

Санкт-Петербургский государственный университет Кафедра системного программирования

Разработка адаптивной системы защиты ML-моделей на основе мультиагентного подхода с гомоморфным шифрованием

Хокимзода Муборакшои Иноятулло, группа 24.М41-мм

Научный руководитель: к.ф.-м.н. Д.В. Луцив, доцент кафедры системного программирования **Консультант:** В.А. Андриенко, старший преподователь кафедры системного программирования

Санкт-Петербург 2025

Введение и актульность

- Рост использования ML в банках (кредитный скоринг, выявление мошенничества)
- ullet Проблема: ограниченные локальные ресурсы o аренда облачных серверов
- Риски утечки конфиденциальных данных
- Решение: полностью гомоморфное шифрование (FHE) и мультиагентный подход

Цель и задачи исследования

- **Цель:** Разработка ML-модели (логистическая регрессия) на зашифрованных данных для кредитного скоринга
- Задачи:
 - ▶ Изучить FHE и его применение в ML
 - Разработать мультиагентную архитектуру
 - ▶ Реализовать прототип с библиотекой TenSEAL
 - Сравнить производительность моделей на зашифрованных и незашифрованных данных

Теоретические основы

- Полностью гомоморфное шифрование (FHE):
 - Основы: операции сложения и умножения над зашифрованными данными
 - Схемы: BFV(Brakerski/Fan-Vercauteren), BGV(Fully Homomorphic Encryption without Bootstrapping), CKKS(Cheon-Kim-Kim-Song) (используется CKKS для вещественных чисел)
- Проблема сигмоиды: аппроксимация полиномом (минимаксная аппроксимация)
- Мультиагентные системы(MAS): автономность, координация, модульность

FHE

- **Что такое FHE?** Криптографическая техника, позволяющая выполнять вычисления (сложение и умножение) над зашифрованными данными без расшифровки.
- **История:** Впервые предложено Крейгом Джентри в 2009 году на основе решёток.
- Математическая основа:

Для сообщений \emph{m}_1, \emph{m}_2 шифрование $\mathrm{Enc}(\emph{m})$ поддерживает:

$$\operatorname{Enc}(m_1) + \operatorname{Enc}(m_2) = \operatorname{Enc}(m_1 + m_2),$$

 $\operatorname{Enc}(m_1) \cdot \operatorname{Enc}(m_2) = \operatorname{Enc}(m_1 \cdot m_2)$

CKKS

- Схема полностью гомоморфного шифрования (FHE), разработанная Чеонгом, Кимом, Кимом и Сонгом для работы с вещественными числами.
- Поддерживает приближённые вычисления над комплексными и вещественными числами.
- Кодирование данных в полиномы, шифрование с использованием решёток.
- Операции: сложение, умножение, масштабирование (для управления точностью).
- Bootstrapping для уменьшения шума, но с высокой вычислительной стоимостью.

Архитектура системы

- Мультиагентная система: 4 агента
 - Мониторинг: проверка данных на аномалии
 - ▶ Шифрование: CKKS с TenSEAL на клиенте
 - Передача: безопасная доставка данных
 - Анализ: логистическая регрессия на сервере
- Используемые технологии: TenSEAL, Mesa, PyTorch, Pandas, Scikit-learn

Архитектура системы

Рис.: Архитектура FHE + MAS

Реализация прототипа

- Датасет: «Credit Score Classification» (Kaggle)
- Предобработка: очистка, нормализация, логарифмирование
- ullet Шифрование: СККS с параметрами ${\it N}=8192/16384,~\Delta=2^{21}$
- Обучение: PyTorch, логистическая регрессия (50 эпох, SGD)
- Тестирование: сравнение предсказаний на зашифрованных/незашифрованных данных

Результаты тестирования

Таблица: Сравнение производительности моделей

Конфигурация	Точность	F1-мера
Незашифрованные данные	0.3961	0.1816
Зашифрованные данные ($N=8192$)	0.3800	0.0606
Зашифрованные данные (${\it N}=16384$)	0.6400	0.4375

- Выводы: FHE снижает точность на 1–5%, увеличивает время выполнения в 10–100 раз
- Преимущества: полная конфиденциальность данных

Заключение и перспективы

- Достижения: разработана система, обеспечивающая конфиденциальность с приемлемой точностью
- Ограничения: высокая вычислительная сложность FHE
- Перспективы:
 - Оптимизация алгоритмов шифрования
 - Аппаратное ускорение или облачное
 - Интеграция с дифференциальной приватностью

Источники

- MESA Documentation. [Электронный ресурс]. URL: https://mesa.readthedocs.io/stable/getting-started.html
- Microsoft SEAL Documentation. [Электронный ресурс]. URL: https://github.com/Microsoft/SEAL
- TenSEAL Documentation. [Электронный ресурс]. URL: https://github.com/OpenMined/TenSEAL?tab=readme-ov-file
- Kahya A. Machine Learning over Encrypted Data With Fully Homomorphic Encyption. – Master of Science, METU. 2022;