

Tema 1 Introducción: Tendencias Tecnológicas Costo/Rendimiento

Curso 2009-2010

Contenidos

- o La asignatura. ¿ Qué estudia?
- o El entorno tecnológico
- o Rendimiento
- o Costo
- o Un principio simple
- o Bibliografía

```
Capítulo 1 de [HePaO7]
Semiconductor Industry Association. http://public.itrs.net
Standard Performance Evaluation Corporation. http://www.spec.org
Transaction Processing Council. http://www.tpc.org
The Embedded Microprocessor Benchmark Consortium.
http://www.eembc.org
```

□ Niveles de descripción y diseño de un computador

□ Niveles de descripción y diseño de un computador

¿Dónde se estudia?

Arquitectura de computadores

- Los atributos de un computador tal y como los ve un programador en lenguaje ensamblador. La estructura conceptual y el modelo funcional (modelo de programación). Amdahl, Blaaw, Brooks 1964
- ☐ El concepto ha cambiado en el tiempo.
 - o Hasta la mitad de los 80. El énfasis era el diseño de juego de instrucciones orientado a los LAN.
 - o Desde entonces el énfasis es el diseño de CPU, Jerarquía de memoria, sistema de I/O. Aspectos clave coste-rendimiento-tecnología
- ☐ Tres aspectos
 - o Arquitectura del juego de instrucciones
 - o Organización (diferentes organizaciones P6, Netburst AMD, Core)
 - o Implementación (PentiumIII, Celeron, Pentium4, Pentium Xeon, Core2)

ISA: Interfase Critico

- ☐ Propiedades
 - o Permanencia con el tiempo / tecnología (portabilidad)
 - o Proporciona funcionalidad eficaz a los niveles superiores
 - o Permite implementación eficiente en los niveles inferiores

□ Evolución de los juegos de instrucciones

☐ Metodología de Diseño

□ ¿Qué estudia la asignatura?

Entrada/salida y almacenamiento

□ ¿Qué estudia la asignatura?

Switch (5) Procesador (P) Memoria (M)

Multiprocesadores Redes de Interconexión Memoria compartida, paso de mensajes, paralelismo de datos

Red

Topología, Routing, Ancho de banda, Latencia,

El entorno

- □ 1949 EDSAC 10² op/seg
- □ 1957 Transistor: de 10³ a 10⁴ op/seg
 - o DEC PDP-1 (1957)
 - o IBM 7090 (1960)
- \Box 1965 CI: de 10⁵ a 10⁶ op/seg
 - o IBM System 360 (1965)
 - o DEC PDP-8 (1965)
- ☐ 1971 Microprocesador
 - o Intel 4004
- □ 2003 más de 3x10¹³ op/seg
- \square 2008 > 10^{16} op/seg un petaflops
 - o IBM Roadrunner 1,37Pflops, 122400pc
 - o MareNostrum 94Tflops 10240pc

Transistor (47) PN 56

CI (58) PN2000

P 4

Oblea (Wafer)

El entorno

- □ Tecnología: CMOS VLSI domina todas las demás tecnologías
 - o (TTL, ECL, AsGa,..) en costo y rendimiento.
 - o Arquitectura : Mejoras basadas en la tecnología. La tecnología impulsa la desarrollos arquitectónicos.

☐ La Ley de Moore

Cramming More Components onto Integrated Circuits

GORDON E. MOORE, LIFE FELLOW, IEEE

Fig. 3.

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65 000 components on a single silicon chip.

Each approach evolved rapidly and converged so that each borrowed techniques from another. Many researchers believe the way of the future to be a combination of the

LOG2 OF TO NUMBER OF COM PER INTEGRATED

Flectronic- Abril1965

engineering.

Integration will not change linear systems as radical

diagram to technological realization without any sp

It may prove to be more economical to build systems out of smaller functions, which are separately g aged and interconnected. The availability of large funct

combined with functional design and construction, sh allow the manufacturer of large systems to design construct a considerable variety of equipment both ra

IX. LINEAR CIRCUITRY

and economically.

digital systems. Still, a considerable degree of integr will be achieved with linear circuits. The lack of k value capacitors and inductors is the greatest fundam limitation to integrated electronics in the linear area.

☐ La Ley de Moore se ha cumplido

Fuente: Intel Corporation

El entorno

☐ La Ley de Moore se ha cumplido

Fuente: Intel Corporation

□ La Ley de Moore se ha cumplido

Fuente: Intel Corporation

☐ La Ley de Moore continua

Fuente: Intel Corporation

☐ La Ley de Moore continua

Fuente: Intel Corporation

Process Name	P856	P858	Px60	P1262	P1264	P1266	P1268	P1270
1st production	1997	1999	2001	2003	2005	2007	2009	2011
Process	250 nm	180 nm	130 nm	90 nm	65 nm	45 nm	32 nm	22 nm
Wafer size	200	200	200/300	300	300	300	300	300
Inter-connect	Al	Al	Си	Си	Си	Си	Си	?
Metal layers	5	6	6	7	8	9	?	?
Channel	Si	Si	Si	Strained	Strained	Strained	Strained	Strained
Chainlei				Si	Si	Si	Si	Si
Gate Dielectric	SiO ₂	SiO ₂	SiO ₂	SiO ₂	SiO ₂	High — k	High — k	High — k
Gate electrode	Poly-Si	Poly-Si	Poly-Si	Poly-Si	Poly-Si	Metal	Metal	Metal
Lithography	hy 248 nm	8 nm 248 nm	248 nm	193 nm	193 nm	193 nm	EUV	EUV
Littlography	2 4 0 IIII	240 IIIII	240 IIIII	173 11111	173 11111	173 11111	13.4 nm	13.4 nm

(Subject to change)

Manufacturing process details from 1997 to 2011

Fuente: Intel Corporation

- □ Microelectrónica + Microarquitectura
- ☐ Una industria con un progreso que no tiene equivalente
- □ Doblado cada 18 meses (1982-2000):
- Total de incremento 3,200X
- Los coches viajarían a 176,000 MPH; y recorrerían 64,000 millas/gal.
- El viaje: L.A. a N.Y. en 5.5 seg (MACH 3200)
- Doblado cada 24 meses (1971-2001):
- total de incremento 36,000X
- Los coches viajarían a 2,400,000 MPH; y recorrerían 600,000 millas/gal.
- El viaje: L.A. a N.Y. en 0.5 seg (MACH 36,000)

☐ Microelectrónica y microarquitectura

50X in frequency and 75X in performance

□ Densidad de potencia

El entorno: tendencias

□ Resumen de evolución en tecnología de implementación

	Capacidad	Velocidad Latencia			
Logica	X2 en 3 años	X2 en 3 años			
DRAM	X4 en 3 años	X2 en 10 años			
Disco	X2 en 3 años	X2 en 10 años			

☐ Uso de los computadores

- ✓ La cantidad de memoria necesaria crece entre 1.5 y 2 por año. Más bits para direccionamiento.
- ✓ Programación en LAN. Los compiladores son fundamentales, son el interfase entre las aplicaciones y el computador.

Una arquitectura debe ser diseñada para soportar el paso del tiempo Cambios en tecnología, Sw y aplicaciones.

Arquitectura IBM360-390 (1964) ,X86 (1978)

El entorno: tendencias

□ Latencia y ancho de banda en los últimos 20 años

- □ Procesador: '286, '386, '486, Pentium, Pentium Pro, Pentium 4 (21x,2250x)
- □ Ethernet: 10Mb, 100Mb, 1000Mb, 1000Mb, 10000 Mb/s (16×,1000×)
- Modulo de Memoria: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x)
- □ Disco: 3600, 5400, 7200, 10000, 15000 RPM (8×, 143×)

Mejora relativa de latencia

□ Evolución del rendimiento de los procesadores

Evolución

IBM Power2 Ws (1993) más rendimiento que Cray YMP(1988). Costo 50 veces menor

Desktop (precio)
Servidores (disponibilidad)
Servidores HPC (Rendimiento)
Sistemas empotrados
(memoria y consumo)

Itaniun 9000 Montecito 1700 Mtrans 90 nm, 100w 12MB por core 2 thread-2 cores

Retos 2015

□ Dos conceptos clave

Avión	Wa a París	Velocidad	Pasajeros	Throughput (p.km/h)	
Boeing 747	6.5 horas	970 km/h	470	455900	
Concorde	3 horas	2160 km/h	132	285120	

- ✓ Tiempo de Ejecución (TEj): Tiempo que tarda en completarse una tarea
 ✓ (Tiempo de respuesta, latencia)
- √Rendimiento (Performance, Throughput): tareas por hora, día ,...
- √ "X es n veces más rápido que Y" significa

✓ Reducir el TEj incrementa el rendimiento

☐ Medidas del rendimiento

La única medida fiable es el tiempo de ejecución programas reales Dos aspectos: Rendimiento del computador, Rendimiento del procesador

☐ Rendimiento del procesador

- √ N: n° de instrucciones (Compiladores y LM)
- ✓ CPI: (LM, implementación, paralelismo)
- √ t: período de reloj (implementación, tecnología)
- ☐ Ciclos medios por instrucción (CPI)

CPI = (T_{CPU} * Frecuencia de reloj) / Numero de Instrucciones = Ciclos / Numero de Instrucciones

Si asumimos que existen n tipos de instrucciones:

$$T_{CPU} = t * \sum_{j=1}^{n} (CPI_j * I_j)$$
 $(n = tipos de instr., I_j = n^o instr. tipo j ejecutadas)$

$$CPI = \sum_{j=1}^{n} CPI_{j} * F_{j}$$
 (donde F_{j} es la frecuencia de aparición de la instrucción tipo J)

Ejemplo: ALU 1 ciclo(50%), Ld 2 ciclos(20%), St 2 ciclos(10%), saltos 2 ciclos(20%) CPI: ALU 0.5, Ld 0.4, St 0.2, salto 0.4 TOTAL CPI = 1.5

Invertir recursos donde se gasta el tiempo

□ Rendimiento global del computador : Benchmarks

- ✓ La única forma fiable es ejecutando distintos programas reales.
 - ✓ Programas "de juguete": 10~100 líneas de código con resultado conocido. Ej:: Criba de Erastótenes, Puzzle, Quicksort
 - ✓ Programas de prueba (benchmarks) sintéticos: simulan la frecuencia de operaciones y operandos de un abanico de programas reales. Ej:: Whetstone, Dhrystone
- ✓ Programas reales típicos con cargas de trabajo fijas (actualmente la medida más aceptada) SPEC
- ✓ Otros
 - ✓ HPC:LINPACK, SPEChpc96, Nas Parallel Benchmark
 - ✓ Servidores: SPECweb, SPECSFS(File servers), TPC-C
 - ✓ Graficos: SPECviewperf(OpenGL), SPECapc(aplicaciones 3D)
 - ✓ Winbench, EEMBC

□ Rendimiento global del computador : SPEC

- ✓ Programas reales típicos con cargas de trabajo fijas (actualmente la medida más aceptada)
 - ✓ SPEC89: 10 programas proporcionando un único valor.
 - ✓ **SPEC92**: 6 programas enteros (SPECint92) y 14 en punto flotante (SPECfp92). Sin limites en opciones de compilación
 - ✓ SPEC95: 8 programas enteros (SPECint95) y 10 en punto flotante (SPECfp95). Dos opciones en compilación: la mejor para cada programa y la misma en todos (base)
 - ✓ SPEC2000 12 programas enteros y 14 en punto flotante. Dos opciones de compilación (la mejor: spec--, la misma spec--_base
 - ✓ SPEC2006 12 programas enteros y 17 en punto flotante. Dos opciones de compilación (la mejor: spec--, la misma spec--_base

> SPEC2006 vesus SPEC2000

Evolución de la jerarquía de memoria (256KB, 256MB a 4MB, 1GB) Más programas más complejos

	CPU2000		CPU2006			
Benchmark Description	Integer	Lng	RT	Integer	Lng	RT
GNU C compiler	176.gcc	С	1,100	403.gcc	С	8,050
Manipulates strings & prime numbers in Perl language	253.perlbmk	С	1,800	400.perlbench	С	9,766
Minimum cost network flow solver (combinatorial optimization)	181.mcf	С	1,800	429.mcf	С	9,120
Data compression utility	256.bzip2	C	1,500	401.bzip2	С	9,644
Data compression utility	164.gzip	C	1,400			
Video compression & decompression				464.h264ref	С	22,235
Artificial intelligence, plays game of Chess	186.crafty	С	1,000	458.sjeng	С	12,141
Artificial intelligence, plays game of Go				445.gobmk	C	10,489
Artificial intelligence used in games for finding 2D paths across terrains				473.astar	C++	7,017
Natural language processing	197.parser	С	1,800			
XML processing				483.xalancbmk	C++	6,869
FPGA circuit placement and routing	175.vpr	C	1,400			
EDA place and route simulator	300.twolf	C	3,000			
Search gene sequence				456.hmmer	С	9,333
Ray tracing	252.eon	C++	1,300			
Computational group theory	254.gap	C	1,100			
Database program	255.vortex	C	1,900			
Library for simulating a quantum computer				462.libquantum	С	20,704
Discrete event simulation				471.omnetpp	C++	6,270
	hours	5.3	19,100	hours	36.6	131,638

> SPEC2006 vesus SPEC2000

	CPU2000			CPU2006		
Benchmark Description	Floating Pnt	Lng	RTime	Floating Pnt	Lng	RTime
Weather prediction, shallow water model	171.swim	F77	3,100			
Velocity & distribution of pollutants based on temperature, wind	301.apsi	F77	2,600			
Weather modeling (30km area over 2 days)				481.wrf	C/F	11,215
Physics, particle accelerator model	200.sixtrack	F77	1,100			
Parabolic/elliptic partial differential equations	173.applu	F77	2,100			
Multi-grid solver in 3D potential field	172.mgrid	F77	1,800			
General relativity, solves Einstein evolution equations				436.cactusADM	C/F	11,927
Computational electromagnetics (solves Maxwell equations in 3D)				459.GemsFDTD	F	10,583
Quantum chromodynamics	168.wupwise	F77	1,600			
Quantum chromodynamics, gauge field generation with dynamical quarks				433.milc	С	9,180
Fluid dynamics, analysis of oscillatory instability	178.galgel	F90	2,900			
Fluid dynamics, computes 3D transonic transient laminar viscous flow				410.bwaves	F	13,592
Computational fluid dynamics for simulation of astrophysical phenomena				434.zeusmp	F	9,096
Fluid dynamics, large eddy simulations with linear-eddy model in 3D				437.leslie3d	F	9,358
Fluid dynamics, simulates incompressible fluids in 3D				470.lbm	С	13,718
Molecular dynamics (simulations based on newtonian equations of motion)				435.gromacs	C/F	7,132
Biomolecular dynamics, simulates large system with 92,224 atoms				444.namd	C++	8,018
Computational chemistry	188.ammp	С	2,200			
Quantum chemistry package (object-oriented design)				465.tonto	F	9,822
Quantum chemistry, wide range of self-consistent field calculations				416.gamess	F	19,575
Computer vision, face recognition	187.facerec	F90	1,900			
Speech recognition system				482.sphinx3	С	19,528
3D graphics library	177.mesa	С	1,400			
Neural network simulation (adaptive resonance theory)	179.art	С	2,600			
Earthquake modeling (finite element simulation)	183.equake	С	1,300			
Crash modeling (finite element simulation)	191.fma3d	F90	2,100			
Number theory (testing for primes)	189.lucas	F90	2,000			
Structural mechanics (finite elements for linear & nonlinear 3D structures)				454.calculix	C/F	8,250
Finite element analysis (program library)				447.dealII	C++	11,486
Linear programming optimization (railroad planning, airlift models)				450.soplex	C++	8,338
Image ray tracing (400x400 anti-aliased image with abstract objects)				453.povray	C++	5,346
	hours	8.0	28,700	hours	52	186,164

AIC — Tema 1

> Evolución de los SPEC

Year	Iteration	Suites	Languages	Measures	Reference Machine
1989	SPEC CPU	10 SPEC programs RT: 18.66 hours (scores not rounded)	C(4) & Fortran(5) & C/Fortran(1)	SPECmark SPECthruput	Vax 11/780 5 MHz 8K cache off-chip memory N/A
1992	SPEC CPU92	6 CINT92 programs RT: 6.21 hours 14 CFP92 programs RT: 41.27 hours (scores rounded to 10s place)	C(6) C(2) & Fortran(12)	SPECint92 SPECfp92 SPECint_rate92 SPECfp_rate92	same as SPEC89
1995	SPEC CPU95	8 CINT95 programs RT: 5.25 hours 10 CFP95 programs RT: 11.00 hours (scores rounded to 100s place)	C(8) Fortran(10)	SPECint95 SPECint_base95 SPECfp95 SPECfp_base95 SPECint_rate95 SPECint_rate_base95 SPECfp_rate95 SPECfp_rate_base95	SPARCstation 10/40 40 MHz SuperSPARC I 20K/16K I/D L1 on-chip no L2 cache 128MB memory
2000	SPEC CPU2000	12 CINT2000 programs RT: 5.31 hours 14 CFP2000 programs RT: 7.97 hours (scores rounded to 100s place)	C(11) & C++(1) C(4) & Fortran77(6) & Fortran90(4)	same set of 8 measures defined for SPEC CPU95	Ultra 5 model 10 300 MHz UltraSPARC IIi 16K/16K I/D L1 on-chip 2MB L2 cache off-chip 256MB memory
2006	SPEC CPU2006	12 CINT2006 programs RT: 36.57 hours 17 CFP2006 programs RT: 51.71 hours (scores not rounded)	C(9) & C++(3) C(3) & C++(4) & Fortran(6) & C/Fortran(4)	same set of 8 measures defined for SPEC CPU95	Ultra Enterprise 2 296 MHz UltraSPARC II 16K/16K I/D L1 on-chip 2MB L2 cache off-chip 1GB memory

Evolución de los Spec

□ SPEC de los últimos procesadores (SPEC2000)

o Retirados febrero 2007

☐ SPEC de los últimos procesadores (SPEC2006)

Fabricación de un CI

41

□ Coste : El fundamental, el coste del CI

Die coste = <u>coste del Wafer</u>

Dies por Wafer * Die yield

El costo de CI (Die) ≈ f(área del die)2

□ Algunos ejemplos reales

- * Processor core change from previous process generation.
- ** Not mainstream processors, but provided for comparison purposes.

- ☐ Componentes del coste final (Precio)
- o Coste del CI
- o Costo Directo: costes recurrentes: mano de obra, compras,
- Margen bruto: costes no recurrentes, I&D, marketing, ventas, equipamiento, costes financieros, beneficio, impuestos
- o Descuento

□ Evolución en la vida comercial

Fuente Microprocessor Report

□ Diferentes segmentos de mercado

Coste-Rendimiento

Coste-Rendimiento-Consumo

AIC — Tema 1

Un principio simple

- ☐ Un principio básico: Hacer rápidas las funciones frecuentes.

 Gastar recursos donde se gasta el tiempo.
 - ☐ Ley de Amdahl: Permite caracterizar este principio

Permite la evaluación del speedup que se obtendrá al aplicar una cierta mejora, M, que permite ejecutar una parte del código x veces más rápido.

Def: Speedup(E) =
$$\frac{\text{TEj sin M}}{\text{TEj con M}}$$
 Performance con M Performance sin M

Si la mejora sólo acelera la ejecución de un fracción F de la tarea, el tiempo de ejecución del resto permanece sin modificación. Por tanto es muy importante el porcentaje de la tarea que es acelerada.

$$F = \frac{t_B}{t_A + t_B + t_C}$$

Un principio simple

La Ley Amdahl $TEj_{nuevo} = TEj_{antiguo} \times \begin{bmatrix} (1 - Fraccion_{mejora}) + Fraccion_{mejora} \\ x \end{bmatrix}$ Speedup = $\frac{TEj_{antiguo}}{TEj_{nuevo}} = \frac{1}{(1 - Fraccion_{mejora}) + Fraccion_{mejora}}$

Ejemplo 1:. El 10% del tiempo de ejecución de mi programa es consumido por operaciones en PF. Se mejora la implementación de la operaciones PF reduciendo su tiempo a la mitad

$$TEj_{\text{nuevo}} = TEj_{\text{antiguo}} \times (0.9 + 0.1 / 2) = 0.95 \times TEj_{\text{antiguo}}$$

$$Speedup = \frac{1.053}{0.95}$$

$$Mejora de sólo un 5.3%$$

Ejemplo 2: Para mejorar la velocidad de una aplicación, se ejecuta el 90% del trabajo sobre 100 procesadores en paralelo. El 10% restante no admite la ejecución en paralelo.

$$TEj_{\text{nuevo}} = TEj_{\text{antiguo}} \times (0.1 + 0.9 / 100) = 0.109 \times TEj_{\text{antiguo}}$$
 Speedup =
$$\frac{1}{0.109} = 9.17$$

El uso de 100 procesadores sólo multiplica la velocidad por 9.17