Полные системы

- Множество B булевых функций называется полной системой, если формулой с множеством операций B можно задать любую булеву функцию
 - \star от любого числа переменных, не меньшего 1 пример: формула $x \wedge \bar{x}$ задает унарную функцию f(x), равную 0 пример: формула $x \vee y$ задает не только функцию f(x,y) с таблицей значений

		x, y, z	g
		000	0
x, y	f	001	0
00	0	010	1
01	$\mid 1 \mid$, но и функцию $g(x,y,z)$ с таблицей зн	начений 011	1
10	1	100	1
11	1	101	1
		110	1
		111	1

- ★ Если все функции полной системы B можно задать формулами над множеством функций B', то B' полная система
- \star множество $\{\land,\lor,\bar{}\}$ является полной системой
 - например, по следствию из теоремы об СКНФ (предыдущий фрагмент)
- ! Какие еще полные системы существуют?
 - любое надмножество множества {∧, ∨,⁻}
 - включая множества всех булевых функций и всех бинарных булевых функций
 - множества $\{\land,\bar{}\}$ и $\{\lor,\bar{}\}$
 - выразить ∨ (∧) через две оставшиеся функции по формулам де Моргана
 - сослаться на замечание 🛨

Стрелка Пирса и штрих Шефера

Напомним, что $x \downarrow y = \overline{x \lor y}$, $x'y = \overline{x \land y}$

Теорема

Множества $\{\downarrow\}$ и $\{\,'\,\}$ являются полными системами.

Доказательство:

- выразим отрицание и дизъюнкцию через стрелку Пирса:
- $\star \bar{x} = x \mid x$
- $\star \ x \lor y = \overline{x \downarrow y} = (x \downarrow y) \downarrow (x \downarrow y)$
- ullet поскольку $\{ee,\bar{\ }\}$ полная система, $\{\downarrow\}$ тоже полная
- аналогично, отрицание и конъюнкция выражаются через штрих Шефера
- Верна и обратная теорема:
 - \bigstar если f бинарная б.ф. и $\{f\}$ полная система, то $f\in\{\downarrow,\,{}'\,\}$
 - обратная теорема следует из теоремы Поста о полноте (докажем потом)
- Еще одну полную систему рассмотрим в следующем фрагменте

Многочлены над \mathbb{F}_2

- ullet Поле \mathbb{F}_2 это множество $\{0,1\}$ с операциями + (по mod 2) и \cdot $(=\wedge)$
 - ullet таблицы операций в привычном виде: $egin{array}{c|cccc} + & 0 & 1 & & & & & & & & \\ \hline 0 & 0 & 1 & & & & & & & & \\ \hline 0 & 0 & 1 & & & & & & & \\ \hline 1 & 1 & 0 & & & & & & \\ \hline \end{array}$
- \star Многочлены от k переменных над \mathbb{F}_2 это k-местные булевы функции
- \star Множество функций $\{+,\cdot,1\}$ полная система
 - ullet из нее получается $\{\wedge,ar{\ }\}$, так как $x\wedge y=xy$, $ar{x}=x+1$
- \Rightarrow любую функцию можно записать формулой над $\{+,\cdot,1\}$
- Заметим, что
 - пользуясь коммутативностью и дистрибутивностью, можно раскрывать скобки и приводить подобные слагаемые
 - ullet выполняются тождества xx=x и x+x=0
- \Rightarrow Любая формула над $\{+,\cdot,1\}$ эквивалентна многочлену, в котором
 - каждый одночлен это произведение переменных, в котором все переменные различны, либо свободный член (1 или 0)
 - все одночлены различны
 - Описанный канонический вид многочлена называется полиномом Жегалкина
 - \star Для однозначности записи договоримся, что
 - алфавит переменных Σ упорядочен
 - в каждом одночлене переменные записываются по возрастанию
 - ullet одночлены записываются по возрастанию в радиксном порядке на Σ^*

Полиномы Жегалкина

Теорема

Любая булева функция задается полиномом Жегалкина, и притом единственным.

Доказательство:

ullet существование полинома следует из полноты системы $\{+,\cdot,1\}$ и эквивалентности любой формулы над этой системой полиному Жегалкина (предыдущий слайд)

Единственность: зафиксируем алфавит переменных $\Sigma = \{x_1, \dots, x_k\}$

- \bullet над этим алфавитом существует 2^{2^k} различных булевых функций
 - \star таблица значений б.ф. задается битовым вектором длины 2^k
- одночлены над Σ биективно отображаются на подмножества Σ
- \Rightarrow существует 2^k различных одночленов над Σ полиномы Жегалкина над Σ биективно отображаются на множества одночленов
 - полиному 0 сопоставим пустое множество одночленов
- \Rightarrow существует 2^{2^k} различных полиномов Жегалкина над Σ
- ★ функция, которая каждому полиному Жегалкина над Σ ставит в соответствие задаваемую им б.ф. — сюръекция
 - так как каждая функция задается полиномом Жегалкина
- 🛨 СЮЪЕКЦИЯ МЕЖДУ ДВУМЯ КОНЕЧНЫМИ МНОЖЕСТВАМИ ОДНОЙ МОШНОСТИ ЯВЛЯЕТСЯ инъекцией
- каждая функция задается единственным полиномом Жегалкина
- ⋆ Полином Жегалкина это нормальная форма («алгебраическая»)

Булевы схемы

- Булева схема (circuit) альтернативный способ задания булевых функций
 - абстрагирует конструкцию электрической схемы из элементов (вентили, gates)
- ullet Булеву функцию $f(x_1,\ldots,x_k)$ вычисляет черный ящик
 - ullet у ящика k входящих проводов (x_1,\ldots,x_k) и один выходящий (f)
 - ток, идущий по проводу, означает 1, отсутствие тока 0
 - если токи во входящих проводах соответствуют вектору (b_1,\ldots,b_k) , то ток в выходном проводе кодирует $f(b_1,\ldots,b_k)$
- Внутри черного ящика находятся элементы, соединенные проводами в определенном порядке между собой, со входами и выходами
 - каждый элемент это черный ящик, реализующий одну из функций полной системы В (базы)
 - в реальных электрических и электронных схемах элементы это физические устройства, такие как реле в дверном звонке или диоды в электронных часах
 - мы рассматриваем идеальные элементы, абстрагируясь от физических сущностей

Пример: функцию большинства от трех переменных можно задать формулой $T_2(x,y,z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$, которая представляется схемой

1 / 3

Булевы вектор-функции. Сложение столбиком

- ullet Булева вектор-функция это произвольная функция $ec{f}:\{0,1\}^n o \{0,1\}^m$
 - ullet сложение двух n-битных чисел это функция $ADD_n:\{0,1\}^{2n} o \{0,1\}^{n+1}$
 - \star вектор-функции намного удобнее задавать схемами, чем формулами
 - у схемы для вектор-функции т выходов вместо одного
- \star Научимся вычислять функцию ADD_n
 - ullet пусть $a=a_{n-1}\cdots a_0$, $b=b_{n-1}\cdots b_0$ числа в двоичной записи
 - ведущие нули разрешены
 - ullet $ADD_n(a_{n-1},\ldots,a_0,b_{n-1},\ldots,b_0)=(s_n,\ldots,s_0),$ где $s=s_n\cdots s_0=a+b$
- ⋆ Вычисление столбиком:
 - пусть c_n, \ldots, c_0 вспомогательные булевы переменные, c_i = перенос в разряд i
 - $\star c_0 = 0$, $s_0 = a_0 + b_0$ (сложение по mod 2!)
 - \star $c_i = T_2(a_{i-1}, b_{i-1}, c_{i-1})$ для $i = 1, \ldots, n$ (почему?)
 - $\star s_i = a_i + b_i + c_i$ для $i = 1, \dots, n-1$; $s_n = c_n$
- Приведенный алгоритм выполняет $\Theta(n)$ операций
- Как и любой другой алгоритм сложения *п*-битных чисел ... но есть нюанс ...
- булева схема это ациклический орграф
- электрический ток способен течь по проводам параллельно, давая возможность параллельного вычисления значений в разных узлах схемы (вершинах графа)
 - ★ время вычисления функции булевой схемой определяется глубиной схемы максимальной длиной пути от входа до выхода
- ullet Глубина схемы, построенной по алгоритму сложения столбиком, равна $\Theta(n)$
 - \star никакой выгоды от распараллеливания мы не получаем

Параллельная схема для сложения

- Проблема сложения столбиком в последовательном вычислении переносов
 если все переносы известны, все биты s; вычисляются параллельно за один шаг
- Рассмотрим эволюцию переносов:
 - ullet разряд i порождает перенос, если $c_i=0$ и $c_{i+1}=1$
 - \star тогда $a_i=b_i=1$, т.е. $a_i\wedge b_i=1$
 - ullet разряд i сохраняет перенос, если $c_i=1$ и $c_{i+1}=1$
 - \star тогда $a_i \lor b_i = 1$
 - \Rightarrow $c_i = 1 \Leftrightarrow$ найдется разряд j < i такой, что -i порождает перенос, а каждый разряд k, j < k < i, сохраняет его
- ullet Положим $p_i=a_i\lor b_i,\ g_i=a_i\land b_i\Rightarrow c_i=igvee_{j=0}^{i-1}\left(g_j\landigwedge_{k=j+1}^{i-1}p_k
 ight)$
- ★ ADD_n вычисляется за три шага:

шаг 1 — все p_i и g_i ; шаг 2 — все c_i ; шаг 3 — все s_i

Пример: схема сложения для 4-битных чисел (n=4)

Замкнутые классы

- ullet Пусть B- некоторое множество булевых функций
- \star $\langle B
 angle$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle \langle B \rangle \rangle = \langle B \rangle$ (идемпотентность)
- ullet В называется замкнутым классом (булевых функций), если $B=\langle B
 angle$
- \star B- полная система $\Leftrightarrow\langle B
 angle$ содержит все булевы функции
- ullet Б.ф. f сохраняет 0, если $f(ec{0})=0$, и сохраняет 1, если $f(ec{1})=1$
 - множество всех б.ф., сохраняющих 0 (сохраняющих 1) обозначается T_0 (T_1) примеры: $0, \vee, \wedge, + \in T_0$; $1, \bar{}, \sim, \downarrow \notin T_0$; $1, \vee, \wedge, \sim \in T_1$; $0, \bar{}, +, ' \notin T_1$

Лемма

 T_0 и T_1 — замкнутые классы.

Доказательство: рассмотрим формулу над T_0 , построим по ней схему

- если любому элементу схемы подать 0 на все входы, то на выходе у него будет 0
- подадим 0 на все входы схемы
- ⇒ на выходе схемы будет 0
- \Rightarrow функция, задаваемая схемой, принадлежит T_0
- для T_1 доказательство аналогично

Линейные функции

- ullet Функция $f(x_1,\ldots,x_k)$ линейна, если ее полином Жегалкина линейный
 - ullet т.е. $f(x_1,\ldots,x_k)=a_0+a_1x_1+a_2x_2+\cdots a_kx_k$ для некоторых $a_0,\ldots,a_k\in\{0,1\}$
 - \star f обладает свойствами самой обычной линейной функции из курса алгебры
 - множество всех линейных б.ф. обозначается **L** примеры: $0, \bar{\ }, +, \sim \in L; \quad \land, \lor, \to, \downarrow \notin L$

Лемма

L — замкнутый класс.

Доказательство: рассмотрим формулу над L, построим по ней схему

- каждый элемент схемы вычисляет линейную функцию своих входов
- линейная функция от линейных функций переменных является линейной функцией этих переменных
- ⇒ вся схема вычисляет линейную функцию

Самодвойственные функции,

- ullet Функция $f(x_1,\ldots,x_k)$ самодвойственна, если $f(ar x_1,\ldots,ar x_k)=\overline{f(x_1,\ldots,x_k)}$
 - на противоположных наборах аргументов f принимает разные значения
 - множество всех самодвойственных б.ф. обозначается **S** примеры: $\bar{\ \ }, x+y+z, T_2(x,y,z) \in \mathbf{S}; \quad 0, \lor, \to, \downarrow \notin \mathbf{S}$

Лемма

S — замкнутый класс.

Доказательство: рассмотрим формулу над **S**, построим по ней схему

- подадим на входы произвольный битовый вектор
- \star на выходе каждого элемента схемы будет некоторый бит
- поменяем биты на всех входах
- докажем, что бит на выходе каждого элемента поменялся индукцией по максимальной длине n пути от входа до элемента
- \bullet база индукции: n = 1
- входы элемента являются входами схемы, элемент задает функцию из S
- ⇒ выходной бит изменился, так как поменялись все входы
- шаг индукции:
- входами элемента являются либо входы схемы (поменялись по условию), либо выходы элементов с меньшей длиной пути (поменялись по предположению индукции)
- ⇒ выход элемента, задающего самодвойственную функцию, поменялся
- ⇒ в частности, поменялся выходной бит всей схемы
- ⇒ так как рассуждение верно для любого вектора на входе схемы, схема вычисляет самодвойственную функцию

Монотонные функции

- Введем на битовых векторах равной длины покомпонентный порядок:
 - $\bullet \ (x_1,\ldots,x_k)\leqslant (y_1,\ldots,y_k) \Leftrightarrow x_1\leqslant y_1,\ldots,x_k\leqslant y_k$
 - ullet диаграмма Хассе ЧУМа $(\{0,1\}^k,\leqslant)-k$ -мерный куб
- ullet Функция $f(ec{x})$ монотонна, если $f(ec{x}) \leqslant f(ec{y})$ для любых $ec{x} \leqslant ec{y}$
 - если значения каких-то аргументов f увеличить (подняться вверх по кубу), то значение f не уменьшится
 - множество всех монотонных б.ф. обозначается **М** примеры: $0, \vee, \wedge, T_i \in \mathbf{M}; +, \bar{}, \to, ' \notin \mathbf{M}$

Лемма

М — замкнутый класс.

\square оказательство: рассмотрим формулу над M, построим по ней схему

- ullet подадим на входы произвольный битовый вектор, не равный $ec{1}$
- \star на выходе каждого элемента схемы будет некоторый бит
- поменяем биты на некоторых входах с 0 на 1
- \star докажем, что ни у какого элемента выходной бит не поменялся с 1 на 0 индукцией по максимальной длине n пути от входа до элемента
- ! восстановите детали по аналогии с предыдущей леммой
- ⇒ выходной бит всей схемы не уменьшился
- ⇒ так как рассуждение верно для любого вектора на входе схемы, схема вычисляет монотонную функцию