Particle spectrograph

Wave operator and propagator

		$\sigma_{0}^{\#1}$		$\tau_{0}^{\#1}$		$\tau_0^{\#2}$	$\sigma_0^{\!\#}$	1	
$\sigma_{0}^{\#1}$	† - (1+	$-\frac{1}{(1+2k^2)^2t_1}$		$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$		0	0	1	
$ au_{0}^{\#1}$	† - 	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$		$-\frac{2k^2}{(1+2k^2)^2t_1}$		0	0		$\sigma_{2}^{#1}$ †
$ au_{0}^{\#2}$	+	0		0		0	0	ı	$\tau_{2}^{#1} + $
$\sigma_0^{\!\#1}$.	t 🗌	0		0		0	$-\frac{1}{t}$	1	$\sigma_2^{\#1} \dagger^{\alpha_i}$
, I					•				1
$f_{1}^{\#2}$	0	0	0	$i k t_1$	U		0	0	
$\omega_{1^{-}}^{\#2}{}_{lpha}f_{1^{-}}^{\#1}{}_{lpha}f_{1^{-}}^{\#2}{}_{lpha}$	0	0	0	0	U		0	0	
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	C		0	0	
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{}$	٧2	0	$-\bar{l} k t_1$	
$f_1^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	Û)	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta}\;\omega_{1}^{\#2}{}_{\alpha\beta}\;f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	U	>	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta}$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	O		0	0	
	$\omega_1^{\#1} + \alpha \beta$	$\omega_1^{\#_2^2} +^{lphaeta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$a^{+2} + a$	- :	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{#2} + \alpha$	

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^- lphaeta\chi}^{\#1}$	Ī					ı
$\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\omega_{0}^{\#1}$	0	0	0	<i>-t</i> ₁	×
$\dagger^{\alpha\beta}$	2 i √2 k	4 k ²	0	$f_{0}^{#2}$	0	0	0	0	$\omega_{2}^{\#1}{}_{lphaeta\chi}$
αβχ	$(1+2k^2)^2t_1$	$(1+2k^2)^2t_1$	$\frac{2}{2k^2r_1+t_1}$	$f_{0}^{\#1}$	$\sqrt{2} kt_1$	$-2 k^2 t_1$	0	0	$\alpha\beta$
			2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\omega_{0}^{\#1}$	$-t_1$ $ i $	$\sqrt{2} kt_1$	0	0	$\omega_{2}^{\#1}_{+} lpha_{eta}^{\#1} f_{2}^{\#1}_{+}$
)		\ <u>I</u> -			

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_1^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total constraints:	16			

 $\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + \omega_{0}^{#1} + \omega_{0}^{*1} + \omega_{$

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

 $\omega_{2}^{\#1} +^{lphaeta\chi}$

<u>t</u>1

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$