

스마트 배너 입지 선정 및 홍보 관리 서비스 구축

스마트 홍보 시스템

8조: 권지혜, 송예은, 문구영 | KU홍보지기 TEAM

2020 KU 스마트 캠퍼스 데이터톤

Contents

Contents

- 현재 교내 홍보 시스템의 운영 방식
- 현재 교내 홍보 시스템의 문제점 및 필요성
- 프로젝트 과정

현재 교내 홍보 시스템의 운영 방식

*출처: 고려대학교 총학생호

- 기계시물 부착에 대한 총학생회의 허가제는 별도로 존재하지 않는다.
- 2 단, 과대 게시 방지를 위해 개강 직후에 한해 게시물 총량제를 적용한다
 *게시물 총량제란?
 총학생회의 게시 허가를 받고 일자 별 스티커가 주어지면 정해진 기간에 홍보물을 게시할 수 있는 제도
- 3개강 직후가 아닌 경우에는 게시가 자유롭다.
 - 게시 제한 기간 X
 - 외부 단체의 게시에 대한 제약 X

이로 인해 발생하는 문제점에는 어떤 것이 있을까?

시간적, 금전적 부담

→ 홍보물을 게시판에 부착하기 위해선 포스터의 인쇄 및 부착, 게시 허가를 위한 많은 시간과 돈이 수반됨

게시물 총량제 위반 다수 발생

→ 홍보허가를 받지 않은 홍보물이 부착되어 이를 단속하기 위한 인력이 필요함

홍보물 미철거

→ 모집기간이 지났음에도 부착한 홍보물을 철거하지 않음

나에게 필요한 홍보물을 찾기 어려움

→ 내가 정말 필요로 하는 홍보물을, 필요한 순간에 접하지 못함

배경 _ 현재 교내 홍보 시스템의 문제점 및 필요성

홍보물의 무분별한 탈 부착으로 인한 미관 저해

뚜렷한 기준을 통한 홍보물의 분류가 없음 (즉, 원하는 정보를 찾기 어려움)

앱을 이용한 체계적인 교내 홍보 관리 시스템, 스마트 배너의 **필요성 확인**

배경 _ 프로젝트 과정

STEP1. 교내 스마트 배너 설치 최적 입지 선정

- 교내 수업 데이터와 건물 데이터를 사용해 학생들의 유동인구 파악
- 가장 많은 사람들이 홍보물을 확인할 수 있는 스마트 배너 설치 입지 제안

STEP2. 홍보물 자동화 관리 시스템 구축

 학생들이 홍보물을 오프라인 및 온라인에 쉽게 등록하고 관리 할 수 있는 서비스 구축

1. 오프라인 홍보물 게시

- 게시물 (홍보 포스터 등) 업로드
- 홍보물 분석을 통한 적절한 게시 장소 제안
- 학교로 전송, 학교측에서 검토
- 전자배너에 게시

2. 온라인 홍보물 게시

- 교내 게시판이 아닌 앱 내에서 홍보물 업로드 및 관리
- 데이터분석을 통해 앱 사용자의 조회 이력,
 관심사에 부합하는 맞춤형 홍보물 추천

Contents

 배경
 스마트 배너 입지 선정
 홍보물 관리 시스템 구축

 기대효과

- 스마트 배너란?
- 분석 FLOW
- Visualization
- 분석 결과
- 최종 입지 선정

스마트 배너 설치 최적 입지 선정_스마트 배너란?

스마트 배너란?

크엑스 언더월드 파노라마

강남역 파노라마 미디어 플랫폼

- 디지털 전광판으로, 다양한 디스플레이로 정보를 송출할 수 있는 홍보 매체이다.
- 기존의 출력 광고와 다르게 물리적인 작업이 필요 없으며 설치 이후엔 비용이 거의 들지 않아 자원 효율적이다.
- 이를 학교에 설치할 시, 최대한 많은 학생들이 스마트 배너에 노출될 수 있는 장소를 선정한다.

스마트 배너 설치 최적 입지 선정_{- 분석 FLOW}

제공된 2019년도 강의 시간 및 강의실별 학생 데이터 활용

Classroom EDA ["교양관 602호", 10878] ["법학관신관 501호", 5555] ["정경관 205호", 4812] ["정경관 506호", 4486] ["정경관 202호", 4483] ["생명과학관(동관)101호", 4475] ["서관 202호", 4364] ["창의관 B113호", 4195]

Buildings EDA ["서관", 34521] ["국제관", 32950] ["교육관", 29999] ["L-P", 27046] ["정경관", 26737] ["창의관", 23896] ["아산이학관", 23143]

["교양관", 103817]

Routes EDA ["교양관:정경관", 2670] ["교양관:국제관", 2009] ["국제관:교양관", 1868] ["현차관:L-P", 1813] ["법학관신관:교양관", 1809] ["교양관:L-P", 1787] ["교양관:교육관", 1780]

Contents

 배경
 스마트 배너 입지 선정
 홍보물 관리 시스템 구축

 -</

• 시스템 개요

• 앱 구현

추천 알고리즘 유형 추천 알고리즘 구축 태그 제안 모델 구축

홍보물 관리시스템 구축 _시스템 개요

교내 스마트배너 설치와 더불어 홍보물을 온/오프라인으로 쉽게 등록하고 관리할 수 있는 어플리케이션을 구현한다.

추천 알고리즘이란?

ㅇㅇ • 2개월 전

알 수 없는 유튜브 알고리즘이 나를 꽤 괜찮은 곳으로 인도한 것 같다.

8.9천 🐠

38

답글 38개

• 수많은 데이터의 축적, 알고리즘의 전문화에 따라 좋은 성능을 보이는 중

다음

이용자의 취향을 고려하는 고객 맞춤형 시스템의 발전

Objective: 앱 이용자들의 <u>관심사</u>, <u>조회 이력</u> 등의 정보를 고려해 적절한 홍보 게시물을 추천해주는 맞춤형 시스템 구현

효과1) 시간 단축: 검색 등의 중간과정 없이 direct로 컨텐츠 추천

효과2) 커버리지 확보: 이용자가 예측하지 못한 컨텐츠를 접하게 함 (컨텐츠 폭 확장)

추천 알고리즘 유형

- Contents-based Filtering Recommendation (내용 기반 추천시스템)
 - 컨텐츠 내용의 유사성을 바탕으로 추천을 하는 알고리즘
 - 이용자가 조회하거나 구매한 컨텐츠 자체의 특징을 분석하여 그와 유사한 컨텐츠 추천
 - ex) 클래식 음악을 듣는 이용자에게 최근 발매된 클래식 음악이나, 평소 듣는 음악가의 다른 음반 추천

- Collaborative Filtering Recommendation (협업 필터링 추천시스템)
 - 이용자와 컨텐츠 사이의 유사성을 기준으로 비슷한 성향의 이용자들이 선호하는 컨텐츠 추천
 - 나와 가장 유사한 사람을 찾아주거나(사용자 기반) / 나의 관심사와 가장 유사한 컨텐츠를 찾음(아이템 기반)
 - ex) 모차르트 음악을 듣는 이용자가 베토벤의 음악도 들었다면, 모차르트 음악을 듣는 다른 이용자에게도 베토벤 추천

Latent Factor Collaborative Filtering Recommendation

- 2009년 넷플릭스 추천 시스템 경진대회에서 해당 알고리즘이 우승하면서 주목 받음
- 행렬 분해(Matrix Factorization)를 활용해 user-item 간 잠재 요인을 파악하는 알고리즘

예시) 이용자-홍보물 조회수 행렬에 잠재되어 있는 어떠한 요인 검출 → 이를 기준으로 다른 홍보물 추천

	홍보물1	홍보물2	홍보물3	홍보물4	홍보물5
이용자1	4			2	
이용자2		5		3	1
이용자3			3	4	4
이용자4	5	2	1	2	

		요인1	요인2	요인3
	이용자1	0.96	0.47	-0.76
=	이용자2	-0.03	0.84	-2.47
	이용자3	2.38	0.11	-1.20
	이용자4	0.59	1.10	-1.06

		홍보물1	홍보물2	홍보물3	홍보물4	홍보물5
	요인1	1.62	-0.79	1.04	1.07	1.43
×	요인2	1.51	0.45	-0.06	0.12	-0.21
	요인3	-2.22	-1.85	0.43	1.18	-0.50

- 각 이용자별 홍보물들에 대한 조회수
- 빈 칸 = 아직 조회되지 않은 홍보물

- (이용자, 홍보물) = (이용자, 잠재요인) X (잠재요인, 홍보물)
- 잠재요인: blackbox element로 구체적인 정의는 어려우나, 추천의 근거가 됨
- 분해된 두 행렬의 곱은 원 행렬의 조회수 예측치 제공

추천 알고리즘 유형 −Hybrid Recommendation

Simple Recommendation(고객유형/인기도를 기준으로 아이템 분류 및 추천) + Contents-based Filtering Recommendation, + Collaborative Filtering Recommendation 의 조합으로 이루어진 알고리즘

- 유저의 상황에 따라 각 알고리즘에 적절한 가중평균을 취함
- 성격이 다른 추천 알고리즘을 조합함으로써 다양한 추천 시스템들의 장점 극대화, 단점 보완

홍보물 데이터 수집

공모전, 대외활동, 동아리, 학회, 취업활동 등 다양한 분야에서의 홍보물을 크롤링

참고: 2-1. 고파스 크롤링.ipynb / 2-2. 링커리어+쿠카이브 크롤링.ipynb / 2-3. 경력개발센터 크롤링.ipynb

본래 유저들이 <u>홍보물을 자발적으로 등록하는 방식</u>으로 시스템이 운영되지만, 초기 알고리즘 구축 및 앱 세팅을 위해 외부에서 게시된 홍보물을 임시로 가져오는 것을 택함

→ 따라서 데이터 수집은 오로지 알고리즘 학습용이며, 유저가입 이후 따로 데이터를 수집할 필요 없음

> 홍보물 데이터 전처리

데이터 내 결측치 제거

특수문자 제거

불용어(Stopwords) 제거

1단계 Data Cleansing

한글 형태소 분석기인
KoNLPy의 Komoran을 활용해
Tokenizing /
Stemming /
Normalizing /
Lemmatization 진행

2단계 Tokenizing

Scikit-Learn. TFidfVectorizer 를 활용해 데이터 토큰을 TFIDF 벡터로 변환

*TFIDF: 문서 내 frequency와 rarity를 모두 고려하여 각 단어에 가중치 부여하는 알고리즘

3단계 Embedding

유저 데이터 수집

설문조사를 통해 유저정보 & 해당 유저의 홍보물에 대한 관심도를 수집하여 조회테이블과 유저테이블을 생성

조회 테이블

조회 ID, 유저ID, 홍보물 ID, 조회수(=관심도에 비례)

lookupid	userid	articleid	viewed
0	0	487	2
1	0	665	2
2	0	97	2
3	0	590	2
4	0	810	2
	0 1 2 3	0 0 1 0 2 0 3 0	1 0 665 2 0 97 3 0 590

유저 테이블

유저 ID, 학년, 성별, 소속대학, 유저별 총 조회수

	userid	grade	college	sex	viewed
0	0	4학년	사범대학	М	12
1	1	2학년	경영대학	F	30
2	2	4학년	생명과학대학	М	26
3	3	1학년	국제학부	F	33
4	4	2학년	생명과학대학	М	8

Simple Recommendation

1. 유저의 학년, 성별, 소속대학을 기준으로 홍보물 카테고리를 mapping

- 2. 추천 시스템이 이용자 ID를 입력으로 받으면, 사용자 정보(성별, 소속대학, 학년)에 매핑
 - → 매핑된 사용자 정보에 속하는 홍보물 추출
- 3. 조회수(인기도) 별로 정렬
 - 멜론 TOP100, 교보문고 베스트 셀러와 같이 "대다수 학생들이 조회한 홍보물은 나도 좋아할 것이다"라는 개념을 기반

```
추출 결과) (학년:1학년, 성별:M, 단과대학:경영대학> 인 당신에게 어울리는 홍보물을 조회순으로 나열
1 Young Tigers 2 엔더스 3 코기토 4 예술비평연구회 5 고란도란 ...
```

→ 실제로 남자에게 인기가 많은 운동, 음악 동아리가 다수 추천됨을 알 수 있음

Content-based Filtering Recommendation

1. 데이터 전처리를 통해 추출한 게시물 TFIDF Matrix를 활용해 홍보물 간의 유사도를 측정 (Cosine Similarity 사용)

- 2. 추천 시스템이 이용자 ID를 입력으로 받으면, 사용자가 조회했던 홍보물에 해당하는 코사인 유사도 를 추출
- 3. 홍보물과 유사도가 높은 순으로 정렬

```
주출 결과)

109 명상, 어떻게 할까? 밥 먹기보다도 쉽다!
39 포근하고 편안한 원불교학생회로 오세요! (누구나 환영!)
86 "편안해지다"
50 [원불교퀘스트] 신앙은 은혜! 사은(四恩)에 대해 알아봅시다
27 명상? mindfulness? 어떻게 할까?

→ 실제로 해당 사용자는 종교 동아리의 홍보물을 다수 조회하였으며,
조회했던 홍보물과 관련된 홍보물이 다수 추천되는 것을 알 수 있음
```


Collaborative Filtering Recommendation

- 1. 조회테이블을 기반으로 user-item 간 pivot table을 생성
 - → 집계할 값=조회수, 행=유저, 열=홍보물로 구성된 행렬

articleid	2	10	15	19	26	28	31	46	56	57	 853	854	860	862	864	867	869	870	872	873
userid																				
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	2.0	2.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0

(0 : 미 조회)

- 2. Matrix Factorization의 종류인 SVD(Singular Vector Decomposition) 을 이용해 Pivot table 분해
- (유저 x 홍보물) = (유저 x 잠재요인) x (잠재요인 x 홍보물)

= 유저 x(잠재요인 x잠재요인) x홍보물

- 총 3가지 행렬이 추출됨
 - → (우측 이미지 참고) U, V: 분해 행렬 / Σ: 잠재요인 대각행렬
- 3. 잠재요인 행렬의 대각원소 중 상위 원소만 추출 (데이터 압축, Truncated SVD)
 - 상위 원소일수록 데이터의 대부분을 설명함 → 따라서 데이터가 압축되어도 원 데이터의 설명력을 보존

Collaborative Filtering Recommendation

OL =1174

- 4. 앞서 구한 SVD로 분해된 행렬들의 축소(압축, Truncated)버전을 다시 곱 함 → user-item 간의 예측 조회수 계산
 - 원 pivot table 행렬과 값이 다름 (원 데이터를 압축하여, 일부분만 사용했기 때문)

				7	린 항	i렬							목구된 원 행렬 (예즉지)									
articleid	2	10	15	19	26	28	31	46	56	57	8	53			0	1	2	3	4	5	6	
userid													0	-	6.956458e- 03	2.145354e-03	2.145354e-03	-8.257389e- 03	-6.956458e- 03	-2.149288e- 02	-2.149288e- 02	-1.962897
											0		1	-	5.027598e- 03	1.091612e-03	1.091612e-03	-4.714519e- 03	-5.027598e- 03	-1.401978e- 02	-1.401978e- 02	-8.572646e
											0		2		1.754851e-	5.290506e-04	5.290506e-04	-6.142286e-	-1.754851e-	1.985429e+00	1.985429e+00	1.843759e-0
											0		3				2.915258e-04					

- 5. 추천 시스템이 이용자 ID를 입력으로 받으면, userID 별로 SVD 예측값을 내림차순으로 정렬
- 6. 상위 예측값의 인덱스 (홍보물 ID)중 이전에 조회하지 않은 것만 추출

```
추출 결과) what you have seen : ['쿠리에이터', '엔더스', '고대농악대', ...'KU HOPE', 'EBS on Campus']

Recommended for you : ['Young Tigers', 'KULSOM', 'KUHS', ...'와일드아이즈', 'KUBT', 'Talk Through Piano']

→ {{해당 유저가 조회한 홍보물}을 조회한 다른 유저}가 조회한 홍보물을 추천
```

Hybrid Recommendation

앞서 세 가지의 추천 알고리즘을 <u>종합한</u> 알고리즘 구축

- → 목적 : 유저에 따라 최적의 유저 맞춤형 추천시스템 제공
 - → 유저의 상황을 3단계의 USER PHASE로 분류, 각 단계마다 다른 하이브리드 추천 알고리즘 적용

USER PHASE1) 신입 이용자 (조회수 10 미만) ← Simple Recommendation

USER PHASE2) 중간 이용자 (조회수 10 이상) ← Simple x 0.1 + Content-based x 0.6 + Collaborative x 0.3

USER PHASE3) 구 이용자 (조회수 20 이상) ← Simple x 0.1 + Content-based x 0.4 + Collaborative x 0.5

이는 가장 널리 통용되는 하이브리드 추천시스템의 가중치를 사용하였으며, 추후 충분한 유저 데이터와 조회 데이터가 축적된 뒤 **회귀분석**을 통해 가중치를 추정할 예정

홍보물 관리시스템 구축 _ 태그 제안 모델 구축

사용자가 등록한 홍보물의 카테고리를 제안하는 Tag Predictor 모델을 구축

홍보물 제목:[KU_BIG] 고려대학교 빅데이터 연구회 KU-BIG에서 12기 신입부원을 모집합니다!

Host: KU-BIG

홍보물 내용: KUBIG은 고려대 내 유일한 데이터 분석 학회로 빅데이터 시대에 필요한 통계학, 머신러닝, 딥러닝 등에 대한 지식을 함께 공부하고 실제 데이터에 적용하는 프로젝트를 진행하는 학회입니다. 학회 활동 내용으로는…

예측

'학회', '스터디', 'IT', '취업'

- App 내에서 사용자는 제안된 카테고리를 수락하거나, 수동으로 선택할 수도 있음
 - → 홍보물 카테고리를 추천함으로써 사용자는 일일이 카테고리를 선택하지 않아도 됨
- 홍보물의 카테고리는 추후 Simple Recommendation, 오프라인 게시 장소 제안에 사용됨

사용 모델: LSTM

홍보물 관리시스템 구축 태그 제안 모델 구축

LSTM (Long Short Term Memory)이란?

- 텍스트, 시계열 데이터와 같이 순서가 중요한 데이터의 분석에 유용한 딥러닝 모델
- 텍스트 문서의 Tag Prediction에 자주 쓰임
- Objective : 홍보물의 내용(Input, 2D tensor)이 주어졌을 때, 해당 홍보물의 태그(Target) 예측하는 모델 학습

학습과정

Data Preprocessing

- 홍보물 내용을 X(설명변수), 태그를 Y(반응변수)로 Set
- 홍보물 내용 Tokenize / Normalization
- 서로 다른 길이의 입력(홍보물 내용)을 고정된 길이의 벡터로 변환 → 최종 Input : (홍보물 개수 x 고정길이) 형태의 2D Matrix
- Target Data의 경우 One-hot Encoding 진행
- Data Holdout => Train, Test Data Split

Model Train

- Tensorflow.Keras.LSTM 사용
- [Embedding Layer + LSTM Layer + Fully Connected Layer]로 구성된 모델 Build
- Train Data에 대해 모델 fit
- Hyperparameter Tuning을 통해 적절한 초모수 탐색

Model Test

- 학습한 모델을 Test Data 에 적용시켜 Overfitting 여부 확인
- 모델 구조 & weight를 별도의 파일에 저장
- 추후 앱 구축 시 해당 모델 탑재

홍보물 관리시스템 구축 _ 태그 제안 모델 구축

Model Accuracy

Model Loss

LSTM Model Analysis

- 1. Train Data model Accuracy: 0.96
- 2. Test Data model Accuracy: 0.93
- → 93%의 model accuracy로, 홍보물의 태그 예측 정확도가 높음을 확인

LSTM 적용 결과

- 1. REAL_TAGS: 실제 홍보물의 태그
- 2. PRED_1: LSTM이 첫 번째로 예측한 홍보물의 태그
- 3. PRED_2: LSTM이 두 번째로 예측한 홍보물의 태그
- → 홍보물의 실제 태그를 높은 확률로 예측했음을 확인

REAL_TAGS	PRED_1	PRED_2
[운동, 동아리]	[동아리]	[운동]
[봉사, 미술, 대외활동]	[대외활동]	[동아리]
[동아리, 친목, 음악]	[공모전]	[언어]
[취업]	[취업]	[봉사]
[공모전, 경영, 미술]	[공모전]	[예술]
[운동, 동아리]	[동아리]	[사회]
[미술, 대외활동]	[공모전]	[IT]
[경영, 대외활동]	[동아리]	[공모전]
[공모전, 미술]	[대외활동]	[경영]
[경영, 취업, 스터디, 학회]	[스터디]	[과학]
[취업]	[취업]	[미술]
[사회, 스터디, 학회]	[대외활동]	[대외활동]
[경영, 미술, 대외활동]	[사회]	[기타]
[공모전]	[공모전]	[운동]
[공모전, 경영, 미술]	[공모전]	[동아리]
[동아리, 친목, 음악]	[동아리]	[언어]
[동아리, 언어, 스터디, 연합]	[동아리]	[스터디]
[운동, 동아리, 친목]	[동아리]	[연합]

최종 목표:

학생들이 홍보물을 편리하게 관리하고 조회할 수 있는 Mobile Application 생성

Database E-R modeling

Home Screen

- Hybrid Recommendation Algorithm을 기반으로 사용자의
 조회 이력/프로필 정보를 사용해 사용자 맞춤 홍보물 표시
- 키워드를 중심으로 관심 있는 분야 검색 가능
 - 위 예시는 4학년/정보대학/여학생인 유저가 {IT}를 키워
 드로 검색하였을 때 필터링 된 추천 홍보물

DATA@KU 고려대학교 KOREA UNIVERSITY

홍보물 관리시스템 구축 _ 앱 구현

Profile Screen

- 앱에서의 나의 활동 내역 확인
- 스크랩한 홍보물을 모아서 볼 수 있
 음 (SCRAPED POSTS)
- 게시한 홍보물 또한 확인 가능

Register Screen

- Creating Accounts
- 유저 맞춤형 추천시스템을 구현하기 위한 {학년/성별/단과대} 기입 버튼 존재
- 특정 단과대에서 많이 추천되는 홍보 물이 해당건물 근처 스마트 배너에서 홍보 빈도가 높아지도록

Upload Screen

- 홍보 주최가 홍보물을 모바일로 업로드 가능
- "학교 게시판에 전송하기"체크 시 홍보물 인쇄 없이 교내에 홍보물 게시 가능

Login Screen

• 앱을 사용하기 위해 로그인

Contents

기대효과

돈, 시간 낭비 down 1. 홍보비용 절감

- - 다수의 홍보물 인쇄 제작 필요 x
- 2. 홍보물 게시 허가 절차의 자동화
 - 관리의 편의성을 향상시키고, 현장 허가의 시간 비용을 절감시킴으로써 홍보 주체들의 편의성을 보장

효과적인 홍보

- 1. Application을 통한 이용자 맞춤 홍보물 추천
- 2. 홍보물 내용을 통해 교내 적절한 홍보 입지 추천
 - 관심 있는 분야의 홍보물을 지나칠 가능성을 줄일 수 있음

깔끔한 교내 미관

1. 인쇄 홍보물의 필요성이 사라지며 무분별한 홍보물 부착으로 인한 미관 침해 X

기대효과

쉬운 관리

- 1. 게시 유효기간이 지난 홍보물의 철거 자동화
- 2. 자동화 앱의 체계적 관리를 통해 수많은 온/오프라인 홍보물의 관리 용이
- 3. 수작업이 필요했던 절차들의 자동화 → 스마트 캠퍼스로의 도약이 가능

참여형 어플리케이션

- 1. "모두가 만들어가는 어플리케이션"
 - 홍보 주최측은 어플리케이션을 통해 손쉬운 게시 가능
 - 홍보 주최자와 홍보물의 수요자의 니즈를 모두 충족
- 2. 유저가 참여할수록 추천 알고리즘의 질이 향상되어 더 풍부한 콘텐츠 제공

지속 가능성

- 1. 새로운 홍보물의 꾸준한 업데이트에도 지속 가능한 Dynamic Recommendation System
- 2. 일회성이 아닌 지속적인 추천관리시스템
 - 유저의 성향, 검색 내용 등에 따라 꾸준하게 유저에게 fitting & update 되는 추천시스템

참고문헌

(Kim Falk) (Practical Recommender Systems), Kim Falk, Manning **Publications**

Creating a mobile chat app from scratch using React Native and Flask https://www.youtube.com/watch?v=AlbmvWWTv4I

추천시스템 Content Based Filtering(CBF) Python 기반 구현 https://simonezz.tistory.com/19

RESTful에 대해서 설명해주세요.(REST, RESTful, RESTful API 개념 정리) https://jeong-pro.tistory.com/180

React Native Official Documentation

https://reactnative.dev/docs/getting-started

Android Studio 가상 기기 만들기 및 관리

https://developer.android.com/studio/workflow

Keras for Multi-Label Text Classification

https://medium.com/towards-artificial-intelligence/keras-for-multi-

label-text-classification-86d194311d0e

Keras API Reference/Layers API/Recurrnet Layers/LSTM Layer

https://keras.io/api/layers/recurrent_layers/lstm/

활용데이터

고파스 동아리 게시판 홍보물 Linkcareer 대외활동, 공모전 게시판 홍보물 KuChive 홍보물

고려대학교 경력개발센터 취업교육 게시판 홍보물 2019년도 강의시간 및 강의실별 학생 데이터

사용 도구

