Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2017 EE3CO05 / EX3CO05 Electro-Magnetic Theory

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 (M	ICQs) s	should be writte	en in full instea	d of only a, b,	c or d.	
Q.1	i.	Which one of the following is zero?			1	
		(a) Grad div.	(b) Div curl.	(c) Curl grad.	(d) None of these	
	ii.	If the vectors	A and B are co	nservative, the	n	1
		(a) AxB is sol	enoidal	(b) AxB is co	nservative	
		(c) A+B is sol	enoidal.	(d) A-B is sol	enoidal	
	iii.	ty inside a spherical	1			
		shell are:				
		(a) Zero and c	onstant respect	ively.		
		(b) Both inver	sely proportion	nal to radius.		
		(c) Constant and zero respectively.				
	iv.	Poisson's and	d Laplace's ed	quations gover	rn the behaviour of	1
		electric scalar	potential for:			
		(a) Charge fre	e region.			
		(b) A region of	of charge.			
		(c) Charge fre	e region and a	region of charg	ge, respectively	
		(d) Region of	charge and cha	rge free region	, respectively	
	v.	Displacement	current can flo	w through:		1
		(a) Capacitor	(b) Inductor	(c) Resistor	(d) None of these	
	vi.	The magnetic	field intensity	(in ampere/me	tre) at the centre of a	1
		circular coil o	of diameter 1	metre and car	rying a current of 2	
		ampere is				
		(a) 8	(b) 4	(c) 3	(d) 2	

P.T.O.

	vii.	Maxwell's equations in differential form from Ampere's law are obtained from					
		(a) M.M.F area (b) Electric potential area					
		(c) Magnetic flux volume (d) Electric current area					
	viii.	The laws of electromagnetic induction are summarised in the following:	1				
	ix.	(a) e=iR (b) e=Ldi/dt (c) e=-dψ/dt (d) None of these The direction of propagation of electromagnetic waves is given by the direction of	1				
		(a) Vector E (b) Vector H					
		(c) Vector (ExH) (d)None of these					
	х.	Pointing vector has the unit of:	1				
		(a) Watt (b) Watt/metre.					
		(c) Watt/metre ² (d) None of these					
Q.2	i.	Give physical significance of divergence and curl.	2				
	ii.	What are equipotential surfaces? Derive a mathematical equation.					
	iii.	Express vector B in Cartesian and cylindrical coordinate systems.	5				
		Given, $\frac{10}{r}\bar{a}_r + r\cos\theta\bar{a}_\theta + \bar{a}_\Phi$					
		Then find B at (-3, 4, 0) and (5, -2, -2)					
OR	iv.	A point charge of 6nC is located at the origin in free space. Find	5				
		Vp if point P is located at (0.2, -0.4, 0.4) and					
		(a) $V=0$ at infinity					
		(b) $V = 0$ at $(1, 0, 0)$					
		(c) $V=20$ volts at $(-0.5, 1, -1)$					
Q.3	i.	Define perfect conductor	2				
	ii.	Derive equations for energy density in static electric field	3				
	iii.	Derive Boundary conditions for static electric field.	5				
OR	iv.	v. A parallel plate capacitor as shown in the figure 1 contains three					
	dielectric layer where $E_{r_1} = 1$, $d_1 = 0.2mm$, $E_{r_2} = 2$, $d_2 = 0.2mm$						
		0.3mm, $E_{r_3} = 3$ and $d_3 = 0.4mm$. Where S= surface area of					
		plane= $20cm^2$. Find the total capacitance.					

Figure 1

Q.4	i.	State Ampere's circuital law as applied to time varying magnetic field.	2			
	ii.	Derive the expression for force between two current carrying wires. 3				
	iii.	Derive equation for energy stored and energy density in a magnetic field.	5			
OR	iv.	Calculate the magnetic flux density produced by a current loop of radius 'R' on the loop axis when the loop is carrying a current 'I' and situated in air.	5			
Q.5	i.	Define self and mutual inductance	2			
	ii.	What is the difference between vector magnetic potential and	3			
		scalar magnetic potential.				
	iii.	Derive Maxwell's equation in	5			
		(a) Differential form				
		(b) Integral form				
	_	(c) Free space	_			
OR	iv.	Derive for the field at any point P due to long current carrying straight conductor.	5			
Q.6		Attempt any two:				
	i.	State and prove pointings theorem	5			
	ii.	Derive mathematical equations for reflection at the surface of	5			
		the conductive medium.				
	iii.	What is meant by polarization of a wave? What is a wave	5			
		linearly polarized? When is a wave circularly polarized?				

EE3CO05 / EX3CO05 Electro-Magnetic Theory Marking Scheme

Q.1	i.	(c) Curl grad / (b) Div. Curl	1
	ii.	(a) AxB is solenoidal	1
	iii.	(c) Constant and zero respectively.	1
	iv.	(d) Region of charge and charge free region, respectively	1
	v.	(a) Capacitor	1
	vi.	(d) 2	1
	vii.	(a) M.M.F area.	1
	viii.	(c) $e=-d\Psi/dt$	1
	ix.	(c) Vector (ExH).	1
	х.	(c) Watt/metre ²	1
Q.2	i.	Significance of divergence – 1 mark	2
		Significance of curl - 1 mark	2
	ii.	Explanation of equipotential surfaces – 1.5 marks	3
	iii.	Mathemaatical Expression – 1.5 marks Vector B in Cartesian - 1.5 marks	5
	111.	Vector B in cylindrical coordinate systems 1.5 marks	J
		B at (-3, 4, 0) and $(5, \frac{\pi}{2}, -2)$ - 2 marks	
OR	iv.	Vp at (0.2, -0.4, 0.4) - 0.5 marks	5
		\overrightarrow{Vp} if $\overrightarrow{V} = 0$ at infinity - 1.5 marks	
		Vp if $V = 0$ at $(1, 0, 0)$ - 1.5 marks	
		Vp if V= 20 volts at (-0.5, 1, -1) - 1.5 marks	
Q.3	i.	Definition of perfect conductor - 2 marks	2
	ii.	Derivation for energy density - 3 marks	3
	iii.	Derivation of Boundary conditions for static electric field (each	5
OD		2.5 marks) * 2 = 5 marks	_
OR	iv.	Formulas / Given - 2 marks Finding total generitance 3 marks	5
		Finding total capacitance - 3 marks	
Q.4	i.	Statement	2
	ii.	Derivation for force between two current carrying wires.	3
	iii.	Derivation for energy stored - 2.5 marks	5
		Derivation for energy density in a magnetic field - 2.5 marks	
OR	iv.	Diagram - 2 marks	5
		Derivation - 3 marks	

Q.5	i.	Self Inductance - 1 mark	2
		Mutual Inductance - 1 mark	
	ii.	Difference between magnetic vector potential 1.5 marks and	3
		magnetic scalar potential. 1.5 marks	
	iii.	Differential form - 1.5 marks	5
		Integral form - 1.5 marks	
		Free space – 2 marks	
OR	iv.	Diagram - 2 marks	5
		Derivation - 3 marks	
Q.6		Attempt any two:	
	i.	Statement - 1 mark	1
		Derivation - 4 marks	4
	ii.	Derivation (step by step marking)	5
	iii.	Explain Polarisation of a wave - 1 mark	1
		Linearly Polarised - 2 marks	2
		Circularly Polarised - 2 marks	2
