Algoritmos y Estructuras de Datos

Guía Práctica 1 ${\bf L\'ogica}$ Primer Cuatrimestre 2025

1.1. Repaso de lógica proposicional

Ejercicio 1. Determinar los valores de verdad de las siguientes proposiciones cuando el valor de verdad de a, b y c es verdadero y el de x e y es falso.

- a) $(\neg x \lor b)$
- b) $((c \lor (y \land a)) \lor b)$
- c) $\neg (c \lor y)$
- d) $\neg (y \lor c)$

- e) $(\neg(c \lor y) \leftrightarrow (\neg c \land \neg y))$
- f) $((c \lor y) \land (a \lor b))$
- g) $(((c \lor y) \land (a \lor b)) \leftrightarrow (c \lor (y \land a) \lor b))$
- h) $(\neg c \land \neg y)$

Solución

a) True

e) True

b) True

f) True

c) False

g) True

d) False

h) False

Ejercicio 2. Considere la siguiente oración: "Si es mi cumpleaños o hay torta, entonces hay torta".

- Escribir usando lógica proposicional y realizar la tabla de verdad
- Asumiendo que la oración es verdadera y hay una torta, ¿qué se puede concluir?
- Asumiendo que la oración es verdadera y no hay una torta, ¿qué se puede concluir?
- Suponiendo que la oración es mentira (es falsa), ¿se puede concluir algo?

Soluci'on

• Sea $C = "es \ mi \ cumpleaños" \ y \ T = "hay \ torta"$. Entonces tenemos que $(C \lor H) \to H$

C	H	$C \vee H$	$(C \vee H) \to H$
0	0	0	1
0	1	1	1
1	0	1	0
1	1	1	1

- No se puede concluir nada sobre el cumpleaños (fila 2 y 4)
- Que no es su cumpleaños (fila 1)
- Es el cumpleaños y no hay torta (fila 3)

Ejercicio 3. Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias. Indicar en cada paso qué regla se utilizó.

- a) \bullet $(p \lor q) \land (p \lor r)$
 - $\neg p \to (q \land r)$
- b) $\blacksquare \neg (\neg p) \rightarrow (\neg (\neg p \land \neg q))$
 - **■** q
- c) \blacksquare $((True \land p) \land (\neg p \lor False)) \rightarrow \neg(\neg p \lor q)$
 - p ∧ ¬q
- d) \bullet $(p \lor (\neg p \land q))$
- e) $p \to (q \land \neg (q \to r))$
 - $(\neg p \lor q) \land (\neg p \lor (q \land \neg r))$

Solución

a) Con transformaciones queremos ver que $(p \lor q) \land (p \lor r) \leftrightarrow \neg p \rightarrow (q \land r)$

- 1. $(p \lor q) \land (p \lor r)$
- 2. $p \lor (q \land r)$ Distributiva
- 3. $\neg(\neg p) \lor (q \land r)$ Doble negación
- 4. $\neg p \rightarrow (q \land r)$ Definición condicional

b) Con transformaciones queremos ver que $\neg(\neg p) \rightarrow (\neg(\neg p \land \neg q)) \leftrightarrow q$

- 1. $\neg \neg p \rightarrow (\neg (\neg p \land \neg q))$
- 2. $\neg \neg p \to (\neg \neg p \vee \neg \neg q)$ De Morgan
- 3. $p \to (p \lor q)$ Doble negación
- 4. $\neg p \lor (p \lor q)$ Definición condicional
- 5. $(\neg p \lor p) \lor q$ Asociatividad
- 6. $True \lor q$
- 7. True No se cumple

Se puede ver que cuando p y q son False no se cumple pues queda $True \leftrightarrow False$.

c) Con transformaciones queremos ver que $((True \land p) \land (\neg p \lor False)) \rightarrow \neg(\neg p \lor q) \leftrightarrow p \land \neg q$

- 1. $((True \land p) \land (\neg p \lor False)) \rightarrow \neg(\neg p \lor q)$
- 2. $(p \land (\neg p \lor False)) \rightarrow \neg(\neg p \lor q)$
- Conjunción True

3. $(p \land \neg p) \rightarrow \neg(\neg p \lor q)$

Disyunción False

4. $\neg (p \land \neg p) \lor \neg (\neg p \lor q)$

Definición condicional

5. $\neg(False) \lor \neg(\neg p \lor q)$

Contradicción

- 6. $True \lor \neg(\neg p \lor q)$
- 7. True

No se cumple

Se puede ver que cuando p es False y q es True no se cumple pues queda $True \leftrightarrow False$.

d) Con transformaciones queremos ver que $(p \lor (\neg p \land q)) \leftrightarrow \neg p \rightarrow q$

- 1. $(p \lor (\neg p \land q))$
- 2. $(p \vee \neg p) \wedge (p \vee q)$ Distributiva
- 3. $True \land (p \lor q)$ Tautología
- 4. $p \lor q$ Conjunción True
- 5. $\neg p \rightarrow q$ Definición condicional

- e) Con transformaciones queremos ver que $p \to (q \land \neg (q \to r)) \leftrightarrow (\neg p \lor q) \land (\neg p \lor (q \land \neg r))$
 - 1. $p \to (q \land \neg (q \to r))$
 - $\neg p \lor (q \land \neg (q \to r))$
 - $(\neg p \lor q) \land (\neg p \lor \neg (q \to r))$ Distributiva
 - 3.
 - 4. $(\neg p \lor q) \land (\neg p \lor \neg(\neg q \lor r))$ Definición condicional
 - $(\neg p \lor q) \land (\neg p \lor (q \land \neg r))$ 5. De Morgan

Ejercicio 4. Determinar si las siguientes fórmulas son tautologías, contradicciones o contingencias.

a) $(p \lor \neg p)$

d) $((p \land q) \rightarrow p)$

b) $(p \land \neg p)$

e) $((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$

Definición condicional

c) $((\neg p \lor q) \leftrightarrow (p \rightarrow q))$

f) $((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)))$

Solución

- a) Tautología
 - $\begin{array}{c|ccc} p & \neg p & p \lor \neg p \\ \hline T & F & \mathbf{T} \\ F & T & \mathbf{T} \end{array}$

c) Tautología

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$	$((\neg p \lor q) \leftrightarrow (p \to q))$
\overline{T}	Т	F	Т	Т	${f T}$
${ m T}$	F	\mathbf{F}	F	F	${f T}$
\mathbf{F}	Т	Τ	Т	Т	${f T}$
\mathbf{F}	F	Τ	T	T	${f T}$

- b) Contradicción
 - $\begin{array}{c|cccc} p & \neg p & p \land \neg p \\ \hline T & F & F \\ F & T & F \end{array}$

d) Tautología

p	q	$p \wedge q$	$(p \land q) \to p$
\overline{T}	Т	Т	T
Τ	F	\mathbf{F}	\mathbf{T}
F	Τ	\mathbf{F}	\mathbf{T}
F	F	\mathbf{F}	\mathbf{T}

e) Tautología

p	q	r	$q\vee r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \wedge q) \vee (p \wedge r)$	$(p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))$
$^{\mathrm{T}}$	Т	Т	Τ	T	Т	T	${ m T}$	${f T}$
${ m T}$	T	F	${ m T}$	T	T	F	${ m T}$	${f T}$
${ m T}$	F	Т	${ m T}$	${ m T}$	F	T	${ m T}$	${f T}$
${ m T}$	F	F	F	F	F	F	\mathbf{F}	${f T}$
\mathbf{F}	Т	Т	${ m T}$	F	F	F	\mathbf{F}	${f T}$
\mathbf{F}	Т	F	${ m T}$	F	F	F	\mathbf{F}	${f T}$
\mathbf{F}	F	Т	${ m T}$	F	F	F	\mathbf{F}	${f T}$
\mathbf{F}	F	F	F	F	F	F	\mathbf{F}	${f T}$

f) Tautología

p	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \to (p \to r)$	$ \mid (p \to (q \to r)) \to ((p \to q) \to (p \to r)) $
\overline{T}	Т	Т	Т	T	Т	Т	Τ	\mathbf{T}
\mathbf{T}	T	F	F	F	T	F	F	${f T}$
\mathbf{T}	F	Т	T	T	F	Т	T	${f T}$
\mathbf{T}	F	F	T	T	F	F	T	$oldsymbol{ ext{T}}$
F	T	Т	T	T	T	T	${ m T}$	${f T}$
\mathbf{F}	T	F	F	T	T	T	T	\mathbf{T}
\mathbf{F}	F	Т	T	T	${ m T}$	Т	${ m T}$	\mathbf{T}
\mathbf{F}	F	F	T	T	${ m T}$	Т	${ m T}$	\mathbf{T}
	'	1	1	I	1	1	l	1

Ejercicio 5. Dadas las proposiciones lógicas α y β , se dice que α es más fuerte que β si y sólo si $\alpha \to \beta$ es una tautología. En este caso, también decimos que β es más débil que α . Determinar la relación de fuerza de los siguientes pares de fórmulas:

a) True, False

d) $p, (p \lor q)$

b) $(p \wedge q), (p \vee q)$

e) p, q

c) $p, (p \wedge q)$

f) $p, (p \rightarrow q)$

¿Cuál es la proposición más fuerte y cuál la más débil de las que aparecen en este ejercicio?

Solución

Decimos que A es más fuerte que B si $A \to B$ es tautología.

a) False es más fuerte que True

d) p es más fuerte que $(p \lor q)$

b) $(p \wedge q)$ es más fuerte que $(p \vee q)$

p	q	$p \wedge q$	$p \to (p \lor q)$
Т	Т	Т	${f T}$
\mathbf{T}	F	Т	${f T}$
F	Т	Т	${f T}$
\mathbf{F}	F	F	${f T}$

- e) $p,\,q$ no tienen relación de fuerza (contingencia)

p	q	$p \rightarrow q$	$q \to p$
T	Т	\mathbf{T}	\mathbf{T}
${ m T}$	F	F	${f T}$
\mathbf{F}	Т	\mathbf{T}	${f F}$
\mathbf{F}	F	\mathbf{T}	${f T}$

- c) $(p \wedge q)$ es más fuerte que p
- $\begin{array}{c|cccc} p & q & p \wedge q & (p \wedge q) \rightarrow p \\ \hline T & T & T & \mathbf{T} \\ T & F & F & \mathbf{T} \\ F & T & F & \mathbf{T} \end{array}$

f) $p, (p \rightarrow q)$ no tienen relación de fuerza (contingencia)

p	q	$p \rightarrow q$	$p \to (p \to q)$	$(p \to q) \to p$
T	T	Т	${f T}$	\mathbf{T}
$_{ m F}^{ m T}$	F	F	${f F}$	\mathbf{T}
\mathbf{F}	Γ	Т	${f T}$	${f F}$
\mathbf{F}	F	T	${f T}$	\mathbf{F}

La proposición más fuerte es False y la más débil es True. Esto se debe a que $False \to B$ es siempre verdadero sin importar el valor que tome B, mientras que $A \to True$ requiere que A sea verdadero siempre.

4

1.2. Trivaluada

Ejercicio 6. Asumiendo que el valor de verdad de b y c es verdadero, el de a es falso y el de x e y es indefinido, indicar cuáles de los operadores deben ser operadores "luego" para que la expresión no se indefina nunca:

a) $(\neg x \lor b)$

e) $((c \lor y) \land (a \lor b))$

b) $((c \lor (y \land a)) \lor b)$

f) $(((c \lor y) \land (a \lor b)) \leftrightarrow (c \lor (y \land a) \lor b))$

c) $\neg (c \lor y)$

g) $(\neg c \land \neg y)$

d) $(\neg(c \lor y) \leftrightarrow (\neg c \land \neg y))$

Solución

a) Se indefine siempre

e) $((c \vee_L y) \wedge (a \vee b))$

b) $((c \vee_L (y \wedge a)) \vee b)$

f) $(((c \vee_L y) \wedge (a \vee b)) \leftrightarrow (c \vee_L (y \wedge a) \vee_L b))$

c) $\neg (c \lor_L y)$

d) $(\neg(c \lor_L y) \leftrightarrow (\neg c \land_L \neg y))$

g) $(\neg c \land_L \neg y)$

Ejercicio 7. Sean p, q y r tres variables de las que se sabe que:

• p y q nunca están indefinidas,

 \blacksquare r se indefine sii q es verdadera

Proponer una fórmula que nunca se indefina, utilizando siempre las tres variables y que sea verdadera si y solo si se cumple que:

a) Al menos una es verdadera.

d) Sólo p y q son verdaderas.

b) Ninguna es verdadera.

e) No todas al mismo tiempo son verdaderas.

c) Exactamente una de las tres es verdadera.

f) r es verdadera.

Solución

a) $(p \lor q) \lor_L r$

d) $p \wedge q$

b) $(\neg p \land \neg q) \land_L \neg r$

e) $(\neg p \lor \neg q) \lor_L \neg r$

c) $(p \land \neg q \land_L \neg r) \lor (\neg p \land q) \lor (\neg p \land \neg q \land_L r)$

f) $\neg q \wedge_L r$

1.3. Cuantificadores

Ejercicio 8. Determinar, para cada aparición de variables, si dicha aparición se encuentra libre o ligada. En caso de estar ligada, aclarar a qué cuantificador lo está. En los casos en que sea posible, proponer valores para las variables libres de modo tal que las expresiones sean verdaderas.

5

a) $(\forall x : \mathbb{Z})(0 \le x \le n \to x + y = z)$

b) $(\forall x : \mathbb{Z})((\forall y : \mathbb{Z})((0 \le x < n \land 0 \le y < m) \rightarrow x + y = z))$

- c) $(\forall j : \mathbb{Z})(0 \le j < 10 \to j < 0)$
- d) $(\forall j : \mathbb{Z})(j \leq 0 \rightarrow P(j)) \land P(j)$

Solución

- a) La x se encuentra ligada al \forall , el resto de las variables se encuentra libres.Un caso posible de valores para que la expresión sea verdadera es n=1, y=1, z=1.
- b) La x, y se encuentra ligada a los \forall , el resto de las variables se encuentra libres. Un caso posible de valores para que la expresión sea verdadera es n = 1, m = 1.
- c) La j se encuentra ligada al \forall . En este caso la expresión siempre es falsa.
- d) La j se encuentra ligada al \forall . En este caso el valor de verdad depende de P(j)

Ejercicio 9. Sea $P(x : \mathbb{Z})$ y $Q(x : \mathbb{Z})$ dos predicados cualquiera. Explicar cuál es el error de traducción a fórmulas de los siguientes enunciados. Dar un ejemplo en el cuál sucede el problema y luego corregirlo.

a) "Todos los naturales menores a 10 cumple P"

$$(\forall i : \mathbb{Z})((0 \le i < 10) \land P(i))$$

b) "Algún natural menor a 10 cumple P"

$$(\exists i: \mathbb{Z})((0 \leq i < 10) \rightarrow P(i))$$

c) "Todos los naturales menores a 10 que cumplen P, cumplen Q":

$$(\forall x : \mathbb{Z})((0 \le x < 10) \to (P(x) \land Q(x)))$$

d) "No hay ningún natural menor a 10 que cumpla P y Q":

$$\neg((\exists x : \mathbb{Z})(0 \le x < 10 \land P(x))) \land \neg((\exists x : \mathbb{Z})(0 \le x < 10 \land Q(x)))$$

Solución

- a) $(\forall i : \mathbb{Z})((0 \le i < 10) \xrightarrow{L} P(i))$
- b) $(\exists i : \mathbb{Z}) ((0 \le i < 10) \land_{\mathbf{L}} P(i))$
- c) $(\forall x : \mathbb{Z})((0 \le x < 10) \to_L (P(x) \to Q(x)))$
- d) $\neg (\exists x : \mathbb{Z}) (0 \le x < 10 \land_L (P(x) \land Q(x)))$

Ejercicio 10. Sean $P(x : \mathbb{Z})$ y $Q(x : \mathbb{Z})$ dos predicados cualesquiera que nunca se indefinen. Escribir el predicado asociado a cada uno de los siguientes enunciados:

- "Existe un único número natural menor a 10 que cumple P"
- "Existen al menos dos números naturales menores a 10 que cumplen P"
- "Existen exactamente dos números naturales menores a 10 que cumplen P"
- "Todos los enteros pares que cumplen P, no cumplen Q"
- "Si un entero cumple P y es impar, no cumple Q"
- "Todos los enteros pares cumplen P, y todos los enteros impares que no cumplen P cumplen Q"

• "Si hay un número natural menor a 10 que no cumple P entonces ninguno natural menor a 10 cumple Q; y si todos los naturales menores a 10 cumplen P entonces hay al menos dos naturales menores a 10 que cumplen Q"

```
Solución
Sea pred esMenorQueDiez (x: \mathbb{Z}) {
       0 \le x < 10
}
     \blacksquare (\exists x : \mathbb{Z})(esMenorQueDiez(x) \land (P(x) \land 
          \neg(\exists y : \mathbb{Z}) (esMenorQueDiez(y) \land (x \neq y \land P(y))))
     \blacksquare (\exists x : \mathbb{Z})(esMenorQueDiez(x) \land (P(x) \land 
         (\exists y : \mathbb{Z})(esMenorQueDiez(y) \land (x \neq y \land P(y))))
     \blacksquare (\exists x : \mathbb{Z})(esMenorQueDiez(x) \land (P(x) \land 
         (\exists y : \mathbb{Z}) (esMenorQueDiez(y) \land (x \neq y \land P(y) \land 
         \neg(\exists z: \mathbb{Z})(esMenorQueDiez(z) \land (x \neq z \land y \neq z \land P(z)))))))
     • (\forall i : \mathbb{Z})(esPar(i) \rightarrow (P(i) \rightarrow \neg Q(i)))
     • (\forall i : \mathbb{Z})((esImpar(i) \land P(i)) \rightarrow \neg Q(i))
     \blacksquare (\forall i : \mathbb{Z})(esPar(i) \to P(i)) \land (\forall i : \mathbb{Z})((esImpar(i) \land \neg P(i)) \to Q(i))
     ■ (\exists x : \mathbb{Z})(esMenorQueDiez(x) \land (\neg P(x) \rightarrow (\forall y : \mathbb{Z})(esMenorQueDiez(y) \rightarrow \neg Q(y))a)) \land
         (\forall z: \mathbb{Z})(esMenorQueDiez(z) \rightarrow (P(z) \rightarrow (\exists v, w: \mathbb{Z})((v \neq w \land v \in s \land w \in s) \rightarrow (Q(v) \land Q(w))))
```

Ejercicio 11. Sean $P(x : \mathbb{Z})$ y $Q(x : \mathbb{Z}, y : \mathbb{Z})$ dos predicados cualesquiera que nunca se indefinen. Escribir el predicado asociado a cada uno de los siguientes enunciados:

- "Si un entero cumple P, entonces existe un entero distinto tal que juntos cumplen Q"
- "Existe un par de enteros tal que cumplen Q y ninguno de ambos cumple P"
- "Si un par de enteros cumplen Q, entonces al menos uno de ellos cumple P"
- "Si un entero cumple P, no existe ningún entero tal que juntos cumplan Q"

```
Solución
```

```
\bullet (\forall n: \mathbb{Z})(P(n) \to (\exists m: \mathbb{Z})(m \neq n \land Q(n, m)))
```

$$\bullet (\exists n : \mathbb{Z})((\exists n : \mathbb{Z})(Q(n,m) \land (\neg P(n) \land \neg P(m))))$$

$$(\forall n : \mathbb{Z})((\forall n : \mathbb{Z})(Q(n, m) \to (P(n) \lor P(m))))$$

 $(\forall n : \mathbb{Z})(P(n) \to \neg(\exists m : \mathbb{Z})(Q(n,m)))$

Ejercicio 12. Sean $P(x : \mathbb{Z})$ y $Q(x : \mathbb{Z})$ dos predicados cualesquiera que nunca se indefinen y sean a, b y k enteros. Decidir en cada caso la relación de fuerza entre las dos fórmulas:

```
a) P(3)

k > 5 (\forall n : \mathbb{Z})((0 \le n < 5) \to P(n))

b) P(3)

k > 5 (\exists n : \mathbb{Z})(0 \le n < 5 \land P(n))
```

- c) $(\forall n : \mathbb{Z})((0 \le n < 10 \land P(n)) \to Q(n))$ $(\forall n : \mathbb{Z})((0 \le n < 10) \to Q(n))$
- d) $(\exists n : \mathbb{Z})(0 \le n < 10 \land P(n) \land Q(n))$

 $(\forall n : \mathbb{Z})((0 \le n < 10) \to Q(n))$

e) $k = 0 \land (\exists n : \mathbb{Z})(0 \le n < 10 \land P(n) \land Q(n))$

 $k = 0 \land ((\forall n : \mathbb{Z})((0 \le n < k) \to Q(n)))$

Solución

- a) $(\forall n : \mathbb{Z})((0 \le n < 5) \to P(n)))$ es más fuerte que P(3). Esto se debe a que siempre que el primer término es verdadero el segundo tiene que serlo, puesto que P(3) está contenido.
- b) P(3) es más fuerte que $(\exists n : \mathbb{Z})((0 \le n < 5) \to P(n)))$. Si P(3) es verdadero entonces el existencial es verdadero (para n = 3) y si P(3) es falso, $P(3) \to (\exists n : \mathbb{Z})((0 \le n < 5) \to P(n)))$ es verdadero porque si el antecedente es falso toda impliación es verdadera.
- c) $(\forall n : \mathbb{Z})((0 \le n < 10) \to Q(n))$ es más fuerte que $(\forall n : \mathbb{Z})(((0 \le n < 10) \land P(n)) \to Q(n))$. En este caso se nos dice que para todos los positivos menores que 10 ocurre por un lado que se cumple siempre Q y en el otro que cuando se cumple P implica que se cumpla Q. Ahora bien, si se cumple el primero, va a valer siempre Q para ese rango, lo que necesariamente hará que valga $P(n) \to Q(n)$ sin importar si se cumple o no P.
- d) No hay relación de fuerza entre $(\exists n : \mathbb{Z})((0 \le n < 10) \land P(n)) \land Q(n))$ y $(\forall n : \mathbb{Z})((0 \le n < 10) \rightarrow Q(n))$ porque si nunca vale el predicado P, entonces el existencial sería False.
- e) $k = 0 \land (\exists n : \mathbb{Z})((0 \le n < 10) \land P(n) \land Q(n))$ es más fuerte que $k = 0 \land ((\forall n : \mathbb{Z})((0 \le n < k) \rightarrow Q(n)))$. Ya que se puede ver que $k = 0 \land ((\forall n : \mathbb{Z})((0 \le n < k) \rightarrow Q(n))) \equiv ((\forall n : \mathbb{Z})((0 \le n < 0) \rightarrow Q(n))) \equiv ((\forall n : \mathbb{Z})(False \rightarrow Q(n))) \equiv True$