Array Fold Logic Proof

October 20, 2020

Overview

- Overview of the proof.
- Proof of Complexity.

Definitions

Definition (SMC)

A symolic k-counter machine is a tuple $\mathcal{M}=(\eta,X,Q,\delta,q^{init})$, where $\delta\subseteq Q\times \mathrm{CC}_k(X)\times \mathrm{IC}(X)\times Q\times \mathbb{Z}^k$.

Definition (Translation)

We define a translation of a functional constant f of FSort^m as an SCM $\mathcal{M}(f) = (\eta, X, Q, \delta, q^{init})$. Let $G = \langle S, E, \gamma \rangle$ be the edge-labeled graph of f, then the translation...

Definitions

Definition 3. The parallel composition (product) of two SCMs \mathcal{M}_1 and \mathcal{M}_2 , where $\mathcal{M}_i = (\eta_i, X_i, Q_i, \delta_i, q_i^{\text{init}})$, is an SCM $\mathcal{M} = (\eta, X, Q, \delta, q^{\text{init}})$ such that:

- $\eta = \eta_1 \eta_2$,
- $-X=X_1\cup X_2,$
- $Q = Q_1 \times Q_2,$
- for each pair of transitions $(q_i, \alpha_i, \beta_i, p_i, \mathbf{w}_i) \in \delta_i$, where i = 1..2, there is the transition $((q_1, q_2), \alpha_1 \wedge \alpha_2, \beta_1 \wedge \beta_2, (p_1, p_2), \mathbf{w}_1 \mathbf{w}_2) \in \delta$, which are the only transitions in δ .
- $q^{\text{init}} = (q_1^{\text{init}}, q_2^{\text{init}}).$

Small Model Property

Lemma

There exists a constant $c\in\mathbb{N}$, such that an AFL formula Φ is satisfiable iff there exists a model σ it maps each variable in X to integer that $\leq 2^{|\Phi|^c}$ and array to sequence of $\leq 2^{|\phi|^c}$ where each integer of the array also lies in the bound.

Complexity

Theorem

The satisfiability problem of AFL is **PSPACE**-complete.

- Membership: If the small model property holds, an NTM can
 - \blacktriangleright nondeterministically guess variable use space of $|\Phi|^c$ bits.
 - guess one-by-one the value of $2^{|\Phi|^c}$ array cells and use $|\Phi|^c$ bits to count the current index.
 - due to the bound of the variable and the bound of length, the counter value of fold is also bounded in poly.

Then a NTM can simulate the SAT problem in **PSPACE**.

► Hardness: Reduce the emptiness problem of intersection of DFAs which is **PSPACE**-complete to this problem.

$$\bigcap_{i=1}^{n} \mathcal{L}(A_i) \neq \emptyset$$

 A_i can be simulated by $fold_a^i$ with a single counter: What is the alphabet? What is accepting? Why this work?

Proof of Small Model Property

Given a array a and a assignment σ , assume σ satisfiy ϕ . Let $s=|\psi|\leq 3|\phi|$.

$$\mathcal{R} = \{[0, c_1], [c_1, c_1], [c_1 + 1, c_2 - 1], [c_2, c_2], \dots, [c_l, +\infty]\}$$

Size of \mathcal{R} : $2dim(\mathbf{c}) + 1 \leq 3s$.

 Tr_i, Tr_i^* .

A mode: is a tuple in \mathcal{R}^k that describes the region of each counter. Reversal-bounded: \mathcal{M} is reversal-bounded, then any run can traverse at most $max = r \cdot k \cdot |\mathcal{R}| \leq \mathcal{O}(s^3)$ different modes. Take an accepting run $Tr = Tr_1 \cdots Tr_{max}$ of \mathcal{M} . The property of $Tr_i = \delta_m, \cdots, \delta_n$. How to modify Tr_i to get

Proof of Small Model Property

The satisfiability of ϕ then can be translated into a LP problem $\mathbf{LP} = \bigwedge_{i=1}^{5} \mathbf{LP}_i$, where \mathbf{LP}_1 :

$$z_{i,j} = w_{i,j} + \bar{b}_{i,j} + \sum_{m=1}^{|S_i^{=}|} b_{i,j,m} \ y_{i,m},$$
$$w_{i+1,j} = z_{i,j} + b_{i,j}^{+}$$

 \mathbf{LP}_2 : not fold(copy of variables).

 \mathbf{LP}_3 : link fold and not fold.

 \mathbf{LP}_4 : bound of counters.

 \mathbf{LP}_5 : all input constraint in Tr are satisfiable.

Then we get an LP problem, which by [1] the model is bounded.

[1]C. H. Papadimitriou. On the complexity of integer programming.