Antoine Groudiev

ENS UIm

Janvier 2024

Introduction à l'informatique quantique

Notation de Dirac Représentation vectorielle Sphère de Bloch

Modèles de calculabilité quantique

Circuits quantiques Langages, automates, grammaires quantiques

Théorie de la complexité quantique

Classe BQP Thèse de Church-Turing

Algorithme de Deutsch-Jozsa

Introduction à l'informatique quantique

Notation de Dirac Représentation vectorielle Sphère de Bloch

Introduction

Notation de Dirac

Représentation vectorielle

Visualisation avec la sphère de Bloch

Modèles de calculabilité quantique

Circuits quantiques

Langages, automates, grammaires quantiques

Circuits quantiques

Figure – Un exemple de circuit (Algorithme de Deutsch-Jozsa)

Porte X

Porte Z

Langage quantique

Retour sur les langages classiques

Soit Σ un alphabet, et $L \subseteq \Sigma^*$ un langage. L peut être défini alternativement comme un sous-ensemble de Σ^* , ou par sa fonction caractéristique χ_L :

$$\chi_L(w) = \begin{cases} 1 & \text{si } w \in L \\ 0 & \text{sinon} \end{cases}$$

Langage quantique

On peut par analogie définir un *langage quantique* comme une fonction associant des probabilités à des mots :

Définition (Langage quantique)

Un langage quantique sur l'alphabet Σ est une fonction f telle que :

$$f: \Sigma^{\star} \rightarrow [0,1]$$

Remarque

f est un langage classique lorsque $f(\Sigma^*) \subseteq \{0,1\}$.

Automate quantique fini

Définition (AQF)

Un Automate Quantique Fini $Q = (H, s_{\text{init}}, H_{\text{accept}}, P_{\text{accept}}, \Sigma, \delta)$ constiste en :

- un espace de Hilbert H de dimension n
- un vecteur initial normalisé $s_{\text{init}} \in H$ (i.e. $||s_{\text{init}}||^2 = 1$)
- un sous-espace $H_{\text{accept}} \subseteq H$, et un opérateur P_{accept} projettant sur H_{accept}
- un alphabet Σ
- une fonction $\delta:\Sigma\to U_n(\mathbb{C})$, associant à chaque lettre une matrice unitaire U_a (c'est-à-dire $U_2U_2^{\dagger}=I_n$)

On note $\delta^*(w = w_1 \cdots w_{|w|}) = \delta(w_{|w|}) \cdots \delta(w_1) = U_{w_{|w|}} \cdots U_{w_1}$. Enfin, le langage reconnu par Q est :

$$f_Q: w \mapsto \|P_{\mathsf{accept}}\delta^{\star}(w)s_{\mathsf{init}}\|^2$$

Langage quantique régulier et propriétés

Définition (LQR)

Un Langage Quantique Régulier est un langage quantique reconnu par un automate quantique fini

Théorème (Clôture des LQR par produit)

Soient f, g des LQRs. Alors, le produit fg est un LQR.

Théorème (Clôture des LQR par combinaison linéaire)

Soient f_i des LQRs, et c_i des constantes telles que $\sum_i c_i \leq 1$. Alors, $\sum_i c_i f_i$ est un LQR.

Langage quantique régulier et propriétés

Théorème (Lemme de pompage quantique)

Si f est un LQR, alors pour tout mot $w \in \Sigma^*$ et tout $\varepsilon > 0$, il existe $k \in \mathbb{N}^*$ tel que $||f(uw^kv)-f(uv)|| < \varepsilon$ pour tout mots u, v. De plus, si l'automate de f est de dimension n, alors il existe une constante c (indépendante de ε) telle que $k < (c\varepsilon)^{-n}$.

Grammaire quantique

Définition (Grammaire Quantique 1)

Une Grammaire Quantique G = (V, T, I, P) de dimensionnalité n consiste en :

- un alphabet V de variables
- un alphabet T de terminaux
- une variable initiale $I \in V$
- un ensemble fini de productions P de la forme $\alpha \to \beta$, où $(\alpha, \beta) \in V^* \times (T \cup V)^*$.

À chaque production de P est associée un ensemble d'amplitudes complexes $(c_k(\alpha \to \beta))_{1 < k < n}$

On définit l'amplitude d'une suite de productions :

$$c_k(\alpha_1 \to \cdots \to \alpha_m = \beta) := \prod_{i=1}^{m-1} c_k(\alpha_i \to \alpha_{i+1})$$

Et l'amplitude d'une dérivation :

$$c_k(\alpha \Rightarrow \beta) := \sum_{\alpha = \alpha_1 \to \cdots \to \alpha_m = \beta} c_k(\alpha_1 \to \cdots \to \alpha_m)$$

Enfin, G génère le langage quantique f définit par :

$$f(w) = \sum_{k=1}^{n} \|c_k(I \Rightarrow w)\|^2$$

000

Théorie de la complexité quantique

Théorie de la complexité quantique

Classe BQP

Thèse de Church-Turing

Classe BQP (Bounded-error Quantum Polynomial time)

Positionnement par rapport aux classes de complexité classiques

Algorithme de Deutsch-Jozsa

Description du problème

Solution classique

Cas général (n quelconque)