# COVID-19 Review and Meta-Analysis

# Vicente Ramirez 6/5/2020

```
## Loading required package: tidyverse
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.0
                    v purrr
                               0.3.3
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 1.0.2 v stringr 1.4.0
          1.3.1 v forcats 0.4.0
## v readr
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
      set_names
## The following object is masked from 'package:tidyr':
##
      extract
## Loading required package: meta
## Warning: package 'meta' was built under R version 3.6.2
## Loading 'meta' package (version 4.12-0).
## Type 'help(meta)' for a brief overview.
## Loading required package: metaviz
## Warning: package 'metaviz' was built under R version 3.6.2
## Loading required package: readxl
```

### Removing Unnecessary Data

```
dat<-read_excel("Review_Data.xlsx")

## New names:
## * notes -> notes...16
## * `` -> ...17
## * `` -> ...18
## * notes -> notes...19

dat %<>%
  filter(`RH Include?`=="YES")

##We dedcided to filter this becuase it was not in english
dat %<>% filter(`Author Name`!= "Bocksberger et al.")

COVID19 <- dat %>% select(`Article Number`,`Author Name`,DOI,`Number of subjects`,Cases,Type,Measured)
```

```
write_csv(COVID19,"COVID19_REVIEW_DATA_.csv")
rm(dat)
```

#### Compute some statistics

```
COVID19$p<- COVID19$Cases/COVID19$ Number of subjects`

COVID19$CI_Lower<-COVID19$p + 1.96*COVID19$p.)/COVID19$ Number of subjects`)

COVID19$CI_Lower<-COVID19$p - 1.96*COVID19$p.E.

COVID19$CI_Upper<- COVID19$p + 1.96*COVID19$p.E.

COVID19 <- COVID19[order(COVID19$p,decreasing = T),]

summary_COVID_Obj<-data.frame(Name="Summary (Objective)",Subjects=sum(COVID19$Type=="Objective" summary_COVID_Sub<-data.frame(Name="Summary (Subjective)",Subjects=sum(COVID19[COVID19$Type=="Subjective" summary_COVID_Sub<-bind_rows(summary_COVID_Obj,summary_COVID_Sub)

## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character

## Warning in bind_rows_(x, .id): binding character and factor vector,

## coercing into character vector

COVID19$ Measure Type <-as.factor(COVID19$Type)
```

# Computing Detailed Meta-Analysis of Proportions

## IVM

First we compute using the Inverse Variance Method

```
ma.INV<-metaprop(COVID19$Cases,n=COVID19$`Number of subjects`,studlab = COVID19$`Author Name`,byvar = C
#pdf(sprintf("Forestplot_%s",d))
forest(ma.INV,col.by = "black",pooled.events = T,bylab = "Measurement Type")
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <91>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <e2>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <80>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
```

## xy, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot ## substituted for 91

| Study                                               | Events              | Total             |                                               | Proportion | 95%-CI       | Weight (fixed) | Weight (random) |  |  |  |  |
|-----------------------------------------------------|---------------------|-------------------|-----------------------------------------------|------------|--------------|----------------|-----------------|--|--|--|--|
| Measurement Type = Objective                        |                     |                   |                                               |            |              |                |                 |  |  |  |  |
| Moein et al.                                        | 59                  | 60                | <u> </u>                                      | 0.98       | [0.91; 1.00] | 0.3%           | 2.9%            |  |  |  |  |
| Hornuss et al.                                      | 38                  | 45                |                                               |            | [0.71; 0.92] | 0.2%           | 2.9%            |  |  |  |  |
| Iravani et al.                                      | 13                  | 16                | <u> </u>                                      |            | [0.57; 0.93] | 0.1%           | 2.7%            |  |  |  |  |
| Vaira et al. 3                                      | 241                 | 345               |                                               |            | [0.65; 0.74] | 1.7%           | 3.0%            |  |  |  |  |
| Vaira et al. 1                                      | 44                  | 72                | <del>!   </del>                               |            | [0.50; 0.72] | 0.4%           | 2.9%            |  |  |  |  |
| Vaira et al. 2                                      | 17                  | 33                |                                               |            | [0.35; 0.67] | 0.2%           | 2.9%            |  |  |  |  |
| Fixed effect model                                  | 412                 | 571               | ♦                                             |            | [0.70; 0.77] | 2.9%           |                 |  |  |  |  |
| Random effects mode                                 |                     |                   |                                               |            | [0.61; 0.89] |                | 17.3%           |  |  |  |  |
| Heterogeneity: $I^2 = 91\%$ ,                       | $\tau^2 = 0.0354$   | , <i>p</i> < 0.01 |                                               |            | • , •        |                |                 |  |  |  |  |
| Measurement Type = \$                               | Subjective          | )                 |                                               |            |              |                |                 |  |  |  |  |
| Parma et al.                                        | 3749                | 4039              | •                                             | 0.93       | [0.92; 0.94] | 20.4%          | 3.0%            |  |  |  |  |
| Lechien et al.                                      | 357                 | 417               |                                               |            | [0.82; 0.89] | 2.1%           | 3.0%            |  |  |  |  |
| Luers et al.                                        | 53                  | 72                |                                               |            | [0.62; 0.82] | 0.4%           | 2.9%            |  |  |  |  |
| Yan et al. 1                                        | 40                  | 59                | <u>i</u>                                      |            | [0.55; 0.78] | 0.3%           | 2.9%            |  |  |  |  |
| Roland et al.                                       | 95                  | 145               | <del></del>                                   |            | [0.57; 0.73] | 0.7%           | 3.0%            |  |  |  |  |
| Menni et al.                                        | 4668                | 7178              | +                                             |            | [0.64; 0.66] | 36.3%          | 3.0%            |  |  |  |  |
| Haehner et al.                                      | 22                  | 34                |                                               |            | [0.48; 0.79] | 0.2%           | 2.9%            |  |  |  |  |
| Spinato et al.                                      | 130                 | 202               |                                               |            | [0.58; 0.71] | 1.0%           | 3.0%            |  |  |  |  |
| BoscoloRizzo et al                                  | 34                  | 54                | <u>: i                                   </u> | 0.63       | [0.50; 0.75] | 0.3%           | 2.9%            |  |  |  |  |
| Speth et al.                                        | 63                  | 103               |                                               |            | [0.52; 0.70] | 0.5%           | 3.0%            |  |  |  |  |
| Yan et al. 2                                        | 75                  | 128               | <u> </u>                                      | 0.59       | [0.50; 0.67] | 0.7%           | 3.0%            |  |  |  |  |
| Gelardi et al.                                      | 42                  | 72                | <del>-  </del>                                | 0.58       | [0.47; 0.69] | 0.4%           | 2.9%            |  |  |  |  |
| Paderno et al.                                      | 284                 | 508               |                                               | 0.56       | [0.52; 0.60] | 2.6%           | 3.0%            |  |  |  |  |
| De Maria et al.                                     | 48                  | 95                | - !                                           |            | [0.41; 0.60] | 0.5%           | 3.0%            |  |  |  |  |
| Klopfenstein et al.                                 | 54                  | 114               | <del></del>                                   | 0.47       | [0.38; 0.56] | 0.6%           | 3.0%            |  |  |  |  |
| Dawson et al.                                       | 18                  | 42                | <del> !</del>                                 | 0.43       | [0.29; 0.58] | 0.2%           | 2.9%            |  |  |  |  |
| Levinson et al.                                     | 15                  | 42                | <del></del>                                   | 0.36       | [0.23; 0.51] | 0.2%           | 2.9%            |  |  |  |  |
| Beltran-Corbellini et al.                           |                     | 79                | <del></del>                                   | 0.32       | [0.22; 0.43] | 0.4%           | 2.9%            |  |  |  |  |
| Shoer et al.                                        | 136                 | 498               |                                               | 0.27       | [0.24; 0.31] | 2.5%           | 3.0%            |  |  |  |  |
| Ji Yun Noh et al.                                   | 52                  | 199               | <del></del>                                   | 0.26       | [0.21; 0.33] | 1.0%           | 3.0%            |  |  |  |  |
| Trubiano et al.                                     | 7                   | 28                |                                               |            | [0.13; 0.43] | 0.1%           | 2.8%            |  |  |  |  |
| Giacomelli et al.                                   | 14                  | 59                |                                               | 0.24       | [0.15; 0.36] | 0.3%           | 2.9%            |  |  |  |  |
| Wee et al.                                          | 35                  | 154               | <del></del>                                   |            | [0.17; 0.30] | 0.8%           | 3.0%            |  |  |  |  |
| Lee et al.                                          | 488                 | 3191              | +                                             |            | [0.14; 0.17] | 16.1%          | 3.0%            |  |  |  |  |
| Merza et al.                                        | 2                   | 15 -              | <del>'</del>                                  |            | [0.04; 0.38] | 0.1%           | 2.7%            |  |  |  |  |
| Liu et al.                                          | 42                  | 321               | +                                             |            | [0.10; 0.17] | 1.6%           | 3.0%            |  |  |  |  |
| Gudbjartsson et al.                                 | 119                 | 1113              | #                                             |            | [0.09; 0.13] | 5.6%           | 3.0%            |  |  |  |  |
| Mao et al.                                          | 11                  | 214 →             | -                                             |            | [0.03; 0.09] | 1.1%           | 3.0%            |  |  |  |  |
| Fixed effect model                                  | 10678               | 19175             | •                                             |            | [0.56; 0.57] | 97.1%          |                 |  |  |  |  |
| Random effects mode<br>Heterogeneity: $I^2 = 100\%$ |                     | 9, <i>p</i> = 0   |                                               | 0.45       | [0.31; 0.59] |                | 82.7%           |  |  |  |  |
| Fixed effect model                                  | 11090               | 19746             | • •                                           | 0.57       | [0.56; 0.58] | 100.0%         |                 |  |  |  |  |
| Random effects mode                                 |                     |                   |                                               |            | [0.38; 0.63] |                | 100.0%          |  |  |  |  |
| Heterogeneity: $I^2 = 100\%$                        |                     | 6. $p = 0$        |                                               | 2.30       |              |                |                 |  |  |  |  |
| Residual heterogeneity: I                           | $r^2 = 100\%,  \mu$ | $\rho = 0$        | 0.2 0.4 0.6 0.8                               |            |              |                |                 |  |  |  |  |
| #den off()                                          |                     |                   |                                               |            |              |                |                 |  |  |  |  |

#dev.off()

 $\#\#\#\mathrm{GLMM}$  Next we compute using the GLMM method. We ultimately do no use this in the paper.

ma.GLMM<-metaprop(COVID19\$Cases,n=COVID19\$`Number of subjects`,studlab = COVID19\$`Author Name`,byvar =

```
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <91>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <e2>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <80>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
## x$y, : conversion failure on 'Boscolo-Rizzo et al' in 'mbcsToSbcs': dot
## substituted for <91>
```

forest(ma.GLMM,,col.by = "black",pooled.events = T,bylab = "Measurement Type")

| Study                                                          | Events                  | Total   |                                                    | Proportion | 95%-CI      |  |  |  |  |  |  |
|----------------------------------------------------------------|-------------------------|---------|----------------------------------------------------|------------|-------------|--|--|--|--|--|--|
| Measurement Type = Objective                                   |                         |         |                                                    |            |             |  |  |  |  |  |  |
| Moein et al.                                                   | 59                      | 60      | -                                                  | 0.98 [0    | 0.91; 1.00] |  |  |  |  |  |  |
| Hornuss et al.                                                 | 38                      | 45      |                                                    | -          | 0.71; 0.92] |  |  |  |  |  |  |
| Iravani et al.                                                 | 13                      | 16      |                                                    | -          | 0.57; 0.93] |  |  |  |  |  |  |
| Vaira et al. 3                                                 | 241                     | 345     | -                                                  | -          | 0.65; 0.74] |  |  |  |  |  |  |
| Vaira et al. 1                                                 | 44                      | 72      | <del>:                                      </del> | -          | 0.50; 0.72] |  |  |  |  |  |  |
| Vaira et al. 2                                                 | 17                      | 33      |                                                    | -          | 0.35; 0.67] |  |  |  |  |  |  |
| Fixed effect model                                             | 412                     | 571     | →                                                  |            | 0.68; 0.76] |  |  |  |  |  |  |
| Random effects mode                                            |                         | _       |                                                    | -          | 0.60; 0.91] |  |  |  |  |  |  |
| Heterogeneity: $I^2 = 93\%$ , $\tau^2 = 1.1465$ , $p < 0.01$   |                         |         |                                                    |            |             |  |  |  |  |  |  |
| ,                                                              |                         |         |                                                    |            |             |  |  |  |  |  |  |
| Measurement Type = \$                                          | -                       |         | _                                                  |            |             |  |  |  |  |  |  |
| Parma et al.                                                   | 3749                    | 4039    |                                                    |            | 0.92; 0.94] |  |  |  |  |  |  |
| Lechien et al.                                                 | 357                     | 417     | _ =                                                | -          | 0.82; 0.89] |  |  |  |  |  |  |
| Luers et al.                                                   | 53                      | 72      |                                                    | _          | 0.62; 0.82] |  |  |  |  |  |  |
| Yan et al. 1                                                   | 40                      | 59      | <u> </u>                                           | -          | 0.55; 0.78] |  |  |  |  |  |  |
| Roland et al.                                                  | 95                      | 145     | <u> </u>                                           | -          | 0.57; 0.73] |  |  |  |  |  |  |
| Menni et al.                                                   | 4668                    | 7178    | <u>+</u>                                           | -          | 0.64; 0.66] |  |  |  |  |  |  |
| Haehner et al.                                                 | 22                      | 34      | <del></del>                                        | -          | 0.48; 0.79] |  |  |  |  |  |  |
| Spinato et al.                                                 | 130                     | 202     |                                                    | -          | 0.58; 0.71] |  |  |  |  |  |  |
| BoscoloRizzo et al                                             | 34                      | 54      | : : : -                                            | -          | 0.50; 0.75] |  |  |  |  |  |  |
| Speth et al.                                                   | 63                      | 103     | <del></del>                                        | -          | 0.52; 0.70] |  |  |  |  |  |  |
| Yan et al. 2                                                   | 75                      | 128     | -                                                  | -          | 0.50; 0.67] |  |  |  |  |  |  |
| Gelardi et al.                                                 | 42                      | 72      | <del></del>                                        | -          | 0.47; 0.69] |  |  |  |  |  |  |
| Paderno et al.                                                 | 284                     | 508     | -                                                  | -          | 0.52; 0.60] |  |  |  |  |  |  |
| De Maria et al.                                                | 48                      | 95      | <del></del>                                        | _          | 0.41; 0.60] |  |  |  |  |  |  |
| Klopfenstein et al.                                            | 54                      | 114     |                                                    | -          | 0.38; 0.56] |  |  |  |  |  |  |
| Dawson et al.                                                  | 18                      | 42      |                                                    | -          | 0.29; 0.58] |  |  |  |  |  |  |
| Levinson et al.                                                | 15                      | 42      |                                                    | -          | 0.23; 0.51] |  |  |  |  |  |  |
| Beltran-Corbellini et al.                                      | 25                      | 79      |                                                    | _          | 0.22; 0.43] |  |  |  |  |  |  |
| Shoer et al.                                                   | 136                     | 498     | <del></del>                                        | -          | 0.24; 0.31] |  |  |  |  |  |  |
| Ji Yun Noh et al.                                              | 52                      | 199     | -                                                  | -          | 0.21; 0.33] |  |  |  |  |  |  |
| Trubiano et al.                                                | 7                       | 28      |                                                    |            | 0.13; 0.43] |  |  |  |  |  |  |
| Giacomelli et al.                                              | 14                      | 59      |                                                    | -          | 0.15; 0.36] |  |  |  |  |  |  |
| Wee et al.                                                     | 35                      | 154     |                                                    | -          | 0.17; 0.30] |  |  |  |  |  |  |
| Lee et al.                                                     | 488                     | 3191    | +                                                  | -          | 0.14; 0.17] |  |  |  |  |  |  |
| Merza et al.                                                   | 2                       | 15      |                                                    | -          | 0.04; 0.38] |  |  |  |  |  |  |
| Liu et al.                                                     | 42                      | 321     | <del></del>                                        | -          | 0.10; 0.17] |  |  |  |  |  |  |
| Gudbjartsson et al.                                            | 119                     | 1113    |                                                    | -          | 0.09; 0.13] |  |  |  |  |  |  |
| Mao et al.                                                     | 11                      | 214     | =                                                  |            | 0.03; 0.09] |  |  |  |  |  |  |
| Fixed effect model                                             | 10678                   | 19175   | . •                                                |            | 0.55; 0.56] |  |  |  |  |  |  |
| Random effects mode                                            |                         |         |                                                    | 0.44 [0    | 0.33; 0.55] |  |  |  |  |  |  |
| Heterogeneity: $I^2 = 99\%$ ,                                  | τ <sup>-</sup> = 1.4691 | , p = 0 |                                                    |            |             |  |  |  |  |  |  |
| Fixed effect model                                             | 11090                   | 19746   | <b>\( \)</b>                                       | 0.56 [0    | 0.55; 0.57] |  |  |  |  |  |  |
| Random effects mode                                            |                         |         |                                                    | _          | 0.39; 0.62] |  |  |  |  |  |  |
| Heterogeneity: $I^2 = 99\%$ , $\tau^2 = 1.7360$ , $p = 0$      |                         |         |                                                    |            |             |  |  |  |  |  |  |
| Residual heterogeneity: $I^2 = 99\%$ , $p = 0$ 0.2 0.4 0.6 0.8 |                         |         |                                                    |            |             |  |  |  |  |  |  |

```
##Flow Chart This code was adapted from Peter Higgins post on https://rpubs.com/phiggins/461686
data <- tibble(x= 1:100, y= 1:100)
head(data)
## # A tibble: 6 x 2
##
         X
##
     <int> <int>
## 1
        1
               1
## 2
        2
## 3
        3
               3
## 4
         4
               4
## 5
         5
               5
## 6
         6
p<- data %>%
  ggplot(aes(x, y)) +
  scale_x_continuous(minor_breaks = seq(0, 100, 10)) +
  scale_y_continuous(minor_breaks = seq(0, 100, 10)) +
  theme_linedraw()
p <- p +
  geom_rect(xmin = 36, xmax=64, ymin=90, ymax=100, color='black',
           fill='white', size=0.25, size=0.25) +
  annotate('text', x= 50, y=95,label=
             'Assessed for eligibility through database\n searching (Pubmed, Medline, Google Scholar).\
## Warning: Duplicated aesthetics after name standardisation: size
p<- p +
  geom_rect(xmin = 75, xmax=100, ymin=80, ymax=90, color='black',
            fill='white', size=0.25, size=0.25) +
  annotate('text', x= 87, y=85,label=
             'Excluded N=35 \n Not meeting inclusion criteria or data unavailable \n Not written in the
           size=2.5)
## Warning: Duplicated aesthetics after name standardisation: size
##HERE IS ESSENTIALLY WHAT WE ARE DOING RIGHT NOW. It is ugly for now, but this is the
```

thought process behind the code



##Final Version

## Warning: Duplicated aesthetics after name standardisation: size

## Warning: Duplicated aesthetics after name standardisation: size

 $\hbox{\tt\#\# Warning: Duplicated aesthetics after name standardisation: size}$ 

```
p<- p +
  geom_rect(xmin = 36, xmax=64, ymin=30, ymax=40, color='black',
           fill='white', size=0.25, size=0.25) +
  annotate('text', x= 50, y=35,label=
             ' Data extracted N=34 \nTwo authors extracted data \nTwo authors confirmed data extracted'
           size=2.5)
## Warning: Duplicated aesthetics after name standardisation: size
p<- p +
  geom_rect(xmin = 36, xmax=64, ymin=10, ymax=20, color='black',
            fill='white', size=0.25, size=0.25) +
  annotate('text', x= 50, y=15, label=
             'Articles included \nN=34',
           size=2.5)
## Warning: Duplicated aesthetics after name standardisation: size
p <-p +
  geom_segment(
    x=50, xend=50, y=90, yend=80.3,
    size=0.10, linejoin = "mitre", lineend = "butt",
    arrow = arrow(length = unit(1, "mm"), type= "closed")) +
  geom_segment(
    x=50, x=674.7, y=85, y=685,
    size=0.10, linejoin = "mitre", lineend = "butt",
    arrow = arrow(length = unit(1, "mm"), type= "closed")) +
  geom_segment(
    x=50, x=60, y=70, y=60.3,
    size=0.10, linejoin = "mitre", lineend = "butt",
    arrow = arrow(length = unit(1, "mm"), type= "closed")) +
  geom_segment(
    x=50, x=65, y=65, y=65,
    size=0.10, linejoin = "mitre", lineend = "butt",
    arrow = arrow(length = unit(1, "mm"), type= "closed")) +
  geom_segment(
    x=50, x=50, y=50, y=60.3,
    size=0.10, linejoin = "mitre", lineend = "butt",
    arrow = arrow(length = unit(1, "mm"), type= "closed")) +
  geom segment (
    x=50, x=50, y=30, y=30, y=30,
    size=0.10, linejoin = "mitre", lineend = "butt",
    arrow = arrow(length = unit(1, "mm"), type= "closed"))
p + theme_void()
```

