OUTILS MATHÉMATIQUES 8 Coniques

Excentricité et paramètre d'une conique

Conique

Une **conique** est une courbe plane, correspondant à l'intersection d'un plan avec un cône de révolution, le plan de coupe ne passant pas par le sommet du cône.

<u>Définition</u> : On appelle **conique**, de foyer F, de directrice Δ et d'excentricité ele lieu \mathcal{C} des points M tel que :

$$\frac{MF}{MK} = e = cste$$

où MK représente la distance (M, Δ) .

Paramètre p de la conique

 $\underline{\mathbf{Définition}}$: La perpendiculaire en F à l'axe de symétrie (Fx) de la conique coupe cette conique au point I: la distance p = FI définit le paramètre de la conique.

> Excentricité e

Selon les valeurs de l'excentricité e, on obtient différentes coniques :

 $0 \le e < 1$: **ellipse** (cercle pour e = 0)

e=1: parabole

e > 1: hyperbole

Propriété : $p = e \cdot FH$ où FH est la distance du foyer F à la directrice Δ .

Ellipse

Définition: Une **ellipse** est formée par l'ensemble des points *M* d'un plan dont la somme des distances à deux points fixes (les foyers F et F) est constante : FM + F'M = cste

Cette constante est appelée le **grand axe** de l'ellipse.

- > Une ellipse est caractérisée par :
 - \bullet les **foyers** F et F
 - \bullet le demi-grand axe a
 - \bullet le demi- petit axe b
 - la distance $c = ea = OF = OF' = \sqrt{a^2 b^2}$
- > Excentricité et paramètre :

$$e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}} < 1$$
 et $p = \frac{b^2}{a} = a(1 - e^2)$

- Aire de l'ellipse : $\mathcal{A} = \pi ab$ Equation cartésienne : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

L'origine des coordonnées polaires est le foyer F et l'axe de symétrie (Fx) est l'axe polaire: FM = r et $\theta = (Fx, FM)$

$$r = \frac{p}{1 + e\cos(\theta)}$$

> Points particuliers

<u>Définition</u>: Le sommet P le plus proche d'un foyer est le **périapse**; le sommet A le plus éloigné d'un foyer est l'**apoapse**.

- Position du périapse: $FP = r(0) = \frac{p}{1+e} = a(1-e)$
- Position de l'apoapse : $FA = r(\pi) = \frac{p}{1-e} = a(1+e)$

Parabole

- ▶ **Définition**: La parabole est l'ensemble des points M situés à la même distance du foyer F et de la génératrice Δ , perpendiculaire à l'axe de symétrie de la parabole. La distance entre F et Δ est égale à L.
- $ightharpoonup rac{\text{Équation cartésienne}}{L} = rac{y}{L} = rac{1}{2} \left(rac{x}{L} \right)^2$

- ightharpoonup Équation polaire: $r = \frac{p}{1 + \cos(\theta)} = \frac{L}{1 + \cos(\theta)}$
- Point particulier

La parabole a un périapse O, mais pas d'apoapse : courbe non fermée.

Position du périapse :
$$FP = FO = r(0) = \frac{p}{2} = \frac{L}{2}$$

4 Hyperbole

Caractérisation

L'hyperbole est une courbe non fermée à deux branches distinctes, passant par les sommets A et B et partant à l'infini. Les axes (Ox) et (Oy) sont deux axes de symétrie.

Le demi-axe focal a vérifie : OA = OB = a

- Excentricité et paramètre : $e = \frac{c}{a} = \sqrt{1 + \frac{b^2}{a^2}} > 1$ et $p = \frac{b^2}{a} = a(e^2 1)$
- $ightharpoonup rac{\text{Équation cartésienne}}{a^2} : \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
- Équation polaire
 - lacktriangle Pour la branche d'hyperbole la plus proche du foyer F:

$$r = \frac{p}{1 + e\cos(\theta)}$$

 Pour la branche
 d'hyperbole la plus éloignée du foyer F:

$$r = \frac{p}{-1 + e\cos(\theta)}$$

- Point particulier: L'hyperbole a un périapse, mais pas d'apoapse.
 - Position du périapse : $FP = r(0) = \frac{p}{1+e} = a(e-1)$
- $ightharpoonup rac{\text{Équations des asymptotes}}{} : y = \pm \frac{b}{a} x \text{ ou } \cos(\theta) = -\frac{1}{e}$