♥ 컴퓨터공학과/20171630/남주형

3,2월 배열식의 성질

Date.

/ /

#1 A= | a b c

|E| = 3a(-4ei+4fh)-3b(4di+4fg)+3c(-4dh+4eg)= -12 a(ex-th)+12b(di-tg)-12c(dh-eg) = -12 (a(ei-th)-b(di-fg)+c(dh-eg))

= -12 |A| = -12 (-6) =12

$$(2) = \begin{cases} 0+9 & b+h & (+\lambda) \\ d & e & f \\ g & h & \lambda \end{cases}$$

| E | = (a+g) (ei-th)-(b+h) (di-tg)+(c+i)(dh-eg) = a(ex-th) -b(dx-to)+((dh-ey)+{9xx-9th-hdx+hdo+hdn-leo})

= |A| = -6

[E] = -3a (ei-4et-th+4fe)+3b(di-4df-fg+4fd)-3c(dh+de-eg+4ed) = -3 {a(ei-th) - b(di-ty) + c (ah-ey)} -3 [a(4+e-4+et)-b(4+d-4+d+)+c(4+d-4-de)]

= -3 | A| = -3 (-6) = 18

#2
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

#3 지정한 방법을 이용하여 다음 행정의 행정식을 구하여라.

$$|A| = \begin{vmatrix} 2 & 1 & 5 & 7 \\ 0 & \frac{3}{2} - \frac{13}{2} & -\frac{23}{2} \\ 0 & 0 & \frac{2}{3} & \frac{2}{3} \end{vmatrix} = 2 \times \left(-\frac{3}{2}\right) \times \left(-\frac{2}{3}\right) \times 5 = 10$$

$$E_{6+}(-2) \begin{vmatrix} 2 & 1 & 3 & 45 \\ 0 & 2 & 2 & 1 & 3 \\ 0 & 0 & 4 & 1 & 2 \\ 0 & 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 & 4 \end{vmatrix} = 5$$

$$\begin{vmatrix} 2 & 1 & 3 & 45 \\ 0 & 2 & 2 & 49 \\ 2 & 3 & 4 & 2 \\ 2 &$$

#4 행권식에 대한 다음의 등식이 성립함을 증명하여라.

bb

$$= - (a-b)^{\frac{1}{x}} (a-b)^{\frac{1}{x}}$$

$$= - (a-b)^{\frac{1}{x}}$$

	Date.	/	/
(2) X a b 1			•
$ A = \begin{vmatrix} a & b & b \\ a & b & c \end{vmatrix} = (d-a)(d-b)(d-c)$			
a b c 1	\		
T			
1A = C14 + C24 + C34 + C44			
1a2b 12ab 12ab 22ab			
= - abx + abx - a 2b + axb			
label abel label about			
$= -(abc + ax^2tab^2 - abd - acd)$			
+ $(bc)(+a^2+tab^2-ab^2-a^2c)$			
- (cx²+a²b+ab²-abt-b32-a²c)			
+ (713+ a26 + a62 - a62-621-621)			
$= \chi^3 - \chi^2(\alpha + b + \zeta) + \chi(\alpha b + \alpha c + b c) - \alpha b c$			
=(2-0)(2-6)(2-6)			
(5/10 / 60			
3,3 전 해연식과 여행인 연강선형박정식			
# 1 nxn 행정 A에 대하여 다음의 동기 조건을 증명하더라.			
$ A = 0 \iff adj(A) = 0$			
이 명제의 대우는 IAI to (=> laa)(A) (+0 이다. 이를 증명해보다.			
A · adj(A) = (det A) In			
$det(A \cdot adj(A)) = det(cdetA)I_n)$			
det(A)-det(adj(A)) = (det A)^det(In) (*. ' 224 3.2.1 (3-1) det()	eA) = K ⁿ (det	(A)	
$\det(A) \cdot \det(\operatorname{adj}(A)) = (\det A)^n$,	
$\det(\mathrm{adj}(A)) = (\det A)^{n-1}$			
$ adj(A) = (A)^{n-1}$			
,', A to <=) ads(A) to	,		
·(A =0 <=> adj(A) =0 の付望をた			

# 2	다음의 제차 연강년형방정식에 자명한 해 만을 가지도록 상수 k의 강은 결정하여라.
	\\ \k\1. + \lambda = 0
	21, + k212 + 2/3 =0
	$\lambda_{1} + \lambda_{2} = 0$
	이 연립선형 바람식이 자명한 배를 가격려면
	계수행전기 행전식이 이미되면 당된다 (det / +0)
	\
	$det A = \begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \end{vmatrix} = k^3 + 1 + 1 - k - k - R = k^3 - 3k + 2$
	[l k]
	$k^3-3k+2\neq0$ alolok of ct.
	$(k-1)^{2}(k+2) \neq 0$ $(k+1) \neq -2$
#3	적권한 방법을 이용하여 다음했던형 방경식의 해를 구하여라.
	$\{\lambda_1 + \lambda_2 + \lambda_3 = 1\}$
	$ax_1 + bol_2 + Cd_3 = k$
	$a^2 d_1 + b^2 d_2 + (a^2 d_3 = k^2)$
	1 1
	$det A = a b c = bc^2 + a^2c + ab^2 - a^2b - b^2c - ac^2$
	$\left\langle \alpha^{2} \right\rangle \left\langle \delta^{2} \right\rangle$
	$\det A_1 = k b = bc^2 + k^2 c + kb^2 - k^2 b - b^2 c - kc^2$
	$ k^2 b^2 c^2$ $ bc^2+k^2c+kb^2-k^2b-b^2c-kc^2 det A$
	$\det A_2 = \alpha k C = kc^2 + \alpha^2 c + \alpha k^2 - \alpha^2 k - k^2 c - \alpha c^2$
	$a^{2} k^{2} C^{2}$ $bc^{2} + a^{2}c + ak^{2} - a^{2}k - k^{2}c - ac^{2} = \frac{det A_{2}}{det A}$
	$\det A_3 = a + b + k = bk^2 + a^2k + ab^2 - a^2b - b^2k - ak^2$ $a^2 + b^2 + k^2 + a^2k + ab^2 - a^2b - b^2k - ak^2$ $bk^2 + a^2k + ab^2 - a^2b - b^2k - ak^2$ $det A_3$
	$ a^{2}b^{2}k^{2} $ $ a^{2}bk^{2}+a^{2}k+ab^{2}-a^{2}b-b^{2}k-ak^{2}-\frac{detA_{3}}{detA}$
	be+a*ctab*-a*b-b*c-ac* detA

(ramer) 342 of \$40 \$1 73 of of.
3 -5 -2
det A = 1 -1 = 1
-1 2 1
1 -5 -2
det A, = 4 -1 -1 = -1 +25 - 16 - 10 + 2 + 20 = 20
$5 2 \lambda_1 = \frac{\det A_1}{\det A} = \frac{20}{1} = 20$
3 1 -2
det A= 1 4 -1 = 12+1-10-8+15-1=9
-151 $t_1 = \frac{det A_1}{det A} = \frac{q}{1} = q$
3 -5 1
det A3= 1 -1 4 = -15+20+2-1-24+25=7
-1 2 5 $t_2 = \frac{\det A_3}{\det A} = \frac{7}{1} = 7$

(4) 위의 제가지 방법 중 가강 식된 방법이 되었더라고 생각하는가? 자신의 생각물 전이라.
3까기 X N 인행 전 시가 있을 때 이이 3부다 자기나 같아요 (2),(3) 방법 이 된 한것이다.
나지만 이어 3부다 거지만 시한 시문 가 하는 방법이 보장 레지므로 (1) 의 방법이 좋은 방법이라고 생각하다.