9.2.12

Seja $K = \mathbb{F}^m$ e considere $T \in \operatorname{Hom}_{\mathbb{F}}(V,K)$ dado por $T(v) = \sum_{i=1}^m f_i(v)e_i$, onde $\alpha = \{e_i\}_{i=1}^m$ é a base canônica de K. Claro que $W = \bigcap_{j=1}^m \mathcal{N}(f_j) = \mathcal{N}(T)$. Por isso, $V/W \cong T(V) \subset K$, e segue que $\dim(V/W) \leq \dim(K) = m$. Além disso, vimos no exercício 9.2.5 que se $\{f_i\}_{i=1}^m$ for l.i., então T(V) = K, e reciprocamente, se $\dim(V/W) = m$ então T é sobrejetora; nesse caso, considere $a_i \in \mathbb{F}$ tal que $a_1f_1 + \cdots + a_mf_m = 0$. Podemos definir um funcional $g \in K^*$ por $g(e_i) = a_i$ para $1 \leq i \leq m$, e dessa forma:

$$(T^{t}g)(v) = g\left(\sum_{i=1}^{m} f_{i}(v)e_{i}\right) = \sum_{i=1}^{m} g(e_{i})f_{i}(v) = \sum_{i=1}^{m} a_{i}f_{i}(v) = 0$$

Mas como T é sobrejetora, para todo $1 \le i \le m$ existe $v_i \in V$ tal que $T(v_i) = e_i$, de forma que $a_i = g(e_i) = (T^t g)(v_i) = 0$, ou seja, $\{f_i\}_{i=1}^m$ é l.i..