EECSIGA DIS 14B

Last discussion!

Learning Objectives

- (1) Least squares special case: Orthonormal columns of A in AX & I
 - (We locked @ Orthogonal columns last time)
 La proje(A) = projato + projato + ... + projato
 - @ Orthonormality buys us not having to add extra correction terms. Will explain more. (ix the loss squares context) @ Orthonormality can give us linear independence (in general)
- 2) Correlation: checking presence of signals by using correlation/ Innov product as a similarity measure

Muslc

Thundercat - Them Changes Procol Havum - Whiter Shade of Pale Corinne Bailey Rae-Pavis Nights/New York Mornings

1. Orthonormal Matrices and Projections

An orthonormal matrix, **A**, is a matrix whose columns, \vec{a}_i , are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_i \rangle = 0$ when $i \neq j$)
 - Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|^2 = \langle \vec{a}_i, \vec{a}_i \rangle = 1$.
- (a) Suppose that the matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ has <u>linearly independent columns</u>. The vector \vec{y} in \mathbb{R}^N is not in the subspace spanned by the columns of A. What is the projection of \vec{y} onto the subspace spanned by the columns of A?

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a_1 & a_2 & \dots & a_M \\ 1 & 1 & 1 \end{bmatrix} \quad a_i \in \mathbb{R}^N \quad \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{Ni} \end{bmatrix} \quad y \in \mathbb{R}^N$$

$$\downarrow^2 \quad X \in \mathbb{R}^N \quad \{ a_{1i} \\ a_{Ni} \} \quad y \in \mathbb{R}^N$$

$$\downarrow^2 \quad X \in \mathbb{R}^N \quad \{ a_{1i} \\ \vdots \\ a_{Ni} \} \quad \{ a_{Ni$$

Proje(A)
$$\vec{y} = A \cdot last squares solution

= A (ATA)^{-1} A T \vec{y} A has line indep. cols

(ATA)^{-1} exists$$

(b) Show if $\mathbf{A} \in \mathbb{R}^{N \times N}$ is an orthonormal matrix then the columns, \vec{a}_i , form a basis for \mathbb{R}^N .

Show If
$$A \in \mathbb{R}^{n \times n}$$
 is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

Thus

He is a basis of \mathbb{R}^n .

This is a basis is linearly independent

This is a basis of \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i , form a basis for \mathbb{R}^n .

The image is an orthonormal matrix then the columns, a_i is a basis is a

$$P(V_{X}) = P(V_{X})$$

$$P(V_{X}) = P(V_{X})$$

$$P(V_{X}) = P(V_{X})$$

$$P(V_{X}) = P(V_{X})$$

2. Identifying satelites and their delays

We are given the following two signals, $\vec{s_1}$ and $\vec{s_2}$ respectively, that are signatures for two satellites.

(a) Your cellphone antenna receives the following signal r[n]. You know that there may be some noise present in r[n] in addition to the transmission from the satellite.

Which satellites are transmitting? What is the delay between the satellite and your cellphone? Use cross-correlation to justify your answer. You can use iPython to compute the cross-correlation.

(b) Now your cellphone receives a new signal r[n] as below. What the satellites that are transmitting and what is the delay between each satellite and your cellphone?

