

Name: Alan Relienauer NSHE ID: 2001751827

Question 1:

What's the time complexity of the below operations:

(a). for (let
$$i = 0$$
; $i < n$; $i + +$){ — $O(n)$
for (let $j = 0$; $j < m$; $j + +$){ — $O(m)$
cout $<< i << '''' << j$;}}

(b). for (int i = n; i > 0; i=i/2){
 for (int j = 0; j < n; j++){
 cout << "hello"; }}

Question 2:

What's the pre-order, in-order traversal of the below tree?

Preorder: A, C, Z, G, D, H, Q, L, T In order: Z, C,G, A,Q, H, L, T, D

L,R, Ro Post Orde: 7,6, C, Q, L, H, J, D, A

Question 3:

Insert below into a AVL tree. Please write down each step of rotation to make it an AVL tree. Insert: 50, 25, 75, 20, 90, 70, 100, 95

1) Injert all the elements

@ Determine
the Bulance funtur
Arall never

3 Determine the source subtree Per imbalance

@ Rothte Parbulance - Left Rothwar of 50& 75

Ocheck balance agan

6) Tree is balanced Final AVL tree

Final true: 75 50 90 20 70 95 100

Question 4:

Please indicate the computational complex of the below list-based priority queue.

	insertItem	removeMin	minKey	minElement
Unsorted list implementation	0(1)	0(n)	Q(n)	O(n)
sorted list implementation	O(n)	0(1)	0(1)	0(1)

Question 5:

Given the below list-data, implement a selection sort for the priority queue.

	Sequence S	Priority Queue P
Input	(7, 4, 8, 2, 5, 3, 9)	0
((a) Insur all clemants (b) (g)	(17) (17,4,8) (17,4,8) (17,4,8,2) (17,4,8,2,5,3)
(a) remare Min remove Min	(7,4,8,5,9): (2) (7,4,8,5,9): (2,3) (7,8,5,9): (2,3,4) (7,8,9): (2,3,4,5) (8,9): (2,3,4,5,7) (9): (2,3,4,5,7,8) (): (2,3,4,5,7,8)

Question 6:

Is it a binary heap? Why or why not?

No, the behavy help must be a complete tree of this is an incomplete tree.

This is also not a binny heap smee it also is an incomplete tree.

this tree is valid, it neets all three binary heap requirements.

Question 7:

implement removeMin() for the below binary heap

- 1 remove Root
 2 replace with last added

OPercolate down

Question 8:

implement insert() for the below binary heap: insert a node with value 3.

Oinsert at end

3) Percolste up

13

Question 9:

fill out each step in the three parts: current node, queue, and visited, for implementing breadth first search for traversing a graph

(1) Current node: A

Queue: **B**, **D** Visited: **A**

2) currenz node: B

Queue: D, E, C

Vriitch: A) B

3 curer rode: D

Queue: E, C, F, G Visited: A, B, D 9 Current node: E Queue: C, F, G, H Visited: A, B, D, E

- Schred neck: C Queue: F,G,H Visited A, B, D, E, C
- @curenz node: F Queue: G, H Virited: A, B, D, E, C, F
- Downfrode: G Queuc: H, I Visited: A, B,D, E, C,F,G
- 8 Current node: H Quene: I Visited: A, B, D, E, C, F, 6, H
- 9 Chrest rade: I Queue: Vissted: A,B,D,E,C,F,G,H, I