

CSE 4/535 Information Retrieval

Sayantan Pal PhD Student, Department of CSE 338Z Davis Hall

Before we start

- 1. Project 1 released, due 27th September.
- 2. Join office hours if you have questions
- 3. Today's lecture TF-IDF and VSM
- 4. Remind me 30 mins prior to class to solve your doubts related to project 1

Recap - Previous Class

- 1. Index Compression
 - a. Dictionary Compression
 - b. Postings Compression
 - i. Gamma Codes
 - ii. VB Codes

University at Buffalo

Term Weighting & Vector Space Models

Department of CSE

Roadmap

- **Ranked retrieval** How is it different from Boolean retrieval?
- **Scoring documents** ... Does it help?
- **Term frequency**
- **Collection statistics**
- Weighting schemes
- **Vector space scoring**

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search

- Boolean queries often result in either too few
 (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" \rightarrow 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
- Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Take 1: Jaccard coefficient

- A common measure of overlap of two sets A and B
 - \circ jaccard(A,B) = $|A \cap B| / |A \cup B|$
 - o jaccard(A,A) = 1
 - jaccard(A,B) = 0 if A \cap B = 0
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?

Query: ides of march

Document 1: caesar died in march

Document 2: the long march

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Recall: Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Term-document count matrices

Consider the number of occurrences of a term in a document:

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the bag of words model.
- In a sense, this is a step back:
 - a. The positional index was able to distinguish these two documents.

Term frequency - tf

- 1. The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
 - a. Note: Frequency means count in IR
- 2. We want to use tf when computing query document match scores. But how?
- 3. Raw term frequency is not what we want:
 - a. A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - b. But not 10 times more relevant.
- 4. Relevance does not increase proportionally with term frequency.

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \text{ etc.}$
- Score for a document-query pair: sum over terms t in both q and d:
- score $=\sum_{t \in q \cap d} (1 + \log t f_{t,d})$
- The score is 0 if none of the query terms is present in the document.

Rare terms are more informative

- 1. Rare terms are more informative than frequent terms
 - a. Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- 3. A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Collection vs. Document frequency

- Collection frequency of t is the number of occurrences of t in the collection
- Document frequency of t is the number of documents in which t occurs

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is better for search (gets higher weight)?

Collection vs. Document frequency

- Collection frequency of t is the number of occurrences of t in the collection
- Document frequency of t is the number of documents in which t occurs

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is better for search (gets higher weight)?

Answer: Insurance

Inverse Document Frequency (idf) weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by $idf_t = log_{10} (N/df_t)$

• We use $log(N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Example \rightarrow N = 1M Docs

term	df_t	idf_t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

There is one idf value for each term t in a collection.

$$idf_t = \log_{10} (N/df_t)$$

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
- idf affects the ranking of documents for queries with at least two terms
- For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N/\mathbf{df}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Score for a document given a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted

- ...

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Vector Space Model

Vector Space

A vector space is defined by a set of linearly independent Basis Vectors
 typically, correspond to the dimension of a vector space describe all vectors in the vector space should be orthogonal or linearly independent to each

What will be the basis vectors for information retrieval?

Vector Space Model

 Everything is represented as a vector in a highdimensional space - documents, queries

$$D_j = (a_{j1}, a_{j2}, ..., a_{jn})$$
 $Q_j = (q_{j1}, q_{j2}, ..., q_{jn})$

■ Vocabulary : *n* distinct terms - (t₁, t₂, ..., t_n)

Term	t_1	t_2	t_3	t_4	,,	t_n
D_1	1	1	0	0	,,	0
D_2	1	0	0	1	,,	1
D_3	0	0	1	0	,,	0
:	:	:	:	:	,,	:

How to compute similarity of document and query vectors? Linear Algebra

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors -most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance

Formalizing vector space proximity

- First cut: distance between two points is the distance between the endpoints of the two vectors
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance between q and $\overrightarrow{d_2}$ is large even though the distribution of terms in the query \overrightarrow{q} and the distribution of terms in the document $\overrightarrow{d_2}$ are very similar.

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L_2 norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document)

Dot product
$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 q_i is the weight of term i in the query d_i is the weight of term i in the document

 $\overrightarrow{\cos}(q,d)$ is the cosine similarity of \overrightarrow{q} and \overrightarrow{d} ... or, equivalently, the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} .

Cosine similarity amongst 3 documents

How similar are

the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

After length normalization

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

$$dot(SaS,PaP) \approx 12.1$$

 $dot(SaS,WH) \approx 13.4$
 $dot(PaP,WH) \approx 10.1$

$$cos(SaS,PaP) \approx 0.94$$

 $cos(SaS,WH) \approx 0.79$
 $cos(PaP,WH) \approx 0.69$

Summary –vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K(e.g., K= 10) to the user

Note - Cosine Similarity

- Cosine similarity measure emphasizes on relationship between document and query
- In large documents only parts of it will be relevant to a query - most of it will be non-relevant.
- In some sense, Cosine similarity seems to prefer ???? documents than ???? ones.

Note - Cosine Similarity

- Cosine similarity measure emphasizes on relationship between document and query
- In large documents only parts of it will be relevant to a query - most of it will be non-relevant.
- In some sense, Cosine similarity seems to prefer shorter documents than longer ones.

Parametric search

- Most documents have, in addition to text, some "meta-data" in <u>fields</u> e.g.,
 - Language = French

- Subject = Physics etc.
- Date = Feb 2000
- A parametric search interface allows the user to combine a full-text query with selections on these field values e.g.,
 - language, date range, etc.

Zones

- A zone is an identified region within a doc
- E.g., Title, Abstract, Bibliography
- Generally culled from marked-up input or document metadata (e.g., powerpoint)
- Contents of a zone are free text
- Not a "finite" vocabulary
- Indexes for each zone -allow queries like
- sorting in Title AND smith in Bibliography AND recur* in Body

Boosting

- Supported by Solr
- What to boost Query terms
 - E.g. terms appearing in title more important those those in body of document
 - Named entities
- Documents
 - o E.g. more recent documents

Amazon Product Search (Sept 2019)

◆ WSJ NEWS EXCLUSIVE

Amazon Changed Search Algorithm in Ways That Boost Its Own Products

The e-commerce giant overcame internal dissent from engineers and lawyers, people familiar with the move say

Index support for zone combinations

- In the simplest version we have a separate inverted index for each zone
- Variant: have a single index with a separate dictionary entry for each term and zone

Of course, compress zone names like author/title/body.

Zone combinations index

- The above scheme is still wasteful: each term is potentially replicated for each zone
- In a slightly better scheme, we encode the zone in the postings:

as before, the zone names get compressed.

1.author, 1.body → 2.author, 2.body → 3.title

As before, the zone names get compressed.

References

- 1. Slides provided by Sougata Saha (Instructor, Fall 2022 CSE 4/535)
- 2. Materials provided by Dr. Rohini K Srihari
- 3. https://nlp.stanford.edu/IR-book/information-retrieval-book.html