105 Groupe des permutations d'un ensemble fini. Applications.

Pour toute cette leçon, on fixe un entier $n \ge 1$.

I - Généralités

1. Définitions

Définition 1. Soit E un ensemble. On appelle **groupe des permutations** de E le groupe des bijections de E dans lui-même. On le note S(E).

[ROM21] p. 37

Notation 2. Si E = [1, n], on note $S(E) = S_n$, le groupe symétrique à n éléments.

Notation 3. Soit $\sigma \in S_n$. On note :

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

pour signifier que σ est la bijection $\sigma : k \mapsto \sigma(k)$.

Le théorème suivant justifie que, pour un ensemble à n éléments, on peut se contenter d'étudier S_n en lieu et place de S(E).

Théorème 4. (i) Soient E et F deux ensembles en bijection. Alors S(E) et S(F) sont isomorphes.

(ii)

$$|S_n| = n!$$

Théorème 5 (Cayley). Tout groupe G est isomorphe à un sous-groupe de S(G).

p. 53

2. Orbites et cycles

Définition 6. Soit $\sigma \in [1, n]$. On a une action naturelle de $H = \langle \sigma \rangle$ sur [1, n] définie par

$$\forall k \in \mathbb{Z}, \forall j \in [1, n], \sigma^k \cdot j = \sigma^k(j)$$

Les orbites pour cette action sont les $H \cdot j = \{\sigma(j) \mid j \in [1, n]\}$. On les note $\mathcal{O}_{\sigma}(j)$.

p. 41

Remarque 7. — Les orbites selon σ sont décrites par la relation

$$x \sim y \iff \exists k \in \mathbb{Z} \text{ tel que } y = \sigma^k(x)$$

— Une orbite $\mathcal{O}_{\sigma}(j)$ est réduite à un point si et seulement si $\sigma(j) = j$.

Définition 8. Soient $l \le n$ et $i_1, \dots, i_l \in [\![1,n]\!]$ des éléments distincts. La permutation $\gamma \in S_n$ définie par

$$\gamma(j) = \begin{cases} j & \text{si } j \notin \{i_1, \dots, i_l\} \\ i_{k+1} & \text{si } j = i_k \text{ avec } k < l \\ i_1 & \text{si } j = i_l \end{cases}$$

et notée $(i_1 \dots i_l)$ est appelée **cycle** de longueur l et de **support** $\{i_1, \dots, i_l\}$. Un cycle de longueur 2 est une **transposition**.

Proposition 9. Une permutation σ est cycle si et seulement s'il n'y a qu'une seule orbite $\mathcal{O}_{\sigma}(j)$ non réduite à un point.

Remarque 10. La composée de deux cycles n'est pas un cycle en général.

Exemple 11. Avec $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \in S_4$, on a $\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ qui n'est pas un cycle.

Proposition 12. L'ordre d'un cycle est égal à sa longueur.

Proposition 13. Soient σ et τ deux cycles de S_n dont on note respectivement $\mathrm{Supp}(\sigma)$ et $\mathrm{Supp}(\tau)$ les supports. Si $\mathrm{Supp}(\sigma) \cap \mathrm{Supp}(\tau) = \emptyset$, alors $\mathrm{Supp}(\sigma\tau) = \mathrm{Supp}(\sigma) \cup \mathrm{Supp}(\tau)$ et dans ce cas :

- (i) $\sigma \tau = \tau \sigma$.
- (ii) $\sigma \tau = id \implies \sigma = \tau = id$.

Théorème 14. Toute permutation de S_n s'écrit de manière unique (à l'ordre près) comme produit de cycles dont les supports sont deux à deux disjoints.

Exemple 15.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 1 & 3 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$

p. 37

p. 42

[ULM21]

p. 56

Définition 16. On appelle **type** d'une permutation $\sigma \in S_n$ et on note $[l_1, ..., l_m]$ la liste des cardinaux l_i des orbites dans [1, n] de l'action du groupe $\langle \sigma \rangle$ sur [1, n], rangée dans l'ordre croissant.

Proposition 17. Une permutation de type $[l_1, ..., l_m]$ a pour ordre ppcm $(l_1, ..., l_m)$.

Exemple 18. La permutation de l'Exemple 15 est d'ordre 6.

3. Signature

Définition 19. Soit $\sigma \in S_n$. On appelle **signature** de σ , notée $\varepsilon(\sigma)$ le nombre rationnel

$$\varepsilon(\sigma) = \prod_{i \neq j} \frac{\sigma(i) - \sigma(j)}{i - j}$$

Exemple 20.

$$\epsilon(\begin{pmatrix} 1 & 2 \end{pmatrix}) = -1$$

Proposition 21. $\epsilon: S_n \to \mathbb{Q}^*$ est un morphisme de groupes. Pour une permutation $\sigma \in S_n$, on a les propriétés suivantes :

- (i) Si σ est un transposition, $\epsilon(\sigma) = -1$.
- (ii) Si l est le nombre de transpositions qui apparaît dans une décomposition de σ en produit de transpositions, alors $\epsilon(\sigma) = (-1)^l$.
- (iii) Si σ est de type $[l_1, ..., l_m]$, alors $\varepsilon(\sigma) = (-1)^{l_1 + \cdots + l_m m}$.

En particulier, si $n \ge 2$, l'image de ϵ est le sous-groupe $\{\pm 1\}$ de \mathbb{Q}^* .

Proposition 22. Le seul morphisme non trivial de S_n dans \mathbb{C}^* est ϵ .

[**PEY**] p. 20

Définition 23. — Soit $\sigma \in S_n$. Si $\varepsilon(\sigma) = 1$, on dit que σ est **paire**. Sinon, on dit qu'elle est **impaire**.

[**ULM21**] p. 64

— Le noyau de ε (constitué donc des permutations paires) est un sous-groupe distingué de S_n appelé **groupe alterné** et noté A_n .

Proposition 24. Pour $n \ge 2$,

$$|A_n| = \frac{n!}{2}$$

II - Structure

1. Conjugaison

Proposition 25. Deux permutations σ et τ de S_n sont conjuguées si et seulement si elles sont du même type. En particulier, pour $\omega \in S_n$ et tout cycle $\begin{pmatrix} i_1 & \dots & i_l \end{pmatrix} \in S_n$, on a :

$$\omega \begin{pmatrix} i_1 & \dots & i_l \end{pmatrix} \omega^{-1} = \begin{pmatrix} \omega(i_1) & \dots & \omega(i_l) \end{pmatrix}$$

Exemple 26. Les types possibles d'une permutation de S_4 sont [1] (l'identité), [2] (les transpositions), [2,2] (les doubles transpositions), [3] (les 3-cycles) et [4] (les 4-cycles) : on a 5 classes de conjugaison de tailles respectives 1, 6, 3, 8 et 6.

Proposition 27. Pour tout $n \ge 3$, $Z(S_n) = \{ \sigma \in S_n \mid \forall \tau \in S_n, \sigma \tau = \tau \sigma \} = \{ id \}.$

[**PER**] p. 13

p. 60

Lemme 28. Les 3-cycles sont conjugués dans A_n pour $n \ge 5$.

p. 15

2. Générateurs

Proposition 29. (i) S_n est engendré par les transpositions. On peut même se limiter aux transpositions de la forme $\begin{pmatrix} 1 & k \end{pmatrix}$ ou encore $\begin{pmatrix} k & k+1 \end{pmatrix}$ (pour $k \le n$).

[ROM21] p. 44

(ii) S_n est engendré par $\begin{pmatrix} 1 & 2 \end{pmatrix}$ et $\begin{pmatrix} 1 & \dots & n \end{pmatrix}$.

Exemple 30. Pour $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 6 & 7 \end{pmatrix}$, on a $\sigma = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} \begin{pmatrix} 6 & 7 \end{pmatrix}$.

Proposition 31. A_n est engendré par les 3-cycles pour $n \ge 3$.

3. Simplicité

Lemme 32. Les 3-cycles sont conjugués dans A_n pour $n \ge 5$.

[PER] p. 15

Lemme 33. Le produit de deux transpositions est un produit de 3-cycles.

[ROM21] p. 49 [DEV]

Théorème 34. A_n est simple pour $n \ge 5$.

[**PER**] p. 28

Corollaire 35. Le groupe dérivé de A_n est A_n pour $n \ge 5$, et le groupe dérivé de S_n est A_n pour $n \ge 2$.

Corollaire 36. Pour $n \ge 5$, les sous-groupes distingués de S_n sont S_n , A_n et {id}.

Corollaire 37. Soit H un sous-groupe d'indice n de S_n . Alors, H est isomorphe à S_{n-1} .

III - Applications

1. Déterminant

Soit $\mathbb K$ un corps et soit E un espace vectoriel de dimension n sur $\mathbb K$.

[**GOU21**] p. 140

Définition 38. Soient E_1, \dots, E_p et F des espaces vectoriels sur \mathbb{K} et $f: E_1, \dots, E_p \to F$.

- f est dite p-linéaire si en tout point les p applications partielles sont linéaires.
- Si f est p-linéaire et si $E_1 = \cdots = E_p$ ainsi que $F = \mathbb{K}$, f est une **forme** p-**linéaire**. On note $\mathscr{L}_p(E,\mathbb{K})$ l'ensemble des formes p-linéaires sur E.
- Si de plus $f(x_1, ..., x_p) = 0$ dès que deux vecteurs parmi les x_i sont égaux, alors f est dite **alternée**.

Exemple 39. En reprenant les notations précédentes, pour p = 2, f est bilinéaire.

Proposition 40. $\mathcal{L}_p(E,\mathbb{K})$ est un espace vectoriel et, $\dim(\mathcal{L}_p(E,\mathbb{K})) = |\dim(E)|^p$.

Théorème 41. L'ensemble des formes p-linéaires alternées sur E est un \mathbb{K} -espace vectoriel de dimension 1. De plus, il existe une unique forme p-linéaire alternée f prenant la valeur 1 sur une base \mathscr{B} de E. On note $f = \det_{\mathscr{B}}$.

Définition 42. $\det_{\mathscr{B}}$ est l'application **déterminant** dans la base \mathscr{B} . En l'absence d'ambiguïté, on s'autorise à noter $\det = \det_{\mathscr{B}}$.

Proposition 43. Soit $\mathscr{B}=(e_1,\ldots,e_n)$ une base de E. Si $x_1,\ldots,x_n\in E$ ($\forall i\in [\![1,n]\!]$, on peut écrire $x_i=\sum_{j=1}^n x_{i,j}e_j$), on a la formule $\det_{\mathscr{B}}(x_1,\ldots,x_n)=\sum_{\sigma\in S_n}\varepsilon(\sigma)\prod_{i=1}^n x_{i,\sigma(i)}$.

Corollaire 44. Soit \mathcal{B} une base de E.

- (i) Si \mathscr{B}' est une autre base de E, alors $\det_{\mathscr{B}'} = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}$.
- (ii) Une famille de vecteurs est liée si et seulement si son déterminant est nul dans une base quelconque de E.
- (iii) Soient $A, B \in \mathcal{M}_n(\mathbb{K})$, alors $\det_{\mathscr{B}}(AB) = \det_{\mathscr{B}}(A) \det_{\mathscr{B}}(B)$.
- (iv) Soit $A \in \mathcal{M}_n(\mathbb{K})$, alors $\det_{\mathscr{B}}(A) = \det_{\mathscr{B}}({}^tA)$ et pour tout $\lambda \in \mathbb{K}$, $\det_{\mathscr{B}}(\lambda A) = \lambda^n \det_{\mathscr{B}}(A)$.
- (v) Si on effectue une permutation $\sigma \in S_n$ sur les colonnes d'une matrice A, alors le déterminant de A est multiplié par $\epsilon(\sigma)$.

Notation 45. Soit $a \in \mathbb{F}_p$. On note $\left(\frac{a}{p}\right)$ le symbole de Legendre de a modulo p.

[I-P] p. 203

Lemme 46. Soient $p \ge 3$ un nombre premier et V un espace vectoriel sur \mathbb{F}_p de dimension finie. Les dilatations engendrent GL(V).

[DEV]

Théorème 47 (Frobenius-Zolotarev). Soient $p \ge 3$ un nombre premier et V un espace vectoriel sur \mathbb{F}_p de dimension finie.

$$\forall u \in GL(V), \varepsilon(u) = \left(\frac{\det(u)}{p}\right)$$

où u est vu comme une permutation des éléments de V.

2. Matrices de permutation

Soit \mathbb{K} un corps et soit E un espace vectoriel de dimension n sur \mathbb{K} .

[ROM21] p. 54

Définition 48. À tout $\sigma \in S_n$ on associe la matrice de passage de la base canonique $(e_i)_{i \in [\![1,n]\!]}$ à la base $(e_\sigma(i))_{i \in [\![1,n]\!]}$ que l'on note P_σ : c'est la **matrice de permutation** associée à σ .

Remarque 49. En reprenant les notations précédentes, $\forall j \in [1, n], P_{\sigma}e_j = \sigma(e_j)$.

Proposition 50. $\sigma \mapsto P_{\sigma}$ est un morphisme de groupes injectif de S_n dans $\mathrm{GL}_n(\mathbb{K})$. De plus, on a

$$\det(P_{\sigma}) = \epsilon(\sigma)$$

Corollaire 51. Tout groupe fini d'ordre n est isomorphe à un sous groupe de $GL_n(\mathbb{F}_p)$ pour un premier $p \ge 2$.

3. Polynômes symétriques

Soit K un corps de caractéristique différente de 2.

[GOU21] p. 83

Définition 52. Soit $P \in \mathbb{K}[X_1, ..., X_n]$. On dit que P est **symétrique** si

$$\forall \sigma \in S_n, P(X_{\sigma(1)}, \dots, X_{\sigma(n)}) = P(X_1, \dots, X_n)$$

Exemple 53. Dans $\mathbb{R}[X]$, le polynôme XY + YZ + ZX est symétrique.

Définition 54. On appelle **polynômes symétriques élémentaires** de $A[X_1,\ldots,X_n]$ les polynômes noté Σ_p où $p\in [\![1,n]\!]$ définis par

$$\Sigma_p = \sum_{1 \leq i_1 < \dots < i_p \leq n} X_{i_1} \dots X_{i_p}$$

Exemple 55. —
$$\Sigma_1 = X_1 + \dots + X_n$$
.
— $\Sigma_2 = \sum_{1 \le i < j \le n} X_i X_j$.
— $\Sigma_n = X_1 \dots X_n$.

Remarque 56. Si $P \in A[X_1, ..., X_n]$, alors $P(\Sigma_1(X_1, ..., X_n), ..., \Sigma_n(X_1, ..., X_n))$ est symétrique. Et la réciproque est vraie.

Théorème 57 (Théorème fondamental des polynômes symétriques). Soit $P \in A[X_1,...,X_n]$ un polynôme symétrique. Alors,

$$\exists ! \Phi \in A[X_1, \dots, X_n]$$
 tel que $\Phi(\Sigma_1, \dots, \Sigma_n)$

Exemple 58.
$$P = X^3 + Y^3 + Z^3$$
 s'écrit $P = \Sigma_1^3 - 3\Sigma_1\Sigma_2 + 3\Sigma_3$.

Application 59 (Relations coefficients - racines). Soit $P = a_0 X^n + \dots + a_n \in \mathbb{K}[X]$ avec $a_0 \neq 0$ scindé sur \mathbb{K} , dont les racines (comptées avec leur ordre de multiplicité) sont x_1, \dots, x_n . Alors

$$\forall p \in [1, n], \ \Sigma_p(x_1, \dots, x_n) = (-1)^p \frac{a_p}{a_0}$$

p. 64

En particulier,

Application 60 (Théorème de Kronecker). Soit $P \in \mathbb{Z}[X]$ unitaire tel que toutes ses racines complexes appartiennent au disque unité épointé en l'origine (que l'on note D). Alors toutes ses racines sont des racines de l'unité.

[**I-P**] p. 279

Corollaire 61. Soit $P \in \mathbb{Z}[X]$ unitaire et irréductible sur \mathbb{Q} tel que toutes ses racines complexes soient de module inférieur ou égal à 1. Alors P = X ou P est un polynôme cyclotomique.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529.html.

L'algèbre discrète de la transformée de Fourier

[PEY]

Gabriel Peyré. *L'algèbre discrète de la transformée de Fourier. Niveau M1*. Ellipses, 15 jan. 2004. https://adtf-livre.github.io.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.

Théorie des groupes [ULM21]

Felix Ulmer. *Théorie des groupes. Cours et exercices.* 2e éd. Ellipses, 3 août 2021.

https://www.editions-ellipses.fr/accueil/13760-25304-theorie-des-groupes-2e-edition-9782340057241.html.