

iGenCo: Técnicas ómicas en el diagnóstico de enfermedades raras

Parc Científic de Barcelona, 16-17 de Noviembre

ANÁLISIS DEL EPIGENOMA

Laura Balagué, Natàlia Carreras i Xavier Escribà

TABLA DE CONTENIDOS

LAS EPIMUTACIONES Qué son y por qué las estudiamos

MÉTODOS DE DETECCIÓN PREVIOS
Cuáles son y qué limitaciones tienen

PAQUETE EPIMUTACIONS
Cómo funciona

03

MANOS A LA OBRA Caso práctico 04

KAHOOT ¿Quién se ha enterado de algo?

LAS EPIMUTACIONES

Las **epimutaciones** se definen como alteraciones raras del patrón de metilación en un loci específico.

Pueden usarse para **resolver casos clínicos ambiguos** que no pueden ser diagnosticados mediante técnicas convencionales (secuenciación de exomas o genomas completos).

MÉTODOS DE DETECCIÓN PREVIOS

01

MANOVA

Análisis multivariante de la varianza

Aref-Eshghi et al. 2019

02

QUANTILE

Distribución de cuantiles

Garg et al. 2020

- Métodos no implementados en R
- No hay comparación de los métodos

PAQUETE EPIMUTACIONS

CpGs

PAQUETE EPIMUTACIONS

INPUT: GenomicRatioSet

CARACTERÍSTICAS

Información sondas

)pG

FENOTIPOS

PAQUETE EPIMUTACIONS

DISTRIBUCIÓN DE LOS DATOS

Leave one out

Caso - Control

Casos

•

•

• • • •

BUMPHUNTER + OUTLIER TEST

01

IDENTIFICACIÓN DE REGIONES CANDIDATAS

Regiones con al menos 3 CpGs separados por menos de 1 kb

BUMPHUNTER + OUTLIER TEST

02

IDENTIFICACIÓN DE REGIONES DIFERENCIALMENTE METILADAS

Compara la muestra de interés con el panel de referencia e identifica todas aquellas regiones que están diferencialmente metiladas en la muestra.

BUMPHUNTER + OUTLIER TEST

03

OUTLIER TEST

Usando uno de los 4 métodos posibles, se evalúa cada región por separado y se identifican aquellas que son significativas.

MANOVA

Análisis multivariante de la varianza

MLM

Modelo lineal multivariante

iForest *Isolation forest*

MAH-DIST

Distancia de Mahalanobis

MANOVA Y MODELO LINEAL MULTIVARIANTE

$$cpg_i = \alpha + \beta x_i$$

ANOVA:
$$cpg_i = \alpha + \beta x_i$$
 $i = 1 ... n$
 $x = caso/control$

MANOVA:
$$c(cpg_i, cpg_{i+1}, cpg_{i+2}, ..., cpg_{i+k}) = \alpha + \beta x$$

Asume distribución normal multivariada

ISOLATION FOREST

DISTANCIA DE MAHALANOBIS

OUTLIERS + CLUSTERING

01

IDENTIFICACIÓN DE OUTLIERS PARA CADA CPG

Para cada CpG, se analiza si la muestra tiene una metilación anormal comparado con el panel de referencia.

CpG 1

CpG 2

CpG 3

QUANTILEDistribución de cuantiles

BETA

Distribución de valores betas

DISTRIBUCIÓN DE CUANTILES

DISTRIBUCIÓN DE VALORES BETAS

OUTLIERS + CLUSTERING

02

IDENTIFICACIÓN DE EPIMUTACIONES

Cuando encontramos 3 o más CpGs *outliers* consecutivos con menos de 1kb entre ellos, se considera una epimutación.

- OUTLIER
- METILACIÓN NORMAL

Epimutación

PAQUETE EPIMUTACIONS

OUTPUT

Sample	Chr	Start	End	Size	Num. CpGs
GSM256269	chr19	12777736	12777903	167	4
CLT1236766	chr8	89554	89634	80	3

CpGs	Direction	P value	P value adjusted	GENCODE	
cg20791841,cg25267526, cg03641858,cg25441478	hypermethylation	3.44·10 ⁻⁹	2.17·10 ⁻⁶	MSRA, TNKS, RP1L1, RP1L1	
cg65267526,cg13641858, cg890374639	Hypomethylation	2.03·10 ⁻¹³	6.11·10 ⁻¹¹	IL2, ADAD1, IL2	

CONSIDERACIONES

- El método que da mejores resultados es **Quantile**.
- Los controles deberían estar hechos con el mismo array y ser del mismo sexo que la muestra de interés.
- En la medida de lo posible, usar el método **caso-control** y no One-leave-Out.
- Para priorizar epimutaciones, es recomendable comprobar si la epimutación afecta la expresión de algún gen cercano.

iMANOS A LA OBRA!

Ol Copiar el siguiente link en vuestro PC:

https://epimutacions.isglobal.org/

02 Entrar con el usuario y contraseña:

User: idX (X: a cada uno le asignaremos un número)

Password: 123

epimutacionsShiny	≡	
Home	Available datasets	Select dataset
Data selection	• 4 case samples IDAT files (GEO: GSE131350) + reference_panel: a	Datasets
Epimutations	RGChannelSet class object containing 22 healthy individuals (GEO: GSE127824). This dataset is to test the pre-process functionality.	IDAT files ▼
Acknowledgements	 reference_panel: a GenomicRatioSet class object containing 22 healthy individuals (GEO: GSE127824). This dataset is to test the one leave out epimutations functionality. methy: a GenomicRatioSet object which includes 49 controls (GEO: GSE104812) and 3 cases (GEO: GSE97362). 	Load dataset

03 Copia el siguiente link para la Shiny:

epishiny.isglobal.org

- ¿Cuáles son las 3 epimutaciones más significativas con el **método mlm**?
- Cuántos CpGs tiene cada epimutación?
- Orea un plot para la epimutación más significativa.

epi_mvo <- epimutations (case_samples, control_samples, method = "mlm")

¿Cuáles son las 3 epimutaciones más significativas con el **método mlm**?

‡	epi_id [‡]	sample [‡]	chromosome	start [‡]	end [‡]	sz [‡]	cpg_n [‡]	cpg_ids	outlier_direction ‡	pvalue [‡]	adj_pvalue 🔷
1	epi_mlm_2	GSM2562699	chr19	12777736	12777903	167	7	cg20791841,cg25267526,cg03641858,cg254	hypermethylation	1.000000e-14	6.600000e-13
2	epi_mlm_7	GSM2562699	chr7	1080558	1081068	510	4	cg03916490,cg12581298,cg22785556,cg243	hypomethylation	1.021405e-14	6.639134e-13
3	epi_mlm_46	GSM2562701	chr7	65509125	65509578	453	4	cg02423318,cg22864337,cg04406873,cg156	hypermethylation	1.000000e-14	8.600000e-13

U2 ¿Cuántos CpGs tiene cada epimutación?

‡	epi_id [‡]	sample [‡]	chromosome	start [‡]	end [‡]	sz [‡]	cpg_n [‡]	cpg_ids	outlier_direction ‡	pvalue [‡]	adj_pvalue 💂
1	epi_mlm_2	GSM2562699	chr19	12777736	12777903	167	7	cg20791841,cg25267526,cg03641858,cg254	hypermethylation	1.000000e-14	6.600000e-13
2	epi_mlm_7	GSM2562699	chr7	1080558	1081068	510	4	cg03916490,cg12581298,cg22785556,cg243	hypomethylation	1.021405e-14	6.639134e-13
3	epi_mlm_46	GSM2562701	chr7	65509125	65509578	453	4	cg02423318,cg22864337,cg04406873,cg156	hypermethylation	1.000000e-14	8.600000e-13

03 Crea un **plot** para la epimutación más significativa.

KAHOOT

https://kahoot.it/

MATERIAL CURSO

https://isglobal-brge.github.io/course_epimutations/

