Cours SQL – Le modèle relationnel

Djamal Benslimane

- Base de données (BD) = ensemble de données accessibles et exploitables au moyen d'un ensemble de programmes informatiques.
- Système de gestion de bases de données (SGBD) = outil (logiciel) permettant d'accéder et de manipuler des données d'une BD.

Objectifs des SGBD:

- exploitation de gros volumes de données
 - => structures de données et méthodes d'accès efficaces,
- exploitation par différents types d'utilisateurs (Indépendance programme données)
 - => différents outils d'accès ou interfaces-utilisateurs,
- gestion de données sensibles
 - => sécurité et fiabilité des outils,
- aspect multi-utilisateurs
 - => mécanismes de protection
- Exemples de SGBD relationnels : Oracle, Mysql, SQLServer, Access, ...

Exemples d'utilisations de SGBD

- consultation en local ou à distance des données relatives aux produits d'une entreprise,
- consultation des cours de la bourse,
- facturation à partir des données relatives aux commandes-clients et aux caractéristiques de produits, ...

Pourquoi modéliser les données ?

Prenons un exemple

Il s'agit de créer une base de données pour une caisse de maladie. On veut stocker tous les employés-membres de la caisse avec leur société-employeur. Afin de faciliter l'exercice, nous allons uniquement stocker les informations suivantes pour chaque employé:

- · le numéro de l'employé
- · le nom de l'employé
- · le prénom de l'employé
- · le numéro de son entreprise
- · le nom de son entreprise
- · la localité où se trouve l'entreprise

Pourquoi modéliser?

A première vue, la solution suivante s'impose :_

NoEmp	Nom_Emp	Prénom_Emp	NoEntr	Nom_Entr	Localité
102	Boesch	Emil	1	Schaffgaer S.à r.l.	Differdange
103	Midd	Erny	2	Gudjär	Colmar Berg
104	Witz	Evelyne	1	Schaffgaer S.à r.l.	Differdange
105	Kuhl	Menn	1	Schaffgaer S.à r.l.	Differdange
106	Super	Jhemp	2	Gudjär	Colmar Berg
	ļ	1			

Problèmes posés avec cette représentations :

Redondance : nom et localité des entreprises

Incohérence: si on change la localité de Gudjar sur la ligne 2 et on oublie de le faire sur les autres lignes, on aura 2 localités pour L'entreprise N° 2

Méthode Générale de modélisation des données

En Résumé

Modèle conceptuel des données (MCD)

Entité-Association, UML

Modèle logique des données (MLD)

Modèle Relationnel, ...

Modèle physique des données (MPD)

Oracle, Mysql, SQL
Server, Access, etc.

Analyse

MLD

MPD

Modélisations à plusieurs niveaux

On est plutôt proche des utilisateurs non Informaticiens On est indépendant du Modèle choisi sur machine

On est plutôt proche de la machine et des développeurs

Deux représentations d'une même réalité

buniv-lyar1.h: directi index, gpi projectid=1.65hcv/FarniVledic=truebdays=0

Autrement dit Personne **Voiture** Voiture conduit Personne Schéma/modèle conceptuel Monde réel Concepteur **Table Personne Table Voiture BD** Oracle **Développeurs Table Conduit** Programmes Java, Php Voiture Schéma/modèle logique Personne Ford KA Dupont Peugeot 106 Durant Toyota yaris Rochat

Utilisateurs (LMD Oracle sql developer, ...)

Modèle physique

Modèle relationnel des BD - principaux concepts

Attribut.

- Un attribut est un identificateur (un nom)
 décrivant une information stockée dans une base.
- Exemple : le numéro et le nom d'une personne sont des attributs.

Domaine.

- Le domaine d'un attribut est l'ensemble, fini ou infini, de ses valeurs possibles.
- Exemple : l'attribut numéro a pour domaine un entier et nom a pour domaine l'ensemble des combinaisons de lettres (chaîne de caractères).

Modèle relationnel des BD - principaux concepts

Relation/Table.

- Une relation/table est un sous-ensemble du produit cartésien de n domaines d'attribut (n > 0)
- Une relation/table est représentée sous la forme d'un tableau à deux dimensions dans lequel les attributs correspondent aux titres des colonnes.
- Exemple: table Personne avec trois attributs:

schéma	numero	nom	prenom	Schéma de la table :	
Contenu	5	Durand	Caroline	Personne (numero : entier, nom : chaine, prenom : chaine)	
	1	Dubois	Jacques	Ou on plus consist	
	12	Dupont	Lisa	Ou en plus concis : Personne (numero, nom, prenom)	
	3	Dubois	Rose-Marie	Degré = 3; cardinalité = 4	
			(12. Dupont.	Lisa): ligne/tuple/n-uplet/occurence	

Clé candidate dans une table

Une clé candidate :

- C'est un ensemble minimal des attributs de la table dont les valeurs identifient à coup sûr une ligne.
- La valeur d'une clé candidate d'une table est donc distincte pour toutes les lignes.
- La notion de clé candidate est essentielle dans le modèle relationnel.
- Toute relation a au moins une clé candidate et peut en avoir plusieurs.
- Les clés candidates d'une relation n'ont pas forcément le même nombre d'attributs.

Exemple.

- Numéro est une clé candidate de Personne si deux étudiants ne peuvent pas avoir le même numéro.
- (Nom, prenom) constituent une clé candidate si on est dans un contexte où l n'existe pas deux personnes de même nom et prénom.

Clé primaire d'une table

- La clé primaire d'une table :
 - C'est une de ses clés candidates.
 - La notion de clé primaire est plus importante que celle de clé candidate dans le modèle relationnel.

- Notation possible :
 - les attributs qui constituent la clé primaire sont soulignés.
 - Exemple:
 - Personne (<u>Numero</u>, nom, prénom) indique que Numéro est la clé primaire de la table Personne.
 - Personne (Numero, <u>nom</u>, <u>prenom</u>) indique que le couple (nom, prenom) constitue la clé primaire de la table Personne.

Clé étrangère d'une table

- Une clé étrangère
 - permet d'assurer la cohérence des données définies dans plusieurs tables
 - Elle est formée d'un ou plusieurs de ses attributs qui constituent une clé primaire dans une autre relation.
 - Notation possible : les attributs qui constituent la clé étrangère sont précédés du caractère #.
 - Exemple :
 - Personne (<u>Numero</u>, nom, prenom, #NumIUT)
 - IUT (NumIUT, nomIUT, adresseIUT)
 - #NumIUT est une clé étrangère dans Personne et indique qu'une personne ne peut être affectée à un IUT que si celuici est connu dans la table IUT.

Personne

IUT

Numero	Nom	Prenom	NumIUT
5	Durand	Caroline	1
1	Dubois	Jacques	3
12	Dupont	Lisa	1
3	Dubois	Rose-Marie	4

NumIUT	nomIUT	adresseIUT
1	IUTLyon1	Villeurbanne
2	IUTMarseille	Marseille
3	IUTParis	Paris

Insertion du dernier tuple dans Personne est impossible

La valeur 4 est impossible/fausse car l'IUT n° 4 n'existe pas

Remarquez que l'IUT N° 2 peut exister même si aucun étudiant n'y est affecté

Schéma de la base de données

- Une base de données est un ensemble d'informations stocké par un ordinateur selon une structure définie. Elle est définie par l'ensemble des tables/relations.
- Le schéma de notre base de données (BD)est :
 - Personne(<u>Numéro</u>, nom, prénom, #NumIUT)
 - IUT(<u>NumIUT</u>, nom, adresse)
- Le contenu de la base de données est constitué du contenu de ses différentes tables.