上次课回顾

- 1、聚类的基本定义: cluster
- 2、如何评判聚类的好坏:距离函数
- 3、聚类的技术与方法 划分法: k均值、PAM 层次法: 凝聚层次聚类、分裂层次聚类 基于密度的方法: Density-based approach 基于模型的方法: Model-based approach
- 4、聚类的应用

k-means例子

样本等序号	数据 属性 1	属性2
1	1	1
2	2	1
3	1	2
4	2	2
5	4	3
6	5	3
7	4	4
8	5	4

根据所给的数据通过对其实施k-means (设n=8,k=2),,其主要执行执行步骤:第一次迭代:假定随机选择的两个对象,如序号1和序号3当作初始点,分别找到离两点最近的对象,并产生两个簇 $\{1, 2\}$ 和 $\{3, 4, 5, 6, 7, 8\}$ 。对于产生的簇分别计算平均值,得到平均值点。

对于 $\{1, 2\}$, 平均值点为(1.5, 1) (这里的平均值是简单的相加出2); 对于 $\{3, 4, 5, 6, 7, 8\}$, 平均值点为(3.5, 3)。

第二次迭代:通过平均值调整对象的所在的簇,重新聚类,即将所有点按离平均值点(1.5,1)、(3.5,1)最近的原则重新分配。得到两个新的簇: {1,2,3,4}和{5,6,7,8}。重新计算簇平均值点,得到新的平均值点为(1.5,1.5)和(4.5,3.5)。

第三次迭代:将所有点按离平均值点(1.5, 1.5)和(4.5, 3.5)最近的原则重新分配,调整对象,簇仍然为{1, 2, 3, 4}和{5, 6, 7, 8},发现没有出现重新分配,而且准则函数收敛,程序结束。

迭代次数	平均值 (簇1)	平均值 (簇2)	产生的新簇	新平均值 新平均值 (簇1) (簇2)
1	(1, 1)	(1, 2)	{1, 2}, {3, 4, 5, 6, 7, 8}	(1.5, 1) (3.5, 3)
2	(1.5, 1)	(3.5, 3)	{1, 2, 3, 4}, {5, 6, 7, 8}	(1.5, 1.5) (4.5, 3.5)
3	(1.5, 1.5)	(4.5, 3.5)	{1, 2, 3, 4}, {5, 6, 7, 8}	(1.5, 1.5) (4.5, 3.5)

第五章 聚类分析

- 1、聚类的基本定义: cluster
- 2、如何评判聚类的好坏:距离函数
- 3、聚类的技术与方法 划分法: k均值、PAM 层次法: 凝聚层次聚类、分裂层次聚类 基于密度的方法: Density-based approach 基于模型的方法: Model-based approach
- 4、聚类的应用

- PAM: Partitioning Around Medoid, 围绕中心点的聚类划分,选用簇中位置最中心的对象作为代表对象,试图对1/0个对象给出k个划分。
 - 代表对象也被称为是中心点,其他对象则被称为非代表对象。
 - 最初随机选择k个对象作为中心点,该算法反复地用非代表对象来代替代表对象,试图找出更好的中心点,以改进聚类的质量。
 - 在每次迭代中,所有可能的对象对被分析,每个对中的一个对象是中心点,而另一个是非代表对象。
 - 对可能的各种组合,估算聚类结果的质量。一个对象 Oi被可以产生最大平方-误差值减少的对象代替。在一次迭代中产生的最佳对象集合成为下次迭代的中心点。

PAM 方法

■ Oi 和Om是两个原中心点,Oh是替换Oi作为新的

中心点

 O_j 被重新分配给 $O_{m,}$ $C_{jih}=d(j, m)-d(j, i)$

第二种情况

 O_j 被重新分配给 O_h , $C_{jih}=d(j,h)-d(j,l)$

PAM 方法

■ O;和Om是两个原中心点,Oh是替换Oi作为新的

中心点

 O_j 的隶属不发生变化, $C_{iih} = 0$

第四种情况

 O_i 被重新分配给 O_h , $C_{jih} = d(j, h) - d(j, m)$

PAM算法代价函数的四种情况

第一种情况

 O_j 被重新分配给 $O_{m,}$ $C_{jih}=d(j,m)-d(j,i)$

第三种情况

 O_{j} 的隶属不发生变化, $C_{jih} = 0$

第二种情况

 O_{jih} 重新分配给 O_{h} , $C_{jih} = d(j, h) - d(j, i)$

第四种情况

 O_h 被重新分配给 O_h , $C_{jih} = d(j, h) - d(j, m)$

PAM算法基本思想(续)

- 为了判定一个非代表对象 O_h是否是当前一个代表 对象 O_i的好的替代,对于每一个非中心点对象 O_j, 下面的四种情况被考虑:
 - **第一种情况:** O_j 当前隶属于中心点对象 O_i 。如果 O_i 被 O_h 所代替作为中心点,且 O_j 离一个 O_m 最近, $i \neq m$,那么 O_j 被重新分配给 O_m 。
 - **第二种情况:** O_j 当前隶属于中心点对象 O_i 。如果 O_i 被 O_h 代替作为一个中心点,且 O_j 离 O_h 最近,那么 O_j 被重新分配给 O_h 。
 - **第三种情况:** O_j 当前隶属于中心点 O_m , $m \neq i$ 。如果 O_i 被 O_h 代替作为一个中心点,而 O_j 依然离 O_m 最近,那么对象的隶属不发生变化。
 - **第四种情况:** O_j 当前隶属于中心点 O_m , $m \neq i$ 。如果 O_i 被 O_h 代替作为一个中心点,且 O_j 离 O_h 最近,那么 O_i 被重新分配给 O_h 。

PAM算法基本思想(续)

- 每当重新分配发生时,平方-误差E所产生的差别对代价函数有影响。因此,如果一个当前的中心点被非中心点所代替,代价函数计算平方-误差值所产生的差别。替换的总代价是所有非中心点对象所产生的代价之和。
 - 总代价定义如下:

$$TC_{ih} = \sum_{j=1}^{n} C_{jih}$$

其中, C_{jih} 表示 O_{jih} 在 O_{jih} 0 $_{h}$ 代替后产生的代价。下面我们将介绍上面所述的四种情况中代价函数的计算公式,其中所引用的符号有: O_{i} 和 O_{m} 是两个原中心点, O_{h} 将替换 O_{i} 作为新的中心点。

- 如果总代价是负的,那么实际的平方-误差将会减小, O_i 可以被 O_b 替代。
- 如果总代价是正的,则当前的中心点 O_i 被认为是可接受的,在本次迭代中没有变化。

在PAM算法中,可以把过程分为两个步骤:

■ 建立:随机寻找k个中心点作为初始簇的中心点

交换:对于所有可能的对象对进行分析 ,找到交换后可以使平方-误差减少的对象 ,代替原中心点 假如空间中的五个点 $\{A, B, C, D, E\}$ 如图1所示,各点之间的距离关系如表1所示,根据所给的数据对其运行PAM算法实现划分聚类(设k=2)。 样本点间距离如下表所示:

样本点	A	В	С	D	E
A	0	1	2	2	4
В	1	0	2	4	3
С	2	2	0	1	5
D	2	4	1	0	3
E	3	3	5	3	0

起始中心点为A,B

第一步 建立阶段: 假如从5个对象中随机抽取的2个中心点为 $\{A, B\}$,则样本被划分为 $\{A, C, D\}$ 和 $\{B, E\}$,如图5-3所示。

样本点	A	В	С	D	Е
A	0	1	2	2	4
В	1	0	2	4	3
С	2	2	0	1	5
D	2	4	1	0	3
Е	3	3	5	3	0

第二步 交换阶段: 假定中心点A、B分别被非中心点 $\{C, D, E\}$ 替换,根据PAM算法需要计算下列 代价 TC_{AC} TC_{AD} TC_{BC} TC_{BD} TC_{BC} TC_{BC} TC_{BC} 以 TC_{AC} 为例说明计算过程:

- a)当A被C替换以后,A不再是一个中心点,因为A离B比A离C近,A被分配到B中心点代表的 簇, $C_{AAC}=d(A,B)-d(A,A)=1$ 。
- b) B是一个中心点, 当A被C替换以后, B不受影响, $C_{BAC}=0$ 。
- c)C原先属于A中心点所在的簇,当A被C替换以后,C是新中心点,符合PAM算法代价函数的第二种情况 $C_{CAC}=d(C,C)-d(C,A)=0-2=-2$ 。
- d)D原先属于A中心点所在的簇,当A被C替换以后,离D最近的中心点是C,根据PAM算法代价函数的第二种情况 $C_{DAC}=d(D,C)-d(D,A)=1-2=-1$ 。
- e)E原先属于B中心点所在的簇,当A被C替换以后,离E最近的中心仍然是 B,根据PAM算法代价函数的第三种情况 C_{EAC} =0。

因此, $TC_{AC} = CA_{AC} + CB_{AC} + CB_{AC} + CD_{AC} + CE_{AC} = 1 + 0 - 2 - 1 + 0 = -2$ 。

在上述代价计算完毕后,我们要选取一个最小的代价,显然有多种替换可以选择,我们选择 第一个最小代价的替换(也就是C替换A),根据图5-4(a)所示,样本点被划分为{B、A、E}和{C、 D}两个簇。图5-4(b)和图5-4(c)分别表示了D替换A,E替换A的情况和相应的代价

(a) C**替换**A, *TC_{AC}* = −2

(b) D**替换**A, *TC_{AD}* = −2

(c) E**替换**A, TC_{AE} = -1

图5-4 替换中心点A

图5-5(a)、(b)、(c)分别表示了用C、D、E替换B的情况和相应的代价。

(a) C替换B, *TC_{RC}* = -2

(b) D替换B,
$$TC_{BD} = -2$$
 (c) E替换B, $TC_{BE} = -2$ 图 5-5 替换中心点B

通过上述计算,已经完成了PAM算法的第一次迭代。在下一迭代中,将用其他的非中心点{A、 D、E} 替换中心点 {B、C}, 找出具有最小代价的替换。一直重复上述过程,直到代价不再减小为止。

2021年11月26日星期五 DMKD Sides By MAO

PAM算法基本思想(续)

算法5-2 PAM (围绕中心点的划分)

输入: 簇的数目k和包含n个对象的数据库。

输出: k个簇, 使得所有对象与其最近中心点的相异度总和最小。

- (1) 任意选择**k**个对象作为初始的簇中心点;
- (2) REPEAT
- (3) 指派每个剩余的对象给离它最近的中心点所代表的簇;
- (4) REPEAT
- (5) 选择一个未被选择的中心点*O*;
- (6) REPEAT
- (7) 选择一个未被选择过的非中心点对象 O_h ;
- (8) 计算用 O_h 代替 O_h 的总代价并记录在S中;
- (9) UNTIL 所有的非中心点都被选择过;
- (10) UNTIL 所有的中心点都被选择过;
- (11) IF 在*S*中的所有非中心点代替所有中心点后的计算出的总代价有小于0的存在 THEN 找出*S*中的用非中心点替代中心点后代价最小的一个,并用该非中心点替代对应的中心点,形成一个新的*k*个中心点的集合;
 - (12) UNTIL 没有再发生簇的重新分配,即所有的*S*都大于0.

PAM算法性能分析

- (1) 消除k-平均算法对于孤立点的敏感性。
- (2) K-中心点方法比k-平均算法的代价要高

■ (3) 必须指定k

■ (4) PAM对小的数据集非常有效,对大数据 集效率不高。特别是N和k都很大的时候。

第五章 聚类分析

- 1、聚类的基本定义: cluster
- 2、如何评判聚类的好坏:距离函数
- 3、聚类的技术与方法 划分法: k均值、PAM、 层次法: 凝聚层次聚类、分裂层次聚类 基于密度的方法: Density-based approach 基于模型的方法: Model-based approach
- 4、聚类的应用

第五章 聚类方法

内容提要

- 聚类方法概述
- 划分聚类方法
- 层次聚类方法
- 密度聚类方法
- 其它聚类方法

17

层次聚类方法概述

■层次聚类方法对给定的数据集进行层 次的分解,直到某种条件满足为止。 具体又可分为:

- 凝聚的层次聚类:一种自底向上的策略,首先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到某个终结条件被满足,如AGNES算法。
- 分裂的层次聚类:采用自顶向下的策略,它首先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到达到了某个终结条件,如DIANA算法。

■ AGNES (AGglomerative NESting): 自底向上凝聚 算法, 先将每个对象作为一个簇, 然后这些簇根据 某些准则被一步步地合并。两个簇间的相似度由这 两个不同簇中距离最近的数据点对的相似度来确定。 聚类的合并过程反复进行直到所有的对象最终满足

算法5-3 AGNES(自底向上凝聚算法)

输入:包含n个对象的数据库,终止条件簇的数目k。

输出: k个簇, 达到终止条件规定簇数目。

- (1) 将每个对象当成一个初始簇;
- (2) REPEAT
- (3) 根据两个簇中最近的数据点找到最近的两个簇;
- (4) 合并两个簇,生成新的簇的集合;
- (5) UNTIL 达到定义的簇的数目;

AGNES算法

序号	属性1	属性 2
1	1	1
2	1	2
3	2	1
4	2	2
5	3	4
6	3	5
7	4	4
8	4	5

AGNES算法例子

序号	属性1	属性 2
1	1	1
2	1	2
3	2	1
4	2	2
⑤	3	4
6	3	5
7	4	4
8	4	5

第1步:根据初始簇计算每个簇之间的距离,随机找出距离最小的两个簇,进行合并,最小距离为1,合并后1,2点合并为一个簇。

第2步: ,对上一次合并后的簇计算簇间距离,找出距离最近的两个簇进行合并,合并后3,4点成为一簇。

第3步: 重复第2步的工作, 5, 6点成为一簇。

第4步: 重复第2步的工作, 7, 8点成为一簇。

第5步: 合并{1,2},{3,4}成为一个包含四个点的簇。

第6步: 合并{5,6},{7,8},由于合并后的簇的数目已经达到了用户输入的终止条件程序结束。

步骤	最近的簇距离	最近的两个簇	合并后的新簇
1	1	{1}, {2}	{1, 2}, {3}, {4}, {5}, {6}, {7}, {8}
2	1	{3}, {4}	$\{1, 2\}, \{3, 4\}, \{5\}, \{6\}, \{7\}, \{8\}$
3	1	<i>{</i> 5 <i>}</i> , <i>{</i> 6 <i>}</i>	$\{1, 2\}, \{3, 4\}, \{5, 6\}, \{7\}, \{8\}$
4	1	{7}, {8}	$\{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}$
5	1	$\{1, 2\}, \{3, 4\}$	{1, 2, 3, 4}, {5, 6}, {7, 8}
6	1	{5, 6}, {7, 8}	{1, 2, 3, 4}, {5, 6, 7, 8}结束

AGNES性能分析

- AGNES算法比较简单,但经常会遇到合并点选择的困难。 假如一旦一组对象被合并,下一步的处理将在新生成的簇 上进行。已做处理不能撤消,聚类之间也不能交换对象。 如果在某一步没有很好的选择合并的决定,可能会导致低 质量的聚类结果。
- 这种聚类方法不具有很好的可伸缩性,因为合并的决定需要检查和估算大量的对象或簇。

- DIANA (Divisive ANAlysis) 算法是典型的分裂聚类方法。
- 用户能定义希望得到的簇数目作为一个结束 条件。同时,它使用下面两种测度方法:
 - 簇的直径: 在一个簇中的任意两个数据点的距离中的最大值。
 - 平均相异度(平均距离):

$$d_{avg}(C_i, C_j) = \frac{1}{n_i n_j} \sum_{x \in C_i} \sum_{y \in C_j} |x - y|$$

算法5-4 DIANA(自顶向下分裂算法)

输入:包含n个对象的数据库,终止条件簇的数目k。

输出: k个簇, 达到终止条件规定簇数目。

- (1) 将所有对象整个当成一个初始簇;
- (2) FOR $(i=1; i\neq k; i++)$ DO BEGIN
- (3) 在所有簇中挑出具有最大直径的簇C;
- (4) 找出C中与其它点平均相异度最大的一个点p并把p放入 splinter group,剩余的放在old party中;
- (5). REPEAT
- 在old party里找出到最近的splinter group中的点的距离不大于到old party中最近点的距离的点,并将该点加入splinter group。
- (7) UNTIL 没有新的old party的点被分配给splinter group;
- (8) splinter group和old party为被选中的簇分裂成的两个簇,与其它簇一起组成新的簇集合。
- (9) END.

DIANA算法

序号	属性1	属性 2
1	1	1
2	1	2
3	2	1
4	2	2
5	3	4
6	3	5
7	4	4
8	4	5

序号	属性1	属性 2	\$5
1	1	1	
2	1	2	
3	2	1	
4	2	2	<u>\$</u>
5	3	4	
6	3	5	\$5
7	4	4	\$ 5
8	4	5	\$

第1步,找到具有最大直径的簇,对簇中的每个点计算平均相异度(如欧式距离) 1的平均距离: (1+1+1.414+3.6+4.24+4.47+5) /7=2.96 2的平均距离为2.526;

3的平均距离为2.68; 4的平均距离为2.18;

.....

挑出平均相异度最大的点1放到splinter group中,剩余点在old party中。

第2步,在old party里找出到最近的splinter group中的点的距离不大于到old party 中最近的点的距离的点,将该点放入splinter group中,该点是2。

第3步,重复第2步的工作,splinter group中放入点3。

第4步,重复第2步的工作,splinter group中放入点4。

第5步,没有在old party中的点放入了splinter group中且达到终止条件(k-2),程序终止。如果没有到终止条件,因该从分裂好的簇中选一个直径最大的簇继续分裂。

步骤 1	具有最大直径的簇 {1, 2, 3, 4, 5, 6, 7, 8}	splinter group {1}	Old party {2, 3, 4, 5, 6, 7, 8}
2 3 4	{1, 2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8}	{1, 2} {1, 2, 3} {1, 2, 3, 4}	{3, 4, 5, 6, 7, 8} {4, 5, 6, 7, 8} {5, 6, 7, 8}
5	{1, 2, 3, 4, 5, 6, 7, 8}	{1, 2, 3, 4}	{5, 6, 7, 8} 终止

第五章 聚类方法

内容提要

- 聚类方法概述
- 划分聚类方法
- 层次聚类方法
- 密度聚类方法
- 其它聚类方法

■密度聚类方法的指导思想是,只要一个 区域中,点的密度大于某个阈值,就把 它加到与之相连的簇中去。

区域:以q为中心点 ε 为半径,

阈值:包含多于 MinPts个对象

- ■1. 密度聚类方法的概念
- ■2. 密度聚类典型算法
- ■3. 密度聚类算法描述
- ■4. 密度聚类算法的性能分析
- ■5. 密度聚类在数据挖掘中的应用

■密度聚类的典型算法:

- (1) DBSCAN: Density-Based Spatial Clustering of Applications with Noise, 噪声环境下的密度聚类算法
- (2) OPTICS: Ordering Points To Identify the Clustering Structure, 基于不同密度的聚类算法
- (3) EDNCLUE: Density Clustering, 基于一组密度分布函数的聚类算法

■ DBSCAN算法:如果一个点q的区域内包含多于MinPts 个对象,则创建一个q作为核心对象的簇。然后,反复 地寻找从这些核心对象直接密度可达的对象,把一些 密度可达簇进行合并。当没有新的点可以被添加到任 何簇时、该过程结束。

样本	а	b	С	d	e	f	g	h	i	j	k	l
属性x	1	4	0	1	2	3	4	5	0	1	4	1
属性y	0	0	1	1	1	1	1	1	2	2	2	3

2、密度聚类方法

$$n=12,$$

$$\mathcal{E}=1$$
, MinPts=4.

核心对象?

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
1	a	2	无

2、密度聚类方法

$$n=12$$
, $\varepsilon=1$, $MinPts=4$.

核心对象?

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
2	b	2	无

2、密度聚类方法

n=12, $\mathcal{E}=1$, MinPts=4.

核心对象?

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
3	C	3	无

n=12, $\mathcal{E}=1$, MinPts=4.

核心对象? 这簇还有其他的点吗?

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
4	d	5	簇C1: { d }

n=12, $\mathcal{E}=1$, MinPts=4.

直接密度可达的点 这次迭代结束了吗?

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
4	d	5	簇C1: {a, c, d, e, j}

n=12, ε =1, MinPts=4.

密度可达

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
4	d	5	簇C1: {a, c, d, e, i, j, l}

n=12, ε =1, MinPts=4.

密度可达

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
4	d	5	簇C1: {a, c, d, e, i, j, l}

$$n=12$$
, $\varepsilon=1$, MinPts=4.

- 1、核心对象
- 2、直接密度可达
- 3、密度可达
- 4、密度相连

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
7	g	5	簇C2: { b, f, g, h, k }

n=12, $\varepsilon = 1$, MinPts = 4.

迭代	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
7	g	5	簇C2:{ b, f, g, h, k}
8	h	2	已在一个簇C2中
9	i	3	已在一个簇C1中
10	j	4	已在一个簇C1中
(11)	k	2	已在一个簇C2中
12)	l	2	已在一个簇C1中

■1. 密度聚类方法的概念

- (1) 核心对象
- (2) 直接密度可达
- (3) 密度可达
- (4) 密度相连

定义 5-3 对象的ε-临域: 给定 对象在半径ε内的区域。

定义 5-4 核心对象:如果一个对象的ε-临域至少包含最小数目MinPts个对象,则称该对象为核心对象。

定义 5-5 直接密度可达: 给 定一个对象集合D,如果p是在q 的ε-邻域内,而q是一个核心对象, 我们说对象p从对象q出发是直接 密度可达的。

图5-6直接密度可达

定义 5-6 密度可达:如果存在一个对象链 p_1 , p_2 ,..., p_n , p_1 =q, p_n =p, 对 p_i \in D, (1<=i<=n), p_i +1是从 p_i 关于 ε 和MitPts直接密度可达的,则对象p是从对象q关于 ε 和MinPts间接密度可达。

定义 5-7 密度相连:如果对象集合D中存在一个对象o,使得对象p和q是从o关于 ε 和MinPts间接密度可达,那么对象p和q是关于 ε 和MinPts密度相连。

图5-7密度可达

图5-8密度相连

定义 5-8 噪声: 一个基于密度的簇是基于密度可达性的最大的密度相连对象的集合。不包含在任何簇中的对象被认为是"噪声"。

补充 边界点:落在某个核心点的邻域内,是一个稠密区域边缘上的点。

图5-9 噪声与边界点

■ DBSCAN聚类

举例:这有如下二维数据集,共13个样本点,取 ε =3,minpts=3,请使用DBSCAN算法对其聚类(使用曼哈顿距离)。

P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13
1	2	2	4	5	6	6	7	9	1	3	5	3
2	1	4	3	8	7	9	9	5	12	12	12	3

■ DBSCAN算法三个关键的参数: n=12, $\varepsilon=3$, minpts=3

顺序扫描样本点

P1	1	2
P2	2	1
P3	2	4
P4	4	3
P5	5	8
P6	6	7
P7	6	9
P8	7	9
P9	9	5
P10	1	12
P11	3	12
P12	5	12
P13	3	3

■ DBSCAN算法三个关键的参数: n=12, $\varepsilon=3$, minpts=3

顺序扫描样本点

P1	1	2
P2	2	1
P3	2	4
P4	4	3
P5	5	8
P6	6	7
P7	6	9
P8	7	9
P9	9	5
P10	1	12
P11	3	12
P12	5	12
P13	3	3

■ DBSCAN算法三个关键的参数: n=12, $\varepsilon=3$, minpts=3

P1	1	2
P2	2	1
P3	2	4
P4	4	3
P5	5	8
P6	6	7
P7	6	9
P8	7	9
P9	9	5
P10	1	12
P11	3	12
P12	5	12
P13	3	3

■ DBSCAN算法与个关键的参数: n=12, $\varepsilon=3$, minpts=3

顺	
序	
扫	
描	
样	
本	
点	

P1	1	2
P2	2	1
P3	2	4
P4	4	3
P5	5	8
P6	6	7
P7	6	9
P8	7	9
P9	9	5
P10	1	12
P11	3	12
P12	5	12
P13	3	3

■ DBSCAN算法三个关键的参数: n=12, $\varepsilon=3$, minpts=3

顺序扫描样本点

P1	1	2	
P2	2	1	
P3	2	4	
P4	4	3	
P5	5	8	
P6	6	7	
P7	6	9	
P8	7	9	
P9	9	5	
P10	1	12	
P11	3	12	
P12	5	12	
P13	3	3	

- ■1. 密度聚类方法的概念
- ■2. 密度聚类典型算法
- ■3. 密度聚类算法描述
- ■4. 密度聚类算法的性能分析
- ■5. 密度聚类在数据挖掘中的应用

DBSCAN 算法描述:

输入:包含n个对象的数据库,半径 ε ,最少数目MinPts。

输出:所有生成的簇,达到密度要求。

- (1) DBSCAN通过检查数据集中每点的Eps邻域来搜索簇,如果点p的Eps邻域包含的点多于MinPts个,则创建一个以p为核心对象的簇;
- (2) 然后, DBSCAN迭代地聚集从这些核心对象直接密度可达的对象, 这个过程可能涉及一些密度可达簇的合并;
 - (3) 当没有新的点添加到任何簇时,该过程结束。

- (1) 首先将数据集D中的所有对象标记为未处理状态
- (2) for(数据集D中每个对象p) do
- (3) if (p已经归入某个簇或标记为噪声) then
- (4) continue;
- (5) else
- (6) 检查对象p的Eps邻域 NEps(p);
- (7) if (NEps(p)包含的对象数小于MinPts) then
- (8) 标记对象p为边界点或噪声点;
- (9) else
- (10) 标记对象p为核心点,并建立新簇C,并将p邻域内所有点加入C
- (11) for (NEps(p)中所有尚未被处理的对象q) do
- (12) 检查其Eps邻域NEps(q),若NEps(q)包含至少MinPts个对象,则将NEps(q)中未归入任何一个簇的对象加入C;
- (13) end for (14) end if (15) end if (16) end for

DBSCAN 算法在educoder平台中运行:

■ 不同的 ε , 不同的minpts , 聚类结果不一样

- ■1. 密度聚类方法的概念
- ■2. 密度聚类典型算法
- ■3. 密度聚类算法描述
- ■4. 密度聚类算法的性能分析
- ■5. 密度聚类在数据挖掘中的应用

■ DBSCAN算法, Density-Based Spatial Clustering of Applications with Noise, 噪声环境下的密度聚类算法,将密度相连的点的最大集合聚成簇,并可在有"噪声"的空间数据库中发现任意形状的聚类。

■ DBSCAN算法的性能分析:

如果采用空间索引,DBSCAN的计算复杂度是 $O(n \log n)$,这里n是数据库中对象的数目。否则,计算复杂度是 $O(n^2)$

时间复杂度	一次邻居点的查询	DBSCAN	
无索引	0 (n)	0 (n)	
有索引	$\log n$	n log n	

■ DBSCAN算法的优点:

- (1) 聚类速度快且能够有效处理噪声点和 发现任意形状的空间聚类;
- (2)与K-MEANS比较起来,不需要输入要划分的聚类个数:
 - (3) 聚类簇的形状没有偏倚;
 - (4) 对噪声数据不敏感。

■ DBSCAN算法的缺点:

- (1) 当数据量增大时,要求较大的内存 支持I/O消耗也很大;
- (2) 当空间聚类的密度不均匀、聚类间距差相差很大时,聚类质量较差,因为这种情况下参数MinPts和Eps选取困难。
- (3) 算法聚类效果依赖与距离公式选取, 实际应用中常用欧式距离,对于高维数据,存 在"维数灾难"。

第五章 聚类方法

内容提要

- 聚类方法概述
- 划分聚类方法
- 层次聚类方法
- 密度聚类方法
- 其它聚类方法

- STING(Statistaical Information Grid_based method)是一种基于网格的多分辨率聚类技术, 它将空间区域划分为矩形单元。针对不同级别的分辨率, 通常存在多个级别的巨型单元, 这些单元形成了一个层次结构: 高层的每个单元被划分为多个第一层的单元。高层单元的统计参数可以很容易的从底层单元的计算得到。这些参数包括属性无关的参数count、属性相关的参数m (平均值)、 s(标准偏差)、 min(最小值)、 max(最大值)以及该单元中属性值遵循的分布类型。
- STING算法的主要优点是效率高,通过对数据集的一次扫描来计算单元的统计信息,因此产生聚类的时间复杂度是O(n)。在建立层次结构以后,查询的时间复杂度是O(g), g 远小于n。STING算法采用网格结构,有利于并行处理和增量更新。

STING: 统计信息网格

STING聚类的层次结构

1st level (top level) could have only one cell.

A cell of (i-1)th level corresponds to 4 cells of ith level.

STING: 统计信息网格

假设当前层的属性x的统计信息记为n, m, s, min, max, dist, 而n_i, m_i, s_i, min_i, max_i是相对于当前层来说,对应于更低一层的统计参数。那么n, m, s, min, max, dist

可以用以下方法计算:

$$n = \sum_{i} n_{i}$$

$$m = \frac{\sum_{i} m_{i} n_{i}}{n}$$

$$s = \sqrt{\frac{\sum_{i} (s_{i}^{2} + m_{i}^{2}) n_{i}}{n} - m^{2}}$$

$$min = \min_{i} (min_{i})$$

$$max = \max_{i} (max_{i})$$

$$dist$$

$$?$$

The determination of dist for a parent cell is a bit more complicated. First, we set dist as the distribution type followed by most points in this cell. This can be done by examining $dist_i$ and n_i . Then, we estimate the number of points, say confl, that conflict with the distribution determined by dist, m, and s according to the following rule:

- 1. If $dist_i \neq dist$, $m_i \approx m$ and $s_i \approx s$, then confl is increased by an amount of n_i ;
- If dist_i ≠ dist, but either m_i ≈ m or s_i ≈ s is not satisfied, then set confl to n (This enforces dist will be set to NONE later);
- 3. If $dist_i = dist$, $m_i \approx m$ and $s_i \approx s$, then confl is not changed;
- 4. If $dist_i = dist$, but either $m_i \approx m$ or $s_i \approx s$ is not satisfied, then confl is set to n.

Finally, if $\frac{confl}{n}$ is greater than a threshold t (This threshold is a small constant, say 0.05, which is set before the hierarchical structure is built), then we set dist as NONE; otherwise, we keep the original type. For example, the parameters of lower level cells are as follows.

STING: 统计信息网格

Table 1: Parameters of Children Cells

i	1	2	3	4
n_i	100	50	60	10
m_i	20.1	19.7	21.0	20.5
Si	2.3	2.2	2.4	2.1
min,	4.5	5.5	3.8	7
max_i	36	34	37	40
disti	NORMAL	NORMAL	NORMAL	NONE

Then the parameters of current cell will be

$$n = 220$$

 $m = 20.27$
 $s = 2.37$
 $min = 3.8$
 $max = 40$
 $dist = NORMAL$

The distribution type is still NORMAL based on the following: Since there are 210 points whose distribution type is NORMAL, dist is first set to NORMAL. After examining $dist_i$, m_i , and s_i of each lower level cell, we find out confl = 10. So, dist is kept as NORMAL ($\frac{confl}{n} = 0.045 < 0.05$).

- SOM神经网络是一种基于模型的聚类 方法。SOM神经网络由输入层和竞争 层组成。
 - 输入层由N个输入神经元组成,竞争层由m×m = M个输出神经元组成,且形成一个二维平面阵列。
 - 输入层各神经元与竞争层各神经元之间实现全 互连接。
- ■该网络根据其学习规则,通过对输入模式的 反复学习,捕捉住各个输入模式中所含的模式特征,并对其进行自组织,在竞争层将聚 类结果表现出来,进行自动聚类。竞争层的 任何一个神经元都可以代表聚类结果。

SOM神经网络(续

图1给出了SOM神经网络基本结构,图2给出了结构中各输入神经元与 竞争层神经元间连接情况。

图15OM网络基本结构 图2输入神经元与竞争层神经元/的连接情况

- 设网络的输入模式为 $k=1,2,\cdots$, p; 竞争层神经元向量为 $B_i=(b_{il},b_{i2},\cdots,b_{im})$, j $=1, 2, \cdots, m;$ 其中 A_k 为连续值, B_i 为数字量。网络的连接权为 $\{w_{i,j}\}$ $i=1, 2, \cdots, N;$ $\not=1, 2, \cdots, M_{\circ}$
- SOM网络寻找与输入模式Ak最接近的连接权向量 $W_g = (w_{gl}, w_{g2}, \cdots, w_{gN})$,将该连接权向量 W_g 进一步朝与输入模式Ak接近的方向调整,而且还调整邻域内的各个连接权向量 W_j , $j \in N_g(t)$ 。 随着学习次数的增加,邻域逐渐缩小。最终得到聚类结果。
- SOM类似于大脑的信息处理过程,对二维或三维数据的可视是非常有效的。SOM网络的最 大局限性是, 当学习模式较少时, 网络的聚类效果取决于输入模式的先后顺序; 且网络 连接权向量的初始状态对网络的收敛性能有很大影响。

聚类分析在数据挖掘中的应用分析

- 聚类在数据挖掘中的典型应用有:
 - 可以作为其它算法的预处理步骤: 利用聚类进行数据预处理,可以获得数据的基本概况,在此基础上进行特征抽取或分类就可以提高精确度和挖掘效率。也可将聚类结果用于进一步关联分析,以获得进一步的有用信息。
 - 可以作为一个独立的工具来获得数据的分布情况: 聚类分析是获得数据分布情况的有效方法。通过观察聚类得到的每个簇的特点,可以集中对特定的某些簇作进一步分析。这在诸如市场细分、目标顾客定位、业绩估评、生物种群划分等方面具有广阔的应用前景。
 - 可以完成孤立点挖掘: 许多数据挖掘算法试图使孤立点影响最小化,或者排除它们。然而孤立点本身可能是非常有用的。如在欺诈探测中,孤立点可能预示着欺诈行为的存在。

聚类分析在数据挖掘中的应用分析

- 聚类在数据挖掘中的典型应用有:
 - 可以作为其它算法的预处理步骤: 利用聚类进行数据预处理,可以获得数据的基本概况,在此基础上进行特征抽取或分类就可以提高精确度和挖掘效率。也可将聚类结果用于进一步关联分析,以获得进一步的有用信息。
 - 可以作为一个独立的工具来获得数据的分布情况: 聚类分析是获得数据分布情况的有效方法。通过观察聚类得到的每个簇的特点,可以集中对特定的某些簇作进一步分析。这在诸如市场细分、目标顾客定位、业绩估评、生物种群划分等方面具有广阔的应用前景。
 - 可以完成孤立点挖掘: 许多数据挖掘算法试图使孤立点影响最小化,或者排除它们。然而孤立点本身可能是非常有用的。如在欺诈探测中,孤立点可能预示着欺诈行为的存在。