Metody Numeryczne - Projekt 2

Paweł Florek 327272 gr. 1

Grudzień 2023

Polecenie

Wyznaczanie rozkładu Crouta macierzy $A \in \mathbb{R}^{n \times n}$. Wykorzystanie tego rozkładu do rozwiązywania równań macierzowych AX = B oraz XA = B, $B \in \mathbb{R}^{n \times m}$. Wykonać testy dla różnych macierzy B, m.in dla takich, dla których AX = XA (np. B = I). Porównać wyniki

2 Opis matematyczny

W rozkładzie LU macierz A zapisuje się jako iloczyn macierzy trójkatnej dolnej L oraz trójkatnej górnej U, przy czym na głównej przekątnej jednej z nich znajdują się wyłącznie jedynki. Jeśli U ma jedynyki na głównej przekatnej, to mamy do czynienia z rozkładem Crouta.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{bmatrix} \cdot \begin{bmatrix} 1 & u_{12} & \dots & u_{1n} \\ 0 & 1 & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Wzory ogólne na poszczególne elementy macierzy rozkładu

Dla wszystkich $i \in 1, 2, \ldots, n$:

 $u_{ii} = 1$

 $l_{ji} = (a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki}) \text{ dla } j \in \{i, i+1, \dots, n\}$ $u_{ij} = (a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}) / l_{ii} \text{ dla } j \in \{i+1, i+2, \dots, n\}$

Z ostatniego równania wynika, że metoda nie zadziała, gdy $l_{ii} = 0$. Wówczas w naszym wzorze nie dokonujemy dzielenie przez $l_{ii} = 0$.

2.2Rozwiązywanie równań macierzowych

Rozwiązywanie układów równań liniowych AX = B, gdzie $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ Podstawiając A = BLU otrzymujemy:

$$LUX = B$$
.

Rozwiązywanie tego układu znajdujemy rozwiązując 2 układy z macierzami trójkątnymi:

$$LY = B \text{ oraz } UX = Y.$$

Jest to przydatne zwłaszcza w zastosowaniach, gdy mamy do rozwiązania wiele układów równań z tą samą macierzą, a różnymi macierzami B.

Analogicznie dla równań macierzowych XA = B.

3 Opis programu

Implementacja metod w funkcjach:

- rozkladCrouta(A) funkcja służy wyznaczaniu rozkładu Crouta, gdzie:
 - $A \in \mathbb{R}^{n \times n}$ macierz, której wyznaczamy rozkład LU,
 - L macierz trójkątna dolna,
 - U macierz trójkątna górna, z jedynkami na głównej przekątnej
- \bullet rozwiązAX(A, B) funkcja rozwiązująca równanie macierzowe AX = B, gdzie:
 - $A \in \mathbb{R}^{n \times n}$ macierz z możliwym rozkładem LU,
 - $-B \in \mathbb{R}^{n \times m},$
 - $-\ X \in \mathbb{R}^{n \times m}$ macierz rozwiązanie.
- $\bullet\,$ rozwiąz
XA(A, B) funkcja rozwiązująca równanie macierzowe XA = B, gdzie:
 - $A \in \mathbb{R}^{m \times m}$ macierz z możliwym rozkładem LU,
 - $-B \in \mathbb{R}^{n \times m}$
 - $-X \in \mathbb{R}^{m \times n}$ macierz rozwiązanie.
- bladAX/bladXA(A, B, X) funkcja wyznaczająca błąd bezwzględny rozwiązania naszymi funkcjami w porównaniu dla funkcji wbudowanych.

Przykładowe użycie powyższych funkcji:

```
% przyk Ćadowe dane
   A = \begin{bmatrix} 2 & 1 & -1; & -4 & -1 & 3; & 6 & 1 & -3 \end{bmatrix};
3 \mid B = [1 \ 1 \ 3; \ -1 \ 1 \ 2; \ 3 \ -1 \ 1];
5
   |% wyznaczanie rozkladu Crouta
   [L, U] = rozkladCrouta(A)
7
  \% L =
  \frac{1}{2}
              0
9
   %
       -4
              1
                      0
10
       6
           -2
                      2
11
  % U =
  %
      1.0000
12
                   0.5000
                             -0.5000
13 |%
                1.0000
        0
                              1.0000
14 |%
             0
                              1.0000
                      0
15
   rozwiazAX(A, B)
16
17
  \% ans =
18 |% 1.0000
                              1.5000
  %
                   2.0000
19
        0
                              4.0000
20
  1%
      1.0000
                   1.0000
                              4.0000
21
22
  bladAX(A, B)
23
   % ans =
  \% 1.0e-15 *
24
25 |%
       0
                   0.0370
26 |%
             0
                   0.2220
                              0.4441
27
  1%
            0
                                   0
                      0
28
29
   rozwiazXA(A, B)
30
  \frac{1}{2} ans =
  3.0000
31
                   3.5000
                              1.5000
32
   |\%| 2.5000
                   1.5000
33
   |\% -1.0000|
                   2.5000
                              2.5000
34
35
   bladXA(A, B)
36
   \% ans =
37
   \% 1.0e-15 *
  %
38
            0
                        0
   %
39
             0
                        0
                              0.2220
40
  %
      0.4441
                        0
                              0.4441
```

4 Analiza wyników

4.1 Macierze różnych wielkości

Weźmy losowe macierze $A_1, B_1 \in \mathbb{R}^{3 \times 3}$ oraz $A_2, B_2 \in \mathbb{R}^{100 \times 100}$. Błędy bezwzględne naszych rozwiązań równania AX = B przez nasz algorytm.:

Widzimy, że wielkości rozważanych przez nas macierzy nie mają wpływu na dokładność rozwiązań, która i tak jest bardzo wysoka.

4.2 Macierze o elementach ujemnych

Dla macierzy $A \in \mathbb{R}^{10 \times 10}_-$ rozwiązaliśmy równania z polecenia. Wyniki wykazały, że nie ma to większego wpływu na dokładność metody.

4.3 Macierze osobliwe

W przypadku, gdy A jest macierzą osobliwą, istnieją dwa główne scenariusze dotyczące rozwiązania układu równań AX = B: brak rozwiązania lub nieskończona liczba rozwiązań. Sprawdźmy, jak zadziała nasz algorytm dla macierz osobliwej A = $\begin{pmatrix} 1 & 2 & 1\\ 3 & -7 & -2\\ 2 & 4 & 2 \end{pmatrix}$.

Rozkład LU dla tej macierzy ma postać L = $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -13 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$, U = $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$. Widzimy, że na przekątnej macierzy U pojawiło się 0, co mogło sprawić problem przy obliczaniu rozkładu.

Próbując jednak rozwiązać układ równań AX = B, otrzymujemy: $\binom{NaN \ NaN}{Inf} - Inf \choose -Inf \ Inf}$.

Świadczy to o braku rozwiązania lub nieskończonej liczbie rozwiązań. Wartości NaN i Inf mogą również wynikać z problemów numerycznych w procesie rozwiązywania układu równań. Mogły wystąpić dzielenia przez zero, błędy zaokrągleń lub inne problemy numeryczne, zwłaszcza, że macierz A jest osobliwa.

4.4 Macierze trójkątne

Dla macierzy trójkatnej górnej, jak i macierzy trójkatnej dolnej, można uzyskać rozkład LU w podobny sposób. Dla macierzy trójkatnej, proces znajdowania rozkładu LU jest łatwym do uzyskania. W przykładzie użyto macierzy $A \in \mathbb{R}^{3\times 3}$.

	Macierz trójkątna górna	Macierz trójkątna dolna
Średni błąd AX	0	4.3175e-16
Średni błąd XA	0	0

4.5 Macierze B, gdzie AX = XA

Przetestujmy nasz algorytm dla macierzy B, dla której AX = XA. Przykładem takiej macierzy jest macierz jednostkowa $I^{n\times n}$. Porównajmy wyniki dla różnych n.

	3	4	5	6	7	8	9	10
Średni błąd AX	6.1679e-18	1.3905e-17	1.8874e-17	6.2696e-16	8.4662e-16	8.8972e-17	3.321e-17	2.11e-16
Średni błąd XA	1.1565e-17	6.966e-18	1.4745e-17	9.5525e-16	9.7499e-16	1.1658e-16	3.7214e-17	2.216e-16

4.6 Porównanie czasowe

Sprawdźmy, jak wyglada porównanie czasowe dla różnych wielkości macierzy oraz porównanie "zwykłych" macierzy a trójkatnych (BZO sprawdzimy na macierzach trójkatnych górnych). Do wyznaczenia rozwiazania równania AX = B wykorzystaliśmy wbudowana w MATLABie funkcje linsolve. Następnie, porównaliśmy czas z utworzynymi przez nas funkcjami.

	Zwykła 10x10	Trójkątna 10x10	Zwykła 10x100	Trójkątna 100x100	Zwykła 1000x1000	Trójkątna 1000x1000
Czas MATLAB	0.0010446	0.0001207	0.0007239	0.0009317	0.043707	0.036932
Czas rozkladCrouta + rozwiazAX	0.0006617	5.8498	0.024473	0	5.6717	0

5 Praktyczne zastosowanie metody

- Rozwiązywanie układów równań Metoda LU Crouta może być stosowana do rozwiązywania układów równań macierzowych, co jest powszechne w wielu obszarach nauki danych i uczenia maszynowego. W przypadku dużej liczby równań, gdzie macierze są rzadkie, zastosowanie efektywnych algorytmów rozkładu LU może przyspieszyć proces rozwiązywania układów równań.
- Dekompozycja LU może być używana do rozkładu macierzy i umożliwienia bardziej efektywnego obliczania pewnych operacji, zwłaszcza w przypadku iteracyjnych algorytmów optymalizacyjnych.
- Algorytmy faktoryzacji macierzy W analizie składnikowej, gdzie modeluje się dane jako iloczyn macierzy, faktoryzacja LU może być używana jako jedna z metod faktoryzacji macierzy, co jest przydatne w redukcji wymiarów itp.