$12a_{0038} (K12a_{0038})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{35} - u^{34} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 35 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{35} - u^{34} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{8} - u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{8} - u^{6} + 3u^{4} - 2u^{2} + 1 \\ -u^{8} - 2u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{10} + u^{8} - 4u^{6} + 3u^{4} - 3u^{2} + 1 \\ u^{10} + 3u^{6} + u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{12} - u^{10} + 5u^{8} - 4u^{6} + 6u^{4} - 3u^{2} + 1 \\ -u^{12} - 4u^{8} - 3u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{25} - 2u^{23} + \dots - 6u^{3} + u \\ -u^{25} + u^{23} + \dots - 3u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{29} - 2u^{27} + \dots - 8u^{3} + u \\ u^{31} - 3u^{29} + \dots + 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-4u^{34} + 12u^{32} - 4u^{31} - 68u^{30} + 8u^{29} + 160u^{28} - 52u^{27} - 460u^{26} + 88u^{25} + 852u^{24} - 268u^{23} - 1596u^{22} + 376u^{21} + 2304u^{20} - 704u^{19} - 3032u^{18} + 800u^{17} + 3316u^{16} - 1020u^{15} - 3092u^{14} + 920u^{13} + 2408u^{12} - 836u^{11} - 1512u^{10} + 588u^9 + 728u^8 - 372u^7 - 256u^6 + 192u^5 + 48u^4 - 64u^3 + 12u - 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{35} + 15u^{34} + \dots + 2u - 1$
c_2, c_5	$u^{35} + u^{34} + \dots + 4u + 1$
c_3	$u^{35} - u^{34} + \dots - 8u + 1$
c_4, c_9	$u^{35} + u^{34} + \dots + 2u + 1$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{35} + 5u^{34} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{35} + 11y^{34} + \dots + 50y - 1$
c_{2}, c_{5}	$y^{35} + 15y^{34} + \dots + 2y - 1$
c_3	$y^{35} + 7y^{34} + \dots - 30y - 1$
c_4, c_9	$y^{35} - 5y^{34} + \dots + 2y - 1$
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$y^{35} + 51y^{34} + \dots + 10y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.827985 + 0.442924I	-0.41301 - 6.75076I	-7.52201 + 10.31083I
u = 0.827985 - 0.442924I	-0.41301 + 6.75076I	-7.52201 - 10.31083I
u = -0.819369 + 0.722392I	3.00560 + 2.68433I	-6.38966 - 3.26103I
u = -0.819369 - 0.722392I	3.00560 - 2.68433I	-6.38966 + 3.26103I
u = -0.748025 + 0.473052I	1.37372 + 2.37460I	-2.95509 - 5.64025I
u = -0.748025 - 0.473052I	1.37372 - 2.37460I	-2.95509 + 5.64025I
u = -0.781691 + 0.815109I	6.78620 - 3.64652I	-2.24620 + 2.51117I
u = -0.781691 - 0.815109I	6.78620 + 3.64652I	-2.24620 - 2.51117I
u = 0.812484 + 0.804258I	8.37825 - 1.52833I	0.15922 + 2.57141I
u = 0.812484 - 0.804258I	8.37825 + 1.52833I	0.15922 - 2.57141I
u = 0.876029 + 0.769070I	8.16101 - 4.25998I	-0.39518 + 3.37976I
u = 0.876029 - 0.769070I	8.16101 + 4.25998I	-0.39518 - 3.37976I
u = -0.899548 + 0.751693I	6.38574 + 9.40965I	-3.35814 - 8.21027I
u = -0.899548 - 0.751693I	6.38574 - 9.40965I	-3.35814 + 8.21027I
u = 0.764387 + 0.291862I	-2.05998 - 0.57416I	-12.32788 + 4.08784I
u = 0.764387 - 0.291862I	-2.05998 + 0.57416I	-12.32788 - 4.08784I
u = -0.796033 + 0.081424I	-3.02472 + 3.09558I	-15.0272 - 5.6835I
u = -0.796033 - 0.081424I	-3.02472 - 3.09558I	-15.0272 + 5.6835I
u = -0.569720 + 0.552671I	1.96860 + 1.39447I	-0.18894 - 3.96327I
u = -0.569720 - 0.552671I	1.96860 - 1.39447I	-0.18894 + 3.96327I
u = 0.446314 + 0.583151I	0.82978 + 3.00776I	-2.26446 - 2.93479I
u = 0.446314 - 0.583151I	0.82978 - 3.00776I	-2.26446 + 2.93479I
u = 0.954730 + 0.937736I	13.9541 - 3.4440I	-5.66125 + 2.21477I
u = 0.954730 - 0.937736I	13.9541 + 3.4440I	-5.66125 - 2.21477I
u = 0.947637 + 0.954402I	18.2191 + 3.9502I	-2.24732 - 2.32186I
u = 0.947637 - 0.954402I	18.2191 - 3.9502I	-2.24732 + 2.32186I
u = -0.953750 + 0.951945I	-19.4865 + 1.6085I	0 2.11449I
u = -0.953750 - 0.951945I	-19.4865 - 1.6085I	0. + 2.11449I
u = -0.967443 + 0.943280I	-19.5330 + 5.3455I	0 2.28570I
u = -0.967443 - 0.943280I	-19.5330 - 5.3455I	0. + 2.28570I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.972104 + 0.939042I	18.1363 - 10.8977I	-2.41433 + 6.69442I
u = 0.972104 - 0.939042I	18.1363 + 10.8977I	-2.41433 - 6.69442I
u = 0.628123	-0.861815	-11.7130
u = 0.119848 + 0.450363I	-0.30459 - 1.79271I	-2.31417 + 3.71994I
u = 0.119848 - 0.450363I	-0.30459 + 1.79271I	-2.31417 - 3.71994I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{35} + 15u^{34} + \dots + 2u - 1$
c_2, c_5	$u^{35} + u^{34} + \dots + 4u + 1$
<i>c</i> ₃	$u^{35} - u^{34} + \dots - 8u + 1$
c_4, c_9	$u^{35} + u^{34} + \dots + 2u + 1$
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$u^{35} + 5u^{34} + \dots + 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{35} + 11y^{34} + \dots + 50y - 1$
c_2, c_5	$y^{35} + 15y^{34} + \dots + 2y - 1$
<i>c</i> ₃	$y^{35} + 7y^{34} + \dots - 30y - 1$
c_4, c_9	$y^{35} - 5y^{34} + \dots + 2y - 1$
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$y^{35} + 51y^{34} + \dots + 10y - 1$