Lab 4.0

TFT-LCD Display + Camera

O. Facklam, J. Schweizer, S. Thirion

07/01/21

Global system

• 4 main modules

2 external interfaces: GPIO_0 and GPIO_1

 Synchronization of LCD and CAMERA controller with 2 conduits

Storage in SDRAM

4 buffers, 1 frame each

Access via Avalon Master (4 bytes)

- Write burst of 80 words (2 pixels = 4 bytes)
- Read burst of 40 words (2 pixels = 4 bytes)

[3:0] conduits between modules for concurrent access

- Conduit displaying buffer being read
- **Conduit capturing** buffer being written in

Figure: Organisation of 1 buffer

Camera module (general)

Registers

Buffer config storage

FSM

Synchronization
Acquisition management

Camera interface

Sampling, debayerization

DMA

FIFO dequeuing SDRAM write

4 external interfaces: Avalon master, Avalon slave, Camera input, LCD synchro conduit

Camera module (camera interface)

- Simple state machine to track row/column parity
- Store even rows in green & red FIFO
- Merge 4 colors during odd rows

Camera module (FSM & DMA)

FSM: track buffer index & camera frame start

DMA: burst counter & current address registers

LCD module (general)

Address	Register name	Bits	Explanation	Default value
0x00	MODENABLE	0	Enable the lcd controller module	0
0x01	FRAMESEC	0-7	Frame per second of the transfer	25
0x03	BUFFADDR	0-31	Address in memory of the first buffer	0x000000000
0x04	COMMANDLCD	0-15	Send a command to LCD	None
0x05	DATALCD	0-15	Send a data to LCD	None

Master controller

SDRAM read, FIFO enqueuing

LCD controller

FIFO dequeuing, transmit commands

Register

Global variables, transmit commands to LCD controller

4 external interfaces: **Avalon Master**, **Avalon Slave**, **Camera Conduit** and **Lcd Output**

LCD module (master controller)

- Needed: Buffer Address & FPS
- What FPS value? Not too low nor too high! (it is an upper bound)

LCD module (LCD controller)

- Avoids pulling too fast with FPS
- Fastest pixel transmission possible (80 ns / pixel)

Merged system

Test of camera module

- ModelSim validation
- Save picture from camera to SDRAM
- Retrieve picture from SDRAM

Test of LCD module

- ModelSim validation
- Write image from software (commands)
- Set SDRAM buffers to predefined values

Software programming

- Init of the camera & camera controller:
 - Programming the camera registers (image size, skipping, binning)
 - Programming custom registers (buffer address, number, length), automatically starting capture of images

- Init of the LCD controller
 - Programming custom registers (fps, buffer_address, ...)
 - Programming the LCD screen (pixel format, color, gamma correction, control ...)
 - Displaying small screen boot
 - Starting the display of images

A success story...

... to be improved

• LCD screen & camera configuration (exposure & saturation)

• FPS - find and remove bottleneck (currently ~10 fps)

Small random lag & saturated pixels when overexposed scenery

Thanks!