# 1. Introduction to Blockchain

## Contents

- 1. 블록체인의 정의: 신뢰 기반의 분산 기술
- 2. 블록체인의 구성 요소:
  - 블록(Block)
  - 트랜잭션(Transaction)
  - 체인(Chain)
- 3. 블록체인의 네트워크 구조:
  - 노드(Node): 블록체인을 구성하는 참여자
  - 피어(Peer): 탈중앙화 네트워크에서의 노드 간 연결
- 4. 중앙화 vs. 탈중앙화: 블록체인의 차별점
- 5. 블록체인 아키텍쳐

# 1. 블록체인의 정의: 신뢰 기반의 분산 기술

### Blockchain 의 정의:

- 블록체인은 디지털 데이터를 투명하고 안전하게 저장하고 관리하기 위한 **분산** 장부 기술(Distributed Ledger Technology)

### Blockchain의 특징:

- 블록체인은 신뢰할 수 없는 환경에서도 중앙 기관 없이 신뢰를 구축할 수 있는 기술
- 데이터를 시간 순서대로 기록하며 변경이 불가능한 구조로, 투명성과 보안성을 보장
- 주로 가상화폐(비트코인 등), 스마트 컨트랙트, 탈중앙화 금융(DeFi) 등에서 활용

# 2. 블록체인의 구성 요소 (블록)

### 블록 (Block):

- 블록은 데이터가 저장되는 기본 단위
- 각 블록은 **헤더(Header)**와 **바디(Body)**로 구성
  - **헤더:** 이전 블록의 해시값, 생성 시간, 난이도 값, 논스(nonce) 등 메타데이터를 포함
  - 바디: 트랜잭션 데이터를 저장
- 블록은 암호화된 방식으로 연결되어 체인을 형성





# 2. 블록체인의 구성 요소 (트랜젝션)

### 트랜잭션 (Transaction):

- 블록체인에서 기록되는 데이터의 최소 단위
- 일반적으로 트랜잭션은 사용자 간 자산 이동(예: 비트코인 전송) 또는 스마트 컨트랙트 실행을 의미
- 트랜잭션은 블록 생성 전, 네트워크 노드에서 검증되어야 함



# 2. 블록체인의 구성 요소 (체인)

## 체인(Chain):

- 블록들이 연결되어 형성된
  데이터의 연속체
- 각 블록은 이전 블록의 해시값을 포함하여 변조가 불가능
- 데이터의 무결성을 보장하고, 신뢰할 수 없는 환경에서도 신뢰를 제공

### Structure of Blockchain





# 3. 블록체인의 네트워크 구조

### 노드(Node):

- 블록체인을 구성하는 참여자(컴퓨터 또는 서버)

- 각 노드는 블록체인의 복사본을 저장 & 새로운 트랜잭션과 블록을 검증하고

동기화



# 3. 블록체인의 네트워크 구조

### 노드의 유형:

- 풀 노드(Full Node): 전체 블록체인을 저장하며 트랜잭션 및 블록 검증에 참여
- 라이트 노드(Light Node): 주요 데이터만 저장하며 간단한 작업 수행
- 마이닝 노드(Mining Node): 새로운 블록을 생성하는 역할 수행

| 노드 유형  | 저장 데이터  | 장점            | 단점            |
|--------|---------|---------------|---------------|
| 풀 노드   | 전체 블록체인 | 네트워크 완전 검증 가능 | 저장 공간과 리소스 요구 |
| 라이트 노드 | 블록 헤더만  | 저장 공간과 리소스 절약 | 완전 검증 불가      |

# 3. 블록체인의 네트워크 구조

### 피어(Peer):

- 탈중앙화 네트워크에서 노드 간의 연결을 의미
- 블록체인은 P2P(Peer-to-Peer) 네트워크로 구성되며, 모든 노드가 동등한 권한을 가짐
- 피어 간 데이터는 실시간으로 전파 및 동기화

# 4. 중앙화 vs. 탈중앙화: 블록체인의 차별점

|    | 중앙화 시스템                 | 탈중앙화 시스템                                       |  |
|----|-------------------------|------------------------------------------------|--|
| 특징 | 중앙 서버 또는 기관이 데이터를 관리    | 데이터가 네트워크의 모든 노드에 분산 저장                        |  |
| 예시 | 은행, 클라우드 서버             | 비트코인, 토렌트                                      |  |
| 장점 |                         | 단일 정애점 제거,<br>데이터 위조 및 해킹 사실상 불가능<br>투명성 및 신뢰성 |  |
| 단점 | 단일 장애점, 데이터 위조 및 해킹 가능성 | 확장성 문제, 데이터 처리 속도가 느릴 수 있음                     |  |





Client-server

P2P network

| Property                      | Public blockchain           | Consortium blockchain | Private blockchain      |
|-------------------------------|-----------------------------|-----------------------|-------------------------|
| Consensus determination       | All miners                  | Selected set of nodes | Within one organization |
| Read permission               | Public                      | Public or restricted  | Public or restricted    |
| Immutability level            | Almost impossible to tamper | Could be tampered     | Could be tampered       |
| Efficiency (use of resources) | Low                         | High                  | High                    |
| Centralization                | No                          | Partial               | Yes                     |
| Consensus process             | Permissionless              | Needs permission      | Needs permission        |

### **Public Blockchain**

#### - 특징

- 완전한 탈중앙화, 투명성, 보안(높은 수준의 보안을 위해 작업증명 PoW 또는 지분증명 PoS 와 같은 합의 알고리즘 사용), 익명성

### - 장점

- 개방형 네트워크로 누구나 접근 가능
- 탈중앙화로 인해 신뢰의 중개자(은행, 정부 등)가 필요 없음

### - 단점

- 느린 처리 속도
- 높은 에너지 소비 (특히 PoW 기반 시스템)

#### - 사용 사례

- 비트코인, 이더리움과 같은 암호화폐
- 완전한 투명성과 개방성이 필요한 응용 (ex 글로벌 결제 시스템, 분산 금융DeFi)

### **Consortium Blockchain**

### - 특징

- 부분적 탈중앙화(멤버가 제한), 접근 제한, 효율성(제한된 참여자로 인해), 보안 강화

### - 장점

- 처리 속도와 효율성이 높음
- 데이터 접근과 관리가 제한적이므로 기업 간 협력에 적합

#### - 단점

- 완전한 탈중앙화가 아니므로 신뢰의 중개자가 여전히 필요
- 투명성이 Public Blockchain 보다 낮음

### - 사용 사례

- 금융기관 간 결제 시스템 : 여러 은행 간 빠르고 안전한 결제를 처리 (ex. R3의 Corda)
- 공급망 관리: 다양한 이해관계자가 공유하면서도 기밀성 유지 (ex. Hyperledger Fabric)
- 헬스케어 데이터 관리 : 병원과 연구소간 민감한 데이터 교환

### **Private Blockchain**

- 특징
  - 중앙 집중화, 접근 완전 제한, 효율성 극대화, 보안 강화
- 장점
  - 빠르고 효율적이며 맞춤형 설계 가능
  - 기업 내부의 데이터 관리와 Workflow에 최적화
- 단점
  - 탈중앙화가 거의 없고, 소유자의 신뢰에 의존
  - Public Blockchain에 비해 투명성이 매우 낮음
- 사용 사례
  - 기업 내부 데이터 관리 : ex. 직원 기록 관리, 내부 자산 추적
  - 정부 관리 시스템: ex. ID발급, 세금 기록 등 민감 데이터 처리
  - 은행 내부 시스템: 거래 기록과 같은 민감한 데이터를 효율적으로 관리

# End