Applied Machine Learning

Lecture: 7-1
Model Evaluation

Ekarat Rattagan, Ph.D.

Slides adapted from Andrew NG, Eric Eaton, Raquel Urtasun, and Patrick Winston

Outline

- 7.1 Machine learning diagnostic
- 7.2 Model selection & evaluation
- 7.3 Diagnosing bias vs. variance
- 7.4 Regularization and bias/variance
- 7.5 Learning curves
- 7.7 Imbalanced data

7.6 Error metrics

Machine learning diagnostic

Suppose you have implemented regularized linear regression to predict housing prices.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

unacceptably large errors in its predictions. What should you try next? However, when you test your hypothesis on a new set of houses, you find that it makes

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
- Try decreasing λ
- Try increasing λ

Machine learning diagnostic:

Diagnostic:

algorithm, and gain guidance as to how best to improve its performance A test that you can run to gain insight what is/isn't working with a learning

use of your time Diagnostics can take time to implement, but doing so can be a very good

7.2 Model selection & evaluation

Model Selection

models in order to choose the best one. Model selection: estimating the performance of different

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

•

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

Which one to choose? how a model generalizes to unseen test data.

Model Evaluation

- A part of the model development process to find the best model
- Two methods of evaluating models are
- 1. Hold-out
- 2. Cross validation

1. Hold-out method

1494	1380	1534 1427	1985	3000	1416	2400	1600	2104	Size
243	212	315	300	540	232	369	330	400	Price
$\text{Test} \vdots \\ (x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$	$(x_{test}^{(2)},y_{test}^{(2)})$	$(x_{test}^{(1)}, y_{test}^{(1)})$		1 rain $(x^{(m)}, y^{(m)})$		\	$(x^{(2)},y^{(2)})$	$(x^{(1)}, y^{(1)})$	

- >>> import numpy as np
- >>> from sklearn.model_selection import train_test_split
- >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X

- array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]])
 >>> list(y)
 [0, 1, 2, 3, 4]
- >>> X_train, X_test, y_train, y_test = train_test_split(
 ... X, y, test_size=0.30, random_state=42)
 >>> X_train
 array([[4, 5],
 [0, 1],
 [6, 7]])
 >>> y_train
 [2, 0, 3]
 >>> X_test
 array([[2, 3],
 [8, 9]])
 >>> y_test
 [1, 4]

1. Hold-out method

Learn parameter θ from training data (70%)

Compute test set (30%)
$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^{2}$$

1. Hold-out method

· Cimple	Method	Advantage	Disadvantage
 Takes no longer to compute Its evaluation 	1. Holdout	SimpleTakes no longer to compute	Waste data (30% in this slide)Its evaluation can have a high error

2. Cross validation

2. Cross-Validation

1494	1380	1427	1534	1985	3000	1416	2400	1600	2104	Size
243	212	199	315	300	540	232	369	330	400	Price

50%	
	50%

7	50%	

 $(x^{(m)},y^{(m)})$

 $(x^{(1)}, y^{(1)})$ $(x^{(2)}, y^{(2)})$

$(x_{cv}^{(m_{cv})}$	$(x_{cv}^{(2)}$	$(x_{cv}^{(1)}$
$,y_{cv}^{(m_{cv})})$	$,y_{cv}^{\left(2 ight) })$	$,y_{cv}^{\left(1\right) })$

$$(x_{test}^{(m_{test})},y_{test}^{(m_{test})})$$

 $(x_{test}^{(1)}, y_{test}^{(1)})$ $(x_{test}^{(2)}, y_{test}^{(2)})$

Train/validation/test error

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})$$

2. Cross Validation (K-fold)

Figure from Hands-on Machine Learning

The training set is divided into k subsets, and the **holdout method** is repeated k times.

Each time, one of the k subsets is used as the test set and the other k-1 subsets are put together to form a training set.

Then the average error across all k trials is computed

```
>>> print(kf)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          >>> import numpy as np
                                                                                                                                                                                                                KFold(n_splits=2, random_state=None, shuffle=False)
                                                                                                                                                                                                                                                                                                                           >>> kf.get_n_splits(X)
                                                                                                                                                                                                                                                                                                                                                             >>> kf = KFold(n_splits=2)
                                                                                                                                                                                                                                                                                                                                                                                              >>> y = np.array([1, 2, 3, 4])
                                                                                                                                                                                                                                                                                                                                                                                                                                     >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           >>> from sklearn.model_selection import KFold
                                                                                                                                                                            >>> for train_index, test_index in kf.split(X):
TRAIN:
                                   TRAIN:
[0 1] TEST: [2 3]
                               [2 3] TEST: [0 1]
                                                              y_train, y_test = y[train_index], y[test_index]
                                                                                                                                          print("TRAIN:", train_index, "TEST:", test_index
                                                                                                    X_{\text{train}}, X_{\text{test}} = X[\text{train_index}], X[\text{test_index}]
```

Evaluation method

• Ti	te 2. Cross validation	1. Holdout - Si - Lo	Method
The variance of the resulting estimate is reduced as <i>k</i> is increased	Every data point gets to be in a test set exactly once, and gets to be in a training set k-1 times.	SimpleLow computation	Advantage
	 High computation 	 Waste data (30% in this slide) Its evaluation can have a high variance 	Disadvantage

LOOCV (Leave-one-out Cross Validation)

K-fold cross validation taken to its logical extreme, with K equal to N.

Evaluation method

Method 1. Holdout	• Simple Advantage	Disadvantage • Waste data (30% in this slide)
1. Holdout	SimpleLow computation	_
	• Every data point gets to be in a test set exactly once, and gets to be in a training set k-1 times.	 High computation
2. Cross validation	• The variance of the resulting estimate is reduced as <i>k</i> is increased	
3. Leave-One-Out	 Does not waste data 	 High computation

7.4 Diagnosing bias vs. variance

Bias/variance

High bias (underfit)

"Just right"

High variance (overfit)

Diagnosing bias vs. variance

hoping ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.). Is it a bias problem or a variance Suppose your learning algorithm is performing less well than you were problem?

Bias (underfit):

Variance (overfit):

7.5 Regularization and bias/ variance

Linear regression with regularization

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}) - y^{(i)}_{cv})^2$$

7.6 Learning curves

Error VS #Training data

https://rmartinshort.jimdofree.com/2019/02/17/overfitting-bias-variance-and-leaning-curves/

High bias

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

(high variance)

Number of instances

Debugging a learning algorithm:

prices. However, when you test your hypothesis in a new set of houses, you find Suppose you have implemented regularized linear regression to predict housing that it makes unacceptably large errors in its prediction. What should you try

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc})$
- Try decreasing λ
- Try increasing λ

7.6 Error metrics

Error metrics

- Confusion Matrix Precision , Rec
- Precision , Recall , and Accuracy
- F1-score
- ROC AUC Curve and score

Confusion Matrix

A performance measurement for ML classification

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

Confusion Matrix

٧	y pred	output for threshold 0.6	Recall	Precision	Accuracy
0	0.5	0			
1	0.9	1			
0	0.7	1			
1	0.7	1	1/2	2/3	4/7
1	0.3	0			
0	0.4	0			
1	0.5	0			

Precision/Recall

y = 1 in presence of rare class that we want to detect

Precision

actually has cancer?) (Of all patients where we predicted y = 1, what fraction

Recall

we correctly detect as having cancer?) (Of all patients that actually have cancer, what fraction did

Trading off precision and recall

precision

true positives

no. of predicted

positive

true positives

Logistic regression: $0 \le h_{\theta}(x) \le 1$

Predict 1 if $h_{\theta}(x) \geq 0.5$ Predict 0 if $h_{\theta}(x) < 0.5$

Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

More generally: Predict 1 if $h_{\theta}(x) \geq$ threshold.

Precision no. of actual positive Recall

F₁ Score (F score)

How to compare precision/recall numbers?

	Precision(P)	Recall (R)
Algorithm 1	0.5	0.4
Algorithm 2	0.7	0.1
Algorithm 3	0.02	1.0
Average: \underline{F}	$\frac{P+R}{\hat{z}}$	

 F_1 Score: $2\frac{PR}{P+R}$

7.7 Imbalanced data

What is imbalanced data

https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets