Course 1: Deep Learning

Global formalism

Input/output

- Goal: infer a function from an input (often tensor) space to an output (often tensor) space, y = f(x),
- **Example:** input can be an image, output a vector where the largest value indicate the category the image belongs to.

Error/Loss

- \blacksquare Loss: nonnegative measure of the discrepancy between expected output \hat{y} and obtained output y.
- **Example:** output should be [0, 1] but is [0.2, 0.8].

Parameters

- $f = f_{\theta}$ contains **parameters** θ to be trained,
- lacksquare In most cases, an ideal $f_{ heta}$ exists but is **hard to find in practice**,
- Learning is a regression ill-posed problem.

Global formalism

Input/output

- Goal: infer a function from an input (often tensor) space to an output (often tensor) space, y = f(x),
- **Example:** input can be an image, output a vector where the largest value indicate the category the image belongs to.

Error/Loss

- Loss: nonnegative measure of the discrepancy between expected output $\hat{\textbf{y}}$ and obtained output y.
- Example: output should be [0, 1] but is [0.2, 0.8].

Parameters

- lacksquare $f=f_{ heta}$ contains **parameters** heta to be trained,
- In most cases, an ideal f_{θ} exists but is **hard to find in practice**,
- Learning is a regression ill-posed problem.

Global formalism

Input/output

- Goal: infer a function from an input (often tensor) space to an output (often tensor) space, y = f(x),
- **Example:** input can be an image, output a vector where the largest value indicate the category the image belongs to.

Error/Loss

- Loss: nonnegative measure of the discrepancy between expected output \hat{y} and obtained output y.
- Example: output should be [0, 1] but is [0.2, 0.8].

Parameters

- $lacktriangledown f = f_{ heta}$ contains **parameters** heta to be trained,
- In most cases, an ideal f_{θ} exists but is hard to find in practice,
- Learning is a regression ill-posed problem.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

Main idea

- Instead of directly mapping x to y, constructs a graph of intermediate representations, associated through very simple mathematical functions called layers,
- Training: Backpropagate the gradient of the loss throughout the architecture.

Number of layers, choice of the architecture are hyperparameters

Layers

- $\mathbf{x} \mapsto h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: convolutional layers

Layers

- $\mathbf{x} \mapsto h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: convolutional layers.

Layers

- $\mathbf{x} \mapsto h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: convolutional layers.

Layers

- $\mathbf{x} \mapsto h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: convolutional layers

Fully connected layer

$$\begin{pmatrix} w_{1,1} & w_{1,2} & w_{1,3} & w_{1,4} & w_{1,5} \\ w_{2,1} & w_{2,2} & w_{2,3} & w_{2,4} & w_{2,5} \\ w_{3,1} & w_{3,2} & w_{3,3} & w_{3,4} & w_{3,5} \end{pmatrix}$$

Layers

- $\mathbf{x} \mapsto h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: **convolutional layers**.

Convolutional layer

$$\begin{pmatrix} \begin{pmatrix} w_{10} & w_{8} & w_{9} & 0 & 0 \\ w_{10} & w_{2} & w_{3} & 0 & 0 & 0 \\ 0 & w_{10} & w_{2} & w_{3} & 0 & 0 \\ 0 & 0 & w_{1} & w_{2} & w_{3} & 0 & 0 \\ 0 & 0 & w_{1} & w_{2} & w_{3} \end{pmatrix}$$

Layers

- $\mathbf{x} \mapsto h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: convolutional layers.

Optimization

- Variants of the (Stochastic) Gradient Descent (SGD) algorithm are used:
 - Use of moments,
 - Use of regularizers.

Layers

- $\mathbf{x} \mapsto h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: convolutional layers.

Optimization

- Variants of the (Stochastic) Gradient Descent (SGD) algorithm are used:
 - Use of moments,
 - Use of regularizers.

Batches

Inputs are often treated concurrently using small batches.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$.

Idea: use **feature vectors** from a **backbone** (pretrained) network to train a **downstream** classifier.

- Fine-tuning: both the backbone and downstream networks are trained,
- Transfer Learning: Only the downstream network is trained.

Idea: use **feature vectors** from a **backbone** (pretrained) network to train a **downstream** classifier.

- Fine-tuning: both the backbone and downstream networks are trained,
- Transfer Learning: Only the downstream network is trained.

Idea: use **feature vectors** from a **backbone** (pretrained) network to train a **downstream** classifier.

- Fine-tuning: both the backbone and downstream networks are trained,
- Transfer Learning: Only the downstream network is trained.

Idea: use **feature vectors** from a **backbone** (pretrained) network to train a **downstream** classifier.

- Fine-tuning: both the backbone and downstream networks are trained,
- Transfer Learning: Only the downstream network is trained.

Hyperparameters

Architecture

- Number of layers
- Architecture choice (e.g. ResNet, DenseNet, VGG, ...)

Training

- Learning rate and scheduling
- Regularization (e.g. weight decay)
- Choice of optimizer (e.g. SGD)

Hyperparameters

Architecture

- Number of layers
- Architecture choice (e.g. ResNet, DenseNet, VGG, ...)

Training

- Learning rate and scheduling
- Regularization (e.g. weight decay)
- Choice of optimizer (e.g. SGD)

Lab Session 1 and assignment

Introduction to Deep Learning

- Introduction to Deep Learning in Pytorch
- Train a full DL model from scratch
- Train a small model using tranfer learning

Project 1 (oral presentation)

Explore one of the following architectures : ResNet, DenseNet, PreActResNet, VGG.

You have to prepare a 10 minutes (+5 min Q&A) presentation for session 2, in which you explain :

- Description of the architecture
- Hyperparameter search and results
- Study the compromise between architecture size, performance and training time.