What is claimed is:

1	1. A satellite based positioning method, comprising:	
2	a mobile station using stored satellite sub-almanacs to acquire a plurality of	
3	satellites;	
4	the mobile station using the satellite sub-almanacs to take measurements;	
5	the mobile station using the sub-almanacs to calculate a coarse position of the	
6	mobile station; and	
7	the mobile station transmitting the coarse position to a network.	
1	2. The method of claim 1, wherein the mobile station further stores the	
2	coarse position, and wherein the mobile station transmits the coarse position to the	
3	network after a period of time.	
1	The method of claim 1, further comprising:	
2	the network calculating a correction to the coarse position; and	
3	the network transmitting the correction to the mobile station.	
1	4. The method of claim 1, further comprising:	
2	determining whether any of the sub-almanacs require replacement; and	
3	transmitting and required replacement sub-almanacs to the mobile station.	
1	5. The method of claim 4, further comprising the mobile station transmitting	
2	an indication of an acceptable level of error to the network, wherein determining whether	

- 3 any of the sub-almanacs requires replacement includes determining whether the
- 4 acceptable level of error has been exceeded.
- 1 6. The method of claim 1, further comprising:
- 2 the mobile station receiving a reference position; and
- 3 the mobile station using the reference position to calculate the coarse position.
- The method of claim 6, wherein the mobile station transmitting the coarse
- 2 position comprises transmitting a position difference between the reference position and
- 3 the coarse position.
- 1 8. The method of claim 3, further comprising the mobile station transmitting
- 2 an identification list to the network, wherein the identification list comprises
- 3 identifications of particular satellites used in calculating the coarse position, and
- 4 identifications of particular sub-almanacs for each of the particular satellites.
- 1 9. The method of claim 8, wherein calculating the correction comprises
- 2 calculating a position correction vector over satellites used to calculate the coarse
- 3 position.
- 1 10. The method of claim 8, wherein calculating the correction comprises
- 2 calculating a pseudorange correction for each satellite used to calculate the coarse
- 3 position.
- 1 11. The method of claim 8, wherein calculating the correction comprises
- 2 calculating a differential correction, wherein the differential correction accounts for

3	discrepancies between calculation results obtained using ephemeris data and pseudorange
4	data observed by a reference receiver at a known location.
1	12. A satellite based positioning system, comprising:
2	a location server in a network, wherein the location server receives satellite
3	positioning data, including global positioning system (GPS) data;
4	a base station in the network;
5	a mobile station configured to communicate with the base station, wherein the
6	mobile station comprises,
7	a memory that stores satellite sub-almanac data;
8	a central processing unit (CPU) configured to calculate a coarse position
9	using the sub-almanac data; and
10	a transceiver configured to transmit the coarse position to the network.
1	13. The system of claim 12, wherein the location server is configured to
2	calculate a correction to the coarse position.
1	14. The system of claim 13, wherein the mobile station is further configured
2	to transmit an identification list to the network, wherein the identification list comprises
3	identifications of particular satellites used in calculating the coarse position, and
4	identification of particular sub-almanacs for each of the particular satellites.
1	15. The system of claim 14, wherein the location server is configured to
2	determine whether any of the sub-almanacs require replacement, and to transmit any
3	required replacement sub-almanacs to the mobile station.

1	16.	The system of claim 15, wherein the mobile station is further configured
2	to transmit ar	n indication of an acceptable level of error to the network, and wherein
3	determining	whether any of the sub-almanacs requires replacement includes determining
4	whether the a	acceptable level of error has been exceeded.
1	17.	The system of claim 12, wherein the mobile station is further configured
2	to receive a r	eference position, and to use the reference position to calculate the coarse
3	position.	
1	18	The system of claim 17, wherein transmitting the coarse position
2	comprises tra	insmitting a position difference between the reference position and the
3	coarse position	on.
1	19.	The system of claim 16, further comprising the mobile station transmitting
2	an identificat	ion list to the network, wherein the identification list comprises
3	identification	s of particular satellites used in calculating the coarse position, and
4	identification	of particular sub-almanacs for each of the particular satellites.
1	20.	The system of claim 19, wherein calculating the correction comprises
2	calculating a	position correction vector over satellites used to calculate the coarse
3	position.	
1	21.	The system of claim 19, wherein calculating the correction comprises

calculating a pseudorange correction for each satellite used to calculate the coarse

2

3

position.

1	22. The system of claim 19, wherein calculating the correction comprises
2	calculating a differential correction, wherein the differential correction accounts for
3	discrepancies between calculation results obtained using ephemeris data and pseudorange
4	data observed by a reference receiver at a known location.
1	23. A method of determining a position of a mobile station, the method
2	comprising:
3	the mobile station storing sub-almanac data;
4	the mobile station using the sub-almanac data to calculate a coarse position;
5	the mobile station transmitting the coarse position and an identification list to a
6	network, wherein the identification list comprises identifications of particular satellites
7	used in calculating the coarse position, and identifications of particular sub-almanacs for
8	each of the particular satellites;
9	the network calculating an estimated range error per satellite; and
10	if the estimated range error exceeds a predetermined threshold for particular sub-
11	almanacs, transmitting replacement sub-almanacs to the mobile station.
1	24. The method of claim 23, further comprising, if the estimated range error
2	does not exceed the predetermined threshold for any of the sub-almanacs, calculating a
3	final position solution for the mobile station.
1	25. The method of claim 23, further comprising:
2	re-transmitting a position request to the mobile station; and

3	the mobile station recalculating a coarse position using the replacement sub-
4	almanacs.
1	26. A satellite based positioning method for a mobile station in
2	communication with a network, the method comprising:
3	the mobile station transmitting an identification list comprising identifications of
4	particular satellites thought to be in view, and identifications of particular sub-almanacs
5	for each of the particular satellites;
6	the network estimating range errors for each of the particular sub-almanacs;
7	the network transmitting replacement sub-almanacs to the mobile station for each
8	sub-almanac for which a predetermined range error threshold is exceeded; and
9	the mobile station calculating a coarse position using the sub-almanacs including
10	any replacement sub-almanacs.
1	27. The method of claim 26, further comprising:
2	the mobile station transmitting the coarse position and a new identification list to
3	the network; and
4	the network calculating a final position solution for the mobile station.
1	28. A satellite based positioning method for a mobile station in
2	communication with a network, the method comprising:
3	the mobile station calculating which particular satellites the mobile station tracks;
4	the mobile station determining whether any sub-almanacs associated with the
5	particular satellites are older than a predetermined maximum age:

6	if one or more of the sub-almanacs are older than the predetermined age, the	
7	mobile station transmitting to the network an identification list and an error threshold,	
8	wherein the identification list comprises identifications of particular satellites thought to	
9	be in view, and identifications of particular sub-almanacs for each of the particular	
10	satellites;	
11	the network estimating range errors for each of the particular satellites; and	
12	the network transmitting replacement sub-almanacs for any satellites for which	
13	the range error exceeds the error threshold.	
1	29. The method of claim 28, further comprising the mobile station using	
2	stored data and any replacement sub-almanacs to acquire satellites and take	
3	measurements.	
1	30. The method of claim 29, further comprising:	
1	50. The method of claim 29, further comprising.	
2	the mobile station calculating a coarse position;	
3	the mobile station transmitting the coarse position and an identification list to the	
4	network; and	
5	the network calculating a final position solution for the mobile station.	
1	31. A machine-readable medium having instructions stored thereon, which	
2	when executed cause a processor to perform a satellite positioning process, wherein the	
3	process comprises:	
4	using stored satellite sub-almanacs to acquire a plurality of satellites;	
5	using the satellite sub-almanacs to take measurements;	

6	using the sub-almanacs to calculate a coarse position of a mobile station; and
7	transmitting the coarse position to a network.
1	32. The machine-readable medium of claim 31, wherein the process further
2	comprises storing the coarse position, and transmitting the coarse position to the network
3	after a period of time.
1	33. The machine-readable medium of claim 31, wherein the process further
2	comprises:
3	calculating a correction to the coarse position; and
4	transmitting the correction to the mobile station.
1	34. The machine-readable medium of claim 31, wherein the process further
2	comprises:
3	determining whether any of the sub-almanacs require replacement; and
4	transmitting and required replacement sub-almanacs to the mobile station.
1	35. The machine-readable medium of claim 34, wherein the process further
2	comprises transmitting an indication of an acceptable level of error to the network,
3	wherein determining whether any of the sub-almanacs require replacement includes
4	determining whether the acceptable level of error has been exceeded.
1	36. The machine-readable medium of claim 31, wherein the process further
2	comprises:
3	receiving a reference position; and

- 4 using the reference position to calculate the coarse position.
- 1 37. The machine-readable medium of claim 36, wherein transmitting the
- 2 coarse position comprises transmitting a position difference between the reference
- 3 position and the coarse position.
- 1 38. The machine-readable medium of claim 33, wherein the process further
- 2 comprises transmitting an identification list to the network, wherein the identification list
- 3 comprises identifications of particular satellites used in calculating the coarse position,
- 4 and identification of particular sub-almanacs for each of the particular satellites.
- 1 39. The machine-readable medium of claim 38, wherein calculating the
- 2 correction comprises calculating a position correction vector over satellites used to
- 3 calculate the coarse position.
- 1 40. The machine-readable medium of claim 38, wherein calculating the
- 2 correction comprises calculating a pseudorange correction for each satellite used to
- 3 calculate the coarse position.
- 1 41. The machine-readable medium of claim 38, wherein calculating the
- 2 correction comprises calculating a differential correction, wherein the differential
- 3 correction accounts for discrepancies between calculation results obtained using
- 4 ephemeris data and pseudorange data observed by a reference receiver at a known
- 5 location.