

® BUNDESREPUBLIK DEUTSCHLAND

(5) Int. Cl.⁷: C 07 D 231/22

A 01 N 43/50 A 01 N 37/38

DEUTSCHES
PATENT- UND
MARKENAMT

(1) Aktenzeichen:(2) Anmeldetag:

199 61 330.3 20. 12. 1999

(3) Offenlegungstag:

21. 6. 2001

Anmelder:

Bayer AG, 51373 Leverkusen, DE

② Erfinder:

Heinemann, Ulrich, Dr., 42799 Leichlingen, DE; Gayer, Herbert, Dr., 40789 Monheim, DE; Gerdes, Peter, Dr., 52080 Aachen, DE; Krüger, Bernd-Wieland, Dr., 51467 Bergisch Gladbach, DE; Maurer, Fritz, Dr., 40789 Monheim, DE; Vaupel, Martin, Dipl.-Biol. Dr., 42799 Leichlingen, DE; Mauler-Machnik, Astrid, Dipl.-Agr.-Ing. Dr., 42799 Leichlingen, DE; Wachendorff-Neumann, Ulrike, Dr., 56566 Neuwied, DE; Hänßler, Gerd, Dipl.-Landw. Dr., 51381 Leverkusen, DE; Kuck, Karl-Heinz, Dr., 40764 Langenfeld, DE; Erdelen, Christoph, Dr., 42799 Leichlingen, DE; Lösel, Peter, Dipl.-Zoologe Dr., 40789 Monheim, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Pyrazolylbenzylether
- ⑤ Die Erfindung betrifft neue Pyrazolylbenzylether, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von schädlichen Organismen.

Beschreibung

Die Ersindung betrifft neue Pyrazolylbenzylether, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von schädlichen Organismen.

Bestimmte Verbindungen mit ähnlichem Substitutionsmuster, sowie deren fungizide Wirkung sind bereits bekannt geworden (WO 96-10556, WO 96-06072 und WO 99-33812). Die Wirkung dieser vorbekannten Verbindungen ist jedoch insbesondere bei niedrigen Aufwandmengen und Konzentrationen nicht in allen Anwendungsgebieten völlig zufriedenstellend.

Es wurden nun die neuen Pyrazolylbenzylether der allgemeinen Formel (I) gefunden,

$$R-N$$

$$CH_3$$

$$CH_3$$

$$(I)$$

in welcher

20

R für jeweils gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Aryl steht,

 L^1 , L^2 , L^3 und L^4 gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Halogen, Cyano, Nitro, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl stehen

In den Definitionen sind die gesättigten oder ungesättigten Kohlenwasserstoffketten, wie Alkyl, Alkandiyl, Alkenyl oder Alkinyl, auch in Verknüpfung mit Heteroatomen, wie beispielsweise in Alkoxy, Alkylthio oder Alkylamino, jeweils geradkettig oder verzweigt.

Aryl steht für aromatische, mono- oder polycyclische Kohlenwasserstoffringe, wie z. B. Phenyl, Naphthyl, Anthranyl, Phenanthryl, vorzugsweise Phenyl oder Naphthyl, insbesondere Phenyl.

Heterocyclyl steht für gesättigte oder ungesättigte, sowie aromatische, ringförmige Verbindungen, in denen mindestens ein Ringglied ein Heteroatom, d. h. ein von Kohlenstoff verschiedenes Atom, ist. Enthält der Ring mehrere Heteroatome, können diese gleich oder verschieden sein. Heteroatome sind bevorzugt Sauerstoff, Stickstoff oder Schwefel. Enthält der Ring mehrere Sauerstoffatome, stehen diese nicht benachbart. Gegebenenfalls bilden die ringförmigen Verbindungen mit weiteren carbocyclischen oder heterocyclischen, ankondensierten oder überbrückten Ringen gemeinsam ein polycyclisches Ringsystem. Bevorzugt sind mono- oder bicyclische Ringsysteme, insbesondere mono- oder bicyclische, aromatische Ringsysteme.

Cycloalkyl steht für gesättigte, carbocyclische, ringförmige Verbindungen, die gegebenenfalls mit weiteren carbocyclischen, ankondensierten oder überbrückten Ringen ein polycyclisches Ringsystem bilden.

Weiterhin wurde gefunden, daß man die neuen Pyrazolylhenzylether der allgemeinen Formel (I) erhält, wenn man Benzylhalogenide der Formel (II),

in welcher

L¹, L², L³ und L⁴ die oben angegebenen Bedeutungen haben und X für Halogen steht, mit einem substituierten Pyrazolon der allgemeinen Formel (III),

in welcher

R die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors, umsetzt

Schließlich wurde gefunden, daß die neuen Pyrazolylbenzylether der allgemeinen Formel (I) eine starke Wirkung gegen schädliche Organismen, insbesondere eine sehr starke fungizide Wirkung, zeigen. Die erfindungsgemäßen Wirkstoffe zeigen gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch eine Wirkung gegen pflanzliche oder tierische Schädlinge.

Unter schädlichen Organismen werden insbesondere Mikroorganismen sowie tierische Schädlinge verstanden.

Die erfindungsgemäßen Verbindungen können gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z. B. E- und Z-, vorliegen. Es werden sowohl die E- als auch die Z-Isomeren, wie auch beliebige Mischungen dieser Isomeren, beansprucht.

Gegenstand der Erfindung sind vorzugsweise Verbindungen der Formel (I), in welcher

R für Alkyl mit 1 his 8 Kohlenstoffatomen, für jeweils gegebenenfalls einfach bis zweifach durch Halogen, Alkyl, oder Hydroxy substituiertes Cycloalkyl mit 3 bis 7 Kohlenstoffatomen;

15

20

25

. 35

oder für jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden substituiertes Phenyl oder Naphthyl steht, wobei die möglichen Substituenten vorzugsweise aus der nachstehenden Aufzählung ausgewählt sind:

Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl;

jeweils geradkettiges oder verzweigtes Alkyl, Hydroxyalkyl, Oxoalkyl, Alkoxy, Alkoxyalkyl, Alkylthioalkyl, Dialkoxyalkyl, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 8 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen; jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Ha-

logenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen; jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 11 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Arylalkylaminocarbonyl, Dialkylaminocarbonyl, Alkenylcarbonyl oder Alkinylcarbonyl, mit 1 bis 6 Kohlenstoffatomen in den jeweiligen Kohlenwasserstoffketten;

Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 6 Kohlenstoffatomen;

jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Oxo, Methyl, Trifluormethyl oder Ethyl substitutiertes, jeweils zweifach verknüpftes Alkylen mit 3 oder 4 Kohlenstoffatomen, Oxyalkylen mit 2 oder 3 Kohlenstoffatomen oder Dioxyalkylen mit 1 oder 2 Kohlenstoffatomen; oder eine Gruppierung

A¹ || N

worin

A¹ für Wasserstoff, Hydroxy oder Alkyl mit 1 bis 4 Kohlenstoffatomen oder Cycloalkyl mit 1 bis 6 Kohlenstoffatomen steht und

A² für Hydroxy, Amino, Methylamino, Phenyl, Benzyl oder für jeweils gegebenenfalls durch Cyano, Hydroxy, Alkoxy, Alkylthio, Alkylamino, Dialkylamino oder Phenyl substituiertes Alkyl oder Alkoxy mit 1 bis 4 Kohlenstoffatomen, oder für Alkenyloxy oder Alkinyloxy mit jeweils 2 bis 4 Kohlenstoffatomen steht,

sowie jeweils gegehenenfalls im Ringteil einfach his dreifach durch Halogen, und/oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, Phenoxy, Phenyllthio, Benzoyl, Benzoylethenyl, Cinnamoyl, Heterocyclyl oder Phenylalkyl, Phenylalkyloxy, Phenylalkylthio, oder Heterocyclylalkyl, mit jeweils 1 bis 3 Kohlenstoffatomen in den jeweiligen Alkylieilen,

L¹, L², L³ und L⁴ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Halogen, Cyano, Nitro, jeweils gegebenenfalls durch 1 bis 5 Halogenatome substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen stehen.

Die Erfindung betrifft insbesondere Verbindungen der Formel (I), in welcher

R für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentyl oder Hexyl, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Methyl, Ethyl oder Hydroxy substituiertes Cyclopentyl oder Cyclohexyl;

oder für jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden substituiertes Phenyl oder Naphthyl steht, wobei die möglichen Substituenten vorzugsweise aus der nachstehenden Aufzählung ausgewählt sind:

Fluor, Chlor, Brom, Iod, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl

Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, 1-, 2-, 3-, neo-Pentyl, 1-, 2-, 3-, 4-(2-Methylbutyl), 1-, 2-, 3-Hexyl, 1-, 2-, 3-, 4-, 5-(2-Methylpentyl), 1-, 2-, 3-(3-Methylpentyl), 2-Ethylbutyl, 1-, 3-, 4-(2,2-Dimetylbutyl), 1-, 2-(2,3-Dimethylbutyl), Hydroxymethyl, Hydroxymethyl, 3-Oxobutyl, Methoxymethyl, Dimethoxymethyl,

Methoxy, Ethoxy, n- oder i-Propoxy, Methoxymethyl, Ethoxymethyl, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Methylsulfonyl, Ethylthiomethyl, Vinyl, Allyl, 2-Methylallyl, Propen-1-yl, Crotonyl, Propargyl, Vinyloxy, Allyloxy, 2-Methylallyloxy, Propen-1-yloxy, Crotonyloxy, Propargyloxy;

Trifluormethyl, Trifluorethyl,

Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Trifluormethylthio, Difluorchlormethylsulfinyl oder Trifluormethylsulfonyl,

Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino,

Acctyl, Propionyl, Methoxycarbonyl, Ethoxycarbonyl, Methylaminocarbonyl, Ethylaminocarbonyl, Dimethylaminocarbonyl, Diethylaminocarbonyl, Diethylaminocarbonyl, Diethylaminocarbonyl, Acryloyl, Propioloyl,

S Cyclopentyl, Cyclohexyl,

jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Oxo, Methyl oder Trifluormethyl substituiertes, jeweils zweifach verknüpftes Propandiyl, Ethylenoxy, Methylendioxy, Ethylendioxy oder eine Gruppierung

5 wobei

A1 für Wasserstoff, Methyl oder Hydroxy steht und

Λ² für Hydroxy, Methoxy, Ethoxy, Amino, Methylamino, Phenyl, Benzyl oder Hydroxyethyl steht, sowie jeweils gegebenenfalls im Ringteil einfach bis dreifach durch Halogen, und/oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, Phenoxy, Phenylthio, Benzoyl, Benzoylethenyl, Cinnamoyl, Benzyl, Phenylpropyl, Benzyloxy, Benzyloxy, Benzylthio, 5,6-Dihydro-1,4,2-dioxazin-3-ylmethyl, Triazolylmethyl, Benzoxazol-2-ylmethyl, 1,3-Dioxan-2-yl, Benzimidazol-2-yl, Dioxol-2-yl, Oxadiazolyl und

L¹, L², L³ und L⁴ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, Methylsulfinyl, Methylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Difluormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl stehen.

Die Erfindung betrifft besonders bevorzugt Verbindungen der Formel (I),

in welcher

R für jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden substituiertes Phenyl steht, wobei die möglichen Substituenten vorzugsweise aus der nachfolgenden Aufzählung gewählt sind:

Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Trifluormethyl,

L¹ und L³ für Wasserstoff stehen, und

L² und L⁴ unabhängig voneinander für Wasserstoff oder Methyl stehen.

In einer weiteren ganz besonders bevorzugten Gruppe von Verbindungen stehen

BS L¹ und L³ für Wasserstoff und

L² und L⁴ unabhängig voneinander für Wasserstoff oder Methyl.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen angegebenen Restedefinitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangsstoffe bzw. Zwischenprodukte.

Die in den jeweiligen Kombinationen bzw. bevorzugten Kombinationen von Resten im einzelnen für diese Reste angegebenen Restedefinitionen werden unabhängig von der jeweilig angegebenen Kombination der Reste, beliebig auch durch Restedefinitionen anderer Vorzugsbereiche ersetzt.

Die zur Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten Benzylhalogenide sind durch die Formel (II) allgemein definiert. In dieser Formel (II) haben L^1, L^2, L^3 und L^4 vorzugsweise bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für L^1, L^2, L^3 und L^4 angegeben wurden. X steht für Halogen, vorzugsweise für Chlor oder Brom.

Die Ausgangsstoffe der Formel (II) sind bekannt und können nach bekannten Verfahren hergestellt werden (vergleiche z. B. WO 96-10556)

Die zur Durchführung des erfindungsgemäßen Verfahrens weiterhin als Ausgangsstoffe benötigten Pyrazolone sind durch die Formel (III) allgemein definiert. In dieser Formel (III) hat R vorzugsweise bzw. insbesondere diejenige Bedeutung, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R angegeben wurde.

Die Ausgangsstoffe der Formel (III) sind bekannt und/oder können nach bekannten Methoden hergestellt werden (vergleiche z. B. Chem. Pharm. Bull. 19, 1389 (1971)).

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie beispielsweise Dicthylcther, Diisopropylether, Methyl-t-butylether, Methyl-t-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Ketone, wie beispielsweise Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon, Nitrile, wie beispielsweise Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie beispielsweise N,N-Dimethylformamid, N,N-Dimethylacetanid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie beispielsweise Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie beispielsweise Dimethylsulfoxid; Sulfone, wie beispielsweise Sulfolan; Alkohole, wie beispielsweise Methanol, Ethanol, n- oder i-Propanol, n-, i-, sek- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, deren Gemische mit Wasser oder reines Wasser.

Das erfindungsgemäße Verfahren wird gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumearbonat, Kaliumshydrogencarbonat, Natriumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie beispielsweise Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicycloonen (DBN) oder Diazabicycloundecen (DBU).

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Be-

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von –20°C bis 100°C, vorzugsweise bei Temperaturen von –10°C bis 80°C.

Zur Durchführung des erfindungsgemäßen Verfahrens zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Benzylhalogenids der Formel (II) im allgemeinen 0,5 bis 15 Mol, vorzugsweise 0,8 bis 8 Mol substituiertes Pyrazolon der Formel (III) ein.

Das erfindungsgemäßen Verfahren wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck im allgemeinen zwischen 0,1 bar und 10 bar zu arbeiten.

Die Reaktionsdurchführung, Aufarbeitung und Isolierung der Reaktionsprodukte erfolgt nach allgemein üblichen Methoden (vergleiche auch die Herstellungsbeispiele).

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

30

50

55

Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;

Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;

Erwinia-Arten, wie beispielsweise Erwinia amylovora;

Pythium-Arten, wie beispielsweise Pythium ultimum;

Phytophthora-Arten, wie beispielsweise Phytophthora infestans;

Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis;

Plasmopara-Arten, wie beispielsweise Plasmopara viticola;

Bremia-Arten, wie beispielsweise Bremia lactucae;

Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;

Erysiphe-Arten, wie beispielsweise Erysiphe graminis;

Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;

Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;

Venturia-Arten, wie beispielsweise Venturia inaequalis;

Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea (Konidienform: Drechslera, Syn: Helminthosporium);

Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform: Drechslera, Syn: Helminthosporium);

Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;

Puccinia-Arten, wie beispielsweise Puccinia recondita;

Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;

Tilletia-Arten, wie beispielsweise Tilletia caries;

Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;

Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;

Fusarium-Arten, wie beispielsweise Fusarium culmorum;

Botrytis-Arten, wie beispielsweise Botrytis cinerea;

Septoria-Arten, wie beispielsweise Septoria nodorum;

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;

Cercospora-Arten, wie beispielsweise Cercospora canescens;

Alternaria-Arten, wie beispielsweise Alternaria brassicae;

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekännpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Leptosphaeria- oder Puccinia -Arten, von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Alternaria-, Venturia-, Sphaerotheca-, Podosphaera-, Phytophtora- und Plasmopara-Arten, oder von Reiskrankheiten, wie beispielsweise gegen Pyricularia-Arten, einsetzen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages.

Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe

einsetzen.

Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z. B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z. B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z. B. Geophilus carpophagus, Scutigera spp.

Aus der Ordnung der Symphyla z. B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z. B. Lepisma saccharina.

Aus der Ordnung der Collembola z. B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z. B. Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus spp., Schistocerca gregaria.

Aus der Ordnung der Blattaria z. B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica

Aus der Ordnung der Dermaptera z. B. Forficula auricularia.

Aus der Ordnung der Isoptera z. B. Reticulitermes spp.

Aus der Ordnung der Phthiraptera z. B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp.

Aus der Ordnung der Thysanoptera z. B. Hercinothrips femoralis, Thrips tabaci, Thrips palmi, Frankliniella accidentalis.

Aus der Ordnung der Heteroptera z. B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z. B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.

Aus der Ordnung der Lepidoptera z. B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria, Euproctis chrysorrhoca, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.

Aus der Ordnung der Colcoptera z. B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorthynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.

Aus der Ordnung der Hymenoptera z. B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa

Aus der Ordnung der Diptera z. B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypodesca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp.

Aus der Ordnung der Siphonaptera z. B. Xenopsylla cheopis, Ceratophyllus spp.

Aus der Klasse der Arachnida z. B. Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp.

Zu den pflanzenparasitären Nematoden gehören z. B. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp.

Sie lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten, wie beispielsweise gegen die Larven des Meerettichblattkäfers (Phaedon cochleariae), der grünen Pfirsischblattlaus (Myzus persicae), den Raupen des Heerwurms (Spodoptera frugiperda), sowie gegen die Bohnenspinnmilbe (Tetranychus urticae), einsetzen.

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhi-

zome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die ersindungsgemäße Behandlung der Pslanzen und Pslanzenteile mit den Wirkstoffen ersolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z. B. durch Tauchen, Sprühen, Verdampsen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

25

30

35

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

Alternaria, wie Alternaria tenuis, Aspergillus, wie Aspergillus niger, . Chaetomium, wie Chaetomium globosum, Coniophora, wie Coniophora puetana, Lentinus, wie Lentinus tigrinus,

Penicillium, wie Penicillium glaueum,
Polyporus, wie Polyporus versicolor,
Aureobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,
Escherichia, wie Escherichia coli,
Pseudomonas, wie Pseudomonas aeruginosa,

Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z. B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z. B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methyleton, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z. B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z. B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z. B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel. Als Einulgier und/oder schaumerzeugende Mittel kommen in Frage: z. B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z. B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage: z. B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethyleellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylaleetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z. B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90%.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z. B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d. h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:

Fungizide

Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,

10 Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Bla-sticidin-S. Bromuconazol, Bupirimat, Buthiobat,

Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chiorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram,

15 Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,

Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,

Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutclanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox, Guazatin.

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovaledione,

Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,

Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Metrifuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,

Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,

Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,

Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur,

Quinconazol, Quintozen (PCNB), Quinoxyfen,

Schwefel und Schwefel-Zubereitungen,

Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanatemethyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid,

Tricyclazol, Tridemorph, Triflumizol, Triform, Triticonazol,

Uniconazol,

Validamycin A, Vinclozolin, Viniconazol,

Zarilamid, Zineh, Ziram sowie Dagger G,

OK-8705,

OK-8801,

 α -(1,1-Dimethylethyl)- β -(2-phenoxyethyl)-1H-1,2,4-triazol-1-ethanol,

α-(2,4-Dichlorphenyl)-β-fluor-b-propyl-1H-1,2,4-triazol-1-ethanol,

α-(2,4-Dichlorpheny1)-β-methoxy-a-methyl-1H-1,2,4-triazol-1-ethanol,

 $\alpha\text{-}(5\text{-Methyl-1,3-dioxan-5-yl)-}\beta\text{-}[[4\text{-}(trifluormethyl)-phenyl]-methylen]-1H-1,2,4\text{-}triazol-1-ethanol,}$

io (5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon,

(E)-a-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,

[2-Melhyl-1-[[[1-(4-methylphenyl)-ethyl]-amino]-carbonyl]-propyl)-carbaminsäure-1-isopropylester

1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,

1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,

5 1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,

1-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol,

1-[[2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl]-methyl]-1H-imidazol,

1-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-1H-1,2,4-triazol,

1-[1-[2-[(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol,

1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,

- 2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluormethyl-1,3-thiazol-5-carboxanilid,
- 2,2-Dichlor-N-[1-(4-chlorphenyl)-ethyl]-1-ethyl-3 -methyl-cyclopropancarboxamid,
- 2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
- 2.6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
- 2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid, 2-(2,3,3-Triiod-2-propenyl)-2II-tetrazol,
 - 2-[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol,
 - 2-[[6-Deoxy-4-O-(4-O-methyl-β-D-glycopyranosyl)-a-D-glucopyranosyl]-amino)-4-methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril,

2-Aminobutan, 2-Brom-2-(brommethyl)-pentandinitril, 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,	
2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid, 2-Phenylphenol(OPP), 3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion, 3,5-Dichlor-N-[cyan (1-methyl-2-propynyl)-oxy]-methyl]-benzamid,	5
3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril, 3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin, 4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid, 4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,	10
8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro [4.5]decan-2-methanamin, 8-Hydroxychinolinsulfat, 9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid,	
bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat, cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol, cis-4-[3-[4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholinhydrochlorid,	15
Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat, Kaliumhydrogencarbonat, Methantetrathiol-Natriumsalz,	20
Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat, Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat, Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,	20
N-(2,3-Dichlor-4-hydroxyphenyl)-1-methyl-cyclohexancarboxamid. N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid, N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,	25
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid, N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin, N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,	
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid, N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid, N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,	30
N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid, N-Formyl-N-hydroxy-DL-alanin -Natriumsalz, O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,	35
O-Methyl-S-phenyl-phenylpropylphosphoramidothioate, S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,	33
spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on, Bakterizide	40
Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.	,
Insektizide/Akarizide/Nematizide	45
Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin, Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Baculoviren, Beauveria bassiana, Beau-	
veria tenella, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Biopermethrin, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben, Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr,	,
Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Cis-Resmethrin, Cis-permethrin, Clocythrin, Cloethocarb, Clofentezine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhalothrin, Cypermethrin, Cyromazine,	- 55
Deltamethrin, Demeton M, Demeton S. Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn, Eflusilanate, Emanectin, Empenthrin, Endosulfan, Entomopfthora spp., Esfenvalerate, Ethiofencarb, Ethion, Ethopro-	
phos, Etofenprox, Etoxazole, Etrimfos, Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazinam, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,	- 60 -
Granuloseviren Halolenozide, HCH, Heptenophos, Hexallumuron, Hexythiazox, Hydroprene,	
Imidacloprid, Isazofos, Isofenphos, Isoxathion, Ivermectin, Kernpolyederviren	65
Lambda-cyhalothrin, Lufenuron Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methadat	-

hion, Methiocarb, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Monocrotophos, Naled, Nitenpyram, Nithiazine, Novaluron

Omethoat, Oxamyl, Oxydemethon M

Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen, Quinalphos,

Ribavirin

Salithion, Sebufos, Silafluofen, Spinosad, Sulfotep, Sulprofos,

Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Theta-cypermethrin, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Trimethacarb,

Vamidothion, Vaniliprole, Verticillium lecanii

Zeta-cypermethrin, Zolaprofos

(1R-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)-furanyliden)-methyl]-2,2-dimethylcyclopropancarboxylat

(3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat

1-[(2-(Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-imin

2-(2-Chlor-6-fluorphenyl)-4-[4-(1,1-dimethylethyl)phenyl]-4,5-dihydro-oxazol

2-(Acetlyoxy)-3-dodecyl-1,4-naphthalindion

2-Chlor-N-[[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid

2-Chlor-N-[[[4-(2,2-dichlor-l, l-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid

3-Methylphenyl-propylcarbamat

4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol

4-Chlor-2-(1,1-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio] -3 (2H)-pyridazinon

4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-10d-3-pyridinyl)methoxy]-3(2H)-pyridazinon

4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon

Bacillus thuringiensis strain EG-2348

Benzoesäure [2-benzoyl-1-(1,1-dimethylethyl)-hydrazid

Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-ylester

[3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid

Dihydro-2-(nitromethylen)-2H-1,3-thiazine-3(4H)-carboxaldehyd

Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat

N-(3,4,4-Trifluor-1-oxo-3-butenyl)-glycin

N-(4-Chlorphenyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-1H-pyrazol-1-carboxamid

N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin

N-Methyl-N'-(1-methyl-2-propenyl)-1,2-hydrazindicarbothioamid

N-Methyl-N'-2-propenyl-1,2-hydrazindicarbothioamid

O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sproßpilze, Schimmel- und diphasische Pilze, z. B. gegen Candida-Spezies wie Candida albicans oder Candida glabrata; Epidermophyton-Spezies wie Epidermophyton floccosum; Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus; Trichophyton-Spezies wie Trichophyton mentagrophytes; Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfaßbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z. B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen (),01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff,

vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

Herstellungsbeispiele

Beispiel 1

1,5 g (0,005 Mol) 2-[2-(Brommethyl)phenyl]-3-(fluormethoxy)-2-acrylsäuremethylester, 5,3 g (0,005 Mol) 1-(4-Chlorphenyl)-1,2-dihydro-3H-pyrazol-3-on und 0,2 g (0,005 Mol) Natriumhydrid (60%ig) werden in 20 ml trockenem Dimethylfornamid 18 Stunden lang bei Raumtemperatur gerührt. Anschließend wird das Lösungsmittel bei vermindertem Druck abdestilliert. Der Rückstand wird in 50 ml Essigsäureethylester aufgenommen und mehrfach mit Wasser gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und bei vermindertem Druck eingeengt. Der Rückstand wird mit Hexan/Aceton (8 : 2) an Kieselgel chromatografiert. Man erhält 1 g (48% der Theorie) 2-[2-({[1-(4-Chlorphenyl)-1H-pyrazol-3-yl]oxy}methyl)-phenyl]-3-(fluormethoxy)-2-acrylsäuremethylester. HPLC: logP = 3,30

Analog Beispiel 1 sowie entsprechend den Angaben in der allgemeinen Verfahrensbeschreibung, werden die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel (I-a) erhalten.

$$R - N$$
 O
 CH_3
 $(I-a)$

45

50

55

60

Tabelle 1

	Beispiel	R	logP
	2	4-t-Butylphenyl	4,63
	3	4-Fluorphenyl	3,49
10	4	4-(i-Propyl)phenyl	4,39
. ο	5	3-Bromphenyl	4
15	6	4-Bromphenyl	4,04
13	7	3,5-Dichlorphenyl	4,59
20	8	2-Chlorphenyl	3,59
	9	4-Cyanophenyl	3,24
	10	4-Tolyl	3,77
25	11	2,4-Dichlorphenyl	4,15
	12	2-Bromphenyl	3,61
30	13	Phenyl	3,45
	14	2,6-Dichlor-4-	4,23
		trifluormethylphenyl	

Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch IIPLC (Gradientenmethode, Acctonitril/0,1% wäßrige Phosphorsäure)

Anwendungsbeispiele

Beispiel A

Puccinia-Test (Weizen)/protektiv

45 Lösungsmittel: 25 Gewichtsteile N,N-Dimethylacetamid Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether

40

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Puccinia recondita besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100% relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80% aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigen die in den Beispielen (1, 2, 4) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 250 g/ha einen Wirkungsgrad von 98% oder mehr.

Beispiel B

Phytophthora-Test (Tomate)/protektiv

Lösungsmittel: 24,5 Gewichtsteile Aceton 24,5 Gewichtsanteile Dimethylacetamid

Emulgator: 1,0 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angege-

benen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Sporensuspension von Phytophthora infestans inokuliert. Die Pflanzen werden dann in einer Inkubationskabine bei ca. 20°C und 100% relativer Luftfeuchtigkeit aufgestellt.

3 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 99% oder mehr.

Beispiel C

Plasmopara-Test (Rebe)/protektiv

15

30

50

55

Lösungsmittel: 24,5 Gewichtsteile Aceton 24,5 Gewichtsanteile Dimethylacetanid

Emulgator: 1,0 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Sporensuspension von Plasmopara viticola inokuliert und verbleiben dann 1 Tag in einer Inkubationskabine bei ca. 20°C und 100% relativer Luftfeuchtigkeit. Anschließend werden die Pflanzen 5 Tage im Gewächshaus bei ca. 21°C und ca. 90% relativer Luftfeuchtigkeit aufgestellt. Die Pflanzen werden dann angefeuchtet und 1 Tag in eine Inkubationskabine gestellt.

6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 98% oder mehr.

Beispiel D

Podosphaera-Test (Apfel)/protektiv

Lösungsmittel: 24,5 Gewichtsteile Aceton 24,5 Gewichtsanteile Dimethylacetamid

Emulgator: 1,0 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Sporensuspension des Apfelmehltauerregers Podosphaera leucotricha inokuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70% aufgestellt.

10 Tage nach der Inokulation erfolgt die Auswertung. Dahei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 98% oder mehr.

Beispiel E

Sphaerotheca-Test (Gurke)/protektiv

Lösungsmittel: 47 Gewichtsteile Aceton

Emulgator: 3 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Sporensuspension von Sphaerotheca fuliginea inokuliert. Die Pflanzen werden dann bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70% im Gewächshaus aufgestellt.

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 98% oder mehr.

Beispiel F

Venturia-Test (Apfel)/protektiv

 Lösungsmittel: 24,5 Gewichtsteile Accton 24,5 Gewichtsanteile Dimethylacetamid

Emulgator: 1,0 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100% relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90% aufgestellt. 12 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Aufwandmenge von 10 g/ha einen Wirkungsgrad von 98% oder mehr.

Beispiel G

Leptosphaeria nodorum Test (Weizen)/protektiv

25 Lösungsmittel: 49 Gewichtsteile N,N-Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Weizenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer wäßrigen Sporensuspension von Leptosphaeria nodorum inokuliert und verbleiben dann 48 h bei 100% rel. Luststeuchte und 20°C. Anschließend werden die Pflanzen in einem Gewächshaus bei 80% rel. Lustsfeuchtigkeit und einer Temperatur von 22°C aufgestellt.

12-14 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Aufwandmenge von 750 g/ha einen Wirkungsgrad von 98% oder mehr.

Beispiel H Alternaria-Test (Tomate)/protektiv

·

40

Lösungsmittel: 49 Gewichtsteile N,N-Dimethylformamid

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Tomatenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Alternaria solani inokuliert und stehen dann 24 h bei 100% rel. Feuchte und 20°C. Anschließend stehen die Pflanzen bei 96% rel. Luftfeuchtigkeit und einer Temperatur von 20°C.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.

Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Aufwandmenge von 750 g/ha einen Wirkungsgrad von 80% oder mehr.

Beispiel I

Pyricularia-Test (Reis)/protektiv

Lösungsmittel: 25 Gewichtsteile N,N-Dimethylacetamid Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Reispflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. Nach dem Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Sporensuspension von Pyricularia oryzae inokuliert und verbleiben dann 24 h bei 100% rel. Luftfeuchte und 26°C. Anschließend

14

DE 199 61 330 A 1 werden die Pflanzen in einem Gewächshaus bei 80% rel, Luftfeuchtigkeit und einer Temperatur von 26°C aufgestellt, 7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird. Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Aufwandmenge von 125 g/ha einen Wirkungsgrad von 80% oder mehr. Beispiel J Phaedon-Larven-Test 10 Lösungsmittel: 30 Gewichtsteile Aceton Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration. Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven des Meerrettichkäfers (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind. Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100%, daß alle Käferlarven abgetötet wurden; 0% bedeutet, daß keine Käferlarven abgetötet wurden. Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Wirkstoffkonzentration von 1000 ppm einen Abtötungsgrad von 98% oder mehr. Beispiel K Spodoptera frugiperda-Test 25 Lösungsmittel: 30 Gewichtsteile Aceton Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration. Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoftzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms (Spodoptera frugiperda) besetzt, solange die Blätter noch feucht sind. Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100%, daß alle Raupen abgetötet wurden; 0% bedeutet, daß keine Raupen abgetötet wurden. 35 Bei diesem Test zeigt der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Wirkstoffkonzentration von 1000 ppm einen Abtötungsgrad von 98% oder mehr. Beispiel L 40 Myzus-Test Lösungsmittel: 30 Gewichtsteile Aceton Emulgator: 1 Gewichtsteile Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegehenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit einulgatorhaltigem Wasser auf die gewünschten Konzentrationen. Keimlinge der Dicken Bohne (Vicia faba), welche mit der Grünen Pfirsichblattlaus (Myzus persicae) befallen sind, werden in eine Wirkstoffzuhereitung der gewünschten Konzentration getaucht und in eine Plastikdose gelegt.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100%, daß alle Tiere abgetötet wurden; 0% bedeutet, daß keine Tiere abgetötet wurden.

Bei diesem Test zeigt,der in Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Wirkstoffkonzentration von 1000 ppm einen Abtötungsgrad von 98% oder mehr.

Beispiel M 55

Tetranychus-Test (QP-resistent/Tauchbehandlung)

Lösungsmittel: 30 Gewichtsteile Aceton

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Bohnenpilanzen (Phaseolus vulgaris), die stark von allen Stadien der gemeinen Spinnmilbe ('letranychus urticae) befallen sind, werden in eine Wirkstoffzubereitung der gewünschten Konzentration getaucht.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100%, daß alle Spinnmilben abgetötet wurden; 0% bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigt der in d Beispiel (1) aufgeführte erfindungsgemäße Stoff bei einer Wirkstoffkonzentration von

100 ppm einen Abtötungsgrad von 90% oder mehr.

Patentansprüche

1. Verbindungen der allgemeinen Formel (I),

R-N O CH₃

20 in welcher

10

15

25

35

40

45

50,

55

60

65

R für jeweils gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Aryl steht,

L¹, L², L³ und L⁴ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Halogen, Cyano, Nitro, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl stehen.

(I)

2. Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass R für Alkyl mit 1 bis 8 Kohlenstoffatomen,

für jeweils gegebenenfalls einfach bis zweifach durch Halogen, Alkyl, oder Hydroxy substituiertes Cycloalkyl mit 3 bis 7 Kohlenstoffatomen;

oder für jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden substituiertes Phenyl oder Naphthyl steht, wobei die möglichen Substituenten vorzugsweise aus der nachstehenden Aufzählung ausgewählt sind: Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl; jeweils geradkettiges oder verzweigtes Alkyl, Hydroxyalkyl, Oxoalkyl, Alkoxy, Alkoxyalkyl, Alkylthioalkyl, Dial-

koxyalkyl, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 8 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 11 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Arylalkylaminocarbonyl, Dialkylaminocarbonyloxy, Alkenylcarbonyl oder Alkinylcarbonyl, mit 1 bis 6 Kohlenstoffatomen in den jeweiligen Kohlenwasserstoffketten; Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 6 Kohlenstoffatomen;

jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Oxo, Methyl, Trifluormethyl oder Ethyl substituiertes, jeweils zweifach verknüpftes Alkylen mit 3 oder 4 Kohlenstoffatomen, Oxyalkylen mit 2 oder 3 Kohlenstoffatomen oder Dioxyalkylen mit 1 oder 2 Kohlenstoffatomen; oder eine Gruppierung

worin

Λ¹ für Wasserstoff, Hydroxy oder Alkyl mit 1 bis 4 Kohlenstoffatomen oder Cycloalkyl mit 1 bis 6 Kohlenstoffato

A² für Hydroxy, Amino, Methylamino, Phenyl, Benzyl oder für jeweils gegebenenfalls durch Cyano, Hydroxy, Alkoxy, Alkylamino, Dialkylamino oder Phenyl substituiertes Alkyl oder Alkoxy mit 1 bis 4 Kohlenstoffatomen, oder für Alkenyloxy oder Alkinyloxy mit jeweils 2 bis 4 Kohlenstoffatomen steht,

sowie jeweils gegebenenfalls im Ringteil einfach bis dreifach durch Halogen, und/oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, Phenoxy, Phenyllthio, Benzoyl, Benzoylethenyl, Cinnamoyl, Heterocyclyl oder Phenylalkyl, Phenylalkyloxy, Phenylalkylthio, oder Heterocyclylalkyl, mit jeweils 1 bis 3 Kohlenstoffatomen in den jeweiligen Alkylteilen,

L¹, L², L

³ und L

⁴ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Halogen, Cyano, Nitro, jeweils gegebenenfalls durch 1 bis 5 Halogenatome substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen stehen.

3. Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass R für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Pentyl oder Hexyl,

für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Methyl, Ethyl oder Hydroxy substituiertes Cyclopentyl oder Cyclohexyl;

oder für jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden substituiertes Phenyl oder Naphthyl steht, wobei die möglichen Substituenten vorzugsweise aus der nachstehenden Aufzählung ausgewählt sind:

Fluor, Chlor, Brom, Iod, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, 1-, 2-, 3-, neo-Pentyl, 1-, 2-, 3-, 4-(2-Methylbutyl), 1-, 2-, 3-Hexyl, 1-, 2-, 3-, 4-(5-Methylpentyl), 1-, 2-, 3-(3-Methylpentyl), 2-Ethylbutyl, 1-, 3-, 4-(2-Dimetylbutyl), 1-, 2-(2-3-Dimethylbutyl), Hydroxymethyl, Hydroxyethyl, 3-Oxobutyl, Methoxymethyl, Dimethoxymethyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methoxymethyl, Ethoxymethyl, Methylthio, Ethylbutyl, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Methylthiomethyl, Ethylthiomethyl,

Vinyl, Allyl, 2-Methylallyl, Propen-1-yl, Crotonyl, Propargyl, Vinyloxy, Allyloxy, 2-Methylallyloxy, Propen-1-yloxy, Crotonyloxy, Propargyloxy;

10

15

30

50

Trifluormethyl, Trifluorethyl,

Difluormethoxy, Trifluormethoxy, Difluormethoxy, Difluormethylthio, Trifluormethylthio, Difluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl,

Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino,

Acetyl, Propionyl, Methoxycarbonyl, Ethoxycarbonyl, Methylaminocarbonyl, Ethylaminocarbonyl, Dimethylaminocarbonyl, Diethylaminocarbonyl, Diethylaminocarbonyl, Diethylaminocarbonyl, Benzylaminocarbonyl, Acryloyl, Propioloyl,

Cyclopentyl, Cyclohexyl,

jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Oxo, Methyl oder Trifluormethyl substituiertes, jeweils zweifach verknüpftes Propandiyl, Ethylenoxy, Methylendioxy, Ethylendioxy oder eine Gruppierung

wobei A¹ für Wasserstoff, Methyl oder Hydroxy steht und

A² für Hydroxy, Methoxy, Ethoxy, Amino, Methylamino, Phenyl, Benzyl oder Hydroxyethyl steht, sowie jeweils gegebenenfalls im Ringteil einfach bis dreifach durch Halogen, und/oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, Phenoxy, Phenylthio, Benzoyl, Benzoylethenyl, Cinnamoyl, Benzyl, Phenylethyl, Phenylpropyl, Benzyloxy, Benzylthio, 5,6-Dihydro-1,4,2-dioxazin-3-ylmethyl, Triazolylmethyl, Benzoxazol-2-ylmethyl, 1,3-Dioxan-2-yl, Benzimidazol-2-yl, Dioxol-2-yl, Oxadiazolyl und L¹, L², L³ und L⁴ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, Methylsulfinyl, Bthylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl stehen.

4. Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass in welcher

R für jeweils gegebenenfalls einfach bis vierfach, gleich oder verschieden substituiertes Phenyl steht, wobei die möglichen Substituenten vorzugsweise aus der nachfolgenden Aufzählung gewählt sind:

Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Trifluormethyl,

L1 und L3 für Wasserstoff stehen, und

L² und L⁴ unabhängig voneinander für Wasserstoff oder Methyl stehen.

5. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I), wie in Anspruch 1 definiert, dadurch gekennzeichnet, dass man Verbindungen der Formel (II),

in welcher

 L^1, L^2, L^3 und L^4 die oben angegebenen Bedeutungen haben und X für Halogen steht,

mit einem substituierten Pyrazolon der allgemeinen Formel (III),

in welcher

R die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors, umsetzt.

- 6. Mittel zur Bekämpfung von schädlichen Organismen enthaltend Streckmittel und/oder Trägerstoffe sowie gegebenenfalls oberflächenaktive Stoffe, gekennzeichnet durch einen Gehalt an einer Verbindung wie in den Ansprüchen 1 bis 4 definiert.
- 7. Verfahren zur Bekämpfung von schädlichen Organismen, dadurch gekennzeichnet, dass man Verbindungen wie in den Ansprüchen 1 bis 4 definiert bzw. Mittel wie in Ansprüch 6 definiert auf schädliche Organismen und/oder ihren Lebensraum einwirken lässt.
- 8. Verwendung von Verbindungen wie in den Ansprüchen 1 bis 4 bzw. von Mitteln wie in Ansprüch 6 definiert zur Bekämpfung von schädlichen Organismen.
- 9. Verfahren zur Herstellung von Mitteln wie in Anspruch 6 definiert, dadurch gekennzeichnet, dass man Verbindungen wie in den Ansprüchen 1 bis 4 definiert mit Streckmitteln und/oder Trägerstoffen und/oder oberflächenaktiven Mitteln.