图算法篇: 最大流

童咏昕

北京航空航天大学 计算机学院

中国大学MOOC北航《算法设计与分析》

问题背景

算法思想

算法实例

算法分析

算法性质

• 从塔里木气区到上海输送天然气,如何计算最大输送量?

• 从塔里木气区到上海输送天然气,如何计算最大输送量?

问题: 如何描述输送线路?

• 从塔里木气区到上海输送天然气,如何计算最大输送量?

将输送线路抽象为有向图

• 从塔里木气区到上海输送天然气,如何计算最大输送量?

城市视为顶点,管道视为边

• 从塔里木气区到上海输送天然气,如何计算最大输送量?

流网络 $G = \langle V, E, C \rangle$

用边的权值表示管道的容量

从塔里木气区到上海输送天然气,如何计算最大输送量?

流网络 $G = \langle V, E, C \rangle$

用边的权值表示管道的容量

路径上的流量不应超过边的容量

• 从塔里木气区到上海输送天然气,如何计算最大输送量?

计算最大天然气输送量(最大化总流量)

• 给定有向图 $G = \langle V, E, C \rangle$,其被称为流网络:

● 容量: 对于每条边 $c(e) \ge 0$

• 流量: 对于每条边 $c(e) \ge f(e) \ge 0$

• 给定有向图 $G = \langle V, E, C \rangle$,其被称为流网络:

● 容量: 对于每条边 $c(e) \ge 0$

• 流量: 对于每条边 $c(e) \ge f(e) \ge 0$

• 剩余容量: 对于每条边,剩余容量为c(e) - f(e)

剩余容量=容量-流量

• 给定有向图 $G = \langle V, E, C \rangle$,其被称为流网络:

● 容量: 对于每条边 $c(e) \ge 0$

• 流量: 对于每条边 $c(e) \ge f(e) \ge 0$

• 剩余容量: 对于每条边,剩余容量为c(e) - f(e)

总流量:

$$|f| = \sum_{e \text{ out of } s} f(e) = \sum_{e \text{ in to } t} f(e)$$

总流量=源点流出量=汇点流入量

• 给定有向图 $G = \langle V, E, C \rangle$,其被称为流网络:

● 容量: 对于每条边 $c(e) \ge 0$

• 流量: 对于每条边 $c(e) \ge f(e) \ge 0$

• 剩余容量: 对于每条边,剩余容量为c(e) - f(e)

总流量:

$$|f| = \sum_{e \text{ out of } s} f(e) = \sum_{e \text{ in to } t} f(e)$$

- 流量的两条性质
 - 容量限制: 对边 $e \in E$, 有 $0 \le f(e) \le c(e)$

边上的流量不应超过边的容量

• 给定有向图 $G = \langle V, E, C \rangle$,其被称为流网络:

● 容量: 对于每条边 $c(e) \ge 0$

• 流量: 对于每条边 $c(e) \ge f(e) \ge 0$

• 剩余容量: 对于每条边,剩余容量为c(e) - f(e)

总流量:

$$|f| = \sum_{e \text{ out of } s} f(e) = \sum_{e \text{ in to } t} f(e)$$

• 流量的两条性质

• 容量限制: 对边 $e \in E$,有 $0 \le f(e) \le c(e)$

流量守恒: 对顶点v∈V-{s,t}

$$\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

进人某顶点*v*流量和 等于流出此顶点流量和

最大流问题

Maximum Flow Problem

输入

- 有向图 $G = \langle V, E, C \rangle$, 其中 $c(e) \in C$ 表示边e的容量
- 源点s,汇点t

输出

• 总流量|*f*|

$$\max |f| = \max \sum_{e \text{ out of } s} f(e)$$
 优化目标

$$s.t.$$
 $0 \le f(e) \le c(e)$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

容量限制

流量守恒

问题背景

算法思想

算法实例

算法分析

算法性质

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0

流网络G

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)

流网络G

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
 - 按路径P上最小剩余容量增加路径流量

流网络G

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
 - 按路径P上最小剩余容量增加路径流量

流网络G

• 算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

流网络G

• 算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

流网络G

• 算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

流网络G

• 算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

流网络G

• 算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

流网络G

算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

流网络G

总流量: 19

无法寻找到可增加流量的路径

● 直观策略

总流量: 19

• 最优方案

• 直观策略

$$|f| = \sum_{e \text{ out of } s} f(e)$$

总流量: 19

• 最优方案

●直观策略

容量未充分利用

总流量: 19

• 最优方案

尝试扩充 -个单位流量

总流量: 19

• 最优方案

• 直观策略

为满足 v_1 流量守恒, 扩充从其它边流出 的流量

总流量: 19

• 最优方案

• 直观策略

重新分配经过 v_1 的 流量

总流量: 19

• 最优方案

● 直观策略

无法扩充*v*₃从其它 边流出的流量

总流量: 19

• 最优方案

● 直观策略

为满足*v*3 流量守恒, 缩减其它边的进人 流量

总流量: 19

• 最优方案

●直观策略

重新分配经过 v_3 的 流量

总流量: 19

• 最优方案

● 直观策略

为满足 v_2 流量守恒, 扩充从其它边流出 的流量

总流量: 19

• 最优方案

● 直观策略

重新分配经过 v_2 的 流量

总流量: 19

• 最优方案

最大总流量: 24

• 直观策略

为满足 v_4 流量守恒, 扩充从其它边流出 的流量

总流量: 19

• 最优方案

最大总流量: 24

● 直观策略

重新分配经过 v_4 的 流量

总流量: 19+1=20

• 最优方案

最大总流量: 24

• 直观策略

总流量: 20

• 最优方案

最大总流量: 24

如果允许缩减边上的容量,可进一步增大总流量

• 调整流量的两种方式

总流量: 20

扩充边上的流量

问题: 如何改进直观策略?

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
 - 按路径P上最小剩余容量增加路径流量
 - 迭代寻找路径P直至无法增加路径流量

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
 - 按路径P上最小剩余容量增加路径流量
 - 迭代寻找路径P直至无法增加路径流量

扩充边上的流量

算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

扩充边上的流量

算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

扩充边上的流量

• 如何保证流量调整合理

• 反向边权重:可缩减流量的上限,即原始边上的流量f(e)

• 正向边权重:可扩充流量的上限,即原始边上的剩余容量c(e) - f(e)

残存网络(Residual Network)

• 给定流网络 $G = \langle V, E, C \rangle$ 和流量f,可得残存网络 $G_f = \langle V, E_f \rangle$, 其中每条边的残存容量:

•
$$c_f(e) = \begin{cases} c(e) - f(e), e$$
为正向边 $f(e), e$ 为反向边

流网络

残存网络

残存网络(Residual Network)

- 增广路径(Augmenting Path)
 - 给定流网络 $G = \langle V, E \rangle$ 和流f,增广路径p是残存网络 G_f 中一条从源顶点s到汇点t的简单路径(路径上的各顶点均不互相重复)

残存网络(Residual Network)

- 增广路径的残存容量
 - 一条增广路径p上各边残存容量的最小值

• 算法思想

- 对所有边 $e \in E$,初始化流量为零f(e) = 0
- 寻找一条s到t的路径P,此路径上的每条边e均满足f(e) < c(e)
- 按路径P上最小剩余容量增加路径流量
- 迭代寻找路径P直至无法增加路径流量

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 构造残存网络 G_f ,寻找S到t的增广路径P
 - 按路径P上最小剩余容量增加路径流量
 - 迭代寻找路径P直至无法增加路径流量

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 构造残存网络 G_f ,寻找S到t的增广路径P
 - 按路径P的残存容量增加流量
 - 迭代寻找路径P直至无法增加路径流量

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 构造残存网络 G_f ,寻找S到t的增广路径P
 - 按路径P的残存容量增加流量
 - 迭代寻找路径P直至无法增加路径流量

• 设计思路小结

问题1: 直观策略有何不足之处?

只能扩充边的流量,不能缩减边的流量

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 构造残存网络 G_f ,寻找S到t的增广路径P
 - 按路径P的残存容量增加流量
 - 迭代寻找路径P直至无法增加路径流量

• 设计思路小结

问题1: 直观策略有何不足之处?

只能扩充边的流量,不能缩减边的流量

问题2: 如何整合流量调整方式?

引入残存网络,寻找增广路径

- 算法思想
 - 对所有边 $e \in E$,初始化流量为零f(e) = 0
 - 构造残存网络 G_f ,寻找S到t的增广路径P
 - 按路径P的残存容量增加流量
 - 迭代寻找路径P直至无法增加路径流量

• 设计思路小结

问题1: 直观策略有何不足之处?

只能扩充边的流量,不能缩减边的流量

问题2: 如何整合流量调整方式?

引入残存网络,寻找增广路径

问题3: 如何确定流量扩充数值?

按照路径残存容量增加流量

问题背景

算法思路

算法实例

算法分析

算法性质

流网络G

总流量: 0

残存网络 G_f

流网络G

总流量: 0+11=11

残存网络 G_f

流网络G

总流量: 11

残存网络 G_f

更新残存网络

流网络G

总流量: 11+5=16

残存网络 G_f

流网络G

总流量: 16

残存网络 G_f

更新残存网络

流网络G

总流量: 16+3=19

残存网络 G_f

流网络G

总流量: 19

残存网络 G_f

更新残存网络

总流量: 19+3=22

残存网络 G_f

流网络G

总流量: 22

残存网络 G_f

更新残存网络

流网络G

总流量: 22+2=24

残存网络 G_f

流网络G

总流量: 24

残存网络 G_f

更新残存网络

流网络G

总流量: 24

残存网络 G_f

无增广路径 算法可终止

问题背景

算法思想

算法实例

算法分析

算法性质

伪代码

• Ford-Fulkerson(G, s, t)

```
输人: 图G=< V, E, C>,源点s,汇点t输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
   //更新流f
   for each edge e in p do
       if e \in E then
           e.f \leftarrow e.f + c_f(p)
       end
       else
          e.f \leftarrow e.f - c_f(p)
       end
    \mathbf{end}
   update G_f
end
f^* \leftarrow f
return f^*
```

初始化边的流量

伪代码

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
  e.f \leftarrow 0
end
G_f \leftarrow build \ residual \ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
    c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
    //更新流f
    for each edge e in p do
        if e \in E then
            e.f \leftarrow e.f + c_f(p)
        end
        else
           e.f \leftarrow e.f - c_f(p)
        end
    \mathbf{end}
    update G_f
end
 f^* \leftarrow f
return f^*
```

构造残存网络

伪代码

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
  c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
   //更新流f
   for each edge e in p do
       if e \in E then
           e.f \leftarrow e.f + c_f(p)
       end
       else
         | e.f \leftarrow e.f - c_f(p) |
       end
   \mathbf{end}
   update G_f
\mathbf{end}
f^* \leftarrow f
return f^*
```

寻找增广路径

伪代码

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e): e \ is \ in \ p\}
//更新流f
   for each edge e in p do
       if e \in E then
           e.f \leftarrow e.f + c_f(p)
       end
       else
         | e.f \leftarrow e.f - c_f(p)
       end
   end
   update \ G_f
\mathbf{end}
f^* \leftarrow f
return f^*
```

确定增广路径残存容量

伪代码

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(\underline{e}) : \underline{e} \text{ is in } \underline{p}\}
//更新流f
    for each edge e in p do
        if e \in E then
           e.f \leftarrow e.f + c_f(p)
        end
        else
         | e.f \leftarrow e.f - c_f(p) |
        end
    \mathbf{end}
   update \ G_f
end
f^* \leftarrow f
return f^*
```

更新流

伪代码

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
   //更新流f
   for each edge e in p do
       if e \in E then
          e.f \leftarrow e.f + c_f(p)
       end
       else
         e.f \leftarrow e.f - c_f(p)
       end
   \mathbf{end}
   update G_f
\mathbf{end}
f^* \leftarrow f
return f^*
```

更新残存网络

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
   //更新流f
   for each edge e in p do
       if e \in E then
          e.f \leftarrow e.f + c_f(p)
       end
       else
        | e.f \leftarrow e.f - c_f(p) |
       end
   \mathbf{end}
   update \ G_f
end
f^* \leftarrow f
return f^*
```

O(E)

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
   //更新流f
   for each edge e in p do
       if e \in E then
          e.f \leftarrow e.f + c_f(p)
       end
       else
        | e.f \leftarrow e.f - c_f(p) |
       end
   end
   update \ G_f
end
f^* \leftarrow f
return f^*
```


残存网络最多有2E条边 且 $O(V) \leq O(E)$

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
   //更新流f
   for each edge e in p do
       if e \in E then
          e.f \leftarrow e.f + c_f(p)
       end
       else
        | e.f \leftarrow e.f - c_f(p) |
       end
   end
   update G_f
\mathbf{end}
f^* \leftarrow f
return f^*
```

O(E)

使用DFS,可在O(V + 2E) = O(E)时间内找到一条增广路

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
                                                                                         O(E)
   //更新流f
   for each edge e in p do
       if e \in E then
          e.f \leftarrow e.f + c_f(p)
       end
       else
                                                                                          O(E)
        | e.f \leftarrow e.f - c_f(p) |
       end
   \mathbf{end}
   update G_f
end
f^* \leftarrow f
return f^*
```


• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
 输出: 最大流f^*
 //初始化边的流量
 for each edge e \in G.E do
 | e.f \leftarrow 0
 end
G_f \leftarrow build\ residual\ network
 //在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
    c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
    //更新流f
    for each edge e in p do
        if e \in E then
           e.f \leftarrow e.f + c_f(p)
        end
        else
         | e.f \leftarrow e.f - c_f(p) |
        end
    \mathbf{end}
    update G_f
\mathbf{end}
f^* \leftarrow f
 return f^*
```

每次循环中, 流的值至少提升一个单位

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
 输出: 最大流f^*
 //初始化边的流量
 for each edge e \in G.E do
 | e.f \leftarrow 0
 end
 G_f \leftarrow build\ residual\ network
 //在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
    c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
    //更新流f
    for each edge e in p do
        if e \in E then
           e.f \leftarrow e.f + c_f(p)
        end
        else
         | e.f \leftarrow e.f - c_f(p)
        end
    \mathbf{end}
    update G_f
\mathbf{end}
 f^* \leftarrow f
 return f^*
```

每次循环后, 流的值至少增加1

最多循环 $|f^*|$ 次

• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
                                                                                        O(E)
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
   //更新流f
   for each edge e in p do
       if e \in E then
          e.f \leftarrow e.f + c_f(p)
       end
                                                                                        O(E \cdot |f^*|)
       else
        | e.f \leftarrow e.f - c_f(p) |
       end
   \mathbf{end}
   update G_f
end
f^* \leftarrow f
return f^*
```


• Ford-Fulkerson(G, s, t)

```
输入: 图G=< V, E, C>,源点s,汇点t
输出: 最大流f^*
//初始化边的流量
for each edge e \in G.E do
 | e.f \leftarrow 0
end
G_f \leftarrow build\ residual\ network
//在G_f中寻找增广路径
while there exists a path p from s to t in the residual network G_f do
   c_f(p) \leftarrow min\{c_f(e) : e \text{ is in } p\}
   //更新流f
   for each edge e in p do
       if e \in E then
          e.f \leftarrow e.f + c_f(p)
       end
       else
         e.f \leftarrow e.f - c_f(p)
       end
   end
   update G_f
end
f^* \leftarrow f
return f^*
```

时间复杂度 $O(E \cdot |f^*|)$

• 运行时间依赖于增广过程

• 运行时间依赖于增广过程

• 运行时间依赖于增广过程

• 运行时间依赖于增广过程

每次增广总流量只增加1 需要执行2000次可完成

每次增广总流量增加1000 仅需执行2次即可完成

问题背景

算法思想

算法实例

算法分析

算法性质

流网络G

流网络 G_f

问题: 如何证明Ford-Fulkerson算法可获得最优解?

- 受启发于最大二分匹配证明
 - M是最大匹配⇔二分图G中无M的交替路径

- 受启发于最大二分匹配证明
 - M是最大匹配⇔二分图G中无M的交替路径

- 最大流证明思路
 - f是最大流⇔残存网络 G_f 中无增广路径

 - 必要性: f是最大流 \leftarrow 残存网络 G_f 中无增广路径

• f是最大流⇔残存网络 G_f 中无增广路径

● 充分性: f是最大流 \Rightarrow 残存网络 G_f 中无增广路径

• 反证:

o 如果流f有增广路径p,则总流量|f|可被增加,f不是最大流,矛盾

• f是最大流⇔残存网络 G_f 中无增广路径

● 必要性: f是最大流←残存网络 G_f 中无增广路径

• f是最大流⇔残存网络 G_f 中无增广路径

割(Cut)

• 最小生成树的割

• 图 $G = \langle V, E \rangle$ 是一个连通无向图,割(A, V - A)将图G的顶点集V划分为两部分

• 流网络的割

• 图 $G = \langle V, E, C \rangle$ 是一个有向图,割(A, V - A)将图G的顶点集V划分为两部分

• 其中源点 $s \in A$,汇点 $t \in V - A$

割的容量

- 横跨(Cross)
 - 给定割(A, V A)和边(u, v), $u \in A, v \in V A$,称边(u, v)横跨割(A, V A)
- 割的容量

$$cap(A, V - A) = \sum_{e \text{ out of } A} c(e)$$

不同的割可能具有不同的容量

流值定理

• 给定割(A,V-A)和流f,那么

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

流值定理

• 给定割(A,V-A)和流f,那么

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

流过割的流量=10+14-0

流值定理

• 给定割(A,V-A)和流f,那么

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

• 证明:

$$val(f) = \sum_{e \text{ out of } s} f(e)$$

$$= \sum_{v \in A} \sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

最小割

• 最大流: 计算最大的天然气输送量

• 最小割: 寻找天然气输送管道的瓶颈总容量

• f是最大流⇔残存网络 G_f 中无增广路径

• f是最大流⇔残存网络 G_f 中无增广路径

● 必要性: f是最大流 $\stackrel{?}{\leftarrow}$ 存在割是最大流的上界 $\stackrel{?}{\leftarrow}$ 残存网络 G_f 中无增广路径

• f是最大流⇔残存网络 G_f 中无增广路径

● 必要性: f是最大流←存在割是最大流的上界←残存网络 G_f 中无增广路径

• f是最大流⇔残存网络 G_f 中无增广路径

必要性: f是最大流←存在割是最大流的上界←残存网络 G_f 中无增广路径

步骤2: f是最大流←存在割(A,V-A)使得val(f) = cap(A,V-A)

• f是最大流⇔残存网络 G_f 中无增广路径

步骤1: 存在割(A,V-A)使得val(f)=cap(A,V-A) \leftarrow 残存网络 G_f 中无增广路径

- 。 证明
 - 无增广路径,s只可达部分顶点,依据顶点可达性,划分形成割(A,V-A)

• f是最大流⇔残存网络 G_f 中无增广路径

步骤1: 存在割(A,V-A)使得val(f)=cap(A,V-A) \leftarrow 残存网络 G_f 中无增广路径

- 。 证明
 - 无增广路径,s只可达部分顶点,依据顶点可达性,划分形成割(A,V-A)
 - 残存网络中,因为s不可达V-A中的点,所以横跨割的残存边一定从V-A指向A

• f是最大流⇔残存网络 G_f 中无增广路径

步骤1: 存在割(A, V - A)使得 $val(f) = cap(A, V - A) \leftarrow$ 残存网络 G_f 中无增广路径

- 证明
 - 无增广路径,s只可达部分顶点,依据顶点可达性,划分形成割(A,V-A)
 - 残存网络中,因为s不可达V-A中的点,所以横跨割的残存边一定从V-A指向A
 - **b** 因此,一组横跨隔的残存边只剩一条,说明f(e) = 0或f(e) = c(e)

• f是最大流⇔残存网络 G_f 中无增广路径

步骤1: 存在割(A,V-A)使得val(f)=cap(A,V-A) \leftarrow 残存网络 G_f 中无增广路径

- 。 证明
 - 无增广路径,s只可达部分顶点,依据顶点可达性,划分形成割(A,V-A)
 - 残存网络中,因为s不可达V-A中的点,所以横跨割的残存边一定从V-A指向A
 - **因此**,一组横跨隔的残存边只剩一条,说明f(e) = 0或f(e) = c(e)
 - 流网络中,若 $(u,v) \in E$,则必有f(u,v) = c(u,v),否则s可达顶点 $v, v \in V A$

 $u \in A$, $v \in V - A$

• f是最大流⇔残存网络 G_f 中无增广路径

步骤1: 存在割(A,V-A)使得val(f)=cap(A,V-A) \leftarrow 残存网络 G_f 中无增广路径 。证明

- 无增广路径,s只可达部分顶点,依据顶点可达性,划分形成割(A,V-A)
- 残存网络中,因为s不可达V-A中的点,所以横跨割的残存边一定从V-A指向A
- 因此,一组横跨隔的残存边只剩一条,说明f(e) = 0或f(e) = c(e)
- ·流网络中,若 $(u,v) \in E$,则必有f(u,v) = c(u,v),否则s可达顶点 $v, v \in V A$
- 流网络中,若 $(v,u)\in E$,则必有f(v,u)=0,否则 $c_f(u,v)=f(v,u)>0$,顶点 $v\in A$

 $u \in A$, $v \in V - A$

• f是最大流⇔残存网络 G_f 中无增广路径

步骤1: 存在割(A,V-A)使得 $val(f) = cap(A,V-A) \leftarrow$ 残存网络 G_f 中无增广路径

。 证明

 $u \in A$, $v \in V - A$

- 流网络中,若 $(u,v) \in E$,则必有f(u,v) = c(u,v)
- 流网络中,若 $(v,u) \in E$,则必有f(v,u) = 0

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

流值定理

• f是最大流⇔残存网络 G_f 中无增广路径

步骤1: 存在割(A,V-A)使得 $val(f) = cap(A,V-A) \leftarrow$ 残存网络 G_f 中无增广路径

f(e) = 0

。 证明

 $u \in A$, $v \in V - A$

- 流网络中,若 $(u,v) \in E$,则必有f(u,v) = c(u,v)
 - 流网络中,若 $(v,u) \in E$,则必有f(v,u) = 0

$$f(e) = c(e)$$
 $val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$ 流值定理

• f是最大流⇔残存网络 G_f 中无增广路径

步骤2: f是最大流←存在割(A, V - A)使得val(f) = cap(A, V - A)

- o 弱对偶性: 对于任意流f与任意割(A,V-A), val(f) ≤ cap(A,V-A)
 - 证明:

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, V - A)$$

流值定理

每条边流量必小于容量

• f是最大流⇔残存网络 G_f 中无增广路径

步骤2: f是最大流←存在割(A, V - A)使得val(f) = cap(A, V - A)

- 。 强对偶性: 最大流可取到其上界(最小割)
 - 证明:
 - 设割(A, V A)使得cap(A, V A) = val(f)
 - 根据弱对偶性,对于任意流f',有 $val(f) = cap(A, V A) \ge val(f')$

弱对偶性

· 流f是最大流

对偶性

- 弱对偶性(Weak Duality)
 - 对于任意流f与任意割(A, V A), $val(f) \le cap(A, V A)$

- 强对偶性(Strong Duality)
 - f是最大流,存在割(最小割)(A,V-A)使得val(f)=cap(A,V-A)

- 二分图
 - M是最大匹配⇔二分图G中无增广路径
- 最大流
 - f是最大流⇔残存网络 G_f 中无增广路径
 - 。 充分性: f是最大流⇒残存网络 G_f 中无增广路径

回顾以上证明过程,得到最大流最小割定理

最大流最小割定理

- f为流网络 $G = \langle V, E, C \rangle$ 中一个流,该流网络源点为S,汇点为t,以下三条件相互等价
 - (i) 存在割(A, V A)使得val(f) = cap(A, V A)
 - (ii) 流f是最大流
 - (iii) 流f没有增广路径

最大流 |*f**| =<mark>24</mark>

最小割 cap(A, V - A) = 24

小结

Ford-Fulkerson算法可求解最大二分匹配问题

・ 求解思想: 将二分图转化为流网络 R_1 R_1 R_2 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_5 R_5 R_6 R_7 R_8 R_9 R_9 R

小结

• 最大二分匹配问题和最大流问题比较

	-117		-1.		- 1/2
		最大二分匹配		最大流	
核心思	想寻找到	交替路径,增加匹配	2数 寻找增	广路径,扩充流量	
图的结	构	二分图	×:	流网络	×.
边的性	.质 [匹配边、非匹配边	流量、	、容量、残存容量	
增益过	程。 找	到一条交替路径, 匹配数增加一		一条增广路径, 路径的最小剩余容	量