

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Campus Blumenau

Engenharia de Controle e Automação

Plano de Ensino

Identificação

Código	Nome	№. de Créditos		C. H. Global	Período
codigo	Nome	Teóricos	Práticos		
BLU 3202	Algoritmos e Estruturas de Dados	02	02	72	2°

Cursos	Engenharia de Controle e Automação
Pré-requisitos	BLU 3101 — Introdução à Informática

Ano/Semestre:	2017/1	Turmas:	A e B
Professor(es):	Mauri Ferrandin		
E-mail:	mauri.ferrandin@ufsc.br		
Hard on the call	Turma A: 3.1330-2/A301 - 3.1510-2/A003		
Horário/local:	Turma B: 3.1330-2/A3	301 - 4.0820-	-2/A004

Ementa

Estruturas de Dados e de Tipos Abstratos de Dados; Alocação Dinâmica de Memória; Algoritmos Recursivos; Estruturas de Dados em Memória Principal; Algoritmos de Pesquisa em Memória Principal; Pesquisa Digital, Algoritmos de Ordenação Interna.

Objetivos

Apresentar os algoritmos e as estruturas de dados básicas para o desenvolvimento de programas de computador. Ao final da disciplina o estudante deverá ser capaz de:

- Desenvolver programas em C, envolvendo a seleção e adaptação de estruturas de dados e algoritmos;
- Saber aplicar metodologias e técnicas para desenvolvimento de programas de computador;
- Conhecer estruturas de dados lineares, árvores binárias e tabelas de dispersão;
- Conhecer e saber aplicar algoritmos de procura e ordenação.

Conteúdo Programático

Programação em C e Metodologias de Desenvolvimento

- Consolidação de conceitos básicos de programação em C
- Criação e utilização de bibliotecas de funções
- Utilização de técnicas de depuração (debugging)

Programação de baixo-nível

- Representação de dados em memória
- Alocação dinâmica de memória
- Mecanismos de passagem de argumentos a funções

Estruturas de dados

- Estruturas lineares listas, filas e pilhas
- Tabelas de dispersão
- Árvores
- Heaps

Algoritmos de ordenação de dados

- Algoritmos de Ordenação Interna: Seleção, Inserção, Shellsort, Heapsort, QuickSort, Mergesort, Radixsort.
- Algoritmos de Pesquisa em Memória Principal: Pesquisa Sequencial, Pesquisa Binária, Pesquisa com Transformação de Chaves, Árvores Binárias de Pesquisa.

Metodologia de Ensino

- (X) Aulas expositivas em quadro
- (X) Utilização de transparências ou slides
- () Aulas práticas em laboratório
- () Trabalho teórico extra classe
- (X) Trabalho prático extra classe
- (X) Estudo Dirigido/ Listas de Exercícios
- (X) Aulas em Salas de Microcomputadores
- () Outros Especificar

Avaliação (Instrumentos e critérios)

A avaliação será fundamentada na aquisição das competências mínimas para o exercício da prática profissional e terá por finalidade analisar a evolução e o entendimento teórico e prático do aluno.

Ao longo da disciplina, o estudante será avaliado através de 03 provas escritas (P1, P2, P3) e 01 trabalhos práticos (T1). Todos os trabalhos deverão ser entregues até a data limite estipulada pelo professor. A partir desta data serão considerados como não entregues. Todos os trabalhos devem ser enviados através do Moodle da disciplina. A nota final (NF) obtida durante o semestre será a média aritmética entre as provas e a média dos trabalhos.

$$NF = \frac{P1 + P2 + P3 + T1}{4}$$

Estará aprovado o estudante com frequência mínima de 75% e MF maior ou igual a 6,0.

Recuperação

O estudante com frequência suficiente (F>=75%)e nota final entre 3,0 e 5,5 terá direito de realizar a recuperação, que compreenderá todo o conteúdo da disciplina e consistirá de uma prova.

A nota final após a recuperação (NFR) será então a **média aritmética** entre a **nota alcançada na prova de recuperação (NR)** e a nota final obtida **durante semestre (NF)**.

$$NFR = \frac{NF + NR}{2}$$

Cronograma de Aulas

Cronc	Cronograma de Aulas					
Aula	Tipo	Data	Assunto			
1	Р		Apresentação da disciplina.			
			Estruturas.			
2	Р		Ponteiros			
3	Р		Alocação Dinâmica de Memória			
4	Р		Recursividade			
5	Р	04/04	Prova 1			
6	Р		Listas Encadeadas			
7	Р		Filas e Pilhas			
8	Р		Tabelas Hash			
9	Р		Árvores: Árvores binárias, árvores binárias de pesquisa e árvores AVL			
10	Р		Exercícios			
11	Р	06/06, 07/06	Prova 2			
12	Р	13/06, 14/06	Complexidade de algoritmos			
13	Р	13/06, 14/06	Algoritmos de pesquisa em vetores			
14	Р	20/06, 21/06	Algoritmos de Ordenação			
15	Р	19/06*, 26/06*	Trabalho			
16	Р	27/06, 28/06	Prova 3 (30/06: divulgação dos resultados da prova 3 e trabalho)			
17	Р	03/07*	Revisão			
18	Р	04/07	Recuperação			

^{*} das 08:20 as 11:50 na sala A003.

Bibliografia Básica

- 1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Algoritmos: Teoria E Prática. 3 ed.: Campus, 2012. ISBN: 9788535236996.
- 2. Ziviani, Nivio. Projeto De Algoritmos Com Implementações Em Pascal E C 3ed.: CENGAGE, 2010. ISBN: 9788522110506.
- 3. Feofiloff, Paulo. Algoritmos Em Linguagem C: Campus, 2008. ISBN: 8535232494.

Bibliografia complementar

- 1. Wirth, Niklaus. Algoritmos E Estruturas De Dados: LTC, 1989. ISBN: 8521611900.
- 2. Tenenbaum, Aaron, Yedidyah Langsam and Moshe J. Augenstein. Estruturas De Dados Usando C. 1 ed.: Makron, 1995. ISBN: 8534603480.
- 3. Sedgewick, Robert. Algorithms in C Parts 1-4. 3 ed.: Addison Wesley, 1998. ISBN: 201314525.
- 4. Szwarfiter, Jayme Luiz and Lilian Markenzon. Estruturas De Dados E Seus Algoritmos. 3 ed.: LTC, 2010. ISBN: 852161750x.
- 5. Ziviani, Nivio. Projeto De Algoritmos Com Implementações Em Java E C++: Thomson Pioneira, 2006. ISBN: 8522105251.

Observações:

- A. Atestado médico não abona falta.
- B. Discentes que faltarem em quaisquer das avaliações terão somente direito à segunda chamada mediante requerimento circunstanciado, pessoalmente encaminhado e protocolado na Secretaria dos Cursos no prazo máximo de 72 horas a partir da data de avaliação.
- C. Discentes com nota final menor que 3,0 (três) ou com frequência inferior a 75%, serão reprovados na disciplina.
- D. Plágio. Plagiar é a apresentar ideias, expressões ou trabalhos de outros como se fossem os seus, de forma intencional ou não. Serão caracterizadas como plágio a compra ou apresentação de trabalhos elaborados por terceiros e a reprodução ou paráfrase de material, publicado ou não, de outras pessoas, como se fosse de sua própria autoria, e sem a devida citação da fonte original. Os casos relacionados à compra, reprodução, citação, apresentação etc., de trabalhos, ideias ou expressões serão encaminhados pelo professor da disciplina ao Colegiado do Curso e rigorosamente examinados.
- E. O Regulamento dos Cursos de Graduação da UFSC (resolução 17/CUN/1997) encontra-se no seguinte endereço: http://antiga.ufsc.br/paginas/downloads/UFSC Resolução N17 CUn97.pdf.
- F. Plano de ensino sujeito a alterações.