Partie I: Suites complètement monotones

1a. Soit, pour $p \in \mathbb{N}^*$, l'assertion (\mathcal{H}_p) : "pour toute fonction f indéfiniment dérivable de $\mathbb{R}+$ dans \mathbb{R} et tout entier naturel n, il existe $x \in]n, n+p[$ tel que $(\Delta^p u)_n = f^{(p)}(x)$." (La suite (u_n) étant définie par $\forall n \in \mathbb{N}, u_n = f(n)$).

- Soit f indéfiniment dérivable de $\mathbb{R}+$ dans \mathbb{R} et $n \in \mathbb{N}$; d'après l'égalité des accroissements finis, il existe $x \in]n, n+1[$ tel que $(\Delta u)_n = f(n+1) f(n) = f'(x)$: (\mathcal{H}_1) est donc vraie.
- Soit $p \in \mathbb{N}^*$; supposons (\mathcal{H}_p) vraie; soit f indéfiniment dérivable de $\mathbb{R}+$ dans \mathbb{R} . Définissons $g:\mathbb{R}+\to\mathbb{R}$ par: $\forall x \geq 0, g(x) = f(x+1) f(x)$, et la suite (v_n) par: $\forall n \in \mathbb{N}, v_n = g(n)$, i.e. $v_n = (\Delta u)_n$. Alors g est indéfiniment dérivable, et en lui appliquant (\mathcal{H}_p) : pour tout $n \in \mathbb{N}$, il existe $y \in [n, n+p]$ tel que

$$(\Delta^{p+1}u)_n = (\Delta^p v)_n = g^{(p)}(y) = f^{(p)}(y+1) - f^{(p)}(y).$$

On peut réappliquer l'égalité des accroissements finis à $f^{(p)}$ (indéfiniment dérivable), et il existe $x \in]y, y+1[\subset]n, n+p+1[$ tel que $f^{(p)}(y+1)-f^{(p)}(y)=f^{(p+1)}(x)$. Il s'ensuit que (\mathcal{H}_{p+1}) est vraie, et le résultat requis s'en déduit par récurrence sur p.

1b. La suite (a_n) est associée à la fonction $f: \mathbb{R}+ \to \mathbb{R}$ définie par : $\forall x \geq 0, f(x) = \frac{1}{x+1}$. f est indéfiniment dérivable, et une récurrence triviale montre que $\forall p \in \mathbb{N}, \forall x \geq 0, f^{(p)}(x) = \frac{(-1)^p p!}{(x+1)^{p+1}}$. En appliquant le **1a.**, il vient :

$$\forall p \geqslant 1, \forall n \in \mathbb{N}, \exists x \in]n, n + p[, (\Delta^p a)_n = \frac{(-1)^p p!}{(x+1)^{p+1}}.$$

Il s'ensuit que $(-1)^p(\Delta^p a)_n = \frac{p!}{(x+1)^{p+1}} > 0$. Comme de plus $\forall n \in \mathbb{N}, (\Delta^0 a)_n = a_n > 0$, il en découle que

 (a_n) est complètement monotone.

2a. Notons $T: E \to E$ défini par : $\forall u \in E, \forall n \in \mathbb{N}, (Tu)_n = u_{n+1}$. C'est un endomorphime de E, et $\Delta = T - id_E$. Comme T et id_E commutent, on peut appliquer la formule du binôme de Newton dans l'anneau $\mathcal{L}(E)$:

$$\forall p \in \mathbb{N}, \Delta^p = \sum_{k=0}^p (-1)^{p-k} {p \choose k} T^k.$$

D'où

$$\forall u \in E, \forall p \geqslant 1, \forall n \in \mathbb{N}, (\Delta^p u)_n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} u_{n+k}.$$

Remarque : La formule précédente est vraie aussi pour p=0; observons de plus que, puisque $\forall k \in \mathbb{N}, (-1)^k = (-1)^{-k}$:

$$\forall p \geqslant 0, \forall n \in \mathbb{N}, (-1)^p (\Delta^p u)_n = \sum_{k=0}^p (-1)^k {p \choose k} u_{n+k},$$

formule que je noterai (i).

2b. La formule (i) fournit $\forall (p,n) \in \mathbb{N}^2$, $(-1)^p (\Delta^p b)_n = \sum_{k=0}^p (-1)^k {p \choose k} b^{n+k} = b^n (1-b)^p$ (en réappliquant le binôme de Newton au développement de $(1-b)^p$). Comme $b \in]0,1[$, il s'ensuit que

$$(b_n)$$
 est complètement monotone.

3a. Soit $N \in \mathbb{N}$; on a:

$$\sum_{k=0}^{N} (-1)^k u_k = \int_0^1 \sum_{k=0}^{N} (-t)^k \omega(t) \, \mathrm{d}t = \int_0^1 \frac{1}{1+t} \omega(t) \, \mathrm{d}t - \int_0^1 \frac{(-t)^{N+1}}{1+t} \omega(t) \, \mathrm{d}t.$$

(Somme partielle d'une série géométrique de raison $-t \neq 1$.)

Notons $R_N = \int_0^1 \frac{(-t)^{N+1}}{1+t} \omega(t) dt$, et soit $M = \sup_{t \in [0,1]} |\omega(t)|$ (bien défini, puisque ω est continue sur le segment [0,1]). Comme pour tout $t \in [0,1]$, $\frac{1}{1+t} \leq 1$, il vient :

$$|R_N| \leqslant M \int_0^1 t^{N+1} dt = \frac{M}{N+2}.$$

Il en résulte que $\lim_{N \to +\infty} R_N = 0$: c'est dire que

la série numérique
$$\sum (-1)^k u_k$$
 converge, et $\sum_{k=0}^{+\infty} (-1)^k u_k = \int_0^1 \frac{\omega(t)}{1+t} dt$.

Remarque: On peut également invoquer le théorème de convergence dominée, appliqué sur [0,1] à la suite de fonctions $S_N(t) = \sum_{k=0}^{N} (-t)^k \omega(t) = \frac{1 - (-t)^{N+1}}{1+t} \omega(t)$, en observant que $|S_N(t)| \leq 2\omega(t)$.

3b. D'après la formule (i) (cf. 2.a), et en utilisant les calculs effectués au 2.b:

$$\forall (p,n) \in \mathbb{N}^2, (-1)^p (\Delta^p u)_n = \int_0^1 \sum_{k=0}^p (-1)^k {p \choose k} t^{n+k} \, \mathrm{d}t = \int_0^1 t^n (1-t)^p \omega(t) \, \mathrm{d}t.$$

Cependant $t\mapsto t^n(1-t)^p\omega(t)$ est continue, positive sur [0,1]; il en découle que $(-1)^p(\Delta^pu)_n\geqslant 0$, et que si cette quantité était nulle, alors $\forall t \in [0,1], t^n(1-t)^p\omega(t) = 0$. En particulier, on aurait $\forall t \in]0,1[,\omega(t)=0$ et par continuité: $\forall t \in [0,1], \omega(t)=0$,

ce qui est exclu par hypothèse. Ainsi : $\forall (p,n) \in \mathbb{N}^2, (-1)^p (\Delta^p u)_n > 0$ et

 $(u_n)_{n\in\mathbb{N}}$ est complètement monotone.

3c. Pour tout $t \in [0,1]$, on peut développer (puisque $0 \leqslant \frac{1-t}{2} \leqslant \frac{1}{2}$):

$$\frac{1}{1+t} = \frac{1}{2} \frac{1}{1 - (\frac{1-t}{2})} = \frac{1}{2} \sum_{n=0}^{+\infty} (\frac{1-t}{2})^p.$$

Définissons donc, pour $p \in \mathbb{N}$: $f_p:[0,1] \to \mathbb{R}$ par: $\forall t \in [0,1], f_p(t) = (\frac{1-t}{2})^p \omega(t)$. Chaque f_p est continue sur [0,1], et on a de plus : $\forall t \in [0,1], |f_p(t)| \leq \frac{M}{2^p}$ (avec les notations du **3.a**). Ainsi, la série de fonctions continues $\sum f_p$ converge normalement sur [0,1], et on peut intervertir :

$$\int_0^1 \frac{\omega(t)}{1+t} dt = \int_0^1 \sum_{p=0}^{+\infty} f_p(t) dt = \sum_{p=0}^{+\infty} \int_0^1 f_p(t) dt$$

Compte-tenu du 3.a, on a bien:

$$\int_{k=0}^{+\infty} (-1)^k u_k = \frac{1}{2} \sum_{p=0}^{+\infty} \int_0^1 (\frac{1-t}{2})^p \omega(t) dt.$$

3.d Pour tout $p \in \mathbb{N}$, on obtient, en développant le binôme $(1-t)^p$ et d'après **2.a**:

$$\int_0^1 (\frac{1-t}{2})^p \omega(t) dt = \frac{1}{2^p} \sum_{k=0}^p (-1)^k {p \choose k} \int_0^1 t^k \omega(t) dt = \frac{(-1)^p}{2^p} \sum_{k=0}^p (-1)^{p-k} {p \choose k} u_k = \frac{(-1)^p}{2^p} (\Delta^p u)_0.$$

D'où, d'après 3.c:

$$\left(\sum_{k=0}^{+\infty} (-1)^k u_k = \sum_{p=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.\right)$$

4. Appliquons ce qui précède à $\omega:[0,1]\to\mathbb{R}$, définie par : $\forall t\in[0,1], \omega(t)=1$ (qui vérifie bien les hypothèses du 3.); ici : $\int_0^1 \frac{\omega(t)}{1+t} \, \mathrm{d}t = \int_0^1 \frac{1}{1+t} \, \mathrm{d}t = [\ln(1+t)]_0^1 = \ln 2,$

- $\sum_{k=0}^{+\infty} (-1)^k u_k = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1}$,
- $\forall p \in \mathbb{N}, \int_0^1 (\frac{1-t}{2})^p \omega(t) dt = \int_0^1 (\frac{1-t}{2})^p dt = \frac{1}{(p+1)2^p}$ (effectuer le changement de variable u = 1 t).

D'parès 3.a et 3.c , il vient :

$$n = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \sum_{p=0}^{+\infty} \frac{1}{(p+1)2^{p+1}}.$$

Remarque: La première égalité peut se déduire du développement $(D): \forall t \in]-1,1[,\ln(1+t)=\sum_{n=0}^{+\infty}\frac{(-1)^nt^{n+1}}{n+1},$ et du fait que cette série de fonctions converge uniformément sur [0,1] (majorer les restes en utilisant le critère spécial des séries alternées): par continuité de $t \to \ln(1+t)$, (D) reste valable en 1. La seconde égalité revient à appliquer (D) en $\frac{-1}{2}$.

5a. Les calculs faits au 3.d impliquent l'égalité requise.

5b. D'après ce qui précède (et, toujours, le 3d.), on a

$$|S - \mathcal{E}_n| = |\sum_{p=n+1}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0| = |\frac{1}{2} \sum_{p=n+1}^{+\infty} \int_0^1 (\frac{1-t}{2})^p \omega(t) dt|.$$

Or on a vu que la série de fonctions continues $\sum f_p$ (donc aussi, a fortiori, $\sum_{p \geqslant n+1} f_p$) convergeait normalement sur [0,1]; il s'ensuit qu'on peut intervertir la série et l'intégrale, et, compte-tenu des calculs du 3.c:

$$|\frac{1}{2}\sum_{p=n+1}^{+\infty}\int_{0}^{1}(\frac{1-t}{2})^{p}\omega(t)\,\mathrm{d}t| = |\frac{1}{2}\int_{0}^{1}\sum_{p=n+1}^{+\infty}(\frac{1-t}{2})^{p}\omega(t)\,\mathrm{d}t| = |\frac{1}{2}\int_{0}^{1}(\frac{1-t}{2})^{n+1}\sum_{p=0}^{+\infty}(\frac{1-t}{2})^{p}\omega(t)\,\mathrm{d}t| = |\int_{0}^{1}(\frac{1-t}{2})^{n+1}\frac{\omega(t)}{1+t}\,\mathrm{d}t|.$$

Enfin, puisque $\omega \geqslant 0$ et comme $\forall t \in [0,1], 0 \leqslant \frac{1-t}{2} \leqslant \frac{1}{2}$, on peut conclure :

$$|S - \mathcal{E}_n| \leqslant \frac{1}{2^{n+1}} \int_0^1 \frac{\omega(t)}{1+t} dt = \frac{S}{2^{n+1}}.$$

Partie II: Transformée d'Euler

6a. La série $\sum (-1)^n u_n$ converge, donc $\lim_{n \to +\infty} u_n = 0$ et pour tout $k \in \mathbb{N}$, $\lim_{n \to +\infty} u_{n+k} = 0$. Or, p étant fixé, le 2.a fournit :

 $\forall n \in \mathbb{N}, (\Delta^p u)_n = \sum_{k=0}^p (-1)^{p-k} {p \choose k} u_{n+k}.$ D'où

6b. La suite $(r_n)_{n\in\mathbb{N}}$ converge, donc est bornée: notons $R=\sup_{n\in\mathbb{N}}|r_n|$. Soit $\varepsilon>0$; comme $\lim_{n\to+\infty}r_n=0$, il existe $N_1 \in \mathbb{N}, \forall n \geqslant N_1, |r_n| \leqslant \frac{\varepsilon}{2}$. Alors, pour tout $p \geqslant N_1$, comme $\frac{1}{2^p} \sum_{k=N_1}^p \binom{p}{k} \leqslant \frac{1}{2^p} \sum_{k=0}^p \binom{p}{k} = 1$:

$$|\frac{1}{2^{p}}\sum_{k=0}^{p}{p\choose k}r_{k}|\leqslant \frac{1}{2^{p}}\sum_{k=0}^{p}{p\choose k}|r_{k}|\leqslant \frac{R}{2^{p}}\sum_{k=0}^{N_{1}-1}{p\choose k}+\frac{1}{2^{p}}\sum_{k=N_{1}}^{p}{p\choose k}\frac{\varepsilon}{2}\leqslant \frac{R}{2^{p}}\sum_{k=0}^{N_{1}-1}{p\choose k}+\frac{\varepsilon}{2}$$

Or, N_1 étant fixé, la fonction $p \mapsto \sum_{k=0}^{N_1-1} {p \choose k}$ est polynômiale en p (écrire ${p \choose k} = \frac{p(p-1)...(p-k+1)}{k!}$), donc $\lim_{n \to +\infty} \frac{R}{2^p} \sum_{k=0}^{N_1-1} {p \choose k} = 0$. Ainsi, il existe $N_2 \in \mathbb{N}$ tel que pour tout $p \geqslant N_2, \left|\frac{R}{2^p}\sum_{k=0}^{N_1-1} \binom{p}{k}\right| \leqslant \frac{\varepsilon}{2}$.

Finalement, pour tout $p \geqslant \operatorname{Max}(N_1, N_2), |\frac{1}{2^p} \sum_{k=0}^p {p \choose k} r_k| \leqslant \varepsilon$, et

$$\lim_{n \to +\infty} \frac{1}{2^p} \sum_{k=0}^p \binom{p}{k} r_k = 0.$$

$$S_N = \sum_{p=0}^N \left[\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n \right] = \frac{(-1)^0}{2^0} (\Delta^0 u)_n - \frac{(-1)^{N+1}}{2^{N+1}} (\Delta^{N+1} u)_n = u_n - \frac{(-1)^{N+1}}{2^{N+1}} (\Delta^{N+1} u)_n.$$

Le **2a.** permet d'écrire $\frac{(-1)^{N+1}}{2^{N+1}}(\Delta^{N+1}u)_n = \frac{(-1)^n}{2^{N+1}}\sum_{k=0}^{N+1} {N+1 \choose k}(-1)^{n+k}u_{n+k}$. Or on vient de voir au **6a.** que $\lim_{n\to+\infty}u_n=0$:

le **6b.** appliqué à la suite $((-1)^n u_n)_{n \in \mathbb{N}}$ fournit alors $\lim_{N \to +\infty} \frac{(-1)^{N+1}}{2^{N+1}} (\Delta^{N+1} u)_n = 0$; on en déduit que $\lim_{N \to +\infty} S_N = u_n$,

c'est-à-dire que la série $\sum_{p\geqslant 0} \left[\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n\right]$ converge, et $\left[\sum_{p=0}^{+\infty} \left[\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n\right] = u_n.$

$$\left(\sum_{p=0}^{+\infty} \left[\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n\right] = u_n.\right)$$

7b. Notons, pour simplifier: $\forall n \in \mathbb{N}, w_n = (\Delta^p u)_n$. Soit $N \in \mathbb{N}$; notons également $\mathcal{U}_N = \sum_{n=0}^N (-1)^n (2(\Delta^p u)_n + (\Delta^{p+1} u)_n)$ $=\sum_{n=0}^{N}(-1)^{n}(2w_{n}+(\Delta w)_{n})$. Comme $\forall n \in \mathbb{N}, 2w_{n}+(\Delta w)_{n}=w_{n+1}+w_{n}$, on a:

$$\mathcal{U}_N = \sum_{n=0}^N (-1)^n w_{n+1} + \sum_{n=0}^N (-1)^n w_n = \sum_{n=1}^{N+1} (-1)^{n-1} w_n + \sum_{n=0}^N (-1)^n w_n = (-1)^N w_{N+1} + w_0.$$

Or, p étant fixé, le **6a.** montre que $\lim_{n\to +\infty} w_n = 0$, donc $\lim_{N\to +\infty} U_N = w_0 = (\Delta^p u)_0$. Il s'ensuit que la série

$$\sum_{n\geqslant 0} (-1)^n \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n\right) \text{ converge, et}$$

$$\sum_{n\geqslant 0} (-1)^n \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n\right) \text{ converge, et } \qquad \left[\sum_{n=0}^{+\infty} (-1)^n \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n\right) = \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.\right]$$

8a. D'après la question précédente, $E_n = \sum_{p=0}^n \sum_{k=0}^{+\infty} (-1)^k (\frac{(-1)^p}{2^p} (\Delta^p u)_k - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_k)$

$$=\sum_{k=0}^{+\infty}(-1)^k\sum_{p=0}^n(\frac{(-1)^p}{2^p}(\Delta^p u)_k-\frac{(-1)^{p+1}}{2^{p+1}}(\Delta^{p+1}u)_k)=\sum_{k=0}^{+\infty}(-1)^k(u_k-\frac{(-1)^{n+1}}{2^{n+1}}(\Delta^{n+1}u)_k).$$

Comme $\sum_{k\geq 0} (-1)^k u_k$ converge, ce qui précède montre que $\sum_{k\geq 0} \frac{(-1)^{n+1}}{2^{n+1}} (\Delta^{n+1} u)_k$ aussi, et, d'après **2a.**:

$$E_n - S = \frac{-1}{2^{n+1}} \sum_{k=0}^{+\infty} (-1)^{n+1+k} (\Delta^{n+1} u)_k = \frac{-1}{2^{n+1}} \sum_{k=0}^{+\infty} \sum_{p=0}^{n+1} (-1)^{k+p} {n+1 \choose p} u_{k+p} =$$

$$\left[\frac{-1}{2^{n+1}} \sum_{p=0}^{n+1} {n+1 \choose p} \sum_{k=p}^{+\infty} (-1)^k u_k.\right]$$

8b. Posons, pour $n \in \mathbb{N}^*$, $R_n = \sum_{k=n}^{+\infty} (-1)^k u_k$; en tant que reste d'une série convergente, on a : $\lim_{n \to +\infty} R_n = 0$. On peut alors

appliquer le **6b.** :
$$\lim_{n \to +\infty} \frac{1}{2^{n+1}} \sum_{p=0}^{n+1} {n+1 \choose p} R_p = 0$$
, d'où aussi $\lim_{n \to +\infty} E_n - S = 0$, *i.e.*

$$S = \sum_{p=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.$$

Partie III: Une amélioration de la méthode

9a. On a vu au **3a.** que $S = \int_0^1 \frac{\omega(t)}{1+t} dt$, d'où, comme $P_n(-1) \neq 0$: $T_n = \frac{1}{P_n(-1)} \int_0^1 \frac{P_n(-1) - P_n(t)}{1+t} \omega(t) dt$

$$= S - \int_0^1 \frac{P_n(t)}{P_n(-1)(1+t)} \omega(t) dt$$
, et

$$S - T_n = \int_0^1 \frac{P_n(t)}{P_n(-1)(1+t)} \omega(t) dt.$$

9b. ω étant positive, pour $M_n = \sup_{t \in [0,1]} |P_n(t)|$, on a

$$|S - T_n| \le M_n \int_0^1 \frac{\omega(t)}{|P_n(-1)|(1+t)} dt = \frac{SM_n}{|P_n(-1)|}.$$

Remarque: Il faut ne pas lire ces questions pour ne pas y répondre; les deux questions suivantes satisfont d'ailleurs la même condition nécessaire.

10. Ici, immédiatement : $P_n(-1) = 2^n$ et $M_n = 1$, d'où

$$|S - T_n| \leqslant \frac{S}{2^n}.$$

11. Ici $P_n(-1)=3^n$, et comme $\forall t\in[0,1], -1\leqslant 1-2t\leqslant 1$ et 1 est atteint pour t=0: $M_n=1$, et

$$|S - T_n| \leqslant \frac{S}{3^n}.$$

12a. Développons, pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$: $\cos(2nt) = \text{Re}[\exp(2int)] = \text{Re}[(\cos(t) + i\sin(t))]^{2n} = \text{Re}\sum_{k=0}^{2n} {2n \choose k} (i\sin(t))^k (\cos(t))^{2n-k} = \sum_{l=0}^{n} {2n \choose 2l} (-1)^l \sin^{2l}(t) \cos^{2n-2l}(t) = \sum_{l=0}^{n} (-1)^n {2n \choose 2l} \sin^{2l}(t) (\sin^2(t) - 1)^{n-l}.$

Définissons donc

$$P_n(X) = (-1)^n \sum_{l=0}^n {2n \choose 2l} X^l (X-1)^{n-l}.$$

- P_n est un polynôme de degré a priori $\leq n$, et comme le coefficient en X^n vaut $(-1)^n \sum_{l=0}^n \binom{2n}{2l} \neq 0$ (car $\forall l_i n[0, n] \binom{2n}{2l} > 0$), on a bien deg $P_n = n$.
- En outre, par définition et d'après les calculs précédents: $\forall t \in \mathbb{R}, P_n(\sin^2(t)) = \cos(2nt)$ (relation notée (ii)).
- Enfin, soit Q_n un autre polynôme vérifiant (ii); \sin^2 étant surjective de \mathbb{R} dans [0,1], les deux polynômes Q_n et P_n coïncident sur la partie infinie [0,1], donc sont égaux: d'où l'unicité de la suite $(P_n)_{n\in\mathbb{N}}$ vérifiant la relation (ii).

12b. Par définition: $P_n(-1) = (-1)^n \sum_{l=0}^n {2n \choose 2l} (-1)^l (-2)^{n-l} = \sum_{l=0}^n {2n \choose 2l} 2^{n-l} = \sum_{p=0}^n {2n \choose 2p} (\sqrt{2})^{2p}$ (en posant p = n - l, et compte-tenu de ${2n \choose 2l} = {2n \choose 2n-2l}$). Posons $a_n = P_n(-1) = \sum_{p=0}^n {2n \choose 2p} (\sqrt{2})^{2p}$, et $b_n = \sum_{p=0}^{n-1} {2n \choose 2p+1} (\sqrt{2})^{2p+1}$; il vient:

• $a_n + b_n = \sum_{k=0}^{2n} {2n \choose k} (\sqrt{2})^k = (1 + \sqrt{2})^{2n},$

• $a_n - b_n = \sum_{k=0}^{2n} {2n \choose k} (-\sqrt{2})^k = (1 - \sqrt{2})^{2n} = (\sqrt{2} - 1)^{2n}.$

D'où

$$P_n(-1) = \frac{1}{2}[(1+\sqrt{2})^{2n} + (\sqrt{2}-1)^{2n}].$$

12c. \sin^2 étant (une fois de plus) surjective de \mathbb{R} sur [0,1]: $\forall x \in [0,1], \exists t \in \mathbb{R}, P_n(x) = P_n(\sin^2(t)) = \cos(2nt)$. D'où $|M_n| \leq 1$ (on a même $M_n = 1$, atteint pour x = 0), et $\left[|S - T_n| \leq \frac{2S}{[(1+\sqrt{2})^{2n} + (\sqrt{2}-1)^{2n}]} \right]$

Partie IV : Comparaison des méthodes sur un exemple

13. Question ouverte, et intéressante; notons, pour $n \in \mathbb{N}$: $R_{1,n} = S - S_n, R_{2,n} = S - E_n, R_{3,n} = S - T_n$.

• On peut écrire, d'après le calcul effectué au **3a.** et en posant $u=t^{n+1}$, qui définit un \mathcal{C}^1 -difféomorphisme de]0,1] sur]0,1]:

$$R_{1,n} = \int_0^1 \frac{(-t)^{n+1}}{1+t} dt = \frac{(-1)^{n+1}}{n+1} \int_0^1 \frac{u^{1/n+1}}{1+u^{1/n+1}} du.$$

Formons alors $g_n:]0,1] \to]0,1]$ définie par: $\forall u \in]0,1], g_n(u) = \frac{u^{1/n+1}}{1+u^{1/n+1}}$. C'est une suite de fonctions continues et intégrables sur]0,1], qui converge simplement vers la fonction constante $\frac{1}{2}$, et telle que $\forall (n,u) \in \mathbb{N} \times]0,1]: |g_n(u)| \leq 1$,

fonction constante intégrable sur]0,1]. Le théorème de convergence dominée s'applique, et $\lim_{n\to+\infty}\int_0^1g_n(u)\,\mathrm{d}u=\frac{1}{2}$. D'où

$$R_{1,n} = S - S_n \sim \frac{(-1)^{n+1}}{2n}.$$

• La même idée peut être appliquée à $R_{2,n}=\int_0^1 (\frac{1-t}{2})^{n+1} \frac{1}{1+t} \,\mathrm{d}t$ (cf. **5b.**). On a, en posant $v=(1-t)^{n+1}$ (\mathcal{C}^1 -difféomorphisme de [0,1[sur]0,1]):

$$R_{2,n} = \frac{1}{(n+1)2^{n+1}} \int_0^1 \frac{v^{1/n+1}}{2 - v^{1/n+1}} dv.$$

On forme, de même, $h_n:]0,1] \rightarrow]0,1]$ définie par $\forall v \in]0,1], h_n(v) = \frac{v^{1/n+1}}{2-v^{1/n+1}}: (h_n)$ est une suite de fonctions continues intégrables sur]0,1], qui converge simplement vers 1, et telle que $\forall (n,v) \in \mathbb{N} \times]0,1], |h_n(v)| \leqslant 1$. D'après le théorème de convergence dominée: $\lim_{n \to +\infty} \int_0^1 h_n(v) dv = 1$, et donc $\boxed{R_{2,n} = S - E_n \sim \frac{1}{n2^{n+1}}.}$

• Comme $0 < \sqrt{2} - 1 < 1 < \sqrt{2} + 1$, on a $\lim_{n \to +\infty} (\sqrt{2} - 1)^{2n} = 0$ et $\lim_{n \to +\infty} (\sqrt{2} + 1)^{2n} = +\infty$; de plus : $\lim_{n \to +\infty} \frac{n2^{n+1}}{(\sqrt{2} + 1)^{2n}} = 0$. Il s'ensuit, en utilisant **12c.** et ce qui précède, que

$$|S - T_n| \le \frac{2S}{[(1+\sqrt{2})^{2n} + (\sqrt{2}-1)^{2n}]} \sim \frac{2S}{[(1+\sqrt{2})^{2n}]} = o(S - E_n).$$

$$(T_n)$$
 converge donc plus rapidement que (S_n) ou (E_n) .

• Reste à obtenir un équivalent de $S - T_n$; pour ce faire, on écrit, en posant $t = \sin^2 u$ (\mathcal{C}^1 -difféomorphisme de $]0, \frac{\pi}{2}[$ sur]0, 1[), puis v = 2u:

$$P_n(-1)(S-T_n) = \int_0^1 \frac{P_n(t)}{1+t} dt = \int_0^{\frac{\pi}{2}} \frac{2\cos(2nu)\sin(u)\cos(u)}{1+\sin^2(u)} du = \int_0^{\frac{\pi}{2}} 2\frac{\cos(2nu)\sin(2u)}{3-\cos(2u)} du = \int_0^{\pi} \frac{\cos(nv)\sin(v)}{3-\cos(v)} dv.$$

On forme enfin $F:[0,\pi]\to\mathbb{R}$ définie par : $\forall v\in[0,\pi], F(v)=\frac{\sin(v)}{3-\cos(v)}$. F est \mathcal{C}^{∞} sur $[0,\pi]$, et, en effectuant une triple intégration par parties, $\forall n\geqslant 1$:

intégration par parties,
$$\forall n \geqslant 1$$
:
$$\int_0^\pi \cos(nv) F(v) dv = \left[\frac{\sin(nv) F(v)}{n} \right]_0^\pi - \int_0^\pi \frac{\sin(nv) F'(v)}{n} dv = -\int_0^\pi \frac{\sin(nv) F'(v)}{n} dv = \left[\frac{\cos(nv) F'(v)}{n^2} \right]_0^\pi - \int_0^\pi \frac{\cos(nv) F''(v)}{n^2} dv = \left[\frac{\cos(nv) F'(v)}{n^2} \right]_0^\pi + \int_0^\pi \frac{\sin(nv) F^{(3)}(v)}{n^3} dv.$$

Cependant $\forall v \in [0,\pi]: F'(v) = \frac{3\cos(v)-1}{(3-\cos(v))^2}$, et $[\frac{\cos(nv)F'(v)}{n^2}]_0^\pi = \frac{(-1)^nF'(\pi)-F'(0)}{n^2} = -\frac{2+(-1)^n}{4n^2}$. En outre, en notant $M_3 = \sup_{v \in [0,\pi]} |F^{(3)}(v)|$, on a $|\int_0^\pi \frac{\sin(nv)F^{(3)}(v)}{n^3} dv| \leqslant \frac{\pi M_3}{n^3} = o(\frac{2+(-1)^n}{4n^2})$,

d'où finalement

$$S - T_n \sim -P_n(-1) \frac{2 + (-1)^n}{4n^2} \sim -\frac{2 + (-1)^n}{2n^2(\sqrt{2} + 1)^{2n}}.$$

Pour toute remarque ou suggestion concernant ce corrigé, contacter denis.favennec@prepas.org.