

2º Teste Prático

Física Computacional — 2013/2014

22 de março de 2014 — Sala 11.2.8

Turma P1 — Duração: 2 horas

Universidade de Aveiro Departamento de Física

Justifique as suas respostas às perguntas.

Note que os símbolos a **negrito** representam vetores.

Deve ser criada uma pasta no desktop contendo os ficheiros .m e eventuais figuras.

1. A equação de Mathieu é dada por

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + [\lambda - 2q\cos(2x)]y = 0,$$

aqui considerada no intervalo $x \in [0, \pi]$ e para q = 5.

- a) Encontre a solução da equação quando $\lambda = 1$ e y(0) = 1 e y'(0) = 0, usando a rotina do Matlab ode45. Faça o grafico da solução.
- b) Para λ 's específicos, as soluções são tais que y(0) = 1 e y'(0) = 0 e ainda $y'(\pi) = 0$. Use um método de shooting para encontrar o λ perto de 1 que permite uma solução desse tipo. Faça o gráfico da solução.
- c) Altere o shooting de forma a conseguir uma precisão para o λ de 1e-5.
- d) Encontre a solução para λ perto de 10.0 e determine a respetiva transformada de Fourier. Faça o gráfico correspondente.