VERSUCH 107

Das Kugelfallviskosimeter nach Höppler

 $\label{tabea} Tabea\ Hacheney \\ tabea.hacheney @tu-dortmund.de$

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 14.12.2021 Abgabe: 21.12.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung	3
3	Auswertung 3.1 Bestimmung der Apparatenkonstante	3
4	Diskussion	5
5	Messwerte	5
Lit	teratur	6

1 Theorie

[sample]

2 Durchführung

3 Auswertung

3.1 Bestimmung der Apparatenkonstante

Um die Apparatenkonstante zu bestimmen, werden die Dichten der Kugeln benötigt. Die Messwerte der Massen und Radien der beiden Kugeln sind in Tabelle 1 zu finden. Die Radien und Massen bestimmen sich zu

$$\begin{split} r_{\rm Gr} &= (7,86 \pm 0,04) \cdot 10^{-3} \, \mathrm{m} \\ m_{\rm Gr} &= (4,54 \pm 0,01) \cdot 10^{-3} \, \mathrm{kg} \\ r_{\rm Kl} &= (7,64 \pm 0,11) \cdot 10^{-3} \, \mathrm{m} \\ m_{\rm Kl} &= (4,44 \pm 0,02) \cdot 10^{-3} \, \mathrm{kg}. \end{split}$$

Aus () ergibt sich für die Dichten

$$\begin{split} \rho_{\rm Gr} &= (2232 \pm 34) \, \frac{\rm kg}{\rm m^3} \\ \rho_{\rm Kl} &= (2380 \pm 10) \, \frac{\rm kg}{\rm m^3}. \end{split}$$

Tabelle 1: Messdaten der Massen und Radien der beiden Kugeln.

$r_{\rm Gr}/10^{-3}\rm m$	$m_{\rm Gr}/10^{-3}\rm kg$	$r_{\rm Kl}/10^{-3}\rm m$	$m_{\rm Kl}/10^{-3}{\rm kg}$
7,90	4,54	7,75	4,46
7,80	$4,\!56$	$7,\!55$	4,46
$7,\!85$	4,54	$7,\!55$	4,43
7,90	$4,\!54$	7,80	$4,\!42$
7,85	4,54	$7,\!55$	$4,\!43$

Weiterhin werden noch die Fallzeiten der beiden Kugeln im Viskosimeter benötigt. Die Fallzeiten der kleinen und der großen Kugel sind in Tabelle 2 angegeben. Aus den Messwerten ergibt sich für die Fallzeiten

$$t_{\text{Kl}} = (12, 04 \pm 0, 18) \,\text{s}$$

 $t_{\text{Gr}} = (39, 7 \pm 0, 39) \,\text{s}.$

Tabelle 2: Fallzeiten der Kugeln.

$t_{\rm Kl}/{\rm s}$	$t_{\mathrm{Gr}}/\mathrm{s}$
12,28	40,17
12,06	40,17
11,94	$39,\!27$
11,97	$39,\!67$
$12,\!12$	$39,\!67$
$12,\!12$	$39,\!55$
$12,\!13$	39,40
$11,\!87$	$39,\!57$
$11,\!87$	$40,\!52$
$11,\!59$	$39,\!85$
$12,\!12$	$39,\!52$
$12,\!13$	$39,\!60$
11,88	$39,\!43$
11,97	$39,\!49$
12,09	38,92
$12,\!47$	39,09
$12,\!15$	40,11
12,06	$40,\!17$
12,06	39,99
11,84	39,88

Nun wird mit Hilfe der Fallzeitwerte der kleinen Kugel die Viskosität von Wasser bei Raumtemperatur bestimmt. Dabei werden

$$K_{\rm Kl} = 7,64 \cdot 10^{-8} \, \frac{\rm Pa \cdot m^3}{\rm kg}$$

$$\rho_{\rm Fl} = 998, 2 \, \frac{\rm kg}{\rm m^3}$$

verwendet. $K_{\rm Kl}$ ist die angegeben Appartenkonstante für die kleine Kugel [1] und $\rho_{\rm Fl}$ die Dichte von Wasser bei Raumtemperatur [2]. Daraus ergibt sich für die Viskosität des Wassers bei Raumtemperatur

$$\eta_{\rm RT} = (1, 27 \pm 0, 02) \cdot 10^{-3} \, {\rm Pa \cdot s}.$$

Abbildung 1: Plot.

4 Diskussion

5 Messwerte

Radius &. Radius Ul.	Massege.	Massey.
1,58cm 1,55cm	4.61 4.54	4,46
1,56cm 1,55 cm	4,60 4,56	4,46
1,57cm 1,55cm	4,60 4,54	4,43
1,58cm 1,56 cm	4,614,54	4,42
1,57cm 1,55cm	4,614,54	4,43
35 63	4,59	
	191.54	1

Abbildung 2: Messung der Massen und Dichte der beiden Kugeln.

Literatur

- $[1] \quad \text{TU Dortmund. } \textit{Versuch V107: Das Kugelfall-Viskosimeter nach H\"{o}ppler. 2014.}$
- [2] Frostburg State University. Water Density Calculator. URL: http://antoine.frostburg.edu/chem/senese/javascript/water-density.html.