

2

AD-A221 155

MEMORANDUM REPORT BRL-MR-3825

BRL

CHANGE IN MUZZLE VELOCITY DUE TO
A CHANGE IN PROPELLANT TEMPERATURE
FOR SMALL ARMS AMMUNITION

STC
RELEASE
MAY 03 1990
S D
APRIL 1990

BARBARA A. WAGONER

APRIL 1990

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

90 05 02 03

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1202, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	April 1990	Memorandum	
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Change In Muzzle Velocity Due To A Change In Propellant Temperature for Small Arms Ammunition		1L162618AH80	
6. AUTHOR(S)			
Barbara A. Wagoner			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066		BRL-MR-3825	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution is unlimited.			
13. ABSTRACT (Maximum 200 words)			
<p>The available muzzle velocity test data for small arms ammunition were analyzed to determine the change in muzzle velocity due to variations in propellant temperature. This change in muzzle velocity must be quantified in order to provide range safety data for the small arms weapon systems. This task was accomplished through the analysis of Ball and Improved Military Rifle (IMR) propellants.</p> <p style="text-align: right;">(S.G.)</p>			
14. SUBJECT TERMS		15. NUMBER OF PAGES	
Small Arms Ammunition, <i>ORDNANCE</i> , Ball Propellant, Improved Military Rifle Propellant,		Range Safety Data, Muzzle Velocity, <i>Versus</i> , Propellant Temperature	
		21	
		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

UNCLASSIFIED

INTENTIONALLY LEFT BLANK.

Table of Contents

	<u>Page</u>
List of Figures	v
List of Tables	vii
I. Introduction	1
II. Results	1
III. Conclusions	3
References	7
List of Symbols	9
Appendix	11
Distribution List	17

INTENTIONALLY LEFT BLANK.

List of Figures

<u>Figure</u>		<u>Page</u>
1	Muzzle velocity propellant temperature factor versus propellant temperature for Ball propellants	4
2	Muzzle velocity propellant temperature factor versus propellant temperature for IMR propellants	5
3	Muzzle velocity propellant temperature factor versus propellant temperature for Ball and IMR propellants	6

INTENTIONALLY LEFT BLANK.

List of Tables

<u>Table</u>		<u>Page</u>
1	Small Arms Ammunition Used in Data Analysis	1
2	Muzzle Velocity Temperature Coefficients	3
A-1	Ball and IMR Propellant Muzzle Velocity Correction Factors for Propellant Temperature	15

IINTENTIONALLY LEFT BLANK.

I. Introduction

Modifications to the firing tables for direct fire weapons are being developed to assist range safety officials in the determination of range safety limits for a variety of nonstandard conditions. Currently, firing tables only list the range/superelevation relationship achieved under standard conditions; therefore, a set of range correction values for nonstandard conditions are needed. These range correction values are provided for three nonstandard conditions which typically cause the largest effects, namely, changes in air density, range wind (head or tail) and muzzle velocity.

The change in muzzle velocity is the most difficult to obtain of the three nonstandard conditions included in the firing table modifications. The most obvious and significant contributor to the change in muzzle velocity is the change in propellant temperature. Therefore, an effort was undertaken to establish muzzle velocity variations for nonstandard propellant temperatures for direct fire weapon systems. For some ammunition types, muzzle velocity data as a function of propellant temperature were easily accessible. However, the data were not readily available for small arms ammunition. Therefore, an analysis of test results (muzzle velocities for different propellant temperatures) was conducted. Muzzle velocity data as a function of propellant temperature between -65° F and 160° F were obtained from several sources¹⁻⁵ and analyzed.

II. Results

The muzzle velocity data used in this analysis were gathered on a variety of small arms ammunition which use Ball and IMR type propellants. Table 1 is a listing of the specific small arms ammunition presented in this report.

Table 1. Small Arms Ammunition Used in Data Analysis

Ammunition Type	Propellant Type
5.56mm NATO, M193	Ball
6mm Remington (Commercial)	Ball and IMR
7mm Remington Magnum (Commercial)	Ball and IMR
.308 Winchester (7.62mm NATO, Commercial)	Ball and IMR
.340 Weatherby Magnum (Commercial)	IMR
25mm, HEI-T, M792	Ball
30mm, HEDP, M789	Ball

A muzzle velocity propellant temperature factor, $\frac{MV}{MV_{STD}}$, was determined and plotted as a function of propellant temperature for the two propellant types (Ball and IMR)

where:

MV = muzzle velocity at a given propellant temperature

MV_{STD} = standard muzzle velocity at a propellant temperature of $70^{\circ}F$.

A least squares fit was then used to determine the muzzle velocity propellant temperature coefficient as a function of propellant temperature for each propellant type. Figures 1 and 2 graphically display the muzzle velocity data and the least squares fits for the Ball and IMR propellants, respectively. Since these fits proved to be very similar and their overall spread at each propellant temperature was similar, the muzzle velocity data for both the Ball and IMR propellants were combined and one muzzle velocity propellant temperature coefficient was determined. Figure 3 shows the combined muzzle velocity data and least squares fits for Ball and IMR propellants. The muzzle velocity propellant temperature coefficients were determined as follows:

$$\frac{MV}{MV_{STD}} = 1 + a(PT - 70^{\circ}F) \quad (1)$$

or,

$$MV = [1 + a(PT - 70^{\circ}F)] * MV_{STD} \quad (2)$$

where:

a = muzzle velocity propellant temperature coefficient,

PT = propellant temperature ($^{\circ}F$)

and the change in muzzle velocity with respect to propellant temperature $\left(\frac{\delta MV}{\delta PT}\right)$ is

$$\frac{\delta MV}{\delta PT} = a MV_{STD} \quad (3)$$

As determined by the least squares fitting technique, the muzzle velocity propellant temperature coefficients (a), their standard deviations (σ_a) and the root mean square errors (ERMS) of the fits are provided in the following table. The fits match the observed data points with root means square errors of no more than 1.4 percent.

Table 2. Muzzle Velocity Temperature Coefficients

Propellant Type	a ($1/{}^{\circ}F$)	σ_a ($1/{}^{\circ}F$)	ERMS
Ball	.000408	.000010	.014
IMR	.000373	.000026	.011
Ball and IMR	.000405	.000010	.013

The original expectation was that projectiles fired with the Ball and IMR propellants would show a significantly different change in muzzle velocity due to propellant temperature. A statistical analysis of the fits to determine if they had the same slopes, indicated that there were significant differences between the two. However, the data base for the Ball propellant is much larger than that of the IMR propellant, with data located at the two extremes beyond the data available for the IMR propellant, affecting the outcome of such a comparison. Testing the means of the two propellants, where data existed for both propellant types, indicated that there is no significant differences between the mean values ($\frac{MV}{MV_{STD}}$) at those temperatures.

From a practical standpoint, one fit combining both propellant types would be more desirable. To determine if one fit would be adequate, a comparsion was made between the delta muzzle velocities obtained using the fits for the respective propellants and the combined fit for a small sample of projectiles using Ball and IMR propellants. That is, a comparison was made between the delta muzzle velocity obtained using the Ball propellant fit and the combined fit; and a comparison was made using the IMR propellant fit and the combined fit. Although the differences between the IMR fit and the combined fit were higher than that of the Ball fit and the combined fit, the differences are within one round-to-round standard deviation in muzzle velocity.

III. Conclusions

The muzzle velocity propellant temperature coefficients determined by the least squares fitting techniques and subsequent analysis indicated very similar trends for the Ball and IMR type propellants. Therefore, one muzzle velocity propellant temperature coefficient can be used to determine the change in muzzle velocity for nonstandard propellant temperatures for the small arms ammunition using the Ball and IMR type propellants.

Figure 1. Muzzle velocity propellant temperature factor versus propellant temperature for Ball propellants.

Figure 2. Muzzle velocity propellant temperature factor versus propellant temperature for IMR propellants.

Figure 3. Muzzle velocity propellant temperature factor versus propellant temperature for Ball and IMR propellants.

References

1. Piddington, M.J., "Comparison of the Exterior Ballistics of the M193 Projectiles When Launched From 1:12 in. and 1:14 in Twist Rifles," BRL-MR-1943, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, October 1968 (AD 844934).
2. Hagel, B., "Game Loads and Practical Ballistics for the American Hunter," Alfred A. Knopp, Inc., New York.
3. Private communication between Mr. Charles Abel, US Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, Maryland and Mr. William Chase, US Army Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland in 1982 concerning Qualification Test of 30mm, M789, HEDP Ammunition at Yuma Proving Ground, Yuma, Arizona.
4. G. Steier, "First Partial Report Preproduction Test (PPT)of 25-MM, Ammunition, Second Source," Material Testing Directorate, Aberdeen Proving Ground, Maryland, APG -MT-5997 (VOLUME I), July 1984.
5. R.J. Carey, "Vol I Final Report Preproduction Test - Government (PPT-G) of 25-mm, M790 Series Ammunition, Third Source," Material Testing Directorate, Aberdeen Proving Ground, Maryland, APG -MT-5997 (VOLUME I), July 1984.

INTENTIONALLY LEFT BLANK.

List of Symbols

Symbol	Definition	Unit
a	Muzzle velocity propellant temperature coefficient	$1/{}^{\circ}F$
ΔMV	Change in muzzle velocity	m/s
MV	Muzzle velocity at a given propellant temperature	m/s
MV_{STD}	Standard muzzle velocity at a temperature of $70^{\circ} F$	m/s
$\frac{\delta MV}{\delta PT}$	Change in muzzle velocity with respect to propellant temperature	$m/s/{}^{\circ} F$
PT	Propellant temperature	${}^{\circ} F$

INTENTIONALLY LEFT BLANK.

APPENDIX

APPLICATIONS

INTENTIONALLY LEFT BLANK.

APPENDIX. APPLICATIONS

The muzzle velocity for a given projectile is determined in the following manner:

Given:

Cartridge	30mm, HEDP, M789
-----------	------------------

MV _{STD}	805 m/s
-------------------	---------

Propellant temperature	160° F
------------------------	--------

From equation [3], Section II, the change in muzzle velocity with respect to propellant temperature ($\frac{\delta MV}{\delta PT}$) is determined by:

$$\left(\frac{\delta MV}{\delta PT} \right) = a MV_{STD}$$

$$= 0.000405 * 805$$

$$= .326$$

therefore,

$$\Delta MV = .326 * (PT - 70^\circ F)$$

$$= .326 * (160 - 70)$$

$$= +29.3 m/s$$

where ΔMV is the change in muzzle velocity due to a propellant temperature of 160° F.

$$MV_{160^\circ F} = 805 + 29.3$$

$$= 834.3 m/s$$

Or, by substituting directly into equation [2], Section II:

$$MV_{160^{\circ}F} = [1 + 0.000405 * (160 - 70)] * 805$$
$$= 834.3 \text{ m/s}$$

Muzzle velocity correction factors for various propellant temperatures are provided in Table A-1. These tabular values are obtained by solving equation [1] Section II, for the propellant temperature of interest. Using this table, muzzle velocity for a given cartridge can be determined as follows:

Given:

Cartridge	30mm, HEDP, M789
MV_{STD}	805 m/s
Propellant temperature	$160^{\circ} F$

From Table 1, the muzzle velocity correction factor for a propellant temperature of $160^{\circ} F$ is 1.0364, implying a 3.64% increase over the muzzle velocity at $70^{\circ} F$.

$$MV_{160^{\circ}F} = 1.0364 * MV_{STD}$$
$$= 1.0364 * 805$$
$$= 834.3 \text{ m/s}$$

Table A-1.Ball and IMR Propellant Muzzle Velocity Correction Factors for Propellant Temperature

TEMPERATURE OF PROPELLANT ° F	MUZZLE VELOCITY CORRECTION FACTOR	TEMPERATURE OF PROPELLANT ° C
-70	.9433	-56.7
-60	.9474	-51.1
-50	.9514	-45.6
-40	.9554	-40.0
-30	.9595	-34.4
-20	.9636	-28.9
-10	.9676	-23.3
0	.9716	-17.8
10	.9757	-12.2
20	.9798	-6.7
30	.9838	-1.1
40	.9878	4.4
50	.9919	10.0
60	.9960	15.6
70	1.0000	21.1
80	1.0040	26.7
90	1.0081	32.2
100	1.0122	37.8
110	1.0162	43.3
120	1.0202	48.9
130	1.0243	54.4
140	1.0284	60.0
150	1.0324	65.6
160	1.0364	71.1
170	1.0405	76.7

INTENTIONALLY LEFT BLANK.

No of Copies	<u>Organization</u>	No of Copies	<u>Organization</u>
1	Office of the Secretary of Defense OUSD(A) Director, Live Fire Testing ATTN: James F. O'Bryon Washington, DC 20301-3110	1	Commander US Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
2	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander US Army Tank-Automotive Command ATTN: AMSTA-TSL (Technical Library) Warren, MI 48397-5000
1	HQDA (SARD-TR) WASH DC 20310-0001	1	Director US Army TRADOC Analysis Command ATTN: ATAA-SL White Sands Missile Range, NM 88002-5502
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	(Class. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
1	Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145	(Unclass. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000	1	Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000
2	Commander US Army, ARDEC ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000		<u>Aberdeen Proving Ground</u>
1	Director Benet Weapons Laboratory US Army, ARDEC ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050	2	Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-5000	1	Cdr, USATECOM ATTN: AMSTE-TD
1	Commander US Army Aviation Systems Command ATTN: AMSAV-DACL 4300 Goodfellow Blvd. St. Louis, MO 63120-1798	3	Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-MSI
1	Director US Army Aviation Research and Technology Activity Ames Research Center Moffett Field, CA 94035-1099	1	Dir, VLAMO ATTN: AMSLC-VL-D

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
2	Air Force Armament Laboratory ATTN: AFATL/FXA Mr. G. Abate Mr. G. Winchenbach Eglin AFB, FL 32542-5000	4	Commanding Officer Naval Weapons Support Center ATTN: Code 2021, Bldg. 2521 Mr. C. Zeller ATTN: Code 2022 Mr. R. Henry Mr. G. Dornick Mr. J. Maassen Crane, IN 47522-5020
1	Director HQ, TRAC-RPD ATTN: ATRC-RP Fort Monroe, VA 23651-5143	1	Commanding General MCDEC ATTN: Code D091 LTC Lutz Fire Power Division Quantico, VA 22134-5080
1	Commander TRADOC Analysis Command ATTN: ATRC Fort Leavenworth, KS 66027-5200	1	US Secret Service J. J. Rowley Training Center ATTN: Mr. R. Lutz 9200 Powder Mill Road, RD 2 Laurel, MD 20707
1	Director TRAC-WSMR White Sands Missile Range, NM 88002-5502	1	Commander Naval Surface Warfare Center ATTN: Code G31 Mr. F. Willis Dahlgren, VA 22408-5000
1	US Army JFK Center ATTN: ATSU-CD-ML Mr. S. Putnam Fort Bragg, NC 28307-5007	1	Tioga Engineering Company ATTN: Mr. W. C. Davis, Jr. 13 Cone Street Wellsboro, PA 16901
1	Commander US Army Materiel Command ATTN: AMXSO Mr. J. McKernan 5001 Eisenhower Avenue Alexandria, VA 22333-0001	11	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-CCJ Mr. J. Ackley Mr. V. Shisler Mr. H. Wreden Mr. J. Hill ATTN: SMCAR-CCL-AD Mr. F. Puzycki Mr. W. Schupp Mr. R. Mazeski Mr. D. Conway
1	Commandant US Army Infantry School ATTN: ATSH-CD-CS-OR CPT Janicki Fort Benning, GA 31905-5400	1	ATTN: SMCAR-CCL-FA Mr. R. Schlenner Mr. J. Fedewitz Mr. P. Wyluda Picatinny Arsenal, NJ 07806-5000
1	President US Army Infantry Board ATTN: ATZB-IB-SA Mr. L. Tomlinson Fort Benning, GA 31905-5800		
1	Commander Naval Sea Systems Command ATTN: Code 62CE Mr. R. Brown Washington, DC 20362-5101		

No. of Copies	<u>Organization</u>
8	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-CCL-SP Mr. W. Bunting Mr. P. Errante ATTN: SMCAR-AET-A Mr. R. Kline Mr. Chiu Ng ATTN: SMCAR-FSF-GD Mr. K. Pfleger ATTN: AMCPM-GMG Mr. W. Gadomski ATTN: SMCAR-CCL-CF Mr. J. Cline ATTN: SMCAR-SF Mr. S. Hoxha Picatinny Arsenal, NJ 07806-5000

Aberdeen Proving Ground

6	Director, USAMSA ATTN: AMXSY-J Mr. K. Jones Mr. M. Carroll Mr. J. Weaver Mr. W. Heiss Mr. J. M. Weaver ATTN: AMXSY-GI Mr. L. DeLatre
1	Commander, USATECOM ATTN: AMSTE-SI-F
2	Commander, CRDEC, AMCCOM ATTN: SMCCR-RSP-A Mr. M. Miller Mr. J. Huerta
2	Director, USAHEL ATTN: SLCHE-IS Mr. B. Corona Mr. P. Ellis
1	Director, USACSTA ATTN: STECS-AS-LA Mr. G. Niewenhous

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number BRL-MR-3825 Date of Report APRIL 1990

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

CURRENT ADDRESS

Name _____
Organization _____
Address _____
City, State, Zip Code _____

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

OLD ADDRESS

Name _____
Organization _____
Address _____
City, State, Zip Code _____

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

-----FOLD HERE-----

DEPARTMENT OF THE ARMY

Director

U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066

OFFICIAL BUSINESS

**NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES**

BUSINESS REPLY MAIL
FIRST CLASS PERMIT No 0001, APG, MD

POSTAGE WILL BE PAID BY ADDRESSEE

Director

U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-9989

-----FOLD HERE-----