SOLUTION SHEE	MSe in Math. Physics Mse in Appl. Math.	EXAMINATION SITTING:	SUMMER
SUBJECT:	TENSOR CALCULUS	SITTING:	SUPPLEMENTAL AUTUMN WINTER
EXAMINER:	ROSSBN IVANOV	EXPECTED SOLUTION TO QUESTION NO:	1
PAGEO	}	PROPOSED MARK ALLOCATION:	33
the pro	jections of the rod tical directions in	on the ho	en Zoutal
Δ×' =	= locosto	¥	[Smarks]
4	$\Delta y' = \Delta y$ since $y' = y$ $\Delta y = losin Oo$ $\Delta X = \sqrt{1-\beta^2} \Delta X'$,	3= = AX=	
	$e = \sqrt{(2x)^2 + (24)^2} =$	V62 (1-B2) Cog200	[5 marks]
l = lo	$\sqrt{1-\beta^2\cos^2\theta_0}$, $\ell=\ell_0\sqrt{1}$	-(x)20,20,	[5 mans]
b) tan o	$= \frac{\Delta Y}{\Delta x} = \frac{\text{losmbo}}{\sqrt{1-\beta^2} \text{locobo}} =$	Jan 00	(8 mars)
c) fon 450	$= \frac{4a_{1}30^{\circ}}{\sqrt{1-\beta^{2}}} = \frac{1}{\sqrt{3}} = \sqrt{1-\beta^{2}} = \frac{1}{\sqrt{3}} = \sqrt{1-\beta^{2}} = \sqrt{1-\beta^{2}}$ $V = \sqrt{\frac{2}{3}} C$		manz

SOLUTION SHEET

COURSE / YEAR				EXAMINATION SITTING:	SUMMER SUPPLEMENTAL	
SUBJECT:					AUTUMN WINTER	
EXAMINER:				EXPECTED SOLUTION TO QUESTION NO:	2	
PAGE 2 OF	7			PROPOSED MARK ALLOCATION:	33	
a) The	luerly of	the	elictron	75		

SOI	UTION.	SHEET

COURSE / YEAR SUBJECT:	EXAMINATION SITTING:	SUMMER SUPPLEMENTAL AUTUMN WINTER
EXAMINER:	EXPECTED SOLUTION TO QUESTION NO:	3
PAGE 3 OF 7	PROPOSED MARK ALLOCATION:	33
a) $L_b^a = \frac{\partial x^b}{\partial x^b} - transformation$	matrix	
A'Ü = L'KL' 9 AK9		

If
$$A^{R9} = A^{RR}$$
 is symmetric then

$$A^{IJi} = L^{J} q L^{i} R A^{qR} = L^{j} q L^{i} R^{R9} = L^{i} R^{j} q = A^{IJ}$$

$$A^{IJi} = L^{J} q L^{i} R A^{qR} = L^{j} q L^{i} R^{R9} = L^{i} R^{j} q = A^{IJ}$$

$$A^{IJi} = A^{IJi} = A^{IJi} R^{I} R^{$$

as they browsform as contravariant vector: $t' = \frac{t - \frac{vz}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}} \quad x' = \frac{ze - vt}{\sqrt{1 - \frac{v^2}{c^2}}} \quad y' = y$

$$L = \begin{pmatrix} \frac{1}{\sqrt{1-\sqrt{2}}} & -\frac{\sqrt{2}}{\sqrt{2}} & 0 & 0 \\ \sqrt{1-\sqrt{2}} & \sqrt{1-\sqrt{2}} & 0 & 0 \\ \sqrt{1-\sqrt{2}} & \sqrt{1-\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

[4 marris]

SOI	JUTION	SHEET

COURSE / YEAR	EXAMINATION SITTING:	SUMMER SUPPLEMENTAL AUTUMN
SUBJECT:		WINTER
EXAMINER:	EXPECTED SOLUTION TO QUESTION NO:	
PAGE 4 OF 7	PROPOSED MARK ALLOCATION:	
Symmetric tensor transforms	the same in	ay as xizi
=> $A^{(0)} = (t')^2 = \frac{t^2 - 2 \frac{v \times t}{c^2}}{1 - \frac{v^2}{c^2}}$	+ 1/3 c > A 00	$\frac{2^{2}-2^{2}A^{0}+\frac{v^{2}}{2}A^{0}}{\sqrt{1-\frac{v^{2}}{2}}}$
$(A')^{00} = \frac{1}{1 - \frac{v^{\perp}}{c^{\perp}}} \left(A^{00} - 2 \frac{v}{c^{2}} A^{01} + \frac{v^{\perp}}{c^{\perp}} A^{11} \right)$		[2 mans]
$(A')^{11} \Leftrightarrow (x')^{2} = \left(\frac{x - vt}{\sqrt{1 - (\xi')^{2}}}\right)^{2} = \frac{x^{2} - 21}{1 - (\xi')^{2}}$	1xt+vt ()	(VI- 22 A
$(A')^{11} = \frac{1}{1 - \frac{v^2}{c^2}} \left(A'' - 2v A^{01} + \frac{v^2}{c^2} A^{00} \right)$	Α.	(2 marus)
$(A')^{22} \iff (\chi'^2)^2 = y^2 \iff A^{22}$		
$(A')^{22} = A^{22} \cdot \int_{0}^{\infty} \sin^{2}(\alpha r \log r) dr $	$(x-vt)$ $(1+\frac{v^2}{2})^2$	(4 many)
$(A')^{01} \leftrightarrow (x')^{0}(x')^{1} = t' \cdot x' = \frac{(c_{2})^{1}}{1 - \frac{u^{2}}{2}}$		1- 12
$(A')^{01} = \frac{1}{1-\frac{v^2}{c^2}} \left(-v A^{00} + \left(1 + \frac{v^2}{c^2} \right) A^{01} - \frac{v}{c^2} \right)$	A^{11}	2 mars)

$$(A')^{42} = (A')^{4}(A')^{2} = (A')^{4}(A')^{2} = (A')^{4}(A')^{4}(A')^{2} = (A')^{4}(A')^{2} = (A')^{4}$$

SOLUTION SHEET

COURSE / YEAR	EXAMINATION SITTING:	SUMMER SUPPLEMENTAL
SUBJECT:		AUTUMN U
EXAMINER:	EXPECTED SOLUTION TO QUESTION NO:	4
PAGE 6 OF 7	PROPOSED MARK ALLOCATION:	33
The coordinates are x'=r, x	2=0 then	
a) gy =1+222 g12=0, 722=12		
g#= (1+272) , g12 = 0, g22 = r-2		Swares)
b) 31, 1 = 2d2r, 922, 1=2r, 3,2,7	712,2=911,2=9242=	- 0
Fi,mn = 2 (gim, n + gin, m - Jun,	1/3	
[1,11 = 2], [1,22 = -r, [2,12=[2,21=1	
This = [1,2] = [2,1] = [2,12 = [2,12]	=0 n	*
$\Gamma_{M}^{1} = \frac{d^{2}r}{1+d^{2}r^{2}}, \Gamma_{12}^{2} = \Gamma_{21}^{2} = \frac{1}{r}, \Gamma_{22}^{1} = \frac{1}{r}$:- r 1+d3/2 / Fil= [12=	[2=[2=0 [10 mars]
c) The only newsers components $R^{1}_{212} = \frac{2^{2}r^{2}}{(1+d^{2}r^{2})^{2}}, R^{2}_{212} = \frac{2}{2}$	of R Bcd are	
=> R 1212 = 911 R1 212 + 912 R2 ==================================	1+222 is the onl	y essential
all component (others are detain	ued by symmetry	properties)

SOLUTION SHEET

COURSE / YEAR		EXAMINATION SITTING:	SUMMER SUPPLEMENTAL	000
SUBJECT:			AUTUMN WINTER	
EXAMINER:		EXPECTED SOLUTION TO QUESTION NO:		
PAGEOF	7	PROPOSED MARK ALLOCATION:		

d) The Scalar curvature is

$$R = g^{ij}g^{lm}R_{iljm}$$

Nowzero terms will be

 $R = g^{mg^{22}}R_{1212} + g^{22}g^{m}R_{2121} = 2g^{mg^{22}}R_{1212} = 2(1+\lambda^2r^2)^{\frac{1}{2}}r^{\frac{1}{2}} = 2\lambda^2r^2$
 $R = \frac{2\lambda^2}{(1+\lambda^2r^2)^2}$
 $R = \frac{2\lambda^2}{(1+\lambda^2r^2)^2}$

(7 mary)