

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 327 681 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 16.07.2003 Bulletin 2003/29

(21) Application number: 01978852.0

(22) Date of filing: 22.10.2001

(51) Int Cl.⁷: **C12N 15/09**, C12N 15/62, C07K 16/28, A61K 39/395

(86) International application number: **PCT/JP01/09260**

(87) International publication number: WO 02/033073 (25.04.2002 Gazette 2002/17)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 20.10.2000 JP 2000321821

20.10.2000 JP 2000321822 12.03.2001 WOPCT/JP01/01912 17.04.2001 WOPCT/JP01/03288 12.09.2001 JP 2001277314

(71) Applicant: CHUGAI SEIYAKU KABUSHIKI KAISHA

Tokyo, 115-8543 (JP)

(72) Inventors:

• FUKUSHIMA, Naoshi, c/o CHUGAI SEIYAKU K.K. Gotemba-shi, Shizuoka 412-8513 (JP) TSUCHIYA, Masayuki, c/o CHUGAI SEIYAKU K.K.
 Gotemba-shi, Shizuoka 412-8513 (JP)

UNO, Shinsuke,
 c/o CHUGAI SEIYAKU KABUSHIKI KAISHA
 Gotemba-shi, Shizuoka 412-8513 (JP)

OHTOMO, Toshihiko,
 c/o CHUGAI SEIYAKU KABUSHIKI K.
 Gotemba-shi, Shizuoka 412-8513 (JP)

YABUTA, Naohiro,
 c/o CHUGAI SEIYAKU KABUSHIKI K.
 Niihari-gun, Ibaraki 300-4101 (JP)

 TSUNODA, Hiroyuki, c/o CHUGAI SEIYAKU KABUSHIKI K. Niihari-gun, Ibaraki 300-4101 (JP)

(74) Representative: HOFFMANN EITLE
Patent- und Rechtsanwälte
Arabellastrasse 4
81925 München (DE)

(54) **DEGRADED AGONIST ANTIBODY**

(57) The invention relates to a modified antibody which contains two or more H chain V regions and two or more L chain V regions of monoclonal antibody and can transduce a signal into cells by crosslinking a cell surface molecule(s) to thereby serve as an agonist. The

modified antibody can be used as a signal transduction agonist and, therefore, useful as a preventive and/or remedy for various diseases such as cancer, inflammation, hormone disorders and blood diseases.

Description

TECHNICAL FIELD

[0001] This invention relates to modified antibodies containing two or more H chain V regions and two or more L chain V regions of a monoclonal antibody which show an agonist activity by crosslinking a cell surface molecule(s) or intracellular molecule(s). The modified antibodies have an agonist activity of transducing a signal into cells by crosslinking a cell surface molecule(s) and are useful as a medicine for various purposes.

BACKGROUND ART

10

30

35

40

45

50

55

[0002] JP-A 9-295999 discloses the preparation of a specific monoclonal antibody using a splenic stromal cell line as a sensitizing antigen aiming at developing specific antibodies that can recognize the aforementioned splenic stromal cells and the preparation of novel monoclonal antibodies that recognize mouse Integrin Associated Protein (mouse IAP) as an antigen. JP-A. 9-295999 also discloses that the monoclonal antibodies are capable of inducing apoptosis of myeloid cells.

[0003] WO99/1297 discloses monoclonal antibodies whose antigen is human Integrin Associated Protein (hereinafter referred to as human IAP; amino acid sequence and nucleotide sequence thereof are described in J. Cell Biol., 123, 485-496, 1993; see also Journal of Cell Science, 108, 3419-3425, 1995) and which are capable of inducing apoptosis of human nucleated blood cells (myeloid cell and lymphocyte) having said human IAP. These monoclonal antibodies are referred to antibody MABL-1 and antibody MABL-2, and hybridomas producing these antibodies are also referred to MABL-1 (FERM BP-6100) and MABL-2 (FERM BP-6101), respectively.

[0004] Japanese Patent Application 11-63557 describes the preparation of single chain Fvs having single chain Fv regions from the monoclonal antibodies whose antigen is human IAP. The single chain Fvs are capable of inducing apoptosis of nucleated blood cells having human IAP.

[0005] The monoclonal antibody recognizing IAP as an antigen induces apoptosis of nucleated blood cells having human IAP, but it also causes hemagglutination in vitro. It indicates that the administration of a large amount of the monoclonal antibody recognizing IAP as an antigen may result in a side effect such as hemagglutination.

[0006] The inventors made intensive research for utilizing the monoclonal antibodies against human IAP as therapeutic agent of blood diseases and obtained single chain Fvs having the single chain Fv region capable of inducing apoptosis of nucleated blood cells having human IAP.

[0007] On the other hand modified antibodies, especially antibodies with lowered molecular size, for example, single chain Fvs were developed to improve permeability into tissues and tumors by lowering molecular size and to produce by a recombinant method. Recently the dimers of single chain Fvs, especially bispecific-dimers have been used for crosslinking cells. Typical examples of such dimers are hetero-dimers of single chain Fvs recognizing antigens of cancer cells and antigens of host cells like NK cells and neutrophils (Kipriyanov et al., Int. J. Cancer, 77, 9763-9772, 1998). They were produced by construction technique of single chain Fv as modified antibodies, which are more effective in treating cancers by inducing intercellular crosslinking. It has been thought that the intercellular crosslinking is induced by antibodies and their fragments (e.g. Fab fragment), bispecific modified antibodies and even dimers of single chain Fvs, which are monospecific.

[0008] As antibodies capable of transducing a signal by crosslinking a cell surface molecule(s), there are known an antibody against EPO receptor involved in cell differentiation and proliferation (JP-A 2000-95800), an antibody against MuSK receptor (Xie et al., Nature Biotech. 15, 768-771, 1997) and others. However there have been no reports on modified antibodies with lowered molecular size.

[0009] Noticing that single chain Fv monomers derived from antibody MABL-1 and antibody MARL-2 do not induce apoptosis of cells while single chain Fv dimers induce apoptosis of cells having IAP, the inventors discovered that they crosslink (dimerize) IAP receptor on cell surface, thereby a signal is transduced into the cells and, as a result, apoptosis is induced. This suggests that monospecific single chain Fv dimers crosslink a cell surface molecule(s) (e.g. receptor) and transduce a signal like a ligand, thereby serving as an agonist.

Focusing on the intercellular crosslinking, it was discovered that the above-mentioned single chain Fv dimers do not cause hemagglutination while the above-mentioned monoclonal antibodies do. The same result was also observed with single chain bivalent antibodies (single chain polypeptides containing two H chain V regions and two L chain V regions). This suggests that monoclonal antibodies may form intercellular crosslinking while modified antibodies like single chain Fv dimers and single chain bivalent antibodies crosslink a cell surface molecule(s) but do not form intercellular crosslinking.

[0010] Based on those observations the inventors have newly discovered that modified antibodies such as single chain Fv dimers and single chain bivalent antibodies crosslink a cell surface molecule(s) or intercellular molecule(s) of the same cell, in addition to known intercellular crosslinking, and are suitable as a ligand to the molecule(s) (especially

as a ligand which mimics the action of natural ligand).

[0011] Discovering further that an antibody molecule (whole IgG) can be modified into single chain Fv dimers, single chain bivalent antibodies and the like which crosslink a cell surface molecule(s), thereby reducing side effects caused by intercellular crosslinking and providing new medicines inducing only desired effect on the cell, the inventors completed the invention. The modified antibodies of the invention have remarkably high activity compared with natural ligands such as TPO, EPO or G-CSF, or whole antibodies (IgG) having the same V region as the modified antibodies. They have an improved permeability into tissues due to the lowered molecular size compared with antibody molecules and the lack of constant regions.

DISCLOSURE OF INVENTION

10

30

35

40

50

[0012] An object of this invention is to provide low molecular-sized agonist modified antibodies which contain two or more H chain V regions and two or more L chain V regions of monoclonal antibodies and have an agonist action by crosslinking a cell surface molecule(s) or intracellular molecule(s).

[0013] Therefore, this invention relates the modified antibodies which contain two or more H chain V regions and two or more L chain V regions, preferably 2 to 6 each, especially preferably 2 to 4 each, most preferably two each, and show an agonist activity by crosslinking a cell surface molecule(s) or intracellular molecule(s).

[0014] The "modified antibodies" in the specification mean any substances which contain two or more H chain V regions and two or more L chain V regions, wherein said V regions are combined directly or via linker through covalent bond or non-covalent bond. For example, polypeptides and compounds produced by combining each V region of antibody through a peptide linker or a chemical crosslinking agent and the like. Two or more H chain V regions and two or more L chain V regions used in the invention can be derived from the same antibody or from different antibodies.

[0015] Preferable examples of modified antibodies of the invention are multimers such as dimers, trimers or tetramers of single chain Ev containing and H chain V region and an L chain V region, or single chain polypeptides containing two

of single chain Fv containing an H chain V region and an L chain V region, or single chain polypeptides containing two or more H chain V regions and two or more L chain V regions. When the modified antibodies of the invention are multimers of single chain Fv such as dimers, trimers, tetramers and the like containing an H chain V region and an L chain V region, it is preferable that the H chain V region and L chain V region existing in the same chain are not associated to form an antigen-binding site.

[0016] More preferable examples are dimers of the single chain Fv which contains an H chain V region and an L chain V region, or a single chain polypeptide containing two H chain V regions and two L chain V regions. The H chain V region and L chain V region are connected preferably through a linker in the modified antibodies.

[0017] "Agonist action" in the specification means a biological action occurring in the cell(s) into which a signal is transduced by crosslinking a cell surface molecule(s) or intracellular molecule(s), for example, apoptosis induction, cell proliferation induction, cell differentiation induction, cell division induction or cell cycle regulation action.

[0018] ED50 of the agonist action in the invention is determined by known methods for measuring agonist action. Examples are to detect agonist specific cell death or cell proliferation, to detect expression of proteins specific to cell differentiation (e.g. specific antigens) or to measure a kinase activity specific to cell cycle. ED50 is a dose needed for achieving 50% reaction of the maximum activity set as 100% in the dose-reaction curve.

[0019] Preferable modified antibodies of the invention have an agonist action (ED50) equivalent to or better than that of an antibody having the same antigen-binding region as the modified antibody, namely the whole antibody like IgG (hereinafter "parent antibody") having the same pair of H chain V region and L chain V region as the pair of H chain V region and L chain V region forming antigen-biding region of the modified antibody. More preferable are those having an agonist action (ED50) more than two times higher than that of parent antibody, further preferably more than 5 times, most preferably more than 10 times. The invention includes modified antibodies with an agonist action containing H chain V region and L chain V region forming the same antigen-binding region as parent antibody which binds to target cell surface molecule(s) or intracellular molecule(s) but has no agonist action to the molecule.

[0020] The compounds containing two or more H chain V regions and two or more L chain V regions of the invention can be any compounds which contain two or more H chain V regions and two or more L chain V regions of antibody and show an agonist action (ED50) equivalent to or better than that of a natural ligand binding to a cell surface molecule (s) or intracellular molecule(s). Preferable are those having an agonist action (ED50) more than two times higher than that of a natural ligand, more preferably more than 5 times, most preferably more than 10 times.

[0021] The "compounds" mentioned here include not only modified antibodies of the invention but also any compounds containing two or more, preferably from 2 to 6, more preferably from 2 to 4, most preferably 2 antigen-binding regions such as whole antibodies or F(ab')₂.

[0022] The modified antibodies or compounds of the invention containing two or more H chain V regions and two or more L chain V regions of antibody have preferably no substantial intercellular adhesion action. When the H chain V region and L chain V region of the modified antibodies of the invention are derived from the same antibody, those are preferable with an intercellular adhesion action (ED50) not more than 1/10 compared with the original antibody.

[0023] ED50 of intercellular adhesion action in the invention is determined by known methods for measuring agonist action, for example, by the measurement of agglomeration action of cells expressing said cell surface molecule such as hemagglutination test.

[0024] The invention relates to DNAs which code for the modified antibodies.

[0025] The invention relates to animal cells or microorganisms which produce the modified antibodies.

[0026] The invention relates to use of the modified antibody as an agonist.

[0027] The invention relates to a method of transducing a signal into cells by crosslinking cell surface molecule or intracellular molecule using the modified antibody and thereby inducing an agonist action of cells such as apoptosis induction, cell proliferation induction, cell differentiation induction, cell division induction or cell cycle regulation action.

[0028] The invention relates to a medicine containing the modified antibody.

10

30

35

40

45

50

55

[0029] The invention relates to use of the modified antibody as a medicine.

[0030] The invention relates to a method of screening or measuring the modified antibody, which contains two or more H chain V regions and two or more L chain V regions of antibody and shows an agonist action by crosslinking cell surface molecule or intracellular molecule, that comprises 1) to prepare a modified antibody containing two or more H chain V regions and two or more L chain V regions of antibody and binding specifically to said molecule, 2) to contact the modified antibody with cells expressing said molecule and 3) to measure an agonist action which occurs in the cells caused by crosslinking said molecule. The method of measurement is useful for the quality control in producing the modified antibodies of the invention as a medicine and other purposes.

[0031] The above-mentioned single chain Fv dimer includes a dimer by non-covalent bond, a dimer by a covalent bond through a crosslinking radical and a dimer through a crosslinking reagent (an antibody, an antibody fragment, or bivalent modified antibody). Conventional crosslinking radicals used for crosslinking peptides can be used as the crosslinking radicals to form the dimers. Examples are disulfide crosslinking by cysteine residue, other crosslinking radicals such as $C_4 - C_{10}$ alkylene (e.g. tetramethylene, pentamethylene, hexamethylene, heptamethylene and octamethylene, etc.) or $C_4 - C_{10}$ alkenylene (cis/trans -3-butenylene, cis/trans-2-pentenylene, cis/trans-3-pentenylene, cis/trans-3-hexenylene, etc.).

[0032] Moreover, the crosslinking reagent which can combine with a single chain Fv is, for example, an amino acid sequence which can optionally be introduced into Fv, for example, an antibody against FLAG sequence and the like or a fragment thereof, or a modified antibody originated from the antibody, for example, single chain Fv.

[0033] The invention also relates to a method of inducing an agonist action to cells by administering the first ligand and the second ligand which combine with a cell surface molecule(s) or intracellular molecule(s), and administering a substance which combine with the first and the second ligands and crosslink the first and second ligands. The first ligand and the second ligand can be any things which contain a biding site to said molecule and can induce an agonist action by being crosslinked. Preferable examples are monovalent modified antibodies, such as the same or different single chain Fv monomer, a fragment of antibody etc. The substance to crosslink the above-mentioned ligand can be any things that induce an agonist action to the cells by crosslinking the first ligand and the second ligand. Preferable examples are antibodies, fragments of antibodies, (Fab)₂ or bivalent modified antibodies. Examples of bivalent antibodies are (Fab)₂, dimers of single chain Fv containing one H chain V region and one L chain V region and single chain polypeptides containing two H chain V regions and two L chain V regions. The method is effective for exploring receptors that transduce a signal into cells by crosslinking, is expected to be employed for DDS to deliver a medicine to target cells and is also useful as a drug administration system which suppresses side effect and allows a medicine to become effective at desired time and for desired period.

[0034] The modified antibodies of this invention can be any things which contain L chain V region and H chain V region of antibody (e.g. antibody MABL- 1, antibody MABL-2, antibody 12B5, antibody 12E10 etc.) and which specifically recognize the cell surface molecule(s) or intracellular molecule(s), for example, a protein (a receptor or a protein involved in signal transduction), or a sugar chain of the above-mentioned protein or of a cell membrane protein and crosslink said cell surface molecule(s), thereby transduce a signal into cells. Modified antibodies in which a part of amino acid sequence of V region has been altered are included.

[0035] Depending upon the characteristics of cell surface molecule or intracellular molecule to be combined, for example, the structure of molecule or the action mechanism, the modified antibodies can be mono-specific or multispecific like bi-specific. When the modified antibody is combined with a receptor molecule which homodimerizes and transduces a signal into the cells (e.g. erythropoietin receptor, thrombopoietin receptor, G-CSF receptor, SCF receptor, EGF receptor, IAP(CD47) and the like), mono-specific modified antibody is preferable. When it is combined with a receptor molecule which heterodimerizes and transduces a signal into the cells (e.g. IL-6 receptor, LIF receptor, IL-11 receptor), bi-specific modified antibody is preferable. When it is combined with a receptor molecule which heterotrimerizes and transduces a signal into the cells (e.g. IL-2 receptor, CNTF receptor, OSM receptor), tri-specific modified antibody is preferable. A method for producing bi-specific single chain Fv dimers is described in WO9413804 and the like.

[0036] The present invention also relates to modified antibodies whose H chain V region and/or L chain V region is

H chain V region derived from human antibody and/or L chain V region derived from human antibody. The H chain V region and/or L chain V region derived from human antibody can be obtained by screening human nomoclonal antibody's library as described in WO99/10494. The H chain V region and L chain V region derived from human monoclonal antibodies are also included.

[0037] The present invention further relates to modified antibodies whose H chain V regions and/or L chain V regions are humanized H chain V regions and/or humanized L chain V regions. Specifically, the humanized modified antibodies consist of the humanized L chain V region which comprises framework regions (FR) derived from an L chain V region of human monoclonal antibody and complementarity determining regions (hereinafter "CDR") derived from an L chain V region of non-human mammalian (e.g. mouse, rat, bovine, sheep, ape) monoclonal antibody and/or the humanized H chain V region which comprises FR derived from an H chain V region of human monoclonal antibody and CDR derived from an H chain V region of non-human mammalian (e.g. mouse, rat, bovine, sheep, ape) monoclonal antibody. In this case, the amino acid sequence of CDR and FR may be partially altered, e.g. deleted, replaced or added.

10

30

35

40

45

50

[0038] H chain V regions and/or L chain V regions of the modified antibodies of the invention can be H chain V regions and/or L chain V regions derived from monoclonal antibodies of animals other than human (such as mouse, rat, bovine, sheep, ape, chicken and the like). In this case, the amino acid sequence of CDR and FR may be partially altered, e.g. deleted, replaced or added.

[0039] The invention also relates to DNAs encoding the various modified antibodies as mentioned above and genetic engineering techniques for producing recombinant vectors comprising the DNAs.

[0040] The invention also relates to host cells transformed with the recombinant vectors. Examples of host cells are animal cells such as human cells, mouse cells or the like and microorganisms such as <u>E. coli</u>, <u>Bacillus subtilis</u>, yeast or the like.

[0041] The invention relates to a process for producing the modified antibodies, which comprises culturing the above-mentioned hosts and extracting the modified antibodies from the culture thereof.

[0042] The present invention further relates to a process for producing a dimer of the single chain Fv which comprises culturing host animal cells producing the single chain Fv in a serum-free medium to secrete the single chain Fv into the medium and isolating the dimer of the single chain Fv formed in the medium.

[0043] The present invention also relates to the use of the modified antibodies as an agonist. That is, it relates to the signal-transduction agonist which comprises as an active ingredient the modified antibody obtained as mentioned above. Since the modified antibodies used in the invention are those that crosslink a cell surface molecule(s) or intracellular molecule(s) and induce signal transduction, the molecule can be any molecule that is oligomerized, e.g. dimerized, by combining with the ligand and thereby transduce a signal into cells.

[0044] Such cell surface molecule includes hormone receptors and cytokine receptors. The hormone receptor includes, for example, estrogen receptor. The cytokine receptor and the like include hematopoietic factor receptor, lymphokine receptor, growth factor receptor, differentiation control factor receptor and the like. Examples of cytokine receptors are erythropoietin (EPO) receptor, thrombopoietin (TPO) receptor, granulocyte colony stimulating factor (G-CSF) receptor, macrophage colony stimulating factor (M-CSF) receptor, granular macrophage colony stimulating factor (GM-CSF) receptor, tumor necrosis factor (TNF) receptor, interleukin-1 (IL-1) receptor, interleukin-2 (IL-2) receptor, interleukin-3 (IL-3) receptor, interleukin-4 (IL-4) receptor, interleukin-5 (IL-5) receptor, interleukin-6 (IL-6) receptor, interleukin-7 (IL-7) receptor, interleukin-9 (IL-9) receptor, interleukin-10 (IL-10) receptor, interleukin-11 (IL-11) receptor, interleukin-12 (IL-12) receptor, interleukin-13 (IL-13) receptor, interleukin-15 (IL-15) receptor, interferon-alpha (IFN-alpha) receptor, interferon-beta (IFN-beta) receptor, interferon-gamma (IFN-gamma) receptor, growth hormone (GH) receptor, epidermal cell growth factor (EGF) receptor, nerve growth factor (NGF) receptor, fibroblast growth factor (FGF) receptor, platelet-derived growth factor (PDGF) receptor, transforming growth factor-beta (TGF-beta) receptor, leukocyte migration inhibitory factor (LIF) receptor, ciliary neurotrophic factor (CNTF) receptor, oncostatin M (OSM) receptor, Notch family receptor and the like.

[0045] The intracellular surface molecule includes TAK1, TAB1 and the like. TAK1 and TAB1 act in signal transduction pathway of TGF- β , activate MAP kinase by forming hetero-dimer and transduce a series of signals. Many cancer cells have mutation of TGF- β receptor, which represses the growth of cancer, and, therefore, the signal of TGF- β is not transduced. The modified antibodies, which can transduce a signal by crosslinking TAK1 and TAB1, can induce the signal of TGF- β through an agonistic action by combining with TAK1/TAB1. Such modified antibodies of the invention can inhibit the growth of TGF- β resistant cancer cells and provide a new method for cancer therapy. Other examples of intracellular molecule are transcription factor E2F homo-dimer and E2F/DP1 hetero-dimer having cell proliferation action. The modified antibodies of the invention can induce an agonist action also on those molecules, and therefore can be used for the treatment of various cell-proliferation-related diseases. The modified antibodies of the invention can induce an agonist action by crosslinking intracellular factor involved in apoptosis-induction-related signal transduction and therefore can induce apoptosis cell death of cancer cells or autoimmune-disease-related cells.

[0046] To achieve the interaction of the modified antibodies of the invention with intracellular molecule, peptides with

cell-membrane-permeation-ability (e.g. Pegelin, Penetratin) can be used to transport the modified antibodies into the cells (Martine Mazel et al, Doxorubicin-peptide conjugates overcome multidrug resistance. AntiCancer Drugs 2001, 12, Dccrossi D. et al., The third helix of the antennapedia homeodomain translocates through biological membranes, J. Biol. Chem. 1994, 269, 10444-10450).

[0047] Therefore, the pharmaceutical preparations containing the agonist modified antibody as an active ingredient are useful as preventives and/or remedies etc. for various diseases such as cancers, inflammation, hormone disorders, blood diseases and autoimmune diseases.

[0048] Oligomers which can be formed by receptor proteins can be homo-oligomers or hetero-oligomers, and any oligomers such as dimers, trimers and tetramers. It is known for example that erythropoietin receptor, thrombopoietin receptor, G-CSF receptor, SCF receptor, EGF receptor and the like form homo-dimers, that IL-6 receptor, LIF receptor and IL-11 receptor form hetero-dimers and that IL-2 receptor, CNTF receptor, OSM receptor form hetero-trimers.

[0049] The modified antibodies of the present invention comprise two or more H chain V regions and two or more L chain V regions derived from monoclonal antibodies. The structure of the modified antibodies may be a dimer of single chain Fv comprising one H chain V region and one L chain V region or a polypeptide comprising two H chain V regions and two L chain V regions. In the modified antibodies of the invention, the V regions of H chain and L chain are preferably linked through a peptide linker which consists of one or more amino acids. The resulting modified antibodies contain variable regions of antibodies and bind to the antigen with the same specificity as that of the original monoclonal antibodies.

20 H chain V region

10

30

35

40

45

50

[0050] In the present invention, the H chain V region derived from an antibody recognizes a cell surface molecule (s) or intracellular molecule(s), for example, a protein (a receptor or a signal-transduction-related protein) or a sugar chain of the protein or on cell membrane and oligomerizes, for example, dimerizes through crosslinking said molecule, and thereby transduces a signal into the cells. The H chain V region of the invention includes H chain V regions derived from a mammal (e.g. human, mouse, rat, bovine, sheep, ape etc.) and H chain V regions having partially modified amino acid sequences of the H chain V regions. More preferable is a humanized H chain V region containing FR of H chain V region of a human monoclonal antibody and CDR of H chain V region of a mouse monoclonal antibody. Also preferable is an H chain V region having an amino acid sequence derived from a human, which can be produced by recombination technique. The H chain V region of the invention may be a fragment of aforementioned H chain V region, which fragment preserves the antigen binding capacity.

L chain V region

[0051] In the present invention, the L chain V region recognizes a cell surface molecule(s) or intracellular molecule (s), for example, a protein (a receptor or a signal-transduction-related protein) or a sugar chain of the protein or on cell membrane and oligomerizes, for example, dimerizes through crosslinking said molecule, and thereby transduces a signal into the cells. The L chain V region of the invention includes L chain V regions derived from a mammal (e.g. human, mouse, rat, bovine, sheep, ape etc.) and L chain V regions having partially modified amino acid sequences of the L chain V regions. More preferable is a humanized L chain V region containing FR of L chain V region of human monoclonal antibody and CDR of L chain V region of mouse monoclonal antibodies. Also preferable is an L chain V region having an amino acid sequence derived from a human antibody, which can be produced by recombination technique. The L chain V regions of the invention may be fragments of L chain V region, which fragments preserve the antigen binding capacity.

Complementarity determining region (CDR)

[0052] Each V region of L chain and H chain forms an antigen-binding site. The variable region of the L and H chains is composed of comparatively conserved four common framework regions linked to three hypervariable regions or complementarity determining regions (CDR) (Kabat, E.A. et al., "Sequences of Protein of Immunological Interest", US Dept. Health and Human Services, 1983).

[0053] Major portions in the four framework regions (FRs) form β -sheet structures and thus three CDRs form a loop. CDRs may form a part of the β -sheet structure in certain cases. The three CDRs are held sterically close position to each other by FR, which contributes to the formation of the antigen-binding site together with three CDRs.

[0054] These CDRs can be identified by comparing the amino acid sequence of V region of the obtained antibody with known amino acid sequences of V regions of known antibodies according to the empirical rule in Kabat, E.A. et al., "Sequences of Protein of Immunological Interest".

Single chain Fv

[0055] A single chain Fv is a polypeptide monomer comprising an H chain V region and an L chain V region linked each other which are derived from monoclonal antibodies. The resulting single chain Fvs contain variable regions of the parent monoclonal antibodies and preserve the complementarity determining region thereof, and therefore the single chain Fvs bind to the antigen by the same specificity as that of the parent monoclonal antibodies (JP-Appl. 11-63557). A part of the variable region and/or CDR of the single chain Fv of the invention or a part of the amino acid sequence thereof may be partially altered, for example, deleted, replaced or added. The H chain V region and L chain V region composing the single chain Fv of the invention are mentioned before and may be linked directly or through a linker, preferably a peptide linker. The constitution of the single chain Fv may be [H chain V region]-[L chain V region] or [L chain V region]-[H chain V region]. In the present invention, it is possible to make the single chain Fv to form a dimer, a trimer or a tetramer, from which the modified antibody of the invention can be formed.

Single chain modified antibody

[0056] The single chain modified antibodies of the present invention comprising two or more H chain V regions and two or more L chain V regions, preferably each two to four, especially preferable each two, comprise two or more H chain V regions and L chain V regions as mentioned above. Each region of the peptide should be arranged such that the modified single chain antibody forms a specific steric structure, concretely mimicking a steric structure formed by the dimer of single chain Fv. For instance, the V regions are arranged in the order of the following manner:

```
[H chain V region]-[L chain V region]-[H chain V region]-[L chain V region]; or [L chain V region]-[H chain V region]-[L chain V region]-[H chain V region],
```

wherein these regions are connected through a peptide linker, respectively.

Linker

10

15

30

50

[0057] In this invention, the linkers for the connection between the H chain V region and the L chain V region may be any peptide linker which can be introduced by the genetic engineering procedure or any linker chemically synthesized. For instance, linkers disclosed in literatures, e.g. Protein Engineering, 9(3), 299-305, 1996 may be used in the invention. These linkers can be the same or different in the same molecule. If peptide linkers are required, the following are cited as example linkers:

```
35
         Ser
         Gly-Ser
         Gly-Gly-Ser
         Ser-Gly-Gly
         Glv-Glv-Glv-Ser
40
         Ser-Gly-Gly-Gly
         Gly-Gly-Gly-Ser
         Ser-Gly-Gly-Gly-Gly
         Gly-Gly-Gly-Gly-Ser
         Ser-Gly-Gly-Gly-Gly
45
         Gly-Gly-Gly-Gly-Ser
         Ser-Gly-Gly-Gly-Gly-Gly
         (Gly-Gly-Gly-Ser), and
         (Ser-Gly-Gly-Gly-Gly)<sub>n</sub>
```

wherein n is an integer not less than one. Preferable length of the linker peptide varies dependent upon the receptor to be the antigen, in the case of single chain Fvs, the range of 1 to 20 amino acids is normally preferable. In the case of single chain modified antibodies comprising two or more H chain V regions and two or more L chain V regions, the peptide linkers connecting those forming the same antigen binding site comprising [H chain V region]-[L chain V region] (or [L chain V region]-[H chain V region]) have lengths of 1 - 30 amino acids, preferably 1 - 20 amino acids, more preferably 3 - 18 amino acids. The peptide linkers connecting those not forming the same antigen biding site comprising [H chain V region]-[L chain V region] or ([L chain V region]-[H chain V region]) have lengths of 1 - 40 amino acids, preferably 3 - 30 amino acids, more preferably 5 - 20 amino acids. The method for introducing those linkers will be described in the explanation for DNA construction coding for modified antibodies of the invention.

[0058] The chemically synthesized linkers, i.e. the chemical crosslinking agents, according to the invention can be any linkers conventionally employed for the linkage of peptides. Examples of the linkers may include N-hydroxy succinimide (NHS), disuccinimidyl suberate (DSS), bis (sulfosuccinimidyl) suberate (BS³), dithiobis (succinimidyl propionate) (DSP), dithiobis(sulfosuccinimidyl propionate) (DTSSP), ethylene glycolbis(succinimidyl succinate) (EGS), ethylene glycolbis(sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis[2-(succinimido oxycarbonyloxy)ethyl]sulfone (BSOCOES), bis[2-(sulfosuccinimido oxycarbonyloxy) ethyl] sulfone (sulfo-BSOCOES) or the like. These are commercially available. It is preferable for the chemically synthesized linkers to have the length equivalent to that of peptide linkers.

[0059] To form a dimer of the single chain Fv it is preferable to select a linker suitable to dimerize in the solution such as culture medium more than 20%, preferably more than 50%, more preferably more than 80%, most preferably more than 90% of the single chain Fv produced in the host cells. Specifically, preferable is a linker composed of 2 to 12 amino acids, preferably 3 to 10 amino acids or other linkers corresponding thereto.

Preparation of modified antibodies

10

15

30

35

40

45

50

55

[0060] The modified antibodies can be produced by connecting, through the aforementioned linker, an H chain V region and an L chain V region derived from known or novel monoclonal antibodies specifically binding to a cell surface molecule(s). As examples of the single chain Fvs are cited MABL1-scFv and MABL2-scFv comprising the H chain V region and the L chain V region derived from the antibody MABL-1 and the antibody MABL-2, respectively. As examples of the single chain polypeptides comprising two H chain V regions and two L chain V regions are cited MABL1-sc(Fv)₂ and MABL2-sc(Fv)₂ comprising the H chain V region and the L chain V region derived from the aforementioned antibodies.

[0061] For the preparation of the polypeptide, a signal peptide may be attached to N-terminal of the polypeptide if the polypeptide is desired to be a secretory peptide. A well-known amino acid sequence useful for the purification of polypeptide such as the FLAG sequence may be attached for the efficient purification of the polypeptide. In this case a dimer can be formed by using anti-FLAG antibody.

[0062] For the preparation of the modified antibody of the invention, it is necessary to obtain a DNA, i.e. a DNA encoding the single chain Fv or a DNA encoding reconstructed single chain polypeptide. These DNAs, especially for MABL1-scFv, MABL2-scFv, MABL1-sc(Fv)₂ and/or MABL2-SC(Fv)₂ are obtainable from the DNAs encoding the H chain V region and the L chain V region derived from said Fv. They are also obtainable by polymerase chain reaction (PCR) method using those DNA as a template and amplifying the part of DNA contained therein encoding desired amino acid sequence with the aid of a pair of primers corresponding to both ends thereof.

[0063] In the case where each V region having partially modified amino acid sequence is desired, the V regions in which one or some amino acids are modified, i.e. deleted, replaced or added can be obtained by a procedure known in the art using PCR. A part of the amino acid sequence in the V region is preferably modified by the PCR known in the art in order to prepare the modified antibody which is sufficiently active against the specific antigen.

[0064] For the determination of primers for the PCR amplification, it is necessary to decide the type of the H chain and L chain of the desired antibodies. In the case of antibody MABL-1 and the antibody MABL-2 it has been reported, however, that the antibody MABL-1 has κ type L chains and γ 1 type H chains and the antibody MABL-2 has κ type L chains and γ 2a type H chains (JP-Appl. 11-63557). For the PCR amplification of the DNA encoding the H chain and L chain of the antibody MABL-1 and/or the antibody MABL-2, primers described in Jones, S.T. et al., Bio/Technology, 9, 88-89, 1991 may be employed.

[0065] For the amplification of the L chain V regions of the antibody MABL-1 and the antibody MABL-2 by PCR, 5'-end and 3'-end oligonucleotide primers are decided as aforementioned. In the same manner, 5'-end and 3'-end oligonucleotide primers are decided for the amplification of the H chain V regions of the antibody MABL-1 and the antibody MABL-2.

[0066] In embodiments of the invention, the 5'-end primers which contain a sequence "GANTC" providing the restriction enzyme Hinf I recognition site at the neighborhood of 5'-terminal thereof are used and the 3'-end primers which contain a nucleotide sequence "CCCGGG" providing the Xmal recognition site at the neighborhood of 5'-terminal thereof are used. Other restriction enzyme recognition site may be used instead of these sites as long as they are used for subcloning a desired DNA fragment into a cloning vector.

[0067] Specifically designed PCR primers are employed to provide suitable nucleotide sequences at 5'-end and 3'-end of the cDNAs encoding the V regions of the antibodies MABL-1 and MABL-2 so that the cDNAs are readily inserted into an expression vector and appropriately function in the expression vector (e.g. this invention devises to increase translation efficiency by inserting Kozak sequence). The V regions of the antibodies MABL-1 and MABL-2 obtained by amplifying by PCR using these primers are inserted into HEF expression vector containing the desired human C region (see WO92/19759). The cloned DNAs can be sequenced by using any conventional process, for example, by the automatic DNA sequencer (Applied Biosystems).

[0068] A linker such as a peptide linker can be introduced into the modified antibody of the invention in the following manner. Primers which have partially complementary sequence with the primers for the H chain V regions and the L chain V regions as described above and which code for the N-terminal or the C-terminal of the linker are designed. Then, the PCR procedure can be carried out using these primers to prepare a DNA encoding the peptide linker having desired amino acid sequence and length. The DNAs encoding the H chain V region and the L chain V region can be connected through the resulting DNA to produce the DNA encoding the modified antibody of the invention which has the desired peptide linker. Once the DNA encoding one of the modified antibodies is prepared, the DNAs encoding the modified antibodies with or without the desired peptide linker can readily be produced by designing various primers for the linker and then carrying out the PCR using the primers and the aforementioned DNA as a template.

[0069] Each V region of the modified antibody of the present invention can be humanized by using conventional techniques (e.g. Sato, K. et al., Cancer Res., 53, 1-6 (1993)). Once a DNA encoding each of humanized Fvs is prepared, a humanized single chain Fv, a fragment of the humanized single chain Fv, a humanized monoclonal antibody and a fragment of the humanized monoclonal antibody can readily be produced according to conventional methods. Preferably, amino acid sequences of the V regions thereof may be partially modified, if necessary.

10

30

35

40

45

50

55

[0070] Furthermore, a DNA derived from other mammalian origin, for example a DNA encoding each of V regions of human antibody, can be produced in the same manner as used to produce DNA encoding the H chain V region and the L chain V region derived from mouse by conventional methods as mentioned in the above. The resulting DNA can be used to prepare an H chain V region and an L chain V region of other mammal, especially derived from human antibody, a single chain Fv derived from human and a fragment thereof, and a monoclonal antibody of human origin and a fragment thereof.

[0071] When the modified antibodies of the invention is bi-specific modified antibodies, they can be produced by known methods (for example, the method described in WO9413804).

[0072] As mentioned above, when the aimed DNAs encoding the V regions of the modified antibodies and the V regions of the humanized modified antibodies are prepared, the expression vectors containing them and hosts transformed with the vectors can be obtained according to conventional methods. Further, the hosts can be cultured according to a conventional method to produce the reconstructed single chain Fv, the reconstructed humanized single chain Fv, the humanized monoclonal antibodies and fragments thereof. They can be isolated from cells or a medium and can be purified into a homogeneous mass. For this purpose any isolation and purification methods conventionally used for proteins, e.g. chromatography, ultra-filtration, salting-out and dialysis, may be employed in combination, if necessary, without limitation thereto.

[0073] When the reconstructed single chain Fv of the present invention is produced by culturing an animal cell such as COS7 cells or CHO cells, preferably CHO cells, in a serum-free medium, the dimer of said single chain Fv formed in the medium can be stably recovered and purified in a high yield. Thus purified dimer can be stably preserved for a long period. The serum-free medium employed in the invention may be any medium conventionally used for the production of a recombinant protein without limit thereto.

[0074] For the production of the modified antibodies of the present invention, any expression systems can be employed, for example, eukaryotic cells such as animal cells, e.g., established mammalian cell lines, filamentous fungi and yeast, and prokaryotic cells such as bacterial cells e.g., <u>E. coli.</u> Preferably, the modified antibodies of the invention are expressed in mammalian cells, for example COS7 cells or CHO cells.

[0075] In these cases, conventional promoters useful for the expression in mammalian cells can be used. Preferably, human cytomegalovirus (HCMV) immediate early promoter is used. Expression vectors containing the HCMV promoter include HCMV-VH-HCγ 1, HCMV-VL-HCK and the like which are derived from pSV2neo (WO92/19759).

[0076] Additionally, other promoters for gene expression in mammal cell which may be used in the invention include virus promoters derived form retrovirus, polyoma virus, adenovirus and simian virus 40 (SV40) and promoters derived from mammal such as human polypeptide-chain elongation factor- 1α (HEF- 1α). SV40 promoter can easily be used according to the method of Mulligan, R.C., et al. (Nature 277, 108-114 (1979)) and HEF- 1α promoter can also be used according to the methods of Mizushima, S. et al. (Nucleic Acids Research, 18, 5322 (1990)).

[0077] Replication origin (ori) which can be used in the invention includes ori derived from SV40, polyoma virus, adenovirus, bovine papilloma virus (BPV) and the like. An expression vector may contain, as a selection marker, phosphotransferase APH (3') II or I (neo) gene, thymidine kinase (TK) gene, <u>E. coli</u> xanthine-guanine phosphoribosyl transferase (Ecogpt) gene or dihydrofolate reductase (DHFR) gene.

[0078] The antigen-binding activity of the modified antibody prepared in the above can be evaluated by a conventional method such as radio immunoassay (RIA), enzyme-linked immunosorbent assay (ELISA) or surface plasmon resonance. It can also be evaluated using the binding-inhibitory ability of original antibodies as an index, for example in terms of the absence or presence of concentration-dependent inhibition of the binding of said monoclonal antibody to the antigen.

[0079] More in detail, animal cells transformed with an expression vector containing a DNA encoding the modified antibody of the invention, e.g., COS7 cells or CHO cells, are cultured. The cultured cells and/or the supernatant of the

medium or the modified antibody purified from them are used to determine the binding to antigen. As a control is used a supernatant of the culture medium in which cells transformed only with the expression vector were cultured. In the case of an antigen, for example, the antibody MABL-1 and the antibody MABL-2, a test sample of the modified antibody of the invention or the supernatant of the control is added to mouse leukemia cell line, L1210 cells, expressing human IAP and then an assay such as the flow cytometry is carried out to evaluate the antigen-binding activity.

[0080] In vitro evaluation of the signal transduction effect (apoptosis-inducing effect in the cases of the antibody MABL-1 and the antibody MABL-2) is performed in the following manner: A test sample of the above modified antibody is added to the cells which are expressing the antibody or cells into which the gene for the antibody has been introduced, and is evaluated by the change caused by the signal transduction, for example, whether cell death is induced in a manner specific to the human IAP-antigen, using conventional methods.

[0081] In vivo evaluation of the apoptosis-inducing effect, for example, in the case where the modified antibody recognizes human IAP (e.g. modified antibodies derived from the antibody MABL-1 and the antibody MABL-2) is carried out in the following manner: A mouse model of human myeloma is prepared. To the mice is intravenously administered the monoclonal antibody or the modified antibody of the invention, which induces apoptosis of nucleated blood cells having IAP. To mice of a control group is administered PBS alone. The induction of apoptosis is evaluated in terms of antitumor effect based on the change of human IgG content in serum of the mice and their survival time.

[0082] As mentioned above the modified antibodies of the invention can be obtained by preparing modified antibodies which contain two or more H chain V regions and two or more L chain V regions and specifically bind to target cell surface molecule or intracellular molecule and screening the modified antibodies by in vivo or in vitro evaluation as mentioned in the above.

[0083] The modified antibodies of the invention, which comprises two or more H chain V regions and two or more L chain V regions, preferably each two to four, more preferably each two, may be a dimer of the single chain Fv comprising one H chain V region and one L chain V region, or a single chain polypeptide in which two or more H chain V regions and two or more L chain V regions are connected. It is considered that owing to such construction the peptide mimics three dimensional structure of a natural ligand and therefore retains an excellent antigen-binding property and agonist activity.

[0084] The modified antibodies of the invention have a remarkably lowered molecular size compared with antibody molecule (whole IgG), and, therefore, a superior permeability into tissues and tumors and a higher activity than original agonist monoclonal antibodies. Therefore, proper selection of the parent antibody makes it possible to transduce various signals into cells and to induce various actions in the cells such as apoptosis induction, cell proliferation induction, cell differentiation induction, cell division induction or cell cycle regulation action. The pharmaceutical preparations containing them are useful for treating diseases curable by inducing signal transduction, for example cancers, inflammation, hormone disorders, autoimmune diseases as well as blood dyscrasia, for example, leukemia, malignant lymphoma, aplastic anemia, myelodysplasia syndrome and polycythemia vera. It is further expected that the antibody of the invention can be used as a contrast agent by RI-labeling. The effect can be enhanced by attaching to a RI-compound or a toxin.

BEST MODE FOR WORKING THE INVENTION

[0085] The present invention will concretely be illustrated in reference to the following examples, which in no way limit the scope of the invention.

[0086] For illustrating the production process of the modified antibodies of the invention, examples of producing single chain Fvs are shown below. Mouse antibodies against human IAP, MABL-1 and MABL-2 were used in the examples of producing the modified antibodies. Hybridomas MABL-1 and MABL-2 producing them respectively were internationally deposited as FERM BP-6100 and FERM BP-6101 with the National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, Minister of International Trade and Industry (1-3 Higasi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan), an authorized depository for microorganisms, on September 11, 1997.

Examples

10

30

35

40

45

50

55

Example 1 (Cloning of DNAs encoding V region of mouse monoclonal antibodies to human IAP)

[0087] DNAs encoding variable regions of the mouse monoclonal antibodies to human IAP, MABL-1 and MABL-2, were cloned as follows.

1.1 Preparation of messenger RNA (mRNA)

[0088] mRNAs of the hybridomas MABL-1 and MABL-2 were obtained by using mRNA Purification Kit (Pharmacia

Biotech).

25

30

35

40

45

50

1.2 Synthesis of double-stranded cDNA

5 [0089] Double-stranded cDNA was synthesized from about 1 μg of the mRNA using Marathon cDNA Amplification Kit (CLONTECH) and an adapter was linked thereto.

- 1.3 PCR Amplification of genes encoding variable regions of an antibody by
- [0090] PCR was carried out using Thermal Cycler (PERKIN ELMER).
 - (1) Amplification of a gene coding for L chain V region of MABL-1
 - [0091] Primers used for the PCR method are Adapter Primer-1 (CLONTECH) shown in SEQ ID No. 1, which hybridizes to a partial sequence of the adapter, and MKC (Mouse Kappa Constant) primer (Bio/Technology, 9, 88-89, 1991) shown in SEQ ID No. 2, which hybridizes to the mouse kappa type L chain V region.

[0092] 50 μ l of the PCR solution contains 5 μ l of 10 \times PCR Buffer II, 2 mM MgCl₂, 0.16 mM dNTPs (dATP, dGTP, dCTP and dTTP), 2.5 units of a DNA polymerase, AmpliTaq Gold (PERKIN ELMER), 0.2 μ M of the adapter primer of SEQ ID No. 1, 0.2 μ M of the MKC primer of SEQ ID No. 2 and 0.1 μ g of the double-stranded cDNA derived from MABL-1. The solution was preheated at 94°C of the initial temperature for 9 minutes and then heated at 94°C for 1 minute,

at 60°C for 1 minute and at 72°C for 1 minute 20 seconds in order. This temperature cycle was repeated 35 times and then the reaction mixture was further heated at 72°C for 10 minutes.

(2) Amplification of cDNA encoding H chain V region of MABL-1

[0093] The Adapter Primer-1 shown in SEQ ID No. 1 and MHC-γ1 (Mouse Heavy Constant) primer (Bio/Technology, 9, 88-89, 1991) shown in SEQ ID No. 3 were used as primers for PCR.

[0094] The amplification of cDNA was performed according to the method of the amplification of the L chain V region gene, which was described in Example 1.3-(1), except for using 0.2 μ M of the MHC- γ 1 primer instead of 0.2 μ M of the MKC primer.

(3) Amplification of cDNA encoding L chain V region of MABL-2

[0095] The Adapter Primer-1 of SEQ ID No. 1 and the MKC primer of SEQ ID No. 2 were used as primers for PCR. [0096] The amplification of cDNA was carried out according to the method of the amplification of the L chain V region gene of MABL-1 which was described in Example 1.3-(1), except for using 0.1 µg of the double-stranded cDNA derived from MABL-2 instead of 0.1 µg of the double-stranded cDNA from MABL-1.

(4) Amplification of cDNA encoding H chain V region of MABL-2

[0097] The Adapter Primer-1 of SEQ ID No. 1 and MHC-γ2a primer (Bio/Technology, 9, 88-89, 1991) shown in SEQ ID No. 4 were used as primers for PCR.

[0098] The amplification of cDNA was performed according to the method of the amplification of the L chain V region gene, which was described in Example 1.3-(3), except for using 0.2 μ M of the MHC- γ 2a primer instead of 0.2 μ M of the MKC primer.

1.4 Purification of PCR products

[0099] The DNA fragment amplified by PCR as described above was purified using the QIAquick PCR Purification Kit (QIAGEN) and dissolved in 10 mM Tris-HCI (pH 8.0) containing 1 mM EDTA.

1.5 Ligation and Transformation

[0100] About 140 ng of the DNA fragment comprising the gene encoding the mouse kappa type L chain V region derived from MABL-1 as prepared above was ligated with 50 ng of pGEM-T Easy vector (Promega) in the reaction buffer comprising 30 mM Tris-HCl (pH 7.8), 10 mM MgCl₂, 10 mM dithiothreitol, 1 mM ATP and 3 units of T4 DNA Ligase (Promega) at 15°C for 3 hours.

[0101] Then, 1 μ l of the reaction mixture was added to 50 μ l of E. coli DH5 α competent cells (Toyobo Inc.) and the

cells were stored on ice for 30 minutes, incubated at 42°C for 1 minute and stored on ice for 2 minutes again. 100 μ l of SOC medium (GIBCO BRL) was added. The cells of <u>E. coli</u> were plated on LB (Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Laboratory Press, 1989) agar medium containing 100 μ g/ml of ampicillin (SIGMA) and cultured at 37°C overnight to obtain the transformant of E. coli.

[0102] The transformant was cultured in 3 ml of LB medium containing 50 μg/ml of ampicillin at 37°C overnight and the plasmid DNA was prepared from the culture using the QIAprep Spin Miniprep Kit (QIAGEN).

[0103] The resulting plasmid comprising the gene encoding the mouse kappa type L chain V region derived from the hybridoma MABL-1 was designated as pGEM-M1L.

[0104] According to the same manner as described above, a plasmid comprising the gene encoding the mouse H chain V region derived from the hybridoma MABL-1 was prepared from the purified DNA fragment and designated as pGEM-M1H.

[0105] A plasmid comprising the gene encoding the mouse kappa type L chain V region derived from the hybridoma MABL-2 was prepared from the purified DNA fragment and designated as pGEM-M2L.

[0106] A plasmid comprising the gene encoding the mouse H chain V region derived from the hybridoma MABL-2 was prepared from the purified DNA fragment and designated as pGEM-M2H.

Example 2 (DNA Sequencing)

[0107] The nucleotide sequence of the cDNA encoding region in the aforementioned plasmids was determined using Auto DNA Sequencer (Applied Biosystem) and ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystem) according to the manufacturer's protocol.

[0108] The nucleotide sequence of the gene encoding the L chain V region from the mouse antibody MABL-1, which is included in the plasmid pGEM-M1L, is shown in SEQ ID No. 5.

[0109] The nucleotide sequence of the gene encoding the H chain V region from the mouse antibody MABL-1, which is included in the plasmid pGEM-M1H, is shown in SEQ ID No. 6.

[0110] The nucleotide sequence of the gene encoding the L chain V region from the mouse antibody MABL-2, which is included in the plasmid pGEM-M2L, is shown in SEQ ID No. 7.

[0111] The nucleotide sequence of the gene encoding the H chain V region from the mouse antibody MABL-2, which is included in the plasmid pGEM-M2H, is shown in SEQ ID No. 8.

Example 3 (Determination of CDR)

[0112] The V regions of L chain and H chain generally have a similarity in their structures and each four framework regions therein are linked by three hypervariable regions, i.e., complementarity determining regions (CDR). An amino acid sequence of the framework is relatively well conserved, while an amino acid sequence of CDR has extremely high variation (Kabat, E.A., et al., "Sequences of Proteins of Immunological Interest", US Dept. Health and Human Services, 1983).

[0113] On the basis of these facts, the amino acid sequences of the variable regions from the mouse monoclonal antibodies to human IAP were applied to the database of amino acid sequences of the antibodies made by Kabat et al. to investigate the homology. The CDR regions were determined based on the homology as shown in Table 1.

Table 1

<u>Plasmid</u>	SEQ ID No.	CDR(1)	CDR(2)	CDR(3)
pGEM-M1L	5	43-58	74-80	113-121
pGEM-M1H	6	50-54	69-85	118-125
pGEM-M2L	7	43-58	74-80	113-121
pGEM-M2H	8	50-54	69-85	118-125

50

40

45

10

30

55

Example 4 (Identification of Cloned cDNA Expression

(Preparation of Chimera MABL-1 antibody and Chimera MABL-2 antibody.)

4.1 Preparation of vectors expressing chimera MABL-1

antibody

10

[0114] cDNA clones, pGEM-M1L and pGEM-M1H, encoding the V regions of the L chain and the H chain of the mouse antibody MABL-1, respectively, were modified by the PCR method and introduced into the HEF expression vector (WO92/19759) to prepare vectors expressing chimera MABL-1 antibody.

[0115] A forward primer MLS (SEQ ID No. 9) for the L chain V region and a forward primer MHS (SEQ ID No. 10) for the H chain V region were designed to hybridize to a DNA encoding the beginning of the leader sequence of each V region and to contain the Kozak consensus sequence (J. Mol. Biol., 196, 947-950, 1987) and HindIII restriction enzyme site. A reverse primer MLAS (SEQ ID No. 11) for the L chain V region and a reverse primer MHAS (SEQ ID No. 12) for the H chain V region were designed to hybridize to a DNA encoding the end of the J region and to contain the splice donor sequence and BamHI restriction enzyme site.

[0116] $100 \,\mu$ I of a PCR solution comprising $10 \,\mu$ I of $10 \times$ PCR Buffer II, 2 mM MgCl₂, 0.16 mM dNTPs (dATP, dGTP, dCTP and dTTP), 5 units of DNA polymerase AmpliTaq Gold, 0.4 μ M each of primers and 8 ng of the template DNA (pGEM-M1L or pGEM-M1H) was preheated at 94°C of the initial temperature for 9 minutes and then heated at 94°C for 1 minute, at 60°C for 1 minute and at 72°C for 1 minute 20 seconds in order. This temperature cycle was repeated 35 times and then the reaction mixture was further heated at 72°C for 10 minutes.

[0117] The PCR product was purified using the QIAquick PCR Purification Kit (QIAGEN) and then digested with HindIII and BamHI. The product from the L chain V region was cloned into the HEF expression vector, HEF- κ and the product from the H chain V region was cloned into the HEF expression vector, HEF- γ . After DNA sequencing, plasmids containing a DNA fragment with a correct DNA sequence are designated as HEF-M1L and HEF-M1H, respectively.

4.2 Preparation of vectors expressing chimera MABL-2 antibodies

[0118] Modification and cloning of cDNA were performed in the same manner described in Example 4.1 except for using pGEM-M2L and pGEM-M2H as template DNA instead of pGEM-M1L and pGEM-M1H. After DNA sequencing, plasmids containing DNA fragments with correct DNA sequences are designated as HEF-M2L and HEF-M2H, respectively.

4.3 Transfection to COS7 cells

[0119] The aforementioned expression vectors were tested in COS7 cells to observe the transient expression of the chimera MABL-1 and MABL-2 antibodies.

40 (1) Transfection with genes for the chimera MABL-1 antibody

[0120] COS7 cells were co-transformed with the HEF-M1L and HEF-M1H vectors by electroporation using the Gene Pulser apparatus (BioRad). Each DNA (10 μ g) and 0.8 ml of PBS with 1 \times 10⁷ cells/ml were added to a cuvette. The mixture was treated with pulse at 1.5 kV, 25 μ F of electric capacity.

[0121] After the restoration for 10 minutes at a room temperature, the electroporated cells were transferred into DMEM culture medium (GIBCO BRL) containing 10% γ-globulin-free fetal bovine serum. After culturing for 72 hours, the supernatant was collected, centrifuged to remove cell fragments and recovered.

(2) Transfection with genes coding for the chimera MABL-2 antibody

[0122] The co-transfection to COS7 cells with the genes coding for the chimera MABL-2 antibody was carried out in the same manner as described in Example 4.3-(1) except for using the HEF-M2L and HEF-M2H vectors instead of the HEF-M1L and HEF-M1H vectors. The supernatant was recovered in the same manner.

4.4 Flow cytometry

50

[0123] Flow cytometry was performed using the aforementioned culture supernatant of COS7 cells to measure binding to the antigen. The culture supernatant of the COS7 cells expressing the chimera MABL-1 antibody or the COS7

cells expressing the chimera MABL-2 antibody, or human IgG antibody (SIGMA) as a control was added to 4×10^5 cells of mouse leukemia cell line L1210 expressing human IAP and incubated on ice. After washing, the FITC-labeled anti-human IgG antibody (Cappel) was added thereto. After incubating and washing, the fluorescence intensity thereof was measured using the FACScan apparatus (BECTON DICKINSON).

[0124] Since the chimera MABL-1 and MABL-2 antibodies were specifically bound to L1210 cells expressing human IAP, it is confirmed that these chimera antibodies have proper structures of the V regions of the mouse monoclonal antibodies MABL-1 and MABL-2, respectively (Figs. 1-3).

Example 5 (Preparation of reconstructed Single chain Fv (scFv) of the antibody MABL-1 and antibody MABL-2)

5.1 Preparation of reconstructed single chain Fv of antibody MABL-1

10

30

35

50

[0125] The reconstructed single chain Fv of antibody MABL-1 was prepared as follows. The H chain V region and the L chain V of antibody MABL-1, and a linker were respectively amplified by the PCR method and were connected to produce the reconstructed single chain Fv of antibody MABL-1. The production method is illustrated in Fig. 4. Six primers (A-F) were employed for the production of the single chain Fv of antibody MABL-1. Primers A, C and E have a sense sequence and primers B, D and F have an antisense sequence.

[0126] The forward primer VHS for the H chain V region (Primer A, SEQ ID No. 13) was designed to hybridize to a DNA encoding the N-terminal of the H chain V region and to contain Ncol restriction enzyme recognition site. The reverse primer VHAS for H chain V region (Primer B, SEQ ID No. 14) was designed to hybridize to a DNA coding the C-terminal of the H chain V region and to overlap with the linker.

[0127] The forward primer LS for the linker (Primer C, SEQ ID No. 15) was designed to hybridize to a DNA encoding the N-terminal of the linker and to overlap with a DNA encoding the C-terminal of the H chain V region. The reverse primer LAS for the linker (Primer D, SEQ ID No. 16) was designed to hybridize to a DNA encoding the C-terminal of the linker and to overlap with a DNA encoding the N-terminal of the L chain V region.

[0128] The forward primer VLS for the L chain V region (Primer E, SEQ ID No. 17) was designed to hybridize to a DNA encoding the C-terminal of the linker and to overlap with a DNA encoding the N-terminal of the L chain V region. The reverse primer VLAS-FLAG for L chain V region (Primer F, SEQ ID No. 18) was designed to hybridize to a DNA encoding the C-terminal of the L chain V region and to have a sequence encoding the FLAG peptide (Hopp. T. P. et al., Bio/Technology, 6, 1204-1210, 1988), two stop codons and EcoRI restriction enzyme recognition site.

[0129] In the first PCR step, three reactions, A-B, C-D and E-F, were carried out and PCR products thereof were purified. Three PCR products obtained from the first PCR step were assembled by their complementarity. Then, the primers A and F were added and the full length DNA encoding the reconstructed single chain Fv of antibody MABL-1 was amplified (Second PCR). In the first PCR, the plasmid pGEM-M1H encoding the H chain V region of antibody MABL-1 (see Example 2), a plasmid pSC-DP1 which comprises a DNA sequence encoding a linker region comprising: Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly Gly Gly Ser (SEQ ID No. 19) (Huston, J.S., et al., Proc. Natl. Acad. Sci. USA, 85, 5879-5883, 1988) and the plasmid pGEM-M1L encoding the L chain V region of antibody MABL-1 (see Example 2) were employed as template, respectively.

[0130] 50 μ l of the solution for the first PCR step comprises 5 μ l of 10 \times PCR Buffer II, 2 mM MgCl₂, 0.16 mM dNTPs, 2.5 units of DNA polymerase, AmpliTaq Gold (PERKIN ELMER), 0.4 μ M each of primers and 5 ng each of template DNA. The PCR solution was preheated at 94°C of the initial temperature for 9 minutes and then heated at 94°C for 1 minute, at 65°C for 1 minute and at 72°C for 1 minute and 20 seconds in order. This temperature cycle was repeated 35 times and then the reaction mixture was further heated at 72°C for 7 minutes.

[0131] The PCR products A-B (371bp), C-D (63bp) and E-F (384bp) were purified using the QIAquick PCR Purification Kit (QIAGEN) and were assembled in the second PCR. In the second PCR, 98 μ I of a PCR solution comprising 120 ng of the first PCR product A-B, 20 ng of the PCR product C-D and 120 ng of the PCR product E-F, 10 μ I of 10 \times PCR Buffer II, 2mM MgCl₂, 0.16 mM dNTPs, 5 units of DNA polymerase AmpliTaq Gold (PERKIN ELMER) was preheated at 94°C of the initial temperature for 8 minutes and then heated at 94°C for 2 minutes, at 65°C for 2 minutes and at 72°C for 2 minutes in order. This temperature cycle was repeated twice and then 0.4 μ M each of primers A and F were added into the reaction, respectively. The mixture was preheated at 94°C of the initial temperature for 1 minutes and then heated at 94°C for 1 minute, at 65°C for 1 minute and at 72°C for 1 minute and 20 seconds in order. This temperature cycle was repeated 35 times and then the reaction mixture was further heated at 72°C for 7 minutes.

[0132] A DNA fragment of 843 bp produced by the second PCR was purified and digested by Ncol and EcoRI. The resultant DNA fragment was cloned into pSCFVT7 vector. The expression vector pSCFVT7 contains a pelB signal sequence suitable for <u>E. coli</u> periplasmic expression system (Lei, S.P., et al., J. Bacteriology, 169, 4379-4383, 1987). After the DNA sequencing, the plasmid containing the DNA fragment encoding correct amino acid sequence of the reconstructed single chain Fv of antibody MABL-1 is designated as "pscM1" (see Fig. 5). The nucleotide sequence and the amino acid sequence of the reconstructed single chain Fv of antibody MABL-1 contained in the plasmid pscM1

are shown in SEQ ID No. 20.

10

30

35

40

50

55

[0133] The pscM1 vector was modified by the PCR method to prepare a vector expressing the reconstructed single chain Fv of antibody MABL-1 in mammalian cells. The resultant DNA fragment was introduced into pCHO1 expression vector. This expression vector, pCHO1, was constructed by digesting DHFR-ΔE-rvH-PM1-f (WO92/19759 with EcoRI and Smal to eliminate the antibody gene and connecting the EcoRI-NotI-BamHI Adapter (Takara Shuzo) thereto.

[0134] As a forward primer for PCR, Sal-VHS primer shown in SEQ ID No. 21 was designed to hybridize to a DNA encoding the N-terminal of the H chain V region and to contain Sall restriction enzyme recognition site. As a reverse primer for PCR, FRH1anti primer shown in SEQ ID No. 22 was designed to hybridize to a DNA encoding the end of the first framework sequence.

[0135] $100 \,\mu$ l of PCR solution comprising $10 \,\mu$ l of $10 \times$ PCR Buffer II, 2 mM MgCl₂, 0.16 mM dNTPs, 5 units of the DNA polymerase, AmpliTaq Gold, 0.4 $\,\mu$ l M each of primer and 8 ng of the template DNA (pscM1) was preheated at 95°C of the initial temperature for 9 minutes and then heated at 95°C for 1 minute, at 60°C for 1 minute and at 72°C for 1 minute and 20 seconds in order. This temperature cycle was repeated 35 times and then the reaction mixture was further heated at 72°C for 7 minutes.

[0136] The PCR product was purified using the QIAquick PCR Purification Kit (QIAGEN) and digested by Sall and Mboll to obtain a DNA fragment encoding the N-terminal of the reconstructed single chain Fv of antibody MABL-1 The pscM1 vector was digested by Mboll and EcoRI to obtain a DNA fragment encoding the C-terminal of the reconstructed single chain Fv of antibody MABL-1. The Sall-Mboll DNA fragment and the Mboll-EcoRI DNA fragment were cloned into pCHO1-lgs vector. After DNA sequencing, the plasmid comprising the desired DNA sequence was designated as "pCHOM1" (see Fig. 6). The expression vector, pCHO1-lgs, contains a mouse IgG1 signal sequence suitable for the secretion-expression system in mammalian cells (Nature, 322, 323-327, 1988). The nucleotide sequence and the amino acid sequence of the reconstructed single chain Fv of antibody MABL-1 contained in the plasmid pCHOM1 are shown in SEQ ID No. 23.

5.2 Preparation of reconstructed single chain Fv of antibody MABL-2

[0137] The reconstructed single chain Fv of antibody MABL-2 was prepared in accordance with the aforementioned Example 5.1. Employed in the first PCR step were plasmid pGEM-M2H encoding the H chain V region of MABL-2 (see Example 2) instead of pGEM-M1H and plasmid pGEM-M2L encoding the L chain V region of MABL-2 (see Example 2) instead of pGEM-M1L, to obtain a plasmid pscM2 which comprises a DNA fragment encoding the desired amino acid sequence of the single chain Fv of antibody MABL-2. The nucleotide sequence and the amino acid sequence of the reconstructed single chain Fv of antibody MABL-2 contained in the plasmid pscM2 are shown in SEQ ID No. 24. [0138] The pscM2 vector was modified by the PCR method to prepare a vector, pCHOM2, for the expression in mammalian cells which contains the DNA fragment encoding the correct amino acid sequence of reconstructed the single chain Fv of. antibody MABL-2 contained in the plasmid pCHOM2 are shown in SEQ ID No. 25.

5.3 Transfection to COS7 cells

[0139] The pCHOM2 vector was tested in COS7 cells to observe the transient expression of the reconstructed single chain Fv of antibody MABL-2.

[0140] The COS7 cells were transformed with the pCHOM2 vector by electroporation using the Gene Pulser apparatus (BioRad). The DNA (10 μ g) and 0.8 ml of PBS with 1 \times 10⁷ cells/ml were added to a cuvette. The mixture was treated with pulse at 1.5 kV, 25 μ F of electric capacity.

[0141] After the restoration for 10 minutes at a room temperature, the electroporated cells were transferred into IMDM culture medium (GIBCO BRL) containing 10% fetal bovine serum. After culturing for 72 hours, the supernatant was collected, centrifuged to remove cell fragments and recovered.

5.4 Detection of the reconstructed single chain Fv of antibody MABL-2 in culture supernatant of COS7 cells

[0142] The existence of the single chain Fv of antibody MABL-2 in the culture supernatant of COS7 cells which had been transfected with the pCHOM2 vector was confirmed by the Western Blotting method.

[0143] The culture supernatant of COS7 cells transfected with the pCHOM2 vector and the culture supernatant of COS7 cells transfected with the pCHO1 as a control were subjected to SDS electrophoresis and transferred to REIN-FORCED NC membrane (Schleicher & Schuell). The membrane was blocked with 5% skim milk (Morinaga Nyu-gyo), washed with 0.05% Tween 20-PBS and mixed with an anti-FLAG antibody (SIGMA). The membrane was incubated at room temperature, washed and mixed with alkaline phosphatase-conjugated mouse IgG antibody (Zymed). After incubating and washing at room temperature, the substrate solution (Kirkegaard Perry Laboratories) was added to

develop color (Fig. 7).

[0144] A FLAG-peptide-specific protein was detected only in the culture supernatant of the pCHOM2 vector-introduced COS7 cells and thus it is confirmed that the reconstructed single chain Fv of antibody MABL-2 was secreted in this culture supernatant.

5.5 Flow cytometry

10

30

35

45

50

55

[0145] Flow cytometry was performed using the aforementioned COS7 cells culture supernatant to measure the binding to the antigen. The culture supernatant of the COS7 cells expressing the reconstructed single chain Fv of antibody MABL-2 or the culture supernatant of COS7 cells transformed with pCHO1 vector as a control was added to 2×105 cells of the mouse leukemia cell line L1210 expressing human Integrin Associated Protein (IAP) or the cell line L1210 transformed with pCOS1 as a control. After incubating on ice and washing, the mouse anti-FLAG antibody (SIGMA) was added. Then the cells were incubated and washed. Then, the FITC labeled anti-mouse IgG antibody (BECTON DICKINSON) was added thereto and the cells were incubated and washed again. Subsequently, the fluorescence intensity was measured using the FACScan apparatus (BECTON DICKINSON).

[0146] Since the single chain Fv of antibody MABL-2 was specifically bound to L1210 cells expressing human IAP, it is confirmed that the reconstructed single chain Fv of antibody MABL-2 has an affinity to human Integrin Associated Protein (IAP) (see Figs. 8-11).

20 5.6 Competitive ELISA

[0147] The binding activity of the reconstructed single chain Fv of antibody MABL-2 was measured based on the inhibiting activity against the binding of mouse monoclonal antibodies to the antigen.

[0148] The anti-FLAG antibody adjusted to 1 μg/ml was added to each well on 96-well plate and incubated at 37°C for 2 hours. After washing, blocking was performed with 1% BSA-PBS. After incubating and washing at a room temperature, the culture supernatant of COS7 cells into which the secretion-type human IAP antigen gene (SEQ ID No. 26) had been introduced was diluted with PBS into twofold volume and added to each well. After incubating and washing at a room temperature, a mixture of 50 μl of the biotinized MABL-2 antibody adjusted to 100 ng/ml and 50 μl of sequentially diluted supernatant of the COS7 cells expressing the reconstructed single chain Fv of antibody MABL-2 were added into each well. After incubating and washing at a room temperature, the alkaline phosphatase-conjugated streptoavidin (Zymed) was added into each well. After incubating and washing at a room temperature, the substrate represent living cells and dots in the right-lower region represent cells at the early stage of apoptosis and dots in the right-upper region represent cells at the late stage of apoptosis. The results show that the reconstructed single chain Fv of antibody MABL-2 (MABL2-scFv) remarkably induced cell death of L1210 cells specific to human IAP antigen (Figs. 13-16) and that the reconstructed single chain Fv also induced remarkable cell death of CCRF-CEM cells in comparison with the control (Figs. 17-18).

5.8 Expression of MABL-2 derived single chain Fv in CHO cells

40 [0149] CHO cells were transfected with the pCHOM2 vector to establish a CHO cell line which constantly expresses the single chain Fv (polypeptide) derived from the antibody MABL-2.

[0150] CHO cells were transformed with the pCHOM2 vector by the electroporation using the Gene Pulser apparatus (BioRad). A mixture of DNA ($10~\mu g$) and 0.7~ml of PBS with CHO cells ($1~\times~10^7$ cells/ml) was added to a cuvette. The mixture was treated with pulse at 1.5~kV, $25~\mu F$ of electric capacity. After the restoration for 10~minutes at a room temperature, the electroporated cells were transferred into nucleic acid free α -MEM medium (GIBCO BRL) containing 10% fetal bovine serum and cultured. The expression of desired protein in the resultant clones was confirmed by SDS-PAGE and a clone with a high expression level was selected as a cell line producing the single chain Fv derived from the solution (SIGMA) was added and absorbance of the reaction mixture in each well was measured at 405~nm. [0151] The results revealed that the reconstructed single chain Fv of antibody MABL-2 (MABL2-scFv) evidently inhibited concentration-dependently the binding of the mouse antibody MABL-2 to human IAP antigen in comparison with the culture supernatant of the PCHO1-introduced COS7 cells as a control (Fig. 12). Accordingly, it is suggested that the reconstructed single chain Fv of antibody MABL-2 has the correct structure of each of the V regions from the mouse monoclonal antibody MABL-2.

5.7 Apoptosis-inducing Effect in vitro

[0152] An apoptosis-inducing action of the reconstructed single chain Fv of antibody MABL-2 was examined by Annexin-V staining (Boehringer Mannheim) using the L1210 cells transfected with human IAP gene, the L1210 cells

transfected with the pCOS1 vector as a control and CCRF-CEM cells.

[0153] To each 1×10^5 cells of the above cells was added the culture supernatant of the COS7 cells expressing the reconstructed single chain Fv of antibody MABL-2 or the culture supernatant of COS7 cells transfected with the pCHO1 vector as a control at 50% final concentration and the mixtures were cultured for 24 hours. Then, the Annexin-V staining was performed and the fluorescence intensity was measured using the FACScan apparatus (BECTON DICKINSON). [0154] Results of the Annexin-V staining are shown in Figs. 13-18, respectively. Dots in the left-lower region antibody MABL-2. The cell line was cultured in serum-free medium CHO-S-SFM II (GIBCO BRL) containing 10 nM methotrexate (SIGMA). Then, the culture supernatant was collected, centrifuged to remove cell fragments and recovered.

5.9 Purification of MABL-2 derived single chain Fv produced in CHO cells

[0155] The culture supernatant of the CHO cell line expressing the single chain Fv obtained in Example 5.8 was concentrated up to twenty times using a cartridge for the artificial dialysis (PAN130SF, ASAHI MEDICALS). The concentrated solution was stored at -20°C and thawed on purification.

[0156] Purification of the single chain Fv from the culture supernatant of the CHO cells was performed using three kinds of chromatography, i.e., Blue-sepharose, a hydroxyapatite and a gel filtration.

(1) Blue-sepharose column chromatography

[0157] The concentrated supernatant was diluted to ten times with 20 mM acetate buffer (pH 6.0) and centrifuged to remove insoluble materials (10000 × rpm, 30 minutes). The supernatant was applied onto a Blue-sepharose column (20 ml) equilibrated with the same buffer. After washing the column with the same buffer, proteins adsorbed in the column were eluted by a stepwise gradient of NaCl in the same buffer, 0.1, 0.2, 0.3, 0.5 and up to 1.0 M. The pass-through fraction and each eluted fraction were analyzed by SDS-PAGE. The fractions in which the single chain Fv were confirmed (the fractions eluted at 0.1 to 0.3M NaCl) were pooled and concentrated up to approximately 20 times using CentriPrep-10 (AMICON).

(2) Hydroxyapatite

[0158] The concentrated solution obtained in (1) was diluted to 10 times with 10 mM phosphate buffer (pH 7.0) and applied onto the hydroxyapatite column (20 ml, BIORAD). The column was washed with 60 ml of 10 mM phosphate buffer (pH 7.0). Then, proteins adsorbed in the column were eluted by a linear gradient of sodium phosphate buffer up to 200 mM (see Fig. 19). The analysis of each fraction by SDS-PAGE confirmed the single chain Fv in fraction A and fraction B.

(3) Gel filtration

35

40

50

55

[0159] Each of fractions A and B in (2) was separately concentrated with CentriPrep-10 and applied onto TSKgel G3000SWG column (21.5 \times 600 mm) equilibrated with 20 mM acetate buffer (pH 6.0) containing 0.15 M NaCl. Chromatograms are shown in Fig. 20. The analysis of the fractions by SDS-PAGE confirmed that both major peaks (Al and Bl) are of desired single chain Fv. In the gel filtration analysis, the fraction A was eluted at 36 kDa of apparent molecular weight and the fraction B was eluted at 76 kDa. The purified single chain Fvs (Al, Bl) were analyzed with 15% SDS polyacrylamide gel. Samples were treated in the absence or presence of a reductant and the electrophoresis was carried out in accordance with the Laemmli's method. Then the protein was stained with Coomassie Brilliant Blue. As shown in Fig. 21, both Al and Bl gave a single band at 35 kDa of apparent molecular weight, regardless of the absence or presence of the reductant. From the above, it is concluded that Al is a monomer of the single chain Fv and Bl is a non-covalently bound dimer of the single chain Fv. The gel filtration analysis of the fractions Al and Bl with TSKgel G3000SW column (7.5 \times 60 mm) revealed that a peak of the monomer is detected only in the fraction Al and a peak of the dimer is detected only in the fraction Bl (Fig. 22). The dimer fraction (fraction Bl) accounted for 4 period of total single chain Fvs. More than 90% of the dimer in the dimer fraction was stably preserved for more than a month at 4°C.

5.10 Construction of vector expressing single chain Fv derived from antibody MABL-2 in E. coli cell

[0160] The pscM2 vector was modified by the PCR method to prepare a vector effectively expressing the single chain Fv from the antibody MABL-2 in <u>E. coli</u> cells. The resultant DNA fragment was introduced into pSCFVT7 expression vector.

[0161] As a forward primer for PCR, Nde-VHSm02 primer shown in SEQ ID No. 27 was designed to hybridize to a DNA encoding the N-terminal of the H chain V region and to contain a start codon and Ndel restriction enzyme recog-

nition site. As a reverse primer for PCR, VLAS primer shown in SEQ ID No. 28 was designed to hybridize to a DNA encoding the C-terminal of the L chain V region and to contain two stop codons and EcoRI restriction enzyme recognition site. The forward primer, Nde-VHSm02, comprises five point mutations in the part hybridizing to the DNA encoding the N-terminal of the H chain V region for the effective expression in E. coli.

[0162] 100 μl of a PCR solution comprising 10 μl of 10 x PCR Buffer #1, 1 mM MgCl₂, 0.2 mM dNTPs, 5 units of KOD DNA polymerase (all from TOYOBO), 1 μM of each primer and 100 ng of a template DNA (pscM2) was heated at 98°C for 15 seconds, at 65°C for 2 seconds and at 74°C for 30 seconds in order. This temperature cycle was repeated 25 times.

[0163] The PCR product was purified using the QIAquick PCR Purification Kit (QIAGEN) and digested by Ndel and EcoRI, and then the resulting DNA fragment was cloned into pSCFVT7 vector, from which pelB signal sequence had been eliminated by the digestion with Ndel and EcoRI. After DNA sequencing, the resulting plasmid comprising a DNA fragment with the desired DNA sequence is designated as "pscM2DEm02" (see Fig. 23). The nucleotide sequence and the amino acid sequence of the single chain Fv derived from the antibody MABL-2 contained in the plasmid pscM2DEm02 are shown in SEQ ID No. 29.

5.11 Expression of single chain Fv derived from antibody MABL-2 in E. coli cells

10

15

20

30

35

40

50

55

[0164] <u>E. coli</u> BL21(DE3)pLysS (STRATAGENE) was transformed with pscM2DEm02 vector to obtain a strain of <u>E. coli</u> expressing the single chain Fv derived from antibody MABL-2. The resulting clones were examined for the expression of the desired protein using SDS-PAGE, and a clone with a high expression level was selected as a strain producing the single chain Fv derived from antibody MABL-2.

5.12 Purification of single chain Fv derived from antibody MABL-2 produced in E.coli

[0165] A single colony of <u>E. coli</u> obtained by the transformation was cultured in 3 ml of LB medium at 28°C for 7 hours and then in 70 ml of LB medium at 28°C overnight. This pre-culture was transplanted to 7 L of LB medium and cultured at 28°C with stirring at 300 rpm using the Jarfermenter. When an absorbance of the medium reached O.D. =1.5, the bacteria were induced with 1 mM IPTG and then cultured for 3 hours.

[0166] The culture medium was centrifuged ($10000 \times g$, 10 minutes) and the precipitated bacteria were recovered. To the bacteria was added 50 mM Tris-HCl buffer (pH 8.0) containing 5 mM EDTA, 0.1 M NaCl and 1% Triton X-100 and the bacteria were disrupted by ultrasonication (out put: 4, duty cycle: 70%, $1 \text{ minute} \times 10 \text{ times}$). The suspension of disrupted bacteria was centrifuged ($12000 \times g$, 10 minutes) to precipitate inclusion body. Isolated inclusion body was mixed with 50 mM Tris-HCl buffer (pH 8.0) containing 5 mM EDTA, 0.1 M NaCl and 4% Triton X-100, treated by ultrasonication (out put: 4, duty cycle: 50%, $30 \text{ seconds} \times 2 \text{ times}$) again and centrifuged ($12000 \times g$, 10 minutes) to isolate the desired protein as precipitate and to remove containment proteins included in the supernatant.

[0167] The inclusion body comprising the desired protein was lysed in 50 mM Tris-HCl buffer (pH 8.0) containing 6 M Urea, 5 mM EDTA and 0.1 M NaCl and applied onto Sephacryl S-300 gel filtration column (5 \times 90 cm, Amersharm Pharmacia) equilibrated with 50 mM Tris-HCl buffer (pH 8.0) containing 4M Urea, 5 mM EDTA, 0.1 M NaCl and 10 mM mercaptoethanol at a flow rate of 5 ml/minutes to remove associated single chain Fvs with high-molecular weight. The obtained fractions were analyzed with SDS-PAGE and the fractions with high purity of the protein were diluted with the buffer used in the gel filtration up to $O.D_{280}$ =0.25. Then, the fractions were dialyzed three times against 50 mM Tris-HCl buffer (pH 8.0) containing 5 mM EDTA, 0.1 M NaCl, 0.5 M Arg, 2 mM glutathione in the reduced form and 0.2 mM glutathione in the oxidized form in order for the protein to be refolded. Further, the fraction was dialyzed three times against 20 mM acetate buffer (pH 6.0) containing 0.15 M NaCl to exchange the buffer.

[0168] The dialysate product was applied onto Superdex 200 pg gel filtration column (2.6 × 60 cm, Amersharm Pharmacia) equilibrated with 20 mM acetate buffer (pH 6.0) containing 0.15 M NaCl to remove a small amount of high molecular weight protein which was intermolecularly crosslinked by S-S bonds. As shown in Fig. 24, two peaks, major and sub peaks, were eluted after broad peaks which are expectedly attributed to an aggregate with a high molecular weight. The analysis by SDS-PAGE (see Fig. 21) and the elution positions of the two peaks in the gel filtration analysis suggest that the major peak is of the monomer of the single chain Fv and the sub peak is of the non-covalently bound dimer of the single chain Fv. The non-covalently bound dimer accounted for 4 percent of total single chain Fvs.

5.13 Apoptosis-inducing activity in vitro of single chain Fv derived from antibody MABL-2

[0169] An apoptosis-inducing action of the single chain Fv from antibody MABL-2 (MABL2-scFv) produced by the CHO cells and <u>E. coli</u> was examined according to two protocols by Annexin-V staining (Boehringer Mannheim) using the L1210 cells (hIAP/L1210) into which human IAP gene had been introduced.

[0170] In the first protocol sample antibodies at the final concentration of 3 μ g/ml were added to 5 \times 10⁴ cells of

hIAP/L1210 cell line and cultured for 24 hours. Sample antibodies, i.e., the monomer and the dimer of the single chain Fv of MABL-2 from the CHO cells obtained in Example 5.9, the monomer and the dimer of the single chain Fv of MABL-2 from <u>E. coli</u> obtained in Example 5.12, and the mouse IgG antibody as a control were analyzed. After culturing, the Annexin-V staining was carried out and the fluorescence intensity thereof was measured using the FACScan apparatus (BECTON DICKINSON).

[0171] In the second protocol sample antibodies at the final concentration of 3 μ g/ml were added to 5 \times 10⁴ cells of hIAP/L1210 cell line, cultured for 2 hours and mixed with anti-FLAG antibody (SIGMA) at the final concentration of 15 μ g/ml and further cultured for 22 hours. Sample antibodies of the monomer of the single chain Fv of MABL-2 from the CHO cells obtained in Example 5.9 and the mouse IgG antibody as a control were analyzed. After culturing, the Annexin-V staining was carried out and the fluorescence intensity thereof was measured using the FACScan apparatus.

[0172] Results of the analysis by the Annexin-V staining are shown in Figs. 25-31. The results show that the dimers of the single chain Fv polypeptide of MABL-2 produced in the CHO cells and <u>E. coli</u> remarkably induced cell death (Figs. 26, 27) in comparison with the control (Fig. 25), while no apoptosis-inducing action was observed in the monomers of the single chain Fv polypeptide of MABL-2 produced in the CHO cells and <u>E. coli</u> (Figs. 28, 29). When anti-FLAG antibody was used together, the monomer of the single chain Fv polypeptide derived from antibody MABL-2 produced in the CHO cells induced remarkably cell death (Fig. 31) in comparison with the control (Fig. 30).

5.14 Antitumor effect of the monomer and the dimer of scFv/CHO polypeptide with a model mouse of human myeloma

(1) Quantitative measurement of human IgG in mouse serum

20

30

45

50

55

[0173] Measurement of human IgG (M protein) produced by human myeloma cell and contained in mouse serum was carried out by the following ELISA. 100 μ L of goat anti-human IgG antibody (BIOSOURCE, Lot#7902) diluted to 1 μ g/mL with 0.1% bicarbonate buffer (pH 9.6) was added to each well on 96 wells plate (Nunc) and incubated at 4°C overnight so that the antibody was immobilized. After blocking, 100 μ L of the stepwisely diluted mouse serum or human IgG (CAPPEL, Lot#00915) as a standard was added to each well and incubated for 2 hours at a room temperature. After washing, 100 μ L of alkaline phosphatase-labeled anti-human IgG antibody (BIOSOURCE, Lot#6202) which had been diluted to 5000 times was added, and incubation was carried out for 1 hour at a room temperature. After washing, a substrate solution was added. After incubation, absorbance at 405 nm was measured using the MICROPLATE READ-ER Model 3550 (BioRad). The concentration of human IgG in the mouse serum was calculated based on the calibration curve obtained from the absorbance values of human IgG as the standard.

(2) Preparation of antibodies for administration

35 [0174] The monomer and the dimer of the scFv/CHO polypeptide were respectively diluted to 0.4 mg/mL or 0.25 mg/mL with sterile filtered PBS(-) on the day of administration to prepare samples for the administration.

(3) Preparation of a mouse model of human myeloma

[0175] A mouse model of human myeloma was prepared as follows. KPMM2 cells passaged in vivo (JP-Appl. 7-236475) by SCID mouse (Japan Clare) were suspended in RPMI1640 medium (GIBCO-BRL) containing 10% fetal bovine serum (GIBCO-BRL) and adjusted to 3 × 10⁷ cells/mL. 200 μL of the KPMM2 cell suspension (6 × 10⁶ cells/mouse) was transplanted to the SCID mouse (male, 6 week-old) via caudal vein thereof, which had been subcutane-ously injected with the asialo GM1 antibody (WAKO JUNYAKU, 1 vial dissolved in 5 mL) a day before the transplantation.

(4) Administration of antibodies

[0176] The samples of the antibodies prepared in (2), the monomer (250 μ L) and the dimer (400 μ L), were administered to the model mice of human myeloma prepared in (3) via caudal vein thereof. The administration was started from three days after the transplantation of KPMM2 cells and was carried out twice a day for three days. As a control, 200 μ L of sterile filtered PBS(-) was likewise administered twice a day for three days via caudal vein. Each group consisted of seven mice.

(5) Evaluation of antitumor effect of the monomer and the dimer of scFv/CHO polypeptide with the model mouse of human myeloma

[0177] The antitumor effect of the monomer and the dimer of scFv/CHO polypeptide with the model mice of human myeloma was evaluated in terms of the change of human IgG (M protein) concentration in the mouse serum and

survival time of the mice. The change of human IgG concentration was determined by measuring it in the mouse serum collected at 24 days after the transplantation of KPMM2 cells by ELISA described in the above (1). The amount of serum human IgG (M protein) in the serum of the PBS(-)-administered group (control) increased to about 8500 μ g/mL, whereas the amount of human IgG of the scFv/CHO dimer-administered group was remarkably low, that is, as low as one-tenth or less than that of the control group. Thus, the results show that the dimer of scFv/CHO strongly inhibits the growth of the KPMM2 cells (Fig. 32). As shown in Fig. 33, a remarkable elongation of the survival time was observed in the scFv/CHO dimer-administered group in comparison with the PBS(-)-administered group.

[0178] From the above, it is confirmed that the dimer of scFv/CHO has an antitumor effect for the human myeloma model mice. It is considered that the antitumor effect of the dimer of scFv/CHO, the modified antibody of the invention, results from the apoptosis-inducing action of the modified antibody.

5.15 Hemagglutination Test

10

30

35

40

45

50

[0179] Hemagglutination test and determination of hemagglutination were carried out in accordance with "Immuno-Biochemical Investigation", Zoku-Seikagaku Jikken Koza, edited by the Biochemical Society of Japan, published by Tokyo Kagaku Dojin.

[0180] Blood was taken from a healthy donor using heparin-treated syringes and washed with PBS(-) three times; and then erythrocyte suspension with a final concentration of 2% in PBS(-) was prepared. Test samples were the antibody MABL-2, the monomer and the dimer of the single chain Fv polypeptide produced by the CHO cells, and the monomer and the dimer of the single chain Fv polypeptide produced by E. coli, and the control was mouse IgG (ZYMED). For the investigation of the hemagglutination effect, round bottom 96-well plates available from Falcon were used. 50 μ L per well of the aforementioned antibody samples and 50 μ L of the 2% erythrocyte suspension were added and mixed in the well. After incubation for 2 hours at 37°C, the reaction mixtures were stored at 4°C overnight and the hemagglutination thereof was determined. As a control, 50 μ L per well of PBS(-) was used and the hemagglutination test was carried out in the same manner. The mouse IgG and antibody MABL-2 were employed at 0.01, 0.1, 1.0, 10.0 or 100.0 μ g/mL of the final concentration of the antibodies. The single chain Fvs were employed at 0.004, 0.04, 0.4, 4.0, 40.0 or 80.0 μ g/mL of the final concentration and further at 160.0 μ g/mL only in the case of the dimer of the polypeptide produced by E. coli. Results are shown in the Table 2. In the case of antibody MABL-2, the hemagglutination was observed at a concentration of more than 0.1 μ g/mL, whereas no hemagglutination was observed for both the monomer and the dimer of the single chain Fv.

Table 2

Hemagglutination Tes	st								
	Control	0.01	0.1	1	10	100	μg/mL		
mlgG	-	-	-	-	-	-			
MABL-2 (intact)	-	-	+	+++	+++	++			
	Control	0.004	0.04	0.4	4	40	80	μg/mL	
scFv/CHO monomer	-	-	-	-	-	-	-		
scFv/CHO-dimer	-	-	-	-	-	-	-		
	Control	0.004	0.04	0.4	4	40	80	160	μg/mL
scFv/E.coli monomer	-	-	-	-	-	-	-		
scFv/E.coli dimer	-	-	-	-	-	ı	-	-	

Example 6 Modified antibody $sc(Fv)_2$ comprising two H chain V regions and two L chain V regions and antibody MABL-2 scFvs having linkers with different length

6.1 Construction of plasmid expressing antibody MABL-2 sc(Fv)₂

[0181] For the preparation of a plasmid expressing the modified antibody [sc(Fv)₂] which comprises two H chain V regions and two L chain V regions derived from the antibody MABL-2, the aforementioned pCHOM2, which comprises the DNA encoding scFv derived from the MABL-2 described above, was modified by the PCR method as mentioned below and the resulting DNA fragment was introduced into pCHOM2.

[0182] Primers employed for the PCR are EF1 primer (SEQ ID NO: 30) as a sense primer, which is designed to hybridize to a DNA encoding EF1 α , and an antisense primer (SEQ ID NO: 19), which is designed to hybridize to the DNA encoding C-terminal of the L chain V region and to contain a DNA sequence coding for a linker region, and VLLAS

primer containing Sall restriction enzyme recognition site (SEQ ID NO 31).

15

30

35

40

50

[0183] $100 \,\mu$ I of the PCR solution comprises $10 \,\mu$ I of $10 \times$ PCR Buffer #I, 1 mM MgCl₂, 0.2 mM dNTPs (dATP, dGTP, dCTP and dTTP), 5 units of KOD DNA polymerase (Toyobo, Inc.), 1 μ M of each primer and 100 ng of the template DNA (pCHOM2). The PCR solution was heated at 94°C for 30 seconds, at 50°C for 30 seconds and at 74°C for 1 minute in order. This temperature cycle was repeated 30 times.

[0184] The PCR product was purified using the QIAquick PCR Purification Kit (QIAGEN) and digested by Sall. The resultant DNA fragment was cloned into pBluescript KS+ vector (Toyobo, Inc.). After DNA sequencing, a plasmid comprising the desired DNA sequence was digested by Sall and the obtained DNA fragment was connected using Rapid DNA Ligation Kit(BOEHRINGER MANNHEIM) to pCHOM2 digested by Sall. After DNA sequencing, a plasmid comprising the desired DNA sequence is designated as "pCHOM2(Fv)₂" (see Fig. 34). The nucleotide sequence and the amino acid sequence of the antibody MABL-2 sc(Fv)₂ region contained in the plasmid pCHOM2(Fv)₂ are shown in SEQ ID No. 32.

6.2 Preparation of Plasmid expressing antibody MABL-2 scFvs having linkers with various length

[0185] The scFvs containing linkers with different length and the V regions which are designed in the order of [H chain]-[L chain] (hereinafter "HL") or [L chain]-[H chain] (hereinafter "LH") were prepared using, as a template, cDNAs encoding the H chain and the L chain derived from the MABL-2 as mentioned below.

[0186] To construct HL type scFv the PCR procedure was carried out using pCHOM2(Fv)₂ as a template. In the PCR step, a pair of CFHL-F1 primer (SEW ID NO: 33) and CFHL-R2 primer (SEQ ID NO: 34) or a pair of CFHL-F2 primer (SEQ ID NO: 35) and CFHL-R1 primer (SEQ ID NO: 36) and KOD polymerase were employed. The PCR procedure was carried out by repeating 30 times the temperature cycle consisting of 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 1 minute in order to produce a cDNA for the H chain containing a leader sequence at 5'-end or a cDNA for the L chain containing FLAG sequence at 3'-end thereof. The resultant cDNAs for the H chain and the L chain were mixed and PCR was carried out by repeating 5 times the temperature cycle consisting of 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 1 minute in order using the mixture as templates and the KOD polymerase. To the reaction mixture were added CFHL-F1 and CFHL-R1 primers and then the PCR reaction was performed by repeating 30 times of the aforementioned temperature cycle to produce a cDNA for HL-0 type without a linker.

[0187] To construct LH type scFv, the PCR reaction was carried out using, as a template, pGEM-M2L and pGEM-M2H which contain cDNAs encoding the L chain V region and the H chain V region from the antibody MABL-2, respectively (see JP- Appl. 11-63557). A pair of T7 primer (SEQ ID NO: 37) and CFLH-R2 primer (SEQ ID NO: 38) or a pair of CFLH-F2 primer (SEQ ID NO: 39) and CFLH-R1 (SEQ ID NO: 40) and the KOD polymerase (Toyobo Inc.) were employed. The PCR reaction was performed by repeating 30 times the temperature cycle consisting of 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 1 minute in sequential order to produce a cDNA of an L chain containing a leader sequence at 5'-end or a cDNA of an H chain containing FLAG sequence at 3'-end thereof. The resultant cDNAs of the L chain and the H chain were mixed and PCR was carried out using this mixture as templates and the KOD polymerase by repeating 5 times the temperature cycle consisting of 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 1 minute in order. To the reaction mixture were added T7 and CFLH-R1 primers and the reaction was performed by repeating 30 times of the aforementioned temperature cycle. The reaction product was used as a template and PCR was carried out using a pair of CFLH-F4 primer (SEQ ID NO: 41) and CFLH-R1 primer by repeating 30 times the temperature cycle consisting of 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 1 minute in order to produce a cDNA of LH-0 type without a linker.

[0188] The resultant cDNAs of LH-0 and HL-0 types were digested by EcoRI and BamHI restriction enzymes (Takara Shuzo) and the digested cDNAs were introduced into an expression plasmid INPEP4 for mammalian cells using Ligation High (Toyobo Inc.), respectively. Competent <u>E. coli</u> JM109 (Nippon Gene) was transformed with each plasmid and the desired plasmids were isolated from the transformed <u>E. coli</u> using QIAGEN Plasmid Maxi Kit (QUIAGEN). Thus plasmids pCF2LH-0 and pCF2HL-0 were prepared.

[0189] To construct the expression plasmids of HL type containing linkers with different size, pCF2HL-0, as a template, and CFHL-X3 (SEQ ID NO: 42), CFHL-X4 (SEQ ID NO: 43), CFHL-X5 (SEQ ID NO: 44), CFHL-X6 (SEQ ID NO: 45) or CFHL-X7 (SEQ ID NO: 46), as a sense primer, and BGH-1 (SEQ ID NO: 47) primer, as an antisense primer, which is complementary with the vector sequence were employed. PCR reaction was carried out using the KOD polymerase by repeating 30 times the temperature cycle consisting of 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 1 minute in order and the reaction products were digested by restriction enzymes Xhol and BamHI (Takara Shuzo). The digested fragments were introduced between Xhol and BamHI sites in the pCF2HL-0 using Ligation High (Toyobo Inc.), respectively. Competent E. coli JM109 was transformed with each plasmid and the desired plasmids were isolated from the transformed E. coli by using Qiagen Plasmid Maxi kit. Thus expression plasmids pCF2HL-3, pCF2HL-5, pCF2HL-6 and pCF2HL-7 were prepared.

[0190] To construct expression plasmid for the transient expression in COS7 cells the plasmids pCF2HL-0, pCF2HL-

3, pCF2HL-4, pCF2HL-5, pCF2HL-6 and pCF2HL-7 were digested by restriction enzymes EcoRI and BamHI (Takara Shuzo) and the resultant fragments of approximately 800 bp were purified with agarose gel electrophoresis. The obtained fragments were introduced between EcoRI and BamHI sites in an expression plasmid pCOS1 for the expression in mammalian cells by using Ligation High (Toyobo Inc.), respectively. Competent <u>E. coli</u> DH5α (Toyobo Inc.) was transformed with each plasmid and the desired plasmids were isolated from the transformed <u>E. coli</u> using Qiagen Plasmid Maxi kit. Thus the expression plasmids CF2HL-0/pCOS1, CF2HL-3/pCOS1, CF2HL-4/pCOS1, CF2HL-5/pCOS1 and CF2HL-7/pCOS1 were prepared.

[0191] As a typical example of these plasmids, the construction of the plasmid CF2HL-0/pCOS1 is illustrated in Fig. 35 and the nucleotide sequence and the amino acid sequence of MABL2-scFv <HL-0> contained in the plasmid are shown in SEQ ID No. 48. Nucleotide sequences and amino acid sequences of the linker regions in these plasmids are also shown in Fig. 36.

[0192] To construct the expression plasmids of LH type containing linkers with different size, pCF2LH-0, as a template, and CFLH-X3 (SEQ ID NO: 49), CFLH-X4 (SEQ ID NO: 50), CFLH-X5 (SEQ ID NO: 51), CFLH-X6 (SEQ ID NO: 52) or CFLH-X7 (SEQ ID NO: 53), as a sense primer, and BGH-1 primer, as an antisense primer, which is complementary with the vector sequence were employed. PCR reaction was carried out using the KOD polymerase by repeating 30 times the temperature cycle consisting of 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 1 minute in order and the reaction products were digested by restriction enzymes XhoI and BamHI. The digested fragments were introduced into the pCF2LH-0 between XhoI and BamHI sites using Ligation High, respectively. Competent \underline{E} . \underline{coli} DH5 α (Toyobo Inc.) was transformed with each plasmid and the desired plasmids were isolated from the transformed \underline{E} . \underline{coli} using Qiagen Plasmid Maxi kit. Thus expression plasmids pCF2LH-3, pCF2LH-4, pCF2LH-5, pCF2LH-6 and pCF2LH-7 were prepared.

[0193] To construct expression plasmid for the transient expression in COS7 cells the plasmids pCF2LH-0, pCF2LH-3, pCF2LH-5, pCF2LH-6 and pCF2LH-7 were digested by restriction enzymes EcoRI and BamHI (Takara Shuzo) and the resultant fragments of approximately 800 bp were purified with agarose gel electrophoresis. The obtained fragments were introduced between XhoI and BamHI sites in an expression plasmid pCOS1 for the expression in mammalian cells by using the Ligation High, respectively. Competent E. coli DH5 α (Toyobo Inc.) was transformed with each plasmid and the desired plasmids were isolated from the transformed E. coli using the Qiagen Plasmid Maxi kit. Consequently, the expression plasmids CF2LH-0/pCOS1, CF2LH-3/pCOS1, CF2LH-4/pCOS1, CF2LH-5/pCOS1, CF2LH-6/pCOS1 and CF2LH-7/pCOS1 were prepared.

30 [0194] As a typical example of these plasmids, the construction of the plasmid CF2LH-0/pCOS1 is illustrated in Fig. 37 and the nucleotide sequence and the amino acid sequence of MABL2-scFv <LH-0> contained in the plasmid are shown in SEQ ID No. 54. Nucleotide sequences and amino acid sequences of the linker regions in these plasmids are also shown in Fig. 38.

6.3 Expression of scFvs and sc(Fv)₂ in COS7 cells

10

35

40

50

55

(1) Preparation of culture supernatant using serum-containing culture medium

[0195] The HL type and LH type of scFvs and $sc(Fv)_2$ were transiently expressed in COS7 cells (JCRB9127, Japan Health Sciences Foundation). COS7 cells were subcultured in DMEM media (GIBCO BRL) containing 10% fetal bovine serum (HyClone) at 37°C in carbon dioxide atmosphere incubator. The COS7 cells were transfected with CF2HL-0, 3 ~ 7/pCOS1, or CF2LH-0, 3 ~ 7/pCOS1 prepared in Example 6.2 or pCHOM2(Fv)₂ vectors by electroporation using the Gene Pulser apparatus (BioRad). The DNA (10 μ g) and 0.25 ml of 2 \times 10⁷ cells/ml in DMEM culture medium containing 10% FBS and 5 mM BES (SIGMA) were added to a cuvette. After standing for 10 minutes the mixtures were treated with pulse at 0.17kV, 950 μ F of electric capacity. After the restoration for 10 minutes at room temperature, the electroporated cells were transferred into the DMEM culture medium (10%FBS) in 75 cm³ flask. After culturing for 72 hours, the culture supernatant was collected and centrifuged to remove cell fragments. The culture supernatant was subjected to the filtration using 0.22 μ m bottle top filter (FALCON) to obtain the culture supernatant (hereinafter "CM").

(2) Preparation of culture supernatant using serum-free culture medium

[0196] Cells transfected in the same manner as (1) were transferred to the DMEM medium (10% FBS) in 75 cm³ flask and cultured overnight. After the culture, the supernatant was discarded and the cells were washed with PBS and then added to CHO-S-SFM II medium (GIBCO BRL). After culturing for 72 hours, the culture supernatant was collected, centrifuged to remove cell fragments and filtered using 0.22 μm bottle top filter (FALCON) to obtain CM.

6.4 Detection of scFvs and sc(Fv)₂ in CM of COS7

[0197] The various MABL2-scFVs and sc(Fv)₂ in CM of COS7 prepared in the aforementioned Example 6.3 (2) were detected by Western Blotting method.

[0198] Each CM of COS7 was subjected to SDS-PAGE electrophoresis and transferred to REINFORCED NC membrane (Schleicher & Schuell). The membrane was blocked with 5% skim milk (Morinaga Nyu-gyo) and washed with TBS. Then an anti-FLAG antibody (SIGMA) was added thereto. The membrane was incubated at room temperature and washed. A peroxidase labeled mouse IgG antibody (Jackson Immuno Research) was added. After incubating and washing at room temperature, the substrate solution (Kirkegaard Perry Laboratories) was added to develop color (Fig. 39).

6.5 Flow cytometry

10

25

30

35

40

45

50

[0199] Flow cytometry was performed using the culture supernatants of COS7 cells prepared in Example 6.3 (1) to measure the binding of the MABL2-scFVs and $sc(Fv)_2$ to human Integrin Associated Protein (IAP) antigen. The culture supernatants to be tested or a culture supernatant of COS7 cells as a control was added to 2×105 cells of the mouse leukemia cell line L1210 expressing human IAP. After incubating on ice and washing, $10\,\mu\text{g/mL}$ of the mouse anti-FLAG antibody (SIGMA) was added and then the cells were incubated and washed. Then, the FITC labeled anti-mouse IgG antibody (BECTON DICKINSON) was added thereto and the cells were incubated and washed again. The fluorescence intensity was measured using the FACScan apparatus (BECTON DICKINSON). The results of the flow cytometry show that the MABL2-scFvs having linkers with different length and the $sc(Fv)_2$ in the culture supernatants of COS7 have high affinity to human IAP (see Figs. 40a and 40b).

6.6 Apoptosis-inducing Effect in vitro

[0200] An apoptosis-inducing action of the culture supernatants of COS7 prepared in Example 6.3 (1) was examined by Annexin-V staining (Boehringer Mannheim) using the L1210 cells transfected with human IAP gene (hIAP/L1210). **[0201]** To 5×10^4 cells of the hIAP/L1210 cells were added the culture supernatants of COS7 cells transfected with each vectors or a culture supernatant of COS7 cells as a control at 10% of the final concentration and the mixtures were cultured for 24 hours. Then, the Annexin-V/PI staining was performed and the fluorescence intensity was measured using the FACScan apparatus (BECTON DICKINSON). The results revealed that scFvs <HL3, 4, 6, 7, LH3, 4, 6, 7> and sc(Fv)₂ in CM of COS7 induced remarkable cell death of hIAP/L1210 cells. These results are shown in Fig. 41.

6.7 Construction of vectors for the expression of scFvs and sc(Fv)₂ in CHO cells

[0202] To isolate and purify MABL2-scFvs and sc(Fv)₂ from culture supernatant, the expression vectors for expressing in CHO cells were constructed as below.

[0203] The EcoRI-BamHI fragments of pCF2HL-0, $3\sim7$, and pCF2LH-0, $3\sim7$ prepared in Example 6.2 were introduced between EcoRI and BamHI sites in an expression vector pCHO1 for CHO cells using the Ligation High. Competent <u>E. coli</u> DH5 α was transformed with them. The plasmids were isolated from the transformed <u>E. coli</u> using QIAGEN Plasmid Midi kit (QIAGEN) to prepare expression plasmids pCHOM2HL-0, $3\sim7$, and pCHOM2LH-0, $3\sim7$.

6.8 Production of CHO cells expressing MABL2-scFvs <HL-0, $3\sim7$ >, MABL2-scFvs <LH-0, $3\sim7$ > and sc(Fv)₂ and preparation of the culture supernatants thereof

[0204] CHO cells were transformed with each of the expression plasmids pCHOM2HL-0, $3 \sim 7$, and pCHOM2LH-0, $3 \sim 7$, constructed in Example 6.7 and pCHOM2(Fv)₂ vector to prepare the CHO cells constantly expressing each modified antibody. As a typical example thereof, the production of the CHO cells constantly expressing MABL2-scFv <HL-5> or sc(Fv)₂ is illustrated as follows.

[0205] The expression plasmids pCHOM2HL-5 and pCHOM2(Fv) $_2$ were linearized by digesting with a restriction enzyme Pvul and subjected to transfection to CHO cells by electroporation using Gene Pulser apparatus (BioRad). The DNA (10 μ g) and 0.75 ml of PBS with 1 \times 10 7 cells/ml were added to a cuvette and treated with pulse at 1.5 kV, 25 μ F of electric capacity. After the restoration for 10 minutes at room temperature, the electroporated cells were transferred into nucleic acid-containing α -MEM culture medium (GIBCO BRL) containing 10% fetal bovine serum and cultured. After culturing overnight, the supernatant was discarded. The cells were washed with PBS and added to nucleic acid-free α -MEM culture medium (GIBCO BRL) containing 10% fetal bovine serum. After culturing for two weeks, the cells were cultured in a medium containing 10 nM (final concentration) methotrexate (SIGMA), then 50 nM and 100 nM methotrexate. The resultant cells were cultured in serum-free CHO-S-SFM II medium (GIBCO BRL) in a

roller bottle. The culture supernatant was collected, centrifuged to remove cell fragments and filtered using a filter with 0.22 µm of pore size to obtain CM, respectively.

[0206] According to the above, CHO cells which constantly express MABL2-scFvs <HL-0, -3, -4, -6, -7> and <LH-0, -3, -4, -5, -6, -7> and CMs thereof were obtained.

6.9 Purification of dimer of MABL2-scFv <HL-5> and sc(Fv)₂

[0207] The MABL2-scFv <HL-5> and the sc(Fv)₂ were purified from CMs prepared in Example 6.8 by two types of purification method as below.

<Purification Method 1>

10

25

30

35

40

45

50

55

[0208] HL-5 and $sc(Fv)_2$ were purified by the anti-FLAG antibody affinity column chromatography utilizing the FLAG sequence located at C-terminal of the polypeptides and by gel filtration. One liter of CM as obtained in 6.8 was applied onto a column (7.9ml) prepared with anti-FLAG M2 Affinity gel (SIGMA) equilibrated with 50 mM Tris-HCl buffer (TBS, pH 7.5) containing 150 mM NaCl. After washing the column with TBS, the scFv was eluted by 0.1 M glycine-HCl buffer, pH 3.5. The resultant fractions were analyzed by SDS-PAGE and the elution of the scFv was confirmed. The scFv fraction was mixed with Tween 20 up to 0.01% of the final concentration and concentrated using Centricon-10 (MILI-PORE). The concentrate was applied onto TSKgel G3000SWG column (7.5 \times 600 mm) equilibrated with 20 mM acetate buffer (pH 6.0) containing 150 mM NaCl and 0.01% Tween 20. At 0.4 mL/minute of the flow rate, the scFv was detected by the absorption at 280 nm. The HL-5 was eluted as the major fraction in the position of the dimer and the sc(Fv)₂ was eluted in the position of the monomer.

<Purification Method 2>

[0209] HL-5 and $sc(Fv)_2$ were purified using three steps comprising ion exchange chromatography, hydroxyapatite and gel filtration. In the ion exchange chromatography, Q sepharose fast flow column (Pharmacia) was employed for HL-5 and SP-sepharose fast flow column was employed for $sc(Fv)_2$. In and after the second step, HL-5 and $sc(Fv)_2$ were processed by the same procedure.

First step for HL-5

[0210] CM of HL-5 was diluted to two times with 20 mM Tris-HCl buffer (pH 9.0) containing 0.02% Tween 20 and then the pH was adjusted to 9.0 with 1 M Tris. The solution was applied onto Q Sepharose fast flow column equilibrated with 20 mM Tris-HCl buffer (pH 8.5) containing 0.02% Tween 20. A polypeptide adsorbed to the column was eluted by a linear gradient of NaCl in the same buffer, from 0.1 to 0.55 M. Monitoring the eluted fractions by SDS-PAGE, the fractions containing HL-5 were collected and subjected to hydroxyapatite of the second step.

First step for sc(Fv)₂

[0211] CM of the $sc(Fv)_2$ was diluted to two times with 20mM acetate buffer (pH 5.5) containing 0.02% Tween 20 and its pH was adjusted to 5.5 with 1 M acetic acid. The solution was applied onto a SP-Sepharose fast flow column equilibrated with 20 mM acetate buffer (pH 5.5) containing 0.02% Tween 20. A polypeptide adsorbed to the column was eluted by a linear gradient of NaCl in the buffer, from 0 to 0.5 M. Monitoring the eluted fractions by SDS-PAGE, the fractions containing the $sc(Fv)_2$ were collected and subjected to hydroxyapatite of the second step.

Second step: Hydroxyapatite chromatography of HL-5 and sc(Fv)₂

[0212] The fractions of HL-5 and sc(Fv)₂ obtained in the first step were separately applied onto the hydroxyapatite column (Type I, BIORAD) equilibrated with 10 mM phosphate buffer containing 0.02% Tween 20, pH 7.0. After washing the column with the same buffer, polypeptides adsorbed to the column were eluted by a linear gradient of the phosphate buffer up to 0.5 M. Monitoring the eluted fractions by SDS-EAGE, the fractions containing the desired polypeptides were collected.

Third step: Gel filtration of HL-5 and sc(Fv)₂

[0213] Each fraction obtained at the second step was separately concentrated with CentriPrep-10 (MILIPORE) and applied onto a Superdex 200 column (2.6×60 cm, Pharmacia) equilibrated with 20 mM acetate buffer (pH 6.0) con-

taining 0.02% Tween 20 and 0.15 M NaCl. HL-5 was eluted in the position of the dimer, and sc(Fv)HL-5 and sc(Fv)₂ were eluted in the position of the monomer as a major peek respectively.

[0214] Since the monomer of HL-5 was hardly detected by both purification methods, it is proved that the dimers of single chain Fvs are formed in high yields when the linker for the single chain Fv contains around 5 amino acids. Furthermore, the dimer of HL-5 and the sc(Fv)₂ were stably preserved for a month at 4°C after the purification.

6.10 Evaluation of the binding activity of purified dimer of scFv <HL-5> and sc(Fv)2 against antigen

[0215] Flow cytometry was performed using the purified dimer of MABL2-scFv <HL-5> and the purified sc(Fv) $_2$ in order to evaluate the binding to human Integrin Associated Protein (IAP) antigen. $10\mu g/ml$ of the purified dimer of MABL2-scFv <HL-5>, the purified sc(Fv) $_2$, the antibody MABL-2 as a positive control or a mouse IgG (Zymed) as a negative control was added to 2×10^5 cells of the mouse leukemia cell line L1210 expressing human IAP (hIAP/L1210) or the cell line L1210 transformed with pCOS1 (pCOS1/L1210) as a control. After incubating on ice and washing, $10\mu g/mL$ of the mouse anti-FLAG antibody (SIGMA) was added and then the cells were incubated and washed. FITC labeled anti-mouse IgG antibody (BECTON DICKINSON) was added thereto and the cells were incubated and washed again. Then the fluorescence intensity was measured using the FACScan apparatus (BECTON DICKINSON).

[0216] Since the purified dimer of MABL2-scFv <HL-5> and the purified sc(Fv)₂ were specifically bound to hIAP/L1210 cells, it is confirmed that the dimer of scFv <HL-5> and the sc(Fv)₂ have high affinity to human IAP (see Fig. 42).

20 6.11 Apoptosis-inducing activity in vitro of purified dimer of scFv <HL-5> and sc(Fv)₂

10

30

40

45

50

55

[0217] An apoptosis-inducing action of the purified dimer of MABL2-scFv <HL-5> and the purified sc(Fv)₂ were examined by Annexin-V staining (Boehringer Mannheim) using the L1210 cells (hIAP/L1210) in which human IAP gene had been introduced and cells of human leukemic cell line CCRF-CEM.

[0218] Different concentrations of the purified dimer of MABL2-scFv <HL-5>, the purified MABL2-sc(Fv)₂, the antibody MABL-2 as a positive control or a mouse IgG as a negative control were added to 5 × 10⁴ cells of hIAP/L1210 cell line or 1 × 10⁵ cells of CCRF-CEM cell line. After culturing for 24 hours, the Annexin-V staining was carried out and the fluorescence intensity thereof was measured using the EACScan apparatus (BECTON DICKINSON). As a result the dimer of MABL2-scFv <HL-5> and the MABL2-sc(Fv)₂ remarkably induced cell death of hHIAP/L1210 and CCRF-CEM in concentration-dependent manner (see Fig. 43). As a result it was shown that the dimer of MABL2-scFv <HL-5> and MABL2-sc(Fv)₂, had improved efficacy of inducing apoptosis compared with original antibody MABL-2.

6.12 Hemagglutination Test of the purified dimer of scFv <HL-5> and the sc(Fv)₂

35 [0219] Hemagglutination test was carried out using different concentrations of the purified dimer of scFv <HL-5> and the purified sc(Fv)₂ in accordance with Example 5.15.

[0220] The hemagglutination was observed with the antibody MABL-2 as a positive control, whereas no hemagglutination was observed with both the single chain antibody MABL2-SC(Fv)₂ and the MABL2-scFv <HL-5>. Further, there was no substantial difference in the hemagglutination between two buffers employed with the antibody MABL-2. These results are shown in Table 3.

i5			i	0		;)		ī
•	Нета	ıgglutina	Hemagglutination Test	, -				•	TABLE 3	က						
		Diluer	Diluent : PBS												π)	(μg/ml)
	cont	28.9	14.45	7.225	3.6125	1.8063	0.9031	0.4516	0.2258	0.1129	0.0564	0.0282	0.0141	0.0071	0.0035	0.0018
MABL2- sc(Fv) ₂	l	t	1	1	1	1	1	1	1	1	1	1	1	į	ŧ	ı
	cont	28.0	14.0	7.0	3.5	1.75	0.875	0,4375	0.2188	0.1094	0.0547	0.0273	0.0137	0.0068	0.0034	0.0017
MABL2- sc(Fv) <hl5></hl5>	ı	ſ	1	1	ı	ı	I	I	ı	1.	1	I	I	1	1	ŀ
	cont	88	94	20	10	5	2.5	1.25	0.625	0.3125	0.1563	0.0781	0.0391	0.0195	0.0098	0.0049
MABL2 (intact)	:	+	+	+	+	+	+ .	+	+	+	+1	1	1	ı	l	I
mlgG	i	i	ſ	l	1	1	ı	1	ı	1		I	l	1	1	ı
	Diluer	nt: Ace	Diluent: Acetate Buffer	fer			π)	(m/g n/)								
	cont	8	\$	70	5	5	2.5	1.25	0.625	0.3125	0.1563	0.0781	0.0391	0.0195	0.0098	0.0049
MABL2 (Intact)	1	+	+	+	+	+	+	+	+	+	+	+	I	ţ	1	ı

6.13 Antitumor effect of the purified dimer of scFv <HL-5> and the sc(Fv)₂ for a model mouse of human myeloma

[0221] The antitumor effects were tested for the dimer of scFv < HL-5> and the $sc(Fv)_2$ prepared and purified in Examples 6.8 and 6.9. The test was performed by using the mouse model for human myeloma produced in Example 5.1 and determining the amount of M protein produced by human myeloma cells in the mouse serum using ELISA and examining survival time of the mice. Then, the antitumor effects of the dimer of scFv < HL-5> and the $sc(Fv)_2$ were evaluated in terms of the change of the amount of M protein in the mouse serum and the survival time of the mice.

[0222] In the test, the HL-5 and the $sc(Fv)_2$ were employed as a solution at 0.01, 0.1 or 1 mg/mL in vehicle consisting of 150 mM NaCl, 0.02% Tween and 20 mM acetate buffer, pH 6.0 and administered to the mice at 0.1, 1 or 10 mg/kg of dosage. Control group of mice were administered only with the vehicle.

[0223] The mouse serum was gathered 26 days after the transplantation of the human myeloma cells and the amount of M protein in the serum was measured using ELISA according to Example 5.14. As a result, the amount of M protein in the serum of both mice groups administered with HL-5, the dimer and the $sc(Fv)_2$ decreased in dose-dependent manner (see Fig. 44). Furthermore, a significant elongation of the survival time was observed in both groups administered with the HL-5 (Fig. 45) and with the $sc(Fv)_2$ (Fig. 46) in comparison with the control group administered with the vehicle. These results show that the HL-5 and the $sc(Fv)_2$ of the invention have excellent antitumor effect in vivo.

Example 7

10

25

30

35

40

45

50

20 Single chain Fv comprising H chain V region and L chain V region of human antibody 12B5 against human MPL

[0224] A DNA encoding V regions of human monoclonal antibody 12B5 against human MPL was constructed as follows:

7.1 Construction of a gene encoding H chain V region of 12B5

[0225] The gene encoding H chain V region of human antibody 12B5 binding to human MPL was designed by connecting the nucleotide sequence of the gene thereof (SEQ ID NO: 55) at the 5'-end to the leader sequence (SEQ ID NO: 56) originated from human antibody gene (Eur. J. Immunol. 1996; 26: 63-69). The designed nucleotide sequence was divided into four oligonucleotides having overlapping sequences of 15 bp each (12B5VH-1, 12B5VH-2, 12B5VH-3, 12B5VH-4). 12B5VH-1 (SEQ ID NO: 57) and 12B5VH-3 (SEQ ID NO: 59) were synthesized in the sense direction, and 12B5VH-2 (SEQ ID NO: 58) and 12B5VH-4 (SEQ ID NO: 60) in the antisense direction, respectively. After assembling each synthesized oligonucleotide by respective complementarity, the outside primers (12B5VH-S and 12B5VH-A) were added to amplify the full length of the gene. 12B5VH-S (SEQ ID NO: 61) was designed to hybridize to 5'-end of the leader sequence by the forward primer and to have Hind III restriction enzyme recognition site and Kozak sequence, and 12B5VH-A (SEQ ID NO: 62) was designed to hybridize to the nucleotide sequence encoding C-terminal of H chain V region by the reverse primer and to have a splice donor sequence and BamHI restriction enzyme recognition site, respectively.

[0226] 100μl of the PCR solution containing 10μl of 10 x PCR Gold Buffer II, 1.5mM MgCl₂, 0.08mM dNTPs (dATP, dGTP, dCTP, dTTP), 5 units of DNA-polymerase AmpliTaq Gold (all by PERKIN ELMER) and each 2.5 p mole of each synthesized oligonucleotide (12B5VH-1 to -4) was heated at 94°C of the initial temperature for 9 minutes, at 94°C for 2 minutes, at 55°C for 2 minutes and 72°C for 2 minutes. After repeating the cycle two times each 100 pmole of external primer 12B5VH-S and 12B5VH-A was added. The mixture was subjected to the cycle consisting of at 94°C for 30 seconds, at 55°C for 30 seconds and 72°C for 1 minute 35 times and heated at 72°C for further 5 minutes.

[0227] The PCR product was purified by 1.5% low-melting-temperature agarose gel (Sigma), digested by restriction enzymes BamHI and Hind III, and cloned into expression vector HEF-gy1 for human H chain. After determining the DNA sequence the plasmid containing the correct DNA sequence was named HEF-12B5H-gy1.

[0228] The HEF-12B5H-gγ1 was digested by restriction enzymes EcoRI and BamHI to produce the gene encoding 12B5VH which was then cloned into an expression vector pCOS-Fd for human Fab H chain to produce pFd-12B5H. The expression vector for human Fab H chain was constructed by amplifying the DNA (SEQ ID NO: 63) containing the intron region existing between the genes encoding human antibody H chain V region and the constant region, and the gene encoding a part of the constant region of human H chain by PCR, and inserting the PCR product into animal cell expression vector pCOS1. The human H chain constant region was amplified for the gene under the same conditions mentioned above using as the template HEF-gγ1, as the forward primer G1CH1-S (SEQ ID NO: 64) which was designed to hybridize to 5'-end sequence of intron 1 and to have restriction enzyme recognition sites EcoRI and BamHI and as the reverse primer G1CH1-A (SEQ ID NO: 65) which was designed to hybridize to 3'-end DNA of human H chain constant region CH1 domain and to have a sequence encoding a part of hinge region, two stop codons and restriction enzyme recognition site Bg1 II.

[0229] The nucleotide sequence and amino acid sequence of the reconstructed 12B5H chain variable region which were included in plasmids HEF-12B5H-gy1 and pFd-12B5H are shown in SEQ ID NO: 66.

7.2 Construction of the gene encoding 12B5 L chain V region

10

25

30

35

40

45

50

55

[0230] The gene encoding L chain V region of human antibody 12B5 binding to human MPL was designed by connecting the nucleotide sequence of gene (SEQ ID NO: 67) at the 5'-end to the leader sequence (SEQ ID NO: 68) originated from human antibody gene 3D6 (Nuc. Acid Res. 1990: 18; 4927). In the same way as mentioned above the designed nucleotide sequence was divided into four oligonucleotides having overlapping sequences of 15 bp each (12B5VL-1, 12B5VL-2, 12B5VL-3, 12B5VL-4) and synthesized respectively. 12B5VL-1 (SEQ ID NO: 69) and 12B5VL-3 (SEQ ID NO: 71) had sense sequences, end 12B5VL-2 (SEQ ID NO: 70) and 12B5VL-4 (SEQ ID NO: 72) had antisense sequences, respectively. Each of the synthesized oligonucleotides was assembled by respective complementarity and mixed with the external primer (12B5VL-S and 12B5VL-A) to amplify the full length of the gene. 12B5VL-S (SEQ ID NO: 73) was designed to hybridize to 5'-end of the leader sequence by the forward primer and to have Hind III restriction enzyme recognition site and Kozak sequence. 12B5VL-A (SEQ ID NO: 74) was designed to hybridize to the nucleotide sequence encoding C-terminal of L chain V region by the reverse primer and to have a splice donor sequence and BamHI restriction enzyme recognition site.

[0231] Performing the PCR as mentioned above, the PCR product was purified by 1.5% low-melting-temperature agarose gel (Sigma), digested by restriction enzymes BamHl and Hind III, and cloned into an expression vector HEF-g κ for human L chain. After determining the DNA sequence the plasmid containing the correct DNA sequence was named HEF-12B5L-g κ . The nucleotide sequence and amino acid sequence of the reconstructed 12B5 L chain V region which were included in plasmid HEF-12B5L-g κ are shown in SEQ ID NO:75.

7.3 Production of reconstructed 12B5 single chain Fv (scFv)

[0232] The reconstructed 12B5 antibody single chain Fv was designed to be in the order of 12B5VH-linker-12B5VL and to have FLAG sequence (SEQ ID NO: 76) at C-terminal to facilitate the detection and purification. The reconstructed 12B5 single chain Fv (sc12B5) was constructed using a linker sequence consisting of 15 amino acids represented by (Gly₄Ser)₃.

(1) Production of the reconstructed 12B5 single chain Fv using the linker sequence consisting of 15 amino acids

[0233] The gene encoding the reconstructed 12B5 antibody single chain Fv, which contained the linker sequence consisting of 15 amino acids, was constructed by connecting 12B5 H chain V region, linker region and 12B5 L chain V region which was amplified by PCR respectively. This method is schematically shown in Fig. 47. Six PCR primers (A-F) were used for production of the reconstructed 12B5 single chain Fv. Primers A, C, and E had sense sequences, and primers B, D, and F had antisense sequences.

[0234] The forward primer 12B5-S (Primer A, SEQ ID NO: 77) for H chain V region was designed to hybridize to 5'-end of H chain leader sequence and to have EcoRI restriction enzyme recognition site. The reverse primer HuVHJ3 (Primer B, SEQ ID NO: 78) for H chain V region was designed to hybridize to DNA encoding C-terminal of H chain V region.

[0235] The forward primer RHuJH3 (Primer C, SEQ ID NO: 79) for the linker was designed to hybridize to DNA encoding the N-terminal of the linker and to overlap DNA encoding the C-terminal of H chain V region. The reverse primer RHuVK1 (Primer D, SEQ ID NO: 80) for the linker was designed to hybridize to DNA encoding the C-terminal of the linker and overlap DNA encoding the N-terminal of L chain V region.

[0236] The forward primer HuVK1.2 (Primer E, SEQ ID NO: 81) for L chain V region was designed to hybridize to DNA encoding the N-terminal of L chain V region. The reverse primer 12B5F-A for L chain V region (Primer F, SEQ ID NO: 82) was designed to hybridize to DNA encoding C-terminal of L chain V region and to have the sequence encoding FLAG peptide (Hopp, T. P. et al., Bio/Technology, 6, 1204-1210, 1988), two transcription stop codons and Notl restriction enzyme recognition site.

[0238] 50μl of PCR solution for the first step contained 5μl of 10 x PCR Gold Buffer II, 1.5mM MgCl₂, 0.08mM dNTPs, 5 units of DNA polymerase AmpliTaq Gold (all by PERKIN ELMER), each 100 pmole of each primer and 100ng of each template DNA. The PCR solution was heated at 94°C of the initial temperature for 9 minutes, at 94 for 30 seconds, 55°C for 30 seconds and 72°C for 1 minute. After repeating the cycle 35 times the reaction mixture was further heated 72°C for 5 minutes.

[0239] The PCR products A-B, C-D, and E-F were assembled by the second PCR. PCR mixture solution for the second step of $98\mu l$ containing as the template $1\mu l$ of the first PCR product A-B, $0.5\mu l$ of PCR product C-D and $1\mu l$ of PCR product E-F, $10\mu l$ of $10 \times PCR$ Gold Buffer II, $1.5mM MgCl_2$, 0.08mM dNTPs, 5 units of DNA polymerase AmpliTaq Gold (all by PERKIN ELMER) was heated at $94^{\circ}C$ of the initial temperature for 9 minutes, at $94^{\circ}C$ for 2 minutes. After repeating the cycle two times, each 100 pmole of each of primers A and F were added. After repeating the cycle consisting of at $94^{\circ}C$ for 30 seconds, $55^{\circ}C$ for 30 seconds and $72^{\circ}C$ for 100 minute 1000 mixture was heated at 1000 minutes.

[0240] The DNA fragments produced by the second PCR were purified using 1.5% low-melting-temperature agarose gel, digested by EcoRI and NotI, and cloned into pCHO1 vector and pCOS1 vector (Japanese Patent Application No. 8-255196). The expression vector pCHO1 was a vector constructed by deleting the antibody gene from DHFR-ΔE-rvH-PM1-f (see WO92/19759) by EcoRI and Smal digestion, and connecting to EcoRI-NotI-BamHI Adaptor (TAKARA SHUZO). After determining the DNA sequence the plasmids containing the DNA fragment encoding the correct amino acid sequence of reconstructed 12B5 single chain Fv were named pCHO-sc12B5 and pCOS-sc12B5. The nucleotide sequence and amino acid sequence of the reconstructed 12B5 single chain Fv included in the plasmids pCHO-sc12B5 and pCOS-sc12B5 are shown in SEQ ID NO: 84.

7.4 Expression of antibody 12B5 (IgG, Fab) and single chain Fv polypeptide by animal cell

[0241] Antibody 12B5 (IgG, Fab) and single chain Fv derived from antibody 12B5 were expressed by using COS-7 cells or CHO cells.

[0242] The transient expression using COS-7 cells was performed as follows. The transfection was performed by electroporation method using Gene Pulser equipment (BioRad). For the expression of antibody 12B5 (IgG) each 10μg of the above-mentioned expression vector HEF-12B5H-gγ1 and HEF-12 B5L-gκ were added, for the expression of 12B5Fab fragment each 10μg of pFd-12B5H and HEF-12B5L-gκ were added and for the expression of single chain Fv 10μg of pCOS-sc12B5 was added to COS-7 cells (1×10^7 cells/ml) suspended in 0.8ml of PBS. The mixture kept in a cuvette was treated by pulse at the capacity of 1.5kV, 25μFD. After recovering for 10 minutes in a room temperature the electroporated cells were added to DMEM culture medium (GIBCO BRL) containing 10% bovine fetal serum cultivated. After cultivating overnight the cells were washed once by PBS, added to serum-free medium CHO-S-SFM.II and cultivated for 2 days. The culture medium was centrifuged to remove cell debris and filtered with 0.22μm filter to prepare the culture supernatant.

[0243] To establish a stable expression CHO cell line for the single chain Fv (polypeptide) derived from antibody 12B5, the expression vector pCHO-sc12B5 was introduced into CHO cells as follows.

[0244] The expression vector was introduced into CHO cells by electroporation method using Gene Pulser equipment (BioRad). Linearized DNA (100μg) obtained by digestion with restriction enzyme Pvul and CHO cells (1x10⁷ cells /ml) suspended in 0.8 ml of PBS were mixed in a cuvette, left stationary on ice for 10 minutes and treated with pulse at the capacity of 1.5kV, 25μFD. After recovering for 10 minutes at a room temperature the electroporated cells were added to CHO-S-SFM II (GIBCO BRL) containing 10% bovine fetal serum and cultivated. After cultivating for 2 days the cultivation was continued in CHO-S-SFM II (GIBCO BRL) containing 5nM methotrexate (SIGMA) and 10% bovine fetal serum. From thus obtained clones a clone with high expression rate was selected as the production cell line for 12B5 single chain Fv. After cultivating in serum-free medium CHO-S-SFM II (GIBCO BRL) containing 5nM methotrexate (SIGMA), the culture supernatant was obtained by centrifugal separation of cell debris.

7.5 Purification of single chain Fv derived from 12B5 produced by CHO cells

50 [0245] The culture supernatant of CHO cell line expressing 12B5 single chain Fv obtained in 7.4 was purified by anti-FLAG antibody column and gel filtration column.

(1) Anti-FLAG antibody column

10

20

25

30

35

40

[0246] The culture supernatant was added to anti-FLAG M2 affinity gel (SIGMA) equilibrated by PBS. After washing the column by the same buffer the proteins adsorbed to the column were eluted by 0.1M glycine-HCl buffer (pH 3.5). The eluted fractions were immediately neutralized by adding 1M Tris-HCl buffer (pH 8.0). The eluted fractions were analyzed by SDS-PAGE and the fraction which was confirmed to contain the single chain Fv was concentrated using

Centricon-10 (MILLIPORE).

(2) Gel filtration

10

15

30

35

40

50

[0247] The concentrated solution obtained in (1) was added to Superdex200 column (10x300mm, AMERSHAM PHARMACIA) equilibrated by PBS containing 0.01% Tween20.

[0248] The product sc12B5 was eluted in two peaks (A, B) (see Fig. 48). The fractions A and B were analyzed using the 14%-SDS-polyacrylamide gel. The sample was processed by electrophoresis in the presence and absence of a reducing agent according to Laemmli method, and stained by Coomassie Brilliant Blue after the electrophoresis. As shown in Fig. 49 the fractions A and B, regardless of the presence of the reducing agent or its absence, produced a single band having an apparent molecular weight of about 31 kD. When the fractions A and B were analyzed by gel filtration using Superdex200 PC 3.2/30 (3.2x300mm, AMERSHAM PHARMACIA), the fraction A produced an eluted product at an apparent molecular weight of about 44 kD and the fraction B produced at 22kD (see Fig. 50a and b). The results show that the fraction A is the non-covalent bond dimer of sc12B5 single chain Fv, and B is the monomer.

7.6 Measurement of TPO-like agonist activity of various single chain Fvs

[0249] The TPO-like activity of anti-MPL single chain antibody was evaluated by measuring the proliferation activity to Ba/F3 cells (BaF/mpl) expressing human TPO receptor (MPL). After washing BaF/Mpl cells two times by RPMI1640 culture medium (GIBCO) containing 10% bovine fetal serum (GIBCO), the cells were suspended in the culture medium at cell density of 5x10⁵ cells/ml. The anti-MPL single chain antibody and human TPO (R&D Systems) was diluted with the culture medium, respectively. 50μl of the cell suspension and 50μl of the diluted antibody or human TPO were added in 96-well microplate (flat bottom) (Falcon), and cultivated in CO2 incubator (CO2 concentration: 5%) for 24 hours. After the incubation 10μl of WST-8 reagent (reagent for measuring the number of raw cells SF: Nacalai Tesque) was added and the absorbance was immediately measured at measurement wavelength of 450nm and at refference wavelength of 620nm using fluorescence absorbency photometer SPECTRA Fluor (TECAN). After incubating in CO₂ incubator (CO₂ concentration: 5%) for 2 hours, the absorbance at 450nm of measurement wavelength and 620nm of refference wavelength was again measured using SPECTRA Fluor. Since WST-8 reagent developed the color reaction depending upon the number of live cells at wavelength of 450nm, the proliferation activity of BaF/Mpl based on the change of absorbance in 2 hours was evaluated by ED 50 calculated as follows. In the proliferation reaction curve wherein the absorbance was plotted on the ordinate against the antibody concentration on the abscissa, the absorbance at the plateau was set 100% reaction rate. Obtaining an approximation formula by straight line approximation method based on the plotted values close to 50% reaction rate, the antibody concentration of 50% reaction rate was calculated and adopted as ED 50.

[0250] The results of the agonist activity to MPL measured by using culture supernatants of COS-7 cells expressing various 12B5 antibody molecules showed as illustrated in Fig. 51 that 12B5IgG having bivalent antigen-binding site increased the absorbance in concentration-dependent manner and had TPO-like agonist activity (ED50; 29nM), while the agonist activity of 12B5Fab having monovalent antigen-biding site was very weak (ED50; 34,724nM). On the contrary the single chain Fv (sc12B5) having monovalent antigen-binding site like Fab showed strong agonist activity at a level that ED50 was 75nM. However it has been known that variable regions of H chain and L chain of the single chain Fv are associated through non-covalent bond and, therefore, each variable region is dissociated in a solution and can be associated with variable region of other molecule to form multimers like dimers. When the molecular weight of sc12B5 purified by gel filtration was measured, it was confirmed that that there were molecules recognized to be monomer and dimer (see Fig. 48). Then monomer sc12B5 and dimer sc12B5 were isolated (see Fig. 50) and measured for the agonist activity to MPL. As shown in Figs. 51 and 52, ED50 of sc12B5 monomer was 4438.7nM, which confirmed that the agonist activity was reduced compared with the result using culture supernatant of COS-7 cells. On the contrary single chain Fv (sc12B5 dimer) having bivalent antigen-binding site showed about 400-fold stronger agonist activity (ED50; 10.1nM) compared with monovalent sc12B5. Furthermore, the bivalent single chain Fv showed the agonist activity equivalent to or higher than the agonist activity of human TPO and 12B5IgG.

Example 8

Construction of a gene encoding the variable region of human antibody 12E10 against human MPL

55 [0251] A DNA encoding variable region of human monoclonal antibody 12E10 against human MPL was constructed as follows:

8.1 Construction of a gene encoding 12E10 H chain V region

10

30

35

40

50

55

[0252] The nucleotide sequence SEQ ID NO:86 was designed as a gene encoding H chain V region of human antibody 12E10 binding to human MPL on the basis of the amino acid sequence described in WO99/10494 (SEQ ID NO:85). The full length of nucleotide sequence was designed by connecting to its 5'-end the leader sequence (SEQ ID NO:87) derived from human antibody gene (GenBank accession No. AF062252). The designed nucleotide sequence was divided into four oligonucleotides having overlapping sequences of 15 bp each (12E10VH1, 12E10VH2, 12E10VH3, 12E10VH4). 12E10VH1 (SEQ ID NO: 88) and 12E10VH3 (SEQ ID NO: 90) were synthesized in the sense direction, end 12E10VH2 (SEQ ID NO: 89) end 12E10VH4 (SEQ ID NO: 91) in the antisense direction, respectively. After assembling each synthesized oligonucleotide by respective complementarity, the external primers (12E10VHS and 12E10VHA) were added to amplify the full length of the gene. 12E10VHS (SEQ ID NO: 92) was designed to hybridize to 5'-end of the leader sequence by the forward primer and to have Hind III restriction enzyme recognition site and Kozak sequence, and 12E10VHA (SEQ ID NO: 93) was designed to hybridize to the nucleotide sequence encoding C-terminal of H chain V region by the reverse primer and to have a splice donor sequence and BamHI restriction enzyme recognition site, respectively.

[0253] $100\mu l$ of the PCR solution containing $10\mu l$ of $10 \times PCR$ Gold Buffer II, 1.5 mM MgCl₂, 0.08 mM dNTPs (dATP, dGTP, dCTP, dTTP), 5 units of DNA-polymerase AmpliTaq Gold (all by PERKIN ELMER) and each 2.5 ml each synthesized oligonucleotide (1285 VH-1 to -4) was heated at 94 °C of the initial temperature for 9 minutes, at 94 °C for 2 minutes, at 55 °C for 2 minutes and 72 °C for 2 minutes. After repeating the cycle two times each 100 pmole of external primer 12E10VHS and 12E10VHA were added. The mixture was subjected to the cycle consisting of at 94 °C for 30 seconds, at 55 °C for 30 seconds and 72 °C for 1 minute 35 times and heated at 72 °C for further 5 minutes.

[0254] The PCR product was purified by 1.5% low-melting-temperature agarose gel (Sigma), digested by restriction enzymes BamHl and Hind III, and cloned into a human H chain expression vector HEF-gγ1. After determining the DNA sequence the plasmid containing the correct DNA sequence was named HEF-12E10H-gγ1.

[0255] The HEF-12E10H-g γ 1 was digested by restriction enzymes EcoRI and BamHI to produce the gene encoding 12E10VH and then cloned into a human Fab H chain expression vector pCOS-Fd to produce pFd-12E10H. The human Fab H chain expression vector was constructed by amplifying the DNA (SEQ ID NO: 63) containing the intron region existing between the genes encoding human antibody H chain V region and the constant region, and the gene encoding a part of the human H chain constant region by PCR, and inserting the PCR product into animal cell expression vector pCOS1. The human H chain constant region was amplified for the gene under the same conditions mentioned above using as the template HEF-g γ 1, as the forward primer G1CH1-S (SEQ ID NO: 64) which was designed to hybridize to 5'-end sequence of intron 1 and to have restriction enzyme recognition sites EcoRI and BamHI and as the reverse primer G1CH1-A (SEQ ID NO: 65) which was designed to hybridize to 3'-end DNA of human H chain constant region CH1 domain and to have a sequence encoding a part of hinge region, two stop codons and restriction enzyme recognition site Bg1 II.

[0256] The nucleotide sequence and amino acid sequence of the reconstructed 12E10 H chain variable region which were included in plasmids HEF-12E10H-gγ1 and pFd-12E10H are shown in SEQ ID NO: 94.

8.2 Construction of a gene encoding 12E10 L chain V region

[0257] The nucleotide sequence SEQ ID NO:96 was designed as a gene encoding L chain V region of human antibody 12E10 binding to human MPL on the basis of the amino acid sequence described in WO99/10494 (SEQ ID NO:95). It was further designed by connecting to its 5'-end the leader sequence (SEQ ID NO: 97) derived from human antibody gene (Mol. Immunol. 1992; 29: 1515-1518). In the same way as mentioned above the designed nucleotide sequence was divided into four oligonucleotides having overlapping sequences of 15 bp each (12E10VL1, 12E10VL2, 12E10VL3, 12E10VL4) and synthesized respectively. 12E10VL1 (SEQ ID NO: 98) and 12E10VL3 (SEQ ID NO: 100) had sense sequences, and 12E10VL2 (SEQ ID NO: 99) and 12E10VL4 (SEQ ID NO: 101) had antisense sequences, respectively. Each of the synthesized oligonucleotides was assembled by respective complementarity and mixed with the external primers (12E10VLS and 12E10VLA) to amplify the full length of the gene. 12E10VLS (SEQ ID NO: 102) was designed to hybridize to 5'-end of the leader sequence by the forward primer and to have EcoRI restriction enzyme recognition site and Kozak sequence. 12E10VLA (SEQ ID NO: 103) was designed to hybridize to the nucleotide sequence encoding C-terminal of L chain V region by the reverse primer and to have a BlnI restriction enzyme recognition site.

[0258] Performing the PCR as mentioned above, the PCR product was purified by 1.5% low-melting-temperature agarose gel (Sigma), digested by restriction enzymes EcoRl and Blnl, and cloned into pUC19 containing a gene for human lambda chain constant region. After determining the DNA sequence the plasmid containing the correct DNA sequence was digested by EcoRl to produce a gene encoding 12E10 L chain V region and human lambda chain constant region and then inserted in expression vector pCOS1. The plasmid having 12E10 L chain gene (SEQ ID NO: 104) was named pCOS-12E10L

8.3 Production of reconstructed 12E10 single chain Fv

35

40

45

50

55

[0259] The reconstructed 12E10 antibody single chain Fv was designed to be in the order of 12E10VH-linker-12E10VL and to have FLAG sequence (SEQ ID NO: 105) at C-terminal to facilitate the detection and purification. The reconstructed 12E10 chain Fvs (sc12E10 and db12E10) were constructed using a linker sequence consisting of 15 amino acids represented by (Gly₄Ser)₃ or 5 amino acids represented by (Gly₄Ser)₁.

- (1) Production of the reconstructed 12E10 single chain Fv using the linker sequence consisting of 5 amino acids
- 10 [0260] The gene encoding the reconstructed 12E10 single chain Fv, which contained the linker sequence consisting of 5 amino acids, was constructed by introducing the nucleotide sequence for the linker (Gly₄Ser)₁ to 3'-end of the gene encoding 12E10 H chain V region and to 5'-end of the gene encoding 12E10 L chain V region, amplifying thus obtained respective gene by PCR and connecting the amplified genes. Four PCR primers (A-D) were used to produce the reconstructed 12E10 single chain Fv. Primers A and C had sense sequences, and primers B and D had antisense sequences.
 - [0261] The forward primer for H chain V region was 12E10S (Primer A, SEQ ID NO: 106). The reverse primer DB2 (Primer B, SEQ ID NO: 107) for H chain V region was designed to hybridize to DNA encoding C-terminal of H chain V region and to have the nucleotide sequence encoding the linker (Gly₄Ser)₁ and the nucleotide sequence encoding N-terminal of L chain V region.
 - [0262] The forward primer DB1 (Primer C, SEQ ID NO: 108) for L chain V region was designed to hybridize to DNA encoding the N-terminal of L chain V region and to have the nucleotide sequence encoding the linker (Gly₄Ser)₁ and the nucleotide sequence encoding C-terminal of H chain V region. The reverse primer 12E10FA (Primer D, SEQ ID NO: 109) for L chain V region was designed to hybridize to DNA encoding the C-terminal of L chain V region and to have the nucleotide sequence encoding FLAG and Notl restriction enzyme recognition site.
- [0263] In the first PCR step, two reactions A-B and C-D were performed, and the two PCR products obtained from the first step PCR were assembled by respective complementarity. After adding primers A and D the full length DNA encoding the reconstructed 12E10 single chain Fv having the linker consisting of 5 amino acids was amplified (the second PCR). In the first step PCR, the plasmid HEF-12E10H-gγ1 (see Example 8. 1) encoding the reconstructed 12E10 H chain V region and pCOS-12E10L (see Example 8.1) encoding the reconstructed 12E10 L chain V region were used as templates, respectively.
 - [0264] 50µl of the first step PCR solution contained 5µl of 10 x PCR Gold Buffer II, 1.5mM MgCl₂, 0.08mM dNTPs, 5 units of DNA polymerase AmpliTaq Gold (by PERKIN ELMER), each 100 pmole of each primer and 100ng of each template DNA. The PCR solution was heated at 94°C of the initial temperature for 9 minutes, at 94 for 30 seconds, 55°C for 30 seconds and 72°C for 1 minute. After repeating the cycle 35 times the reaction mixture was further heated at 72°C for 5 minutes.
 - **[0265]** The PCR products A-B (429bp) and C-D (395bp) were assembled by the second PCR. The second step PCR mixture solution (98 μ l) containing 1 μ l each of the first PCR product A-B and C-D as templates, 100 pmole each of each primer, 10 μ l of 10 x PCR Gold Buffer II, 1.5mM MgCl₂, 0.08mM dNTPs and 5 units of DNA polymerase AmpliTaq Gold (by PERKIN ELMER) was reacted under the same conditions as mentioned above.
 - [0266] The DNA fragment of 795bp produced by the second PCR was purified using 1.5% low-melting-temperature agarose gel, digested by EcoRl and Notl, and cloned into pCHO1 vector or pCOS1 vector. The expression vector pCHO1 was a vector constructed by deleting the antibody gene from DHFR-ΔE-RVH-PM1-f (see WO92/19759) by EcoRl and Smal digestion, and connecting to EcoRl-Notl-BamHl Adaptor (TAKARA SHUZO). After determining the DNA sequence the plasmids containing the DNA fragment encoding the correct amino acid sequence of reconstructed 12B5 single chain Fv were named pCHO-db12E10 and pCOS-db12E10. The nucleotide sequence and amino acid sequence of the reconstructed 12E10 single chain Fv included in the plasmids pCHO-db12E10 and pCOS-db12-E10 are shown in SEQ ID NO: 110.
 - (2) Production of the reconstructed 12E10 single chain Fv using the linker sequence consisting of 15 amino acids
 - **[0267]** The gene encoding the reconstructed 12E10 antibody single chain Fv, which contained the linker sequence consisting of 15 amino acids, was constructed by introducing the nucleotide sequence for the linker $(Gly_4Ser)_3$ to 3'-end of the gene encoding 12E10 H chain V region and to 5'-end of the gene encoding 12E10 L chain V region, amplifying thus obtained respective gene by PCR and connecting the amplified genes. Four PCR primers (A-D) were used for production of the reconstructed 12E10 single chain Fv. Primers A and C had sense sequences, and primers B and D had antisense sequences.
 - [0268] The forward primer for H chain V region was 12E10S (Primer A, SEQ ID NO: 106). The reverse primer sc4.3 (Primer B, SEQ ID NO: 111) for H chain V region was designed to hybridize to DNA encoding C-terminal of H chain V

region and to have the nucleotide sequence encoding the linker $(Gly_4Ser)_3$ and the nucleotide sequence encoding N-terminal of L chain V region.

[0269] The forward primer sc1.3 (Primer C, SEQ ID NO: 112) for L chain V region was designed to hybridize to DNA encoding the N-terminal of L chain V region and to have the nucleotide sequence encoding the linker (Gly₄Ser)₃ and the nucleotide sequence encoding C-terminal of H chain V region. The reverse primer 12E10FA (Primer D, SEQ ID NO: 109) for L chain V region was designed to hybridize to DNA encoding the C-terminal of L chain V region and to have the nucleotide sequence encoding FLAG and NotI restriction enzyme recognition site.

[0270] In the first PCR step, two reactions A-B and C-D were performed, and the two PCR products obtained from the first step PCR were assembled by respective complementarity. After adding primers A and D the full length DNA encoding the reconstructed 12E10 single chain Fv having the linker consisting of 15 amino acids was amplified (the second PCR). In the first step PCR, the plasmid pCOS-db12E10 (see Example 8. 1(1)) encoding the reconstructed 12E10 single chain Fv was used as template.

[0271] 50μ l of the first step PCR solution contained 5μ l of 10 x ExTaq Buffer, 0.4mM dNTPs, 2.5 units of DNA polymerase TaKaRa ExTaq (by TAKARA), each 100 pmole of each primer and 10ng of each template DNA. The PCR solution was heated at 94° C of the initial temperature for 30 seconds, at 94 for 15 seconds and 72° C for 2 minute, and the cycle was repeated 5 times. After repeating 28 times the cycle of at 94° C for 15 seconds and at 70° C for 2 minutes, the reaction mixture was further heated at 72° C for 5 minutes.

[0272] The PCR products A-B (477bp) and C-D (447bp) were assembled by the second PCR. The second step PCR mixture solution (98 μ I) containing 1 μ I each of the first PCR products A-B and C-D as templates, 100 pmole each of each primer A and D, 5 μ I of 10 x ExTaq Buffer, 0.4mM dNTPs, 2.5 units of DNA polymerase TaKaRa ExTaq (by TAKARA) was reacted under the same conditions as mentioned above.

[0273] The DNA fragment of 825bp produced by the second PCR was purified using 1.0% low-melting-temperature agarose gel, digested by EcoRl and Notl. Thus obtained DNA fragment was cloned into pCHO1 vector or pCOS1 vector. After determining the DNA sequence the plasmids containing the DNA fragment encoding the correct amino acid sequence of reconstructed 12E10 single chain Fv were named pCHO-sc12E10 and pCOS-sc12E10. The nucleotide sequence and amino acid sequence of the reconstructed 12E10 single chain Fv included in the plasmids pCHO-sc12E10 and pCOS-sc12E10 are shown in SEQ ID NO: 113.

8.4 Expression of antibody 12E10 (IgG, Fab) and single chain Fv polypeptide by animal cell

10

30

35

40

45

50

55

[0274] Antibody 12E10 (IgG, Fab) and single chain Fv derived from antibody 12E10 (linker sequence 5 amino acids, 15 amino acids) were expressed by using COS-7 cells or CHO cells.

[0275] The transient expression using COS-7 cells was performed as follows. The transfection was performed by electroporation method using Gene Pulser II equipment (BioRad). For the expression of antibody 12E10 (IgG) each 10μg of the above-mentioned expression vector HEF-12E10H-gγ1 and pCOS-12E10L were added, for the expression of 12E10Fab fragment each 10μg of pFd-12E10H and pCOS-12E10L were added and for the expression of single chain Fv of pCOS-sc12E10 (10μg) or pCOS-db12E10 (10μg) was added to COS-7 cells (1×10^7 cells/ml) suspended in 0.8ml of PBS. The mixture kept in a cuvette was treated by pulse at the capacity of 1.5kV, 25μFD. After recovering for 10 minutes in a room temperature the electroporated cells were added to DMEM medium (GIBCO BRL) containing 10% bovine fetal serum and cultivated. After cultivating overnight the cells were washed once by PBS, added to serum-free medium CHO-S-SFM II (GIBCO BRL) and cultivated for 3 days. The culture supernatant was centrifuged to remove cell debris and filtered with 0.22μm filter.

[0276] To establish a stable expression CHO cell line for the single chain Fv (polypeptide) derived from antibody 12E10, the expression vector pCHO-sc12E10 or pCHO-ds12E10 was introduced into CHO cells respectively.

[0277] Each expression vector was introduced into CHO cells by electroporation method using Gene Pulser II equipment (BioRad). Linearized DNA (100μg) obtained by digestion with restriction enzyme Pvul and CHO cells (1x10⁷ cells /ml) suspended in 0.8 ml of PBS were mixed in a cuvette, left stationary on ice for 10 minutes and treated with pulse at the capacity of 1.5kV, 25μFD. After recovering for 10 minutes at a room temperature the electroporated cells were added to CHO-S-SFM II medium (GIBCO BRL) containing 10% dialyzed bovine fetal serum and nucleic acid and cultivated. After cultivating for 2 days the cultivation was continued in nucleic acid-free CHO-S-SFM II medium (GIBCO BRL) containing 10% dialyzed bovine fetal serum. From thus obtained clones a clone with high expression rate was selected as the production cell line for 12E10 single chain Fv. After cultivating in serum-free CHO-S-SFM II medium (GIBCO BRL), the culture supernatant was centrifuged to remove cell debris and filtered with 0.22μm filter.

8.5 Purification of single chain Fv derived from 12E10 produced by CHO cells

[0278] The culture supernatants produced by CHO cell lines expressing 12E10 single chain Fvs (sc12E10, db12E10) obtained in Example 8.4 were purified by anti-FLAG antibody column and gel filtration column respectively to produce

purified single chain Fvs.

(1) Purification with anti-FLAG antibody column

[0279] Each culture supernatant (sc12E10 db12E10) was added to anti-FLAG M2 affinity gel column (SIGMA) equilibrated by 50mM Tris-HCl buffer (pH7.4) containing 150mM NaCl. After washing the column by the same buffer the proteins adsorbed to the column were eluted by 100mM glycine buffer (pH 3.5). The eluted fractions were immediately neutralized by adding 1M Tris-HCl buffer (pH 8.0) and analyzed by SDS-PAGE. The fraction which was confirmed to contain the single chain Fv was pooled and concentrated about 20-fold using Centricon-10 (AMICON).

(2) Gel filtration

10

25

30

35

40

45

50

55

[0280] The concentrated solution obtained in (1) was added to Superdex200 column HR (10x300mm, AMERSHAM PHARMACIA) equilibrated by PBS containing 0.01% Tween20. Chlomatograms were shown in Fig. 53 and 54. The product sc12E10 was eluted in two peaks (A, B) (see Fig. 53). The product db12E10 was eluted in two peaks (C, D) (see Fig. 54). Each peak fraction was collected, treated in the presence and absence of a reducing agent, processed by electrophoresis according to Laemmli method and stained by Coomassie Brilliant Blue after the electrophoresis. As shown in Fig. 55 the all of fractions A, B, C and D, regardless of the presence or absence of the reducing agent, produced a single band having an apparent molecular weight of about 31 kD. When these fractions were analyzed by gel filtration using Superdex200 HR, the fraction A produced a product eluted at an apparent molecular weight of about 20 kD, the fraction B at 42kD (see Fig. 56), fraction C at 69kD and fraction D at 41kD (see Fig. 57). The results suggest that sc12E10-derive fraction A is the non-covalent bond dimer of single chain Fv and the fraction B is the monomer of single chain Fv, and the db12E10-derived fraction C is the non-covalent bond trimer of single chain Fv and D is non-covalent bond dimer of single chain Fv.

8.6 Measurement of TPO-like agonist activity of various single chain Fvs

[0281] The TPO-like activity of anti-mpl single chain antibody was evaluated by measuring the proliferation activity to Ba/F3 cells (BaF/mpl) expressing human TPO receptor (MPL).

[0282] After washing BaF/mpl cells two times by RPMI1640 medium (GIBCO) containing 1% bovine fetal serum (GIBCO), the cells were suspended in the medium at cell density of $5x10^5$ cells/mL. The anti-MPL single chain antibody or human TPO (R&D Systems) was diluted with the medium, respectively. 50μ l of the cell suspension and 50μ l of the diluted antibody or human TPO were added in 96-well microplate (flat bottom) (Corning), and cultivated in CO_2 incubator (CO_2 concentration: 5%) for 24 hours. After the incubation 10μ l of WST-8 reagent (reagent for measuring the number of raw cells SF: Nacalai Tesque) was added and the absorbance was immediately measured at measurement wavelength of 450nm and at reference wavelength of 655nm using absorbency photometer Benchmark Plus (BioRad). After incubating in CO_2 incubator (CO_2 concentration: 5%) for 2 hours, the absorbance at 450nm of measurement wavelength and 655nm of reference wavelength was again measured using Benchmark Plus. Since WST-8 reagent developed the color reaction depending upon the number of live cells at wavelength of 450nm, the proliferation activity of BaF/mpl was evaluated based on the change of absorbance in 2 hours.

[0283] The agonist activity to MPL measured by using culture supernatants of COS-7 cells expressing various 12E10 antibody molecules are shown in Fig. 58. Single chain Fvs having the 5-amino-acid-linker (ds12E10 and the 15-amino-acid-linker (sc12E10) increased the absorbance in concentration-dependent manner, showing TPO-like agonist activity (ED50; 9pM and 51pM respectively), while 12E10lgG and 12E10Fab had no activity.

[0284] It has been known that H chain and L chain of the single chain Fv are associated not only within a molecule but also between molecules to form multimers such as dimer. When the culture supernatants of CHO cells expressing single chain Fvs of 12E10 were gel filtrated and tested for agonist activity on MPL. The results were shown in Fig. 59. The dimer, which was contained in sc12E10 in a small amount, showed about 5000-fold stronger TPO-like agonist activity (sc12E10 dimer, ED50; 1.9pM) compared with the monomer (sc12E10 monomer, ED50; >10nM). The activity was higher than that of TPO (ED50; 27pM). The dimer of db12E10 (db12E10 dimer, ED50;2.0pM) showed strong activity comparable to that of sc12E10 dimer. db12E10 trimer (ED50; 7.4pM), which was presumed to be a trimer from molecular weight obtained by gel filtration, showed a high activity which is lower than that of db12E10 dimer. Those results suggest that it is important for the activity of agonist antibody 12E10 that the antigen-binding site is bivalent (dimer). Considering the fact that 12E10 IgG had no activity, other factors than being bivalent are presumed to be important such as the Location of antigen-binding site, the distance or the angle.

EXPLANATION OF DRAWINGS

[0285]

10

15

25

30

35

45

50

- Fig. 1 shows the result of flow cytometry, illustrating that human IgG antibody does not bind to L1210 cells expressing human IAP (hIAP/L1210).
 - Fig. 2 shows the result of flow cytometry, illustrating that the chimera MABL-1 antibody specifically binds to L1210 cells expressing human IAP (hIAP/L1210).
 - Fig. 3 shows the result of flow cytometry, illustrating that the chimera MABL-2 antibody specifically binds to L1210 cells expressing human IAP (hIAP/L1210).
 - Fig. 4 schematically illustrates the process for producing the single chain Fv according to the present invention.
 - Fig. 5 illustrates a structure of an expression plasmid which can be used to express a DNA encoding the single chain Fv of the invention in E. coli.
 - Fig. 6 illustrates a structure of an expression plasmid which is used to express a DNA encoding the single chain Fv of the invention in mammalian cells.
 - Fig. 7 shows the result of western blotting in Example 5.4. From the left, a molecular weight marker (which indicates 97.4, 66, 45, 31, 21.5 and 14.5 kDa from the top), the culture supernatant of pCHO1-introduced COS7 cells and the culture supernatant of pCHOM2-introduced COS7 cells. It illustrates that the reconstructed single chain Fv of the antibody MABL-2 (arrow) is contained in the culture supernatant of the pCHOM2-introduced cells.
- Fig. 8 shows the result of flow cytometry, illustrating that an antibody in the culture supernatant of pCH01/COS7 cell as a control does not bind to pCOS1/L1210 cell as a control.
 - Fig. 9 shows the result of flow cytometry, illustrating that an antibody in the culture supernatant of MABL2-scFv/COS7 cells does not bind to pCOS1/L1210 cells as a control.
 - Fig. 10 shows the result of flow cytometry, illustrating that an antibody in the culture supernatant of pCOS1/COS7 cells as a control does not bind to hIAP/L1210 cells.
 - Fig. 11 shows the result of flow cytometry, illustrating that an antibody in the culture supernatant of MABL2-scFv/COS7 cells specifically binds to hIAP/L1210 cells.
 - Fig. 12 shows the result of the competitive ELISA in Example 5.6, wherein the binding activity of the single chain Fv of the invention (MABL2-scFv) to the antigen is demonstrated in terms of the inhibition of binding of the mouse monoclonal antibody MABL-2 to the antigen as an index, in comparison with the culture supernatant of pCHO1/COS7 cells as a control.
 - Fig. 13 shows the results of the apoptosis-inducing effect in Example 5.7, illustrating that the antibody in the culture supernatant of pCH01/COS7 cells as a control does not induce the apoptosis of pCOS1/L1210 cells as a control. Fig. 14 shows the results of the apoptosis-inducing effect in Example 5.7, illustrating that the antibody in the culture supernatant of MABL2-scFv/COS7 cells does not induce apoptosis of pCOS1/L1210 cells as a control.
 - Fig. 15 shows the results of the apoptosis-inducing effect in Example 5.7, illustrating that the antibody in the culture supernatant of pCHO1/COS7 cells as a control does not induce apoptosis of hIAP/L1210 cells.
 - Fig. 16 shows the results of the apoptosis-inducing effect in Example 5.7, illustrating that the antibody in the culture supernatant of MABL2-scFv/COS7 cells specifically induces apoptosis of hIAP/L1210 cells.
- Fig. 17 shows the results of the apoptosis-inducing effect in Example 5.7, illustrating that the antibody in the culture supernatant of pCHO1/COS7 cells as a control does not induce apoptosis of CCRF-CEM cells (at 50% of the final concentration).
 - Fig. 18 shows the results of the apoptosis-inducing effect in Example 5.7, illustrating that the antibody in the culture supernatant of MABL2-scFv/COS7 cells specifically induces apoptosis of CCRF-CEM cells (at 50% of the final concentration).
 - Fig. 19 shows the chromatogram obtained in the purification of the single chain Fv derived form the antibody MABL-2 produced by the CHO cells in Example 5.9, illustrating that fraction A and fraction B were obtained as the major peaks when the fraction from Blue-sepharose column was purified with hydroxyapatite column.
 - Fig. 20 shows the results of purification by gel filtration of fraction A and fraction B obtained in Example 5.9-(2), illustrating that the major peaks (Al and Bl, respectively) were eluted from fraction A at approximately 36 kD of the apparent molecular weight and from fraction B at approximately 76 kD.
 - Fig. 21 is the analysis on SDS-PAGE of the fractions obtained in the purification of the single chain Fv derived from the antibody MABL-2 produced by the CHO cells in Example 5.9, illustrating that a single band of approximately 35 kD of molecular weight was observed in both fractions.
- Fig. 22 shows the results of analysis of fractions AI and BI obtained by gel filtration in the purification of the single chain Fv derived from the antibody MABL-2 produced by the CHO cells, wherein fraction AI comprises monomer and fraction BI comprises dimer.
 - Fig. 23 illustrates a structure of an expression plasmid which can be used to express a DNA encoding the single

chain Fv of the invention in E. coli.

10

25

40

45

50

55

Fig. 24 shows the results of purification on the gel filtration column of crude products of the single chain Fv polypeptide derived from the antibody MABL-2 produced by <u>E. coli</u> obtained in Example 5.12, wherein each peak indicates monomer or dimer, respectively, of the single chain Fv produced by E. coli.

- Fig. 25 shows the results of the apoptosis-inducing effect in Example 5.13, illustrating that mouse IgG antibody as a control does not induce apoptosis of hIAP/L1210 cells (the final concentration of 3 μg/ml).
 - Fig. 26 shows the results of the apoptosis-inducing effect in Example 5.13, illustrating that the dimer of MABL2-scFv produced by the CHO cells remarkably induces apoptosis of hIAP/L1210 cells (the final concentration of 3 μ g/ml). Fig. 27 shows the results of the apoptosis-inducing effect in Example 5.13, illustrating that the dimer of MABL2-scFv produced by E. coli remarkably induces apoptosis of hIAP/L1210 cells (the final concentration of 3 μ g/ml).
 - Fig. 28 shows the results of the apoptosis-inducing effect in Example 5.13, illustrating that apoptosis induction to hIAP/L1210 cells by the MABL2-scFv monomer produced by the CHO cells is the same level as that of the control (the final concentration of 3 μ g/ml).
- Fig. 29 shows the results of the apoptosis-inducing effect in Example 5.13, illustrating that apoptosis induction to hIAP/L1210 cells of the MABL2-scFv monomer produced by <u>E. coli</u> is the same level as that of control (the final concentration of 3 μg/ml).
 - Fig. 30 shows the results of the apoptosis-inducing effect in Example 5.13, illustrating that mouse IgG antibody used as a control does not induce apoptosis of hIAP/L1210 cells even when anti-FLAG antibody is added (the final concentration of 3 μg/ml).
- Fig. 31 shows the results of the apoptosis-inducing effect in Example 5.13, illustrating that MABL2-scFv monomer produced by the CHO cells remarkably induces apoptosis of hIAP/L1210 cells when anti-FLAG antibody is added (the final concentration of 3 μg/ml).
 - Fig. 32 shows the results of quantitative measurement of human IgG in the serum of a human myeloma cell line KPMM2-transplanted mouse, indicating amounts of human IgG produced by the human myeloma cells in the mouse. It illustrates that the dimer of scFv/CHO remarkably inhibited growth of the KPMM2 cells.
 - Fig. 33 shows the survival time of the mouse after the transplantation of tumor, illustrating that the scFv/CHO dimer-administered group elongated remarkably the survival time.
 - Fig. 34 illustrates a structure of an expression plasmid which expresses a modified antibody $[sc(Fv)_2]$ comprising two H chain V regions and two L chain V regions derived from the antibody MABL-2.
- Fig. 35 illustrates a structure of a plasmid which expresses a scFv (HL type) wherein the V regions are linked in the manner of [H chain]-[L chain] without a peptide linker.
 - Fig. 36 illustrates a structure of the HL-type polypeptide and amino acid sequences of peptide linkers.
 - Fig. 37 illustrates a structure of a plasmid which expresses a scFv (LH type) wherein the V regions are linked in the manner of [L chain]-[H chain] without a peptide linker.
- 35 Fig. 38 illustrates a structure of the LH-type polypeptide and amino acid sequences of peptide linkers.
 - Fig. 39 shows the results of the western blotting in Example 6.4, illustrating that the modified antibody $sc(FV)_2$ comprising two H chain V regions and two L chain V regions, and the MABL2-scFv having peptide linkers with different length are expressed.
 - Figs. 40a and 40b show the results of flow cytometry using the culture supernatant of COS7 cells prepared in Example 6.3 (1), illustrating that the MABL2-scFv and sc(Fv)₂ having peptide linkers with different length have high affinities against human IAP.
 - Fig. 41 shows the results of the apoptosis-inducing effect in Example 6.6, illustrating that the scFv <HL3, 4, 6, 7, LH3, 4, 6 and 7> and the sc(Fv)₂ remarkably induce cell death of hIAP/L1210 cells.
 - Fig. 42 shows the results of the evaluation of antigen binding capacity in Example 6.10, illustrating that the dimer of scFv <HL5> and sc(Fv)₂ have high affinities against human IAP.
 - Fig. 43 shows the results of the <u>in vitro</u> apoptosis-inducing effect in Example 6.11, illustrating that the dimer of scFv <HL5> and the sc(Fv)₂ induce apoptosis of hIAP/L1210 cells and CCRF-CEM cells in concentration-dependent manner.
 - Fig. 44 shows the results of the quantitative measurement of M protein produced by a human myeloma cell line KPMM2 in the serum of the human myeloma cell-transplanted mouse. It illustrates that the dimer of scFv <HL5> and the sc(Fv)₂ remarkably inhibited growth of the KPMM2 cells.
 - Fig. 45 shows the survival time (days) of mice after the transplantation of tumor, illustrating that the survival time of the scFv <HL5> administrated-group was remarkably prolonged.
 - Fig. 46 shows the survival time (days) of mice after the transplantation of tumor, illustrating that the survival time of the sc(Fv)₂ administrated-group was remarkably prolonged.
 - Fig. 47 is a scheme showing the method for constructing DNA fragment encoding the reconstructed 12B5 single chain Fv containing the linker sequence consisting of 15 amino acids and the structure thereof.
 - Fig. 48 shows the purification result of each 12B5 single chain Fv by gel filtration obtained in Example 7. 5 (1),

illustrating that sc12B5 was divided into two peaks (fractions A and B).

Fig. 49 shows the analytical result of each fraction A and B by SDS-PAGE performed in Example 7. 5 (2).

Fig. 50 shows the analytical result of each fraction A and B by Superdex200 column performed in Example 7. 5 (2), illustrating that the major peak of fraction A was eluted at an apparent molecular weight of about 44 kD shown in (a) and that the major peak of fraction B was eluted at an apparent molecular weight of about 22kD shown in (b). Fig. 51 shows the measurement result of the TPO-like agonist activity of sc12B5 and antibody 12B5 (IgG, Fab), illustrating that 12B5IgG and monovalent single chain Fv (sc12B5) showed TPO-like agonist activity in concentration-dependent manner.

Fig. 52 shows the measurement result of TOP-like agonist activity of sc12B5 monomer and dimer, illustrating that single chain Fv (sc12B5 dimer) having bivalent antigen-binding site had agonist activity about 400-fold higher than monovalent sc12B5 and that the efficacy is equivalent to or higher than human TPO.

Fig. 53 shows the purification result of obtained sc12E10 single chain antibody by gel filtration chromatography using Superdex200HR column, illustrating that 12E10sc3 was divided into two peaks (fractions A and B).

Fig. 54 shows the purification result of obtained db12E10 single chain antibody by gel filtration chromatography using Superdex200HR column, illustrating that 12E10sc3 was divided into two peaks (fractions C and D).

Fig. 55.shows SDS-PAGE analysis of fractions A and B (sc12E10) and fractions C and D (db12E10) under the reductive or non-reductive condition.

Fig. 56 shows the analytical result of fractions A and B by gel filtration chromatography using Superdex200HR column, illustrating (1) the major peak of fraction A was eluted at an apparent molecular weight of about 42 kD and (2) the major peak of fraction B was eluted at an apparent molecular weight of about 20kD.

Fig. 57 shows the analytical result of fractions C and D by gel filtration chromatography using Superdex200HR column, illustrating (1) the major peak of fraction C was eluted at an apparent molecular weight of about 69 kD and (2) the major peak of fraction B was eluted at an apparent molecular weight of about 41kD.

Fig. 58 is a graph showing the agonist activity of various 12E10 antibody molecules on MPL, illustrating that single chain Fvs (sc12E10, db12E10) showed TPO-like agonist activity while 12E10 IgG and 12E10 Fab did not.

Fig. 59 is a graph showing the agonist activity of monomer and dimer of sc12E10 and dimer and trimer of db12E10 on MPL, illustrating that dimer of sc12E10 and dimer and trimer of db12E10 showed TPO-like agonist activity higher than TPO.

30 INDUSTRIAL APPLICABILITY

5

10

15

20

25

35

40

45

50

55

[0286] The modified antibodies of the invention have an agonist action capable of transducing a signal into cells by crosslinking a cell surface molecule(s) and are advantageous in that the permeability to tissues and tumors is high due to the lowered molecular size compared with the parent antibody molecule (whole IgG). The present invention provides the modified antibodies which have remarkably high agonist activity compared with natural ligands such as TPO and the parent antibody (whole IgG). Even if the parent antibody has no agonist activity, modified antibodies with a higher agonist activity compared with natural ligands can be provided. This is attributable to that the modified antibodies are in a shape closer to a ligand as compared with original antibodies. Therefore the modified antibodies can be used as signal-transducing agonists to achieve apoptosis induction, cell proliferation induction, cell differentiation induction, cell division induction or cell cycle regulation action. The modification of antibody molecule to the modified antibody according to the invention results in the reduction of side effects caused by intercellular crosslinking and provides novel medicines inducing only required action by crosslinking a cell surface molecule(s). Medical preparations containing as active ingredient the modified antibody of the invention are useful as preventives and/or remedies for cancers, inflammation, hormone disorders, autoimmune diseases and blood diseases, for example, leukemia, malignant lymphoma, aplastic anemia, myelodysplasia syndrome and polycythemia vera.

SEQUENCE LISTING

5	
	<110> CHUGAI SEIYAKU KABUSHIKI KAISHA
	<120> Small remodeling agonist antibody
10	<130> FP1032
	<141> 2001-10-22
15	<150> JP2000-321821
	<151> 2000-10-20
	<150> JP2000-321822
20	<151> 2000-10-20
	<150> PCT/JP01/01912
25	<151> 2001-03-12
25	<150> PCT/JP01/03288
	<151> 2001-04-17
30	<150> JP2001-277314
	<151> 2001-09-12
35	<160> 113
40	<210> 1
	<211> 27
	<212> DNA
45	<213> Artificial Sequence
	⟨220⟩
50	<223> PCR primer
	₹400> 1
	ccatcctaat acgactcact atagggc 27

	<210> 2
5	<211> 27
	<212> DNA
	<213> Artificial Sequence
10	<220>
	<223> PCR primer
15	<400> 2
	ggatcccggg tggatggtgg gaagatg 27
20	<210> 3
	⟨211⟩ 28
25	<212> DNA
	<213> Artificial Sequence
	<220>
30	<223> PCR primer
	<400> 3
35	ggatcccggg ccagtggata gacagatg 28
	⟨210⟩ 4
40	<211> 26
	<212> DNA
45	<213> Artificial Sequence
70	〈220〉
	<223> PCR primer
50	<400> 4
	ggatcccggg agtggataga ccgatg 26
55	<210> 5
00	/4IU/ 0

	<211	.> 39	94														
5	<212	2> DN	ĮΑ														
	<213	B> Mi	ıs														
	<220)>															
10	<221	l> CI	S														
	<222	2> (1	l)	(393	3)												
15	<223	3> p(GEM-N	/1L.	1-57	7;sig	gnal	pept	tide,	58-	-394	matı	ıre j	pepti	ide		
	<400)> 5															
	atg	aag	ttg	cct	gtt	agg	ctg	ttg	gtg	ctg	atg	ttc	tgg	att.	cct	gcg	48
20	Met	Lys	Leu	Pro	Val	Arg	Leu	Leu	Val	Leu	Met	Phe	Trp	Ile	Pro	Ala	
	1				5	•				10					15		
25	tcc	agc	agt	gat	gtt	gtg	atg	acc	caa	act	cca	ctc	tcc	ctg	cct	gtc	96
	Ser	Ser	Ser	Asp	Val	Val	Met	Thr	Gln	Thr	Pro	Leu	Ser	Leu	Pro	Val	
				20					25					30			
30	agt	ctt	gga	gat	caa	gcc	tcc	atc	tct	tgc	aga	tct	agt	cag	agc	ctt	144
	Ser	Leu	Gly	Asp	Gln	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser	Leu	
35			35					40					45				
														cag		_	192
	Leu		Ser	Lys	Gly	Asn		Tyr	Leu	G1n	Trp		Leu	Gln	Lys	Pro	
40		50					55					60					
		_									-			cga			240
45		Gln	Ser	Pro	Lys		Leu	He	Tyr	Lys		Ser	Asn	Arg	Phe		
45	65		•			70					75					80	222
														gat			288
50	Gly	Val	Pro	Asp	•	Phe	Ser	Gly	Ser	-	Ser	Gly	Thr	Asp		Inr	
					85					90					95		000
														tat			336
<i>55</i>	Leu	Lys	пе	ser	Arg	val	GIU	ита	GIU	АSР	Leu	GIA	vai	Tyr	rne	Cys	

		100	10	05	110
5	tct caa agt	aca cat gtt	ccg tac ac	eg tee gga ggg g	gg acc aag ctg 384
	Ser Gln Ser	Thr His Val	Pro Tyr Th	nr Ser Gly Gly G	ly Thr Lys Leu
	115		120	1	25
10	gaa ata aaa	c			394
	Glu Ile Lys				
15	130				
	<210> 6				
20	<211> 409				
	<212> DNA		-		
	<213> Mus				
25	<220>				
	<221> CDS				
30	<222> (1)	. (408)			
	<223> pGEM-N	M1H. 1-57;si	gnal peptio	de, 58-409;matur	e peptide
	<400> 6				
35	atg gaa tgg	agc tgg ata	ttt ctc tt	to oto otg toa g	ga act gca ggt 48
	Met Glu Trp	Ser Trp Ile	Phe Leu Ph	ne Leu Leu Ser G	ly Thr Ala Gly
	1	5		10	15
40	gtc cac tcc	cag gtc cag	ctg cag ca	ag tot gga cot g	ac ctg gta aag 96
	Val His Ser	Gln Val Gln	Leu Gln Gl	ln Ser Gly Pro A	sp Leu Val Lys
45		20	2	25	30
	cct ggg gct	tca gtg aag	atg too tg	gc aag get tet g	ga tac acc ttc 144
	Pro Gly Ala	Ser Val Lys	Met Ser Cy	ys Lys Ala Ser G	ly Tyr Thr Phe
50	35		40		45
	gtt aac cat	gtt atg cac	tgg gtg aa	ag cag aag cca g	gg cag ggc ctt 192
	Val Asn His	Val Met His	Trp Val Ly	ys Gln Lys Pro G	ly Gln Gly Leu
<i>55</i>					

		50					55					60					
5	gag	tgg	att	gga	tat	att	tat	cct	tac	aat	gat	ggt	act	aag	tac	aat	240
	Glu	Trp	Ile	Gly	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	Gly	Thr	Lys	Tyr	Asn	
	65					70					75					80	
10	gag	aag	ttc	aag	ggc	aag	gcc	aca	ctg	act	tca	gag	aaa	tcc	tcc	agc	288
	Glu	Lys	Phe	Lys	Gly	Lys	Ala	Thr	Leu	Thr	Ser	Glu	Lys	Ser	Ser	Ser	
15					85					90					95		
	gca	gcc	tac	atg	gag	ctc	agc	agc	ctg	gcc	tct	gag	gac	tct	gcg	gtc	336
	Ala	Ala	Tyr	Met	Glu	Leu	Ser	Ser	Leu	Ala	Ser	Glu	Asp	Ser	Ala	Val	
20				100					105					110			
	tac	tac	tgt	gca	aga	ggg	ggt	tac	tat	agt	tac	gac	gac	tgg	ggc	caa	384
	Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	Tyr	Tyr	Ser	Tyr	Asp	Asp	Trp	Gly	Gln	
25			115					120					125				
	ggc	acc	act	ctc	aca	gtc	tcc	tca	g								409
30	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser									
		130					135					•					
35	<210)> 7															
	<211	1> 39	94														
	<212	2> Di	ΝA														
40	<213	3> Ma	ıs														
	<220)>															
45	<22]	1> CI	OS														
	<222	2> (1)	. (39:	3)												
	<223	3> p(GEM-1	M2L.	1-5	7;si	gnal	pept	tide,	58-	-394	matu	ıre p	pepti	ide		
50	<400	o> 7															
	atg	aag	ttg	cct	gtt	agg	ctg	ttg	gtg	ctg	atg	ttc	tgg	att	cct	ggt	48
	Met	Lys	Leu	Pro	Val	Arg	Leu	Leu	Val	Leu	Met	Phe	Trp	Ile	Pro	Gly	
CC																	

	1				5					10					15		
5	tcc	agc	agt	gat	gtt	gtg	atg	acc	caa	agt	cca	ctc	tcc	ctg	cct	gtc	96
	Ser	Ser	Ser	Asp	Val	Val	Met	Thr	Gln	Ser	Pro	Leu	Ser	Leu	Pro	Val	
				20					25					30			
10	agt	ctt	gga	gat	caa	gcc	tcc	atc	tct	tgc	aga	tca	agt	cag	agc	ctt	144
	Ser	Leu	Gly	Asp	G1n	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	G1n	Ser	Leu	
15			35					40					45				
	gtg	cac	agt	aat	gga	aag	acc	tat	tta	cat	tgg	tac	ctg	cag	aag	cca	192
	Val	His	Ser	Asn	Gly	Lys	Thr	Tyr	Leu	His	Trp	Tyr	Leu	G1n	Lys	Pro	
20		50					55					60					,
	ggc	cag	tct	cca	aaa	ctc	ctg	atc	tac	aaa	gtt	tcc	aac	cga	ttt	tct	240
	Gly	Gln	Ser	Pro	Lys	Leu	Leu	Ile	Tyr	Lys	Val	Ser	Asn	Arg	Phe	Ser	
25	65					70					75					80	
	ggg	gtc	cca	gac	agg	ttc	agt	ggc	agt	gga	tca	gtg	aca	gat	ttc	aca	288
30	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Val	Thr	Asp	Phe	Thr	
					85					90					95		
	ctc	atg	atc	agc	aga	gtg	gag	gct	gag	gat	ctg	gga	gtt	tat	ttc	tgc	336
35	Leu	Met	Ile	Ser	Arg	Val	Glu	Ala	G1u	Asp	Leu	G1y	Val	Tyr	Phe	Cys	
				100	•				105					110			
	tct	caa	agt	aca	cat	gtt	ccg	tac	acg	ttc	gga	ggg	ggg	acc	aag	ctg	384
40	Ser	Gln	Ser	Thr	His	Val	Pro	Tyr	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	
			115					120					125				
45	gaa	ata	aaa	c													394
	Glu	Ile	Lys														
		130															
50																	
	<21	0> 8															
	<21	1> 4	09														
55																	

	<212	> DN	ľΑ														
5	<213	> Mu	ıs														
	<220	>															
	<221	> CD	S														
10	<222	> (1	.)	(408	3)												
	<223)q <	EM-N	12H.	1-57	7;sig	gnal	pept	ide,	58-	-409	mati	ıre p	oepti	de		
15	<400	8 <															
13	atg	gaa	tgg	agc	tgg	ata	ttt	ctc	ttc	ctc	ctg	tca	gga	act	gca	ggt	48
	Met	Glu	Trp	Ser	Trp	Ile	Phe	Leu	Phe	Leu	Leu	Ser	Gly	Thr	Ala	Gly	
20	- 1				5					10					15		
	gtc	cac	tcc	cag	gtc	cag	ctg	cag	cag	tct	gga	cct	gaa	ctg	gta	aag	96
	Val	His	Ser	G1n	Val	Gln	Leu	G1n	Gln	Ser	Gly	Pro	Glu	Leu	Val	Lys	
25				20					25					30			
	cct	ggg	gct	tca	gtg	aag	atg	tcc	tgc	aag	gct	tct	gga	tac	acc	ttc	144
30	Pro	Gly	Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	
			35					40					45				
	gct	aac	cat	gtt	att	cac	tgg	gtg	aag	cag	aag	cca	ggg	cag	ggc	ctt	192
35	Ala	Asn	His	Val	Ile	His	Trp	Val	Lys	G1n	Lys	Pro	G1y	G1n	Gly	Leu	
		50					55					60					
	gag	tgg	att	gga	tat	att	tat	cct	tac	aat	gat	ggt	act	aag	tat	aat	240
40	Glu	Trp	Ile	Gly	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	Gly	Thr	Lys	Tyr	Asn	
	65					70					75					80	
45	gag	aag	ttc	aag	gac	aag	gcc	act	ctg	act	tca	gac	aaa	tcc	tcc	acc	288
	Glu	Lys	Phe	Lys	Asp	Lys	Ala	Thr	Leu	Thr	Ser	Asp	Lys	Ser	Ser	Thr	
					85					90					95		
50	aca	gcc	tac	atg	gac	ctc	agc	agc	ctg	gcc	tct	gag	gac	tct	gcg	gtc	336
	Thr	Ala	Tyr	Met	Asp	Leu	Ser	Ser	Leu	Ala	Ser	Glu	Asp	Ser	Ala	Val	
				100					105					110			

	tat tac	tgt gca	aga	ggg	ggt	tac	tat	act	tac	gac	gac	tgg	ggc	caa	384
5	Tyr Tyr	Cys Ala	Arg	G1y	Gly	Tyr	Tyr	Thr	Tyr	Asp	Asp	Trp	Gly	Gln	
		115				120					125				
10	ggc acc	act cto	aca	gtc	tcc	tca	g								409
10	Gly Thr	Thr Leu	Thr	Val	Ser	Ser									
	130				135										
15												•			
	<210> 9														
	<211> 32	2													
20	<212> DN	IA													
	<213> Ar	tificia	ıl Sed	queno	се										
	<220>														
25	<223> PC	CR prime	er												
•	<400> 9												-		
30	cccaagct	tc cac	atga	ag ti	tgcci	tgtta	a gg	32							
												٠			
	<210> 10)													
35	<211> 32	2													
	<212> DN	VA													
	<213> Ar	tificia	al Se	quen	ce				•						
40	<220>														
	<223> PC	CR prime	er												
45	<400> 10)	•												
	cccaagct	ttc cac	atgg	aa t	ggag	ctgga	a ta	32							
						•									
50	<210> 11	ĺ													
	<211> 34	1													
	<212> DN	ŇΑ													

	<213> Artificial Sequence
5	<220>
	<223> PCR primer
	< 400> 11
10	cgcggatcca ctcacgtttt atttccagct tggt 34
15	<210> 12
	<211> 34
	<212> DNA
20	<213> Artificial Sequence
	<220> ·
	<223> PCR primer
25	<400> 12
	cgcggatcca ctcacctgag gagactgtga gagt 34
30	
	<210> 13
	<211> 30
35	<212> DNA
	<213> Artificial Sequence
	<220>
40	<223> PCR primer
	<400> 13
45	catgccatgg cgcaggtcca gctgcagcag 30
	<210> 14
50	<211> 27
	<212> DNA
	<213> Artificial Sequence
<i>55</i>	

	<220>
5	<223> PCR primer
	<400> 14
	accaccacct gaggagactg tgagagt 27
10	
	<210> 15
15	<211> 27
	<212> DNA
	<213> Artificial Sequence
20	<220>
	<223> PCR primer
	<400> 15
25	gtctcctcag gtggtggtgg ttcgggt 27
30	<210> 16
	<211> 27
	<212> DNA
35	<213> Artificial Sequence
	<220>
	<223> PCR primer
40	<400> 16
	cacaacatcc gatccgccac cacccga 27
45	
	<210> 17
	<211> 27
50	<212> DNA
	<213> Artificial Sequence
	<220>

	<223> PCR primer
5	<400> 17
	ggcggatcgg atgttgtgat gacccaa 27
10	<210> 18
	<211> 57
15	<212> DNA
	<213> Artificial Sequence
	<220>
20	<223> PCR primer
	<400> 18
05	ccggaattct cattatttat cgtcatcgtc tttgtagtct tttatttcca gcttggt 57
25	
	<210> 19
30	<211> 45
	<212> DNA
	<213> Artificial Sequence
35	<220>
	<223> Linker amino acid sequence and nucleotide sequence
40	<400> 19
40	ggt ggt ggt tcg ggt ggt ggt tcg ggt ggt
	Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
45	5 10 15
	⟨210⟩ 20
50	<211> 828
	<212> DNA
	<213> Mus

	<220)>															
5	<221	> CI	S														
	<222	2> (1	ı)	(822	2)												
	<223	3> ps	scM1.	MAE	3L1~5	scFv											
10	<400	> 20)														
	atg	aaa	tac	cta	ttg	cct	acg	gca	gcc	gct	gga	ttg	tta	tta	ctc	gct	48
15	Met	Lys	Tyr	Leu	Leu	Pro	Thr	Ala	Ala	Ala	Gly	Leu	Leu	Leu	Leu	Ala	
	1				5					10					15		
	gcc	caa	cca	gcc	atg	gcg	cag	gtc	cag	ctg	cag	cag	tct	gga	cct	gac	96
20	Ala	Gln	Pro	Ala	Met	Ala	G1n	Val	Gln	Leu	Gln	G1n	Ser	G1y	Pro	Asp	
				20		٠			25					30			
	ctg	gta	aag	cct	ggg	gct	tca	gtg	aag	atg	tcc	tgc	aag	gct	tct	gga	144
25	Leu	Val	Lys	Pro	Gly	Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	Ala	Ser	Gly	
			35					40					45				
30	tac	acc	ttc	gtt	aac	cat	gtt	atg	cac	tgg	gtg	aag	cag	aag	cca	ggg	192
	Tyr	Thr	Phe	Val	Asn	His	Val	Met	His	Trp	Val	Lys	Gln	Lys	Pro	Gly	
		50					55					60					
35	cag	ggc	ctt	gag	tgg	att	gga	tat	att	tat	cct	tac	aat	gat	ggt	act	240
		Gly	Leu	Glu	Trp		Gly	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	Gly		
40	65					70					75					80	
40		_		_			aag										288
	Lys	Tyr	Asn	Glu		Phe	Lys	Gly	Lys		Thr	Leu	Thr	Ser		Lys	
45					85					90					95		• • •
							atg										336
	Ser	Ser	Ser		Ala	Tyr	Met	Glu		Ser	Ser	Leu	Ala		Glu	Asp	
50				100					105					110			004
							gca										384
EE	ser	ита	vaı	ıyr	ıyr	cys	Ala	Arg	оту	ота	ıyr	ıyr	ser	ıyr	Asp	Asp	

			115					120					125				
5	tgg	ggc	caa	ggc	acc	act	ctc	aca	gtc	tcc	tca	ggt	ggt	ggt	ggt	tcg	432
	Trp	Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	
		130					135					140					
10	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggc	gga	tcg	gat	gtt	gtg	atg	acc	caa	480
	Gly	Gly	Gly	Gly	Ser	Gly	G1 y	Gly	Gly	Ser	Asp	Val	Val	Met	Thr	G1n	
15	145					150					155					160	
	act	cca	ctc	tcc	ctg	cct	gtc	agt	ctt	gga	gat	caa	gcc	tcc	atc	tct	528
	Thr	Pro	Leu	Ser	Leu	Pro	Val	Ser	Leu	Gly	Asp	G1n	Ala	Ser	Ile	Ser	
20	•				165					170					175		
	tgc	aga	tct	agt	cag	agc	ctt	cta	cac	agt	aaa	gga	aac	acc	tat	tta	576
05	Cys	Arg	Ser	Ser	G1n	Ser	Leu	Leu	His	Ser	Lys	Gly	Asn	Thr	Tyr	Leu	
25				180					185					190			
•	caa	tgg	tac	cta	cag	aag	cca	ggc	cag	tct	cca	aag	ctc	ctg	atc	tac	624
30	G1n	Trp	Tyr	Leu	Gln	Lys	Pro	Gly	Gln	Ser	Pro	Lys	Leu	Leu	Ile	Tyr	
			195					200		•			205				
	aaa	gtt	tcc	aac	cga	ttt	tct	ggg	gtc	cca	gac	agg	ttc	agt	ggc	agt	672
35	Lys	Val	Ser	Asn	Arg	Phe	Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	G1y	Ser	
		210					215					220					
40	gga	tca	ggg	aca	gat	ttc	aca	ctc	aag	atc	agc	aga	gtg	gag	gct	gag	720
40	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Lys	Ile	Ser	Arg	Val	Glu	Ala	Glu	
	225					230					235					240	
45	gat	ctg	gga	gtt	tat	ttc	tgc	tct	caa	agt	aca	cat	gtt	ccg	tac	acg	768
	Asp	Leu	Gly	Val	Tyr	Phe	Cys	Ser	Gln	Ser	Thr	His	Val	Pro	Tyr	Thr	
					245					250					255		
50	tcc	gga	ggg	ggg	acc	aag	ctg	gaa	ata	aaa	gac	tac	aaa	gac	gat	gac	816
	Ser	G1y	Gly	G1y	Thr	Lys	Leu	Glu	Ile	Lys	Asp	Tyr	Lys	Asp	Asp	Asp	
<i>55</i>				260					265					270			

	gat aaa taatga	828
5	Asp Lys	
	<210> 21	
10	<211> 31	
	<212> DNA	
15	<213> Artificial Sequence	
	<220>	
	<223> PCR primer	
20	<400> 21	
	acgcgtcgac tcccaggtcc agctgcagca g 31	
25		
20	<210> 22	
	<211> 18	
30	<212> DNA	
	<213> Artificial Sequence	
	<220>	
35	<223> PCR primer	
	<400> 22	
40	gaaggtgtat ccagaagc 18	
	(010) 00	
	<210> 23	
45	<211> 819	
	<212> DNA	
	<213> Mus	
50	<220> <221> CDS	
	<222> (1) (813)	
	\UUU/ \I)\UIU/	

	<223	3> p(CHOM	l. M <i>A</i>	ABL1-	-scF	7										
5	<400)> 23	3														
	atg	gga	tgg	agc	tgt	atc	atc	ctc	ttc	ttg	gta	gca	aca	gct	aca	ggt	48
	Met	G1y	Trp	Ser	Cys	Ile	Ile	Leu	Phe	Leu	Val	Ala	Thr	Ala	Thr	Gly	
10	1				5					10					15		
	gtc	gac	tcc	cag	gtc	cag	ctg	cag	cag	tct	gga	cct	gac	ctg	gta	aag	96
15	Val	Asp	Ser	Gln	Val	Gln	Leu	Gln	Gln	Ser	Gly	Pro	Asp	Ĺeu	Val	Lys	
				20					25					30			
	cct	ggg	gct	tca	gtg	aag	atg	tcc	tgc	aag	gct	tct	gga	tac	acc	ttc	144
20	Pro	Gly	Ala	Ser	Va1	Lys	Met	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	
	•		35				-	40					45				
	gtt	aac	cat	gtt	atg	cac	tgg	gtg	aag	cag	aag	cca	ggg	cag	ggc	ctt	192
25	Val	Asn	His	Val	Met	His	Trp	Val	Lys	G1n	Lys	Pro	Gly	Gln	Gly	Leu	
		50					55					60					
30	gag	tgg	att	gga	tat	att	tat	cct	tac	aat	gat	ggt	act	aag	tac	aat	240
	Glu	Trp	Ile	Gly	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	Gly	Thr	Lys	Tyr	Asn	
	65					70					7 5					80	
35	gag	aag	ttc	aag	ggc	aag	gcc	aca	ctg	act	tca	gag	aaa	tcc	tcc	agc	288
	Glu	Lys	Phe	Lys	Gly	Lys	Ala	Thr	Leu	Thr	Ser	Glu	Lys	Ser	Ser	Ser	
					85					90					95		
40	gca	gcc	tac	atg	gag	ctc	agc	agc	ctg	gcc	tct	gag	gac	tct	gcg	gtc	336
	Ala	Ala	Tyr	Met	Glu	Leu	Ser	Ser	Leu	Ala	Ser	Glu	Asp	Ser	Ala	Val	
<i>45</i>				10	0				10	5				110)		
	tac	tac	tgt	gca	aga	ggg	ggt	tac	tat	agt	tac	gac	gac	tgg	ggc	caa	384
	Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	Tyr	Tyr	Ser	Tyr	Asp	Asp	Trp	Gly	Gln	
50			115					120					125				
	ggc	acc	act	ctc	aca	gtc	tcc	tca	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggt	432
	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser	Gly	Gly	G1y	Gly	Ser	Gly	Gly	G1y	
<i>55</i>																	

		130					135					140					
5	ggt	tcg	ggt	ggt	ggc	gga	tcg	gat	gtt	gtg	atg	acc	caa	act	cca	ctc	480
	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Asp	Val	Val	Met	Thr	Gln	Thr	Pro	Leu	
	145					150					155					160	
10	tcc	ctg	cct	gtc	agt	ctt	gga	gat	caa	gcc	tcc	atc	tct	tgc	aga	tct	528
	Ser	Leu	Pro	Val	Ser	Leu	Gly	Asp	Gln	Ala	Ser	Ile	Ser	Cys	Arg	Ser	
15					165					170	•				175		
	agt	cag	agc	ctt	cta	cac	agt	aaa	gga	aac	acc	tat	tta	caa	tgg	tac	576
	Ser	G1n	Ser	Leu	Leu	His	Ser	Lys	Gly	Asn	Thr	Tyr	Leu	G1n	Trp	Tyr	
20	~			180					185			-		190			
	cta	cag	aag	cca	ggc	cag	tct	cca	aag	ctc	ctg	atc	tac	aaa	gtt	tcc	624
	Leu	Gln	Lys	Pro	Gly	Gln	Ser	Pro	Lys	Leu	Leu	Ile	Tyr	Lys	Val	Ser	
25			195					200					205				
	aac	cga	ttt	tct	ggg	gtc	cca	gac	agg	ttc	agt	ggc	agt	gga	tca	ggg	672
30	Asn	Arg	Phe	Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	G1 y	Ser	Gly	
		210					215				•	220					
	aca	gat	ttc	aca	ctc	aag	atc	agc	aga	gtg	gag	gct	gag	gat	ctg	gga	720
35	Thr	Asp	Phe	Thr	Leu	Lys	Ile	Ser	Arg	Val	G1u	Ala	Glu	Asp	Leu	Gly	
	225					230					235					240	
40	gtt	tat	ttc	tgc	tct	caa	agt	aca	cat	gtt	ccg	tac	acg	tcc	gga	ggg	768
	Val	Tyr	Phe	Cys	Ser	Gln	Ser	Thr	His	Val	Pro	Tyr	Thr	Ser	Gly	Gly	
					245					250					255		
45	ggg	acc	aag	ctg	gaa	ata	aaa	gac	tac	aaa	gac	gat	gac	gat	aaa	taa	816
	Gly	Thr	Lys		Glu	Ile	Lys	Asp		Lys	Asp	Asp	Asp				
				260					265					270			
50	tga																819

53

<210> 24

	<211	1> 82	28														
5	<212	2> DI	NA														
	<213	3> Mi	ıs														
	<220)>															
10	<221	r> ci	os										-				
	<222	2> (1	1)	(822	2)												
15	<223	3> ps	scM2.	MAI	3L2-s	scFv											
	<400)> 24	4														
	atg	aaa	tac	cta	ttg	cct	acg	gca	gcc	gct	gga	ttg	tta	tta	ctc	gct	48
20	Met	Lys	Tyr	Leu	Leu	Pro	Thr	Ala	Ala	Ala	Gly	Leu	Leu	Leu	Leu	Ala	
	1				5		•			10					15		
	gcc	caa	cca	gcc	atg	gcg	cag	gtc	cag	ctg	cag	cag	tct	gga	cct	gaa	96
25	Ala	Gln	Pro	Ala	Met	Ala	Gln	Val	G1n	Leu	Gln	Gln	Ser	Gly	Pro	Glu	
				20					25					.30			
30	ctg	gta	aag	cct	ggg	gct	tca	gtg	aag	atg	tcc	tgc	aag	gct	tct	gga	144
	Leu	Val	Lys	Pro	Gly	Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	Ala	Ser	Gly	
			35	•				40					45				
35	tac	acc	ttc	gct	aac	cat	gtt	att	cac	tgg	gtg	aag	cag	aag	cca	ggg	192
	Tyr		Phe	Ala	Asn	His		Ile	His	Trp	Val		Gln	Lys	Pro	Gly	
40		50					55					60					
40			ctt														240
		Gly	Leu	Glu	Trp		Gly	Tyr	Ile	Tyr		Tyr	Asn	Asp	Gly		
45	65					70					75					80	
			aat														288
	Lys	Tyr	Asn	Glu	-	Phe	Lys	Asp	Lys		Thr	Leu	Thr	Ser	_	Lys	
50 .					85					90					95		000
			acc														336
<i>55</i>	ser	ser	Thr	ınr	AIS	ıyr	мет	мsр	Leu	ser	ser	Leu	wra	ser	GIU	лsр	

				100					105					110			
5	tct	gcg	gtc	tat	tac	tgt	gca	aga	ggg	ggt	tac	tat	act	tac	gac	gac	384
	Ser	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	Tyr	Tyr	Thr	Tyr	Asp	Asp	
			115	-				120					125				
10	tgg	ggc	caa	ggc	acc	act	ctc	aca	gtc	tcc	tca	ggt	ggt	ggt	ggt	tcg	432
	Trp	G1y	Gln	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	
15		130					135					140					
	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggc	gga	tcg	gat	gtt	gtg	atg	acc	caa	480
	Gly	G1y	G1y	Gly	Ser	Gly	G1y	Gly	G1y	Ser	Asp	Val	Val	Met	Thr	Gln	
20	145					150					155					160	
	agt	cca	ctc	tcc	ctg	cct	gtc	agt	ctt	gga	gat	caa	gcc	tcc	atc	tct	528
	Ser	Pro	Leu	Ser	Leu	Pro	Val	Ser	Leu	Gly	Asp	G1n	Ala	Ser	Ile	Ser	
25					165					170					175		
	tgc	aga	tca	agt	cag	agc	ctt	gtg	cac	agt	aat	gga	aag	acc	tat	tta	576
30	Cys	Arg	Ser	Ser	Gln	Ser	Leu	Val	His	Ser	Asn	Gly	Lys	Thr	Tyr		
				180					185					190			
	cat	tgg	tac	ctg	cag	aag	cca	ggc	cag	tct	cca	aaa	ctc	ctg	atc	tac	624
35	His	Trp	Tyr	Leu	Gln	Lys	Pro	Gly	Gln	Ser	Pro	Lys	Leu	Leu	Ile	Tyr	
			195					200					205				
	aaa	gtt	tcc	aac	cga	ttt	tct	ggg	gtc	cca	gac	agg	ttc	agt	ggc	agt	672
40 .	Lys	Val	Ser	Asn	Arg	Phe	Ser	G1y	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	
		210					215					220					
45	gga	tca	gtg	aca	gat	ttc	aca	ctc	atg	atc	agc	aga	gtg	gag	gct	gag	720
	G1y	Ser	Val	Thr	Asp	Phe	Thr	Leu	Met	Ile	Ser	Arg	Val	G1u	Ala	Glu	
	225					230					235					240	
50	gat	ctg	gga	gtt	tat	ttc	tgc	tct	caa	agt	aca	cat	gtt	ccg	tac	acg	768
	Asp	Leu	Gly	Val	Tyr	Phe	Cys	Ser	Gln	Ser	Thr	His	Val	Pro	Tyr	Thr	
					245					250					255		
<i>55</i>																	

	ttc gga	ggg	ggg	acc	aag	ctg	gaa	ata	aaa	gac	tac	aaa	gac	gat	gac	816
5	Phe Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	Asp	Tyr	Lys	Asp	Asp	Asp	
			260					265					270			
	gat aaa	taat	ga													828
10	Asp Lys															
15	<210> 2	5														
	<211> 8	19														
	<212> DI	AV														
20	<213> M	us														
	<220>					•										
	<221> C	DS														
25	<222> (1)	(813	3)												
	<223> pt	CHOM	2. M/	ABL2-	-scF	v										
30	<400> 2	5														
	atg gga	tgg	agc	tgt	atc	atc	ctc	ttc	ttg	gta	gca	aca	gct	aca	ggt	48
	Met Gly	Trp	Ser	Cys	Ile	Ile	Leu	Phe	Leu	Val	Ala	Thr	Ala	Thr	G1y	
35	1			5					10					15		
	gtc gac	tcc	cag	gtc	cag	ctg	cag	cag	tct	gga	cct	gaa	ctg	gta	aag	96
	Val Asp	Ser	Gln	Val	G1n	Leu	Gln	Gln	Ser	Gly	Pro	Glu	Leu	Val	Lys	
40			20					25					30			
	cct ggg	gct	tca	gtg	aag	atg	tcc	tgc	aag	gct	tct	gga	tac	acc	ttc	144
45	Pro Gly	Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	Ala	Ser	G1y	Tyr	Thr	Phe	
		35					40					45				
	gct aac	cat	gtt	att	cac	tgg	gtg	aag	cag	aag	cca	ggg	cag	ggc	ctt	192
50	Ala Asn	His	Val	Ile	His	Trp	Val	Lys	G1n	Lys	Pro	Gly	Gln	G1y	Leu	
	50					55					60					
	gag tgg	att	gga	tat	att	tat	cct	tac	aat	gat	ggt	act	aag	tat	aat	240
55																

	Glu	Trp	lle	Gly	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	Gly	Thr	Lys	Tyr	Asn	
5	65					70					75					80	
	gag	aag	ttc	aag	gac	aag	gcc	act	ctg	act	tca	gac	aaa	tcc	tcc	acc	288
	Glu	Lys	Phe	Lys	Asp	Lys	Ala	Thr	Leu	Thr	Ser	Asp	Lys	Ser	Ser	Thr	
10					85					90					95		
	aca	gcc	tac	atg	gac	ctc	agc	agc	ctg	gcc	tct	gag	gac	tct	gcg	gtc	336
15	Thr	Ala	Tyr	Met	Asp	Leu	Ser	Ser	Leu	Ala	Ser	Glu	Asp	Ser	Ala	Val	
				100					105					110			
	tat	tac	tgt	gca	aga	ggg	ggt	tac	tat	act	tac	gac	gac	tgg	ggc	caa	384
20	Tyr	Tyr	Cys	Ala	Arg	G1y	Gly	Tyr	Tyr	Thr	Tyr	Asp	Asp	Trp	G1y	G1n	
			115				•	120					125				
	ggc	acc	act	ctc	aca	gtc	tcc	tca	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggt	432
25	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	
		130					135					140					
30	ggt	tcg	ggt	ggt	ggc	gga	tcg	gat	gtt	gtg	atg	acc	caa	agt	cca	ctc	480
	Gly	Ser	Gly	Gly	Gly	G1y	Ser	Asp	Val	Val	Met	Thr	Gln	Ser	Pro	Leu	
	145					150					155					160	
35	tcc	ctg	cct	gtc	agt	ctt	gga	gat	caa	gcc	tcc	atc	tct	tgc	aga	tca	528
	Ser	Leu	Pro	Val	Ser	Leu	Gly	Asp	Gln	Ala	Ser	Ile	Ser	Cys	Arg	Ser	
					165					170					175		
40	agt	cag	agc	ctt	gtg	cac	agt	aat	gga	aag	acc	tat	tta	cat	tgg	tac	576
	Ser	Gln	Ser	Leu	Val	His	Ser	Asn	Gly	Lys	Thr	Tyr	Leu	His	Trp	Tyr	
45				180					185					190			
	ctg	cag	aag	cca	ggc	cag	tct	cca	aaa	ctc	ctg	atc	tac	aaa	gtt	tcc	624
	Leu	Gln	Lys	Pro	Gly	Gln	Ser	Pro	Lys	Leu	Leu	Ile	Tyr	Lys	Val	Ser	
50			195					200					205				
	aac	cga	ttt	tct	ggg	gtc	cca	gac	agg	ttc	agt	ggc	agt	gga	tca	gtg	672
	Asn	Arg	Phe	Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Val	
FF																	

	210	215	220
5	aca gat ttc aca ctc atg	atc agc aga gtg gag	gct gag gat ctg gga 720
	Thr Asp Phe Thr Leu Met	Ile Ser Arg Val Glu	Ala Glu Asp Leu Gly
	225 230	235	240
10	gtt tat ttc tgc tct caa	agt aca cat gtt ccg	tac acg ttc gga ggg 768
	Val Tyr Phe Cys Ser Gln	Ser Thr His Val Pro	Tyr Thr Phe Gly Gly
15	245	250	255
	ggg acc aag ctg gaa ata	aaa gac tac aaa gac	gat gac gat aaa taa 816
	Gly Thr Lys Leu Glu Ile	Lys Asp Tyr Lys Asp	Asp Asp Asp Lys
20	260	265	270
	tga		819
25	<210≻ 26		
	<211> 456		•
30	<212> DNA		
	<213> Mus		
	⟨220⟩		•
35	<221> CDS		
	⟨222⟩ (1)(450)		
	<223> pCHO-shIAP. Solub	le human IAP	
40	<400≻ 26		
	atg tgg ccc ctg gta gcg	gcg ctg ttg ctg ggc	tcg gcg tgc tgc gga 48
45	Met Trp Pro Leu Val Ala	Ala Leu Leu Cly	Ser Ala Cys Cys Gly
	1 5	10	15
	tca gct cag cta cta ttt	aat aaa aca aaa tct	gta gaa ttc acg ttt 96
50	Ser Ala Gln Leu Leu Phe	Asn Lys Thr Lys Ser	Val Glu Phe Thr Phe
	20	25	30
	tgt aat gac act gtc gtc	att cca tgc ttt gtt	act aat atg gag gca 144
55			

	Cys	Asn	Asp	Thr	Val	Val	Ile	Pro	Cys	Phe	Val	Thr	Asn	Met	G1u	Ala	
5			35					40					45				
	caa	aac	act	act	gaa	gta	tac	gta	aag	tgg	aaa	ttt	aaa	gga	aga	gat	192
	G1n	Asn	Thr	Thr	Glu	Val	Tyr	Val	Lys	Trp	Lys	Phe	Lys	Gly	Arg	Asp	
10		50					55					60					
	att	tac	acc	ttt	gat	gga	gct	cta	aac	aag	tcc	act	gtc	ccc	act	gac	240
15	Ile	Tyr	Thr	Phe	Asp	Gly	Ala	Leu	Asn	Lys	Ser	Thr	Val	Pro	Thr	Asp	
	65					70					7 5					80	
	ttt	agt	agt	gca	aaa	att	gaa	gtc	tca	caa	tta	cta	aaa	gga	gat	gcc	288
20	Phe	Ser	Ser	Ala	Lys	Ile	G1u	Val	Ser	Gln	Leu	Leu	Lys	Gly	Asp	Ala	
					85		-			90					95		
	tct	ttg	aag	atg	gat	aag	agt	gat	gct	gtc	tca	cac	aca	gga	aac	tac	336
25	Ser	Leu	Lys	Met	Asp	Lys	Ser	Asp	Ala	Val	Ser	His	Thr	Gly	Asn	Tyr	
•				100					105					110			
30	act	tgt	gaa	gta	aca	gaa	tta	acc	aga	gaa	ggt	gaa	acg	atc	atc	gag	384
	Thr	Cys	Glu	Val	Thr	Glu	Leu	Thr	Arg	Glu	Gly	Glu	Thr	Ile	Ile	Glu	
			115					120					125				
35	cta	aaa	tat	cgt	gtt	gtt	tca	tgg	ttt	tct	cca	aat	gaa	aat	gac	tac	432
	Leu	Lys	Tyr	Arg	Val	Val	Ser	Trp	Phe	Ser	Pro	Asn	Glu	Asn	Asp	Tyr	
		130					135					140					
40	aag	gac	gac	gat	gac	aag	tga-	tag									456
	Lys	Asp	Asp	Asp	Asp	Lys											
45	145					150											
	<21	0> 2'	7														
50	<21	1> 40	6														
	<21	2> Di	NA														
	<21 3	3> A:	rtif	icia	1 Se	quen	ce										
55																	

```
<220>
          <223> PCR primer
          <400> 27
          ggaattccat atgcaagtgc aacttcaaca gtctggacct gaactg 46
10
          <210> 28
          <211> 31
15
          <212> DNA
          <213> Artificial Sequence
20
          <220>
          <223> PCR primer
          <400> 28
25
          ggaattctca ttattttatt tccagcttgg t 31
          <210> 29
30
          <211> 741
          <212> DNA
          <213> Mus
35
          <220>
          <221> CDS
40
          <222> (1)...(735)
          <223> pscM2DEm02. MABL2-scFv
          <400> 29
45
          atg caa gtg caa ctt caa cag tct gga cct gaa ctg gta aag cct ggg
                                                                              48
          Met Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly
                            5
            1
                                                10
                                                                     15
50
          get tea gtg aag atg tee tge aag get tet gga tae ace tte get aac
                                                                              96
          Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ala Asn
55
```

				20					25					30			
5	cat	gtt	att	cac	tgg	gtg	aag	cag	aag	cca	ggg	cag	ggc	ctt	gag	tgg	144
	His	Val	Ile	His	Trp	Val	Lys	Gln	Lys	Pro	Gly	Gln	Gly	Leu	Glu	Trp	
			35					40					45				
10	att	gga	tat	att	tat	cct	tac	aat	gat	ggt	act	aag	tat	aat	gag	aag	192
	Ile	G1y	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	Gly	Thr	Lys	Tyr	Asn	Glu	Lys	
15		50					55					60					
	ttc	aag	gac	aag	gcc	act	ctg	act	tca	gac	aaa	tcc	tcc	acc	aca	gcc	240
	Phe	Lys	Asp	Lys	Ala	Thr	Leu	Thr	Ser	Asp	Lys	Ser	Ser	Thr	Thr	Ala	
20	.65					70					75					80	
	tac	atg	gac	ctc	agc	agc	ctg	gcc	tct	gag	gac	tct	gcg	gtc	tat	tac	288
	Tyr	Met	Asp	Leu	Ser	Ser	Leu	Ala	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Tyr	
25					85					90					95		
	tgt	gca	aga	ggg	ggt	tac	tat	act	tac	gac	gac	tgg	ggc	caa	ggc	acc	336
30	Cys	Ala	Arg	Gly	Gly	Tyr	Tyr	Thr	Tyr	Asp	Asp	Trp	Gly	Gln	Gly	Thr	
				100					105					110			
	act	ctc	aca	gtc	tcc	tca	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggt	ggt	tcg	384
35	Thr	Leu	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	
			115					120					125				
	ggt	ggt	ggc	gga	tcg	gat	gtt	gtg	atg	acc	caa	agt	cca	ctc	tcc	ctg	432
40	G1y	Gly	Gly	Gly	Ser	Asp	Val	Va1	Met	Thr	Gln	Ser	Pro	Leu	Ser	Leu	
		130					135					140					
45	cct	gtc	agt	ctt	gga	gat	caa	gcc	tcc	atc	tct	tgc	aga	tca	agt	cag	480
	Pro	Val	Ser	Leu	Gly	Asp	Gln	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	G1n	
	145					150					155	•				160	
50	agc	ctt	gtg	cac	agt	aat	gga	aag	acc	tat	tta	cat	tgg	tac	ctg	cag	528
	Ser	Leu	Val	His	Ser	Asn	Gly	Lys	Thr	Tyr	Leu	His	Trp	Tyr	Leu	G1n	
					165					170				,	175		
<i>55</i>																	

	aag cca ggc cag tct cca aaa ctc ctg atc tac aaa gtt tcc aac cga	576
5	Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg	
	180 185 190	
	ttt tct ggg gtc cca gac agg ttc agt ggc agt gga tca gtg aca gat	624
10	Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Val Thr Asp	
	195 200 205	
15	ttc aca ctc atg atc agc aga gtg gag gct gag gat ctg gga gtt tat	672
	Phe Thr Leu Met Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr	
	210 215 220	
20	ttc tgc tct caa agt aca cat gtt ccg tac acg ttc gga ggg ggg acc	720
	Phe Cys Ser Gln Ser Thr His Val Pro Tyr Thr Phe Gly Gly Gly Thr	
25	225 230 235 240	
25	aag ctg gaa ata aaa taatga	741
	Lys Leu Glu Ile Lys	
30	245	
	(010) 00	
	<210> 30	
35	<211> 18	
	<212> DNA	
40	<213> Artificial Sequence <220>	
	<223> PCR primer	
	(400) 30	
45	cagacagtgg ttcaaagt 18	
	Cagacaguag vicadagu 10	
50	<210> 31	
	<211> 72	
	<212> DNA	
55		

	<213	3> Ar	tifi	cial	. Sec	quenc	е										
5	<220	>															
	<223	3> PC	R pi	imer	-												
	<400	> 31	L														
10	cgcg	gtcga	icc é	gatco	gcca	ac ca	accc	gaaco	aco	cacca	accc	gaad	ccaco	cac o	cacc ⁻	ttttat	60
	ttcc	agct	tg g	gt													72
15																	
	<210)> 32	2														
	<211	> 16	605														
20	<212	2> DI	ΙA														
	<213	3> Mu	ıs														
25	<220)>															
25	<221	l> CI	os														
	<222	2> (1	ι)	(159	99)												
30	<223	3> p(CHOM	2 (Fv)	2. N	MABL	2-sc	(Fv) 2	2								
	<400)> 32	2														
	atg	gga	tgg	agc	tgt	atc	atc	ctc	ttc	ttg	gta	gca	aca	gct	aca	ggt	48
35	Met	G1y	Trp	Ser	Cys	Ile	Ile	Leu	Phe	Leu	Val	Ala	Thr	Ala	Thr	Gly	
	1				5					10					15		
40	gtc	gac	tcc	cag	gtc	cag	ctg	cag	cag	tct	gga	cct	gaa	ctg	gta	aag	96
40	Val	Asp	Ser	Gln	Val	Gln	Leu	Gln	Gln	Ser	Gly	Pro	Glu	Leu	Val	Lys	
				20					25					30			
45	cct	ggg	gct	tca	gtg	aag	atg	tcc	tgc	aag	gct	tct	gga	tac	acc	ttc	144
	Pro	Gly	Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	
			35					40					45				
50	gct	aac	cat	gtt	att	cac	tgg	gtg	aag	cag	aag	cca	ggg	cag	ggc	ctt	192
	Ala	Asn	His	Val	Ile	His	Trp	Val	Lys	Gln	Lys	Pro	Gly	Gln	Gly	Leu	
55		50					55				٠	60					

	gag	tgg	att	gga	tat	att	tat	cct	tac	aat	gat	ggt	act	aag	tat	aat	240
5	Glu	Trp	Ile	Gly	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	Gly	Thr	Lys	Tyr	Asn	
	65					70					75					80	
	gag	aag	ttc	aag	gac	aag	gcc	act	ctg	act	tca	gac	aaa	tcc	tcc	acc	288
10	Glu	Lys	Phe	Lys	Asp	Lys	Ala	Thr	Leu	Thr	Ser	Asp	Lys	Ser	Ser	Thr	
					85					90					95		
15	aca	gcc	tac	atg	gac	ctc	agc	agc	ctg	gcc	tct	gag	gac	tct	gcg	gtc	336
	Thr	Ala	Tyr	Met	Asp	Leu	Ser	Ser	Leu	Ala	Ser	Glu	Asp	Ser	Ala	Val	
				100					105			-		110			
20	ŧat	tac	tgt	gca	aga	ggg	ggt	tac	tat	act	tac	gac	gac	tgg	ggc	caa	384
	Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	Tyr	Tyr	Thr	Tyr	Asp	Asp	Trp	Gly	G1n	
0.5			115					120					125				
25	ggc	acc	act	ctc	aca	gtc	tcc	tca	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggt	432
	G1y	Thr	Thr	Leu	Thr	Val	Ser	Ser	Gly	Gly	Gly	G1y	Ser	Gly	Gly	G1y	
30		130					135					140					
	ggt	tcg	ggt	ggt	ggc	gga	tcg	gat	gtt	gtg	atg	acc	caa	agt	cca	ctc	480
	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Asp	Val	Val	Met	Thr	G1n	Ser	Pro	Leu	
35	145					150					155					160	
	tcc	ctg	ccţ	gtc	agt	ctt	gga	gat	caa	gcc	tcc	atc	tct	tgc	aga	tca	528
	Ser	Leu	Pro	Val	Ser	Leu	Gly	Asp	Gln	Ala	Ser	Ile	Ser	Cys	Arg	Ser	
40				•	165					170					175		
	agt	cag	agc	ctt	gtg	cac	agt	aat	gga	aag	acc	tat	tta	cat	tgg	tac	576
45	Ser	Gln	Ser	Leu	Val	His	Ser	Asn	Gly	Lys	Thr	Tyr	Leu	His	Trp	Tyr	
				180					185					190			
	ctg	cag	aag	cca	ggc	cag	tct	cca	aaa	ctc	ctg	atc	tac	aaa	gtt	tcc	624
50	Leu	Gln	Lys	Pro	Gly	Gln	Ser	Pro	Lys	Leu	Leu	Ile	Tyr	Lys	Val	Ser	
			195					200					205				
55	aac	cga	ttt	tct	ggg	gtc	cca	gac	agg	ttc	agt	ggc	agt	gga	tca	gtg	672
<i>55</i>																	

	Asn	Arg	Phe	Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Val	
5		210					215					220					
	aca	gat	ttc	aca	ctc	atg	atc	agc	aga	gtg	gag	gct	gag	gat	ctg	gga	720
10	Thr	Asp	Phe	Thr	Leu	Met	Ile	Ser	Arg	Val	Glu	Ala	G1u	Asp	Leu	Gly	
70	225					230					235					240	
	gtt	tat	ttc	tgc	tct	caa	agt	aca	cat	gtt	ccg	tac	acg	ttc	gga	ggg	768
15	Val	Tyr	Phe	Cys	Ser	G1n	Ser	Thr	His	Val	Pro	Tyr	Thr	Phe	Gly	Gly	
					245					250					255		
	ggg	acc	aag	ctg	gaa	ata	aaa	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggt	ggt	816
20	Gly	Thr	Lys	Leu	G1u	Ile	Lys	Gly	G1y	Gly	Gly	Ser	Gly	G1y	G1y	Gly	
				260					265					270			
25	tcg	ggt	ggt	ggc	gga	tcg	gtc	gac	tcc	cag	gtc	cag	ctg	cag	cag	tct	864
	Ser	Gly	Gly	Gly	Gly	Ser	Val	Asp	Ser	Gln	Val	Gln	Leu	Gln	Gln	Ser	
			275					280					285				
30	gga	cct	gaa	ctg	gta	aag	cct	ggg	gct	tca	gtg	aag	atg	tcc	tgc	aag	912
	Gly	Pro	Glu	Leu	Val	Lys	Pro	Gly	Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	
		290					295					300					
35	gct	tct	gga	tac	acc	ttc	gct	aac	cat	gtt	att	cac	tgg	gtg	aag	cag	960
	Ala	Ser	Gly	Tyr	Thr	Phe	Ala	Asn	His	Val	Ile	His	Trp	Val	Lys	G1n	
40	305					310					315					320	
	aag	cca	ggg	cag	ggc	ctt	gag	tgg	att	gga	tat	att	tat	cct	tac	aat	1008
	Lys	Pro	Gly	G1n	Gly	Leu	Glu	Trp	Ile	Gly	Tyr	Ile	Tyr	Pro	Tyr	Asn	
45					325					330					335		
	gat	ggt	act	aag	tat	aat	gag	aag	ttc	aag	gac	aag	gcc	act	ctg	act	1056
	Asp	Gly	Thr	Lys	Tyr	Asn	Glu	Lys	Phe	Lys	Asp	Lys	Ala		Leu	Thr	
50				340					345					350			
	tca	gac	aaa	tcc	tcc	acc	aca	gcc	tac	atg	gac	ctc	agc	agc	ctg	gcc	1104
55	Ser	Asp	Lys	Ser	Ser	Thr	Thr	Ala	Tyr	Met	Asp	Leu	Ser	Ser	Leu	Ala	

		355					360				-	365				
5	tct ga	g gac	tct	gcg	gtc	tat	tac	tgt	gca	aga	ggg	ggt	tac	tat	act	1152
	Ser Gl	u Asp	Ser	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	Tyr	Tyr	Thr	
10	37	0				375					380					
10	tac ga	c gac	tgg	ggc	caa	ggc	acc	act	ctc	aca	gtc	tcc	tca	ggt	ggt	1200
	Tyr As	p Asp	Trp	Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser	Gly	Gly	
15	385				390					395					400	
	ggt gg	t tcg	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggc	gga	tcg	gat	gtt	gtg	1248
	Gly Gl	y Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Asp	Val	Val	
20	•			405					410					415		
	atg ac	c caa	agt	cca	ctc	tcc	ctg	cct	gtc	agt	ctt	gga	gat	caa	gcc	1296
25	Met Th	r Gln	Ser	Pro	Leu	Ser	Leu	Pro	Val	Ser	Leu	G1y	Asp	G1n	Ala	
			420					425					430			
	tcc at	c t¢t	tgc	aga	tca	agt	cag	agc	ctt	gtg	cac	agt	aat	gga	aag	1344
30	Ser Il	e Ser	Cys	Arg	Ser	Ser	Gln	Ser	Leu	Val	His	Ser	Asn	Gly	Lys	
		435					440					445				
	acc ta	t tta	cat	tgg	tac	ctg	cag	aag	cca	ggc	cag	tct	cca	aaa	ctc	1392
35	Thr Ty		His	Trp	Tyr		Gln	Lys	Pro	Gly	Gln	Ser	Pro	Lys	Leu	
	45					455					460					
40	ctg at			_												1440
	Leu II	e Tyr	Lys	Val		Asn	Arg	Phe	Ser		Val	Pro	Asp	Arg		-
	465				470					475				•	480	
45	agt gg															1488
	Ser Gl	y Ser	Gly		Val	Ihr	Asp	Phe		Leu	Met	He	Ser		Val	
50		.		485			4 - 4		490					495		1506
50	gag go															1536
	Glu Al	a viu		Leu	GIŸ	vai	ıyr		cys	ser	GIN	ser		nıs	val	
55			500					505					510			

	ccg tac acg ttc gga ggg ggg acc aag ctg gaa ata aaa gac tac aaa 1584
5	Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Asp Tyr Lys
	515 520 525
	gac gat gac gat aaa taatga 1605
10	Asp Asp Asp Lys
	530
15	
	⟨210⟩ 33
	⟨211⟩ 23
20	<212> DNA
	<213> Artificial Sequence
25	<220>
25	<223> PCR primer
	<400> 33
30	tgaggaattc ccaccatggg atg 33
	<210> 34
35	<211> 40
	<212> DNA
40	<pre><213> Artificial Sequence</pre>
40	<220>
	<223> PCR primer
45	<400> 34
	cacgacgtca ctcgagactg tgagagtggt gccttggccc 40
50	<210> 35
	<211> 40
	<212> DNA

	<213> Artificial Sequence
5	<220>
	<223> PCR primer
10	<400> 35
10	agtetegagt gacgtegtga tgacceaaag tecaetetee 40
15	⟨210⟩ 36
	<211> 31
	<212> DNA
20	<pre><213> Artificial Sequence</pre>
	<220>
25	<223> PCR primer
	<400> 36
	gactggatcc tcattattta tcgtcatcgt c 31
30	
	<210> 37
	<211> 22
35	<212> DNA
	<213> Artificial Sequence
40	<220>
40	<223> PCR primer
	<400> 37
45	cgcgtaatac gactcactat ag 22
	<210> 38
50	<211> 46
	<212> DNA
	<213> Artificial Sequence
<i>55</i>	

	<220>
5	<223> PCR primer
	<400> 38
10	gcaattggac ctgttttatc tcgagcttgg tccccctcc gaacgt 46
	<210> 39
15	<211> 45
	<212> DNA
	<213> Artificial Sequence
20	<220>
	<223> PCR primer
25	<400> 39
20	gctcgagata aaacaggtcc aattgcagca gtctggacct gaact 45
30	<210> 40
	<211> 60
	<212> DNA
35	<213> Artificial Sequence
	<220>
40	<223> PCR primer
70	<400> 40
	gactggatcc tcattattta tcgtcatcgt ctttgtagtc tgaggagact gtgagagtgg 60
45	
	<210> 41
	<211> 32
50	<212> DNA
	<213> Artificial Sequence
55	⟨220⟩

	(223) PCR primer
5	<400> 41
	gactgaattc ccaccatgaa gttgcctgtt ag 32
10	
,,	<210> 42
	<211> 40
15	<212> DNA
	<213> Artificial Sequence
	<220>
20	<223> PCR primer
	<400> 42
25	cagtetegag tggtggttee gaegtegtga tgaeccaaag 40
20	
	<210> 43
30	⟨211⟩ 43
	<212> DNA
	<213> Artificial Sequence
35	<220>
	<223> PCR primer
40	<400> 43
40	cagtetegag tggtggtggt teegacgteg tgatgaceca aag 43
45	<210> 44
	<211> 46
	<212> DNA
50	<213> Artificial Sequence
	<220>
55	<223> PCR primer

	<400> 44
5	cagtetegag tggtggtggt ggtteegaeg tegtgatgae ecaaag 46
	<210> 45
10	<211> 49
	<212> DNA
15	<213> Artificial Sequence
	<220>
	<223> PCR primer
20	< 400> 45
	cagtetegag tggtggtggt ggtggtteeg acgtegtgat gacceaaag 49
25	<210> 46
	<211> 52
30	<212> DNA
•	<213> Artificial Sequence
	<220>
35	<223> PCR primer
	<400> 46
	cagtetegag tggtggtggt ggtggtggtt cegacgtegt gatgaceeaa ag 52
40	
	<210> 47
45	<211> 20
	<212> DNA
	(213) Artificial Sequence
50	⟨220⟩
	<223> PCR primer
	<400> 47

ggccgcatgt tgtcacgaat 20

5																		
	<210)> 48	3															
	<211	l> 78	30															
10	<212	2> DN	₹A															
	<213	3> Mi	ıs															
15	<220)>																
	<221	ı> ci	os															
	<222	2> (1	ı)	(768	3)													
20	<223	3> CF	P2HL-	-0/p0	OS1.	MAE	3L2-s	scFv<	(HL-()>								
	<400)> 48	3															
	atg	gga	tgg	agc	tgt	atc	atc	ctc	ttc	ttg	gta	gca	aca	gct	aca	ggt	gtc	51
25	MET	Gly	Trp	Ser	Cys	Ile	Ile	Leu	Phe	Leu	Val	Ala	Thr	Ala	Thr	G1y	Val	
					. 5					10					15			•
30	gac	tcc	cag	gtc	cag	ctg	cag	cag	tct	gga	cct	gaa	ctg	gta	aag	cct	ggg	102
	Asp	Ser	G1n	Val	Gln	Leu	G1n	G1n	Ser	Gly	Pro	Glu	Leu	Va1	Lys	Pro	G1y	
			20					25					30					
35	gct	tca	gtg	aag	atg	tcc	tgc	aag	gct	tct	gga	tac	acc	ttc	gct	aac	cat	153
	Ala	Ser	Val	Lys	MET	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Ala	Asn	His	
	35					40					45					50		
40	gtt	att	cac	tgg	gtg	aag	cag	aag	cca	ggg	cag	ggc	ctt	gag	tgg	att	gga	204
	Val	Ile	His	Trp	Val	Lys	G1n	Lys	Pro	G1y	Gln	Gly	Leu	Glu	Trp	Ile	G1y	
45				55					60					65				
	tat	att	tat	cct	tac	aat	gat	ggt	act	aag	tat	aat	gag	aag	ttc	aag	gac	255
	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	Gly	Thr	Lys	Tyr	Asn	Glu	Lys	Phe	Lys	Asp	
50		70					75					80					85	
	aag	gcc	act	ctg	act	tca	gac	aaa	tcc	tcc	acc	aca	gcc	tac	atg	gac	ctc	306
	Lys	Ala	Thr	Leu	Thr	Ser	Asp	Lys	Ser	Ser	Thr	Thr	Ala	Tyr	MET	Asp	Leu	

			•		90					95					100			
5	agc	agc	ctg	gcc	tct	gag	gac	tct	gcg	gtc	tat	tac	tgt	gca	aga	ggg	ggt	357
	Ser	Ser	Leu	Ala	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	
			105					110					115					
10	tac	tat	act	tac	gac	gac	tgg	ggc	caa	ggc	acc	act	ctc	aca	gtc	tcg	agt	408
	Tyr	Tyr	Thr	Tyr	Asp	Asp	Trp	Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser	
15	120					125					130					135		
	gac	gtc	gtg	atg	acc	caa	agt	cca	ctc	tcc	ctg	cct	gtc	agt	ctt	gga	gat	459
	Asp	Val	Val	MET	Thr	G1n	Ser	Pro	Leu	Ser	Leu	Pro	Val	Ser	Leu	G1y	Asp	
20				140					145					150		•		
	caa	gcc	tcc	atc	tct	tgc	aga	tca	agt	cag	agc	ctt	gtg	cac	agt	aat	gga	510
	Gln	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser	Leu	Val	His	Ser	Asn	Gly	
25		155					160					165					170	
	aag	acc	tat	tta	cat	tgg	tac	ctg	cag	aag	cca	ggc	cag	tct	cca	aaa	ctc	561
30	Lys	Thr	Tyr	Leu	His	Trp	Tyr	Leu	Gln	Lys	Pro	Gly	G1n	Ser	Pro	Lys	Leu	
					175					180					185			
	ctg	atc	tac	aaa	gtt	tcc	aac	cga	ttt	tct	ggg	gtc	cca	gac	agg	ttc	agt	612
35	Leu	Ile	Tyr	Lys	Val	Ser	Asn	Arg	Phe	Ser	G1y	Val	Pro	Asp	Arg	Phe	Ser	
			190					195					200					
40	ggc	agt	gga	tca	gtg	aca	gat	ttc	aca	ctc	atg	atc	agc	aga	gtg	gag	gct	663
40		Ser	Gly	Ser	Val	Thr	Asp	Phe	Thr	Leu	MET	Ile	Ser	Arg	Val	Glu	Ala	
	205					210					215					220		
45		gat	_		_			_			_							714
	Glu	Asp	Leu	•	Val	Tyr	Phe	Cys	Ser	Gln	Ser	Thr	His		Pro	Tyr	Thr	
				225					230					235				
50		gga																765
	Phe	Gly	Gly	Gly	Thr	Lys		Glu	Ile	Lys	Asp		Lys	Asp	Asp	Asp		
55		240					245					250					255	

	aaa taa tga gga tcc 780
5	Lys
	⟨210⟩ 49
10	⟨211⟩ 45
	<212> DNA
15	<213> Artificial Sequence
	<220>
	<223> PCR primer
20	< 4 00> 49
	caagetegag ataaaateeg gaggeeaggt ceaattgeag eagte 45
25	<210> 50
	<211> 48
30	<212> DNA
	<213> Artificial Sequence
	<220>
35	<223> PCR primer
	<400> 50
	caagetegag ataaaateeg gaggtggeea ggteeaattg cageagte 48
40	
	<210> 51
45	<211> 51
	<212> DNA
	<213> Artificial Sequence
50	⟨220⟩
	<223> PCR primer
	<400> 51

	caagetegag ataaaateeg gaggtggtgg eeaggteeaa tigeageagt e of
5	
	<210> 52
	<211> 54
10	<212> DNA
	<213> Artificial Sequence
15	<220>
	<223> PCR primer
	<400> 52
20	caagetegag ataaaateeg gaggtggtgg tggceaggte caattgeage agte 54
	•
	<210> 53
25	<211> 57
	<212> DNA
30	<213> Artificial Sequence
	<220>
	<223> PCR primer
35	<400> 53
	caagetegag ataaaateeg gaggtggtgg tggtggeeag gteeaattge ageagte 57
40	<210> 54
	<211> 780
45	<212> DNA
	<213> Mus
	<220>
50	<221> CDS
	⟨222⟩ (1) (768)
	<223> CF2LH-0/pCOS1. MABL2-scFv <lh-0></lh-0>

	<400)> 54	Į.																
5	atg	aag	ttg	cct	gtt	agg	ctg	ttg	gtg	ctg	atg	ttc	tgg	att	cct	ggt	tcc	51	
	MET	Lys	Leu	Pro	Val	Arg	Leu	Leu	Val	Leu	MET	Phe	Trp	Ile	Pŗo	Gly	Ser		
					, 5					10					15				
10	agc	agt	gat	gtt	gtg	atg	acc	caa	agt	cca	ctc	tcc	ctg	cct	gtc	agt	ctt	102	
	Ser	Ser	Asp	Val	Val	MET	Thr	Gln	Ser	Pro	Leu	Ser	Leu	Pro	Val	Ser	Leu		
15			20					25					30						
,,,	gga	gat	caa	gcc	tcc	atc	tct	tgc	aga	tca	agt	cag	agc	ctt	gtg	cac	agt	153	•
	Gly	Asp	Gln	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	G1n	Ser	Leu	Va1	His	Ser		
20	35	•				40					45					50			
	aat	gga	aag	acc	tat	tta	cat	tgg	tac	ctg	cag	aag	cca	ggc	cag	tct	cca	204	
	Asn	Gly	Lys	Thr	Tyr	Leu	His	Trp	Tyr	Leu	Gln	Lys	Pro	Gly	G1n	Ser	Pro		
25				55					60					65					
	aaa	ctc	ctg	atc	tac	aaa	gtt	tcc	aac	cga	ttt	tct	ggg	gtc	cca	gac	agg	255	
30	Lys	Leu	Leu	Ile	Tyr	Lys	Val	Ser	Asn	Arg	Phe	Ser	Gly	Val	Pro	Asp	Arg		
		70					75					80					85		
	ttc	agt	ggc	agt	gga	tca	gtg	aca	gat	ttc	aca	ctc	atg	atc	agc	aga	gtg	306	
35	Phe	Ser	G1y	Ser	Gly	Ser	Val	Thr	Asp	Phe	Thr	Leu	MET	Ile	Ser	Arg	Val		
					90					95					100				
	gag	gct	gag	gat	ctg	gga	gtt	tat	ttc	tgc	tcţ	caa	agt	aca	cat	gtt	ccg	357	
40	Glu	Ala	Glu	Asp	Leu	G1y	Val	Tyr	Phe	Cys	Ser	Gln	Ser	Thr	His	Val	Pro		
			105					110					115						
45	tac	acg	ttc	gga	ggg	ggg	acc	aag	ctc	gag	ata	aaa	cag	gtc	caa	ttg	cag	408	
,,,	Tyr	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	G1n	Val	Gln	Leu	Gln		
	120					125					130					135			
50	cag	tct	gga	cct	gaa	ctg	gta	aag	cct	ggg	gct	tca	gtg	aag	atg	tcc	tgc	459	
	Gln	Ser	Gly	Pro	Glu	Leu	Val	Lys	Pro	Gly	Ala	Ser	Val	Lys	MET	Ser	Cys		
				140					145					150					

	aag	gct	tct	gga	tac	acc	ttc	gct	aac	cat	gtt	att	cac	tgg	gtg	aag	cag	510
5	Lys	Ala	Ser	G1y	Tyr	Thr	Phe	Ala	Asn	His	Val	Ile	His	Trp	Val	Lys	G1n	
		155					160					165					170	
	aag	cca	ggg	cag	ggc	ctt	gag	tgg	att	gga	tat	att	tat	cct	tac	aat	gat	561
10	Lys	Pro	G1y	G1n	Gly	Leu	Glu	Trp	Ile	Gly	Tyr	Ile	Tyr	Pro	Tyr	Asn	Asp	
					175					180					185			
15	ggt	act	aag	tat	aat	gag	aag	ttc	aag	gac	aag	gcc	act	ctg	act	tca	gac	612
	G1y	Thr	Lys	Tyr	Asn	G1u	Lys	Phe	Lys	Asp	Lys	Ala	Thr	Leu	Thr	Ser	Asp	
			190					195					200	-				
20	aaa	tcc	tcc	acc	aca	gcc	tac	atg	gac	ctc	agc	agc	ctg	gcc	tct	gag	gac	663
	Lys	Ser	Ser	Thr	Thr	Ala	Tyr	MET	Asp	Leu	Ser	Ser	Leu	Ala	Ser	G1u	Asp	
0.5	205					210					215					220		
25	tct	gcg	gtc	tat	tac	tgt	gca	aga	ggg	ggt	tac	tat	act	tac	gac	gac	tgg	714
	Ser	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	Tyr	Tyr	Thr	Tyr	Asp	Asp	Trp	
30				225					230					235				
	ggc	caa	ggc	acc	act	ctc	aca	gtc	tcc	tca	gac	tac	aaa	gac	gat	gac	gat	765
	Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser	Asp	Tyr	Lys	Asp	Asp	Asp	Asp	
35		240					245					250					255	
	aaa	taa	tga	gga	tcc	780												
40	Lys																	
40																		
		0> 58																
45		1> 38																
		2> DI		٠														
		3> H1	uman															
50	<220		00															
		1> CI		(0.5														
55	\ZZ	2> (17	(35.	l)													
-																		

	<223	3> 12	2B5H\	/. 1-	-351	pep	tide										
5	<400	0> 5	5						•								
	cag	gtg	cag	ctg	gtg	cag	tct	ggg	gga	ggc	ttg	gtc	cgg	ccc	ggg	ggg	48
	Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Gly	Gly	Leu	Val	Arg	Pro	Gly.	Gly	
10	1				. 5					10					15		
	tcc	ctg	agt	ctc	tcc	tgt	gca	gtc	tct	gga	atc	acc	ctc	agg	acc	tac	96
15	Ser	Leu	Ser	Leu	Ser	Cys	Ala	Val	Ser	Gly	Ile	Thr	Leu	Arg	Thr	Tyr	
				20					25					30			
	ggc	atg	cac	tgg	gtc	cgc	cag	gct	cca	ggc	aag	ggg	ctg	gag	tgg	gtg	144
20	G1y	Met	His	Trp	Val	Arg	Gln	Ala	Pro	G1y	Lys	Gly	Leu	Glu	Trp	Val	
			35				•	40					45				
	gca	ggt	ata	tcc	ttt	gac	gga	aga	agt	gaa	tac	tat	gca	gac	tcc	gtg	192
25	Ala	Gly	Ile	Ser	Phe	Asp	Gly	Arg	Ser	Glu	Tyr	Tyr	Ala	Asp	Ser	Val	
		50					55			-		60					
30	cag	ggc	cga	ttc	acc	atc	tcc	aga	gac	agt	tcc	aag	aac	acc	ctg	tat	240
	Gln	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Ser	Ser	Lys	Asn	Thr	Leu	Tyr	
	65					70					75					80	
35	ctg	caa	atg	aac	agc	ctg	aga	gcc	gag	gac	acg	gct	gtg	tat	tac	tgt	288
	Leu	G1n	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	
					85					90					95		
40	gcg	aga	gga	gca	cat	tat	ggt	ttc	gat	atc	tgg	ggc	caa	ggg	aca	atg	336
	Ala	Arg	Gly	Ala	His	Tyr	Gly	Phe	Asp	Ile	Trp	Gly	Gln	Gly	Thr	Met	
45				100					105					110			
	gtc	acc	gtc	tcg	agt												351
	Val	Thr	Val	Ser	Ser												
50			115														
	<21	0> 5	6														

	<211> 57
5	<212> DNA
	<213> Human
	<220>
10	<221> CDS
	<222> (1)(57)
15	<223> reader sequence
	<400> 56
	atg gag ttt ggg ctg agc tgg gtt ttc ctc gtt gct ctt tta aga ggt 48
20	Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
	5 10 15
	gtc cag tgt 57
25	Val Gln Cys
30	
	<210> 57
,	<211> 115
35	<212> DNA
	<213> Artificial Sequence
	<220>
40	<223> 12B5VH-1
	<400> 57
<i>45</i>	atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag 60
	gtgcagctgg tgcagtctgg gggaggcttg gtccggcccg gggggtccct gagtc 115
50	<210> 58
	<211> 115
	<212> DNA

	<213> Artificial Sequence
5	⟨220⟩
	<223> 12B5VH-2
	<400> 58
10	aaggatatac ctgccaccca ctccagcccc ttgcctggag cctggcggac ccagtgcatg 60
	ccgtaggtcc tgagggtgat tccagagact gcacaggaga gactcaggga ccccc 115
15	
	<210> 59
	<211> 115
20	<212> DNA
	<213> Artificial Sequence
	<220>
25	<223> 12B5VH-3
	<400> 59
30	ggcaggtata tcctttgacg gaagaagtga atactatgca gactccgtgc agggccgatt 60
	caccatetee agagacagtt ccaagaacae cetgtatetg caaatgaaca geetg 115
35	<210> 60
	<211> 108
	<212> DNA
40	<213> Artificial Sequence
	<220>
45	<223> 12B5VH-4
40	⟨400⟩ 60
	actogagacg gtgaccattg tcccttggcc ccagatatcg aaaccataat gtgctcctct 60
50	cgcacagtaa tacacagccg tgtcctcggc tctcaggctg ttcatttg 108
	⟨210⟩ 61
55	

	<211> 32
5	<212> DNA
	<213> Artificial Sequence
	<220>
10	<223> 12B5VH-S, PCR primer
	<400> 61
15	ttcaagette caccatggag tttgggetga gc 32
	<210> 62
20	<211> 34
	<212> DNA
	<213> Artificial Sequence
25	<220>
	<223> 12B5VH-A, PCR primer
30	<400> 62
	ttgggatcca ctcaccactc gagacggtga ccat 34
35	<210> 63
	<211> 588
	<212> DNA
40	<213> Human
	<220>
45	<221> CDS
	<222> (236) (558)
	<223> 1-235; intron, 236-558; Human IgG constant region (partial)
50	⟨400⟩ 63
	gaattegtga gtggatecea agetagettt etggggeagg eeaggeetga eettggettt 60
	ggggcagga gggggctaag gtgaggcagg tggcgccagc caggtgcaca cccaatgccc 120

	atgagcccag	acactggacg	ctgaacctcg	cggacagtta	agaacccagg	ggcctctgcg 180
5	ccctgggccc	agctctgtcc	cacaccgcgg	tcacatggca	caacctctct	tgca gcc 237
						Ala
						1
10	tcc acc aa	g ggc cca t	cg gtc ttc o	ccc ctg gca	ccc tcc tcc	aag agc 285
	Ser Thr Ly	s Gly Pro S	er Val Phe A	Pro Leu Ala	Pro Ser Ser	Lys Ser
15	·	5		10	15	
,0	acc tct gg	g ggc aca g	cg gcc ctg g	ggc tgc ctg	gtc aag gac	tac ttc 333
	Thr Ser Gl	y Gly Thr A	la Ala Leu (Gly Cys Leu	Val Lys Asp	Tyr Phe
20	. 2	0	25		30	
	ccc gaa cc	g gtg acg g	tg tcg tgg a	aac tca ggc	gcc ctg acc	agc ggc 381
	Pro Glu Pr	o Val Thr V	al Ser Trp A	Asn Ser Gly	Ala Leu Thr	Ser Gly
25	35		40		45	
	gtg cac ac	c ttc ccg g	ct gtc cta	cag tec tea	gga ctc tac	tcc ctc 429
30	Val His Th	r Phe Pro A	la Val Leu (Gln Ser Ser	Gly Leu Tyr	Ser Leu
	50		55	60		65
	agc agc gt	g gtg acc g	tg ccc tcc a	agc agc ttg	ggc acc cag	acc tac 477
35	Ser Ser Va	l Val Thr V	al Pro Ser S	Ser Ser Leu	Gly Thr Gln	Thr Tyr
		70		75		80
	atc tgc aa	c gtg aat c	ac aag ccc a	agc aac acc	aag gtg gac	aag aaa 525
40	Ile Cys As	n Val Asn H	lis Lys Pro S	Ser Asn Thr	Lys Val Asp	Lys Lys
		85		90	95	
45	gtt gag cc	c aaa tct t	gt gac aaa a	act cac aca		558
,-	Val Glu Pr	o Lys Ser C	Cys Asp Lys 1	Thr His Thr		
	10	0	105			
50						
	<210> 64				.*	
	<211> 27				•	
<i>55</i>						

	<212> DNA
5	<213> Artificial Sequence
	<220>
	<223> G1CH1-S, PCR primer
10	<400> 64
	tgagaattcg tgagtggatc ccaaget 27
15	
15	<210> 65
	<211> 60
20	<212> DNA
	<213> Artificial Sequence
	<220>
25	<223> G1CH1-A, PCR primer
	<400> 65
30	aaaagatett tateatgtgt gagttttgte acaagatttg ggeteaactt tettgteeac 60
30	
	<210> 66
35	<211> 432
	<212> DNA
	<213> Human
40	<220>
	<221> CDS
45	<222> (12)(419)
45	<223> HEF-12B5H-g gamma. 12-419 peptide
	<400> 66
50	aagetteeae e atg gag ttt ggg etg age tgg gtt tte ete gtt get ett 50
	Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu
	1 5 10

	tta	aga	ggt	gtc	cag	tgt	cag	gtg	cag	ctg	gtg	cag	tct	ggg	gga	ggc	98
5	Leu	Arg	Gly	Val	Gln	Cys	Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	G1y	Gly	
		15					20				•	25					
	ttg	gtc	cgg	ccc	ggg	ggg	tcc	ctg	agt	ctc	tcc	tgt	gca	gtc	tct	gga	146
10	Leu	Val	Arg	Pro	Gly	Gly	Ser	Leu	Ser	Leu	Ser	Cys	Ala	Val	Ser	Gly	•
	30					35					40					45	
15	atc	acc	ctc	agg	acc	tac	ggc	atg	cac	tgg	gtc	cgc	cag	gct	cca	ggc	194
	Ile	Thr	Leu	Arg	Thr	Tyr	Gly	Met	His	Trp	Val	Arg	G1n	Ala	Pro	Gly	
					50					55				•	60		
20	aag	ggg	ctg	gag	tgg	gtg	gca	ggt	ata	tcc	ttt	gac	gga	aga	agt	gaa	242
	Lys	Gly	Leu	Glu	Trp	Val	Ala	Gly	Ile	Ser	Phe	Asp	Gly	Arg	Ser	Glu	
				65					70					7 5			
25	tac	tat	gca	gac	tcc	gtg	cag	ggc	cga	ttc	acc	atc	tcc	aga	gac	agt	290
	Tyr	Tyr	Ala	Asp	Ser	Val	Gln	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Ser	
30			80					85					90				
	tcc	aag	aac	acc	ctg	tat	ctg	caa	atg	aac	agc	ctg	aga	gcc	gag	gac	338
	Ser	Lys	Asn	Thr	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	
35		95					100					105					
	acg	gct	gtg	tat	tac	tgt	gcg	aga	gga	gca	cat	tat	ggt	ttc	gat	atc	386
		Ala	Val	Tyr	Tyr		Ala	Arg	Gly	Ala		Tyr	Gly	Phe	Asp		
40	110					115					120					125	
			caa									ggtg	gagt	gga 1	tcc		432
45	Trp	G1y	Gln	Gly		Met	Val	Thr	Val		Ser						
					130					135							
	40.4	• • •	_														
50		0> 6°															
		1> 3:															
55	\21 ;	2> Di	AK														
<i>55</i>																	

	<213	3> Hu	ıman													•	
5	<220)>															
	<221	> CI)S														
	<222	2> (1	ı)	(32)	ι)						,		•				
10	<223	3> 12	B5LV	/. 1-	-321	pep	tide										
	<400)> 67	7														
15	gac	atc	cag	atg	acc	cag	tct	cct	tcc	acc	ctg	tct	gca	tct	att	gga	48
,,,	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Thr	Leu	Ser	Ala	Ser	Ile	Gly	
	1				5					10					15		
20	gac	aga	gtc	acc	atc	acc	tgc	cgg	gcc	agc	gag	ggt	att	tat	cac	tgg	96
	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Glu	Gly	Ile	Tyr	His	Trp	
				20					25					30			
25	ttg	gcc	tgg	tat	cag	cag	aag	cca	ggg	aaa	gcc	cct	aaa	ctc	ctg	atc	144
	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Leu	Ile	
30			35					40					45				
	tat	aag	gcc	tct	agt	tta	gcc	agt	ggg	gcc	cca	tca	agg	ttc	agc	ggc	.192
	Tyr	Lys	Ala	Ser	Ser	Leu	Ala	Ser	Gly	Ala	Pro	Ser	Arg	Phe	Ser	Gly	
35		50					55					60					
	agt	gga	tct	ggg	aca	gat	ttc	act	ctc	acc	atc	agc	agc	ctg	cag	cct	240
	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	G1n	Pro	
40	65					70					75					80	
	gat	gat	ttt	gca	act	tat	tac	tgc	caa	caa	tat	agt	aat	tat	ccg	ctc	288
45	Asp	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Tyr	Ser	Asn	Tyr	Pro	Leu	
					85					90					95		
								ctg									321
50	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys						
				100					105								

	<210> 68	
5	<211> 66	
	<212> DNA	
	<213> Human	
10	<220>	
	<221> CDS	
15	⟨222⟩ (1) (66)	
	<223> reader sequence	
	<400> 68	
20	atg gac atg agg gtc ccc gct cag ctc ctg ggg ctc ctg ctg ctc tgg	48
	MET Asp MET Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp	
	5 10 15	
25	ctc cca ggt gcc aaa tgt	66
	Leu Pro Gly Ala Lys Cys	
30	20	
	<210> 69	
35	<211> 110	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
	<223> 12B5VL-1	
45	<400> 69	
	atggacatga gggtccccgc tcagctcctg gggctcctgc tgctctggct cccaggtgcc	60
	aaatgtgaca tccagatgac ccagtctcct tccaccctgt ctgcatctat	110
50		
	⟨210⟩ 70	
	<211> 110	

	<212> DNA	
5	<213> Artificial Sequence	
	<220>	
	<223> 12B5VL-2	
10	<400> 70	
	ggagtttagg ggctttccct ggcttctgct gataccaggc caaccagtga taaataccct	60
15	cgctggcccg gcaggtgatg gtgactctgt ctccaataga tgcagacagg	110
	<210> 71	
20	<211> 110	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> 12B5VL-3	
30	<400> 71	
	aagcccctaa actcctgatc tataaggcct ctagtttagc cagtggggcc ccatcaaggt	60
	teageggeag tggatetggg acagatttea eteteaceat cageageetg	110
35		
	<210> 72	
	⟨211⟩ 103	
40	<212> DNA	
	<213> Artificial Sequence	
45	⟨220⟩	
	<223> 12B5VL-4	
	<400> 72	
50	tttgatctcc agcttggtcc ctccgccgaa agtgagcgga taattactat attgttggca	60
	gtaataagtt gcaaaatcat caggctgcag gctgctgatg gtg	103

	<210> 73
5	<211> 32
	<212> DNA
	<213> Artificial Sequence
10	<220>
	<223> 12B5VL-S, PCR primer
15	<400> 73
,,,	ttcaagcttc caccatggac atgagggtcc cc 32
20	<210> 74
	<211> 35
	<212> DNA
25	<213> Artificial Sequence
	<220>
30	<223> 12B5VL-A, PCR primer
	<400> 74
	tctaggatcc actcacgttt gatctccagc ttggt 35
35	
	<210> ·75
	<211> 415
40	<212> DNA
	<213> Human
45	<220>
	<221> CDS
	<222> (12) (398)
50	<223> HEF-12B5H-g kappa. 12-398 peptide
	<400> 75
	aagettecae e atg gae atg agg gte eee get eag ete etg ggg ete etg 50

	Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu																
5				1	l			{	5				10)			
	ctg	ctc	tgg	ctc	cca	ggt	gcc	aaa	tgt	gac	atc	cag	atg	acc	cag	tct	98
	Leu	Leu	Trp	Leu	Pro	Gly	Ala	Lys	Cys	Asp	Ile	Gln	Met	Thr	Gln	Ser	
10		15					20					25					
	cct	tcc	acc	ctg	tct	gca	tct	att	gga	gac	aga	gtc	acc	atc	acc	tgc	146
15	Pro	Ser	Thr	Leu	Ser	Ala	Ser	Ile	Gly	Asp	Arg	Val	Thr	Ile	Thr	Cys	
	30					35					40					45	
	cgg	gcc	agc	gag	ggt	att	tat	cac	tgg	ttg	gcc	tgg	tat	cag	cag	aag	194
20	Arg	Ala	Ser	Glu	Gly	Ile	Tyr	His	Trp	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	
						50	Ò				58	5				60	
	cca	ggg	aaa	gcc	cct	aaa	ctc	ctg	atc	tat	aag	gcc	tct	agt	tta	gcc	242
25	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Leu	Ile	Tyr	Lys	Ala	Ser	Ser	Leu	Ala	
				65					70					75			
30	agt	ggg	gcc	cca	tca	agg	ttc	agc	ggc	agt	gga	tct	ggg	aca	gat	ttc	290
	Ser	Gly	Ala	Pro	Ser	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	
			80					85					90				
35	act	ctc	acc	atc	agc	agc	ctg	cag	cct	gat	gat	ttt	gca	act	tat	tac	338
	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro	Asp	Asp	Phe	Ala	Thr	Tyr	Tyr	
		95					100					105					
40	tgc	caa	caa	tat	agt	aat	tat	ccg	ctc	act	ttc	ggc	gga	ggg	acc	aag	386
	Cys	Gln	Gln	Tyr	Ser	Asn	Tyr	Pro	Leu	Thr	Phe	Gly	Gly	Gly	Thr	Lys	
45	110					115					120					125	
	ctg	gag	atc	aaa	cgt	gagt	gga	tect	aga								415
	Leu	Glu	Ile	Lys													
50												:					
		0> 76														,	
	<21	1> 2	4										-				
<i>55</i>																	

	<212> DNA
5	<213> Artificial Sequence
	<220>
	<223> FLAG tag sequence
10	⟨400⟩ 76
	gac tac aag gat gac gac gat aag 24
15	Asp Tyr Lys Asp Asp Asp Lys
	5
20	<210> 77
	⟨211⟩ 31
	<212> DNA
25	<213> Artificial Sequence
	⟨220⟩
30	<223> 12B5-S, PCR primer
	<400> 77
	atagaattcc accatggagt ttgggctgag c 31
35	
	<210> 78
	<211> 24
40	<212> DNA
	<213> Artificial Sequence
45	⟨220⟩
	<223> HuVHJ3, PCR primer
	<400> 78
50	tgaagagacg gtgaccattg tccc 24
	⟨210⟩ 79

	⟨211⟩ 28
5	<212> DNA
	<213> Artificial Sequence
	<220>
10	<223> RhuJH3, PCR primer
	<400> 79
15	ggacaatggt caccgtctct tcaggtgg 28
	<210> 80
20	<211≻ 32
	<212> DNA
	<213> Artificial Sequence
25	<220>
	<223> RhuVK1, PCR primer
30	<400> 80
	ggagactggg tcatctggat gtccgatccg cc 32
35	<210> 81
	<211> 23
	<212> DNA
40	<213> Artificial Sequence
	<220>
45	<223> HuVK1.2, PCR primer
	<400> 81
	gacatccaga tgacccagtc tcc 23
50	
	⟨210⟩ 82
	⟨211⟩ 59

	<212> DNA
5	<213> Artificial Sequence
	<220>
	<223> 12B5F-A, PCR primer
10	<400> 82
	attgcggccg cttatcactt atcgtcgtca tccttgtagt ctttgatctc cagcttggt 59
15	
	<210> 83
	<211> 45
20	<212> DNA
	<213> Artificial Sequence
	<220>
25	<223> Linker amino acid sequence and nucleotide sequence
	<400> 83
30	ggt ggt ggt tcg ggt ggt ggt tcg ggt ggt
	Gly
	5 10 15
35	
	<210> 84
	<211> 823
40	<212> DNA
	<213> Human
45	<220>
45	<221> CDS
	<222> (12)(809)
50	<223> sc12B5, Single chain Fv
	⟨400⟩ 84
	aagettecae e atg gag ttt ggg etg age tgg gtt tte ete gtt get ett 50
	·

	met Glu Phe Gly Leu Ser Irp val Phe Leu val Ala Leu																
5				1	l				5				10				
	tta	aga	ggt	gtc	cag	tgt	cag	gtg	cag	ctg	gtg	cag	tct	ggg	gga	ggc	98
	Leu	Arg	Gly	Val	Gln	Cys	Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Gly	Gly	
10		15					20					25					
	ttg	gtc	cgg	ccc	ggg	ggg	tcc	ctg	agt	ctc	tcc	tgt	gca	gtc	tct	gga	146
15	Leu	Val	Arg	Pro	Gly	Gly	Ser	Leu	Ser	Leu	Ser	Cys	Ala	Val	Ser	Gly	
	30					35					40					45	
	atc	acc	ctc	agg	acc	tac	ggc	atg	cac	tgg	gtc	cgc	cag	gct	cca	ggc	194
20	Џе	Thr	Leu	Arg	Thr	Tyr	Gly	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	
					50		•			55					60		
	aag	ggg	ctg	gag	tgg	gtg	gca	ggt	ata	tcc	ttt	gac	gga	aga	agt	gaa	242
25	Lys	Gly	Leu	Glu	Trp	Val	Ala	Gly	Ile	Ser	Phe	Asp	Gly	Arg	Ser	Glu	
				65					70					75			
30	tac	tat	gca	gac	tcc	gtg	cag	ggc	cga	ttc	acc	atc	tcc	aga	gac	agt	290
	Tyr	Tyr	Ala	Asp	Ser	Val	Gln	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Ser	
	•		80					85					90				
35	tcc	aag	aac	acc	ctg	tat	ctg	caa	atg	aac	agc	ċtg	aga	gcc	gag	gac	338
	Ser	Lys	Asn	Thr	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	G1u	Asp	
		95					100					105					
40	acg	gct	gtg	tat	tac	tgt	gcg	aga	gga	gca	cat	tat	ggt	ttc	gat	atc	386
	Thr	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Ala	His	Tyr	Gly	Phe	Asp	Ile	
45	110					115					120					125	
	tgg	ggc	caa	ggg	aca	atg	gtc	acc	gtc	tcg	agt	ggt	ggt	ggt	ggt	tcg	434
	Trp	Gly	G1n	G1y	Thr	Met	Val	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	
50					130					135					140		
	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggc	gga	tcg	gac	atc	cag	atg	acc	cag	482
	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Asp	Ile	G1n	Met	Thr	Gln	
<i>55</i>																	

				145					150					155			
5	tct	cct	tcc	acc	ctg	tct	gca	tct	att	gga	gac	aga	gtc	acc	atc	acc	530
	Ser	Pro	Ser	Thr	Leu	Ser	Ala	Ser	Ile	Gly	Asp	Arg	Val	Thr	Ile	Thr	
			160					165					170				
10	tgc	cgg	gcc	agc	gag	ggt	att	tat	cac	tgg	ttg	gcc	tgg	taț	cag	cag	578
	Cys	Arg	Ala	Ser	Glu	Gly	Ile	Tyr	His	Trp	Leu	Ala	Trp	Tyr	Gln	Gln	
15		175					180					185					
	aag	cca	ggg	aaa	gcc	cct	aaa	ctc	ctg	atc	tat	aag	gcc	tct	agt	tta	626
	Lys	Pro	G1y	Lys	Ala	Pro	Lys	Leu	Leu	Ile	Tyr	Lys	Ala	Ser	Ser	Leu	
20	190					195					200					205	
	gcc	agt	ggg	gcc	cca	tca	agg	ttc	agc	ggc	agt	gga	tct	ggg	aca	gat	674
	Ala	Ser	G1y	Ala	Pro	Ser	Arg	Phe	Ser	Gly	Ser	G1y	Ser	Gly	Thr	Asp	
25					210					215					220		
	ttc	act	ctc	acc	atc	agc	agc	ctg	cag	cct	gat	gat	ttt	gca	act	tat	722
30	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	G1n	Pro	Asp	Asp	Phe	Ala	Thr	Tyr	
				225					230					235			
	TAC	TGC	CAA	CAA	TAT	AGT	AAT	TAT	CCG	CTC	ACT	TTC	GGC	GGA	GGG	ACC	770
35	Tyr	Cys	Gln	Gln	Tyr	Ser	Asn	Tyr	Pro	Leu	Thr	Phe	Gly	Gly	G1y	Thr	
			240					245					250				
	aag	ctg	gag	atc	aaa	gac	tac	aag	gat	gac	gac	gat	aag	tgat	taago	egg c	820
40	Lys	Leu	Glu	Ile	Lys	Asp	Tyr	Lys	Asp	Asp	Asp	Asp	Lys				
		255					260					265					
45	cgc																823
			_														,
		0> 8															
50		1> 1:														•	
		2> Pi															
	(21)	3> Hı	uman														

5	<400	> 85	5			-											
	Gln	Val	Gln	Leu	Gln	G1n	Ser	Gly	Pro	Gly	Leu	Val	Lys	Pro	Ser	Glu	
	1				5					10			•		15		
10	Thr	Leu	Ser	Leu	Thr	Cys	Thr	Val	Ser	Gly	Asp	Ser	Ile	Ser	Ser	Tyr	
				20					25					30			
15	Tyr	Trp	Ser	Trp	Ile	Arg	G1n	Pro	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Ile	
15			35					40					45				
	Gly	Tyr	Ile	Tyr	Tyr	Ser	Gly	Ser	Thr	Asn	Tyr	Asn	Pro	Ser	Leu	Lys	
20		50					55					60					
	Ser	Arg	Val	Thr	Ile	Ser	Val	Asp	Thr	Ser	Lys	Ser	G1n	Phe	Ser	Leu	
	65					70					75					80	
25	Lys	Leu	Ser	Ser	Val	Thr	Ala	Ala	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala	
					85					90					95		
20	Arg	Gly	Arg	Tyr	Phe	Asp	Val	Trp	Gly	Arg	Gly	Thr	Met	Val	Thr	Val	
30				100					105					110			
	Ser	Ser															
35																	
	<210)> 86	â														
	<211	> 34	42							•							
40	<212	2> Di	NA														
	<213	3> Hi	uman														
45																	
45	<400)> 8(6														
	cagg	gtgc	agc	tgca	gcag	tc g	ggcc	cagga	a ct	ggtga	aagc	ctte	cgga	gac	cctg	tccctc	60
50	acct	tgca	ctg	tctc	tggt	ga c	tcca	tcag	t ag	ttac	tact	gga	gctg	gat	tcgg	cagccc	120
	ccag	ggga	agg	gact	ggag	tg g	attg	ggta	t at	ctat	taca	gtg	ggag	cac	caac	tacaac	180
	ccci	tccc	tca	agag	tcga	gt c	acca	tatca	a gta	agaca	acgt	cca	agago	cca .	gttc	tccctg	240
55																	

	aagetgaget etgtgacege egeagaeaeg geegtgtatt aetgtgegag agggeggtae	300
5	ttegatgtct ggggccgtgg caccatggtc actgtctcct ca	342
	<010\ 07	
10	<210> 87	
70	<211> 57	
	<212> DNA	
15	<213> Human	
	<220>	
	<221> CDS	
20	<222> (1)(57)	
	<223> reader sequence	
	<308> GenBank No. AF062252	
25	<400> 87	
	atg aaa cat ctg tgg ttc ttc ctt ctc ctg gtg gca gct ccc aga tgg 48	8
30	Met Lys His Leu Trp Phe Phe Leu Leu Val Ala Ala Pro Arg Trp	
30	1 5 10 15	
	gtc ctg tcc 57	7
35	Val Leu Ser	
	<210> 88	
40	<211> 110	
	<212> DNA	
	<213> Artificial Sequence	
45	<220>	
	<223> 12E10VH1	
50	<400> 88	
	atgaaacatc tgtggttctt ccttctcctg gtggcagctc ccagatgggt cctgtcccag	60
	gtgcagctgc agcagtcggg cccaggactg gtgaagcctt cggagaccct	110
55		

5	<210> 89	
	<211> 110	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
15	<223> 12E10VH2	
	<400> 89	
	acccaatcca ctccagtccc ttccctgggg gctgccgaat ccagctccag tagtaactac	60
20	tgatggagtc accagagaca gtgcaggtga gggacagggt ctccgaaggc	110
	•	
	<210> 90	
25	<211> 110	
	<212> DNA	
30	<213> Artificial Sequence	
	<220>	
	<223> 12E10VH3	
35	<400> 90	
	tggagtggat tgggtatatc tattacagtg ggagcaccaa ctacaacccc tccctcaaga	60
	gtcgagtcac catatcagta gacacgtcca agagccagtt ctccctgaag	110
40		
	<210> 91	
45	<211> 114	
	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
	<223> 12E10VH4	
	<400> 91	

	tgaggagaca	gtgaccatgg	tgccacggcc	ccagacatcg	aagtaccgcc	ctctcgcaca	60
5	gtaatacacg	gccgtgtctg	cggcggtcac	agagctcagc	ttcagggaga	actg	114
	(210) 00				<i>:</i>		
10	<210> 92		,				
70	<211> 32						
	<212> DNA						
15	<213> Arti	ficial Seque	ence				
	<220>						
	<223> 12E1	OVHS, PCR p	rimer		•	•	
20	<400> 92						
	ttcaagcttc	caccatgaaa	catctgtggt	tc 32			
25	<210> 93						
	⟨211⟩ 34						
30	<212> DNA						
30	<213> Arti	ficial Sequ	ence			•	
	<220>						
35	<223> 12E1	OVHA, PCR p	rimer				
	<400> 93						
	ttgggatcca	ctcacctgag	gagacagtga	ccat 34			
40							
	<210> 94						
	<211> 426						
45	<212> DNA						
	<213> Mus						
50	<220>						
	<221> CDS						
	<222> (12)	(417)					

	<223	3> 12	2E10}	ł, H	chai	in V	regi	ion									
5	<400)> 94	1														
	aago	ette	cac o	at	g aaa	a cat	t cte	g tgg	g tto	e tte	c cti	t ct	c ct	ggt	g gca	a gct	50
				Me	t Lys	s His	Lei	ı Tr	o Phe	e Phe	e Lei	ı Leı	ı Lei	ı Val	l Ala	a Ala	
10				:	l				5				10)			
	ccc	aga	tgg	gtc	ctg	tcc	cag	gtg	cag	ctg	cag	cag	tcg	ggc	cca	gga	98
15	Pro	Arg	Trp	Val	Leu	Ser	G1n	Val	Gln	Leu	G1n	G1n	Ser	Gly	Pro	Gly	
		15					20					25					
	ctg	gtg	aag	cct	tcg	gag	acc	ctg	tcc	ctc	acc	tgc	act	gtc	tct	ggt	146
20	Leu	Val	Lys	Pro	Ser	Glu	Thr	Leu	Ser	Leu	Thr	Cys	Thr	Val	Ser	Gly	
	30					35	•				40					45	
	gac	tcc	atc	agt	agt	tac	tac	tgg	agc	tgg	att	cgg	cag	ccc	cca	ggg	194
25	Asp	Ser	Ile	Ser	Ser	Tyr	Tyr	Trp	Ser	Trp	Ile	Arg	Gln	Pro	Pro	Gly	
					50					55					60		
30	aag	gga	ctg	gag	tgg	att	ggg	tat	atc	tat	tac	agt	ggg	agc	acc	aac	242
	Lys	G1y	Leu	Glu	Trp	Ile	Gly	Tyr	Ile	Tyr	Tyr	Ser	Gly	Ser	Thr	Asn	
				65					70					75			
35	tac	aac	ccc	tcc	ctc	aag	agt	cga	gtc	acc	ata	tca	gta	gac	acg	tcc	290
	Tyr	Asn	Pro	Ser	Leu	Lys	Ser	Arg	Val	Thr	Ile	Ser	Val	Ásp	Thr	Ser	
			80					85					90				
40	aag	agc	cag	ttc	tcc	ctg	aag	ctg	agc	tct	gtg	acc	gcc	gca	gac	acg	338
	Lys	Ser	G1n	Phe	Ser	Leu	Lys	Leu	Ser	Ser	Val	Thr	Ala	Ala	Asp	Thr	
45		95					100					105					
	gcc	gtg	tat	tac	tgt	gcg	aga	ggg	cgg	tac	ttc	gat	gtc	tgg	ggc	cgt	386
	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Arg	Tyr	Phe	Asp	Val	Trp	Gly	Arg	
50	110					115					120					125	
	-								ggtg	gagte	gga 1	tccca	aa				426
	Gly	Thr	Met	Val	Thr	Val	Ser	Ser									
<i>55</i>																	

130

					100							•				
5																
	<210	> 95	5													
	<211	> 11	0													
10	<212	> PF	RT													
	<213	>- Mi	ıs													
15																
,,,	<400)> 95	5													
	Ser	Tyr	Val	Leu	Thr	GIn	Pro	Pro	Ser	Val	Ser	Gly	Ser	Pro	G1y	Gln
20	. 1				5					10					15	
	Ser	Ile	Thr	Ile	Ser	Cys	Thr	Gly	Thr	Ser	Ser	Asp	Val	Gly	Gly	Tyr
				20					25					30		
25	Asn	Tyr	Val	Ser	Trp	Tyr	G1n	Gln	His	Pro	Gly	Lys	Ala	Pro	Lys	Leu
			35					40					45			
30	Met	Ile	Tyr	Glu	Gly	Ser	Lys	Arg	Pro	Ser	Gly	Val	Ser	Asn	Arg	Phe
		50					55					60				
	Ser	Gly	Ser	Lys	Ser	G1y	Asn	Thr	Ala	Ser	Leu	Thr	Ile	Ser	Gly	Leu
35	65					70					7 5					80
	G1n	Ala	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Ser	Ser	Tyr	Thr	Thr	Arg
					85					90					95	
40	Ser	Thr	Arg	Val	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Thr	Val	Leu		
				100					105					110		
45																
	<210)> 9(6				•									
	<211	1> 3	30													

55

50

<212> DNA

<213> Mus

	<400> 96	
5	tcctatgtgc tgactcagcc accetcggtg tcagggtctc ctggacagtc gatcaccatc	60
	tcctgcactg gaaccagcag tgacgttggt ggttataact atgtctcctg gtaccaacag	120
	cacccaggea aagcccccaa actcatgatt tatgagggca gtaaacggcc ctcaggggtt	180
10	tctaatcgct tctctggctc caagtctggc aacacggcct ccctgaccat ctctgggctc	240
	caggetgagg acgaggetga ttattactge ageteatata caaccagaag cactegggtg	300
15	ttcggcggag ggaccaagct gaccgtccta	330
	<210> 97	
20	⟨211⟩ 57	•
	<212> DNA	
	<213> Human	
25	⟨220⟩	
	<221> CDS	
30	<222> (1)(57)	
	<223> reader sequence	
	⟨310⟩	
35	<400> 97	
	atg gec tgg acc gtt etc etc etc etc etc etc tet eac tge aca ggc 48	
	Met Ala Trp Thr Val Leu Leu Gly Leu Leu Ser His Cys Thr Gly	
40	1 5 10 15	
	tct gtg acc 57	
45	Ser Val Thr	
	<210> 98	
50	<211> 110	
	<212> DNA	
	(213) Artificial Sequence	

	<220>	
5	<223> 12E10VL1, PCR primer	
	<400> 98	
	atggcctgga ccgttctcct cctcggcctc ctctctcact gcacaggctc tgtgacctcc	60
10	tatgtgctga ctcagccacc ctcggtgtca gggtctcctg gacagtcgat	110
15	<210> 99	
	<211> 62	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> 12E10VL2, PCR primer	
25	<400> 99	
	tcatgagttt gggggctttg cctgggtgct gttggtacca ggagacatag ttataaccac	60 ⁻
30	caacgtcact gctggttcca gtgcaggaga tggtgatcga ctgtccagga	110
	<210> 100	
35	<211> 110	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
	<223> 12E10VL3, PCR primer	
45	<400> 100	
	cccccaaact catgatttat gagggcagta aacggccctc aggggtttct aatcgcttct	60
	ctggctccaa gtctggcaac acggcctccc tgaccatctc tgggctccag	110
50		
	<210> 101	
	<211> 102	
55		

	<212> DNA	
5	<213> Artificial Sequence	
	<220>	
	<223> 12E10VL4, PCR primer	
10	<400> 101	
	taggacggtc agcttggtcc ctccgccgaa cacccgagtg cttctggttg tatatgagct	60
15	gcagtaataa tcagcctcgt cctcagcctg gagcccagag at	102
,,		
	<210> 102	
20	<211> 31	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> 12E10VLS, PCR primer	
30	<400> 102	
	atcaagette caccatggee tggacegtte t 31	
35	<210> 103	
	<211> 36	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
45	<223> 12E10VLA, PCR primer	
70	<400> 103	
	ctaggatccg ggctgaccta ggacggtcag cttggt 36	
50		
	<210> 104	
	<211> 387	

	<212	5> DN	ΙA														
5	<213	3> Mi	is														
	<220)>															
	<221	l> CI	S														
10	<222	2> (1	ı)	(387	7)												
	<223	3> 12	2E10I	., L	chai	in V	regi	ion									
15	<310)>															
	<400)> 10)4														
	atg	gcc	tgg	acc	gtt	ctc	ctc	ctc	ggc	ctc	ctc	tct	cac	tgc	aca	ggc	48
20	Met	Ala	Trp	Thr	Val	Leu	Leu	Leu	Gly	Leu	Leu	Ser	His	Cys	Thr	Gly	
	1				5		•			10					15		
0.5	tct	gtg	acc	tcc	tat	gtg	ctg	act	cag	cca	ccc	tcg	gtg	tca	ggg	tct	96
25	Ser	Val	Thr	Ser	Tyr	Val	Leu	Thr	G1n	Pro	Pro	Ser	Val	Ser	Gly	Ser	
				20					25	÷		•		30			
30	cct	gga	cag	tcg	atc	.acc	atc	tcc	tgc	act	gga	acc	agc	agt	gac	gtt	144
	Pro	Gly	G1n	Ser	Ile	Thr	Ile	Ser	Cys	Thr	G1y	Thr	Ser	Ser	Asp	Val	
			35					40					45				
35	ggt	ggt	tat	aac	tat	gtc	tcc	tgg	tac	caa	cag	cac	cca	ggc	aaa	gcc	192
	Gly	G1 y	Tyr	Asn	Tyr	Val	Ser	Trp	Tyr	G1n	Gln	His	Pro	Gly	Lys	Ala	
40		50					55					60					
, 0	ccc	aaa	ctc	atg	att	tat	gag	ggc	agt	aaa	cgg	ccc	tca	ggg	gtt	tct	240
		Lys	Leu	Met	Ile		Glu	Gly	Ser	Lys		Pro	Ser	Gly	Val		
45	65					70					75					80	
				tct								_		_			288
	Asn	Arg	Phe	Ser		Ser	Lys	Ser	Gly		Thr	Ala	Ser	Leu		lle	
50					85					90					95		
				cag											_		336
55	Ser	Giy	Leu	Gln	Ala	Glu	Asp	Glu	Ala	Asp	lyr	lyr	Cys	Ser	Ser	lyr	

		100	105	110	
5	Aca acc aga	agc act cgg gtg	ttc ggc gga ggg	acc aag ctg acc gtc	384
	Thr Thr Arg	Ser Thr Arg Val	Phe Gly Gly Gly	Thr Lys Leu Thr Val	
10	115		120	125	
10	cta				387
	Leu				
15					
	⟨210⟩ 105				
	<211> 24				
20	<212> DNA				
		icial Sequence			
25	<220>				
	<221> CDS		· ·		
	<222> (1)	·,			
30		reader sequence			
	<400> 105				
		gat gac gac gat			
35	Asp lyr Lys	Asp Asp Asp	Lys	·	
	<210> 106				
40	<211> 30				
	<212> DNA				
		icial Sequence			
45	⟨220⟩				
	<223> 12E109	S, PCR primer			
50	<400> 106	-			
		accatgaaac atctg	ggtt 30		

	<210> 107
5	<211> 38
	<212> DNA
	<213> Artificial Sequence
10	<220>
	<223> DB2, PCR primer
15	<400> 107
	taggagetae egeeteeace tgaggagaca gtgaccat 38
20	<210> 108
	<211> 44
<i>25</i>	<212> DNA
25	<213> Artificial Sequence
	<220>
30	<223> DB1, PCR primer
	<400> 108
	gtctcctcag gtggaggcgg tagctcctat gtgctgactc agcc 44
35	
	<210> 109
40	<211> 59
40	<212> DNA
	<213> Artificial Sequence
45	<220>
	<223> 12E10FA, PCR primer
	< 400> 109
50	attgcggccg cttateactt atcgtcgtea teettgtagt ctaggacggt cagettggt 59
	(010) 110
	<210> 110

	<211	> 79	92														
5	<212	> DN	ΙA														
	<213	> Ar	tifi	cial	l Sec	queno	ce										
	<220	>								•							
10	<221	> CD	Š														
	<222	> (1	1)	. (77	78)												
15	<223	> 12	E10,	Sir	ngle	chai	in F	v									
	<400	> 11	0														
	gaat	tcca	acc a	atg a	aaa o	cat o	ctg	tgg	ttc	ttc	ctt (ctc	ctg	gtg	gca	gct	49
20			M	let i	ys ł	lis I	Leu 1	[rp]	Phe 1	Phe 1	Leu l	Leu 1	Leu	Val	Ala	Ala	
				1			•	5					10				
0.5	ccc	aga	tgg	gtc	ctg	tcc	cag	gtg	cag	ctg	cag	cag	tcg	ggc	cca	gga	97
25	Pro	Arg	Trp	Val	Leu	Ser	Gln	Val	Gln	Leu	Gln	Gln	Ser	Gly	Pro	Gly	
		15					20					25					
30	ctg	gtg	aag	cct	tcg	gag	acc	ctg	tcc	ctc	acc	tgc	act	gtc	tct	ggt	145
	Leu	Val	Lys	Pro	Ser	G1u	Thr	Leu	Ser	Leu	Thr	Cys	Thr	Val	Ser	G1y	
	30					35					40					4 5	
35	gac	tcc	atc	agt	agt	tac	tac	tgg	agc	tgg	att	cgg	cag	ccc	cca	ggg	193
	Asp	Ser	Ile	Ser		Tyr	Tyr	Trp	Ser	Trp	Ile	Arg	Gln	Pro	Pro	Gly	
40					50			•		55					60		
40	aag																241
	Lys	Gly	Leu		Trp	Ile	Gly	Tyr		Tyr	Tyr	Ser	Gly			Asn	
45				65					70					75			
															acg		289
	Tyr	Asn		Ser	Leu	Lys	Ser		Val	Thr	He	Ser			Thr	Ser	
50			80					85					90				000
															gac		337
<i>55</i>	Lys	ser	GIN	rne	ser	Leu	Lys	Leu	ser	ser	vai	ınr	Ala	ATA	Asp	ınr	

		95					100					105					
5	gcc	gtg	tat	-tac	tgt	gcg	aga	ggg	cgg	tac	ttc	gat	gtc	tgg	ggc	cgt	385
	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	G1y	Arg	Tyr	Phe	Asp	Val	Trp	Gly	Arg	
	110					115					120					125	
10	ggc	acc	atg	gtc	act	gtc	tcc	tca	ggt	gga	ggc	ggt	agc	tcc	tat	gtg	433
	Gly	Thr	Met	Val	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Ser	Tyr	Val	
15					130					135					140		
	ctg	act	cag	cca	ccc	tcg	gtg	tca	ggg	tct	cct	gga	cag	tcg	atc	acc	481
	Leu	Thr	Gln	Pro	Pro	Ser	Val	Ser	G1y	Ser	Pro	Gly	Gln	Ser	Ile	Thr	
20	•			145					150					155			
	atc	tcc	tgc	act	gga	acc	agc	agt	gac	gtt	ggt	ggt	tat	aac	tat	gtc	529
25	Ile	Ser	Cys	Thr	Gly	Thr	Ser	Ser	Asp	Val	Gly	Gly	Tyr	Asn	Tyr	Val	
25			160					165					170				
	tcc	tgg	tac	caa	cag	cac	cca	ggc	aaa	gcc	ccc	aaa	ctc	atg	att	tat	577
30	Ser	Trp	Tyr	Gln	Gln	His	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Met	Ile	Tyr	
		175					180					185					
	gag	ggc	agt	aaa	cgg	ccc	tca	ggg	gtt	tct	aat	cgc	ttc	tct	ggc	tcc	625
35		Gly	Ser	Lys	Arg		Ser	Gly	Val	Ser		Arg	Phe	Ser	Gly		
	190					195					200					205	
40											•			cag			673
70	Lys	Ser	Gly	Asn		Ala	Ser	Leu	Thr		Ser	Gly	Leu	Gln		Glu	
					210					215					220		
45														agc			721
	Asp	Glu	Ala		lyr	Tyr	Cys	Ser		Tyr	Thr	Thr	Arg	Ser	Thr	Arg	
				225					230					235			700
50														aag			769
	val	rne	-	GIY	GIA	Ihr	Lys		ınr	Val	Leu	Asp	-	Lys	Asp	Asp	
<i>55</i>			240					245				٠	250				

	gac gat aag tgataagcgg ccgc	192
5	Asp Asp Lys	
	255	
10	<210> 111	
	<211> 62	
15	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> sc4.3, PCR primer	
	<400> 111	
	ggtggctgag tcagcacata ggacgatccg ccaccaccg aaccaccacc acccgaacca	60
25	cc	62
30	<210> 112	
	<211> 61	
	<212> DNA	
35	<213> Artificial Sequence	
	<220>	
	<223> sc1.3, PCR primer	
40	<400> 112	
	gcaccatggt cactgtctcc tcaggtggtg gtggttcggg tggtggtggt tcgggtggtg	60
45	g	61
	<210> 113	
50	<211> 822	
	<212> DNA	
	<213> Artificial Sequence	
<i>55</i>		

<220	>															
<221	> CD	S														
<222	> (1	1)	. (80)7)								,	-			
<223	> sc	12E1	10, 5	Sing	le cł	nain	Fv									
<400	> 11	3														
gaati	tcca	icc a	atg a	aaa o	cat o	etg 1	tgg 1	ttc 1	t t c (ctt d	etc o	ctg	gtg į	gca g	gct	49
		N	Met I	.ys ł	lis I	Leu 1	rp F	he I	Phe I	Leu l	_eu l	Leu '	Val A	Ala A	Ala	
			1				5					10				
ccc a	aga	tgg	gtc	ctg	tcc	cag	gtg	cag	ctg	cag	cag	tcg	ggc	cca	gga	97
Pro 1	Arg	Trp	Val	Leu	Ser	G1n	Val	G1n	Leu	Gln	Gln	Ser	Gly	Pro	Gly	
	15				٠,	20					25					
ctg g	gtg	aag	cct	tcg	gag	acc	ctg	tcc	ctc	acc	tgc	act	gtc	tct	ggt	145
Leu V	Val	Lys	Pro	Ser	Glu	Thr	Leu	Ser	Leu	Thr	Cys	Thr	Val	Ser	G1y	
30					35					40					45	
gac 1	tcc	atc	agt	agt	tac	tac	tgg	agc	tgg	att	cgg	cag	ccc	cca	ggg	193
Asp S	Ser	Ile	Ser	Ser	Tyr	Tyr	Trp	Ser	Trp	Ile	Årg	Gln	Pro	Pro	Gly	
				50					55					60		
aag į	gga	ctg	gag	tgg	att	ggg	tat	atc	tat	tac	agt	ggg	agc	acc	aac	241
Lys (Gly	Leu	Glu	Trp	Ile	Gly	Tyr	Ile	Tyr	Tyr	Ser	Gly	Ser	Thr	Asn	
			65					70					75			
tac a	aac	ccc	tcc	ctc	aag	agt	cga	gtc	acc	ata	tca	gta	gac	acg	tcc	289
Tyr A	Asn	Pro	Ser	Leu	Lys	Ser	Arg	Val	Thr	Ile	Ser	Val	Asp	Thr	Ser	
		80					85					90				
aag a	agc	cag	ttc	tcc	ctg	aag	ctg	agc	tct	gtg	acc	gcc	gca	gac	acg	337
Lys S	Ser	G1n	Phe	Ser	Leu	Lys	Leu	Ser	Ser	Val	Thr	Ala	Ala	Asp	Thr	
	95					100					105					
gcc	gtg	tat	tac	tgt	gcg	aga	ggg	cgg	tac	ttc	gat	gtc	tgg	ggc	cgt	385
Ala '	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Arg	Tyr	Phe	Asp	Val	Trp	Gly	Arg	
	CCC a Rro A Ctg a Leu S Asp S Asp S Lys (Lys a Lys a Lys a Lys a	<pre><222> (1 <223> sc <400> 11 gaattcca ccc aga Pro Arg</pre>	<pre><221> CDS <222> (11) <223> sc12Ef <400> 113 gaattccacc a</pre>	<pre><221> CDS <222> (11)(80 <223> sc12E10, S <400> 113 gaattccacc atg a</pre>	<pre><221> CDS <222> (11)(807) <223> sc12E10, Sing! <400> 113 gaattccacc atg aaa c</pre>	<pre><221> CDS <222> (11)(807) <223> sc12E10, Single check <400> 113 gaattccacc atg aaa cat commet Lys His I</pre>	<221> CDS <222> (11)(807) <223> sc12E10, Single chain <400> 113 gaattccacc atg aaa cat ctg factor Met Lys His Leu 1 1 ccc aga tgg gtc ctg tcc cag Pro Arg Trp Val Leu Ser Gln 15 20 ctg gtg aag cct tcg gag acc Leu Val Lys Pro Ser Glu Thr 30 35 gac tcc atc agt agt tac tac Asp Ser Ile Ser Ser Tyr Tyr 50 aag gga ctg gag tgg att ggg Lys Gly Leu Glu Trp Ile Gly 65 tac aac ccc tcc ctc aag agt Tyr Asn Pro Ser Leu Lys Ser 80 aag agc cag ttc tcc ctg aag Lys Ser Gln Phe Ser Leu Lys 95 100 gcc gtg tat tac tac tgt gcg aga	<221> CDS <222> (11) (807) <223> sc12E10, Single chain Fv <400> 113 gaattccacc atg aaa cat ctg tgg tatted to the cag gtg to the cag gtg to the cag gtg to the cag gtg the cag tatted to the cag gtg aag cc ctg to the cag gtg gtg the cag gtg aag cc ctg to the cag gtg acc ctg the cag gtg aag gtg acc ctg the cag gtg the cag gtg the cag tatted the cag gtg gtg the cag gtg gtg the cag gtg gtg gtg gtg gtg gtg gtg gtg gtg g	<pre><221> CDS <222> (11)(807) <223> sc12E10, Single chain Fv <400> 113 gaattccacc atg aaa cat ctg tgg ttc f</pre>	<222> (11)(807) <222> (22) (11)(807) <223> sc12E10, Single chain Fv <400> 113 gaattccacc atg aaa cat ctg tgg ttc ttc can be	<pre><221> CDS <222> (11)(807) <223> sc12E10, Single chain Fv <4400> 113 gaattccacc atg aaa cat ctg tgg ttc ttc ctt c</pre>	<pre><221> CDS <222> (11) (807) <223> sc12E10, Single chain Fv <4400> 113 gaattccacc atg aaa cat ctg tgg ttc ttc ctt ctc ct dec agattccacc atg aaa cat ctg tgg ttc ttc ctt ctc ct agattg gtc ctg tcc cag gtg cag ctg cag cag cag Rro Arg Trp Val Leu Ser Gln Val Gln Leu Gln Gln</pre>	<221> CDS <222> (11) (807) <223> sc12E10, Single chain Fv <400> 113 gaattccacc atg aaa cat ctg tgg ttc ttc ctt ctc ctg gattcacc atg aaa cat ctg tgg ttc ttc ctt ctc ctg gattcacc atg ag cag tcg Met Lys His Leu Trp Phe Phe Leu Leu Leu Leu Incompany 1 5 10 ccc aga tgg gtc ctg tcc cag gtg cag ctg cag cag tcg cag cag tcg Rro Arg Trp Val Leu Ser Gln Val Gln Leu Gln Gln Ser 15 20 25 ctg gtg aag cct tcg gag acc ctg tcc ctc acc tgc act Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr 30 35 40 gac tcc atc agt agt tac tac tgg agc tgg att cgg cag Asp Ser Ile Ser Ser Tyr Tyr Trp Ser Trp Ile Arg Gln 50 55 aag gga ctg gag tgg att ggg tat atc tat tac agt agg Lys Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly 65 70 tac aac ccc tcc ctc aag agt cga gtc acc ata tca gta Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val 80 85 90 aag agc cag ttc tcc ctg aag ctg agc tct gtg acc gcc Lys Ser Gln Phe Ser Leu Lys Leu Ser Ser Val Thr Ala 95 100 105 gcc gtg tat tac tac tgt gag agg ggg cag tac ttc gat gtc 100 105	<221> CDS <222> (11) (807) <223> sc12E10, Single chain Fv <400> 113 gaattccacc atg aaa cat ctg tgg ttc ttc ctt ctc ctg gtg te tty SHis Leu Trp Phe Phe Leu Leu Leu Val Ander State	<pre><221> CDS <2222</pre>	<pre><221> CDS <222> (11)(807) <223> sc12E10, Single chain Fv <400> 113 gaattccacc atg aaa cat ctg tgg ttc ttc ctt ctc ctg gtg gca gct</pre>

	110					115					120					125	
5	ggc	acc	atg	gtc	act	gtc	tcc	tca	ggt	ggt	ggt	ggt	tcg	ggt	ggt	ggt	433
	Gly	Thr	Met	Val	Thr	Val	Ser	Ser	Gly	Gly	Gly.	Gly	Ser	G1y	Gly	Gly	
					130					135					140		
10	ggt	tcg	ggt	ggt	ggc	gga	tcg	tcc	tat	gtg	ctg	act	cag	cca	ссс	tcg	481
	Gly	Ser	Gly	Gly	G1y	G1y	Ser	Ser	Tyr	Val	Leu	Thr	Gln	Pro	Pro	Ser	
15				145					150					155			
	gtg	tca	ggg	tct	cct	gga	cag	tcg	atc	acc	atc	tcc	tgc	act	gga	acc	529
	Val	Ser	Gly	Ser	Pro	Gly	Gln	Ser	Ile	Thr	.I1e	Ser	Cys	Thr	Gly	Thr	
20			160					165					170				
	agc	agt	gac	gtt	ggt	ggt	tat	aac	tat	gtc	tcc	tgg	tac	caa	cag	cac	577
	Ser	Ser	Asp	Val	G1 y	G1y	Tyr	Asn	Tyr	Val	Ser	Trp	Tyr	G1n	Gln	His	
25		175					180					185					
	cca	ggc	aaa	gcc	ccc	aaa	ctc	atg	att	tat	gag	ggc	agt	aaa	cgg	çcc	625
30	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Met	Ile	Tyr	G1u	Gly	Ser	Lys	Arg	Pro	
	190					195					200					205	
	tca	ggg	gtt	tct	aat	cgc	ttc	tct	ggc	tcc	aag	tct	ggc	aac	acg	gcc	673
35	Ser	Gly	Val	Ser	Asn	Arg	Phe	Ser	Gly	Ser	Lys	Ser	Gly	Asn	Thr	Ala	
					210					215					220		
	tcc	ctg	acc	atc	tct	ggg	ctc	cag	gct	gag	gac	gag	gct	gat	tat	tac	721
40	Ser	Leu	Thr	Ile	Ser	Gly	Leu	G1n	Ala	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	
				225					230					235			
45	tgc	agc	tca	tat	aca	acc	aga	agc	act	cgg	gtg	ttc	ggc	gga	ggg	acc	769
	Cys	Ser	Ser	Tyr	Thr	Thr	Arg	Ser	Thr	Arg	Val	Phe	Gly	Gly	Gly	Thr	
			240					245					250	*			
50	aag	ctg	acc	gtc	cta	gac	tac	aag	gat	gac	gac	gat	aag	tgat	taago	gg	818
	Lys	Leu	Thr	Val	Leu	Asp	Tyr	Lys	Asp	Asp	Asp	Asp	Lys				
55		255					260					265					
<i>55</i>																	

ccgc 822

Claims

- 1. A modified antibody comprising two or more H chain V regions and two or more L chain V regions of the same or different monoclonal antibody and showing an agonist action by crosslinking a cell surface molecule(s) or intracellular molecule(s).
 - 2. The modified antibody comprising two or more H chain V regions and two or more L chain V regions of monoclonal antibody and showing an agonist action by crosslinking a cell surface molecule(s).
 - 3. The modified antibody of claim 1 or 2, wherein the H chain V region and the L chain V region are connected through a linker.
- 4. The modified antibody of claim 3, wherein the linker is a peptide linker comprising at least one amino acid.
- 5. The modified antibody of any one of claims 1 to 4, wherein the modified monoclonal antibody is a multimer of single chain Fv comprising an H chain V region and an L chain V region.
- The modified antibody of claim 5, wherein the modified antibody is composed of tetramer, trimer or dimer of single chain Fv.
 - 7. The modified antibody of claim 6, wherein the modified antibody is composed of dimer of single chain Fv.
- 8. The modified antibody of any one of claims 5 to 7, wherein the H chain V region and the L chain V region existing in the same chain are not associated to form an antigen-binding site.
 - 9. The modified antibody of any one of claims 1 to 4, wherein the modified antibody is a single chain polypeptide comprising two or more H chain V regions and two or more L chain V regions.
 - **10.** The modified antibody of claim 9, wherein the modified antibody is a single chain polypeptide comprising two H chain V regions and two L chain V regions.
 - 11. The modified antibody of any one of claims 1 to 10, wherein the modified antibody further comprises an amino acid sequence(s) for peptide purification.
 - 12. The modified antibody of any one of claims 1 to 11, wherein the modified antibody has been purified.
 - 13. The modified antibody of any one of claims 1 to 12, wherein H chain V region and/or L chain V region is H chain V region and/or L chain V region derived from a human antibody.
 - 14. The modified antibody of any one of claims 1 to 13, wherein H chain V region and/or L chain V region is humanized H chain V region and/or L chain V region.
 - **15.** The modified antibody of any one of claims 1 to 14, wherein the cell surface molecule or intracellular molecule is a hormone receptor, a cytokine receptor, tyrosine kinase receptor or intranuclear receptor.
 - 16. The modified antibody of any one of claims 1 to 15, wherein the cell surface molecule or intracellular molecule is erythropoietin (EPO) receptor, thrombopoietin (TPO) receptor, granulocyte colony stimulating factor (G-CSF) receptor, macrophage colony stimulating factor (M-CSF) receptor, granular macrophage colony stimulating factor (GM-CSF) receptor, tumor necrosis factor (TNF) receptor, interleukin-1 (IL-1) receptor, interleukin-2 (IL-2) receptor, interleukin-3 (IL-3) receptor, interleukin-4 (IL-4) receptor, interleukin-5 (IL-5) receptor, interleukin-6 (IL-6) receptor, interleukin-10 (IL-10) receptor, interleukin-11 (IL-11) receptor, interleukin-12 (IL-12) receptor, interleukin-13 (IL-13) receptor, interleukin-15 (IL-15) receptor, interferon-

15

10

5

20

35

45

40

55

alpha (IFN-alpha) receptor, interferon-beta (IFN-beta) receptor, interferon-gamma (IFN-gamma) receptor, growth hormone (GH) receptor, insulin receptor, blood stem cell proliferation factor (SCF) receptor, vascular endothelial growth factor (VEGF) receptor, epidermal cell growth factor (EGF) receptor, nerve growth factor (NGF) receptor, fibroblast growth factor (FGF) receptor, platelet-derived growth factor (PDGF) receptor, transforming growth factor-beta (TGF-beta) receptor, leukocyte migration inhibitory factor (LIF) receptor, ciliary neurotrophic factor (CNTF) receptor, oncostatin M (OSM) receptor, Notch family receptor, E2F, E2F/DP1 or TAK1/TAB1.

- 17. The modified antibody of any one of claims 1 to 16, wherein the agonist action is apoptosis induction, cell proliferation induction, cell differentiation induction, cell division induction or cell cycle regulation action.
- **18.** The modified antibody of any one of claims 1 to 17, wherein the modified antibody is mono-specific modified antibody.
- 19. The modified antibody of any one of claims 1 to 17, wherein the modified antibody is multi-specific modified antibody.
 - 20. The modified antibody of claim 19, wherein the modified antibody is bi-specific modified antibody.

5

10

15

20

30

35

40

45

- 21. The monoclonal antibody of claim 20, wherein the L chain V region and the H chain V region are from the same monoclonal antibody.
- 22. The monoclonal antibody of any one of claims 1 to 21 which shows an equivalent or better agonist action (ED50) compared with the parent monoclonal antibody.
- 25 **23.** The monoclonal antibody of claim 22 which shows at least 2-fold agonist action (ED50) compared with the parent monoclonal antibody.
 - 24. The monoclonal antibody of claim 23 which shows at least 10-fold agonist action (ED50) compared with the parent monoclonal antibody.
 - **25.** The monoclonal antibody of any one of claims 1 to 21 which is derived from a parent antibody having substantially no agonist action.
 - 26. A compound comprising two or more H chain V regions and two or more L chain V regions of monoclonal antibody and showing an equivalent or better agonist action (ED50) compared with a natural ligand that binds to a cell surface molecule(s) or intracellular molecule(s).
 - 27. The compound of claim 26 which shows at least 2-fold agonist action (ED50) compared with a natural ligand that binds to a cell surface molecule(s) or intracellular molecule(s).
 - 28. The compound of claim 27 which shows at least 10-fold agonist action (ED50) compared with a natural ligand that binds to a cell surface molecule(s) or intracellular molecule(s).
 - 29. The modified antibody or compound of any one of claims 1 to 28 which has substantially no intercellular adhesion action.
 - **30.** The modified antibody or compound of any one of claims 1 to 28 which has intercellular adhesion action (ED50) not more than 1/10 compared with the parent antibody.
- 31. A DNA which encodes the modified antibody or compound of any one of claims 1 to 28.
 - 32. An animal cell which produces the modified antibody or compound of any one of claims 1 to 28.
 - 33. A microorganism which produces the modified antibody or compound of any one of claims 1 to 28.
 - 34. Use of the modified antibody or compound of any one of claims 1 to 28 as an agonist.
 - 35. A method of inducing an agonist action to cells which comprises administering the first ligand and the second

ligand that bind to a cell surface molecule(s) or intracellular molecule(s) and administering a substance that binds to the first and the second ligands and crosslinks the first and the second ligands.

- 36. The method of claim 35 wherein the first and the second ligands are the same or different single chain Fv monomers.
- **37.** The method of claim 35 or 36 wherein the substance that crosslinks the ligands is an antibody, an antibody fragment or a bivalent modified antibody.
- **38.** A method of causing agonist action to cells by crosslinking a cell surface molecule(s) or intracellular molecule(s) using the modified antibody or compound of any one of claims 1 to 28.
 - **39.** The method of claim 38 wherein the agonist action is apoptosis induction, cell proliferation induction, cell differentiation induction, cell division induction or cell cycle regulation action.
- 40. A medicine comprising as active ingredient the modified antibody or compound of any one of claims 1 to 29.
 - 41. Use of the modified antibody or compound of any one of claims 1 to 29 as medicine.
 - **42.** A method of screening a modified antibody comprising two or more H chain V regions and two or more L chain V regions of antibody and showing an agonist action by crosslinking a cell surface molecule(s) or intracellular molecule(s) which comprises the steps
 - (1) to produce a modified antibody comprising two or more H chain V regions and two or more L chain V regions of antibody and binding specifically to a cell surface molecule(s) or intracellular molecule(s),
 - (2) to subject cells expressing said cell surface molecule(s) or intracellular molecule(s) to react with the modified antibody and
 - (3) to measure the agonist action in the cells caused by crosslinking said cell surface molecule(s) or intracellular molecule(s).
- 43. A method of measuring an agonist action of a modified antibody comprising two or more H chain V regions and two or more L chain V regions of antibody and showing an agonist action by crosslinking a cell surface molecule (s) or intracellular molecule(s) which comprises the steps
 - (1) to produce a modified antibody comprising two or more H chain V regions and two or more L chain V regions of antibody and binding specifically to a cell surface molecule(s) or intracellular molecule(s),
 - (2) to subject cells expressing said cell surface molecule(s) or intracellular molecule(s) to react with the modified antibody and
 - (3) to measure the agonist action in the cells caused by crosslinking said cell surface molecule(s) or intracellular molecule(s).
 - **44.** A method of producing a modified antibody comprising two or more H chain V regions and two or more L chain V regions of monoclonal antibody and showing an agonist action by crosslinking a cell surface molecule(s) or intracellular molecule(s) which comprises the steps
 - (1) to culture animal cells of claim 32 or microorganisms of claim 33 to produce the modified antibody and
 - (2) to purify said monoclonal antibody.

5

20

25

35

40

45

50

55

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Competitive ELISA

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

SDS-PAGE analysis of MABL2-scFv

TSK gel G3000SW 20 mM Acetate buffer, 0.15 M NaCl, pH 6.0

Fig. 23

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

Fig. 31

Fig. 32 Effect of MABL-2 (scFv) on serum hlgG in KPMM2 i.v. SCID mice

Fig. 33

Effect of MABL-2 (scFv) on survival of KPMM2 i.v. SCID mice

Fig. 34

Fig. 35

Fig. 36

Base Sequence and Amino Acid Sequence of Linker for HL Type

Heavy 			Light chain te gtg … V V	FLAG
	Number of			
Plasmid	linker amino acid		linker	
CF2HL-0/pCOS1	0	gtc tcg agt		gac gtc gtg
		v s s		D A A
CF2HL-3/pCOS1	3	gtc tcg agt ggt ggt	tcc	gac gtc gtg
		V S S G G	S	D V V
CF2HL-4/pCOS1	4	gtc tcg agt ggt ggi	ggt tcc	gac gtc gtg
		V S S G G	G S	V V Č
CF2HL-5/pCOS1	5	gtc tcg agt ggt ggt	ggt ggt tcc	gac gtc gtg

CF2HL-6/pCOS1

CF2HL-7/pCOS1 7.

6

VSSGGGGS DVV

gtc tcg agt ggt ggt ggt ggt ggt ggt tcc gac gtc gtg
V S S G G G G G G S D V V

gtc tcg agt gt ggt ggt ggt tcc gac gtc gtg
V S S G G G G G S D V V

Fig. 37

Fig. 38

Base Sequence and Amino Acid Sequence of Linker for LH Type

Light chain		Heavy chain	
··· gag ata aaa	linker	cag gtc caa ···	FLAG
EIK		Q V Q	

	Number of	
Plasmid	linker amino acid	linker
CF2LH-0/pCOS1	0	gag ata aaa cag gtc caa
	•	E I K Q V Q
CF2LH-3/pCOS1	3	gag ata aaa tee gga gge cag gte caa
		E I K S G G Q V Q
CF2LH-4/pCOS1	4	gag ata aaa tcc gga ggt ggc cag gtc caa
		E I K S G G G Q V Q
CF2LH-5/pCOS1	5	gag ata aaa tcc gga ggt ggt ggc cag gtc caa
••		E I K S G G G G V Q
CF2LH-6/pCOS1	6	gag ata aaa too gga ggt ggt ggt ggc cag gto caa
		E I K S G G G G Q V Q
CF2LH-7/pCOS1	7	gag ata aaa too gga ggt ggt ggt ggc cag gto caa
		EIKSGGGGGGQVQ

Fig. 39

Fig. 40a

Fig. 40b

Fig. 41b

Fig. 42

Fig. 43

Fig. 44

Fig. 45

Fig. 46

Number of Days after Transplantation

Fig. 47

Fig. 48

Fig. 49

M:MW marker

1:sc12B5 fractionA

2:sc12B5 fractionB

Fig. 50

Fig. 51

Fig. 52

Fig. 55

0.0

0.0

10.0

20.0

Retention time (minute)

30.0

40.0

min

Fig. 57

Fig. 58

Fig. 59

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/09260

				
	NFICATION OF SUBJECT MATTER C1 C12N15/09, 15/62, C07K16/2	28, A61K39/395		
According to International Patent Classification (IPC) or to both national classification and IPC				
<u> </u>	SSEARCHED			
	ocumentation scarched (classification system followed Cl ⁷ Cl2N15/09, 15/62, C07K16/2			
Documental	ion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JICST FILE (JOIS), MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)				
0100	of Fibe (0013), Paparne (514), W	BT (DIMING), BIOSIS (DIV	.106,	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap		Relevant to claim No.	
Y	Bijia DENG et al., "An Agonist Antibody to the Human c-Mpl Red Megakaryocytpoiesis", Blood, 15 No.6, pages 1981 to 1988	ceptor Stimulayes	1-44	
Ϋ́	US 5885574 A (Amgen Inc.),		1-44	
	23 March, 1999 (23.03.99),	0.01		
	& JP 2000-95800 A & EP 77396 & WO 96/03438 A	2 81		
Ą	KIPRIYANOV et al., "Bispecific T Cell-Mediated Lysis of Malign Int. J. Cancer, (1998), Vol.77,	nant Human B Cells",	1-44	
Y	WO 00/53634 A (Chugai Pharmace) 14 September, 2000 (14.09.00), & EP 1167388 A	utical Co., Ltd.),	144	
А	Ming-Hong XIE et al., "Direct of involvement in acetycholine rece identification of agonist ScFv" August, 1997, Vol.15, No.8, pag	eptor clustering through , Nature Biotechnology,	1-44	
Furthe:	r documents are listed in the continuation of Box C.	See patent family annex.		
Special categories of cited documents: 'A' document defining the general state of the art which is not		"T" later document published after the inter priority date and not in conflict with th		
consíde	red to be of particular relevance document but published on or after the international filing	understand the principle or theory under "X" document of particular relevance; the o	erlying the invention	
date	ent which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider	red to involve an inventive	
cited to	establish the publication date of another citation or other	step when the document is taken alone document of particular relevance; the c	laimed invention cannot be	
"O" docume	reason (as specified) ant referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	documents, such	
means "P" document published prior to the international filing date but later than the priority date claimed		combination being obvious to a person "&" document member of the same patent f		
	etual completion of the international search anuary, 2002 (29.01.02)	Date of mailing of the international sear 05 February, 2002 (0		
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
		Telephone No.		
Facsimile No.		retephone 140.		

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP01/09260

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	EP 1035132 A (Chugai Pharmaceutical Co., Ltd.), 13 September, 2000 (13.09.00), & WO 99/12973 A	1-44

Form PCT/ISA/210 (continuation of second sheet) (July 1992)