```
from numpy import sqrt,log,pi,exp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

dp=pd.read_csv('/content/housing.csv')
dp
```

3		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
	0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
	2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
	3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
	4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
	20635	-121.09	39.48	25.0	1665.0	374.0	845.0	330.0	1.5603	78100.0	INLAND
	20636	-121.21	39.49	18.0	697.0	150.0	356.0	114.0	2.5568	77100.0	INLAND
	20637	-121.22	39.43	17.0	2254.0	485.0	1007.0	433.0	1.7000	92300.0	INLAND
	20638	-121.32	39.43	18.0	1860.0	409.0	741.0	349.0	1.8672	84700.0	INLAND
	20639	-121.24	39.37	16.0	2785.0	616.0	1387.0	530.0	2.3886	89400.0	INLAND

20640 rows × 10 columns

10

```
columns = ['latitude', 'total_rooms', 'housing_median_age', 'total_bedrooms']
for column in columns:
   if column in dp.columns:
       mean_mle = np.mean(dp[column])
       variance_mle = np.var(dp[column])
       print(f"Column: {column}")
       print(f"Mean (MLE): {mean_mle}")
       print(f"Variance (MLE): {variance_mle}\n")
    else:
       print(f"Warning: Column '{column}' not found in DataFrame.\n")

→ Column: latitude
     Mean (MLE): 35.63186143410853
     Variance (MLE): 4.562071602892517
     Column: total_rooms
     Mean (MLE): 2635.7630813953488
     Variance (MLE): 4759214.512668024
     Column: housing_median_age
```

```
Mean (MLE): 28.639486434108527
Variance (MLE): 158.38858617035862
Column: total_bedrooms
Mean (MLE): 537.8705525375618
Variance (MLE): 177556.6871536956
```

~ 2Q

```
def FindMLEAndLLv(x):
 m = dp['latitude'].mean()
 v = dp['latitude'].var()
 mle = (1/(sqrt(2*pi*v)))*(exp(-(x-m)**2/(2*v)))
 return mle , np.log(mle)
x_values = [50,75,80]
for x in x values:
 mle, lle = FindMLEAndLLv(x)
 print(f"The max likelyhood value of {x} is : {mle}")
 print(f"The log-likelihood value of {x} is : {lle}")
 print("\n")
→ The max likelyhood value of 50 is : 2.7888287682024593e-11
     The log-likelihood value of 50 is : -24.302814311583585
     The max likelyhood value of 75 is : 3.1953586400568146e-75
     The log-likelihood value of 75 is : -171.53218264261452
     The max likelyhood value of 80 is : 3.775090060098623e-95
     The log-likelihood value of 80 is : -217.41715959503816
```

~ 3Q

```
columns = ['latitude', 'total_rooms', 'housing_median_age', 'total_bedrooms']
bins_list = [5, 10, 15, 20]

for column in columns:
    for bins in bins_list:
        plt.hist(dp[column], bins=bins, density=True, edgecolor='black', alpha=1)
        plt.title(f'Density Estimation of {column} for {bins} bins')
        plt.xlabel(column)
        plt.ylabel('Density')
        plt.grid(True)
        plt.show()
```


latitude

DONE BY KODAM SHISHIR BHAGATH [2303A52164]