Speech and Audio Signal Processing

Lecture 9: Bayes decision methods and Gaussian mixture models

Content

- Introduction: From feature values to decisions / detections
- Basics of the Bayes decision theory
- Scalar and multi-dimensional Gaussians models
- Detection / classification: Motivation for...
- ... Gaussian mixture models (GMMs)
- GMM parameter estimation based on training data:=> Iterative procedure
- □ GMM comparison with codebooks
- Alternative methods, e.g., decision trees, k-nearest neighbors, LSVM, DNN / MLPs
- Application on speaker detection

Detection / decision theory: The basic understanding

- Basis for a decision: Feature value (scalar feature) or several feature values, combined in a vector (feature vector).
- $lue{}$ One Example for a decision based on a scalar feature value, $x_0(n)$:
 - Voiced / unvoiced decision based on the feature value "total frame energy" (s. lecture 8)

$$pow(n) = \sum_{n_0=n}^{n+L-1} x^2(n_0)$$

- $lue{}$ One Example for a decision based on a feature vector, $oldsymbol{x}(n)$:
 - $lue{}$ Speaker recognition based on the MFCC vector: $m{y}_{\mathrm{mfcc}}(n)$

$$egin{aligned} oldsymbol{y}_{ ext{abs}}(n) &= & \left[\left| Y(e^{j\Omega_0}, n) \right|, ..., \left| Y(e^{j\Omega_{N-1}}, n) \right|
ight]^{ ext{T}} & oldsymbol{y}_{ ext{log}}(n) = \log_e \{ oldsymbol{y}_{ ext{mel}}(n) \} \ oldsymbol{y}_{ ext{mel}}(n) &= & oldsymbol{M} oldsymbol{y}_{ ext{abs}}(n) \ & oldsymbol{y}_{ ext{mfcc}}(n) = oldsymbol{P} oldsymbol{T}_{ ext{cos}} oldsymbol{y}_{ ext{log}}(n) \end{aligned}$$

Two binary decision principles: 1) mean value

□ Based on the **mean feature values** for each hypothesis:

 $x_{0, \mathrm{Unvoiced}}$: mean values for each $x_{0, \mathrm{Voiced}}$ hypothesis determined based on training data

Detection for the hypothesis whose mean value has the lower distance to the current feature value:

$$|x_0(n) - x_{0,\text{Unvoiced}}|$$
 $>$
 $|x_0(n) - x_{0,\text{Voiced}}|$
 $<$
 $|x_0(n) - x_{0,\text{Voiced}}|$

□ **Vector** (s. vector quantization):

$$oldsymbol{x} = [x_0, x_1]^{\mathrm{T}} \ oldsymbol{x}_{\mathrm{Speaker 1}}$$
 : mean vectors for each $oldsymbol{x}_{\mathrm{Speaker 2}}$ hypothesis determined

based on training data

Detection based on the distance:

$$\|oldsymbol{x}(n) - oldsymbol{x}_{ ext{Speaker 1}}\| egin{array}{c} ext{Speaker 2} \ & || oldsymbol{x}(n) - oldsymbol{x}_{ ext{Speaker 2}}\| \ & || \ &$$

Two binary decision principles: 2) probability density (pdf)

□ Based on the **probability density** for each hypothesis:

Detection based on the probabilities of the feature values for each hypothesis

Vector:

Equivalent detection principle

lacksquare Decision for a hypothesis H_i with: $i \in [1,\ldots,M]$

based on a feature vector $\boldsymbol{x} = [x_0, x_1, \dots, x_{D-1}]^{\mathrm{T}}$

with the *largest* **a posteriori** probability: *MAP (max. a posteriori) detection*, $p(H_i|\boldsymbol{x})$

which is the probability for the "class" / "hypothesis" H_i after observing the feature vector $\boldsymbol{x} = [x_0, x_1, \dots, x_{D-1}]^T$

□ The a posteriori probability can be written – according to Bayes – as follows:

$$p(H_i|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|H_i) \, p(H_i)}{p(\boldsymbol{x})} \quad \text{with:} \ p(\boldsymbol{x}) = \sum_{i=1}^M p(\boldsymbol{x}|H_i) \, p(H_i)$$

 $lue{}$ Decision for the largest a posteriori probability $p(H_i|m{x})$

$$H_d = \underset{i}{\operatorname{arg max}} p(H_i | \boldsymbol{x})$$

= $\underset{i}{\operatorname{arg max}} [p(\boldsymbol{x} | H_i) p(H_i)]$

 $lue{}$ In case of a two-class (binary) decision M=2 one can write:

$$p(\boldsymbol{x}|H_1) p(H_1) \stackrel{H_1}{\underset{H_2}{>}} p(\boldsymbol{x}|H_2) p(H_2)$$

Likelihood ratio:

$$l(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|H_1) p(H_1)}{p(\boldsymbol{x}|H_2) p(H_2)} \stackrel{H_1}{\underset{H_2}{>}} 1$$

Log Likelihood ratio:

$$llr(\mathbf{x}) = \log p(\mathbf{x}|H_1) - \log p(\mathbf{x}|H_2) + \log p(H_1) - \log p(H_2) \overset{H_1}{\underset{H_2}{\leq}} 0$$

Discriminant functions:

$$g_i(\mathbf{x}) = \log p(\mathbf{x}|H_i) + \log p(H_i)$$

Gaussian models

■ Discriminant functions for Gaussian distributions:

$$g_i(\mathbf{x}) = \log p(\mathbf{x}|H_i) + \log p(H_i)$$

For scalar values:
$$p(x_0|H_i) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x_0 - \mu_i)^2}{2\sigma_i^2}}$$

$$g_i(x_0) = -\log(\sigma_i \sqrt{2\pi}) - \frac{(x_0 - \mu_i)^2}{2\sigma_i^2} + \log p(H_i)$$

In general, this is a non-linear function.

lacksquare Log likelihood ratio: $llr(oldsymbol{x}) = g_1(oldsymbol{x}) - g_2(oldsymbol{x})$

For Gaussian distributions with $\sigma = \sigma_1 = \sigma_2$ one can formulate a modified log likelihood ratio which is linear:

$$llr(x_0) = (\mu_1 - \mu_2) \left[x_0 - \left(\frac{\mu_1 + \mu_2}{2} - \frac{\sigma^2}{\mu_1 - \mu_2} \log \frac{p(H_1)}{p(H_2)} \right) \right]$$

Gaussian models

 \Box Log likelihood ratio: $llr(x_0) = g_1(x_0) - g_2(x_0)$

A posteriori probabilities and Ilr's

A posteriori probabilities and Ilr's

Gaussian probability density function (pdf) for feature vectors:

$$p(\boldsymbol{x}|H_i) = \frac{1}{\sqrt{(2\pi)^D \, |\boldsymbol{\Sigma}_i|}} \, e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^{\mathrm{T}} \, \boldsymbol{\Sigma}_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i)}$$
 with:
$$\boldsymbol{\mu}_i = \begin{bmatrix} \mu_{0,i} \\ \mu_{1,i} \\ \vdots \\ \mu_{D-1,i} \end{bmatrix} \, \boldsymbol{\Sigma}_i = \begin{bmatrix} \sigma_{0,i}^2 & \sigma_{10,i} & \cdots & \sigma_{D-10,i} \\ \sigma_{01,i} & \sigma_{1,i}^2 & \cdots & \sigma_{D-11,i} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{0D-1,i} & \sigma_{1D-1,i} & \cdots & \sigma_{D-1,i}^2 \end{bmatrix}$$

 $|\Sigma_i|$: determinant

With:

$$g_i(\boldsymbol{x}) = \log p(\boldsymbol{x}|H_i) + \log p(H_i)$$

one obtains:

$$g_i(\boldsymbol{x}) = -\frac{1}{2} \log(|\boldsymbol{\Sigma}_i| (2\pi)^D) - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i) + \log p(H_i)$$
$$llr(\boldsymbol{x}) = g_1(\boldsymbol{x}) - g_2(\boldsymbol{x})$$

- □ In general, the *llr* is a non-linear function, resulting in a non-linear separation of the classifier:
- Gaussian pdfs:

□ Difference function (*IIr*):

$$llr(\boldsymbol{x}) = g_1(\boldsymbol{x}) - g_2(\boldsymbol{x})$$

■ Non-linear separation between the Gaussian distributions:

The non-linear separation is a difference compared to separation in the case of vector quantization.

Linear separation between the Gaussian distributions in case of identical variance matrices: $\Sigma = \Sigma_1 = \Sigma_2$

■ With:

$$g_i(\boldsymbol{x}) = -\frac{1}{2} \log(|\boldsymbol{\Sigma}_i| (2\pi)^D) - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i) + \log p(H_i)$$
$$llr(\boldsymbol{x}) = g_1(\boldsymbol{x}) - g_2(\boldsymbol{x})$$

one obtains a linear relation with x:

$$llr(\boldsymbol{x}) = [\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_1)]^{\mathrm{T}} \boldsymbol{x}$$
$$+ \left(-\frac{1}{2} \boldsymbol{\mu}_1^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_2^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 + \log p(H_1) - \log p(H_2) \right)$$

□ Linear separation between the Gaussian distributions with identical variances:

Separation line is a tangent to the contour curves.

In case of identical variances on the diagonal, the separation line is orthogonal to the connection line between the two Gaussian distributions.

Detection / classification

 $lue{}$ In real applications the conditional distributions must be modeled for each class H_i :

$$p(\boldsymbol{x}|H_i)$$

- $lue{}$ Also, the a priori probabilities $p(H_i)$ for each class should be known or have to be assumed. In case of no a priori knowledge they are chosen identically.
- □ In case of one feature (element) only, the conditional distributions may be estimated by histogram data.
- When no correlation between the features is considered, the conditional vector probability can be determined as follows:

$$p(\boldsymbol{x}|H_i) = \prod_{j=0}^{D-1} p(x_j|H_i)$$

Detection / classification

□ However, typically the feature values are correlated and a multiplication is a too strong simplification.

$$p(x|H_i) = \prod_{j=0}^{D-1} p(x_j|H_i)$$

□ In order to estimate the *D*-dimensional distributions, a number of data values at the power of *D* is necessary compared to an estimation of one dimension.

$$\tilde{N} = N^D$$

This is the case if one wants to estimate the distributions with histograms.

Histogram of a Gaussian distribution

- Width of each column is a parameter of the histogram; here chosen as 0.2
- To generate an estimated pdf: Divide the histogram values by their widths multiplied with the number of random values => 0.2*10000 = 2000

$$y = -5:0.2:5;$$

 $z = hist(x,y);$

Plot of a histogram: => bar(y,z)

Plot of the estimated pdf: => bar(y,z/2000);

Gaussian mixture models (GMM)

- ☐ An alternative is to model the joint distribution by Gaussian mixture models.
- □ The sum of several Gaussian distributions allows to approximate arbitrary distributions

itrary distributions One multivariate
$$\mathcal{N}(m{x}|m{\mu},m{\Sigma}) = rac{1}{\sqrt{(2\pi)^D\,|m{\Sigma}|}}\,e^{-rac{1}{2}(m{x}-m{\mu})^{
m T}\,m{\Sigma}^{-1}(m{x}-m{\mu})}$$
 Gaussian pdf

$$\boldsymbol{x} = [x_0, x_1, \dots, x_{D-1}]^{\mathrm{T}} \boldsymbol{\mu} = \begin{bmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ \mu_{D-1} \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_0^2 & \sigma_{10} & \cdots & \sigma_{D-10} \\ \sigma_{01} & \sigma_1^2 & \cdots & \sigma_{D-11} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{0D-1} & \sigma_{1D-1} & \cdots & \sigma_{D-1}^2 \end{bmatrix}$$

 $|\mathbf{\Sigma}|$: determinant

 $\ \ \, \Box$ Approximation of the probability density function (pdf) by a weighted sum of Gaussians (GMM): $\ \ \, _{K-1}$

$$p(m{x}|H_i) = ilde{p}(m{x}) = \sum_{k=0}^{K-1} g_k \, \mathcal{N}(m{x}|m{\mu}_k, m{\Sigma}_k)$$
 with: $\sum_{k=0}^{K-1} g_k = 1$

Gaussian mixture models (GMM)

- □ For each class such a Gaussian mixture must be determined or trained.
- Compared to a D-dimensional histogram, severely less parameters must be determined: K weights, mean vectors and variance matrices.
- □ Example: Sum of K = 4 Gaussians

$$ilde{p}(oldsymbol{x}) = \sum_{k=0}^{3} g_k \, \mathcal{N}(oldsymbol{x} | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$

Gaussian mixture models (GMM)

 \square Classification (i.e. select 1 of N), here N = 2.

Decision for the model with the higher probability.

Assuming a training set of feature vectors:

$$X = [x(0), x(1), \cdots, x(N-1)]$$

Target:

Optimize / maximize the probability of the training set of feature vectors:

$$p(\boldsymbol{X}|\boldsymbol{g}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=0}^{N-1} \left[\sum_{k=0}^{K-1} g_k \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$

□ Since the logarithm is a monotonic increasing function, the logarithm of the probability function can alternatively be optimized:

$$\log p(\boldsymbol{X}|\boldsymbol{g}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=0}^{N-1} \log \left\{ \sum_{k=0}^{K-1} g_k \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

Assuming a current / initial model set is available which has to optimized, an "affiliation" value for each of the Gaussian distributions can determined:

Affiliation value: Relative contribution of the k-th Gaussian to the pdf.

$$\gamma_k(n) = \frac{g_k \, \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=0}^{K-1} g_j \, \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \qquad \text{with: } \sum_{k=0}^{K-1} \gamma_k(n) = 1$$

Derivation of the cost function with respect to the mean values:

$$\frac{d}{d\boldsymbol{\mu}_k} \log p(\boldsymbol{X}|\boldsymbol{g}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{d}{d\boldsymbol{\mu}_k} \sum_{n=0}^{N-1} \log \left\{ \sum_{l=0}^{K-1} g_l \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l) \right\}$$

Affiliation

- Example with two Gaussians modelling a pdf.
- $lue{}$ At the value $oldsymbol{x}(n)$ the first Gaussian contributes relatively 1/3 and the second 2/3.

Setting the derivation to zero:

$$0 = \frac{d}{d\boldsymbol{\mu}_{k}} \sum_{n=0}^{N-1} \log \left\{ \sum_{l=0}^{K-1} g_{l} \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l}) \right\}$$

$$= \sum_{n=0}^{N-1} \frac{g_{k} \frac{d}{d\boldsymbol{\mu}_{k}} \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=0}^{K-1} g_{l} \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})}$$

$$= \sum_{n=0}^{N-1} \frac{g_{k} \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=0}^{K-1} g_{l} \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}(n) - \boldsymbol{\mu}_{k})$$

Current result:

$$0 = \sum_{n=0}^{N-1} \frac{g_k \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=0}^{K-1} g_l \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)} \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}(n) - \boldsymbol{\mu}_k)$$

using:
$$\gamma_k(n) = \frac{g_k \, \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=0}^{K-1} g_j \, \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Leads to:

$$0 = \sum_{n=0}^{N-1} \gamma_k(n) \, \boldsymbol{\Sigma}_k^{-1} \left(\boldsymbol{x}(n) - \boldsymbol{\mu}_k \right) \qquad \text{Multiplication with: } \boldsymbol{\Sigma}_k$$

$$\boldsymbol{\mu}_k \sum_{n=0}^{N-1} \gamma_k(n) = \sum_{n=0}^{N-1} \gamma_k(n) \, \boldsymbol{x}(n)$$

Current result:

$$\boldsymbol{\mu}_k \sum_{n=0}^{N-1} \gamma_k(n) = \sum_{n=0}^{N-1} \gamma_k(n) \boldsymbol{x}(n)$$

Leads to:

$$oldsymbol{\mu}_k = rac{\sum\limits_{n=0}^{N-1} \gamma_k(n) \, oldsymbol{x}(n)}{\sum\limits_{n=0}^{N-1} \gamma_k(n)}$$

Mean of the training data weighted with the corresponding affiliation values.

□ A comparable approach can be used to update the covariance matrix:

$$0 = \frac{d}{d\Sigma_k} \sum_{n=0}^{N-1} \log \left\{ \sum_{l=0}^{K-1} g_l \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l) \right\}$$

□ A comparable approach can be used to update the covariance matrix:

$$0 = \frac{d}{d\Sigma_k} \sum_{n=0}^{N-1} \log \left\{ \sum_{l=0}^{K-1} g_l \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l) \right\}$$

Leads to:

$$\boldsymbol{\Sigma}_{k} = \frac{\sum_{n=0}^{N-1} \gamma_{k}(n) \left(\boldsymbol{x}(n) - \boldsymbol{\mu}_{k}\right) \left(\boldsymbol{x}(n) - \boldsymbol{\mu}_{k}\right)^{\mathrm{T}}}{\sum_{n=0}^{N-1} \gamma_{k}(n)}$$

Mean of the training data variance weighted with the corresponding affiliation values.

□ The gains are calculated based on a Lagrange approach:

$$0 = \frac{d}{dg_k} \left[\sum_{n=0}^{N-1} \log \left\{ \sum_{l=0}^{K-1} g_l \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l) \right\} + \lambda \left(\sum_{l=0}^{K-1} g_l - 1 \right) \right]$$

Constraint: Sum of Gaussian gains (weights) has to be 1.

The derivation leads to:

$$0 = \sum_{n=0}^{N-1} \frac{\mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=0}^{K-1} g_{l} \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} + \lambda$$

$$0 = \sum_{n=0}^{N-1} \frac{g_{k} \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{l=0}^{K-1} g_{l} \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l})} + \lambda g_{k}$$

$$= \sum_{n=0}^{N-1} \gamma_{k}(n) + \lambda g_{k}$$

Multiplication with g_k

Current result:

$$0 = \sum_{n=0}^{N-1} \gamma_k(n) + \lambda g_k$$

$$0 = \sum_{n=0}^{N-1} \sum_{k=0}^{K-1} \gamma_k(n) + \lambda \sum_{k=0}^{K-1} g_k$$

$$0 = N + \lambda$$

$$\lambda = -N$$

Summation over *k*

□ Results in:

$$g_k = \frac{1}{N} \sum_{n=0}^{N-1} \gamma_k(n)$$

Mean of the affiliation values of the training data.

GMM parameter estimation (summary)

Description of the joint probability density by Gaussian mixture models:

$$\tilde{p}(\boldsymbol{x}) = \sum_{k=0}^{K-1} g_k \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}_k|}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)}$$

- Iterative procedure or EM (estimation / maximization) procedure for the estimation of the GMM parameters g_k , μ_k , Σ_k based on N training data values x(n):
 - $lue{}$ 1) Allocation of the data vectors $\boldsymbol{x}(n)$, **E-step**:

$$\gamma_k(n) = \frac{g_k \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=0}^{K-1} g_j \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

□ 2) Update of the Gaussian parameters, **M-step**:

$$\mu_k = \frac{\sum_{n=0}^{N-1} \gamma_k(n) x(n)}{\sum_{n=0}^{N-1} \gamma_k(n)} \qquad g_k = \frac{1}{N} \sum_{n=0}^{N-1} \gamma_k(n)$$

$$\boldsymbol{\Sigma}_{k} = \frac{\sum_{n=0}^{N-1} \gamma_{k}(n) \left(\boldsymbol{x}(n) - \boldsymbol{\mu}_{k}\right) \left(\boldsymbol{x}(n) - \boldsymbol{\mu}_{k}\right)^{\mathrm{T}}}{\sum_{n=0}^{N-1} \gamma_{k}(n)}$$

GMM parameter estimation Iteration stop criterion

Stop criterion for the iteration:

In case the joint probability for the training data is only marginally increased by one adaptation step, the iteration is stopped.

$$\frac{\sum_{n=0}^{N-1} \log \left\{ \sum_{k=0}^{K-1} g_k^{\text{new}} \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_k^{\text{new}}, \boldsymbol{\Sigma}_k^{\text{new}}) \right\}}{\sum_{n=0}^{N-1} \log \left\{ \sum_{k=0}^{K-1} g_k^{\text{old}} \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_k^{\text{old}}, \boldsymbol{\Sigma}_k^{\text{old}}) \right\}} < 1 + \epsilon$$

GMM parameter estimation: Critical issues for the iteration

When the cost function is optimized

$$\log p(\boldsymbol{X}|\boldsymbol{g},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{n=0}^{N-1} \log \left\{ \sum_{k=0}^{K-1} g_k \, \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \right\} \longrightarrow \max$$

one has to be careful when only few training vectors are allocated to one Gaussian.

Example:

Assume one had only diagonal covariance matrices with the same elements on the diagonal: $\pmb{\Sigma}_k = \sigma_k^2 \pmb{I}$

and one feature vector would be identical to one Gaussian mean:

$$\boldsymbol{x}(n_0) = \boldsymbol{\mu}_{k_0}$$

GMM parameter estimation: Critical issues for the iteration

■ Example (cont.):

Then the variance would approach zero and would lead the value of the Gaussian to infinity at the feature vector value.

=> in that case the optimization criterion is reached.

□ In order to avoid these cases, the diagonal elements of the covariance matrices are lower limited corresponding to a lower limit of the width of the Gaussians.

GMM parameter estimation: Initialization of the iteration

□ Initialization with the k-means of LBG algorithms:

Typically, a reasonable initialization is recommended for the GMM iteration.

Therefore, a **codebook is trained** and the codebook vectors are used as initialization for the **mean Gaussian values**.

The **covariance matrices** are estimated based on the covariance of the data vectors allocated to the respective codebook vector.

The **weights** are initialized by the number of elements allocated to each codebook entry.

Gaussian mixture models vs. Codebooks

Codebooks:

Training data for quantized vector description.

GMMs:

Training data for pdf estimation. Pdf modeled by Gaussian functions.

Gaussian mixture models vs. Codebooks

1) Allocation of the data vectors x(n), E-step:

$$\gamma_k(n) = \frac{g_k \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=0}^{K-1} g_j \mathcal{N}(\boldsymbol{x}(n)|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

 $\gamma_k(n) = \frac{g_k \, \mathcal{N}\left(\boldsymbol{x}(n) | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)}{\sum_{i=0}^{K-1} g_j \, \mathcal{N}(\boldsymbol{x}(n) | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \quad \text{a training data value is allocated to one cluster center ("hard allocation").}$ In the codebook training (LBG algorithm) The GMM allocation is soft.

- 2) Update of the Gaussian parameters, M-step:
 - Adaptation of the means:

$$\mu_k = \frac{\sum_{n=0}^{N-1} \gamma_k(n) \, \boldsymbol{x}(n)}{\sum_{n=0}^{N-1} \gamma_k(n)}$$

The adaptation of the mean is the same for GMMs and Codebooks. However, with a binary allocation for codebooks.

Gaussian mixture models vs. Codebooks

- □ 2) Update of the Gaussian parameters, M-step:
 - Adaptation of the covariance matrices:

$$\boldsymbol{\Sigma}_{k} = \frac{\sum_{n=0}^{N-1} \gamma_{k}(n) \left(\boldsymbol{x}(n) - \boldsymbol{\mu}_{k}\right) \left(\boldsymbol{x}(n) - \boldsymbol{\mu}_{k}\right)^{\mathrm{T}}}{\sum_{n=0}^{N-1} \gamma_{k}(n)}$$

The sum of the diagonal elements of the covariance matrix is sometimes used for an evaluation of the codebook training.

Adaptation of the weights:

$$g_k = \frac{1}{N} \sum_{n=0}^{N-1} \gamma_k(n)$$

The weights of the codebook entries are typically chosen identically. For a MAP (max. a posteriori) estimation, also a weighting according to the number of allocated elements is possible (which is g_k)

Complexity reduction

 In the general case DxD elements of the covariance matrices have to be estimated.

□ In case one would only consider the diagonal elements, the complexity can be significantly reduced.

 However, in order to obtain the same approximation quality, one has to model more Gaussians.

Other Classification Methods

- Naïve Bayes
- Decision tree
- Random Forest
- k-Nearest Neighbor
- □ Linear Support Vector Machine (SVM)
- DNNs: Multi-Layer Perceptron

Other Classification Methods: Naïve Bayes

□ Simpler concept than GMMs: Model the probabilities of each class with one Gaussian only and not a weighted some as in the GMMs.

Example for a one-dimentional feature:

Other Classification Methods: Decision tree

□ Application of hierarchical decision rules for partitioning the feature space.

Example for a two-dimentional feature set:

Other Classification Methods: Random Forest

☐ Train several decision trees on different subsets of the whole data set. Each subset produces an individual decision. Overall decision by majority voting.

Other Classification Methods: k-Nearest Neighbor

■ Number of training samples per class closest to the test sample (current observation to classify determines the decision class.

Other Classification Methods: Linear Support Vector Machine (SVM)

□ A hyperplane in the n-dimensional space separates the different classes. More classes to differentiate, more hyperplanes.

Input Layer:

 Sometimes input data is propagated unchanged to the next layer:

$$\boldsymbol{h}_0(n) = \boldsymbol{x}(n)$$

sometime changed to zero mean and normalized variance:

$$h_{0,i}(n) = \frac{x_i(n) - \mu_{x_i}}{\sigma_{x_i}}$$
 $\boldsymbol{x}(n)$

$$\boldsymbol{h}_0(n) = \left[h_{0,0}(n), \dots, h_{0,N_0-1}(n)\right]^{\mathrm{T}}$$

■ Hidden Layer, i.e., Neural processing: Linearly weighted sum with bias:

$$x_{m,i}(n) = \boldsymbol{w}_{m,i}^{\mathrm{T}} \boldsymbol{h}_m(n) + b_{m,i}$$

$$\boldsymbol{w}_{m,i} = \left[w_{m,0}, \dots, w_{m,N_m-1}\right]^{\mathrm{T}}$$

■ Non-linear activation function:

$$y_{m,i}(n) = f_{\text{act},m} \left(x_{m,i}(n) \right)$$

Combination to a vector:

$$\boldsymbol{h}_{m+1}(n) = [y_{m,0}, \dots, y_{m,N_m-1}]^{\mathrm{T}}$$

Activation functions:

- Most used:
- the **Tanh** function:

$$f_{\text{act}}(x(n)) = \frac{e^{2x(n)} - 1}{e^{2x(n)} + 1}$$

the Rectified Linear function (or Unit; **ReLU**):

$$f_{\rm act}\left(x(n)\right) = \max\left\{0, \, x(n)\right\}$$

Output Layer:

Sometimes a pass-through layer only:

$$\hat{\boldsymbol{y}}(n) = \boldsymbol{h}_M(n)$$

sometime a limitation, and/or:

$$\hat{y}_i(n) = \max \left\{ \hat{y}_{\min}, \min \left\{ \hat{y}_{\max}, h_{M,i}(n) \right\} \right\}$$

■ a normalization, and/or:

$$\hat{y}_i(n) = \frac{h_{M,i}(n)}{\sum_{i=0}^{N_M - 1} h_{M,i}(n)}$$

or a quantization / decision is performed:

$$\hat{y}_i(n) = \begin{cases} 1 : h_{M,i}(n) > \text{limit} \\ 0 : \text{else} \end{cases}$$

Other Classification Methods using DNNs

Some general comments:

- Multi-Layer Perceptrons (MLPs) realize complex and learned decision rules. Typically, it makes sense to use a feature vector and not raw data as input.
- In order to realize a memory dependent decision (typically time correlated data where memory to consider makes sense) recurrent networks with memory elements should be used, such as Long short time memory networks (LSTMs):

Other Classification Methods using DNNs

■ Some general comments:

- □ If not feature should be used but **raw data as input**, usually a **convolutional layer net** is used as first processing stage: feature learning followed by a detection stage with MLPs or LSTMs.
- Convolution performed by weighted (according kernel weights) sum of the input data.

Might be done several times with different kernels => more dimensions.

Other Classification Methods using DNNs

□ Typical example structure of a convolutional network:

Application – separate lecture

■ Speaker recognition with GMMs:

More, about speaker recognition, next lecture...

Summary

- Introduction to decision problems.
- Basis: Gaussian distributions: single and multi-dimensional.
- Motivation for GMMs based on the estimation of multi-dimensional distributions.
- GMM description:
 - Estimation of GMM parameters based on training data.
 - Derivation of an iterative estimation procedure.
 - Simplifications and applications.
- Alternative detection methods
- Next lecture:
 - Speaker recognition based on MFCCs and GMMs.

References

Gaussian mixture models:

- [1] Nuno Vasconcelos: The Gaussian classifier http://svcl.ucsd.edu/~courses/ece271A-F10/handouts/GC.pdf
- [2] Frédéric Bimbot, et al.: A Tutorial on Text-Independent Speaker Verification, Eurasip Journal on Applied Signal Processing 2004:4, 430-451
- [3] C. M. Bishop: Pattern Recognition and Machine Learning, Springer, 2006
- [4] L. Rabiner, B.H. Juang: Fundamentals of Speech Recognition, Prentice Hall, 1993
- [5] B. Gold, N. Morgan: Speech and Audio Signal Processing, Wiley, 2000