DNS

Sujet

Optique géométrique de base	1
I.Miroirs sphériques.	
A. Position de l'image et grandissement transversal.	
B.Le télescope de Cassegrain.	2
II.Lentilles minces.	
A. Position de l'image et grandissement transversal.	3
B. <u>La lunette de Galilée</u> .	

Optique géométrique de base

I. Miroirs sphériques

Les miroirs sphériques étudiés seront utilisés dans l'approximation de Gauss. On définira le rayon de courbure d'un miroir (M) par $R = \overline{SC}$.

A. Position de l'image A'B' et grandissement transversal

1. Construire l'image A'B' pour le miroir (M_1) , de centre C_1 et de sommet S_1 (Figure 1).

2. Construire l'image A'B' pour le miroir (M_2) , de centre C_2 et de sommet S_2 (Figure 2).

- 3. Le miroir (M_3) est concave, de rayon de courbure R_3 tel que $|R_3|=20\,cm$. L'objet AB est situé au milieu de F_3S_3 (F_3 : Foyer objet; S_3 : Sommet). Calculer $\overline{S_3A'}$ et en déduire le grandissement transversal. Retrouver qualitativement les résultats par construction de l'image.
- 4. Le miroir (M_4) est convexe, de rayon de courbure R_4 tel que $|R_4|=40\,cm$. L'objet AB est situé après S_4 tel que $\overline{S_4A}=50\,cm$. Calculer $\overline{C_4A'}$ et en déduire le grandissement transversal. Retrouver qualitativement les résultats par construction de l'image.

B. Le télescope de Cassegrain

Données numériques :

• Diamètre de la Lune : $D_L = 3456 \, km$

• Distance Terre – Lune : $D_{TL} = 384\,000 \, km$

L'axe optique d'un miroir sphérique concave (\mathcal{M}) , de sommet S, de centre C et de rayon $R = \overline{SC}$ est dirigé vers le centre de la Lune.

- 5. Déterminer la position de l'image A'B' de la Lune après réflexion sur (\mathcal{M}) . Illustrer par une construction de l'image.
- 6. Calculer le diamètre apparent ε du disque lunaire.
- 7. En déduire la dimension de l'image A'B' pour |R|=60 cm.

On réalise l'objectif d'un télescope de type Cassegrain en associant deux miroirs sphériques (Figure 3) : un miroir sphérique concave (\mathcal{M}_1) , appelé miroir primaire, de sommet S_1 , de centre C_1 , de foyer F_1 et de rayon $R_1 = \overline{S_1 C_1}$ et un miroir sphérique convexe (\mathcal{M}_2) , appelé miroir secondaire, de sommet S_2 , de centre C_2 , de foyer F_2 et de rayon $R_2 = \overline{S_2 C_2}$. Le miroir (\mathcal{M}_1) comprend une petite ouverture centrée en S_1 pour permettre le passage de la lumière après réflexion sur (\mathcal{M}_1) puis sur (\mathcal{M}_2) . Le miroir (\mathcal{M}_2) est de petite dimension, afin de ne pas obstruer le passage de la lumière tombant sur le miroir primaire.

Figure 3

- 8. Où doit se situer l'image A'B' de la Lune après réflexion sur (\mathcal{M}_1) , afin que le miroir sphérique convexe (\mathcal{M}_2) , caractérisé par S_2 , C_2 et F_2 , en donne une image réelle A''B''?
- 9. Déterminer la position du foyer image F', de l'association des miroirs (\mathcal{M}_1) et (\mathcal{M}_2) , en exprimant $\overline{S_2F'}$ en fonction de R_1 , R_2 et $d=\overline{S_2S_1}$.
- 10. Exprimer le grandissement transversal y_2 de l'objet A'B' à travers le miroir (\mathcal{M}_2) en fonction de R_1 , R_2 et $d = \overline{S_2S_1}$.
- 11. Calculer $\overline{S_2F'}$, y_2 et la dimension finale de l'image A''B'' pour : $|R_1|=60\,cm$; $|R_2|=40\,cm$ et $|d|=18\,cm$.
- 12. Quelle serait la distance focale image f_L d'une unique lentille mince qui donnerait de la Lune la même image A"B"? Commenter.

II. Lentilles minces

Les lentilles minces étudiées seront utilisées dans l'approximation de Gauss.

A. Position de l'image A'B' et grandissement transversal

13. Construire l'image A'B' pour la lentille (L_1) , de centre optique O_1 , de foyers objet F_1 et image F'_1 (Figure 4).

14. Construire l'image A'B' pour la lentille (L_2) , de centre optique O_2 , de foyers objet F_2

et image F'_2 (Figure 5).

- 15.La lentille (L_3) est convergente, de distance focale image $|f'_3|=30\,cm$. L'objet AB est dans une position telle que $\overline{O_3A}=15\,cm$. Calculer $\overline{F'_3A'}$ et en déduire le grandissement transversal. Retrouver qualitativement les résultats par construction.
- 16.La lentille (L_4) est divergente, de distance focale image $|f'_4|=30\,cm$. L'objet AB est dans une position telle que $\overline{AF'_4}=20\,cm$. Calculer $\overline{O_4A'}$ et en déduire le grandissement transversal. Retrouver qualitativement les résultats par construction.

B. La lunette de Galilée

Données numériques :

• Distance Terre – Lune : $D_{TI} = 384\,000 \, km$

Une lunette de Galilée comprend : un objectif assimilable à une lentille mince (\mathcal{L}_1) , de centre O_1 et de vergence V_1 =5 dioptries et un oculaire assimilable à une lentille mince (\mathcal{L}_2) , de centre O_2 et de vergence V_2 =-20 dioptries .

17. Déterminer la nature et les valeurs des distances focales images f'_1 et f'_2 des lentilles.

La lunette est du type « afocal » :

- 18. Préciser la position relative des deux lentilles, la valeur de la distance $d = O_1O_2$ et l'intérêt d'une lunette afocale.
- 19. Dessiner, dans les conditions de Gauss, la marche d'un faisceau lumineux incident, issu d'un point objet à l'infini, faisant un angle θ avec l'axe optique et émergeant sous l'angle θ' .
- 20.En déduire le grossissement (ou grandissement angulaire) de cette lunette en fonction des angles θ et θ' , puis des distances focales f'_1 et f'_2 . Valeur du grossissement ?

Un astronome amateur utilise cette lunette, normalement adaptée à la vision d'objets terrestres, pour observer deux cratères lunaires : Copernic (diamètre = 96 km) et Clavius (diamètre = 240 km).

21.L'astronome voit-il ces deux cratères lunaires :

- à l'oeil nu ? (Acuité visuelle : $3 \times 10^{-4} rad$)
- à l'aide de cette lunette ? Justifier vos réponses.

3) On charche 5A' on utilise les formules avec origine on 5

$$\frac{1}{SA} + \frac{1}{SA'} = \frac{2}{SC} \quad \text{avec} \quad \frac{SC}{SA} = \frac{R}{SA}$$

$$= \frac{SC}{2SA} - \frac{SC}{SA}$$

$$= \frac{R}{4} - \frac{R}{2}$$

$$= \frac{R}{2} - R$$

$$= \frac{R}{2} - \frac{R}{2}$$

$$8 = -\frac{\overline{SA'}}{\overline{SA}}$$

$$= -\frac{R/2}{R/4}$$

$$8 = 2$$

4) On cherche CA' on utilise les formules avec origine au centre.

•
$$\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2}{\overline{CS}}$$

$$= \frac{2}{\overline{CS}} = -R$$

$$\overline{CA} = \overline{SA} - \overline{SC}$$

$$= \overline{SA} - R$$

$$\overline{CA'} = \frac{CS \overline{CA}}{2 \overline{CA} - \overline{CS}}$$

$$= \frac{-R (\overline{SA} - R)}{2 (\overline{SA} - R) + R}$$

$$\overline{CA'} = -R (\overline{SA} - R)$$

$$(2\overline{SA} - R)$$

$$R = +40 cm$$

$$CA' = -40 (50-40)$$

$$(2x50-40)$$

5) $D_{TL} \gg |R|$ done l'objet (la lune) est considérée comme étant à l'infini.
L'image se trouve donc dans le plan focal image

D_L
D_{TL}

$$\mathcal{E} = \frac{\mathcal{D}_{L}}{\mathcal{D}_{TL}}$$

A.N. = 3456 km 384000 km

7) Avec f' distance focale moge définie per $\overline{SF'} = f' = \frac{R}{2}$ (ici f'(0)

on aura

$$\overline{A'B'} = f' \epsilon$$
 (ici $\overline{A'B'} < 0$)

A.N.
$$A'B' = \frac{R}{2} \epsilon$$

= $\frac{-60}{2} 9 \cdot 10^{-3}$
 $A'B' = -0.27 cm$

8)

Pour M2, A'B' joue le rôle d'objet.

L'image A'B" est neelle si elle se trouve entre 52 et l'infini

A" est en 52 si A' est en 52

A" est à l'infini si A' est en F2

Done:

Objet A
$$(M1)$$
 image en F'_1

Objet $(M2)$ image en F'_1

objet $(M2)$ image en F'_1

On exit la relation de conjugación four M2 avec origine en 52 (avec $\overline{S_2F_1'} = \overline{S_2S_1} + \overline{S_1F_1'} = d + \frac{R_1}{2}$) $\frac{1}{\overline{S_2F_1'}} + \frac{1}{\overline{S_2F_1'}} = \frac{2}{\overline{S_2C_2}}$ $\frac{1}{d + \frac{R_1}{2}} + \frac{1}{\overline{S_2F_1'}} = \frac{2}{\overline{R_2}}$

$$\frac{\overline{S_2F'}}{2(2d+R_1)} = \frac{R_2(2d+R_1)}{2(2d+R_1-R_2)}$$

$$\delta_2 = -\frac{\overline{S_2F'}}{\overline{S_2F'_1}}$$

$$\delta_2 = -\frac{R_2}{\overline{S_2F'_1}}$$

2d+R1-R2

11) A.N.

avec
$$R_{1} = \overline{S_{1}C_{1}} = -60 \text{ cm}$$

$$R_{2} = \overline{S_{2}C_{2}} = -40 \text{ cm}$$

$$d = \overline{S_{2}S_{1}} = +18 \text{ cm}$$

$$\overline{S_{2}F_{1}} = \frac{-40 (2 \times 18 - 60)}{2 (2 \times 18 - 60 + 40)}$$

$$\mathcal{E}_{2} = -\frac{-40}{(2\times18-60+40)}$$

$$\overline{A''B''} = \delta_2 \overline{A'B'}$$

$$\overline{A''B''} = \delta_2 \overline{f_1'} \epsilon$$

$$= \frac{2,5}{2} \frac{-60}{2} \cdot 9.10^{-3}$$

$$\overline{A''B''} = -0,675 \text{ cm}$$

13)

Pour la lentille équivalente :

(cf
$$\varepsilon > 0$$
 et $f_{\perp} > 0$

$$\overline{A''B''} < 0$$
)

$$f_L = - \frac{V_2}{2} \frac{R_1}{2}$$

七「 75 cm

- ceci est nettenent supérieur à l'enambrement du télescope précédent (75 cm > 52F'= 30 cm)
- la lentille est moins pratique (cf problèmes d'aberrations chromatiques qui n'existent per dans le cas des mirions)

(construction avec les 3 rayons)

15) Un veut calculer F'A'. On utilise les formules de

$$\chi = -\frac{a}{t} = -\frac{t}{a}$$

d'où

$$GG' = -f^{12}$$

$$FA F'A' = -f^{12}$$

$$F'A' = -\frac{f^{12}}{FA}$$

$$= -\frac{f^{12}}{OA - OF}$$

$$\overline{F'A'} = -\frac{f'^2}{\overline{OA} + f'}$$

$$Y = -\frac{\sigma'}{f'}$$

A.N.

$$\overline{F'A'} = \frac{-(3_0)^2}{45 + 30}$$

$$Y = \frac{30}{15+30}$$

16) On veut calcular $\overline{OA'}$. On utilise les formules de Descartes (avec $P = \overline{OA}$ $= \overline{F'A} - \overline{F'O}$ $= -\overline{AF'} + \overline{F'}$

$$-\frac{\Lambda}{P} + \frac{\Lambda}{P'} = \frac{1}{f'}$$

$$\overline{OA'} = \frac{f' + P}{f' + \overline{AF'}}$$

$$2f' - \overline{AF'}$$

et $\delta = \frac{P'}{P}$

$$x = \frac{f'}{2f' - AF'}$$

A.N. F / = -30 cm

$$\frac{\overline{OA'}}{2x-30-20}$$

$$OA' = -18,75 cm$$

$$=\frac{-30}{2x-30-20}$$

$$f'_{1} = \frac{1}{V_{1}}$$

$$f'_{1} = 20 \text{ cm}$$

$$convergente$$

$$f'_{2} = \frac{1}{V_{2}}$$

$$f'_{2} = -5 \text{ cm}$$

$$dwergente$$

18) La lunette est afocale donc un dyst à l'infini possède une mage à l'infini.

L'amage étant (comme l'objet de déjant) à l'infini, l'écil reste au repos et n'a pes à accommoder. (confort visiel)

(beaucoup d'inutile sur ce tracé. Il suffit de représenter 0,1B', 02B' et A'B') O et O' sont ici positifs (voir convention utilisé)

$$\theta = -\frac{\overline{A'B'}}{\overline{O_1}F_1'} = -\frac{\overline{A'B'}}{\overline{F_1'}}$$

$$\theta' = -\frac{\overline{A'B'}}{\overline{O_2}F_2} = -\frac{\overline{A'B'}}{\overline{F_2'}} = \frac{\overline{A'B'}}{\overline{F_2'}}$$

$$G = \frac{\theta'}{\theta}$$

$$G = -\frac{\overline{F_1'}}{\overline{F_2'}}$$

A.N.
$$= -\frac{20}{-5}$$
$$G = +4$$

(10sitif: remarquer que le favoceau incident et le favoceau portant sont inclinés tous deux -ici - vors le bas)

21)		$\theta = \frac{96}{384000} = 2,5 \cdot 10^{-4} \binom{\text{Pas}}{\text{W}}$	à travers lunette	
	Copernic		θ'=4θ	(vu)
	Clavius	$\theta = \frac{240}{384000} = 6,3 \text{ As}^{-4} \text{ (vu)}$		