CHAPTER 10 PATHS AND CIRCUITS

> 10.1 EULERIAN CIRCUITS

EULERIAN CIRCUITS

A walk is an afternating sequence of vertices and edges $V_1 e_1 V_2 e_2 \cdots V_n e_n V_1$ where $e_i = V_i V_{i+1}$ and the e_i are distinct.

An Eulerian circuit in a pseudograph is a walk that crosses each edge exactly once and ends where it started.

If a pseudograph G admits an Eulenian circuit, we say that G is Eulerian.

Euler is pronounced Oiler.

THE KÖNIGSBERG BRIDGE PROBLEM

The Bridges of Konigsberg

Is it possible to take a walk, Cross each bridge exactly once, and return to where you started?

CONNECTIVITY

We just argued that Eulerian graphs have no vertices of odd degree.

What else? Eulerian graphs must also be connected.

A pseudograph is connected if there is a walk between any

two vertices.

EULERIAN PSEUDOGRAPHS

THEOREM. A pseudograph is Eulerian if and only if it is connected and every vertex has even degree.

PROOF.

EULERIAN PSEUDOGRAPHS

THEOREM. A pseudograph is Eulerian if and only if it is connected and every vertex has even degree.

SECOND PROOF (FLEURY'S ALGORITHM). Pick a starting vertex. While the pseudograph has at least one edge:

traverse any edge that is not a bridge

and delete that edge.

Prove that this always results in an Eulerian circuit.

EULERIAN PSEUDOGRAPHS

For each pseudograph, find an Eulenian circuit if it exists.

10.2 HAMILTONIAN CYCLES

HAMILTONIAN CYCLES

A Hamiltonian cycle in a pseudograph is a walk that visits each vertex exactly once:

Sir William Rowan Hamilton

If a pseudograph has a Hamiltonian cycle, we say the pseudograph is Hamiltonian.

Euler: each edge once Hamilton: each vertex once

Note: A Hamiltonian cycle is isomorphic to an n-cycle.

HAMILTONIAN CYCLES

Show that the following graphs are Hamiltonian.

In other words,

HAMILTONIAN GRAPHS

We saw that it is easy to tell if a graph is Eulerian or not. To prove a graph is Hamiltonian, just find a Hamiltonian cycle. But there is no easy method for showing a graph is not Hamiltonian.

You could check all paths of length IVI. Takes too long!

Better to use some basic facts:

Let H be a Hamiltonian cycle in a pseudograph G

① Every vertex of G has exactly edges

of H passing through it.

② The only cycle contained in H is.

HAMILTONIAN GRAPHS

Prove that the following graphs are not Hamiltonian.

HAMILTONIAN GRAPHS

Which of the following graphs are Hamiltonian?

THE PETERSEN GRAPH

PROPOSITION. The Retersen graph is not Hamiltonian.

PROOF.

GRAY CODES

We can record the position of a rotating pointer with a bit string:

Can read the position of the arrow with 3 sets of contacts:

Problem: A small error could give 100 instead of 011 and 3 bits wrong!

GRAY CODES

To fix this, want to number so that adjacent regions differ by one bit.

At first, not obvious how to do this.