SC-RNAseq Data Structure and Basic Quality Control

Julieth Andrea López Castiblanco

PhD student in Biotechnology julalopezcas@unal.edu.co

Data sources

Repository	Link to resource
NCBI	https://www.ncbi.nlm.nih.gov/
Human Cell Atlas: Data Explorer	https://explore.data.humancellatlas.org/projects
CellXGene Collection	https://cellxgene.cziscience.com/datasets
Single Cell Portal	https://singlecell.broadinstitute.org/single_cell
EBI Single Cell Expression Atlas	https://www.ebi.ac.uk/gxa/sc/home

Data tables

Count matrix

	Cell 1	Cell 2	 Cell N
Gene 1	0	1	 0
Gene 2	1	3	 0
Gene M	2	2	4

Genes information

	ID	Symbol	 Chromosome
Gene 1	ENSG00000155816	FMN2	 1
Gene 2	ENSG00000229807	XIST	 X
Gene M	ENSG00000139618	BRCA2	13

Cells information

	Barcode	Donor		Treatment
Cell 1	ACTGTA	D1		Drug
Cell 2	TGCATA	D1	•••	Control
Cell N	CCTATA	D6		Drug

Log transformation

	Cell 1	Cell 2		Cell N
Gene 1	0	0.6		0
Gene 2	0.3	0.8		0
	•••	•••	•••	•••
Gene M	0.35	0.67		2.1

Single-cell data

Single-cell data consists of 4 main components:

- → Gene expression data
- → Metadata about each genes
- → Metadata about each cell
- → Unstructured metadata about the data collected
 - ◆ Batch/replicate information
 - Sequencing platform
 - Data / time
 - Tissue source

Which tools can we use to give this structure to the data?

Which R-based classes can we use?

Save data into R data file formats: RDS | RDATA saveRDS(), save(), save.image()

R base functions

SingleCellExperiment

SingleCellExperiment Object (Bioconductor)

This **Bioconductor class** implements a data structure that stores all aspects of single-cell data and allow to manipulate them in a synchronized manner.

- → Primary data
 - Count matrix
 - Transformed data
- → Feature metadata
 - Transcript length
 - Gene symbol
- → Cell metadata
- → Dimension reduction
 - ◆ PCA, tSNE, etc
- Other study metadata
 - Batch/replicate information
 - Sequencing platform
 - Data / time
 - Tissue source

SingleCellExperiment

Seurat Object

Formal class 'Seurat' [package "SeuratObject"] with 13 slots ..@ assavs :List of 1\$ RNA:Formal class 'Assay' [package "SeuratObject"] with 8 slots :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots @ counts : int [1:2282976] 29 73 80 148 163 184 186 227 229 230@ p : int [1:2701] 0 779 2131 3260 4220 4741 5522 6304 7094 7626 ... : int [1:2] 13714 2700 s: chr [1:13714] "AL627309.1" "AP006222.2" "RP11-206L10.2" "RP11-206L10.9" s: chr [1:2700] "AAACATACAACCAC-1" "AAACATTGAGCTAC-1" "AAACATTGATCAGC-1" "AAACCGTGCTTCCG-1" ... : num [1:2282976] 11 2 11 11 41 11@ factors : list()@ meta.features:'data.frame': 13714 obs. of 0 variables : list() ..@ meta.data :'data.frame': 2700 obs. of 3 variables:\$ orig.ident : Factor w/ 1 level "pbmc3k": 1111111111...\$ nCount_RNA: num [1:2700] 2419 4903 3147 2639 980\$ nFeature_RNA: int [1:2700] 779 1352 1129 960 521 781 782 790 532 550@ active.assay: chr "RNA" ..@ active.ident: Factor w/ 1 level "pbmc3k": 1111111111... ... - attr(*, "names")= chr [1:2700] "AAACATACAACCAC-1" "AAACATTGAGCTAC-1" "AAACATTGATCAGC-1" "AAACCGTGCTTCCG-1"@ graphs : list() ..@ neighbors : list()

..@ reductions : list()

Now, we can start working with the data

Basic Quality Control

Motivation

There are cells featuring one or more of the next characteristics:

- Low total counts
- Few expressed genes
- High proportion of reads coming from mitochondria

What happen if we do not apply quality control?

- Distinct cluster(s) **complicating interpretation** of results
- Distortion of population heterogeneity
- Artificial 'upregulation' of certain genes

About mitochondrial content

Why having into account mitochondrial RNA?

- → Due to very harsh conditions in tissue dissociation step, dying cells release their cytoplasmic contents
- → High mitochondrial contamination means low-quality cells

© 2007-2011 The University of Waikato | www.sciencelearn.org.nz

What can we do?

- → First metrics
 - ◆ RNA count (or count depth, number of UMIs)
 - ◆ Feature count (or gene count)
 - Mitochondrial content
- → Recommendations
 - ◆ Identify and discard outliers
 - Different samples may require different cutoffs

- Low-quality cells or empty droplets will often have very few genes
- Cell doublets or multiplets may exhibit an aberrantly high gene count

What do we achieve?

The consequences of applying quality control are:

- → Sufficient data quality for downstream analysis
 - Cannot be determined a priori
 - Iterative quality control
- → Enhance interpretation
 - Relevant for datasets containing heterogeneous cell populations (low-quality or outlier cells can be misinterpreted)
 - Results are reflective of **biological variability** rather than technical artifacts

Quality control software options

Official release of Seurat 4.0

Blockressics, 2016, 2017, 1179–1186
dai: 11.1093/biofelmetics/bev.717
Afrence Access Philipsian Date: 14. January 2017
Original Paper
OX.800.0

Gene expression

Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R

Davis J. McCarthy 1,2,3,* , Kieran R. Campbell 2,4 , Aaron T. L. Lun 5 and Quin F. Wills 2,6

Thanks!

HUMAN CELL ATLAS

@JuliethLopz

julalopezcas@unal.edu.co

https://www.linkedin.com/in/julieth-andrea-lopez/

wellcome connecting science