

Instituto Superior de Engenharia de Coimbra

Licenciatura em Engenharia Informática Introdução à Inteligência Artificial

Trabalho Prático **Agentes Reativos**

Índice

Introdução	2
Modelo Melhorado	3
Interface	4
Análise dos resultados – Modelo Base	5
Caso 1	5
Caso 2	5
Caso 3	6
Análise dos resultados – Modelo Melhorado	7
Caso 1	7
Caso 2	8
Caso 3	9
Conclusão	10

Introdução

Neste trabalho foi pedido, para o modelo base, para criarmos um ambiente com dois tipos de agentes reativos, *basics* e *experts*, tendo diferentes características que lhes permitem diferentes maneiras de sobreviver no ambiente onde estão inseridos. Todo o ambiente é decidido pelo utilizador.

Também nos foi proposto o melhoramento do modelo base de maneira a reduzir a desvantagem dos basics e adicionar novos elementos ao ambiente.

Para a realização do trabalho foi usado o **Netlogo**.

Modelo Melhorado

O ambiente é definido com quatro tipos de *patches*¹: alimento verde, alimento amarelo, armadilhas vermelhas e as *gems* rosa.

No ambiente estão introduzidos três tipos de agentes: *basics*, *experts* e *mages*, que têm como missão sobreviver o máximo de tempo. Para que isso seja possível cada agente pode tomar um conjunto de decisões em prol do seu objetivo.

Basics - São agentes reativos que consomem alimento amarelo.

Experts – São agentes reativos com memória que consomem alimento amarelo e alimento verde. Têm como habilidade multiplicar-se a cada 5 *basics* que matam.

Mages – São agentes reativos com a habilidade de multiplicar os *basics* se os detetarem algures à sua volta (neightbourhood 4) e de matar os *experts* que encontrarem à sua frente. Para serem criados um *basic* deve consumir uma *gem*. Após a sua morte criam uma *gem* num sítio aleatório no ambiente.

Basics e Experts são afetados pelas armadilhas, porém os experts ganhando experiência deixam de ser afetados pelas mesmas.

-

¹ patches - células

Interface

percentagem_alimento_amarelo – controla a percentagem de alimento amarelo
percentagem_alimento_verde – controla a percentagem de alimento verde
percentagem_armadilhas – controla a percentagem de armadilhas
abrigos – controla o nº de abrigos
n_basics – controla o nº de basics
n_experts – controla o nº de experts
gems – controla o nº de gems

Análise dos resultados - Modelo Base

Caso 1²
Caso base onde os *basics* e os *experts* existem na mesma quantidade.

	Inicio	Fim
percentagem_alimento_amarelo	5	5
percentagem_alimento_verde	15	15
percentagem_armadilhas	2	2
abrigos	5	5
n_basics	25	0
n_experts	25	21

Nesta situação a simulação vai até aos 1000 ticks de duração, porém os basics são extintos em 26 ticks, prevalecendo assim os experts.

Caso 2³
Caso base só existe *basics*.

	Inicio	Fim
percentagem_alimento_amarelo	5	5
percentagem_alimento_verde	15	15
percentagem_armadilhas	2	2
abrigos	5	5
n_basics	25	3
n_experts	0	0

² <u>estudo1_base.csv</u>

³ estudo2 base.csv

Nesta situação a simulação vai até aos 1000 ticks de duração. Sem a existência de experts os basics prevalecem até ao fim da simulação, porém com uma população em decrescimento.

Análise dos resultados - Modelo Base

Caso 3⁴
Caso base onde os *basics* e os *experts* existem na mesma quantidade.

	Inicio	Fim
percentagem_alimento_amarelo	5	5
percentagem_alimento_verde	15	15
percentagem_armadilhas	2	2
abrigos	5	5
n_basics	0	0
n_experts	25	15

Nesta situação a simulação vai até aos 1000 ticks de duração. Sem a existência de basics os experts prevalecem até ao fim da simulação, porém com um decrescimento maior do que quando existem basics.

⁴ estudo3 base.csv

Análise dos resultados - Modelo Melhorado

Caso 1⁵
Caso base onde os *basics* e os *experts* existem na mesma quantidade.

	Inicio	Fim
percentagem_alimento_amarelo	5	5
percentagem_alimento_verde	15	15
percentagem_armadilhas	2	2
abrigos	5	5
n_basics	25	0
n_experts	25	21
gems	5	5

Nesta situação a simulação vai até aos 1000 ticks de duração. Os basics neste modelo prevalecem durante mais tempo, mas acabam por ser extintos 189 ticks.

⁵ <u>estudo1 melhorado.csv</u>

Análise dos resultados - Modelo Melhorado

Caso 2⁶
Caso base onde os *basics* existem em nº superior aos *experts*.

	Inicio	Fim
percentagem_alimento_amarelo	5	5
percentagem_alimento_verde	15	15
percentagem_armadilhas	2	2
abrigos	5	5
n_basics	30	0
n_experts	15	2
gems	5	5

Nesta situação a simulação vai até aos 1000 ticks de duração. Os basics neste caso têm uma flutuação de população conseguindo sobreviver mais tempo do que qualquer outro caso, porém extinguem-se aos 553 ticks. Apesar de se extinguirem causam grandes danos a população de experts, com a ajuda dos mages.

⁶ <u>estudo2 melhorado.csv</u>

Análise dos resultados - Modelo Melhorado

Caso 3⁷

Caso base onde os *basics* existem em nº superior aos *experts* e as *gems* existem em maior quantidade.

	Inicio	Fim
percentagem_alimento_amarelo	5	5
percentagem_alimento_verde	15	15
percentagem_armadilhas	2	2
abrigos	5	5
n_basics	30	545
n_experts	15	0
gems	10	10

Nesta situação a simulação vai até aos 1000 ticks de duração. Com um maior nº de basics e de gems a população tem uma subida exponencial chegando a um máximo de 557 basics. Com o maior de nº de gems a existência de mages também aumenta trazendo mais perigos aos experts, que combinou numa extinção aos 469 ticks.

⁷ <u>estudo3 melhorado.csv</u>

Conclusão

Durante a realização deste trabalho foram encontrados problemas onde foi necessário pesquisar soluções em *sites* como o **StackOverflow** ou mesmo a documentação do **Netlogo**.

Com a realização deste trabalho foi possível trabalhar na matéria lecionada tanto nas Teóricas como nas Práticas, de maneira a ganhar mais compreensão sobre I.A e o seu funcionamento.