BILGISAYAR MÜHENDISLIĞINE GIRIŞ HAFTA 4

- Karnaugh Haritaları
- Karnaugh Haritaları ile Lojik Devrelerin Sadeleştirilmesi

- ✓ Karnaugh(karno) haritaları, lojik ifadelerin çarpımlarının toplanması şeklinde sadeleştirilmesini sağlayan kutucuklardan oluşan bir yöntemdir.
- ✓ Değişken sayısına göre karno haritasının hazırlanmasında öncelikli olarak bulunması gereken, kullanılacak kutucuk sayısıdır.
- ✓ Kutucuk sayısı ise 2^{değişken} ifadesi ile bulunur.
- ✓ Doğruluk tablosunda tanımlı A ve B değişkenlerinin her bir ihtimali için karno haritasında bir kutucuk vardır.

CD AB	C'D'	C'D	CD	CD'
A'B'	A'B'C'D'	A'B'C'D	A'B'CD	A'B'CD'
A'B	A'BC'D'	A'BC'D	A'BCD	A'BCD'
AB	ABC'D'	ABC'D	ABCD	ABCD'
AB'	AB'C'D'	AB'C'D	AB'CD	AB'CD'

DÖRT GİRİŞLİ KARNO HAR.

Α	В	Q
0	0	0
0	1	0
1	0	1
1	1	1

- ✓ Q=A.(A+B) fonksiyonu karnaugh haritası ile sadeleştirelim.
- ✓ Tablodaki A-B değişkenlerinin bağıntıya göre karşılıkları ilgili kutucuğa yazılır.
- ✓ Karno haritası üzerinde yapılması gereken bütün 1'leri gruplar içerisine almaktır.
- ✓ Bunun için içerisinde 1 bulunan birbirine komşu gruplar varsa 4'lü, yoksa 2'li yoksa da tekli gruplar oluşturulur.
- ✓ Gruplar 2'nin kuvvetlerinden(1,2,4,8,16...) başka olamaz.
- ✓ Gruplama işleminde esas, mümkün olduğunca geniş gruplar oluşturmaktır.
- ✓ Ne kadar büyük gruplama yapılırsa o kadar sade sonuçlar elde edilir.
- ✓ Herhangi bir grup içine alınarak kullanılan bir kutu başka bir gruplama amacıyla da kullanılabilir. Yani bir kutu birden fazla grupta yer alabilir

Α	В	Q
0	0	0
0	1	0
1	0	1
1	1	1

- ✓ Gruplamadan sonra grup bölgesinde 0 ve 1 değerlerini beraber içeren değişkenler elenir.
- ✓ Yukarıdaki örnekte B değişkeni, grup içine alınan bölgede hem 1 hem de 0 olduğu için elenir.
- ✓ Bu durumda sadece A değişkeni geriye kalmıştır.
- ✓ Grubun işaretlendiği bölgede A değişkeni 1 değerindedir.
- ✓ Bu nedenle karno sonucu A 'dır.
- ✓ Q = A.(A+B) fonksiyonu Q = A olarak sadeleşmiş olur.

- ✓ Lojik ifadeler direk olarak karnoya yerleştirilebilir.
- ✓ Örneğin $Q = \bar{A}B + AB + A\bar{B}$ ifadesini karnoya aktaralım.
- ✓ İstenirse doğruluk tablosu ile kontrol edilebilir.
- ✓ Bu ifadede üç AND işlemi OR işlemleri ile birleştirilmiştir.
- ✓ AND işlemleri karnoda karşılıklarının bulunduğu kutulara 1 olarak yazılır.
- ✓ Boş kalan kutuların değeri 0 'dır. Daha sonra gruplama işlemi yapılır.

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

А	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

- ✓ Burada Q eşitliğini sağlayan f1 ve f2 olmak üzere iki tane grup oluştu.
- ✓ Karnoda bulunan bütün 1'ler grup içine alınmış oldu.
- √ f1 grubu A değişkeninin 1 olduğu bölgedir.
- √ f2 grubu B değişkeninin 1 olduğu bölgedir.
- ✓ Bu sebeplerle f1 = A ve f2 = B olarak alınır.
- ✓ Bütün gruplar VEYA işlemine tabi tutularak sonuç bulunur.
- $\checkmark Q = \bar{A}B + AB + A\bar{B}$ ifadesi karnoda sadeleştirilince Q = f1 + f2 = A+B sonucu elde edilmiştir.

- ✓ ÜÇ GİRİŞLİ KARNAUGH HARİTASI
- √ Üç değişkenli karnaugh diyagramında 2³ = 8 tane kare bulunur.
- ✓ Burada her kutu üç değişkenli bir terime karşılık gelir.

BC	B'C'	B'C	BC	BC'
A	00	01	11	10
A' - 0	000	001	011	010
	A'B'C'	A'B'C	A'BC	A'BC'
A - 1	100	101	111	110
	AB'C'	AB'C	ABC	ABC'

BC A	00	01	11	10
0				
1				1

- ✓ Örneğin alt sırada en sağdaki kutuyu ele alalım.
- ✓ Bu kutuda
 - ✓ A değişkeni 1,
 - ✓ B değişkeni 1,
 - ✓ C değişkeni 0 olur.
- ✓ Buna göre bu kutu $AB\bar{C}$ (ABC') terimine aittir.
- ✓ Bu şekilde her kutunun hangi terime ait olduğunu bulabiliriz.

- ✓ Kutuların sol üst köşesinde bulunan giriş değişkenleri çıkış ifadesinin kutu üzerindeki dağılımını etkiler.
- $\checkmark Q = \bar{A}BC + \bar{A}\bar{B}C + AB\bar{C} + AB\bar{C}$ ifadesini karno haritasına yerleştirelim.

BC	B'C'	B'C	BC	BC'
A	00	01	11	10
A' - 0	000	001	011	010
	A'B'C'	A'B'C	A'BC	A'BC'
A - 1	100	101	111	110
	AB'C'	AB'C	ABC	ABC'

A BC	00	01	11	10
0	0	1	1	0
1	0	0	1	1
AB C	00	01	11	10
0	0	0	1	0
1	1	1	1	0

Α	В	С	Q
0	0	0	A'B'C' - 0
0	0	1	A'B'C - 1
0	1	0	A'BC' - 0
0	1	1	A'BC - 1
1	0	0	AB'C' - 0
1	0	1	AB'C - 0
1	1	0	ABC' - 1
1	1	1	ABC – 1

- ✓ Sol üst köşedeki girişlerin değiştirilmesi karno üzerinde yer değiştirmesi sadeleştirme sonucunu etkilemez.
- ✓ Önemli olan çıkış ifadesine ait 1'lerin karno üzerinde doğru yerleştirilmesidir.

✓ ÜÇ GİRİŞLİ KARNAUGH HARİTASI

 $\checkmark Q = \bar{A}BC + \bar{A}\bar{B}C + AB\bar{C} + AB\bar{C}$ ifadesini karno haritası ile sadeleştirelim.

BC A	00	01	11	10
0	0	1	1	0
1	0	0	1	1

- ✓ Sadeleştirmede esas kural bütün 1'lerin grup içerisine alınmasıdır.
- ✓ Gruplamaya 1'lerin azınlıkta olduğu yerden başlamak gereksiz grup oluşturmayı engeller.
- ✓ f1 grubu içerisinde B girişi 0 ve 1 değerleri almıştır. Fakat A yalnızca 0, C ise yalnızca 1 değerine sahiptir. Bu durumda $f1 = \bar{A}C$ olur.
- ✓ f2 grubu içerisinde C girişi 0 ve 1 değerleri almıştır. Fakat A yalnızca 1, B ise yine yalnızca 1 değerine sahiptir. Bu durumda f2 = AB olur.
- ✓ Sadeleştirme işlemi sonunda $Q = f1 + f2 = \bar{A}C + AB$ elde edilir.

✓ ÖRNEK: $Q = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + \bar{A}B\bar{C} + A\bar{B}\bar{C} + A\bar{B}C$ ifadesini karno haritası ile sadeleştirelim.

BC A	00	01	11	10
0	1	1	1	1
1	1	1	0	0

- ✓ Sadeleştirmede bir kutucuk birden fazla grup içerisinde bulunabilir.
- ✓ Ne kadar büyük gruplar oluşturulursa o kadar sade bir çıkış elde edilir.
- ✓ f1 grubu içerisinde A girişi 0 ve 1 değerleri almıştır. Yine C girişi 0 ve 1 değerleri almıştır. Fakat B girişi yalnızca 0 değerine sahiptir. Bu durumda $f1 = \bar{B}$ olur.
- \checkmark f2 grubu içerisinde B girişi 0 ve 1 değerleri almıştır. Yine C girişi 0 ve 1 değerleri almıştır. Fakat A girişi yalnızca 0 değerine sahiptir. Bu durumda $f2=\bar{A}$ olur.
- ✓ Sadeleştirme işlemi sonunda $Q = f1 + f2 = \overline{A} + \overline{B}$ elde edilir.

- ✓ DÖRT GİRİŞLİ KARNAUGH HARİTASI
- ✓ Dört değişkenli karnaugh diyagramında 2⁴ = 16 tane kare bulunur.
- ✓ Burada her kutu dört değişkenli bir terime karşılık gelir.

CD	C'D'	C'D	CD	CD'
AB	00	01	11	10
A'B'	A'B'C'D'	A'B'C'D	A'B'CD	A'B'CD'
00	0000	0001	0011	0010
A'B	A'BC'D'	A'BC'D	A'BCD	A'BCD'
01	0100	0101	0111	0110
AB	ABC'D'	ABC'D	ABCD	ABCD'
11	1100	1101	1111	1110
AB'	AB'C'D'	AB'C'D	AB'CD	AB'CD'
10	1000	1001	1011	1010

- ✓ Burada da kurallar 2 ve 3 değişkenli karnaugh diyagramlarında olduğu gibidir.
- ✓ İçinde 1 bulunan bitişik kutular onaltılı, sekizli, dörtlü, ikili veya birli gruplar içine alınırlar. Grup içine alınmamış 1 bırakılmaz.
- √ 16 kutunun hepsinde 1 varsa fonksiyonun değeri Q = 1 şeklinde olur. Hepsinde 0 varsa fonksiyonun değeri Q = 0 olur.

✓ ÖRNEK: $Q = \bar{A}B\bar{C}\bar{D} + A\bar{B}C\bar{D} + ABCD + AB\bar{C}\bar{D} + ABC\bar{D} + A\bar{B}CD + AB\bar{C}D$ ifadesini karno haritası ile sadeleştiriniz.

- ✓ f1 grubunda B = 1, C = 0, D = 0 olarak sabit kalmaktadır. Bu durumda $f1 = B\bar{C}\bar{D}$ olur.
- ✓ f2 grubunda A = 1, B = 1 olarak sabit kalmaktadır. Bu durumda f2 = AB olur.
- ✓ f3 grubunda A = 1, C = 1 olarak sabit kalmaktadır. Bu durumda f3 = AC olur.

✓ Sadeleştirme işlemi sonunda $Q = f1 + f2 + f3 = B\bar{C}\bar{D} + AB + AC$ elde edilir.

- ✓ Karnoda çapraz gruplama yapılamaz.
- ✓ Gruplama yapılırken birbirine yakın olan tüm 1 'ler gruba dahil edilmelidir.
- ✓ Bir grupta ne kadar çok 1 olursa o kadar sade bir tanım elde edilir.
- ✓ Bir de şekilde görüldüğü gibi en dış kısımda bulunan 1 'ler gruba alınabilirler.
- ✓ Karno haritasını bir kağıt gibi düşünürsek, üst veya yan kenarlarını uç uca getirdiğimizde bu 1 'lerin bir grup oluşturabildiğini görürüz.

- ✓ Bu YANLIŞ bir gruplamadır.
- ✓ Çünkü en büyük grup oluşturacak şekilde gruplama yapılmamıştır.
- √ Üç ayrı grup yapılarak çıkış ifadesi gereksiz yere uzatılmıştır.

- ✓ Bu da yukarıdakine göre biraz daha doğru olsa da YANLIŞ bir gruplamadır.
- ✓ Grup yapılabiliyorsa tek başına 1 bırakılmamalıydı.

- ✓ Bu DOĞRU bir gruplamadır.
- ✓ Hiçbir "1" açıkta kalmamıştır.
- ✓ En büyük sayıdaki gruplar alınmıştır.
- ✓ AB (11) hücresindeki 1 her iki gruba da dâhil edilebilir.

- ✓ Bu YANLIŞ bir gruplamadır.
- ✓ Çünkü 3 adet "1" ile gruplama yapılamaz.
- ✓ Grup sayısı 1, 2, 4, 8.... olmalıdır.

- ✓ Bu YANLIŞ bir gruplamadır.
- ✓ Çünkü çapraz grup yapılamaz.

- ✓ Bu YANLIŞ bir gruplamadır.
- ✓ Boş kutular gruba dâhil edilemez.

- ✓ Bu YANLIŞ bir gruplamadır.
- ✓ Çünkü grup içinde hem alt alta hem yan yana "1" olamaz.
- ✓ Grup ya yan yana ya alt alta olmalıdır.

- ✓ Bu DOĞRU bir gruplamadır.
- ✓ Burada 4 adet grup bulunmaktadır
- ✓ Karno haritasında en yukardan en aşağıya veya en sağdan en sola geçiş vardır.

- ✓ Bu DOĞRU bir gruplamadır.
- ✓ Burada dörtlü ve ikili olmak üzere 2 adet grup vardır.
- ✓ Ucu açık olan çizgiler birleşerek dörtlü grubu oluşturmaktadır.

- ✓ Bu YANLIŞ bir gruplamadır.
- ✓ Çünkü altılı grup yapılamaz.

- ✓ Bu YANLIŞ bir gruplamadır.
- ✓ Aslında yanlıştan daha çok eksik bir gruplamadır.
- ✓ Dörtlü iki grup yapılabilirdi.

- ✓ Bu DOĞRU bir gruplamadır.
- ✓ Kare içinde ve daire içinde olmak üzere 2 adet dörtlü
- ✓ grup vardır.

✓ ÖRNEK GRUPLAMALAR

- ✓ Bu DOĞRU bir gruplamadır.
- ✓ Burada biri ikili biri dörtlü olmak üzere 2 adet grup vardır.
- ✓ Ucu açık olan çizgiler içinde ikili grup bulunmaktadır.

✓ Bu DOĞRU bir gruplamadır.

✓ Bu DOĞRU bir gruplamadır.

- ✓ FARKETMEZ (DON'T CARE) DURUMU İLE KARNO UYGULAMASI
- ✓ Bazı tasarımlarda gerek giriş gerekse çıkış değişkenlerinin bir önemi yoktur.
- ✓ Bu durumda ifadenin önemsiz olduğunu belirtmek için 0 ve 1 dışında özel bir karekter olan "X" kullanılır.
- ✓ Buna farketmez, önemsiz vb... gibi adlar verilebilir.
- √ "X" bulunan kutular duruma göre "0" veya "1" olarak kabul edilebilir.
- ✓ Sadeleştirme işleminde en büyük gruplamayı yapmak esastır.
- ✓ Farketmezlerin hepsi 1 veya hepsi 0 olarak kullanılabileceği gibi en büyük gruplama yapabilmek için istenilen "X"i alıp, diğerlerini grup dışında bırakabiliriz.
- √ "X" işareti yerine bazı kaynaklarda "d" işareti de kullanılmaktadır.

✓ ÖRNEK:

Bu durumda çıkış ifadesi Q = B' olur.

✓ ÖRNEK: Verilen karno haritasını sadeleştirelim.

BC A	00	01	11	10
0	х	1	1	Х
1	0	1	Х	1

- ✓ f1 grubu içerisinde C girişi yalnızca 1 değerine sahiptir. Bu durumda f1=C olur.
- ✓ f2 grubu içerisinde B girişi yalnızca 1 değerine sahiptir. Bu durumda f2 = B olur.
- ✓ Sadeleştirme işlemi sonunda Q = f1 + f2 = C + B olarak elde edilir.

✓ ÖRNEK: Verilen karno haritasını sadeleştirelim.

- ✓ f1 grubunda C = 0, D = 1 sabit kalmaktadır. Bu durumda $f1 = \bar{C}D$ olur.
- ✓ f2 grubunda B = 0, C = 1 sabit kalmaktadır. Bu durumda $f2 = \overline{B}C$ olur.

✓ Sadeleştirme işlemi sonunda $Q = f1 + f2 = \bar{C}D + B\bar{C}$ elde edilir.

✓ ÖRNEK: Verilen karno haritasını sadeleştirelim.

√ 1)

BC A	00	01	11	10
0	Х	1	0	1
1	х	0	х	1

√ 2)

BC A	00	01	11	10
0	1	1	1	Х
1	х	0	0	1

✓ ÖRNEK: Verilen karno haritalarını sadeleştirelim.

√	1)	CD AB	00	01	11	10
		00	1		1	1
		01	1	х	1	х
		11	х	х	1	
		10	1	х		х

\checkmark	2)	CD				
		AB	00	01	11	10
		00	Х		1	Х
		01	1	1	x	1
		11	1	х		1
		10	х	1		

- ✓ ÖRNEK: Üç adet butonun kullanıldığı bir sistemde iki veya daha fazla butona basılması durumunda sistemin çalışmasını sağlayan devreyi karno haritalarından faydalanarak tasarlayınız.
- ✓ 1. AŞAMA: Durum tablosunun oluşturulması

BUT	TONLA	ÇIKIŞ	
Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

✓ 2. AŞAMA: Durum tablosundan karno haritasına yerleştirme

BC A	00	01	11	10
0			1	
1		1	1	1

✓ 3. AŞAMA: Karno haritasında gruplamanın yapılması ve sadeleştirme

$$f1 = AC$$

$$f2 = AB$$

$$f3 = BC$$

$$Q = AC + AB + BC$$

✓ 4. AŞAMA: Uygulama devresinin çizimi

✓ ÖRNEK: Bir alarm cihazında dört adet sensör kullanılarak kumanda edilmektedir. Bu sensörlerden herhangi üç tanesi kapalı olması durumunda alarmın çalışmasını sağlayacak lojik kumanda devresini tasarlayınız.

Α	В	С	D	Q
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	1
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	1
1	1	0	0	
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$$\checkmark f1 = ABD$$

$$\checkmark f2 = ACD$$

$$\checkmark f3 = ABC$$

$$\checkmark f3 = BCD$$

$$Q = f1 + f2 + f3 + f4 = ABD + ACD + ABC + BCD$$

✓ ÖRNEK: Bir yönetim kurulu toplantısında 4 adet kurul üyesi işçiler adına kararlar alacaktır. Üyeler bulundukları birimlerdeki işçi sayılarına göre temsil oranlarına sahiptir. Birinci üyenin %10 temsil hakkı, ikinci üyenin %25 temsil hakkı, üçüncü üyenin %30 temsil hakkı, dördüncü üyenin ise %35 temsil hakkı bulunmaktadır. Yapılan oylamalarda %50 ve üstü elde edilmesi durumunda ilgili karar geçerli olacaktır. Kararların geçerliliğini gösterecek lojik kumanda sistemini tasarlayınız.

A %10	B %25	C %30	D %35	Q
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	1
0	1	0	0	
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	1
1	1	0	0	
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$$\checkmark f1 = BD$$

$$\checkmark f2 = CD$$

✓
$$f3 = BC$$

$$Q = f1 + f2 + f3 = BD + CD + BC$$