© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°03

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 ★★

Soit
$$n \in \mathbb{N}^*$$
. On pose $S_n = \sum_{k=0}^n (-1)^k \binom{2n}{2k}$ et $T_n = \sum_{k=0}^{n-1} (-1)^k \binom{2n}{2k+1}$.

- 1. Calculer S_1 , S_2 , S_3 d'une part et T_1 , T_2 , T_3 d'autre part.
- **2.** Ecrire 1 + i sous forme exponentielle.
- **3.** Justifier que $S_n + iT_n = (1 + i)^{2n}$.
- **4.** En déduire des expressions des sommes S_n et T_n faisant intervenir les fonctions cos et sin.

Exercice 2 ★★

- 1. Soit $\alpha = \frac{-1+i}{4}$. Ecrire α sous forme exponentielle.
- 2. Déterminer les racines cubiques de α sous forme exponentielle.
- 3. Montrer qu'une seule de ses racines cubiques a une puissance quatrième réelle.
- 4. Déterminer des complexes β , λ et μ tels que

$$\forall z \in \mathbb{C}, \ z^4 + \lambda z^3 + \mu z^2 - (1 - i)z - \frac{1}{4} = (z + \beta)^4$$

On écrira ces trois nombres complexes sous forme algébrique.

Exercice $3 \star \star$

- 1. On considère l'équation (E) : $(1+iz)^5 = (1-iz)^5$ d'inconnue $z \in \mathbb{C}$.
 - **a.** Soit $\theta \in \mathbb{R}$ non congru à $\frac{\pi}{2}$ modulo π . Montrer que $\frac{e^{2i\theta}-1}{e^{2i\theta}+1}=i\tan\theta$.
 - **b.** Déterminer les solutions complexes de (E) à l'aide des racines cinquièmes de l'unité. On exprimera les solutions à l'aide de la fonction tan.
 - **c.** Développer $(1+iz)^5$ et $(1-iz)^5$ à l'aide de la formule du binôme de Newton. En déduire les solutions de (E) sous une autre forme.
 - **d.** Déterminer le sens de variation de la fonction tan sur l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. En déduire les va-

1

© Laurent Garcin MP Dumont d'Urville

leurs de tan $\frac{\pi}{5}$ et tan $\frac{2\pi}{5}$.

2. On se donne maintenant $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et on considère l'équation

$$(E_{\alpha})$$
: $(1+iz)^{5}(1-i\tan\alpha) = (1-iz)^{5}(1+i\tan\alpha)$

d'inconnue $z \in \mathbb{C}$.

- **a.** Montrer que $\frac{1+i\tan\alpha}{1-i\tan\alpha} = e^{2i\alpha}$.
- **b.** Résoudre l'équation $Z^5 = e^{2i\alpha}$ d'inconnue $Z \in \mathbb{C}$.
- $\boldsymbol{c}_{\boldsymbol{\cdot}}$ En déduire les solutions de (E_{α}) que l'on exprimera à l'aide de la fonction tan.