The RWTH Aachen University English-German and German-English Unsupervised Neural Machine Translation Systems for WMT 2018

Miguel Graça, Yunsu Kim, Julian Schamper, Jiahui Geng, Hermann Ney Human Language Technology and Pattern Recognition, RWTH Aachen University, Aachen, Germany

Core System

Model:

- ▶ 4-layer Transformer
- ightharpoonup 300 hidden nodes, 2048 feed-forward hidden units, 6 attention heads, 0.1 dropout
- ► Shared encoder, decoder and output layer

Optimization:

- ullet AdaM with learning rate $3 \cdot 10^{-4}$ and $eta_1 = 0.5$
- ▶ Batch size: 32 sentences
- Noise model [Lample et. al. 2017] applied to all inputs

Online Back-translation [Artxexe et. al 2017]

- ullet Back-translation during training for the next 10 mini-batches
- ightharpoonup Trained for 500k updates ightharpoonup pprox 3 epochs

Batch (Iterative) Back-translation [Lample et. al 2017]

- ▶ Initialize with an unsupervised word-by-word translation [Conneau et. al. 2017]
- ▶ Back-translation after 1 epoch (160k updates)
- ► Each epoch the model sees **one** back-translation of a given sentence
- lacktriangle Trained for 800k updates ightarrow 5 epochs

Data Processing

Training data:

- ▶ 100M sentences from NewsCrawl 2014 to 2017: Word embedding training
- ▶ 5M subset of above 100M sentences: Translation model training

Vocabularies:

- ► Shared joint BPE with 50k merge operations
- ▶ Shared and unshared word-based vocabularies of top 50k frequent words

Pre-processing:

▶ Tokenization, numbers / URLs mapped to categories, lower-casing

Post-processing:

▶ Unknown and category carry-over, frequent-casing, de-tokenization

Model selection: Bleu on newstest2015 German \rightarrow English (see Submission)

Embedding Initialization Experiments

		German → English			English $ o$ German		
	newste	newstest2017		newstest2018		st2018	
	$\mathrm{BLEU}^{[\%}$	$^{ m J}$ Ter $^{ m [\%]}$	BLEU ^[%]	$Ter^{[\%]}$	$Bleu^{[\%]}$	$\mathrm{Ter}^{[\%]}$	
random onlin	e 4.9	92.7	4.9	91.7	4.9	96.5	
monolingual	7.5	88.2	8.2	85.7	5.9	93.0	
cross-lingual	13.1	75.5	15.4	70.8	12.0	79.5	
+ frozen	12.7	76.3	15.1	71.6	10.9	78.9	
random batc	h 14.5	73.6	17.6	68.2	13.7	78.0	
monolingual	14.3	73.3	17.2	68.0	13.9	76.9	
cross-lingual	14.9	72.7	18.1	67.1	14.0	77.0	
+ frozen	14.0	75.8	16.9	71.5	12.6	83.6	

Remarks:

- ▶ Online system: Weak / implicit cross-lingual signal by embedding initialization
- ▶ Batch system: Strong / explicit word-by-word translation

Training Progress on newstest 2017 German o English

Vocabulary Experiments

		$German \to English$				$English \to German$		
		newstest2017		newstest2018		newstest2018		
		$\mathrm{Bleu}^{[\%]}$	$Ter^{[\%]}$	$\mathrm{Bleu}^{[\%]}$	$\mathrm{Ter}^{[\%]}$	$\mathrm{Bleu}^{[\%]}$	$\mathrm{Ter}^{[\%]}$	
words	batch	14.9	72.7	18.1	67.1	14.0	77.0	
unshared		14.5	73.3	17.2	67.8	13.6	77.2	
words	online	11.9	75.7	14.2	71.0	10.6	81.5	
unshared		10.6	77.7	13.2	73.1	9.7	81.9	
BPE 20k		11.8	77.9	13.6	73.9	10.8	81.1	
BPE 50k		13.1	75.5	15.4	70.8	12.0	79.5	

Word Embedding Gating Mechanism

$$ar{w} = \left(g(w) \odot E_{pre-train}(w) + (1 - g(w)) \odot E_{random}(w)
ight)$$

Gate weights:

$$g(w) = \sigma \Big(b + W \cdot [E_{pre-train}(w), E_{random}(w)] \Big)$$

Motivation:

- ▶ Pre-trained embeddings are rich in information and have the cross-lingual property
- ▶ However: adaptation to the task at hand might cancel out its benefits
- ightharpoonup Embedding pre-training is not normalized ightharpoonup apply weight normalization

Additional Feature Experiments

	$German \to English$				English $ o$ German		
	newstest2017		newstest2018		newstest2018		
	$Bleu^{[\%]}$	$Ter^{[\%]}$	$Bleu^{[\%]}$	$Ter^{[\%]}$	$Bleu^{[\%]}$	$\mathrm{Ter}^{[\%]}$	
baseline	14.9	72.7	18.1	67.1	14.0	77.0	
+ frozen emb.	14.0*	75.8*	16.9*	71.5*	12.6*	83.6*	
+ gating	14.4*	72.5	17.6*	67.3	14.2	77.2	
+ emb. WN	14.5*	73.4*	17.5*	68.4*	13.6	77.7*	
+ emb. WN	14.7	72.8	18.2	67.1	14.4 *	76.9	
+ adversarial loss	13.9*	74.2*	16.9*	69.0*	12.8*	79.6*	
+ unshared decoder	14.3*	73.3*	17.3*	68.0*	13.9	77.4	
+ drop AE & noise	15.2	72.6	18.3	66.9	14.4*	76.5 *	

^{*} denotes a p-value of < 1% w.r.t. the baseline

Remarks:

- ▶ Don't freeze your embeddings!
- Adversarial loss needs to be adjusted for the Transformer architecture
- ▶ Noise and auto-encoding can be dropped during training after the 4th epoch

Final Results

	newstest2018					
	German -	→ English	English —	German		
	$Bleu^{[\%]}$	$\mathrm{Ter}^{[\%]}$	$Bleu^{[\%]}$	$\mathrm{Ter}^{[\%]}$		
RWTH submission	18.6	66.3	14.8	75.3		
LMU submission	17.9	68.4	15.5	76.2		
RWTH internal	24.4	60.6	17.4	73.7		
best supervised systems	48.4	38.1	48.3	40.7		

- ► Model selection: round-trip Bleu on newstest2017
- ▶ Internal setup: BPE, same data, larger models, larger batch size

Acknowledgements

This work has received funding from the European Research Council (ERC) (under the European Union's Horizon 2020 research and innovation programme, grant agreement No 694537, project "SEQCLAS") and the Deutsche Forschungsgemeinschaft (DFG; grant agreement NE 572/8-1, project "CoreTec"). The GPU computing cluster was supported by DFG (Deutsche Forschungsgemeinschaft) under grant INST 222/1168-1 FUGG. The work reflects only the authors' views and none of the funding agencies is responsible for any use that may be made of the information it contains.