Neural Computation

The Perceptron

Devin K. Phillips. "Speed of the Human Brain". ASU - Ask A Biologist. 13 May, 2015. https://askabiologist.asu.edu/plosable/speed-human-brain

Devin K. Phillips. "Speed of the Human Brain". ASU - Ask A Biologist. 13 May, 2015. https://askabiologist.asu.edu/plosable/speed-human-brain

Perceptron aka McCulloch-Pitts Neuron

Frank Rosenblatt's Perceptron

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." - NY times 1958

Perceptron Classifier

Perceptron Classifier

Perceptron Classifier

Perceptron Classifier (without bias)

One	Dist (km)	Day	Commute time (min)
<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	у
1	2.7	1	25
1	4.1	1	33
1	1.0	0	15
1	5.2	1	45
1	2.8	0	22

1: Initialize $\mathbf{w} = 0$

b we assume no bias for simplicity

2: while All training examples are not correctly classified do

 $for (x, y) \in S do$

if $y \cdot \mathbf{w}^{\top} \mathbf{x} \leq 0$ then

 \triangleright If the pair (\mathbf{x}, y) is misclassified

 $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

ightharpoonup Update the weight vector ${\bf w}$

1: Initialize $\mathbf{w} = 0$

- b we assume no bias for simplicity
- 2: while All training examples are not correctly classified do
- 3: for $(\mathbf{x}, y) \in S$ do

4: if $y \cdot \mathbf{w}^{\top} \mathbf{x} \leq 0$ then

 \triangleright If the pair (x, y) is misclassified

 $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

1: Initialize $\mathbf{w} = 0$

b we assume no bias for simplicity

2: while All training examples are not correctly classified do

 $3: \quad \text{for } (\mathbf{x}, y) \in S \text{ do}$

if $y \cdot \mathbf{w}^{\top} \mathbf{x} \leq 0$ then

 \triangleright If the pair (x, y) is misclassified

 $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

1: Initialize $\mathbf{w} = 0$

b we assume no bias for simplicity

2: while All training examples are not correctly classified do

 $for (x, y) \in S do$

if $y \cdot \mathbf{w}^{\top} \mathbf{x} \leq 0$ then

 \triangleright If the pair (x, y) is misclassified

 $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

1: Initialize $\mathbf{w} = 0$

- b we assume no bias for simplicity
- 2: while All training examples are not correctly classified do
- 3: for $(x, y) \in S$ do

4: if $y \cdot \mathbf{w}^{\top} \mathbf{x} \leq 0$ then

 \triangleright If the pair (\mathbf{x}, y) is misclassified

 $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

1: Initialize $\mathbf{w} = 0$

b we assume no bias for simplicity

2: while All training examples are not correctly classified do

 $3: \quad \text{for } (\mathbf{x}, y) \in S \text{ do}$

if $y \cdot \mathbf{w}^{\top} \mathbf{x} \leq 0$ then

 \triangleright If the pair (x, y) is misclassified

 $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

1: Initialize $\mathbf{w} = 0$

b we assume no bias for simplicity

2: while All training examples are not correctly classified do

 $for (x, y) \in S do$

if $y \cdot \mathbf{w}^{\top} \mathbf{x} \leq 0$ then

 \triangleright If the pair (x, y) is misclassified

 $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

Summary

Dendrites Dendrites Axon

Perceptron ...

• is (very) simple model of biological neuron

• implements linear classifier

output bias i'th weight
$$y = \operatorname{sgn}\left(b + \sum_{i} x_{i}w_{i}\right)$$
 i'th input

- Algorithm finds weights and biases
 - Guaranteed to stop if linearly separable

Perceptron Algorithm

```
1: Initialize \mathbf{w} = 0 \triangleright we assume no bias for simplicity
2: \mathbf{while} All training examples are not correctly classified \mathbf{do}
3: \mathbf{for}(\mathbf{x}, y) \in S \ \mathbf{do} \qquad \triangleright Loop over each (feature, label) pair in the dataset
4: \mathbf{if} \ y \cdot \mathbf{w}^{\top} \mathbf{x} \leq 0 \ \mathbf{then} \triangleright If the pair (\mathbf{x}, y) is misclassified
5: \mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x} \triangleright Update the weight vector \mathbf{w}
```

Limitations

Some data is not linearly separable

Limitations

Some data is not linearly separable

Preview

This is a perceptron

Problem Build soft perceptron

How can we train this?

- Perceptron algorithm no longer works
- Use gradient descent

The idea is to replace the sgn function with a differentiable non-linear function

e.g., sigmoid function

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Mapping: $(-\infty, +\infty) \mapsto (0, 1)$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$
 (exercise)

$$w_1x_1$$
 $\sum_i^{\sigma} w_ix_i + b$ σ $\sum_i^{\sigma} w_ix_i + b$ output activation function

$$f(\mathbf{x}) = \sigma\Big(\sum_i w_i x_i + b\Big)$$
output
activation
function
$$f(\mathbf{x}) = \sigma\Big(\sum_i w_i x_i + b\Big)$$

Interpret as probability

Training

Dataset: n input/output pairs $S = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})\}$

Mean-Square Error

$$C(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(\underbrace{\sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b)}_{\text{predicted output}} - \underbrace{y^{(i)}}_{\text{output}} \right)^{2}.$$

No closed form solution for the minimizer of $C(\mathbf{w})$

Use Gradient Descent to train a $\mathbf{w} \in \mathbb{R}^d$ with a small $C(\mathbf{w})$

How to compute?

$$\frac{\partial (\sigma(\mathbf{w}^{\top}\mathbf{x}+b)-y)^2}{\partial w_i}$$

In the next video

$$\mathbf{w}^{\mathsf{new}} = \mathbf{w} - \eta \nabla C(\mathbf{w}) \quad \Longleftrightarrow w_i^{\mathsf{new}} = w_i - \eta \frac{\partial C(\mathbf{w})}{\partial w_i}.$$