

Matematik A

Studentereksamen

Fredag den 25. maj 2012 kl. 9.00 - 14.00

Opgavesættet er delt i to dele.

Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler består af opgave 7-15 med i alt 19 spørgsmål.

De 25 spørgsmål indgår med lige vægt i bedømmelsen.

Bedømmelsen af det skriftlige eksamenssæt

I bedømmelsen af besvarelsen af de enkelte spørgsmål og i helhedsindtrykket vil der blive lagt vægt på, om eksaminandens tankegang fremgår klart af besvarelsen. Dette vurderes blandt andet ud fra kravene beskrevet i de følgende fem kategorier:

1. TEKST

Besvarelsen skal indeholde en forbindende tekst fra start til slut, der giver en klar præsentation af, hvad den enkelte opgave og de enkelte delspørgsmål går ud på.

2. NOTATION OG LAYOUT

Der kræves en hensigtsmæssig opstilling af besvarelsen i overensstemmelse med god matematisk skik, herunder en redegørelse for den matematiske notation, der indføres og anvendes, og som ikke kan henføres til standardviden.

3. REDEGØRELSE OG DOKUMENTATION

Besvarelsen skal indeholde en redegørelse for den anvendte fremgangsmåde og dokumentation i form af et passende antal mellemregninger og/eller en matematisk forklaring på brugen af de forskellige faciliteter, som et værktøjsprogram tilbyder.

4. FIGURER

I besvarelsen skal der indgå en hensigtsmæssig brug af figurer og illustrationer, og der skal være en tydelig sammenhæng mellem tekst og figurer.

5. KONKLUSION

Besvarelsen skal indeholde en afrunding af de forskellige spørgsmål med præcise konklusioner, præsenteret i et klart sprog og/eller med brug af almindelig matematisk notation.

Delprøven uden hjælpemidler

- **Opgave 1** Reducér udtrykket $(a-b)(a+b) 2a^2 + b^2$.
- Opgave 2 Bestem koordinatsættet til skæringspunktet mellem linjerne l og m, der er givet ved ligningerne

$$l: 2x-3y=1$$

$$m: x+6y=8.$$

Opgave 3 En 5 m lang vippe er ophængt på midten. Når den ene ende rører jorden, er der 2 m til den stolpe, den er fastgjort til.

Bestem, hvor højt punktet *B* er over jorden.

- **Opgave 4** Bestem tallet c, så andengradsligningen $3x^2 2x + c = 0$ har netop én løsning.
- **Opgave 5** Gør rede for, at funktionen $f(x) = (x+1) \cdot e^x$ er en løsning til differentialligningen

$$\frac{dy}{dx} = y + \frac{y}{x+1}.$$

Opgave 6 På figuren ses en skitse af graferne for tre funktioner f, g og h.

Gør rede for, hvilken af funktionerne g og h, der er den afledede funktion til f.

Delprøven med hjælpemidler

Opgave 7 Tabellen viser prisen i danske kroner på en pakke cigaretter i en række lande i juli 2007.

Land	PL	CZ	A	I	NL	DK	FIN	В	D	F	S	IRL	GB	N	GL
Pris	16	19	28	31	31	32	32	34	35	38	38	53	60	61	66

a) Bestem kvartilsættet for cigaretpriserne, og tegn et boksplot for fordelingen.

Opgave 8 En funktion f er bestemt ved

$$f(x) = (x^3 - 8) \cdot \ln x, \quad x > 0.$$

- a) Løs ligningen f(x) = 0.
- b) Bestem en ligning for tangenten til grafen for f i punktet P(1, f(1)).

Opgave 9 Tabellen viser antallet af Facebook-brugere i hele verden for en række år i perioden 2004 - 2010.

Årstal	2004	2005	2006	2009	2010
Antal brugere (mio.)	1	5,5	12	350	600

I en model antages det, at udviklingen i antallet af Facebook-brugere i verden kan beskrives ved en funktion af typen

$$f(t) = b \cdot a^t$$
,

hvor f(t) betegner antallet af Facebook-brugere i verden (målt i mio.) t år efter 2004.

- a) Benyt tabellens data til at bestemme tallene a og b.
- b) Bestem fordoblingstiden.
- c) Benyt modellen til at beregne antallet af Facebook-brugere i 2008, og gør rede for, hvad tallet *a* fortæller om udviklingen i antallet af Facebook-brugere.

Opgave 10 I trekant ABC er punktet D skæringspunktet mellem vinkelhalveringslinjen for vinkel B og siden AC.

- a) Bestem $\angle B$ i trekant ABD.
- b) Bestem $\angle A$ i trekant ABC, og bestem |AC|.

Opgave 11 En cirkel er givet ved ligningen

$$(x-2)^2 + (y+1)^2 = 100$$
,

og en linje l er givet ved ligningen

$$3x + 4y - 7 = 0$$
.

a) Bestem afstanden fra cirklens centrum til linjen l.

Linjen m går gennem cirklens centrum og er vinkelret på l.

b) Bestem koordinatsættet til hvert af skæringspunkterne mellem linjen *m* og cirklen.

Opgave 12

En funktion f er givet ved

$$f(x) = 4 - \frac{x^2}{4}$$
.

Grafen for f og førsteaksen afgrænser i første og anden kvadrant en punktmængde M, der har et areal (se figur 1).

a) Bestem arealet af M.

Fra punktmængden *M* er der udskåret et rektangel (se figur 2).

b) Bestem arealet af det skraverede område på figur 2 udtrykt ved x.

Opgave 13

Kilde: sketchup.google.com

Figuren viser en model af Denver Museum indtegnet i et koordinatsystem. Alle enheder er i feet.

a) Bestem en ligning for den plan α , der indeholder punkterne A, B og C.

Det oplyses, at planen β , der indeholder punkterne C, D og F, har ligningen

$$326x + 75y - 135z = 16925$$
.

- b) Bestem vinklen mellem α og β .
- c) Undersøg, om \overrightarrow{AE} er parallel med \overrightarrow{GI} , og bestem arealet af tagfladen AEIG.

Opgave 14 I en model kan udviklingen i et barns højde de første 48 måneder beskrives ved differentialligningen

$$\frac{dh}{dt} = 5,24 - 0,045 \cdot h, \quad 0 \le t \le 48$$

hvor *t* er barnets alder (målt i måneder), og *h* er barnets højde (målt i cm). I modellen er et barn 50 cm højt ved fødslen.

- a) Benyt modellen til at bestemme væksthastigheden, når barnet er 100 cm højt.
- b) Bestem en forskrift for *h*, og benyt denne til at bestemme barnets alder, når det er 100 cm højt.

Opgave 15 En funktion f er givet ved

$$f(x) = 19 \cdot \frac{\sqrt{-x^2 + 100x + 14400}}{65}, \quad 0 \le x \le 180.$$

Grafen for f afgrænser sammen med koordinatsystemets akser i første kvadrant en punktmængde M. Bemærk, at førsteaksen er lodret på figuren.

Billedet viser en cigarformet bygning. I en model har bygningen form som det omdrejningslegeme, der fremkommer, når *M* drejes 360° omkring førsteaksen, og enheden på akserne er meter.

- a) Bestem maksimum for f, og benyt dette til at bestemme bredden af bygningen, der hvor den er bredest.
- b) Benyt modellen til at bestemme bygningens volumen.

