```
In [1]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as se
In [2]: x=np.array([95,85,80,70,60])
         y=np.array([85,95,70,65,70])
         model=np.polyfit(x,y,1)
In [3]:
         model
In [4]:
         array([ 0.64383562, 26.78082192])
Out[4]:
In [6]:
         predict=np.poly1d(model)
         predict(65)
         68.63013698630137
Out[6]:
         y_pred=predict(x)
In [7]:
         y_pred
         array([87.94520548, 81.50684932, 78.28767123, 71.84931507, 65.4109589])
Out[7]:
         from sklearn.metrics import r2_score
In [11]:
         r2_score(y,y_pred)
         0.4803218090889326
Out[11]:
In [13]: y_line=model[1]+model[0]*x
         plt.plot(x,y_line,c='r')
         plt.scatter(x,y_pred)
         plt.scatter(x,y,c='r')
         plt.show()
```


In [14]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as se

In [15]: sp=pd.read_csv("/home/student/Desktop/Boston.csv")

In [16]: sp.head(6)

Out[16]:		Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat
	0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
	1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
	2	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
	3	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
	4	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33
	5	6	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21

In [17]: sp['crim']

```
Out[17]:
         1
                0.02731
         2
                0.02729
         3
                0.03237
         4
                0.06905
                 . . .
         501
                0.06263
         502
                0.04527
         503
                0.06076
         504
                0.10959
                0.04741
         505
         Name: crim, Length: 506, dtype: float64
In [18]: sp.isnull().sum()
         Unnamed: 0
                       0
Out[18]:
         crim
                       0
         zn
                       0
         indus
                       0
         chas
                       0
         nox
                       0
                       0
         rm
                       0
         age
         dis
                       0
         rad
                       0
                       0
         tax
         ptratio
                       0
         black
                       0
         lstat
                       0
         medv
                       0
         dtype: int64
In [19]: x=sp.drop(['crim'],axis=1)
         y=sp['crim']
In [20]: | from sklearn.model_selection import train_test_split
         xtrain, xtest, ytrain, ytest=train_test_split(x,y,test_size=0.2)
In [21]: import sklearn
         from sklearn.linear_model import LinearRegression
         lm=LinearRegression()
         model=lm.fit(xtrain,ytrain)
In [22]: ytrain_pred=lm.predict(xtrain)
         ytest_pred=lm.predict(xtest)
In [23]: sp=(ytrain_pred,ytrain)
         sp=(ytest_pred,ytest)
In [24]: #from sklearn.metrics import mean_squared_error.r2_score
         #mse=mean_squared_error(ytest,ytest_pred)
          #print(mse)
         #mse=mean_squared_error(ytrain_pred,ytrain)
          #print(mse)
In [25]: #mse=mean_squared_error(ytest,ytest_pred)
         #print(mse)
```

0.00632

```
In [26]: plt.scatter(ytrain,ytrain_pred,c='blue',marker='o',label='training data')
   plt.scatter(ytest,ytest_pred,c='red',marker='o',label='Test data')
   plt.xlabel('True values')
   plt.ylabel('Predicted')
   plt.title("True value vs Predicted value")
   plt.legend(loc='lower right')
   plt.plot()
   plt.show()
```


Tn Γ 1.