

Scientific Communication (How to Give a Talk Talk)

Steven E. Wheeler
Center for Computational Quantum Chemistry
University of Georgia

Everything!

Every step of your career will hinge on your ability to communicate your research

Improving your ability to communicate science requires work

Written Communication

- Abstracts
- Grant proposals
- Scientific papers
 - Communications
 - Full Papers
 - Reviews

Recommended Reading:

Learn to write well by **studying** well-written papers

Oral Communication

- Elevator pitch
- Scientific talks
 - Research talks
 - Literature talks

Scenario:

 You run into one of your scientific heroes in an elevator/poster session

Goal:

 Introduce yourself and summarize your research in a coherent and memorable way in 30 seconds

Pitfalls:

- Too vague
- Too specific/rambling
- Inability to answer follow-up questions

You need to practice this!

Try to seek out these opportunities

Written Communication

- Abstracts
- Grant proposals
- Scientific papers
 - Communications
 - Full Papers
 - Reviews

Recommended Reading:

Learn to write well by **studying** well-written papers

Oral Communication

- Elevator pitch
- Scientific talks
 - Research talks
 - Literature talks

Steps to take when starting a project:

- 1. Determine the <u>context</u> of your project with regard to:
 - Your research and your career
 - Your group's research
 - The broader field
 - Society
- Determine specific questions to be answered and <u>how</u> they can be answered

Make sure your project matches the stage of your career

- Explain how you have addressed an interesting scientific question
- Teach the audience things that are relevant to their interests
- Sell an idea or a tool
- The purpose of a talk should never be to show off how smart you are and how much work you have done

Even though research takes twists and turns, your presentation should probably follow a **straight path from start to finish**

Common Pitfalls

- Forgetting that you know more about your project than your audience
 - Introduce your work in a gentle, methodical manner

Rule 1: Know your audience!

- Getting bogged down in unimportant details
 - Don't include details unless they are vital to the main point of your talk

- Running over time
 - Practice!

Make your slides clean, simple, and attractive

If your slides are sloppy, your science is probably sloppy!

Rule 2: Slides are cheap, but space on a slide is valuable

(this **does not** mean to fill your slides with details!)

Use a simple, clutter-free template

Use slide titles to convey information about each slide

Slides should be mostly figures/pictures with **very few words** (this is not a typical talk)

Use colors and animations with a **purpose**

$$R^{1}$$
 = alkyl; R^{2} = aryl; R^{3} = H, alkyl, aryl R^{1} = R^{2} R^{3} R^{3} R^{2} R^{3} R^{3}

Don't make your audience work harder than they must

Rule 3: A Scientific Talk is a Story

(Research talk)

Beginning

- Set the stage
- Goal: Convince the audience that there is an important gap in our knowledge/abilities
- For a 40 minute talk, have one overarching question comprising 2-3 smaller questions

Middle

- Present your results
- Goal: Clearly and methodically show what you have done to address the gap in our knowledge/abilities

End

- Summarize key results
- Goal: Connect what you have done to the questions raised in the Beginning

Please do not include an 'Outline' slide

Rule 3: A Scientific Talk is a Story

(Literature talk)

Beginning

- Set the stage
- Goal: Convince the audience that there is an important controversy in the literature
- For a 40 minute talk, have one main controversy and present 2-3 different sides/perspectives

Middle

- Present your results
- Goal: Clearly and methodically show what has been done to shed light on the controversy

End

- Summarize key points of both sides or perspectives
- Goal: Provide you own critique/commentary and make suggestions regarding work that can be done to settle the controversy once and for all

Please do not include an 'Outline' slide

Statement of controversy

Side A

- Main results supporting Side A
- Main results supporting Side A
- Main results supporting Side A

Side B

- Main results supporting Side B
- Main results supporting Side B
- Main results supporting Side B

(use a slide like this to introduce both sides of controversy and to transition between talking about the different sides)

Rule 3: A Scientific Talk is a Story

(Research talk)

Beginning

- Set the stage
- Goal: Convince the audience that there is an important gap in our knowledge/abilities
- For a 40 minute talk, have one overarching question comprising 2-3 smaller questions

Middle

- Present your results
- Goal: Clearly and methodically show what you have done to address the gap in our knowledge/abilities

End

- Summarize key results
- Goal: Connect what you have done to the questions raised in the Beginning

Please do not include an 'Outline' slide

- A bad Introduction can ruin an otherwise good talk
- Goal: Convince each member of the audience to listen to the rest of your talk
- Approach: Convince the audience that you are going to address a question that is important to them

Rule 1: Know your audience!

Common Pitfalls

- Failure to clearly raise an important scientific question
 - At the end of your Introduction, state the problem/question you wish to solve/answer
- The bait and switch
 - By the end of your talk, you must have addressed each of the questions raised in the Introduction

- Start out broad
- Narrow your focus to the questions you plan to answer
- You want to lead the audience to the main questions you plan to answer

- At the end of your Introduction, the audience should have a clear idea of:
 - The questions you plan to answer
 - The broader significance of those questions

Rule 3: A Scientific Talk is a Story

(Research talk)

Beginning

- Set the stage
- Goal: Convince the audience that there is an important gap in our knowledge/abilities
- For a 40 minute talk, have one overarching question comprising 2-3 smaller questions

Middle

- Present your results
- Goal: Clearly and methodically show what you have done to address the gap in our knowledge/abilities

End

- Summarize key results
- Goal: Connect what you have done to the questions raised in the Beginning

Please do not include an 'Outline' slide

One slide, one point

If you can't summarize a slide in a simple sentence then that slide is **too complicated**

Rule 2: Slides are cheap, but space on a slide is valuable

Your goal is to **maximize** signal to noise

Every word, every image, and every table must **earn its place** on your slide

If you have trouble sticking to the main point, include it on your slide

Do not cut and paste tables from a paper

Rule 2: Slides are cheap, but space on a slide is valuable

Only include data that will be discussed!

TABLE I. DZP++ and CCSD(T)/aug-cc-pCVQZ adiabatic electron affinities (AEA) in eV.

	BH&HLYP	BLYP	B3LYP	CCSD(T)/aug- cc-pCVQZ	Expt.
SiH ₂	1.02	1.07	1.19	1.05	1.124 ± 0.02 (Ref. 3)
Si(CH ₃) ₂	0.38	0.46	0.55		
Si(SiH ₃) ₂	1.98	1.95	2.11		
SiF ₂	0.41	0.46	0.57		0.1 ± 0.1 (Ref. 34)
SiCl ₂	1.50	1.38	1.57		
SiBr ₂	1.72	1.56	1.76		
HSiSiH ₃	1.55	1.56	1.70		
CH ₃ SiSiH ₃	1.23	1.24	1.38		
HSiCH ₃	0.65	0.71	0.82		
SiHF	0.76	0.79	0.91		
SiHCl	1.29	1.24	1.40		
SiHBr	1.41	1.33	1.51		
SiFCH ₃	0.40	0.46	0.56		
SiClCH ₃	1.03	0.93	1.07		
SiBrCH ₃	1.09	1.04	1.19		
SiFC1	0.99	0.95	1.10		
SiFBr	1.14	1.08	1.23		
SiClBr	1.61	1.47	1.67		
FSiSiH ₃	1.31	1.31	1.45		
ClSiSiH ₃	1.77	1.69	1.87		
BrSiSiH ₃	1.86	1.75	1.94		

TABLE I. DZP++ and CCSD(T)/aug-cc-pCVQZ adiabatic electron affinities (AEA) in eV.

	BH&HLYP	BLYP	B3LYP	CCSD(T)/aug- cc-pCVQZ	Expt.
SiH ₂	1.02	1.07	1.19	1.05	1.124 ± 0.02 (Ref. 3)
SiF ₂	0.41	0.46	0.57		0.1 ± 0.1 (Ref. 34)

Problems:

- Low resolution
- Much of the data is not discussed
- References to unknown experimental papers

SiCIBr

FSiSiH₂

CISiSiH₃

BrSiSiH₃

1.61

1.31

1.77 1.86

1.75

Goal: Show how well DFT can predict electron affinities

TABLE I. DZP++ and CCSD(T)/aug-cc-pCVQZ adiabatic electron affinities (AEA) in eV.

	BH&HLYP	BLYP	B3LYP	CCSD(T)/aug- cc-pCVQZ	Expt.
SiH ₂	1.02	1.07	1.19	1.05	1.124 ± 0.02 (Ref. 3)
Si(CH ₃) ₂	0.38	0.46	0.55		
Si(SiH ₃) ₂	1.98	1.95	2.11		
SiF ₂	0.41	0.46	0.57		0.1 ± 0.1 (Ref. 34)
SiCl ₂	1.50	1.38	1.57		
SiBr ₂	1.72	1.56	1.76		
HSiSiH ₃	1.55	1.56	1.70		
CH ₃ SiSiH ₃	1.23	1.24	1.38		
HSiCH ₃	0.65	0.71	0.82		
SiHF	0.76	0.79	0.91		
SiHCl	1.29	1.24	1.40		
SiHBr	1.41	1.33	1.51		
SiFCH ₃	0.40	0.46	0.56		
SiClCH ₃	1.03	0.93	1.07		
SiBrCH ₃	1.09	1.04	1.19		
SiFC1	0.99			0 011	
SiFBr	1.14		₹ul€	2: Sli	des ar

Rule 2: Slides are cheap, but space on a slide is valuable

Larkin and Schaefer J. Chem. Phys. 121, 9361 (2004).

1.94

Adiabatic Electron Affinities (eV)

				CCSD(T)/aug-	
	BH&HLYP	BLYP	B3LYP	cc-pCVQZ	Expt.
SiH ₂	1.02	1.07	1.19	1.05	1.124 ± 0.02 (Damrauer)
SiF ₂	0.41	0.46	0.57	-	0.1 ± 0.1 (Kawamata)

Only include data that will be discussed!

Rule 2: Slides are cheap, but space on a slide is valuable

Usually, a plot is better than a table

Damrauer and Hankin *Chem. Rev.* **95**, 1137 (1995). Kawamata, *et al. J. Chem. Phys.* **105**, 5369 (1996). Larkin and Schaefer *J. Chem. Phys.* **121**, 9361 (2004).

Damrauer and Hankin *Chem. Rev.* **95**, 1137 (1995). Kawamata, *et al. J. Chem. Phys.* **105**, 5369 (1996). Larkin and Schaefer *J. Chem. Phys.* **121**, 9361 (2004).

TABLE I. DZP++ and CCSD(T)/aug-cc-pCVQZ adiabatic electron affinities (AEA) in eV.

	BH&HLYP	BLYP	B3LYP	CCSD(T)/aug- cc-pCVQZ	Expt.
SiH ₂	1.02	1.07	1.19	1.05	1.124 ± 0.02 (Ref. 3)
Si(CH ₃) ₂	0.38	0.46	0.55		
Si(SiH ₃) ₂	1.98	1.95	2.11		
SiF ₂	0.41	0.46	0.57		0.1 ± 0.1 (Ref. 34)
SiCl ₂	1.50	1.38	1.57		
SiBr ₂	1.72	1.56	1.76		
HSiSiH ₃	1.55	1.56	1.70		
CH ₃ SiSiH ₃	1.23	1.24	1.38		
HSiCH ₃	0.65	0.71	0.82		
SiHF	0.76	0.79	0.91		
SiHCl	1.29	1.24	1.40		
SiHBr	1.41	1.33	1.51		
SiFCH ₃	0.40	0.46	0.56		
SiClCH ₃	1.03	0.93	1.07		
SiBrCH ₃	1.09	1.04	1.19		
SiFC1	0.99	0.95	1.10		
SiFBr	1.14	1.08	1.23		
SiClBr	1.61	1.47	1.67		
FSiSiH ₃	1.31	1.31	1.45		
ClSiSiH ₃	1.77	1.69	1.87		
BrSiSiH ₃	1.86	1.75	1.94		

Figures for talks are different from figures for papers

- Labels
- Shape
- Density of information

Rule 2: Slides are cheap, but space on a slide is valuable

Figures should be clean, crisp, and self-contained

If you want your audience to compare two structures or plots, **show both** on the slide!

Problems:

- Low resolution/too small
- Wrong shape
- Unnecessary labels

Rule 2: Slides are cheap, but space on a slide is valuable

Be careful taking screen shots!

Rule 3: A Scientific Talk is a Story

(Research talk)

Beginning

- Set the stage
- Goal: Convince the audience that there is an important gap in our knowledge/abilities
- For a 40 minute talk, have one overarching question comprising 2-3 smaller questions

Middle

- Present your results
- Goal: Clearly and methodically show what you have done to address the gap in our knowledge/abilities

End

- Summarize key results
- Goal: Connect what you have done to the questions raised in the Beginning

Please do not include an 'Outline' slide

Your Conclusions/Summary section is your opportunity to:

- Highlight key results
- Revisit the questions raised in the Introduction
- Suggest broader impacts, future work, etc.

The Summary should be brief and include images

- Develop and practice your 'Elevator pitch'
- When building a talk, remember:

Rule 1: Know your audience!

Rule 2: Slides are cheap, but space on a slide is valuable

Rule 3: A Scientific Talk is a Story

- Building a good talk takes time, effort, and planning
- Devote time to making good figures
- Practice. You get better at giving talks by giving talks