MCR2 - LabVIEW Simulator

LabVIEW Simulator Description

- 1 <u>Unzip</u> the folder named "PuzzlebotLabviewTemplateV1_2.zip" into a directory.
- 2. Open the LabView Project called "PuzzlebotLabview.lvproj" you should see the following

3. Open the "PuzzlebotSim.vi", the following screen will be shown

4. Parameters used in Front Panel of the VI

Parameter in	Default Value	Description
LabView		
IP Address	192.168.11	IP Address of the real robot shown on the
		screen (For this coursework will not be used)
Mode Select	Robot	Mode Selection Control
	Simulation	Robot Simulation: Simulates the real
		robot, opens a new window that plots
		the robot movement and the trajectory
		that follows.
		2. Robot DC Motor Sim: Simulates two DC
		motors.
		3. Real Robot: Used to connect to the real
		robot. (Not used in this coursework)
dt(ms)	50	Sampling time selection in mS (milliseconds)
ControlR	0	PWM signal percentage applied to the right DC
		motor. The values can vary in the interval [-1, 1],
		i.e., [-1,,-0.5,,0,,0.5,1], where 1 is full power to
		the motor and -1 is full power in reverse
		direction.
ControlL	0	PWM signal percentage applied to the left DC
		motor. The values can vary in the interval [-1, 1],
		i.e., [-1,,-0.5,,0,,0.5,1], where 1 is full power to
		the motor and -1 is full power in reverse
		direction.
Velocity Right		Indicator showing the right motor velocity
Velocity Left		Indicator showing the left motor velocity
Sonar Distance		Indicator showing the distance measured by
		the Sonar Sensor (Real Robot only, if included)
Servo Angle		Control the Servo Motor angle on the interval
		[-90, 90] deg
Stop		Stop button (This button must be used to stop
		simulation and/or real robot usage)
		Similardi redi robot dsage)

5. Block Diagram description

The block diagram can be divided into three sections, Initialisation, Simulation Execution and Close Communication / Simulation End as follows.

6. The block diagram uses a SubVi called "Robot SIM" that simulates the dynamics of the robots including the motors.

7. The following table will describe the parameters that will be used in this laboratory.

Parameter	Input / Output	Definition
Mode Select	Input	Mode Selection Control
		1 Robot Simulation: Simulates the
		real robot, opens a new window
		that plots the robot movement
		and the trajectory that follows.
		2. Robot DC Motor Sim: Simulates
		two DC motors.
		3. Real Robot: Used to connect to
		the real robot.
Action	Input	Define the action of the SubVi to
		initialise variables, Run the simulation, or
		finalise "close" the simulation/
		communication.
Ur	Input	PWM signal percentage applied to the
		right DC motor. The values can vary in
		the interval [-1, 1], i.e., [-1,,-
		0.5,,0,,0.5,1], where 1 is full power to
		the motor and -1 is full power in reverse
		direction.
UI	Input	PWM signal percentage applied to the
		left DC motor. The values can vary in
		the interval [-1, 1], i.e., [-1,,-
		0.5,,0,,0.5,1], where 1 is full power to

		the motor and -1 is full power in reverse direction.
		direction.
IP Address	Input	IP Address used to communicate with
		the real robot.
error in	Input	Input error function.
OmegaR	Output	Output the right motor velocity as given
		by the encoders.
OmegaL	Output	Output of the Left motor velocity as
		given by the encoders.
error out	Output	Error output.