Time Series Analysis 1. Stationary ARMA models

Andrew Lesniewski

Baruch College New York

Spring 2017

Outline

Time series

- A time series is a sequence of data points X_t indexed a discrete set of (ordered) dates t, where -∞ < t < ∞.
- Each X_t can be a simple number or a complex multi-dimensional object (vector, matrix, higher dimensional array, or more general structure).
- We will be assuming that the times t are equally spaced throughout, and denote the time increment by h (e.g. second, day, month). Unless specified otherwise, we will be choosing the units of time so that h = 1.
- Typically, time series exhibit significant irregularities, which may have their origin either in the nature of the underlying quantity or imprecision in observation (or both).
- Examples of time series commonly encountered in finance include:
 - (i) prices,
 - (ii) returns,
 - (iii) index levels,
 - (iv) trading volums,
 - (v) open interests,
 - (vi) macroeconomic data (inflation, new payrolls, unemployment, GDP, housing prices, . . .)

Time series

- For modeling purposes, we assume that the elements of a time series are random variables on some underlying probability space.
- Time series analysis is a set of mathematical methodologies for analyzing observed time series, whose purpose is to extract useful characteristics of the data.
- These methodologies fall into two broad categories:
 - non-parametric, where the stochastic law of the time series is not explicitly specified;
 - (ii) parametric, where the stochastic law of the time series is assumed to be given by a model with a finite (and preferably tractable) number of parameters.
- The results of time series analysis are used for various purposes such as
 - (i) data interpretation,
 - (ii) forecasting,
 - (iii) smoothing,
 - (iv) back filling, ...
- We begin with stationary time series.

Stationarity and ergodicity

- A time series (model) is *stationary*, if for any times $t_1 < \ldots < t_k$ and any τ the joint probability distribution of $(X_{t_1+\tau}, \ldots, X_{t_k+\tau})$ is identical with the joint probability distribution of $(X_{t_1}, \ldots, X_{t_k})$.
- A stationary time series model is ergodic if

$$\lim_{T \to \infty} \frac{1}{T} \sum_{1 \le k \le T} X_{t+k} = \mu, \tag{1}$$

i.e. if the time average of X_t is equal to the (ensemble) average.

- Ergodicity is a desired property of a financial time series, as we are always faced with a single realization of a process rather than an ensemble of alternative outcomes.
- The limit in (1) is usually understood in the sense of squared mean convergence.
- The notions of stationarity and ergodicity are hard to verify in practice. Luckily, there is a more practical concept.

Autocovariance and stationarity

- A time series is covariance-stationary (a.k.a. weakly stationary), if:
 - (i) $E(X_t) = \mu$ is a constant,
 - (ii) For any τ , the *autocovariance* Cov(X_s , X_t) is time translation invariant,

$$Cov(X_{s+\tau}, X_{t+\tau}) = Cov(X_s, X_t), \tag{2}$$

i.e. $\operatorname{Cov}(X_s, X_t)$ depends only on the difference t-s. We will write it as Γ_{t-s} .

- For covariance stationary series, $\Gamma_{-t} = \Gamma_t$ (show it!).
- Notice that $\Gamma_0 = \text{Var}(X_t)$.
- The autocorrelation function of a time series is defined as

$$R_{s,t} = \frac{\text{Cov}(X_s, X_t)}{\sqrt{\text{Var}(X_s)}\sqrt{\text{Var}(X_t)}}.$$
 (3)

• For covariance-stationary time series, $R_{s,t} = R_{t-s}$, and

$$R_t = \frac{\Gamma_t}{\Gamma_0} \,. \tag{4}$$

Autocovariance and stationarity

- Note that μ , Γ , and R are usually unknown, and are estimated from sample data. The estimated sample mean $\widehat{\mu}$, autocovariance $\widehat{\Gamma}$, and autocorrelation \widehat{R} are calculated as follows.
- Consider a finite sample X_0, X_1, \ldots, X_T . Then

$$\widehat{\mu} = \frac{1}{T} \sum_{t=1}^{T} X_{t},$$

$$\widehat{\Gamma}_{t} = \begin{cases} \frac{1}{T} \sum_{j=t+1}^{T} (X_{j} - \widehat{\mu})(X_{j-t} - \widehat{\mu}), & \text{for } t = 0, 1, \dots, T - 1, \\ \widehat{\Gamma}_{-t}, & \text{for } t = -1, \dots, -(T - 1). \end{cases}$$

$$\widehat{R}_{t} = \frac{\widehat{\Gamma}_{t}}{\widehat{\Gamma}_{0}}.$$
(5)

 Notice that this method allows us to compute up to T - 1 estimated sample autocorrelations.

Models of time series

- For practical applications, it is convenient to model a time series as a discrete-time stochastic process with a small number of parameters.
- Time series models have typically the following structure:

$$X_t = p_t + m_t + \varepsilon_t, \tag{6}$$

where the three components on the RHS have the following meaning:

- p_t is a periodic function called the seasonality,
- m_t is a slowly varying process called the *trend*,
- ε_t is a stochastic component called the *error* or *disturbance*.
- Classic linear time series models fall into three broad categories:
 - autoregressive,
 - moving average,
 - integrated,

and their combinations.

White noise

• The source of randomness in the models discussed in these lectures is white noise. It is a process specified as follows:

$$X_t = \varepsilon_t,$$
 (7)

where $\varepsilon_t \sim N(0,\sigma^2)$ are i.i.d. (= independent, identically distributed) normal random variables.

Note that

$$\mathsf{E}(\varepsilon_t) = 0,$$

$$\mathsf{Cov}(\varepsilon_s, \varepsilon_t) = \begin{cases} \sigma^2, & \text{if } s = t, \\ 0, & \text{otherwise.} \end{cases} \tag{8}$$

- The white noise process is stationary and ergodic (show it!).
- The white noise process with linear drift

$$X_t = at + b + \varepsilon_t, \quad a \neq 0, \tag{9}$$

is not stationary, as $E(X_t) = at + b$.

- The first class of models that we consider are the autoregressive models AR(p).
 Their key characteristic is that the current observation is directly correlated with the lagged p observations.
- The simplest among them is *AR*(1), the autoregressive model with a single lag.
- The model is specified as follows:

$$X_t = \alpha + \beta X_{t-1} + \varepsilon_t. \tag{10}$$

- Here, $\alpha, \beta \in \mathbb{R}$, and $\varepsilon_t \sim N(0, \sigma^2)$ is a white noise.
- A particular case of the AR(1) model is the random walk model, namely

$$X_t = X_{t-1} + \varepsilon_t$$

in which the current value of X is the previous value plus a "white noise" disturbance.

• The graph below shows a simulated AR(1) time series with the following choice of parameters: $\alpha = 0.1$, $\beta = 0.3$, $\sigma = 0.005$.

• Here is the code snippet used to generate this graph in Python:

```
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARMA
alpha=0.1
beta=0.3
sigma=0.005
#Simulate AR(1)
T = 2.50
x0=alpha/(1-beta)
x=np.zeros(T+1)
x[0]=x0
eps=np.random.normal(0.0, sigma, T)
for i in range (1, T+1):
   x[i]=alpha+beta*x[i-1]+eps[i-1]
#Take a look at the simulated time series
plt.plot(x)
plt.show()
```

- Let us investigate the circumstances under which an AR(1) process is covariance-stationary.
- For $\mu = E(X_t)$ to be independent of t we must have from (10):

$$\mu = \alpha + \beta \mu.$$

This equation has a solution iff $\beta \neq 1$ (except for the random walk case corresponding to $\alpha = 0$, $\beta = 1$). In this case,

$$\mu = \frac{\alpha}{1 - \beta} \,. \tag{11}$$

Let us now compute the autocovariance. To this end, we rewrite (10) as

$$X_t - \mu = \beta(X_{t-1} - \mu) + \varepsilon_t. \tag{12}$$

Notice that the two terms on the RHS of this equation are independent of each other.

• For $\Gamma_0 = \text{Var}(X_t)$ to be independent of t, this implies that

$$\Gamma_0 = \beta^2 \Gamma_0 + \sigma^2,$$

and so

$$\Gamma_0 = \frac{\sigma^2}{1 - \beta^2} \,. \tag{13}$$

- Since $\Gamma_0 > 0$, this equation implies that $|\beta| < 1$.
- Multiplying (12) by $X_{t-1} \mu$, we find that $\Gamma_1 = \beta \Gamma_0$. Iterating, we find that

$$\Gamma_k = \beta^k \Gamma_0, \tag{14}$$

with Γ_0 given by (14). The autocorrelation function is decaying exponentially fast as a function of lag between two observations.

• In conclusion, the condition for a AR(1) process to be covariance-stationary is that $|\beta| < 1$.

• The AR(1) with $|\beta| < 1$ has a natural interpretation that can be gleaned from the following "explicit" representation of X_t . Namely, iterating (10) we find that:

$$X_{t} = \alpha + \beta X_{t-1} + \varepsilon_{t}$$

$$= \alpha(1+\beta) + \beta^{2} X_{t-2} + \varepsilon_{t} + \beta \varepsilon_{t-1}$$

$$= \dots$$

$$= \alpha(1+\beta+\dots+\beta^{L-1}) + \beta^{L} X_{t-L} + \varepsilon_{t} + \beta \varepsilon_{t-1} + \dots + \beta^{L-1} \varepsilon_{t-L+1}$$

$$= \mu(1-\beta^{L}) + \beta^{L} X_{t-L} + \sqrt{\Gamma_{0}(1-\beta^{2L-1})} \, \xi_{t}$$
(15)

where $\xi_t \sim N(0, 1)$.

This implies that

$$E(X_t|X_{t-L}) = \mu(1-\beta^L) + \beta^L X_{t-L},$$

$$Var(X_t|X_{t-L}) = \Gamma_0(1-\beta^{2L-1}).$$
(16)

• Since $\beta^L \to 0$ exponentially fast, for large L we have

$$X_t \approx \mu + \sqrt{\Gamma_0} \, \xi_t. \tag{17}$$

- In other words, the AR(1) model describes a mean reverting time series. After a large number of observations, X_t takes the form (17), i.e. it is equal to its mean value plus a Gaussian noise.
- The rate of convergence to this limit is given by |β|: the smaller this value, the faster X_t reaches its limit behavior.
- The next question is: given a set of observations, how do we determine the values of the parameters α , β , and σ in (10)?

Maximum likelihood estimation

- Maximum likelihood estimation (MLE) is a commonly used method of estimating the parameters of a statistical model given a set of observations.
- It is based on the premise that the best choice of the parameter values should maximize the likelihood of making the observations given these parameters.
- Given a statistical model with parameters θ = (θ₁,...,θ_d), and a set of data y = (y₁,...,y_N), we construct the *likelihood function* L(θ|y), which links the model with the data in such a way as if the data were drawn from the assumed model.
- In practice, $\mathcal{L}(\theta|y)$ is the joint probability density function (PDF) $p(y|\theta)$ under the model, evaluated at the observed values.
- \bullet In particular, if the observations y_i are independent, then

$$\mathcal{L}(\theta|y) = \prod_{i=1}^{N} p(y_i|\theta), \tag{18}$$

where $p(y_i|\theta)$ denotes the PDF of a single observation.

Maximum likelihood estimation

- The value θ^* that maximizes $\mathcal{L}(\theta|y)$ serves as the best fit between the model specification and the data.
- It is usualy more convenient to consider the *log liklihood function* (LLF) $-\log \mathcal{L}(\theta|y)$. Then, θ^* is the value at which the LLF attains its minimum.
- As an illustration, consider a sample $y = (y_1, \dots, y_N)$ drawn from the normal distribution $N(\mu, \sigma^2)$. Its likelihood function is given by

$$\mathcal{L}(\theta|y) = (2\pi\sigma^2)^{-N/2} \prod_{i=1}^{N} \exp\left(-\frac{(y_i - \mu)^2}{2\sigma^2}\right), \tag{19}$$

and the LLF is

$$-\log \mathcal{L}(\theta|y) = \frac{1}{2} N \log \sigma^2 + \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \mu)^2 + const.$$
 (20)

Maximum likelihood estimation

• Taking the μ and σ derivatives and setting them to 0, we readily find that that the MLE estimates of μ and σ are

$$\mu^* = \frac{1}{N} \sum_{i=1}^{N} y_i,$$

$$\sigma^* = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu^*)^2.$$
(21)

respectively.

- Note that, while μ^* is *unbiased*, the estimator σ^* is *biased* (N in the denominator above, rather than the usual N-1).
- The fact that the MLE estimator of a parameter is biased is a common occurance. One can show, however, that MLE estimators are *consistent*, i.e. in the limit N → ∞ they converge to the appropriate value.
- Going forward, we will use the notation $\widehat{\theta}$ rather than θ^* for the MLE estimators.

- Consider now the AR(1) model and a time series of data x_0, \ldots, x_T , believed to be drawn from this model. The easiest way to construct the likelihood function is to focus on the conditional PDF $p(x_1, \ldots, x_T | x_0, \theta)$. This leads to the *conditional* MLE method.
- Let

$$\widehat{\varepsilon}_t = x_t - \alpha - \beta x_{t-1}, \tag{22}$$

for $t=1,\ldots,T$, be the disturbances implied from the data. According to the model specification, each $\hat{e_t}$ is independently drawn from $N(0,\sigma^2)$, and thus

$$p(x_1, ..., x_T | x_0, \theta) = \frac{1}{(2\pi\sigma^2)^{T/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{t=1}^{T} \varepsilon_t^2\right)$$

$$= \frac{1}{(2\pi\sigma^2)^{T/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{t=1}^{T} (x_t - \alpha - \beta x_{t-1})^2\right)$$
(23)

Hence the LLF is given by

$$-\log \mathcal{L}(\theta|y) = \frac{1}{2} T \log \sigma^2 + \frac{1}{2\sigma^2} \sum_{t=0}^{T-1} (x_{t+1} - \alpha - \beta x_t)^2 + const.$$
 (24)

Minimizing this function yields:

$$\begin{pmatrix}
\widehat{\alpha} \\
\widehat{\beta}
\end{pmatrix} = \begin{pmatrix}
T & \sum_{t=0}^{T-1} x_t \\
\sum_{t=0}^{T-1} x_t & \sum_{t=0}^{T-1} x_t^2
\end{pmatrix}^{-1} \begin{pmatrix}
\sum_{t=0}^{T-1} x_{t+1} \\
\sum_{t=0}^{T-1} x_t x_{t+1}
\end{pmatrix},$$

$$\widehat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} (x_t - \widehat{\alpha} - \widehat{\beta} x_{t-1})^2.$$
(25)

This can also be explicitly rewritten as

$$\widehat{\beta} = \frac{\sum_{t=0}^{T-1} (x_t - \widehat{x})(x_{t+1} - \widehat{x}_+)}{\sum_{t=0}^{T-1} (x_t - \widehat{x})^2},$$

$$\widehat{\alpha} = \widehat{x}_+ - \widehat{\beta}\widehat{x},$$
(26)

where

$$\widehat{x} = \sum_{t=0}^{T-1} x_t, \qquad \widehat{x}_+ = \sum_{t=0}^{T-1} x_{t+1}.$$
 (27)

 The exact MLE method attempts to infer the likelihood of x₀ from the probability distribution. Since x₀ ~ N(μ, Γ₀),

$$p(x_0|\theta) = \sqrt{\frac{1-\beta^2}{2\pi\sigma^2}} \exp\left(-\frac{(x_0 - \alpha/(1-\beta))^2}{2\sigma^2/(1-\beta^2)}\right).$$
 (28)

On the other hand, for t = 1,..., T,

$$p(x_t|x_{t-1},...,x_1,\theta) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x_t - \alpha - \beta x_{t-1})^2}{2\sigma^2}\right).$$
 (29)

From the definition of conditional probability we have the following identity:

$$p(x_0, x_1, \dots, x_T | \theta) = p(x_0 | \theta) \prod_{t=1}^T p(x_t | x_{t-1}, \dots, x_1, \theta).$$
 (30)

Therefore, the LLF is given by

$$-\log \mathcal{L}(\theta|x) = \frac{1}{2} \log \frac{\sigma^2}{1-\beta^2} + \frac{1}{2} T \log \sigma^2 + \frac{(x_0 - \alpha/(1-\beta))^2}{2\sigma^2/(1-\beta^2)} + \frac{1}{2\sigma^2} \sum_{t=1}^{T} (x_t - \alpha - \beta x_{t-1})^2 + const.$$
(31)

 Unlike the conditional case, the minimum of the exact LLF cannot be calculated in closed form, and the calculation has to be done by means of a numerical search.

• Here is the Python code snippet implementing the MLE for AR(1):

Alternatively, one can use statsmodels functions:

```
#MLE estimate with statsmodels
model=ARMA(x,order=(1,0)).fit(method='mle')
alphaMLE=model.params[0]
betaMLE=model.params[1]
sigmaMLE=np.std(model.resid)
```

Second order autoregressive model AR(2)

A second order autoregressive model AR(2) model is specified as follows:

$$X_t = \alpha + \beta_1 X_{t-1} + \beta_2 X_{t-2} + \varepsilon_t, \tag{32}$$

where $\alpha, \beta_1, \beta_2 \in \mathbb{R}$, and $\varepsilon_t \sim N(0, \sigma^2)$ is a white noise.

- Under this specification, the state variable depends on its two lags (rather than one lag as in AR(1).
- Let us determine the conditions under which the model is covariance-stationary.
- From the requirement that $E(X_t) = \mu$,

$$\mu = \frac{\alpha}{1 - \beta_1 - \beta_2} \,, \tag{33}$$

and so we can can rewrite (32) in the following form:

$$X_{t} - \mu = \beta_{1}(X_{t-1} - \mu) + \beta_{2}(X_{t-2} - \mu) + \varepsilon_{t}. \tag{34}$$

Second order autoregressive model AR(2)

• Multiplying (34) by $X_{t-j} - \mu$, for j=0,1,2, and calculating expectations, we find that

$$\Gamma_{k} = \begin{cases} \beta_{1}\Gamma_{1} + \beta_{2}\Gamma_{2} + \sigma^{2}, & \text{if } k = 0, \\ \beta_{1}\Gamma_{k-1} + \beta_{2}\Gamma_{k-2}, & \text{if } k = 1, 2. \end{cases}$$
 (35)

This identity is called the *Yule-Walker equation* for the autocovariance.

Dividing (57) by Γ₀ yields the Yule-Walker equation for the autocorrelation:

$$R_k = \beta_1 R_{k-1} + \beta_2 R_{k-2}, \tag{36}$$

for k = 1, 2.

- This equation allows us calculate explicitly the ACF for AR(2).
- Namely, plugging in k = 1 and remembering that $R_{-1} = R_1$ yields $R_1 = \beta_1 + \beta_2 R_1$, or

$$R_1 = \frac{\beta_1}{1 - \beta_2} \,. \tag{37}$$

Second order autoregressive model AR(2)

• Plugging in k = 2 yields $R_2 = \beta_1 R_1 + \beta_2$, or

$$R_2 = \beta_2 + \frac{\beta_1^2}{1 - \beta_2} \,. \tag{38}$$

• Finally, substituting k = 0 in (34) yields

$$\Gamma_0 = (\beta_1 R_1 + \beta_2 R_2) \Gamma_0 + \sigma^2. \tag{39}$$

Solving this, we obtain

$$\Gamma_0 = \frac{(1 - \beta_2)\sigma^2}{(1 + \beta_2)((1 - \beta_2)^2 - \beta_1^2)}.$$
 (40)

- We have not yet addressed the question under what condition is an AR(2) time series covariance-stationary. We will now introduce the concepts that will settle this issue and will allow us to formulate criteria for stationarity for more general models,
- Let us define the lag operator L as a (linear) mapping:

$$LX_t = X_{t-1}. (41)$$

In other words, the lag operator shifts the time index back by one unit.

Applying the lag operator k times shifts the time index by k units:

$$L^k X_t = X_{t-k}. (42)$$

We refer to L^k as the k-th power of L.

• Finally, if $\psi(z) = \psi_0 + \psi_1 z + \ldots + \psi_n z^n$ is a polynomial in z, we associate with it an operator $\psi(L)$ defined by

$$\psi(L) = \psi_0 + \psi_1 L + \ldots + \psi_n L^n. \tag{43}$$

Notice that equation (32) can be stated as

$$\psi(L)X_t = \alpha + \varepsilon_t,\tag{44}$$

where $\psi(z) = 1 - \beta_1 z - \beta_2 z^2$.

• Solving this equation amounts to finding the inverse $\psi(L)^{-1}$ of $\psi(L)$:

$$X_t = \frac{\alpha}{\psi(1)} + \psi(L)^{-1} \varepsilon_t. \tag{45}$$

• Suppose that we can write $\psi(L)^{-1}$ as an infinite series

$$\psi(L)^{-1} = \sum_{j=0}^{\infty} \gamma_j L^j, \tag{46}$$

with

$$\sum_{i=0}^{\infty} |\gamma_j| < \infty. \tag{47}$$

Then

$$X_{t} = \frac{\alpha}{\psi(1)} + \sum_{j=0}^{\infty} \gamma_{j} \varepsilon_{t-j}, \tag{48}$$

with

$$\mathsf{E}(X_t) = \frac{\alpha}{\psi(1)},\tag{49}$$

and

$$Cov(X_t, X_{t+k}) = \sum_{j=0}^{\infty} \gamma_j \gamma_{j+k}, \text{ for } k \ge 0,$$
(50)

independently of t. The series is thus covariance-stationary.

• In the case of AR(1), $\psi(L) = 1 - \beta L$, it is clear that the geometric series does the job:

$$(1 - \beta L)^{-1} = \sum_{j=0}^{\infty} \beta^{j} L^{j}, \tag{51}$$

• Condition (47) holds as long as $|\beta| < 1$. Another way of saying this is that the root $z_1 = 1/\beta$ of $1 - \beta z$ lies outside of the unit circle.

• Now, if $\psi(z)$ is a polynomial with non-zero roots z_1, \ldots, z_n . Then

$$\psi(L) = (-1)^n \left(\prod_{j=1}^n z_j\right) \prod_{j=1}^n (1 - z_j^{-1} L).$$
 (52)

- If each of the roots z_j (they may be complex) lies outside of the unit circle, i.e. $|z_j^{-1}| < 1$, then we can invert $\psi(L)$ by applying (51) to each factor in the product above.
- It is not hard to verify that the convergence criterion (47), and thus the time series is stationary.
- We can summarize these arguments by stating that a time series model given by the lag form equation (44) is covariance stationary if the roots of the polynomial $\psi(z)$ lie outside of the unit circle.

General autoregressive model AR(p)

• The *p-th order autoregressive model AR(p)* model is specified as follows:

$$X_t = \alpha + \beta_1 X_{t-1} + \ldots + \beta_p X_{t-p} + \varepsilon_t, \tag{53}$$

where $\alpha, \beta_i \in \mathbb{R}$, and $\varepsilon_t \sim N(0, \sigma^2)$ is a white noise.

• For the covariance-stationarity, the requirement that $E(X_t) = \mu$ yields

$$\mu = \frac{\alpha}{1 - \beta_1 - \ldots - \beta_p} \,. \tag{54}$$

- Furthermore, we require that the roots of the characteristic polynomial $\psi(z) = 1 \alpha \beta_1 z \ldots \beta_p z^p$ lie outside of the unit circle.
- We can rewrite (53) in the following form:

$$X_t - \mu = \beta_1(X_{t-1} - \mu) + \ldots + \beta_p(X_{t-p} - \mu) + \varepsilon_t.$$
 (55)

General autoregressive model AR(p)

• Multiplying this equation by $X_{t-j} - \mu$, for $j = 0, \dots, p$, and calculating expectations yields the Yule-Walker equation for the autocovariance:

$$\Gamma_{k} = \begin{cases} \beta_{1}\Gamma_{1} + \dots + \beta_{p}\Gamma_{p} + \sigma^{2}, & \text{if } k = 0, \\ \beta_{1}\Gamma_{k-1} + \dots + \beta_{p}\Gamma_{k-p}, & \text{if } k = 1, \dots, p. \end{cases}$$
(56)

• Dividing (56) by Γ_0 yields the Yule-Walker equation for the autocorrelation:

$$R_k = \beta_1 R_{k-1} + \ldots + \beta_p R_{k-p},$$
 (57)

for $k = 1, \ldots, p$.

- Note that the autocorrelations satisfy essentially the same equation as the process defining X_t.
- The ACF R_k can be found as the solution to the Yule-Walker equation and are expressed in terms of the roots of the characteristic polynomial.

Choosing the number of lags in AR(p)

- In practice, the number of lags p is unknown, and has to be determined empirically.
- This can be done by regressing the variable on its lagged values with p = 1, 2, ..., and assessing the impact of each added lag on the fit.
- It is important not to overfit the model ("torture it until it confesses") by adding too many lags.
- Useful quantitative guides for model selection are various information criteria.
- The Akaike information criterion defined as follows:

$$AIC = 2k - 2\log \mathcal{L}(\widehat{\theta}|x). \tag{58}$$

Here $k=\#\theta$ is the number of model parameters, $-\log\mathcal{L}(\widehat{\theta}|x)$ denotes the optimized value of the LLF.

 According to this criterion, among the candidate models the model with the lowest value of AIC is the preferred one.

Choosing the number of lags in AR(p)

- This is in contrast with picking the model whose optimized LLF is the lowest: this
 may be the result of overfitting. The AIC criterion penalizes the number of
 parameters, and thus discourages overfitting.
- Another popular information criteria is the Bayesian information criterion (a.k.a the Schwarz criterion), which is defined as follows:

$$BIC = \log(N)k - 2\log \mathcal{L}(\widehat{\theta}|x), \tag{59}$$

where N = #x is the number of data points.

 According to this criterion, the model with the smallest value of BIC is the preferred model.

Moving average model *MA*(1)

The moving average model MA(1) is specified as follows:

$$X_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}, \tag{60}$$

where μ and θ are constants, and ε_t is white noise.

- The key feature of the MA(1) model is that its are autocorrelated with lag 1.
- The expected value of X_t is

$$\mathsf{E}(X_t) = \mu,\tag{61}$$

as $E(\varepsilon_t) = \mu$, for all t.

Its variance is

$$\begin{aligned} \mathsf{E}((X_t - \mu)^2) &= \mathsf{E}((\varepsilon_t + \theta \varepsilon_{t-1})^2) \\ &= \mathsf{E}(\varepsilon_t^2) + 2\theta \mathsf{E}(\varepsilon_t \varepsilon_{t-1}) + \theta^2 \mathsf{E}(\varepsilon_{t-1}^2) \\ &= (1 + \theta^2)\sigma^2. \end{aligned}$$

Moving average model *MA*(1)

For the first autocovariance, we have

$$\mathsf{E}((X_t - \mu)(X_{t-1} - \mu)) = \mathsf{E}((\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2}))$$
$$= \theta \sigma^2.$$

- All autocovariances with lag ≥ 2 are zero (show it!).
- As a result, MA(1) is (unlike AR(1)) always covariance-stationary with

$$\Gamma_{t} = \begin{cases}
(1 + \theta^{2})\sigma^{2}, & \text{if } t = 0, \\
\theta\sigma^{2}, & \text{if } |t| = 1, \\
0, & \text{if } |t| \ge 2.
\end{cases}$$
(62)

• As a result, the first autocorrelation $R_1 = \Gamma_1/\Gamma_0$ is given by

$$R_1 = \frac{\theta}{1 + \theta^2} \,, \tag{63}$$

with all higher order autocorrelations equal zero.

Moving average model *MA*(1)

The graph below shows a simulated MA(1) time series with the following choice of parameters: $\mu = 1.1$, $\beta = 0.6$, $\sigma = 0.5$.

Moving average model *MA*(1)

• Here is the code snippet used to generate this graph in Python:

```
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARMA
m_{11}=1.1
theta=0.6
sigma=0.5
#Simulate MA(1)
T = 2.50
\times 0 = m11
x=np.zeros(T+1)
0x = [0]x
eps=np.random.normal(0.0, sigma, T+1)
for i in range (1,T+1):
   x[i]=mu+eps[i]+theta*eps[i-1]
#Take a look at the simulated time series
plt.plot(x)
plt.show()
```

- As in the case of AR(1), there are two natural approaches to MLE of an MA(1) model: conditional on the initial value of ε and exact.
- We begin with the conditional MLE method, which is somewhat easier.
- Since the value of ε_0 cannot be calculated from the observed data, we are free to set it arbitrarily; we choose $\varepsilon_0=0$. All the probabilities calculated below are conditional on this choice.
- We then have, for t = 1, ..., T,

$$\varepsilon_t = x_t - \mu - \theta \varepsilon_{t-1}, \tag{64}$$

and so the conditional PDF of x_t is

$$p(x_t|x_{t-1},\ldots,x_1,\varepsilon_0=0,\theta)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{\varepsilon_t^2}{2\sigma^2}\right).$$
 (65)

- This expression is deceivingly simply: in reality ε_t is a nested function of all x_s with s ≤ t.
- The liklihood function of the sample x_1, \ldots_T is given by the product of the probabilities above, and so

$$\mathcal{L}(\theta|x,\varepsilon_0=0) = \prod_{t=1}^{T} p(x_t|x_{t-1},\ldots,x_1,\varepsilon_0=0,\theta),$$
 (66)

The log liklihood has thus the following form:

$$-\log \mathcal{L}(\theta|x,\varepsilon_0=0) = \frac{1}{2} T \log \sigma^2 + \frac{1}{2\sigma^2} \sum_{t=1}^{T} \varepsilon_t^2 + const.$$
 (67)

- This is a quadratic function of the x_t's. It is cumbersome to write it down explicitly, but easy to code it in a programming language. Its minimum is easiest to find by means of a numerical search.
- In case of $|\theta| < 1$, the impact of the choice $\varepsilon_0 = 0$ phases out as we iterate through time steps. For $|\theta| > 1$ the impact of this choice accumulates, and the method cannot be used.
- For the exact MLE method, we notice that the joint PDF of x is given by

$$p(x|\theta) = \frac{1}{(2\pi)^{T/2} \det(\Omega)^{1/2}} \exp\left(-\frac{1}{2} (x-\mu)^{\mathrm{T}} \Omega^{-1} (x-\mu)\right),$$
 (68)

and thus

$$-\log \mathcal{L}(\theta|x) = \frac{1}{2}\log \det(\Omega) + \frac{1}{2}(x-\mu)^{\mathrm{T}}\Omega^{-1}(x-\mu). \tag{69}$$

Here, Ω is a band diagonal matrix:

$$\Omega = \sigma^{2} \begin{pmatrix} 1 + \theta^{2} & \theta & 0 & \dots & 0 \\ \theta & 1 + \theta^{2} & \theta & \dots & 0 \\ 0 & \theta & 1 + \theta^{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & 1 + \theta^{2} \end{pmatrix}$$
(70)

- ullet The numerics of minimizing (69) can be handled either by (i) a clever triangular factorization of Ω , or by the Kalman filter method (we will discuss Kalman filters later in this course).
- \bullet Unlike the conditional MLE method, the exact method does not suffer from instabilities if $|\theta| \geq 1.$

 Here is the Python code snippet implementing the MLE for MA(1) using statsmodels:

```
#MLE estimate with statsmodels
model=ARMA(x,order=(0,1)).fit(method='mle')
muMLE=model.params[0]
thetaMLE=model.params[1]
sigmaMLE=np.std(model.resid)
```

General moving average model MA(q)

A q-th order moving average model MA(q) is specified as follows:

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q}, \tag{71}$$

where μ and θ_i are constants, and ε_t is white noise.

- In other words, the MAq1) model fluctuates around μ with disturbances which are autocorrelated with lag q.
- The expected value of X_t is

$$\mathsf{E}(X_t) = \mu,\tag{72}$$

while its autocovariance is

$$\Gamma_{j} = \begin{cases}
(1 + \theta_{1}^{2} + \dots + \theta_{q}^{2})\sigma^{2}, & \text{if } j = 0, \\
(\theta_{j} + \theta_{j+1}\theta_{1} + \dots + \theta_{q}\theta_{q-j})\sigma^{2}, & \text{if } j = 1, \dots, q, \\
0, & \text{if } j > q.
\end{cases}$$
(73)

ARMA(p,q) model

A mixed autoregressive moving average model ARMA(p, q) is specified as follows:

$$X_{t} = \alpha + \beta_{1} X_{t-1} + \ldots + \beta_{p} X_{t-p} + \varepsilon_{t} + \theta_{1} \varepsilon_{t-1} + \ldots + \theta_{q} \varepsilon_{t-q}, \tag{74}$$

where α and β_j , θ_k are constants, and ε_t is white noise.

The equation above has the following lag operator representation:

$$\psi(L)X_t = \alpha + \varphi(L)\varepsilon_t, \tag{75}$$

where

$$\psi(z) = 1 - \beta_1 z - \dots - \beta_p z^p,$$

$$\varphi(z) = 1 + \theta_1 z + \dots + \theta_q z^q.$$
(76)

• The process (45) is covariance stationary if the roots of ψ lie outside of the unit circle.

ARMA(p,q) model

In this case, we can write the model in the form

$$X_t = \mu + \gamma(L)\varepsilon_t,\tag{77}$$

where $\mu = \alpha/\psi(1)$, and $\gamma(L) = \psi(L)^{-1}\varphi(L)$. Explicitly, $\gamma(L)$ is an infinite series:

$$\gamma(L) = \sum_{j=0}^{\infty} \gamma_j L^j, \tag{78}$$

with

$$\sum_{j=0}^{\infty} |\gamma_j|^2 < \infty. \tag{79}$$

- This form of the model specification is called the moving average form.
- The parameters ARMA models are estimated by means of the MLE method. The complexity of computation required to minimize the LLF increases with the number of parameters.
- Information criteria, such as AIC or BIC, remain useful quantitative guides for model selection.

- An important function of time series analysis is making predictions about future values of the observed data, i.e. forecasting.
- Data based forecasting problem can be formulated as follows: given the observations X_{1:t} = X₁,..., X_t, what is the best forecast X^{*}_{t+1|1:t} of X_{t+1}?
- In mathematical terms, the problem requires minimizing a suitable loss function.
 We choose to minimize the mean squared error (MSE) given by

$$\mathsf{E}\big((X_{t+1}-X_{t+1|1:t}^*)^2\big). \tag{80}$$

• We claim that $X_{t+1|1:t}^*$ is, indeed, given given by the conditional expected value:

$$X_{t+1|1:t}^* = E_t(X_{t+1}). (81)$$

Here E_t denotes expectation, conditional on the information up to time t,

$$\mathsf{E}_t(\cdot) = \mathsf{E}(\cdot | X_{1:t}). \tag{82}$$

 Indeed, if Z is any random variable measurable with respect to the information set generated by X_{1:t}, then

$$\begin{split} \mathsf{E}\big((X_{t+1}-Z)^2\big) &= \mathsf{E}\big((X_{t+1}-E_t(X_{t+1})+E_t(X_{t+1})-Z)^2\big) \\ &= \mathsf{E}\big((X_{t+1}-E_t(X_{t+1}))^2\big) + \mathsf{E}\big((E_t(X_{t+1})-Z)^2\big) \\ &+ 2\mathsf{E}\big((X_{t+1}-E_t(X_{t+1}))(E_t(X_{t+1})-Z)\big). \end{split}$$

We argue that the cross term above is zero. Indeed

$$\begin{aligned} \mathsf{E}_t \big((X_{t+1} - E_t(X_{t+1})) (E_t(X_{t+1}) - Z) \big) &= \mathsf{E}_t \big(X_{t+1} - E_t(X_{t+1}) \big) \big(E_t(X_{t+1}) - Z \big) \\ &= \big(\mathsf{E}_t (X_{t+1}) - E_t(X_{t+1}) \big) \big(E_t(X_{t+1}) - Z \big) \\ &= 0. \end{aligned}$$

Since $E(\cdot) = E(E_t(\cdot)|X_t)$, the claim follows.

As a result

$$\mathsf{E}\big((X_{t+1}-Z)^2\big) = \mathsf{E}\big((X_{t+1}-E_t(X_{t+1}))^2\big) + \mathsf{E}\big((E_t(X_{t+1})-Z)^2\big),$$

which has its minimum at $Z = E_t(X_{t+1})$. This proves (81).

The argument above is, in fact, quite general, and it easily extends to general k-period forecasts X^{*}_{t+k|1:t}. Minimizing the corresponding MSE yields:

$$X_{t+k|1:t}^* = E_t(X_{t+k}). (83)$$

 Later we will generalize this method to time series models with more complex structure.

As an example, a single period forecast in an AR(1) model is

$$X_{t+1|1:t}^* = \mathsf{E}_t(X_{t+1})$$

$$= \mathsf{E}_t(\alpha + \beta X_t + \varepsilon_{t+1})$$

$$= \alpha + \beta X_t.$$
(84)

- The forecast error is ε_{t+1} , and so the variance of the forecast error is σ^2 .
- Likewise, a single period forecast in an AR(p) model is

$$X_{t+1|1:t}^* = \alpha + \beta_1 X_t + \ldots + \beta_p X_{t-p+1}.$$
 (85)

with forecast error is ε_{t+1} , and the variance of the forecast error is σ^2 .

A two-period forecast in an AR(1) model is given by

$$X_{t+2|1:t}^{*} = \mathsf{E}_{t}(X_{t+2})$$

$$= \mathsf{E}_{t}(\alpha + \beta X_{t+1} + \varepsilon_{t+2})$$

$$= (1 + \beta)\alpha + \beta^{2} X_{t}.$$
(86)

- The error of the two period forecast is $\varepsilon_{t+2} + \beta \varepsilon_{t+1}$; its variance is $(1 + \beta^2)\sigma^2$.
- A one period forecast in an MA(1) model is

$$X_{t+1|1:t}^* = \mathsf{E}_t(X_{t+1})$$

$$= \mathsf{E}_t(\mu + \varepsilon_{t+1} + \theta \varepsilon_t)$$

$$= \mu + \theta \varepsilon_t.$$
(87)

- The forecast error is ε_{t+1} , and its variance is σ^2 .
- These calculations can be generalized to produce a general formula for a multi-period forecast in an ARMA(p, q) model. This result is known as the Wiener-Kolmogorov prediction formula and its discussion can be found in [1].

References

Hamilton, J. D.: Time Series Analysis, Princeton University Press (1994).

Tsay, R. S.: Analysis of Financial Time Series, Wiley (2010).