Espais vectorials

 $E ext{ } \mathbb{K}$ -espai vectorial de dimensió n, B base d'E.

Si $u_1, \ldots, u_k \in E$, $((u_1)_B, \ldots, (u_k)_B)$ representa la matriu que té per columnes les coordenades dels vectors u_1, \ldots, u_k en la base B.

- (1) $v \in \langle u_1, \dots, u_k \rangle \Leftrightarrow \operatorname{rang}((u_1)_B, \dots, (u_k)_B) = \operatorname{rang}((u_1)_B, \dots, (u_k)_B, (v)_B).$
- (2) u_1, \ldots, u_k són L.I. $\Leftrightarrow \operatorname{rang}((u_1)_B, \ldots, (u_k)_B) = k$.
- (3) u_1, \ldots, u_k són L.D. $\Leftrightarrow \operatorname{rang}((u_1)_B), \ldots, (u_k)_B) < k$.
- (4) v és pot expressar com a C.L. dels vectors u_1, \ldots, u_k d'almenys dues maneres diferents \Leftrightarrow rang $((u_1)_B), \ldots, (u_k)_B, (v)_B) = \operatorname{rang}((u_1)_B), \ldots, (u_k)_B) < k$.

Espais vectorials

 $E \mathbb{K}$ -espai vectorial de dimensió n, B base d'E.

Si $u_1, \ldots, u_k \in E$, $((u_1)_B), \ldots, (u_k)_B)$ representa la matriu que té per columnes les coordenades dels vectors u_1, \ldots, u_k en la base B.

- (5) dim $\langle u_1, \ldots, u_k \rangle = \text{rang}((u_1)_B, \ldots, (u_k)_B).$
- (6) Una base de $\langle u_1, \ldots, u_k \rangle$: vectors de $\{u_1, \ldots, u_k\}$ corresponents a les columnes dels pivots d'una matriu escalonada equivalent per files a $((u_1)_B, \ldots, (u_k)_B)$ (o sigui, u_i és d'aquesta base si i només si a la columna i de la matriu escalonada hi ha un pivot).

A més, si tenim la matriu escalonada **reduïda** equivalent per files (a la columna del pivot només hi ha un 1 i la resta són 0's), a les columnes que no corresponen als pivots tenim els coeficients del vector corresponent com a combinació lineal lineal de la base formada pels vectors corresponents a les columnes dels pivots.

Espais vectorials

 $E \times B$ -espai vectorial de dimensió n, B base d'E.

- (7) $\{u_1, \ldots, u_n\}$ és base d' $E \Leftrightarrow \operatorname{rang}((u_1)_B, \ldots, (u_n)_B) = n \Leftrightarrow \det((u_1)_B, \ldots, (u_n)_B) \neq 0$.
- (8) u_1, \ldots, u_k L.I. \Rightarrow existeix una base d'E que conté u_1, \ldots, u_k .
- (9) u_1, \ldots, u_k L.I. \Rightarrow es pot completar amb vectors de la base canònica fins una base d'E: provem amb vectors w_1, \ldots, w_{n-k} de la base canònica de manera que rang $((u_1)_B, \ldots, (u_k)_B, (w_1)_B, \ldots, (w_{n-k})_B) = n$.

Subespais vectorials

 $E \ \mathbb{K}$ -espai vectorial de dimensió n, B base d'E.

Vector genèric d'E: $(x)_B = (x_1, \dots, x_n)$.

Maneres de donar un subespai F d'E:

- (a) $F = \langle u_1, \dots, u_k \rangle$. Base i dimensió: vegeu (5), (6)
- (b) Base d'F: $\{v_1, \ldots, v_r\}$. La dimensió de F és r.
- (c) Com a solució d'un sistema d'equacions lineals homogeni amb variables x_1, \ldots, x_n . La dimensió és d'F é el nombre de graus de llibertat del sistema. Base: la trobem a partir de l'expressió de la solució en forma paramètrica.

Com passar d'expressar-lo d'una manera a altra:

- (a)→(b): vegeu (6)
- (b) \rightarrow (a): observeu que $F = \langle v_1, \dots, v_r \rangle$
- (b) \rightarrow (c): imposar que rang $((v_1)_B, \dots (v_r)_B, (x)_B) = r$.
- (c)→(b): resoldre el sistema i donar la solució de forma paramètrica.

Subespais vectorials

Base i dimensió d'un subespai d'una altra manera.

E \mathbb{K} -espai vectorial de dimensió n, B base d'E, F subespai d'E, $F = \langle u_1, \ldots, u_k \rangle$.

Considerem la matriu
$$A = \begin{pmatrix} (u_1)_B \\ \vdots \\ (u_k)_B \end{pmatrix}$$
 que té per files les

coordenades dels vectors u_1, \ldots, u_k en la base B.

Es pot demostrar que els vectors fila d'una matriu equivalent a *A* per files generen el mateix subespai que els vectors fila d'*A*. Per tant, es compleix:

- $\dim F = \operatorname{rang} A$;
- una base de F està formada pels vectors fila no nuls d'una matriu escalonada equivalent a A per files.

Subespais vectorials

Base i dimensió d'un subespai d'una altra manera (cont.).

El mètode anterior és útil per completar bases de subespais: afegim els n – rangA vectors que tenen totes les coordenades iguals a 0 excepte una única coordenada igual a 1 en les columnes que no corresponen als pivots de la matriu escalonada equivalent a A.

Exemple. Si al posar per files els 4 vectors que generen un subespai F de \mathbb{R}^6 arribem a la matriu escalonada equivalent de l'esquerra, una base de F està formada per les 3 files no nul·les i la podem completar amb els 3(=6-3) vectors fila de la base canònica que tenen l'1 a les columnes on no hi ha pivots (en vermell):

$$\begin{pmatrix} \mathbf{1} & 1 & 1 & 2 & 2 & 2 \\ 0 & \mathbf{1} & 2 & 2 & 1 & 0 \\ 0 & 0 & 0 & \mathbf{3} & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{1} & 1 & 1 & 2 & 2 & 2 \\ 0 & \mathbf{1} & 2 & 2 & 1 & 0 \\ 0 & 0 & 0 & \mathbf{3} & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} \mathbf{1} & 1 & 1 & 2 & 2 & 2 \\ 0 & \mathbf{1} & 2 & 2 & 1 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{3} & 3 & 1 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} \end{pmatrix}$$

Inclusió de subespais

$$F = \langle u_1, \dots, u_r \rangle$$
, $G = \langle v_1, \dots, v_s \rangle$ subespais d' E

- $F \subseteq G \Leftrightarrow u_1, \ldots, u_r \in G$ (vegeu (1))
- $F = G \Leftrightarrow F \subseteq G \text{ i } G \subseteq F$ $\Leftrightarrow u_1, \dots, u_r \in G \text{ i } v_1, \dots, v_s \in F$
- Si dim $F = \dim G$:

$$F = G \Leftrightarrow F \subseteq G \Leftrightarrow G \subseteq F$$

$$\Leftrightarrow u_1, \dots, u_r \in G \Leftrightarrow v_1, \dots, v_s \in F$$

 $E ext{ } \mathbb{K}$ -espai vectorial de dimensió $n. ext{ } F, ext{ } G$ subespais d'E. Base de $F \cap G$?

- (a) F, G donats com a solució de sistemes homogenis.
- (b) Base d'F: $\{v_1, ..., v_r\}$, base de G: $\{u_1, ..., u_s\}$.
- (c) Base de $F: \{v_1, \ldots, v_r\}$; G donat coma solució d'un sistema d'equacions lineals homogeni.

E \mathbb{K} -espai vectorial de dimensió n. F, G subespais d'E. Base de $F \cap G$?

(a) F, G donats com a solució de sistemes homogenis.Resoldre el sistema format per les equacions de F i de G.

E \mathbb{K} -espai vectorial de dimensió n. F, G subespais d'E. Base de $F \cap G$?

- (b) Base d'F: $\{v_1, ..., v_r\}$, base de G: $\{u_1, ..., u_s\}$.
 - $w \in F \cap G \Leftrightarrow w = x_1v_1 + \cdots + x_rv_r = y_1u_1 + \cdots + y_su_s$.
 - Resolem el sistema amb n equacions i r+s incògnites que prové de la igualtat:

$$x_1v_1+\cdots+x_rv_r=y_1u_1+\cdots+y_su_s$$

• Substituïm les solucions obtingudes per a x_1, \ldots, x_r en $w = x_1v_1 + \cdots + x_rv_r$ (o bé substituïm les solucions obtingudes per a y_1, \ldots, y_s en $w = y_1u_1 + \cdots + y_su_s$).

 $E \times G$ -espai vectorial de dimensió n. F, G subespais d'E. Base de $F \cap G$?

- (c) Base de $F: \{v_1, \ldots, v_r\}$; G donat com a solució d'un sistema d'equacions lineals homogeni.
 - $w \in F \Leftrightarrow w = \alpha_1 v_1 + \cdots + \alpha_r v_r$.
 - Substituïm les n coordenades de w (en funció de les α 's) en el sistema que defineix G.
 - Resolem el sistema amb n equacions i les r incògnites $\alpha_1, \ldots, \alpha_r$ obtingut.
 - Substituïm les solucions obtingudes per a $\alpha_1, \ldots, \alpha_r$ en $w = \alpha_1 v_1 + \cdots + \alpha_r v_r$.