Consequently, if we set $\nabla L_{w,\epsilon,b,\xi,\xi'} = 0$, we obtain the equations

$$w = \sum_{i=1}^{m} (\mu_i - \lambda_i) x_i = X^{\top} (\mu - \lambda),$$

$$C\nu - \gamma - \sum_{i=1}^{m} (\lambda_i + \mu_i) = 0$$

$$\sum_{i=1}^{m} (\lambda_i - \mu_i) = 0$$

$$\frac{C}{m} - \lambda - \alpha = 0, \quad \frac{C}{m} - \mu - \beta = 0.$$

Substituting the above equations in the second expression for the Lagrangian, we find that the dual function G is independent of the variables γ, α, β and is given by

$$G(\lambda, \mu) = -\frac{1}{2} \sum_{i,j=1}^{m} (\lambda_i - \mu_i)(\lambda_j - \mu_j) x_i^{\top} x_j - \sum_{i=1}^{m} (\lambda_i - \mu_i) y_i$$

if

$$\sum_{i=1}^{m} \lambda_i - \sum_{i=1}^{m} \mu_i = 0$$

$$\sum_{i=1}^{m} \lambda_i + \sum_{i=1}^{m} \mu_i + \gamma = C\nu$$

$$\lambda + \alpha = \frac{C}{m}, \quad \mu + \beta = \frac{C}{m},$$

and $-\infty$ otherwise.

The dual program is obtained by maximizing $G(\alpha, \mu)$ or equivalently by minimizing $-G(\alpha, \mu)$, over $\alpha, \mu \in \mathbb{R}^m_+$. Taking into account the fact that $\alpha, \beta \geq 0$ and $\gamma \geq 0$, we obtain the following dual program:

Dual Program for ν -SV Regression:

minimize
$$\frac{1}{2} \sum_{i,j=1}^{m} (\lambda_i - \mu_i)(\lambda_j - \mu_j) x_i^{\top} x_j + \sum_{i=1}^{m} (\lambda_i - \mu_i) y_i$$
subject to
$$\sum_{i=1}^{m} \lambda_i - \sum_{i=1}^{m} \mu_i = 0$$
$$\sum_{i=1}^{m} \lambda_i + \sum_{i=1}^{m} \mu_i \le C\nu$$
$$0 \le \lambda_i \le \frac{C}{m}, \quad 0 \le \mu_i \le \frac{C}{m}, \quad i = 1, \dots, m,$$