

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 1 of 76

Full SAR Test Report

Applicant Name: Hanwang Technology Co.,Ltd.

Applicant Address: 3rd Floor, Building 5, No. 8 Dongbeiwang West Road, Haidian

District, Beijing, China

The following samples were submitted and identified on behalf of the client as:

Sample Description	WISEreader
SGS Ref	MM001
Model Number	N618
Final Hardware Version Tested	2.60
Final Software Version Tested	N618_0.001
FCC ID	XQIWR61005
Date Initial Sample Received	09-06,2010
Testing Start Date	09-09,2010
Testing End Date	09-09,2010

According to:

FCC 47CFR § 2.1093, IEEE Std C95.1-2005

IEEE1528-2003, OET Bulletin 65 Supplement C

RSS-102-2010

Comments/ Conclusion:

The configuration tested complied to the certification requirements specified in this report.

Signed for on behalf of SGS

Project Manager

Technical Manager

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/terms and conditions.htm. and, for electronic format documents to Terms and Conditions for Electronic Documents at www.sgs.com/terms-e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained heron reflects the company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligation under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorised alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

SHGSM

SGS-CSTC Standards Technical Services(Shanghai) Co, Ltd..
Testing Center-GSM Laboratory

3rd Building, No. 889, Yishan Road, Shanghai, China 200233 中国•上海·徐汇区宜山路 889 号 3 号楼 邮編: 200233 t (86 -21) 61402666*2736

f (86 -21) 54500149

149 ww.cn.sgs.com

t (86 -21) 61402666*2736 f (86 -21) 54500149 e <u>sgs.china@sgs.com</u>

Table of Contents

Cha	nge H	History	3
1.	Repo	ort Overview	4
2.	Test	Lab Declaration or Comments	4
3.	Appl	licant Declaration or Comments	4
4.	Full	Test Report	4
5.	Parti	ial Test Report	4
6.	Meas	surement Uncertainty	4
7.	Testi	ing Environment	6
8.	Prima	nary Test Laboratory	6
9.	Detai	nils of Applicant	6
10.		nils of Manufacturer	
11.	Othe	er testing Locations	6
12.		erenced Documents	
13.		nary Laboratory Accreditation Details	
14.		Shanghai Wireless Telecommunications lab, Personnel	
15.	Test	Equipment Information	10
	15.1	SPEAG DASY4	10
	15.2	The SAR Measurement System	
	15.3	Isotropic E-field Probe ES3DV3	13
	15.4	SAM Twin Phantom	14
	15.5	Device Holder for Transmitters	15
16.	Detai	niled Test Results	16
	16.1	Summary of Results	16
	16.2	Maximum Results	17
	16.3	Operation Configurations	17
	16.4	Measurement procedure	19
	16.5	Detailed Test Results	21
17.	ldent	tification of Samples	31
18.	Phot	tographs of EUT	32
Anr	nex A	Photographs of Test Setup	33
	nex B	Tissue Simulant Liquid	
Anr	nex C	SAR System Validation	37
Anr	nex D	Description of Test Position	40
Anr	nex E	Calibration certificate	
	Anne	ex E.1 Probe Calibration certificate	
	Anne	ex E.2 DAE Calibration certificate	54
	Anne	ex E.3 Dipole Calibration certification	59
Anr	nex F	Additional SAR Probe Validation	68
ENI	OFR	REPORT	76

Report No.: GSM10387085S01

Issue Date: 09-16, 2010

Page 3 of 76

Change History

Version	Change Contents	Author	Date
V1.0	First edition	David Lee	09-16, 2010

SHGSM

Member of the SGS Group (Société Générale de Surveillance)

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 4 of 76

Report Overview

This report details the results of testing carried out on the samples listed in section 17, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of SGS Shanghai Wireless Telecommunications lab or testing done by SGS Shanghai Wireless Telecommunications lab made in connection with the distribution or use of the tested product must be approved in writing by SGS Shanghai Wireless Telecommunications lab.

2. **Test Lab Declaration or Comments**

None

3. **Applicant Declaration or Comments**

None

Full Test Report

A full test report contains, within the results section, all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

5. Partial Test Report

A partial test report contains within the results section a sub-set of all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

6. **Measurement Uncertainty**

Measurements and results are all in compliance with the standards listed in section 12 of this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/fail criteria.

Page 5 of 76

A	b1	С	d	e = f(d,k)	g	i = cxg/e	k
Lla containte Commanant	Section	Tol	Prob .	Div.	Ci	1g	Vi
Uncertainty Component	in P1528	(%)	Dist.		(1g)	ui (%)	(Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.3	· ∞
Axial isotropy	E.2.2	0.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	0.20	∞
hemispherical isotropy	E.2.2	2.6	R	$\sqrt{3}$	$\sqrt{c_p}$	1.06	∞
Boundary effect	E.2.3	0.8	R	$\sqrt{3}$	1	0.46	∞
Linearity	E.2.4	0.6	R	$\sqrt{3}$	1	0.35	∞
System detection limit	E.2.5	0.25	R	$\sqrt{3}$	1	0.15	∞
Readout electronics	E.2.6	0.3	N	1	1	0.3	∞
Response time	E.2.7	0	R	$\sqrt{3}$	1	0	∞
Integration time	E.2.8	2.6	R	$\sqrt{3}$	1	1.5	∞
RF ambient Condition –Noise	E.6.1	3	R	$\sqrt{3}$	1	1.73	8
RF ambient Condition - reflections	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
Probe positioning- mechanical tolerance	E.6.2	1.5	R	$\sqrt{3}$	1	0.87	∞
Probe positioning- with respect to phantom	E.6.3	2.9	R	$\sqrt{3}$	1	1.67	∞
Max. SAR evaluation	E.5.2	1	R	$\sqrt{3}$	1	0.58	∞
Test sample positioning	E.4.2	4	N	1	1	3.7	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.6	∞
Output power variation –SAR drift measurement	6.62	5	R	$\sqrt{3}$	1	2.89	∞
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	$\sqrt{3}$	1	2.31	8
Liquid conductivity - deviation from target values	E.3.2	5	R	$\sqrt{3}$	0.64	1.85	∞
Liquid conductivity - measurement uncertainty	E.3.2	4	N	1	0.64	2.56	5
Liquid permittivity - deviation from target values	E.3.3	5	R	$\sqrt{3}$	0.6	1.73	∞
Liquid permittivity			1		0.6		5
- measurement uncertainty	E.3.3	4	N	1	0.0	2.40	
Combined standard uncertainty				RSS		10.71	430
Expanded uncertainty				1.00		10.71	100
(95% CONFIDENCE INTERVAL)				K=2		21.43	

7. Testing Environment

Normal Temperature	+20 to +24 °C
Relative Humidity	35 to 60 %

8. Primary Test Laboratory

Name:	Wireless Telecommunications Laboratory
	SGS-CSTC Standards Technical Services(Shanghai) Co., Ltd
Address:	9F, 3 rd Building, No.889, Yishan Rd, Xuhui District, Shanghai,
	China 200233
Telephone:	+86 (0) 21 6140 2666
Fax:	+86 (0) 21 5450 0149
Internet:	http://www.cn.sgs.com
Contact:	Mr. Peter Xue
Email:	peter.xue@sgs.com

9. Details of Applicant

Name:	Hanwang Technology Co.,Ltd.	
Address:	3rd Floor,Building 5,No.8 Dongbeiwang West Road,	
Address.	Haidian District, Beijing, China	
Telephone:	010-82786760	
Fax	010-82786765	
Contact:	Hanwang Technology Co.,Ltd.	
Email:	lixm@hanwang.com.cn	

10. Details of Manufacturer

Name:	Hanwang Technology Co.,Ltd.	
Address:	3rd Floor,Building 5,No.8 Dongbeiwang West Road,	
Address.	Haidian District,Beijing,China	
Telephone:	010-82786760	
Fax	010-82786765	
Contact:	Hanwang Technology Co.,Ltd.	
Email:	lixm@hanwang.com.cn	

11. Other testing Locations

Name:	Not Required
Address:	
Telephone:	
Contact:	
Fax	

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 7 of 76

Email:

12. Referenced Documents

The Equipment under Test (EUT) has been tested at SGS's (own or subcontracted) laboratories according to FCC 47CFR § 2.1093, IEEE Std C95.1-2005, IEEE1528-2003, OET Bulletin 65 Supplement C

The following table summarizes the specific reference documents such as harmonized standards or test specifications which were used for testing as SGS's (own or subcontracted) laboratories.

Identity	Document Title	
FCC 47CFR § 2.1093	Radiofrequency radiation exposure evaluation:portable devices	
IEEE Std C95.1-2005	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.	2005
IEEE1528-2003	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	2003
OET Bulletin 65 Supplement C	Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions	2001
KDB 447498 D01	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies	-
KDB 248227 D01	SAR Measurement Procedures for 802.11a/b/g Transmitters	-

Human Exposure	Uncontrolled Environment General Population
Spatial Peak SAR	1.60 W/kg (averaged over a mass of 1g)

Table 12-1 RF Exposure Limits

Notes:

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

13. Primary Laboratory Accreditation Details

14. SGS Shanghai Wireless Telecommunications lab, Personnel

SGS Wireless Shanghai Project Management Team and list of approved Testers for SGS Wireless Shanghai.

Surname	Forename	Initials
CAI	CAI	CAICAI
Xue	Peter	PETERXUE
Xu	Anya	ANYA
Ni	Lemon	LEMONNI
Тао	Kevin	KEVINTAO
Wang	Lawrence	LAWRENCE
Zhang	Sean	SEANZH
Ruan	Roger	ROGER
Tan	Terry	TERRY
Zhang	Zenger	ZENGER
Tang	Eva	EVATANG
Но	James	JAMESHO
Tang	Kenny	KENNY
Hailiang	Cai	HAILIANG
Chan	Hik Kwong	нкс
Nie	Neo	Neo
Gong	Tina	TINA
Lee	David	David

Version 2010-05-10

15. Test Equipment Information

15.1 **SPEAG DASY4**

Test Platform	SPEAG DASY4 Professional								
Location	SGS SH Lab #8	SGS SH Lab #8							
Manufacture	SPEAG	SPEAG							
	SAR Test System (Frequency range 300N	/IHz-3GHz)						
Description		00, 2000, 2450 freque	ncy band						
		HAC Extension							
Software Reference	DASY4: V4.7 Build								
	SEMCAD: V1.8 Bu	ild 186							
Hardware Reference		1	<u> </u>	T					
Equipment	Model	Serial Number	Calibration Date	Due date of calibration					
Robot	RX90L	F03/5V32A1/A01	n/a	n/a					
Phantom	SAM 12	TP-1283	n/a	n/a					
DAE	DAE3	569	2009-11-18	2010-11-17					
E-Field Probe	ES3DV3	3088	2009-11-19	2010-11-18					
Validation Kits	D2450V2	733	2009-11-25	2010-11-24					
Agilent Network Analyzer	E5071B	MY42100549	2009-11-25	2010-11-24					
RF Bi-Directional Coupler	ZABDC20-252H	n/a	2010-05-21	2011-05-20					
Agilent Signal Generator	E4438C	14438CATO-19719	2009-11-30	2010-11-29					
Mini-Circuits Preamplifier	ZHL-42	D041905	2009-11-30	2010-11-29					
Agilent Power Meter	E4416A	GB41292095	2009-11-25	2010-11-24					
Agilent Power Sensor	8481H	MY41091234	2009-11-25	2010-11-24					
R&S Power Sensor	NRP-Z92	100025	2010-04-12	2011-04-11					
R&S Universal Radio Communication Tester	CMU200	103633	2009-11-26	2010-11-25					

Page 11 of 76

15.2 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. 15-1.

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ES3DV3 3088 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY4 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension is for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

Fig. 15-1 SAR System Configuration

- Ϋ The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- Ϋ A computer operating Windows 2000.

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 12 of 76

- Ϋ DASY4 software.
- Ϋ Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- Ϋ The SAM twin phantom enabling testing left-hand, right-hand and BodyWorn usage.
- Ÿ The device holder for handheld mobile phones.
- Ÿ Tissue simulating liquid mixed according to the given recipes.
- Ϋ Validation dipole kits allowing to validating the proper functioning of the system

Issue Date: 09-16, 2010

Page 13 of 76

15.3 Isotropic E-field Probe ES3DV3

Fig. 15-2 E-field Probe

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range $5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

> Dosimetry in strong gradient fields Compliance tests of mobile phones

15.4 **SAM Twin Phantom**

Fig. 15-3 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- · Right hand
- Flat phantom

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Phantom specification:

Description The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM)

phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the

dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids

by teaching three points with the robot.

Shell Thickness 2+0.2mm, Center ear point: 6+0.2mm

Filling Volume Approx.25 liters

Dimensions Length: 1000mm, Width: 500mm, Height: 850mm

Member of the SGS Group (Société Générale de Surveillance)

15.5 **Device Holder for Transmitters**

Fig. 15-4 Device Holder for Transmitters

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

16. Detailed Test Results

16.1 **Summary of Results**

16.1.1 Measurement of RF conducted Power

Unit:dBm

	Mode	WiFi		
Band	d Data rate Channel		Peak	Average
		1	11.86	9.90
802.11b 1Mbps	1Mbps	6	12.43	10.82
		11	12.46	11.25
		1	17.23	10.12
802.11g	12Mbps	6	17.91	10.95
		11	17.72	11.65

16.1.2 Measurement of SAR average value

				Average	d SAR over 1	g (W/kg)	SAR	
Band	EUT Position	Mode	Test Configuration	CH1	CH6	CH11	limit 1g	Verdict
				2412MHz	2437MHz	2462MHz	(W/kg))	Passed Passed Passed
			Rear of EUT facing phantom	0.196	0.295	0.246	1.6	Passed
			Front of EUT facing phantom		0.195		1.6	Passed
			Top of EUT facing phantom	-	0.00746	-	1.6	Passed
WiFi	Body	802.11b	Bottom of EUT facing phantom		0.011		1.6	Passed
	Worn		Left of EUT facing phantom		0.00978		1.6	Passed
			Right of EUT facing phantom	-	0.076		1.6	Passed
	Worst 6 802.1 802		Rear of EUT facing phantom		0.269		1.6	Passed

16.2 **Maximum Results**

The maximum measured SAR values for Body configuration are given in section 16.2.1.

16.2.1 Body Configuration

Frequency Band	EUT Position	Conducte d Power (dBm)	SAR, Averaged over 1g (W/kg)	Power Drift (dB)	SAR limit (W/kg)	Verdict
802.11b	Rear of EUT facing phantom/Mid	12.43	0.295	0.149	1.6	Passed

16.2.2 Maximum Drift

Maximum Drift during measurement	0.305
----------------------------------	-------

16.2.3 Measurement Uncertainty

Extended Uncertainty (k=2) 95%	21.43%
, , , , , , , , , , , , , , , , , , , ,	

16.3 **Operation Configurations**

The EUT is measured using chipset based test mode software to ensure the results are consistent and reliable.

The tests are performed in the 802.11b/g mode.

1. The modulations and data rates defined for 802.11a/b/g transmitters are identified in the following table

802.11a/g OFD	M,802.11g DSSS	802.	11 b/g		
Data Rate (Mbps)		Modulation	Data Rate(Mbps)	Modulation	
full	half	quarter		nate(wbps)	
6	3	1.5	BPSK	1	DBPSK
9	4.5	2.25	BPSK	2	DQPSK
12	6	3	QPSK	5.5	CCK/PBCC
18	9	4.5	QPSK	11	CCK/PBCC
24	12	6	16-QAM	22	ERP-PBCC
36	18	9	16-QAM	33	ERP-PBCC
48	24	12	64-QAM		
54	27	13.5	64-QAM		

- 2. The 802.11b mode is tested at 1,6,11 channels.
- 3. The 802.11g mode is checked at worst case of 802.11b mode.
- 4. The EUT is at the lowest data rate during test.
- 5. Test reduction has been adopted according to conducted output power and produced SAR level:

Low and High channel SAR are optional if SAR value produced in the middle channel is 3dB lower than the applicable SAR limit;

- 6. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which within 2dB of the highest peak
- 7. Test positions of EUT (the distance below are all 0mm)

Page 19 of 76

16.4 Measurement procedure

Step 1: Power reference measurement

The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

SHGSM

SGS-CSTC Standards Technical Services(Shanghai) Co, Ltd..
Testing Center-GSM Laboratory

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 20 of 76

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 7*7*7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the center of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification) the extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points (10*10*10) were interpolated to calculate the average. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Power reference measurement (drift)

The SAR value at the same location as in step 1 was again measured. (If the value changed by more than 5%, the evaluation should be done repeatedly)

16.5 **Detailed Test Results**

16.5.1 802.11b- BackSide-Middle

Date/Time: 2010-9-9 19:00:07

Test Laboratory: SGS-GSM MM01 WiFi Back Side Middle

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (111x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.339 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.13 V/m; Power Drift = 0.149 dB

Peak SAR (extrapolated) = 0.830 W/kg

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.123 mW/g

Maximum value of SAR (measured) = 0.328 mW/g

16.5.2 802.11b-FrontSide-Middle

Date/Time: 2010-9-9 18:28:26

Test Laboratory: SGS-GSM MM01 WiFi Front Side Middle

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (111x141x1): **Measurement grid: dx=15mm, dy=15mm**

Maximum value of SAR (interpolated) = 0.220 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.54 V/m; Power Drift = 0.244 dB

Peak SAR (extrapolated) = 0.448 W/kg

SAR(1 g) = 0.195 mW/g; SAR(10 g) = 0.091 mW/g

Maximum value of SAR (measured) = 0.220 mW/g

0 dB = 0.220 mW/g

SHGSM

SGS-CSTC Standards Technical Services(Shanghai) Co, Ltd.. Testing Center-GSM Laboratory

3rd Building, No. 889, Yishan Road, Shanghai, China 200233

t (86 -21) 61402666*2736

f (86 -21) 54500149 ww.cn.sgs.com

中国•上海·徐汇区宜山路 889 号 3 号楼 邮编: 200233 t (86-21) 61402666*2736 f (86-21) 54500149 e sgs.china@sgs.com

16.5.3 802.11b-TopSide-Middle

Date/Time: 2010-9-9 20:20:12

Test Laboratory: SGS-GSM MM01 WiFi Top Side Middle

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (111x61x1): **Measurement grid: dx=15mm, dy=15mm**

Maximum value of SAR (interpolated) = 0.009 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.92 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 0.013 W/kg

SAR(1 g) = 0.00746 mW/g; SAR(10 g) = 0.00393 mW/g

Maximum value of SAR (measured) = 0.009 mW/g

0 dB = 0.009 mW/g

16.5.4 802.11b-BottomSide-Middle

Date/Time: 2010-9-9 20:44:03

Test Laboratory: SGS-GSM MM01 WiFi Bottom Side Middle

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (111x61x1): **Measurement grid: dx=15mm, dy=15mm**

Maximum value of SAR (interpolated) = 0.013 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.86 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 0.022 W/kg

SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00628 mW/gMaximum value of SAR (measured) = 0.012 mW/g

0 dB = 0.012 mW/g

SHGSM

SGS-CSTC Standards Technical Services(Shanghai) Co, Ltd.. Testing Center-GSM Laboratory

3rd Building, No. 889, Yishan Road, Shanghai, China 200233 t (86 -21) 61402666*2736

f (86 -21) 54500149 ww.cn.sgs.com

中国•上海·徐汇区宜山路 889 号 3 号楼 邮编: 200233 t (86-21) 61402666*2736 f (86-21) 54500149 e sgs.china@sgs.com

16.5.5 802.11b-RightSide-Middle

Date/Time: 2010-9-9 19:56:23

Test Laboratory: SGS-GSM MM01 WiFi Right Side Middle

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (61x151x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.077 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.48 V/m; Power Drift = 0.083 dB

Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.076 mW/g; SAR(10 g) = 0.034 mW/gMaximum value of SAR (measured) = 0.086 mW/g

0 dB = 0.086 mW/g

16.5.6 802.11b-LeftSide-Middle

Date/Time: 2010-9-9 19:32:51

Test Laboratory: SGS-GSM MM01 WiFi Left Side Middle

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (61x151x1): **Measurement grid: dx=15mm, dy=15mm**

Maximum value of SAR (interpolated) = 0.011 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.12 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.00978 mW/g; SAR(10 g) = 0.00517 mW/g

Maximum value of SAR (measured) = 0.011 mW/g

0 dB = 0.011 mW/g

SHGSM

SGS-CSTC Standards Technical Services(Shanghai) Co, Ltd.. Testing Center-GSM Laboratory

3rd Building, No. 889, Yishan Road, Shanghai, China 200233 中国•上海·徐汇区宜山路 889 号 3 号楼 邮编: 200233 t (86-21) 61402666*2736 f (86-21) 54500149 e sgs.china@sgs.com

t (86 -21) 61402666*2736

f (86 -21) 54500149 ww.cn.sgs.com

16.5.7 802.11b-BackSide-High

Date/Time: 2010-9-9 21:41:23

Test Laboratory: SGS-GSM MM01 WiFi Back Side High

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2462 MHz; $\sigma = 1.99 \text{ mho/m}$; $\epsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

High/Area Scan (111x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.298 mW/g

High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.71 V/m; Power Drift = 0.160 dB

Peak SAR (extrapolated) = 0.687 W/kg

SAR(1 g) = 0.246 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.269 mW/g

0 dB = 0.269 mW/g

SGS-CSTC Standards Technical Services(Shanghai) Co, Ltd.. Testing Center-GSM Laboratory

3rd Building, No. 889, Yishan Road, Shanghai, China 200233 中国•上海·徐汇区宜山路 889 号 3 号楼 邮编: 200233 t (86-21) 61402666*2736 f (86-21) 54500149 e sgs.china@sgs.com

t (86 -21) 61402666*2736

f (86 -21) 54500149 ww.cn.sgs.com

16.5.8 802.11b- BackSide -Low

Date/Time: 2010-9-9 21:11:24

Test Laboratory: SGS-GSM MM01 WiFi Back Side Low

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2412 MHz; $\sigma = 1.93 \text{ mho/m}$; $\epsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Low/Area Scan (111x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.236 mW/g

Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.14 V/m; Power Drift = 0.305 dB

Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.196 mW/g; SAR(10 g) = 0.086 mW/g

Maximum value of SAR (measured) = 0.220 mW/g

0 dB = 0.220 mW/g

16.5.9 802.11q-BackSide-Middle

Date/Time: 2010-9-9 22:14:56

Test Laboratory: SGS-GSM MM01 802.11g Back Side Middle

DUT: AA01; Type: WiFi; Serial: MM001AA01

Communication System: WiFi(2450); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid/Area Scan (111x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.371 mW/g

Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.84 V/m; Power Drift = 0.194 dB

Peak SAR (extrapolated) = 0.749 W/kg

SAR(1 g) = 0.269 mW/g; SAR(10 g) = 0.112 mW/g

Maximum value of SAR (measured) = 0.302 mW/g

0 dB = 0.302 mW/g

17. Identification of Samples

Product Name	WISEreader					
Marketing Name	N618					
Final Hardware Version	2.60	2.60				
Final Software Version	N618_0.001					
Normal Voltage	5.0V					
High Voltage	5.5V	5.5V				
Low Voltage	4.5V	4.5V				
Antenna Type	Inner antenna					
IMIE: E	802.11b	Tx/Rx: 2.412~2.472GHz				
WiFi Frequency Bands	802.11g	Tx/Rx: 2.412~2.472GHz				
Reference Number	AA01					
IMEI						
Date of receipt	09-06,2010					
Date of Testing Start	09-09,2010					
Date of Testing End	09-09,2010					

Fig.17-1 Front View

Fig.17-2 Back View

Photographs of Test Setup Annex A

Fig.A-1 Photograph of the SAR measurement System

Fig.A-3 Photograph of the Tissue Simulant Liquid depth 15cm for Body Worn

Fig.A-4a Photograph of Back side of the EUT status

Fig.A-4b Photograph of Front side of the EUT status

Fig.A-4c Photograph of Left side of the EUT status

Issue Date: 09-16, 2010

Fig.A-4d Photograph of Right side of the EUT status

Fig.A-4e Photograph of Top side of the EUT status

Fig.A-4f Photograph of Bottom side of the EUT status

Tissue Simulant Liquid Annex B

Annex B.1 Recipes for Tissue Simulant Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Frequency (MHz)	83	35	90	00	1800	0-2000	24	150
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Ingredient (% by weight)								
Water	40.30	50.75	40.30	50.75	55.24	70.17	62.7	73.26
Salt (NaCl)	1.38	0.94	1.38	0.94	0.31	0.39	0.5	0.04
Sucrose	57.90	48.21	57.90	48.21	0	0	0	0
HEC	0.24	0	0.24	0	0	0	0	0
Bactericide	0.18	0.10	0.10	0.10	0	0	0	0
DGBE	0	0	0	0	44.45	29.44	36.8	26.7
		Measure	ement die	lectric par	ameters			
Dielectric Constant	41.9	55.0	41.1	54.5	39.2	53.2	39.8	52.5
Conductivity (S/m)	0.93	0.97	1.04	1.06	1.45	1.59	1.88	1.78
Target values								
Dielectric Constant	41.5	55.2	41.5	55.0	40.0	53.3	39.2	52.7
Conductivity (S/m)	0.90	0.97	0.97	1.05	1.40	1.52	1.80	1.95

Salt: 99⁺% Pure Sodium Chloride

Sucrose: 98⁺% Pure Sucrose

Water: De-ionized, $16 \text{ M}\Omega^+$ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Table B-1 Recipe of Tissue Simulat Liquid

Annex B.2 Measurement for Tissue Simulant Liquid

The dielectric properties for this Tissue Simulant Liquids were measured by using the Agilent Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5071B Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was 22±2°C.

Frequency (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (°C)
2450	Body	Recommended Limit	52.7±5% (50.07~55.34)	1.95±5% (1.85~2.05)	22±2
		Measured, 09-09,2010	51.87	1.98	21.9

Table B-2 Measurement result of Tissue electric parameters

SAR System Validation Annex C

The microwave circuit arrangement for system verification is sketched in Fig. C-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 835&1900MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table C-1 (A power level of 250mw was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Fig. C-1 the microwave circuit arrangement used for SAR system verification

- A. Agilent E4438C Signal Generator
- B. Mini-Circuit ZHL-42 Preamplifier
- C. Mini-Circuit VLF-2500+ Low Pass Filter
- D. Mini-Circuits ZABDC20-252H-N+ Bi-DIR Coupling
- PM1. Power Sensor NRP-Z92
- PM2. Agilent Model E4416A Power Meter
- PM3. Power Sensor NRP-Z92

Issue Date: 09-16, 2010

Page 38 of 76

Validation	Frequency	Tissue	Limi	it/Measurement		
Kit	(MHz)	Type	Condition	Recommended/Measured	1g	
			Nomalized to 1mW(for nominal	Recommended Limit	50.28±10%	
			Head TSL parameters)	Recommended Limit	(45.25-55.31)	
D2450V2	2450	Body	Nomalized to 1W(for nominal		51.6	
			Head TSL parameters)	-	31.0	
			250mW input power	Measured, 09-09, 2010	12.8	

Table C-1 SAR System Validation Result

Page 39 of 76

System Validation for 2450MHz-Body

Date/Time: 2010-9-9 13:29:50

Test Laboratory: SGS-GSM System-Validation-D2450-Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:733 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450-Body Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\epsilon_r = 51.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.2, 4.2, 4.2); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.1 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.91 mW/g

Maximum value of SAR (measured) = 14.3 mW/g

0 dB = 14.3 mW/g

Annex D **Description of Test Position**

Annex D.1 **SAM Phantom Shape**

Figure D-1 front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup of Figure D-2. Note: The center strip including the nose region has a different thickness tolerance.

Figure D-2 Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

Figure D-3 Close-up side view of phantom showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

Figure D-4 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Page 41 of 76

Annex D.2 **EUT constructions**

Figure D-5a Handset vertical and horizontal reference lines-"fixed case"

Figure D-5b Handset vertical and horizontal reference lines-"clam-shell case"

Annex D.3 Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position" see Figure 1-7). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE;
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until the phone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Annex D.4 Definition of the "tilted" position

- a) Position the device in the "cheek" position described above;
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

Page 42 of 76

Figure D-6 Definition of the reference lines and points, on the phone and on the phantom and initial position

Figure D-7 "Cheek" and "tilt" positions of the mobile phone on the left side

Annex E **Calibration certificate**

Annex E.1 Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Katibrierdienst Service suisse d'étalonnage C Servizio svizzero di tareture Saiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Appreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

SGS SH (Auden) Certificate No: ES3-3088 Nov09 CALIBRATION CERTIFICATE ES3DV3 - SN:3088 Object Calibration procedure(s) QA CAL-01.v5, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes November 19, 2009 Califoration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the confidence. All colibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (MATE or load for calibration) Primary Stancards ID# Cal Date (Certificate No.) Scheduled Calibration Famou moder F44193 GB41293874 1-Apr-09 (No. 217-31030) Apr-10 Fower sensor E4412A MY41495277 1-Apr-06 (No. 217-01030) Fower sensor Edit 125 MV41458087 1-Apr-08 (No. 217-01030) Apr-10 Reference 3 dB Attanuator SN: 85054 (3c) 31-Mer-09 (No. 217-01026) Mar-50 Reference 20 dB Allemuator SN. 85066 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Reference Probe ES3DV2 Sh-3013 2-Jan-09 (No. ES3-3013 Jan09) Jan-10 SN: 660 29-Sep-09 (No. DAE4-630, Sep09) Sep. 10 Secondary Stancards Check Date (in house) Scheduled Check US3064211017C0 RF generator HP 3646C 4-Aug-99 (in house theck Oct-09) In house chack: Oct-11 Network Analyzer HP 8763E US37390586 18 Oct-01 (in house check Oct-00) In house check: Ort 10 Calibrated by: Jeton Kastrati Laboratory Technician Katia Policyio Technical Manager Approved by: bsued: November 24, 2009 This calibration cartificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No. ES3-3088 Nov09

Page 1 of 11

Issue Date: 09-16, 2010

Page 44 of 76

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 9004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accomplishing No.: SCS 108

Accredited by the Swiss Accreditation Sprvice (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,Z ConvF

DCP

OF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

A. B. C. Polarization o crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

e rotation around probe axis

Polarization 9

3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., θ = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement

Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-hold devices used in close proximity to the ear [frequency range of 300 MHz to 3 GHz]*, February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; 1> 1800 MHz; R22 waveguide). NORMx.y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of Convi-.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media; VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 850 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Sonerical isotropy (3D deviation from isotropy): in a field of low gradients realized using a fat phantom exposed by a patch antenna
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3088_Nov09

Page 2 of 11

SHGSM

Issue Date: 09-16, 2010

Page 45 of 76

ES3DV3 SN:3088

November 19, 2009

Probe ES3DV3

SN:3088

Manufactured:

July 20, 2005

Last calibrated:

December 22, 2008 November 19, 2009

Recalibrated:

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3088 NovC9

Page 3 of 11

Issue Date: 09-16, 2010

Page 46 of 76

ES3DV3 SN:3088

November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ⁴	1.32	1.27	1.26	± 10.1%
DCP (nW) ⁵	94.2	94.4	94.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^c (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300.0	±1.5%
	2.22	10000	Y	0.00	0.00	1.00	300.0	A CONTRACTOR
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Cartificate No. ES3-3088, Nov09

Page 4 of 11

^{*} The uncertainties of NermX,Y,Z do not affect the E² field uncontainty inside TEL (see Pages 6 and 6).

^D Numerical linearization parameter uncertainty not required.

^{*} Unsertainty is determined, using the maximum day at on from linear response applying recolangular distribution and is expressed for the square of the field value.

Issue Date: 09-16, 2010

Page 47 of 76

ES3DV3 SN:3088

November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Head Tissue Simulating Media

r [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvFX C	onvFY C	onvF Z	Alpha	Depth Unc (k=2)
900	£ 50 / £ 100	41.5 ± 5%	$0.97 \pm 5\%$	5.84	5.84	5.84	0.90	1.06 ± 11.0%
1810	± 50 / ± 100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	5.00	5.00	5.00	0.38	1.75 ± 11.0%
1903	+ 50 / + 100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	4.97	4.97	4.97	0.48	1.53 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.40	4.40	4.40	0.43	1.79 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at entiretion in equancy and the uncertainty to the Indicated frequency band.

Page 5 of 1

Page 48 of 76

ES3DV3 SN:3088

November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz]	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Dopth Unc (k=2)
500	±50/±100	$56.0 \pm 5\%$	$1.05\pm5\%$	5.88	5.68	5.68	0.97	1.07 ±11.0%
1810	±50/±100	$53.3\pm5\%$	1.52 ± 5%	4.76	4.76	4.76	0.41	1.88 ±11.0%
1900	±50/±100	$53.3 \pm 5\%$	1.52 ± 5%	4.58	4.58	4.58	0.36	2.13 ±11.0%
2450	±50/±100	52.7 ± 5%	1.95 ± 5%	4.20	4.20	4.20	0.99	1.04 + 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSE of the ConvF uncertainty at emitmation frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3088_Nov09

Page 6 of 11

Issue Date: 09-16, 2010

Page 49 of 76

ES3DV3 SN:3088

November 19, 2009

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX. Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: E53-3088_Nov09

Page 7 of 11

SHGSM

Certificate No: ES3-3088_Nov09

Page 8 of 11.

SHGSM

Page 51 of 76

ES3DV3 SN:3088

November 19, 2009

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3366 Nov09

Page 9 of 11

ES3DV3 SN:3088 November 19, 2009

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (¢, 9), f = 900 MHz

Uncertainty of Spherical isotropy Assessment: ± 2.6% (k=2)

Certificate No. ES3-3066_Nov09

Page 10 of 11

SHGSM

Issue Date: 09-16, 2010

Page 53 of 76

ES3DV3 SN:3088

November 19, 2009

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	- 2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3085_Nov09

Page 11 of 11

Page 54 of 76

Annex E.2 DAE Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

SGS - SH (Auden)

Certificate No: DAE3-569 Nov09

CALIBRATION CERTIFICATE DAE3 - SD 000 D03 AA - SN: 569 QA CAL-06,v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Galibration date: November 18, 2009 This collibration certificats documents the traceability to national standards, which realize the physical units of measurements (\$1). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory locality; environment temperature (22 ± 3 °C and humicity < 70%). Colibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cell Date (Certificate No.) Scheduled Calibration Keithley Multimote: Type 2001 SN: 0610278 1-Oct-09 (No: 9055) Oct-10 Secondary Standards Check Date (in house) Scheduled Check SE UMS 006 AB 1004 05-Jun-09 (in house check) In house check: Jun-10 Calibrated by: Dominique Steffen Technician Approved by: Fin Bon host RAD Director Issued November 18, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No. DAE3-569 Nov09

Page 1 of 5

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 55 of 76

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Appreditation Sorvice (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

Connector angle

DAE

data acquisition electronics.

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement,
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage
 - AD Convertor Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating

Certificate No: DAE3-569_Nov09

Page 2 of 5

Issue Date: 09-16, 2010

Page 56 of 76

DC Voltage Measurement

A/D · Converter Resolution nominal High Range: 1LSB =

 $6.1 \mu V$ full range = -100...+300 mV full range = -1.....+3mV Low Range: 1LSB = 61nV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	404,766 ± 0.1% (k=2)	404.352 ± 0.1% (k=2)	404.129 ± 0.1% (k=2)
Low Range	3.94150 ± 0.7% (k=2)	3.93629 ± 0.7% (k=2)	3.95193 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	264.0 ° ± 1 °

Curtificate No: DAE3-569_Nov09

Page 3 of 5

Page 57 of 76

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	200000.4	3.78	0.00
Channel X + Input	20001.03	0.33	0.00
Channel X - Input	-19995.39	5.31	-0.03
Channel Y + Input	200010,9	3.93	0.00
Channel Y + Input	19997,76	-2.84	-0.01
Channel Y - Input	-20002.85	-3.05	0.02
Channel Z + Input	200008.6	4.33	0.00
Channel Z + Input	19999.52	-0.88	-0.00
Channel Z - Input	-20001.79	0.01	0.01

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	1999.7	-0.28	-0.01
Channel X	+ Input	199.60	-0.40	-0.20
Channel X	- Input	-201.13	-1.23	0.62
Channel Y	+ Input	2000.0	0.02	0.00
Channel Y	+ Input	199.28	-0.82	-0.41
Channel Y	- Input	-201.40	-1.50	0.75
Channel Z	+ Input	1999.9	-5.17	-0.01
Channel Z	+ Input	196,61	-1,39	-0.70
Channel Z	- Input	201.65	-1.75	0.88

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-3.14	-5.24
	- 200	6.52	4.85
Channel Y	200	7.98	7.35
	- 200	-8.52	-8.82
Channel Z	200	-5.05	-5.64
	- 200	3.96	4.09

3. Channel separation

Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
200	-	2.19	0.12
200	2.65		3.55
200	1.86	-0.43	2
	200 200	200 - 200 2.65	200 - 2.19 200 2.65

Certificate No: DAE3-569 Nov09

Page 4 of 5

Page 58 of 76

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16392	14988
Channel Y	15762	16421
Channel Z	16298	16514

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.18	-1.21	0.79	0.33
Channel Y	-0.51	-1.80	0.79	0.30
Channel Z	-0.97	-2.37	-0.10	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.8
Channel Y	0.2000	204.0
Channel Z	0.2001	204.9

8. Low Battery Alarm Voltage (verified during pre-test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	17.9	
Supply (- Vcc)	-7.6	-

9. Power Consumption (verified during one test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-U.01	-5	-9

Certificate No: DAE3-569_Nov09

Page 5 of 5

Annex E.3 Dipole Calibration certification

D2450V2

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-SH (Auden)

Accreditation No.: SCS 108

Certificate No: D2450V2-733 Nov09

Object	D2450V2 - SN: 7	33	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Collibration date:	November 25, 20	09	
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar y facility: environment temperature (22 ± 3)*	nd are part of the certificate.
Calibration Equipment used (M&)	TE critical for calibration)		
	TE critical for calibration)	Cell Date (Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.) 06-Oct-09 (No. 217-01098)	Scheduled Calibration Oct-18
Primary Standards Power meter EPM-442A	10 #		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	06-Oct-09 (No. 217-01096)	Qdi-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37490704 US37292783	06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086)	Oct-10 Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismalch combination	ID # GB37490704 US37290783 SW: 5088 (20g)	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-08 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Primary Standards Power meter EPM-442A Power sansor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSOV3	ID # GB37490704 US37292783 SN: 5081 (20g) SN: 5047.2706327	06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
Primary Standards Power meter EPM-442A Power sansor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4	ID # GB37490704 US37292783 SN: 5081 (20g) SN: 5047.2706327 SN: 3206	06-Oct-09 (No. 217-Ot086) 08-Oct-09 (No. 217-Ot086) 31-Mar-09 (No. 217-Ot025) 31-Mar-09 (No. 217-Ot029) 26-Jun-09 (No. ES3-3205 Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSOV3 DAE4 Secondary Standards	ID # GB37490704 US37292783 SN: 5081 (20g) SN: 5047.2706327 SN: 3206 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSOV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37490704 US37292783 SN: 5081 (20g) SN: 5047.2706327 SN: 3206 SN: 601	06-Oct-09 (No. 217-Ot086) 06-Oct-09 (No. 217-Ot086) 31-Mar-09 (No. 217-Ot025) 31-Mar-09 (No. 217-Ot029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Ces-18 Cet-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check
Primary Standards Power meter EPM-42A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSOV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-66	ID # GB37490704 US37290783 SN: 5089 (20g) SN: 5047.2706327 SN: 3206 SN: 601	06-Oct-09 (No. 217-Ot086) 06-Oct-09 (No. 217-Ot086) 31-Mar-09 (No. 217-Ot025) 31-Mar-09 (No. 217-Ot029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-66	ID # GB37490704 US37290783 SN: 5089 (20g) SN: 5047.2706327 SN: 3206 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-Ot086) 08-Oct-09 (No. 217-Ot086) 31-Mar-09 (No. 217-Ot025) 31-Mar-09 (No. 217-Ot023) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in touse) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Alternation Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-66 Notwork Analyzer HP 8753E	ID # GB37490704 US37292783 SN: 5081 (20g) SN: 5047 2 / 06327 SN: 3206 SN: 601 ID # MY41092317 100005 US37200589 \$4206	06-Oct-09 (No. 217-Ott086) 08-Oct-09 (No. 217-Ott086) 31-Mar-09 (No. 217-Ott025) 31-Mar-09 (No. 217-Ott023) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-18 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-14 In house check: Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards	ID # GB37490704 US37292783 SN: 5081 (20g) SN: 5047.2706327 SN: 3206 SN: 601 ID # MY41092317 100005 US37300585 \$4206 Name	06-Oct-09 (No. 217-Ott-08) 08-Oct-09 (No. 217-Ott-08) 31-Mar-09 (No. 217-Ott-09) 31-Mar-09 (No. 217-Ott-09) 28-Jun-09 (No. ES3-3205_Jun-09) 07-Mar-09 (No. DAE4-601_Mar-09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-18 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-14 In house check: Oct-14 Signature

Certificate No: D2450V2-733_Nov09

Page 1 of 9

SHGSM

SGS-CSTC Standards Technical Services(Shanghai) Co, Ltd.. Testing Center-GSM Laboratory

3rd Building, No. 889, Yishan Road, Shanghai, China 200233 中国•上海•徐汇区宜山路 889 号 3 号楼 邮编: 200233 t (86-21) 61402666*2736 f (86-21) 54500149 e sgs.china@sgs.com

t (86 -21) 61402666*2736

f (86 -21) 54500149 ww.cn.sgs.com

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 60 of 76

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 3004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnace C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swas Accreditation Service (SAS). The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

TSL ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques', December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET). Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated,
- Antenne Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-733 Nov09

Page 2 of 9

SHGSM

Page 61 of 76

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.80 mha/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		1

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.25 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.0 mW /g ± 16.5 % (k=2)

Certificate No. D2450V2-733_Nov09

Page 3 of 9

Issue Date: 09-16, 2010

Page 62 of 76

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Gonductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C	() -) 	-

SAR result with Body TSL

SAR averaged over 1 cm ⁸ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 mW / g
SAR normalized	normalized to 1W	50.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition		
SAR measured	250 mW input power	5.86 mW / g	
SAR normalized	normalized to 1W	23.4 mW / g	
SAR for nominal Body TSL parameters	normalized to 1W	23.3 mW / g ± 16.5 % (k=2)	

Certificate No: D2450V2-733_Nov09

Page 4 of 9

Issue Date: 09-16, 2010 Page 63 of 76

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54,4 \Omega + 2.1 j\Omega	
Return Lose	- 26.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.6 Ω ± 4.1 μΩ
Return Loss	- 27.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns
Crops and Dated Co. o. o. com. 3	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be insusured.

The dipole is made of standard semirigid coexial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 07, 2003	

Certificate No: D2450V2-733_Nov09

Page 5 of 9

SHGSM

DASY5 Validation Report for Head TSL

Date/Time: 25.11.2009 13:30:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:733

Communication System: CW; Frequency: 2450 MHz; Duty Cycle; 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.8 \text{ mbo/m}$; $\varepsilon_c = 39.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; Comf (4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2007
- Phantom: Flat Phanton: 5.0 (front); Type: QD000P50AA; Serial: 100T
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.059 dB

Peuk SAR (extrapolated) = 27 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.25 mW/g

Maximum value of SAR (measured) = 17.4 mW/g

0 dB = 17.4 mW/g

Certificate No: D2450V2-733_Nov09

Page 6 of 9

SHGSM

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-733_Nov09

Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 18.11.2009 14:57:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:733

Communication System: CW; Frequency; 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\epsilon_0 = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3+SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 So601: Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002.
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.4 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.86 mW/g

Maximum value of SAR (measured) = 16.7 mW/g

0 dB = 16.7 mW/g

Certificate No: D2450V2-733 Nov09

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-733_Nov09

Page 9 of 9

Issue Date: 09-16, 2010

Page 68 of 76

Additional SAR Probe Validation Annex F

SAR PROBE CALIBRATION

Model No.: S62 FCC ID : YCNS62

The following procedures are recommended for DUT measurements at 150MHz to 3GHz to minimize probe calibration and tissue dielectric parameter discrepancies.

a) In general, CUT SAR measurements below 300 MHz should be within +/- 50 MHz of the probe calibration frequency.

SEE ALSO ITEM c).

b) At 300 MHz to 3 GHz, DUT measurements should be within +/- 100 MHz of the probe calibration frequency.

SEE ALSO ITEM c).

- c) Measurements exceeding 50% of these intervals, I.E.,
- +/- 25 MHz, DUT f<300 MHz, OR
- +/- 50 MHz, DUT f>/=300 MHz,

SHALL APPLY THE FOLLOWING ADDITIONAL STEPS:

1) When the actual tissue dielectric parameters used for probe calibration are available (careful about some probe manuf.list only nominal or range on calib.cert), the differences for relative permittivity and conductivity between probe calibration and routine measurements should each be less than or equal to 5 % while also satisfying the required +/- 5% tolerances in target dielectric parameters.

<Head 900 MHz>

The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within +/-5%, were the probe calibrated centre frequency at 900MHz has permittivity and conductivity of 41.5 and 0.97 respectively. At the probe extreme frequencies the following are true: at 800MHz the permittivity and conductivity are 39.4 and 0.86 respectively. At 1000MHz the permittivity and conductivity are 43.6 and 1.03 respectively.

The probe was calibrated at these parameters in order to cover the frequency range 800MHz to 1000MHz.

Page 70 of 76

<Body 900 MHz>

The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within +/-5%, were the probe calibrated centre frequency at 900MHz has permittivity and conductivity of 55.0 and 1.05 respectively. At the probe extreme frequencies the following are true: at 800MHz the permittivity and conductivity are 52.3 and 0.92 respectively. At 1000MHz the permittivity and conductivity are 57.8 and 1.10 respectively.

The probe was calibrated at these parameters in order to cover the frequency range 800MHz to 1000MHz.

Page 71 of 76

<Head 1810 MHz>

The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within +/-5%, were the probe calibrated centre frequency at 1810MHz has permittivity and conductivity of 40.0 and 1.40 respectively. At the probe extreme frequencies the following are true: at 1710MHz the permittivity and conductivity are 38.0 and 1.29 respectively. At 1910MHz the permittivity and conductivity are 42.0 and 1.47 respectively.

The probe was calibrated at these parameters in order to cover the frequency range 1710MHz to 1910MHz.

Page 72 of 76

<Body 1810 MHz>

The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within +/-5%, were the probe calibrated centre frequency at 1810MHz has permittivity and conductivity of 53.3 and 1.52 respectively. At the probe extreme frequencies the following are true: at 1710MHz the permittivity and conductivity are 50.6 and 1.38 respectively. At 1910MHz the permittivity and conductivity are 56.0 and 1.60 respectively.

The probe was calibrated at these parameters in order to cover the frequency range 1710MHz to 1910MHz.

The target permittivity and conductivity at 835 MHz is 41.5 and 0.90 and 1900 MHz is 40.0 and 1.40 respectively which is within the calibrated range of the probe parameter. The following parameters are declared in the probe calibration certificate.

DASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
900	±50/±100	41.5 ± 5%	$0.97 \pm 5\%$	5.84	5.84	5.84	0.90	1.06 ± 11.0%
1810	±50/±100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	5.00	5.00	5.00	0.38	1.75 ± 11.0%
1900	±50/±100	40.0 ± 5%	1.40 ± 5%	4.97	4 97	4.97	0.48	1.53 ± 11.0%
2450	±50/±100	39.2 ± 5%	$1.80 \pm 5\%$	4.40	4 40	4.40	0.43	1.79 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Calibration Parameter Determined in Body Tissue Simulating Media

Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	5.68	5.68	5.68	0.97	1.07 ± 11.0%
± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	4.76	4.76	4.76	0.41	1.88 ± 11.0%
± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	4.58	4.58	4.58	0.36	2.13 ± 11.0%
± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.20	4.20	4.20	0.99	1.04 ± 11.0%
	± 50 / ± 100 ± 50 / ± 100 ± 50 / ± 100	$\pm 50 / \pm 100$ 55.0 $\pm 5\%$ $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ $\pm 50 / \pm 100$ 53.3 $\pm 5\%$	$\pm 50 / \pm 100$ 55.0 $\pm 5\%$ 1.05 $\pm 5\%$ $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$	$\pm 50 / \pm 100$ 55.0 $\pm 5\%$ 1.05 $\pm 5\%$ 5.68 $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ 4.76 $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ 4.58	$\pm 50 / \pm 100$ 55.0 $\pm 5\%$ 1.05 $\pm 5\%$ 5.68 5.68 $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ 4.76 4.76 $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ 4.58 4.58	$\pm 50 / \pm 100$ 55.0 $\pm 5\%$ 1.05 $\pm 5\%$ 5.68 5.68 5.68 $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ 4.76 4.76 $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ 4.58 4.58 4.58	$\pm 50 / \pm 100$ 55.0 $\pm 5\%$ 1.05 $\pm 5\%$ 5.68 5.68 0.97 $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ 4.76 4.76 4.76 0.41 $\pm 50 / \pm 100$ 53.3 $\pm 5\%$ 1.52 $\pm 5\%$ 4.58 4.58 0.36

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<Head 850 MHz>

Liquid		Parameters	Target	Measured	Deviation[%]	
Medium	Freq.[MHZ]		13951		Bovidion[70]	
	825.0	Permitivity	41.6	41.93	0.79	
	020.0	Conductivity	0.90	0.897	-0.33	
Body	835.0 845.0	Permitivity	41.5	41.81	0.75	
Войу		Conductivity	0.90	0.907	0.78	
		Permitivity	41.5	41.70	0.48	
	3 10.0	Conductivity	0.91	0.917	0.77	

<Body 850 MHz>

Lic	Liquid		Target	Measured	Deviation[%]
Medium	Freq.[MHZ]	Parameters	raigot	inicaca.ca	Deviation[/o]
	825.0	Permitivity	55.2	55.20	0
	020.0	Conductivity	0.97	0.9477	-2.30
Body	835.0 845.0	Permitivity	55.2	55.14	-0.11
Body		Conductivity	0.97	0.958	-1.24
		Permitivity	55.2	55.09	0.2
	3 10.0	Conductivity	0.98	0.969	-1.12

<Head 1900 MHz>

Lio	Liquid		Target	Measured	Deviation[%]
Medium	Freq.[MHZ]	Parameters	laigot	oadaroa	Bovication[70]
Body	1850	Permitivity	40	38.90	-2.75
	1.000	Conductivity	1.4	1.431	2.21
		Permitivity	40	38.72	-3.20
	1880	Conductivity	1.4	1.466	4.71
		Permitivity	40	38.63	-3.43

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 75 of 76

		1	1	1
1910	Conductivity	1.4	1.469	4.93

<Body 1900 MHz>

Lic	Liquid		Target	Measured	Deviation[%]
Medium	Freq.[MHZ]	Parameters	rarget	Wedsarea	Deviation[70]
	1850	Permitivity	53.3	53.85	1.03
	1000	Conductivity	1.52	1.464	-3.68
Body	1880 1910	Permitivity	53.3	53.82	0.98
Воду		Conductivity	1.52	1.502	-1.18
		Permitivity	53.3	53.79	1.89
		Conductivity	1.52	1.534	0.92

2) when nominal tissue dielectric parameters are PROVIDED in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target relative permittivity and higher than the target conductivity values, to minimize SAR underestimations. Otherwise, a thorough analysis of the effective frequency interval supported by the probe calibration and dielectric medium should be included in the SAR report to substantiate the test results-SEE ITEM d).

Alternatively, the measured 1-g SAR may be compensated with respect to +5%tolerance in relative permittivity and -5%tolerances in conductivity, computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness.

- d) When thorough analysis is required for the additional steps, the following SHALL ASSO BE ADDRESSED. These other items can contribute to additional SAR differences, especially when the probe calibration, tissue dielectric parameters and device test frequencies are misaligned.
- 1) the probe conversion factor and its frequency response, with respect to the tissue dielectric media used during probe calibration and routine measurements, should be examined to determine if the effective frequency intervals is adequate for the intended measurements, should be examined to determine if the effective frequency interval is adequate for the intended measurements to satisfy protocol requirements.
- 2) Measurements within the required frequency intervals should satisfy an expanded probe calibration uncertainty (k=2) less than or equal to 15% for all measurement conditions.
- 3) When SAR is reported within 10% of the SAR limit, differences in field conditions and effects of output power levels on signal modulation between probe calibration and routine measurements should be examined to determine probe calibration validity.

Report No.: GSM10387085S01 Issue Date: 09-16, 2010

Page 76 of 76

4) Probe isotropy should also be assessed by rotating the probe in 15 degree increments at the peak SAR location of the zoom scan and accounted for in the measurement uncertainty.

The measured SAR values in the report are all below 10% of the SAR limit. The measurement within the required frequency interval satisfy an expanded probe calibration uncertainty (k=2) <=15% for all measurement conditions. Please refer to SAR report for probe and dipole calibration certificates produce by the system manufacturer.

As you can see we used the conductivity and permittivity parameters which are within +/-5% of the target values.

END OF REPORT