

Mathématiques

Classe: 4ème Mathématiques

Devoir de contrôle N°1

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

4.5 pts

Soit f la fonction définie sur
$$\mathbb{R}$$
 par : $f(x) = \begin{cases} \frac{1}{1+x} - \sqrt{x} & \text{si } x \ge 0 \\ 1+x.\sin\left(\frac{\pi}{x}\right) & \text{si } x < 0 \end{cases}$

- **1)a)** Montrer que pour tout réel x < 0, on a : $|f(x) 1| \le |x|$.
 - b) Montrer que f est continue en 0
 - c) Montrer que l'équation f(x) = 0 possède une solution unique α dans l'intervalle]0,1[.
- 2) Soit g une fonction continue sur \mathbb{R} dont le tableau de variation est donné ci-dessous, et telle que g(0) = 1 et $0 < g(-1) < \alpha$.

On considère la fonction h définie par $h(x) = (f \circ g)(x)$

x -∞ +∞ g 0

- a) Montrer que h est continue sur \mathbb{R} .
- **b)** Montrer que h(-1) > 0.
- c) Montrer que l'équation h(x) = 0 possède une solution unique β dans l'intervalle] 1, 0[.
- **d)** Montrer que $\alpha = g(\beta)$.

Exercice 2

(\$\) 40 min

4.5 pts

Soit la suite (u_n) définie par : $u_1 = 1$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = u_n + \frac{1}{n^2 + n}$.

- 1)a) Montrer que, pour tout $n \in \mathbb{N}^*$, on a $1 \le u_n \le 2$.
 - **b)** Montrer que la suite (u_n) est convergente. Soit $a = \lim_{n \to +\infty} u_n$.
- **2)a)** Vérifier que, pour tout $k \in \mathbb{N}$, on a : $\frac{1}{k^2 + k} = \frac{1}{k} \frac{1}{k+1}$.
 - **b)** Montrer que, pour tout $n \in \mathbb{N}^*$, on a $u_n = 2 \frac{1}{n}$. En déduire la valeur de a.
- 3) On pose, pour tout $n \in \mathbb{N}^*$, $v_n = (-1)^n (u_n 2)$ et $S_n = \sum_{k=1}^n \frac{\left(-1\right)^{k+1}}{k}$.
- a) Calculer $\lim_{n\to +\infty} v_n$.
- **b)** Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- c) En déduire que la suite $\left(S_{_{n}}\right)$ est convergente vers un réel α et que $\frac{35}{60} \le \alpha \le \frac{47}{60}$.

Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}).

On désigne par (C) le cercle de centre O et de rayon $\sqrt{6}$ et (C') le cercle de centre O et de rayon 6.

Soit $a = \sqrt{5} + i$ et A le point d'affixe a.

- 1) Calculer |a| . Placer alors le point A sur l'annexe.
- 2) Soit B le point d'affixe $b = a 3ie^{i\frac{\pi}{3}}$. Calculer AB et donner une mesure de l'angle orienté $(\vec{u}, \overrightarrow{AB})$. Placer alors le point B sur l'annexe.
- 3) Soit β un argument de a . Déterminer en fonction de β les solutions de l'équation (E) : $z^5 = az^{-4}$.
- **4)** Soit Q le point du cercle (C') tel que $(\overrightarrow{OA}, \overrightarrow{OQ}) \equiv \beta[2\pi]$.
 - a) Placer sur l'annexe le point Q.
 - b) Déterminer l'affixe q du point Q.
- **5)a)** Résoudre dans \mathbb{C} , l'équation (E_q) : $z^4-i\bigg(iq+4e^{i\frac{\pi}{3}}\bigg)z^2-4iqe^{i\frac{\pi}{3}}=0$.
- **b)** Placer sur l'annexe les points M_1 , M_2 , M_3 et M_4 d'affixes resp. z_1, z_2, z_3 et z_4 les solutions de (E_{α}) .
- **6)** Soit $Z = a + 3e^{-i\frac{\pi}{6}} 2e^{i\theta}$ avec θ un réel de l'intervalle $[-\frac{\pi}{2}, \frac{\pi}{2}]$. Déterminer et construire sur l'annexe l'ensemble Γ des points M(Z) lorsque θ décrit $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Exercice 4

(5) 50 min

5 pts

- Soit dans \mathbb{C} , l'équation $(\mathbb{E}_{\theta}): z^2 \frac{1}{2}(1+3\mathbf{i})e^{\mathbf{i}\theta}z e^{\mathbf{i}2\theta} = 0$ où $\theta \in \mathbb{R}$.
 - (a) Vérifier que $\left(\frac{3}{2} + \frac{1}{2}\mathbf{i}\right)^2 = 2 + \frac{3}{2}\mathbf{i}$.
 - **b** Résoudre dans **C** l'équation (**E**_θ).
- Dans le plan complexe est muni d'un repère orthonormé direct $(\mathbf{O}; \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$, on considère les points \mathbf{A} et \mathbf{B} d'affixes respectives $z_{\mathbf{A}} = (1+\mathbf{i})e^{\mathbf{i}\theta}$ et $z_{\mathbf{B}} = \frac{1}{2}(-1+\mathbf{i})e^{\mathbf{i}\theta}$ où $\theta \in \mathbb{R}$.
 - $oxed{a}$ Donner la forme exponentielle de z_A et z_B .
 - **b** Montrer que le triangle OAB est rectangle en O.
- Soit $\theta \in \mathbb{R}$ et $M\left(e^{i2\theta}\right)$.
 - (a) Montrer que : $e^{i2\theta} 1 = 2i\sin(\theta)e^{i\theta}$.
 - **b** Montrer que : $\mathbf{MA} \times \mathbf{MB} = \left| e^{\mathbf{i}2\theta} 1 \left(\frac{1}{2} + \frac{3}{2}\mathbf{i} \right) e^{\mathbf{i}\theta} \right|$.
 - c En déduire que : $MA \times MB = \sqrt{\frac{1}{4} + \left(-\frac{3}{2} + 2\sin\theta\right)^2}$.
 - d Déterminer, lorsque θ varie , les coordonnées des points M pour lesquels le produit $MA \times MB$ est minimal.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000