Vorlesung Baumautomaten (Mitschrift)

Benedikt Elßmann (3720358) be57xocu@studserv.uni-leipzig.de

Universität Leipzig

5. April 2019

Inhaltsverzeichnis

0 Einleitung

Automaten lesen Wörter $w = a_1 \dots a_n$ und geben "accept" aus oder nicht. Dafür gibt es Erweiterungen, wie etwa:

- gewichtete Automaten, das heißt der Output ist ein Semiringelement
- Automaten mit Gedächtnis (Stack)
- Automaten über anderen Strukturen
 - $-\omega$ -Wörter $w = a_1 \dots a_n$
 - Graphen
 - Bäume
 - Kombinationen dieser

Typische Fragestellungen:

- Ausdrucksstärke
- Darstellung als rationale Ausdrücke (Kleene)
- Darstellung als Grammatik
- Darstellung als Logik

1 Bäume und Baumautomaten

Wir betrachten über $A = \{a, b\}$ den Automaten A:

mit $L(\mathcal{A} = b * aba * .$

Betrachtung des Wortes $w = baba \in L(A)$:

Der eindeutige erfolgreiche Lauf für w lässt sich darstellen als:

 $q_0baba \rightarrow bq_0aba \rightarrow baq_1ba \rightarrow babq_2a \rightarrow babaq_2 \in F$ (Finalzustand)

Baumautomaten funktionieren analog. Unser erstes Beispiel wird

Akzeptiert mit dem Lauf:

mit $q_f \in F$

1.1 Definition Rangalphabet

Ein paar (Σ, rk) , wobei Σ eine endliche Menge von Symbolen und $rk : \Sigma \to \mathbb{N}$ eine Abbildung ist, heißt Rangalphabet.

Für $f \in \Sigma$ heißt rk(f) der Rang (oder die Stelligkeit) von f.

Intuitiv: rk(f) ist die Anzhal der Kinder von f in einem Baum. Insbesondere ist die Anzhal der Kinder für jedes Symbol fest.

Gilt rk(f) = n, schreiben wir auch $f^{(n)}$ statt f. wir schreiben:

- 0-stellige Symbole (Konstanten) a, b, \dots
- unär, binär, ... f, g, ...

Wir setzen $\Sigma^{(n)} = \{ f \in \Sigma | rk(f) = n \}$

 ${\rm In}$

f ist also
$$rk(f) = 2, rk(b) = 0$$
f b

1.2 Definition Term, Tree

Sei (Σ, rk) ein Rangalphabet. Die Menge T_{Σ} der Bäume üeber Σ ist induktiv definiert durch:

- $\Sigma^0 \subseteq T_{\Sigma}$
- $f^{(n)} \in \Sigma$. $t_1, \ldots, t_n \in T_{\Sigma}$, dann ist $f(t_1, \ldots, t_n) \in T_{\Sigma}$

Intuitiv sind t_1, \ldots, t_n die Kinder von f.

Z.B. ist

1.3 Definition Höhe

Sei (Σ, rk) ein Rangalphabet. Die Höhe ht ist gegeben durch:

- für $a^{(0)} \in \Sigma : ht(a) = 1$.
- für $f(t_1, ..., t_n) \in T_{\Sigma} : ht(f) = 1 + max\{ht(t_i) | i \in \{i, ..., n\}\}$

Ziel: Zugriff auf einen Knoten innterhalb eines Baumes und deren Label. Dafür ordenen wir den Knoten Positionen zu. Das geht induktiv wie foelgt:

1.4 Definition Position

Sei (Σ, rk) ein Rangalphabet. Die Positionenmenge ist definiert durch:

- für $a^{(0)} \in T_{\Sigma} istPos(a) = \{\varepsilon\}$
- für $f(t_1, \ldots, t_n) \in T_{\Sigma}$ ist $Pos(f(t_1, \ldots, t_n)) = \{\varepsilon\} 1 \cdot Pos(t_1) \cup \cdots \cup n \cdot Pos(t_n)$

Beispiel:

Betrachtung von f(f(a,b),b) bzw.

$$Pos(f) = \{\varepsilon, 1, 2, 1.1, 1.2\}$$

1.5 Definition der Label an den Positionen

Für einen Term der Form $t = f(t_1, \dots, t_n)$ ist das Symbol t(p) in t an p-ter Position induktiv definert durch:

- $t(\varepsilon) = f$
- $t(ip) = t_i(p), i \in \{1, ..., n\}$

Beispiel: Betrachtung von f(f(a,b),b)

Dann ist

$$t(\varepsilon) = f$$

$$t(1) = t(1 \cdot \varepsilon) = t_1(\varepsilon) = f$$

$$t(2) = t(2 \cdot \varepsilon) = t_2(\varepsilon) = b$$

$$t(1.1) = t_1(1) = a$$

$$t(1.2) = t_2(1) = b$$

1.6 Definition Sub-Baum

Für T_{Σ} ist ein Sub-Baum $t_{|p}$ an p-ter Position wie folgt definiert:

•
$$Pos(t_{|p}) = \{i|pi \in Pos(t)\}$$

• $\forall q \in Pos(t_{|p} \text{ ist } t_{|p}(q) = t(pq)$

Wir schreiben $t[u]_p$ für den Baum, der entsteht, wenn man in t den sub-Baum $t_{|p}$ durch n ersetzt.

Beispiel: f(f(a,b),b) bzw. f a b $t_{|1} = f(a,b)$ f a b $t_{|2} = t(1.2) = b$ u = g(b,a) g , dann ist b a $t[u]_{|1} = f(g(b,a),b)$ f

1.7 Definition Baumautomat

Ein Buamautomat \mathcal{A} ist ein 4-Tupel (Q, Σ, F, Δ) , wobei:

 $Q\dots$ endliche Menge an Zusänden

 $\Sigma \dots$ Rangalphabet

 $F \cdots \subset Q$ Finalzustände

 $\Delta \dots$ Menge von regeln

$$r: f(q_1\dots q_n)\to q$$
 für $q,q_1,\dots,q_n\in Q,$ für $a^{(0)}\in T_\Sigma:a\to q$

Beispiel:

$$\mathcal{A} = \{ \{q_a, q_b, q_f\}, \{a^{(0)}, b^{(0)}, f^{(2)}\}, \{q_f\}, \Delta \}$$

mit $\Delta = \{a \to q_a, b \to q_b, f(q_a, q_b) \to q_a, f(q_a, q_b), f(q_a, q_b) \to q_f \}$