

Design and Analysis of Algorithms I

Graph Algorithms Representing Graphs

Graphs

Two ingredients

- <u>Vertices</u> aka nodes (V)
- Edges (E) = pairs of vertices
 - can be <u>undirected</u> [unordered pair] or <u>directed</u> [ordered pair] (aka <u>arcs</u>)

Examples: road networks, the Web, social networks, precedence constraints, etc.

Consider an undirected graph that has n vertices, no parallel edges, and is connected (i.e., "in one piece"). What is the minimum and maximum number of edges that the graph could have, respectively?

- $\bigcirc n-1$ and n^2
- \bigcirc *n* and 2^n
- \bigcirc *n* and n^n

Tei ve

Sparse vs. Dense Graphs

Let $\underline{\mathbf{n}} = \#$ of vertices, $\underline{\mathbf{m}} = \#$ of edges.

In most (but not all) applications, m is $\Omega(n)$ and $O(n^2)$

- in a "sparse" graph, m is or is close to O(n)
- in a "dense" graph, m is closer to $\theta(n^2)$

The Adjacency Matrix

Represent G by a n x n 0-1 matrix A where $A_{ij} = 1 \Leftrightarrow G$ has an i-j edge \bigcirc

Variants

- $A_{ij} = \#$ of i-j edges (if parallel edges)
- A_{ij} = weight of i-j edge (if any)

•
$$A_{ij} = \begin{bmatrix} +1 & \text{if } \bigcirc \bigcirc \bigcirc \bigcirc \\ -1 & \text{if } \bigcirc \bigcirc \bigcirc \bigcirc \end{bmatrix}$$

How much space does an adjacency matrix require, as a function of the number n of vertices and the number m of edges?

- $\bigcirc \theta(n)$
- $\bigcirc \theta(m)$
- $\bigcirc \theta(m+n)$
- $\bigcirc \theta(n^2)$

Adjacency Lists

Ingredients

- array (or list) of vertices
- array (or list) of edges
- each edge points to its endpoints
- each vertex points to edges incident on it

How much space does an adjacency list representation require, as a function of the number n of vertices and the number m of edges?

- $\bigcirc \theta(n)$
- $\bigcirc \theta(m)$
- $\bigcirc \theta(m+n)$
 - $\bigcirc \theta(n^2)$

Adjacency Lists

<u>Ingredients</u>	<u>Space</u>
 array (or list) of vertices 	$\theta(n)$
• array (or list) of edges one-to-one	heta(m)
• each edge points to its endpoints correspondence!	$\theta(m)$
 each vertex points to edges incident on it 	heta(m)
Question: which is better? Answer: depends on graph density and operations	$\frac{\overline{\theta(m+n)}}{\theta(max\{m,n\})]}$

needed.

This course: focus on adjacency lists.

Tim Roughgarden