## SAS4323 Surfactant

Lecture 6 Foaming

#### What is a Foam?

- Foam is produced when air or gas is introduced beneath the surface of a liquid that expands to enclose the gas with a film of liquid
  - Collection of bubbles
  - Air inside a liquid film

- Requires
  - Air
  - Liquid
  - Surfactant

### Structure of Foam



Intersection Point of Three Bubbles

#### Structure of Foam

 Honeycomb structure with twosided thin films called "lamellae"

 when 3 or more bubble meet, a 'Plateau border' or "Gibbs triangles" is formed

 The curvature in the lamellae is greatest in the plateau borders

#### Foam Destruction

 Foams are destroyed when liquid drains out from between the two parallel surfaces of the lamella

 When the film reaches a critical thickness (50-100Å), it collapses

• 
$$Å = 10^{-10} m$$

## Drainage inside Foam

- Drainage is caused by
  - Hydrostatic Pressure
    - Liquid flow under gravity
    - Lamellae are thinnest in upper region and thickest in the lower region
  - Pressure from Curvature
    - Lamellae as parts of bubbles, have different pressure at different curvature (Young-Laplace Equation)

## Gravity Drainage of Foam



### Types of Foams

- Persistent foam (or metastable foams)
  - Lifetime = hours or days

- Transient foam (or unstable foams)
  - Lifetime = less than a minute

## Film Elasticity

- For a liquid to foam (persistently or transiently), the liquid membrane surrounding the bubbles must possess a special form of elasticity
  - Any applied stresses that tend toward local thinning or stretching of the membrane are rapidly opposed and counterbalanced by restoring forces, like the stretching of a rubber band

## Film Elasticity

 A necessary condition for the production of foam but not sufficient for the formation of persistent foam



 This film elasticity is only possible if a surfactant is present

### Foam Persistence

Factors Affecting Foam Persistence:

 Drainage of liquid inside lamellae

Electrical double layer effect

# Foam Persistence Drainage of Liquid

- Mechanism must be present to retard the loss of liquid and gas from the foam and to prevent rupture of the lamellae
- Drainage by gravity
  - important in thick lamellae
  - affected by viscosity
    - Increase viscosity, retarding

# Foam Persistence Drainage of Liquid

- Drainage by pressure due to curvature
  - Important in thin lamellae
  - Depends on the existence of pressure difference at various points in the lamellae
  - Greater the difference between  $R_B$  and  $R_A$ , greater the curvatures difference, greater the difference in pressure difference causing the drainage

# Foam Persistence Electrical double layer

- Thinning of foam film may be prevented by the existence and thickness of electrical double layer
  - Electrostatic repulsion between the 2 sides of the film.
    - Maintaining Thickness of the Lamella
- High osmotic pressure due to large concentration of counterions present

# Foam Persistence Double Layer in Lamellae





### Nonionic surfactants

 Nonionic surfactants generally produce less foam and much less stable foam than ionic surfactants in aqueous media

- These are probably due to:
  - Large surface area per molecule
  - Absence of highly charges surface films

#### Foam Measurements

- Foaming ability of a surfactant depends on:
  - Concentration
  - Temperature
  - Water hardness
  - Method used to produce the foam

#### Ross-Miles method

Foam
created by
impinging( []
[]) a stream
of liquid
onto a pool
of liquid



#### Ross-Miles method

- Two Characteristics are Measured
  - Foam production, measured by height of foam initially produced
  - Foam stability,
    measured by height
    of foam after a given

    FIG. 1 For
    amount of time



Surfactants concentrations required to attain maximum

| -foam height, MFH(Ross-Miles Method, 60°C)                                           |             |                            |  |
|--------------------------------------------------------------------------------------|-------------|----------------------------|--|
| Surfactant                                                                           | cmc<br>(mM) | Concentration for MFH (mM) |  |
| C <sub>12</sub> H <sub>25</sub> SO <sub>3</sub> -Na+                                 | 11          | 13                         |  |
| C <sub>12</sub> H <sub>25</sub> SO <sub>4</sub> -Na+                                 | 9           | 5                          |  |
| C <sub>14</sub> H <sub>29</sub> SO <sub>3</sub> -K+                                  | 3           | 3                          |  |
| C <sub>14</sub> H <sub>29</sub> SO <sub>4</sub> -Na+                                 | 2.3         | 3                          |  |
| C <sub>16</sub> H <sub>33</sub> SO <sub>3</sub> -K+                                  | 0.9         | 0.8                        |  |
| C <sub>16</sub> H <sub>33</sub> SO <sub>4</sub> -Na+                                 | 0.7         | 0.8                        |  |
| p-C <sub>8</sub> H <sub>17</sub> C <sub>6</sub> H <sub>4</sub> SO <sub>3</sub> -Na+  | 16          | 13                         |  |
| p-C <sub>10</sub> H <sub>21</sub> C <sub>6</sub> H <sub>4</sub> SO <sub>3</sub> -Na+ | 3           | 4.5                        |  |
| p-C <sub>12</sub> H <sub>25</sub> C <sub>6</sub> H <sub>4</sub> SO <sub>3</sub> -Na+ | 1.2         | 4                          |  |
| o-C <sub>12</sub> H <sub>25</sub> C <sub>6</sub> H <sub>4</sub> SO <sub>3</sub> -Na+ | 3           | 4                          |  |
| (C <sub>8</sub> H <sub>17</sub> ) <sub>2</sub> CHSO <sub>4</sub> -Na+                | 2.3         | 4                          |  |

### Foaming Agent

## Efficiency(□□)

- Bulk phase concentration required to produce a significant amount of foam
- Often measured by CMC, i.e. the lower CMC the more efficient the surfactant as a foaming agent

### Foaming Agent

### Effectiveness( □□ )

- Maximum foam height obtained regardless of concentration
- depends on:
  - Its effectiveness in reducing the surface tension of the foaming solution
  - The magnitude of its intermolecular cohesion forces

## **Emulsion**

#### Definition of an Emulsion

 'Significantly Stabilized' suspension of particles of liquid droplets of a certain size within a second immiscible liquid

- Thermodynamically Unstable
  - Eventually revert to a twophase system

#### Classification of Emulsion

- Classification based on size of dispersed particles
  - Macro-emulsion 0.2 to 50 μm
    - Opaque( □□□ )
    - Visible under microscope
  - Mini-emulsion 0.1 to 0.4 μm
  - Micro-emulsion 0.01 to 0.2  $\mu m$  (10 200nm)
    - Transparent or semi-transparent

## Light Dispersion of Colloid/Emulsion

| Diameter of<br>Dispersed Particles | Appearance                 |
|------------------------------------|----------------------------|
| > 1 µm                             | Milky White                |
| 0.1 – 1 μm                         | Bluish White               |
| 0.05 – 0.1 μm                      | Gray, Semi-<br>transparent |
| < 0.05 μm                          | Transparent                |

#### Classification of Emulsion

#### Classification based on dispersed phase:

- Oil-in-water (O/W) emulsion
  - Dispersion of oil droplets in water
  - Continuous phase Water
  - Dispersed phase Oil
- Water-in-Oil (W/O) emulsion
  - Dispersion of water droplets in oil
  - Continuous phase Oil
  - Dispersed phase Water

### Oil - in - Water Emulsion







## Comparison O/W and W/O Emulsion

| C | Oil in Water Emulsion        | Water in Oil Emulsion       |
|---|------------------------------|-----------------------------|
|   | Dilute by Water              | Dilute with Oil             |
|   | Good Conductance             | Bad Conductance             |
| C | olor by Water Soluble<br>Dye | Color by Oil Soluble<br>Dye |

29

#### **Emulsification**

- Formation of emulsion from two immiscible liquid
- A third component
   (components) called
   "emulsifying agent" (usually a
   surface-active agent) must be
   present to stabilize the system

# Functions of Emulsifying Agent

- Instability is the result of increase in surface area due to formation of dispersed phase which increases the system free energy
- Reduce thermodynamic instability
  - Reduced interfacial tension between liquids
- Decrease rate of coalescence( []]) of the dispersed liquid particles by formation barriers between them
  - Mechanical

Steric

## Factors Affecting Formation of Emulsion

- Type of emulsion formed by "water" and "oil" depends on:
  - Nature of emulsifying agent
  - Process used in preparing the emulsion
  - Relative proportions of 'oil' and 'water' present

#### Bancroft Rule

- o/w emulsions are generally produced by emulsifying agents that are more soluble in 'water' than in 'oil' phase
- The reverse is true for w/o emulsions

# Factors Affecting Emulsion Stability

- Stability = resistance to coalescence
  - Measured by rate of coalescence
- Physical nature of interfacial film
  - Strong lateral intermolecular forces between surfactant to hold together
  - High film elasticity
    - Mixture of two or more surfactants
- Existence of electrical or steric barrier on the droplets





- Colloidal particles in solution stabilized by:
- 1. electrostatic repulsion due to surface charges (left) or
- 2. by steric repulsion of grafted longchain, polymeric molecules (right)

35

## Factors Affecting Emulsion Stability

- Viscosity of the continuous phase
- The motion of droplets is characterized by the diffusion coefficient  $D = \frac{kT}{6\pi rn}$
- Where r is the radius, η is the viscosity of outer phase
- as D is reduced, rate of coalescence are reduced and more stable for the emulsion

# Factors Affecting Emulsion Stability

- Size distribution of droplets
  - the larger the size of droplets, less interfacial surface per unit volume, the more thermodynamically stable
  - Emulsion with uniform size distribution is more stable
- Phase volume ratio
  - the instability of the system increase as the volume of the dispersed phase increases

# Factors Affecting Emulsion Stability

- Temperature
  - Interfacial tension
  - Interfacial film
  - Relative solubility of emulsifying agent in two phases
  - Vapor pressure and viscosity of liquids
  - Thermal agitation of dispersed particles

- The HLB method (Hydrophile -Lipophile Balance Method)
- A number between 0 and 20 can be assigned to an emulsifying agent
- It can be based on experimental emulsification data
- Or

 HLB number can be calculated from the structure of the emulsifying agent by

$$HLB=20 \times \left[ \frac{M_H}{M_H + M_L} \right]$$

Where  $M_H$  = Formula Weight of Hydrophilic Portion Where  $M_L$  = Formula Weight of Lipophilic Portion

 Usually HLB < 10 lipophilic, HLB > 10 hydrophilic

- A similar range of numbers can be assigned to various substances that are frequently emulsified, e.g. oil, lanolin, paraffin wax, xylene, etc.
  - Note: value may depend on which phase it is in

- An emulsifying agent (or a combination of emulsifying agents) is selected whose HLB number is about the same as that of the ingredients to be emulsified
  - Note: weighted average of assigned numbers is always used for mixtures

#### Example:

For a mixture of 20% paraffin wax (HLB = 10) and 80% aromatic mineral oil (HLB = 13)

HLB number =  $(10 \times 0.20) + (13 \times 0.80)$ = 12.4

To emulsify this mixture, a mixture of 60% surfactant with HLB = 16.9 and 40% surfactant with HLB = 5.3 could be tried.

 $HLB = (16.9 \times 0.06) + (5.3 \times 0.40)$ = 12.2

- Materials with high HLB values are o/w emulsifiers, with low HLB values are, w/o emulsifiers.
  - HLB value of 3-6 is recommended range for w/o emulsification

| HLB     | Application            |
|---------|------------------------|
| 1 - 3   | anti-foaming agent     |
| 3 – 6   | w/o emulsifying agents |
| 7 – 9   | wetting agents         |
| 8 - 18  | o/w emulsifying agents |
| 13 – 15 | detergents             |
| 15 - 18 | solubilizing agents    |

 Water solubility of the surfactant can be used as a rough guideline for its HLB

| Behavior in water                                      | HLB   |
|--------------------------------------------------------|-------|
|                                                        | Range |
| No dispersibility                                      | 1-4   |
| Poor dispersion                                        | 3-6   |
| Milky dispersion after                                 | 6-8   |
| vigorous agitation                                     |       |
| Stable milky dispersion (upper end almost translucent) | 8-10  |
| Form translucent to clear                              | 10-13 |
| Clear solution                                         | 13+   |

| Surfactant                         | Commercial Name | HLB  |
|------------------------------------|-----------------|------|
| Sorbitan trioleate                 | SPAN 85         | 1.8  |
| Sorbitan tristearate               | SPAN 65         | 2.1  |
| Propylene glycol monostearate      | "PURE"          | 3.4  |
| Glycerol monostearate              | ATMUL 67        | 3.8  |
| Sorbitan monooleate                | SPAN 80         | 4.3  |
| Sorbitan monostearate              | SPAN 60         | 4.7  |
| Diethylene glycol monolaurate      | GLAURIN         | 6.1  |
| Sorbitan monolaurate               | SPAN 20         | 8.6  |
| Glycerol monostearate              | ALDO 28         | 11   |
| Polyoxyethylene(2) cetyl ether     | BRIJ 52         | 5.3  |
| Polyoxyethylene(10) cetyl ether    | BRIJ 56         | 12.9 |
| Polyoxyethylene(20) cetyl ether    | BRIJ 58         | 15.7 |
| Polyoxyethylene(6) tridecyl ether  | RENEX 36        | 11.4 |
| Polyoxyethylene(12) tridecyl ether |                 | 14.5 |
| Polyoxyethylene(15) tridecyl ether | r RENEX 31      | 15.4 |

## Question 1

 Calculate the percentage composition of surfactant A in a mixture of surfactant A and B if the Hydrophile– Lipophile Balance (HLB) of the mixture is 9.9.

- GIVEN:
- HLB of surfactant A is 12.3
- HLB of surfactant B is 8.6

#### Answer

- Let x be the percentage of surfactant
   A and (1 x) be the percentage of surfactant B
- 9.9 = x(12.3) + (1 x)(8.6)
- x = 0.3514
- There are 35.14% of A

### Question 2

 Suppose 100g of water and 250g of oil is mixed to form an emulsion. 25% of the molar mass of oil molecule can be considered as polar. What is the HLB number of the oil and the emulsion?

#### Answer

HLB<sub>oil</sub> = 20 X 
$$\frac{250(0.25)}{250}$$
 = 5 |  
HLB<sub>emulsion</sub> =  $\frac{100}{100 + 250}(20) + \frac{250}{100 + 250}(5) = 9.29$