4M Synchronous Fast Static RAM (128k-words x 36-bits)

HITACHI

ADE-203-1008(Z) Preliminary, Rev. 0.0 Feb. 5, 1999

Features

- 3.3V+10%, -5% Operation
- 4M bit density
- 200MHz 250MHz frequency
- Synchronous Operation
- Internal self-timed Late Write
- Byte Write Control (4 byte write selects, one for each 9 bits)
- Optional x 18 configuration
- HSTL compatible I/O
- Programmable impedance output drivers
- User selective input trip point
- Differential, HSTL Clock Inputs
- Asynchronous G Output Control
- Asynchronous sleep mode
- BGA 119pin Package
- Limited set of boundary scan JTAG IEEE 1149.1 compatible
- Protocol: Single Clock Register-Register Mode

Ordering Information

Type Number	Access Time	Cycle Time	Package
HM62G36128BP-5	2.5ns	5.0ns	119 Bump 1. 27 mm
HM62G36128BP-4	2.2 ns	4.0 ns	14 mm × 22 mm BGA (BP-119A)

Pin Arrangement

Block Diagram

Pin Descriptions

Name	I/O Type	Descriptions	Note
V_{DD}	Supply	Core Power Supply	
V _{SS}	Supply	Ground	
V_{DDQ}	Supply	Output Power Supply	
V_{REF}	Supply	Input Reference : provides input reference voltage	
K	Input	Clock Input. Active high.	
K	Input	Clock Input. Active low.	
SS	Input	Synchronous Chip Select	
SWE	Input	Synchronous Write Enable	
SAn	Input	Synchronous Address Input	n=0,1,216
SWEx	Input	Synchronous Byte Write Enables	x = a, b, c, d
G	Input	Asynchronous Output Enable	
ZZ	Input	Power Down Mode Select	
ZQ	Input	Output impedance control	1
DQxn	I/O	Synchronous Data Input / Output	x = a, b, c, d, n=0,1,28
M1, M2	Input	Output Protocol Mode Select	
TMS	Input	Boundary Scan Test Mode Select	
TCK	Input	Boundary Scan Test Clock	
TDI	Input	Boundary Scan Test Data Input	
TDO	Output	Boundary Scan Test Data Output	
NC	_	No Connection	
	•		·

M1	M2	Protocol	
V _{ss}	V_{DD}	Synchronous register to register operation 2	

Notes: 1. ZQ is to be connected to Vss via a resistance RQ where $150\Omega \le RQ \le 350 \Omega$, if $ZQ=V_{DDQ}$ or open, output buffer impedance will be maximum. A case of minimum impedance, it needs to connect over 120Ω between ZQ and Vss.

2. There is 1 protocol with mode pin. Mode control pins(M1 , M2) are to be tied either VDD or Vss. The state of the Mode control inputs must be set before power-up and must not change during device operation. Mode control inputs are not standard inputs and may not meet VIH or VIL specification.

Truth Table

ZZ	SS	$\overline{\mathbf{G}}$	SWE	SWEa	SWEb	SWEc	SWEd	K	$\overline{\mathbf{K}}$	Operation	DQ(n)	DQ(n+1)
Н	Х	Х	Х	Х	Х	Х	Х	Χ	Х	sleep mode	High-Z	High-Z
L	Н	X	Х	Х	Х	Х	Х	L-H	H-L	Dead (not selected)	Х	High-Z
L	Х	Н	Х	Х	Х	Х	Х	Х	Х	Dead (Dummy read)	High-Z	High-Z
L	L	L	Н	Х	Х	X	Х	L-H	H-L	Read	Х	Dout(a,b,c,d)0-8
L	L	Х	L	L	L	L	L	L-H	H-L	Write a, b, c, d byte	High-Z	Din(a,b,c,d)0 -8
L	L	Х	L	Н	L	L	L	L-H	H-L	Write b, c, d byte	High-Z	Din(b,c,d)0-8
L	L	Х	L	L	Н	L	L	L-H	H-L	Write a, c, d byte	High-Z	Din(a,c,d)0-8
L	L	X	L	L	L	Н	L	L-H	H-L	Write a, b, d byte	High-Z	Din(a,b,d)0- 8
L	L	Х	L	L	L	L	Н	L-H	H-L	Write a, b, c byte	High-Z	Din(a,b,c)0-8
L	L	Х	L	Н	Н	L	L	L-H	H-L	Write c, d byte	High-Z	Din(c,d)0-8
L	L	Χ	L	L	Н	Н	L	L-H	H-L	Write a, d byte	High-Z	Din(a,d)0-8
L	L	X	L	L	L	Н	Н	L-H	H-L	Write a, b byte	High-Z	Din(a,b)0-8
L	L	Х	L	Н	L	L	Н	L-H	H-L	Write b,c byte	High-Z	Din(b,c)0-8
L	L	Х	L	Н	Н	Н	L	L-H	H-L	Write d byte	High-Z	Din(d)0-8
L	L	Х	L	Н	Н	L	Н	L-H	H-L	Write c byte	High-Z	Din(c)0-8
L	L	Х	L	Н	L	Н	Н	L-H	H-L	Write b byte	High-Z	Din(b)0-8
L	L	Χ	L	L	Н	Н	Н	L-H	H-L	Write a byte	High-Z	Din(a)0-8

Notes: 1. X means don't care for synchronous inputs, and H or L for asynchronous inputs.

^{2.} SWE, SS, SWEa to SWEd, SA are sampled at the rising edge of K clock.

^{3.} Although differential clock operation is implied, this SRAM will operate properly with one clock phase (either K or \overline{K})tied to Vref. Under such single-ended clock operation, all parameters specification within this document will be met.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Input Voltage on any pin	V_{IN}	-0.5 to V _{DDQ} +0.5	V	1, 4
Core Supply voltage	V _{DD}	-0.5 to 3.9	V	1
Output Supply Voltage	V_{DDQ}	-0.5 to 2.2	V	1, 4
Operating Temperature	T _{OPR}	0 to 70	°C	
Storage Temperature	T _{STG}	-55 to 125	°C	
Output Short–Circuit Current	I _{OUT}	25	mA	
Latch up Current	I _{LI}	200	mA	
Package junction to case thermal resistance	θЈС	2	°C/W	5,7
Package junction to ball thermal resistance	θЈВ	5	°C/W	6,7

Notes: 1. All voltage are referenced to $V_{\rm ss}$.

- Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional
 operation should be restricted the Operation Conditions. Exposure to higher than recommended
 voltages for extended periods of time could affect device reliability.
- 3. These CMOS memory circuits have been designed to meet the DC and AC specifications shown in the tables after thermal equilibrium has been established.
- 4. The following supply voltage application sequence is recommended: V_{SS} , V_{DD} , V_{DDQ} , V_{ref} then Vin. Remember, according to the Absolute Maximum Ratings table, V_{DDQ} is not to exceed 3.9V, whatever the instantaneous value of V_{DDQ} .
- 5. θJC is measured at the center of mold surface in fluorocarbon.(See Fig1.)
- 6. θJB is measured on the center ball pad after removing the ball in fluorocarbon. (See Fig1.)
- 7. These thermal resistance value have error of +/- 5°C/W.

Fig.1 Definition of measurement

Recommended DC Operating Conditions (Ta = 0 to 70° C [Tj max = 110° C])

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Power Supply voltage Core	V_{DD}	3.135	3.30	3.63	V	
Power Supply voltage I/O	V_{DDQ}	1.4	1.5	1.6	V	
Input Reference Voltage I/O	V_{REF}	0.65	0.75	0.90	V	1
Input High Voltage	V _{IH}	V _{REF} +0.1		V _{DDQ} +0.3	V	
Input Low Voltage	V _{IL}	-0.5	_	V _{REF} -0.1	V	
Clock Differential Voltage	V_{DIF}	0.1		V _{DDQ} +0.3	V	2, 3
Clock Common Mode Voltage	V _{CM}	0.55	_	0.90	V	3
Clock input Differential Voltage	V_{DIF}	0.2	_	V _{DDQ} +0.3	V	3

- Notes: 1. Peak to Peak AC component superimposed on V_{ref} may not exceed 5% of V_{ref}.
 - 2. Minimum differential input voltage required for differential input clock operation.
 - 3. See Figure 1.

DC Characteristics (Ta = 0 to 70°C, [Tjmax=110°C], $V_{DD} = 3.3V+10\%$, -5%)

Parameter		Symbol	Min	Max	Unit	Note
Input Leakage Current		I _{LI}	_	2	μΑ	1
Output Leakage Current		I _{LO}	_	5	μΑ	2
Standby Current		I _{SBZZ}	_	100	mA	3
VDD Operating Current, excluding output drivers.	4ns cycle	I _{DD4}	_	580	mA	4
	5ns cycle	I _{DD5}	_	500	mA	4
Quiescent Active Power Supply Current.		I _{DD2}	_	180	mA	5

Parameter	Symbol	Min	Тур	Max	Unit	Note
Output Low Voltage	V_{OL}	V_{ss}	_	V _{ss} +0.4	V	6
Output High Voltage	V _{OH}	V _{DDQ} -0.4	_	V_{DDQ}	V	6
ZQ pin Connect Resistance	RQ	150	250	350	Ω	
Output "Low" Current	I _{OL}	(V _{DDQ} /2)/[(RQ/5)-15%]		(V _{DDQ} /2)/[(RQ/5)+15%]	mA	7,9
Output "High" Current	I _{OH}	(V _{DDQ} /2)/[(RQ/5)+15%]		(V _{DDQ} /2)/[(RQ/5)-15%]	mA	8,9

Note: 1. $0 \le Vin \le V_{DDQ}$ for all input pins (except V_{REF} , ZQ, M1, M2 pin)

- 2. $0 \le VOUT \le V_{DDO}$, DQ in High-Z
- 3. All inputs (except clock) are held at either VIH or VIL,ZZ is held at VIH,lout=0 mA
- 4. lout = 0 mA, read 50% / write 50%, $V_{DD} = V_{DD}$ max , Frequency =min.cycle
- 5. lout = 0 mA, read 50% / write 50%, $V_{DD} = V_{DD}$ max , Frequency = 3 Mhz
- 6. Minimum impedance push pull output buffer mode, I_{OH}=-6mA, I_{OL}=6mA
- 7. Measured at $V_{OL}=1/2$ V_{DDQ}
- 8. Measured at V_{DDQ} =1/2 V_{DDQ}
- 9. Output buffer impedance can be programmed by terminating the ZQ pin to VSS through a precision resister(RQ). The value of RQ is five times the output impedance desired. The allowable range of RQ to guarantee impedance matching with a tolerance of 15% is between 150Ω and 350Ω . If the status of ZQ pin is open ,output impedance is maximum. Maximum impedance occurs with ZQ connected to V_{DDQ} . The impedance update of the output driver occurs when the SRAM is in High-Z. Write and Deselect operations will synchronously switch the SRAM into and out of High-Z, therefore triggering an update. The user may choose to invoke asynchronous \overline{G} updates by providing a \overline{G} setup and hold about the K clock to guarantee the proper update. At power up, the output impedance default to minimum impedance. It will take 1024 cycles for the impedance to be completely updated if the programmed impedance is much higher than minimum impedance.

AC Characteristics (0°C \leq Ta \leq 70°C [Tj max = 110°C], V_{DD} = 3.3V+10%, -5%)

Single Differential Clock Register-Register Mode (M1 = V_{SS} , M2 = V_{DD})

		-4		- 5			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
CK Clock Cycle time	t _{KHKH}	4.0	_	5.0	_	ns	
CK Clock High Width	t _{KHKL}	1.5		1.5	_	ns	_
CK Clock Low Width	t _{KLKH}	1.5	_	1.5	_	ns	
Address Setup Time	t _{AVKH}	0.5	_	0.5	_	ns	_
Data Setup Time	t _{DVKH}	0.5		0.5	_	ns	
Address Hold Time	t _{KHAX}	_	0.75 1)	_	1.0	ns	
Data Hold Time	t _{KHDX}	_	0.75 1)	_	1.0	ns	_
Clock High to output valid	t _{KHQV}		2.2	_	2.5	ns	2
Clock High to output hold	t _{KHQX}	0.5	_	0.5	_	ns	2
Clock High to output valid(/SS ctrl.)	t _{KHQX2}	_	2.2	_	2.5	ns	2,5
Clock High to output High-Z	t _{KHQZ}		2.5	_	3.0	ns	2,3
Output Enable low to output Low-Z	t _{GLQX}	0.5	_	0.5	_	ns	2,5
Output Enable low to output valid	t _{GLQV}		2.5	_	2.5	ns	2,3
Output Enable low to output High-Z	t _{GHQZ}	_	2.5	_	2.5	ns	2,3
Sleep mode recovery time	t _{zzr}	10.0	_	10.0	_	ns	
Sleep mode enable time	t _{zze}	_	10.0	_	10.0	ns	2,3

Notes: 1. Guaranteed by design.

- 2. See AC Test Loading figure.
- 3. Transitions are measured at start point of output high impedance from output low impedance.
- 4. Output Driver Impedance update specifications for \overline{G} induced updates. Write and Deselected cycles will also induce Output Driver updates during High-Z.
- 5. Transitions are measured ±50mV from steady state voltage.

Read Cycle 1

Read Cycle 2 (SS Controlled)

Notes: \overline{G} , ZZ=VIL, x=a,b,c,d

Read Cycle 3 (G Controlled)

Write Cycle

Notes:ZZ=VIL,x=a,b,c,d

Read-Write Cycle

ZZ Control

Notes: ZZ=VIL,x=a,b,c,d

Input Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min	Max	Unit	Pin Name
Input Capacitance	C _{IN}		4	pF	SAn, SS, SWE, SWEx
Clock Input Capacitance	C _{CLK}		7	pF	K, K, G
I/O Capacitance	C _{IO}		5	pF	DQxn

Note: This parameter is sampled and not 100% tested.

AC Test Conditions

Parameter	Symbol	Conditions	Unit	Note
Input and output timing reference levels	V_{REF}	0.75	V	
Input signal amplitude	V_{IL}, V_{IH}	0.25 to 1.25	V	
Input rise / fall time	tr, tf	0.5 (10% to 90%)	ns	
Clock input timing reference level	,	Differential Cross Point		
V _{DIF} to Clock		0.75	V	
V _{CM} to Clock	"	0.75	V	
Output Loading conditions		See Figures		

Note: Measurement condition is the minimum impedance push pull output buffer mode, IOH=-6mA,IOL=6mA

Boundary Scan Test Access Port Operations

overview

In order to perform the interconnect testing of the modules that include this SRAM, the serial boundary scan test access port (TAP) is designed to operate in a manner consistent with IEEE Standard 1149.1 - 1990. But does not implement all of the functions required for 1149.1 compliance The HM62G series contains a TAP controller. Instruction register, Boundary scan register, Bypass register and ID register.

Test Access Port Pins

Symbol I/O	Name	
TCK	Test Clock	
TMS	Test Mode Select	
TDI	Test Data In	
TDO	Test Data Out	

Notes: This Device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. To disable the TAP, TCK must be connected to Vss. TDO should be left unconnected. To test Boundary scan, ZZ need to be kept below Vref –0.4V.

TAP DC Operating Characteristics (Ta = 0° C to 70° C [Tj max = 110° C])

Parameter	Symbol	Min	Max	Note
Boundary scan Input High voltage	V _{IH}	2.0 V	V _{DD} + 0.3 V	
Boundary scan Input Low voltage	V _{IL}	-0.5 V	0.8 V	
Boundary scan Input Leakage Current	I _{LI}	–2μΑ	+2μΑ	1
Boundary scan Output Low voltage	V _{oL}		0.4 V	2
Boundary scan Output High voltage	V _{OH}	2.4 V		3

Notes: 1. $0 \le Vin \le V_{DD}$ for all logic input pin

2. $I_{OL} = -8 \text{ mA}$

3. $I_{OH} = 8 \text{ mA}$

TAP AC Operating Characteristics (Ta = 0° C to 70° C [Tj max = 110° C])

Parameter	Symbol	Min	Max	Unit	Note
Test Clock Cycle Time	t _{THTH}	67	_	ns	
Test Clock High Pulse Width	t _{THTL}	30	_	ns	_
Test Clock Low Pulse Width	t _{TLTH}	30	<u> </u>	ns	
Test Mode Select Setup	t _{MVTH}	10	<u>.</u>	ns	
Test Mode Select Hold	t _{THMX}	10	_	ns	
Capture Setup	t _{cs}	10	<u> </u>	ns	1
Capture Hold	t _{CH}	10	<u>.</u>	ns	1
TDI Valid to TCK High	t _{DVTH}	10	_	ns	
TCK High to TDI Don't Care	t _{THDX}	10	_	ns	
TCK Low to TDO Unknown	t _{TLQX}	0	<u>.</u>	ns	
TCK Low to TDO Valid	t _{TLQV}		20	ns	

Note: 1. $t_{cs} + t_{cH}$ defines the minimum pause in RAM I/O pad transitions to assure pad data capture.

TAP AC Test Conditions

 $\begin{array}{lll} \bullet & \text{Temperature} & 0^{\circ}\text{C} \leq \text{Ta} \leq 70^{\circ}\text{C} \text{ [Tj max} = 110^{\circ}\text{C]} \\ \bullet & \text{Input timing measurement reference Level} & 1.5 \text{ V} \\ \bullet & \text{Input pulse levels} & 0 \text{ to } 3.0 \text{ V} \\ \bullet & \text{Input Rise/Fall Time} & 2.0 \text{ ns typical } (10\% \text{ to } 90\%) \\ \bullet & \text{Output timing measurement reference Level} & 1.5 \text{ V} \\ \bullet & \text{Test load termination supply voltage } (\text{V}_{\text{T}}) & 1.5 \text{ V} \\ \bullet & \text{Output Load} & \text{See figures} \\ \end{array}$

TAP Controller Timing Diagram

Test Access Port Registers

Register Name	Length	Symbol	Note
Instruction Register	3 bits	IR [0;2]	
Bypass Register	1 bits	BP	
ID Register	32 bits	ID [0;31]	
Boundary Scan Register	70 bits	BS [1;70]	HM62G36128 series

TAP Controller Instruction Set

IR2	IR1	IR0	Instruction	Operation
0	0	0	SAMPLE-Z	Tristate all data drivers and capture the pad value
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	Tristate all data drivers and capture the pad value
0	1	1	BYPASS	
1	0	0	SAMPLE	
1	0	1	BYPASS	
1	1	0	BYPASS	
1	1	1	BYPASS	

Note: This Device does not perform EXTEST, INTEST or the preload portion of the PRELOAD command in IEEE 1149.1.

Boundary Scan Order

Bit #	Bump ID	Signal Name	Bit #	Bump ID	Signal Name			
1	5R	M2	36	3B	SA7			
2	4P	SA15	37	2B	NC			
3	4T	SA14	38	3A	SA6			
4	6R	SA10	39	3C	SA3			
5	5T	SA12	40	2C	SA13			
6	7T	ZZ	41	2A	SA0			
7	6P	DQa0	42	2D	DQc0			
8	7P	DQa1	43	1D	DQc1			
9	6N	DQa3	44	2E	DQc3			
10	7N	DQa2	45	1E	DQc2			
11	6M	DQa4	46	2F	DQc4			
12	6L	DQa5	47	2G	DQc5			
13	7L	DQa6	48	1G	DQc6			
14	6K	DQa8	49	2H	DQc8			
15	7K	DQa7	50	1H	DQc7			
16	5L	SWEa	51	3G	SWEc			
17	4L	K	52	4D	ZQ			
18	4K	K	53	4E	SS			
19	4F	G	54	4G	NC			
20	5G	SWEb	55	4H	NC			
21	7H	DQb7	56	4M	SWE			
22	6H	DQb8	57	3L	SWEd			
23	7G	DQb6	58	1K	DQd7			
24	6G	DQb5	59	2K	DQd8			
25	6F	DQb4	60	1L	DQd6			
26	7E	DQb2	61	2L	DQd5			
27	6E	DQb3	62	2M	DQd4			
28	7D	DQb1	63	1N	DQd2			
29	6D	DQb0	64	2N	DQd3			
30	6A	SA2	65	1P	DQd1			
31	6C	SA1	66	2P	DQd0			
32	5C	SA5	67	3T	SA11			
33	5A	SA4	68	2R	SA9			
34	6B	NC	69	4N	SA16			
35	5B	SA8	70	3R	M1			

Notes: 1. Bit#1 is the first scan bit to exit the chip.

- 2. The NC pads listed in this table are indeed no connects, but are represented in the boundary scan register by a "Place Holder". Place holder registers are internally connected to VSS.
- 3. In Boundary scan mode, differential input K and K are referenced to each other and must be at opposite logic levels for reliable operation.
- 4. ZZ must remain at V_{IL} during boundary scan.
- In boundary scan mode, ZQ must be driven to VDDQ or VSS supply rail to ensure consistent results.
- 6. M1 and M2 must be driven to VDD or VSS supply rail to ensure consistent results.

ID register

Bit#	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Value	х	х	х	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	Vendor Revision No.					Depth					Width				Use	in th	ie fu	ture		Vendor ID No.								Fix				

TAP Controller State Diagram

Note: The value adjacent to each state transition in this figure represents the signal present at TMS at the time of a rising edge at TCK.

No matter what the original state of the controller, it will enter Test-Logic-Reset when TMS is held high for at least five rising edges of TCK.

Package Outline

(BP-119A) (Unit: mm)

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire

or other consequential damage due to operation of the Hitachi product.

- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre,

Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Harbour City, Canton Road, Tsim Sha Tsui,

HITACHI

Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica

http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Europe Asia (Singapore) Asia (Taiwan) Asia (HongKong)

http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1> (408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich

Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd.

Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom

Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105)

Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by			
0.0	Feb. 05,1999	Initialrelease	M.Ikeda	S.Nakazato			