SPRINT 01

Date	10th november 2022
Team ID	PNT2022TMID13834
Project Name	Project – Signs with Smart Connectivity for Better Road Safety

SPRINT GOALS:

- 1. Create and initialize accounts in various public APIs like OpenWeather API.
- 2. Write a Python program that outputs results given the inputs like weather and location.

CODE FLOW:

PROGRAM CODE:

Weather.py

This file is a utility function that fetches the weather from OpenWeatherAPI. Itreturns only certain required parameters of the API response.

```
# Python code
  import requests as
  regs def
    get(myLocation,APIK
    E Y):apiURL =
  f"https://api.openweathermap.org/data/2.5/weather?q={myLocation}&ap
  pi
  d={API KEY}"
    responseJSON =
    (reqs.get(apiURL)).json()
    returnObject = {
      "temperature": responseJSON['main']['temp'] - 273.15,
"weather": [responseJSON['weather'][ ]['main'].lower() for in
  range(len(responseJSON['weather']))],
      "visibility": responseJSON['visibility']/100, # visibility in
  percentage where 10km is 100% and 0km is 0%
    }
    if("rain" in responseJSON):
returnObject["rain"] = [responseJSON["rain"][key] for
  key inresponseJSON["rain"]]
```

return(returnObject

brain.py

This file is a utility function that returns only essential information to be displayed at the hardware side and abstracts all the unnecessary details. This is where the code flow logic is implemented.

```
# Python code
# IMPORT SECTION STARTS
import weather
from datetime import datetime as dt
# IMPORT SECTION ENDS
# UTILITY LOGIC SECTION STARTS
def
  processConditions(myLocation,APIKEY,localityInfo):
  weatherData = weather.get(myLocation,APIKEY)
  finalSpeed = localityInfo["usualSpeedLimit"] if "rain" not in weatherData
else localityInfo["usualSpeedLimit"]/2
  finalSpeed = finalSpeed if weatherData["visibility"]>35 else finalSpeed/2
  if(localityInfo["hospitalsNearby"])
    : # hospital zone
    doNotHonk = True
  else:
    if(localityInfo["schools"]["schoolZone"]==False)
```

: # neither school nor hospital zone

```
doNotHonk = False
    else:
      # school zone
      now = [dt.now().hour,dt.now().minute]
      activeTime = [list(map(int,_.split(":"))) for _
      in
localityInfo["schools"]["activeTime"]]
      doNotHonk = activeTime[0][0]<=now[0]<=activeTime[1][0]</pre>
and activeTime[0][1]<=now[1]<=activeTime[1][1]
  return({
    "speed": finalSpeed,
    "doNotHonk":
    doNotHonk
  })
# UTILITY LOGIC SECTION ENDS
```

Main.py

The code that runs in a forever loop in the microcontroller. This calls all the util functions from other python files and based on the return value transduces changes in the output hardware display.

Python code

IMPORT SECTION STARTS

```
import brain
# IMPORT SECTION ENDS
# USER INPUT SECTION STARTS
myLocation = "Chennai,IN"
APIKEY = "bf4a8d480ee05c00952bf65b78ae826b"
localityInfo =
  { "schools"
  : {
    "schoolZone": True,
    "activeTime" : ["7:00","17:30"] # schools active from 7 AM till 5:30 PM
    },
  "hospitalsNearby": False,
  "usualSpeedLimit": 40 # in
  km/hr
}
# USER INPUT SECTION ENDS
# MICRO-CONTROLLER CODE STARTS
print(brain.processConditions(myLocation,APIKEY,localityInfo))
```

MICRO CONTROLLER CODE WILL BE ADDED IN SPRINT 2 AS PER OUR PLANNED SPRINT SCHEDULE

,,,

MICRO-CONTROLLER CODE ENDS

OUTPUT:

Code Output

{'speed': 40, 'doNotHonk': False}

IMAGES:

```
pycode.py - C:/Users/god/AppData/Local/Programs/Python/Python311/pycode.py (3.11.0)
File Edit Format Run Options Window Help
                                                                                                                                File Edit Shell Debug Options Window Help

Python 3.11.0 (main, Oct 24 2022, 18:26:48) [MSC v.1933 64 bit (AMD64)] on win32 *

Type "help", "copyright", "credits" or "license()" for more information.
                                                                                                                                 lDLE Shell 3.11.0
# IMPORT SECTION STARTS
import brain
                                                                                                                                    ==== RESTART: C:/Users/god/AppData/Local/Programs/Python/Python311/pycode.py === ('speed': 20.0, 'doNotHonk': False)
 # IMPORT SECTION ENDS
 # USER INPUT SECTION STARTS
myLocation = "Chennai, IN"
APIKEY = "bf4a8d480ee05c00952bf65b78ae826b"
localityInfo = {
    "schools": {
        "schoolZone": True,
        "activeTime": ["7:00","17:30"] # schools active from 7 AM till 5:30 PM
        .
      "hospitalsNearby": False,
"usualSpeedLimit": 40 # in km/hr
 # USER INPUT SECTION ENDS
 # MICRO-CONTROLLER CODE STARTS
print (brain.processConditions (myLocation, APIKEY, localityInfo))
 MICRO CONTROLLER CODE WILL BE ADDED IN SPRINT 2 AS PER OUR PLANNED SPRINT SCHEDULE
 # MICRO-CONTROLLER CODE ENDS
                                                                                                                                                                                                                                            Ln: 6 Col: 0
```