1: DFA

Name Name

- (a) (12pts) Give state diagrams of DFA's recognizing the following languages. The alphabet is $\{x, y\}$.
 - $L_1 = \{w | w \text{ has length 5 and its third symbol is a } x\}$
 - $L_2 = \{w | w \text{ begins with } y \text{ ends with } x\}$
 - $L_3 = \{w | w \text{ the length of } w \text{ is at most } 4\}$
 - $L_4 = \{w \mid \text{ has at least 2 x's and at most 2 } y's \}$
- (b) (4pts) Write the formal definition of L_2
- (c) (4pts) Construct a DFA that accepts strings over alphabet $\{x, y, z\}$ whose symbols are in alphabetical order (for example: xxyzz, yz and xzz are accepted but not xzy or xyzx).
- (d) (8pts) Give state diagrams of DFA's recognizing the following languages. That alphabet is $\Sigma = \{x, y\}$
 - $L_5 = \{w | w \text{ any string that does not contain the substring } xyy\}$
 - $L_6 = \{w | w \in A \text{ where } A = \Sigma^* \{x, xx, y\}\}.$ (Σ^* denotes all strings in the alphabet)
- (e) (4pts) Give state diagrams of DFA's recognizing the following $L_7 = \{w | w \text{ is not divisible by 6} \}$ The alphabet is $\{0, 1\}$,

2: NFA

- (a) (3pts) Construct an NFA that accepts binary strings over alphabet $\{x,y\}$ that have y as the second-to-last symbol.
- (b) (8pts) Give the state diagrams of NFAs with the specified number of states recognizing each of the following languages. The alphabet is $\{x, y\}$.
 - $L_8 = \{w | w \text{ contains the substring } yxyx\}$ (5 states or less)
 - $L_9 = \{w | w \text{ contains an even number of } x's \text{ or contains exactly two } y's \}$ (6 states or less)
- (c) (7pts) Convert the following NFA to a DFA. Show your work for full credit.

