Assignment for Machine Learning workshop, EVA2023

Hi everyone, please answer these questions based on reviewing the workshop presentation and the five Python notebooks available on the Github page here: https://github.com/sundarjhu/EscueladeVerano_2023

* In	dicates required question
	arouted required question
1.	What is the primary goal of machine learning? *
	Mark only one oval.
	To create intelligent machines
	To develop algorithms that can think like humans
	To enable computers to learn patterns from data and to make predictions
	To automate repetitive tasks
	Mill fill fill i NOT
2.	Which of the following is NOT a supervised learning task? *
	Mark only one oval.
	Classification
	Regression
	Clustering
	Natural language processing
0	
3.	In machine learning, what is the purpose of a training set? *
	Mark only one oval.
	To evaluate the performance of a model
	To test the accuracy of a model
	To tune hyperparameters of a model
	To train a model to learn patterns from labeled examples

4.	What is the difference between hyperparameters and parameters in machine * learning?
	Mark only one oval.
	Hyperparameters are learned during training, while parameters are set before training.
	Hyperparameters control the learning process, while parameters are learned by the model.
	Hyperparameters define the model's structure, while parameters determine the model's behavior.
	Hyperparameters are specific to certain algorithms, while parameters are universal across all models.
5.	What is the bias of a machine learning model?
	Mark only one oval.
	The difference between predicted and actual values
	The difference between the average predicted value and the average actual value
	The tendency of the model to underfit the training data
	The tendency of the model to overfit the training data
6.	What is the variance of a machine learning model? *
	Mark only one oval.
	The difference between predicted and actual values
	The difference between the average predicted value and the average actual value
	The tendency of the model to underfit the training data
	The tendency of the model to overfit the training data

7.	What is the main challenge in unsupervised learning? *
	Mark only one oval.
	Finding the optimal hyperparameters
	Handling missing data in the input features
	Dealing with imbalanced class distributions
	Extracting meaningful patterns from unlabeled data
8.	What does the bias-variance trade-off refer to in machine learning? *
	Mark only one oval.
	The balance between underfitting and overfitting
	The trade-off between precision and recall
	The balance between model complexity and model interpretability
	The trade-off between training time and prediction time
9.	What is the purpose of cross-validation in machine learning? *
	Mark only one oval.
	To divide the dataset into training and testing sets
	To evaluate the performance of a model on unseen data
	To compute feature importance
	To reduce overfitting of a model

10.	What is the difference between precision and recall? *
	Mark only one oval.
	Precision measures the proportion of correctly predicted positive instances, while recall measures the proportion of actual positive instances correctly predicted
	Precision measures the proportion of correctly predicted negative instances, while recall measures the proportion of actual negative instances correctly predicted.
	Precision measures the accuracy of a model, while recall measures the reliability of a model.
	Precision measures the ability of a model to generalize, while recall measures the model's complexity.
11.	Which evaluation metric is suitable for imbalanced classification problems? * [Hint: think about the imbalanced situation we discussed where we defined accuracy, precision, and recall. What would be the best way to ensure that the underrepresented class is as correctly classified as possible, based on the definitions of these metrics?]
	Mark only one oval.
	Accuracy Mean Squared Error F1 score (the harmonic mean of the precision and recall) R-squared coefficient
12.	Which of the following is an example of a hyperparameter? *
	Mark only one oval.
	Weights of a neural network
	Intercept term in linear regression
	Number of decision trees in a random forest
	Coefficients in logistic regression