The group G is isomorphic to the group labelled by [24, 14] in the Small Groups library. Ordinary character table of $G \cong C2 \times C2 \times S3$:

	1a	2a	2b	2c	3a	2d	2e	2f	6a	6b	2g	6c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	-1	1	1	1	1	-1	-1	-1	1
χ_3	1	-1	-1	1	1	1	-1	-1	-1	1	1	-1
χ_4	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_5	1	-1	1	1	1	-1	-1	1	1	1	-1	1
χ_6	1	1	-1	-1	1	-1	-1	1	-1	-1	1	1
χ_7	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1
χ_8	1	1	1	-1	1	1	-1	-1	1	-1	-1	-1
χ_9	2	0	-2	-2	-1	0	0	2	1	1	0	-1
χ_{10}	2	0	-2	2	-1	0	0	-2	1	-1	0	1
χ_{11}	2	0	2	-2	-1	0	0	-2	-1	1	0	1
χ_{12}	2	0	2	2	-1	0	0	2	-1	-1	0	-1

Trivial source character table of $G \cong C2 \times C2 \times S3$ at p = 3:

Normalisers N:

Normalisers N_i		N_1									N_2								
p-subgroups of G up to conjugacy in G		P_1									P_2								
Representatives $n_j \in N_i$	1 <i>a</i>	2a	2b	2c	2d	2e	2f	2g	1a	2c	2b	2a	2f	2e	2d	2g			
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	3	1	3	3	1	1	3	1	0	0	0	0	0	0	0	0			
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	-3	-3	1	1	3	-1	0	0	0	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	-3	3	1	-1	-3	1	0	0	0	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	3	-3	-1	1	-3	1	0	0	0	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	3	-1	3	3	-1	-1	3	-1	0	0	0	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	1	-3	-3	-1	-1	3	1	0	0	0	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	1	-3	3	-1	1	-3	-1	0	0	0	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	1	3	-3	1	-1	-3	-1	0	0	0	0	0	0	0	0			
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	-1	1	-1	-1	-1	1	-1	1	1	-1	-1	1	-1			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	-1	1	-1	1	-1	-1	1	1	-1	1	-1	1	-1	-1			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	1			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	1	1	-1	-1	1	-1	1	1	1	-1	1	-1	-1	-1			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	-1	1	1			
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1			

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 12, 5)(2, 16, 8)(3, 18, 10)(4, 19, 11)(6, 21, 14)(7, 22, 15)(9, 23, 17)(13, 24, 20)]) \cong C3$

 $N_1 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,5)(2,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,2)(14,18)(15,19)(17,24)(20,23), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21$