# Δεύτερο project Τεχνητής Νοημοσύνης

A. Υλοποίησα τον αλγόριθμο multinomial naive bayes χρησιμοποιώντας και information gain.

Χρησιμοποιώντας όλα τα training reviews και όλα τα test reviews, ο αλγόριθμος επιτυγχάνει ποσοστό 78.55%. Αφαιρώ από το λεξιλόγιο μου m=115782 λέξεις, k=254 λέξεις και κρατάω n=1922 λέξεις στο λεξιλόγιο. Σε αυτά τα νούμερα κατέληξα αφαιρώντας τις λέξεις που είχαν συχνότητα μικρότερη από 86 φορές και μεγαλύτερη από 1455 φορές.

Training started.

Most frequent removed: 254. Least frequent removed: 115782.

Words remaining in vocabulary: 1922. Training finished, starting testing.

Total: 25000 total correct: 19637 total correct percentage: 78.548%.

Positives percentage: 81.264%. Negatives percentage: 75.832%.

#### Training table και graph:

| Training data (reviews) | Accuracy (%) |
|-------------------------|--------------|
| 0                       | 50           |
| 200                     | 57           |
| 500                     | 63           |
| 1000                    | 68           |
| 2000                    | 71.816       |
| 5000                    | 73.12        |
| 10000                   | 76.884       |
| 15000                   | 77.37        |
| 20000                   | 77.936       |
| 25000                   | 78.548       |



#### Testing table και graph:

| Testing data (reviews) | Accuracy (%) |
|------------------------|--------------|
| 2                      | 100          |
| 100                    | 84           |
| 500                    | 83.4         |
| 1000                   | 83           |
| 2000                   | 82.25        |
| 5000                   | 79.82        |
| 10000                  | 79.28        |
| 15000                  | 79.56        |
| 20000                  | 78.985       |
| 25000                  | 78.548       |



Precision, recall, F1 table and graph  $\gamma\iota\alpha$  testing data:

### Χρησιμοποίησα τους τύπους:

- Precision = True Positives / (True Positives + False Positives)
- Recall = True Positives / (True Positives + False Negatives)
- F1 = 2 \* Precision \* Recall / (Precision + Recall)

| Testing data (reviews) | Precision | Recall | F1   |
|------------------------|-----------|--------|------|
| 2                      | 1         | 1      | 1    |
| 100                    | 0.92      | 0.94   | 0.93 |
| 500                    | 0.92      | 0.92   | 0.92 |
| 1000                   | 0.90      | 0.92   | 0.91 |
| 2000                   | 0.89      | 0.91   | 0.90 |
| 5000                   | 0.89      | 0.90   | 0.89 |
| 10000                  | 0.88      | 0.90   | 0.88 |
| 15000                  | 0.87      | 0.89   | 0.88 |
| 20000                  | 0.87      | 0.88   | 0.87 |
| 25000                  | 0.86      | 0.88   | 0.87 |



B. Για το δεύτερο κομμάτι της εργασίας χρησιμοποίησα τον αντίστοιχο αλγόριθμο της Weka (weka.classifiers.bayes.NaiveBayesMultinomial).

### Training table και graph:

| Training data (reviews) | Accuracy (%) |
|-------------------------|--------------|
| 0                       | 50           |
| 200                     | 60.5         |
| 500                     | 66.723       |
| 1000                    | 72.28        |
| 2000                    | 76.5         |
| 5000                    | 79           |
| 10000                   | 82.56        |
| 15000                   | 84.02        |
| 20000                   | 85.32        |
| 25000                   | 87.02        |



# Testing table και graph

| Testing data (reviews) | Accuracy (%) |
|------------------------|--------------|
| 2                      | 100          |
| 100                    | 93.12        |
| 500                    | 92.4         |
| 1000                   | 90.57        |
| 2000                   | 90.25        |
| 5000                   | 89.01        |
| 10000                  | 88.52        |
| 15000                  | 88.3         |
| 20000                  | 87.72        |
| 25000                  | 87.02        |



### Precision, recall, F1 table and graph $\gamma\iota\alpha$ to testing data:

# Χρησιμοποίησα τους τύπους:

- Precision = True Positives / (True Positives + False Positives)
- Recall = True Positives / (True Positives + False Negatives)
- F1 = 2 \* Precision \* Recall / (Precision + Recall)

| Testing data (reviews) | Precision | Recall | F1   |
|------------------------|-----------|--------|------|
| 2                      | 1         | 1      | 1    |
| 100                    | 0.77      | 0.84   | 0.83 |
| 500                    | 0.82      | 0.84   | 0.83 |
| 1000                   | 0.81      | 0.85   | 0.82 |
| 2000                   | 0.81      | 0.83   | 0.8  |
| 5000                   | 0.79      | 0.81   | 0.79 |
| 10000                  | 0.78      | 0.81   | 0.79 |
| 15000                  | 0.78      | 0.81   | 0.79 |
| 20000                  | 0.77      | 0.81   | 0.79 |
| 25000                  | 0.76      | 0.81   | 0.78 |

