数值分析 code0 实验报告

张景浩 PB20010399

2023.3.12

1 问题介绍

级数计算 [Hamming 1962]

$$\phi(x) = \sum_{k=1}^{\infty} \frac{1}{k(k+x)}$$

x 取值 $x = 0.0, 0.1, 0.2, \dots, 1.0, 10.0, 20.0, \dots, 300.0$ 共 41 个值,要求误差小于 10^{-6} ,并给出相应的 k 的取值上界(找到满足条件的最小的 k)。

2 解决方法

x = 0.0 时,注意到取 $\forall \varepsilon > 0$,都有

$$\sum_{k=0}^{\infty} \frac{1}{k^2} < \sum_{k=0}^{\infty} \frac{1}{k^2 - \varepsilon^2} = \sum_{k=0}^{\infty} \frac{1}{(k+\varepsilon)(k-\varepsilon)} = \frac{1}{2\varepsilon} \sum_{k=0}^{\infty} (\frac{1}{k-\varepsilon} - \frac{1}{k+\varepsilon})$$

 $\Leftrightarrow \varepsilon = \frac{1}{2}$, 得

$$\sum_{k=n}^{\infty} \frac{1}{k^2} < \sum_{k=n}^{\infty} \left(\frac{1}{k - \frac{1}{2}} - \frac{1}{k + \frac{1}{2}}\right) < 10^{-6} \Rightarrow n > 10^6 + \frac{1}{2}$$

向下取整可知,此时满足条件的最小的 k 为 1000000。

 $x \neq 0.0$ 时,注意到有

$$\sum_{k=n}^{\infty} \frac{1}{k^2} < \int_{n-1}^{\infty} \frac{1}{k^2} dk$$

进一步地,有

$$\sum_{k=-\infty}^{\infty} \frac{1}{k(k+x)} < \int_{n-1}^{\infty} \frac{1}{k(k+x)} dk < 10^{-6} \Rightarrow n > \frac{x-1+e^{x\times 10^{-6}}}{e^{x\times 10^{-6}}-1}$$

向下取整可得此时满足条件地最小的 k。

3 编译环境及使用方法

本程序使用 matlab 编译,使用时直接调用 outcome.m 文件即可。

4 实验结果

x	$\phi(x)$	k
0.0	1.644933	1000000
0.1	1.534606	1000000
0.2	1.440878	1000000
0.3	1.360082	1000000
0.4	1.289577	1000000
0.5	1.227410	1000000
0.6	1.172104	1000000
0.7	1.122518	1000000
0.8	1.077758	1000000
0.9	1.037110	1000000
1.0	0.999999	1000000
10.0	0.292896	999996
20.0	0.179886	999991
30.0	0.133165	999986
40.0	0.106963	999981
50.0	0.089983	999976
60.0	0.077997	999971
70.0	0.069040	999966
80.0	0.062067	999961
90.0	0.056472	999956

100.0	0.051873	999951
110.0	0.048019	999946
120.0	0.044740	999941
130.0	0.041911	999936
140.0	0.039445	999931
150.0	0.037274	999926
160.0	0.035346	999921
170.0	0.033622	999916
180.0	0.032071	999911
190.0	0.030667	999906
200.0	0.029389	999901
210.0	0.028221	999896
220.0	0.027150	999891
230.0	0.026162	999886
240.0	0.025249	999881
250.0	0.024402	999876
260.0	0.023614	999871
270.0	0.022879	999866
280.0	0.022191	999861
290.0	0.021547	999856
300.0	0.020941	999851

运行结果

5 总结

因为 $\phi(x)$ 在 x>0 时是一个单调减的函数, 所以随着 x 增大, $\phi(x)$ 的值减小, 且 k 的值理 论上应该也随着 x 的增大而减小。通过观察程序结果发现, $\phi(x)$ 的值确实随着 x 的增大而减小,在 $x\in[0,1]$ 时,k 的值保持一致;当 $x\in[1,\infty)$ 时,k 的值也随着 x 的增大而减小,这是因为当 $x\in[0,1]$ 时,x 的取值不影响 $n>\frac{x-1+e^{x\times 10^{-6}}}{e^{x\times 10^{-6}}-1}$ 右侧值的向下取整。

A Computer Code

Here we include the computer code.

```
1 function n = standard(x,e)
2 %返回误差e的最小 k值
3 if x==0.0
4 k=10^6;
6 else
6 k=(x-1+exp(x*e))/(exp(x*e)-1);
```

```
end
   n = floor(k);
   end
10
   function [ret, k] = series(x, e)
11
   %返回级数计算的结果以及满足条件的最小k值
   k=standard(x,e);
14
   ret = 0.;
   for i=1:k
15
        ret = ret + 1.0/(i*(i+x));
17
   end
18
   end
19
   e=1.0*10^(-6);
20
21
   for x=0.0:0.1:1.0
        [phi,k] = series(x,e);
22
        fprintf('%.1f & %f & %d\t',x,phi,k);
23
24
        fprintf('\\');
        fprintf('\\');
25
        fprintf(' \setminus n');
26
   end
27
   for x=10.0:10.0:300.0
28
        [phi,k] = series(x,e);
29
        {\tt fprintf('\%.1f \& \%f \& \%d \backslash t', x, phi, k);}
30
        fprintf('\\');
31
        fprintf('\\');
33
        fprintf(' \setminus n');
   end
34
```