國立清華大學

碩士論文

單光子展頻

Spread Single Photon Spectrum

系 所:物理研究所

學 號:105022555

研究生:陳奕丞 (Chen, Yi-Cheng)

指導教授:褚志崧 博士 (Prof. Chuu, Chih-Sung)

中華民國一〇八年七月

Todo list

單光子展頻

摘要

我們運用對單光子波包的操控,讓單光子免於被躍遷頻率同其頻率的原子吸收或「偵測」,達到隱形斗篷的效果。

關鍵字:關鍵字,論文,樣板,讓我畢業

Spread Single Photon Spectrum

Abstract

Write your English abstract here.

Keywords: Keyword, Thesis, Template, Graduate me

誌謝

謝謝天謝謝地

目錄

		頁	次
摘	要		iii
Al	ostra	ct	iv
誌	謝		\mathbf{v}
目	錄		vi
_	`	實驗背景與動機	1
	1.1	古典通訊展頻	1
	1.2	量子通訊展頻	1
_	`	基本原理介紹	2
	2.1	展頻技術	2
	2.2	相位調製	2
		2.2.1 數學形式	2
		2.2.2 單頻波	3
三	`	理論模擬	5
	3.1	展頻及壓縮	5
	3.2	銣原子氣體吸收	7
四	`	實驗儀器與優化流程	9
	4.1	儀器介紹	9
		4.1.1 隨機訊號產生器	9

六	`	總結		22
		5.4.2	⁸⁷ <i>Rb</i> 吸收	20
		5.4.1	展頻與壓縮	19
	5.4	單光子	一光源製備	18
	5.3	單光子	子量測	18
		5.2.2	銣原子吸收譜	17
		5.2.1	雷射頻譜量測	14
	5.2	古典光	台量測	14
	5.1	相位調	周製對光強的影響	13
五.	`	實驗架	是設與結果討論	13
		4.1.5	Etalon 干涉儀	12
		4.1.4	法布立-培若干涉儀	
		4.1.3	高頻電訊號放大器	11
		4.1.2	電光調製器	10

圖目錄

		頁次
2.1	窄頻雷射頻譜	4
3.1	隨機訊號 $PRBS(t)$	5
3.2	展寬後頻譜模擬圖	6
3.3	$\Delta t_p > \Delta t_{RF}$ 時壓縮頻譜	7
3.4	展寬後頻譜模擬圖	7
3.5	壓縮後頻譜模擬圖	8
4.1	隨機訊號眼圖	9
4.2	偏振角度不對	10
4.3	放大後的隨機訊號眼圖	11
4.4	Fabry-Perot 干涉儀透射頻率	12
5.1	EOM 開啟前後之功率變化率	13
5.2	雷射頻譜量測光路圖	14
5.3	窄頻雷射頻譜	15
5.4	5 Gb/s 訊號之展頻頻譜	15
5.7	10 Gb/s 訊號壓縮後頻譜	17
5.8	調製後的銣原子吸收譜	17
5.9	單光子量測光路圖	19
5.10	nocell 調製比較圖	20

5.11	heatcell 調製比較圖								20
5.12	調製後光子之銣原子吸收比較圖								21

一、 實驗背景與動機

1.1 古典通訊展頻

展頻技術 (Spread Spectrum Technology) 在古典通訊上已行之有年,

1.2 量子通訊展頻

在量子通訊中,若以單光子作為攜帶資訊的媒介,展頻技術也可以 降低環境對於單光子的影響,還能將展頻後的單光子藏匿於人工外加的 雜訊之中,並在接收端將其還原成原始訊號的模樣。

二、 基本原理介紹

2.1 展頻技術

展頻技術 (spread spectrum technology) 是一種可將原訊號的頻譜打散分佈到比原始頻寬更寬的技術。在我們的實驗上,能窄頻雷射 (narrow-band laser) 與單光子的頻寬從約 10 MHz 展至 10 GHz,其作法為,以 PRBS 產生高頻隨機訊號,使用光電調製器 (EOM) 對入射光進行相位調製,此在時域上的操作,經傅立葉轉換後等效於增加其他頻率成分,以達到展寬頻率的效果。

2.2 相位調製

2.2.1 數學形式

此小節介紹相位調製的數學形式。設入射 EOM 的雷射波函數為 $E_0(t)$,調製函數 (modulation function) 為 M(t),經調製後的波函數 $E_m(t)$ 可表示成:

$$E_m(t) = E_0(t)e^{iM(t)}$$
 (2.1)

若對此式做傅立葉轉換,根據 convolution theorem,可得:

$$\mathscr{F}\lbrace E_0(t)e^{iM(t)}\rbrace = \tilde{E}_0(\omega) * \mathscr{F}\lbrace e^{iM(t)}\rbrace$$
 (2.2)

 $\tilde{E}_0(\omega)$ 為入射光之頻譜,所以在數學分析上,我們可以把入射光頻譜與相位調製的部分分開處理,都計算好後再做摺積即可得到調製後的頻譜。

2.2.2 單頻波

若入射光的頻譜為中心頻率在 ν_0 的勞倫茲分佈 (lorenz distribution),調製函數為頻率 ν_m 的單頻波,意即輸入的電訊號強度隨時間的函數可表示為 $\phi_0 sin(2\pi\nu_m \omega t)$,則可將 (2.2) 改寫為:

$$\mathscr{F}\{E_0(t)e^{i\phi_0\sin(2\pi\nu_m\omega t)}\} = \tilde{E}_0(\omega) * \mathscr{F}\{e^{i\phi_0\sin(2\pi\nu_m\omega t)}\}$$
 (2.3)

其中 $\tilde{E}_0(\omega)$ 為勞倫茲分佈,另一項傅立葉轉換的結果為第一類貝索函數 (Bessel function of the first kind):

$$\mathscr{F}\left\{e^{i\phi_0 \sin(2\pi\nu_m \omega t)}\right\} = J_n(\phi_0) \tag{2.4}$$

或在時域上看,將調製項做傅立葉級數展開:

$$e^{i\phi_0 \sin(2\pi\nu_m \omega t)} = \sum_{n=-\infty}^{\infty} J_n(\phi_0) e^{i2\pi n\nu_m t}$$
(2.5)

可從上式看出,調製項的頻譜是由頻率為 $n\nu_m$ 的狄拉克函數 (Dirac function) 組成, $n=0,\pm1,\pm2,...$,強度分佈為 $J_n(\phi_0)$ 。

以 $\phi_0 = \pi$ 為例,從 (2.3) 可知,將入射光(圖)與調製項的頻譜做 摺積可得調製後的結果,如圖:

兩者比較可明顯看出,時域上相位調製能讓改變頻率的分佈。

圖 2.1: 窄頻雷射頻譜

三、 理論模擬

3.1 展頻及壓縮

從上一章單頻波的例子可看出,相位調製可將原先頻率集中於 ν_0 的 光,分散至 $\nu_0 \pm \nu_m, \nu_0 \pm 2\nu_m, \dots$ 。若調製函數改用時間寬度為 ΔT 的隨機方波 PRBS(t) (如圖),則可將 (2.2) 的右式寫成:

$$\tilde{E}_0(\omega) * \mathscr{F}\{e^{iPRBS(t)}\}$$
 (3.1)

經計算,展寬後的頻譜如圖:

待放圖片

圖 3.1: 隨機訊號 *PRBS*(t)

其包絡線接近 sinc 的平方,展開的寬度為 $\pm \frac{1}{\Delta T}$,在我們實驗中使用的隨機訊號的產生率為 $10~{\rm Gb/s}$,單一位元的時間寬度為 $100~{\rm ps}$,相當於能將頻譜從數 ${\rm MHz}$ 展至 $10~{\rm GHz}$ 寬。

經展頻後的訊號,可以降低環境的影響,避免光子被特定原子團

圖 3.2: 展寬後頻譜模擬圖

吸收,但若想還原光子初始相位的資訊,則需要一個反向的操作,讓 光子再經過第二台 EOM,輸入的電訊號為與 PRBS(t) 互補的訊號 $\overline{PRBS}(t)$,這兩個訊號要滿足以下關係:

$$PRBS(t) + \overline{PRBS}(t) = 0 \tag{3.2}$$

或

$$e^{iPRBS(t)} \times e^{i\overline{PRBS}(t)} = 1$$
 (3.3)

若光子在兩台 EOM 行經的時間間距為 Δt_p ,兩個電訊號抵達的時間差為 Δt_{RF} ,當 $\Delta t_p = \Delta t_{RF}$ 時,理論上可以對相位進行反向的調製,將展頻後的訊號壓縮回原本的樣子,但若 $\Delta t_p > \Delta t_{RF}$,則無法完全還原頻譜,如下圖:

圖 3.3: $\Delta t_p > \Delta t_{RF}$ 時壓縮頻譜

3.2 鉫原子氣體吸收

從銣原子吸收譜可以看出,在其中兩個特定頻率上,各有約 1.5 GHz 的都卜勒吸收區,未經調製前的窄頻雷射進入原子氣體內會幾乎全部被吸收,但若將頻率展至 10 GHz 寬,則其中只有少部分會被吸收,這即是展頻的主要用途,可以降低光子被環境的影響,模擬如圖:

待放圖片

圖 3.4: 展寬後頻譜模擬圖

此時再讓光經過第二台 EOM 將頻譜壓縮,結果比較圖:

從圖中可以看出,光被部分吸收後,還是能透過反向的操作將已展 寬的頻譜變窄。

圖 3.5: 壓縮後頻譜模擬圖

四、 實驗儀器與優化流程

4.1 儀器介紹

4.1.1 隨機訊號產生器

由於實驗上無法產生真正的隨機訊號,只能使用偽隨機訊號產生器 (Pseudo Random Bit Sequence, PRBS),儀器型號為 Anritsu 的MP1763C,可以產生 0.5 至 12.5 Gb/s 的訊號。偽隨機訊號實際上為週期訊號,會重複出現特定的隨機序列,其週期可以調整,為了達到最接近隨機的效果,我們選擇使用最長的隨機序列,一個週期內共有 $2^{31}-1$ 的隨機位元。

我們實驗上實際使用的頻率為 $10~\mathrm{GHz}$ (或 $10~\mathrm{Gb/s}$),每秒能產生 10×10^9 個隨機位元,以示波器去測量該訊號的眼圖 (eye diagram) 則可以知道訊號的品質,量測結果如下:

待放圖片

圖 4.1: 隨機訊號眼圖

可見實際訊號與理論(圖)有蠻大的差異,有著相對大的上升與下降時間,圖形上下也不太對稱,這都會影響到展頻與壓縮的效果,造成實驗與理論的誤差。

4.1.2 電光調製器

電光調製器 (Electro-Optic Modulator, EOM) 可使用電訊號對光進行調製,一般而言可以分成三種,分別為振幅、相位與偏振的調製,在我們的實驗中需要調製的是相位。使用的儀器為 EOSPACE 的 SN73717 與 SN73718,分別為頻譜的窄寬與壓縮用。

相位調制器由鈮酸鋰 $(LiNbO_3)$ 雙折射晶體製成,因泡克耳斯效應 (Pockels effect),外加電場能線性的改變快軸上的折射率,進而達到改變相位的效果,且我們稱能將 45 度線偏旋轉至 -45 度的電壓為 V_{π} 。

由上介紹可知,實際使用上需優化進光的偏振以及電訊號的振幅, 以達到預期的相位調製效果。

我們使用半波片 (half-wave plate) 調整入射 EOM 偏振的方向,若偏振方向不對的話,調製效果會不佳,如圖,所以實驗上優化的方式為,看著調製後的頻譜,將偏振旋轉到最接近理論模擬時的角度。

待放圖片

圖 4.2: 偏振角度不對

4.1.3 高頻電訊號放大器

由於我們使用的隨機訊號產生器僅能輸出 0.2 至 2 V_{pp} 的訊號, EOM 的 V_{π} 為 2.3 V,需再經過放大器才能提供足夠的電壓去進行相位 調製。同樣的,也用示波器去測量眼圖,看放大後的訊號品質,如下圖

待放圖片

圖 4.3: 放大後的隨機訊號眼圖

由於兩台放大器連接 EOM 使用的 SMA 線的材質與長短不同,會有不一樣的頻率響應與耗損,使兩個訊號無法互補,這會對頻譜壓縮與環原的效果造成負面的影響。

4.1.4 法布立一培若干涉儀

古典光可以用法布立一培若 (Fabry-Perot) 干涉儀來掃出頻譜,我們使用的儀器為 THORLABS 的(型號), FSR 為 10 GHz。此干涉儀的主體為一個共振腔,由兩面高反射率的鏡子所組成。當光垂直入射腔體時,須滿足以下共振條件的光才能會有建設性干涉,能透射共振腔:

$$2nL = m\lambda \tag{4.1}$$

n 為共振腔的折射率,L 為腔長,頻率與透射率做圖,其中 ν_F 稱為 FSR (Free Spectrual Range),此參數決定了這個干涉儀適用的掃頻範

圍,調整腔長 L 的大小能改變允許透射的頻率,所以若在其中一面鏡子黏上 Piezo ,輸入電壓即可微調腔長,達到掃頻的效果。

待放圖片

圖 4.4: Fabry-Perot 干涉儀透射頻率

此外,另一個重要的參數為 F (Finesse),為精細度,定義如下:

$$F = \frac{\pi R^{1/2}}{1 - R} \tag{4.2}$$

此共振腔的頻寬(解析度) $\delta\lambda$ 與 F 成反比,關係如下式,所以鏡面 反射率越高,F 越大,解析度越好,此次實驗使用的干涉儀解析度約為 $30~\mathrm{MHz}$ 。

$$\delta\lambda = \frac{\nu_F}{F} \tag{4.3}$$

4.1.5 Etalon 干涉儀

與 Fabry-Perot 干涉儀為相同的原理,只是共振腔使用的鏡子反射率較低,所以線寬較大(約為 $60~\mathrm{MHz}$),若固定腔長 L ,則可做為濾波器使用,僅讓頻率寬度在 $60\mathrm{MHz}$ 這區間內的光通過,中心頻率則可以由溫度 T 改變腔長 $\mathrm{L}(T)$ 來調整。

補上型號,確定共振腔的物質,與偏振的關係

五、 實驗架設與結果討論

5.1 相位調製對光強的影響

我們先以兩種方式去確認相位調製對光強的影響,第一種是用功率計 (power meter) ,讓光一次通過兩台 EOM,去分別測量兩台同時開啟與關閉時的光強,再將兩個數值相除得到變化率;另一種方法是透過Fabry-Perot 測量頻譜,比較相位調製前後的總面積大小,測量結果如下。

圖 5.1: EOM 開啟前後之功率變化率

從隨機訊號 1 Gb/s 到 10 Gb/s 的調製,看不出有特定的變化趨勢,可見展頻與壓縮只會影響頻率的分佈,不會明顯改變光強度。

5.2 古典光量測

古典光源為 Toptica 的半導體雷射,可產生波長 795 nm 的窄頻雷射,這部分的量測主要可以分成兩個部分,第一個部分是要測量雷射的頻譜,看相位調製如何影響頻率的分佈;另一部分是讓雷射通過銣原子氣體管,調整入射雷射的頻率測量 Rb^{87} 的吸收譜。

5.2.1 雷射頻譜量測

實驗光路架設如圖,我們將窄頻雷射通過兩台 EOM 對其進行相位調製,第一台為展頻用,第二台用來做反向的調製來還原頻譜,再以Fabrty-Perot 干涉儀去掃頻。

待放圖片

圖 5.2: 雷射頻譜量測光路圖

在兩台 EOM 都關閉的情況下,可以測到波長 795 奈米窄頻雷射的頻譜,結果如圖,以此 Fabry-Perot 的解析度掃出的雷射頻寬約為 30 MHz。

若只開啟第一台 EOM,在 10 Gb/s 隨機訊號的調製下可將窄頻雷射光的頻譜展至 10 GHz 寬,但由於我們的使用的 Fabry-Perot FSR 僅 10 GHz,無法涵蓋完整的頻率區間,會使測量的結果失真,要想掃出完整展開的頻譜需使用 FSR 20 GHz 以上的干涉儀,所以下面會先以 2 Gb/s的訊號來測試展頻的結果是否符合理論模擬。

圖 5.3: 窄頻雷射頻譜

5.2.1.1 2 Gb/s 隨機訊號之相位調製

先以 2 Gb/s 隨機訊號進行相位調製,只開啟第一台能將頻譜展至 ±5 GHz 寬,如下圖。

待放圖片

圖 5.4: 5 Gb/s 訊號之展頻頻譜

頻譜的形狀大致上與理論相符,但在 ±2 GHz 的位置有一個突起的訊號,這是由於隨機訊號的上升與下降時間不夠快所致,若在數值模擬中把隨機訊號加上約 30 ps 的上升與下降時間(如圖),則會出現類似的結果,如圖:

此外,還可看出該頻譜的包絡線有週期振盪的訊號,原因為我們使用的隨機訊號實際上是個重複出現的週期訊號,每個週期有 $2^{31}-1$ 個位元,若把單位週期的位元數調為 $2^{15}-1$ 做可看到週期更小的震盪週期,

待放圖片 待放圖片

(a) caption 1

(b) caption_2

如圖:

待放圖片 待放圖片

(a) caption_1

(b) caption_2

從測量的頻譜可以看出,展寬的頻率與理論計算的結果一致,所以 我們認為 10 Gb/s 的隨機訊號能將訊號展至 ±10 GHz 寬。

5.2.1.2 10 Gb/s 隨機訊號之相位調製

上一小節我們先以 $2~\mathrm{Gb/s}$ 的訊號做展頻的測試,是因為我們使用的 Fabry-Perot 干涉儀 FSR 不夠大,無法涵蓋以 $10~\mathrm{Gb/s}$ 訊號調製的展頻頻譜,所以先用 $2~\mathrm{Gb/s}$ 做確認。至於壓縮頻譜的部分,能將頻寬壓回數十 MHz ,所以可使用 $10~\mathrm{Gb/s}$ 的訊號進行調製與量測。

當兩台 EOM 同時開啟時,理論上要能將展寬的頻譜還原成調製前的狀態,但從(圖)的實驗結果可以看出,壓縮回來的頻譜與調製前相比,中心頻率的強度僅為本來的 70%,若只計算中心頻率附近 1 GHz 的頻率區間,與調製前相比,光強僅約 80%,剩下 20% 的能量還分散在其他頻率沒被還原。造成頻譜壓縮效果不佳的可能原因為,兩個隨機訊號的形狀不同,上下也不夠對稱,導致無法將相位做反向的調製,使訊號完美還原成最初的狀態。

圖 5.7: 10 Gb/s 訊號壓縮後頻譜

5.2.2 鉫原子吸收譜

為了確定相位調製對於銣原子吸收的影響,我們在兩台 EOM 的後面放上一個如原子氣體管,並以光二極體 (photodiode) 收光,測量透射的強度。只有在入射頻率與銣原子要遷能接共振時光子才會被吸收,使透射率降低,所以若連續調整入射光的頻率,則能掃出整個吸收譜,如圖黑線。

待放圖片

圖 5.8: 調製後的銣原子吸收譜

接著打開第一台 EOM,將頻寬從 30 MHz 展至 10 GHz,結果如上 圖藍線,可見頻譜展寬之後,光能大部分透射銣原子氣體不被吸收,就 像隱形了一般,能降低光子受環境的影響。若同時開啟兩台 EOM 將頻 譜壓縮,則能再次看到光被吸收,但吸收率卻明顯降低,原因如上一小 節所述,可能為隨機訊號品質不所致,影響頻譜壓縮的效果,有部分的 能量還分散在各個頻率上沒能被還原,那些能量不在銣原子的共振頻率 上,所以能夠穿透氣體管,使穿透率上升。

5.3 單光子量測

5.4 單光子光源製備

雙光子的產生機制為 SPDC,入射一道波長 397.5 奈米的藍光雷射進入 PPKTP 晶體,產生 Type-II 的時間 - 能量糾纏光子對 (time-energy entangled biphoton),波長為 795 奈米。實驗上會讓雙光子對經過 PBS 分光,並做 $G^2(\tau)$ 的測量, $G^2(\tau)$ 的定義如下。

$$G^{2}(\tau) = \frac{4\Gamma_{s}\Gamma_{i}}{\Gamma_{s} + \Gamma_{i}} \begin{cases} e^{\Gamma_{s}\tau} &, \tau < 0 \\ e^{-\Gamma_{i}\tau} &, \tau > 0 \end{cases}$$

$$(5.1)$$

此為二階強度關聯函數 (second-order intenstity correlation function), τ 為兩顆單光子抵達探測器的時間差。

若調整入射光的頻率與 PPKTP 晶體的溫度,則可改變單光子的頻率。

雙光子在產生出來後會先進 PBS 將訊號分為 signal 和 idler,以 idler 做為觸發訊號,讓 signal 經過 EOM 與銣原子氣體管,進行相位的 調製與吸收。

這部分的實驗,我們將單光子 (signal) 的頻率調至銣原子的躍遷頻率,使光子能被吸收,再藉由相位調製展寬光子的頻譜,降低原子對光子的影響,以達到隱形斗篷的效果。但由於單光子能量太弱,無法以Fabry-Perot 干涉儀掃頻,所以為了要確定兩台 EOM 同時開啟時能否將頻譜還原,我們改用頻寬 60 MHz 的 Etalon 濾波器,限制光子能通過的

頻寬,架設如圖。

待放圖片

圖 5.9: 單光子量測光路圖

5.4.1 展頻與壓縮

以(光路圖)的架設,先不要放 ^{87}Rb 原子氣體管,讓單光子直接 通過 $60~\mathrm{MHz}$ 寬的 Etalon 濾波器。若兩台 EOM 都沒開,窄頻的單光子能完全通濾波器, $G^2(\tau)$ 的量測結果如圖。此時若開啟第一台 EOM,將頻譜展至 $10~\mathrm{GHz}$ 寬,則單光子僅有極低的機率能通過 Etalon,如圖,幾乎測不到單光子的訊號。若同時開啟兩台 EOM,互補的隨機訊號能互相抵銷相位的變化,使頻譜還原至窄頻,如此就能使光子再次通過Etalon,如圖,與未調製前的結果相比,強度低了些,這是由於壓縮效果不夠好,導致部分的光子沒能通過 Etalon 所致。

圖 5.10: nocell 調製比較圖

5.4.2 87 Rb 吸收

同上一小節的光路架設,但把 ⁸⁷ Rb 原子氣體管放回光路上,如圖。兩台相位調製器都不開的話,單光子幾乎全部被吸收,如圖。若開啟第一台 EOM 將單光子頻譜展寬,雖然光子能幾乎不被吸收,但由於 Etalon 的過濾,探測器仍測不太到光子,如圖。若將第二台相位調製器 也開啟,則能把單光子的頻譜壓縮,再通過 Etalon,如圖。

待放圖片

圖 5.11: heatcell 調製比較圖

單獨將圖與圖拿出來比較(圖),同樣是測量展頻再壓縮回來的光, 黑線為沒放銣原子氣體館,紅線則有,從結果可看出,本來該被完全吸 收的單光子,可透過相位的調製大幅降低銣原子氣體的影響,讓部分的 光可以穿透,並在頻譜還原後被探測,達到隱形斗篷的效果。

圖 5.12: 調製後光子之銣原子吸收比較圖

六、 總結

就是這樣,喵!