Robótica grupo2 Clase 19

Facultad de Ingeniería UNAM

M.I. Erik Peña Medina

Derechos reservados

Todos los derechos reservados, Facultad de Ingeniería de la Universidad Nacional Autónoma de México © 2020. Quedan estrictamente prohibidos su uso fuera del ámbito académico, alteración, descarga o divulgación por cualquier medio, así como su reproducción parcial o total.

Planteamiento del primer examen parcial

Examen parcial tipo A

• Examen parcial tipo B

Planteamiento del modelo dinámico de un robot serial RRR en el plano

- Ecuación de Eüler-Lagrange
- Inercia lineal e inercia rotacional
- Propagación de velocidades
- Cálculo del Lagrangeano
- Cálculo de los pares
- Modelo dinámico general

Para el robot RPR desarrollar los siguientes puntos:

- Desarrollar el modelo cinemático de la postura del robot.
- Desarrollar el modelo cinemático directo e inverso de las velocidades del robot.
- Desarrollar el modelo dinámico del robot.

Los modelo pueden ser desarrollados mediante algún programa de cálculo como:

- Wolfram Mathematica
- Matlab
 Fecha de entrega 23 de marzo

Para el robot RRP desarrollar los siguientes puntos:

- Desarrollar el modelo cinemático de la postura del robot.
- Desarrollar el modelo cinemático directo e inverso de las velocidades del robot.
- Desarrollar el modelo dinámico del robot.

Los modelo pueden ser desarrollados mediante algún programa de cálculo como:

- Wolfram Mathematica
- Matlab
 Fecha de entrega 23 de marzo

Cálculo de los pares

Cálculo del Lagrangeano

$$\Gamma = (k_1 + k_2 + k_3) - (u_1 + u_2 + u_3)$$

Ecuación del par

$$\tau_{i} = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_{i}} \Gamma \right) - \frac{\partial}{\partial q_{i}} \Gamma$$

Cálculo de los pares

Cálculo del Lagrangeano

$$\Gamma = (k_1 + k_2 + k_3) - (u_1 + u_2 + u_3)$$

Ecuación del par

$$\mathbf{\tau}_{\theta} = \mathbf{M}(q)\ddot{\mathbf{q}} + \mathbf{V}(q, \dot{q}) + \mathbf{G}(q)$$

Cálculo de los pares de un robot (Eüler-Lagrange)

Modelo cinemático general relacionado con los efectos inerciales

$$\mathbf{M}_{\theta}(q)\ddot{\mathbf{q}} + \mathbf{V}(q, \dot{q}) + \mathbf{G}(q) = \mathbf{\tau}_{\theta I}$$

$$\ddot{\mathbf{q}} = \begin{pmatrix} {}^{0}\ddot{\theta}_{1} \\ {}^{1}\ddot{\theta}_{2} \\ {}^{2}\ddot{\theta}_{3} \end{pmatrix} \qquad q = \{ {}^{0}\theta_{1}, {}^{1}\theta_{2}, {}^{2}\theta_{3} \}$$
$$\dot{q} = \{ {}^{0}\dot{\theta}_{1}, {}^{1}\dot{\theta}_{2}, {}^{2}\dot{\theta}_{3} \}$$

Cálculo de los pares de un robot (Eüler-Lagrange)

Modelo cinemático general relacionado con los efectos inerciales

$$\mathbf{M}_{\theta}(q)\ddot{\mathbf{q}} = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{pmatrix} \begin{pmatrix} {}^{0}\ddot{\theta}_{1} \\ {}^{1}\ddot{\theta}_{2} \\ {}^{2}\ddot{\theta}_{3} \end{pmatrix}$$

Cálculo de los pares de un robot (Eüler-Lagrange)

Modelo cinemático general relacionado con los efectos inerciales

$$\begin{pmatrix} \tau_{\theta 1} \\ \tau_{\theta 2} \\ \tau_{\theta 3} \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{pmatrix} \begin{pmatrix} {}^{0}\ddot{\theta}_{1} \\ {}^{1}\ddot{\theta}_{2} \\ {}^{2}\ddot{\theta}_{3} \end{pmatrix}$$

Cálculo de los pares de un robot (Eüler-Lagrange)

Cálculo de los pares de un robot (Eüler-Lagrange)

Modelo cinemático relacionado con los efectos inerciales

$$\mathbf{M}(q)\ddot{\mathbf{q}} + \mathbf{V}(q, \dot{q}) + \mathbf{G}(q) = \mathbf{\tau}_{\theta}$$

Cálculo de los pares de un robot (Eüler-Lagrange)

Efectos dinámicos externos

$$\begin{split} E_{Robot} &= E_{resorte} \\ P_{Robot} &= P_{resorte} \\ \boldsymbol{\tau}_{\theta}^{T} \dot{\mathbf{q}} &= \mathbf{F}_{ex}^{T} \dot{\mathbf{x}} \\ \dot{\mathbf{x}} &= \mathbf{J}_{\theta}(q) \dot{\mathbf{q}} \\ \boldsymbol{\tau}_{\theta}^{T} \dot{\mathbf{q}} &= \mathbf{F}_{ex}^{T} \mathbf{J}_{\theta}(q) \dot{\mathbf{q}} \\ \boldsymbol{\tau}_{\theta}^{T} &= \mathbf{F}_{ex}^{T} \mathbf{J}_{\theta}(q) \\ \boldsymbol{\tau}_{\theta} &= \mathbf{J}_{\theta}^{T}(q) \mathbf{F}_{ex} \end{split}$$

Cálculo de los pares de un robot (Eüler-Lagrange)

Modelo dinámico general

Planeación de movimientos

La planeación de movimiento es establecer la secuencia de movimientos ordenados que debe realiza un robot con el fin de realizar alguna tarea al manipular un objeto o herramienta dentro de su espacio de trabajo. La planeación de movimientos se puede establecer de dos maneras:

- Planeación de movimientos en el espacio de las juntas del robot.
- Planeación de movimientos en el espacio de trabajo del robot.

Planeación de movimientos en el espacio de las juntas del robot

La planeación del espacio de las juntas consiste en establecer los movimientos que debe realizar un robot para posicionar y orientar su efector final efector final dentro de su espacio de trabajo a partir de un postura inicial \mathbf{q}_0 a una postura final \mathbf{q}_1 .

$$\mathbf{q_0} = \begin{pmatrix} q_{1_0} \\ \vdots \\ q_{n_0} \end{pmatrix} \longrightarrow \mathbf{q_1} = \begin{pmatrix} q_{1_1} \\ \vdots \\ q_{n_1} \end{pmatrix} \longrightarrow \mathbf{q_m} = \begin{pmatrix} q_{1_m} \\ \vdots \\ q_{n_m} \end{pmatrix} \longrightarrow \mathbf{q_0} = \begin{pmatrix} q_{1_0} \\ \vdots \\ q_{n_0} \end{pmatrix}$$

Planeación de movimientos en el espacio de las juntas del robot

https://www.youtube.com/watch?reload=9&v=t_UAyEIpKks

$$\mathbf{q_0} = \begin{pmatrix} q_{1_0} \\ \vdots \\ q_{n_0} \end{pmatrix} \longrightarrow \mathbf{q_1} = \begin{pmatrix} q_{1_1} \\ \vdots \\ q_{n_1} \end{pmatrix} \longrightarrow \mathbf{q_2} = \begin{pmatrix} q_{1_2} \\ \vdots \\ q_{n_2} \end{pmatrix}$$

Planeación de movimientos

Planeación de movimientos en el espacio de las juntas del robot

$$\mathbf{q_0} = \begin{pmatrix} q_{1_0} \\ \vdots \\ q_{n_0} \end{pmatrix} \qquad \mathbf{q_1} = \begin{pmatrix} q_{1_1} \\ \vdots \\ q_{n_1} \end{pmatrix}$$

$$\mathbf{q} = \begin{pmatrix} q_{1_0} + \lambda(t) \cdot (q_{1_1} - q_{1_0}) \\ \vdots \\ q_{n_0} + \lambda(t) \cdot (q_{n_1} - q_{n_0}) \end{pmatrix}$$

Planeación de movimientos en el espacio de las juntas del robot

https://www.youtube.com/watch?reload=9&v=t_UAyEIpKks

$$\mathbf{q_0} = \begin{pmatrix} q_{1_0} \\ \vdots \\ q_{n_0} \end{pmatrix} \longrightarrow \mathbf{q_1} = \begin{pmatrix} q_{1_1} \\ \vdots \\ q_{n_1} \end{pmatrix} \longrightarrow \mathbf{q_2} = \begin{pmatrix} q_{1_2} \\ \vdots \\ q_{n_2} \end{pmatrix}$$

Planeación de movimientos en el espacio de las juntas del robot

$$\mathbf{q_0} = \begin{pmatrix} q_{1_0} \\ \vdots \\ q_{n_0} \end{pmatrix} \qquad \mathbf{q_1} = \begin{pmatrix} q_{1_1} \\ \vdots \\ q_{n_1} \end{pmatrix}$$

$$\mathbf{q} = \begin{pmatrix} q_{1_0} + \lambda(t) \cdot (q_{1_1} - q_{1_0}) \\ \vdots \\ q_{n_0} + \lambda(t) \cdot (q_{n_1} - q_{n_0}) \end{pmatrix}$$

$$\mathbf{q} = \begin{pmatrix} q_{1_0} + \lambda(t) \cdot (q_{1_1} - q_{1_0}) \\ \vdots \\ q_{n_0} + \lambda(t) \cdot (q_{n_1} - q_{n_0}) \end{pmatrix}$$

$$\lambda(t)$$

$$0 \le \lambda(t) \le 1$$

$$0 \le \lambda(t) \le 1 \qquad \lambda(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$$

$$t = 0$$

$$\lambda(0) = 0$$

$$\dot{\lambda}(0) = 0$$

$$\hat{\lambda}(0) = 0$$

$$t = t_f$$

$$\lambda(t_f) = 1$$

$$\dot{\lambda}(t_f) = 0$$

$$\ddot{\lambda}(t_f) = 0$$

Planeación de movimientos en el espacio de trabajo

Planeación de movimientos en el espacio de trabajo

Planeación de movimientos en el espacio de trabajo

$$\mathbf{F} = {}^{0}\boldsymbol{\xi}_{P_{i}} - {}^{0}\boldsymbol{\xi}_{P_{i}} \mathbf{q}_{i} = \begin{pmatrix} {}^{0}\boldsymbol{x}_{P_{i}} - \boldsymbol{L}_{1}\cos({}^{0}\boldsymbol{\theta}_{1_{i}}) - \boldsymbol{L}_{2}\cos({}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}}) - \boldsymbol{L}_{3}\cos({}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}} + {}^{2}\boldsymbol{\theta}_{3_{i}}) \\ {}^{0}\boldsymbol{y}_{P_{i}} - \boldsymbol{L}_{1}\sin({}^{0}\boldsymbol{\theta}_{1_{i}}) - \boldsymbol{L}_{2}\sin({}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}}) - \boldsymbol{L}_{3}\sin({}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}} + {}^{2}\boldsymbol{\theta}_{3_{i}}) \\ {}^{0}\boldsymbol{\theta}_{P_{i}} - {}^{0}\boldsymbol{\theta}_{1_{i}} - {}^{1}\boldsymbol{\theta}_{2_{i}} - {}^{2}\boldsymbol{\theta}_{3_{i}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Ć

$$\mathbf{F} = {}^{0}\boldsymbol{\xi}_{P_{i}} \ \mathbf{q}_{i} - {}^{0}\boldsymbol{\xi}_{P_{i}} = \begin{pmatrix} L_{1}\cos({}^{0}\boldsymbol{\theta}_{1_{i}}) + L_{2}\cos({}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}}) + L_{3}\cos({}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}} + {}^{2}\boldsymbol{\theta}_{3_{i}}) - {}^{0}\boldsymbol{x}_{P_{i}} \\ L_{1}\sin({}^{0}\boldsymbol{\theta}_{1_{i}}) + L_{2}\sin({}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}}) + L_{3}\sin({}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}} + {}^{2}\boldsymbol{\theta}_{3_{i}}) - {}^{0}\boldsymbol{y}_{P_{i}} \\ {}^{0}\boldsymbol{\theta}_{1_{i}} + {}^{1}\boldsymbol{\theta}_{2_{i}} + {}^{2}\boldsymbol{\theta}_{3_{i}} - {}^{0}\boldsymbol{\theta}_{P_{i}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$