Single neuron models

 $\begin{array}{c} \text{L. PEZARD} \\ \text{Aix-Marseille University} \end{array}$

Biophysics

Biological neuron

Biophysics

Ionic currents

Passive properties

Active properties

Typology of models

Compartmental models

Differential models

Hybrid models

Discrete state automata

Models of synapses

Models of synapses

Biological neuron

The membrane

Models of the electrophysiology of excitability

Electro-diffusion laws

Fick's law:

$$J_d = -D \frac{\partial c}{\partial x}$$

Ohm's law:

$$J_{e} = -\mu zc \ \frac{\partial V}{\partial x}$$

Einstein's relation:

$$D = \frac{\mu k_B T}{q}$$

Nernst-Planck equation

Ionic form:

$$J = -(\mu zc \frac{\partial V}{\partial x} + \frac{\mu k_B T}{q} \frac{\partial c}{\partial x})$$

Molar form:

$$\mathbf{J} = J/\mathcal{N} = -(uzc \ \frac{\partial V}{\partial x} + u \ \frac{RT}{\mathcal{F}} \ \frac{\partial c}{\partial x})$$

Current density:

$$I = \mathbf{J} \cdot z\mathcal{F} = -(uz^2 \mathcal{F}c \ \frac{\partial V}{\partial x} + uzRT \ \frac{\partial c}{\partial x})$$

Nernst's equation

At equilibrium (I=0):

$$V_2 - V_1 = -\frac{RT}{z\mathcal{F}} \ln(\frac{c_2}{c_1})$$

Conventions of electrophysiology:

- 1. $V_m = V_i V_e = V$
- 2. Positive currents: from inside to outside

Equilibrium potential for an ion (k):

$$E_k = V(I_k = 0)$$
 thus $E_k = \frac{RT}{z\mathcal{F}} \ln(\frac{c_e}{c_i})$

lonic distributions

Cell of Mammal ($T = 37^{\circ}C$):

lons	Ci	Ce	$\mid E_k \mid$
K^{+}	140	5	$pprox -90\mathrm{mV}$
Na^{+}	from 5 to 15	145	$\approx -90 \text{mV}$ $\approx 60 \text{to} 90 \text{mV}$ $\approx -90 \text{mV}$
Cl^-	4	110	$pprox -90\mathrm{mV}$

Gradients maintenance:

- Active processes: pump (ATP-ases), exchanger, co-transporters
- Donnan's equilibrium

Membrane potential is the result of a stationary regime of exchanges based on transmembrane ionic currents

Ionic currents

Ionic channels:

- Non-gated channels
- ► Gated channels

Models:

- Electrodiffusion
- Barriers models
- State models (kinetics and stochastics)

Characteristic:

▶ I-V curve

Goldman-Hodgkin-Katz model

Hypothesis:

- 1. Electrodiffusion in the membrane
- 2. No interaction between ions
- 3. Constant electric field (dV/dx = V/I)

Current I(V):

$$I_k = P_k z \mathcal{F} \xi \frac{c_i - c_e e^{-\xi}}{1 - e^{-\xi}}$$
 et $\xi = \frac{z \mathcal{F} V}{RT}$

I-V curves for GHK model

Ohmic (linear) model

Hypothesis:

- 1. Equivalent circuit
- 2. Currents follow Ohm's law

Equivalent circuit:

Current I(V):

$$I_k = \gamma_k (V - E_k)$$
 with $\gamma_k = 1/\rho_k$

Resting potential

$$\begin{array}{c|c} \bullet V_o \\ \hline G_{\rm K} & G_{\rm Na} & G_{\rm Cl} \\ \hline E_{\rm K} & E_{\rm Na} & E_{\rm Cl} \\ \hline I_{\rm K} & I_{\rm Na} \\ \hline I_{\rm V} & I_{\rm Cl} \\ \hline \end{array} \begin{array}{c} E_{\rm Cl} & V_r = \frac{G_{\rm Na}E_{\rm Na} + G_{\rm K}E_{\rm K} + G_{\rm Cl}E_{\rm Cl}}{G_{\rm Na} + G_{\rm K} + G_{\rm Cl}} \\ \hline Constant field (GHK): \\ \hline I_{\rm m} & V_r = -\frac{RT}{\mathcal{F}} \ln \left(\frac{P_{\rm K}[{\rm K}]_i + P_{\rm Na}[{\rm Na}]_i + P_{\rm Cl}[{\rm Cl}]_e}{P_{\rm Na}[{\rm Na}]_e + P_{\rm K}[K]_e + P_{\rm Cl}[{\rm Cl}]_i} \right) \end{array}$$

$$I_m = I_{\mathrm{Na}} + I_{\mathrm{K}} + I_{\mathrm{Cl}} = 0$$

Passive and active currents

Definitions:

- 1. Passive currents have a constant conductance
- 2. Active currents have a variable conductance (voltage, stimulus or chemical sensitive). They are the basis of cell excitability.

Formalism:

1. Passive:

$$I_k = g_k(V - E_k)$$

2. Active:

$$I_k = \bar{g}_k p(\cdot)(V - E_k)$$

Cable equation (Rall, 1957-1969)

$$\tau_m \frac{\partial V}{\partial t} + R_m I_{ion} = \lambda_m^2 \frac{\partial^2 V}{\partial x^2} \qquad \text{with:} \quad \tau_m = R_m C_m \quad \text{and} \quad \lambda_m = \sqrt{\frac{R_m d}{4 R_c}}$$

Temporal properties

Spatial properties

$$V_m(x) = V_r + V_{\infty} e^{-x/\lambda}$$

Sodium gated channel

Formalism for gated channels

$$I_k = \bar{g}_k p(\cdot)(V - E_k) = \bar{g}_k m^a h^b (V - E_k)$$

- ▶ Probability of opening for activation (m) and inactivation (h) gates.
- ▶ Number of activation (a) and inactivation (b) gates
- Independence of the gates:

$$p(\cdot) = \underbrace{m \times m \times \cdots \times m}_{\text{a times}} \times \underbrace{h \times h \times \cdots \times h}_{\text{b times}}$$

Open / activated channel:

$$m = 1$$
 (partially activated: $0 < m < 1$) and $h = 1$.

- Closed channel:
 - Not activated: m = 0 and h = 1
 - ▶ Inactivated: m = 1 and h = 0

Action potential

Hodgkin & Huxley (1952):

Experimental analysis and theoretical model that explains the genesis of action potential in the squid giant axon.

Hypothesis:

- 1. No spatial dependency
- Ohmic currents
- 3. Sodium, potassium and leak
- 4. First order kinetics for activation and inactivation gates

First order kinetics

Closed
$$\stackrel{\alpha}{\underset{\beta}{\longleftarrow}}$$
 Open
$$\frac{df}{dt} = \alpha(1-f) - \beta f$$

$$f(t) = f_{\infty}(1-e^{-t/\tau}) \qquad \text{with} \quad f_{\infty} = \frac{\alpha}{\alpha+\beta} \quad \text{and} \quad \tau = \frac{1}{\alpha+\beta}$$

$$f_{\infty} \uparrow ------$$

Time

Circuit for Hodgkin and Huxley model

Active currents:

► Transient sodium current:

$$I_{\mathrm{Na}} = \bar{g}_{\mathrm{Na}} m^3 h (V - E_{\mathrm{Na}})$$

► Persistent potassium current: $I_{\rm K} = \bar{g}_{\rm K} n^4 (V - E_{\rm K})$

Historical Hodgkin-Huxley model

$$\begin{array}{lll} C\dot{V} &= I - \ \bar{g}_{\rm Na} m^3 h(V - E_{\rm Na}) \ - \ \bar{g}_{\rm K} n^4 (V - E_{\rm K}) \ - \ g_{\rm L} (V - E_{\rm L}) \\ \\ \dot{m} &= \ \alpha_m(V) (1 - m) - \beta_m(V) m \\ \\ \dot{h} &= \ \alpha_h(V) (1 - h) - \beta_h(V) h \\ \\ \dot{n} &= \ \alpha_n(V) (1 - n) - \beta_n(V) n \end{array}$$

and

$$\alpha_n(V) = 0.01 (10 - V)/(\exp((10 - V)/10) - 1)$$
 $\beta_n(V) = 0.125 \exp(-V/80)$
 $\alpha_m(V) = 0.1 (25 - V)/(\exp((25 - V)/10) - 1)$
 $\beta_m(V) = 4 \exp(-V/18)$
 $\alpha_h(V) = 0.07 \exp(-V/20)$
 $\beta_h(V) = 1 / (\exp((30 - V)/10) + 1)$

Potential dependence of kinetics parameters

Time constant

$$\tau_{x}(V) = \frac{1}{\alpha_{x}(V) + \beta_{x}(V)}$$

Asymptotic value

$$x_{\infty}(V) = \frac{\alpha_{x}(V)}{\alpha_{x}(V) + \beta_{x}(V)}$$

Hodgkin-Huxley model

Standard Hodgkin-Huxley model

$$\begin{split} C\dot{V} &= I - \bar{g}_{\mathrm{Na}} m^{3} h(V - E_{\mathrm{Na}}) - \bar{g}_{\mathrm{K}} n^{4} (V - E_{\mathrm{K}}) - g_{\mathrm{L}} (V - E_{\mathrm{L}}) \\ \dot{m} &= (m_{\infty}(V) - m) / \tau_{m}(V) \\ \dot{h} &= (h_{\infty}(V) - h) / \tau_{h}(V) \\ \dot{n} &= (n_{\infty}(V) - n) / \tau_{n}(V) \end{split}$$

Standard kinetic parameters

$$x_{\infty}(V) pprox rac{1}{1 + e^{rac{V_{1/2} - V}{k}}}$$

$$au_{\scriptscriptstyle X}(V) pprox \; C_b \; + \; C_a \; e^{rac{-(V_{max}-V)^2}{\sigma^2}}$$

"Zoology" of ion channels

Neuronal models

Criteria:

- 1. Biological plausibility
- 2. Computational load

Categories:

- 1. Compartmental models
- 2. Differential models (simplified HH)
- 3. Hybrid models
- 4. Discrete state automata

Compartmental models

Principle:

Compartmental models

Simulation environments:

NEURON, GENESIS

Zoology of channels

Channels types:

- ► INa(fast), INa(slow), ICa(L), ICa(T), ICa(N), ICa(P), IK(DR), IK(A), IK(D), IK(M)
- ▶ IQ, Ih, If, IK(IR), ICI(V)
- ► IK(C), IK(AHP), ICI(Ca)
- ► IK(L), ICI, IK(ATP), IK(Na)

Potassium channels:

Reduction of Hodgkin-Huxley model: step 1

Separation of time scales:
$$m = m_{\infty}(V)$$

Thus:

$$C\dot{V} = I - \bar{g}_{\mathrm{Na}} m_{\infty}(V)^{3} h(V - E_{\mathrm{Na}}) - \bar{g}_{\mathrm{K}} n^{4} (V - E_{\mathrm{K}}) - g_{\mathrm{L}}(V - E_{\mathrm{L}})$$

 $\dot{h} = (h_{\infty}(V) - h)/\tau_{h}(V)$ and $\dot{n} = (n_{\infty}(V) - n)/\tau_{n}(V)$

Comparison of HH models: 4D vs. 3D

Reduction of Hodgkin-Huxley model: step 2

Comparison of *h* and *n*: $h + n \approx 0.8$

Thus:

$$C\dot{V} = I - \bar{g}_{\mathrm{Na}} m_{\infty} (V)^{3} (0.8 - n) (V - E_{\mathrm{Na}}) - \bar{g}_{\mathrm{K}} n^{4} (V - E_{\mathrm{K}})$$

- $g_{\mathrm{L}} (V - E_{\mathrm{L}})$
 $\dot{n} = (n_{\infty} (V) - n) / \tau_{n} (V)$

Comparison of HH models: 4D vs. 2D

Two-dimensional models

Morris-Lecar model:

$$\begin{split} C\dot{V} &= I - \bar{g}_{\mathrm{Ca}} m_{\infty}(V) (V - E_{\mathrm{Ca}}) - \bar{g}_{\mathrm{K}} n (V - E_{\mathrm{K}}) - g_L (v - \\ \dot{n} &= (n_{\infty}(V) - n) / \tau_n(V) \end{split}$$

INa,p+IK model:

$$C\dot{V} = I - \bar{g}_{\mathrm{Na}} m_{\infty}(V)(V - E_{\mathrm{Na}}) - \bar{g}_{\mathrm{K}} n(V - E_{\mathrm{K}}) - g_{\mathrm{L}}(V - i)$$

 $\dot{n} = (n_{\infty}(V) - i)/\tau_{n}(V)$

Fitzhugh-Nagumo model:

$$\dot{x} = x(a-x)(x-1) - y + I$$

$$\dot{y} = bx - cy$$

Example of 1D linear system:

$$C\frac{dV}{dt} = -G(V - V_{rest}) = C\dot{V}$$

General 1D linear system:

Example of 1D nonlinear system: persistent sodium model.

$$C\dot{V} = I - g_{\mathrm{L}}(V - E_{\mathrm{L}}) - g_{\mathrm{Na}} m_{\infty}(V)(V - V_{\mathrm{Na}})$$

Example of 1D nonlinear system: persistent sodium model (I = 60)

$$C\dot{V} = I - g_{\mathrm{L}}(V - E_{\mathrm{L}}) - g_{\mathrm{Na}}m_{\infty}(V)(V - V_{\mathrm{Na}})$$

2D system:

General behavior: I = 0

General behavior: I = 0

Saddle-node bifurcation: I = 4.75

Saddle-node bifurcation: I = 6

INa,p+IK model: low threshold

Supercritical Hopf bifurcation: I = 18.5

INa,p+IK model: low threshold

Supercritical Hopf bifurcation: I = 21

INa,p+IK model: low threshold

Supercritical Hopf bifurcation: I = 27

Hodgkin's classification (1948)

Type I neurons:

- Variable frequency
- Saddle-node / high threshold

Type II neurons:

- Constant frequency
- ► Hopf / low threshold

Bursting models (3D)

Fast-slow system:

Hindmarsh-Rose model:

$$\dot{x} = y - ax^3 + by^2 - z + I$$

$$\dot{y} = c - dx^2 - y$$

$$\dot{z} = r[s(x - x_0) - z]$$

Hindmarsh-Rose model (1984)

Two-dimensional: r = 0

Periodic behavior (limit cycle)

Hindmarsh-Rose model (1984)

Three-dimensional: r = 0.006

Chaotic behavior (strange attractor)

Hybrid models

Characteristics:

- ► Continuous part
- ► Discrete part

Leaky "integrate and fire" (Lapicque, 1909)

$$\tau_m \dot{V} = -V + RI(t)$$

If $V > V_{th}$ then $V \leftarrow V_{reset}$

Quadratic integrate and fire

$$\tau \dot{V} = V^2 + RI(t)$$

Two-dimensional hybrid model

Two-dimensional hybrid model

Simplified models

Izhikevich (2004)

Discrete state automata

Binary models:

Excitable systems:

- Quiescent
- Active
- ► Refractory

Generic models:

Models of synapses

- Synaptic weights: matrix representation
- Synaptic currents:
 - ▶ Kinetic models
 - Simplified models
- Learning rules:

Synaptic weights

$$W = [w_{ij}]$$

- $w_{ij} > 0$ for excitatory connections.
- $w_{ii} < 0$ for inhibitory connections.
- ▶ With quantal release (*n* sites, *p* probability of release, *q* size of the quantum):

$$w \approx npq$$

Synaptic mechanisms

Transmitter release

$$[T](V_{pre}) = rac{T_{max}}{1+e^{\xi}} \qquad ext{with} \quad \xi = rac{-(V_{pre}-v_{1/2})}{K_p}$$

Synaptic currents: kinetic models

$$I_{syn}(t) = g_{syn}(t)(V_m(t) - E_{syn})$$
 with $g_{syn}(t) = \bar{g}_{syn}s(t)$

- ▶ Dependency to transmitter concentration
- Kinetics of current changes

Ionotropic receptors

$$C + T \underset{\beta}{\overset{\alpha}{\rightleftharpoons}} O \tag{1}$$

with C for "Closed" and O for "open". We get the equation:

$$\frac{ds}{dt} = \alpha \left[T \right] (1 - s) - \beta s \tag{2}$$

$$I_{\text{AMPA}} = \bar{g}_{\text{AMPA}} s(V_m - E_{\text{AMPA}}) \tag{3}$$

$$I_{\text{GABA}_A} = \bar{g}_{\text{GABA}_A} s(V_m - E_{\text{GABA}_A}) \tag{4}$$

$$I_{\text{NMDA}} = \bar{g}_{\text{NMDA}} sM(V)(V - E_{\text{NMDA}})$$
 (5)

and:

$$M(V) = \frac{1}{1 + \exp(-0.062V) \left[\text{Mg2+}\right]_o / 3.57}$$
 (6)

Metabotropic receptors

$$R_i + T \underset{K_2}{\overset{K_1}{\longleftarrow}} R \tag{7}$$

$$R + G_i \xrightarrow{K_3} R + G \tag{8}$$

$$G \xrightarrow{\kappa_4} G_i$$
 (9)

$$I_{\text{GABA}_B} = \bar{g}_{\text{GABA}_B} \frac{s^n}{s^n + K_d} (V - E_{\text{K}}) \quad \text{with} \quad n = 4$$
 (10)

$$\frac{dr}{dt} = K_1[T](1-r) - K_2r \tag{11}$$

$$\frac{ds}{dt} = K_3 r - K_4 s \tag{12}$$

Synaptic currents: simplified models

$$I_{syn}(t) = g_{syn}(t)(V_m(t) - E_{syn})$$
 with $g_{syn}(t) = \bar{g}_{syn}s(t)$

$$s(t) = \sum_{k} F(t - t_k)$$
 with $\begin{cases} F(t) = 0 & \text{for } t < 0 \\ F(t) > 0 & \text{otherwise} \end{cases}$

The α function:

$$F(t) = \frac{f_r f_d}{f_r - f_d} (e^{-f_d t} - e^{-f_r t})$$