

Bayesian machine learning

Définition

Voir TD6

Idée principale:

Les paramètres optimisés $\theta \in \mathbb{R}^p$ en ML deviennent des variables aléatoires

suivant une loi a priori π dont la variance est donnée par C.

 $C \to \infty$: aucun a priori, toutes les valeurs sont possibles: \Rightarrow risque d'overfitting

 $C \to 0$: a priori très strict, seule une valeur est possible \Rightarrow risque d'underfitting

Discuter de l'effet de C très grand / très petit.

La loi a priori est équivalente à la pénalité de régularisation: elle contrôle la complexité du modèle

Différence de méthodologie:

Au lieu d'optimiser, on simule suivant la loi a posteriori $\theta | { m data}$

Résultats: Au lieu d'avoir une seule prédiction on a une distribution de prédictions: moyenne, écart-type, HDI ...

Définition

Idée principale:

Les paramètres optimisés $\theta \in \mathbb{R}^p$ en ML deviennent des variables aléatoires suivant une loi a priori π dont la variance est donnée par C.

Discuter de l'effet de C très grand / très petit.

 $C \to \infty$: aucun a priori, toutes les valeurs sont possibles: \Rightarrow risque d'overfitting

 $C \to 0$: a priori très strict, seule une valeur est possible \Rightarrow risque d'underfitting

La loi a priori est équivalente à la pénalité de régularisation: elle contrôle la complexité du modèle

Différence de méthodologie:

Au lieu d'optimiser, on simule suivant la loi a posteriori θ data

Résultats:

Au lieu d'avoir une seule prédiction on a une distribution de prédictions: moyenne, écart-type, HDI ...

Frequentist machine learning

