EE2012/ST2334 Discussion 5*

Liu Zichen

April 8, 2019

- 1. [Population, sample] A *population* is a set of similar items or events which is of interest for some question or experiment, and a *sample* is any subset of population. Every outcome or observation can be recorded as a *numerical* or a *categorical* value. Population may be finite or infinite.
- 2. [Random sampling] Simple random sample of n observations is a sample such that every subset of n observations of the population has the same probability of being selected.
 - (a) When we sample from a finite population, we can sample with/without replacement. This corresponds to the counting problems.
 - (b) When we sample from an infinite population, if we assume that all random variables have the *same* distribution and are *independent*, we say that the sample is random.
- 3. [Sampling distribution] The main purpose of sampling is to estimate some *unknown population parameters*, so that we can make some *inference* regarding the true population. A value computed from a sample is called a *statistic*, and it varies (why?). Hence a statistic should be a random variable. The *probability distribution of a statistic* is called a *sampling distribution*.

Sample mean defined by the statistic:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{1}$$

Theorem (see an example): For random samples of size n taken from an *infinite* population or from a *finite population with* replacement having population mean μ and population standard deviation σ , the **sampling distribution of the sample** mean has:

$$\mu_{\overline{X}} = \mu_X$$
 and $\sigma_{\overline{X}}^2 = \frac{\sigma_X^2}{n}$ (2)

Law of large number (LLN): Let X_1, X_2, \dots, X_n be a random sample of size n from a population having any distribution with mean μ and *finite* population variance σ^2 . Then for any $\epsilon \in \mathcal{R}$

$$P(|\overline{X} - \mu| > \epsilon) \to 0 \text{ as } n \to \infty$$
 (3)

Central limit theorem (CLT): Let X_1, X_2, \dots, X_n be a random sample of size n from a population having any distribution with mean μ and finite population variance σ^2 . If n is sufficiently large, the sampling distribution of the sample mean \overline{X} is approximately normal with mean μ and variance $\frac{\sigma^2}{n}$:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \text{ approx } \sim N(0, 1)$$
 (4)

Theorem: if X_i , $i = 1, 2, \dots, n$ are $N\left(\mu, \sigma^2\right)$, the sample mean \overline{X} is $N\left(\mu, \frac{\sigma^2}{n}\right)$ regardless of the sample size n.

What about the **sampling distribution of the difference of two sample means**? If independent samples of size $n_1 (\geq 30)$ and $n_2 (\geq 30)$ are drawn from two large or infinite populations, discrete or continuous, with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , respectively. The sampling distribution of the difference of means, \overline{X}_1 and \overline{X}_2 , is approximately normally distributed with mean and standard deviation given by $\mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2$ and $\sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}$:

$$\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \text{ approx } \sim N(0, 1)$$
 (5)

4. [Chi-square distribution] Y is a chi-square distribution with n degrees of freedom if

$$f_Y(y) = \frac{1}{2^{n/2}\Gamma(n/2)} y^{n/2-1} e^{-y/2}, \quad \text{for } y > 0, \text{ and } 0 \text{ otherwise}$$
 (6)

It is denoted as $\chi^2(n)$, and n is a positive integer and $\Gamma(\cdot)$ is the gamma function: $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx = (n-1)!$.

E(Y)=n, V(Y)=2n; if $X\sim N(0,1),$ then $X^2\sim \chi^2(1);$ let X_1,X_2,\cdots,X_n be a random sample from a normal population with mean μ and variance $\sigma^2, Y=\sum_{i=1}^n \frac{(X_i-\mu)^2}{\sigma^2}\sim \chi^2(n).$

^{*}Some examples from bookmarked pages of the lecture notes