Taylor's Theorem, Taylor Series and Power Series (Lecture 17 & 18)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Taylor's theorem

• If a function f has an nth derivative at a point a, then we can construct an nth degree polynomial P_n such that $P_n(a) = f(a)$ and $P_n^{(k)}(a) = f^{(k)}(a)$ for $k = 0, 1, 2, \dots, n$.. The polynomial is

$$P_n(x) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

This polynomial P_n is called the *nth* **Taylor polynomial for** f **at** a. Then $f(x) = P_n(x) + R_n(x)$ in a neighbourhood of a, where R_n is the reminder. Also, we expect $R_n(x) \to 0$ as $x \to a$.

Theorem

Let $f: I \to \mathbb{R}$ be such that f and its derivatives of order m are continuous on I and $f^{(m+1)}(x)$ exists in a neighbourhood of $x = a \in I$. Then for any x in I there exists a point $c \in (a, x)$ (or $c \in (x, a)$) such that

$$f(x) = f(a) + f'(a)(x - a) + \dots + f^{(m)}(a) \frac{(x - a)^m}{m!} + R_m(x),$$

where $R_m(x) = \frac{f^{(m+1)}(c)}{(m+1)!}(x-a)^{m+1}$.

Taylor's theorem

Proof: Define the functions *F* and *g* as

$$F(y) = f(x) - f(y) - f'(y)(x - y) - \dots - \frac{f^{(m)}(y)}{m!}(x - y)^m,$$
$$g(y) = F(y) - \left(\frac{x - y}{x - a}\right)^{m+1} F(a).$$

Then g(a) = 0. Also g(x) = F(x) = f(x) - f(x) = 0. Therefore, by Rolle's theorem, there exists some $c \in (a, x)$ such that

$$g'(c) = 0 = F'(c) + \frac{(m+1)(x-c)^m}{(x-a)^{m+1}}F(a).$$

On the other hand, from the definition of F,

$$F'(c) = -\frac{f^{(m+1)}(c)}{m!}(x-c)^m.$$

Hence $F(a) = \frac{(x-a)^{m+1}}{(m+1)!} f^{(m+1)}(c)$ and the result follows.

Taylor's theorem

Examples

(i)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} e^c, c \in (0, x)$$
 or $(x, 0)$ depending on the sign of x .
(ii) $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^n}{n!} \sin(c + \frac{n\pi}{2}), c \in (0, x)$ or $(x, 0)$.
(iii) $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} \cos(c + \frac{n\pi}{2}), c \in (0, x)$ or $(x, 0)$.

(ii)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^n}{n!} \sin(c + \frac{n\pi}{2}), c \in (0, x) \text{ or } (x, 0)$$

(iii)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^3}{4!} + \dots + \frac{x^n}{n!} \cos(c + \frac{n\pi}{2}), c \in (0, x) \text{ or } (x, 0).$$

Problem

Find the order n of Taylor Polynomial P_n , about x = 0 to approximate e^x in (-1, 1) so that the error is not more than 0.005

Solution: We know that $p_n(x) = 1 + x + \dots + \frac{x^n}{n!}$. The maximum error in [-1,1] is

$$|R_n(x)| \le \frac{1}{(n+1)!} \max_{[-1,1]} |x|^{n+1} e^x \le \frac{e}{(n+1)!}.$$

So n is such that $\frac{e}{(n+1)!} \leq 0.005$ or $n \geq 5$.

Problem

Find the interval of validity when we approximate $\cos x$ with 2nd order polynomial with error tolerance 10^{-4} .

Solution: Taylor polynomial of degree 2 for $\cos x$ is $1 - \frac{x^2}{2}$. So the remainder is $(\sin c)\frac{x^3}{3!}$. Since $|\sin c| \le 1$, the error will be at most 10^{-4} if $\left|\frac{x^3}{3!}\right| \le 10^{-4}$. Solving this gives |x| < 0.084.

Taylor's series

Suppose f is infinitely differentiable at a and if the remainder term in the Taylor's formula, $R_n(x) \to 0$ as $n \to \infty$. Then we write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

This series is called Taylor series of f(x) about the point a.

• Suppose there exists C = C(x) > 0, independent of n, such that $|f^{(n)}(x)| \le C(x)$. Then $|R_n(x)| \to 0$ if $\lim_{n \to \infty} \frac{|x-a|^{n+1}}{(n+1)!} = 0$. Using **Ratio test**, one can show that $\lim_{n \to \infty} \frac{|x-a|^{n+1}}{(n+1)!} = 0$.

Remark

If a = 0, the formula obtained in Taylor's theorem is known as *Maclaurin's formula* and the corresponding series that one obtains is known as *Maclaurin's series*.

Examples

(i)
$$f(x) = e^x$$
.

In this case
$$R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c) = \frac{x^{n+1}}{(n+1)!} e^c = \frac{x^{n+1}}{(n+1)!} e^{\theta x}$$
, for some $\theta \in (0,1)$.

Therefore for any given
$$x$$
 fixed, $\lim_{n\to\infty} |R_n(x)| = \lim_{n\to\infty} \left(\frac{x^{n+1}}{(n+1)!}\right) e^{\theta x} = 0.$

$$(ii) f(x) = \sin x.$$

Here
$$|R_n(x)| \le \frac{|x|^{2n+1}}{(2n+1)!} \left| \sin(c + \frac{n\pi}{2}) \right|$$
. Now use the fact that $|\sin x| \le 1$ and follow as in (i).

Maxima and Minima: Derivative test

- A point x = a is called critical point of the function f(x) if f'(a) = 0.
- A point x = a is a local maxima if f'(a) = 0 and f''(a) < 0.
- Suppose f(x) is continuously differentiable in an interval around x = a and let x = a be a critical point of f. Then f'(a) = 0. By Taylor's theorem around x = a, there exists $c \in (a, x)$ (or $c \in (x, a)$) such that

$$f(x) - f(a) = \frac{f''(c)}{2}(x - a)^2.$$

If f''(a) < 0. Then f''(c) < 0 in $|x - a| < \delta$ as f''(x) is continuous at x = a. Hence f(x) < f(a) in $|x - a| < \delta$, which implies that x = a is a local maximum.

- Similarly, a point x = a is a local minima if f'(a) = 0, f''(a) > 0.
- Also the above observations show that if f'(a) = 0, f''(a) = 0 and $f^{(3)}(a) \neq 0$, then the sign of f(x) f(a) depends on $(x a)^3$. i.e., it has no constant sign in any interval containing a. Such point is called point of inflection or saddle point.
- If $f'(a) = f''(a) = f^{(3)}(a) = 0$, then we again have x = a is a local minima if $f^{(4)}(a) > 0$ and is a local maxima if $f^{(4)}(a) < 0$.

Maxima and Minima: Derivative test

Theorem

Let f be a real valued function that is differentiable 2n times and $f^{(2n)}$ is continuous at x = a. Then

- (a) If $f^{(k)}(a) = 0$ for $k = 1, 2, \dots, 2n 1$ and $f^{(2n)}(a) > 0$ then a is a point of local minimum of f(x).
- (b) If $f^{(k)}(a) = 0$ for $k = 1, 2, \dots, 2n 1$ and $f^{(2n)}(a) < 0$ then a is a point local maximum of f(x).
- (c) If $f^{(k)} = 0$ for $k = 1, 2, \dots, 2n 2$ and $f^{(2n-1)}(a) \neq 0$, then a is point of inflection. i.e., f has neither local maxima nor local minima at x = a.
- Suppose f(x), g(x) are differentiable n times, and $f^{(n)}$, $g^{(n)}$ are continuous at a and $f^{(k)}(a) = g^{(k)}(a) = 0$ for $k = 0, 1, 2, \dots, n-1$. Also if $g^{(n)}(a) \neq 0$. Then by Taylor's theorem,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f^{(n)}(x)}{g^{(n)}(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}$$

Similarly, we can derive a formula for limits as x approaches infinity by taking $x = \frac{1}{y}$.

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{y \to 0} \frac{f(1/y)}{g(1/y)} = \lim_{y \to 0} \frac{(-1/y^2)f'(1/y)}{(-1/y^2)g'(1/y)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

- Given a sequence of real numbers $\{a_n\}_{n=0}^{\infty}$, the series $\sum_{n=0}^{\infty} a_n (x-c)^n$ is called **power series** with center c. The series converges for x=c.
- Power series is a function of x provided it converges for x. If a power series converges, then the domain of convergence is either a bounded interval or the whole of \mathbb{R} .
- The translation x' = x c reduces a power series around c to a power series around 0.
- Consider the series for c = 0, i.e., the power series around 0 of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + \dots + a_n x^n + \dots$$
 (1)

Even though the functions appearing in (1) are defined over all of \mathbb{R} , it is not to be expected that the series (1) will converge for all x in \mathbb{R} . For example, the series

$$\sum_{n=0}^{\infty} n! x^n, \quad \sum_{n=0}^{\infty} x^n, \quad \sum_{n=0}^{\infty} x^n / n!,$$

converge for x in the sets

$$\{0\}, \{x \in \mathbb{R} : |x| < 1\}, \mathbb{R}, \text{ respectively.}$$

Theorem

If $\sum a_n x^n$ converges at x = r, then $\sum a_n x^n$ converges for |x| < |r|.

Proof: We can find C > 0 such that $|a_n r^n| \le C$ for all n. Then

$$|a_nx^n| \leq |a_nr^n||\frac{x}{r}|^n \leq C|\frac{x}{r}|^n.$$

Conclusion follows from comparison theorem.

Theorem

If $\sum a_n x^n$ diverges at x = r, then $\sum a_n x^n$ diverges for |x| > |r|.

Theorem

If a power series $\sum_{n=0}^{\infty} a_n x^n$ be neither nowhere convergent nor everywhere convergent, then there exists a positive real number R such that the series converges absolutely for all real x satisfying |x| < R and diverges for all x satisfying |x| > R.

• The real number R in the above theorems is called the **radius of convergence** of the power series. The interval (-R, R) is called the **interval of convergence** of the power series.

Theorem

Consider the power series $\sum_{n=0}^{\infty} a_n x^n$. Suppose $\beta = \limsup \sqrt[n]{|a_n|}$ and $R = \frac{1}{\beta}$ (we define R = 0 if

$$\beta=\infty$$
 and $R=\infty$ if $\beta=0$). Then

- **3** No conclusion if |x| = R.

Theorem

Consider the power series $\sum_{n=0}^{\infty} a_n x^n$. Suppose $\beta = \limsup \left| \frac{a_{n+1}}{a_n} \right|$ and $R = \frac{1}{\beta}$. Then

Examples

Find the interval of convergence of (i) $\sum \frac{x^n}{n}$, (ii) $\sum \frac{x^n}{n!}$, (iii) $\sum 2^{-n}x^{3n}$.

- (i) $\beta = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, and we know that the series does not converge for x = 1. So the interval of convergence is [-1, 1).
- (ii) $\beta = \limsup \left| \frac{a_{n+1}}{a_n} \right| = 0$. Hence the series converges everywhere.
- (iii) To see the subsequent non-zero terms, we write the series as $\sum 2^{-n}(x^3)^n = \sum 2^{-n}y^n$. For this series $\beta_y = \limsup \sqrt[n]{|a_n|} = 2^{-1}$. Therefore, $\beta_x = 2^{-1/3}$ and $R = 2^{1/3}$.

Theorem (Term by term differentiation and integration)

Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges for |x| < R. Then

- A power series is infinitely differentiable with in its radius of convergence.

Results

- (a) Let R be the radius of convergence of $\sum a_n x^n$ and let K be a closed and bounded interval contained in the interval of convergence (-R,R). Then the power series converges uniformly on K.
- (b) The limit of a power series is continuous on the interval of convergence. A power series can be integrated term-by-term over any closed and bounded interval contained in the interval of convergence.
- (c) A power series can be differentiated term-by-term within the interval of convergence.
- (d) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R(>0) and f(x) be the sum of the series on (-R, R). Then $f^k(0) = k! a_k$, $k = 0, 1, 2, \cdots$.
- (e) Every power series $\sum_{n=0}^{\infty} a_n x^n$ with radius of convergence R(>0) is the Taylor's series about 0 of its sum function f.

Question

If a function f, having derivatives of all orders on some neighbourhood N(0) of 0, be chosen first and the Taylor's series $\sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$ be constructed, does this power series will have f as its sum function on N(0)?

• The answer is No.

Example

Consider the function

$$f(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Then $f^n(0) = 0$ for $n = 0, 1, 2, \cdots$. The Taylor's series of f about 0 is $0 + 0 + 0 + \cdots$ and this converges to 0, and not to f, on N(0).

Remark

If a series is convergent at an endpoint, then the differentiated series may or may not be convergent at this point. For example, the series $\sum_{n=1}^{\infty} x^n/n^2$ converges at both endpoints

x = 1, -1. However, the differentiated series given by $\sum_{n=1}^{\infty} x^{n-1}/n$ converges at x = -1 but diverges at x = 1.

Theorem

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R(>0). If the series converges at the end point R of the interval of convergence (-R,R), then the series is uniformly convergent on the closed interval [0,R].

Result

We write $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$ for |x-c| < R if and only if the sequence $\{R_n(x)\}$ of remainders converges to 0 for each x in some interval $\{x : |x-c| < R\}$. In this case, the power series is the Taylor expansion of f at c.

Example

Find the Taylor series of $f(x) = \tan^{-1} x$ and a domain of its convergence.

Solution:

$$\tan^{-1} x = \int \frac{dx}{1+x^2} = \int 1 - x^2 + x^4 - \dots$$
$$= x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$

Taking x = 1 we get

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \tan^{-1}(1) = \frac{\pi}{4}.$$

Though the function $\tan^{-1} x$ is defined on all of \mathbb{R} , we see that the power series converges on (-1, 1). Also, the series converges at x = 1, -1.

