Partition of [a, b]: A finite set $\{x_0, x_1, ..., x_n\} \subset [a, b]$ such that $a = x_0 < x_1 < \cdots < x_n = b$.

Partition of [a, b]: A finite set $\{x_0, x_1, ..., x_n\} \subset [a, b]$ such that $a = x_0 < x_1 < \cdots < x_n = b$.

Upper sum & Lower sum: Let $f : [a, b] \to \mathbb{R}$ be bounded.

Partition of [a, b]: A finite set $\{x_0, x_1, ..., x_n\} \subset [a, b]$ such that $a = x_0 < x_1 < \cdots < x_n = b$.

Upper sum & Lower sum: Let $f : [a, b] \to \mathbb{R}$ be bounded.

For a partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b], let

$$M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\},\$$

$$m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\} \text{ for } i = 1, 2, ..., n$$

Partition of [a, b]: A finite set $\{x_0, x_1, ..., x_n\} \subset [a, b]$ such that $a = x_0 < x_1 < \cdots < x_n = b$.

Upper sum & Lower sum: Let $f : [a, b] \to \mathbb{R}$ be bounded.

For a partition
$$P = \{x_0, x_1, ..., x_n\}$$
 of $[a, b]$, let

$$M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\},$$

$$m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\} \text{ for } i = 1, 2, ..., n$$

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$
 – Upper sum of f for P

Partition of [a, b]: A finite set $\{x_0, x_1, ..., x_n\} \subset [a, b]$ such that $a = x_0 < x_1 < \cdots < x_n = b$.

Upper sum & Lower sum: Let $f : [a, b] \to \mathbb{R}$ be bounded.

For a partition
$$P = \{x_0, x_1, ..., x_n\}$$
 of $[a, b]$, let

$$M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\},\$$

$$m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\} \text{ for } i = 1, 2, ..., n$$

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$
 – Upper sum of f for P

$$L(f, P) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$$
 – Lower sum of f for P

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$
, where $M = \sup\{f(x) : x \in [a,b]\}$ and $m = \inf\{f(x) : x \in [a,b]\}$.

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$
, where $M = \sup\{f(x) : x \in [a,b]\}$ and $m = \inf\{f(x) : x \in [a,b]\}$.

Upper integral:
$$\int_{a}^{\overline{b}} f = \inf_{P} U(f, P)$$

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$
, where $M = \sup\{f(x) : x \in [a,b]\}$ and $m = \inf\{f(x) : x \in [a,b]\}$.

Upper integral:
$$\int_{a}^{\overline{b}} f = \inf_{P} U(f, P)$$

Lower integral:
$$\int_{a}^{b} f = \sup_{P} L(f, P)$$

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$
, where $M = \sup\{f(x) : x \in [a,b]\}$ and $m = \inf\{f(x) : x \in [a,b]\}$.

Upper integral:
$$\int_{a}^{\overline{b}} f = \inf_{P} U(f, P)$$

Lower integral:
$$\int_{\underline{a}}^{b} f = \sup_{P} L(f, P)$$

Riemann integral: If Upper integral = Lower integral, then f is Riemann integrable on [a,b] and the common value is the

Riemann integral of f on [a, b], denoted by $\int_{a}^{b} f$.

(a) f(x) = k for all $x \in [0, 1]$.

(a)
$$f(x) = k$$
 for all $x \in [0, 1]$.

(b) Let
$$f(x) = \begin{cases} 0 & \text{if } x \in (0, 1], \\ 1 & \text{if } x = 0. \end{cases}$$

- (a) f(x) = k for all $x \in [0, 1]$.
- (b) Let $f(x) = \begin{cases} 0 & \text{if } x \in (0,1], \\ 1 & \text{if } x = 0. \end{cases}$
- (c) Let $f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}, \\ 0 & \text{if } x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$

(a)
$$f(x) = k$$
 for all $x \in [0, 1]$.

(b) Let
$$f(x) = \begin{cases} 0 & \text{if } x \in (0,1], \\ 1 & \text{if } x = 0. \end{cases}$$

(c) Let
$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}, \\ 0 & \text{if } x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$$

(d)
$$f(x) = x$$
 for all $x \in [0, 1]$.

- (a) f(x) = k for all $x \in [0, 1]$.
- (b) Let $f(x) = \begin{cases} 0 & \text{if } x \in (0,1], \\ 1 & \text{if } x = 0. \end{cases}$
- (c) Let $f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}, \\ 0 & \text{if } x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$
- (d) f(x) = x for all $x \in [0, 1]$.
- (e) $f(x) = x^2$ for all $x \in [0, 1]$.

- (a) f(x) = k for all $x \in [0, 1]$.
- (b) Let $f(x) = \begin{cases} 0 & \text{if } x \in (0,1], \\ 1 & \text{if } x = 0. \end{cases}$
- (c) Let $f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}, \\ 0 & \text{if } x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$
- (d) f(x) = x for all $x \in [0, 1]$.
- (e) $f(x) = x^2$ for all $x \in [0, 1]$.

Remark: Let $f:[a,b]\to\mathbb{R}$ be bounded. Let there exist a sequence (P_n) of partitions of [a,b] such that $L(f,P_n)\to\alpha$ and $U(f,P_n)\to\alpha$. Then $f\in\mathcal{R}[a,b]$ and $\int\limits_a^b f=\alpha$.

Some Riemann integrable functions:

Some Riemann integrable functions:

(a) A continuous function on [a, b]

Some Riemann integrable functions:

- (a) A continuous function on [a, b]
- (b) A bounded function on [a, b] which is continuous except at finitely many points in [a, b]

Some Riemann integrable functions:

- (a) A continuous function on [a, b]
- (b) A bounded function on [a, b] which is continuous except at finitely many points in [a, b]
- (c) A monotonic function on [a, b]

Some Riemann integrable functions:

- (a) A continuous function on [a, b]
- (b) A bounded function on [a, b] which is continuous except at finitely many points in [a, b]
- (c) A monotonic function on [a, b]

Properties of Riemann integrable functions:

Some Riemann integrable functions:

- (a) A continuous function on [a, b]
- (b) A bounded function on [a, b] which is continuous except at finitely many points in [a, b]
- (c) A monotonic function on [a, b]

Properties of Riemann integrable functions:

Example:
$$\frac{1}{3\sqrt{2}} \le \int_{0}^{1} \frac{x^2}{\sqrt{1+x}} dx \le \frac{1}{3}$$

First fundamental theorem of calculus: Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable on [a,b] and let $F(x)=\int\limits_a^x f(t)\,dt$ for all $x\in[a,b]$. Then $F:[a,b]\to\mathbb{R}$ is continuous.

First fundamental theorem of calculus: Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable on [a,b] and let $F(x)=\int\limits_a^x f(t)\,dt$ for all $x\in[a,b]$. Then $F:[a,b]\to\mathbb{R}$ is continuous.

Also, if f is continuous at $x_0 \in [a, b]$, then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

First fundamental theorem of calculus: Let $f:[a,b] \to \mathbb{R}$ be Riemann integrable on [a,b] and let $F(x) = \int_a^x f(t) dt$ for all $x \in [a,b]$. Then $F:[a,b] \to \mathbb{R}$ is continuous.

Also, if f is continuous at $x_0 \in [a, b]$, then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

Second fundamental theorem of calculus: Let $f:[a,b] \to \mathbb{R}$ be Riemann integrable on [a,b]. If there exists a differentiable function $F:[a,b] \to \mathbb{R}$ such that F'(x)=f(x) for all $x \in [a,b]$, then $\int\limits_a^b f(x) \, dx = F(b) - F(a)$.

Riemann sum: $S(f, P) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}),$ where $f : [a, b] \to \mathbb{R}$ is bounded, $P = \{x_0, x_1, ..., x_n\}$ is a partition of [a, b],and $c_i \in [x_{i-1}, x_i]$ for i = 1, 2, ..., n. Riemann sum: $S(f, P) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}),$ where $f : [a, b] \to \mathbb{R}$ is bounded, $P = \{x_0, x_1, ..., x_n\}$ is a partition of [a, b],and $c_i \in [x_{i-1}, x_i]$ for i = 1, 2, ..., n.

Result: A bounded function $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b] iff $\lim_{\|P\|\to 0} S(f,P)$ exists in \mathbb{R} .

Riemann sum: $S(f, P) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}),$ where $f : [a, b] \to \mathbb{R}$ is bounded, $P = \{x_0, x_1, ..., x_n\}$ is a partition of [a, b],and $c_i \in [x_{i-1}, x_i]$ for i = 1, 2, ..., n.

Result: A bounded function $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b] iff $\lim_{\|P\|\to 0} S(f,P)$ exists in \mathbb{R} .

Also, in this case, $\int_a^b f = \lim_{\|P\| \to 0} S(f, P)$.

Riemann sum:
$$S(f, P) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}),$$

where $f:[a,b] \to \mathbb{R}$ is bounded,

 $P = \{x_0, x_1, ..., x_n\}$ is a partition of [a, b],

and $c_i \in [x_{i-1}, x_i]$ for i = 1, 2, ..., n.

Result: A bounded function $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b] iff $\lim_{\|P\|\to 0} S(f,P)$ exists in \mathbb{R} .

Also, in this case, $\int_{a}^{b} f = \lim_{\|P\| \to 0} S(f, P)$.

Example:
$$\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right] = \log 2.$$

(a) Type I: The interval of integration is infinite

- (a) Type I : The interval of integration is infinite
- (b) Type II : The integrand is unbounded in the (finite) interval of integration

- (a) Type I : The interval of integration is infinite
- (b) Type II : The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.

- (a) Type I : The interval of integration is infinite
- (b) Type II : The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.

Convergence of Type I improper integrals:

Let
$$f \in \mathcal{R}[a,x]$$
 for all $x > a$. If $\lim_{x \to \infty} \int_a^x f(t) dt$ exists in \mathbb{R} , then $\int_a^\infty f(t) dt$ converges and $\int_a^\infty f(t) dt = \lim_{x \to \infty} \int_a^x f(t) dt$.

Improper integrals:

- (a) Type I: The interval of integration is infinite
- (b) Type II: The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.

Convergence of Type I improper integrals:

Let
$$f \in \mathcal{R}[a,x]$$
 for all $x > a$. If $\lim_{x \to \infty} \int_a^x f(t) dt$ exists in \mathbb{R} , then $\int_a^\infty f(t) dt$ converges and $\int_a^\infty f(t) dt = \lim_{x \to \infty} \int_a^x f(t) dt$.

Otherwise, $\int_{a}^{\infty} f(t) dt$ is divergent.

Improper integrals:

- (a) Type I: The interval of integration is infinite
- (b) Type II: The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.

Convergence of Type I improper integrals:

Let
$$f \in \mathcal{R}[a,x]$$
 for all $x > a$. If $\lim_{x \to \infty} \int\limits_a^x f(t) \, dt$ exists in \mathbb{R} ,

then
$$\int\limits_{a}^{\infty}f(t)\,dt$$
 converges and $\int\limits_{a}^{\infty}f(t)\,dt=\lim_{x\to\infty}\int\limits_{a}^{x}f(t)\,dt.$

Otherwise,
$$\int_{a}^{\infty} f(t) dt$$
 is divergent.

Similarly, we define convergence of $\int_{-\infty}^{b} f(t) dt$ and $\int_{-\infty}^{\infty} f(t) dt$.

(b)
$$\int_{-\infty}^{\infty} e^t dt$$
 (c) $\int_{0}^{\infty} \frac{1}{1+t^2} dt$

(b)
$$\int_{-\infty}^{\infty} e^t dt$$
 (c) $\int_{0}^{\infty} \frac{1}{1+t^2} dt$

Comparison test: Let $0 \le f(t) \le g(t)$ for all $x \ge a$. If $\int_{a}^{\infty} g(t) dt$ converges, then $\int_{a}^{\infty} f(t) dt$ converges.

(b)
$$\int_{-\infty}^{\infty} e^t dt$$
 (c) $\int_{0}^{\infty} \frac{1}{1+t^2} dt$

Comparison test: Let $0 \le f(t) \le g(t)$ for all $x \ge a$. If $\int_a^\infty g(t) dt$ converges, then $\int_a^\infty f(t) dt$ converges.

Limit comparison test: Let $f(t) \ge 0$ let g(t) > 0 for all $t \ge a$ and let $\lim_{t \to \infty} \frac{f(t)}{g(t)} = \ell \in \mathbb{R}$.

(b)
$$\int_{-\infty}^{\infty} e^t dt$$
 (c) $\int_{0}^{\infty} \frac{1}{1+t^2} dt$

Comparison test: Let $0 \le f(t) \le g(t)$ for all $x \ge a$. If $\int_a^\infty g(t) dt$ converges, then $\int_a^\infty f(t) dt$ converges.

Limit comparison test: Let $f(t) \ge 0$ let g(t) > 0 for all $t \ge a$ and let $\lim_{t \to \infty} \frac{f(t)}{g(t)} = \ell \in \mathbb{R}$.

- (a) If $\ell \neq 0$, then $\int_{a}^{\infty} f(t) dt$ converges iff $\int_{a}^{\infty} g(t) dt$ converges.
- (b) If $\ell=0$, then $\int\limits_a^\infty f(t)\,dt$ converges if $\int\limits_a^\infty g(t)\,dt$ converges.

Examples: (a)
$$\int_{1}^{\infty} \frac{\sin^2 t}{t^2} dt$$
 (b) $\int_{1}^{\infty} \frac{dt}{t\sqrt{1+t^2}}$

Examples: (a)
$$\int_{1}^{\infty} \frac{\sin^2 t}{t^2} dt$$
 (b) $\int_{1}^{\infty} \frac{dt}{t\sqrt{1+t^2}}$

Absolute convergence: If $\int_{a}^{\infty} |f(t)| dt$ converges, then $\int_{a}^{\infty} f(t) dt$ converges.

Examples: (a)
$$\int_{1}^{\infty} \frac{\sin^2 t}{t^2} dt$$
 (b) $\int_{1}^{\infty} \frac{dt}{t\sqrt{1+t^2}}$

Absolute convergence: If $\int_{a}^{\infty} |f(t)| dt$ converges, then $\int_{a}^{\infty} f(t) dt$ converges.

Example: $\int_{0}^{\infty} \frac{\cos t}{1+t^2} dt$ converges.

Examples: (a)
$$\int_{1}^{\infty} \frac{\sin^2 t}{t^2} dt$$
 (b) $\int_{1}^{\infty} \frac{dt}{t\sqrt{1+t^2}}$

Absolute convergence: If $\int_{a}^{\infty} |f(t)| dt$ converges, then $\int_{a}^{\infty} f(t) dt$ converges.

Example: $\int_{0}^{\infty} \frac{\cos t}{1+t^2} dt$ converges.

Integral test for series: Let $f:[1,\infty)\to\mathbb{R}$ be a positive decreasing function. Then $\sum\limits_{n=1}^{\infty}f(n)$ converges iff $\int\limits_{1}^{\infty}f(t)\,dt$ converges.

- (a) f is decreasing and $\lim_{t\to\infty} f(t) = 0$, and
- (b) g is continuous and there exists M>0 such that $\left|\int_{a}^{x}g(t)\,dt\right|\leq M$ for all $x\geq a$.

Then $\int_{a}^{\infty} f(t)g(t) dt$ converges.

- (a) f is decreasing and $\lim_{t\to\infty} f(t) = 0$, and
- (b) g is continuous and there exists M>0 such that $\left|\int_{a}^{x}g(t)\,dt\right|\leq M$ for all $x\geq a$.

Then $\int_{a}^{\infty} f(t)g(t) dt$ converges.

Example: $\int_{1}^{\infty} \frac{\sin t}{t} dt$ converges.

- (a) f is decreasing and $\lim_{t\to\infty}f(t)=0$, and
- (b) g is continuous and there exists M>0 such that $\left|\int_{a}^{x}g(t)\,dt\right|\leq M$ for all $x\geq a$.

Then $\int_{a}^{\infty} f(t)g(t) dt$ converges.

Example: $\int_{1}^{\infty} \frac{\sin t}{t} dt$ converges.

Convergence of Type II and mixed type improper integrals:

- (a) f is decreasing and $\lim_{t\to\infty} f(t) = 0$, and
- (b) g is continuous and there exists M>0 such that $\left|\int\limits_{a}^{x}g(t)\,dt\right|\leq M$ for all $x\geq a$.

Then $\int_{a}^{\infty} f(t)g(t) dt$ converges.

Example: $\int_{1}^{\infty} \frac{\sin t}{t} dt$ converges.

Convergence of Type II and mixed type improper integrals:

Example: $\int_{0}^{1} \frac{1}{t^{p}} dt$ converges iff p < 1.

Lengths of smooth curves:

(a) Let y = f(x), where $f : [a, b] \to \mathbb{R}$ is such that f' is continuous.

Then
$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

Lengths of smooth curves:

(a) Let y = f(x), where $f : [a, b] \to \mathbb{R}$ is such that f' is continuous.

Then
$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

(b) Let $x = \varphi(t)$, $y = \psi(t)$, where $\varphi : [a, b] \to \mathbb{R}$ and $\psi : [a, b] \to \mathbb{R}$ are such that φ' and ψ' are continuous.

Then
$$L=\int\limits_a^b\sqrt{(arphi'(t))^2+(\psi'(t))^2}\,dt$$

Lengths of smooth curves:

(a) Let y = f(x), where $f : [a, b] \to \mathbb{R}$ is such that f' is continuous.

Then
$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

(b) Let $x = \varphi(t)$, $y = \psi(t)$, where $\varphi : [a, b] \to \mathbb{R}$ and $\psi : [a, b] \to \mathbb{R}$ are such that φ' and ψ' are continuous.

Then
$$L=\int\limits_a^b\sqrt{(arphi'(t))^2+(\psi'(t))^2}\,dt$$

(c) Let $r = f(\theta)$, where $f : [\alpha, \beta] \to \mathbb{R}$ is such that f' is continuous.

Then
$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + (f'(\theta))^2} d\theta$$

(a) The length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ from x = 0 to x = 3 is 12.

- (a) The length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ from x = 0 to x = 3 is 12.
- (b) The perimeter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- (a) The length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ from x = 0 to x = 3 is 12.
- (b) The perimeter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (c) The length of the curve $x=e^t\sin t$, $y=e^t\cos t$, $0 \le t \le \frac{\pi}{2}$, is $\sqrt{2}(e^{\frac{\pi}{2}}-1)$.

- (a) The length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ from x = 0 to x = 3 is 12.
- (b) The perimeter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (c) The length of the curve $x = e^t \sin t$, $y = e^t \cos t$, $0 \le t \le \frac{\pi}{2}$, is $\sqrt{2}(e^{\frac{\pi}{2}} 1)$.
- (d) The length of the cardioid $r = 1 \cos \theta$ is 8.

- (a) The length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ from x = 0 to x = 3 is 12.
- (b) The perimeter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (c) The length of the curve $x = e^t \sin t$, $y = e^t \cos t$, $0 \le t \le \frac{\pi}{2}$, is $\sqrt{2}(e^{\frac{\pi}{2}} 1)$.
- (d) The length of the cardioid $r = 1 \cos \theta$ is 8.

Area between two curves: If $f,g:[a,b]\to\mathbb{R}$ are continuous and $f(x)\geq g(x)$ for all $x\in[a,b]$, then we define the area between y=f(x) and y=g(x) from a to b to be $\int\limits_{a}^{b} (f(x)-g(x))\,dx.$

- (a) The length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ from x = 0 to x = 3 is 12.
- (b) The perimeter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (c) The length of the curve $x = e^t \sin t$, $y = e^t \cos t$, $0 \le t \le \frac{\pi}{2}$, is $\sqrt{2}(e^{\frac{\pi}{2}} 1)$.
- (d) The length of the cardioid $r = 1 \cos \theta$ is 8.

Area between two curves: If $f,g:[a,b]\to\mathbb{R}$ are continuous and $f(x)\geq g(x)$ for all $x\in[a,b]$, then we define the area between y=f(x) and y=g(x) from a to b to be $\int\limits_{a}^{b} (f(x)-g(x))\,dx.$

Example: The area above the x-axis which is included between the parabola $y^2 = ax$ and the circle $x^2 + y^2 = 2ax$, where a > 0, is $\left(\frac{3\pi - 8}{12}\right)a^2$.

Example: The area of the region that is inside the cardioid $r = a(1 + \cos \theta)$ and also inside the circle $r = \frac{3}{2}a$.

Example: The area of the region that is inside the cardioid $r = a(1 + \cos \theta)$ and also inside the circle $r = \frac{3}{2}a$.

Volume by slicing: $V = \int_{a}^{b} A(x) dx$.

Example: The area of the region that is inside the cardioid $r = a(1 + \cos \theta)$ and also inside the circle $r = \frac{3}{2}a$.

Volume by slicing: $V = \int_{a}^{b} A(x) dx$.

Example: A solid lies between planes perpendicular to the x-axis at x=0 and x=4. The cross sections perpendicular to the axis on the interval $0 \le x \le 4$ are squares whose diagonals run from the parabola $y=-\sqrt{x}$ to the parabola $y=\sqrt{x}$. Then the volume of the solid is 16.

Volume of solid of revolution: $V = \int_{a}^{b} \pi(f(x))^2 dx$.

Volume of solid of revolution: $V = \int_a^b \pi(f(x))^2 dx$.

Example: The volume of a sphere of radius r is $\frac{4}{3}\pi r^3$.

Volume of solid of revolution:
$$V = \int_a^b \pi(f(x))^2 dx$$
.

Volume by washer method:
$$V = \int_a^b \pi((f(x))^2 - (g(x))^2) dx$$

Volume of solid of revolution:
$$V = \int_a^b \pi(f(x))^2 dx$$
.

Volume by washer method:
$$V = \int_a^b \pi((f(x))^2 - (g(x))^2) dx$$

Example: A round hole of radius $\sqrt{3}$ is bored through the centre of a solid sphere of radius 2. Then the volume of the portion bored out is $\frac{28}{3}\pi$.

Volume of solid of revolution:
$$V = \int_a^b \pi(f(x))^2 dx$$
.

Volume by washer method:
$$V = \int_a^b \pi((f(x))^2 - (g(x))^2) dx$$

Example: A round hole of radius $\sqrt{3}$ is bored through the centre of a solid sphere of radius 2. Then the volume of the portion bored out is $\frac{28}{3}\pi$.

Area of surface of revolution:
$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^2} dx$$
.

Volume of solid of revolution:
$$V = \int_a^b \pi(f(x))^2 dx$$
.

Volume by washer method:
$$V = \int_a^b \pi((f(x))^2 - (g(x))^2) dx$$

Example: A round hole of radius $\sqrt{3}$ is bored through the centre of a solid sphere of radius 2. Then the volume of the portion bored out is $\frac{28}{3}\pi$.

Area of surface of revolution:
$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^2} dx$$
.

Example: The volume and area of the curved surface of a paraboloid of revolution formed by revolving the parabola $y^2 = 4ax$ about the x-axis, and bounded by the section $x = x_1$.