## **Universidad San Carlos de Guatemala Manejo e Implementacion de Archivos**

# Manual Técnico de Proyecto 1

Sergio Sebastian Sandoval Ruiz 202010298 30 de marzo del 2025

# Sistema de Archivos EXT2 - Proyecto 1

# 1. Descripción de la Arquitectura del Sistema

La arquitectura del sistema está compuesta por dos capas principales:

#### **Frontend**

El frontend está desarrollado con un framework moderno (React). Su función es proporcionar una interfaz de usuario amigable y dinámica que permita:

- Ingresar comandos manualmente o mediante archivos .smia.
- Visualizar los resultados enviados desde el backend.
- Mostrar reportes generados por comandos como REP.



#### **Backend**

El backend, desarrollado exclusivamente en Go, es el responsable de:

- Interpretar y ejecutar los comandos recibidos desde el frontend.
- Manipular directamente archivos .mia que simulan discos duros.
- Administrar particiones, estructuras del sistema EXT2 y usuarios.
- Generar los reportes en formatos . jpg, .pdf o .txt mediante Graphviz.

Ambas capas se comunican a través de una API RESTful, lo que permite una separación clara de responsabilidades y facilita la escalabilidad del sistema.

#### Diagrama de Arquitectura



# Explicación de las Estructuras de Datos

El sistema simula el sistema de archivos EXT2 utilizando diversas estructuras grabadas dentro del archivo binario .mia.

#### **MBR** (Master Boot Record)

- Se ubica al inicio del archivo .mia.
- Contiene información global del disco como tamaño, fecha de creación, y las particiones.

#### **EBR (Extended Boot Record)**

- Representa las unidades lógicas dentro de una partición extendida.
- Actúa como una lista enlazada para representar múltiples particiones lógicas.

#### **Super Bloque**

- Es único por partición formateada.
- Almacena información esencial del sistema como:
  - o Cantidad total y libre de inodos y bloques.
  - Punteros a las estructuras bitmap, tabla de inodos y bloques.

#### Inodos

- Cada archivo o carpeta tiene un inodo asociado.
- Contiene permisos, fechas, tamaño, tipo (archivo/carpeta), y punteros a bloques.

#### **Bloques**

#### **Existen tres tipos:**

- Bloques de carpeta: Guardan b\_content, que enlaza nombre de archivo y número de inodo.
- Bloques de archivo: Contienen directamente el contenido del archivo.
- Bloques de apuntadores: Referencian bloques indirectos para archivos grandes.

#### **Bitmaps**

• Indican qué inodos y bloques están ocupados (1) o libres (0).

## 3. Descripción de los Comandos Implementados

Aquí se enlistan los comandos implementados, divididos por categoría:

#### Administración de Discos

- MKDISK: Crea un nuevo disco .mia.
- RMDISK: Elimina un disco.
- FDISK: Administra particiones (primarias, extendidas, lógicas).
- MOUNT: Monta particiones y genera un ID único.
- MOUNTED: Lista particiones actualmente montadas.

#### Sistema de Archivos

- MKFS: Formatea una partición como EXT2 y crea el archivo users.txt.
- CAT: Lee el contenido de archivos si el usuario tiene permiso.

## **Usuarios y Grupos**

- LOGIN / LOGOUT: Inicia o cierra sesión.
- MKGRP / RMGRP: Crea o elimina grupos.
- MKUSR / RMUSR: Crea o elimina usuarios.
- CHGRP: Cambia el grupo de un usuario.

### **Archivos y Carpetas**

- MKFILE: Crea archivos.
- MKDIR: Crea directorios.

## Reportes

- REP: Genera reportes visuales y/o textuales del sistema de archivos.
  - Ejemplos: mbr, disk, inode, block, bm\_inode, tree, file, ls, etc.

### **Script**

 Archivos . smia permiten ejecutar múltiples comandos de forma automatizada.