

Mathematics 1 1-6e Straight Line Example (EFPRB): MATHEMATICS-29 In finding the distance, d, between two points, which equation is the appropriate one to use? (A) $d = \sqrt{(x_1 - x_2)^2 - (y_2 - y_1)^2}$ (B) $d = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ (C) $d = \sqrt{(x_1^2 - x_2^2) + (y_1^2 - y_2^2)}$ (D) $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ The distance formula is defined as follows. $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ The answer is (D).

Mathematics 1

1-7b

Quadratic Equations

Example (EFPRB):

MATHEMATICS-6

What is the solution of the equation $50x^2 + 5(x-2)^2 = -1$, where x is a real-valued variable?

For real-valued x, the left-hand side of the equation must always be greater than or equal to zero, since all terms containing \boldsymbol{x} are squared. There is no solution to this equation for real values of x.

The answer is (D).

Mathematics 1

1-7c

Quadratic Equations

Example (EFPRB):

MATHEMATICS-7

What are the roots of the cubic equation $x^3 - 8x - 3 = 0$?

- (A) x = -7.90, -3, -0.38

- (B) x = -3, -2, 2(C) x = -3, -0.38, 2(D) x = -2.62, -0.38, 3

By inspection, +3 is a root, and (x-3) is a factor. Factor out (x-3).

$$\frac{x^3 - 8x - 3}{x - 3} = x^2 + 3x + 1$$

Use the quadratic equation to solve $x^2 + 3x + 1 = 0$.

$$x = 3, \frac{-3 \pm \sqrt{9 - 4}}{2}$$
$$= -2.62, -0.38, 3$$

The answer is (D).

Mathematics 11-10bTrigonometric Identities• Two-angle formulas• Half-angle formulas
$$sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$$

$$cos(\alpha + \beta) = cos \alpha cos \beta - sin \alpha sin \beta$$

$$tan(\alpha + \beta) = \frac{tan \alpha + tan \beta}{1 - tan \alpha tan \beta}$$

$$cos(\alpha + \beta) = \frac{cot \alpha cot \beta - 1}{cot \alpha + cot \beta}$$

$$4.50$$

$$cot(\alpha + \beta) = \frac{cot \alpha cot \beta - 1}{cot \alpha + cot \beta}$$

$$4.51$$

$$tan(\alpha - \beta) = sin \alpha cos \beta - cos \alpha sin \beta$$

$$4.52$$

$$cos(\alpha - \beta) = cos \alpha cos \beta + sin \alpha sin \beta$$

$$4.53$$

$$cos(\alpha - \beta) = cos \alpha cos \beta + sin \alpha sin \beta$$

$$4.53$$

$$cot(\alpha - \beta) = \frac{tan \alpha - tan \beta}{1 + tan \alpha tan \beta}$$

$$4.54$$

$$cot(\alpha - \beta) = \frac{cot \alpha cot \beta + 1}{cot \beta - cot \alpha}$$

$$4.55$$

Mathematics 1					1-11e
General Triangles					
Example (EFPRB):					
MATHEMATICS-23					
What is the inverse natural function of the cosecant?					
(A)	secant	(B) sine	(C) cosine	(D) tangent	
орр		sine is the oppos $\sin\theta =$ B).		•	
Professional Publications, Inc. FERC					

