Polunhakualgoritmit ja -järjestelmät	
Rodion Efremov	

Kandidaatintutkielma-aine HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Helsinki, 4. lokakuuta 2014

${\tt HELSINGIN\ YLIOPISTO-HELSINGFORS\ UNIVERSITET-UNIVERSITY\ OF\ HELSINKI}$

Tiedekunta — Fakultet — Faculty		Laitos — Institution — Department						
Matemaattis-luonnontieteellinen		Tietojenkäsittelytieteen laitos						
Tekijä — Författare — Author Rodion Efremov								
Työn nimi — Arbetets titel — Title								
Polunhakualgoritmit ja -järjestelmät								
Oppiaine — Läroämne — Subject Tietojenkäsittelytiede								
Työn laji — Arbetets art — Level	Aika — Datum — Mo		Sivumäärä — Sid	doantal — N	Number of pages			
Kandidaatintutkielma-aine	4. lokakuuta 2014		2					
Tiivistelmä — Referat — Abstract	Abstract							
Tiivistelmä.								
Avainsanat — Nyckelord — Keywords								
a, bb, ccc	enosited							
Säilytyspaikka — Förvaringsställe — Where deposited								
Muita tietoja — Övriga uppgifter — Additional information								

Sisältö

1	Johdanto	1
2	Tavallisimmat algoritmit	1
3	Kaksisuuntainen haku	1
4	Prioriteettijonon valinta	1
Lä	ihteet	2

1 Johdanto

Polunhaku painotetuissa tai painottamattomissa verkoissa on perustavanlaatuinen ongelma, joka ei ole mielenkiintoinen vain itsessään, vaan on toisinaan tarvittava alioperaatio muissa algoritmeissa. Esimerkiksi Edmond-Karpin algoritmi käyttää leveyssuuntaisen haun ratkaistaessaan maksimivuo-ongelmaa; multiple sequence alignment -ongelmaa on ruvettu viime vuosikymmeninä ratkomaan heuristisin polunhakualgoritmein.

Verkoista puhuttaessa verkko G on kaksikko (V,A), jossa V on solmujen joukko, ja $A \subset V \times V$ on (suunnattujen) kaarien joukko. Suuntaamaton verkko G' = (V, E) voidaan aina simuloida suunnatulla verkolla G = (V, A) siten, että jokaista suuntaamatonta kaarta $\{u, v\} \in E$ kohti laitetaan A:han kaaret (u, v) ja (v, u). (Suunnattu verkko on suuntamattoman yleistys.) Polunhakua varten, verkosta erotellaan kaksi solmua: lähtösolmu s ja maalisolmu t. Jatkossa, n = |V| ja m = |E|; näin esimerkiksi leveyssuuntaisen haun aikavaativuus on O(n + m). Polku on $\gamma_k = \langle u_0, u_1, \ldots, u_k \rangle$, missä mikään solmu ei esiinny yhtä kertaa enempää, ja verkossa on kaari (u_i, u_{i+1}) jokaisella $i = 0, 1, \ldots, k-1$. Polkuun liittyvä kustannus on sen kaarien painojen summa, ja mitä tulee itse painoihin, ne oletetaan olevan ei-negatiivisia. Eipainotettujen verkojen kohdalla, jokaisen kaaren paino oletetaan olevan 1.

2 Tavallisimmat algoritmit

Edsger W. Dijkstra esitti vuonna 1959 kuuluisan polunhakualgoritminsa, joka käy polynomisessa ajassa [1]. Algoritmi voidaan pitää yhdistävän "ahneuden" (engl. $greedy \ algorithm$), dynaamisen ohjelmoinnin ja inkrementaalisen lähestymistavan. Saatuaan lähtösolmun s, algoritmi laskee lyhimpien polkujen puun lähtien solmusta s kunnes t joutuu $avoimeen \ listaan$ (engl. $open \ list;$ $search \ frontier$), ja sitä kautta $suljettuun \ listaan$ (engl. $closed \ list;$ $settled \ node \ list$), jolloin lyhin s,t-polku on löytynyt. Hart et al. esittivät vuonna 1968 kuuluisan A*-algoritminsa, amoin kuten Djikstran algoritmi, A* ylläpitää mm. kunkin saavutetun solmun u g-arvon g(u), joka on toistaiseksi pienin kustannus lähtösolmusta s solmuun u, ja joka on taattu olemaan pienin mahdollinen heti kun u poistuu avoimesta listasta.

3 Kaksisuuntainen haku

4 Prioriteettijonon valinta

Polkua hakiessa painotetuissa verkoissa joudutaan käyttäämään prioriteettijonoja, jotka ovat tarpeellisia pitääkseen haut optimaaleina, ja joiden oletetaan tarjoavan ainakin neljä operaatiota:

- 1. Insert(H, x, k) tallettaakseen solmun x sen prioriteetin k kera,
- 2. Decrease-Key(H, x, k) päivittääkseen solmun x talletetun prioriteetin (pienemmäksi),
- 3. Extract-Minimum(H) poistaakseen minimiprioriteetin omaava solmu, ja
- 4. Is-Empty(H) varmistaakseen, että jonossa on vielä alkioita.

Helpoin tehokkaaksi kutsuttu prioriteettijonorakenne (jatkossa vain "keko") on binäärikeko, jonka operaatiot 1 - 3 käyvät ajassa $O(\log n)$, jolloin tällaisella keolla Dijkstran ja A*-algoritmit käyvät kumpikin ajassa $O((m+n)\log n)$. Teoriassa edelläoleva ylläraja voidaan parantaa käyttämällä Fibonacci-kekoa, jonka lisäysoperaatio käy eksaktissa vakioajassa, päivitysoperaatio tasoitetussa vakioajassa, ja poisto-operaatio tasoitetussa ajassa $O(\log n)$, jolloin haut voidaan suorittaa ajassa $O(m+n\log n)$. Huomaa, että kaikki tähän asti mainitut keot perustuvat vertailuihin, ja teoriassa enintään yksi operaatiosta INSERT tai EXTRACT-MINIMUM voi käydä (eksaktissa tai tasoitetussa) vakioajassa, ja toisen on käyttävä ajassa $\Omega(\log n)$, koska muuten algoritmi 1 tällaisella keolla rikkoisi lajittelemisen informaatioteoreettisen rajan, joka on $\Omega(n\log n)$. Jos kuitenkin kaarien painot ovat kokonaislukuja,

Algoritmi 1: GENERIC-HEAP-SORT(S, H)

```
H = \varnothing: tyhjennä keko.

for i = 1 to |S| do

LINSERT(H, S[i], S[i]): S[i] on itsensä prioriteetti.

for i = 1 to |S| do

LS[i] = EXTRACT-MINIMUM(H)
```

 $O(m+n\log n)$ -rajaa voidaan parantaa: Mikkel Thorup esitti vuonna 2003 keon, jonka poisto-operaatio käy ajassa $O(\log\log\min\{n,N\})$, missä N on maksimiprioriteetti, ja muut opeaatiot vakioajassa, jolloin haun aikavaativuus voidaan laskea aikaan $O(m+n\log\log\min\{n,N\})$ [2].

Lähteet

- [1] Dijkstra, Edsger W.: A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.
- [2] Thorup, Mikkel: Integer Priority Queues with Decrease Key in Constant Time and the Single Source Shortest Paths Problem. Teoksessa Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC '03, sivut 149–158, New York, NY, USA, 2003. ACM, ISBN 1-58113-674-9. http://doi.acm.org/10.1145/780542.780566.