Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta
 errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero
 punti.
- 1. (1 punto) Qual è il comportamento desiderato della funzione di sensitività complementare in uno schema a retroazione negativa unitaria?
 - (a) Vogliamo la sensitività complementare più piccola possibile a frequenze dove il disturbo sull'uscita ha contenuto frequenziale significativo
 - (b) Vogliamo la sensitività complementare identicamente pari a zero
 - (c) Vogliamo la sensitività complementare più alta possibile a frequenze dove il segnale di riferimento ha contenuto frequenziale significativo
 - (d) Vogliamo la sensitività complementare più piccola possibile a frequenze dove il rumore di misura ha contenuto frequenziale significativo
 - (e) Vogliamo la sensitività complementare più piccola possibile a frequenze dove il segnale di riferimento ha contenuto frequenziale significativo
- 2. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s - 2}{s^3 + 3s^2 + 3s + 7}$$

- (a) 0
- (b) ∞
- (c) 1,29
- (d) 0,71
- (e) 1

- 3. (1 punto) Il luogo del piano complesso corrispondente ad una coppia di poli con sovraelongazione inferiore ad un valore $\bar{S}_{\%}$ (è:
- 8 punti
- (a) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel primo e quarto quadrante
- (b) Un cerchio centrato nell'origine
- (c) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
- (d) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel primo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
- (e) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel secondo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
- 4. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove l'impianto ha f.d.t.

G(s) =
$$\frac{1}{(s+16)(s+3)}$$
 ed il controllore è un PI con

f.d.t.
$$C(s) = 18 \frac{s+z}{s}$$
. Si determini per quale valore dello zero del controllore il sistema a ciclo chiuso presenta due poli puramente immaginari.

- (a) 0
- (b) -1,67
- (c) -69,67
- (d) 1,67
- (e) 69,67

- 5. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove l'impianto ha f.d.t. $G(s) = \frac{1}{(s+15)(s+3)}$ ed il controllore è un PI con f.d.t. $C(s) = 24 \frac{s+z}{s}$. Si determini per quale valore dello zero del controllore il sistema a ciclo chiuso presenta due poli puramente immaginari.
 - (a) -51,75
 - (b) -1,67
 - (c) 0
 - (d) 1,67
 - (e) 51,75

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

4 punti

$$e_p = \boxed{ egin{array}{c} {f 3} & & & \\ \end{array} }, \qquad e_v = \boxed{ \ \ \ }$$

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

$$G(s) = \frac{1}{s^2 + 8s - 9}$$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 1s;
- errore di posizione inferiore al 19%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

Esercizio 1.

Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{s+z}{(s+4)^2}.$$

5 punti

Si scelga il valore del guadagno $k \in \mathbb{R}$ e del parametro $z \in \mathbb{R}$ in maniera che G(s) abbia un margine di ampiezza pari a 6dB.

Esercizio 2.

Si abbinino le funzioni di trasferimento con i corrispondenti diagrammi di Nyquist riportati nelle figure:

$$\underline{\quad \quad } L(s) = \frac{s-1}{s^2+1}$$

$$(A) \qquad \mathrm{Fig.}\ c$$

$$\underline{\mathbf{B}} \qquad L(s) = \frac{s-1}{s(s+1)}$$

$$\underline{\quad \quad }L(s)=\frac{(s+1)}{s(s-1)}$$

$$\underline{\mathbf{A}} \qquad L(s) = \frac{s+1}{s^2+1}$$

5 punti

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta
 errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero
 punti.
- 1. (1 punto) Il luogo del piano complesso corrispondente ad una coppia di poli con sovraelongazione inferiore ad un valore $\bar{S}_{\%}$ è:
 - (a) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel primo e quarto quadrante
 - (b) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel primo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
 - (c) Un cerchio centrato nell'origine
 - (d) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel secondo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
 - (e) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
- 2. (1 punto) Quali sono i vantaggi del controllo in retroazione?
 - (a) Consente di risparmiare sui costi di implementazione
 - (b) È sufficiente un'azione proporzionale per stabilizzare un processo
 - (c) Consente di controllare processi non perfettamente noti
 - (d) Aumentando il guadagno del controllo si stabilizza il processo
 - (e) È più semplice da progettare rispetto al controllo a ciclo aperto

3. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

8 punti

$$G(s) = \frac{s^2 + 2s + 5}{s^3 + 3s^2 + 6s + 4}$$

- (a) 2,25
- (b) -1
- (c) 1
- (d) ∞
- (e) -0.25
- 4. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 - 2s + 19}{s^3 + 3s^2 + 3s + 19}$$

- (a) 1,11
- (b) 0,89
- (c) ∞
- (d) 1
- (e) 0

5. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s - 4}{s^3 + 4s^2 + 3s + 6}$$

- (a) 1
- (b) 0,33
- (c) ∞
- (d) 0
- (e) 1,67

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

4 punti

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

 $e_p =$, $e_v =$

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

 $G(s) = \frac{1}{s^2 + 4s - 5}$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 2s;
- errore di posizione inferiore al 38%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

Esercizio 1. Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{9 - s}{s(s+9)}$$

5 punti

e si scelga il guadagno $k \in \mathbb{R}$ in maniera tale che G(s) abbia un margine di ampiezza pari a 6dB.

Esercizio 2.

$$\underline{\hspace{1cm}} L(s) = \frac{s-1}{s(s+1)}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{(s+1)}{s(s-1)}$$

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta
 errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero
 punti.
- 1. (1 punto) Qual è il comportamento desiderato della funzione di sensitività diretta in uno schema a retroazione negativa unitaria?
 - (a) Vogliamo la sensitività più piccola possibile a frequenze dove il segnale di riferimento ha contenuto frequenziale significativo
 - (b) Vogliamo la sensitività più alta possibile a frequenze dove il disturbo sull'uscita dell'impianto ha contenuto frequenziale significativo
 - (c) Vogliamo la sensitività più alta possibile a frequenze dove il segnale di riferimento ha contenuto frequenziale significativo
 - (d) Vogliamo la sensitività identicamente pari ad uno
 - (e) Vogliamo la sensitività più piccola possibile a frequenze dove il rumore di misura ha contenuto frequenziale significativo
- 2. (1 punto) Il luogo del piano complesso corrispondente ad una coppia di poli con sovraelongazione inferiore ad un valore $\bar{S}_{\%}$ è:
 - (a) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel secondo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
 - (b) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
 - (c) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel primo e quarto quadrante
 - (d) Un cerchio centrato nell'origine
 - (e) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel primo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse

3. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 - 2s + 4}{s^3 + 3s^2 + 8s + 5}$$

- (a) 1
- (b) -1
- (c) 0,2
- (d) 1,8
- (e) ∞
- 4. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove l'impianto ha f.d.t. $G(s) = \frac{1}{(s+15)(s+2)} \text{ ed il controllore è un PI con}$ f.d.t. $C(s) = 22\frac{s+z}{s}$. Si determini per quale valore dello zero del controllore il sistema a ciclo chiuso presenta due poli puramente immaginari.
 - (a) -1.67
 - (b) 1,67
 - (c) -40,18
 - (d) 40,18
 - (e) 0

8 punti

- 5. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove l'impianto ha f.d.t. $G(s) = \frac{1}{(s+18)(s+2)}$ ed il controllore è un PI con f.d.t. $C(s) = 16\frac{s+z}{s}$. Si determini per quale valore dello zero del controllore il sistema a ciclo chiuso presenta una coppia di poli dominanti con coefficiente di smorzamento nullo.
 - (a) 1,67
 - (b) -1,67
 - (c) -65
 - (d) 65
 - (e) 0

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

4 punti

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

$$G(s) = \frac{1}{s^2 + 4s - 5}$$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 2s;
- errore di posizione inferiore al 38%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ESERCIZIO 1. Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{4-s}{s(s+4)}$$

5 punti

<u>e si scelga il guadagno $k \in \mathbb{R}$ in maniera tale che G(s) abbia un margine di fase pari a 60°.</u>

Esercizio 2.

$$\underline{\hspace{1cm}} L(s) = \frac{s-1}{s(s+1)}$$

$$\underline{\qquad} L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{(s+1)}{s(s-1)}$$

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero punti.
- 1. (1 punto) In cosa consiste un problema di controllo?
 - (a) Misurare le variabili manipolabili di un processo
 - (b) Agire su di un processo affinché si comporti nella maniera desiderata
 - (c) Manipolare le variabili di interesse di un processo
 - (d) Misurare le variabili di interesse di un processo
 - (e) Modificare un processo nella maniera desiderata
- 2. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s + 4}{s^3 + 5s^2 + 7s + 5}$$

- (a) ∞
- (b) 1,8
- (c) 0,2
- (d) -1
- (e) 1

3. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 - 2s + 3}{s^3 + 3s^2 + 8s + 5}$$

- (a) 1,6
- (b) -1
- (c) 0.4
- (d) ∞
- (e) 1
- 4. (1 punto) Il luogo del piano complesso corrispondente ad una coppia di poli con sovraelongazione inferiore ad un valore $\bar{S}_{\%}$ è:
 - (a) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel primo e quarto quadrante
 - (b) Un cerchio centrato nell'origine
 - (c) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
 - (d) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel primo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
 - (e) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel secondo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse

5. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s + 5}{s^3 + 5s^2 + 7s + 4}$$

- (a) 1
- (b) ∞
- (c) -0,25
- (d) 2,25
- (e) -1

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

4 punti

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

$$e_p =$$
, $e_v =$

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

$$G(s) = \frac{1}{s^2 + 7s - 8}$$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 1,14s;
- errore di posizione inferiore al 21%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

Esercizio 1. Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{s - 9}{s(s + 9)}$$

5 punti

e si scelga il guadagno $k \in \mathbb{R}$ in maniera tale che G(s) abbia un margine di ampiezza pari a 6dB.

Esercizio 2.

$$\underline{\hspace{1cm}} L(s) = \frac{s-1}{s(s+1)}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{(s+1)}{s(s-1)}$$

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero punti.
- 1. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove la funzione di anello è $L(s) = \frac{9}{(s+20)(s+3)(s+5)}$. Si determini il margine di fase.
 - (a) 33.67°
 - (b) -27°
 - $(c) \infty$
 - (d) 0
 - (e) 180°
- 2. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s + 2}{s^3 + 5s^2 + 7s + 4}$$

- (a) 1,5
- (b) ∞
- (c) 1
- (d) 0,5
- (e) -1

- **3.** (1 punto) Quali sono i vantaggi del controllo a ciclo aperto?
 - (a) Consente di velocizzare la risposta del processo
 - (b) È più difficile da progettare rispetto al controllo a ciclo chiuso
 - (c) Consente di controllare processi non perfettamente noti
 - (d) È più semplice da progettare rispetto al controllo a ciclo chiuso
 - (e) Consente di stabilizzare processi instabili
- **4.** (1 punto) Il luogo del piano complesso corrispondente ad un polo con tempo di assestamento (all'un percento) inferiore a \bar{T}_{a1} è:
 - (a) Il semipiano a sinistra di una retta parallela all'asse immaginario e giacente nel secondo e terzo quadrante
 - (b) L'area esterna ad un cerchio centrato nell'origine
 - (c) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
 - (d) Il semipiano a sinistra di una retta parallela all'asse immaginario e giacente nel primo e quarto quadrante
 - (e) L'area interna ad un cerchio centrato nell'origine

5. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s - 2}{s^3 + 4s^2 + 4s + 8}$$

- (a) ∞
- (b) 0
- (c) 1,25
- (d) 1
- (e) 0,75

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

4 punti

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

$$e_p =$$
 , $e_v =$

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

$$G(s) = \frac{1}{s^2 + 4s - 5}$$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 2s;
- errore di posizione inferiore al 38%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

Esercizio 1. Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{5 - s}{s(s+5)}$$

5 punti

e si scelga il guadagno $k \in \mathbb{R}$ in maniera tale che G(s) abbia un margine di ampiezza pari a 12dB.

Esercizio 2.

$$L(s) = \frac{s+1}{s^2+1}$$

(A) Fig. b

$$L(s) = \frac{(s+1)}{s(s-1)}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s-1}{s(s+1)}$$

(B) Fig. a

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s-1}{s(s+1)}$$

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta
 errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero
 punti.
- 1. (2 punti) Il segnale $u(t) = t \cdot 1(t)$ è applicato al sistema $G(s) = \frac{s+3}{s^2(s+2)}.$ L'uscita
 - (a) tende a zero
 - (b) tende al valore 1,5
 - (c) tende ad una rampa di pendenza unitaria
 - (d) tende al valore -1.5
 - (e) tende all'infinito
- 2. (1 punto) Qual è il comportamento desiderato della funzione di sensitività diretta in uno schema a retroazione negativa unitaria?
 - (a) Vogliamo la sensitività più alta possibile a frequenze dove il segnale di riferimento ha contenuto frequenziale significativo
 - (b) Vogliamo la sensitività identicamente pari ad uno
 - (c) Vogliamo la sensitività più alta possibile a frequenze dove il disturbo sull'uscita dell'impianto ha contenuto frequenziale significativo
 - (d) Vogliamo la sensitività più piccola possibile a frequenze dove il segnale di riferimento ha contenuto frequenziale significativo
 - (e) Vogliamo la sensitività più piccola possibile a frequenze dove il rumore di misura ha contenuto frequenziale significativo

3. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove l'impianto ha f.d.t. $G(s) = \frac{1}{(s+15)(s+4)} \text{ ed il controllore è un PI con}$ $f.d.t. G(s) = 17 \frac{s+z}{s} \text{ Si determini per quale valor}$

f.d.t. $C(s) = 17 \frac{s+z}{s}$. Si determini per quale valore dello zero del controllore il sistema a ciclo chiuso presenta due poli puramente immaginari.

- (a) -1,67
- (b) 1,67
- (c) -86,06
- (d) 86,06
- (e) 0
- **4.** (1 punto) Il luogo del piano complesso corrispondente ad una coppia di poli con coefficiente di smorzamento ξ inferiore ad un valore negativo $\bar{\xi}0$ (cioè $\xi\bar{\xi}<0$) è:
 - (a) L'area esterna ad un cerchio centrato nell'origine
 - (b) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel primo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
 - (c) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
 - (d) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel primo e quarto quadrante
 - (e) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel secondo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse

- 5. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove l'impianto ha f.d.t. $G(s) = \frac{1}{(s+19)(s+5)}$ ed il controllore è un PI con f.d.t. $C(s) = 18 \frac{s+z}{s}$. Si determini per quale valore dello zero del controllore il sistema a ciclo chiuso presenta una coppia di poli dominanti con coefficiente di smorzamento nullo.
 - (a) 1,67
 - (b) 0
 - (c) -150,67
 - (d) -1,67
 - (e) 150,67

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

4 punti

$$e_p =$$
 , $e_v =$

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

$$G(s) = \frac{1}{s^2 + 7s - 8}$$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 1,14s;
- errore di posizione inferiore al 21%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

Esercizio 1. Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{4-s}{s(s+4)}$$

5 punti

e si scelga il guadagno $k \in \mathbb{R}$ in maniera tale che G(s) abbia un margine di fase pari a 50°.

Esercizio 2.

$$\underline{\qquad} L(s) = \frac{(s+1)}{s(s-1)}$$

$$L(s) = \frac{s-1}{s(s+1)}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s-1}{s^2 + 1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

5 punti

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta
 errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero
 punti.
- 1. (1 punto) Qual è il comportamento desiderato della funzione di sensitività complementare in uno schema a retroazione negativa unitaria?
 - (a) Vogliamo la sensitività complementare più piccola possibile a frequenze dove il disturbo sull'uscita ha contenuto frequenziale significativo
 - (b) Vogliamo la sensitività complementare più alta possibile a frequenze dove il segnale di riferimento ha contenuto frequenziale significativo
 - (c) Vogliamo la sensitività complementare più piccola possibile a frequenze dove il rumore di misura ha contenuto frequenziale significativo
 - (d) Vogliamo la sensitività complementare più piccola possibile a frequenze dove il segnale di riferimento ha contenuto frequenziale significativo
 - (e) Vogliamo la sensitività complementare identicamente pari a zero
- 2. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 - 2s - 3}{s^3 + 5s^2 + 5s + 8}$$

- (a) 0,63
- (b) ∞
- (c) 0
- (d) 1,38
- (e) 1

- 3. (2 punti) <u>Il segnale</u> $u(t) = t \cdot 1(t)$ <u>è applicato al sistema</u> $G(s) = \frac{s+5}{s^2(s+3)}$. L'uscita
 - (a) tende ad una rampa di pendenza unitaria
 - (b) tende al valore -1,67
 - (c) tende all'infinito
 - (d) tende a zero
 - (e) tende al valore 1,67
- **4.** (1 punto) Il luogo del piano complesso corrispondente ad una coppia di poli con coefficiente di smorzamento superiore ad un valore $\bar{\xi} > 0$ è:
 - (a) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel primo e quarto quadrante
 - (b) Un cerchio centrato nell'origine
 - (c) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
 - (d) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel secondo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
 - (e) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel primo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse

- 5. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove la funzione di anello è $L(s) = \frac{12}{(s+17)(s+2)(s+3)}.$ Si determini il margine di fase.
 - (a) ∞
 - (b) 0
 - (c) 33.67°
 - (d) 180°
 - (e) -27°

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

4 punti

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

 $G(s) = \frac{1}{s^2 + 4s - 5}$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 2s;
- errore di posizione inferiore al 38%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

Esercizio 1. Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{s - 10}{s(s + 10)}$$

5 punti

e si scelga il guadagno $k \in \mathbb{R}$ in maniera tale che G(s) abbia un margine di ampiezza pari a 6dB.

Esercizio 2.

$$\underline{\qquad} L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s-1}{s(s+1)}$$

$$L(s) = \frac{s-1}{s(s+1)}$$

$$L(s) = \frac{(s+1)}{s(s-1)}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta
 errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero
 punti.
- 1. (1 punto) Il luogo del piano complesso corrispondente ad una coppia di poli con coefficiente di smorzamento superiore ad un valore $\bar{\xi} > 0$ è:
 - (a) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel primo e quarto quadrante
 - (b) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
 - (c) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel secondo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
 - (d) Il settore racchiuso tra il semiasse positivo delle ordinate ed una semiretta che parte dall'origine e giace nel primo quadrante, unito al corrispondente settore simmetrico rispetto all'asse delle ascisse
 - (e) Un cerchio centrato nell'origine
- 2. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s - 2}{s^3 + 4s^2 + 4s + 8}$$

- (a) 0
- (b) 0,75
- (c) 1,25
- (d) 1
- (e) ∞

- **3.** (1 punto) Quali sono gli effetti del controllo a ciclo chiuso?
 - (a) Garantisce un errore di velocità sempre nullo
 - (b) Le prestazioni sono indipendenti dal sensore utilizzato
 - (c) Sposta gli zeri del sistema da controllare
 - (d) Mantiene la posizione dei poli del sistema da controllare
 - (e) Sposta i poli del sistema da controllare
- **4.** (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s + 3}{s^3 + 4s^2 + 7s + 5}$$

- (a) 1,6
- (b) -1
- $(c) \infty$
- (d) 1
- (e) 0.4

8 punti

5. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 - 2s + 5}{s^3 + 3s^2 + 8s + 4}$$

- (a) 1
- (b) -0.25
- (c) 2,25
- (d) -1
- (e) ∞

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

4 punti

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

$$e_p =$$
 , $e_v =$

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

$$G(s) = \frac{1}{s^2 + 7s - 8}$$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 1,14s;
- errore di posizione inferiore al 21%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

Esercizio 1.

Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{s+z}{(s+4)^2}.$$

5 punti

Si scelga il valore del guadagno $k \in \mathbb{R}$ e del parametro $z \in \mathbb{R}$ in maniera che G(s) abbia un margine di ampiezza pari a 6dB.

Esercizio 2.

$$L(s) = \frac{s-1}{s(s+1)}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{(s+1)}{s(s-1)}$$

$$L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s-1}{s^2+1}$$

5 punti

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Per ogni domanda seguente una sola risposta risulta corretta. Il candidato evidenzi la risposta che ritiene corretta.
- Per ogni risposta corretta, viene assegnato il punteggio indicato accanto al testo della domanda. Per ogni risposta
 errata, viene sottratto un quarto del suddetto punteggio. Se non è indicata alcuna risposta, vengono assegnati zero
 punti.
- 1. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

$$G(s) = \frac{s^2 + 2s + 2}{s^3 + 4s^2 + 5s + 4}$$

- 3
- (a) ∞(b) 1
- (c) 1,5
- (d) -1
- (e) 0.5

3. (2 punti) Si calcoli l'errore di posizione quando si vuol far inseguire un gradino al sistema

8 punti

$$G(s) = \frac{s^2 + 2s - 5}{s^3 + 3s^2 + 5s + 6}$$

- (a) 0
- (b) 1
- (c) 1,83
- (d) ∞
- (e) 0,17
- **2.** (1 punto) Il luogo del piano complesso corrispondente ad un polo con tempo di assestamento (all'un percento) inferiore a \bar{T}_{a1} è:
 - (a) L'area esterna ad un cerchio centrato nell'origine
 - (b) Il settore racchiuso tra due semirette che partono dall'origine e giacciono nel secondo e terzo quadrante
 - (c) Il semipiano a sinistra di una retta parallela all'asse immaginario e giacente nel primo e quarto quadrante
 - (d) L'area interna ad un cerchio centrato nell'origine
 - (e) Il semipiano a sinistra di una retta parallela all'asse immaginario e giacente nel secondo e terzo quadrante

- 4. (1 punto) Quali sono i vantaggi del controllo a ciclo aperto?
 - (a) È più difficile da progettare rispetto al controllo a ciclo chiuso
 - (b) Consente di controllare processi non perfettamente noti
 - (c) È più semplice da progettare rispetto al controllo a ciclo chiuso
 - (d) Consente di stabilizzare processi instabili
 - (e) Consente di velocizzare la risposta del processo

- 5. (2 punti) Si consideri un sistema di controllo con retroazione negativa unitaria dove l'impianto ha f.d.t. $G(s) = \frac{1}{(s+19)(s+5)}$ ed il controllore è un PI con f.d.t. $C(s) = 23 \frac{s+z}{s}$. Si determini per quale valore dello zero del controllore il sistema a ciclo chiuso presenta due poli puramente immaginari.
 - (a) -1.67
 - (b) 123,13
 - (c) 0
 - (d) -123,13
 - (e) 1,67

Si svolgano gli esercizi riportati di seguito fornendo le risposte a quanto richiesto. Accanto ad ogni esercizio è riportato il punteggio massimo che si può ottenere.

Precisione statica

Esercizio 1.

Si consideri il sistema di controllo a ciclo chiuso schematizzato nella figura seguente e se ne calcoli l'errore di posizione e di velocità.

4 punti

Si ricorda che $e_p \stackrel{\triangle}{=} r - y$ quando r = 1(t) e $e_v \stackrel{\triangle}{=} r - y$ quando $r = t \cdot 1(t)$.

Luogo delle radici

Esercizio 1.

Si consideri l'impianto descritto dalla funzione di trasferimento

$$G(s) = \frac{1}{s^2 + 5s - 6}$$

5 punti

- risposta indiciale con tempo di assestamento t_a all'1% inferiore a 1,6s;
- errore di posizione inferiore al 30%.

Controlli Automatici 22 giugno 2016	Prof. L. Iannelli	Firma leggibile dello studente
Cognome:	Nome:	Matricola:

Esercizio 1. Si consideri la funzione di trasferimento

$$G(s) = k \cdot \frac{s - 9}{s(s + 9)}$$

5 punti

e si scelga il guadagno $k \in \mathbb{R}$ in maniera tale che G(s) abbia un margine di ampiezza pari a 6dB.

Esercizio 2.

$$\underline{\hspace{1cm}} L(s) = \frac{s-1}{s^2+1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s+1}{s^2+1}$$

$$L(s) = \frac{s-1}{s(s+1)}$$

$$L(s) = \frac{(s+1)}{s(s-1)}$$

$$\underline{\qquad} L(s) = \frac{(s+1)}{s(s-1)}$$