

One-sample t-test

- Given a sample from a population, want to know if the population mean could be a particular value μ_0 ?
 - 1. Compute the sample mean.
 - 2. Compute the normalized difference (t-statistic) between the sample mean and the hypothesized mean μ_0 .
 - 3. Compare it with the reference distribution (t-distribution).

One- & Two-Sample Tests

One-sample t-test

```
# Daily energy intake in kJ for 11 women
daily.intake <- c(5260, 5470, 5640, 6180, 6390, 6515,
    6805, 7515, 7515, 8230, 8770)
# To investigate whether women's intake deviates
    # from a recommended value of 7725kJ
mean(daily.intake)
sd(daily.intake)
boxplot(daily.intake); abline(h=7725, col=2, lty=2)
t.test(daily.intake, mu=7725, alternative="less")
# alternative = "greater", "two.sided"</pre>
```

One- & Two-Sample Tests

One-sample Wilcoxon Signed-Rank Test

- Assume only that the data distribution is symmetric around the theoretical mean.
 - I. Subtract the theoretical mean and rank the differences.
 - 2. Ignoring the sign, calculate the sum of positive or negative ranks.

wilcox.test(daily.intake, mu=7725)

One- & Two- Sample Tests

gender

id	gender	GPA
I	М	4.0
2	М	3.8
3	М	3.5
4	М	3.1
5	F	3.3
6	F	3.5
7	F	4.0
8	F	4.2
9	F	3.8
10	F	3.7

Two-sample t-test

- Given one sample each from two population, want to know if the population means could differ each other?
 - 1. Compute the sample means.
 - 2. Compute the normalized difference (t-statistic) between the sample.
 - 3. Compare it with the reference distribution (t-distribution).

One- & Two-Sample Tests

Two-sample Tests

```
group <- c(rep("M", 4), rep("F", 6))
y <- c(4.0, 3.8, 3.5, 3.1, 3.3, 3.5, 4.0, 4.2, 3.8, 3.7)
boxplot(y~group)
```

- # Two-sample t-test
 t.test(y~group)
- # Wilcoxon rank-sum test
 wilcox.test(y~group)

One- & Two-Sample Tests

Paired Tests

```
library(ISwR)
attach(intake)
intake
t.test(pre, post, paired=T)
t.test(pre, post) # WRONG!!!
wilcox.test(pre, post, paired=T)
# Or...
diff <- post-pre
t.test(diff, mu=0)
wilcox.test(diff, mu=0)</pre>
```


One- & Two-Sample Tests