Math, Problem Set 5, Convex Analysis

Name: Charlie Walker

Solutions

7.1 Claim: If S is a nonempty subset of V, then conv(S) is convex.

The hull H = conv(S) is given by the set of all finite sums of the form $\lambda_1 x_1 + ... + \lambda_n x_n$ for all $x \in S$, $n \in \mathbb{N}$ with $\sum \lambda_i = 1$ and $\lambda_i \geq 0$. H is convex if $\gamma y + (1 - \gamma)x \in H \ \forall x, y \in H$ and $0 \leq \gamma \leq 1.\gamma y + (1 - \gamma)x = \gamma(\lambda_1 y_1 + ... + \lambda_n y_n) + (1 - \gamma)(\lambda'_1 x_1 + ... + \lambda'_k x_k) \in H$ iff $\gamma \sum \lambda_i + (1 - \gamma) \sum \lambda'_j = 1$. Since $x, y \in H$ by definition of H it follows that $\sum \lambda_i = \sum \lambda'_j = 1$. Finally, $\gamma 1 + (1 - \gamma)1 = 1$ is true.

7.2i Claim: A hyperplane is convex.

Let x_a and x_b be any two arbitrary points in $P = \{x \in V | \langle a, x \rangle = b\}$. Then, $\lambda x_a + (1 - \lambda)x_b = \lambda a_1x_{a1} + ... + \lambda a_nx_{an} + ... + (1 - \lambda)a_1x_{b1} + ... + (1 - \lambda)a_nx_{bn} = \lambda a_1x_{a1} + a_1x_{b1} - \lambda a_1x_{b1} + ... + \lambda_a nx_{an} + a_nx_{bn} - \lambda a_nx_{bn} = b + \lambda b - \lambda b = b$. Since any convex combination of the two points is still in the hyperplane P, we know that the hyperplane is convex.

7.2ii Claim: Half-spaces are convex.

Let $H = \{x \in V | \langle a, x \rangle \leq b\}$ be a half-space, where $a \in V, a \neq 0$, and $b \in \mathbb{R}$. Then, for any two arbitrary points x_a and x_b in the half-space, we know that $\lambda(a_1x_1 + ... + a_nx_n + (1-\lambda)(a_1x_1' + ... + a_nx_n' = \lambda a_1x_1 + a_1x_1' - \lambda a_1x_1' + ... + \lambda a_nx_n + a_nx_n' - \lambda a_nx_n' \leq \lambda b + b - \lambda b = b$. Since the convex combination of any two arbitrary points is in the half-space, we conclude that the half-space is convex.

7.4i Claim: $||x - y||^2 = ||x - p||^2 + ||p - y||^2 + 2\langle x - p, p - y \rangle$. $||x - y||^2 = \langle x - y, x - y \rangle = \langle x - p + p - y, x - p + p - y \rangle = \langle x - p, x - p \rangle + \langle x - p, p - y \rangle$ $||y - y||^2 + ||y - y||^2 + ||p - y||^2 + 2\langle x - p, p - y \rangle$.

7.4ii $||x-p|| \le ||x-p|| + ||p-y||$ because $||p-y|| \ge 0$. Therefore squaring both sides, we preserve the inequality and obtain $||x-p||^2 \le ||x-p||^2 + ||p-y||^2 + 2\langle x-p, p-y\rangle =$

 $||x-y||^2$. Taking the squareroot of both sides now, we obtain $||x-p|| \le ||x-y||$.

7.4iii Given that $z = \lambda y + (1 - \lambda)p$, we can write $||x - z||^2 = ||x - p||^2 + ||p - z||^2 + 2\langle x - p, p - z \rangle = ||x - p||^2 + ||p - \lambda y - p + \lambda p||^2 + 2\langle x - p, p - \lambda y - p + \lambda p \rangle = ||x - p||^2 + ||\lambda p - \lambda y||^2 + 2\langle x - p, \lambda p - \lambda y \rangle = ||x - p||^2 + \lambda^2 ||p - y|| + 2\lambda \langle x - p, p - y \rangle.$

7.4iv Claim: If p is a projection of x onto the convex set C, then $\langle x-p,p-y\rangle \ge 0 \forall y \in C$.

Suppose p is the projection of x onto the convex set C. Then we know that $||x-z||^2 = ||x-p||^2 + 2\lambda\langle x-p, p-y\rangle + \lambda^2||y-p||^2$. We know that the right hand side of the equation is greater than $||x-p||^2$ since p is a projection onto C and z is a point in C (z is in C because C is convex and z is a convex linear combination of points in C). Moreover, the right hand side can be rewritten as $||x-p||^2 + \lambda(2\langle x-p, p-y\rangle + \lambda||y-p||^2)$ where $\lambda||y-p||^2 \geq 0$. Since the expression has to be greater than or equal to $||x-p||^2$, it follows that $2\langle x-p, p-y\rangle + \lambda||y-p||^2 \geq 0$ for all $y \in C$ and $\lambda \in [0,1]$. Thus, we can let $\lambda = 0$ and see that $2\langle x-p, p-y\rangle \geq 0$.

7.6 Claim: If f is a convex function, then the set $\{x \in \mathbb{R}^n | f(x) \leq c\}$ is a convex set. Suppose f is a convex function. Let x_a and x_b be arbitrary elements of $S = \{x \in \mathbb{R}^n | f(x) \leq c\}$. It remains to show that $f(\lambda x_a + (1 - \lambda)x_b) \leq c$. $f(\lambda x_a + (1 - \lambda)x_b) \leq c$. $\lambda f(x_a) + (1 - \lambda)f(x_b) \leq \lambda c + (1 - \lambda)c = \lambda c - \lambda c + c = c$, as desired.

7.7 To show that f(x) is conex, we need to show that for all $x_1, x_2 \in C$, $f(\mu x_1 + (1 - \mu)x_2) \le \mu f(x_1) + (1 - \mu)f(x_2)$. $f(\mu x_1 + (1 - \mu)x_2) = \sum_{i=1}^k \lambda_i f_i(\mu x_1 + (1 - \mu)x_2) \le \sum_{i=1}^k \lambda_i [\mu f_i(x_1) + (1 - \mu)f_i(x_2)] = \mu \sum_{i=1}^k \lambda_i f_i(x_i) + (1 - \mu)\sum_{i=1}^k \lambda_i f_i(x_2) = \mu f(x_1) + (1 - \mu)f(x_2)$.

7.13 Claim: If f is convex and bounded above, then f is constant.

Suppose f is convex and bounded above, and suppose to the contrary that there exists x, y where $f(x) \geq f(y)$. Then for any $x_1, x_2 \in C$ and $0 \leq \lambda \leq 1$, we have

 $f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$. Thus, we know $f(x) \leq \lambda f(\frac{x - (1 - \lambda)y}{\lambda}) + (1 - \lambda)f(y)$, where $x = \lambda x_1 + (1 - \lambda)x_2$ and $y = x_2$. Rearranging the inequality, we obtain $\frac{f(x) - (1 - \lambda)f(y)}{\lambda} \leq f(\frac{x - (1 - \lambda)y}{\lambda}) \leq b$, where b is a finite upper bound for f. As $\lambda \to 0^+$, $\frac{f(x) - (1 - \lambda)f(y)}{\lambda} \to \infty$, which contradicts the assumption that f is bounded above. Therefore, it follows that f is constant, that is f(x) = f(y) for all $x, y \in C$.

7.20 Claim: If f is convex and -f is also convex, then f is affine.

Suppose f is convex. Then, $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$. Suppose -f is convex. Then $-f(\lambda x + (1 - \lambda)y) \leq -\lambda f(x) + -(1 - \lambda)f(y)$. Multiplying the last inequality by -1 throughout and see that $f(\lambda x + (1 - \lambda)y) \geq \lambda f(x) + (1 - \lambda)f(y)$. The only way that both inequalities can be true is if $f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$. Therefore f is linear and thus affine.

7.21 Suppose $f(x*) \leq f(y) \forall y \in \mathbb{R}^n$. Since ϕ is strictly increasing, we know that $f(x^*)$ minimizes ϕ over the range of f, which means that x^* minimizes $\phi \circ f$. Suppose $\phi \circ f(x^*) \leq \phi \circ f(y) \forall y \in \mathbb{R}^n$. Then because ϕ is strictly increasing, $f(x^*) \leq f(y) \forall y \in C$, which means that x^* minimizes f.