Insper

Sistemas Hardware-Software

Aula 1 – Introdução + Inteiros na CPU

2021/2 - Engenharia

Maciel Calebe Vidal <macielcv@insper.edu.br>
Igor Montagner <igorsm1@insper.edu.br>
Fábio Ayres <fabioja@insper.edu.br>

Professores

- Maciel Calebe Vidal
- Antonio Deusany de Carvalho Junior (DJ)

Aulas

- Aulas
 - Híbrida
 - Seg 13h30 às 15h30
 - . Remota
 - Qui 15h45 às 17h45

Atendimento

Remoto

• Seg 09h00 às 10h30

Atendimento durante atividades práticas

- Mensagem
 - Marcar com @professores

Hoje

- Resumo rápido do curso
- Inteiros na CPU

Critérios para Avaliação

Exercícios práticos (atividades e labs)

- Série de exercícios práticos de implementação
- Complexidade crescente
- Testes automatizados quando possível
 - Facilitar correção
 - Criar espaços para conversar da matéria
 - Criação de testes pelos alunos

Exercícios práticos (entrega)

- Blackboard (por enquanto)
 - Testes automatizados para alguns exercícios

Avaliação

• Média Final (MF) se cumpridas as condições:

• Média Final (MF) se NÃO cumpridas as condições:

$$MF = min(A, PI, PF, L, C)$$

• Condições:

Avaliação (DELTA provas)

- 1. Aluno faz uma nova prova PD no dia da SUB relativa a avaliação em que tirou nota menor que 4.
- 2. Critério de barreira de provas é cumprido se PD >= 5.

Ferramentas

- GCC 9.3 (ou superior) -- C99
- Linux (Preferencialmente ubuntu 20.04)

Não há suporte a outros sistemas. Instalem direto ou usem uma VM. Se usar VM, veja se funciona com proctorio.

Resumo do curso

Objetivo de Sistemas Hardware-Software

Entender como um programa roda em um PC

- Representação de dados na memória
- Linguagem Assembly x86 (processadores Intel e AMD)
- Sistemas Operacionais (Linux)
 - programas, processos
 - entrada/saída

Aula!

O que é isto?!

1111111

480

Representação de inteiros na CPU

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Bits e Bytes

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Não é possível distinguir conteúdo a partir de uma sequência de bits

Bits e Bytes

Agrupamos 8 bits em 1 byte

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Não é possível distinguir conteúdo a partir de uma sequência de bits

Inteiros (decimal)

Número **9153**

$$9000 + 100 + 50 + 3 = 9 \times 10^{3} + 1 \times 10^{2} + 5 \times 10^{1} + 3 \times 10^{0}$$

- 1. Cada dígito multiplica uma potência de 10
- 2. O dígito mais significativo é 9 (multiplica a maior potência)
- 3. O dígito menos significativo é 3 (multiplica a menor potência)

Inteiros (binário)

- 1. Cada dígito multiplica uma potência de 2
- 2. O dígito mais significativo é 1 (multiplica a maior potência)
- 3. O dígito menos significativo é 0 (multiplica a menor potência)
- 4. Ambos representam a mesma quantidade!

Conversão Binário -> Decimal

Converta o número abaixo para decimal

$$2^{1} + 2^{6} + 2^{7}$$

 $2 + 64 + 128 = p_{1}94$

Conversão Decimal -> Binário

Fazemos agora o caminho inverso: dividimos sucessivamente por 2 e guardamos o resto

11101010

Conversão Decimal -> Binário

Agora é sua vez:

Conversão Decimal -> Binário

Forma bônus:

$$+2 (10) = ? (2)$$
128 64 32 14 8 4 2 1
1 0 0 1 0 0 0

Arquitetura de computadores

- Todo dado tem tamanho fixo.
- Um inteiro pode ter os seguintes tamanhos:

Tamanho em bytes	Tipo em C	Capacidade
1	char	
2	short	
4	int	
8	long	

Arquitetura de computadores

- Todo dado tem tamanho fixo.
- Um inteiro pode ter os seguintes tamanhos:

Tamanho em bytes	Tipo em C	Capacidade
1	char	256
2	short	65536
4	int	2 ³²
8	long	2 ⁶⁴

Inteiros sem sinal

Representação para números positivos somente

Tamanho em bytes	Tipo em C	Menor número	Maior Número
1	char	0	255
2	short	0	65535
4	int	0	2 ³² - 1
8	long	0	2 ⁶⁴ - 1

Inteiros com sinal (Complemento de dois)

Dado um inteiro b_2 com w bytes, seu valor em decimal é

$$\mathbf{b}_{10} = -2^{w-1}b_{w-1} + \sum_{i=0}^{w-2} 2^{i}b_{i}$$

- 1. Somamos todos os bits normalmente
- 2. Menos o último, que ao invés de somar subtrai

$$3^{2} \stackrel{?}{1}^{2} \stackrel{?}{1}^{2} = -5$$

Qual o valor de 0100 0101?

Sem sinal:

Qual o valor de 0100 0101?

Sem sinal:

Qual o valor de 10011101?

Sem sinal:

Qual o valor de $\overset{3}{1}$ $\overset{6}{0}$ $\overset{1}{0}$ $\overset{1}{0}$

Sem sinal:

Os dois números abaixo são o mesmo? Se não qual o bit

diferente?

1001110011101110

1001110111101110

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Objetivo: facilitar a leitura de números binários

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Ideia:

- agrupar 4 em 4 bits em um dígito que vai de 0 a 15
- letras para os dígitos maiores que 10

Binário	Hexa	Binário	Hexa
0000	0×0	1000	0x8
0001	0×1	1001	0×9
0010	0×2	1010	0xA
0011	0×3	1011	0xB
0100	0×4	1100	0xC
0101	0×5	1101	0xD
0110	0×6	1110	0×E
0111	0×7	1111	0xF

Exercício

Converta para binário: 0xDE9

10			0.0
Binário	Hexa	Binário	Hexa
0000	0×0	1000	0x8
0001	0×1	1001	0×9
0010	0×2	1010	$0 \times A$
0011	0×3	1011	0xB
0100	0×4	1100	0×C
0101	0×5	1101	0×D
0110	0×6	1110	0×E
0111	0×7	1111	0×F

Converta para hexadecimal: 1100 1110 0011 1010

Conversões de tipos

Conversões de tipos inteiros

Duas regras:

- 1. O valor é mantido quando convertemos de um tipo menor para um tipo maior
 - char -> int
- 2. A conversão de um tipo maior para um tipo menor é feita pegando o X bits menos significativos
 - int -> char pega os 8 bits menos significativos, o restante é descartado

Conversões de tipos inteiros - sinal

Atividade prática

Conversão de números: bases e sinal

- rodar programa bases_e_sinais
- 2. colocar sua solução em solucoes.txt
- 3. verificar se tudo está ok rodando

bases_e_sinais < solucoes.txt</pre>

Git

https://insper.github.io/SistemasHardwareSoftware/

https://github.com/Insper/SistemasHardwareSoftware

Insper

www.insper.edu.br