Θέματα

Θέμα Α (14)

- 1. **[Μονάδες 7]** Έστω δύο συναρτήσεις f, g ορισμένες σε ένα διάστημα Δ . Αν οι f, g είναι συνεχείς στο Δ και f'(x) = g'(x) για κάθε εσωτερικό σημείο x του Δ , τότε να αποδείξετε ότι υπάρχει σταθερά $c \in \mathbb{R}$ τέτοια ώστε για κάθε $x \in \Delta$ να ισχύει: f(x) = g(x) + c.
- 2. [Μονάδες 4] Θεωρήστε τον παρακάτω ισχυρισμό:

"Κάθε συνάρτηση f συνεχής σε ένα σημείο $x_0 \in \mathbb{R}$ είναι παραγωγίσιμη στο x_0 ."

- α) [**Μονάδες 1**] Να χαρακτηρίσετε τον παραπάνω ισχυρισμό με Α (αληθής) ή Ψ (ψευδής).
- β) [Μονάδες 3] Να αιτιολογήσετε την απάντησή σας.
- 3. [**Μονάδες 4**] Να γράψετε στο τετράδιό σας το γράμμα που αντιστοιχεί στη φράση η οποία συμπληρώνει σωστά την ημιτελή πρόταση:

Για κάθε συνεχή συνάρτηση $f:[\alpha,\beta] \to \mathbb{R}$, αν ισχύει $f(\alpha)f(\beta)>0$ τότε

- α) Η εξίσωση f(x) = 0 δεν έχει λύση στο (α, β) .
- β) Η εξίσωση f(x)=0 έχει ακριβώς μια λύση στο (α,β) .
- γ) Η εξίσωση f(x) = 0 έχει τουλάχισοτν δύο λύσεις στο (α, β) .
- δ) Δεν μπορούμε να έχουμε συμπεράσματα για το πλήθος των λύσεων της εξίσωσης f(x)=0 στο (α,β) .
- 4. [Μονάδες 10] Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη.
 - α) Το μικρότερο από τα τοπικά ελάχιστα μίας συνάρτησης δεν είναι απαραίτητα ελάχιστο της συνάρτησης.
 - β) Μία συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, αν υπάρχουν x_1 , $x_2 \in \Delta$ με $x_1 < x_2$ τέτοια ώστε $f(x_1) < f(x_2)$
 - γ) Αν η συνάρτηση είναι παραγωγίσιμη στο (α, β) και γνησίως φθίνουσα στο $[\alpha, \beta]$, τότε υπάρχει $x_0 \in (\alpha, \beta)$ τέτοιο ώστε f'(x) > 0.
 - δ) Έστω μία συνάρτηση f συνεχής σε ένα διάστημα Δ και δύο φορές παραγωγίσιμη στο εσωτερικό του Δ . Αν f''(x)>0 για κάθε εσωτερικό σημείο x του Δ , τότε η f είναι κοίλη στο Δ .
 - ε) Av $0 < \alpha < 1$, τότε $\lim_{x \to \infty} \alpha^x = +\infty$.

Θέμα Β (21)

Δίνεται η συνάρτηση $f(x) = \frac{x^2 - x - 1}{x - 2}$.

- α) [Μονάδες 7] Να βρείτε τα διαστήματα μονοτονίας της f καθώς και τις θέσεις και τις τιμές των τοπικών της ακροτάτων.
- β) [Μονάδες 7] Να μελετήσετε την f ως προς την κυρτότητα.
- γ) [**Μονάδες 6**] Να βρείτε τις ασύμπτωτες της f.
- δ) [Μονάδες 16] Να βρείτε το σύνολο τιμών της f.

Θέμα Γ (17)

Δίνονται οι παραγωγίσιμες συναρτήσεις f, g στο $[0, +\infty)$ για τις οποίες ισχύουν

- f(0) = 1 και $f(x) \neq 0$ για κάθε $x \in (0, +\infty)$
- f' συνεχής στο $[0, +\infty)$.
- $2g(x) = f^2(x) + 2f(x)$ για κάθε $x \in (0, +\infty)$.
- g'(x) = f(x) για κάθε $x \in [0, +\infty)$
- 1. [Μονάδες 8] Να δείξετε ότι οι g και f' έχουν το ίδιο είδος μονοτονίας στο $[0, +\infty)$.
- 2. [Μονάδες 5] Να δείξετε ότι $\lim_{x\to +\infty}x\left(f\left(\frac{1}{x}\right)-1\right)=\frac{1}{2}$.
- 3. **[Μονάδες 6]** Αν γνωρίζουμε ότι $\lim_{x\to +\infty}f(x)=+\infty$ να δείξετε ότι το σύνολο τιμών της f' είναι το διάστημα $[\frac{1}{2},1)$
- 4. [Μονάδες 6] Να αποδείξετε ότι 5 < 2g(1) < 2f(1) + 3.

Θέμα Δ (20)

Δίνεται η παραγωγίσιμη συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ για την οποία ισχύουν:

- $e^{f(x)} \eta \mu x \cdot e^{\sigma \upsilon \nu x 1 + x} = e^{f(x)} \cdot f'(x), x \in \mathbb{R}$
- f(0) = 0
- 1. [Mονάδες 6] Να αποδείξετε ότι $f(x) = \sigma v \nu x + x 1$ για κάθε $x \in \mathbb{R}$.
- 2. **[Μονάδες 5]** Να αποδείξετε ότι η ευθεία (ε_1) που διέρχεται από το σημείο $\mathbf{A}(\pi,\pi-2)$ και είναι παράλληλη στην εφαπτόμενη (ε) της C_f στο $x_0=0$, εφάπτεται της C_f ακριβώς σε δύο σημεία στο διάστημα $[-\pi,\pi]$.
- 3. [Μονάδες 3] Να αποδείξετε ότι η f αντιστρέφεται στο $(0, \frac{\pi}{2})$ καθώς και ότι ισχύει $f^{-1} > x$ για κάθε $x \in (0, \frac{\pi}{2} 1)$.

4. (α΄) [Μονάδες 5] Αν γνωρίζετε πως η $f^{-1}(x)$ είναι συνεχής στο $x_0=0$, να υπολογίσετε το όριο:

$$\lim_{x \to 0^+} \frac{x - 1 + \sigma v \nu(f^{-1}(x))}{f^{-1}(x)}$$

(β΄) [Μονάδες 6] Ένα κινητό Μ ξεκινάει από την αρχή των αξόνων και κινείται κατά μήκος της C_f . Να αποδείξετε ότι δεν υπάρχει σημείο της καμπύλης C_f στο διάστημα $[0,\pi]$ στο οποίο ο ρυθμός μεταβολής της τεταγμένης y του Μ να είναι διπλάσιος του ρυθμού μεταβολής της τετμημένης του x, αν υποτεθεί x'(t)>0 για κάθε $t\geq 0$.

Καλή επιτυχία