FREE VARIABLES

The set of *free variables* of a term M is defined by recursion on the structure of M:

$$FV(x) = \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

$$FV(\lambda x. N) = FV(N) \setminus \{x\}$$

A term M without free variables is said to be **closed** or a **combinator**. The set of all closed terms is written Λ^0 .

SUBSTITUTION

We define *capture-avoiding substitution* of N for free variable x in term M, written M[N/x], recursively on the structure of M:

$$y[N/x] = y$$
 if $x \neq y$
 $y[N/x] = N$ if $x = y$
 $(PQ)[N/x] = P[N/x]Q[N/x]$
 $(\lambda y. P)[N/x] = \lambda y. P$ if $y = x$
 $(\lambda y. P)[N/x] = \lambda y. P[N/x]$ if $y \neq x$ and $y \notin FV(N)$