Compléments

On donne ici un certain nombre de démonstrations de résultats présentés dans le cours d'Analyse de Fourier.

1 Théorème de Riemann-Lebesgue

On montre que si $x \in L^1(\mathbb{R})$, alors $\hat{x}(f) \to 0$ quand $|f| \to +\infty$.

On utilise pour cela le résultat suivant.

Théorème (admis):

Soit $h \in \mathbb{R}$. Pour une fonction x donnée, on définit sa translatée $\tau_h x$ par $\tau_h x(t) = x(t-h)$. Alors on montre que pour tout $1 \le p < +\infty$, $\lim_{h\to 0} \|\tau_h x - x\|_p = 0$.

Pour $h \in \mathbb{R}$, on a $\widehat{\tau_{-h}x}(f) = \int_{\mathbb{R}} x(t+h)e^{-2j\pi ft}dt = e^{2j\pi hf}\widehat{x}(f)$. On pose alors $h = \frac{1}{2f}$. On a ainsi $e^{2j\pi hf} = -1$. D'où:

$$2\widehat{x}(f) = \int_{\mathbb{R}} (x(t) - x(t+h))e^{-2j\pi ft} dt$$

et donc $2|\hat{x}(f)| \leq \int_{\mathbb{R}} |(x(t) - x(t+h))| dt = ||\tau_{-h}x - x||_1$. D'après le théorème précédent, on a ainsi

$$\lim_{|f| \to +\infty} |\hat{x}(f)| \leqslant \frac{1}{2} \lim_{h \to 0} ||\tau_{-h} x - x||_1 = 0.$$

2 Suite régularisante

La notion de suite régularisante sera utile pour démontrer l'injectivité de la transformée de Fourier ainsi que la formule d'inversion.

2.1 Définition

On appelle suite régularisante ou approximation de l'unité ou approximation de l'identité sur \mathbb{R} toute suite (ou plus généralement toute famille) de fonctions $(x_k)_k$ de \mathbb{R} dans \mathbb{R} telle que :

- $\forall k, x_k \text{ est à valeurs dans } \mathbb{R}^+$;
- $\forall k, x_k$ est C^{∞} (selon les définitions ce critère n'est pas toujours pris en compte);
- $\forall k, \int_{\mathbb{R}} x_k(t)dt = 1$;
- $\forall k$, le support de x_k est contenu dans un boule de rayon r_k avec $r_k \to 0$ quand $k \to +\infty$.

Ce dernier critère peut être remplacé par le critère plus général suivant :

• $\forall \varepsilon > 0$, $\int_{|t| > \varepsilon} x_k(t) dt \to 0$ quand $k \to +\infty$.

Il s'agit donc d'une famille de fonctions positives d'intégrales égales à 1 qui se "concentrent" en 0.

2.2 Exemple

soit ϕ la fonction gaussienne définie par $\phi(t) = e^{-\pi t^2}$. On pose alors :

$$\forall \lambda > 0, \ \phi_{\lambda}(t) = \frac{1}{\lambda} \phi\left(\frac{t}{\lambda}\right) = \frac{1}{\lambda} e^{-\frac{\pi t^2}{\lambda^2}}$$

1

Puisque $\forall \sigma > 0$, $\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} dt = 1$ (densité d'une loi gaussienne de variance σ^2), on a $\int_{\mathbb{R}} \phi_{\lambda}(t) dt = 1 \ \forall \lambda$. D'autre part les critères 1 et 2 sont évidemment vérifiés.

De plus, par le changement de variable $u = \frac{\sqrt{\pi}}{\lambda}t$, on a pour tout $\varepsilon > 0$:

$$\int_{-\varepsilon}^{+\varepsilon} \phi_{\lambda}(t)dt = \int_{-\sqrt{\pi}\varepsilon/\lambda}^{+\sqrt{\pi}\varepsilon/\lambda} \frac{1}{\lambda} e^{-u^{2}} \frac{\lambda}{\sqrt{\pi}} du,$$

ce qui montre que $\forall \varepsilon$, $\int_{-\varepsilon}^{+\varepsilon} \phi_{\lambda}(t) dt \to 1$ quand $\lambda \to 0$, et donc que $\forall \varepsilon > 0$, $\int_{|t| > \varepsilon} \phi_{\lambda}(t) dt \to 0$ quand $\lambda \to 0$. Ainsi, la famille $(\phi_{\lambda})_{\lambda}$ est une approximation de l'identité quand $\lambda \to 0$. On peut dire aussi que la famille $(\phi_{1/\lambda})_{\lambda}$ est une approximation de l'identité quand $\lambda \to +\infty$.

2.2.1 Propriété

Théorème (admis): si $x \in L^p(\mathbb{R})$ et si $(\phi_k)_k$ est une suite régularisante, alors $(x*\phi_k)_k$ converge vers x dans $L^p(\mathbb{R})$.

Interprétation: $L^1(\mathbb{R})$ muni du produit de convolution est une algèbre, mais sans élément neutre car il n'existe pas de fonction $e \in L^1(\mathbb{R})$ telle que pour tout $x \in L^1(\mathbb{R})$, x * e = x. Une suite régularisante remplace donc d'une certaine façon, par passage à la limite, cet élément neutre (ou élément unité). D'où le terme d'approximation de l'unité.

3 Injectivité de la transformée de Fourier dans $L^1(\mathbb{R})$

La TF est une application injective si pour 2 fonctions x et y de $L^1(\mathbb{R})$, $\hat{x} = \hat{y}$ implique que x = y presque partout. Compte tenu de la linéarité de la TF, cela revient à montrer que si $x \in L^1(\mathbb{R})$ est telle que $\hat{x} = 0$, alors x = 0 p.p. sur \mathbb{R} .

Considérons pour cela la suite régularisante $(\phi_{\lambda})_{\lambda}$ ci-dessus. On pose alors, pour un réel a quelconque :

$$g_{\lambda}(u) = e^{2i\pi au}\phi_{\lambda}(u)$$

On a alors : $\hat{g}_{\lambda}(f) = \hat{\phi}_{\lambda}(f-a)$ (formules de translation). On a donc :

$$\int_{\mathbb{R}} x(u)\hat{g}_{\lambda}(u)du = \int_{\mathbb{R}} x(u)\hat{\phi}_{\lambda}(u-a)du$$

$$= \int_{\mathbb{R}} x(u)\hat{\phi}_{\lambda}(a-u)du \text{ (car } \phi \text{ paire implique } \hat{\phi} \text{ paire)}$$

$$= x * \hat{\phi}_{\lambda}(a)$$

Or on sait que pour $\alpha > 0$, la TF de $e^{-\alpha t^2}$ est $\sqrt{\frac{\pi}{\alpha}} e^{-\frac{\pi^2}{\alpha} f^2}$. Il en résulte que $\hat{\phi}_{\lambda}(a) = \frac{1}{\lambda} \phi_{1/\lambda}(a)$. Donc :

$$\int_{\mathbb{R}} x(u)\widehat{g}_{\lambda}(u)du = \frac{1}{\lambda}x * \phi_{1/\lambda}(a)$$

Mais d'autre part, d'après la formule de transfert et puisque $\hat{x} = 0$, on a :

$$\int_{\mathbb{R}} x(u)\hat{g}_{\lambda}(u)du = \int_{\mathbb{R}} \hat{x}(u)g_{\lambda}(u)du = 0$$

Ainsi,

$$\forall \lambda, \ \forall a \in \mathbb{R}, x * \phi_{1/\lambda}(a) = 0$$

Mais on a vu que $(\phi_{1/\lambda})$ était une suite régularisante. Donc, d'après le théorème précédent, $(x*\phi_{1/\lambda})_{\lambda}$ converge vers x dans $L^1(\mathbb{R})$, c'est-à-dire $\lim_{\lambda \to +\infty} \|x*\phi_{1/\lambda} - x\|_{L^1} = 0$.

Or, $x * \phi_{1/\lambda} = 0$ pour tout λ . On en déduit donc que $||x||_{L^1} = 0$, c'est-à-dire que x = 0 p.p.

L'injectivité de la TF peut aussi se déduire de la formule d'inversion démontrée ci-dessous.

4 Formule d'inversion

Soit $x \in L^1(\mathbb{R})$ telle que \hat{x} soit également dans $L^1(\mathbb{R})$. On va montrer que

$$x(t) = \int_{\mathbb{R}} \hat{x}(f)e^{+2j\pi ft}df$$
 p.p. t

On pose par définition

$$\check{\hat{x}}(t) = \int_{\mathbb{R}} \hat{x}(f)e^{+2j\pi ft}df$$

On considère la fonction ϕ définie ci-dessus, et pour $\lambda > 0$ on s'intéresse à l'intégrale

$$\int_{\mathbb{R}} \hat{x}(f)e^{+2j\pi ft}\phi(\lambda f)df$$

Puisque $|\hat{x}(f)e^{+2j\pi ft}\phi(\lambda f)| \leq |\hat{x}(f)|$ qui est par hypothèse dans $L^1(\mathbb{R})$, on peut appliquer le théorème de la convergende dominée, et donc :

$$\check{\hat{x}}(t) = \lim_{\lambda \to 0^+} \int_{\mathbb{R}} \hat{x}(f) e^{+2j\pi ft} \phi(\lambda f) df$$

De plus, par la formule de translation et la formule de transfert, on a

$$\int_{\mathbb{R}} \widehat{x}(f)e^{+2j\pi ft}\phi(\lambda f)df = \int_{\mathbb{R}} \widehat{\tau_{-t}(x)}(f)\phi(\lambda f)df$$

$$= \int_{\mathbb{R}} \tau_{-t}(x)(u)\widehat{\phi(\lambda f)}(u)du$$

$$= \int_{\mathbb{R}} \tau_{-t}(x)(u)\frac{1}{\lambda}\phi\left(\frac{u}{\lambda}\right)du$$

$$= \int_{\mathbb{R}} \tau_{-t}(x)(u)\phi_{\lambda}(u)du$$

$$= \int_{\mathbb{R}} x(u+t)\phi_{\lambda}(u)du$$

$$= \int_{\mathbb{R}} x(t-v)\phi_{\lambda}(-v)dv$$

$$= \int_{\mathbb{R}} x(t-v)\phi_{\lambda}(v)dv \text{ (car } \phi_{\lambda} \text{ est paire)}$$

$$= x * \phi_{\lambda}(t)$$

On a vu que ϕ_{λ} est une suite régularisante. Donc d'après le théorème, $\lim_{\lambda \to 0^+} x * \phi_{\lambda} = x$ dans $L^1(\mathbb{R})$. Il existe une sous-suite $(x * \phi_{\lambda_k})_{k \in \mathbb{N}}$ qui converge presque partout, c'est-à-dire $\lim_{k \to +\infty} x * \phi_{\lambda_k}(t) = x(t)$ p.p. $t \in \mathbb{R}$ (selon un théorème plus général disant que si une suite de fonctions g_k converge vers une fonction g dans un espace L^p , alors il existe une sous-suite de g_{k_n} qui converge presque partout vers g). On a donc bien au final

$$\check{\hat{x}}(t) = \lim_{k \to +\infty} \int_{\mathbb{R}} \hat{x}(f) e^{+2j\pi f t} \phi(\lambda_k f) df = x(t) \text{ p.p.} t \in \mathbb{R}$$