Tables for supersymmetry.

Bruno Le Floch, Princeton University, 2018. Very sparse references, not always to original papers.

Help welcome at https://github.c	om/b	lefloch/tables-for-supersymmetry	
1 Lie algebras and groups	1	1d $\mathcal{N}=2$	
1.1 Lie algebras	1	NLSM	-
Complex simple Lie algebras Roots and Weyl group		5 Other theories	7
Real simple Lie algebras		5.1 Two-dimensional CFT Virasoro algebra	1
Accidental isomorphisms ADE classification		$\mathcal{N} = 1$ super-Virasoro algebra	
1.2 Lie groups	2	$\mathcal{N}=2$ super-Virasoro algebra $SW(3/2,2)$ super-Virasoro algebra	
Basics	2	bc system	
Compact connected Lie groups		$\beta\gamma$ system	
Real connected simple Lie groups Spin and Pin groups		Liouville CFT Minimal model	
Accidental isomorphisms		Unitary minimal model	
Homotopy	2	$\mathcal{N} = 2$ minimal models	7
1.3 Simple Lie superalgebras Classical Lie superalgebras	3	5.2 3d gauge theories Chern-Simons term	7
Real forms of Lie superalgebras		Magnetic global symmetry	
Some isomorphisms		Contact term in $\langle JJ \rangle$	
1.4 Lie supergroups	3	Action of $SL(2, \mathbb{Z})$ 5.3 Supergravity and strings	8
1.5 Representations	3	String actions	O
2 Gauge theory generalitie		Pure supergravities	
2.1 Generalities	3	M-theory Branes	
Yang-Mills term Theta term		Flat space brane configurations	
Chern-Simons term		S-rule, brane creation	
Boundaries and gauge redundancies		Little string theory (LST)	8
2.2 Anomalies Continuous anomalies	4	5.4 Integrable models Relativistic quantum Toda chain	0
Fermion effective action		6 Dualities	8
Anomaly polynomial		6.1 4d $\mathcal{N} = 1$ dualities	8
Continuous gravitational anomaly Discrete gravitational anomaly		IR duality	
Mixed gauge-gravity anomaly		Seiberg duality: SU with flavours SO with fundamentals	
2.3 Supersymmetric theories	4	USp with fundamentals	
Vector		Self-duality	
Matter Superpotential term		SU with flavours and adjoint SU mixing two W	
An accidental symmetry		Other 4d $\mathcal{N} = 1$ dualities	
R-symmetry		6.2 3d dualities	9
Classical vacua 2.4 Spinors	4	Level-rank duality	
Clifford algebra	-	Chern-Simons matter dualities With scalars and fermions	
Charge conjugation		6.3 Field theory dualities	9
Reduced spinors Flavour symmetries		6.4 String theory dualities	9
Products of spinor representations		7 Manifolds	ğ
3 Supersymmetry	5	7.1 Pseudo-Riemannian geometry	9
3.1 Generalities	5	Connection	
The Poincaré algebra		The Levi-Civita connection	
Super-Poincaré algebra Example: M-theory algebra		Killing vector 7.2 G-structures, holonomy	10
Lorentzian superconformal algebras		Structure group	10
Dimensional reduction Supersymmetry on symmetric curved		Integrability	
spaces		The holonomy group Spin structures	
3.2 Explicit susy algebras	5	Symmetric spaces	
$4d \mathcal{N} = 2$		K3 surfaces	
3d $\mathcal{N} = 2$	6	Yau's theorem 8 Misc	11
3.3 Spin ≤ 1 supermultiplets For 16 supercharges	U	8.1 Special functions	11
For 8 supercharges		Multiple gamma function	11
For 4 supercharges For 2 supercharges		Plethystic exponential	
3.4 Other supermultiplets	6	q-Pochhammer symbol q-gamma (or basic gamma) function	
$4d \mathcal{N} = 1$ supercurrent multiplet	Ü	Modular form	
4 Supersymmetric (gauge)		Dedekind eta function Theta functions	
theories	6	Theta functions Eisenstein series	
4.1 Maximal super Yang–Mills	6	Elliptic gamma function	
Data Lorentzian		Polylogarithm and Riemann zeta Gauss hypergeometric function	
4d $\mathcal{N} = 4$		Gauss hypergeometric function Generalized hypergeometric functions	
$3d \mathcal{N} = 8$		Basic hypergeometric series	
4.2 Theories with 9 to 12		8.2 Physics of gauge theories	11
supercharges	6	Phases characterized by potential Instantons	
$4d \mathcal{N} = 3$ $3d \mathcal{N} = 5, 6$		8.3 Homology and cohomology	11
4.3 Theories with 8 supercharges	6	Complex projective space	
6d $\mathcal{N} = (1, 0)$	-	8.4 Homotopy groups π_n	11
5d $\mathcal{N} = 1$ SCFTs		Basic properties	
4d $\mathcal{N}=2$ gauge theories 4d $\mathcal{N}=2$ generalities		Quotient Long exact sequence for a fiber bundl	e
4d $\mathcal{N} = 2$ (G, G') Argyres-Douglas		Homotopy groups of spheres	
theories $3d \mathcal{N} = 4$		Topological groups have abelian $\pi_1(G)$	
2d $\mathcal{N} = 4$ 2d $\mathcal{N} = (4, 4)$ gauge theories		8.5 Kähler 4-manifolds K3 surfaces	12
4.4 Theories with 4 supercharges	6	Examples of K3 surfaces	
Superspace		Non-simply connected	
4d $\mathcal{N} = 1$ pure SYM Wess-Zumino model		Gravitational instantons ALE hyperKähler 4-manifolds	
$3d \mathcal{N} = 2$		8.6 Some algebraic constructions	12
$2d \mathcal{N} = (2, 2)$ $1d \mathcal{N} = 4$		Reduction of a Lie (super)algebra	
$0.00 \times 0.00 \times $	7	S-expansion of a Lie (super)algebra A color (super)algebra	
$3d \mathcal{N} = 1$	•	8.7 Other	12
$2d \mathcal{N} = (0, 2)$		Fuzzy spaces	-
$2d \mathcal{N} = (1,1)$			

 \mathfrak{e}_7 \mathfrak{e}_8 \mathfrak{e}_6 Five exceptions with dimensions 133 248 52 78

Type	Dimension	Lie algebra
\mathfrak{a}_n	n(n+2)	$\mathfrak{sl}(n+1,\mathbb{C}) = \{\text{traceless}\}$
\mathfrak{b}_n	n(2n+1)	$\mathfrak{so}(2n+1,\mathbb{C}) = \{\text{antisymmetric}\}\$
\mathfrak{c}_n	n(2n + 1)	$\mathfrak{sp}(2n,\mathbb{C}) = \left\{ \begin{pmatrix} 0 & \mathbb{1}_n \\ -\mathbb{1}_n & 0 \end{pmatrix} \times \text{symmetric} \right\}$
\mathfrak{d}_n	n(2n-1)	$\mathfrak{so}(2n,\mathbb{C}) = \{\text{antisymmetric}\}\$

Roots and Weyl group. The Weyl group has $\prod_i d_i$ elements where d_i are degrees of fundamental invariants. (Below, $\mathbb{1}_i$ denotes the *i*-th unit vector in \mathbb{Z}^n and $1 \leq i \neq j \leq n$.)

- \mathfrak{a}_{n-1} : (note shifted rank) roots $\mathbb{1}_i \mathbb{1}_j$, simple roots $\mathbb{1}_i \mathbb{1}_{i+1}$. The Weyl group S_n permutes the $\mathbb{1}_i$. Fundamental invariants: $x_1^k + \cdots + x_n^k$ for $2 \le k \le n$.
- \mathfrak{b}_n : roots $\pm \mathbb{1}_i$ and $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i \mathbb{1}_{i+1}$ and $\mathbb{1}_n$. The Weyl group $\{\pm 1\}^n \rtimes S_n$ permutes and changes signs of the $\mathbb{1}_i$. Fundamental invariants: $x_1^{2k} + \cdots + x_n^{2k}$ for $2 \le 2k \le 2n$.
- \mathfrak{c}_n : roots $\pm 2\mathbb{1}_i$ and $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i \mathbb{1}_{i+1}$ and $2\mathbb{1}_n$. Same Weyl group and invariants as \mathfrak{b}_n .
 - \mathfrak{d}_n : roots $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i \mathbb{1}_{i+1}$ and $\mathbb{1}_{n-1} + \mathbb{1}_n$. The Weyl group $\{\pm 1\}^{n-1} \rtimes S_n$ permutes the $\mathbb{1}_i$ and changes an even number of signs. Fundamental invariants $x_1 \cdots x_n$ and $x_1^{2k} + \dots + x_n^{2k}$ for $2 \le 2k \le 2n - 2$.
 - $\mathfrak{e}_{8} \colon \{ \pm \mathbb{1}_{i} \pm \mathbb{1}_{j} \} \cup \{ \frac{1}{2} \sum_{k=1}^{8} \epsilon_{k} \mathbb{1}_{k} \mid \epsilon_{k} = \pm 1, \prod_{k=1}^{8} \epsilon_{k} = -1 \}, \\ \text{simple roots } \mathbb{1}_{i} \mathbb{1}_{i+1} \text{ and } \frac{1}{2} (-\mathbb{1}_{1} \dots \mathbb{1}_{5} + \mathbb{1}_{6} + \mathbb{1}_{7} + \mathbb{1}_{8}).$ The $2^{14} 3^5 5^2 7 = 696729600$ -element Weyl group is $O_{\mathfrak{s}}^+(\mathbb{F}_2)$. Degrees of invariants are $\{d_i\} = \{2, 8, 12, 14, 18, 20, 24, 30\},\$ with mnemonic 1 + (primes from 7 to 29).
 - \mathfrak{e}_7 : roots $\sum_{i=1}^8 a_i \mathbb{1}_i$ of \mathfrak{e}_8 with $a_1 = \sum_{i=2}^8 a_i$, simple roots are those of \mathfrak{e}_8 except $\mathbb{1}_1 \mathbb{1}_2$. The $2^{10} \times 3^4 \times 5 \times 7 = 2903040$ element Weyl group is $\mathbb{Z}_2 \times \mathrm{PSp}_6(\mathbb{F}_2)$. Degrees of invariants are $\{d_i\} = \{2, 6, 8, 10, 12, 14, 18\}.$
 - \mathfrak{e}_6 : roots $\sum_{i=1}^8 a_i \mathbb{1}_i$ of \mathfrak{e}_8 with $a_1 = a_2$ and $\sum_{i=3}^8 a_i = 0$, simple roots are those of \mathfrak{e}_8 except $\mathbb{1}_1 - \mathbb{1}_2$ and $\mathbb{1}_2 - \mathbb{1}_3$. The $2^7 3^4 5 = 51840$ -element Weyl group is Aut(PSp₄(\mathbb{F}_3)). Degrees of invariants are $\{d_i\} = \{2, 5, 6, 8, 9, 12\}.$
 - f_4 : roots $\pm 1_i$, $\pm 1_i \pm 1_j$, $\frac{1}{2}(\pm 1_1 \pm 1_2 \pm 1_3 \pm 1_4)$, simple roots $\mathbb{1}_1 - \mathbb{1}_2$, $\mathbb{1}_2 - \mathbb{1}_3$, $\mathbb{1}_3$, $-\frac{1}{2}(\mathbb{1}_1 + \mathbb{1}_2 + \mathbb{1}_3 + \mathbb{1}_4)$. It has an 1152-element Weyl group and $\{d_i\} = \{2, 6, 8, 12\}.$
 - \mathfrak{g}_2 : 12 roots $e^{2\pi i k/6}$, $e^{2\pi i (2k+1)/12}\sqrt{3} \in \mathbb{C}$ for $0 \le k < 6$, simple roots 1 and $e^{5\pi i/6}\sqrt{3}$. The 12-element Weyl group is the dihedral group D_6 , and $\{d_i\} = \{2, 6\}$.

The Coxeter number $h(\mathfrak{g}) = (\dim \mathfrak{g} / \operatorname{rank} \mathfrak{g}) - 1$ is the largest d_i . A Coxeter element is the product of all simple reflections, in any order. Its eigenvalues $e^{2\pi i(d_i-1)/h}$ come in conjugate pairs.

A real simple Lie algebra is a complex algebra (see above) or a real form of it. Let $\mathfrak{sp}(m,n) = \mathfrak{usp}(2m,2n) = \mathfrak{u}(m,n,\mathbb{H}),$ $\mathfrak{su}^*(2n) = \mathfrak{sl}(n,\mathbb{H}) = \{ \operatorname{Re} \operatorname{Tr} M = 0 \text{ in } \mathfrak{gl}(n,\mathbb{H}) \} \simeq \mathfrak{gl}(n,\mathbb{H})/\mathbb{R},$ $\mathfrak{so}^*(2n) = \mathfrak{o}(n, \mathbb{H})$. A Lie algebra is called compact if it exponentiates to a compact Lie group. In $\mathfrak{e}_{r(s)}$, s is the number of (non-compact) – (compact) generators. The maximal compact subalgebra of a complex algebra is its compact real form.

§1 Lie algebras and groups (dimension $< \infty$)

Lie algebras

Complex simple Lie algebras. Infinite series $\mathfrak{a}_{n>1}$, $\mathfrak{b}_{n>1}$, $\mathfrak{c}_{n\geq 1},\,\mathfrak{d}_{n\geq 2} \text{ with } \mathfrak{a}_1=\mathfrak{b}_1=\mathfrak{c}_1,\,\mathfrak{b}_2=\mathfrak{c}_2,\,\mathfrak{d}_2=\mathfrak{a}_1\oplus\mathfrak{a}_1,\,\mathfrak{d}_3=\mathfrak{a}_3.$

	Real form		Max compac	ct subalg	gebra	Range
$\mathfrak{sl}(n,\mathbb{C})$	$\mathfrak{su}(n)$ $\mathfrak{sl}(n,\mathbb{R})$ $\mathfrak{su}(n-p)$ $\mathfrak{su}^*(n)$,p)	$ \begin{array}{l} \operatorname{compact} \\ \supset \mathfrak{so}(n) \\ \supset \mathfrak{su}(n-p) \\ \supset \mathfrak{usp}(n) \end{array} $	$\oplus \mathfrak{su}(p)$	$\oplus \mathfrak{u}(1)$	0 n even
$\mathfrak{o}(n)$	$\mathfrak{so}(n)$ $\mathfrak{so}(p,n-s\mathfrak{o}^*(n))$	- p)	compact $\supset \mathfrak{so}(p) \oplus \mathfrak{so}$ $\supset \mathfrak{u}(n/2)$	(n-p)		0 $n even$
$\mathfrak{sp}(2n,\mathbb{C})$	$ \begin{array}{ccc} & \mathfrak{sp}(n) & \mathfrak{g}(n) \\ & \mathfrak{g}(2n) & \mathrm{compact} \\ & \mathfrak{g}(2n,\mathbb{R}) & \mathfrak{g}(n) \\ & \mathfrak{g}(2n-2p,2p) & \mathfrak{gp}(2n-2p) \\ & \mathfrak{g}(2n-2p,2p) & \mathfrak{gp}(2n-2p) \end{array} $			$(2p) \oplus \mathfrak{us}_{2}$	$\mathfrak{p}(2p)$	0
	$egin{array}{ccc} oldsymbol{\mathfrak{e}}_{6(-78)} & ext{compact} \ oldsymbol{\mathfrak{e}}_{6(-26)} & \supset \mathfrak{f}_4 \ oldsymbol{\mathfrak{e}}_{6(-14)} & \supset \mathfrak{so}(10) \oplus \mathfrak{so}(2) \ oldsymbol{\mathfrak{e}}_{6(2)} & \supset \mathfrak{su}(6) \oplus \mathfrak{su}(2) \ \end{array}$		$)\oplus\mathfrak{so}(2)$	$\mathfrak{e}_{8(-248)}$ $\mathfrak{e}_{8(-24)}$ $\mathfrak{e}_{8(8)}$	$\supset \mathfrak{e}_7 \oplus$	$ eg \mathfrak{su}(2) $
_	e ₆₍₆₎	⊃ usp (8)	$\mathfrak{g}_{2(-14)}$ compact $\mathfrak{g}_{2(2)} \supset \mathfrak{su}(2) \oplus \mathfrak{su}(2)$		
	. (-)	$\supset \mathfrak{e}_6 \oplus \mathfrak{s}$	$\mathfrak{so}(2) \ \oplus \mathfrak{su}(2)$	$f_{4(-52)}$ $f_{4(-20)}$ $f_{4(4)}$	$\supset \mathfrak{so}(9)$	

Accidental isomorphisms.

$$\begin{array}{lll} \mathfrak{so}(2) = \mathfrak{u}(1), & \mathfrak{so}(1,1) = \mathbb{R} & \mathfrak{so}(4,1) = \mathfrak{usp}(2,2) \\ \mathfrak{so}(3) = \mathfrak{su}(2) = \mathfrak{su}^*(2) = \mathfrak{usp}(2) & \mathfrak{so}(3,2) = \mathfrak{sp}(4,\mathbb{R}) \\ \mathfrak{so}(2,1) = \mathfrak{su}(1,1) = \mathfrak{sl}(2,\mathbb{R}) = \mathfrak{sp}(2,\mathbb{R}) & \mathfrak{so}(6) = \mathfrak{su}(4) \\ \mathfrak{so}(4) = \mathfrak{su}(2) \oplus \mathfrak{su}(2) & \mathfrak{so}(5,1) = \mathfrak{su}^*(4) \\ \mathfrak{so}(3,1) = \mathfrak{sl}(2,\mathbb{C}) = \mathfrak{sp}(2,\mathbb{C}) & \mathfrak{so}(4,2) = \mathfrak{su}(2,2) \\ \mathfrak{so}(2,2) = \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R}) & \mathfrak{so}(3,3) = \mathfrak{sl}(4,\mathbb{R}) \\ \mathfrak{so}^*(4) = \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{su}(2) & \mathfrak{so}^*(6) = \mathfrak{su}(3,1) \\ \mathfrak{so}(5) = \mathfrak{usp}(4) & \mathfrak{so}^*(8) = \mathfrak{so}(6,2) \end{array}$$

ADE classification of symmetric matrices with eigenvalues in (-2,2) and $\mathbb{Z}_{>0}$ entries (adjacency matrices of ADE diagrams), of simply laced simple Lie algebras, of binary polyhedral groups Γ (discrete subgroups of SU(2)) and du Val singularities $\mathbb{C}^2/\Gamma \simeq$ (zeros of Kleinian polynomial), of integers $1 \le p \le q \le r$ with 1/p + 1/q + 1/r > 1, of singularities with no moduli (Arnold) hence of $\mathcal{N}=2$ minimal models (c<3), of $\mathcal{N}=0$ unitary minimal models (c<1), of quivers of finite ${\rm type,}\dots$

\mathfrak{g}	(p,q,r)	Kleinian polynomial
\mathfrak{a}_k	(1,q,1+k-q)	$w^2 + x^2 + y^{k+1}$
\mathfrak{d}_k	(2,2,k-2)	$w^2 + x^2y + y^{k-1}$
\mathfrak{e}_6	(2, 3, 3)	$w^2 + x^3 + y^4$
\mathfrak{e}_7	(2, 3, 4)	$w^2 + x^3 + xy^3$
\mathfrak{e}_8	(2, 3, 5)	$w^2 + x^3 + y^5$

§1.2 Lie groups

Basics. The identity component G_0 is a normal subgroup: G/G_0 is the group of components. The maximal compact subgroup K is unique up to conjugation.

Every compact connected Lie group K is a quotient of $\mathrm{U}(1)^n \times \prod_{i=1}^m K_i$ by a finite subgroup Γ of its center, where K_i are simple, compact, simply-connected, connected. Then $\pi_1(K)/\mathbb{Z}^n \simeq \Gamma$ for some embedding $\mathbb{Z}^n \hookrightarrow \pi_1(K)$, and the center of K is $Z(K) = (U(1)^n \times \prod_{i=1}^m Z(K_i)) / \Gamma$.

Center of all such K_i : $Z(SU(n)) = \mathbb{Z}_n$, $Z(USp(2n)) = \mathbb{Z}_2$, $Z(\operatorname{Spin}(n \geq 3)) = (\mathbb{Z}_2 \text{ for } n \text{ odd}, \mathbb{Z}_4 \text{ for } n/2 \text{ odd}, \mathbb{Z}_2^2 \text{ otherwise}),$ $Z(\mathcal{E}_{6(-78)}) = \mathbb{Z}_3, \ Z(\mathcal{E}_{7(-133)}) = \mathbb{Z}_2, \text{ while } \mathcal{E}_{8(-248)}, \ \mathcal{F}_{4(-52)},$ $G_{2(-14)}$ have no center.

Named quotients: $SO(n) = Spin(n)/\mathbb{Z}_2$ and PG = G/Z(G)for G = SU, USp, SO (also U, GL, SL). The other two quotients $\operatorname{Spin}(4n)/\mathbb{Z}_2$ have no name.

Real connected simple Lie groups are the simply-connected G (classified by simple Lie algebras) and their quotients by a subgroup $\Gamma \subset Z(G)$ of the center; equivalently, covers of the center-free $G_{\rm cf} = \widetilde{G}/Z(\widetilde{G})$. One has $\pi_1(\widetilde{G}/\Gamma) = \Gamma$ and $Z(\widetilde{G}/\Gamma) = Z(\widetilde{G})/\Gamma$. The algebraic universal cover \widetilde{G}_{alg} (largest with a faithful finite-dimensional representation) may be a quotient of \widetilde{G} . We define $\pi_1^{\text{alg}}(\widetilde{G}_{\text{alg}}/\Gamma) = \Gamma$. For each real simple Lie algebra \mathfrak{g} , we tabulate: $G_{\rm cf}$ as a quotient of $\widetilde{G}_{\rm alg}$; the (topological) π_1 ; the real rank r_{Re} ; and the maximal compact subgroup $K \subset G_{cf}$. Below, $\iota(l) = (1 \text{ for } l \text{ odd}, 2 \text{ otherwise}),$ p+q=n with $p,q\geq 1,$ and 2k=n when n is even. For $\mathfrak{sl}(2)$ use SU(2) = Sp(2), $SL(2, \mathbb{R}) = Sp(2, \mathbb{R})$, $SL(2, \mathbb{C}) = Sp(2, \mathbb{C})$.

$\widetilde{G}_{ m alg}/\pi_1^{ m alg}(G_{ m cf})$	K	π_1	$r_{ m Re}$
\subseteq SU(n)/ \mathbb{Z}_n	$SU(n)/\mathbb{Z}_n$	\mathbb{Z}_n	0
$\widehat{\widehat{\mathfrak{S}}}$ $\mathrm{SL}(n,\mathbb{R})/\mathbb{Z}_{\iota(n)}$	$\operatorname{PSpin}(n)^{\ddagger\S}$	$Z(\operatorname{Spin}(n))^{\ddagger\S}$	n-1
$\operatorname{SU}(p,q)/\mathbb{Z}_{p+q}$	$\frac{\mathrm{SU}(p)\times\mathrm{SU}(q)\times\mathrm{U}(1)}{\mathbb{Z}_{pq/\gcd(p,q)}}$	<u>-)</u> ¶ ℤ mi	n(p,q)
$\widecheck{\mathfrak{s}}$ $\mathrm{SU}^*(2k)/\mathbb{Z}_2$	$\mathrm{USp}(2k)/\mathbb{Z}_2$	\mathbb{Z}_2	k-1
$\mathrm{SL}(n,\mathbb{C})/\mathbb{Z}_n$	$SU(n)/\mathbb{Z}_n$	\mathbb{Z}_n	n-1
$\widehat{\mathfrak{S}}$ PSpin $(n)^{\ddagger}$	PSpin(n)	$Z(\operatorname{Spin}(n))^{\ddagger}$	0
$^{\wedge }_{\sim} \operatorname{PSpin}(p,q)^{\ddagger}$	$\frac{SO(p) \times SO(q)}{\mathbb{Z}_2 \text{ if } p, q \text{ even}}$	Γ^{\parallel} mi	n(p,q)
$\stackrel{\mathcal{E}}{\circ}$ SO* $(2k)/\mathbb{Z}_2$	$\mathrm{U}(k)/\mathbb{Z}_2$	$\mathbb{Z}_{\iota(k)} \times \mathbb{Z}$	$\lfloor k/2 \rfloor$
$\operatorname{PSpin}(n,\mathbb{C})$	PSpin(n)	$Z(\operatorname{Spin}(n))^{\ddagger}$	$\lfloor n/2 \rfloor$
$\widehat{\otimes} \operatorname{USp}(2n)/\mathbb{Z}_2$	$USp(2n)/\mathbb{Z}_2$	\mathbb{Z}_2	0
\bigwedge $\operatorname{Sp}(2n,\mathbb{R})/\mathbb{Z}_2$	$\mathrm{U}(n)/\mathbb{Z}_2$	$\mathbb{Z}_{\iota(n)} imes \mathbb{Z}$	n
\mathfrak{S} USp $(2p,2q)/\mathbb{Z}_2$	$\frac{\mathrm{USp}(2p)\times\mathrm{USp}(2q)}{\mathbb{Z}_2}$	\mathbb{Z}_2 mi	n(p,q)
জি $\operatorname{Sp}(2n,\mathbb{C})/\mathbb{Z}_2$	$USp(2n)/\mathbb{Z}_2$	\mathbb{Z}_2	n

[‡] For $r + s \ge 3$, PSpin(r, s) = Spin(r, s)/Z(Spin(r, s)) and $Z(\operatorname{Spin}(r,s)) = (\mathbb{Z}_2 \text{ if } r \text{ or } s \text{ odd}, \mathbb{Z}_4 \text{ if } \frac{r+s}{2} \text{ odd}, \text{ else } \mathbb{Z}_2^2).$

§ Exception: for
$$n = 2$$
, $K = SO(2)/\mathbb{Z}_2$ and $\pi_1 = \mathbb{Z}$.
¶ $K \ni \overline{(A, B, \lambda)} \mapsto \begin{pmatrix} \lambda^{q/(p+q)} A & 0 \\ 0 & \lambda^{-p/(p+q)} B \end{pmatrix} \in PSU(p, q)$.

 $\Gamma = \pi_1(SO(p)) \times \pi_1(SO(q))$ for p or q odd (each factor is \mathbb{Z}_2 except $\pi_1(SO(1)) = 0$ and $\pi_1(SO(2)) = \mathbb{Z}$; otherwise $\Gamma \subset \pi_1(SO(p)/\mathbb{Z}_2) \times \pi_1(SO(q)/\mathbb{Z}_2)$ consists of (γ_p, γ_q) such that both or neither γ is in the corresponding $\pi_1(SO) \subset \pi_1(SO/\mathbb{Z}_2)$.

	$\widetilde{G}_{ m alg}/\pi_1^{ m alg}(G_{ m cf})$	K	π_1	$r_{ m Re}$
	$\widetilde{\mathrm{E}}_{6(-78)}/\mathbb{Z}_3$	$= E_{6(-78)}$	\mathbb{Z}_3	0
:	Hind an	$F{4(-52)}$	1	2
tec	$\widetilde{\mathrm{E}}_{6(-14)}/\mathbb{Z}$	$\operatorname{Spin}(10) \times \operatorname{U}(1)/?$	\mathbb{Z}	2
ıns	$\widetilde{\mathrm{E}}_{6(2)}/\mathbb{Z}_{6}$	$(SU(6)/\mathbb{Z}_6) \times SU(2)$	\mathbb{Z}_6	4
e ti	$\widetilde{\mathrm{E}}_{6(6)}/\mathbb{Z}_2$	$USp(8)/\mathbb{Z}_2$	\mathbb{Z}_2	6
t be	$\begin{array}{c} \Xi_{6(-26)} \\ \Xi_{6(-14)}/\mathbb{Z} \\ \widetilde{\Xi}_{6(2)}/\mathbb{Z}_{6} \\ \widetilde{\Xi}_{6(6)}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{6}^{(-133)}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{7(-133)}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{7(-25)}/\mathbb{Z} \\ \widetilde{\Xi}_{7(-7)}/\mathbb{Z}_{4} \\ \widetilde{\Xi}_{7}/\mathbb{Z}_{2} \\ \end{array}$ $\begin{array}{c} \Xi_{8(-248)} \\ \widetilde{\Xi}_{8(-24)}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{8(8)}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{8}(-24)/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{8}(-24)/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{1}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{2}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{3}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{1}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{1}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{2}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{3}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{4}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{1}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{1}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{2}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{3}/\mathbb{Z}_{2} \\ \widetilde{\Xi}_{4}/\mathbb{Z}_{2} \\ \widetilde$	$E_{6(-78)}$	\mathbb{Z}_3	6
no	$ \widetilde{\widetilde{E}}_{7(-133)}/\mathbb{Z}_{2} $ $ \widetilde{\widetilde{E}}_{7(-25)}/\mathbb{Z} $ $ \widetilde{\widetilde{E}}_{7(-5)}/\mathbb{Z}_{2} $	$= E_{7(-133)}$	\mathbb{Z}_2	0
Пd	$\widetilde{\mathrm{E}}_{7(-25)}/\mathbb{Z}$	$E_{6(-78)} \times U(1)/?$	\mathbb{Z}	3
hoı	$\widetilde{\mathrm{E}}_{7(-5)}/\mathbb{Z}_2^2$	$\operatorname{Spin}(12) \times \operatorname{SU}(2)/\mathbb{Z}_2^2$	\mathbb{Z}_2^2	4
on Ox	$\widetilde{\mathrm{E}}_{7(7)}/\mathbb{Z}_4$	$SU(8)/\mathbb{Z}_4$	\mathbb{Z}_4	7
abl	$\widetilde{\operatorname{E}}_7^{\mathbb{C}}/\mathbb{Z}_2$	$E_{7(-133)}$	\mathbb{Z}_2	7
is t	$E_{8(-248)}$	E ₈₍₋₂₄₈₎	1	0
$^{\mathrm{th}}$	$\widetilde{\mathrm{E}}_{8(-24)}/\mathbb{Z}_2$	$\widetilde{\mathrm{E}}_{7(-133)} \times \mathrm{SU}(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
$\dot{\text{i}}$	$\widetilde{\mathrm{E}}_{8(8)}/\mathbb{Z}_2$	$SO(16)/\mathbb{Z}_2$	\mathbb{Z}_2	8
sd_1	$\mathrm{E}_8^{\mathbb{C}^{}}$	$E_{8(-248)}$	1	8
rou	$F_{4(-52)}$	$F_{4(-52)}$	1	0
യ	$\widetilde{\mathrm{F}}_{4(-20)}/\mathbb{Z}_2$	$\operatorname{Spin}(9)/\mathbb{Z}_2$	\mathbb{Z}_2	1
ret	$\widetilde{\mathrm{F}}_{4(4)}$	$USp(6) \times SU(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
iscı	$\mathbf{F}_4^{\mathbb{C}^{^{\prime}}}$	$F_{4(-52)}$	1	4
Ω	$G_{2}(-14)$	$G_{2(-14)}$	1	0
	$\widetilde{\mathrm{G}}_{2(2)}/\mathbb{Z}_2$	$\mathrm{SU}(2) \times \mathrm{SU}(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
	$\widetilde{\mathrm{G}}_{2(2)}^{2(-14)}/\mathbb{Z}_2$ $\mathrm{G}_2^\mathbb{C}$	$G_{2(-14)}$	1	4

Spin and Pin groups. SO(n) has a double cover Spin(n). Since $\pi_0(O(n)) = \mathbb{Z}_2$ there are two double covers: $Pin_+(n)$ in which a reflection R obeys $R^2 = 1$, and $Pin_-(n)$ in which $R^2 = (-1)^F$. For $p, q \ge 1$, $\pi_0(O(p,q)) = \pi_0(O(p)) \times \pi_0(O(q)) = \mathbb{Z}_2^2$; the identity component $SO_+(p,q)$ has a double cover Spin(p,q). The eight double covers of O(p,q) differ in whether R^2 , T^2 and $(RT)^2$ are +1 or $(-1)^F$.

Accidental isomorphisms (real reductive Lie groups) $\mathbb{R}/\mathbb{Z} = U(1)$; $SU(2) = Spin(3) \twoheadrightarrow SO(3)$; . . .

Homotopy. Any connected Lie group is homeomorphic to its maximal compact subgroup K times a Euclidean space \mathbb{R}^p . All $\pi_{j\geq 1}(K)$ are abelian and finitely generated, $\pi_2(K)=0$, $\pi_3(K)=\mathbb{Z}^m$ where m counts simple factors in a finite cover $\mathrm{U}(1)^n\times\prod_{i=1}^m K_i\twoheadrightarrow K$, and $\pi_j(K)=\prod_{i=1}^m \pi_j(K_i)$ for $j\geq 2$.

For any G there exists $\prod_{i=1}^{\operatorname{rank} G} S^{2d_i-1} \to G$ which induces isomorphisms of rational (i.e., torsion-free part of) homotopy/cohomology groups where d_i are the degrees of fundamental invariants. For compact simple K,

Group $(2d_i - 1)$	E_6 3, 9, 11, 15, 17, 23
$\begin{array}{ccc} A_n & 3, 5, \dots, 2n+1 \\ B_n, C_n & 3, 7, \dots, 4n-1 \\ D_n & 3, 7, \dots, 4n-5, 2n-1 \end{array}$	$E_7 \ 3, 11, 15, 19, 23, 27, 35 \\ E_8 \ 3, 15, 23, 27, 35, 39, 47, 59 \\ F_4 \ 3, 11, 15, 23 \\ G_2 \ 3, 11$

 $\pi_{j\geq 2}(G)$ has a factor \mathbb{Z} for each S^j above, and some torsion. Explicitly, $\pi_j(\mathrm{SU}(n))$ is \mathbb{Z} for odd j<2n, 0 for even j<2n, and is pure torsion for $j\geq 2n$. Similarly, $\pi_{j<4n+2}(\mathrm{USp}(2n))$ is \mathbb{Z} for $j\equiv 3,7 \bmod 8$, \mathbb{Z}_2 for $j\equiv 4,5 \bmod 8$, and 0 otherwise.

§1.3 Simple Lie superalgebras

Classical Lie superalgebras: the bosonic algebra acts on the fermionic generators in a completely reducible representation. This excludes Cartan-type superalgebras $\mathfrak{w}(n)$, $\mathfrak{s}(n)$, $\tilde{\mathfrak{s}}(n)$ and $\mathfrak{h}(n)$. In this table, $m,n\geq 1$ and we do not list purely bosonic Lie algebras. The factor \mathbb{C} of $\mathfrak{sl}(m|n)$ must be removed if m=n.

	Bosonic algebra	Fermionic repr.
$\mathfrak{sl}(m n)$	$\mathfrak{sl}(m,\mathbb{C})\oplus\mathfrak{sl}(n,\mathbb{C})\oplus\mathbb{C}$	$(m,\overline{n})\oplus(\overline{m},n)$
$\mathfrak{osp}(m 2n)$	$\mathfrak{so}(m,\mathbb{C})\oplus\mathfrak{sp}(2n,\mathbb{C})$	(m,2n)
$\mathfrak{d}(2,1,lpha)$	$\mathfrak{sl}(2,\mathbb{C})^3$	(2, 2, 2)
$\mathfrak{f}(4)$	$\mathfrak{so}(7,\mathbb{C})\oplus\mathfrak{sl}(2,\mathbb{C})$	(8,2)
$\mathfrak{g}(3)$	$\mathfrak{g}_2\oplus\mathfrak{sl}(2,\mathbb{C})$	(7,2)
$\mathfrak{p}(m)$	$\mathfrak{sl}(m+1,\mathbb{C})$	$\mathrm{sym} \oplus (\mathrm{antisym})^*$
$\mathfrak{q}(m)$	$\mathfrak{sl}(m+1,\mathbb{C})$	adjoint

Real forms of Lie superalgebras, starting from their compact form (p=q=0). $\mathfrak{p}(m)$ has no compact form. Here, $m,n\geq 1, 0\leq p\leq m/2, 0\leq q\leq n/2$. The forms \mathfrak{su}^* , \mathfrak{osp}^* , \mathfrak{q}^* only exist for even rank; \mathfrak{sl}' only if m=n.

Real form	Bosonic algebra
$\begin{array}{c} \mathfrak{su}(m-p,p n-q,q) \\ \mathfrak{sl}(m n) \\ \mathfrak{sl}'(n n) (m=n) \\ \mathfrak{su}^*(m n) (m,n \text{ even}) \end{array}$	$\begin{array}{c} \mathfrak{su}(m-p,p) \oplus \mathfrak{su}(n-q,q) \oplus \mathfrak{u}(1)^{\ddagger} \\ \mathfrak{sl}(m,\mathbb{R}) \oplus \mathfrak{sl}(n,\mathbb{R}) \oplus \mathfrak{so}(1,1)^{\ddagger} \\ \mathfrak{sl}(n,\mathbb{C}) \\ \mathfrak{su}^*(m) \oplus \mathfrak{su}^*(n) \oplus \mathfrak{so}(1,1)^{\ddagger} \end{array}$
$ \begin{aligned} & \mathfrak{osp}(m-p,p 2n) \\ & \mathfrak{osp}^*(m 2n-2q,2q) \ (m \end{aligned} $	$\mathfrak{so}(m-p,p)\oplus\mathfrak{sp}(2n,\mathbb{R})$ $\mathfrak{so}^*(m)\oplus\mathfrak{usp}(2n-2q,2q)^\P$
$\mathfrak{d}^p(2,1,lpha)$ §	$\mathfrak{so}(4-p,p)\oplus\mathfrak{sl}(2,\mathbb{R})\ (p=0,1,2)$
$\mathfrak{f}^p(4) \text{ for } p = 0, 3$ $\mathfrak{f}^p(4) \text{ for } p = 1, 2$	$\mathfrak{so}(7-p,p)\oplus\mathfrak{sl}(2,\mathbb{R}) \ \mathfrak{so}(7-p,p)\oplus\mathfrak{su}(2)$
$g_s(3) \text{ for } s = -14, 2$	$\mathfrak{g}_{2(s)}\oplus\mathfrak{sl}(2,\mathbb{R})$
$\mathfrak{p}(m)$	$\mathfrak{sl}(m+1,\mathbb{R})$
$\begin{array}{c} \mathfrak{uq}(m-p,p) \\ \mathfrak{q}(m) \\ \mathfrak{q}^*(m) \pmod{0} \end{array}$	$\mathfrak{su}(m+1-p,p)$ $\mathfrak{sl}(m+1,\mathbb{R})$ $\mathfrak{su}^*(m+1)$

- [‡] For m = n, $\mathfrak{u}(1)$ and $\mathfrak{so}(1,1)$ factors are absent. Additionally, one can project down to a single bosonic factor.
 - ¶ \wedge A real form of $\mathfrak{osp}(2|2,\mathbb{C}) = \mathfrak{sl}(2|1,\mathbb{C})$ is missing.
- § The three $\mathfrak{sl}(2)$ bosonic factors of $\mathfrak{d}(2,1,\alpha)$ appear with weights 1, α and $-1-\alpha$ in fermion anticommutators. For \mathfrak{d}^0 and \mathfrak{d}^2 , α is real. For \mathfrak{d}^1 , $\alpha=1+ia$ with a real.

Some isomorphisms: $\mathfrak{su}(1,1|1) = \mathfrak{sl}(2|1) = \mathfrak{osp}(2|2)$ and $\mathfrak{su}(2|1) = \mathfrak{osp}^*(2|2,0)$ and $\mathfrak{d}^p(2,1,\alpha=1) = \mathfrak{osp}(4-p,p|2)$ and $\mathfrak{osp}(6,2|4) = \mathfrak{osp}^*(8|4)$.

§1.4 Lie supergroups

§1.5 Representations

§2 Gauge theory generalities

§2.1 Generalities

Yang–Mills term. A gauge group is a compact reductive Lie group G such as $(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_6$. The gauge kinetic term is $\mathcal{L}_{SYM} = g^{-2} \operatorname{Tr} F \wedge \star F$, with one real gauge coupling g per simple factor.

Theta term in even dimension: $\theta \operatorname{Tr} F^{\wedge (d/2)}$ with θ periodic. **R-symmetry.** In 2d and higher the IR R-symmetry is part In 4d, θ and g combine to $\tau = \theta/(2\pi) + 4\pi i/g^2$. of the superconformal algebra, rather than an outer auto-

Chern–Simons term in 3d: $k \operatorname{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$ with k quantized (normalization missing).

Boundaries and gauge redundancies. On a non-compact spacetime one can consider the group of gauge redundancies with various boundary conditions. Let $H \subset F$ be the constant transformations included as gauge redundancies (including constant gauge transformations by $H \cap G$). The Higgs branch flavour symmetry is then $\{x \in F \mid xG = Gx, xH = Hx\}/H$.

§2.2 Anomalies

Continuous anomalies in d=2n, in (n+1)-point functions of currents: (n+1)-gon fermion loop, summed over fermions. Forbid simultaneous nontrivial backgrounds for all n+1 symmetries. Anomaly with (n+1) gauge currents \Longrightarrow theory is sick. Anomaly with n gauge, one flavour \Longrightarrow classical flavour symmetry fails at one-loop, $D_{\mu}J^{\mu} \sim \text{Tr}(\mathrm{d}A_1 \wedge \cdots \wedge \mathrm{d}A_n) + O(A^{n+1})$.

Fermion effective action $\Gamma[A]$ defined by $\exp(-\Gamma[A]) = \int D\bar{\chi} D\psi \exp(-\int d^4x \,\bar{\chi} i \not D \gamma_- \psi)$ always has gauge-invariant and diffeomorphism-invariant real part but varies by the imaginary $D_{\mu}(\delta\Gamma/\delta A_{\mu}) = D_{\mu}\langle J^{\mu}\rangle$ and $D_{\mu}(\delta\Gamma/\delta g_{\mu\nu}) = \frac{1}{2}D_{\mu}\langle T^{\mu\nu}\rangle$, non-zero in case of anomaly.

Anomaly polynomial: formal (d+2)-form built from field strengths F and Riemann R two-forms, traced.

Continuous gravitational anomaly. Spin(1, d-1) plus CPT only has complex representations for d=4k+2: for other even d, CPT exchanges chirality so we cannot have a single Weyl spinor. Focus on d=1+(4k+1), Weyl fermions of spin $\frac{1}{2}$ and $\frac{3}{2}$ and self-dual 2k+1 form. In 10d, unique theory with anomaly cancellation between fields of different spins: IIB supergravity. Above 10d, only same spins can cancel.

Discrete gravitational anomaly. In d=8k and d=8k+1, single Majorana spinors cannot be given mass (but pairs can). It turns out that coupling an odd number of spin $\frac{1}{2}$ Majorana fermions to gravity is inconsistent.

Mixed gauge-gravity anomaly (or flavour-gravity) corresponds to $(\frac{1}{2}d+1)$ -gons fermion loops with an even number of stress-tensors and some currents.

§2.3 Supersymmetric theories

Vector. Yang–Mills, theta, Chern–Simons terms have super-symmetric completion. Additionally, FI parameter, real for 4 supercharges, triplet for 8 supercharges. Dimensionless in 2d, the FI parameter combines with the theta angle.

Matter. For 16 supercharges, none. For 8 supercharges, symplectic representation $V \simeq \mathbb{H}^n$ namely $G \to F = \mathrm{USp}(2n)$. For 4 supercharges, unitary representation $V \simeq \mathbb{C}^n$ namely $G \to F = \mathrm{U}(n)$. Canonical kinetic term for bosons: $D_{\mu}\phi_i D^{\mu}\phi_i$.

Superpotential term. For 4 supercharges, $\int d^2\theta W$ gives a potential for scalars and Yukawa-type interactions. W is holomorphic in chiral fields and in couplings seen as background fields. Example: the kinetic term $\operatorname{Im} \int d^2\theta [\tau W_\alpha^2]$ of an abelian gauge field: W_α^2 is a chiral field so τ is the background value of a chiral field.

An accidental symmetry is a flavour symmetry of the IR but not of the UV.

R-symmetry. In 2d and higher the IR R-symmetry is part of the superconformal algebra, rather than an outer automorphism of it. The manifest (UV) R-symmetry can be a mixture of the IR R-symmetry and of a flavour symmetry: $R_{\rm UV} \subset R_{\rm IR} \times F$. For nonabelian R-symmetry that flavour symmetry must be accidental as it does not commute with $R_{\rm UV}$. For abelian R-symmetry the mixing is continuous; assuming no accidental flavour symmetries it is fixed in 4d $\mathcal{N}=1$ by a-extremization, in 3d $\mathcal{N}=2$ by Z_{S^3} -extremization, in 2d $\mathcal{N}=(0,2)$ by c-extremization.

Vector multiplet scalars and gauge field are $U(1)_R$ neutral. For chirals, $\Delta \geq \frac{1}{2}(d-1)|R|$ at the fixed point.

Classical vacua: Coulomb, Higgs and mixed branches. Coulomb branch ($\mathfrak g$ modulo conjugation by G) parametrized by vector multiplet scalars, larger in 3d due to monopoles, can be lifted by quantum effects. For 4 supercharges, Higgs branch parametrized by chiral multiplet scalars: Kähler quotient R//G. For 8 supercharges, Higgs branch parametrized by hypermultiplet scalars: hyper-Kähler quotient R//G. The Higgs branch has flavour symmetry $\{x \in F \mid xG = Gx\}/G$ normalizer of G in $F = \mathrm{U}(R)$ or $F = \mathrm{USp}(R)$ modulo G. Background vector multiplet scalars (real/twisted masses) reduce the Higgs and mixed branches to fixed points of corresponding flavour symmetries.

§2.4 Spinors (e.g. [hep-th/9910030])

Clifford algebra. Let h_{ab} be diagonal with s '+1' and t '-1', and d = s + t. The Clifford algebra $\{\Gamma_a, \Gamma_b\} = 2h_{ab}$ has real dimension 2^d and is isomorphic to a matrix algebra $M_{2^{\#}}(\bullet)$ with

$s-t \bmod 8$	8 0	1	2	3	4	5	6	7
• i	\mathbf{s}	$\mathbb{R}\oplus\mathbb{R}$	\mathbb{R}	\mathbb{C}	\mathbb{H}	$\mathbb{H}\oplus\mathbb{H}$	\mathbb{H}	\mathbb{C}

Charge conjugation. $(-\eta)\Gamma_a^T = \mathcal{C}\Gamma_a\mathcal{C}^{-1}$ are conjugate for $\eta = \pm 1$ because they obey the same algebra. Get $\mathcal{C}^T = -\varepsilon\mathcal{C}$ with $\varepsilon = \pm 1$ by transposing twice. Let $\Gamma^{(n)} = \Gamma_{a_1...a_n}$. Using $\left(\mathcal{C}\Gamma^{(n)}\right)^T = -\epsilon(-)^{n(n-1)/2}(-\eta)^n\mathcal{C}\Gamma^{(n)}$ find which $n \mod 4$ give symmetric $\mathcal{C}\Gamma^{(n)}$. The sum of $\binom{d}{n}$ must be $2^{\lfloor d/2 \rfloor}(2^{\lfloor d/2 \rfloor} + 1)/2$. This fixes ϵ, η . Odd d require $\eta = (-1)^{d(d+1)/2}$ to preserve $\Gamma^{(d)}$. Even d allow two choices of signs: consult the rows $d \pm 1$.

$d \bmod 8$	n	ϵ	η
$0_{\overline{2/1}}$	0, 1	-1	-1
$\frac{2}{4}$ 3	1, 2	+1	+1
6/5	2, 3	+1	-1
0 - 7	0, 3	-1	+1

Reduced spinors. $M_{ab} \in \mathfrak{so}(s,t)$ acts as $\gamma_a \gamma_b$ on representations of the Clifford algebra. But the $2^{\lceil d/2 \rceil}$ -dimensional representation is not irreducible as a representation of $\mathfrak{so}(s,t)$.

In even d, Weyl (or chiral) spinors $\Gamma^{(d)}\lambda=\pm\lambda$ have $2^{d/2-1}$ real components. Let B be defined by $\Gamma_a^*=-\eta(-1)^tB\Gamma_aB^{-1}$. Majorana spinors $\lambda^*=B\lambda$ exist for $s-t\equiv 0,\pm 1,\pm 2$ mod 8; the case $s-t\equiv \pm 2$ requires $\eta=\mp(-1)^{d/2}$. When $s-t\equiv 3,4,5,$ a set of 2n spinors can be symplectic Majorana: $(\lambda^I)^*=B\Omega_{IJ}\lambda^J$ for $\Omega=((0,\mathbb{1}_n);(-\mathbb{1}_n,0))$. (Symplectic) Majorana–Weyl spinors exist for $s-t\equiv 0,4$ mod 8. The table also includes the real dimension of the minimal spinor.

d t ≡	≣ 0	1	2	$3 \bmod 4$
1 (D 2) M	1	M 1		
$2 (W 2) M^{-}$	2	MW = 1	M^+ 2	
3 (D 4) s	4	M = 2	M = 2	s 4
4 (W 4) sW	4	M^+ 4	MW 2	M^- 4
5 (D 8) s	8	s 8	M = 4	M = 4
$6 \text{ (W 8) } \text{M}^{+}$	8	sW = 8	M^- 8	MW = 4
7 (D 16) M	8	s 16	s 16	M = 8
8 (W16) MW	8	M^{-} 16	sW = 16	M^{+} 16
9 (D32) M	16	M 16	s 32	s 32
$10 \text{ (W32) } \text{M}^-$	32	MW 16	M^{+} 32	sW 32
11 (D 64) s	64	M = 32	M = 32	s 64
12 (W64) sW	64	M^{+} 64	MW 32	M^{-} 64

Flavour symmetries of N minimal spinors. This is also the R-symmetry of the N-extended superalgebra. For (symplectic) Majorana Weyl spinors, specify $N = (N_L, N_R)$ left/right-handed.

$$\begin{array}{l} \mathbf{M} & \begin{cases} \mathfrak{u}(N) & \text{if } d \text{ even} \\ \mathfrak{so}(N) & \text{if } d \text{ odd} \end{cases} \\ \mathbf{MW: } \mathfrak{so}(N_L) \times \mathfrak{so}(N_R) \\ \mathbf{s} & : \mathfrak{usp}(2N) \\ \mathbf{sW: } \mathfrak{usp}(2N_L) \times \mathfrak{usp}(2N_R) \end{array}$$

E.g., Lorentzian 6d (2,0) has $\mathfrak{usp}(4) \times \mathfrak{usp}(0)$ R-symmetry.

Products of spinor representations. For odd d=2m+1, let \mathcal{S} be a spinor representation of complex dimension 2^m . The symmetric product $S^2\mathcal{S}$ consists of k-forms with $k\equiv m \mod 4$. Since k-forms and (d-k)-forms are the same representation, other descriptions can be given. For the antisymmetric product $\bigwedge^2 \mathcal{S}$, take $k\equiv m-1 \mod 4$. See the list of forms in the table.

d	1	3	5	7	9	11
$\dim_{\mathbb{C}} \mathcal{S}$	1	2	4	8	16	32
S^2S	0	1	2	0,3	0, 1, 4	1, 2, 5
$\bigwedge^2 \mathcal{S}$		0	0, 1	1.0	2, 3	0, 3, 4

For even d=2m, let \mathcal{S}_{\pm} be the Weyl spinor representations of complex dimension 2^{m-1} . The tensor product $\mathcal{S}_{+}\otimes\mathcal{S}_{-}$ consists of (m-1-2j)-forms for $0 \leq j \leq (m-1)/2$. The symmetric products $S^2\mathcal{S}_{\pm}$ decompose into the (anti)-self-dual m-forms and (m-4j)-forms for $0 < j \leq m/4$. The antisymmetric products $\bigwedge^2 \mathcal{S}_{\pm}$ decompose into (m-2-4j)-forms for $0 \leq j \leq (m-2)/4$.

d	2	4	6	8	10	12
$\dim_{\mathbb{C}}\mathcal{S}_{\pm}$	1	2	4	8	16	32
$S^2 \mathcal{S}_{\pm}$	1^{\dagger}	2^{\dagger}	3^{\dagger}	$0, 4^{\dagger}$	$1,5^{\dagger}$	$2,6^{\dagger}$
$igwedge^2 \mathcal{S}_\pm$		0	1	2	3	0, 4
$\mathcal{S}_+ \otimes \mathcal{S}$	0	1	0, 2	1,3	0, 2, 4	1, 3, 5

Note that $S^2(\mathcal{S}_+ \oplus \mathcal{S}_-) = S^2\mathcal{S}_+ \oplus (\mathcal{S}_+ \otimes \mathcal{S}_-) \oplus S^2\mathcal{S}_-$

$$\bigwedge^{2}(\mathcal{S}_{+}\oplus\mathcal{S}_{-})=\bigwedge^{2}\mathcal{S}_{+}\oplus(\mathcal{S}_{+}\otimes\mathcal{S}_{-})\oplus\bigwedge^{2}\mathcal{S}_{-}$$

§3 Supersymmetry

§3.1 Generalities

The Poincaré algebra is $\mathbb{R}^{s,t} \rtimes \mathfrak{so}(s,t)$, the semi-direct product of translations by rotations. Namely, $[P_a,P_b]=0$, $[M_{ab},P_c]=2ih_{c[a}P_{b]}$, and $[M_{ab},M^{cd}]=4ih_{[a}^{[c}M_{b]}^{d]}$.

Super-Poincaré algebra. Add supercharges in some spinor representation Q of the Poincaré algebra (so $[P_a,Q]=0$). Their anticommutator transforms in the representation S^2Q and should include the one-form P. Depending on s,t they can include other k-forms Z, called central charges because [P,Z]=[Z,Z]=0. The super-Poincaré algebra is $((\mathbb{R}^{s,t}\times Z).Q)\rtimes(\mathfrak{so}(s,t)\times R)$, where the R-symmetry acts on Q. This Lie superalgebra is graded: $\operatorname{gr}(\mathbb{R}^{s,t}\times Z)=-2$, $\operatorname{gr}(Q)=-1$, and $\operatorname{gr}(\mathfrak{so}(s,t)\times R)=0$. The supertranslations consist of $(\mathbb{R}^{s,t}\times Z).Q$.

Example: M-theory algebra. d=10+1 super-Poincaré algebra with Q= Majorana. Since S^2Q has 1, 2, and 5-forms, there are 2-form and 5-form central charges $Z_{(2)}$ and $Z_{(5)}$ (under which M2 and M5 branes are charged):

$$\{Q_{\alpha}, Q_{\beta}\} = (\gamma^{M} C)_{\alpha\beta} P_{M} + \frac{1}{2} (\gamma_{MN} C)_{\alpha\beta} Z_{(2)}^{MN} + \frac{1}{5!} (\gamma_{MNPQR} C)_{\alpha\beta} Z_{(5)}^{MNPQR}$$

Altogether the M-theory algebra is $\mathfrak{osp}(1|32)$.

Lorentzian superconformal algebras are the same as super AdS_{d+1} . The bosonic part is $\mathfrak{so}(d,2)$ and R-symmetries. As a supermatrix: $\begin{pmatrix} \mathfrak{so}(d,2) & Q+S \\ Q-S & R \end{pmatrix}$ or $\begin{pmatrix} R & Q+S \\ Q-S & \mathfrak{so}(d,2) \end{pmatrix}$. Note that $\{Q,S\}$ contains R. For d=2, the finite conformal algebra is $\mathfrak{so}(2,2)=\mathfrak{so}(2,1)\oplus\mathfrak{so}(2,1)$, sum of two d=1 algebras, so the superalgebra is sum of two d=1 superalgebras.

\overline{d}	Superalgebra	R-symm (compact)	#Q+#S
1	$\mathfrak{osp}(N 2)$	$\mathfrak{o}(N)$	2N
	$\mathfrak{su}(N 1,1)$	$\mathfrak{su}(N) \oplus \mathfrak{u}(1)$ for $N \neq 2$	4N
	$\mathfrak{su}(2 1,1)$	$\mathfrak{su}(2)$	8
	$\mathfrak{osp}(4^* 2N)$	$\mathfrak{su}(2) \oplus \mathfrak{usp}(2N)$	8N
	$\mathfrak{g}_{-14}(3)$	$\mathfrak{g}_{2(-14)}$	14
	$f^{0}(4)$	$\mathfrak{so}(7)$	16
	$\mathfrak{d}^0(2,1,\alpha)$	$\mathfrak{su}(2) \oplus \mathfrak{su}(2)$	8
3	$\mathfrak{osp}(N 4)$	$\mathfrak{so}(N)$	4N
4	$\mathfrak{su}(2,2 N)$	$\mathfrak{su}(N) \oplus \mathfrak{u}(1) \text{ for } N \neq 4$	8N
	$\mathfrak{su}(2,2 4)$	$\mathfrak{su}(4)$	32
5	$\mathfrak{f}^2(4)$	$\mathfrak{su}(2)$	16
6	$\mathfrak{osp}(8^* N)$	$\mathfrak{usp}(N)$ $(N \text{ even})$	8N

Dimensional reduction of Lorentzian supersymmetry algebras. The 1d column gives the number of real supercharges.

10d	6d	5d	4d	3d	2d	1d
$\mathcal{N} = (1,0)$	(1, 1)	2	4	8	(8, 8)	16
	(1,0)	1	2	4	(4, 4)	8
			1	2	(2, 2)	4

Supersymmetry on symmetric curved spaces $4d \mathcal{N} = 2$ supersymmetry on S^4 is $\mathfrak{osp}(2|4)$. $2d \mathcal{N} = (2,2)$ supersymmetry on S^2 is $\mathfrak{osp}(2|2)$.

§3.2 Explicit supersymmetry algebras

4d
$$\mathcal{N}=2$$
. $\{Q_{\alpha}^{A}, \overline{Q}_{\dot{\alpha}}^{B}\}=\epsilon^{AB}P_{\alpha\dot{\alpha}}; 0=\{Q_{\alpha}^{A}, Q_{\beta}^{B}\}=\{\overline{Q}_{\dot{\alpha}}^{A}, \overline{Q}_{\dot{\beta}}^{B}\}.$

3d $\mathcal{N}=2$. $\{Q_{\alpha},\overline{Q}_{\beta}\}=2\sigma_{\alpha\beta}^{\mu}P_{\mu}+2i\epsilon_{\alpha\beta}Z$ with $Z=P_3$ a central charge; $0=\{Q_{\alpha},Q_{\beta}\}=\{\overline{Q}_{\alpha},\overline{Q}_{\beta}\}.$

§3.3 Spin ≤ 1 supermultiplets

For 16 supercharges, there is only the vector multiplet.

For 8 supercharges, vector multiplet and hypermultiplet; in 3d and lower also twisted vector multiplet and twisted hypermultiplet.

For 4 supercharges, vector $(V = V^{\dagger})$ and chiral $(\overline{D}_{\dot{\alpha}}X = 0)$ multiplets; in 3d $\mathcal{N} = 2$ also linear multiplets $(\epsilon^{\alpha\beta}D_{\alpha}D_{\beta}\Sigma = 0 = \epsilon^{\alpha\beta}\overline{D}_{\alpha}\overline{D}_{\beta}\Sigma)$; in 2d $\mathcal{N} = (2,2)$ also twisted vector, twisted chirals, semichirals, . . .

For 2 supercharges, vector, chiral, linear, Fermi, ...

§3.4 Other supermultiplets

6d $\mathcal{N} = (2,0)$ tensor multiplet with self-dual two-form gauge field B (namely $dB = \star dB$), four spinors, five scalars.

6d $\mathcal{N}=(1,0)$ tensor multiplet (contains one scalar), reduces to 4d $\mathcal{N}=2$ vector.

6d $\mathcal{N}=(1,0)$ supergravity multiplet, reduces to 4d $\mathcal{N}=2$ supergravity multiplet and two vectors.

4d $\mathcal{N}=1$ supercurrent multiplet contains stress tensor and/or R-symmetry current; is a source for supergravity. Ferrara–Zumino supercurrent $\overline{D}^{\dot{\alpha}}J_{\alpha\dot{\alpha}}=D_{\alpha}X$ with $\overline{D}_{\dot{\alpha}}X=0$ contains stress tensor; sources old minimal supergravity. R-symmetry multiplet $\overline{D}^{\dot{\alpha}}R_{\alpha\dot{\alpha}}=\chi_{\alpha}, \ \overline{D}_{\dot{\alpha}}\chi_{\alpha}=0, \ D^{\alpha}\chi_{\alpha}=\overline{D}_{\dot{\alpha}}\overline{\chi}^{\dot{\alpha}}$ contains (conserved) R-symmetry current; sources new minimal supergravity. Komargodski–Seiberg multiplet [1002.2228] $\overline{D}^{\dot{\alpha}}S_{\alpha\dot{\alpha}}=\chi_{\alpha}+D_{\alpha}X$, with χ_{α} and X as above, contains both stress tensor and R-symmetry current and sources 16/16 supergravity.

§4 Supersymmetric (gauge) theories

§4.1 Maximal super Yang–Mills

Data: gauge group.

Lorentzian 10d $\mathcal{N}=1$ SYM is anomalous unless the gauge group is abelian. Its dimensional reductions are anomaly-free and have one gauge field, 10-d scalars and \mathcal{N} (symplectic or Majorana, and Weyl or not) spinors. The Lagrangian's R-symmetry Spin(10-d) is contained in the automorphism group of the superalgebra (they coincide for $d \geq 5$).

dim.	$\mathcal N$ spinors	autom. \supset R-sym.
10d	(1,0) MW	
9d	1 M	
8d	1 M	U(1) = Spin(2)
7d	1 s	USp(2) = Spin(3)
6d	(1,1) sW	$USp(2)^2 = Spin(4)$
5d	$2 \mathrm{s}$	USp(4) = Spin(5)
4d	4 M	$U(4) \supset Spin(6)$
3d	8 M	$Spin(8) \supset Spin(7)$
2d	(8,8) MW	$\operatorname{Spin}(8)^2 \supset \operatorname{Spin}(8)$
1d	16 M	$Spin(16) \supset Spin(9)$

4d $\mathcal{N}=4$ has exactly marginal parameter $\tau=\theta/(2\pi)+4\pi i/g^2$. Lagrangian theories are characterized by G but non-Lagrangian theories are not ruled out.

3d $\mathcal{N} = 8$ [0806.1218] Bagger-Lambert, ABJM

§4.2 Theories with 9 to 12 supercharges

4d $\mathcal{N}=3$ theories exist, always non-Lagrangian.

3d $\mathcal{N} = 5,6$ [0806.1218, 0807.4924] ABJM, ABJ

§4.3 Theories with 8 supercharges

6d $\mathcal{N} = (1,0)$ UV-complete Lagrangian gauge theories classified in [1502.05405, 1502.06594].

5d $\mathcal{N} = 1$ **SCFTs** built from 5-brane diagrams or UV fixed point of gauge theory.

 $\mathrm{SU}(2N)$ SYM with $N_f \leq 7$ fundamental hypermultiplets has $\mathrm{SO}(2N_f) \times \mathrm{U}(1)_T \subset \mathrm{E}_{N_f+1}$ flavour symmetry enhancement. For $\mathrm{SU}(2)$ and $N_f = 0$, non-trivial " θ " in $\pi_4(\mathrm{SU}(2)) = \mathbb{Z}_2$ gives the \widetilde{E}_1 theory with $\mathrm{U}(1)_T$ symmetry only.

4d $\mathcal{N}=2$ gauge theories classified in [1309.5160]: $SU(2)^n$ gauge group with trifundamental hypermultiplets; quiver in the shape of a (possibly single-node) Dynkin or affine Dynkin diagram; finitely many exceptions.

4d $\mathcal{N}=2$ generalities

There can be no continuous flavour symmetry enhancement.

The theory on $\mathbb{R}^4_{\epsilon_1,0}$ (Nekrasov–Shatashvili limit) \leftrightarrow quantum integrable system with Planck constant ϵ_1 .

Coulomb moduli \leftrightarrow action variables.

Supersymmetric vacua \leftrightarrow eigenstates.

Lift to $\mathbb{R}^4 \times S^1$ gives K-theoretic Nekrasov partition function. The 5d theory \leftrightarrow relativistic version of the integrable system.

4d $\mathcal{N}=2$ (G,G') Argyres–Douglas theories (with G and G' among A_k , D_k , $E_{6,7,8}$) are engineered as IIB strings on three-fold singularity $f_G(x_1,x_2)+f_{G'}(x_3,x_4)=0$ where $f_{A_k}(x,y)=x^2+y^{k+1}$ etc. (see page 2).

3d $\mathcal{N}=4$ has $\mathrm{SU}(2)_C\times\mathrm{SU}(2)_H$ R-symmetry acting on the Coulomb and Higgs branch. Both branches are hyper-Kähler and the $\mathrm{SU}(2)$ rotates their \mathbb{CP}^1 worth of complex structures. Denote $\mathrm{T}\subset\mathrm{G}$ the Cartan torus. The Coulomb branch is a holomorphic Lagrangian fibration $\mathcal{M}_C\to\mathfrak{t}_\mathbb{C}/\mathrm{Weyl}$ with generic fiber $\mathrm{T}^\vee_\mathbb{C}\simeq(\mathbb{C}^*)^{\mathrm{rank}\,\mathrm{G}}$. Its classical $\mathrm{Hom}(\pi_1(\mathrm{G}),\mathrm{U}(1))$ topological flavour symmetry can be enhanced quantum mechanically.

Example: $\boxed{\mathrm{SU}(N)}$ — $\boxed{\mathrm{U}(N-1)}$ — \cdots — $\boxed{\mathrm{U}(2)}$ — $\boxed{\mathrm{U}(1)}$ (edges denote bifundamental hypermultiplets) is the $T[\mathrm{SU}(N)]$ theory. Its manifest $\mathfrak{su}(N) \times \mathfrak{u}(1)^{N-1}$ flavour symmetry enhances to $\mathfrak{su}(N)^2$. The T[G] theory has flavour symmetry $G \times^L G$ acting on Higgs and Coulomb branch respectively. Mirror symmetry exchanges $G \leftrightarrow^L G$. Gauging G and G with two 4d vector multiplets realizes the S-duality domain wall of 4d $\mathcal{N}=4$ SYM [0804.2902].

2d $\mathcal{N}=(4,4)$ gauge theories. Typically get in the IR a direct sum of 2d $\mathcal{N}=(4,4)$ SCFTs (from the Coulomb and Higgs branches) whose central charges are different. Their $SU(2) \times SU(2)$ left/right-moving R-symmetries are different.

§4.4 Theories with 4 supercharges

Superspace $\mathbb{R}^{4|4} \ni (x^m|\theta^{\alpha}, \overline{\theta}^{\dot{\alpha}})$ in $(2,2) \oplus (2,1) \oplus (1,2)$ of $\mathfrak{so}(1,3)$ or $\mathfrak{so}(4) = \mathfrak{su}(2)^2$. Supercharges $Q_{\alpha} = \partial_{\theta^{\alpha}} - i\sigma_{\alpha\dot{\alpha}}^m \overline{\theta}^{\dot{\alpha}} \partial_{x^m}$ and $\overline{Q}_{\dot{\alpha}} = -\partial_{\overline{\theta}^{\dot{\alpha}}} + i\sigma_{\alpha\dot{\alpha}}^m \theta^{\alpha} \partial_{x^m}$ obey $\{Q_{\alpha}, \overline{Q}_{\dot{\alpha}}\} = 2i\sigma_{\alpha\dot{\alpha}}^m \partial_{x^m}$. They commute with superderivatives D_{α} and $\overline{D}_{\dot{\alpha}}$ obtained by $\sigma \leftrightarrow -\sigma$. Note $\overline{Q}_{\dot{\alpha}} = \mathrm{e}^{-A}\overline{D}_{\dot{\alpha}}\mathrm{e}^A$ for $A = 2i\theta\sigma^m \overline{\theta} \partial_{x^m}$; likewise D_{α} is conjugate to Q_{α} .

4d $\mathcal{N}=1$ pure SYM classically has $\mathrm{U}(1)_R$ symmetry, broken by instantons to \mathbb{Z}_{2h} with $h=C_2(\mathrm{adj})$. It confines, is mass-gapped, and has $C_2(A)$ vacua associated to breaking \mathbb{Z}_{2h} to \mathbb{Z}_2 by gaugino condensation $\langle \lambda \lambda \rangle$. Witten index $\mathrm{Tr}(-1)^F=h$. $W_\alpha=-\frac{1}{4}\overline{D}\overline{D}\mathrm{e}^{-V}D_\alpha\mathrm{e}^V$ and $\overline{W}_\alpha=-\frac{1}{4}DD\mathrm{e}^{-V}\overline{D}_\alpha\mathrm{e}^V$ field strength.

Wess-Zumino model: chiral multiplet ϕ with superpotential $W = m\phi^2 + g\phi^3$.

3d
$$\mathcal{N} = 2 \text{ [hep-th/9703110]}$$

In Abelian theories or (only approximately) deep in the Coulomb branch, the dual photon γ (a periodic real scalar) is defined by $d\gamma = J_T = \star F$ where J_T is the topological current. Chiral superfield $\Phi = \phi + i\gamma$ where ϕ is the vector multiplet scalar.

Field strength $\Sigma = \epsilon^{\alpha\beta} \overline{D}_{\alpha} D_{\beta} V$.

$$Z_{S^3} = \int_{\mathfrak{t}} \mathrm{d} u \, \frac{\prod_{\alpha \, \mathrm{root}} (2 \sinh(\alpha u/2))^2}{\prod_{w \in \mathcal{R}} \cosh(w u/2)} \mathrm{e}^{\mathrm{i} k \, \mathrm{Tr} \, u^2/(4\pi)}$$

2d $\mathcal{N}=(2,2)$. Classical U(1) × U(1) R-symmetry. The axial U(1) R-symmetry has an anomaly with U(1) gauge symmetry proportional to the total charge under that gauge symmetry.

The gauge field strength is a twisted chiral multiplet Σ .

Integrating out massive chirals gives a twisted superpotential $-\operatorname{Tr}_R(\Sigma\log(\Sigma/\mu)-\Sigma)$ where Σ combines gauge field strength and twisted masses. FI parameters (twisted superpotentials linear in Σ) thus run as $\log(\mu)$ times the sum of charges.

Twisted chiral ring relations: $\partial W/\partial \Sigma_i \in 2\pi i\mathbb{Z}$.

1d
$$\mathcal{N}=4$$

Data: gauge group G, representation V of G for chiral multiplets. Gauge couplings, FI parameters, superpotential W. Flavour Wilson line, twisted and real masses $v, m_1 + im_2, m_3 \in \mathfrak{g}_F$ that commute.

R-symmetry: SU(2), times U(1) if W has charge 2.

§4.5 Theories with 2 supercharges

3d N = 1

2d $\mathcal{N} = (0, 2)$

2d $\mathcal{N} = (1,1)$

1d $\mathcal{N}=2$

Discrete data: gauge group G, chiral multiplets in a representation V of G, Wilson line in a unitary representation $M=M_0\oplus M_1$ of \mathfrak{g} , flavour symmetry group $G_F\subseteq \mathrm{U}(V)\times \mathrm{U}(M_0)\times \mathrm{U}(M_1)$ commuting with G. Gauge anomaly cancellation: $M\otimes \det^{1/2}V$ must be a representation of G.

Continuous data: gauge couplings, FI parameters, flavour Wilson line and real mass $v, \sigma \in \mathfrak{g}_F$ that commute, \mathfrak{g} -equivariant holomorphic odd map $Q \colon V \to \operatorname{End} M$ with $Q^2 = 0$ describing how supercharges act on M.

Special case: Fermi multiplets in representation $V_{\rm f}$ of G with G-equivariant holomorphic maps $E\colon V\to V_{\rm f}$ and $J\colon V\to V_{\rm f}^\vee$ obeying $J\cdot E=0$ are equivalent to Wilson line in $M=\wedge V_{\rm f}\otimes \det^{-1/2}V_{\rm f}$ with $Q=E\wedge +J \perp$.

R-symmetry: U(1) if $Q: V \to \text{End } M$ has charge 1. Mixing with flavour symmetries not fixed by superconformal algebra.

NLSM Chiral multiplet: scalar ϕ in a Kähler target X and fermion in holomorphic bundle ϕ^*T_X . Wilson line depends on a complex of vector bundles \mathcal{F} . Fermi multiplet takes values in a holomorphic vector bundle \mathcal{E} with hermitian metric, equivalent to Wilson line with $\mathcal{F} = \det^{-1/2} \mathcal{E} \otimes \wedge \mathcal{E}$. Anomaly cancellation: $\sqrt{K_X} \otimes \wedge T_X \otimes \det^{-1/2} \mathcal{E} \otimes \wedge \mathcal{E} \otimes \mathcal{F}$ is a well-defined vector bundle on X.

§5 Other theories

Chern-Simons (2m-1)-form $m \operatorname{Tr} \left(A \int_0^1 \mathrm{d}t (t \mathrm{d}A + t^2 A^2)^{m-1} \right)$.

§5.1 2d conformal field theories

Virasoro algebra Vir_c, $c \in \mathbb{R}$: generators L_m , $m \in \mathbb{Z}$ obey $[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3-m)\delta_{m+n,0}$ and $L_n^{\dagger} = L_{-n}$. $\mathcal{N} = 1$ super-Virasoro algebra additionally $[L_m, G_r] = (m/2 - r)G_{m+r}$ and $\{G_r, G_s\} = 2L_{r+s} + \frac{c}{2}(r^2 - 1/4)\delta_{r+s,0}$

 $(m/2-r)G_{m+r}$ and $\{G_r,G_s\}=2L_{r+s}+\frac{c}{3}(r^2-1/4)\delta_{r+s,0}$ where either $r\in\mathbb{Z}$ (Ramond algebra) or $r\in\mathbb{Z}+1/2$ (Neveu–Schwarz algebra). Adjoint $G_r^{\dagger}=G_{-r}$.

 $\mathcal{N}=2 \text{ super-Virasoro algebra } [L_m,J_n]=-nJ_{m+n}, \\ [J_m,J_n]=\frac{c}{3}m\delta_{m+n,0}, [L_m,G_r^\pm]=(m/2-r)G_{m+r}^\pm, \\ [J_m,G_r^\pm]=\pm G_{m+r}^\pm, \{G_r^+,G_s^+\}=\{G_r^-,G_s^-\}=0, \\ \{G_r^+,G_s^-\}=L_{r+s}+\frac{1}{2}(r-s)J_{r+s}+\frac{c}{6}(r^2-1/4)\delta_{r+s,0}. \\ \text{Adjoint } L_{\pi}^{\dagger}=L_{-m}, J_{\pi}^{\dagger}=J_{-m}, (G_r^\pm)^{\dagger}=G_{-r}^\mp, c^{\dagger}=c. \text{ The algebras with } r\in\mathbb{Z} \text{ (Ramond) or } r\in\mathbb{Z}+1/2 \text{ (Neveu–Schwarz)} \\ \text{are isomorphic under spectral shift } \alpha_{\pm 1/2} \text{ where } \alpha_{\eta}(L_n)=L_n+\eta J_n+\frac{c}{6}\eta^2\delta_{n,0}, \ \alpha_{\eta}(J_n)=J_n+\frac{c}{3}\eta\delta_n, \ \alpha_{\eta}(G_r^\pm)=G_{r\pm\eta}^\pm. \\ \text{Another automorphism is } G_r^+\leftrightarrow G_r^-, J_m\mapsto -J_m-\frac{c}{3}\delta_{m,0}. \text{ We get a } \mathbb{Z} \rtimes \mathbb{Z}_2 \text{ automorphism group.}$

SW(3/2,2) super-Virasoro algebra has $L,\,G,\,W,\,U$ bc system

 $\beta \gamma$ system

Liouville CFT has $c = 1 + 6(b+1/b)^2$ and primary operators with $h(\alpha) = \alpha(b+1/b-\alpha)$ for "momentum" $\alpha \in \frac{1}{2}(b+1/b)+i\mathbb{R}$.

Minimal model $\mathcal{M}_{p,q}$ for p > q coprime is a quotient of $b = i\sqrt{p/q}$ Liouville CFT. It has $c = 1 - \frac{6(p-q)^2}{pq}$ and primary operators with $h_{r,s} = \frac{(ps-qr)^2 - (p-q)^2}{4pq}$ for 0 < r < p and 0 < s < q; no degeneracy besides $h_{r,s} = h_{p-r,q-s}$. Example: Ising model $\mathcal{M}_{4,3}$, tricritical Ising model $\mathcal{M}_{5,4}$, Yang-Lee singularity $\mathcal{M}_{5,2}$.

Unitary minimal model $\mathcal{M}_{k+2,k+1}$ is coset $\frac{\hat{\mathfrak{su}}(2)_{k-1} \times \hat{\mathfrak{su}}(2)_1}{\hat{\mathfrak{su}}(2)_k}$

 $\mathcal{N}=2$ minimal models have an ADE classification; the A_k has c/3=1-2/(k+2) and is the IR limit of a Landau–Ginzburg model with $W=\Phi^{k+2}$ superpotential.

§5.2 3d gauge theories

Chern–Simons term $S_{\text{CS}} = \frac{1}{2\pi} \int_M \mathrm{d}^3 x \operatorname{Tr} \left(A \mathrm{d}A + 2A^3/3 \right) \right)$ for a trivial G-bundle; otherwise realize A as boundary of an A_{4d} on some 4d manifold X with $M = \partial X$ and use $S_{\text{CS}} = \frac{1}{8\pi} \int_X \mathrm{d}^4 x \operatorname{Tr}(F \wedge F)$. This gives a TQFT (topological quantum field theory).

Magnetic global symmetry $G_{\text{mag}} = \text{Hom}(\pi_1(G), \text{U}(1))$. Gauging discrete $\Gamma \subset G_{\text{mag}}$ enlarges gauge group G to a covering with $\tilde{G}/\Gamma = G$. Explicit "topological" current $J = \star \text{d}A/(2\pi)$ for G = U(1).

Contact term in $\langle JJ \rangle$ where J is a conserved current in 3d: $\langle J_{\mu}(x)J_{\nu}(y)\rangle = \cdots + \frac{w}{2\pi}\epsilon_{\mu\nu\rho}\partial_{x^{\rho}}\delta^{3}(x-y)$ for some w.

Action of $SL(2,\mathbb{Z})$ [hep-th/0307041] on 3d CFTs with U(1) flavour symmetry (current J). $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ gauges the U(1) but gives no kinetic energy to A; $T^k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ shifts background Chern–Simons level by k, equivalently adds contact term to $\langle JJ \rangle$, where $k \in 2\mathbb{Z}$ if the manifold has no spin structure. Relations: $S^2 \colon J \to -J$ simply, while $(ST)^3$ multiplies path integral by theory-indepedent topological invariant of M.

§5.3 Supergravity and strings

String actions Polyakov action $L_{\rm P} = \lambda^{mn} [(\partial_m X)(\partial_n X) - g_{mn}] + \frac{1}{\alpha'} \sqrt{-g}$. Using equations of motion get Nambu–Goto action $L_{\rm NG} = \frac{1}{\alpha'} \sqrt{-\det[(\partial_m X)(\partial_n X)]}$ or [inspire:109550] action $L_{\rm BdVHDZ} = \frac{1}{2\alpha'} \sqrt{-g} [g^{mn}(\partial_m X)(\partial_n X) - (d-2)]$ with d=2 the world-sheet dimension.

Pure supergravities in $4 \le d \le 11$. Gravity is topological in d = 3. The maximum number of supercharges Q = 32 forbids d > 11. A priori, all Q = 4k are possible. Focus on 32, 16, 8, 4.

d	Q = 32	16	8	4
11	√			
10	(2,0) (1,1)	$(1,0)^{\ddagger}$		
9	(2,0) (1,1) ✓	(1,0) ✓		
8	\checkmark	\checkmark		
7	✓	✓		
6	(2, 2)	(2,0) $(1,1)$	(1,0)	
5	✓	√	\checkmark	
4	N = 8	N = 4	N=2	N=1

 ‡ 10d (1,0) supergravity ("type I") has a gravitational anomaly [inspire:192309]. (Perhaps 6d (2,0) or (1,0) supergravity too?)

M-theory has as its low-energy limit 11d supergravity, which has two $\frac{1}{2}$ -BPS membrane solutions (with 16 Killing spinors): M2-brane $\mathrm{d}s^2 = \Lambda^4\,\mathrm{d}x^2 + \frac{\mathrm{d}y^2}{\Lambda^2}$ with $\Lambda = (1 + \frac{c_2N_2l^6}{|y|^6})^{-1/6}$, and M5-brane $\mathrm{d}s^2 = \Lambda\,\mathrm{d}x^2 + \mathrm{d}y^2/\Lambda^2$ with $\Lambda = (1 + \frac{c_5N_5l^3}{|y|^3})^{-1/3}$, where $x \in \mathbb{R}^{p,1}$ and $y \in \mathbb{R}^{10-p}$. In the near horizon $y \to 0$ these become $\mathrm{AdS}_4 \times S^7$ and $\mathrm{AdS}_7 \times S^4$ with 32 Killing spinors.

Branes IIA strings: D0, F1 (strings), D2, D4, O4[±], $\widetilde{O4}^+$, NS5, D6, D8 (wall), O8 (wall), etc.. IIB strings: D(-1), F1 (strings), D1, D3, (p,q) 5-branes (includes D5 and NS5), O5[±], $\widetilde{O5}^+$, D7, O7[±], ON⁰, etc.. M-theory: M2, M5, OM5, M9.

Flat space brane configurations Flat space preserves 32 supercharges. One stack of parallel branes breaks half; two stacks break all unless: Dp and Dq have 0, 4 or 8 directions that one brane spans and not the other; Dp branes have 1 or 3 directions transverse to any NS5; any pair of NS5 branes has 2, 4, 6 common directions. Kappa-projection: for Dp is $\Gamma_{01...p}\epsilon_L=\epsilon_R$, for NS5 is $\Gamma_{01...5}\epsilon_L=\epsilon_L$. Then at least $32/2^{\#\text{stacks}}$ supercharges preserved.

S-rule, brane creation Let a $\mathrm{D}p$ have 3 directions transverse to an NS5. Zero or one $\mathrm{D}(p-2)$ can stretch between the two (spanning common directions and directions where neither $\mathrm{D}p$ nor NS5 stretch). Moving $\mathrm{D}p$ through NS5 toggles between zero and one.

Little string theory (LST) Decoupled $g_s \to 0$, fixed α description of k coincident NS5 branes on transverse T^5 gives (1,1) LST for IIB and (2,0) LST for IIA. Has AdS/CFT dual with linear dilaton background.

§5.4 Integrable models

Relativistic quantum Toda chain. $H = \sum_{n=1}^{N} (\cos(2\eta \hat{p}_n) + g^2 \cos(\eta \hat{p}_n + \eta \hat{p}_{n+1}) e^{x_{n+1} - x_n})$. Its non-relativistic limit is $\eta \to 0$ imaginary with $g/(i\eta\sqrt{2}) = c$ fixed.

§6 Dualities

§6.1 4d $\mathcal{N} = 1$ dualities

IR duality: the "electric" theory A has the same IR limit as the "magnetic" theory B: TQFT, SCFT, free theory, infinite flow, or sum of products thereof.

Gauge-invariant chirals \mathcal{O} of trial R-charge $\leq 2/3$ are free and of true IR R-charge 2/3 thanks to mixing with accidental $\mathfrak{u}(1)$ acting on \mathcal{O} . Other view: given a term δW , trial R-charge obeys $R(\delta W)=2$ but true R-charge maybe $R(\delta W)>2$; then δW is irrelevant and leaves some chiral free.

Typical evidence: global symmetries, 't Hooft anomaly matching, moduli space of vacua, chiral rings, behaviour of these under F-term deformations, superconformal index $(S_b^3 \times S^1)$ partition function).

Seiberg duality [hep-th/9411149] SU(F) Q SU(C) Q SU(F) dual to SU(F) Q SU(F) with $W = Tr(M\tilde{q}q)$ and $C' = F - C \ge 0$ (here $SU(1) = SU(0) = \{1\}$).

Non-anomalous global symmetries $\mathfrak{su}(F)^2 \times \mathfrak{u}(1)_B \times \mathfrak{u}(1)_R$ coincide, where $(Q, \tilde{Q}), M, (\tilde{q}, q)$ have $\mathfrak{u}(1)_B$ charges $\pm \frac{1}{C}, 0, \pm \frac{1}{F-C}$ and trial $\mathfrak{u}(1)_R$ charges $\frac{F-C}{F}, 2\frac{F-C}{F}, \frac{C}{F}$.

- For $0 \le C \le F/3$ the SU(C) theory is IR-free.
- For F/3 < C < 2F/3 flow to SCFT.
- For $2F/3 \le C \le F$ the SU(C') theory is IR-free.
- For 0 < F < C supersymmetry is broken.

Gauge-invariants match: mesons $M^{j}{}_{i} = \tilde{Q}^{j}Q_{i}$; (anti)baryons $B_{\mathcal{A}} = \bigwedge_{i \in \mathcal{A}} Q_{i} \leftrightarrow \bigwedge_{i \notin \mathcal{A}} \tilde{q}^{i}$ and $\tilde{B}_{\mathcal{A}} = \bigwedge_{j \in \mathcal{A}} \tilde{Q}^{j} \leftrightarrow \bigwedge_{j \notin \mathcal{A}} q_{j}$ for $\mathcal{A} \subset [\![1,F]\!]$ with $|\mathcal{A}| = C$. Relation $\tilde{B}_{\mathcal{A}'}B_{\mathcal{A}} = \det(M^{j}{}_{i})_{i \in \mathcal{A}}^{j \in \mathcal{A}'}$ of $\mathrm{SU}(C)$ theory only holds quantumly in $\mathrm{SU}(C')$ theory.

A mass term $W = m\tilde{Q}_FQ_F$ decouples a flavour $(F \to F - 1)$ and Higgses $\mathrm{SU}(C')$ to $\mathrm{SU}(C'-1)$. Dually, Higgsing $\mathrm{SU}(C)$ to $\mathrm{SU}(C-1)$ using $\langle \tilde{Q}_FQ_F \rangle \to \infty$ (so $F \to F - 1$) gives mass to q_F , \tilde{q}_F and leaves $\mathrm{SU}(C')$ fixed.

SO: $\boxed{\mathrm{SU}(F)} \stackrel{Q}{\leftarrow} (\mathrm{SO}(C))$ dual to $M \stackrel{Q}{\leftarrow} (\mathrm{SU}(F)) \stackrel{q}{\leftarrow} (\mathrm{SO}(C'))$ with C' = F - C + 4 and W = Mqq (we assume $C, C' \geq 4$).

Non-anomalous global symm. $\mathfrak{u}(1)_R \times (\mathrm{SU}(F) \times \mathbb{Z}_{2F})/\mathbb{Z}_{F,\mathrm{diag}};$ $Q,\ M,\ q$ have trial $\mathfrak{u}(1)_R$ charges $\frac{F-C+2}{F},\ 2\frac{F-C+2}{F},\ \frac{C-2}{F}$ and are $\overline{\square}$, sym² $\overline{\square}$, \square under SU(F), while \mathbb{Z}_{2F} acts by $Q \to \mathrm{e}^{\pi\mathrm{i}/F}Q$, $q \to C\mathrm{e}^{-\pi\mathrm{i}/F}q$ with $\mathcal C$ charge conjugation.

- For F/3 < C 2 < 2F/3 flow to SCFT.
- For $2F/3 \le C 2 \le F 2$ the SU(C') theory is IR-free.
- For $F + 5 \le C$ supersymmetry is broken.

Gauge-invariants match: mesons $M_{(ij)} = Q_i Q_j$; field strength $W_{\mathcal{A},\alpha} = W_{\alpha} \wedge \bigwedge_{i \in \mathcal{A}} Q_i \leftrightarrow W_{\alpha} \wedge \bigwedge_{i \notin \mathcal{A}} q^i$ for $|\mathcal{A}| = C - 2$ flavours; baryons $B_{\mathcal{A}} = \bigwedge_{i \in \mathcal{A}} Q_i \leftrightarrow W_{\alpha} \wedge W_{\alpha} \wedge \bigwedge_{i \notin \mathcal{A}} q^i$ for $|\mathcal{A}| = C$ and $b_{\mathcal{A}} = W_{\alpha} \wedge W_{\alpha} \wedge \bigwedge_{i \in \mathcal{A}} Q_i \leftrightarrow \bigwedge_{i \notin \mathcal{A}} q^i$ for $|\mathcal{A}| = C - 4$.

Self-duality in the SU, SO, USp dualities for F = 2C, 2C - 4, 2C + 2 respectively, namely $C(R_{\text{chirals}}) = 2C(\text{adj})$; adding an adjoint gives $\mathcal{N} = 2$ SCFTs.

Kutasov–Schwimmer–Seiberg duality [hep-th/9510222] $\underbrace{SU(F)}_{Q} \underbrace{\tilde{S}U(C)}_{Q} \underbrace{\tilde{S}U(F)}_{Q} \underbrace{dual}_{M_{1},...,M_{k}} \underbrace{\tilde{g}}_{M_{1},...,M_{k}} \underbrace{\tilde{g}}_{M_{1},...,M_{k$

for $W_{\rm el}={\rm Tr}\,P(X)=\sum_{j=1}^{k+1}s_{k+1-j}\,{\rm Tr}\,X^j/j$ (with $s_1=0$) and $W_{\rm mag}=\alpha(s)-{\rm Tr}\,P(x)+\frac{1}{\mu^2}\sum_{1\leq i\leq j\leq k}s_{k-j}M_i\tilde{q}x^{j-i}q$, for some function α and mass μ . Here, $C'=kF-C\geq 0$.

Non-anomalous global symmetries $\mathfrak{su}(F)^2 \times \mathfrak{u}(1)_B \times \mathfrak{u}(1)_R$ where $(Q, \tilde{Q}), X, (q, \tilde{q}), x$ have $\mathfrak{u}(1)_B$ charges $\pm \frac{1}{C}, 0, \pm \frac{1}{C'}, 0$ and $\mathfrak{u}(1)_R$ charges $1 - \frac{2C}{(k+1)F}, \frac{2}{k+1}, 1 - \frac{2C'}{(k+1)F}, \frac{2}{k+1}$.

Gauge-invariants: mesons $M_j = \tilde{Q}X^{j-1}Q$; baryons $B_{\mathcal{A}} = \bigwedge_{(i,j)\in\mathcal{A}}(X^{j-1}Q_i) \leftrightarrow \bigwedge_{(i,j)\notin\mathcal{A}}(x^{j-1}q_i)$ and antibaryons $\tilde{B}_{\mathcal{A}} = \bigwedge_{(i,j)\in\mathcal{A}}(\tilde{Q}_iX^{j-1}) \leftrightarrow \bigwedge_{(i,j)\notin\mathcal{A}}(\tilde{q}_ix^{j-1})$ for $\mathcal{A} \subset \llbracket 1,F \rrbracket \times \llbracket 1,k \rrbracket$ with $|\mathcal{A}| = C$; and $\operatorname{Tr} X^j/j = \partial W/\partial s_{k+1-j} = \partial W_{\operatorname{mag}}/\partial s_{k+1-j}$ expressed in terms of $\operatorname{Tr} x^i$ (for this, $\alpha(s)$ matters); ...

Aharony–Sonnenschein–Yankielowicz [hep-th/9504113] SU(C) with F flavours (Q, \tilde{Q}) , F' flavours (Z, \tilde{Z}) and an adjoint X, with $W_{\rm el} = \tilde{Z}XZ + {\rm Tr}\,X^3/3$ is dual to SU(2F+F'-C) with F+F' flavours $q, \tilde{q}, z, \tilde{z}$, an adjoint x, gauge singlets M_j , N, \tilde{N} and $W_{\rm mag} = \tilde{z}xz + {\rm Tr}\,x^3/3 + M_1\tilde{q}xq + M_2\tilde{q}q + N\tilde{z}q + \tilde{N}\tilde{q}z$. Duality likely generalizes to $W = {\rm Tr}\,P(X) + \sum_i \tilde{Z}_i X^{k_i} Z_i$ with an SU $(F \deg P + \sum_i k_i - C)$ dual.

Other 4d $\mathcal{N}=1$ dualities Brodie, Intriligator–Pouliot, Argyres–Intriligator–Leigh–Strassler, Klebanov cascade, Intriligator–Leigh–Strassler, Kutasov–Lin.

$\S6.2$ 3d dualities

We recall Sp(n) = USp(2n).

Level-rank duality of Chern–Simons TQFTs (proven). For $k, N \geq 0$, have $\mathrm{U}(k)_{\pm N} \leftrightarrow \mathrm{SU}(N)_{\mp k}$, $\mathrm{SO}(k)_{\pm N} \leftrightarrow \mathrm{SO}(N)_{\mp k}$, $\mathrm{Sp}(k)_{\pm N} \leftrightarrow \mathrm{Sp}(N)_{\mp k}$ but subtleties [1607.07457].

Chern–Simons matter dualities [1706.08755] where scalars and fermions are in \mathbb{C}^N for $\mathrm{U}(N)$, \mathbb{R}^N for $\mathrm{SO}(N)$, $?^{2N}$ for $\mathrm{Sp}(N)$, and scalars have quartic coupling. Assuming N, k, F, \pm obey $N \in \mathbb{Z}_{\geq 0}$, $F/2 \pm k \in \mathbb{Z}_{\geq 0}$ and an unknown upper bound $F < N_*$ greater than 2|k|, conjectured dualities (modified for $\mathrm{SO}(1)$ and $\mathrm{SO}(2)$, see reference):

- $SU(N)_k$ & F fermions $\leftrightarrow U(F/2 \pm k)_{\mp N}$ & F scalars;
- $SO(N)_k$ & F fermions $\leftrightarrow SO(F/2 \pm k)_{\mp N}$ & F scalars;
- $\operatorname{Sp}(N)_k \& F \text{ fermions} \leftrightarrow \operatorname{Sp}(F/2 \pm k)_{\mp N} \& F \text{ scalars}.$

Denote $X=\mathrm{SU},\mathrm{SO},\mathrm{Sp}$ and $X'=\mathrm{U},\mathrm{SO},\mathrm{Sp}$ to uniformize cases. Turn on equal mass m for all fermions. For $\mp m \gg g^2$ the theory flows to $X(N)_{k\mp F/2} \leftrightarrow X'(|k\mp F/2|)_{-\operatorname{sign}(k\mp F/2)N}$. If $F\leq 2|k|$ the (only) bosonic dual has the same two phases. If $2|k| < F < N_*$ a confining phase sits between these phases; each bosonic dual describes two of the three phases. In the confining phase the global symmetry breaks to $Y(F/2+k) \times Y(F/2-k) \subset Y(F)$, giving an NLSM on the quotient and N times the Wess–Zumino term. Here Y is Sp for SU(2) and otherwise \tilde{X} .

Integrating out one fermion of large mass m shifts $F \to F-1$. For $\mp m > 0$ get $k \to k+1/2$; the dual scalar becomes massive and k+F/2 is unchanged. For $\pm m > 0$ get $k \to k-1/2$; the dual scalar has Mexican potential so $k+F/2 \to k+F/2-1$. With scalars and fermions [1712.00020, 1712.04933] (less firm footing). Denote " ϕ " and " ψ " for scalars and fermions, let (X, X') be one of (SU, U), (SO, SO), (Sp, Sp), and assume $0 \le S \le N$, $0 \le F \le k$ and additionally $(S, F) \ne (N, k)$ for (X, X') = (SU, U) and $S + F + 3 \le N + k$ for SO. The duality is then $X(N)_{k-F/2}$, $S\phi$, $F\psi \leftrightarrow X'(k)_{-N+S/2}$, $F\phi$, $S\psi$.

§6.3 Field theory dualities

2d $\mathcal{N} = (0, 2)$ Gadde-Gukov-Putrov triality (IR).

2
d $\mathcal{N}=(2,2)$ mirror symmetry of Calabi–Yau sigma models (exact).

2d $\mathcal{N} = (2, 2)$ Hori–Tong (SU), Hori (Sp. SO groups), plus adjoint (ADE-type and $(2, 2)^*$ -like) dualities (IR).

2d $\mathcal{N}=(2,2)$ Hori–Vafa/Hori–Kapustin duality of gauged linear sigma models and Landau–Ginzburg models (IR).

3d Chern-Simons level-rank duality.

3d $\mathcal{N}=2$ Aharony, Giveon–Kutasov, Aharony–Fleischer dualities (IR).

 $3d \mathcal{N} = 2$ and $\mathcal{N} = 4$ mirror symmetry exchanging Coulomb and Higgs branches (IR).

S-duality of 4d $\mathcal{N} = 2$ gauge theories (exact).

S-duality of 4d $\mathcal{N} = 4$ SYM (exact).

§6.4 String theory dualities

In this table "type IIA" etc. refer to string theories not supergravities

F-theory on K3	$\Leftrightarrow E_8 \times E_8$ heterotic on T^2
M-theory on K3	\Leftrightarrow heterotic or type I on T^3
Type IIA on K3	\Leftrightarrow heterotic or type I on T^4
M-theory on G ₂ -manifolds ¹	\Leftrightarrow heterotic or type I on CY ₃
M-theory on $K3^2$	\Leftrightarrow type IIA on T^3/\mathbb{Z}_2

§7 Manifolds

§7.1 Pseudo-Riemannian geometry

 $\begin{array}{l} T_{\ldots\lambda[\mu_1\ldots\mu_m]\nu\ldots}=m!^{-1}\sum_{\sigma\in S_m}\epsilon(\sigma)T_{\ldots\lambda\mu_{\sigma(1)}\ldots\mu_{\sigma(m)}\nu\ldots} \text{ antisymmetrization, where }\epsilon(\sigma)=\pm 1 \text{ is the signature of the permutation; symmetrization }T_{\ldots\lambda(\mu_1\ldots\mu_m)\nu\ldots} \text{ is without }\epsilon. \end{array} \label{eq:total_constraint} \begin{array}{l} \sum_{\sigma\in S_m}\epsilon(\sigma)T_{\ldots\lambda\mu_{\sigma(1)}\ldots\mu_{\sigma(m)}\nu\ldots} \text{ antisymmetrization }T_{\ldots\lambda(\mu_1\ldots\mu_m)\nu\ldots} \text{ is without }\epsilon. \end{array}$ Derivatives: $\partial_\mu=\partial/\partial x^\mu \text{ and }T^{\nu_1\ldots\nu_n}_{\rho_1\ldots\rho_r,\mu_1\ldots\mu_m}=\partial_{\mu_1}\cdots\partial_{\mu_m}T^{\nu_1\ldots\nu_n}_{\rho_1\ldots\rho_r} \text{ and }T^{\nu_1\ldots\nu_n}_{\rho_1\ldots\rho_r};\mu_1\ldots\mu_m=\nabla_{\mu_1}\cdots\nabla_{\mu_m}T^{\nu_1\ldots\nu_n}_{\rho_1\ldots\rho_r} \text{ (namely ";" is ∇)}. \end{array}$

Connection $\nabla = \partial + \Gamma$ in terms of Christoffel symbols Γ . $T_{\rho_1...;\mu}^{\nu_1...;\mu} = T_{\rho_1...,\mu}^{\nu_1...;\mu} + (T_{\rho_1...}^{\lambda\nu_2...}\Gamma^{\nu_1}{}_{\lambda\mu} + \cdots) - (T_{\lambda\rho_2...}^{\nu_1...}\Gamma^{\lambda}{}_{\rho_1\mu} + \cdots)$ for a tensor. In particular, $\nabla_{\mu}v^{\nu} = \partial_{\mu}v^{\nu} + v^{\lambda}\Gamma^{\nu}{}_{\lambda\mu}$ for a vector and $\nabla_{\mu}\omega_{\nu} = \partial_{\mu}\omega_{\nu} - \omega_{\lambda}\Gamma^{\lambda}{}_{\nu\mu}$ for a one-form. Extra $-w(\log\Omega)_{,\mu}T_{\rho_1...}^{\nu_1...}$ for a weight w tensor density, where Ω is the volume factor ($|\det g|^{1/2}$ for a metric).

The Levi-Civita connection of a metric g is $\nabla = \partial + \Gamma$ with $\Gamma^{\lambda}{}_{\nu\rho} = \frac{1}{2} g^{\lambda\mu} (\partial_{\rho} g_{\mu\nu} + \partial_{\nu} g_{\mu\rho} - \partial_{\mu} g_{\nu\rho})$. It is the only torsion-free connection $(\Gamma^{\lambda}{}_{[\mu\nu]} = 0)$ that kills the metric. Note that $\Gamma^{\lambda}{}_{\lambda\rho} = \frac{1}{2} g^{\lambda\mu} \partial_{\rho} g_{\lambda\mu} = \frac{1}{2} \partial_{\rho} \log|\det g|$. Denote $\sqrt{g} = |\det g|^{1/2}$. Then $\sqrt{g} \nabla_{\nu} v^{\nu} = \partial_{\nu} (v^{\nu} \sqrt{g})$ and $\sqrt{g} \nabla_{\nu} F^{[\nu\rho]} = \partial_{\nu} (F^{[\nu\rho]} \sqrt{g})$ are total derivatives.

Killing vector k_{μ} such that $\nabla_{(\mu}k_{\nu)}=0$. For a symmetric conserved stress-tensor T we have $\nabla_{\mu}(k_{\nu}T^{\mu\nu})=0$, giving conserved quantities.

§7.2 G-structures, holonomy

Structure group. A G-structure on a manifold X (with $n = \dim_{\mathbb{R}} X$) is a G-subbundle of the $\mathrm{GL}(n,\mathbb{R})$ -principal bundle $\mathrm{GL}(TX)$ of tangent frames, namely a global section of $\mathrm{GL}(TX)/G$.

A manifold is oriented if it has a $GL_+(n, \mathbb{R}) = \{ \det > 0 \}$ structure. Similar definitions for Riemannian manifolds etc.:

G-structure Manifold type	Other characterization [‡]
O(n) Riemannian	metric $g > 0$
$SO(n)$ oriented, Riemannian $O(p,q)$ pseudo-Riemannian $SO_{+}(p,q)$ pseudo-Riemannian, or Pin_{\pm} or $Spin$ (pseudo)-Riemannian	
$\operatorname{GL}(n/2,\mathbb{C})$ Almost complex $\operatorname{Sp}(2n/2,\mathbb{R})$ Almost symplectic $\operatorname{U}(n/2)$ Almost Hermitian	$\mathbb{C} \subset TX$ (i.e., $J^2 = -1$) Non-degenerate $\omega \in \Omega^2 X$ Two compatible (g, J, ω) §
$U^*(n/2)$ Almost hypercomple $USp(n/2)$ Almost hyperHerm $U^*(n/2)USp(2)$ Almost quatern $USp(n/2)USp(2)$ Almost quatern	itian $(g, J_{1,2,3}, \omega_{1,2,3})$ ionic¶ $\mathbb{H} \subset TX$

- [‡] All sections are global. For instance, an almost complex structure is a global section J of End TX with $J^2 = -1$. A metric is a global section g of $S^2(T^*X)$.
- § Any two of (g,J,ω) fix the third by $\omega_{ik}=J_i{}^jg_{jk}$ if they are compatible: $J_i{}^jJ_l{}^k\omega_{jk}=\omega_{il}$ or $J_i{}^jJ_l{}^kg_{jk}=g_{il}$ namely ω or g is J-invariant, or $\omega_{ij}g^{jk}\omega_{kl}=-g_{il}$. In a basis $e^\beta,\bar{e}^{\bar{\gamma}}$ (= $\mathrm{d}z^\beta,\mathrm{d}\bar{z}^{\bar{\gamma}}$ for Hermitian manifolds) of (1,0) and (0,1) forms, $\omega=\frac{1}{2}h_{\beta\bar{\gamma}}\,e^\beta\wedge\bar{e}^{\bar{\gamma}}$ and $g=\frac{1}{2}h_{\beta\bar{\gamma}}(e^\beta\otimes\bar{e}^{\bar{\gamma}}+\bar{e}^{\bar{\gamma}}\otimes e^\beta)$.

On an almost complex manifold, (p,q)-forms are wedge products $\Omega^{(p,q)}X = \bigwedge^p (\Omega^{(1,0)}X) \wedge \bigwedge^q (\Omega^{(0,1)}X)$ where J acts by $\pm i$ on $\Omega^1X = \Omega^{(1,0)}X \oplus \Omega^{(0,1)}X$. The exterior derivative is $d = d^{2,-1} + d^{1,0} + d^{0,1} + d^{-1,2}$ with $d^{i,j} : \Omega^{(p,q)} \to \Omega^{(p+i,q+j)}$. Dolbeault differential operators are $\partial = d^{1,0}$ and $\overline{\partial} = d^{0,1}$.

An almost symplectic 2m-manifold admits the volume form $\omega^m/m!$. On an almost Hermitian manifold X it is equal to the Riemannian volume form and belongs to $\Omega^{(m,m)}X$.

¶ While almost quaternionic manifolds have a 3d subbundle of End TX locally spanned by J_1, J_2, J_3 with $J_i^2 = J_1 J_2 J_3 = -1$, almost hypercomplex manifolds require J_1, J_2, J_3 to be global.

Integrability. A G-structure is k-integrable (resp. integrable) near $x \in X$ if it can be trivialized to order k (resp. all orders) in a neighborhood of x. We automatically have 0-integrability.

Any Riemannian structure is 1-integrable thanks to Riemann normal coordinates. Integrability is equivalent to the Riemann curvature vanishing.

An almost complex structure is complex if (equivalently) it is integrable; it is 1-integrable; it has a vanishing Nijenhuis tensor $N_J: \bigwedge^2 X \to TX$ defined on vector fields u, v by the Lie brackets $N_J(u, v) = -J^2[u, v] + J[Ju, v] + J[u, Jv] - [Ju, Jv]$; the Lie bracket of (1,0) vector fields is a (1,0) vector field; $d = \partial + \overline{\partial}$ namely $d^{2,-1} = 0 = d^{-1,2}$; or $\overline{\partial}^2 = 0$.

A symplectic structure is an integrable almost symplectic structure. Equivalently, it is 1-integrable: $d\omega = 0$. Altogether,

(Almost) quaternionic/quaternionHermitian/quaternionKähler and (almost) hypercomplex/hyperHermitian/hyperKähler manifolds are defined by replacing J by a 3d subbundle of End TX or by global sections J_1, J_2, J_3 as in the table of G-structures. ‡ Since $\mathrm{GL}(n,\mathbb{R})/\mathrm{O}(n)$ is contractible, any manifold admits (non-canonically) an $\mathrm{O}(n)$ -structure, namely a smooth choice of which frames are orthonormal, i.e., a Riemannian metric g. Similarly $\mathrm{GL}(n/2,\mathbb{C})/\mathrm{U}(n/2)$ is contractible so almost complex manifolds admit almost Hermitian structures.

§ An almost Hermitian manifold is Kähler if (equivalently) its U(n/2)-structure is 1-integrable; $d\omega = 0$ and $N_J = 0$; $\nabla \omega = 0$; $\nabla J = 0$; or the holonomy group is in U(n/2). Locally, $\omega = i\partial \bar{\partial} \rho$ for some real-valued Kähler potentials ρ , and ω is invariant under Kähler transformations $\rho \to \rho + f(z) + \bar{f}(\bar{z})$.

The holonomy group at $x \in X$ of a connection ∇ on a bundle $E \to X$ is the group of symmetries of E_x arising from parallel transport along closed curves based at x.

For Riemannian manifolds X the holonomy group is defined as that of the Levi-Civita connection on the tangent bundle. It is a subgroup of $\mathrm{O}(n)$ (or $\mathrm{SO}(n)$ for X orientable) since parallel transport preserves orthogonality $(\nabla g = 0)$.

If the holonomy group acts reducibly on the tangent space then X is locally (globally if X is geodesically complete) a product. Simply connected X that are locally neither products nor symmetric spaces (we give a list later) can have the following special holonomy subgroups of $\mathrm{SO}(n)$ (Berger's theorem)

Holonomy	Manifold type	$\dim_{\mathbb{R}}$
$\mathrm{U}(m)$ $\mathrm{SU}(m)$	Kähler Calabi–Yau CY_m	2m $2m$
$\frac{\left(\mathrm{USp}(2k)\times\mathrm{USp}(2)\right)/\mathbb{Z}_2}{\mathrm{USp}(2k)}$	quaternionic Kähler hyperKähler	$\frac{4k}{4k}$
$\frac{\operatorname{Spin}(7)}{\operatorname{G}_2}$	$Spin(7)$ manifold G_2 manifold	8 7

Note that hyperKähler \Longrightarrow Calabi–Yau \Longrightarrow Kähler since $\mathrm{USp}(m)\subset\mathrm{SU}(m)\subset\mathrm{U}(m)$. In contrast, quaternionic-Kähler manifolds are not Kähler.

A Calabi–Yau manifold is a Kähler manifold such that (equivalently) some Kähler metric has global holonomy group in SU(m); the structure group can be reduced to SU(m); or the holomorphic canonical bundle is trivial i.e., there exists a nowhere vanishing holomorphic top-form. A weaker set of equivalent conditions

todo: here

For simply connected manifolds, the conditions above are equivalent to the following (always equivalent) conditions on X: some Kähler metric has local holonomy group in SU(m); some Kähler metric has vanishing Ricci curvature; the first real

Chern class vanishes; a positive power of the holomorphic canonical bundle is trivial; X has a finite cover with trivial holomorphic canonical bundle; X has a finite cover equal to the product of a torus and a simply connected manifold with trivial holomorphic canonical bundle.

Spin structures todo: see http://mathoverflow.net/questions/220502/

Symmetric spaces todo: list missing

K3 surfaces are the only CY_2 : they have holonomy SU(2).

Yau's theorem. Fix a complex structure on a compact complex manifold X of $\dim_{\mathbb{C}} X > 1$ and vanishing real first Chern class. Any real class $H^{1,1}(X,\mathbb{C})$ of positive norm contains a unique Kähler form whose metric is Ricci flat.

(from Wikipedia on Calabi conjecture: "The Calabi conjecture states that a compact Khler manifold has a unique Khler metric in the same class whose Ricci form is any given 2-form representing the first Chern class.")

§8 Misc

§8.1 Special functions

Multiple gamma function. For $a_i \in \mathbb{C}$ with $\operatorname{Re} a_i > 0$, $\Gamma_N(x|\vec{a}) = \prod_{\vec{n}}^{\operatorname{reg.}} (x + \vec{n} \cdot \vec{a})^{-1} = \exp(\partial_s \sum_{\vec{n}} (x + \vec{n} \cdot \vec{a})^{-s}|_{s=0})$, where $\vec{n} \in \mathbb{Z}_{\geq 0}^N$. Here, we zeta-regularized the product; the sum is analytically continued from $\operatorname{Re} s > N$. The meromorphic $x \mapsto \Gamma_N(x|\vec{a})$ has no zero and poles at $x = -\vec{n} \cdot \vec{a}$ (simple poles for generic \vec{a}). $\Gamma_0(x|) = 1/x$, $\Gamma_1(x|a) = a^{x/a-1/2}\Gamma(x/a)/\sqrt{2\pi}$, $\Gamma_N(x|\vec{a}) = \Gamma_{N-1}(x|a_1,\ldots,a_{N-1})\Gamma_N(x+a_N|\vec{a})$ and it is invariant under permutations of \vec{a} .

Plethystic exponential. Let $\mathbf{m} \subset R[[x_1,\ldots,x_n]]$ be series with no constant term over a ring R. Then plexp: $\mathbf{m} \to 1+\mathbf{m}$ obeys $\operatorname{plexp}[x_i^p] = 1/(1-x_i^p)$, $\operatorname{plexp}[f+g] = \operatorname{plexp}[f]\operatorname{plexp}[g]$ and $\operatorname{plexp}[\lambda f] = \operatorname{plexp}[f]^{\lambda}$ for $\lambda \in R$. It maps an index of single-particle states f(x) to that of multiparticle states $\operatorname{plexp} f(x) = \exp \sum_{k>1} \frac{1}{k} f(x_1^k,\ldots,x_n^k)$.

q-Pochhammer $(a;q)_{\infty}=\operatorname{plexp} \frac{-a}{1-q}=\prod_{k=0}^{\infty}(1-aq^k)$ and finite version $(a;q)_n=(a;q)_{\infty}/(aq^n;q)_{\infty}$. Products are often denoted $(a_1,\ldots,a_N;q)_n=(a_1;q)_n\cdots(a_N;q)_n$. Properties: $(a;q)_{-n}(q/a;q)_n=(-q/a)^nq^{n(n-1)/2}$ and q-binomial theorem $(ax;q)_{\infty}/(x;q)_{\infty}=\sum_{n=0}^{\infty}x^n(a;q)_n/(q;q)_n$.

q-gamma (or basic gamma) function for |q| < 1, $\Gamma_q(x) = (1-q)^{1-x}(q;q)_{\infty}/(q^x;q)_{\infty}$ obeys $\Gamma_q(x+1) = \frac{1-q^x}{1-q}\Gamma_q(x)$ and $\Gamma_q(x) \xrightarrow{q \to 1} \Gamma(x)$. It has simple poles at $x \in \mathbb{Z}_{<0}$ and no zero.

Modular form of weight k: holomorphic on $\mathbf{H} = \{\operatorname{Im} \tau > 0\}$ and as $\tau \to i\infty$ and obeys $f(\frac{a\tau + b}{c\tau + d}) = (c\tau + d)^k f(\tau)$.

Dedekind eta function: $\eta(\tau) = q^{1/24}(q;q)_{\infty}$ for $q = e^{2\pi i \tau}$. $\Delta = \eta^{24}$ is a modular form of weight 12.

Theta functions: q-theta $\theta(z;q) = (z;q)_{\infty} (q/z;q)_{\infty}$ obeys $\theta(z;q) = \theta(q/z;q) = -z\theta(1/z;q)$. Variant $\theta_1(z;q) = \theta_1(\tau|u) = iz^{-1/2} q^{1/12} \eta(\tau) \theta(z;q) = -iz^{1/2} q^{1/8} (q;q)_{\infty} (qz;q)_{\infty} (1/z;q)_{\infty}$ with $z = \mathrm{e}^{2\pi \mathrm{i} u}$.

Eisenstein series $(k \ge 1)$ $E_{2k} = 1 + \frac{2}{\zeta(1-2k)} \sum_{n=1}^{\infty} n^{2k-1} \frac{q^n}{1-q^n}$ obeys $E_{2k}(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^{2k} E_{2k}(\tau) + \frac{6}{\pi \mathrm{i}} c(c\tau+d) \delta_{k=1}$. For $k \ge 2$ it is a modular form and $E_{2k} = \frac{1}{2\zeta(2k)} \sum_{0 \ne \lambda \in \mathbb{Z} + \tau \mathbb{Z}} \lambda^{-2k}$.

Elliptic gamma function $\Gamma(z;p,q)=\operatorname{plexp} \frac{z-pq/z}{(1-p)(1-q)}=\prod_{m=0}^{\infty}\prod_{n=0}^{\infty}(1-p^{m+1}q^{m+1}z^{-1})/(1-p^mq^nz)$ obeys $\Gamma(z;p,q)=\Gamma(z;q,p)=1/\Gamma(pq/z;p,q)$ and $\Gamma(pz;p,q)=\theta(z;q)\Gamma(z;p,q)$ and $\Gamma(z;0,q)=1/(z;q)_{\infty}$.

Polylogarithm and Riemann zeta $\zeta(s)=\operatorname{Li}_s(1)$ where $\operatorname{Li}_s(z)=\sum_{k\geq 1}z^k/k^s=\left(1/\Gamma(s)\right)\int_0^\infty t^{s-1}\mathrm{d}t/(\mathrm{e}^t/z-1)$ obeys $\operatorname{Li}_{s+1}(z)=\int_0^z\operatorname{Li}_s(t)\mathrm{d}t/t$ and $\operatorname{Li}_1(z)=-\log(1-z)$. The dilogarithm obeys $\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)=\pi^2/6-\log(x)\log(1-x)$ (reflection formula) and $\operatorname{Li}_2(x)+\operatorname{Li}_2(y)-\operatorname{Li}_2(xy)=\operatorname{Li}_2(t)+\operatorname{Li}_2(u)+\log(1-t)\log(1-u)$ where x=t/(1-u) and y=u/(1-t) (pentagon formula).

Gauss hypergeometric function is given by ${}_2F_1(a,b;c;z) = \sum_{n \geq 0} z^n(a)_n(b)_n/\big(n!(c)_n\big)$ converging for |z| < 1, continued to $\mathbb{C} \setminus [1,\infty)$ with branch cut. Here $(a)_n = a(a+1)\dots(a+n-1)$.

Generalized hypergeometric functions: let $a_i, b_i \notin \mathbb{Z}_{\leq 0}$. Then ${}_jF_k(a;b;z) = \sum_{n\geq 0} z^n(a_1)_n \dots (a_j)_n/\big(n!(b_1)_n \dots (b_k)_n\big)$ converges if j=k+1 and |z|<1, or if $j\leq k$. Differential equation $z\prod_{i=1}^j(z\partial_z+a_i)F(z)=z\partial_z\prod_{i=1}^k(z\partial_z+b_i-1)F(z)$. Physically: vortex partition function of the 2d $\mathcal{N}=(2,2)$ U(1) theory with j charge +1 and k+1 charge -1 chiral multiplets. Fox-Wright, Appell, Kampé de Fériet and Lauricella functions are vortex partition functions of specific U(1)ⁿ theories.

Basic hypergeometric series in terms of q-Pochhammer $_{j}\phi_{k}(a;b;q,z) = \sum_{n\geq 0} \left(-q^{(n-1)/2}\right)^{n(1+k-j)} z^{n}(a_{1},\ldots,a_{j};q)_{n}/(b_{1},\ldots,b_{k};q)_{n}$.

§8.2 Physics of gauge theories

Phases characterized by potential V(R) (up to a constant) between quarks at distance R: Coulomb 1/R, free electric $1/(R \log(R\Lambda))$, free magnetic $\log(R\Lambda)/R$, Higgs (constant), confining σR .

Instantons are anti-self-dual $(F = -\star F)$ connections on \mathbb{R}^4 that decay at infinity and extend to S^4 . The bundles are classified by $\pi_3(G)$ so an instanton number $k \in \mathbb{Z}$ for simple gauge groups; for fixed $k \geq 0$ $(k \leq 0)$ (anti)instantons minimize the action. The k-instanton moduli space for $G = \mathrm{SU}(N)$ is a 4Nk-dimensional [inspire:128223] hyperKähler manifold, in bijection with rank N framed locally free sheaves on \mathbb{CP}^2 [inspire:125044].

§8.3 Homology and cohomology

 $H_k(\mathbb{CP}^n, M) = M$ for $0 \le k \le 2n$ even, else 0.

§8.4 Homotopy groups π_n

Basic properties. $\pi_0(X,x)$ is the set of connected components. $\pi_1(X,x)$ is the fundamental group. For $k \geq 1$, $\pi_k(X,x)$ only depends on the connected component of x. $\pi_k(X \times Y,(x,y)) = \pi_k(X,x) \times \pi_k(Y,y)$.

Quotient. If G acts on connected simply-connected X then $\pi_1(X/G) = \pi_0(G)$ (= G for G discrete).

Long exact sequence for a fiber bundle $F \hookrightarrow E \twoheadrightarrow B$: for base-points $b_0 \in B$ and $e_0 = f_0 \in F = p^{-1}(b_0) \subset E$, $\cdots \to \pi_{i+1}(B) \to \pi_i(F) \to \pi_i(E) \to \pi_i(B) \to \cdots \to \pi_0(E)$ is exact, namely each image equals the next kernel (inverse image of the constant map).

Homotopy groups of spheres are finite except $\pi_n(S^n) = \mathbb{Z}$ and $\pi_{4n-1}(S^{2n}) = \mathbb{Z} \times \text{finite.}$ For k < n, $\pi_k(S^n) = 0$, and $\pi_{n+k}(S^n)$ is independent of n for $n \ge k+2$. All $\pi_k(S^0) = 0$, $\pi_k(S^1) = 0$ for $k \ne 1$, and $\pi_k(S^3) = \pi_k(S^2)$ for $k \ne 2$.

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8
S^0	0	0	0	0	0	0	0	0
S^1	\mathbb{Z}	0	0	0	0	0	0	0
S^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2
S^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2
S^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	\mathbb{Z}_2^2
S^5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}

 $\pi_1(\overline{\mathbb{RP}^n}) = \mathbb{Z}_2 \text{ for } n \geq 2 \text{ and } \pi_k(\mathbb{RP}^n) = \pi_k(S^n) \text{ for } k \geq 2.$ $\pi_1(\mathbb{CP}^n) = 0, \, \pi_2(\mathbb{CP}^n) = \mathbb{Z}, \, \pi_k(\mathbb{CP}^n) = \pi_k(S^{2n+1}) \text{ for } k \geq 3.$

Topological groups have abelian $\pi_1(G)$. Proofs. 1. The multiplication in G (point-wise) and concatenation of loops are two compatible group structures, hence (by Eckmann–Hilton theorem) coincide and are commutative. 2. Explicitly, for $\alpha_1, \alpha_2 \in \pi_1(G)$ loops, $(t_1, t_2) \mapsto \alpha_1(t_1)\alpha_2(t_2) \in G$ is a homotopy between $\alpha_1 \star \alpha_2$ (concatenation) along bottom and right edges, $\alpha_1 \cdot \alpha_2$ (point-wise multiplication) along the diagonal, and $\alpha_2 \star \alpha_1$ along left and top edges.

§8.5 Kähler 4-manifolds

K3 surfaces are (the only besides T^4) compact complex surfaces of trivial canonical bundle. They have $h^{1,0}=0$ (in contrast to T^4 which has todo: value). Their first Chern class $c_1 \in H^2(X,\mathbb{Z})$ thus vanishes. By Yau's theorem there exists a Ricci flat metric, whose holonomy is then SU(2) = USp(2) by Berger's classification. K3 surfaces are thus Calabi–Yau (CY₂) and hyperKähler (hK₄). Their moduli space is connected and they are all diffeomorphic.

Examples of K3 surfaces. Quartic hypersurface in \mathbb{P}^4 . Kummer surface namely resolution of T^4/\mathbb{Z}_2 .

Non-simply connected Ricci-flat Kähler manifolds may fail to be CY_n when the restricted holonomy group is SU(n) but the global holonomy group is disconnected. For example an Enriques surface $K3/\mathbb{Z}_2$ has a non-trivial canonical bundle.

A gravitational instanton is a metric with (anti-)self-dual curvature. A simply-connected Riemannian 4-manifold is hyper-Kähler if and only if it is a gravitational instanton. Compact hK₄ are K3 and T^4 . Non-compact hK₄ are ALE (asymptotically locally Euclidean), ALF (asymptotically locally flat), ALG, ALH if their volume growth rate is of order 4, 3, 2, 1. ALE spaces are resolutions of \mathbb{H}/Γ for a finite subgroup $\Gamma < \text{USp}(2)$. The quotient \mathbb{H}/Γ can appear as a local model of an orbifold singularity in a K3 surface.

ALE hyperKähler 4-manifolds X are diffeomorphic to the minimal resolution of \mathbb{H}/Γ for some finite $\Gamma \subset \mathrm{SU}(2)$. The metric is fixed (up to isometry) by cohomology classes $\alpha_1, \alpha_2, \alpha_3 \in H^2(X, \mathbb{R})$ such that there is no two-cycle Σ such that $\Sigma \cdot \Sigma = -2$ and all $\alpha_i(\Sigma) = 0$.

todo: Taub-NUT spaces, multi-Taub-NUT spaces, Eguchi-Hanson spaces, Gibbons-Hawking multicenter spaces. Write metric. todo: Non-explicitly: Atiyah-Hitchin space (moduli space of two SU(2) 't Hooft-Polyakov monopoles in 4d).

todo: The only compact CY_2 are T^4 and K3 surfaces.

todo: The only compact hypercomplex 4-manifolds are T^4 , K3 surfaces, and the Hopf surface $((\mathbb{H} \setminus 0)/(q^{\mathbb{Z}}))$ for a quaternion |q| > 1; it is diffeomorphic to $S^3 \times S^1$.

§8.6 Some algebraic constructions

Reduction of a Lie (super)algebra \mathfrak{g} . If $\mathfrak{g} = V_1 \oplus V_2$ with $[V_1, V_2] \subseteq V_2$ then the bracket of \mathfrak{g} restricted and projected to V_1 defines a Lie (super)algebra.

S-expansion of a Lie (super)algebra \mathfrak{g} by an abelian multiplicative semigroup S: Lie (super)algebra $\mathfrak{g} \times S$ with bracket $[(x,\alpha),(y,\beta)]=([x,y],\alpha\beta)$. If $S=S_1\cup S_2$ with $S_1S_2\subseteq S_2$ (in particular if there is a zero element $0_S=0_S\alpha=\alpha 0_S$) then by reduction we get a Lie (super)algebra structure on $\mathfrak{g}\times S_1$.

A color (super)algebra is a graded vector space with a bracket such that (for X,Y,Z with definite grading) $\operatorname{gr}[X,Y]=\operatorname{gr}X+\operatorname{gr}Y$ and $[X,Y]=-(-1)^{(\operatorname{gr}X,\operatorname{gr}Y)}[Y,X]$ and Jacobi identity $[X,[Y,Z]](-1)^{(\operatorname{gr}Z,\operatorname{gr}X)}+[Y,[Z,X]](-1)^{(\operatorname{gr}X,\operatorname{gr}Y)}+[Z,[X,Y]](-1)^{(\operatorname{gr}Y,\operatorname{gr}Z)}=0$, where (\bullet,\bullet) is some bilinear mapping into $\mathbb{C}/(2\mathbb{Z})$.

$\S 8.7$ Other

A fuzzy space is d Hermitian matrices X^a ("coordinates") acting on some Hilbert space H. The dispersion of $\psi \in H$ is $\delta_{\psi} = \sum_{a} (\langle \psi | (X^a)^2 | \psi \rangle - \langle \psi | X^a | \psi \rangle^2)$.