Assessment of model performance

- Likelihood
- AIC
- Absolute measures of model fit
 - Chi-squared test
 - Qq plots
 - Kolmogorov-Smirnov and Cramér-von Mises tests

Likelihood

f(x) = probability density function of x

f(x) dx = Pr (animal was between x and x+dx from the line, given it was detected between 0 and w) for small dx

When distances are exact, the **likelihood** is given by

$$L = \prod_{i=1}^{n} f(\mathbf{x}_i) = f(\mathbf{x}_1) \times f(\mathbf{x}_2) \times \dots \times f(\mathbf{x}_n)$$

 x_i = distance of i^{th} detected animal from the line.

We fit f(x) by finding the values for the parameters of f(x) (or equivalently g(x)) that maximize L (or $\log_e(L)$).

Akaike's Information Criterion

$$AIC = -2\log_e(L) + 2q$$

L is the maximized likelihood (evaluated at the maximum likelihood estimates of the model parameters)

and q is the number of parameters in the model.

- Models need not be special cases of one another
- Select the model with smallest AIC
- Gives a relative measure of fit

Limitations of AIC

Cannot be used to select between models when:

- sample size *n* differs
- truncation distance w differs
- data are grouped, and cutpoints differ
- data are grouped in one analysis and ungrouped in the other

Goodness-of-Fit

- Chi-squared test for grouped (interval) data; if data are exact, we must specify interval cutpoints for this test
- Q-Q plots and related tests for exact data

Chi-squared tests

Define u distance intervals, with n_i detections in interval i, i = 1, ..., u.

Then

$$\chi^2 = \sum_{i=1}^u \frac{(n_i - n\hat{\pi}_i)^2}{n\hat{\pi}_i}$$

where
$$n = \sum n_i$$

and $\hat{\pi}_i$ is the proportion of the area under the estimated pdf, $\hat{f}(x)$, that lies in interval i.

If the model is 'correct': $\chi^2 \sim \chi^2_{u-q-1}$ q = no. of parameters

Chaffinch line transect data

χ^2 goodness-of-fit test

Cell i	Cut Points		Observed Values	Expected Values	Chi-square Values
1	0.000	12.5	16	15.32	0.030
2	12.5	22.5	11	11.63	0.034
3	22.5	32.5	11	10.62	0.013
4	32.5	42.5	8	9.33	0.189
5	42.5	52.5	9	7.87	0.164
6	52.5	62.5	7	6.37	0.062
7	62.5	77.5	3	6.96	2.253
8	77.5	95.0	8	4.91	1.953

Total Chi-square value = 4.6970 Degrees of Freedom = 6.00

Probability of a greater chi-square value, P = 0.58322

The program has limited capability for pooling. The user should judge the necessity for pooling and if necessary, do pooling by hand.

Q-Q Plots and Related Tests

f(x)

Example: Rounding to zero

University of St Andrews

Kolmogorov-Smirnov test

Cramér-von Mises test

Chaffinch line transect Q-Q plot

K-S test and Cramer-von Mises test

Q-Q Plot Summary

- Q-Q plots show goodness-of-fit at "high resolution" without requiring grouping into intervals
- Kolmogorov-Smirnov test and Cramér-von Mises test are goodness-of-fit tests that do not require grouping
- Cramér-von Mises test can be weighted, to give higher weight to x near zero

