

Introduction to Docker

Peter Organisciak
Assistant Professor, University of Denver
August 2018

What is Docker?

Platform for packaging code as well as its necessary environment in containers.

Containers Арр С Арр В Арр D Арр А **Docker Your Operating System**

How can Docker help with data curation?

- Consistent
- Portable
- Small
- Explicit
- Fast
- Secure

```
import sys
```

assert sys.version_info >= (3,6)

print("My wonderful code is running!")

Application 1

- 1A. start with debian linux image
- 1B. install Python
- 1C. add Application 1 to the
- container
- 1D. run Application 1 on start

Application 2

- 2A. start with debian linux image
- 2B. install Python
- 2C. add Application 1 to the
- container
- 2D. run Application 1 on start

Application 1	Application 2	
1A. start with debian linux image 1B. install Python		
	2C. add Application 2 to the	
container	container	
1D. run Application 1 on start	2D. run Application 2 on start	

Application 1

- 1A. start with debian linux image
- 1B. install Python
- 1C. add Application 1 to the
- container
- 1D. run Application 1 on start

Modified Application 1

- 3A. start with debian linux image
- 3B. install Python
- 3C. add Application 1 to the
- container
- 3D. edit a file in Application 1
- 3E. run Application 1 on start

Application 1	Modified Application 1
1A. start with debian linux image 1B. install Python 1C. add Application 1 to the container	
1D. run Application 1 on start	3D. edit a file in Application 1 3E. run Application 1 on start

docker run -p 8888:8888 -e GEN_CERT=yes jupyter/datascience-notebook:latest

```
e3c68aea9a5f: Pull complete
484c6d5fc38a: Pull complete
0448c1360cb9: Pull complete
61d7e6dc705d: Pull complete
4220f6699adb: Pull complete
42646a2d845b: Pull complete
689dca58215b: Pull complete
408031a94ea3: Pull complete
38f4c07194d6: Pull complete
04393f8a225b: Pull complete
3c3204bbdfa5: Pull complete
057546de4f19: Pull complete
1b0aa2e4e0c8: Pull complete
Ocbd2ca311ac: Pull complete
3d5fc02377ea: Pull complete
c0b663a6314d: Pull complete
69ec86ab3eae: Pull complete
efb4b201c735: Pull complete
47211337a970: Pull complete
357MB/357MB
```

You can use other people's containers to simplify your own work.

Peter Organisciak University of Denver

http://portfolio.du.edu/organisciak

Twitter: **POrg**

Docker Documentation https://docs.docker.com/get-started/

Code

https://github.com/organisciak/docker-example

Slides

https://goo.gl/rHrFZF