Lecture 33: Gaussian mixture models and the EM algorithm

Ciaran Evans

Previously: Gaussian mixture model

- ightharpoonup Observe data $X_1, ..., X_n$
- Assume each observation i comes from one of k groups. Let $Z_i \in \{1, ..., k\}$ denote the group assignment
 - ▶ The group Z is an unobserved (**latent**) variable

Model:

- $P(Z_i = j) = \lambda_j$
- $\blacktriangleright X_i | (Z_i = j) \sim N(\mu_j, \sigma_j^2)$

Posterior probabilities and parameter estimation

► Posterior probabilities:

$$P(Z_i = j | X_i) = \frac{\lambda_j f(X_i | Z_i = j)}{\lambda_1 f(X_i | Z_i = 1) + \dots + \lambda_k f(X_i | Z_i = k)}$$

► Parameter updates:

$$\widehat{\lambda}_{j} = \frac{1}{n} \sum_{i=1}^{n} P(Z_{i} = j | X_{i})$$

$$\widehat{\mu}_{j} = \frac{\sum_{i=1}^{n} X_{i} P(Z_{i} = j | X_{i})}{\sum_{i=1}^{n} P(Z_{i} = j | X_{i})}$$

$$\widehat{\sigma}_{j} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \widehat{\mu}_{j})^{2} P(Z_{i} = j | X_{i})}{\sum_{i=1}^{n} P(Z_{i} = j | X_{i})}}$$

Today: where do these estimates come from??

Parameter estimation

The quantity we **want** to optimize is called the **log-likelihood**, and it is given by

$$\ell(\lambda, \mu, \sigma) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{k} \lambda_{j} f(X_{i}|Z_{i}=j) \right)$$

Question: We have discussed optimization extensively in this course. How do we usually try to optimize a function?

Parameter estimation

Let $\theta=(\lambda,\mu,\sigma)$ be the collection of all parameters we are trying to estimate for the Gaussian mixture model. Let $\theta^{(t)}$ be our current estimates of these parameters, at iteration t, and let

$$\gamma_{ij}^{(t)} = P^{(t)}(Z_i = j|X_i, \theta^{(t)})$$

be the posterior probabilities calculated with $\theta^{(t)}$. Then define

$$Q(\theta|\theta^{(t)}) = \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij}^{(t)} \log(\lambda_{j} f(X_{i}|Z_{i}=j)) - \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij}^{(t)} \log(\gamma_{ij}^{(t)})$$

- Maximizing $Q(\theta|\theta^{(t)})$ helps us maximize $\ell(\lambda,\mu,\sigma)$

Example

- $\mu^{(t)} = (1,5)$
- ▶ Want to find μ_1 , μ_2 to maximize Q. Look at different possibilities for μ_2 :

Doing the calculus

$$Q(\theta|\theta^{(t)}) = \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij}^{(t)} \log \left(\lambda_{j} \frac{1}{\sqrt{2\pi\sigma_{j}^{2}}} \exp\left\{ -\frac{1}{2\sigma_{j}^{2}} (X_{i} - \mu_{j})^{2} \right\} \right) - \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij}^{(t)} \log(\gamma_{ij}^{(t)})$$

Summary: EM algorithm

Want to maximize

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{k} \lambda_j f(X_i | Z_i = j) \right)$$

Define

$$Q(\theta|\theta^{(t)}) = \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij}^{(t)} \log(\lambda_{j} f(X_{i}|Z_{i}=j)) - \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij}^{(t)} \log(\gamma_{ij}^{(t)})$$

EM algorithm:

- 1. Begin with $\theta^{(0)}$
- 2. Calculate $Q(\theta|\theta^{(0)})$
- 3. $\theta^{(1)}$ maximizes $Q(\theta|\theta^{(0)})$
- 4. Iterate between steps 2 and 3 until $\ell(\theta)$ stops changing