SOP com Busca Tabu

Augusto Bennemann Fabrício Mazzola

Introdução

- Estudar um problema NP-completo
- Desenvolver a formulação matemática em Pl
- Implementar uma meta-heurística
- Avaliação comparativa da resolução do problema entre os métodos Programação Linear e Meta-Heurística.
- Conclusão

Introdução

- Estudar um problema NP-completo (Sequential Ordering Problem)
- Desenvolver a formulação matemática em Pl
- Implementar uma meta-heurística
- Avaliação comparativa da resolução do problema entre os métodos Programação Linear e Meta-Heurística.
- Conclusão

Introdução

- Estudar um problema NP-completo (Sequential Ordering Problem)
- Desenvolver a formulação matemática em PI
- Implementar uma meta-heurística (Busca Tabu)
- Avaliação comparativa da resolução do problema entre os métodos Programação Linear e Meta-Heurística.
- Conclusão

Problema - SOP

- Variação do Caixeiro Viajante Assimétrico (ATSP)
- Objetivos:
 - Encontrar o caminho de menor custo.
- Restrições
 - Respeitar restrições de precedência entre os vértices.
 - Visitar todos os vértices do grafo exatamente uma vez.
 - Partir do vértice 1
 - Chegar no vértice N

Caminho ótimo = 14

Conjuntos

V conjunto de vértices (1 a n)

Parâmetros

rarametros
$$c_{ij}$$
 $i \in V, j \in V$ custo do vértice i ao vértice j p_{ij} $i \in V, j \in V$
$$\begin{cases} 1, & \text{se vértice } i \text{ precede o vértice } j \\ 0, & \text{caso contrário} \end{cases}$$

$$x_{ij}$$
 $i \in V, j \in V$
$$\begin{cases} 1, & \text{se arco } (i,j) \text{ presente na solução} \\ 0, & \text{caso contrário} \end{cases}$$
 o_i $i \in V$ ordem de visitação $[0,n-1]$

Conjuntos V conjunto de vértices (1 a n)

Parâmetros

$$c_{ij}$$
 $i \in V, j \in V$ custo do vértice i ao vértice j
 p_{ij} $i \in V, j \in V$
$$\begin{cases} 1, & \text{se vértice } i \text{ precede o vértice } j \\ 0, & \text{caso contrário} \end{cases}$$

$$x_{ij}$$
 $i \in V, j \in V$
$$\begin{cases} 1, & \text{se arco } (i,j) \text{ presente na solução} \\ 0, & \text{caso contrário} \end{cases}$$
 o_i $i \in V$ ordem de visitação $[0,n-1]$

Conjuntos

conjunto de vértices (1 a n)

Parâmetros

Parâmetros
$$c_{ij} \quad i \in V, j \in V \qquad \text{custo do vértice } i \text{ ao vértice } j$$

$$p_{ij} \quad i \in V, j \in V \qquad \begin{cases} 1, & \text{se vértice } i \text{ precede o vértice } j \\ 0, & \text{caso contrário} \end{cases}$$

$$x_{ij}$$
 $i \in V, j \in V$
$$\begin{cases} 1, & \text{se arco } (i,j) \text{ presente na solução} \\ 0, & \text{caso contrário} \end{cases}$$
 o_i $i \in V$ ordem de visitação $[0, n-1]$

Conjuntos

V conjunto de vértices (1 a n)

Parâmetros

rametros
$$c_{ij}$$
 $i \in V, j \in V$ custo do vértice i ao vértice j p_{ij} $i \in V, j \in V$
$$\begin{cases} 1, & \text{se vértice } i \text{ precede o vértice } j \\ 0, & \text{caso contrário} \end{cases}$$

$$x_{ij} \quad i \in V, j \in V \quad \begin{cases} 1, & \text{se arco } (i,j) \text{ presente na solução} \\ 0, & \text{caso contrário} \end{cases}$$

$$o_i \quad i \in V \quad \text{ordem de visitação } [0,n-1]$$

Função objetivo

$$\min \quad \sum_{i \in V} \sum_{j \in V - \{i\}} x_{ij} c_{ij}$$

Restrições

$$\sum_{j \in V - \{i\}} x_{ij} = 1, \ \forall i \in V \setminus \{n\}$$

$$\sum_{i \in V - \{j\}} x_{ij} = 1, \ \forall j \in V \setminus \{1\}$$

$$x_{n,j} = 0, \ \forall j \in V.$$

$$x_{i,1} = 0, \ \forall i \in V.$$

$$o_i + 1 \le o_j, \ \forall i, j \in V, \ i \ne j, \ p_{ij} = 1$$

$$o_i + 1 \le o_j - M * (x_{i,j} - 1), \ \forall i, j \in V, \ i \ne j.$$

$$x_{i,j} \in \{0, 1\}$$

$$o_i \in R^+$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(9)$$

(2)

Restrições

Todos vértices, exceto o último, devem ter exatamente um arco de saída

$$\sum_{j \in V - \{i\}} x_{ij} = 1, \ \forall i \in V \setminus \{n\}$$
 (2)

$$\sum_{i \in V - \{j\}} x_{ij} = 1, \ \forall j \in V \setminus \{1\}$$
(3)

$$x_{n,j} = 0, \ \forall j \in V. \tag{4}$$

$$x_{i,1} = 0, \ \forall i \in V. \tag{5}$$

$$o_i + 1 \le o_j, \ \forall i, j \in V, \ i \ne j, \ p_{ij} = 1$$
 (6)

$$o_i + 1 \le o_j - M * (x_{i,j} - 1), \ \forall i, j \in V, \ i \ne j.$$
 (7)

$$x_{i,j} \in \{0,1\} \tag{8}$$

$$o_i \in R^+ \tag{9}$$

Restrições

Todos vértices, exceto o primeiro, devem ter exatamente um arco de entrada

$$\sum_{j \in V - \{i\}} x_{ij} = 1, \ \forall i \in V \setminus \{n\}$$

$$\sum_{i \in V - \{j\}} x_{ij} = 1, \ \forall j \in V \setminus \{1\}$$
(3)

$$x_{n,j} = 0, \ \forall j \in V. \tag{4}$$

$$x_{i,1} = 0, \ \forall i \in V. \tag{5}$$

$$o_i + 1 \le o_j, \ \forall i, j \in V, \ i \ne j, \ p_{ij} = 1$$
 (6)

$$o_i + 1 \le o_j - M * (x_{i,j} - 1), \ \forall i, j \in V, \ i \ne j.$$
 (7)

$$x_{i,j} \in \{0,1\} \tag{8}$$

$$o_i \in R^+ \tag{9}$$

Restrições

Não há nenhum arco saindo do último vértice.

Não há nenhum arco chegando no primeiro vértice

$$\sum_{j \in V - \{i\}} x_{ij} = 1, \ \forall i \in V \setminus \{n\}$$
 (2)

$$\sum_{i \in V - \{j\}} x_{ij} = 1, \ \forall j \in V \setminus \{1\}$$
(3)

$$\begin{cases} x_{n,j} = 0, \ \forall j \in V. \\ x_{i,1} = 0, \ \forall i \in V. \end{cases}$$

$$\tag{4}$$

$$x_{i,1} = 0, \ \forall i \in V. \tag{5}$$

$$o_i + 1 \le o_j, \ \forall i, j \in V, \ i \ne j, \ p_{ij} = 1$$
 (6)

$$o_i + 1 \le o_j - M * (x_{i,j} - 1), \ \forall i, j \in V, \ i \ne j.$$
 (7)

$$x_{i,j} \in \{0,1\} \tag{8}$$

$$o_i \in R^+ \tag{9}$$

Restrições

$$\sum_{j \in V - \{i\}} x_{ij} = 1, \ \forall i \in V \setminus \{n\}$$
 (2)

$$\sum_{i \in V - \{j\}} x_{ij} = 1, \ \forall j \in V \setminus \{1\}$$
(3)

$$x_{n,j} = 0, \ \forall j \in V. \tag{4}$$

$$x_{i,1} = 0, \ \forall i \in V. \tag{5}$$

$$o_i + 1 \le o_j, \ \forall i, j \in V, \ i \ne j, \ p_{ij} = 1$$
 (6)

$$o_i + 1 \le o_j - M * (x_{i,j} - 1), \ \forall i, j \in V, \ i \ne j.$$
 (7)

$$x_{i,j} \in \{0,1\} \tag{8}$$

$$o_i \in R^+ \tag{9}$$

Restrições

$$\sum_{j \in V - \{i\}} x_{ij} = 1, \ \forall i \in V \setminus \{n\}$$
 (2)

$$\sum_{i \in V - \{j\}} x_{ij} = 1, \ \forall j \in V \setminus \{1\}$$
(3)

$$x_{n,j} = 0, \ \forall j \in V. \tag{4}$$

$$x_{i,1} = 0, \ \forall i \in V. \tag{5}$$

$$o_i + 1 \le o_j, \ \forall i, j \in V, \ i \ne j, \ p_{ij} = 1$$
 (6)

$$o_i + 1 \le o_j - M * (x_{i,j} - 1), \ \forall i, j \in V, \ i \ne j.$$
 (7)

$$x_{i,j} \in \{0,1\} \tag{8}$$

$$o_i \in R^+$$
 (9)

usada, *i* deve preceder *j*.

Se aresta entre i e j é

Restrições

$$\sum_{j \in V - \{i\}} x_{ij} = 1, \ \forall i \in V \setminus \{n\}$$

$$\sum_{i \in V - \{j\}} x_{ij} = 1, \ \forall j \in V \setminus \{1\}$$

$$x_{n,j} = 0, \ \forall j \in V.$$

$$x_{i,1} = 0, \ \forall i \in V.$$

$$o_{i} + 1 \leq o_{j}, \ \forall i, j \in V, \ i \neq j, \ p_{ij} = 1$$

$$o_{i} + 1 \leq o_{j} - M * (x_{i,j} - 1), \ \forall i, j \in V, \ i \neq j.$$

$$x_{i,j} \in \{0, 1\}$$

$$o_{i} \in R^{+}$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

$$(6)$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(9)$$

Busca Tabu

- Objetivo:
 - Evitar que partes recentemente visitadas sejam retornadas, criando ciclos na solução.
- Lista Tabu armazena movimentos feitos até o presente momento.
- Serve como uma memória de curto prazo dos movimentos recentes dentro da área pesquisável.

- Representação do problema e Estruturas de Dados
 - Grafo completo G = <V, A>
 - Uso de uma matriz de adjacência NxN, em que N = |V|
 - Lista Tabu
 - Vetores
 - Caminhos
 - Vetores

Geração da solução inicial

- Algoritmo guloso
- Partindo do vértice inicial, escolhe a aresta de menor custo cujo vértice conectado (i) ainda não foi visitado e (ii) todos vértices que o precedem já foram visitados.
- Uma vez escolhido o próximo vértice do caminho, o processo é repetido a partir desse vértice, até que não haja mais vértices para se escolher.

- Vizinhança e a estratégia para seleção dos vizinhos;
 - Busca local: 2-opt
 - Calcula o custo 2-opt para cada combinação de vizinhos de um vértice
 - Escolhe a combinação de menor custo e realiza a troca (best improvement)
 - Coloca na lista tabu o movimento realizado

- Parâmetro(s) do método, com os valores utilizados nos experimentos;
 - Tamanho lista Tabu
 - Critério de Aspiração
 - Movimentos na lista Tabu considerados válidos, com determinada probabilidade
 - Diversificação espaço de busca
 - Válidas trocas entre vértices mais distantes, quando nenhuma movimentação têm solução melhor

 Parâmetro(s) do método, com os valores utilizados nos experimentos;

Tabela 1. Variação dos parâmetros

Parâmetro	Variações			
Tamanho lista Tabu	N/2, N/4, N/8			
Critério de aspiração	50%, 20%, 10%			
Diversificar espaço de busca	3, 5, 6			

- Critério de parada do algoritmo.
 - Número de iterações sem encontrar melhora na solução.
 - Cada busca local decresce o contador de iterações
 - Quando acha uma solução melhor, o contador de iterações é reiniciado

Ambiente de avaliação

- Intel i5-4570 CPU @ 3.20GHz
- 32 Gb de RAM
- S0: OS X
- C++
- Compilador LLVM version 8.0.0 (clang-800.0.42.1)

Resultados

- 1. Valor da melhor solução encontrada pelo GLPK
- 2. Tempo de execução do GLPK;
- 3. Valor médio da solução inicial do seu algoritmo;
- 4. Valor médio da melhor solução;
- 5. Desvio padrão das melhores soluções;
- 6. Tempo de execução médio (em segundos) do algoritmo;
- 7. Desvio percentual médio das soluções;

Análise de resultados obtidos

Tabela 2. Tabela de resultados - 10 iterações

Instância	1	2	3	4	5	6	7
ESC07	2125	0	2700	2550.0	0.0	0.00	20.00
ESC12	1675	1.2	2034	1751.0	0.0	0.01	4.53
ESC25	1681	129.6	3360	3360.0	0.0	0.08	99.88
ESC47	3152	3600	3843	3553.0	0.0	0.85	175.85
ESC78	-	3600	22600	22120.0	430.0	6.74	21.33
ft70.1	-	3600	45255	44459.0	0.0	3.14	13.08
prob.100	-	3600	2921	2755.0	0.0	10.84	136.88
rbg109a	_	3600	1443	1330.4	4.8	122.46	28.16
rbg150a	(700)	3600	2168	2079.8	1.8	417.97	18.84
rbg174a	_	3600	2444	2295.7	0.9	1009.22	12.92

Análise de resultados obtidos

Tabela 3. Tabela de resultados - 50 iterações

Instância	1	2	3	4	5	6	7
ESC07	2125	0	2700	2550.0	0.0	0.01	20.00
ESC12	1675	1.2	2034	1743.4	22.8	0.06	4.08
ESC25	1681	129.6	3360	3179.8	143.1	0.65	89.16
ESC47	3152	3600	3843	3553.0	0.0	3.61	175.85
ESC78	-	3600	22600	21812.0	519.0	27.82	19.64
ft70.1		3600	45255	44459.0	0.0	12.26	13.08
prob.100		3600	2921	2755.0	0.0	42.15	136.88
rbg109a		3600	-	N		120.00	-
rbg150a	-	3600	_	_	-	120.00	1-
rbg174a		3600	-	-	-	120.00	85-

Conclusões

- Nosso algoritmo conseguiu bons resultados para instâncias pequenas e com um alto número de iterações
- Para instâncias grandes, o algoritmo se torna muito demorado mesmo com poucas iterações
- É difícil encontrar os parâmetros certos e bons
- A aleatoriedade influencia pouco nos resultados da busca tabu