EXAMPLE FLEXIBLE PAVEMENT DESIGN

Given the bold faced information, determine the pavement materials and thickness required for a truck route.

Step 1 - Develop Equivalent Single Axle Load, W18

<u>стор .</u>	stop i Borolop Equitations on glo 7 tale Educa, 11 10						
	Vehicles per Lifetime	Breakdown of Vehicles	Table 600.03 Vehicle Equivalency Factors		W18		
	338502756	5%	Heavy Truck	6.5	110013396		
		5%	Medium Truck	1	16925138		
		5%	Light Truck	0.25	4231284		
		85%	Automobile	0.0008	230182		
				W18 =	131400000		

Step 2 Develop soil resilient Modulus, Mr

Mr = 1500CBR = 1500(10) = 15000 psi

Step 3 Determine the overall standard deviation, So

So = 0.45 Typical

Step 4 Select the level of reliability, R

Truck Route, Table 600.04 R = 99.9 ZR = -3.090

Step 5 Select design serviceability loss, PSI

Table 600.05	
po = 4.2)
pt = 3.0)
PSI = 1.2	2

Step 6 Solve for structural number, SN

SN =8.0

Step 7 - Determine Material Thickness

Step 7 Betermine Material Philotope								
Table 600.	06							
Pavement Material	Coefficient (per cm)	Trial Thickness (per cm)	SN Contribution					
Asphaltic Concrete	0.17	30	5.1					
Aggregate Base	0.05	22	1.1					
Sand-Asphalt Base	0.08	0	0.0					
Soil Subbase	0.04	45	1.8					
Actual SN = 8.								

Note: Various material combinations can be compared economically to determine the optimum design. Make certain thickness meet Table 600.07.