CEG 7450: Differentiated Services • [B+98] S. Blake et al, "An Architecture for Differentiated Services", RFC 2475, December 1998 Overview > Review of traffic and service characterization Differentiated services

Traffic and Service Characterization

- To quantify a service one has to know
 - Flow's traffic arrival
 - Service provided by the router, i.e., resources reserved at each router
- Examples:
 - Traffic characterization: token bucket
 - Service provided by router: fix rate and fix buffer space

4

Token Bucket • Characterized by three parameters (b, r, R) • b − token depth • r − average arrival rate • R − maximum arrival rate (e.g., R link capacity) • A bit is transmitted only when there is an available token • When a bit is transmitted exactly one token is consumed r tokens per second bits b*R/(R-r) slope r imme

Characterizing a Source by Token Bucket Arrival curve – maximum amount of bits transmitted by time t Use token bucket to bound the arrival curve bps Arrival curve time time

Source S sends a message containing traffic characteristics r,b,R This message is used to computes the number of hops Receiver R sends back this information + worst-case delay (D) Each router along path provide a per-hop delay guarantee and forwards the message In simplest case routers split the delay D num hops (b,r,R,0,0) S1 (b,r,R,1,D-d,-d,) Worst-case delay

Overview

- Review of traffic and service characterization
- > Differentiated services

10

What is the Problem?

- Goal: provide support for wide variety of applications:
 - Interactive TV, IP telephony, on-line gamming (distributed simulations), VPNs, etc
- Problem:
 - Best-effort cannot do it (see previous lecture)
 - Intserv can support all these applications, but
 - · Too complex
 - Not scalable

11

Differentiated Services (Diffserv)

- Build around the concept of domain
- Domain a contiguous region of network under the same administrative ownership
- Differentiate between edge and core routers
- Edge routers
 - Perform per aggregate shaping or policing
 - Mark packets with a small number of bits; each bit encoding represents a class (subclass)
- Core routers
 - Process packets based on packet marking
- Far more scalable than Intserv, but provides weaker services

Two types of service Assured service Premium service Plus, best-effort service

Assured Service [Clark & Wroclawski '97]

- Defined in terms of user profile, how much assured traffic is a user allowed to inject into the network
- Network: provides a lower loss rate than best-effort
 - In case of congestion best-effort packets are dropped first
- User: sends no more assured traffic than its profile
 - If it sends more, the excess traffic is converted to besteffort

16

Assured Service

- Large spatial granularity service
- Theoretically, user profile is defined irrespective of destination
 - All other services we learnt are end-to-end, i.e., we know destination(s) a priori
- This makes service very useful, but hard to provision (why ?)

1

Premium Service [Jacobson '97]

- Provides the abstraction of a virtual pipe between an ingress and an egress router
- Network: guarantees that premium packets are not dropped and they experience low delay
- User: does not send more than the size of the pipe
 - If it sends more, excess traffic is delayed, and dropped when buffer overflows

Assumptions

- Assume two bits
 - P-bit denotes premium traffic
 - A-bit denotes assured traffic
- Traffic conditioner (TC) implement
 - Metering
 - Marking
 - Shaping

20

21

Clear A-bit → ■ out-of-profile traffic

Scheduler Employed by both edge and core routers For premium service – use strict priority, or weighted fair queuing (WFQ) For assured service – use RIO (RED with In and Out) Always drop OUT packets first For OUT measure entire queue For IN measure only in-profile queue Dropping probability OUT Assured service Average queue length

out-of-profile traffic (delayed and dropped)

Scheduler Example Premium traffic sent at high priority Assured and best-effort traffic pass through RIO and then sent at low priority P-bit set? yes high priority no yes RIO low priority

Control Path

- Each domain is assigned a Bandwidth Broker (BB)
 - Usually, used to perform ingress-egress bandwidth allocation
- BB is responsible for performing admission control in the entire domain
- BB not easy to implement
 - Require complete knowledge about domain
 - Single point of failure, may be performance bottleneck
 - Designing BB still a research problem

25

Example

• Achieve end-to-end bandwidth guarantee

26

Comparison to Best-Effort and Intserv

	Best-Effort	Diffserv	Intserv
Service	Connectivity	Per aggregate isolation	Per flow isolation
	No isolation	Per aggregate guarantee	Per flow guarantee
	No guarantees		
Service scope	End-to-end	Domain	End-to-end
Complexity	No setup	Long term setup	Per flow steup
Scalability	Highly scalable (nodes maintain only routing state)	Scalable (edge routers maintains per aggregate state; core routers per class state)	Not scalable (each router maintains per flow state)

Summary

- Diffserv more scalable than Intserv
 - Edge routers maintain per aggregate state
 - Core routers maintain state only for a few traffic classes
- But, provides weaker services than Intserv, e.g.,
 - Per aggregate bandwidth guarantees (premium service) vs. per flow bandwidth and delay guarantees
- BB is not an entirely solved problem
 - Single point of failure
 - Handle only long term reservations (hours, days)

28

Random Early Detection Gateways for Congestion Avoidance

Outline

- Motivation
- RED overview
- The RED algorithm
- Tuning parameters
- Simulation results
- Discussions

1	ı	1	1	١	
	ı	J	l	ı	

Motivation

- Congestion avoidance
 - Current TCP protocol
 - Reducing window size before packets drop is desired
- Gateway is the right place to provide congestion avoidance
 - Detect the congestions effectively
 - Decide the duration and magnitude of transient congestion to be allowed

31

Drawbacks of Drop Tail

Global Power $\propto \frac{Throughput}{Delay}$

Low global power:

To accommodate transient congestion periods, queue must be large, thus causes delay

- Global synchronization
- Bias against bursty traffic

32

Global Synchronization

- When queue overflows, several connections decrease congestion windows simultaneously
- Key: one RTT is required for connection notified of congestion to decrease CW
- in the meantime all the others send and get packets dropped

1	1

Bias Against Bursty Traffic Bursty traffic more likely to be dropped average queue length V.S.

Congestion Avoidance

- Maintains low delay and high throughput
 - Average queue size is kept low
 - Actual queue size grows enough to handle:
 - · Bursty traffic
 - Transient congestion
- Since the gateway knows most about the queue and sources contributing to congestion, avoidance is best done here

3

Goals and ways

- Predict congestions by monitoring the queue size
- Provide feedback before packets are dropped by marking the packets
- Reduce the delay by maintaining a reasonable queue size at each gateway
- Avoid global synchronization by randomly choosing packets to mark
- Avoid a bias against bursty traffic by uniformly marking the packets to be dropped
- Allow transient congestion by using low pass filter for computing the average queue size

RED solves the following problems...

- How to detect incipient congestion?
- How to decide which connections to notify of congestion?
- How to provide notification?

37

The RED Algorithm

- · Computing the average queue size
 - Determines degree of burstiness allowed
 - Should still be responsive enough to detect incipient congestion
- Computing probability of packet drop
 - Determines average queue length
 - Should drop at evenly-space intervals (to avoid global-synch and bursty-traffic-bias)

38

Average Queue Size

Use low-pass filter (exponential weighted moving average)

$$avg \leftarrow (1 - w_q)avg + w_q q$$

 ${}^{\bullet}$ $\,w_q^{}$ should be small enough to filter out transient congestion, and large enough for the average to be responsive

Drop Probability

RED algorithm

- If avg < min_{th}
 - No marking
- If Min_{th}< avg < max_{th}
 - Randomly Mark the packets
- If avg > Max_{th}
 - Mark all the packets

Calculate the marking probability

- Geometric random variables:
 - Use P_b to mark the packets
 - so each packet is marked with probability

$$p_b \leftarrow max_p(avg - min_{th})/(max_{th} - min_{th})$$

$$Prob[X = n] = (1 - p_b)^{n-1} p_b$$

$$p_a \leftarrow p_b/(1-count \cdot p_b)$$

where count is # of packets since last marking

Uniform Distribution of Drops

• If you just use p_b :

$$P[X = n] = (1 - p_b)^{n-1} p_b$$
 • Using $p_b/(1 - count \times p_b)$:

$$P[X = n] = \frac{p_b}{1 - (n - 1)p_b} \prod_{i=0}^{n-2} \left(1 - \frac{p_b}{1 - i \cdot p_b} \right)$$

$$= \frac{p_b}{1 - (n - 1)p_b} \prod_{i=0}^{n-2} \left(\frac{1 - (i + 1)p_b}{1 - i \cdot p_b} \right)$$

$$= \frac{p_b}{1 - (n - 1)p_b} \frac{1 - (n - 1)p_b}{1} = p_b$$

Drop Probability Parameters

- To accommodate bursty traffic \min_{th} must be large enough
- $\qquad \qquad \mathbf{max}_{\mathit{th}} \text{ depends in part on maximum average} \\ \text{ delay allowed}$
- $(max_{th-}$ $min_{th})$ must be larger than typical increase in average queue length during an RTT

Decide \min_{th} and \max_{th}

- Set \min_{th} sufficient high to maximize network power

Global Power
$$\propto \frac{\text{Throughput}}{\text{Delay}}$$

- Make max_{th} min_{th} sufficient large to avoid global synchronization. It should be larger than the increase of queue size in one RTT
- $\mathit{Min}_{\mathit{th}}$ depends on the magnitude of the transient congestions being allowed by the gateway
- Max_{th} depends on the maximum average delay of the network

The Advantages of RED

- No bias against bursty traffic
- No global synchronization
- Packet marking probability proportional to connection's share of bandwidth
- Gradual integration possible
 - Free choice of transport protocol
 - If uncooperative, drop packets
- No assumption about other gateways
- Scalable: no per-connection state

Evaluation of RED

- Congestion avoidance
- Appropriate time scales
- No global synchronization
- Simplicity
- Maximizing global network power
- Appropriate for a wide range of environment? Fairness