Bayes Net Syntax and Semantics

Bayes Net Syntax

- A set of nodes, one per variable X_i
- A directed, acyclic graph
- A conditional distribution for each node given its *parent variables* in the graph
 - CPT (conditional probability table); each row is a distribution for child given values of its parents

Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

P(E)			
true	false		
0.002	0.998		

В	Е	P(A B,E)		
		true	false	
true	true	0.95	0.05	
true	false	0.94	0.06	
false	true	0.29	0.71	
false	false	0.001	0.999	

Α	P(M A)		
	true false		
true	0.7	0.3	
false	0.01	0.99	

Number of *free parameters* in each CPT:

Parent range sizes d₁,...,d_k

Child range size d
Each table row must sum to 1

 $(d-1) \Pi_i d_i$

	true	false
true	0.9	0.1
false	0.05	0.95

2

General formula for sparse BNs

- Suppose
 - n variables
 - Maximum range size is d
 - Maximum number of parents is k
- Full joint distribution has size $O(d^n)$
- Bayes net has size $O(n \cdot d^k)$
 - Linear scaling with n as long as causal structure is local

Bayes net global semantics

 Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

Example

0.9

0.05

true

false

0.1

0.95

P(E)			
true false			
0.002	0.998		

P(b,¬e, a,	¬j, ¬m) =	
P(b) P(¬e)	P(a b,¬e) P(¬j a)	P(¬m a)

В	Е	P(A B,E)		
		true	false	
true	true	0.95	0.05	
true	false	0.94	0.06	
false	true	0.29	0.71	
false	false	0.001	0.999	

=.(UU)1x,	.99	8x.	94	x.1	X.5	3=.(UU	UU	2	8

Α	P(M A)		
	true	false	
true	0.7	0.3	
false	0.01	0.99	

Conditional independence in BNs

Compare the Bayes net global semantics

$$P(X_1,..,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

with the chain rule identity

$$P(X_{1},...,X_{n}) = \prod_{i} P(X_{i} | X_{1},...,X_{i-1})$$

- Assume (without loss of generality) that $X_1,...,X_n$ sorted in topological order according to the graph (i.e., parents before children), so $Parents(X_i) \subseteq X_1,...,X_{i-1}$
- So the Bayes net asserts conditional independences $P(X_i \mid X_1, ..., X_{i-1}) = P(X_i \mid Parents(X_i))$
 - To ensure these are valid, choose parents for node X_i , that "shield" it from other predecessors

Example: Burglary

Example: Burglary

- Alarm
- Burglary
- Earthquake

А	P(B A)		
	true	false	
true	?		
false			

А	В	P(E	A,B)
		true	false
true	true		
true	false		
false	true		
false	false		

Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics

Markov blanket

- A variable's Markov blanket consists of parents, children, children's other parents
- Every variable is conditionally independent of all other variables given its Markov blanket

Summary

- Independence and conditional independence are important forms of probabilistic knowledge
- Bayes net encode joint distributions efficiently by taking advantage of conditional independence
 - Global joint probability = product of local conditionals
 - Local causality => exponential reduction in total size

CS 188: Artificial Intelligence

Bayes Nets: Exact Inference

Instructor: Stuart Russell and Dawn Song --- University of California, Berkeley

Bayes Nets

✓ Part I: Representation

Part II: Exact inference

- Enumeration (always exponential complexity)
- Variable elimination (worst-case exponential complexity, often better)
- Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data

Inference

Inference: calculating some useful quantity from a probability model (joint probability distribution)

• Examples:

- Posterior marginal probability
 - $P(Q|e_1,..,e_k)$
 - E.g., what disease might I have?
- Most likely explanation:
 - argmax P(Q=q,R=r,S=s|e1,...,ek)
 E.g., what did he say?

Inference by Enumeration in Bayes Net

- Reminder of inference by enumeration:
 - Any probability of interest can be computed by summing entries from the joint distribution: $P(Q \mid e) = \alpha \sum_{h} P(Q, h, e)$
 - Entries from the joint distribution can be obtained from a BN by multiplying the corresponding conditional probabilities
- $P(B \mid j, m) = \alpha \sum_{e,a} P(B, e, a, j, m)$ • $\alpha \sum_{e,a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$
- So inference in Bayes nets means computing sums of products of numbers: sounds easy!!
- Problem: sums of *exponentially many* products!

Can we do better?

- Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
 - 16 multiplies, 7 adds
 - Lots of repeated subexpressions!
- Rewrite as (u+v)(w+x)(y+z)
 - 2 multiplies, 3 adds
- $= P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(\neg e)P(a|B,\neg e)P(j|a)P(m|a)$ $+ P(B)P(e)P(\neg a|B,e)P(j|\neg a)P(m|\neg a) + P(B)P(\neg e)P(\neg a|B,\neg e)P(j|\neg a)P(m|\neg a)$

Lots of repeated subexpressions!

Variable elimination: The basic ideas

Move summations inwards as far as possible

```
■ P(B \mid j, m) = \alpha \sum_{e,a} P(B) P(e) P(a \mid B,e) P(j \mid a) P(m \mid a)

= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B,e) P(j \mid a) P(m \mid a)
```

- Do the calculation from the inside out
 - I.e., sum over *a* first, then sum over *e*
 - Problem: $P(a \mid B, e)$ isn't a single number, it's a bunch of different numbers depending on the values of B and e
 - Solution: use arrays of numbers (of various dimensions) with appropriate operations on them; these are called *factors*

Factor Zoo

Factor Zoo I

Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- |X|x|Y| matrix
- Sums to 1

Projected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for one x, all y
- |Y|-element vector
- Sums to P(x)

P(A,J)

A \ J	true	false
true	0.09	0.01
false	0.045	0.855

P(a,J)

A\J	true	false
true	0.09	0.01

Number of variables (capitals) = dimensionality of the table

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

P(J|a)

A\J	true	false
true	0.9	0.1

- Family of conditionals:P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(J|A)

A\J	true	false
true	0.9	0.1
false	0.05	0.95

 $\left. \begin{array}{c} P(J|a) \\ P(J|a) \end{array} \right.$

- $P(J| \neg a$

Operation 1: Pointwise product

- First basic operation: pointwise product of factors (similar to a database join, not matrix multiply!)
 - New factor has union of variables of the two original factors
 - Each entry is the product of the corresponding entries from the original factors
- Example: $P(J|A) \times P(A) = P(A,J)$

Example: Making larger factors

• Example: $P(A,J) \times P(A,M) = P(A,J,M)$

P(A,J)

A\J	true	false
true	0.09	0.01
false	0.045	0.855

P(A,M)

A\M	true	false		
true	0.07	0.03		
false	0.009	0.891		

P(A,J,M)

J	\ M	tı	ue	fal	se	
J/M	true	e e	fal	se		
true					18	A=false
false			.00	03	A=true	

Example: Making larger factors

- Example: $P(U,V) \times P(V,W) \times P(W,X) = P(U,V,W,X)$
- Sizes: $[10,10] \times [10,10] \times [10,10] = [10,10,10,10]$
- I.e., 300 numbers blows up to 10,000 numbers!
- Factor blowup can make VE very expensive

Operation 2: Summing out a variable

- Second basic operation: summing out (or eliminating) a variable from a factor
 - Shrinks a factor to a smaller one
- Example: $\sum_{j} P(A,J) = P(A,j) + P(A,\neg j) = P(A)$

Summing out from a product of factors

- Project the factors each way first, then sum the products
- Example: $\sum_{a} P(a|B,e) \times P(j|a) \times P(m|a)$
- $= P(a|B,e) \times P(j|a) \times P(m|a) +$
- $P(\neg a \mid B, e) \times P(j \mid \neg a) \times P(m \mid \neg a)$

Variable Elimination

Variable Elimination

- Query: $P(Q|E_1=e_1,...,E_k=e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Eliminate (sum out) H_j from the product of all factors mentioning H_j
- Join all remaining factors and normalize

Example

Query $P(B \mid j,m)$

P(B) P(E) P(A|B,E) P(j|A) P(m|A)

Choose A

P(A|B,E) P(j|A)P(m|A)

P(j,m|B,E)

P(B) P(E) P(j,m|B,E)

Example

Choose E

$$P(E)$$

 $P(j,m|B,E)$

$$P(B)$$
 $P(j,m|B)$

Finish with B

$$P(B)$$

 $P(j,m|B)$

Order matters

Order the terms Z, A, B C, D

$$P(D) = \alpha \sum_{z,a,b,c} P(z) P(a|z) P(b|z) P(c|z) P(D|z)$$

$$= \alpha \sum_{z} P(z) \sum_{a} P(a|z) \sum_{b} P(b|z) \sum_{c} P(c|z) P(D|z)$$

- Largest factor has 2 variables (D,Z)
- Order the terms A, B C, D, Z

$$P(D) = \alpha \sum_{a,b,c,z} P(a|z) P(b|z) P(c|z) P(D|z) P(z)$$

$$= \alpha \sum_{\alpha} \sum_{b} \sum_{c} \sum_{z} P(\alpha|z) P(b|z) P(c|z) P(D|z) P(z)$$

- Largest factor has 4 variables (A,B,C,D)
- In general, with n leaves, factor of size 2ⁿ

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor (and it's space that kills you)
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity? Reduction from SAT

- Variables: W, X, Y, Z
- CNF clauses:
 - 1. $C_1 = W \vee X \vee Y$
 - $2. \quad C_2 = Y \vee Z \vee \neg W$
 - 3. $C_3 = X \vee Y \vee \neg Z$
- Sentence $S = C_1 \wedge C_2 \wedge C_3$
- P(S) > 0 iff S is satisfiable
 - = > NP-hard
- $P(S) = K \times 0.5^{n}$ where K is the number of satisfying assignments for clauses
 - = => #P-hard

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees the complexity of variable elimination is *linear in the* network size if you eliminate from the leave towards the roots

Bayes Nets

- ✓ Part I: Representation
- ✓ Part II: Exact inference
 - Enumeration (always exponential complexity)
 - Variable elimination (worst-case exponential complexity, often better)
 - ✓ Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data