Public Key Encryption/Authentification

CS6025 Data Encoding

Yizong Cheng

3-10-15

Diffie-Hellman Key Exchange (1976)

- Global parameters: q, a large prime number, and α , a primitive root of q.
- A and B generate random private keys Xa and Xb, and public keys Ya = α^{Xa} mod q and Yb = α^{Xb} mod q, respectively and exchange the public keys over an insecure channel.
- The shared secret is Ya^{Xb}=Yb^{Xa} mod q

Secrecy of the Shared Secret

- Knowing q, α , and Ya= α^{Xa} mod q, it is infeasible to compute Xa, the discrete logarithm base α of Ya mod q.
- Man-in-the-middle attack is possible.

ElGamal Public Key Encryption (1984)

- Given Diffie-Hellman keys, encrypt plaintext m<q.
- A chooses random k<q and compute K=(Yb)^k, C₁= α^k , C₂ =Km, all mod q and sends (C₁, C₂) to B. (Yb= α^{Xb})
 - K is called the one-time key, used to encrypt and decrypt the message as in
 - C2 = Km mod q and m = C2/K mod q
- B computes $K=C_1^{Xb}$ and $m=C_2K^{-1}$, all mod q.
- All we need is the receiver's public key for the sender to do encryption.
 - Only the receiver is able to decrypt using its private key.

ElGamal Digital Signature Scheme (1985)

- Given Diffie-Hellman keys, sign (message digest) m<q.
- A chooses random K < q and computes S1= α^{K} .
- A computes $S2 = K^{-1} (m Xa S1) \mod (q 1)$.
- The signature is (S1, S2), sent along with m.
- B compute V1 = α^{m} mod q and V2 = Ya^{S1} S1^{S2} mod q.
- The signature is valid if V1 = V2.
- V2 = $\alpha^{XaS1}\alpha^{KS2}$ mod q = V1 = α^{m} mod q is the same as
- $\alpha^{\text{m-XaS1}}$ mod q = α^{KS2} mod q, or m XaS1 mod (q-1) = K S2 mod (q-1), a property for α to be a primitive root of q.

Schnorr Digital Signature Scheme (1991)

- Chooses primes p, a 1024-bit number, and q, a 160-bit number, such that q is a factor of p-1.
- Choose α such that $\alpha^q = 1 \mod p$.
- A chooses random 0 < s < q as the private key and $v = \alpha^{-s}$ mod q as the public key.
- A chooses random 0 < r < q and computes $x = \alpha^r \mod q$.
- A has message m and computes using SHA-1 e = H(m||x).
- A computes $y = (r + se) \mod q$ and the signature is (e, y).
- B computes $x' = \alpha^y v^e \mod p$ and verifies e = H(m | | x').

Digital Signature Algorithm (DSA, 1996)

- Global parameters: primes p and q such that q divides p-1 and $g=h^{(p-1)/q}$ mod p for some h<p-1.
- private key x<q, a random number
- public key y = g^x mod p
- per-message secret number k<q
- (r,s) as signature to message m<q.

DSA Signing and Verification

- Signing: r=(g^k mod p) mod q
- $s = [k^{-1}(m+xr)] \mod q$
- Verifying: w=s⁻¹ mod q
- u1 = mw mod q
- u2 = rw mod q
- v=(g^{u1}y^{u2} mod p) mod q
- Test: v=r?

Homework 15: due 3-23-15

- Complete H15.java to implement ElGamal and DSA
- Print out hexadecimal values for comparison and verification.

•