# 추천시스템 기말 프로젝트

강민수 권홍욱 김미소 박나무

## **CONTENTS**

- 01. 핵심 아이디어
- 02. 핵심 코드
- 03. 알고리즘 개선 과정
- 04. 최종 결과
- 05. Lessons learned

## 01. 핵심 아이디어



- 평가 경향이 서로 다른 모든 유저들을 포함하여 단일 모델로 학습을 진행 시, 노이즈가 커지는 단점 발생
- 따라서, 평가 경향이 비슷한 유저들끼리 군집화하여 군집 별 학습의 필요성 확인
- 평균 Rating이 근사하면 비슷한 평가 경향을 보인다고 가정한 뒤, 평균 Rating 기준으로 내림차순 정렬하여 25%씩 4개의 Cluster로 나눔
- 각 Cluster 별로 MF(Matrix Factorization) 모델 학습 진행
- 각 MF의 Full Matrix값들을 단일 User x Item Matrix형태로 결합하여, Test set을 추출하여 최종 RMSE 계산

### 02. 핵심 코드

#### QMF(Quartered Matrix Factorization)

```
class QMF():
   # Initializing the object
   def init (self, rating matrix, K, alpha, beta, iterations, verbose=True):
       self.R = rating matrix
       self.K = K
       self.alpha = alpha
       self.beta = beta
       self.iterations = iterations
       self.verbose = verbose
       # Calculate and sorting by user mean
                                                                            유저 별 평균 rating
       self.user mean = self.R .mean(axis=1).sort values(ascending=False)
                                                                          ▶ 계산 후 내림차순 정렬
       # Set divide size(# of user in each Matrix)
       self.div_size = int(np.ceil(len(self.user_mean)/4))
                                                                            그룹화할 임계치 계산
       # Get indexes of each Matrix
       self.idx1 = self.user mean.index[:self.div size]
                                                                           임계치를 기준으로
      self.idx2 = self.user_mean.index[self.div_size:self.div_size*2]
                                                                           유저를 4개의 군집으로
      self.idx3 = self.user mean.index[self.div size*2;self.div size*3]
                                                                           군집화
       self.idx4 = self.user_mean.index[self.div_size*3:]
       # Make quartered Matrixes
       self.R1 = np.array(self.R .loc[self.idx1].fillna(0))
                                                                            각 군집별
      self.R2 = np.array(self.R .loc[self.idx2].fillna(0))
                                                                            Quartered matrix
      self.R3 = np.array(self.R_.loc[self.idx3].fillna(0))
                                                                             생성
       self.R4 = np.array(self.R_.loc[self.idx4].fillna(0))
       # Make full Matrix for validation
                                                                            검증을 위한
       self.R0 = np.concatenate([self.R1, self.R2, self.R3, self.R4])
                                                                            Full matrix 생성
```

```
def train(self):
...

# Train each matrixes
for self.R in tqdm([self.R1, self.R2, self.R3, self.R4]):
    self.num_users, self.num_items = np.shape(self.R)

make sample...

for i in tqdm(range(self.iterations)):
    training...
self.total_matrix = np.concatenate((self.total_matrix, self.full_matrix), axis=0)

각 군집별로 개별적인 학습 진행 이후
Full matrix로 concatenation
```

### 03. 알고리즘 개선 과정

#### STEP 1

전체 유저를 대상으로 다양한 알고리즘 구현 시도하여 각 알 고리즘 별 성능 비교

→기본 MF를 최종 알고리즘으로 선정

| 알고리즘          | RMSE   |
|---------------|--------|
| SVD++         | 1.6292 |
| 기본 MF         | 1.6133 |
| NCF           | 1.7078 |
| Keras-MF      | 1.6639 |
| deep learning | 1.63   |
| NCFC          | 1.6553 |





#### STEP 2

- 유저 별 평균 rating 점수를 구한 뒤 유저 별 평가 경향에 차이가 있다는 점을 발견
- → 전체 유저의 평균 rating 점수를 sorting하여 전체 유저를 25%씩 4개의 Cluster로 나누어 각 Cluster 별 기본 MF 알고리즘 적용

[Cluster1]



Book의 파생 변수인 major\_author를 Book의 bias로 반영함

## 04. 최종 결과

Test RMSE



1.272814



| Train RMSE | 1.2693   |
|------------|----------|
| Test RMSE  | 1.482958 |



| Train RMSE | 1.3723   |
|------------|----------|
| Test RMSE  | 1.638933 |



| Train RMSE | 1.5534   |
|------------|----------|
| Test RMSE  | 1.855046 |

개선 사항 반영하여 최종 모델 학습 시 RMSE 1.528677

#### Lesson 1

평가 경향 비슷한 유저끼리 군집화하여 모델 학습 시, 모델의 예측 정확성 향상

#### Lesson 2

NCF, NCFC 등등 추천시스템에 다양한 알고리즘 존재

#### Lesson 3

종속변수에 영향을 끼치는 유의한 파생변수 생성 및 모델 반영의 어려움

#### Discussion

- 본 프로젝트에서는 단순하게 데이터를 4가지로 등분하여 각각 모델을 학습하는 QMF(Quartered Matrix Factorization) 방식으로 진행. 향후, 최적의 k값을 찾아 알고리즘을 개선시킬 것으로 기대됨
- Book의 파생 변수인 major\_author를 Book의 Bias로 반영하여 모델링 설계. 향후, 다양한 방식으로 Rating을 제외한 변수 반영하여 알고리즘 개선시킬 것으로 기대됨

# Thank you:)