FUNCTIONAL ANALYSIS II SUMMARY

YANNIS BÄHNI

Abstract.

Contents

Elliptic Operators in Divergence Form	 1
References	 (

Elliptic Operators in Divergence Form

Lemma 1.1 (Poincaré Inequality).

Theorem 1.1 (Riesz Representation Theorem).

Theorem 1.2. Let $\Omega \subseteq \subseteq \mathbb{R}^n$, $k \in \omega$ and consider the elliptic operator

$$L := \sum_{i,j=1}^{n} \frac{\partial}{\partial x^{i}} \left(a_{ij} \frac{\partial}{\partial x^{j}} \right),$$

for $a_{ij} \in C^{k+1}(\overline{\Omega})$ symmetric. Then:

(a) Given $f \in L^2(\Omega)$, the homogenous Dirichlet problem

$$\begin{cases}
-L(u) = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

admits a unique weak solution $u \in H_0^1(\Omega)$.

(b) If $f \in H^k(\Omega)$ for some $k \in \omega$, then we have $u \in H^{k+2}_{loc}(\Omega)$ for the unique weak solution of part (a) and moreover, for any $\Omega' \subseteq \subseteq \Omega$ we have the estimate

$$||u||_{H^{k+2}(\Omega')} \le C (||f||_{H^k(\Omega)} + ||u||_{H^1(\Omega)}).$$

Proof.

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Step 1: Derivation of Weak Formulation. Suppose $u \in C^2(\overline{\Omega})$ is a solution of (1). Let $\varphi \in C_c^{\infty}(\Omega)$. Then integration by parts (see [Lee13, p. 436]) yields

$$-\int_{\Omega} L(u)\varphi = -\sum_{j=1}^{n} \int_{\Omega} \operatorname{div}(X_{j})\varphi = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^{j}} \frac{\partial \varphi}{\partial x^{i}} = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^{i}} \frac{\partial \varphi}{\partial x^{j}},$$

where $X_j := \left(a_{ij} \frac{\partial}{\partial x^j}\right)_i$. Thus we get the weak formulation:

$$\sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^{i}} \frac{\partial \varphi}{\partial x^{j}} = \int_{\Omega} f \varphi \qquad \forall \varphi \in C_{c}^{\infty}(\Omega). \tag{2}$$

Step 2: Existence and Uniqueness of Weak Solutions. Since L is uniformly elliptic, there exists $\lambda > 0$ such that

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Moreover, since $a_{ij} \in C^0(\overline{\Omega})$, we get that L is uniformly bounded, i.e. there exists $\Lambda > 0$ such that

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Now define a bilinear form $\langle \cdot, \cdot \rangle_a : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ by

$$\langle u, v \rangle_a := \sum_{i,j=1}^n \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^i} \frac{\partial v}{\partial x^j}$$
 (3)

Then it is easy to see, that $\langle \cdot, \cdot \rangle_a$ is symmetric. Also, $\langle \cdot, \cdot \rangle_a$ is positive definite since

$$\langle u, u \rangle_a = \sum_{i,j=1}^n \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^i} \frac{\partial u}{\partial x^j} \ge \lambda \int_{\Omega} |\nabla u|^2 \ge C \lambda \int_{\Omega} |u|^2$$

using ellipticity and Poincaré's inequality. Moreover by Poincaré's inequality we have that

$$C\lambda \|u\|_{H_0^1(\Omega)}^2 \le \|u\|_a \le \Lambda \|u\|_{H_0^1(\Omega)}^2$$

for the induced norm $\|\cdot\|_a$. Hence the induced norm is equivalent to the standard norm on $H^1_0(\Omega)$ and thus $(H^1_0(\Omega),\|\cdot\|_a)$ is a Hilbert space. Thus an application of Riesz representation theorem 1.1 yields the existence of a unique $u\in H^1_0(\Omega)$, such that

$$\langle u, \varphi \rangle_a = l(\varphi) := \int_{\Omega} f \varphi$$

holds for all $\varphi \in H^1_0(\Omega)$, since $l \in (H^1_0(\Omega))^*$ This proves part (a). Step 3: H^1 -Estimate. The main idea in proving part (b) is an induction on $k \in \omega$.

References

[Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.