

MICROCOPY RESOLUTION TEST CHART NATIONAL BURFARI OF STANDARDS 1947 4

2007	
e, E	en e

CURITY CLASSIFICATION OF TH	IS PAGE		' 			
		REPORT BOCUME	NTATION PAGE			
A REPORT SECURITY CLASSIFIC	ATION	110	15. RESTRICTIVE M	ARKINGS		
UNCLASSIFIED LASSIFICATION A		ECTE	3. DISTRIBUTION/A	VAILABILITY	E REPORT	
NA	FE	B 2 5 1987	Approved for Public Release; Distribution			ribution
b. DECLASSIFICATION/DOWNGR	ADIN CHED	ULE	Unlimited			
NA . PERFORMING ORGANIZATION	REPORT NUM	SEA TO CO	5 MONITORING OR	GANIZATION R	ERORT NUMBER	
Technical Report No.	142		ł	MONITORING ORGANIZATION REPORT NUMBER(S)		
		<u> </u>	Arugh			
A NAME OF PERFORMING ORGA		6b. OFFICE SYMBOL (If applicable)	7s. NAME OF MONITORING ORGANIZATION			
University of North C	arolina		AFOSR/NM			
Le ADDRESS (City, State and ZIP C Center for Stochastic	Processes	s. Statistics	7b. ADDRESS (City.	State and ZIP Coo	ie)	
Department, Phillips			Bldg. 410 Bolling AFB	. DC 20332	-6448	
Chapel Hill, NC 27514		·				
L. NAME OF FUNDING/SPONSOR	ING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER		UMBER	
ORGANIZATION AFOSR		, 	F49620 85 C 0144			
e. ADDRESS (City, State and ZIP C	ode)		10. SOURCE OF FUN			
31dg. 410			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNI
Bolling AFB, DC			6.1102F	2304		NO.
1. TITLE (Include Security Classific	etion)		1	2001	1.45	
"On a limit theorem	and invari	ance principle	for symmetric	statistic	3''	<u>.</u>
2. PERSONAL AUTHOR(S) Mandrekar, V.					,	
34 TYPE OF REPORT	13b. TIME C		14. DATE OF REPO	RT (Yr., Mo., Day		OUNT
technical	FROM 9/	85 ro 8/86	July 1986		6	
6. SUPPLEMENTARY NOTATION						
	·					
7. COSATI CODES		ia subject terms (d Keywords:	ontinue on reverse if ne	cessary and ident	ify by block number	r)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	US, GR.	, xey #0, us.				
		<u> </u>				
9. ABSTRACT (Continue on reverse						
The purpose of t	`	1				
of E.B. Dynkin and A						
[3] with a very simple	le proof.	This is achiev	ed by avoiding	g the use o	of Poisson p	rocess.
Let us set up some no	otation.	Let (L,Σ,μ) be	a probability	space and	$(X^{k}, \Sigma^{k}, \mu^{k})$	be the
k-fold produce probab	oility spa	ce. Let h, (x	\dots, x_n) be a s	symmetric f	function of	k-variable
We call it canonical						
be a i.i.d. X-valued						···,``n
Alaca	Luniuom va	radic on a pro	oddfifty space	MICH GIST	.i.iυution μ.	
		· · · · · · · · · · · · · · · · · · ·				
C DISTRIBUTION/AVAILABILIT			21. ABSTRACT SEC	JRITY CLASSIF	CATION	
UNCLASSIFIED/UNLIMITED 🛣 :	SAME AS RPT.	OTIC USERS	UNCLASSIFI	ED		
224 NAME OF RESPONSIBLE IND	IVIDUAL		22b. TELEPHONE N	COCREEMU	22c. OFFICE SYM	8 0L
Poggy Paritch Ma's	Crau	u leu	919-962-2307	~	AFOSR/NM	
DD FORM 1473, 83 APR		EDITION OF 1 JAN 73	S OSSOLETE.	UN	CLASSIFIED	
· - · · · · · · · · · · · · · · · · · ·						

CENTER FOR STOCHASTIC PROCESSES

AFOSR-TR- 87-0121

Department of Statistics University of North Carolina Chapel Hill, North Carolina

ON A LIMIT THEOREM AND INVARIANCE PRINCIPLE FOR SYMMETRIC STATISTICS

BY

Approved for public release; distribution unlimited.

V. Mandrekar

Technical Report No. 142

July 1986

ON A LIMIT THEOREM AND INVARIANCE PRINCIPLE FOR SYMMETRIC STATISTICS

by

V. Mandrekar*

Department of Statistics and Probability
Michigan State University
East Lansing, MI 68824

and

Center for Stochastic Processes
Department of Statistics
University of North Carolina
Chapel Hill, NC 27514

	Acc	esion For		_
	Una	S CRA&I C TAB nnouriced ification	<u>n</u>	
		bution / Availability Ci	adea	
c	Dist	Avail and Special		-
Y TED	A-1			1

ed secessia percenta espesible percenta espesible

DTIC COPY INSPECTED 6

This research supported by ONR N00014-85-K-0150 and the Air Force Office of Scientific Research Contract No. F49620 85C 0144.

0. Introduction: The purpose of this note is to give a direct proof of some recent important results of E.B. Dynkin and A. Mandelbaum [2]. This also provides immediately the results in [3] with a very simple proof. This is achieved by avoiding the use of Poisson process. Let us set up some notation. Let (X, Σ, μ) be a probability space and (X^k, Σ^k, μ^k) be the k-fold produce probability space. Let $h_k(x_1, \ldots, x_k)$ be a symmetric function of k-variables. We call it canonical if $\int h_k(x_1, \ldots, x_{k-1}, y) d\mu = 0$ for all $x_1, \ldots, x_{k-1} \in X^{k-1}$. Let X_1, \ldots, X_n be a i.i.d. X-valued random variable on a probability space with distribution μ . As in [2], define $\sigma_k^n(h_k) = \Sigma_{1 \le s_1} < \ldots < s_k \le n$ $h_k(X_s_1, \ldots, X_s_k)$, for $k \le n$

Let $H = \{(h_0, h_1, \ldots) : h_k \text{ canonical and } \sum_{k=1}^{\infty} \frac{1}{k!} \|h_k\|_2^2 < \infty \}$ where h_0 is a constant and $\|\cdot\|_2$ is the norm in $L^2(X^k, \Sigma^k, \mu^k)$. On H define $\|h\|^2 = \sum_{k=0}^{\infty} \|h_k\|_2^2 / k!$. H is the so-called exponential (Foch) space of $L_0^2(X, \Sigma, \mu)$ ($\phi \in L^2(X, \Sigma, \mu)$ with $E\phi(X) = 0$). It is a Hilbert space under coordinate addition, scalar multiplication and $\|\cdot\|$. For each $\phi \in L_0^2(X, F, \mu)$, $h^{\phi} \in H$ with $h_k^{\phi} = \phi(x_1), \ldots, \phi(x_k)$. It can be easily seen that $\mathrm{sp}\{h^{\phi} : \phi \in L_0^2(X, F, \mu)\}$ is dense in H. Define for each $h \in H$,

(0.1)
$$Y_{n}(h) = \sum_{k=0}^{\infty} n^{-k/2} \sigma_{k}^{n}(h_{k}).$$

The Manager Contract Contract of the Contract

Since $\sigma_k^n(h_k) = 0$ for k > n, this is a finite sum. Also, let

(0.2)
$$Y_n^t(h) = \sum_{k=0}^{\infty} n^{-k/2} \sigma_k^{[nt]}(h_k).$$

The main purpose is to show directly that $Y_n(h) \stackrel{\mathcal{D}}{\to} \sum_{k=0}^{\infty} \frac{I_k(h_k)}{k!}$ where $\stackrel{\mathcal{D}}{\to}$ denotes convergence in distribution and $I_k(h_k)$ denotes Ito-Wiener multiple

integral of h_k with respect to Gaussian random measure W with $EW(A)W(A') = \mu(A \cap A')$.

In the next section we discuss the convergence of $Y_n^t(h)$. We observe that for $\varphi \in L^2_0(X,\Sigma,\mu)$

$$Y_{n}(h^{\updownarrow}) = \sum_{k=0}^{n} n^{-k/2} \sum_{1 \leq s_{1} < \dots < s_{k} \leq n} \varphi(X_{s_{1}}) \dots \varphi(X_{s_{k}})$$

$$= \sum_{k=0}^{n} \sum_{1 \leq s_{1} < \dots < s_{k} \leq n} \frac{\varphi(X_{s_{1}})}{\sqrt{n}} \dots \frac{\varphi(X_{s_{k}})}{\sqrt{n}}$$

$$= \prod_{1}^{n} (1 + \frac{\varphi(X_{1})}{\sqrt{n}}).$$

Let us observe that for any $\varepsilon > 0$,

$$\sum_{\mathbf{j}} P(|\phi(\mathbf{X}_{\mathbf{j}})| > \sqrt{\varepsilon_{\mathbf{j}}}) = \sum_{\mathbf{j}} P(|\phi(\mathbf{X}_{\mathbf{j}})|^2 > \varepsilon_{\mathbf{j}}) \le ||\phi||_2^2 < \infty.$$

Hence by Borel-Cantelli lemma, a.s. (for $j \le n$)

$$|\phi(X_j)| \le \sqrt{\epsilon j} \le \sqrt{\epsilon} \sqrt{n}$$
 for $j \ge \text{some } N(\omega)$ $(N(\omega) < \infty)$.

But
$$\Pi(1 + \frac{\phi(X_i)}{\sqrt{n}}) = \Pi(1 + \frac{\phi(X_i)}{\sqrt{n}}) \Pi(1 + \frac{\phi(X_i)}{\sqrt{n}})$$
 giving for a.s. w, so

$$\lim_{n} Y_{n}(h^{\phi}) = \lim_{n} \prod_{n} (1 + \frac{\phi(X_{i})}{\sqrt{n}}).$$
 Thus WLOG, we can assume for n large

$$\left|\frac{\phi(X_j)}{\sqrt{n}}\right| < 1$$
 a.s. for all $j \le n$ and $Y_n(h^{\phi}) = \prod_{1}^{n} (1 + \frac{\phi(X_j)}{\sqrt{n}})$. Taking log on both sides and expanding $\log(1+x)$ we have

$$\log \left(1 + \frac{\phi(X_j)}{\sqrt{n}}\right) = \sum_{1}^{n} \frac{\phi(X_j)}{\sqrt{n}} - \frac{1}{2} \sum_{1}^{n} \frac{\phi(X_j)^2}{n} + \varepsilon_n(\phi)$$

where $\varepsilon_n(\phi) \stackrel{P}{\to} 0$ by the WLLN and since $\max \left| \frac{\phi(x_i)}{\sqrt{n}} \right| \stackrel{P}{\to} 0$ by Chebychev's Inequality,

i.e. the $(Y_n(h^{\varphi})) \stackrel{\mathcal{D}}{\to} \exp[I_1(\varphi) - \frac{1}{2}|| \div ||_2^2]$. Using Cramér-Wold device and the above argument we get

0.3 <u>Lemma</u>: For any finite subset $\{\phi_1, \dots, \phi_k\} \subseteq L^2(X, \Sigma, \mu)$

$$(Y_n(h^{\frac{1}{2}}), \dots, Y_n(h^{\frac{1}{k}})) \stackrel{\mathcal{D}}{\to} (\exp(I_1(\phi_1)) - \frac{1}{2}||\phi_1||_2^2, \dots, \exp(I_1(\phi_k) - \frac{1}{2}||\phi_k||_2^2).$$

As a consequence, we get for $\{\phi_i, i \in I\}$ a finite subset of $L^2(X, \Sigma, \mu)$ and $\{c_i, i \in I\} \subseteq \mathbb{R}$,

(0.3)'
$$Y_n(\sum_{i \in I} c_i h^{\phi_i}) \stackrel{\mathcal{D}}{\leftarrow} \sum_{k=0}^{\infty} \frac{I_k([\sum_{i \in I} c_i h^{\phi_i}]_k)}{k!}$$

We now observe that for $h,h' \in H$,

(0.4)
$$E[Y_n(h) - Y_n(h')]^2 = \sum_{k} {n \choose k} n^{-k} ||h_k - h_k'||^2 \le E||h - h'||^2$$
,

since $E\sigma_{k}^{n}(h_{k}-h_{k}^{*})\sigma_{\ell}^{n}(h_{\ell}-h_{\ell}^{*}) = \binom{n}{k} \|h_{k}-h_{k}^{*}\|^{2} \delta_{k\ell}$ by ([2], p. 744). Also,

(0.5)
$$E(\sum_{k=0}^{\infty} I_k(h_k)/k! - \sum_{k=0}^{\infty} \frac{I_k(h_k')}{k!})^2 = ||h - h'||^2.$$

Thus we get

(0.6) Theorem: For any $h \in H$,

$$Y_n(h) \stackrel{\mathcal{D}}{\rightarrow} W(h) = \sum_{k=0}^{\infty} \frac{I_k(h_k)}{k!}$$

<u>Proof</u>: Let $h \in H$ and $\varepsilon > 0$. Choose $h' = \sum_{i \in I} c_i h^{\oplus i}$ such that $||h - h'||^2 < \varepsilon/2$. Now consider for $t \in \mathbb{R}$

$$|E(e^{itY_n(h)} - e^{itW(h)})| \le E|e^{itY_n(h)} - e^{itY_n(h')}| + E|e^{itW(h')}| + E|e^{itW(h')}|$$

Using Schwartz's Inequality and the fact $|e^{ix}-1| \le |x|$ we get that the first

and third term of the above inequality are dominated by $t^2E||h-h'||^2$ using (0.4) and (0.5). Hence by (0.3)'

$$\frac{1}{\lim_{h \to \infty} |Ee^{itY}(h)|} = \frac{|Ee^{itW}(h)|}{|Ee^{itW}(h)|} \le \epsilon/2.$$

As ϵ is arbitrary we get the result.

Finally, we make some observations to be used later.

$$(0.7) Y_{n}^{t}(h^{\phi}) = \sum_{k=0}^{\lfloor nt \rfloor} n^{-k/2} \sum_{1 \le s_{1} \le \ldots \le s_{k} \le \lfloor nt \rfloor} \phi(X_{s_{1}}) \ldots \phi(X_{s_{k}}) = \sum_{1}^{\lfloor nt \rfloor} \frac{\phi(X_{1})}{\sqrt{n}}.$$

Also, $\min(t,s)\mu(A\cap A')$ is a covariance on $[0,\infty)\times \Sigma$ giving that there exists a centered Gaussian process $\underline{W}(t,A)$ with $\underline{E}\underline{W}(t,A)\underline{W}(s,A')=\min(t,s)\mu(A\cap A')$. Let for $T<\infty$

$$H_{T} = \{(h_{0}, h_{1}, ...) \in H : \sum_{k=0}^{\infty} T^{k} \frac{||h_{k}||^{2}}{k!} < \infty\}.$$

1. Invariance Principle: Let D[0,T], $(T \le \infty)$ be the space of right continuous functions on [0,T] ($[0,\infty)$) with left limits at each $t \le T$. The space D[0,T] is endowed with Skorohod topology [1]. The topology in $D[0,\infty)$ is the one described in Whitt [4]. We note that

$$X_{[nt]} = \sum_{1}^{[nt]} \frac{\phi^{2}(X_{i}) - E\phi^{2}}{n}$$
 has stationary independent increments. So for $\varepsilon > 0$

$$P(\sup_{0 \le t \le T} |X_{[nt]}| > \varepsilon) \le C.P(|X_{[nT]}| \ge \varepsilon) \rightarrow 0$$

by the weak law of large numbers. Using this, the arguments preceding Lemma 0.3, invariance principle and Cramér-Wold device we get the following analogue of Lemma 0.3.

Lemma 1.1:
$$(Y_n^t(h^{\phi_1}), \dots, Y_n^t(h^{\phi_k})) \xrightarrow{\mathcal{D}_{k,T}} (\exp(I_1^t(\phi_j) - \frac{1}{2}t||\phi_j||^2), j = 1, \dots, k)$$

where $I^{t}(\phi_{j}) = \int \int 1_{(0,t]} (u) \phi_{j}(x) W_{k}(du,dx)$. Here $\frac{D_{k,T}}{D}$ denotes convergence in $D^{k}[0,T]$ with respect to product topology.

We note that W(t,A) is a Brownian motion for each $A \in \Sigma$. Thus we can choose $I^t(x)$ continuous for each ϕ and a martingale in t as $I^t(\phi) = \int \phi(x)W(t,dx)$. We get for $\{c_1,\ldots,c_k\} \subseteq \mathbb{R}$, (k finite),

$$Y^{t}(\sum_{j=1}^{k}c_{j}h^{\phi_{j}}) + \sum_{j=1}^{k}c_{j}\exp(I^{t}(\phi_{j}) - \frac{1}{2}t \|\phi_{j}\|^{2}).$$

Let $\phi \in L_0^2(X, \Sigma, \mu)$, $||\phi|| = 1$, and denote

$$(\phi^k)^t = \phi(x_1) \dots \phi(x_k) 1_{(0,t]} (u_1) \dots 1_{(0,t]} (u_k).$$

Define $I_k(\hat{\tau}^k)^t = k!H_k(t,I(\phi))$ where H_k is Hermite polynomial, i.e. $\Sigma_{k=0}^{\infty} \gamma^k H_k(t,x) = \exp(\gamma x - \frac{1}{2} \gamma^2 t). \quad \text{For } \phi \in L_0^2(X,\Sigma,\mu), \ \|\hat{\tau}\| = 1, \text{ we define for } (h^{\hat{\tau}})^t = (1,\phi^t,(\phi^2)^t,\ldots),$

$$W(h^{\phi})^{t} = \sum_{k=0}^{\infty} \frac{I_{k}(\phi^{k})^{t}}{k!},$$

and extend it linearly to $(\Sigma c_j(h^{\phi_j})^t)$. It is a martingale. Let $h \in H_T$ $\{h(n)\}$ a sequence in $sp\{(h^{\phi})^t, \phi \text{ in CONS in } L_0^2(X, \Sigma, \mu)\} \subseteq H_T$, then

$$P(\sup_{t \le T} |W^{t}(h(n) - h(m))| \ge \varepsilon) \le E|W^{T}(h(m) - h(n))|^{2}$$

$$= \sum_{k=0}^{\infty} T^{k} \frac{||h_{k}(m) - h_{k}(n)||^{2}}{k!}$$

using Doob's inequality and argument as in (0.5). Define for $h \in H^t$, $W^t(h) = -\lim_n W^t(h_n) \text{ where the limit is uniform on compact for } h_n \to h. \text{ Then } W^t(h) \text{ is right continuous martingale and has the same distribution as } \Sigma_k I_k^t(h_k)/k!. \text{ Now we derive the main theorem of [3].}$

Theorem 1.2: $Y_n^t(h) \stackrel{\mathcal{D}}{\to} W^t(h)$ in D[0,T] for $h \in H^T$ for each $T < \infty$.

<u>Proof</u>: Let $h \in H$ and $\varepsilon > 0$, choose $h_k^{\dagger} \in \operatorname{sp}\{h^{\ddagger}: \varphi \in L_0^2(X, \Sigma, \mu)\} \ni h_k^{\rightarrow}h$. Now define

$$X_{nk}^{\bullet} = Y_{n}^{\bullet}(h_{k}^{\dagger}), Z_{n}^{\bullet} = Y_{n}^{\bullet}(h), X_{k}^{\bullet} = W^{\bullet}(h_{k}^{\dagger}) \text{ and } X = W^{\bullet}(h).$$

Then $X_{n,k}^{\bullet} \xrightarrow{\mathcal{D}} X_k^{\bullet}$ as $n \to \infty$ in D[0,T] for each $T < \infty$ by Lemma 1.1. Also $X_k^{\bullet} \xrightarrow{\mathcal{D}} X$ as $n \to \infty$ in D[0,T] for each $T < \infty$. In addition,

$$P\left(\sup_{0 \le t \le T} \left| X_{nk}^{\bullet} - Z_{n}^{\bullet} \right| \ge \epsilon\right) \le E\left| Y_{n}^{T}(h - h_{k}^{\bullet}) \right|^{2} \le T\left| \left| h - h_{k}^{\bullet} \right| \right|$$

giving $\lim \overline{\lim} P(\rho(X_{nk}^{\bullet}, Z_n^{\bullet}) \ge \varepsilon) \to 0$ with ρ being the Skorohod metric on D[0,T]. $k \to \infty$ n This implies by ([1], Thm 4.2, p. 25) that $Z_n^{\bullet} \to W^{\bullet}(h)$ in D[0,T] ($T < \infty$) giving the result.

Remark: In the above arguments we may use an interpolated version of $Y_n^t(h)$ from the beginning and use appropriate version of Donsker's Invariance Principle to conclude above convergence occurs in D[0,T] in sup norm giving $W^t(h)$ continuous.

References

- [1] Billingsley, P. (1968) Convergence of probability measures, Wiley, New York.
- [2] Dynkin, E.B. and Mandelbaum, A. (1983) Symmetric statistics, Poisson point processes and multiple Wiener integrals, Ann. Statist. 11 739-745.
- [3] Mandelbaum, A. and Taqqu, M.S. (1984) Invariance principles for symmetric statistics. Ann. Statist. 12 483-496.
- [4] Whitt, W. (1980) Some useful functions for functional limit theorems, Math. of Op. Research 5 67-85.

FERTICAL BANKSON STREET, SERVICE CONTRACT BANKSON STREET, CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT