

Doc. No.: TD-MM18-SP-2004	Doc. Title: 0.18um Mixed Signal Enha 1.8V/3.3V SPICE Model	Doc.Rev:	Tech Dev Rev: 1.11	_	No.:	
Document Level: (For Engineering & Quality Document/工程暨品质文件专用)						
☐ Level 1 - Manual ☐ Level 2 - Procedure/SPEC/Report ☐ Level 3 - Operation Instruction						
Canada I areale						

Security Level: ☑ Security 2 - SMIC Restricted ☐ Security 3 - SMIC Internal ☐ Security 1 - SMIC Confidential **Document Change History** Change Description Doc. Tech Effective Author Rev. Dev. Date Rev. 0R 1.0 2015-04-17 Claude Zhang Initiate 1. Change the version number of Title from Version 1.0 to Version 1.10. Change the model file names in this document from v1p0 to v1p10 in section 7.5 & 8.1. 2. Update the N18/P18/NNT33 fix corner parameters in section 7.2.4 of 'Table 7.2.3' and 'Table 7.2.4'. 3. Update the N18/P18/NNT33/NMVT33 PCM compare result in section 7.2.5 of 'Table 7.2.7', 'Table 7.2.8' and 'Table 7.2.9'. 4. Update the corner case R.O. simulation result in section 7.2.6 of 'Table 7.2.10~7.2.18'. 5. Update the LOD parameters of N18/P18 in section 7.2.8 of 'Table 7.2.22'. 6. Update resistor parameters in section 7.6.3 and section 7.6.4 of 'Table 7.6.3' and 'Table 7.6.5'. 7. Modify item 8.1: 1) Retarget n18 and p18 MOS and re-extract LOD effect model. Retarget nmvt33 MOS model. Retarget nnt33 1 1.10 2015-11-09 Sifeng Wu MOS corner model. Re-extract p33 and pmvt18 MOS cigate parameters. Set all MOS devices WPEMOD=0 to turn off WPE effect. Update model parameters in 'ms018 enhanced v1p10.mdl' and 'ms018 enhanced v1p10 mis.mdl'. 2) Retarget n+ poly silicide, p+ poly silicide, p+ poly sab, nwell AA resistor model. Update parameters in 'ms018 enhanced v1p10 res.mdl' and 'ms018 enhanced v1p10 res.ckt'. 3) Modify mim default wr lr value and mismatch random variable in 'ms018_enhanced_v1p10_mim.ckt' and 'ms018 enhanced v1p10 mim spe.ckt'. 4) Update npn18a100_mis_ckt model, and update the related file in hspice/bjt/npn18a100.mdl. 8. Update 1.8V/3.3V native NMOS Wmin from 0.22um to 0.42um to follow DR, and update in section 7.2.2.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page N	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	1/90	

				1. Update the version from v1.10 to v1.11 in title and section
				7.5.2/7.6.4/8 in main document.
				2. Deleted 3K HRP resistor related models for PIE request in
				attachment "ms018_enhanced_v1p11_res.ckt",
				"ms018_enhanced_v1p11_res.mdl",
				"ms018_enhanced_v1p11_res_spe.ckt",
				"ms018_enhanced_v1p11_res_spe.mdl","ms018_fit_G.pdf" and
				"ms018_fit_D.pdf", and updated in section
				7.6.1/7.6.2/7.6.3/7.6.4/7.9 in main document. 3. Modified 'l=lr w=wr' to 'l=10e-6 w=1e-6' for resistor in
				"ms018_enhanced_v1p11_res.ckt" and
				"ms018_enhanced_v1p11_res_spe.ckt".
				4. Deleted doubld defined parameter
				"+sigma_mis_res=agauss(0,1,1)" for resistor in
				"ms018_enhanced_v1p11_res.ckt" and
				"ms018_enhanced_v1p11_res_spe.ckt"
				5. Updated SPECTRE diode parameter tcv to match HSPICE
				simualton result in "ms018_enhanced_v1p11_dio_spe.mdl".
				6. Updated gate current to match HSPICE in "gc.va" file.
				7. Updated 'rbm' in all npn BJT devices to avoid warning in bjt
				folder.
				8. Updated nmvt18 model to avoid acde parameter warning in
2	1.11	2016-10-14	Sifeng Wu	"ms018 enhanced v1p11.mdl",
_	1.11	2010 10 11	Sheng wa	"ms018_enhanced_v1p11_mis.mdl",
				"ms018_enhanced_v1p11_spe.mdl" and
				"ms018_enhanced_v1p11_mis_spe.mdl".
				9. Updated mismatch for mim_ckt in SPECTRE to match
				HSPICE in "ms018_enhanced_v1p11_mim_spe.ckt".
				10. Updated "ASCII.7z" zip file name to
				"SMIC_SP_model_018MSE_1833.tar.gz" for new naming rule,
				and update in section 8.1
				11. Align attached document format to pdf with ECN, and
				updated in section 8.3.
				12. Update document title to "0.18um Mixed Signal Enhanced
				1.8V/3.3V SPICE Model" for new naming rule.
				13. Updated attachment "GDS.7z" zip file name to
				"SMIC_SP_GDS_018MSE_1833.tar.gz" for new naming rule.
				14. Updated attachment name for new naming rule, from
				"ms018_fit_A.pdf/ms018_fit_B1.pdf/ms018_fit_B2.pdf/ms018_f
				it_C.pdf/ms018_fit_D.pdf/ms018_fit_F.pdf/ms018_fit_G.pdf" to
				"SMIC_SP_fit_A_018MSE_1833.pdf/SMIC_SP_fit_B1_018MS
				E_1833.pdf/SMIC_SP_fit_B2_018MSE_1833.pdf/SMIC_SP_fit_
				C_018MSE_1833.pdf/SMIC_SP_fit_D_018MSE_1833.pdf/SMI
				C_SP_fit_F_018MSE_1833.pdf/SMIC_SP_fit_G_018MSE_1833
				.pdf"

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	2/90	

1. Title:

0.18um Mixed Signal Enhanced 1.8V/3.3V SPICE Model

2. Purpose:

To provide SPICE model for circuit designers who use SMIC 0.18um Mixed Signal 1.8V/3.3V process.

3. Scope:

This document describes detailed information about devices modeling, covering MOSFETs Model (wafer information, model capability, fixed corner model table, 1/f noise model, LOD Stress Effect Model,), as well as wafer information, model capability and fixed corner model table of Bipolar Gummel-Poon Model, Diode Model, Interconnection Model, Resistor Model, MOS Varactor Model, and MIM Capacitor Model.

4. Nomenclature:

1P6M: Single Poly Sextuple Metal

5. Reference:

TD-LO18-DR-2001 0.18um Logic & Mix-signal 1.8V/3.3V Design Rule

TD-MM18-PC-2004 0.18um Logic/Mixed Signal & RF 1P6M Salicide 1.8V/3.3V Enhanced WAT PCM SPEC

6. Responsibility:

It is the responsibility of Technology R&D/Tech-Bas Des-Enb division to generate and release SPICE models for internal and external customers

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

2008-06-27

Doc. No.:Doc. Title: 0.18um Mixed Signal EnhancedDoc.Rev:Tech DevPageNo.:TD-MM18-SP-20041.8V/3.3V SPICE Model2Rev: 1.113/90

7. Subject Content:

7.1 Model Overview	
7.1.1 SPICE Model Introduction	
7.1.2 SMIC's SPICE Model Introduction	4
7.2 MOSFET MODEL	5
7.2.1 Wafer Information	
7.2.2 Capability of Model	
7.2.3 Sub-circuit Model	
7.2.4 Fixed Corner Model of MOSFETs	16
7.2.5 MOSFET Model Simulation compare with PCM Spec Table	
7.2.6 Corner-Case Simulation Results of Inverter, NAND and NOR Ring-Oscillator	27
7.2.7 1/f Noise Model	29
7.2.8 LOD Stress Effect Model	
7.3 BIPOLAR GUMMEL-POON MODEL	
7.3.1 Wafer Information	34
7.3.2 Capability of Model	
7.3.3 Fixed Corner Model of BJT	
7.4 DIODE MODEL	42
7.4.1 Wafer Information	
7.4.2 Capability of Model	42
7.4.3 Fixed Corner Model of Diode	
7.5 Interconnection Table.	
7.5.1 Related Process Data and Information for Interconnection	46
7.5.2 Capability of Model	
7.5.3 Corner Cases of Interconnection Capacitance	50
7.6 RESISTOR MODEL	
7.6.1 Wafer Information	
7.6.2 Capability of Model	
7.6.3 Resistor Model Parameters and Equations	
7.6.4 Fixed Corner Model of Resistor	
7.7 MOS VARACTOR MODEL	
7.7.1 Wafer Information	57
7.7.2 Capability of Model	58
7.7.3 Fixed Corner Model of MOS Varactor	
7.7.4 MOS Varactor CV fitting curve	59
7.8 MIM CAPACITOR MODEL	
7.8.1 Wafer information	
7.8.2 Capability of Model	
7.8.3 Fixed Corner Model of MIM Capacitor	63
7.8.4 MIM Model	
7.9 MODEL FITTING AND PLOTTING RESULTS	68
7.10 CONCLUSION	
7.11 APPENDIXES	75
7.11.1 The Flicker Noise Parameters	75
7.11.2 Model Parameter Description for HSPICE Level 54	76
7.12 Reference	86
8.1 ASCII files: SMIC_SP_model_018MSE_1833.tar.gz	88
8.2 GDS Files	89
8.3 DOC Files	

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page 1	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	4/90	

7.1 Model Overview

7.1.1 SPICE Model Introduction

SPICE (simulation program with integrated circuit emphasis) is a transistor-level simulator developed by experts from UC Berkeley, which is a public domain software specially designed for integrated circuit (IC) applications. The circuit simulators for SPICE include public domain ones (e.g. SPICE1, SPICE2 and SPICE3, etc, all from UC Berkeley) and commercial ones, such as HSPICE from Synopsys used by 90% fables design houses, SPECTRE from Cadence for RF and IDM design, ELDO from Mentor Graphics widely used in Europe, Smart-SPICE from Silvaco mainly applied by small design houses and board level PSPICE. Additionally, there're also some proprietary SPICE simulators developed by MCSPICE, TISPICE, IBM, Intel, and more.

The SPICE model is defined as a set of parameters describing devices' electrical characteristics for SPICE simulation, almost covering all device models, such as models of MOSFETs, diodes, BJTs, JFETs, MESFETs, and as well the passive device (resistors, capacitors and inductors)models. It's actually a set of sophisticated equations that correctly reproduce the exact transistor characteristics for SPICE simulation, which is not only a mathematical model of a prototype transistor, but also provides series of accurate models to simulate many real device effects of the modern transistor.

For SPICE modeling, a complete set of electrical parameters of arbitrary device dimensions is extracted from a set of relevant data, such as physical parameters, electrical parameters, technology specific data and process data. By this, each value of the required model parameters can be regarded as a function of the aforementioned data, describing its dependence on the operating conditions, temperature environments, electrical data (e.g. capacitance, sheet resistance) and also technology data (layout design rules).

It's too difficult to directly analyze numerous in-line test data, and then the SPICE model allows us to leverage the large volumes of measured data and provides a statistical modeling for circuit designers to simulate realistic integrated circuits.

7.1.2 SMIC's SPICE Model Introduction

The simplified steps of SPICE modeling would be wafer preparation (including data measurement) and model parameter extraction. Wafer preparation is to select a golden wafer and its golden die by comparing the WAT data with the PCM specification to make sure the wafer is suitable for model extraction. The extracted parameters for different devices are all listed in their relative sections. We modeled MOSFET, BJT, diode, resistor, MOS varactor and MIM, and their modeling methods and results would be discussed in this document.

SMIC applies the commercial BSIMProPlus model extraction tool to derive parameters of MOSFET, BJT, diode, MOS varactor and MIM, as well adopts MBP(Model Building Program) for model extraction of resistor. The extracted models are compatible with HSPICE (Synopsys) and SPECTRE (Cadence) formats. If the circuit designers need to use simulators other than the two above mentioned types, please contact SMIC to convert the format to meet your specified input requirement. All the model files are given in the attachment.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	5/90	

The naming of SMIC model version follows the following rule: Version 0.X (Under Development); Version 1.X (Process frozen); Furthermore, the tech. version would be changed if the model card has been modified and the modification affects device characteristics and performances, however if just some errors about document or model parameters are corrected, which would not influence any device characteristics, we would just update the document version only.

7.2 MOSFET Model

7.2.1 Wafer Information

The transistors for MOSFET SPICE modeling include 1.8V thin oxide Standard Vt NMOS/PMOS, 1.8V thin oxide Medium Vt NMOS/PMO, 1.8V thin oxide Native NMOS, 3.3V thick oxide NMOS/PMOS, 3.3V thick oxide medium Vt NMOS, 3.3V thick oxide native NMOS.

The silicon data of the above mentioned components are extracted from different wafers, and each wafer is 8 inches with 26 dies. The data is provided by the Wafer Acceptance Test (WAT) team: determining the golden die whose median value (Idsat, Idlin, Vtlin and Vtsat) almost approximates that of mapping data and then sweeping IV and CV curve to obtain the measured data. The detailed lot and wafer information is shown in Table 7.2.1.

Lot number	Wafer number
DL2291	1.8V MOS: #13
	1.8V MVT MOS: #5
DL1737	3.3V MOS: #5
	3.3V MVT MOS: #5

Table 7.2.1 Wafer Information for MOSFET Device Simulation

A typical single MOSFET contains active area (AA), poly and contact (CT), as illustrated in Fig7.2.1, green as active area and blue as poly, and it typically has four terminals: Gate, Source, Drain and Bulk.

Fig 7.2.1 The cross section of MOSFETs (NMOS)

Idsat and Vth of all types of MOSFETs devices on the modeling wafer are on target or close to the target. The poly CD values on the wafers are smaller than the mask drawing sizes. The on-target Idsat device The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	6/90	

sizes are W/L=10/0.18 for 1.8V N&PMOS and N&PMOS in DNW, W/L=10/0.35 for 3.3V NMOS, W/L=10/0.3 for 3.3V PMOS, W/L=10/0.3 for 1.8V MVT NMOS, W/L=10/0.25 for 1.8V MVT PMOS, W/L=10/0.35 for 1.8V native NMOS, W/L=10/0.6 for 3.3V MVT NMOS, W/L=10/1.8 for 3.3V native NMOS. Since not all device parameters on the wafers are exactly on targets, after model parameter extraction, some model parameters are adjusted to make all simulation values on target. The parameters adjusted will be mentioned in subsequent sections.

The geometries for of different types of MOSFETs for measurement and modeling are listed in Fig 7.2.2 to Fig 7.2.9.

Fig 7.2.2 Device sizes for 1.8V NMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	7/90	

Fig 7.2.3 Device sizes for 1.8V PMOS

Fig 7.2.4 Device sizes for 1.8V Native NMOS

Fig 7.2.5 Device sizes for 1.8V MVT NMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page 1	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	8/90	

Fig 7.2.6 Device sizes for 1.8V MVT PMOS

Fig 7.2.7 Device sizes for 3.3V NMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	9/90	

Fig 7.2.8 Device sizes for 3.3V PMOS

Fig 7.2.9 Device sizes for 3.3V MVT NMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	10/90	

Fig 7.2.10 Device sizes for 3.3V Native NMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	11/90	

7.2.2 Capability of Model

The MOSFET modeling in this technology node covers five fixed corner models: TT, FF, SS, FNSP and SNFP; monte carlo corners: MOS_MC, which would be discussed in detail in the flowing section. Furthermore, the effect models of MOSFET, including 1/f noise model, LOD effect model are all simulated.

According to the industry standard of general devices, for measurement and modeling of MOSFETs, the ambient temperature ranges from -40°C to 125°C. In this version of the technology node, we model the MOSFET devices with BSIM4v4.5 model which is accounting for physical effects in sub-100nm devices. The BSIM model consists of two main components- core model and real device models. The core is a ideal long channel model, which is threshold voltage based [1] [2], while the real device models are being used to simulate the effects in real devices e.g. short channel effect, velocity saturation effect, quantum mechanical effect and more.

Here in this technology node, our model covers the following effects that would influence MOSFETs' electrical performances: short channel effects, mobility/transport dependent on field/doping/L, output conductance, current saturation, gate current, GIDL current, impact ionization current, 1/f noise model, S/D resistance, fringe capacitance, random variation, WPE, LOD, LDE, temperature effect, self heating, parasitic diode, inversion layer thickness.

The SPICE model can be classified into global model and bin model. The global model means modeling all the geometries of one type of devices via one model, whereas the bin model is to model the same kind of device with several model equations that follow some certain rule. The former one is more physical while the latter one is more accurate but is more challenging to keep the continuity between models. The model used by SMIC is the global model extraction strategy with different geometries measured and modeled. The MOSFETs sizes used for modeling are shown below: The transistor sizes used in the extraction are 0.18um ≤ length ≤ 20um, 0.22um ≤ width ≤ 100um for 1.8V thin-oxide and in dnw devices, 0.35um ≤ length ≤ 20um, 0.22um ≤ width ≤ 100um for 3.3V NMOS and NMOS in DNW, 0.3um ≤ length ≤ 20um, 0.22um ≤ width ≤ 100um for 3.3V PMOS and PMOS in DNW, 1um ≤ length ≤ 20um, 0.42um ≤ width ≤ 100um for 1.8V thin-oxide native NMOS, 1.8um ≤ length ≤ 20um, 0.42um ≤ width ≤ 100um for 3.3V native NMOS, 0.3um ≤ length ≤ 20um, 0.22um ≤ width ≤ 100um for 1.8V thin-oxide MVT NMOS, 0.25um ≤ length ≤ 20um, 0.22um ≤ width ≤ 100um for 1.8V thin-oxide MVT PMOS, 0.6um ≤ length ≤ 20um, 0.22um ≤ width ≤ 100um for 1.8V thin-oxide MVT PMOS, 0.6um ≤ length ≤ 20um, 0.22um ≤ width ≤ 100um for 1.8V thin-oxide MVT PMOS, 0.6um ≤ length ≤ 20um, 0.22um ≤ width ≤ 100um for 1.8V thin-oxide MVT PMOS

The circuit engineers should keep the geometries of designed devices in the limited ranges, and devices out of the ranges, especially beyond the minimum geometry, are not recommended. Otherwise, the accuracy of the SPICE model cannot be guaranteed.

The valid range of device sizes is graphically shown below in Fig 7.2.11-Fig 7.2.19

A. 1.8V thin-oxide MOS model

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	12/90	

Where n18, p18 are the model names for 1.8V NMOS, PMOS transistors, respectively. And n18_ckt, p18_ckt are the subckt model names for 1.8V NMOS, PMOS transistors, respectively.

B. 1.8V thin-oxide MOS in DNW model

Where n18_dnw_ckt, n18_dnw_4t_ckt, p18_dnw_ckt and p18_dnw_4t_ckt are the subckt model names for 1.8V NMOS, PMOS in DNW transistors, respectively.

C. 3.3V thin-oxide NMOS and NMOS in DNW model

Where n33, n33_ckt are the model names for 3.3V NMOS transistors, and n33_dnw_ckt, n33_dnw_4t_ckt are the model names for 3.3V NMOS in DNW transistors, respectively.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	13/90	

D. 3.3V thin-oxide PMOS and PMOS in DNW model

Where p33, p33_ckt are the model names for 3.3V PMOS transistors, and p33_dnw_ckt, p33_dnw_4t_ckt are the model names for 3.3V PMOS in DNW transistors, respectively.

E. 1.8V thin-oxide native NMOS model

Where nnt18, nnt18_ckt are the model names for 1.8V native NMOS transistors.

F. 3.3V thin-oxide native NMOS model

Where nnt33, nnt33_ckt are the model names for 3.3V native NMOS transistors.

G. 1.8V thin-oxide MVT NMOS model

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	14/90	

Where nmvt18, nmv18_ckt are the model names for 1.8V MVT NMOS transistors.

H. 1.8V thin-oxide MVT PMOS model

Where nmvt18, nmv18_ckt are the model names for 1.8V MVT PMOS transistors.

I. 3.3V thin-oxide MVT NMOS model

Where nmvt33, nmv33_ckt are the model names for 3.3V MVT NMOS transistors.

7.2.3 Sub-circuit Model

The MOSFETs models provided by the SMIC Model team are sub-circuit models. For normal MOSFETs, the sub-circuit model is established by adding the mismatch model part to the original compact model.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	15/90	

The sub-circuit model can compatible with any simulator which allows great flexibility for circuit designers.

To set up a unique sub-circuit model, the netlist should be established whose Hspice format is as shown below:

For normal MOSFET:

xm1 d g s b n18_ckt l=0.18u w=20u sa=0.48u sb=0.48u sd=0.54u as=1e-18 ad=1e-18 ps=1e-15 pd=1e-15 sca=0 scb=0 scc=0 nf=4 mr=1 mismod=1

Where: w: Total device width

1: Device length

sa: Distance between OD edge to Poly from one side

sb: Distance between OD edge to Poly from other side

sd: Distance between neighbouring fingers

as: Total source area

ad: Drain area defined by Nwell or Pwell

ps: Total source perimeter

pd: Drain perimeter defined by Nwell or Pwell

nrd: Number of squares of drain diffusion for resistance calculations

nrs: Number of squares of source diffusion for resistance calculations

nf: Number of device fingers

mr: Multiplier

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

2008-06-27

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	16/90	

7.2.4 Fixed Corner Model of MOSFETs

The process variation occurs due to the variation of process parameters, for example changes of etching rate, photolithography misalignment, dopant fluctuation, day-to-day operating status of foundry equipments and more all can result in process variation, which would lead to device parameters variations. Therefore device fixed corner models are used to simulate the best/worst-case circuit performance in light of process variations.

The SMIC model team models five fixed corner cases to simulate the sensitivities of corners to the process parameters. The provided fixed corner models by SMIC are primarily for predicting most important corner cases: TT, FF, SS, FNSP and SNFP. Their definitions are listed in Table 7.2.2.

Fixed Corner	Definition
Model	
TT	Typical model, for Nominal process modeling
FF	Fast N, Fast P corner. Performance corner for best cases of the static MOSFET circuit,
	including both global (e.g. chip to chip) and local (e.g. mismatch) variations.
SS	Slow N, Slow P corner. Performance corner for worst cases of the static MOSFET
	circuit, including both global (e.g. chip to chip) and local (e.g. mismatch) variations.
FNSP	Fast N, Slow P corner. Corner for bounding the range that single NMOS/PMOS devices
	can move in opposite performance directions, including both global (e.g. chip to chip)
	and local (e.g. mismatch) variations.
SNFP	Slow N, Fast P corner. Corner for bounding the range that single NMOS/PMOS devices
	can move in opposite performance directions, including both global (e.g. chip to chip)
	and local (e.g. mismatch) variations.

Table 7.2.2 Fixed corner model definitions for MOSFET

The following tables from Table 7.2.3 to Table 7.2.6 show the values of the data for compensating the corner cases of every device, and please refer to Section 7.10 for detailed info about the meaning of relevant parameters.

A. 1.8V thin-oxide MOS

Parameters	Unit	TT	FF	SS	FNSP	SNFP
dtox_n18	m	0	-4.60E-11	4.60E-11	0	0
dxl_n18	m	0	-5.00E-09	5.00E-09	0	0
dxw_n18	m	0	9.10E-09	-9.10E-09	0	0
dcj_n18	F/m ²	0	-4.94E-05	4.94E-05	-3.95E-05	3.95E-05
dcjsw_n18	F/m	0	-2.91E-12	2.91E-12	-2.33E-12	2.33E-12
dcjswg_n18	F/m	0	-1.85E-11	1.85E-11	-1.48E-11	1.48E-11
dcgdo_n18	F/m	0	9.00E-12	-9.00E-12	0	0
dcgdl_n18	F/m	0	4.50E-12	-4.50E-12	0	0

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.: TD-MM18-SP-200			Mixed Signal Ent V SPICE Model	nanced D	Ooc.Rev: Tech Dev Rev: 1.11	Page No.: 17/90
dcf_n18	F/m	0	4.27E-12	-4.27E-1	2 0	0
dvth0_n18	V	0	-0.0325	0.0376	-0.028	0.032
dlvth0_n18	V	0	-2.40E-09	2.82E-09	-2.00E-09	2.40E-09
dpvth0_n18	V	0	-1.24E-15	1.16E-15	-1.05E-15	9.86E-16
du0_n18	$m^2/(Vs)$	0	1.00E-03	-9.40E-0	4 8.50E-04	-8.00E-04
dlu0_n18	m ² /(Vs)	0	1.20E-10	-1.20E-10	0 1.02E-10	-1.02E-10
dpu0_n18	m ² /(Vs)	0	0	-4.20E-1	7 0	-3.57E-17
dvsat_n18	m/s	0	0.00E+00	0.00E+0	0.00E+00	0.00E+00
dlvsat_n18	m/s	0	9.00E-04	-1.08E-03	7.70E-04	-9.18E-04
dpvsat_n18	m/s	0	4.00E-11	-1.40E-10	0 4.00E-11	-1.19E-10
dvoff_n18	V	0	-0.01	0	-0.0085	0
dwvth_n18	V	0	-6.50E-09	5.70E-09	-5.50E-09	4.85E-09
dwu0_n18	$m^2/(Vs)$	0	0	-1.80E-1	0 0	-1.53E-10
dtox_p18	m	0	-4.60E-11	4.60E-11	0	0
dxl_p18	m	0	-5.00E-09	5.00E-09	0	0
dxw_p18	m	0	9.10E-09	-9.10E-09	9 0	0
dcj_p18	F/m ²	0	-5.53E-05	5.53E-05	4.42E-05	-4.42E-05
dcjsw_p18	F/m	0	-4.37E-12	4.37E-12	2 3.50E-12	-3.50E-12
dcjswg_p18	F/m	0	-2.11E-11	2.11E-11	1.69E-11	-1.69E-11
dcgdo_p18	F/m	0	1.05E-11	-1.05E-1	1 0	0
dcgdl_p18	F/m	0	8.80E-12	-8.80E-12	2 0	0
dcf_p18	F/m	0	4.25E-12	-4.25E-12	2 0	0
dvth0_p18	V	0	5.40E-02	-4.80E-02	2 -3.84E-02	4.32E-02
dlvth0_p18	V	0	2.00E-09	-3.60E-09	9 -2.88E-09	1.60E-09
dpvth0_p18	V	0	6.80E-16	-5.00E-1	6 -4.00E-16	5.44E-16
du0_p18	$m^2/(Vs)$	0	0.00E+00	-1.00E-0	4 -8.00E-05	0.00E+00
dlu0_p18	$m^2/(Vs)$	0	0.00E+00	-4.00E-1	1 0.00E+00	0.00E+00
dpu0_p18	$m^2/(Vs)$	0	1.60E-17	-3.00E-1	7 -2.40E-17	1.28E-17
dvoff_p18	$m^2/(Vs)$	0	-7.00E-03	7.00E-03	5.60E-03	-5.60E-03
dvsat_p18	m/s	0	0.00E+00	0.00E+0	0.00E+00	0.00E+00
dlvsat_p18	m/s	0	0.00E+00	0.00E+0	0.00E+00	0.00E+00
dpvsat_p18	m/s	0	0.00E+00	0.00E+0	0.00E+00	0.00E+00
dwvth_p18	V	0	3.00E-09	-3.00E-09	9 -2.40E-09	2.40E-09
dwu0_p18	$m^2/(Vs)$	0	5.00E-11	-9.00E-1	1 -7.20E-11	4.00E-11

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.: TD-MM18-SP-200			Mixed Signal Enb V SPICE Model	Doc.	Rev: Tech Dev Rev: 1.11	Page No.: 18/90
dlpe0_p18	m	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dminv_p18		0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dlminv_p18		0	-5.00E-08	5.00E-08	4.00E-08	-4.00E-08
dtoxe_nt18	m	0	-4.60E-11	4.60E-11	0.00E+00	0.00E+00
dxl_nt18	m	0	-5.00E-09	5.00E-09	0.00E+00	0.00E+00
dxw_nt18	m	0	9.10E-09	-9.10E-09	0.00E+00	0.00E+00
dcj_nt18	F/m ²	0	-6.60E-06	6.60E-06	-5.28E-06	5.28E-06
dcjsw_nt18	F/m	0	-7.21E-12	7.21E-12	-5.77E-12	5.77E-12
dcjswg_nt18	F/m	0	-1.83E-12	1.83E-12	-1.46E-12	1.46E-12
dcgdo_nt18	F/m	0	5.05E-12	-5.05E-12	0.00E+00	0.00E+00
dcgdl_nt18	F/m	0	1.88E-11	-1.88E-11	0.00E+00	0.00E+00
dcf_nt18	F/m	0	4.27E-12	-4.27E-12	0.00E+00	0.00E+00
dvth0_nt18	V	0	-6.90E-02	7.00E-02	-5.52E-02	5.60E-02
dlvth0_nt18	V	0	-2.82E-08	2.63E-08	-2.26E-08	2.10E-08
dpvth0_nt18	V	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
du0_nt18	$m^2/(Vs)$	0	2.50E-03	-3.40E-03	2.00E-03	-2.72E-03
dlu0_nt18	m ² /(Vs)	0	1.00E-09	-1.85E-09	8.00E-10	-1.48E-09
dpu0_nt18	m ² /(Vs)	0	2.00E-16	-3.00E-16	1.60E-16	-2.40E-16
dvsat_nt18	m/s	0	9.30E+03	-1.46E+04	7.44E+03	-1.17E+04
dlvsat_nt18	m/s	0	1.00E-02	-1.29E-02	8.00E-03	-1.03E-02
dpvsat_nt18	m/s	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dvoff_nt18	V	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dwvth0_nt18	V	0	-2.50E-09	3.00E-09	-2.00E-09	2.40E-09
dwu0_nt18	$m^2/(Vs)$	0	0.00E+00	-4.00E-10	0.00E+00	-3.20E-10
dtoxe_n18_dnw	m	0	-4.60E-11	4.60E-11	0.00E+00	0.00E+00
dxl_n18_dnw	m	0	-5.00E-09	5.00E-09	0.00E+00	0.00E+00
dxw_n18_dnw	m	0	9.10E-09	-9.10E-09	0.00E+00	0.00E+00
dcj_n18_dnw	F/m ²	0	-4.94E-05	4.94E-05	-3.95E-05	3.95E-05
dcjsw_n18_dnw	F/m	0	-2.91E-12	2.91E-12	-2.33E-12	2.33E-12
dcjswg_n18_dnw	F/m	0	-1.85E-11	1.85E-11	-1.48E-11	1.48E-11
dcgdo_n18_dnw	F/m	0	9.00E-12	-9.00E-12	0.00E+00	0.00E+00
dcgdl_n18_dnw	F/m	0	4.50E-12	-4.50E-12	0.00E+00	0.00E+00
dcf_n18_dnw	F/m	0	4.27E-12	-4.27E-12	0.00E+00	0.00E+00
dvth0_n18_dnw	V	0	-3.25E-02	3.76E-02	-2.80E-02	3.20E-02

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.: TD-MM18-SP-200			Mixed Signal Enh V SPICE Model	nanced Doc.	Rev: Tech Dev Rev: 1.11	Page No.: 19/90
1D WHV110 ST 200	<u> </u>	1.0 775.5	V BITCL Woder	<u>4</u>	1.11	19/90
dlvth0_n18_dnw	V	0	-2.40E-09	2.82E-09	-2.00E-09	2.40E-09
dpvth0_n18_dnw	V	0	-1.24E-15	1.16E-15	-1.05E-15	9.86E-16
du0_n18_dnw	$m^2/(Vs)$	0	1.00E-03	-9.40E-04	8.50E-04	-8.00E-04
dlu0_n18_dnw	$m^2/(Vs)$	0	1.20E-10	-1.20E-10	1.02E-10	-1.02E-10
dpu0_n18_dnw	$m^2/(Vs)$	0	0.00E+00	-4.20E-17	0.00E+00	-3.57E-17
dvsat_n18_dnw	m/s	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dlvsat_n18_dnw	m/s	0	9.00E-04	-1.08E-03	7.70E-04	-9.18E-04
dpvsat_n18_dnw	m/s	0	4.00E-11	-1.40E-10	4.00E-11	-1.19E-10
dvoff_n18_dnw	V	0	-1.00E-02	0.00E+00	-8.50E-03	0.00E+00
dwvth0_n18_dnw	V	0	-6.50E-09	5.70E-09	-5.50E-09	4.85E-09
dwu0_n18_dnw	$m^2/(Vs)$	0	0.00E+00	-1.80E-10	0.00E+00	-1.53E-10
dtoxe_p18_dnw	m	0	-4.60E-11	4.60E-11	0.00E+00	0.00E+00
dxl_p18_dnw	m	0	-5.00E-09	5.00E-09	0.00E+00	0.00E+00
dxw_p18_dnw	m	0	9.10E-09	-9.10E-09	0.00E+00	0.00E+00
dcj_p18_dnw	F/m ²	0	-5.53E-05	5.53E-05	4.42E-05	-4.42E-05
dcjsw_p18_dnw	F/m	0	-4.37E-12	4.37E-12	3.50E-12	-3.50E-12
dcjswg_p18_dnw	F/m	0	-2.11E-11	2.11E-11	1.69E-11	-1.69E-11
dcgdo_p18_dnw	F/m	0	1.05E-11	-1.05E-11	0.00E+00	0.00E+00
dcgdl_p18_dnw	F/m	0	8.80E-12	-8.80E-12	0.00E+00	0.00E+00
dcf_p18_dnw	F/m	0	4.25E-12	-4.25E-12	0.00E+00	0.00E+00
dvth0_p18_dnw	V	0	5.40E-02	-4.80E-02	-3.84E-02	4.32E-02
dlvth0_p18_dnw	V	0	2.00E-09	-3.60E-09	-2.88E-09	1.60E-09
dpvth0_p18_dnw	V	0	6.80E-16	-5.00E-16	-4.00E-16	5.44E-16
du0_p18_dnw	$m^2/(Vs)$	0	0.00E+00	-1.00E-04	-8.00E-05	0.00E+00
dlu0_p18_dnw	$m^2/(Vs)$	0	0.00E+00	-4.00E-11	0.00E+00	0.00E+00
dpu0_p18_dnw	$m^2/(Vs)$	0	1.60E-17	-3.00E-17	-2.40E-17	1.28E-17
dvsat_p18_dnw	m/s	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dlvsat_p18_dnw	m/s	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dpvsat_p18_dnw	m/s	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dvoff_p18_dnw	V	0	-7.00E-03	7.00E-03	5.60E-03	-5.60E-03
dwvth0_p18_dnw	V	0	3.00E-09	-3.00E-09	-2.40E-09	2.40E-09
dwu0_p18_dnw	$m^2/(Vs)$	0	5.00E-11	-9.00E-11	-7.20E-11	4.00E-11
dlpe0_p18_dnw	m	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
dminv_p18_dnw		0	0.00E+00	0.00E+00	0.00E+00	0.00E+00

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Tit	Doc. Title: 0.18um Mixed Signal Enhanced I				Tech Dev	Page No).:
TD-MM18-SP-2004		1.8V/3.3V SPICE Model 2				Rev: 1.11	20/90	
								Ξ.
dlminv_p18_dnw		0	-5.00E-08	5.00E-	08 4	.00E-08	-4.00E-08	3

Table 7.2.3 Fixed corner parameters for 1.8V MOSFET

where: TT: Typical model

SS: Slow model FF: Fast model

SNFP: Slow N fast P model FNSP: Fast N slow P model

B. 3.3V MOS

Parameters	Unit	TT	FF	SS	FNSP	SNFP
dtoxe_n33	m	0	-7.55E-11	7.55E-11	0	0
dxl_n33	m	0	-5.00E-09	5.00E-09	0	0
dxw_n33	m	0	9.10E-09	-9.10E-09	0	0
dcjs_n33	F/m ²	0	-4.30E-05	4.30E-05	-4.30E-05	4.30E-05
dcjsws_n33	F/m	0	-4.84E-12	4.84E-12	-4.84E-12	4.84E-12
dcjswgs_n33	F/m	0	-1.41E-11	1.41E-11	-1.41E-11	1.41E-11
dcgdo_n33	F/m	0	5.00E-12	-5.00E-12	0	0
dcgdl_n33	F/m	0	1.30E-11	-1.30E-11	0	0
dcgso_n33	F/m	0	5.00E-12	-5.00E-12	0	0
dcgsl_n33	F/m	0	1.30E-11	-1.30E-11	0	0
dcf_n33	F/m	0	3.78E-12	-3.78E-12	0	0
dvth0_n33	V	0	-5.54E-02	5.42E-02	-3.88E-02	3.79E-02
dlvth0_n33	V	0	-7.65E-09	8.25E-09	-5.36E-09	5.77E-09
dwvth0_n33	V	0	-8.56E-09	7.53E-09	-5.99E-09	5.27E-09
dpvth0_n33	V	0	1.02E-15	-9.89E-16	7.14E-16	-6.92E-16
du0_n33	m ² /(Vs)	0	1.82E-03	-2.28E-03	1.27E-03	-1.60E-03
dlu0_n33	m ² /(Vs)	0	1.07E-10	-1.01E-11	7.49E-11	-7.08E-11
dwu0_n33	m ² /(Vs)	0	-9.43E-11	-6.13E-11	-6.60E-11	-4.29E-11
dpu0_n33	m ² /(Vs)	0	2.59E-16	-2.09E-16	1.81E-16	-1.46E-16
dvsat_n33	m/sec	0	0	0.00E+00	0	0.00E+00
dlvsat_n33	m/sec	0	1.07E-03	-1.41E-03	0.00074655	-0.000985005
dwvsat_n33	m/sec	0	0.00E+00	0.00E+00	0	0
dpvsat_n33	m/sec	0	3.00E-10	-4.00E-10	2.1E-10	-2.8E-10

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	21/90	

djtsswgs_n33	A/m	0	8.22E-09	-1.50E-09	5.76E-09	-1.05E-09
djtsswgd_n33	A/m	0	8.22E-09	-1.50E-09	5.76E-09	-1.05E-09
dlagidl_n33	-	0	1.68E-14	0.00E+00	1.18E-14	0.00E+00
dpagidl_n33	-	0	5.57E-21	0.00E+00	3.90096E-21	0
dtoxe_p33	m	0	-7.55E-11	7.55E-11	0	0
dxl_p33	m	0	-5.00E-09	5.00E-09	0	0
dxw_p33	m	0	9.10E-09	-9.10E-09	0	0
dcjs_p33	F/m ²	0	-5.22E-05	5.22E-05	5.2200E-05	-5.2200E-05
dcjsws_p33	F/m	0	-4.285E-12	4.285E-12	4.29E-12	-4.29E-12
dcjswgs_p33	F/m	0	-2.02E-11	2.02E-11	2.02E-11	-2.02E-11
dcgdo_p33	F/m	0	5.00E-12	-5.00E-12	0.00E+00	0.00E+00
dcgso_p33	F/m	0	5.00E-12	-5.00E-12	0.00E+00	0.00E+00
dcgdl_p33	F/m	0	1.26E-11	-1.26E-11	0.00E+00	0.00E+00
dcgsl_p33	F/m	0	1.26E-11	-1.26E-11	0	0
dcf_p33	F/m	0	1.525E-12	-1.525E-12	0	0
dvth0_p33	V	0	5.4786E-02	-5.3996E-02	-3.7797E-02	3.8350E-02
dlvth0_p33	V	0	1.1949E-09 -1.2638E-09 -8.8466E-10		8.3643E-10	
dwvsat_p33	V	0	0	0	0	0
dpvth0_p33	V	0	1.0598E-15	-1.0536E-15	-7.3752E-16	7.4186E-16
du0_p33	m ² /(Vs)	0	5.5526E-04	-7.8951E-04	-5.5265E-04	3.8868E-04
dlu0_p33	m ² /(Vs)	0	5.446E-11	-6.4478E-11	-4.51346E-11	3.8122E-11
dwu0_p33	m ² /(Vs)	0	1.05E-10	-1.08E-10	-7.54838E-11	7.3416E-11
dpu0_p33	m ² /(Vs)	0	-1.40E-17	2.13E-17	1.491E-17	-9.8E-18
dvsat_p33	m/sec	0	0.00E+00	0.00E+00	0	0
dlvsat_p33	m/sec	0	9.38E-04	-1.33E-03	-0.00093345	0.00065641
dpvsat_p33	m/sec	0	3.90E-11	-1.96E-10	-1.3727E-10	2.73E-11
dwvth0_p33	m/sec	0	3.7507E-09	-2.98195E-09	-2.08737E-09	2.62549E-09
dagidl_p33	-	0	0.00E+00	-2.79E-13	-1.95E-13	0.00E+00
dlagidl_p33	-	0	4.71E-18	-3.00E-19	-2.10E-19	3.30E-18
dwagidl_p33	-	0	2.00E-18	-5.85E-19	-4.10E-19	1.40E-18
dpagidl_p33	-	0	1.00E-24	9.00E-26	6.30E-26	7.00E-25
dtoxe_nnt33	m	0	-7.55E-11	7.55E-11	0.00E+00	0.00E+00
dxl_nnt33	m	0	-5.00E-09	5.00E-09	0.00E+00	0.00E+00
dxw_nnt33	m	0	9.10E-09	-9.10E-09	0.00E+00	0.00E+00
		_				

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	22/90	

dcjs_nnt33	F/m ²	0	-0.000006583	6.58E-06	-0.000006583	6.58E-06
dcjsws_nnt33	F/m	0	-1.07E-11	1.07E-11	-1.0666E-11	1.07E-11
dcjswgs_nnt33	F/m	0	-3.86E-12	3.86E-12	-3.86025E-12	3.86E-12
dcgdo_nnt33	F/m	0	1.50E-11	-1.50E-11	0	0
dcgdl_nnt33	F/m	0	3.00E-11	-3.00E-11	0	0
dcgso_nnt33	F/m	0	1.50E-11	-1.50E-11	0	0
dcgsl_nnt33	F/m	0	3.00E-11	-3.00E-11	0	0
dcf_nnt33	F/m	0	3.78E-12	-3.78E-12	0	0
dvth0_nnt33	V	0	-3.48E-02	3.59E-02	-2.75E-02	2.79E-02
dlvth0_nnt33	V	0	-2.63E-08	2.50E-08	-1.4742E-08	1.4105E-08
dwvth0_nnt33	V	0	-4.64E-09	4.04E-09	-3.248E-09	2.8273E-09
dpvth0_nnt33	V	0	3.50E-16	-3.75E-16	2.45E-16	-2.625E-16
du0_nnt33	m ² /(Vs)	0	8.10E-04	-8.55E-04	5.67E-04	-5.99E-04
dlu0_nnt33	m ² /(Vs)	0	1.34E-09	-1.52E-09	9.35E-10	-1.07E-09
dwu0_nnt33	m ² /(Vs)	0	-2.61E-11	2.15E-10	-3.05E-11	-5.15E-11
dvsat_nnt33	m/sec	0	0	0	0	0
dlvsat_nnt33	m/sec	0	3.92E-03	-4.16E-03	2.75E-03	-2.91E-03
dpvsat_nnt33	m/sec	0	3.00E-11	-3.00E-11	2.10E-11	-2.10E-11
dpu0_nnt33	m ² /(Vs)	0	2.70E-17	-1.75E-16	1.89E-17	-1.22E-16
dwvsat_nnt33	m/sec	0	0	0	0	0
dvoff_nnt33	V	0	0	0	0	0
dpagidl_p33	-	0	1.00E-24	9.00E-26	6.30E-26	7.00E-25
dtoxe_nnt33	m	0	-7.55E-11	7.55E-11	0.00E+00	0.00E+00
dxl_nnt33	m	0	-5.00E-09	5.00E-09	0.00E+00	0.00E+00
dxw_nnt33	m	0	9.10E-09	-9.10E-09	0.00E+00	0.00E+00
dcjs_nnt33	F/m2	0	-0.000006583	6.58E-06	-0.000006583	6.58E-06
dcjsws_nnt33	F/m	0	-1.07E-11	1.07E-11	-1.0666E-11	1.07E-11
dcjswgs_nnt33	F/m	0	-3.86E-12	3.86E-12	-3.86025E-12	3.86E-12
dcgdo_nnt33	F/m	0	1.50E-11	-1.50E-11	0	0
dcgdl_nnt33	F/m	0	3.00E-11	-3.00E-11	0	0
dcgso_nnt33	F/m	0	1.50E-11	-1.50E-11	0	0
dcgsl_nnt33	F/m	0	3.00E-11	-3.00E-11	0	0
dcf_nnt33	F/m	0	3.78E-12	-3.78E-12	0	0
dvth0_nnt33	V	0	-3.48E-02	3.59E-02	-2.75E-02	2.79E-02

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	23/90	

dlvth0_nnt33	V	0	-2.63E-08	2.50E-08	-1.4742E-08	1.4105E-08
dwvth0_nnt33	V	0	-4.64E-09	4.04E-09	-3.248E-09	2.8273E-09
dpvth0_nnt33	V	0	3.50E-16	-3.75E-16	2.45E-16	-2.625E-16
du0_nnt33	m2/(Vs)	0	8.10E-04	-8.55E-04	5.67E-04	-5.99E-04
dlu0_nnt33	m2/(Vs)	0	1.34E-09	-1.52E-09	9.35E-10	-1.07E-09
dwu0_nnt33	m2/(Vs)	0	-2.61E-11	2.15E-10	-3.05E-11	-5.15E-11
dvsat_nnt33	m/sec	0	0	0	0	0
dlvsat_nnt33	m/sec	0	3.92E-03	-4.16E-03	2.75E-03	-2.91E-03
dpvsat_nnt33	m/sec	0	3.00E-11	-3.00E-11	2.10E-11	-2.10E-11
dpu0_nnt33	m2/(Vs)	0	2.70E-17	-1.75E-16	1.89E-17	-1.22E-16
dwvsat_nnt33	m/sec	0	0	0	0	0
dvoff_nnt33	V	0	0	0	0	0

Table 7.2.4 Fixed corner parameters for 3.3V MOSFET

where: TT: Typical model

SS: Slow model FF: Fast model

SNFP: Slow N fast P model FNSP: Fast N slow P model

C. 1.8V MVT MOS

Parameters	Unit	TT	FF	SS	FNSP	SNFP
dtoxe_nmvt18	m	0	-4.60E-11	4.6E-11	0	0
dxl_nmvt18	m	0	-5.00E-09	5.00E-09	0	0
dxw_nmvt18	m	0	9.10E-09	-9.10E-09	0	0
dvth0_nmvt18	V	0	-3.92E-02	3.91E-02	-2.74E-02	2.74E-02
dlvth0_nmvt18	V	0	-2.06E-09	1.90E-09	-1.44E-09	1.33E-09
dwvth0_nmvt18	V	0	-2.85E-09	2.60E-09	-2.00E-09	1.82E-09
dpvth0_nmvt18	V	0	0	0	0	0
du0_nmvt18	$m^2/(Vs)$	0	0	-1.00E-04	0	-0.00007
dlu0_nmvt18	$m^2/(Vs)$	0	9.80E-10	-9.80E-10	6.86E-10	-6.86E-10
dwu0_nmvt18	$m^2/(Vs)$	0	0	-4.00E-11	0	-2.80E-11
dpu0_nmvt18	$m^2/(Vs)$	0	0	0	0	0
dvsat_nmvt18	m/sec	0	1.30E+03	-2.30E+03	9.10E+02	-1.61E+03
dpvsat_nmvt18	m/sec	0	0	0	0	0
dwvsat_nmvt18	m/sec	0	0	0	0	0
dlvsat_nmvt18	m/sec	0	0	0	0	0
dcjs_nmvt18	F/m ²	0	-4.68E-05	4.68E-05	-4.68E-05	4.68E-05
dcjsws_nmvt18	F/m	0	-3.02E-12	3.02E-12	-3.02E-12	3.02E-12
dcjswgs_nmvt18	F/m	0	-1.69E-11	1.69E-11	-1.69E-11	1.69E-11
dcgdo_nmvt18	F/m	0	1.00E-11	-1.00E-11	0	0
dcgsl_nmvt18	F/m	0	4.70E-12	-4.70E-12	0	0

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	24/90	

dcgso_nmvt18	F/m	0	1.00E-11	-1.00E-11	0	0
dcgdl_nmvt18	F/m	0	4.70E-12	-4.70E-12	0	0
dcf_nmvt18	F/m	0	4.31E-12	-4.31E-12	0	0
dtoxe_pmvt18	m	0	-4.60E-11	4.60E-11	0	0
dxl_pmvt18	m	0	-5.00E-09	5.00E-09	0	0
dxw_pmvt18	m	0	9.10E-09	-9.10E-09	0	0
dvth0_pmvt18	V	0	5.80E-02	-5.79E-02	-4.05E-02	4.06E-02
dlvth0_pmvt18	V	0	5.90E-09	-6.23E-09	-4.36E-09	4.13E-09
dwvth0_pmvt18	V	0	4.40E-09	-4.22E-09	-2.95E-09	3.08E-09
dpvth0_pmvt18	V	0	0	0	0	0
du0_pmvt18	$m^2/(Vs)$	0	0	-9.00E-05	-6.30E-05	0
dlu0_pmvt18	$m^2/(Vs)$	0	0	-9.00E-11	-6.30E-11	0
dwu0_pmvt18	$m^2/(Vs)$	0	0	0	0	0
dpu0_pmvt18	$m^2/(Vs)$	0	0	0	0	0
dvsat_pmvt18	m/sec	0	1.20E+04	-1.00E+04	-7.00E+03	8.40E+03
dpvsat_pmvt18	m/sec	0	0	0	0	0
dwvsat_pmvt18	m/sec	0	-3.00E-03	4.70E-03	3.29E-03	-2.10E-03
dlvsat_pmvt18	m/sec	0	0	0	0	0
dcjs_pmvt18	F/m ²	0	-3.93E-05	3.93E-05	3.93E-05	-3.93E-05
dcjsws_pmvt18	F/m	0	-2.49E-12	2.49E-12	2.49E-12	-2.49E-12
dcjswgs_pmvt18	F/m	0	-3.06E-11	3.06E-11	3.06E-11	-3.06E-11
dcgdo_pmvt18	F/m	0	4.50E-12	-4.50E-12	0	0
dcgso_pmvt18	F/m	0	4.50E-12	-4.50E-12	0	0
dcgdl_pmvt18	F/m	0	2.14E-11	-2.14E-11	0	0
dcgsl_pmvt18	F/m	0	2.14E-11	-2.14E-11	0	0
dcf_pmvt18	F/m	0	4.25E-12	-4.25E-12	0	0

Table 7.2.5 Fixed corner parameters for 1.8V MVT MOSFET

where: TT: Typical model

SS: Slow model FF: Fast model

SNFP: Slow N fast P model FNSP: Fast N slow P model

D. 3.3V MVT MOS

Parameters	Unit	TT	FF	SS	FNSP	SNFP
dtoxe_nmvt33	m	0	-7.55E-11	7.55E-11	0	0
dxl_nmvt33	m	0	-5.00E-09	5.00E-09	0	0
dxw_nmvt33	m	0	9.10E-09	-9.10E-09	0	0
dcjs_nmvt33	V	0	-4.32E-05	4.32E-05	-4.32E-05	4.32E-05
dcjsws_nmvt33	V	0	-5.35E-12	5.35E-12	-5.35E-12	5.35E-12
dcjswgs_nmvt33	V	0	-1.33E-11	1.33E-11	-1.33E-11	1.33E-11

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	25/90	

dcgdo_nmvt33	V	0	5.00E-12	-5.00E-12	0	0
dcgdl_nmvt33	m ² /(Vs)	0	1.85E-11	-1.85E-11	0	0
dcgso_nmvt33	m ² /(Vs)	0	5.00E-12	-5.00E-12	0	0
dcgsl_nmvt33	m ² /(Vs)	0	1.85E-11	-1.85E-11	0	0
dcf_nmvt33	$m^2/(Vs)$	0	3.78E-12	-3.78E-12	0	0
dvth0_nmvt33	m/sec	0	-3.72E-02	3.75E-02	-2.60E-02	2.63E-02
dlvth0_nmvt33	m/sec	0	-1.10E-08	1.05E-08	-7.70E-09	7.35E-09
dwvth0_nmvt33	m/sec	0	-5.21E-09	4.80E-09	-3.65E-09	3.36E-09
dpvth0_nmvt33	m/sec	0	1.90E-16	1.00E-17	1.33E-16	7.00E-18
du0_nmvt33	F/m ²	0	3.13E-04	-3.64E-04	2.19E-04	-2.55E-04
dlu0_nmvt33	F/m	0	1.40E-09	-1.50E-09	9.80E-10	-1.05E-09
dwu0_nmvt33	F/m	0	-1.79E-10	9.00E-11	-1.25E-10	6.30E-11
dvsat_nmvt33	F/m	0	0.00E+00	-9.54E+02	0.00E+00	-6.68E+02
dlvsat_nmvt33	F/m	0	2.00E-03	-2.00E-03	1.40E-03	-1.40E-03
dpvsat_nmvt33	F/m	0	4.05E-11	-6.00E-10	2.84E-11	-4.20E-10
dpu0_nmvt33	F/m	0	1.70E-16	-2.00E-16	1.19E-16	-1.40E-16
dwvsat_nmvt33	F/m	0	0	0	0	0
dvoff_nmvt33	V	0	0	0	0	0

Table 7.2.6 Fixed corner parameters for 3.3V MVT MOSFET

where: TT: Typical model

SS: Slow model FF: Fast model

SNFP: Slow N fast P model FNSP: Fast N slow P model

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	26/90	

7.2.5 MOSFET Model Simulation compare with PCM Spec Table

Simulation Condition:

Vtlin: Vds=0.1V, ID=0.1uA*W/L Vtsat: Vds=VDD, ID=0.1uA*W/L

Idsat: VDS=VGS=VDD

Ioff: VDS=1.1*VDD, VG=VB=VS=0

gmindc=1e-14

Idsat and Ioff normalize to width.

A. Comparison on NMOS & PMOS PCM spec with typical case simulation results 1.8V thin oxide MOS (and in DNW)

	Items		Т	T	F	F	S	SS	FN	ISP	SN	IFP
	Types	Unit	PCM spec.	Simulated Result								
	VTH_N(10/0.18)	V	0.42	0.42	0.36	0.36	0.48	0.48		0.37		0.47
1.8V MOS	IDSAT_N(10/0.18)	mA/um	0.600	0.600	0.690	0.692	0.510	0.509		0.663		0.532
1.87 MOS	VTH_P(10/0.18)	V	-0.485	-0.485	-0.395	-0.4	-0.575	-0.570		-0.551		-0.419
	IDSAT_P(10/0.18)	mA/um	-0.260	-0.260	-0.300	-0.305	-0.220	-0.215		-0.236		-0.283
	VTH_N(10/0.18)	V	0.42	0.42	0.36	0.36	0.48	0.48		0.37		0.47
1.8V in	IDSAT_N(10/0.18)	mA/um	0.600	0.600	0.690	0.690	0.510	0.510		0.663		0.532
DNW MOS	VTH_P(10/0.18)	V	-0.485	-0.484	-0.395	-0.4	-0.575	-0.570		-0.552		-0.419
	IDSAT_P(10/0.18)	mA/um	-0.260	-0.260	-0.300	-0.305	-0.220	-0.215		-0.231		-0.291

Table 7.2.7 Comparison of PCM spec for 1.8V MOSFET

3.3V thick oxide MOS (and in DNW)

	Items	Unit		TT]	FF		SS	F	FNSP	5	SNFP
	Types		PCM spec.	Simulated Result								
	VTH_N(10/0.35)	V	0.720	0.720	0.620	0.621	0.820	0.820	-	0.654	-	0.788
	IDSAT_N(10/0.35)	uA/um	600.0	600.5	680.0	680.4	520.0	520.0	-	647.4	-	548.4
3.3V	IOFF_N(10/0.35)	pA/um	0.30	0.30	3.00	3.14	-	0.02	-	2.07	-	0.10
MOS	VTH_P(10/0.3)	V	-0.650	-0.650	-0.580	-0.580	-0.720	-0.721	-	-0.696	-	-0.605
	IDSAT_P(10/0.3)	uA/um	-300.0	-300.9	-345.0	-345.2	-255.0	-255.2	-	-273.6	-	-324.8
	IOFF_P(10/0.3)	pA/um	-0.90	0.90	-9.00	-9.62	-	-0.22	-	-0.42	-	-6.26
3.3V	VTH_N(10/1.2)	V	-0.149	-0.149	-0.201	-0.202	-0.097	-0.095	ı	-0.187	-	-0.110
Native MOS	IDSAT_N(10/1.2)	mA/um	447.5	447.5	489	489.3	405	405.3	-	474	-	419.7

Table 7.2.8 Comparison of PCM spec for 3.3V MOSFET

1.8V&3.3V MVT NMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	27/90	

	Items	Unit		ТТ	1	FF		ss	F	NSP	5	SNFP
	Types		PCM spec.	Simulated Result								
	VTH_N(10/0.3)	V	0.275	0.275	0.225	0.225	0.325	0.326	-	0.241	-	0.311
1.8V MVT	IDSAT_N(10/0.3)	uA/um	520.0	520.4	580.0	580.1	460.0	460.2	1	554.2	-	484.2
MOS	VTH_P(10/0.25)	V	-0.240	-0.240	-0.150	-0.151	-0.330	-0.331	ı	-0.304	-	-0.178
	IDSAT_P(10/0.25)	uA/um	-270.0	-270.2	-310.0	-309.6	-230.0	-230.8	ı	-245.7	-	-292.5
3.3V	VTH_N(10/0.6)	V	0.450	0.451	0.390	0.391	0.510	0.510	ı	0.409	-	0.492
MVT MOS	IDSAT_N(10/0.6)	uA/um	525.0	524.7	570.0	570.7	480.0	477.9	-	552.4	-	495.2

Table 7.2.9 Comparison of PCM spec for MVT MOSFET

7.2.6 Corner-Case Simulation Results of Inverter, NAND and NOR Ring-Oscillator

In this section, model simulation results with different fixed corners for Inverter, NAND and NOR ring oscillator are shown. For 1.8V device, the W/L of NMOS and PMOS are 4/0.18 and 6/0.18 respectively. For 3.3V devices, the W/L of NMOS and PMOS are 4/0.35 and 6/0.3. For 1.8V MVT devices, the W/L of NMOS and PMOS are 4/0.3 and 6/0.25.

A. 1.8V R.O.

Temp	F.O.	TT	FF	SS	FNSP	SNFP
25C	1	24.20	20.63	29.13	24.40	24.58
125C	1	27.39	23.45	32.93	27.32	28.07
-40C	1	21.80	18.61	26.17	22.08	22.01
25C	3	46.34	39.94	55.23	46.58	47.20
125C	3	52.25	45.05	62.31	51.99	53.68
-40C	3	41.86	36.07	50.10	42.44	42.40

Table 7.2.10 1.8V Inverter Ring-Oscillator: (Vdd=1.8V, unit=ps/gate)

Temp	F.O.	TT	FF	SS	FNSP	SNFP
25C	1	40.92	34.85	49.15	40.38	42.39
125C	1	48.14	41.22	57.98	47.42	49.97
-40C	1	35.90	30.71	43.01	35.52	37.17
25C	3	87.05	74.95	103.62	85.48	90.78
125C	3	102.03	87.84	121.58	99.77	106.70
-40C	3	76.71	66.12	91.22	75.60	79.82

Table 7.2.11 1.8V NAND Ring-Oscillator: (Vdd=1.8V, unit=ps/gate)

Temp	F.O.	TT	FF	SS	FNSP	SNFP
25C	1	50.05	42.66	60.56	51.15	50.14

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	28/90	

125C	1	55.80	47.77	67.20	56.28	56.36
-40C	1	45.25	38.41	54.92	46.57	44.92
25C	3	113.56	97.41	136.30	117.38	111.93
125C	3	125.21	107.63	149.33	127.55	125.32
-40C	3	103.26	88.37	124.70	107.73	101.26

Table 7.2.12 1.8V NOR Ring-Oscillator: (Vdd=1.8V, unit=ps/gate)

B. 1.8V MVT R.O.

Temp	F.O.	TT	FF	SS	FNSP	SNFP
25C	1	32.43	28.81	37.27	32.99	32.36
125C	1	39.86	35.39	45.83	40.30	39.95
-40C	1	28.29	25.05	32.40	28.84	28.00
25C	3	66.78	59.65	76.26	67.79	66.66
125C	3	81.39	72.78	92.97	82.17	81.69
-40C	3	58.46	52.15	66.71	59.66	57.98

Table 7.2.13 1.8V MVT Inverter Ring-Oscillator: (Vdd=1.8V, unit=ps/gate)

Temp	F.O.	TT	FF	SS	FNSP	SNFP
25C	1	56.19	49.26	65.06	56.55	56.43
125C	1	70.43	61.74	81.63	70.81	70.79
-40C	1	47.48	41.90	54.84	48.21	47.59
25C	3	126.62	112.24	145.25	126.63	128.12
125C	3	158.17	140.16	181.66	157.88	160.40
-40C	3	107.67	95.71	123.17	107.98	108.60

Table 7.2.14 1.8V MVT NAND Ring-Oscillator: (Vdd=1.8V, unit=ps/gate)

Temp	F.O.	TT	FF	SS	FNSP	SNFP
25C	1	64.87	57.14	75.45	66.35	64.61
125C	1	80.37	70.47	92.71	81.34	79.99
-40C	1	55.93	49.18	64.85	57.36	55.25
25C	3	150.66	133.16	173.39	155.12	148.36
125C	3	184.71	163.63	212.24	189.37	182.81
-40C	3	130.06	115.14	150.16	134.83	127.57

Table 7.2.15 1.8V MVT NOR Ring-Oscillator: (Vdd=1.8V, unit=ps/gate)

C. 3.3V R.O.

Temp	F.O.	TT	FF	SS	FNSP	SNFP
25C	1	40.02	35.09	46.85	40.55	40.30

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.: TD-MM18-	SP-2004	Doc. Title: 0.18um Mixed Signal Enhanced 1.8V/3.3V SPICE Model			Doc.Rev:		Page No.: 29/90	
	125C	1	46.67	40.65	54.88	47.00	47.27	
	-40C	1	35.04	30.88	40.77	35.55	35.25	1
	25C	3	83.73	73.82	97.13	84.86	84.28	1
	125C	3	96.85	85.00	113.19	97.65	98.16	
	-40C	3	73.64	65.42	84.77	74.79	74.09]

Table 7.2.16 3.3V Inverter Ring-Oscillator: (Vdd=3.3V, unit=ps/gate)

Temp	F.O.	TT	SS	FNSP	SNFP	FF
25C	1	70.21	61.49	81.87	69.89	71.69
125C	1	84.03	73.11	98.74	83.38	86.21
-40C	1	60.72	53.47	70.17	60.66	61.74
25C	3	157.57	139.00	182.27	156.00	162.09
125C	3	187.92	164.57	219.07	185.39	194.26
-40C	3	136.40	121.26	156.64	135.44	139.98

Table 7.2.17 3.3V NAND Ring-Oscillator: (Vdd=3.3V, unit=ps/gate)

Temp	F.O.	TT	SS	FNSP	SNFP	FF
25C	1	83.09	72.18	98.35	85.28	82.58
125C	1	96.92	83.59	114.76	99.11	96.64
-40C	1	72.04	63.00	84.85	74.20	71.48
25C	3	194.27	169.44	228.26	201.02	191.28
125C	3	224.61	195.39	264.65	231.50	222.34
-40C	3	169.23	148.26	198.04	175.21	166.27

Table 7.2.18 3.3V NOR Ring-Oscillator: (Vdd=3.3V, unit=ps/gate)

7.2.7 1/f Noise Model

The noise sources in MOSFETs mainly covers 1/f noise (also known as flicker noise), channel thermal noise, gate noise, thermal noise due to physical resistances, and shot noise due to the gate dielectric tunneling current. The most occurred and influencing noise is the 1/f noise, thus we would address and model it in detail.

The flicker noise is a low-frequency (<100KHz) noise. Its physical mechanism is trapping / detrapping - related charge fluctuation in oxide traps, which results in fluctuations of both mobile carrier numbers and mobilities in the channel. The unified flicker noise model available from SMIC captures this physical process [3]. The wafer information for the flicker noise simulation is listed in Table 7.2.19.

Lot number	Wafer number
DL2291	1.8V MOS: #13
DL1737	1.8V MVT MOS: #5

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

3.3V MVT MOS: #5

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	30/90	
	3.3V MOS: #	‡ 5			

Table 7.2.19 Wafer Information for 1/f Noise

BSIM4 offers two kinds of 1/f noise models: a simple one and a unified one. The simple flicker noise model is invoked when the model selector fnoiMod=0, which model is convenient for hand calculations. The unified physical flicker noise model, the default model, is invoked when fnoiMod = 1. SMIC adopts this model. The model incorporates both the fluctuation in the number of inversion layer carriers (number fluctuation) and the fluctuation in the Coulombic scattering mobility (mobility fluctuation). We investigate that they are correlated as both of them are caused by the fluctuation in the number of trapped charge in the SiO2 near the silicon/SiO2 interface.

To simulate the real situation, the noise density in the inversion region is expressed as:

$$\begin{split} S_{\text{id},inv}(f) &= \frac{k_B T q^2 \mu_{eff} I_{ds}}{C_{oxe} (L_{eff} - 2 \cdot LINTNOI)^2 A_{bulk} f^{ef} \cdot 10^{10}} \left(NOIA \log \left(\frac{N_0 + N^*}{N_l + N^*} \right) + NOIB (N_0 - N_l) + \frac{NOIC}{2} (N_0^2 - N_l^2) \right) \\ &+ \frac{k_B T I_{ds}^2 \Delta L_{clm}}{W_{eff} \cdot (L_{eff} - 2 \cdot LINTNOI)^2 f^{ef} \cdot 10^{10}} \cdot \frac{NOIA + NOIB \cdot N_l + NOIC \cdot N_l^2}{(N_l + N^*)^2} \end{split}$$

Where $\mu_{\rm eff}$ is the effective mobility under the given bias condition, $\mu_{\rm eff}$ and $\mu_{\rm eff}$ are the effective channel length and width, respectively. The parameter μ_0 is the charge density at the source side given by

$$N_0 = C_{\text{oxe}} \cdot V_{gsteff} / q$$

The parameter N_t is the charge density at the drain end given by

$$C_{\text{oxe}} \cdot V_{\text{gsteff}} \cdot \left(1 - \frac{A_{\text{bulk}} V_{\text{dseff}}}{V_{\text{gsteff}} + 2V_{t}}\right) / q$$

 N^* is given by

$$N^* = k_B T \cdot (C_{oxe} + C_d + CIT)/q^2$$

Where CIT (Interface Trap Capacitance) is a model parameter from DCIV and $C_{\rm d}$ is the depletion capacitance.

 $\Delta L_{\it clm}$ is the channel length reduction due to channel length modulation and given by

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	31/90	

$$\Delta L_{\text{clm}} = Litl \cdot \log \left(\frac{\frac{V_{ds} - V_{dseff}}{Litl} + EM}{E_{sat}} \right)$$

$$E_{sat} = \frac{2VSAT}{\mu_{\text{eff}}}$$

In the sub-threshold region, the noise density is written as

$$S_{id,subV_i}(f) = \frac{NOIA \cdot k_B T \cdot I_{ds}^2}{W_{eff} L_{eff} f^{ef} N^{*2} \cdot 10^{10}}$$

The total flicker noise density is

$$S_{id}(f) = \frac{S_{id,inv}(f) \times S_{id,subV_t}(f)}{S_{id,subV_t}(f) + S_{id,inv}(f)}.$$

The flicker noise measurement condition is shown as follows. We cover device operating region from weak inversion to strong inversion. Please refer to Table 7.2.20 for more information.

	NMOS18	(NI	MOS18	in DNV	V)		
Vgs (V)	0.64	0.84 1.5				1.8	
Vds (V)	0.6		0	.9		1.8	
	PMOS18(PMOS18 in DNW)						
Vgs (V)	-0.68	-(0.88	-1.5	5	-1.8	
Vds (V)	-0.6		-().9		-1.8	
		NN	1OS33				
Vgs (V)	0.85		1	1.5	i	3.3	
Vds (V)	1.1		2	.2		3.3	
PMOS33							
Vgs (V)	-0.85		-1	-1.3	5	-3.3	
Vds (V)	-1.1		-2	2.2		-3.3	
	Na	ative	NMOS	S 18			
Vgs (V)	0.46		1	.5		1.8	
Vds (V)	0.6		0	.9		1.8	
	Native NMOS33						
Vgs (V)	-0.1		0.5	1		3.3	
Vds (V)	1.1		2	.2		3.3	
	N	MOS	S MVT	18			

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	32/90	

Vgs (V)	0.4	0.6	0.6 0.9			1.8		
Vds (V)	0.6		1.2		1.2		1.8	
	PMOS MVT 18							
Vgs (V)	-0.4	-0.	-0.6 -0.9			-1.8		
Vds (V)	-0.6	-		-1.2		-1.8		
	NMOS MVT 33							
Vgs (V)	0.6	1	1.5			3.3		
Vds (V)	1.1			2.2		2.2 3.3		3.3

Table 7.2.20 Measurement Conditions of 1.8V/3.3V MOS

7.2.8 LOD Stress Effect Model

Feature size aggressively scaling of MOSFETs makes LOD has been widely studied for its usage in active area isolation process in advanced technologies. In sub-100nm technology node, it's more challenging for LOD process, as with the scaling down, the MOSFET characteristics would become more sensitive to its effect. LOD stress effect influences numerous MOSFETs' characteristics, and SMIC's model for it primarily considers the stress influence on mobility, velocity saturation, threshold voltage, body effect and DIBL effect. After decades of experiments, the experts find that different mechanisms could have influences on the device characteristics: one is mobility-related that is induced by the band structure modification; the other is Vth-related that is resulted from doping profile variation. The modeling method of SMIC is derived based on these phenomenons. The lot and wafer information are shown in Table 7.2.40.

Lot number	Wafer number
DL2063	1.8V MOS: #5
DL2003	3.3V MOS: #5

Table 7.2.21 Wafer Information for LOD Stress Effect Model

To simulate the LOD, 1.8V N/PMOS, 1.8V MVT N/PMOS, 1.8V Native NMOS, IO 3.3V N/PMOS, 3.3V Native NMOS, 3.3V MVT NMOS are measured and modeled, and their model parameters are shown in Table 7.2.22:

Parameters	n18_ckt	p18_ckt	nnt18_ckt	n33_ckt	p33_ckt	nmvt18_ckt	pmvt18_ckt	nmvt33_ckt	nnt33_ckt
saref	4.48E-06	4.48E-06	4.54E-06	5.33E-06	5.33E-06	4.54E-06	4.54E-06	4.54E-06	4.54E-06
sbref	4.48E-06	4.48E-06	4.54E-06	5.33E-06	5.33E-06	4.54E-06	4.54E-06	4.54E-06	4.54E-06
wlod	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ku0	-4.50E-08	8.00E-08	-2.70E-08	-2.00E-08	8.10E-08	-4.80E-08	1.08E-07	-2.40E-08	-6.00E-08
kvsat	1.00E+00	0.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
tku0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
lku0	7.00E-07	1.50E-07	1.00E-09	5.00E-07	2.80E-07	5.00E-07	7.50E-07	5.00E-07	5.00E-07
wku0	5.00E-07	0.00E+00	1.00E-09	1.00E-06	-7.00E-08	1.00E-06	0.00E+00	1.00E-06	1.00E-06
pku0	7.00E-13	2.00E-14	0.00E+00	0.00E+00	-1.20E-14	0.00E+00	-1.93E-13	0.00E+00	0.00E+00

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

D o	c. No.:		Doc. Title	e: 0.18um	Mixed Si	gnal Enha	nced 1	Doc.Rev:	Tech Dev	Page	No.:
ΓD)-MM18-S	SP-2004		1.8V/3.3V SPICE Model 2				Rev: 1.11	33/90		
	llodku0	1.00E+00	1.00E+00	1.30E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00)
	wlodku0	1.00E+00	1.00E+00	1.50E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00)
	kvth0	3.50E-09	-1.00E-10	8.00E-08	6.00E-09	1.00E-09	5.00E-09	-1.45E-08	7.00E-09	3.00E-09)
	lkvth0	-6.00E-08	-1.00E-07	2.80E-09	2.00E-07	2.90E-07	2.00E-07	7 4.00E-07	2.00E-07	2.00E-07	7
	wkvth0	1.00E-07	-2.00E-07	1.00E-09	-5.00E-08	5.00E-06	-5.00E-08	-1.02E-07	-5.00E-08	-5.00E-08	3
	pkvth0	2.00E-14	2.00E-14	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-1.00E-14	0.00E+00	0.00E+00)
	llodvth	1.00E+00	1.00E+00	1.50E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.10E+00	1.00E+00)
	wlodvth	1.00E+00	1.00E+00	1.55E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00)
	stk2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00)
	lodk2	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00)
	steta0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00)
	lodeta0	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00)

Table 7.2.22 Model Parameters for LOD

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	34/90	

7.3 Bipolar Gummel-Poon Model

7.3.1 Wafer Information

The transistors for Bipolar Junction Transistor (BJT) SPICE modeling include vertical 1.8V/3.3V NPN/PNP BJT with fixed emitter area of 1.6*1.6, 2*2, 5*5 and 10*10um^2. The silicon data are extracted from golden wafer, which is 12 inches with dies between 60 and 70. The data is provided by the Wafer Acceptance Test (WAT) team: determining the golden die whose median value (Beta, V_{BE} , I_C , I_B and I_S) almost approximates that of mapping data and then sweeping IV and CV curves to obtain the measured data. Their lot and wafer information are listed in the Table 7.3.1:

Lot number	Wafer number
DL2271	#1

Table 7.3.1 Wafer Information of BJT

BJT is a kind of vertical triode and also a parasitic device, consisting of Collector (C), Base (B) and Emitter (E), as shown in Fig7.3.1. BJT is not scalable in model, and hence, this section investigates BJT (1.05V and 1.8V) with different emitter areas, each area of every type of BJT being simulated by one unique model.

Fig 7.3.1 The cross section of BJT (NPN)

7.3.2 Capability of Model

The BJT modeling in this technology node covers three fixed corner models: BJT_TT, BJT_FF and BJT_SS, which would be discussed in detail in the flowing section.

The measurement and modeling method used for BJT is basically the same with the method applied in the MOSFETs, but as BJT is a kind of device that is not scalable (fixed geometry) in model, three single The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	35/90	

models are used in this technology node to simulate every type of BJTs.

According to the industry standard of general devices, for measurement and modeling of BJTs, the ambient temperature ranges from -40°C to 125°C.

HSPICE bipolar Gummel-Poon Level-1 model is used to simulate BJT models. The Gummel-Poon model is the most widely used bipolar transistor model since its emergence in the early seventies. The model is based on a new, general charge-control relation connecting collector current, junction voltages and base charge.

For bipolar transistors, this model has proved very successful in dependent current generators replaced by time-dependent analysis of non-critical circuits; i.e., circuits in which the performance is dominated by passive feedback. Accurate modeling by this technique requires large numbers of parameters and is a more accurate curve-fitting approach than a physics-based representation of the transistor [12].

PNP BJT parameters are extracted from a vertical P+/Nwell/Psub test structure, and NPN BJT parameters are extracted from a vertical N+/PWELL/DNWELL test structure, as shown below in Fig. 7.3.2 and Fig. 7.3.3.

As we all know that BJT model is usually not scalable, we provide 1.8V models: pnp18a100, pnp18a25, pnp18a4, npn18a100, npn18a25, npn18a4, and 3.3V models: pnp33a100, pnp33a25, pnp33a4, npn33a100, npn33a25ll, npn33a4, with each extracted from different emitter areas. The structure and dimension (physical size) are shown below.

Fig 7.3.2 The cross section of PNP BJT

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	36/90	

Fig 7.3.3 The cross section of NPN BJT

The dimensions used in BJT's model equations are given in Table 7.3.2.

M. LIN	X 7.1.1	Dimension [um]								
Model Name	Vdd	Le	We	Не/Нс	Lb	Wb	Hb	Dbe	Sbe	Sbc
pnp18a100	1.8V	10	10	0.1	12	12	0.085	0.6	0.2	0.1
pnp18a25	1.8V	5	5	0.1	7	7	0.085	0.6	0.2	0.1
pnp18a4	1.8V	2	2	0.1	4	4	0.085	0.6	0.2	0.1
pnp33a100	3.3V	10	10	0.15	12	12	0.2	0.6	0.2	0.1
pnp33a25	3.3V	5	5	0.15	7	7	0.2	0.6	0.2	0.1
pnp33a4	3.3V	2	2	0.15	4	4	0.2	0.6	0.2	0.1
npn18a100	1.8V	10	10	0.1	12	12	0.085	0.6	0.2	0.1
npn18a25	1.8V	5	5	0.1	7	7	0.085	0.6	0.2	0.1
npn18a4	1.8V	2	2	0.1	4	4	0.085	0.6	0.2	0.1
npn33a100	3.3V	10	10	0.15	12	12	0.2	0.6	0.2	0.1
npn33a25	3.3V	5	5	0.15	7	7	0.2	0.6	0.2	0.1
npn33a4	3.3V	2	2	0.15	4	4	0.2	0.6	0.2	0.1

Table 7.3.2 Dimensions of BJT Model

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	37/90	

Where

Le	Length of emitter
We	Width of emitter
Не/Нс	Junction depth ratio of emitter and collector
Lb	Length of base
Wb	Width of base
Hb	Junction depth of base
Dbe	Distance between base-AA to emitter-AA
Sbe	Space of base edge to base-AA
Sbc	Space of base edge to collector-AA

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	38/90	

7.3.3 Fixed Corner Model of BJT

Variations of BJT process parameters (e.g. doping fluctuation, etching rate, photolithography misalignment) could result in process variations. The process variations then lead to device parameters variations, thus device fixed corner models are applied to simulate the best/worst-case circuit performance based on process variations. The typical key bipolar parameters are varied for bipolar fixed corner models, and some of the parameters share the same physical background such that one can't use arbitrary high/low combinations for fixed corner modeling. The provided fixed corner models by SMIC are primarily for predicting most important corner cases: BJT_TT, BJT_FF and BJT_SS, whose definitions are listed in Table 7.3.3.

Fixed corner	Definition
model	
BJT_TT	Typical model, for Nominal process modeling
BJT_FF	Fast corner. Performance corner for best cases of the static BJT circuit, including both
	global (e.g. chip to chip) and local (e.g. mismatch) variations.
BJT_SS	Slow corner. Performance corner for worst cases of the static BJT circuit, including both
	global (e.g. wafer to wafer) and local (e.g. mismatch) variations.

Table 7.3.3 Fixed corner model Definition of BJT

Table 7.3.4-Table 7.3.7 show the values of the data for compensating the corner cases of every device.

Parameters	UNIT	BJT_TT	BJT_FF	BJT_SS
dbf_pnp18a100	-	0	0.4118	-0.4118
dis_pnp18a100	A	0	3.74E-18	-3.74E-18
dnf_pnp18a100	-	0	-5.02E-03	5.02E-03
dbf_pnp18a25	-	0	0.4072	-0.4072
dis_pnp18a25	A	0	9.44E-19	-9.44E-19
dnf_pnp18a25	-	0	-5.00E-03	5.00E-03
dbf_pnp18a4	-	0	0.4095	-0.4095
dis_pnp18a4	A	0	1.86E-19	-1.86E-19
dnf_pnp18a4	-	0	-5.00E-03	5.00E-03
dcje_pnp18a100	F	0	-5.65E-15	5.65E-15
dcje_pnp18a25	-	0	-1.41E-15	1.41E-15
dcje_pnp18a4	-	0	-2.26E-16	2.26E-16
dcjc_pnp18a100	F	0	-1.68E-15	1.68E-15

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	39/90	

dcjc_pnp18a25	-	0	-7.93E-16	7.93E-16
dcjc_pnp18a4	-	0	-4.19E-16	4.19E-16
drb_pnp18a100	ohm	0	-12.08	12.08
drb_pnp18a25	ohm	0	-14.08	14.08
drb_pnp18a4	ohm	0	-21.49	21.49
dre_pnp18a100	ohm	0	-0.2233	0.2233
dre_pnp18a25	ohm	0	-0.414	0.414
dre_pnp18a4	ohm	0	-0.362	0.362
drc_pnp18a100	ohm	0	-3.422	3.422
drc_pnp18a25	ohm	0	-3.422	3.422
drc_pnp18a4	ohm	0	-2.423	2.423
drbm_pnp18a100	ohm	0	-0.4	0.4
drbm_pnp18a25	ohm	0	-0.4	0.4
drbm_pnp18a4	ohm	0	-0.4	0.4
dikf_pnp18a100	A	0	4.00E-04	-4.00E-04
dikf_pnp18a25	A	0	1.80E-04	-1.80E-04
dikf_pnp18a4	A	0	5.00E-05	-5.00E-05

Table 7.3.4 Corner model parameters of 1.8V PNP-BJT

Parameters	UNIT	BJT_TT	BJT_FF	BJT_SS
dnf_pnp33a100	-	0	-5.03E-03	5.03E-03
dnf_pnp33a25	-	0	-4.98E-03	4.98E-03
dnf_pnp33a4	-	0	-5.00E-03	5.00E-03
dcje_pnp33a100	F	0	-5.20E-15	5.20E-15
dcje_pnp33a25	F	0	-1.31E-15	1.31E-15
dcje_pnp33a4	F	0	-2.09E-16	2.09E-16
dcjc_pnp33a100	F	0	-1.68E-15	1.68E-15
dcjc_pnp33a25	F	0	-7.93E-16	7.93E-16
dcjc_pnp33a4	F	0	-4.19E-16	4.19E-16
dbf_pnp33a100	-	0	0.4335	-0.4335
dbf_pnp33a25	-	0	0.4277	-0.4277
dbf_pnp33a4	-	0	0.4276	-0.4276
dis_pnp33a100	A	0	4.16E-18	-4.16E-18
dis_pnp33a25	A	0	9.84E-19	-9.84E-19
dis_pnp33a4	A	0	1.83E-19	-1.83E-19
drb_pnp33a100	ohm	0	-10.73	10.73
drb_pnp33a25	ohm	0	-14.08	14.08
drb_pnp33a4	ohm	0	-21.49	21.49
dre_pnp33a100	ohm	0	-0.4353	0.4353

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	40/90	

dre_pnp33a25	ohm	0	-0.69	0.69
dre_pnp33a4	ohm	0	-0.362	0.362
drc_pnp33a100	ohm	0	-3.86	3.86
drc_pnp33a25	ohm	0	-3.422	3.422
drc_pnp33a4	ohm	0	-2.423	2.423
drbm_pnp33a100	ohm	0	-0.4	0.4
drbm_pnp33a25	ohm	0	-0.4	0.4
drbm_pnp33a4	ohm	0	-0.4	0.4
dikf_pnp33a100	A	0	4.00E-04	-4.00E-04
dikf_pnp33a25	A	0	2.00E-04	-2.00E-04
dikf_pnp33a4	A	0	5.00E-05	-5.00E-05

Table 7.3.5 Corner model parameters of 3.3V PNP-BJT

Parameters	UNIT	BJT_TT	BJT_FF	BJT_SS
dbf_npn18a100	-	0	2.977	-2.977
dis_npn18a100	A	0	1.00E-17	-1.00E-17
dnf_npn18a100	-	0	-5.03E-03	5.03E-03
dbf_npn18a25	-	0	3.126	-3.126
dis_npn18a25	A	0	2.95E-18	-2.95E-18
dnf_npn18a25	-	0	-5.03E-03	5.03E-03
dbf_npn18a4	-	0	3.315	-3.315
dis_npn18a4	A	0	5.08E-19	-5.08E-19
dnf_npn18a4	-	0	-5.01E-03	5.01E-03
dcje_npn18a100	F	0	-4.94E-15	4.94E-15
dcje_npn18a25	-	0	-1.24E-15	1.24E-15
dcje_npn18a4	-	0	-1.98E-16	1.98E-16
dcjc_npn18a100	F	0	-6.40E-15	6.40E-15
dcjc_npn18a25	-	0	-3.02E-15	3.02E-15
dcjc_npn18a4	-	0	-1.60E-15	1.60E-15
drb_npn18a100	ohm	0	-0.09356	0.09356
drb_npn18a25	ohm	0	-10.37	10.37
drb_npn18a4	ohm	0	-2.806	2.806
dre_npn18a100	ohm	0	-1.685	1.685
dre_npn18a25	ohm	0	-2.954	2.954
dre_npn18a4	ohm	0	-7.29	7.29
drc_npn18a100	ohm	0	-1.918	1.918
drc_npn18a25	ohm	0	-1.584	1.584
drc_npn18a4	ohm	0	-5.3	5.3
drbm_npn18a100	ohm	0	-0.02	0.02
drbm_npn18a25	ohm	0	-0.02	0.02

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal Enhanced	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	1.8V/3.3V SPICE Model	2	Rev: 1.11	41/90	

drbm_npn18a4	ohm	0	-0.02	0.02
dikf_npn18a100	A	0	9.00E-03	-9.00E-03
dikf_npn18a25	A	0	2.00E-03	-2.00E-03
dikf_npn18a4	A	0	2.00E-04	-2.00E-04

Table 7.3.6 Corner model parameters of 1.8V NPN-BJT

Parameters	UNIT	BJT_TT	BJT FF	BJT SS
dnf_npn33a100	UNII	0	-5.04E-03	5.04E-03
dnf_npn33a25	<u> </u>	0	-5.00E-03	5.00E-03
dnf_npn33a4	-	0	-5.00E-03	5.00E-03
dcje_npn33a100	F	0	-4.31E-15	4.31E-15
<u> </u>	F	0	-4.51E-15	1.08E-15
dcje_npn33a25	F	0	-1.08E-13	1.08E-13 1.72E-16
dcje_npn33a4				
dcjc_npn33a100	F	0	-6.38E-15	6.38E-15
dcjc_npn33a25	F	0	-3.02E-15	3.02E-15
dcjc_npn33a4	F	0	-1.60E-15	1.60E-15
dbf_npn33a100	-	0	3.831	-3.831
dbf_npn33a25	-	0	4.11	-4.11
dbf_npn33a4	-	0	4.389	-4.389
dis_npn33a100	A	0	1.36E-17	-1.36E-17
dis_npn33a25	A	0	3.03E-18	-3.03E-18
dis_npn33a4	A	0	6.19E-19	-6.19E-19
drb_npn33a100	ohm	0	-12.97	12.97
drb_npn33a25	ohm	0	-10.89	10.89
drb_npn33a4	ohm	0	-24.36	24.36
dre_npn33a100	ohm	0	-0.96	0.96
dre_npn33a25	ohm	0	-2.496	2.496
dre_npn33a4	ohm	0	-6.49	6.49
drc_npn33a100	ohm	0	-0.214	0.214
drc_npn33a25	ohm	0	-0.1616	0.1616
drc_npn33a4	ohm	0	-0.2192	0.2192
drbm_npn33a100	ohm	0	-0.02	0.02
drbm_npn33a25	ohm	0	-0.02	0.02
drbm_npn33a4	ohm	0	-0.02	0.02
dikf_npn33a100	A	0	0.03	-0.03
dikf_npn33a25	A	0	1.10E-03	-1.10E-03
dikf_npn33a4	A	0	1.40E-04	-1.40E-04

Table 7.3.7 Corner model parameters of 1.8V NPN-BJT

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	42/90	
	SPICE Model				

7.4 Diode Model

7.4.1 Wafer Information

The junction diode SPICE modeling test structures include 1.8V/3.3V N+/Pwell, P+/Nwell; 1.8V MVT N+/Pwell and P+/Nwell; 1.8V Nwell/Psub, Buried Pwell/Deep Nwell, and DNwell/Psub; and 3.3V MVT N+/Pwell, parasitic Nwell/Psub, Buried Pwell/DNwell, and DNwell/Psub, 1.8V N+/PSUB, 3.3V N+/PSUB. Every type of diodes employs area type structure and finger type structure, as shown in Fig 7.4.1 and Fig 7.4.2.

Fig 7.4.1 Area type structure of diode

Fig 7.4.2 Finger type structure of diode

The silicon data of the junction diode are extracted from golden wafer, and the wafer is 8 inches with 26 dies. The data is provided by the Wafer Acceptance Test (WAT) team: determining the golden die whose median value ($N_{\rm f}$, $J_{\rm s}$ and $C_{\rm j}$) almost approximates that of mapping data and then sweeping IV and CV curves to obtain the measured data. Their lot and wafer information are listed in Table 7.4.1:

Lot number	Wafer number
DL2271	#1
DL1737	#5

Table 7.4.1 Wafer Information for Diode

7.4.2 Capability of Model

The diode modeling in this technology node covers three fixed corner models: DIO_TT, DIO_FF and DIO_SS, which would be discussed in detail in the flowing section.

According to the industry standard of general devices, for the measurement and modeling of junction diode, the ambient temperature ranges from -40°C to 125°C. In this version of the technology node, we

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	43/90	
	SPICE Model				

model the diodes devices with HSPICE Diode Level-3 model, which is a charge-control-approach-based model.

7.4.3 Fixed Corner Model of Diode

The process variation occurs due to the variation of process parameters, for example changes of etching rate, photolithography misalignment, dopant fluctuation, and day-to-day operating status of foundry equipments and more all can result in process variation, which would lead to device parameters variations. Therefore device fixed corner models are used to simulate the best/worst-case circuit performance in light of process variations. The provided fixed corner models by SMIC are primarily for predicting most important corner cases: DIO TT, DIO FF and DIO SS. Their definitions are listed in Table 7.4.2.

Fixed corner	Definition
model	
DIO_TT	Typical model, for Nominal process modeling
DIO_FF	Fast corner. Performance corner for best cases of the static diode circuit, including both
	global (e.g. chip to chip) and local (e.g. mismatch) variations.
DIO_SS	Slow corner. Performance corner for worst cases of the static diode circuit, including
	both global (e.g. wafer to wafer) and local (e.g. mismatch) variations.

Table 7.4.2 Fixed corner model Definition of Diode

Table 7.4.3-Table 7.4.8 shows the values of the data for compensating the corner cases of every device.

A. 1.8V and 1.8V MVT N+/Pwell, P+/Nwell,

Parameters	Unit	TT	FF	SS
djs_ndio18	A/m^2	0	3.45E-07	-3.45E-07
djsw_ndio18	A/m	0	7.10E-15	-7.10E-15
dn_ndio18	-	0	-1.13E-02	1.13E-02
dcj_ndio18	F/ m^2	0	-4.94E-05	4.94E-05
dcjsw_ndio18	F/m	0	-2.91E-12	2.91E-12
dis_pdio18	A/m^2	0	2.85E-08	-2.85E-08
djsw_pdio18	A/m^2	0	1.50E-14	-1.50E-14
dn_pdio18	-	0	-9.98E-03	9.98E-03
dcj_pdio18	F/ m^2	0	-5.64E-05	5.64E-05
dcjp_pdio18	F/m	0	-4.85E-12	4.85E-12
djs_ndiomvt18	A/m^2	0	1.77E-07	-1.77E-07
dn_ndiomvt18	-	0	-1.06E-02	1.06E-02
djsw_ndiomvt18	A/m	0	1.98E-13	-1.98E-13
dcj_ndiomvt18	F/ m^2	0	-4.68E-05	4.68E-05
dcjsw_ndiomvt18	F/m	0	-3.02E-12	3.02E-12

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

SPICE Model	Doc. No.: TD-MM18-SP-2004	Doc. Title: 0.18um Mixed Signal Enhanced 1.8V/3.3V SPICE Model	Doc.Rev: 2R	Tech Dev Rev: 1.11	_	No.:
-------------	------------------------------	--	----------------	-----------------------	---	------

dis_pdiomvt18	A/m^2	0	9.15E-08	-9.15E-08
djsw_pdiomvt18	A/m	0	1.04E-13	-1.04E-13
dn_pdiomvt18	-	0	-1.05E-02	1.05E-02
dcj_pdiomvt18	F/ m^2	0	-3.93E-05	3.93E-05
dcjp_pdiomvt18	F/m	0	-2.49E-12	2.49E-12

Table 7.4.3 Fixed corner model parameters of 1.8V Diode

B. 3.3V N+/Pwell, P+/Nwell and 3.3V MVT N+/Pwell

Parameters	Unit	TT	FF	SS
djs_ndio33	A/m^2	0	1.26E-07	-1.26E-07
dn_ndio33	-	0	-1.03E-02	1.03E-02
djsw_ndio33	A/m	0	1.98E-13	-1.98E-13
dcj_ndio33	F/ m^2	0	-4.31E-05	4.31E-05
dcjsw_ndio33	F/m	0	-4.84E-12	4.84E-12
dis_pdio33	A/m^2	0	3.18E-08	-3.18E-08
djsw_pdio33	A/m	0	2.49E-14	-2.49E-14
dn_pdio33	-	0	-9.99E-03	9.99E-03
dcj_pdio33	F/ m^2	0	-5.22E-05	5.22E-05
dcjp_pdio33	F/m	0	-4.29E-12	4.29E-12
djs_ndiomvt33	A/m^2	0	2.79E-07	-2.79E-07
dn_ndiomvt33	-	0	-1.06E-02	1.06E-02
djsw_ndiomvt33	A/m	0	9.88E-14	-9.88E-14
dcj_ndiomvt33	F/ m^2	0	-4.32E-05	4.32E-05
dcjsw_ndiomvt33	F/m	0	-5.36E-12	5.36E-12

Table 7.4.3 Fixed corner model parameters of 3.3V Diode

C. Nwell/Psub, Pwell/DNW and DNW/Psub

Parameters	Unit	TT	FF	SS
dis_nwdio	A/m^2	0	7.12E-07	-7.12E-07
djsw_nwdio	A/m	0	1.46E-14	-1.46E-14
dn_nwdio	-	0	-1.09E-02	1.09E-02
dcj_nwdio	F/ m^2	0	-6.55E-06	6.55E-06
dcjp_nwdio	F/m	0	-2.50E-11	2.50E-11
djs_diobpw	A/m^2	0	3.12E-07	-3.12E-07
djsw_diobpw	-	0	7.02E-14	-7.02E-14
dn_diobpw	A/m	0	-1.12E-02	1.12E-02
dcj_diobpw	F/ m^2	0	-2.49E-05	2.49E-05
dcjsw_diobpw	F/m	0	-1.99E-11	1.99E-11
djs_dnwdio	A/m^2	0	3.05E-07	-3.05E-07

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.: TD-MM18-SP-2004	E	_			Doc.Re	Page 45/90	No.:
	djsw_dnwdio	-	0	5.50E-16	-5.50E-16		
	dn_dnwdio	A/m	0	-9.79E-03	9.79E-03		
	dcj_dnwdio	F/ m^2	0	-6.91E-06	6.91E-06		
	dcjsw_dnwdio	F/m	0	-3.37E-11	3.37E-11		

Table 7.4.3 Fixed corner model parameters of Well Diode

D. 1.8V and 3.3V N+/PSUB Diode

Parameters	Unit	TT	FF	SS
dis_nndio18	A/m^2	0	1.56E-06	-1.56E-06
djsw_nndio18	A/m	0	3.00E-14	-3.00E-14
dn_nndio18	-	0	-1.07E-02	1.07E-02
dcj_nndio18	F/ m^2	0	-9.92E-06	9.92E-06
dcjp_nndio18	F/m	0	-5.54E-12	5.54E-12
djs_nndio33	A/m^2	0	1.12E-06	-1.12E-06
dn_nndio33	-	0	-1.06E-02	1.06E-02
djsw_nndio33	A/m	0	1.98E-12	-1.98E-12
dcj_nndio33	F/ m^2	0	-6.58E-06	6.58E-06
dcjsw_nndio33	F/m	0	-1.07E-11	1.07E-11

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	46/90	
	SPICE Model				

7.5 Interconnection Table

For advanced technology node, a large of significant part of the chip area is occupied by interconnections between blocks and electrical components. Parameters of these interconnection lines have effects (delay, crosstalk and more) on electrical parameters of chips and are crucial to the characteristics of the circuit, and hence, precise reproduction of interconnection parasitic elements is indispensable in the circuit design. Parasitic elements cover resistances, capacitances and inductances [13]. The resistor model will be discussed in the next section and the parasitic inductor exists under high frequency which would not be further mentioned in this report, therefore we'll discuss capacitances only in this section.

7.5.1 Related Process Data and Information for Interconnection

The data of interconnection is provided by the PIE team. The related process data and the necessary information of conductor layer and dielectric layer are shown in Table 7.5.1 and Table 7.5.2.

A. Conductor layers

Conductor	Typical	Variation (±%)	Min. Width	Variation (±%)	Min. Space
Name	Thickness (A)	(3 sigma)	(um)	(3 sigma)	(um)
MTT2	40650	10%	2.6	2.5	2.5
MTT1	34100	10%	1.8	1.8	1.8
TM2	22000	10%	1.5	10%	1.5
M6	9825	10%	0.44	10%	0.46
MIM	2000	10%	4	10%	1.2
M5	5500	10%	0.28	10%	0.28
M4	5500	10%	0.28	10%	0.28
M3	5500	10%	0.28	10%	0.28
M2	5500	10%	0.28	10%	0.28
M1	5500	10%	0.23	10%	0.23

Table 7.5.1 Conductor layers information

Note: There is only one top metal in this technology; M6 and TM2, MTT1, MTT2 are provided for different top metal thickness options. Can't be both chosen at the same time.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

2008-06-27

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	47/90	
	SPICE Model				

B. Dielectric layers

Dielectric Name	Typical Thickness (A)	Variation(±%) (3 sigma)	Dielectric Constant
Pass2 (for thick	(A)	(3 sigilia)	
top metal)	6000(SiN)	(+/-10%)	7.9
top metar)	600(SRO)+	(+7-1070)	1.9
Pass1 (for thick	30500(HDP Ox)		HDP Ox 4.2/SRO
top metal)	+5000(SRO)	(+/-10%)	4.2
Pass2 (for thin	+3000(SKO)	(+/-1070)	4.2
top metal)	6000(SiN)	(+/-10%)	7.9
Pass1 (for thin	10000(HDP Ox)	(+7-1070)	HDP Ox 4.2/SRO
top metal)	+1500(SRO)	(+/-10%)	4.2
IMD5b	3500(USG)	(USG:+/-3%)	USG 4.2
IMD5a	12000(FSG)	(FSG:+/-20%	FSG 3.7
IMD4b	2000(USG)	(USG:+/-3%)	USG 4.2
IMD4a	12000(FSG)	(FSG:+/-20%	FSG 3.7
IMD3b	2000(USG)	(USG:+/-3%)	USG 4.2
IMD3a	12000(FSG)	(FSG:+/-20%	FSG 3.7
IMD2b	2000(USG)	(USG:+/-3%)	USG 4.2
IMD2a	12000(FS G)	(FSG:+/-20%)	FSG 3.7
IMD1b	2000(USG)	(USG:+/-3%)	USG 4.2
IMD1a	12000(FSG)	(FSG:+/-20%)	FSG 3.7
IIVID I a	2000(BP TEOS) +	(150.17-2070)	150 5.7
ILD1b	5500(PE TEOS)	(+/-20%)	4.2
ILD1a	400(SiN)	(+/-10%)	4.3
STI	3500	(+/-17%)	4

Table 7.5.2 Dielectric layers information

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Fig 7.5.1 Cross Section of Interconnection Structures

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	49/90	
	SPICE Model				

7.5.2 Capability of Model

The SMIC model team uses Synopsys's Raphael simulation for calculating interconnection capacitance, which is a theoretical calculating method based on the back end of the line (BEOL) structure. The method is usually more convenient and affordable than direct measurements. Although a bus may include many interconnection lines, it's a simple analytical method that only the closest lines are taken into account. Two types of structures are tested: parallel lines on one plane (structure-1) and between two planes (structure-2). The simulation results of typical, fast and slow cases for both structure-1 and structure-2 are listed in a separate file. (Please refer to the attachment: ms018_enhanced_v1p11_interconnect_structure1.txt, ms018_enhanced_v1p11_interconnect_structure2.txt.)

The structures and definition of each capacitance component for structure 1 and structure 2 are illustrated in Fig 7.5.2 and Fig 7.5.3:

Structure 1 represents (a) conduction lines above an infinite ground plane as shown below.

Fig.7.5.2 Lines above an infinite ground plane

*** Definitions of various capacitances:

Ctotal [fF/um]: total capacitance of a conductor to all others.

Ccoup [fF/um]: coupling capacitance between two conductors in the same layer. Cbottom [fF/um]: capacitance between a conductor and the bottom ground plane.

(=Ca+2*Cf)

Cf [fF/um]: fringing capacitance.

Structure 2 represents (b) conduction lines between two infinite ground planes as shown below.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	50/90	
	SPICE Model				

Fig. 7.5.3 Lines between two infinite ground planes

*** Definitions of various capacitances:

Ctotal [fF/um]: total capacitance of a conductor to all others.

Ccoup [fF/um]: coupling capacitance between two conductors in the same layer. Cbottom [fF/um]: capacitance between a conductor and the bottom ground plane.

(=Cb_area+2*Csd)

Ctop[fF/um]: capacitance between a conductor and the top ground plane.

(=Ct_area+2*Csu)

Csd[fF/um]: Side-wall down capacitance coefficient. Csu[fF/um]: Side-wall up capacitance coefficient.

7.5.3 Corner Cases of Interconnection Capacitance

Two corner cases of interconnection capacitance are simulated: one is slow resistance and fast capacitance, and the other is fast resistance and slow capacitance.

For slow resistance and fast capacitance: Thickness = (1- process variation) * typical thickness; Width = (1- process variation) * typical width;

For fast resistance and slow capacitance: Thickness = (1 + process variation) * typical thickness; Width = (1+ process variation) * typical width;

The minimum or maximum dielectric thickness is computed by subtracting or adding the statistical sum of all dielectric thickness variations between the two layers of interest.

Let $\Delta T_{total} = \sqrt{\sum_{i} (\Delta t_i)^2}$, where ΔT_{total} is the effective total variation between two layers, and Δt_i is the

variation of interlayer dielectrics among metal, air, and substrates.

 $\Delta t_i = T_i * \beta_i$, where T_i is the dielectric thickness and β_i is the thickness variation.

$$TH_i = T_i \pm \Delta T_{total} * \frac{\Delta T_i}{\sum_i T_i * \beta_i}$$
, where TH_i is the final thickness of the dielectric[12].

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	51/90	
	SPICE Model				

7.6 Resistor Model

7.6.1 Wafer Information

The silicon data of resistors are extracted from golden wafer, and the wafer is 8 inches with 26 dies. The data is provided by the Wafer Acceptance Test (WAT) team: determining the golden die whose median value ($R_{\rm sh}$) almost approximates that of mapping data and then sweeping IV curve to obtain the measured data. The lot and wafer information used for resistor simulation is listed in Table 7.6.1.

Lot number	Wafer number
DT0932	Resistor #3
DL2271	NWell resistor #1

Table 7.6.1 Wafer Information for Resistor Model

7.6.2 Capability of Model

The resistor modeling in this technology node covers three fixed corner models: RES_TT, RES_FF and RES_SS, which would be discussed in detail in the flowing section.

The resistor modeling in this technology node covers three fixed corner models: RES_TT, RES_FF and RES_SS, which would be discussed in detail in the following section.

According to the industry standard of general devices, for measurement and modeling of resistors, the ambient temperature ranges from -40°C to 125°C. In this technology node, the SMIC model team provides sub-circuit resistor model for both 2T and its relative 3T models. For N+Poly_RS, P+Poly_RS, two capacitors for connecting substrate with high and low voltage terminals respectively (one for each), are added in the model to set up the 3T models of every type of poly resistor. For NW_RS(STI), NW_RS(AA), N+_RS, N+_RS(SAB), P+_RS and P+_RS(SAB), the resistor is split into 4 segments, and 4 pdiodes/ndiodes are added in the model to connect substrate with each segment of presistor/nresistor respectively.

For different types of resistors, their valid voltage ranges and recommended widths for measurement and extraction are shown in Table 7.6.2:

Туре	Valid voltage range	Recommend Width (um)
NW_RS(STI)		>1
1111/_RB(B11)	0V ~ 3.3V	_1
NW_RS(AA)	0V ~ 3.3V	≥1
N+_RS	0V ~ 3.3V	
N+_RS(SAB)	0V ~ 3.3V	≥0.5
P+_RS	-3.3V ~ 0V	
P+_RS(SAB)	-3.3V ~ 0V	≥0.5

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	52/90	
	SPICE Model				

N+Poly_RS	-3.3V ~ 3.3V	
N+Poly_RS(SAB)	-3.3V ~ 3.3V	≥0.5
P+Poly_RS	-3.3V ~ 3.3V	
P+Poly_RS(SAB)	-3.3V ~ 3.3V	≥0.5
HR Poly_1K_RS	-3.3V ~ 3.3V	≥1

Table 7.6.2 Valid Voltage Ranges and Recommended Widths of Various Resistors

Note: The square number is suggested to be larger than 5 for SAB resistor.

7.6.3 Resistor Model Parameters and Equations

Туре	Sheet resistance Typical	Unit	TC1	TC2	Jc1a	Jc1b	Jc2a	Jc2b	DW(m)	DL(m)
NW_RS (STI)	887.3	ohm/sq	2.152E-03	2.055E-06	2.404E-3	2.866E-7	0	2.065E-13	1.019e-07	2.763E-11
NW_RS (AA)	450.5	ohm/sq	2.494E-03	1.909E-06	6.626e-03	1.086E-7	2.445E-10	1.614E-13	5.377E-08	-5.029E-09
Metal1_RS	0.068	ohm/sq	3.39E-03	-6.25E-07					2.3E-8	
Metal2_RS	0.0899	ohm/sq	3.37E-03	-6.37E-07					-8E-9	
Metal3_RS	0.0899	ohm/sq	3.37E-03	-6.37E-07					-8E-9	
Metal4_RS	0.0899	ohm/sq	3.37E-03	-6.37E-07					-8E-9	
Metal5_RS	0.0899	ohm/sq	3.37E-03	-6.37E-07					-8E-9	
Metal6_RS	0.0297	ohm/sq	3.60E-03	-5.15E-07					2.7E-9	
Top Metal2_Thick_ RS(22K)	0.015	ohm/sq	3.60E-03	-5.15E-07					2.7E-9	
MTT1_RS(34K)	0.01	ohm/sq	3.60E-03	-5.15E-07					2.7E-9	
MTT2_RS(40K)	0.0083	ohm/sq	3.60E-03	-5.15E-07					2.7E-9	

Туре	Sheet resistance Typical	Unit	TC1	TC2	Rvc0	Rvc1	Rvc2	DW(m)	DL(m)
N+_RS	5.919	ohm/sq	3.12E-03	2.25E-07	10.59E-12	10.40E-5	0	-2.6E-8	0
P+_RS	6.933	ohm/sq	3.18E-03	3.18E-07	9.04E-12	9.98E-5	0	-3.7E-8	0
N+_RS(SA B)	56.903	ohm/sq	1.37E-03	6.22E-07	-2.90E-12	6.62E-7	4.00E-13	-4.8E-8	-5.4E-7
P+_RS(SAB	127.895	ohm/sq	1.28E-03	8.09E-07	-13.66E-13	9.46E-7	12.83E-14	-3E-8	-3.7E-7
N+Poly_RS	6.795	ohm/sq	3.00E-03	9.75E-08	8.09E-11	2.96E-4	0	-1.3E-8	0
P+Poly_RS	7.398	ohm/sq	3.00E-03	2.76E-07	-7.96E-14	6.04E-4	0	-2E-9	0
N+Poly_RS(SAB)	275.9	ohm/sq	-1.35E-03	1.74E-06	13.69E-13	7.56E-7	2.44E-14	2.6E-8	-3.4E-7

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	53/90	
	SPICE Model				

P+Poly_RS(SAB)	316.9	ohm/sq	-2.22E-04	5.86E-07	6.44E-13	-3.70E-9	-4.52E-14	1.7E-8	-4.6E-7
HR Poly_1K_R S	1050	ohm/sq	-8.37E-04	1.72E-06	-2.95E-16	1.295E-7	2.826e-15	3.2E-9	2E-8

Table 7.6.3 Resistor Model parameters

* The resistance as a function of temperature is described by the following equation:

$$R(T) = R0 * [1 + TC1 * dT + TC2 * (dT)^2],$$
 where $dT = T$ - Thominal (25°C). Valid temperature range: -40°C ~ 125°C.

* R0 = (RSH+DRSH) * (L-2*DL) / (W-2*(DW+DDW));

Where: RSH is the sheet resistance, L is the drawn length, W is the drawn width, DRSH and DDW are the skew parameter for corner model. (L - 2 * DL) is the effective length.

* For Nwll under AA and Nwell under STI, the resistance as a function of terminal voltage is described by:

 $R(V) = R0 * [1 + VC1 * V + VC2 * V^2]$, where V is the voltage across the resistor.

VC1 = Jc1a + Jc1b / L, VC2 = (Jc2a + Jc2b / L) / L, where Jc1a, Jc1b, Jc2a, and Jc2b are the current density coefficient.

For silicide diffusion, non-silicide diffusion, poly, non-silicide npoly and BEOL resistors, the resistance as a function of terminal voltage is described by:

R (V) = R0 * [1.5 - 1 / (2 + RVC * V^2)], where V is the voltage across the resistor RVC= (RVC0 + RVC1 * W + RVC2 * (L / W)) / (L - 2 * DL) / (L - 2 * DL), where RVC0, RVC1, RVC2 are voltage coefficient.

For non-silicide ppoly resistor, the resistance as a function of terminal voltage is described by: $R(V) = R0 * [0.5 + 1 / (2 + RVC * V^2)]$, where V is the voltage across the resistor RVC = (RVC0 + RVC1 * W + RVC2 * (L/W)) / (L - 2 * DL) / (L - 2 * DL), where RVC0, RVC1, RVC2 are coefficient.

* Note: Rc does not appear in the netlist because we have subtracted it in Rsab extraction. On the other hand, Rc is a layout-dependent factor and its value varies with contact number. The designers can calculate Rc based on the resistor table and layout. Then, put it in the netlist.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	54/90	
	SPICE Model				

7.6.4 Fixed Corner Model of Resistor

The process variation occurs due to the variation of process parameters, for example changes of etching rate, photolithography misalignment, dopant fluctuation, and day-to-day operating status of foundry equipments and more all can result in process variation, which would lead to device parameters variations. Therefore device fixed corner models are used to simulate the worst-case circuit performance in light of process variations.

The provided fixed corner models by SMIC are primarily for predicting most important corner cases: RES_TT, RES_FF and RES_SS. Their definitions are listed below.

Fixed corner	Definition
model	
RES_TT	Typical model, for Nominal process modeling
RES_FF	Fast corner. Performance corner for best cases of the static resistor circuit, including both
	global (e.g. chip to chip) and local (e.g. mismatch) variations.
RES_SS	Slow corner. Performance corner for worst cases of the static resistor circuit, including
	both global (e.g. wafer to wafer) and local (e.g. mismatch) variations.

Table 7.6.4 Fixed corner model Definition for Resistors

The following tables show the values of the data for compensating the corner cases of every device.

Parameters	RES_TT	RES_FF	RES_SS
drsh_rndif	0	-2.220E+00	2.220E+00
drsh_rpdif	0	-2.133E+00	2.133E+00
drsh_rnpo	0	-3.171E+00	3.171E+00
drsh_rnpo_3t	0	-3.171E+00	3.171E+00
drsh_rppo	0	-2.534E+00	2.534E+00
drsh_rppo_3t	0	-2.534E+00	2.534E+00
drsh_rnwsti	0	-1.422E+02	1.422E+02
drsh_rnwaa	0	-6.386E+01	6.386E+01
drsh_rndifsab	0	-1.035E+01	1.035E+01
drsh_rpdifsab	0	-2.558E+01	2.558E+01
drsh_rnposab	0	-3.873E+01	3.873E+01
drsh_rnposab_3t	0	-3.873E+01	3.873E+01
drsh_rpposab	0	-4.874E+01	4.874E+01
drsh_rpposab_3t	0	-4.874E+01	4.874E+01
drsh_rm1	0	-2.00E-02	2.00E-02
drsh_rm2	0	-2.464E-02	2.464E-02
drsh_rm3	0	-2.464E-02	2.464E-02
drsh_rm4	0	-2.464E-02	2.464E-02
drsh_rm6	0	-9.000E-03	9.000E-03

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	55/90	
	SPICE Model				

I	1	ı	1 1
drsh_rmtt1	0	-6.000E-03	6.000E-03
drsh_rmtt2	0	-4.980E-03	4.980E-03
drsh_rtm2	0	-9.000E-03	9.000E-03
drsh_rhrpo	0	-1.451E+02	1.451E+02
drsh_rhrpo_3t	0	-1.451E+02	1.451E+02
drsh_rm5	0	-2.642E-02	2.642E-02
ddw_rndif	0	0.000E+00	0.000E+00
ddw_rpdif	0	0.000E+00	0.000E+00
ddw_rnpo	0	0.000E+00	0.000E+00
ddw_rnpo_3t	0	0.000E+00	0.000E+00
ddw_rppo	0	0.000E+00	0.000E+00
ddw_rppo_3t	0	0.000E+00	0.000E+00
ddw_rnwsti	0	0.000E+00	0.000E+00
ddw_rnwaa	0	0.000E+00	0.000E+00
ddw_rndifsab	0	0.000E+00	0.000E+00
ddw_rpdifsab	0	0.000E+00	0.000E+00
ddw_rnposab	0	0.000E+00	0.000E+00
ddw_rnposab_3t	0	0.000E+00	0.000E+00
ddw_rpposab	0	0.000E+00	0.000E+00
ddw_rpposab_3t	0	0.000E+00	0.000E+00
ddw_rm1	0	0.000E+00	0.000E+00
ddw_rm2	0	0.000E+00	0.000E+00
ddw_rm3	0	0.000E+00	0.000E+00
ddw_rm4	0	0.000E+00	0.000E+00
ddw_rm6	0	0.000E+00	0.000E+00
ddw_rmtt1	0	0.000E+00	0.000E+00
ddw_rmtt2	0	0.000E+00	0.000E+00
ddw_rtm2	0	0.000E+00	0.000E+00
ddw_rhrpo	0	0.000E+00	0.000E+00
ddw_rhrpo_3t	0	0.000E+00	0.000E+00
ddw_rm5	0	0.000E+00	0.000E+00
dcox_rnpo	0	1.152E-06	-9.136E-06
dcfox_rnpo	0	3.000E-13	-2.000E-13
dcox_rppo	0	1.152E-06	-9.136E-06
dcfox_rppo	0	3.000E-13	-2.000E-13
dcox_rnposab	0	1.152E-06	-9.136E-06
dcfox_rnposab	0	3.000E-13	-2.000E-13
dcox_rpposab	0	1.152E-06	-9.136E-06
dcfox_rpposab	0	3.000E-13	-2.000E-13

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.: TD-MM18-SP-2004		8um Mixe nanced 1.8 CE Mode	3V/3.3V		Tech Dev Rev: 1.11	_	No.:
	dcox_rhrpo	0	1.152E-06	-9.136E-06			
	dcfox_rhrpo	0	3.000E-13	-2.000E-13			

Table 7.6.5 Fixed corner model Table of Resistors

(HSPICE format: ms018_enhanced_v1p11_res.ckt, ms018_enhanced_v1p11.lib; SPECTRE format: ms018_enhanced_v1p11_res_spe.ckt, ms018_enhanced_v1p11_spe.lib;)

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

^{*} In order to provide more accurate parameters for resistor, the resistor macro models which include both diodes and corner cases are listed in the attachment.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	57/90	
	SPICE Model				

7.7 MOS Varactor Model

The structure of MOS varactor is similar to the standard MOSFETs, but replacing P+ S/D with N+ S/D in PMOS. Its capacitances can be controlled by the applied gate voltage and is an electrically tunable capacitor. Characterization of technology parameters related to oxide thickness, fringing capacitance and more for MOS varactor is also quite similar with that for standard MOSFETs. Fig7.7.1- Fig7.7.2 gives the layouts and cross sections of N+/NW MOS varactor.

Fig. 7.7.1 The layout of N+poly/NW MOS varactor (W is AA width, L is poly length.)

Fig. 7.7.2 The cross section of N+poly/NW MOS varactor

7.7.1 Wafer Information

The silicon data of MOS varactor are extracted from golden wafer, and the wafer is 8 inches with 26 dies. The data is provided by the Wafer Acceptance Test (WAT) team: determining the golden die whose median value (C) almost approximates that of mapping data and then sweeping CV curve to obtain the measured data. The lot and wafer information are shown in Table 7.7.1.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

2008-06-27

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	58/90	
	SPICE Model				

Lot number	Wafer number
DL2271	#1

Table 7.7.1 Wafer Information for MOS varactors

7.7.2 Capability of Model

According to the industry standard of general devices, for the measurement and modeling of MOS varactor, the ambient temperature ranges from -40°C to 125°C.

The capacitance and gate current models of 1.8V and 3.3V MOS varactor devices use sub-circuit model. To use the MOS varactor model for each type structure, AA width (w), gate length (l), gate finger number (nf) and array number (mr) can vary. The valid dimension ranges and valid operation conditions are listed in table 7.7.2

Туре	(Gate width)	L (Gate length)	NF (Gate finger number)	Valid voltage range	Temperature range
pvar18_ckt	10um~60um	1um~20um	1~20	-1.8V~1.8V	-40~125 C
pvar33_ckt	10um~60um	1um~20um	1~40	-3.3V~3.3V	-40~125 C

Table 7.7.2 Valid Voltages and Temperature Ranges for 1.8V/3.3V MOS Varactor Simulation

7.7.3 Fixed Corner Model of MOS Varactor

The process variation occurs due to the variation of process parameters, for example changes of etching rate, photolithography misalignment, dopant fluctuation, and day-to-day operating status of foundry equipments and more all can result in process variation, which would lead to device parameters variations. Therefore device fixed corner models are used to simulate the worst-case circuit performance in light of process variations.

The provided fixed corner models by SMIC are primarily for predicting most important corner cases: VAR_TT, VAR_FF and VAR_SS. Their definitions are listed in Table 7.7.3.

Fixed corner	Definition
model	
VAR_TT	Typical model, for Nominal process modeling
VAR_FF	Fast-corner. Performance corner for best cases of the static MOS varactor circuit,
	including both global (e.g. chip to chip) and local (e.g. mismatch) variations.
VAR_SS	Slow corner. Performance corner for worst cases of the static MOS varactor circuit,
	including both global (e.g. wafer to wafer) and local (e.g. mismatch) variations.

Table 7.7.3 Fixed corner model Definition of MOS Varactor Simulation

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	59/90	
	SPICE Model				

Parameters	VAR_TT	VAR_FF	VAR_SS
dtox_pvar18	0	-1E-10	1E-10
dcvar_pvar18	0	0.05	-0.05

Table 7.7.4 Fixed corner model Table of 1.05V N+/NWell

Parameters	VAR_TT	VAR_FF	VAR_SS
dcvar_pvar33	0	0.05	-0.05

Table 7.7.5 Fixed corner model Table of 1.8V N+/NWell

7.7.4 MOS Varactor CV fitting curve

The capacitance model is done by polynomial equation and it is valid in the following range:

W: AA width is from 5um to 60um L: Poly length is from 1um to30um N: Finger number is from 1 to 20 Operation voltage: -1.8~1.8V Temperature range: -40~125C

Figure 7.7.3 C versus Vg of 1.8V N+poly/NW MOS varactor (symbol: data, line: model) The capacitance model is done by polynomial equation and it is valid in the following range:

W: AA width is from 5um to 60um

L: Poly length is1um to30um

N: Finger number is from 1 to 40

Operation voltage: -3.3~3.3V Temperature range: -40~125C

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

2008-06-27

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	60/90	
	SPICE Model				

Figure 7.7.4 C versus Vg of 3.3V N+poly/NW MOS varactor (symbol: data, line: model)

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	61/90	
	SPICE Model				

7.8 MIM Capacitor Model

The MIM (metal-insulator-metal) is a common capacitor type, configured by metal layers. Fig7.8.1 shows the typical structure of MIM. Its cross section figure is shown in Fig7.8.2. The GDS files of the device layout are given in the attachment.

Fig. 7.8.1 Layout of MIM capacitor

Fig. 7.8.2 Cross-section of MIM capacitor (MIM~M5)

7.8.1 Wafer information

The silicon data of MIM capacitor are extracted from golden wafer, and the wafer is 8 inches with 26 dies. The data is provided by the Wafer Acceptance Test (WAT) team: determining the golden die whose median value (C) almost approximates that of mapping data and then sweeping CV curve to obtain the measured data. The lot and wafer information for MIM capacitance simulation are listed in Table 7.8.1

Lot number	Wafer number
DT0932	#3

Table 7.8.1 Wafer Information of MIM Capacitor Model

2008-06-27

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	62/90	
	SPICE Model				

7.8.2 Capability of Model

According to the industry standard of general devices, for measurement and modeling of MIM, the ambient temperature ranges from -40°C to 125°C. The valid dimension range and working conditions are listed in Table 7.8.2:

MIM architecture	Bottom metal layer	Top metal layer	W	L	Array number	Temperature
MIM capacitor 1fF (two terminals)	5	MIM	4~30	4~30	1~100	-40~125℃
MIM capacitor 2fF (two terminals)	5	MIM	4~30	4~30	1~100	-40~125℃

Table 7.8.2. Valid Dimension Ranges and working conditions of MIM

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

2008-06-27

^{*} To acquire better accuracy, it is recommended to use $W\&L \ge 15$ um for 1fF MIM and $W\&L \ge 8$ um for 2 fF MIM.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	63/90	
	SPICE Model				

7.8.3 Fixed Corner Model of MIM Capacitor

The provided fixed corner models by SMIC are primarily for predicting most important corner cases: MIM_TT, MIM_FF and MIM_SS. Their definitions are listed in Table 7.8.3.

Fixed corner	Definition
model	
MIM_TT	Typical model, for Nominal process modeling
MIM_FF	Fast corner. Performance corner for best cases of the static MIM circuit, including both
	global (e.g. chip to chip) and local (e.g. mismatch) variations.
MIM_SS	Slow corner. Performance corner for worst cases of the static MIM circuit, including
	both global (e.g. wafer to wafer) and local (e.g. mismatch) variations.

Table 7.8.3 Fixed corner model Definition of MIM Capacitor

Table 7.8.4 shows the values of the data for compensating the corner cases of every device.

Parameters	Unit	MIM_TT	MIM_FF	MIM_SS
dmim	1	0	-1.938e-4	1.938e-4
dmim2	-	0	-1.99e-04	-1.99e-04

Table 7.8.4 Corner Model Table of MIM Capacitor

7.8.4 MIM Model

A. MIM (Cspec = 1 fF/um^2)

0.18um Mixed	0.18um Mixed Signal MIM Capacitor Voltage & Temperature Coefficient					
Area (um²)	C0 (fF/um ²)	VC 1 (ppm/V)	$VC 2 (ppm/V^2)$	TC 1 (ppm/C)		
400		-4.76	-7.616	-22.56		
900		25.67	-10.07	-22.24		
1600	0.969	23.14	-10.67	-21.54		
2500		24.71	-11.11	-23.48		
Global Area		22.742	-10.135	-21.98		

Table 7.8.5 MIM1 model parameters

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

^{*} Note: The parameters listed in the row of Global Area are used for fitting all MIM capacitors.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	64/90	
	SPICE Model				

* The capacitance as a function of temperature is described by the following equation:

$$C(T) = C0 * [1 + TC1 * dT], where dT = T - Thominal (25 ° C).$$

Valid temperature range: -40°C ~ 125°C.

* The capacitance as a function of terminal voltage is described by:

$$C(V) = C0 * [1 + VC1 * V + VC2 * V^2]$$
, where V is the voltage across the capacitor.

* C0 is extracted from the scalable formula by giving area.

The slope of fitting line is $C0(0.969fF/um^2)$ in the figure.

* VC1 and VC2 are extracted from the normalized capacitance at 25C. (C0=1 at V=0)

The following figure shows the normalized capacitance versus voltage for global area, both voltage coefficients VC1=22.742ppm/V and VC2=-10.135ppm/V², respectively.

* TC1 is extracted from the normalized capacitance at different temperature.(C0=1 at T=25C)

The figure below shows the normalized capacitance versus temperature for global area. The The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	65/90	
	SPICE Model				

temperature coefficient TC1 is -21.98 ppm/C.

B. $MIM(Cspec = 2 fF/um^2)$

0.18um Mixed	0.18um Mixed Signal MIM Capacitor Voltage & Temperature Coefficient					
Area (um²)	C0 (fF/um ²)	VC 1 (ppm/V)	VC 2 (ppm/V ²)	TC 1 (ppm/C)		
400		9.44	13.31	28.10		
900		7.20	13.73	27.37		
1600	1.99	7.71	13.72	30.00		
2500		6.03	13.89	27.62		
Global Area		7.68	13.59	28.74		

Table 7.8.6 MIM2 model parameters

- * Note: The parameters listed in the row of Global Area are used for fitting all MIM capacitors.
- * The capacitance as a function of temperature is described by the following equation:

$$C(T) = C0 * [1 + TC1 * dT], where dT = T - Thominal (25 ° C).$$

Valid temperature range: -40°C ~ 125°C.

* The capacitance as a function of terminal voltage is described by:

$$C(V) = C0 * [1 + VC1 * V + VC2 * V^2]$$
, where V is the voltage across the capacitor.

* C0 is extracted from the scalable formula by giving area.

The slope of fitting line is $CO(1.99 \text{ fF/um}^2)$ in the figure.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	66/90	
	SPICE Model				

* VC1 and VC2 are extracted from the normalized capacitance at 25C. (C0=1 at V=0)
The following figure shows the normalized capacitance versus voltage for global area, both voltage coefficients VC1= 7.68ppm/V and VC2= 13.59 ppm/V², respectively.

* TC1 is extracted from the normalized capacitance at different temperature.(C0=1 at T=25C) The figure below shows the normalized capacitance versus temperature for global area. The temperature coefficient TC1 is 28.74 ppm/C.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	67/90	
	SPICE Model				

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

According to: SMIC Document Control Procedure; Attachment No.: QR-QUSM-02-2001-023; Rev.:1

2008-06-27

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	68/90	
	SPICE Model				

7.9 Model fitting and plotting results

Due to the size of the plots, all the fitting plots for 0.18um Mix Signal 1P6M Salicide 1.8V/3.3V Enhanced SPICE Model are given in five attachments named "ms018_fit_A.doc", "ms018_fit_B1.doc", "ms018_fit_B2.doc", "ms018_fit_D.doc", "ms018_fit_D.doc", "ms018_fit_F.doc" and "ms018_fit_Gdoc". They are described in six sections (section A, B1, B2,C, D, F and G).

Section A. Comparison between measurement and simulation results (for MOS IV&CV)

- Fig.A 1 Vth versus L at Wdrawn = 10um for 1.8V NMOS
- Fig.A 2 Vtsat versus L at Wdrawn = 10um for 1.8V NMOS
- Fig.A 3 Vth versus W at Ldrawn = 10um for 1.8V NMOS
- Fig.A 4 Vth versus L at Wdrawn =0.22um for 1.8V NMOS
- Fig.A 5 Vth versus W at Ldrawn = 0.18um for 1.8V NMOS
- Fig.A 6 Idlin versus L with different width array at Vbs=0V for 1.8V NMOS
- Fig.A 7 Idlin versus W with different length array at Vbs=0V for 1.8V NMOS
- Fig.A 8 Idsat versus L with different width array at Vbs=0V for 1.8V NMOS
- Fig.A 9 Idsat versus W with different length array at Vbs=0V for 1.8V NMOS
- Fig.A 10 Vth versus L at Wdrawn = 10um for 1.8V PMOS
- Fig.A 11 Vtsat versus L at Wdrawn = 10um for 1.8V PMOS
- Fig.A 12 Vth versus W at Ldrawn = 10um for 1.8V PMOS
- Fig.A 13 Vth versus L at Wdrawn = 0.22um for 1.8V PMOS
- Fig.A 14 Vth versus W at Ldrawn = 0.18um for 1.8V PMOS
- Fig.A 15 Idlin versus L with different width array at Vbs=0V for 1.8V PMOS
- Fig.A 16 Idlin versus W with different length array at Vbs=0V for 1.8V PMOS
- Fig.A 17 Idsat versus L with different width array at Vbs=0V for 1.8V PMOS
- Fig.A 18 Idsat versus W with different length array at Vbs=0V for 1.8V PMOS
- Fig.A 19 Vth vs. T measured and simulated plot with various Vbs for 1.8V NMOS 10/10
- Fig.A 20 Vth vs. T measured and simulated plot with various Vbs for 1.8V NMOS 10/0.18
- Fig.A 21 Idlin vs. T measured and simulated plot with various Vbs for 1.8V NMOS 10/0.18
- Fig.A 22 Idsat vs. T measured and simulated plot with various Vbs for 1.8V NMOS 10/0.18
- Fig.A 23 Vth vs. T measured and simulated plot with various Vbs for 1.8V PMOS 10/10
- Fig.A 24 Vth vs. T measured and simulated plot with various Vbs for 1.8V PMOS 10/0.18
- Fig.A 25 Idlin vs. T measured and simulated plot with various Vbs for 1.8V PMOS 10/0.18
- Fig.A 26 Idsat vs.T measured and simulated plot for 1.8V PMOS 10/0.18
- Fig.A 27 Fitting results of Cox for 1.8V NMOS
- Fig.A 28 Fitting results of Cox for 1.8V PMOS
- Fig.A 29 Fitting ID VD&VG, subthreshold and gds of 1.8V NMOS W/L=10/10 at temp=25C
- Fig.A 30 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=10/10 at temp=125C
- Fig.A 31 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=10/10 at temp=-40C
- Fig.A 32 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=10/0.18 at temp=25C
- Fig.A 33 Fitting ID VD&VG, subthreshold and gds of 1.8V NMOS W/L=10/0.18 at temp=125C
- Fig.A 34 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=10/0.18 at temp=-40C
- Fig.A 35 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=0.22/10 at temp=25C
- Fig.A 36 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=0.22/10 at temp=125C Fig.A 37 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=0.22/10 at temp=-40C
- Fig.A 37 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=0.22/10 at temp=-40C Fig.A 38 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=0.22/0.18 at temp=25C
- The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	69/90	
	SPICE Model				

- Fig.A 39 Fitting ID VD&VG, subthreshold and gds of 1.8V NMOS W/L=0.22/0.18 at temp=125C
- Fig.A 40 Fitting ID_VD&VG, subthreshold and gds of 1.8V NMOS W/L=0.22/0.18 at temp=-40C
- Fig.A 41 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=10/10 at temp=25C
- Fig.A 42 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=10/10 at temp=125C
- Fig.A 43 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=10/10 at temp=-40C
- Fig.A 44 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=10/0.18 at temp=25C
- Fig.A 45 Fitting ID VD&VG, subthreshold and gds of 1.8V PMOS W/L=10/0.18 at temp=125C
- Fig.A 46 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=10/0.18 at temp=-40C
- Fig.A 47 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=0.22/10 at temp=25C
- Fig.A 48 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=0.22/10 at temp=125C Fig.A 49 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=0.22/10 at temp=-40C
- Fig.A 50 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=0.22/0.18 at temp=25C
- Fig.A 51 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=0.22/0.18 at temp=125C
- Fig.A 52 Fitting ID_VD&VG, subthreshold and gds of 1.8V PMOS W/L=0.22/0.18 at temp=-40C
- Fig.A 53 Idlin versus L with different width array at Vbs=0 for 1.8V Native NMOS
- Fig.A 54 Idlin versus W with different length array at Vbs=0 for 1.8V Native NMOS
- Fig.A 55 Idsat versus L with different width array at Vbs=0 for 1.8V Native NMOS
- Fig.A 56 Idsat versus W with different length array at Vbs=0 for 1.8V Native NMOS
- Fig.A 57 Idlin versus T measured and simulated plot for 1.8V Native NMOS 10/1
- Fig.A 58 Idsat versus T measured and simulated plot for 1.8V Native NMOS 10/1
- Fig. A 59 Fitting results of Cox for 1.8V native NMOS W/L=50/50 at temp=25C
- Fig.A 60 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=10/10 at temp=25C
- Fig. A 61 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=10/10 at temp=125C
- Fig.A 62 Fitting ID VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=10/10 at temp=-40C
- Fig.A 63 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=10/1 at temp=25C
- Fig.A 64 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=10/1 at temp=125C
- Fig.A 65 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=10/1 at temp=-40C
- Fig.A 66 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=0.22/10 at temp=25C
- Fig.A 67 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=0.22/10 at temp=125C
- Fig.A 68 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=0.22/10 at temp=-40C
- Fig.A 69 Fitting ID_VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=0.22/1 at temp=25C
- Fig.A 70 Fitting ID VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=0.22/1 at temp=125C
- Fig.A 71 Fitting ID VD&VG, subthreshold and gds of 1.8V Native NMOS W/L=0.22/1 at temp=-40C
- Fig.A 72 Vth versus L at Wdrawn = 10um for 3.3V NMOS
- Fig.A 73 Vtsat versus L at Wdrawn = 10um for 3.3V NMOS
- Fig.A 74 Vth versus W at Ldrawn = 10um for 3.3V NMOS
- Fig.A 75 Vth versus L at Wdrawn =0.22um for 3.3V NMOS
- Fig.A 76 Vth versus W at Ldrawn = 0.35um for 3.3V NMOS
- Fig.A 77 Idlin versus L with different width array at Vbs=0V for 3.3V NMOS
- Fig.A 78 Idlin versus W with different length array at Vbs=0V for 3.3V NMOS
- Fig.A 79 Idsat versus L with different width array at Vbs=0V for 3.3V NMOS
- Fig.A 80 Idsat versus W with different length array at Vbs=0V for 3.3V NMOS
- Fig.A 81 Vth versus L at Wdrawn = 10um for 3.3V PMOS
- Fig.A 82 Vtsat versus L at Wdrawn = 10um for 3.3V PMOS
- Fig.A 83 Vth versus W at Ldrawn = 10um for 3.3V PMOS
- Fig.A 84 Vth versus L at Wdrawn = 0.22um for 3.3V PMOS
- Fig.A 85 Vth versus W at Ldrawn = 0.3um for 3.3V PMOS
- Fig.A 86 Idlin versus L with different width array at Vbs=0V for 3.3V PMOS
- Fig.A 87 Idlin versus W with different length array at Vbs=0V for 3.3V PMOS
- Fig.A 88 Idsat versus L with different width array at Vbs=0V for 3.3V PMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	70/90	
	SPICE Model				

- Fig.A 89 Idsat versus W with different length array at Vbs=0V for 3.3V PMOS
- Fig.A 90 Vth vs. T measured and simulated plot with various Vbs for 3.3V NMOS 10/0.35
- Fig.A 91 Idlin vs. T measured and simulated plot with various Vbs for 3.3V NMOS 10/0.35
- Fig.A 92 Idsat vs. T measured and simulated plot with various Vbs for 3.3V NMOS 10/0.35
- Fig.A 93 Vth vs. T measured and simulated plot with various Vbs for 3.3V PMOS 10/0.3
- Fig.A 94 Idlin vs. T measured and simulated plot with various Vbs for 3.3V PMOS 10/0.3
- Fig.A 95 Idsat vs.T measured and simulated plot for 3.3V PMOS 10/0.3
- Fig.A 96 Fitting results of Cox for 3.3V NMOS
- Fig.A 97 Fitting results of Cox for 3.3V PMOS
- Fig.A 98 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=10/10 at temp=25C
- Fig.A 99 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=10/10 at temp=125C
- Fig.A 100 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=10/10 at temp=-40C
- Fig.A 101 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=10/0.35 at temp=25C
- Fig.A 102 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=10/0.35 at temp=125C
- Fig.A 103 Fitting ID VD&VG, subthreshold and rout of 3.3V NMOS W/L=10/0.35 at temp=-40C
- Fig.A 104 Fitting ID VD&VG, subthreshold and rout of 3.3V NMOS W/L=0.22/10 at temp=25C
- Fig.A 105 Fitting ID VD&VG, subthreshold and rout of 3.3V NMOS W/L=0.22/10 at temp=125C
- Fig.A 106 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=0.22/10 at temp=-40C
- Fig.A 107 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=0.22/0.35 at temp=25C
- Fig.A 108 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=0.22/0.35 at temp=125C Fig.A 109 Fitting ID_VD&VG, subthreshold and rout of 3.3V NMOS W/L=0.22/0.35 at temp=-40C
- Fig.A 110 Fitting ID_VD&VG, subthreshold and rout of 3.3V PMOS W/L=10/10 at temp=25C
- Fig.A 111 Fitting ID_VD&VG, subthreshold and rout of 3.3V PMOS W/L=10/10 at temp=125C
- Fig.A 112 Fitting ID VD&VG, subthreshold and rout of 3.3V PMOS W/L=10/10 at temp=-40C Fig.A 113 Fitting ID_VD&VG, subthreshold and rout of 3.3V PMOS W/L=10/0.3 at temp=25C
- Fig.A 114 Fitting ID_VD&VG, subthreshold and rout of 3.3V PMOS W/L=10/0.3 at temp=125C
- Fig.A 115 Fitting ID_VD&VG, subthreshold and rout of 3.3V PMOS W/L=10/0.3 at temp=-40C
- Fig.A 116 Fitting ID_VD&VG, subthreshold and rout of 3.3V PMOS W/L=0.22/10 at temp=25C
- Fig.A 117 Fitting ID_VD&VG, subthreshold and rout of 3.3V PMOS W/L=0.22/10 at temp=125C
- Fig.A 118 Fitting ID_VD&VG, subthreshold and rout of 3.3V PMOS W/L=0.22/10 at temp=-40C
- Fig.A 119 Fitting ID VD&VG, subthreshold and rout of 3.3V PMOS W/L=0.22/0.3 at temp=25C
- Fig.A 120 Fitting ID VD&VG, subthreshold and rout of 3.3V PMOS W/L=0.22/0.3 at temp=125C
- Fig.A 121 Fitting ID VD&VG, subthreshold and rout of 3.3V PMOS W/L=0.22/0.3 at temp=-40C
- Fig.A 122 Vth versus L at Wdrawn = 10um for 1.8V MVT NMOS
- Fig.A 123 Vtsat versus L at Wdrawn = 10um for 1.8V MVT NMOS
- Fig.A 124 Vth versus W at Ldrawn = 10um for 1.8V MVT NMOS
- Fig.A 125 Vth versus L at Wdrawn =0.22um for 1.8V MVT NMOS
- Fig.A 126 Vth versus W at Ldrawn = 0.3um for 1.8V MVT NMOS
- Fig.A 127 Idlin versus L with different width array at Vbs=0V for 1.8V MVT NMOS
- Fig.A 128 Idlin versus W with different length array at Vbs=0V for 1.8V MVT NMOS
- Fig.A 129 Idsat versus L with different width array at Vbs=0V for 1.8V MVT NMOS
- Fig.A 130 Idsat versus W with different length array at Vbs=0V for 1.8V MVT NMOS
- Fig.A 131 Vth versus L at Wdrawn = 10um for 1.8V MVT PMOS
- Fig.A 132 Vtsat versus L at Wdrawn = 10um for 1.8V MVT PMOS
- Fig.A 133 Vth versus W at Ldrawn = 10um for 1.8V MVT PMOS
- Fig.A 134 Vth versus L at Wdrawn = 0.22um for 1.8V MVT PMOS
- Fig.A 135 Vth versus W at Ldrawn = 0.25um for 1.8V MVT PMOS
- Fig.A 136 Idlin versus L with different width array at Vbs=0V for 1.8V MVT PMOS
- Fig.A 137 Idlin versus W with different length array at Vbs=0V for 1.8V MVT PMOS
- Fig.A 138 Idsat versus L with different width array at Vbs=0V for 1.8V MVT PMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	71/90	
	SPICE Model				

- Fig.A 139 Idsat versus W with different length array at Vbs=0V for 1.8V MVT PMOS
- Fig.A 140 Vth vs. T measured and simulated plot with various Vbs for 1.8V MVT NMOS 10/0.3
- Fig.A 141 Idlin vs. T measured and simulated plot with various Vbs for 1.8V MVT NMOS 10/0.3
- Fig.A 142 Idsat vs. T measured and simulated plot with various Vbs for 1.8V MVT NMOS 10/0.3
- Fig.A 143 Vth vs. T measured and simulated plot with various Vbs for 1.8V MVT PMOS 10/0.25
- Fig.A 144 Idlin vs. T measured and simulated plot with various Vbs for 1.8V MVT PMOS 10/0.25
- Fig.A 145 Idsat vs.T measured and simulated plot for 1.8V MVT PMOS 10/0.25
- Fig.A 146 Fitting results of Cox for 1.8V MVT NMOS
- Fig.A 147 Fitting results of Cox for 1.8V MVT PMOS
- Fig.A 148 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=10/10 at temp=25C
- Fig.A 149 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=10/10 at temp=125C
- Fig.A 150 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=10/10 at temp=-40C
- Fig.A 151 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=10/0.3 at temp=25C
- Fig.A 152 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=10/0.3 at temp=125C
- Fig.A 153 Fitting ID VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=10/0.3 at temp=-40C
- Fig.A 154 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=0.22/10 at temp=25C
- Fig.A 155 Fitting ID VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=0.22/10 at temp=125C
- Fig.A 156 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=0.22/10 at temp=-40C
- Fig.A 157 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=0.22/0.3 at temp=25C Fig.A 158 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=0.22/0.3 at temp=125C
- Fig.A 159 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT NMOS W/L=0.22/0.3 at temp=-40C
- Fig.A 160 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=10/10 at temp=25C
- Fig.A 161 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=10/10 at temp=125C
- Fig.A 162 Fitting ID VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=10/10 at temp=-40C
- Fig.A 163 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=10/0.25 at temp=25C
- Fig.A 164 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=10/0.25 at temp=125C
- Fig.A 165 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=10/0.25 at temp=-40C
- Fig.A 166 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=0.22/10 at temp=25C
- Fig.A 167 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=0.22/10 at temp=125C
- Fig.A 168 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=0.22/10 at temp=-40C
- Fig.A 169 Fitting ID_VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=0.22/0.25 at temp=25C
- Fig.A 170 Fitting ID VD&VG, subthreshold and rout of 1.8V MVT PMOS W/L=0.22/0.25 at temp=125C
- Fig.A 171 Fitting ID VD&VG, subthreshold and rout of 1.8VMVT PMOS W/L=0.22/0.25 at temp=-40C
- Fig.A 172 Vth versus L at Wdrawn = 10um for 3.3V MVT NMOS
- Fig.A 173 Vtsat versus L at Wdrawn = 10um for 3.3V MVT NMOS
- Fig.A 174 Vth versus W at Ldrawn = 10um for 3.3V MVT NMOS
- Fig.A 175 Vth versus L at Wdrawn =0.22um for 3.3V MVT NMOS
- Fig.A 176 Vth versus W at Ldrawn = 0.6um for 3.3V MVT NMOS
- Fig.A 177 Idlin versus L with different width array at Vbs=0V for 3.3V MVT NMOS
- Fig.A 178 Idlin versus W with different length array at Vbs=0V for 3.3V MVT NMOS
- Fig.A 179 Idsat versus L with different width array at Vbs=0V for 3.3V MVT NMOS
- Fig.A 180 Idsat versus W with different length array at Vbs=0V for 3.3V MVT NMOS
- Fig.A 181 Vth versus L at Wdrawn = 10um for 3.3V Native NMOS
- Fig.A 182 Vtsat versus L at Wdrawn = 10um for 3.3V Native NMOS
- Fig.A 183 Vth versus W at Ldrawn = 10um for 3.3V Native NMOS
- Fig.A 184 Vth versus L at Wdrawn = 0.22um for 3.3V Native NMOS
- Fig.A 185 Vth versus W at Ldrawn = 2um for 3.3V Native NMOS
- Fig.A 186 Idlin versus L with different width array at Vbs=0V for 3.3V Native NMOS
- Fig.A 187 Idlin versus W with different length array at Vbs=0V for 3.3V Native NMOS
- Fig.A 188 Idsat versus L with different width array at Vbs=0V for 3.3V Native NMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	72/90	
	SPICE Model				

- Fig.A 189 Idsat versus W with different length array at Vbs=0V for 3.3V Native NMOS
- Fig.A 190 Vth vs. T measured and simulated plot with various Vbs for 3.3V MVT NMOS 10/0.6
- Fig.A 191 Idlin vs. T measured and simulated plot with various Vbs for 3.3V MVT NMOS 10/0.6
- Fig.A 192 Idsat vs. T measured and simulated plot with various Vbs for 3.3V MVT NMOS 10/0.6
- Fig.A 193 Vth vs. T measured and simulated plot with various Vbs for 3.3V Native NMOS 10/1.2
- Fig.A 194 Idlin vs. T measured and simulated plot with various Vbs for 3.3V Native NMOS 10/1.2
- Fig.A 195 Idsat vs.T measured and simulated plot for 3.3V Native NMOS 10/1.2
- Fig.A 196 Fitting results of Cox for 3.3V MVT NMOS
- Fig.A 197 Fitting results of Cox for 3.3V Native NMOS
- Fig.A 198 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=10/10 at temp=25C
- Fig.A 199 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=10/10 at temp=125C
- Fig.A 200 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=10/10 at temp=-40C
- Fig.A 201 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=10/0.6 at temp=25C
- Fig.A 202 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=10/0.6 at temp=125C
- Fig.A 203 Fitting ID VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=10/0.6 at temp=-40C
- Fig.A 204 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=0.22/10 at temp=25C
- Fig.A 205 Fitting ID VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=0.22/10 at temp=125C
- Fig.A 206 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=0.22/10 at temp=-40C Fig.A 207 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=0.22/0.6 at temp=25C
- Fig.A 208 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=0.22/0.6 at temp=125C
- Fig.A 209 Fitting ID_VD&VG, subthreshold and rout of 3.3V MVT NMOS W/L=0.22/0.6 at temp=-40C
- Fig.A 210 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=10/10 at temp=25C
- Fig.A 211 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=10/10 at temp=125C
- Fig.A 212 Fitting ID VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=10/10 at temp=-40C
- Fig.A 213 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=10/1.2 at temp=25C
- Fig.A 214 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=10/1.2 at temp=125C
- Fig.A 215 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=10/1.2 at temp=-40C
- Fig.A 216 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=0.22/10 at temp=25C
- Fig.A 217 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=0.22/10 at temp=125C
- Fig.A 218 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=0.22/10 at temp=-40C
- Fig.A 219 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=0.22/1.2 at temp=25C
- Fig.A 220 Fitting ID_VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=0.22/1.2 at temp=125C
- Fig.A 221 Fitting ID VD&VG, subthreshold and rout of 3.3V Native NMOS W/L=0.22/1.2 at temp=-40C

Section B1. Comparison between measurement and simulation results (for PNP Bipolar)

- Fig.B 1 Fitting results of 1.8V vertical PNP(10X10) bipolar model at temp=25c
- Fig.B 2 Fitting results of 1.8V vertical PNP(10X10) bipolar model at temp=125c
- Fig.B 3 Fitting results of 1.8V vertical PNP(10X10) bipolar model at temp=-40c
- Fig.B 4 Fitting results of 1.8V vertical PNP(5X5) bipolar model at temp=25c
- Fig.B 5 Fitting results of 1.8V vertical PNP(5X5) bipolar model at temp=125c
- Fig.B 6 Fitting results of 1.8V vertical PNP(5X5) bipolar model at temp=-40c
- Fig.B 7 Fitting results of 1.8V vertical PNP(2X2) bipolar model at temp=25c
- Fig.B 8 Fitting results of 1.8V vertical PNP(2X2) bipolar model at temp=125c
- Fig.B 9 Fitting results of 1.8V vertical PNP(2X2) bipolar model at temp=-40C
- Fig.B 10 Fitting results of 3.3V vertical PNP (10X10) bipolar model at temp=25°C
- Fig.B 11 Fitting results of 3.3V vertical PNP (10X10) bipolar model at temp=125°C
- Fig.B 12 Fitting results of 3.3V vertical PNP (10X10) bipolar model at temp=-40°C Fig.B 13 Fitting results of 3.3V vertical PNP (5X5) bipolar model at temp=25°C
- Fig.B 14 Fitting results of 3.3V vertical PNP (5X5) bipolar model at temp=125°C

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	73/90	
	SPICE Model				

- Fig.B 15 Fitting results of 3.3V vertical PNP (5X5) bipolar model at temp=-40°C
- Fig.B 16 Fitting results of 3.3V vertical PNP (2X2) bipolar model at temp=25°C
- Fig.B 17 Fitting results of 3.3V vertical PNP (2X2) bipolar model at temp=125°C
- Fig.B 18 Fitting results of 3.3V vertical PNP (2X2) bipolar model at temp=-40°C
- Fig.B 28 Fitting results of Vbe compare to temperature for 1.8V vertical PNP bipolar model
- Fig.B 29 Fitting results of Vbe compare to temperature for 3.3V vertical PNP bipolar model

Section B2. Comparison between measurement and simulation results (for NPN Bipolar)

- Fig.B 1 Fitting results of 1.8V vertical NPN(10X10) bipolar model at temp=25C
- Fig.B 2 Fitting results of 1.8V vertical NPN(10X10) bipolar model at temp=125C
- Fig.B 3 Fitting results of 1.8V vertical NPN(10X10) bipolar model at temp=-40C
- Fig.B 4 Fitting results of 1.8V vertical NPN(5X5) bipolar model at temp=25C
- Fig.B 5 Fitting results of 1.8V vertical NPN(5X5) bipolar model at temp=125C
- Fig.B 6 Fitting results of 1.8V vertical NPN(5X5) bipolar model at temp=-40C
- Fig.B 7 Fitting results of 1.8V vertical NPN(2X2) bipolar model at temp=25C
- Fig.B 8 Fitting results of 1.8V vertical NPN(2X2) bipolar model at temp=125C
- Fig.B 9 Fitting results of 1.8V vertical NPN(2X2) bipolar model at temp=-40C
- Fig.B 10 Fitting results of 3.3V vertical NPN (10X10) bipolar model at temp=25°C
- Fig.B 11 Fitting results of 3.3V vertical NPN (10X10) bipolar model at temp=125°C
- Fig.B 12 Fitting results of 3.3V vertical NPN (10X10) bipolar model at temp=-40°C
- Fig.B 13 Fitting results of 3.3V vertical NPN (5X5) bipolar model at temp=25°C
- Fig.B 14 Fitting results of 3.3V vertical NPN (5X5) bipolar model at temp=125 °C
- Fig.B 15 Fitting results of 3.3V vertical NPN (5X5) bipolar model at temp=-40°C
- Fig.B 16 Fitting results of 3.3V vertical NPN (2X2) bipolar model at temp=25°C
- Fig.B 17 Fitting results of 3.3V vertical NPN (2X2) bipolar model at temp=125°C
- Fig.B 18 Fitting results of 3.3V vertical NPN (2X2) bipolar model at temp=-40°C
- Fig.B 19 Fitting results of Vbe compare to temperature for 1.8V vertical NPN bipolar model
- Fig.B 20 Fitting results of Vbe compare to temperature for 3.3V vertical NPN bipolar model

Section C. Comparison between measurement and simulation result (for junction diode IV&CV)

- Fig.C 1 Fitting results of 1.8V N+/Pwell diode CV model at temp=25C
- Fig.C 2 Fitting results of 1.8V N+/Pwell diode CV model at temp=125C
- Fig.C 3 Fitting results of 1.8V N+/Pwell diode CV model at temp=-40C
- Fig.C 4 Fitting results of 1.8V N+/Pwell diode CV model at temp=25C
- Fig.C 5 Fitting results of 1.8V N+/Pwell diode CV model at temp=125C
- Fig.C 6 Fitting results of 1.8V N+/Pwell diode CV model at temp=-40C
- Fig.C 7 Fitting results of 1.8V P+/Nwell diode CV model at temp=25C
- Fig.C 8 Fitting results of 1.8V P+/Nwell diode CV model at temp=125C
- Fig.C 9 Fitting results of 1.8V P+/Nwell diode CV model at temp=-40C
- Fig.C 10 Fitting results of 1.8V P+/Nwell diode IV model at temp=25C
- Fig.C 11 Fitting results of 1.8V P+/Nwell diode IV model at temp=125C
- Fig.C 12 Fitting results of 1.8V P+/Nwell diode IV model at temp=-40C
- Fig.C 13 Fitting results of 3.3V N+/Pwell diode CV model at temp=25C
- Fig.C 14 Fitting results of 3.3V N+/Pwell diode CV model at temp=125C
- Fig.C 15 Fitting results of 3.3V N+/Pwell diode CV model at temp=-40C
- Fig.C 16 Fitting results of 3.3V N+/Pwell diode IV model at temp=25C
- Fig.C 17 Fitting results of 3.3V N+/Pwell diode IV model at temp=125C
- Fig.C 18 Fitting results of 3.3V N+/Pwell diode IV model at temp=-40C

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	74/90	
	SPICE Model				

- Fig.C 19 Fitting results of 3.3V P+/Nwell diode CV model at temp=25C
- Fig.C 20 Fitting results of 3.3V P+/Nwell diode CV model at temp=125C
- Fig.C 21 Fitting results of 3.3V P+/Nwell diode CV model at temp=-40C
- Fig.C 22 Fitting results of 3.3V P+/Nwell diode IV model at temp=25C
- Fig.C 23 Fitting results of 3.3V P+/Nwell diode IV model at temp=125C
- Fig.C 24 Fitting results of 3.3V P+/Nwell diode IV model at temp=-40C
- Fig.C 25 Fitting results of 1.8V MVT N+/Pwell diode CV model at temp=25C
- Fig.C 26 Fitting results of 1.8V MVT N+/Pwell diode CV model at temp=125C
- Fig.C 27 Fitting results of 1.8V MVT N+/Pwell diode CV model at temp=-40C
- Fig.C 28 Fitting results of 1.8V MVT N+/Pwell diode IV model at temp=25C
- Fig.C 29 Fitting results of 1.8V MVT N+/Pwell diode IV model at temp=125C
- Fig.C 30 Fitting results of 1.8V MVT N+/Pwell diode IV model at temp=-40C
- Fig.C 31 Fitting results of 1.8V P+/Nwell MVT diode CV model at temp=25C
- Fig.C 32 Fitting results of 1.8V P+/Nwell diode MVT CV model at temp=125C
- Fig.C 33 Fitting results of 1.8V P+/Nwell MVT diode CV model at temp=-40C
- Fig.C 34 Fitting results of 1.8V P+/Nwell MVT diode IV model at temp=25C
- Fig.C 35 Fitting results of 1.8V P+/Nwell MVT diode IV model at temp=125C
- Fig.C 36 Fitting results of 1.8V P+/Nwell MVT diode IV model at temp=-40C
- Fig.C 37 Fitting results of 3.3V MVT N+/Pwell diode CV model at temp=25C
- Fig.C 38 Fitting results of 3.3V MVT N+/Pwell diode CV model at temp=125C
- Fig.C 39 Fitting results of 3.3V MVT N+/Pwell diode CV model at temp=-40C
- Fig.C 40 Fitting results of 3.3V MVT N+/Pwell diode IV model at temp=25C
- Fig.C 41 Fitting results of 3.3V MVT N+/Pwell diode IV model at temp=125C
- Fig.C 42 Fitting results of 3.3V MVT N+/Pwell diode IV model at temp=-40C Fig.C 43 Fitting results of 1.8V buried pwell/deep nwell diode CV model at temp=25C
- Fig.C 44 Fitting results of 1.8V buried pwell/deep nwell diode CV model at temp=125C
- Fig.C 45 Fitting results of 1.8V buried pwell/deep nwell diode CV model at temp= -40C
- Fig.C 46 Fitting results of 1.8V buried pwell/deep nwell diode IV model at temp=25C
- Fig.C 47 Fitting results of 1.8V buried pwell/deep nwell diode IV model at temp=125C
- Fig.C 48 Fitting results of 1.8V buried pwell/deep nwell diode IV model at temp= -40C
- Fig.C 49 Fitting results of nwell/psub diode CV model at temp=25C
- Fig.C 50 Fitting results of nwell/psub diode CV model at temp=125C
- Fig.C 51 Fitting results of nwell/psub diode CV model at temp=-40C
- Fig.C 52 Fitting results of nwell/psub diode IV model at temp=25C
- Fig.C 53 Fitting results of nwell/psub diode IV model at temp=125C
- Fig.C 54 Fitting results of nwell/psub diode IV model at temp=-40C
- Fig.C 55 Fitting results of deep nwell/pusb diode IV model at temp=25C
- Fig.C 56 Fitting results of deep nwell/pusb diode IV model at temp=125C
- Fig.C 57 Fitting results of deep nwell/pusb diode IV model at temp=-40C

Section D. Comparison between measurement and simulation results (for Resistance)

Fig.D1(a)(b)(c)(d) Fitting results of Nwell under STI resistance model

Fig.D2(a)(b)(c)(d) Fitting results of Nwell under AA resistance model

Fig.D5(a)(b)(c)(d) Fitting results of N+ Diffusion with silicide resistance model

Fig.D6(a)(b)(c)(d)(e)Fitting results of N+ Diffusion without silicide resistance model4

Fig.D7(a)(b)(c)(d) Fitting results of P+ Diffusion with silicide resistance model

Fig.D8(a)(b)(c)(d)(e)Fitting results of P+ Diffusion without silicide resistance model

Fig.D9(a)(b)(c)(d) Fitting results of N+ Poly with silicide resistance model

Fig.D10 (a)(b)(c)(d) Fitting results of N+ Poly_3T with silicide resistance model

Fig.D11 (a)(b)(c)(d)(e) Fitting results of N+ Poly without silicide resistance model

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	75/90	
	SPICE Model				

Fig.D12 (a)(b)(c)(d)(e) Fitting results of N+ Poly_3T without silicide resistance model

Fig.D13(a)(b)(c)(d) Fitting results of P+ Poly with silicide resistance model

Fig.D14(a)(b)(c)(d) Fitting results of P+ Poly_3T with silicide resistance model

Fig.D15(a)(b)(c)(d)(e) Fitting results of P+ Poly without silicide resistance model

Fig.D16(a)(b)(c)(d)(e) Fitting results of P+ Poly_3T without silicide resistance model

Fig.D17(a)(b)(c)(d)(e) Fitting results of 1K HRP resistance model

Fig.D18 (a)(b)(c)(d)(e) Fitting results of 1K HRP_3T resistance model

Fig.D21 (a)(b) Fitting results of Metal1 resistance model

Fig.D22 (a)(b) Fitting results of Metal2, Metal3, Metal4, Metal5 resistance model

Fig.D23 (a)(b) Fitting results of Top Metal-thin resistance model

Section F. Comparison between measurement and simulation result (for MOS noise)

Fig.F 1 The measured and simulated noise characteristics of 1.8V NMOS

Fig.F 2 The measured and simulated noise characteristics of 1.8V PMOS

Fig.F 3 The measured and simulated noise characteristics of 1.8V Native NMOS

Fig.F 4 The measured and simulated noise characteristics of 3.3V NMOS

Fig.F 5 The measured and simulated noise characteristics of 3.3V PMOS

Fig.F 6 The measured and simulated noise characteristics of 3.3V Native NMOS

Fig.F 7 The measured and simulated noise characteristics of 1.8V MVT NMOS

Fig.F 8 The measured and simulated noise characteristics of 1.8V MVT PMOS

Fig.F 9 The measured and simulated noise characteristics of 3.3V MVT NMOS

Section G. Comparison between mismatch data and simulation result (for MOS, BJT, Resistor, Varactor and MIM)

7.10 Conclusion

This document is written to provide SPICE model simulation guideline for circuit designers who use SMIC 0.18um Mix Signal Salicide 1.8V/3.3V Enhanced process. In this document, information about device modeling are given in detail, covering MOSFETs Model (wafer information, model capability, fixed corner model table, 1/f noise model, LOD Stress Effect Model,), as well as wafer information, model capability and fixed corner model table of Bipolar Gummel-Poon Model, Diode Model, Interconnection Model, Resistor Model, MOS Varactor Model, and MIM Capacitor Model.

7.11 Appendixes

7.11.1 The Flicker Noise Parameters

Parameter	Description	Default value
name		
	Flicker noise parameter A	6.25e41 (eV)-1s1-EFm-3 for NMOS; 6.188e40
NOIA		(eV)-1s1-EFm-3 for PMOS
NOIB	Flicker noise parameter B	3.125e26 (eV)-1s1-EFm-1 for NMOS; 1.5e25
	_	(eV)-1S1-EFM-1 for PMOS

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

2008-06-27

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	76/90	
	SPICE Model				

NOIC	Flicker noise parameter C	8.75 (eV)-1s1-EFm
EM	Saturation field	4.1e7V/m
AF	Flicker noise exponent	1.0
EF	Flicker noise frequency exponent	1.0
KF	Flicker noise coefficient	0.0 A2-EFs1-EFF
LINTNOI	Length Reduction Parameter Offset	0.0 m
NTNOI	Noise factor for short-channel devices	1.0
	for TNOIMOD=0 only	

7.11.2 Model Parameter Description for HSPICE Level 54

(Reference: UCB BSIM4V4.5 manual and HSPICE manual)

Parameters	Description	Unit
Model Flag Parai	meters	
LEVEL	MOSFET model level, set to 54 for HSPICE model	N/A
LMIN	Minimum channel length	m
LMAX	Maximum channel length	m
WMIN	Minimum channel width	m
WMAX	Maximum channel width	m
VERSION	Model version number	N/A
BINUNIT	Bin unit scale selector	N/A
PARAMCHK	Switch for parameter value check	N/A
MOBMOD	Mobility model selector	N/A
CAPMOD	Capacitance model selector	N/A
IGCMOD	Gate-to-channel tunneling current model selector	N/A
IGBMOD	Gate-to-substrate tunneling current model selector	N/A
RGATEMOD	Gate resistance model selector	N/A
GEOMOD	Geometry-dependent parasitic model selector	N/A
DIOMOD	Source/drain junction diode IV model selector	N/A
RDSMOD	Bias-dependent source/drain resistance model selector	N/A
RBODYMOD	Substrate resistance network model selector	N/A

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:

Doc. Title: 0.18um Mixed Signal

TD-MM18-SP-2004

Doc. Rev: Tech Dev Page No.:

Enhanced 1.8V/3.3V

SPICE Model

Doc. Rev: 1.11 77/90

Parameters	Description	Unit
PERMOD	Whether PS/PD includes the gate-edge perimeter	N/A
ACNQSMOD	AC small-signal NQS model selector	N/A
TRNQSMOD	Transient NQS model selector	N/A
General Model P	arameters	
TNOM	Temperature at which parameters are extracted	\mathbb{C}
TOXE	Electrical gate equivalent oxide thickness	m
TOXP	Physical gate equivalent oxide thickness	m
TOXM	Tox at which parameters are extracted	m
DTOX	Defined as (TOXE-TOXP)	m
EPSROX	Gate dielectric constant relative to vacuum	N/A
LINT	Length offset fitting parameter from I-V without bias	m
WINT	Width offset fitting parameter from I-V without bias	m
WL	Coefficient of length dependence for width offset	m
WLN	Power of length dependence for width offset	N/A
WW	Coefficient of width dependence for width offset	m
WWN	Power of width dependence for width offset	N/A
WWL	Coefficient of length and width cross term dependence for width offset	or m
LL	Coefficient of length dependence for length offset	m
LLN	Power of length dependence for length offset	N/A
LW	Coefficient of width dependence for length offset	m
LWN	Power of width dependence for length offset	N/A
LWL	Coefficient of length and width cross term for length offset	m
WLC	Coefficient of length dependence for CV width offset	m
WWC	Coefficient of width dependence for CV width offset	m
LLC	Coefficient of length dependence for CV length offset	m
LWC	Coefficient of width dependence for CV length offset	m

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	78/90	
	SPICE Model				

Parameters	Description	Unit
LWLC	Coefficient of length and width cross term for CV length offse	et M
WWLC	Coefficient of length and width cross term dependence for C width offset	EV M
XL	The masking and etching effects of channel length	M
XW	The masking and etching effects of channel width	M
DLC	Length offset fitting parameter from C-V	M
DWC	Width offset fitting parameter from C-V	M
XPART	Channel charge partitioning rate flag	N/A
TOXREF	Nominal gate oxide thickness for gate dielectric tunneling current model only	ng M
DLCIG	Source/drain overlap length for Igs and Igd	M
DC Parameters		
XJ	Source/Drain junction depth	M
DWG	Coefficient of Weff's gate dependence	m/V
DWB	Coefficient of Weff's substrate bias dependence	m/V ^{1/2}
RSH	Source/drain diffusion sheet resistance	Ω/square
VTH0	Threshold voltage of long channel device at Vbs=0 and small Vds	all V
K1	First-order body effect coefficient	$V^{1/2}$
K2	Second-order body effect coefficient	N/A
K3	Narrow width effect coefficient	N/A
КЗВ	Body effect coefficient of K3	1/V
W0	Narrow width effect coefficient	M
LDE0	Lateral non-uniform doping parameter at Vbs=0	M
LDEB	Lateral non-uniform doping effect on k1	M
DVT0	First coefficient of short channel effects on Vth	N/A
DVT1	Second coefficient of short channel effects on Vth	N/A

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	79/90	
	SPICE Model				

Parameters	Description	Unit
DVT2	Body-bias coefficient of short channel effects on Vth	1/V
DVT0W	First coefficient of narrow width effects on Vth for small channel length	1/m
DVT1W	Second coefficient of narrow width effects on Vth for small channel length	1/m
DVT2W	Body-bias coefficient of narrow width effects on Vth for small channel length	1/V
DVTP0	First coefficient of drain-induced Vth shift due to for long-channel pocket devices	M
DVTP1	Drain-induced coefficient of pocket implant correction to Vth	1/V
NGATE	Poly-Gate doping concentration	cm ⁻³
NDEP	Channel doping concentration at depletion edge for zero body bias	cm ⁻³
NSD	Source/drain doping concentration	cm ⁻³
A0	Bulk charge effect coefficient for channel length	N/A
A1	First non-saturation effect parameter	1/V
A2	Second non-saturation effect parameter	N/A
RDSW	Zero bias LDD resistance per unit width for RDSMOD=0	Ω*(um)WR
RDSWMIN	LDD resistance per unit width at high Vgs and zero Vbs for RDSMOD=0	Ω*(um)WR
RDW	Zero bias lightly-doped drain resistance Rd(V) per unit width for RDSMOD=1	Ω*(um)WR
RDWMIN	Lightly-doped drain resistance per unit width at high Vgs and zero Vbs for RDSMOD=1	Ω*(um)WR
RSW	Zero bias lightly-doped source resistance Rs(V) per unit width for RDSMOD=1 $\Omega *(um)^{-1}$	
RSWMIN	Lightly-doped source resistance per unit width at high Vgs and	Ω*(um)WR
		1

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:

TD-MM18-SP-2004

Doc. Title: 0.18um Mixed Signal Enhanced 1.8V/3.3V SPICE Model

Doc.Rev: Tech Dev Rev: 1.11 80/90

Parameters	Description	Unit
	zero Vbs for RDSMOD=1	
WR	Channel-width dependence parameter of LDD resistance	N/A
PRWB	Body effect coefficient of RDSW	V -0.5
PRWG	Gate bias effect coefficient of RDSW	1/V
U0	Mobility at TEMP=TNOM	m ² /(V*sec)
VSAT	Saturation velocity at TEMP=TNOM	m/sec
UA	First-order mobility degradation coefficient	m/V
UB	Second-order mobility degradation coefficient	$(m/V)^2$
UC	Body-effect of mobility degradation coefficient	m/V ²
EU	Exponent for mobility degradation of MOBMOD=2	N/A
AGS	Gate bias coefficient of Abulk	1/V
B0	Bulk charge effect coefficient for channel width	M
B1	Bulk charge effect width offset	M
PDITS	Impact of drain-induced Vth shift on Rout	1/V
PDITSL	Channel-length dependence of drain-induced Vth shift for Ro	out 1/m
PDITSD	Vds dependence of drain-induced Vth shift for Rout	1/V
KETA	Body-bias coefficient of bulk charge effect	1/V
CDSC	Source/drain and channel coupling capacitance	F/m ²
CDSCB	Body-bias sensitivity of CDSC	F/Vm ²
CDSCD	Drain-bias sensitivity of CDSC	F/Vm ²
NFACTOR	Subthreshold swing coefficient	N/A
CIT	Interface trap capacitance	F/m ²
VOFF	Offset voltage in the subthreshold region at large Wand L	V
VOFFL	Channel-length dependence of VOFF	V
MINV	Vgsteff fitting parameter for moderate inversion condition	N/A
PHIN	Non-uniform vertical doping effect on surface potential	V
FPROUT	Effect of pocket implant on Rout degradation	V/m ^{0.5}

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:

TD-MM18-SP-2004

Doc. Title: 0.18um Mixed Signal Enhanced 1.8V/3.3V SPICE Model

Doc.Rev: Tech Dev Rev: 1.11 81/90

Description	Unit	
DIBL coefficient exponent in the subthreshold region	N/A	
DIBL coefficient in the subthreshold region	N/A	
Body-bias coefficient for the subthreshold DIBL effect	1/V	
L dependence coefficient of DIBL correction parameter in Ro	ut N/A	
The first parameter of impact ionization current	m/V	
The second parameter of impact ionization current	V	
Effective Vds parameter	V	
Channel length modulation coefficient	N/A	
First output resistance DIBL effect correction parameter	N/A	
Second output resistance DIBL effect correction parameter	N/A	
Body-effect coefficient of DIBL correction parameter	1/V	
First substrate current body-effect parameter	V/m	
Second substrate current body-effect parameter	m/V	
Gate dependence of early voltage	N/A	
Pre-exponential coefficient for GIDL	1/Ω	
Exponential coefficient for GIDL	V/m	
Paramter for body-bias effect on GIDL	V^3	
Fitting parameter for band bending for GIDL	V	
First parameter for Igb in accumulation	$(Fs^2/g^{-1})^{-0.5}/m$	
Second parameter for Igb in accumulation	$(Fs^2/g)^{-0.5}/(Vm)$	
Third Parameter for Igb in accumulation	1/V	
Ideality factor for Igb in accumulation	N/A	
First parameter for Igb in inversion	$(Fs^2/g^{-1})^{-0.5}/m$	
Second parameter for Igb in inversion	$(Fs^2/g)^{-0.5}/(Vm)$	
Third Parameter for Igb in inversion	1/V	
Voltage offset parameter for Igb in inversion	N/A	
	DIBL coefficient exponent in the subthreshold region DIBL coefficient in the subthreshold region Body-bias coefficient for the subthreshold DIBL effect L dependence coefficient of DIBL correction parameter in Ro The first parameter of impact ionization current The second parameter of impact ionization current Effective Vds parameter Channel length modulation coefficient First output resistance DIBL effect correction parameter Second output resistance DIBL effect correction parameter Body-effect coefficient of DIBL correction parameter First substrate current body-effect parameter Second substrate current body-effect parameter Gate dependence of early voltage Pre-exponential coefficient for GIDL Exponential coefficient for GIDL Fitting parameter for band bending for GIDL First parameter for Igb in accumulation Second parameter for Igb in accumulation Ideality factor for Igb in accumulation First parameter for Igb in inversion Second parameter for Igb in inversion Third Parameter for Igb in inversion	

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:

TD-MM18-SP-2004

Doc. Title: 0.18um Mixed Signal Enhanced 1.8V/3.3V SPICE Model

Doc. Rev: Tech Dev Rev: 1.11 82/90

Parameters	Description	Unit
NIGBINV	Ideality factor for Igb in inversion	N/A
AIGC	Parameter for Igcs and Igcd	$(Fs^2/g^{-1})^{-0.5}/m$
BIGC	Parameter for Igcs and Igcd	$(Fs^2/g)^{-0.5}/(Vm)$
CIGC	Parameter for Igcs and Igcd	1/V
AIGSD	Parameter for Igs and Igd	$(Fs^2/g^{-1})^{-0.5}/m$
BIGSD	Parameter for Igs and Igd	$(Fs^2/g)^{-0.5}/(Vm)$
CIGSD	Parameter for Igs and Igd	1/V
NIGC	Parameter for Igcs, Igcd, Igs and Igd	N/A
POXEDGE	Factor for the gate oxide thickness in source/drain overlaregion	P N/A
PIGCD	Vds dependence of Igcs and Igcd	N/A
NTOX	Exponent for the gate oxide ratio	N/A
XRCRG1	Parameter for distributed channel-resistance effect for both intrinsic-input resistance and charge-deficit NQS models	
XRCRG2	Parameter to account for the excess channel diffusion resistance for both intrinsic input resistance and charge-deficit N/A NQS models	
Temperature Ef	fects Parameters	
KT1	Temperature coefficient for threshold voltage	V
KT1L	Channel length dependence of the temperature coefficient for threshold voltage	vr Vm
KT2	Body-bias coefficient of Vth temperature effect	N/A
AT	Temperature coefficient for VSAT	m/sec
UA1	Temperature coefficient for UA	m/V
UB1	Temperature coefficient for UB	$(m/V)^2$
UC1	Temperature coefficient for UC	m/V ²
UTE	Mobility temperature exponent	N/A

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:

TD-MM18-SP-2004

Doc. Title: 0.18um Mixed Signal
Enhanced 1.8V/3.3V
SPICE Model

Doc.Rev: Tech Dev Rev: 1.11 83/90

Parameters	Description	Unit
PRT	Temperature coefficient for RDSW	Ω*um
Capacitance Par	rameters	J
CGSO	Non LDD region source-gate overlap capacitance per channel length	F/m
CGDO	Non LDD region drain-gate overlap capacitance per channel length	F/m
CGBO	Gate bulk overlap capacitance per unit channel length	F/m
ACDE	Exponential coefficient for charge thickness in CAPMOD=2 for accumulation and depletion regions	m/V
MOIN	Coefficient for the gate-bias dependent surface potential	N/A
NOFF	CV parameter in Vgsteff,CV for weak to strong inversion	N/A
VOFFCV	CV parameter in Vgsteff,CV for week to strong inversion	V
Noise Parameter	rs	
NOIA	Flicker noise parameter A	eV ⁻¹ s*m ⁻²
NOIB	Flicker noise parameter B	eV ⁻¹ s
NOIC	Flicker noise parameter C	eV ⁻¹ s*m ⁻²
EM	Saturation field	V/m
AF	Flicker noise exponent	N/A
KF	Flicker noise coefficient	N/A
EF	Flicker noise frequency exponent	N/A
NTNOI	Noise factor for short-channel devices	N/A
TNOIA	Coefficient of channel-length dependence of total channel thermal noise	N/A
TNOIB	Channel-length dependence parameter for channel thermal noise partitioning	N/A
Diode Paramete	rs	<u> </u>
JSS, JSD	Bottom junction reverse saturation current density	A/m ²

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:

Doc. Title: 0.18um Mixed Signal

Enhanced 1.8V/3.3V

SPICE Model

Doc.Rev: Tech Dev Rev: 1.11 84/90

Parameters	Description	Unit
JSWS, JSWD	Isolation-edge sidewall reverse saturation current density	A/m
JSWGS, JSWGD	Gate-edge sidewall reverse saturation current density	A/m
IJTHSFWD, IJTHDFWD	Limiting current in forward bias region	A
BVS, BVD	Breakdown voltage	V
XJBVS, XJBVD	Fitting parameter for diode breakdown	N/A
NJS, NJD	Emission coefficients of junction for source and drain junctions, respectively	N/A
CJS, CJD	Bottom junction capacitance per unit area at zero bias	F/m ²
CJSWS, CJSWD	Isolation-edge sidewall junction capacitance per unit area	F/m
CJSWGS, CJSWGD	Gate-edge sidewall junction capacitance per unit length	F/m
MJS, MJD	Bottom junction capacitance grating coefficient	N/A
MJSWS, MJSWD	Isolation-edge sidewall junction capacitance grading coefficient	N/A
MJSWGS, MJSWGD	Gate-edge sidewall junction capacitance grading coefficient	N/A
PBS PBD	Bottom junction built-in potential	V
PBSWGS, PBSWGD	Isolation-edge sidewall junction built-in potential	V
PBSWS, PBSWD	Gate-edge sidewall junction built-in potential	V/K
TPB	Temperature coefficient of PB	V/K
TPBSW	Temperature coefficient of PBSW	V/K
TPBSWG	Temperature coefficient of PBSWG	V/K
TCJ	Temperature coefficient of CJ	1/K
TCJSW	Temperature coefficient of CJSW	1/K
TCJSWG	Temperature coefficient of CJSWG	1/K
RDC	Additional drain resistance due to contact resistance	Ω/square
RSC	Additional source resistance due to contact resistance	Ω /square
Layout Related Para	meters	

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:

Doc. Title: 0.18um Mixed Signal

TD-MM18-SP-2004

Doc.Rev: Tech Dev Rev: 1.11 85/90

SPICE Model

Doc.Rev: Tech Dev Rev: 1.11 85/90

Parameters	Description	Unit
DMCG	Distance from S/D contact center to the gate edge	M
DMDG	Same as DMCG but for merged for device only	M
DMCGT	DMCG of test structures	M
DWJ	Offset of the S/D junction width	M
XGW	Distance from the gate contact to the channel edge	M
XGL	Channel length offset due to mask/etch effect	M
RF Parameters		
RSHG	Gate electrode sheet resistance	Ω/ square
GBMIN	Conductance in parallel with each of the five substrate resistances	Ω
RBPB	Resistance connected between bNodePrime and bNode	Ω
RBPD	Resistance connected between bNodePrime and dbNode	Ω
RBPS	Resistance connected between bNodePrime and sbNode	Ω
RBDB	Resistance connected between dbNode and bNode	Ω
Stress Paramete	ers	
SA	Distance between OD edge to Poly from one side	M
SB	Distance between OD edge to Poly from other side	M
SD	Distance between neighbouring fingers	M
SAREF	Reference distance between OD and edge to poly of one side	M
SAREF	Reference distance between OD and edge to poly of the other M side	
WLOD	Width parameter for stress effect	M
KU0	Mobility degradation/enhancement coefficient for stress effect	M
KVSAT	Saturation velocity degradation/enhancement parameter for stress effect	
TKU0	Temperature coefficient of KU0 N/A	
LKU0	Length dependence of ku0	N/A

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	86/90	
	SPICE Model				

Parameters	Description	Unit
WKU0	Width dependence of ku0	N/A
LLODKU0	Length parameter for u0 stress effect	N/A
WLODKU0	Width parameter for u0 stress effect	N/A
KVTH0	Threshold shift parameter for stress effect	Vm
LKVTH0	Length dependence of kvth0	N/A
WKVTH0	Width dependence of kvth0	N/A
PKVTH0	Cross-term dependence of kvth0	N/A
LLODVTH	Length parameter for Vth stress effect	N/A
WLODVTH	Width parameter for Vth stress effect	N/A
STK2	K2 shift factor related to Vth0 change	M
LODK2	K2 shift modification factor for stress effect	N/A
STETA0	Eta0 shift factor related to Vth0 change	M
LODETA0	Eta0 shift modification factor for stress effect	N/A

7.12 Reference

- [1] BSIM Models: http://www-device.eecs.berkeley.edu/bsim/
- [2] Wiedong Liu and Chenming Hu, "BSIM4 and MOSFET Modeling for IC Simulation", World Scientific, 2011.
- [3] BSIM4v4.7 MOSFET Model user manual
- [4] Terence B.Hook, etc., "Lateral Ion Implant Straggle and Mask Proximity Effect", IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol.50, No.9, September 2003.
- [5] M. Horstmann et al., "Integration and optimization of embedded SiGe, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies", in Proc. IEDM 2005
- [6] A. Wei et al., "Multiple Stress Memorization in Advanced SOI CMOS Technologies", in Proc. VLSI Symposium 2007
- [7] A. Wei et al., "Integration Challenges for Advanced Process-Strained CMOS on Biaxially-Strained SOI (SSOI) Substrates", ECS Trans. 6, (1) 15 (2007)
- [8] S. Narasimha et al., "High Performance 45-nm SOI Technology with Enhanced Strain, Porous Low-k BEOL, and Immersion Lithography", in Proc. IEDM 2006
- [9] K. W. Ang et al., "Enhanced performance in 50 nm n-MOSFETs with silicon-carbon source/drain regions," in

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	87/90	
	SPICE Model				

Proc. IEDM 2004

- [10] M. Wiatr et al., "REVIEW ON PROCESS-INDUCED STRAIN TECHNIQUES FOR ADVANCED LOGIC TECHNOLOGIES", Advanced Micro Devices, Inc.
- [11] Weidong Liu, Kanyu M. Cao, Xiaodong Jin, and Chenming Hu, "BSIM4.0.0 Technical Notes," http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html.
- [12] H. K. Gummel and H. C. Poon, "A compact bipolar transistor 42, pp. 914-920, June 1954.
- [13] Raphael Interconnect Analysis Program Tutorial, version 2000.2, page 3-11~3-13)

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	88/90	
	SPICE Model				

8. Attachment

8.1 ASCII files: SMIC_SP_model_018MSE_1833.tar.gz

```
SMIC_SP_model_018MSE_1833.tar.gz

→ hspice
spectre
ms018_enhanced_v1p11_interconnect_structure1_tm_9k.txt
ms018_enhanced_v1p11_interconnect_structure1_tm_22k.txt
ms018_enhanced_v1p11_interconnect_structure1_tm_34k.txt
ms018_enhanced_v1p11_interconnect_structure1_tm_40k.txt
ms018_enhanced_v1p11_interconnect_structure2_tm_9k.txt
ms018_enhanced_v1p11_interconnect_structure2_tm_22k.txt
ms018_enhanced_v1p11_interconnect_structure2_tm_34k.txt
ms018_enhanced_v1p11_interconnect_structure2_tm_34k.txt
```

HSPICE and SPECTRE folder content:

hspice	spectre
*	
ms018_enhanced_v1p11_readme.txt	ms018_enhanced_v1p11_readme_spe.txt
ms018_enhanced_v1p11.lib	ms018_enhanced_v1p11_spe.lib
ms018_enhanced_v1p11.mdl	ms018_enhanced_v1p11_spe.mdl
ms018_enhanced_v1p11_mis.mdl	ms018_enhanced_v1p11_mis_spe.mdl
ms018_enhanced_v1p11_dio.mdl	ms018_enhanced_v1p11_dio_spe.mdl
ms018_enhanced_v1p11_res.ckt	ms018_enhanced_v1p11_res_spe.ckt
ms018_enhanced_v1p11_var.ckt	ms018_enhanced_v1p11_var_spe.ckt
ms018_enhanced_v1p11_mim.ckt	ms018_enhanced_v1p11_mim_spe.ckt
ms018_enhanced_v1p11_mim.mdl	ms018_enhanced_v1p11_mim_spe.mdl
ms018_enhanced_v1p11_res.mdl	ms018_enhanced_v1p11_res_spe.mdl
ms018_enhanced_v1p11_bjt.mdl	ms018_enhanced_v1p11_bjt_spe.mdl
pnp33a4.mdl	pnp33a4_spe.mdl
pnp33a25.mdl	pnp33a25_spe.mdl
pnp33a100.mdl	pnp33a100_spe.mdl
pnp18a4.mdl	pnp18a4_spe.mdl
pnp18a25.mdl	pnp18a25_spe.mdl
pnp18a100.mdl	pnp18a100_spe.mdl
npn33a4.mdl	npn33a4_spe.mdl
npn33a25.mdl	npn33a25_spe.mdl
npn33a100.mdl	npn33a100_spe.mdl
npn18a4.mdl	npn18a4_spe.mdl
npn18a25.mdl	npn18a25_spe.mdl
npn18a100.mdl	npn18a100_spe.mdl
	res.va
	gc.va

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc. Title: 0.18um Mixed Signal	Doc.Rev:	Tech Dev	Page	No.:
TD-MM18-SP-2004	Enhanced 1.8V/3.3V	2R	Rev: 1.11	89/90	
	SPICE Model				

*

8.2 GDS Files:

DIO_BPWDNW.gds

DIO_DNWDIO.gds

DIO_NDIOMVT18.gds

DIO_NDIOMVT33.gds

DIO_NPW18.gds

DIO_NPW33.gds

DIO NWPSUB.gds

DIO_PDIOMVT18.gds

DIO_PNW18.gds

DIO PNW33.gds

NPN18A100.gds

NPN18A25.gds

NPN18A4.gds

NPN33A100.gds

NPN33A25.gds

NPN33A4.gds

PNP18A100.gds

PNP18A25.gds

PNP18A4.gds

PNP33A100.gds

PNP33A25.gds

PNP33A4.gds

8.3 DOC Files

SMIC_SP_fit_A_018MSE_1833. pdf

SMIC_SP_fit_B1_018MSE_1833. pdf

SMIC_SP_fit_B2_018MSE_1833. pdf

SMIC_SP_fit_C_018MSE_1833. pdf

SMIC_SP_fit_D_018MSE_1833. pdf SMIC_SP_fit_F_018MSE_1833. pdf

SMIC_SP_fit_G_018MSE_1833. pdf

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.