$$\sigma(Y) = Y^{-1}(\mathcal{B})$$
 &

$\sigma(Y)$ can be generated by $\pi(Y)$

赖睿航 518030910422

April 5, 2020

Exercise 1. Show that $\sigma(Y) = Y^{-1}(\mathcal{B}) := (\{\omega : Y(\omega) \in B\} : B \in \mathcal{B}).$

Proof. Let (S, Σ) be a measurable space. It is already known that

$$\begin{split} \sigma(Y) &:= \sigma(Y^{-1}(\mathcal{B})) \\ &= \sigma(Y^{-1}(B) \colon B \in \mathcal{B}) \\ &= \sigma(\{\omega \colon Y(\omega) \in B\} \colon B \in \mathcal{B}). \end{split}$$

So we only need to show that $\Sigma_0 := Y^{-1}(\mathcal{B}) = \{Y^{-1}(B) : B \in \mathcal{B}\}$ itself is a σ -algebra. By definition we need to prove two properties of Σ_0 :

- 1. $S_0 \in \Sigma_0 \Rightarrow S_0^c \in \Sigma_0$, and
- 2. $(S_i)_{i\in\mathbb{N}}\subseteq\Sigma_0\Rightarrow\bigcup_{i\in\mathbb{N}}S_i\in\Sigma_0$.

Since Y is a random variable which is a Σ -measurable function by definition, the mapping Y^{-1} satisfies that

$$Y^{-1}(A^c) = (Y^{-1}(A))^c, Y^{-1}(\bigcup_{\alpha} A_{\alpha}) = \bigcup_{\alpha} Y^{-1}(A_{\alpha})$$

where $A, A_{\alpha} \in \mathcal{B}$. Thus we have

$$S_0 \in \Sigma_0 \Rightarrow S_0 \in \{Y^{-1}(B) \colon B \in \mathcal{B}\}\$$

 $\Rightarrow \exists B_{S_0} \in \mathcal{B} \text{ s.t. } Y^{-1}(B_{S_0}) = S_0$
 $\Rightarrow Y^{-1}(B_{S_0}{}^c) = (Y^{-1}(B_{S_0}))^c = S_0{}^c$
 $\Rightarrow S_0{}^c \in \Sigma_0,$

and

$$(S_i)_{i \in \mathbb{N}} \subseteq \Sigma_0 \Rightarrow \exists (B_i)_{i \in \mathbb{N}} \text{ s.t. } \forall i \in \mathbb{N}, Y^{-1}(B_i) = S_i$$
$$\Rightarrow Y^{-1}(\bigcup_{i \in \mathbb{N}} B_i) = \bigcup_{i \in \mathbb{N}} Y^{-1}(B_i) = \bigcup_{i \in \mathbb{N}} S_i$$
$$\Rightarrow \bigcup_{i \in \mathbb{N}} S_i \in \Sigma_0.$$

Therefore, $\Sigma_0 = \{Y^{-1}(B) \colon B \in \mathcal{B}\}\$ is a σ -algebra, which means $\sigma(Y) = \sigma(Y^{-1}(\mathcal{B})) = Y^{-1}(\mathcal{B})$.

Exercise 2. $\sigma(Y)$ can be generated by the π -system

$$\pi(Y) := (\{\omega \colon Y(\omega) \leqslant x\} \colon x \in \mathbb{R}) = Y^{-1}(\pi(\mathbb{R})).$$

Proof. Let (S, Σ) be a measurable space. We know that

$$\sigma(Y) = Y^{-1}(\mathcal{B}) = (\{\omega \in S \colon Y(\omega) \in B\} \colon B \in \mathcal{B}),$$

$$\sigma(\pi(Y)) = \sigma(Y^{-1}(\pi(\mathbb{R}))) = \sigma(\{\omega \in S \colon Y(\omega) \leqslant x\} \colon x \in \mathbb{R}).$$

From the Σ -measurability of Y, we know that Y^{-1} preverves all set operations, which is so powerful for us to finish our proof.

Since $\pi(\mathbb{R}) \subseteq \mathcal{B}$ and $\mathcal{B} = \sigma(\pi(\mathbb{R}))$, it follows that $Y^{-1}(\pi(\mathbb{R})) \subseteq Y^{-1}(\mathcal{B})$. And from the result of the previous exercise we know that $Y^{-1}(\mathcal{B})$ is a σ -algebra. So the σ -algebra generated by $Y^{-1}(\pi(\mathbb{R}))$ is a sub- σ -algebra of $Y^{-1}(\mathcal{B})$, i.e., $\sigma(\pi(Y)) = \sigma(Y^{-1}(\pi(\mathbb{R}))) \subseteq \sigma(Y)$.

Next we show that $Y^{-1}(\mathcal{B}) \subseteq \sigma(Y^{-1}(\pi(\mathbb{R})))$. Equivalently we show that for $\forall B \in \mathcal{B}, Y^{-1}(B) = \{\omega \in S \colon Y(\omega) \in B\} \in \sigma(Y^{-1}(\pi(\mathbb{R}))) = \sigma(\{\omega \in S \colon Y(\omega) \leqslant x\} \colon x \in \mathbb{R})$. In the next several steps we use the Σ -measurability of Y implicitly or explicitly.

Note that any Borel set can be obtained by a set of countable open sets of the usual topology on \mathbb{R} . And every open set on \mathbb{R} is a countable union of open intervals. Any open interval I=(a,b) can be written as $\bigcup_{n\in\mathbb{N}}(a,b-\frac{b-a}{2n}]$. Then we have

$$\begin{split} Y^{-1}(I) &= Y^{-1}\big(\bigcup_{n\in\mathbb{N}}(a,b-\frac{b-a}{2n}]\big)\\ &= \bigcup_{n\in\mathbb{N}}Y^{-1}\big((a,b-\frac{b-a}{2n}]\big)\\ &= \bigcup_{n\in\mathbb{N}}Y^{-1}\big((-\infty,b-\frac{b-a}{2n}]\setminus(-\infty,a]\big)\\ &= \bigcup_{n\in\mathbb{N}}(Y^{-1}\big((-\infty,b-\frac{b-a}{2n}]\big)\setminus Y^{-1}\big((-\infty,a]\big))\\ &\in \sigma(Y^{-1}(\pi(\mathbb{R}))). \end{split}$$

Hence every open interval belongs to $\sigma(Y^{-1}(\pi(\mathbb{R})))$, which equivalently means $Y^{-1}(\mathcal{B}) \subseteq \sigma(Y^{-1}(\pi(\mathbb{R})))$ by our previous analysis.

Therefore, $\sigma(Y) = \sigma(\pi(Y))$, i.e., $\sigma(Y)$ can be generated by $\pi(Y)$.