Série ES

Correction

session 2021

Exercice 1:4 points

- 1. Réponse **c**) 4
- 2. Réponse **c**) $g'(x) = 3e^x 4x$
- 3. Réponse **a)** 10,3 %
- 4. Réponse **b**) = SOMME(B1:G1)/NB(B1:G1)

Exercice 2:6 points

Partie 1

- 1. Voir l'arbre
- **2.** $p(A \cap C) = p(A) \times p_A(C) = 0.65 \times 0.3 = 0.195.$
- **3.** $p(C) = p(A \cap C) + p(B \cap C) = 0.195 + 0.35 \times 0.55 = 0.388$
- **4.** $p_{\overline{C}}(A) = \frac{p(A \cap \overline{C})}{p(\overline{C})} = \frac{0.65 \times 0.7}{1 0.388} = \frac{0.455}{0.612} = \frac{455}{612} \approx 0.743$

Partie 2

La fréquence des clients intéressés par l'offre est $f = \frac{95}{180} \approx 0,53$.

n = 180 > 30; nf = 95 > 5 et n(1-f) = 85 > 5. Les conditions sont donc bien réunies pour déterminer un intervalle de confiance au seuil de 95 %.

Ainsi l'intervalle de confiance au seuil de 95 % pour la proportion des clients intéressés par l'offre est :

$$\left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right] = \left[\frac{95}{180} - \frac{1}{\sqrt{180}}; \frac{95}{180} + \frac{1}{\sqrt{180}}\right] \approx \left[0, 453; 0, 602\right]$$

L'estimation faite par le directeur est bien vérifiée.

Partie 3

1. À l'aide de la calculatrice, on a $p(X > 50) \approx 0,202$.

La probabilité qu'un client ait plus de 50 ans est d'environ 0,202.

2. À l'aide de la calculatrice, on a $p(35 < X < 55) \approx 0,904$.

La probabilité qu'un client ait un âge compris entre 35 et 55 ans est d'environ 0,904. Exercice 3 : 4 points

1

- a) Le graphe Δ n'est pas complet car il y a des sommets qui ne sont pas adjacents.
- **b**) Le graphe Δ est connexe car quelque soit la paire de sommets du graphe, il y a une chaîne qui les relient.
- 2. On cherche si le graphe admet une chaine eulérienne.

Sommet	A	Н	С	D	Е	F	G
Degré du sommet	2	3	4	3	2	4	4

Le graphe admet une chaîne eulérienne d'extrémités H et D car seules les sommets H et D sont de degrés impairs.

3. On va utiliser l'algorithme de Dijkstra pour déterminer le chemin le plus court qui mène de la ville de résidence H du candidat au village E. Le chemin le plus court pour aller de H à E fait de 32 km, c'est H – D – C – F – E.

Н	Α	D	С	G	F	E
X	13H	10H	21H			
	13H	X	16D		32D	
	X		16D	27A	32D	
			X	24C	28C	
				X	30G 28C	34G
					X	32F
						X

Exercice 4:6 points

Partie A

1.
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x \left(-0.1 + \frac{5}{x} + \frac{\ln x}{x} \right) = -\infty.$$

2. a)
$$g'(x) = -0.1 + \frac{1}{x} = \frac{-0.1x + 1}{x}$$
.

b)

x	1		10		a	+∞
g'(x)		+	0	_		
g(x)	4,9	<i>_</i> *	4+In(10)			` ^ -∞

3.a) D'après le tableau de variation, l'équation g(x) = 0, admet une unique solution $\alpha \in [10; +\infty[$

b) À l'aide la calculatrice on a $\alpha \approx 95,60$.

c)

ī	1	α	+∞
g(x)	+	0	_

Partie B

1.
$$f'(x) = -0.1x + 4 + \ln x + 1 = -0.1x + 5 + \ln x = g(x)$$

2.
$$\int_{1}^{50} g(x)dx = [f(x)]_{1}^{50} = f(50) - f(1) = 71,05 + 50\ln(50).$$

3.

x	1	α	+∞
f'(x)	+	0	_
f(x)	3,95	≠ ^{f(a)} <	* +∞

Partie C

1. l'artisan doit fabriquer et vendre 10 objets pour réaliser un bénéfice maximal de ≈ 630 258 DJF.

2. Le bénéfice mensuel moyen = $\frac{1}{25-5} \int_5^{25} g(x) dx \approx \frac{122}{20} \approx 6,1.$

Le bénéfice mensuel moyen est d'environ 610 000 DJF.