Отчет о выполнении лабораторной работы 1 1 4

Измерение интенсивности радиационного фона

Дудаков Семён 7 марта 2024 г.

1 Аннотация:

Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

2 Используемое оборудование:

счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

3 Теоретические сведения:

если случайные события (регистрация частиц) однородны во времени и каждое последущее событие не зависит от того, когда и как случилось предыдущее, то такой процесс называется пуассоновским, а результататы - количество отсчётов в одном опыте - подчиняются так называемому распределению Пуассона. При больших числах отсчёт это распределение стремится к нулю.

4 Методика измерений

- 1. Включаем компьютер, программой STAT начинается измерение для основного эксперимента.
- 2. В результате демонстрационного эксперимента убеждаемся, что при увеличении числа измерений:
 - (а) Измеряемая величина флуктуирует;
 - (b) Флуктуации среднего значения измеряемой величины уменьшаются, и среднее значение выходит на постоянную величину;

- (c) Флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного измерения (погрешность метода) выходит на постоянную величину.
- (d) Флуктуации величины погрешности среднего значения уменьшаются, а сама величина убывает.

5 Результаты измерений и обработка данных:

- (а) Переходим к основному эксперименту: измерение плотности потока космического излучения за 10 секунд (результаты набрались с момента включения компьютера). На компьютере проведем обработку, аналогичную сделанной в демонстрационном эксперименте. Результаты приведены в таблицах 1 и 2.
- (b) Разбиваем результаты из таблицы 1 в порядке их получения на группы по 2, что соответствует произведению $N_2=100$ измерений числа частиц за интервал времени, равный 40 с. Результаты сведём в таблицу 3.
- (c) Представим результаты последнего распределения в виде, удоб для построения гистограмм распределения числа срабатываний счетчика за 10 с и 40 с строим на одном графике (рис. 1). При этом для второго расположения цену деления по оси абсцисс увеличиваем в 4 раза, чтобы положения максимумов распределений совпадали.
- (d) Определим среднее число срабатываний счётчика за 10 с:

$$\overline{n}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i = \frac{4205}{400} \approx 10,51.$$
 (1)

Таблица 1

Число срабатываний счетчика за 20 с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	19	18	28	23	21	30	15	19	22	21
10	21	17	20	29	15	22	32	25	20	14
20	20	16	21	21	21	13	18	21	29	21
30	16	19	24	23	21	23	23	20	24	23
40	20	21	24	18	26	9	25	23	20	12
50	18	15	22	21	19	28	21	19	24	30
60	19	27	21	23	24	13	21	15	16	27
70	23	21	24	16	23	20	17	26	13	13
80	20	15	24	15	23	26	11	35	27	19
90	20	15	25	23	18	20	22	25	16	21
100	26	20	19	19	31	23	19	28	25	21
110	21	17	27	17	21	21	23	22	16	21
120	20	25	16	19	22	21	21	16	20	28
130	19	21	25	25	17	22	20	21	23	19
140	14	9	21	22	25	19	22	24	26	27
150	18	21	28	22	23	23	22	21	14	29
160	27	22	16	24	30	26	27	10	15	20
170	26	21	17	28	17	19	23	22	20	20
180	16	19	21	28	17	25	24	8	16	17
190	25	22	23	27	25	22	24	26	12	16

Примечание: таблица составлена так, что, например, результат 135-го опыта лежит на пересечении строки, обозначенной 130, и столбца 5.

Таблица 2 Данные для построения гистограммы распределения числа срабатываний счетчиков за 10 с

Число импульсов n_i	2	3	4	5	6
Число случаев	1	2	5	10	21
Доля случаев ω_n	0,0025	0,005	0,0125	0,025	0,0525
Число импульсов n_i	7	8	9	10	11
Число случаев	32	33	56	47	45
Доля случаев ω_n	0,0800	0,0825	0,1400	0,1175	0,1125
Число импульсов n_i	12	13	14	15	16
Число случаев	45	38	22	18	8
Доля случаев ω_n	0,1125	0,0950	0,0550	0,0450	0,0200
Число импульсов n_i	17	18	19	20	21
Число случаев	9	4	2	1	1
Доля случаев ω_n	0,0225	0,0100	0,0050	0,0025	0,0025

Таблица 3

Чи	сло	сраб	атыі	вани	й сч	етчи	ка з	a 40	\mathbf{c}
іта	1	2	3	4	5	6	7	8	9

№ опыта	1	2	3	4	5	6	7	8	9	10
0	37	51	51	34	43	38	49	37	57	34
10	36	42	34	39	50	35	47	44	43	47
20	41	42	35	48	32	33	43	47	40	54
30	46	44	37	36	43	44	40	43	43	26
40	35	39	49	46	46	35	48	38	47	37
50	46	38	54	37	46	38	44	42	45	37
60	45	35	43	37	48	40	50	39	41	42
70	23	43	44	46	53	39	50	46	43	43
80	49	40	56	37	35	47	45	36	45	40
90	35	49	42	32	33	47	50	47	50	28

(е) Найдём среднеквадратичную ошибку отдельного измерения:

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \overline{n}_1)^2} = \sqrt{\frac{4046}{400}} \approx 3, 18.$$
 (2)

(f) Убедимся в справедливости формулы соотношения между среднеквадратичной ошибкой отдельного измерения и средним измерением:

$$\sigma_1 \approx \sqrt{\overline{n}_1}; \qquad 3, 18 \approx \sqrt{10, 51} \approx 3, 24.$$
 (3)

- (g) Определим долю случаев, когда отклонения не превышают σ_1 и $2\sigma_1$, и сравним с теоретическими оценками (табл. 5).
- (h) Используя формулу (1), определим среднее значение импульсов счётчика за 40 с:

$$\overline{n}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i = \frac{4205}{100} = 42,05.$$

(i) Найдём среднеквадратичную ошибку отдельного измерения по формуле (2):

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \overline{n}_2)^2} = \sqrt{\frac{4108,75}{100}} \approx 6,41$$

(j) Убедимся в справедливости формулы (3):

$$\sigma_2 \approx \sqrt{\overline{n}_2}; \qquad 6,41 \approx \sqrt{42,05} \approx 6,48.$$

Рис. 1. Гистограммы для $t=10\ c$ и $t=40\ c$

Таблина 4

Данные для построения гистограммы распределения числа срабатываний счетчиков за 40 с

Число импульсов n_i	23	24	25	26	27	28	29
Число случаев	1	0	0	1	0	1	0
Доля случаев ω_n	0,01	0	0	0,01	0	0,01	0
Число импульсов n_i	30	31	32	33	34	35	36
Число случаев	0	0	2	2	3	7	3
Доля случаев ω_n	0	0	0,02	0,02	0,03	0,07	0,03
Число импульсов n_i	37	38	39	40	41	42	43
Число случаев	8	4	4	5	2	5	10
Доля случаев ω_n	0,08	0,04	0,04	0,05	0,02	0,05	0,10
Число импульсов n_i	44	45	46	47	48	49	50
Число случаев	5	4	7	7	3	4	5
Доля случаев ω_n	0,05	0,04	0,07	0,07	0,03	0,04	0,05
Число импульсов n_i	51	52	53	54	55	56	57
Число случаев	2	0	1	2	0	1	1
Доля случаев ω_n	0,02	0	0,01	0,02	0	0,01	0,01

Таблица 5

Отклонения от средних значений

Ошибка	Число случаев	Доля случаев	Теоретическая оценка
$\pm \sigma_1 = \pm 3.18$	2767	66	68
$\pm 2\sigma_2 = \pm 6{,}41$	3873	92	95

(k) Сравним среднеквадратичные ошибки отдельных измерений для двух распределений: $\overline{n}_1 \approx 10,51;$ $\sigma_1 \approx 3,18$ и $\overline{n}_2 \approx 42,05;$ $\sigma_2 \approx 6,41.$ Отметим, что хотя абсолютное значение σ во втором распределении больше, чем в первом (6,41>3,18), относительная полуширина второго распределения меньше:

$$\frac{\sigma_1}{\overline{n}_1} \cdot 100\% = \frac{3,18}{10,51} \cdot 100\% \approx 30\%, \quad \frac{\sigma_2}{\overline{n}_2} \cdot 100\% = \frac{6,41}{42,05} \cdot 100\% \approx 15\%.$$

Это следует также из рис. 1.

(1) Определим стандартную ошибку величины \overline{n}_1 и относительную ошибку нахождения \overline{n}_1 для N=400 измерений по 10 с. По формуле

$$\sigma_{\overline{n}_1} = \frac{\sigma_1}{\sqrt{N_1}} = \frac{3,18}{\sqrt{400}} \approx 0.16$$

Найдём относительную ошибку:

$$\varepsilon_{\overline{n}_1} = \frac{\sigma_{\overline{n}_1}}{\overline{n}_1} \cdot 100\% = \frac{0,16}{10,51} \cdot 100\% \approx 1,5\%$$

Приближённо:

$$\varepsilon_{\overline{n}_1} = \frac{100\%}{\sqrt{\overline{n}_1 N_1}} = \frac{100\%}{\sqrt{10, 51 \cdot 400}} \approx 1,5\%.$$

Окончательный результат:

$$n_{t=10c} = \overline{n}_1 \pm \sigma_{\overline{n}_1} = 10,51 \pm 0,16.$$

(m) Аналогично п.14 определим стандартную ошибку теперь для величины \overline{n}_2 и относительную ошибку нахождения \overline{n}_2 для $N_2=100$ измерений по 40 с.

$$\sigma_{\overline{n}_2} = \frac{\sigma_2}{\sqrt{N_2}} = \frac{6,41}{\sqrt{100}} \approx 0.64$$

Найдём относительную ошибку:

$$\varepsilon_{\overline{n}_2} = \frac{\sigma_{\overline{n}_2}}{\overline{n}_2} \cdot 100\% = \frac{0,64}{42,05} \cdot 100\% \approx 1,5\%$$

Приближённо:

$$\varepsilon_{\overline{n}_2} = \frac{100\%}{\sqrt{\overline{n}_2 N_2}} = \frac{100\%}{\sqrt{42,05\cdot 100}} \approx 1,5\% = \varepsilon_{\overline{n}_1}.$$

Окончательный результат:

$$n_{t=10c} = \overline{n}_2 \pm \sigma_{\overline{n}_2} = 42,05 \pm 0,64.$$

6 Обсуждение результатов:

Полученные статистические закономерности примерно совпадают с распределением пуассона, что в целом подтверждает поставленную гипотезу.

7 Вывод:

В работе было измерено среднее число частиц, проходящих через счётчик Гейгера-Мюллера при изменении интенсивности космического излучения (радиационного фона) за 10 с и 40 с, а также были изучены статистические закономерности: в т.ч. закон распределения Пуассона, к которому наиболее близко распределение на гистограмме распределений среднего числа частиц, возникавшие при обработке этих данных.