

布尔函数

定义7.14 设有 $B=\{0,1\}$,可用它构造一个函数

$$Y = f(x_1, x_2, ..., x_n)$$

其中 $f:B'' \to B$,这个函数称为n元布尔函数, x_i 称为它的布尔变元。 布尔函数可以用布尔映射表来表示,例如三元布尔函数的映射表:

x_1	x_2	x_3	Y
0	0	0	1
0	1	0	1
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	0
1	0	1	0
1	1	1	0

布尔表达式

离散数学

布尔函数可以用布尔表达式表示 定义7.15 布尔表达式可由如下公式组成:

- (1)0和1是布尔表达式;
- (2) 布尔变元 $x_1, x_2, ..., x_n$ 是布尔表达式;
- (3) 若 E_1 , E_2 是布尔表达式, 则 $E_1 \land E_2$, $E_1 \lor E_2$, E_1' 是布尔表达式;
- (4) 布尔表达式由且仅由上述三种方式在有限步骤内组成。

回忆合式公式

例: $(x_1 \lor (x_2 \land x_3))'$ 是布尔表达式 \land 布尔积(\circ)、 \lor 布尔和(+) $x_1x_2 \circ x_3$ 不是布尔表达式 如何由布尔函数构造布尔表达式?

由布尔函数构造布尔表达式

定义7.16 布尔变元或其补称为文字,布尔变元 $x_1, x_2, ..., x_n$ 的最小项是一个

Note: 一个最小项对一个且仅对一个变元值的组合为1,这个变元值的取 值如下:

- (1) 当*y_i=x_i*时,取值为1;
- (2) 当 $y_i = x_i$ '时,取值为0。

例:最小项 $x_1 \circ x_2' \circ x_3$ 仅对 $x_1=1, x_2=0, x_3=1$ 的取值组合取值为1

类比: 命题变元的赋值

积之和展开式

离散数学

定义7.17 由最小项所表示的布尔积所组成的布尔和,称为积之和表达式, 也称积之和展开式

类比: 命题逻辑中的主析取范式

定理7.10 布尔函数可用一个积之和展开式表示

证明: 布尔函数可由布尔映射表表示, 布尔映射表中使布尔函数的值为1 的行与一个最小项对应,整个表有m行使布尔函数的值为1,它们组成 了m个布尔积的布尔和,即一个积之和展开式.

例:前述表中的布尔函数为:

$$x_1' \circ x_2' \circ x_3' + x_1' \circ x_2 \circ x_3' + x_1 \circ x_2' \circ x_3' + x_1 \circ x_2 \circ x_3'$$

用布尔代数的性质化简为: x_3

THE END

