Задачи к практическому занятию на тему «Генетические алгоритмы»

Задача 1

Многослойная нейронная сеть, содержащая два скрытых слоя и один выходной нейрон, обучается по выборочным данным воспроизведению значений функции трех переменных. Каждый из скрытых слоев содержит 5 нейронов. Нейроны скрытых слоев имеют логистические активационные характеристики. Выходной нейрон является линейным.

Для обучения нейронной сети применяется генетический алгоритм. В процессе обучения настраиваются не только синаптические коэффициенты всех нейронов, но и параметры крутизны а логистических активационных характеристик нейронов скрытых слоев (предполагается, что активационные характеристики в слоях не являются однородными).

При реализации бинарного генетического алгоритма каждый из обучаемых параметров кодируется 8-разрядным бинарным числом.

- а) Напишите выражение для критериальной функции.
- б) Постройте хромосому и укажите ее длину в байтах.
- *в*) Как следует организовать проверку отсутствия "переобучения" сети в процессе оптимизации?

<u>Задача 2</u>

Для максимизации функции двух переменных
$$D(x,y) = \frac{1}{1 + (1+x)^2 + (4-y)^2}$$
 применяется

генетический алгоритм с непрерывными параметрами x, y. Число хромосом в поколении равно 6, а вероятность мутации p_{μ} =0.07. Операция кроссинговера реализуется при значении $|\beta|$ =0.3 и допускает отрицательные значения β . Селекция выполняется на основе элитарной стратегии.

Состав хромосом и соответствующие значения функции приспособленности в t-поколении представлены в Таблице 1.

Характеристики *t*-поколения

Таблица 1

№ хромосомы	1	2	3	4	5	6
Гены	-2	-2,5	1,25	1	-0,5	-1,7
	2,5	2,9	3	5	3,2	4,5
Функция приспособленности	0,235	0,224	0,142	0,167	0,529	0,575

Проведите расчет всех необходимых генетических операций и постройте (t+1)-поколение.

Для реализации процедур репродукции и мутации воспользуйтесь выборкой случайных чисел из генеральной совокупности R(0, 1) (табл. 2).

Таблица 2

Случайные числа

$\mathcal{N}_{\underline{0}}$	1	2	3	4	5	6	7	8	9
Случайные числа	0,271	0,762	0,143	0,916	0,061	0,512	0,004	0,828	0,633
No	10	11	12	13	14	15	16	17	18
Случайные числа	0,112	0,703	0,609	0,592	0,246	0,318	0,007	0,925	0,676

<u>Задача 3</u>

Для максимизации функции многих переменных применяется генетический алгоритм с бинарным кодированием параметров. Длина хромосомы l=70, число хромосом в поколении N=10, вероятность мутации p_{μ} =0.04.

Рассматривается "выживаемость" схемы H, которая задана следующей строкой:

№ бинарного разряда	1	2	3		34	35	36	37	38	39		70
Значение бинарного разряда	*	*	*	*	1	*	0	0	*	1	*	*

В поколении t рассчитаны значения функции приспособленности для всех хромосом и проанализировано присутствие в них схемы H (табл. 3).

Таблица 2

Характеристики *t*-поколения

№ хромосомы	1	2	3	4	5	6	7	8	9	10
Значение функции	12.4	17.1	0.4	22.1	165	11.0	15.2	10.1	12.5	146
приспособленности $f^p(t)$	13,4	1/,1	9,4	22,1	16,5	11,8	15,3	19,1	13,5	14,6
Индикатор присутствия схемы	0	1	0	0	0	0	1	1	0	1
в хромосоме $i^p(t)$	U	1	U	U	U	U	1	1	U	1

Напишите выражение, определяющее среднее число $m_H(t+1)$ хромосом, содержащих хромосому H в поколении (t+1), если генетический алгоритм реализован по классической схеме Холланда (выполнены условия теоремы о "выживаемости" схем).

Проведите вычисления в соответствии с условиями задачи и оцените способность схемы H к "выживанию" в эволюционном процессе.