Funciones de varias variables

Definición 93: Sea A un subconjunto de \mathbb{R}^n y sea $u \in \mathbb{R}^n$. Decimos que u es un *punto de acumulación* de A, si para cada $\varepsilon > 0$, $B_{\varepsilon}(a) - \{a\}$ interseca a A.

Ejemplo 94: Consideremos por ejemplo una bola abierta $A = B_r(u_0)$ en \mathbb{R}^2 .

Si $d(a, u_0) = r \Rightarrow a$ es un punto de acumulación de A.

Definición 95: Sea $D \subseteq \mathbb{R}^n$ un conjunto no vacío. Y sean

- $f: D \to \mathbb{R}^m$.
- $a \in \mathbb{R}^n$ un punto de acumulación de D

Decimos que existe el *límite cuando u tiende a a de f*(u), y que ese *límite es L*, y lo

$$\lim_{u\to a} f(u) = L,$$

límite

si para cada $\varepsilon > 0$, existe $\delta > 0$ tal que si $u \in D$ y $0 < d(u, a) < \delta$, entonces $d(f(u), L) < \varepsilon$.

O sea, $\lim_{u\to a} f(u) = L \operatorname{sii}$

$$u \in (B_{\delta}(a) - \{a\}) \cap D \Rightarrow f(u) \in B_{\varepsilon}(L)$$

o equivalentemente

$$u \in D$$
 y $0 < ||u - a|| < \delta \Rightarrow ||f(u) - L|| < \varepsilon$.

Decimos que f es continua en a si f está definida en a y

El límite es único.

Si
$$\lim_{u\to u_0} f(u) = L_1$$
 y $\lim_{u\to u_0} f(u) = L_2 \Rightarrow L_1 = L_2$.

Teorema 100: Álgebra de los límites. Sean $f,g:D\subset\mathbb{R}^n\to\mathbb{R}^m$ funciones tales que $\lim_{u\to u_0}f(u)=L_1$ y $\lim_{u\to u_0}g(u)=L_2$. Entonces:

- $\lim_{u \to u_0} (f(u) + g(u)) = L_1 + L_2.$
- $\lim_{u \to u_0} (\lambda f(u)) = \lambda L_1$, para cualquier $\lambda \in \mathbb{R}$.
- 3 si m=1, $\lim_{u\to u_0}(f(u)g(u))=L_1L_2$ e, inductivamente, para cada $k\in\mathbb{N}$, $\lim_{u\to u_0}(f(u))^k=L_1^k$.
- si m=1, $L_1 \neq 0$ y $f(u) \neq 0$ para todo u en un abierto que contenga a u_0 , excepto tal vez en u_0 , entonces $\lim_{u \to u_0} \frac{1}{f(u)} = \frac{1}{L_1}$.

Tenemos un resultado análogo para las funciones continuas

Teorema 104: Límite de la función compuesta. Sean

 $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ y $g:D'\subset\mathbb{R}^m\to\mathbb{R}^k$ funciones tales que $f(D)\subset D'$. Si existen $\lim_{u\to u_0}f(u)=L$ y g es continua en L, entonces

$$\lim_{u\to u_0}(g\circ f)(u)=g(L).$$

Corolario: Si f es continua en u_0 y g es continua en $f(u_0)$, entonces

 $a \circ f$ es continua en u_0 .

Pregunta: El Teorema 104 vale sin pedir g continua? ¿ Puede reemplazarse esta hipótesis por una menos restrictitva?

Teorema 107: Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ una función y sean $f_i = p_i \circ f: D \to \mathbb{R}^m$, $i = 1, \dots, m$ sus funciones componentes. Entonces f es continua en u_0 si y sólo si todas las funciones componentes f_i son continuas en u_0 , para $i = 1, \dots, m$.

Teorema 109: Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ una función. Supongamos que existe $\lim_{u \to a} f(u) = L \operatorname{con} L > 0$ (y $u \in D$). Entonces existe $\delta > 0$ tal que si $0 < \|u - a\| < \delta$ se tiene f(u) > 0.

Corolario 110: Sean $f,g:D\subset\mathbb{R}^n\to\mathbb{R}$ funciones tales que $f(u)\leq g(u)$ para todo $u\in D$. Supongamos que existen los límites $\lim_{u\to a}f(u)$ y $\lim_{u\to a}g(u)$. Entonces $\lim_{u\to a}f(u)\leq \lim_{u\to a}g(u)$.