

Transforms & Forward Kinematics

Linear Transformations

Properties:

For any 2 vectors v_1 , v_2 and constants c_1 , c_2 :

1.
$$L(cv_1) = cL(v_1)$$

1.
$$L(cv_1) = cL(v_1)$$

2. $L(v_1) + L(v_2) = L(v_1 + v_2)$

Purpose: To transform a vector (coordinates) from one space to another

Example:

Find the standard matrix of each of the following transformations.

Horizontal
Contraction &
Expansion

Vertical Contraction & Expansion

$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$$

Projection onto the *x*-axis

Projection onto the *y*-axis

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

** Notice that the columns of the transformation matrix are the coordinate axes of the new space **

Question:

Find the matrix that rotates a vector by 30 degrees

Combining Linear Transformations

Transformation: Scaling a vector \mathbf{v} by a constant \mathbf{k} in y-axis and then rotating by θ anticlockwise:

Transform for scaling in y by k:

Transform for rotating by θ

$$\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \mathbf{V}$$

$$\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix} \mathbf{V}$$

Scaling a vector v by a constant k in y-axis and then rotating by θ anticlockwise:

Inversion

Let \mathbf{v} be the original vector and \mathbf{v}' be the vector after transforming \mathbf{v} by a transform \mathbf{A} .

$$\mathbf{v}' = \mathbf{A} \mathbf{v}$$

Therefore,

$$A^{-1}v' = A^{-1}Av = v$$

Thus, A⁻¹ allows us to get back the original vector.

Assumption: A is invertible.

Question: What would be the inverse of a transformation that projects a vector on the y-axis?

Coordinate frames

Suppose a robotic arm has a depth camera attached at the end effector. The camera detects an object at (x,y) with respect to itself.

What are the coordinates of the object in the global frame?

Different Coordinate Frames:

- Base frame
- Joint Frames
- End effector frame
- Global frame

Rotation of a coordinate frame

Let (x', y') be the coordinates of a fixed point in the new frame.

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$R(heta) = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

2D Rotation matrix

Inverse of Rotation Matrix

Can be done using 2 methods:

1. Rotating by the same angle in the opposite direction

$$R(-\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

2. Inverse of the original transform

$$R^{-1}(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Translation of a Coordinate Frame

Translation of vector \mathbf{v} to a new frame at (x', y'):

$$\mathbf{v}' = \mathbf{v} + \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix}$$

This is not a linear transformation \rightarrow Why?

Thus, we cannot combine this with different transformations.

Requirement: A transformation matrix for translation

Solution: 'Homogeneous coordinate'

Homogeneous coordinate

A 2D vector is represented using a third row which is always 1.

i.e.,
$$(x, y)$$
 is represented as: $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation & Rotation with Homogeneous Coordinate

Rotation matrix in homogeneous rotation

$$R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Combining the translation by (h,k) and rotation by a,

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos a & -\sin a & h \\ \sin a & \cos a & k \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The Transformation Matrix

The general 2D transformation matrix can be considered to be a combination of 4 matrices

Rotation	New
matrix	origin
Zero vector	1

Example:

Transformations in 3 Dimensions

All 3 rotation matrices + the translation matrix

$$R_x(heta) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{bmatrix}$$

$$R_y(heta) = egin{bmatrix} \cos heta & 0 & \sin heta \ 0 & 1 & 0 \ -\sin heta & 0 & \cos heta \end{bmatrix}$$

$$R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Similar to 2D, the general 3D transformation matrix can be considered to be a combination of 4 matrices

Rotation Matrix (3x3)	New origin (3x1)
Zero vector	1

Chaining Rotations

$$R = R_z(lpha) \, R_y(eta) \, R_x(\gamma) = egin{bmatrix} \coslpha & -\sinlpha & 0 \ \sinlpha & \coslpha & 0 \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} \coseta & 0 & \sineta \ 0 & 1 & 0 \ -\sineta & 0 & \coseta \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \ 0 & \cos\gamma & -\sin\gamma \ 0 & \sin\gamma & \cos\gamma \end{bmatrix}$$

$$R = \begin{bmatrix} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma \\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma \end{bmatrix}$$

Inverse of a Transform

The inverse transform, as before, is simply the inverse of the 4 x 4 transformation matrix

Question:

What would happen if the matrix is non-invertible? Is this possible in physical transforms?

Rotation around arbitrary axes

A rotation matrix contains **9 numbers**. Are they independent?

How many numbers are needed to represent an arbitrary?

Any rotation can be represented as a rotation by angle θ around an arbitrary unit vector (l,m,n)

Resultant rotation matrix:

$$\begin{bmatrix} ll(1-\cos\theta)+\cos\theta & ml(1-\cos\theta)-n\sin\theta & nl(1-\cos\theta)+m\sin\theta \\ lm(1-\cos\theta)+n\sin\theta & mm(1-\cos\theta)+\cos\theta & nm(1-\cos\theta)-l\sin\theta \\ ln(1-\cos\theta)-m\sin\theta & mn(1-\cos\theta)+l\sin\theta & nn(1-\cos\theta)+\cos\theta \end{bmatrix}.$$

Quaternions

Complex numbers:

a + **i**b where, i² = -1

Quaternion:

$$p = p_0 + p_1 i + p_2 j + p_3 k$$
.
 $i^2 = j^2 = k^2 = i j k = -1$,
 $i j = k = -j i$,
 $j k = i = -k j$,
 $k i = j = -i k$.

Representing rotations using quaternions

Let
$$q = q_0 + q = q_0 + q_1 i + q_2 j + q_3 k$$

Norm: qq* where,

$$q^* = q_0 - \mathbf{q} = q_0 - q_1 \mathbf{i} - q_2 \mathbf{j} - q_3 \mathbf{k}$$

Unit Quaternion: Quaternion with norm = 1.

Any rotation can be represented as a unit quaternion

Chaining Quaternions

- 1. Multiplication of two unit quaternions is always a unit quaternion
- 2. An inverse of a unit quaternion always exists

Therefore,

Two or more **rotations** can be **combined** by simply **multiplying** their corresponding quaternions

Unit Quaternion Conversions

(for
$$q = s + ix + jy + kz$$
)

$$Rot_{[s x y z]} = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2sz & 2xz - 2sy \\ 2xy - 2sz & 1 - 2x^2 - 2z^2 & 2yz - 2sx \\ 2xz - 2sy & 2yz - 2sx & 1 - 2x^2 - 2y^2 \end{bmatrix}$$

Axis-Angle
$$\begin{cases} \theta = 2\cos^{-1}(s) \\ (x, y, z) = v/||v|| \end{cases}$$

Kinematic Chain (Robot Arms)

- A robot arm can be modeled as a sequence of links and joints.
- Each joint corresponds to a rotation transformation
- Each link corresponds to a translation
- As each transformation has a matrix associated with it.
 Hence, there exists a matrix for each pair of coordinate frames

Types of Joints

- In kinematic chains, two types of joints are used:
 - Revolute (Twisting/ Revolving/ Rotational)
 - Prismatic (Linear)

 Multi-DOF joints are modeled as a sequence of multiple joints with a zero-length link joining them

Joint State

The state of any joint can be represented using four values:

Revolute:

Axis (3 values) Angle (1 value)

• Prismatic:

Axis (3 values)
Displacement (1 value)

DH Parameters

Standard form of representing the spatial relation between two joint frames in a kinematic chain, that are attached by a link:

Convention: **z** is always the axis of rotation and **x** points away from the previous joint

The relation is described using **four** parameters, as follows:

- **1. d** = offset along previous z
- **2.** θ = angle between x-axes
- **3.** \mathbf{r} = length of the common normal
- **4.** α = angle between z-axes

DH Parameters - Example

Forward Kinematics

Forward Kinematics: Given a kinematic chain,

- 1. For specific values of joints, where does the end effector go?
- 2. For a specific values of joints, where are all the joint frames
- 3. What is the transform from the base frame to all the other frames

URDF/ Xacro

Universal Robot Description Format:

XML file used by ROS to describe kinematic chains

Xacro:

Modified XML to include macros of URDFs for an easier robot description (Can also be used to describe mobile robots)

URDF example

```
1 <?xml version="1.0"?>
 2 <robot name="origins">
     <link name="base_link">
      <visual>
      <geometry>
          <cylinder length="0.6" radius="0.2"/>
       </geometry>
      </visual>
     </link>
11
     <link name="right_leg">
      <visual>
13
      <geometry>
        <box size="0.6 0.1 0.2"/>
15
      </geometry>
16
        <origin rpy="0 1.57075 0" xyz="0 0 -0.3"/>
17
      </visual>
18
     </link>
19
     <joint name="base_to_right_leg" type="fixed">
21
      <parent link="base_link"/>
      <child link="right_leg"/>
      <origin xyz="0 -0.22 0.25"/>
     </joint>
25
26 </robot>
```


ROS - tf

TF (TransForms):

- tf is a ROS package that keeps a track of multiple coordinate frames over time
- It maintains the relationship between the frames in the form of a tree structure
- It allows the user to transform points, vectors, etc. at any given point of time

Resources for further learning:

ColumbiaX Robotics (EdX): Week 3

Morgan Quigley: Chapter 11 & Chapter 18