

26 洋点数

2.5 浮点数 2.6 浮点数

01 浮点数的表示与IEEE754

02 浮点数的加减

03 程序员如何看浮点运算

04 浮点运算中的误差传播

2. 级师邓太小、万万万 2. 6.1、二进制表示浮点数

十进制科学计数法:

 1.2345×10^{20} , 12.345×10^{19} , 0.497×10^{-50} , 4.97×10^{-51}

二进制小数和十进制数转换

```
= 0.5_{10}
0.1_2 = 1/2 = 2^{-1}
0.01_2 = 1/2^2 = 2^{-2} = 0.25_{10}
0.001_2 = 1/2^3 = 2^{-3} = 0.125_{10}
0.11_2 \neq 2^{-1} + 2^{-2} = 0.75_{10}
0.011_2 = 2^{-2} + 2^{-3} = 0.375_{10}
```


2.6.1、二进制与十进制表示的常见浮点数

0.1	2-1	0.5
0.01	2-2	0.25
0.001	2-3	0.125
0.0001	2-4	0.0625
0.0001	2-5	0.03125
0.00001	2-6	0.015625
0.000001	2-7	0.0078125

2.6.1、十进制转二进制

例1: 0.812510 转二进制是多少?

答: 0.11012

例2: 0.8₁₀ 转二进制是多少?

答: 0.11001100110011····₂

2.6.1、二进制表示浮点数

二进制科学计数法: 101010.11101 可以表示为: 1.0101011101 x 2⁵

浮点数其实是两个值的乘积,而且表示并不唯一。

2.6.1、二进制保存浮点数

2.6.1、二进制保存浮点数

几个问题:

- 1、指数要能表示正负,用补码?
- 2、尾数这里能不能优化?
- 3、这个数给别人,能不能还原?

2.6.1、二进制保存浮点数

2.6.1、二进制保存浮点数

- 1、指数位越多,尾数位则越少,其表示的范围越大,
- 但精度就会越低
- 2、指数位越少,尾数位则越多,其表示的范围越小,
- 但精度就会越高

海城宝藏 专注IT教育在线学习平台

2.6.1、IEEE754浮点数标准

三种浮点数表示:

- 1、32位单精度浮点数
- 2、64位双精度浮点数
- 3、临时实数(不作要求)

2. 级加加3000 2. 6.1、两个关键词

规格化浮点数:小数点前面必须是1, 左规(x2), 右规(÷2)

 $101010.11101 = 1.0101011101 \times 2^{5}$

 $0.0010101011101 = 1.0101011101 \times 2^{-3}$

2.6.1、关于规格化的几个特殊值

- 1、当尾数为-1/2时,尾数的补码为11.100···0. 虽然这在1~1/2区间,但是不满足补码的规格化形式,因而不是规格化数。
- 2、当尾数为-1时,尾数的补码是11.00…0, 因为小数补码允许表示-1, 所以特别规定-1为规格化数。
- 3、0的尾数是全0.

海城宝藏

2.6.1、两个关键词

偏置指数: 2e-1-1,e为存储指数的比特长度

2.6.1、移码

补码的缺点:在比较大小时,因为有符号位,导致运算器输出错误结果。

```
01011,00111,10101,11001排序
```

```
对所有值+2<sup>n</sup>之后再比
01011 + 100000 = 101011
00111 + 100000 = 100111
-11011 + 100000 = 001101
-00111 + 100000 = 011001
```

移码的表示范围: 0~ (2n+1-1)

2.6.1、32位IEEE754单精度浮点数

- 1、尾数(底): 0、0.100…0到0.111…1之间
- 2、指数(阶码、移码表示):存储值是真实值+偏置值(2n-1-1)
- 3、0的表示: 0x00000000, 0x80000000

5+121=(132) = 128-1

大型工程 2412

真实值: (-1)sx1.Fx2e

2.6.1、转换计算

16些制

例1:用IEEE754表示的浮点数x为41360000H,请求x的十进制表示(解压)。

例2: 十进制数0.75的IEEE754单精度浮点数的二进制

表示。

1.5 x 0.25 0.11 (1) x 2 -14

0 | 11 | 10 | 0 en e = 126.

32 501 = 14

2. 数据的表示与存储 2.6.1、常用浮点数

ナ
7
T

						<u> </u>			-
		符号位	阶码	尾数	总位数	最大指 数	最小指 数	指数偏 移量	
7	短实数	1	8	23 ,	32	+127	-126	+127	ブー/
1	长实数	1_	11	52	64	+1023	-1022	+1023	2 - 1
J	临时实数	1_	15	64	80	+16383	-16382	+16383	>14
,									

2. 数插的表示范围 2.6.1、常用浮点数表示范围

	最小值	最大值
短实数	E=1, M=0	E=254,M=.1111
(单精度)	$1.0x2^{1-127} = 2^{-126}$	$1.1111x2^{254-127}=2^{127}x(2-2^{-23})$
长实数	E=1, M=0	E=2046,M=.1111
(双精度)	$1.0x2^{1-123} = 2^{-1022}$	$1.1111x2^{2046-1023} = 2^{1023}x(2-2^{-52})$

海城宝藏 专注IT教育在线学习平台

2.6.1、阶码全0和全1的解释

2.6.1、常用浮点数表示范围

2.6.1、二进制保存浮点数0.3

0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0

默认的舍入规则:

舍入到最接近,一样接近的情况下偶数优先.

	f = 有效数位																							
舍入后 ——	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	
舍入前 ——	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1

2.6.1、IEEE754中定义的4种舍入

- •舍入到最接近: 舍入到最接近, 在一样接近的情况下偶数优先。
- •朝 +∞ 方向舍入: 会将结果朝正无限大的方向舍入。
- •朝---方向舍入:会将结果朝负无限大的方向舍入。
- •朝 0 方向舍入: 会将结果朝 0 的方向舍入。

2. 多X河南山河河。 2. 6. 2、 浮点数的加减

例1:
$$1.2 \times 10^5 + 4.6 \times 10^3$$
 $= (12) + 4.6 \times 10^3 = (12) + 4.6$

海贼宝藏 专注IT教育在线学习平台

2.6.2、浮点数的加减

步骤:

- 1、对阶(小数点对齐,阶码相等):低阶向高阶对齐
- 2、尾数求和(差)是在对阶后进行
- 3、规格化处理
- 4、舍入
- 5、溢出判断: 浮点数的溢出与否是由阶码的符号决定的

127

海城宝藏

2.6.2、浮点数的加减

例1: 两个浮点数 $x = 1.01101x2^5$, $y = 1.10011x2^3$, 用单精度浮点数求x+y和x-y的值(结果保留3位小数位)。

$$x = 1.11 \times 2^{5}$$
 $x = 1.11 \times 2^{5}$
 $x = 1.11 \times 2^{5}$
 $x = 1.11 \times 2^{5}$
 $x = 1.00 \times 2^{5}$
 $x = 1.00 \times 2^{5}$

2.6.3、程序员如何看浮点数

因为精度损失的存在,会出现如下情况:

1、浮点加法不具有结合性 (x+y)+z 和 x+(y+z) 不一定相等 2 x^2-y^2 和 (x+y)*(x-y) $x=5.9995998 \times 10^2$

2、 $x^2 - y^2$ 和 (x+y)*(x-y)

7=5.9995-998×/02 m = 1.00020/ x/5-1 $x^2 = 35.99519776016004 \times 104$ = 3.5995198 x/05 $M^{2} = 1.000402040401 \times 10^{-2}$ $= 1.000402 \times 10^{-2}$ 3.5995198×105 -0.000000 10004020 x10 3,59951969995980 X105

```
m = 1.00020/ x/5-1
     5.9995998 xb
+ 0,001 0002010 x/02
  6,0006000010 x/02
     5,9995998×102
- 2.021 0002010 x/02
  5.9985 995990 × 102
  6,0006000010 x/02
  3,599519675976×105
```


2.6.3、程序员如何看浮点数

因为精度损失的存在,会出现如下情况:

- 1、浮点加法不具有结合性, (x+y)+x 和 x + (y + z)不一定相等
- 2、x²-y²和(x+y)*(x-y)不一定相等
- 3、在C语言中,float和double对应单精度和双精度浮点数,而long double类型刚对应IEEE754中的临时(扩展)浮点数。
- 3.1、类型转换: char → int → long → double, float → double
- 3.2、int → float 转换有可能会发生精度损失,int → double 不会
 - 3.3、double → float 可能会发生溢出,精度损失。
 - 3.4、float → int, double → int 小数部分全部舍入。

2.6.4、浮点运算中的误差

1、乘法的相对误差比加法大:

2、两个几乎相等的数相减,引起有效位变少:

3、两个浮点数判断相等时,不能直接使用 == 运算符,要使用abs求出绝对值后判断是否小于一个很小的常数。

2.6. 本节总结

- 1. 浮点数一般用科学计数法表示
- 2. 把科学计数法中的变量,填充到固定 bit 中,即是浮点数的结果
- 3. 浮点数规则不统一,导致同一个数字的浮点数表示各不相同,在 计算时还需要先进行转换才能进行计算
- 4. IEEE 组织统一浮点数标准,规定了单精度浮点数 float 和双精度 浮点数 double

2.6. 本节总结

- 5. 浮点数在表示小数时,由于十进制小数在转换为二进制时,存在 无法精确转换的情况,而在固定 bit 的计算机中存储时会被截断, 所以浮点数表示小数可能存在精度损失
- 6. 浮点数在表示一个数字时,其范围和精度非常大,所以我们平时使用的小数,在计算机中通常用浮点数来存储
- 7. 浮点数加减时的5个步骤,乘除法参考十进制运算,更好处理。
- 8. 浮点数的尾数不够表示会进行舍入,这不是溢出,如果指数超过范围才会发生溢出。
- 9. 因为精度有限导致存储的浮点数和真实值之间有误差,要尽可能减小这种误差
- 10. 在程序处理中,发生类型转换时也会出现精度损失和误差

2.6.4、注意抓住关键信息

32かむ

【2020统考真题】已知带符号整数用补码表示,float型数用 1,8,2] IEEE754标准表示,假定变量x的类型只可能是int或float,当x的机器数为C800 0000H时,x的值可能是()

A. -7x2²⁷ B. -2¹⁶ C. 2¹⁷ D. 25x2²⁷

100/0000

欢迎参与学习

WELCOME FOR YOUR JOINING

船说: 计算机基础