

ECSE 421 Lecture 5: Petri Nets

ESD Chapter 2

Last Time

- Kahn Process Networks
- Synchronous Data Flow
- Simulink

Where Are We?

W	D	Date		Topic	ESD	PES	Out	In	Notes
1	Т	12-Jan-2016	L01	Introduction to Embedded System Design	1.1-1.4				
	R	14-Jan-2016		Introduction to Embedded System Design	1.1-1.4				
2	Т	19-Jan-2016	L02	Specifying Requirements / MoCs / MSC	2.1-2.3				
	R	21-Jan-2016	L03	CFSMs	2.4				
3	Т	26-Jan-2016	L04	Data Flow Modeling	2.5	3.1-5,7	LA1		
	R	28-Jan-2016	L05	Petri Nets	2.6				
4	Т	2-Feb-2016	L06	Discrete Event Models	2.7	4			Guest lecturer
	R	4-Feb-2016	L07	DES / Von Neumann Model of Computation	2.8-2.10	5	LA2	LA1	
5	Т	9-Feb-2016	L08	Sensors	3.1-3.2	7.3,12.1-6			
	R	11-Feb-2016	L09	Processing Elements	3.3	12.6-12			
6	Т	16-Feb-2016	L10	More Processing Elements / FPGAs			LA3	LA2	
	R	18-Feb-2016	L11	Memories, Communication, Output	3.4-3.6				
7	Т	23-Feb-2016	L12	Embedded Operating Systems	4.1				
	R	25-Feb-2016		Midterm exam: in-class, closed book			Р	LA3	Chapters 1-3
	Т	1-Mar-2016		No class					Winter break
	R	3-Mar-2016		No class					Winter break
8	Т	8-Mar-2016	L13	Middleware	4.4-4.5				
	R	10-Mar-2016	L14	Performance Evaluation	5.1-5.2				
9	Т	15-Mar-2016	L15	More Evaluation and Validation	5.3-5.8				
	R	17-Mar-2016	L16	Introduction to Scheduling	6.1-6.2.2				
10	Т	22-Mar-2016	L17	Scheduling Aperiodic Tasks	6.2.3-6.2.4				
	R	24-Mar-2016	L18	Scheduling Periodic Tasks	6.2.5-6.2.6				

MoCs Considered in 421

Communication/ local computations	Shared memory	Message Synchronous	passing Asynchronous			
Undefined components		es quence charts				
Communicating finite state machines	StateCharts		SDL			
Data flow	(Not useful)		Kahn networks, SDF			
Petri nets		C/E nets,	P/T nets,			
Discrete event (DE) model	VHDL*, Verilog*, SystemC*,	Only experimental systems, e.g. distributed DE in Ptolemy				
Von Neumann model	C, C++, Java	C, C++, Java with libraries CSP, ADA				

Introduction to Petri Nets

- Introduced in 1962 by Carl Adam Petri
- Model causal dependencies
- Communication via message passing only
- Key elements:
 - Conditions: either met or not met
 - Events: may take place if conditions are met
 - Flow relation: relates conditions and events
- Conditions, events and the flow relation form a bipartite graph (graph with two kinds of nodes)

Example: Rail Segment Synchronization

Example: Rail Segment Synchronization

Playing the "Token Game"

normal

Conflict for Resource "Track"

normal

A More Complex Example

 Thalys trains between Cologne, Amsterdam, Brussels and Paris

[http://www.thalys.com/be/en]

Thalys Trains Synchronization

- Slightly simplified
- Synchronization of trains at Brussels
- Synchronization of trains at "Gare du Nord" in Paris

Condition/Event Nets

Def.: N=(C,E,F) is called a **net**, iff the following holds

- 1. C and E are disjoint sets
- 2. $F \subseteq (C \times E) \cup (E \times C)$; is binary relation, ("flow relation")

- What does this mean?
 - Vertices can't be both conditions and events
 - Edges must only connect conditions to events (& vv)

Pre- and Post-sets

Def.: Let *N* be a net and let $x \in (C \cup E)$.

- • $x := \{y \mid y \in x\}$ is called the **pre-set** of x, (or **preconditions** if $x \in E$)
- $x^{\bullet} := \{y \mid x F y\}$ is called the set of **post-set** of x, (or **postconditions** if $x \in E$)

Loops and Pure Nets

Def.: Let $(c, e) \in C \times E$. (c, e) is called a loop iff $cFe \wedge eFc$.

Def.: Net N=(C,E,F) is called **pure** if F does not contain any loops.

Simple Nets

- **Def**.: A net is called **simple** if no two nodes n_1 and n_2 have the same pre-set and post-set.
- Example (not simple nets):

Def.: Simple nets with no isolated elements meeting some additional restrictions are called **condition/event nets** or **C/E nets**.

Place/Transition Nets

Def.: (P, T, F, K, W, M_0) is called a place/transition net iff

- 1. N=(P, T, F) is a **net** with places $p \in P$ and transitions $t \in T$
- 2. $K: P \to (N_0 \cup \{\omega\}) \setminus \{0\}$ denotes the **capacity** of places $(\omega \text{ symbolizes infinite capacity})$
- 3. $W: F \rightarrow (N_0 \setminus \{0\})$ denotes the weight of graph edges
- 4. $M_0: P \to N_0 \cup \{\omega\}$ represents the **initial marking** of places

Computing Changes of Markings

 "Firing" transitions t generate new markings on each of the places p according to the following:

$$M'(p) = \begin{cases} M(p) - W(p,t), & \text{if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ M(p) + W(t,p), & \text{if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ M(p) - W(p,t) + W(t,p), & \text{if } p \in {}^{\bullet}t \cap t^{\bullet} \\ M(p) & \text{otherwise} \end{cases}$$

Activated Transitions

Transition t is "activated" iff

$$(\forall p \in {}^{\bullet}t : M(p) \ge W(p,t)) \land (\forall p \in t^{\bullet} : M(p) + W(t,p) \le K(p))$$

- Activated transitions can fire but don't have to
- No notion of "time" in Petri nets
- The order in which activated transitions fire is not fixed (it is non-deterministic)

Shorthand for Changes of Markings

Slide 16:
$$M'(p) = \begin{cases} M(p) - W(p,t), & \text{if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ M(p) + W(t,p), & \text{if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ M(p) - W(p,t) + W(t,p), & \text{if } p \in {}^{\bullet}t \cap t^{\bullet} \\ M(p) & \text{otherwise} \end{cases}$$

if
$$p \in {}^{\bullet}t \setminus t^{\bullet}$$

if $p \in t^{\bullet} \setminus {}^{\bullet}t$
if $p \in {}^{\bullet}t \cap t^{\bullet}$

$$\underline{t}(p) = \begin{cases} -W(p,t) & \text{if } p \in t \setminus t' \\ +W(t,p) & \text{if } p \in t' \setminus t \\ -W(p,t) + W(t,p) & \text{if } p \in t' \cap t \\ 0 \end{cases}$$

$$\Rightarrow$$

$$\forall p \in P: M'(p) = M(p) + \underline{t}(p)$$

$$\Rightarrow$$

$$M' = M + t$$

+: vector add

Representing Markings with Matrix N

$$\underline{t}(p) = \begin{cases} -W(p,t) & \text{if } p \in t \setminus t \\ +W(t,p) & \text{if } p \in t \setminus t \\ -W(p,t) + W(t,p) & \text{if } p \in t \cap t \\ 0 \end{cases}$$

Def.: Matrix \underline{N} of net N is a mapping

 $\underline{N}: P \times T \rightarrow \mathbb{Z}$ (integers)

such that $\forall t \in T : \underline{N}(p,t) = \underline{t}(p)$

- Components in column t and row p indicate the change of the marking of place p if transition t takes place
- For pure nets, (N, M_0) is a complete representation of a net

Example: N = 1

Place Invariants

- Standardized technique for proving properties of system models
- For any transition $t_j \in T$ we are looking for sets $R \subseteq P$ of places for which the accumulated marking is constant:

$$\sum_{p \in R} \underline{t}_j(p) = 0$$

• Example:

Characteristic Vector

$$\sum_{p \in R} \underline{t}_j(p) = 0$$

Let:
$$\underline{c}_R(p) = \begin{cases} 1 & \text{if } p \in R \\ 0 & \text{if } p \notin R \end{cases}$$

$$\Rightarrow 0 = \sum_{p \in R} \underline{t}_{j}(p) = \sum_{p \in P} \underline{t}_{j}(p) \underline{c}_{R}(p) = \underline{t}_{j} \cdot \underline{c}_{R}$$
Dot product

Condition for Place Invariants

$$\sum_{p \in R} \underline{t}_{j}(p) = \sum_{p \in P} \underline{t}_{j}(p) \underline{c}_{R}(p) = \underline{t}_{j} \cdot \underline{c}_{R} = 0$$

The accumulated marking is constant for all transitions if

$$\underline{t}_{1} \cdot \underline{c}_{R} = 0$$

$$\dots \dots$$

$$\underline{t}_{n} \cdot \underline{c}_{R} = 0$$

Equivalent to $\underline{N}^T c_R = \mathbf{0}$ where \underline{N}^T is the transpose of \underline{N}

More Detailed View of Computations

$$\begin{pmatrix} \underline{t}_{1}(p_{1})...\underline{t}_{1}(p_{n}) \\ \underline{t}_{2}(p_{1})...\underline{t}_{2}(p_{n}) \\ ... \\ \underline{t}_{m}(p_{1})...\underline{t}_{m}(p_{n}) \end{pmatrix} \begin{pmatrix} \underline{c}_{R}(p_{1}) \\ \underline{c}_{R}(p_{2}) \\ ... \\ \underline{c}_{R}(p_{n}) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

- System of linear equations
 - Solution vectors must consist of zeros and ones
- Equations with multiple unknowns that must be integers are called diophantic (Greek mathematician Diophantus, ~300 B.C.)
 - More complex to solve than standard system of linear equations (actually NP-hard)
- Different techniques for solving equation system (manual, ...)

Application to Thalys example

$$\underline{N}^T c_R = \mathbf{0}$$
, with $\underline{N}^T =$

	p_1	p_2	p_3	p_4	<i>p</i> ₅	p_6	<i>p</i> ₇	p_8	<i>p</i> ₉	p_{10}	p_{11}	p_{12}	p_{13}
t_1	1	-1							-1				1
t_2		1	-1										
t_3			1	-1									
t_4				1	-1						1		
<i>t</i> ₅					1	-1	-1					1	
<i>t</i> ₆	-1					1							
<i>t</i> ₇							1	-1					
t_8								1				-1	
t ₉									1	-1			
t ₁₀										1	-1		-1

- ∑rows=0 → 1 linear dependency among rows
- \rightarrow rank = 10-1 = 9
 - Dimension of solution space = 13 rank = 4
- Solutions? Educated guessing

Manually Finding Basis Vectors

- Set 1 of 4 components = 1, others = 0
 - Find independent sets components in the matrix after deleting one row
 - *E.g.*, consider places 7, 8, 12

	p_1	p_2	<i>p</i> ₃	p_4	<i>p</i> ₅	p_6	<i>p</i> ₇	p_8	<i>p</i> ₉	p_{10}	p_{11}	p_{12}	<i>p</i> ₁₃
t_1	1	-1							-1				1
t_2		1	-1										
<i>t</i> ₃			1	-1									
<i>t</i> ₄				1	-1						1		
<i>t</i> ₅					1	-1	-1					1	
<i>t</i> ₆	-1					1							
<i>t</i> ₇							1	-1					
<i>t</i> ₈								1				-1	
t ₉									1	-1			
<i>t</i> ₁₀										1	-1		-1

- Or assume that a particular place is included in R
 - E.g. p_6
- whereas places along the path of other objects are not
 - E.g. p_{11}, p_{12}, p_{13}

27

1st Basis Vector

Set one component (6, 11, 12, 13) to 1, others to 0. \rightarrow **1st basis** b_1 :

 $b_1(p_6)=1$, $b_1(p_{11})=0$,

 $b_1(p_{12})=0, b_1(p_{13})=0$

	p_1	p_2	<i>p</i> ₃	p_4	<i>p</i> ₅	p_6	<i>p</i> ₇	p_8	<i>p</i> ₉	p_{10}	p_{11}	p_{12}	p_{13}
t_1	1	-1							-1				1
t_2		1	-1										
<i>t</i> ₃			1	-1									
<i>t</i> ₄				1	-1						1		
<i>t</i> ₅					1	-1	-1					1	
<i>t</i> ₆	-1					1							
<i>t</i> 7							1	-1					
<i>t</i> ₈								1				-1	
<i>t</i> 9									1	-1			
<i>t</i> ₁₀										1	-1/		-1

$$t_{10}(p_{10}) b_1(p_{10}) + t_{10}(p_{11}) b_1(p_{11}) + t_{10}(p_{13}) b_1(p_{13}) = 0$$

$$\rightarrow b_1(p_{10}) = 0$$

$$\rightarrow b_1(p_9)=0$$

• ...

$$b_1 = (1,1,1,1,1,1,0,0,0,0,0,0,0,0)$$

All components $\in \{0, 1\}$

$$\rightarrow c_{R1} = b_1$$

Interpretation of the 1st Invariant

 Characteristic vector describes places for the Cologne train

We proved that:

 The number of trains along the path remains constant ©

2nd Basis Vector

Set one component (6, 11, 12, 13) to 1, others to 0.

 \rightarrow 2nd basis b_2 :

$$\rightarrow b_2(p_6)=0, b_2(p_{11})=1,$$

 $b_2(p_{12})=0, b_2(p_{13})=0$

	p_1	p_2	<i>p</i> ₃	p_4	<i>p</i> ₅	p_6	<i>p</i> ₇	p_8	<i>p</i> ₉	p_{10}	p_{11}	p_{12}	p_{13}
t_1	1	-1							-1				1
t_2		1	-1										
<i>t</i> ₃			1	-1									
t_4				1	-1						1		
<i>t</i> ₅					1	-1	-1					1	
<i>t</i> ₆	-1					1							
<i>t</i> ₇							1	-1					
t_8								1				-1	
<i>t</i> 9									1	-1			
<i>t</i> ₁₀										1	-1		-1

$$t_{10}(p_{10}) b_2(p_{10}) + t_{10}(p_{11}) b_2(p_{11}) + t_{10}(p_{13}) b_2(p_{13}) = 0$$

$$\rightarrow b_2(p_{10}) = 1$$

$$t_9(p_9) b_2(p_9) + t_9(p_{10}) b_2(p_{10}) = 0$$

$$\rightarrow b_2(p_9)=1$$

• . . .

$$b_2 = (0,-1,-1,-1,0,0,0,0,1,1,1,0,0)$$

$$b_1 = (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)$$

 b_2 not a characteristic vector, but $c_{R,2}$ = b_1 + b_2 is

$$\rightarrow c_{R,2} =$$

(1,0,0,0,1,1,0,0,1,1,1,0,0)

Interpretation of the 2nd Invariant

$$c_{R,2} = (1,0,0,0,1,1,0,0,1,1,1,0,0)$$

We proved that:

 None of the Amsterdam trains get lost (also nice to know ☺)

Two More Invariants Later

$$c_{R,3} = (0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1)$$

$$c_{R,4} = (0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 0)$$

We proved that:

- The number of trains serving Amsterdam, Cologne and Paris remains constant, and
- the number of train drivers remains constant

Applications

- Modeling of (shared) resources
- Modeling of mutual exclusion
- Modeling of synchronization

Predicate/Transition Nets

- *Goal*: compact representation of complex systems
- Key changes
 - Tokens become individuals
 - Transitions are enabled if *functions* on incoming edges are satisfied
 - The number of individuals generated by firing transitions is defined with functions
- Changes can be explained by un/folding C/E nets
 - \Rightarrow Semantics can be defined by C/E nets

Example: Dining Philosophers

- n > 1 philosophers sitting at a round table;
- *n* forks,
- n plates with spaghetti;
- philosophers either think or eat spaghetti (using left and right fork)

How to model conflict for forks?

How to guarantee there is no starvation?

C/E Model of the Dining Philosophers

Let $x \in \{1..3\}$

 t_x : x is thinking

 e_x : x is eating

 f_x : fork x is available

The model is quite clumsy, and it is difficult to extend to more philosophers!

Alternative Predicate/Transition Model

Let *x* be one of the philosophers, let l(x) be the left spoon of x, let r(x) be the right spoon of x.

normal

Tokens: individuals.

Semantics can be defined by replacing the net by the equivalent condition/event net.

Evaluation

Pros

- Appropriate for distributed applications,
- Well-known theory for formally proving properties,
- Initially a quite bizarre topic, but now accepted due to increasing number of distributed applications
- Cons (for the nets presented)
 - problems with modeling timing,
 - no programming elements,
 - no hierarchy
- Extensions
 - Enormous effort to remove limitations

Summary

- Petri nets: focus on causal dependencies
 - Condition/event nets
 - Single token per place
 - Place/transition nets
 - Multiple tokens per place
 - Predicate/transition nets
 - Tokens become individuals
 - Dining philosophers used as an example
 - Extensions required to get around limitations
- Activity diagrams in UML are extended Petri nets

Next Time

- Discrete Event Modeling
 - VHDL
 - Multi-value logic
 - Chapter 2.7

