Das LATEX-KBS

Grundlagen von LaTEX, Beamer und Tipps für Hausaufgaben, Seminararbeiten, etc.

Walter Stieben 4stieben@inf Hauke Stieler 4stieler@inf Ruben Felgenhauer 4felgenh@inf

6. Januar 2018

Danke Henning (8pridoeh) dass wir deine Folien aus dem WS14/15 benutzen dürfen :D

- 1 Was ist LATEX
- 2 Grundlagen von LATEX und TEX
- 3 Mathematischer Textsatz

www.latex-project.org/ Telefonberatung 0221-892031

Einführung

Was ist LATEX

LATEX and LEX:

- T_EX ist ein Textsatzsystem von Donald E. Knuth
- LATEX ist ein Satz von Makros für TEX
- WYSIWYM (What You See Is What You Mean)

Vorteile von LATEX:

- Ergebnis sieht hübsch aus
- LATEX kümmert sich um die Formatierung
- Der Quelltext lässt sich Versionsverwalten
- Für mathematische Formeln sehr gut
- "Ich möchte X mit LATEX machen" \to Suchmaschine: "latex X" eingeben \to Ergebnis in den Quelltext kopieren
- Der meiste Code ist wiederverwendbar

LATEX-Distribution

Die LATEX-Distribution stellt eine Sammlung von Paketen und Programmen zum Kompilieren bereit (Backend).

GNU/Linux Nutzt den Paketmanager eurer Distribution.

Debian/Ubuntu: apt-get install texlive
oder apt-get install texlive-full (> 2 GB)

Windows MiKTeX oder TeX Live herunterladen und installieren. http://miktex.org/http://www.tug.org/texlive/

Mac OS MacTex herunterladen und installieren. http://tug.org/mactex/

LATEX-Editoren

Kile Guter Editor für GNU/Linux (KDE).

Gummi Editor für GNU/Linux (GTK) mit Live-Preview

AUCTeX für Emacs-Benutzer

Texmaker Editor für alle Betriebssysteme

Texstudio Fork von Texmaker mit mehr Funktionen

und viele mehr

Overleaf

Online Editor mit Live-Preview (https://www.overleaf.com)

Verschiedene LATEX-Compiler

Es gibt verschiedenen Compiler für LATEX. Heute: **pdflatex Vorteile von pdflatex**:

- Direktes erzeugen einer PDF
- Viele PDF-Features nutzbar
- Einfach zu verwenden

Nachteile von pdflatex:

- Kein pstricks nutzbar.
- Postscript-Dateien nicht direkt einbindbar
- Keine vollständige Unicode-Unterstützung (wie XelateX)

Detexify - LATEX-Symbolerkennung

Detexify im Play Store

Anmerkungen

Achtung: T_EX ist eine Programmiersprache! Lasst nur vertrauenswürdige Menschen T_EX/LAT_EX-Code auf eurem Rechner/Server ausführen.

Anmerkung: Man kann https://www.overleaf.com.zum live-nachcoden benutzen.

Dokumentenklassen

- Die Dokumentenklasse beschreibt wie ein Dokument aussieht
- Ihr beschreibt was ihr schreibt (z. B. was eine Überschrift ist)
- ETEX formatiert euer Dokument mit Hilfe der Dokumentenklasse, nicht ihr!

Beispiele für Dokumentenklassen:

Scrartcl, article: Artikel im Umfang von mehreren Seiten

Scrllr2, letter: Briefe

Scrreprt, report: Reports, Umfang mehr als 15 Seiten

Scrbook, book: Bücher

Syntax - Befehle und Umgebungen

Befehle:

- Beginnen mit einem Backslash (\...)
- Parameter in geschweiften Klammern ($\{...\}$)
- Optionale Parameter in eckigen ([...])
- Manchmal auch als *-Variante (leicht verändertes Verhalten;
 s. align und align* Umgebung später)

Umgebungen:

- Beginnen mit dem \begin{name} Befehl
- und enden mit dem \end{name} Befehl
- Formatieren ganze Textblöcke

Aufbau des Dokumentes

Dokument:

- Dokumentenklasse wählen
- 2 Pakete laden
- 3 Einstellungen vornehmen, Styles ändern, Befehle definieren, et.
- 4 Dokument öffnen
- 5 Inhalte schreiben
- 6 Dokument schließen

Schriftgrößen

scriptsize \scriptsize \footnotesize \footnotesize \small \normalsize \large \large \Large \LARGE \huge \huge \Large \Luge \large \Larg

\tiny

Schriftgrößen:

Huge

tiny

Mein erstes Dokument

```
\documentclass[a4paper,10pt]{scrartcl}
\usepackage[utf8] {inputenc}
\usepackage[T1]{fontenc}
\usepackage[ngerman]{babel}
\usepackage{lmodern}
\author{Max Mustermann}
\title{Mein erstes Dokume
                                  Mein erstes Dokument
                                        Max Mustermann
\begin{document}
                                        9 Januar 2016
    \maketitle
    Hello World!
                           Hello World!
\end{document}
```

Mein erstes Dokument

```
\documentclass[a4paper,10pt]{article}
\usepackage[utf8] {inputenc}
\usepackage[T1]{fontenc}
\usepackage[ngerman]{babel}
\usepackage{lmodern}
\author{Max Mustermann}
\title{Mein erstes Dokume
                                     Mein erstes Dokument
                                         Max Mustermann
\begin{document}
                                          9. Januar 2016
    \maketitle
    Hello World!
                            Hello World!
\end{document}
```

Gliederung des Dokumentes

LATEX-Code:

\section{Finden von maximalen Cliquen in Graphen}
Maximale Cliquen haben viele reale Anwendungsfälle.
\subsection{NP-Vollständigkeit}
Das Problem ist NP-vollständig.

Ergebnis:

1 Finden von maximalen Cliquen

Maximale Cliquen haben viele reale Anwendungsfälle.

1.1 NP-Vollständigkeit

Das Problem ist NP-vollständig.

Einfache Textformatierung

LATEX-Code:

Dieser Text hat einen\\
Zeilenumbruch.

Dieser Text\newline
auch

Dies ist ein Absatz

Ergebnis:

Dieser Text hat einen Zeilenumbruch Dieser Text auch

Dies ist ein Absatz

Einfache Textformatierung

LATEX-Code:

Dies ist \textbf{fett} oder \texttt{typewriter}
oder \textit{kursiv}. Oder einfach nur
\emph{hervorgehoben}.

Ergebnis:

Dies ist **fett** oder typewriter oder *kursiv*. Oder einfach nur *hervorgehoben*.

(Nummerierte) Auflistungen

LATEX-Code:

```
\begin{itemize}
    \item Kartoffeln
    \item Butter
    \item Milch
\end{itemize}
```

Ergebnis:

- Kartoffeln
- Butter
- Milch

LATEX-Code:

```
\begin{enumerate}
    \item Kartoffeln
    \item Butter
    \item Milch
\end{enumerate}
```

- 1 Kartoffeln
- 2 Butter
- 3 Milch

Übung

Übung:

Schachtel eine Aufzählung, so wie hier:

- Kartoffeln
 - Festkochend
 - Mehligkochend
- Butter
- Milch

Geschachtelte Auflistungen

```
LEX-Code:
```

```
\begin{itemize}
   \item Kartoffeln
   \begin{itemize}
    \item Festkochend
    \item Mehligkochend
   \end{itemize}
   \item Butter
   \item Milch
\end{itemize}
```

- Kartoffeln
 - Festkochend
 - Mehligkochend
- Butter
- Milch

enumerate-Packet

```
LATEX-Code:
\usepackage{enumerate}
% ...
\begin{enumerate}[I.]
    \item Erster Punkt
        \begin{enumerate}[A]
        \item Erster Unterpunkt
        \item Zweiter Unterpunkte
        \end{enumerate}
    \item Zweiter Punkt
    \item Dritter Punkt
\end{enumerate}
```

- Erster Punkt
 - A Erster Unterpunkt
 - **B** Zweiter Unterpunkte
- Zweiter Punkt
- Dritter Punkt

enumerate-Packet

```
LATEX-Code:
\usepackage{enumerate}
% ...
\begin{enumerate}[1]
    \item Erster Punkt
        \begin{enumerate}[(a).]
        \item Erster Unterpunkt
        \item Zweiter Unterpunkte
        \end{enumerate}
    \item Zweiter Punkt
    \item Dritter Punkt
\end{enumerate}
```

- Erster Punkt
 - Erster Unterpunkt
 - Zweiter Unterpunkte
- Zweiter Punkt
- 3 Dritter Punkt

Definitionslisten

```
LATEX-Code:
```

```
\begin{description}
   \item[Kile] Guter Editor für GNU/Linux (KDE).
   \item[AUCTeX] für Emacs-Benutzer
   \item[Texmaker] Editor für alle Betriebssysteme
\end{description}
```

Ergebnis:

```
Kile Einfacher Editor für GNU/Linux (KDE).
```

AUCTeX für Emacs-Benutzer

Texmaker Editor für alle Betriebssysteme

Tabellen

LATEX-Code:

```
\begin{tabular}{1||c|r}
    Händler & Produkt & Preis\\
    \hline
    \hline
    Ohbi & Fliesen & 17,95\\
    Porsche & Motor & 270,15\\
    \hline
    Farber & Stift & 2,99
\end{tabular}
```

Händler	Produkt	Preis
Ohbi	Fliesen	17,95
Porsche	Motor	270,15
Farber	Stift	2,99

Übung

Übung:

Erstelle eine Tabelle mit automatischem Zeilenumbruch:

Spalte 1	Spalte 2
Foo	Lorem ipsum dolor sit amet, consectetur adi-
	piscing elit.
Bar	Lorem ipsum []

Spaltentyp p{<breite>}

LATEX-Code:

```
\begin{tabular}{l|p{8cm}}
Spalte 1 & Spalte 2 \\ \hline
Foo & Lorem ipsum dolor sit amet [...] \\
Bar & Lorem ipsum [...]
\end{tabular}
```

Spalte 1	Spalte 2	
Foo	Lorem ipsum dolor sit amet, consectetur adi-	
	piscing elit.	
Bar	Lorem ipsum []	

Automatische Breite mit tabularx

LATEX-Code:

```
\begin{tabularx}{.85\textwidth}{1|X}
Spalte 1 & Spalte 2 \\ \hline
Foo & Lorem ipsum dolor sit amet [...] \\
Bar & Lorem ipsum [...]
\end{tabularx}
```

Spalte 1	Spalte 2	
Foo	Lorem ipsum dolor sit amet, consectetur adi-	
	piscing elit.	
Bar	Lorem ipsum []	

Grafiken einbinden

LATEX-Code:

\usepackage{graphicx}

\includegraphics[width=3cm] {images/gnu}

ams-Pakete der American Mathematical Society

Für komplexere mathematische Darstellungen müssen die ams-Pakete der American Mathematical Society eingebunden werden.

LATEX-Code:

```
% Im Header
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
```

Mathe-Umgebung

Es gibt verschiedene Mathe-Umgebungen:

- Die \$...\$ Umgebung
 - Mathe innerhalb von Text (stammt nicht aus L^ATEX, sondern aus TEX und sollte vermieden werden)
- Die \(...\) Umgebung
 - Mathe innerhalb von Text (stammt aus LATEX und funktioniert besser mit den ams-Paketen)
- Die \[...\] Umgebung
 - Einzeilige Matheumgebung für eine Formel/Gleichung

Mathe-Umgebung

LATEX-Code:

Wir können im Text Wurzeln, wie z.\,B. \(\sqrt{2}\) verwenden. Oder auch Matheformeln als ganzen Block: \[\sum_{k=1}^n k = \frac{n(n+1)}{2}\]

Ergebnis: Wir können im Text Wurzeln, wie z. B. $\sqrt{2}$ verwenden. Oder auch Matheformeln als ganzen Block:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Mathe-Umgebung

LATEX-Code:

Neben Summen (\$\sum\$) gibt es auch Integrale:
\[\int\limits_a^b f(x) \ \mathrm{d}x \]

Ergebnis: Neben Summen (\sum) gibt es auch Integrale:

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

Mathe-Umgebung

LATEX-Code:

Die Probleminstanz (\mathbb{B}) sei gegeben Durch die Menge (\mathbb{N}) und einer Zahl (n), sowie der Eingabe (\mathbb{A}) .

Ergebnis: Die Probleminstanz \mathfrak{B} sei gegeben Durch die Menge \mathbb{N} und einer Zahl n, sowie der Eingabe \mathcal{A} .

Mathebeispiele: Matrizen

LATEX-Code:

$$\begin{pmatrix} \cos(\alpha) & \sin(\alpha) & 0 & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Mathebeispiele: Matrizen

LATEX-Code:

$$\begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Mathebeispiele: Matrizen

LATEX-Code:

$$\left\{
 \begin{array}{llll}
 \cos(\alpha) & \sin(\alpha) & 0 & 0 \\
 -\sin(\alpha) & \cos(\alpha) & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{array}
\right\}$$

Mathebeispiele: Gleichungssysteme

LEX-Code:

```
\begin{align}
  \sin^2(\alpha) + \cos^2(\alpha) & = 1 \\
  \tan(\alpha) & = \frac{\sin(\alpha)}{\cos(\alpha)}
\end{align}
```

Ergebnis:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{2}$$

Achtung: align macht automatisch eine Mathe-Umgebung auf!

Mathebeispiele: Gleichungssysteme

LATEX-Code:

```
\begin{align*}
  \sin^2(\alpha) + \cos^2(\alpha) & = 1 \\
  \tan(\alpha) & = \frac{\sin(\alpha)}{\cos(\alpha)}
\end{align*}
```

Ergebnis:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Achtung: align macht automatisch eine Mathe-Umgebung auf!

Mathebeispiele: Fallunterscheidung

$$\mathit{fib}(n) = egin{cases} 0 & \text{wenn } n = 0 \\ 1 & \text{wenn } n = 1 \\ \mathit{fib}(n-1) + \mathit{fib}(n-2) & \text{sonst} \end{cases}$$

Finale Übung

Übung: Bilde dieses Dokument nach:

1 Aufgabe 1: Vereinfacung von \mathcal{Z}

Wir vereinfachen den Term $w \cdot \frac{1}{w \cdot \frac{1}{w+1}}$ für später:

$$\mathcal{Z} = w \cdot \frac{1}{w \cdot \frac{1}{w + 1}} \tag{1}$$

$$\mathcal{Z} = \frac{w}{w \cdot \frac{1}{w+1}} \tag{2}$$

$$\mathcal{Z} = \frac{w}{\frac{w}{w+1}} \tag{3}$$

$$\mathcal{Z} = w + 1 \tag{4}$$

Schritt 2 ist sehr wichtig.

Finale Übung

LATEX-Code:

