QIS Potential Energy.

(c)
$$\vec{F} = -K(1-16) \cdot \hat{e}_1$$

= $-K(3-16) \cdot \hat{e}_1$
 $\vec{F} = -\int \vec{F} \cdot d\vec{J}$
= $\int K(3-16) \cdot d\vec{J}$
= $K(\frac{3}{2}^2 - 163)$

(d)
$$F = -\frac{C}{3} = -\frac{C}{3} = \frac{C}{3}$$

 $Ep = -\int F \cdot dA$
 $= \int \frac{C}{3} dA$

(f)
$$F = -K(\tilde{S}_{12}^{2} - \tilde{S}_{11}^{2} - lo) \hat{A}$$

 $Ep = \int K(\tilde{S}_{12}^{2} - \tilde{S}_{11}^{2} - lo) dS$
 $= \int K(\tilde{S}_{12}^{2} - lo) dS$
 $= \frac{K(\tilde{S}_{12}^{2})^{2} - lo(\tilde{S}_{12}^{2})^{2}}{2}$

$$(9) \vec{F} = \frac{-c}{3^2} \hat{\lambda}$$

$$Ep = -\int \vec{F} \cdot d\vec{\lambda}$$

$$= \frac{b^2}{3^2} c dx = \frac{-c}{l^2 - l^2} = \frac{-c}{l^2}$$

(h)
$$\vec{F} = -c\hat{\lambda}$$

 $Ep = -\int \vec{F} \cdot d\vec{\lambda}$
 $= \int c\hat{\lambda} \cdot d\vec{\lambda}$
 $= \frac{c\hat{\lambda} \cdot \vec{F}}{c\hat{\lambda} \cdot d\vec{\lambda}}$

(e)
$$\vec{F} = -f(n) \hat{u}$$

 $E_p = -\int_{n_0}^{n} f(n) dn$