The Optimal Design of Climate Agreements Inequality, Trade, and Incentives for Climate Policy

Thomas Bourany
UCHICAGO / COLUMBIA ECON

Society of Economics Dynamics - Copenhagen

June 2025

► Fighting climate change requires implementing ambitious carbon reduction policies

June 2025

2/19

- Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy has redistributive effects across countries:
 - (i) income differences, (ii) climate damages, (iii) energy markets, (iv) trade leakage

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy has redistributive effects across countries:
 (i) income differences, (ii) climate damages, (iii) energy markets, (iv) trade leakage
- ▶ Proposals to fight climate inaction and the free-riding problem:
 - International cooperation through climate agreements, e.g. UN's COP

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy has redistributive effects across countries:
 (i) income differences, (ii) climate damages, (iii) energy markets, (iv) trade leakage
- ▶ Proposals to fight climate inaction and the free-riding problem:
 - International cooperation through climate agreements, e.g. UN's COP
 - Trade sanctions needed to give incentives to countries to reduce emissions meaningfully
 - "Climate club", Nordhaus (2015): trade sanctions on non-participations to sustain larger "clubs"

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy has redistributive effects across countries:
 (i) income differences, (ii) climate damages, (iii) energy markets, (iv) trade leakage
- ▶ Proposals to fight climate inaction and the free-riding problem:
 - International cooperation through climate agreements, e.g. UN's COP
 - Trade sanctions needed to give incentives to countries to reduce emissions meaningfully
 - "Climate club", Nordhaus (2015): trade sanctions on non-participations to sustain larger "clubs"
- ⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?

Introduction

⇒ What is the optimal climate club, accounting for free-riding and redistributive effects?

Introduction

- ⇒ What is the optimal climate club, accounting for free-riding and redistributive effects?
 - The agreement boils down to a choice of countries, a carbon tax, a tariff rate
 - Trade-off:

Intensive margin: a "climate club" with few countries and large emission reductions vs. *Extensive margin:* a larger set of countries, at the cost of lowering the carbon tax

Introduction

- ⇒ What is the optimal climate club, accounting for free-riding and redistributive effects?
 - The agreement boils down to a choice of countries, a carbon tax, a tariff rate
 - Trade-off: *Intensive margin:* a "climate club" with few countries and large emission reductions vs. *Extensive margin:* a larger set of countries, at the cost of lowering the carbon tax
- ► In this paper:
 - I build a rich Integrated-Assessment Model (IAM) with heterogeneous countries, energy markets, international trade and countries' strategic behaviors
- Preview of the results:
 - *Impossibility result:* Because of free-riding, we cannot achieve *both* a *high carbon tax* and *complete participation*, despite *arbitrary* trade tariffs
 - Optimal club design: (i) need to lower the carbon tax below the Pigouvian benchmark,
 (ii) impose large trade tariffs and (iii) leave several fossil-fuel producers outside the agreement

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994, 2003, 2013, 2022), Carraro, Siniscalco (1993), Chander, Tulkens (1995, 1997), Dutta, Radner (2004, 2006), Harstad (2012), Maggi (2016), Hagen, Schneider (2021), Iverson (2024)
 - Coalition building: Ray, Vohra (2015), Nordhaus (2021), Harstad (2023), Maggi, Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994, 2003, 2013, 2022), Carraro, Siniscalco (1993), Chander, Tulkens (1995, 1997), Dutta, Radner (2004, 2006), Harstad (2012), Maggi (2016), Hagen, Schneider (2021), Iverson (2024)
 - Coalition building: Ray, Vohra (2015), Nordhaus (2021), Harstad (2023), Maggi, Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994, 2003, 2013, 2022), Carraro, Siniscalco (1993), Chander, Tulkens (1995, 1997), Dutta, Radner (2004, 2006), Harstad (2012), Maggi (2016), Hagen, Schneider (2021), Iverson (2024)
 - Coalition building: Ray, Vohra (2015), Nordhaus (2021), Harstad (2023), Maggi, Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► IAM and macroeconomics of climate change and carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al. (2014), Hassler et al (2019)
 - HA model: Bourany (2024), Krusell, Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - ⇒ Strategic and constrained policy with heterogeneous countries & trade

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994, 2003, 2013, 2022), Carraro, Siniscalco (1993), Chander, Tulkens (1995, 1997), Dutta, Radner (2004, 2006), Harstad (2012), Maggi (2016), Hagen, Schneider (2021), Iverson (2024)
 - Coalition building: Ray, Vohra (2015), Nordhaus (2021), Harstad (2023), Maggi, Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► IAM and macroeconomics of climate change and carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al. (2014), Hassler et al (2019)
 - HA model: Bourany (2024), Krusell, Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - ⇒ Strategic and constrained policy with heterogeneous countries & trade

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994, 2003, 2013, 2022), Carraro, Siniscalco (1993), Chander, Tulkens (1995, 1997), Dutta, Radner (2004, 2006), Harstad (2012), Maggi (2016), Hagen, Schneider (2021), Iverson (2024)
 - Coalition building: Ray, Vohra (2015), Nordhaus (2021), Harstad (2023), Maggi, Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► IAM and macroeconomics of climate change and carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al. (2014), Hassler et al (2019)
 - HA model: Bourany (2024), Krusell, Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - ⇒ Strategic and constrained policy with heterogeneous countries & trade
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024), Copeland, Taylor, (2004), Bourany, Rosenthal-Kay (2025)
 - Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
 - Optimal design of climate agreements with free-riding incentives

4/19

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994, 2003, 2013, 2022), Carraro, Siniscalco (1993), Chander, Tulkens (1995, 1997), Dutta, Radner (2004, 2006), Harstad (2012), Maggi (2016), Hagen, Schneider (2021), Iverson (2024)
 - Coalition building: Ray, Vohra (2015), Nordhaus (2021), Harstad (2023), Maggi, Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► IAM and macroeconomics of climate change and carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al. (2014), Hassler et al (2019)
 - HA model: Bourany (2024), Krusell, Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - ⇒ Strategic and constrained policy with heterogeneous countries & trade
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024), Copeland, Taylor, (2004), Bourany, Rosenthal-Kay (2025)
 - Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
 - Optimal design of climate agreements with free-riding incentives

4/19

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

1. Representative household $U_i = \max_{c_{ii}} u(\mathcal{D}_i^u(\mathcal{E})c_i)$, Trade, \grave{a} la Armington

$$c_i = \left(\sum_{j} a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} \qquad \sum_{j \in \mathbb{I}} c_{ij} \underbrace{\left(1 + t_{ij}^b\right)}_{\text{tariff}} \underbrace{\tau_{ij}}_{\text{iceberg}} p_j = \underbrace{w_i \ell_i}_{\text{ost}} + \underbrace{\pi_i^f}_{\text{fossil firm}} \underbrace{t_{imp-sum}^{ls}}_{\text{transfers}}$$

1. Representative household $U_i = \max_{c_{ii}} u(\mathcal{D}_i^u(\mathcal{E})c_i)$, Trade, à la Armington

$$c_i = \left(\sum_j a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} \qquad \sum_{j \in \mathbb{I}} c_{ij} \underbrace{\left(1 + t_{ij}^b\right) \tau_{ij}}_{\text{tariff}} \text{p}_j = \underbrace{w_i \ell_i}_{\text{labor}} + \underbrace{\pi_i^f}_{\text{fossil firm lump-sum profit}} + \underbrace{t_i^{ls}}_{\text{transfers}}$$

2. Representative final good firm:

$$\max_{\ell_i, \ell_i', e_i^c, e_i^c} \mathsf{p}_i \, \mathcal{D}_i^{\mathsf{y}}(\mathcal{E}) \, z_i \, F(\ell_i, \boldsymbol{e}_i^f, e_i^c, e_i^r) - w_i \ell_i - (q^f + \mathsf{t}_i^\varepsilon) \boldsymbol{e}_i^f - (q_i^c + \mathsf{t}_i^\varepsilon) \boldsymbol{e}_i^c - q_i^r \boldsymbol{e}_i^r$$

- Climate externality: $\mathcal{D}_i^y(\mathcal{E})$, Income inequality z_i , Carbon tax: t_i^{ε}

1. Representative household $U_i = \max_{c_{ii}} u(\mathcal{D}_i^u(\mathcal{E})c_i)$, Trade, à la Armington

$$c_i = \left(\sum_{j} a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} \qquad \sum_{j \in \mathbb{I}} c_{ij} \underbrace{\left(1 + t_{ij}^b\right) \tau_{ij}}_{\text{tariff}} \text{ } p_j = \underbrace{w_i \ell_i}_{\text{labor}} + \underbrace{\pi_i^f}_{\text{fossil firm lump-sum profit}} + \underbrace{t_i^{ls}}_{\text{transfers}}$$

2. Representative final good firm:

$$\max_{\ell_i, e_i^f, e_i^c, e_i^c} p_i \mathcal{D}_i^y(\mathcal{E}) z_i F(\ell_i, e_i^f, e_i^c, e_i^r) - w_i \ell_i - (q^f + t_i^{\varepsilon}) e_i^f - (q_i^c + t_i^{\varepsilon}) e_i^c - q_i^r e_i^r$$

- Climate externality: $\mathcal{D}_i^{y}(\mathcal{E})$, Income inequality z_i , Carbon tax: t_i^{ε}
- 3. Energy markets
 - Fossil-fuels (oil-gas) producer, extracting e_i^x , selling on international market, at price q^f :

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x)_{\mathbb{P}_i}$$
 $E^f = \sum_{i \in \mathbb{I}} e_i^f = \sum_{i \in \mathbb{I}} e_i^x$

1. Representative household $U_i = \max_{c_{ii}} u(\mathcal{D}_i^u(\mathcal{E})c_i)$, Trade, à la Armington

$$c_{i} = \left(\sum_{j} a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}$$

$$\sum_{j \in \mathbb{I}} c_{ij} \underbrace{\left(1 + t_{ij}^{b}\right) \tau_{ij}}_{\text{tariff}} \text{ iceberg cost labor income profit transfers}$$

2. Representative final good firm:

$$\max_{\ell_i, e_i^f, e_i^c, e_i^c} p_i \mathcal{D}_i^y(\mathcal{E}) z_i F(\ell_i, e_i^f, e_i^c, e_i^r) - w_i \ell_i - (q^f + t_i^{\varepsilon}) e_i^f - (q_i^c + t_i^{\varepsilon}) e_i^c - q_i^r e_i^r$$

- Climate externality: $\mathcal{D}_i^{y}(\mathcal{E})$, Income inequality z_i , Carbon tax: t_i^{ε}
- 3. Energy markets
 - Fossil-fuels (oil-gas) producer, extracting e_i^x , selling on international market, at price q^i :

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$
 $E^f = \sum_{i \in \mathbb{I}} e_i^f = \sum_{i \in \mathbb{I}} e_i^x$

Coal e_i^c produced at price $q_i^c = z_i^c \mathbb{P}_i$ • Renewables e_i^r produced at price $q_i^r = z_i^r \mathbb{P}_i$

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

- ▶ *Definition:* A climate agreement is a set $\{J, t^{\varepsilon}, t^{b}\}$ of $J \subseteq I$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $t_i^{\varepsilon} = t^{\varepsilon}$
 - Single uniform carbon tax. Corresponds to the Pigouvian (First-Best) benchmark

- ▶ *Definition:* A climate agreement is a set $\{J, t^{\varepsilon}, t^{b}\}$ of $J \subseteq I$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $t_i^{\varepsilon} = t^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $\mathbf{t}_{ij}^b = \mathbf{t}^b$ on goods from j

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $t_i^{\varepsilon} = t^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Single uniform tariff on goods. Extension considering carbon-tariffs (\sim CBAM)

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - Provides "issue linkage" between the trade and climate policies

- ▶ *Definition:* A climate agreement is a set $\{J, t^{\varepsilon}, t^{b}\}$ of $J \subseteq I$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ii}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - All countries trade in oil-gas at price q^f

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - All countries trade in oil-gas at price q^f
 - Assumption relaxed in an extension: oil-gas-specific tariffs

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - All countries trade in oil-gas at price q^f
 - Local, lump-sum rebate of taxes: $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - All countries trade in oil-gas at price q^f
 - Local, lump-sum rebate of taxes: $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - No cross-countries transfers allowed. Assumption relaxed in an extension: "climate fund"

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathfrak{t}_i^{\varepsilon} = \mathfrak{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - All countries trade in oil-gas at price q^f
 - Local, lump-sum rebate of taxes: $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - Countries outside the club $k \notin \mathbb{J}$ have passive policies, $t_{ki}^b = 0$ and $t_k^\varepsilon = 0$.

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - All countries trade in oil-gas at price q^f
 - Local, lump-sum rebate of taxes: $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - Countries outside the club $k \notin \mathbb{J}$ have passive policies, $t_{ki}^b = 0$ and $t_k^{\varepsilon} = 0$.
 - No retaliation. Assumption relaxed in an extension: coordination to retaliate and trade wars

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - All countries trade in oil-gas at price q^f
 - Local, lump-sum rebate of taxes: $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - Countries outside the club $k \notin \mathbb{J}$ have passive policies, $t_{ki}^b = 0$ and $t_k^{\varepsilon} = 0$.
 - Indirect utility $U_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \equiv u(\mathcal{D}_i^{y}(\mathcal{E}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b)) c_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b))$

Climate agreement design: "rules of the game"

- ▶ *Definition:* A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax: $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits the agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from j
 - Countries in the club benefit from free-trade $t_{ij}^b = 0$ (or "status-quo" policy).
 - All countries trade in oil-gas at price q^f
 - Local, lump-sum rebate of taxes: $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - Countries outside the club $k \notin \mathbb{J}$ have passive policies, $t_{ki}^b = 0$ and $t_k^\varepsilon = 0$.
 - Indirect utility $\mathcal{U}_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \equiv u(\mathcal{D}_i^{y}(\mathcal{E}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b)) c_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b))$
- Equilibrium concepts:
 - Unilateral participation decision of i, $\mathbb{J}\setminus\{i\}$, \Rightarrow *Nash equilibrium*

Coalition
$$\mathbb{J}$$
 stable if $\mathcal{U}_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \geq \mathcal{U}_i(\mathbb{J} \setminus \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b)$ $\forall i \in \mathbb{J}$

Sub-coalitional deviation ⇒ Coalitional Nash equilibrium

▶ Objective: search for the optimal *and stable* climate agreement

$$\max_{\mathbb{J}, t^{\varepsilon}, t^{b}} \mathcal{W}(\mathbb{J}, t^{\varepsilon}, t^{b}) = \max_{t^{\varepsilon}, t^{b}} \max_{\mathbb{J}} \sum_{i \in \mathbb{I}} \omega_{i} \, \mathcal{U}_{i}(\mathbb{J}, t^{\varepsilon}, t^{b})$$

$$s.t. \qquad \mathcal{U}_{i}(\mathbb{J}, t^{\varepsilon}, t^{b}) \geq \mathcal{U}_{i}(\mathbb{J} \setminus \{i\}, t^{\varepsilon}, t^{b})$$

- ► Current design:
 - (i) choose taxes $\{t^{\varepsilon}, t^{b}\}$

[outer problem]

- (ii) choose the coalition J s.t. participation constraints hold
- [inner problem]

- \Rightarrow Combinatorial Discrete Choice Problem for $\mathbb{J} \in \mathcal{P}(\mathbb{I})$
- Solution method: use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023)
 extended to handle participation constraints, Approach, details , Deviations , Solution methods

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Quantification

- Climate block:
 - Static economic model: decisions taken "once and for all", e.g. $\mathcal{E} = \sum_i e_i^f + e_i^c$.
 - "Dynamic" climate system: $\dot{S}_t = \mathcal{E} \delta_s S_t$, $T_{it} = \bar{T}_{i0} + \Delta_i S_t$
 - Quadratic damage functions as in Nordhaus-DICE: $\mathcal{D}(T_{it}-T_i^{\star})=e^{-\gamma(T_{it}-T_i^{\star})^2}$
 - Feedback in Present discounted value: $\mathcal{D}_i^y(\mathcal{E}) = \bar{\rho} \int_0^\infty e^{-(\rho n + (1 \eta)\bar{g})t} \mathcal{D}(T_{it} T_i^{\star}) dt$

Quantification

- ► Climate block:
 - Static economic model: decisions taken "once and for all", e.g. $\mathcal{E} = \sum_i e_i^f + e_i^c$.
 - "Dynamic" climate system: $\dot{S}_t = \mathcal{E} \delta_s S_t$, $T_{it} = \bar{T}_{i0} + \Delta_i S_t$
 - Quadratic damage functions as in Nordhaus-DICE: $\mathcal{D}(T_{it}-T_i^{\star})=e^{-\gamma(T_{it}-T_i^{\star})^2}$
 - Feedback in Present discounted value: $\mathcal{D}_i^y(\mathcal{E}) = \bar{\rho} \int_0^\infty e^{-(\rho n + (1 \eta)\bar{g})t} \mathcal{D}(T_{it} T_i^*) dt$
- \triangleright Pareto weights ω_i , Negishi, to imply no redistribution motive
 - $\omega_i = \frac{1}{u'(\bar{c_i})}$, for $\bar{c_i}$ conso in initial equilibrium t = 2020 w/o climate change Details Pareto weights
- Standard functional forms:
 - CRRA utility, Nested CES production, Iso-elastic fossil fuel extraction

Quantification

- ► Climate block:
 - Static economic model: decisions taken "once and for all", e.g. $\mathcal{E} = \sum_i e_i^f + e_i^c$.
 - "Dynamic" climate system: $\dot{S}_t = \mathcal{E} \delta_s S_t$, $T_{it} = \bar{T}_{i0} + \Delta_i S_t$
 - Quadratic damage functions as in Nordhaus-DICE: $\mathcal{D}(T_{it}-T_i^{\star})=e^{-\gamma(T_{it}-T_i^{\star})^2}$
 - Feedback in Present discounted value: $\mathcal{D}_i^y(\mathcal{E}) = \bar{\rho} \int_0^\infty e^{-(\rho n + (1 \eta)\bar{g})t} \mathcal{D}(T_{it} T_i^*) dt$
- \blacktriangleright Pareto weights ω_i , Negishi, to imply no redistribution motive
 - $\omega_i = \frac{1}{u'(\bar{c}_i)}$, for \bar{c}_i conso in initial equilibrium t=2020 w/o climate change Details Pareto weights
- Standard functional forms:
 - CRRA utility, Nested CES production, Iso-elastic fossil fuel extraction
- Parameters to match country-level variables Details calibration, Details country-level moments
 - TFP $z_i \Rightarrow$ GDP y_i , Population \mathcal{P}_i , Temperature T_{it_0} , Pattern scaling Δ_i
 - Mix: oil-gas e_i^f , Coal e_i^c , Low-carbon e_i^r , energy share, oil-gas prod° e_i^x , reserves \mathcal{R}_i , rents π_i^f
 - Trade: cost τ_{ij} projected on distance, preferences a_{ij} to match import shares s_{ij}

Quantitative application – Data and sample of countries

Sample of 32 "countries": (i) US, (ii) Canada, (iii) China, (iv) Germany, France, Spain, Italy, Rest of EU, (v) UK, (vi) India, (vii) Pakistan, (viii) Nigeria, (ix) South-Africa, (x) Rest of Africa, (xi), Egypt, (xii) Iran, (xiii) Saudi Arabia, (xiv) Turkey, (xv) Rest of Middle-East+Maghreb (xvi) Russia, (xvii) Rest of CIS, (xviii) Australia, (xix) Japan (xx) Korea, (xxi) Indonesia, (xxii) Thailand, (xxiii) Rest of South-East Asia, (xxiv) Argentina, (xxv) Brazil, (xxvi) Mexico, (xxvi) Rest of Latin America, Data: Avg. 2018–2023.

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks:
 Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Optimal policy benchmarks

- ▶ Policy benchmarks, without free-riding incentives
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects

Optimal policy benchmarks

- ▶ Policy benchmarks, without free-riding incentives
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects
 - Second-Best: Social planner, single carbon tax without transfers
 - Optimal carbon tax t^{ε} correct climate externality, but also accounts for:
 - (i) Redistribution motives, and G.E. effects on (ii) energy markets and (iii) trade leakage

$$\mathbf{t}^{\varepsilon} = \underbrace{\sum_{i} \phi_{i} LCC_{i}}_{=SCC} + \sum_{i} \phi_{i} \text{ Supply Redistrib}_{i}^{\circ} + \sum_{i} \phi_{i} \text{ Demand Distort}_{i}^{\circ} - \sum_{i} \text{Trade Redistrib}_{i}^{\circ} \qquad \phi_{i} \propto \omega_{i} u'(c_{i})$$

- Details: CE, First-Best, Second-Best, Club policy
- Companion paper: Bourany (2024), Climate Change, Inequality, and Optimal Climate Policy
- *Unilateral policy*: local planners choose their own optimal climate-trade policy,

see Farrokhi, Laksharipour (2024), Kortum, Weisbach (2022) Nash-Unilateral Policies

Second-Best climate policy

- Accounting for redistribution and lack of transfers
 - \Rightarrow implies a carbon tax lower than the Social Cost of Carbon (SCC), from \$155 to \$131/ tCO_2 .

Gains from cooperation – World Optimal policy

- Optimal carbon tax Second Best: $\sim \$131/tCO_2$
- Reduce fossil fuels / CO₂
 emissions by 45% compared to
 the Competitive equilibrium
 (Business as Usual, BAU)
- Welfare difference between world optimal policy vs. comp. eq./BAU

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Main result and Intuition

- ► The optimal climate agreement navigates the intensive and extensive margin tradeoff:
 - *Participation:* all the countries in the world with the exception of Russia, former Soviet countries, Saudi Arabia, Iran, Nigeria
 - Carbon tax: need to reduce tax level from \$131 to $$114/tCO_2$
 - *Trade tariffs:* impose substantial tariff 50% on the goods from non-members

Main result and Intuition

- ► The optimal climate agreement navigates the intensive and extensive margin tradeoff:
 - Participation: all the countries in the world with the exception of Russia, former Soviet countries, Saudi Arabia, Iran, Nigeria
 - Carbon tax: need to reduce tax level from \$131 to \$114/tCO₂
 - *Trade tariffs:* impose substantial tariff 50% on the goods from non-members
- ► Mechanism:
 - Countries participate depending on { (i) the cost of distortionary carbon taxation
 (ii) the cost of tariffs (= the gains from trade)
 - Russia/Middle East/South Asia do not join the club for high carbon tax for any tariffs, because cost of taxing fossil-fuels >> cost of tariffs / autarky
 - ⇒ As a result, we need to decrease the carbon tax

Laffer curve for carbon taxation

- Due to free-riding incentives, cannot reach globally optimal carbon tax $t^{\varepsilon,\star} = \131

Emissions \mathcal{E} (in $GtCO_2/yr$) and welfare \mathcal{W} as function of the carbon tax t^{ε} , with tariff $t^b = 50\%$.

Laffer curve for carbon taxation

- Due to free-riding incentives, cannot reach globally optimal carbon tax $t^{\varepsilon,\star} = \131
- Need to lower the carbon tax to increase participation:
 Improve welfare by sharing the costs of carbon mitigation with *more countries*

Emissions \mathcal{E} (in $GtCO_2/yr$) and welfare \mathcal{W} as function of the carbon tax t^{ε} , with tariff $t^b = 50\%$.

Climate Agreements: Intensive vs. Extensive Margin

- Intensive margin: given a coalition: higher tax t^{ε} , emissions $\mathcal{E} \downarrow$, improve welfare $\mathcal{W} \uparrow$
- ► Extensive margin:

carbon tax also deters participation individual countries free-ride increasing emissions $\mathcal{E} \uparrow$

Optimal Climate Agreement

- Despite full discretion of instruments (t^ε, t^b), we cannot sustain an agreement with Russia, Middle East, South-Asia & South America
- ⇒ need to reduce carbon tax from \$131 to \$114
- ⇒ Beneficial to leave several fossil-fuel producers outside the agreement e.g. no incentive for Russia to join: cold, closed to trade, large fossil-fuel producer

Emission reduction vs. Welfare: Different metrics!

- Agreements with tariffs recover 92% of welfare gains from the Second-Best optimal carbon tax without transfers at a cost of increasing emissions by 11%
- Setting the policy "wrongly" at $t^{\epsilon} = SCC = \$155$ lowers the participation: India, Pakistan, Egypt, Turkey, Argentina, Brazil, Rest of Middle-East, all exit the agreement

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Extensions

- 1. Coalition building details
 - Sequential procedure: Europe as first mover, then US & Asia, then developing countries
- 2. Transfers Climate fund, c.f. COP29's proposal, details
 - Optimal size: zero! Advanced economies lose from lump-sum transfers to developing countries
- 3. Carbon Border Adjustment Mechanism (CBAM), c.f. EU policy details
 - Still need a very high carbon tariff to incentivize participation
- 4. Fossil-fuels specific tariffs \sim price cap on oil-gas exports, details
 - Target energy rent of fossil-fuel producers:
 can induce their participation but can not increase the optimal carbon tax t^ε
- 5. Retaliation Trade war between club and non-club members, details
 - Moderate retaliation induce a lower carbon tax, Large "trade war" induces "mutual destruction" and can promote cooperation

Conclusion

- ► In this project, I solve for the optimal design of climate agreements
 - Accounting for free-riding incentives, as well as for inequality,
 GE effects through energy markets and trade leakage
- ► Climate agreement design jointly solves for:
 - The optimal choice of countries participating
 - The carbon tax and tariff levels, accounting for participation constraints
- ▶ The optimal climate club depends on the trade-off between:
 - the gains from climate cooperation and free-riding incentives
 - the gains from trade, i.e. the cost of retaliatory tariffs
 - ⇒ Need a large coalition at a cost of lowering the carbon tax from the world optimum \$130 to \$110
- ► Future research:
 - Dynamic policy games, bargaining, and coalition building

Conclusion

Thank you!

 $thomas bour any @\,uchicago.edu$

Optimal Design of Climate Agreements

Appendices

- Why uniform policy instruments t^{ε} and t^{b} for all club members:
 - Our social planner/designer solution represents the outcome of a "bargaining process" between countries (with bargaining weights ω_i).
 - Deviation from Coase theorem:
 - With transaction/bargaining cost: impossible to reach a consensual decision on $I + I \times I$ instruments $\{t_i^{\varepsilon}, t_{ii}^{b}\}_{ii}$
 - Such costs increase exponentially in the number of countries *I*

- Why uniform policy instruments t^{ε} and t^{b} for all club members:
 - Our social planner/designer solution represents the outcome of a "bargaining process" between countries (with bargaining weights ω_i).
 - Deviation from Coase theorem:
 - With transaction/bargaining cost: impossible to reach a consensual decision on $I + I \times I$ instruments $\{t_i^{\varepsilon}, t_{ii}^{b}\}_{ii}$
 - Such costs increase exponentially in the number of countries I
- ► Optimal country specific carbon taxes:
 - Without free-riding / exogeneous participation

$$\mathbf{t}_{i}^{\varepsilon} = \frac{1}{\phi_{i}} \mathbf{t}^{\varepsilon} \propto \frac{1}{\omega_{i} u'(c_{i})} \left[SCC + SCF - SCT \right]$$

• With participation constraints: multiplier $\nu_i(\mathbb{J})$

$$\mathbf{t}_i^{arepsilon} \propto rac{1}{ig(\omega_i +
u_i(\mathbb{J})ig)u'(c_i)}ig[\mathit{SCC} + \mathit{SCF} - \mathit{SCT}ig]$$

- ► Equilibrium concepts and participation constraints:
 - *Nash equilibrium* \Rightarrow unilateral deviation $\mathbb{J}\setminus\{j\}$, $\mathbb{J}\in\mathbb{S}(\mathfrak{t}^f,\mathfrak{t}^b)$ if:

$$\mathcal{U}_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \geq \mathcal{U}_i(\mathbb{J} \setminus \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b)$$
 $\forall i \in \mathbb{J}$

• *Coalitional Nash-equilibrium* $\mathbb{C}(\mathfrak{t}^f,\mathfrak{t}^b)$: robust of sub-coalitions deviations:

$$\mathcal{U}_{i}(\mathbb{J}, \mathfrak{t}^{f}, \mathfrak{t}^{b}) \geq \mathcal{U}_{i}(\mathbb{J} \backslash \hat{\mathbb{J}}, \mathfrak{t}^{f}, \mathfrak{t}^{b}) \ \forall i \in \hat{\mathbb{J}} \& \forall \hat{\mathbb{J}} \subseteq \mathbb{J} \cup \{i\}$$

- Stability requires to check all potential coalitions $\mathbb{J} \in \mathcal{P}(\mathbb{I})$ as all sub-coalitions $\mathbb{J} \setminus \hat{\mathbb{J}}$ are considered as deviations in the equilibrium
- Requires to solve all the combination \mathbb{J} , \mathfrak{t}^f , \mathfrak{t}^b , by exhaustive enumeration.
 - \Rightarrow becomes very computationally costly for $I = \#(\mathbb{I}) > 10$

back

Climate club design:

Separation of the joint problem into inner and outer problems, s.t. participation constraints

$$\max_{\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}} \mathcal{W}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) = \max_{\mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}} \max_{\mathbb{J}} \sum_{i \in \mathbb{I}} \omega_{i} \, \mathcal{U}_{i}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) = \max_{\mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}} \sum_{i \in \mathbb{I}} \omega_{i} \, \mathcal{U}_{i}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b})$$

$$s.t. \qquad \mathcal{U}_{i}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) \geq \mathcal{U}_{i}(\mathbb{J} \setminus \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b})$$

- Current design:
 - (i) choose taxes $\{t^{\varepsilon}, t^{b}\}$

[outer problem]

(ii) choose the coalition J s.t. participation constraints hold

[inner problem]

Computation:

M policies (grid search), 2^N choices of coalition (include both unilateral and subcoalition dev.)

- Alternative
 - (i) choose the coalition J

[outer problem]

(ii) choose taxes $\{t^{\varepsilon}, t^{b}\}$

[inner problem]

- (iii) check participation constraints for $(\mathbb{J}, t^{\varepsilon}, t^{b})$
- \triangleright Computation: 2^N choices of coalition, M policies (grid search?), N unilateral deviations

back

Country deviation and policy

- \blacktriangleright Consider coalition \mathbb{J} . Suppose we search for optimal policy $t^{\varepsilon}(\mathbb{J}), t^{b}(\mathbb{J})$
 - Requires to compute allocation $U_i(\mathbb{J}, t^{\varepsilon}(\mathbb{J}), t^b(\mathbb{J}))$
 - Participation constraints $\mathcal{U}_i(\mathbb{J}, \mathsf{t}^{\varepsilon}(\mathbb{J}), \mathsf{t}^b(\mathbb{J})) \geq \mathcal{U}_i(\mathbb{J} \setminus \{i\}, \mathsf{t}^{\varepsilon}(\mathbb{J} \setminus \{i\}), \mathsf{t}^b(\mathbb{J} \setminus \{i\}))$ with multiplier $\nu_{\mathbb{J},i}$
 - Requires to compute allocation $U_i(\mathbb{J}\setminus\{i\}, \mathsf{t}^{\varepsilon}(\mathbb{J}\setminus\{i\}), \mathsf{t}^{b}(\mathbb{J}\setminus\{i\}))$
 - Participation constraints $\mathcal{U}_j(\mathbb{J}\setminus\{i\}, \mathsf{t}^{\varepsilon}(\mathbb{J}\setminus\{i\}), \mathsf{t}^{b}(\mathbb{J}\setminus\{i\})) \geq \mathcal{U}_j(\mathbb{J}\setminus\{i,j\}, \mathsf{t}^{\varepsilon}(\mathbb{J}\setminus\{i,j\}), \mathsf{t}^{b}(\mathbb{J}\setminus\{i,j\}))$ with multiplier $\nu_{\mathbb{J}\setminus\{i\},j}$
 - Etc etc.
- ▶ Implies that we would need to solve *jointly* for $2^{\mathbb{I}}$ allocations and policy for coalitions \mathbb{J} , and each of them with $2^{\mathbb{J}}$ constraints and multipliers \Rightarrow untractable

Solution method

- ► Current design: $\max_{\mathbf{t}} \max_{\mathbb{J}} \mathcal{W}(\mathbb{J}, \mathbf{t})$ s.t. $\mathcal{U}_j(\mathcal{J}, \mathbf{t}) \ge \mathcal{U}_j(\mathcal{J} \setminus \{i\}, \mathbf{t})$
- ► Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints

Solution method

- ► Current design: $\max_{\mathbf{t}} \max_{\mathbf{J}} \mathcal{W}(\mathbb{J}, \mathbf{t})$ s.t. $\mathcal{U}_{j}(\mathcal{J}, \mathbf{t}) \geq \mathcal{U}_{j}(\mathcal{J} \setminus \{i\}, \mathbf{t})$
- ► Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints
 - Squeezing step:

$$\Phi(\mathcal{J}) \equiv \left\{ j \in \mathbb{I} \, \middle| \, \Delta_j \mathcal{W}(\mathcal{J}) > 0 \, \& \, \Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t}) > 0, \forall j \in \mathcal{J} \right\}$$

where marginal values of $j \in \mathcal{J}$ for global $\Delta_j \mathcal{W}(\mathcal{J}, \mathbf{t})$ and individual welfare $\Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t})$ are:

$$\Delta_{j}\mathcal{W}(\mathcal{J},\mathbf{t}) \equiv \mathcal{W}(\mathcal{J} \cup \{j\},\mathbf{t}) - \mathcal{W}(\mathcal{J} \setminus \{j\},\mathbf{t}) \qquad \qquad \Delta_{j}\mathcal{U}_{j}(\mathcal{J},\mathbf{t}) \equiv \mathcal{U}_{j}(\mathcal{J} \cup \{j\},\mathbf{t}) - \mathcal{U}_{j}(\mathcal{J} \setminus \{j\},\mathbf{t})$$

Solution method

- ► Current design: $\max_{\mathbf{t}} \max_{\mathbb{J}} \mathcal{W}(\mathbb{J}, \mathbf{t})$ s.t. $\mathcal{U}_j(\mathcal{J}, \mathbf{t}) \ge \mathcal{U}_j(\mathcal{J} \setminus \{i\}, \mathbf{t})$
- ► Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints
 - Squeezing step:

$$\Phi(\mathcal{J}) \equiv \left\{ j \in \mathbb{I} \mid \Delta_j \mathcal{W}(\mathcal{J}) > 0 \& \Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t}) > 0, \forall j \in \mathcal{J} \right\}$$

where marginal values of $j \in \mathcal{J}$ for global $\Delta_j \mathcal{W}(\mathcal{J}, \mathbf{t})$ and individual welfare $\Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t})$ are:

$$\Delta_{j}\mathcal{W}(\mathcal{J},\mathbf{t}) \equiv \mathcal{W}(\mathcal{J} \cup \{j\},\mathbf{t}) - \mathcal{W}(\mathcal{J} \setminus \{j\},\mathbf{t}) \qquad \qquad \Delta_{j}\mathcal{U}_{j}(\mathcal{J},\mathbf{t}) \equiv \mathcal{U}_{j}(\mathcal{J} \cup \{j\},\mathbf{t}) - \mathcal{U}_{j}(\mathcal{J} \setminus \{j\},\mathbf{t})$$

- Iterative procedure build lower bound $\underline{\mathcal{J}}$ and upper bound $\overline{\mathcal{J}}$ by successive squeezing steps

$$\underline{\mathcal{J}}^{(k+1)} = \Phi(\underline{\mathcal{J}}^{(k)}) \qquad \qquad \overline{\mathcal{J}}^{(k+1)} = \Phi(\overline{\mathcal{J}}^{(k)})$$

• Squeezing procedure converges to the optimal set under *Complementarity* (Assumption, Details

Back, solution method

Complementarity

- Application of *Squeezing procedure* as in Arkolakis, Eckert, Shi (2023)
- Condition: Single Crossing Differences in choice (SCD-C), that I extend to account for participation constraints (SCD-C,PC)
- In our setting, condition as follows:

IF the coalition $\mathcal J$ makes (i) allocation outcomes better for welfare with $\{j\}$, if both $\mathcal J$ and $\mathcal J \cup \{j\}$ are stable, or (ii) the coalition $\mathcal J \cup \{j\}$ is stable if $\mathcal J$ is unstable THEN one of these conditions should also be respected for larger coalitions $\mathcal J' \supseteq \mathcal J$.

$$\begin{cases} & \Delta_{i}\mathcal{U}_{i}(\mathcal{J} \cup \{j\}) \geq 0 \\ & \& \left[\begin{array}{c} \left(\Delta_{j}\mathcal{W}(\mathcal{J} \cup \{j\}) \geq 0 & \& \ \Delta_{i}\mathcal{U}_{i}(\mathcal{J}) \geq 0 \right) \\ \text{or } \Delta_{i}\mathcal{U}_{i}(\mathcal{J}) < 0 \end{array} \right] \Rightarrow \begin{cases} & \Delta_{i}\mathcal{U}_{i}(\mathcal{J}' \cup \{j\}) \geq 0 \\ & \& \left[\left(\Delta_{j}\mathcal{W}(\mathcal{J}' \cup \{j\}) \geq 0 & \& \ \Delta_{i}\mathcal{U}_{i}(\mathcal{J}') \geq 0 \right) \\ \text{or } \Delta_{i}\mathcal{U}_{i}(\mathcal{J}') < 0 \end{array}$$

Welfare and Pareto weights

Welfare:

$$\mathcal{W}(\mathbb{J}) = \sum_{i \in \mathbb{I}} \omega_i \ u(c_i)$$

• Pareto weights ω_i :

$$\omega_i = \frac{1}{u'(\bar{c}_i)}$$

for \bar{c}_i consumption in initial equilibrium "without climate change", i.e. year = 2020

• Imply no redistribution motive in t = 2020

$$\omega_i u'(\bar{c}_i) = \omega_j u'(\bar{c}_j) \qquad \forall i, j \in \mathbb{I}$$

 Climate change, taxation, and climate agreement (tax + tariffs) have redistributive effects
 ⇒ change distribution of c_i

back

Quantification – Trade model

Armington Trade model:

$$s_{ij} \equiv \frac{c_{ij}p_{ij}}{c_{i}\mathbb{P}_{i}} = a_{ij}\frac{((1+t_{ij})\tau_{ij}p_{j})^{1-\theta}}{\sum_{k} a_{ik}((1+t_{ik})\tau_{ik}p_{k})^{1-\theta}}$$

- Estimated gravity equation regression: $\log(s_{ij}) = f_i + f_j + \underbrace{\beta(1-\theta)}_{} \log d_{ij}$
- Get $\kappa = -1.43$, CES $\theta = 5$ minimizing variance of a_{ii}
- Iceberg cost τ_{ij} as projection of distance $\log \tau_{ii} = \beta \log d_{ii}$
- Preferences a_{ij} captures the remaining variation in trade shares s_{ij} , i.e. $a_{ij} \propto (1+\bar{t}_{ij})\bar{\tau}_{ij}\bar{a}_{ij}$ \Rightarrow invariant to the club policies

back

Thomas Bourany (UChicago)

Step 0: Competitive equilibrium & Trade

- Each household in country i maximize utility and firms maximize profit
- ► Standard trade model results:
 - Consumption and trade:

$$s_{ij} = \frac{c_{ij}p_{ij}}{c_{i}\mathbb{P}_{i}} = a_{ij}\frac{(\tau_{ij}(1+t_{ij}^{b})p_{j})^{1-\theta}}{\sum_{k} a_{ik}(\tau_{ik}(1+t_{ik}^{b})p_{k})^{1-\theta}} \qquad \qquad \& \qquad \mathbb{P}_{i} = \left(\sum_{j} a_{ij}(\tau_{ij}p_{j})^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

• Energy consumption doesn't internalize climate damage:

$$p_iMPe_i=q^e$$

Inequality, as measured in local welfare units:

$$\lambda_i = u'(c_i)$$

• "Local Social Cost of Carbon", for region i

$$LCC_{i} = -\frac{\partial \mathcal{W}_{i}/\partial \mathcal{E}}{\partial \mathcal{W}_{i}/\partial c_{i}} = \frac{\psi_{i}^{\mathcal{E}}}{\lambda_{i}} \rightarrow \frac{\Delta_{i}\chi}{\rho - n + (1 - \eta)\bar{g}} (T_{i} - T_{i}^{\star}) \left[\gamma^{y} \, \mathbf{p}_{i} y_{i} + \gamma^{u} c_{i} \mathbb{P}_{i} \right] \qquad (> 0 \, \text{for warm regions})$$

Step 1: World First-best policy

► Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- Full array of instruments: cross-countries lump-sum transfers \mathbf{t}_i^{ls} , unrestricted individual carbon taxes $\mathbf{t}_i^{\varepsilon}$ on energy e_i^f, e_i^c , unrestricted bilateral tariffs \mathbf{t}_{ii}^{ls}
- Budget constraint: $\sum_i t_i^{ls} = \sum_i t_i^f e_i^f + \sum_{i,j} t_{ij}^b c_{ij} \tau_{ij} p_j$
- ► Maximize welfare subject to
 - Market clearing for good i, $[\mu_i]$, market clearing for energy μ^e

back

Step 1: World First-best policy

- ► Social planner allocation and decentralization:
 - Consumption:

$$\omega_i u'(c_i) = \bar{\lambda} \Big[\sum_j a_{ij} (\tau_{ij} \omega_j \mu_j)^{1-\theta} \Big]^{\frac{1}{1-\theta}} = \bar{\lambda} \mathbb{P}_i \qquad \qquad \omega_i \frac{u'(c_i)}{\mathbb{P}_i} = \bar{\lambda}$$

Energy use:

$$\omega_i \mu_i MPe_i = \mu^e + SCC$$

Social cost of carbon:

$$SCC
ightarrow \sum_{j} \omega_{j} \frac{\Delta_{j} \chi}{\rho - n + (1 - \eta) \overline{g}} (T_{j} - T_{j}^{\star}) \left[\gamma^{y} \mu_{j} y_{j} + \gamma^{u} c_{j} \mathbb{P}_{j} \right]$$

 Decentralization: large transfers to equalize marg. utility + carbon tax = SCC

$$\mathbf{t}^{\varepsilon} = SCC = \sum_{i} \omega_{j} LCC_{j} \qquad \qquad \mathbf{t}_{i}^{lb} = c_{i}^{\star} \mathbb{P}_{i} - w_{i} \ell_{i} - \pi_{i}^{f} \qquad s.t. \quad \omega_{i} u'(c_{i}^{\star}) = \bar{\lambda} \mathbb{P}_{i}$$

Step 2: World optimal Ramsey policy

Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- One single instrument: uniform carbon tax t^f on energy e_i^f
- Rebate tax lump-sum to HHs $t_i^{ls} = t^{\varepsilon} e_i^f + t^{\varepsilon} e_i^c$
- Ramsey policy: Primal approach, maximize welfare subject to
 - Budget constraint $[\lambda_i]$, Market clearing for good $[\mu_i]$, market clearing for energy

 - Optimality (FOC) conditions for good demands $[\eta_{ii}]$, energy demand $[v_i]$ & supply $[\theta_i]$, etc.
 - Trade-off faced by the planner:
 - (i) Correcting climate externality, (ii) Redistributive effects, (iii) Distort energy demand and supply (iv) Distort/reallocate final good demand

Step 2: World optimal Ramsey policy

- ► The planner takes into account
 - (i) the marginal value of wealth λ_i
 - (ii) the shadow value of good i, from market clearing, μ_i :
 - (iii) the shadow value of bilateral trade ij, from household FOC, η_{ij} :

w/ free trade
$$u'(c_i) = \lambda_i$$
 vs. w/ Armington trade
$$u'(c_i) = \lambda_i \Big(\sum_{j \in \mathbb{I}} a_{ij} (\tau_{ij} \mathbf{p}_j)^{1-\theta} \Big[1 + \frac{\omega_j}{\omega_i} \frac{\mu_j}{\lambda_i} - \frac{\eta_{ij}}{\theta \lambda_i} (1 - s_{ij}) \Big]^{1-\theta} \Big)^{\frac{1}{1-\theta}}$$

Relative welfare weights, representing inequality

$$\widehat{\lambda}_i = \frac{\omega_i \lambda_i}{\overline{\lambda}} = \frac{\omega_i u'(c_i)}{\frac{1}{I} \sum_{\overline{1}} \omega_j u'(c_j)} \leq 1 \qquad \Rightarrow \qquad \begin{array}{c} \text{ceteris paribus, poorer} \\ \text{countries have higher } \widehat{\lambda}_i \end{array}$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_{i} := \frac{\partial \mathcal{W}_{i}/\partial \mathcal{E}}{\partial \mathcal{W}_{i}/\partial w_{i}} = \frac{\psi_{i}^{\mathcal{E}}}{\lambda_{i}} \rightarrow \frac{\Delta_{i}\chi}{\rho - n + (1 - \eta)\bar{g}} (T_{i} - T_{i}^{\star}) \left[\gamma^{y} p_{i} y_{i} + \gamma^{u} c_{i} \mathbb{P}_{i} \right]$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_{i} := \frac{\partial \mathcal{W}_{i}/\partial \mathcal{E}}{\partial \mathcal{W}_{i}/\partial w_{i}} = \frac{\psi_{i}^{\mathcal{E}}}{\lambda_{i}} \rightarrow \frac{\Delta_{i}\chi}{\rho - n + (1 - \eta)\bar{g}} (T_{i} - T_{i}^{\star}) \left[\gamma^{y} p_{i} y_{i} + \gamma^{u} c_{i} \mathbb{P}_{i} \right]$$

• Social Cost of Carbon for the planner:

$$SCC := \frac{\partial \mathcal{W}/\partial \mathcal{E}}{\partial \mathcal{W}/\partial w} = \frac{\sum_{\mathbb{I}} \omega_i \psi_i^{\mathcal{E}}}{\frac{1}{I} \sum_{\mathbb{I}} \omega_i \lambda_i}$$

Social Cost of Carbon integrates these inequalities:

$$SCC = \sum_{\mathbb{T}} \widehat{\lambda}_i LCC_i = \sum_{\mathbb{T}} \omega_i LCC_i + \mathbb{C}ov_i(\widehat{\lambda}_i, LCC_i)$$

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
 - 3. Reallocate goods production, which is then supplied internationally

Supply Redistrib sb + Demand Distort - Trade effect
$$d$$
 = $C_{EE}^f Cov_i(\widehat{\lambda}_i, e_i^f - e_i^x)$ - $Cov_i(\widehat{v}_i, \frac{f'(1-s_i^f)}{\sigma_i e_i})$ - $Q^f \underbrace{\mathbb{E}_j[\widehat{\mu}_j]}_{\text{good T-o-T redistrib}}$ - $Q^f \underbrace{\mathbb{E}_j[\widehat{\mu}_j]}_{\text{good T-o-T redistrib}}$

 \circ Params: \mathcal{C}_{EE}^f agg. fossil inv. elasticity, s_i^e energy cost share and σ_i energy demand elasticity

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
 - 3. Reallocate goods production, which is then supplied internationally

Supply Redistrib sb + Demand Distort - Trade effect
$$effect^{sb} = \underbrace{\mathcal{C}_{EE}^f}_{agg. supply} \underbrace{\mathbb{C}ov_i\left(\widehat{\lambda}_i, e_i^f - e_i^x\right)}_{energy \text{ T-o-T}} - \underbrace{\mathbb{C}ov_i\left(\widehat{v}_i, \frac{d'(1 - s_i^e)}{\sigma_i e_i}\right)}_{demand \\ distortion} - \underbrace{q^f \underbrace{\mathbb{E}_j\left[\widehat{\mu}_j\right]}_{good \text{ T-o-T}}}_{redistrib}$$

- \circ Params: \mathcal{C}_{EE}^f agg. fossil inv. elasticity, s_i^e energy cost share and σ_i energy demand elasticity
- ► *Proposition 2:* Optimal fossil energy tax:

$$\Rightarrow$$
 $\mathbf{t}^f = SCC^{sb} + \text{Supply Redistribution}^{sb} + \mathbf{Demand Distortion}^{sb} - \text{Trade effect}^{sb}$

Reexpressing demand terms:

$$\mathbf{t}^{\varepsilon} = \left(1 + \mathbb{C}\mathrm{ov}_{i}(\widehat{\lambda}_{i}^{w}, \frac{\widehat{\sigma_{i}e_{i}}}{1 - s_{i}^{\varepsilon}})\right)^{-1} \left[\sum_{\mathbb{I}} \omega_{i} LCC_{i} + \mathbb{C}\mathrm{ov}_{i}(\widehat{\lambda}_{i}^{w}, LCC_{i}) + \mathcal{C}_{EE}^{f} \mathbb{C}\mathrm{ov}_{i}(\widehat{\lambda}_{i}^{w}, e_{i}^{f} - e_{i}^{x}) - q^{f} \mathbb{E}_{j}[\widehat{\mu}_{j}]\right]$$

Step 3: Ramsey Problem with participation constraints

- Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $\mathbf{t}^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f

Step 3: Ramsey Problem with participation constraints

- Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $\mathbf{t}^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f
- ► Participation constraints:

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

► Welfare:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{\mathbb{J}} \omega_i \ u(c_i) + \sum_{\mathbb{J}^c} \alpha \omega_i \ u(c_i)$$

Step 3: Ramsey Problem with participation constraints

► Participation constraints

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

- ► Second-Best social valuation with participation constraints
 - Participation incentives change our "social welfare weights" $\widehat{\widetilde{\lambda}}_i \propto \omega_i (1+\nu_i) u'(c_i)$

w/ Armington trade
$$(1+\nu_i)u'(c_i) = \lambda_i \Big(\sum_{j \in \mathbb{I}} a_{ij} (\tau_{ij} \mathbf{p}_j)^{1-\theta} \Big[1 + \frac{\omega_j}{\omega_i} \frac{\mu_j}{\lambda_i} - \frac{\eta_{ij}}{\theta \lambda_i} (1-s_{ij}) \Big]^{1-\theta} \Big)^{\frac{1}{1-\theta}} = \lambda_i \mathbb{P}_i$$

$$\Rightarrow \qquad \qquad \widehat{\lambda}_i = \frac{\omega_i (1+\nu_i)u'(c_i)}{\frac{1}{J} \sum_{\mathbb{J}} \omega_j (1+\nu_j)u'(c_j)} \neq \widehat{\lambda}_i$$

• Similarly, the "effective Pareto weights" are $\alpha\omega_i$ for countries outside the club $i \notin \mathbb{J}$

Step 3: Participation constraints & Optimal policy

- ► *Proposition 3.2:* Second-Best taxes:
 - Taxation with imperfect instruments:
 - Climate change & general equilibrium effects on fossil market affects all countries $i \in \mathbb{I}$
 - Need to adjust for the "outside" countries $i \notin \mathbb{J}$ not subject to the tax, which weight on the energy market as $\vartheta_{\mathbb{J}^c} \approx \frac{E_{\mathbb{J}^c}}{E_{\mathbb{I}}} \frac{\nu \sigma}{q^f(1-s^f)}$ with ν fossil supply elasticity, σ energy demand elasticity and s^f energy cost share.
 - Optimal fossil energy tax $t^f(\mathbb{J})$:

$$\Rightarrow \quad \mathfrak{t}^f(\mathbb{J}) = SCC + \text{Supply Redistrib}^{\circ sb} + \text{Demand Distort}^{\circ sb} - \text{Trade effect}^{sb}$$

$$= \frac{1}{1 - \vartheta_{\mathbb{J}^c}} \sum_{i \in \mathbb{J}} \widetilde{\lambda}_i LCC_i + \frac{1}{1 - \vartheta_{\mathbb{J}^c}} \mathcal{C}_{EE}^f \sum_{i \in \mathbb{J}} \widetilde{\lambda}_i (e_i^f - e_i^x) - \sum_{i \in \mathbb{J}} \widetilde{\upsilon}_i \frac{q^f (1 - s_i^f)}{\sigma e_i^f}$$

• Optimal tariffs/export taxes $\mathfrak{t}^b_{ij}(\mathbb{J})$ for $j \notin \mathbb{J}$ As of now, only opaque system of equations (fixed point w/ demand/multipliers)

Step 4: Unilateral optimal policy

Unilateral Social Planner maximizing local welfare

$$\mathcal{W}_i = \max_{\mathbf{t}_i, c_i} u(c_i)$$

- Instruments: local carbon taxes t_i^{ε} on energy e_i^f, e_i^c , unrestricted bilateral tariffs t_{ij}^b , and lump-sum rebate to the household.
- Maximize welfare subject to the market clearing for good j, $[\mu_j^{(i)}]$, market clearing for fossil energy $\mu^{f(i)}$ and local optimality conditions
- Unilateral tariffs:

$$\mathsf{t}_{ij}^b = \omega_j^{(i)} \frac{\mu_j^{(i)}}{\lambda_i}$$

• Terms of trade manipulation weighted by $\omega_j^{(i)}$: the more planner i internalizes the good j's market clearing, the higher the tariffs. Small Open Econ: $\omega_j^{(i)} := 0$

Step 4: Unilateral optimal policy

- ► Social planner *i* allocation and local social cost of carbon:
 - Local Cost of Carbon:

$$LCC_{i} = -\frac{\partial W_{i}/\partial \mathcal{E}}{\partial W_{i}/\partial c_{i}} \rightarrow \frac{\chi}{\rho - n + (1 - \eta)\bar{g}} \left(\Delta_{i} (T_{i} - T_{i}^{\star}) \left[\gamma^{y} p_{i} y_{i} + \gamma^{u} c_{i} \mathbb{P}_{i} \right] + \sum_{j} \omega_{j}^{(i)} \frac{\mu_{j}^{(i)}}{\lambda_{i}} \Delta_{j} (T_{j} - T_{j}^{\star}) \gamma^{y} p_{j} y_{j} \right)$$

- International trade makes the LCC_i correlated across regions due to goods-trade linkages (\approx spatial diffusion of climate shocks from region j)
- ► Optimal local carbon tax:

$$\mathsf{t}_i^\varepsilon = -q^f \frac{\mu_i^{(i)}}{\lambda_i} + q^f \nu_i \frac{e_i^f - e_i^x}{e_i^x} + LCC_i$$

- Internalizes (i) good production distortion $\mu_i^{(i)}$, (ii) energy supply redistribution (w/ ν_i inverse supply elasticity), and (iii) Pigouvian motives LCC_i .
- The tax becomes a carbon *subsidy* if oil-gas exports are large $e_i^x > e_i^f$, and if the local cost of carbon LCC_i is small

Quantification – Firms

▶ Production function $y_i = \mathcal{D}_i^y(T_i)z_iF(k,\varepsilon(e^f,e^r))$

$$F_{i}(\varepsilon(e^{f}, e^{c}, e^{r}), \ell) = \left[(1 - \epsilon)^{\frac{1}{\sigma_{y}}} (\bar{k}^{\alpha} \ell^{1 - \alpha})^{\frac{\sigma_{y} - 1}{\sigma_{y}}} + \epsilon^{\frac{1}{\sigma_{y}}} (z_{i}^{e} \varepsilon_{i}(e^{f}, e^{c}, e^{r}))^{\frac{\sigma_{y} - 1}{\sigma_{y}}} \right]^{\frac{\sigma_{y}}{\sigma_{y} - 1}}$$

$$\varepsilon_{i}(e^{f}, e^{c}, e^{r}) = \left[(\omega^{f})^{\frac{1}{\sigma_{e}}} (e^{f})^{\frac{\sigma_{e} - 1}{\sigma_{e}}} + (\omega^{c})^{\frac{1}{\sigma_{e}}} (e^{c})^{\frac{\sigma_{e} - 1}{\sigma_{e}}} + (\omega^{r})^{\frac{1}{\sigma_{e}}} (e^{r})^{\frac{\sigma_{e} - 1}{\sigma_{e}}} \right]^{\frac{\sigma_{e}}{\sigma_{e} - 1}}$$

- Calibrate TFP z_i to match $y_i = GDP_i$ per capita in 2019-23 (avg. PPP).
- Technology: $\omega^f = 56\%$, $\omega^c = 27\%$, $\omega^f = 17\%$, $\epsilon = 12\%$ for all i
- Calibrate (z_i^e) to match Energy/GDP $q^e e_i/p_i v_i$
- ▶ Damage functions in production function *y*:

$$\mathcal{D}_{i}^{y}(T) = e^{-\gamma_{i}^{\pm,y}(T - T_{i}^{\star})^{2}}$$

- Asymmetry in damage to match empirics with $\gamma^y = \gamma^{+,y} \mathbb{1}_{\{T > T_c^*\}} + \gamma^{-,y} \mathbb{1}_{\{T < T_c^*\}}$
- Symmetric damage: $\gamma_i^{\pm,y} = \bar{\gamma}^{\pm,y} \& T_i^{\star} = \bar{\alpha} T_{it_0} + (1 \bar{\alpha}) T^{\star}$

Quantification – Energy markets

- ► Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. ν_i extraction cost curvature to match profit $\pi_i^f = \frac{\bar{\nu}_i \nu_i}{1 + \nu_i} (\frac{e_i^x}{\mathcal{R}_i})^{\nu_i} \mathcal{R}_i \mathbb{P}_i$
 - Future: Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost C_e & extraction data e_i^x (BP, IEA)
- ► Coal and Renewable: Production \bar{e}_i^r , \bar{e}_i^x and price q_i^c , q_i^r
 - Calibrate $q_i^c = z^c \mathbb{P}_i$, $q_{it}^r = z^r \mathbb{P}_i$ Choose z_i^c , z_i^r to match the energy mix (e_i^f, e_i^c, e_i^r)
- ► Population dynamics
 - Match UN forecast for growth rate / fertility

back

Calibration Table: Baseline calibration ($\star = \text{subject to future changes}$) back

Techno	ology & Energy m	narkets			
α	0.35	Capital share in $F(\cdot)$	Capital/Output ratio		
ϵ	0.12	Energy share in $F(\cdot)$	Energy cost share (8.5%)		
σ	0.3	Elasticity capital-labor vs. energy	Complementarity in production (c.f. Bourany 2022)		
ω^f	0.56	Fossil energy share in $e(\cdot)$	Oil-gas/Energy ratio		
ω^c	0.27	Coal energy share in $e(\cdot)$	Coal/Energy ratio		
ω^r	0.17	Non-carbon energy share in $e(\cdot)$	Non-carbon/Energy ratio		
σ_e	2.0	Elasticity fossil-renewable	Slight substitutability & Study by Stern		
δ	0.06	Depreciation rate	Investment/Output ratio		
\bar{g}	0.01*	Long run TFP growth	Conservative estimate for growth		
Prefere	ences & Time hor	rizon			
ρ	0.015	HH Discount factor	Long term interest rate & usual calib. in IAMs		
η	1.5	Risk aversion	Standard Calibration		
n	0.0035	Long run population growth	Average world population growth		
Climat	e parameters				
ξ^f, ξ^c	2.761 & 3.961	Emission factor - Oil+nat. gas vs. Coal	Conversion 1 $MTOE \Rightarrow 1 MT CO_2$		
χ	2.3/1e6	Climate sensitivity	Pulse experiment: $100 GtC \equiv 0.23^{\circ} C$ medium-term warming		
$rac{\chi}{\delta_s}$	0.0004	Carbon exit from atmosphere	Pulse experiment: $100 GtC \equiv 0.15^{\circ}C$ long-term warming		
γ^\oplus	0.003406	Damage sensitivity	Nordhaus, Barrage (2023)		
α^T	0.5	Weight historical climate for optimal temp.	Marginal damage correlated with initial temp.		
T^{\star}	14.5	Optimal yearly temperature	Average yearly temperature/Developed economies		

Matching country-level moments

Table: Heterogeneity across countries

Dimension of heterogeneity	Model parameter	Matched variable from the data	Source
Population TFP/technology/institutions	Country size \mathcal{P}_i Firm productivity z_i	Population GDP per capita (2019-PPP)	UN WDI
Productivity in energy Cost of coal energy Cost of non-carbon energy	Energy-augmenting productivity z_i^e Cost of coal production C_i^c Cost of non-carbon production C_i^r	Energy cost share e_i^c/e_i Energy mix/coal share e_i^c/e_i	SRE SRE SRE
Local temperature Pattern scaling	Initial temperature T_{ii_0} Pattern scaling Δ_i	Pop-weighted yearly temperature Sensitivity of T_{it} to world \mathcal{T}_t	Burke et al Burke et al
Oil-gas reserves Cost of oil-gas extraction Cost of oil-gas extraction	Reserves \mathcal{R}_i Slope of extraction cost $\bar{\nu}_i$ Curvature of extraction cost ν_i	Proved Oil-gas reserves Oil-gas extracted/produced e_i^x Profit π_i^f / energy rent	SRE SRE WDI
Trade costs Armington preferences	Distance iceberg costs $ au_{ij}$ CES preferences a_{ij}	Geographical distance $ au_{ij} = d_{ij}^{eta}$ Trade flows	CEPII CEPII

Theoretical investigation: decomposing the welfare effects

- **Experiment:**
 - Start from the equilibrium where carbon tax $\mathbf{t}_{j}^{\varepsilon} = 0, \mathbf{t}_{jk}^{b} = 0, \forall j,$
 - Change in welfare: Linear approximation around that point \Rightarrow small changes in carbon tax dt_i^{ε} , $\forall j$ and tariffs $dt_{i,k}^{b}$, $\forall j, k$ for a club J_i

$$\frac{d\mathcal{U}_i}{u'(c_i)} = \eta_i^c d \ln p_i + \left[-\eta_i^c \bar{\gamma}_i \frac{1}{\bar{\nu}} - \eta_i^c s_i^e s_i^f + \eta_i^{\pi} (1 + \frac{1}{\bar{\nu}}) \right] d \ln q^f - \left[\eta_i^c s_i^e (s_i^c + s_i^r) + \eta_i^{\pi} \frac{1}{\bar{\nu}} + 1 \right] d \ln \mathbb{P}_i$$

• GE effect on energy markets $d \ln q^f \approx \bar{\nu} d \ln E^f + \dots$, due to taxation

$$d \ln q^f = -\frac{\bar{\nu}}{1 + \bar{\gamma} + \mathbb{C}\text{ov}_i(\widetilde{\lambda}_i^f, \bar{\gamma}_i) + \bar{\nu}\overline{\lambda}^{\sigma,f}} \sum_i \widetilde{\lambda}_i^f \mathbf{J}_i d\mathfrak{t}^{\varepsilon} + \sum_i \beta_i d \ln \mathfrak{p}_i$$

- Climate damage $\bar{\gamma}_i = \gamma (T_i T_i^*) T_i s^{E/S}$
- Trade and leakage effect: GE impact of t_i^{ε} and t_i^{b} on y_i and p_i
- \circ Params: σ energy demand elast^y, s^e energy cost share, $\bar{\nu}$ energy supply inverse elas^y

Welfare decomposition

- Armington model of trade with energy:
 - Linearized market clearing

$$\left(\frac{d\mathbf{p}_{i}}{d\mathbf{p}_{i}} + \frac{dy_{i}}{y_{i}}\right) = \sum_{k} \mathbf{t}_{ik} \left[\left(\frac{\mathbf{p}_{k}y_{k}}{v_{k}}\right) (d \ln \mathbf{p}_{k} + d \ln y_{k}) + \frac{q^{f}e_{k}^{x}}{v_{k}} d \ln e_{k}^{x} - \frac{q^{f}e_{k}^{f}}{v_{k}} d \ln e_{k}^{f} + \frac{q^{f}(e_{k}^{x} - e_{k}^{f})}{v_{k}} d \ln q^{f} + \theta \sum_{h} \left(s_{kh}d \ln t_{kh} - (1+s_{ki})d \ln t_{ki}\right) + (\theta-1) \sum_{h} \left(s_{kh}d \ln \mathbf{p}_{h} - d \ln \mathbf{p}_{i}\right) \right]$$

• Fixed point for price level $d \ln p_i$

$$\begin{split} & \left[(\mathbf{I} - \mathbf{T} \odot \nu^{y}) [\mathbf{I} - \alpha^{y,p} \odot \mathbf{I}] + \mathbf{T} (\nu^{e^{x}} \odot \frac{1}{\nu}) + \mathbf{T} \nu^{e^{f}} \frac{\sigma^{y}}{1 - s^{e}} - (\theta - 1) (\mathbf{T} \mathbf{S} - \mathbf{T}') - \left((\mathbf{I} - \mathbf{T} \odot \nu^{y}) \alpha^{y,z} - \frac{\sigma^{y}}{1 - s^{e}} \right) \odot \bar{\gamma} \mathbf{I} \odot (\frac{\lambda^{x}}{\nu})' \right] d \ln \mathbf{p} = \\ & \left[- (\mathbf{I} - \mathbf{T} \odot \nu^{y}) \alpha^{y,qf} + \mathbf{T} (\nu^{e^{x}} \odot \frac{1}{\nu} + \nu^{e^{f}} \frac{\sigma^{y}}{1 - s^{e}} + \nu^{ne}) - \left((\mathbf{I} - \mathbf{T} \odot \nu^{y}) \alpha^{y,z} - \frac{\sigma^{y}}{1 - s^{e}} \right) \bar{\gamma} \frac{1}{\bar{\nu}} \right] d \ln q^{f} \\ & + \left[- (\mathbf{I} - \mathbf{T} \odot \nu^{y}) \alpha^{y,qf} + \mathbf{T} (\nu^{e^{f}} \odot \frac{\sigma^{y}}{1 - s^{e}}) \right] \odot \mathbf{J} d \ln \mathbf{t}^{\varepsilon} + \theta \left(\mathbf{T} \mathbf{S} \odot \mathbf{J} \odot d \ln \mathbf{t}^{b} - \mathbf{T} (\mathbf{1} + \mathbf{S}') \odot (\mathbf{J} \odot d \ln \mathbf{t}^{b})' \right) \end{split}$$

June 2025

Trade-off – Gains from trade

Gains from trade (ACR) vs. loss from tariffs/autarky in this model back

Climate agreement and welfare

Recover 92% of welfare gains, i.e. 6% out of 6.5% conso equivalent.

Coalition building

- ► How to build sequentially the climate coalition?
 - Which countries have the most interest in joining the club?

Coalition building

- ► Sequence of "rounds" of the static equilibrium
 - At each round (n), countries decide to enter or not depending on the gain

$$\Delta_{i}\mathcal{U}_{i}(\mathbb{J}^{(n)}) = \mathcal{U}_{i}(\mathbb{J}^{(n)} \cup \{i\}, t^{\varepsilon}, t^{b}) - \mathcal{U}_{i}(\mathbb{J}^{(n)} \setminus \{i\}, t^{\varepsilon}, t^{b})$$

- Construction evaluated at the optimal carbon tax $t^{\varepsilon} = 114\$$, and tariff $t^{b} = 50\%$.
- Sequential procedure coming for free from our CDCP algorithm / squeezing procedure
- Idea analogous to Farrokhi, Lashkaripour (2024)

Coalition building

- ► Sequence of "rounds" of the static equilibrium
 - At each round (n), countries decide to enter or not depending on the gain

$$\Delta_i \mathcal{U}_i(\mathbb{J}^{(n)}) = \mathcal{U}_i(\mathbb{J}^{(n)} \cup \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) - \mathcal{U}_i(\mathbb{J}^{(n)} \setminus \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b)$$

- Construction evaluated at the optimal carbon tax $t^{\varepsilon} = 114\$$, and tariff $t^{b} = 50\%$.
- Sequential procedure coming for free from our CDCP algorithm / squeezing procedure
- Idea analogous to Farrokhi, Lashkaripour (2024)
- ► Result: sequence up to the optimal climate agreement back
 - Round 1: European Union, i.e. Germany, France, Spain, Italy, Rest of EU
 - Round 2: China, UK, Turkey, Rest of South and South-East Asia
 - Round 3: USA, Japan, Korea, Australia, Thailand,
 Indonesia, Pakistan, Rest of Africa & Latin America
 - Round 4: Canada, South-Africa, Mexico
 - Round 5: India, Brazil, Egypt, Argentina, Rest of Middle-East
 - € Stay out of the agreement: Russia, CIS, Saudi Arabia, Iran, Nigeria

Transfers – Climate fund

- COP29 Major policy proposal: New Collective Quantified Goal (NCQG) on Climate Finance for developing countries
- ► In our context: lump-sum rebate of carbon tax revenues (transfers from large to low emitters)

$$\mathbf{t}_{i}^{ls} = (1 - \alpha) \, \mathbf{t}^{\varepsilon} \varepsilon_{i} + \alpha \frac{1}{\mathcal{P}} \sum_{i} \mathbf{t}^{\varepsilon} \varepsilon_{j}$$

- ► Optimal transfers: back
 - $\alpha^* = 0\%$: Not optimal for rich countries to do lump-sum transfers.
 - I compare to the \$300 bn agreed in COP29: most countries looses, biggest winners (not shown) "Rest of Africa" and "Rest of South Asia"

Carbon tariffs - EU's CBAM

- ► Carbon Border Adjustment Mechanism: European Union's "Carbon tariff"
 - Tariff t_{ii}^b scaling w/ carbon content ξ_i^y

$$\mathbf{t}_{ij}^b = \xi_j^y \, \mathbf{t}^{b,\varepsilon} = \frac{\varepsilon_j}{y_i \mathbf{p}_i} \, \mathbf{t}^{b,\varepsilon} \qquad \text{if } i \in \mathbb{J}, j \notin \mathbb{J} \;,$$

- ► Objective: fight carbon/trade leakage. But also has strategic effects (foster participation to the club)
- ► Optimal Carbon tariff:
 - Border price of carbon $t^{b,\varepsilon} > 1000
 - Additional constraint t^ε = t^{b,ε}
 ⇒ prevents any large stable club

Taxation of fossil fuels energy inputs

- Current climate club: back
 Tariffs only on final goods, not energy imports
 - Empirically relevant, c.f. Shapiro (2021): inputs are more emission-intensives but trade policy is biased against final goods output
- ► Alternative: tax energy import t_{ij}^{bf} of non-members

$$q_{\mathbb{J}}^{f}=(1+\mathsf{t}^{bf})q_{\mathbb{I}\setminus\mathbb{J}}^{f}$$

if non-members export fossil fuels to the club

- ▶ Optimal tariffs $t^{bf}/q_{\parallel}^f = 30\%$
 - Compares to the \$60 price-cap from EU (out of \sim \$100 /barrel) on Russian oil (!)

Trade retaliation

- ► Trade war and policy retaliation: Suppose the regions outside the agreement impose retaliatory tariffs to club members
- Exercise: back
 - Countries outside the club $j \notin \mathbb{J}$ impose tariffs $t_{ii} = \beta t_{ij}$ on club members $i \in \mathbb{J}$

