- (a) Nessuna delle altre
- (b) {ε}
- (c) $\{a\}^*$
- (d) $\{ \varepsilon, a \}$
- (e) Ø

2. Quale delle seguenti identità tra E.R. Non è valida

- (a) nessuna
- (b) $(\varepsilon + r * r) = r *$
- (c) $(r^*+s^*)^* = (r^*s^*)^*$
- (d) $\varepsilon^* = \emptyset^*$
- (e) (rs)*r = r(sr)*

3. Quanti stati ha il DFA minimo che accetta il linguaggio su alfabeto {a,b,c} denotato dall'E.R. ((a+b)(a+b)...(a+b))* [(a+b) ripetuto n volte]

- (a) n+2
- -----(b) nessuna
 - (c) n+1
 - (d) n
 - (e) 2*n

4. Qual'è la cardinalità dell'insieme delle MdT con n stati e m simboli

- (a) $(2*n*m + 1)^2n$
 - (b) m^n
 - (c) |P(n)|
 - (d) nessuna
 - (e) lml

5. Un sottoinsieme di un linguaggio acontestuale

- nguaggio acontestuale (Non é decidibele)
- (a) è decidibile
- (c) è monotono
- (d) è regolare
- (e) è acontestuale

6. Quali delle seguenti coppie hanno diverso peso espressivo

- (a) DFA e NFA
- (b) MdT ordinate e MdT con più nastri
- -A(c) APD e APND
- (d) nessuna
- (e) ER ordinarie ed ER senza ε

166

7. Quale delle seguenti identità tra espressioni regolari NON è valida

(a)
$$(r^*+s^*)^*=(r^*s^*)$$

- (c) (ε+r*r)=r*
- (d) (rs)*r=r(sr)*
- (e) $\varepsilon^* = \emptyset^*$

8. Quale è la cardinalità dell'insieme dei linguaggi acontestuali su di un alfabeto di n>0 simboli

- (a) nessuna delle altre
- (b) IP(N)
- (c) IN I
- (d) 2^2^n
- (e) 2ⁿ

9. Il complemento di un linguaggio finito

- (a) è acontestuale non regolare
- (b) è irregolare
- (c) è finito
- → (d) è regolare
 - (e) nessuna delle altre

10. Quale delle seguenti identità tra espressioni regolari non è valida

- (a) $(\varepsilon^* + \emptyset)^* = \emptyset^*$
- (b) (rs)*r = r(sr)*
- (c) $r*r* = rr* + \epsilon*$
- (d) (s*r)*s*=(r*s)*r*

11. Si considerino le seguenti grammatiche espresse in forma concisa e si dica quale di queste è ambigua o se nessuna lo è

- (b) $S \rightarrow aSla$
- (c) nessuna

(e) $S \rightarrow aSal\epsilon$

12. Si consideri la MdT definita dal seguente automa

Q	0	1	\$	
qo			Q1 \$ R	
q1	Q2 1 L	Q1 0 R		
q2		Q2 1 L		

Si supponga che cominci la computazione allo stato q0, avendo per input sul nastro la stringa "111010", con la testina posizionata sul primo simbolo \$ alla sinistra della stringa . Allora la computazione stessa termina:

Gran.

 $H=dom(\rho)$

```
(a) dopo 5 passi ←
       (b) nessuna delle altre
      (c) dopo 6 passi
      (d) dopo 3 passi
      (e) dopo 4 passi
   13. Gli insiemi ricorsivamente enumerabili non sono chiusi rispetto a
      (a) rimozione di un elemento
      (b) unione
      (c) intersezione
      (d) nessuna delle altre
    (e) differenza
   14. Quale delle seguenti espressioni regolari su \Sigma = \{a,b,c\} denota il linguaggio \{\varepsilon\} \cup \{w \in \Sigma^* \mid il\}
      numero di occorrenze di a in w è pari e positivo}
      (a) ((b+c)*a(b+c)*a)*
      (b) ((b^*+c^*)a(b^*+c^*)a(b^*+c^*))^*
      (c) ((b*c*)a(b*c*)a(b*c*))*
       (d) (a(b+c)*a(b+c)*)*
  (e) ((b+c)*a(b+c)*a(b+c)*)*
   15. Si considerino le espressioni regolari sull'alfabeto \Sigma = \{0,1\}
       r1 = (0+1)*(0011+1010)(0+1)*
       r2 = \varepsilon + (0+10+110)*(\varepsilon+1+11)
       (a) [|r1|] \supset [|r2|]
  (b) nessuna
       (c) [|r1|] = [|r2|]
       (d) [|r1|] \cap [|r2|] = \emptyset
      (e) [|r1|] \subset [|r2|]
                                                         (Non DECIDIBILE)
   16. Un sottoinsieme di un linguaggio regolare è
       (a) monotono
       (b) c.f.
       (c) Regolare
       (d) decidibile
   (e) nessuno
1709
   17. Quali dei seguenti automi può accettare
\{x \in \{0,1\}^* \mid n0(x) = n1(x)\}\ \text{con } nb(\epsilon) = 0 \text{ e } nb(aw) = 1 - |a-b| + nb(w) ?
       (a) ε-NFA
       (b) NFA
       (c) nessuna delle altre
  (d) APND
       (e) DFA
```

- 18. L'affermazione "Se I⊆N è un insieme X e I' = N\I allora anche I' è X " se al posto di X scrivo
 - (a) 'ricorsivamente enumerabile'
- (b) 'ricorsivo'
 - (c) 'non ricorsivamente enumerabile'
 - (d) nessuna delle altre
 - (e) 'ricorsivamente enumerabile non ricorsivo'
- 19. Quante sono le sottostringhe di una stringa di lunghezza n su di un alfabeto di m>0 simboli?
 - (a) n(n+1)/2
- -(b) 1+ n(n+1)/2
 - (c) m*n
 - (d) m(m+1)/2
 - (e) 1+m(n+1)/2
- 20. Scriviamo dfa(x) e apnd(y) a significare che x è un DFA e y un APND; scriviamo x≡y per dire che x e y sono equivalenti. Quale delle seguenti formule logiche rappresenta il fatto che, dato comunque un DFA, esiste un APND equivalente?
 - (a) $\forall x : \exists y . (dfa(x) \land apnd(y) \land x \equiv y)$
 - (b) $\neg \forall y : (\exists x. dfa(x) \Rightarrow (\exists y . apnd(y) \land x \equiv y)$
 - (c) nessuna delle altre
 - (d) $\forall x : dfa(x) \Rightarrow (\exists y . apnd(y) \land x \equiv y)$
 - (e) $\forall x : \exists y . (dfa(y) \land apnd(x) \land x \equiv y)$
- Identificare le eventuali affermazioni vere tra le seguenti, che riguardano l'uso delle MdT come riconoscitori di linguaggi formali
 - (a) più di una delle altre
 - (b) una MdT è più potente di un ε-NFA perchè il controllo della MdT non è a stati finiti
 - (c) un ε-NFA++ che potesse riavvolgere il nastro (di input) sarebbe tanto potente quanto una MdT
 - (d) una MdT che muove la testina solo a dx è tanto potente quanto un ε-NFA
 - (e) nessuna delle altre DOVREBBE ESSELE a DESTA
- 22. Quale è la cardinalità dell'insieme delle stringhe lunghe n sull'alfabeto Σ ?
 - (a) |P(N)|
 - (b) $n^{|\Sigma|}$
 - (c) 2ⁿ
- $(d) |\Sigma|^n$
 - (e) [N]

- 23. Quale dei seguenti linguaggi sull'alfabeto $\Sigma = \{0,1,2\}$ è regolare
 - (a) $\{0^n \in \Sigma^* \mid n \ge 1 \text{ è primo }\}$
- (b) nessuna delle altre
 - (c) $\{0^n 1^m 2^{n+m} \in \Sigma^* \mid n \ge 1, m \ge 1\}$
 - (d) $\{0^n1^m1^{n+m} \in \Sigma^* \mid n \ge 1, m \ge 1\}$
 - (e) $\{02^{n+1} \in \Sigma^* \mid n \ge 1, m \ge 1\}$
- 24. Quale delle seguenti espressioni regolari sull'alfabeto $\Sigma = \{0,1\}$ il linguaggio delle stringhe che contengono un numero '0' divisibili per 3? 11111 E aget &
 - (a) nessuna delle altre
 - (b) (1*01*01*0)*+1*
 - (c) ((0+1)*0(0+1)*0(0+1)*0(0+1)*)*+1*
 - (d) (1*01*01*01*)*
- (e) (1*01*01*01*)*+1*
- 25. Qual'è la cardinalità delle funzioni totali
 - (a) $\{0,1\} \to \mathbb{N}$
 - (b) $\mathbb{N} \to \{0\}$
 - (c) nessuna delle altre
 - (d) IN I
- (e) lp(N)

1744

- 26. Si dica quanti stati ha un DFA minimo che accetta il linguaggio sull'alfabeto {a,b,c} denotato dall' E.R. $\varepsilon + (a+b)(a+b)...(a+b)$ n volte
- (a) n+2
 - (b) nessuna delle altre
 - (c) 2n
 - (d) n
 - (e) n+1
- 27. Si consideri l'automa a pila $M=<\{q\},\{a,b\},\{a,b,S\},\delta,q,S,\varnothing>dove$

n

$$\delta(q, \epsilon, S) = \{(q, bSa), (q, bS), (q, SS), (q, \epsilon)\}$$

$$\delta(q, a, a) = \{(q, \varepsilon)\}\$$

$$\delta(q, b, b) = \{(q, \varepsilon)\}\$$

- Si dica quali delle seguenti stringhe non è accettata per pila vuota
- (a) ε
- (b) babb
- (c) baa
 - (d) tutte le altre sono accettate
 - (e) bbaa

- 28. Quale delle seguenti espressioni regolari su $\Sigma = \{a,b,c\}$ denota il linguaggio $\{w \in \{a,b,c\}^* \mid$ il numero di occorrenze di a in w è dispari}?
- (a) ((b+c)*a(b+c)*)((b+c)*a(b+c)*a)*
- (b) ((b+c)*a(b+c)*a(b+c)*)*(a(b+c)*)
- (c) ((b+c)*a(b+c)*a)*((b+c)*a(b+c)*)
 - (d) ((b+c)*a)((b+c)*a(b+c)*a(b+c)*)*
 - (e) $(a(b+c)^*)((b+c)^*a(b+c)^*a(b+c)^*)^*$
- 29. Quale dei seguenti automi si arresta sempre dopo aver effettuato un numero finito di transizioni se riceve in input una sequenza finita di simboli (non blank per la MdT)?
 - (a) APND
- (b) DFA
 - (c) MdT
 - (d) APD
 - (e) Nessuna delle altre
- 30. Quali dei seguenti linguaggi sull'alfabeto $\Sigma = \{a,b\}$ sono regolari?
 - (a) $\{a^n a^{(n+1)^2-n^2} \in \Sigma^* \mid n \ge 0\}$
 - (b) $\{x \in \Sigma^* \mid x \text{ ha tante a quante b }\}$
 - (c) $\{x \in \Sigma^* \mid x \text{ più a che b }\}$
 - (d) { $a^nb^n \in \Sigma^* \mid n \ge 1$ }
- (e) nessua degli altri

NONUMBER

- 31. Quale è la cardinalità degli insiemi non acontsestuali
 - (a) $|\{0,1\} \to \mathbb{N}|$
 - (b) $\mathbb{N} \to \{0\}$
 - (c) nessuna delle altre
- --->(d) IN I
 - (e) lp(N)l
- 32. Quali fra i seguenti problemi sono decidibili
- 1. se l'intersezione di due linguaggi regolari è infinita
- 2. Se una data grammatica è ambigua
- 3. Se due APND accettano lo stesso linguaggio
- 4. Se una grammatica è acontestuale
 - (a) 2 e 4
 - (b) nessuna delle altre
 - (c) 2 e 3
 - (d) 1 e 2
- (e) 1 e 4

33. Quali delle seguenti espressioni regolari è tale che il linguaggio denotato <u>non</u> contiene stringhe con due 1 consecutivi
(a) più di una delle altre
(b) $(0+1)*(0+\epsilon)$
(c) (01+10)* (d) (1+\varepsilon)(01+0)*
(e) nessuna delle altre
34. Il complemento di un linguaggio acontestuale Non DECID(BILE)
(a) è decidibile
(b) è regolare
(c) è finito
(d) è acontestuale (e) nessuna delle altre
Communication (C) Hesselfit delice differences
35. La chiusura di Kleene di un linguaggio acontestuale
a) è infinita
(b) è acontestuale
(c) è monotona non acontestuale
(d) è regolare
(e) nessuna delle altre
36. Siano Σ un alfabeto e P,Q,R ⊆Σ*
Allora $(P \cap Q \cap R) \cup (\overline{P} \cap Q \cap R) \cup \overline{Q} \cup \overline{R}$
è uguale a
(a) nessuna delle altre
(b) RU QU R
(c) PuQu R
(d) Σ^*
(e) $\bar{\mathbb{Q}}$ $\bar{\mathbb{R}}$