$DS201_Lab9-Classification$

Use sklearn to train the classifier model using Iris data:

```
from sklearn.datasets import load_iris
iris = load_iris()
```

iris.head(150)

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa
10	5.4	3.7	1.5	0.2	setosa

- 1. Create a seaborn pairplot with above data with species as hues and add markers. (Figure at the end)
- 2. Use the Iris data to train multiple classifiers:
 - KNeighborsClassifier(n neighbors=1)
 - KNeighborsClassifier(n neighbors=5)
 - LogisticRegression
- 3. Predict the type of two new iris flowers:

[3, 4, 4, 2], [4, 4, 3, 2]

By using above three classifier models:

- 4. Evaluate KNN model using different neighbor size
 - Create a train/test split of the iris data (70/30)
 - Train a model with neighbor size = 5 and predict the species in test set
 - Plot a line chart of KNN accuracy of k=1 to k=25 then pick the best k value.
- 5. Answer in the .pynb file code block:

Submit as DS201XLab09 Classifier LastFirst.ipynb on Canvas

