除法运算的一般形式示意图

讲解: 有关系 R 和关系 S

关系 R,包含 A、B、C三个属性 关系 S,包含 B、C、D 三个属性

Α	В	С
a1	b1	c2
a2	b3	с7
a3	b4	с6
a1	b2	c1
a4	b6	с6
a2	b2	с3
a1	b2	c3

/ (// -/	J -	, -
В	С	D
b1	c2	d1
b2	c1	d1
b2	c3	d2

如何计算 R÷S呢,首先我们引进 '象集 '的概念,具体意义看下面的陈述即可理解

关系 R和关系 S拥有共同的属性 B、C,R÷S得到的属性值就是关系 R包含而关系 S不包含的属性,即 A属性

在 R 关系中 A 属性的值可以取 { a1, a2, a3, a4 } a1 值对应的象集为 { (b1,c2) , (b2,c1) , (b2,c3) } a2 值对应的象集为 { (b3,c7) , (b2,c3) } a3 值对应的象集为 { (b4,c6) } a4 值对应的象集为 { (b6,c6) }

只有 a1 值对应的象集包含关系 S的投影集,所以只有 a1 应该包含在 A 属性中所以 R÷S为

A a1

【例题一】为了更好的理解除法的实际作用,请看下面的例题设有教学数据库有 3个关系(以下四小问均用除法的思想解决)

学生信息关系 student (sno, sname, age, sex)

学生选课关系 sc(sno,cno,score)

学校课程关系 course (cno, cname)

Student 表

sno	sname	age	sex
S001	陈晓	16	男
S002	周倩	21	女
S003	华南	19	男
S004	曹匀	21	女
S005	郑威	20	男

Course表

cno	cname
C001	计算机科学
C002	诗歌鉴赏
C003	资本论

SC表

0018		
sno	cno	score
S001	C001	88
S001	C002	95
S001	C003	99
S002	C001	97
S002	C003	84
S003	C002	69
S005	C002	77
S005	C003	98

SQL语言中没有全称量词 , 具体实现时可以把带有全称量词的谓词转换为等 价的带有存在量词的谓词。

解决这类的除法问题一般采用双嵌套 not exists来实现带全称量词的查询 解决所谓 forall 的问题。

(1) 检索所学课程包含了 C002课程的学生学号

解 关系代数表达式: sno(sc÷ cno(cno='C002course)) Sql语句

从略

(2) 求至少选择了 C001 和 C003 两门课程的学生学号

解 关系代数表达式: sno(sc÷ cno(cno='C001' or cno=3"(do0dse))

Sql 语句

select distinct sno from sc A where not exists

select * from course B where cno in ('C002', 'C003') and

```
not exists
     select * from sc Cwhere A sno=C sno and B cno=C cno
也可以采用自连接
select s1. sno
from (select * from sc where cno='C001') as s1,
     (select * from sc where cno='C003') as s2
where s1. sno=s2. sno
(3) 求至少学习了学生 S003所学 课程的学生学号
解 关系代数表达式: sno(sc÷ cno(sno='S003sc))
select distinct sno from sc A where not exists
  select * from sc B where sno='S003' and not exists
     select * from sc Cwhere A sno=C sno and B cno=C cno
(4) 求选择了全部课程的学生的学号
解 此例的等价自然语义是,输出这样的学号,不存在某门课程在他的选课记录
 里没有选这门课
  关系代数表达式: sno (sc÷ cno(course))
  Sql语句
select distinct sno from sc A where not exists
     select
            cno from course B where not
                                             exists
         select
               * from sc C where C sno=A sno and
         C. cno=B. cno
(5) 求选择了全部课程的学生的学号和姓名
解 关系代数表达式: sno,sname((student sc): cno(course))
Sql 语句
```

```
select sno, sname from student A where not exists
   select cno from course B where not exists
      select * from sc C where C sno=A sno and
      C. cno=B. cno
以上小问用 group by 结合 count 语句也是可以实现的 , 也更好理解一
些。
例如
求选择了全部课程的学生学号
SELECTsno FROM(SELECTCOUNT(*) cnt, Sno
FROMSC
GROURY sno ) T
WHEREnt >= ( SELECTCOUNT(Cno)
FROMCOURS
求至少选择了 C002和 C003 两门课程的学生学号
select sno from sc where cno in( 'C002', 'C003') group by
sno having COUN(Tono)= 2
但该方法对于一个学生多次选修一门课程的情况无法处理, 需要对其
中的 SC 关系用 distinct 进行一定预处理,所以 group by +count 有
一定的局限性
```