Import the important modules

```
In [2]:
```

```
import pandas as pd # for Dataframe.
import numpy as np # for array formation.
import pickle
import datetime # for datetime.
import string
import random as ran # for randomization
from random import randint
import matplotlib.pyplot as plt # for plotting
import matplotlib.image as mpimg
import re # for regular expression
import nltk # for natural language processing
import tensorflow as tf # for tensorflow
import warnings
warnings.filterwarnings('ignore')
from tqdm import tqdm
from sklearn.utils import shuffle #for randomization in data.
from sklearn.model_selection import train test split #split the data
from tensorflow.keras.applications.xception import Xception ,preprocess input # use pre-trained xc
eption model for image feature extraction.
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.text import Tokenizer# for tokenization of text data.
from tensorflow.keras.preprocessing.sequence import pad_sequences # padding the text tokenize sequ
```

Let's import the data files

In [4]:

```
train_input = np.load("/content/train_input.npy",allow_pickle=True)
train_output = np.load("/content/train_output.npy",allow_pickle=True)

validation_input = np.load("/content/validation_input.npy",allow_pickle=True)
validation_output = np.load("/content/validation_output.npy",allow_pickle=True)

test_input = np.load("/content/test_input.npy",allow_pickle=True)
test_output = np.load("/content/test_output.npy",allow_pickle=True)
```

MAKE THE WORD EMBEDDINGS USING FATSTEXT PRE-TRAINED MODELS

tokenizer

```
In [5]:
```

```
token = pickle.load(open("/content/tokenizer.pkl", 'rb'))
embedding_matrix = pickle.load(open("/content/embedding_matrix_oversample.pkl", 'rb'))
path= pickle.load(open("/content/path.pkl", 'rb'))
```

In [6]:

```
from google.colab import drive# import the drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

In [7]:

```
maximum_length_output_sentences= 80
```

```
SIZE_OF_BATCH=32 #Batch size
SIZE_OF_BUFFER= 500 #Batch Buffer
DIMENSION_OF_EMBEDDING= 300 #Embedding
UNITS= 300 #units
```

Lets get encoder and decoder

```
In [9]:
```

```
from tensorflow.keras.layers import Dense, Flatten, Dropout, Conv2D, Reshape, Concatenate
class encoder(tf.keras.Model):
    """ encoder for image features extracted by pre-trained model"""
    def __init__ (self,DIMENSION_OF_EMBEDDING):
        super(encoder,self).__init__ ()
        self.flat=tf.keras.layers.Flatten()
        self.dense = tf.keras.layers.Dense(DIMENSION_OF_EMBEDDING, kernel_initializer=tf.keras.initiali
zers.glorot_uniform(seed=45),name='output_layer_of_encoder')# dense layer.

def call(self, a):
    concatination_enc= Concatenate()([a[:,0], a[:,1]])# concatenate
    a=self.flat(concatination_enc)
    a =self.dense(a)
    return a
```

In [10]:

```
class decoder(tf.keras.Model):
  """ RNN decoder with attention over image features."""
 def init (self, DIMENSION OF EMBEDDING, UNITS, size of vocabulary):
       super(decoder, self). init ()
       self.units = UNITS
       self.concat = tf.keras.layers.Concatenate()
       self.embedding = tf.keras.layers.Embedding(size of vocabulary,DIMENSION OF EMBEDDING,weight
s=[embedding matrix], input length=maximum length output sentences, trainable=False)
       self.lstm = tf.keras.layers.LSTM(self.units,
                                       return sequences=True,
                                       return state=True,
                                       recurrent initializer=tf.keras.initializers.glorot uniform(s
ed=45))
       self.dense = tf.keras.layers.Dense(size of vocabulary, kernel initializer=tf.keras.initiali
zers.glorot uniform(seed=45))
       self.attention = tf.keras.layers.AdditiveAttention(self.units)
        self.flatten = tf.keras.layers.Flatten()
 def call(self, a,features,hidden):
       attention outputs = self.attention([features, hidden]) # attention have the encoder
features and the hidden states
       embedding = self.embedding(a) # here we make the embedding of text
       concat output = self.concat([embedding,tf.expand dims(attention outputs,1)]) # here we conca
t the embedding and attention output
       output, prev_state_vector,_ = self.lstm(concat_output) # here we pass the concat output
       a= self.flatten(output)
       a= self.dense(a)
       return a,prev_state_vector
```

In [11]:

```
size_of_vocabulary=1445
```

In [12]:

```
Encoder= encoder(DIMENSION_OF_EMBEDDING) # encoder
```

In [13]:

```
Decoder= decoder(DIMENSION_OF_EMBEDDING, UNITS, size_of_vocabulary)# decoder
```

In [14]:

```
Encoder.built = True
Decoder.built = True
```

```
In [15]:
encod temp = Encoder(np.random.rand(1,30,1024))
In [16]:
decod temp = Decoder(np.random.rand(1,1),np.random.rand(1,300),np.random.rand(1,300))
In [17]:
Encoder.load_weights('/content/abhi_krishna_oversample_weights_encoder_final_final.h5')
In [18]:
Decoder.load weights('/content/drive/MyDrive/abhi krishna oversample weights decoder final.h5')
In [19]:
# base model= tf.keras.applications.VGG16(include top=False,weights ='imagenet')
# model for image features= Model(inputs=base model.input,
outputs=base model.get layer('block5 pool').output)
In [20]:
from tensorflow.keras.layers import Dense, Dropout, Input, Conv2D
from tensorflow.keras.applications import densenet
chex = densenet.DenseNet121(include_top=False, weights = None, input_shape=(299,299,3))
X = chex.output
X = Dense(14, activation="sigmoid", name="predictions")(X)
model = Model(inputs=chex.input, outputs=X)
model.load weights('/content/drive/MyDrive/brucechou1983 CheXNet Keras 0.3.0 weights.h5')
model = Model(inputs = model.input, outputs = model.layers[-2].output)
avg pooling=tf.keras.layers.GlobalAveragePooling2D(data format=None)(model.output)
model for image features=Model(inputs=model.input,outputs=avg pooling)
In [21]:
def tensor of image (path of image, name of image, model):
  """ Here we extract the features of the image"""
 i = tf.io.read file(path of image + str(name of image)) # read file
 i = tf.image.decode jpeg(i, channels=3) # decode the jpeg
 i = tf.image.resize(i, (299,299)) # resize the image
  i = tf.keras.applications.xception.preprocess input(i) # extract the features with the help of xc
eption model.
  features of the image = model(tf.constant(i)[None, :]) # features of image.
 return features of the image
In [22]:
def score(x):
    """cumulative score of the sentences"""
    return x[1]/len(x[0])
def beam search(name of image, beam index):
    """take image as input in beam search"""
    hidden 1 = tf.zeros((1, UNITS)) # Initialize the hidden state
    tensor of im = tf.convert to tensor([tensor of image(path of image,path[0],
model_for_image_features), # img[0], img[1]
                                      tensor of image (path of image, path [1],
model for image features)])
   features of image = tf.constant(tensor of im) [None, :] # get the features of the image
    values of features = Encoder (features of image) # get the encoder output
    start = [token.word_index["<start>"]] # here we get the start index
    word decoder = [[start, 0.0]]
    while len(word decoder[0][0]) < maximum length output sentences:</pre>
       temp = []
        for s in word decoder:
```

predict,hidden 1 = Decoder(tf.cast(tf.expand dims([s[0][-1]], 0), tf.float32),

```
values of features, hidden 1) # het the output from the decoder
            word preds = np.argsort(predict[0])[-beam index:]# here we return the indices of the pr
edictions
            # Getting the top <beam index>(n) predictions and creating a
            # new list so as to put them via the model again
            for w in word preds:
               next cap, prob = s[0][:], s[1]# here we get the next impresssiona and probability s
core
               next cap.append(w)
                prob += predict[0][w]
               temp.append([next cap, prob.numpy()])
       word decoder = temp
        # Sorting according to the probabilities scores
       word decoder = sorted(word decoder, reverse=False, key=score)
        # Getting the top words
       word decoder = word decoder[-beam index:]
   word decoder = word decoder[-1][0]
   impression = [token.index_word[i] for i in word_decoder if i !=0]
   result = []
   for i in impression:
       if i != '<end>':
            result.append(i)
       else:
           break
   text = ' '.join(result[1:])
   return result, text
```

In [23]:

```
import matplotlib.image as mpimg
from nltk.translate.bleu score import sentence bleu
def test_img_cap_beam(img_data, actual_text, beam_indexing):
   result, text = beam_search(img_data, beam_index = beam_indexing)
    """Displays images for given input array of image names"""
    """ it will display the images for the given array of images names"""
   fig, axs = plt.subplots(1, len(img_data), figsize = (10,10), tight_layout=True)
   count = 0
   for img, subplot in zip(img data, axs.flatten()):
        img =mpimg.imread(path of image+img)
       imgplot = axs[count].imshow(img , cmap = 'bone')
       count +=1
   plt.show()
   reference = [actual_text.split()[1:-1]]
   result = result[1:]
   print("Beam Search index is :", beam_indexing)
   print("Actual impression is:", actual text)
   print("Predicted impression is :",text)
   print('*'*50)
   print('One-gram: {:.4f} || Cumulative one gram: {:.4f}'.format(sentence_bleu(reference, resul
t, weights=(1, 0, 0, 0)), sentence_bleu(reference, result, weights=(1, 0, 0, 0))))
   print('Two-gram: {:.4f} || Cumulative two gram: {:.4f}'.format(sentence bleu(reference, resul
t, weights=(0, 1, 0, 0)), sentence bleu(reference, result, weights=(0.5, 0.5, 0, 0))))
   print('Three-gram: {:.4f}|| Cumulative three gram: {:.4f}'.format(sentence bleu(reference, res
ult, weights=(0, 0, 1, 0)), sentence_bleu(reference, result, weights=(0.33, 0.33, 0.33, 0))))
   print('Four-gram: {:.4f} || Cumulative four gram: {:.4f}'.format(sentence_bleu(reference, resul
  weights=(0, 0, 0, 1)), sentence bleu(reference, result, weights=(0.25, 0.25, 0.25, 0.25))))
```

Let's test the image caption

Here we see the bleu score for multiple grams based on argmax and beam search

```
In [24]:
```

```
path_of_image='/content/drive/My Drive/NLMCXR_png/' # from this path we get our images.
```

```
In [25]:
```

```
test_img_cap_beam(test_input[6], test_output[6], 3)
```


Beam Search index is : 3

Actual impression is: <start> heart size normal right hilar calcifications are suggestive prior granulomatous disease otherwise the mediastinal silhouette and pulmonary vascularity are within no rmal limits there no focal airspace consolidation pleural effusion pneumothora <end>

Predicted impression is : with clear infiltrate disease chest within

One-gram: 0.0061 || Cumulative one gram: 0.0061 Two-gram: 0.0183 || Cumulative two gram: 0.0106 Three-gram: 0.0183|| Cumulative three gram: 0.0127 Four-gram: 0.0183 || Cumulative four gram: 0.0139

In [26]:

test_img_cap_beam(test_input[45], test_output[45], 5)

Beam Search index is : 5

Actual impression is: <start> no acute pulmonary abnormality moderate cardiomegaly without pulmonary edema <end>

Predicted impression is : with normal lungs pleural may normal lungs pleural infiltrate disease chest lung appearance chest lung disease chest lung no cardiopulmonary atelectasis limits chest lung no cardiopulmonary left stable chronic

One-gram: 0.0345 || Cumulative one gram: 0.0345 Two-gram: 1.0000 || Cumulative two gram: 0.1857 Three-gram: 1.0000|| Cumulative three gram: 0.3292

In [27]:

test_img_cap_beam(test_input[98], test_output[98], 3)

Beam Search index is: 3

Actual impression is: <start> heart size normal lungs are clear calcified granuloma the left midlung status post resection left upper lobe no adenopathy nodules masses no effusion <end> Predicted impression is: with clear infiltrate disease chest within

One-gram: 0.0098 || Cumulative one gram: 0.0098 Two-gram: 0.0588 || Cumulative two gram: 0.0240 Three-gram: 0.0588|| Cumulative three gram: 0.0326 Four-gram: 0.0588 || Cumulative four gram: 0.0376

In [28]:

test_img_cap_beam(test_input[150], test_output[150], 9)

Beam Search index is : 9
Actual impression is: <start> picc catheter tip mid svc heart size normal lungs clear <end>
Predicted impression is : no cardiopulmonary left stable chronic

One-gram: 0.0000 || Cumulative one gram: 0.0000

```
Three-gram: 0.0000 || Cumulative three gram: 0.0000 Four-gram: 0.0000 || Cumulative four gram: 0.0000
```

In [29]:

```
columns = ["idx", "image_1", "image_2", "actual", "predicted", "score"]
df = pd.DataFrame(columns = columns)
for i in tqdm(range(len(test_input))):
    result, text_predicted = beam_search(test_input[i])
    actual = ' '.join([str(elem) for elem in test_output[i].split()[1:-1]])
    predicted = ' '.join([str(elem) for elem in result[1:]])
    df = df.append(pd.Series([i, test_input[i][0], test_input[i][1], actual, predicted,
sentence_bleu([test_output[i].split()[1:-1]], result[1:], weights=(1, 0, 0, 0))], index = columns),
ignore_index = True)
df.head(20)
```

100%| 399/399 [35:25<00:00, 5.33s/it]

Out[29]:

	idx	image_1	image_2	actual	predicted	score
0	0	CXR1979_IM-0637- 2001.png	CXR1979_IM-0637- 1001.png	there no radiographic evidence acute cardiopul	no cardiopulmonary left stable chronic	0.268128
1	1	CXR1458_IM-0296- 1001.png	CXR1458_IM-0296- 2001.png	stable cardiomegaly clear lungs	with clear normal lungs pleural lung further c	0.103448
2	2	CXR1204_IM-0138- 2001.png	CXR1204_IM-0138- 1001.png	no acute cardiopulmonary disease	with normal lungs pleural may normal lungs ple	0.103448
3	3	CXR2190_IM-0800- 3001.png	CXR2190_IM-0800- 2001.png	clear lungs	no cardiopulmonary left stable no study airspa	0.000000
4	4	CXR3656_IM-1817- 1001.png	CXR3656_IM-1817- 2001.png	negative for acute cardiopulmonary disease	with no fluid copd active no fractures chest a	0.000000
5	5	CXR3741_IM-1869- 1002001.png	CXR3741_IM-1869- 1002001.png	no active disease	with no fluid copd active no fractures chest a	0.105263
6	6	CXR603_IM-2193- 2001.png	CXR603_IM-2193- 1001.png	heart size normal right hilar calcifications a	opacity findings the chest chest abdomen the m	0.106667
7	7	CXR1870_IM-0563- 1001.png	CXR1870_IM-0563- 2001.png	marked cardiomegaly low lung volumes	abnormality pneumonia are without limits no in	0.038462
8	8	CXR2694_IM-1165- 1001.png	CXR2694_IM-1165- 2001.png	no acute cardiopulmonary disease	opacity findings the chest chest abdomen the m	0.026667
9	9	CXR3975_IM-2035- 1001.png	CXR3975_IM-2035- 2001.png	no acute cardiopulmonary findings	opacity findings right abnormality findings mo	0.100000
10	10	CXR508_IM-2125- 1002.png	CXR508_IM-2125- 1001.png	no acute cardiopulmonary abnormality	opacity findings right abnormality findings mo	0.100000
11	11	CXR3660_IM-1820- 1001.png	CXR3660_IM-1820- 2001.png	negative for acute cardiopulmonary abnormality	abnormality pneumonia are without limits no in	0.076923
12	12	CXR25_IM-1024- 2001.png	CXR25_IM-1024- 3001.png	left lower lobe airspace disease and bilateral	with clear infiltrate disease chest within	0.009803
13	13	CXR2473_IM-1003- 2001.png	CXR2473_IM-1003- 1001.png	no acute disease	no cardiopulmonary left stable chronic	0.200000
14	14	CXR3734_IM-1866- 2001.png	CXR3734_IM-1866- 1001.png	no acute cardiopulmonary abnormality	opacity findings the chest chest abdomen the m	0.040000
15	15	CXR2835_IM-1251- 1001.png	CXR2835_IM-1251- 2001.png	no acute cardiopulmonary findings	abnormality pneumonia are without limits no in	0.076923
16	16	CXR549_IM-2153- 2001.png	CXR549_IM-2153- 1001.png	no acute cardiopulmonary process stable appear	with clear infiltrate disease chest within	0.000000
17	17	CXR1744_IM-0489- 2001.png	CXR1744_IM-0489- 1001.png	no acute cardiopulmonary abnormality	with clear normal lungs pleural lung further c	0.068966
18	18	CXR790_IM-2329- 1001.png	CXR790_IM-2329- 1002.png	no active disease	no cardiopulmonary left stable no study airspa	0.052632
19	19	CXR3566_IM-1751- 4004.png	CXR3566_IM-1751- 1001.png	no acute cardiopulmonary abnormality technical	no cardiopulmonary pulmonary evaluation view n	0.100000

T [201

ın [30]:

```
poor_data_frame= df[df['score']<0.08]</pre>
```

In [31]:

```
poor_data_frame.head()
```

Out[31]:

	idx	idx image_1 image_2 actual predicted		score		
3	3	CXR2190_IM-0800- 3001.png	CXR2190_IM-0800- 2001.png	clear lungs	no cardiopulmonary left stable no study airspa	0.000000
4	4	CXR3656_IM-1817- 1001.png	CXR3656_IM-1817- 2001.png	negative for acute cardiopulmonary disease	with no fluid copd active no fractures chest a	0.000000
7	7	CXR1870_IM-0563- 1001.png	CXR1870_IM-0563- 2001.png	marked cardiomegaly low lung volumes	abnormality pneumonia are without limits no in	0.038462
8	8	CXR2694_IM-1165- 1001.png	CXR2694_IM-1165- 2001.png	no acute cardiopulmonary disease	opacity findings the chest chest abdomen the m	0.026667
11	11	CXR3660_IM-1820- 1001.png	CXR3660_IM-1820- 2001.png	negative for acute cardiopulmonary abnormality	abnormality pneumonia are without limits no in	0.076923

Let's check the duplicate images poor score as well

In [32]:

```
poor_data_frame['duplicate_img'] = np.where(poor_data_frame['image_1'] == poor_data_frame['image_2']
, 1, 0)
```

In [33]:

```
poor_data_frame.head()
```

Out[33]:

	idx	image_1	image_2	actual	predicted	score	duplicate_img
3	3	CXR2190_IM-0800- 3001.png	CXR2190_IM-0800- 2001.png	clear lungs	no cardiopulmonary left stable no study airspa	0.000000	0
4	4	CXR3656_IM-1817- 1001.png	CXR3656_IM-1817- 2001.png	negative for acute cardiopulmonary disease	with no fluid copd active no fractures chest a	0.000000	0
7	7	CXR1870_IM-0563- 1001.png	CXR1870_IM-0563- 2001.png	marked cardiomegaly low lung volumes	abnormality pneumonia are without limits no in	0.038462	0
8	8	CXR2694_IM-1165- 1001.png	CXR2694_IM-1165- 2001.png	no acute cardiopulmonary disease	opacity findings the chest chest abdomen the m	0.026667	0
11	11	CXR3660_IM-1820- 1001.png	CXR3660_IM-1820- 2001.png	negative for acute cardiopulmonary abnormality	abnormality pneumonia are without limits no in	0.076923	0

Let's count the values of duplicate images which have poor score

In [34]:

```
poor_data_frame['duplicate_img'].value_counts()
```

Out[34]:

0 189 1 27

Name: duplicate_img, dtype: int64

- So, there are 27 duplicate image data whose predicted score is poor as we already know that these data point we considered as noise and equally split among all the data sets.
- Let's ignore those data points in the prediction and perform the analysis.

```
In [35]:
```

Out[35]:

	idx	image_1	image_2	actual	predicted	score
0	0	CXR1979_IM-0637- 2001.png	CXR1979_IM-0637- 1001.png	there no radiographic evidence acute cardiopul	opacity findings right abnormality findings mo	0
1	1	CXR1458_IM-0296- 1001.png	CXR1458_IM-0296- 2001.png	stable cardiomegaly clear lungs	with no fluid copd active no fractures chest a	0
2	2	CXR1204_IM-0138- 2001.png	CXR1204_IM-0138- 1001.png	no acute cardiopulmonary disease	no cardiopulmonary left stable chronic	0.4
3	3	CXR2190_IM-0800- 3001.png	CXR2190_IM-0800- 2001.png	clear lungs	with clear normal lungs pleural lung further c	0.0689655
4	4	CXR3656_IM-1817- 1001.png	CXR3656_IM-1817- 2001.png	negative for acute cardiopulmonary disease	opacity findings right abnormality findings mo	0.2
5	6	CXR603_IM-2193- 2001.png	CXR603_IM-2193- 1001.png	heart size normal right hilar calcifications a	no cardiopulmonary left stable no study airspa	0.117997
6	7	CXR1870_IM-0563- 1001.png	CXR1870_IM-0563- 2001.png	marked cardiomegaly low lung volumes	with normal lungs pleural may normal lungs ple	0.0344828
7	8	CXR2694_IM-1165- 1001.png	CXR2694_IM-1165- 2001.png	no acute cardiopulmonary disease	opacity findings right abnormality findings mo	0
8	9	CXR3975_IM-2035- 1001.png	CXR3975_IM-2035- 2001.png	no acute cardiopulmonary findings	with clear normal lungs pleural lung further c	0.103448
9	10	CXR508_IM-2125- 1002.png	CXR508_IM-2125- 1001.png	no acute cardiopulmonary abnormality	opacity findings right abnormality findings mo	0.1
10	11	CXR3660_IM-1820- 1001.png	CXR3660_IM-1820- 2001.png	negative for acute cardiopulmonary abnormality	with no fluid copd active no fractures chest a	0.0526316
11	12	CXR25_IM-1024- 2001.png	CXR25_IM-1024- 3001.png	left lower lobe airspace disease and bilateral	with normal lungs pleural may normal lungs ple	0.137931
12	13	CXR2473_IM-1003- 2001.png	CXR2473_IM-1003- 1001.png	no acute disease	with normal lungs pleural may normal lungs ple	0.0689655
13	14	CXR3734_IM-1866- 2001.png	CXR3734_IM-1866- 1001.png	no acute cardiopulmonary abnormality	with clear infiltrate disease chest within	0
14	15	CXR2835_IM-1251- 1001.png	CXR2835_IM-1251- 2001.png	no acute cardiopulmonary findings	opacity findings the chest chest abdomen the m	0.04
15	16	CXR549_IM-2153- 2001.png	CXR549_IM-2153- 1001.png	no acute cardiopulmonary process stable appear	opacity findings the chest chest abdomen the m	0.08
16	17	CXR1744_IM-0489- 2001.png	CXR1744_IM-0489- 1001.png	no acute cardiopulmonary abnormality	with clear normal lungs pleural lung further c	0.0689655
17	18	CXR790_IM-2329- 1001.png	CXR790_IM-2329- 1002.png	no active disease	opacity findings right abnormality findings mo	0
18	19	CXR3566_IM-1751- 4004.png	CXR3566_IM-1751- 1001.png	no acute cardiopulmonary abnormality technical	opacity findings the chest chest abdomen the m	0.04
19	21	CXR2994_IM-1380- 1001.png	CXR2994_IM-1380- 2001.png	no acute pulmonary disease	with clear normal lungs pleural lung further c	0.0689655

Let's get the best score data points

In [36]:

```
best_score_data_points= df1[df1['score']>0.3]
best_score_data_points.head()
```

Out[36]:

	idx	image_1	image_2	actual	predicted	score
2	2	CXR1204_IM-0138- 2001.png	CXR1204_IM-0138- 1001.png	no acute cardiopulmonary disease	no cardiopulmonary left stable chronic	0.4
32	34	CXR1477_IM-0309- 2001.png	CXR1477_IM-0309- 1001.png	no acute cardiopulmonary findings	no cardiopulmonary left stable chronic	0.4
53	61	CXR3075_IM-1436- 1001.png	CXR3075_IM-1436- 2001.png	no acute cardiopulmonary findings	no cardiopulmonary left stable chronic	0.4
60	68	CXR429_IM-2070- 1001.png	CXR429_IM-2070- 2001.png	no acute cardiopulmonary findings	no cardiopulmonary left stable chronic	0.4
96	110	CXR1199_IM-0133- 1002.png	CXR1199_IM-0133- 1001.png	no radiographic evidence active cardiopulmonar	no cardiopulmonary left stable chronic	0.327492

Let's sort these values according to score

In [37]:

```
sorted_values = df1.sort_values('score', ascending= False)
sorted_values.head()
```

Out[37]:

	idx	image_1	image_2	actual	predicted	score
287	324	CXR609_IM-2197- 1001.png	CXR609_IM-2197- 2001.png	no acute cardiopulmonary abnormality	no cardiopulmonary left stable chronic	0.4
60	68	CXR429_IM-2070- 1001.png	CXR429_IM-2070- 2001.png	no acute cardiopulmonary findings	no cardiopulmonary left stable chronic	0.4
145	164	CXR532_IM-2140- 1001.png	CXR532_IM-2140- 2001.png	no acute cardiopulmonary abnormality	no cardiopulmonary left stable chronic	0.4
119	138	CXR3470_IM-1686- 2001.png	CXR3470_IM-1686- 1001.png	no acute cardiopulmonary abnormalities	no cardiopulmonary left stable chronic	0.4
32	34	CXR1477_IM-0309- 2001.png	CXR1477_IM-0309- 1001.png	no acute cardiopulmonary findings	no cardiopulmonary left stable chronic	0.4

Let's get the length of sorted data frame

In [38]:

```
length_sorted_data_frame= len(sorted_values[sorted_values['score']<0.08])
length_sorted_data_frame</pre>
```

Out[38]:

204

In [39]:

```
print('\{:.1f\} % of the data seems having poor bleu score. let take the those data point do some an alysis'.format((204/375)*100))
```

54.4 % of the data seems having poor bleu score. let take the those data point do some analysis

In [40]:

```
poor_data_frame= sorted_values[sorted_values['score']<0.08]
poor_data_frame.head()</pre>
```

Out[40]:

idx	image_1	image_2	actual	predicted	score
	CXR1957 IM-0624-	CXR1957 IM-0624-	bilateral pleural effusions right larger	opacity findings the chest chest	

0.08 score	abdom ened	t aet ual	୍ଲିନ(aʻge <u>n</u> 2	46/24g₽ <u>n</u> g	230 idx	203
0.08	opacity findings the chest chest abdomen the m	limited eamination with stable cardiomegaly an	CXR1961_IM-0628- 2001.png	CXR1961_IM-0628- 3001.png	177	158
0.08	opacity findings the chest chest abdomen the m	no acute cardiopulmonary process stable appear	CXR549_IM-2153- 1001.png	CXR549_IM-2153- 2001.png	16	15
0.08	opacity findings the chest chest abdomen the m	continued hilar fullness consistent with adeno	CXR3972_IM-2032- 2001.png	CXR3972_IM-2032- 1001.png	211	184
0.0769231	abnormality pneumonia are without limits no in	no acute cardiopulmonary finding	CXR1208_IM-0141- 2001.png	CXR1208_IM-0141- 1001.png	329	292

Lets get the word count of actual impression of the poor bleau score data frame

In [41]:

```
poor_data_frame['actual_count'] = poor_data_frame['actual'].astype(str).str.split().apply(lambda x:
0 if x==None else len(x))
poor_data_frame.head()
```

Out[41]:

	idx	image_1	image_2	actual	predicted	score	actual_count
203	230	CXR1957_IM- 0624-4004.png	CXR1957_IM- 0624-0001.png	bilateral pleural effusions right larger than	opacity findings the chest chest abdomen the m	0.08	23
158	177	CXR1961_IM- 0628-3001.png	CXR1961_IM- 0628-2001.png	limited eamination with stable cardiomegaly an	opacity findings the chest chest abdomen the m	0.08	14
15	16	CXR549_IM-2153- 2001.png	CXR549_IM-2153- 1001.png	no acute cardiopulmonary process stable appear	opacity findings the chest chest abdomen the m	0.08	10
184	211	CXR3972_IM- 2032-1001.png	CXR3972_IM- 2032-2001.png	continued hilar fullness consistent with adeno	opacity findings the chest chest abdomen the m	0.08	22
292	329	CXR1208_IM- 0141-1001.png	CXR1208_IM- 0141-2001.png	no acute cardiopulmonary finding	abnormality pneumonia are without limits no in	0.0769231	4

In [42]:

```
print('The shape of the poor bleau score data frame is:',poor_data_frame.shape)
```

The shape of the poor bleau score data frame is: (204, 7)

Description of actual count in which we get the min and max word count.

In [43]:

```
poor_data_frame['actual_count'].describe()
```

Out[43]:

```
count 204.000000
mean 9.053922
std 9.152890
min 1.000000
25% 4.000000
50% 4.000000
75% 12.000000
max 49.000000
Name: actual_count, dtype: float64
```

• minimum word count is 1 and maximum word count is 49 . we have used the max_length_of_words in our prediction as 80 but here in actua there is no word who is larger than 80. so no need to ignore any actual sentence.

Let's do each data point analysis

In [44]:

import random

In [47]:

```
random_point=random.choice(poor_data_frame.index.tolist())
names_of_image = [poor_data_frame["image_1"][random_point], poor_data_frame["image_2"]
[random_point]]
fig, axs = plt.subplots(1, len(names_of_image), figsize = (10,10), tight_layout=True)
cnt = 0
for img, subplot in zip(names_of_image, axs.flatten()):
    img_=mpimg.imread(path_of_image+img)
    imgplot = axs[cnt].imshow(img_, cmap = 'bone')
    cnt +=1
plt.show()
print("bleau-Score:", poor_data_frame["score"][random_point])
print("Actual impression:", poor_data_frame["actual"][random_point])
print("Predicted impression:", poor_data_frame["predicted"][random_point])
print("count of words:", poor_data_frame["actual_count"][random_point])
```


bleau-Score: 0.03448275862068965

Actual impression: cardiomegaly and small bilateral pleural effusions abnormal pulmonary opacities most suggestive pulmonary edema primary differential diagnosis includes infection and aspiration c linical correlation recommended

Predicted impression: with clear normal lungs pleural lung further chest abdomen disease density this disease lobe findings low the heart no cardiopulmonary left stable no cardiopulmonary finding no cardiopulmonary left right

count of words: 23

- here length of word is 23 and there is overlap in the actual impression words as well as predicted impression
- length of the actual impression is more as compare to predicted impression. bleau score is not good because of not considering the meaning of sentences.

Let's have another data point

In [56]:

```
random_point=random.choice(poor_data_frame.index.tolist())
names_of_image = [poor_data_frame["image_1"][random_point], poor_data_frame["image_2"]
[random_point]]
fig, axs = plt.subplots(1, len(names_of_image), figsize = (10,10), tight_layout=True)
cnt = 0
for img, subplot in zip(names_of_image, axs.flatten()):
    img_=mpimg.imread(path_of_image+img)
    imgplot = axs[cnt].imshow(img_, cmap = 'bone')
    cnt +=1
plt.show()
print("bleau-Score:", poor_data_frame["score"][random_point])
print("Actual impression:", poor_data_frame["actual"][random_point])
print("Predicted impression:", poor_data_frame["predicted"][random_point])
print("count of words:", poor_data_frame["actual_count"][random_point])
```


bleau-Score: 0.01509869171115925

Actual impression: heart size within normal limits stable mediastinal contours mediastinal surgica 1 clips mediastinal and right hilar calcifications suggest previous granulomatous process improved lung volumes left base opacities most suggestive scarring no focal alveolar consolidation no definite pleural effusion seen bronchovascular crowding without typical findings pulmonary edema Predicted impression: opacity findings right abnormality findings most and process negative for count of words: 45

- Here word count is 45, there is no erro in actual words. still cant find any image wise pattern issue.
- predicted word is poor not give any meaning related to actual impression

summary

- As i observe that the bleu score greater than 0 have the partial meaning of the actual impression which we can considered as the good prediction .
- One important information is that when we have the sentence which have more than 20 words they have the poor bleu score it means our model not perform good for the larger sentences.

Let's get the data points which have the score as proper 0.

In [58]:

```
poor_data_frame_zero= poor_data_frame[poor_data_frame['score']== 0]
poor_data_frame_zero.head()
```

Out[58]:

	idx	image_1	image_2	actual	predicted	score	actual_count
198	225	CXR2747_IM-1198- 1001.png	CXR2747_IM-1198- 2001.png	small bilateral pleural effusions	with no fluid copd active no fractures chest a	0	4
199	226	CXR2152_IM-0772- 2001.png	CXR2152_IM-0772- 1001.png	normal eam	with clear infiltrate disease chest within	0	2
144	163	CXR2261_IM-0852- 1001.png	CXR2261_IM-0852- 2001.png	no acute active cardiac pulmonary pleural disease	opacity findings right abnormality findings mo	0	7
325	368	CXR2713_IM-1180- 2001.png	CXR2713_IM-1180- 1001.png	low lung volume study with minimal bibasilar a	no cardiopulmonary pulmonary evaluation view n	0	10
151	170	CXR959_IM-2449- 2001.png	CXR959_IM-2449- 1001.png	patchy right lower lobe airspace disease may d	no cardiopulmonary left stable chronic	0	10

In [59]:

Lets get the data points whose word count of impression is short and have the zero bleu score.

In [61]:

```
poor_data_frame_zero_short_sentence= poor_data_frame_zero[poor_data_frame_zero['actual_count']< 20
]
poor_data_frame_zero_short_sentence.head()</pre>
```

Out[61]:

	idx	image_1	image_2	actual	predicted	score	actual_count
198	225	CXR2747_IM-1198- 1001.png	CXR2747_IM-1198- 2001.png	small bilateral pleural effusions	with no fluid copd active no fractures chest a	0	4
199	226	CXR2152_IM-0772- 2001.png	CXR2152_IM-0772- 1001.png	normal eam	with clear infiltrate disease chest within	0	2
144	163	CXR2261_IM-0852- 1001.png	CXR2261_IM-0852- 2001.png	no acute active cardiac pulmonary pleural disease	opacity findings right abnormality findings mo	0	7
325	368	CXR2713_IM-1180- 2001.png	CXR2713_IM-1180- 1001.png	low lung volume study with minimal bibasilar a	no cardiopulmonary pulmonary evaluation view n	0	10
151	170	CXR959_IM-2449- 2001.png	CXR959_IM-2449- 1001.png	patchy right lower lobe airspace disease may d	no cardiopulmonary left stable chronic	0	10

In [62]:

```
print(' The shape of data points which have the score zero and have the word count less than 20 is
: ',poor_data_frame_zero_short_sentence.shape)
```

The shape of data points which have the score zero and have the word count less than 20 is: (56, 7)

Let's get the best 25 random patient x-ray which have good score.

In [69]:

```
print("***** Displaying best result random 16 patient X-Ray 1st image *****")
figure, axis = plt.subplots(4, 4, figsize = (16,16), tight_layout=True)
for row, subplot in zip(best_score_data_points[0:16].itertuples(), axis.flatten()):
    img=mpimg.imread(path_of_image+row.image_1)
    subplot.imshow(img, cmap = 'bone')
plt.show()
```

***** Displaying best result random 16 patient X-Ray 1st image *****

Important points in best bleu score images

- Here i observe that images alignments is in proper manner
- We are able to the brighter view of chest bones in the images.
- Here no line and any disturbance is not present in the images.
- · Here we are able to see that dull images are visualized properly.

Bad bleu score chest x ray images

In [70]:

```
print("***** Displaying bad result random 16 patient X-Ray 1st image *****")
figure, axis = plt.subplots(4, 4, figsize = (16,16), tight_layout=True)
for row, subplot in zip(poor_data_frame_zero[0:16].itertuples(), axis.flatten()):
    img=mpimg.imread(path_of_image+row.image_1)
    subplot.imshow(img, cmap = 'bone')
plt.show()
```

***** Displaying bad result random 16 patient X-Ray 1st image *****

Important points in the bad bleu score images

- here images are very vague not able to see properly(row,column): images are (1,4),(2,3),(3,2),(4,4)
- In many images there is too much brigtness in which we are not able to see properly.

Let's check the data points problems in image which have poor score

In [71]:

```
random_point=random.choice(poor_data_frame_zero.index.tolist())
names_of_image = [poor_data_frame_zero["image_1"][random_point], poor_data_frame_zero["image_2"][r
andom_point]]
fig, axs = plt.subplots(1, len(names_of_image), figsize = (10,10), tight_layout=True)
cnt = 0
for img, subplot in zip(names_of_image, axs.flatten()):
    img_=mpimg.imread(path_of_image+img)
    imgplot = axs[cnt].imshow(img_, cmap = 'bone')
    cnt +=1
plt.show()
print("bleau-Score:", poor_data_frame_zero["score"][random_point])
print("Actual impression:", poor_data_frame_zero["actual"][random_point])
print("Predicted impression:", poor_data_frame_zero["predicted"][random_point])
print("count of words:", poor_data_frame_zero["actual_count"][random_point])
```



```
bleau-Score: 0
Actual impression: heart size normal slightly tortuous calcified aorta no pneumothora effusion no evidence aortic transection
Predicted impression: with clear infiltrate disease chest within count of words: 14
```

• Here we able to observe that the second picture is total vague we are not able to see the picture properly.

In [72]:

```
random_point=random.choice(poor_data_frame_zero.index.tolist())
names_of_image = [poor_data_frame_zero["image_1"][random_point], poor_data_frame_zero["image_2"][r
andom_point]]
fig, axs = plt.subplots(1, len(names_of_image), figsize = (10,10), tight_layout=True)
cnt = 0
for img, subplot in zip(names_of_image, axs.flatten()):
    img_=mpimg.imread(path_of_image+img)
    imgplot = axs[cnt].imshow(img_, cmap = 'bone')
    cnt +=1
plt.show()
print("bleau-Score:", poor_data_frame_zero["score"][random_point])
print("Actual impression:", poor_data_frame_zero["actual"][random_point])
print("Predicted impression:", poor_data_frame_zero["predicted"][random_point])
print("count of words:", poor_data_frame_zero["actual_count"][random_point])
```


bleau-Score: 0
Actual impression: bilateral large pleural effusion possibly from pleuritis sympathetic from the k nown pancreatitis
Predicted impression: with clear infiltrate disease chest within count of words: 12

- First images is totally been out of brightness. poor visibility in first image
- Second image is too bright which makes us incompetent to visualize the part of the chest.

In [147]:

```
random_point=random.choice(poor_data_frame_zero.index.tolist())
names_of_image = [poor_data_frame_zero["image_1"][random_point], poor_data_frame_zero["image_2"][r
andom_point]]
fig, axs = plt.subplots(1, len(names_of_image), figsize = (10,10), tight_layout=True)
cnt = 0
for img, subplot in zip(names_of_image, axs.flatten()):
    img_=mpimg.imread(path_of_image+img)
    imgplot = axs[cnt].imshow(img_, cmap = 'bone')
```

```
cnt +=1
plt.show()
print("bleau-Score:", poor_data_frame_zero["score"][random_point])
print("Actual impression:", poor_data_frame_zero["actual"][random_point])
print("Predicted impression:", poor_data_frame_zero["predicted"][random_point])
print("count of words:", poor_data_frame_zero["actual_count"][random_point])
```


bleau-Score: 0 Actual impression: no acute cardiopulmonary finding Predicted impression: with clear infiltrate disease chest within count of words: 4

• poor image quality in both the images. image is totally vague.

Conclusion:

- As we have the knowledge from this analysis, we came to know that quality of image plays an important role . Mostly the error data points are with poor images quality.
- The model works fine for the clear and well bright images in which every part of chest is clearly seen to us.
- There are some images which have the high brightness there also model able to fails in the decision making so the score is not good in such type of images.
- Most important is that model is not performing well when we have the actual word count more than 20.
- there are some error points which we can find out and then ignore those points for better results.