

ETFA2013 – 4th 4DIAC Users' Workshop

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

Designing High Performance IEC61499 Applications on Top of DDS

Introduction

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

- ☐ Industrial communications
 - Complex
 - Different solutions at the different layers
 - ☐ Fieldbus at bottom layers: Profibus, CAN, ...
 - ☐ Ethernet, Wi-Fi at top layers
- Middleware solutions
 - CORBA: Common Object Request Broker Architecture
 - OPC: Object Linking and Embedding for Process Control
 - Web Services
 - DDS: Data Distribution Service

DDS: Data Distribution Service

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

Properties

- Middleware specification by the OMG
 - Object Management Group
- Publisher/Subscriber paradigm
 - Versus Client/Server, e.g. CORBA
- Guarantee Real-Time constrains
- Quality of Service control
- Open solutions
 - RTI Connext, OpenSplice, OpenDDS
- Programming languages
 - □ C, C++, Java
- Operating Systems
 - Windows, VxWorks, QNX, Lynx, ...
- Data defined using IDL (Interface Definition Language)
 - Instead of exchanging messages

DDS: Data Distribution Service

Introduction

- DDS overview
 - Control comm.
 - **DDS** mapping
 - **4DIAC Implement.**
 - **Summary**

DDS v1.2 API Standard

- Language Independent, OS and HW architecture independent
- DCPS: Standard API for Data-Centric, Topic-Based, Real-Time Publish/Subscribe
- DLRL: Standard API for creating Object Views out of collection of Topics

□ DDSI/RTPS v2.1 Wire Protocol Standard

 Standard wire protocol allowing interoperability between different implementations of the DDS standard

DDS Data Space

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

Virtual Global Data Space

- Many to many communication
- Decoupled in time, space and synchronization

DDS Entities

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

DDS Topics

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

Topic

- ☐ Unit of information atomically exchanged between Publishers and Subscribers
- An association between a unique name, a type and a QoS setting

A DDS Topic Type is described by an IDL Structure containing an arbitrary number for fields

DDS Domains and Partitions

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

Domain

- A Domain is one instance of the DDS Global Data Space
- DDS entities always belong to a specific domain

Partition

A partition is a scoping mechanism provided by DDS organize a partition

Application / DDS Coordination

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

DDS provides three main mechanism for exchanging information with the application

- Polling: The application polls from time to time for new data or status changes. The interval might depend on the kind of applications as well as data
- WaitSets: The application registers a WaitSet with DDS and waits (i.e. is suspended) until one of the specified events has happened
- Listeners: The application registers a listener with a specific DDS entity to be notified when relevant events occur, such as state changes

Quality of Service Model (QoS)

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

QoS-Policies

- QoS-Policies are used to control relevant properties of OpenSplice DDS entities, such as:
 Temporal Properties, Priority, Durability, Availability, ...
- Some QoS-Policies are matched based on a Request vs.
 Offered Model thus QoS-enforcement
- Publications and Subscriptions match only if the declared vs.
 requested QoS are compatible

QoS Policies

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

QoS Policy	Applicability	RxO	Modifiable	
DURABILITY	T, DR, DW	Υ	N	Data Availability
DURABILITY SERVICE	T, DW	N	N	
LIFESPAN	T, DW	N/A	Υ	
HISTORY	T, DR, DW	N	N	
PRESENTATION	P, S	Y	N	Data Delivery
RELIABILITY	T, DR, DW	Y	N	
PARTITION	P, S	N	Y	
DESTINATION ORDER	T, DR, DW	Y	N	
OWNERSHIP	T, DR, DW	Y	N	
OWNERSHIP STRENGTH	DW	N/A	Y	
DEADLINE	T, DR, DW	Y	Y	Data Timeliness
LATENCY BUDGET	T, DR, DW	Y	Y	
TRANSPORT PRIORITY	T, DW	N/A	Y	
TIME BASED FILTER	DR	N/A	Y	Resources
RESOURCE LIMITS	T, DR, DW	N	N	
USER_DATA	DP, DR, DW	N	Υ	Configuration
TOPIC_DATA	T	N	Υ	
GROUP_DATA	P, S	N	Y	

Control Comm. in Industrial Automation

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

Communication types

- □ Non-Real-Time communications: ERP, MES, SCADA, ...
 - Configuration and monitoring
 - Parameterization
 - Diagnostics
- Cyclical Process communications
 - ☐ Real-time process data transfer
- Acyclic Process communications
 - Real-time alarms and events

Mapping Industrial Communications with DDS

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

	Services				
	Aperiodic Alarms & Events	Periodic Sampled Measures	Request/No Response	Request / Response	
Topics	1	1	1	2	
Distribution	Many to many	Many to many	One to one	One to one	
Deadline	-	Period	-	-	
Destination Order	Source	Source	Reception	Source	
Durability	Persistent / Transient	Volatile	Volatile / Transient	Volatile / Transient	
History	Keep N	Keep last	Keep N	Keep N	
Latency Budget	Estimated urgency	33-50% of Period	-	-	
Lifespan	App. dependent	Period	-	-	
Liveliness	Automatic	Manual by topic	Automatic	Automatic	
Ownership	Shared / Exclusive	Shared	Shared	Exclusive	
Reliability	Reliable	Best effort	Reliable	Reliable	
Transport Priority	Highest	High	Low	Lowest	

Introduction

Mapping into DDS topics

Messages exchanged and mapping into DDS topics

DDS overview
Control comm.
DDS mapping
4DIAC Implement.
Summary

	Services				
	Acyclic Events	Cyclic Variables	Request /No Response	Request / Response	
Paradigm	Publish / S	Subscribe	Client / Server		
Topics (per variable)	1	1	1	2	
Distribution	Many to one	Many to many	One to one	One to one	
Content Filtered	No	Yes	Yes	Yes	

4DIAC-FORTE Implementation

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

DDS SIFBs

4DIAC-FORTE Implementation

DDS Entities Configuration XML File

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

```
public:
    typedef enum
{
    TTNULL,
    TTBYTE,
    TTWORD,
    TTDWORD,
    TTBUFFER,
    TTSTRING
} TopicTypes;
```


4DIAC-FORTE Implementation

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

DDS QoS Configuration XML File (USER_QOS_PROFILES.xml)

```
<?xml version="1.0" encoding="UTF-8"?>
<dds>
   <!-- Init - FORTEQoSLibrary Library
   <qos library name="FORTEQoSLibrary">
      <!-- Init - FORTEQoSLibrary Library - Aperiodic Profile
      <qos profile name="Aperiodic">
          <participant qos>
             <participant name>
                <name>FORTE QoS (Aperiodic)</name>
             </participant name>
          </participant gos>
          <datareader qos>
             <destination order>
                <kind>BY SOURCE TIMESTAMP DESTINATIONORDER QOS</kind>
             </destination order>
             <durability>
                <kind>TRANSIENT DURABILITY QOS</kind>
             </durability>
             veliness>
                <kind>AUTOMATIC LIVELINESS QOS</kind>
             </liveliness>
             <ownership>
                <kind>SHARED OWNERSHIP QOS</kind>
             </ownership>
             <reliability>
                <kind>RELIABLE RELIABILITY QOS</kind>
             </reliability>
                <kind>KEEP LAST HISTORY QOS</kind>
                <depth>1</depth>
             </history>
             col>
          </datareader gos>
          <datawriter gos>
      </gos profile>
      <!-- End - FORTEQoSLibrary Library - Aperiodic Profile
```


4DIAC Example

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

DDS Test Application

4DIAC Example

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

Summary

DDS Test System

Summary

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

- Middleware backbone: OMG DDS
 - Adequate for Real-Time environments
 - Some non-RT services adapt better to Client/Server
 - Avoid critical and non-critical interferences
 - Main services in Industrial automation identified
 - Mapping
 - Topics
 - QoS parameters
- □ 4DIAC-FORTE Implementation by SIFBs
- ☐ Future Work
 - Analyze performance

Questions

Introduction

DDS overview

Control comm.

DDS mapping

4DIAC Implement.

