Inferência Estatística Comparada

AULA 5 - INFERÊNCIA CLÁSSICA

- $\delta: \mathcal{X} \to \Theta$ é não-viesado para θ $(g(\theta))$ se, \forall $\theta \in \Theta$, $\mathbb{E}(\delta(X)|\theta) = \theta$ $(g(\theta))$, isto é,
- $\mathbb{E}(\delta(X)|\theta) = \sum_{x \in \mathcal{X}} \delta(x) \mathbb{P}(X = x|\theta) = \sum_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso discrete)
- $\mathbb{E}(\delta(X)|\theta) = \int_{x \in \mathcal{X}} \delta(x) f(x|\theta) =$ = $\int_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso continuo)
- Obtido um estimador não-viesado δ , a estimativa a partir da observação $x \in \mathcal{X}$ é obtida aplicando-se δ em x, $\delta(x)$. A estimativa no ponto x não é obtida EXCLUSIVAMENTE a partir de V_x (no sentido de depender também de $V_{x'}(\theta), x' \neq x$): primeiro obtemos o estimador (função δ) e então aplicamos no ponto x.

- $\delta: \mathcal{X} \to \Theta$ é não-viesado para $\theta \ (g(\theta))$ se, $\forall \ \theta \in \Theta$, $\mathbb{E}(\delta(X)|\theta) \ = \ \theta \ (g(\theta))$, isto é,
- $\mathbb{E}(\delta(X)|\theta) = \sum_{x \in \mathcal{X}} \delta(x) \mathbb{P}(X = x|\theta) = \sum_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso discrete)
- $\mathbb{E}(\delta(X)|\theta) = \int_{x \in \mathcal{X}} \delta(x) f(x|\theta) =$ = $\int_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso continuo)
- Obtido um estimador não-viesado δ , a estimativa a partir da observação $x \in \mathcal{X}$ é obtida aplicando-se δ em x, $\delta(x)$. A estimativa no ponto x não é obtida EXCLUSIVAMENTE a partir de V_x (no sentido de depender também de $V_{x'}(\theta), x' \neq x$): primeiro obtemos o estimador (função δ) e então aplicamos no ponto x.

- $\delta: \mathcal{X} \to \Theta$ é não-viesado para $\theta \ (g(\theta))$ se, $\forall \ \theta \in \Theta$, $\mathbb{E}(\delta(X)|\theta) \ = \ \theta \ (g(\theta))$, isto é,
- $\mathbb{E}(\delta(X)|\theta) = \sum_{x \in \mathcal{X}} \delta(x) \mathbb{P}(X = x|\theta) = \sum_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso discreto)
- $\mathbb{E}(\delta(X)|\theta) = \int_{x \in \mathcal{X}} \delta(x) f(x|\theta) =$ = $\int_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso continuo)
- Obtido um estimador não-viesado δ , a estimativa a partir da observação $x \in \mathcal{X}$ é obtida aplicando-se δ em x, $\delta(x)$. A estimativa no ponto x não é obtida EXCLUSIVAMENTE a partir de V_x (no sentido de depender também de $V_{x'}(\theta), x' \neq x$): primeiro obtemos o estimador (função δ) e então aplicamos no ponto x.

- $\delta: \mathcal{X} \to \Theta$ é não-viesado para $\theta \ (g(\theta))$ se, $\forall \ \theta \in \Theta$, $\mathbb{E}(\delta(X)|\theta) \ = \ \theta \ (g(\theta))$, isto é,
- $\mathbb{E}(\delta(X)|\theta) = \sum_{x \in \mathcal{X}} \delta(x) \mathbb{P}(X = x|\theta) = \sum_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso discreto)
- $\mathbb{E}(\delta(X)|\theta) = \int_{x \in \mathcal{X}} \delta(x) f(x|\theta) =$ = $\int_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso contínuo)
- Obtido um estimador não-viesado δ , a estimativa a partir da observação $x \in \mathcal{X}$ é obtida aplicando-se δ em x, $\delta(x)$. A estimativa no ponto x não é obtida EXCLUSIVAMENTE a partir de V_x (no sentido de depender também de $V_{x'}(\theta), x' \neq x$): primeiro obtemos o estimador (função δ) e então aplicamos no ponto x.

- $\delta: \mathcal{X} \to \Theta$ é não-viesado para θ $(g(\theta))$ se, \forall $\theta \in \Theta$, $\mathbb{E}(\delta(X)|\theta) = \theta$ $(g(\theta))$, isto é,
- $\bullet \ \mathbb{E}(\delta(X)|\theta) \ = \ \sum_{x \in \mathcal{X}} \delta(x) \mathbb{P}(X = x|\theta) \ = \\ = \ \sum_{x \in \mathcal{X}} \delta(x) V_x(\theta) \ = \ \theta \ , \ \forall \ \theta \in \Theta. \ \text{(caso discreto)}$
- $\mathbb{E}(\delta(X)|\theta) = \int_{x \in \mathcal{X}} \delta(x) f(x|\theta) =$ = $\int_{x \in \mathcal{X}} \delta(x) V_x(\theta) = \theta$, $\forall \theta \in \Theta$. (caso contínuo)
- Obtido um estimador não-viesado δ , a estimativa a partir da observação $x \in \mathcal{X}$ é obtida aplicando-se δ em x, $\delta(x)$. A estimativa no ponto x não é obtida EXCLUSIVAMENTE a partir de V_x (no sentido de depender também de $V_{x'}(\theta), x' \neq x$): primeiro obtemos o estimador (função δ) e então aplicamos no ponto x.

- $\delta_{MV}: \mathcal{X} \to \Theta$ que associa a cada $x \in \mathcal{X}$ um ponto de
- No exemplo 2 (AAS do modelo Bernoulli (θ)), verifica-se
- Por exemplo, para n=5 e observado x=(1,0,0,1,0), a sem levar em conta $V_{x'}$, para qualquer $x' \neq x$.

- $\delta_{MV}: \mathcal{X} \to \Theta$ que associa a cada $x \in \mathcal{X}$ um ponto de máximo de $V_x(\cdot)$ é estimador de máxima verossimilhança (EMV) para θ .
- No exemplo 2 (AAS do modelo Bernoulli (θ)), verifica-se que $\delta_{MV}(X) = \bar{X}$ é o EMV para θ (nesse caso, o EMV coincide com o estimador não-viesado obtido na aula anterior).
- Por exemplo, para n=5 e observado x=(1,0,0,1,0), a estimativa de máxima verossimilhança, 2/5, maximiza $V_x(\theta)=\theta^2(1-\theta)^3$. Note que tal estimativa é (pode ser) determinada EXCLUSIVAMENTE a partir de $V_{(1,0,0,1,0)}$, sem levar em conta $V_{x'}$, para qualquer $x'\neq x$

- $\delta_{MV}: \mathcal{X} \to \Theta$ que associa a cada $x \in \mathcal{X}$ um ponto de máximo de $V_x(\cdot)$ é estimador de máxima verossimilhança (EMV) para θ .
- No exemplo 2 (AAS do modelo Bernoulli (θ)), verifica-se que $\delta_{MV}(X) = \bar{X}$ é o EMV para θ (nesse caso, o EMV coincide com o estimador não-viesado obtido na aula anterior).
- Por exemplo, para n=5 e observado x=(1,0,0,1,0), a estimativa de máxima verossimilhança, 2/5, maximiza $V_x(\theta)=\theta^2(1-\theta)^3$. Note que tal estimativa é (pode ser) determinada EXCLUSIVAMENTE a partir de $V_{(1,0,0,1,0)}$, sem levar em conta $V_{x'}$, para qualquer $x'\neq x$.

- $\delta_{MV}: \mathcal{X} \to \Theta$ que associa a cada $x \in \mathcal{X}$ um ponto de máximo de $V_x(\cdot)$ é estimador de máxima verossimilhança (EMV) para θ .
- No exemplo 2 (AAS do modelo Bernoulli (θ)), verifica-se que $\delta_{MV}(X) = \bar{X}$ é o EMV para θ (nesse caso, o EMV coincide com o estimador não-viesado obtido na aula anterior).
- Por exemplo, para n=5 e observado x=(1,0,0,1,0), a estimativa de máxima verossimilhança, 2/5, maximiza $V_x(\theta)=\theta^2(1-\theta)^3$. Note que tal estimativa é (pode ser) determinada EXCLUSIVAMENTE a partir de $V_{(1,0,0,1,0)}$, sem levar em conta $V_{x'}$, para qualquer $x' \neq x$.

• Para $g(\theta) = \theta^2$, o EMV para $g(\theta)$ é facilmente determinado pela propriedade de INVARIÂNCIA:

$$g(\hat{\theta})_{MV} = g(\delta_{MV})$$

• Assim, $\hat{\theta}^2_{MV}(X) = (\delta_{MV}(X))^2 = \bar{X}^2$. Aqui, ENVVUM e EMV são distintos. É razoável tentar estabelecer algum tipo de comparação entre tais estimadores? Se sim, sob quais aspectos?

• Para $g(\theta) = \theta^2$, o EMV para $g(\theta)$ é facilmente determinado pela propriedade de INVARIÂNCIA:

$$g(\hat{\theta})_{MV} = g(\delta_{MV})$$

• Assim, $\hat{\theta^2}_{MV}(X) = (\delta_{MV}(X))^2 = \bar{X}^2$. Aqui, ENVVUM e EMV são distintos. É razoável tentar estabelecer algum tipo de comparação entre tais estimadores? Se sim, sob quais aspectos?

• Para $g(\theta) = \theta^2$, o EMV para $g(\theta)$ é facilmente determinado pela propriedade de INVARIÂNCIA:

$$g(\hat{\theta})_{MV} = g(\delta_{MV})$$

• Assim, $\hat{\theta^2}_{MV}(X) = (\delta_{MV}(X))^2 = \bar{X}^2$. Aqui, ENVVUM e EMV são distintos. É razoável tentar estabelecer algum tipo de comparação entre tais estimadores? Se sim, sob quais aspectos?

 $\bullet \ \ \mbox{No exemplo 1, vimos que, para} \ x \in \{1,2,3,\ldots\}, \\$

- de modo que a estimativa de máxima verossimilhança ao observar $x \in \mathcal{X}$ é $\delta_{MV}(x) = x$ (consequentemente, o EMV é $\delta_{MV}(X) = X$).
- O estimador não-viesado "ótimo"nesse caso é $\delta_U(X)=2X-1$. Como (se possível) comparar δ_{MV} e δ_U ?
- Como no exemplo 2 (AAS Bernoulli(θ)), a estimativa de máxima verossimilhança ao observar x depende APENAS de V_x , sem fazer menção a qualquer $V_{x'}$, $x' \neq x$.

- No exemplo 1, vimos que, para $x \in \{1, 2, 3, ...\}$,
- $\bullet \ V_x(\theta) = \begin{cases} \frac{1}{\theta}, & \text{se } \theta \geq x \ (\theta \in \{x, x+1, \ldots\}) \\ 0, & \text{se } \theta < x \end{cases},$
- de modo que a estimativa de máxima verossimilhança ao observar $x \in \mathcal{X}$ é $\delta_{MV}(x) = x$ (consequentemente, o EMV é $\delta_{MV}(X) = X$).
- O estimador não-viesado "ótimo"nesse caso é $\delta_U(X)=2X-1$. Como (se possível) comparar δ_{MV} e δ_U ?
- Como no exemplo 2 (AAS Bernoulli(θ)), a estimativa de máxima verossimilhança ao observar x depende APENAS de V_x , sem fazer menção a qualquer $V_{x'}$, $x' \neq x$.

- No exemplo 1, vimos que, para $x \in \{1, 2, 3, ...\}$,
- $\bullet \ V_x(\theta) = \begin{cases} \frac{1}{\theta}, & \text{se } \theta \geq x \; (\theta \in \{x, x+1, \ldots\}) \\ 0, & \text{se } \theta < x \end{cases}$
- de modo que a estimativa de máxima verossimilhança ao observar $x \in \mathcal{X}$ é $\delta_{MV}(x) = x$ (consequentemente, o EMV é $\delta_{MV}(X) = X$).
- O estimador não-viesado "ótimo"nesse caso é $\delta_U(X)=2X-1$. Como (se possível) comparar δ_{MV} e δ_U ?
- Como no exemplo 2 (AAS Bernoulli(θ)), a estimativa de máxima verossimilhança ao observar x depende APENAS de V_x , sem fazer menção a qualquer $V_{x'}$, $x' \neq x$.

- No exemplo 1, vimos que, para $x \in \{1, 2, 3, ...\}$,
- $\bullet \ V_x(\theta) = \begin{cases} \frac{1}{\theta}, & \text{se } \theta \geq x \; (\theta \in \{x, x+1, \ldots\}) \\ 0, & \text{se } \theta < x \end{cases}$
- de modo que a estimativa de máxima verossimilhança ao observar $x \in \mathcal{X}$ é $\delta_{MV}(x) = x$ (consequentemente, o EMV é $\delta_{MV}(X) = X$).
- O estimador não-viesado "ótimo"nesse caso é $\delta_U(X)=2X-1.$ Como (se possível) comparar δ_{MV} e δ_U ?
- Como no exemplo 2 (AAS Bernoulli(θ)), a estimativa de máxima verossimilhança ao observar x depende APENAS de V_x , sem fazer menção a qualquer $V_{x'}$, $x' \neq x$.

- No exemplo 1, vimos que, para $x \in \{1, 2, 3, ...\}$,
- $\bullet \ V_x(\theta) = \begin{cases} \frac{1}{\theta}, & \text{se } \theta \geq x \; (\theta \in \{x, x+1, \ldots\}) \\ 0, & \text{se } \theta < x \end{cases}$
- de modo que a estimativa de máxima verossimilhança ao observar $x \in \mathcal{X}$ é $\delta_{MV}(x) = x$ (consequentemente, o EMV é $\delta_{MV}(X) = X$).
- O estimador não-viesado "ótimo"nesse caso é $\delta_U(X)=2X-1.$ Como (se possível) comparar δ_{MV} e δ_U ?
- Como no exemplo 2 (AAS Bernoulli(θ)), a estimativa de máxima verossimilhança ao observar x depende APENAS de V_x , sem fazer menção a qualquer $V_{x'}$, $x' \neq x$.

Resumidamente:

- 1) Para a observação $x \in \mathcal{X}$, a obtenção da estimativa de máxima verossimilhança depende EXCLUSIVAMENTE de V_x ; a estimativa não-viesada depende da construção do estimador (função), que, por sua vez, depende de TODAS $\{V_{x'}: x' \in \mathcal{X}\}$ e subsequente aplicação do estimador construído no ponto x.
- 2) Para comparar tais estimadores, além da propriedade que caracteriza estimadores não-viesados, podemos fazer uso de medidas de desempenho desses estimadores: Erro Quadrático Médio (EQM), Erro Absoluto Médio, dentre outros riscos (funcões de risco).

- Resumidamente:
- 1) Para a observação $x \in \mathcal{X}$, a obtenção da estimativa de máxima verossimilhança depende EXCLUSIVAMENTE de V_x ; a estimativa não-viesada depende da construção do estimador (função), que, por sua vez, depende de TODAS $\{V_{x'}: x' \in \mathcal{X}\}$ e subsequente aplicação do estimador construído no ponto x.
- 2) Para comparar tais estimadores, além da propriedade que caracteriza estimadores não-viesados, podemos fazer uso de medidas de desempenho desses estimadores: Erro Quadrático Médio (EQM), Erro Absoluto Médio, dentre outros riscos (funções de risco).

- Resumidamente:
- 1) Para a observação $x \in \mathcal{X}$, a obtenção da estimativa de máxima verossimilhança depende EXCLUSIVAMENTE de V_x ; a estimativa não-viesada depende da construção do estimador (função), que, por sua vez, depende de TODAS $\{V_{x'}: x' \in \mathcal{X}\}$ e subsequente aplicação do estimador construído no ponto x.
- 2) Para comparar tais estimadores, além da propriedade que caracteriza estimadores não-viesados, podemos fazer uso de medidas de desempenho desses estimadores: Erro Quadrático Médio (EQM), Erro Absoluto Médio, dentre outros riscos (funções de risco).

- Critério para comparação de (desempenho de) estimadores: Erro Quadrático Médio (EQM)
- $EQM(\delta(X)|\theta) = \mathbb{E}((\delta(X) \theta)^2|\theta) =$ = $\sum_{x \in \mathcal{X}} (\delta(x) - \theta)^2 \mathbb{P}(X = x|\theta)$. (caso discreto) = $\int_{x \in \mathcal{X}} (\delta(x) - \theta)^2 f(x|\theta) d\theta$. (caso contínuo)
- Expressão alternativa:

$$EQM(\delta(X)|\theta) = \{\mathbb{E}(\delta(X)|\theta) - \theta\}^2 + VAR(\delta(X)|\theta)$$

 Critério para comparação de (desempenho de) estimadores: Erro Quadrático Médio (EQM)

•
$$EQM(\delta(X)|\theta) = \mathbb{E}((\delta(X) - \theta)^2|\theta) =$$

= $\sum_{x \in \mathcal{X}} (\delta(x) - \theta)^2 \mathbb{P}(X = x|\theta)$. (caso discreto)
= $\int_{x \in \mathcal{X}} (\delta(x) - \theta)^2 f(x|\theta) d\theta$. (caso contínuo)

Expressão alternativa:

$$EQM(\delta(X)|\theta) = \{\mathbb{E}(\delta(X)|\theta) - \theta\}^2 + VAR(\delta(X)|\theta)$$

- Critério para comparação de (desempenho de) estimadores: Erro Quadrático Médio (EQM)
- $$\begin{split} \bullet \ & EQM(\delta(X)|\theta) \ = \ \mathbb{E}((\delta(X)-\theta)^2|\theta) \ = \\ & = \ \sum_{x\in\mathcal{X}} (\delta(x)-\theta)^2 \ \mathbb{P}(X=x|\theta). \ \text{(caso discreto)} \\ & = \ \int_{x\in\mathcal{X}} (\delta(x)-\theta)^2 \ f(x|\theta) d\theta. \ \text{(caso continuo)} \end{split}$$
- Expressão alternativa:

$$EQM(\delta(X)|\theta) = \{\mathbb{E}(\delta(X)|\theta) - \theta\}^2 + VAR(\delta(X)|\theta)$$

- Critério para comparação de (desempenho de) estimadores: Erro Quadrático Médio (EQM)
- $EQM(\delta(X)|\theta) = \mathbb{E}((\delta(X) \theta)^2|\theta) =$ = $\sum_{x \in \mathcal{X}} (\delta(x) - \theta)^2 \mathbb{P}(X = x|\theta)$. (caso discreto) = $\int_{x \in \mathcal{X}} (\delta(x) - \theta)^2 f(x|\theta) d\theta$. (caso contínuo)
- Expressão alternativa:

$$EQM(\delta(X)|\theta) \ = \ \{\mathbb{E}(\delta(X)|\theta) - \theta\}^2 \ + \ VAR(\delta(X)|\theta)$$

- Critério para comparação de (desempenho de) estimadores: Erro Quadrático Médio (EQM)
- $EQM(\delta(X)|\theta) = \mathbb{E}((\delta(X) \theta)^2|\theta) =$ = $\sum_{x \in \mathcal{X}} (\delta(x) - \theta)^2 \mathbb{P}(X = x|\theta)$. (caso discreto) = $\int_{x \in \mathcal{X}} (\delta(x) - \theta)^2 f(x|\theta) d\theta$. (caso contínuo)
- Expressão alternativa:

$$EQM(\delta(X)|\theta) = \{\mathbb{E}(\delta(X)|\theta) - \theta\}^2 + VAR(\delta(X)|\theta)$$

- No Exemplo 2 (AAS Bernoulli(θ)). Consideremos os seguintes estimadores:
- $\delta_1(X) = \bar{X} = \frac{X_1 + ... + X_n}{n}$ (EMV não-viesado)

•
$$\delta_2(X) = \frac{X_1 + X_2}{2}$$

$$\bullet \ \delta_3(X) = \frac{1 + n\bar{X}}{n+2}$$

•
$$\delta_4(X) = \frac{17}{100}$$

• No Exemplo 2 (AAS Bernoulli(θ)). Consideremos os seguintes estimadores:

•
$$\delta_1(X) = \bar{X} = \frac{X_1 + \ldots + X_n}{n}$$
 (EMV não-viesado)

•
$$\delta_2(X) = \frac{X_1 + X_2}{2}$$

•
$$\delta_3(X) = \frac{1 + n\bar{X}}{n+2}$$

•
$$\delta_4(X) = \frac{17}{100}$$

- No Exemplo 2 (AAS Bernoulli(θ)). Consideremos os seguintes estimadores:
- $\delta_1(X) = \bar{X} = \frac{X_1 + \ldots + X_n}{n}$ (EMV não-viesado)

•
$$\delta_2(X) = \frac{X_1 + X_2}{2}$$

$$\bullet \ \delta_3(X) = \frac{1 + n\bar{X}}{n+2}$$

•
$$\delta_4(X) = \frac{17}{100}$$

- No Exemplo 2 (AAS Bernoulli(θ)). Consideremos os seguintes estimadores:
- $\delta_1(X) = \bar{X} = \frac{X_1 + \ldots + X_n}{n}$ (EMV não-viesado)
- $\delta_2(X) = \frac{X_1 + X_2}{2}$
- $\delta_3(X) = \frac{1 + n\bar{X}}{n+2}$
- $\delta_4(X) = \frac{17}{100}$

- No Exemplo 2 (AAS Bernoulli(θ)). Consideremos os seguintes estimadores:
- $\delta_1(X) = \bar{X} = \frac{X_1 + \ldots + X_n}{n}$ (EMV não-viesado)
- $\delta_2(X) = \frac{X_1 + X_2}{2}$
- $\bullet \ \delta_3(X) = \frac{1 + n\bar{X}}{n+2}$
- $\delta_4(X) = \frac{17}{100}$

- No Exemplo 2 (AAS Bernoulli(θ)). Consideremos os seguintes estimadores:
- $\delta_1(X) = \bar{X} = \frac{X_1 + \ldots + X_n}{n}$ (EMV não-viesado)
- $\delta_2(X) = \frac{X_1 + X_2}{2}$
- $\bullet \ \delta_3(X) = \frac{1 + n\bar{X}}{n+2}$
- $\delta_4(X) = \frac{17}{100}$

•
$$EQM(\delta_1(X)|\theta) = 0^2 + VAR(\bar{X}|\theta) = \frac{\theta(1-\theta)}{n}$$

•
$$EQM(\delta_2(X)|\theta) = 0^2 + VAR(\frac{X_1 + X_2}{2}|\theta) = \frac{\theta(1-\theta)}{2}$$

•
$$EQM(\delta_3(X)|\theta) =$$

$$= \{\mathbb{E}(\frac{1+n\bar{X}}{n+2}|\theta) - \theta\}^2 + VAR(\frac{1+n\bar{X}}{n+2}|\theta) =$$

$$= \{\frac{1+n\theta}{n+2} - \theta\}^2 + \frac{n\theta(1-\theta)}{(n+2)^2} \rightarrow$$

$$\Rightarrow EQM(\delta_3(X)|\theta) = (\frac{1-2\theta}{n+2})^2 + \frac{n\theta(1-\theta)}{(n+2)^2}$$

•
$$EQM(\delta_1(X)|\theta) = 0^2 + VAR(\bar{X}|\theta) = \frac{\theta(1-\theta)}{n}$$

•
$$EQM(\delta_2(X)|\theta) = 0^2 + VAR(\frac{X_1 + X_2}{2}|\theta) = \frac{\theta(1 - \theta)}{2}$$

•
$$EQM(\delta_3(X)|\theta) =$$

$$= \{\mathbb{E}(\frac{1+n\bar{X}}{n+2}|\theta) - \theta\}^2 + VAR(\frac{1+n\bar{X}}{n+2}|\theta) =$$

$$= \{\frac{1+n\theta}{n+2} - \theta\}^2 + \frac{n\theta(1-\theta)}{(n+2)^2} \rightarrow$$

$$\Rightarrow EQM(\delta_3(X)|\theta) = (\frac{1-2\theta}{n+2})^2 + \frac{n\theta(1-\theta)}{(n+2)^2}$$

•
$$EQM(\delta_1(X)|\theta) = 0^2 + VAR(\bar{X}|\theta) = \frac{\theta(1-\theta)}{n}$$

•
$$EQM(\delta_2(X)|\theta) = 0^2 + VAR(\frac{X_1 + X_2}{2}|\theta) = \frac{\theta(1-\theta)}{2}$$

•
$$EQM(\delta_3(X)|\theta) =$$

= $\{\mathbb{E}(\frac{1+n\bar{X}}{n+2}|\theta) - \theta\}^2 + VAR(\frac{1+n\bar{X}}{n+2}|\theta) =$
= $\{\frac{1+n\theta}{n+2} - \theta\}^2 + \frac{n\theta(1-\theta)}{(n+2)^2} \rightarrow$
 $\Rightarrow EQM(\delta_3(X)|\theta) = (\frac{1-2\theta}{n+2})^2 + \frac{n\theta(1-\theta)}{(n+2)^2}$

•
$$EQM(\delta_1(X)|\theta) = 0^2 + VAR(\bar{X}|\theta) = \frac{\theta(1-\theta)}{n}$$

•
$$EQM(\delta_2(X)|\theta) = 0^2 + VAR(\frac{X_1 + X_2}{2}|\theta) = \frac{\theta(1-\theta)}{2}$$

•
$$EQM(\delta_3(X)|\theta) =$$

$$= \{\mathbb{E}(\frac{1+n\bar{X}}{n+2}|\theta) - \theta\}^2 + VAR(\frac{1+n\bar{X}}{n+2}|\theta) =$$

$$= \{\frac{1+n\theta}{n+2} - \theta\}^2 + \frac{n\theta(1-\theta)}{(n+2)^2} \rightarrow$$

$$\Rightarrow EQM(\delta_3(X)|\theta) = (\frac{1-2\theta}{n+2})^2 + \frac{n\theta(1-\theta)}{(n+2)^2}$$

Vamos determinar o EQM de cada um dos estimadores:

•
$$EQM(\delta_1(X)|\theta) = 0^2 + VAR(\bar{X}|\theta) = \frac{\theta(1-\theta)}{n}$$

•
$$EQM(\delta_2(X)|\theta) = 0^2 + VAR(\frac{X_1 + X_2}{2}|\theta) = \frac{\theta(1-\theta)}{2}$$

•
$$EQM(\delta_3(X)|\theta) =$$

= $\{\mathbb{E}(\frac{1+n\bar{X}}{n+2}|\theta) - \theta\}^2 + VAR(\frac{1+n\bar{X}}{n+2}|\theta) =$
= $\{\frac{1+n\theta}{n+2} - \theta\}^2 + \frac{n\theta(1-\theta)}{(n+2)^2} \rightarrow$
 $\Rightarrow EQM(\delta_3(X)|\theta) = (\frac{1-2\theta}{n+2})^2 + \frac{n\theta(1-\theta)}{(n+2)^2}$

• Finalmente,

•
$$EQM(\delta_4(X)|\theta) =$$

= $\{\mathbb{E}(\delta_4(X)|\theta) - \theta\}^2 + VAR(\delta_4(X)|\theta) =$
= $(\frac{17}{100} - \theta)^2 + 0 = (\frac{17}{100} - \theta)^2$

• Finalmente,

•
$$EQM(\delta_4(X)|\theta) =$$

= $\{\mathbb{E}(\delta_4(X)|\theta) - \theta\}^2 + VAR(\delta_4(X)|\theta) =$
= $(\frac{17}{100} - \theta)^2 + 0 = (\frac{17}{100} - \theta)^2$

- Finalmente,
- $EQM(\delta_4(X)|\theta) =$ = $\{\mathbb{E}(\delta_4(X)|\theta) - \theta\}^2 + VAR(\delta_4(X)|\theta) =$ = $(\frac{17}{100} - \theta)^2 + 0 = (\frac{17}{100} - \theta)^2$

- Voltando ao exemplo 1 (da urna). Consideremos os estimadores:
- $\delta_1(X) = 2X 1$ (estimador não-viesado)
- $\bullet \ \delta_2(X) = X \text{ (EMV)}$
- $\delta_3(X) = 10$
- Exercício: Determinar o EQM de cada um dos estimadores acima.

- Voltando ao exemplo 1 (da urna). Consideremos os estimadores:
- $\delta_1(X) = 2X 1$ (estimador não-viesado)
- $\bullet \ \delta_2(X) = X \text{ (EMV)}$
- $\delta_3(X) = 10$
- Exercício: Determinar o EQM de cada um dos estimadores acima.

- Voltando ao exemplo 1 (da urna). Consideremos os estimadores:
- $\delta_1(X) = 2X 1$ (estimador não-viesado)
- $\bullet \ \delta_2(X) = X \text{ (EMV)}$
- $\bullet \ \delta_3(X) = 10$
- Exercício: Determinar o EQM de cada um dos estimadores acima.

- Voltando ao exemplo 1 (da urna). Consideremos os estimadores:
- $\delta_1(X) = 2X 1$ (estimador não-viesado)
- $\bullet \ \delta_2(X) = X \text{ (EMV)}$
- $\delta_3(X) = 10$
- Exercício: Determinar o EQM de cada um dos estimadores acima.

- Voltando ao exemplo 1 (da urna). Consideremos os estimadores:
- $\delta_1(X) = 2X 1$ (estimador não-viesado)
- $\bullet \ \delta_2(X) = X \text{ (EMV)}$
- $\bullet \ \delta_3(X) = 10$
- Exercício: Determinar o EQM de cada um dos estimadores acima.

- Voltando ao exemplo 1 (da urna). Consideremos os estimadores:
- $\delta_1(X) = 2X 1$ (estimador não-viesado)
- $\bullet \ \delta_2(X) = X \text{ (EMV)}$
- $\delta_3(X) = 10$
- Exercício: Determinar o EQM de cada um dos estimadores acima.

- Outros aspectos para apreciação (mais adiante):
- 1) Propriedades para grandes amnostras
- 2) Conexão com Princípios de Inferência Estatística
- 3) Conexão com Teoria da Decisão
- 4) Relação com Identificabilidade de modelos
- 5) Outros aspectos (computacionais, etc.)

- Outros aspectos para apreciação (mais adiante):
- 1) Propriedades para grandes amnostras
- 2) Conexão com Princípios de Inferência Estatística
- 3) Conexão com Teoria da Decisão
- 4) Relação com Identificabilidade de modelos
- 5) Outros aspectos (computacionais, etc.)

- Outros aspectos para apreciação (mais adiante):
- 1) Propriedades para grandes amnostras
- 2) Conexão com Princípios de Inferência Estatística
- 3) Conexão com Teoria da Decisão
- 4) Relação com Identificabilidade de modelos
- 5) Outros aspectos (computacionais, etc.)

- Outros aspectos para apreciação (mais adiante):
- 1) Propriedades para grandes amnostras
- 2) Conexão com Princípios de Inferência Estatística
- 3) Conexão com Teoria da Decisão
- 4) Relação com Identificabilidade de modelos
- 5) Outros aspectos (computacionais, etc.)

- Outros aspectos para apreciação (mais adiante):
- 1) Propriedades para grandes amnostras
- 2) Conexão com Princípios de Inferência Estatística
- 3) Conexão com Teoria da Decisão
- 4) Relação com Identificabilidade de modelos
- 5) Outros aspectos (computacionais, etc.)

- Outros aspectos para apreciação (mais adiante):
- 1) Propriedades para grandes amnostras
- 2) Conexão com Princípios de Inferência Estatística
- 3) Conexão com Teoria da Decisão
- 4) Relação com Identificabilidade de modelos
- 5) Outros aspectos (computacionais, etc.)

- Outros aspectos para apreciação (mais adiante):
- 1) Propriedades para grandes amnostras
- 2) Conexão com Princípios de Inferência Estatística
- 3) Conexão com Teoria da Decisão
- 4) Relação com Identificabilidade de modelos
- 5) Outros aspectos (computacionais, etc.)