DSCI353-353m-453: Class 10b Contigency Tables & T-tests

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

03 November, 2022

Contents

10.2.2.1 Class Readings, Assignments, Syllabus Topics
10.2.2.1.1 Reading, Lab Exercises, SemProjects
10.2.2.1.2 Textbooks
10.2.2.1.3 Syllabus
10.2.2.2 CrossTab/Contingency Tables and T-tests
10.2.2.2.1 Frequency and Contingency Tables
10.2.2.2.2 Frequency tables
10.2.2.2.3 Tests of Independence
10.2.2.2.4 Measures of Association
10.2.2.3 Correlations
10.2.2.3.1 Pearson, Spearman, and Kendall Correlations
10.2.2.3.2 Covariances and correlations
10.2.2.4 t-tests
10.2.2.4.1 Independent t-test
10.2.2.4.2 Dependent t-test
10.2.2.5 Nonparametric tests of group differences
10.2.2.5.1 Comparing two groups
10.2.2.5.2 Comparing more than two groups
10.2.2.5.3 Nonparametric multiple comparisons
10.2.2.6 Summary
10.2.3 Links

10.2.2.1 Class Readings, Assignments, Syllabus Topics

10.2.2.1.1 Reading, Lab Exercises, SemProjects

- Readings:
 - For today:
 - For next class: OIS 8
- Laboratory Exercises:
 - LE 5: is due Thursday November 10th
 - LE 6: Will be posted Thursday November 10th
- Office Hours: (Class Canvas Calendar for Zoom Link)
 - Wednesday @ 4:00 PM to 5:00 PM, Will Oltjen
 - Saturday @ 3:00 PM to 4:00 PM, Kristen Hernandez
 - Office Hours are on Zoom, and recorded
- Semester Projects
 - DSCI 451 Students Biweekly Update #5 Due Friday Nov. 4th
 - DSCI 451 Students

- * Next Update #5 is Due Friday November 4th
- All DSCI $351/351\mathrm{M}/451$ Students:
 - * Peer Grading of Report Out #2 is Due November 8th
- Exams
 - * Final: Monday December 19, 2022, 12:00PM 3:00PM, Nord 356 or remote

10.2.2.1.2 Textbooks

- Introduction to R and Data Science
 - For R, Coding, Inferential Statistics
 - * Peng: R Programming for Data Science
 - * Peng: Exploratory Data Analysis with R

Textbooks for this class

- OIS = Diez, Barr, Çetinkaya-Runde: Open Intro Stat v4
- R4DS = Wickham, Grolemund: R for Data Science

Textbooks for DSCI353/353M/453, And in your Repo now

- ISLR = James, Witten, Hastie, Tibshirani: Intro to Statistical Learning with R
- ESL = Trevor Hastie, Tibshirani, Friedman: Elements of Statistical Learning
- DLwR = Chollet, Allaire: Deep Learning with R

10.2.2.1.3 Syllabus

10.2.2.2 CrossTab/Contingency Tables and T-tests

- What are Contingency Tables
 - a contingency table
 - * (also known as a cross tabulation or crosstab)
 - is a type of table in a matrix format
 - * that displays the (multivariate) frequency distribution of the variables.

They are heavily used in

- survey research,
- business intelligence,
- engineering, and scientific research.

They provide a basic picture of

- the interrelation between two variables
 - and can help find interactions between them.

10.2.2.2.1 Frequency and Contingency Tables

- Lets look at frequency and contingency tables
 - from categorical variables,
 - along with
 - * tests of independence,
 - * measures of association, and
 - * methods for graphically displaying results.

We'll be using functions in base R,

- along with functions from
 - the vcd package

Day:Date	Foundation	Practicum	Reading	Due
w01a:Tu:8/30/22	ODS Tool Chain	R, Rstudio, Git		
w01b:Th:9/1/22	Setup ODS Tool Chain	Bash, Git, Slack, Agile	PRP4-33	LE1
w02a:Tu:9/6/22	Bash-Git-Knuth- Lit.Prog.	RIntroR	PRP35-64	
w02b:Th:9/8/22 w02Pr:Fr:9/9/22	What is Data Science	OIS:Intro2R	OIS1,2 PRP65-93	451 Update1
w03a:Tu:9/13/22	Data Intro	Data Analytic Style	PRP94-116	LE2 LE1 Due
w03b:Th:9/15/22	Rand. Var. Normal Dist.	Git, Rmds, Loops	OIS4	
w04a:Tu:9/20/22	Tidy Check Explore	Tidy GapMinder	EDA1-31	
w04b:Th:9/22/22	Inference, DSCI Process	Other Distrib. 7 ways	R4DS1-3	LE3 LE2 Due
w04Pr:Fr:9/23/22			EDA32-58	451 Update2
w05a:Tu:9/27/22	OIS4 Rand. Var.	EDA of PET Degr.	OIS5	
w05b:Th:9/29/22	OIS5 Found. of Infer.	Multivar Corr. Plot	R4DS4-6	
w05Pr:Fr:9/30/22				451 RepOut1
w06a:Tu:10/4/22	Pred., Algorithm, Model		R4DS7-8	
w06b:Th:10/6/22	Summ. Stats & Vis.	Anscombe's Quartets	R4DS9-16	LE4 LE3 Due
w06Pr:Fr:10/7/22		-		451 Update3
w07a:Tu:10/11/22	Midterm Rev. Tidy Data	Correl Plots Summ Stats	OIS6.1-2	PeerRv1 Due
w07b:Th:10/13/22	HypoTest, Infer. Recap	Penguin EDA, Sampling		
w08a:Tu:10/18/22	MIDTERM	EXAM		
w08b:Th:10/20/22	Programming & Coding	Code Packaging		LE4 Due
w08Pr:Fr:10/21/22		6 6		451 Update4
Tu:10/24,25	CWRU	FALL BREAK	R4DS17-21	-
w09b:Th:10/27/22	Cat. Inf. 1 & 2 propor.	Indep. Test,2-way tables	OIS6.3-4	LE5
w09Pr:Fr:10/28/22				451 RepOut2
w10a:Tu:11/1/22	Goodness of Fit, χ^2 test	t-tests 1&2 means	OIS7.1-4	
w10b:Th:11/3/22	Num. Infer, Cont. Tables	Stat. Power		
w10Pr:Fr:11/4/22				451 Update5
w11a:Tu:11/8/22	Sample & Effect Size	Stat. Power GGmap	OIS8	PeerRv2 Due
w11b:Th:11/10/22	Inf. 4 Regr, Test & Train	Curse of Dimen.	ISLR1,2.1,2	LE6 LE5 Due
w12a:Tu:11/15/22	Lin. Regr. Part 1	Residuals	OIS9	
w12b:Th:11/17/22	Lin. Regr. Part 2	Regr. Diagnostics		
w12Pr:Fr:11/18/22				451 Update6
w13a:Tu:11/22/22	Mult. Lin. Regr.	Var. & Mod. Selec.,	ISLR3.1	LE7 LE6 due
w13b:Th:11/24/22	Log. Regr.	GIS Trends	ISLR3.2	
w13Pr:Fr:11/25/22				451 RepOut3
w14a:Tu:11/23/22	Classificat., Sup. Lrning	Caret, Broom 4 modeling	ISLR4.1-3	
Th,Fr:11/24,25	THANKSGIVIING	Vacation		
w15a:Tu:11/29/22		Clustering		PeerRv3 Due
w15b:Th:12/1/22	Big Data Analytics	Dist. Comp., Hadoop		
w15SPr:Fr:12/2/22		Read Article by	Mirletz,2015	
w16a:Tu:12/6/22	Final Exam Review			
w15b:Th:12/8/22				LE7 due
Friday 12/12	SemProj	Final Report		SemProj4 due
Monday 12/19	FINAL EXAM	12:00-3:00pm	Nord 356	or remote

Figure 1: DSCI351-351M-451 Syllabus

- and the gmodels package

In the following examples,

- assume that A, B, and C
- represent categorical variables.

10.2.2.2.2 Frequency tables

- The data for this section come from the Arthritis dataset
 - included with the vcd package.

The data are from Kock & Edward (1988)

- and represent a double-blind clinical trial
- of new treatments for rheumatoid arthritis.

library(vcd)

```
## Loading required package: grid
```

head(Arthritis)

```
##
     ID Treatment Sex Age Improved
## 1 57
          Treated Male
                        27
                                Some
## 2 46
          Treated Male
                        29
                                None
## 3 77
          Treated Male
                        30
                                None
## 4 17
         Treated Male
                        32
                             Marked
## 5 36
          Treated Male 46
                             Marked
## 6 23
          Treated Male
                        58
                             Marked
```

str(Arthritis)

```
## 'data.frame': 84 obs. of 5 variables:
## $ ID : int 57 46 77 17 36 23 75 39 33 55 ...
## $ Treatment: Factor w/ 2 levels "Placebo", "Treated": 2 2 2 2 2 2 2 2 2 2 2 2 ...
## $ Sex : Factor w/ 2 levels "Female", "Male": 2 2 2 2 2 2 2 2 2 2 2 ...
## $ Age : int 27 29 30 32 46 58 59 59 63 63 ...
## $ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...</pre>
```

Above are the first few observations:

- Treatment (Placebo, Treated),
- Sex (Male, Female), and
- Improved (None, Some, Marked)
 - are all categorical factors.

Next we'll create

- frequency tables and
- contingency tables (cross-classifications)
 - from the data.

We'll begin with simple frequencies,

- followed by two-way contingency tables,
- and end with multiway contingency tables.

One way contigency table

- The first step is to create a table
 - using either the table()

```
- or xtabs() function
```

* and then manipulate it using the other functions.

You can generate simple frequency counts using the table() function.

You can turn these frequencies into proportions with prop.table()

• or into percentages using prop.table()*100:

```
mytable <- table(Arthritis$Improved)</pre>
mytable
                                # counts
##
##
     None
             Some Marked
##
       42
               14
                      28
prop.table(mytable)
                                # proportions
##
##
                            Marked
        None
                   Some
## 0.5000000 0.1666667 0.3333333
prop.table(mytable) * 100
                                  # percents
##
##
       None
                 Some
                        Marked
## 50.00000 16.66667 33.33333
Two way contingency table
  • For two-way tables,
       - the format for the table() function is
           * mytable <- table(A, B)
       - where A is the row variable and
       - B is the column variable.
Alternatively,
  • the xtabs() function allows you to create
       - a contingency table
       - using formula-style input.
mytable <- xtabs(~ Treatment + Improved, data = Arthritis)</pre>
mytable # counts
             Improved
##
## Treatment None Some Marked
                29
##
     Placebo
##
     Treated
                13
                      7
                             21
margin.table(mytable, 1) # total counts for Treatment
## Treatment
## Placebo Treated
        43
prop.table(mytable, 1)
                              # row proportions (rows add to 1)
             Improved
## Treatment
                   None
                              Some
                                      Marked
     Placebo 0.6744186 0.1627907 0.1627907
```

```
Treated 0.3170732 0.1707317 0.5121951
##
margin.table(mytable, 2) # total counts for Improved
## Improved
##
     None
            Some Marked
##
       42
              14
                     28
prop.table(mytable, 2) # column proportions (columns add to 1)
            Improved
##
                                    Marked
## Treatment
                  None
                            Some
    Placebo 0.6904762 0.5000000 0.2500000
##
     Treated 0.3095238 0.5000000 0.7500000
prop.table(mytable)
                            # cell proportions (all cells add to 1)
##
            Improved
## Treatment
                   None
                              Some
                                       Marked
##
    Placebo 0.34523810 0.08333333 0.08333333
     Treated 0.15476190 0.08333333 0.25000000
addmargins(mytable)
                            # cell counts with row and column sums
##
            Improved
## Treatment None Some Marked Sum
##
    Placebo
               29
                     7
                            7 43
##
    Treated 13
                     7
                           21 41
##
     Sum
               42
                    14
                           28 84
addmargins(prop.table(mytable)) # cell proportions with row and column proportions
##
            Improved
## Treatment
                   None
                              Some
                                       Marked
                                                     Sum
    Placebo 0.34523810 0.08333333 0.08333333 0.51190476
##
     Treated 0.15476190 0.08333333 0.25000000 0.48809524
##
##
             0.50000000 0.16666667 0.33333333 1.00000000
addmargins(prop.table(mytable, 1), 2) # row proportions with row sums
##
            Improved
## Treatment
                  None
                            Some
                                    Marked
                                                 Sum
    Placebo 0.6744186 0.1627907 0.1627907 1.0000000
     Treated 0.3170732 0.1707317 0.5121951 1.0000000
addmargins(prop.table(mytable, 2), 1) # column proportions with column sums
##
            Improved
## Treatment
                  None
                            Some
                                    Marked
##
    Placebo 0.6904762 0.5000000 0.2500000
     Treated 0.3095238 0.5000000 0.7500000
##
            1.0000000 1.0000000 1.0000000
##
Two-way table using gmodels::CrossTable
library(gmodels)
CrossTable(Arthritis$Treatment, Arthritis$Improved)
##
```

6

##

```
##
     Cell Contents
##
##
##
  | Chi-square contribution |
##
          N / Row Total |
##
            N / Col Total |
          N / Table Total |
    -----|
##
##
  Total Observations in Table: 84
##
##
##
                     | Arthritis$Improved
                                                Marked | Row Total |
                           None |
  Arthritis$Treatment |
                                       Some |
##
                                                -----I
##
             Placebo |
                             29 I
                                         7 |
                                                    7 |
                                                               43 I
##
                          2.616
                                      0.004 |
                                                 3.752 |
##
                          0.674 I
                                     0.163 |
                                                 0.163 |
                                                            0.512 I
##
                          0.690 |
                                     0.500 |
                                                 0.250 |
##
                          0.345 I
                                     0.083 |
                                                 0.083 |
                                         7 |
                             13 |
                                                   21 |
                                                               41 l
##
             Treated |
                          2.744 I
                                      0.004 I
                                                 3.935 I
##
                                                 0.512 |
                                                            0.488 I
##
                          0.317 |
                                      0.171 |
##
                          0.310 l
                                      0.500 l
                                                 0.750 l
##
                          0.155 |
                                      0.083 |
                                                 0.250 |
                             42 |
         Column Total |
                                        14 l
                                                    28 I
                          0.500 l
                                      0.167 l
##
                                                 0.333 |
     -----|----|-----|
##
##
```

Three-way contingency table

##

- Both table() and xtabs()
 - can be used to generate multidimensional tables
 - $\ast\,$ based on three or more categorical variables.
 - The margin.table(), prop.table(), and addmargins() functions
 - * extend naturally to more than two dimensions.

Additionally, the ftable() function

- can be used to print multidimensional tables
- in a compact and attractive manner.

Here is an example.

```
mytable <- xtabs( ~ Treatment + Sex + Improved, data = Arthritis) # 1. Cell Frequencies
mytable
## , , Improved = None</pre>
```

##
Sex
Treatment Female Male
Placebo 19 10

```
##
     Treated
##
   , , Improved = Some
##
##
##
            Sex
## Treatment Female Male
##
    Placebo
##
     Treated
                  5
##
##
  , , Improved = Marked
##
##
            Sex
## Treatment Female Male
##
     Placebo
                  6
##
     Treated
                 16
                       5
margin.table(mytable, 1) # totals for Treatment, 2. Marginal Frequencies
## Treatment
## Placebo Treated
        43
                41
margin.table(mytable, 2) # totals for Sex
## Sex
## Female
            Male
##
       59
              25
margin.table(mytable, 3) # totals for Improved
## Improved
##
     None
            Some Marked
##
       42
              14
margin.table(mytable, c(1, 3)) # totals for Treatment by Improved
##
            Improved
## Treatment None Some Marked
               29
##
     Placebo
                     7
##
                     7
                           21
     Treated
               13
                               # 3. Treatment × Improved marginal frequencies
ftable(prop.table(mytable, c(1, 2))) # 4. Improved proportions for Treatment × Sex
##
                    Improved
                                    None
                                               Some
                                                        Marked
## Treatment Sex
                             0.59375000 0.21875000 0.18750000
## Placebo
             Female
##
             Male
                             0.90909091 0.00000000 0.09090909
## Treated
             Female
                             0.2222222 0.18518519 0.59259259
##
             Male
                             0.50000000 0.14285714 0.35714286
ftable(addmargins(prop.table(mytable, c(1, 2)), 3))
##
                    Improved
                                                        Marked
                                                                       Sum
                                   None
                                               Some
## Treatment Sex
                             0.59375000 0.21875000 0.18750000 1.00000000
## Placebo
             Female
##
             Male
                             0.90909091 0.00000000 0.09090909 1.00000000
             Female
                             0.2222222 0.18518519 0.59259259 1.00000000
## Treated
```

In the code above

- The code at #1 produces cell frequencies for the three-way classification.
 - The code also demonstrates how the ftable() function can be used
 - to print a more compact and attractive version of the table.
- The code at #2 produces the marginal frequencies
 - for Treatment, Sex, and Improved.
- Because you created the table with
 - the formula ~Treatment+Sex + Improved,
- Treatment is referred to by index 1,
 - Sex is referred to by index 2,
 - and Improved is referred to by index 3.
- The code at #3 produces the marginal frequencies
 - for the Treatment x Improved classification,
 - summed over Sex.
- The proportion of patients with None, Some, and Marked improvement
 - for each Treatment \times Sex combination
 - is provided in #4.
- Here you see that 36% of treated males had marked improvement,
 - compared to 59% of treated females.
- In general, the proportions will add to 1
 - over the indices not included in the prop.table() call
 - (the third index, or Improved in this case).
- You can see this in the last example,
 - where you add a sum margin over the third index.

Contingency tables tell you

- the frequency or proportions of cases
 - for each combination of the variables that make up the table,
- but you're probably also interested in whether the variables in the table
 - are related or independent.

Tests of independence are covered next.

10.2.2.2.3 Tests of Independence

- R provides several methods of testing the independence
 - of categorical variables.

The three tests described in here are

- the χ^2 (chi-square) test of independence,
- \bullet the Fisher exact test,
- and the Cochran-Mantel-Haenszel test.

Treatment by Sex for each Level of Improved

• We'll use this as our example

ftable(mytable)

##			Improved	${\tt None}$	Some	Marked
##	Treatment	Sex				
##	Placebo	Female		19	7	6
##		Male		10	0	1
##	Treated	Female		6	5	16

```
7
                                      2
##
             Male
                                              5
ftable(prop.table(mytable, c(1, 2))) # proportions sum to 1 over index omitted
##
                     Improved
                                    None
                                                         Marked
## Treatment Sex
## Placebo
             Female
                              0.59375000 0.21875000 0.18750000
##
             Male
                              0.90909091 0.00000000 0.09090909
             Female
                              0.2222222 0.18518519 0.59259259
## Treated
                              0.50000000 0.14285714 0.35714286
##
             Male
ftable(addmargins(prop.table(mytable, c(1, 2)), 3))
##
                    Improved
                                    None
                                                Some
                                                         Marked
                                                                        Sum
## Treatment Sex
## Placebo
             Female
                              0.59375000 0.21875000 0.18750000 1.00000000
                              0.90909091 0.00000000 0.09090909 1.00000000
##
             Male
                              0.2222222 0.18518519 0.59259259 1.00000000
## Treated
             Female
##
             Male
                              0.50000000 0.14285714 0.35714286 1.00000000
ftable(addmargins(prop.table(mytable, c(1, 2)), 3)) * 100
##
                    Improved
                                    None
                                                                        Sum
                                                Some
                                                         Marked
## Treatment Sex
## Placebo
                               59.375000 21.875000
                                                      18.750000 100.000000
             Female
##
             Male
                               90.909091
                                           0.000000
                                                       9.090909 100.000000
             Female
                               22.22222 18.518519
                                                      59.259259 100.000000
## Treated
             Male
                               50.000000 14.285714 35.714286 100.000000
\chi^2 (Chi-square) test of independence
  • You can apply the function chisq.test()
       - to a two-way table in order to produce a chi-square test of independence

    of the row and column variables.

library(vcd)
mytable <- xtabs(~ Treatment + Improved, data = Arthritis)</pre>
chisq.test(mytable) # 1
##
##
    Pearson's Chi-squared test
##
## data: mytable
## X-squared = 13.055, df = 2, p-value = 0.001463
mytable <- xtabs(~ Improved + Sex, data = Arthritis)</pre>
chisq.test(mytable) #2
## Warning in chisq.test(mytable): Chi-squared approximation may be incorrect
##
##
    Pearson's Chi-squared test
##
## data: mytable
## X-squared = 4.8407, df = 2, p-value = 0.08889
  1. Treatment and Improved aren't independent.
```

2. Gender and Improved are independent.

From the results #1, there appears to be

• a relationship between treatment received and level of improvement - (p < .01).

But there doesn't appear to be a relationship #2

• between patient sex and improvement (p > .05).

The p-values are the probability of obtaining the sampled results,

• assuming independence of the row and column variables in the population.

Because the probability is small for #1,

- you reject the hypothesis
 - that treatment type and outcome are independent.

Because the probability for #2 isn't small,

• it's not unreasonable to assume that outcome and gender are independent.

The warning message is produced because

- one of the six cells in the table (male-some improvement)
 - has an expected value less than five,
 - which may invalidate the chi-square approximation.

Fisher's exact test

- You can produce a Fisher's exact test
 - via the fisher.test() function.

Fisher's exact test evaluates

- the null hypothesis of independence of rows and columns
 - in a contingency table with fixed marginals.

Fisher's exact test is a statistical significance test

- used in the analysis of contingency tables.
- Although in practice it is employed
 - when sample sizes are small,
 - it is valid for all sample sizes.
- It is named after its inventor, Ronald Fisher,
 - and is one of a class of exact tests,
- so called because the significance of the deviation from a null hypothesis
 - (e.g., P-value)
 - can be calculated exactly,
- rather than relying on an approximation
 - that becomes exact in the limit
 - as the sample size grows to infinity,
 - as with many statistical tests.

The format is fisher.test(mytable),

• where mytable is a two-way contingency table.

```
mytable <- xtabs( ~ Treatment + Improved, data = Arthritis)
fisher.test(mytable)</pre>
```

```
##
## Fisher's Exact Test for Count Data
##
```

```
## data: mytable
## p-value = 0.001393
```

alternative hypothesis: two.sided

In contrast to many statistical packages,

- the fisher.test() function can be applied
 - to any two-way table with two or more rows and columns,
 - not just a 2×2 table.

Chochran-Mantel-Haenszel test

- The mantelhaen.test() function provides
 - a Cochran-Mantel-Haenszel chi-square test of the null hypothesis
 - * that two nominal variables are conditionally independent
 - * in each stratum of a third variable.

The following code tests the hypothesis

- that the Treatment and Improved variables
 - are independent within each level for Sex.

The test assumes

- that there's no three-way (Treatment \times Improved \times Sex) interaction:

```
mytable <- xtabs( ~ Treatment + Improved + Sex, data = Arthritis)
mantelhaen.test(mytable)</pre>
```

```
##
## Cochran-Mantel-Haenszel test
##
## data: mytable
## Cochran-Mantel-Haenszel M^2 = 14.632, df = 2, p-value = 0.0006647
```

The results suggest that

- the treatment received
- and the improvement reported
 - aren't independent within each level of Sex
 - (that is, treated individuals improved more
 - than those receiving placebos when controlling for sex).

10.2.2.2.4 Measures of Association

- The significance tests in the previous section
 - evaluate whether sufficient evidence exists
 - * to reject a null hypothesis of independence between variables.

If you can reject the null hypothesis,

- your interest turns naturally to measures of association
 - in order to gauge the strength of the relationships present.

The assocstats() function in the vcd package

- can be used to calculate
 - the phi coefficient,
 - contingency coefficient,
 - and Cramer's V for a two-way table.

Measures of association for a two-way table

- The significance tests in the previous section
 - evaluate whether sufficient evidence exists
 - * to reject a null hypothesis of independence between variables.

If you can reject the null hypothesis,

- your interest turns naturally to measures of association
 - in order to gauge the strength of the relationships present.

The assocstats() function in the vcd package

- can be used to calculate
 - the ϕ coefficient.
 - contingency coefficient,
 - and Cramer's V
- for a two-way table.

Here's an example.

```
library(vcd)
mytable <- xtabs(~ Treatment + Improved, data = Arthritis)
assocstats(mytable)</pre>
```

In general, larger magnitudes indicate stronger associations.

The vcd package also provides a kappa() function

- that can calculate Cohen's kappa and weighted kappa
 - for a confusion matrix
- (for example, the degree of agreement between two judges
 - classifying a set of objects into categories).

We'll see more of confusion matrices in the spring.

Visualizing these types of results

- To visually exploring the relationships among categorical variables
 - You typically use bar charts to visualize
 - * frequencies in one dimension.

The vcd package has excellent functions for visualizing relationships

- among categorical variables in multidimensional datasets
- using mosaic and association plots.

Finally, correspondence-analysis functions in the ca package

- allow you to visually explore relationships
 - between rows and columns in contingency tables
- using various geometric representations.

10.2.2.3 Correlations

- Correlation coefficients are used to describe relationships
 - among quantitative variables.

The sign (plus or minus) indicates

- the direction of the relationship (positive or inverse),
- and the magnitude indicates the strength of the relationship
 - (ranging from 0 for no relationship to 1
 - for a perfectly predictable relationship).

Here we'll look at a variety of correlation coefficients,

• as well as tests of significance.

We'll use the state.x77 dataset available in the base R installation.

- It provides data on
 - the population,
 - income,
 - illiteracy rate,
 - life expectancy,
 - murder rate, and
 - high school graduation rate
- for the 50 US states in 1977.

There are also temperature and land-area measures,

• but we'll drop them to save space.

Use help(state.x77) to learn more about the dataset.

In addition to the base installation,

• we'll be using the psych and ggm packages.

R can produce a variety of correlation coefficients, including

- Pearson,
- Spearman,
- Kendall,
- partial,
- polychoric, and
- polyserial.

10.2.2.3.1 Pearson, Spearman, and Kendall Correlations

- The Pearson product-moment correlation
 - assesses the degree of linear relationship
 - * between two quantitative variables.

Spearman's rank-order correlation coefficient

- assesses the degree of relationship
 - between two rank-ordered variables.

Kendall's tau is also

• a nonparametric measure of rank correlation.

The cor() function produces all three correlation coefficients,

• whereas the cov() function provides covariances.

There are many options,

• but a simplified format for producing correlations is - cor(x, use=, method=)

The options are described in table 7.2.

Option	Description
Х	Matrix or data frame.
	Specifies the handling of missing data. The options are all.obs (assumes no missing data—missing data will produce an error), everything (any correlation involving a case with missing values will be set to missing), complete.obs (listwise deletion), and pairwise.complete.obs (pairwise deletion).
Method	Specifies the type of correlation. The options are pearson, spearman, and kendall.

Figure 2: cov options

The default options are

- use = "everything" and
- method = "pearson".

```
states <- state.x77[, 1:6]
cov(states)</pre>
```

10.2.2.3.2 Covariances and correlations

```
##
                 Population
                                 Income
                                          Illiteracy
                                                          Life Exp
                                                                        Murder
## Population 19931683.7588 571229.7796
                                         292.8679592 -407.8424612 5663.523714
## Income
                571229.7796 377573.3061 -163.7020408
                                                       280.6631837 -521.894286
                   292.8680
                              -163.7020
## Illiteracy
                                           0.3715306
                                                        -0.4815122
                                                                      1.581776
## Life Exp
                  -407.8425
                               280.6632
                                           -0.4815122
                                                         1.8020204
                                                                     -3.869480
                  5663.5237
## Murder
                              -521.8943
                                           1.5817755
                                                        -3.8694804
                                                                     13.627465
## HS Grad
                 -3551.5096
                              3076.7690
                                          -3.2354694
                                                         6.3126849 -14.549616
##
                   HS Grad
## Population -3551.509551
## Income
               3076.768980
## Illiteracy
                 -3.235469
## Life Exp
                  6.312685
## Murder
                -14.549616
## HS Grad
                 65.237894
```

```
cor(states)
##
              Population
                            Income Illiteracy
                                                Life Exp
                                                             Murder
                                                                        HS Grad
             1.00000000 0.2082276
## Population
                                   0.1076224 -0.06805195
                                                          0.3436428 -0.09848975
## Income
              0.20822756
                         1.0000000 -0.4370752 0.34025534 -0.2300776 0.61993232
## Illiteracy
              0.10762237 -0.4370752 1.0000000 -0.58847793
                                                          0.7029752 -0.65718861
## Life Exp
             -0.06805195
                        0.3402553 -0.5884779
                                               1.00000000 -0.7808458
                                                                    0.58221620
## Murder
              0.34364275 -0.2300776 0.7029752 -0.78084575 1.0000000 -0.48797102
## HS Grad
             -0.09848975 0.6199323 -0.6571886 0.58221620 -0.4879710 1.00000000
cor(states, method = "spearman")
##
             Population
                           Income Illiteracy
                                                                     HS Grad
                                              Life Exp
                                                           Murder
## Population 1.0000000
                        0.3457401 -0.3833649
## Income
              0.1246098 1.0000000 -0.3145948 0.3241050 -0.2174623
                                                                  0.5104809
                                                        0.6723592 -0.6545396
## Illiteracy 0.3130496 -0.3145948
                                  1.0000000 -0.5553735
```

0.3457401 -0.2174623 0.6723592 -0.7802406 1.0000000 -0.4367330

-0.3833649 0.5104809 -0.6545396 0.5239410 -0.4367330 1.0000000

1.0000000 -0.7802406

0.5239410

0.3241050 -0.5553735

HS Grad
The first call

cor(x, y)

Life Exp

Murder

produces the variances and covariances.

-0.1040171

The second provides

• Pearson product-moment correlation coefficients,

And the third produces

• Spearman rank-order correlation coefficients.

You can see, for example,

- that a strong positive correlation exists
 - between income and high school graduation rate
- and that a strong negative correlation exists
 - between illiteracy rates and life expectancy.

Notice that you get square matrices by default

• (all variables crossed with all other variables).

You can also produce nonsquare matrices,

• as shown in the following example:

```
## Life Exp Murder
## Population -0.06805195 0.3436428
## Income 0.34025534 -0.2300776
## Illiteracy -0.58847793 0.7029752
## HS Grad 0.58221620 -0.4879710
```

This version of the function is particularly useful

- when you're interested in the relationships
 - between one set of variables and another.

Notice that the results don't tell you if the correlations

- differ significantly from 0
 - that is, whether there's sufficient evidence based on the sample data
 - to conclude that the population correlations differ from 0.

Partial correlations

- A partial correlation is
 - a correlation between two quantitative variables,
 - * controlling for one or more other quantitative variables.

You can use the pcor() function in the ggm package

- to provide partial correlation coefficients.
- The format is pcor(u, S)
 - where u is a vector of numbers.
 - * with the first two numbers
 - * being the indices of the variables to be correlated,
 - and the remaining numbers being the indices of the conditioning variables
 - * (that is, the variables being partialed out).
 - S is the covariance matrix among the variables.

An example.

```
library(ggm)
colnames(states)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"

## [6] "HS Grad"

pcor(c(1, 5, 2, 3, 6), cov(states))
```

[1] 0.3462724

In this case, 0.346 is the correlation between

- population (variable 1) and
 - murder rate (variable 5),
- controlling for the influence of
 - income, illiteracy rate, and high school graduation rate
 - (variables 2, 3, and 6 respectively).

The use of partial correlations is common in the social sciences.

Other types of Correlations

The hetcor() function in the polycor package

- can compute a heterogeneous correlation matrix
 - containing Pearson product-moment correlations

- between numeric variables,
- polyserial correlations between numeric and ordinal variables,
- polychoric correlations between ordinal variables,
- and tetrachoric correlations between two dichotomous variables.

Polyserial, polychoric, and tetrachoric correlations

- assume that the ordinal or dichotomous variables
- are derived from underlying normal distributions.

Testing a correlation coefficient for significance

- Once you've generated correlation coefficients,
 - how do you test them for statistical significance?

The typical null hypothesis is no relationship

• (that is, the correlation in the population is 0).

You can use the cor.test() function

• to test an individual Pearson, Spearman, & Kendall correlation coefficient.

A simplified format

```
• is cor.test(x, y, alternative = , method = )

    where x and y are the variables to be correlated,

• alternative specifies a two-tailed or one-tailed test
```

- - ("two.side", "less", or "greater"),
- and method specifies the type of correlation
 - ("pearson", "kendall", or "spearman") to compute.

Use alternative ="less" when the research hypothesis

• is that the population correlation is less than 0.

Use alternative="greater" when the research hypothesis

• is that the population correlation is greater than 0.

By default, alternative="two.side"

- (population correlation isn't equal to 0)
- is assumed.

```
cor.test(states[, 3], states[, 5])
```

```
##
   Pearson's product-moment correlation
##
## data: states[, 3] and states[, 5]
## t = 6.8479, df = 48, p-value = 1.258e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5279280 0.8207295
## sample estimates:
##
         cor
## 0.7029752
```

This code tests the null hypothesis

- that the Pearson correlation between life expectancy and murder rate is 0.
- Assuming that the population correlation is 0,

- you'd expect to see a sample correlation as large as 0.703
- less than 1 time out of 10 million (that is, p = 1.258e-08).
- Given how unlikely this is,
 - you reject the null hypothesis in favor of the research hypothesis,
 - that the population correlation
 - between life expectancy and murder rate is not 0.

Correlation matrix and tests of significance via corr.test()

- Unfortunately, you can
 - test only one correlation at a time
 - using cor.test().

Luckily, the corr.test() function provided in the psych package

• allows you to go further.

The corr.test() function produces

- correlations and significance levels
- for matrices of Pearson, Spearman, and Kendall correlations.

An example

```
library(psych)
corr.test(states, use = "complete")
## Call:corr.test(x = states, use = "complete")
## Correlation matrix
##
              Population Income Illiteracy Life Exp Murder HS Grad
## Population
                     1.00
                            0.21
                                        0.11
                                                -0.07
                                                         0.34
                                                                -0.10
## Income
                                       -0.44
                                                 0.34 - 0.23
                                                                 0.62
                     0.21
                            1.00
## Illiteracy
                     0.11
                           -0.44
                                        1.00
                                                 -0.59
                                                         0.70
                                                                -0.66
## Life Exp
                    -0.07
                            0.34
                                       -0.59
                                                 1.00
                                                       -0.78
                                                                 0.58
## Murder
                     0.34
                           -0.23
                                        0.70
                                                -0.78
                                                         1.00
                                                                -0.49
## HS Grad
                    -0.10
                            0.62
                                       -0.66
                                                 0.58 - 0.49
                                                                 1.00
## Sample Size
## [1] 50
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
##
              Population Income Illiteracy Life Exp Murder HS Grad
                     0.00
                                        1.00
## Population
                            0.59
                                                   1.0
                                                         0.10
                                                                     1
## Income
                     0.15
                            0.00
                                        0.01
                                                   0.1
                                                         0.54
                                                                     0
## Illiteracy
                            0.00
                                        0.00
                                                   0.0
                                                         0.00
                                                                     0
                     0.46
                                        0.00
## Life Exp
                     0.64
                            0.02
                                                   0.0
                                                         0.00
                                                                     0
## Murder
                     0.01
                            0.11
                                        0.00
                                                   0.0
                                                         0.00
                                                                     0
## HS Grad
                     0.50
                            0.00
                                        0.00
                                                   0.0
                                                         0.00
                                                                     0
##
```

To see confidence intervals of the correlations, print with the short=FALSE option

Before leaving this topic, it should be mentioned that

- the r.test() function in the psych package
- also provides a number of useful significance tests.

The function can be used to test the following:

- The significance of a correlation coefficient
- The difference between two independent correlations
- The difference between two dependent correlations sharing a single variable
- The difference between two dependent correlations

- based on completely different variables

10.2.2.4 t-tests

- The most common activity in research is the comparison of two groups.
 - Do patients receiving a new drug show greater improvement
 - * than patients using an existing medication?
 - Does one manufacturing process produce fewer defects than another?
 - Which of two teaching methods is most cost-effective?

If your outcome variable is categorical,

• you can use the methods just described.

Here, we'll focus on group comparisons,

- where the outcome variable is continuous
- and assumed to be distributed -normally.

For this illustration, we'll use the UScrime dataset in the MASS package.

- It contains information about the effect of punishment regimes
 - on crime rates in 47 US states in 1960.
- The outcome variables of interest will be
 - Prob (the probability of imprisonment),
 - U1 (the unemployment rate for urban males ages 14-24),
 - and U2 (the unemployment rate for urban males ages 35–39).

The categorical variable So

- (an indicator variable for Southern states)
- will serve as the grouping variable.

The data have been rescaled by the original authors.

10.2.2.4.1 Independent t-test

- Are you more likely to be imprisoned
 - if you commit a crime in the South?

The comparison of interest is Southern versus non-Southern states,

• and the dependent variable is the probability of incarceration.

A two-group independent t-test can be used

• to test the hypothesis that the two population means are equal.

Here, you assume

- that the two groups are independent
- and that the data is sampled from normal populations.

The following code

- compares Southern (group 1)
 - and non-Southern (group 0) states
- on the probability of imprisonment
- using a two-tailed test without the assumption of equal variances:

```
library(MASS)
t.test(Prob ~ So, data = UScrime)
```

```
##
## Welch Two Sample t-test
##
## data: Prob by So
## t = -3.8954, df = 24.925, p-value = 0.0006506
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.03852569 -0.01187439
## sample estimates:
## mean in group 0 mean in group 1
## 0.03851265 0.06371269
```

You can reject the hypothesis

- that Southern states and non-Southern states
 have equal probabilities of imprisonment
- (p < .001).

10.2.2.4.2 Dependent t-test

- As a second example, you might ask
 - if the unemployment rate for younger males (14–24) * is greater than for older males (35–39).

In this case, the two groups aren't independent.

You wouldn't expect the unemployment rate

• for younger and older males in Alabama to be unrelated.

When observations in the two groups are related,

• you have a dependent-groups design.

Pre-post or repeated-measures designs

• also produce dependent groups.

A dependent t-test assumes that

• the difference between groups is normally distributed.

```
sapply(UScrime[c("U1", "U2")], function(x)
  (c(mean = mean(x), sd = sd(x))))
##
              U1
## mean 95.46809 33.97872
       18.02878 8.44545
with(UScrime, t.test(U1, U2, paired = TRUE))
##
##
   Paired t-test
##
## data: U1 and U2
## t = 32.407, df = 46, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 57.67003 65.30870
## sample estimates:
## mean difference
```

61.48936

The mean difference (61.5) is large enough

- to warrant rejection of the hypothesis
 - that the mean unemployment rate for older and younger males is the same.
 - Younger males have a unemployment higher rate.
- In fact, the probability of obtaining a sample difference this large
 - if the population means are equal
 - is less than 0.00000000000000022 (that is, 2.2e-16).

When there are more than two groups

• What do you do if you want to compare more than two groups?

If you can assume that the data are

- independently sampled from normal populations,
- you can use analysis of variance (ANOVA).

ANOVA is a comprehensive methodology

- that covers many experimental and quasi-experimental designs.
- As such it almost a topic of its own.

10.2.2.5 Nonparametric tests of group differences

- If you're unable to meet
 - the parametric assumptions of a t-test or ANOVA,
 - you can turn to nonparametric approaches.

For example, if the outcome variables

- are severely skewed or ordinal in nature,
- you may wish to use the techniques in this section.

10.2.2.5.1 Comparing two groups

- If the two groups are independent,
 - you can use the Wilcoxon rank sum test
 - * (more popularly known as the Mann–Whitney U test)
 - to assess whether the observations are sampled
 - * from the same probability distribution
 - * (that is, whether the probability of obtaining higher scores
 - * is greater in one population than the other).

Mann-Whitney U-test

- If you apply the Mann-Whitney U test
 - to the question of incarceration rates from the previous section,
 - you'll get these results:

with(UScrime, by(Prob, So, median))

```
wilcox.test(Prob ~ So, data = UScrime)
##
##
   Wilcoxon rank sum exact test
##
## data: Prob by So
## W = 81, p-value = 8.488e-05
\#\# alternative hypothesis: true location shift is not equal to 0
sapply(UScrime[c("U1", "U2")], median)
## U1 U2
## 92 34
with(UScrime, wilcox.test(U1, U2, paired = TRUE))
## Warning in wilcox.test.default(U1, U2, paired = TRUE): cannot compute exact p-
## value with ties
##
##
   Wilcoxon signed rank test with continuity correction
##
## data: U1 and U2
## V = 1128, p-value = 2.464e-09
## alternative hypothesis: true location shift is not equal to 0
Again, you can reject the hypothesis
  • that incarceration rates are the same in Southern and non-Southern states
       - (p < .001).
The Wilcoxon signed rank test provides
  • a nonparametric alternative to the dependent sample t-test.
It's appropriate in situations where
  • the groups are paired
  • and the assumption of normality is unwarranted.
Let's apply it to the unemployment question from the previous section.
sapply(UScrime[c("U1", "U2")], median)
## U1 U2
## 92 34
with(UScrime, wilcox.test(U1, U2, paired = TRUE))
## Warning in wilcox.test.default(U1, U2, paired = TRUE): cannot compute exact p-
## value with ties
##
##
   Wilcoxon signed rank test with continuity correction
##
## data: U1 and U2
## V = 1128, p-value = 2.464e-09
## alternative hypothesis: true location shift is not equal to 0
Again, you reach the same conclusion reached with the paired t-test.
```

10.2.2.5.2 Comparing more than two groups

- When there are more than two groups to be compared,
 - you must turn to other methods.

Consider the state.x77 dataset we used earlier.

- It contains population, income, illiteracy rate, life expectancy,
- murder rate, and high school graduation rate data for US states.

What if you want to compare the illiteracy rates

- in four regions of the country
 - (Northeast, South, North Central, and West)?

This is called a one-way design,

- and there are both parametric and nonparametric approaches available
 - to address the question.

If you can't meet the assumptions of ANOVA designs,

• you can use nonparametric methods to evaluate group differences.

If the groups are independent, a Kruskal–Wallis test

• provides a useful approach.

If the groups are dependent

- (for example, repeated measures or randomized block design),
- the Friedman test is more appropriate.

Kruskal-Wallis test

• Let's apply the Kruskal–Wallis test to the illiteracy question.

First, you'll have to add the region designations to the dataset.

- These are contained in the dataset state.region
- distributed with the base installation of R:

```
states <- data.frame(state.region, state.x77)
kruskal.test(Illiteracy ~ state.region, data = states)</pre>
```

```
##
## Kruskal-Wallis rank sum test
##
## data: Illiteracy by state.region
## Kruskal-Wallis chi-squared = 22.672, df = 3, p-value = 4.726e-05
```

The significance test suggests

- that the illiteracy rate isn't the same
 - in each of the four regions of the country (p <.001).

10.2.2.5.3 Nonparametric multiple comparisons

- Although you can reject the null hypothesis of no difference,
 - the test doesn't tell you which regions
 - * differ significantly from each other.

To answer this question, you could

• compare groups two at a time using the Wilcoxon test.

A more elegant approach is to apply a multiple-comparisons procedure

- that computes all pairwise comparisons,
- while controlling the type I error rate
 - (the probability of finding a difference that isn't there).

Lets define a function wmc() that can be used for this purpose.

- It compares groups two at a time
 - using the Wilcoxon test
- and adjusts the probability values using the p.adj() function.

The function's format is wmc(y ~ A, data, method),

- where y is a numeric outcome variable,
- A is a grouping variable,
- data is the data frame containing these variables,
- and method is the approach used to limit Type I errors.

It uses an adjustment method developed by Holm (1979).

- It provides strong control of the family-wise error rate
 - (the probability of making one or more Type I errors
 - in a set of comparisons).
- See help(p.adjust) for a description of the other methods available.

The wmc() function

- first provides the
 - sample sizes,
 - medians,
 - and median absolute deviations
 - for each group #2.

```
wmc <- function(formula,
                  data,
                  exact = FALSE,
                  sort = TRUE,
                  method = "holm") {
  # setup
  df <- model.frame(formula, data)</pre>
  v <- df[[1]]
  x <- as.factor(df[[2]])
  # reorder levels of x by median y
  if (sort) {
    medians <- aggregate(y, by = list(x), FUN = median)[2]</pre>
    index <- order(medians)</pre>
    x <- factor(x, levels(x)[index])</pre>
  }
  groups <- levels(x)</pre>
  k <- length(groups)</pre>
  # summary statistics
  stats <-
```

```
function(z)
    (c(
      N = length(z),
      Median = median(z),
      MAD = mad(z)
    ))
sumstats <- t(aggregate(y, by = list(x), FUN = stats)[2])</pre>
rownames(sumstats) <- c("n", "median", "mad")</pre>
colnames(sumstats) <- groups</pre>
cat("Descriptive Statistics\n\n")
print(sumstats)
# multiple comparisons
mc <- data.frame(</pre>
 Group.1 = character(0),
  Group.2 = character(0),
  W = numeric(0),
 p.unadj = numeric(0),
 p = numeric(0),
 stars = character(0),
 stringsAsFactors = FALSE
# perform Wilcoxon test
row <- 0
for (i in 1:k) {
  for (j in 1:k) {
    if (j > i) {
      row <- row + 1
      y1 \leftarrow y[x == groups[i]]
      y2 \leftarrow y[x == groups[j]]
      test <- wilcox.test(y1, y2, exact = exact)</pre>
      mc[row, 1] <- groups[i]</pre>
      mc[row, 2] <- groups[j]</pre>
      mc[row, 3] <- test$statistic</pre>
      mc[row, 4] <- test$p.value</pre>
 }
}
mc$p <- p.adjust(mc$p.unadj, method = method)</pre>
# add stars
mc$stars <- " "
mc$stars[mc$p < .1] <- "."
mc$stars[mc$p < .05] <- "*"
mc$stars[mc$p < .01] <- "**"
mc$stars[mc$p < .001] <- "***"
names(mc)[6] <- " "
cat("\nMultiple Comparisons (Wilcoxon Rank Sum Tests)\n")
cat(paste("Probability Adjustment = ", method, "\n\n", sep = ""))
print(mc[-4], right = TRUE)
cat("---\nSignif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1\n")
```

```
return(invisible(NULL))
}
states <- data.frame(state.region, state.x77)</pre>
wmc(Illiteracy ~ state.region, data = states, method = "holm")
## Warning in xtfrm.data.frame(x): cannot xtfrm data frames
  Descriptive Statistics
##
##
              West North Central Northeast
                                               South
                        12.00000
## n
          13.00000
                                   9.00000 16.00000
## median 0.60000
                         0.70000
                                   1.10000
                                           1.75000
## mad
           0.14826
                         0.14826
                                   0.29652
                                           0.59304
##
## Multiple Comparisons (Wilcoxon Rank Sum Tests)
## Probability Adjustment = holm
##
##
           Group.1
                         Group.2
## 1
              West North Central 88.0 8.665618e-01
## 2
              West
                       Northeast 46.5 8.665618e-01
## 3
              West
                           South 39.0 1.788186e-02
## 4 North Central
                       Northeast 20.5 5.359707e-02
## 5 North Central
                           South 2.0 8.051509e-05 ***
## 6
         Northeast
                           South 18.0 1.187644e-02
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The West has the lowest illiteracy rate,

• and the South has the highest.

The function then generates six statistical comparisons

- West versus North Central,
- West versus Northeast,
- West versus South.
- North Central versus Northeast,
- North Central versus South.
- and Northeast versus South) #3.

You can see from the two-sided p-values (p) that

- the South differs significantly from the other three regions
- and that the other three regions don't differ from each other
- at a p < .05 level.

10.2.2.6 Summary

- Inferential Statistics and statistical Tests
 - Descriptive statistics are used
 - * to describe the distribution a quantitative variable numerically.
 - * Many packages in R provide descriptive statistics for data frames.
 - * The choice among packages is primarily a matter of personal preference.
 - Frequency tables and cross tabulations are used
 - * to summarize the distributions of categorical variables.
 - The t-tests and the Mann-Whitney U test can be used

- $\ast\,$ to compare two groups on a quantitative outcome.
- $-\,$ A chi-square test can be used
 - * to evaluate the association between two categorical variables.
- The correlation coefficient is used
 - \ast to evaluate the association between two quantitative variables.
- Numeric summaries and statistical tests
 - * should usually be accompanied by data visualizations.
 - * Otherwise, important features of the data may be missed.

10.2.3 Links

• R. I. Kabacoff, R in Action, 3rd Edition, Manning Publications