EE503 Probability for Electrical and Computer Engineers

School of Engineering

Week 1 Session 1

Outcome space / Sample space

 $\Omega = \{ set \ of \ all \ possible \ outcomes \ of \ a \ random \ experiment \}$

1. Flip 1 coin:

$$\Omega = \{H, T\}$$

2. Flip 2 coins:

$$\Omega = \{HH, TT, HT, TH\}$$

3. Number of emails in the inbox from 10:30 am to 12:30 pm:

$$\Omega = \{0, 1, 2, 3, \dots\}$$

4. Amplitude of the received signal at the radar:

$$\Omega = \{0, \infty\}$$

Events:

Flip 2 coins:

$$\Omega = \{HH, TT, HT, TH\}$$

$$A = \{HH, TT\}$$

Event A: a subset of Ω

If the observed outcome belongs to event A, then event A has occured.

Radar:

$$\Omega = \{0, \infty\}$$

$$A = \{0, 1\}$$

$$B = \{\pi\}$$

Event Space: Collection of events.

1. Flip 1 coin:

$$\Omega = \{H,T\}$$

Event Space: $\{H\}$, $\{T\}$, Ω , ϕ [All possible subsets of Ω]

Power set of Ω : 2^{Ω}

2. Flip 2 coins:

$$\Omega = \{HH, TT, HT, TH\}$$

Event space 1: $\phi,\Omega,$ $\{HH\},$ $\{HT\},$ $\{TH\},$ $\{TT\},$ $\{HH,TT\},$ $\{HT,TH\},$ $\{HH,HT\},$ $\{HT,TT\}$...

[Power set of Ω]

For a set with n elements, number of possible subsets is 2^n .

Event Space 2: $\Omega = \{HH, TT, HT, TH\}$

 $\{HH,TT\}$, $\{HT,TH\}$, Ω , ϕ \leftarrow Another possible event space for the experiment of flipping

Requirement of an **Event Space**

- 1. Ω is in the event space (sure event)
- 2. If A is in the event space, A^c is in the event space
- 3. If A and B are in the event space, then $A \bigcup B$ and $A \cap B$ are also in the event space.

Deduction 1:

 ϕ is always in event space

Deduction 2:

If $A_1, A_2, \dots A_n$ in the event space, then:

 $igcap_{i=1}^n A_i$ and $igcup_{i=1}^n A_i$ are in the event space.

Probability Law ${\cal P}$

For each event A in the event space, P(A) is a real number that describes our belief/ likelihood of event A.

Axioms of Probability

- 1. $P(\Omega) = 1$
- 2. For any event A, $0 \leq P(A) \leq 1$
- 3. Additivity Axiom
 - (a) If A and B are 2 disjoint (i.e., mutually exclusive $\leftarrow A \cap B = \phi$) events, then:

$$P(A \cup B) = P(A) + P(B)$$

(b) If $A_1,A_2,\ldots A_n$ are pairwise disjoint events (i.e., $A_k \bigcap A_l = \phi$ for all $k \neq l$), then:

$$P(A_1 \cup A_2 \dots \cup A_n) = \sum_{i=1}^n P(A_i)$$

$$\Omega = \{H,T\}$$

Event space=Power set of Ω

$$P(\{H\}) = 1/2$$

What is the value of P(T)

$$P(\Omega) = 1$$

$$P(\{H,T\}) = 1$$

$$\{H,T\}=\{H\}\bigcup\{T\}$$

$$P(\{H\}\bigcup\{T\}) = 1 \leftarrow \mathsf{Additivity} \ \mathsf{axiom}$$

$$P({H}) + P({T}) = 1$$

$$P(\{T\}) = 1 - P(\{H\})$$

$$P({T}) = 1 - 1/2 = 1/2$$

$Example\ 2$

Throw a die

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Event space=Power set of Ω

Probability law: For any event A, $P(A)=rac{|A|}{6}$

 $Notation: |A| = number\ of\ elements\ in\ A = cardinality\ of\ A$

$$P(\{6\}) = 1/6$$

 $Prob\ of\ getting\ an\ even\ number:$

$$P(\{2,4,6\})=3/6$$

$$P(\phi) = 0$$

$Example\ 3$

Throw a die

$$\Omega = \{1,2,3,4,5,6\}$$

Event space=Power set of Ω

$$P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\}) = P(\{5\}) = 5/12$$

$$P(\{6\}) = 1/3$$

$$P({3,4,5}) = P({3} \cup {4} \cup {5})$$

$$= P(\{3\}) + P(\{4\}) + P(\{5\})$$

$$\Omega = \{0, \infty\}$$

Event space consist of all possible sub-interval of $\{0,\infty\}$ as well as their compliments, unions and intersections.

e.g.,
$$(a, b)$$
, $[a, b]$, $(a, b]$, $[a, \infty)$

Borel event space or Borel sigma algebra

Probability law: For any interval A

$$P(A) = \int_A e^{-\omega} d\omega$$

$$P((1,2))=\int_1^2 e^{-\omega}d\omega$$

$$P([2,\infty))=\int_2^\infty e^{-\omega}d\omega$$

Probability that the outcome is less than 1 or greater than 5?

$$P([0,1]) \bigcup (5,\infty)) = P([0,1]) + P((5,\infty))$$

= $\int_0^1 e^{-\omega} d\omega + \int_5^\infty e^{-\omega} d\omega$

Example 5

$$\Omega = \{1, 2, 3, 4, \dots\}$$

$$\mathcal{F} = Power\ set\ of\ \Omega$$

i.e., Event space ${\mathcal F}$ [sigma-algebra]

$$P(\{k\})=rac{1}{2^k}$$
 , where $k=1,2,3,\ldots$

Verify
$$P(\Omega)=1$$

Event space

If A_1,A_2,\ldots,A_n are in the event space, then:

 $\bigcap_{i=1}^n A_i$ and $\bigcup_{i=1}^n A_i$ are in the event space.

If A_1, A_2, A_3, \ldots are in the event space, then:

 $igcap_{i=1}^\infty A_i$ and $igcup_{i=1}^\infty A_i$ are also in the event space.

Probability Axioms

Additivity axiom

 A_1,A_2,\ldots,A_n are pairwise disjoint events

$$P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$$

• Countable additivity axiom

$$A_1,A_2,A_3,\ldots$$
 are pairwise disjoint events

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

$$P(\Omega) = P(\{1, 2, 3, 4...\})$$

$$\{1,2,3,\dots\}=\{1\}\bigcup\{2\}\bigcup\dots$$

$$P(\{1\} \cup \{2\} \cup ...) = P(\{1\}) + P(\{2\}) + ...$$

Countable additivity axiom: $P(\{k\}) = \frac{1}{2^k}$

$$=\frac{1}{2}+\frac{1}{2^2}+\dots$$

$$=\frac{1/2}{1-1/2}$$

Note \leftarrow Geometric series

$$a+ar+ar^2+\ldots$$
 where $r<1$, then

$$sum = rac{a}{1-r}$$

Probability that the outcome is an even number:

$$P({2,4,6,8...}) = P({2} \cup {4} \cup ...)$$

$$= P({2}) + P({4}) + \dots$$

$$=\frac{1}{2^2}+\frac{1}{2^4}+\dots$$

$$=\frac{1/4}{1-1/4}$$

$$= 1/3$$

Example 6

$$\Omega = \{(x,y): 0 \leq x, y \leq 1\}$$

$$P(A) = Area \ of \ A$$

$$P(\Omega) = Area \ of \ \Omega = 1$$

$$P(A) = 1/2$$

B is the event that the sum of x and y coordinate is less than or equal to 1/2

$$B=(x,y)\in\Omega: x+y\leq 1/2$$

Week 1 Session 2

Random Experiment & Probability Model

- Outcome space / Sample Space Ω
- An event is a subset of Ω
- If the realized outcome of experiment lies in A, we say event A has occurred.

Event Space / Sigma algebra ${\cal F}$

Properties of \mathcal{F} :

- 1. Ω is in ${\mathcal F}$
- 2. If A is in \mathcal{F} , then A^c is in \mathcal{F}
- 3. (a) If $A_1, A_2, \ldots A_n$ are in ${\mathcal F}$, then:

$$igcup_{i=1}^n A_i$$
 is in ${\mathcal F}$ and $igcap_{i=1}^n A_i$ is in ${\mathcal F}$

(b) If A_1, A_2, A_3, \ldots is an infinite sequence of events that are in \mathcal{F} , then:

$$igcup_{i=1}^\infty A_i$$
 is in ${\mathcal F}$ and $igcap_{i=1}^\infty A_i$ is in ${\mathcal F}$

Probability Law

For each event A in \mathcal{F} , P(A) is a real number.

Probability Axioms

1.
$$P(\Omega) = 1$$

$$0 \le P(A) \le 1$$

3. (a) If $A_1,A_2,\ldots A_n$ are pairwise disjoint events, then:

$$P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$$

(b) If A_1,A_2,A_3,\ldots is an infinite sequence of pairwise disjoint events, then:

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Deduction from Axioms

1.
$$P(A) + P(A^c) = 1$$

Proof:

$$1 = P(\Omega)$$

$$=P(A\bigcup A^c)$$

$$=P(A)+P(A^c)$$

2. If
$$A\subset B$$
, then $P(A)\leq P(B)$

Proof:

$$B = A \bigcup C$$

$$P(B) = P(A \bigcup C)$$

$$= P(A) + P(C)$$

$$ightarrow P(B) \geq P(A)$$

$$C = B \bigcap A^c$$

3. Union Formula

For any 2 events \boldsymbol{A} and \boldsymbol{B}

$$P(A \bigcup B) = P(A) + P(B) - P(A \cap B)$$

 $A \cap B$

$$A \bigcap B^c$$

$$B \bigcap A^c$$

Proof:

$$P(A) = P(A \cap B^c) + P(A \cap B)$$
 1

$$P(B) = P(B \cap A^c) + P(A \cap B)$$
 ②

$$P(A \bigcup B) = P(A \bigcap B^c) + P(A \bigcap B) + P(B \bigcap A^c)$$

$$P(A) + P(B \cap A^c)$$
 (1) is applied $P(A) + P(B) - P(A \cap B)$ (2) is applied $P(A) = 0$

Proof:

$$P(\phi) + P(\phi^c) = 1$$

$$P(\phi) + P(\Omega) = 1$$

$$P(\phi) + 1 = 1$$

$$P(\phi) = 0$$

Exercise 1.

$$A_1, A_2, A_3$$

$$P(A_1)=a_1$$
 , $P(A_2)=a_2$, $P(A_3)=a_3$

$$P(A_1 igcap A_2) = b_1$$
 , $P(A_2 igcap A_3) = b_2$, $P(A_3 igcap A_1) = b_3$

$$P(A_1 \cap A_2 \cap A_3) = c$$

What is the value of $P(A_1 \bigcup A_2 \bigcup A_3)$?

$$B = A_2 \bigcup A_2$$

$$P(A_1 \cup B) = P(A_1) + P(B) - P(A_1 \cap B)$$

$$= P(A_1) + P(A_2 \bigcup A_3) - P(A_1 \bigcap (A_2 \bigcap A_3))$$

Exercise, show that:

$$A_1 \cap (A_2 \cup A_3) = (A_1 \cap A_2) \cup (A_1 \cap A_3)$$

Union Bound

Theorem:

$$A_1,A_2,\ldots A_n$$
 are n events $(n\geq 2)$

$$P(\bigcup_{i=1}^n A_i) \le \sum_{i=1}^n P(A_i)$$

Proof: Induction argument

$$n = 2$$

$$P(A_1 \bigcup A_2) = P(A_1) + P(A_2) - P(A_1 \bigcap A_2) \le P(A_1) + P(A_2)$$

Assume that the theorem is true for n=k

i.e.,
$$P(igcup_{i=1}^k A_i) \leq \sum_{i=1}^k P(A_i)$$

Then in the k+1 case, where

$$A_1, A_2, \ldots A_k, A_{k+1}$$

$$P(igcup_{i=1}^{k+1} A_i) = P((igcup_{i=1}^k igcup_{A_{k+1}}) \leq P(igcup_{i=1}^k A_i + P(A_{k+1}))$$

$$P(igcup_{i=1}^{k+1} A_i) \leq \sum_{i=1}^k P(A_i) + P(A_{k+1})$$

$$P(\bigcup_{i=1}^{k+1} A_i) = \sum_{i=1}^{k+1} P(A_i)$$

Cardinality of sets

Finite sets

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$\Omega = \{a, b, c, \dots z\}$$

Infinite sets

Countably infinite sets

$$N = \{1, 2, 3, \dots\}$$

A set A that is "as large" as N is called a countably infinite set.

Formally, A is countably infinite if we can find a function f from A to N, such that

 $(i) \ f$ is a one-to-one function

i.e., if $a \neq b$, then $f(a) \neq f(b)$

(ii) for every positive integer n , there is an $a\subset A$ such that f(a)=n

Example 1

$$A = \{0, 1, 2, 3, \dots\}$$

$$N=\{1,2,3,\dots\}$$

$$f(a) = a + 1 = n$$

$$a = n - 1$$

Therefore, A is countably infinite

Example 2

$$B = \{2, 4, 6, 8, \dots\}$$

$$N=\{1,2,3,\dots\}$$

$$f(b) = b/2 = n$$

$$b=2n$$

Example 3

$$C = \{2, 4, 8, 16, 32, \dots\}$$

$$f(c) = \log_2 c = n$$

$$c = 2^n$$

Example 4

$$\{-1, -2, -3, \dots\}$$

$$\{\ldots, -1, 0, 1, 2, \ldots\}$$

are countably infinite sets

Uncountably infinite sets

Much larger sets of positive integers

e.g.,
$$[0,1]$$
, $[0,\infty]$, $(-\infty,\infty)$

[0, 1]

There is no way of finding a one-to-one association(correspondence) between $\left[0,1\right]$ and N

$$A_1 \subset A_2$$

$$P(A_1 \bigcup A_2) = P(A_2)$$

$$A_1 \subset A_2 \subset \ldots \subset A_k$$

$$P(igcup_{i=1}^k A_i) = P(A_k)$$

$$A_1 \subset A_2 \subset \ldots \subset A_k \subset A_{k+1} \ldots$$

$$P(\bigcup_{i=1}^{\infty} A_i) = \lim_{k \to \infty} P(A_k)$$

$$A_1\supset A_2$$

$$P(A_1\supset A_2)=P(A_2)$$

$$A_1\supset A_2\supset\ldots\supset A_k$$

$$P(\bigcap_{i=1}^k A_i) = P(A_k)$$

$$A_1 \supset A_2 \supset \ldots \supset A_k \supset A_{k+1} \ldots$$

$$P(igcap_{i=1}^\infty A_i) = \lim_{k o\infty} P(A_k)$$

Example 6

$$\Omega = [0, 1]$$

$$P(interval) = length \ of \ interval$$

$$A_1=[0,1]$$

$$A_2=[0,1/2]$$

$$\mathcal{A}_3=[0,1/3]$$

. . .

$$A_k = [0, 1/k]$$
 $A_1 \supset A_2 \supset A_3 \supset \dots$
 $P(A_1 \bigcap A_2 \bigcap A_3) = P(A_3) = 1/3$
 $P(\bigcap_{i=1}^{\infty} A_i) = \lim_{k \to \infty} P(A_k) = \lim_{k \to \infty} 1/k = 0$
 $\bigcap_{i=1}^{\infty} A_i = \{0\} = [0, 0]$
 $P([0, 0]) = 0$

Finite outcome space

$$egin{aligned} \Omega &= \{\omega_1, \omega_2, \dots, \omega_n\} \ &\mathcal{F} = power \ set \ of \ \Omega \ &P(\omega_1) = p_1, P(\omega_2) = p_2, \dots P(\omega_n) = p_n \ &P(\{\omega_1, \omega_2, \omega_3\}) = P(\{\omega_1\} igcup \{\omega_2\} igcup \{\omega_3\}) \ &= P\{\omega_1\} + P\{\omega_2\} + P\{\omega_3\} \ &= p_1 + p_2 + p_3 \end{aligned}$$

$$p_1+p_2+\ldots+p_n=1$$
 $1=P(\Omega)=P(\{\omega_1,\ldots,\omega_n\})$

Special case:

$$\Omega = \{\omega_1, \ldots, \omega_n\}$$

 $\mathcal{F} = Power\ set$

$$P(\omega_i) = p \, ext{ for } i = 1, 2, \dots n \, ext{ Equally likely outcomes}$$

$$1 = p + p + \ldots + p$$

$$1 = np$$

$$p = 1/n$$

$$P(\{\omega_2,\omega_4,\omega_6\}) = P(\{\omega_2\}) + P(\{\omega_4\}) + P(\{\omega_6\})$$

$$=3/n$$

$$A = \{\omega_{k1}, \ldots, \omega_{km}\}$$

$$P(A) = m/n$$

$$P(A) = \frac{|A|}{n}$$

If Ω is countably infinite,

$$\Omega = \{\omega_1, \omega_2, \dots\}$$

we will usually work with power set on our event space

$$\Omega = [0, 1]$$

Borel Sigma algebra: all sub-interval, union, intersections, compliments

 $P(sub-interval \ of \ [0,1]) = length \ of \ sub-interval$

$$0 \leq a \leq b \leq 1$$

$$P([a,b]) = b - a$$

$$A = \{\omega \in [0,1]: |\omega - 0.5| \geq 0.1\}$$

$$P(A) = 0.8$$

$$A = [0, 0.4] \bigcup [0.6, 1]$$

$$P(A) = 0.4 + 0.4 = 0.8$$

Exercise

$$B = \{\omega \in [0,1] : (\omega - 1/2)^2 \ge 1/4\}$$

$$P(B) = ?$$

$$P([0,1]) = 1$$

$$P([0,1]) = P(\bigcup_{0 \le \omega \le 1} \omega)$$

$$=\sum_{0\leq\omega\leq1}P(\omega)$$

$$eq \sum_{0 \leq \omega \leq 1} P([\omega, \omega])$$

$$\neq 0$$

Conditional Probability

Roll a fair die

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$\mathcal{F} = Power set$$

Equally likely outcomes

$$P(k) = 1/6, 1 \le k \le 6$$

$$B = \{2, 4, 6\}$$

$$A = \{2\}$$

Given that B has occurred, the new probability for event A=1/3

$$C = \{1, 2, 3\}$$

Given that B has occurred, what is the revised probability for event C?

1/3

New prob of
$$A = \frac{|A \bigcap B|}{|B|}$$

New prob of
$$C = \frac{|C \bigcap B|}{|B|}$$

Definition:

If A and B are 2 events, and P(B)>0

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|B) = 1$$

$$P(B^c|B) = 0$$

$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

Week 2 Session 1

Deductions from Axioms

1.
$$P(A) + P(A^c) = 1$$

$$2. P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3. If
$$A\subset B$$
 , then $P(A)\leq P(B)$

Finite outcome space

$$\Omega = \{\omega_1, \dots \omega_n\}$$

Typically, $\mathcal{F}=$ Power set of ω

$$P(\{\omega_1)\}) = p_1, \ldots, P(\{\omega_n\}) = p_n$$

Special case: Finite ω with equally likely outcome

$$P(\{\omega_i\})=rac{1}{n}$$
 , $n=|\Omega|$

$$P(A) = \frac{|A|}{n}$$

Conditional Probabilities

Definition: If A and B are 2 events, and P(B)>0

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

4 sided die, roll it twice

$$\Omega = \{(x,y): x,y \in \{1,2,3,4\}\}$$

= $\{(1,1),(1,2),(1,3),\dots(4,4,)\}$

Equally likely outcome $P(\{x,y\}) = \frac{1}{16}$

$$E = \{\text{Both number are less than 3}\} = \{(1,1), (1,2), (2,1), (2,2)\}$$

 $F = \{ \text{Both numbers are 1} \} = \{(1,1)\}$

$$P(F|E) = \frac{P(F \cap E)}{P(E)}$$

$$P(E) = \frac{4}{16}$$

$$P(F \cap E) = \frac{1}{16}$$

$$P(F|E) = \frac{1}{4}$$

$$P(E|F) = rac{P(E \cap F)}{P(F)}$$

$$P(E|F) = \frac{1}{16} / \frac{1}{16} = 1$$

 $B = \{\text{minimum of 2 number is 2}\} = \{(2, 2), (2, 3), (3, 2), (2, 4), (4, 2)\}$

 $A = \{\text{maximum of 2 number is 3}\} = \{(3,3), (3,1), (1,3), (2,3), (3,2)\}$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{2/16}{5/16} = 2/5$$

 $C = \{ \text{maximum of 2 number is 1} \}$

$$P(C|B) = \frac{P(C \cap B)}{P(B)} = \frac{P(\phi)}{P(B)} = 0$$

Probability Axioms

1.
$$P(\Omega) = 1$$

$$2.0 \le P(A) \le 1$$

3. Additivity axiom

Fix event B with P(B) > 0. Consider conditional probability of various event given B. These new probability will satisfy probability axioms.

1.
$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

2.
$$0 \le P(A|B) \le 1$$

$$0 \le \frac{P(A \cap B)}{P(B)} \le 1$$

3. If A_1 and A_2 are disjoint events

$$P(A_1 \bigcup A_2 | B) = \frac{P((A_1 \bigcup A_2) \cap B)}{P(B)}$$

$$= \frac{P((A_1 \cap B) \cup (A_2 \cap B))}{P(B)}$$

$$= \frac{P(A_1 \cap B) + P(A_2 \cap B)}{P(B)}$$

$$= P(A_1 | B) + P(A_2 | B)$$

Deduction from Axioms

1.
$$P(A|B) + P(A^c|B) = 1$$

2.
$$P(A \cup C|B) = P(A|B) + P(C|B) - P(A \cap C|B)$$

3. If
$$A \subset C$$
. then $P(A|B) \leq P(C|B)$

Chain Rule / Multiplication Rule

If
$$P(B)>0$$
 , then $P(A|B)=rac{P(A \cap B)}{P(B)}$

$$P(A \cap B) = P(A|B)P(B)$$
 - Chain Rule

If
$$P(A)>0$$
 , then $P(B|A)=rac{P(B\bigcap A)}{P(A)}$

$$P(B \cap A) = P(B|A)P(A)$$

$$P(B) > 0, P(B^c) > 0$$

$$P(A|B)$$
 , $P(A|B^c)$

$$P(A \cap B) = P(A|B)P(B)$$

$$P(A \cap B^c) = P(A|B^c)P(B^c)$$

Law of total probability

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

Partition

Partition of Ω

 B_1,\ldots,B_n forms a partition of Ω

if
$$B_i \cap B_j = \phi$$
 for $i \neq j$ (pairwise disjoint) and $igcup_{i=1}^n B_i = \Omega$

$$P(B_i)$$
 for $i=1,\ldots,n$

$$P(A|B_i)$$
 for $i=1,\ldots,n$

$$P(A) = P(A \cap \Omega)$$

$$=P(A\bigcap(\bigcup_{i=1}^n B_i))$$

$$= P((A \cap B_1) \cup \dots (A \cap B_n))$$

$$=\sum_{i=1}^n P(A \cap B_i)$$

Law of total probability

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Say a sender and receiver with transmission route 1 and 2

P(R1)=3/4, P(D|R1)=1/3, P(R2)=1/4, P(D|R2)=2/3 where D is the packet get dropped

$$P(D) = P(D \cap R1) + P(D \cap R2)$$

$$= P(D|R1)P(R1) + P(D|R2)P(R2)$$

$$= 1/3 \cdot 3/4 + 2/3 \cdot 1/4 = 5/12$$

 $P(\text{Packet not getting dropped}|\text{R1}) = P(D^c|R1)$

$$= 1 - P(D|R1)$$

$$= 2/3$$

$$P(R1|D) = \frac{P(R1 \cap D)}{P(D)}$$

= $\frac{P(D|R1)P(R1)}{5/12}$

Bayes' Rule

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

$$P(R1|D^c) = \frac{P(D^C|R1)P(R1)}{P(D^c)}$$

$$=rac{(1-P(D|R1))\cdot 3/4}{1-P(D)}
eq P(R1)$$

This it because $P(R1|D^c)$ is the posterior probability and P(R1) is the prior probability.

Law of total probability + Bayes' Rule

Partition of $\Omega: B_1, \ldots B_n$

$$B_i \cap B_j = \phi$$

$$\bigcup_{i=1}^n B_i = \Omega$$

Given
$$P(B_i)$$
, $P(A|B_i)$

$$P(B_i|A) = rac{P(A|B_i)P(B_i)}{P(A)}$$

Bayes' Rule:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

Binary communication channel

$$P(S0) = 1 - lpha$$
 , $P(S1) = lpha$

$$P(R0|S0) = 1 - q$$
 , $P(R1|S0) = q$

$$P(R0|S0) = p$$
 , $P(R1|S1) = 1 - p$

$$P(R1) = P(R1 \cap S1) + P(R1 \cap S0)$$

$$= P(R1|S1)P(S1) + P(R1|S0)P(S0)$$

$$= (1 - p)\alpha + q(1 - \alpha)$$

$$P(S1|R1) = \frac{P(R1|S1)P(S1)}{P(R1)}$$
$$= \frac{(1-p)\alpha}{(1-p)\alpha + q(1-\alpha)}$$

Chain Rule

$$P(A \cap B) = P(A|B)P(B)$$

$$P(A \bigcap B \bigcap C) = P(A|(B \bigcap C))P(B \bigcap C)$$

$$=P(A|(B\bigcap C))P(B|C)P(C)$$

$$P(A_1 \cap \ldots \cap A_n) = P(A_1 | A_2 \cap \ldots \cap A_n) P(A_2 | A_3 \ldots \cap A_n) \ldots P(A_{n-1} | A_n) P(A_n)$$

Example

Two urns

Urn 1: 5 red balls and 5 green balls

Urn 2: 2 red balls and 4 green balls

Randomly pick one ball from the selected urn and remove it

Randomly pick 2^{nd} ball from the same urn

$$U1 = \{\text{Urn 1 is selected}\}$$
, $P(U1) = 2/3$

$$U2 = \{ \mathrm{Urn}\ 2 \ \mathrm{is} \ \mathrm{selected} \}$$
 , $P(U2) = 1/3$

 $R1 = \{ \text{first ball is red} \}$

 $R2 = \{\text{second ball is red}\}$

$$\begin{split} &P(R1 \bigcap R2) = P(R1 \bigcap R2 \bigcap U1) + P(R1 \bigcap R2 \bigcap U2) \\ &P(R2 \bigcap R1 \bigcap U1) = P(R2|R1 \bigcap U1)P(R1|U1)P(U1) \\ &= 4/9 \cdot 5/10 \cdot 2/3 \\ &P(R2 \bigcap R1 \bigcap U2) = P(R2|R1 \bigcap U2)P(R1|U2)P(U2) \\ &= 1/5 \cdot 2/6 \cdot 1/3 \\ &P(U1|R1 \bigcap R2) = \frac{P(R1 \bigcap R2|U1)P(U1)}{P(R1 \bigcap R2)} \\ &= \frac{4/9 \cdot 5/10 \cdot 2/3}{P(R1 \bigcap R2)} \end{split}$$

Week 2 Session 2

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$
 if $P(B) > 0$

Chain Rule:

$$P(A \cap B) = P(A|B)P(B)$$

$$P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C)$$

Law of total probability:

If
$$B_1,\dots B_n$$
 is a partition of Ω
Then $P(A)=\sum_{i=1}^n P(A\bigcap B_i)$
 $=\sum_{i=1}^n P(A|B_i)P(B_i)$

Can be extended to a countable partition, i.e., B_1, B_2, \ldots

that are pairwise disjoint and $\bigcup_{i=1}^{\infty} B_i = \Omega$

Then,
$$P(A) = \sum_{i=1}^{\infty} P(A \bigcap B_i) = \sum_{i=1}^{\infty} P(A|B_i)P(B_i)$$

Bayes' Rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

$$P(A \cap B) = P(A|B)P(B)$$

Statement: $P(A \cap B|C) = P(A|B \cap C)P(B|C)$

LHS:
$$P(A \cap B|C) = \frac{P(A \cap B \cap C)}{P(C)}$$

RHS:
$$P(A|B \cap C)P(B|C) = \frac{P(A \cap B \cap C)}{P(B \cap C)} \frac{P(B \cap C)}{P(C)}$$

Two urns example

$$P(R2 \bigcap R1|U1)P(U1)$$

$$= P(R2|R1 \cap U1)P(R1|U1)P(U1)$$

$$P(A \cap B) \sim rac{ ext{number of}(A \cap B)}{n}$$
 relative frequency

$$P(B) \sim rac{ ext{number of} B}{n}$$

$$P(A|B) \sim \frac{\text{number of } (A \cap B)}{\text{number of } B}$$

Independent Events

Definition: Two events A and B are independent if $P(A \cap B) = P(A)P(B)$

Let A and B be independent events and P(B)>0

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

$$P(B^{c}) > 0$$

$$P(A|B^c) = \frac{P(A \cap B^c)}{P(B^c)} = \frac{P(A) - P(A \cap B)}{1 - P(B)} = \frac{P(A) - P(A)P(B)}{1 - P(B)} = P(A)$$

Independence \neq Disjoint events

$$C \cap D = \phi$$
 , $P(C), P(D) > 0$

Are C and D independent?

$$P(C \cap D) = P(\phi) = 0$$

$$P(C \cap D) \neq P(C)P(D)$$

 ${\cal C}$ and ${\cal D}$ are not independent

$$P(C|D) = 0$$

Lemma 1

If \boldsymbol{A} and \boldsymbol{B} are independent events, then so are the following events:

(a) ${\cal A}$ and ${\cal B}^c$

$$P(A \cap B^c) = P(A)P(B^c)$$

- (b) A^{c} and B are independent
- (c) A^c and B^c are independent

Proof:

(a)
$$P(A \cap B^c) = P(A) - P(A \cap B)$$

$$= P(A) - P(A)P(B)$$

$$= P(A)(1 - P(B))$$

$$=P(A)P(B^c)$$

(b) A^c and B

(c)
$$A^c$$
 and B^c

Using property:
$$(A \bigcup B)^c = A^c \bigcap B^c$$

$$P(A^c \cap B^c) = 1 - P(A \cup B)$$

$$= 1 - P(A) - P(B) + P(A \cap B)$$

$$= 1 - P(A) - P(B) - P(A)P(B)$$

$$= (1 - P(A))(1 - P(B))$$

$$=P(A^c)P(B^c)$$

4 sided die,
$$\Omega = \{1,2,3,4\}$$

Equally likely outcomes

$$A=\{1,4\}$$
 , $B=\{2,4\}$

$$P(A) = 1/2, P(B) = 1/2$$

$$P(A \cap B) = 1/4$$

Example

$$\Omega=\{1,2,3,4\}$$

$$P(\{1\}) = P(\{2\}) = P(\{3\}) = p$$

$$A=\{1,4\}$$
 , $B=\{2,4\}$

$$P(A) = 1 - 2p$$

$$P(B) = 1 - 2p$$

$$P(A \cap B) = P(\{4\}) = 1 - 3p$$

A and B are independent if $1-3p=(1-2p)^2$

Independence of 3 events

 $\label{eq:def:alpha} \text{Def:}\ A,B,C\ \text{are independent (mutually independent) if}$

1.
$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

2.
$$P(A \cap B) = P(A)P(B)$$

3.
$$P(B \cap C) = P(B)P(C)$$

4.
$$P(C \cap A) = P(C)P(A)$$

$$P(A \cap B|C) = \frac{P(A \cap B \cap C)}{P(C)} = \frac{P(A)P(B)P(C)}{P(C)} = P(A)P(B) = P(A \cap B)$$

$$P(A|C) = P(A)$$

$$P(A \bigcup B|C) = \frac{P((A \bigcup B) \cap C)}{P(C)}$$

$$= \frac{P((A \cap C) \cup (B \cap C))}{P(C)}$$

$$= \frac{P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)}{P(C)}$$

$$= \frac{P(A)P(C) + P(B)P(C) - P(A)P(B)P(C)}{P(C)}$$

$$= P(A) + P(B) - P(A)P(B)$$

$$= P(A \cup B)$$

$$P(A \cup C) = P(A|C) + P(B|C) - P(A \cap B|C)$$

$$= P(A) + P(B) - P(A \cap B)$$

Pairwise independence

A,B,C are pairwise independent if

$$P(A \cap B) = P(A)P(B)$$

$$P(B \cap C) = P(B)P(C)$$

$$P(C \cap A) = P(C)P(A)$$

Example

 $= P(A \cup B)$

4 sided die equally likely outcomes $\Omega = \{1,2,3,4\}$

$$A=\{1,4\}$$
 , $B=\{2,4\}$, $C=\{3,4\}$

$$P(A igcap B) = 1/4$$
 , $P(A) = 1/2$, $P(B) = 1/2$

A,B,C are pairwise independent

$$P(A \cap B \cap C) = 1/4$$

$$P(A)P(B)P(C) = 1/8$$

$$P(A \bigcap B \bigcap C) \neq P(A)P(B)P(C)$$
 meaning A,B,C are not independent

$$P(A \cap B|C) = \frac{P(A \cap B \cap C)}{P(C)} = \frac{1/4}{1/2} = 1/2$$

Lemma 2

A,B,C are independent then

(a) A^c, B, C are independent

Proof:

$$P(A^c \cap B) = P(A^c)P(B)$$

$$P(A^c \cap C) = P(A^c)P(C)$$

$$P(B \cap C) = P(B)P(C)$$

$$P(A^c \bigcap B \bigcap C) = P(B \bigcap C) - P(B \bigcap C \bigcap A)$$

$$= P(B)P(C) - P(B)P(C)P(A)$$

$$= (1 - P(A))P(B)P(C)$$

$$= P(A^c)P(B)P(C)$$

(b) A^c, B^c, C are independent

$$E = A^c$$

From Part (a) E,B,C are independent

$$\implies E, B^c, C$$
 are independent

$$\implies A^c, B^c, C$$
 are independent

(c)
$$A^c, B^c, C^c$$
 are independent

$$E = A^c, F = B^c$$

From Part (b)

 $\implies E, F, C$ are independent

using Part (a)

$$\implies E, F, C^c$$
 are independent

$$\implies A^c, B^c, C^c$$
 are independent re

Example

3 bits are transmitted over a noisy channel

For each bit, the probability of correct reception is λ

$$P(C_i) = \lambda$$
 , $P(E_i) = 1 - \lambda$

The error events for the 3 bits are mutually independent

$$E_i = \{ \text{bit } i \text{ incorrectly received} \}$$

 E_1, E_2, E_3 are independent

 $C_i = \{ \text{bit } i \text{ correctly received} \}$

 C_1, C_2, C_3 are independent

 C_1, C_2, E_3 are independent

Example

Find the probability that the number of correctly received bits is 2

 $S = \{$ Number of correct bits is $2\}$

$$(C_1 \cap C_2 \cap E_3) \cup (C_1 \cap E_2 \cap C_3) \cup (E_1 \cap C_2 \cap C_3)$$

say
$$F_1=C_1 \cap C_2 \cap E_3, F_2=C_1 \cap E_2 \cap C_3, F_3=E_1 \cap C_2 \cap C_3$$

$$S = F_1 \bigcup F_2 \bigcup F_3$$

$$P(S) = P(F_1) + P(F_2) + P(F_3)$$

because F_1, F_2, F_3 are pairwise disjoint

$$P(C_1 \cap C_2 \cap E_3) = \lambda \lambda (1 - \lambda)$$

$$P(S) = 3\lambda^2(1-\lambda)$$

Probability that all bits are correctly received:

$$=P(C_1 \cap C_2 \cap C_3)=\lambda^3$$

Probability that at least 2 bits are correctly received:

$$=\lambda^3+3\lambda^2(1-\lambda)$$

Finite Ω and equally likely outcomes

$$P(\{\omega\}) = rac{1}{|\Omega|}$$
 , $|\Omega|$ is the cardinality of Ω

$$P(A) = \sum_{\omega \in A} P(\{\omega\}) = \sum_{\omega \in A} \frac{1}{|\Omega|} = \frac{|A|}{|\Omega|}$$

Example

Antenna array consists of n antennas

Arrange n antennas in a straight line

m out of the n antennas are defective

All arrangement of n antennas are equally likely

The array will not work if 2 defective antennas are next to each other

Probability of the array that does not work?

$$n = 4, m = 2$$

$$A = \{DDNN, NNDD, NDDN, NDND, DNDN, DNND\}$$

$$P(Array not work) = \frac{|A|}{|\Omega|} = \frac{3}{6}$$

$$n = 12, m = 4$$

Systematic / Efficient way of counting number of elements in a set without listing all elements \rightarrow Combinatorics

Basis principle of counting

 $n_1 n_2$ ways of doing this procedure

Example

4 digit passcode

 10^{4}

Example

7 character license plate where first 3 characters are letter other 4 are digits

$$26\cdot 26\cdot 26\cdot 10\cdot 10\cdot 10\cdot 10$$

Repetition of letter or digits is not allowed

$$26 \cdot 25 \cdot 24 \cdot 10 \cdot 9 \cdot 8 \cdot 7$$

Week 3 Session 1

Independent events

Definition: Two events A and B are independent if $P(A \cap B) = P(A)P(B)$

Independence
$$\implies P(A|B) = P(A|B^c) = P(A)$$

Independence of 3 events

Def: A,B,C are independent (mutually independent) if

1.
$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

2.
$$P(A \cap B) = P(A)P(B)$$

3.
$$P(B \cap C) = P(B)P(C)$$

$$4. P(C \cap A) = P(C)P(A)$$

Independence of multiple events

Definition: $A_1, \ldots A_n$ are (mutually) independent if

$$P(\bigcap_{i\in I}A_i)=\prod_{i\in I}P(A_i)$$

for every non-empty $I\subset\{1,2,\ldots,n\}$

Definition: A_1,A_2,\ldots are (mutually) independent if

$$P(\bigcap_{i\in I}A_i)=\prod_{i\in I}P(A_i)$$

for every non-empty and finite $I\subset\{1,2,\dots\}$

Finite Ω and equally like outcomes

$$P(A) = rac{|A|}{|\Omega|}$$

Basic principle of Counting

Total number of ways of doing 2-stage procedure is $n_1 n_2$

Permutations

Definition: Any arrangement of elements of S in a sequence

$$S = \{I_1, \dots I_n\}$$

How many permutation of S are possible?

Imagine have n slots,

$$n \cdot (n-1) \dots \cdot 1 = n!$$

Example

4 digit passcode using all of these digits 2,4,6,8

number of passcodes=number of permutations=4!

$$S = \{I_1, \dots I_n\}$$

Sampling an ordered k-tuple with repetitions allowed

$$k=2$$
 , $(I_1\ I_2)
eq (I_2\ I_1)$, $(I_1\ I_1)
eq (I_1\ I_1)$

How many ordered pairs are possible?

 n^2

Ordered k-tuple

Flipping a coin k times. How many sequence of H, T are possible?

k-tuple: 2^k

Sampling ordered k-tuple without repetitions $1 \leq k \leq n$

$$S = \{I_1, \dots I_n\}$$

Within k slots, then $n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$

Number of ordered k-tuple without repitition

$$n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Example

n people in a department.

Need to form a committee consisting of a chair, a vice chair and a secretary

Same person cannot serve in more than 1 role

How many such committees are possible?

$$n(n-1)(n-2) = \frac{n!}{(n-3)!}$$

Example: Birthday problem

k people , $1 \leq k \leq 365$

All were born in non-leap year

a) How many birthday sequences are possible?

 $(d_1, \ldots d_k)$ where every slot has 365 possibilities

 365^k

b) How many birthday sequences are possible without repitition?

$$\frac{365!}{(365-k)!} = 365 \cdot 364 \cdot \ldots \cdot (365-k+1)$$

c) Assume that all birthday sequence are equally likely?

Probability that the group of k-people have distinct birthdays

$$\frac{|A|}{|\Omega|} = \frac{\frac{365!}{(365-k)!}}{365^k}$$

d) Probability that at least 2 people in this k-people group have the same birthday?

P(B) = 1 - P(everyone has a different birthday)

$$=1-rac{rac{365!}{(365-k)!}}{365^k}$$

Selecting a subset with k elements, $1 \leq k \leq n$

- Order is not important
- No repetitions
- ullet A subset of k elements is called a "combination" with k-elements

Say $S=\{I_1,I_2,I_3\}$ has a subset of size 2

 $\{I1,I2\},\{I1,I3\},\{I3,I2\}$ all 3 possibilities

With n elements in S

number of k element subsets $n\mathbf{C}_k$

 $n\mathrm{C}_k = rac{n!}{(n-k)!k!} = inom{n}{k}$ where $rac{n!}{(n-k)!k!}$ is the binomial coefficient

number of subset of 0 elements=1

$$k = 0$$

$$\binom{n}{0} = \frac{n!}{n!0!} = 1$$

for $k \geq n+1$

$$nC_k = 0$$

Why is the number of subsets of S with k-elements= $\binom{n}{k}$

Task: Select an order k-tuple from S without repititions

$$n(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!k!}$$

Indirect method for task

Stage1:

Pick a subset of k elements (without considering order)

 nC_k

Stage2:

Pick a permutation for the k-element subset chosen in stage1

k!

$$n\mathrm{C}_k k! = rac{n!}{(n-k)!}$$

$$nC_k = \frac{n!}{(n-k)!k!}$$

a) 20 people in an organization need a committee of 3 people

number of possible committees= $\binom{20}{3} = \frac{20!}{3!17!}$

b) 12 people - 5 women and 7 men

Need to form a committee with 2 women and 3 men

number of possible committees $=\binom{5}{2}\binom{7}{3}$

c) 7 people

Committee of 3 people

Two of 7 people - Person 1 and Person 2 refuse to serve together

number of possible committees= $\binom{7}{3} - \binom{5}{1}$

Method 2: $S=P_1,\ldots P_7$

Committees with P_1 but not $P_2 = \binom{5}{2}$

Committees with P_2 but not $P_1={5 \choose 2}$

Committees with neither P_1 or $P_2 = \binom{5}{3}$

$$\binom{5}{2} + \binom{5}{2} + \binom{5}{3} = 30$$

Example

50 items: 10 of items are defective, 40 are functional

Randomly pick 10 items

Probability that exactly 5 of selected items are defective

 $\frac{\binom{10}{5}\binom{40}{5}}{\binom{50}{10}}$

Example

32 bit binary number. How many such numbers have exactly 5 zeros

 $\binom{32}{5}$

A computer randomly generate a 32 bit binary number.

Probability that the number generated has exactly 5 zeros.

n antennas, m defective , n-m functional, $1 \leq m \leq n$

n antennas are arranged in a row

a) How many ways can I arrange m defective (0) and (n-m) functional (1) antennas?

say
$$n=4, m=2$$

$$\binom{4}{2} = \frac{4!}{2!2!} = 6$$

 $\it n$ - bit binary number with $\it m$ 0 and $\it n-m$ 1

 $\binom{n}{m}$

b) How many arrangement where no 2 defective antennas are adjacent to each other?

 $\it n$ bits where no 2 zeros are adjacent

m zeros and n-m ones

say m=2 then n-2 ones simply

$$\binom{n-1}{2}$$

 $^{n-m+1}\mathrm{C}_m$ number of valid arrangement

If
$$m \leq n-m+1$$

$$^{n-m+1}\mathrm{C}_m = \binom{n-m+1}{m}$$

If
$$m > n - m + 1$$

$$^{n-m+1}\mathbf{C}_m = 0$$

c) Antenna system works as long as no two defective antennas are next to each other

$$P(\text{Antenna system works}) = \frac{{n - m + 1}{C_m}}{{n \choose m}}$$

Example

$$S=(I_1,\ldots I_n)$$

Divide S into groups: Group 1 with k_1 items, Group with k_2 items

where
$$k_1+k_2=n$$
 , $1\leq k_1\leq n$, $1\leq k_2\leq n$

How many such division of S are possible?

$$\binom{n}{k_1}\binom{n-k_1}{k_2} = \binom{n}{k_1}\binom{k_2}{k_2} = \binom{n}{k_1}$$

Problem:

Divide S into r groups

Group 1: k_1 items

...

Group r: k_r items

where
$$k_1 + \ldots + k_r = n$$

How many such divisions are possible?

$$\binom{n}{k_1}\binom{n-k_1}{k_2}\cdots\binom{n-k_1-k_2-\ldots-k_{r-1}}{k_r}$$

$$= \frac{n!}{k_1!(n-k_1)!} \frac{(n-k_1)!}{k_2!(n-k_1-k_2)!} \dots$$

$$= \frac{n!}{k_1!k_2!...k_r!}$$

Multinomial coefficient

Example

6 sided die. Roll it 12 times.

How man sequence with 10 ones, 1 twos and 1 threes?

12 positions

Divide 12 positions into 3 groups

G1-10

G2-1

G3-1

12! 10!1!1!

Exercise: How many outcomes where each number appears exactly twice

Week 3 Session 2

Combinatorial Problems

$$S = I_1, \dots I_n$$

1. Number of ordered k-tuple with repetitions allowed

 n^k

2. Number of ordered k-tuples without repetition $1 \leq k \leq n$

$$\frac{n!}{(n-k)!}$$

3. Number of possible subsets of size k , $1 \leq k \leq n$

 $\binom{n}{\iota}$

4. Partition S into r groups of sizes $k_1,k_2,\ldots k_r$ respectively $(k_1+k_2+\ldots +k_r=n)$

Number of possible partitions

$$\frac{n!}{k_1!\dots k_r!} = \binom{n}{k_1,k_2,\dots k_r}$$

Example: k identical items (k \$1 bills)

Divide among two people

P1	P2
0	k
1	k-1
2	k-2
k-1	1
k	0

Each outcome compounds to k+1 bit number with exactly one 0

Number of such number $= \binom{k+1}{1}$

Divide among 3 people

Each outcome compounds to a k+2 bit number with exactly two 0

 $\binom{k+2}{2}$

Divide k identical item among n people

 ${n-1+k\choose n-1}=$ number of possible division of k identical items among n people

$$\binom{n-1+k}{n-1} = \binom{n-1+k}{k}$$

Example

Consider the equation

$$x_1 + x_2 + \ldots + x_n = k$$

Non-negative integer x_1, \ldots, x_n that satisfy the equation above.

How many such solutions are possible?

$$\binom{n-1+k}{n-1}$$

Example

Unordered sampling with replacement

$$S = \{a, b, c\}$$

Sample this set k times with repitition allowed

Outcome is triplet (x_a, x_b, x_c)

 $x_a+x_b+x_c=k$ where x_a is the number of times a was picked, x_b is the number of times b was picked, x_c is the number of times c was picked

Number of possible outcomes= $\binom{k+2}{2}$

Ordered sampling with replacement

$$S = \{a, b, c\}$$

Sample this set k times with repitition allowed

Outcome is the sequence of items selected

E.g., aabb...b

$$S = \{a, b, c\}$$

Sampling without repetition, 3 times

Number of ordered triplets = 3 imes 2 imes 1

Picking a subset of size 3

Number of subsets = $\binom{3}{3} = 1$

$$S = \{a, b, c\}$$

Sampling with repetition, ordered k-tuple

Number of order k-tuple= 3^k

Number of such tuples with 1a, 1b, k-2 c

$$\frac{k!}{1!1!(k-2)!}$$

Example

Roll a 6-sided die n times

Outcome is the sequence of number obtained

Number of possible outcomes $= 6^n$

Number of possible outcomes with k_1 ones, k_2 twos, ... k_6 sixes

$$\binom{n}{k_1,k_2,...,k_6}$$

Number of possible outcomes with x even numbers and n-x odd numbers

Sequential experiment with independent sub-experiments

Toss a coin n times (n=3)

$$\Omega = \{HHH, TTT, \dots\}$$

 $P(\{HTH\}) = P(\{\text{Heads on 1st toss}\}\{\text{Tails on 2nd toss}\}\{\text{Heads on 3rd toss}\})$

Assume Independence

= P(Heads on 1st toss)P(Tails on 2nd toss)P(Heads on 3rd toss)

$$= p(1-p)p$$

$$P(\text{Heads on } k^{th} \text{ toss}) = p$$

$$P(\text{Tails on } k^{th} \text{ toss}) = 1 - p$$

Roll a 4-sided die 3 times.

Rolls are independent. The die is fair.

 $P((\text{Even number of 1st roll}) \cap (\text{Even number of 2nd roll}) \cap (4 \text{ on 3rd roll}))$

= P((Even number of 1st roll)P(Even number of 2nd roll)P(4 on 3rd roll)

$$=1/2\cdot 1/2\cdot 1/4$$

Suppose we have a sequential experiment with n independent sub-experiments

This means that if we consider any n events A_1, \ldots, A_n

where A_i occurrence depends only on the outcomes of ith sub-experiments

Then, A_1, \ldots, A_n are independent

Example

Coin toss n times

Each toss is H with probability p and T with probability (1-p)

Coin tosses are independent

$$P(HHTT...T) = p \cdot p \cdot (1-p)...\cdot (1-p)$$

$$= p^2 (1-p)^{n-2}$$

$$P(THHT...T) = p^2(1-p)^{n-2}$$

 $P(\text{a square of length } n \text{ with } k H, (n-k) T) = p^k (1-p)^{n-k}$

Probability that we get k heads and n-k tails

=
$$\sum_{\text{sequence with } k \ H,(n-k) \ T)} P(\text{sequence})$$

$$=\sum_{ ext{sequence with }k\;H,(n-k)\;T)}p^k(1-p)^{n-k}$$

= sequence with k H, (n-k) T
$$p^k(1-p)^{n-k}$$

$$= \binom{n}{k} p^k (1-p)^{n-k}$$

 $P(\{\text{Getting }k \text{ heads in }n \text{independent coin tosses}\}) = \binom{n}{k} p^k (1-p)^{n-k}$

$$k = 0, 1, 2, \dots n$$

Binomial probability law

Example

n trials of a new drug

Each trial is a success with probability or a failure with probability 1-p

Trials are independent

$$P(\{\text{Get exactly } k \text{ success in } n \text{ trials}\}) = \binom{n}{k} p^k (1-p)^{n-k}$$

Example

100 bits are transmitted over a noisy channel. The transmission of each bit are independent.

Each bit is received correctly with probability λ or incorrectly with probability $1-\lambda$

$$P(\{\text{Get } k \text{ bits correctly}) = \binom{100}{k} \lambda^k (1-\lambda)^{100-k}$$

Example

A coin is tossed infinitely many times. Coin tosses are independent

For each toss,
$$H
ightarrow p, T
ightarrow 1-p$$
 , $0 \leq p \leq 1$

Probability that the first H appears on the m^{th} toss

m = 1	p
m=2	$(1-p)\cdot p$

Probability that first H on m^{th} toss

$$=P(\{TT\ldots TH\})=(1-p)^{m-1}p$$
 where $m=1,2,3,\ldots$

Exercise: Probability that it takes more than m tosses to get the first H

$$P(\{\text{first } H \text{ on } m+1 \text{ toss}\} \bigcup \{\text{first } H \text{ on } m+2 \text{ toss}\} \bigcup \{\dots\})$$

Additivity since disjoint events

$$=\sum_{k=m+1}^{\infty}P(\mathrm{first}\,H\,\mathrm{on}\,k^{th}\mathrm{toss})$$

$$=\sum_{k=m+1}^{\infty}P(TT\ldots H)$$

$$=\sum_{k=m+1}^{\infty}(1-p)^{k-1}p$$

$$= (1-p)^m p + (1-p)^{m+1} p + \dots$$

$$=rac{(1-p)^mp}{1-(1-p)}=(1-p)^m$$

$$P(\{TTT\dots T\}) = (1-p)^m$$

Roll a 6-sided die 7 times. Rolls are independent

Once each roll, probability of getting $k, (k=1,2,\ldots,6)$ is p_k

$$p_1 + p_2 + \ldots + p_6 = 1$$

Probability of getting this sequence (1123456)= $p_1 \cdot p_1 \cdot p_2 \cdot p_3 \cdot p_4 \cdot p_5 \cdot p_6$

Probability of getting (2311564) = $p_1 \cdot p_1 \cdot p_2 \cdot p_3 \cdot p_4 \cdot p_5 \cdot p_6$

Probability of getting 2 ones, 1 two, 1 three, 1 four, 1 five, 1 six?

- $=\sum_{\text{sequence with 2 ones, 1 twos, ...}} P(\text{sequence})$
- = {Number of sequence with 2 ones, 1 twos, ...} $\cdot p_1^2 p_2 \dots p_6$
- $=rac{7!}{2!1!...1!}p_1^2p_2...p_6$

Sequential experiment with n independent sub-experiments

On each sub-experiment, there are m possible outcomes with probability $p_1, p_2, \dots p_m$

$$\sum_{i=1}^m p_i = 1$$

Probability(Outcome 1 happens k_1 times, Outcome 2 happen k_2 times, ... Outcome m happens k_m times)

$$k_1 + k_2 + \dots k_m = n$$

- $= \{\text{Number of valid sequences}\} p_1^{k_1} p_2^{k_2} \dots p_m^{k_m}$
- $=inom{n}{k_1,k_2,...k_m}p_1^{k_1}p_2^{k_2}...p_m^{k_m}$

Multinomial probability Law

Random Variable

6-sided die

Roll it 3 times

Number of sequence with 1 even 2 odds

Pick 1 position for even number: $\binom{3}{1}$

Pick an even number to put in the selected position: 3

Pick 2 odd number to put in the other 2 position: 3^2

$$\binom{3}{1} \cdot 3 \cdot 3^2 = 3^4$$

6-sided die

n rolls, k even numbers, n-k odd numbers

Pick k positions for the evens: $\binom{n}{k}$

Pick k even numbers: 3^k

Pick (n-k) odds: 3^{n-k}

 $\sum_{k=0}^{n} {n \choose k} 3^n = \sum_{k=1}^{n}$ Number of sequence with k events = Total number of sequence

$$3^n \sum_{k=0}^n \binom{n}{k} = 6^n$$

$$3^n 2^n = 6^n$$

Week 4 Session 1

Suppose we have a sequential experiment with n independent sub-experiments

Consider event $A_1, A_2, \dots A_n$

where $A_i^\prime s$ occurrence depends only on outcome of i^{th} sub-experiment

Then $A_1, A_2, \dots A_n$ are independent

Example

Coin toss n times

Each toss is H with probability p and T with probability (1-p)

Coin tosses are independent

 $P(\text{Getting } k \text{ heads in } n \text{ independent coin tosses}) = p^k (1-p)^{n-k}$

$$k = \{0, 1, 2, \dots n\}$$

Binomial probability law

 $A = \{ \text{first } k \text{ out of } n \text{ coin tosses are } H \}$

 $B = \{\text{There were }\}kH \text{ in } n \text{ coin tosses }$

$$P(A|B) = rac{P(A \cap B)}{P(B)} = rac{p^k (1-p)^{n-k}}{inom{n}{k} p^k (1-p)^{n-k}} = rac{1}{inom{n}{k}}$$

 $A \bigcap B = HH \ldots HT \ldots T$ where there are kH, (n-k)T

$$\sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} = 1$$

Probabilistic way:

 $\sum_{k=0}^{n} P(\{\text{Getting } kH \text{ in tosses}\})$

$$= P(\{\text{Getting 0H}\} \bigcap \{1H\} ... \bigcap nH)$$

$$=P(\Omega)=1$$

Algebraic way:

Binomial expansion:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

where
$$a=p, b=1-p$$

$$\sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} = (p+1-p)^n = 1$$

$${\rm say}\, p=1/2$$

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{2^n} = 1$$

$$\sum_{k=0}^{n}inom{n}{k}=2^n$$

Random Variables

Probability model Ω, \mathcal{F}, p

Definition: A random variable (RV) is a function from Ω to real number $\mathbb R$

$$X:\Omega o\mathbb{R}$$

Example

Coin toss n=2 times with independent tosses

$$X(\omega) = \{ \text{Number of } H \text{ in } \omega \}$$

Example

$$H:\Omega o\mathbb{R}$$

$$H(\omega) = \{ \text{Height of selected student} \}$$

Remark

1. X is a function

Fix ω , then $X(\omega)$ is a fixed real number

2. X may be a many-to-one function

It is possible to have $X(\omega_1)=X(\omega_2)$ for some $\omega_1
eq\omega_2$

Events in terms of RVs

$$X:\omega o\mathbb{R}$$

$$A=\{\omega\in\Omega:X(\omega)=2\}$$
 is an event

$$B = \{\omega \in \Omega : 0 \le X(\omega) \le 2\}$$

$$C = \{\omega \in \Omega : sin(X(\omega)) > 0\}$$

$$P(\{\omega \in \Omega : X(\omega) = 2\})$$

Notation: P(X = 2)

$$P(\{\omega \in \Omega : X(\omega) \leq 2\})$$

Notation:
$$P(X \leq 2)$$

$$P(\{\omega \in \Omega : X(\omega) \in (a,b)\})$$

Notation:
$$P(X \in (a,b)) = P(a < x < b)$$

n coin toss, independent toss

Probability of
$$H=p$$

Probability of
$$T=1-p$$

$$X(\omega) = \text{Number of } H \text{ in } \omega$$

$$P(X = 0) = P(\{\omega \in \Omega : X(\omega) = 0\})$$

$$= P(\{TT...T\})$$

$$=(1-p)^n$$

$$P(X \le 1) = P(\{T \dots T, HT \dots T, TH \dots T, \dots\})$$

$$= (1-p)^n + np(1-p)^{n-1}$$

$$P(X \le 1) = P(\{X = 0\} \cap \{X = 1\})$$

$$= P(X = 0) + P(X = 1)$$

$$= P(Getting 0H) + P(Getting 1H)$$

$$=\binom{n}{0}p^k0(1-p)^{n-0}+\binom{n}{1}p^1(1-p)^{n-1}$$

$$= (1-p)^n + np(1-p)^{n-1}$$

Example

Roll a 4-sided die two times

Rolls are independent. Die is fair.

$$\Omega = \{(1,1), (1,2), \dots (4,4)\}$$

z = Number on the 2nd roll

$$P(z = 1) = P(\text{Get 1 on 2nd roll}) = 1/4$$

$$P(\{1,1\} = P(1 \text{ on first})P(1 \text{ on second}) = 1/4 \cdot 1/4 = 1/16$$

$$P(\{(1,1),(1,2),\dots(4,4)\}) = 4 \cdot 1/16 = 1/4$$

X = minimum if the numbers on the 2 roll

$$P(X = 4) = P({4,4}) = 1/16$$

$$P(X = 2) = P(\{2, 2\}, \{2, 3\}, \{2, 4\}, \{3, 2\}, \{4, 2\}) = 5/16$$

Discrete RVs

Range of RV X= all possible values $X(\omega)$ can take

Coin toss example $X = \operatorname{number} \operatorname{of} H$

Range of X: $S_x = \{0, 1, 2..., n\}$

Definition: A RV X is discrete if S_x is a finite or a countably infinite set.

Example

Coin with probability H=p, T=1-p

Independent coin tosses.

Keep tossing until a H appears

N =Number of tosses until an H appears

$$S_N = \{1,2,3,\dots\}$$

N is a discrete RV

$$P(N=1)=p$$

$$P(N=k)=(1-p)^{k-1}p$$
 where $k\geq 2$

$$S_x = \{x_1, x_2, \dots x_n\}$$

$$S_x = \{x_1, x_2, x_3, \dots\}$$

Notations: X, Y, Z to indicate RV

$$P(X = x)$$

x,y,z indicates real number/ values that a RV may take

Probability Mass Function (PMF)

$$S_x = \{x_1, x_2, \dots x_n\}$$

$$P_X(x_i) = P(X = x_i) = P(\{\omega \in \Omega : X(\omega) = x_i\})$$

1.
$$0 \le P_X(x_i) \le 1$$

2.
$$S_x = \{x_1, x_2, \dots x_n\}$$

$$a \neq S_x$$

$$P(X = a) = P(\{\omega \in \Omega : X(\omega) = a\}) = P(\phi) = 0$$

3.
$$P(\{X=x_1\} \bigcap \{X=x_2\})=0$$

Disjoint Events

4.
$$P({X = x_1} \cup {X = x_2} \cup ... {X = x_n}) = P(\Omega) = 1$$

$$\sum_{i=1}^n P(X=x_i)$$

$$\sum_{i=1}^n P_X(x_i)$$

$$\sum_{i=1}^n P_X(x_i) = 1$$
 PMF add up to 1
5. $\{X=x_1\}, \{X=x_2\}, \dots, \{X=x_n\} \text{ form a partition of } \Omega$
6. Let (a,b) be an interval in \mathbb{R}
$$P(X \in (a,b))$$
 Law of total probability: $\sum_{i=1}^n P(X \in (a,b) \cap X = x_i)$
$$= \sum_{i:x_i \in (a,b)} P(X \in (a,b) \cap X = x_i) + \sum_{i:x_i \not\in (a,b)} P(X \in (a,b) \cap X = x_i)$$
 where $\sum_{i:x_i \not\in (a,b)} P(X \in (a,b) \cap X = x_i) = 0$
$$= \sum_{i:x_i \in (a,b)} P(X = x_i)$$

$$= \sum_{i:x_i \in (a,b)} P(X = x_i)$$
 Therefore: $P(X \in (a,b)) = \sum_{i:x_i \in (a,b)} P_X(x_i)$
$$P(X \in (1,2) \cup X \in (4,5))$$

$$= P(X \in (1,2) \cap Y(X_i) + \sum_{x_i \in (4,5) \cap Y(X_i)} P_X(x_i)$$

$$= \sum_{x_i \in (1,2) \cap Y(X_i)} P_X(x_i)$$

For any arbitrary subset \boldsymbol{B} pf the real line

$$P(X \in B) = \sum_{i:x_i \in B} P_X(x_i)$$

Example

Coin toss n times independent.

X =Number of H that appear

$$S_x = \{0, 1, \dots, n\}$$

Binomial RV:

$$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 where $0 \leq k \leq n$

 $X \sim \operatorname{Binomial}(n, p)$

$$X \sim \text{Binomial}(10, 1/2)$$

$$P_X(k) = {10 \choose k} rac{1}{2^k} rac{1}{2^{n-k}}$$
 where $0 \le k \le 10$

$$P(X \ge 9) = P_X(9) + P_X(10)$$

$$P(X < 0.8) = P_X(0)$$

$$P(|X-5| \le 1) = P_X(4) + P_X(5) + P_X(6)$$

If $X \ge n-1$, then I win \$100.

Otherwise if X < n-1, I lose \$10

Y= my earnings, y=g(x)

What is the PMF of y?

$$S_y = \{100, -10\}$$

$$P_Y(100) = P(y = 100) = P(X \ge n - 1) = P_X(n - 1) + P_X(n)$$

$$P_Y(-10) = 1 - P_Y(100) = 1 - P_X(n-1) - P_X(n)$$

Example

Keep repeating independent coin tosses until ${\cal H}$

 ${\cal N}=$ Number of coin tosses until ${\cal H}$

What is the PMF of N

$$S_N = \{1, 2, 3, \dots\}$$

For $k\geq 1$

$$P_N(k) = P(N=k) = (1-p)^{k-1}p$$

Geometric RV

 $X \sim \text{Geometric}(p)$

$$X \sim \text{Binomial}(n, p)$$

$$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Example

Roll a fair 4-sided die.

X = Number that appears

$$S_X = \{1, 2, 3, 4\}$$

$$P_X(k) = P(X = K) = 1/4$$

Uniform RV

Uniform RV with range $=\{1,2,\ldots,m\}$ where $1\leq k\leq m$

$$P_{X}(k) = 1/m$$

Uniform RV with range $= \{-m, -(m-1), \dots, m\}$ where $-m \le k \le m$

$$P_X(k) = 1/(2m+1)$$

Week 4 Session 2

Random Variable

$$X:\Omega o\mathbb{R}$$

for each $\omega \in \Omega$, $X(\omega)$ is a real number

Events:

$$P(a < X \le b) = P(\{\omega \in \Omega : a < X(\omega) \le b\})$$

Discrete RV:

finite or countably infinite range S_{X}

$$S_x = \{x_1, x_2, \dots x_n\}$$

$$S_x = \{x_1, x_2, x_3, \dots\}$$

$$S_X = \{ \text{All possible values of } X(\omega) \text{ for all } \omega \in \Omega \}$$

PMF of X:

$$P(X \in B) = \sum_{i:x_i \in B} P_X(x_i)$$

$$P(a < X \le b) = \sum_{i:a < x_i \le b} P_X(x_i)$$

$$P(ax^3 + bx^2 + cx > 0) = \sum_{i:ax_i^3 + bx_i^2 + cx_i > 0} P_X(x_i)$$

Example

$$X \sim \operatorname{Binomial}(n, p)$$

$$P_X(k) = inom{n}{k} p^k (1-p)^{n-k}$$
 where $0 \leq k \leq n$

$$P(X \ge 1) = \sum_{k \ge 1} P_X(k)$$

$$=\sum_{k\geq 1}inom{n}{k}p^k(1-p)^{n-k}$$

or

$$= 1 - P(X < 1)$$

$$=1-P(X=0)$$

$$=1-\binom{n}{0}p^0k(1-p)^{n-0}$$

$$=1-(1-p)^n$$

Bernoulli RV

$$S_X = \{0,1\}$$

$$P_X(1) = p, P_X(0) = 1 - p$$

$$X \sim \mathrm{Bernoulli}(p)$$

$$X:\Omega o\mathbb{R}$$

$$X(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

Indicator RV for event A, I_{A}

$$P_X(1) = P(X=1)$$

$$=P(\{\omega\in\Omega:X(\omega)=1\})$$

$$= P(A)$$

$$P_X(0) = 1 - P_X(1) = 1 - P(A) = P(A^c)$$

Poisson RV

$$S_X=\{0,1,2,3\dots\}$$

$$P_X(k)=rac{e^{-\lambda}\lambda^k}{k!}$$
 for $k=0,1,2..$.

Here, λ is a fixed positve number

$$X \sim \operatorname{Poisson}(\lambda)$$

$$P_X(k) \geq 0$$

$$\sum_{k\geq 0} P_X(k) = \sum_{k\geq 0} rac{e^{-\lambda}\lambda^k}{k!}$$

$$=e^{-\lambda}\sum_{k\geq 0}rac{\lambda^k}{k!}$$

$$=e^{-\lambda}e^{\lambda}=1$$

$$P(X \ge 1) = 1 - P(X < 1)$$

$$=1-P(X=0)$$

$$=1-rac{e^{-\lambda}\lambda^0}{0!}$$

$$=1-e^{-\lambda}$$

Example

 ${\it Z}$ is a discrete RV

$$P(Z \le 1) \le P(Z \le 2)$$

where
$$P(Z \leq 1) = 0.1, P(Z \leq 2) = 0.2$$

$$P(Z \le 2) = P(\{Z \le 1\} \bigcup \{1 < Z \le 2\})$$

$$= P(Z \leq 1) + P(1 < Z \leq 2)$$

$$P(1 < Z \le 2) = 0.2$$

Expected Value of RV

Definition: \boldsymbol{X} is a discrete RV

$$E[X] = \sum_{x \in S_X} x P_X(x)$$

$$S_X = \{x_1, x_2, \ldots x_n\}$$

$$E[X] = \sum_{x_i \in S_X} x_i P_X(x_i)$$
 , finite value

$$S_X = \{x_1, x_2, \dots\}$$

$$E[X] = \sum_{i=1}^{\infty} x_i P_X(x_i)$$

It is possible that this infinite series doesn't converge. In that case, ${\cal E}[X]$ is undefined.

Example

 $X \sim \mathrm{Bernoulli}(p)$

$$S_X = \{0, 1\}$$

$$P_X(1) = p, P_X(0) = 1 - p$$

$$E[X] = 0 \cdot (1 - p) + 1 \cdot p = p$$

Example

 $X \sim \text{Uniform with range } S_X = \{0, 1, \dots, (M-1)\}$

$$P_X(k) = 1/M, 0 \le k \le M-1$$

$$E[X] = \sum_{k=0}^{M-1} k \cdot 1/M$$

$$=1/M\cdot\sum_{k=0}^{M-1}k$$

$$=1/M\cdot rac{M(0+M-1)}{2}$$

$$=\frac{M-1}{2}$$

In general of PMF is symmetric about same number c

$$P_X(c+a) = P_X(c-a), orall a \in \mathbb{R}$$

Then
$$E[X]=c$$

Example

 $X \sim \mathrm{Binomial}(3, 0.5)$

$$P_X(k)inom{3}{k}rac{1}{2^k}(1/2)^{3-k}$$
 , $k=0,1,2,3$

$$E[X] = \sum_{k=0}^{3} k \cdot P_X(k)$$

$$=1\cdot \binom{3}{1}\frac{1}{2^3}+2\cdot \binom{3}{2}\frac{1}{2^3}+3\cdot \binom{3}{3}\frac{1}{2^3}=1.5$$

Result:

$$X \sim \operatorname{Binomial}(n, p)$$

$$E[X] = np$$

Interpretation of ${\cal E}[X]$

$$S_X = \{1, 2, 4\}$$

$$P_X(1) = 1/4, P_X(2) = 1/2, P_X(4) = 1/4$$

N independent repetitions of the underlying random experiment and record the value of X in each experiment

$$2, 2, 4, 1, 2, 1, 2, 4, \dots$$

Average value =
$$\frac{\text{Add up all numbers}}{N}$$

$$= \frac{\text{(number of times 1)} \cdot 1 + \text{(number of times 2)} \cdot 2 + \text{(number of times 4)} \cdot 4}{N}$$

$$=\textstyle\sum_{x\in S_X} x\cdot \frac{\text{number of times } x \text{ appears}}{N}$$

As $N \to \infty$, number of times x appears $\to P_X(x)$

Empirical average
$$o \sum_{n \in S_X} x \cdot P_X(x) = E[X]$$

$$X \sim \operatorname{Binomial}(n,p), E[X] = np$$

$$P_X(k) = inom{n}{k} p^k (1-p)^{n-k}$$
 , $0 \leq k \leq n$

Binomial expansion

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

$$E[x] = \sum_{k=0}^{n} k P_X(k)$$

$$=\sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

$$=\sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^k (1-p)^{n-k}$$

$$=\sum_{k=1}^n n rac{(n-1)!}{(k-1)!((n-1)-(k-1)!)} p^k (1-p)^{n-k}$$

say
$$j = k - 1$$

$$= n \sum_{j=0}^{n-1} rac{(n-1)!}{j!(n-1-j)!} p^{j+1} (1-p)^{(n-1)-j}$$

$$= np \sum_{j=0}^{n-1} {n-1 \choose j} p^j (1-p)^{(n-1)-j}$$

where $\binom{n-1}{j}p^j(1-p)^{(n-1)-j}$ is a term from Binomial (n-1,p)

$$= np(p+1-p)^{n-1}$$

$$= np$$

$$X \sim \operatorname{Geometric}(p), p > 0$$

$$P_X(k)=(1-p)^{k-1}p$$
 , $k=1,2,3,\ldots$

say
$$q = 1 - p$$

$$P_X(k) = q^{k-1}p$$

$$E[X] = \sum_{k=1}^{\infty} kq^{k-1}p$$

$$=p\sum_{k=1}^{\infty}kq^{k-1}$$

$$=prac{1}{(1-q)^2}$$

$$=1/p$$

Mathematics used:

$$\sum_{k=0}^{\infty} a^k = rac{1}{1-a}$$
 , $0 < a < 1$

$$\sum_{k=1}^{\infty} k a^{k-1} = rac{1}{(1-a)^2}$$
 , $0 < a < 1$

$$\sum_{k=1}^{\infty} k a^k = rac{a}{(1-a)^2}$$
 , $0 < a < 1$

Example

$$X \sim \operatorname{Poisson}(\lambda)$$

$$P_X(k)=rac{e^{-\lambda}\lambda^k}{k!}$$
 , $k=0,1,2,3...$

$$E[X] = \sum_{k \geq 0} k rac{e^{-\lambda} \lambda^k}{k!}$$

$$=\sum_{k\geq 1} k rac{e^{-\lambda}\lambda^k}{k!}$$

$$=\sum_{k\geq 1}\lambdarac{e^{-\lambda}\lambda^{k-1}}{(k-1)!}$$

$$=\lambda e^{-\lambda}\sum_{k\geq 1}rac{\lambda^{k-1}}{(k-1)!}$$

where
$$\sum_{k\geq 1}rac{\lambda^{k-1}}{(k-1)!}=e^{\lambda}$$

$$=\lambda$$

Example

$$S_X=3$$
 constant RV, degenerate RV

$$P_X(3)=1$$

$$E[X] = \sum_{x \in S_X} x P_X(x) = 3 \cdot 1 = 3$$

$$E[3] = 3$$

In general E[a]=a where $a\in\mathbb{R}$

$$S_X=\{1,2,3,\dots\}$$

$$P_X(k) = rac{1}{ck^2}$$
 where $k=1,2,\ldots$, c is a positive constant

$$\sum_{k\geq 1} \frac{1}{ck^2} = 1$$

$$\frac{1}{c}\sum_{k\geq 1}\frac{1}{k^2}=1$$

$$\sum_{k\geq 1} rac{1}{k^2} = c$$

where
$$\sum_{k\geq 1}rac{1}{k^2}
ightarrowrac{\pi^2}{6}$$

$$E[X] = \sum_{k>1} k P_X(k)$$

$$=\frac{1}{c}\sum_{k\geq 1}\frac{k}{k^2}$$

$$= \frac{1}{c} \sum_{k \ge 1} \frac{1}{k}$$

where
$$\sum_{k\geq 1}rac{1}{k}
ightarrow\infty$$

$$E[X] = \infty$$

Remarks

If S_X is countably infinite and it included both positive and negative values

$$E[X] = \sum_{x \in S_X} x P_X(x)$$

$$=\sum_{x\in S_X,x>0}xP_X(x)+\sum_{x\in S_X,x<0}xP_X(x)$$

If
$$\sum_{x \in S_X, x > 0} x P_X(x) o \infty$$

If
$$\sum_{x \in S_{X}, x < 0} x P_{X}(x) o -\infty$$

$$E[X] = \infty - \infty$$
 which is undefined

Properties of ${\cal E}[X]$

$$S_X = \{x_1, x_2, \dots\}$$

Suppose $x_i \geq a$ for i=1,2.. .

$$E[X] \geq a$$

$$E[X] = \sum_{x \in S_X} x P_X(x) = \sum_{x \in S_X} a P_X(x) = a \sum_{x \in S_X} P_X(x) = a$$

Similarly if $x_i \leq b orall x_i \in S_X$

$$E[X] \leq b$$

Function of a RV

$$S_X = \{-3, -1, 1, 3\}$$

 $X\sim ext{uniform over the range } S_X$

$$E[X] = 0, Y = X^2$$

$$S_Y = \{1, 9\}$$

$$P_Y(y)$$

$$P_Y(1) = P(Y = 1) = P(X^2 = 1) = P_X(1) + P_X(-1) = 1/2$$

$$P_Y(9) = 1 - P_Y(1) = 1/2$$

$$E[Y] = 1 \cdot 1/2 + 9 \cdot 1/2 = 5$$

Result

If y = g(x), then

$$E[Y] = \sum_{x \in S_X} g(x) P_X(x)$$

$$E[Y] = E[X^2] = 5 \neq (E[X])^2$$

In general $E[g(x)] \neq g(E[X])$

Proof of result

$$Y=g(x)$$
 , $S_y=\{y_1,y_2,\dots y_m\}$

$$E[Y] = \sum_{y \in S_y} y P_Y(y)$$

$$P_Y(y) = P(Y = y) = P(g(x) = y)$$

$$=\sum_{x_i:g(x_i)=y}P_X(x_i)$$

So,
$$E[Y] = \sum_{y \in S_y} y(\sum_{x_i: g(x_i) = y} P_X(x_i))$$

RHS:

$$\sum_{x \in S_X} g(x) P_X(x)$$

$$=\sum_{x\in S_X:g(x)=y_1}g(x)P_X(x)+\sum_{x\in S_X:g(x)=y_2}g(x)P_X(x)+\ldots\sum_{x\in S_X:g(x)=y_m}g(x)P_X(x)$$

$$=\sum_{x\in S_X:q(x)=y_1}y_1P_X(x)+\sum_{x\in S_X:q(x)=y_2}y_2P_X(x)+\ldots\sum_{x\in S_X:q(x)=y_m}y_mP_X(x)$$

$$=y_1\sum_{x\in S_X:g(x)=y_1}P_X(x)+y_2\sum_{x\in S_X:g(x)=y_2}P_X(x)+\ldots y_m\sum_{x\in S_X:g(x)=y_m}P_X(x)$$

Week 5 Session 1

Expected value of RV

Definition: X is a discrete RV

$$E[X] = \sum_{x \in S_X} x P_X(x)$$

Function of a RV

If
$$y = g(x)$$

Then
$$E[Y] = \sum_{x \in S_X} g(x) P_X(x)$$

Why?

By definition of ${\cal E}[Y]$

$$E[Y] = \sum_{y \in S_Y} y P(Y=y)$$
 where $P(Y=y) = P(g(x)) = y)$

$$=\sum_{y\in S_Y}y(\sum_{x:q(x)=y}P_X(x))$$

$$= y_1 \sum_{x:g(x)=y_1} P_X(x) + y_2 \sum_{x:g(x)=y_2} P_X(x) + \dots$$

 $\sum_{x \in S_X} g(x) P_X(x)$ rearrange terms equals to the above

Example

$$X$$
 uniform $S_X = \{-3, -1, 1, 3\}$
$$E[X] = 0$$

$$Y = g(x) = \begin{cases} 1 & \text{if } x < 0 \\ 0 & \text{if } x \geq 0 \end{cases}$$

$$E[Y] = \sum_{x \in S_X} g(x) P_X(x) = 1 \cdot 1/4 + 1 \cdot 1/4 + 0 \cdot 1/4 + 0 \cdot 1/4 = 1/2$$

$$g(E[X]) = 0 \neq E[g(x)]$$

Linearity properties of Expectation

1.
$$E[aX + b] = aE[X] + b$$

 $Y = aX + b$
 $E[Y] = \sum_{x \in S_X} (ax + b)P_X(x)$
 $= \sum_{x \in S_X} a_x P_X(x) + \sum_{x \in S_X} bP_X(x)$
 $= aE[X] + b$
2. $E[ag(x) + bh(x) + c]$
 $= aE[g(x)] + bE[h(x)] + c$
 $Z = ag(x) + bh(x) + c$
 $E[Z] = \sum_{x \in S_X} (ag(x) + bh(x) + c)P_X(x)$
 $= a\sum_x g(x)P_X(x) + b\sum_x h(x)P_X(x) + c\sum_x P_X(x)$
 $= aE[g(x)] + bE[h(x)] + c$

$$E[X]=0$$
 ,mean of X , mean value of X , 1^{st} moment of X $E[X^2]=5$, 2^{nd} moment of X $E[X^n]$, n^{th} moment of X $Y=(2x+10)^2$ $E[Y]=E[(2X+10)^2]$ $=E[4X^2+40X+100]$ $=4E[X^2]+40E[X]+100$ $=120$

 $X \sim \operatorname{Binomial}(48,1/3)$, $S_X = \{0,1,\ldots,48\}$

 \boldsymbol{X} is the number of voice packets that need to be transmitted.

Transmitter can only send 20 packets.

If X is more than 20, the excess packets are discarded.

Expected number of discarded packets

$$Y=g(x)=egin{cases} x-20 & ext{if } x>20 \ 0 & ext{if } x\leq 20 \end{cases}$$

$$E[Y] = \sum_{x \in S_X} g(x) P_X(x)$$

$$=\sum_{k=0}^{20} 0 \cdot P_X(x) + \sum_{k=21}^{48} (k-20) \cdot P_X(k)$$

$$=\sum_{k=21}^{48} (k-20) {48 \choose k} (\frac{1}{3})^k (\frac{2}{3})^{48-k}$$

$$= 0.182$$

$$E[X] = 0$$

$$Var(X) = E[(X - 0)^2]$$

$$= E[X^2] = (1)^2 \cdot 1/2 + (-1)^2 \cdot 1/2$$

$$= 1$$

$$E[Y] = 0$$

$$Var[Y] = E[(Y - 0)^2]$$

$$= E[Y^2] = 100$$

Variance of a RV

$$E[(X-m_X)^2]$$

Variance of X : Var(X) or σ_X^2

Standard Deviation

$$\sigma_X = +\sqrt{Var(X)}$$

$$X \sim \mathrm{Bernoulli}(p)$$

$$S_X=\{0,1\}$$

$$P_X(1) = p, P_X(0) = 1 - p$$

$$E[X] = 0 \cdot P_X(0) + 1 \cdot P_X(1) = p$$

$$egin{aligned} Var[X] &= E[(X-p)^2] \ &= (0-p)^2 P_X(0) + (1-p)^2 P_X(1) \ &= p^2 (1-p) + (1-p)^2 p \ &= p (1-p) \end{aligned}$$

Example: Degenerate/ Constant RV

$$egin{aligned} S_X &= \{c\} \ E[X] &= c \cdot 1 = c \ Var(X) &= E[(X-c)^2] \ &= \sum_{x \in S_X} (x-c)^2 P_X(x) = 0 \end{aligned}$$

$$egin{aligned} Var(X) &= E[(X-m_X)^2] = \sum_{x \in S_X} (x-m_X)^2 P_X(x) \ Var(X) &= E[(X-m_X)^2] = E[X^2-2m_XX+m_X^2] \ &= E[X^2] - 2m_X E[X] + m_X^2 \ &= E[X^2] - 2m_X m_X + m_X^2 \ &= E[X^2] - m_X^2 \ &= E$$

Example

$$Y=X+c$$

$$E[Y]=E[X+c]=E[X]+c ext{ where } E[X]=m_X$$

$$Var(Y)=E[(Y-m_Y)^2] ext{ where } m_Y=m_X+c$$

$$=E[(x+c-(m_X+c))^2]$$

$$=E[(X-m_X)^2]$$

$$=\sigma_X^2$$
 If $Y=X+c$, then $Var(Y)=Var(X)$

$$Y = c \cdot X$$
 $E[Y] = E[cX] = cE[X] = cm_X$
 $Var(Y) = E[(Y - m_Y)^2]$
 $= E[(cX - cm_X)^2]$
 $= E[c^2(X - m_X)^2]$

$$=c^2E[(X-m_X)^2]$$
 $=c^2Var(X)$ If $Y=cX$, then $Var(Y)=c^2Var(X)$ If $Y=-X$, then $Var(Y)=Var(X)$

$$\begin{split} X, m_X, \sigma_X^2 \\ Y &= \frac{X - m_X}{\sigma_X} \\ E[Y] &= E[\frac{1}{\sigma_X}(X - m_X)] \\ &= \frac{1}{\sigma_X} E[(X - m_X)] \\ &= \frac{1}{\sigma_X} (E[X] - m_X) \\ &= 0 \\ Var(Y) &= E[(Y - 0)^2] \\ &= E[Y^2] \\ &= E[\frac{(X - m_X)^2}{\sigma_X^2}] \\ &= E[\frac{1}{\sigma_X^2}(X - m_X)^2] \\ &= \frac{1}{\sigma_X^2} E[(X - m_X)^2] \\ &= \frac{\sigma_X^2}{\sigma_X^2} = 1 \\ &= \frac{X - m_X}{\sigma_X} \to \text{Normalized form of } X \text{ has mean 0 and variance 1} \end{split}$$

Conditional probability

Bayes' Rule

Total probability law

Let C be any event with P(C)>0

$$\begin{split} &P(A|C) = \frac{P(A \cap C)}{P(C)} \\ &A = \{X = x\} = \{\omega \in \Omega : X(\omega) = x\} \\ &P(A|C) = P(X = x|C) \\ &= \frac{P(\{X = x\} \cap C)}{P(C)} \\ &P_X(x|C) := \frac{P(\{X = x\} \cap C)}{P(C)} = P(X = x|C) \end{split}$$

We can use the above definition for all $x \in S_X$

$$S_X = \{x_1, x_2, \ldots, x_n\}$$

 $P_X(x_1|C), P_X(x_2|C), \ldots$ are conditional PMF of X given C

Results

1.
$$0 \le P_X(x_i|C) \le 1$$

2.
$$\sum_{x \in S_X} P_X(x|C) = 1$$

3. a)
$$P(x \in (a,b)|C) = \sum_{x \in (a,b)} P_X(x|C)$$

b) If B is any subset of $\mathbb R$

$$P(X \in B|C) = \sum_{x \in B} P_X(x|C)$$

$$S_X = \{x_1, \dots, x_n\}$$

$$\sum_{i=1}^{n} P(X = x_i | C) = P(\Omega | C) = 1$$

Example

X has uniform PMF with $S_X = \{1, 2, \dots, L\}$ for $1 \leq k \leq L$

$$P_X(k) = \frac{1}{L}$$

$$C = \{X > 1\}$$

Conditional PMF of X given C

$$P_X(1|C) = P(X = 1|X > 1) = \frac{P(X=1 \cap X > 1)}{P(X>1)} = 0$$

For $2 \leq k \leq L$

$$P_X(k|C) = P(X=2|X>1) = rac{P(X=2\bigcap X>1)}{P(X>1)} = rac{1/L}{1-1/L} = rac{1}{L-1}$$

Example

 $X \sim \operatorname{Geometric}(p)$

$$S_X = \{1,2,3\dots\}$$

$$P_X(k) = (1-p)^{k-1} p$$
 where $k \geq 1$

$$C=\{X>1\}$$

$$Y = X - 1$$

Conditional PMF of Y given C

$$P(Y = k|C) = P(Y = k|X > 1)$$

$$= P(X - 1 = k|X > 1)$$

$$= P(X = 1 + k|X > 1)$$

$$= \frac{P(X=1+k \cap X>1)}{P(X>1)}$$

$$= egin{cases} rac{0}{1-p} & k = 0 \ rac{P_X(1+k)}{1-p} & k = 1, 2, \dots \end{cases}$$

$$P(Y=k|X>1) = P(X=k)$$

Exercise

 $X \sim \operatorname{Geometric}(p)$

 $C = \{X > m\}$ where m is a positive integer

$$Z = X - m$$

Find the conditional PMF of Z given C

Chain Rule

$$P(A \cap B) = P(A|B)P(B)$$

Bayes' Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Law of total probability

$$P(A) = \sum_{i=1}^{n} P(A \cap C_i)$$

$$= \sum_{i=1}^{n} P(A|C_i) P(C_i)$$

Example

Factory that produce 2 types of devices

Type 1 is produced with probability α

Lifetime $\sim \operatorname{Geometric}(r)$

Type 2 is produced with probability $1-\alpha$

Lifetime $\sim \operatorname{Geometric}(s)$

I purchase a device from this factory X = lifetimes of purchased device

$$S_X = \{1, 2, 3, \dots\}$$

 $\underline{\mathsf{PMF}\,\mathsf{of}\,} X$

$$P_X(k) = P(X = k)$$

$$= P(X = k | \text{Type 1}) P(\text{Type 1}) + P(X = k | \text{Type 2}) P(\text{Type 2})$$

$$= (1-r)^{k-1}r\alpha + (1-s)^{k-1}s(1-\alpha)$$

Verify that $P_X(k)$ adds up to 1 of summed over all $k \geq 1$

Suppose I observe that X=m

$$P(\text{Type 1 device was purchased}|X=m) = \frac{P(X=m|\text{Type 1})P(\text{Type 1})}{P(X=m)}$$

$$= \frac{(1-r)^{m-1}r\alpha}{(1-r)^{m-1}r\alpha + (1-s)^{m-1}s(1-\alpha)}$$

$$P(ext{Type 1}|X>m)=rac{P(X>m| ext{Type 1})P(ext{Type 1})}{P(X>m)}$$

where
$$P(X>m|\mathrm{Type}\ 1)=\sum_{k=m+1}^{\infty}(1-r)^{k-1}r$$

$$P(X > m) = P(X > m | \text{Type 1})\alpha + P(X > m | \text{Type 2})(1 - \alpha)$$

PMF	Expectation		
$P_X(k)$	$E[X] = \sum_{x \in S_X} x P_X(x)$		
Conditional PMF	Conditional Expectation		
$P_X(x C)$	$E[X C] = \sum_{x \in S_X} x P_X(x C)$		

$$E[ext{lifetime}| ext{Type 1}] = \sum_{k=1}^{\infty} k P_X(k| ext{Type 1}) \ = \sum_{k=1}^{\infty} k (1-r)^{k-1} r$$

Week 5 Session 2

1.
$$E[aX + b] = aE[X] + b$$

2.
$$Var[X] = E[(X - m_X)^2] = E[X^2] - m_X^2$$

3. Conditional PMF of RV X given event C

$$P_X(x|C)$$
 for $x \in S_X$

Using law of total probability with RVs

Suppose $C_1, C_2, \dots C_n$ is a partition of Ω , then

$$P_X(x) = P(X = x)$$

$$= \sum_{i=1}^{n} P(\{X=x\} \cap C_i)$$

$$= \sum_{i=1}^{n} P(X = x | C_i) P(C_i)$$

$$= \sum_{i=1}^{n} P_X(x|C_i) P(C_i)$$

Example

X is a discrete RV with range $S_X = \{x_1, x_2, \dots x_n\}$

For any real number c_r , the mean squared error is defined as follows

$$f(c) = E[(X - c)^2]$$

What choice of c given the minimum value of f(c)

$$E[(X-c)^2] = \sum_{i=1}^n (x_i - c)^2 P_X(x_i)$$

$$f(c) = \sum_{i=1}^n (x_i - c)^2 P_X(x_i)$$

$$\frac{df(c)}{dc} = 0$$

$$\sum_{i=1}^{n} -2(x_i - c)P_X(x_i) = 0$$

$$\textstyle\sum_{i=1}^n x_i P_X(x_i) = c \sum_{i=1}^n P_X(x_i)$$

$$c = m_X$$

$$\frac{d^2f(c)}{dc} > 0$$

$$c = m_X$$

$$f(c) = f(m_X) = E[(X - m_X)^2] = Var(X)$$

Conditional PMF given ${\cal C}$

$$P_X(x|C), x \in S_X$$

Conditional expectation given ${\cal C}$

$$m_{X|c} = E[X|C] = \sum_{x \in S_X} x P_X(x|C)$$

$$E[g(X)|C] = \sum_{x \in S_X} g(x) P_X(x|C)$$

Conditional variance given ${\cal C}$

$$E[(X - m_{X|C})^2 | C] = \sum_{x \in S_X} (x - m_{X|C})^2 P_X(x | C)$$

Law of total expectation

Theorem: Suppose $C_1, \ldots C_n$ is a partition of Ω . Then

$$P_X(x) = \sum_{i=1}^n P_X(x|C_i)P(C_i)$$

$$E[X] = \sum_{i=1}^{n} E[X|C_i]P(C_i)$$

Proof:

$$E[X] = \sum_{x \in S_X} x P_X(x)$$

$$=\sum_{x\in S_X}x\sum_{i=1}^nP_X(x|C_i)P(C_I)$$

$$=\sum_{i=1}^n\sum_{x\in S_X}xP_X(x|C_i)P(C_i)$$

$$=\sum_{i=1}^n E[X|C_i]P(C_i)$$

$$Y = g(x)$$

$$E[Y] = \sum_{i=1}^{n} E[Y|C_i]P(C_i)$$

$$E[g(x)] = \sum_{i=1}^n E[g(x)|C_i]P(C_i)$$

Example

 C_1,C_2 form a partition of Ω

Given C_1 . $X \sim \operatorname{Geometric}(r)$

Given C_2 . $X \sim \operatorname{Geometric}(s)$

 $Z \sim \operatorname{Geometric}(p)$

$$E[Z]=1/p$$

$$E[Z^2] = rac{1+p}{p^2}$$

 $\underline{\operatorname{Find}}Var(X)$

$$Var(X) = E[X^2] - m_X^2$$

$$\begin{split} m_X &= E[X] = E[X|C_1]P(C_1) + E[X|C_2]P(C_2) \\ &= \frac{1}{r}P(C_1) + \frac{1}{s}P(C_2) \\ E[X^2] &= E[X^2|C_1]P(C_1) + E[X^2|C_2]P(C_2) \\ &= \frac{1+r}{r^2}P(C_1) + \frac{1+s}{s^2}P(C_2) \\ Var(X) &= E[X^2] - (m_X)^2 \end{split}$$

n independent Bernoulli trials

Each trial may result in a success with probability p or a failure with probability 1-p X= number of successes in n trials

$$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 where $0 \leq k \leq n$

Suppose X=1

What is the conditional probability that the first trial was successful?

$$A_1 = \{ \text{first trial is success} \}$$

$$P(A_1|X=1)=rac{P(A_1igcap X=1)}{P(X=1)}$$

$$= \frac{P(SFFFF...F)}{\binom{n}{1}p^1(1-p)^{n-1}}$$

$$=rac{p^{1}(1-p)^{n-1}}{inom{n}{1}p^{1}(1-p)^{n-1}}$$

$$=\frac{1}{n}$$

 $A_2 = \{\text{second trial is success}\}$

$$P(A_2|X=1) = \frac{P(A_2 \cap X=1)}{P(X=1)}$$

$$= \frac{P(FSFFF...F)}{\binom{n}{1}p^1(1-p)^{n-1}}$$

$$=\frac{1}{n}$$

Example

Given A_1 , find the conditional PMF of X

$$S_X = \{0, 1, \ldots, n\}$$

$$P_X(0|A_1) = P(X=0|A_1) = 0$$

For
$$n \geq k \geq 1$$

$$P_X(k|A_1) = P(X=k|A_1) = rac{P(X=k igcap A_1)}{P(A_1)}$$

$$P(A_1) = p$$

$$P(X = k \cap A_1) = P(A_1 \cap k - 1 \text{ success trials } 2, 3, \dots n)$$

$$= P(A_1)P(k-1 \text{ success trials } 2,3,\ldots n)$$

$$= p\binom{n-1}{k-1}p^{k-1}(1-p)^{n-k}$$

$$P_X(k|A_1) = inom{n-1}{k-1} p^{k-1} (1-p)^{n-k}$$
 for $1 \leq k \leq n$

$$P(X \ge n - 1|A_1) = P_X(n - 1|A_1) + P_X(n|A_1)$$

$$=\binom{n-1}{n-2}p^{n-2}(1-p)^1+p^{n-1}$$

$$=(n-1)p^{n-2}(1-p)+p^{n-1}$$

Conditional PMF of X given $A_{\mathbf{1}}^{c}$

$$S_X = \{0, 1, \dots, n\}$$

$$P_X(n|A_1^c) = P(X=n|A_1^c) = 0$$

For
$$0 \leq k \leq n-1$$

$$P_X(k|A_1^c) = P(X = k|A_1^c)$$

$$=rac{P(X=k \bigcap A_1^c)}{P(A_1^c)}$$

$$= \frac{P(A_1^c \cap k \text{ success in trials } 2, \dots, n)}{1-p}$$

$$= \frac{P(A_1^c)P(\text{success in trials 2,...,n})}{1-n}$$

$$= \binom{n-1}{k} p^k (1-p)^{n-1-k}$$

$$P_X(k|A_1), P_X(k|A_1^c)$$
 where $0 \leq k \leq n$

Verify

$$P(X=k) = P(X=k|A_1)P(A_1) + P(X=k|A_1^c)P(A_1^c)$$

$$k = 0$$

LHS:
$$P(X = 0) = (1 - p)^n$$

RHS:
$$P(X = 0|A_1)P(A_1) + P(X = 0|A_1^c)P(A_1^c)$$

$$= 0P(A_1) + (1-p)^{n-1}(1-p)$$

$$= (1-p)^n$$

$$P(A_1|X=2) = rac{P(X=2|A_1)P(A_1)}{P(X=2)}$$

$$P(A_1 igcap A_2 | X=2) = rac{P(A_1 igcap A_2 igcap X=2)}{P(X=2)}$$

$$= \frac{pp(1-p)^{n-2}}{\binom{n}{2}p^2(1-p)^{n-2}}$$

$$=\frac{1}{\binom{n}{2}}$$

If A, B are independent

$$P(A \cap B) = P(A)P(B)$$

If A, B are disjoint

$$P(A \bigcup B|C) = P(A|C) + P(B|C)$$

$$P(A \bigcup B|C) = \frac{P(A \bigcup B \cap C)}{P(C)}$$

$$= \frac{P(A \cap C \cup B \cap C)}{P(C)}$$

$$= \frac{P(A \cap C) + P(B \cap C)}{P(C)}$$

$$= P(A|C) + P(B|C)$$

 $Z \sim \text{Poisson}(\lambda)$

$$P_X(k)=rac{\lambda^k e^{-\lambda}}{k!}$$
 for $k=0,1,2...$

$$E[Z] = \lambda$$

$$Var[Z] = \lambda$$

$$E[Z^2] = \lambda + \lambda^2$$

Example

Optical Communication

Receiver in an optical communication system. If message is being sent, then the receiver gets a random number of photons that has a Poisson PMF λ_1

If message is not being sent, then receiver gets a random number of photons with a Poisson PMF λ_0

$$\lambda_0 < \lambda_1$$

The prior probability that a message is being sent is p

a) Suppose the receiver get k photons. Conditional probability that a message was sent

X = number of photons at the receiver

 $M = \{\text{message is sent}\}\$

 $A = \{ {
m message \ is \ absent} \}$, $A = M^c$

$$P(M|X=k) = rac{P(X=k|M)P(M)}{P(X=k)}$$

Number=
$$\frac{\lambda_1^k e^{-\lambda_1}}{k!} p$$

Denominator
$$P(X=k) = P(X=k|M)P(M) + P(X=k|A)P(A)$$

$$=rac{\lambda_1^k e^{-\lambda_1}}{k!}p+=rac{\lambda_0^k e^{-\lambda_0}}{k!}(1-p)$$

b) Receiver calculates I=P(M|X=k) and II=P(A|X=k)

Declares message present if I>II

Declares message absent if I < II

Declare present if:

$$P(M|X=k) > P(A|X=k)$$

$$rac{\lambda_1^k e^{-\lambda_1}}{P(X=k)} > rac{\lambda_0^k e^{-\lambda_0}}{P(X=k)} (1-p)$$

$$rac{\lambda_1}{\lambda_0}^k > rac{1-p}{p}e^{\lambda_1-\lambda_0}$$

$$k>rac{lograc{1-p}{p}+(\lambda_1-\lambda_0)}{log(rac{\lambda_1}{\lambda_0})}=c$$

Receiver decision rule is

Declare present if Number of photons > c

Declare absent if Number of photons $\leq c$

c) Suppose that a message is present. What is the probability that the receiver makes a wrong declaration?

$$P(\text{Declaring Absent}|M) = P(X \le c|M)$$

$$=\sum_{0\leq k\leq c}e^{-\lambda_1}rac{\lambda_1^k}{k!}$$

d)
$$P(\text{Declares present}|A) = P(X > c|A)$$

$$=\sum_{k>c}e^{-\lambda_0}rac{\lambda_0^k}{k!}$$

e) Probability that receiver makes a wrong declaration

$$W = \{ \text{Weong declaration} \}$$

$$P(W) = P(W|M)P(M) + P(W|A)P(A)$$

$$= P(W|M)p + P(W|A)(1-p)$$

f)
$$M o X \sim \mathrm{Poisson}(\lambda_1)$$

$$A \to X \sim \text{Poisson}(\lambda_0)$$

$$E[X] = E[X|M]P[M] + E[X|A]P[A]$$

$$=\lambda_1 p + \lambda_0 (1-p)$$

g)
$$E[X^2] = E[X^2|M]P[M] + E[X^2|A]P[A]$$

$$=(\lambda+\lambda^2)p+(\lambda_0+\lambda_0^2)(1-p)$$

$$P(X = 2), x \in S_X$$

Cumulative Distribution Function (CDF)

$$F_X(x) = P(X \le x) \forall x \in \mathbb{R}$$