Math101

16. oktober 2018

Benjamin Støttrup benjamin@math.aau.dk

> Institut for matematiske fag Aalborg universitet Danmark

Agenda

Ubestemte integraler

Regneregler for ubestemte integraler

Bestemte integraler

Regneregler for bestemte integraler

► En funktion f har stamfunktion F hvis

$$F'(x) = f(x)$$

- ▶ Hvis F er stamfunktion til f så er F(x) + c også, for alle $c \in \mathbb{R}$.
- ▶ Det ubestemte integral af f defineres til

$$\int f(x) \, dx = F(x) + c,$$

hvor F er en stamfunktion til f og $c \in \mathbb{R}$.

► En funktion f har stamfunktion F hvis

$$F'(x) = f(x)$$

- ► Hvis F er stamfunktion til f så er F(x) + c også, for alle $c \in \mathbb{R}$.
- ▶ Det ubestemte integral af f defineres til

$$\int f(x)\,dx=F(x)+c,$$

hvor F er en stamfunktion til f og $c \in \mathbb{R}$.

► En funktion f har stamfunktion F hvis

$$F'(x) = f(x)$$

- ▶ Hvis F er stamfunktion til f så er F(x) + c også, for alle $c \in \mathbb{R}$.
- ▶ Det ubestemte integral af f defineres til

$$\int f(x)\,dx=F(x)+c,$$

hvor F er en stamfunktion til f og $c \in \mathbb{R}$.

► En funktion f har stamfunktion F hvis

$$F'(x) = f(x)$$

- ▶ Hvis F er stamfunktion til f så er F(x) + c også, for alle $c \in \mathbb{R}$.
- ▶ Det ubestemte integral af f defineres til

$$\int f(x)\,dx=F(x)+c,$$

hvor F er en stamfunktion til f og $c \in \mathbb{R}$.

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$		
X	$\frac{1}{2}x^2 + k$		
x ⁿ	$\frac{1}{n+1}x^{n+1}+k, (n \neq -1)$		
e^{x}	$e^{x} + k$		
e ^{cx}	$\frac{1}{c}e^{cx}+k$		

 $f(x) \qquad \int f(x) dx$ $\frac{1}{x} \qquad \ln(|x|) + k$ $\ln x \qquad x \ln(x) - x + k$ $\cos x \qquad \sin x + k$ $\sin x \qquad -\cos x + k$

$$\int \sqrt{x} dx$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$			
С	cx + k			
Χ	$\frac{1}{2}X^2 + K$			
X ⁿ	$\frac{1}{n+1}X^{n+1} + k$, $(n \neq -1)$			
e ^{cx}	$\frac{1}{c}e^{cx}+k$			

$$f(x) \qquad \int f(x) dx$$

$$\frac{1}{x} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\int \sqrt{x} dx$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$			
С	cx + k			
X	$\frac{1}{2}X^2 + k$			
X ⁿ	$\frac{1}{n+1}X^{n+1} + k$, $(n \neq -1)$			
e ^x	$e^{x} + k$			
e ^{cx}	$\frac{1}{c}e^{cx}+k$			

$$f(x) \qquad \int f(x) dx$$

$$\frac{1}{x} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\int \sqrt{x} dx$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$		
С	cx + k		
X	$\frac{1}{2}x^2 + k$		
x ⁿ	$\frac{1}{n+1}X^{n+1} + k, (n \neq -1)$		
e^{x}	$e^{x} + k$		
e ^{cx}	$\frac{1}{c}e^{cx}+k$		

$$f(x) \qquad \int f(x) dx$$

$$\frac{1}{x} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\tan x \qquad -\ln(|\cos(x)|) + k$$

$$\int \sqrt{x} dx$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$		
С	cx + k		
X	$\frac{1}{2}x^2 + k$		
x ⁿ	$\frac{1}{n+1}X^{n+1} + k$, $(n \neq -1)$		
e ^x	$e^x + k$		
e ^{cx}	$\frac{1}{c}e^{cx}+k$		

$$f(x) \qquad \int f(x) dx$$

$$\frac{1}{x} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\tan x \qquad -\ln(|\cos(x)|) + k$$

$$\int \sqrt{x} dx$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$		
С	cx + k		
X	$\frac{1}{2}x^2 + k$		
x ⁿ	$\frac{1}{n+1}X^{n+1} + k, (n \neq -1)$		
e ^x	$e^x + k$		
e ^{cx}	$\frac{1}{c}e^{cx}+k$		

$$f(x) \qquad \int f(x) dx$$

$$\frac{1}{x} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\tan x \qquad -\ln(|\cos(x)|) + k$$

$$\int \sqrt{x} \, dx,$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$		
С	cx + k		
X	$\frac{1}{2}x^2 + k$		
x ⁿ	$\frac{1}{n+1}X^{n+1} + k, (n \neq -1)$		
e ^x	$e^x + k$		
e ^{cx}	$\frac{1}{c}e^{cx}+k$		

$$f(x) \qquad \int f(x) dx$$

$$\frac{1}{x} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\tan x \qquad -\ln(|\cos(x)|) + k$$

$$\int \sqrt{x} dx$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$		
С	cx + k		
X	$\frac{1}{2}x^2 + k$		
x ⁿ	$\frac{1}{n+1}X^{n+1} + k, (n \neq -1)$		
e^{x}	$e^x + k$		
e ^{cx}	$\frac{1}{c}e^{cx}+k$		

$$f(x) \qquad \int f(x) \, dx$$

$$\frac{1}{x} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\tan x \qquad -\ln(|\cos(x)|) + k$$

$$\int \sqrt{x} \, dx,$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$		
С	cx + k		
Х	$\frac{1}{2}x^2 + k$		
x ⁿ	$\frac{1}{n+1}X^{n+1} + k$, $(n \neq -1)$		
e ^x	$e^{x} + k$		
e ^{cx}	$\frac{1}{c}e^{cx}+k$		

$$\frac{f(x)}{\frac{1}{x}} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\int \sqrt{x} dx$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$			
С	cx + k			
Χ	$\frac{1}{2}x^2 + k$			
x ⁿ	$\frac{1}{n+1}X^{n+1} + k$, $(n \neq -1)$			
e^x	$e^x + k$			
e ^{cx}	$\frac{1}{c}e^{cx}+k$			

$$\frac{f(x)}{\frac{1}{x}} \qquad \ln(|x|) + k$$

$$\frac{1}{x} \qquad \ln(|x|) + k$$

$$\ln x \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

$$\tan x \qquad -\ln(|\cos(x)|) + k$$

$$\int \sqrt{x} dx$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$			
С	cx + k			
X	$\frac{1}{2}x^2 + k$			
x ⁿ	$\frac{1}{n+1}X^{n+1} + k$, $(n \neq -1)$			
e ^x	$e^x + k$			
e ^{cx}	$\frac{1}{c}e^{cx}+k$			

$$\frac{f(x)}{\frac{1}{x}} \qquad \ln(|x|) + k$$

$$\frac{1}{x} \qquad x \ln(x) - x + k$$

$$\cos x \qquad \sin x + k$$

$$\sin x \qquad -\cos x + k$$

 $\tan x - \ln(|\cos(x)|) + k$

$$\int x^3 dx$$

▶ Vi har følgende regneregler:

f(x)	$\int f(x) dx$	f(x)	$\int f(x) dx$
С	cx + k	$\frac{1}{x}$	$\ln(x) + k$
Х	$\frac{1}{2}x^2 + k$	ln X	$x \ln(x) - x + k$
x ⁿ	$\frac{1}{n+1}X^{n+1} + k, (n \neq -1)$	cos X	$\sin x + k$
e^{x}	$e^x + k$	sin X	$-\cos x + k$
e ^{cx}	$\frac{1}{c}e^{cx}+k$	tan X	$-\ln(\cos(x))+k$

► Eksempler:

$$\int \sqrt{x} \, dx,$$

$$\int x^3 dx$$

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$	f(x)	$\int f(x) dx$
С	cx + k	$\frac{1}{x}$	ln(x) + k
X	$\frac{1}{2}X^2 + k$	ln X	$x \ln(x) - x + b$
x ⁿ	$\frac{1}{n+1}x^{n+1} + k, (n \neq -1)$	cos X	$\sin x + k$
e ^x	$e^x + k$	sin X	$-\cos x + k$
e ^{cx}	$\frac{1}{c}e^{cx}+k$	tan <i>X</i>	$-\ln(\cos(x)) +$

► Eksempler: $\int \sqrt{x} dx$

$$\int x^3 dx$$

► Vi har følgende generelle regneregler

$$\int cf(x) dx = c \int f(x) dx$$

$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$$

$$\int e^{3x} + \sqrt[3]{x} + 1 \, dx,$$
$$\int \frac{1}{2x} - \cos(x) \, dx$$

► Vi har følgende generelle regneregler

$$\int cf(x) dx = c \int f(x) dx$$
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx.$$

$$\int e^{3x} + \sqrt[3]{x} + 1 \, dx,$$
$$\int \frac{1}{2x} - \cos(x) \, dx$$

► Vi har følgende generelle regneregler

$$\int cf(x) dx = c \int f(x) dx$$
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx.$$

$$\int e^{3x} + \sqrt[3]{x} + 1 \, dx,$$
$$\int \frac{1}{2x} - \cos(x) \, dx.$$

► Vi har følgende generelle regneregler

$$\int cf(x) dx = c \int f(x) dx$$
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx.$$

$$\int e^{3x} + \sqrt[3]{x} + 1 \, dx,$$
$$\int \frac{1}{2x} - \cos(x) \, dx.$$

- ► Vi vil bestemme arealer under grafer for funktioner.
- ► Arealet mellem grafen for f og x-asksen i intervallet [a, b] er givet ved

$$F(b) - F(a)$$
,

hvor F er en stamfunktion til f.

▶ Derfor defineres det bestemte integral af *f* i intervallet [*a*, *b*] til

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

- ► Vi vil bestemme arealer under grafer for funktioner.
- ► Arealet mellem grafen for *f* og *x*-asksen i intervallet [*a*, *b*] er givet ved

$$F(b) - F(a)$$
,

hvor F er en stamfunktion til f.

▶ Derfor defineres det bestemte integral af *f* i intervallet [*a*, *b*] til

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

- ► Vi vil bestemme arealer under grafer for funktioner.
- ► Arealet mellem grafen for f og x-asksen i intervallet [a, b] er givet ved

$$F(b) - F(a)$$
,

hvor F er en stamfunktion til f.

▶ Derfor defineres det bestemte integral af f i intervallet [a, b] til

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

- ► Vi vil bestemme arealer under grafer for funktioner.
- ► Arealet mellem grafen for f og x-asksen i intervallet [a, b] er givet ved

$$F(b) - F(a)$$
,

hvor F er en stamfunktion til f.

► Derfor defineres det bestemte integral af *f* i intervallet [*a*, *b*] til

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

▶ Vi har følgende generelle regneregler for bestemte integraler

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

Eksempler: Udregr

$$\int_{1}^{2} \frac{1}{2x} - 1 \, dx$$

$$\int_{0}^{4} 3x^{2} + 3e^{x} \, dx.$$

▶ Vi har følgende generelle regneregler for bestemte integraler

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

Eksempler: Udregr

$$\int_{1}^{2} \frac{1}{2x} - 1 \, dx$$

$$\int_{0}^{4} 3x^{2} + 3e^{x} \, dx.$$

▶ Vi har følgende generelle regneregler for bestemte integraler

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

$$\int_{1}^{2} \frac{1}{2x} - 1 \, dx$$

$$\int_{0}^{4} 3x^{2} + 3e^{x} \, dx.$$

► Vi har følgende generelle regneregler for bestemte integraler

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

$$\int_{1}^{2} \frac{1}{2x} - 1 \, dx$$
$$\int_{0}^{4} 3x^{2} + 3e^{x} \, dx.$$

Opgaveregning!

