1.3 Propositional Logic

Material from this section is drawn from [1, Chapter 3] and [2, Chapter 2].

1.47 Definition (Atomic Formula)

An atomic formula is a Boolean Variable.

(Well-formed) formulas are defined as follows.

- 1. All atomic formulas are formulas.
- 2. For every formula F, $\neg F$ is a formula, called the *negation* of F.
- 3. For all formulas F and G, also $(F \vee G)$ and $(F \wedge G)$ are formulas, called the *disjunction* and the *conjunction* of F and G, respectively.
- 4. Nothing else is a formula.

1.48 Definition (Assignment)

 $\mathbb{T} = \{0,1\}$ - the set of truth values: false, and true, respectively.

An assignment is a function $\mathcal{A}: \mathbf{D} \to \mathbb{T}$, where **D** is a set of atomic formulas.

Assignments extend to formulas, via the following *truth tables*. The following are definitions for disjunction, conjunction, and negation, respectively.

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \wedge G)$	$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \vee G)$	$\mathcal{A}(F)$	$A(\neg F)$
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

A formula F is called *satisfiable* if there exists an assignment \mathcal{A} with $\mathcal{A}(F) = 1$. \mathcal{A} is called a *model* of F in this case, and we write $\mathcal{A} \models F$.

1.49 Theorem (Properties for Propisitional Logic)

The following hold for all formulas F, G, and H.

$$F \wedge G \equiv G \wedge F \qquad F \vee G \equiv G \vee F \qquad \text{Commutativity}$$

$$(F \wedge G) \wedge H \equiv F \wedge (G \wedge H) \qquad (F \vee G) \vee H \equiv F \vee (G \vee H) \qquad \text{Associativity}$$

$$F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H) \qquad F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H) \qquad \text{Distributivity}$$

$$\neg \neg F \equiv F \qquad \qquad \text{Double Negation}$$

$$\neg (F \wedge G) \equiv \neg F \vee \neg G \qquad \neg (F \vee G) \equiv \neg F \wedge \neg G \qquad \text{de Morgan's Laws}$$

Proof: Straightforward using truth tables.