Chapter 6

Multiple Regression Analysis - Further Issues

Jim Bang

Interactions between Variables

Interactions between Continous Variables

Suppose we want to estimate the following model of (standardized) final exam scores:

$$Final = \beta_0 + \beta_1 Attendance + \beta_2 PriorGPA + \beta_3 ACT + \beta_4 PriorGPA^2 + \beta_5 ACT^2$$

where:

Attendance = percentage of classes the student attended, atnorder <math>PriorGPA = student's GPA in previous classes, priGPA ACT = student's ACT score, ACT

We may suspect that the *effect* of attendance depends on, or is *moderated by*, prior GPA: Attendance might not matter as much for students who do perform well generally. Then,

$$Final = \beta_0 + \beta_1 Attendance + \beta_2 PriorGPA + \beta_3 ACT + \beta_4 PriorGPA^2 + \beta_5 ACT^2 + \beta_6 PriorGPA \cdot Attendance + u$$

 $\hat{\beta}_1$ = effect of attendance on final performance when prior GPA equals zero.

What we (probably) want to know: The effect of attendance on final performance at the mean (of prior GPA and other variables): $\frac{\delta Final}{\delta Attendance}\Big|_{PriorGPA=\bar{x}_{PriorGPA}} = \beta_1 + \beta_6 \cdot \bar{x}_{PriorGPA}$

Interactions in R

- 1. Estimate the above regressions using the (pre-loaded) attend dataset (attend.lm1 and attend.lm2).
- 2. Summarize the results in a stargazer text table.
- 3. Calculate $\frac{\delta Final}{\delta Attendance}\Big|_{PriorGPA=\bar{x}_{PriorGPA}}$ for each model.

```
attend.lm1 <- lm(stndfnl ~ atndrte + priGPA + ACT + I(priGPA^2) + I(ACT^2), data = attend)
attend.lm2 <- lm(stndfnl ~ atndrte*priGPA + ACT + I(priGPA^2) + I(ACT^2), data = attend)
attend.lm1$coefficients['atndrte']

## atndrte
## 0.006174715
attend.lm2$coefficients['atndrte'] + attend.lm2$coefficients['atndrte:priGPA'] * mean(attend.lm1$model$priGPA)

## atndrte
## 0.007736558</pre>
```

Centering Continuous Interactions

##

A trick to make things less cumbersome is to *center* the variables in the interaction. This estimates:

```
Final = \beta_0 + \beta_1 Attendance + \beta_2 PriorGPA + \beta_3 ACT + \beta_4 PriorGPA^2 + \beta_5 ACT^2 + \beta_6 (PriorGPA - \mu_{PriorGPA}) \cdot (Attendance - \mu_{Attendance}) + u
```

Re-estimate attend.lm2 using the scale() function with scale = FALSE and call it attend.lm3.

Summarize all three attend models using the stargazer command.

```
attend.lm3 <- lm(stndfnl ~ atndrte + priGPA + ACT + I(priGPA^2) + I(ACT^2) + I(scale(atndrte, scale = FALSE)*scale(priGPA, scale = FALSE) stargazer(attend.lm1, attend.lm2, attend.lm3, type = 'text')
```

##	t ====================================				
##	ŧ	Dependent variable:			
##	‡				
##	ŧ	${\tt stndfnl}$			
##	ŧ	(1)	(2)	(3)	
##	t				
##	# atndrte	0.006***	-0.007	0.008***	
##	ŧ	(0.002)	(0.010)	(0.003)	
##	ŧ				
##	priGPA	-1.491***	-1.629***	-1.172**	
##	;	(0.469)	(0.481)	(0.530)	
##	‡				
##	‡ ACT	-0.118	-0.128	-0.128	
##	‡	(0.098)	(0.098)	(0.098)	
##	‡				

## I(priGPA2)	0.359***	0.296***	0.296***
##	(0.089)	(0.101)	(0.101)
##			
## I(ACT2)	0.004**	0.005**	0.005**
##	(0.002)	(0.002)	(0.002)
##			
## atndrte:priGPA		0.006	
##		(0.004)	
##			
## I(scale(atndrte, scale = FALSE) * scale(priGPA, scale = FALSE)	ALSE))		0.006
##			(0.004)
##			
## Constant	1.296	2.050	0.870
##	(1.230)	(1.360)	(1.273)
##			
##			
## Observations	680	680	680
## R2	0.227	0.229	0.229
## Adjusted R2	0.221	0.222	0.222
## Residual Std. Error		0.873 (df = 673)	
## F Statistic	39.526*** (df = 5; 674	4) 33.250*** (df = 6; 673)) 33.250*** (df = 6; 673)
## ====================================		:============	
## Note:		*p·	<0.1; **p<0.05; ***p<0.01

Comparing Specifications

Adjusted \mathbb{R}^2

$$\bar{R}^2 = 1 - \frac{SSR/(n-k-1)}{SST/(n-1)} = 1 - \frac{\hat{\sigma}_u^2}{\hat{\sigma}_y^2}$$

Useful for comparing nonnested models, e.g. switching one control for another, and alternate forms of the dependent variable.

Information Criteria for Nested Models

Choose the Lowest-Valued Specification

Akaike Information Criteria (Normal Error Distribution): $-2\frac{\ell}{n} + 2\frac{k}{n} = C + ln(\frac{\sum_{i=1}^{n}u_i^2}{n}) + 2\frac{k}{n}$

Bayes/Schwartz Information Criteria (Normal Error Distribution): $-2\frac{\ell}{n} + \ln(n)\frac{k}{n} = C + \ln(\frac{\sum_{i=1}^{n}u_i^2}{n}) + \ln(n)\frac{k}{n}$

Inappropriate Controls

Adding a control that directly causes y and is uncorrelated with x generally helps by reducing $\hat{\sigma}_{u}^{2}$.

Adding a control that directly causes y and is *correlated* with x is tricky: 1. Adding the control helps by reducing omitted-variable bias; 2. Adding the control hurts by increasing the variance.

Things get even trickier when the control only indirectly causes y through x (collider bias), or when x inflences the control on the way to causing the outcome (post-treatment effect bias).

Be careful adding controls!

Overfitting

Controlling for too many things risks overfitting the sample (and threatens exteernal validity).

- 1. Forward/Backward Stepwise Regression
- 2. Ridge Regression
- 3. Least-Angle Regression (LARS)
- 4. Least Absolute Shrinkage & Selection Operator (LASSO)
- 5. Validation Sample/Cross-Validation

Colliders

Controlling for a variable that causes your treatment introduces collider bias.

```
df <- data.frame(X = rnorm(200)+1, Y=rnorm(200)+1, time="1") %>%
  mutate(C = as.integer(X+Y+rnorm(200)/2>2)) \%\%
  group by(C) %>%
 mutate(mean X=mean(X),mean Y=mean(Y)) %>%
 ungroup()
before cor <- paste("1. Start with raw data, ignoring C. Correlation between X and Y: ",round(cor(df$X,df$Y),3),sep='')
after_cor <- paste("7. Analyze what's left! Correlation between X and Y controlling for C: ",round(cor(df$X-df$mean_X,df$Y-df$mean_Y),3),s
dffull <- rbind(</pre>
  df %>% mutate(mean_X=NA,mean_Y=NA,C=0,time=before_cor),
  df %>% mutate(mean X=NA,mean Y=NA,time='2. Separate data by the values of C.'),
  df %>% mutate(mean_Y=NA,time='3. Figure out what differences in X are explained by C'),
  df %>% mutate(X = X - mean X,mean X=0,mean Y=NA,time="4. Remove differences in X explained by C"),
  df %>% mutate(X = X - mean_X,mean_X=NA,time="5. Figure out what differences in Y are explained by C"),
  df %>% mutate(X = X - mean X,Y = Y - mean Y,mean X=NA,mean Y=0,time="6. Remove differences in Y explained by C"),
  df %>% mutate(X = X - mean X,Y = Y - mean Y,mean X=NA,mean Y=NA,time=after cor))
p1 <- ggplot(subset(dffull, time == names(table(dffull$time))[1]),
  aes(y=Y,x=X,color=as.factor(C)))+geom point()+
  geom vline(aes(xintercept=mean X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide legend(title="C"))+
  scale color colorblind()+
 labs(title = names(table(dffull$time))[1])
p2 <- ggplot(subset(dffull, time == names(table(dffull$time))[2]),</pre>
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom_vline(aes(xintercept=mean_X,color=as.factor(C)), na.rm = TRUE)+
  geom hline(aes(vintercept=mean Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide_legend(title="C"))+
  scale color colorblind()+
 labs(title = names(table(dffull$time))[2])
p3 <- ggplot(subset(dffull, time == names(table(dffull$time))[3]),
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom vline(aes(xintercept=mean X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide legend(title="C"))+
  scale color colorblind()+
  labs(title = names(table(dffull$time))[3])
```

```
p4 <- ggplot(subset(dffull, time == names(table(dffull$time))[4]),
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom_vline(aes(xintercept=mean_X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide_legend(title="C"))+
  scale_color_colorblind()+
  labs(title = names(table(dffull$time))[4])
p5 <- ggplot(subset(dffull, time == names(table(dffull$time))[5]),
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom vline(aes(xintercept=mean X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide legend(title="C"))+
  scale_color_colorblind()+
  labs(title = names(table(dffull$time))[5])
p6 <- ggplot(subset(dffull, time == names(table(dffull$time))[6]),</pre>
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom_vline(aes(xintercept=mean_X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide_legend(title="C"))+
  scale_color_colorblind()+
  labs(title = names(table(dffull$time))[6])
ggarrange(p1, p2, p3, p4, p5, p6, nrow = 2, ncol = 3)
```


Post-Treatment Effects

Controlling for a variable that is caused by the treatment and subsequently causes the outcome introduces post-treatment effect bias.

```
df <- data.frame(X = rnorm(200)+1, Y=rnorm(200)+1, time="1") %>%
  mutate(C = as.integer(X+Y+rnorm(200)/2>2)) \%\%
  group by(C) %>%
 mutate(mean X=mean(X),mean Y=mean(Y)) %>%
 ungroup()
before cor <- paste("1. Start with raw data, ignoring C. Correlation between X and Y: ",round(cor(df$X,df$Y),3),sep='')
after_cor <- paste("7. Analyze what's left! Correlation between X and Y controlling for C: ",round(cor(df$X-df$mean_X,df$Y-df$mean_Y),3),s
dffull <- rbind(</pre>
  df %>% mutate(mean_X=NA,mean_Y=NA,C=0,time=before_cor),
  df %>% mutate(mean_X=NA,mean_Y=NA,time='2. Separate data by the values of C.'),
  df %>% mutate(mean_Y=NA,time='3. Figure out what differences in X are explained by C'),
  df %>% mutate(X = X - mean X,mean X=0,mean Y=NA,time="4. Remove differences in X explained by C"),
  df %>% mutate(X = X - mean_X,mean_X=NA,time="5. Figure out what differences in Y are explained by C"),
  df %>% mutate(X = X - mean X,Y = Y - mean Y,mean X=NA,mean Y=0,time="6. Remove differences in Y explained by C"),
  df %>% mutate(X = X - mean X,Y = Y - mean Y,mean X=NA,mean Y=NA,time=after cor))
p1 <- ggplot(subset(dffull, time == names(table(dffull$time))[1]),
  aes(y=Y,x=X,color=as.factor(C)))+geom point()+
  geom vline(aes(xintercept=mean X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide legend(title="C"))+
  scale color colorblind()+
 labs(title = names(table(dffull$time))[1])
p2 <- ggplot(subset(dffull, time == names(table(dffull$time))[2]),</pre>
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom_vline(aes(xintercept=mean_X,color=as.factor(C)), na.rm = TRUE)+
  geom hline(aes(vintercept=mean Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide_legend(title="C"))+
  scale color colorblind()+
 labs(title = names(table(dffull$time))[2])
p3 <- ggplot(subset(dffull, time == names(table(dffull$time))[3]),
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom vline(aes(xintercept=mean X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide legend(title="C"))+
  scale color colorblind()+
  labs(title = names(table(dffull$time))[3])
```

```
p4 <- ggplot(subset(dffull, time == names(table(dffull$time))[4]),
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom_vline(aes(xintercept=mean_X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide_legend(title="C"))+
  scale_color_colorblind()+
  labs(title = names(table(dffull$time))[4])
p5 <- ggplot(subset(dffull, time == names(table(dffull$time))[5]),
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom vline(aes(xintercept=mean X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide legend(title="C"))+
  scale_color_colorblind()+
  labs(title = names(table(dffull$time))[5])
p6 <- ggplot(subset(dffull, time == names(table(dffull$time))[6]),</pre>
  aes(y=Y,x=X,color=as.factor(C)))+geom_point()+
  geom_vline(aes(xintercept=mean_X,color=as.factor(C)), na.rm = TRUE)+
  geom_hline(aes(yintercept=mean_Y,color=as.factor(C)), na.rm = TRUE)+
  guides(color=guide_legend(title="C"))+
  scale_color_colorblind()+
  labs(title = names(table(dffull$time))[6])
ggarrange(p1, p2, p3, p4, p5, p6, nrow = 2, ncol = 3)
```


Further Issues

- Prediction Intervals
- Residual Analysis
- Predicting y when log(y) is the dependent variable