

Métodos de Imputación basados en la Función de Verosimilitud

Subdepartamento de Investigación Estadística

Departamento de Metodologías e Innovación Estadística

Instituto Nacional de Estadísticas

Miguel Alvarado

Septiembre, 2023

1 Anexo 1: Distribución Weibull (σ)

```
load('FUNs_MLE_WEIBULL1.RData')

As <- seq(1.5, 6, 1.5)
Sigmas <- seq(0.5, 2.0, 0.5)
set.seed(12358)
at <- 1
for(a in As){
    st <- 1
    for(s in Sigmas){
        nmMTX <- paste('MLE_Weib_', 'A', at, '_', 'S', st, sep = "")
        assign(nmMTX, FUN_SIM_MLE_Weibull1(arg_a = a, arg_s = s))
        st <- st + 1
    }
    at <- at + 1
}</pre>
```


XXX

Table 1: Weibull: 1-2

	Scale	Prom.	Min.	Max.	S.D.		Scale	Prom.	Min.	Max.	S.D.
S1	0.5	0.5003	0.4640	0.5360	0.0108	S1	0.5	0.4999	0.4815	0.5171	0.0052
S2	1.0	0.9998	0.9349	1.0699	0.0212	S2	1.0	1.0000	0.9685	1.0350	0.0106
S3	1.5	1.4981	1.3917	1.5938	0.0316	S3	1.5	1.5000	1.4415	1.5495	0.0160
S4	2.0	1.9983	1.8784	2.1443	0.0417	S4	2.0	1.9999	1.9399	2.0727	0.0204

Table 2: Weibull: 3-4

	Scale	Prom.	Min.	Max.	S.D.		Scale	Prom.	Min.	Max.	S.D.
S1	0.5	0.5001	0.4901	0.5121	0.0035	S1	0.5	0.4998	0.4921	0.5077	0.0026
S2	1.0	0.9999	0.9769	1.0211	0.0068	S2	1.0	0.9998	0.9809	1.0151	0.0051
S3	1.5	1.5004	1.4668	1.5332	0.0106	S3	1.5	1.4998	1.4744	1.5218	0.0075
S4	2.0	1.9994	1.9525	2.0409	0.0141	S4	2.0	1.9996	1.9653	2.0315	0.0101

2 Anexo 2: Distribución Gamma (α)

```
load('FUNs_MLE_GAMMA1.RData')

Alfas <- seq(1.5, 6, 1.5)
Sigmas <- seq(0.5, 2.0, 0.5)
set.seed(12358)
at <- 1
for(a in Alfas){
    st <- 1
    for(s in Sigmas){
        nmMTX <- paste('MLE_Gamma_', 'A', at, '_', 'S', st, sep = "")
        assign(nmMTX, FUN_SIM_MLE_Gamma(arg_a = a, arg_s = s) )
        st <- st + 1
    }
    at <- at + 1
}</pre>
```


Table 3: Gamma: 1-2

	Shape	Prom.	Min.	Max.	S.D.		Shape	Prom.	Min.	Max.	S.D.
A1	1.5	1.5006	1.4031	1.6105	0.0326	A1	1.5	1.4999	1.4107	1.6033	0.0316
A2	3.0	3.0000	2.8256	3.1416	0.0492	A2	3.0	2.9990	2.8536	3.1603	0.0504
A3	4.5	4.5013	4.2956	4.7076	0.0621	A3	4.5	4.5022	4.2611	4.7129	0.0624
A4	6.0	5.9981	5.7411	6.2593	0.0730	A4	6.0	5.9999	5.7463	6.2590	0.0724

Table 4: Gamma: 3-4

	Shape	Prom.	Min.	Max.	S.D.		Shape	Prom.	Min.	Max.	S.D.
A1	1.5	1.5014	1.4059	1.6103	0.0324	A1	1.5	1.5014	1.4059	1.6103	0.0324
A2	3.0	3.0015	2.8499	3.1927	0.0505	A2	3.0	3.0015	2.8499	3.1927	0.0505
A3	4.5	4.5036	4.3232	4.7190	0.0594	A3	4.5	4.5036	4.3232	4.7190	0.0594
A4	6.0	6.0010	5.7577	6.2675	0.0748	A4	6.0	6.0010	5.7577	6.2675	0.0748

XXX

3	Distribución	Weibull	(a, a)	σ

XXX

Bibliografía

- Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. 1977. "Maximum Likelihood from Incomplete Data via the EM Algorithm." *Journal of the Royal Statistical Society: Series B (Methodological)* 39 (1): 1–22.
- Dobson, Annette J., and Adrian G. Barnett. 2018. An Introduction to Generalized Linear Models. Texts in Statistical Science Series. CRC Press.
- Dunn, Peter K., and K. Smyth Gordon. 2018. Generalized Linear Models with Examples in R. Springer Texts in Statistics. Springer.
- Enders, Craig K. 2022. Applied Missing Data Analysis. Guilford Publications.
- He, Yulei, Guangyu Zhang, and Chiu-Hsieh Hsu. 2021. Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies. CRC Press.
- Lindsey, James. K. 1997. Applying Generalized Linear Models. Springer Texts in Statistics. Springer.
- Little, Roderick J. A., and Donald B. Rubin. 2020. Statistical Analysis with Missing Data. Wiley Series in Probability and Statistics. John Wiley & Sons.
- McCullagh, P., and J. A. Nelder. 1989. *Generalized Linear Models*. Monographs on Statistics and Applied Probability 37. Chapman; Hall, London.
- Molenberghs, G., G. Fitzmaurice, M. G. Kenward, A. Tsiatis, and G. Verbeke. 2015. *Handbook of Missing Data Methodology*. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press.
- Nelder, J. A., and R. W. M. Wedderburn. 1972. "Generalized Linear Models." *Journal of the Royal Statistical Society* A135 (3): 370–84.
- Rubin, Donald B. 1976. "Inference and Missing Data." Biometrika 63 (3): 581–92.
- Tan, Ming T., Guo L. Tian, and Kai W. Ng. 2010. Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation. Chapman & Hall/CRC Biostatistics Series. CRC Press.
- Van Buuren, Stef. 2012. Flexible Imputation of Missing Data. Chapman & Hall/CRC Interdisciplinary Statistics Series. CRC Press.