Support Vector Machine for Non-Linearly Separable Patterns

INDRAPRASTHA INSTITUTE *of* INFORMATION TECHNOLOGY **DELHI**

Non-linearly Separable Data

- Linear SVM with Soft Margin
- Non-linear SVM
 - Kernel SVM

Non-Separable Patterns

- $y_i^*(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) >= 1, \forall i=1,2,...N$
- Violation:
 - \circ {(x_i, y_i} falls on the right side of the decision surface

Non-Separable Patterns

- $d_i^*(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) >= 1, \forall i=1,2,...N$
- Violation:
 - \circ { (x_i, y_i) falls on the wrong side of the decision surface

Slack Variables

- Let $\{\xi_i\}_{i=1}^N >= 0$ $\circ y_i^*(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) >= 1 \xi_i, \forall i=1,2,...N$
- ε; are known as slack variables:
 - Deviation of a data point from the ideal condition of pattern separability
 - \bullet o <= ε_i <=1: Data point falls on the right side of the decision surface
 - \bullet $\epsilon_i > 1$: Data point falls on the wrong side of the decision surface
- Support vectors are those particular data points that satisfy the equation precisely even if $\varepsilon_i > 0$

Optimal Hyperplane

- The cost function

 - C: Regularization parameter that controls the tradeoff between the complexity of the machine and the number of nonseparable patterns.
- High value of C-> High confidence in the quality of the training data
- Small value of C -> Less emphasis on the training data
- C has to be selected by the user *experimentally*.

Primal Problem

- Given the training sample $\{(x_i, y_i\}_{i=1}^N$, find the optimum values of the weight vector \mathbf{w} and bias b such that they satisfy the constraints
 - $0 \quad y_i^*(\mathbf{w^T}\mathbf{x_i} + \mathbf{b}) >= 1 \epsilon_i, \ \forall \ i=1,2,...N$
 - \circ $\varepsilon_i >= 0, \forall i$
- and such that the weight vector \mathbf{w} and the slack variables $\boldsymbol{\epsilon}_i$ minimize the cost functional
 - Φ(**w**, ε) = 1/2**w**^T**w** + $C\sum_{i=1}^{N} ε_i$ where C is user-specified positive parameter.
- Exercise: Apply the Lagrangian multipliers to get the dual

Dual Problem

- Given the training sample $\{(x_i, y_i\}_{i=1}^N$, find the Lagrange multipliers α_i that maximize the objective function
 - $Q(\alpha) = \sum_{i=1}^{N} \alpha_i 1/2\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_j \alpha_j y_j y_j x_i^T x_j S.T.$
 - $\sum_{i=1}^{N} \alpha_i y_i = 0$
 - $o \le \alpha_i \le C$, $\forall i = 1,2,....N$ where C is user-specified positive parameter
- Neither the slack variables nor their own Langarne multipliers appear in the dual problem!
- Separable vs Non Separable
 - \circ $\alpha_i >= 0$
 - \circ o \leftarrow c \leftarrow c, \forall i = 1,2,N

Cover's Theorem:(Cover, 1965)

- "A complex pattern-classification problem cast in high-dimensional space nonlinearly is more likely to be linearly separable than in a low dimensional space"
 - Transformation is non-linear
 - Dimensionality of the feature space is high enough

Kernel SVM: Non-linear Mapping

Kernel SVM: Optimal Hyperplane in Feature Space

- Similar to the idea of the non separable patterns
 Separating hyperplane is defined as a linear function of
- vectors drawn from the feature space rather than the original input space.
- Non-linear Transformation $\Phi(x) = [\Phi_0(x), \Phi_1(x), ..., \Phi_m(x)]$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i x_i \quad \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \Phi(x_i)$$

$$\mathbf{w}^T \Phi(x) = 0 \quad \sum_{i=1}^{N} \alpha_i y_i \Phi^T(x_i) \Phi(x) = 0$$

The Inner Product Kernel

• For a given set of training samples (in a lower-dimensional feature space) and a transformation into a higher-dimensional space, there exists a function (The Kernel Function) which can compute the dot product in the higher-dimensional space without explicitly transforming the vectors into the higher-dimensional space first.

$$K(\mathbf{x}, \mathbf{x}_i) = \Phi(\mathbf{x})^T \Phi(\mathbf{x}_i)$$

$$= \sum_{j=0}^m \Phi_j(x)^T \Phi_j(x_i), \forall i = 1, 2, ..., N$$

$$K(\mathbf{x}, \mathbf{x}_i) = K(\mathbf{x}_i, \mathbf{x}), \forall i$$

The Kernel Trick

Optimal Hyperplane

$$\sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) = 0$$

- Specifying the kernel is *sufficient* for the pattern classification in the output space; we need never explicitly compute the weight vector w_o
- The optimal hyperplane consists of a finite number of terms that is equal to the number of support vector patterns.

Optimum Design of a SVM

- Given the training sample $\{(x_i, y_i\}_{i=1}^N$, find the Lagrange multipliers α_i that maximize the objective function
 - $O(\alpha) = \sum_{i=1}^{N} \alpha_i 1/2 \sum_{i=1}^{N} \sum_{i=1}^{N} \alpha_i \alpha_i y_i y_i K(\mathbf{x_i, x_i}) \text{ S.T.}$
 - $\sum_{i=1}^{N} \alpha_i y_i = 0$
 - $\bullet \quad o \Leftarrow \alpha_i \Leftarrow C, \ \forall \ i = 1,2,....N$

where C is user-specified positive parameter

- $K(\mathbf{x_i}, \mathbf{x_j})$ can also be viewed as the ij-th element of a symmetric N-by-N matrix K:
- - First component of w represents the bias b
- Feature Space dimensionality is determined by N_s.

Inner-Product Kernels

TABLE 6.1 Summary of Mercer Kernels [Vpe of support Mercer kernel]		
Type of support vector machine	$k(\mathbf{x}, \mathbf{x}_i), i = 1, 2,, N$	Comments
Polynomial learning machine	$(\mathbf{x}^T\mathbf{x}_i+1)^p$	Power <i>p</i> is specified <i>a priori</i> by the user
Radial-basis-function network	$\exp\left(-\frac{1}{2\sigma^2}\ \mathbf{x}-\mathbf{x}_i\ ^2\right)$	The width σ^2 , common to all the kernels, is specified <i>a priori</i> by the user

Two-layer perception: Apply the Lagrangian multiplier's to get the dual values of β₀ and β₁

• Exercise: Read Mercer Theorem

Architecture of SVM

XOR Problem: Kernel Trick

TABLE 6.2 XOR Problem		
Input vector x	Desired response d	
(-1, -1)	-1	
(-1, +1)	+1	
(+1,-1)	+1	
(+1, +1)	-1	

- Given the following kernel:

 $\circ K(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{1} + \mathbf{x^T} \mathbf{x_i})^2$ Derive the optimum **w** for a SVM using the above kernel

- Define a kernel:
- $\bullet \quad K(\mathbf{x_i}, \mathbf{x_i}) = ?$

- Gram

$$\mathbf{K} = \begin{bmatrix} 9 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \\ 1 & 1 & 1 & 9 \end{bmatrix}$$

• Dual form Objective Function

$$O(\alpha) = \sum_{i=1}^{N} \alpha_i - 1/2\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_i K(\mathbf{x_i x_j}),$$

$$Q(\alpha) = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - \frac{1}{2} (9\alpha_1^2 - 2\alpha_1\alpha_2 - 2\alpha_1\alpha_3 + 2\alpha_1\alpha_4 + 9\alpha_2^2 + 2\alpha_2\alpha_3 - 2\alpha_2\alpha_4 + 9\alpha_3^2 - 2\alpha_3\alpha_4 + 9\alpha_4^2)$$

• Conditions of optimality

$$\circ \quad \partial Q(\alpha)/\partial \alpha = O$$

$$9\alpha_{1} - \alpha_{2} - \alpha_{3} + \alpha_{4} = 1$$

$$-\alpha_{1} + 9\alpha_{2} + \alpha_{3} - \alpha_{4} = 1$$

$$-\alpha_{1} + \alpha_{2} + 9\alpha_{3} - \alpha_{4} = 1$$

$$\alpha_{1} - \alpha_{2} - \alpha_{3} + 9\alpha_{4} = 1$$

Dual form Objective Function Solution

$$\alpha_{o,1} = \alpha_{o,2} = \alpha_{o,3} = \alpha_{o,4} = \frac{1}{8}$$

- Optimum Weight
 - $\circ \mathbf{w}_{o} = \sum_{i=1}^{N_{S}} \alpha_{o,i} d_{i} \phi(\mathbf{x}_{i})$

$$\mathbf{w}_o = \frac{1}{8} \left[-\varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) + \varphi(\mathbf{x}_3) - \varphi(\mathbf{x}_4) \right]$$

• Optimum Weight

• Optimum Hyperplane

$$\circ \mathbf{w}_{o}^{T} \varphi(\mathbf{x}) = o \text{ or }$$

$$\sum_{i=1}^{N} \alpha_i d_i K(\mathbf{x}, \mathbf{x}_i) = 0$$

$$-x_1x_2=0$$

References

- 1. https://www.youtube.com/watch?v=SRVswRH507E
- 2. http://cs229.stanford.edu/notes/cs229-notes3.pdf
- 3. Chapter 6, Neural Networks: A Comprehensive Foundation (2nd Edition) 2nd Edition by Simon Haykin
- 4. Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, second edition. New York: Springer, 2008.
- 5. Christianini, N., and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.
- 6. Fan, R.-E., P.-H. Chen, and C.-J. Lin. "Working set selection using second order information for training support vector machines." Journal of Machine Learning Research, Vol 6, 2005, pp. 1889–1918.

