Theory of Computation: CS-202

Turing Machine

Outline

- ☐ Standard Turing Machine
- **□** Examples

Standard Turing Machine

A Turing Machine is an automaton whose temporary storage is a tape, which is divided into cells, each of which is capable of holding one symbol

Formal Definition of a Standard Turing machine

A <u>Turing machine (TM)</u> is defined by the seven-tuples:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$$

- Q A <u>finite</u> set of internal states
- Σ A <u>finite set of</u> input alphabet
- Γ A <u>finite</u> set of symbols called tape alphabet
- q_0 The initial/starting state, q_0 is in Q
- \square A special symbol called the blank symbol, is in Γ
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, where

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L/R\}$$

Moves of the Turing Machine

 $\delta(q_0, a) = (q1, d, R)$

Input tape

Finite control uint

Consider a Turing machine defined by

$$\begin{split} M &= (Q, \Sigma, \Gamma, \delta, q_0, \; \square, F) \\ Q &= \{q0, q1\} \\ \Sigma &= \{a, b\} \\ \Gamma &= \{a, b, \; \square\} \\ F &= \{q_1\} \\ \& \; \delta(q0, a) = (q0, b, R), \qquad \delta(q0, b) = (q0, b, R), \; \delta(q0, \; \square) = (q1, \; \square, L) \end{split}$$

Design a Turing Machine for the language $L=\{a^nb^n, n\geq 1\}$

□ a a b b □

Transition Table

	a	b	Χ	Υ	
q_0	(q ₁ , X, R)	-	-	(q ₃ , Y, R)	-
q_1	(q ₁ , a, R)	(q ₂ , Y, L)	-	(q ₁ , Y, R)	-
q_2	(q ₂ , a, L)	-	(q ₀ , X, R)	(q ₂ , Y, L)	-
q_3	-	-	-	(q ₃ , Y, R)	(q _f , □, R)
q_f	-	-	-	-	-

Design a Turing Machine that accepts a set of string ending with 010

1 0 1 0 **□**

DFA

Design a Turing Machine that accepts a set of string ending with 010

1 0 1 0 **□**

Design a Turing Machine to add two positive integers

Design a Turing Machine to add two positive integers

1 1 1 0 1 1 □

$$S(q_{0,1}) = (q_{0,1,R})$$

$$S(q_{0,0}) = (q_{1,1,R})$$

$$(q_{1,1}) = (q_{1,1,R})$$

$$(q_{1,1}) = (q_{2,1,R})$$

$$(q_{2,1}) = (q_{3,0,L})$$

$$(q_{3,1}) = (q_{3,1,L})$$

$$(q_{3,1}) = (q_{4,1,R})$$

Design a Turing Machine that computes string reversal

Suggested readings

- 1. An introduction to FORMAL LANGUAGES and AUTOMATA by PETER LINZ.
- 2. Introduction to Automata Theory, Languages, And Computation by JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN
- 3. Theory of computer science: automata, languages and computation by K.L.P MISHRA