CS5461 Assignment 5

Li Jiaru (SID: A0332008U)

13 September 2025

- 1. (a) Yes.
 - (b) Yes.
 - (c) No.
 - (d) No.
- 2. Recall that the core is defined as a set of vectors \mathbf{x} such that

$$\sum_{i \in N} x_i = v(N),$$

$$\sum_{i \in S} x_i \ge v(S), \quad \forall S \subseteq N.$$

(a) Given the weighted voting game (1, 2, 3; 4), we can rewrite the constraints as

$$x_1 + x_3 \ge 1,\tag{1}$$

$$x_2 + x_3 \ge 1,\tag{2}$$

$$x_1 + x_2 + x_3 = 1, (3)$$

$$x_1, x_2, x_3 \ge 0, (4)$$

since the winning coalitions are (1,3), (2,3) and (1,2,3). By (1) we have $x_1+x_2+x_3 \geq x_2+1$, so by (3) we get $1 \geq x_2+1 \implies x_2 \leq 0$, and by (4) we must have $x_2=0$. Therefore by (2) we require $x_3 \geq 1$, and by efficiency we need $x_3=1$. Finally by (3) we can see that $x_1=0$. Therefore the only element in the core is (0,0,1).

(b) The only winning coalitions are (2,3) and (1,2,3), so we can rewrite the constraints as

$$x_2 + x_3 \ge 6,$$

 $x_1 + x_2 + x_3 = 6,$
 $x_1, x_2, x_3 \ge 0.$

Therefore by efficiency we must have $x_1 = 0$, and the core is the set of elements $(0, t, 6 - t)|0 \le t \le 6$

(c) Here we can rewrite the constraints as

$$x_1 + x_2 + x_i \ge 1, \quad i \in \{3, 4, \dots, 10\},$$

$$x_1 + x_2 + \dots + x_{10} = 1,$$

$$x_1, x_2, \dots, x_{10} \ge 0.$$

Again by efficiency we require all $x_i = 0$ for $i \in \{3, 4, ..., 10\}$, and the core is the set of elements $\{(t, 1 - t, 0, 0, ..., 0) | 0 \le t \le 1\}$.

(d) Note that $v(\{i\}) = |\{i\}| + 1 = 2$ for any single player i. But we have $x_i \geq v(\{i\})$, so $v(N) = \sum_{i \in N} x_i \geq \sum_{i \in N} v(\{i\}) = 10 \times 2 = 20$, contradicting with v(N) = |N| + 1 = 11. Therefore the core is empty.

1

3. (a) Consider the following game such that for each subset $S \subseteq N = \{1, 2, 3, 4\}$,

$$v(S) = \begin{cases} 1 & \text{if } |S| \ge 3, \\ 0 & \text{otherwise,} \end{cases}$$

which is monotone and superadditive. We now justify that its core is empty.

By definition, the winning coalitions are all the sets with 3 or 4 players. Consider any set of 3 players T. There are 4 of them, each of which must satisfy $x(T) \ge v(T) = 1$. We then have

$$\sum_{T} x(T) = 4x(T) \ge 4,$$

but the left hand side is just $3(x_1 + x_2 + x_3 + x_4) = 3v(N)$ since each player occurs exactly 3 times. Therefore $v(N) \ge 4/3$, contradicting with efficiency v(N) = 1. Thus the core is empty, as required.

(b) Consider the following game such that with $N = \{1, 2, 3\}$, we have

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0,$$

$$v(\{1, 2\}) = v(\{1, 3\}) = 1, \quad v(\{2, 3\}) = 0,$$

$$v(N) = 1, \quad v(\varnothing) = 0,$$

which is monotone and superadditive. We now justify that it is not convex.

Recall that a game is convex if for $S \subseteq T \subseteq N$ and $i \in N \setminus T$, we have

$$v(S \cup \{i\}) - v(S) \le v(T \cup \{i\}) - v(T).$$

However, if we take $S = \emptyset$, $T = \{2\}$, i = 3, then by definition,

$$v(S) = 0$$
, $v(T) = 1$, $v(S \cup \{i\}) = 1$, $v(T \cup \{i\}) = 0$,

so that

$$v(S \cup \{i\}) - v(S) = 1 - 0 = 1, \quad v(T \cup \{i\}) - v(T) = 0 - 1 = -1.$$

Therefore, this game is not convex, as required.