Лабораторная работа № 4 «Корреляционный анализ»

студента Моисеенко Олеси Игоревны группы <u>Б20-514</u> . Дата сдачи:
Ведущий преподаватель: Сорока А.А. оценка: подпись:

Вариант №15

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проведения корреляционного анализа данных.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, <i>п</i>
X	$\chi^{2}(15)$	k = 15	15	30	
Y	R(5, 25)	a = 5 $b = 25$	15	33.333333	100

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

	— · F · · · · · F · · · · · · ·					
СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	КК по Пирсону, $\tilde{r}_{\chi \gamma}$	КК по Спирмену, $\tilde{\rho}_{XY}$	КК по Кендаллу, $ ilde{ au}_{\chi \gamma}$	
X	16.109734	38.986900	0.04711073807833	0.0219021902190	0.01696969696969	
Y	15.114881	28.101614	272	219	697	

Проверка значимости коэффициентов корреляции:

Статистическая гипотеза, H_0	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
H_0 : $r_{XY} = 0$	0.6416142714105674	H_0 принимается	нет
H_0 : $\rho_{XY} = 0$	0.8287584399128479	H_0 принимается	нет
H_0 : $\tau_{XY} = 0$	0.8024622175039021	Н ₀ принимается	нет

Примечание: для проверки гипотез использовать функцию **corr** (**scipy.stats.pearsonr**)

2. Визуальное представление двумерной выборки

Диаграмма рассеяния случайных величин Х и У:

Примечание: для построения диаграммы использовать функции **plot, scatter** (matplotlib.pyplot.scatter)

3. Проверка независимости методом таблиц сопряженности

Статистическая гипотеза: $H_0: F_Y(y \mid X \in \Delta_1) = ... = F_Y(y \mid X \in \Delta_k) = F_Y(y)$

Эмпирическая/теоретическая таблицы сопряженности:

Y	[5.33825547;	[9.25430786;	[13.17036024;	[17.08641263;	[21.00246501;
$X \sim$	9.25430786)	13.17036024)	17.08641263)	21.00246501)	24.9185174]
$\Delta_1 = [6.84296756;$	6	8	9	8	4
12.77148684)	6.65	5.25	10.85	5.95	6.3
$\Delta_2 = $ [12.77148684;	10	3	8		12
18.70000611)	6.84	5.4	11.16	6.12	6.48
$\Delta_3 = [18.70000611;$	3		10	3	1
24.62852538)	3.61	2.85	5.89	3.23	3.42
$\Delta_4 = $	0	1	4	2	1
[24.62852538; 30.55704466)	1.52	1.2	2.48	1.36	1.44
$\Delta_5 =$	0	1	0	1	0
[30.55704466; 36.48556393]	0.38	0.3	0.62	0.34	0.36

Примечание: для группировки использовать функцию hist3

 $\underline{(matplot lib.pyplot.hist 2d)}$

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
25.227924646163828	0.06590682272076571	Н ₀ принимается	нет

Примечание: для проверки гипотезы использовать функцию **crosstab** (scipy.stats.chi2_contingency)

4. Исследование корреляционной связи

Случайная величина $U = \lambda X + (1-\lambda)Y$, $\lambda \in [0; 1]$

Случайная величина $V = \lambda X^3 + (1-\lambda)Y^3$ $\lambda \in [0; 1]$

Графики зависимостей коэффициента корреляции $\tilde{r}_{x_U}(\lambda)$, рангового коэффициента корреляции по Спирмену $\tilde{\rho}_{x_U}(\lambda)$, по Кендаллу $\tilde{\tau}_{x_U}(\lambda)$

Графики зависимостей $\tilde{r}_{xv}(\lambda)$, $\tilde{\rho}_{xv}(\lambda)$, $\tilde{\tau}_{xv}(\lambda)$

Выводы: из графиков видно, что по мере возрастания λ увеличиваются и корреляционные коэффициенты по Пирсону, Спирмену и Кендаллу, что при отсутствии функциональной связи попарно между величинами X и V, X и U, то есть при λ =0, значения коэффициентов будут равняться нулю. А при λ =1 на первом графике наблюдаем равенство всех коэффициентов единице, что свидетельствует о линейной функциональной связи между величинами X и U, на втором графике — корреляционный коэффициент по Пирсону не достигает значения единицы, но очень близок к нему, что отвечает наличию нелинейной функциональной связи между X и V(при KД = 1), в то время как значение τ = 1 свидетельствует о монотонно возрастающей зависимости между X и V.

Примечание: для расчёта рангов использовать функцию **tiedrank** (**scipy.stats.rankdata**)

Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

Выводы: из диаграммы рассеяния случайных величин X и V и диаграммы рассеяния рангов случайных величин X и V при $\lambda=0$ видно, что зависимость между случайными величинами X и V отсутствует, для независимых случайных величин характерно практически равномерное рассеяние выборочных рангов. А для случая $\lambda=1$ на диаграмме рассеяния случайных величин X и V наблюдается монотонно возрастающая зависимость, «выпрямляющаяся» на диаграмме рассеяния рангов величин X и V.