Небольшое вступление(для лучшего понимания читателем изложенного материала

```
В [1]: #1) Выводы записаны не в тексовом файле, а в рабочем ноутбуке т.к.
         # те вовыды, которые будут получены можно будет сразу же и проверить, а также
         # появляется возможность иметь улучшенный прототип, который можно использовать
         # UPDATE: т.к. из чата прилетела инфа, что ноутбуки категорически запрещены,
         # решено перенести все выклдавки в pdf, но сам факт наличия воспроизводимого
         # анализа + сам ноутбук будут не лишними
         # 2)
 B [64]: import os
         import itertools
         from itertools import chain
         import random
  B [3]: import numpy as np
         import scipy as sp
         import pandas as pd
         import missingno as msno
         import matplotlib.pyplot as plt
         import seaborn as sns
         plt.rcParams["figure.figsize"] = (15, 10)
         %matplotlib inline
  B [4]: import sklearn
         from sklearn.preprocessing import LabelEncoder
         from sklearn.metrics import mean_absolute_error
         from sklearn.linear_model import LinearRegression
         from sklearn.model_selection import train_test_split
  B [5]: import torch
         import torch.nn as nn
B [107]: import warnings
         warnings.filterwarnings('ignore')
  B [6]: SEED = 42
         ROOT = ""
         dataset_csv = "dataset.csv"
  B [7]: def seed everything(seed=SEED):
             random.seed(seed)
             os.environ['PYTHONHASHSEED'] = str(seed)
             np.random.seed(seed)
             torch.manual_seed(seed)
             torch.cuda.manual seed(seed)
             torch.backends.cudnn.deterministic = True
         seed everything() # для воспроизводимости результатов
```

Представленная работа с внесёнными изменениями и моими размышлениями

Загружаем библиотеки

В [8]: # Здесь без комментариев т.к. это просто импорт библиотек

Загружаем данные

B [9]: data_df = pd.read_csv(os.path.join(ROOT, dataset_csv), sep=";", index_col=0, header=0)
data_df

Out[9]:

	Unnamed: 0.1	school	school_setting	school_type	classroom	teaching_method	n_student	gender	
0	0	ANKYI	Urban	Non-public	6OL	Standard	20.0	Male	Dc
1	1	ANKYI	Urban	Non-public	6OL	Standard	20.0	Male	Dc
2	2	ANKYI	Urban	Non-public	6OL	Standard	NaN	Male	Dc
3	3	ANKYI	Urban	Non-public	6OL	Standard	20.0	Male	Dc
4	4	ANKYI	Urban	Non-public	6OL	Standard	20.0	Male	Dc
2128	2128	ZOWMK	Urban	Public	ZBH	Standard	30.0	Female	Dc
2129	2129	ZOWMK	Urban	Public	ZBH	Standard	30.0	Female	Qualit reduce
2130	2130	ZOWMK	Urban	Public	ZBH	Standard	30.0	Female	Qualit reduce
2131	2131	ZOWMK	Urban	Public	ZBH	Standard	30.0	Male	Qualit reduce
2132	2132	ZOWMK	Urban	Public	ZBH	Standard	30.0	Male	Qualit reduce
2133 r	rows × 11 co	olumns							
4 ■									

Out[10]:

	school	school_setting	school_type	classroom	teaching_method	n_student	gender	lunch	post
0	ANKYI	Urban	Non-public	6OL	Standard	20.0	Male	Does not qualify	
1	ANKYI	Urban	Non-public	6OL	Standard	20.0	Male	Does not qualify	
2	ANKYI	Urban	Non-public	6OL	Standard	NaN	Male	Does not qualify	
3	ANKYI	Urban	Non-public	6OL	Standard	20.0	Male	Does not qualify	4
4	ANKYI	Urban	Non-public	6OL	Standard	20.0	Male	Does not qualify	4
								•••	
2128	ZOWMK	Urban	Public	ZBH	Standard	30.0	Female	Does not qualify	+
2129	ZOWMK	Urban	Public	ZBH	Standard	30.0	Female	Qualifies for reduced/free lunch	•
2130	ZOWMK	Urban	Public	ZBH	Standard	30.0	Female	Qualifies for reduced/free lunch	1
2131	ZOWMK	Urban	Public	ZBH	Standard	30.0	Male	Qualifies for reduced/free lunch	1
2132	ZOWMK	Urban	Public	ZBH	Standard	30.0	Male	Qualifies for reduced/free lunch	

2133 rows × 10 columns

B []:

Заменим пропуски в данных

```
B [11]: # заполняем "n_student" m.к. данная статистика необхожима для дальнейшего создания фичи, пр

в [12]: df["n_student"].fillna(df["n_student"].mean(), inplace=True)
```

Заинжинирим новую переменную

```
B [15]:
           # Чтобы посчитать статистику по всему df, производим инженеринг данных сначала, а потом
           # уже делим df на train/test
 B [24]:
           # здесь без особого комментирование, т.к. создание новых фичей дело
           # творческое
           def create_woe_feature(df):
               for i in df.gender.unique():
                    for j in df.n_student.unique():
                         l=df.loc[(df.gender==i) & (df.n_student>=j)]
                         woe=1.target.sum()/(1.target.count() - df.target.mean() - 1)
                         df.loc[(df.gender==i) & (df.n_student>=j), 'woe_agegender']=woe
           create_woe_feature(df)
 B [25]: df
Out[25]:
                          school_setting
                                                       classroom teaching_method
                                                                                   n_student gender
                   school
                                          school_type
                                                                                                           lunch
                                                                                                                  post
                                                                                                         Does not
                                                            6OL
                                                                                    20.00000
               0
                   ANKYI
                                   Urban
                                            Non-public
                                                                          Standard
                                                                                                Male
                                                                                                           qualify
                                                                                                         Does not
                   ANKYI
                                   Urban
                                            Non-public
                                                            6OL
                                                                          Standard
                                                                                    20.00000
                                                                                                Male
                                                                                                           qualify
                                                                                                         Does not
               2
                                                            6OL
                   ANKYI
                                   Urban
                                            Non-public
                                                                          Standard
                                                                                    22.75339
                                                                                                Male
                                                                                                           qualify
                                                                                                         Does not
               3
                   ANKYI
                                   Urban
                                            Non-public
                                                            6OL
                                                                          Standard
                                                                                    20.00000
                                                                                                Male
                                                                                                           qualify
                                                                                                         Does not
                   ANKYI
                                                                          Standard
                                                                                    20.00000
                                   Urban
                                            Non-public
                                                            6OL
                                                                                                Male
                                                                                                           qualify
                                                                                                         Does not
            2128 70WMK
                                   Urban
                                                Public
                                                            7<sub>B</sub>H
                                                                          Standard
                                                                                    30.00000
                                                                                              Female
                                                                                                           qualify
                                                                                                       Qualifies for
                                                            ZBH
            2129 ZOWMK
                                   Urban
                                                Public
                                                                          Standard
                                                                                    30.00000
                                                                                              Female
                                                                                                      reduced/free
                                                                                                            lunch
                                                                                                       Qualifies for
            2130 ZOWMK
                                   Urban
                                                Public
                                                            ZBH
                                                                          Standard
                                                                                    30 00000
                                                                                              Female
                                                                                                      reduced/free
                                                                                                            lunch
                                                                                                       Qualifies for
            2131 ZOWMK
                                                Public
                                                            ZBH
                                                                          Standard
                                                                                    30.00000
                                   Urban
                                                                                                Male
                                                                                                      reduced/free
                                                                                                            lunch
                                                                                                       Qualifies for
            2132 ZOWMK
                                   Urban
                                                Public
                                                            ZBH
                                                                          Standard
                                                                                    30.00000
                                                                                                Male
                                                                                                      reduced/free
                                                                                                            lunch
           2133 rows × 11 columns
  B [ ]:
```

Разобьем выборку на train / test

```
В [26]: # Перед тем, как разбивать данные на train/test, я задамся вопросом, а что # от модели хотят получить?

# Ответ: Задача построить модель прогнозирования факта сдачи теста.

# Т.е. по факту наша модель на основе данных(нагенерированных фичей) # конкретного ученика должна выдать нам вероятность того, что данный ученик # сдаст тест

# Т.е. если вероятность сдачи напрямую определяется через кол-во баллов, # полученных учеником, то поиск конкретных баллов ученика должен нам помочь
```

```
В [27]: # Давайте проверим, а на сколько кол-во баллов влияют на сдачу теста

plt.figure(figsize=(10, 7))
sns.histplot(x="posttest", data=df, hue="target", palette=["yellow", "blue"]);
plt.title('Распределение кол-ва сдавших/не сдавших в зависиости от баллов за тест')

■
```

Out[27]: Text(0.5, 1.0, 'Распределение кол-ва сдавших/не сдавших в зависиости от баллов за тест')


```
В [28]: # Как можно заметить, распределения "практически" тождественны, что
# никак не помогает ответить на вопрос об удачности сдачи теста, а
# использование в качестве таргета колонку - "posttest" (баллы за тест),
# является ошибкой на уровне понимания вопроса, поставленного перед
# нами

# ИСПРАВЛЕНИЯ:
# 1) Тарегет: - это сам факт сдачи/ не сдачи учеником теста - колонка "target"
# 2) В качестве лосса теперь используем лог-лосс (кросс энтропия)
# 3) Модель - логистическая регрессия (предположим, что
# раз используется именно лин. регрессия, то подразумевается использование
# класса линейных моделей)
```

```
B [29]: # Таким образом производим разбитие данных на train/test
# Но, перед этим убедимся, что столбец target не содержит NaN
msno.matrix(df);
```



```
В [30]: # Как можно заметить, в самом конце имеются пропуски, print("Процентное соотношение пропусков в target: ", df["target"].isna().sum() / len(df)) # От них можно просто избавиться df = df[~df["target"].isna()] 

Процентное соотношение пропусков в target: 0.0046882325363338025
```

B [31]: # Таким образом производим разбитие данных на train/test, # но перед этим посмотрим, на соотношение класов target в df df["target"].value_counts(normalize=True)

Out[31]: 1.0 0.502591 0.0 0.497409 Name: target, dtype: float64

В [32]: # Как видим, дисбаланса классов не наблюдается, но

Таким образом производим разбитие данных на train/test

в отличие от авторского примера, разбиение будем делать

X = df.drop(columns=["target"])
y = df["target"]

стратифицированное по target

X_train, X_test, y_train, y_test =\
 train_test_split(X, y, test_size=0.2, random_state=SEED, stratify=y)
X_train.shape, y_train.shape, X_test.shape, y_test.shape

Out[32]: ((1698, 10), (1698,), (425, 10), (425,))

```
В [33]: # убедимся, что стратификация отработала
         y_train.value_counts(normalize=True)
Out[33]: 1.0
                0.502356
         0.0
                0.497644
         Name: target, dtype: float64
 B [34]: y_test.value_counts(normalize=True)
Out[34]: 1.0
                0.503529
         0.0
                0.496471
         Name: target, dtype: float64
         Дальше накинем one-hot encoding( + StandartScaler)
 B [38]: df.columns.values
Out[38]: array(['school', 'school_setting', 'school_type', 'classroom',
                 'teaching_method', 'n_student', 'gender', 'lunch', 'posttest',
                'target', 'woe_agegender'], dtype=object)
 B [49]: num_columns = ["n_student", "posttest", "woe_agegender"]
         cat_columns = ["school", "school_setting", "school_type", "classroom", "teaching_method",
         target = "target"
 В [40]: # В Model students upd.ipynb происходит не one-hot-encoding,
         # a label encoding.
         # Для применения label encoding нужно как минимум проверить, а являются
         # ли данные порядковыми + было бы желательно обладать знаниями о
         # том, как можно смоделировать отношение порядка между разными соседними
         # порядковыми единицами
         # Данной информацией мы не обладаем, к тому же кол-во столбцов
         # позволяет нам провести one-hot-encoding
 В [55]: # кол-во категорий
         X train[cat columns].nunique()
Out[55]: school
                            23
                             3
         school_setting
         school_type
                             2
                            97
         classroom
         teaching_method
                             2
         gender
                             2
         lunch
         dtype: int64
 В [42]: # classroom скорее всего не является важной фичей(можно как минимум
         # посмотретьт на распределение значенмя target по категориям classroom),
         cat_columns.remove("classroom")
         cat_columns
Out[42]: ['school',
           'school_setting',
           'school_type',
           'teaching_method',
           'gender',
           'lunch']
 B [43]: from sklearn.preprocessing import OneHotEncoder
```

+StandartScaler

```
В [ ]: # Не забываем, что линейные модели очень требовательны к препроцессингу
         # данных, а также предполагют нрмальность рапределения неустранимой ошибки.
         # Помимо этого, масштаб признаков, подаваемых в линейную модель должен
         # сопоставим друг с другом, чего к изначальном ноутбуке не проделалось ....
         # ИСПРАВЛЕНИЕ:
         # 1) Нормализирием num columns для подачи их в лейную модель
 B [56]: from sklearn.preprocessing import StandardScaler
 B [59]: | standart_scaler = StandardScaler()
         standart_scaler.fit(X_train[num_columns])
Out[59]: StandardScaler()
  В [ ]: # как можно заметить, действительно данные имеют
         # различный масштаб, что мы и утсраняем с помощью standart_scaler
 B [63]: standart scaler.mean , standart scaler.scale
Out[63]: (array([22.67851563, 67.13898704, 0.51008578]),
          array([ 3.99647496, 13.73545272, 0.02146912]))
  B [ ]: #
```

Дополнительная секция

```
В []: # Аналогичной секции нет в Model_students_upd.ipynb

# Так как процесс обучения скомкан и не выделен в отдельную секцию,

# процесс обучения модели и вариации улучшения способов обученя модели

# рассмотрит ниже
```

Создадим train/test данные(предобработанные DataFrame), для удобства

Обучение логистической регрессии

B []:	# Теперь, когда мы постарались учесть ошибки, которые были произведены # в Model_students_upd.ipynb, время обучать модель
	# Но, мы не будем проивзодить аналогичный процесс обучения модели, а # постараеся его улучшить # 1) Даныые уже разделены test данные должны использоваться именно для # тестирования конечно модели, после того, как она прошла валидацию, для # чекпоинта своих ожиданий, что модель в итоге показывает +- похожее # качетво на validation
	# 2) Данные train - их не много + всегда есть шанс просто переобучиться на # разбиение данных, поэтому будем обучать модель с помощью кроссвалидации
	# 3) Также, почему бы и не использовать перебор по сетке параметров, чего # также не было сделано в Model_students_upd.ipynb
	# 4) Отсеивание признаков также за собой не несёт особо смысла т.к. # выбрано слишком слабое условие на pvalue = 0.0 + не произовдился никакой # препроцессинг данных, что пагубно влияет на адекватность выводов #
	# 5) Отсеивание признаков наиболее правильно произовить с регуляризацией \ # L1 т.к. именно в этом случае, модель чаще обнуляет менее валидные признаки
	←
3 [106]:	<pre>from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.model_selection import cross_val_score, StratifiedKFold from sklearn.model_selection import GridSearchCV</pre>
B []:	<pre>from sklearn.model_selection import cross_val_score, StratifiedKFold</pre>
	<pre>from sklearn.model_selection import cross_val_score, StratifiedKFold</pre>
в[]:	<pre>from sklearn.model_selection import cross_val_score, StratifiedKFold</pre>
B []:	<pre>from sklearn.model_selection import cross_val_score, StratifiedKFold</pre>
B []: B []:	<pre>from sklearn.model_selection import cross_val_score, StratifiedKFold</pre>
B []: B []: B []:	<pre>from sklearn.model_selection import cross_val_score, StratifiedKFold</pre>
B []: B []: B []:	<pre>from sklearn.model_selection import cross_val_score, StratifiedKFold</pre>