Pedestrian trajectory prediction Rodolphe Farrando & Romain Gratier

EPFL – ENAC Faculty

{rodolphe.farrando, romain.gratierdesaint-louis}@epfl.ch

Introduction

- Trajectory prediction is crucial for improving autonomous vehicles behaviour
- Could avoid situations seen in the ethical lectures

Previous Work

Referecnce

- The prediction are done per frame: the goal is to determine multiple trajectory at the same time
- Introduction of a social pooling characteristics: if two pedestrian are side-by-side, they are grouped together

Idea for our Models

- Instead of focusing on frames, prediction focus on one pedestrian
- Special effort is put on pre-processing to make learning easier

Pre-processing

Goal: Normalize data such that every trajectory begin the same way, the model should learn more easily.

- The preprocessing is divided in 5 steps:
- 1. Isolate each trajectory along with its interaction
- 2. Normalize the trajectories: the first point is at (0,0); the second is at $(0,y_1)$
- 3. Calculate axis velocities V_x and V_y
- 4. For each frame, if there is an interacting pedestrian we add his/her coordinates and speed otherwise we add zeros
- 5. Data augmentation: flip and add noise to trajectories

Figure 1: Example of one trajectory after pre-processing

Final shape of the data:

- Pedestrians ID
- Frame number
- ullet Twenty sets of x and y coordinates per pedestrian

Frame Number	ID	x	y	V_x	V_y
0	i	0	0	0	0
10	i	0	y_1	0	V_{y_1}
•	•	•	•	•	•

Objectives

- Train on the 10 first coordinates and speed and their interaction
- Predict the next 10
- Inputs have the following shape: $[10, N, 4 * N_{inter}]$

Models

Inputs: sequence of coordinates and velocities of the trajectory of interest and of the interacting trajectories Outputs: sequence of predicted coordinates and velocities for the trajectory of interest.

CNN

LSTM

Results

Precision indicators

To calculate the correctness of the prediction two indicators are used:

- 1. The final displacement error: $e_{fin} = \sqrt{(X_{gt,n} X_{pred,n})^2}$
- 2. The mean displacement error: $e_{mean} = \sqrt{\frac{\sum_{i=0}^{n} (X_{gt,i} X_{pred,i})^2}{(n)}}$

Post-processing

Depending on the inputs two ways are possible to find the predicted coordinates:

- 1. If the coordinates are predicted: directly use them
- 2. If the velocities are predicted: $X_t = X_{t-1} + V_t \cdot 0.4$, with 0.4 the time between two frames in seconds

Model tests case

Four different cases, that corresponds to four losses, are tested for each model:

- 1. Predict coordinates with loss defines as $L_1 = (X X_{pred})^2$ with X = [x, y]
- 2. Predict speeds with loss defines as $L_2 = (V V_{pred})^2$ with $V = [V_x, V_y]$
- 3. Predict both coordinates and speeds with loss defines as $L = L_1 + L_2$
- 4. Predict both coordinates and speeds with loss defines as $L = L_1 + L_2 + L_3$, with $L_3 = (X X_{t-1} + V_t * 0.4)^2$

Trajectory type

- 1. Static
- 2. Linear trajectories
- 3. Non-linear trajectories

Linear prediction results

- Type 1: Mean = 0.141, Final = 0.322
- Type 2: Mean = 0.541, Final = 0.93
- Type 3: Mean = 0.651, Final = 1.457
- Total: Mean = 0.512, Final = 0.982

Models results

CNN			LSTM						
		Type 1	Type 2	Type 3	Total	Type 1	Type 2	Type 3	Total
Coord.	Mean	4.696	5.144	4.674	4.176	1.309	0.777	0.862	0.877
	Final	10.246	7.009	10.501	5.602	1.385	0.92	1.108	1.037
Speed	Mean	0.567	5.133	1.911	4.17	0.726	0.573	0.651	0.616
	Final	0.77	6.971	3.882	5.587	1.412	1.045	1.231	1.148
2 Losses	Mean	1.269	5.134	1.762	4.163	0.695	0.532	0.627	0.581
	Final	2.727	6.978	3.546	5.57	1.302	0.963	1.2	1.076
3 Losses	Mean	0.549	5.135	3.829	4.163	0.748	0.607	0.681	0.647
	Final	0.758	6.983	4.962	5.573	1.364	1.072	1.308	1.177

Observation

Representation

Non linear trajectory with good prediction:

Non linear trajectory with bad prediction:

Issues & Future work

Vivamus molestie, risus tempor vehicula mattis, libero arcu volutpat purus, sed blandit sem nibh eget turpis.