

1.	Hallar el cociente y el re	sto de la división de:		
	a) 135 por 23,	c) $135 \text{ por } -23,$	e) 127 por 99,	
	b) -135 por 23,	d) -135 por -23,	f) 98 por 73.	
2.	2. a) Si $a = b \cdot q + r$, con $b \le r < 2b$, hallar el cociente y el resto de la división de por b .			
	b) Repetir el ejercicio a	que $-b \le r < 0$.		
3.	. Dado $m \in \mathbb{N}$ hallar los restos posibles de m^2 y m^3 en la división por $3,4,5,7,8,11$.			
4.	Expresar en base 10 los s	siguientes enteros:		

$a) (1503)_6$	$c) (1111)_{12}$	$e) (12121)_3$
$b) (1111)_2$	$d) (123)_4$	$f) (1111)_5$

5. Convertir

a)
$$(133)_4$$
 a base 8,
b) $(B38)_{16}$ a base 8,
c) $(3506)_7$ a base 2,
d) $(1541)_6$ a base 4.

6. Calcular: a)
$$(2234)_5 + (2310)_5$$
 b) $(10101101)_2 + (10011)_2$.

7. Sean $a,\,b,\,c\in\mathbb{Z}.$ Demostrar las siguientes afirmaciones:

a) Si
$$ab = 1$$
, entonces $a = b = 1$ ó $a = b = -1$.

- b) Si $a, b \neq 0$, a|b y b|a, entonces a = b ó a = -b.
- c) Si a|1, entonces a = 1 ó a = -1.
- d) Si $a \neq 0$, a|b y a|c, entonces a|(b+c) y a|(b-c).
- e) Si $a \neq 0$, a|b y a|(b+c), entonces a|c.
- f) Si $a \neq 0$ y a|b, entonces $a|b \cdot c$.
- 8. Dados b,centeros, probar las siguientes propiedades:
 - a) 0 es par y 1 es impar.

- b) Si b es par y $b \mid c$, entonces c es par. (Por lo tanto, si b es par, también lo es -b).
- c) Si b y c son pares, entonces b+c también lo es.
- d) Si un número par divide a 2, entonces ese número es 2 ó -2.
- e) La suma de un número par y uno impar es impar.
- f) b+c es par si y sólo si b y c son ambos pares o ambos impares.
- 9. Sea $n \in \mathbb{Z}$. Probar que n es par si y sólo si n^2 es par.
- 10. Probar que n(n+1) es par para todo n entero.
- 11. Sean $a, b, c \in \mathbb{Z}$. ¿Cuáles de las siguientes afirmaciones son verdaderas? Justificar las respuestas.
 - a) $a \mid b \cdot c \Rightarrow a \mid b \circ a \mid c$.
 - b) $a \mid (b+c) \Rightarrow a \mid b \text{ \'o } a \mid c$.
 - c) $a \mid c \ y \ b \mid c \Rightarrow a \cdot b \mid c$.
 - d) $a \mid c \ y \ b \mid c \Rightarrow (a+b) \mid c$.
 - e) a, b, c > 0 y $a = b \cdot c$, entonces $a \ge b$ y $a \ge c$.
- 12. Probar que cualquiera sea $n \in \mathbb{N}$:
 - a) $3^{2n+2} + 2^{6n+1}$ es múltiplo de 11.
 - b) $3^{2n+2} 8n 9$ es divisible por 64.
- 13. Decir si es verdadero o falso justificando:
 - a) $3^n + 1$ es múltiplo de $n, \forall n \in \mathbb{N}$.
 - b) $3n^2 + 1$ es múltiplo de 2, $\forall n \in \mathbb{N}$.
 - c) $(n+1) \cdot (5n+2)$ es múltiplo de 2, $\forall n \in \mathbb{N}$.
- 14. Probar que para todo $n \in \mathbb{Z}$, $n^2 + 2$ no es divisible por 4.
- 15. Probar que todo entero impar que no es múltiplo de 3, es de la forma $6m \pm 1$, con m entero.
- 16. a) Probar que el producto de tres enteros consecutivos es divisible por 6.
 - b) Probar que el producto de cuatro enteros consecutivos es divisible por 24 (ayuda: el número combinatorio $\binom{n}{4}$ es entero).
- 17. Probar que si a y b son enteros entonces $a^2 + b^2$ es divisible por 7 si y sólo si a y b son divisibles por 7. ¿Es lo mismo cierto para 3? ¿Para 5?
- 18. Encontrar (7469, 2464), (2689, 4001), (2447, -3997), (-1109, -4999).

FAMAF Matemática Discreta I

19. Calcular el máximo común divisor y expresarlo como combinación lineal de los números dados, para cada uno de los siguientes pares de números:

a) 14 y 35,

- d) 12 y -52,
- q) 606 y 108.

b) 11 y 15,

e) 12 v 532,

c) 12 y 52,

f) 725 y 441,

20. Probar que no existen enteros x e y que satisfagan x + y = 100 y (x, y) = 3.

- 21. a) Sean a y b coprimos. Probar que si $a \mid b \cdot c$ entonces $a \mid c$.
 - b) Sean a y b coprimos. Probar que si $a \mid c \ y \ b \mid c$, entonces $a \cdot b \mid c$.
- 22. Probar que si $n \in \mathbb{Z}$, entonces los números 2n+1 y $\frac{n(n+1)}{2}$ son coprimos.
- 23. Encontrar todos los enteros positivos a y b tales que (a, b) = 10 y [a, b] = 100.
- 24. a) Probar que si d es divisor común de a y b, entonces $\frac{(a,b)}{d} = \left(\frac{a}{d}, \frac{b}{d}\right)$.
 - b) Probar que si $a, b \in \mathbb{Z}$ no nulos, entonces $\frac{a}{(a,b)}$ y $\frac{b}{(a,b)}$ son coprimos.
- 25. Probar que 3 y 5 son números primos.
- 26. Dar todos los números primos positivos menores que 100.
- 27. Determinar con el criterio de la raíz cuáles de los siguientes números son primos: 113, 123, 131, 151, 199, 503.
- 28. Si $a \cdot b$ es un cuadrado y a y b son coprimos, probar que a y b son cuadrados.
- 29. a) Probar que $\sqrt{5}$ no es un número racional.
 - b) Probar que $\sqrt{15}$ no es un número racional.
 - c) Probar que $\sqrt{8}$ no es un número racional.
 - d) Probar que $\sqrt[3]{4}$ no es un número racional.
- 30. Probar que si p_k es el k-ésimo primo positivo entonces

$$p_{k+1} \le p_1 \cdot p_2 \cdot \dots \cdot p_k + 1$$

- 31. Calcular el máximo común divisor y el mínimo común múltiplo de los siguientes pares de números usando la descomposición en números primos.
 - a) a = 12 y b = 15.
- c) a = 140 y b = 150. e) $a = 2^2 \cdot 3.5 \text{ y } b = 2.5.7.$
- b) a = 11 v b = 13.
- d) $a = 3^2 \cdot 5^2$ y $b = 2^2 \cdot 11$.