Predicting the West Nile Virus in Chicago

DSI13 Project 4 Group 3 Toh Jun Kai, Tan Hueeming, Huang Shilin, Elton Yeo

Overview

- Problem Statement and Context
- Data Cleaning
- Data Visualisation
- Modelling
- Cost-Benefit Analysis
- Recommendations
- Next Steps

Problem Statement and Context

To predict the when and where the West Nile Virus will occur in mosquitos by taking into account a range of variables (e.g. location, temperature etc.).

Models: Linear regression, K-nearest neighbours, Random forest

Evaluation: Receiver Operating Characteristic (ROC) Area Under Curve (AUC) score

Data Cleaning - Train and Test

The more mosquitos in the trap, the more likely WNV is present.

WNV is only transmitted by Culex Pipiens and Culex Restuans.

Across all years in the train dataset, the number of mosquitoes peaked in June.

Across all years in the train dataset, 2007 had the highest number of mosquitos.

Spread of WNV across the years in the train dataset.

Spread of WNV across the months in 2007 only.

Year - 2007

Data Cleaning - Spray

	Date	Time	Latitude	Longitude
0	2011-08-29	6:56:59 PM	42.391623	-88.089163
1	2011-08-29	6:57:08 PM	42.391348	-88.089163
2	2011-08-29	6:57:18 PM	42.391022	-88.089157
3	2011-08-29	6:57:28 PM	42.390637	-88.089158
4	2011-08-29	6:57:38 PM	42.390410	-88.088858

object -> datetime64

Delete duplicate entries 41.98646 (541) 41.983917 (2)

Data Visualisation - Spray

- No pattern observed
- Inconsistent reporting periods
- Spray data available for 2011 and 2013
- Not available in test set

Data Cleaning - Weather

Changing 'Date' column data type from object to datetime.

Add dates, breakdown by Year, Month, Week and Day

Fill values in column PrecipTotal labelled T and M with zero.

Weather Feature Engineering

- 1. Add daily temperature range. Tmax minus Tmin
- 2. Add relative humidity
- 3. Add number of days since it last rained
- 4. Introduce 14 days lagged weather feature

Data Visualisation - Weather

Baseline - AUC ROC

- Accuracy
- AUC ROC Area Under The ROC (Receiver operating characteristic) Curve
- AUC ROC > 0.5

Modelling

	Logistic Regression	K-Nearest Neighbors	Random Forest
Accuracy	0.69	0.93	0.66
Recall	0.75	0.07	0.87
Precision	0.12	0.18	0.12
ROC AUC	0.78	0.71	0.83

^{*} Certain hyperparameters for all models are optimized using RandomizedSearchCV, Pipeline, and StandardScaler

Consequences of model error

False Positive False Negative Inconvenience to citizens due to vector Higher risk of contracting the virus without control measures e.g. spraying, avoiding any mitigating factors. certain areas during certain times

Modelling - Random Forest

• ROC AUC Score - 0.83

Features Importance

Cost-Benefit Analysis

	Spraying	Not Spraying	
Cost	~\$7 million per year Inconvenience to citizens due to vector control measures	~\$17 million per year Lives lost, medical resources spent on those who contract the virus,	
		impact on economy due to fewer tourists/workers	
Benefit	Lives, and medical resources (amounting to ~\$10 million) saved	Greater convenience to citizens	

Recommendations

- 1. STRATEGICALLY FOGGING
- 2. CONTROL TALL GRASS AND SHRUBBERY
- 3. ELIMINATE /TREATING STANDING WATER
- 4. MOSQUITO STERILIZATION

HOW TO Use Lemon Grass To

Next Steps

Our ROC AUC score was **0.83**; however, our Kaggle score was **0.61**. Why this disparity?

It is possible that our models are almost entirely modeling noise. What can we do?

1. Restructure the data

2. Get more, cleaner data

