Highlight

$$1_B(\omega) = \begin{cases} 1 & \text{wenn } \omega = B, \\ 0 & \text{wenn } \omega = W. \end{cases}$$

$$\frac{1}{n}\sum_{i=1}^{n}1_{B}(\omega_{i})=?$$

Inegrierbare Funktionen

Maßraum

Ein Meßraum (Ω, \mathcal{A}) ist ein Tupel bestehend aus der Grundmenge Ω und einer σ -Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$

Maß

Ein Maß auf einem Meßraum (Ω,\mathcal{A}) ist Abbildung $\mu:\mathcal{A} o \mathbb{R}_{\geq 0}$

$$\mu\left(\bigcup_{i}A_{i}\right)=\sum_{i}\mu(A_{i}), \text{ mit } A_{i}\cap A_{j}=\emptyset \text{ für } i\neq j$$

Wahrscheinlichkeitsmaß

Ein Maß mit $\mu(\Omega) = 1$ ist ein Wahrscheinlichkeitsmaß.

Sigma-Algebra

erzeugte Sigma-Algebra

Sei X eine Menge und $\mathcal{C} \subseteq \mathcal{P}(X)$ ein Mengensystem.

Die von $\mathcal C$ erzeugte σ -Algebra ist definiert als

$$\sigma(\mathcal{C}) = \bigcap \big\{ \mathcal{F} \subseteq \mathcal{P}(X) \ \big| \ \mathcal{F} \text{ ist eine } \sigma\text{-Algebra und } \mathcal{C} \subseteq \mathcal{F} \big\}.$$

Sigma-Algebra

- $\mathcal{P}(X)$ selbst ist eine σ -Algebra und enthält \mathcal{C} .
- Daher ist die Menge aller σ -Algebren, die $\mathcal C$ enthalten, nicht leer.
- Der Schnitt beliebig vieler σ -Algebren ist wieder eine σ -Algebra.
- Damit existiert und ist eindeutig die kleinste σ -Algebra mit $\mathcal{C} \subseteq \sigma(\mathcal{C})$.
- $\sigma(\mathcal{C})$ enthält genau diejenigen Mengen, die aus \mathcal{C} gewonnen werden können durch
- Komplementbildung,
- abzählbare Vereinigungen,
- (und folglich abzählbare Durchschnitte).

Borellsche Sigma-Algebra auf $\mathbb R$

Die Borel- σ -Algebra $\mathcal{B}(\mathbb{R})$ ist definiert als

$$\mathcal{B}(\mathbb{R}) = \sigma(\{\text{offene Teilmengen von } \mathbb{R}\}).$$

Äquivalent:

$$\mathcal{B}(\mathbb{R}) = \sigma(\{(a,b): a < b\}) = \sigma(\{(-\infty,a): a \in \mathbb{R}\}).$$

Inklusion 2: offene Intervalle

Jede offene Menge U lässt sich darstellen als

$$U = \bigcup_{k=1}^{\infty} (a_k, b_k), \quad a_k, b_k \in \mathbb{Q}.$$

$$(a, b) = (-\infty, b) \cap ((-\infty, a])^c$$

$$(-\infty, a] = \bigcap_{k=1}^{\infty} (-\infty, a + \frac{1}{n}) \in \sigma(\mathcal{H})$$

Inegrierbare Funktionen

Meßbare Abbildung

Eine Abbildung $f:\Omega\to\Omega'$ zwischen zwei Maßräumen (Ω,\mathcal{A}) und (Ω',\mathcal{A}') heißt meßbar, falls

$$f^{-1}(A') \in \mathcal{A}$$
 für alle $A' \in \mathcal{A}'$

Meßbare Abbildung

Das Urbild jedes Ereignisses ist ein Ereignis

Beispiel^b

Bei endlichen Mengen mit der Potenzmenge als Sigma-Algebra ist jede Funktion Meßbar.

Meßbare Funktionen

Die Menge der meßbaren Funktionen $f:\Omega\to\mathbb{R}$ bezeichnen wir mit \mathcal{M}_{Ω} oder einfach \mathcal{M} wenn der Kontext klar ist. Mit \mathcal{M}^+ bezeichnen wir die meßbaren Funktionen $f:\Omega\to\mathbb{R}$ mit $f(\omega)\geq 0$.

Messbarkeit von Abbildungen

Sei (X, Σ) ein Messraum, Y eine Menge und

$$\mathcal{E} \subseteq \mathcal{P}(Y), \quad \mathcal{T} = \sigma(\mathcal{E})$$

die von ${\mathcal E}$ erzeugte $\sigma ext{-Algebra}$ auf Y. Dann ist

$$f:(X,\Sigma)\longrightarrow (Y,\mathcal{T})$$

genau dann messbar, wenn

$$f^{-1}(E) \in \Sigma$$
 für alle $E \in \mathcal{E}$.

Indikatorfunktion

Für eine Teilmenge $A\subset\Omega$ heißt

$$1_A(x) := \begin{cases} 1 \text{ falls } x \in A \\ 0 \text{ sonst} \end{cases}$$

Indikatorfunktion.

Figure: Quelle: Wikipedia:

 $https://commons.wikimedia.org/wiki/File:Indicator_function_illustration.png$

Treppenfunktion

Eine meßbare Funktion $u:\Omega\to\mathbb{R}$ heißt Treppenfunktion, falls sie nur endlich viele verschiedene Werte annimmt.

Figure: Quelle: Wikipedia:

https://commons.wikimedia.org/wiki/File:Stepfunction1.png

Beispiel einer Treppenfuntkion

 $u(x) = \sum_{i=1}^{n} a_i \cdot 1_{A_i}(x)$ mit $A_i \cap A_j = \emptyset$ für $i \neq j$ ist eine Treppenfunktion.

Treppenfuntkion

Eine Treppenfunktion u hat eine Darstellung $u(x) = \sum_{i=1}^{n} a_i \cdot 1_{A_i}(x)$ mit $A_i \cap A_j = \emptyset$ für $i \neq j$ ist eine Treppenfunktion.

Treppenfuntkion

Die Menge der Treppenfunktionen bezeichnen wir mit \mathcal{T} und die Treppenfunktionen mit $a_i > 0$ mit \mathcal{T}^+ .

Eindeutigkeit der Darstellung

Sind $u = \sum_{i=1}^{n} a_i 1_{A_i} = \sum_{j=1}^{m} b_j 1_{B_j}$ zwei verschiedene Darstellungen einer Treppenfunktion $u \in \mathcal{T}^+$ so ist $\sum_{i=1}^{n} a_i \mu(A_i) = \sum_{j=1}^{m} b_j \mu(B_j)$

Integral einer Treppenfunktion

Für eine Treppenfunktion $u \in \mathcal{T}^+$ definieren wir

$$\int_{\Omega} u \ d\mu = \sum_{i=1}^n a_i \mu(A_i)$$

Diese ist unabhängig von der Darstellung.

Eigenschaften des Integrals von Treppenfunktionen

Sind *u* und *v* zwei Treppenfunktionen, dann gilt:

- $\int_{\Omega} 1_A d\mu = \mu(A)$
- $\int_{\Omega} \alpha u + \beta v d\mu = \alpha \int_{\Omega} u d\mu + \beta \int_{\Omega} v d\mu$
- Ist $u(x) \le v(x)$ für alle x, so ist $\int_{\Omega} u d\mu \le \int_{\Omega} v d\mu$

Integral nicht negativer meßbarer Funktionen

Für eine Funktion $f \in \mathcal{M}^+$ definieren wir

$$\int_{\Omega} f \ d\mu := \sup \biggl\{ \int_{\Omega} u \ d\mu \mid u \in \mathcal{T}^+, u(x) \leq f(x) \ \text{für alle} \ x \in \Omega \biggr\}$$

Meßbare Abbildungen

Eine nicht negative messbare Funktion $f: \Omega \to \mathbb{R}_{\geq 0}$ ist genau dann meßbar, wenn es eine Folge $f_n \in \mathcal{T}^+$ gibt mit $f_n \uparrow f$.

Sei $f \in \mathcal{M}^+$ meßbar: definiere

$$A_{j,n} := \begin{cases} \{\frac{j}{2^n} \le f \le \frac{j+1}{2^n}\} & \text{für } j = 0, \dots, n \cdot 2^n - 1\\ \{f \ge n\} & \text{für } j = n \cdot 2^n \end{cases}$$

und damit

$$f_n := \sum_{j=0}^{n2^n} \frac{j}{2^n} 1_{A_{j,n}}$$

Damit gilt $f_n(x) \le f(x) \le f_n(x) + 2^{-n}$.

Sei

$$f_n(x) = \sum_{i=1}^{\kappa_n} a_{n,i} \mathbf{1}_{A_{n,i}}(x),$$

eine punktweise konvergente folge $f_n \uparrow f$ von Treppenfunktionen.

1. Treppenfunktionen sind messbar. Für feste n und $\alpha \in \mathbb{R}$ gilt

$$\{x: f_n(x) < \alpha\} = \bigcup_{\substack{1 \le i \le k_n \\ a_{n,i} < \alpha}} A_{n,i} \in \Sigma,$$

da endliche und abzählbare Vereinigungen sowie Komplemente in Σ liegen. Also ist f_n messbar.

2. Charakterisierung der Messbarkeit. Eine Funktion $g:X\to\mathbb{R}$ ist genau dann messbar, wenn für alle $\alpha\in\mathbb{R}$

$$\{x:g(x)<\alpha\}\in\Sigma.$$

Da $f_n(x) \to f(x)$ punktweise, gilt für jedes $x \in X$ und jedes $\alpha \in \mathbb{R}$:

$$f(x) < \alpha \iff \exists k \ \forall n \ge k : f_n(x) < \alpha.$$

Daher

$$\{x: f(x) < \alpha\} = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} \{x: f_n(x) < \alpha\}.$$

Integral für meßbare Funktionen

Für eine meßbare Funktion $f \in \mathcal{M}$ setzen wir

$$\int_{\Omega} f \ d\mu = \int_{\Omega} f^+ \ d\mu - \int_{\Omega} -f^- \ d\mu$$

wobei $f^+(x) := \max(0, f(x))$ und $f^-(x) := \min(0, f(x))$

Integral für meßbare Funktionen

Eine meßbare Funktion heißt integrierbar, falls ihr Integral endlich ist.

Eigenschaften des Integrals

Sind f und g zwei meßbare Funktionen, dann gilt:

- $\int_{\Omega} 1_A d\mu = \mu(A)$
- $\int_{\Omega} \alpha f + \beta g d\mu = \alpha \int_{\Omega} f d\mu + \beta \int_{\Omega} g d\mu$
- Ist $f(x) \leq g(x)$ für alle x, so ist $\int_{\Omega} f d\mu \leq \int_{\Omega} g d\mu$

Zufallsvariablen

Zufallssvariable

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, (R, \mathcal{B}) ein Messraum. Eine Zufallsvariable ist eine messbare Abbildung $X : \Omega \to R$.

Reelle Zufallssvariable

Zufallsvariablen

Verteilung und Unabhängigkeit

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, (R, \mathcal{B}) ein Messraum und $\{X_i\}_{i=1}^n$ ein Folge von Zufallsvariablen $X_i: \Omega \to R$. Die Zufallsvariablen heißen identisch verteilt, falls $P_{X_i} = P_{X_j}$ für alle i, j und stochastisch unabhängig, falls $P_{(X_1, \cdots, X_n)} = \prod_{i=1}^n P_{X_i}$ gilt.

Erwartungswert

Für eine reelle integrierbare Zufallsvariableist ihr Erwartungswert definiert durch

$$\mathbb{E}(X) := \int_{\Omega} X \ dP \ .$$

Erwartungswert

Ist (Ω, \mathcal{A}, P) ein diskreter Wahrscheinlichkeitsraum und $X: \Omega \to \mathbb{R}$ eine reelle Zufallsvariable, so ist

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

Eigenschaften

Sind $X,Y:\Omega\to\mathbb{R}^n$ reelle, integrierbare Zufallsvariablen und $a,b\in\mathbb{R}$ konstant, so gilt:

$$\begin{split} \mathbb{E}(a\cdot X + b\cdot Y) &= a\cdot \mathbb{E}(X) + b\cdot \mathbb{E}(Y) \\ X(x) &\leq Y(x) \ \forall x \in \Omega \Rightarrow \mathbb{E}(X) \leq \mathbb{E}(Y) \\ X, Y \text{ stoch. unabhängig} &\Rightarrow \mathbb{E}(X\cdot Y) = \mathbb{E}(X)\cdot \mathbb{E}(Y) \\ \mathbb{E}(1_{\Delta}) &= P(A) \end{split}$$

Varianz

Für eine reelle Zufallsvariable ist die Varianz definiert durch

$$\mathbb{V}(X) := \mathbb{E}((X - \mathbb{E}(X))^2)$$
.

Verschiebungssatz

$$V(X) = \mathbb{E}(X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2) = \mathbb{E}(X^2) - 2\mathbb{E}(X)^2 + \mathbb{E}(X)^2$$

= $\mathbb{E}(X^2) - \mathbb{E}(X)^2$

Kovarianz

Für reelle Zufallsvariable X, Y ist die Kovarianz definiert durch

$$\mathcal{C}(X, Y) := \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$
.

Kovarianz

Per Definition ist

$$C(X,X) := V(X).$$

Beispiel

$$\begin{split} \Omega &= \{\mathsf{Kopf}, \mathsf{Zahl}\}, \ P(\mathsf{Kopf}) = P(\mathsf{Zahl}) = \frac{1}{2}, \\ X(\mathsf{Kopf}) &= 0, X(\mathsf{Zahl}) = 1 \\ \mathbb{E}(X) &= 0 \cdot P(X^{-1}(0)) + 1 \cdot P(X^{-1}(1)) \\ &= 0 \cdot P(\mathsf{Kopf}) + 1 \cdot P(\mathsf{Zahl}) = \frac{1}{2} \end{split}$$

Markov Ungleichung

Sei $Y:\Omega\to\mathbb{R}$ eine reelle, integrierbare Zufallsvariable und $f:[0,\infty)\to[0,\infty)$ monoton wachsend. Dann gilt für alle $\epsilon>0$ mit $f(\epsilon)>0$

$$P(|Y| \ge \epsilon) \le \frac{\mathbb{E}(f \circ |Y|)}{f(\epsilon)}$$

Beweis

Da $f(\epsilon)1_{\{|Y|>\epsilon\}} \leq f \circ |Y|$ folgt

$$egin{aligned} f(\epsilon)P(|Y| \geq \epsilon) = & f(\epsilon)\mathbb{E}(1_{\{|Y| \geq \epsilon\}}) = \mathbb{E}(f(\epsilon)1_{\{|Y| \geq \epsilon\}}) \ & \leq & \mathbb{E}(f \circ |Y|) \end{aligned}$$

Tschebyscheff-Ungleichung

Für eine reelle, integrierbare und quadratintegrierbare Zufallsvariable $Y:\Omega\to\mathbb{R}$ gilt:

$$P(|Y - \mathbb{E}(Y)| \ge \epsilon) \le \frac{\mathbb{V}(Y)}{\epsilon^2}$$

Beweis

Folgt direkt aus der Markov-Ungleichung mit $Y' = Y - \mathbb{E}(Y)$ und $f(x) = x^2$

Highlight

Schwaches Gesetz der großen Zahlen

Seien $X_i:\Omega\to\mathbb{R}$ unabhängige, reelle Zufallsvariablen (uiv, iid(englisch)) mit $\mathbb{E}(X_i)=\mu<\infty$ und $\mathbb{V}(X_i)=\sigma<\infty$, dann gilt

$$P(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|\geq\epsilon)\leq\frac{\sigma}{n\cdot\epsilon^{2}}\quad\underset{n\to\infty}{\longrightarrow}0$$

(stochastische Konvergenz).

Beweis

Mit $Y_n = \frac{1}{n} \sum_{i=1}^n X_i - \mu$ ist $\mathbb{E}(Y_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i - \mu) = 0$ und $\mathbb{V}(Y_n) = \frac{1}{n^2} \sum_{i=1}^n \mathbb{V}(X_i) = \frac{\sigma}{n}$. Aus der Tschebyscheff-Ungleichung folgt die Behauptung.

