Asp	Ile	Arg	Trp	Met 360	Lys	Glu	Gln	Thr	Gly 365	Ser	Ile	Cys
Gln	Tyr 370	Leu	Val	Met	Arg	Ala 375	Lys	Arg	Lys	Leu	Gly 380	Asp	His	Leu	Pro
Ser / 385	Arg	Leu	Ser	Glu	Gln 390	Val	Glu	Leu	Arg	Arg 395	Ala	Gln	Ser	Leu	Pro 400
Ser	Val	Pro	Leu	Ser 405	Cys	Ala	Thr	Tyr	Ser 410	Glu	Ala	Leu	Pro	Asn 415	Trp
Val .	Arg	Asn	Asn 420	Leu	Ser	Leu	Gly	Asp 425	Ala	Leu	Ala	Lys	Trp 430	Glu	Glu
Cys	Gln	Arg 435	Gln	Leu	Leu	Leu	Gly 440	Leu	Phe	Cys	Thr	Asn 445	Val	Ala	Phe
Pro	Pro 450	Asp	Ala	Leu	Arg	Met 455	Arg	Ala	Pro	Ala	Ser 460	Pro	Thr	Ala	Thr
Asp 465	Pro	Ala	Thr	Pro	Gln 470	Asp	Pro	Ser	Gly	Leu 475	Pro	Pro	Cys		
<210 <211 <212	> 2	L8 20 DNA							D	ane	15				

<213>	Artificial
<220> <223>	PCR primer
<400>	18
gcagtt	tcct gctgaaggtc
<210>	19
<211>	20
<212>	DNA
<213>	Artificial
<220> <223>	PCR primer
<400>	19
gctcgt	cctt ggagttgaag
<210>	20
<211>	20
<212>	DNA
<213>	Artificial
<220> <223>	Primer
<400>	20
tgtggc	ctca ttcctcctac
<210>	21
<211>	20
<212>	DNA
<213>	Artificial
<220> <223>	Primer
<400>	21
tgagaa	tggg gacactgtga
<210>	22
<211>	20
<212>	DNA
<213>	Artificial
<220> <223>	Primer
<400>	22
tatccg	gtgg atgaaagagc
<210>	23
<211>	20
<212>	DNA
<213>	Artificial
<220>	

<223>	Prime	er						1173	,500 <u> </u>		. •					
<400> cagtto	23 ccacc 1	tgcto	cagao	ca												20
<210> <211> <212> <213>	24 9 PRT Arti	ficia	al													
<220> <223>	Syntl	Synthetic Construct														
<400>	24															
Asp Ly 1	/s Thr	His	Thr 5	Cys	Pro	Pro	Cys									
<210> <211> <212> <213>	19	ficia	al													
<220> <223>	Forwa	ard p	orime	er												
<400> aacccc	25 cttgc 1	tggcg	gttgo	C												19
<210> <211> <212> <213>	19	ficia	al													
<220> <223>	Revei	rse p	orime	er												
<400> cccgtd	26 ctgct o	cctto	catco	Ξ.												19
<210> <211> <212> <213>	27 292 PRT Arti	ficia	al													
<220> <223>	adipo	onutr	rin													
<400>	27															
Tyr As 1	sp Ala	Arg	Gly 5	Ser	Leu	Phe	His	Ala 10	Thr	Arg	His	Leu	Arg 15	Asp		
Arg Me	et Leu	Phe 20	His	Cys	Val	Gly	Val 25	Leu	Ser	Ile	Pro	G] u 30	Gln	Thr		
Leu G	In Val	Leu	Ser	Asp	Leu	Val	Arg		Ser age		Ile	Ile	Phe	Ser		

40

Ala Thr Pro Tyr Tyr Lys Val Lys Phe Leu His Val Asp Ile Lys Leu 85 90 95

Leu Arg Leu Cys Thr Gly Leu Arg Phe Val Asp Leu Lys Gly Ile Leu $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Arg Leu Ala Phe Glu Glu Lys Ile Cys Gln Gly Lys Ser Ser Glu 115 120 125

Gly Met Asp Pro Glu Val Ala Met Pro Ser Trp Ala Asn Met Ser Leu 130 135 140

Asp Ser Ser Ser Ala Ala Leu Arg Leu Glu Gly Asp Leu Leu His Leu 145 150 155 160

Arg Ser Ile Leu Pro Trp Glu Ser Asp Thr Ser Pro Ala Thr Ser Glu 165 170 175

Met Lys Asp Lys Gly Gly Tyr Met Ser Lys Ile Cys Leu Ile Ile Met 180 185 190

Ser Tyr Val Leu Cys Val Ile Ala Ile Val Gln Val Thr Met Asp Val 195 200 205

Leu Leu Gln Trp Val Ser Gln Val Phe Thr Arg Val Leu Cys Leu Leu 210 220

Pro Ala Ser Arg Ser Gln Met Val Ser Ser Gln Gln Ala Ser Pro Cys 235 230 235

Thr Pro Glu Asp Trp Cys Trp Thr Cys Pro Lys Gly Cys Pro Ala Glu 245 250 255

Thr Lys Ala Glu Ala Thr Pro Arg Ser Ile Arg Ser Ser Asn Phe Phe 260 265 270

Leu Gly Asn Lys Val Pro Ala Gly Ala Glu Gly Leu Ser Ser Phe Ser 275 280 285

```
Glu Lys Ser Leu
290
```

<210> 28 <211> 41

<212> PRT

Artificial <213>

<220>

<223> Synthetic Construct

<400>

Gly Leu Leu Asn Arg Pro Asn Pro Leu Leu Ala Leu Pro Pro Ala Arg
1 10 15

Pro His Gly Glu Pro Asp Lys Asp Gln Ala Val Glu Ser Ala Gln Ala 20 25 30

Glu Asp Tyr Ser Gln Leu Pro Gly Glu 35 40

<210> 29 <211> 55 <212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 29

Thr Asn Val Ala Phe Pro Pro Glu Ala Leu Arg Met Arg Ala Pro Ala 10 15

Asp Pro Ala Pro Ala Pro Ala Asp Pro Ala Ser Pro Gln His Gln Leu 20 25 30

Ala Gly Pro Ala Pro Leu Leu Ser Thr Pro Ala Pro Glu Ala Arg Pro 35 40 45

Val Ile Gly Ala Leu Gly Leu 50 55

<210> 30

<211> 14

<212> PRT

<213> Artificial

<220>

<223> R1

<400> 30

Asn Ala Thr Ile Tyr Gly Ala Ser Ala Gly Ala Leu Thr Ala Page 19

```
1149908_1.TXT
                    5
1
<210>
        31
15
<211> 15
<212> PRT
<213> Artificial
<220>
<223>
        Patatain B2
<400> 31
Tyr Phe Asp Val Ile Gly Gly Thr Ser Thr Gly Gly Leu Leu Thr
<210> 32
<211> 15
<212> PRT
<213> Artificial
<220>
<223> cPLA2
<400> 32
Cys Ala Thr Tyr Val Ala Gly Leu Ser Gly Ser Thr Trp Tyr Met 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
<210> 33
<211> 20
<212> PRT
<213> Artificial
<220>
<223>
        R1
<400> 33
Ser Leu Gln Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Pro Leu Tyr Glu
<210>
        34
<211> 20
<212> PRT
<213> Artificial
<220>
<223>
        Patatin B2
<400> 34
Ala Arg Tyr Glu Phe Asn Leu Val Asp Gly Ala Val Ala Thr Val Gly 1 5 10 15
```

Asp Pro Ala Leu 20

<210> 35 <211> 19 <212> PRT <213> Artificial

<220> <223> CPLA2

<400> 35

Lys Ser Lys Lys Ile His Val Val Asp Ser Gly Leu Thr Phe Asn Leu $1 \ \ \,$ 10 $\ \ \,$ 15

Pro Tyr Pro