jsk_recognition

Caution: This document only covers implement official tutorial, bag of features, and partially cover the deep learning with own dataset and ssb_object_detector. For more functionality, visit the official jsk documentation site.

Last update: 04/04/2019

Created by: Kate. Student number: s2861506

https://jsk-docs.readthedocs.io/en/latest/jsk recognition/doc/index.html

Setups, installation before going to the official tutorial

Install pip

sudo apt-get install python-pip update pip to 9.0.3 or above sudo pip install pip==9.0.3

Install jsk_recognition

Two ways to install, recommend use apt-get install instead of build from source. Because build from source may take 4-6 hours to complete.

Install from apt-get

sudo apt-get install ros-kinetic-jsk-pcl-ros sudo apt-get install ros-kinetic-jsk-pcl-ros-utils sudo apt-get install ros-kinetic-jsk-perception sudo apt-get install ros-kinetic-jsk-recognition-msgs sudo apt-get install ros-kinetic-jsk-recognition-utils

Build from source, only if the installed packages not working

cd ~/catkin_ws/src

git clone https://github.com/jsk-ros-pkg/jsk recognition.git

Install dependency for all packages in the workspace

cd ~/catkin_ws

rosdep install --from-paths src --ignore-src -r -y

Notice: this can take some time depends on how many dependency needs to be installed

Build workspace

catkin build -continue-on-failure

If build from source, and cannot compile due to memory error, use following command catkin build --continue-on-failure -p1 -j1

Buld from source can take up to 4-6 hours to complete

cd ~/catkin_ws

catkin build --continue-on-failure

. ~/catkin_ws/devel/setup.bash

Create new package

Create new package with any name you would like to have in the work space catkin_create_pkg replace_here_with_the_name_you_prefer std_msgs rospy roscpp . ~/catkin_ws/devel/setup.bash

Launch pepper_bringup

roslaunch pepper_bringup pepper_full.launch networ_interface:=enp2s0 roscore_ip:=kate-iMac.local

JSK - Official Tutorial

https://jsk-docs.readthedocs.io/en/latest/jsk_recognition/doc/tutorials/index.html

Run the tutorial to see if all the required node can be run with rosrun command. If any missing, build from source. Following is the implementation with the tea boxes

run image_view from pepper's camera

rosrun image_view image:=/pepper_robot/camera/front/image_raw

Step 1. Apply color filter

run hsv_color_filter

rosrun opencv_apps hsv_color_filter image:=/pepper_robot/camera/front/image_raw name:=hsv color filter

rosrun image_view image_view image:=/hsv_color_filter/image

run rqt_reconfigure

rosrun rqt_reconfigure rqt_reconfigure

set values for hsv_color_filter to

h_limit_max 30

h limit min 341

s limit max 128

s limit min 256

v_limit_max 113

v_limit_min 256

Above value should be adjust depends on what type of background is using. The main purpose is to get object that you want become white, and surrounding are black

Optional: Create launch file in the package

roscd package_name_you_created

mkdir launch

touch apply_color_filter.launch

copy and paste following, implemented with pepper's camera from the original file https://jsk-docs.readthedocs.io/en/latest/jsk-recognition/doc/tutorials/find-object-with-color-filtering.html

<launch>

```
<node name="hsv_color_filter"
   pkg="opency apps" type="hsv color filter">
 <remap from="image" to="/pepper_robot/camera/front/image_raw" />
 <rosparam>
  use_camera_info: false
  h_limit_max: 164
  h_limit_min: 360
  s_limit_max: 152
  s_limit_min: 256
  v_limit_max: 158
  v limit min: 256
 </rosparam>
</node>
<node name="image_view_color_filtering"
   pkg="image_view" type="image_view">
 <remap from="image" to="hsv color filter/image" />
</node>
<node name="rqt_reconfigure"
   pkg="rqt_reconfigure" type="rqt_reconfigure"
   args="hsv_color_filter">
</node>
```

Run the launch file

roslaunch package_name_you_created apply_color_filter.launch

Result

Step 2. Get masked image

see the stamp

rostopic echo /pepper_robot/camera/front/image_raw/header/stamp rostopic echo /hsv_color_filter/image/header/stamp apply mask image

rosrun jsk_perception apply_mask_image _clip:=false _approximate_sync:=false \~input:=/pepper_robot/camera/front/image_raw \~input/mask:=hsv_color_filter/image rosrun image_view image_view

image:=/JSK_NODELET_jsk_perception_apply_mask_image/output (Attention: if use launch file, the path name will be different! Check with rostopic list to see the correct path. Here is without using the launch file)

bound object mask image

rosrun jsk_perception bounding_object_mask_image \~input:=hsv_color_filter/image apply mask image better

rosrun jsk_perception apply_mask_image \~input:=/pepper_robot/camera/front/image_raw \~input/mask:=/JSK_NODELET_jsk_perception_bounding_object_mask_image/(Attention: if use launch file, the path name will be different! Check with rostopic list to see the correct path. Here is without using the launch file) output _clip:=false

Result

Step3. Save image

roscd package_you_created mkdir data cd data mkdir collected_images cd collected_images mkdir object_name cd object_name

Save the image

rosrun image_view image_saver image:=/JSK_NODELET_jsk_perception_apply_mask_image/ (Attention: if use launch file, the path name will be different! Check with rostopic list to see the correct path) output _save_all_image:=false _filename_format:=side(Attention: need to change name according to side, back, front view)%04i.%s __name:=image_saver open a new terminal

rosservice call /image saver/save

When change object view, just need to adjust the rqt_reconfigure values.

JSK - Bag of features(Bof) for object recognition

Bag of features for object recognition

https://jsk-

docs.readthedocs.io/en/latest/jsk recognition/doc/jsk perception/bof object recognition.html

Step 1. create descriptors dataset

Make sure have more than one objects image data under the collected_images folder rosrun jsk_perception create_sift_dataset.py \$(rospack find package you created)/data/collected images

Step 2. create bag of features

rosrun jsk_perception create_bof_dataset.py extract_bof collected_images_sift_feature.pkl.gz -O collected_images_bof.pkl.gz

Step 3. create bag of features histogram

rosrun jsk_perception create_bof_dataset.py extract_bof_hist collected_images_sift_feature.pkl.gz collected_images_bof.pkl.gz -O collected_images_bof_hist.pkl.gz

Step 4. train classifier use sklearn classifier train see

rosrun jsk_perception sklearn_classifier_trainer.py collected_images_bof_hist.pkl.gz -O collected_images_clf.pkl.gz

mask image to label

https://jsk-

docs.readthedocs.io/en/latest/jsk recognition/doc/jsk perception/nodes/mask image to label.html roscd package_you_created

cd launch

touch get masked imageto label.launch

copy and paste following, implement the original launch file from - https://github.com/jsk-ros-pkg/jsk-recognition/blob/master/jsk-perception/sample/sample-mask-image-to-label.launch

```
<launch>
<arg name="gui" default="true" />
<node name="apply_mask_image"
    pkg="jsk_perception" type="apply_mask_image">
  <remap from="~input" to="/pepper_robot/camera/front/image_raw" />
  <remap from="~input/mask" to="hsv_color_filter/image" />
  <rosparam>
   clip: false
  </rosparam>
 </node>
<node name="mask_image_to_label"
    pkg="jsk_perception" type="mask_image_to_label.py">
  <remap from="~input" to="/apply mask image/output/mask" />
 </node>
<group if="$(arg gui)">
  <node name="image_view0"
     pkg="image view" type="image view">
   <remap from="image" to="apply_mask_image/output" />
  </node>
  <node name="image_view1"
```

```
pkg="image_view" type="image_view">
<remap from="image" to="mask_image_to_label/output" />
</node>
</group>
</launch>
```

Bof object recognition

touch bof_object_recognition.launch

copy and paste following, implment the orginal launch file from - https://github.com/jsk-ros-pkg/jsk-recognition/blob/master/jsk-perception/sample/sample-bof-object-recognition.launch

```
<launch>
 <arg name="gui" default="true" />
 <node name="colorize labels"
    pkg="jsk_perception" type="colorize_labels">
  <remap from="~input" to="/mask image to label/output" />
 </node>
 <node name="imagesift"
    pkg="imagesift" type="imagesift">
  <remap from="image" to="/pepper_robot/camera/front/image_raw" />
  <remap from="Feature0D" to="~output" />
 </node>
 <node name="feature0d_to_image"
    pkg="posedetection msgs" type="feature0d to image">
  <remap from="image" to="/pepper_robot/camera/front/image_raw" />
  <remap from="FeatureOD" to="imagesift/output" />
 </node>
 <node name="bof_histogram_extractor"
    pkg="jsk_perception" type="bof_histogram_extractor.py">
  <remap from="~input" to="imagesift/output" />
  <remap from="~input/label" to="/mask_image_to_label/output" />
  <param name="~bof_data" value="$(find</pre>
pepper jsk image recognition)/data/collected images bof.pkl.gz" />
  <rosparam>
   approximate_sync: true
   slop: 1.0
  </rosparam>
 </node>
 <node name="sklearn_classifier"
    pkg="jsk_perception" type="sklearn_classifier.py">
  <remap from="~input" to="bof_histogram_extractor/output" />
  <param name="~clf_path" value="$(find</pre>
pepper_jsk_image_recognition)/data/collected_images_clf.pkl.gz" />
 </node>
 <group if="$(arg gui)">
  <node name="rqt_gui"
```

```
pkg="rqt_gui" type="rqt_gui"
    args="--perspective-file $(find
jsk_perception)/sample/config/sample_bof_object_recognition.perspective" />
    </group>
</launch>
```

Launch the launch files

roslaunch package_you_created get_masked_imageto_label.launch roslaunch package_you_created bof_object_recognition.launch The ClassificationResult will be /sklearn_classifier/output

Draw classfication result using the Bof

https://github.com/jsk-ros-

pkg/jsk_recognition/blob/master/jsk_perception/sample/sample_draw_classification_result.launch rosrun jsk_perception draw_classification_result.py ~input:=/sklearn_classifier/output ~input/image:=/pepper_robot/camera/front/image_raw rosrun image_view image_view image:=/draw_classification_result/output

This only display the probability of the objects. Beacuase under the collected_images only have two objects data, therefore the probability is $50 \sim 60\%$

JSK - Deep learning with your own dataset

https://jsk-

recognition.readthedocs.io/en/latest/deep learning with image dataset/overview.html

Annotate images

https://jsk-

recognition.readthedocs.io/en/latest/deep learning with image dataset/annotate images with labe lme.html

training: folder - images: folder

- labels.txt

create dataset for semantic segmentation

Before followintg the tutorial, first you can choose to

1. git clone https://github.com/wkentaro/labelme.git whole repo to one of the folder, and copy the labelme2voc.py file from labelme/example/semantic segmentation to the training folder

2. create a python file under the training folder and copy the code from https://github.com/wkentaro/labelme/blob/master/examples/semantic_segmentation/labelme2voc.py follow the tutorial to create dataset

https://github.com/wkentaro/labelme/tree/master/examples/semantic_segmentation python labelme2voc.py inputdata_folder(exsits) outputdata_folder(not exist) --labels labels.txt

Train neural network

https://jsk-recognition.readthedocs.io/en/latest/deep_learning_with_image_dataset/overview.html sudo pip install opency-python

sudo pip install chainer-mask-rcnn

https://pypi.org/project/chainer-mask-rcnn/

https://github.com/wkentaro/chainer-mask-rcnn

sudo pip install --upgrade cryptography

sudo python -m easy install --upgrade pyOpenSSL

semantic segmentation

--gou, -1 cpu mode, 0 gpu mode

rosrun jsk_perception train_fcn.py --train_dataset_dir \$(rospack find

pepper_jsk_image_recognition)/data/teabox_dataset(folder for the image file)/train

--val_dataset_dir \$(rospack find package_you_created)/data/teabox_dataset/test --out_dir \$(rospack find package you created)/data/teabox dataset/trainned data --gpu -1

No reaction called on the mac

instance segmentation

rosrun jsk_perception train_mask_rcnn.py --train_dataset_dir \$(rospack find pepper jsk_image_recognition)/data/teabox_dataset_instance/train --val_dataset_dir \$(rospack find pepper jsk image recognition)/data/teabox dataset instance/test --out dir \$(rospack find pepper_isk_image_recognition)/data/teabox_dataset_instance/trainned_data --gpu -1 Getting error

/usr/local/lib/python2.7/dist-packages/chainercv/utils/bbox/non maximum suppression.py:81: RuntimeWarning: invalid value encountered in true_divide

iou = area / (bbox_area[i] + bbox_area[selec] - area)

/usr/local/lib/python2.7/dist-packages/chainercv/utils/bbox/non_maximum_suppression.py:82: RuntimeWarning: invalid value encountered in greater_equal if (iou >= thresh).any():

ssb_object_detector (GPU mode)

https://jsk-

docs.readthedocs.io/en/latest/jsk recognition/doc/jsk perception/nodes/ssd object detector.html create yml file contains labeling name

vim label_name.yml

the format of yml should be:

- lable name
- lable name

git clone https://github.com/yuyu2172/image-labelling-tool

cd image-labelling-tool

sudo pip install -e.

python ../image-labelling-tool/flask_app.py --image_dir \$(rospack find

pepper_jsk_image_recognition)/data/experiment/train/twinings_english_breakfast_teabox_extra_str ong/ --label names \$(rospack find

pepper_jsk_image_recognition)/data/experiment/train/twinings_english_breakfast_teabox_extra_strong/label_names.yml --file_ext jpg