Линейная Алгебра и Геометрия

Лекторий ПМИ ФКН

3-4 июня 2016

Определения

1. Алгебраическая форма комплексного числа. Сложение, умножение и деление комплексных чисел в алгебраической форме.

Запись z=a+bi, где $a,b\in\mathbb{R}$, называется алгебраической формой комплексного числа $z\in\mathbb{C}.$

 $a = \operatorname{Re} z$ — действительная часть числа z.

 $b = \operatorname{Im} z$ — мнимая часть числа z.

Сложение:

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$

Умножение:

$$(a + bi)(c + di) = ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc)i.$$

Деление:

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i, \quad (c+di) \neq 0.$$

В делении используется формула обратного элемента:

$$\frac{1}{a+bi} = \frac{\overline{a+bi}}{|a+bi|^2} = \frac{a-bi}{a^2+b^2}.$$

2. Комплексное сопряжение и его свойства: сопряжение суммы и произведения комплексных чисел.

1

Отображение $\mathbb{C} \to \mathbb{C} : a + bi \mapsto a - bi$ называется (комплексным) сопряжением. Само число $\overline{z} = a - bi$ называется (комплексно) сопряженным к числу z = a + bi.

Для любых двух комплексных чисел $z,w\in\mathbb{C}$ выполняется, что

- (a) $\overline{z+w} = \overline{z} + \overline{w}$;
- (b) $\overline{zw} = \overline{z} \cdot \overline{w}$.

3. Геометрическая модель комплексных чисел, интерпретация в ней сложения и сопряжения.

Заметим, что поле комплексных чисел $\mathbb{C} = \{(a,b) \mid a,b \in \mathbb{R}\}$ равно \mathbb{R}^2 . Следовательно, комплексные числа можно представить как точки на действительной плоскости \mathbb{R}^2 , или сопоставить их векторам.

В таком представлении сложение комплексных чисел интерпретируется как сложение векторов, а сопряжение — как отражение относительно оси $Ox(\operatorname{Re} z)$.

4. Модуль комплексного числа и его свойства: неотрицательность, неравенство треугольника, модуль произведения двух комплексных чисел.

Модулем комплексного числа z=a+bi называется длина соответствующего вектора. Обозначение: $|z|; |a+bi| = \sqrt{a^2+b^2}$.

Свойства модуля:

- (a) $|z| \ge 0$, причем |z| = 0 тогда и только тогда, когда z = 0;
- (b) $|z + w| \le |z| + |w|$ неравенство треугольника;
- (c) $z \cdot \overline{z} = |z|^2$;
- (d) $|zw| = |z| \cdot |w|$;

5. Аргумент комплексного числа.

Аргументом комплексного числа $z \neq 0$ называется всякий угол φ такой что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

6. Тригонометрическая форма комплексного числа.

Используя аргумент, можно представить комплексное число следующим образом:

$$\begin{vmatrix} a = |z|\cos\varphi \\ b = |z|\sin\varphi \end{vmatrix} \Rightarrow z = a + bi = |z|\cos\varphi + i|z|\sin\varphi = |z|(\cos\varphi + i\sin\varphi)$$

Запись $z=|z|(\cos\varphi+i\sin\varphi)$ называется тригонометрической формой комплексного числа z.

7. Формула Муавра.

Пусть $z = |z| (\cos \varphi + i \sin \varphi)$. Тогда:

$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)) \quad \forall n \in \mathbb{Z}.$$

8. Извлечение корней из комплексных чисел.

Пусть $n \in \mathbb{N}$ и $n \geqslant 2$.

Корнем n-й степени из числа z называется всякое $w \in \mathbb{C}$: $w^n = z$. То есть

$$\sqrt[n]{z} = \{ w \in \mathbb{C} \mid w^n = z \}.$$

Представим z и w в тригонометрическом виде:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

Если z=0, то w=0. В противном случае, z имеет ровно n корней n-й степени:

$$\sqrt[n]{z} = \left\{ \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) \mid k = 0, \dots, n - 1 \right\}.$$

9. Решение квадратных уравнений с комплексными коэффициентами.

Пусть дано квадратное уравнение $az^2 + bz + c = 0$, где $a, b, c \in \mathbb{C}$ и $a \neq 0$. Тогда оно решается аналогично квадратным уравнениям над полем \mathbb{R} , с тем лишь отличием, что из дискриминанта всегда можно извлечь корень.

$$\{d_1, d_2\} = \sqrt[2]{b^2 - 4ac}$$

$$z_1 = \frac{-b + d_1}{2a}, z_2 = \frac{-b + d_2}{2a}$$

10. Основная теорема алгебры комплексных чисел.

Всякий многочлен $P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$ степени n, где $n \ge 1$, $a_n \ne 0$, и $a_0, \ldots, a_n \in \mathbb{C}$ имеет корень.

11. Овеществление комплексного векторного пространства и его размерность.

V — векторное пространство над $\mathbb C$. Овеществление пространства V — это то же пространство V, рассматриваемое как пространство над $\mathbb R$. Обозначение: $V_{\mathbb R}$.

Пусть $\dim V < \infty$. Тогда $\dim V_{\mathbb{R}} = 2 \dim V$.

12. Комплексификация вещественного векторного пространства и его размерность.

Пусть W — пространство над \mathbb{R} . Комплексификация пространства W — это множество $W \times W = W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\}$ с операциями $(u_1,v_1) + (u_2,v_2) = (u_1+u_2,v_1+v_2), (a+bi)(u,v) = (au-bv,av+bu),$ где $(a+bi) \in \mathbb{C}$.

Рутинная проверка показывает, что $W^{\mathbb{C}}$ является векторным пространством над полем \mathbb{C} , причем $\dim W^{\mathbb{C}} = \dim W$.

13. Сумма двух подпространств векторного пространства.

Пусть V — конечномерное векторное пространство, а U и W — его подпространства.

Сумма подпространств U и W — это множество

$$U + W = \{u + w \mid u \in U, w \in W\},\$$

которое является подпространством векторного пространства V.

14. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения.

Пусть V — конечномерное векторное пространство, а U и W — его подпространства. $\dim (U \cap W) = \dim U + \dim W - \dim (U + W)$

15. Прямая сумма двух подпространств векторного пространства. Пусть
$$V$$
 — конечномерное векторное пространство, а U и W — подпространства.

Если $U \cap W = \{0\}$, то U + W называется прямой суммой.

16. Матрица перехода от одного базиса векторного пространства к другому.

Пусть V — векторное пространство, $\dim V = n$, $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ — базисы в V.

Матрицей перехода от базисе e к базису e' называется матрица, по столбцам которой стоят координаты базиса e' в базисе e.

$$e_j'=\sum_{i=1}^nc_{ij}e_i,\quad c_{ij}\in F$$

$$(e_1',\dots,e_n')=(e_1,\dots,e_n)\cdot C,\quad C=(c_{ij})\text{— матрица перехода}$$

17. Формула преобразования координат вектора при замене базиса векторного пространства.

Пусть V — векторное пространство. Формула преобразования координат вектора $v \in V$ при переходе от базиса е к е':

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} \qquad \text{или} \qquad x_i = \sum_{j=1}^n c_{ij} x_j',$$

где (x_1,\ldots,x_n) — координаты вектора v в базисе е, (x'_1,\ldots,x'_n) — координаты вектора v в базисе е' и C — матрица перехода от базиса е к базису е'.

18. Линейное отображение.

Пусть V и W — два векторных пространства над полем F.

Отображение $f: V \to W$ называется линейным, если:

- (a) $f(u_1 + u_2) = f(u_1) + f(u_2), \quad \forall u_1, u_2 \in V;$
- (b) $f(\alpha u) = \alpha f(u)$, $\forall u \in V, \forall \alpha \in F$.

19. Изоморфизм векторных пространств. Изоморфные векторные пространства.

Пусть V и W — два векторных пространства над полем F.

Отображение $\varphi:V\to W$ называется изоморфизмом, если φ линейно и биективно. Обозначение: $\varphi:V\xrightarrow{\sim} W$.

Два векторных пространства V и W называются изоморфными, если существует изоморфизм $\varphi:V\stackrel{\sim}{\to} W$ (и тогда существует изоморфизм $V\stackrel{\sim}{\leftarrow} W$). Обозначение: $V\simeq W$ или $V\cong W$.

20. Критерий изоморфности двух конечномерных векторных пространств.

Два конечномерных векторных пространства V и W изоморфны тогда и только тогда, когда $\dim V = \dim W$.

21. Матрица линейного отображения.

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис V, $f = (f_1, \ldots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение.

Матрицей линейного отображения φ в базисах e и f (или по отношению к базисам e и f) называется такая матрица, у которой в j-ом столбце выписаны координаты вектора $\varphi(e_j)$ в базисе f.

$$arphi(e_j)=a_{1j}f_1+\ldots+a_{mj}f_m=\sum_{i=1}^m a_{ij}f_i,\quad A=(a_{ij})\in \mathrm{Mat}_{m imes n}$$
 — матрица $arphi$

22. Сумма двух линейных отображений и её матрица.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Отображение $\varphi + \psi \in \text{Hom}(V, W)$ — это $(\varphi + \psi)(v) := \varphi(v) + \psi(v)$ — сумма отображений.

Пусть $e = (e_1, \dots, e_n)$ — базис V, $f = (f_1, \dots, f_m)$ — базис W, φ , $\psi \in \text{Hom}(V, W)$. При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\varphi+\psi}$ — для $\varphi + \psi$.

Тогда $A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$.

23. Произведение линейного отображения на скаляр и его матрица.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Отображение $\alpha \in F$, $\alpha \varphi \in \text{Hom}(V, W)$ — это $(\alpha \varphi)(v) := \alpha(\varphi(v))$ — произведение линейного отображения на скаляр.

Пусть $e = (e_1, \dots, e_n)$ — базис V, $f = (f_1, \dots, f_m)$ — базис W, φ , $\psi \in \text{Hom}(V, W)$. При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\alpha\varphi}$ — для $\alpha\varphi$.

Тогда $A_{\alpha\varphi} = \alpha A_{\varphi}$.

24. Композиция линейных отображений и её матрица.

Возьмем три векторных пространства — U,V и W размерности n,m и k соответственно, и их базисы e, f и g. Также рассмотрим цепочку линейных отображений $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$.

Отображение $\varphi \circ \psi \in \mathrm{Hom}(U,W)$ – это $(\varphi \circ \psi)(v) := \varphi(\psi(v))$ – композиция линейных отображений.

Пусть A — матрица φ в базисах ${\mathbb F}$ и ${\mathbb F}$, B — матрица ψ в базисах ${\mathbb F}$ и ${\mathbb F}$, C — матрица $\varphi \circ \psi$ в базисах ${\mathbb F}$ и ${\mathbb F}$.

Тогда C = AB.

25. Ядро и образ линейного отображения.

Пусть V и W — векторные пространства, $\varphi: V \to W$ — линейное отображение.

 \mathcal{A} дро φ — это множество $\operatorname{Ker} \varphi := \{v \in V \mid \varphi(v) = 0\}.$

Образ φ — это множество Im $\varphi := \{ w \in W \mid \exists v \in V : \varphi(v) = w \}.$

26. Критерий инъективности линейного отображения в терминах его ядра.

Пусть $\varphi \colon V \to W$ — линейное отображение.

Отображение φ инъективно тогда и только тогда, когда $\operatorname{Ker} \varphi = \{0\}.$

27. Связь между рангом матрицы линейного отображения и размерностью его образа.

Пусть V, W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис $V, f = (f_1, \ldots, f_m)$ — базис W, A — матрица φ по отношению $k \in f$.

Тогда dim Im $\varphi = \operatorname{rk} A$.

28. Критерий изоморфности линейного отображения в терминах его матрицы.

Пусть V и W — векторные пространства, $\varphi: V \to W$ — линейное отображение.

Отображение φ является изоморфизмом тогда и только тогда, когда его матрица является квадратной и невырожденной.

29. Ранг произведения двух матриц.

Пусть $A \in \operatorname{Mat}_{k \times m}$, $B \in \operatorname{Mat}_{m \times n}$. Тогда $\operatorname{rk} AB \leqslant \min\{\operatorname{rk} A, \operatorname{rk} B\}$.

30. Теорема о связи размерностей ядра и образа линейного отображения.

Пусть $\varphi \colon V \to W$ — линейное отображение.

Тогда $\dim \operatorname{Im} \varphi = \dim V - \dim \operatorname{Ker} \varphi$.

31. Линейный оператор.

Пусть V — конечномерное векторное пространство.

Линейным оператором (или линейным преобразованием) называется всякое линейное отображение $\varphi \colon V \to V$, то есть из V в себя.

32. Матрица линейного оператора.

Пусть V — векторное пространство, $e = (e_1, \dots, e_n)$ — его базис и φ — его линейный оператор.

Матрицей линейного оператора φ называется такая матрица, в j-ом столбце которой стоят координаты вектора $\varphi(e_i)$ в базисе e.

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)\,A,\quad A$$
 — матрица φ

33. Формула изменения матрицы линейного оператора при переходе к другому базису.

Пусть φ — линейный оператор векторного пространства V, A — матрица φ в базисе $\mathbb{Q} = (e_1, \dots, e_n)$. Пусть $\mathbb{Q}' = (e'_1, \dots, e'_n)$ — другой базис, причём $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, где C — матрица перехода, и A' — матрица φ в базисе \mathbb{Q}' .

Тогда $A' = C^{-1}AC$.

34. Подобные матрицы.

Две матрицы $A', A \in M_n(F)$ называются подобными, если существует такая матрица $C \in M_n(F)$, $\det C \neq 0$, что $A' = C^{-1}AC$.

35. Подпространство, инвариантное относительно линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Подпространство $U\subseteq V$ называется инвариантным относительно φ (или φ -инвариантным), если $\varphi(U)\subseteq U$. То есть $\forall u\in U\colon \varphi(u)\in U$.

36. Матрица линейного оператора в базисе, дополняющем базис инвариантного подпространства.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Пусть $U\subset V-\varphi$ -инвариантное подпространство. Также пусть (e_1,\dots,e_k) — базис в U. Дополним его до базиса $V\colon \ \mathbb{e}=(e_1,\dots,e_n)$. Тогда

$$\underbrace{A(\varphi,\,\mathbf{e})}_{ ext{Матрица c углом нулей}} = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}, \quad \text{где } B \in M_k$$

37. Собственный вектор линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Ненулевой вектор $v \in V$ называется собственным для V, если $\varphi(v) = \lambda v$ для некоторго $\lambda \in F$.

38. Собственное значение линейного оператора.

Элемент $\lambda \in F$ называется собственным значением линейного оператора φ векторно пространства V, если существует такой ненулевой вектор $v \in V$, что $\varphi(v) = \lambda v$.

39. Собственное подпространство линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Множество $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda v\}$ называется собственным подпространством линейного оператора, отвечающим собственному значению λ .

40. Диагонализуемый линейный оператор.

Линейный оператор $\varphi \colon V \to V$ называется диагонализуемым, если существует базис e в V такой, что $A(\varphi, e)$ диагональна.

41. Критерий диагонализуемости линейного оператора в терминах собственных векторов.

Линейный оператор $\varphi \colon V \to V$ диагонализуем тогда и только тогда, когда в V существует базис из собственных векторов.

42. Характеристический многочлен линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Многочлен $\chi_{\varphi}(t) = (-1)^n \det(\varphi - t \operatorname{id})$ называется характеристическим для линейного оператора φ .

43. Связь собственных значений линейного оператора с его характеристическим многочленом.

 λ — собственное значение линейного оператора φ тогда и только тогда, когда $\chi_{\varphi}(\lambda)=0$.

44. Алгебраическая кратность собственного значения линейного оператора.

Алгебраической кратностью собственного значения λ линейного оператора $\varphi\colon V\to V$ называется число k, которое равно кратности λ как корня характеристического многочлена φ .

45. Геометрическая кратность собственного значения линейного оператора.

Пусть $\varphi: V \to V$ — линейный оператор, λ — его собственное значение и $V_{\lambda}(\varphi)$ — соответствующее собственное подпространство.

Геометрической кратностью собственного значения λ называется число dim $V_{\lambda}(\varphi)$.

46. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора.

Геометрическая кратность не больше алгебраической кратности.

47. Сумма нескольких подпространств векторных пространств.

Пусть U_1, \ldots, U_k — подпространства векторного пространства V. Суммой нескольких пространств называется $U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$.

48. Прямая сумма нескольких подпространств векторных пространств.

Пусть U_1, \ldots, U_k — подпространства векторного пространства V.

Сумма нескольких подпространств $U_1 + \ldots + U_k$ называется прямой, если из условия $u_1 + \ldots + u_k = 0$, где $u_i \in U_i$, следует, что $u_1 = \ldots = u_k = 0$.

49. Эквивалентные условия, определяющие прямую сумму нескольких подпространств векторного пространства.

Пусть U_1, \ldots, U_k — подпространства векторного пространства V.

Следующие условия эквивалентны:

- (a) Сумма $U_1 + ... + U_k$ прямая;
- (b) Если e_i базис U_i , то $e = e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$;
- (c) $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.

50. Сумма собственных подпространств линейного оператора, отвечающих попарно различным собственным значениям.

Пусть V — векторное пространство над полем F, φ его линейный оператор, $\lambda_1, \ldots, \lambda_k$ — набор собственных значений φ , где $\lambda_i \neq \lambda_j$ при $i \neq j$, и $V_{\lambda_i}(\varphi) \subseteq V$ — соответствующее собственное подпространство.

Тогда сумма $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_k}(\varphi)$ является прямой.

51. Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей собственных значений.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Линейный оператор φ диагонализируем тогда и только тогда, когда

- (a) $\chi_{\varphi}(t)$ разлагается на линейные множители;
- (b) Если $\chi_{\varphi}(t) = (t \lambda_1)^{k_1} \dots (t \lambda_s)^{k_s}$, где $\lambda_i \neq \lambda_j$ при $i \neq j$, то dim $V_{\lambda_i}(\varphi) = k_i \, \forall i$ (то есть для любого собственного значения φ равны геометрическая и алгебраическая кратности).
- 52. Корневой вектор линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Вектор $v \in V$ называется корневым вектором линейного оператора φ , отвечающим значению $\lambda \in F$, если существует $m \geqslant 0$ такое, что $(\varphi - \lambda \mathrm{id})^m(v) = 0$.

Наименьшее такое m называют высотой корневого вектора v.

53. Корневое подпространство линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Множество $V^{\lambda}(\varphi)=\{v\in V\mid \exists m\geqslant 0: (\varphi-\lambda\mathrm{id})^m(v)=0\}$ называется корневым пространством для $\lambda\in F.$

54. Характеристический многочлен ограничения линейного оператора на корневое подпространство.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Будем обозначать как $\varphi \mid_W$ ограничение линейного оператора на пространство W.

Характеристический многочлен линейного отображения $\varphi \mid_{V^{\lambda}(\varphi)}$ равен $(t-\lambda)^k$, где $k=\dim V^{\lambda}(\varphi)$.

55. Размерность корневого подпространства линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Если λ — собственное значение φ , то dim $V^{\lambda}(\varphi)$ равна алгебраической кратности λ .

56. Сумма корневых подпространств линейного оператора, отвечающих попарно различным собственным значениям.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Если $\lambda_1, \ldots, \lambda_k$, где $\lambda_i \neq \lambda_j$ при $i \neq j$ — собственные значения φ , то сумма $V^{\lambda_1}(\varphi) + \ldots + V^{\lambda_k}(\varphi)$ — прямая.

57. Признак разложимости пространства в прямую сумму корневых подпространств линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Если характеристический многочлен $\chi_{\varphi}(t)$ разлагается на линейные множители, причём $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, то $V = \bigoplus_{i=1}^s V^{\lambda_i}(\varphi)$.

58. Жорданова клетка.

Пусть $\lambda \in F$. Жорданова клетка порядка n, отвечающая значению λ (с собственным значением λ) — это матрица следующего вида:

$$J_{\lambda}^{n} = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix} \in M_{n}(F).$$

59. Теорема о Жордановой нормальной форме линейного оператора.

Пусть V — векторное пространство, φ — линейный оператор.

Пусть $\chi_{\varphi}(t)$ разлагается на линейные множители. Тогда существует базис е в V такой, что

$$A(\varphi, e) = \begin{pmatrix} J_{\mu_1}^{n_1} & 0 & \dots & 0 \\ 0 & J_{\mu_2}^{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\mu_p}^{n_p} \end{pmatrix} \quad (*)$$

Кроме того, матрица (*) определена однозначно с точностью до перестановки жордановых клеток.

Матрица (*) называется жордановой нормальной формой линейного оператора.

60. Линейная функция.

Линейной функцией (формой, функционалом) на векторном пространстве V называется всякое линейное отображение $\sigma \colon V \to F$.

61. Двойственный (сопряжённый) базис пространства линейных функций.

Пусть е = (e_1, \dots, e_n) — базис V. Рассмотрим линейные формы $\varepsilon_1, \dots, \varepsilon_n$ такие, что $\varepsilon_i(e_j) = \delta_{ij}$, где $\delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$ — символ Кронекера.

To есть $\varepsilon_i = (\delta_{i1}, \ldots, \delta_{ii}, \ldots, \delta_{in}) = (0, \ldots, 1, \ldots, 0).$

Тогда $(\varepsilon_1,\ldots,\varepsilon_n)$ — базис в V^* , называющийся двойственным (сопряжённым) к базису е.

62. Билинейная функция.

Билинейной функцией (формой) на векторном пространстве V называется всякое билинейное отображение $\beta\colon V\times V\to F.$ То есть это отображение, линейное по каждому аргументу:

- (a) $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y);$
- (b) $\beta(\lambda x, y) = \lambda \beta(x, y)$;
- (c) $\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2);$
- (d) $\beta(x, \lambda y) = \lambda \beta(x, y)$.

63. Матрица билинейной функции.

Пусть V — векторное пространство, $\dim V < \infty$, $\beta \colon V \times V \to F$ — билинейная функция. Матрицей билинейной функции в базисе $e = (e_1, \dots, e_n)$ называется матрица $B = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$.

64. Формула для вычисления значений билинейной функции в координатах.

Пусть (e_1, \ldots, e_n) — базис V, $\beta \colon V \times V \to F$ — билинейная функция, B — ее матрица в базисе $\mathfrak e$. Тогда для некоторых векторов $x = x_1e_1 + \ldots + x_ne_n \in V$ и $y = y_1e_1 + \ldots + y_ne_n \in V$ верно, что:

$$\beta(x,y) = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

65. Формула изменения матрицы билинейной функции при переходе к другому базису.

Пусть $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ — два базиса V, β — билинейная функция на V. Пусть также e' = eC, где C — матрица перехода, также $B(\beta, e) = B$ и $B(\beta, e') = B'$. Тогла $B' = C^T BC$.

66. Ранг билинейной функции.

Пусть $B(\beta, e)$ – матрица билинейной функции β в базисе e.

Число $\operatorname{rk} B$ называется рангом билинейной функции β . Обозначение: $\operatorname{rk} \beta$.

67. Симметричная билинейная функция.

Билинейная функция β называется симметричной, если $\beta(x,y) = \beta(y,x)$ для любых $x,y \in V$.

68. Квадратичная форма.

Пусть $\beta: V \times V \to F$ — билинейная функция. Тогда функция $Q_{\beta}: V \to F$, заданная формулой $Q_{\beta}(x) = \beta(x,x)$, называется квадратичной формой (функцией), ассоциированной с билинейной функцией β .

69. Соответствие между симметричными билинейными функциями и квадратичными формами.

Пусть $\beta \colon V \times V \to F$ — симметричная билинейная функция, где F — поле, в котором $0 \neq 2$ (то есть можно делить на два).

Отображение $\beta(x,y) \mapsto Q_{\beta}(x) = \beta(x,x)$ является биекцией между симметричными билинейными функциями на V и квадратичными функциями на V.

70. Поляризация квадратичной формы.

Симметричная билинейная функция $\beta(x,y) = \frac{1}{2} \left(Q(x+y) - Q(x) - Q(y) \right)$ называется поляризацией квадратичной формы Q.

71. Матрица квадратичной формы.

Пусть V — векторное пространство, dim $V < \infty$.

Матрицей квадратичной формы $Q\colon V\to F$ в базисе $\mathbb P$ называется матрица соответствующей ей симметричной билинейной функции $\beta\colon V\times V\to F$ в том же базисе.

72. Канонический вид квадратичной формы.

Квадратичная форма Q имеет в базисе $e = (e_1, \ldots, e_n)$ канонический вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in F$. Иными словами, она имеет диагональную матрицу.

73. Нормальный вид квадратичной формы.

Квадратичная форма Q имеет нормальный вид в базисе $e = (e_1, \dots, e_n)$, если для любого вектора $x = x_1e_1 + \dots + x_ne_n$ верно, что $Q(x) = a_1x_1^2 + \dots + a_nx_n^2$, причем $a_i \in \{-1, 0, 1\}$.

74. Индексы инерции квадратичной формы.

Пусть Q — квадратичная форма над \mathbb{R} , которая в базисе $\mathbb{e} = (e_1, \dots, e_n)$ имеет нормальный вид:

$$Q(x_1, \dots, x_n) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2,$$

где s — это количество положительных слагаемых, а t — отрицательных. Тогда:

- (a) $i_{+} := s$ положительный индекс инерции;
- (b) $i_{-} := t$ отрицательный индекс инерции;
- (c) $i_0 := n s t$ нулевой индекс инерции.

75. Закон инерции для квадратичной формы.

Индексы инерции не зависят от выбора базиса, в котором квадратичная форма Q имеет нормальный вид.

76. Положительно/неотрицательно определенная квадратичная форма.

Квадратичная форма Q называется:

- (a) положительно определенной, если $Q(x) > x \ \forall x \neq 0$. Обозначение: Q > 0;
- (b) неотрицательно определенной, если $Q(x) \ge 0 \ \forall x$. Обозначение: $Q \ge 0$.

77. Отрицательно/неположительно определенная квадратичная форма.

Квадратичная форма Q называется:

- (a) отрицательно определенной, если $Q(x) < x \ \forall x \neq 0$. Обозначение: Q < 0;
- (b) неположительно определенной, если $Q(x) \le 0 \ \forall x$. Обозначение: $Q \le 0$.

78. Неопределенная квадратичная форма.

Квадратичная форма Q называется неопределенной, если существуют такие векторы x, y, что Q(x) > 0 и Q(y) < 0.

79. Теорема Якоби.

Пусть Q — квадратичная форма и $\delta_i \neq 0$ для всех i. Тогда rk Q=n и $i_-(Q)$ равен числу перемен знака последовательности $\delta_0, \delta_1, \ldots, \delta_n$.

Здесь δ_i — угловой минор $i \times i$ -подматрицы матрицы соответствующей симметричной билинейной функции β в некотором базисе; $\delta_0 = 1$.

80. Критерий Сильвестра положительной определенности квадратичной формы.

Квадратичная форма Q является положительно определенной тогда и только тогда, когда $\delta_i>0$ для всех i.

Здесь δ_i — угловой минор $i \times i$ -подматрицы матрицы соответствующей симметричной билинейной функции β в некотором базисе; $\delta_0 = 1$.

81. Критерий отрицательной определенности квадратичной формы.

Квадратичная форма Q является отрицательно определенной тогда и только тогда, когда:

$$\begin{cases} \delta_i < 0, & 2 \nmid i \\ \delta_i > 0, & 2 \mid i \end{cases}.$$

Здесь δ_i — угловой минор $i \times i$ -подматрицы матрицы соответствующей симметричной билинейной функции β в некотором базисе; $\delta_0 = 1$.

82. Евклидово пространство.

Евклидово пространство — это векторное пространство \mathbb{E} над полем \mathbb{R} , на котором задана положительно определённая симметрическая билинейная функция (\cdot, \cdot) , которую мы будем называть скалярным произведением.

83. Длина вектора в евклидовом пространстве.

Пусть \mathbb{E} — евклидово пространство, $x \in \mathbb{E}$. Тогда длиной вектора называют величину $|x| = \sqrt{(x,x)}$.

84. Неравенство Коши-Буняковского.

Пусть \mathbb{E} — евклидово пространство, $x,y \in \mathbb{E}$. Тогда $|(x,y)| \leq |x||y|$, причём знак равенства возможен тогда и только тогда, когда x и y пропорциональны.

85. Угол между векторами Евклидова пространства.

Пусть \mathbb{E} — евклидово пространство. Углом между векторами $x,y\in\mathbb{E}$ называют такой α , что $\cos\alpha=\frac{(x,y)}{|x||y|}$.

86. Матрица Грама системы векторов евклидова пространства.

Пусть \mathbb{E} — евклидово пространство.

Матрица Грама системы $v_1, \ldots, v_k \in \mathbb{E}$ это

$$G(v_1, \ldots, v_k) := (g_{ij}), \quad g_{ij} = (v_i, v_j).$$

87. Свойства определителя матрица Грама.

Пусть \mathbb{E} — евклидово пространство, $G(v_1,\ldots,v_k)$ — матрица Грама. Тогда:

- (a) $\det G(v_1, ..., v_k) \ge 0$;
- (b) $\det G(v_1,\ldots,v_k)=0$ тогда и только тогда, когда v_1,\ldots,v_k линейно зависимы.

88. Ортогональное дополнение системы векторов евклидова пространства.

Пусть S — произвольное подпространство евклидова пространства \mathbb{E} . Ортогональным дополнением к S называется множество $S^{\perp} = \{x \in \mathbb{E} \mid (x,y) = 0 \ \forall y \in S\}.$

89. Ортогональная проекция вектора на подпространство.

Пусть S — подпространство евклидова пространства $\mathbb E$. Тогда любой вектор $x \in E$ единственным образом разбивается на сумму x=y+z, где $y \in S$ и $z \in S^{\perp}$.

Вектор y называется ортогональной проекцией вектора x на подпространство S. Обозначение: $\operatorname{pr}_S x.$

90. Ортогональная составляющая вектора относительно подпространства.

Пусть S — подпространство евклидова пространства \mathbb{E} . Тогда любой вектор $x \in E$ единственным образом разбивается на сумму x = y + z, где $y \in S$ и $z \in S^{\perp}$.

Вектор z называется ортогональной составляющей вектора x относительно (вдоль) подпространства S. Обозначение: ort $_Sx$.

91. Ортогональный базис.

Базис (e_1, \ldots, e_n) в евклидовом пространстве \mathbb{E} называется ортогональным, если $(e_i, e_j) = 0 \ \forall i \neq j$. Это равносильно тому, что $G(e_1, \ldots, e_n)$ диагональна.

92. Ортонормированный базис.

Базис (e_1, \ldots, e_n) в евклидовом пространстве $\mathbb E$ называется ортонормированным, если он является ортогональным базисом и дополнительно $(e_i, e_i) = 1 \ \forall i$. Это равносильно тому, что $G(e_1, \ldots, e_n) = E$.

93. Ортогональная матрица.

Пусть $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ — два ортонормированных базиса в евклидовом пространстве E, причем $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$.

Тогда матрица C называется ортогональной.

94. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса.

Пусть S — подпространство евклидова пространства \mathbb{E} , (e_1, \ldots, e_k) — его ортогональный базис, $x \in \mathbb{E}$.

Тогда $\operatorname{pr}_S x = \sum_{i=1}^k \frac{(x,e_i)}{(e_i,e_i)} e_i$. В частности, если базис ортонормированный, $\operatorname{pr}_S x = \sum_{i=1}^k (x,e_i) e_i$

95. Теорема Пифагора в евклидовом пространстве.

Если векторы евклидова пространства x и y перпендикулярны, то $|x+y|=|x|^2+|y|^2$.

96. Расстояние между векторами евклидова пространства.

Расстоянием между векторами евклидова пространства x и y называется число $\rho(x,y) := |x-y|$.

97. Связь ортогональной составляющей вектора относительно подпространства с расстоянием до этого подпространства.

Пусть U — подпространство евклидова пространства \mathbb{E} .

Модуль ортогональной составляющей вектора $x \in E$ относительно подпространства U равен расстоянию от вектора x до подпространства U.

$$\rho(x,U) = |\operatorname{ort}_{U} x|.$$

98. Формула для расстояния от вектора до подпространства в терминах матриц Грама.

13

Пусть U — подпространство евклидова пространства $\mathbb{E}, x \in \mathbb{E}, (e_1, \dots, e_k)$ — базис U. Тогда $(\rho(x,U))^2 = \frac{\det G(e_1, \dots, e_k, x)}{\det G(e_1, \dots, e_k)}$.

99. *п*-мерный параллелепипед и его объем.

N-мерным параллелепипедом, натянутым на векторы a_1, \ldots, a_n евклидова пространства $\mathbb E$ называется множество

$$P(a_1, \dots, a_n) := \left\{ x = \sum_{i=1}^n x_i a_i \mid 0 \leqslant x_i \leqslant 1 \right\}.$$

Объем n-мерного параллелепипеда $P(a_1, \ldots, a_n)$ — это число vol $P(a_1, \ldots, a_n)$, определяемое рекурсивно следующим образом:

$$n = 1$$
 vol $P(a_1) = |a_1|$
 $n > 1$ vol $P(a_1, ..., a_n) = \text{vol } P(a_1, ..., a_{n-1}) \cdot |h|$

Где $h=\operatorname{ort}_{\langle a_1,\dots,a_{n-1}\rangle}a_n$ — высота $P(a_1,\dots,a_n).$

100. Формула для объема n-мерного параллелепипеда (любая из двух).

Пусть \mathbb{E} — векторное пространство, (e_1,\ldots,e_n) — его ортогональный базис и $(a_1,\ldots,a_n)=$ = $(e_1,\ldots,e_n)A$ для некоторой матрицы $A\in M_n(\mathbb{R})$. Тогда vol $P(a_1,\ldots,a_n)=|\det A|$.

Вторая формула: vol $P(a_1, ..., a_n)^2 = \det G(a_1, ..., a_n)$.

101. Критерий изоморфности двух конечномерных евклидовых пространств.

Два конечномерных евклидовых пространства \mathbb{E} и \mathbb{E}' изоморфны тогда и только тогда, когда их размерности совпадают.

102. Сопряженный линейный оператор.

Пусть \mathbb{E} — евклидово пространство. Линейный оператор ψ в \mathbb{E} называется сопряженным к φ , если для всех векторов $x, y \in \mathbb{E}$ верно, что $(\psi(x), y) = (x, \varphi(y))$. Обозначение: $\psi = \varphi^*$.

103. Матрица сопряженного оператора в произвольном и ортонормированном базисах.

Пусть \mathbb{E} — евклидово пространство, $\mathbb{e}=(e_1,\ldots,e_n)$ — базис $\mathbb{E},\ G=G(e_1,\ldots,e_n)$ — матрица Грама, φ — линейный оператор в $\mathbb{E},\ A_{\varphi}$ — матрица φ в базисе $\mathbb{e},\ A_{\varphi^*}$ — матрица φ^* в том же базисе. Тогда:

$$A_{\varphi^*} = G^{-1} A_{\varphi}^T G.$$

В частности, если е — ортонормированный базис, то $A_{\varphi^*} = A_{\varphi}^T$.

104. Самосопряженный линейный оператор.

Линейный оператор φ евклидова пространства \mathbb{E} называется самосопряженным (симметрическим), если $\varphi^* = \varphi$. Это равносильно тому, что $(\varphi(x), y) = (x, \varphi(y))$) для любых векторов $x, y \in \mathbb{E}$.

105. Канонический вид самосопряженного линейного оператора.

Самосопряженный линейный оператор φ имеет канонический вид в базисе e, если его матрица в этом базисе имеет диагональный вид с собственными значениями на диагонали.

106. Приведение квадратичной формы к главным осям.

Для любой квадратичной формы Q над евклидовым пространством $\mathbb E$ существует ортонормированный базис, в котором Q имеет канонический вид.

$$Q(x_1, \dots, x_n) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2.$$

Причем числа $\lambda_1, \ldots, \lambda_n$ определены однозначно с точностью до перестановки.

107. Ортогональный линейный оператор.

Линейный оператор φ евклидова пространства $\mathbb E$ называется ортогональным, если

$$(\varphi(x), \varphi(y)) = (x,y), \quad \forall x, y \in \mathbb{E}.$$

Другими словами, φ сохраняет скалярное произведение, осуществляет изоморфизм $\mathbb E$ на себя.

Эквивалентные определения:

- (a) $|\varphi(x)| = |x|$ для всех $x \in \mathbb{E}$, то есть φ сохраняет длины;
- (b) существует φ^{-1} , причем $\varphi^{-1} = \varphi^*$, то есть $\varphi \cdot \varphi^* = \varphi^* \cdot \varphi = \mathrm{id}$;
- (c) если е ортонормированный базис, то $A(\varphi, e)$ ортогональная матрица;
- (d) если (e_1,\ldots,e_n) ортонормированный базис, то $(\varphi(e_1),\ldots,\varphi(e_n))$ тоже ортонормированный базис.

108. Классификация ортогональных линейных операторов в одномерном и двумерном евклидовых пространствах.

Пусть \mathbb{E} — евклидово пространство, е — его базис, φ — его ортогональный линейный оператор, A — матрица φ в базисе е.

Если $\dim \mathbb{E} = 1$, то $\varphi = \pm id$.

Если $\dim \mathbb{E} = 2$, то возможны два случая:

- (а) φ это поворот пространства на угол α , $A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$;
- (b) φ это отражение относительно некоторой прямой, $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

109. Канонический вид ортогонального линейного оператора.

Ортогональный линейный оператор φ евклидова пространства $\mathbb E$ имеет в базисе $\mathbb E$ канонический вид, если его матрица в этом базисе имеет вид:

$$\begin{pmatrix}
\Pi(\alpha_1) & & & & & & & \\
& \ddots & & & & & & \\
& \Pi(\alpha_k) & & & & & & \\
& & -1 & & & & \\
& & & \ddots & & & \\
& & & & 1 & & \\
& & & & \ddots & & \\
& & & & & 1
\end{pmatrix},$$

где
$$\Pi(\alpha_i) = \begin{pmatrix} \cos \alpha_i & \sin \alpha_i \\ \sin \alpha_i & \cos \alpha_i \end{pmatrix}$$
 — матрица поворота на угол α_i .

110. Классификация ортогональных линейных операторов в трехмерного евклидовом пространстве.

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E}=3,\,\varphi$ — его ортогональный линейный оператор, $A(\varphi,\mathbb{e})$ — матрица φ в некотором базисе \mathbb{e} .

Тогда возможны два случая:

- (а) φ это поворот на угол α вокруг оси $\langle e_3 \rangle$, где $e = (e_1, e_2, e_3)$ некоторый ортонормированный базис, $A(\varphi, e) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$;
- (b) φ это «зеркальный поворот», то есть поворот на угол α вокруг прямой e_3 и зеркальное отражение относительно $\langle e_1,e_2\rangle=\langle e_3\rangle^\perp$, где $\mathbb{e}=(e_1,e_2,e_3)$ некоторый ортонормированный базис, $A(\varphi,\mathbb{e})=\begin{pmatrix}\Pi(\alpha)&0\\0&-1\end{pmatrix}$.