Social Media-Based Field Experiments: Individual-level assignment

Florian Foos

Assistant Professor in Political Behaviour
Department of Government
London School of Economics & Political Science

f.foos@lse.ac.uk
 @florianfoos

July 27, 2021

Some basics Random assignment

Examples
Non-interference
Your own social media expriment

Notation

• Indexing experimental subjects/units: subscript *i* refers to subjects 1 through N.

- Indexing experimental subjects/units: subscript *i* refers to subjects 1 through N.
- Defining treatment: The variable d_i indicates whether the ith subject is treated.

- Indexing experimental subjects/units: subscript *i* refers to subjects 1 through N.
- Defining treatment: The variable d_i indicates whether the ith subject is treated.
- $d_i = 1$

- Indexing experimental subjects/units: subscript *i* refers to subjects 1 through N.
- Defining treatment: The variable d_i indicates whether the ith subject is treated.
- $d_i = 1$ means the ith subject receives the treatment.

- Indexing experimental subjects/units: subscript *i* refers to subjects 1 through N.
- Defining treatment: The variable d_i indicates whether the ith subject is treated.
- $d_i = 1$ means the ith subject receives the treatment.
- $d_i = 0$

- Indexing experimental subjects/units: subscript *i* refers to subjects 1 through N.
- Defining treatment: The variable d_i indicates whether the ith subject is treated.
- $d_i = 1$ means the ith subject receives the treatment.
- $d_i = 0$ means the ith subject does not receive the treatment.

- Indexing experimental subjects/units: subscript *i* refers to subjects 1 through N.
- Defining treatment: The variable d_i indicates whether the ith subject is treated.
- $d_i = 1$ means the ith subject receives the treatment.
- $d_i = 0$ means the ith subject does not receive the treatment.
- It is assumed that d_i is observed for every subject.

Some basics Random assignment

Examples
Non-interference
Your own social media expriment

Recap: Potential outcomes

Recap: Potential outcomes

 \bullet $Y_i(1)$

Recap: Potential outcomes

• $Y_i(1)$ is the potential outcome if the ith subject was treated.

Recap: Potential outcomes

- $Y_i(1)$ is the potential outcome if the ith subject was treated.
- \bullet $Y_i(0)$

Recap: Potential outcomes

- $Y_i(1)$ is the potential outcome if the ith subject was treated.
- $Y_i(0)$ is the potential outcome if the ith subject was not treated.

Recap: Conditional potential outcomes

•
$$Y_i(0) \mid d_i = 1$$

• $Y_i(0) \mid d_i = 1$: untreated potential outcome for subjects that receive the treatment.

- $Y_i(0) \mid d_i = 1$: untreated potential outcome for subjects that receive the treatment.
- $Y_i(1) \mid D_i = 0$

- $Y_i(0) \mid d_i = 1$: untreated potential outcome for subjects that receive the treatment.
- $Y_i(1) \mid D_i = 0$: treated potential outcome for subjects that would not receive the treatment under a hypothetical random assignment.

Random assignment

 "Experiment": a study in which subjects are assigned to treatment (and control) with a known probability between 0 and 1.

- "Experiment": a study in which subjects are assigned to treatment (and control) with a known probability between 0 and 1.
- Random assignment: the probability of assignment to treatment (and control) is equal for each subject.

- "Experiment": a study in which subjects are assigned to treatment (and control) with a known probability between 0 and 1.
- Random assignment: the probability of assignment to treatment (and control) is equal for each subject.
- That means no subjects has a higher probability to be treated than another subject. There is no attribute that can systematically predict treatment assignment.

Random Assignment

• Types of random assignment:

- Types of random assignment:
 - Simple random assignment: Each subject is allocated to the treatment group with probability m/N, where m is the number of subjects assigned to treatment.

- Types of random assignment:
 - Simple random assignment: Each subject is allocated to the treatment group with probability m/N, where m is the number of subjects assigned to treatment.
 - ② Complete random assignment (exactly m units are assigned to treatment).

- Types of random assignment:
 - Simple random assignment: Each subject is allocated to the treatment group with probability m/N, where m is the number of subjects assigned to treatment.
 - 2 Complete random assignment (exactly m units are assigned to treatment).
 - Block-random assignment (exactly m units within each subgroup defined by pre-treatment covariate are assigned to treatment).

How to randomize?

• Can we done in Excel using the RAND() function.

- Can we done in Excel using the RAND() function.
- Much better: Use the randomizr package in R (Coppock, Cooper and Fultz 2019),

```
power_R2.R × Assignment.R* ×
Run 🏓 Source 🕶
    library(randomizr)
 9 library(foreign)
 10 library(tidyverse)
 11
 12
 13 options(scipen=999)
 14
 15
     setwd("~/Foos Lab Dropbox/Florian Foos/JRRT/Data")
 16
 17
     data<-read.csv("PS_randomisation.csv")
 18
 19
     set.seed(12345)
 20
 21
     data$exp_group<-block_ra(blocks=data$Constituency, conditions=c("Control", "Ads"))
 22
 23
     table(data$Constituency, data$exp_group)
 24
 25
     write.csv(data, "assignment.csv")
     (Top Level) $
12:1
                                                                             R Script $
```

> table(data\$Constituency, data\$exp_group)

No. of the County	Control	
Aberdeen South		12
Alyn and Deeside	9	8
Angus		12
Ayr, Carrick and Cumnock		11
Banff and Buchan		14
Battersea		23
Bedford		14
Bermondsey and Old Southwark		15
Bolsover		11
Brentford and Isleworth		18
Carshalton and Wallington	12	12
Chipping Barnet		
Clwyd South	10	
Colne Valley	11	
Croydon Central	10	
Dagenham and Rainham	11	
Darlington	7	7
Delyn	5	5
Don Valley		10
Eltham	11	
Enfield North	10	
Enfield Southgate	6	7
Erith and Thamesmead	7	
Finchley and Golders Green	12	
Great Grimsby	8	8
Harrow East	8	9
Hendon	9	8
High Peak	14	
Ilford North	8	7
Keighley	12	
Kensington	16	
Moray	11	
Ochil and South Perthshire	18	17
Putney	4	5

Munger (2017)

Table 1 Experimental design and hypothesized effect sizes

	In-group	Out-group
Low followers	Medium effect	Small effect
High followers	Large effect	Medium effect

Munger (2017)

@ Hey man, just remember that there are real people who are hurt when you harass them with that kind of language

Fig. 3 Treatments. a The treatment—black bot. b The bot applying the treatment—white bot

11 / 22

Foos et al. 2020

Foos et al. 2020

Figure 4. Effect of treatment assignment (ITTs) on social interaction—covariate-adjusted, 95 percent CIs.

Guess et al. 2021

Fig. 1. Overview of study design. Subjects in wave 3 who were randomly assigned to the Fox News or HuffPost encouragement groups were offered \$8 in YouGov incentives to participate in the treatment.

Munger 2017 Foos et al. 2020 Guess et al. 2021

The three core assumptions

- Independence
- Excludability
- Non-interference

Munger 2017 Foos et al. 2020 Guess et al. 2021

The three core assumptions

- Independence
- Excludability
- Non-interference

Non-interference assumption / SUTVA

- The values of the potential outcomes for subject i depend only on whether the subject itself is treated (whether d equals 1 or 0).
- Each subject is unaffected by the treatments and assignments of other units.

Some basics
Random assignment
Examples
Non-interference
Your own social media expriment

•
$$Y_i(d)$$
:

• $Y_i(d)$: the potential outcome that would be expressed based on the treatment that subject i receives.

- $Y_i(d)$: the potential outcome that would be expressed based on the treatment that subject i receives.
- $Y_i(\mathbf{d})$:

- $Y_i(d)$: the potential outcome that would be expressed based on the treatment that subject i receives.
- $Y_i(\mathbf{d})$: the potential outcome that subject i would express based on the assignments that all other subjects receive.

- $Y_i(d)$: the potential outcome that would be expressed based on the treatment that subject i receives.
- $Y_i(\mathbf{d})$: the potential outcome that subject i would express based on the assignments that all other subjects receive.
- $Y_i(d) = Y_i(d)$

- $Y_i(d)$: the potential outcome that would be expressed based on the treatment that subject i receives.
- $Y_i(\mathbf{d})$: the potential outcome that subject i would express based on the assignments that all other subjects receive.
- $Y_i(d) = Y_i(d)$
- The equality means that subject i is unaffected by the treatment of other subjects.

Some basics Random assignment Examples Non-interference Your own social media expriment

• But what if there is interference/interaction between subjects (as is often the case on social media)?

- But what if there is interference/interaction between subjects (as is often the case on social media)?
 - Contagion

- But what if there is interference/interaction between subjects (as is often the case on social media)?
 - Contagion
 - Communication

- But what if there is interference/interaction between subjects (as is often the case on social media)?
 - Contagion
 - 2 Communication
 - Social comparison

- But what if there is interference/interaction between subjects (as is often the case on social media)?
 - Contagion
 - 2 Communication
 - Social comparison
 - Inference across platforms including displacement.

Some basics
Random assignment
Examples
Non-interference
Your own social media expriment

Interference between subjects

Interference between subjects

 What to do if potential outcomes are likely to depend on other subjects' treatment status?

Interference between subjects

- What to do if potential outcomes are likely to depend on other subjects' treatment status?
 - We can expand the schedule of potential outcomes and redefine the estimator.

$$Y_i(1,1)$$
 $Y_i(0,0)$ $Y_i(1,0)$ $Y_i(0,1)$

Interference between subjects

- What to do if potential outcomes are likely to depend on other subjects' treatment status?
 - We can expand the schedule of potential outcomes and redefine the estimator.

$$Y_i(1,1)$$
 $Y_i(0,0)$ $Y_i(1,0)$ $Y_i(0,1)$

We can obtain a measure of the network pre-treatment and assign subjects in the same network together to treatment or control (cluster-random assignment)

If you could conduct a randomized experiment using social media, what would it be?

- What would the research question be?
- Which platform would you use?
- What would be the treatment?
- Any complications to keep in mind?

Some basics Random assignment Examples Non-interference Your own social media expriment

Time for questions.