

Adaptive Control of 2-Link Manipulator

Luke Roberto

Background

- Using Julia programming language, developed at MIT
 - https://julialang.org/
- Also using the JuliaRobotics suite, developed by Robot Locomotion Group
 - http://www.juliarobotics.org/

Source code hosted at: https://github.com/Lukeroberto/2.152_project

Double Integrator

Figure 8.1 - The double integrator as a unit-mass brick on a frictionless surface

$$m\ddot{x} = \tau$$
Model

$$\tau = \hat{m}(\ddot{x_d} - 2\lambda \dot{\tilde{x}} - \lambda^2 \tilde{x})$$
$$\dot{\hat{m}} = -\gamma vs$$
Control/Adaptation Law

*http://underactuated.csail.mit.edu/underactuated.html?chapter=dp

Double Integrator

Double Integrator

2-Link Manipulator

2-Link Manipulator

2-Link Manipulator

Composite Adaptation

- these estimates fluctuate quite a bit
- composite adaptation lets us extract information not only from our trajectory error, but from other knowns in the model
- computational costs of adaptation?

Questions?

