

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе N 4

По курсу: Моделирование

На тему: Обслуживающий аппарат

Студент:

Турсунов Жасурбек Рустамович

Группа: ИУ7-76Б

Преподователь:

Рудаков Игорь Владимирович

Содержание

1	Зад	ание	2
2	Teo	ритическая часть	2
	2.1	Равномерное распределение	2
	2.2	Нормальное распределение	2
	2.3	Пошаговый подход	3
	2.4	Событийный подход	3
3	Рез	ультаты	4
4	Лис	тинг кола	7

1 Задание

Необходимо промоделировать систему, состоящую из генератора памяти и обслуживающего аппарата. Генератор подаёт сообщения, распределённые по нормальному закону, они проходят в память и выбираются на обработку по закону из лабораторной работы №1. Количество заявок конечно и задано. Предусмотреть случай, когда обработанная заявка возвращается обратно в очередь. Необходимо определить оптимальную длину очереди, при которой не будет потерянных сообщений. Реализовать, используя пошаговый и событийные подходы.

2 Теоритическая часть

2.1 Равномерное распределение

Непрерывное равномерное распределение - распределение случайной вещественной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке почти всюду постоянна.

Плотность распределения представлена в формуле 1.

$$f_X(x) = \begin{cases} \frac{1}{b-a}, x \in [a, b] \\ 0, x \notin [a, b] \end{cases}$$
 (1)

Функция распределения представлена в формуле 2.

$$F_X(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, x \ge b \end{cases}$$
 (2)

2.2 Нормальное распределение

Нормальное распределение — распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса.

Плотность распределения представлена в формуле 3.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (3)

Функция распределения представлена в формуле 4.

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt \tag{4}$$

2.3 Пошаговый подход

Пошаговый подход заключается в последовательном анализе состояний всех блоков в момент $t+\Delta t$ по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные события должны имитироваться программной моделью на данный момент времени.

Основной недостаток этого подхода: значительные затраты машинного времени на реализацию моделирования системы. А при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

2.4 Событийный подход

Характерное свойство моделируемых систем — состояние отдельных устройств изменяется в дискретные моменты времени, которые совпадают с моментами поступления сообщений в систему, моментами окончания решения задач, моментами возникающих аварийных сигналов и т.д. Поэтому, моделирование и продвижение текущего времени в системе удобно проводить использую событийный принцип, при котором состояние всех блоков системы анализируется лишь в момент наступления какого-либо события. Момент наступления следующего события определяется минимальным значением из списка будущих событий, представляющих собой совокупность моментов ближайшего изменения состояний каждого из блоков системы.

3 Результаты

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0
Метод моделирования	Событийный 🗸
Δt	
Вычислить	
Количество обработанных заявок	1000
Количество повторно обработанных заявок	0
Максимальная длина очереди	3
Время работы	5517.078

Рис. 1: Событийный подход, вероятность возврата заявки в очередь равна 0

1				
10				
1				
2				
1000				
0				
Δt				
0.1				
1000				
Количество повторно обработанных заявок 0				
3				
5475.1				

Рис. 2: Пошаговый подход, вероятность возврата заявки в очередь равна 0

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0.5
Метод моделирования	Событийный 🗸
Δt	
Вычислить	
Количество обработанных заявок	2031
Количество повторно обработанных заявок	1031
Максимальная длина очереди	6
Время работы	5578.753

Рис. 3: Событийный подход, вероятность возврата заявки в очередь равна 0.5

a	1		
b	10		
μ	1		
σ	2		
Количество заявок	1000		
Вероятность повторной обработки заявки	0.5		
Метод моделирования	Δt		
Δt	0.1		
Вычислить			
Количество обработанных заявок	1971		
Количество повторно обработанных заявок 971			
Максимальная длина очереди	8		
Время работы	5501.6		

Рис. 4: Пошаговый подход, вероятность возврата заявки в очередь равна 0.5

Рис. 5: Событийный подход, вероятность возврата заявки в очередь равна 0.99

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0.99
Метод моделирования	Δt
Δt	0.1
Вычислить	
Количество обработанных заявок	100135
Количество повторно обработанных заявок	99135
Максимальная длина очереди	17332
Время работы	100445.8

Рис. 6: Пошаговый подход, вероятность возврата заявки в очередь равна 0.99

4 Листинг кода

```
class Uniform:
      def __init__(self, a, b):
          if not 0 <= a <= b:</pre>
              raise ex.ParameterError("Parameters must be 0 <= a <= b")</pre>
          self._a = a
           self._b = b
      def generate(self):
          return nr.uniform(self._a, self._b)
12 class Normal:
      def __init__(self, mu, sigma):
           self._mu = mu
           self._sigma = sigma
15
16
      def generate(self):
17
          return nr.normal(self._mu, self._sigma)
20 class Generator:
      def __init__(self, generator):
           self._generator = generator
           self._receivers = set()
23
      def add_receiver(self, receiver):
25
           self._receivers.add(receiver)
      def remove_receiver(self, receiver):
          try:
               self._receivers.remove(receiver)
30
          except KeyError:
               pass
33
      def next_time(self):
34
          return self._generator.generate()
36
      def emit_request(self):
```

```
for receiver in self._receivers:
38
               receiver.receive_request()
  class Modeller:
41
      def __init__(self, uniform_a, uniform_b, n_mu, n_sigma, reenter_prop):
          self._generator = Generator(Uniform(uniform_a, uniform_b))
43
          self._processor = Processor(Normal(n_mu, n_sigma), reenter_prop)
44
          self._generator.add_receiver(self._processor)
46
      def event_based_modelling(self, request_count):
47
          generator = self._generator
48
          processor = self._processor
49
      gen_period = generator.next_time()
51
      proc_period = gen_period + processor.next_time()
      while processor.processed_requests < request_count:</pre>
          if gen_period <= proc_period:</pre>
54
               generator.emit_request()
               gen_period += generator.next_time()
56
          if gen_period >= proc_period:
               processor.process()
58
               if processor.current_queue_size > 0:
                   proc_period += processor.next_time()
               else:
61
                   proc_period = gen_period + processor.next_time()
62
63
      return (processor.processed_requests, processor.reentered_requests,
64
               processor.max_queue_size, round(proc_period, 3))
66
      def time_based_modelling(self, request_count, dt):
67
          generator = self._generator
68
          processor = self._processor
69
          gen_period = generator.next_time()
71
          proc_period = gen_period + processor.next_time()
72
          current_time = 0
73
          while processor.processed_requests < request_count:</pre>
74
               if gen_period <= current_time:</pre>
                   generator.emit_request()
76
```

```
77
                  gen_period += generator.next_time()
              if current_time >= proc_period:
                  processor.process()
79
                  if processor.current_queue_size > 0:
80
                       proc_period += processor.next_time()
                   else:
82
                       proc_period = gen_period + processor.next_time()
              current_time += dt
85
          return (processor.processed_requests, processor.reentered_requests,
                  processor.max_queue_size, round(current_time, 3))
87
```

Листинг 1: Программная реализация обслуживающего аппарата