REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets

Camille Marchet, Zamin Iqbal, Mikaël Salon, Rayan Chikhi

DSB'20 - Rennes

Context

Sets of k-mer sets

18 related papers and counting since 2016

k-mer aggregative method

color aggregative method

Sets of k-mer sets

Good performances due to FP tradeoff Presence/absence VARI (Muggli et al. 17)

De Bruijn graph representation Presence/absence + bubble calling

Our goal

REINDEER method:

Query abundances of sequences in a collection of datasets of raw reads

Set of k-mers from all datasets + abundance matrix

Motivation

Motivation

Color matrix

ATA

GAG

3

4

color matrix

ATA

GAG

color classes

Abundance matrix

count matrix

Definitions

dataset

CAGCT AGCTA ATTTA TATTT ACTTA

a raw read multiset we see it as a set of k-mers

count vector

4 → 10 0 3 ...

vec[x,i] = count of x in dataset i

abundance matrix

10	0	3	
2	5	13	
10	2	3	

a list of count vectors for each x

Definitions

Required building blocks

dataset 2

Associative structure

- Compact & compressed indices for efficient exact string matching (FM-index [Ferragina & Manzini '05])
- k-mer indices
 - approximate membership query (AMQ)
 (Bloom filters, Othello [Yu et al. '18],
 Quasi-dictionary [Marchet et al. '16])
 - associative indices (Couting Quotient Filters [Pandey et al. '17], MPHF [Almodaresi et al '17])

+ minimizers — BLight [Marchet et al. '19]

	nb. 31-mers Pufferfish (time/mem)		BLight (tim/mem)	
human	2.5 billions	1 h/20 GB	30 min/8 GB	
		(12.5 GB for the index)	$(\approx 26 \text{ bits}/k\text{-mer})$	

K-mer counts

K-mer counts

- ► Good approximation of *k*-mer counts
- Record more redundant values
- Smooth counts due to sequencing errors

Associate counts to kmers

Associate counts to kmers

Associate counts to kmers

Represent a set of k-mers: Spectrum Preserving String Sets

A SPSS of a k-mer set S is a **set of strings having same** k-mer **spectrum as S**

- k-mer set itself
- Unitigs
- Super k-mers from reads [Deorowicz et al.'15]
- ► Super *k*-mers from unitigs [Marchet et al.'19]
- Simplitigs[Brinda et al.'20]/UST[Rahman et al.'20]

None can guarantees that all k-mers in a given string have the same count-vector

A new SPSS: Minitigs

Minitigs are paths of the union DBG:

- ▶ All k-mers in a minitig have the same count vector
- Each k-mers is in one and only one minitig
- Minitigs can span several unitigs
- In practice
 - ► All k-mers in a minitig have the same minimizer
 - Greedy algorithm for construction

Minitig example

REINDEER

REINDEER

- Each count-vector is compressed with RLE and dumped on the disk
- ► The MPHF can be dumped as well

Query

► Value reported only if X% of the query k-mers were found present in a dataset

Results: index construction

\sim 2500 human RNA-seq datasets

\sim 4 billions distinct *k*-mers

Tool	Ext. Memory (GB)	Time (h)	Peak RAM (GB)	Index Size (GB)	Counts (Y/N)
SBT	300	55	25	200	N
HowDeSBT	30	10	N/A	15	N
Mantis	3,500	20	N/A	30	N
SeqOthello	190	2	15	20	N
BIGSI	N/A	N/A	N/A	145	N
Reindeer - raw counts	6,800	55	36	60	Υ
Reindeer - discretized	6,500	58	35	42	Y
Reindeer - log 2	5,500	68	28	40	Υ
Reindeer - presence/absence	6,600	55	27	36	N

Results: query

Batches of sequences using Refseq human transcripts (mean size 3,300 bases)

Batch size	Index loading time (s, wallclock)	Query time (s, wallclock)	Peak RAM (GB)
	mean/min/max	mean/min/max	
10 sequences		41.68 /40.55/42.97	
100 sequences		41.95 /40.35/45.98	75
1000 sequences		42.60 /41.62/46.20	75
1000 sequences		42.70 /40.47/46.28	

Application to transcriptomics

Find abundances of oncogenes/tumor repressor genes in a few minutes across 2585 datasets

Left boxplot: Cancer / Right boxplot: Non-cancer

▶ Need normalization to go further with biological conclusions

Take home messages

What REINDEER does: query abundances of sequences in a collection of datasets of raw reads

- ► Represent the set of *k*-mers using minitigs
- Exact associative index for k-mer → count information
- Counts per dataset in compressed, non redundant abundance matrix
- Reindeer can do presence/absence but other data-structures perform better for this (HowDeSBT, BIGSI,...)

