Machine Learning Practical -2 Support Vector Machine (SVM)

Lecturer:

Dr Hamid Khayyam (Australia) Email: hamid.khayyam@rmit.edu.au

The aim of Machine learning methods (recap)

• To find a relationship between some inputs and outputs from different engineering problems when the model is unknown (black box modelling).

• To build mathematical models of engineering systems from observed input—output data (system identification) regardless of what the inputs and outputs are and make predictions based on some unseen new inputs.

Steps of An Application of SVM (Recap)

- 1. Data pre-processing (check for missing data ,standardization)
- 2. Model development and training
- 3. Mdl = fitcsvm(X, Y) (Classification) % Mdl is the developed model

Mdl = fitrsvm(X, Y) (Regression)

3. Simulation (prediction)

label= predict(Mdl,X) (classification)

% label: predicted labels

Y_predicted= predict(Mdl,X) (Regression) %Y_predicted is the predicted responses

- 4. Post-processing
 - MSE,RMSE,R (Regression)

Training (solving) hard-margin problem in Matlab:

Minimize
$$L = \frac{1}{2}W^{T}W$$

Subject to

$$y(W^{T}X + b) - 1 \ge 0$$
 if $y = 1$ then $W^{T}X + b \ge 1$
if $y = -1$ then $W^{T}X + b \le -1$

Non separable data (soft-margin)

•

Error

• Training(solving) Soft-margin problem in Matlab:

$$\begin{split} \text{Minimize} \quad & \frac{1}{2}W^{\text{T}}W + C\sum_{i=1}^{n}\xi_{i} \quad i = 1, \dots, n \\ \text{Subject to}: \quad & y_{i}\big(W^{\text{T}}X + b\big) \geq 1 - \xi_{i}, \quad \forall i {\in} \{1, \dots, n\} \\ & \xi_{i} \geq 0, \qquad \qquad \forall i {\in} \{1, \dots, n\} \end{split}$$

Solution (Lagrangian multiplier):

Minimize
$$L = \frac{1}{2}W^{\mathrm{T}}W - \sum_{i} \alpha_{i} [y(W^{\mathrm{T}}X + b) - 1]$$
 $i = 1, \ldots, n$

 α : the multiplier of the constraint.

Primal problem of SVM method

$$\begin{cases} \frac{dL}{dW} = 0 \Rightarrow W - \sum_{i} \alpha_{i} y_{i} x_{i} \Rightarrow W = \sum_{i} \alpha_{i} y_{i} x_{i} \\ \frac{dL}{db} = 0 \Rightarrow \sum_{i} \alpha_{i} y_{i} = 0 \end{cases}$$

Dual problem of SVM method

Maximize
$$L_D = -\frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j x_i^{\mathrm{T}} x_j + \sum_i \alpha_i \quad i = 1, \dots, n$$

Subject to $\sum_i \alpha_i y_i = 0 \quad \alpha_i \ge 0$

Support Vector Machine - Regression (SVR)

· Solution:

$$\min \frac{1}{2} \|w\|^2$$

Hard-Margin Solution

· Constraints:

$$y_i - wx_i - b \le \varepsilon$$

$$wx_i + b - y_i \le \varepsilon$$

E: Margin of tolerance

Soft-Margin Solution

Linear SVR: $y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \cdot \langle x_i, x \rangle + b$

· Minimize:

$$\frac{1}{2} \left\| w \right\|^2 + C \sum_{i=1}^{N} \left(\xi_i + \xi_i^* \right)$$

· Constraints:

$$y_i - wx_i - b \le \varepsilon + \xi_i$$

$$wx_i + b - y_i \le \varepsilon + \xi_i^*$$

$$\xi_i, \xi_i^* \ge 0$$

Support vector Machine (SVM) (Nonlinear)

Kernel Trick (Nonlinear SVM)

Training (solving) problem with Kernel function in Matlab:

Maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j . k(x_i, x_j)$$
Subject to:
$$\alpha_i \ge 0, \quad \forall i \in \{1, \dots, n\}$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Support vector Machine (SVM) (cont.)

Kernel functions

Linear

$$k(x_i x_j) = x_i^{\mathrm{T}} x_j$$

Polynomial

$$k(x_ix_j) = (\gamma \ x_i^{\mathrm{T}}x_j + r)^d, \quad \gamma > 0$$

• RBF(Radial basis function)

$$k(x_ix_j) = \exp(-\gamma||x_i - x_j||^2), \quad \gamma > 0$$

where, γ , r, and d are kernel parameters.

Support vector Machine (SVM) (cont.)

Nonlinear SVR

$$y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \cdot K(x_i, x) + b$$

Support vector machine model: fitcsvm

• fitcsym

Syntax

```
Mdl = fitcsvm(x, t) %trains a two-class (binary) classification.
```

Example:

```
Mdl=fitcsvm(x,t);
```

Predict

Syntax

```
ylabel = predict(Mdl,x) (Regression )
```

Example:

```
y_predicted=predict(mdl,x);
```

Support vector machine model: fitcsvm (cont.)

fitcsvm additional options:

- 'Standardize': false | true (Default: false) % Standardize data
- 'Solver': 'ISDA' | 'L1QP' | 'SMO' (Default: SMO) % Solver for objective functions
- KernelFunction

```
'gaussian' or 'rbf': Gaussian or Radial Basis Function (RBF) kernel
'linear': Linear kernel (default)

'polynomial': Polynomial kernel % Use 'PolynomialOrder', q, to specify a polynomial kernel of order q.
```

- 'PolynomialOrder': positive integer (Default:3)
- 'KernelScale': 1 (default) | 'auto' | positive scalar % gamma in RBF kernel
- 'BoxConstraint': positive scalar (Default:1) % C ,the cost of misclassification

Support vector machine model: fitcsvm

fitrsym

Syntax

```
Mdl = fitrsvm(x, t) %trains a two-class (binary) classification.
```

Example:

```
Mdl = fitrsvm(x,t);
```

Predict

Syntax

```
y= predict(Mdl,x) (Regression )
```

Example:

```
y_predicted=predict(mdl,X);
```

Support vector regression (SVR): fitrsvm (cont.)

fitrsvm additional options:

- 'Standardize': false | true (Default:false)
- 'Solver': 'ISDA' | 'L1QP' | 'SMO' (Default: SMO)
- KernelFunction:
 - 'gaussian' or 'rbf': Gaussian or Radial Basis Function (RBF) kernel
 - 'linear': Linear kernel (default)
 - 'polynomial': Polynomial kernel. % Use 'PolynomialOrder', q, to specify a polynomial kernel of order q.
- 'BoxConstraint': positive scalar (Default:1) % C the cost of wrong prediction
- 'KernelScale': 1 (default) | 'auto' | positive scalar % gamma in RBF kernel

Example of regression (Linear kernel): fitrsvm

```
clear;
clc;
rng(1);
x = 0:0.01:5;
t = sin(x) + rand(1, length(x));
x = x';
t = t';
Mdl = fitrsvm(x,t,'Standardize',true);
y= predict(Mdl,x); %y is the predicted output based on
model Mdl and input x
scatter(x,t); % Scatter plot
hold on
plot(x, y, 'r.')
```

Example of regression (Gaussian kernel): fitrsvm

```
1.5
clear; clc;
rng(1);
x = 0:0.01:5;
  = \sin(x) + \operatorname{rand}(1, \operatorname{length}(x));
                                           -0.5
x = x';
t = t';
Mdl = fitrsvm(x,t,'KernelFunction','gaussian','Standardize',true);
y= predict(Mdl,x); %y is the predicted output based on
model Mdl and input x
scatter(x,t); % Scatter plot
hold on
plot(x, y, 'r.')
```

Example of regression (Polynomial kernel): fitrsvm

```
clear; clc;
rng(1);
x = 0:0.01:5;
  = sin(x) + rand(1, length(x));
x = x';
t = t';
Mdl =
fitrsvm(x,t,'KernelFunction','polynomial','polynomialorder',2,'Stand
ardize',true);
y= predict (Mdl,x); %y is the predicted output based on
model Mdl and input x
scatter(x,t); % Scatter plot
hold on
plot(x,y,'r.')
```

Example of classication-1: fitcsvm

```
clear ;
clc;
load ionosphere.mat
rng(1); % random number generation to reproduce results
mdl = fitcsvm(X,Y, 'KernelFunction', 'gaussian', ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Solver', 'L10P',...
    'Standardize', true); % use fitcsvm with gaussian
kernel and solver L1QP
y expected=predict(mdl,X);
table( Y( 20:30 ), y expected( 20:30 ), 'VariableNames',...
    {' TrueLabel', ' PredictedLabel'}) %Show the results of
20th to 30th data of the output and predicted output.
```

1
el
١

'b'	'b'	
'g'	'g'	
'b'	'g'	
'g'	'g'	
'b'	'b'	
'g'	'g'	
'b'	'b'	
'g'	'g'	
'b'	'b'	
'g'	'g'	
'b'	'b'	
'g'	'g'	

Example of regression-1: fitrsym

```
clear; clc;
rng(1);
Filename='SVR1.xlsx';
Sheetread='x';
Input1='A1:M252';
Sheetread1='t';
output1='A1:A252';
Input=xlsread(Filename, Sheetread, Input1); %Read Microsoft
Excel
Target=xlsread(Filename, Sheetread1, output1);
x=Input;
t=Target;
```

```
mdl = fitrsvm(x,t, 'KernelFunction', 'polynomial', ...
    'polynomialorder', 2, 'Standardize', true); %To
standardize the data and use polynomial function as the
kernel with order 2.
yfit=predict(mdl,x); % prediction based on the developed
SVR model and x as the input.
table(t(40:50,:), yfit(40:50,:), 'VariableNames', { 'ObservedV
alue', ' PredictedValue')) % show 40th to 50th data in
output and predicted output
MSE training=sum((yfit-t).^2)/numel(t); % Calculate MSE
for training data
RMSE training=sqrt(sum((yfit-t).^2)/numel(t)); % Calculate
RMSE for training data
```

ans =

11×2 table

MSE training = 11.9979

RMSE training = 3.4638

Example of regression-2: fitrsym

```
clear; clc;
rng(1);
Filename='SVR2.xlsx':
Sheetread='x';
Input1='A1:A94';
Sheetread1='t';
output1='A1:A94';
Input=xlsread(Filename, Sheetread, Input1); %Read Microsoft
Excel
Target=xlsread(Filename, Sheetread1, output1);
x=Input;
t=Target;
```

```
mdl = fitrsvm(x,t, 'KernelFunction', 'qaussian', ...
    'Solver', 'L10P',...
    'Standardize', true); %standardize the data and use
Gaussian kernel.
yfit=predict(mdl,x); % prediction based on the developed
SVR model and x as the input
table(t(20:30,:), yfit(20:30,:), 'VariableNames', { 'ObservedV
alue', ' PredictedValue' ) % show 20th to 30th data in
output and predicted output
MSE training=sum((yfit-t).^2)/numel(t); % Calculate MSE
for data ; numel : number of elements
RMSE training=sqrt(sum((yfit-t).^2)/numel(t)); % Calculate
RMSE for data ; numel : number of elements
```

ans =

11×2 table

ObservedValue	PredictedValue
9.8589	9.3745
9.6876	9.347
9.4722	9.2794
9.2283	9.1763
8.9701	9.0433
8.7099	8.8865
8.4579	8.7125
8.2217	8.5285
8.0065	8.3412
7.8153	8.1577
7.6494	7.9841

 $MSE_{training} = 0.6481$

RMSE_training = 0.8051

Example of regression-3: fitrsym

```
clear:clc:
rng(1);
Filename='SVR3.xlsx';
Sheetread='Sheet1';
Input1='A1:B89';
output1='C1:C89';
Input=xlsread(Filename, Sheetread, Input1); %Read Microsoft
Excel
Target=xlsread(Filename, Sheetread, output1);
Sheetread1='Sheet2';
Input2='A1:B11';
Target2 = 'C1:C11';
Inputnew=xlsread(Filename, Sheetread1, Input2);
Targetnew=xlsread(Filename, Sheetread1, Target2);
```

```
x=Input;
t=Target;
xnew=Inputnew;
tnew=Targetnew;
x=fillmissing(x,'spline'); %fill in the missing input data
t= fillmissing(t, 'spline'); %fill in the missing output
data
mdl=fitrsvm(x,t,'Standardize',true,'KernelFunction','qauss
ian', 'epsilon', 0.3); %standardize the data and use
gaussian kernel to develope and model the data
yfit=predict(mdl,x); % prediction based on the developed
SVR model and x as the input
MSE training=sum((yfit-t).^2)/numel(t); % Calculate MSE
for data
```

```
RMSE_Training=sqrt(sum((yfit-t).^2)/numel(yfit)); %
Calculate RMSE for training data

table(t(60:70,:),yfit(60:70,:),'VariableNames',{'ObservedV alue',' PredictedValue'}) % show 60th to 70th data in output and predicted output

ynew=predict(mdl,xnew);% prediction based on new data

MSE_testing=sum((ynew-tnew).^2)/numel(tnew); % Calculate

MSE for new data

RMSE_Testing=sqrt(sum((ynew-tnew).^2)/numel(ynew)); %
Calculate RMSE for new data
```

Without kernel (linear kernel)

11×2 table

ObservedValue	PredictedValue
26.5	26.211
20	21.763
13	15.464
19	21.642
19	22.758
16.5	17.312
16.5	11.827
13	15.017
13	16.64
13	16.498
28	25.359

 $RMSE_training = 3.5404$

RMSE_testing = 7.7213

With kernel (Gaussian kernel)

11×2 table

ObservedValue	PredictedValue
26.5	28.769
20	20.415
13	14.942
19	20.878
19	19.911
16.5	16.355
16.5	15.869
13	14.975
13	15.262
13	14.873
28	25.599

RMSE_training = 2.8585

RMSE_testing = 7.5712

Example of regression-4: fitrsym

```
clear; clc;
rng(1);
Filename='SVR4.xlsx';
Sheetread='Sheet1';
Input1='A1:H72';
output1='I1:I72';
Input=xlsread(Filename, Sheetread, Input1); %Read Microsoft
Excel
Target=xlsread(Filename, Sheetread, output1 );
x=Input;
t=Target;
Sheetread1='Sheet2':
Input2='A1:H3';
Target2 = 'I1:I3';
```

```
Inputnew=xlsread(Filename, Sheetread1, Input2);
Targetnew=xlsread(Filename, Sheetread1, Target2);
xnew=Inputnew;
tnew=Targetnew;
mdl = fitrsvm(x,t, 'KernelFunction', 'gaussian', ...
        'Standardize', true); %standardize the data
%standardize the data and use gaussian kernel to develope
and model the data
conv = mdl.ConvergenceInfo.Converged; % Shows whether the
program reach an answer
iter = mdl.NumIterations; % number of iteration to reach
the answer
yfit=predict(mdl,x); % prediction based on the developed
SVR model and x as the input
```

```
table(t(20:30,:), yfit(20:30,:), 'VariableNames', { 'ObservedV
alue', ' PredictedValue' }) % show 20th to 30th data in
output and predicted output
MSE training=sum((yfit-t).^2)/numel(t); % Calculate MSE
for data
RMSE training=sqrt(sum((yfit-t).^2)/numel(t)); % Calculate
RMSE for data
ynew=predict(mdl,xnew);
table(tnew(:), ynew(:), 'VariableNames', { 'ObservedValue Newd
ata',' PredictedValue newdata'}) % show data in output and
predicted output
MSE testing=sum((tnew-ynew).^2)/numel(tnew); % Calculate
MSE for new data
RMSE testing=sqrt(sum((tnew-ynew).^2)/numel(tnew)); %
Calculate RMSE for new data
Errorpercentage=((ynew-tnew)./tnew)*100; % Calculate error
percentage for tnew and ynew
```

Without kernel (linear kernel)

ans =

11×2 table

ObservedValue	PredictedValue
	-
514	513.96
518	517
517	516.09
517	517.04
515	514.48
511	511.61
511	512.02
516	512.24
515	512.21
514	512.38
515	515.57

ObservedValue_Newdata	PredictedValue_newdata
495	495.46
498	497.53
498	497.03
: (-	

$$MSE_{training} = 3.8295$$

$$MSE_testing = 0.4576$$

RMSE_testing =
$$0.6765$$

With kernel (linear kernel)

11×2 table

ObservedValue	PredictedValue
514	513
518	517
517	516
517	516
515	514
511	511.18
511	512
516	515
515	514
514	513.47
515	514

MSE_training = 2.1296

 $RMSE_{training} = 1.4593$

MSE_testing=4.4638

RMSE_testing = 2.1128

ans = 3×2 table ObservedValue Newdata PredictedValue newdata 495 496.37 498 496.21 498 500.88 Errorpercentage 3x1 double 3 2 0.2768

-0.3601

0.5785

4

SVM References

- https://au.mathworks.com
- S. Araghinejad, Data-Driven Modeling: Using MATLAB® in Environmental Engineering
- http://www.saedsayad.com/support_vector_machine_reg
 .htm
- https://digitaltransformationpro.com/data-mining-steps/