

A Plug-and-Play Optimization Module that Improves the Geometry of Generated 3D Assets

Xiaoyan Cong, Jiayi Shen, Rui Zhou, Yixin Wan December 16, 2024

Outline

- Background
- Problem Statement
- Motivation
- Framework
- Experiments
- Discussion

Background

• The automatic creation of 3D digital content finds applications in many scenarios, such as virtual reality, filming, gaming, and aided industrial design.

Background

- The automatic creation of 3D digital content finds applications in many scenarios, such as virtual reality, filming, gaming, and aided industrial design.
- In this work, we focus on generating high-quality 3D assets from a single image.

Background

- The automatic creation of 3D digital content finds applications in many scenarios, such as virtual reality, filming, gaming, and aided industrial design.
- In this work, we focus on generating high-quality 3D assets from a single image.

Problem Statement

• When applied to out-of-distribution data such as **flat-shaped images**, all the feed-forward image-to-3D models significantly degenerate and produce 3D assets with abnormal thin structure.

Motivation

- We attribute this failure mode to the data distribution misalignment between flat-shaped images and those that image-to-3D models use for training.
- Although all the images are represented as 2D, many of them implicitly contain 3D information such as **shadows**, **certain viewpoints**, and **reasonable depth or normal structures**, especially those images rendered from a 3D world.

Motivation

- We attribute this failure mode to the **data distribution misalignment** between flat-shaped images and those that image-to-3D models use for training.
- We curate a new dataset *Flat2D* from online publicly available resources, which all the existing image-to-3D models fail for.

Motivation

- We attribute this failure mode to the **data distribution misalignment** between flat-shaped images and those that image-to-3D models use for training.
- We curate a new dataset *Flat2D* from online publicly available resources, which all the existing image-to-3D models fail for.

Contribution:

- we introduce a plug-and-play optimization module to modify the flat-shaped inputs to align them with the distribution of training data used in pre-trained image-to-3D models.
- We curate a new dataset Flat2D to evaluate this general failure mode.
- Experimental results demonstrate that our optimization module can significantly enhance the geometry quality of generated 3D assets and exhibits superior generalizable capacities and promising practical applicability.

Computer Science

Framework

Experiments

Image Prompts

Shap-E [15]

LN3Diff [18] InstantMesh [52] 3DTopia-XL [4]

LGM [40]

Trellis [51]

Ours

Experiments

Discussion

- > How to map texture?
 - > SDS: practical, robust, but time-consuming
 - > Feed-forward:
- > How to extend to other user-friendly input modalities?
 - > E.g. Sketch / Edge images...

Thank you!

Xiaoyan Cong, Jiayi Shen, Rui Zhou, Yixin Wan December 16, 2024