ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIO DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS MICROONES, GENER 2003

EXAMEN FINAL

PROFESSORS: A. AGUASCA, A. COMERON

I. CORBELLA, N. DUFFO

Barcelona, 10 de gener de 2003

Cal realitzar **només tres** dels quatre problemes proposats Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

La figura mostra el circuit equivalent aproximat d'una transició coaxial-microstrip.

Mesures de laboratori permeten determinar el coeficient de reflexió a l'entrada per a diverses condicions de càrrega.

- a) Calculeu la matriu S referida a Z_0 =50 Ω i als plans 1 i 2.
- b) Trobeu les expressions de ℓ i C en funció de dues mesures de Γ_{in} : una amb curtcircuit (Γ_L =-1) i altre amb una càrrega adaptada (Γ_L =0).
- c) Calculeu els valors de ℓ (en termes de λ) i C per a les següents mesures fetes a 1,5GHz:

$$\Gamma_{\text{in}} (\Gamma_{\text{L}} = -1) = 1 \angle 90^{\circ}$$

$$\Gamma_{\text{in}} (\Gamma_{\text{L}} = 0) = \frac{1}{2\sqrt{5}} \angle 153.4^{\circ}$$

d) Calculeu les pèrdues de retorn i les pèrdues d'inserció de la transició per a 1,5 GHz

PROBLEMA 2

La figura 1 presenta el circuit equivalent, en les proximitats de la freqüència central, d'un filtre passa-banda d'ordre 1 realitzat amb línies acoblades.

Fig. 1

a) Sabent que l'ample de banda a $3 \, dB$ d'un filtre fet amb un circuit ressonant paral·lel és aproximadament

$$\Delta f = \frac{1}{2\pi C R_T}$$
, on R_T té en compte la

resistència de càrrega i la interna del generador, determineu el valor de \overline{J} en funció de Δf i \overline{C} .

- b) Quantes seccions de **línies acoblades** es necessiten per realitzar el filtre? Quina ha de ser la longitud de cada secció en termes de la longitud d'ona λ_0 a la freqüència central del filtre? Dibuixeu esquemàticament les pistes del filtre realitzat en strip-line.
- c) Si la freqüència central del filtre ha de ser $f_0 = 4\,GHz$, i el filtre es realitza en strip-line amb un substrat de constant dielèctrica relativa $\varepsilon_r = 2,17$, quina ha de ser la longitud de cada secció de línies acoblades?
- d) Si l'ample de banda del filtre ha de ser $\Delta\,f=400~MHz$, les impedàncies de càrrega i generador són $R=50~\Omega$ i les seccions de línies acoblades compleixen la condició

d'adaptació per a $Z_{\rm 0}$ = 50 Ω , determineu $Z_{\rm 0e}$ i $Z_{\rm 0o}$

(Notes:
$$\overline{C} = \frac{\pi}{2 \omega_0}$$
, $\frac{Z_{0e} - Z_{0o}}{Z_{0e} + Z_{0o}} = \frac{\overline{J}}{\sqrt{1 + \overline{J}^2}}$).

e) Utilitzant les gràfiques de la figura 2 determineu aproximadament l'amplada de les línies acoblades i la seva separació si el gruix del substrat és $b = 2,54 \ mm$.

PROBLEMA 3

El circuit de la figura és un modulador d'amplitud digital de dos nivells que funciona a 10GHz. L'híbrid té continuïtat elèctrica (DC) entre totes les seves portes i els diodes PIN són idèntics i es poden modelar en AC de la següent manera: En polarització directa equivalen a una resistència de valor R_j =0.025/ I_{DC} (Ω), essent I_{DC} el corrent de polarització i expressat en A, i en polarització inversa o nul·la equivalen a un condensador de 0.1 pF.

- a) Expliqueu la funció que realitzen els condensadors C i la inductància L, i indiqueu les limitacions que impliquen en la freqüència dels generadors v_g i v_m . Quin dels dos generadors és el senyal modulador i quin la portadora?
- b) Dibuixeu el circuit equivalent a la freqüència de v_g pels dos nivells de tensió de v_m , tot indicant els valors dels elements de circuit que hi intervenen. (Nota: per aquest càlcul negligiu la tensió DC que cau en cada un dels diodes).
- c) Calculeu el guany de transferència de potència del circuit pels dos nivells anteriors de tensió.

d) Feu un dibuix esquemàtic de la realització del circuit utilitzant línies microstrip (híbrid branch-line) tot indicant longituds elèctriques i impedàncies característiques de les línies.

PROBLEMA 4

Donat el transistor de la figura, del qual es coneixen els Cercles de Guany Constant (a l'entrada i a la sortida) i els de Factor de Soroll constant, s'adapta a la freqüència de 2GHz amb les xarxes indicades, on les línies de transmissió tenen les longituds indicades.

- a) Trobi els valors dels paràmetres S_{11} , S_{22} , Γ_{opt} del transistor, així com els valors de guany unilateral G_{TU} i el factor de soroll, associats a les xarxes d'adaptació indicades si S_{21} =8 \angle -90°.
- b) Justifiqui i trobi les modificacions que caldria fer per aconseguir mínim factor de soroll. Quin serà el guany G_{TU} associat?.
- c) Justifiqui i trobi les modificacions que caldria fer per aconseguir màxim guany unilateral G_{TUmax} .

DADES:

Totes les línies de transmissió representades són *microstrip*, amb les següents característiques, Z_0 =50 Ω ; Z_0 '=80 Ω ; ℓ_1 =0.25 λ ; ℓ_2 =0.276 λ ; ℓ_3 =0.118 λ ; ℓ_4 =0.099 λ

$$G_{TU} = \frac{\left(1 - |\Gamma_{g}|^{2}\right) \cdot |S_{21}|^{2} \cdot \left(1 - |\Gamma_{L}|^{2}\right)}{|1 - S_{11}\Gamma_{g}|^{2} \cdot |1 - S_{22}\Gamma_{L}|^{2}}$$

Els cercles de guany a l'entrada són: 2.5dB, 2dB 1dB 0dB

Els cercles de guany a la sortida són: 1.5dB, 1dB 0.5dB 0dB

Els cercles de Fsoroll són: 1dB, 2dB, 3dB, 4dB

