29 JAN 2024-2

1

EE24BTECH11011-B.PRANAY KUMAR

1) Let $\mathbf{OA} = \mathbf{a}, \mathbf{OB} = 12\mathbf{a} + 4\mathbf{b}$ and $\mathbf{OC} = \mathbf{b}$, where \mathbf{O} is the origin.If S is the parallelogram with adjacent sides \mathbf{OA} and \mathbf{OC} , then $\frac{\text{area of the quadrilateral }OABC}{\text{area of }S}$ is equal

2) Let a unit vector $\mathbf{u} = x\hat{i} + y\hat{j} + z\hat{k}$ makes angles $\frac{\pi}{2}\frac{\pi}{3}$ and $\frac{2\pi}{3}$ with the vectors $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}$ and $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ respectively. If $\mathbf{v} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}$ then $|\mathbf{u} - \mathbf{v}|^2$ is equal to

c) 6

d) 10

to

a) 8

b) 7

	a) 9	c) 7
	b) $\frac{5}{2}$	d) $\frac{11}{2}$
	3) The function $f(x) = 2x + 3(x)^{\frac{2}{3}}$, $x \in \mathbb{R}$ has a) exactly one point of local minima and no point of local laxima b) exactly one point of local maxima and exactly one point of local minima c) exactly one point of local maxima and no point of local minima d) exactly two points of local maxima and exactly one point of local minima	
		a_1, a_2, a_3, \dots with $a_1 = \frac{1}{8}$ and $a_2 \neq a_1$ is the nd $S_n = a_1 + a_2 + \dots + a_n$ then $S_{20} - S_{18}$ is
	a) 2^{18} b) -2^{18}	c) 2 ¹⁵ d) -2 ¹⁵
 5) If log_e a, log_e b, log_ec are in A.P and log_ea - log_e 2b, log_e 2b - log_e 3c, log_e 3c - are also in an A.P then a: b: c is equal to a) 16: 4: 1 b) 6: 3: 2 c) 25: 10: 4 d) 9: 6: 4 		
	6) Let $\mathbf{A}(3,2,3)$, $\mathbf{Q}(4,6,2)$ and $\mathbf{R}(7,3,2)$ $\angle QPR$ is a) $\cos^{-1}\left(\frac{1}{18}\right)$	be the vertices of $\triangle PQR$. Then the angle

equal to		
a) 736b) 746	c) 732 d) 742	
10) If		
$\int \frac{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x}{\sqrt{\sin^3 x \cos^3 x \sin(x - \theta)}} dx = A \sqrt{\cos \theta \tan x - \sin \theta} + B \sqrt{\cos \theta - \sin \theta \cot x} + C$		
$\int \int \partial u du du du du du du du $	(10.1)	
where C is the integration constant, then AB is equal to		
a) $4 \csc(2\theta)$	c) 2 sec θ	
b) $4 \sec \theta$	d) $8 \csc(2\theta)$	
11) If \mathbf{R} is the smallest equivalence relation on the set $\{1, 2, 3, 4\}$ such that $\{(1, 2, 2, 3, 4), (1, 2, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 3, 4), (1, 3, 4), (1, 3, 4), (1, 3, 4), (1, 3, 4), (1, 4, 4), (1, $		
a) 12	c) 8	
b) 15	d) 10	
12) Let $x = \frac{m}{n}(m, n)$ are co-prime natural numbers) be a solution of the equation $\cos(2\sin^{-1}x) = \frac{1}{9}$ and let α, β ($\alpha > \beta$) be the roots of the equation $mx^2 - nx - m + n = 0$. Then the point (α, β) lies on the line a) $5x + 8y = 9$ b) $3x - 3y = -2$ c) $5x - 8y = -9$		

7) Number of ways of arranging 8 identical books into 4 identical shelves where any

8) The distance of the point (2, 3) from the line 2x - 3y + 28 = 0 measured parallel to

9) Let $y = log_e(\frac{1-x^2}{1+x^2})$, -1 < x < 1. Then at $x = \frac{1}{2}$, then the value off 225 (y' - y'') is

c) 15

d) 12

c) $6\sqrt{3}$ d) $4\sqrt{2}$

number of shelves may remain empty is equal to

the line $\sqrt{3}x - y + 1 = 0$ is equal to

b) $\frac{\pi}{3}$ c) $\frac{\pi}{6}$

a) 16

b) 18

a) $4 + 6\sqrt{3}$ b) $3 + 4\sqrt{2}$

d) $\cos^{-1}\left(\frac{7}{18}\right)$

d)
$$3x + 2y = 2$$

13) The sum of the solutions $x \in \mathbb{R}$ of the equation

$$\frac{3\cos 2x + \cos^3 2x}{\cos^{6x} - \sin^3 6x} = x^3 - x^2 + 6 \tag{13.1}$$

is

a)
$$-1$$

14) Let
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2 \end{pmatrix}$$
 and $\mathbf{P} = \begin{pmatrix} 1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5 \end{pmatrix}$. The sum of the prime factors of $|\mathbf{P}^{-1}\mathbf{A}\mathbf{P} - 2\mathbf{I}|$ is equal to

- 15) An integer is chosen at random from the integers 1, 2, 3, ..., 50. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is
 - a) $\frac{9}{50}$
 - b) $\frac{8}{25}$
 - c) $\frac{21}{50}$
 - d) $\frac{14}{25}$