EECE.3170: Microprocessor Systems Design I

Summer 2017

Homework 2 Solution

1. (70 points) Assume the state of an x86 processor's registers and memory are:

	Address	Lo			Hi
EAX: 0xEECE3170	0x20100	10	00	08	00
EBX: 0x00000001	0x20104	10	10	FF	FF
ECX: 0x00000002	0x20108	08	00	19	91
EDX: 0x00000004	0x2010C	20	40	60	80
ESI: 0x00020100	0x20110	02	00	AB	0F
EDI: 0x00020110	0x20114	30	99	11	55
	0x20118	40	AA	7C	EE
	0x2011C	FF	BB	42	D2
	0x20120	30	C	30	90

What is the result of each of the instructions listed below? Assume that the instructions execute in sequence—in other words, the result of each instruction may depend on the results of earlier instructions. Correctly evaluating each instruction will earn you 7 points.

Note that you may assume any constant values shown using less than 32 bits are zero-extended to 32 bits if necessary (for example, 0x000F = 0x0000000F).

```
MOV DL, 0xFE
Solution: DL = 0xFE
```

MOV DH, AL

Solution: DH = AL = 0x70 (EDX now = 0x000070FE)

MOVSX BX, BYTE PTR [ESI+0x000F]

Solution: BX = sign-extended byte at address ESI+0x000F = 0x00020100 + 0x000F = 0x0002010F

 \rightarrow BX = 0x80 sign-extended = **0xFF80**

MOV [EDI+ECX], EBX

Solution: Double-word at address EDI+ECX = EBX

EDI+ECX = 0x00020110 + 0x00000002 = 0x00020112

 \rightarrow (0x20112) = EBX = **0x0000FF80** (bytes ordered as 0x80, 0xFF, 0x00, 0x00)

EECE.3170: Microprocessor Systems Design I Summer 2017

Instructor: M. Geiger Homework 2 Solution

MOV [ESI+4*ECX], AX

Solution: Word at address ESI+4*ECX = AX

ESI + 4*ECX = 0x20100 + 4*2 = 0x20108

 \rightarrow (0x20108) = **0x3170** (bytes ordered as 0x70, 0x31)

XCHG CL, [ESI]

Solution: Swap byte values in CL, address $0x20110 \rightarrow CL = 0x10$, (0x20110) = 0x02

MOVZX EAX, WORD PTR [EDI+ECX]

Solution: EAX = zero-extended word at address EDI+ECX = 0x20110 + 0x00000010 = 0x20120

 \rightarrow EAX = **0x0000CC30** (original word underlined)

MOV DX, [EDI+0xFFFFFFFA]

Solution: DX = word at address EDI+0xFFFFFFA = 0x20110 + (-6) = 0x2010A

 \rightarrow DX = 0x9119

LEA ECX, [*ESI*+*EBX*+0*x*0017]

Solution: ECX = ESI + EBX + 0x0017h = 0x20100 + 0x0000FF80 + 0x0017h =**0x30097**

MOVSX EBX, BYTE PTR [ESI+4]

Solution: EBX = sign-extended byte at address 0x20104h = 0x00000010 (original byte underlined)

2. (80 points) Assume the initial state of an x86 processor's registers, memory, and carry flag are:

EAX: 0x00003170 EBX: 0x9876DCBA ECX: 0x00001995 EDX: 0xAC921E14 ESI: 0x00008440

CF: 0

 Address
 Lo

 0x8440
 FF

 0x8444
 08

 0x8448
 78

Lo			Hi
FF	03	99	87
08	09	F6	BB
78	15	00	00

Instructor: M. Geiger

Homework 2 Solution

What is the result of each of the instructions listed below? Assume that the instructions execute in sequence—in other words, the result of each instruction may depend on the results of earlier instructions. Correctly evaluating each instruction will earn you **8 points**.

Note that you may assume any constant values shown using less than 32 bits are zero-extended to 32 bits if necessary (for example, 0x000F = 0x0000000F).

ADD AX, BX

Solution:
$$AX = AX + BX = 0x3170 + 0xDCBA = 0x0E2Ah, CF = 1$$

ADC EAX, ECX

Solution: EAX = EAX + ECX + CF =
$$0x000000E2A + 0x00001995 + 1 = 0x000027C0$$
, CF = 0

INC WORD PTR [ESI]

Solution: Add 1 to word at address
$$ESI = 0x00008440$$

→ Word @
$$0x8440 = 0x03FF + 1 = 0x0400$$
 (byte @ $0x8440 = 0x00$, byte @ $0x8441 = 0x04$)

Solution:
$$AX = AL * unsigned byte @ (ESI+4)$$

$$\rightarrow$$
 Address = ESI + 4 = 0x8440 + 4 = 0x8444; byte @ 0x8444 = 0x08

$$\rightarrow$$
 AX = 0xC0 * 0x08 = 192 * 8 = 1536 = **0x0600**

$$SUB$$
 AX , $[ESI+8]$

Solution:
$$AX = AX - word @ ESI+8$$

$$\rightarrow$$
 Address = ESI + 8 = 0x8440 + 8 = 0x8448; word @ 0x8448 = 0x1578

$$\rightarrow$$
 AX = 0x0600 - 0x1578 = 0xF088, CF = 1 (since borrow out of MSB required)

DEC AH

Solution:
$$AH = AH - 1 = 0xF0 - 1 = 0xEFh$$

IMUL AH

Solution: AX = AL * AH (signed multiplication) =
$$0x88 * 0xEF = -120 * -17 = 2040 = 0x07F8$$

EECE.3170: Microprocessor Systems Design I Fall 2016

Instructor: M. Geiger Homework 2 Solution

IDIV DL

Solution: AL = AX / DL (signed division) = 0x07F8 / 0x14 = 2040 / 20 = 102 =**0x66** AH = AX % DL (remainder) = 2040 % 20 =**0x00**

DIV DH

Solution: AL = AX / DH (unsigned division) = 0x0066 / 0x1E = 102 / 30 = 0x03AH = AX % DH (remainder) = 102 % 30 = 12 = 0x0C

NEG AH

Solution: $AH = -AH = -0x0C = -(0000\ 1100_2) = (1111\ 0011_2 + 1 = 1111\ 0100_2 = \mathbf{0xF4h}$