

Find the remainder when 7^{2001} is divided by 5.

Given the lemma and use of Fermat's Little Theorem $a\equiv b \pmod{n}$ and $c\equiv d \pmod{n} \rightarrow ac \equiv bd \pmod{n}$ $7^4\equiv 1 \pmod{5}$ and $7^4\equiv 1 \pmod{5} \rightarrow 7^8\equiv 1 \pmod{5}$ $7^8\equiv 1 \pmod{5}$ and $7^4\equiv 1 \pmod{5} \rightarrow 7^{12}\equiv 1 \pmod{5}$ and so on... Until $7^{2000}\equiv 1 \pmod{5}$ And since $7\equiv 2 \pmod{5}$ our final answer is $7^{2001}\equiv 2 \pmod{5}$

What is 4^{100,000} (mod 19) equal to?


```
100,000 = 5555*18 + 10
4^{100,000} \equiv (4^{18})^{5555} * 4^{10} \pmod{19}
\equiv 1^{5555} * 4^{10} \pmod{19}
\equiv 4^8 * 4^2 \pmod{19}
\equiv 5 * -3 \pmod{19}
\equiv 4 \pmod{19}
```

*want 18 to have FLT work

*use successive squaring to find these numbers mod 19

 $x \equiv 3 \pmod{5}$

 $x \equiv 1 \pmod{7}$

 $x \equiv 6 \pmod{8}$

Find x.


```
Step 1: Calculate m = 5*7*8 = 280
Step 2: Calculate M_1 = 56, M_2 = 40, M_z = 35
Step 3: Calculate y_1 = M_1^{-1} \equiv 1 \pmod{5}
                     y_2 = M_2^{-1} \equiv 3 \pmod{7}
                     y_z = M_z^{-1} \equiv 3 \pmod{8}
Step 4: Calculate X = 3*1*56 + 1*3*40 + 6*3*35
                        = 918 \equiv 78 \pmod{280}
```

