Homework08

In Exercises 13-15 use depth-first search to produce a spanning tree for the given simple graph. Choose a as the root of this spanning tree and assume that the vertices are ordered alphabetically.

16. Use breadth-first search to produce a spanning tree for each of the simple graphs in Exercises 13–15. Choose a as the root of each spanning tree.

11.4. ex.16 (-14)

In Exercises 2–4 use Prim's algorithm to find a minimum spanning tree for the given weighted graph.

6. Use Kruskal's algorithm to find a minimum spanning tree for the weighted graph in Exercise 2.

2. Find the sum-of-products expansions of these Boolean functions.

(a)
$$F(x, y) = \overline{x} + y$$

(b) $F(x, y) = x \overline{y}$
(c) $F(x, y) = 1$
(d) $F(x, y) = \overline{y}$

b)
$$F(x, y) = x \overline{y}$$

c)
$$F(x, y) = 1$$

d)
$$F(x, y) = \overline{y}$$

12.2ex.2-
01)
$$F(x,y) = \bar{x} \cdot 1 + 1 \cdot y = \bar{x}(y+\bar{y}) + (\bar{x}+x)y$$

 $= \bar{x}y + \bar{x}\bar{y} + \bar{x}y + xy = \bar{x}y + xy + \bar{x}\bar{y}$
 $b) F(x,y) = x\bar{y}$

4. Find the sum-of-products expansions of the Boolean function F(x, y, z) that equals 1 if and only if

(a)
$$x = 0$$
.

(b)
$$xy = 0$$
.
(d) $xyz = 0$

c)
$$x + y = 0$$
.

d)
$$xyz = 0$$
.

12.2.ex.4

a)
$$F(x,y,\overline{z}) = \overline{\chi} = \overline{\chi} \cdot |x| = \overline{\chi}(y+\overline{y}|(z+\overline{z}) = \overline{\chi}(y+\overline{x})(z+\overline{z}) = \overline{\chi}(y+\overline{x})(z+\overline{x})($$

$$(b F(xyz) = (xy) = \overline{x} + \overline{y} = \overline{x} \cdot |x| + \overline{y} \cdot |x| = \overline{x} \cdot (y + \overline{y}) \cdot (z + \overline{z})$$

8. Find a Boolean product of Boolean sums of literals that has the value 0 if and only if x = y = 1 and z = 0, x = z = 0 and y = 1, or x = y = z = 0. [Hint: Take the Boolean product of the Boolean sums found in parts (a), (b), and (c) in Exercise 7.]

12. Express each of these Boolean functions using the operators \cdot and $\bar{}$.

a)
$$x + y + z$$

b) $x + \overline{y}(\overline{x} + z)$
c) $\overline{x + \overline{y}}$
d) $\overline{x}(x + \overline{y} + \overline{z})$

d)
$$\overline{x}(x+\overline{y}+\overline{z})$$

c)
$$\overline{x+\overline{y}}$$

$$\mathbf{d)} \ \overline{x}(x+\overline{y}+\overline{z})$$

12.2 ex. 12
a)
$$x+y+z = \overline{xy} = \overline{\overline{x}}$$

$$= \overline{x}\overline{y}z$$

b) $x+\overline{y}(\overline{x}+z) = (\overline{\overline{x}}\overline{z})\overline{y}+x = \overline{x}\overline{z}.\overline{y}+x$

$$= \overline{x}.\overline{x}\overline{z}\overline{y}$$