Illustration 1: If $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 9, 11\}$, $C = \{2, 11, 18, 22\}$ find: $A \cap B$, $B \cap C$, $C \cap A$, $A \cap B \cap C$. Also verify that : $(A \cap B) \cap C = A \cap (B \cap C)$,

a On Hisy bes As y ←

C and (ye B and ye C)

Ans:

 $A \cap B = \{1, 2, 3, 4\} \cap \{3, 4, 9, 11\}$ Here

 $A \cap B = \{3, 4\}$

 $B \cap C = \{11\}$

 $C \cap A = \{2\}$

 $A \cap B \cap C = \emptyset, \{\}$ because $A \ni \emptyset = \emptyset$

Now we want to verify that $(A \cap B) \cap C = A \cap (B \cap C)$

 $A \cap B = \{3, 4\}, C = \{2, 11, 18, 22\}$

 $\therefore (A \cap B) \cap C = \phi^{(A \cap B)} \cap A \text{ for inside } A$ Also $A = \{1, 2, 3, 4\}, B \cap C = \{11\}$

 $A \cap (B \cap C) = \emptyset$

 $\therefore (A \cap B) \cap C = A \cap (B \cap C)$

Illustration 2: If $A = \{x/x \in \mathbb{N}, x \le 5\}$ $B = \{x/x \in \mathbb{N}, 2 \le x \le 8\}$ $C = \{x/x \in \mathbb{N}, x \leq 3\}, \text{ find } A \cap B, B \cap C \text{ and } C \cap A$ Ans: Here

 $A = \{1, 2, 3, 4, 5\}$

 $B = \{2, 3, 4, 5, 6, 7, 8\}$

 $C = \{1, 2, 3\}$

 $A \cap B = \{2, 3, 4, 5\}$

 $B \cap C = \{2, 3\}$

 $C \cap A = \{1, 2, 3\}$

Illustration 4: $A = \{x/x \in \mathbb{N}, x^2 < 10\},$ $B = \{x/x \in \mathbb{N}, x \le 1\},$ $C = \{x/x \in \mathbb{N}, 1 \le x < 5\}$

Find $A \cup B$, $B \cup C$, $C \cup A$ and verify that $(A \cup B) \cup C = A \cup (B \cup C)$

Ans.:

 $A = \{1, 2, 3\}, B = \{1\}, C = \{1, 2, 3, 4\},\$ $A \cup B = \{1, 2, 3\}$

■ Set T

B \cup C = {1, 2, 3, 4} C \cup A = {1, 2, 3, 4} Now, (A \cup B) \cup C = {1, 2, 3} \cup {1, 2, 3, 4} = {1, 2, 3, 4} And, A \cup (B \cup C) = {1, 2, 3} \cup {1, 2, 3, 4} = {1, 2, 3, 4} \therefore (A \cup B) \cup C = A \cup (B \cup C)

Illustration 9: If $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 3, 6\}$, $B = \{3, 5, 6\}$ then verify that (i) $(A \cup B)' = A' \cap B'$

Ans. (i) $A \cup B = \{2, 3, 5, 6\}$ $(A \cup B)' = \{1, 4\}$ $A' = U - A = \{1, 4, 5\}$ $B' = U - B = \{1, 2, 4\}$ $A' \cap B' = \{1, 4\}$ $\therefore (A \cup B)' = A' \cap B'$

to assert that $(A \cup R)' = A' \cap B'*$

```
Illustration 12: If A = \{x/x \le 9, x \in N\}, B = \{y/3 \le y \le 7, \text{ and } y \text{ is odd number}\} C = \{z/1 \angle z \angle 7, \text{ and } z \text{ is even number}\} then prove that A - (B \cup C) = (A - B) \cap (A - C) A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} B = \{3, 5, 7\} C = \{2, 4, 6\} A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} B \cup C = \{2, 3, 4, 5, 6, 7\} L.H.S = A - (B \cup C) = \{1, 8, 9\} Now, A - B = \{1, 2, 4, 6, 8, 9\} A - C = \{1, 3, 5, 7, 8, 9\} R.H.S = (A - B) \cap (A - C) = \{1, 8, 9\} From (i) and (ii) We have A - (B \cup C) = (A - B) \cap (A - C)
```

Define · difference of

Illustration 15: If
$$A = \{x \mid x \in \mathbb{N}, | x^3 - 2 | \le 25\}$$
, $B = \{y \mid y \in \mathbb{N}, 1 \angle y \angle 5\}$ $C = \{z \mid z \in \mathbb{N}, Z^4 = 81\}$
Verify that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$:

Ans:

$$A = \{x / x \in \mathbb{N}, | x^3 - 2 | \le 25\}$$

i.e. $A = \{1, 2, 3\}$
 $B = \{y / y \in \mathbb{N}, 1 < y < 5\}$
i.e. $B = \{2, 3, 4\}$
 $C = \{z / z \in \mathbb{N}, z^4 = 81\}$
i.e. $C = \{3\}$

```
Now A' = \{1, 2, 3\}
                                                                                                                                                                                                                                                                    A \cup B = \{1, 2, 3, 4\}
                                     B \cap C = \{3\}
                                                                                                                                                                                                                                                                                                                                                              A \cup C = \{1, 2, 3\}
                                    L.H.S = A \cup (B \cap C) = \{1, 2, 3\}
                                                                                                                  = (A \cup B) \cap (A \cup C)
                                                                                                                 = \{1, 2, 3\}
                                                                                                                 L.H.S = R.H.S
             Illustration 16: If A = \{a / a^2 - 1 \neq 10, a \in \mathbb{Z}\},\
                                                                                                                                                                                                 B = \{b \mid b-1 \mid \angle 2, b \in N\}
                                                                                                                                                                                                  C = \{c \mid |c| \le 1, c \in Z\}
                                                                                                                                                                                                 Prove that A \times (B \cap C) = (A \times B) \cap (A \times C)
Ans:
               Here A = \{-3, -2, -1, 0, 1, 2, 3\},\
                                                                            B = \{1, 2\}
                                                                             C = \{-1, 0, 1\}
                         Now B \cap C = {1}
                        L.H.S = A \times (B \cap C) = \{(-3, 1), (-2, 1), (-1, 1), (0, 1), (1, 1), (2, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1),
                                                                                                                 (3, 1)
                        A \times B = \{(-3, 1), (-2, 1), (-1, 1), (0, 1), (1, 1), (2, 1), (3, 1), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 2), (-3, 
                                                                                                               (-2, 2), (-1, 2), (0, 2), (1, 2), (2, 2), (3, 2)
                        A \times C = \{(-3, -1), (-2, -1), (-1, -1), (0, -1), (1, -1), (2, -1), (3, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1),
                                                                                                                (-3, 0), (-2, 0), (-1, 0), (0, 0), (1, 0), (2, 0), (3, 0), (-3, 1),
                                                                                        (-2, 1), (-1, 1), (0, 1), (1, 1), (2, 1), (3, 1)
                     R.H.S = (A \times B) \cap (A \times C) = \{(-3, 1), (-2, 1), (-1, 1), (0, 1), (1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (
                                                                                                                 (2, 1), (3, 1)
```

 \therefore L.H.S = R.H.S

Mustration 17: In a class of 42 students, each play atleast one of the three games Cricket, Hockey and Football. It is found that 14 play Cricket, 20 play Hockey and 24 play Football, 3 play both Cricket and Football, 2 play both Hockey and Football. None play all the three games. Find the number of students who play Cricket but not Hockey. Ans.

Let C denote the set of students who play cricket \Rightarrow n(C) = 14. Let H denote the set of students who play Hockey \Rightarrow n(H) = 20 Let F denote the set of udents who play Football \Rightarrow n(F) = 24 Also, n(C \cup H \cup F) = 42 $C \cap F = \{\text{students who play both Cricket & Football}\} \Rightarrow n(C \cap F) = 3$ $H \cap F = \{\text{students who play Hockey \& Football}\} \Rightarrow n(H \cap F) = 2$ C∩H∩F = {students who play Cricket, Hockey & Football} \Rightarrow n(C \cap H \cap F \cap) = 0

Hère, we are required to find the number of students who play cricket but not Hockey i.e. $n(C \cap H')$

Now, $n(C \cup H \cup F) = n(C) + n(H) + n(F) - n(C \cap H)$ $n(H \cap F) - n(F \cap C) + n(C \cap H \cap F)$

$$42 = 14 + 20 + 24 - n (C \cap H) - 2 - 3 + 0$$

$$42 = 53 - n (C \cap H)$$

$$\therefore$$
 n (C \cap H) = 11

Now $n(C) = n(C \cap H') + n(C \cap H)$

$$\therefore 14 = n'(C \cap H') + 11$$

$$\therefore$$
 n (C \cap H') = 3

:. 3 students play Cricket but not Hockey.

Illustration 18: If $U = \{x \mid x \in \mathbb{N}, x \le 10\}$,

$$A = \{ x / x \in N, x^2 \angle 10 \}$$

$$B = \{2, 4, 6\}$$

$$C = \{x / x^3 - 3x^2 - 4x = 0\}$$

Verify that, (i) $A \cap (B - C) = (A \cap B) - (A \cap C)$

(ii)
$$A' - B' = B - A$$

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{1, 2, 3\}, B = \{2, 4, 6\}, C = \{0, -1, 4\}$$

$$[\therefore \dot{x}^3 - 3x^2 - 4x = 0,$$

$$x(x^2 - 3x - 4) = 0,$$

$$x(x-4)(x+1)=0,$$

$$x = 0 \text{ or } x = 4 \text{ or } x = -1$$

(i)
$$B - C = \{2, 6\}$$

 $A \cap (B - C) = \{2\}$
Now $A \cap B = \{2\}$ (i)

Now
$$A \cap B = \{2\}, A \cap C = \{\}$$

$$(A \cap B) - (A \cap C) = \{2\}$$
(ii)

$$\therefore A \cap (B - C) = (A \cap B) - (A \cap C)$$

L.H.S = A' - B' =
$$\{4, 6\}$$

R.H.S = B - A = $\{4, 6\}$
 \therefore LHS = RHS

Illustration 19: Examine the validity of the following statements and justify your answer:

(i) If
$$A = \{x / x^3 - 5x^2 + 6x = 0\}$$

 $B = \{x / x \in Z, |x| < 1\}$ then $A \cap B = \emptyset$

(ii) If
$$A - B = A$$
, Then $A \cap B = A$

(iii) If
$$A = \{\phi, a\}$$
 Then $\{\phi\} \in P(A)$

(iv) If
$$x \notin (A \cup B)$$
 Then $x \notin A$ or $x \notin B$

(v) If
$$A = \{a, b, c\}$$
, $B = \{2, 5, 7\}$
then $B \times A = \{2a, 5b, 7c\}$

Ans.:

- (i) False: Here $A = \{0, 2, 3\}, B = \{0\}$
 - $A \cap B = \{0\}$, and not ϕ
 - : Statement is false = V A lo taemele can set y fe
- (ii) False: A B = A

i.e. No element of B is in A Hence $A \cap B = \phi$. The statement is therefore false.

(iii) **True**: because
$$P(A) = \{\{\}, \{\phi, a\}, \{\phi\}, \{a\}\}\}$$

Thus $\{\phi\} \in P(A)$ is true

- (iv) False: because If $x \notin (A \cup B)$ $\Rightarrow x \notin A \text{ and } x \notin B.$
- (v) False: because

$$A = \{a, b, c\}, B = \{2, 5, 7\}$$

Then $B \times A = \{(2, a), (2, b), (2, c), (5, a), (5, b), (5, c), (7, a), (7, b), (7, b), (7, b), (7, b), (8, c), (8, c)$ (7, c)

Illustration 20: If $A = [1, 3, a, \{1\}, \{1, a\}]$, state whether the following statements are true or false.

- (i) $1 \in A$,
- (ii) $\{1\} \in A$,
- (iii) $\phi \in A$,
- (iv) $\{1, a\} \subset A$
- (v) $\phi \subset A$
- (vi) $\{1, a\} \in A$

```
26
```

Ans.:

(i)
$$1 \in A$$
, True

(iv)
$$\{1, a\} \subset A$$
, True,

(v)
$$\phi \subset A$$
, True

(vi)
$$\{1, a\} \in A$$
, True

Illustration 21 : Prove that (A')' = A

We shall prove that

(i)
$$(A')' \subseteq A$$
 (ii) $A \subseteq (A')'$

(i) Let x be any element of
$$(A')' \Rightarrow x \in (A')'$$

$$\Rightarrow x \notin A'$$

$$\Rightarrow x \in A$$

$$\Rightarrow$$
 (A')' \subseteq A(i

(ii) Let y be any element of
$$A \Rightarrow y \in A$$

$$\Rightarrow$$
 y \notin A'

$$\Rightarrow$$
 y \in (A')'

$$\Rightarrow$$
 A \subseteq (A')'(ii

From (i) & (ii), (A')' = A

Illustration 22: Prove that : $A - (A - B) = A \cap B$

We shall prove that (i) $A - (A - B) \subseteq (A \cap B)$

(ii)
$$A \cap B \subseteq A - (A - B)$$

(i) Let x be any element of A - (A - B)

$$\Rightarrow x \in A - (A - B)$$

$$\Rightarrow x \in A \text{ but } x \notin (A - B)$$

$$\Rightarrow x \in A \text{ but } (A - B)$$

$$\Rightarrow x \in A \text{ but } (x \notin A \text{ and } x \in B)$$

$$\Rightarrow x \in A \text{ and } x \in B$$

$$\Rightarrow x \in A \cap B$$

$$\Rightarrow x \in A \cap B$$

$$\Rightarrow A - (A - B) \subseteq A \cap B$$

(i) Let y be any element of $A \cap B$

$$\Rightarrow$$
 y \in (A \cap B)

$$\Rightarrow$$
 y \in A and y \in B

$$\Rightarrow y \in A \text{ but } (y \notin A \text{ and } y \in B)$$

$$\Rightarrow y \in A \text{ but } y \notin A \text{ and } y \in B)$$

$$\Rightarrow$$
 y \in A but y \notin (A - B)

$$\Rightarrow y \in A - (A - B)$$

$$\Rightarrow A \cap B \subseteq (A - (A - B)) \qquad(ii)$$
From (i) & (ii)
$$A - (A - B) = (A \cap B)$$
EVEDOLOF