Manual Técnico del Electricista

Electrónica para electricistas

C/Toledo, 176 28005-MADRID Telf.: 913 660 063 © P.L.C. Madrid[®]
C/ Toledo 176
28005-Madrid
Tif: 913 660 063 Fax: 913 664 655

www.plcmadrid.es plcmadrid@plcmadrid.es

SALVADOR DOMINGUEZ POMBO JOSÉ MORENO GIL CARLOS FERNÁNDEZ GARCÍA JOSÉ RAMÓN BERGAÑA MEDINA ALEJANDRO PINDADO RUIZ

Reservados todos los derechos de la obra

No está permitida la reproducción total o parcial de este manual técnico, de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de P.L.C. MADRID®.

Edita **P.L.C. MADRID** Depósito Legal M-7829-2014 I.S.B.N. 84-95357-54-2

Presentación

INDICE DE CONTENIDOS:

1 TOSCHILLOIOTI	
Simbología eléctrica	3
Magnitudes	10
Resistores	
Tipos	11
Características	12
Código de colores	16
Ley de Ohm	17
Resistencias en serie.	18
Resistencias en paralelo	19
Resistencias en serie y paralelo.	20
Bobina	
Tipos	21
Características	22
Código de colores	24
Circuitos con bobinas	25
Bobinas en serie	26
Bobinas en paralelo.	28
Condensadores	
Tipos	30
Carga y descarga	32
Capacidad	34
Código de denominación	35
Condensadores en serie	39
Condensadores en paralelo	40
Funcionamiento en corriente alterna	
Relación de magnitudes eléctricas	44

PRESENTACIÓN

El objetivo de este manual técnico es ofrecer una quía de consulta rápida a estudiantes de Formación profesional y a todos los electricistas en general, donde se incluyen los conceptos y aspectos básicos más relevantes de electrónica.

El manual aborda de manera resumida la simbología normalizada y las características de los componentes electrónicos más usuales, indicando su constitución funcionamiento y las aplicaciones más frecuentes. También se incluyen las fórmulas más utilizadas y algunos circuitos básicos y su comportamiento

En resumen, creemos que con esta colección de guías de bolsillo para el instalador electricista, cualquier profesional del sector va disponer de una importante herramienta de consulta.

Este manual lo queremos dedicar a nuestros abonados al Servicio y Gestión al Instalador (S.G.I.) Un grupo selecto de profesionales, cuya inquietud y animo de superación les hace diferentes. Por encima de de todo les une el amor a la profesión, la profesionalidad y el trabajo bien hecho.

Con el ánimo de mejorar el contenido de este manual agradeceríamos nos aportaran sus comentarios y sugerencias a través de alguno de estos medios.

Simbología				
Imagen	Símbolo	Descripción	Características	
WIN	ļ	Resistencia		
		Resistencia variable (Potenciómetro)	Se le llama resistencia eléctrica a la propiedad para oponerse al paso de la	
COCCC	#	Resistencia variable con plots (Décadas de resistencias)	corriente. La unidad de resistencia en el Sistema Internacional es el	
5		Resistencia ajustable	ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemán George Ohm, quien descubrió el principio que	
		Resistencia dependiente de la luz (Fotoresistencia LDR)	ahora lleva su nombre. Según sea la magnitud de esta medida, los materiales	
	*	Resistencia dependiente de la temperatura (Termistancia NTC ó PTC)	se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos	
		Resistencia dependiente de la tensión (Varistancia VDR)	materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el	
	P	Resistencia dependiente de la presión	que el valor de la resistencia es prácticamente nulo.	
	В	Resistencia dependiente del campo magnético		

	Simbología				
Imagen	Símbolo	Descripción	Características		
	\	Autoinducción	Un inductor está constituido normalmente por una bobina de conductor, típicamente		
		Autoinducción con núcleo	alambre o hilo de cobre esmaltado. Existen inductores con núcleo de aire o con núcleo hecho de		
	- 	Autoinducción con polaridad	material ferroso (por ejemplo, acero magnético), para incrementar su capacidad de magnetismo.		
	- }	Autoinducción variable	Los inductores pueden también estar construidos en circuitos integrados, usando el mismo proceso utilizado		
	-	Autoinducción variable con polaridad	para realizar microprocesadores. En estos		
		Autoinducción ajustable	casos se usa, comúnmente, el aluminio como material conductor.		
		Autoinducción ajustable con polaridad			
			La impedancia (Z) es la oposición al paso de la corriente alterna.		
SQ		Impedancia	A diferencia de la resistencia, la impedancia incluye los efectos de acumulación y eliminación de carga		
	i i	прочина	(capacitancia) o inducción magnética (inductancia). Este efecto es apreciable al analizar la señal eléctrica implicada en el tiempo.		

Simbología				
Imagen	Símbolo	Descripción	Características	
	$\dashv \vdash$	Condensador	Un condensador es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo	
	+	Condensador con polaridad	eléctrico. Está formado por un par de superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una	
	#	Condensador variable	van a parar a la otra) separadas por un material dieléctrico o por el vacío. Las placas, sometidas a una diferencia de potencial, adquieren una determinada	
	*	Condensador ajustable (trimmer)	acqueler in determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de carga total.	
GETO 4,000 MHz	- ₽	Cristal (oscilador de cuarzo)	El oscilador de cristal se caracteriza por su estabilidad de frecuencia y pureza de fase, dada por el resonador. Estos osciladores admiten un pequeño ajuste de frecuencia, con un condensador en serie con el resonador, que aproxima la frecuencia de este, de la resonancia serie a la paralela. Este ajuste se puede utilizar en los VCO para modular su salida.	

Simbología				
Imagen	Símbolo	Descripción	Características	
No.	*	Diodo		
		Diodo emisor de luz (Led)	Un diodo es un componente electrónico de dos terminales	
	***	Fotodiodo	que permite la circulación de la corriente eléctrica a través de él en un solo sentido. Este término generalmente	
	1	Diodo varicap	se usa para referirse al diodo semiconductor, el más común en la actualidad; consta de una pieza de cristal semiconductor conectada a dos terminales	
a rout	*	Diodo zener	eléctricos. El diodo de vacío (que actualmente ya no se usa,	
*	#	Diodo Schottky	excepto para tecnologías de alta potencia) es un tubo de vacío con dos electrodos: una lámina como ánodo, y un cátodo.	
		Diodo tunel		
5 FAGOR 3 880 C1500/1000 2 + 2	-	Puente de diodos	Consiste en cuatro diodos comunes. Convierte la corriente alterna en corriente continua.	

Simbología				
Imagen	Símbolo	Descripción	Características	
		Transistor PNP	El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador.	
		Transistor NPN	Actualmente se encuentran prácticamente en todos los aparatos electrónicos de uso diario.	
		Fototransistor PNP	Los fototransistores son sensibles a la radiación electromagnética en frecuencias cercanas a la de la luz visible; debido a esto su flujo de corriente puede	
		Fototransistor NPN	ser regulado por medio de la luz incidente. Un fototransistor es, en esencia, lo mismo que un transistor normal, sólo que	
		Fototransistor Fet canal N	puede trabajar de 2 maneras diferentes: Como un transistor normal con la corriente de base.	
		Fototransistor Fet canal P	Como fototransistor.	
Pri	→	Transistor Mosfet canal P	Es el transistor más utilizado en la industria microelectrónica, ya sea en circuitos analógicos o digitales, aunque el transistor	
130R	→	Transistor Mosfet canal N	de unión bipolar fue mucho más popular en otro tiempo. Prácticamente la totalidad de los microprocesadores comerciales están basados en transistores MOSFET.	

	Simbología				
Imagen	Símbolo	Descripción	Características		
8	+	Tiristor	Los materiales de los que se compone son de tipo semiconductor, es decir, dependiendo de la temperatura a la que se		
///		Triac	encuentren pueden funcionar como aislantes o como conductores. Son dispositivos		
		Diac	unidireccionales porque solamente transmiten la corriente en un único sentido. Se emplea generalmente para el control de potencia eléctrica.		
	***	Optoacoplador con transistor PNP	Es un dispositivo de emisión y recepción que funciona como un interruptor activado		
dillion	*	Optoacoplador con transistor NPN	mediante la luz emitida por un diodo LED que satura un componente optoelectrónico,		
	***	Optoacoplador con tiristor	normalmente en forma de fototransistor o fototriac. Se suelen utilizar para aislar		
•	* **	Optoacoplador con triac	eléctricamente a dispositivos muy sensibles.		
		Tubo de rayos catódicos (TRC)	El tubo de rayos catódicos es una tecnología que permite visualizar imágenes mediante un haz de rayos catódicos constante dirigido contra una pantalla de vidrio recubierta de fósforo y plomo. Se emplea principalmente en monitores, televisores y osciloscopios, aunque en la actualidad se está sustituyendo paulatinamente por tecnologías como plasma, LCD, LED o DLP.		

Simbología					
Imagen	Símbolo	Descripción	Características		
C Hill	-j +	Pila	Una pila eléctrica es un dispositivo que convierte energía química en energía eléctrica por un proceso químico.		
			Una fuente de alimentación se encarga de convertir la corriente alterna en continua.		
	=	Fuente de alimentación	En caso de ser fija, solo nos dan un valor constante.		
			Las regulables o ajustables ofrecen diferentes valores de salida.		
		Altavoz	Un altavoz es un transductor electroacústico utilizado para la reproducción de sonido.		
		Antena FM	Una antena es un dispositivo diseñado con el objetivo de emitir o recibir ondas electromagnéticas hacia el espacio libre.		
	ō	Auricular	Los auriculares son altavoces que por su diseño permiten colocar cerca de los oídos para generar ondas sonoras audibles.		
	П	Micrófono	El micrófono es un transductor electroacústico.		
	<u>}</u>	Cabeza grabadora	El electroimán actúa reorientando las partículas del material ferromagnético (óxidos de hierro o de cromo)		
		Cabeza lectora	que recubren el soporte. La reproducción del sonido recorre el camino opuesto.		

Magnitudes				
Prefijo	símbolo	Múltiplo	Valor	
yotta	Υ	10+24	1.000.000.000.000.000.000.000.000	
zetta	Z	10+21	1.000.000.000.000.000.000	
exa	E	10+18	1.000.000.000.000.000.000	
peta	Р	10+15	1.000.000.000.000.000	
tera	Т	10+12	1.000.000.000.000	
giga	G	10+9	1.000.000.000	
mega	М	10 ⁺⁶	1.000.000	
kilo	k	10 ⁺³	1.000	
		10°	1	
mili	m	10 ⁻³	0,001	
micro	μ	10 ⁻⁶	0,000.001	
nano	n	10 ⁻⁹	0,000.000.001	
pico	р	10 ⁻¹²	0,000.000.000.001	
femto	f	10 ⁻¹⁵	0,000.000.000.000.001	
atto	а	10 ⁻¹⁸	0,000.000.000.000.000.001	
zepto	Z	10 ⁻²¹	0,000.000.000.000.000.000.001	
yocto	у	10 ⁻²⁴	0,000.000.000.000.000.000.000.001	

	Tipos de resistores				
n o grafito (a)		Aglomerados: Se mezcla con otro elemento aislante como la cera o cola. Robustez mecánica y eléctrica. Elevado nivel de ruido. Bajo coeficiente de temperatura			
	Carbón idos con carbón o (baja resistencia)	Película de carbón: Se forman al recubrir un cilindro cerámico con una película de carbón. El grosor determina el valor de la resistencia.	310		
Resistores Fijos	Carbón construidos con carbón o grafito (baja resistencia)	Resistores de montaje superficial: Son construidos también depositando una película de carbón, pero en este caso es sobre una base de cerámica rectangular. El valor de la resistencia en ohmios es determinado ahora por un corte realizado sobre la capa, lo cual aumenta la resistencia eléctrica al reducir la sección por la que la corriente puede circular	TOPO		
Res	os etálicos, o etálicas	Capa metálica: Se deposita óxido de estaño y antimonio sobre un soporte de vidrio o porcelana. -Tolerancias reducidas -Bajo coeficiente de temperatura -Muy bajo nivel de ruido			
	Metálicos metal, óxidos metálicos, o aleaciones metálicas	Película metálica: Los metales más utilizados son Cromo, Molibdeno, Wólfram y Titanio. -Muy estables y fiables. -De alta precisión. -Baja disipación de potencia. -Bajo nivel de ruido y buena estabilidad térmica.	GHI!		
		Bobinados			
ores oles	Resistores Ajustables	Potenciómetro de aiuste Potenciómetro giratorio Potenciómetro de cursor	251		
Resistores Variables	Resistores Dependientes de magnitudes	De presión De luz (Fotorresistencias) De temperatura (termistor) De voltaje (varistor) De campo magnético			

Características de los resistores

Cuando aumenta la intensidad luminosa sobre la misma disminuye su valor óhmico.

Se utiliza en aplicaciones relacionadas con la intensidad luminosa (interruptores y alarmas activados por la luz o por la oscuridad, alarmas de barrera luminosa, alarmas de humo por reflexión, etc)

VDR

Cuando aumenta la tensión en sus extremos disminuye su valor óhmico, y circula más corriente por sus extremos.

Se utiliza como protección para evitar subidas de tensión en los circuitos.

Cuando se supera la tensión de la VDR la corriente se marcha por ella y protege al circuito.

TERMISTOR PTC

PTC: Resistencia de coeficiente positivo de temperatura. Cuando aumenta la temperatura de la misma aumenta su valor óhmico.

Se utiliza en sensores de temperatura, en temperaturas que oscilan entre 60°C a 180°C, por ejemplo, para protección de los bobinados de motores eléctricos y transformadores.

TERMISTOR NTC

Resistencia de coeficiente negativo de temperatura. Cuando aumenta la temperatura de la misma disminuye su valor óhmico. Si nos pasamos de la temperatura máxima o estamos por debajo de la mínima se comporta de forma inversa.

Se utiliza en medición y control de temperatura, compensación de temperatura y medición del flujo de fluidos.

Resistencia eléctrica

Factores principales
Tipo de material (resistividad)
Longitud y sección transversal
Temperatura

Tipo de material. Resistividad.

Resistividad (p) [rho]: Resistencia eléctrica específica de una determinada sustancia.

La resistividad de los metales aumenta al aumentar la temperatura al contrario de los semiconductores en donde este valor decrece.

El inverso de la resistividad se llama conductividad (σ) [sigma]

Material	Conductividad	Resistividad
Plata	0,6305	0,0164
Cobre	0,5958	0,0172
Oro	0,4464	0,0230
Aluminio	0,3767	0,0278
Latón	0,1789	0,0590
Cinc	0,1690	0,0610
Cobalto	0,1693	0,0602
Níquel	0,1462	0,0870
Hierro	0,1030	0,0970
Acero	0,1000	0,1000
Platino	0,0943	0,1050
Estaño	0,0839	0,1200
Plomo	0,0484	0,2815
Magnesio	0,0054	2700
Cuarzo	0,0016	4500
Grafito	0,0012	8000
Madera seca	0,0010	10000
Carbón	0,00025	40000

Longitud y sección transversal de las resistencias

- Un material de mayor longitud ofrece más resistencia al paso de la corriente que el de menor longitud
- Un material con mayor sección transversal tiene menor resistencia.
- Los materiales que se encuentran a mayor temperatura tienen mayor resistencia. Ver variación de la resistencia con la temperatura

La resistencia de un material viene dada por la fórmula:

$$R = \rho \frac{1}{s}$$

Parámetro	Símbolo	Unidad	Símbolo
Resistencia	R	Ohmio	Ω
Resistividad	ρ	Ohmio por metro	Ω·m
Longitud		metros	m
Sección	S	Milímetros cuadrados	mm ²

Temperatura

La variación de la temperatura del cuerpo de un resistor produce una variación de su resistencia.

La resistencia de un resistor a una temperatura determinada se calcula con la siguiente expresión:

$$R_{(T)} = R_{(T0)}(1+\alpha \cdot \Delta T)$$

	Símbolo	Parámetro	Unidad
	R	Resistencia	ohmios
Tempera inicial		Temperatura inicial	Grados Kelvin o Grados centígrados
	т	Temperatura final	Grados Kelvin o Grados centígrados
	ΔΤ	Diferencia entre las dos temperaturas	Grados Kelvin o Grados centígrados
	α Coeficiente de temperatura		Constante (K ⁻¹)

temperatura Material Coeficiente a 20 °C (1/K)		
Cobre	3,9 x 10 ⁻³	
Aluminio	3,9 x 10 ⁻³	
Tungsteno	4,5 x 10 ⁻³	
Acero	5,0 x 10 ⁻³	
Mercurio	0,9 x 10 ⁻³	
Carbón	-0,5 x 10 ⁻³	
Germanio -4,8 x 10 ⁻²		

Características de los resistores

Las características más generales son:

- Valor nominal (Ω): Es el valor esperado de resistencia, a la temperatura de 25°C, del resistor.
- Tolerancia (%): Se establece el concepto de tolerancia como un % del valor nominal. De esta forma, si nosotros sumamos el resultado de aplicar el porcentaje al valor nominal, obtenemos un valor límite superior. Si por el contrario lo que hacemos es restarlo, obtenemos un valor límite inferior. Con la tolerancia, el fabricante nos garantiza que el valor real de la resistencia va a estar siempre comprendido entre estos valores. Si esto no es así, el componente está defectuoso.
- Potencia nominal (W): Es aquella que se puede disipar sobre la resistencia nominal, de forma continuada, sin que el componente sufra deterioro, a una temperatura de trabajo y condiciones ambientales especificadas. El tamaño del componente da una idea de la potencia nominal.
- Tensión nominal (V): Es la tensión continua, que hay en bornas de la resistencia nominal, cuando sobre ella, se disipa la potencia nominal.
- Tensión máxima (V): Es la tensión continua, o alterna eficaz a 50 Hz, por encima de la que no se puede pasar, a la temperatura de trabajo especificada.

Resistencia eléctrica

Código de colores

La Ley de Ohm

Parámetro	Símbolo	Unidad	Símbolo
Tensión	J	voltios	V
Intensidad	I	Amperios	Α
Resistencia	R	Ohmio	Ω

Leyes de kirchoff

PRIMERA LEY

SEGUNDA LEY

En cualquier nodo, la suma de las corrientes que entran en ese nodo es igual a la suma de las corrientes que salen.

De forma equivalente, la suma de todas las corrientes que pasan por el nodo es igual a cero.

$$\sum_{K=1}^{N} I_{K} = I_{1} + I_{2} + I_{3} ... + I_{N} = 0$$

En un lazo cerrado, la suma de todas las caídas de tensión es igual a la tensión total suministrada.

De forma equivalente, la suma algebraica de las diferencias de potencial eléctrico en un lazo es igual a cero.

$$\sum_{K=1}^{N} U_K = U_1 + U_2 + U_3 ... + U_N = 0$$

Resistencias en serie

Calcular la intensidad total que recorre el circuito y la caída de tensión en cada resistencia.

$$\begin{split} I_T &= \frac{U_T}{R_T} & I_T = \frac{12 \ V}{8 K \Omega} = 1,5 \ mA \\ R_T &= R_1 + R_2 + R_3 \quad R_T = 4 K \Omega + 3 K \Omega + 1 K \Omega = 8 K \Omega \\ & U_{R1} &= I_T \cdot R_1 = 1,5 mA \cdot 4 K \Omega = 6 V \\ & U_{R2} &= I_T \cdot R_2 = 1,5 mA \cdot 3 K \Omega = 4,5 V \\ & U_{R3} &= I_T \cdot R_3 = 1,5 mA \cdot 1 K \Omega = 1,5 V \\ & U_T &= U_{R1} + U_{R2} + U_{R3} = 6 V + 4,5 V + 1,5 V = 12 V \end{split}$$

Resistencias en paralelo

Calcular la intensidad total que recorre el circuito y la caída de tensión en cada resistencia.

$$I_{T} = \frac{U_{T}}{R_{T}} \qquad I_{T} = \frac{12 V}{1,7K\Omega} = 7 mA$$

$$R_{T} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}} = \frac{4K\Omega \cdot 3K\Omega}{4K\Omega + 3K\Omega} = 1,7K\Omega = 1K7\Omega$$

$$I_{1} = \frac{U_{T}}{R_{1}} = \frac{12V}{4K\Omega} = 3mA \qquad I_{2} = \frac{U_{T}}{R_{2}} = \frac{12V}{3K\Omega} = 4mA$$

 $I_T = I_1 + I_2 = 4 mA + 3mA = 7mA$

Resistencias en serie y paralelo

Calcular la intensidad total que recorre el circuito y la caída de tensión en cada resistencia.

	Tipos de bobinas					
	De núcleo de aire	Núcleo de Aire: Poseen valores de inductancia bajos ente 1 nH y 15 mH, utilizadas para filtros y circuiterías en general.				
Bobinas Fijas		Núcleo de ferrita: Poseen valores de inductancia más altos que los anteriores debido a su nivel elevado de permeabilidad magnética.	9			
	De núcleo sólido	Toroides: Se caracterizan por que el flujo generado no se dispersa hacia el exterior ya que por su forma se crea un flujo magnético cerrado, dotándolas de un gran rendimiento y precisión.				
		De núcl	Encapsulados: Se emplean debido a las características que ofrecen al funcionamiento de osciladores y filtros, trabajando entre valores de 0,1 µH a 1mH.			
		Chips: Su característica más importante es su tamaño, ya que en muy poco espacio podemos emplear una bobina, los valores que ofrecen son parecidos al de las bobinas encapsuladas.	and the second			
Bobinas ajustables	Ajustables	Si se quiere obtener un valor exacto de la inductividad, ésta deberá ser graduable, esto se consigue fácilmente por medio de un entrehierro variable. Por ejemplo, se modifica el núcleo del molde de tal manera que el pivote central sea más corto que el molde. Uno o ambos pivotes centrales se construyen vacíos y se proveen de una rosca, en la que se aplica un tornillo de núcleo, que es del mismo material que el núcleo del molde.				
		Su empleo más popular es el de los equipos de radio frecuencia, transistores y receptores.				

Características de la bobina

Una bobina es un componente formado por N espiras conductoras arrolladas sobre un núcleo de un material magnético (en algunas ocasiones aire).

Cuanto más alta es la frecuencia de la corriente aplicada a una bobina menos espiras se necesitan para obtener una reactancia u oposición al paso de la corriente alterna suficiente.

El coeficiente de autoinducción L de una bobina con núcleo ferromagnético se puede definir por medio de la fórmula:

$$L = \frac{N^2}{R_m}$$

Parámetro	Símbolo	Unidad	Símbolo
Coeficiente de autoinducción	L	Henrios	н
Número de espiras	N	Espiras	
Reluctancia (Resistencia magnética)	Rm	Amperivueltas/Weber	Av/Wb

A causa del constante cambio de magnetización y de las corrientes parásitas, llamadas también corrientes de Foucault, se originan, dentro del núcleo de hierro, pérdidas que producen calor. Se disminuyen considerablemente las pérdidas ocasionadas por corrientes parásitas construyendo un núcleo de hierro a base de planchas aisladas entre sí.

FORMAS DEL NUCLEO DE UNA BOBINA				
V	E	М		

Características de la bobina

Características principales	
Coeficiente de autoinducción	
Tolerancia	
Factor de calidad	

Coeficiente de autoinducción: En una bobina con núcleo de aire depende exclusivamente de sus características constructivas es decir, del número de espiras, sección de la espira y longitud del arrollamiento, mientras que en el caso de una bobina con núcleo ferromagnético el coeficiente de autoinducción depende además del coeficiente de permeabilidad del núcleo. Su valor se expresa en Henrios (H).

Tolerancia: El valor del coeficiente de autoinducción discrepa, dentro de unos ciertos límites, del valor nominal o valor teórico de la bobina. Estas discrepancias son debidas al proceso de fabricación, y se designan, como en el caso de las resistencias y condensadores, por tolerancias.

Factor de calidad: Es la relación entre la reactancia inductiva y la resistencia óhmica de la bobina, y viene expresada:

$$Q = \frac{X_L}{R} = \frac{2\pi f L}{R}$$

Con frecuencias elevadas se empeora el factor de calidad de la bobina, a pesar de que según la fórmula anterior tendríamos que suponer que aumenta con la frecuencia. Ello es debido a que con frecuencias más elevadas la resistencia óhmica aumenta también debido al fenómeno pelicular.

Para que el factor de calidad de una bobina sea grande, debe ser su resistencia R pequeña y su inductividad L grande.

Código de colores

Circuitos con bobinas

Para la fuente de corriente alterna la bobina presenta una especie de resistencia, denominada reactancia inductiva, que es consecuencia de su inductividad.

Cuanto mayor sea la frecuencia de la tensión del generador, tanto menor será el valor cresta que la corriente que podrá alcanzar. La reactancia inductiva de toda bobina depende, pues, de la frecuencia con que varía la tensión del generador y de la inductividad propia de la bobina.

Esta relación se expresa por la siguiente fórmula:

$$X_L = \, 2\pi f L$$

Parámetro	Símbolo	Unidad	Símbolo
Reactancia Inductiva	Reactancia Inductiva X _L		Ω
Pi	π	3,1416	
Frecuencia	f	Herzios	Hz
Inductancia	L	Henrios	Н

Calcular la intensidad de corriente que circulará por una bobina de 5 mH a la que se le aplica una tensión de 12 V 50 Hz:

$$X_{L} = 2 \cdot \pi \cdot 50 \text{ Hz} \cdot 5\text{mH} = 1,57\Omega$$

El valor de la corriente se halla por la ley de Ohm:

$$I = \frac{U}{X_L} = \frac{12V}{1,57\Omega} = 7,64A$$

Parámetro	Símbolo	Unidad	Símbolo
Intensidad	1	Amperios	Α
Tensión	U	Voltios	V
Reactancia Inductiva	XL	Ohmios	Ω

Bobinas en serie

Calcular la intensidad total que recorre el circuito y la caída de tensión en cada bobina.

El valor inductivo total:

$$L_T = L_1 + L_2 = 40mH + 10 mH = 50 mH$$

Reactancia individual de cada bobina y del conjunto de bobinas:

$$\begin{array}{l} X_{L1} = 2 \cdot \pi \cdot f \cdot L_1 = 2 \cdot \pi \cdot 50 Hz \cdot 40 mH = 12,\!56 \Omega \\ X_{L2} = 2 \cdot \pi \cdot f \cdot L_2 = 2 \cdot \pi \cdot 50 Hz \cdot 10 mH = 3,\!14 \Omega \\ X_{LT} = 2 \cdot \pi \cdot f \cdot L_2 = 2 \cdot \pi \cdot 50 Hz \cdot 50 mH = 15,\!7 \Omega \end{array}$$

Tensiones y corriente presentes en el circuito

$$I = \frac{U_T}{X_T} = \frac{5V}{15,7\Omega} = 0,318 A = 318 mA$$

Bobinas en serie

Tensión en bornes de cada una de ellas:

$$U_{L1} = X_{L1} \cdot I = 12,56\Omega \cdot 0,318A = 4V$$

 $U_{L2} = X_{L2} \cdot I = 3,14\Omega \cdot 0,318A = 1V$
 $U_{T} = U_{L1} + U_{L2} = 4V + 1V = 5V$

De esto último se deduce que dos bobinas conectadas en serie se comportan como un divisor de tensión alterna.

Desarrollo del diagrama vectorial

El vector intensidad está atrasado 90° con respecto a los vectores de tensión U_{L1} y U_{L2} .

La longitud de U_{L1} es proporcional a su valor (4 V) y la de U_{L2} al suyo (1V).

Las tensiones U_{L1} y U_{L2} están en fase, la suma de ambos vectores nos da el vector U_{T} , no indicado, cuyo valor es igual a la suma aritmética de $U_{1,1} + U_{1,2}$ (5 V).

Bobinas en paralelo

$$L_{T} = \frac{L_{1} \cdot L_{2}}{L_{1} + L_{2}} = \frac{10mH \cdot 30mH}{10mH + 30mH} = 7,5mH$$

$$X_{L1} = 2 \cdot \pi \cdot f \cdot L_{1} = 2 \cdot \pi \cdot 50Hz \cdot 10mH = 3,14\Omega$$

$$X_{L2} = 2 \cdot \pi \cdot f \cdot L_{2} = 2 \cdot \pi \cdot 50Hz \cdot 30mH = 9,42\Omega$$

$$X_{LT} = 2 \cdot \pi \cdot f \cdot L_{2} = 2 \cdot \pi \cdot 50Hz \cdot 7,5mH = 2,36\Omega$$

$$X_{LT} = \frac{X_{L1} \cdot X_{L2}}{X_{L1} + X_{L2}} = \frac{3,14\Omega \cdot 9,42\Omega}{3,14\Omega + 9,42\Omega} = 2,36\Omega$$

Bobinas en paralelo

Corrientes y tensión presentes en el circuito:

$$I_{L1} = \frac{U}{X_{L1}} = \frac{5V}{3,14\Omega} = 1,59A$$

$$I_{L2} = \frac{U}{X_{L2}} = \frac{5V}{9,42\Omega} = 0,53A$$

$$I_T = I_{L1} + I_{L2} = 1,59A + 0,53A = 2,12A$$

		Tipos de condensadores	
	DE PAPEL	Se fabrican de dos tipos: Con dieléctrico de papel impregnado, parafinado, baquelizado o sometido a algún otro tratamiento que reduzca su higroscopia y aumente su resistencia de aislamiento. Se usan en acoplo / desacoplo y aplicaciones antiparásitos, fluorescentes, etc. Con dieléctrico de papel metalizado: tienen la capacidad de autorregenerarse cuando se perfora el dieléctrico por exceso de tensión. Se usan en aplicaciones industriales, para eliminación de interferencias en RF, etc.	Ma A MA
FIJOS NO POLARIZADOS	DE PLÁSTICO	Tienen buenas prestaciones y bajo precio, por lo que son los más habituales en aplicaciones normales. Presentan alta resistencia de aislamiento y altas temperaturas de funcionamiento. Según el proceso de fabricación, pueden ser de electrodo metálico o de electrodo de metal vaporizado (dieléctrico metalizado). Estos últimos son los más habituales, y tienen la capacidad de autorregenerarse. Dependiendo del tipo de dieléctrico, pueden ser: • de poliestireno (KS) • de poliéster (KT) • de poliéster metalizado (MKT) • de polipropileno (KP) • de polipropileno metalizado (MKC) • de teflón (PTFE)	
CONDENSADORES	CERÁMICOS	Dependiendo del tipo de construcción, pueden ser en forma de disco, de placa, tubulares, o chips. El dieléctrico es un material cerámico (generalmente dióxido de titanio), metalizado por ambos lados. Se clasifican en: De grupo I (baja constante dieléctrica): Muy estables, resistencia de aislamiento elevada, alta fiabilidad y capacidades bajas (hasta 1 nF). Se usan en alta frecuencia y en circuitos resonantes y de sintonía. De grupo II y III (alta constante dieléctrica): Menor estabilidad, menor resistencia de aislamiento y menor fiabilidad. Tienen mayor capacidad para un mismo volumen (hasta 500 nF). Se usan en filtros de RF, en circuitos con transistores y para eliminar interferencias.	
	DE MICA	Constan de una serie de láminas de mica y de metal, apiladas y superpuestas alternativamente. Se fabrican con capacidades entre 2pF y 220 nF. Tienen bajas pérdidas, y pueden soportar altas temperaturas y tensiones elevadas, de hasta 5000 voltios. No se degradan con el tiempo, ni por oxidación ni con la humedad. Se usan en lugar de los cerámicos cuando se necesita alta estabilidad, por lo que son más caros. También se emplean en aplicaciones de alta frecuencia, circuitos de filtrado, sintonía y paso de radiofrecuencia.	

	Tipos de condensadores				
CONDENSADORES FIJOS (ELECTROLÍTICOS)	DE ALUMINIO	De electrolito líquido: Son generalmente polarizados, en los que el ánodo es una lámina de aluminio oxidado, el dieléctrico es el óxido que se deposita sobre el ánodo y el cátodo está constituido por otra lámina de aluminio y un electrolito húmedo. Tienen capacidades entre 1 y 220.000 µF y tensiones nominales que pueden alcanzar 500 V. Presentan alta corriente de fuga y perdidas grades en frecuencias medias y bajas. Se usan para filtrado en fuentes de alimentación, acoplo/desacoplo en baja frecuencia y almacenamiento de energía. Pueden estallar si se conectan con la polaridad invertida. También se fabrican de tamaño reducido para montajes superficiales (SMD).			
ORES FIJOS		De electrolito sólido (dióxido de manganeso): Presentan capacidades y tensiones nominales inferiores pero son más fiables que los de electrolito húmedo. Están protegidos externamente mediante cápsulas de aluminio o resina epoxi.	1		
CONDENSAD	DE TÁNTALO	Son similares a los de aluminio, pero en este caso el dieléctrico es de óxido de tántalo, lo que permite que con menor volumen se obtengan capacidades similares, fabricándose con valores entre 10 nF y 500 µF y tensiones nominales entre 2 V y 75 V. La corriente de fuga y las pérdidas que ofrece son también menores. Se usan en baja frecuencia, en circuitos que requieran gran relación capacidad/volumen y en equipos profesionales que requieran alta fiabilidad.	CTS.		
S VARIABLES	GIRATORIOS	Disponen de una serie de placas que al ser accionadas mediante un eje se modifica la superficie enfrentada, variando la capacidad. El dieléctrico es de aire, y se fabrican con capacidades comprendidas entre 1 y 500 pF. Se emplean para sintonizar emisoras de radio.			
CONDENSADORES VARIABLES	AJUSTABLES (TRIMMERS)	Pueden usar como dieléctrico materiales cerámicos, plásticos y mica. Se utilizan para realizar ajustes finos, una sola vez, y dejarlos fijos en el circuito. Su capacidad puede variar entre 1 y 100 pF, aunque los de mica pueden alcanzar los 2000 µF. Algunos se fabrican con tamaño muy reducido, para montaje superficial (SMD).			

Carga y descarga de un condensador

La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia.

$$C = \frac{Q}{U_1 - U_2}$$

Parámetro	Símbolo	Unidad	Símbolo
Capacitancia	С	Faradios	F
Carga	Q	Culombios	С
Tensión borne 1	U ₁	Voltios	٧
Tensión borne 2	U ₂	Voltios	V

Al conectar un condensador en un circuito, la corriente empieza a circular por el mismo y va acumulando carga entre sus placas. Cuando se ha cargado totalmente, deja de circular corriente por el circuito. Si se quita la fuente y se presenta un elemento como es el caso de una resistencia, la carga empieza a fluir de una de las placas del condensador a la otra en sentido contrario pasando por la resistencia, hasta que la carga es nula en las dos placas.

$$U_{C} = U_{O} \qquad I_{C} = \frac{U_{O}}{R}$$

Parámetro	Símbolo	Unidad	Símbolo
Tensión del condensador	U _c	Voltios	٧
Tensión de la fuente de alimentación	U ₀	Voltios	V
Intensidad	1	Amperios	Α
Resistencia	R	Ohmios	Ω

Carga y descarga

Cuando cerramos el circuito de carga el condensador se carga hasta alcanzar casi la tensión de alimentación. A partir de entonces se comporta como un circuito abierto.

El tiempo de carga depende de la capacidad del condensador y del valor óhmico de la resistencia que está en serie con él R1, siguiendo la fórmula:

Cuando cerramos el circuito de descarga, es el condensador el que entrega la corriente a la resistencia hasta agotarse su carga.

El tiempo de descarga ahora depende de la capacidad y de la resistencia de descarga R2.

Capacidad de un condensador

Es la medida de su aptitud para acumular cargas eléctricas.

$$C = \frac{Q}{U}$$

Parámetro	Símbolo	Unidad	Símbolo
Capacitancia	С	Faradios	F
Carga	Q	Culombios	С
Tensión	U	Voltios	V

Un condensador tiene una capacidad de un faradio cuando adquiere la carga de un culombio si la diferencia de potencial o tensión eléctrica entre sus armaduras es de un voltio.

El faradio es una unidad grande, y como no resulta práctica, se trabaja con submúltiplos.

Submúltiplo (F)	Símbolo	Faradios	Potencia
microfaradio	μF	0,000001	10 ⁻⁶
Nanofaradio	nF	0,000000001	10 ⁻⁹
Picofaradio	pF	0,00000000001	10 ⁻¹²

Condensador metálico

Código de colores

Condensador metálico

Código de dígitos

Condensador plástico

Código de colores

Condensador plástico

Código de dígitos

Condensadores en serie

Calcular la carga total del circuito y la caída de tensión en cada condensador.

$$C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

$$C_T = \frac{1}{\frac{1}{60 \,\mu F} + \frac{1}{30 \,\mu F}} = 20 \,\mu F$$

$$Q_T = Q_1 = Q_2 = U \cdot C$$
 $Q_T = 100V \cdot 20 \ \mu F = 2mC$

Al conectar condensadores en serie todos toman la misma carga, que es igual a la del conjunto.

$$U_{C1} = \frac{Q_T}{C_1} = \frac{2mC}{60 \,\mu F} = 33{,}33V$$

$$U_{C1} = \frac{Q_T}{C_2} = \frac{2mC}{30 \,\mu F} = 66,66V$$

En régimen estacionario, la corriente que circula por el circuito externo de los condensadores vale 0 A.

Condensadores en paralelo

Calcular la carga total del circuito y la caída de tensión en cada condensador.

$$C_T = C_1 + C_2$$
 $C_T = 5 \mu F + 1 \mu F = 6 \mu F$ $Q_T = U_T \cdot C_T = 150 V \cdot 6 \mu F = 900 \mu F$ $Q_1 = U_T \cdot C_1 = 150 V \cdot 1 \mu F = 150 \mu F$ $Q_2 = U_T \cdot C_2 = 150 V \cdot 5 \mu F = 750 \mu F$

Como los condensadores están en paralelo, la tensión que adoptará cada uno, es la tensión de la batería, 150 V. Por lo tanto será posible la conexión de los condensadores en paralelo, solo en el caso de que la menor de las tensiones nominales de los condensadores sea mayor que la aplicada.

Funcionamiento en corriente alterna para resistencias

Cuando la carga es únicamente una resistencia, la tensión y la corriente están en fase y la relación entre ambas se puede obtener mediante la ley de ohm aplicada a los valores eficaces (igualmente se puede aplicar a los valores instantáneos, máximos y medios):

$$U = I \cdot R$$

Parámetro	Símbolo	Unidad	Símbolo
Tensión	U	Voltios	V
Intensidad	I	Amperios	А
Resistencia	R	Ohmios	Ω

Cuando el receptor es una resistencia, hay una sincronización entre la fase y la intensidad, no existe desfase entre ambas.

Funcionamiento en corriente alterna para bobinas

La tensión y la corriente son magnitudes vectoriales, la relación entre ambas es:

$$U = j \cdot \omega L \cdot I$$

Parámetro	Símbolo	Unidad	Símbolo
Tensión	U	Voltios	V
Número complejo	j		
Reactancia inductiva	ωL	Ohmios	Ω
Intensidad	_	Amperios	А

Cuando el receptor es una bobina cuyo coeficiente de autoinducción es L, se produce un desfase de 90º entre la tensión y la corriente, estando ésta desfasada de la tensión.

Funcionamiento en corriente alterna para condensadores

Funcionamiento en alterna

Cuando el receptor es un condensador se produce igualmente un desfase de 90º entre tensión y corriente, estando la tensión retrasada respecto a la corriente.

$$U = -j\frac{1}{C\omega}I$$

Parámetro	Símbolo	Unidad	Símbolo
Tensión	U	Voltios	V
Número complejo	j		
Reactancia capacitiva	1/Cω	Ohmios	Ω
Intensidad		Amperios	А

Relación de magnitudes eléctricas:

Para estudiar el funcionamiento de los circuitos eléctricos es necesario conocer algunas magnitudes eléctricas, como intensidad de corriente, diferencia de potencial, resistencia y potencia eléctrica.

A continuación se expone una tabla con las formulas que interrelacionan estas magnitudes eléctricas fundamentales facilitando la comprensión de estas y sirviendo de ayuda al cálculo de secciones en los conductores.

Magnitudes		Corriente Alterna Monofásica	Corriente Alterna Trifásica
	Р	$P = U \cdot I \cdot cos\varphi$	$P = U \cdot I \cdot \cos\varphi \cdot \sqrt{3}$
Potencia	ø	$Q = U \cdot I \cdot sen\varphi$	$Q = U \cdot I \cdot sen\varphi \cdot \sqrt{3} = P \cdot tan\varphi$
	s	$S = U \cdot I$	$S = U \cdot I \cdot \sqrt{3} = \sqrt{P^2 + Q^2}$
Tensión	U	$U = \frac{R \cdot I}{\cos \varphi} = \frac{P}{I \cdot \cos \varphi}$	$U = \frac{P}{I \cdot \cos\varphi \cdot \sqrt{3}} = \frac{S}{I \cdot \sqrt{3}}$
Intensidad	1	$I = \frac{U \cdot cos\varphi}{R} = \frac{P}{U \cdot cos\varphi}$	$I = \frac{P}{U \cdot \cos\varphi \cdot \sqrt{3}} = \frac{S}{U \cdot \sqrt{3}}$
	Ia	$I_a = I \cdot cos \varphi$	$I_a = I \cdot cos \varphi$
	Ir	$I_r = I \cdot sen \varphi$	$I_r = I \cdot sen \varphi$
Resistencia	R	$R = \frac{U}{I} \cdot \cos \varphi$	$R = \frac{U}{I \cdot \sqrt{3}} \cdot \cos \varphi$
	х	$X = \frac{U}{I} \cdot sen\varphi$	$X = \frac{U}{I \cdot \sqrt{3}} \cdot sen\varphi$
	Z	$Z = \sqrt{R^2 + X^2}$	$Z = \sqrt{R^2 + X^2} = \frac{U}{I \cdot \sqrt{3}}$

¿Qué es el Servicio y Gestión al Instalador S.G.I?

Es un servicio de calidad creado en el año 2005, orientado a cubrir las necesidades de información, formación y asesoramiento técnico integral, dentro del sector eléctrico y muy especialmente entre los instaladores electricistas con inquietud y ánimo de superación.

El objetivo primordial es el de ofrecer servicios y gestiones que hagan el trabajo del instalador más cómodo y productivo.

P.V.P. del Servicio S.G.I. 60 € año

Mucho más que un reglamento

Ventajas de comprar nuestro reglamento

Actualizado

Encuadernado en espiral.

A todo color

Plataforma web para descargas.

Servicio de consultas online

Curso online del REBT con diploma y bolsa de empleo.

Espacio Web exclusivo para profesores.

Resúmenes Guía REBT y

Otros Manuales Técnicos

Infraestructuras
Comunes de
Telecomunicación

Documentación y Puesta en Servicio de las Instalaciones

nstalaciones Eléctricas Interiores

Protecciones Eléctricas

Matemáticas para Electricistas

Cálculo de Secciones

Cursos especialmente pensados para el profesional de la electricidad Grupos reducidos-Horarios flexibles:

Mañanas, tardes, noches, fines de semana

Servicio de asesoramiento técnico a profesionales

Toledo, 176 (Gta. De las Pirámides) Tfno.: 91 366 00 63 – Fax: 91 366 46 55 www.plcmadrid.es E-mail: plcmadrid@plcmadrid.es 28005 Madrid. Metro PIRÁMIDES

P.V.P.: 5 €