OVERVIEW

The purpose of this analysis was to develop a binary classification model for Alphabet Soup, a nonprofit organization. The model was designed to predict the probability of success for funding applicants based on various components of the dataset. Using a deep learning approach, a neural network was built, optimized, and evaluated to achieve the best possible accuracy for the classification problem.

RESULTS

Data Preprocessing

- Target Variable:
 - "IS_SUCCESSFUL": binary outcome representing funding success/failure)
- Feature Variables:
 - "ASK_AMT": scaled using StandardScaler
 - "INCOME_AMT": scaled using StandardScaler
- Removed Variables:
 - "EIN": ID column, irrelevant to model
 - "NAME": text-based column with no predictability
 - "STATUS": very low variance (majority status "1")
 - "SPECIAL_CONSIDERATIONS": vet low variance (majority special considerations "NO")

Compiling, Training and Evaluating the Model

- Alphabet Soup Charity Model:
 - Dropped columns "EIN" and "Name"
 - Input Layer: Features from the dataset
 - Hidden Layers:
 - o 1st layer: 80 neurons, ReLU activation
 - o 2nd layer: 30 neurons, ReLU activation
 - Output Layer: 1 neuron, Sigmoid activation
 - Results:
 - o Accuracy: 72.83%
 - o Loss: 0.5660

- Analysis: The accuracy indicates the model correctly predicted funding success for approximately 73% of test cases. However, the loss suggests there is room for improvement.

Optimization Attempt 1:

- Dropped additional column "STATUS" and "SPECIAL_CONSIDERATIONS"
- Added one additional hidden layer (3 total):

1st layer: 100 neurons2nd layer: 50 neurons3rd layer: 25 neurons

- Used the same activation functions ReLU for hidden layers, Sigmoid for output
- Results:

o Accuracy: 72.90%

o Loss: 0.5716

- Analysis: Removing additional unnecessary columns, adding an additional layer and increasing the neurons improved accuracy but the increase was minimal.

Optimization Attempt 2:

- Increased neurons in all layers:

1st layer: 200 neurons.2nd layer: 150 neurons.3rd layer: 100 neurons.

- Maintained ReLU activation for hidden layers and Sigmoid activation for output.
- Results:

o Accuracy: 73.01%

o Loss: 0.6055

- Analysis: Increasing neurons improved accuracy marginally, but it also increased the loss. This suggests potential overfitting.

Optimization Attempt 3:

- Added a 4th hidden layer to make the model deeper:

1st layer: 200 neurons.
2nd layer: 150 neurons.
3rd layer: 100 neurons.
4th layer: 50 neurons.

- ReLU activation for hidden layers and Sigmoid for output layer.
- Results:

Accuracy: 73.07%

- o Loss: 0.6191
- Analysis: Adding an additional layer improved accuracy slightly, but the loss increased further. The improvement in accuracy is minimal compared to the added complexity.

SUMMARY

Overall Results:

• The best accuracy achieved was 73.07% with the third optimization attempt. In this attempt two additional hidden layers were added, and neurons were progressively increased throughout earlier attempts to reach this outcome.

Challenges:

- Loss metrics suggest limitations in predictability, leading to further complexity.
- Target model performance of 75% was not achieved.

Recommendation:

 Conduct feature engineering to extract additional meaningful features or explore external datasets to enhance predictive power.

CONCLUSION

The neural network achieved a maximum accuracy of 73.07%. While the performance improvements were marginal across attempts, this model provides a solid foundation for predicting funding success. Future efforts should focus on developing feature and testing alternative models to further enhance accuracy.