無機化学

目	次

第Ⅰ部	非金属元素	2
1	水素	2
1.1	性質	2
1.2	同位体	2
1.3	製法	2
1.4	反応	2
2	貴ガス	2
2.1	性質	2
2.2	生成	2
2.3	ヘリウム He	2
2.4	ネオン Ne	2
2.5	アルゴン Ar	2
3	ハロゲン	3
3.1	単体	3
3.2	ハロゲン化水素	4
3.3	ハロゲン化銀....................................	5
3.4	次亜塩素酸塩	5
3.5	水素酸カリウム	5
4	酸素	6
4.1	酸素原子	6
4.2	酸素	6
4.3	オゾン	6
4.4	酸化物	7
4.5	水	7
5	硫黄	8
5.1	硫黄	8
5.2	硫化水素	8
5.3	二酸化硫黄(亜硫酸ガス)	8
5.4	硫酸	8
5.5	チオ硫酸ナトリウム(ハイポ)	9
5.6	重金属の硫化物	10
6	窒素	10
6.1	窒素	10
6.2	アンモニア	10

6.3	一酸化二窒素(笑気ガス)	10
6.4	性質	10
6.5	製法	10
6.6	一酸化窒素	10
6.7	二酸化窒素	11
6.8	硝酸	11
第Ⅱ部	3 典型金属	12
7	アルカリ金属	12
7.1	単体	12
7.2	水酸化ナトリウム(苛性ソーダ)	12
第Ⅲ部	图 APPENDIX	13
8	気体の乾燥剤	13

第I部

非金属元素

1 水素

1.1 性質

- 無色無臭の気体
- 最も軽い
- 水に溶けにくい

1.2 同位体

 1 H 99% 以上 2 H ($\underline{\mathbf{D}}$)0.015% 3 H ($\underline{\mathbf{T}}$) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- 赤熱した $\frac{1-\rho_Z}{1}$ に $\frac{1}{N}$ を吹き付ける $\frac{1}{N}$ を吹き付ける $\frac{1}{N}$ に $\frac{1}{N}$
- 水(水酸化ナトリウム水溶液) の電気分解 $2 \, \mathrm{H_2O} \longrightarrow 2 \, \mathrm{H_2} + \mathrm{O_2}$
- イオン化傾向がH₂ より大きい金属と希薄強酸
- 水酸化ナトリウムと水 ${\rm NaH} + {\rm H_2O} \longrightarrow {\rm NaOH} + {\rm H_2}$

1.4 反応

- 水素と酸素 (爆鳴気の燃焼)
 - $2\,\mathrm{H}_2 + \mathrm{O}_2 \longrightarrow \mathrm{H}_2\mathrm{O}$
- 加熱した酸化銅(II)と水素 $CuO + H_2 \longrightarrow Cu + H_2O$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

2.1 性質

- 無色無臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が極めて小さい
- 電気陰性度が定義されない

2.2 生成

 40 K の電子捕獲 40 K + $\mathrm{e^-} \longrightarrow ^{40}$ Ar

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 $N_2,\,O_2$ に次いで 3 番目に空気中での存在量が多い (約 1%)。

無機化学 2/13

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	$ m F_2 \qquad Cl_2 \qquad Br_2$			I_2	
分子量	小 ——			大	
分子間力	弱 ———				
反応性	強 ====				
沸点・融点	低 ———			——————————————————————————————————————	
常温での状態	<u>気体</u>	<u>気体</u>	液体	固体	
色	<u>淡黄</u> 色	淡黄 色 黄緑 色 赤褐 色			
特徴	特異 臭 刺激 臭 揮発性 昇華 性				
H ₂ との反応	<u>冷暗所</u> でも	<mark>常温</mark> でも <mark>光</mark> で	<u>加熱</u> して	高温で平衡状態	
112 2007,21/10	爆発的に反応	爆発的に反応	<u>触媒</u> により反応	<u>加熱</u> して <u>触媒</u> により一部反応	
水との反応	水を酸化して酸素と	一部とけて反応	一部とけて反応	反応しない	
水との反心	<u>激しく</u> 反応			KIaq には可溶	
用途	保存が困難	<u>ClO</u> _による	C=C ❖	<u>ヨウ素デンプン</u> 反応で	
20,11	Kr や Xe と反応	<mark>殺菌・漂白</mark> 作用	C≡C の検出	<u>青紫</u> 色	

3.1.2 製法

- フッ化水素ナトリウム KHF_2 のフッ化水素 HF 溶液 の電気分解 $\boxed{\mathrm{T業的製法}}$ $\mathrm{KHF}_2 \longrightarrow \mathrm{KF} + \mathrm{HF}$
- 塩化ナトリウム の電気分解 塩素 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- 酸化マンガン (IV) に濃硫酸 を加えて加熱 塩素 $\mathrm{MnO}_2 + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl}_2 + \mathrm{Cl}_2 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- 高度さらし粉と塩酸 塩素 ${\rm Ca(ClO)_2 \cdot 2\, H_2O + 4\, HCl} \longrightarrow {\rm CaCl_2 + 2\, Cl_2 \uparrow + 4\, H_2O}$
- <u>さらし粉</u>と<u>塩酸</u> 塩素 $\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl} \, \longrightarrow \, \operatorname{CaCl}_2 + \operatorname{Cl}_2 \uparrow \, + 2\operatorname{H}_2\operatorname{O}$
- 臭化マグネシウムと塩素 臭素 $\mathrm{MgBr}_2 + \mathrm{Cl}_2 \longrightarrow \mathrm{MgCl}_2 + \mathrm{Br}_2$
- ヨウ化カリウムと塩素 ョウ素 $2 \operatorname{KI} + \operatorname{Cl}_2 \longrightarrow 2 \operatorname{KCl} + \operatorname{I}_2$

3.1.3 反応

- 塩素と水素 $\begin{array}{l} \mathbf{H}_2 + \mathrm{Cl}_2 \xrightarrow{\mathcal{H}^{eb} \exists \, \mathsf{Ta} \, \mathsf{E} \, \mathbb{Q}^{eb}} 2 \, \mathrm{HCl} \end{array}$
- 臭素と水素 ${\rm H_2} + {\rm Br_2} \xrightarrow{\bar{\rm All}^{\rm all} \bar{\rm C} \bar{\rm C} \bar{\rm C} \bar{\rm C}} 2 \, {\rm HBr}$
- ヨウ素と水素 $\mathrm{H}_2 + \mathrm{I}_2 \xleftarrow{\mathrm{\overline{a}} \mathrm{\underline{H}} \mathrm{C}\mathrm{\underline{T}} \mathrm{\underline{m}}} 2\,\mathrm{HI}$
- フッ素と水 $2F_2 + 2H_2O \longrightarrow 4HF + O_2$
- 塩素と水 $\operatorname{Cl}_2 + \operatorname{H}_2\operatorname{O} \Longleftrightarrow \operatorname{HCl} + \operatorname{HClO}$
- 臭素と水 $Br_2 + H_2O \Longrightarrow HBr + HBrO$
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応 ${\rm I_2} + {\rm I^-} \longrightarrow {\rm I_3}^-$

無機化学 3/13

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}\,\,\mathrm{Cl_2,HCl,H_2O}$ \downarrow _水 に通す (HCl の除去) $\mathrm{Cl_2,H_2O}$ \downarrow 濃硫酸に通す (H_2O の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸・・・酸素を含む酸性物質

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI	
色・臭い		<u>無</u> 色 <u>刺激</u> 臭			
沸点	20°C	$-85^{\circ}\mathrm{C}$	−67°C	−35°C	
水との反応	よく溶ける				
水溶液	フッ化水素酸	塩酸	臭化水素酸	ヨウ化水素酸	
(強弱)	弱性	整 ≪ 強酸 < 強	酸 < 強酸	2	
用途	<mark>ガラス</mark> と反応	<mark>アンモニア</mark> の検出	半導体加工	インジウムスズ	
用处	⇒ ポリエチレン瓶	各種工業	一一一一一	酸化物の加工	

3.2.2 製法

- <u>ホタル石</u>に<u>濃硫酸</u>を加えて加熱(<mark>弱酸遊離</mark>) フッ化水素 ${
 m CaF}_2 + {
 m H}_2{
 m SO}_4 \longrightarrow {
 m CaSO}_4 + 2\,{
 m HF}$ \uparrow
- 水素と塩素 塩化水素 工業的製法

 ${\rm H}_2 + {\rm Cl}_2 \longrightarrow 2\,{\rm HCl}\,{\uparrow}$

• $\frac{$ 塩化ナトリウム $}{NaCl+H_2SO_4}$ に $\frac{$ 濃硫酸 $}{\Delta}$ に加えて加熱 $\frac{$ 塩化水素 $}{\Delta}$ ($\frac{37}{68}$ 酸・ $\frac{$ 揮発性</u>酸の追い出し)

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$
- <u>塩化水素</u>による<u>アンモニア</u>の検出 $HCl + NH_3 \longrightarrow NH_4Cl$

無機化学 4/13

3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgCl AgBr	
固体の色	黄褐色	<u>白</u> 色	淡黄色	黄色
水との反応	よく溶ける	ほと	んど溶けフ	ない
光との反応	感光	感分	匕性(→ <u>A</u>	g)

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 ${\rm Ag_2O+2\,HF} \longrightarrow 2\,{\rm AgF} + {\rm H_2O}$

• ハロゲン化水素イオンを含む水溶液と $\frac{$ 硝酸銀水溶液} $Ag^+ + X^- \longrightarrow AgX \downarrow$

3.4 次亜塩素酸塩

3.4.1 性質

<u>酸化</u>剤として反応(<u>殺菌・漂白</u>作用) $\mathrm{ClO^-} + 2\,\mathrm{H^+} + 2\,\mathrm{e^-} \longrightarrow \mathrm{Cl^-} + \mathrm{H_2O}$

3.4.2 製法

・ 水酸化ナトリウム水溶液と塩素2 NaOH + Cl₂ → NaCl + NaClO + H₂O

• 水酸化カルシウムと塩素 ${\rm Ca(OH)_2 + Cl_2} \longrightarrow {\rm CaCl(ClO) \cdot H_2O}$

3.5 水素酸カリウム

化学式:KClO₃

3.5.1 性質

<u>酸素</u>の生成(<u>二酸化マンガン</u>を触媒に加熱) $2 \, \text{KClO}_3 \xrightarrow{\text{MnO}_2} 2 \, \text{KClO} + 2 \, \text{O}_2 \, \uparrow$

無機化学 5/13

4 酸素

4.1 酸素原子

同<u>位</u>体:酸素 (O_2) ,<u>オゾン</u> (O_3) 地球の地殻に<mark>最も多く</mark>存在

- 地球の地殻における元素の存在率 -

$$\frac{O}{\underline{\mathfrak{wk}}}$$
 > $\frac{Si}{774 \pm}$ > $\frac{Al}{7 l l}$ > $\frac{Fe}{\underline{\mathfrak{k}}}$ > $\frac{Ca}{27.7\%}$ > $\frac{Na}{21.3\%}$ > $\frac{h}{2.83\%}$ > $\frac{Na}{2.83\%}$ おっ し ゃる て か な

4.2 酸素

化学式: O_2

4.2.1 性質

- 無色無臭の気体
- 沸点 -183°C

4.2.2 製法

- 液体空気の分留 工業的製法
- 水 (水酸化ナトリウム水溶液) の電気分解 $2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{H}_2 \uparrow + \operatorname{O}_2 \uparrow$
- 過酸化水素水 ($\frac{3 + 2 + 2 + 2}{2 + 2}$ の分解 $\frac{1}{2}$ $\frac{1}{2}$
- <mark>塩素酸カリウム</mark>の熱分解 $\frac{\text{LKClO}_3}{2 \text{ KClO}_3} \xrightarrow{\text{MnO}_2} 2 \text{ KClO} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

酸化剤としての反応

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$$

4.3 オゾン

化学式: O_3

4.3.1 性質

- <u>ニンニク</u>臭(特異臭)を持つ<u>淡青</u>色の<u>気体</u>(常温)
- 水に少し溶ける
- 殺菌・脱臭作用

オゾンにおける酸素原子の運動・

4.3.2 製法

酸素中で<u>無声放電</u>/強い<mark>紫外線</mark>を当てる $3\,{
m O}_2\longrightarrow 2\,{
m O}_3$

4.3.3 反応

- 酸化剤としての反応 $O_3 + 2 H^+ + 2 e^- \longrightarrow O_2 + H_2O$
- 湿らせた<u>ヨウ化カリウムでんぷん紙</u>を<u>青</u>色に変色 $O_3 + 2 \text{ KI} + \text{H}_2 \text{O} \longrightarrow \text{I}_2 + O_2 + 2 \text{ KOH}$

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	<u>陽性の大きい金属</u> 元素	<u>陽性の小さい金属</u> 元素	<u>非金属</u> 元素
水との反応	塩基性	ほとんど溶けない	酸性(オキソ酸)
中和	酸と反応	<mark>酸・塩基</mark> と反応	<u>塩基</u> と反応

両性酸化物 \cdots <u>アルミニウム</u> (\underline{Al}) , <u>亜鉛</u> (\underline{Zn}) , \underline{ZZ} (\underline{Sn}) , $\underline{\underline{a}}$ (\underline{Pb}) *1

- $\bigcirc M CO_2 + H_2O \longrightarrow H_2CO_3$
- $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$
- $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}_3$

4.4.1 反応

酸化銅(Ⅱ)と塩化水素

 $\mathrm{CuO} + 2\,\mathrm{HCl} \longrightarrow \mathrm{CuCl_2} + \mathrm{H_2O}$

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$

• 酸化アルミニウムと水酸化ナトリウム水溶液

 $\mathrm{Al_2O_3} + 2\,\mathrm{NaOH} \longrightarrow 3\,\mathrm{H_2O} + 2\,\mathrm{Na[Al(OH)^+]}$

4.5 水

4.5.1 性質

- 極性分子
- 周りの4つの分子と水素結合
- 異常に高い沸点
- ・ 隙間の多い結晶構造(密度:固体
- 特異な融解曲線

4.5.2 反応

● 酸化カルシウムと水

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

• 二酸化窒素と水

$$3 \text{ NO}_2 + \text{H}_2 \text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$$

無機化学 7/13

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

—			
	斜方硫黄	単斜硫黄	ゴム状硫黄
化学式	S_8	S_8	S_x
色	<u>黄</u> 色	<u>黄</u> 色	<u>黄</u> 色
構造	塊状結晶	針状結晶	<u>不定形</u> 固体
融点	113°C	119°C	不定
構造	S S S S		S S S S S S S S S S S S S S S S S S
CS_2 との反応	溶ける	溶ける	溶けない

CS₂··· 無色・芳香性・揮発性 ⇒<mark>無極性</mark>触媒

5.1.2 反応

- 高温で多くの金属(Au、Pt を除く)との反応 $Fe + S \longrightarrow FeS$
- 空気中で<u>青</u>色の炎を上げて燃焼 $S + O_2 \longrightarrow SO_2$

5.2 硫化水素

化学式: H_2S

5.2.1 性質

- 無色・腐卵臭
- 弱酸性

$$\begin{cases} \frac{\text{H}_2\text{S} \Longrightarrow \text{H}^+ + \text{HS}^-}{\text{HS}^- \Longrightarrow \text{H}^+ + \text{S}^-} & K_1 = 9.5 \times 10^{-8} \text{ mol/L} \\ \hline \text{K}_2 = 1.3 \times 10^{-14} \text{ mol/L} \end{cases}$$

5.2.2 製法

- 酸化鉄(Ⅱ)と希塩酸
 FeS+2HCl → FeCl₂+H₂S↑
- 酸化鉄(II)と希硫酸 ${\rm FeS} + {\rm H_2SO_4} \longrightarrow {\rm FeSO_4} + {\rm H_2S} \uparrow$

5.2.3 反応

5.3 二酸化硫黄(亜硫酸ガス)

5.3.1 性質

無色、刺激臭の気体

- 水に溶けやすい
- 弱酸性

 $H_2O + SO_2 \Longrightarrow H^+ + HSO_3^ K_1 = 1.4 \times 10^{-2} \text{ mol/L}$

● 還元剤 (漂白作用)

 $SO_2 + 2H_2O \longrightarrow SO_4^{2-} + 4H^+ + 2e^-$

• 酸化剤($\underline{\mathbf{H}_2\mathbf{S}}$ などの強い還元剤に対して)

$$\mathrm{SO_2} + 4\,\mathrm{H^+} + 4\,\mathrm{e^-} \longrightarrow \mathrm{S} + 2\,\mathrm{H_2O}$$

5.3.2 製法

- 硫黄や硫化物の燃焼 工業的製法 $2 \, \mathrm{H_2S} + 3 \, \mathrm{O_2} \longrightarrow 2 \, \mathrm{SO_2} + 2 \, \mathrm{H_2O}$
- <u>亜硫酸ナトリウム</u>と希硫酸

 $Na_2SO_3 + H_2SO_4 \xrightarrow{\wedge} NaHSO_4 + SO_2 \uparrow + H_2O$

● 銅と熱濃硫酸

 $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$

5.3.3 反応

● 二酸化硫黄の水への溶解

 $SO_2 + H_2O \longrightarrow H_2SO_3$

● 二酸化硫黄と硫化水素

 $SO_2 + 2H_2S \longrightarrow 3S + 3H_2O$

• 硫酸酸性で過マンガン酸カリウムと二酸化硫黄 $2\,{\rm KMnO_4}\,+\,5\,{\rm SO_2}\,+\,2\,{\rm H_2O}\,\,\longrightarrow\,\,2\,{\rm MnSO_4}\,+\,\\2\,{\rm H_2SO_4}+{\rm K_2SO_4}$

5.4 硫酸

5.4.1 性質

- 無色無臭の液体
- 水に非常によく溶ける
- 溶解熱が非常に大きい
- 水に濃硫酸を加えて希釈
- 不揮発性で密度が大きく、粘度が大きい 濃硫酸
- 吸湿性・脱水作用 濃硫酸
- 強酸性 希硫酸

 $\left(\begin{array}{c} \underline{\mathrm{H}_{2}\mathrm{SO}_{4}} & \Longrightarrow \underline{\mathrm{H}^{+}} + \underline{\mathrm{HSO}_{4}}^{-} & K_{1} > 10^{8}\mathrm{mol/L} \end{array}\right)$

- 弱酸性 濃硫酸 (水が少なく、H₃O⁺の濃度が小さい)
- 酸化剤として働く 熱濃硫酸

 $H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_4 + 2H_2O$

▼ルカリ性土類金属 (Ca,Be)、Pbと難容性の塩を生成 希硫酸

5.4.2 製法

接触法工業的製法

1. 黄鉄鉱 FeS。の燃焼

$$\begin{split} 4\operatorname{FeS}_2 + 11\operatorname{O}_2 &\longrightarrow 2\operatorname{Fe}_2\operatorname{O}_3 + 8\operatorname{SO}_2 \\ (\operatorname{S} + \operatorname{O}_2 &\longrightarrow \operatorname{SO}_2) \end{split}$$

2. <u>酸化バナジウム</u>触媒で酸化

$$2\operatorname{SO}_2 + \operatorname{O}_2 \xrightarrow{\operatorname{V_2O_5}} 2\operatorname{SO}_3$$

3. <u>濃硫酸</u>に吸収させて<u>発煙硫酸</u>とした後、希硫酸 を加えて希釈

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

$$\mathrm{KNO_3} + \mathrm{H_2SO_4} \longrightarrow \mathrm{HNO_3} + \mathrm{KHSO_4}$$

• スクロースと濃硫酸

$$C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12\,C + 11\,H_2O$$

• 希硫酸と水酸化ナトリウム

$$\mathrm{H_2SO_4} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2SO_4} + 2\,\mathrm{H_2O}$$

• 銀と熱濃硫酸

$$2\,\mathrm{Ag} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + \mathrm{SO}_2 + 2\,\mathrm{H}_2\mathrm{O}$$

• 塩化バリウム水溶液と希硫酸

$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCl$$

5.5 チオ硫酸ナトリウム (ハイポ)

化学式:Na₂S₂O₃

5.5.1 性質

● 無色透明の結晶(5水和物)で、水に溶けやすい。

● 還元剤として反応

例水道水の脱塩素剤 (カルキ抜き)

$$2\,\mathrm{S_2O_3}^{2-} \longrightarrow \mathrm{S_4O_6} + 2\,\mathrm{e^-}$$

$$\begin{array}{c} : \ddot{\mathbf{O}} : & \vdots \ddot{\mathbf{O}} : \\ \vdots \ddot{\mathbf{O}} : \ddot{\mathbf{S}} : \ddot{\mathbf{S}} : \ddot{\mathbf{S}} : \ddot{\mathbf{S}} : \ddot{\mathbf{O}} : \\ \vdots \ddot{\mathbf{O}} : & \vdots \ddot{\mathbf{O}} : \\ \vdots \ddot{\mathbf{O}} : & \vdots \ddot{\mathbf{O}} : \\ \vdots \ddot{\mathbf{O}} : & \vdots \ddot{\mathbf{O}} : \\ & & \vdots \ddot{\mathbf{O}} : \ddot{\mathbf{S}} : \ddot{\mathbf{S}} : \ddot{\mathbf{S}} : \ddot{\mathbf{O}} : \\ & & \vdots \ddot{\mathbf{O}} : & \vdots \ddot{\mathbf{O}} : \\ \vdots \ddot{\mathbf{O}} : & \vdots \ddot{\mathbf{O}} : \\ \vdots \ddot{\mathbf{O}} : & \vdots \ddot{\mathbf{O}} : \\ \end{array}$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

$$Na_2SO_4 + S_n \longrightarrow Na_2S_2O_3$$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

$$I_2 + 2 \operatorname{Na_2S_2O_3} \longrightarrow 2 \operatorname{NaI} + \operatorname{Na_2S_4O_6}$$

5.6 重金属の硫化物

Ī	酸性でも沈澱(全液性で沈澱)					中性・	塩基性	で沈澱	(酸性では溶解)
Ag_2S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
<u>黒</u> 色	黒色	黒色	黒色	褐色	黒色	黒色	黒色	白色	淡赤色

6 窒素

6.1 窒素

化学式:N₂

6.1.1 性質

- 無色無臭の気体
- 空気の 78% を占める
- 水に溶けにくい(無極性分子)
- 常温で不活性(食品などの酸化防止)
- 高エネルギー状態(高温・放電)では反応

6.1.2 製法

- 液体窒素の分留 工業的製法
- <u>亜硝酸アンモニウムの熱分解</u> NH₄NO₂ → N₂ + 2 H₂O

6.1.3 反応

• 窒素と酸素

$$\mathrm{N_2} + 2\,\mathrm{O_2} \longrightarrow 2\,\mathrm{NO_2} \left\{ \begin{array}{c} \mathrm{N_2} + \mathrm{O_2} \longrightarrow 2\,\mathrm{NO} \\ \\ 2\,\mathrm{NO} + \mathrm{O_2} \longrightarrow 2\,\mathrm{NO_2} \end{array} \right.$$

• 窒素とマグネシウム $3\,\mathrm{Mg} + \mathrm{N}_2 \longrightarrow \mathrm{Mg}_3\mathrm{N}_2$

6.2 アンモニア

化学式:NH₃

6.2.1 性質

- 無色刺激臭の気体
- 水素結合
- 水に非常によく溶ける (上方置換)
- 塩基性

- 塩素の検出
- 高温・高圧で二酸化炭素と反応して、尿素を生成

6.2.2 製法

- ハーバーボッシュ法 工業的製法
 低温高圧で、四酸化三鉄 (Fe₃O₄) 触媒
 N₂ + 3 H₂ ⇒ 2 NH₃
- <u>塩化アンモニウム</u>と水酸化カルシウム</u>を混ぜて加熱
 2NH₄Cl+Ca(OH)₂ → 2NH₃↑+CaCl₂+2H₂O

6.2.3 反応

- 硫酸とアンモニア $2 NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$
- 塩素の検出

 $NH_3 + HCl \longrightarrow NH_4Cl \downarrow$

• アンモニアと二酸化炭素 $2\,\mathrm{NH_3} + \mathrm{CO_2} \longrightarrow (\mathrm{NH_2})_2\mathrm{CO} + \mathrm{H_2O}$

6.3 一酸化二窒素(笑気ガス)

化学式:N₂O

6.4 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 麻酔効果

6.5 製法

<u>硝酸アンモニウム</u>の熱分解

 $NH_4NO_2 \longrightarrow N_2O + 2H_2O$

6.6 一酸化窒素

化学式:NO

6.6.1 性質

- 無色無臭の気体
- 中性で水に溶けにくい
- ・ 空気中では酸素とすぐに反応
- 血管拡張作用·神経伝達物質

6.7 二酸化窒素 6 窒素

6.6.2 製法

銅と希硝酸

 $3\,\mathrm{Cu} + 8\,\mathrm{HNO_3} \longrightarrow 3\,\mathrm{Cu(NO_3)_2} + 2\,\mathrm{NO} + 4\,\mathrm{H_2O}$

6.6.3 反応

酸素と反応

 $2\,\mathrm{NO} + \mathrm{O_2} \longrightarrow 2\,\mathrm{NO_2}$

6.7 二酸化窒素

化学式:NO₂

6.7.1 性質

- 赤褐色刺激臭の気体
- 水と反応して<mark>強酸</mark>性(<mark>酸性雨</mark>の原因)
- 常温では $\underline{\text{mœ}}$ 化二<u>窒素</u> (無色) と $\underline{\text{平衡状態}}$ $2 \, \mathrm{NO}_2 \Longrightarrow \mathrm{N}_2 \mathrm{O}_4$
- 140°C 以上で熱分解 $2\operatorname{NO}_2 \longrightarrow 2\operatorname{NO} + \operatorname{O}_2$

6.7.2 製法

銅と濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

6.8 硝酸

化学式:HNO₃

6.8.1 性質

- 色臭での
- 水に

6.8.2 製法

● オストワルト法

$$\mathrm{NH_3} + 2\,\mathrm{O_2} \longrightarrow \mathrm{HNO_3} + \mathrm{H_2O}$$

- 1. <u>白金</u>触媒で<u>アンモニア</u>を<u>酸化</u> $4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{ O}$
- 2. 空気酸化

$$2\,\mathrm{NO} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{NO}_2$$

- 3. <u>水</u>と反応 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$
- 硝酸塩に濃硫酸を加えて加熱

6.8.3 反応

無機化学 11/13

第Ⅱ部

典型金属

7 アルカリ金属

7.1 単体

7.1.1 性質

- 銀白色で柔らかい金属
- 全体的に反応性が高く、灯油中に保存
- 原子一個粗利の自由電子が<u>1</u>個(<mark>弱</mark>い金属結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	K	Rb	Cs		
融点	181°C	98°C	64°C	39°C	28°C		
密度	0.53	0.97	0.86	1.53	1.87		
構造		体心立方格子(軽金属)					
イオン化エネルギー	大						
反応力	小 —				大		
炎色反応	<u>赤</u> 色	<u>黄</u> 色	<u>赤紫</u> 色	深赤色	<u>青紫</u> 色		
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料(K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)		

7.1.2 製法

水酸化物や塩化物の<mark>溶融塩電解</mark> 工業的製法

7.2 水酸化ナトリウム(苛性ソーダ)

化学式: <u>NaOH</u>

7.2.1 性質

- 白色の固体
- 潮解性
- 水によくとける(水との親和性が<mark>非常に高い</mark>)
- 乾燥剤
- 強塩基性

 $\underline{\text{NaOH}} \rightleftharpoons \underline{\text{Na}^+ + \text{OH}^-} K_1 = 1.0 \times 10^{-1} \text{mol/L}$

7.2.2 製法

水酸化ナトリウム水溶液の電気分解 工業的製法

7.2.3 反応

• hoge

無機化学 12/13

第Ⅲ部

APPENDIX

8 気体の乾燥剤

固体の乾燥剤は<mark>U字管</mark>につめて、液体の乾燥剤は<mark>洗気瓶</mark>に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	十酸化四リン	P_4O_{10}	酸性・中性	塩基性の気体(<u>NH₃</u>)
段江	濃硫酸	$\underline{\mathrm{H}_{2}\mathrm{SO}_{4}}$	段压"个压	+ <u>H₂S</u> (<u>還元剤</u>)
中性	塩化カルシウム	$CaCl_2$	ほとんど全て	$\overline{\mathrm{NH_{3}}}$
十庄	<u>シリカゲル</u>	$\underline{\mathrm{SiO}_2 \cdot n\mathrm{H}_2\mathrm{O}}$	はこんと主し	特になし
塩基性	酸化カルシウム	<u>CaO</u>	中性・塩基性	酸性の気体
塩 基 注	ソーダ石灰	CaO と NaOH	中は・塩茎は	$\underline{\text{Cl}_2},\underline{\text{HCl}},\underline{\text{H}_2}\text{S},\underline{\text{SO}_2},\underline{\text{CO}_2},\underline{\text{NO}_2}$

無機化学 13/13