

UE 3.2 Physiologie

Chapitre 10 : Physiologie intégrée – l'adaptation cardiovasculaire à l'effort

Pr. Stéphane DOUTRELEAU

Objectifs pédagogiques du cours

- La demande métabolique
- Connaitre les mécanismes CV d'adaptation à l'exercice
- Comprendre et connaitre les modifications CV induites par l'entrainement

Plan

- Adaptations cardiovasculaires à l'exercice
 - Demande métabolique et débit cardiaque
 - Adaptations vasculaires
 - Adaptations cardiaques
- Modifications cardiovasculaires à l'entrainement
 - Adaptations vasculaires
 - Adaptations cardiaques

Dépense énergétique

- dépend surtout
 - des muscles mis en jeu (jambes, bras…)
 - de la masse musculaire mise en jeu
 - de l'entrainement
 - du sexe, de l'âge
 - de l'environnement (froid, altitude...)
- demande en oxygène

Dépenses énergétiques dans différents types d'activité

Activité sportive	Calories dépensées (kcal)						
	55 kg	60 kg	65 kg	70 kg	75 kg	80 kg	85 kg
Course (sprint)	980	1060	1150	1240	1330	1420	1500
Course longue distance	730	790	860	930	990	1060	1124
Squash	704	764	828	892	956	1020	1084
Roller	660	720	780	840	900	960	1020
Step	640	700	760	815	880	930	990
Ping Pong	590	640	700	750	805	860	910
Danse	550	600	650	700	760	805	850
Natation rapide	520	560	620	680	705	750	800
Ski de fond	495	540	580	630	680	720	760
Basket	460	500	540	580	625	670	708
Jogging	444	500	752	570	605	650	690
Football	436	476	516	556	596	636	676
Escalade	400	440	476	512	548	584	624
Marche à pied (8km/h)	395	430	460	500	540	570	610
Tennis	360	396	430	460	500	530	560
Cyclisme (16km/h)	330	350	390	420	450	480	505
Badminton	325	352	380	408	440	465	496
Ski alpin	324	356	384	412	444	474	504
Gymnastique	220	240	260	280	300	320	340
Faire ses courses	205	220	240	260	280	300	315
Volley	168	184	200	216	232	248	260
Marche à pied (3km/h)	160	175	190	200	220	235	250
Bowling	155	170	180	195	210	222	240
Position assise	65	75	80	85	90	95	100
Monter les escallers (4 étages)	70	77	83	89	96	102	110

- dépends aussi
 - du poids du sujet (surtout dans les sports portés)
 - de l'intensité (donc de la vitesse de marche)
 - du type de pratique d'un sport

substrats utilisés à l'exercice

selon l'intensité

selon la durée

La consommation d'oxygène

 $VO_2 = Qc \times D_{AV}O_2$

dépense énergétique de repos $3,5 \text{ ml/min/kg d'}O_2 = 1 \text{ METS}$

V (km/h)

La chaine de distribution de l'oxygène

La performance aérobie

Les performances à l'effort

<u>COEUR</u>

POUMONS

VAISSEAUX

<u>Débit cardiaque</u> 5 → 20 à 401/min

Fréquence cardiaque 60 → 180 bpm

Pression artérielle 120/80 → 180/80 mmHg Respiration
8 → 100 à 200 l/min

Fréquence respiratoire 12 → 40 bpm

ACTIVITE EXERCICE SPORT

Redistribution vasculaire à l'exercice

Adaptations vasculaires

- redistribution vasculaire
 - vers les muscles en activité
 - vasodilatation artériolaire
 - recrutement capillaires musculaires
 - vers les organes nobles
 - augmentation du débit coronaire
 - vers la peau = thermorégulation

Adaptations vasculaires

- vasodilatation
 - vers les muscles en activité
 - vers les organes nobles
 - vers la peau = thermorégulation

- vasoconstriction
 - « sacrifice » du débit vers des organes peu utiles dans ce contexte : tube digestif, muscles inactifs, reins etc...

Baisse des résistances artérielles

Adaptations cardiaques

$$VO_2 = Qc \times DAV O_2$$

$$VO_2 = VES \times Fc \times DAV O_2$$

Evolution de la Fc

Origine de la tachycardie

heures

- levée du frein vagal
- stimulation sympathique

stimulation hormonale (noradrénaline)

Evolution du VES

Evolution du VES

Volume ventriculaire (ml)

PA à l'exercice

PA à l'exercice

Plan

- Adaptations cardiovasculaires à l'exercice
 - Demande métabolique et débit cardiaque
 - Adaptations vasculaires
 - Adaptations cardiaques
- Modifications cardiovasculaires à l'entrainement
 - Adaptations vasculaires
 - Adaptations cardiaques

La consommation d'oxygène

 $VO_2 = Qc \times D_{AV}O_2$

Fc et entrainement

Entraînement et VES

Entraînement et VES

Remodelage ventriculaire du sportif

Messages essentiels du cours

- l'exercice nécessite d'augmenter le débit d'apport d'oxygène donc la chaîne de distribution de l'oxygène
- l'augmentation du débit cardiaque est sous-tendue par l'augmentation de la Fc et du VES
- l'entrainement s'accompagne d'un remodelage du muscle cardiaque

Mentions légales

L'ensemble de ce document relève des législations française et internationale sur le droit d'auteur et la propriété intellectuelle. Tous les droits de reproduction de tout ou partie sont réservés pour les textes ainsi que pour l'ensemble des documents iconographiques, photographiques, vidéos et sonores.

Ce document est interdit à la vente ou à la location. Sa diffusion, duplication, mise à disposition du public (sous quelque forme ou support que ce soit), mise en réseau, partielles ou totales, sont strictement réservées à l'Université Grenoble Alpes (UGA).

L'utilisation de ce document est strictement réservée à l'usage privé des étudiants inscrits en Première Année Commune aux Etudes de Santé (PACES) à l'Université Grenoble Alpes, et non destinée à une utilisation collective, gratuite ou payante.

