mexdulon Aufbau der Bausätze

Bestückung der Platinen

Überprüfe anhand der Stückliste, ob alle benötigten Bauteile im Lieferumfang enthalten sind. Danach kannst du mit der Montage beginnen. Es ist vorteilhaft, beim Bestücken mit den niedrigsten Bauteilen anzufangen. Eine empfehlenswerte Reihenfolge ist also folgende:

Widerstände, Dioden, LEDs, IC Fassungen, Taster, Kondensatoren, Stiftleisten, Wannenstecker.

Zuerst wird das gewünschte Bauteil positioniert und in die Platine gesteckt. Dann wird die Platine umgedreht, um das Bauteil von der Rückseite der Platine zu löten. Manchmal kann es zweckmäßig sein, eine sogenannte "Dritte-Hand" oder einen Platinenhalter zu verwenden, um das Bauteil an seinem Platz zu halten. Es ist jedoch auch möglich ohne solche Hilfsmittel auszukommen und die Platine auf der Tischfläche zu löten. Für Lötanfänger empfehlen wir die Einführung durch eine erfahrene Person. Auch Video Anleitungen (z.B. auf Youtube) können vor den ersten Versuchen hilfreich sein.

Nachdem alles fertig gelötet ist, können die ICs eingesetzt werden (siehe unten). Überprüfe vor dem ersten Betrieb noch einmal, ob alle Bauteile richtig eingesetzt sind und keine Kurzschlüsse (bspw. durch unerwünschte Lötbrücken) entstanden sind. Dafür kann du auch ein Multimeter einsetzen.

Widerstände

Bei den tetra-Board Bausätzen werden zwei grundlegende Widerstandstypen eingesetzt: Einzelne Widerstände und Widerstands-Netzwerke. Für die Identifizierung der einzelnen Widerstände werden Farbcodes verwendet (siehe unten). Hier müssen die Drähte zurecht gebogen werden, bevor sie ihren Platz auf der Platine einnehmen können. Bei den Netzwerken (wie übrigens auch bei größeren SMD Widerständen) gibt es typischerweise eine Beschriftung mit einem Code aus 3 Ziffern. Dabei geben die ersten beiden Ziffern den Wert und die dritte die Anzahl angehängter Nullen an. Somit ergibt 221 \rightarrow 2 | 2 | 0 \rightarrow 220 Ω oder 472 \rightarrow 4 | 7 | 00 \rightarrow 4700 Ω = 4,7k Ω . Netzwerke gibt es wiederum in zwei Varianten: Paralleloder Sternschaltung. Für die Sternschaltung ist die Orientierung wichtig, dafür ist bei dem Aufdruck der Platine der erste Pin markiert, der meist mit einem Punkt auf dem Bauteil markiert ist.

Farbcodes

Die einzelnen bedrahteten Widerstände werden mit Farbcodes identifiziert. Dafür werden mehrere Ringe auf den Bauteilen farblich markiert. In den Bausätzen werden Widerstände mit 5 Ringen und einer Toleranz von 1 % eingesetzt. Dort stehen die ersten 3 Ringe für den Wert und der vierte für den Multiplikator. Der letzte Ringe steht für die Toleranz, also der Bereich, den der tatsächliche Widerstandswert vom gewünschten abweichen kann. Die folgende Tabelle gibt einen Überblick über die Farben und Ringe.

mexdulon Aufbau der Bausätze

		Ring 1	Ring 2	Ring 3	Ring 4	Ring 5
Farbe		Wert Ziffer	Wert Ziffer	Wert Ziffer	Faktor Nullen	Toleranz
<keine></keine>	7///////					± 20 %
silber						± 10 %
gold						±5%
schwarz		0	0	0	-	
braun		1	1	1	0	<u>+</u> 1%
rot		2	2	2	00	± 2 %
orange		3	3	3	000	
gelb		4	4	4	0 000	
grün		5	5	5	00 000	± 0,5 %
blau		6	6	6	000 000	± 0,25 %
lila		7	7	7		± 0,1 %
grau		8	8	8		± 0,05 %
weiß		9	9	9		

Es gibt auch Widerstände mit 3, 4 oder 6 Ringen, dann ändert sich die Bedeutung der Ringe. Bei 3 oder 4 Ringen stehen Ringe 1 und 2 für den Wert und Ring 3 für den Faktor. Der potentielle 6. Ring steht für den sogenannten Temperatur-Koeffizienten. Die Zuordnung von Farbe und Wert bleibt jedoch immer einheitlich.

Beispiele für Farbcodes:

Ringe	Farben	Widerstandswert	Toleranz	
3	braun-schwarz-rot	1 0 00 = 1000 Ω = 1 k Ω	± 20 %	
4	rot-rot-braun-gold	2 2 0 = 220 Ω	±5%	
5	gelb-lila-schwarz-braun-braun	4 7 0 0 = 4700 Ω = 4,7 k Ω	±1%	
5	rot-rot-schwarz-rot-rot	2 2 0 00 = 22000 Ω = 22 k Ω	± 2 %	

In der folgenden Tabelle sind alle bisher in den tetra-Boards eingesetzten Widerstandswerte mit den dazugehörigen Farben eingetragen. Abkürzung entspricht dabei der Beschriftung auf den Boards und im Schaltplan. Beachte, dass zu dem jeweiligen Farbcode noch der letzte Ring für die Toleranz hinzukommt, z.B. braun für 1 % oder gold für 5 %. Dieser ist in der Spalte Farbcode in Klammern angegeben. Wenn du dir unsicher bist, welchen Wert ein Widerstand hat, kannst du notfalls auch mit einem Multimeter nachmessen.

mexdulon Aufbau der Bausätze

Abkürzung	Wert	Farbcode (5 Ringe)		2.	3.	4.
68	68 Ω	blau-grau-schwarz-gold (braun)				
100	100 Ω	braun-schwarz-schwarz (braun)				
220	220 Ω	rot-rot-schwarz-schwarz (braun)				
1k	1000 Ω	braun-schwarz-schwarz-braun (braun)				
2k2	2200 Ω	rot-rot-schwarz-braun (braun)				
4k7	4700 Ω	gelb-lila-schwarz-braun (braun)				
10k	10.000 Ω	braun-schwarz-schwarz-rot (braun)				
22k	22.000 Ω	rot-rot-schwarz-rot (braun)				
100k	100.000 Ω	braun-schwarz-schwarz-orange (braun)				

ICs

Die ICs werden nicht direkt auf die Platine aufgelötet, sondern in einen Sockel eingesteckt. Das hat den Vorteil, dass die ICs bei einem Defekt einfacher ausgetauscht werden können. Außerdem werden sie so nicht der Löthitze ausgesetzt, was sie beschädigen kann. Zuerst wird also der IC-Sockel platziert und festgelötet. Achte dabei auf die richtige Orientierung, also dass die Einkerbung mit der abgebildeten übereinstimmt. Wenn das Board komplett fertig gelötet ist, kann der IC eingesetzt werden. Auch hier ist die richtige Ausrichtung der Einkerbung wichtig. Damit er auf die Fassung passt, müssen die Beine des ICs etwas nach innen gebogen werden. Dafür kann ein harter Untergrund zum Abdrücken hilfreich sein.

Kondensatoren

Ähnlich wie bei den Wiederstand-Netzwerken ist bei Kondensatoren der Wert aufgedruckt. In der Regel wird hier ein dreistelliger Code verwendet: Die ersten beiden Ziffern stehen für den Wert und die dritte für die Anzahl angehängter Nullen. Der entsprechende Wert ist dann in Pikofarad (pF). So ergibt zum Beispiel $473 \rightarrow 4 | 7 | 000 \rightarrow 47000 \text{ pF} = 47 \text{ nF}$.

Elektrolyt-Kondensatoren

Bei Elektrolyt-Kondensatoren (kurz Elkos) ist es wichtig neben dem Wert auf die richtige Polung (+/-) zu achten. Sie haben den jeweiligen Wert und die Kennzeichnung der Polarität bereits aufgedruckt. Während auf der Platine der Pluspol des Bauteils markiert ist, sind bei den Bauteilen selbst häufig die Minuspole gekennzeichnet.

Achtung

Kontrolliere das Board noch einmal, bevor du es in Betrieb nimmst. Entferne alle Lötzinnreste und abgeschnittene Drahtenden, sodass kein Kurzschluss entstehen kann. Überprüfe, ob du die richtigen Bauteile eingesetzt hast und die Polarität bei Dioden, Transistoren, ICs und Elkos stimmt.

Wir wünschen dir viel Spaß beim Aufbau!