Mean-payoff objectives for Markov Decision Processes

On Value Iteration

Based on a paper accepted at CAV 2017

 $\frac{Pranav~Ashok}{Dan~Křetínský}^1,~Krishnendu~Chatterjee^2,~Przemysław~Daca^2,~Jan~Křetínský^1~and~Tobias~Meggendorfer^1$

April 23, 2017

¹Technical University of Munich, Germany

²IST Austria

Motivation

Markov Decision Processes (MDPs) are a standard model for describing systems which display probabilistic as well as non-deterministic behaviour.

1

Markov Decision Process (MDPs)

Strategy

A strategy (or policy) gives the action to be taken at every state.¹

¹We are only representing partial strategies in the diagrams

Strategy

A strategy (or policy) gives the action to be taken at every state.¹

¹We are only representing partial strategies in the diagrams

Mean-payoff

Mean payoff or Long-run average reward

$$\rho = 0$$
 10 10 10 0 10 0 10 0 10 0 ...

Then, n-step average reward is given by

$$MP_n(\rho) := \frac{1}{n} \cdot \sum_{i=1}^n \rho_i \xrightarrow{n \to \infty} 5$$

We usually talk about min/max mean-payoff.

$$v := \sup_{\pi} \lim_{n \to \infty} \mathbb{E}^{\pi}[MP_n(\rho)]$$

4

$Algorithms^2\\$

- Linear Programming (LP)
- Strategy Iteration (SI)
- Value Iteration (VI)

²Markov Decision Processes, Martin L. Puterman, '94

Value Iteration

Total Expected Rewards

$$v_n(s_1, a) = \{0 + 0.99 \cdot v_{n-1}(s_3) + 0.01 \cdot v_{n-1}(s_5)\}$$

$$v_n(s_1, b) = \{0 + v_{n-1}(s_2)\}$$
max

Value Iteration

Total reward

$$v_n(s, a) = r(s, a) + \sum_{s'} p(s, a, s') v_{n-1}(s')$$

 $v_n(s) = \max_{a} \{v_n(s, a)\}$

Average reward

$$\lim_{n\to\infty}\frac{v_n(s)}{n}~\approx~(v_n(s)-v_{n-1}(s)),~\text{for large}~n$$

Our Contribution

Computing ε -optimal solutions

Goals:

- Identify what contributes the most to the mean-payoff and exploit this knowledge
- Use techniques from machine learning to avoid exploring the whole MDP

Another look at the MDP

Another look at the MDP

Maximal end-components!

Maximal End Components (MECs)

A MEC is a (maximal) pair (S', A') such that

- successors along every action in A^\prime is part of S^\prime
- for all $s_x, s_y \in S'$ there exists $s_x \stackrel{*}{\to} s_y$.

An example MEC

MEC viewed as an MDP

Recap

- \bullet In general, not known when to stop VI so as to get $\epsilon\text{-}\text{optimal}$ value
- But known for MDPs in which every state can reach every other state via some action (communicating MDPs)³
- Moreover, only MECs contribute to the mean-payoff

³Martin L. Puterman, Markov Decision Processes, 1994

Approach (MEC-Decomposition)

Find all MECs and perform VI on them until ε -convergence

Transformation to reachability problem

Max. mean-payoff = $\sup_{\pi} p_1 m_1 + p_2 m_2 + p_3 m_3$

MEC Collapsing

Collapse MEC into a single state and add a special action

Transformation to reachability problem

Let the largest MEC reward be $R = max\{m_1, m_2, m_3\}$. Then,

$$\frac{\text{Max. mean-payoff}}{R} = \sup_{\pi} p_1 \frac{m_1}{R} + p_2 \frac{m_2}{R} + p_3 \frac{m_3}{R}$$

Transformation to reachability problem

Let the largest MEC reward be $R = max\{m_1, m_2, m_3\}$. Then,

$$\frac{\text{Max. mean-payoff}}{R} = \sup_{\pi} p_1 \frac{m_1}{R} + p_2 \frac{m_2}{R} + p_3 \frac{m_3}{R}$$

Can we do better?

- Whole state space is being explored
- Finding MECs on large state spaces is computationally expensive

Idea: Partial exploration using sampling – let sampling guide us to the "important" regions

Red region is reachable with small probability

- Existing: BRTDP approach for reachability⁴⁵
- Maintains lower and upper bounds for every state, L and U
- Uncertainty is given by (U L)
- Target state: U = L = 1; Sink states: U = L = 0
- Repeatedly samples paths from initial state
- Back-propagates values along the path using VI operator

⁴Bounded Real-Time Dynamic Programming, McMahan et. al., ICML '05

 $^{^5}$ Verification of Markov Decision Processes using Learning Algorithms, Brazdil et. al., ATVA '14

- Repeatedly collapse MECs amongst the states explored so far
- While collapsing, compute their values and add transition to the special + and - states
- Solve reachability for +

Even better?

- Sample paths like in the previous method
- When MECs are detected, collapse them but...
- Don't compute MEC value until convergence
- Add transition with probability \propto (U-L) to a ? state
- Refine value of a MEC only when the ? state is encountered

Collapse MEC into a single state and add a special action

Summary

We saw two methods which can be used to obtain mean-payoff with guarantees

- 1. Collapse MECs, add transitions to \pm -states, run reachability
- 2. Run sampling, collapse on-the-go, refine MEC values only when ? is encountered

Benchmarks

Model	States	MECs	${\tt LP}^1$	MEC-VI ²	MEC-BRTDP3	$\rm HM2^4$
virus	809	1	0.19	0.05	0.05	ТО
cs_nfail4	960	176	0.7	0.18	0.19	3.34
investor	6 688	837	2.8	0.51	0.47	1.32
phil-nofair5	93 068	1	TO	6.67	6.92	TO
rabin4	668 836	1	TO	112.38	112.49	TO

- 1. MultiGain, Brazdil et. al. 2015.
- 2. MEC-VI: Straightforward conversion to reachability, then VI
- 3. MEC-BRTDP: Straightforward conversion to reachability, then $\ensuremath{\mathsf{BRTDP}}$
- 4. HM2: Heuristic Method 2, refine MEC values when needed

Benchmarks

Heuristic Method 2 better by orders of magnitude depending on topology

Model	States	MEC-VI	HM2	HM2 States	HM2 MECs
zeroconf(40,10)	3 001 911	МО	5.05	481	3
avoid				582	3
zeroconf(300,15)	4 730 203	MO	16.6	873	3
avoid				5 434	3
sensors(2)	7 860	18.9	20.1	3 281	917
sensors(3)	77 766	2293.0	37.0	10 941	2 301

Conclusions

- If the MDP is a single MEC, then the standard VI⁶, works the best.
- If the MDP is not a single MEC, then
 - 1. for small models, the MEC-collapsing methods work the fastest
 - 2. for large models, usually Heuristic Method 2 works the best

⁶Markov Decision Processes, Martin L. Puterman, '94