Scientific programming in mathematics

Exercise sheet 2

IF statement, Functions, Recursion, Vectors

Exercise 2.1. Write a function evenorodd which takes a number $n \in \mathbb{N}$ as input and returns the value 1 if n is even or 0 if n is odd. Write a main program which reads in the value n from the keyboard and prints on the monitor if n is even or odd.

Exercise 2.2. Write a function rounding, which, given $x \in \mathbb{R}$, computes the number $n \in \mathbb{Z}$ which is closest to x. If x is exactly in the middle between two integers n and n+1, the function chooses the biggest one, i.e., n+1. Then, write a main program which reads the number x from the keyboard, calls the function and displays the rounded value. Save your source code as rounding.c into the directory series02.

Exercise 2.3. Write a void-function divisor which checks if a given number $x \in \mathbb{N} := \{1, 2, 3, ...\}$ is divisible by 2, 3, or 6. Additionally, write a main program that reads in the number x, then calls the function divisor, and prints out the result. Save your source code as teiler.c into the directory series02.

Exercise 2.4. Write a program that reads from the keyboard three numbers $x, y, z \in \mathbb{R}$ and prints them on the screen in increasing order, i.e., first the minimum $\min\{x, y, z\}$ und last the maximum $\max\{x, y, z\}$. Save your source code as sort3.c into the directory series02.

Exercise 2.5. Write a recursive function binomial which computes and returns the binomial coefficient $\binom{n}{k}$ of two given integers $0 \le k \le n$. Use the addition formula

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{for } 1 \le k < n$$

with $\binom{n}{0} = 1 = \binom{n}{n}$. Write a main program which reads k and n from the keyboard and prints to the screen the result $\binom{n}{k}$. Save your source code as binomial.c into the directory series02.

Exercise 2.6. The Fibonacci sequence is recursively defined by $x_0 := 0$, $x_1 := 1$, and $x_{n+1} := x_n + x_{n-1}$. Write a recursive function fibonacci, which computes and returns x_n for given $n \in \mathbb{N}_0$. Then, write a main program, which reads n from the keyboard and prints to the screen the value of x_n . Save your source code as fibonacci.c into the directory series02.

Exercise 2.7. Write a function scalar product which computes and returns the scalar product $w = \mathbf{u} \cdot \mathbf{v} := ax + by + cz$ of two given vectors $\mathbf{u} = (a, b, c)^T$ and $\mathbf{v} = (x, y, z)^T$. Furthermore, write a main program which reads the parameters a, b, c, x, y, z from the keyboard and prints to the screen the value of the scalar product. Save your source code as scalar product. \mathbf{c} into the directory series 02.

Exercise 2.8. Write a program that allocates a static vector x of length 1000. The coefficients shall satisfy x[i] = i for all $i \in \{0, 1, \dots, 999\}$. Next, the vector shall be displayed on the screen. You must not use loops. Save your source code as array.c into the directory series02.

Hint: Write functions createVector and printVector that are called in the main program.