Exercícios dados em sala

05 a 08 de dezembro de 2023

Autor: Rodrigo Bissacot Proença

Transcrito para LaTeXpor: Lucas Amaral Taylor

9 de dezembro de 2023

1. Prove que, seja $X \neq \emptyset$, $X \subset M$ é limitado se, e somente se, diam $X < +\infty$. Ou seja, existe $L \in \mathbb{R}$ tal que:

$$\sup\{d(x,y); x \in X \text{ e } y \in X\} = L$$

Em particular, temos que:

$$d(x,y) \leqslant L \quad \forall x,y \in X.$$

- 2. Seja x_1, \ldots, x_n elementos distintos dois a dois $(x_i \neq x_j, \forall i \neq j)$ e $D = \max_{1 \leq i < j \leq n} d(x_i, x_j)$. Tome $X = \bigcup_{i=1}^n B_1(x_i)$. Mostre que diam $X \leq D + 2$.
- 3. Mostre que:

$$\bigcup_{n=1} C_n = \bigcup_{n=1} \left(\frac{1}{n}, 1\right) = (0, 1)$$

4. Dado $x \in M$. Para cada $n \in \mathbb{N}$

$$B_{\frac{1}{n}}(x) = \left\{ y \in M; d(x,y) < \frac{1}{n} \right\}$$

$$\bar{B}_{\frac{1}{n}}(x) = \left\{ y \in M \; ; \; d(x,y) \leqslant \frac{1}{n} \right\}$$

Mostre que:

$$\bigcap_{n=1}^{+\infty} B_{\frac{1}{n}}(x) = \bigcap_{n=1}^{+\infty} \bar{B}_{\frac{1}{n}}(x) = \{x\}$$

5. $\forall n \in \mathbb{N} \ \mathrm{e} \ x \in M$

$$\bar{B}_{\frac{1}{n}}(x) = \left\{ y \in M \; ; \; d(x,y) \le \frac{1}{n} \right\}$$

é fechado. Portanto, $A_N = B_{\frac{1}{n}}^c(x)$ é aberto

- 6. Se $k = \{1, 2, 3, 5\}$, mostre que k é compacto usando a definição com coberturas abertas.
- 7. Temos:

$$f:[0,+\infty]\longmapsto \mathbb{R}$$

$$x \longmapsto f(x) = \sqrt{x}$$

Mostre que f é contínua usando ε e δ .

Dica: Trate separadamente $x_0 = 0$. e $x_0 \neq 0$

- 8. Mostre que dado $a \in \mathbb{R}$ a função $f : \mathbb{R} \to \mathbb{R}$, $f(x) = a \cdot x$ em contínua em dado ponto $x_0 \in \mathbb{R}$ (usando ε e δ). Mostre que SEMPRE podemos escolher δ dependendo apenas de ε e não de x_0
- 9. Seja $f: X \to \mathbb{R}$ uma função. $X \subseteq \mathbb{R}$ e $x_0 \in X$ é isolado. Mostre que f é contínua em x_0 .
- 10. $X = [0,1) \cup (2,2]$

$$f(x) = \begin{cases} x, \text{ se } 0 \le x < 1\\ x + 1, \text{ se } 1 < x \le 2 \end{cases}$$

Mostre que f é contínua usando ε e δ .

11. Seja $f:X\to\mathbb{R}$ uma função. $X\subseteq\mathbb{R}$ e $x_0\in X$ é isolado. Mostre que f é contínua em x_0 .