電源管理晶片設計與實作

Final Project & HW3

TA: 温晨羽, 劉子寧

August 15th, 2023

National Yang Ming Chiao Tung University

Close-loop Boost Converter

◆ Architecture and specification

Simulation Result

◆ Steady state simulation waveform (示意圖)

Design Specification

♦ Final Project

Design Specification				
Input Voltage (V _{IN})	1.0V			
Switching Frequency (F _{SW})	1 MHz			
Output Voltage (V _{OUT})	1.8V			
Output Loading (I _L)	0.1mA/1mA/5mA			
Efficiency (η) @0.1mA	Pre-layout Simulation	Post-layout Simulation		
		∆ η < 2.5%		
Efficiency (η) @1mA	Pre-layout Simulation	Post-layout Simulation		
		∆ η < 2.5%		
Efficiency (η) @5mA	Pre-layout Simulation	Post-layout Simulation		
		∆ η < 2.5%		
Chip Area(um*um)				
FOM (%/um²)	(請填寫Post-layout Simulation結果)			

Layout Notice

- ◆ 每種製程都有各自的假錯表,從CIC網站即可搜尋到。
- ◆ 而U18跑DRC驗證時,若出現以下錯誤,則視為假錯。

Off_Grid	佈局走線與圖型未在 0.01um 之最小格線上。		
	可允許錯誤。		
SkewEdge	佈局走線角度非 0°、45°與 90 度。		
	可允許錯誤。		
4.1M			
4.20G			
4.22G	局部區域之 Density Rule。		
4.24G	可允許錯誤,請盡量符合其 Rule。		
4.26G	□		
4.28G	Final Projec		
4.31F	──────────────────────────────────────		
4.20C			
4.22C			
4.24C	可允許錯誤,請盡量符合其 Rule。		
4.26C			
4.28C	一		
4.29NOTICE	如無使用 RF 元件,則會提醒您關閉 RF_Rule Group。		
	可允許錯誤。		

ESD Rule		
IO5.5.4.Note	缺少 IOID Layer 為驗證 ESD 需要之 Layer, 可允許錯誤。	
PAD Rule	T	
5.2.2_M1 5.2.2_M2 5.2.2_M3	PAD_RF 之 P-Cell 元件。	
5.2.2_LTM 5.2.2_LSM	可允許錯誤。	

Source: http://www2.cic.org.tw/~shuttle/drc/all/U18.pdf

Chip Layout with Power MOS & PAD

Consider the input/output points with I/O PAD

- Power path (power line) indicates a large current flow
- Power line as short as possible → I_{IN} x R²
- Power MOS need to be placed closer to I/O PAD
- Keep power path flowing in same direction as possible
 - For example: M_P is power PMOS of buck converter
 M_N is power NMOS of buck converter

Chip Layout Example

PAD Import(1)

◆ 在CIW界面选择Import → Stream

PAD Import(2)

◆ 在Stream File欄內選擇需要匯入的gds檔, 填寫好Library Name, Top Level Cell 和 Tech File之後點擊Translate即可

National Yang Ming Chiao Tung University

PAD Import(3)

◆ 匯入完成後就可以在Library中找到Layout

Bonus (pre-layout simulation)

♦ Close-loop Boost Converter with ZCD:

Final Project Notice

- ◆ 本次上機作業為Final Project的pre-layout simulation 部分。
- ◆ 請在報告中加入三個不同負載的Pre-sim.和Post-sim.模擬結果,Layout圖(並標 註晶片長寬),DRC及LVS結果。報告中的波形圖請改用白底,並將線條加粗。
- ◆ 報告中請加入V_{OUT}, V_{REF}, V_{FB}, V_{GN}, I_L 的波形圖,並註明清楚各波型名稱。
- ◆ 所有控制電路的VDD皆為V_{OUT},**控制電路的VDD不出PAD**(V_{OUT}與控制電路的 VDD需在電路內部相連)
- ◆ 使用initial condition功能設V_{OUT}初始值為1.78V。
- ◆ 晶片面積以覆蓋全晶片(包括pad)的最小矩形面積進行計算。
- ◆ 晶片的四周都需要圍pad,且PAD與PAD之間不可以擺放電路,但可以補 Metal,Diffusion或是Poly的Density,請各位同學在計算面積時用Layout的左右最 長及上下最長距離相乘。
- ◆ 請萃取全晶片的R+C+CC進行post-layout simulation。

Final Project Notice

- ◆ 若完成bonus電路,請在報告中說明電路實現方式並提供模擬結果驗證,bonus只要有完成(提供ZCD的功能驗證結果及與原版的效率比較),期末專題成績就直接加10分。
- ◆ 計算效率 I_L=0.1mA: 取第2個充電cycle後的6個整數cycles的平均功率進行計算 I_L=1mA, 5mA:請取50us至1ms的完整整數週期(亦即僅扣除頭尾週期)的平均功率 進行計算
- ◆ 效率誤差計算方法→Error=abs(presim效率-postsim效率)<2.5%
- ◆ 評分標準: 1. DRC、LVS通過,分數為60分
 - 2. 通過三個負載的spec, 分數為70分(若未通過spec則不計排名分數)
 - 3. 剩下30分評比FOM大小,按名次給分(排序從0分至滿分依序給分)

FOM=(0.1mA的效率+1mA的效率+5mA的效率)/晶片面積

- ◆ 作業繳交時間為2023/09/04(一)晚上12點前,請將作業報告寄至e3平台
- ◆ 請額外上傳Final project的gds檔,未上傳者期末專題0分。助教將會確認期末專題 的模擬結果是否與報告內容一致,若數據有誤也同樣計0分。

HW3 - Comparator

Architecture and specification

■ Comparator:

 M_1 :(1 μ m/0.5 μ m) M_2 :(1 μ m/0.5 μ m)

 $M_3:(2\mu m/0.5\mu m)*4$

 M_4 :(1µm/2µm)

 $M_5:(2\mu m/0.5\mu m)$

 $M_6:(1\mu m/0.5\mu m)$

 M_7 :(2µm/0.5µm)*4

 $M_8:(2\mu m/0.18\mu m)$

 M_9 :(2µm/0.18µm)

 M_{10} :(2µm/0.18µm)

 M_{11} :(2µm/0.5µm)*4

 M_{12} :(2µm/0.18µm)

 M_{13} :(2µm/0.5µm)

 M_{14} :(1µm/0.5µm)

 M_{15} :(2µm/0.18µm)

 M_{16} :(1µm/0.18µm)

 M_{17} :(2µm/0.18µm)*2

 M_{18} :(1µm/0.18µm)*2

 $M_B:(2\mu m/0.5\mu m)^*2$

HW3 - Comparator

Simulation Result(I): Delay time

HW3 - Comparator

- **♦** Simulation Result(II): Offset voltage:
 - **♦** Tran: stop time=100us, Vin+:950mV→850mV, Vin-: 850mV→950mV
 - Offset voltage = 900.66mV- 899.34mV = 1.32mV

Layout Skill

1-Dimensional Common-Centroid Arrays

Layout Skill

◆ 2-Dimensional Common-Centroid Arrays

Layout Skill

- Differential Pair Layout Example
 - > Make sure the parasitic capacitors are also matched.

National Yang Ming Chiao Tung University

HW3 – Comparator Layout

Specification

Parameters	Pre-sim.	Post-sim.	Error(%)
VDD	1.8V	1.8V	
Offset voltage			
Delay time			

• Error計算: $\frac{|POST - PRE|}{PRE} \times 100\%$

- > 繳交一份電子檔。
- ➤ 請在報告中加入Pre-sim.和Post-sim.模擬結果(Offset voltage及Delay time), 上表, Layout圖, DRC及LVS結果。報告中的波形圖請改用白底,並將線條加粗。
- ➤ Schematic及Layout所使用的finger/multiplier數請相同。
- ▶ 請在V_{OUT}端加入0.1pF的電容(正端接V_{OUT},負端接地)進行模擬。
- ➤ Bonus:請設計比較器以達到遲滯的功能, spec請參考下一頁。(完成者HW3+25%)
- ➤ 若完成bonus電路,請在報告中附上設計結果並提供模擬結果驗證,並簡單敘述設 計觀念,若無敘述設計觀念不給分。
- ▶ 作業繳交時間為2023/08/21(一)晚上12點前,請將作業報上傳至e3平台。

HW3 - Bonus

- Design of a CMOS Comparator with Hysteresis
 - **♦** Tran: stop time=5us, Vin+:0V ↔ 1.8V, Vin-: 0.9V
 - ◆ For V_{IN+} from 0V to 1.8V, V_{OUT} should rise @ V_{IN+}= 0.995V~1.005V (左圖)
 - ◆ For V_{IN+} from 1.8V to 0V, V_{OUT} should fall @ V_{IN+}= 795mV~805mV (右圖)
 - ◆ Hint:調整M9/M10的尺寸
 - ◆ 模擬結果請參考下圖格式呈現,並註明清楚切換的電壓分別為何

National Yang Ming Chiao Tung University

Thank You!

Appendix

♦ D Flip-Flop Circuit:

