Non-dimensionalization scheme, Boussinesq approximation

June 18, 2020

1 The Navier-Stokes equation

The Navier-Stokes equation (NS), dimensional form:

$$\rho \partial_t \mathbf{u} + 2\rho \mathbf{\Omega} \times \mathbf{u} = -\nabla P + \rho \mathbf{g} + \rho \nu \nabla^2 \mathbf{u}. \tag{1}$$

Assume small density variations ρ' following

$$\rho = \rho_0 + \rho' = \rho_0 - \rho_0 \alpha \theta,$$

where α is the thermal expansion coefficient and θ is the temperature variation from the isentropic profile T(r). Assume also

$$\mathbf{g} = -g_0 \frac{r}{R} \mathbf{\hat{r}}.$$

Within the Boussinesq approximation, the density variations enter only through the buoyancy force, so

$$\rho \mathbf{g} \longrightarrow \rho' \mathbf{g} = \rho_0 \alpha g_0 \frac{r}{R} \theta \mathbf{\hat{r}}.$$

Now we make the dimensional units explicit. With the unit of length being R, the unit of time $1/\Omega$, the unit of temperature θ^* , the unit of pressure P^* then the NS equation, after dividing by ρ_0 , is

$$\Omega^2 R \, \partial_t \mathbf{u} + \Omega^2 R \, 2\hat{\mathbf{z}} \times \mathbf{u} = -\frac{P^*}{\rho_0 R} \mathbf{\nabla} P + \alpha g_0 \theta^* r \theta \hat{\mathbf{r}} + \frac{\nu \Omega}{R} \nabla^2 \mathbf{u},$$

where now the variables $r, t, \mathbf{u}, P, \theta$ have been rendered dimensionless. Divide now the equation by $\Omega^2 R$ and get

$$\partial_t \mathbf{u} + 2\mathbf{\hat{z}} \times \mathbf{u} = -\frac{P^*}{\rho_0 \Omega^2 R^2} \nabla P + \frac{\alpha g_0 \theta^*}{\Omega^2 R} r \theta \mathbf{\hat{r}} + \frac{\nu}{\Omega R^2} \nabla^2 \mathbf{u}.$$

We are free to choose the scales P^* and θ^* as we wish. We choose then $P^* = \rho_0 \Omega^2 R^2$. For the time being we leave θ^* unspecified and simply define the dimensionless Brunt-Väisälä frequency N such that

$$N^2 \equiv \frac{\alpha g_0 \theta^*}{\Omega^2 R},\tag{2}$$

so that the NS equation becomes

$$\partial_t \mathbf{u} + 2\hat{\mathbf{z}} \times \mathbf{u} = -\nabla P + N^2 \,\theta r \,\hat{\mathbf{r}} + E\nabla^2 \mathbf{u},\tag{3}$$

where E is the Ekman number.

2 The heat equation

The heat equation, dimensional form is:

$$\partial_t \theta = -u_r \frac{\mathrm{d}T}{\mathrm{d}r} + \kappa \nabla^2 \theta,\tag{4}$$

where κ is the thermal diffusivity. Assume an isentropic temperature distribution (dimensional too) such that

$$\frac{\partial T}{\partial r} = \beta \left(\frac{r}{R}\right)^q,\tag{5}$$

where β is a positive constant and the exponent q is either q=1 or q=-2. Following Dormy(2004) and Dintrans(1999) the case q=1 corresponds to a uniform distribution of heat sinks across the fluid volume, and the case q=-2 corresponds to a differential heating case. In Dintrans(1999) they focus only on the q=1 case.

Analogously as for the NS equation, we make the dimensional units explicit and heat equation becomes

$$\Omega \theta^* \partial_t \theta = -\Omega R u_r \beta r^q + \frac{\kappa \theta^*}{R^2} \nabla^2 \theta,$$

where it is understood that now the variables r, t, u_r, θ became dimensionless. Divide the equation by $\Omega \theta^*$ and get

$$\partial_t \theta = -\frac{R}{\theta^*} \beta \, r^q \, u_r + \frac{\kappa}{\Omega R^2} \nabla^2 \theta.$$

Choosing the temperature scale as $\theta^* = R\beta$ and using the Prandtl number $\mathcal{P} \equiv \nu/\kappa$ then the heat equation is

$$\partial_t \theta = -r^q u_r + \frac{E}{\mathcal{P}} \nabla^2 \theta. \tag{6}$$

We can go back now to Eq. 2 and replace θ^* by $R\beta$ and write the dimensionless Brunt-Väisälä frequency (squared) as

$$N^2 = \frac{\alpha g_0 \beta}{\Omega^2}. (7)$$