Analysis of Daily Taxi Trips in Chicago Communities in 2022

In this project, we aim to conduct a comprehensive analysis of historical taxi trips in Chicago during 2022. The primary goal of this analysis is to identify communities with high demand for taxi services, enabling our company to make informed decisions regarding resource allocation and strategic planning. By doing so, we hope to foster growth and attract more customers in 2023.

Given that our dataset may not include every taxi trip taken in the city, it is crucial to ensure that our analysis is as representative as possible. To achieve this, we will employ statistical sampling methods, specifically stratified sampling. This approach allows us to account for potential discrepancies in the data and to generate reliable insights into the distribution of taxi trips across Chicago's communities.

In this project, we will be using the bigquery-public-data.chicago_taxi_trips.taxi_trips dataset, which is publicly available on Google BigQuery. This dataset provides a comprehensive record of taxi trips in Chicago and serves as an invaluable resource for our analysis. Before diving into the analysis, we have already filtered the data to focus exclusively on taxi trips taken in 2022. This allows us to concentrate on the most recent and relevant information for our purposes.

Below it's our stratified sampling design for this project.

sampling design

1. Data Preparation

```
In [27]: # import necessary libraries
import pandas as pd
import numpy as np
import os
import re
from scipy import stats
import math

import geopandas as gpd
from shapely.geometry import Point
from shapely.geometry.polygon import Polygon
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import json
```

```
In [2]: # set filepath, load dataset, set time start as datetime index
filepath = "../dataset/preprocessed-all-taxi-trips.csv"

main_df = pd.read_csv(filepath, parse_dates=["trip_start_timestamp"], index_col=["trip_s display(main_df.head(3), print("dataframe's shape:", main_df.shape))
```

unique_key trip_end_timestamp trip_seconds trip_miles pic

trip_start_timestamp

dataframe's shape: (5866819, 13)

23:30:00+00:00 UTC

```
2022-09-30
                                                                 2022-09-30 13:15:00
                           5b91f49428e134433e329c3b133b5a73fc466287
                                                                                       1740.0
                                                                                                  8.80
             12:45:00+00:00
                                                                             UTC
                2022-09-30
                                                                 2022-09-30 04:45:00
                           646a2313684586b725de9618521a8bc359d1e91f
                                                                                        682.0
                                                                                                 10.52
            04:30:00+00:00
                                                                             UTC
        None
        # display date range to validate that we have one year period in the dataset
In [3]:
        print(f"date range: {main df.index.min()} to {main df.index.max()}")
        date range: 2022-01-01 00:00:00+00:00 to 2022-12-31 23:45:00+00:00
In [4]: # copy dataframe, remove unnecessary columns, rearrange columns order
        all trips = main df.copy()
        all trips = all trips.drop(["trip end timestamp", "pickup community area", "dropoff comm
                                      "dropoff location", "payment type", "dropoff community"], axi
        columns order = ["unique key", "trip seconds", "trip minutes", "trip miles", "fare", "p
        all trips = all trips[columns order]
        all trips.head(3)
Out[4]:
                                                      unique_key trip_seconds trip_minutes trip_miles
                                                                                                  fare pic
        trip_start_timestamp
                2022-09-30
                           3696bb7f386062eb3f42a48ae2a7df55cb290853
                                                                      596.0
                                                                                   9.93
                                                                                            2.54
                                                                                                  9.50 (-8
             23:30:00+00:00
                                                                                                       41
                2022-09-30
                           5b91f49428e134433e329c3b133b5a73fc466287
                                                                     1740.0
                                                                                  29.00
                                                                                            8.80 26.25 (-8
             12:45:00+00:00
                                                                                                       41
                2022-09-30
                           646a2313684586b725de9618521a8bc359d1e91f
                                                                      682.0
                                                                                  11.37
                                                                                           10.52 27.75
                                                                                                      (-8
            04:30:00+00:00
                                                                                                       41
        # is there any null values?
In [5]:
        all trips.isnull().sum()
        unique key
                              \cap
Out[5]:
        trip seconds
        trip minutes
                              0
        trip miles
        fare
        pickup location
                              0
        pickup community
        dtype: int64
In [6]: # groupby pickup_community, resample to daily
        grouped = main df.groupby('pickup community').resample('D')
In [7]: # using grouped and resampled object data, calculate the total daily trip for each commu
         # extract day name from the date
         # rename the columns
        daily trip counts = grouped["unique key"].count().reset index()
        daily trip counts['trip start timestamp'] = daily trip counts['trip start timestamp'].dt
```

daily_trip_counts['trip_start_timestamp'] = pd.to_datetime(daily_trip_counts['trip_start_daily trip counts['trip start timestamp'].dt.day name()

```
daily_trip_counts = daily_trip_counts.rename(columns={'unique_key':'total_trip', 'trip_s
daily_trip_counts
```

Out[7]:		pickup_community	date	total_trip	day_name
		Albany Park	2022-01-01	37	Saturday
	1	Albany Park	2022-01-02	34	Sunday
	2	Albany Park	2022-01-03	46	Monday
	3	Albany Park	2022-01-04	41	Tuesday
	4	Albany Park	2022-01-05	36	Wednesday
	•••				
	28096	Woodlawn	2022-12-27	48	Tuesday
	28097	Woodlawn	2022-12-28	45	Wednesday
28098		Woodlawn	2022-12-29	36	Thursday
	28099	Woodlawn	2022-12-30	36	Friday
	28100	Woodlawn	2022-12-31	82	Saturday

28101 rows × 4 columns

Out[8]:

```
In [8]: # using grouped and resampled object data, calculate the total daily fare, distance, and
# extract day name from the date
# rename the columns
daily_trip_features = grouped[['fare', 'trip_miles', 'trip_minutes']].sum().reset_index(
daily_trip_features['trip_start_timestamp'] = daily_trip_features['trip_start_timestamp'
daily_trip_features['trip_start_timestamp'] = pd.to_datetime(daily_trip_features['trip_s
daily_trip_features['day_name'] = daily_trip_features['trip_start_timestamp'].dt.day_nam
daily_trip_features = daily_trip_features.rename(columns={'fare':'sum_fare', 'trip_miles
daily_trip_features
```

	pickup_community	date	sum_fare	sum_trip_miles	sum_trip_minutes	day_name
0	Albany Park	2022-01-01	645.67	154.59	812.18	Saturday
1	Albany Park	2022-01-02	629.09	165.42	1743.49	Sunday
2	Albany Park	2022-01-03	843.56	205.70	957.52	Monday
3	Albany Park	2022-01-04	738.50	195.25	860.92	Tuesday
4	Albany Park	2022-01-05	586.60	163.55	585.08	Wednesday
•••						
28096	Woodlawn	2022-12-27	1163.72	322.56	1127.63	Tuesday
28097	Woodlawn	2022-12-28	1065.52	322.06	1003.26	Wednesday
28098	Woodlawn	2022-12-29	853.18	263.72	825.89	Thursday
28099	Woodlawn	2022-12-30	926.60	276.22	974.05	Friday
28100	Woodlawn	2022-12-31	1952.00	610.68	2009.58	Saturday

28101 rows × 6 columns

```
# set the date as datetime index
merged_df = pd.merge(daily_trip_counts, daily_trip_features, on=['pickup_community', 'da
merged_df['date'] = merged_df['date'].dt.strftime('%Y-%m-%d')
merged_df.set_index("date", inplace=True)
merged_df.sort_index(ascending=True, inplace=True)

merged_df.shape

Out[9]:

# display the merged dataframe
merged_df
```

Out[10]: pickup_community total_trip day_name sum_fare sum_trip_miles sum_trip_minutes

date						
2022-01-01	Albany Park	37	Saturday	645.67	154.59	812.18
2022-01-01	North Center	43	Saturday	675.79	130.06	531.68
2022-01-01	Avalon Park	3	Saturday	64.25	21.86	56.10
2022-01-01	West Garfield Park	2	Saturday	39.00	11.90	46.00
2022-01-01	Armour Square	19	Saturday	484.37	140.04	375.82
•••						
2022-12-31	Chatham	148	Saturday	3925.06	1273.30	2852.10
2022-12-31	Roseland	84	Saturday	3056.60	870.86	2411.94
2022-12-31	Calumet Heights	38	Saturday	1010.46	260.34	888.58
2022-12-31	Lake View	1413	Saturday	20059.92	4447.96	21189.78
2022-12-31	Woodlawn	82	Saturday	1952.00	610.68	2009.58

28101 rows × 6 columns

```
In [11]: # take the community names from the merged dataframe
    # create a seperate dataframe for each community using merged dataframe, and store it wi
    pickup_communities = merged_df['pickup_community'].unique()

community_dfs = []

for community in pickup_communities:
    community_df = merged_df[merged_df['pickup_community'] == community]
    community_dfs.append(community_df)

# validate the result, it should be 77 community names in Chicago
    print("Number of dataframes: ", len(community_dfs))
```

Number of dataframes: 77

```
In [12]: # validate by display the first two objects within the list
community_dfs[0:2]
```

Out[12]:	[pickup_community	total_trip	day_name	sum_fare	sum_trip_miles	
out[12].	date						
	2022-01-01	Albany Park	37	Saturday	645.67	154.59	\
	2022-01-02	Albany Park	34	Sunday	629.09	165.42	
	2022-01-03	Albany Park	46	Monday	843.56	205.70	
	2022-01-04	Albany Park	41	Tuesday	738.50	195.25	
	2022-01-05	Albany Park	36	Wednesday	586.60	163.55	

2022-12-27	Albany Park	44	Tuesday	901.67	254.78	
2022-12-28	Albany Park	36	Wednesday	604.86	174.78	
2022-12-29	Albany Park	39	Thursday	843.28	214.72	
2022-12-30	Albany Park	32	Friday		267.59	
2022-12-31	Albany Park	90	Saturday		410.34	
5	sum trip minutes					
date						
2022-01-01	812.18					
2022-01-02	1743.49					
2022-01-03	957.52					
2022-01-04	860.92					
2022-01-05	585.08					
2022-12-27	907.89					
2022-12-28	666.33					
2022-12-29	1841.66					
2022-12-30	1540.56					
2022-12-31	1540.60					
2022 12 31	1010.00					
[365 rows x 6	6 columnsl.					
	ickup community	total trip	day name	sum fare	sum trip miles	
date		00001_011p		2411_1413	5 d.m_51 1pm1105	
2022-01-01	North Center	43	Saturday	675.79	130.06	\
2022-01-02	North Center	25	Sunday	392.03	86.28	`
2022-01-03	North Center	37	Monday	521.19	103.44	
2022-01-04	North Center	35	Tuesday	573.15	145.30	
2022-01-05	North Center	30	Wednesday	414.81	95.78	
		• • •	wednesday			
2022-12-27	North Center	34	Tuesday	549.84	133.18	
2022-12-28	North Center	34	Wednesday	731.46	193.11	
2022-12-29	North Center	37	Thursday	592.00	102.36	
2022-12-30	North Center	53	Friday	708.53	148.68	
2022-12-31	North Center	123	Saturday	1790.56	377.26	
2022 12 01	North odirect	120	Sacaraay	1730.00	377.20	
S	sum trip minutes					
date						
2022-01-01	531.68					
2022-01-02	341.43					
2022-01-03	509.61					
2022-01-04	536.76					
2022-01-05	628.42					
2022-12-27	598.46					
2022-12-28	786.81					
2022 12 20	569.33					
2022-12-30	736.29					
2022-12-31	1690.45					
~~~~ I~~JI	1030.43					
[365 rows x 6	6 columns]]					

Great, we already prepared the data for the analysis. We can move to the next step.

# 2. Taxi Trips Analysis Using Stratified Sampling

sampling design

```
In [13]: def is_weekend(day_name):
    """
    Returns a boolean value indicating whether the given day is a weekend day.

Parameters:
```

```
day_name : str
The name of the day of the week

Returns:
-----
bool
True if the day is a weekend day (i.e. Saturday or Sunday), False otherwise.
"""
return day_name in ['Saturday', 'Sunday']
```

Optimum allocation for sample size for each stratum:

$$n_h = n \cdot \frac{N_h \sigma_h}{\sum_{k=1}^L N_k \sigma_k}$$

```
In [14]: # set empty list
         # for each community in community dfs, stratify by weekday-weekend, calculate the regire
         optimum stratified dfs = []
         for community df in community dfs:
             # separate the dataframe into weekend and weekday data
             weekend df = community df[community df['day name'].apply(is weekend)]
             weekday df = community df[~community df['day name'].apply(is weekend)]
             # calculate required sample size from the population
             population std = community df['total trip'].std()
             margin of error = 0.05 * community df['total trip'].mean()
             confidence level = 0.95
             Z = stats.norm.ppf((1 + confidence level) / 2)
             population size = len(community df)
             n sample = (Z**2 * population std**2 * population size) / ((margin of error**2 * (po
             n sample = math.ceil(n sample)
             # calculate optimum allocation sample size from each stratum
             weekend std = weekend df['total trip'].std()
             weekday std = weekday df['total trip'].std()
             nh weekend size = n sample * (len(weekend_df) * weekend_std) / (len(weekend_df) * we
             nh weekday size = n sample * (len(weekday df) * weekday std) / (len(weekend df) * we
             # build dataframe
             stratified df = pd.DataFrame({
                 'pickup community': [community df.iloc[0]['pickup community']],
                 'population size': [population size],
                 'population_std': [population_std],
                 'population moe': [margin of error],
                 'required sample': [n sample],
                 'weekend size': [len(weekend df)],
                 'weekday size': [len(weekday df)],
                 'weekend std': [weekend std],
                 'weekday std': [weekday std],
                 'nh weekend size': [round(nh weekend size)],
                 'nh weekday size': [round(nh weekday size)],
```

```
# append the stratified_df to the optimum_stratified_dfs list
   optimum_stratified_dfs.append(stratified_df)

# concatenate all dataframes in the optimum_stratified_dfs list into a single dataframe
final_optimum_stratified = pd.concat(optimum_stratified_dfs, ignore_index=True)

# display the results
final_optimum_stratified
```

Out[14]:		pickup_community	population_size	population_std	population_moe	required_sample	weekend_size	weekday
	0	Albany Park	365	7.638385	1.796849	59	105	
	1	North Center	365	13.689483	2.472466	90	105	
	2	Avalon Park	365	5.422278	0.750000	130	105	
	3	West Garfield Park	365	2.809706	0.318767	165	105	
	4	Armour Square	365	10.413344	2.209315	70	105	
	•••							
	72	Ashburn	365	4.585832	0.649041	126	105	
	73	South Chicago	365	8.906410	1.572055	93	105	
	74	Logan Square	365	24.491824	4.295616	94	105	
	75	Lake View	365	192.911804	31.399315	104	105	
	76	Mount Greenwood	361	1.555276	0.095291	268	102	

77 rows × 11 columns

Unbiased estimator for population means:

$$\bar{y}_{st} = \frac{1}{N} \sum_{h=1}^{L} N_h \bar{y}_h$$

```
In [15]: def calculate_trip_mean_sample(community_dfs, final_optimum_stratified, n_iterations=100
    """
    Calculates the mean daily taxi trips for each community using stratified sampling wi
    Parameters:
        - community_dfs (list): A list of dataframes, each containing data for one community
        - final_optimum_stratified (DataFrame): A dataframe containing the optimum allocatio
        - n_iterations (int): The number of iterations to perform for the sampling process.

Returns:
        - mean_samples (list): A list of mean daily taxi trips for each community, calculate
    """
    mean_samples = []

for i, community_df in enumerate(community_dfs):
    # separate the dataframe into weekend and weekday data
    weekend_df = community_df[community_df['day_name'].apply(is_weekend)]
    weekday_df = community_df[community_df['day_name'].apply(is_weekend)]
```

```
nh weekday size = final optimum stratified.loc[i, 'nh weekday size']
                 sample means = []
                 for in range(n iterations):
                     # sample the weekend and weekday data proportionally
                     weekend samples = weekend df.sample(n=nh weekend size, replace=True)['total
                     weekday samples = weekday df.sample(n=nh weekday size, replace=True)['total
                     # calculate the mean of the weekend and weekday samples
                     weekend mean = weekend samples.mean()
                     weekday mean = weekday samples.mean()
                     # calculate the population size for each stratum
                     N weekend = len(weekend df)
                    N weekday = len(weekday df)
                     # compute the weighted average using the unbiased estimator
                     stratified mean = (N weekend * weekend mean + N weekday * weekday mean) / (N
                     sample means.append(stratified mean)
                 # calculate the overall mean of the sample means
                 overall mean = round(np.mean(sample means))
                 mean samples.append(overall mean)
             return mean samples
         # calculate mean samples and mean populations for each community
In [16]:
         # loop through the community dfs and calculate mean population values, store in mean pop
        mean samples = calculate trip mean sample (community dfs, final optimum stratified)
        mean populations = []
         for community df in community dfs:
            mean population = round(community df['total trip'].mean())
            mean populations.append(mean population)
         # add the mean populations and mean samples to the final optimum stratified dataframe
         final optimum stratified['mean trip population'] = mean populations
         final optimum stratified['mean trip samples'] = mean samples
         # sort the dataframe on mean trip sample 1000 times
```

# get the number of weekend and weekday samples from final_stratified_df
nh weekend size = final optimum stratified.loc[i, 'nh weekend size']

	pickup_community	population_size	population_std	population_moe	required_sample	weekend_size	weekda
0	Near North Side	365	1119.096105	202.910274	89	105	
1	Loop	365	1047.088512	141.139589	135	105	
2	Ohare	365	899.777275	135.822466	116	105	
3	Near West Side	365	478.996869	72.729589	115	105	
4	Near South Side	365	420.917368	31.438493	239	105	
•••							
72	Gage Park	365	1.941520	0.142192	243	105	
73	Edison Park	365	1.719608	0.154247	208	105	
74	Hermosa	365	1.748434	0.160548	203	105	

final optimum stratified = final optimum stratified.sort values(by="mean trip samples",

final optimum stratified

Out[16]:

75	Montclare	365	1.657833	0.103288	267	105
76	Mount Greenwood	361	1.555276	0.095291	268	102

77 rows × 13 columns

#### Estimate variance:

$$\widehat{ ext{var}}({ar{y}}_{st}) = \sum_{h=1}^L \left(rac{N_h}{N}
ight)^2 \left(rac{N_h-n_h}{N_h}
ight) rac{s_h^2}{n_h}$$

```
In [17]: def estimate_variance(row):
    """
    Calculate the estimate variance for stratified sampling in each community.

Args:
    row (pd.Series): A row from the final_optimum_stratified DataFrame.

Returns:
    float: The estimate variance for the given community.
    """

Nh = row['population_size']
    nh_weekend = row['nh_weekend_size']
    nh_weekday = row['nh_weekday_size']
    sh_weekend_sq = row['weekend_std'] ** 2
    sh_weekday_sq = row['weekday_std'] ** 2

weekend_variance = ((Nh / nh_weekend) * ((Nh - nh_weekend) / Nh) * sh_weekend_sq) /
    weekeday_variance = ((Nh / nh_weekeday) * ((Nh - nh_weekeday) / Nh) * sh_weekeday_sq) /
    return weekend_variance + weekday_variance
```

#### **Confidence Intervals:**

$$\hat{\mu}_{st} \pm t_{lpha/2} \sqrt{\widehat{ ext{var}}(\hat{\mu}_{st})}$$

```
In [18]:
        def calculate confidence interval(row):
             Calculate the confidence interval for the mean daily taxi trips in each community.
            Aras:
                row (pd.Series): A row from the final optimum stratified DataFrame.
                tuple: A tuple containing the lower and upper bounds of the confidence interval.
             mean population = row['mean trip samples']
             estimate variance = row['estimate variance']
             confidence level = 0.95
             Z = stats.norm.ppf((1 + confidence level) / 2)
             # Calculate the margin of error
            margin of error = Z * np.sqrt(estimate variance)
             # Calculate the confidence interval
             lower bound = round(mean population - margin of error)
             upper bound = round(mean population + margin of error)
             return round (margin of error), lower bound, upper bound
```

In [19]: # apply the functions
# calculate estimate variance and confidence intervals
# display the result after it finished
final_optimum_stratified['estimate_variance'] = final_optimum_stratified.apply(estimate_final_optimum_stratified['margin_of_error'], final_optimum_stratified['CI_lower_bound'],
final_optimum_stratified

[19]:		pickup_community	population_size	population_std	population_moe	required_sample	weekend_size	weekday
	0	Near North Side	365	1119.096105	202.910274	89	105	
	1	Loop	365	1047.088512	141.139589	135	105	
	2	Ohare	365	899.777275	135.822466	116	105	
	3	Near West Side	365	478.996869	72.729589	115	105	
	4	Near South Side	365	420.917368	31.438493	239	105	
	•••							
	72	Gage Park	365	1.941520	0.142192	243	105	
	73	Edison Park	365	1.719608	0.154247	208	105	
	74	Hermosa	365	1.748434	0.160548	203	105	
	75	Montclare	365	1.657833	0.103288	267	105	
	76	Mount Greenwood	361	1.555276	0.095291	268	102	

77 rows × 17 columns

Out[

In [20]:	fir	final_optimum_stratified.head(10)										
Out[20]:		pickup_community	population_size	population_std	population_moe	required_sample	weekend_size	weekday_				
	0	Near North Side	365	1119.096105	202.910274	89	105					
	1	Loop	365	1047.088512	141.139589	135	105					
	2	Ohare	365	899.777275	135.822466	116	105					
	3	Near West Side	365	478.996869	72.729589	115	105					
	4	Near South Side	365	420.917368	31.438493	239	105					
	5	Lake View	365	192.911804	31.399315	104	105					
	6	Garfield Ridge	365	177.420728	25.121781	126	105					
	7	Lincoln Park	365	127.361443	20.625753	105	105					
	8	Uptown	365	50.421059	13.781507	46	105					
	9	West Town	365	70.086265	10.384247	119	105					

Our analysis of the results shows that the stratified sampling method was effective in estimating the mean daily taxi trips for each community. The mean samples, calculated using unbiased estimators, are very close to the mean population values, indicating the accuracy of the method used.

Based on the top 10 communities with the highest mean daily trips, it's clear that Near North Side, Loop, and Ohare are the busiest communities, with significantly higher daily taxi trips compared to the others. These areas should be prioritized for additional resources and investment, as focusing on these communities could lead to more customers and increased growth for the company.

However, it's also essential not to neglect other communities in the top 10, such as Near West Side, Near South Side, Lake View, Garfield Ridge, Lincoln Park, Uptown, and West Town. While their daily taxi trips are not as high as the top three, they still represent significant demand and potential for growth. Allocating resources proportionally to these communities can help optimize the company's operations and ensure better coverage.

In addition to allocating resources, the company can also leverage the findings of this analysis to tailor its marketing strategies and promotional offers. For instance, offering targeted discounts or incentives in these high-demand communities could attract more customers and foster loyalty. By focusing resources and strategies on these communities, the company can effectively tap into the high demand, resulting in increased growth and customer satisfaction.

```
In [21]: final_optimum_stratified.to_csv("../dataset/preprocessed-stratified-sampling-taxi.csv",
```

### 3. Visualize the Results

Out[23]:

```
In [22]: # read geojson chicago
    # change the community name into a tittle case
    chicago_path = "../dataset/Boundaries - Community Areas (current).geojson"
    boundaries = gpd.read_file(chicago_path)
    boundaries = boundaries[["community", "geometry"]]
    boundaries["community"] = boundaries["community"].apply(lambda x: x.title())
    boundaries.head()
```

```
        Out[22]:
        community
        geometry

        0
        Douglas
        MULTIPOLYGON (((-87.60914 41.84469, -87.60915 ...

        1
        Oakland
        MULTIPOLYGON (((-87.59215 41.81693, -87.59231 ...

        2
        Fuller Park
        MULTIPOLYGON (((-87.62880 41.80189, -87.62879 ...

        3
        Grand Boulevard
        MULTIPOLYGON (((-87.60671 41.81681, -87.60670 ...

        4
        Kenwood
        MULTIPOLYGON (((-87.59215 41.81693, -87.59215 ...
```

```
In [23]: boundaries
```

	community	geometry
0	Douglas	MULTIPOLYGON (((-87.60914 41.84469, -87.60915
1	Oakland	MULTIPOLYGON (((-87.59215 41.81693, -87.59231
2	Fuller Park	MULTIPOLYGON (((-87.62880 41.80189, -87.62879
3	Grand Boulevard	MULTIPOLYGON (((-87.60671 41.81681, -87.60670
4	Kenwood	MULTIPOLYGON (((-87.59215 41.81693, -87.59215
•••		
72	Mount Greenwood	MULTIPOLYGON (((-87.69646 41.70714, -87.69644
73	Morgan Park	MULTIPOLYGON (((-87.64215 41.68508, -87.64249
74	Ohare	MULTIPOLYGON (((-87.83658 41.98640, -87.83658
75	Edgewater	MULTIPOLYGON (((-87.65456 41.99817, -87.65456
76	Edison Park	MULTIPOLYGON (((-87.80676 42.00084, -87.80676

```
In [24]: # merge the dataframes on the community name\
    # convert the merged dataframe into a geodataframe
    merged_df = final_optimum_stratified.merge(boundaries, left_on='pickup_community', right
    merged_gdf = gpd.GeoDataFrame(merged_df, geometry='geometry')
    merged_gdf.drop(["community"], axis=1, inplace=True)

# display the results
merged_gdf.head()

Out[24]: pickup_community population_size population_std population_moe required_sample weekend_size weekday_
```

	pickup_community	population_size	population_std	population_moe	required_sample	weekend_size	weekuay_
0	Near North Side	365	1119.096105	202.910274	89	105	
1	Loop	365	1047.088512	141.139589	135	105	
2	Ohare	365	899.777275	135.822466	116	105	
3	Near West Side	365	478.996869	72.729589	115	105	
4	Near South Side	365	420.917368	31.438493	239	105	

```
In [49]: merged gdf json = json.loads(merged gdf.to json())
         fig = go.Figure(go.Choroplethmapbox(geojson=merged gdf json,
                                              locations=merged gdf.index,
                                              z=merged gdf['mean trip samples'],
                                             colorscale='YlOrRd',
                                              colorbar=dict(len=0.7, title="<b>Daily<br>Trip</b>",
                                             marker line width=1,
                                             marker opacity=0.8,
                                             text=merged gdf['pickup community'],
                                              hovertemplate="<b>%{text}</b><br>Mean Daily Trips: %
         fig.update layout(mapbox style="carto-positron",
                           mapbox zoom=10,
                           mapbox center={"lat": merged gdf.geometry.centroid.y.mean(), "lon": me
                           margin={"r": 0, "t": 0, "l": 0, "b": 0},
                           width=900,
                           height=900,
                           title={
                               'text': "<b>Mean Daily Taxi Trips by Chicago Community</b>",
                               'y': 0.98,
                               'x': 0.5,
                               'xanchor': 'center',
                               'yanchor': 'top'})
         fig.show()
```

```
C:\Users\PF2L6BL6\AppData\Local\Temp\ipykernel_29892\3693698261.py:15: UserWarning:

Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoS eries.to_crs()' to re-project geometries to a projected CRS before this operation.

C:\Users\PF2L6BL6\AppData\Local\Temp\ipykernel_29892\3693698261.py:15: UserWarning:

Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoS eries.to_crs()' to re-project geometries to a projected CRS before this operation.
```

```
In [50]: def get community distributions (community name, final optimum stratified, n iterations=1
             Generates a histogram of the mean daily taxi trips for a specific community using st
             Parameters:
             - community name (str): The name of the community for which the histogram is to be g
             - final optimum stratified (DataFrame): A dataframe containing the optimum allocation
             - n iterations (int): The number of iterations to perform for the sampling process.
            Returns:
             - The function displays the histogram plots.
            name = community name
             community df = [df for df in community dfs if df['pickup community'].iloc[0] == name
             community df = community df[0]
             stratified = final optimum stratified[final optimum stratified["pickup community"] ==
             weekend df = community df[community df['day name'].apply(is weekend)]
             weekday df = community df[~community df['day name'].apply(is weekend)]
             nh weekend size = stratified["nh weekend size"][0]
             nh weekday size = stratified["nh weekday size"][0]
             sample means = []
             for in range(n iterations):
                 weekend samples = weekend df.sample(n=nh weekend size, replace=True)['total trip
                 weekday samples = weekday df.sample(n=nh weekday size, replace=True)['total trip
                 # combine the weekend and weekday samples
                 combined samples = pd.concat([weekend samples, weekday samples], ignore index=Tr
                 # calculate the mean of the combined samples
                 sample mean = combined samples.mean()
                 sample means.append(sample mean)
             overall mean = np.mean(sample means)
             fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 7))
             # create histogram for samples
             ax.hist(sample means,
                    density=True,
                    facecolor="dodgerblue",
                    alpha=0.75,
                    label='Sample Means')
             # create histogram for population
             ax.hist(community df['total trip'],
                    density=True,
```

```
facecolor="lime",
        alpha=0.5,
        label='Population')
ax.axvline(overall mean,
        color="red",
        linestyle="dashed",
        label="Mean-Sample")
ax.axvline(stratified["mean trip population"][0],
        color="blue",
        linestyle="dashed",
        label="Mean-Population")
# tidy up plot
ax.set xlabel(f"{name} Average Taxi Daily Trip", fontsize=16)
ax.set ylabel("Probability", fontsize=16)
plt.legend()
plt.grid(True)
return plt.show()
```

In [51]: get_community_distributions("Near North Side", final_optimum_stratified, 10000)



In [ ]: