Turing Machines Part 1

Adam Wyner CS3518, Spring 2017 University of Aberdeen

Turing Machines

- Abstract but accurate model of computers
- Proposed by Alan Turing in 1936
- Turing's motivation: find out whether there exist mathematical problems that cannot be solved algorithmically, e.g. Hilbert's decision problem
- Similar to a FSA but with an unlimited and unrestricted memory
- Able to do everything a real computer can do
- However: There are problems even a Turing Machine (TM) can't solve, which are beyond the theoretical limits of computation

Turing Machines: Features

- A tape is a countably infinite list of cells
- A tape head can
 - read and write symbols from/onto a cell on the tape
 - move forward and backward on the tape
- Schematically:

Turing Machines: Features (Cont'd)

- Initially the tape contains only the input string and is blank everywhere else
- To store information, the TM writes it onto the tape
- To read the info it has written, TM can move the head back over it
- TMs have the following behaviours:
 - They "compute" then stop in a "reject" state
 - They "compute" then stop in an "accept" state
 - They loop forever
- Compare to FSAs, which have no "reject" states and no looping forever.

Turing Machines vs. Finite Automata

- TMs can both write on the tape and read from it
 - FSAs can only read (or only write if they are generators)
- TM's read/write head can move to the left and right
 - FSAs cannot "go back" on the input
- TM's tape is infinite
 - In FSAs the input and output is always finite
- TM's accept/reject states take immediate effect
 - There is no need to "consume" all the input
- TMs come in different flavours. Their differences are unimportant

Turing Machine: an informal Example

• TM M_1 to test if an input (on the tape) belongs to

$$B = \{w \# w \mid w \in \{0,1\}^*\}$$

 M_1 checks if the contents of the tape consists of two identical strings of 0's & 1's separated by "#"

- $-M_1$ accepts inputs
 - 0110#0110, 000#000, 010101010#0101010
- $-M_1$ rejects inputs

1111#0000, 000#0000, 0001#1000

Turing Machine: an informal Example

- M₁ should work for any size of input (general)
 - There are infinitely many, so we cannot use "cases"
- How would you program this?
 - All you have is a tape, and a head to read/write it

- Strategy for M_1 :
 - "Zig-zag" to corresponding places at both sides of "#" and check if they match
 - Mark (cross off) those places you have checked
 - If it crosses off all symbols, then everything matches and M_1 goes into an accept state
 - If it discovers a mismatch then it enters a reject state

- M_1 in effect says, on input string S
 - 1. Scan S to verify there is a single # symbol; if not, reject.
 - 2. Zig-zag across the tape to corresponding positions on either side of # to check if they contain the same symbol.
 - If they do not match, reject.
 - Cross off symbols as they are checked to keep track of things.
 - 3. When all symbols to the left of # have been crossed off, check for any remaining symbols to the right of #.
 - If any symbols remain, reject; otherwise accept.

Strategy:

- 1. start at the leftmost of the tape, char x_1
- 2. go to the symbol s_1 leftmost relative to the #
- 3. check if x_1 and s_1 match.
 - a. if so, cross off x_1 and s_1 and continue
 - b. otherwise reject.
- 4. go to the leftmost symbol of the tape not crossed off
- 5. go to the symbol leftmost relative to the # and not crossed off
- 6. check match....
- 7. iterate from 3 and considering previous conditions.
- The blank symbol right of # is \Box

Accept

Reject

Formal Definition of Turing Machines

- Previous slides give a flavour of TMs, but not their details.
- We can describe TMs formally, similarly to what you did for FAS
- We shall not always use formal descriptions for TMs because these would tend to be quite long
- But ultimately, our informal descriptions should be "translatable" into formal ones, so it is crucial to understand these formal descriptions

Formal definition of Turing Machines

- The imperative model of "algorithmhood" is formulated in terms of actions:
 - A TM is always in one of a specified number of states (these include the accept and reject states)
 - The action of the TM, at a given moment, depends on its state and on what the TM is reading at that moment
 - A TM always performs three types of actions: (1) replace the symbol that it reads by another (or the same) symbol,
 (2) move the head Left or Right, and (3) enter a new state (or the same state again).

Formal Definition of TMs (Cont'd)

- The heart of a TM is a function δ mapping from
 - A state s of the machine, and
 - The symbol a on the tape where the head is to
 - A new state t of the machine, and
 - A symbol b to be written on the tape (over a), and
 - A movement L (left) or R (right) of the head

Formal Definition of TMs (Cont'd)

$$\delta(s,a) = (t,b,L)$$

 When the machine is in state s and the head is over a cell containing a symbol a, then the machine writes the symbol b (replacing a), goes to state t and moves the head to the Left.

Formal Definition of TMs (Cont'd)

A Turing Machine is a 7-tuple

$$(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$$

where Q, Σ , Γ are all finite sets and

- 1. Q is the set of states
- 2. Σ is the input alphabet not containing the special blank symbol " \square "
- 3. Γ is the tape alphabet, where $\Gamma \subseteq \Sigma \cup \{\Box\}$
- 4. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function
- 5. $q_0 \in Q$ is the start state
- 6. $q_{acc} \in Q$ is the accept state
- 7. $q_{rej} \in Q$ is the reject state, where $q_{rej} \neq q_{acc}$

How Turing Machines "Compute"

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$$

- M receives its input $w = w_1 w_2 ... w_n \in \Sigma^*$
 - w is on the leftmost n cells of the tape.
 - The rest of the tape is blank (infinite list of "□")
- The head starts on the leftmost cell of the tape
 - Σ does not contain " \square ", so the first blank on the tape marks the end of the input
- M follows the "moves" encoded in δ
 - If M tries to move its head to the left of the left-hand end of the tape, the head stays in the same place
 - The computation continues until it enters the accept or reject state, at which point M halts
 - If neither occurs, M goes on forever...

Formalisation of TMs

- Formalisation is needed to say precisely how TMs behave.
- TMs use "sudden death" (and "sudden life")
 - FSA accepts a string iff the string is the label of a successful path.
 - TM accepts a string if, while processing it, an accept state is reached; TM rejects a string if, while processing it, a reject state is reached
- What exactly does it mean to "move to the right"?
 - What if the head is already at the rightmost edge?

Configurations of TMs

- As a TM computes, changes occur in its:
 - State
 - Tape contents
 - Head location

These three items are a configuration of the TM

- Configurations are represented in a special way:
 - When the TM is in state q, and
 - The contents of the tape is two strings uv, and
 - The head is on the leftmost position of string v
 - Then we represent this configuration as uqv

Configurations of TMs

- Configurations are represented in a special way:
 - When the TM is in state q7, and
 - The contents of the tape is two strings u = 1011 and v = 011111, and
 - The head is on the leftmost position of string v
 - Then we represent this configuration as uqv
- Example: $1011q_7011111$
- Same thing as the picture:

Formalising TMs Computations

Assume

- -a, b, c in Γ (3 characters from the tape)
- u and v in Γ^* (2 strings from the tape)
- states q_i and q_j

We can now say that (for all u and v)

 $u a q_i b v$ yields $u q_i a c v$ if $\delta(q_i, b) = (q_i, c, L)$

Graphically:

Formalising TMs Computations

We can now say that (for all u and v) $u \, a \, q_i \, b \, v \text{ yields } u \, q_i \, a \, c \, v \text{ if } \delta(q_i, b) = (q_i, c, L)$

When the machine is in state q_i and the head is over a cell containing a symbol b, then the machine writes the symbol c (replacing b), goes to state q_i and moves the head to the Left.

A similar definition for rightward moves $ua \ q_i \ bv \ \ yields \ uacq_i \ v \ if \ \delta(q_i, b) = (q_i, c, R)$

Graphically:

- Special cases when head at beginning of tape
- For the left-hand end (q_i on the left), moving left:

$$q_i$$
 by yields q_j c ν if $\delta(q_i,b) = (q_j,c,L)$

We prevent the head from "falling off" the left-hand end of the tape:

For the left-hand end, moving right:

$$q_i bv$$
 yields $cq_i v$ if $\delta(q_i, b) = (q_i, c, R)$

- For the right-hand "end" (not really the end...)
 - infinite sequence of blanks follows the part of the tape represented in the configuration
- We thus handle the case above as any other rightward move

- The start configuration of M on input w is $q_0 w$
 - M in start state q_0 with head at leftmost position of tape
- An accepting configuration has state q_{acc}
- A rejecting configuration has state q_{rej}
- Rejecting and accepting configurations are halting configurations
 - They do not yield further configurations
 - No matter what else is in the configuration!
- Note: δ is a function, and there is only one start state, so the TM (as defined here) is deterministic

- An accepting configuration has state q_{acc}
- A rejecting configuration has state q_{rej}
- Notice here that "why" something is an accepting or rejecting configuration is not specified here. Just what the "program" does is given by the transition function:
 - δ : Q × Γ → Q × Γ × {L, R}, where q_{acc} , $q_{rei} \in Q$

- A TM M accepts input w if there is a sequence of configurations $C_1, C_2, ..., C_k$ where
 - 1. C_1 is the start configuration of M on input w
 - 2. Each C_i yields C_{i+1} , and
 - 3. C_k is an accepting configuration

Analogous to FSAs,

- the set of strings that M accepts is the language of M, denoted L(M)
- we also say that a TM "accepts" or "recognizes" a language.

Sample Turing Machine (Cont'd)

Some shorthands to simplify notation:

1.

$$\delta(q_1,0)=(q_2,\square,\mathsf{R})$$

"when in state q_1 with the head reading $\mathbf{0}$, it goes to state q_2 , writes \square and moves the head to the right"

2.
$$q_3 \longrightarrow q_4$$

$$\delta(q_3,0) = (q_4,0,R)$$

"machine moves its head to the right when reading 0 in the state q_3 , but nothing is written onto the tape"

Transitions from accept/reject states can be omitted (because of sudden death).