KIT DE DESENVOLVIMENTO PARADOXUS PEPTO – MANUAL DO USUÁRIO

Autor: Eng. Wagner Rambo

WR KITS

Copyright WR Kits 2016 (todos os direitos reservados): Proibida reprodução total ou parcial sem prévia autorização por escrito do autor. Copyright protegido pela Lei de Direitos Autorais LEI N° 9.610, de 19 de Fevereiro de 1998.

Sumário

1.	Introdução	2
2.	Características do PIC16F628A	3
3.	Periféricos da placa PARADOXUS PEPTO	5
4.	Informações Adicionais	8

PARADOXUS PEPTO - Manual do Usuário

1. Introdução

O Kit PARADOXUS PEPTO (*Programmable Apparatus Rehearsal Academic Didactic Objective Extract Universal Science Peripheral Environment Processor Technological Onboard*) é um sistema embarcado completo baseado na família PIC16 (Figura 1). Utiliza o microcontrolador PIC16F628A. Ele viabiliza o estudo de programação de processadores, desenvolvimento de sistemas eletrônicos, controle de periféricos, sistemas de automação entre outros.

O sistema pode ser utilizado para exercitar os conhecimentos estudados em salas de aula e/ou cursos baseados em microcontroladores PIC. Consiste em uma única PCB com conexão para gravação do MCU via ICSP (*In-Circuit Serial Programming*), ou seja, programação da memória flash diretamente na placa.

Figura 1: Kit de desenvolvimento PARADOXUS PEPTO.

2. Características do PIC16F628A

O kit de desenvolvimento PARADOXUS PEPTO é baseado no microcontrolador PIC16F628A, que apresenta as seguintes características:

- Oscilador interno de 4MHz;
- Possibilidade de utilizar-se cristal oscilador externo até 20MHz;
- Resistores de pull-up inseridos via programação no PORTB;
- Watchdog timer com oscilador independente para operação confiável (reseta o processador em caso de mau funcionamento);
- Programação In-Circuit (ICSP) e proteção ao código programado;
- Alta resistência na gravação da memória Flash e EEPROM (100 mil escritas na memória Flash, 1 milhão de escritas na EEPROM);
- Até 40 anos de retenção do código;
- 16 I/O's, 2 timers de 8 bits (TMR0 e TMR2), 1 timer de 16 bits (TMR1), USART, 128 bytes de EEPROM;
- Módulo CCP (capture/compare/PWM), 16 bits (capture-compare), 10 bits (PWM);
- Corrente de sink/source até 20mA, que permite o controle direto de LED's a partir das saídas programáveis;
- 2 comparadores analógicos;
- Corrente de standby da ordem de 100nA.

O PIC16F628A que acompanha o kit consiste em um circuito integrado de 18 pinos dispostos em linha (DIL), os quais são apresentados na Figura 2.

Figura 2: Pinos do microcontrolador PIC16F628A.

Outros microcontroladores com o mesmo encapsulamento podem ser utilizados no kit PARADOXUS PEPTO, como o PIC16F84A, PIC16F627, PIC16F648A, entre outros. As características destes processadores citados, como memória flash e registradores internos por exemplo, variam e uma consulta ao datasheet do componente deve ser realizada, caso o usuário opte por utilizar outro dispositivo na placa de desenvolvimento.

3. Periféricos da placa PARADOXUS PEPTO

Na Figura 3, estão destacados todos os periféricos contidos na placa do kit de desenvolvimento PARADOXUS PEPTO.

Figura 3: Periféricos do kit de desenvolvimento PARADOXUS PEPTO.

Aos pinos RA3 e RA2 estão conectados 2 LEDs vermelhos de 3mm no modo *current sourcing*¹ (LED1 e LED2 respectivamente), você pode programalos como indicação visual nos mais diversos projetos. Pode utilizar juntamente com outras aplicações nos pinos RA3 e RA2, deixando o jumper "LEDS" na placa na posição "ON". Se não quiser utilizar os LEDs onboard, poderá colocar o jumper "LEDS" na posição "OFF". Para gravar o PIC, o jumper "OP" deverá estar na posição "RM" (*record mode*). Após a gravação bem sucedida, comute o jumper para "EM" (*executable mode*) e poderá então rodar o seu projeto. O

-

¹ Anodo do LED conectado ao pino programável através de um resistor limitador de corrente e catodo ligado ao GND. Enviando nível high acende o LED, nível low apaga.

processo completo para gravação do MCU está detalhado nos cursos de microcontroladores PIC do WR Kits Channel (www.youtube.com/canalwrkits).

Existem também 2 botões onboard, S1/INT e S2/RESET. Ambos podem ser utilizados como entradas genéricas (estão ligados aos pinos RB0 e RA5 respectivamente). O S1 ainda pode ser utilizado como entrada de interrupção externa e o S2 como RESET do sistema. Ambos os pinos RB0 e RA5 também estão disponíveis nos soquetes J1 e J2.

Todos os recursos do PIC16F628A estão disponíveis nos soquetes J1 e J2, que permite uma inteiração e controle dos mais diversos sistemas e transforma a PARADOXUS PEPTO em um microcontrolador *embedded* compacto e eficiente. A seguir, a descrição de cada uma das funções.

- RA0/A0: Entrada/Saída bidirecional e entrada inversora do primeiro comparador interno;
- RA1/A1: Entrada/Saída bidirecional e entrada inversora do segundo comparador interno;
- RA2/A2/V: Entrada/Saída bidirecional, entrada não-inversora do segundo comparador interno, saída da tensão de referência interna programável;
- RA3/A3/C1: Entrada/Saída bidirecional, entrada não-inversora do primeiro comparador interno, saída do primeiro comparador interno;
- RA4/T0/C2: Entrada/Saída bidirecional em dreno aberto, entrada externa para incremento do Timer0, saída do segundo comparador interno;
- RA5/RESET: Entrada digital, master clear ativo em nível low. Provoca um reset no processador;
- RB0/INT: Entrada/Saída bidirecional com *pull-up* interno programável, entrada para interrupção externa;
- RB1/RX/DT: Entrada/Saída bidirecional com *pull-up* interno programável, recepção para comunicação USART síncrona, via de dados para comunicação USART síncrona;

- RB2/TX/CK: Entrada/Saída bidirecional com *pull-up* interno programável, transmissão para comunicação USART síncrona, via de clock para comunicação USART síncrona;
- RB3/CCP1: Entrada/Saída bidirecional com *pull-up* interno programável, módulo de Captura, Comparação e PWM;
- RB4/PGM: Entrada/Saída bidirecional com *pull-up* interno programável, entrada para programação em baixa tensão, interrupção por mudança de estado;
- RB5: Entrada/Saída bidirecional com *pull-up* interno programável, interrupção por mudança de estado;
- RB6/T1O/T1: Entrada/Saída bidirecional com *pull-up* interno programável, saída para cristal externo para o Timer1, entrada externa para incremento do Timer1, interrupção por mudança de estado;
- RB7/T1O: Entrada/Saída bidirecional com *pull-up* interno programável, saída para cristal externo para o Timer1, interrupção por mudança de estado.

Os pinos RA6 e RA7 do PIC16F628A não estão disponíveis nos soquetes J1 e J2, pois há o cristal externo de 4MHz ligado a eles. Optou-se por deixar o oscilador externo fixo. Na Figura 4, pode-se conferir os jumpers "OP" e "LEDS" mais de perto.

Figura 4: Jumpers "OP" e "LEDS".

4. Informações Adicionais

Agora que você já tem o kit PARADOXUS PEPTO poderá desenvolver os mais diversos projetos com microcontroladores PIC16. Como bônus, a pasta virtual contém alguns projetos em Assembly comentados linha por linha e também os mesmos projetos compilados para você testar em seu kit!

Além de Assembly, você poderá programar o PIC16F628A em linguagem C, Basic ou outras compatíveis com a família PIC16.

Acompanhe nosso curso de Assembly para PIC para aprender a utilizar o MPLAB.

O curso está disponível gratuitamente em nosso canal no YouTube no link https://www.youtube.com/canalwrkits

Confira outros produtos em nossa loja online https://wrkits.com.br/

Este produto foi projetado e fabricado nos laboratórios da WR Kits e é totalmente nacional.

