

ACM-ICPC World Finals 2017

Team Reference Document

University of Illinois at Urbana-Champaign: Time Limit Exceeded

Coach

Uttam Thakore

Contestants

Tong Li, Yuting Zhang, Yewen Fan

Contents				4	Computational Geometry	
1	Dat 1.1 1.2 1.3 1.4 1.5	a Structures Bitmasks Union-Find Disjoint Sets Segment Tree Fenwick Tree Treap Trie	2 2 2 2 3 3 4	5	String Processing 5.1 KMP 5.2 Suffix Array	
2		ph Theory	5			
	2.1	Articulation Points and Bridges	5			
	2.2	Tarjan's Algorithm	5 C			
	$\frac{2.3}{2.4}$	Bipartite Graph Check	6			
	$\frac{2.4}{2.5}$	Kruskal's Algorithm	7			
	$\frac{2.5}{2.6}$	Dijkstra's Algorithm	7			
	2.7	Bellman Ford's Algorithm	7			
	2.8	Floyd Warshall's Algorithm	8			
	2.9	Shortest Path Faster Algorithm	8			
	2.10	Network Flow	8			
	2.11	Euler Tour	9			
	2.12	Max Cardinality Bipartite Matching	9			
3	Mat	th	10			
	3.1	Sieve of Eratosthenes	10			
	3.2	Euler Phi function	10			
	3.3	GCD mod related (CRT)	11			
	3.4	Enumerate Combination	11			
	3.5	Gauss Elimination	11			
	3.6	FFT	12			
	3.7	Simplex				
	3.8 3.9	Pell Function				
		二次剩余				
		Catalan Numbers	14			

1 Data Structures

1.1 Bitmasks

```
#define lowBit(S) (S & (-S))
#define setAll(S, n) (S = (1 << n) - 1)
#define modulo(S, N) ((S) & (N - 1)) // returns S % N, where N
    is a power of 2
#define isPowerOfTwo(S) (!(S & (S - 1)))
#define nearestPowerOfTwo(S) ((int)pow(2.0,
        (int)((log((double)S) / log(2.0)) + 0.5)))
#define turnOffLastBit(S) ((S) & (S - 1))
#define turnOnLastZero(S) ((S) | (S + 1))
#define turnOnLastConsecutiveBits(S) ((S) & (S + 1))
#define turnOnLastConsecutiveZeroes(S) ((S) | (S - 1))</pre>
```

1.2 Union-Find Disjoint Sets

```
struct DisjointSets{
  void addelements(int num){
     while (num--)
       s.push_back(-1);
  int find(int elem) {
     return s[elem] < 0 ? elem : s[elem] = find(s[elem]);</pre>
  void setunion(int a, int b) {
     int root1 = find(a), root2 = find(b);
     int newSize = s[root1] + s[root2];
     if (s[root1] <= s[root2]){</pre>
       s[root2] = root1;
       s[root1] = newSize;
    }
     else{
       s[root1] = root2;
       s[root2] = newSize;
    }}
```

```
vector<int> s;
};
```

1.3 Segment Tree

```
// Segment tree for range sum queries.
struct segment_tree {
   vector<long long> st, lazy;
   const vector<long long> &A;
   size_t n;
   inline int left(int p) { return p << 1;}</pre>
   inline int right(int p) { return (p << 1) + 1; }</pre>
   void propagate(int p, int L, int R) {
      if (lazy[p] != 0) {
          if (L != R) {
             lazy[left(p)] += lazy[p];
              lazy[right(p)] += lazy[p];
          st[p] += (R - L + 1) * lazy[p];
          lazy[p] = 0;
      }}
   void build(int p, int L, int R) {
      if (L == R)
          st[p] = A[L];
      else {
          build(left(p), L, (L + R) / 2);
          build(right(p), (L + R) / 2 + 1, R);
          st[p] = st[left(p)] + st[right(p)];
   long long update(int p, int L, int R, int i, int j, long
       long val) {
      propagate(p, L, R);
      if (L > j || R < i)
          return st[p];
      if (L >= i && R <= j) {
          lazy[p] = val;
          propagate(p, L, R);
          return st[p];
```

```
return st[p] = update(left(p), L, (L + R) / 2, i, j,
        val) +
                update(right(p), (L + R) / 2 + 1, R, i, j,
long long query(int p, int L, int R, int i, int j) {
   if (L > j || R < i)
       return 0;
   propagate(p, L, R);
   if (L >= i && R <= j)
       return st[p];
   return query(left(p), L, (L + R) / 2, i, j) +
         query(right(p), (L + R) / 2 + 1, R, i, j);
segment_tree(const vector<long long> &_A): A(_A) {
   n = A.size();
   st.assign(n * 4, 0);
   lazy.assign(n * 4, 0);
   build(1, 0, n - 1);
void update(int i, int j, long long val) {
   update(1, 0, n - 1, i, j, val);
long long query(int i, int j) {
   return query(1, 0, n - 1, i, j);
}};
```

1.4 Fenwick Tree

```
#define LSOne(S) (S & (-S))
class FenwickTree {
private:
   vi ft;
public:
   FenwickTree() {}
   // initialization: n + 1 zeroes, ignore index 0
   FenwickTree(int n) { ft.assign(n + 1, 0); }
```

```
int rsq(int b) {
                                                // returns
      RSQ(1, b)
   int sum = 0; for (; b; b -= LSOne(b)) sum += ft[b];
   return sum; }
 int rsq(int a, int b) {
                                                // returns
      RSQ(a, b)
   return rsq(b) - (a == 1 ? 0 : rsq(a - 1)); }
 // adjusts value of the k-th element by v (v can be +ve/inc
      or -ve/dec)
 void adjust(int k, int v) {
                                          // note: n =
      ft.size() - 1
   for (; k < (int)ft.size(); k += LSOne(k)) ft[k] += v; }</pre>
};
```

1.5 Treap

```
template<typename T>
struct treap{
   treap(){
      srand(time(0));
      root = nullptr;
   void insert(const T& elem){
      insert(root, elem);
   void remove(const T& elem){
      remove(root, elem);
   struct node_t{
      T elem:
      shared_ptr<node_t> left, right;
      int priority;
   };
   shared_ptr<node_t> root;
   shared_ptr<node_t> rotateLeft(shared_ptr<node_t> node){
      shared_ptr<node_t> right = node->right, rightLeft =
           right->left;
```

```
right->left = node;
   node->right = rightLeft;
   return right;
shared_ptr<node_t> rotateRight(shared_ptr<node_t> node){
   shared_ptr<node_t> left = node->left, leftRight =
       left->right;
   left->right = node;
   node->left = leftRight;
   return left;
void insert(shared_ptr<node_t>& node, const T& elem){
   if (node == nullptr){
       node = make_shared<node_t>();
       node->elem = elem;
       node->left = node->right = nullptr;
       node->priority = rand();
       return;
   }
   // We do not allow multiple keys with the same value
   if (node->elem == elem)
       return:
   if (node->elem > elem){
       insert(node->left, elem);
       if (node->priority < node->left->priority)
          node = rotateRight(node);
   }else{
       insert(node->right, elem);
       if (node->priority < node->right->priority)
          node = rotateLeft(node);
   }}
void remove(shared_ptr<node_t>& node, const T& elem){
   if (node == nullptr)
       return;
   if (node->elem == elem){
       if (!node->left && !node->right)
          node = nullptr;
       // Keep rotating until the node to be deleted becomes
```

```
a leaf node.
       else if (!node->left || (node->left && node->right &&
          node->left->priority < node->right->priority)){
          node = rotateLeft(node);
          remove(node->left, elem);
       }
       else{
          node = rotateRight(node);
          remove(node->right, elem);
       }
   }
   else if (node->elem > elem)
       remove(node->left, elem);
   else
       remove(node->right, elem);
}};
```

1.6 Trie

```
const int maxnode = 4000 * 100 + 10;
const int sigma_size = 26;
// This template use unnecessary large memory.
// should replace ch[maxnode][sigma_size] by vector<node>.
struct Trie {
 int ch[maxnode][sigma_size];
 int val[maxnode];
 int sz; // the number of node
 void clear() { sz = 1; memset(ch[0], 0, sizeof(ch[0])); }
 int idx(char c) { return c - 'a'; }
 // insert string s, with additional information v
 // v has to be non-zero, zero means "this node is not word
     node"
 void insert(const char *s, int v) {
   int u = 0, n = strlen(s);
   for(int i = 0; i < n; i++) {
     int c = idx(s[i]);
```

```
if(!ch[u][c]) { // the node not exist
    memset(ch[sz], 0, sizeof(ch[sz]));
    val[sz] = 0;
    ch[u][c] = sz++;
    }
    u = ch[u][c]; // going down
}
val[u] = v;
}};
```

2 Graph Theory

2.1 Articulation Points and Bridges

```
vi dfs low;
               // additional information for articulation
    points/bridges/SCCs
vi articulation_vertex;
int dfsNumberCounter, dfsRoot, rootChildren;
int DFS_WHITE = -1; // unvisited
void articulationPointAndBridge(int u) {
 dfs low[u] = dfs num[u] = dfsNumberCounter++; // dfs low[u]
      <= dfs_num[u]
 for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
   ii v = AdjList[u][j];
   if (dfs_num[v.first] == DFS_WHITE) {
                                                         // a
       tree edge
     dfs_parent[v.first] = u;
     if (u == dfsRoot) rootChildren++; // special case, count
         children of root
     articulationPointAndBridge(v.first);
     if (dfs_low[v.first] >= dfs_num[u])
                                                // for
         articulation point
       articulation_vertex[u] = true;
                                          // store this
           information first
```

```
// for
     if (dfs low[v.first] > dfs num[u])
         bridge
       printf(" Edge (%d, %d) is a bridge\n", u, v.first);
     dfs_low[u] = min(dfs_low[u], dfs_low[v.first]); // update
         dfs_low[u]
   else if (v.first != dfs_parent[u]) // a back edge and not
        direct cycle
     dfs low[u] = min(dfs low[u], dfs num[v.first]); // update
         dfs_low[u]
} }
//inside int main()
  printThis("Articulation Points & Bridges (the input graph
      must be UNDIRECTED)");
  dfsNumberCounter = 0; dfs_num.assign(V, DFS_WHITE);
      dfs low.assign(V, 0);
  dfs_parent.assign(V, -1); articulation_vertex.assign(V, 0);
  printf("Bridges:\n");
  for (int i = 0; i < V; i++)
   if (dfs_num[i] == DFS_WHITE) {
     dfsRoot = i; rootChildren = 0;
     articulationPointAndBridge(i);
     articulation vertex[dfsRoot] = (rootChildren > 1); } //
          special case
  printf("Articulation Points:\n");
 for (int i = 0; i < V; i++)
   if (articulation_vertex[i])
     printf(" Vertex %d\n", i);
```

2.2 Tarjan's Algorithm

```
<= dfs num[u]
 S.push_back(u);
                        // stores u in a vector based on order
      of visitation
 visited[u] = 1;
 for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
   ii v = AdjList[u][j];
   if (dfs_num[v.first] == DFS_WHITE)
     tarjanSCC(v.first);
   if (visited[v.first])
                                                  // condition
        for update
     dfs_low[u] = min(dfs_low[u], dfs_low[v.first]);
 }
 if (dfs_low[u] == dfs_num[u]) { // if this is a root
      (start) of an SCC
   printf("SCC %d:", ++numSCC);
                                      // this part is done
        after recursion
   while (1) {
     int v = S.back(); S.pop_back(); visited[v] = 0;
     printf(" %d", v);
     if (u == v) break;
   printf("\n");
} }
//inside int main()
 printThis("Strongly Connected Components (the input graph
      must be DIRECTED)");
 dfs_num.assign(V, DFS_WHITE); dfs_low.assign(V, 0);
      visited.assign(V, 0);
  dfsNumberCounter = numSCC = 0;
 for (int i = 0; i < V; i++)
   if (dfs_num[i] == DFS_WHITE)
     tarjanSCC(i);
```

2.3 Bipartite Graph Check

```
queue<int> q; q.push(s);
```

```
vi color(V, INF); color[s] = 0;
bool isBipartite = true;
while (!q.empty() & isBipartite){
  int u = q.front(); q.pop();
  for (int j = 0; j < (int)AdjList[u].size(); j++){
    ii v = AdjList[u][j];
    if (color[v.first] == INF){
      color[v.first] = 1 - color[u];
      q.push(v.first);}
    else if (color[v.first] == color[u]){
      isBipartite = false; break;}}</pre>
```

2.4 Kruskal's Algorithm

```
vector< pair<int, ii> > EdgeList; // (weight, two vertices)
    of the edge
for (int i = 0; i < E; i++) {
 scanf("%d %d %d", &u, &v, &w);
                                      // read the triple: (u,
 EdgeList.push_back(make_pair(w, ii(u, v)));
                                                     // (w, u,
     v)
 AdjList[u].push_back(ii(v, w));
 AdjList[v].push_back(ii(u, w));
sort(EdgeList.begin(), EdgeList.end()); // sort by edge
    weight O(E log E)
                 // note: pair object has built-in comparison
                      function
int mst_cost = 0;
UnionFind UF(V);
                                // all V are disjoint sets
    initially
for (int i = 0; i < E; i++) {
                                            // for each edge,
    0(E)
 pair<int, ii> front = EdgeList[i];
 if (!UF.isSameSet(front.second.first, front.second.second))
     { // check
   mst_cost += front.first;
                                      // add the weight of e
```

2.5 Prim's Algorithm

```
vi taken;
                                     // global boolean flag to
    avoid cycle
                             // priority queue to help choose
priority_queue<ii> pq;
    shorter edges
void process(int vtx) { // so, we use -ve sign to reverse the
    sort order
 taken[vtx] = 1;
 for (int j = 0; j < (int)AdjList[vtx].size(); j++) {</pre>
   ii v = AdjList[vtx][j];
   if (!taken[v.first]) pq.push(ii(-v.second, -v.first));
} }
                              // sort by (inc) weight then by
    (inc) id
// inside int main() --- assume the graph is stored in AdjList,
    pq is empty
 taken.assign(V, 0);
                                // no vertex is taken at the
      beginning
 process(0); // take vertex 0 and process all edges incident
      to vertex 0
 mst_cost = 0;
 while (!pq.empty()) { // repeat until V vertices (E=V-1
      edges) are taken
   ii front = pq.top(); pq.pop();
   u = -front.second, w = -front.first; // negate the id and
        weight again
   if (!taken[u])
                              // we have not connected this
```

2.6 Dijkstra's Algorithm

```
// Dijkstra routine
vi dist(V, INF); dist[s] = 0;
                                           // INF = 1B to
    avoid overflow
priority_queue< ii, vector<ii>, greater<ii> > pq;
    pq.push(ii(0, s));
                        // ^to sort the pairs by increasing
                            distance from s
while (!pq.empty()) {
                                                          //
    main loop
 ii front = pq.top(); pq.pop(); // greedy: pick shortest
      unvisited vertex
 int d = front.first, u = front.second;
 if (d > dist[u]) continue; // this check is important, see
      the explanation
 for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
   ii v = AdjList[u][j];
                                          // all outgoing
        edges from u
   if (dist[u] + v.second < dist[v.first]) {</pre>
     dist[v.first] = dist[u] + v.second;
                                                   // relax
         operation
     pq.push(ii(dist[v.first], v.first));
} } // note: this variant can cause duplicate items in the
    priority queue
```

2.7 Bellman Ford's Algorithm

```
// Bellman Ford routine
```

2.8 Floyd Warshall's Algorithm

```
for (int k = 0; k < V; k++) // common error: remember that
   loop order is k->i->j
  for (int i = 0; i < V; i++)
   for (int j = 0; j < V; j++)
    AdjMatrix[i][j] = min(AdjMatrix[i][j], AdjMatrix[i][k] +
    AdjMatrix[k][j]);</pre>
```

2.9 Shortest Path Faster Algorithm

```
// SPFA from source S
// initially, only S has dist = 0 and in the queue
vi dist(n, INF); dist[S] = 0;
queue<int> q; q.push(S);
vi in_queue(n, 0); in_queue[S] = 1;

while (!q.empty()) {
  int u = q.front(); q.pop(); in_queue[u] = 0;
  for (j = 0; j < (int)AdjList[u].size(); j++) { // all
    outgoing edges from u
  int v = AdjList[u][j].first, weight_u_v =
    AdjList[u][j].second;
  if (dist[u] + weight_u_v < dist[v]) { // if can relax</pre>
```

```
dist[v] = dist[u] + weight_u_v; // relax
if (!in_queue[v]) { // add to the queue only if it's
    not in the queue
    q.push(v);
    in_queue[v] = 1;
}}}
```

2.10 Network Flow

```
void augment(int v, int min_edge){
   if (v == s){
      flow = min_edge;
      return;
   else if (parent[v] != -1){
       int u = parent[v];
       augment(u, min(min_edge, residue[u][v]));
      residue[u][v] -= flow;
      residue[v][u] += flow;
   }}
void Dinic(){
   max_flow = 0;
   while (true){
      parent.assign(V, -1);
       vector<bool> visited(V, false);
       queue<int> q;
      q.push(s);
      visited[s] = true;
       while (!q.empty()){
          int u = q.front();
          q.pop();
          if (u == t)
             break;
          for (int v : adjList[u])
             if (!visited[v] && residue[u][v] > 0){
                 parent[v] = u;
                 visited[v] = true;
                 q.push(v);
```

```
int new_flow = 0;
for (int u : adjList[t]){
    if (residue[u][t] <= 0)
        continue;
    flow = 0;
    augment(u, residue[u][t]);
    residue[u][t] -= flow;
    residue[t][u] += flow;
    new_flow += flow;
}
if (new_flow == 0)
    break;
max_flow += new_flow;
}
</pre>
```

2.11 Euler Tour

2.12 Max Cardinality Bipartite Matching

```
int N, M, P, limit;
#define MAXN 50500
```

```
#define MAXE 150500
int pair_left[MAXN], pair_right[MAXN], dist_left[MAXN],
    dist_right[MAXN];
bool visited[MAXN];
int adjlist[MAXN];
int node[MAXE];
int link[MAXE];
bool BFS() {
   queue<int> q;
   memset(dist_right, -1, sizeof dist_right);
   memset(dist_left, -1, sizeof dist_left);
   for (int i = 0; i < N; i++) {
       if (pair_left[i] == -1) {
          dist_left[i] = 0;
          q.push(i);
       }}
   limit = INT MAX;
   while (!q.empty()) {
       int u = q.front();
       q.pop();
       if (dist_left[u] > limit)
       for (int i = adjlist[u]; i != -1; i = link[i]) {
          int v = node[i];
          if (dist_right[v] == -1) {
              dist_right[v] = dist_left[u] + 1;
              if (pair_right[v] == -1)
                 limit = dist_right[v];
                 dist_left[pair_right[v]] = dist_right[v] + 1;
                 q.push(pair_right[v]);
             }}}}
   return limit != INT_MAX;
bool DFS(int u) {
   for (int i = adjlist[u]; i != -1; i = link[i]) {
       int v = node[i];
       if (!visited[v] && dist_right[v] == dist_left[u] + 1) {
          visited[v] = true;
```

```
if (pair_right[v] != -1 && dist_right[v] == limit)
              continue;
          if (pair_right[v] == -1 || DFS(pair_right[v])) {
              pair_right[v] = u;
              pair_left[u] = v;
              return true;
          }}}
   return false;
}
int main() {
   scanf("%d %d %d", &N, &M, &P);
   memset(pair_left, -1, sizeof pair_left);
   memset(pair_right, -1, sizeof pair_right);
   memset(link, -1, sizeof link);
   memset(adjlist, -1, sizeof adjlist);
   for (int i = 0; i < P; i++) {
       int u, v;
       scanf("%d %d", &u, &v);
      node[i] = v - 1;
      link[i] = adjlist[u - 1];
       adilist[u - 1] = i;
   int matching = 0;
   while (BFS()) {
       memset(visited, 0, sizeof visited);
      for (int i = 0; i < N; i++)
          if (pair_left[i] == -1)
              if (DFS(i))
                 matching++;
   printf("%d\n", matching);
   return 0;
}
```

3 Math

3.1 Sieve of Eratosthenes

3.2 Euler Phi function

```
int euler_phi(int n){
  int m = (int) sqrt(n+0.5);
  int ans = n;
  for(int i=2;i<=m;i++)</pre>
   if(n\%i==0){
     ans = ans/i*(i-1);
     while(n\%i==0) n /= i;
   }
  if(n>1) ans = ans/n*(n-1);
  return ans;}
void euler_phi_table(int n, int *phi){
  for(int i=2;i<=n;i++) phi[i] = 0;
  phi[1] = 1;
  for(int i=2;i<=n;i++)
   if(!phi[i])
     for(int j=i; j<=n; j+=i){</pre>
       if(!phi[j]) phi[j] = j;
       phi[j] = phi[j]/i*(i-1);
}}
```

3.3 GCD mod related (CRT)

```
//ax+by=gcd(a,b), min abs(x)+abs(y) x, y may be negative
void gcd(LL a, LL b, LL & d, LL & x, LL & y) {
 if(!b) { d = a; x = 1; y = 0; }
 else { gcd(b,a\%b,d,y,x); y=x*(a/b);}}
// calculate inv(a) mod n. If not exist, return -1
LL inv(LL a, LL n) {
 LL d, x, y; gcd(a, n, d, x, y);
 return d == 1 ? (x+n)%n : -1; }
// n functions: x=a[i] (mod m[i]) m[i] co-prime
LL CRT(int n, int * a, int * m) {
 LL M = 1, d, y, x = 0;
 for(int i=0;i<n;i++) M *= m[i];
 for(int i=0;i<n;i++) {
   LL w = M / m[i];
   gcd(m[i], w, d, d, y);
   x = (x + y*w*a[i]) % M;
 }
 return (x+M)%M;}
// solve a^x=b mod n. n prime. If no solution, return -1
int log_mod(int a, int b, int n) {
 int m, v, e = 1;
 m = (int) sqrt(n+0.5);
 v = inv(pow_mod(a, m, n), n);
 map<int, int> x; x[1] = 0;
 for(int i=1;i<m;i++) {
   e = mul mod(e, a, n);
   if(!x.count(e)) x[e] = i;
 for(int i=0;i<m;i++) {</pre>
   if(x.count(b)) return i*m + x[b];
   b = mul_mod(b, v, n);
 return -1;}
```

3.4 Enumerate Combination

```
const int maxn = 1000;
int com[maxn];
bool next_Com(int num, int k){ //0,1...num-1 choose k
 if(k == 0) return false;
 if(com[k-1]!=num-1){ com[k-1]++: return true:}
 int i:
 for(i=k-1;i>=0;i--)
   if(com[i]!=num-k+i) break;
 if(i==-1) return false;
 com[i]++:
 for(int j=i+1; j<k; j++)</pre>
   com[j] = com[i]+(j-i);
 return true: }
void makeFirstCom(int k){
 for(int i=0;i<k;i++) com[i] = i;
}
```

3.5 Gauss Elimination

```
const int maxn = 110;
typedef double Matrix[maxn][maxn];
// require matrix A invertible
// A is augmented matrix, A[i][n] = bi
// After execution, A[i][n] is the value of i-th variable
void gauss_elimination(Matrix A, int n) {
 int i, j, k, r;
 for (i=0; i<n; i++) {
   r = i;
   for (j=i+1; j<n; j++) {
     if (fabs(A[j][i]) > fabs(A[r][i])) r = j;
   }
   if (r != i)
     for (j=0; j<=n; j++)
       swap(A[r][j], A[i][j]);
   for (j=n; j>=i; j--)
     for (k=i+1; k< n; ++k)
      A[k][j] -= A[k][i] / A[i][i] * A[i][j];
```

```
}
for (i=n-1; i>=0; i--) {
  for (j=i+1; j<n; j++)
    A[i][n] -= A[j][n] * A[i][j];
  A[i][n] /= A[i][i];
}</pre>
```

3.6 FFT

```
const long double PI = acos(0.0) * 2.0;
typedef complex<double> CD;
inline void FFT(vector<CD> &a, bool inverse) {
 int n = a.size();
 for(int i = 0, j = 0; i < n; i++) {
   if(j > i) swap(a[i], a[j]);
   int k = n;
   while(j & (k >>= 1)) j &= ~k;
   j |= k;
 double pi = inverse ? -PI : PI;
 for(int step = 1; step < n; step <<= 1) {</pre>
   double alpha = pi / step;
   for(int k = 0; k < step; k++) {
     CD omegak = exp(CD(0, alpha*k));
     for(int Ek = k; Ek < n; Ek += step << 1) {</pre>
      int Ok = Ek + step;
      CD t = omegak * a[0k];
      a[0k] = a[Ek] - t;
      a[Ek] += t;
     }
   }
 }
 if(inverse)
   for(int i = 0; i < n; i++) a[i] /= n;
inline vector<double> operator * (const vector<double>& v1,
    const vector<double>& v2) {
 int s1 = v1.size(), s2 = v2.size(), S = 2;
```

```
while(S < s1 + s2) S <<= 1;
vector<CD> a(S,0), b(S,0);
for(int i = 0; i < s1; i++) a[i] = v1[i];
FFT(a, false);
for(int i = 0; i < s2; i++) b[i] = v2[i];
FFT(b, false);
for(int i = 0; i < S; i++) a[i] *= b[i];
FFT(a, true);
vector<double> res(s1 + s2 - 1);
for(int i = 0; i < s1 + s2 - 1; i++) res[i] = a[i].real();
return res;
} // 用FFT实现的快速多项式乘法
```

3.7 Simplex

```
//输入矩阵a描述线性规划的标准形式。a为m+1行n+1列,其中行0~m-1为不等式
//行m为目标函数(最大化),列0~n-1为变量0~n-1的系数,列n为常数项
//第i个约束为a[i][0]*x[0] + a[i][1]*x[1] + ... <= a[i][n]
//目标为max(a[m][0]*x[0] + a[m][1]*x[1] + ... +
   a[m][n-1]*x[n-1] - a[m][n]
//注意: 变量均有非负约束x[i] >= 0
const int maxm = 500; // 约束数目上限
const int maxn = 500; // 变量数目上限
const double INF = 1e100;
const double eps = 1e-10;
struct Simplex {
 int n; // 变量个数
 int m; // 约束个数
 double a[maxm][maxn]; // 输入矩阵
 int B[maxm], N[maxn]; // 算法辅助变量
 void pivot(int r, int c) {
   swap(N[c], B[r]);
   a[r][c] = 1 / a[r][c];
   for(int i = 0; i \le n; i++) if(i != c) a[r][i] *= a[r][c];
   for(int i = 0; i <= m; i++) if(i != r) {
    for(int j = 0; j \le n; j++) if(j != c) a[i][j] -= a[i][c]
        * a[r][i]:
    a[i][c] = -a[i][c] * a[r][c];
```

```
}
                                                                       if(v < p) \{ r = i; p = v; \}
}
bool feasible() {
                                                                     if(p == INF) return -1;
 for(;;) {
                                                                     pivot(r, c);
   int r, c;
                                                                   }}
                                                                };
   double p = INF;
   for(int i = 0; i < m; i++) if(a[i][n] < p) p = a[r = i][n];
   if(p > -eps) return true;
   p = 0;
                                                                     Pell Function
                                                                3.8
   for(int i = 0; i < n; i++) if(a[r][i] < p) p = a[r][c = i];
   if(p > -eps) return false;
   p = a[r][n] / a[r][c];
                                                                //求x^2-ny^2=1的最小正整数根,n不是完全平方数
   for(int i = r+1; i < m; i++) if(a[i][c] > eps) {
                                                                p[1]=1;p[0]=0; q[1]=0;q[0]=1; a[2]=(int)(floor(sqrt(n)+1e-7));
    double v = a[i][n] / a[i][c];
                                                                g[1]=0;h[1]=1;
    if(v < p) \{ r = i; p = v; \}
                                                                for (int i=2;i;++i) {
                                                                  g[i]=-g[i-1]+a[i]*h[i-1]; h[i]=(n-sqr(g[i]))/h[i-1];
   pivot(r, c);
                                                                  a[i+1]=(g[i]+a[2])/h[i]; p[i]=a[i]*p[i-1]+p[i-2];
                                                                  q[i]=a[i]*q[i-1]+q[i-2]; 检查p[i],q[i]是否为解,如果是,则退出
//解有界返回1, 无解返回0, 无界返回-1。b[i] \lambda x[i] 的值, ret 为目标函数<del>的值</del>
int simplex(int n, int m, double x[maxn], double& ret) {
 this->n = n;
                                                                     二次剩余
 this->m = m:
 for(int i = 0; i < n; i++) N[i] = i;
 for(int i = 0; i < m; i++) B[i] = n+i;
                                                                /*a*x^2+b*x+c==0 (mod P) 求0..P-1的根 */
 if(!feasible()) return 0;
                                                                int pDiv2,P,a,b,c,Pb,d;
 for(;;) {
                                                                inline int calc(int x,int Time){
   int r, c;
                                                                    if (!Time) return 1; int tmp=calc(x,Time/2);
   double p = 0;
                                                                    tmp=(long long)tmp*tmp%P;
   for(int i = 0; i < n; i++) if(a[m][i] > p) p = a[m][c = i];
                                                                    if (Time&1) tmp=(long long)tmp*x%P; return tmp;
   if(p < eps) {
                                                                }
    for(int i = 0; i < n; i++) if(N[i] < n) x[N[i]] = 0;
                                                                inline int rev(int x){ if (!x) return 0; return calc(x,P-2);}
    for(int i = 0; i < m; i++) if(B[i] < n) x[B[i]] =
                                                                inline void Compute(){
         a[i][n];
                                                                    while (1) { b=rand()\%(P-2)+2; if (calc(b,pDiv2)+1==P)
    ret = -a[m][n];
                                                                        return; }
     return 1;
                                                                }
   }
                                                                int main(){
   p = INF;
                                                                    srand(time(0)^312314); int T;
   for(int i = 0; i < m; i++) if(a[i][c] > eps) {
                                                                   for (scanf("%d",&T);T;--T) {
    double v = a[i][n] / a[i][c];
                                                                       scanf("%d%d%d%d",&a,&b,&c,&P);
```

```
if (P==2) {
         int cnt=0; for (int i=0;i<2;++i) if
             ((a*i*i+b*i+c)%P==0) ++cnt;
        printf("%d",cnt);
        for (int i=0; i<2; ++i) if ((a*i*i+b*i+c)%P==0)
             printf(" %d",i);
        puts("");
     }else {
         int delta=(long long)b*rev(a)*rev(2)%P;
         a=(long long)c*rev(a)%P-sqr( (long long)delta )%P;
         a%=P;a+=P;a%=P; a=P-a;a%=P; pDiv2=P/2;
         if (calc(a,pDiv2)+1==P) puts("0");
        else {
            int t=0,h=pDiv2; while (!(h\%2)) ++t,h/=2;
            int root=calc(a,h/2);
            if (t>0) { Compute(); Pb=calc(b,h); }
            for (int i=1;i<=t;++i) {
                d=(long long)root*root*a%P;
                for (int j=1; j <= t-i; ++ j) d=(long long)d*d%P;
                if (d+1==P) root=(long long)root*Pb%P;
                Pb=(long long)Pb*Pb%P;
            root=(long long)a*root%P;
            int root1=P-root; root-=delta;
            root%=P; if (root<0) root+=P;</pre>
            root1-=delta; root1%=P; if (root1<0) root1+=P;</pre>
            if (root>root1) { t=root;root=root1;root1=t; }
            if (root==root1) printf("1 %d\n",root);
            else printf("2 %d %d\n",root,root1);
}}return 0; }
```

3.10 Schröder-Hipparchus Number

$$S(n) = \frac{1}{n}((6n-9)S(n-1) - (n-3)S(n-2))$$

3.11 Catalan Numbers

$$Cat(n) = \frac{2n!}{n! \times n! \times (n+1)}$$
$$Cat(n+1) = \frac{(2n+2) \times (2n+1)}{(n+2) \times (n+1)} \times Cat(n)$$

4 Computational Geometry

```
struct Point{
 double x, y;
 Point(double x=0, double y=0):x(x), y(y){}
};
typedef Point Vector;
// Vector + Vector = Vector / Point + Vector = Point
Vector operator + (Vector A, Vector B){
 return Vector(A.x + B.x, A.y + B.y);}
// Point - Point = Vector
Vector operator - (Point A, Point B){
 return Vector(A.x - B.x, A.y - B.y);}
Vector operator * (Vector A, double p){
 return Vector(A.x * p, A.y * p);}
Vector operator / (Vector A, double p){
 return Vector(A.x / p, A.y / p);}
const double eps = 1e-10;
int dcmp(double x){
 if(fabs(x) < eps) return 0;</pre>
 return x < 0 ? -1 : 1; }
bool operator < (const Point& a, const Point& b){
 return dcmp(a.x - b.x) < 0 \mid \mid (dcmp(a.x-b.x)==0 \&\& dcmp(a.y - b.x))
      b.y) < 0); }
bool operator == (const Point& a, const Point &b){
 return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;
double Dot(Vector A, Vector B){
 return A.x*B.x + A.y*B.y; }
double Length(Vector A){
 return sqrt(Dot(A,A)); }
// polar angle theta is the counterclockwise angle from the
    x-axis at which a point in the xy-plane lies
// (-pi, pi]
```

```
double angle(Vector v) {
                                                                    bool segmentProperIntersection(Point a1, Point a2, Point b1,
 return atan2(v.y, v.x); }
                                                                        Point b2){
// counterclockwise angle from A to B [0, pi]
                                                                     double c1 = Cross(a2-a1,b1-a1);
double Angle(Vector A, Vector B){
                                                                     double c2 = Cross(a2-a1,b2-a1);
 return acos(Dot(A,B)/Length(A)/Length(B)); }
                                                                     double c3 = Cross(b2-b1,a1-b1);
double Cross(Vector A, Vector B){
                                                                     double c4 = Cross(b2-b1,a2-b1);
 return A.x*B.y - A.y*B.x; }
                                                                     return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;}
// counterclockwisely rotate A for rad
                                                                    // determine P on segment a1a2 (endpoint excluded)
Vector Rotate(Vector A, double rad){
                                                                    bool OnSegment(Point p, Point a1, Point a2) {
 return Vector(A.x*cos(rad)-A.y*sin(rad),
                                                                     return dcmp(Cross(a1-p,a2-p))==0 \&\& dcmp(Dot(a1-p,a2-p))<0;
      A.x*sin(rad)+A.y*cos(rad)); }
                                                                    // calulate the direct area for polygon (not necessarily
// unit normal vector for A (left rotate pi/2) A != 0
                                                                        convex)
Vector Normal(Vector A){
                                                                    double PolygonArea(Point* p, int n) {
 double L = Length(A);
                                                                      double area = 0;
 return Vector(-A.y/L, A.x/L);}
                                                                     for(int i=1;i<n-1;i++)
// P+tv,Q+tw should have only one intersection,iff Cross(v,w)!=0
                                                                       area += Cross(p[i]-p[0],p[i+1]-p[0]);
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
                                                                     return area/2;}
 Vector u = P-Q;
                                                                    // convex hull: n points in array p, ch array for output,
 double t = Cross(w,u)/Cross(v,w);
                                                                        return the number of points on hull
 return P+v*t:}
                                                                    // no duplicate points in input; the order of input points is
// distance from P to line AB
                                                                        not preserved
double DistanceToLine(Point P, Point A, Point B){
                                                                    // if want input points on edges of hull, change two <= to <
 Vector v1 = B-A, v2 = P-A;
                                                                    int ConvexHull(Point* p, int n, Point* ch) {
 return fabs(Cross(v1,v2))/Length(v1);}
                                                                     sort(p,p+n); int m = 0;
// distance from P to segment AB
                                                                     for(int i=0;i<n;i++){
double DistanceToSegment(Point P, Point A, Point B){
                                                                       while (m>1 \&\& dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0)
 if(A == B) return Length(P-A);
                                                                         m--;
 Vector v1 = B-A, v2 = P-A, v3 = P-B;
                                                                       ch[m++] = p[i];
 if(dcmp(Dot(v1,v2))<0) return Length(v2);</pre>
                                                                     int k = m;
 if(dcmp(Dot(v1,v3))>0) return Length(v3);
                                                                     for(int i=n-2;i>=0;i--){
 return fabs(Cross(v1,v2))/Length(v1);}
                                                                       while (m>k && dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0)
Point GetLineProjection(Point P, Point A, Point B){
 Vector v = B-A;
                                                                       ch[m++] = p[i];
 return A+v*(Dot(v,P-A) / Dot(v,v)); }
                                                                     if(n>1) m--;
// determine segment a1a2 and b1b2 normal intersection (only
                                                                     return m;}
    one intersection, not endpoint)
                                                                    // return the diameter of set of points (Rotating Calipers
// if allowing intersecting on endpoints:
                                                                        Algorithm)
// 1) c1 = c2 = 0: on the same line, probably intersecting
                                                                    // ch: already convex hull (no three points in a line) n: the
// 2) otherwise, one endpoint on the other segment (Use
                                                                        number of points
    OnSegment() method)
                                                                    double diameter(Point* ch, int n) {
```

```
if(n == 1) return 0;
 if(n == 2) return Length(ch[0] - ch[1]);
  ch[n] = ch[0];
 double ans = 0;
 for(int u = 0, v = 1; u < n; u++) {
   for(;;) {
     double diff = Cross(ch[u+1]-ch[u], ch[v+1]-ch[v]);
     if(dcmp(diff) <= 0) {</pre>
       ans = max(ans, Length(ch[u]-ch[v]));
      if(dcmp(diff) == 0)
        ans = max(ans, Length(ch[u]-ch[v+1]));
       break:
     v = (v + 1) \% n;
   }}
 return ans;}
// poly: polygon n: the number of points
// return value: (-2, vertex) (-1, edges) (0, outside) (1,
    inside)
// determine if point on the left side of all edges (vertex
    already counterclock ordered)
int isPointInPolygon(Point p, Point* poly, int n){
  int wn = 0;
 for(int i=0;i<n;i++){
   if(p == poly[i]) return -2;
   if(OnSegment(p, poly[i], poly[(i+1)%n])) return -1;
   int k = dcmp(Cross(poly[(i+1)%n]-poly[i], p-poly[i]));
   int d1 = dcmp(poly[i].y - p.y);
   int d2 = dcmp(poly[(i+1)\%n].y - p.y);
   if(k>0 && d1<=0 && d2>0) wn++;
   if(k<0 && d2<=0 && d1>0) wn--;
 if(wn != 0) return 1;
 return 0;
struct Line{
 Point p; Vector v;
 Line(Point p, Vector v):p(p),v(v){}
 Point point(double t) {return p + v*t;}
 Line move(double d) {return Line(p + Normal(v)*d, v);}
};
```

```
struct Circle{
 Point c;
 double r;
 Circle(Point c, double r):c(c),r(r){}
 Point point(double a) {return Point(c.x + cos(a)*r, c.y +
      sin(a)*r);}
}:
// return number of intersection, sol has all intersection
// intersection P = A + t(B-A), simplify to et^2+ft+g = 0
int getLineCircleIntersection(Line L, Circle C, double& t1,
    double& t2, vector<Point>& sol){
 double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y -
 double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -
      C.r*C.r:
 double delta = f*f - 4*e*g;
 if(dcmp(delta) < 0) return 0;</pre>
 if(dcmp(delta) == 0){
   t1 = t2 = -f / (2*e);
   sol.push_back(L.point(t1));
   return 1; }
 t1 = (-f - sqrt(delta)) / (2*e);
  sol.push_back(L.point(t1));
 t2 = (-f + sqrt(delta)) / (2*e);
 sol.push_back(L.point(t2));
 return 2:}
// return the number of intersection
// if two circle identical, then return -1
int getCircleCircleIntersection(Circle C1, Circle C2,
    vector<Point>& sol){
 double d = Length(C1.c-C2.c);
 if(dcmp(d) == 0){
   if(dcmp(C1.r-C2.r) == 0) return -1;
   return 0;
 if(dcmp(C1.r+C2.r-d) < 0) return 0;
 if(dcmp(fabs(C1.r-C2.r) - d) > 0) return 0;
 double a = angle(C2.c-C1.c);
 double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d));
      // angle from C1C2 to C1P1
```

```
Point p1 = C1.point(a-da), p2 = C1.point(a+da);
                                                                     a[cnt] = A.point(base + ang);
 sol.push_back(p1);
                                                                     b[cnt] = B.point(base + ang); cnt++;
 if(p1 == p2) return 1;
                                                                     a[cnt] = A.point(base - ang);
 sol.push_back(p2);
                                                                    b[cnt] = B.point(base - ang); cnt++;
 return 2:}
                                                                     if(dcmp(d2-rsum*rsum) == 0){
// tangent lines from P to C
                                                                      a[cnt] = A.point(base);
// v[i]: i-th tangent lines, return the number of tangent lines
                                                                      b[cnt] = B.point(PI + base); cnt++;
int getTangents(Point p, Circle C, Vector* v){
                                                                    }
 Vector u = C.c - p;
                                                                     else if(dcmp(d2 - rsum*rsum) > 0){ // two internal common
 double dist = Length(u);
                                                                         tangents
 if(dist < C.r) return 0;</pre>
                                                                      double ang = acos((A.r+B.r) / sqrt(d2));
 else if(dcmp(dist-C.r)==0){
                                                                      a[cnt] = A.point(base+ang);
   v[0] = Rotate(u,PI/2);
                                                                      b[cnt] = B.point(PI+base+ang); cnt++;
   return 1;
                                                                      a[cnt] = A.point(base-ang);
                                                                      b[cnt] = B.point(PI+base-ang); cnt++;
 } else {
   double ang = asin(C.r / dist);
   v[0] = Rotate(u, -ang); v[1] = Rotate(u, +ang);
                                                                    return cnt;}
   return 2;
 }}
                                                                   void CircleCenter(point p0 , point p1 , point p2 , point &cp ){
                                                                       double a1=p1.x-p0.x , b1=p1.y-p0.y , c1=(sqr(a1)+sqr(b1)) /
// return the number of tangents, -1 means inf
// a[i], b[i]: point of tangency with i-th tangent on A, B;
                                                                            2;
    same when internally or externally tangent
                                                                       double a2=p2.x-p0.x, b2=p2.y-p0.y, c2=(sqr(a2)+sqr(b2)) /
int getTangents(Circle A, Circle B, Point* a, Point* b) {
                                                                           2;
 int cnt = 0;
                                                                       double d = a1*b2 - a2*b1;
 if(A.r < B.r){ swap(A, B); swap(a, b); }</pre>
                                                                       cp.x = p0.x + (c1*b2 - c2*b1) / d;
 double d2 = (A.c.x-B.c.x)*(A.c.x-B.c.x) +
                                                                       cp.y = p0.y + (a1*c2 - a2*c1) / d;
      (A.c.y-B.c.y)*(A.c.y-B.c.y);
                                                                   double Incenter(point A, point B, point C, point &cp ){
 double rdiff = A.r - B.r:
                                                                     double s , p , r , a , b , c ;
 double rsum = A.r + B.r;
                                                                     a = dis(B, C), b = dis(C, A), c = dis(A, B); p = (a + b + c)
 if(dcmp(d2 - rdiff*rdiff) < 0) // containing</pre>
                                                                         / 2 :
   return 0:
                                                                    s = sqrt (p * (p-a) * (p-b) * (p-c)); r = s / p;
                                                                     cp.x = (a*A.x + b*B. x + c*C.x) / (a + b + c);
 double base = atan2(B.c.y-A.c.y, B.c.x-A.c.x);
                                                                     cp.y = (a*A.y + b*B. y + c*C.y) / (a + b + c);
 if (dcmp(d2)==0 \&\& dcmp(A.r-B.r)==0) // infinite tangents
   return -1;
                                                                    return r ;}
 if(dcmp(d2-rdiff*rdiff) == 0){ // inscribe, one tangent
                                                                   void Orthocenter(point A, point B, point C, point &cp ){
   a[cnt] = A.point(base); b[cnt] = B.point(base);
                                                                     CircleCenter(A, B, C, cp );
   cnt++; return 1;
                                                                    cp.x = A.x + B.x + C.x - 2 * cp.x ; cp.y = A.y + B.y + C.y - 2
                                                                         * cp.y ;}
 double ang = acos((A.r-B.r)/sqrt(d2)); // two external common
      tangents
                                                                   double twoCircleAreaUnion(point a, point b , double r1, double
```

```
r2){
 if (r1+r2<=(a-b).dist()) return 0;
 if (r1+(a-b).dist()<=r2) return pi*r1*r1;</pre>
 if (r2+(a-b).dist()<=r1) return pi*r2*r2;</pre>
 double c1, c2, ans=0;
 c1=(r1*r1-r2*r2+(a-b).dis())/(a-b).dist()/r1/2.0;
 c2=(r2*r2-r1*r1+(a-b).dis())/(a-b).dist()/r2/2.0;
 double s1,s2; s1=acos(c1); s2=acos(c2);
 ans+=s1*r1*r1-r1*r1*sin(s1)*cos(s1);
 ans+=s2*r2*r2-r2*r2*sin(s2)*cos(s2);
 return ans;
}//===两园面积交 dist=是距离, dis是平方
double area2(point pa, point pb) {
 if (pa.len() < pb.len()) swap(pa, pb); if (pb.len() < eps)</pre>
      return 0;
 double a, b, c, B, C, sinB, cosB, sinC, cosC, S, h, theta;
 a = pb.len(); b = pa.len(); c = (pb-pa).len();
 cosB=dot(pb,pb-pa)/a/c; sinB=fabs(det(pb,pb-pa)/a/c);
 cosC=dot(pa, pb) / a / b; sinC=fabs(det(pa,pb)/a/b);
 B=atan2(sinB , cosB); C=atan2(sinC, cosC);
 if (a > r) { S = C/2*r*r; h = a*b*sinC/c;
   if (h < r \&\& B < PI/2) S = (acos(h/r)*r*r -
       h*sqrt(r*r-h*h));
 else if (b > r) { theta = PI - B - asin(sinB/r*a);
   S = .5*a*r*sin(theta) + (C-theta)/2*r*r; }
 else S = .5*sinC*a*b; return S; }// a, b, c, r fixed
double area(const point &o) {
 double S = 0; point oa = a-o, ob = b-o, oc = c-o;
 S += area2(oa, ob) * sign(det(oa, ob));
 S += area2(ob, oc) * sign(det(ob, oc));
 S += area2(oc, oa) * sign(det(oc, oa)); return abs(S);
   //====多边形和圆相交的面积用有向面积,划分成一个三角形和圆的面积的交
```

5 String Processing

5.1 KMP

```
#define MAX N 100010
char T[MAX_N], P[MAX_N]; // T = text, P = pattern
int b[MAX_N], n, m; // b = back table, n = length of T, m =
    length of P
void kmpPreprocess() { // call this before calling kmpSearch()
 int i = 0, j = -1; b[0] = -1; // starting values
 while (i < m) { // pre-process the pattern string P
   while (j \ge 0 \&\& P[i] != P[j]) j = b[j]; // if different,
       reset j using b
   i++; j++; // if same, advance both pointers
   b[i] = j; // observe i = 8, 9, 10, 11, 12 with j = 0, 1, 2,
} }
            // in the example of P = "SEVENTY SEVEN" above
void kmpSearch() { // this is similar as kmpPreprocess(), but
    on string T
 int i = 0, j = 0; // starting values
 while (i < n) { // search through string T
   while (j \ge 0 \&\& T[i] != P[j]) j = b[j]; // if different,
       reset j using b
   i++; j++; // if same, advance both pointers
   if (j == m) \{ // \text{ a match found when } j == m \}
     printf("P is found at index %d in T\n", i - j);
     j = b[j]; // prepare j for the next possible match
} } }
```

^{町面积}りえ Suffix Array

```
characters
                                       // the length of input
int n:
    string
int RA[MAX_N], tempRA[MAX_N]; // rank array and temporary
    rank array
int SA[MAX_N], tempSA[MAX_N]; // suffix array and temporary
    suffix array
int c[MAX_N];
                                          // for counting/radix
    sort
char P[MAX_N];
                           // the pattern string (for string
    matching)
                                      // the length of pattern
int m;
    string
int Phi[MAX_N];
                                // for computing longest common
    prefix
int PLCP[MAX_N];
int LCP[MAX_N]; // LCP[i] stores the LCP between previous
    suffix T+SA[i-1]
                                        // and current suffix
                                            T+SA[i]
bool cmp(int a, int b) { return strcmp(T + a, T + b) < 0; } //</pre>
    compare
void constructSA_slow() {
                                 // cannot go beyond 1000
    characters
 for (int i = 0; i < n; i++) SA[i] = i; // initial SA: {0, 1,
      2, \ldots, n-1
 sort(SA, SA + n, cmp); // sort: O(n log n) * compare: O(n) =
      O(n^2 \log n)
}
                                                          //
void countingSort(int k) {
    O(n)
 int i, sum, maxi = max(300, n); // up to 255 ASCII chars or
      length of n
 memset(c, 0, sizeof c);
                                        // clear frequency
      table
```

```
for (i = 0; i < n; i++) // count the frequency of each
     integer rank
   c[i + k < n ? RA[i + k] : 0]++;
 for (i = sum = 0; i < maxi; i++) {</pre>
   int t = c[i]; c[i] = sum; sum += t;
                              // shuffle the suffix array if
 for (i = 0; i < n; i++)
     necessarv
   tempSA[c[SA[i]+k < n ? RA[SA[i]+k] : 0]++] = SA[i];
 for (i = 0; i < n; i++)
                                       // update the suffix
     array SA
   SA[i] = tempSA[i];
}
                      // this version can go up to 100000
void constructSA() {
    characters
 int i, k, r;
 for (i = 0; i < n; i++) RA[i] = T[i];
                                               // initial
     rankings
 for (i = 0; i < n; i++) SA[i] = i; // initial SA: {0, 1, 2,}
     ..., n-1}
 for (k = 1; k < n; k <<= 1) { // repeat sorting process log n</pre>
   countingSort(k); // actually radix sort: sort based on the
       second item
   countingSort(0);
                         // then (stable) sort based on the
       first item
   tempRA[SA[O]] = r = 0;
                                 // re-ranking; start from rank
       r = 0
   for (i = 1; i < n; i++)
                                        // compare adjacent
       suffixes
     tempRA[SA[i]] = // if same pair => same rank r; otherwise,
         increase r
     (RA[SA[i]] == RA[SA[i-1]] \&\& RA[SA[i]+k] == RA[SA[i-1]+k])
         ? r : ++r;
                                         // update the rank
   for (i = 0; i < n; i++)
       array RA
     RA[i] = tempRA[i];
   if (RA[SA[n-1]] == n-1) break;
                                          // nice optimization
       trick
```

```
} }
void computeLCP_slow() {
 LCP[0] = 0;
                                                  // default
      value
 for (int i = 1; i < n; i++) {
                                   // compute LCP by
      definition
   int L = 0:
                                             // always reset L
       to 0
   while (T[SA[i] + L] == T[SA[i-1] + L]) L++; // same L-th
       char, L++
   LCP[i] = L;
} }
void computeLCP() {
 int i, L;
 Phi[SA[0]] = -1;
                                   // default value
 for (i = 1; i < n; i++)
                                   // compute Phi in O(n)
   Phi[SA[i]] = SA[i-1]; // remember which suffix is behind
       this suffix
 for (i = L = 0; i < n; i++) {
                                   // compute Permuted LCP
      in O(n)
   if (Phi[i] == -1) { PLCP[i] = 0; continue; } // special case
   while (T[i + L] == T[Phi[i] + L]) L++; // L increased max n
       times
   PLCP[i] = L;
   L = \max(L-1, 0);
                           // L decreased max n times
 for (i = 0; i < n; i++) // compute LCP in O(n)
   LCP[i] = PLCP[SA[i]]; // put the permuted LCP to the correct
       position
}
ii stringMatching() {    // string matching in O(m log n)
 int lo = 0, hi = n-1, mid = lo; // valid matching = [0..n-1]
 while (lo < hi) {
                               // find lower bound
   mid = (lo + hi) / 2;
                             // this is round down
   int res = strncmp(T + SA[mid], P, m); // try to find P in
       suffix 'mid'
   if (res >= 0) hi = mid; // prune upper half (notice the
```

```
>= sign)
               lo = mid + 1; // prune lower half including mid
   else
                        // observe '=' in "res >= 0" above
 if (strncmp(T + SA[lo], P, m) != 0) return ii(-1, -1); // if
      not found
 ii ans; ans.first = lo;
 lo = 0; hi = n - 1; mid = lo;
 while (lo < hi) {    // if lower bound is found, find upper</pre>
      bound
   mid = (lo + hi) / 2;
   int res = strncmp(T + SA[mid], P, m);
   if (res > 0) hi = mid;
                           // prune upper half
   else
              lo = mid + 1;  // prune lower half including
       mid
       // (notice the selected branch when res == 0)
 if (strncmp(T + SA[hi], P, m) != 0) hi--; // special case
 ans.second = hi;
 return ans;
} // return lower/upperbound as first/second item of the pair,
    respectively
ii LRS() { // returns a pair (the LRS length and its index)
 int i, idx = 0, maxLCP = -1;
 for (i = 1; i < n; i++) // O(n), start from i = 1
   if (LCP[i] > maxLCP)
     maxLCP = LCP[i], idx = i;
 return ii(maxLCP, idx);
int owner(int idx) { return (idx < n-m-1) ? 1 : 2; }</pre>
ii LCS() {
            // returns a pair (the LCS length and its index)
 int i, idx = 0, maxLCP = -1;
 for (i = 1; i < n; i++) // O(n), start from i = 1
   if (owner(SA[i]) != owner(SA[i-1]) && LCP[i] > maxLCP)
     maxLCP = LCP[i], idx = i;
 return ii(maxLCP, idx);
```