

A Performance and Energy Study of the Hyperbolic PDE Solver Engine ExaHyPE

Master's Thesis in Computational Science and Engineering

Fabian Güra

Department of Informatics
Technische Universität München
September 2016

Supervisors: Univ.-Prof. Dr. Michael Bader Dr. Tobias Weinzierl

Advisor: Dr. Vasco Varduhn

A Performance and Energy Study of the Hyperbolic PDE Solver Engine ExaHyPE

Master's Thesis in Computational Science and Engineering

Fabian Güra

Department of Informatics
Technische Universität München
September 2016

Supervisors: Univ.-Prof. Dr. Michael Bader Dr. Tobias Weinzierl

Advisor: Dr. Vasco Varduhn

Abstract

... ...

Contents

Co	onten	ts		iii
1	Intr	oductio	n	1
2	The	ory		3
	2.1		limensional ADER-DG scheme with MUSCL-Hancock	
			eriori subcell limiting for non-linear hyperbolic conser-	
		vation	laws	3
		2.1.1	Notation	3
		2.1.2	PDE	3
		2.1.3	Mesh	4
		2.1.4	Weak formulation	4
		2.1.5	Restriction to finite-dimensional function spaces	5
		2.1.6	Space-time predictor	7
		2.1.7	Mappings	8
		2.1.8	Orthogonal bases for the finite-dimensional spatial and	
			space-time function spaces	10
		2.1.9	Basis functions in global coordinates	13
		2.1.10		
			predictor	14
		2.1.11	A fully discrete update scheme for the time-discrete	
			solution	21
		2.1.12	A posteriori subcell limiting	27
	2.2		ng and Energy-aware Computing	28
3	A p	rofiling	infrastructure for ExaHyPE	29
4	Prel	iminar	y profiling results, case studies	31
5	Con	clusion	and Outlook	33

6 Acknowledgment

35

Introduction

- Challenges of exascale
- The ExaHyPE project (numerics, resilience, profiling) as an answer
- On the importance of profiling and performance measuring

Theory

2.1 A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Arbitrary High Order Derivatives Discontinuous Galerkin (ADER-DG)

2.1.1 Notation

We use vector notation whenever possible. Advantage: Complete derivation, direct conversion to code.

2.1.2 PDE

Task: Solve the PDE

$$\frac{\partial}{\partial t} [\mathbf{u}]_v + \frac{\partial}{\partial x_d} [\mathbf{F}(\mathbf{u})]_{vd} = [\mathbf{s}(\mathbf{u})]_v \text{ on } \mathbf{\Omega} \times (0, T)$$
 (2.1)

with initial conditions

$$[u(x,0)]_v = [u_0(x)]_v \,\forall x \in \Omega, \tag{2.2}$$

and boundary conditions

$$[u(x,t)]_v = [u_B(x,t)]_v \ \forall x \in \partial \Omega, t \in (0,T), \tag{2.3}$$

for all $v \in \mathcal{V}$, where we define the index set $\mathcal{V} = \{1, 2, ..., V\}$ for V being the number of quantities that describe the state of the physical system, $\Omega \subset \mathbb{R}^D$ is the spatial domain, D the number of space dimensions and [0, T] a time interval. The function $F : \mathbb{R}^V \to \mathbb{R}^{V \times D}$, $u \mapsto F(u) = [f_1(u), f_2(u), ..., f_D(u)]$ is called the flux function.

For the problem to be hyperbolic we require that all Jacobian matrices $A_d(u)$, $d \in \{1, 2, ..., D\} := \mathcal{D}$, defined as

$$[A_d]_{ij} = \frac{\partial [f_d]_i}{\partial u_i},\tag{2.4}$$

have D real eigenvalues in each admissible state u.

2.1.3 Mesh

Let K_h be a quadrilateral partition of Ω , i.e.

$$K \cap I = \emptyset \, \forall K, I \in \mathcal{K}_h, K \neq I,$$
 (2.5)

$$\bigcup_{K \in \mathcal{K}_h} K = \mathbf{\Omega}. \tag{2.6}$$

For the index set $\mathcal{I} := \{0, 1, ..., I - 1\}$ let $\{t_i\}_{i \in \mathcal{I}}$ be an I-fold partition of the time interval [0, T] such that

$$0 = t_0 < t_1 < \dots < t_I = T. (2.7)$$

For $i \in \mathcal{I}$ we furthermore define

$$\Delta t_i = t_{i+1} - t_i, \tag{2.8}$$

so that the interval $[t_i, t_{i+1}]$ can be written as $[t_i, t_i + \Delta t_i]$.

2.1.4 Weak formulation

Let $L^2(\mathbf{\Omega})^V$ be the space of vector-valued, square-integrable functions on $\mathbf{\Omega}$, i.e.

$$L^{2}(\mathbf{\Omega})^{V} = \left\{ \boldsymbol{w} : \mathbf{\Omega} \to \mathbb{R}^{V} \mid \int_{\mathbf{\Omega}} \|\boldsymbol{w}\|^{2} d\boldsymbol{x} < \infty \right\}. \tag{2.9}$$

Let $w \in L^2(\Omega)^V$ be a spatial test function. Multiplication of the original PDE (2.1) and integration over a space-time cell $K \times [t_i, t_i + \Delta t_i]$ yields a weak, element local formulation of the problem

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\boldsymbol{u} \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt + \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{F}(\boldsymbol{u}) \right]_{vd} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt = \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\boldsymbol{u}) \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt, \tag{2.10}$$

which we require to hold for all $v \in \mathcal{V}$, $w \in L^2(\Omega)^V$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Integration by parts of the spatial integral in the second term yields

$$\int_{K} \frac{\partial}{\partial x_{d}} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} d\mathbf{x} =$$

$$\int_{K} \frac{\partial}{\partial x_{d}} \left(\left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \right) d\mathbf{x} - \int_{K} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\mathbf{w} \right]_{v} d\mathbf{x}.$$
(2.11)

Application of the divergence theorem to the first term on the right-hand side of (2.11) yields

$$\int_{K} \frac{\partial}{\partial x_{d}} \left(\left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \right) d\mathbf{x} = \int_{\partial K} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \left[\mathbf{n} \right]_{d} ds(\mathbf{x}), \tag{2.12}$$

where $n \in \mathbb{R}^D$ is the unit-length, outward-pointing normal vector at a point x on the surface of K, which we denote by ∂K .

Inserting eqs. (2.11) and (2.12) into eq. (2.10) yields the following weak, element-local formulation of the original equation (2.1):

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\boldsymbol{u} \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt - \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\boldsymbol{u}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{F}(\boldsymbol{u}) \right]_{vd} \left[\boldsymbol{w} \right]_{v} \left[\boldsymbol{n} \right]_{d} ds(\boldsymbol{x}) dt = \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\boldsymbol{u}) \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt. \tag{2.13}$$

Again we require the weak formulation to hold for all $v \in \mathcal{V}$, $w \in L^2(\Omega)^V$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

2.1.5 Restriction to finite-dimensional function spaces

To discretize eq. (2.13) we need to impose the restriction that both test and ansatz functions come from a finite-dimensional space. First, let $\mathbb{Q}_N(K)^V$ and $\mathbb{Q}_N(K \times [t_i, t_i + \Delta t_i])^V$ be the space of vector-valued, multivariate polynomials of degree less or equal N in each variable on K and $K \times [t_i, t_i + \Delta t_i]$, respectively. We then make the following choices:

• For spatial functions we restrict ourselves to

$$\mathbf{W}_h = \left\{ \mathbf{w}_h \in L^2(\mathbf{\Omega})^V : \mathbf{w}_h|_K := \mathbf{w}_h^K \in \mathbb{Q}_N(K)^V \, \forall K \in \mathcal{K}_h \right\}. \tag{2.14}$$

• For space-time functions we restrict ourselves to

$$\widetilde{\mathbf{W}}_{h}^{i} = \left\{ \widetilde{\mathbf{w}}_{h}^{i} \in L^{2} \left(\mathbf{\Omega} \times [t_{i}, t_{i} + \Delta t_{i}] \right) \mid \\
\widetilde{\mathbf{w}}_{h}^{i} \middle|_{K} := \widetilde{\mathbf{w}}_{h}^{K,i} \in \mathbb{Q}_{N} \left(K \times [t_{i}, t_{i} + \Delta t_{i}] \right) \forall K \in \mathcal{K}_{h} \right\}$$
(2.15)

for all $i \in \mathcal{I}$.

Replacing w by $w_h \in W_h$ and u by $\tilde{u}_h^i \in \tilde{W}_h^i$ in eq. (2.13) yields a finite-dimensional approximation of the weak formulation,

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{u}}_{h}^{K,i} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{F}(\tilde{\boldsymbol{u}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt + \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}(\tilde{\boldsymbol{u}}_{h}^{K,i}, \tilde{\boldsymbol{u}}_{h}^{K+i}, \boldsymbol{n}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} ds(\boldsymbol{x}) dt = \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\tilde{\boldsymbol{u}}_{h}^{K,i}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt, \tag{2.16}$$

which now has to hold for all $w_h \in W_h$, $K \in \mathcal{K}_h$ and $i \in \{0, 1, ..., I - 1\}$. Since for a cell $K \in \mathcal{K}_h$ and one of its Voronoi neighbors $K' \in \mathcal{V}(K)$ one has in general

$$\tilde{u}_{h}^{K,i}(x^{*}) \neq \tilde{u}_{h}^{K'i}(x^{*}), x^{*} \in K \cap K',$$
 (2.17)

i.e. \tilde{u}_h^i is double-valued at the interface between K and K', in order to compute the surface integral we need to introduce the numerical flux function $\mathcal{G}(\tilde{u}_h^{K,i}, \tilde{u}_h^{K'i}, n)$. The numerical flux at a position $x^* \in K \cap K'$ on the interface is obtained by (approximately) solving a Riemann problem in normal direction.

Riemann problem: Let x^* be a point on interface ∂K between a cell K and its Voronoi K' in X and let N be the outward pointing unit normal vector at this point. Then to obtain the numerical flux we need to solve the initial boundary value problem ("Riemann problem")

$$\frac{\partial}{\partial t} \left[\mathbf{g} \right]_v + \sum_{d=1}^D \frac{\partial}{\partial x_d} \left[\mathbf{F}(\mathbf{g}) \right]_{vd} \left[\mathbf{n} \right]_d = 0 \tag{2.18}$$

along the line $x = x^* + \alpha n$ for $\alpha \in \mathbb{R}$ with discontinuous initial conditions

$$g(\mathbf{x}^* + \alpha \mathbf{n}, 0) = \begin{cases} \tilde{\mathbf{u}}_h^{K,i} \Big|_{\mathbf{x}^*} & \text{if } \alpha < 0 \\ \tilde{\mathbf{u}}_h^{K',i} \Big|_{\mathbf{x}^*} & \text{if } \alpha > 0. \end{cases}$$
(2.19)

We then evaluate the similarity solution $\tilde{g}(\alpha/t)$ to define

$$\left[\mathcal{G}\left(\tilde{u}_{h}^{K,i},\tilde{u}_{h}^{K',i},n\right)\right]_{v} := \left[\tilde{g}|_{0}\right]_{v}.$$
(2.20)

TODO: Overview state of the art solver.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Integration by parts in time of the first term of eq. (2.16) and noting that w_h is constant in time yields the following one-step update scheme for the cell-local time-discrete solution $\tilde{u}_h^{K,i}$:

$$\int_{K} \left[\left[\tilde{\boldsymbol{u}}_{h}^{K,i} \right]_{t_{i} + \Delta t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} = \int_{K} \left[\left[\tilde{\boldsymbol{u}}_{h}^{K,i} \right]_{t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} + \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{F} (\tilde{\boldsymbol{u}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}} (\tilde{\boldsymbol{u}}_{h}^{K,i}, \tilde{\boldsymbol{u}}_{h}^{K+i}, \boldsymbol{n}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{s} (\tilde{\boldsymbol{u}}_{h}^{K,i}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt. \tag{2.21}$$

Again we require eq. (2.21) to hold for all $v \in V$, $w_h \in W_h$, $K \in K_h$ and $i \in I$.

Problem: We only have $\tilde{u}_h^i|_{t}$ at the discrete time steps $t \in \{t_i, t_i + \Delta t_i\}$, not within the open interval, i.e. for $t \in (t_i, t_i + \Delta t_i)$.

Idea: Replace \tilde{u}_h in $K \times (t_i, t_i + \Delta t_i)$ by an approximation $\tilde{q}_h^i \in \tilde{W}_h^i$ which we call space-time predictor.

2.1.6 Space-time predictor

To derive a procedure to compute the space-time predictor $\tilde{q}_h^i \in \tilde{W}_h^i$ we again start from the original PDE (2.1), but this time we do not use a spatial test function $w_h \in W_h$, but a space-time test function $\tilde{w}_h^i \in \tilde{W}_h^i$. If we furthermore replace the solution u by the the space-time predictor $\tilde{q}_h^i \in \tilde{W}_h^i$, integrate over the space-time element $K \times [t_i, t_i + \Delta t_i]$ and apply the divergence theorem analogously to eq. (2.12) we obtain the following relation:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\tilde{\boldsymbol{q}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}} \left(\tilde{\boldsymbol{q}}_{h}^{K,i}, \tilde{\boldsymbol{q}}_{h}^{K+i}, \boldsymbol{n} \right) \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\tilde{\boldsymbol{q}}_{h}^{K,i} \right) \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt. \tag{2.22}$$

We require eq. (2.22) to hold for all $v \in \mathcal{V}$, $\tilde{w}_h^i \in \tilde{\mathbb{W}}_h^i$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

The assumption that the solution is balanced, i.e. that there is no net inflow or outflow for cell $K \in \mathcal{K}_h$ allows us to drop the third term. Together with integration by parts in time of the first term this yields

$$\int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \Big|_{t_{i} + \Delta t_{i}} \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \Big|_{t_{i} + \Delta t_{i}} \right]_{v} d\boldsymbol{x} - \int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \Big|_{v} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt \right] dt =$$

$$\int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \Big|_{t_{i}} \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \Big|_{t_{i}} \right]_{v} d\boldsymbol{x} + \int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\tilde{\boldsymbol{q}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt +$$

$$\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\tilde{\boldsymbol{q}}_{h}^{K,i} \right) \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt, \tag{2.23}$$

which we require to hold for all $v \in \mathcal{V}$, $\tilde{w}_h^i \in \tilde{W}_h^i$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$. Together with the initial condition

$$\left. \tilde{q}_{h}^{K,i} \right|_{t_{i}} = \left. \tilde{u}_{h}^{K} \right|_{t_{i}} \tag{2.24}$$

and an initial guess

$$\tilde{q}_h^{K,i}\Big|_t = \tilde{u}_h^K\Big|_{t_i} \ \forall t \in [t_i, t_i + \Delta t_i]$$
 (2.25)

this relation can be used as a fixed-point iteration to find the cell-local space-time predictor $\tilde{q}_h^{K,i}$.

In the following two sections we will introduce mappings from spatial elements K and space-time elements $K \times [t_i, t_i + \Delta t_i]$ to spatial and space-time reference cells and orthogonal bases for the spaces \mathbb{W}_h and $\tilde{\mathbb{W}}_h^i$. We will then insert these results into eq. (2.23) and derive a fully-discrete iterative method to compute the cell-local space-time predictor $\tilde{q}_h^{K,i}$.

2.1.7 Mappings

Let $\hat{K} = [0,1]^D$ be the spatial reference element and $\xi \in \hat{K}$ be a point in the reference element. Let [0,1] be the reference time interval and $\tau \in [0,1]$ be a point in time in reference time.

We can then introduce the following mappings:

Spatial mappings: Let $K \in \mathcal{K}_h$ be a cell in global coordinates with extent Δx^K and "lower-left corner" P_K , more precisely that is

$$\left[\Delta x^{K}\right]_{d} = \max_{\mathbf{x} \in K} \left[\mathbf{x}\right]_{d} - \min_{\mathbf{x} \in K} \left[\mathbf{x}\right]_{d}$$
 (2.26)

and

$$[\mathbf{P}_K]_d = \min_{\mathbf{x} \in K} [\mathbf{x}]_d \tag{2.27}$$

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

for $d \in \mathcal{V}$. We can then define a mapping

$$\mathcal{X}_K: \hat{K} \to K, \xi \mapsto \mathcal{X}_K(\xi) = x$$
 (2.28)

via the relation

$$[x]_d = [\mathcal{X}_K(\xi)]_d = [P_K]_d + [\Delta x]_d [\xi]_d \qquad (2.29)$$

for $v \in \mathcal{V}$ (i.e. no summation on v) and for all $x \in K$, $\xi \in \hat{K}$ and $K \in \mathcal{K}_h$.

Temporal mappings: Let $(t_i, t_i + \Delta t_i), i \in \mathcal{I}$ be an interval in global time. The mapping

$$\mathcal{T}_i: [0,1] \to [t_i, t_i + \Delta t_i], \tau \mapsto \mathcal{T}_i(\tau) = t_i + \Delta t_i \tau = t$$
 (2.30)

maps a point in reference time $\tau \in [0,1]$ to a point in global time $t \in [t_i, t_i + \Delta t_i]$ for all $i \in \mathcal{I}$.

The inverse mappings, the Jacobian matrices and the Jacobi determinants of the mappings are given in the following:

Spatial mappings: The inverse spatial mappings

$$\mathcal{X}_K^{-1}: K \to \hat{K}, x \mapsto \mathcal{X}_K^{-1}(x) = \xi \tag{2.31}$$

are defined via the relation

$$\left[\boldsymbol{\xi}\right]_{d} = \left[\boldsymbol{\mathcal{X}}_{K}^{-1}(\boldsymbol{x})\right]_{d} = \frac{1}{\left[\Delta \boldsymbol{x}^{K}\right]_{d}} \left(\left[\boldsymbol{x}\right]_{d} - \left[\boldsymbol{P}_{K}\right]_{d}\right) \tag{2.32}$$

for $v \in \mathcal{V}$ and for all $\boldsymbol{\xi} \in \hat{K}$, $\boldsymbol{x} \in K$ and $K \in \mathcal{K}_h$. The Jacobian of $\boldsymbol{\mathcal{X}}_K$ is found to be

$$\left[\frac{\partial \boldsymbol{\mathcal{X}}_{K}}{\partial \boldsymbol{\xi}}\right]_{dd'} = \frac{\partial \left[\boldsymbol{\mathcal{X}}_{K}\right]_{d}}{\partial \boldsymbol{\xi}_{d'}} = \left[\Delta \boldsymbol{x}^{K}\right]_{d} \delta_{dd'},$$
(2.33)

where $d, d' \in \mathcal{D}$ (i.e. no summation on d) and for all $K \in \mathcal{K}_h$. As usual $\delta_{dd'}$ denotes the Kronecker delta defined as

$$\delta_{dd'} = \begin{cases} 0 & \text{if } d \neq d' \\ 1 & \text{if } d = d'. \end{cases}$$
 (2.34)

The Jacobi determinant of \mathcal{X}_K for $K \in \mathcal{K}_h$ then simply is

$$J_{\mathcal{X}_K} = \|\frac{\partial \mathcal{X}_K}{\partial \xi}\| = \prod_{d=1}^D \left[\Delta x^K\right]_d, \tag{2.35}$$

i.e. the determinant is constant for all $x \in K$.

Temporal mappings: The inverse temporal mappings are given as

$$\mathcal{T}_i^{-1}: [t_i, t_i + \Delta t_i] \to [0, 1], t \mapsto \mathcal{T}_i^{-1}(t) = \frac{t - t_i}{\Delta t_i} = \tau$$
 (2.36)

for all $\tau \in [0,1]$, $t \in [t_i, t_i + \Delta t_i]$ and $i \in \mathcal{I}$. In the trivial case of a one-dimensional mapping the Jacobian of \mathcal{T}_i is a scalar which in turn is its own determinant. One finds

$$\frac{d\mathcal{T}_i}{\partial \tau} = \Delta t_i = J_{\mathcal{T}_i} \tag{2.37}$$

which again is constant for all $t \in [t_i, t_i + \Delta t_i]$ for a fixed $i \in \mathcal{I}$.

2.1.8 Orthogonal bases for the finite-dimensional spatial and space-time function spaces

Lagrange interpolation

Let $f \in \mathbb{Q}_N([0,1])$ be a polynomial of degree N and for the index set $\mathcal{N} := \{0,1,\ldots,N\}$ let $\{\hat{\zeta}_n\}_{n\in\mathcal{N}}$ be a set of distinct nodes in [0,1]. The the Lagrange interpolation of f,

$$\hat{f}(\xi) = \sum_{n=0}^{N} L_n(\xi) f(\xi_n)$$
 (2.38)

with Lagrange functions

$$L_n(\xi) = \prod_{m=0, m \neq n}^{N} \frac{\xi - \hat{\xi}_m}{\hat{\xi}_n - \hat{\xi}_m}$$
 (2.39)

is exact, i.e.

$$f(\xi) = \hat{f}(\xi) \,\forall \xi \in [0, 1].$$
 (2.40)

Since every polynomial $f \in \mathbb{Q}_N([0,1])$ can be represented as a linear combination of the Legendre polynomials L_n the set of functions $\{L_n\}_{n\in\mathcal{N}}$ is a basis of $\mathbb{Q}_N([0,1])$.

The following observation is an important property of the Lagrange polynomials:

$$L_n(\hat{\zeta}_{n'}) = \delta_{nn'},\tag{2.41}$$

i.e. at each node $\hat{\xi}_n$ only L_n has value 1 and all other polynomials evaluate to 0.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Legendre polynomials and Gauss-Legendre integration

Let $P_0 : [-1,1] \to \mathbb{R}, \xi \mapsto 1$ and $P_1 : [-1,1] \to \mathbb{R}, \xi \mapsto \xi$ be the zeroth and the first Legendre polynomial, respectively. Then the N+1-st Legendre polynomial can be defined via the following recurrence relation:

$$P_{N+1}(\xi) = \frac{1}{N+1} \left((2N+1)P_N(\xi) - nP_{N-1}(\xi) \right). \tag{2.42}$$

Let $\{\tilde{\xi}_n\}_{n\in\mathcal{N}}$ be the roots of the N+1-st Legendre polynomial L_{N+1} . Then $\{\hat{\xi}_n\}_{n\in\mathcal{N}}$ with

$$\hat{\xi}_n = \frac{1}{2}(\tilde{\xi}_n + 1) \tag{2.43}$$

are the roots of the N+1-st Legendre polynomial linearly mapped to the interval (0,1). In conjunction with a set of suitable weights $\{\hat{\omega}_n\}_{n\in\mathcal{N}}$ Gauss-Legendre integration can be used to integrate polynomials of degree up to 2N+1 over the integral [0,1] exactly, i.e.

$$\int_{0}^{1} f(\xi) d\xi = \sum_{n=0}^{N} \hat{\omega}_{n} f(\hat{\xi}_{n}) \,\forall f \in \mathbb{Q}_{2N+1} ([0,1]). \tag{2.44}$$

A script on how to find the weights $\{\hat{\xi}_n\}_{n\in\mathcal{N}}$ can be found in appendix XXX.

1d basis functions

Let $\{\hat{\psi}_n\}_{n\in\mathcal{N}}$ be the set of N+1 Lagrange polynomials with nodes at the roots of the N+1-st Legendre polynomial linearly mapped to the interval [0,1], i.e.

$$\hat{\psi}_n(x) = \sum_{n'=0}^{N} \frac{x - \hat{x}_{n'}}{\hat{x}_n - \hat{x}_{n'}}$$
(2.45)

for $n \in \mathcal{N}$. Since $\{\hat{\psi}_n\}_{n \in \mathcal{N}}$ are Lagrange polynomials and the roots $\{\hat{x}_n\}_{n \in \mathcal{N}}$ are distinct the set is a basis of $\mathbb{Q}_N([0,1])$. Since furthermore

$$\left\langle \hat{\psi}_{n}, \hat{\psi}_{m} \right\rangle_{L^{2}\left([0,1]\right)} = \int_{0}^{1} \hat{\psi}_{n}(x) \hat{\psi}_{m}(x) dx = \sum_{n'=0}^{N} \hat{w}'_{n} \hat{\psi}_{n}(\hat{x}_{n'}) \hat{\psi}_{m}(\hat{x}_{n'}) = \hat{w}_{n} \delta_{mn}$$
(2.46)

for all $m,n\in\mathcal{N}$ (i.e. no summation over n), the set is even an orthogonal basis of $\mathbb{Q}_N([0,1])$ with respect to the L^2 -scalar product as defined above. In this derivation we used the fact that $\hat{\psi}_n\hat{\psi}_m$ has degree 2N and that Gauss-Legendre integration with N+1 nodes is exact for polynomials up to degree 2N+1.

Scalar-valued basis functions on the spatial reference element

For the vector-valued index set $\mathcal{N} := \{0, 1, \dots, N\}^D$ let us define the set of scalar-valued spatial basis functions $\{\hat{\phi}_n\}_{n \in \mathcal{N}}$ on $\hat{K} := [0, 1]^D$ as

$$\hat{\phi}_{n}(\xi) = \prod_{d=1}^{D} \hat{\psi}_{[n]_{d}}([\xi]_{d}) = \hat{\psi}_{[n]_{d}}([\xi]_{d}), \tag{2.47}$$

i.e. $\{\hat{\phi}_n\}_{n\in\mathcal{N}}$ is the tensor product of $\{\hat{\psi}_n\}_{n\in\mathcal{N}}$ and as such it is a basis of $\mathbb{Q}([0,1]^D) = \mathbb{Q}(\hat{K})$. If we define

$$\left[\hat{\boldsymbol{\xi}}_{\boldsymbol{n}}\right]_{d} = \hat{\boldsymbol{\xi}}_{\left[\boldsymbol{n}\right]_{d}} \tag{2.48}$$

and

$$\prod_{d=1}^{D} \hat{\omega}_{[n]_{d'}} \tag{2.49}$$

for all $d \in \mathcal{V}$ and $n \in \mathcal{N}$, we furthermore observe that the basis is orthogonal with respect to the L^2 -scalar product, since

$$\left\langle \hat{\phi}_{n}, \hat{\phi}_{m} \right\rangle_{L^{2}(\hat{K})} = \int_{\hat{K}} \hat{\phi}_{n}(\xi) \hat{\phi}_{m}(\xi) d\xi =$$

$$\sum_{n' \in \mathcal{N}} \left(\hat{\omega}_{n'} \hat{\phi}_{n}(\hat{\xi}_{n'}) \hat{\phi}_{m}(\hat{\xi}_{n'}) \right) = \hat{\omega}_{n} \delta_{nm}$$
(2.50)

for all $n, m \in \mathcal{N}$. The natural extensions of the Kronecker delta for vector-valued indices is defined as follows:

$$\delta_{nm} = \prod_{d=1}^{D} \delta_{[n]_d[m]_d} = \delta_{[n]_d[m]_d}.$$
 (2.51)

Scalar-valued basis functions on the space-time reference element

Analogously to the procedure illustrated above for the spatial reference element \hat{K} we can define a basis $\{\hat{\theta}_{nl}\}_{n\in\mathcal{N},l\in\mathcal{N}}$ of $\mathbb{Q}_N(\hat{K}\times[0,1])$ on the reference space-time element $\hat{K}\times[0,1]$ as

$$\hat{\theta}_{nl}(\xi,\tau) = \hat{\phi}_n(\xi)\hat{\psi}_l(\tau), \tag{2.52}$$

which again is orthogonal, since

$$\left\langle \hat{\theta}_{nl}, \hat{\theta}_{mk} \right\rangle_{L^{2}(\hat{K} \times [0,1])} = \int_{0}^{1} \int_{\hat{K}} \hat{\theta}_{nl} \hat{\theta}_{mk} d\xi d\tau = \hat{\omega}_{n} \hat{\omega}_{l} \delta_{nm} \delta_{lk}$$
 (2.53)

for all $n, m \in \mathcal{N}$ and $l, k \in \mathcal{N}$.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Vector-valued basis functions on the spatial reference element

If we define $\{\hat{\boldsymbol{\phi}}_{nv}\}_{n\in\mathcal{N},v\in\mathcal{V}}$ as

$$\hat{\boldsymbol{\phi}}_{\boldsymbol{n}\boldsymbol{v}} = \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} \boldsymbol{e}_{\boldsymbol{v}},\tag{2.54}$$

where e_v is the v-th unit vector, i.e.

$$[e_v]_{v'} = \delta_{vv'} \tag{2.55}$$

for $v, v' \in \mathcal{V}$. Since

$$\left\langle \hat{\boldsymbol{\phi}}_{\boldsymbol{n}v}, \hat{\boldsymbol{\phi}}_{\boldsymbol{n}'v'} \right\rangle_{L^{2}(\hat{K})^{V}} = \int_{\hat{K}} \left[\hat{\boldsymbol{\phi}}_{\boldsymbol{n}v} \right]_{j} \left[\hat{\boldsymbol{\phi}}_{\boldsymbol{n}'v'} \right]_{j} d\boldsymbol{\xi} =$$

$$\left(\left[\boldsymbol{e}_{v} \right]_{j} \left[\boldsymbol{e}_{v'} \right]_{j} \right) \int_{0}^{1} \int_{\hat{K}} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}'} d\boldsymbol{\xi} = \hat{\omega}_{\boldsymbol{n}} \delta_{\boldsymbol{n}\boldsymbol{n}'} \delta_{vv'}$$

$$(2.56)$$

for all $n, n' \in \mathcal{N}$ and $v, v' \in \{1, 2, ..., V\}$ the set is an orthogonal basis for $\mathbb{Q}_N(\hat{K})^V$.

Vector-valued basis functions on the space-time reference element

The set $\{\hat{\boldsymbol{\theta}}_{nlv}\}_{n\in\mathcal{N},l\in\mathcal{N},v\in\mathcal{V}}$ defined as

$$\hat{\boldsymbol{\theta}}_{nlv}(\boldsymbol{\xi}, \tau) = \hat{\boldsymbol{\theta}}_{nl}(\boldsymbol{\xi}, \tau) \boldsymbol{e}_v = \hat{\boldsymbol{\phi}}_n(\boldsymbol{\xi}) \hat{\boldsymbol{\psi}}_l(\tau) \boldsymbol{e}_v \tag{2.57}$$

is a basis of $\mathbb{Q}_N(\hat{K} \times [0,1])^V$. Since furthermore

$$\left\langle \hat{\boldsymbol{\theta}}_{nlv}, \hat{\boldsymbol{\theta}}_{n'l'v'} \right\rangle_{L^{2}\left(\hat{K}\times[0,1]\right)^{V}} = \int_{0}^{1} \int_{\hat{K}} \left[\hat{\boldsymbol{\theta}}_{nlv} \right]_{j} \left[\hat{\boldsymbol{\theta}}_{n'l'v'} \right]_{j} d\boldsymbol{\xi} d\tau = \hat{\omega}_{n} \hat{\omega}_{l} \delta_{nn'} \delta_{ll'} \delta_{vv'}, \tag{2.58}$$

for all $n, n' \in \mathcal{N}$, $l, l' \in \mathcal{N}$ and $v, v' \in \mathcal{V}$, the set is an orthogonal basis with respect to the respective L^2 -scalar product.

2.1.9 Basis functions in global coordinates

We can use the mappings derived in ch. 2.1.7 to map the basis functions to global coordinates. For the vector-valued basis functions on a spatial element *K* we obtain

$$\boldsymbol{\phi}_{nv}^{K}(\boldsymbol{x}) = \begin{cases} \left(\hat{\boldsymbol{\phi}}_{nv} \circ \boldsymbol{\mathcal{X}}_{K}^{-1}\right)(\boldsymbol{x}) & \text{if } \boldsymbol{x} \in K\\ 0 & \text{otherwise,} \end{cases}$$
 (2.59)

and for the vector-valued basis functions on a space-time element $K \times [t_i, t_i + \Delta t_i]$ we have

$$\boldsymbol{\theta}_{nlv}^{Ki}(\boldsymbol{x},t) = \begin{cases} \left(\hat{\boldsymbol{\theta}}_{nlv} \circ \left(\boldsymbol{\mathcal{X}}_{K}^{-1}, \mathcal{T}_{i}^{-1}\right)\right)(\boldsymbol{x},t) & \text{if } \boldsymbol{x} \in K \text{ and } t \in [t_{i}, t_{i} + \Delta t_{i}] \\ 0 & \text{otherwise} \end{cases}$$
(2.60)

for $n \in \mathcal{N}$, $l \in \{0, 1, ..., N\}$ as well as $v \in \mathcal{V}$ and for all $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

2.1.10 A fully-discrete iterative method for the space-time predictor

We recall relation (2.25) for the space-time predictor. Plugging in the initial condition (2.24) yields

$$\int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} d\boldsymbol{x} - \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \right]_{j} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{j} d\boldsymbol{x} dt =$$

$$\int_{K} \left[\tilde{\boldsymbol{u}}_{h}^{K,i} \Big|_{t_{i}} \right]_{j} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \Big|_{t_{i}} \right]_{j} d\boldsymbol{x} + \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\tilde{\boldsymbol{q}}_{h}^{K,i}) \right]_{jk} \frac{\partial}{\partial x_{k}} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{j} d\boldsymbol{x} dt +$$

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\tilde{\boldsymbol{q}}_{h}^{K,i} \right) \right]_{j} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{j} d\boldsymbol{x} dt \tag{2.61}$$

which we require to hold for all $\tilde{w}_h \in \tilde{W}_h$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

Making use of the bases we derived in the previous section the cell-local space-time predictor $\tilde{q}_h^{K,i}$ can be represented by a tensor of coefficients $\hat{q}^{K,i}$ ("degrees of freedom") as follows:

$$\tilde{\boldsymbol{q}}_{h}^{K,i} = \left[\hat{\boldsymbol{q}}^{K,i}\right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki}.$$
(2.62)

The initial condition $\left. \tilde{u}_h^{K,i} \right|_{t_i}$ can be represented as

$$\left. \tilde{\boldsymbol{u}}_{h}^{K,i} \right|_{t_{i}} = \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \boldsymbol{\phi}_{\boldsymbol{n}v}^{K}, \tag{2.63}$$

where

$$\left[\hat{\boldsymbol{u}}^{K,i}\right]_{\boldsymbol{n}v} = \left[\left.\tilde{\boldsymbol{u}}_{h}^{K,i}\right|_{\left(\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{\xi}_{\boldsymbol{n}}),t_{i}\right)}\right]_{v}.$$
(2.64)

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Inserting eqs. (2.62) and (2.63) into eq. (2.61) and introduction of the iteration index $r \in \{0, 1, ..., R\}$ leads to the following iterative scheme for the degrees of freedom of the cell-local space-time predictor:

$$\underbrace{\int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} dx - \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \right]_{j} \frac{\partial}{\partial t} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \Big|_{j} dx dt \right]}_{S-III} \\
\underbrace{\int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i} \right]_{nv} \boldsymbol{\phi}_{nv}^{K} \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \Big|_{t_{i}} \right]_{j} dx + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[F \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \right) \right]_{jk} \frac{\partial}{\partial x_{k}} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \right]_{j} dx dt + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \right) \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \right]_{j} dx dt .}_{S-V} \tag{2.65}$$

We require this relation to hold for all $\alpha \in \mathcal{N}$, $\beta \in \mathcal{N}$ and $\gamma \in \mathcal{V}$.

As initial condition, i.e. for r = 0, we use

$$\left[\hat{\boldsymbol{q}}^{K,i,0}\right]_{nvl} = \left[\hat{\boldsymbol{u}}^{K,i}\right]_{nv} \tag{2.66}$$

for all time degrees of freedom $l \in \mathcal{N}$.

We will now proceed in a term-by-term fashion to rewrite all integrals with respect to reference coordinates so that we can finally derive a complete rule on how to compute $\hat{q}^{K,i,r+1}$ that holds for all $K \in \mathcal{K}_h$.

Term S-I

The first term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlw} \boldsymbol{\theta}_{nlv}^{Ki} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \right]_{t_{i}+\Delta t_{i}} dx =$$

$$\int_{K} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \boldsymbol{\phi}_{n}^{K} \left(\psi_{l}^{i} \Big|_{t_{i}+\Delta t_{i}} \right) \left[e_{v} \right]_{j} \boldsymbol{\phi}_{\alpha}^{K} \left(\psi_{\beta}^{i} \Big|_{t_{i}+\Delta t_{i}} \right) \left[e_{\gamma} \right]_{j} dx =$$

$$J_{\mathcal{X}_{K}} \int_{\hat{K}} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \hat{\boldsymbol{\phi}}_{n} \left(\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \left[e_{v} \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \left[e_{\gamma} \right]_{j} d\xi =$$

$$J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \hat{\boldsymbol{\phi}}_{n} (\hat{\boldsymbol{\xi}}_{\alpha'}) \left(\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \left[e_{v} \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} (\hat{\boldsymbol{\xi}}_{\alpha'}) \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \left[e_{\gamma} \right]_{j} \right) =$$

$$J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \delta_{n\alpha'} \left(\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \delta_{vj} \delta_{\alpha\alpha'} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \delta_{j\gamma} \right) =$$

$$J_{\mathcal{X}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \underbrace{\left[\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right]}_{[\hat{\boldsymbol{q}}^{K,i,r+1}]} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{\alpha l\gamma'} (\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \delta_{vj} \delta_{\alpha\alpha'} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \delta_{j\gamma} \right] =$$

$$J_{\mathcal{X}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \underbrace{\left[\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right]}_{[\hat{\boldsymbol{q}}^{K,i,r+1}]} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{\alpha l\gamma'} (\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \delta_{vj} \delta_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \delta_{j\gamma}$$

where we remember from eq. (2.35) that

$$J_{\mathcal{X}_K} = \prod_{d=1}^D \left[\Delta x \right]_d. \tag{2.68}$$

Term S-II

The second term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \theta_{nlv}^{Ki} \right]_{j} \frac{\partial}{\partial t} \left[\theta_{\alpha\beta\gamma}^{Ki} \right]_{j} dx dt =$$

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \phi_{n}^{K} \psi_{l}^{i} \left[e_{v} \right]_{j} \phi_{\alpha}^{K} \left(\frac{\partial}{\partial t} \psi_{\beta}^{i} \right) \left[e_{\gamma} \right]_{j} dx dt =$$

$$I_{\mathcal{T}_{i}} I_{\mathcal{X}_{K}} \int_{0}^{1} \int_{\hat{K}} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \hat{\phi}_{n} \hat{\psi}_{l} \left[e_{v} \right]_{j} \hat{\phi}_{\alpha} \left(\frac{1}{\Delta t_{i}} \frac{\partial}{\partial \tau} \hat{\psi}_{\beta} \right) \left[e_{\gamma} \right]_{j} d\xi d\tau =$$

$$I_{\mathcal{T}_{i}} I_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \hat{\phi}_{n} (\hat{\xi}_{\alpha'}) \hat{\psi}_{l} (\hat{\tau}_{\beta'}) \left[e_{v} \right]_{j} \dots \right.$$

$$\dots \hat{\phi}_{\alpha} (\hat{\xi}_{\alpha'}) \left(\frac{\partial}{\partial \tau} \hat{\psi}_{\beta} (\hat{\tau}_{\beta'}) \right) \left[e_{\gamma} \right]_{j} \right) =$$

$$I_{\mathcal{T}_{i}} I_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \delta_{n\alpha'} \delta_{l\beta'} \delta_{vj} \dots \right.$$

$$\dots \delta_{\alpha\alpha'} \left(\frac{1}{\Delta t_{i}} \frac{\partial}{\partial \tau} \hat{\psi}_{\beta} (\hat{\tau}_{\beta'}) \right) \delta_{\gamma j} \right) =$$

$$I_{\mathcal{T}_{i}} I_{\mathcal{X}_{K}} \hat{\omega}_{\alpha} \frac{1}{\Delta t_{i}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\beta'} \left[\frac{\partial}{\partial \tau} \hat{\psi}_{\beta} (\hat{\tau}_{\beta'}) \right] \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{\alpha\beta'\gamma} \right),$$

$$\left[K_{XXY}^{i} \right]_{\beta\beta'} \hat{\boldsymbol{q}}_{\beta'} \hat{\boldsymbol{q}}_{\beta'} \hat{\boldsymbol{q}}_{\gamma'} \hat{\boldsymbol{q}}_{\gamma'} \right] \hat{\boldsymbol{q}}_{\beta'} \hat{\boldsymbol{q}}_{\gamma'} \hat{\boldsymbol{q}}_{\gamma'} \hat{\boldsymbol{q}}_{\gamma'}$$

where we remember from eq. (2.37) that

$$J_{\mathcal{T}_i} = \Delta t_i, \tag{2.70}$$

so that Δt_i and $1/\Delta t_i$ in eq. (2.69) cancel. In the derivation we made use of the fact that due to the chain rule

$$\frac{\partial}{\partial t}\psi_{\beta}^{i} = \frac{\partial}{\partial t}\left(\hat{\psi}_{\beta}\circ\mathcal{T}_{i}^{-1}\right) = \left(\frac{\partial}{\partial \tau}\hat{\psi}_{\beta}\right)\left(\frac{\partial}{\partial t}\mathcal{T}_{i}^{-1}\right) = \frac{1}{\Delta t_{i}}\frac{\partial}{\partial \tau}\hat{\psi}_{\beta}.$$
 (2.71)

Term S-III

The third term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\int_{K} \left[\left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \boldsymbol{\phi}_{\boldsymbol{n}v}^{K} \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \Big|_{t_{i}} \right]_{j} dx =$$

$$\int_{K} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \boldsymbol{\phi}_{\boldsymbol{n}}^{K} \left[\boldsymbol{e}_{v} \right]_{j} \boldsymbol{\phi}_{\boldsymbol{\alpha}}^{K} \left(\boldsymbol{\psi}_{\beta}^{i} \Big|_{t_{i}} \right) \left[\boldsymbol{e}_{\gamma} \right]_{j} dx =$$

$$J_{\mathcal{X}_{K}} \int_{\hat{K}} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} \left[\boldsymbol{e}_{v} \right]_{j} \hat{\boldsymbol{\phi}}_{\boldsymbol{\alpha}} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{0} \right) \left[\boldsymbol{e}_{\gamma} \right]_{j} d\xi =$$

$$J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} (\boldsymbol{\xi}_{\alpha'}) \left[\boldsymbol{e}_{v} \right]_{j} \hat{\boldsymbol{\phi}}_{\boldsymbol{\alpha}} (\boldsymbol{\xi}_{\alpha'}) \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{0} \right) \left[\boldsymbol{e}_{\gamma} \right]_{j} \right) =$$

$$J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \delta_{\boldsymbol{n}\alpha'} \delta_{vj} \delta_{\alpha\alpha'} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{0} \right) \delta_{\gamma j} \right) =$$

$$J_{\mathcal{X}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \left[\hat{\boldsymbol{\psi}}_{\beta} \Big|_{0} \right] \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\alpha\gamma} .$$

$$(2.72)$$

Term S-IV

The third term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\begin{split} &\int_{t_{i}}^{t_{i}+\Delta h_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\boldsymbol{\theta}_{nlv}^{Ki}\right)\right]_{jk}\frac{\partial}{\partial x_{k}}\left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki}\right]_{j}dx\,dt = \\ &\int_{t_{i}}^{t_{i}+\Delta h_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\boldsymbol{\phi}_{n}^{K}\boldsymbol{\psi}_{l}^{i}e_{v}\right)\right]_{jk}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right)\boldsymbol{\psi}_{\beta}^{i}(t)\left[e_{\gamma}\right]_{j}\dots\\ &\dots\left(\frac{\partial}{\partial x_{k}}\boldsymbol{\psi}_{[\alpha]_{k}}^{K}\right)dx\,dt = \\ &I_{\mathcal{T}_{i}}I_{\boldsymbol{X}_{K}}\int_{0}^{1}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\hat{\boldsymbol{\phi}}_{n}\hat{\boldsymbol{\psi}}_{l}e_{v}\right)\right]_{jk}\left(\prod_{d=1,d\neq k}^{D}\hat{\boldsymbol{\psi}}_{[\alpha]_{d}}\left[\boldsymbol{\xi}\right]_{d}\right)\boldsymbol{\psi}_{\beta}(t)\left[e_{\gamma}\right]_{j}\dots\\ &\dots\left(\frac{1}{[\Delta x]_{k}}\frac{\partial}{\partial \boldsymbol{\xi}_{k}}\hat{\boldsymbol{\psi}}_{[\alpha]_{k}}([\boldsymbol{\xi}]_{k})\right)d\boldsymbol{\xi}\,d\tau = \\ &I_{\mathcal{T}_{i}}I_{\boldsymbol{X}_{K}}\sum_{\alpha'\in\mathcal{N}}\sum_{\beta'\in\mathcal{N}}\left(\hat{\boldsymbol{\omega}}_{\alpha'}\hat{\boldsymbol{\omega}}_{\beta'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\hat{\boldsymbol{\phi}}_{n}(\boldsymbol{\xi}_{\alpha'})\hat{\boldsymbol{\psi}}_{l}(\hat{\boldsymbol{\tau}}_{\beta'})e_{v}\right)\right]_{jk}\dots\\ &\dots\left(\prod_{d=1,d\neq k}^{D}\hat{\boldsymbol{\psi}}_{[\alpha]_{d}}\left(\left[\boldsymbol{\xi}_{\alpha'}\right]_{d}\right)\right)\boldsymbol{\psi}_{\beta}(\hat{\boldsymbol{\tau}}_{\beta'})\left[e_{\gamma}\right]_{j}\left(\frac{1}{[\Delta x]_{k}}\frac{\partial}{\partial \boldsymbol{\xi}_{k}}\hat{\boldsymbol{\psi}}_{[\alpha]_{k}}\left(\left[\boldsymbol{\xi}_{\alpha'}\right]_{k}\right)\right)\right) = \\ &I_{\mathcal{T}_{i}}I_{\boldsymbol{X}_{K}}\sum_{\alpha'\in\mathcal{N}}\sum_{\beta'\in\mathcal{N}}\left(\hat{\boldsymbol{\omega}}_{\alpha'}\hat{\boldsymbol{\omega}}_{\beta'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\hat{\boldsymbol{\delta}}_{n\alpha'}\delta_{l\beta'}e_{v}\right)\right]_{jk}\dots\\ &\dots\left(\prod_{d=1,d\neq k}^{D}\delta_{[\alpha]_{d}[\alpha']_{d}}\right)\delta_{\beta\beta'}\delta_{\gamma j}\left(\frac{1}{[\Delta x]_{k}}\frac{\partial}{\partial \boldsymbol{\xi}_{k}}\hat{\boldsymbol{\psi}}_{[\alpha]_{k}}\left(\left[\boldsymbol{\xi}_{\alpha'}\right]_{k}\right)\right)\right) = \\ &I_{\mathcal{T}_{i}}I_{\boldsymbol{X}_{K}}\hat{\boldsymbol{\omega}}_{\beta}\sum_{k=1}^{D}\left(\frac{1}{[\Delta x]_{k}}\sum_{\alpha'_{k}\in\{0,1,\dots,N\}}\left(\prod_{d=0,d\neq k}^{D}\hat{\boldsymbol{\omega}}_{[\alpha]_{d}}\dots\\ &\dots\hat{\boldsymbol{\omega}}_{\alpha'_{k}}\left(\frac{\partial}{\partial \boldsymbol{\xi}_{k}}\hat{\boldsymbol{\psi}}_{[\alpha]_{k}}\left(\boldsymbol{\xi}_{\alpha'_{k}}\right)\right)\right)\left[F\left(\left[\boldsymbol{\hat{q}^{K,i,r}}\right]_{[\alpha_{0},\alpha_{1,\dots,\alpha_{k-1},\alpha'_{k},\alpha_{k+1},\dots,\alpha_{N}]}\right]\boldsymbol{\rho}_{v}}\right)\right]_{\gamma k}\right), \\ &(2.73) \end{aligned}$$

where we used that

$$\frac{\partial}{\partial x_{k}} \theta_{\alpha\beta\gamma}^{Ki}(\mathbf{x},t) = \left(\frac{\partial}{\partial x_{k}} \phi_{\alpha}^{K}(\mathbf{x})\right) \psi_{\beta}^{i}(t) e_{\gamma} = \left(\frac{\partial}{\partial x_{k}} \prod_{d=1}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \psi_{\beta}^{i}(t) e_{\gamma} = \left(\prod_{d=1,d\neq k}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \left(\frac{\partial}{\partial x_{k}} \psi_{[\alpha]_{k}}^{K}([\mathbf{x}]_{k})\right) \psi_{\beta}^{i}(t) e_{\gamma} = \left(\prod_{d=1,d\neq k}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \left(\frac{\partial}{\partial x_{k}} \hat{\psi}_{[\alpha]_{k}}\left(\left[\mathcal{X}_{K}^{-1}(\mathbf{x})\right]_{k}\right)\right) \psi_{\beta}^{i}(t) e_{\gamma} = \left(\prod_{d=1,d\neq k}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \left(\left(\frac{\partial}{\partial \xi_{k}} \hat{\psi}_{[\alpha]_{k}}\left(\left[\mathcal{X}_{K}^{-1}(\mathbf{x})\right]_{k}\right)\right) \left(\frac{\partial}{\partial x_{k}}\left[\mathcal{X}_{K}^{-1}(\mathbf{x})\right]_{k}\right)\right) \dots \dots \psi_{\beta}^{i}(t) e_{\gamma} = \left(\prod_{d=1,d\neq k}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \left(\frac{1}{[\Delta \mathbf{x}^{K}]_{k}} \frac{\partial}{\partial \xi_{k}} \hat{\phi}_{[\alpha]_{k}}\left(\left[\mathcal{X}_{K}^{-1}(\mathbf{x})\right]_{k}\right)\right) \psi_{\beta}^{i}(t) e_{\gamma}. \tag{2.74}$$

Term S-V

The fifth term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \right) \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \right]_{j} dx dt =$$

$$J_{\tau_{i}} J_{\mathcal{X}_{K}} \int_{0}^{1} \int_{\hat{K}} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \hat{\boldsymbol{\phi}}_{n} \hat{\boldsymbol{\psi}}_{l} \boldsymbol{e}_{v} \right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} \hat{\boldsymbol{\psi}}_{l} \left[\boldsymbol{e}_{\gamma} \right]_{j} d\xi d\tau =$$

$$J_{\tau_{i}} J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \hat{\boldsymbol{\phi}}_{n} (\xi_{\alpha'}) \hat{\boldsymbol{\psi}}_{l} (\hat{\tau}_{\beta'}) \boldsymbol{e}_{v} \right) \right]_{j} \dots$$

$$\dots \hat{\boldsymbol{\phi}}_{\alpha} (\xi_{\alpha'}) \hat{\boldsymbol{\psi}}_{\beta} (\hat{\tau}_{\beta'}) \left[\boldsymbol{e}_{\gamma} \right]_{j} \right) =$$

$$J_{\tau_{i}} J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \delta_{n\alpha'} \delta_{l\beta'} \boldsymbol{e}_{v} \right) \right]_{j} \delta_{\alpha\alpha'} \delta_{\beta\beta'} \delta_{\gamma j} \right) =$$

$$J_{\tau_{i}} J_{\mathcal{X}_{K}} \hat{\omega}_{\alpha} \hat{\omega}_{\beta} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{\alpha\beta v} \boldsymbol{e}_{v} \right) \right]_{\gamma}$$

The complete fixed-point iteration for the space-time predictor

Now collecting the results from eqs. (2.67), (2.69), (2.72), (2.73) and (2.75) and plugging them back into eq. (2.65) and division by $J_{\mathcal{X}_K}$ yields TODO: division by omega alpha

$$\hat{\omega}_{\alpha}[\mathbf{FRm}]_{\beta\beta'} \left[\hat{\mathbf{q}}^{K,i,r+1} \right]_{\alpha\beta'\gamma} - \\
\hat{\omega}_{\alpha} \left[\mathbf{Kxi} \right]_{\beta\beta'} \left[\hat{\mathbf{q}}^{K,i,r+1} \right]_{\alpha\beta'\gamma} = \\
\hat{\omega}_{\alpha} \left[\hat{\mathbf{\psi}}_{\beta} \right]_{0} \left[\hat{\mathbf{u}}^{K,i} \right]_{\alpha\gamma} + \\
J_{\mathcal{T}_{i}} \hat{\omega}_{\beta} \sum_{k=1}^{D} \left(\frac{1}{[\Delta \mathbf{x}]_{k}} \sum_{\alpha'_{k} \in \{0,1,\dots,N\}} \left(\prod_{d=0,d\neq k}^{D} \hat{\omega}_{[\alpha]_{d}} \dots \right) \\
\dots \left[\mathbf{Kxi} \right]_{[\alpha]_{k}\alpha'_{k}} \left[F\left(\left[\hat{\mathbf{q}}^{K,i,r} \right]_{[\alpha_{0},\alpha_{1},\dots,\alpha_{k-1},\alpha'_{k},\alpha_{k+1},\dots,\alpha_{N}]\beta v} e_{v} \right) \right]_{\gamma k} \right) + \\
J_{\mathcal{T}_{i}} \hat{\omega}_{\alpha} \hat{\omega}_{\beta} \left[s\left(\left[\hat{\mathbf{q}}^{K,i,r} \right]_{\alpha\beta v} e_{v} \right) \right]_{\gamma} ,$$

which has to hold for all $\alpha \in \mathcal{N}$, $\beta \in \mathcal{N}$ and $\gamma \in \mathcal{V}$.

Next step: [K1] = [FRm] - [Kxi]. Precompute $[iK1] = ([FRm] - [Kxi])^{-1}$ in advance.

TODO: Add appendix with code that computes all matrices

2.1.11 A fully discrete update scheme for the time-discrete solution

Now that we have developed a method to compute the space-time predictor, we can go back to the original one-step, cell-local update scheme given in eq. (2.21). Inserting the local space-time predictor $\tilde{q}_h^{K,i}$ yields

$$\int_{K} \left[\tilde{\boldsymbol{u}}_{h}^{K,i} \Big|_{t_{i}+\Delta t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} = \int_{K} \left[\tilde{\boldsymbol{u}}_{h}^{K,i} \Big|_{t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\tilde{\boldsymbol{q}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\hat{\boldsymbol{q}}^{K,i} \right) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}} \left(\tilde{\boldsymbol{q}}_{h}^{K,i}, \tilde{\boldsymbol{q}}_{h}^{K+i}, \boldsymbol{n} \right) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} ds(\boldsymbol{x}) dt, \tag{2.77}$$

which has to hold for all $v \in \mathcal{V}$, $K \in \mathcal{K}_h$, $w_h \in \mathbb{W}_h$ and $i \in \mathcal{I}$.

Making use of the bases we derived earlier the call-local solution $\tilde{u}_h^{K,i}$ at times $t=t_i$ and $t=t_i+\Delta t_i$ can be represented by tensors of coefficients $\hat{u}^{K,i}$ and $\hat{u}^{K,i+1}$ as

$$\left. \tilde{\boldsymbol{u}}_{h}^{K,i} \right|_{t_{i}} = \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}.\boldsymbol{v}} \boldsymbol{\phi}_{\boldsymbol{n},\boldsymbol{v}}^{K} \tag{2.78}$$

and

$$\left. \tilde{\boldsymbol{u}}_{h}^{K,i} \right|_{t_{i} + \Delta t_{i}} = \left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},v} \boldsymbol{\phi}_{\boldsymbol{n},v}^{K}, \tag{2.79}$$

respectively. Inserting eqs. (2.78) and (2.79) and the ansatz for the space-time predictor (2.62) into eq. (2.77) yields

$$\underbrace{\int_{K} \left[\left[\hat{\boldsymbol{\eta}}^{K,i+1} \right]_{\boldsymbol{n},v} \boldsymbol{\phi}_{\boldsymbol{n},v}^{K} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} d\boldsymbol{x}}_{U-II} = \underbrace{\int_{K} \left[\left[\hat{\boldsymbol{\eta}}^{K,i} \right]_{\boldsymbol{n},v} \boldsymbol{\phi}_{\boldsymbol{n},v}^{K} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j}}_{U-III} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[F\left(\left[\hat{\boldsymbol{q}}^{K,i} \right]_{\boldsymbol{n},l,v} \boldsymbol{\theta}_{\boldsymbol{n},l,v}^{Ki} \right) \right]_{jk} \frac{\partial}{\partial x_{k}} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} d\boldsymbol{x} dt}_{U-III} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i} \right]_{\boldsymbol{n},l,v} \boldsymbol{\theta}_{\boldsymbol{n},l,v}^{Ki} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} d\boldsymbol{x} dt}_{U-IV} - \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^$$

which we require to hold for all $\alpha \in \mathcal{N}$, $\gamma \in \mathcal{V}$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$. In the following we will again proceed by simplifying each term in reference coordinates separately and then in the end assemble all terms to obtain a complete fully-discrete update scheme.

Term U-I

The first term of eq. (2.80) can be rewritten with respect to reference coordinates as follows:

$$\int_{K} \left[\left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \boldsymbol{\phi}_{\boldsymbol{n},\boldsymbol{v}}^{K} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\boldsymbol{\gamma}}^{K} \right]_{j} d\boldsymbol{x} = \\
\int_{K} \left[\left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \boldsymbol{\phi}_{\boldsymbol{n}}^{K} \boldsymbol{e}_{\boldsymbol{v}} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha}}^{K} \boldsymbol{e}_{\boldsymbol{\gamma}} \right]_{j} d\boldsymbol{x} = \\
J_{\boldsymbol{\mathcal{X}}_{K}} \int_{\hat{K}} \left[\left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} \boldsymbol{e}_{\boldsymbol{v}} \right]_{j} \left[\hat{\boldsymbol{\phi}}_{\boldsymbol{\alpha}} \boldsymbol{e}_{\boldsymbol{\gamma}} \right]_{j} d\boldsymbol{\xi} = \\
J_{\boldsymbol{\mathcal{X}}_{K}} \sum_{\boldsymbol{\alpha}' \in \mathcal{N}} \left(\hat{\omega}_{\boldsymbol{\alpha}'} \left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} (\hat{\boldsymbol{\xi}}_{\boldsymbol{\alpha}'}) \left[\boldsymbol{e}_{\boldsymbol{v}} \right]_{j} \hat{\boldsymbol{\phi}}_{\boldsymbol{\alpha}} (\hat{\boldsymbol{\xi}}_{\boldsymbol{\alpha}'}) \left[\boldsymbol{e}_{\boldsymbol{\gamma}} \right]_{j} \right) = \\
J_{\boldsymbol{\mathcal{X}}_{K}} \sum_{\boldsymbol{\alpha}' \in \mathcal{N}} \left(\hat{\omega}_{\boldsymbol{\alpha}'} \left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \delta_{\boldsymbol{n}\boldsymbol{\alpha}'} \delta_{\boldsymbol{v}j} \delta_{\boldsymbol{\alpha}\boldsymbol{\alpha}'} \delta_{\boldsymbol{\gamma}j} \right) = \\
J_{\boldsymbol{\mathcal{X}}_{K}} \hat{\omega}_{\boldsymbol{\alpha}} \left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{\alpha},\boldsymbol{\gamma}}. \tag{2.81}$$

Term U-II

Analogously to the first term of eq. (2.80), the second term can be rewritten as follows:

$$\int_{K} \left[\left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n},\boldsymbol{v}} \boldsymbol{\phi}_{\boldsymbol{n},\boldsymbol{v}}^{K} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\boldsymbol{\gamma}}^{K} \right]_{j} d\boldsymbol{x} =$$

$$J_{\boldsymbol{\mathcal{X}}_{K}} \hat{\omega}_{\boldsymbol{\alpha}} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{\alpha},\boldsymbol{\gamma}}.$$
(2.82)

Term U-III

The third term of eq. (2.80) can be rewritten with respect to reference coordinates as follows:

$$\begin{split} &\int_{t_{i}}^{t_{i}+\Delta t_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\theta}_{n,l,v}^{Ki}\right)\right]_{jk}\frac{\partial}{\partial x_{k}}\left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K}\right]_{j}dxdt = \\ &\int_{t_{i}}^{t_{i}+\Delta t_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}^{K}\boldsymbol{\psi}_{i}^{i}\boldsymbol{e}_{v}\right)\right]_{jk}\frac{\partial}{\partial x_{k}}\left(\prod_{d=1}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &\int_{t_{i}}^{t_{i}+\Delta t_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,v,l}\boldsymbol{\phi}_{n}^{K}\boldsymbol{\psi}_{i}^{i}\boldsymbol{e}_{v}\right)\right]_{jk}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\int_{0}^{1}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,v,l}\boldsymbol{\phi}_{n}^{K}\boldsymbol{\psi}_{i}^{i}\boldsymbol{e}_{v}\right)\right]_{jk}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\int_{0}^{1}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}\hat{\boldsymbol{\psi}}_{i}\boldsymbol{e}_{v}\right)\right]_{kj}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}([\boldsymbol{\xi}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\int_{0}^{1}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}\hat{\boldsymbol{\psi}}_{i}\boldsymbol{e}_{v}\right)\right]_{kj}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}([\boldsymbol{\xi}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\sum_{\boldsymbol{\alpha}'\in\boldsymbol{\mathcal{N}}}\sum_{\boldsymbol{\beta}'\in\boldsymbol{\mathcal{N}}}\left(\hat{\boldsymbol{\omega}}_{\boldsymbol{\alpha}'}\hat{\boldsymbol{\omega}}_{\boldsymbol{\beta}'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}(\boldsymbol{\xi}_{\boldsymbol{\alpha}'})\hat{\boldsymbol{\psi}}(\hat{\boldsymbol{\tau}}_{\boldsymbol{\beta}'})\boldsymbol{e}_{v}\right)\right]\left[\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right)\right]\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\sum_{\boldsymbol{\alpha}'\in\boldsymbol{\mathcal{N}}}\sum_{\boldsymbol{\beta}'\in\boldsymbol{\mathcal{N}}}\left(\hat{\boldsymbol{\omega}}_{\boldsymbol{\alpha}'}\hat{\boldsymbol{\omega}}_{\boldsymbol{\beta}'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}(\boldsymbol{\xi}_{\boldsymbol{\alpha}'})\hat{\boldsymbol{\psi}}(\hat{\boldsymbol{\tau}}_{\boldsymbol{\beta}'})\boldsymbol{e}_{v}\right)\right]\left[\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right)\right]\left[\boldsymbol{\xi}_{\boldsymbol{\alpha}}\right]_{k}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right]_{k}\right]dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\sum_{\boldsymbol{\alpha}'\in\boldsymbol{\mathcal{N}}}\sum_{\boldsymbol{\beta}'\in\boldsymbol{\mathcal{N}}\left(\hat{\boldsymbol{\omega}}_{\boldsymbol{\alpha}'}\hat{\boldsymbol{\omega}}_{\boldsymbol{\beta}'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\delta}_{\boldsymbol{\alpha}\boldsymbol{\alpha}'}\boldsymbol{\delta}_{\boldsymbol{\beta}'}\boldsymbol{e}_{v}\right)\right]\left[\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{\boldsymbol{\alpha}}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right)\right]\left[\boldsymbol{\xi}_{\boldsymbol{\alpha}}\right]_{k}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right]_{k}dxdt = \\ &J_{i,l}J_{\boldsymbol{\alpha}}\sum_{\boldsymbol{\alpha}'\in\boldsymbol{\mathcal{N}}}\sum_{\boldsymbol{\beta}'\in\boldsymbol{\mathcal{N}}\left(\hat{\boldsymbol{\omega}}_{\boldsymbol{\alpha}'}\hat{\boldsymbol{\omega}}_{\boldsymbol{\beta}'}\right)\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\delta}_{\boldsymbol{\alpha}'}\boldsymbol{\delta}_{\boldsymbol{\alpha}'}\boldsymbol{\delta}_{\boldsymbol{\alpha}'}\right)\right]\left[\prod_{d=1,d\neq k}^{D}\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right]\left[\boldsymbol{\xi}_{\boldsymbol{\alpha}}\right]_{k}dxdt = \\ &J_{i,l}J_{\boldsymbol{\alpha}}\sum$$

(2.83)

where we made use of the fact that du to the chain rule:

$$\frac{\partial}{\partial x_{k}} \left(\prod_{d=1}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) = \left(\prod_{d=1, d \neq k}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) \frac{\partial}{\partial x_{k}} \psi_{[\boldsymbol{\alpha}]_{k}}^{K}([\boldsymbol{x}]_{k}) =$$

$$\left(\prod_{d=1, d \neq k}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) \frac{\partial}{\partial \xi_{j}} \hat{\psi}_{[\boldsymbol{\alpha}]_{k}} \left([\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{x})]_{k} \right) \frac{\partial}{\partial x_{k}} [\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{x})]_{j} =$$

$$\left(\prod_{d=1, d \neq k}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) \frac{\partial}{\partial \xi_{j}} \hat{\psi}_{[\boldsymbol{\alpha}]_{k}} \left([\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{x})]_{k} \right) \frac{1}{[\Delta \boldsymbol{x}^{K}]_{k}} \delta_{k} j =$$

$$\left(\prod_{d=1, d \neq k}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) \frac{1}{[\Delta \boldsymbol{x}^{K}]_{k}} \frac{\partial}{\partial \xi_{k}} \hat{\psi}_{[\boldsymbol{\alpha}]_{k}} \left([\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{x})]_{k} \right) d\boldsymbol{x} dt.$$
(2.84)

Term U-IV

The fourth term of eq. (2.80) can be rewritten with respect to reference coordinates as follows:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \boldsymbol{\theta}_{n,l,v}^{Ki}\right) \right]_{j} \left[\boldsymbol{\phi}_{\alpha,\gamma}^{K}\right]_{j} dx dt =$$

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \boldsymbol{\phi}_{n}^{K} \boldsymbol{\psi}_{l}^{i} \boldsymbol{e}_{v}\right) \right]_{j} \boldsymbol{\phi}_{\alpha}^{K} \left[\boldsymbol{e}_{\gamma}\right]_{j} dx dt =$$

$$J_{T_{i}} J_{\boldsymbol{x}_{K}} \int_{0}^{1} \int_{\hat{K}} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \hat{\boldsymbol{\phi}}_{n} \hat{\boldsymbol{\psi}}_{l} \boldsymbol{e}_{v}\right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} \left[\boldsymbol{e}_{\gamma}\right]_{j} d\xi d\tau =$$

$$J_{T_{i}} J_{\boldsymbol{x}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \hat{\boldsymbol{\phi}}_{n} (\hat{\boldsymbol{\xi}}_{\alpha'}) \hat{\boldsymbol{\psi}}_{l} (\hat{\boldsymbol{\tau}}_{\beta'} \boldsymbol{e}_{v}) \right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} (\hat{\boldsymbol{\xi}}_{\alpha'}) \left[\boldsymbol{e}_{\gamma}\right]_{j} \right) =$$

$$J_{T_{i}} J_{\boldsymbol{x}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \delta_{n\alpha'} \delta_{l\beta'} \boldsymbol{e}_{v}\right) \right) \right]_{j} \delta_{\alpha\alpha'} \delta_{\gamma j} \right) =$$

$$J_{T_{i}} J_{\boldsymbol{x}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\beta'} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{\alpha,\beta',v} \boldsymbol{e}_{v}\right) \right]_{\gamma} \right). \tag{2.85}$$

Term U-V

Let $d \in \mathcal{D}$ and $e \in \{0,1\} := \mathcal{E}$. Then if we define the D-1-dimensional quadrilateral $\partial \hat{K}_{d,e}$ as

$$\partial \hat{K}_{d,e} = \left\{ \xi \in \hat{K} \, | \, \left[\xi \right]_d = e \right\},\tag{2.86}$$

the set $\{\partial \hat{K}_{d,e}\}_{d \in \mathcal{D}, e \in \mathcal{E}}$ is a partition of the surface $\partial \hat{K}$ of the spatial reference element. By making use of the mappings \mathcal{X}_K that maps points $\xi \in \hat{K}$ to $x \in K$ for all $K \in \mathcal{K}_h$ we can define

$$\partial K_{d,e} = \mathcal{X}_K \left(\partial \hat{K}_{d,e} \right), \tag{2.87}$$

where now the set $\{\partial K_{d,e}\}_{d\in\mathcal{D},e\in\mathcal{E}}$ is a quadrilateral partition of the surface ∂K for all cells $K\in\mathcal{K}_h$.

In consequence the surface integral in the fifth term of eq. (2.80) can be rewritten as follows:

$$\begin{split} &\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\alpha,\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) \, dt = \\ &\int_{t_{i}}^{t_{i}+\Delta t_{i}} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \left(\int_{\partial K_{d,e}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, e_{d} \right) \right]_{j} \boldsymbol{\phi}_{\alpha}^{K} \left[e_{\gamma} \right]_{j} ds(\boldsymbol{x}) \right) \, dt = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \int_{0}^{1} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \left(\frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \int_{\partial \hat{K}_{d,e}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} \left[e_{d} \right]_{j} ds(\boldsymbol{\xi}) \right) \, d\tau = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \sum_{\beta' \in \mathcal{D}} \hat{\omega}_{\beta'} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\omega}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha'} (\hat{\boldsymbol{\xi}}_{\alpha'}) \left(\hat{\boldsymbol{\psi}}_{[\alpha]_{d}} \right|_{e} \right) \left[e_{d} \right]_{j} \right) = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \sum_{\beta' \in \mathcal{D}} \hat{\omega}_{\beta'} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\omega}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \delta_{\alpha'} \hat{\boldsymbol{\omega}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{[\alpha]_{d}} \right|_{e} \right) \delta_{\gamma j} \right) = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \hat{\omega}_{\alpha} \sum_{\beta' \in \mathcal{D}} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\omega}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \underbrace{\hat{\boldsymbol{\psi}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{[\alpha]_{d}} \right|_{e}} \right) \delta_{\gamma j} \right) = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \hat{\omega}_{\alpha} \sum_{\beta' \in \mathcal{D}} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\omega}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \underbrace{\hat{\boldsymbol{\psi}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{[\alpha]_{d}} \right|_{e}} \right) \delta_{\gamma j} \right) = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \underbrace{\hat{\boldsymbol{\psi}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{\alpha'} \right)_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \right]_{j} \delta_{\alpha'} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{\alpha'} \right)_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \right]_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \right]_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \right]_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'$$

In each term we have to solve a Riemann problem in direction of the unit vector e_d defined as

$$[e_d]_{d} = \delta_{dd'} \tag{2.89}$$

for $d' \in \mathcal{D}$.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

The complete one-step update formula

Inserting eqs. (2.81) to (2.83), (2.85) and (2.88) into eq. (2.80) and dividing the resulting equation by $\hat{\omega}_{\alpha}$ and $J_{\mathcal{X}_{K}}$ yields

$$\begin{bmatrix} \hat{\boldsymbol{a}}^{K,i+1} \end{bmatrix}_{\boldsymbol{\alpha},\gamma} = \begin{bmatrix} \hat{\boldsymbol{a}}^{K,i} \end{bmatrix}_{\boldsymbol{\alpha},\gamma} +$$

$$J_{\mathcal{T}_{i}} \sum_{k=1}^{D} \left(\sum_{\alpha'_{k} \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\frac{\hat{\omega}_{\beta'}}{\hat{\omega}_{\alpha'_{k}}} \frac{1}{\left[\Delta \boldsymbol{x}^{K}\right]_{k}} \underbrace{\frac{\partial}{\partial \xi_{k}} \hat{\psi}_{\alpha'_{k}} \left(\left[\hat{\boldsymbol{\xi}} \right]_{\alpha'_{k}} \right)}_{Kxi_{\alpha'_{k}k}} \left[F \left(\left[\hat{\boldsymbol{q}}^{K,i} \right]_{\left[[\boldsymbol{\alpha}]_{1}, [\boldsymbol{\alpha}]_{2}, \dots, [\boldsymbol{\alpha}]_{k-1}, \alpha'_{k'}[\boldsymbol{\alpha}]_{k+1}, \dots, [\boldsymbol{\alpha}]_{D} \right], \beta', v} e_{v} \right) \right]_{\gamma,k} \right) +$$

$$J_{\mathcal{T}_{i}} \sum_{\beta' \in \mathcal{D}} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha'_{d} \in \mathcal{N}} \left(\frac{\hat{\omega}_{\beta'}}{\hat{\omega}_{\alpha'_{d}}} \frac{1}{\left[\Delta \boldsymbol{x}^{K}\right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, (-1)^{e} e_{d} \right) \right]_{\gamma} \underbrace{\left(\hat{\psi}_{\alpha'_{d}} \right|_{e}}_{F0, F1} \right)}_{, (2.90)},$$

which we require to hold for $\alpha \in \mathcal{N}$, $\gamma \in \mathcal{V}$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

2.1.12 A posteriori subcell limiting

Motivation:

- Shock = discontinuity
- Discontinuity + high-order DG method leads to Gibbs phenomenon (oscillations)
- Reason: Discon. initial data or spontaneous formation in nonlinear problems
- Problems:
 - 1. Pointwise first order away from discontinuity
 - 2. Loss of pointwise convergence at the point of discontinuity
 - 3. Introduction of artificial and persistent oscillations at the point of discontinuity
- Positive physical quantities such as pressure or density might become negative; simulation might crash

2. Theory

• ADER-DG with a posteriori subcell limiting has very desirable properties (TODO)

Identification of troubled cells

Projection

MUSCL Hancook

2.2 Profiling and Energy-aware Computing

A profiling infrastructure for ExaHyPE

- General architecture
- Architecture profiling
- Functionality

Preliminary profiling results, case studies

- Analytic benchmark: Introduction, derivation
- Pie-chart per kernel
- $\bullet \ \, \text{Case-study: Cache-misses, compile-time } (\to \text{Toolkit philosophy})$
- ullet Degree o Wallclock, Energy (AMR)
- Static mesh $\Delta x \rightarrow$ Error for polynomials (convergence tables)

Conclusion and Outlook

- PA is important
- ExaHyPE as an answer to exascale challenges
- Applications

Acknowledgment