

Large sampling (one of case) Z-test Steps: 1] Setting of Hypothesis

Null Hypothesis (Ho) - M = Alternate Hypothesis (HA) - u + .. 2) Test statistics: $|z| = |\bar{x} - u| = \frac{1}{\sqrt{2}}$ 3) Level of significance (x). x = 5% or x = 1% 47 Critical value (Za) Zx = 1.96 for x = 5%. Zx = 2.576 for x = 1%. 5) Decision If Z < Zz ... Hull Hypothesis accepted If Z > Zx -. Null Hypothesis rejected & comment

FAGE No.	
DATE	111

1) A random nample of 50 items gives the mean 6.2 and variance 10.24 (an it be regarded as drawn from a normal population with mean 5.4 at 5% level of significant

A = 50

mean = $\bar{\chi} = 6.2$

S2 = 10.24

5 = 3.2

d = 5%.

Z = 1.96

Setting of Hypothesis

NUM Hypothesis (Ho) -> M = 5.4

Alternate Hypothesis (Hn) -> M ≠ 5.4

Test statistics

$$\frac{121 = |x - u|}{\sqrt{5}} = \frac{|x - u|}{\sqrt{5}} = \frac{|6 \cdot 2 - 5 \cdot 4|}{\sqrt{5}} = \frac{1 \cdot 76}{\sqrt{5}}$$

LOS: x = 5%.

Critical Value: Zx = 1.96

Decision

スくる

Yes, the sample can be regarded as drawn from a normal population

2] A random sample of 400 members is found to have a mean of 4:45 cm. (an it be reasonably regarded as a sample from a large population whose mean is som and variance is 4 cm

7=400

x = 4.45

02=4

setting of Hypothesis: Hull Hypothesis (Ho) -> 11=5 Alternate Hypothesis (HA) -> 11 7 5

Test dtatistics:

$$|Z| = |\overline{x} - u| = |4 \cdot 45 - 5| = 5.5$$

$$|\overline{\sigma}| = |\overline{\chi} - u| = |4 \cdot 45 - 5| = 5.5$$

LOS:

Assume a= 5 %.

Oritical value:

Zx = 1.96

Decision:

Z > Z ... Mull Hypothesis rejected. The sample is not drawn from a large population whose mean is 5cm

A type (ompany claims that the lives of types have mean 42000 km with SD of 4000 km. A change in the production process is believed to result in setter product.

A test sample of 81 new types has a mean life of 42,500km

Test at 5% 205 that the new product is significantly better than the old one.

n = 81 M = 42000 $\overline{x} = 42500$

- = 4000

Alternate Hypothesis (Ha) U = 42000 - ... No improvement Alternate Hypothesis (Ha) U = 42000 - . Improved.

Test statistics:

|Z| = |Z - u| = |42500 - 42000| = 1.125

205: x = 5%

Critical value:

Zx = 1.96

Decision:

スンス

Nun thypothesis accepted

The new product has no improvement.

of A machine is det to produce metal plates of thickness 1.5 cm with standard deviation of 0.2 cm. A sample of 100 plates produced by machine gave an average thickness of 15200 go the machine fulfilling the purpose?

x = 152

5 = 0.2

Setting of thy pothesis Mull Hypothesis (Ho) => 11=1.5 Alternate Mypothesis (HA) > uf 1.5

Test statistics:

 $|z| = |\overline{z} - u| = |1.52 - 1.50| = 1$

205:

x = 5% (assumed)

Critical value:

Za = 1.96

Yes the machine is fulfilling its prespose.

Mean of 103.75 and sum of squares of deviations from the mean 843.75 (m² (an we say that the population has a mean of 108.75 cm.

$$n = 16$$
 $\bar{\chi} = 103.75$
 $\bar{\chi} = (\chi_i - \bar{\chi})^2 = 843.75$
 $\bar{u} = 108.75$ cm

Null Hypothesis (Ha) => 11 = 108.75 cm Alternate Hypothesis (Ha) => 11 + 108.75 cm

Test estatisfies: $|+1| = |\bar{x} - u| = |\bar{x} - u| = |-2.66| = 2.66$

for
$$S$$
 $S = \sum_{i=1}^{\infty} (\frac{x_i - x_i}{x_i - x_i})$

$$S = \sum_{i=1}^{\infty} (\frac{x_i - x_i}{x_i - x_i})$$

$$S = \sum_{i=1}^{\infty} (\frac{x_i - x_i}{x_i - x_i})$$

LOS: Q = 57.

Cuitical value: tx = 5% = 0.05

ta = 2.131

t>ta

Null Hypothesis rejected

The population doesn't have a mean of 108.75 cm

1	PROE NO.	
	DATE	777

1	Ten indiviouals are chosen at random from a population
1	1 to be 63 63,64,65,66,69 69;
11	inches. Discuss the suggestion that the mean height of the union
11	is 65 inches

given: n=10

M=65

 $x_1 = 63,63,64,65,66,69,69,70,70,71$

$$\overline{X} = xi = 63+63+64+65+66+69+69+70+70+71$$

X = 67

osolution: xi	· (21-2) *	$(x_i - \overline{x})^2$
63	- 4	16
63	- 4	16
64	-3	9
65	- 2	4
66	-1	1
69	2	4
69	2	4
70	3	9
70	3	9
71	4	16

$$\Sigma (\gamma_i - \overline{\gamma})^2 = 88$$

$$5 = \int \frac{\xi(x_i - \bar{z})^2}{n} = \int \frac{88}{10} = 2.96$$

PAGE NO.	

n = 10

M = 577

xi = 578,572,570,568,572,570,570,572,596,584

$$\bar{\chi} = \underline{\xi}\chi_i = \frac{5752}{n} = \frac{575 \cdot 2}{10}$$

χ _i	ri-z	$(x_i - \bar{x})^2$
578	2.8	7.84
572	-3.2	10.24
570	-5.2	27.04
568	-7.2	51.84
5 72	-3.2	10.24
570	-5.2	27.04
570	-5.2	27.04
572	-3.2	10.24
596	20.8	432.64
584	8.8	77.44
		E (xi-\bar{z}) = 681.6

$$S = \sqrt{\frac{\xi(\chi_i - \bar{\chi})^2}{n}} = \sqrt{\frac{681.6}{10}} = 8.25$$

Null Hypothesis (Ho) => 11 = 577
Alternate Hypothesis (HA) => 11 ≠ 577

	Note: - 9f pop" mean 'u' is not given then take u=0
	as to different dates of same of sample source given
	Hote: - 9f pop" mean 'n' is not given that sample & oure given 9f two different datas of same of sample & oure given then subtract these data to get xi DATE //
100	
4]	A certain injection administered to 12 patients resulted in the
	Pallo 210 0 0 AL HIAND THEMWEL : 5, 2, 8, 1, 3, 1, 6, -2, 1
	Can it be concluded that the injection will be general accompanion
	by an increase in blood pressure.
	n = 12
	U=0. assume
yes a	xi = 5,2,8,-1,3,0,6,-2,1,5,0,4
	\bar{z} $\chi_i = 31$
	$\bar{X} = \underline{\Sigma}Xi = 31 = 2.58$
	7 12
and the same of th	
	$\chi_i = (\chi_i - \bar{\chi}) = (\chi_i - \bar{\chi})^2$
***	5 2.42 5.85
·	2 -0.58 6.33
·	8 5.42 29.37
9	-3.58 12.81
	3 0.42 0.17
	0 263
	6
	3-42 11-69
	2 -4.58 20.97
	5 2.49
	2.42 5.85
	-2.58 6.656
	1.42 2.01
	ε(χ;-χ)=141.47
	S = [(x) = = 12
	n = 141.47 = 3.43
	12

Setting of Hypothesis:

Hull Hypothesis (Ho) => U=0 No rise

Alternate Hypothesis (HA) => U≠0 ruse in BP

test statistics:

$$|t| = |\bar{x} - \bar{u}| = |2-58 - 0| = 2.49$$

$$\frac{s}{\sqrt{n_1}} = \frac{3.43}{\sqrt{n_1}}$$

LOS: x=57

-1x = 2.201

Decision:

t > ta

Hull Hypothesis rejected: There is a rise in mean BP.

Ten perhool boys were given a test in statistics and their scenes were recorded. They were given a month's special coaching on vecond test was given to them in the scame publical at the end of the coaching period. Test if the marks given below give evidence to the fact that the students are benefitted by coaching

Marks in Test II: 68, 70, 52, 73, 75, 78, 80, 92, 54, 55

n = 10

$\chi_i = T_1 - T_2$	zi-x	(x:-x) -	
2	-13	1 69	
-2	-5.3	28.09	
4	0.7	0.49	
2	-1-3	1.69	
5	1.7	2.89	
12	8.7	75.69	
-12	-15.3	234.09	
17	13 . 7	187-69	
2	-1.3	1 69	
3	- 6 3	0.09	
Exi= 33		E(x;- \vec{x})=	532.41

$$5 = \sqrt{\frac{5(x_i - \bar{x})}{n}} = \sqrt{\frac{532.41}{10}} = 7.296$$

$$n_1 = 8$$
 $n_2 = 10$ $\overline{X}_1 = 118.4$ $\overline{X}_2 = 121.0$ $\overline{X}_3 = 12.17$ $\overline{X}_4 = 12.88$

Setting of Hypothesis

Null Hypothesis (Ho) => 11=12

Alternate Hypothesis (HA) => 11, 7 112

$$S_p = \frac{\int n_1 S_1^2 + n_2 S_2^2}{\int n_1 + n_2^2} = \frac{\int 8(12 \cdot 17)^2 + 10(12 \cdot 88)^2}{8 + 10 - 2} = 13 \cdot 33$$

Std error =
$$SP \int_{n_1}^{1} \frac{1}{n_2} = 13.33 \int_{8}^{1} \frac{1}{10} = 6.32$$

$$|t| = |\overline{\chi}_1 - \overline{\chi}_2| = |118.4 - 121| = 0.41$$
 $|\overline{SE}| = |6.32|$

LOS: 4=54

Critical value:
$$t_{\alpha} \Rightarrow \alpha = 5\% = 0.05 = 0.05$$

Decision: t < ta

Null Hypothesis accepted

BP io not related to age

PACE	40.			
DATE	1	1		

sample of two types of	electric bulbs	werl	tested	for length
life and following data	were obtained		1	9
0		Tur	a IT	

	Type T	Type II
No of samples	8	7
Mean of samples (in his)	\$1134	1024
6td Deviation (in his)	35	40

Test at 5% level of significance whether the difference is the sample means is significant

$$n_1 = 8$$
 $n_2 = 7$
 $\overline{X}_1 = 1134$ $\overline{X}_2 = 1024$
 $S_1 = 35$ $S_2 = 40$

fetting of Hypothesis: Nucl Hypothesis (Ho) => el, = 112 Atternate thypothesis (Ha) => U, 7 U,

Test statistics:

$$Sp = \int_{-1.5,2}^{0.15,2} + n_2 6_2^2 = \int_{-1.5}^{2} 8(35)^2 + 7(40)^2 = 40.19$$

$$\sqrt{n_1 + n_2 - 2} = \sqrt{8 + 7 - 2}$$

$$|+| = | \frac{\chi_1 - \chi_2}{8E} = | \frac{1134 - 1024}{20.8} | = 5.28$$

205: Q = 5%

Cuitral value:
$$t \propto \mathcal{X} = 5 \times ... = 0.05$$

$$\mathcal{V} = n_1 + n_2 - 2 = 13$$

Difference is significant.

Setting of typothesis:

New Hypothesis (Ho) => 11, = 1/2

Alternale Hypothesis (HA) => 11, 7 1/2

Test otatistics:

$$\frac{s_p = \sqrt{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}}{n_1 + n_2 - 2} = \sqrt{\frac{5(2 - 2)^2 + 5(2 - 6)^2}{10}} = 2.40$$

$$SE = SP \sqrt{1+1} = 2.40 \sqrt{1+1} = 1.39$$

$$|t| = |\overline{X_1 - X_2}| = |15.4 - 11.2| = 3.04$$

 $\overline{X}_1 = 15.4$ $\overline{X}_2 = 11.2$ $S_1 = 2.2$ $S_2 = 2.6$

LOS: x = 5%.

tx = 2.8228

Decision:

t>tx

Null Hypothusis rejected

The Difference in dosage has effect

The means of two ramdom samples of size 9 & 7 are 1964 and 198.82 nospectively The sum of squares of deviations from the means are 26-94 and 18-73 respectively can the samples be considered to have been drawn from the same population?

$$n_1 = 9$$
 $n_2 = 7$
 $\overline{X}_1 = 196.42$ $\overline{X}_2 = 198.82$
 $\Sigma(x_i - \overline{X})^{\frac{1}{2}} = 26.94$ $\Sigma(y_i - \overline{Y})^2 = 18.73$

Getting of thypotheris Null Hypothesis (40) => 11, = 11, Alternate Hypothesis (HA) => U, 7 1/2

Test statistics:

$$Sp = \int \frac{\Sigma(x_i - \bar{x})^2 + \Sigma(y_i - \bar{y})^2}{\int \Omega_1 + \Omega_2 - Z} = \int \frac{26.94 + 18.73}{14} = \frac{6.76}{180}$$

$$|t| = |\overline{x}_1 - \overline{x}_2| = |196.42 - 198.82| = 0.38990$$

LOS: x=5%

Critical value:
$$t_{\infty} = 5 \times ... = 0.05$$

$$V = n_1 + n_2 = 14$$

ta = 2.145

Decision:

tx tx

Mull Hypotheris accepted rejected They are not drawn from the same population

$$n_1 = 6$$
 $\chi i = 63,65,68,69,71,72$
 $n_2 = 10$ $\chi i = 61,62,65,66,66,69,70,71,72,73$

Setting of flypothesis:

New (Hypothesis (Ho) => 11, = 11,

Alternate Hypothesis (HA) => 11, 7 11,

Test statisfics: -

-							
	xi	$(x_i - \overline{x})$) = x:-x	yi yi	(41- 7y)=	$(y_i - \bar{y})^2$	
1	63	-5	25	61	-6.5	42.25	
	65	-3	9	62	-5.5	30.25	
	68	0	0	65	72.5	6.25	
	69	1	1	66	-1.5	2.25	
	71	3	9	66	-1.5	2-25	
	72	4	16	69	1.5	2.25	
	X= 5x;= 408		(60)	20	2.5	6.25	
	N 6			71	3.5	12.25	
	= 68			72	4.5	20.25	
				73	5.5	30.25	
				X, = 67	1.5	(154.5)	

$$sp^{-1}(60) + (154.5) = 3.91$$

	DATE / /]
-	$SE = Sp \sqrt{1+1}$
	= 3.91 / 1 + 1
-	
100	= 2.019
	$ t = \overline{X}, -\overline{X},$ $ SE $
	= 68 - 67·S 2·019
- Anna -	= 0.24
	Critical value: $t_{\alpha} = 5\%$.
Angeles -	V=14
	Decision:
	$t < t_{\alpha}$
	Hull Hypo accepted
	No soldiers taller than sailors

1 794	SE No.			
DA	re /	1	1	

7	Investigate the association between the darkness of eye colour in f	Top 1
-	and don from the following data	1

		Colowa	of father's	yes
		Dark	Not Dark	Total
Colows	Dark	48	90	138
of son's	Not Dark	80	782	862
eyes	Total	128	872	1000

Hull Hypothesis => There is no association

Alternate Hypothesis => There is association.

Test attatistics:

yor E −>	Dork	Hot Dark	Total
Dark	18	120	138
Not Dark	110	752	862
Total	128	872	1000

 $E_1 = 128 \times 138 = 18$

E2 = 872 × 138 = 120

Jether	$0 E (0-E)^2 (0-E)^2/E$
	48 18 900 50
	90 120 900 7.5
	80 UD 900
	782 752 900 1.19
	$\frac{\mathcal{E}\left(\left(0-\mathcal{E}\right)^{2}\right)=66.87}{\mathcal{E}}$
	$\chi^2 = \sum_{\varepsilon} \left[(0 - \varepsilon)^2 \right]$
	E
	$\chi^2 = 66.87$
	LOS: X = 5 %.
	Critical value: $\chi'_{out} = 5\% = 0.05$ $V = (8-1) = 1$
	$\mathcal{V} = (8-1) = 1$
	× (c-1)
	2 crit = 3.841 from chart
	Q
	Decision:
	$\chi^2 > \chi^2_{\text{crit}}$
	Null Hypothesis rejected
	There is association between the darkness
	of eye colour in father and son.

योज =>	For tabular sums. 98 Hern Yates correction is	any fully i	& less the	ans
build	Hen Yates correction 1	needed	DATE	
	$\chi^2 = E \left[\frac{(10-E)-0}{E} \right]$	3)		

Datch was inoculated and other was not. The number of dead and other was not the number of dead and other was not. The number of dead and other was not.

	0 1		Total
	Dead	surviving	1-10-0
Inoculated	2	10	12
Hot-inoculated	8	4	12
Total	lo	14	24

Setting of Hypothesis:

Hull Hypothesis (Ho) => Not effective

Alternate Hypothesis (Hn) => effective

Test sotatistics:

for E ->

and the same of	Dead	surviving	Total	
Inoculated	5	7	12	
Hot-inoculated	5	7	12	
Total	10	14	24	

$$E_{1} = 10 \times 12 = 5$$

$$\chi^{2} = E[(0-E)^{2}] = 6.17$$
 $\chi^{2} = E[(0-E(1-0.5)^{2})] = 4.28$

LOS:
$$\alpha = 5 \gamma$$
.

Critical value: $\chi^2 \rightarrow \alpha = 5 \gamma = 0.05$

Critical $\gamma = (8-1)(c-1) = 1$

x2 > Xuit

Hull Hypothesis rejected. Inoculation is effective again disease

PAGE	NO. /		
DATE	1		

To test the effect of a new drug, a controlled experiment was conducted. 300 patients were given the new drug wikile 200 patients were given the basis of examination of these persons, the following results were obtained.

	Cured	Condition worsened	Not effect To	otal
Cina llinger Atua	200	40	60	300
given the new drug	120	30	50	200
Not given the drug	320	70	110	500

Setting of flypothesis:

New Hypothesis (Ho) => There is no effect

Alternate Hypothesis (Ha) => The effect is significant.

Test statistics:

Jor € ->

	(wild	Condition worsened	Not egged	Total
given the new drug	192	42	66	300
Not given the drug	128	28	44	200
Total	320	76	110	500

$$E_1 = 320 \times 300 = 192$$

$$E_2 = \frac{70 \times 300}{500} = 42$$

$$\chi^2 = \mathcal{E}\left[\frac{(0-E)^2}{E}\right] = 2.41$$

Critical value: Xit = 5% = 0.05

X = 5.991 - from chart

x2 < Xout

.. Null Hypothesis accepted

The effect is vignificant on patients

1	parties A B (Test who	ther the	age	and the choice of the icance using x' test	they con
1	and independent	Party		9 0	Total	
1	Age	A	20	25	70	1
	20 - 35 35 - 50	25	25	35	80	
	above 50	25	25	30	80	
	Total	70	70	90	230	

Setting of thypothesis

Hull thypothesis -> age and Choice has no association

Atternate Hypothesis -> age and Choice has anovation

Test statistics:

For E →

	E ==	10		
Total Contract of the Contract	Party			Total
Age	A	В	C	
A 20-35	209 21	21	28	70
35-50	2 24	24	32	80
above 50	25	25	30	80
Total	70	70	90	230

$$E_1 = \frac{70 \times 70^{-21}}{230} = \frac{70 \times 70}{230} = 21$$

$$E_4 = 80 \times 70 = 24$$
, $E_5 = 80 \times 70 = 24$

1	
Har.	$0 \in (0-\epsilon)^2 (0-\epsilon)^2/\epsilon$
Perty Perty	25 21 16 0.76
4	20 21 1 0.04
	25 28 9 0.32
	20 24 16 0.67
	25 24 1 0.04
	35 32 9 0.29
	25 25 0 0
	AS 25 0 0
	30 30 0 0
	Z = 2·11
ciation	
	$\chi^2 = \varepsilon \left[\left(0 - \varepsilon \right)^2 \right] = 2 \cdot 11$
cetion	E
	LOS: X = 5.7.
	Children $\chi^2 \rightarrow \alpha = 0.05$
	Critical value: $\chi^2_{\text{crit}} \stackrel{>}{\triangleright} \alpha = 0.05$ $V = (3-1)(c-1) = 4$
	Xuit = 9.4/88
	1011 = 1.2188
_	Decision:
	22 2 Xorit
	Myss Hypothusis accepted
	Myss Hypothusis accepted age and choice has no association.

PAUE NO			
	1		

5) In a survey of 200 boys of which 75 were intelligent by the unintelligent bay has educated fathers. Do these figure support the see hypothese that educated fathers have intelligent boys.

	7	athers	25
	Educated Total Ryest	uneducateda	Total
Boys Intelligent	40	35	75
unintelligent	40	85	125
Total	80	126	200

Setting of Hypothesis - There is association

Alternate Hypothesis - These is no association

Test & Tatio tice:

	Educated	uneducated	Total
Intelligent	30	45	75
Unintelligent	50	75	125
Total	80	120	200

$$\overline{\xi_1} = 80 \times 75 = 30$$

0	E	(0-E)2	(0-E) =/E
40	30	100	3.33
35	45	100	2.22
40	50	100	2
8 5	75	100	1:33
			5 = 8.88

$$\chi^2 = \sum \left[\frac{(o-E)^2}{E} \right] = 8.88$$

LOS: d=5%.

Dritical value:
$$\chi^{2}_{crit} = 0.05$$

$$V = (7-1)(c-1) = 1$$

Xvit = 3.84)

Decision:

Mull Hypothesis rejected

There is association between education of father and intelligence of son.

DATE 11
hecking data: Corrections
o
→ given case
-> Opposite of given case
note
χ²., ¬ α = ···
$\chi_{\text{crit}}^2 > \alpha = \cdots$
Alternate Hypothesis rige
Alternate Hypothesis region
7 3: 1
ons for Poissons
$e^{n} \times Total$ $\bar{\epsilon} = N \cdot e^{m} m^{x}$
where,
m = E fixi

1 Goodness of Fit

Steps: 1) Setting of Hypothus Null Hypothusis (Ha)

Atternate flypothesis (Hn)

For E -> Check

2) Test statistics:

5] LOS : X=5/

4] critical value:

Decision:

For regular case for Proport

Total pro

NOTE: - FOR E

E = total

no. of data

If x2 x 2 x wit

17 The follo	wing table	gives #	number a	a accidente	in a city	Automa
whether	z the accid	lents or	e uniforms	distrib	ited over a	weng
			0	0.0	ina over a	Wen_
	Day		Sun Mon	Tue Wed	Tru thi sar	Total
	No-of ac	cidents	13 15	9 11	12 10 14	84
			- 600	AL PINE	1	
n =	7	363.	- Lilliam	and the same	ul.	
Sett	ing of H	upothesia	-			
	Hall	tly pothes i	s (HO) =>	accidents	uniformly	distributed
	Atterna	te Hypoth	esia (HA) =>	accedents	non-uniformly	, distribute
		Vi	3		10	
	Test statist	ics:				
			= 84 =	: 12		
	no	. ay data	7			
		West Control		Ab Laborator		
	0	E	(0-E)2	(O-E) 2/E		
	13	12	1	0.08		
	15	12	9	0.75		
	9	12	9	0.75		
	11	12	1	0.08		
	12	(2	0	0		
	10	12	4	0.33		
	14	12	4	0.33		
		9 4	1 1	E = 2.3	2	
	X = E [0-E)2)	= 2.32	-		
	L	6 7				
	205 =	q=5 %.	20.02			
			= 25) = 6	X cri	+ = 12.592	
		$\chi^2 < \chi$	crit			
	· Now H					
	Accident	e are	uniformly	district ut	ed.	

The die is unbiased.

Tru number of car accidents in a metropolitian city was found to be 20, 17, 12, 6, 7, 15, 8, 5, 16 & 14 per month respectively. Use X'-test to check whether these frequeencies are in agreement with the being that occurence of accidents was the same during to Monthal period Test at 5% level of alignificance

setting of the pothesis

Nul Atternate Hypothesis (Ho) => accidents occur some no. of times.

Alternate thypothesis (Hn) => accidents accur different no. of times.

Test statistics

	1001	010010	1100			
-		E =	Ma Total		= 120 =	12
			- Carried State of Contract of	ddta	10	
	0	E	(0-	e)2	(D-E)/	E
	20	12	6.	4	5-33	
	17	12	2:	5	2.08	
	12	12	O		0	
	6	12	36		3	
	7	12	25	,	2.08	
	15	12	9		0.75	
	8	12	16		1.33	
	5	12	40	9	4.08	
	16	12	16		1:33	
	14	120	21		0.33	,
			7		20.33	

 $LOS = \mathcal{L} = SY.$ Orifical => \mathcal{L}^2 Orif $\int_{-\infty}^{\infty} \mathcal{L} = 0.05$ \mathcal{L}^2 orif = 16.919

Decision: 2° > 2° nit

Null Hypothesis rejected

Accidents do not occur uniformly month

	1 1000 in the four groups A.
	the proportion of beans the number
47	Theory predicts that the proportion of beans in the four groups A,B (Theory predicts that the proportion of beans the numbers whould be 9:3:3:1. In an experiment among 1600 beans the numbers whould be 9:3:3:1. In an experiment and 118. Does the experiment
	should be 9:3:3:1. In an experience 28 7 and 118. Does the experience
	11.0 6017 000110
-	results oupport the theory? Beans Freq
	results & appois
-	A 882
	n = 4
	A, B, C, D
	9:3:3:1 D 118
	Petting of thypothesis:
-	Hun Hypothesis (Ho) => expt should support theory
	Hull Hypothesis (He)
	Alternate Hypothesis (Ha) => expt doesn't &upport theory
	Test statistics
	$\chi^2 = \mathcal{E}\left[\frac{(o-\mathcal{E})^2}{\mathcal{E}}\right]$
	for E -> E = given proportion x total
	Total proportion
	Fa = 9 41/2 = 922
	EA = 9 × 1600 = 900
	EB = 3 × 1600 = 300
	16
	Ec = 3 × 1600 = 300
	Entition
	Ep= 1 × 1600 = 100

0	E	(0-E)2	(0-E)2/E
882	900	324	0.36
313	300	169	0.56
287	3 00	169	0.56
118	100	324	3.24
			E=4.776

LOS $\Rightarrow \alpha = 5 \%$.

Orifical value: $\chi^2_{wit} \int_{0}^{\infty} \alpha = 0.05$

1º vrit = 7.815

x2 < x2 vit

Decipion: Mull Hypothesis accepted Expt supposts the theory.

	the following frequencies were
5]	9n an experiment on pea braiding the following frequencies work obtained Round & yellow whinkled & yellow Roundly Green Wrinkled & Green Toll Round & yellow whinkled & yellow Roundly Green Wrinkled & Green Toll Theory predicts that the frequencies should be in proportion of 9 3 15 Theory predicts that the frequencies should be in proportion of 9 3 15 Examine the correspondence between theory & expt using x2 test.
	Examine the correspondence petting of flypothesis Null Hypothesis (Ho) => 9:3:3:1 is correct proportion Alternate Hypothesis (Ha) => 9 3:3:1 is incorrect proportion
	Test atatistics: Total proportion x Total Total proportion Total proportion 312:75
	$E_{Ry} = \frac{9 \times 556}{16} = 312.75$ $E_{Ry} = \frac{3}{16} \times 556 = 104.25$
	ERY = 3 × 556 = 104.25
	$E_{xy} = 1 \times 556 = 34.75$ 16
	$0 E (0-E)^2 (0-E)^2/E$ 315 312.75 5.06.25 0.016
	108 104.25 14.0625 0.134
	32 34.75 7.562S 0.217 \(\varepsilon = 0.6797\)

LOS = Q = 5%.

	I I crewit board is hypother				
	The number of defects in printed circuit board is hypothese. The number of defects in printed circuit board is hypothese. The number of defects in printed circuit board is hypothese. The number of defects in printed circuit board is hypothese.				
7)	The number of defention of hate				
	The number of defects in printed circuit sample of 60 The number of defects in printed circuit sample of 60 to follow Poisson distribution A random sample of 60 printed boards showed the following data printed boards showed the following 2 3 Total Number of defects 0 1 9 4 60				
100	printed boards showed 0 1 2 60				
	Number of defects 32 15 9				
	to follow Poisson distribution data printed boards showed the following data printed boards showed the following 2 3 Total Number of defects 0 1 2 4 60 Number of defects 3 2 15 9 4 60 Observed frequency 3 2 15 9 4 60 Does the hypothesis of Poisson distribution deen appropriate Does the hypothesis of Poisson distribution deen appropriate				
	Day the Hypothesis of Polsson				
	Dolp 12 11gl				
	Setting of Hypothesis Null Hypothesis (Ho) => Poisson's distribution is appropriate				
	the theris (Ha) => POINOUS as is not approximately				
	Mull Hypothesis (Ha) => Poisson's distribution is not appropria				
	Alternate Hypothesis Com				
	Test statistice				
	X" = E (O-E)				
	[E]				
	For E -> No. of data				
	tore E = Memma				
	~!				
	guting $m = \tilde{\epsilon}fixi = (32)(6) + (15)(1) + (9)(2) + (3)(4)$ $\tilde{\epsilon}fi$ 60				
	guting m = Efixi = (32)(6) +(13)(1) + (1)(2) +(13)				
	Efi 60				
16	= 0.75				
18					
15 18 12 45 93 66 224	-0.75				
95 93 66 MU	$E = (66) e^{-0.75} (0.75)^{2}$				
7 169	x!				
	For $x=0$ for $x=1$ for $x=2$ for $x=3$				
	E = 28.34 E = 21.25 E = 7.97 E = 1.99				

0	E	(0-E)2	(0-E)2/E
32	28:34	13.39	.0.47
15	21.25	39.06	1.83
9	7.97	1.06	0.132
24	1.99	4.04	2.03
			5 - 4.46

105: 4=5%.

x' orit = [x:0.05

X'crit = 7.815

Desision: x² < x'crit

Paisson's distribution is appropriate.