The role of skin specific genes in skin cancer

Group 3: Binnur Özay, Christofer Richard, Denisa Neacsu, Pinar Cavus

Supervisor: Dr. Maria Dinkelacker

Tutor: Nils Mechtel

Molecular Biotechnology B.Sc, Ruprecht Karls University of Heidelberg, SS21

Dinkelacker, 2007. A database of genes that are expressed in a tissue-restricted manner to analyse promiscous gene expression in medullary thymic epithelial cells. Diplomarbeit, Albert-Ludwigs-Universitaet, Freiburg, Germany.

Background

Why do we want to focus on TRAs?

melanoma -> one of the most common type of cancer in humans, also most **metastatic** among all cancers!

tissue restricted antigens (TRAs)

- upregulated in cancer cells for unknown reasons
- potential drug targets

Pie Chart skin specific TRAs

What are we working with?

Data Description

WM266-4 human melanoma cell line with a BRAF-V600D mutation extracted mRNA from cells ->->- labeled fragmented cRNA, hybridized on microarrays all microarrays proved to be quality.

treated with:

- trametinib: MEK-Inhibitor → 3h -24h
- ERK1/2-Inhibitor → 3h 24h
- doxycycline-shERK1 → 3d-7d

Objectives

Identifying upregulated skin specific TRAs in skin cancer, and investigating them to see if they are possible drug targets.

After identifying upregulated genes:

- are our identified genes **related to sun exposure**?
- are there any **non skin-specific TRAs** that are upregulated in skin cancer?
- are there any interesting **groups**?
- can we **predict the expression** of these genes by using other genes (potential targets)?
- do the efficacy of the drugs vary?

Highly expressed genes

Highly expressed skin genes in melanoma

ANXA2: cancer biomarker GPNMB: pro-metastatic protein

both responsible for the biogenesis of **melanosomes**!

melanin production

melanoma develops from melanocytes

Differential Gene Expression AnalysisUpregulated skin specific TRAs

no data available from cells without treatment \rightarrow start point for differential expression analysis: three hours and three days

- **log2 fold change:** within the chips with the same treatment time-frame
- **t-test:** significance of ten genes from each chip with the highest log-fold change
- limma analysis: same genes were found, confirmed

Heatmap of upregulated genes

Expression of upregulated genes

Significantly upregulated skin specific TRAs

Upregulated genes in treatment with ERK1/2 inhibitor

Upregulated genes in treatment with Trametinib

Differential gene expression analysis

Downregulated skin specific TRAs

Methods: log2 fold change, t-test

The existence of significantly downregulated genes indicates:

- these genes were probably inducing tumors before the treatment
- the treatment is successfully working.

Significantly downregulated skin specific TRAs

Downregulated genes in treatment with ERK1/2 inhibitor

Downregulated genes in treatment with Trametinib

Significantly downregulated skin specific TRAs

Downregulated genes in treatment with Sherk

The importance of TYRP1

- significantly upregulated under Trametinib treatment, but significantly downregulated under dox-shERK1.
- relation to MITF: upregulation under BRAF and MEK inhibitors, in this case Trametinib
- microphthalmia-associated transcription factor (MITF):
 - natural function → pigmentation
 - in melanoma: master regulator, crucial for the maintenance and survival of the melanoma cell

Clustering of the upregulated skin-specific TRAs

red: prognostic markers

green: melanosome biosynthesis (TYRP1 and DCT)

blue: MITF and EMT related genes

MITF and EMT in Melanoma

epithelial-mesenchymal transition (EMT): transition from proliferative epithelial cells to invasive cells

expectation:

MITF **↑**

- proliferative stage
- MITF related genes: TPRM1, PPFBIBP2 🕈
- EMT-like process X : TGFBI, ARHGEF5 ↓

MITF **↓**

- invasive stage
- MTF related genes: TPRM1, PPFBIBP2 ↓
- EMT-like process **V** : TGFBI, ARHGEF5

our data:

MITF **↑**

- TPRM1, PPFBIBP2 **↑**
- TGFBI, ARHGEF5

va, M., Nomimura, S., Kuba, Y., Nam, J. M., Kajiwara, K., Nada, S., Oneyama, C., Sabe, H., & Okada, M. (2018). The Rho quarine nucleotide exchange factor ARHGEFS promotes tumor malignancy via epithelial-mesenchymal transition. Occogenesis, 5(9), e258. https://doi.org/10.1038/occsis.2016/epg. 8. V., McCall, B. L., Yochida, A., Diehl, I.A., & Howe, P. H. (2017). Interleakin-like BMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines. PloS one, 12(9), e017/93/03. https://doi.org/10.1371/journal.com/s01779/03.

Why?

Hypothesis: **high MITF expression** has a responsibility over **proliferation AND metastasis in melanoma.**

Expression with and without the sun

Visualization via k-means

Clustering of genes with or without sun exposure

Wilcoxon signed rank test: significant difference between the two

orange: sun exposure blue: no sun exposure

Genes upregulated under sun exposure

ARHGEF5 and TGFBI: allow a high metastatic potential, upregulated by MITF

DAPL1: also upregulated by MITF

- → MITF upregulating genes under sun exposure
- → conclusion: triggering effects of MITF and sun exposure on melanoma

ETV7: usually downregulated in melanoma

- → upregulated under trametinib under the sun
- → **suspicion:** natural response, and treatment, attacking the tumor microenvironment

Non-skin specific TRAs

Venn diagram

non skin-specific TRAs that are **upregulated** in skin cancer to be used as potential drug targets.

Potential drug targets

Principal Component Analysis (PCA)

PCA is carried out only with the second time points (24h and 7d).

PC1 and PC2 represent **97.7% of all the variance** of the melanoma dataset.

5 genes with the top variance from each components:

- from PC1: ANXA2, DCT, NDRG1, TYRP1, PTPRZ1
- from PC2: DSP, GJA1, PPP1R14C, TGFBI, UCN2

Multiple linear regression

Is there any significant dependencies between the PC genes and the upregulated genes?

- prediction of the expressions
- PC genes → better prognosis

But first:

- do residuals have a mean of zero?
- do they correlate within themselves or with the predictors?

Multiple linear regression; Correlation

Correlation within the upregulated genes (Pearson)

upregulated gene representatives:

- MPZL3
- ARHGEF5 (for all the other genes)

PC gene representatives:

- GJA1
- DSP
- ANXA2

Multiple linear regression

Multiple linear regression of MPZL3

Multiple linear regression of ARHGEF5

Simple linear regression

Independent variables with the highest impact; DSP

DSP has the highest impact on the MPZL3 model.

DSP: desmosomal protein

- escaping the immune system
- desmosomal proteins are used to identify melanomas

MPZL3

- is related to microsatellite instability
- doesn't correlate with the rest;
 unknown; further research

Simple linear regression

Independent variables with the highest impact; ANXA2

Simple linear regression of ARHGEF5 by ANXA2

- high correlation of upregulated genes: almost all upregulated genes predicted together
- ANXA2 already popular drug target in cancer

Objectives

Upregulated skin specific TRAs in skin cancer identified 🗸

Are our identified genes **related to sun exposure?** \checkmark

- Yes! Four genes that are upregulated are also sun exposed.

Are there any **non skin-specific TRAs** that are upregulated in skin cancer? **V**

No!

Are there any interesting **groups**?

- Yes! MITF related genes have an important role in melanoma and are good drug targets.

Can we **predict the expression** of these genes by using other genes (potential targets)? **V**

- Yes! Most of the identified upregulated genes can be predicted by ANXA2, DSP, GJA1.

Do the **efficacy of the drugs** vary?

- Yes! The treatments showed varying effects on different genes. The effect of the MAPK pathway inhibitors on melanoma are questionable, combination therapy may be needed.