Determinación del módulo de Young: método estático

Laboratorio 4 - Facultad de Ciencias Exactas y Naturales (UBA)

> Juan Octavio Castro Sofía Correa

Objetivos

 Determinar el valor del módulo de Young de una barra de acero inoxidable (304) a partir de un método estático

- Determinar el valor del módulo de Young de una barra de acero inoxidable (304) a partir de un método estático
- Aprender a procesar imágenes

Módulo de Young

¿Qué es?

Ley de Hooke: fuerza proporcional al estiramiento

Ley de Hooke: fuerza proporcional al estiramiento

$$F_e \propto \Delta x$$

Ley de Hooke: fuerza proporcional al estiramiento

$$F_e \propto \Delta x$$

 $F \propto A \frac{\Delta l}{l}$

Ley de Hooke: fuerza proporcional al estiramiento

$$F_e \propto \Delta x$$

$$F \propto A \frac{\Delta l}{l}$$

Ley de Hooke: fuerza proporcional al estiramiento

$$F_e \propto \Delta x$$

$$F \propto A \frac{\Delta l}{l}$$
 K

Barra en voladizo:

Zf: apartamiento de la barra respecto del equilibrio a una distancia x del punto de apoyo

$$z_f = \frac{W}{EI} \left(\frac{Lx^2}{2} - \frac{x^3}{6}\right)$$

En este caso la fuerza es el peso

$$z_f = \frac{W}{E(I)} \left(\frac{L x^2}{2} - \frac{x^3}{6}\right)$$

$$I = \frac{\pi d^4}{64}$$

Momento de inercia de la sección transversal de la barra

$$z_f = \frac{W}{EI} \left(\frac{Lx^2}{2} - \frac{x^3}{6} \right)$$

$$z_f = \frac{W}{EI} \left(\frac{L x^2}{2} - \frac{x^3}{6} \right)$$

Módulo de Young!!!

$$z_f = \underbrace{\frac{W}{E\,I}(\frac{L\,x^2}{2} - \frac{x^3}{6})}_{}$$

Constante

$$I(y) \propto rac{sin^2(rac{\pi y z_r}{\lambda D})}{(rac{\pi y z_r}{\lambda D})^2}$$

$$I(y) \propto \frac{\sin^2(\frac{\pi y z_r}{\lambda D})}{(\frac{\pi y z_r}{\lambda D})^2}$$

$$z_r^2 \ll D \lambda$$

$$I(y) \propto \frac{\sin^2(\frac{\pi y z_r}{\lambda D})}{(\frac{\pi y z_r}{\lambda D})^2}$$

$$z_r^2 \ll D \lambda$$

$$I(y) \propto \frac{\sin^2(\frac{\pi y z_r}{\lambda D})}{(\frac{\pi y z_r}{\lambda D})^2}$$

$$z_r^2 \ll D \lambda$$

Apertura de la rendija

$$I(y) \propto \frac{\sin^2(\frac{\pi y z_r}{\lambda D})}{(\frac{\pi y z_r}{\lambda D})^2}$$

Distancia al centro del patrón

 $\Delta y = \frac{\lambda D}{z_r} \implies z_r = \frac{\lambda D}{\Delta y}$

$$\Delta y = \frac{\lambda D}{(z_r)} \implies z_r = \frac{\lambda D}{\Delta y}$$

$$\Delta y = \frac{\lambda D}{2r} \implies z_r = \frac{\lambda D}{\Delta y} \implies \text{Obtenemos}$$

$$\Delta y = \frac{\lambda D}{z_r} \implies z_r = \frac{\lambda D}{\Delta y} \quad \Longrightarrow \quad \text{Obtenemos}$$
 Zr

$$\Delta y_{eq} = \frac{\lambda D}{z_{eq}} \implies z_{eq} = \frac{\lambda D}{\Delta y_{eq}}$$

¿Cómo hicimos esto en el laboratorio?

Láser

Esquema experimental

Procesamiento de imágenes: formato

Procesamiento de imágenes: formato R В 919x1256 8 bits Rojo Verde Azul

Procesamiento de imágenes

Procesamiento de imágenes

Procesamiento de imágenes: conversión de unidades

Masa: (24.5787 ±0,0002) g

Masa: (24.5787 ±0,0002) g

Resultados Intensidad lumínica Suma de píxeles sobre el eje horizontal Mínimos relativos Píxeles eje vertical

Resultados Intensidad lumínica Suma de píxeles sobre el eje horizontal Mínimos relativos Píxeles eje vertical

Fuerza flexora (depende de la masa)

~		~ .	1	~		λL
z_r	=	z_f	+	z_{eq}	=	Δy

	Masa [g]	Interfranja* [mm] ∆y	Flexión* [mm] z _f
	14,6624 ± 0,0002	7,0748 ± 0,0005	0,1007 ± 0,0006
	16,3590 ± 0,0002	6,6329 ± 0,0005	0,1104 ± 0,0006
1)	18,5125 ± 0,0002	5,9671 ± 0,0004	0,1277 ± 0,0007
1)	34,6247 ± 0,0002	3,6207 ± 0,0003	0,024 ± 0,001
)	40,6943 ± 0,0002	3,1466 ± 0,0003	0,282 ± 0,001
,	49,9454 ± 0,0002	2,6106 ± 0,0003	0,349 ± 0,002
	52,1047 ± 0,0002	2,5212 ± 0,0003	0,363 ± 0,002

Fuerza flexora (depende de la masa)

$$z_r = z_f + z_{eq} = \frac{\lambda L}{\Delta r}$$

	Masa [g]	Δy		Z_{f}	
	14,6624 ± 0,0002	7,0748 ± 0,0005		0,1007 ± 0,0006	
	16,3590 ± 0,0002	6,6329 ± 0,0005		0,1104 ± 0,0006	
)	18,5125 ± 0,0002	5,9671 ± 0,0004		0,1277 ± 0,0007	
,	34,6247 ± 0,0002	3,6207 ± 0,0003	 	0,024 ± 0,001	
	40,6943 ± 0,0002	3,1466 ± 0,0003	 	0,282 ± 0,001	
	49,9454 ± 0,0002	2,6106 ± 0,0003	 	0,349 ± 0,002	
	52,1047 ± 0,0002	2,5212 ± 0,0003		0,363 ± 0,002	

Fuerza flexora (depende de la masa)

$$z_f = \frac{W}{EI} \left(\frac{Lx^2}{2} - \frac{x^3}{6}\right)$$

	Masa [g]	Interfranja* [mm] ∆y	Flexión* [mm] z _f
	14,6624 ± 0,0002	7,0748 ± 0,0005	0,1007 ± 0,0006
	16,3590 ± 0,0002	6,6329 ± 0,0005	0,1104 ± 0,0006
a)	18,5125 ± 0,0002	5,9671 ± 0,0004	0,1277 ± 0,0007
4)	34,6247 ± 0,0002	3,6207 ± 0,0003	0,024 ± 0,001
}	40,6943 ± 0,0002	3,1466 ± 0,0003	0,282 ± 0,001
-)	49,9454 ± 0,0002	2,6106 ± 0,0003	0,349 ± 0,002
	52,1047 ± 0,0002	2,5212 ± 0,0003	0,363 ± 0,002

$$z_f = \frac{W}{EI} \left(\frac{Lx^2}{2} - \frac{x^3}{6} \right) \qquad \longrightarrow \qquad \frac{m}{E} = \frac{2z_f I}{g\left(Lx^2 - \frac{x^3}{3} \right)}$$

Coeficiente de correlación lineal

$$r = 0,999$$

Coeficiente de correlación lineal

$$r = 0,999$$

Módulo de Young

$$E = (192 \pm 3) GPa.$$

• El método es bueno para conseguir una aproximación del módulo de Young

- El método es bueno para conseguir una aproximación del módulo de Young
- Utilizar un el espejo regulable para dirigir el haz.

- El método es bueno para conseguir una aproximación del módulo de Young
- Utilizar un el espejo regulable para dirigir el haz.
- Regular el número de interfranjas en cada medición.

$$\Delta y = \frac{\lambda D}{z_f + z_{eq}}$$

- El método es bueno para conseguir una aproximación del módulo de Young
- Utilizar un el espejo regulable para dirigir el haz.
- Regular el número de interfranjas en cada medición.
- Explorar otro rango para la fuerza flexora.

- El método es bueno para conseguir una aproximación del módulo de Young
- Utilizar un el espejo regulable para dirigir el haz.
- Regular el número de interfranjas en cada medición.
- Explorar otro rango para la fuerza flexora.

GRACIAS (

Tres colores patrón

Tomando el patrón sólo sobre una columna

Píxeles eje horizontal

*Los resultados que faltan

Masa [g]	Interfranja [mm] ∆y	Flexión [mm] z _f	
45,7895 ± 0,0002	2,8297 ± 0,0003	0,319 ± 0,001	Inte
			22.0
47,9055 ± 0,0002	2,7298 ± 0,0003	0,332 ± 0,001	22,9
19,4098 ± 0,0002	5,7956 ± 0,0004	0,1328 ± 0,000	07
20,0659 ± 0,0002	5,5512 ± 0,0004	0,1406 ± 0,000	07
24,5787 ± 0,0002	4,7877 ± 0,0004	0,1701 ± 0,000	09

*Equilibrio

Interfranja [mm]	Apertura [mm]
22,9696 ± 0,0009	0,0448 ± 0,0002

Valor obtenido con promedio

$$E = (192 \pm 3) GPa$$

banco de ecuaciones

 $I(y) \propto \frac{\sin^2(\frac{\pi y z_r}{\lambda D})}{(\frac{\pi y z_r}{\lambda D})^2}$

 $z_f = \frac{W}{E\,I} \left(\frac{L\,x^2}{2} - \frac{x^3}{6} \right)$

 $z_r = z_f + z_{eq}$

 $\Delta y = \frac{\lambda D}{z_r} \implies z_r = \frac{\lambda D}{\Delta y}$