Numerical Analysis

Lusine Poghosyan

AUA

November 8, 2018

Example

Construct a quadrature rule

$$\int_{-2}^{2} f(x)dx \approx Af(-1) + Bf(c) + Af(1)$$

which will have the maximal precision degree.

Numerical Optimization

We are going to consider the following problem

minimize
$$f(x)$$
 subject to $x \in \Omega$,

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, with $n \ge 1$.

The function *f* that we wish to minimize is called the **objective function** or **cost function**.

The set Ω is called the **constraint set** or **feasible set**.

If Ω is a proper subset of \mathbb{R}^n then we have **constrained optimization** problem.

If $\Omega = \mathbb{R}^n$ then we have unconstrained optimization problem.

Definition

A point $x^* \in \Omega$ is a **local minimizer** of f over Ω if there exists $\varepsilon > 0$ such that $f(x) \ge f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$ and $||x - x^*|| < \varepsilon$. A point $x^* \in \Omega$ is a **global minimizer** of f over Ω if $f(x) \ge f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$.

If in the definitions above we replace ">" with ">" then we have a strict local minimizer and a strict global minimizer, respectively.

If x^* is a global minimizer of f over Ω , we write $f(x^*) = \min_{x \in \Omega} f(x)$ and $x^* = \arg\min_{x \in \Omega} f(x)$. If the minimization is unconstrained, we simply write $x^* = \arg\min_x f(x)$ or $x^* = \arg\min_f f(x)$

One Dimensional Search Methods

Here we consider the minimization of univariate function $f : [a, b] \to \mathbb{R}$.

In an iterative algorithm we start with an initial candidate solution x_0 and generate sequence of points x_1, x_2, \ldots Each x_{k+1} iteration depends on previous points x_0, x_1, \ldots, x_k . The algorithm may also use the value of f or f' or even f'' at some points:

- Golden section method (uses only f);
- Fibonacci method (uses only f);
- Bisection method (uses only f');
- Gradient descent (uses only f');
- Newton's method (uses f' and f").

Definition

The function $f:[a,b] \to \mathbb{R}$ is called a unimodal function on interval [a,b], if f has only one local minimizer in [a,b].

Example

Check if the function f is unimodal on the given interval, if

- **a.** $f(x) = \sin(x), x \in [\pi/2, 2\pi];$
- **b.** $f(x) = \sin(x), x \in [0, 2\pi];$
- **c.** $f(x) = \frac{x^5}{5} x^3, x \in [-1, 2].$

If $f:[a,b]\to\mathbb{R}$ is continuous and unimodal on [a,b], then f is strictly decreasing up to the minimum point x^* and strictly increasing thereafter.

Golden Section Search

Assume $f : [a, b] \to \mathbb{R}$ is unimodal and continuous on interval [a, b].

Let's denote

$$[a_0, b_0] = [a, b].$$
 $A = a_0 + \gamma(b_0 - a_0),$ $B = b_0 - \gamma(b_0 - a_0),$

where $\gamma \in (0, \frac{1}{2})$.

We define the new interval in the following way

$$[a_1, b_1] = \begin{cases} [a_0, B], & \text{if } f(A) < f(B), \\ [A, b_0], & \text{if } f(A) \ge f(B). \end{cases}$$

$$x^* \in [a_1, b_1]$$

$$b_1 - a_1 = (1 - \gamma)(b_0 - a_0).$$

The first approximation will be

$$x_1=\frac{a_1+b_1}{2}.$$

n-th step

$$[a_n, b_n] = \begin{cases} [a_{n-1}, B], & \text{if } f(A) < f(B), \\ [A, b_{n-1}], & \text{if } f(A) \ge f(B). \end{cases}$$

$$x^* \in [a_n, b_n]$$

$$b_n - a_n = (1 - \gamma)(b_{n-1} - a_{n-1})$$

The *n*-th approximation will be

$$x_n=\frac{a_n+b_n}{2}.$$

Theorem

If f is a unimodal and continuous function on [a,b] and $\gamma \in (0,\frac{1}{2})$, then the golden section search approximation x_n converges to x^* and we have

$$|x_n - x^*| \le 0.5(1 - \gamma)^n (b - a).$$

Stopping conditions

•
$$|b_n - a_n| < \varepsilon$$

•
$$|x_n - x_{n-1}| < \varepsilon$$
 or $\frac{|x_n - x_{n-1}|}{|x_{n-1}|} < \varepsilon$, if $x_{n-1} \neq 0$

•
$$|f(x_n) - f(x_{n-1})| < \varepsilon$$
 or $\frac{|f(x_n) - f(x_{n-1})|}{|f(x_{n-1})|} < \varepsilon$, if $f(x_{n-1}) \neq 0$

Example

Calculate the second approximation x_2 of the golden section search method with $\gamma = \frac{1}{3}$ for function $f(x) = \frac{x^3}{3} - 2x$ on the interval [-3, 0].

In general case at each step we calculate the value of f at two points: A and B.

It is possible to find $\gamma \in (0, \frac{1}{2})$ such that we evaluate f at two points at first step but at each next step we evaluate f at one point.

Let's assume that at the step n f(A) < f(B), which means that our new interval $[a_n, b_n]$ is going to be $[a_{n-1}, B]$.

$$a_{n-1} + \gamma(b_{n-1} - a_{n-1}) = b_n - \gamma(b_n - a_n)$$

= $b_{n-1} - \gamma(2 - \gamma)(b_{n-1} - a_{n-1})$

This implies

$$\gamma^2 - 3\gamma + 1 = 0$$

and

$$\gamma = \frac{3 - \sqrt{5}}{2} \approx 0.382.$$

$$|x_n - x^*| \le 0.5 \left(\frac{\sqrt{5} - 1}{2}\right)^n (b - a).$$

Example (MatLab)

Our aim is to find the minimum of $f(x) = x^4 + x^2 - 2x$ on the interval [-4, 5] with an error of at most 10^{-3} . Write a MatLab program that calculates the approximation of the minimum point using the golden section search method with $\gamma = \frac{3-\sqrt{5}}{2}$.