Formulaire

NICOLAS LE HIR

TABLE DES MATIÈRES

Algorithmic complexity	1
Distances	2
2.1 Distances in two dimensions	2
2.2 Distances in three dimensions	2
2.3 Distances in d dimensions	2
Likelihood / Vraisemblance	3
Derivative / Dérivée	3
Expected value / Éspérance	3
K-means / K moyennes	4
Entropy	4
Binary decomposition algorithm	4
	Distances 2.1 Distances in two dimensions 2.2 Distances in three dimensions 2.3 Distances in d dimensions Likelihood / Vraisemblance Derivative / Dérivée Expected value / Éspérance K-means / K moyennes Entropy

PRESENTATION

This short document if an informal memo for Epitech students.

1 ALGORITHMIC COMPLEXITY

Let n be the size of the problem (number of samples in the dataset, number of dimensions, number of integers to sort, ...), and A an algorithm that processes the problem.

Definition 1. Polynomial time complexity

We say that the algorithm \mathcal{A} has **polynomial** time-complexity if the number of elementary operations N(n) (sums, products, accessing an element in an array, etc.) required for \mathcal{A} to terminate is smaller than a polynomial function of n. Formally, there exsits a fixed integer or float k, and a real number \mathcal{A} , such that :

$$\forall n \in \mathbb{N}, N(n) \leqslant A \times n^k \tag{1}$$

The **Landau notation** is often used : $N(n) = O(n^k)$.

Example: sorting a list of size n.

Definition 2. Exponential complexity

We say that $\mathcal A$ has an **exponential** complexity if there exists k>1, and $B\in\mathbb R$, such that

$$\forall n \in \mathbb{N}, N(n) \leqslant B \times k^n \tag{2}$$

Similarly, we would write $N(n) = O(k^n)$.

Example: enumerating the subsets of a set of size n.

2 DISTANCES

Here are some common distances in \mathbb{R}^2 and \mathbb{R}^3 .

2.1 Distances in two dimensions

We consider two points x and y in the 2D space \mathbb{R}^2 with coordinates (x_1, y_1) , and (x_2, y_2) , respectively.

L2

$$d(x,y) = ||x - y||_2 = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (3)

L1

$$d(x,y) = ||x - y||_1 = |x_1 - x_2| + |y_1 - y_2|$$
(4)

 $L\infty$

$$d(x,y) = ||x - y||_{\infty} = \max(|x_1 - x_2|, |y_1 - y_2|)$$
(5)

weighted L1:

let α_1 and α_2 be real numbers ($\in \mathbb{R}$).

$$d(x,y) = \alpha_1 |x_1 - x_2| + \alpha_2 |y_1 - y_2|$$
 (6)

2.2 Distances in three dimensions

We consider two points x and y in the 3D space \mathbb{R}^3 with coordinates (x_1, y_1, z_1) , and (x_2, y_2, z_2) , respectively.

L2

$$d(x,y) = ||x - y||_2 = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (7)

L1

$$d(x,y) = ||x - y||_1 = |x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|$$
(8)

 $L\infty$

$$d(x,y) = ||x-y||_{\infty} = \max(|x_1 - x_2|, |y_1 - y_2|, |z_1 - z_2|)$$
(9)

weighted L1:

let α_1 , α_2 and α_3 be real numbers ($\in \mathbb{R}$).

$$d(x,y) = \alpha_1|x_1 - x_2| + \alpha_2|y_1 - y_2| + \alpha_3|z_1 - z_2|$$
(10)

2.3 Distances in d dimensions

 $x = (x_1, ..., x_p)$ and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

L2

$$d(x,y) = ||x - y||_2 = \sqrt{\sum_{k=1}^{p} (x_k - y_k)^2}$$
 (11)

L1

$$d(x,y) = ||x - y||_1 = \sum_{k=1}^{p} |x_k - y_k|$$
 (12)

 $L\infty$

$$d(x,y) = ||x - y||_{\infty} = \max(x_1, \dots, x_n)$$
(13)

weighted L1:

$$\sum_{k=1}^{p} w_k |x_k - y_k| \tag{14}$$

3 LIKELIHOOD / VRAISEMBLANCE

We define the likelihood of a parametric model.

- Observations : $(x_1, ..., x_n)$
- Model : p (for instance a normal law)
- Parameters : θ (for instance (μ, σ) , the mean and the standard deviation of the normal law).

The likelihood writes:

$$L(\theta) = p(x_1, \dots, x_n | \theta)$$
(15)

4 DERIVATIVE / DÉRIVÉE

Let $f : \mathbb{R} \to \mathbb{R}$ be a real.

If it exists, the derivative of f in x is defined by :

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (16)

Examples:

If $g: x \mapsto 3x$, then the derivative exists and $\forall x \in \mathbb{R}, x, g'(x) = 3$

If $h: x \mapsto x^2$, then the derivative exists and $\forall x \in \mathbb{R}, h'(x) = 2x$.

If $h: x \mapsto |x|$, then the derivative exists only if $x \neq 0$.

5 EXPECTED VALUE / ÉSPÉRANCE

Let X be a discrete random variable that takes the values x_i with probability p_i .

The **expected value** of X, if the sum converges, writes

$$E(X) = \sum_{i=1}^{n} p_i x_i \tag{17}$$

Example:

If X is a constant random variable : $X = \alpha$

$$\sum_{i=1}^{n} p_{i} x_{i} = \sum_{i=1}^{n} p_{i} \alpha = \alpha \sum_{i=1}^{n} p_{i}$$
(18)

K-MEANS / K MOYENNES

- Datapoints (x_1, \ldots, x_n)
- Centroids (c_1, \ldots, c_n) (one centroid per point, however the number of different centroids is smaller than the number of datapoints)

The inertia or distorsion I is given by:

$$I = \sum_{i=1}^{n} d(x_i, c_i)^2$$
 (19)

ENTROPY

Definition 3. Shannon entropy

The **Shannon entropy** of a discrete random variable X that takes the values x_i with probability p_i is given by :

$$H(X) = -\sum_{i=1}^{n} p_i \log(p_i)$$
 (20)

Examples:

- Entropy of certain distribution H = 0.
- Entropy of uniform distribution with n values :

$$H = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}$$

$$= -n \times \frac{1}{n} \times \log \frac{1}{n}$$

$$= \log n$$
(21)

8 BINARY DECOMPOSITION ALGORITHM

```
Result: Integer n in binary form
L \leftarrow liste vide [];
r \leftarrow 0;
```

$$\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} $n>0$ & do \\ & $r\leftarrow n\%2$; \\ & $L\leftarrow L+[r]$; \\ & $n\leftarrow (n-r)/2$; \\ \end{tabular}$$

end

 $L \leftarrow reversed(L);$

return L

Algorithm 1: Binary decomposition of integer n