BT ÔN TẬP KTTX1

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong các khẳng định sau, khẳng định nào là sai?

$$(\mathbf{A})\sin(\pi - \alpha) = \sin \alpha.$$

$$\mathbf{B} \cos(\pi - \alpha) = \cos \alpha.$$

$$\mathbf{C}\sin(\pi+\alpha)=-\sin\alpha.$$

$$\mathbf{D}\cos(\pi+\alpha)=-\cos\alpha.$$

🗭 Lời giải.

Ta có $\cos(\pi - \alpha) = -\cos \alpha$ nên $\cos(\pi - \alpha) = \cos \alpha$ là khẳng định sai.

CÂU 2. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $\frac{2\pi}{3}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác O'u', O'v'.

$$(O'u',Ov') = \frac{\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

B
$$(O'u', Ov') = \frac{4\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$(O'u', Ov') = \frac{2\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$(O'u', Ov') = -\frac{\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

🗭 Lời giải.

Ta có
$$(O'u', Ov') = (Ou, Ov) + k2\pi = \frac{2\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

CÂU 3. Rút gọn biểu thức $M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$, ta được

$$\widehat{\mathbf{A}} M = \sin 4a.$$

$$\mathbf{B} M = 1 - 2\cos^2 a.$$

$$M = 1 - 2\sin^2 a$$
.

$$\mathbf{(D)} M = \cos 4a.$$

🗭 Lời giải.

Ta có

$$M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$$

$$= \frac{1}{2}(\cos 2a + \cos 2b) + \frac{1}{2}(\cos 2a - \cos 2b)$$

$$= \cos 2a$$

$$= 1 - 2\sin^2 a.$$

Chọn đáp án \bigcirc

CÂU 4. Tập nghiệm của phương trình $3\cos\left(3x-\frac{\pi}{3}\right)=0$ là

$$\bigcirc \left\{ \frac{5\pi}{18} + \frac{k2\pi}{3}, k \in \mathbb{Z} \right\}.$$

🗭 Lời giải.

$$3\cos\left(3x-\frac{\pi}{3}\right)=0 \Leftrightarrow 3x-\frac{\pi}{3}=\frac{\pi}{2}+k\pi \Leftrightarrow x=\frac{5\pi}{18}+\frac{k\pi}{3}, k\in\mathbb{Z}. \text{ Tập nghiệm phương trình } S=\left\{\frac{5\pi}{18}+\frac{k\pi}{3}, k\in\mathbb{Z}\right\}.$$

Chọn đáp án (D).....

CÂU 5. Phương trình $\sqrt{3}\sin x + \cos x = 1$ tương đương với phương trình nào sau đây?

$$(\mathbf{A}) \cos \left(x + \frac{\pi}{6} \right) = \frac{1}{2}.$$

$$\mathbf{B}\sin\left(x+\frac{\pi}{3}\right) = \frac{1}{2}.$$

🗭 Lời giải.

Chia hai vế của phương trình cho 2, ta được

$$\sqrt{3}\sin x + \cos x = 1 \quad \Leftrightarrow \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x = \frac{1}{2}$$

$$\Leftrightarrow \sin\frac{\pi}{3}\sin x + \cos\frac{\pi}{3}\cos x = \frac{1}{2}$$

$$\Leftrightarrow \cos\left(x - \frac{\pi}{3}\right) = \frac{1}{2}.$$

CÂU 6. Tìm điều kiện xác định của hàm số $y = \cot x$.

♥ VNPmath - 0962940819 ♥

🗭 Lời giải.

Hàm số $y = \cot x$ xác định khi và chỉ khi $\sin x \neq 0 \Leftrightarrow x \neq k\pi, k \in \mathbb{Z}$.

CÂU 7. Hàm số nào sau đây đồng biến trên khoảng $(0; \pi)$?

🗭 Lời giải.

Hàm số $y = x^2$ đồng biến khi $x > 0 \Rightarrow$ hàm số đồng biên trên khoảng $(0; \pi)$.

Chọn đáp án \bigcirc

CÂU 8. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $-\frac{5\pi}{6}$. Cho góc lượng giác (O'u',O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u',O'v').

$$(A) (O'u', Ov') = \frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

B
$$(O'u', Ov') = \frac{4\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$(C'u', Ov') = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

$$\bigcirc$$
 $(O'u', Ov') = -\frac{5\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$

🗭 Lời giải.

Ta có
$$(O'u', Ov') = (Ou, Ov) + k2\pi = -\frac{5\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

Chọn đáp án $\boxed{\mathbb{D}}$ \square

CÂU 9. Hình bên dưới là đồ thị của hàm số nào dưới đây?

(B)
$$y = -2 - \cos x$$
.

(c)
$$y = 2 + |\cos x|$$
.

$$(\mathbf{D}) y = \cos x - 4.$$

🗭 Lời giải.

$$\Theta$$
 $y(0) = -3 \Rightarrow \text{loai } y = \cos x - 4 \text{ và } y = 2 + |\cos x|.$

$$\mathbf{\Theta} \ y(\pi) = 3 \Rightarrow \text{loai } y = -2 - \cos x.$$

CÂU 10. Điều kiện xác định của hàm số $y = \cot x$ là

$$\mathbf{C} \ x \neq k\pi.$$

🗭 Lời giải.

Hàm số xác định khi và chỉ khi $\sin x \neq 0 \Leftrightarrow x \neq k\pi, k \in \mathbb{Z}$.

CÂU 11. Cho hàm số $y=\sin^2 x-\sin x+2$. Gọi M,N lần lượt là GTLN và GTNN của hàm số đã cho. Khi đó M+N bằng

B
$$\frac{23}{4}$$
.

$$\bigcirc \frac{15}{4}$$

🗭 Lời giải.

Ta có $y = \sin^2 x - \sin x + 2 = \left(\sin x - \frac{1}{2}\right)^2 + \frac{7}{4}$.

 $\text{Vì } -1 \leq \sin x \leq 1, \, \forall x \in \mathbb{R} \text{ nên } -\frac{3}{2} \leq \sin x - \frac{1}{2} \leq \frac{1}{2}, \, \forall x \in \mathbb{R}.$

Suy ra $0 \le \left(\sin x - \frac{1}{2}\right)^2 \le \frac{9}{4}, \forall x \in \mathbb{R}.$

Suy ra $\frac{7}{4} \le \left(\sin x - \frac{1}{2}\right)^2 + \frac{7}{4} \le 4, \, \forall x \in \mathbb{R}.$

Suy ra $\frac{7}{4} \le y \le 4, \, \forall x \in \mathbb{R}.$

Vậy $M + N = \frac{7}{4} + 4 = \frac{23}{4}$.

Chọn đáp án B....

CÂU 12. Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

- $(A) y = \tan x + x.$
- **B** $y = x^2 + 1$.

🗭 Lời giải.

Hàm số $y = \cot x$ là hàm số tuần hoàn với chu kỳ $T = \pi$.

CÂU 13. Góc 18° có số đo bằng rađian là bao nhiêu?

 \mathbf{A} π .

 $\mathbf{C} \frac{\pi}{10}$.

 $\bigcirc \frac{\pi}{18}.$

🗭 Lời giải.

Ta có $18^{\circ} = \frac{\pi}{10}$ rad.

Chọn đáp án C

CÂU 14. Biểu diễn các góc lượng giác $\alpha = -\frac{5\pi}{6}$, $\beta = \frac{\pi}{3}$, $\gamma = \frac{25\pi}{3}$, $\delta = \frac{17\pi}{6}$ trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?

A β và γ .

- \bigcirc $\alpha, \beta, \gamma.$
- $\bigcirc \beta, \gamma, \delta.$
- \bigcirc α và β .

🗭 Lời giải.

Ta có $\beta + 8\pi = \frac{\pi}{3} + 8\pi = \frac{25\pi}{3} = \gamma$.

Do đó, β và γ có điểm biểu diễn trùng nhau trên đường tròn lượng giác.

CÂU 15. Cho góc lượng giác (Ou, Ov) có số đo là $\frac{3\pi}{4}$, góc lượng giác (Ou, Ow) có số đo là $\frac{5\pi}{4}$. Số đo của góc lượng giác (Ov, Ow) là

 $(Ov, Ow) = 2\pi + k2\pi \ (k \in \mathbb{Z}).$

 $(Ov, Ow) = -\frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$

 $(Ov, Ow) = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$

🗭 Lời giải.

Theo hệ thức Chasles, ta có

$$(Ov, Ow) = (Ou, Ow) - (Ou, Ov) + k2\pi$$
$$= \frac{5\pi}{4} - \frac{3\pi}{4} + k2\pi$$
$$= \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

Chọn đáp án A....

CÂU 16. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo 45° . Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Công thức biểu thị số đo góc lượng giác (O'u', O'v') là

 $\textcircled{\textbf{A}} \; (O'u',Ov') = -45^\circ + k360^\circ \; (k \in \mathbb{Z}).$

B $(O'u', Ov') = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

 \bigcirc $(O'u', Ov') = 135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

 \bigcirc $(O'u', Ov') = -135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

🗭 Lời giải.

Ta có $(O'u', Ov') = (Ou, Ov) + k360^{\circ} = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

Chọn đáp án B

CÂU 17. Hàm số $y = 3 - 5 \sin x$ có giá trị lớn nhất bằng

A 6.

B 2.

C 8.

 \bigcirc 4.

🗭 Lời giải.

Ta có

$$-1 \leq \sin x \leq 1 \Leftrightarrow 5 \geq -5 \sin x \geq -5 \Leftrightarrow 8 \geq 3 - 5 \sin x \geq -2 \Rightarrow -2 \leq y \leq 8.$$

Suy ra giá trị lớn nhất của hàm số là 8, đạt được khi $x=\frac{\pi}{2}+k2\pi, k\in\mathbb{Z}.$

Chọn đáp án \bigcirc

CÂU 18. Rút gọn biểu thức $M=\sin(\pi-a)+\tan\left(\frac{\pi}{2}-a\right)+\sin(-a)+\cot(\pi+a)$ được

- $\widehat{\mathbf{A}} M = 2\cos a.$
- $(\mathbf{B}) M = 2 \tan a.$
- $M = 2 \cot a.$

🗭 Lời giải.

Ta có $M = \sin a + \cot a - \sin a + \cot a = 2 \cot a$.

Chọn đáp án \bigcirc

CÂU 19. Đồ thị hàm số $y = \cos x$ đi qua điểm nào sau đây?

- \bigcirc $P(-1;\pi)$.
- $(\mathbf{B}) M(\pi; 1).$
- \mathbb{C} $Q(3\pi;1)$.
- **D** N(0;1).

🗭 Lời giải.

Điểm N(0;1) thuộc đồ thị hàm số.

Chọn đáp án \bigcirc

CÂU 20. Tập xác định của hàm số $y = 2017 \tan^{2018} \left(2x + \frac{\pi}{2}\right)$ là

🗭 Lời giải.

Hàm số xác định khi $2x + \frac{\pi}{3} \neq \frac{\pi}{2} + k\pi \Leftrightarrow x \neq \frac{\pi}{12} + k\frac{\pi}{2}, k \in \mathbb{Z}.$

Chọn đáp án iga(A).....

CÂU 21. Tìm khẳng định đúng (với điều kiện các hệ thức đã xác định).

- $(\mathbf{A})\cos(\pi \alpha) = \cos\alpha.$
- $\mathbf{B} \cos(-\alpha) = \cos \alpha.$
- $(\mathbf{c})\sin(\pi-\alpha)=-\sin\alpha.$
- $(\mathbf{D})\sin(-\alpha) = \sin\alpha.$

🗭 Lời giải.

Ta có

- Θ $\sin(-\alpha) = -\sin\alpha$.
- Θ $\cos(\pi \alpha) = -\cos\alpha$.
- Θ cos $(-\alpha) = \cos \alpha$.
- Θ $\sin(\pi \alpha) = \sin \alpha$.

Chọn đáp án B.....

II. PHẦN TỰ LUẬN:

CÂU 22. Giải phương trình:

- a) $\sin\left(2x \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2};$
- b) $\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2};$
- c) $\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2};$

d) $2\cos 3x + 5 = 3$;

e) $3 \tan x = -\sqrt{3}$;

f) $\cot x - 3 = \sqrt{3} (1 - \cot x)$.

🗭 Lời giải.

a) Ta có

$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \sin\left(2x - \frac{\pi}{3}\right) = \sin\left(-\frac{\pi}{3}\right)$$

$$\Leftrightarrow \left[2x - \frac{\pi}{3} = -\frac{\pi}{3} + k2\pi\right]$$

$$\Leftrightarrow \left[2x - \frac{\pi}{3} = \pi + \frac{\pi}{3} + k2\pi\right]$$

$$\Leftrightarrow \left[2x = k2\pi\right]$$

$$\Leftrightarrow \left[2x = k2\pi\right]$$

$$\Leftrightarrow \left[x = k\pi\right]$$

$$\Leftrightarrow \left[x = k\pi\right]$$

$$\Leftrightarrow \left[x = k\pi\right]$$

$$\Leftrightarrow \left[x = k\pi\right]$$

b) Ta có

$$\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2}$$

$$\Leftrightarrow \sin\left(3x + \frac{\pi}{4}\right) = \sin\left(-\frac{\pi}{6}\right)$$

$$\Leftrightarrow \left[3x + \frac{\pi}{4} = -\frac{\pi}{6} + k2\pi\right]$$

$$3x + \frac{\pi}{4} = \pi - \left(-\frac{\pi}{6}\right) + k2\pi\right]$$

$$\Leftrightarrow \left[3x = -\frac{5\pi}{12} + k2\pi\right]$$

$$3x = \frac{11\pi}{12} + k2\pi$$

$$4x = \frac{11\pi}{36} + \frac{k2\pi}{3}$$

$$4x = \frac{11\pi}{36} + \frac{k2\pi}{3}$$

$$4x = \frac{11\pi}{36} + \frac{k2\pi}{3}$$

c) Ta có

$$\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \cos\frac{\pi}{6}$$

$$\Leftrightarrow \left[\frac{x}{2} + \frac{\pi}{4} = \frac{\pi}{6} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} + \frac{\pi}{4} = -\frac{\pi}{6} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} = -\frac{\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} = -\frac{5\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{\pi}{6} + k4\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{5\pi}{6} + k4\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{5\pi}{6} + k4\pi\right]$$

- d) Ta có $2\cos 3x + 5 = 3 \Leftrightarrow \cos 3x = -1 \Leftrightarrow 3x = \pi + k2\pi \Leftrightarrow x = \frac{\pi}{3} + \frac{k2\pi}{3} \ (k \in \mathbb{Z}).$
- e) Ta có $3\tan x = -\sqrt{3} \Leftrightarrow \tan x = -\frac{\sqrt{3}}{3} \Leftrightarrow \tan x = \tan\left(-\frac{\pi}{6}\right) \Leftrightarrow x = -\frac{\pi}{6} + k\pi \ (k \in \mathbb{Z}).$

f) Ta có

$$\cot x - 3 = \sqrt{3} (1 - \cot x)$$

$$\Leftrightarrow \cot x - 3 = \sqrt{3} - \sqrt{3} \cot x$$

$$\Leftrightarrow (1 + \sqrt{3}) \cot x = \sqrt{3} (1 + \sqrt{3})$$

$$\Leftrightarrow \cot x = \sqrt{3}$$

$$\Leftrightarrow \cot x = \cot \frac{\pi}{6}$$

$$\Leftrightarrow x = \frac{\pi}{6} + k\pi \ (k \in \mathbb{Z}).$$

CÂU 23. Giải phương trình:

a)
$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x;$$

b)
$$\sin 2x = \cos 3x$$
;

c)
$$\cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right)$$
.

🗭 Lời giải.

a) Ta có

$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x \Leftrightarrow \begin{bmatrix} 2x + \frac{\pi}{4} = x + k2\pi \\ 2x + \frac{\pi}{4} = \pi - x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{4} + k2\pi \\ 3x = -\frac{\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{4} + k2\pi \\ x = -\frac{\pi}{12} + \frac{k2\pi}{3} \end{bmatrix}, (k \in \mathbb{Z}).$$

b) Ta có

$$\sin 2x = \cos 3x \quad \Leftrightarrow \quad \cos 3x = \cos \left(\frac{\pi}{2} - 2x\right)$$

$$\Leftrightarrow \quad \begin{bmatrix} 3x = \frac{\pi}{2} - 2x + k2\pi \\ 3x = \pi - \left(\frac{\pi}{2} - 2x\right) + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \quad \begin{bmatrix} 5x = \frac{\pi}{2} + k2\pi \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \quad \begin{bmatrix} x = \frac{\pi}{12} + \frac{k2\pi}{5} \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix} \quad (k \in \mathbb{Z}).$$

c) Ta
$$\cot \cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right) \Leftrightarrow \begin{bmatrix} \cos 2x = \cos \left(x + \frac{\pi}{6}\right) & (1) \\ \cos 2x = -\cos \left(x + \frac{\pi}{6}\right) & (2) \end{bmatrix}$$

$$+) (1) \Leftrightarrow \begin{bmatrix} 2x = x + \frac{\pi}{6} + k2\pi \\ 2x = -\left(x + \frac{\pi}{6}\right) + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ 3x = -\frac{\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = -\frac{\pi}{18} + \frac{k2\pi}{3} \end{bmatrix} (k \in \mathbb{Z}).$$

$$+) (2) \Leftrightarrow \cos 2x = \cos \left[\pi - \left(x + \frac{\pi}{6}\right)\right] \Leftrightarrow \begin{bmatrix} 2x = \pi - \left(x + \frac{\pi}{6}\right) + k2\pi \\ 2x = -\left[\pi - \left(x + \frac{\pi}{6}\right)\right] + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 3x = \frac{5\pi}{6} + k2\pi \\ x = -\frac{5\pi}{6} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = \frac{5\pi}{18} + \frac{k2\pi}{3} \\ x = -\frac{5\pi}{6} + k2\pi \end{cases} (k \in \mathbb{Z}).$$

CÂU 24. Giải các phương trình sau

a)
$$\sin 2x - \cos x + 2\sin x = 1$$
;

b)
$$2\sin^2 x - 5\sin x + 3 = 0$$
;

c)
$$\sqrt{3} \tan^2 x - 2 \tan x + \sqrt{3} = 0;$$

d)
$$2\cos^2 2x - 5\cos 2x + 2 = 0$$
;

e)
$$\sin^2 \frac{x}{2} + \sin \frac{x}{2} - 2 = 0$$
.

🗭 Lời giải.

a) $\sin 2x - \cos x + 2\sin x = 1 \Leftrightarrow 2\sin x \cos x - \cos x + 2\sin x - 1 = 0 \Leftrightarrow (2\sin x - 1)(\cos x + 1) = 0$

$$\Leftrightarrow \begin{bmatrix} \sin x = \frac{1}{2} \\ \cos x = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sin x = \sin \frac{\pi}{6} \\ x = (2k+1)\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix} (k \in \mathbb{Z});$$

- b) $2\sin^2 x 5\sin x + 3 = 0 \Leftrightarrow (2\sin x 3)(\sin x 1) = 0 \Leftrightarrow \begin{bmatrix} \sin x = \frac{3}{2} > 1 \text{ (VN)} \\ \sin x = 1 \end{bmatrix} \Leftrightarrow x = \frac{\pi}{2} + k2\pi, (k \in \mathbb{Z})$
- c) $\sqrt{3} \tan^2 x 2 \tan x + \sqrt{3} = 0 \Leftrightarrow \sqrt{3} \left(\tan x \frac{1}{\sqrt{3}} \right)^2 + \frac{2}{\sqrt{3}} = 0$ (VN);
- d) $2\cos^2 2x 5\cos 2x + 2 = 0 \Leftrightarrow \begin{bmatrix} \cos 2x = 2 > 1 \text{ (VN)} \\ \cos 2x = \frac{1}{2} \end{bmatrix} \Leftrightarrow \cos 2x = \cos \frac{\pi}{3} \Leftrightarrow 2x = \pm \frac{\pi}{3} + k2\pi \Leftrightarrow x = \pm \frac{\pi}{6} + k\pi, \ (k \in \mathbb{Z});$
- e) $\sin^2 \frac{x}{2} + \sin \frac{x}{2} 2 = 0 \Leftrightarrow \begin{bmatrix} \sin \frac{x}{2} = 1 \\ \sin \frac{x}{2} = -2 < -1 \text{ (VN)} \end{bmatrix} \Leftrightarrow \frac{x}{2} = \frac{\pi}{2} + k2\pi \Leftrightarrow x = \pi + k4\pi, (k \in \mathbb{Z}).$

CÂU 25. Tìm tập xác định của các hàm số sau

a)
$$y = \frac{1 + \cos x}{\sin 2x}$$
.

$$b) y = \sqrt{\frac{1 + \cos x}{2 + \cos x}}.$$

c)
$$y = \frac{\cos x}{1 - \sin x}$$
.

$$d) y = \frac{1}{\tan x}.$$

e)
$$y = \frac{\sqrt{1 - \sin x}}{2\cos x - \sqrt{3}}$$

🗭 Lời giải.

- a) $y = \frac{1 + \cos x}{\sin 2x}$ Hàm số $y = \frac{1 + \cos x}{\sin 2x}$ xác định $\Leftrightarrow \sin 2x \neq 0 \Leftrightarrow x \neq \frac{k\pi}{2}, k \in \mathbb{Z}$. Vậy $D = \mathbb{R} \setminus \left\{ k \frac{\pi}{2}, k \in \mathbb{Z} \right\}$.
- b) $y = \sqrt{\frac{1+\cos x}{2+\cos x}}$ Hàm số $y = \sqrt{\frac{1+\cos x}{2+\cos x}}$ xác định $\Leftrightarrow \frac{1+\cos x}{2+\cos x} \ge 0$ Ta có: $\begin{cases} 1+\cos x \ge 0 \ , \ \forall x \in \mathbb{R} \\ 2+\cos x > 0 \ , \ \forall x \in \mathbb{R} \end{cases} \Rightarrow \frac{1+\cos x}{2+\cos x} \ge 0 \ , \forall x \in \mathbb{R}$ Vây $D = \mathbb{R}$.
- c) $y = \frac{\cos x}{1 \sin x}$ Hàm số $y = \frac{\cos x}{1 - \sin x}$ xác định $\Leftrightarrow 1 - \sin x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k2\pi, \ k \in \mathbb{Z}.$ Vậy $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}.$
- d) $y = \frac{1}{\tan x}$ Hàm số $y = \frac{1}{\tan x}$ xác định $\Leftrightarrow \begin{cases} \tan x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \begin{cases} \sin x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \sin 2x \neq 0 \Leftrightarrow x \neq k \frac{\pi}{2}, \, k \in \mathbb{Z}.$ Vây $D = \mathbb{R} \setminus \left\{ k \frac{\pi}{2}, k \in \mathbb{Z} \right\}.$
- e) $y = \frac{\sqrt{1-\sin x}}{2\cos x \sqrt{3}}$ Hàm số $y = \frac{\sqrt{1-\sin x}}{2\cos x - \sqrt{3}}$ xác định $\Leftrightarrow \begin{cases} 1-\sin x \geq 0 \\ 2\cos x - \sqrt{3} \neq 0 \end{cases}$ Ta có: $1-\sin x \geq 0 \Leftrightarrow \sin x \leq 1$, điều này đúng với mọi $x \in \mathbb{R}$.

$$\begin{split} 2\cos x - \sqrt{3} &\neq 0 \Leftrightarrow \cos x \neq \frac{\sqrt{3}}{2} \Leftrightarrow x \neq \pm \frac{\pi}{6} + k2\pi, \, k \in \mathbb{Z}. \\ \text{Vây } D &= \mathbb{R} \setminus \left\{ \pm \frac{\pi}{6} + k2\pi, k \in \mathbb{Z} \right\}. \end{split}$$

CÂU 26. Tìm tập giá trị của các hàm số sau:

a)
$$y = 2\sin\left(x + \frac{\pi}{4}\right) + 3;$$

b)
$$y = \sqrt{2 + \cos x} - 5$$
.

c)
$$y = 2\cos\left(x - \frac{\pi}{4}\right) - 7;$$

$$d) y = 3 - \sqrt{2 + \sin x}$$

🗭 Lời giải.

a) Tập xác định của hàm số là $D = \mathbb{R}$.

Ta có
$$-1 \le \sin\left(x + \frac{\pi}{4}\right) \le 1, \forall x \in \mathbb{R}$$

 $\Leftrightarrow -2 \le 2\sin\left(x + \frac{\pi}{4}\right) \le 2, \forall x \in \mathbb{R}$
 $\Leftrightarrow 1 \le 2\sin\left(x + \frac{\pi}{4}\right) + 3 \le 5, \forall x \in \mathbb{R}$
hay $1 \le y \le 5, \forall x \in \mathbb{R}$.

Vậy tập giá trị của hàm số là T = [1; 5].

b) Vì $\cos x \ge -1 \Leftrightarrow 2 + \cos x \ge 1 > 0, \forall x \in \mathbb{R}$ nên tập xác định của hàm số là $D = \mathbb{R}$.

Ta có: $-1 \leq \cos x \leq 1, \forall x \in \mathbb{R} \Leftrightarrow 1 \leq 2 + \cos x \leq 3, \forall x \in \mathbb{R} \Leftrightarrow 1 \leq \sqrt{2 + \cos x} \leq \sqrt{3}, \forall x \in \mathbb{R} \Leftrightarrow -4 \leq \sqrt{2 + \cos x} - 5 \leq \sqrt{3} - 5, \forall x \in \mathbb{R} \text{ hay } -4 \leq y \leq \sqrt{3} - 5, \forall x \in \mathbb{R}.$ Vậy tập giá trị của hàm số là $T = \begin{bmatrix} -4; \sqrt{3} - 5 \end{bmatrix}$.

c) Tập xác định của hàm số là $D = \mathbb{R}$.

Ta có
$$-1 \le \cos\left(x - \frac{\pi}{4}\right) \le 1, \forall x \in \mathbb{R}$$

 $\Leftrightarrow -2 \le 2\cos\left(x - \frac{\pi}{4}\right) \le 2, \forall x \in \mathbb{R}$
 $\Leftrightarrow -9 \le 2\cos\left(x - \frac{\pi}{4}\right) - 7 \le -5, \forall x \in \mathbb{R}$
hay $-9 \le y \le -5, \forall x \in \mathbb{R}$.

Vậy tập giá trị của hàm số là T = [-9; -5].

d) Vì $2 + \sin x \ge 1 > 0, \forall x \in \mathbb{R}$ nên tập xác định của hàm số là $D = \mathbb{R}$.

Ta có:
$$-1 \le \sin x \le 1$$
, $\forall x \in \mathbb{R}$
 $\Leftrightarrow 1 \le 2 + \sin x \le 3$, $\forall x \in \mathbb{R}$
 $\Leftrightarrow 1 \le \sqrt{2 + \sin x} \le \sqrt{3}$, $\forall x \in \mathbb{R}$
 $\Leftrightarrow -1 \ge -\sqrt{2 + \sin x} \ge -\sqrt{3}$, $\forall x \in \mathbb{R}$
 $\Leftrightarrow 2 \ge 3 - \sqrt{2 + \sin x} \ge 3 - \sqrt{3}$, $\forall x \in \mathbb{R}$
hay $3 - \sqrt{3} \le y \le 2$, $\forall x \in \mathbb{R}$.
Vậy tập giá trị của hàm số là $T = [3 - \sqrt{3}; 2]$.

CÂU 27. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=2(\sin x+\cos x)+\sin 2x+3$. $\textcircled{\textbf{P}}$ Lời giải.

Tập xác định $\mathscr{D}=\mathbb{R}.$

Dặt
$$t = \sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right), t \in \left[-\sqrt{2}; \sqrt{2}\right].$$

Ta có
$$t^2 = (\sin x + \cos x)^2 = 1 + 2\sin x \cos x = 1 + \sin 2x \Rightarrow \sin 2x = t^2 - 1.$$

Hàm số trở thành $y = g(t) = t^2 + 2t + 2$.

Bảng biến thiên của hàm số y=g(t) trên đoạn $\left[-\sqrt{2};\sqrt{2}\right]$

t	$-\sqrt{2}$	-1	$\sqrt{2}$
g(t)	$4-2\sqrt{2}$		$4 + 2\sqrt{2}$

Vậy $\max_{x \in \mathbb{R}} y = 4 + 2\sqrt{2}$ và $\min_{x \in \mathbb{R}} y = 1$.

CÂU 28. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\sqrt{3}\sin x-\cos x+5$. \bigcirc Lời giải.

Tập xác định $\mathscr{D}=\mathbb{R}.$

Biến đổi
$$y = \sqrt{3} \sin x - \cos x + 5 = 2\left(\frac{\sqrt{3}}{2} \cdot \sin x - \frac{1}{2} \cdot \cos x\right) + 5 = 2 \sin\left(x - \frac{\pi}{6}\right) + 5.$$

Với mọi $x\in\mathbb{R}$ ta có

$$-1 \le \sin\left(x - \frac{\pi}{6}\right) \le 1$$

$$\Leftrightarrow \quad -2 \le 2\sin\left(x - \frac{\pi}{6}\right) \le 2$$

$$\Leftrightarrow \quad 3 \le 2\sin\left(x - \frac{\pi}{6}\right) + 5 \le 7.$$

Vậy
$$\max_{x\in\mathbb{R}}y=7$$
 khi $x=\frac{2\pi}{3}$ và $\min_{x\in\mathbb{R}}y=3$ khi $x=-\frac{\pi}{3}.$

