Hugo Marquerie 03/02/2025

Variedad topológica

Definición 1 (Variedad topológica). Sea (M, \mathcal{T}) un espacio topológico y $n \in \mathbb{N}$, M es una variedad topológica de dimensión $n \iff$

- (i) (M, \mathcal{T}) es de Hausdorff.
- (ii) (M, \mathcal{T}) es segundo numerable.
- (iii) $\forall p \in M : \exists U \in \mathcal{V}(p) : \exists f : U \longrightarrow \mathbb{R}^n$ homeomorfismo.

Ejercicio 1. Comprueba que (iii) es equivalente a

(iii') $\forall p \in M : \exists U \in \mathcal{V}(p) : \exists U' \subset \mathbb{R}^n \text{ abierto y } \exists f : U \longrightarrow U' \text{ homeomorfismo.}$

Solución: Probemos ambas direcciones de la equivalencia (iii) \iff (iii'):

- \Longrightarrow Sea $p \in M$, tenemos que $\exists U \in \mathcal{V}(p)$ homeomorfo a \mathbb{R}^n . Dado que $\mathbb{R}^n \subset \mathbb{R}^n$ es abierto, basta tomar $U' = \mathbb{R}^n$ con la misma $f : U \longrightarrow U' = \mathbb{R}^n$.
- Sea $p \in M$, entonces $\exists U \in \mathcal{V}(p)$ y $\exists U' \subset \mathbb{R}^n$ abierto con $f : U \longrightarrow U'$ homeomorfismo. Como $f(p) \in U'$ y U' es un abierto de \mathbb{R}^n , $\exists \delta > 0 : B_{\delta}(f(p)) \subset U'$. Tomamos $V := f^{-1}(B_{\delta}(f(p)))$ que es abierto de U por ser f continua. Por tanto, $V \in \mathcal{V}(p)$ y $f|_{V} : V \longrightarrow B_{\delta}(f(p))$ es homeomorfismo.

Como sabemos que existe $g: B_{\delta}(f(p)) \longrightarrow \mathbb{R}^n$ homeomorfismo, basta componer $g \circ f|_V$ para obtener el homeomorfismo buscado.