

Aluno: Estevam Souza

Professor: Vagner

Faculdade: Estácio

RELATÓRIO FINAL [] RELATÓRIO PARCIAL [X]

APROVADO [] REPROVADO [] AJUSTES []

Universidade Estácio de Florianópolis Relatório sobre IoT

Conteúdo

1	Introdução	3
2	Protocolos de Comunicação IoT	3
	2.1 MQTT (Message Queuing Telemetry Transport)	3
	2.2 CoAP (Constrained Application Protocol)	4
	2.3 HTTP (Hypertext Transfer Protocol)	4
3	Comparação de Protocolos	4
4	Conclusão	5
5	Assinaturas	6

5 de junho de 2024

1. Introdução

A Internet das Coisas (IoT) está se tornando cada vez mais importante em diversos setores, e a comunicação eficiente entre dispositivos é essencial para o funcionamento adequado dos sistemas IoT. Nesta pesquisa, exploraremos os protocolos mais comuns utilizados na comunicação entre dispositivos IoT.

2. Protocolos de Comunicação IoT

Existem vários protocolos de comunicação disponíveis para dispositivos IoT, cada um com suas próprias características e casos de uso específicos. Alguns dos protocolos mais populares incluem:

2.1 MQTT (Message Queuing Telemetry Transport)

O MQTT é um protocolo leve de mensagens, projetado para comunicações entre dispositivos com largura de banda limitada e alta latência. Ele utiliza o modelo de publicação/assinatura, facilitando a comunicação assíncrona entre dispositivos.

2.2 CoAP (Constrained Application Protocol)

O CoAP é um protocolo de aplicação web projetado para dispositivos com recursos limitados, como sensores e atuadores IoT. Ele oferece um modelo de comunicação baseado em requisição/resposta, semelhante ao HTTP, mas otimizado para ambientes com restrições de largura de banda e energia.

2.3 HTTP (Hypertext Transfer Protocol)

Embora não seja exclusivo para IoT, o HTTP ainda é amplamente utilizado para comunicação entre dispositivos IoT e servidores na nuvem. Ele oferece uma variedade de métodos de requisição, como GET, POST, PUT e DELETE, tornando-o flexível para diferentes tipos de interações.

3. Comparação de Protocolos

Para determinar o protocolo mais adequado para uma determinada aplicação IoT, é importante considerar vários fatores, como largura de banda disponível, consumo de energia, latência e requisitos de segurança. A tabela a seguir resume algumas das características-chave dos protocolos discutidos:

Protocolo	Largura de Banda	Consumo de Energia	Latência
MQTT	Baixa	Baixo	Alta
CoAP	Baixa	Baixo	Média
HTTP	Alta	Alto	Baixa

Universidade Estácio de Florianópolis Relatório sobre IoT

4. Conclusão

A escolha do protocolo de comunicação correto é essencial para o sucesso de um sistema IoT. Ao considerar as características de diferentes protocolos, os desenvolvedores podem selecionar a opção mais adequada para atender aos requisitos específicos de sua aplicação.

5. Assinaturas

Assinatura do Aluno Estevam Souza

Assinatura do professor

Vagner (professor)