Intersecting M-branes as Four-Dimensional Black Holes

I.R. Klebanov*

Joseph Henry Laboratories
Princeton University, Princeton, NJ 08544

and

A.A. Tseytlin*†

Theoretical Physics Group, Blackett Laboratory Imperial College, London SW7 2BZ, U.K.

Abstract

We present two 1/8 supersymmetric intersecting p-brane solutions of 11-dimensional supergravity which upon compactification to four dimensions reduce to extremal dyonic black holes with finite area of horizon. The first solution is a configuration of three intersecting 5-branes with an extra momentum flow along the common string. The second describes a system of two 2-branes and two 5-branes. Related (by compactification and T-duality) solution of type IIB theory corresponds to a completely symmetric configuration of four intersecting 3-branes. We suggest methods for counting the BPS degeneracy of three intersecting 5-branes which, in the macroscopic limit, reproduce the Bekenstein-Hawking entropy.

April 1996

^{*} e-mail address: klebanov@puhep1.princeton.edu

^{*} e-mail address: tseytlin@ic.ac.uk

[†] On leave from Lebedev Physics Institute, Moscow.

1. Introduction

The existence of supersymmetric extremal dyonic black holes with finite area of the horizon provides a possibility of a statistical understanding [1] of the Bekenstein-Hawking entropy from the point of view of string theory [2,3,4]. Such black hole solutions are found in four [5,6,7] and five [4,8] dimensions but not in D > 5 [9,10]. While the D-brane BPS state counting derivation of the entropy is relatively straightforward for the D = 5 black holes [4,11], it is less transparent in the D = 4 case, a complication being the presence of a solitonic 5-brane or Kaluza-Klein monopole in addition to a D-brane configuration in the descriptions used in [12,13].

One may hope to find a different lifting of the dyonic D=4 black hole to D=10 string theory that may correspond to a purely D-brane configuration. A related question is about the embedding of the D=4 dyonic black holes into D=11 supergravity (M-theory) which would allow to reproduce their entropy by counting the corresponding BPS states using the M-brane approach similar to the one applied in the D=5 black hole case in [14].

As was found in [15], the (three-charge, finite area) D=5 extremal black hole can be represented in M-theory by a configuration of orthogonally intersecting 2-brane and 5-brane (i.e. 2 ± 5) with a momentum flow along the common string, or by configuration of three 2-branes intersecting over a point $(2\pm 2\pm 2)$. A particular embedding of (four-charge, finite area) D=4 black hole into D=11 theory given in [15] can be interpreted as a similar 2 ± 5 configuration 'superposed' with a Kaluza-Klein monopole.

Below we shall demonstrate that it is possible to get rid of the complication associated with having the Kaluza-Klein monopole. There exists a simple 1/8 supersymmetric configuration of *four* intersecting M-branes $(2 \pm 2 \pm 5 \pm 5)$ with diagonal D=11 metric. Upon compactification along six isometric directions it reduces to the dyonic D=4 black hole with finite area and all scalars being regular at the horizon.

The corresponding $2\pm 2\pm 4\pm 4$ solution of type IIA D=10 superstring theory (obtained by dimensional reduction along a direction common to the two 5-branes) is T-dual to a D=10 solution of type IIB theory which describes a remarkably symmetric configuration of four intersecting 3-branes.¹

¹ Similar D-brane configuration was discussed in [16,17]. Note that it is a combination of four and not three intersecting 3-branes that is related (for the special choice of equal charges) to the non-dilatonic (a = 0) RN D = 4 black hole. T-dual configuration of one 0-brane and three intersecting 4-branes of type IIA theory was considered in [18].

Our discussion will follow closely that of [15] where an approach to constructing intersecting supersymmetric p-brane solutions (generalising that of [19]) was presented.² The supersymmetric configurations of two or three intersecting 2- and 5-branes of D=11 supergravity which preserve 1/4 or 1/8 of maximal supersymmetry are 2 ± 2 , 5 ± 5 , 2 ± 5 , $2\pm 2\pm 5$, and $2\pm 5\pm 5$. Two 2-branes can intersect over a point, two 5-branes – over a 3-brane (which in turn can intersect over a string), 2-brane and 5-brane can intersect over a string [19]. There exists a simple 'harmonic function' rule which governs the construction of composite supersymmetric p-brane solutions in both D=10 and D=11: a separate harmonic function is assigned to each constituent 1/2 supersymmetric p-brane.

Most of the configurations with four intersecting M-branes, namely, $2\pm2\pm2\pm2$, $2\pm2\pm2\pm5$ and $5\pm5\pm5\pm2$ are 1/16 supersymmetric and have transverse x-space dimension equal to two $(5\pm5\pm5\pm5$ configuration with 5-branes intersecting over 3-branes to preserve supersymmetry does not fit into 11-dimensional space-time). Being described in terms of harmonic functions of x they are thus not asymptotically flat in transverse directions. There exists, however, a remarkable exception – the configuration $2\pm2\pm5\pm5$ which (like $5\pm2\pm2$, $5\pm5\pm2$ and $5\pm5\pm5$) has transverse dimension equal to three and the fraction of unbroken supersymmetry equal to 1/8 (Section 3). Upon compactification to D=4 it reduces to the extremal dyonic black hole with four different charges and finite area of the horizon.

Similar D=4 black hole background can be obtained also from the the 'boosted' version of the $D=11\ 5\pm5\pm5$ solution [15] (Section 2)³ as well from the $3\pm3\pm3\pm3$ solution of D=10 type IIB theory (Section 4). The two D=11 configurations $5\pm5\pm5+$ 'boost' and $2\pm2\pm5\pm5$ reduce in D=10 to $0\pm4\pm4\pm4$ and $2\pm2\pm4\pm4$ solutions of D=10 type IIA theory which are related by T-duality.

In Section 5 we shall suggest methods for counting the BPS entropy of three intersecting 5-branes which reproduce the Bekenstein-Hawking entropy of the D=4 black hole. This seems to explain the microscopic origin of the entropy directly in 11-dimensional terms.

Intersecting p-brane solutions in [19,15] and below are isometric in all directions internal to all constituent p-branes (the background fields depend only on the remaining common transverse directions). They are different from possible virtual configurations where, e.g., a (p-2)-brane ends (in transverse radial direction) on a p-brane [20]. A configuration of p-brane and p'-brane intersecting in p+p'-space may be also considered as a special anisotropic p+p'-brane. There may exist more general solutions (with constituent p-branes effectively having different transverse spaces [19,21]) which may 'interpolate' between intersecting p-brane solutions and solutions with one p-brane ending on another in the transverse direction of the latter.

³ The 'boost' along the common string corresponds to a Kaluza-Klein electric charge part in the D=11 metric which is 'dual' to a Kaluza-Klein monopole part present in the D=11 embedding of dyonic black hole in [15].

2. 'Boosted' $5 \pm 5 \pm 5$ solution of D = 11 theory

The D=11 background corresponding to $5\pm 5\pm 5$ configuration [19] is [15]

$$ds_{11}^2 = (F_1 F_2 F_3)^{-2/3} \left[F_1 F_2 F_3 (-dt^2 + dy_1^2) \right]$$
(2.1)

$$+ F_2 F_3 (dy_2^2 + dy_3^2) + F_1 F_3 (dy_4^2 + dy_5^2) + F_1 F_2 (dy_6^2 + dy_7^2) + dx_s dx_s],$$

$$\mathcal{F}_4 = 3(*dF_1^{-1} \wedge dy_2 \wedge dy_3 + *dF_2^{-1} \wedge dy_4 \wedge dy_5 + *dF_2^{-1} \wedge dy_6 \wedge dy_7). \tag{2.2}$$

Here \mathcal{F}_4 is the 4-form field strength and F_i are the inverse powers of harmonic functions of x_s (s=1,2,3). In the simplest 1-center case discussed below $F_i^{-1}=1+P_i/r$ ($r^2=x_sx_s$). The *-duality is defined with respect to the transverse 3-space. The coordinates y_n internal to the three 5-branes can be identified according to the F_i factors inside the square brackets in the metric: $(y_1, y_4, y_5, y_6, y_7)$ belong to the first 5-brane, $(y_1, y_2, y_3, y_6, y_7)$ to the second and $(y_1, y_2, y_3, y_4, y_5)$ to the third. 5-branes intersect over three 3-branes which in turn intersect over a common string along y_1 . If $F_2 = F_3 = 1$ the above background reduces to the single 5-brane solution [22] with the harmonic function $H = F_1^{-1}$ independent of the two of transverse coordinates (here y_2, y_3). The case of $F_3 = 1$ describes two 5-branes intersecting over a 3-brane.⁴ The special case of $F_1 = F_2 = F_3$ is the solution found in [19].

Compactifying $y_1, ..., y_7$ on circles we learn that the effective 'radii' (scalar moduli fields in D=4) behave regularly both at $r=\infty$ and at r=0 with the exception of the 'radius' of y_1 . It is possible to stabilize the corresponding scalar by adding a 'boost' along the common string. The metric of the resulting more general solution [15] is (the expression for \mathcal{F}_4 remains the same)

$$ds_{11}^2 = (F_1 F_2 F_3)^{-2/3} [F_1 F_2 F_3 (du dv + K du^2)$$
(2.3)

+
$$F_2F_3(dy_2^2 + dy_3^2) + F_1F_3(dy_4^2 + dy_5^2) + F_1F_2(dy_6^2 + dy_7^2) + dx_s dx_s$$
.

Here $u = y_1 - t$, v = 2t and K is a harmonic function of the three coordinates x_s . A non-trivial K = 1 + Q/r describes a momentum flow along the string direction.⁵

⁴ The corresponding 1/4 supersymmetric background also has 3-dimensional transverse space and reduces to a D=4 black hole with two charges (it has a=1 black hole metric when two charges are equal). The 5 ± 5 configuration compactified to D=10 gives 4 ± 4 solution of type IIA theory which is T-dual to 3 ± 3 solution of type IIB theory.

⁵ The metric (2.3) with $F_i = 1$ (i.e. $ds^2 = -K^{-1}dt^2 + K[dy_1 + (K^{-1} - 1)dt]^2 + dy_n dy_n + dx_s dx_s$) reduces upon compactification along y_1 direction to the D = 10 type IIA R-R 0-brane background [23] with Q playing the role of the KK electric charge.

Q also has an interpretation of The D=11 metric (2.3) is regular at the r=0 horizon and has a non-zero 9-area of the horizon (we assume that all y_n have period L)

$$A_9 = 4\pi L^7 [r^2 K^{1/2} (F_1 F_2 F_3)^{-1/2}]_{r \to 0} = 4\pi L^7 \sqrt{Q P_1 P_2 P_3} . \tag{2.4}$$

Compactification along $y_2, ... y_7$ leads to a solitonic D = 5 string. Remarkably, the corresponding 6-volume is constant so that one gets directly the Einstein-frame metric

$$ds_5^2 = H^{-1}(dudv + Kdu^2) + H^2dx_sdx_s , \quad H \equiv (F_1F_2F_3)^{-1/3} . \tag{2.5}$$

Further compactification along y_1 or u gives the D=4 (Einstein-frame) metric which is isomorphic to the one of the dyonic black hole [6]

$$ds_4^2 = -\lambda(r)dt^2 + \lambda^{-1}(r)(dr^2 + r^2d\Omega_2^2) , \qquad (2.6)$$

$$\lambda(r) = \sqrt{K^{-1}F_1F_2F_3} = \frac{r^2}{\sqrt{(r+Q)(r+P_1)(r+P_2)(r+P_3)}} \ . \tag{2.7}$$

Note, however, that in contrast to the dyonic black hole background of [6] which has two electric and two magnetic charges here there is one electric (Kaluza-Klein) and 3 magnetic charges. From the D=4 point of view the two backgrounds are related by U-duality. The corresponding 2-area of the r=0 horizon is of course A_9/L^7 .

In the special case when all 4 harmonic functions are equal $(K = F_i = H^{-1})$ the metric (2.3) becomes

$$ds_{11}^2 = H^{-1}dudv + du^2 + dy_2^2 + \dots + dy_6^2 + H^2 dx_s dx_s$$
 (2.8)

$$= -H^{-2}dt^2 + H^2dx_sdx_s + [dy_1 + (H^{-1} - 1)dt]^2 + dy_2^2 + \dots + dy_6^2,$$

and corresponds to a charged solitonic string in D=5 or the Reissner-Nordström (a=0) black hole in D=4 ('unboosted' $5\pm5\pm5$ solution with K=1 and equal F_i reduces to $a=1/\sqrt{3}$ dilatonic D=4 black hole [19]).

A compactification of this $5\pm 5\pm 5+$ 'boost' configuration to D=10 along y_1 gives a type IIA solution corresponding to three 4-branes intersecting over 2-branes plus additional Kaluza-Klein (Ramond-Ramond vector) electric charge background, or, equivalently, to the $0\pm 4\pm 4\pm 4$ configuration of three 4-branes intersecting over 2-branes which in turn intersect over a 0-brane. If instead we compactify along a direction common only to two of the three 5-branes we get $4\pm 4\pm 5+$ 'boost' type IIA solution.⁶ Other related solutions of type IIA and IIB theories can be obtained by applying T-duality and SL(2, Z) duality.

⁶ This may be compared to another type IIA configuration (consisting of solitonic 5-brane lying within a R-R 6-brane, both being intersected over a 'boosted' string by a R-R 2-brane) which also reduces [12,15] to the dyonic D=4 black hole.

3. $2 \pm 2 \pm 5 \pm 5$ solution of D = 11 theory

Solutions with four intersecting M-branes are constructed according to the rules discussed in [15]. The $2\pm2\pm5\pm5$ configuration is described by the following background

$$ds_{11}^2 = (T_1 T_2)^{-1/3} (F_1 F_2)^{-2/3} \left[-T_1 T_2 F_1 F_2 dt^2 \right]$$
(3.1)

$$+ T_{1}F_{1}dy_{1}^{2} + T_{1}F_{2}dy_{2}^{2} + T_{2}F_{1}dy_{3}^{2} + T_{2}F_{2}dy_{4}^{2} + F_{1}F_{2}(dy_{5}^{2} + dy_{6}^{2} + dy_{7}^{2}) + dx_{s}dx_{s}],$$

$$\mathcal{F}_{4} = -3dt \wedge (dT_{1} \wedge dy_{1} \wedge dy_{2} + dT_{2} \wedge dy_{3} \wedge dy_{4})$$

$$+ 3(*dF_{1}^{-1} \wedge dy_{2} \wedge dy_{4} + *dF_{2}^{-1} \wedge dy_{1} \wedge dy_{3}).$$
(3.2)

Here T_i^{-1} are harmonic functions corresponding to the 2-branes and F_i^{-1} are harmonic functions corresponding to the 5-branes, i.e.

$$T_i^{-1} = 1 + \frac{Q_i}{r} , \qquad F_i^{-1} = 1 + \frac{P_i}{r} .$$
 (3.3)

 (y_1, y_2) belong to the first and (y_3, y_4) to the second 2-brane. $(y_1, y_3, y_5, y_6, y_7)$ and $(y_2, y_4, y_5, y_6, y_7)$ are the coordinates of the two 5-branes. Each 2-brane intersects each 5-brane over a string. 2-branes intersect over a 0-brane (x = 0) and 5-branes intersect over a 3-brane.

Various special cases include, in particular, the 2-brane solution [24] $(T_2 = F_1 = F_2 = 1)$, as well as 5 ± 5 $(T_1 = T_2 = 1)$ [19] and 2 ± 5 $(T_1 = F_2 = 1)$, $2 \pm 2 \pm 5$ $(F_2 = 1)$, $2 \pm 5 \pm 5$ $(T_2 = 1)$ [15] configurations (more precisely, their limits when the harmonic functions do not depend on a number of transverse coordinates).

As in the case of the $5\pm 5\pm 5\pm 5$ +'boost' solution (2.3),(2.2), the metric (3.1) is regular at the r=0 horizon (in particular, all internal y_n -components smoothly interpolate between finite values at $r\to\infty$ and $r\to0$) with the 9-area of the horizon being (cf.(2.4))

$$A_9 = 4\pi L^7 [r^2 (T_1 T_2 F_1 F_2)^{-1/2}]_{r\to 0} = 4\pi L^7 \sqrt{Q_1 Q_2 P_1 P_2} . \tag{3.4}$$

The compactification of y_n on 7-torus leads to a D=4 background with the metric which is again the dyonic black hole one (2.6), now with

$$\lambda(r) = \sqrt{T_1 T_2 F_1 F_2} = \frac{r^2}{\sqrt{(r+Q_1)(r+Q_2)(r+P_1)(r+P_2)}} . \tag{3.5}$$

In addition, there are two electric and two magnetic vector fields (as in [6]) and also 7 scalar fields. The two electric and two magnetic charges are *directly* related to the 2-brane and 5-brane charges (cf. (3.2)).

When all 4 harmonic functions are equal $(T_i^{-1} = F_i^{-1} = H)$ the metric (3.1) becomes (cf. (2.8))

$$ds_{11}^2 = -H^{-2}dt^2 + H^2dx_s dx_s + dy_1^2 + \dots + dy_7^2 , \qquad (3.6)$$

i.e. describes a direct product of a D=4 Reissner-Nordström black hole and a 7-torus.

Thus there exists an embedding of the dyonic D=4 black holes into D=11 theory which corresponds to a remarkably symmetric combination of M-branes only. In contrast to the embeddings with a Kaluza-Klein monopole [15] or electric charge ('boost') (2.3),(2.8) it has a diagonal D=11 metric.

4. $3 \pm 3 \pm 3 \pm 3$ solution of type IIB theory

Dimensional reduction of the background (3.1),(3.2) to D=10 along a direction common to the two 5-brane (e.g. y_7) gives a type IIA theory solution representing the R-R p-brane configuration $2\pm2\pm4\pm4$. This configuration is T-dual to $0\pm4\pm4\pm4$ one which is the dimensional reduction of the $5\pm5\pm5+$ 'boost' solution. This suggests also a relation between the two D=11 configurations discussed in Sections 2 and 3.

T-duality along one of the two directions common to 4-branes transforms $2 \pm 2 \pm 4 \pm 4$ into the $3 \pm 3 \pm 3 \pm 3$ solution of type IIB theory. The explicit form of the latter can be found also directly in D=10 type IIB theory (i.e. independently of the above D=11 construction) using the method of [15], where the 1/4 supersymmetric solution corresponding to two intersecting 3-branes was given. One finds the following D=10 metric and self-dual 5-form (other D=10 fields are trivial)

$$ds_{10}^{2} = (T_{1}T_{2}T_{3}T_{4})^{-1/2} \left[-T_{1}T_{2}T_{3}T_{4} dt^{2} \right]$$

$$+ T_{1}T_{2}dy_{1}^{2} + T_{1}T_{3}dy_{2}^{2} + T_{1}T_{4}dy_{3}^{2} + T_{2}T_{3}dy_{4}^{2} + T_{2}T_{4}dy_{5}^{2} + T_{3}T_{4}dy_{6}^{2} + dx_{s}dx_{s} \right] ,$$

$$\mathcal{F}_{5} = dt \wedge (dT_{1} \wedge dy_{1} \wedge dy_{2} \wedge dy_{3} + dT_{2} \wedge dy_{1} \wedge dy_{4} \wedge dy_{5}$$

$$+ dT_{3} \wedge dy_{2} \wedge dy_{4} \wedge dy_{6} + dT_{4} \wedge dy_{3} \wedge dy_{5} \wedge dy_{6}$$

$$+ *dT_{1}^{-1} \wedge dy_{4} \wedge dy_{5} \wedge dy_{6} + *dT_{2}^{-1} \wedge dy_{2} \wedge dy_{3} \wedge dy_{6}$$

$$+ *dT_{3}^{-1} \wedge dy_{1} \wedge dy_{3} \wedge dy_{5} + *dT_{4}^{-1} \wedge dy_{1} \wedge dy_{2} \wedge dy_{4} .$$

$$(4.1)$$

The coordinates of the four 3-branes are (y_1, y_2, y_3) , (y_1, y_4, y_5) , (y_2, y_4, y_6) and (y_3, y_5, y_6) , i.e. each pair of 3-branes intersect over a string and all 6 strings intersect at one point. T_i are the inverse harmonic functions corresponding to each 3-brane, $T_i^{-1} = 1 + Q_i/r$. Like the $2 \pm 2 \pm 5 \pm 5$ background of D = 11 theory this D = 10 solution is 1/8 supersymmetric, has 3-dimensional transverse space and diagonal D = 10 metric.

Its special cases include the single 3-brane [23,25] with harmonic function independent of 3 of 6 transverse coordinates $(T_2 = T_3 = T_4 = 1)$, 3 ± 3 solution found in [15] $(T_3 = T_4 = 1)$ and also $3 \pm 3 \pm 3$ configuration $(T_4 = 1)$. The 1/8 supersymmetric $3 \pm 3 \pm 3$ configuration also has 3-dimensional transverse space⁷ but the corresponding D = 10 metric

$$ds_{10}^{2} = (T_{1}T_{2}T_{3})^{-1/2} \left[-T_{1}T_{2}T_{3} dt^{2} + T_{1}T_{2}dy_{1}^{2} + T_{1}T_{3}dy_{2}^{2} + T_{1}dy_{3}^{2} + T_{2}T_{3}dy_{4}^{2} + T_{2}dy_{5}^{2} + T_{3}dy_{6}^{2} + dx_{s}dx_{s} \right],$$

$$(4.3)$$

⁷ Similar configurations of three and four intersecting 3-branes, and, in particular, their invariance under the 1/8 fraction of maximal supersymmetry were discussed in D-brane representation in [17,16].

is singular at r = 0 and has zero area of the r = 0 horizon.⁸

As in the two D=11 cases discussed in the previous sections, the metric of the $3\pm 3\pm 3\pm 3$ solution (4.1) has r=0 as a regular horizon with finite 8-area (cf.(2.4),(3.4))

$$A_8 = 4\pi L^6 \left[r^2 (T_1 T_2 T_1 T_2)^{-1/2}\right]_{r \to 0} = 4\pi L^6 \sqrt{Q_1 Q_2 Q_3 Q_4} . \tag{4.4}$$

 A_8/L^6 is the area of the horizon of the corresponding dyonic D=4 black hole with the metric (2.6) and

$$\lambda(r) = \sqrt{T_1 T_2 T_3 T_4} = \frac{r^2}{\sqrt{(r+Q_1)(r+Q_2)(r+Q_3)(r+Q_4)}} \ . \tag{4.5}$$

The gauge field configuration here involves 4 pairs of equal electric and magnetic charges. When all charges are equal, the $3\pm 3\pm 3\pm 3$ metric (4.1) compactified to D=4 reduces to the a=0 black hole metric (while the $3\pm 3\pm 3$ metric (4.3) reduces to the $a=1/\sqrt{3}$ black hole metric [26]).

5. Entropy of D = 4 Reissner-Nordström black hole

Above we have demonstrated the existence of supersymmetric extremal D=11 and D=10 configurations with finite entropy which are built solely out of the fundamental p-branes of the corresponding theories (the 2-branes and the 5-branes of the M-theory and the 3-branes of type IIB theory) and reduce upon compactification to D=4 dyonic black hole backgrounds with regular horizon.

Namely, there exists an emdedding of a four dimensional dyonic black hole (in particular, of the non-dilatonic Reissner-Nordström black hole) into D=11 theory which corresponds to a combination of M-branes only. This may allow an application of the approach similar to the one of [14] to the derivation of the entropy (3.4) by counting the number of different BPS excitations of the $2\pm2\pm5\pm5$ M-brane configuration.

The $3\pm3\pm3\pm3$ configuration represents an embedding of the 1/8 supersymmetric dyonic D=4 black hole into type IIB superstring theory which is remarkable in that all four charges enter symmetrically. It is natural to expect that there should exist a microscopic counting of the BPS states which reproduces the Bekenstein-Hawking entropy in a (*U*-duality invariant) way that treats all four charges on an equal footing.

Although we hope to eventually attain a general understanding of this problem, in what follows we shall discuss the counting of BPS states for one specific example discussed above: the M-theory configuration (2.3),(2.2) of the three intersecting 5-branes with a common line. Even though the counting rules of M-theory are not entirely clear, we see an advantage to doing this from M-theory point of view as compared to previous discussions in the context of string theory [12,13]: the 11-dimensional problem is more symmetric. Furthermore, apart from the entropy problem, we may learn something about the M-theory.

⁸ This is similar to what one finds for the 'unboosted' $5\pm5\pm5$ configuration (2.1),(2.2). As is well-known from 4-dimensional point of view, one does need *four* charges to get a regular behaviour of scalars near the horizon and finite area.

5.1. Charge quantization in M-theory and the Bekenstein-Hawking entropy

Upon dimensional reduction to four dimensions, the boosted $5\pm 5\pm 5$ solution (2.3), (2.2), reduces to the 4-dimensional black hole with three magnetic charges, P_1 , P_2 and P_3 , and an electric charge Q. The electric charge is proportional to the momentum along the intersection string of length L, $\mathcal{P} = 2\pi N/L$. The general relation between the coefficient Q in the harmonic function K appearing in (2.3) and the momentum along the D=5 string (cf.(2.5)) wound around a compact dimension of length L is (see e.g. [27])

$$Q = \frac{2\kappa_{D-1}^2}{(D-4)\omega_{D-3}} \cdot \frac{2\pi N}{L} = \frac{\kappa_4^2 N}{L} = \frac{\kappa^2 N}{L^8} , \qquad (5.1)$$

where $\kappa_4^2/8\pi$ and $\kappa^2/8\pi$ are the Newton's constants in 4 and 11 dimensions. All toroidal directions are assumed to have length L.

The three magnetic charges are proportional to the numbers n_1, n_2, n_3 of 5-branes in the (14567), (12367), and the (12345) planes, respectively (see (2.1),(2.3)). The complete symmetry between n_1 , n_2 and n_3 is thus automatic in the 11-dimensional approach. The precise relation between P_i and n_i is found as follows. The charge q_5 of a D=11 5-brane which is spherically symmetric in transverse $d+2 \leq 5$ dimensions is proportional to the coefficient P in the corresponding harmonic function. For d+2=3 appropriate to the present case (two of five transverse directions are isotropic, or, equivalently, there is a periodic array of 5-branes in these compact directions) we get

$$q_5 = \frac{\omega_{d+1}d}{\sqrt{2}\kappa}P \to \frac{\omega_2 L^2}{\sqrt{2}\kappa}P = \frac{4\pi L^2}{\sqrt{2}\kappa}P. \tag{5.2}$$

At this point we need to know precisely how the 5-brane charge is quantized. This was discussed in [9], but we repeat the argument here for completeness. A different argument leading to equivalent results was presented earlier in [28]. Upon compactification on a circle of length L, the M-theory reduces to type IIA string theory where all charge quantization rules are known. We use the fact that double dimensional reduction turns a 2-brane into a fundamental string, and a 5-brane into a Dirichlet 4-brane. Hence, we have

$$T_2 \kappa^2 = T_1 \kappa_{10}^2 , \qquad T_5 \kappa^2 = T_4 \kappa_{10}^2 , \qquad (5.3)$$

where the 10-dimensional gravitational constant is expressed in terms of the 11-dimensional one by $\kappa_{10}^2 = \kappa^2/L$. The charge densities are related to the tensions by

$$q_2 = \sqrt{2\kappa}T_2 , \qquad q_5 = \sqrt{2\kappa}T_5 , \qquad (5.4)$$

and we assume that the minimal Dirac condition is satisfied, $q_2q_5=2\pi$. These relations, together with the 10-dimensional expressions [29]

$$\kappa_{10} = g(\alpha')^2, \qquad T_1 = \frac{1}{2\pi\alpha'}, \qquad \kappa_{10}T_4 = \frac{1}{2\sqrt{\pi\alpha'}}, \qquad (5.5)$$

fix all the M-theory quantities in terms of α' and the string coupling constant, g. In particular, we find

$$\kappa^2 = \frac{g^3(\alpha')^{9/2}}{4\pi^{5/2}} , \qquad L = \frac{g\sqrt{\alpha'}}{4\pi^{5/2}} .$$
(5.6)

The tensions turn out to be

$$T_2 = \frac{2\pi^{3/2}}{g(\alpha')^{3/2}} , \qquad T_5 = \frac{2\pi^2}{g^2(\alpha')^3} .$$
 (5.7)

Note that T_2 is identical to the tension of the Dirichlet 2-brane of type IIA theory, while T_5 – to the tension of the solitonic 5-brane. This provides a nice check on our results, since single dimensional reduction indeed turns the M-theory 2-brane into the Dirichlet 2-brane, and the M-theory 5-brane into the solitonic 5-brane. Note that the M-brane tensions satisfy the relation $2\pi T_5 = T_2^2$, which was first derived in [28] using toroidal compactification to type IIB theory in 9 dimensions. This serves as yet another consistency check.

It is convenient to express our results in pure M-theory terms. The charges are quantized according to 9

$$q_2 = \sqrt{2\kappa T_2} = n\sqrt{2}(2\kappa\pi^2)^{1/3} , \qquad (5.8)$$

$$q_5 = \sqrt{2\kappa} T_5 = n\sqrt{2} (\frac{\pi}{2\kappa})^{1/3} ,$$
 (5.9)

i.e.

$$P_i = \frac{n_i}{2\pi L^2} (\frac{\pi \kappa^2}{2})^{1/3} \ . \tag{5.10}$$

The resulting expression for the Bekenstein-Hawking entropy of the extremal Reissner-Nordström type black hole, (2.6), (2.7), which is proportional to the area (2.4), is

$$S_{BH} = \frac{2\pi A_9}{\kappa^2} = \frac{8\pi^2 L^7}{\kappa^2} \sqrt{P_1 P_2 P_3 Q} = 2\pi \sqrt{n_1 n_2 n_3 N} . \tag{5.11}$$

This agrees with the expression found directly in D=4 [2,3,12,13].

In the case of the $2\pm 2\pm 5\pm 5$ configuration we find (for each pair of 2-brane and 5-brane charges) $q_2=\frac{4\pi L^5}{\sqrt{2}\kappa}Q,\ q_5=\frac{4\pi L^2}{\sqrt{2}\kappa}P$. The Dirac condition on unit charges translates into $q_2q_5=2\pi n_1n_2$, where n_1 and n_2 are the numbers of 2- and 5-branes. We conclude that $Q_1P_1=\frac{\kappa^2}{4\pi L^7}n_1n_2$. Then from (3.4) we learn that

$$S_{BH} = \frac{2\pi A_9}{\kappa^2} = \frac{8\pi^2 L^7}{\kappa^2} \sqrt{Q_1 P_1 Q_2 P_2} = 2\pi \sqrt{n_1 n_2 n_3 n_4} . \tag{5.12}$$

⁹ In [30] it was argued that the 2-brane tension, T_2 , satisfies $\kappa^2 T_2^3 = \pi^2/m_0$, where m_0 is a rational number that was left undetermined. The argument of [28], as well as our procedure [9], unambiguously fix $m_0 = 1/2$.

Remarkably, this result does not depend on the particular choice of M-brane quantization condition (choice of $m_0 = \pi^2 \kappa^{-2} T_2^{-3}$) or use of D-brane tension expression since the $2 \pm 2 \pm 5 \pm 5$ configuration contains equal number of 2-branes and 5-branes. This provides a consistency check. Note also that the D=4 black holes obtained from the $2\pm 2\pm 5\pm 5$ and from the $5\pm 5\pm 5$ M-theory configurations are not identical, but are related by U-duality. The equality of their entropies provides a check of the U-duality.

The same expression is obtained for the entropy of the D = 10 configuration $3 \pm 3 \pm 3 \pm 3$ (4.3) (or related D = 4 black hole). Each 3-brane charge q_3 is proportional to the corresponding coefficient Q in the harmonic function (cf. (5.2))

$$q_3 = \frac{1}{\sqrt{2}} \left(\frac{\omega_{d+1} d}{\sqrt{2} \kappa_{10}} \right) Q \quad \to \quad \frac{\omega_2 L^3}{2 \kappa_{10}} Q = \frac{2\pi L^3}{\kappa_{10}} Q , \qquad (5.13)$$

where $\kappa_{10}^2/8\pi$ is the 10-dimensional Newton's constant and the overall factor $\frac{1}{\sqrt{2}}$ is due to the dyonic nature of the 3-brane. The charge quantization in the self-dual case implies (see [9]) $q_3 = n\sqrt{\pi}$ (the absence of standard $\sqrt{2}$ factor here effectively compensates for the 'dyonic' $\frac{1}{\sqrt{2}}$ factor in the expression for the charge).¹⁰ Thus, $Q_i = \frac{\kappa_{10}}{2\sqrt{\pi}}n_i$, and the area (4.4) leads to the following entropy,

$$S_{BH} = \frac{2\pi A_8}{\kappa_{10}^2} = \frac{8\pi^2 L^6}{\kappa^2} \sqrt{Q_1 Q_2 Q_3 Q_4} = 2\pi \sqrt{n_1 n_2 n_3 n_4} . \tag{5.14}$$

5.2. Counting of the microscopic states

The presence of the factor \sqrt{N} in S_{BH} (5.11) immediately suggests an interpretation in terms of the massless states on the string common to all three 5-branes. Indeed, it is well-known that, for a 1 + 1 dimensional field theory with a central charge c, the entropy of left-moving states with momentum $2\pi N/L$ is, for sufficiently large N, given by c

$$S_{stat} = 2\pi \sqrt{\frac{1}{6}cN} \ . \tag{5.15}$$

We should find, therefore, that the central charge on the intersection string is, in the limit of large charges, equal to

$$c = 6n_1n_2n_3 (5.16)$$

This agrees with the D3-brane tension, $\kappa_{10}T_3 = \sqrt{\pi}$, since in the self-dual case $q_p = \kappa_{10}T_p$.

As pointed out in [31], this expression is reliable only if $N \gg c$. Requiring N to be much greater than $n_1n_2n_3$ is a highly asymmetric choice of charges. If, however, all charges are comparable and large, the entropy is dominated by the multiply wound 5-branes, which we discuss at the end of this section.

The fact that the central charge grows as $n_1n_2n_3$ suggests the following picture. 2-branes can end on 5-branes, so that the boundary looks like a closed string [20,32,33]. It is tempting to associate the massless states with those of 2-branes attached to 5-branes near the intersection point. Geometrically, we may have a two-brane with three holes, each of the holes attached to different 5-dimensional hyperplanes in which the 5-branes lie. Thus, for any three 5-branes that intersect along a line, we have a collapsed 2-brane that gives massless states in the 1+1 dimensional theory describing the intersection. What is the central charge of these massless states? From the point of view of one of the 5-branes, the intersection is a long string in 5+1 dimensions. Such a string has 4 bosonic massless modes corresponding to the transverse oscillations, and 4 fermionic superpartners. Thus, we believe that the central charge arising from the collapsed 2-brane with three boundaries is $4(1+\frac{1}{2})=6$.¹²

The upshot of this argument is that each triple intersection contributes 6 to the central charge. Since there are $n_1n_2n_3$ triple intersections, we find the total central charge $6n_1n_2n_3$. One may ask why there are no terms of order n_1^3 , etc. This can be explained by the fact that all parallel 5-branes are displaced relative to each other, so that the 2-branes produce massless states only near the intersection points.

One notable feature of our argument is that the central charge grows as a product of three charges, while in all D-brane examples one found only a product of two charges. We believe that this is related to the peculiar n^3 growth of the near-extremal entropy of n coincident 5-branes found in [9] (for coincident D-branes the near-extremal entropy grows only as n^2). This is because the intersecting D-brane entropy comes from strings which can only connect objects pairwise. The 2-branes, however, can connect three different 5-branes. Based on our observations about entropy, we conjecture that the geometries where a 2-brane connects four or more 5-branes are forbidden (otherwise, for instance, the near-extremal entropy of n parallel 5-branes would grow faster than n^3). Perhaps such configurations are not supersymmetric and do not give rise to massless states.

The counting argument presented above applies to the configuration where there are n_1 parallel 5-branes in the (14567) hyperplane, n_2 parallel 5-branes in the (12367) hyperplane, and n_3 parallel 5-branes in the (12345) hyperplane. As explained in [31], if $n_1 \sim n_2 \sim n_3 \sim N$ we need to examine a different configuration where one replaces a number of disconnected branes by a single multiply wound brane. Let us consider, therefore, a single 5-brane in the (14567) hyperplane wound n_1 times around the y_1 -circle, a single 5-brane in the (12367) hyperplane wound n_2 times around the y_1 -circle, and a single 5-brane in

Upon compactification on T^7 , these massless modes are simply the small fluctuations of the long string in 4+1 dimensions which is described by the classical solution (2.5). One should be able to confirm that the central charge on this string is equal to 6 by studying its low-energy modes.

the (12345) hyperplane wound n_3 times around the y_1 -circle. Following the logic of [31], one can show that the intersection string effectively has winding number $n_1n_2n_3$: this is because the 2-brane which connects the three 5-branes needs to be transported $n_1n_2n_3$ times around the y_1 -circle to come back to its original state.¹³ Therefore, the massless fields produced by the 2-brane effectively live on a circle of length $n_1n_2n_3L$. This implies [34] that the energy levels of the 1+1 dimensional field theory are quantized in units of $2\pi/(n_1n_2n_3L)$. In this theory there is only one species of the 2-brane connecting the three 5-branes; therefore, the central charge on the string is c=6. The calculation of BPS entropy for a state with momentum $2\pi N/L$, as in [34,31], once again reproduces (5.11). While the end result has the form identical to that found for the disconnected 5-branes, the connected configuration is dominant when all four charges are of comparable magnitude [31]. Now the central charge is fixed, and the large entropy is due to the growing density of energy levels.

6. Black Hole Entropy in D = 5 and Discussion.

The counting arguments presented here are plausible, but clearly need to be put on a more solid footing. Indeed, it is not yet completely clear what rules apply to the 11-dimensional M-theory (although progress has been made in [14]). The rule associating massless states to collapsed 2-branes with three boundaries looks natural, and seems to reproduce the Bekenstein-Hawking entropy of extremal black holes in D=4. Note also that a similar rule can be successfully applied to the case of the finite entropy D=5 extremal dyonic black holes described in 11 dimensions by the 'boosted' 2 ± 5 configuration [15]. Another possible D=11 embedding of the D=5 black hole is provided by $2\pm 2\pm 2$ configuration [15]. The relevant D=10 type IIB configuration is 3 ± 3 (cf. (4.3)) with momentum flow along common string. In the case of 2 ± 5 configuration the massless degrees of freedom on the intersection string may be attributed to a collapsed 2-brane with a hole attached to the 5-brane and one point attached to the 2-brane. If the 5-brane is wound n_1 times and the 2-brane $-n_2$ times, the intersection is described by a c=6

The role of $n_1n_2n_3$ as the effective winding number is suggested also by comparison of the D=5 solitonic string metric, (2.5), with the fundamental string metric, $ds^2=V^{-1}(dudv+Kdu^2)+dx_sdx_s$, where the coefficient in the harmonic function V is proportional to the tension times the winding number of the source string (see e.g. [27]). After a conformal rescaling, (2.5) takes the fundamental string form with $V=H^3=(F_1F_2F_3)^{-1}$ so that near r=0 the dudv part of it is multiplied by $P_1P_2P_3 \sim n_1n_2n_3$. Thus, the source string may be thought of as wound $n_1n_2n_3$ times around the circle.

theory on a circle of length n_1n_2L . Following the arguments of [31], we find that the entropy of a state with momentum $2\pi N/L$ along the intersection string is

$$S_{stat} = 2\pi \sqrt{n_1 n_2 N} \ . \tag{6.1}$$

This seems to supply a microscopic M-theory basis, somewhat different from that in [14], for the Bekenstein-Hawking entropy of D = 5 extremal dyonic black holes.

We would now like to show that (6.1) is indeed equal to the expression for the Bekenstein-Hawking entropy for the 'boosted' $2 \perp 5$ configuration [15] (cf. (5.11))

$$S_{BH} = \frac{2\pi A_9}{\kappa^2} = \frac{4\pi^3 L^6}{\kappa^2} \sqrt{QPQ'} \ . \tag{6.2}$$

Q and P are the parameters in the harmonic functions corresponding to the 2-brane and the 5-brane, and Q' is the parameter in the 'boost' function, i.e. $T^{-1} = 1 + Q/r^2$, $F^{-1} = 1 + P/r^2$, $K = 1 + Q'/r^2$. Note that here (cf. (5.1))

$$Q' = \frac{\kappa^2 N}{\pi L^7} , \qquad q_2 = \frac{4\pi^2 L^4}{\sqrt{2}\kappa} Q , \qquad q_5 = \frac{4\pi^2 L}{\sqrt{2}\kappa} P .$$
 (6.3)

As in the case of the $2\pm 2\pm 5\pm 5$ configuration, we can use the Dirac quantization condition, $q_2q_5=2\pi n_1n_2$, to conclude that $QP=\frac{\kappa^2}{4\pi^3L^5}n_1n_2$. This yields (6.1) when substituted into (6.2). A similar expression for the BPS entropy is found in the case of the completely symmetric $2\pm 2\pm 2$ configuration,

$$S_{BH} = \frac{4\pi^3 L^6}{\kappa^2} \sqrt{Q_1 Q_2 Q_3} = 2\pi \sqrt{n_1 n_2 n_3} , \qquad (6.4)$$

where we have used the 2-brane charge quantization condition (5.8), which implies that $Q_i = n_i L^{-4} (\frac{\kappa}{\sqrt{2\pi}})^{4/3}$. Agreement of different expressions for the D=5 black hole entropy provides another check on the consistency of (5.8),(5.9).

Our arguments for counting the microscopic states applies only to the configurations where M-branes intersect over a string. It would be very interesting to see how approach analogous to the above might work when this is not the case. Indeed, black holes with finite horizon area in D=4 may also be obtained from the $2\pm2\pm5\pm5$ configuration in M-theory, and the $3\pm3\pm3\pm3$ one in type IIB, while in D=5 – from the $2\pm2\pm2$ configuration. Although from the D=4, 5 dimensional point of view these cases are related by U-duality to the ones we considered, the counting of their states seems to be harder at the present level of understanding. We hope that a more general approach to the entropy problem, which covers all the solutions we discussed, can be found.

7. Acknowledgements

We are grateful to V. Balasubramanian, C. Callan and M. Cvetič for useful discussions. I.R.K. was supported in part by DOE grant DE-FG02-91ER40671, the NSF Presidential Young Investigator Award PHY-9157482, and the James S. McDonnell Foundation grant No. 91-48. A.A.T. would like to acknowledge the support of PPARC, ECC grant SC1*-CT92-0789 and NATO grant CRG 940870.

References

- [1] A. Sen, Mod. Phys. Lett. A10 (1995) 2081, hep-th/9504147.
- [2] F. Larsen and F. Wilczek, hep-th/9511064.
- [3] M. Cvetič and A.A. Tseytlin, Phys. Rev. D53 (1996) 5619, hep-th/9512031.
- [4] A. Strominger and C. Vafa, hep-th/9601029.
- [5] R. Kallosh, A. Linde, T. Ortín, A. Peet and A. van Proeyen, Phys. Rev. D46 (1992) 5278.
- [6] M. Cvetič and D. Youm, Phys. Rev. D53 (1996) 584, hep-th/9507090.
- [7] M. Cvetič and A.A. Tseytlin, Phys. Lett. B366 (1996) 95, hep-th/9510097.
- [8] A.A. Tseytlin, Mod. Phys. Lett. A11 (1996) 689, hep-th/9601177.
- [9] I.R. Klebanov and A.A. Tseytlin, hep-th/9604089 (revised).
- [10] M. Cvetič and D. Youm, unpublished.
- [11] C.G. Callan and J.M. Maldacena, hep-th/9602043.
- [12] J.M. Maldacena and A. Strominger, hep-th/9603060.
- [13] C. Johnson, R. Khuri and R. Myers, hep-th/9603061.
- [14] R. Dijkgraaf, E. Verlinde and H. Verlinde, hep-th/9603126; hep-th/9604055.
- [15] A.A. Tseytlin, hep-th/9604035.
- [16] V. Balasubramanian and F. Larsen, hep-th/9604189.
- [17] M.B. Green and M. Gutperle, hep-th/9604091.
- [18] M. Cvetič and A. Sen, unpublished.
- [19] G. Papadopoulos and P.K. Townsend, hep-th/9603087.
- [20] A. Strominger, hep-th/9512059.
- [21] G. Papadopoulos, hep-th/9604068.
- [22] R. Güven, Phys. Lett. B276 (1992) 49.
- [23] G.T. Horowitz and A. Strominger, Nucl. Phys. B360 (1991) 197.
- $[24]\,$ M.J. Duff and K.S. Stelle, Phys. Lett. B253 (1991) 113.
- [25] M.J. Duff and J.X. Lu, Phys. Lett. B273 (1991) 409.
- [26] G.W. Gibbons and K. Maeda, Nucl. Phys. B298 (1988) 741.
- [27] A. Dabholkar, J.P. Gauntlett, J.A. Harvey and D. Waldram, hep-th/9511053.
- [28] J.H. Schwarz, hep-th/9510086.
- [29] J. Polchinski, S. Chaudhuri and C.V. Johnson, hep-th/9602052.
- [30] M.J. Duff, J.T. Liu and R. Minasian, Nucl. Phys. B452 (1995) 261, hep-th/9506126.
- [31] J. Maldacena and L. Susskind, hep-th/9604042.
- [32] P.K. Townsend, hep-th/9512062.
- [33] K. Becker and M. Becker, hep-th/9602071.
- [34] S. Das and S. Mathur, hep-th/9601152.