Problemas Sortidos

Guilherme Zeus Dantas e Moura zeusdanmou@gmail.com

Problema 1 (2019 Putnam, A1 2)

Determine todos os possíveis valores de $A^3+B^3+C^3-3ABC$, em que $A,\ B$ e C são inteiros não-negativos.

Problema 2 (2019 Putnam, A2 2)

No triângulo $\triangle ABC$, seja G o baricentro, e seja I o incentro. Suponha que os segmentos IG e AB são paralelos e que $\angle B = 2 \tan^{-1}(1/3)$. Determine $\angle A$.

Problema 3 (China ♂)

Dados inteiros positivos m e n, suponha que $n \ge 2m \ge 4$. Sejam $x_1 \ge x_2 \ge \cdots \ge x_n$ números reais, tais que

$$\sum_{k=1}^{n} x_k = 0 \text{ e } \sum_{k=1}^{n} x_k^2 = n(n-1).$$

Determine o valor mínimo de $\sum_{k=1}^{m} x_k$.

Problema 4 (2019 Putnam, A5 2)

Seja p um primo ímpar, e seja \mathbb{F}_p o corpo de inteiros módulo p. Seja $\mathbb{F}_p[x]$ o anel de polinômios sobre \mathbb{F}_p , e considere $q(x) \in \mathbb{F}_p[x]$ definido por $q(x) = \sum_{k=1}^{p-1} a_k x^k$, em que $a_k = k^{(p-1)/2} \pmod{p}$. Ache o maior inteiro não negativo n tal que $(x-1)^n$ divide q(x) em $\mathbb{F}_p[x]$.