ITCT Programming Homework III

MPEG-1 Tutorial Guide

張嘉祐 chchang@cmlab.csie.ntu.edu.tw 19 May 2008

CMLab R501

Introduction

- In 1988 the International Standards Organization (ISO) set up the Moving Picture Expert Group (MPEG) to standardize this compression.
- Its first standard, IS 11172 (known as MPEG-1)
 came in five parts:
 - System (11172-1)
 - Video (11172-2)
 - Audio (11172-3)
 - Compliance testing (11172-4)
 - Software for MPEG-1 coding (11172-5)

About MPEG SPEC

• Part1

Brief Introduction and Overview

• Part2

Definition, Abbreviations and Symbols

• Part3

Video Bitstream Syntax

Part4

The Video Decoding Process

Part5

Annex for necessary table and codec detail

MPEG-1 Syntax Hierarchy

Pictures Types

- I pictures (Intra-coded pictures)
 - All macroblocks coded without prediction
- P pictures (Predictive coded pictures)
 - Coded with forward prediction from references made from previous I and P pictures
- B pictures (Bi-directionally predicted pictures)
 - Coded with interpolated prediction from past and future I or P references

GOP Layer

• I, P, B three type of picture to consist a GOP (group of picture)

Temporal: 1 2 3 4 5 6 7 8 9 10 Coding seq.: 1 3 4 2 6 7 5 9 10 8 Picture type: I B B P B B P B B P

Video Bitstream Syntax

- Function of each layer of the bit stream
 - Video Sequence Layer
 - Random access unit: context
 - Group of Pictures (GOP) Layer
 - Random access unit: video
 - Picture Layer
 - Primary coding unit
 - Slice Layer
 - Resynchronization unit
 - Macroblock Layer
 - Motion compensation unit
 - Block Layer
 - DCT unit

Algorithms for Parsing Video Sequence

name	hexadecimal value
picture start code	00000100
slice start codes (including slice vertical positions)	00000101
	through
	000001AF
reserved	000001B0
reserved	000001B1
user_data_start_code	000001B2
sequence_header_code	000001B3
sequence_error_code	000001B4
extension_start_code	000001B5
reserved	000001B6
sequence end code	000001B7
group_start_code	000001B8
system start codes (see note)	000001B9
	through
	000001FF
NOTE - system start codes are defined in Part 1 of th	

p28

sequence_header()

Video Sequence Layer

Lookup Tables

Ratio of height to width for the 16 pel_aspect_ratio codes

pel_aspect_ratio	height/width	example
0000	forbidden	
0001	1.0000	VGA etc.
0010	0.6735	
0011	0.7031	16:9, 625line
0100	0.7615	
0101	0.8055	
0110	0.8437	16:9, 525line
0111	0.8935	
1000	0.9375	CCIR601, 625line
1001	0.9815	
1010	1.0255	
1011	1.0695	
1100	1.1250	CCIR601, 525line
1101	1.1575	
1110	1.2015	
1111	reserved	

p35

Constrained parameters bounds

```
horizontal size <= 768 pels,
vertical size <= 576 pels,
((horizontal size+15)/16) *((vertical size+15)/16) <= 396,
((horizontal_size+15)/16) *((vertical_size+15)/16))*picture_rate <= 396*25,
picture rate <= 30 pictures per second.
forward f code <= 4
                                           (forward f \le 8)
backward f code <= 4
                                           (backward f \le 8)
```

Picture rate in pictures per second and typical applications

picture_rate	pictures per second
0000	forbidden
0001	23.976
0010	24
0011	25
0100	29.97
0101	30
0110	50
0111	59.94
1000	60
	reserved
1111	reserved

p35

Group of Pictures Layer

GSC: group_start_code

TC: time_code
CG: closed_gop
BL: broken_link

ESC: extension_start_code
GED: group_extension_data
UDSC: user_data_start_code

UD: user_data

nextbits(32) = 0x 00 00 01 00?

p30

time_code	range of value	bits
drop_frame_flag		1
time_code_hours	0 - 23	5
time_code_minutes	0 - 59	6
marker_bit	1	1
time_code_seconds	0 - 59	6
time_code_pictures	0 - 59	6

p37

Yes

Done

Picture Layer

PSC: picture_start_code

TR: temporal_reference

PCT: picture_coding_type

VBD: vbv_delay

FPFV: full_pel_forward_vector

FFC: forward_f_code

FPBV: full_pel_backward_vector

BFC: backward_f_code

EBP: extra_bit_picture

EIP: extra_information_picture

ESC: extension_start_code

PED: picture_extension_data

UDSC: user_data_start_code

UD: user_data

Picture Layer

Picture type codes

Code	Picture type
000	forbidden
001	I-picture
010	P-picture
011	B-picture
100	D-picture
101	reserved
111	reserved

pD-24

Buffer Size and Delay

vbv_delay

- This parameter defines the time needed to fill the Input
 Buffer from an empty state to the correct level immediately
 before the Picture Decoder removes all the bits for the
 picture.
- This time is thus a delay and is measured in units of 1/90000 second.

Slice Layer

Macroblock Layer

MBS: macroblock_stuffing MBE: macroblock_escape

MBAI: macroblock_address_increment

MBT: macroblock_type
QS: quantizer_scale

MHFC: motion_horizontal_forward_code
MVFC: motion_vertical_forward_code
MHBC: motion_horizontal_backward_code
MVBC: motion_vertical_backward_code
CBP: coded_block_pattern (pD-51~D-52)

EOMB: end_of_macroblock

Macroblock Layer

VLC for macroblock_type

	VLC code	macroblock_ quant	macroblock_ motion_	macroblock motion_	macroblock_ pattern	macroblock_ intra
			forward	backward		
I-pictures	1	0	0	0	0	1
	01	1	0	0	0	1
P-pictures	1	0	1	0	1	0
-	01	0	0	0	1	0
	001	0	1	0	0	0
	00011	0	0	0	0	1
	00010	1	1	0	1	0
	00001	1	0	0	1	0
	000001	1	0	0	0	1
B-pictures	10	0	1	1	0	0
	11	0	1	1	1	0
	010	0	0	1	0	0
	011	0	0	1	1	0
	0010	0	1	0	0	0
	0011	0	1	0	1	0
	00011	0	0	0	0	1
	00010	1	1	1	1	0
	000011	1	1	0	1	0
	000010	1	0	1	1	0
	000001	1	0	0	0	1
D-pictures	1	0	0	0	0	1

pB-2

Macroblock Type in I-pictures

2 modes

CMLab | GINM | CSIE | NTU

Intra-d is the default type where the quantizer scale is not changed. Intra-q sets the quantizer scale.

Macroblock Type in P-pictures

CMLab | GINM | CSIE | NTU

Macroblock Type in B-pictures

CMLab | GINM | CSIE | NTU

Macroblock Type in B-pictures

Туре	VLC	Intra	ΜF	ΜВ	Coded pattern	Quant	
pred-i	10		1	1			
pred-ic	11		1	1	1		
pred-b	010			1			
pred-bc	011			1	1		
pred-f	0010		1				
pred-fc	0011		1		1		
intra-d	0001 1	1					
pred-icq	0001 0		1	1	1	1	
pred-fcq	0000 11		1		1	1	
pred-bcq	0000 10			1	1	1	
intra-q skipped	0000 01	1				1	pD-58

- *VLC* variable length code
- MF motion forward
- MB motion backward
- *pred* predictive
- *m* motion compensated
- c at least one block in the macroblock is coded and transmitted
- *d* default quantizer is used
- q quantizer scale is changed
- *i* interpolated. This is a combination of forward prediction and backward prediction.
- b backward prediction
- f forward prediction

Macroblock Skip

- In *I-pictures*, all macroblocks are coded and there are <u>no</u> skipped macroblocks
- In *P-pictures*, the skipped macroblock is defined to be a macroblock with a reconstructed motion vector equal to zero and no DCT coefficients.
- In *B-pictures*, the skipped macroblock is defined to have the same macroblock type as the prior macroblock, differential motion vectors equal to zero (use the motion vector predictor as its motion vector), and no DCT coefficients.

Block Layer

DCF: dct_coeff_first

DCL: dct_dc_size_luminance

DCC: dct_dc_size_chrominance

DCD: dct_dc_differential

DCN: dct_coeff_next

EOB: end_of_block

Algorithm for Blocks Layer

```
block(i) { // from ISO 11172-2 2.4.2.8
    if (pattern code[i]) { // if i-th block coded
       if (macroblock intra) { // intra-coded macroblock in I, D, P or B
         if (i<4) { // luminance blocks
                                            // r/w VLC for Y size
            dct dc size luminance
            if(dct_dc_size_luminance != 0) // if Y size not zero
               dct dc differential
                                             // r/w size bits of diff. DC
         else { // chrominance blocks
                                            // r/w VLC for C<sub>b</sub> or C<sub>r</sub> size
            dct dc size chrominance
             if(dct dc size chrominance !=0) // if C<sub>b</sub> or C<sub>r</sub> size not zero
                                              // r/w size bits of diff. DC
               dct dc differential
       else { // inter-coded macroblock in P or B
         dct coeff first
                           // r/w VLC 1st run-level
       if (picture coding type != 4) { // if not D-picture
         while (nextbits() != '10') // while not end-of-block
            dct coeff_next // r/w VLC next run-level → zigzag scan
         end of block
                             // r/w '01' EOB
  } /* end block(i) function */
```

DC quantized coefficient coding

• Example:

- Luminance DC change of 10 → 1101010

DIFFERENTIAL DC (absolute value)	SIZE	VLC CODE (luminance)	VLC CODE (chrominance)
:0	0	100	00
1	1	00	01
2 to 3	2	01	10
4 to 7	3	101	_ 110
8 to 15	4	110	1110
16 to 31	5	1110	1111 0
32 to 63	6	1111 0	1111 10
64 to 127	7	1111 10	1111 110
128 to 255	88	1111 110	1111 1110

Table 2-D.12. Differential DC size and VLC

8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

DIFFERENTIAL DC	SIZE	ADDITIONAL CODE
-255 to -128	8	00000000 to 01111111
¦-127 to −64	7	0000000 to 0111111
!-63 to -32	6	000000 to 011111
-31 to -16	5	00000 to 01111
:-15 to −8	4	0000 to 0111
-7 to -4	3	000 to 011
!3 to −2	2	00 to 01
<u> </u>	1	0
: 0	0	;
:1	1	1 ;
<u>:</u> 2 to 3	2	10 to 11
•4 to 7	3	100 to 111
¦8 to 15	4	1000 to 1111
16 to 31	5	10000 to 11111
32 to 63	6	100000 to 111111
64 to 127	7	1000000 to 1111111
128 to 255	8	10000000 to 11111111

Table 2-D.13. Differential DC additional code

AC quantized coefficient coding

RUN	VALUE	CODE	COMMENT
1	2	0001 100	
0	4	0000 1100	
0	-3	0010 11	
3	-5	0000 01 00 0011 1111 1011	esc seq
0	1	110	
14	130	0000 0100 1110 0000 0000 1000 0010	esc seq
EOB		10	

s = 0 for positive levels = 1 for negative level

Table 2-D.15

RUN	LEVEL	VLC CODE
EOB		10
0	1	1s IF FIRST COEFF
0	1	11s NOT FIRST COEFF
0	2	0100 s
0	3	0010 1s
0	4	0000 110s
0	5	0010 0110 s
0	6	0010 0001 s
0	7	0000 0010 10s
0	8	0000 0001 1101 s
0	9	0000 0001 1000 s
-		
1	1	011s
1	2	0001 10s
1	3	0010 0101 s
1	4	0000 0011 00s
1	5	0000 0001 1011 s
1	6	0000 0000 1011 0s
30	1	0000 0000 0001 1100s
31	1	0000 0000 0001 1011s
ESCAPE	-	0000 01

Table 2-D.16

RUN-LEN	GTH VLC CODE
0	000000
1	0000 01
2	በበበበ 1በ
₆ 3:	000011
63	1111 11

Table 2-D.17

LEVEL	VLC CODE
-256	FORBIDDEN
-255	1000 0000 0000 0001
-254	1000 0000 0000 0010
-129	1000 0000 0111 1111
-128	1000 0000 1000 0000
-127	1000 0001

-5: 1111 1011

-1 0 1 2	1111 1111 FORBIDDEN 0000 0001 0000 0010
126	0111 1110
127	0111 1111
128	0000 0000 1000 0000
129	0000 0000 1000 0001
254	0000 0000 1111 1110
255	0000 0000 1111 1111

Motion Vector

- Each macroblock has an associated motion vector.
- The vectors of adjacent macroblocks are highly correlated.
 - The horizontal or vertical motion vector, MV, is predicted from the one of the preceding macroblock, PMV, in the slice. →only the difference, dMV, is coded.

dMV = MV - PMV

Motion Vector (cont.)

- full_pel_forward_vector: 0,1
- ∘ forward_f_code: 1~7
 - forward_r_size : 0~6 forward_r_size = forward_f_code 1
 - forward_**f**: 1, 2, 4, 8, 16, 32, 64.

```
forward_f = 2<sup>forward_r_size</sup> = 2<sup>forward_f_code - 1</sup>
```

- ∘ motion_horizontal_forward_code: -16 ~ +16.
- motion_horizontal_forward_r

dMV = motion_code x f - Sign(motion_code) x motion_r

Sign() Sign(x) = 1
$$x > 0$$

0 $x == 0$
-1 $x < 0$

Motion Vector Range

• Range of motion_code: -16~16

f code	r oizo	motion_r	f	Range [low, high]		
I_code	r_size			full_pel=0	full_pel=1	
1	0	0	1	[-8, 7.5]	[-16, 15]	
2	1	0~1	2	[-16, 15.5]	[-32, 31]	
3	2	0~3	4	[-32, 31.5]	[-64, 63]	
4	3	0~7	8	[-64, 63.5]	[-128, 127]	
5	4	0~15	16	[-128, 127.5]	[-256, 255]	
6	5	0~31	32	[-256, 255.5]	[-512, 511]	
7	6	0~63	64	[-512, 511.5]	[-1024, 1023]	

pD-25, pD-37

Motion Vector Coding

Assume that a slice has the following vectors, expressed in the units set by the full pel flag

The initial prediction is zero, so the differential values are

The differential values are reduced to the range -32 to 31 by adding or subtracting modulus 64 corresponding to the forward_f_code 2:

forward_f_code	Modulus		
1	32		
2	64		
3	128		
4	256		
5	512		
6	1024		
7	2048		

pD-41

32

Motion Vector Coding (cont.)

dMV = motion_code x f - Sign(motion_code) x motion_r

3	=	2 x 2 - 1
7	=	4 x 2 - 1
20	=	10 x 2 - 0
0	=	0 x 2
- 2	=	$-1 \times 2 + 0$
-21	=	-11 x 2 + 1
- 3	=	-2 x 2 + 1

Value	VLC	Value	VLC
3	0010 0	20	0000 0100 101
7	0000 1100	-2	0111
20	0000 0100 101	-21	0000 0100 0110
0	1	-3	0011 0

code	VLC code
0	1
1	01s
2	001s
3	0001 s
4	0000 11s
5	0000 101s
6	0000 100s
7	0000 011s
8	0000 0101 1s
9	0000 0101 0s
10	0000 0100 1s
11	0000 0100 01s
12	0000 0100 00s
13	0000 0011 11s
14	0000 0011 10s
15	0000 0011 01s
16	0000 0011 00s

pD-40

s = 0 for positive value s = 1 for negative value

Review of MPEG Compression

Predictive Coding:
Difference Pulse
Coded Modulation

A block diagram of an MPEG-1 decoder

pD-7

Optimization

- Optimization Issue
 - InBitStream efficiency
 - VLC decoding efficiency
 - Fast IDCT
 - Efficient Motion Compensation
 - Use binary shift instead of *,/ operation.
 - YCbCr → RGB transform
- You can use 3rd party codes, e.g., IDCT, to optimize your program.

Summary

- Step1:
 - MPEG Syntax Parser
- Step2:
 - Basic MPEG-1 Decoder
- Step3:
 - Optimization

Grading

- Basic requirement
 - MPEG-1 I-Frame decoder with UI
- P frame decodable / B frame decodable
- MPEG encoder
- Can read the file with audio/video and system mixed together (.mpg)
- VCR functionality
 - random access, fast-forward/backward
- Any practical improvement

Some appendixes...

Video Sequence Header

Video Sequence Header (cont.)

GOP Header

^{*} Set if the Group is encoded without prediction vectors pointing to the previous Group. A closed Group may more easily be edited after encoding.

(skip to next start code)

Picture Header

	bit 7	6	5	4	3	2	1	0	
byte	/					<u>-</u>	<u>-</u>		
0			0			******)		
1 2			0		tart code				
3			0)		
4	temporal reference Unsigned integer. Set to zero for first displayed Picture of Group, then in-								
5	cremented	mod 1024.	Resp.: forb	coding typidden, I, P, B,	D, rsvdrsvd	VBV delay	Time in	90 kHz	
6	clock o	ycles needed	to fill VBV but	ffer from empty	y state at target	bitrate to correc	t level at start	of play.	
7		or non-const	ant bitrate, is s	et to FFFF.					
						: For F	or B- picture	es only.	
			or B-pictures or	nly.		full pel for- ward vector	V / -	f code [†]	
	(cont.)	full baok- ward vector		kward f co	de † 📉 📉				
					ded represent in				
	T F codes a	re unsigned n	on-zero intege	ers describing	decoding motio	n vectors as pe	er §2.4.4.3, IS	0 111/2.	
	(Optional arbitrary number of 9-bit extra information structures.) extra bit (set) extra information							formation	
		(Present only	y if extra bit is	set. Always or	ne byte long.)		•••	extra bit (cleared)	
	Extra info	ormation struc	tures are termi	nated by a cle	ared extra bit.				
	(skip to next start code)								
	Sequer	nce extensi	ion data		for MPEG-2. P naled by the pr			0001B5.	
	User data (optional) Preceded by start code 0x000001B2. End is signaled by the presence of 0x000001.								
	Slices			Preceded k	y slice start co	odes 00000101	- 000001AF		

Slice Header

