Password: wia2005test

1	
	True or false: Let f be a function, if $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
	Select one: True False
2	True or false Let f be a function, if $f = \Omega$ (g) and $h = \Omega$ (g), then $f = \Omega$ (h). Select one: \bigcirc True \bigcirc False
3	True or false A function with a faster growth rate is better than a function with a slower growth rate. Select one: True False

Describe the functions in Figure 1: cg(n)f(n)Figure 1 Select one: \bigcirc a. Function g(n) is a subset of Big O of f(n), if there is a positive constant n_0 and c such that at and to the right of n_0 , the values of f(n) lies on or below cg(n). O b. Function f(n) is a subset of Big Omega of g(n), if there is a positive constant n_0 and c such that at and to the right of n_0 , the values of f(n) above cg(n). \bigcirc c. Function f(n) is a subset of Big Omega of g(n), if there is a positive constant n_0 and c such that at and to the right of n_0 , the values of g(n) lies on or below cg(n). \odot d. Function f(n) is a subset of Big O of g(n), if there is a positive constant n_0 and c such that at and to the right of n_0 , the values of f(n) lies on or below cg(n). Clear my choice 5 Compare the following functions and select the case based on the order of growth rate: $f(n) = \sqrt{2}n$ $g(n) = n^2 \log n$ \bigcirc a. $f(n) = \Omega(g(n))$ \bigcirc b. g(n) = O(f(n))

c. f(n) = O(g(n))
 d. f(n) = θ(g(n))
 Clear my choice

6	Compare the following functions and select the case based on the order of growth rate: $f(n)=2^{\sqrt{\log n}}$ $g(n)=n^{4/3}$
	• a. $f(n) = O(g(n))$ • b. $g(n) = O(f(n))$ • c. $f(n) = \Omega(g(n))$ • d. $f(n) = \theta(g(n))$ Clear my choice
7	Given $f(n) = n^2 - 5$, $g(n) = n^3 + 7$ and $n_0 = -2$, define the case based on the order of growth rate and based on the definition, state the possible value of n and c that proves that it is the case.
	○ b. $f(n) = O(g(n)), n = 1, c = -2$ ○ c. $f(n) = O(g(n)), n = -2, c = 1$ ○ d. $f(n) = \Omega(g(n)), n = 1, c = 1$ Clear my choice

8 Given $f(n) = n^2$, g(n) = log n + 5 and $n_0 = 2.3$, define the case based on the order of growth rate and based on the definition, state the possible value of n and c that proves that it is the case. ○ a. $f(n) = \Omega(g(n)), n = 1, c = -1$ \bigcirc b. f(n) = O(g(n)), n = 3, c = 1 \bigcirc d. g(n) = O(f(n)), n = 1, c = 1Clear my choice 9 Calculate the running time complexity of Function A. Function_A() $max = a_i$ For i = 2 to nIf a_i > max then Set $max = a_i$ Endif **Endfor** ○ a. O(n log n) ○ b. O(n-2) \bigcirc c. $O(n^2)$ d. O(n) Clear my choice

```
10
        Calculate the running time complexity of Function B.
           Function_B(arr)
           n = len(arr)
           For i in range(n):
                  For j in range(0, n-i-1):
                         If arr[j] > arr[j+1]:
                                arr[j], arr[j+1] = arr[j+1], arr[j]
                  Endfor
           Endfor
         ○ a. O(2n)
         ○ b. O(n)
         \odot c. O(n^2)
         ○ d. O(n-1)
             Clear my choice
11
         Write the recurrence relation for Algorithm A.
           Algorithm_A(n):
            if n == 0:
              return 0
             else:
              return 2 * Algorithm_A(n/2) + n
          \bigcirc a. T(n/2) = 2T(n/2) + n
          ○ b. T(n) = T(n/2) - n
          \bigcirc c. T(n) = 2T(n) + (n/2)
          \bullet d. T(n) = 2T(n/2) + n
             Clear my choice
```


Given a recurrence relation in Question 15, calculate the height of the recursion tree, k. \bigcirc a. $k = log_{3/4}n$ \bigcirc b. $k = log_3 n$ \bigcirc c. $k = log_2 n$ Clear my choice 17 Case 3: If $log_b a < k$ then a) If $p \ge 0$, then, $T(n) = \Theta(n^k \log^p n)$ b) If p < 0, then, $T(n) = O(n^k)$ Using the master method, solve T(n) = 3T(n/4) + n. \bigcirc a. $\Theta(n^2)$ b. Θ(n) \bigcirc c. $\Theta(n^{\log_2 3})$ \bigcirc d. $\Theta(n \log n)$ Clear my choice

18	Using the master method, solve $T(n) = 7T(n/49) + n^2 \log n$.
	 a. Θ(n) b. Θ(n²) c. Θ(n log n) d. Θ(n² log n) Clear my choice
19	Jsing the master method, solve $T(n) = 4T(n/2) + n^2$.
	○ a. Θ(n)
	○ b. Θ(n²)
	○ c. Θ(n log n)
	\odot d. $\Theta(n^2 \log n)$
	Clear my choice
20	Using the master method, solve $T(n) = 16T(n/4) + n$.
	○ a. Θ(n log n)
	○ b. Θ(n)
	\bigcirc c. $\Theta(n^2 \log n)$
	$lacktriangle$ d. $\Theta(n^2)$
	Clear my choice