1. List of Theorems and Definitions

Definition 2.1 (Prime numbers)	. 2
Theorem 2.2	. 2
Γheorem 2.3 (Euclid)	. 2
Theorem 2.4	. 3
Theorem 2.5	. 3

2. Prime numbers

Definition 2.1 (Prime numbers). A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

Theorem 2.2. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do.

Theorem 2.3 (Euclid). *There are infinitely many primes.*

Corollary 2.3.1. *There is no largest prime number.*

Corollary 2.3.2. *There are infinitely many composite numbers.*

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat.

Theorem 2.4. *Lorem ipsum dolor sit amet, consectetur adipiscing.*

Theorem 2.5. There are arbitrarily long stretches of composite numbers.

Proof. For any n > 2, consider

$$n! + 2$$
, $n! + 3$, ..., $n! + n$.

3. Appendix (restated or deferred)

Definition 2.1 (Prime numbers). A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

Theorem 2.3 (Euclid). *There are infinitely many primes.*

Proof. Suppose to the contrary that $p_1, p_2, ..., p_n$ is a finite enumeration of all primes. Set $P = p_1 p_2 ... p_n$. Since P+1 is not in our list, it cannot be prime. Thus, some prime factor p_j divides P+1. Since p_j also divides P, it must divide the difference (P+1)-P=1, a contradiction.

Corollary 2.3.2. *There are infinitely many composite numbers.*

Theorem 2.4. Lorem ipsum dolor sit amet, consectetur adipiscing.

Theorem 2.5. There are arbitrarily long stretches of composite numbers.

Proof. For any n > 2, consider

$$n! + 2, \quad n! + 3, \quad ..., \quad n! + n.$$

4. Only restate Theorem or Corollary

Theorem 2.3 (Euclid). *There are infinitely many primes.*

Corollary 2.3.2. *There are infinitely many composite numbers.*

Theorem 2.4. *Lorem ipsum dolor sit amet, consectetur adipiscing.*

Theorem 2.5. There are arbitrarily long stretches of composite numbers.

5. Only restate 'Result'

Corollary 2.3.2. *There are infinitely many composite numbers.*

Theorem 2.4. *Lorem ipsum dolor sit amet, consectetur adipiscing.*

6. Only restate (Theorem and 'Result') or Definition

Definition 2.1 (Prime numbers). A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

Theorem 2.4. *Lorem ipsum dolor sit amet, consectetur adipiscing.*

7. Only restate if some key contains 'fi'

Definition 2.1 (Prime numbers). A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

8. Only display if (name is not none) or is 'Result'

Definition 2.1 (Prime numbers). A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

Theorem 2.3 (Euclid). *There are infinitely many primes.*

Corollary 2.3.2. *There are infinitely many composite numbers.*

Theorem 2.4. *Lorem ipsum dolor sit amet, consectetur adipiscing.*

9. Only restate up to <euclid_proof>

Definition 2.1 (Prime numbers). A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

Theorem 2.3 (Euclid). *There are infinitely many primes.*

Proof. Suppose to the contrary that $p_1, p_2, ..., p_n$ is a finite enumeration of all primes. Set $P = p_1 p_2 ... p_n$. Since P+1 is not in our list, it cannot be prime. Thus, some prime factor p_j divides P+1. Since p_j also divides P, it must divide the difference (P+1)-P=1, a contradiction.