

# Machine Learning CS60050

## Bayesian Learning

(Bayes Classifier – Part I)



## Two Principles for Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose  $\theta$  that maximizes probability of observed data  $\mathcal D$ 

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

• Maximum a Posteriori (MAP) estimate: choose  $\theta$  that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

#### Maximum Likelihood Estimate



 $P(X=0) = 1-\theta$ 

(Bernoulli)

 $\bullet$  Each flip yields boolean value for X

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1 - X)}$$

• Data set D of independent, identically distributed (iid) flips produces  $\alpha_1$  ones,  $\alpha_0$  zeros

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

$$\hat{\theta}^{MLE} = \arg\max_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

## Maximum A Posteriori (MAP) Estimate



• Data set D of independent, identically distributed (iid) flips produces  $\alpha_1$  ones,  $\alpha_0$  zeros

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

- Assume prior  $P(\theta) = Beta(\beta_1, \beta_0) = \frac{1}{B(\beta_1, \beta_0)} \theta^{\beta_1 1} (1 \theta)^{\beta_0 1}$
- Then

$$\hat{\theta}^{MAP} = \arg\max_{\theta} P(D|\theta)P(\theta) = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 - 1)}$$

(like MLE, but hallucinating  $\beta_1-1$  additional heads,  $\beta_0-1$  additional tails)

## Let's learn classifiers by learning P(Y|X)

Consider Y=Wealth, X=<Gender, HoursWorked>



| Gender | HrsWorked | P(rich   G,HW) | P(poor   G,HW) |
|--------|-----------|----------------|----------------|
| F      | <40.5     | .09            | .91            |
| F      | >40.5     | .21            | .79            |
| M      | <40.5     | .23            | .77            |
| M      | >40.5     | .38            | .62            |

#### How many parameters must we estimate?

Suppose  $X = \langle X_1, ..., X_n \rangle$ where  $X_i$  and Y are boolean RV's

| Gender | HrsWorked | P(rich   G,HW) | P(poor   G,HW) |
|--------|-----------|----------------|----------------|
| F      | <40.5     | .09            | .91            |
| F      | >40.5     | .21            | .79            |
| М      | <40.5     | .23            | .77            |
| М      | >40.5     | .38            | .62            |

To estimate  $P(Y|X_1, X_2, ... X_n)$ 

If we have 30 boolean  $X_i$ 's:  $P(Y \mid X_1, X_2, ..., X_{30})$ 

## Bayes Rule

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Which is shorthand for:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$

#### Equivalently:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{\sum_k P(X = x_j | Y = y_k) P(Y = y_k)}$$

## Can we reduce params using Bayes Rule?

Suppose X =1,... X<sub>n</sub>>  
where X<sub>i</sub> and Y are boolean RV's 
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

How many parameters to define  $P(X_1, ..., X_n \mid Y)$ ?

How many parameters to define P(Y)?

## Naïve Bayes

Naïve Bayes assumes

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

i.e., that X<sub>i</sub> and X<sub>j</sub> are conditionally independent given Y, for all i≠j

## Conditional Independence

Definition: X is <u>conditionally independent</u> of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write

$$P(X|Y,Z) = P(X|Z)$$

E.g.,

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naïve Bayes uses assumption that the  $X_i$  are conditionally independent, given Y. E.g.,  $P(X_1|X_2,Y)=P(X_1|Y)$ 

Given this assumption, then:

$$P(X_1, X_2|Y) =$$

Naïve Bayes uses assumption that the  $X_i$  are conditionally independent, given Y. E.g.,  $P(X_1|X_2,Y)=P(X_1|Y)$ 

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$
  
=  $P(X_1|Y)P(X_2|Y)$ 

in general: 
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

Naïve Bayes uses assumption that the  $X_i$  are conditionally independent, given Y. E.g.,  $P(X_1|X_2,Y)=P(X_1|Y)$ 

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$
  
=  $P(X_1|Y)P(X_2|Y)$ 

in general: 
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

How many parameters to describe  $P(X_1...X_n|Y)$ ? P(Y)?

- Without conditional indep assumption?
- With conditional indep assumption?

## Naïve Bayes in a Nutshell

#### Bayes rule:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 ... X_n | Y = y_j)}$$

## Assuming conditional independence among X<sub>i</sub>'s:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

So, to pick most probable Y for  $X^{new} = \langle X_1, ..., X_n \rangle$ 

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

## Naïve Bayes Algorithm – discrete X<sub>i</sub>

• Train Naïve Bayes (examples) for each\* value  $y_k$  estimate  $\pi_k \equiv P(Y=y_k)$  for each\* value  $x_{ij}$  of each attribute  $X_i$  estimate  $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$ 

• Classify  $(X^{new})$ 

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$ 

<sup>\*</sup> probabilities must sum to 1, so need estimate only n-1 of these...

## Estimating Parameters: Y, X<sub>i</sub> discrete-valued

#### Maximum likelihood estimates (MLE's):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

Number of items in dataset D for which Y=y<sub>k</sub>

#### Example: Live in Sq Hill? P(S|G,D,B)

- S=1 iff live in Squirrel Hill
   D=1 iff Drive or carpool to CMU
- G=1 iff shop at SH Giant Eagle
   B=1 iff Birthday is before July 1

What probability parameters must we estimate?

#### Example: Live in Sq Hill? P(S|G,D,E)

P(B=1 | S=1):

P(B=1 | S=0):

- G=1 iff shop at SH Giant Eagle
   B=1 iff Birthday is before July 1
- S=1 iff live in Squirrel Hill
   D=1 iff Drive or Carpool to CMU

P(B=0 | S=1):

P(B=0 | S=0):

```
P(S=1):
                                P(S=0):
P(D=1 | S=1):
                                P(D=0 | S=1):
P(D=1 | S=0):
                                P(D=0 | S=0):
P(G=1 | S=1):
                                P(G=0 | S=1):
P(G=1 | S=0):
                                P(G=0 | S=0):
```

## Naïve Bayes: Subtlety #1

Often the  $X_i$  are not really conditionally independent

- We use Naïve Bayes in many cases anyway, and it often works pretty well
  - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
  - Extreme case: what if we add two copies:  $X_i = X_k$

Extreme case: what if we add two copies:  $X_i = X_k$ 

## Naïve Bayes: Subtlety #2

If unlucky, our MLE estimate for  $P(X_i \mid Y)$  might be zero. (for example,  $X_i$  = birthdate.  $X_i$  = Jan\_25\_1992)

Why worry about just one parameter out of many?

What can be done to address this?

## **Estimating Parameters**

• Maximum Likelihood Estimate (MLE): choose  $\theta$  that maximizes probability of observed data  $\mathcal D$ 

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

• Maximum a Posteriori (MAP) estimate: choose  $\theta$  that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

## Estimating Parameters: $Y, X_i$ discrete-valued

#### Maximum likelihood estimates:

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \land Y = y_k\}}{\#D\{Y = y_k\}}$$

#### MAP estimates (Beta, Dirichlet priors):

$$\hat{\pi}_k = \hat{P}(Y=y_k) = \frac{\#D\{Y=y_k\} + (\beta_k-1)}{|D| + \sum_m (\beta_m-1)} \qquad \text{``imaginary'' examples}$$
 
$$\hat{\theta}_{ijk} = \hat{P}(X_i=x_j|Y=y_k) = \frac{\#D\{X_i=x_j \land Y=y_k\} + (\beta_k-1)}{\#D\{Y=y_k\} + \sum_m (\beta_m-1)}$$

## Learning to classify text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?

How shall we represent text documents for Naïve Bayes?

## Baseline: Bag of Words Approach



aardvark 0 about all Africa apple 0 anxious gas oil . . . Zaire

## Learning to classify document: P(Y|X) the "Bag of Words" model

- Y discrete valued. e.g., Spam or not
- $X = \langle X_1, X_2, ... X_n \rangle = document$
- X<sub>i</sub> is a random variable describing the word at position i in the document
- possible values for X<sub>i</sub>: any word w<sub>k</sub> in English
- Document = bag of words: the vector of counts for all w<sub>k</sub>'s
  - like #heads, #tails, but we have many more than 2 values
  - assume word probabilities are position independent (i.i.d. rolls of a 50,000-sided die)

## Naïve Bayes Algorithm – discrete X<sub>i</sub>

Train Naïve Bayes (examples)

for each value 
$$y_k$$

estimate 
$$\pi_k \equiv P(Y = y_k)$$

for each value  $x_i$  of each attribute  $X_i$ 

estimate 
$$\theta_{ijk} \equiv P(X_i = x_j | Y = y_k)$$

prob that word  $x_j$  appears in position i, given  $Y=y_k$ 

Classify (X<sup>new</sup>)

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
 
$$Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$$

<sup>\*</sup> Additional assumption: word probabilities are position independent  $\theta_{ijk} = \theta_{mjk} \;\; {
m for \; all} \; i,m$ 

## MAP estimates for bag of words

#### Map estimate for multinomial

$$\theta_{i} = \frac{\alpha_{i} + \beta_{i} - 1}{\sum_{m=1}^{k} \alpha_{m} + \sum_{m=1}^{k} (\beta_{m} - 1)}$$

What  $\beta$ 's should we choose?

#### Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism
soc.religion.christian
talk.religion.misc
talk.politics.mideast
talk.politics.misc
talk.politics.misc

sci.space sci.crypt sci.electronics sci.med

Naive Bayes: 89% classification accuracy

Learning Curve for 20 Newsgroups

For code and data, see

www.cs.cmu.edu/~tom/mlbook.html click on "Software and Data"



Accuracy vs. Training set size (1/3 withheld for test)

#### What you should know:

- Training and using classifiers based on Bayes rule
- Conditional independence
  - What it is
  - Why it's important
- Naïve Bayes
  - What it is
  - Why we use it so much
  - Training using MLE, MAP estimates
  - Discrete variables and continuous (Gaussian)

## **Questions:**

How can we extend Naïve Bayes if just 2 of the X<sub>i</sub>'s are dependent?

 What does the decision surface of a Naïve Bayes classifier look like?

- What error will the classifier achieve if Naïve Bayes assumption is satisfied and we have infinite training data?
- Can you use Naïve Bayes for a combination of discrete and real-valued X<sub>i</sub>?

## Expected values

Given discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

We also can talk about the expected value of functions of X

$$E[f(X)] = \sum_{x \in \mathcal{X}} f(x)P(X = x)$$

#### Covariance

Given two random vars X and Y, we define the covariance of X and Y as

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

e.g., X=gender, Y=playsFootball

or X=gender, Y=leftHanded

Remember: 
$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

## Thank You!



