| <b>Tiny6410</b> | User | manua |
|-----------------|------|-------|
|-----------------|------|-------|

Ver 2.0 Date: 2011-3-22

# Change History

| Rev  | Date      | Description                  |  |  |
|------|-----------|------------------------------|--|--|
| V1.0 | 2011-2-23 | The initial released Version |  |  |
|      |           |                              |  |  |

# Catalogue

| Tiny6410 User manual                         | 1    |
|----------------------------------------------|------|
| Catalogue                                    | 3    |
| Chapter 1 Overview                           |      |
| 1.1 OverView                                 | 4    |
| 1.2 Hardware Features                        | 4    |
| Chapter 2 Tiny6410 CPU board                 | 0    |
| 2.1 Feature of the Tiny6410 CPU board        |      |
| 2.2 Pin definition of the Tiny6410 CPU board |      |
| 2.3 Dimensions of the Tiny6410 CPU board     |      |
| Chapter 3 Mother board                       |      |
| Chapter 4 Interface                          |      |
| 4.1 Power In                                 |      |
| 4.2 Serial port                              | . 14 |
| 4.3 USB interface                            | . 15 |
| 4.4 SCON interface                           | . 16 |
| 4.5 Network interface                        | . 17 |
| 4.6 Audio intreface                          | . 17 |
| 4.7 TV-out interface                         |      |
| 4.8 JTAG                                     | . 17 |
| 4.9 LED                                      |      |
| 4.9 Key                                      |      |
| 4.11 LCD interface                           |      |
| 4.12 ADC input                               | 20   |
| 4.13 PWM(buzzer)                             |      |
| 4.14 temperature sensor                      | 20   |
| 4.15 IR                                      | 20   |
| 4.16 I2C-EEPROM                              | 21   |
| 4.17 SD card slot                            | 21   |
| 4.18 SDIO-II/SD-WiFi interface               | . 21 |
| Chapter V Hardware feature                   |      |
| 5.1 Boot mode set                            |      |
| Chapter VI Software                          |      |

### **Chapter 1 Overview**

#### 1.1 OverView

The Tiny6410 vBoard Computer is a high-performance controller board introduced. It is designed based on the S3C6410 microcontroller, 256MByte DDR SDRAM, 1GByte Nand Flash, RTC, Audio and net on board. It has integrated RS232, USB, Ethernet, Audio In/Out, Keyboard, LCD, CVBS, TV out, camera in, SD card and more other functions on board. So many hardware resources provided by the expansion board, it becomes a solid reference board for customer design.

We also offers a complete software development package to customers. The board supports linux 2.6.36, Android2.1 and WindowsCE 6.0 operating system and is provided with complete basic drivers which enable a quick channel to evaluate the Samsung S3C6410 processor and customize application software. It would be an ideal development platform for multimedia and communication applications



#### 1.2 Hardware Features

The S3C6410X is a 16/32-bit RISC microprocessor, which is designed to provide a cost-effective, low-power capabilities, high performance Application Processor

solution for mobile phones and general applications. To provide optimized H/W performance for the 2.5G & 3G communication services, the S3C6410X adopts 64/32-bit internal bus architecture. It also includes many powerful hardware accelerators for tasks such as motion video processing, audio processing, 2D graphics, display manipulation and scaling. An integrated Multi Format Codec (MFC) supports encoding and decoding of MPEG4/H.263/H.264 and decoding of VC1.

The Tiny6410 Single Board Computer is based on S3C6410 processor. This board is characterized as follows chapter.

# Chapter 2 Tiny6410 CPU board

# 2.1 Feature of the Tiny6410 CPU board



| Item            | Description                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------|
| СРИ             | <ul> <li>Samsung S3C6410A, run at 533Mhz ARM1176JZF-S, up to<br/>667Mhz</li> </ul>                          |
| RAM             | • 256 DDR RAM                                                                                               |
| Flash           | 256 MB DDR RAM, 32 bit Bus                                                                                  |
| Interface       | <ul> <li>4 x User Leds</li> <li>10 pin 2.0mm space Jtag connector</li> <li>Reset button on board</li> </ul> |
| Connector       | <ul> <li>2 x 60 pin 2.0mm space DIP connector</li> <li>2 x 30 pin 2.0mm space GPIO connector</li> </ul>     |
| Power<br>Supply | Supply Voltage from 2.0V to 6V                                                                              |
| Size            | • 64 x 50 x 12mm (L x W x H)                                                                                |
| OS Support      | <ul><li>Windows CE 6</li><li>Linux 2.6.38</li><li>Android 2.3</li><li>Ubuntu 9.10</li></ul>                 |





Tiny6410 Front view

Tiny6410 Bottom view

## 2.2 Pin definition of the Tiny6410 CPU board

Tiny6410 CPU board use the 2.0mm pitch double pin, leads to a total of 4 groups: P1, P2, CON1, CON2.

P1 and P2 are each 60 Pin; CON1 and CON2 are each 30Pin, leads to a total of 180 Pin. The follow shown is the layout description:



| Pin    | Details                                                |
|--------|--------------------------------------------------------|
| P1     | Contain LCD, AD, SDIO2, EINT, USB, TVOUT0              |
| P2     | Serial port, SPI1, I2C, SD Card, AC97(I2S), System bus |
| CON1   | GPIO , AD , SPIO , TAVOUT1                             |
| CON2   | CMOS , GPIO                                            |
| JTAG   | JTAG interface                                         |
| Others | 4 User LED, power LED, Reset key.                      |

| P1    | Pin define | Remarks      | P1    | Pin define | Remarks      |
|-------|------------|--------------|-------|------------|--------------|
| P1.1  | VDD_5V     | DC 5V input  | P1.2  | GND        | GND          |
| P1.3  | VD23       | LCD_R5/GPJ7  | P1.4  | VD22       | LCD_R4/GPJ6  |
| P1.5  | VD21       | LCD_R3/GPJ5  | P1.6  | VD20       | LCD_R2/GPJ4  |
| P1.7  | VD19       | LCD_R1/GPJ3  | P1.8  | VD18       | LCD_R0/GPJ2  |
| P1.9  | VD15       | LCD_G5/GPI15 | P1.10 | VD14       | LCD_G4/GPI14 |
| P1.11 | VD13       | LCD_G3/GPI13 | P1.12 | VD12       | LCD_G2/GPI12 |
| P1.13 | VD11       | LCD_G1/GPI11 | P1.14 | VD10       | LCD_G0/GPI10 |

| P1.15 | VD7      | LCD_B5/GPI7            | P1.16 | VD6         | LCD_B4/GPI6         |
|-------|----------|------------------------|-------|-------------|---------------------|
| P1.17 | VD5      | LCD_B3/GPI5            | P1.18 | VD4         | LCD_B2/GPI4         |
| P1.19 | VD3      | LCD_B1/GPI3            | P1.20 | VD2         | LCD_B0/GPI2         |
| P1.21 | VDEN     | VDEN/GPJ10             | P1.22 | PWM1        | PWM1/GPF15          |
| P1.23 | VSYNC    | LCD Column signal/GPJ9 | P1.24 | HSYNC       | LCD row singal/GPJ8 |
| P1.25 | VCLK     | LCD clock /GPJ11       | P1.26 | GPE0        | GPE0                |
| P1.27 | VBUS     | VBUS                   | P1.28 | OTGDRV_VBUS | OTGDRV_VBUS         |
| P1.29 | OTGID    | OTGID                  | P1.30 | XEINT8      | EINT8/GPN8          |
| P1.31 | OTGDM    | USB Slave D-           | P1.32 | USBDN       | USB Host D-         |
| P1.33 | OTGDP    | USB Slave D+           | P1.34 | USBDP       | USB Host D+         |
| P1.35 | TSXP     | TSXP/AIN7              | P1.36 | TSXM        | TSXM/AIN6           |
| P1.37 | TSYP     | TSYP/AIN5              | P1.38 | TSYM        | TSYM/AIN4           |
| P1.39 | AIN0     | AIN0                   | P1.40 | AIN1        | AIN1                |
| P1.41 | WiFi_IO  | WiFi_IO/GPP10          | P1.42 | WiFi_PD     | WiFi_PD/GPP11       |
| P1.43 | SD1_CLK  | SD1_CLK/GPH0           | P1.44 | SD1_CMD     | SD1_CMD/GPH1        |
| P1.45 | SD1_nCD  | SD1_nCD/GPN10          | P1.46 | SD1_nWP     | SD1_nWP/GPL14       |
| P1.47 | SD_DAT0  | SD1_DAT0/GPH2          | P1.48 | SD1_DAT1    | SD1_DAT1/GPH3       |
| P1.49 | SD1_DAT2 | SD1_DAT2/GPH4          | P1.50 | SD1_DAT3    | SD1_DAT3/GPH5       |
| P1.51 | DACOUT0  | TV -OUT                | P1.52 | PWM0        | PWM0/GPF14          |
| P1.53 | XEINT0   | XEINT0/GPN0            | P1.54 | XEINT1      | XEINT1/GPN1         |
| P1.55 | XEINT2   | XEINT2/GPN2            | P1.56 | XEINT3      | XEINT3/GPN3         |
| P1.57 | XEINT4   | XEINT4/GPN4            | P1.58 | XEINT5      | XEINT5/GPN5         |
| P1.59 | XEINT19  | XEINT19/GPL11          | P1.60 | XEINT20     | XEINT20/GPL12       |

| P2    | Pin define | Remarks          | P2    | Pin define | Remarks          |
|-------|------------|------------------|-------|------------|------------------|
| P2.1  | ОМЗ        | SD/NAND boot set | P2.2  | OM4        | SD/NAND boot set |
| P2.3  | M_nRESET   | Reset signal     | P2.4  | VDD_RTC    | RTC battle       |
| P2.5  | RTSn1      | RTSn1/GPA7       | P2.6  | CTSn1      | CTSn1/GPA6       |
| P2.7  | TXD0       | TXD0/GPA1        | P2.8  | RXD0       | RXD0/GPA0        |
| P2.9  | TXD1       | TXD1/GPA5        | P2.10 | RXD1       | RXD1/GPA4        |
| P2.11 | TXD2       | TXD2/GPB1        | P2.12 | RXD2       | RXD2/GPB0        |
| P2.13 | TXD3       | TXD3/GPB3        | P2.14 | RXD3       | RXD3/GPB2        |
| P2.15 | SPIMOSI    | SPIMOSI/GPC6     | P2.16 | SPIMISO    | SPIMISO/GPC4     |
| P2.17 | SPICLK     | SPICLK/GPC5      | P2.18 | SPICS      | SPICS/GPC7       |
| P2.19 | I2CSCL     | I2CSCL/GPB5      | P2.20 | I2CSDA     | I2CSDA/GPB6      |

| P2.21 | SD0_CLK     | SD0_CLK/GPG0     | P2.22 | SD0_CMD   | SD0_CMD/GPG1         |
|-------|-------------|------------------|-------|-----------|----------------------|
| P2.23 | SD0_nCD     | SD0_nCD/GPG6     | P2.24 | SD0_nWP   | SD0_nWP/GPL13        |
| P2.25 | SD0_DAT0    | SD0_DAT0/GPG2    | P2.26 | SD0_DAT1  | SD0_DAT1/GPG3        |
| P2.27 | SD0_DAT2    | SD0_DAT2/GPG4    | P2.28 | SD0_DAT3  | SD0_DAT3/GPG5        |
| P2.29 | AC97_BITCLK | AC97_BITCLK/GPD0 | P2.30 | AC97_RSTn | AC97_RSTn/GPD1       |
| P2.31 | AC97_SYNC   | AC97_SYNC/GPD2   | P2.32 | AC97_SDO  | AC97_SDO/GPD4        |
| P2.33 | AC97_SDI    | AC97_SDI/GPD3    | P2.34 | XEINT12   | XEINT12/GPN12        |
| P2.35 | ADDR0       | ADDR0            | P2.36 | ADDR1     | ADDR1                |
| P2.37 | ADDR2       | ADDR2            | P2.38 | ADDR3     | ADDR3                |
| P2.39 | nCS1        | nCS1             | P2.40 | XEINT7    | XEINT7/GPN7          |
| P2.41 | nWAIT       | nWAIT            | P2.42 | nESET     | Reset Signal(Output) |
| P2.43 | LnWE        | LnWE             | P2.44 | LnOE      | LnOE                 |
| P2.45 | DATA0       | DATA0            | P2.46 | DATA1     | DATA1                |
| P2.47 | DATA2       | DATA2            | P2.48 | DATA3     | DATA3                |
| P2.49 | DATA4       | DATA4            | P2.50 | DATA5     | DATA5                |
| P2.51 | DATA6       | DATA6            | P2.52 | DATA7     | DATA7                |
| P2.53 | DATA8       | DATA8            | P2.54 | DATA9     | DATA9                |
| P2.55 | DATA10      | DATA10           | P2.56 | DATA11    | DATA11               |
| P2.57 | DATA12      | DATA12           | P2.58 | DATA13    | DATA13               |
| P2.59 | DATA14      | DATA14           | P2.60 | DATA15    | DATA15               |

| CON1    | Pin define   | Remarks | CON1    | Pin define | Remarks |
|---------|--------------|---------|---------|------------|---------|
| CON1.1  | VDD_IO(3.3V) | OUT     | CON1.2  | GND        |         |
| CON1.3  | GPE1         |         | CON1.4  | GPE2       |         |
| CON1.5  | GPE3         |         | CON1.6  | GPE4       |         |
| CON1.7  | GPM0         |         | CON1.8  | GPM1       |         |
| CON1.9  | GPM2         |         | CON1.10 | GPM3       |         |
| CON1.11 | GPM4         |         | CON1.12 | GPM5       |         |
| CON1.13 | GPQ1         |         | CON1.14 | GPQ2       |         |
| CON1.15 | GPQ3         |         | CON1.16 | GPQ4       |         |
| CON1.17 | GPQ5         |         | CON1.18 | GPQ6       |         |
| CON1.19 | SPICLK0      |         | CON1.20 | SPIMISO0   |         |
| CON1.21 | SPICS0       |         | CON1.22 | SPIMOSI0   |         |
| CON1.23 | EINT6        |         | CON1.24 | EINT9      |         |
| CON1.25 | EINT11       |         | CON1.26 | EINT16     |         |

| CON1.27 | EINT17 | CON1.28 | AIN2    |  |
|---------|--------|---------|---------|--|
| CON1.29 | AIN3   | CON1.30 | DACOUT1 |  |

| CON2    | Pin define   | Remarks     | CON2    | Pin define | Remarks           |
|---------|--------------|-------------|---------|------------|-------------------|
| CON2.1  | CAMSDA       | link I2CSDA | CON2.2  | CAMSCL     |                   |
| CON2.3  | GPK2         |             | CON2.4  | CAMRSTn    |                   |
| CON2.5  | CAMCLK       |             | CON2.6  | CAMHREF    |                   |
| CON2.7  | CAMVSYNC     |             | CON2.8  | CAMPCLK    |                   |
| CON2.9  | CAMDATA7     |             | CON2.10 | CAMDATA6   |                   |
| CON2.11 | CAMDATA5     |             | CON2.12 | CAMDATA4   |                   |
| CON2.13 | CAMDATA3     |             | CON2.14 | CAMDATA2   |                   |
| CON2.15 | CAMDATA1     |             | CON2.16 | CAMDATA0   |                   |
| CON2.17 | VDD_IO(3.3V) | OUT         | CON2.18 | VDDCAM     | 2.4-2.8V for CMOS |
| CON2.19 | 1.8V         | for CMOS    | CON2.20 | GND        |                   |
| CON2.21 | GPK8         |             | CON2.22 | GPK12      |                   |
| CON2.23 | GPK13        |             | CON2.24 | EINT18     |                   |
| CON2.25 | VD0          | For LCD     | CON2.26 | VD1        | For LCD           |
| CON2.27 | VD8          | For LCD     | CON2.28 | VD9        | For LCD           |
| CON2.29 | VD16         | For LCD     | CON2.30 | VD17       | For LCD           |

| JTAG | Pin define | Remarks          | JTAG | Pin define | Remarks          |
|------|------------|------------------|------|------------|------------------|
| 1    | VDD_IO     | Power input 3.3V | 2    | VDD_IO     | Power input 3.3V |
| 3    | TRSTn      | TRSTn            | 4    | nRESET     | nRESET           |
| 5    | TDI        | TDI              | 6    | TDO        | TDO              |
| 7    | TMS        | TMS              | 8    | GND        | GND              |
| 9    | тск        | тск              | 10   | GND        | GND              |

### 2.3 Dimensions of the Tiny6410 CPU board



#### **Chapter 3 Mother board**



Feature of the Tiny6410 SDK board

Item Description

| CPU                | Samsung S3C6410A(ARM1176JZF-S)                                                           |
|--------------------|------------------------------------------------------------------------------------------|
| Frequency          | Operating frequency 533Mhz, up to 667Mhz                                                 |
| RAM                | 256 MB DDR RAM                                                                           |
| Nand Flash         | 256MB Nand Flash                                                                         |
| Multimedia         | Support for Mpeg4, H.264, H.263, VC1 hardware decoding, up to 30fps @ SD                 |
| 3D                 | 3D hardware acceleration support                                                         |
| 2D                 | Promise to support graphics scaling, rotation, flip                                      |
| Debug Port         | COM0 + JTAG + USB Slave                                                                  |
| Indicator          | 4 x User LED (in the core board), 1 x Power LED                                          |
| Test button        | 8 x User Buttons, interrupt-style buttons                                                |
| USB Slave          | 1 x mini USB (OTG floor is not designed to function)                                     |
| USB Host           | Through the USB HUB chip, to achieve 4 USB Host                                          |
| Network Interface  | 10/100M MB Ethernet, RJ-45 interfaces                                                    |
| Audio I/O          | Standard two-channel audio input 3.5mm input and output ports                            |
| SD Card            | Normal SD card connector                                                                 |
| Serial             | 3 x RS232 DB9 serial port, 4 x TTL-level serial port Block                               |
| TV-OUT             | 1 x RCA output                                                                           |
| SDIO2 Interface    | Mainly used to access SD WiFi module (also includes SPI, I2C interface)                  |
| LCD Interface      | 3 LCD Interface Block leads (0.5mm pitch SMT, including seats, seat pin and 2.0mm pitch) |
| Buzzer             | 1 x PWM control the buzzer output                                                        |
| IR                 | 1 channel infrared receiver                                                              |
| Temperature Sensor | 1 Road DS18B02 Temperature Sensor                                                        |
| ADC conversion     | An adjustable resistor, connected CPU's AD0 channel                                      |
| RTC clock          | On-board battery backup RTC clock                                                        |
| Power Supply       | 5V                                                                                       |
| PCB size           | 180 x 130 mm                                                                             |

| Address start | Address end | Size(MB) | Description         |
|---------------|-------------|----------|---------------------|
| 0x0000_0000   | 0x07FF_FFFF | 128MB    | Boot image          |
| 0x0800_0000   | 0x0BFF_FFFF | 64MB     | In-ROM              |
| 0x0C00_0000   | 0x0FFF_FFFF | 128MB    | Stepping Stone(8KB) |
| 0x1000_0000   | 0x17FF_FFFF | 128MB    |                     |
| 0x1800_0000   | 0x1FFF_FFFF | 128MB    | DM9000AEP           |
| 0x2000_0000   | 0x27FF_FFFF | 128MB    |                     |
| 0x2800_0000   | 0x2FFF_FFFF | 128MB    |                     |

| 0x3000_0000 | 0x37FF_FFFF | 128MB |               |
|-------------|-------------|-------|---------------|
| 0x3800_0000 | 0x3FFF_FFFF | 128MB |               |
| 0x4000_0000 | 0x47FF_FFFF | 128MB |               |
| 0x4800_0000 | 0x4FFF_FFFF | 128MB |               |
| 0x5000_0000 | 0x5FFF_FFFF | 256MB | 128MB DDR RAM |
| 0x6000_0000 | 0x6FFF_FFFF | 256MB | 128M DDR RAM  |

#### **Chapter 4 Interface**

#### 4.1 Power In

The board use 5V power supply, it have two method to power the board. One is the D-jack (CN1)power in,

the others is 4Pin header(CON8).





| CON8 | Pins defines |
|------|--------------|
| 1    | VDD5V        |
| 2    | GND          |
| 3    | GND          |
| 4    | VDDIN        |

### 4.2 Serial port

S3C6410 have four serial port, it is UART0,1,2,3, UART1 is 5-wired serial, the others is 3-wired serial.

In Tiny6410SDK board, COM0,1,2 was linked to DB9 interface in RS232, **you can link it to PC.** 

And the all serial was linked from the board to CON1, CON2, CON3, CON4 in TTL.





CON0,1,2,3 pin signal is as follow:

|      | 20110, 1,2,0 pm digital to actionett. |      |            |      |            |      |            |  |
|------|---------------------------------------|------|------------|------|------------|------|------------|--|
| CON0 | Pins signal                           | CON1 | Pin signal | CON2 | Pin signal | CON3 | Pin signal |  |
| 1    | NC                                    | 1    | NC         | 1    | NC         | 1    | NC         |  |
| 2    | RSRXD0                                | 2    | RSRXD1     | 2    | RSRXD2     | 2    | RSRXD3     |  |
| 3    | RSTXD0                                | 3    | RSRXD2     | 3    | RSRXD2     | 3    | RSRXD3     |  |
| 4    | NC                                    | 4    | NC         | 4    | NC         | 4    | NC         |  |
| 5    | GND                                   | 5    | NC         | 5    | GND        | 5    | NC         |  |
| 6    | NC                                    | 6    | NC         | 6    | NC         | 6    | NC         |  |
| 7    | NC                                    | 7    | RSCTS1     | 7    | NC         | 7    | NC         |  |
| 8    | NC                                    | 8    | RSRTS1     | 8    | NC         | 8    | NC         |  |
| 9    | NC                                    | 9    | NC         | 9    | NC         | 9    | NC         |  |

#### 4.3 USB interface

In Tiny6410 board, it have 5 usb interface, there are 4 usb host, and the other is usb slave interface.

# miniUSB interface(USB device)



| miniUSB | Pin signal |
|---------|------------|
| 5       | GND        |
| 4       | OTGID      |
| 3       | D+         |
| 2       | D-         |
| 1       | Vbus       |

**USB** Host interface



| Pi | n signal | Pin signal |
|----|----------|------------|
| 1  |          | 5V         |
| 2  |          | D-         |
| 3  |          | D+         |
| 4  |          | GND        |

#### 4.4 SCON interface

In order to use more serial port peripherals, we deliberately designed the SCON interface and call it "serial port Center, "which includes two serial ports, an I2C interface, an SPI interface, a USB Host port, but also Have a GPIO port, etc., and includes 5V and 3.3V power supply output pin, as shown in Figure (right side interface mechanical dimensions SCON):





| SCON | Pin Define | Remark    | SCON | Pin Define     | Remark    |
|------|------------|-----------|------|----------------|-----------|
| 1    | GND        |           | 2    | 5V Power out   |           |
| 3    | USB_D-     |           | 4    | USB_D+         |           |
| 5    | I2CSCL     |           | 6    | I2CSDA         |           |
| 7    | TXD1       | TTL level | 8    | RXD1           | TTL level |
| 9    | CTSn1      | TTL level | 10   | RTSn1          | TTL level |
| 11   | TXD2       | TTL level | 12   | RXD2           | TTL level |
| 13   | SPIMOSI    | SPI1      | 14   | SPIMISO        | SPI1      |
| 15   | SPICS      | SPI1      | 16   | SPICLK         | SPI1      |
| 17   | nRESET     | Reset     | 18   | EINT8          | EINT      |
| 19   | GND        |           | 20   | 3.3V Power out |           |

#### 4.5 Network interface

the board carries a 100M network card interface, use the DM9000 chips.

#### 4.6 Audio intreface

The S3C6410 can support I2C/PCM/AC97 audio interface, Tiny6410 use the AC97 interfacem and use the WM9714 as the codec function.



#### 4.7 TV-out interface

The board provide 1 TV-out interface, it is from DACOUT0. When you use DACOUT0, you should set the TV mode for CVBS mode.

#### **4.8 JTAG**



#### **4.9 LED**

The board have 4 LED, you can control it, When output GPIO for 0, the LED will be light.



## 4.9 Key

The board have 8 user key, and it can be linked for GPIO(CON12).



| KEY  | K1    | K2    | K3    | K4    | K5    | K6    | K7     | K8     |
|------|-------|-------|-------|-------|-------|-------|--------|--------|
| EINT | EINT0 | EINT1 | EINT2 | EINT3 | EINT4 | EINT5 | EINT19 | EINT20 |
| GPIO | GPN0  | GPN1  | GPN2  | GPN3  | GPN4  | GPN5  | GPL11  | GPL12  |

### 4.11 LCD interface

The board have 3 LCD interface, it have the same signal, LCD1 and LCD2 is the 40pin 0.5mm pitch interface, LCD3 is the 40pin 2.0mm interface.



LCD2&LCD3 Pins signal detaisl

| LCD1&LCD2&LCD3 | signal     | LCD1&LCD2&LCD3 | signal       |
|----------------|------------|----------------|--------------|
| 1              | 5V         | 2              | 5V           |
| 3              | NC         | 4              | NC           |
| 5              | VD2        | 6              | VD3          |
| 7              | VD4        | 8              | VD5          |
| 9              | VD6        | 10             | VD7          |
| 11             | GND        | 12             | NC           |
| 13             | NC         | 14             | VD10         |
| 15             | VD11       | 16             | VD12         |
| 17             | VD13       | 18             | VD14         |
| 19             | VD15       | 20             | GND          |
| 21             | NC         | 22             | NC           |
| 23             | VD18       | 24             | VD19         |
| 25             | VD20       | 26             | VD21         |
| 27             | VD22       | 28             | VD23         |
| 29             | GND        | 30             | GPE0/LCD_PWR |
| 31             | PWM1/GPF15 | 32             | nRESET       |
| 33             | VDEN/VM    | 34             | VSYNC        |
| 35             | HSYNC      | 36             | VCLK         |

| 37 | TSXM | 38 | TSXP |
|----|------|----|------|
| 39 | TSYM | 40 | TSYP |
|    |      | 41 | GND  |

#### 4.12 ADC input

The board have 2 Chanel A/D, AINO was linked to W1, it can be configure 10/12 bit.

### 4.13 PWM(buzzer)

The Buzzer in the board was controlled by PWM, it is PWM0(GPF14)



#### 4.14 temperature sensor

The board have a temperature sensor, it use DS18B20 chips.



#### 4.15 IR

In the board, it have IR, the name is IRM3638, It link to the pin EINT12 as received pins.



### **IR Receiver**



#### 4.16 I2C-EEPROM

The I2C was linked to EEPROM, AT24C08, it was 256byte. only for test the I2C.

#### 4.17 SD card slot

It have a SD card slot, can support 32GByte.

#### 4.18 SDIO-II/SD-WiFi interface

The SDIO was linked to CON11, it also contain 1 SPI, 1 I2C, 4 GPIO.





SD wifi size:



# **Chapter V Hardware feature**

### 5.1 Boot mode set

You can choose the boot mode for S2 switch, S2: in SDBOOT, the board will boot from sd card, S2: in NAND, the board will boot from nand.