PROFILE

조동빈 DONGBIN CHO

Birth 1993.01.05

Email ken.dbc.career@gmail.com

Education	2020.03.01 ~ 2022.02.25	Computer Science Department, Hanyang University [MS] 한양대학교 컴퓨터소프트웨어학과
	2012.03.01 ~ 2018.08.31	Industrial Engineering Department, Kangwon University [BS] 강원대학교 산업공학과
	2022.06.20 ~ 2022.12.30	[Undfined] Dev.Team [언디파인드] 개발팀 Chatbot & Reco. System Developer 챗봇 & 추천 알고리즘 개발자
Work Experience	2019.12.26 ~ 2020.02.29	[Kakao] Reco.Team [카카오] 추천팀 Reco. System Developer 추천 알고리즘 개발자
	2018.11.05 ~ 2019.04.22	[HanbitSoft] AI.Part [한빛소프트] 인공지능파트 Text/Audio Chatbot Developer 텍스트/음성 챗봇 개발자
	2022 BIB Journal	RAMP: Response-Aware Multi-task Learning with

Publications

2022 ICEIC

(Briefings in Bioinformatics)

Quantization training with two-level bit width (link) (International Conference on Electronics, Information, and Communication)

Contrastive Regularization for Cancer Drug Response Prediction (link)

PROJECTS

Undefined	[1] FAQ Chatbot	3 months
	[2] Competition Rule Recommendation	2 months
	[3] Match Result Recorder	1 month
	[1] DNN Model Quantization	1y 10m
Machine Learning System Lab.,	[2] Network Embedding Generation	2y 6m
Hanyang Univ.	[3] Artificial Intelligence Assistant	2 months
	[4] DNN Model Quantization	3 months
Kakao	[1] Automobile Video Recommendation	2 months
Nakau	[2] Comics Recommendation	2 weeks
HanbitSoft	[1] (EN) Text Chatbot	2 months
	[2] (KR) Multi-speaker Speech Synthesis Model	4 months

Undefined

- [1] FAQ Chatbot
- [2] Competition Rule Recommendation
- [3] Match Result Recorder

Al Server Pipeline

Undefined

	Open Source RASA	
	Utilized	Multi-lingual BERT, <u>StarSpace</u>
Chatbot	What I've Done	Dataset PreprocessingModel SelectionModel TuningModel Serving
	Open Source	<u>LibRecommender</u> (Alternative Least Square)
Competition Rule Recommendation	What I've Done	 Define Problem Dataset Preprocessing Feature Selection (via Correlations) Model Selection Model Tuning Model Optimization (removed operations)
	Open Source	Tesseract, Google Vision API
Match Result Recorder (OCR)	What I've Done	 Define Problem Define Pipeline Our Tesseract Model Cloud API (in case of poor confidence) Serving Finetuning

Machine Learning System Lab.

- [1] Network Embedding Generation
- [2] DNN Model Quantization
- [3] DNN Model Quantization
- [4] Artificial Intelligence Assistant

Network Embedding Generation

* Published in 2022 BIB (Briefings in Bioinformatics) Journal

[Human Cell lines - Cancer Drugs] Response Prediction

Project description

Network(graph) dataset consist of

• Cell line nodes

- **Drug** nodes
- Protein nodes (connected to Cell lines)

My Task: Train embedding vectors of Cell lines and Drugs

Problem

Extremely unbalanced dataset

- About 20,000 Protein nodes
- About 900 Cell line nodes
- About 300 Drug nodes

Fails to reflect the relationships between Cell lines & Drugs

As a result, we got poor response prediction performance

Solution

Make training process to focus on relationships between Cell lines & Drugs

Response-aware Negative Sampling (RA-NS)

- Cell line & Drug nodes use resistant Drug & Cell line nodes as their negative samples
 - * Tested Models: Node2Vec, Graph Convolutional Network, Graph Transformer Network

Fig. 2. Embedding similarities among drug and cellines. We subtract the similarity of a drug and its resistant cell lines from the similarity of the drug and its responsive cell lines. The results are normalized and plotted in a heatmap format. The higher (or redder) the value is, the better the embedding reflects the network structure.

DNN Model Quantization

* Published in 2022 ICEIC (International Conference on Electronics, Information, and Communication)

Problem

Quantization Aware Training (Google)

- Fake-quantize all of the weight matrices with a single low-bit type
- Too much quantization errors occur and the trained model gets ruined

QuantNoise (Facebook)

- Fake-quantize probabilistically selected subsets of matrices (a subset per matrix)
- Trained models under-prepared for Quantization

Solution

Fake Single Precision Training (FST)

- Probabilistically select subsets of weight matrices as QuantNoise
- Fake-quantize selected subsets with low-bit type
- Fake-quantize the rests with higher bit type than the selected

DNN Model Quantization

	What is	General DNN models use Float32 type variables
		Quantized models use low-bit INT types at inference
Definition	What for	 Model storage In memory load Matrix multiplication with Float32 type cause bottleneck/unusability in low performance H/W

Granular Exponential Moving Average (Granular EMA)

Train Quantization Parameters while excluding outliers

Neural Network Aware Clustering (NNAC)

Train Quantization Parameters separately across clusters of input images

- Some data might need **shorter min/max range**
- Shorter range means less information loss

Figures' Description

- Shows that our method
 - how efficiently exclude outliers
 - how to work with clusters
- QAT : Baseline (Google)
- Cluster*: Ours
- X: Trained maximum value
- Box-plots: Actual max values per image

Artificial Intelligence Assistant

- Al Assistant App, Almond
 - Currently, the service name has been modified to Genie
 - Developed by Stanford OVAL Lab

- Training Korean Seq2SQL Model
 - Dataset preparation
 - □ Web Crawling
 - ☐ Construct templates of sentences (example of sentences)
 - ☐ Augment sentences based on templates
 - Train & serve model

Kakao

- [1] Automobile Video Recommendation[2] Comics Recommendation

	Thomson	Purpose	Adjustment of trade-off between exploration & exploitation
Exp	Exp Sampling 1, 2 h-params tuning	Reason	[Exp-1] High matrix sparsity
1,2			[Exp-2] Considering time bias enhanced by low traffic
F	Ranking	Purpose	Searching the key model among ensembled models
3, 4	Exp algorithm's 3, 4 h-params tuning	Reason	Other well performing services had been used similar pipelines • Therefore, assumed that the composition of used models are good enough
	11 21 /	Purpose	Overcome Matrix Factorization model's limitation
Exp 5	Motrix	Reason	Needed to generate reco. results within limited item list • The limited items rated 30~40th on avg., if we force the limitation off
	- GCCOTTEGETOTT		Needed some models which capture information which MF can't

Exp 1, 2 Thomson
Sampling
h-params
tuning

Purpose

Adjustment of trade-off between exploration & exploitation

Reason

[Exp-1] High matrix sparsity

[Exp-2] Considering **time bias** enhanced by low traffic

Exp **a** h

Ranking algorithm's h-params tuning Purpose

Searching the key model among ensembled models

Reason

33

0.7070

Other well performing services had been used similar pipelines

• Therefore, assumed that the composition of used models are good enough

Item ID

[CF]
Reco. result

[Text Analysis]
Reco. result

Item ID **Similarity** 0.8542 17 0.8345 weight=0.3 0.7984 23 0.7784 Example of 33 0.6214 Weighted-sum Item ID **Similarity** 0.8441 0.8385 42 17 0.8001 weight=0.7 51 0.7871

[Ensembled]

Reco. result

Similarity

לוווטו	Similarity
2	0.8303
17	0.8104
33	0.6813
42	0.5870
51	0.5510

〈 MF Model's Reward Matrix 〉

(Item2Vec Model's Input Sequence)

Comics Recommendation

\\\ord2\\\os		Purpose	Better reflection of Japanese characteristics
Exp 6	input dataset	Reason	Previously, model used nouns and pronouns only
	1econstruction		According to past researches, verbs and adjectives are also important for JP
		Purpose	Strengthen the key model
	Modified	_	
Exp 7	algorithm	Reason	By previous experiment logs, the only MF used reco. pipeline without ensemble method outperformed ensembled pipeline
	(KKF LO WKF)		But the ranking algorithm the system was using weakened MF's power

Comics Recommendation

Modified
ranking
algorithm
to
Weighted
Rank Fusion

Purpose

Strengthen the key by giving weight to rank values

Reason

By previous experiment logs, the only MF used reco. pipeline without ensemble method outperformed ensembled pipeline

But the Weighted-sum Ranking Algorithm weakened MF's power

[Ensembled]

Item ID	Rank
3	1
2	2
17	3

Example of Weighted Rank Fusion

Item ID	Rank
3	1
17	2
2	3
[CF]

weight=0.3

Item ID	Rank
2	1
42	2
7	3
Γ .	1 • 1

[Text Analysis]

 Item ID
 Rank

 3
 1

 42
 2

 2
 3

weight=0.2

[Image Sim.]

HanbitSoft

[1] (EN) Text/Audio Chatbot

[2] (KR) Multi-speaker Speech Synthesis Model

(EN) Text/Audio Chatbot

(EN) Text/Audio Chatbot

(KR) Multi-speaker Speech Synthesis Model

• Dataset preparation

Web	Audio files
Crawling	Script files
Preprocessing	Cut audio files into files of sentences
	Cut script files into sentences (by comparing STT results)

- H-params optimization
- Demo https://jarvis08.github.io/pjt_hbs_multi.html