CSCB63 Tutorial 1 — Asymptotic Bounds

1 common time complexity asymptotic upper bounds

Consider the following 2D table with column headers and row headers both being: $\ln(n)$, $\lg(n)$, $\lg(n^2)$, $(\lg n)^2$, n, $n \lg(n)$, 2^n , 2^{3n} . Recall that \lg is \log base 2 and \ln is natural logarithm (base e). In each cell (row, col) fill in Y if row's function is Big-Oh of col's function.

	ln(n)	$\lg(n)$	$\lg(n^2)$	$(\lg(n))^2$	n	$n \lg(n)$	2^n	2^{3n}
$\frac{1}{\ln(n)}$	Y	Y	Y	Y	Y	Y	Y	\overline{Y}
$-\lg(n)$	Y	Y	Y	Y	Y	Y	Y	\overline{Y}
$\lg(n^2)$	Y	Y	Y	Y	Y	Y	Y	\overline{Y}
$(\lg(n))^2$				Y	Y	Y	Y	\overline{Y}
\overline{n}					Y	Y	Y	\overline{Y}
$n \lg(n)$						Y	Y	\overline{Y}
2^n							Y	\overline{Y}
2^{3n}								\overline{Y}

As an exercise, prove transitivity of Big-Oh:

$$f \in O(q) \land q \in O(h) \Rightarrow f \in O(h)$$

Note that even though $3n \in O(n)$, we cannot "exponentiate both sides" to infer $2^{3n} \in O(2^n)$.

2 formal proofs of asymptotic upper bounds

We will show proofs for two entries in our Big-Oh table. We will use the Big-Oh definition directly.

1. Prove $n \in O(n \lg n)$.

Choose c = 1, $n_0 = 2$. Then for all $n \ge n_0$:

$$n$$

$$=n * 1$$

$$\leq n * \lg(n)$$

$$=c * n * \lg(n)$$

Thus, $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow 0 \leq n \leq c * n * \lg(n)$.

2. Prove $n \lg(n) \notin O(n)$.

We will use proof by contradiction.

Suppose
$$\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow 0 \leq n \lg(n) \leq c * n$$
.

Notice that replacing $\forall n \geq n_0$ with $\forall n \geq \max(n_0, 1)$ still gives a true statement since $\max(n_0, 1) \geq n_0$.

So, we have $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \max(n_0, 1) \Rightarrow 0 \leq n \lg(n) \leq c * n$.

The reason we made this replacement is because we want $n \ge 1$, to be able to divide by n: For all $n \ge \max(n_0, 1)$:

$$n \lg(n) \leq c * n \qquad \qquad \text{divide both sides by } n$$

$$\iff \lg(n) \leq c$$

$$\iff n \leq 2^c$$

So, we have $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \max(n_0, 1) \Rightarrow n \leq 2^c$.

But there is clearly a counterexample: choosing $n = \max(n_0, 2^c + 1) > 2^c$ makes the statement above false. We get a contradiction.

3 common time complexity asymptotic tight bounds

Now develop a similar table for Big-Theta: in each cell (row, col) fill in Y if row's function is Big-Theta of col's function.

	ln(n)	$\lg(n)$	$\lg(n^2)$	$(\lg(n))^2$	n	$n \lg(n)$	2^n	2^{3n}
$\frac{1}{\ln(n)}$	Y	Y	Y					
$- \lg(n)$	Y	Y	Y					
$\lg(n^2)$	Y	Y	Y					
$(\lg(n))^2$				Y				
\overline{n}					Y			
$n \lg(n)$						Y		
2^n							Y	
2^{3n}								\overline{Y}

4 optional exercises

- 1. Prove $6n^5 + n^2 n^3 \in \Theta(n^5)$ using the definition of Big-Theta.
- 2. Prove $3n^2-4n\in\Omega(n^2)$ using the definition of Big-Omega.