

GANs and Diffusion Models

Exploring Advanced Techniques in Generative AI.

Presentation Agenda

- 1 Introduction
 Generative Models
- 2 GANs
 Architecture, working, advantages, and challenges.
- Diffusion Models

 Concept, mechanism, and applications.
- 4 Comparative Analysis
 GANs vs. Diffusion Models.

What Are Generative

Models?

• Generate new data resembling a given dataset.

Types:

VAEs

Learn probabilistic mappings from data to latent space.

GANs

Adversarial training between generator and discriminator.

Diffusion Models:

Generate data by reversing a diffusion process

Generative model

N = nxn grayscale image

Unrolled N-dim vector

Problem is generating an N-dim vector that represents a "dog"

Understanding GANs

Generator

Creates synthetic data mimicking real data.

Discriminator

Distinguishes between real and generated data.

Training

3

Generator produces data that fools the discriminator.

How GANs Work:

Generate

Synthetic data from noise.

Outcome

A generator capable of producing high-quality, realistic data.

Discriminator

Assesses whether the data is real (from the dataset) or fake (generated)

Adversarial Process:

Both networks improve iteratively;

How GANs Work:

Discriminator Learning:

- Need to predict "1" for "true" images, and "0" for "fake" images
- So the loss function (negative of log loss) for the discriminator is

$$\mathbf{V'} = \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\mathbf{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\mathbf{z}^{(i)}\right)\right)\right) \right]$$

 We want to maximize this loss function. In other words, perform gradient ascent as

$$\theta_d \leftarrow \theta_d + \eta \Delta V'(\theta_d)$$

Discriminator Learning:

Generator Learning:

- Generator needs to fool the discriminator.
- It needs the discriminator to output "1" for "fake" images.
- So the loss function (log loss) for the generator is

$$\mathbf{V}' = \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\mathbf{z}^{(i)}\right)\right) \right)$$

 We want to minimize this loss function. In other words, perform gradient descent as

$$\theta_{g} \leftarrow \theta_{g} - \eta \Delta V'(\theta_{g})$$

Generator Learning:

Generator Learning:

GANs in a Nutshell:

GANs: Advantages & Challenges

Advantages

- High-quality data generation
- Versatility across various data types (images, text, etc.).

Challenges

- Training instability due to the adversarial setup.
- Mode collapse, where the generator produces limited variations.
- Difficulty in evaluating model performance objectively

Generating Anime Faces using GAN

50,000 iterations

Introduction to Diffusion Models

Concept

Generate data by learning to reverse a diffusion process that adds noise to data

Process:

•

Forward Diffusion

Gradually add noise to data, destroying structure.

2

Reverse Diffusion

Learn to reconstruct data by reversing the noise addition, generating new samples.

How Diffusion Models

Work

1 Data Preprocessing

Clean and prepare data for training.

Forward Diffusion

Introduce noise incrementally to the data, creating a sequence of noisy data points.

Reverse Diffusion

Train a model to reconstruct original data from noisy versions, effectively learning the data distribution.

Generation

Sampling from the learned distribution to produce new data instances.

A cascaded diffusion model comprising a base model and two super-resolution models.

Forward diffusion process:

This process will add noise to any image gradually

0 ≤ t ≤ T ; T is a hyperparameter

Forward diffusion process:

Examples of images at different times t

t=T=1000

Here we choose T=1000, but it can be different values (it's an hyperparameter)

Reverse diffusion process:

We train a model to predict $\mathbf{x}_{\text{t-1}}$ from \mathbf{x}_{t}

x₀ is any image from the dataset

Reverse diffusion process:

The same model must predict every x_{t-1} from x_t

Sampling process:

From a random noise we can generate an image

Stable

Diffusion:

Concept

A powerful generative model that creates images from text descriptions.

• Text-to-Image Generation:

Transforms natural language inputs into realistic images by reversing a diffusion process.

Latent Space Representation

Operates in a compressed latent space to reduce computational complexity while maintaining high image quality.

Popular diffusion tools:

DALL-E 2:

Developed by OpenAI, DALL-E 2 is known for highly detailed and creative images from textual descriptions. It uses advanced diffusion techniques to produce images that are both imaginative and realistic, making it a popular tool in creative and artistic applications.

Popular diffusion tools:

DALL-E 3:

DALL-E 3 is the latest version of OpenAI image generation models and is a huge advancement over DALL-E 2. The most notable change is that this latest version isn't just an app but is integrated into ChatGPT. It also stands out with its image generation quality.

Popular diffusion tools:

SORA:

Sora's the latest model by OpenAI, and it's a game-changer. The AI community has been waiting for this drop since it's the first-ever text-to-video model by OpenAI. Sora can make 1080p videos in any resolution up to a minute long, and the videos it creates are scarily realistic.

Applications of Diffusion Models

Image Generation

Audio Synthesis

Data

Augmentation

Anomaly

Detection

GANs vs. Diffusion Models

Training Stability	GANs: Prone to instability.	Diffusion: More stable.
Sample Quality	GANs: High quality, mode collapse.	Diffusion: Diverse, high-fidelity.
Computational Efficiency	GANs: Faster sampling.	Diffusion: Slower sampling.