Национальный Исследовательский Университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа № 3 «Выполнение циклических программ»

Выполнил: Лысенко Данила Сергеевич

Группа: P3110 Вариант: 4756

Преподаватель: Перцев Тимофей Сергеевич

1. Текст исходной программы

Адрес	Код	Мнемоника	Комментарий
	команды		
34A	0363	A	Адрес начала массива данных (А)
34B	0200	P	Хранение указателя массива (Р)
34C	4000	N	Количество элементов массива (N)
34D	E000	Res	Результат (Res)
34E	AF40	LD \$40	Загрузка значения 40 в аккумулятор АС
34F	0680	SWAB	Обмен старших и младших разрядов значения аккумулятора
350	0500	ASL	Арифметический сдвиг влево значения аккумулятора
351	EEFB	ST (IP-5)	Сохранение значения аккумулятора в ячейку памяти IP-5 = 34D
352	AF05	LD \$5	Загрузка значения 5 в аккумулятор АС
353	EEF8	ST (IP-8)	Сохранение значения аккумулятора в ячейку памяти IP-8 = 34C
354	AEF5	LD (IP-11)	Загрузка значения из ячейки памяти IP-B = 34A
355	EEF5	ST (IP-11)	Сохранение значения аккумулятора в ячейку памяти IP-B = 34B
356	AAF4	LD (34B)+	Загрузка ячейки памяти IP-C (из 34B) в аккумулятор и инкремент 34B
357	0480	ROR	Циклический сдвиг значения аккумулятора вправо
358	F407	BLO IP+7	Если был перенос, переходим в IP+7+1= 360
359	0480	ROR	Циклический сдвиг значения аккумулятора вправо
35A	F405	BLO IP+5	Если был перенос, переходим в IP+5+1= 360
35B	0400	ROL	Циклический сдвиг значения аккумулятора влево
35C	0400	ROL	Циклический сдвиг значения аккумулятора влево
35D	7EEF	CMP (IP-17)	Установить флаги по результату AC – 34D
35E	F801	BLT IP+1	Переходим в IP + 2 (361), если меньше
35F	EEED	ST (IP-19)	Сохранение значения аккумулятора в ячейку памяти IP-13 = 34D
360	834C	LOOP	Декремент и пропуск, если значение ячейки 34C <= 0
361	CEF4	JUMP (IP-12)	Переход в 356
362	0100	HLT	Останов программы
363	0743	P[1]	Элемент массива Р[1]
364	0380	P[2]	Элемент массива Р[2]
365	0700	P[3]	Элемент массива Р[3]
366	0001	P[4]	Элемент массива Р[4]
367	0380	P[5]	Элемент массива Р[5]

2. Описание исходной программы

- 1. Назначение программы: поиск среди элементов массива наибольшего числа, кратного 4.
- 2. Расположение в памяти БЭВМ программы, исходных данных и результата:
 - 34А адрес первого элемента массива
 - 34В указатель на элемент массива
 - 34С количество элементов массива
 - 34D результат работы программы
 - 363-367 элементы массива.
- 3. Область представления

$$-2^{15} \le A, P, N, Res, P[1], P[2], P[3], P[4], P[5] \le 2^{15} - 1$$

4. ОДЗ

$$-2^{15} \le Res, P[1], P[2], P[3], P[4], P[5] \le 2^{15} - 1$$

 $0 \le A, P, N \le 2^{11} - 1$

Элементы массива так же могут располагаться в следующих местах в памяти: 000-349, 363-7FF. Таким образом, максимальное количество элементов составляет 1181.

Вывод:

В процессе выполнения лабораторной работы был получен опыт работы с циклическими программами и работы с одномерными массивами. Были изучены различные виды адресации (прямая абсолютная и относительная, косвенная относительная). Данный материал поможет мне в будущем при написании различного рода программ, использующих циклы и одномерные массивы.