CSE 435/535 Fall 2018 Information Retrieval

Lecture: Friday 3 – 5:30 pm Farber 150 (South Campus)

Description:

This course will introduce students to text-based information retrieval (IR) techniques, i.e. search engines. Various IR models such as the Boolean model, vector space model, and probabilistic models will be studied. Efficient indexing techniques for (i) general document collections, (ii) specialized collections (e.g. Wikipedia, patents) and (iii) high velocity data such as social media will be discussed. Techniques for improving search efficiency, improving performance as well as evaluation methodology will be covered. The latter part of the course will focus on web search including link analysis techniques such as PageRank and HITS. Newer methods of representing content (neural embeddings, Word2vec) will be introduced. Students will work on programming projects to gain hands-on expertise in building IR systems.

Prerequisites: Programming expertise, Java, linear algebra

Textbook: Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schütze,

Cambridge University Press (2008)

Note: an online version of this book is available at http://informationretrieval.org

Instructor: Rohini K. Srihari, 338D Davis Hall

email: <u>rohini@buffalo.edu</u>

office hours: TBA

TA:

1. Archita Pathak architap@buffalo.edu

Office hours: TBA

2. Lu Meng lumeng@buffalo.edu

Office hours: TBA

3. Vicky Zheng vickyzhe@buffalo.edu

Office hours: TBA

4. Kishlay Jha kishlayj@buffalo.edu

Office hours: TBA

Course Details:

- 1. You are expected to attend all lectures and to complete all readings on time. In several weeks, there will be recitations in the latter part of class (see course schedule).
- 2. There will be 4 programming assignments in this course. The assignments cover the configuration of Solr for a particular search task, building of search indexes, evaluation of IR models, and a final assignment requiring the development of a complete IR solution based on a real-world problem. All programming assignments will require the use of an AWS account; more information on this will be provided in class.
- 3. We will use Piazza for course related discussion. The Piazza link is https://piazza.com/buffalo/fall2018/cse435535 Class notes will be posted there prior to class.

Projects and announcements will also be posted on this site. Piazza should be used for Q&A related to the course and particularly projects. **Note: Piazza site for this course will open on Monday, 27th Aug, 2018.**

4. Please read department policy on academic dishonesty; *this will be enforced strictly*.

IMPORTANT DATES

First day of class	Aug 31	
Midterm- 1	Oct 5	
Midterm- 2	Nov 9	
Final Project		
Presentation & Last	Dec 7	
Lecture		
Final Exam	Dec 13 11:45 – 2:45	
Project 1 Due	Sept 20	
Project 2 Due	Oct 18	
Project 3 Due	Nov 15	
Project 4 Due	Dec 9	

GRADING

Midterms	30%	
Final	20%	
Projects	50%	
Total	100%	

COURSE SCHEDULE

Week and Date	Topics	Readings *	Important Activities
Week-1	Introduction to IR	Chapter 1, 2	Project 1 Release
Aug 31	Conceptual Models of IR		Recitation - SOLR
	Boolean Model		
	Project 1 release		
	Recitation		
Week-2	Tokenization	Chapter 3	
Sept 7	Text analysis: stop lists, stemming	Supplements	
	Dictionaries, Tolerant Retrieval		
Week-3	Index Construction	Chapter 4	Recitation – Project 1
Sept 14	Distributed Indexing and Search	Supplements	•
	Hadoop		
	Recitation		
Week-4	Text Properties: Heaps, Zipfs Laws	Chapter 5, 6	Project 1 Due on Sept 20
Sept 21	Index Compression		Project 2 Release
	Vector-Space Model		-
	Project 2 release		
Week-5	TF-IDF Weighting	Chapter 6, 7	Recitation
Sept 28	Scoring and Ranking in IR Systems		
	Recitation		

Week-6 Oct 5	Midterm Evaluation Machine Learned Ranking	Chapter 8 Handouts	Midterm 1
Week-7 Oct 12	Relevance Feedback Query Expansion: Local and Global Recitation	Chapter 9	Recitation – Project 2, midterm 1 solutions
Week-8 Oct 19	Text Classification Project 3 release	Chapter 13, 14 Handouts	Project 2 Due on Oct 18Project 3 Release
Week-9 Oct 26	Probabilistic IR: Okapi (BM 25), DFR Language Models for IR, Cross Lingual IR Recitation	Chapter 11,12	Recitation – Project 3
Week-10 Nov 2	Web Search Web Crawling Project 4 release Recitation	Chapter 19, 20	Project 4 ReleaseRecitation – Project 3
Week-11 Nov 9	Midterm 2 Social Network Analysis: Link Analysis PageRank, HITS	Chapter 21 Handouts	Midterm 2
Week-12 Nov 16	Latent Semantic Indexing Word2Vec, Doc2Vec Recitation	Chapter 18 Handouts	 Recitation – Project 4 Project – 3 Due on Nov 15
Week-13 Nov 23	***THAN	IKSGIVING BRE	EAK***
Week-14 Nov 30	Mobile Search, Personalized Search, Computational Advertising Recitation	Handouts	Recitation – Project 4
Week-15 Dec 7	Student Project Presentation Summary		Project – 4 Due on Dec 9

 $[\]hbox{*Chapters are from the $\it An Introduction to Information Retrieval}$ textbook unless specified.$