Eksamen på Økonomistudiet vinter 2017-2018

Lineære Modeller

15. januar 2018

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 2 sider.

OBS: Bliver du syg under selve eksamen på Peter Bangsvej, skal du kontakte et tilsyn, blive registreret som syg hos denne. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM Januar 2018

Eksamen i Lineære Modeller

Mandag d.15 januar 2018.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

Vi betragter den lineære afbildning $L: \mathbf{R}^4 \to \mathbf{R}^3$, som med hensyn til standardbaserne i begge rum har afbildningsmatricen

$$L = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 1 & -1 & -2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} .$$

- (1) Bestem en basis for nulrummet for L. Er L injektiv?
- (2) Bestem en basis for billedrummet, R(L), for L. Er L surjektiv? Hvad siger dimensionsætningen om denne situation?
- (3) Bestem løsningsmængden til ligningen Lx = y, hvor $y = (y_1, y_2, y_3)$ tilhører billedrummet R(L).
- (4) Bestem koordinaterne til vektoren L(1, 1, 1, 1) med hensyn til den basis for billedrummet som blev bestemt i andet spørgsmål.

Opgave 2. Vi betragter 3×3 matricen

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} .$$

- (1) Bestem det karakteristiske polynomium $p_A(\lambda)$ for matricen A.
- (2) Bestem egenværdierne for matricen A, og gør rede for at A er diagonaliserbar.
- (3) Gør rede for, at $p_A(A) = O$, hvor O er 3×3 nulmatricen. (Dette resultat er kendt som Hamilton-Cayleys sætning.)

- (4) Bestem determinanten for matricen e^A .
- (5) Bestem determinanten for matricen B_k , hvor $B_k = \frac{1}{2^k}(-A^3 + A^2 + 2A)^k$.

Opgave 3.

- (1) Beregn integralet $\int \cos(ax) \sin^2(bx) dx$, hvor a og b er reelle tal.
- (2) Løs ligningen $z^2=6+i8$. Løsningerne ønskes angivet på rektangulær form a+ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} e^{n(x^4 - 4x^2)}.$$

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.