Téma: Osobní informatika, MS Excel: numerická a grafická analýza dat

Úkoly:

I) Z plné kontingenční tabulky z úlohy 4a) z minulého týdne vyberte pouze následující firmy: CESKOLSIDLO, DEWALSIDLO, GESIPA, VELBIKE

V oblasti hodnot změňte součet položky *Cena bez DPH* na její počet. Statisticky ověřte hypotézu, že existuje významná souvislost mezi konkrétní firmou (*Kód odběratele*) a jejím způsobem úhrady (*Plnění*).

• Uměli byste modifikovat vstupní data tak, abyste dosáhli právě opačného výsledku?

Řešení první části otázky I):

Reálná data						Očekávaná data			
	CR	EU	Celkem				CR	EU	Celkem
CESKOLSIDLO	55	0	55			CESKOLSIDLO	29,00	26,00	0,23
DEWALSIDLO	0	49	49			DEWALSIDLO	25,83	23,17	0,21
GESIPA	0	64	64			GESIPA	33,74	30,26	0,27
VELBIKE	71	0	71			VELBIKE	37,43	33,57	0,30
Celkem	126	113	239			Celkem	0,53	0,47	1,00
				Test:	1,57E-51				

- II) Tabulku vydaných faktur seřaďte podle položky *Plnění* a graficky znázorněte závislost mezi položkami *Celkem DPH* a *Cena celkem bez DPH* pro prvních 50 tuzemských záznamů. Tento graf doplňte vhodnou spojnicí trendu, zobrazte příslušnou regresní rovnici i výsledný korelační koeficient. Co nám tento statistický model dat říká? Lze z něj vyvodit i nějaké numerické závěry?
 - Uměli byste vytvořit z hlediska korelace, tj. bez ohledu na zpracovávanou datovou tabulku, právě opačný případ?
- III) Ve stejné sadě dat nejděte odběratele s největším počtem vydaných faktur, vytvořte pro něj časovou řadu, charakterizující vývoj celkové fakturované částky (součet *Cena bez DPH*) v jednotlivých letech (nová položka *ROK*) a na základě těchto údajů předpovězte (predikujte) částku, fakturovanou v následujícím roce.

Řešení: predikce celkové fakturované částky hledané firmy pro rok 2013 je 6 455 123,- Kč

IV) Představme si, že BikeNet zřídila výhradně pro své tři klíčové zákazníky Z_1, Z_2 a Z_3 tři výrobní provozy P_A, P_B a P_C, nacházející se na různých místech republiky s kapacitou 100, 200 a 300 kol za měsíc. Každý ze zákazníků Z_i přitom odebírá přesně 200 kol měsíčně. Vzhledem k rozdílným možnostem jednotlivých provozů a jejich vzdálenostech od zákazníků jsou celkové náklady na jedno vyrobené kolo následující:

Náklady [měna]	Z_1	Z_1	Z_1
P_A	90	80	50
P_B	80	60	80
P_C	90	70	90

Jaká by měla být struktura dodávek zákazníkům, tj. počty (P_A -> Z_i), (P_B -> Z_i) a (P_C -> Z_i) za předpokladu **minimalizace celkových nákladů**? Jde o klasickou optimalizační úlohu typu dopravní problém, na níž budeme demonstrovat práci s doplňkem Řešitel (Solver). Předtím ji ale zkuste vyřešit prostou úvahou (např. BikeNet se snaží minimalizovat náklady i počty přeprav u jednotlivých zákazníků, tj. 200 kol z P_A pro Z_1 považuje za výhodnější, než mu dodat 100 kusů z P_A a 100 kusů z P_B.

Neoptimální řešení 1: celkové $T_c = 48\,000$,-, počet přeprav $P_p = 5$

Dodávky [ks]	Z_1	Z_1	Z_1
P_A	100	0	
P_B	100	0	100
P_C	0	200	100

Neoptimální (suboptimální) řešení 2: $T_c = 44\,000, -$, $P_p = 6$

Dodávky [ks]	Z_1	Z_1	Z_1
P_A	0	0	100
P_B	100	100	0
P_C	100	100	100

Optimální řešení: $T_c = 44~000,-$, $P_p = 4$

Dodávky [ks]	Z_1	Z_1	Z_1
P_A	0	0	100
P_B	200	0	0
P_C	0	200	100