Паросочетания с предпочтениями

У каждой вершины можно задать порядок на множестве инцидентных ей ребер: $<_{\it v} \subseteq \it E \times \it E$ (предпочтения).

Паросочетание M называется устойчивым, если не существует $(v_1, v_2) \in E \setminus M$, которое удовлетворяет следующим условиям:

- ▶ ребро (v_1, v_2) у v_1 стоит выше в списке предпочтений, чем его текущая пара $(v_1, v_2') \in M$ (либо v_1 не состоит в паре);
- симметричное условие для v_2 : ребро (v_1, v_2) у него стоит выше в списке предпочтений, чем его текущая пара $(v_1', v_2) \in M$ (либо v_2 не состоит в паре)

Варианты:

- ightharpoonup n мужчин, n женщин, полный порядок $(K_{n,n})$
- ориентированные ребра

Теорема 1 (об устойчивых браках, Гейл и Шепли, 1962)

Во всяком двудольном графе $G=(V_1,V_2,E)$, для всяких предпочтений $\{\leq_v\}_{v\in V_1\cup V_2}$ существует устойчивое паросочетание.

 $extit{Доказательство}.$ Алгоритм, строящий такое паросочетание $(V_1$ — юноши, V_2 — невесты).

Описание алгоритма:

Первый шаг:

- каждый юноша делает предложение первой девушке в своем списке
- каждая девушка заключает помолвку с наиболее предпочтительным женихом из сделавших ей предложение.

Каждый следующий шаг:

- каждый не помолвленный юноша делает предложение следующей девушке в своем списке — неважно, помолвлена она или нет.
- ► Если девушка получает предложение от более предпочтительного жениха, чем ее текущий жених, то она расторгает текущую помолвку и заключает помолвку с наиболее предпочтительным женихом из тех, кто сделал ей предложение.

Постепенно заключаются помолвки, все более предпочтительные для невест, и все менее предпочтительные для женихов. Ни один юноша не делает предложения одной и той же девушке дважды.

Корректность алгоритма:

Конечность алгоритма: Алгоритм завершается, поскольку на каждом шаге хотя бы один юноша делает предложение какой-то девушке, а так как каждый юноша последовательно движется по своему списку предпочтений, общее число шагов ограничено сверху суммой длин этих списков.

Устойчивость полученного паросочетания M: Для всякой несложившейся пары $(v_1, v_2) \in E \backslash M$ рассмотрим следующие случаи.

- v_1 никогда не делал предложения $v_2 \Rightarrow \kappa$ моменту завершения алгоритма у него была более предпочтительная невеста, чем v_2 , и, женившись на ней, менять ее на v_2 он не захочет. Т.е. существует v_2' , т.ч. $(v_1, v_2') \in M$, и это ребро выше в предпочтении v_1 , чем (v_1, v_2) .
- v_1 делал предложение v_2 , но получил отказ \Rightarrow к этому моменту у v_2 был более предпочтительный жених, которого она могла сменить только на еще более предпочтительного. Т.е. $\exists v_1'$, т.ч. $(v_1', v_2) \in M$, и это ребро выше в предпочтении v_2 , чем (v_1, v_2) .
- v_1 делал предложение v_2 , получил согласие, а потом был брошен ею \Rightarrow у v_2 есть более предпочтительный жених. Т.е. $\exists v_1'$, т.ч. $(v_1', v_2) \in M$, и это ребро выше в предпочтении v_2 , чем (v_1, v_2) .

Свойства полученного устойчивого паросочетания

- ightharpoonup для $K_{n,n}$ образуется n пар
- оптимально для мужчин (т.е. каждый мужчина женат на наиболее предпочтительной им женщине среди всех устойчивых паросочетаний)
- самое худшее для женщин (т.е. каждая женщина замужем за наименее предпочтительным мужчиной среди всех устойчивых паросочетаний)

Доказательство оптимальности для мужчин

Возможная пара (m, w): \exists стабильное паросочетание с такой парой.

Наилучший возможный партнер w = best(m) для m: наиболее предпочтительный среди возможных пар (m, w).

Предположим, что в паросочетании GS, выданным алгоритмом, есть мужчина, который не с наилучшей возможной партнершей. Значит, его наилучшая возможная партнерша ему отказала.

Рассмотрим первое событие X, когда мужчине отказала наилучшая возможная партнерша во время работы GS: w = best(m) отказала m, чтобы быть (или продолжать быть) с мужчиной m', более предпочтительным, чем m.

Так как (m,w) возможная пара, то \exists стабильное паросочетание S' с такой парой.

Обозначим партнершу m' в S' за $w' \neq w$. Пара (m', w') — возможная.

Алгоритм $\mathsf{GS} \Rightarrow \mathsf{во} \mathsf{время} \mathsf{события} X$

- ightharpoonup m' еще не был отвергнут $\mathrm{best}(m') \Rightarrow$ и никем из возможных партнерш, в том числе w'
- ightharpoonup m' состовит в паре с w, т.е. мужчине m' отказали все женщины в его списке предпочтений выше w

 \Rightarrow w' после w в списке m'.

Противоречие со стабильностью S': $(m,w),(m',w')\in S'$, но оба w и m' предпочитают друг друга относительно их пар в S'. Оптимальность для мужчин доказана.

Доказательство "наихудшести" для женщин: упражнение (аналогично с использованием оптимальности GS для мужчин) Случай $K_{n,n}$: упражнение.