Devoir à la maison n^o 18

Problème 1 —

Partie I -

On note $\mathcal A$ l'ensemble des matrices $\left(\begin{array}{ccc} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{array}\right)$ avec $a,b,c\in\mathbb R.$

- 1. Montrer que A est un \mathbb{R} -espace vectoriel et préciser sa dimension.
- 2. Montrer que A est un anneau commutatif.
- $\textbf{3. On pose } M = \left(\begin{array}{ccc} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{array} \right). \text{ Justifier que } (I_3, M, M^2) \text{ est une base de } \mathcal{A}.$
- 4. Exprimer M^3 en fonction de I_3 et M.

Partie II -

On définit une suite (u_n) par $u_0=3,\ u_1=0,\ u_2=4$ et par la relation de récurrence : $\forall n\in\mathbb{N}, u_{n+3}=2u_{n+1}-4u_n.$

- $\textbf{1.} \ \, \text{Justifier que pour tout } k \in \mathbb{N}, \, \text{il existe des réels } a_k, \, b_k, \, c_k \, \text{tels que } M^k = \left(\begin{array}{ccc} a_k & 0 & 0 \\ 0 & b_k & c_k \\ 0 & -c_k & b_k \end{array} \right).$
- 2. Déterminer une relation de récurrence vérifiée par la suite (a_k) et deux relations de récurrence liant les suites (b_k) et (c_k) .
- **3.** Pour tout $k \in \mathbb{N}$, on appelle z_k le nombre complexe $z_k = b_k + ic_k$. Exprimer z_{k+1} en fonction de z_k et montrer que $b_k = \operatorname{Re} \left((1+i)^k \right)$.
- 4. Retrouver ce dernier résultat en trouvant une relation de récurrence vérifiée par la suite (b_k) .
- 5. Montrer que la suite (u_n) est à valeurs entières.
- 6. Justifier que pour tout $n\in\mathbb{N},$ $u_n=\mathrm{tr}(M^n).$
- 7. Soit p un nombre premier. On rappelle que pour $k \in [1, p-1]$, p divise $\binom{p}{k}$ et que pour tout $a \in \mathbb{Z}$, p divise $a^p a$ (petit théorème de Fermat). Montrer que p divise u_p .