Fonctions Numériques Fonctions continues sur un intervalle MPSI 2

1 Fonctions continues

Soit I un intervalle non vide.

Soit $f: I \to \mathbb{R}$ une fonction définie sur I.

On dit que f est continue sur I si pour tout x_0 de I, f est continue en x_0 .

Théorème des valeurs intermédiaires

L'image d'un intervalle par une fonction continue est un intervalle.

Soit I un intervalle.

Soit $f: I \to R$ une application continue sut I.

Montrer que f(I) est un intervalle.

Ou montrer que $\forall (y, y') \in \mathbb{R}^2$, $((y, y') \in f(I)^2 \Rightarrow (\forall y'' \in \mathbb{R}, y < y'' < y' \Rightarrow y'' \in f(I))$

Soit y et y' deux éléments distincts de f(I).

Alors il existe a et b dans I tels que: f(a) = y et f(b) = y'

y et y' sont distincts, donc a et b sont distincts.

On suppose par exemple que f(a) < f(b) et a < b

Montrer que $\forall z \in \mathbb{R}, (f(a) < z < f(b)) \Rightarrow (\exists x \in]a, b[, f(x) = z)$

Soit z un réel compris strictement entre f(a) et f(b).

On considère l'ensemble $E = \{x \in [a, b], f(x) < z\}$

Principe de Borne supérieure

Montrer que E admet une borne supérieure:

- E est non vide: $a \in E$
- E est majoré par b

Donc E admet une borne supérieure que l'on notera c

On a: $a \le c \le b$

Et $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists x \in E, \ c - \varepsilon < x \leqslant c$

Pour tout n de \mathbb{N}^* , on pose $\varepsilon = \frac{1}{n}$, et on pose x_n un réel vérifiant le critère. On définit donc une suite: $\forall n \in \mathbb{N}^*$, $x_n \in E$ et $c - \frac{1}{n} < x_n \geqslant c$

En particulier: $\forall n \in \mathbb{N}^*, x_n \in [a,b] \text{ et } f(x_n) < z \text{ et } |x_n-c| < \frac{1}{n}$

Ainsi, la suite $(x_n)_{n\in\mathbb{N}^*}$ converge vers c.

Donc $(f(x_n))_{n\in\mathbb{N}^*}$ converge vers f(c) d'après la caractérisation séquentielle de la limite.

Or, $\forall n \in \mathbb{N}^*, f(x_n) < z$

Donc $f(c) \leq z$

On a donc $f(c) \leq z < f(b)$

D'où c < b.

Par définition de $c: \forall x \in]c, b[, x \notin E$

$$\Rightarrow \forall x \in]c, b[, f(x) \geqslant z$$

Par ailleurs, f est continue, donc sa limite à droite en c existe et vaut f(c).

Ainsi, $f(c) \geqslant z$

Conclusion: f(c) = z

Conclusion générale: $\exists c \in]a, b[, f(c) = z$

Ce raisonnement est valable pour tout z entre a et b. On étend le raisonnement à y et y' dans f(I)

On conclut que f(I) est un intervalle.

Propriété 1.0.1

L'image d'un segment par une application continue est un segment.

Soit I un segment réel non vide.

Soit $f: I \to \mathbb{R}$ continue sur I.

D'après le TVI, f(I) est un intervalle.

Montrer que f(I) est fermé et borné.

• Montrer que f(I) est borné.

C'est à dire, montrer que $\exists M \in \mathbb{R}^+, \ \forall y \in \mathbb{R}, y \in f(I) \Rightarrow |y| \leq M$

|HA| Supposons que f(I) ne soit pas borné.

Donc $\forall M \in \mathbb{R}^+, \exists y \in \mathbb{R}, y \in I \text{ et } |y| > M$

Soit x_0 un élément de I.

- On considère $E_1 = \{x \in I, |f(x)| > f(x_0) + 1\}$

f(I) n'est pas borné, donc E_1 est non vide.

Notons x_1 un élément de E_1 .

- Soit $n \in \mathbb{N}$, supposons construits $(x_i)_{i \in [0,n]}$,

Tels que: $\forall i \in [1, n], |f(x_i)| > |f(x_{i-1})| + 1$

Soit $E_{n+1} = \{x \in I, |f(x)| > |f(x_n)| + 1\}$

f(I) n'est pas borné, donc E_{n+1} n'est pas vide.

On note x_{n+1} un élément de cet ensemble.

- Par récurrence, on construit une suite $(x_n)_{n\in\mathbb{N}}$.

De plus, $\forall n \in \mathbb{N}^*, |f(x_n)| > |f(x_{n-1})| + 1$

Par récurrence, on montre que: $\forall n \in \mathbb{N}, |f(x_n)| > |f(x_0)| + n$

Ainsi, $(|f(x_n)|)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Par ailleurs, $(x_n)_{n\in\mathbb{N}}$ est une suite d'éléments de I. Donc d'après le théorème de Bolzano-Weierstrass, il existe $\phi: \mathbb{N} \Rightarrow \mathbb{N}$ strictement croissante telle que $(x_{\phi(n)})_{n\in\mathbb{N}}$ converge.

Notons ϕ une telle suite et l la limite.

- $\forall n \in \mathbb{N}, \ x_n \in I, \ donc \ l \in I$
- f est continue en $l \in I$, donc (cara séquentielle de la limite) $f(x_n) \xrightarrow[n \to +\infty]{} f(l)$
- On a aussi ①: $|f(x_n)| \underset{n \to +\infty}{\longrightarrow} |f(l)|$ (car abs est continue en f(l))
- De plus, $(|f(x_{\phi(n)})|)_{n\in\mathbb{N}}$ est une suite extraite de $(|f(x_n)|)_{n\in\mathbb{N}}$. Donc ②: $|f(x_{\phi(n)})| \underset{n\to+\infty}{\longrightarrow} +\infty$

On a contradiction entre ① et ②. On en déduit que | HA | est fausse.

Conclusion: f(I) est in intervalle borné.

- Montrer que $\exists (c,d) \in \mathbb{R}, \ f(I) = [c,d]$
 - On pose $c = \inf(f(I))$ et $d = \sup(f(I))$

Montrer que $c \in I$ et $d \in I$

- Montrons que $d \in I$

Donc Montrons que $\exists x \in I, \ f(x) = d$

En appliquant le principe de la borne supérieure avec $\varepsilon = \frac{1}{n}$ pour tout n de \mathbb{N}^* , on construit une suite $(x_n)_{n \in \mathbb{N}^*}$ d'éléments de I telle que $(f(x_n))_{n \in \mathbb{N}^*}$ converge vers d.

* (x_n) est une suite de réels bornée, donc d'après le théorème de B-W, il existe une application strictement croissante $\phi: \mathbb{N} \to \mathbb{N}$ telle que $(x_{\phi(n)})_{n \in \mathbb{N}}$ soit convergente.

Notons l sa limite.

De plus, $l \in I$.

- * f est continue sur I donc $(f(x_{\phi(n)}))_{n\in\mathbb{N}}$ converge vers f(l)
- * Par ailleurs, $(f(x_{\phi(n)}))$ est une suite extraite de $(f(x_n))$, donc $(f(x_{\phi(n)}))$ converge vers d.

Par unicité de la limite, d = f(l). Or, $l \in I$.

Finalement, $d \in f(I)$

- On procède de même pour montrer que $c \in f(I)$.

Conclusion générale: $\exists (c,d) \in \mathbb{R}^2, \ f(I) = [c,d]$

Propriété 1.0.2

Soit $f: I \to \mathbb{R}$ une fonction continue.

Alors on a équivalence entre:

- ① f est injective
- (2) f est strictement monotone

Soit $f: I \to \mathbb{R}$ une fonction continue.

 $(1)\Rightarrow(2)$: Supposons f injective.

Montrer que f est strictement croissante sur I.

Donc montrer que f est croissante sur I. (car f est injective)

Montrer que pour tous $x_1 < x_2 < x_3$ de I, $f(x_2)$ soit compris entre $f(x_1)$ et $f(x_3)$

HA Supposons qu'il existe $x_1 < x_2 < x_3$ de I tels que $f(x_2)$ ne soit pas compris entre $f(x_1)$ et $f(x_3)$.

Alors il existe $y_0 \in \mathbb{R}$, tel que y_0 soit compris strictement entre $f(x_1)$ et $f(x_2)$ et entre $f(x_2)$ et $f(x_3)$

D'après le TVI, $\exists \alpha \in]x_1, x_2[, y_0 = f(\alpha) \text{ et } \exists \beta \in]x_2, x_3[, y_0 = f(\beta)]$

Les intervalles $]x_1, x_2[$ et $]x_2, x_3[$ sont disjoints, donc $\alpha \neq \beta$.

Cependant, $f(\alpha) = f(\beta)$, ce qui contredit l'injectivité de f.

Donc HA est contradictoire.

On conclut que f est monotone sur I

Or, f est injective.

Conclusion générale: f est strictement monotone sur I

 $(2)\Rightarrow(1)$: Facile.

Corollaire 1.0.1

Soit $f: I \to \mathbb{R}$ continue et strictement monotone sur I.

Alors J = f(I) est un intervalle et f réalise une bijection de I sur J.

Propriété 1.0.3

Soit f une fonction strictement croissante sur [a, b].

Alors on a équivalence entre:

- (1): f est continue sur [a, b]
- ②: f est surjective sur [f(a), f(b)]

N.B. Fonctionne aussi avec la stricte décroissance.

On suppose f strictement croissante.

① On suppose f continue sur [a, b]

f est surjective sur f([a,b]) (par définition de l'image)

- f([a,b]) est un segment car f est continue: $\exists (c,d) \in \mathbb{R}^2, \ f([a,b]) = [c,d]$
- f est strictement croissante: $\forall x \in [a, b], f(a) \leq f(x) \leq f(b)$

Donc
$$\begin{cases} f(a) \text{ est un minorant de } f([a,b]) \\ f(a) \in f([a,b]) \end{cases}$$

Ainsi, f(a) est le plus petit élément de f([a,b])

Autrement dit, f(a) = c.

• On procède de même pour montrer que f(b) = d

Conclusion: f([a,b]) = [f(a), f(b)]

② Supposons f surjective sur [f(a), f(b)]

Montrer que f est continue sur [a, b]

Soit x_0 un élément de a, b

Montrer que f est continue en x_0 .

C'est a dire $\forall \varepsilon \in \mathbb{R}^{+*}$, $\exists \alpha \in \mathbb{R}^{+*}$, $\forall x \in [a, b]$, $|x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$ Soit ε un réel positif.

Soient
$$y_0 = \max(\{f(a), f(x_0) - \varepsilon\})$$
 et $y_1 = \min(\{f(b), f(x_0) + \varepsilon\})$

On a: $f(a) \le y_0 < f(x_0) < y_1 \le f(b)$

 y_0 et y_1 sont compris entre f(a) et f(b), et f est surjective sur [f(a), f(b)].

Donc $\exists (x_0', x_1'), \ f(x_0') = y_0 \ \text{et} \ f(x_1') = y_1$

Posons $\alpha = \min(\{x_0 - x_0', x_1' - x_0\})$

Alors
$$]x_0 - \alpha, x_0 + \alpha[\subset [x_0', x_1'] \subset [a, b] \text{ Et } \forall x \in]x_0 - \alpha, x_0 + \alpha[, f(x_0) - \varepsilon \leqslant f(x_0') < f(x) < f(x_1') \leqslant f(x_0) + \varepsilon$$

Car f est strictement croissante, et par définition de y_0 et de y_1 .

Finalement, $\forall x \in [a, b], |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$

Ceci est valable pour tout ε strictement positif, donc f est continue en x_0

Ceci est valable pour tout x_0 de]a,b[, donc f est continue sur]a,b[

On adapte la démonstration en a et b.

On conclut que f est continue sur [a, b].

Corollaire 1.0.2

Soit $f:[a,b] \to \mathbb{R}$ continue et strictement croissante.

Alors f réalise une bijection de [a,b] sur f([a,b]) et son application réciproque est continue sur f([a,b]).

Supposons f strictement croissante.

- f est strictement croissante, donc f réalise une bijection de [a, b] sur J = f([a, b]).
- f est continue donc J est un segment.
- De plus, f est croissante, donc J = [f(a), f(b)]
- $f^{-1}: [f(a), f(b)] \to [a, b]$

Montrer que f^{-1} est continue sur [f(a), f(b)].

f est strictement croissante sur [a, b], donc f^{-1} l'est sur [f(a), f(b)].

Donc, sachant f^{-1} surjective, f^{-1} est continue sur [f(a), f(b)]

Corollaire 1.0.3

Soit I un intervalle réel.

Soit $f: I \to \mathbb{R}$ strictement croissante et continue.

Alors: \bullet f(I) est un intervalle

- f réalise une bijection de I sur f(I)
- f^{-1} est strictement monotone sur f(I)
- f^{-1} est continue sur f(I)

2 Fonctions uniformément continues

Définition 2.0.1

Soit I un intervalle réel.

Soit $f: I \to \mathbb{R}$

On dit que f est uniformément continue sur I si:

 $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall (x_1, x_2) \in I^2, \ |x_1 - x_2| < \alpha \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$