The Fundamental Groupoid in Discrete Homotopy Theory Talk 1: Covering graphs.

I. What is discrete homotopy theory?

A graph is a set equipped w/ a reflexive, symmetric relation ~.

A graph map is a function preserving this relation.

Graph := category of graphs I graph maps.

Examples:

1 The n-interval In, for nEN.

I, I,

(2) The infinite interval I_{∞} $\frac{-2}{-1} = 0 + 2$

3) The n-cycle Cn. for n=3.

C4

The box product X 11 y of X and y is the set X×y with the relation:

$$(x,y) \sim (x',y') \iff \begin{cases} x \sim x' & \text{and} & y = y' \\ x = x' & \text{and} & y \sim y'. \end{cases}$$

Example:

I, o I,

An A-homotopy
$$H: f \Rightarrow g b / w f, g: X \longrightarrow Y$$
 is

$$f,g:X\longrightarrow Y$$

$$H: X \square I_n \longrightarrow Y$$
 for some ne N.

s.th.

$$H(-,0) = f$$

$$H(-,0)=f$$
 and $H(-,n)=g$

A map
$$f: X \longrightarrow Y$$
 is an A-homotopy equivalence if $g: Y \longrightarrow X$ together with A-htpies $g \circ f \Rightarrow idx$ and $f \circ g \Rightarrow idy$.

Examples:

$$\mathbb{O}$$
 In $\stackrel{!}{\longrightarrow}$ Io is an A-htpy equiv.

$$H(-,0) = id_{I_n} ; H(-,n) = C_0.$$

Remark: $I_{\infty} \stackrel{!}{\longrightarrow} I_{\circ}$ is NOT an A-htpy equivalence.

$C_n \stackrel{!}{\longrightarrow} I_o$ is an A-htpy equivalence for n = 3, 4.

Fix a graph
$$X$$
 w a base vertex $x_0 \in X$.

$$A_n(X, n_0) = \begin{cases} f: I_{\infty}^{\square n} \longrightarrow X \mid f(t_1, ..., t_n) = x_0 \\ \text{almost everywhere} \end{cases} / \sim_{\pi}$$

where we are quotienting by A-htpies that also take the value as almost everywhere.

The group operation is given by concatenating the finite non-constant regions.

II. Covering Graphs

 $X : graph, \quad x \in X : vertex.$

The <u>neighbourhood</u> N_n of x in X is a subgraph vertices: x and its neighbours edges: $x \sim x$ for each $x' \in N_n$, $x' \neq x$.

Example:

A map $p: Y \longrightarrow X$ is a <u>local isomorphism</u> if the restriction

 $p|_{N_g}:N_g \longrightarrow N_{p(g)}$ is an isomorphism for every $y \in \mathcal{Y}$.

Examples:

- is a local isomorphism for every $n \ge 3$ and $k \ge 1$.
- is a local isomorphism for every n > 3.

 $X : graph, n, n' \in X : two vertices.$ A path $Y: x \sim x'$ in X is a map $Y: I_{\infty} \longrightarrow X$ for which there exist integers N-, N+ \in \mathbb{Z} s+h. $\gamma(i) = 2$ if i ≤ N~ $\Upsilon(i) = \chi'$ if $i \ge N_+$.

het $p: Y \longrightarrow X$ be a local isomorphism. For any path Y: n msx' in X and any $y \in p^{-1}(x)$, there is a unique path in y starting at y s.th.

Notation:

$$\square : \square_3 \longrightarrow \square, \square \square,$$

$$2 \qquad 3 \qquad (0,0) \qquad (1,0)$$

$$1 \qquad 0 \qquad (0,0) \qquad (1,0)$$

A map $p: Y \longrightarrow X$ is a <u>covering</u> if, in addition to being a local isomorphism, it has the RLP with respect to $\square: I_3 \longrightarrow I_1 \cup I_1$.

Remark: If the base graph X has no 3- or 4-cycles, then every local isomorphism $p\colon Y\longrightarrow X$ is also a covering.

Non-examples:

i)
$$p: C_{nk} \longrightarrow C_n$$
, $i \longmapsto i \pmod{n}$ is NOT a covering if $n=3,4$ and $k>1$.

(2)
$$p: I_{\infty} \longrightarrow C_n$$
, $i \mapsto i \pmod{n}$
is NOT a covering if $n = 3, 4$.

$$X : graph$$
, $n, x' \in X : two vertices$.
 $Y, \sigma : x \longrightarrow x' : two paths in X$

A path homotopy
$$H: \Upsilon \longrightarrow X$$

$$H: I_{\infty} \square I_{n} \longrightarrow X$$

s.th.

$$H(-,0)=\gamma$$
 and $H(-,n)=\sigma$

and s.th.

$$H(-,i)$$
 is a path $n \rightarrow \infty$ in X . for each $i=0,\ldots,n$.

Lemma: Let $p: Y \to X$ be a covering.

For two paths $Y, \sigma : x - m \Rightarrow x'$ in X, and a vertex $y \in p^{-1}(x)$,

there exist paths $Y: y - m \Rightarrow y'$ and $F: y - m \Rightarrow y''$ in $Y: y - m \Rightarrow y''$ and $F: y - m \Rightarrow y''$ in $Y: y - m \Rightarrow y''$ and $F: y - m \Rightarrow y''$ and $F: y - m \Rightarrow y''$ and $F: y - m \Rightarrow y'' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$ and $F: y - m \Rightarrow y' = y''$

Proof: het H: I∞ II In → X be a path-htpy Y⇒ o.

 $p: Y \longrightarrow X$ covering map $Y: x \longrightarrow x'$ path in X.

We can define a function: $unw_{rr3}: p^{-1}(x) \longrightarrow p^{-1}(x^{2})$ $y \longmapsto endpoint of \widetilde{r}$ where \widetilde{r} is the unique lift of r starting at y.

Remark: By path-homotopy lifting property, unwery only depends on the path-homotopy class IrJ of Y.

Def": The fundamental groupoid Π, X of a graph X objects: vertices x, x, ... of X morphisms: path-homotopy classes $\Gamma T: x \longrightarrow x^{2}$ of paths $Y: z \longrightarrow z^{2}$ in X.

$$p: Y \longrightarrow X$$
 covering map

We can define a functor $Fib_x(p): \Pi_i X \longrightarrow Set:$

$$\begin{array}{ccc} x, & \longmapsto & b_{-1}(x) \\ \downarrow & & \downarrow & & \\ x, & \longmapsto & b_{-1}(x) \end{array}$$

Cov(X) := category of coverings over X

objects: coverings p: y -> X

morphisms: $y \xrightarrow{f} y'$

We get a functor $Fib_{x}: Cov(x) \longrightarrow Set^{\Pi,x}$

F: $\Pi_{i}X \longrightarrow Set$ functor

We can define a graph $Tot_{x} F$ on the set

Light Fix as follows: $y \sim y' \iff \begin{cases} y \in Fx \\ x \sim x' \text{ is an edge in } X, \text{ and} \end{cases}$ (F[e])(y) = y'

where e: $x \sim x'$ is the 'edge path' in x.

We also have an obvious map $p: Tot_{x}F \longrightarrow X$.

 $\frac{\text{Prop}^n}{\text{Prop}^n}: \quad p: \text{ Tot}_x F \longrightarrow X \quad \text{ is a covering.}$ $\text{This gives a functor} \quad \text{Tot}_x: \text{ Set}^{\Pi_i X} \longrightarrow \text{Cov}(X).$

 $\mathcal D$.

Theorem: For each $X \in Graph$, we have an equivalence of categories $Cov(X) \simeq Set^{\Pi_i X}$

If (X, x_0) is a pointed, connected graph, then the inclusion $A_1(X, x_0) \subset \Pi_1 X$ is part of an equivalence of categories.

 $\frac{\text{Def}^n:}{\text{universal cover}} \quad \text{p: (Y, yo)} \longrightarrow (X, zo) \text{ is a}$ $\frac{\text{universal cover}}{\text{universal cover}} \quad \text{if it is initial in } \text{Cov}(X, zo).$ If it exists, it is unique up to a unique iso.

Theorem: ① Every pointed graph (X, z) admits a universal cover $p:(X_x,[C_x]) \longrightarrow (X,z)$.
② A pointed covering $p:(Y,y) \longrightarrow (X,x)$ is a universal cover iff Y is simply connected.

(3) $A_n(X, x) \cong Aut_{cov(x)}(X_n).$

Examples:

- (1) The identity maps on C3 and C4 are their resp. universal covers
- (2) The map $p: I_{\infty} \longrightarrow C_n$; $i \mapsto i \pmod{n}$ is the universal cover for $n \gg 5$.

Thus, $A_{i}\left(C_{n},\star\right)\cong\begin{cases}0&\text{if }n=3,4\\\mathbb{Z}&\text{if }n\geqslant5.\end{cases}$