PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1207 – Introducción al Álgebra y Geometría

Solución Interrogación N° 5

1. a) Encuentre un ángulo α tal que $0 < \alpha < \frac{\pi}{2}$ y tal que

$$\tan\left(\frac{-5\pi}{3}\right) = \tan(\alpha)$$

Luego calcule $\tan\left(\frac{-5\pi}{3}\right)$.

b) Encuentre el área del triángulo $\triangle ABC$ con medidas de lados AB=2 y AC=3 y ángulo $\angle BAC=120^{\circ}.$

Solución.

a) Notamos que

$$\frac{-5\pi}{3} = -2\pi + \frac{\pi}{3}$$

luego $\alpha = \frac{\pi}{3}$ por lo que

$$\tan\left(\frac{-5\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \frac{\sin\left(\frac{\pi}{3}\right)}{\cos\left(\frac{\pi}{3}\right)} = \sqrt{3}.$$

b) Área $(\triangle ABC) = \frac{1}{2}(2 \cdot 3 \operatorname{sen}(120^{\circ})) = 3 \operatorname{sen} 60^{\circ} = 3\frac{\sqrt{3}}{2}.$

Criterio de Corrección (CC) Pregunta 1.

CC 1. 1,5 puntos obtener que $\alpha = \pi/3$.

CC 2. 1,5 puntos por determinar el valor de $\tan(-5\pi/3)$.

CC 3. 1,5 puntos por usar la fórmula Área $(\triangle ABC) = ab \operatorname{sen}(\alpha)/2$.

CC 4. 1,5 puntos por calcular $sen(120^\circ) = sen(60^\circ)$ y obtener el área del triángulo.

- 2. Dado el siguiente triángulo $\triangle ABC$ que se muestra en la figura, en donde tenemos las medidas $\overline{BC} = r$, $\overline{DB} = s$, $\overline{AD} = t$ y $\overline{AB} = x$. Si además tenemos que $\angle DCB = \alpha$ y $\angle BDC = \beta$, entonces:
 - a) Exprese s en función de r, $sen(\alpha)$ y $sen(\beta)$.
 - b) Exprese x en función de s, t y $\cos(\beta)$.
 - c) Si $\beta = 2\alpha = \frac{\pi}{3}$ y $r = t = \sqrt{3}$, encuentre explícitamente el valor de x.

Solución.

a) Utilizando el teorema del seno en el triángulo $\triangle DBC$ se tiene que:

$$\frac{\operatorname{sen}(\alpha)}{s} = \frac{\operatorname{sen}(\beta)}{r}$$

es decir, se tiene que $s = \frac{r \cdot \operatorname{sen}(\alpha)}{\operatorname{sen}(\beta)}$.

b) Notemos que $\angle ADB = 180^{\circ} - \beta$, por lo que usando teorema del coseno en el triángulo $\triangle ADB$ se tiene que:

$$x^{2} = s^{2} + t^{2} - 2 \cdot s \cdot t \cdot \cos(180^{\circ} - \beta)$$

Pero como $\cos(180 - \beta) = -\cos(\beta)$ obtenemos que $x = \sqrt{s^2 + t^2 + 2 \cdot s \cdot t \cdot \cos(\beta)}$.

c) Tenemos en primera instancia que:

$$s = \frac{r \cdot \operatorname{sen}(\alpha)}{\operatorname{sen}(\beta)} = \frac{\sqrt{3} \cdot \operatorname{sen}(\frac{\pi}{6})}{\operatorname{sen}(\frac{\pi}{3})} = \frac{\sqrt{3} \cdot \frac{1}{2}}{\frac{\sqrt{3}}{2}} = 1.$$

Así, nos queda:

$$x = \sqrt{1^2 + (\sqrt{3})^2 + 2 \cdot 1 \cdot \sqrt{3} \cdot \cos\left(\frac{\pi}{3}\right)} = \sqrt{4 + \sqrt{3}}.$$

Criterio de Corrección (CC) Pregunta 2.

- ${\bf CC}$ 1. 1 punto por usar el teorema del seno en el triángulo DBC
- **CC 2.** 1 punto por despejar s y obtener que $s = r \operatorname{sen}(\alpha) / \operatorname{sen}(\beta)$.
- ${f CC}$ 3. 1 punto por usar el teorema del coseno en el triángulo ADB
- CC 4. 1 punto por despejar x y obtener que $x = \sqrt{s^2 + t^2 + 2st\cos(\beta)}$.
- CC 5. 1 punto por determinar s usando el inciso a).
- **CC 6.** 1 punto por determinar x usando el inciso b).