APNIC

DNS Concepts

WEBINAR COURSE

Overview

- What is DNS?
- DNS Features
- Domains and Namespaces
- Zones and Delegation
- Nameservers
- DNS Resource Records
- DNS Query

DNS Overview

DNS is a distributed, hierarchical system for translating objects

DNS is a critical piece of the Internet infrastructure

IP Addresses vs Domain Names

DNS Features

Globally Distributed

Multiple DNS servers managed by different operators

Loosely coherent

Even if distributed, servers are still part of one global DNS system

Scalable

The system can be scaled up and multiple servers can be added

Reliable

Critical to the function of the Internet, so it must be reliable

Dynamic

Anyone can add domains and records without causing outage

More about DNS

- DNS is a client-server application
 - Client (resolvers) must request, and DNS server responds with information about the record

Requests and responses are normally sent via UDP port 53

- Occasionally uses TCP port 53 for large requests
 - Ex: Zone transfers

What is DNS?

DNS Hierarchy Tree

FQDN: ws1.training.apnic.net.

FQDN = **Fully Qualified Domain Name**

DNS Components

Domains

Domains are "namespaces"

Delegation

Administrators can create subdomains to group hosts

Administrators can delegate responsibility for managing a subdomain to someone else

The parent domain retains links to the delegated subdomain

Zones

Zones are "administrative spaces"

Zone administrators are responsible for a portion of a domain's name space

Authority is delegated from parent to child

Zones

Name Servers

Name servers answer DNS questions

- Several types of name servers
 - Authoritative servers
 - Primary
 - Secondary
 - Recursive servers
 - also caching forwarders
- Mixture of functions

Secondary DNS servers

Authoritative Nameserver

- A nameserver that is authorised to provide an answer for a particular domain
 - Can be more than one auth nameserver
- Two types based on management method:
 - Primary (Master) and Secondary (Slave)
- Only one primary nameserver
 - All changes to the zone are done in the primary
- Secondary nameserver/s will retrieve the zonefile from the primary server
 - Secondary polls the primary periodically
- Primary server can "notify" the secondary servers

Recursive Nameserver

- The job of the recursive nameserver is to locate the authoritative nameserver and get back the answer
- This process is iterative starts at the root
- Recursive servers are also usually caching servers
- Prefer a nearby cache
 - Minimizes latency issues
 - Also reduces traffic on your external links

Root Servers

The top of the DNS hierarchy

• There are 13 root name servers operated around the world [a-m].root-servers.net

- There are more than 13 physical root name servers
 - Each rootserver has an instance deployed via anycast

Src: https://root-servers.org/

Root Server Deployment at APNIC

 Started in 2002, APNIC is committed to establish new root server sites in the AP region

 The aim is to strengthen DNS by deploying additional resources to handle growing Internet traffic.

Timeline of root server deployment

2020	December			
	M-Root nameserver installed in Brisbane.			
2019	January			
	K-Root nameserver installed in Thimphu.			
	December			
	K-Root nameserver installed in Yangon.			
2018	July			
	F-Root nameserver installed in Port Moresby.			
	December			
	K-Root nameserver installed in Taipei.			
2017	January			
	J-Root nameserver installed in Kathmandu.			

Ref: https://www.apnic.net/community/support/root-servers

Resource Records

Entries in the DNS zone file

Resource Record	Function		
Label	Name substitution for FQDN		
TTL	Timing parameter, an expiration limit		
Class	IN for Internet, CH for Chaos		
Type	RR Type (A, AAAA, MX, PTR) for different purposes		
RDATA	Anything after the Type identifier; Additional data		

Common Resource Record Types

RR Type	Name	Functions		
А	Address record	Maps the domain name to IP address www.example.com. IN A 192.168.1.1		
AAAA	IPv6 address record	Maps the domain name to an IPv6 address www.example.com. IN AAAA 2001:db8::1		
NS	Name server record	Used for delegating zone to a nameserver example.com. IN NS ns1.example.com.		
PTR	Pointer record	Maps an IP address to a domain name 1.1.168.192.in-addr.arpa. IN PTR www.example.com.		
CNAME	Canonical name	Maps an alias to a hostname web IN CNAME www.example.com.		
MX	Mail Exchanger	Defines where to deliver mail for user @ domain example.com. IN MX 10 mail01.example.com. IN MX 20 mail02.example.com.		

Example: RRs in a Zone File

apnic.net.	7200	IN 20200 12h 4h 4d 2h)	SOA)72001	<pre>ns.apnic.net. admin.apnic.net. (; Serial ; Refresh 12 hours ; Retry 4 hours ; Expire 4 days ; Negative cache 2 hours</pre>
apnic.net. apnic.net. www.apnic.net. www.apnic.net		IN IN IN	NS NS A AAAA	ns.apnic.net. ns.ripe.net. 192.168.0.2 2001:DB8::2

DNS Data Flow

Delegating a Zone

Delegation is done by adding NS records.

In this example, **apnic.net** zone is delegating the subdomain **academy.apnic.net** to these 2 nameservers.


```
;From apnic.net zone, add these records:

academy.apnic.net. NS ns1.academy.apnic.net.
academy.apnic.net. NS ns2.academy.apnic.net.
```

A client must then go to ns1.academy.apnic.net (or ns2) to query for any of its subdomain.

Now how can we reach ns1 and ns2? We must add a Glue Record.

Glue Record

A **glue record** is a non-authoritative data. It is an A record that maps the address of the sub-domain's nameserver.

Only this record needs glue ns1.academy.apnic.net. academy.apnic.net. NS academy.apnic.net. NS ns2.academy.apnic.net. ns1.example.net. academy.apnic.net. NS academy.apnic.net. ns2.example.net. NS ns1.academy.apnic.net. A 10.0.0.1 ns2.academy.apnic.net. A 10.0.0.2 **Glue Record**

Delegation Example

ns.apnic.net

- 1. Add NS records and glue
- 2. Make sure there is no other data from the academy.apnic.net. zone in the zone file

ns.academy.apnic.net

- 1. Setup minimum two servers
- 2. Create zone file with NS records
- 3. Add all academy.apnic.net data in its own zonefile.

Resolvers

A piece of software (usually in the operating system) which formats the DNS request into UDP packets

A stub resolver is a minimal resolver that forwards all requests to a local recursive nameserver

Every host needs a resolver

- In Linux, this is in /etc/resolv.conf
- Configure to use more than one DNS server

DNS Query – dig

What is the IP address of academy.apnic.net?

```
dig academy.apnic.net
; <<>> DiG 9.14.10 <<>> academy.apnic.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60912
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;academy.apnic.net.
                                   IN
;; ANSWER SECTION:
academy.apnic.net.
                          86400
                                   IN
                                                     203.119.101.88
;; Query time: 17 msec
;; SERVER: 202.12.29.236#53(202.12.29.236)
;; WHEN: Wed Jan 20 10:58:42 AEST 2021
;; MSG SIZE rcvd: 62
```

DNS Query – drill


```
drill academy.apnic.net
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 62275
;; flags: qr rd ra ; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 6
;; QUESTION SECTION:
;; academy.apnic.net.
                             IN
                                       Α
;; ANSWER SECTION:
academy.apnic.net. 86400
                             IN
                                                 203.119.101.88
;; AUTHORITY SECTION:
apnic.net.
                    3600
                             IN
                                       NS
                                                 ns4.apnic.net.
                                                 netnod.apnic.net.
apnic.net.
                   3600
                             IN
                                       NS
apnic.net.
                   3600
                                                 ns2.apnic.net.
                             IN
                                       NS
                                                  apnic.authdns.ripe.net.
apnic.net.
                    3600
                             IN
                                       NS
;; ADDITIONAL SECTION:
ns2.apnic.net.
                   2547
                             IN
                                                 203.119.95.53
ns4.apnic.net.
                   2547
                             IN
                                                 202.12.31.53
netnod.apnic.net.
                   2575
                                                 194.146.106.106
                             IN
ns2.apnic.net.
                   2547
                             IN
                                       AAAA
                                                 2001:ddd::53
ns4.apnic.net.
                   2547
                             IN
                                       AAAA
                                                 2001:dd8:12::53
netnod.apnic.net.
                   2575
                                                 2001:67c:1010:27::53
                             IN
                                       AAAA
;; Query time: 107 msec
;; SERVER: 203.119.110.16
;; WHEN: Mon Jan 25 15:34:07 2021
;; MSG SIZE rcvd: 273
```

Remember ...

Deploy multiple authoritative servers to distribute load and risk

Use cache to reduce load to authoritative servers and response times

SOA timers and TTL need to be tuned to the needs of the zone

