Empirical IO: HW4

Mo Van De Sompel, Makoto Tanaka, and Colin Williams

Estimate Brenehan and Reiss (1990, 1991) model of firm entry using airline data.

Aggregate data to market level

Estimate profit function paramters via maximum likelihood

Define the reduced form profit function

$$\pi_{im}(N_m) = X_m \alpha + g(N_m) + \epsilon_{0m}$$

where

$$g(N_m) = \sum_{j=1}^{7} \theta_j \mathbf{1} \{ N_m = j \}$$

- 1. The α parameter captures how the profitability of serving a market varies with the flight distance. The θ parameters measure how the entry of additional firms affect per-firm profits.
- 2. We make several assumptions to estimate this model:
- All firms experience an identical market-level profitability shock, $\epsilon_{im} = \epsilon_{0m}$
- All firms have the same loss in profits due to flight distance, $\alpha_i = \alpha$
- All firms have an identical effect on their rivals' profits when they enter any market, $\theta_{ijm} = \theta_i$
- More entrants reduce firm profitability, $\theta_i > \theta_k$ for j < k.

These symmetry assumptions allow the econometrician to model the number, rather than the identity, of entering firms.

3. Model estimates:

```
dt.optim <- data.table(Parameter = c("alpha", paste0("theta", 1:7)), Estimate = optim$par)
kable(dt.optim)</pre>
```

Parameter	Estimate
alpha	0.0000693
theta1	2.3383445
theta2	-0.0933232
theta3	-0.4862804
theta4	-0.6352768
theta5	-0.6999298
theta6	-1.0160213
theta7	-1.5746759
alpha	-1.9829207