

# CIVL31001 Design 3: Geotechnics

Concepts and Options for the Foundation of Building A



Client Representative: Majid Sedighi Project Location: Manchester, England Project Name: New High School Building

**Unique Report Number:** G1/01

#### **Group 1 Engineers:**

Alima Elfrida 10656272 Jamie Shuttleworth 10691773 Jinhong Li 10588946 Joseph Jolley 10638701 Karla Khangara 10684622 Weng Tang 10730702

# Contents

| 1.         | Soil       | Profile                                                                         | 4             |
|------------|------------|---------------------------------------------------------------------------------|---------------|
| 2.         | Bea        | ring Capacity Shallow Foundations                                               | 11            |
| 2          | 2.1        | Direct Calculation Method Using CPT Results                                     | 11            |
| 2          | 2.2        | Indirect Calculation Methods Using CPT Results                                  | 14            |
|            | 2.2.       | 1 Discussion on Verification with Direct Method Results                         | 17            |
| 3.         | Sett       | tlement Calculations                                                            | 18            |
| 3          | 3.1        | Determination of Foundation Flexibility Factor                                  | 18            |
| 3          | 3.2        | Calculation of Settlement using Meyerhof Method                                 | 20            |
| 3          | 3.3        | Calculation of Settlement using Schmertmann Method                              | 23            |
| 4.         | Bea        | ring Capacity and Length of a Single Pile Foundation                            | 26            |
| 2          | l.1        | Alpha LCPC Method                                                               | 26            |
|            | 4.1.       | Verification of MATLAB result (Alpha LCPC Method)                               | 29            |
| 2          | 1.2        | Beta Method (to check Alpha LCPC results)                                       | 32            |
| 5.         | Suit       | able Foundation Recommendation for the Maximum Structural Load                  | 35            |
| 6.         | Furt<br>37 | ther Recommendations and Analysis of Group Pile Foundations if Single Pile Is N | ot Sufficient |
| 6          | 5.1        | Verification of MATLAB Results – Block Failure Method                           | 41            |
| $\epsilon$ | 5.2        | Verification of MATLAB Results – Individual Method                              | 42            |
| 7.         | Con        | clusion and Summary                                                             | 45            |
| 8.         | Refe       | erences                                                                         | 46            |
| 9.         | Apn        | pendices                                                                        | 47            |

# List of Figures

| Figure 1.1: Dividing Data into Multiple Sections                                                    | 4           |
|-----------------------------------------------------------------------------------------------------|-------------|
| Figure 1.2: Plotted Points in Normalized SBT Charts                                                 | 9           |
| Figure 1.3: Soil Behaviour Type and Zone                                                            | 9           |
| Figure 1.4: Full Visualisation of the Soil Layer                                                    | 10          |
| Figure 2.1: Layout of Shallow Foundation Conditions                                                 | 11          |
| Figure 2.2: Determination of kø                                                                     | 12          |
| Figure 2.3: Allowable Bearing Capacity versus Footing Width for the Direct Method                   | 13          |
| Figure 2.4: Allowable Bearing Capacity versus Footing Width for the Indirect Method                 | 16          |
| Figure 3.1: Settlement Beneath a Perfectly Rigid Foundation in Sand (Source: Sedighi, 2022)         | 18          |
| Figure 3.2: Settlement Beneath a Perfectly Flexible Foundation in Sand (Source: Sedighi, 2022) .    | 18          |
| Figure 3.3: Diagram of Shallow Foundation Loads                                                     | 20          |
| Figure 3.4: Comparison of Calculated Bearing Capacities                                             | 21          |
| Figure 3.5: Determination of I <sub>z</sub>                                                         | 24          |
| Figure 3.6: Plot of Immediate Settlement versus Footing Width for Schertmann Method                 | 24          |
| Figure 4.1: Maximum Structural Load of our column - From the Structures Report                      | 26          |
| Figure 4.2: Cross check snip of MATLAB Q allowable values for a single pile, highlighting Qall at 2 | <u>2</u> 0m |
| depth. Units: MN                                                                                    |             |
| Figure 4.3: Figure Containing the Beta Values and Nt Values                                         | 32          |
| Figure 4.4: Soil profile                                                                            | 33          |
| Figure 6.1: Spacing of piles and their diameters                                                    | 38          |
| Figure 6.2: Spacing of piles in the same group, and the spacing between neighbouring groups         | 38          |
| Figure 6.3: Figure highlighting what 's' and 'c' represent                                          | 39          |
| Figure 6.4: MATLAB result (MN) at depth 24.5m                                                       | 42          |
| Figure 6.5: MATLAB output, highlighting the Qall at depth 15.5m. Units: MN                          | 44          |
| Figure 9.1: Settlement Calculation for a 1.5m Square Footing using Schertmann Method                | 51          |
| Figure 9.2: Settlement Calculation for a 2.0m Square Footing using Schertmann Method                | 51          |
| Figure 9.3: Settlement Calculation for a 2.5m Square Footing using Schertmann Method                | 52          |
| Figure 9.4: Settlement Calculation for a 3.0m Square Footing using Schertmann Method                | 52          |
| Figure 9.5: Example of how I₂ can be interpolated for each soil layer                               | 53          |
| Figure 9.6: Displaying how the qc values are updated if they are out of the specific range          | 56          |
| Figure 9.7: Bearing Capacity Analysis (Sedighi, 2022)                                               | 63          |

# List of Tables

| Table 1: Values of <i>u</i> 2 for Soil Section 1                                          | 5            |
|-------------------------------------------------------------------------------------------|--------------|
| Table 2: Results of q <sub>c</sub> and q <sub>t</sub> in Soil Section 1                   | 5            |
| Table 3: Results of $R_f$ in Soil Section 1                                               | 6            |
| Table 4: Results of Unit Weight of Soil Section 1                                         | 7            |
| Table 5: Results of $\sigma vo$ and $\sigma' vo$ of Soil Section 1                        | 8            |
| Table 6: Results of Qt and Fr in Soil Section 1                                           | 8            |
| Table 7: Calculation of q <sub>c(av)</sub>                                                | 12           |
| Table 8: Calculation of qall                                                              | 13           |
| Table 9: Results of Soil Friction Angles from Width 1.5m to 3m                            | 15           |
| Table 10: Results from Indirect Calculation Methods Using CPT Results                     | 15           |
| Table 11: Shallow Foundation Slab Properties                                              | 19           |
| Table 12: Shallow Foundation Flexibility Factors                                          | 19           |
| Table 13: Values of Soil Unit Weight to 4.0m Depth                                        |              |
| Table 14: Calculation of qall                                                             | 21           |
| Table 15: Immediate Settlement for Footing Widths 1.5m to 3m                              | 24           |
| Table 16: Allowable Bearing Capacity of a Single Pile                                     | 27           |
| Table 17: Comparison of Alpha and Beta method results                                     | 33           |
| Table 18: fp (green) or fpmax (yellow) was used                                           | 61           |
| Table 19: FINAL RESULTS of: Single plie, group pile individual method, group pile block i | method, eta, |
| beta method for all depths                                                                | 64           |

## 1. Soil Profile

In this report, the Normalized SBT Chart was used to identify the soil type of each layer. Calculations were performed to obtain the value of the normalized cone resistance ( $Q_{tn}$ ) and normalized friction ratio ( $F_r$ ) which were then used to find the zone number of each soil layer. The full results of each soil layer type can be found in the Appendix. However, a more thorough calculation is also described below to allow better understanding on how the soil type was identified.



Figure 1.1: Dividing Data into Multiple Sections

As can be seen from Figure 1.1, the given data in excel is divided into multiple sections to allow easier soil type identification. This part of the report discusses how to obtain the soil type for soil section 1 in which the method can also be used to find soil type in another section (e.g., soil 2, soil 3 and soil 4).

First, the cone resistance ( $q_c$ ) from the excel data is converted from MPa to kPa through multiplication by 1000. This was done to ensure uniform units are used throughout the calculation. After that, the data of  $u_2$  was extracted from chart provided in excel as shown in Table 1 below. (Soil 1 reaches a depth of 7.5m).

Table 1: Values of  $u_2$  for Soil Section 1

| u2 (kPa) |
|----------|
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |

Then, the corrected cone resistance  $(q_t)$  can be calculated as below

$$q_t = q_c + u_2(1-a)$$

Where:

 $q_c$ : cone resistance (kPa)

 $u_2$ : water pressure at base of sleeve (kPa)

a: net area ratio from laboratory calibration with typical value of 0.70-0.85

The chosen value of net area ratio is 0.775

The results are shown in Table 2 below:

Table 2: Results of  $q_c$  and  $q_t$  in Soil Section 1

| qc (kPa) | qt (kPa) |
|----------|----------|
| 4500     | 4500     |
| 3800     | 3800     |
| 3500     | 3500     |
| 2400     | 2400     |
| 4800     | 4800     |
| 5700     | 5700     |
| 6300     | 6300     |
| 6100     | 6100     |
| 6800     | 6800     |
| 4200     | 4200     |
| 5300     | 5300     |
| 3200     | 3200     |
| 5600     | 5600     |
| 4500     | 4500     |
| 770      | 770      |

Then, the friction ratio (R<sub>f</sub>) can be calculated using the formula below:

$$R_f = \frac{f_s}{q_t} \times 100\%$$

Where:

 $R_f$ : friction ratio

 $f_s$ : sleeve friction (kPa)

 $\boldsymbol{q}_t: corrected\ cone\ resistance\ (kPa)$ 

The results of  $R_f$  are shown in Table 3 below:

Table 3: Results of  $R_f$  in Soil Section 1

| Rf 0.270 0.326 0.351 0.504 0.266 0.243 0.215 0.234 0.195 0.272 0.218 0.391 0.246 0.256 1.623                      |       |  |
|-------------------------------------------------------------------------------------------------------------------|-------|--|
| 0.326<br>0.351<br>0.504<br>0.266<br>0.243<br>0.215<br>0.234<br>0.195<br>0.272<br>0.218<br>0.391<br>0.246<br>0.256 | Rf    |  |
| 0.351<br>0.504<br>0.266<br>0.243<br>0.215<br>0.234<br>0.195<br>0.272<br>0.218<br>0.391<br>0.246<br>0.256          | 0.270 |  |
| 0.504<br>0.266<br>0.243<br>0.215<br>0.234<br>0.195<br>0.272<br>0.218<br>0.391<br>0.246<br>0.256                   | 0.326 |  |
| 0.266<br>0.243<br>0.215<br>0.234<br>0.195<br>0.272<br>0.218<br>0.391<br>0.246<br>0.256                            | 0.351 |  |
| 0.243<br>0.215<br>0.234<br>0.195<br>0.272<br>0.218<br>0.391<br>0.246<br>0.256                                     | 0.504 |  |
| 0.215<br>0.234<br>0.195<br>0.272<br>0.218<br>0.391<br>0.246<br>0.256                                              | 0.266 |  |
| 0.234<br>0.195<br>0.272<br>0.218<br>0.391<br>0.246<br>0.256                                                       | 0.243 |  |
| 0.195<br>0.272<br>0.218<br>0.391<br>0.246<br>0.256                                                                | 0.215 |  |
| 0.272<br>0.218<br>0.391<br>0.246<br>0.256                                                                         | 0.234 |  |
| 0.218<br>0.391<br>0.246<br>0.256                                                                                  | 0.195 |  |
| 0.391<br>0.246<br>0.256                                                                                           | 0.272 |  |
| 0.246<br>0.256                                                                                                    | 0.218 |  |
| 0.256                                                                                                             | 0.391 |  |
|                                                                                                                   | 0.246 |  |
| 1.623                                                                                                             | 0.256 |  |
|                                                                                                                   | 1.623 |  |

Furthermore, the unit weight of the soil ( $\gamma_s$ ) can be found by using the formula below:

$$\frac{\gamma_s}{\gamma_w} = 0.27 \log(R_f) + 0.36 \log(\frac{q_t}{P_a}) + 1.236$$

Where:

 $\gamma_w$ : unit weight of water  $\left(\frac{kN}{m^2}\right)$ 

 $R_f$ : friction ratio

 $P_a: atmospheric\ pressure\ (100\ kPa)$ 

 $\boldsymbol{q}_t: corrected\ cone\ resistance\ (kPa)$ 

Hence, the results can be seen in Table 4 as presented below:

Table 4: Results of Unit Weight of Soil Section 1

| γ <sub>s</sub> |
|----------------|
| (kN/m3)        |
| 16.778         |
| 16.734         |
| 16.692         |
| 16.525         |
| 16.861         |
| 17.023         |
| 17.037         |
| 17.085         |
| 17.040         |
| 16.679         |
| 16.781         |
| 16.676         |
| 17.011         |
| 16.712         |
| 16.119         |

Hence, this unit weight can be used to obtain the total vertical stress ( $\sigma_{vo}$ ) and effective vertical stress ( $\sigma_{vo}$ ) using the below formula:

$$\sigma_{vo} = \gamma_s \times D$$

$$\sigma'_{vo} = \sigma_{vo} - u$$

Where:

 $\sigma_{vo}: total\ vertical\ stress\ (\mathit{kPa})$ 

 $\gamma_s$  : unit weight of soil  $\left(\frac{kN}{m^2}\right)$ 

 $D: depth \ of \ soil \ (m)$ 

 $\sigma^{'}_{vo}: effective\ vertical\ stress\ (kPa)$ 

 $u: pore\ water\ pressure\ (kPa)$ 

The results of total and effective vertical stress for every depth in soil section 1 are provided in Table 5 below:

Table 5: Results of  $\sigma_{vo}$  and  $\sigma_{vo}^{'}$  of Soil Section 1

| σ <sub>νο</sub><br>(kPa) | σ' <sub>να</sub><br>(kPa) |
|--------------------------|---------------------------|
| 8.389                    | 7.889                     |
| 16.734                   | 15.734                    |
| 25.039                   | 24.839                    |
| 33.049                   | 32.749                    |
| 42.152                   | 42.052                    |
| 51.069                   | 50.769                    |
| 59.628                   | 58.428                    |
| 68.338                   | 67.338                    |
| 76.681                   | 76.181                    |
| 83.393                   | 81.393                    |
| 92.295                   | 90.295                    |
| 100.058                  | 95.058                    |
| 110.572                  | 110.472                   |
| 116.982                  | 112.982                   |
| 120.896                  | 117.696                   |

The final step of the calculation is to compute  $Q_t$  and  $F_r$  which will then be plotted in the Normalized SBT Chart. The formula for  $Q_t$  and  $F_r$  is shown below:

$$Q_{t} = (q_{t} - \sigma_{vo})/\sigma'_{vo}$$

$$F_r = \left[\frac{f_s}{q_t - \sigma_{vo}}\right] 100\%$$

The final results are shown in Table 6 below:

Table 6: Results of  $Q_t$  and  $F_r$  in Soil Section 1

| Qt      | Fr (%) |
|---------|--------|
| 569.345 | 0.271  |
| 240.451 | 0.328  |
| 139.902 | 0.354  |
| 72,.74  | 0.511  |
| 113.142 | 0.269  |
| 111.267 | 0.245  |
| 106.805 | 0.217  |
| 89.573  | 0.237  |
| 88.255  | 0.197  |
| 50.577  | 0.278  |
| 57.675  | 0.222  |
| 32.611  | 0.403  |
| 49.691  | 0.251  |
| 38.794  | 0.262  |
| 5.515   | 1.926  |

The mean of  $Q_t$  and  $F_r$  were then calculated to obtain one value which will be plotted in the Normalized SBT Charts. The mean of  $Q_t$  and  $F_r$  were found to be 117.725 and 0.398 respectively. The values for each soil were then plotted in Normalized SBT Charts as shown in Figure 1.2 below:



Figure 1.2: Plotted Points in Normalized SBT Charts

According to Figure 1.2, it can be observed that the soils are found to be in zone 3 and 6, which represents sand and clay, as described in Figure 1.3 below:

| Zone | Soil Behavior Type                        | $I_c$       |
|------|-------------------------------------------|-------------|
| 1    | Sensitive, fine grained                   | N/A         |
| 2    | Organic soils – clay                      | > 3.6       |
| 3    | Clays – silty clay to clay                | 2.95 - 3.6  |
| 4    | Silt mixtures – clayey silt to silty clay | 2.60 - 2.95 |
| 5    | Sand mixtures – silty sand to sandy silt  | 2.05 - 2.6  |
| 6    | Sands – clean sand to silty sand          | 1.31 - 2.05 |
| -/   | Gravelly sand to dense sand               | < 1.31      |
| 8    | Very stiff sand to clayey sand*           | N/A         |
| 9    | Very stiff, fine grained*                 | N/A         |

Figure 1.3: Soil Behaviour Type and Zone

Therefore, a full visualisation of the soil layer can be described in Figure 1.4 as shown below:



As shown in Figure 1.4, the soil has four layers which is mainly formed by clay and sand layers. The sand layer is located near the ground surface down to the depth of 7.5m. Meanwhile, the clay layer extends from depth of 7.5m until 23.5m. The soil behaviour type index ( $I_c$ ) for each layer can also be identified from the chart. For section 1 and 4, the value of  $I_c$  is found to be 1.31. Furthermore, the value of  $I_c$  of section 2 and 3 are 3.5 and 2.9 respectively. This identifies Soils 1 and 4 (top and bottom) as Clean Sand to Silty sand, and Soils 2 and 3 as Silty Clay to Clay.

The shallow foundations will sit within Soil 1, with Z(=B) never reaching the clay layer. This is important for the soil bearing capacity calculations as it dictates which equation is suitable, which is discussed further in Section 2.1.

With the Groundwater Table (GWT) being 10m below the surface, the soil that contains the shallow foundation will be dry. This is important to know for the immediate settlement calculations in Section 4 as this procedure requires the effective stress to be known for the soil zone in question.

## 2. Bearing Capacity Shallow Foundations

## 2.1 Direct Calculation Method Using CPT Results

When calculating the bearing capacity, a few design assumptions must be made before calculations can commence. These are aligned with the client's requirements and the first is to only consider square footings for the design of shallow foundations.

In order to protect the shallow foundations from potential damage caused by frost, erosion, trees, and poor soils, a minimum depth must be selected. In this case, the depth of the foundation footing is D=1.0m below ground level. When conducting the design calculations, a range of footing widths from 1.5m to 3.0m have been considered, in 0.5m increments. It is also assumed that each foundation footing only supports one structural column.

The layout considered for the following calculations is portrayed in Figure 2.1 and accounts for the fact that the shallow foundation will only lie within Soil 1 in Figure 1.4, due to the fact that the investigated depth, Z is equal to the width of the footing, B, which at its maximum is 3.0m, so even at the widest footing only the first Soil type has been included in calculations. The depth Z defines the depth of soil which will contribute to the bearing capacity, which is why the soil below need not be considered for these calculations.



Figure 2.1: Layout of Shallow Foundation Conditions

Due to Soil 1 being Sand, equation (1) is suitable for determining its ultimate bearing capacity.

$$q_u = k_{\emptyset} q_{c(av)} \tag{1}$$

In order to reach this stage, parameters including  $k_\emptyset$  and  $q_{c(av)}$  must first be determined.  $k_\emptyset$  is found using the graph in Figure 2.2 and in this case  $k_\emptyset$  has been identified as 0.23. Next,  $q_{c(av)}$  is calculated by finding the value of  $q_c$  for each depth at increments of 0.5m, and finding their mean for the given value of B. This value is the average CPT penetration resistance below the depth of the footing. It is worth noting here that the depth in question is equal to D + Z, with D=1.0m for all cases and Z being equal

to the footing width B. For example, for a footing width of 1.5m, the depth used to calculate  $q_{c(av)}$  would be 2.5m (1m+1.5m=2.5m).



Figure 2.2: Determination of  $k_{\emptyset}$ 

The results from these calculations are summarised in Table 7.

Table 7: Calculation of  $q_{c(av)}$ 

|           |                      |                      |                | B/D                  |                      |                      |                      |
|-----------|----------------------|----------------------|----------------|----------------------|----------------------|----------------------|----------------------|
|           |                      |                      |                | 1.5                  | 2.0                  | 2.5                  | 3.0                  |
| Depth (m) | q <sub>c</sub> (kPa) | f <sub>s</sub> (kPa) | f <sub>r</sub> | q <sub>c</sub> (kPa) | q <sub>c</sub> (kPa) | q <sub>c</sub> (kPa) | q <sub>c</sub> (kPa) |
| 0.5       | 4500                 | 12.2                 | 0.00027        | 4500                 | 4500                 | 4500                 | 4500                 |
| 1.0       | 3800                 | 12.4                 | 0.00033        | 3800                 | 3800                 | 3800                 | 3800                 |
| 1.5       | 3500                 | 12.3                 | 0.00035        | 3500                 | 3500                 | 3500                 | 3500                 |
| 2.0       | 2400                 | 12.1                 | 0.00050        | 2400                 | 2400                 | 2400                 | 2400                 |
| 2.5       | 4800                 | 12.8                 | 0.00027        | 4800                 | 4800                 | 4800                 | 4800                 |
| 3.0       | 5700                 | 13.9                 | 0.00024        | -                    | 5700                 | 5700                 | 5700                 |
| 3.5       | 6300                 | 13.6                 | 0.00022        | -                    | -                    | 6300                 | 6300                 |
| 4.0       | 6100                 | 14.3                 | 0.00023        | -                    | -                    | -                    | 6100                 |
|           |                      |                      |                |                      |                      |                      |                      |

q<sub>c(av)</sub> (kPa) 3800 4117 4429 4638

Having found  $k_{\emptyset}$  and  $q_{c(av)}$ , the ultimate bearing capacity,  $q_u$  can be calculated for each ratio of B/D using equation (1). For bearing capacity calculations,  $q_{all}$  can be calculated using equation (2). This is the allowable bearing capacity which takes into account the chosen Factor of Safety of 3 in this case to provide a value of the allowable stress to which the soil can be subjected to before undergoing failure.

$$q_{all} = \frac{q_u}{FoS} \tag{2}$$

The values of  $q_{all}$  for each B/D ratio are provided in Table 8. In this case, D=1.0m, so B/D is equivalent to the width of the footing.

| B/D | q <sub>c(av)</sub> (kPa) | $k_{\phi}$ | q <sub>u</sub> (kPa) | q <sub>all</sub> (kPa) |
|-----|--------------------------|------------|----------------------|------------------------|
| 1.5 | 3800                     | 0.23       | 874                  | 291                    |
| 2.0 | 4117                     | 0.23       | 947                  | 316                    |
| 2.5 | 4429                     | 0.23       | 1019                 | 340                    |
| 3.0 | 4638                     | 0.23       | 1067                 | 356                    |

Table 8: Calculation of qall

To visualise these results more clearly, Figure 2.3 depicts a graph of Allowable Bearing Capacity against Footing Width to demonstrate that a greater footing width provides a larger resistance to soil failure.



Figure 2.3: Allowable Bearing Capacity versus Footing Width for the Direct Method

This shows that, as expected, the bearing capacity increases with increasing footing width. To determine the required footing width to support the designed structure, settlement calculations are completed in Section 3 and a comparison is made with these Bearing Capacity figures to see which is dominant, and thus which should dominate the design procedure.

## 2.2 Indirect Calculation Methods Using CPT Results

Indirect calculation methods using CPT results are used to calculate the bearing capacities of the shallow foundations. It also provided a base for comparison with the results obtained via the direct method, as a means for verification. In Section 2.2.1, the verification of the results will be discussed.

Similar to the direct calculation methods using CPT results, the indirect calculation methods follow the same design assumptions of using square footings for the design of shallow foundations and the foundation footings are located at a depth D=1m below the ground level. A range of footing widths from 1.5m to 3.0m have been considered with an increment of 0.5m.

Before calculating the bearing capacity of the shallow foundations using equation (3) shown below, some assumptions of the soil type are made. As the foundation footings only sit on Soil 1 which is sand, the soil is in drained condition, the cohesion part in equation (3) is ignored because the cohesion is 0 (sand is considered a cohesionless soil). In addition, the load inclination factors are assumed to be 1 because the load is vertically acting downward. The simplified equation is shown in equation (4).

$$q_u = 0.5\gamma B N_{\gamma} s_{\gamma} i_{\gamma} + c N_c s_c i_c + \gamma D N_q s_q i_q \tag{3}$$

It simplifies as:

$$q_u = 0.5\gamma B N_{\gamma} s_{\gamma} + \gamma D N_q s_q \tag{4}$$

Where:

 $\gamma$ : unit weight of soil

B: footing width

c: cohesion

D: depth of footing

 $N_{\nu}$ ,  $N_{c}$ ,  $N_{a}$ : bearing capacity factors

 $s_{\gamma}, s_{c}, s_{q} : shape factors$ 

 $i_{\gamma}$ ,  $i_{c}$ ,  $i_{q}$ : load inclination factors

The first step is to calculate the soil friction angle using the CPT results. For example, when B = 1.5m, use the CPT results of soil layers from 0m to 2.5m.

$$tan\phi' = \frac{1}{2.68} \left[ log \left( \frac{q_c}{\sigma'} \right) + 0.29 \right]$$

#### Where:

 $q_c: q_{c(av)} from Table 9$ 

 $\sigma'$ : average effective stress

Table 9: Results of Soil Friction Angles from Width 1.5m to 3m

| footing width (m) | q <sub>c (av)</sub> (kPa) | effective stress (kPa) | Soil friction angle (degrees) |
|-------------------|---------------------------|------------------------|-------------------------------|
| 1.5               | 3800                      | 24.65                  | 43                            |
| 2.0               | 4117                      | 29.01                  | 42                            |
| 2.5               | 4429                      | 33.21                  | 42                            |
| 3.0               | 4638                      | 37.47                  | 41                            |

Soil friction angles are rounded up to integers as it is easier to check the bearing capacity factors and use them in equation (4).  $N_{\gamma}$ ,  $N_{q}$  will be found with varying soil friction angles in a table in Appendices.

Next, shape factors  $s_{\gamma}$ ,  $s_q$  for square footings are calculated using the Eurocode 7 approach:

$$s_{\gamma} = 0.7$$

$$s_{q} = 1 + \sin\phi'$$

Finally, the ultimate bearing capacity  $q_u$  of footing width from 1.5m to 3m are calculated by applying the results of different parameters into equation (4). The allowable bearing capacity  $q_{all}$  considers a Factor of Safety of 3 (refer to equation 2) in this case. The results are shown in Table 10 below:

Table 10: Results from Indirect Calculation Methods Using CPT Results

| f | ooting width (m) | $N_{\gamma}$ | $N_q$ | $S_{\gamma}$ | $s_q$ | depth (m) | $\gamma$ (kN/m <sup>3</sup> ) | q <sub>u</sub> (kPa) | q <sub>all</sub> (kPa) |
|---|------------------|--------------|-------|--------------|-------|-----------|-------------------------------|----------------------|------------------------|
|   | 1.5              | 186.54       | 99.02 | 0.7          | 1.68  | 2.5       | 16.72                         | 8590                 | 2860                   |
|   | 2.0              | 155.55       | 85.38 | 0.7          | 1.67  | 3         | 16.77                         | 9010                 | 3000                   |
|   | 2.5              | 155.55       | 85.38 | 0.7          | 1.67  | 3.5       | 16.801                        | 1067                 | 3560                   |
|   | 3.0              | 155.55       | 85.38 | 0.7          | 1.67  | 4         | 16.84                         | 1233                 | 4110                   |

A graph of allowable bearing capacity against footing width is shown in Figure 2.4 to display the results more visually. It demonstrates that a greater footing width provides a greater bearing resistance.



Figure 2.4: Allowable Bearing Capacity versus Footing Width for the Indirect Method

#### 2.2.1 Discussion on Verification with Direct Method Results

From the findings above, it is evident that the ultimate and allowable bearing capacity yielded from Indirect Calculation Methods using CPT results are much greater than those found through Direct Calculation Methods. This is due to the uncertainties within indirect methods, largely present in assumptions. For example, there is a lack of clarity within the indirect method procedure to calculate the soil friction angles. In the equation,  $q_c$  is required, but average CPT penetration resistance below the depth of footing  $q_{c \, (av)}$  and average effective stress  $\sigma'$  are used instead of the series of values at a specific depth. It is important to consider an average value as soil properties vary across different depths. In addition, the values of soil friction angles are rounded up to integers which reduces the accuracy of the result.

The Direct Method utilises a predetermined depth below the foundation equal to the footing width. This is the zone of soil that is considered to contribute to the bearing capacity, for which the CPT data can be directly used in the calculation of said capacity. This depth is an assumption in itself, but the direct use of measured data eliminates further rounding errors or potential errors in theories, whilst a more direct route to the bearing capacity figure is attainable. As with the indirect method, it is important to consider the average  $q_c$  value over this depth due to potential variability in soil properties; it is very unlikely to encounter completely homogeneous soil on site. A potential for the largest error within the direct method is the selection of  $k_{\emptyset}$  due to the lack of precision in the graph. In this case a value of 0.23 was selected as it best represented the data of the soil being investigated, but due to the subjectivity in selection, another person may have selected a slightly different value from the same graph, which introduces human error to the calculations. Despite this being the most prominent error, it is still likely to have a relatively small impact on the results, leading to the direct method for calculating soil bearing capacity to be a robust and relatively easy to implement one which can be used to quickly determine the strength of the soil and the resulting foundations required.

The large discrepancy, in this case a factor of 10, between the results obtained by direct and indirect methods suggests a substantial lack of accuracy in one or both of them. As a result, the only conclusion that can be made from these preliminary calculations is that shallow foundations are unlikely to be suitable for this project, although further confirmation is available in the Settlement calculations of Section 3. To remain on the conservative side of judgement to ensure the safety of this project, it is recommended that the results of the direct method are abided by. Due to the lack of site information available, and the evident uncertainty in calculations, it is with strong recommendation that further site investigations are carried out before any final decisions are made regarding the foundation design. Details of pile foundation calculations can be found later in this report and offer a more effective solution than shallow foundations for this project. However, shallow foundation calculations are completed due to the much lower cost of their use, making them more economical when able to be implemented.

# 3. Settlement Calculations

The immediate settlement of shallow foundations must be estimated to determine whether the project will be safe to complete. Immediate, or elastic, settlement is caused by the elastic deformation of soil, which in this case is dry, directly after the application of load.

For this project, the client has requested that the immediate settlement be limited to 25mm. The magnitude and envelope of immediate settlement depends on the flexibility of the foundation and the type of soil beneath shallow foundation.

## 3.1 Determination of Foundation Flexibility Factor

The flexibility of the foundation dictates how the settlement will take place. In this case, the shallow foundations will only be in the presence of sand. A perfectly rigid foundation will cause relatively uniform settlement, as demonstrated in Figure 3.1 (Sedighi, 2022), whilst a perfectly flexible foundation will cause uneven settlement, as in Figure 3.2 (Sedighi, 2022).



Figure 3.1: Settlement Beneath a Perfectly Rigid Foundation in Sand (Source: Sedighi, 2022)



Figure 3.2: Settlement Beneath a Perfectly Flexible Foundation in Sand (Source: Sedighi, 2022)

The Foundation Flexibility Factor can be calculated using equation (5):

$$K_F = \left(\frac{E_F}{E_{S(av)}}\right) \left(\frac{2t}{B_e}\right)^3 \tag{5}$$

Where:

 $E_F$ : Elastic Modulus of Foundation Slab

 $E_{s(av)}$ : Average Elastic Modulus of the Soil

t: Thickness of Foundation Slab

 $B_e = \sqrt{\frac{4BL}{\pi}}$  (Where B and L are the width and length of the foundation respectively).

Normally,  $E_{s(av)}$  would be estimated through in situ tests or determined in a laboratory using a triaxial test. However, for the purpose of this report an assumption has been made. Based on data provided by StructX, 2022, the average elastic modulus of clean sand is 5-81 MPa and 5-20MPa for silty sand. As a result, with the sand in question being on the border between clean and silty sand, a value of  $E_{s(av)}$  = 20 MPa has been assumed.

The concrete grade most typically used for footings and foundations is C25 (EasyMix, 2022). Taking this information and applying it to data to be used in accordance with Eurocode 2, provided by Eurocode applied, 2022, the elastic modulus of C20/25 concrete is 29962 MPa and for C25/30 concrete it is 31475 MPa. Taking an average of these values for use with C25 concrete, we have assumed that the Foundation Slab has an elastic modulus of 30719 MPa.

These assumptions have been combined with an assumed slab thickness of 100mm within Table 11 for use in the calculation of the Foundation Flexibility Factor completed in Table 12.

Table 11: Shallow Foundation Slab Properties

| t (m):                    | 0.1   |
|---------------------------|-------|
| E <sub>f</sub> (MPa):     | 30719 |
| E <sub>s(av)</sub> (MPa): | 20    |

Table 12: Shallow Foundation Flexibility Factors

| B (m) | L (m) | B <sub>e</sub> (m <sup>1/2</sup> ) | K <sub>F</sub> |
|-------|-------|------------------------------------|----------------|
| 1.5   | 1.5   | 1.693                              | 2.534          |
| 2.0   | 2.0   | 2.257                              | 1.069          |
| 2.5   | 2.5   | 2.821                              | 0.547          |
| 3.0   | 3.0   | 3.385                              | 0.317          |

 $K_F$  was calculated for a range of footing widths between 1.5m and 3.0m in 0.5m increments. It is evident that in all cases,  $0.01 < K_F < 10$ , so intermediate flexibility is observed. As a result, the settlement behaviour will be in between those seen within Figures 3.1 and 3.2. The foundation with footing width 3.0m is likely to exhibit the most flexible behaviour, resulting in more varied settlement beneath the foundation. In contrast, the settlement seen below a 1.5m footing is likely to be more uniform due to it being more rigid.

## 3.2 Calculation of Settlement using Meyerhof Method

Based on the equation suggested by Meyerhof in 1974, immediate settlement can be calculated using equation (6). By setting s to 25mm (or  $25 \times 10^{-3}$ m) the required footing width can be determined and thus compared with the proposed footing widths to see if they are sufficient.

$$s = \frac{\Delta PB}{2q_{c(av)}} \tag{6}$$

When dealing with settlement, the allowable bearing capacity  $q_{all}$  requires an assumption to be made. It is assumed that  $(W_F + W_s)/A$  is equal to the weight of the soil excavated in order to place the shallow foundation, as indicated in Figure 3.3 and equation (7).  $W_F$  is the weight of the foundation and  $W_s$  is the weight of the soil excavated to lay the foundation.

$$\frac{W_F + W_S}{A} = \gamma_S D \tag{7}$$

Due to the spacing of columns of the proposed structural design, footing widths of 1.5m to 3.0m will be investigated in 0.5m increments.



Figure 3.3: Diagram of Shallow Foundation Loads

Assuming that,

$$q_{all} = \frac{W_{D+L}}{A} + \frac{W_F + W_S}{A} \tag{8}$$

Then,

$$q_{all} = \Delta P + \frac{W_F + W_S}{A} \tag{9}$$

Finally, substituting equation (7) into equation (9), the allowable bearing capacity can be calculated by using equation (10) as below.

$$q_{all} = \Delta P + \gamma_s D \tag{10}$$

ΔP can be calculated by rearranging equation (10) and using s=25mm. These calculations have been completed using excel due to the improved accuracy and reduced chance of human error. The results can be seen below in Tables 13 and 14.

Table 13 shows the estimation of  $\gamma_s$  using data from the CPT results for the site. By multiplying this by the foundation depth of D=1.0m,  $\gamma_s D$ , the load per unit area caused by the weight of the excavated soil and weight of the foundation, is found and can be used in the calculation of  $q_{all}$ .

Table 13: Values of Soil Unit Weight to 4.0m Depth

| D (m) | γ <sub>s</sub> (kPa) |
|-------|----------------------|
| 0.5   | 16.778               |
| 1.0   | 16.734               |
| 1.5   | 16.692               |
| 2.0   | 15.525               |
| 2.5   | 16.861               |
| 3.0   | 17.023               |
| 3.5   | 17.037               |
| 4.0   | 17.085               |

From this data, the average value for  $\gamma_s$  is 16.72 kN/m<sup>3</sup>.

This results in  $\gamma_s D = 16.72 \ kPa$ .

Table 14 shows the calculation of  $q_{all}$  for each footing width B from 1.5m to 3.0m in 0.5m increments. These results are plotted in Figure 3.4.

Table 14: Calculation of qall

| B (m) | q <sub>c(av)</sub> (kPa) | ΔP (kPa) | γ <sub>s</sub> D (kPa) | q <sub>all</sub> (kPa) |
|-------|--------------------------|----------|------------------------|------------------------|
| 1.5   | 3800                     | 127      | 16.72                  | 143                    |
| 2.0   | 4120                     | 103      | 16.72                  | 120                    |
| 2.5   | 4430                     | 89       | 16.72                  | 105                    |
| 3.0   | 4640                     | 77       | 16.72                  | 94                     |



Figure 3.4: Comparison of Calculated Bearing Capacities

From this plot it is clear that the bearing capacity requirement is dominated by the settlement of the footing. Therefore, the results from the soil bearing capacity can be disregarded moving forward and settlement should be focused on as the main controller.

It can be observed from Table 14 that the maximum allowable bearing capacity is 143 kPa which occurs for a footing width of 1.5m, so a base area of  $1.5x1.5 \text{ m}^2$ .

It was concluded from the structural design that the maximum load exerted by a column on a shallow foundation pad would be 4625.98 kN.

$$\frac{4625.98}{1.5^2} = 2055.91 \, kPa \gg 143 \, MPa$$

This shows that the structural load is larger than the load that the 1.5m width footing could withstand whilst limiting immediate settlement to 25mm.

The smallest allowable bearing capacity from Table 14 is 94 MPa which occurs for a footing width of 3.0m and resulting base area of 3.0x3.0 m<sup>2</sup>.

Using the aforementioned maximum load:

$$\frac{4625.98}{3^2} = 514.00 \ kPa \gg 94 \ MPa$$

This shows that even with a footing width of 3.0m, the shallow foundation would not be able to limit immediate settlement to 25mm whilst subjected to the maximum structural load exerted by the column.

To find the required footing width:

$$\frac{4625.98}{0.143} < B^2 => B > 5.59m$$

Based on the maximum allowable bearing capacity, a footing width of at least 5.59m would be required to limit the settlement to 25mm as required, which would not be possible due to the spacing of columns within the proposed structural design.

As a result, it can be concluded that shallow foundations are not a suitable design scheme for this project based on the provided requirements and subsequent assumptions as stated.

## 3.3 Calculation of Settlement using Schmertmann Method

Based on the method developed by Schmertmann in 1970, the immediate settlement beneath a shallow foundation can be calculated using equation (11). A slightly different approach is taken here than with the Meyerhof method. Instead of setting the settlement to 25mm and calculating  $\Delta P$ , and then the resulting  $q_{all}$  to find the required footing width, the equation will be used as it is, and the settlement will be calculated for each footing width and compared to the requirement of 25mm to see whether shallow foundations are suitable for this project.

This approach is more complex than the Meyerhof method due to the inclusion of more variables, but provides a figure for comparison and source for verification of both methods, provided they yield similar results.

$$s = C_1 C_2 \Delta P \sum \frac{I_z}{C_3 E'} \Delta z \tag{11}$$

Where:

$$C_1 = 1 - 0.5 \left( \frac{\sigma_1'}{\Delta P} \right) = 1 - 0.5 \left( \frac{\gamma D}{\Delta P} \right)$$

$$C_2 = 1 + 0.2 \log(10t_{vr})$$

 $C_3 = 1.2$  for square footings

$$E' = \alpha_E q_C$$

In this case, where the shallow foundation comprises a square footing, the depth investigated is z=2B, with B=footing width.  $\Delta z$  is the thickness of the n increments which depth z is divided into. The settlement will be evaluated for a range of footing widths from 1.5m to 3.0m in 0.5m increments due to the spacing of columns proposed in the structural design of the building.

 $\alpha_E$  is a function of the degree of loading, soil density, stress history, cementation, age, grain shape and mineralogy of the soil (Sedighi, 2022), and ranges from 2 to 20 depending on the degree of consolidation of the soil. In this case, a value of  $\alpha_E$ =10 has been used which assumed the soil is a normally consolidated sand. This value has been chosen because the soil classification revealed that the soil is Clean Sand to Silty Sand, so the clay content will be low.

 $C_2$  is reliant on cyclic loading, which will not occur in this case. Therefore, a value of  $C_2$ =1.0 has been selected for these calculations.  $I_Z$  is the rigid footing strain influence factor and can be determined using Figure 3.5. The shallow foundations in this case are square footings.

A safety factor of 3 was applied to produce conservative results given the limited available information. Further site investigation could lead to a lower safety factor being used due to increased certainty, leading to more precise results.

Having split the soil into 0.5m layers,  $\Delta q$ ,  $q_{c(av)}$ , E',  $I_z$  and  $\Delta s$  can be found for each increment, and then the  $\Delta s$  can be summed to find the total settlement of the soil to a depth of twice the footing width. These calculations were completed in Excel. The results are summarised in Table 15 for footing widths 1.5 to 3.0m but the more in-depth calculation tables can be found in the Appendix. A visual representation of these results is provided by Figure 3.6.



Figure 3.5: Determination of  $I_z$ 

Table 15: Immediate Settlement for Footing Widths 1.5m to 3m

| B (m) | s (mm) |
|-------|--------|
| 1.5   | 110.9  |
| 2.0   | 80.7   |
| 2.5   | 59.9   |
| 3.0   | 47.9   |



Figure 3.6: Plot of Immediate Settlement versus Footing Width for Schertmann Method

From the immediate settlements in Table 15 it is evident that even a footing width of 3.0m is insufficient to support the structure whilst limiting settlement to 25mm. It is clear that as the footing width increases, the settlement substantially decreases, reinforced by the negative gradient of the curve in Figure 3.6. However, given the constraints of the structural design, the footing width required to limit settlement to 25mm would be too large to be feasible, as even at 3.0m the settlement is nearly twice that allowed, and the reducing gradient implies that each increase in width has a smaller effect on settlement. Calculations have not been completed into the exact required footing width due to the conclusion already being reached and such data would provide little added value, but it can be estimated that based on the Schertmann method, the footing would need to be at least 8 to 9m, exceeding the constraints of the structural column design.

Having evaluated the immediate settlement for the proposed structural design using both the Meyerhof and Schmertmann methods, and reaching the same conclusion, it can be said with some certainty that shallow foundations are not suitable for this application due to the excessive settlement that would ensue. As a result, it is recommended that investment is made into further site investigations to build a comprehensive data set tailored to calculations for pile design, as this is the most suitable foundation scheme. Preliminary design calculations are provided in the following sections of this report.

## 4. Bearing Capacity and Length of a Single Pile Foundation

## 4.1 Alpha LCPC Method

The alpha method is used to calculate the bearing capacity of piles, this method is often used in cohesive soils. In addition, this method is orientated around undrained shear strength. The undrained ideology is a conservative approach, as when the soil is loaded, the water does not dissipate instantly, resulting in an increase of pore water pressure, reducing the effective stresses. This scenario increases the chances of failure and considers the worst-case scenario. Designing for the worst-case scenarios is a safe approach. Furthermore, this method is applied to cohesive soils (soils that don't dissipate water instantly), the soil profile in this project is a mix of clay (cohesive) and sand (cohesionless), so applying the alpha method to this soil profile is a conservative approach.

The load which the single pile must withstand is found in the Structures report. The greatest structural load was found to be 4.63MN (viewed in the Figure 4.1 below).

| Floor                                 | Slab Area (m^2) | Force per area ULS (kN/m^2)        | Slab and applied loads (kN) | Sec beam self weights (kN) | Primary beam self weight (kN) | Total ULS Load (kN) |
|---------------------------------------|-----------------|------------------------------------|-----------------------------|----------------------------|-------------------------------|---------------------|
| Roof                                  | 87.5            | 15.2325                            | 1332.84375                  | 39.20076                   | 17.56971                      | 1389.61422          |
| Floor 3                               | 87.5            | 11.82                              | 1034.25                     | 31.916835                  | 12.62179125                   | 1078.788626         |
| Floor 2                               | 87.5            | 11.82                              | 1034.25                     | 31.916835                  | 12.62179125                   | 1078.788626         |
| Floor 1                               | 87.5            | 11.82                              | 1034.25                     | 31.916835                  | 12.62179125                   | 1078.788626         |
| SUM                                   |                 |                                    |                             |                            |                               | 4625.980099         |
|                                       | Column required | d to withstand (kN):               | 4625.980099                 |                            |                               |                     |
| Column Section (Buckling length 4.6m) |                 | Buckling resistance capactiy (kNm) | Quantity                    | 72                         |                               |                     |
| 356x406x634 UC                        |                 | 4630                               |                             |                            |                               |                     |
|                                       |                 |                                    |                             |                            |                               |                     |

Figure 4.1: Maximum Structural Load of our column - From the Structures Report

Our methodology for calculating the length of a single pile involves using MATLAB programming to perform a data analysis of the soils present. To calculate the depth of a pile by hand, a trial and error is a possible method but it is time-consuming, excel is a method but this will struggle to identify the appropriate  $k_c$ ,  $a_{LCPC}$ ,  $f_{p,max}$  values (from their tables) for the various depths. 'if' loops are primarily important for condition checking the factors (soil type and  $q_c$  value) which determine these parameters ( $k_c$ ,  $a_{LCPC}$ ,  $f_{p,max}$ ). The program used computes the allowable bearing capacity for every depth (0-30m in increments of 0.5m). Then the data of the allowable bearing capacity can be checked to find the depth which is suitable to support the load in question: '4.63MN'. A full explanation of the code is discussed in the appendices (section 9). However, the results of the code and identified length is discussed here (section 4).

A verification check of the MATLAB code is produced in section 4.1.1.

The soil data provided only reaches a depth of 30m. No single pile length (from 0.5m-30m) of (diameter 0.4m) was suitable to resist the load acting on the foundation (4.63MN). A copy of the total allowable bearing capacity (factor of safety: 2 was used) results at each 0.5m depth increment are provided below (table 16). From table 16, it is evident that at no depth between 0-30m is a single pile suitable. Therefore, a pile group is now suggested and considered (this is discussed in sections 5 and 6), and the client should not use a single pile foundation, it will result in failure.

Section 4.1.1 checks the MATLAB code at depth 20m depth (random depth chosen to prove verification) to find the allowable bearing capacity ( $Q_{all}$ ). If the code is correct, the hand calculations (in section 4.1.1) should result in  $Q_{all}=0.5397MN=539.7kN\cong540kN$ 

Table 16: Allowable Bearing Capacity of a Single Pile

| Depth (m) | Q allowable (SINGLE PILE) (kN) |
|-----------|--------------------------------|
| 0         | 000.0                          |
| 0.5       | 115.3                          |
| 1         | 120.8                          |
| 1.5       | 114.2                          |
| 2         | 131.9                          |
| 2.5       | 175.6                          |
| 3         | 213.6                          |
| 3.5       | 244.3                          |
| 4         | 272.7                          |
| 4.5       | 276.5                          |
| 5         | 280.8                          |
| 5.5       | 267.2                          |
| 6         | 308.8                          |
| 6.5       | 300.9                          |
| 7         | 313.5                          |
| 7.5       | 205.1                          |
| 8         | 228.3                          |
| 8.5       | 233.3                          |
| 9         | 238.3                          |
| 9.5       | 243.4                          |
| 10        | 247.5                          |
| 10.5      | 252.3                          |
| 11        | 257.7                          |
| 11.5      | 261.5                          |
| 12        | 266.8                          |
| 12.5      | 272.0                          |
| 13        | 279.3                          |
| 13.5      | 284.6                          |
| 14        | 266.4                          |
| 14.5      | 277.4                          |
| 15        | 386.6                          |
| 15.5      | 405.7                          |
| 16        | 446.1                          |
| 16.5      | 437.9                          |
| 17        | 463.4                          |
| 17.5      | 447.5                          |
| 18        | 459.9                          |
| 18.5      | 506.7                          |
| 19        | 492.2                          |

| 19.5 | 532.5   |
|------|---------|
| 20   | 539.7   |
| 20.5 | 520.0   |
| 21   | 560.8   |
| 21.5 | 585.9   |
| 22   | 594.1   |
| 22.5 | 607.0   |
| 23   | 622.7   |
| 23.5 | 483.2   |
| 24   | 520.9   |
| 24.5 | 1,484.3 |
| 25   | 1,536.0 |
| 25.5 | 1,563.9 |
| 26   | 1,593.2 |
| 26.5 | 1,629.5 |
| 27   | 1,674.2 |
| 27.5 | 1,702.1 |
| 28   | 1,787.3 |
| 28.5 | 1,844.5 |
| 29   | 1,896.2 |
| 29.5 | 1,922.7 |
| 30   | 1,940.9 |

### 4.1.1 Verification of MATLAB result (Alpha LCPC Method)

The use of a MATLAB programme to calculate the necessary pile length vastly improves the efficiency of the procedure and can improve accuracy through reducing the risk of human errors (by making a rounding mistake) throughout. However, the results must be verified through the hand calculation of a given pile length to ensure the results are in line with those expected from the theory. This method is susceptible to mistakes based on what the engineer has determined for the  $k_c$ ,  $a_{LCPC}$ ,  $f_{p,max}$  values from the tables, this comes from lack of experiences using the tables and this must be considered, that is why the beta method is also completed as a cross check for the Q allowable (beta method is completed and discussed in section 4.2)

In this case, a single pile of length 20m (chosen at random) is investigated to calculate the allowable bearing capacity, for comparison with the results obtained from MATLAB.

At depth 20m, the soil is classified as clay and  $q_c$ =5.5 MPa. Using the  $K_c$  table, this pile is classed as Group 1. Therefore,  $K_c$  = 0.45.

The diameter of the pile is D=0.4m.

$$a = \frac{3}{2} \times 4 = 0.6m$$

Our data is accurate to 0.5m, but 0.6m would require the data to be accurate to 0.1m depth increments. Therefore, 'a' can be rounded down from  $\pm 0.6$ m to  $\pm 0.5$ m for accuracy and to remove the assumptions about what the  $q_c$  values are at the 0.1m increments. Assuming  $q_c$  values at 0.1m increments would result in assumptions, and if assumptions were made at every 0.1m increments, the final bearing capacity results would be highly inaccurate, therefore only  $q_c$  values which are known, are used.

q<sub>ca</sub> is the equivalent average cone resistance at the base of the pile (Sedighi, 2022).

$$q_{c1} = 5.5 \text{ MPa } @ 20m - 0.5m = 19.5m$$
 
$$q_{c2} = 5.5 \text{ MPa } @ 20m$$
 
$$q_{c3} = 4 \text{ MPa } @ 20m + 0.5m = 20.5m$$
 
$$q_{ca} = \frac{5.5 + 5.5 + 4}{3} = 5 \text{ Mpa}$$

Next it must be checked whether the q<sub>c</sub> values used to find q<sub>ca</sub> lie within this range:

$$0.7q_{ca} \text{ to } 1.3q_{ca}$$
  
 $0.7 \times 5 \text{ to } 1.3 \times 5$   
 $3.5 \text{ to } 6.5$ 

 $q_{c1}$ ,  $q_{c2}$ , and  $q_{c3}$  are all values within this range, therefore  $q_{ca}$  remains at 5 MPa and does not need to be adjusted.

The unit base resistance is calculated using equation (12).

$$q_b = K_c q_{ca}$$

$$q_b = 0.45 \times 5 = 2.25 MPa$$
(12)

Then, the total base resistance can be calculated using equation (13).

$$Q_b = A_b q_b \tag{13}$$

$$Q_b = (\pi \times 0.2^2) \times 2.25 = 0.2827 MN$$

The unit shaft resistance can be calculated using the  $\alpha$  method which involves the friction coefficient. The necessary equation is (14).

$$f_p = \frac{q_c}{\alpha_{LCPC}} \tag{14}$$

The soil is a clay with  $q_c$ =5.5 MPa at depth 20m, so  $\alpha_{LCPC}$ =60.

$$f_p = \frac{5.5}{60} = 0.092 \, MPa$$

$$f_{p(\text{max})} = 0.035 < 0.092$$

Therefore,

$$f_p = 0.035 \, MPa$$

The average  $\bar{f}_p$  for the 20m length becomes 0.0317 MPa.

The next step is to calculate the shaft resistance, Q<sub>s</sub>, using equation (15).

$$Q_{s} = A_{s} f_{p}$$
 (15) 
$$Q_{s} = (\pi \times 0.4 \times 20) \times 0.0317 = 0.797 \, MN$$

Therefore, a single pile at a depth of 20m has an ultimate bearing capacity of:

$$Q_{ult} = Q_b + Q_s = 0.2827 + 0.797 = 1.0798 MN$$

The allowable bearing capacity is yielded by applying a Safety Factor of 2, as below:

$$Q_{all} = \frac{1.0798}{2} = 540 \ kN$$

This matches the output of 539.7 kN (0.5397 MN) from the MATLAB code, thus the program results are verified. (View figure 4.2 below for the MATLAB output at depth=20m).

| 1              | Variables - Q | allSingle |
|----------------|---------------|-----------|
|                | QallSingle    | ×         |
|                | 61x1 double   |           |
|                | 1             | 2         |
| 16             | 0.2051        |           |
| 17             | 0.2283        |           |
| 18             | 0.2333        |           |
| 19             | 0.2383        |           |
| 20             | 0.2434        |           |
| 21             | 0.2475        |           |
| 22             | 0.2523        |           |
| 23             | 0.2577        |           |
| 24             | 0.2615        |           |
| 25             | 0.2668        |           |
| 26             | 0.2720        |           |
| 27             | 0.2793        |           |
| 28             | 0.2846        |           |
| 29             | 0.2664        |           |
| 30             | 0.2774        |           |
| 31             | 0.3866        |           |
| 32             | 0.4057        |           |
| 33             | 0.4461        |           |
| 34             | 0.4379        |           |
| 35             | 0.4634        |           |
| 36             | 0.4475        |           |
| 37             | 0.4599        |           |
| 38             | 0.5067        |           |
| 39             | 0.4922        |           |
| 40             | 0.5325        |           |
| <del>4</del> 1 | 0.5397        |           |
| 42             | 0.5200        |           |
| 43             | 0.5608        |           |
| 44             | 0.5859        |           |
|                | 0.5044        |           |

Figure 4.2: Cross check snip of MATLAB Q allowable values for a single pile, highlighting Qall at 20m depth. Units: MN

## 4.2 Beta Method (to check Alpha LCPC results)

The Beta method is done for comparison reason to ensure the alpha method was not preformed incorrectly, and to examine which method provides more conservative results. The equation used for the beta method is as follows:

$$Q_{ult} = f_p A_s + q_b A_b$$

While  $A_s$  is the total periphery area and  $A_b$  is the base area of the pile.  $f_p$  and  $q_b$  is given as follows:

$$f_p = \beta \sigma'_v$$

$$q_b = N_t \sigma'_b$$

And  $\beta$  and  $N_t$  can be found from the figure below (figure 4.3):

β

| Soil Type   | Cast-in-place<br>Piles | Driven<br>Piles |
|-------------|------------------------|-----------------|
| Silt        | 0.2 - 0.3              | 0.3 - 0.5       |
| Loose sand  | 0.2 - 0.4              | 0.3 - 0.8       |
| Medium sand | 0.3 - 0.5              | 0.6 - 1.0       |
| Dense sand  | 0.4 - 0.6              | 0.8 - 1.2       |
| Gravel      | 0.4 - 0.7              | 0.8 - 1.5       |

 $N_t$ 

| Soil Type   | Cast-in-place | Driven    |
|-------------|---------------|-----------|
|             | Piles         | Piles     |
| Silt        | 10 - 30       | 20 - 40   |
| Loose sand  | 20 - 30       | 30 - 80   |
| Medium sand | 30 - 60       | 50 - 120  |
| Dense sand  | 50 - 100      | 100 - 120 |
| Gravel      | 80 - 150      | 150 - 300 |

Figure 4.3: Figure Containing the Beta Values and Nt Values

Since a cast-in-place concrete pile is used and the soil profile form CPT data is as follows:



Figure 4.4: Soil profile

According to the soil profile (figure 4.4) the sand and clay has been identified. For the sand to silty sand sections,  $\beta$  and  $N_t$  are taken as 0.5 and 40 respectively (subject to human error from lack of experiences with the tables), and for the clay sections,  $\beta$  and  $N_t$  are 0.8 and 50 respectively take the number as 0.5 and 30.

Since the unit weight varies vertically, MATLAB code has been used to add up section by section (each section is cylinder with 0.5m height) vertically. The key algorithm is discussed in the appendices section 'Code Methodology' however the results are discussed here.

The results for the lower depth are as follows (FoS 2 has been applied):

Table 17: Comparison of Alpha and Beta method results

| Depth (m) | Allowable Bearing Capacity BETA | Allowable Bearing Capacity |
|-----------|---------------------------------|----------------------------|
|           | METHOD (kN)                     | ALPHA METHOD (kN)          |
| 25.5      | 1,379.2                         | 1,484.3                    |
| 26        | 1,296.6                         | 1,536.0                    |
| 26.5      | 1,334.1                         | 1,563.9                    |
| 27        | 1,345.6                         | 1,593.2                    |
| 27.5      | 1,433.9                         | 1,629.5                    |
| 28        | 1,483.7                         | 1,674.2                    |
| 28.5      | 1,569.4                         | 1,702.1                    |
| 29        | 1,547.6                         | 1,787.3                    |
| 29.5      | 1,589.9                         | 1,844.5                    |
| 30        | 1,605.0                         | 1,896.2                    |

The result is compared with alpha LCPC method for a cross check and to note which method is more conservative. The beta method is more conservative. It is noted that the accuracy of the beta method is highly dependent on the accurate estimation of the  $\beta$  and  $N_t$ , this could be incorrect due to human error and lack of experience with using the β and Nt tables. However, the result is within tolerance which verifies both the methods (alpha and beta). The alpha/alpha -LCPC method is using the calculated undrained shear stress and strength to find out the total bearing capacity. The beta method results were similar and slightly less than the alpha method results. The beta method calculates the bearing capacity directly from the effective stress calculated from the unit weight profile of the soil investigated. As the beta method uses effective stresses (when pore water pressure has been subtracted) the effective stress is lower than the total stress (undrained, which the alpha method uses), this will result in a lower value as the effective stress is usually less than the total effective stress. Beta is more empirical (although both methods are empirical), which means less accurate and, in this case, underestimate the true bearing capacity (which is safe and conservative, but this could result in overengineered piles which can lead to high costs for the client). In addition, the beta method can be computed faster when compared with alpha/alpha-LCPC method. Overall, alpha method will be processed in the field when the soil profile is new (without existing building) and beta method may be used in circumstances like adding auxiliary or temporary structure near existing building, under supervision of experienced senior engineer. The safest way, of course, is preform both methods to verify each other. Finally, the client requested an alpha method approach to the bearing capacity, in this document a beta method approach has also been provided just to show the client that the beta method values are more conservative than the alpha method values (as expected) and that the alpha method values are similar to the beta method, hence the calculations were preformed correctly.

# Suitable Foundation Recommendation for the Maximum Structural Load

Analysis has been carried out in this report to find the bearing capacities of different foundation designs (shallow foundations, single piles and group piles which is upcoming) to find the most effective and efficient design for the maximum structural load exerted by a column. The maximum structural load was calculated in the structures part of the project (this value is highlighted in figure 4.1). According to the results in Section 2 and 3, it can be concluded that it is not advised to use shallow foundations as they would not be able to withstand the maximum load of 4,626 kN from the column of Building A whilst limiting settlement to 25mm, which was taken into consideration in this project to consider the worst-case scenario. Four different widths of shallow foundations were considered with a maximum of 3m as per the client's request; however, these options should not be taken further due to its lack of strength to support the column. A width of 5.6m for the square foundation footing would be needed based on the maximum allowable bearing capacity which would exceed the width requirements enforced by the column spacing, using a width of 5.6m between shallow foundations would severely effect bearing capacity and settlement results, as the square shallow foundations global shear failure path will interact with neighboring shallow foundations. In addition, as the site is located near a lake and river (which is prone to flooding as found in the Hydraulics report), there is a possibility of the water table fluctuating at certain times. The increase in water table could impose negative effect to the stability of the structure due to the presence of uplift force. Hence, pile foundation is preferred and highly recommended to the client to be used for this site.

Hand calculation for single pile foundation was previously performed in section 4 by designing for a circular single pile with length of 20m and factor of safety of 2. However, it was found that the maximum resistance of a 20m pile length is only 539.7kN, which is significantly lower than the actual load that the pile needs to resist. Therefore, further calculations regarding suitable length of the single pile were executed using MATLAB to increase efficiency of the calculation process. After executing the program at every depth in increments 0.5m from the surface (0m) to the maximum depth which data was available (30m), it was found that a single pile is not suitable to support the maximum structural load, even at depth of 30m where the allowable bearing capacity is 1,844kN. This result displays that a single pile foundation design is not suitable for the client. Furthermore, it is recommended a group pile design is used, this check was completed in the upcoming section (section 6). (View the final table in the appendices for the results at all depths, table 19).

When calculating the group pile failure, two methods are considered: Block and Individual failure of piles. Both methods can support the maximum structural load from the column of Building A at various depths. However, the efficiency ratio of a pile group was calculated to be greater than 1 (view table 19 at the end of the appendices for the values of eta at all depths, eta represents the efficiency ratio of a pile group), which stated that the bearing capacity of Block Failure is greater than in Individual Failure due to the zone of influence, however the zone of influence topic is discussed further is section 6. In this case, the Individual failure result is chosen as it gives a lower bearing capacity value (more conservative) and thus is the worst-case scenario for safety. Thus, a length of 24m for the group pile is recommended to resist the maximum load (this can be viewed in the final table of the appendices). In general, large-displacement piles are used when the efficiency ratio is greater than one. However, in this project, a bored cast-in-situ pile is recommended to meet the client's request and to provide minimal vibration, options to use a variety of lengths where necessary, and it is the most commonly used in urban areas.

Due to the substantial expenditure (high cost) of a pile group foundation solution, along with a combination of limited data and uncertainties in calculations at this stage, it is suggested that further actions should be considered prior to the detailed design phase. This should include investment into further site investigations to check whether the soil properties vary from one location to another in the construction area or not through in-situ tests. This is vital to ensure all the foundations for each column are strong enough to support that load while also ensuring that it is not overdesigned, as that is uneconomical and unsustainable. As this building will be located in a city centre area, services and underground works must also be considered. Moreover, considering that the area of the project is a brownfield site, there is a potential that the soil might be contaminated; thus, as stated by Design Buildings (2022), a combined geotechnical and geo-environmental investigation should be considered. Where necessary, remediation of the design should be done, as piling through contaminated ground could create a path for pollutants to enter groundwater (NetRegs, n.d.).

# 6. Further Recommendations and Analysis of Group Pile Foundations if Single Pile Is Not Sufficient

The single-pile foundation is not suitable to support the loading imposed by the column. As a result, a pile group foundation has been proposed along with the results of its bearing capacity. Further recommendations and analysis of group pile are discussed in the upcoming sections.

Based on the client's request, the group pile set up is chosen as a square footing, the piles used in this group have a diameter of 400mm (shown in figure 6.1), with concrete as their construction material. Moreover, the construction methodology is cast-in-place (bored) concrete to be specific.

The number of piles in a pile group is 4. This is due to one pile almost being suitable to withstand the maximum structural load from the column, therefore, there is no need for a pile group with 9 piles or 16 piles, the design would be over-engineered and result in a high cost. As a result, the pile group has been designed for 4 piles.

For the pile's layout within the pile group, the layout pattern is symmetrical, this encourages an even load distribution between the piles. (Layout is provided in figure 6.1).

When calculating the pile group bearing capacity it is important to consider the centre-to-centre (c/c) spacing for the piles within the same group and the c/c spacing between piles in neighbouring pile groups (shown in figures 6.2 and 6.3). This is because the zone of influence of one pile may interact with the zone of influence of another pile (if the c/c spacings is not efficient) within the same group or with a neighbouring group, this will affect the true bearing capacity (reducing it). Ideally, the zone of influence for each pile in the group should not interfere with the other piles in the same group. In this case, the corner column is chosen to consider the spacing because this corner has the shortest distance of 7.5m to the next column (pile group) which is the strictest condition where a zone of influence overlap is likely. As a result, the c/c spacing of piles within the same group is calculated as 3.55m and 3.95m for piles in a different group. The calculations of the c/c spacings are shown below (where c is the c/c spacing of piles within the same group, and s is the distance between the square edge of the pile groups) (highlighted in figures 6.1, 6.2, 6.3):

$$7.5 = s + ((0.5 + 0.4) \times 2) + (c - 0.4)$$

Where,

$$c = s + 1$$

$$7.5 = s + 1.8 + c - 0.4$$

$$7.5 - 1.8 + 0.4 = 6.1 = s + c$$

$$6.1 = c - 1 + c$$

$$7.1 = 2c$$

Therefore,

$$c = 3.55m$$

$$s = 2.55m$$



Figure 6.1: Spacing of piles and their diameters.



Figure 6.2: Spacing of piles in the same group, and the spacing between neighbouring groups



Figure 6.3: Figure highlighting what 's' and 'c' represent

After calculating the pile groups bearing capacity resistance through two methods (completed on MATLAB, verification of both methods is complete in section 6.1 and 6.2). The individual pile group calculation returned lower bearing capacity values than the block bearing capacity calculations. As a result, the individual pile group calculation is used as this method's values are lower, so they provide a more conservative answer. It is better to underestimate the bearing capacity of the soil as opposed to overestimating it and resulting in building failure. It was found that for the pile group layout above, a depth of 24m is suitable to withstand the maximum structural load from the column. The allowable bearing capacity resistance (FoS: 2) at depth 20m is: 4,909.5kN (viewed in table 18 at the end of the appendices) which is greater than the maximum structural load of: 4,630kN. Furthermore, this pile group is utilising 94% of its capability (after FoS has been applied). This number demonstrates efficient material use whilst still having a slight remainder of utilisation for increased safety.

*Utilisation* = 
$$\frac{4,630.0}{4,909.5} \times 100 = 94\%$$

These results have been designed assuming that the zone of influence of the neighbouring piles do not interfere with the nearby piles (of the same group or neighbouring groups), further tests should be completed to find the optimal spacing value. This can be completed using the value eta which helps gauge the efficiency of the pile spacing, however using geotechnical software can help when testing the zones of influence of nearby piles.

Further investigations for the client include a settlement test of the pile group, this is important to consider as the bearing capacity of the pile group may be okay, however the settlement may not be allowable due to standard design codes.

In addition, further investigation is required to ensure that positive skin friction is applied along the pile length. The regions in particular which could result in negative skin friction is the clay sections (ranging from depths 8m-23.5m). Negative skin friction is the result of the soil surrounding the periphery of the pile, settling more than the pile itself. This situation is found in clay soils, as clays experience consolidation settlement (sands only experience instant/elastic settlement). Over a period of time, they have a tendency to drag downwards on the pile periphery. Consolidation of clays is caused by the dissipation of water. This can reduce the pile's bearing capacity as the negative skin friction drags the pile downwards. If, from further tests, it is found that the clay will impose negative skin friction on the periphery of the pile, then mitigation methods are highly recommended. The first mitigation method is to use a sleeve around the pile to stop negative skin friction from occurring, or use a small layer of bitumen on the shaft surface (only apply to regions which are susceptible to negative skin friction) (Szypcio Z, et al. 2006). In addition to clays, negative skin friction could be experienced due to newly back-filled soils.

In addition, the client must be prepared to incur increased costs with this project, as further tests will come at a cost, and that using pile groups can be an expensive method, however the pile group discussed in this section is recommended, provided the settlement tests are acceptable.

## 6.1 Verification of MATLAB Results – Block Failure Method

This method is a relatively fast way of determining the capacity of a pile group, although it is known to significantly overestimate the true bearing capacity. In this case, we will check for a depth of 24.5m.

As in Section 4.2, the unit base resistance is calculated using equation (3). At 24.5m (chosen at random to check), the soil type is sand with a value of  $q_c$ =51.8 MPa. Therefore,  $K_c$ =0.3. For this case, due to the accuracy of the provided data being to ±0.5m, a=±0.50m, rather than the 1.5x0.4=0.6m calculation.

$$q_{c1} = 44.4 \ MPa @ 24.5m - 0.5m = 24m$$
 
$$q_{c2} = 51.8 \ MPa @ 24.5m$$
 
$$q_{c3} = 51.1 \ MPa @ 24.5m + 0.5m = 25.0m$$
 
$$q_{ca} = \frac{44.4 + 51.8 + 51.1}{3} = 49.1 \ MPa$$

Now, check if the  $q_{\text{c}}$  values to calculate  $q_{\text{ca}}$  are in the required range:

$$0.7q_{ca}$$
 to  $1.3q_{ca}$   
 $0.7 \times 49.1$  to  $1.3 \times 49.1$   
 $34.37$  to  $63.83$  (MPa)

Therefore, all of the  $q_c$  values are within this range, so  $q_{ca}$  retains its value of 49.1 MPa. The unit base resistance is calculated as follows:

$$q_b = K_c q_{ca} = 0.3 \times 49.1 = 14.733 MPa$$
 
$$Q_b = A_{bg} q_b = B_g L_g q_b = 3.55 \times 3.55 \times 14.733 = 185.673 MN$$

Using the alpha method, the unit shaft resistance is calculated as follows:

The soil is a sand with  $q_c$ =51.8 MPa, so  $\alpha_{LCPC}$ =150.

$$f_p = \frac{q_c}{\alpha_{LCPC}} = \frac{51.8}{150} = 0.345$$

$$f_{p(\text{max})} = 0.12 < 0.345$$

So fp now becomes 0.12.

The average  $f_p$  value along the length of this 24.5m pile is  $f_p$ =0.0363 MPa.

$$Q_s = A_s f_p = 0.0363 \times 3.55 \times 4 \times 24.5 = 12.629 MN$$

$$Q_{ult} = Q_s + Q_b = 12.629 + 185.673 = 198.302MN$$

Applying a safety factor of 2,

$$Q_{all} = \frac{198.302}{2} = 99.150 \, MN$$

This is very close to the 99.1501 MN value provided by MATLAB; thus, the program results are verified by this hand calculation. (View figure 6.4 for the MATLAB output).



Figure 6.4: MATLAB result (MN) at depth 24.5m

#### **Units MN**

## 6.2 Verification of MATLAB Results – Individual Method

To verify the results produced by the MATLAB program for the pile group, a hand calculation is carried out within this section using the individual method, a more accurate approach than the Block Failure method in Section 6.1.

Firstly, the unit base resistance is calculated at a depth of 15.5m (chosen at random for cross check) using equation (12) as with a single pile in Section 4.1.1. At depth 15.5m, the soil type if clay with  $q_c$ =4.2 MPa, therefore  $K_c$ =0.35.

$$q_b = K_c q_{ca} \tag{12}$$

q<sub>ca</sub> is the average unit base resistance. As with a single pile;

$$\alpha = \frac{3}{2} \times 0.64 = 0.6m$$

The provided data isn't accurate to 0.1m increments, so for these calculations,  $\alpha = \pm 0.5$ m.

$$q_{c1} = 4.5 \text{ MPa } @ 15.5m - 0.5m = 15.0m$$

$$q_{c2} = 4.2 \text{ MPa } @ 15.5m$$

$$q_{c3} = 5.8 \text{ MPa } @ 15.5m + 0.5m = 16.0m$$

$$q_{ca} = \frac{4.5 + 4.2 + 5.8}{3} = 4.833 \text{ MPa}$$

Now, check the q<sub>c</sub> values are in the required range:

$$0.7q_{ca}$$
 to  $1.3q_{ca}$ 

All  $q_c$  values used to calculate  $q_{ca}$  are in this range, so  $q_{ca}$  retains its value of 4.833 MPa.

Therefore, using equation (3):

$$q_h = 0.35 \times 4.833 = 1.692 MPa$$

Thus,

$$Q_h = (\pi \times 0.2^2) \times 1.692 = 0.2126 MN$$

As in section 3.2, the unit shaft resistance is calculated using equation (14):

$$f_p = \frac{q_c}{\alpha_{LCPC}} \tag{14}$$

At depth 15.5m, the soil is classified as clay with  $q_c$ =4.2 MPa, so  $\alpha_{LCPC}$ =40. Using equation (14);

$$f_p = \frac{4.2}{40} = 0.105 MPa$$

$$f_{p(\text{max})} = 0.035 < 0.105$$

Therefore,  $f_p = 0.035$  MPa.

The average shaft resistance along the 15.5m length of the pile is  $f_{p(av)} = 0.0307$  MPa.

$$Q_s = 0.0307 \times (\pi \times 0.4) \times 15.5 = 0.598 MN$$

$$Q_{ult} = Q_s + Q_b = 0.598 + 0.2126 = 0.8106 MN$$

With a group of 4 piles,

$$Q_{ult(group)} = 0.8106 \times 4 = 3.242 MN$$

Applying a Safety Factor of 2,

$$Q_{all(group)} = 1.621 MN$$

This is very close to the 1.623 MN obtained by the MATLAB program, with the discrepancy likely due to rounding errors within the hand calculation. Thus, the MATLAB program is verified for the calculation of pile group capacity. (View figure 6.5 to see the MATLAB output at depth).

| 1  | Variables - Q |           | _ | ) |
|----|---------------|-----------|---|---|
|    | QallgIndivid  | luaiGroup | × |   |
|    | 61x1 double   |           |   |   |
|    | 1             | 2         |   | 3 |
| 1  | 0             |           |   |   |
| 2  | 0.4612        |           |   |   |
| 3  | 0.4834        |           |   |   |
| 4  | 0.4570        |           |   |   |
| 5  | 0.5278        |           |   |   |
| 6  | 0.7025        |           |   |   |
| 7  | 0.8545        |           |   |   |
| 8  | 0.9772        |           |   |   |
| 9  | 1.0908        |           |   |   |
| 10 | 1.1058        |           |   |   |
| 11 | 1.1230        |           |   |   |
| 12 | 1.0690        |           |   |   |
| 13 | 1.2353        |           |   |   |
| 14 | 1.2034        |           |   |   |
| 15 | 1.2541        |           |   |   |
| 16 | 0.8206        |           |   |   |
| 17 | 0.9132        |           |   |   |
| 18 | 0.9330        |           |   |   |
| 19 | 0.9532        |           |   |   |
| 20 | 0.9737        |           |   |   |
| 21 | 0.9899        |           |   |   |
| 22 | 1.0091        |           |   |   |
| 23 | 1.0306        |           |   |   |
| 24 | 1.0461        |           |   |   |
| 25 | 1.0673        |           |   |   |
| 26 | 1.0882        |           |   |   |
| 27 | 1.1171        |           |   |   |
| 28 | 1.1383        |           |   |   |
| 29 | 1.0656        |           |   |   |
| 30 | 1.1096        |           |   |   |
| 31 | 1.5465        |           |   |   |
| 32 | 1.6227        |           |   |   |
|    |               |           |   |   |

Figure 6.5: MATLAB output, highlighting the Qall at depth 15.5m. Units: MN

## 7. Conclusion and Summary

Summary of findings and recommendations to client.

- Shallow foundations should not be used.
- Single pile foundations should not be used.
- Group pile foundations as design in section 6, can be taken forward for further testing (further tests are recommended at the end of sections 5 and 6).
- For the group pile arrangement, pile lengths of 24m is suitable for withstanding the maximum structural load from the column.

## 8. References

Design Buildings. 2022. *Site Investigation*. Available at: <u>Site investigation - Designing Buildings</u>. [Accessed: 08/12/2022].

EasyMix Concrete Ltd, (2022). 'Types of Concrete Mixes and Their Strengths'. Available at: <a href="https://www.easymixconcrete.com/news/types-of-concrete-and-their-strengths/#:~:text=C25%20%2F%20ST%202&text=It%20is%20commonly%20used%20for,as%20well%20as%20general%20groundworks.">https://www.easymixconcrete.com/news/types-of-concrete-and-their-strengths/#:~:text=C25%20%2F%20ST%202&text=It%20is%20commonly%20used%20for,as%20well%20as%20general%20groundworks.</a> Accessed: 09/12/2022

Eurocode Applied, (2022). 'Design aid - Table of concrete design properties including strength properties (fck, fcd, fctm, fctd) elastic deformation properties (Ecm), minimum longitudinal reinforcement against brittle failure, and minimum shear reinforcement'. Available at: <a href="https://eurocodeapplied.com/design/en1992/concrete-design-properties">https://eurocodeapplied.com/design/en1992/concrete-design-properties</a>. Accessed: 09/12/2022

NetRegs. N.d. *Soil contamination and its impacts on construction works*. Available at: <u>Soil contamination and its impacts on construction works | NetRegs | Environmental guidance for your business in Northern Ireland & Scotland</u>. [Accessed: 08/12/2022]

Sedighi, M., (2022). 'Lecture Slides 6 – CPT & Analysis of Settlement'. Accessed: 28/11/2022

StructX, (2022). 'Typical Soil Elastic Modulus (Young's Modulus) Values'. Available at: <a href="https://structx.com/Soil Properties">https://structx.com/Soil Properties 003.html</a>. Accessed: 09/12/2022

Szypcio Z, Dolzyk K. The Bearing Capacity of Layered Subsoil. Studia Geotechnica et Mechanica, Vol XXVIII, No. 1. Accessed at: <a href="https://vdocuments.net/bearing-capacity-of-layerd-soils-numerical-modeling.html?page=1">https://vdocuments.net/bearing-capacity-of-layerd-soils-numerical-modeling.html?page=1</a> Accessed on: 13/12/2022.

## 9. Appendices

Soil 1 ZONE 6

| 2011 1 | ZUNE 0    |             |                         |             |        |             |             |       |                |               |                |         |        |             |
|--------|-----------|-------------|-------------------------|-------------|--------|-------------|-------------|-------|----------------|---------------|----------------|---------|--------|-------------|
| No     | Depth (m) | q。<br>(MPa) | f <sub>s</sub><br>(kPa) | u0<br>(kPa) | u(kPa) | qc<br>(kPa) | qt<br>(kPa) | Rf    | γ_s<br>(kN/m3) | ②_vo<br>(kPa) | 2'_vo<br>(kPa) | Qt      | Fr (%) | u2<br>(kPa) |
| 1      | 0.5       | 4.5         | 12.2                    | 0.001       | 0.5    | 4500        | 4500        | 0.270 | 16.778         | 8.389         | 7.889          | 569.345 | 0.271  | 0           |
| 2      | 1         | 3.8         | 12.4                    | 0.001       | 1      | 3800        | 3800        | 0.326 | 16.734         | 16.734        | 15.734         | 240.451 | 0.328  | 0           |
| 3      | 1.5       | 3.5         | 12.3                    | 0.001       | 0.2    | 3500        | 3500        | 0.351 | 16.692         | 25.039        | 24.839         | 139.902 | 0.354  | 0           |
| 4      | 2         | 2.4         | 12.1                    | 0.001       | 0.3    | 2400        | 2400        | 0.504 | 16.525         | 33.049        | 32.749         | 72.274  | 0.511  | 0           |
| 5      | 2.5       | 4.8         | 12.8                    | 0.001       | 0.1    | 4800        | 4800        | 0.266 | 16.861         | 42.152        | 42.052         | 113.142 | 0.269  | 0           |
| 6      | 3         | 5.7         | 13.9                    | 0.001       | 0.3    | 5700        | 5700        | 0.243 | 17.023         | 51.069        | 50.769         | 111.267 | 0.245  | 0           |
| 7      | 3.5       | 6.3         | 13.6                    | 0.001       | 1.2    | 6300        | 6300        | 0.215 | 17.037         | 59.628        | 58.428         | 106.805 | 0.217  | 0           |
| 8      | 4         | 6.1         | 14.3                    | 0.001       | 1      | 6100        | 6100        | 0.234 | 17.085         | 68.338        | 67.338         | 89.573  | 0.237  | 0           |
| 9      | 4.5       | 6.8         | 13.3                    | 0.001       | 0.5    | 6800        | 6800        | 0.195 | 17.040         | 76.681        | 76.181         | 88.255  | 0.197  | 0           |
| 10     | 5         | 4.2         | 11.4                    | 0.001       | 2      | 4200        | 4200        | 0.272 | 16.679         | 83.393        | 81.393         | 50.577  | 0.278  | 0           |
| 11     | 5.5       | 5.3         | 11.6                    | 0.001       | 2      | 5300        | 5300        | 0.218 | 16.781         | 92.295        | 90.295         | 57.675  | 0.222  | 0           |
| 12     | 6         | 3.2         | 12.5                    | 0.001       | 5      | 3200        | 3200        | 0.391 | 16.676         | 100.058       | 95.058         | 32.611  | 0.403  | 0           |
| 13     | 6.5       | 5.6         | 13.8                    | 0.001       | 0.1    | 5600        | 5600        | 0.246 | 17.011         | 110.572       | 110.472        | 49.691  | 0.251  | 0           |
| 14     | 7         | 4.5         | 11.5                    | 0.001       | 4      | 4500        | 4500        | 0.256 | 16.712         | 116.982       | 112.982        | 38.794  | 0.262  | 0           |
| 15     | 7.5       | 0.8         | 12.5                    | 0.001       | 3.2    | 770         | 770         | 1.623 | 16.119         | 120.896       | 117.696        | 5.515   | 1.926  | 0           |
|        |           |             |                         |             |        | Mean        |             |       |                |               |                | 117.725 | 0.398  |             |

Soil 1 has been identified to be in Zone 6 of the Normalised SBT Chart; Sand to Silty Sand.

Soil

2 ZONE 3

| No  | Donth (m) | q₅<br>(MPa) | f <sub>s</sub><br>(kPa) | u0(kPa) | u(kPa)      | qc<br>(kPa) | qt (kPa) | Rf    | γ_s<br>(kN/m3) | ②_vo<br>(kPa) | []'_V0  | Ot    | Fr     |   | u2 (kPa) |
|-----|-----------|-------------|-------------------------|---------|-------------|-------------|----------|-------|----------------|---------------|---------|-------|--------|---|----------|
| INO | Depth (m) | -           |                         | •       | · · · · · · |             |          |       |                |               | (kPa)   | Qt    | (%)    | - |          |
| 1   | 8         | 0.7         | 39.6                    | 0.001   | 11          | 700         | 700      | 5.657 | 17.434         | 139.475       | 128.475 | 4.363 | 7.065  |   | 0        |
| 2   | 8.5       | 0.7         | 39.12                   | 0.001   | 2.2         | 700         | 700      | 5.589 | 17.420         | 148.071       | 145.871 | 3.784 | 7.088  |   | 0        |
| 3   | 9         | 0.83        | 35.78                   | 0.001   | 0.1         | 830         | 830      | 4.311 | 17.382         | 156.438       | 156.338 | 4.308 | 5.312  |   | 0        |
| 4   | 9.5       | 0.74        | 38.22                   | 0.001   | 1.5         | 740         | 740      | 5.165 | 17.414         | 165.438       | 163.938 | 3.505 | 6.652  | - | 0        |
| 5   | 10        | 0.75        | 39.02                   | 0.001   | 0.5         | 750         | 750      | 5.203 | 17.444         | 174.440       | 173.940 | 3.309 | 6.779  |   | 0        |
| 6   | 10.5      | 0.75        | 38.96                   | 4.905   | 5.2         | 750         | 751.125  | 5.187 | 17.443         | 183.150       | 177.950 | 3.192 | 6.859  |   | 5        |
| 7   | 11        | 0.75        | 39.81                   | 9.81    | 10.3        | 750         | 752.250  | 5.292 | 17.469         | 192.156       | 181.856 | 3.080 | 7.108  |   | 10       |
| 8   | 11.5      | 0.83        | 39.84                   | 14.715  | 13.1        | 830         | 833.375  | 4.781 | 17.510         | 201.361       | 188.261 | 3.357 | 6.304  |   | 15       |
| 9   | 12        | 0.65        | 45                      | 19.62   | 21.6        | 650         | 654.500  | 6.875 | 17.558         | 210.696       | 189.096 | 2.347 | 10.140 |   | 20       |
| 10  | 12.5      | 0.82        | 52.1                    | 24.525  | 30.1        | 820         | 825.625  | 6.310 | 17.821         | 222.757       | 192.657 | 3.129 | 8.642  |   | 25       |
| 11  | 13        | 0.89        | 35.8                    | 29.43   | 29.8        | 890         | 896.750  | 3.992 | 17.413         | 226.368       | 196.568 | 3.410 | 5.340  |   | 30       |
| 12  | 13.5      | 0.95        | 37.2                    | 34.335  | 37.3        | 950         | 957.875  | 3.884 | 17.484         | 236.029       | 198.729 | 3.632 | 5.153  | - | 35       |
| 13  | 14        | 0.89        | 41                      | 39.24   | 44.6        | 890         | 899      | 4.561 | 17.573         | 246.021       | 201.421 | 3.242 | 6.279  |   | 40       |
|     |           |             |                         |         |             | Mean        |          |       |                |               |         | 3.435 | 6.825  |   |          |

Soil 2 has been identified to be in Zone 3 of the Normalised SBT Chart; Clay to Silty Clay.

Soil 3

|    | Depth | qc    | fs    |          | U     | qc    |          |       | γ_s     | ?_vo    | 2'_vo   |        | Fr    |     |
|----|-------|-------|-------|----------|-------|-------|----------|-------|---------|---------|---------|--------|-------|-----|
| No | (m)   | (MPa) | (kPa) | u0 (kPa) | (kPa) | (kPa) | qt (kPa) | Rf    | (kN/m3) | (kPa)   | (kPa)   | Qt     | (%)   | u2  |
| 1  | 14.5  | 4.7   | 102   | 44.145   | 45.1  | 4700  | 4710.125 | 2.166 | 19.289  | 279.690 | 234.590 | 18.886 | 2.302 | 45  |
| 2  | 15    | 4.5   | 121   | 49.05    | 50.6  | 4500  | 4511.250 | 2.682 | 19.472  | 292.086 | 241.486 | 17.472 | 2.868 | 50  |
| 3  | 15.5  | 4.2   | 130.2 | 53.955   | 58.9  | 4200  | 4212.375 | 3.091 | 19.532  | 302.739 | 243.839 | 16.034 | 3.330 | 55  |
| 4  | 16    | 5.8   | 168.2 | 58.86    | 65.1  | 5800  | 5813.500 | 2.893 | 19.958  | 319.324 | 254.224 | 21.612 | 3.061 | 60  |
| 5  | 16.5  | 4.4   | 145.2 | 63.765   | 76.2  | 4400  | 4414.625 | 3.289 | 19.678  | 324.682 | 248.482 | 16.460 | 3.550 | 65  |
| 6  | 17    | 5.7   | 165.3 | 68.67    | 77    | 5700  | 5715.750 | 2.892 | 19.931  | 338.822 | 261.822 | 20.537 | 3.074 | 70  |
| 7  | 17.5  | 3.8   | 95    | 73.575   | 78    | 3800  | 3816.875 | 2.489 | 19.123  | 334.659 | 256.659 | 13.567 | 2.728 | 75  |
| 8  | 18    | 4.7   | 126.9 | 78.48    | 88    | 4700  | 4718.000 | 2.690 | 19.546  | 351.823 | 263.823 | 16.550 | 2.906 | 80  |
| 9  | 18.5  | 5.9   | 182.9 | 83.385   | 88.4  | 5900  | 5919.125 | 3.090 | 20.063  | 371.166 | 282.766 | 19.620 | 3.297 | 85  |
| 10 | 19    | 4.4   | 118.8 | 88.29    | 98    | 4400  | 4420.250 | 2.688 | 19.443  | 369.415 | 271.415 | 14.925 | 2.933 | 90  |
| 11 | 19.5  | 5.5   | 192.5 | 93.195   | 100.4 | 5500  | 5521.375 | 3.486 | 20.096  | 391.868 | 291.468 | 17.599 | 3.753 | 95  |
| 12 | 20    | 5.5   | 170.5 | 98.1     | 110   | 5500  | 5522.500 | 3.087 | 19.954  | 399.072 | 289.072 | 17.724 | 3.328 | 100 |
| 13 | 20.5  | 4     | 120   | 103.005  | 118   | 4000  | 4023.625 | 2.982 | 19.418  | 398.068 | 280.068 | 12.945 | 3.310 | 105 |
| 14 | 21    | 5.6   | 179.2 | 107.91   | 108.5 | 5600  | 5624.750 | 3.186 | 20.019  | 420.401 | 311.901 | 16.686 | 3.443 | 110 |
| 15 | 21.5  | 5.3   | 143.1 | 112.815  | 110   | 5300  | 5325.875 | 2.687 | 19.734  | 424.281 | 314.281 | 15.596 | 2.919 | 115 |
| 16 | 22    | 5.5   | 159.5 | 117.72   | 130   | 5500  | 5526.775 | 2.886 | 19.876  | 437.265 | 307.265 | 16.564 | 3.134 | 119 |
| 17 | 22.5  | 5.3   | 153.7 | 122.625  | 129   | 5300  | 5327.675 | 2.885 | 19.818  | 445.903 | 316.903 | 15.405 | 3.148 | 123 |
| 18 | 23    | 5.5   | 187   | 127.53   | 137   | 5500  | 5529.025 | 3.382 | 20.062  | 461.434 | 324.434 | 15.620 | 3.690 | 129 |
| 19 | 23.5  | 6     | 150   | 132.435  | 134   | 6000  | 6030.375 | 2.487 | 19.838  | 466.187 | 332.187 | 16.750 | 2.696 | 135 |
|    | _     |       | -     |          |       | Mean  | _        | -     | _       |         | -       | 16.871 | 3.130 |     |

Soil 3 has been identified to be in zone 3 of the Normalised SBT chart; Clay to Silty Clay.

Soil 4

| No | Depth<br>(m) | q₅<br>(MPa) | f <sub>s</sub> (kPa) | u0 (kPa) | U<br>(kPa) | qc<br>(kPa) | qt (kPa)  | Rf    | γ_s<br>(kN/m3) | ②_vo<br>(kPa) | ②'_vo<br>(kPa) | Qt      | Fr (%) | u2  |
|----|--------------|-------------|----------------------|----------|------------|-------------|-----------|-------|----------------|---------------|----------------|---------|--------|-----|
| 1  | 24           | 44.4        | 316                  | 137.34   | 153        | 44444       | 44475.719 | 0.711 | 21.492         | 515.819       | 362.819        | 121.162 | 0.719  | 139 |
| 2  | 24.5         | 51.8        | 333.19               | 142.245  | 164        | 51778       | 51809.728 | 0.643 | 21.614         | 529.549       | 365.549        | 140.283 | 0.650  | 142 |
| 3  | 25           | 51.1        | 248.4                | 147.15   | 188        | 51111       | 51144.636 | 0.486 | 21.265         | 531.621       | 343.621        | 147.293 | 0.491  | 149 |
| 4  | 25.5         | 46.7        | 338.1                | 152.055  | 197        | 46667       | 46700.867 | 0.724 | 21.591         | 550.566       | 353.566        | 130.528 | 0.733  | 152 |
| 5  | 26           | 50.2        | 264.42               | 156.96   | 198        | 50222       | 50257.547 | 0.526 | 21.331         | 554.613       | 356.613        | 139.375 | 0.532  | 157 |
| 6  | 26.5         | 49.8        | 374.08               | 161.865  | 196        | 49778       | 49814.453 | 0.751 | 21.735         | 575.968       | 379.968        | 129.586 | 0.760  | 163 |
| 7  | 27           | 46.4        | 219.45               | 166.77   | 176        | 46444       | 46482.019 | 0.472 | 21.082         | 569.218       | 393.218        | 116.762 | 0.478  | 167 |
| 8  | 27.5         | 51.3        | 291.06               | 171.675  | 174        | 51333       | 51372.033 | 0.567 | 21.452         | 589.941       | 415.941        | 122.090 | 0.573  | 172 |
| 9  | 28           | 48.2        | 301.63               | 176.58   | 191        | 48222       | 48262.047 | 0.625 | 21.470         | 601.155       | 410.155        | 116.202 | 0.633  | 177 |
| 10 | 28.5         | 54.0        | 374.22               | 181.485  | 199        | 54000       | 54040.950 | 0.692 | 21.767         | 620.356       | 421.356        | 126.782 | 0.701  | 182 |
| 11 | 29           | 54.4        | 279.3                | 186.39   | 196        | 54444       | 54486.294 | 0.513 | 21.427         | 621.384       | 425.384        | 126.626 | 0.519  | 186 |
| 12 | 29.5         | 50.4        | 240.62               | 191.295  | 196        | 50444       | 50487.419 | 0.477 | 21.222         | 626.063       | 430.063        | 115.940 | 0.483  | 191 |
| 13 | 30           | 52.2        | 235                  | 196.2    | 198        | 52222       | 52266.322 | 0.450 | 21.208         | 636.248       | 438.248        | 117.810 | 0.455  | 196 |
|    |              | -           |                      |          |            | Mean        |           | -     |                |               |                | 126.957 | 0.594  |     |

Soil 4 has been identified to be in zone 6 of the Normalised SBT chart; Sands to Silty sands.

| B (m) | Z (m) | Depth below<br>footing (m) | P present (kPa) | γD (kPa) | ΔP (kPa) | q <sub>c(av)</sub> (kPa) | q <sub>all</sub> (kPa) | <b>C</b> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | $\alpha_{E}$ | E' (kPa) | l <sub>z</sub> | Δz (m) | Δs (m)  |
|-------|-------|----------------------------|-----------------|----------|----------|--------------------------|------------------------|-----------------------|----------------|----------------|--------------|----------|----------------|--------|---------|
| 1.5   | 0.0   | 0.0                        | 2057.8          | 16.7     | 2041.0   | 3800.0                   | 1266.7                 | 0.996                 | 1              | 1.2            | 10           | 12667    | 0.100          | 0.5    | 0.00669 |
| 1.5   | 0.5   | 0.5                        | 2057.8          | 16.7     | 2041.1   | 3650.0                   | 1216.7                 | 0.996                 | 1              | 1.2            | 10           | 12167    | 0.367          | 0.5    | 0.02552 |
| 1.5   | 1.0   | 1.0                        | 2057.8          | 16.5     | 2041.3   | 3233.3                   | 1077.8                 | 0.996                 | 1              | 1.2            | 10           | 10778    | 0.445          | 0.5    | 0.03494 |
| 1.5   | 1.5   | 1.5                        | 2057.8          | 16.9     | 2040.9   | 3625.0                   | 1208.3                 | 0.996                 | 1              | 1.2            | 10           | 12083    | 0.333          | 0.5    | 0.02337 |
| 1.5   | 2.0   | 2.0                        | 2057.8          | 17.0     | 2040.8   | 4040.0                   | 1346.7                 | 0.996                 | 1              | 1.2            | 10           | 13467    | 0.222          | 0.5    | 0.01398 |
| 1.5   | 2.5   | 2.5                        | 2057.8          | 17.0     | 2040.7   | 4416.7                   | 1472.2                 | 0.996                 | 1              | 1.2            | 10           | 14722    | 0.111          | 0.5    | 0.00640 |
| 1.5   | 3.0   | 3.0                        | 2057.8          | 17.1     | 2040.7   | 4657.1                   | 1552.4                 | 0.996                 | 1              | 1.2            | 10           | 15524    | 0.000          | 0.5    | 0.00001 |

| Total Settlement (m): 0.1109 | Total | Settlement ( | (m): | 0.1109 |
|------------------------------|-------|--------------|------|--------|
|------------------------------|-------|--------------|------|--------|

Figure 9.1: Settlement Calculation for a 1.5m Square Footing using Schertmann Method

| B (m) | Z (m) | Depth below<br>footing (m) | P present (kPa) | γD (kPa) | ΔP (kPa) | q <sub>c(av)</sub> (kPa) | q <sub>all</sub> (kPa) | <b>C</b> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | $\alpha_{E}$       | E' (kPa) | l <sub>z</sub> | Δz (m) | Δs (m)  |
|-------|-------|----------------------------|-----------------|----------|----------|--------------------------|------------------------|-----------------------|----------------|----------------|--------------------|----------|----------------|--------|---------|
| 2.0   | 4.0   | 0.0                        | 1157.5          | 16.7     | 1140.8   | 3800.0                   | 1266.7                 | 0.993                 | 1              | 1.2            | 10                 | 12667    | 0.100          | 0.5    | 0.00373 |
| 2.0   | 4.0   | 0.5                        | 1157.5          | 16.7     | 1140.8   | 3650.0                   | 1216.7                 | 0.993                 | 1              | 1.2            | 10                 | 12167    | 0.300          | 0.5    | 0.01164 |
| 2.0   | 4.0   | 1.0                        | 1157.5          | 16.5     | 1141.0   | 3233.3                   | 1077.8                 | 0.993                 | 1              | 1.2            | 10                 | 10778    | 0.500          | 0.5    | 0.02190 |
| 2.0   | 4.0   | 1.5                        | 1157.5          | 16.9     | 1140.6   | 3625.0                   | 1208.3                 | 0.993                 | 1              | 1.2            | 10                 | 12083    | 0.417          | 0.5    | 0.01627 |
| 2.0   | 4.0   | 2.0                        | 1157.5          | 17.0     | 1140.5   | 4040.0                   | 1346.7                 | 0.993                 | 1              | 1.2            | 10                 | 13467    | 0.333          | 0.5    | 0.01167 |
| 2.0   | 4.0   | 2.5                        | 1157.5          | 17.0     | 1140.5   | 4416.7                   | 1472.2                 | 0.993                 | 1              | 1.2            | 10                 | 14722    | 0.250          | 0.5    | 0.00801 |
| 2.0   | 4.0   | 3.0                        | 1157.5          | 17.1     | 1140.4   | 4657.1                   | 1552.4                 | 0.993                 | 1              | 1.2            | 10                 | 15524    | 0.167          | 0.5    | 0.00506 |
| 2.0   | 4.0   | 3.5                        | 1157.5          | 17.0     | 1140.5   | 4925.0                   | 1641.7                 | 0.993                 | 1              | 1.2<br>Horizo  | 10<br>ntal (Value) | 16417    | 0.083          | 0.5    | 0.00239 |
| 2.0   | 4.0   | 4.0                        | 1157.5          | 16.7     | 1140.8   | 4844.4                   | 1614.8                 | 0.993                 | 1              | 1.2            | ntai (value)       | 16148    | 0.000          | 0.5    | 0.00000 |

Total Settlement (m): 0.0807

Figure 9.2: Settlement Calculation for a 2.0m Square Footing using Schertmann Method

| B (m) | Z (m) | Depth below<br>footing (m) | P <sub>present</sub> (kPa) | γD (kPa) | ΔP (kPa) | q <sub>c(av)</sub> (kPa) | q <sub>all</sub> (kPa) | <b>C</b> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | $\alpha_{\text{E}}$ | E' (kPa) | Iz    | Δz (m) | Δs (m)  |
|-------|-------|----------------------------|----------------------------|----------|----------|--------------------------|------------------------|-----------------------|----------------|----------------|---------------------|----------|-------|--------|---------|
| 2.5   | 5.0   | 0.0                        | 740.8                      | 16.7     | 724.1    | 3800.0                   | 1266.7                 | 0.989                 | 1              | 1.2            | 10                  | 12667    | 0.100 | 0.5    | 0.00235 |
| 2.5   | 5.0   | 0.5                        | 740.8                      | 16.7     | 724.1    | 3650.0                   | 1216.7                 | 0.989                 | 1              | 1.2            | 10                  | 12167    | 0.260 | 0.5    | 0.00637 |
| 2.5   | 5.0   | 1.0                        | 740.8                      | 16.5     | 724.3    | 3233.3                   | 1077.8                 | 0.989                 | 1              | 1.2            | 10                  | 10778    | 0.420 | 0.5    | 0.01163 |
| 2.5   | 5.0   | 1.5                        | 740.8                      | 16.9     | 723.9    | 3625.0                   | 1208.3                 | 0.989                 | 1              | 1.2            | 10                  | 12083    | 0.467 | 0.5    | 0.01152 |
| 2.5   | 5.0   | 2.0                        | 740.8                      | 17.0     | 723.8    | 4040.0                   | 1346.7                 | 0.989                 | 1              | 1.2            | 10                  | 13467    | 0.400 | 0.5    | 0.00886 |
| 2.5   | 5.0   | 2.5                        | 740.8                      | 17.0     | 723.8    | 4416.7                   | 1472.2                 | 0.989                 | 1              | 1.2            | 10                  | 14722    | 0.333 | 0.5    | 0.00675 |
| 2.5   | 5.0   | 3.0                        | 740.8                      | 17.1     | 723.7    | 4657.1                   | 1552.4                 | 0.988                 | 1              | 1.2            | 10                  | 15524    | 0.267 | 0.5    | 0.00512 |
| 2.5   | 5.0   | 3.5                        | 740.8                      | 17.0     | 723.8    | 4925.0                   | 1641.7                 | 0.988                 | 1              | 1.2            | 10                  | 16417    | 0.200 | 0.5    | 0.00363 |
| 2.5   | 5.0   | 4.0                        | 740.8                      | 16.7     | 724.1    | 4844.4                   | 1614.8                 | 0.989                 | 1              | 1.2            | 10                  | 16148    | 0.134 | 0.5    | 0.00247 |
| 2.5   | 5.0   | 4.5                        | 740.8                      | 16.8     | 724.0    | 4890.0                   | 1630.0                 | 0.989                 | 1              | 1.2            | 10                  | 16300    | 0.067 | 0.5    | 0.00122 |
| 2.5   | 5.0   | 5.0                        | 740.8                      | 16.7     | 724.1    | 4736.4                   | 1578.8                 | 0.989                 | 1              | 1.2            | 10                  | 15788    | 0.000 | 0.5    | 0.00000 |

Total Settlement (m): 0.0599

Figure 9.3: Settlement Calculation for a 2.5m Square Footing using Schertmann Method

| B (m) | Z (m) | Depth below<br>footing (m) | P <sub>present</sub> (kPa) | γD (kPa) | ΔP (kPa) | q <sub>c(av)</sub> (kPa) | q <sub>all</sub> (kPa) | <b>C</b> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | $\alpha_{E}$ | E' (kPa) | l <sub>z</sub> | Δz (m) | Δs (m)  |
|-------|-------|----------------------------|----------------------------|----------|----------|--------------------------|------------------------|-----------------------|----------------|----------------|--------------|----------|----------------|--------|---------|
| 3.0   | 6.0   | 0.0                        | 514.4                      | 16.7     | 497.7    | 3800.0                   | 1266.7                 | 0.984                 | 1              | 1.2            | 10           | 12667    | 0.100          | 0.5    | 0.00161 |
| 3.0   | 6.0   | 0.5                        | 514.4                      | 16.7     | 497.8    | 3650.0                   | 1216.7                 | 0.984                 | 1              | 1.2            | 10           | 12167    | 0.233          | 0.5    | 0.00391 |
| 3.0   | 6.0   | 1.0                        | 514.4                      | 16.5     | 497.9    | 3233.3                   | 1077.8                 | 0.984                 | 1              | 1.2            | 10           | 10778    | 0.367          | 0.5    | 0.00695 |
| 3.0   | 6.0   | 1.5                        | 514.4                      | 16.9     | 497.6    | 3625.0                   | 1208.3                 | 0.984                 | 1              | 1.2            | 10           | 12083    | 0.500          | 0.5    | 0.00844 |
| 3.0   | 6.0   | 2.0                        | 514.4                      | 17.0     | 497.4    | 4040.0                   | 1346.7                 | 0.983                 | 1              | 1.2            | 10           | 13467    | 0.445          | 0.5    | 0.00673 |
| 3.0   | 6.0   | 2.5                        | 514.4                      | 17.0     | 497.4    | 4416.7                   | 1472.2                 | 0.983                 | 1              | 1.2            | 10           | 14722    | 0.389          | 0.5    | 0.00538 |
| 3.0   | 6.0   | 3.0                        | 514.4                      | 17.1     | 497.4    | 4657.1                   | 1552.4                 | 0.983                 | 1              | 1.2            | 10           | 15524    | 0.333          | 0.5    | 0.00438 |
| 3.0   | 6.0   | 3.5                        | 514.4                      | 17.0     | 497.4    | 4925.0                   | 1641.7                 | 0.983                 | 1              | 1.2            | 10           | 16417    | 0.278          | 0.5    | 0.00345 |
| 3.0   | 6.0   | 4.0                        | 514.4                      | 16.7     | 497.8    | 4844.4                   | 1614.8                 | 0.984                 | 1              | 1.2            | 10           | 16148    | 0.222          | 0.5    | 0.00281 |
| 3.0   | 6.0   | 4.5                        | 514.4                      | 16.8     | 497.7    | 4890.0                   | 1630.0                 | 0.984                 | 1              | 1.2            | 10           | 16300    | 0.167          | 0.5    | 0.00209 |
| 3.0   | 6.0   | 5.0                        | 514.4                      | 16.7     | 497.8    | 4736.4                   | 1578.8                 | 0.984                 | 1              | 1.2            | 10           | 15788    | 0.111          | 0.5    | 0.00144 |
| 3.0   | 6.0   | 5.5                        | 514.4                      | 17.0     | 497.4    | 4808.3                   | 1602.8                 | 0.983                 | 1              | 1.2            | 10           | 16028    | 0.056          | 0.5    | 0.00071 |
| 3.0   | 6.0   | 6.0                        | 514.4                      | 16.7     | 497.7    | 4784.6                   | 1594.9                 | 0.984                 | 1              | 1.2            | 10           | 15949    | 0.000          | 0.5    | 0.00000 |

Total Settlement (m): 0.0479

Figure 9.4: Settlement Calculation for a 3.0m Square Footing using Schertmann Method



Figure 9.5: Example of how  $I_z$  can be interpolated for each soil layer

### **Code Methodology**

The choice of programming language is MATLAB 2020. This program is suitable and appropriate as it is very useful for data analysis, due to its range of functions and storage capabilities.

Firstly, the soil data is stored in excel. The first step is to make a script that extracts the full data set from excel and stores it in a MATLAB matrix.

The data is now arranged in a MATLAB matrix. Key values which need to be extracted include; depth and the  $q_c$  values for each depth. This can be completed by implementing either a loop (time inefficient) or simple direct extraction (the used method in this program and quicker). The extraction code for the depths is as follows:  $depth=Design3SoilProfileDataS2\{1:61,2\}$ ; It is important to use braces as the brackets, so the data is extracted and stored in a matrix and not as a table.

Next, extract the  $q_c$  data for each depth, similarly, direct extraction is done instead of a loop (time efficient).  $qcMPA=Design3SoilProfileDataS2\{1:61,3\}$ ;

A range of vectors are sized, just incase the reader/user wants to manually check the values of  $k_c$  (stored in vector kc),  $q_{ca}$  (stored in vector qcavalues),  $q_b$  (stored in vector qbvalues),  $f_p$  (stored in vector fpvalues) (fpbarvalues is the average of all the fpvalues for all the depths above a given depth). This is implemented by the following code:

```
kc=zeros(leng,1);
qcavalues=zeros(leng,1);
qbvalues=zeros(leng,1);
fpvalues=zeros(leng,1);
```

A  $Q_{ult}$  zeros vector is made where the  $Q_{ult}$  (ultimate bearing capacity) values for each depth is stored. Qult=zeros(leng,1);

Where leng is simply the length of the depth (number of rows). This is so the code knows how many various depths is being programmed for.

The  $Q_{ult}$  is then considered at each depth by initiating a for loop, which will loop through all of the rows in each vector of data. for c=2:leng

The loop starts at row 2, because row 1 in this code represents the ground surface, where Quit is 0.

Extracting the specific depth and qc (MPa) by using the for loop with the variable c. This is programmed as follows:

```
depthi=depth(c);
qcMPAi=qcMPA(c);
```

The next step is to extract the  $k_c$  (bearing capacity factor). This depends on the soil type at that specific point in-depth, and the value  $q_c$  (MPa) at that specific depth. The first soil is loose and silty sands (view section 1 for the soil profile). The  $k_c$  values which apply to this soil are then extracted based on the  $q_c$  (MPa) value, which has been extracted and stored as qcMPAi. For the first soil, with a range of  $q_c$  (MPa) criteria available the code is as follows:

Next, will be analysing the  $q_c$  (MPa) values for the next soil in the soil profile. Silty clays/clays are present from depth 8m-23.5m (inclusive) therefore the upcoming codes knows that within this depth range the  $k_c$  values which are relevant to silty clays/clays must be extracted, the 'elseif' code allows the condition of soil type to switch.

```
elseif c >=16 && c<= 47  % Applying kc values for Soil 2 and 3 = Silty
Clays to Clay
   if qcMPAi<1
        kci=0.4;
   elseif qcMPAi >=1 && qcMPAi <=5
        kci=0.35
   elseif qcMPAi >5 && qcMPAi <=12
        kci=0.45;
   else qcMPAi>12
        kci=0.45;
   end
```

Finally, the soil profile switches back to sands for the final depth in the range 24m-30m (inclusive). This is implemented via the same methodology as above, with different  $k_c$  values of sand being used as a result of different  $q_c$  (MPa) values.

```
else c >= 48 %Applying kc values for loose/ silty sands
    if qcMPAi<1
        kci=0.4;
    elseif qcMPAi >=1 && qcMPAi <=5
        kci=0.4;
    elseif qcMPAi >5 && qcMPAi <=12
        kci=0.4;
    else qcMPAi>12
        kci=0.3;
    end
end
```

The next step is calculating the value of a, which is used to calculate the range of  $q_c$  values used to calculate  $q_{ca}$ . With the  $q_c$  values in the range: depth $\pm a$ . ai=1.5\*0.4; %a=3/2\*diameter

The lower and upper depths are coded and stored as follows at each depth by the following code:

```
DL=depthi-ai; %Calculating lower depth value based on a DU=depthi+ai; %Calculating upper depth value based on a
```

In the case of our data, we have  $q_c$  values for each 0.5m. With a=0.6m, this is close to 0.5m and we don't have the accuracy of data to be specific to know what  $q_c$  is at 0.1m intervals, the data is in terms of 0.5m, and therefore a is now rounded to 0.5m (this is an important depth interval, as the values of 0.6m  $q_c$  is not known, 0.5m interval  $q_c$  depths are known), as the values of  $q_c$  are known, and no assumptions are made, this will results in an accurate answer. 'a' is rounded by the following formula: ai=round(ai/0.5)\*0.5;

The  $q_{ca}$  value is calculated by taking the average of the individual  $q_c$  values within the range  $\pm a$  of the depth at this specific point in the loop (variable= depthi). Each value of 'c' represents 0.5m depth. The range of values are stored into qcprime, the  $q_{ca}$  is then calculated from this.

```
qcprime=zeros(1,3);
```

```
qcprime(1) =qcMPA(c-1);
qcprime(2) =qcMPA(c);
qcprime(3) =qcMPA(c+1);
```

The  $q_{ca}$  value can now be calculated by taking the average of these 3  $q_c$  values:

```
qca=sum(qcprime,2) ./ sum(qcprime~=0,2);
```

The next step is to check if the  $q_c$  values used to calculate the above variable qca, are within the range  $0.7*q_{ca}-1.3*q_{ca}$ . If the  $q_c$  value for a given depth is out of this range it will be set to the next appropriate value e.g.  $0.7*q_{ca}$  or  $1.3*q_{ca}$  (an example of this is shown in figure 9.6 below). This is implemented by the following code:

```
for i=1:3 %Iterating through our 3 values of qc used for qca
   if qcprime(i)<0.7*qca %Below 0.7*qca then edit the value
        qcprime(i)=0.7*qca;

end
   if qcprime(i)>1.3*qca %Greater then 1.3*qca then edit the value
        qcprime(i)=1.3*qca;
   end
end
```



Figure 9.6: Displaying how the qc values are updated if they are out of the specific range

Then the  $q_{ca}$  can be re-calculated, excluding any  $q_c$  values which were outside this stated range  $0.7*q_{ca}-1.3*q_{ca}$ .

Finally, the value  $Q_b$  can be calculated by using  $q_b$  and the area of the base (this occurs for every depth, implemented by the for loop at the start loop through each 0.5m interval of depth):

```
qb=kci*qca;
Ab=pi*0.2^2;
Qb=qb*Ab;
```

Next is to calculate  $f_p$ . For this, a value of alpha<sub>LCPC</sub> is needed. This methodology is similar to the extraction of the value  $k_c$  based on soil type and various values of  $q_c$  (MPa) at different depths.

A main 'if', 'elseif' and 'else' loop is in place to separate the various soil types. Within each of these loops is another series of 'if', 'elseif' and 'else' loops. The first series of loops classifies the various soil types, the next series will use the  $q_c$  values for the specific soil to extract and store the following values; alpha<sub>LCPC</sub> and the  $f_{p,max}$  (which will be used later as a checker). This is implemented in code form as follows:

```
%FINDING ALPHA FOR EACH SOIL TYPE UNDER DIFFERENT LOADS
    if c <= 15 %Loose sand and silty sand
        if qcMPAi<=5</pre>
            aplhai=60;
            fpmax=0.035;
        elseif qcMPAi >5 && qcMPAi <=12
            aplhai=100;
            fpmax=0.08;
        else qcMPAi>12
            aplhai=150;
            fpmax=0.12;
        end
    elseif c >=16 && c<= 47 %CLAYS
        if qcMPAi<1
            aplhai=30;
            fpmax=0.015;
        elseif qcMPAi >=1 && qcMPAi <5
            aplhai=0.40;
            fpmax=0.035;
        elseif qcMPAi >=5 && qcMPAi <=12
            aplhai=60;
            fpmax=0.035;
        else qcMPAi>12
            aplhai=60;
            fpmax=0.035;
    else c >= 48 % Loose Sands
        if qcMPAi<=5</pre>
            aplhai=60;
            fpmax=0.035;
        elseif qcMPAi >5 && qcMPAi <=12
```

```
aplhai=100;
    fpmax=0.08;
else qcMPAi>12
    aplhai=150;
    fpmax=0.12;
end
end
```

At the specific point in depth, the  $f_p$  is calculated as follows:

```
fp=qcMPAi/aplhai;
```

Now the checker using  $f_{p,max}$  which was mentioned above and stored as variable fpmax is used.

This is checked by an 'if' condition loop. The condition is as follows (using variable names), 'if' fp is less than fpmax, then fp keeps its value. However, 'if' fp is greater than fpmax, then fp is set to take the fpmax value. (The fpmax was found for the specific soil type and  $q_c$  value from the above code). This if condition checker is implemented by the following code:

```
if fp>fpmax
    fp=fpmax;
end
```

(Check table 18 to visualise if  $f_p$  that was calculated using  $a_{LCPC}$  or if  $f_p$  has been set to  $f_{p,max}$  has been used instead at all the depths). Green represents the  $a_{LCPC}$   $f_p$  was used, Yellow mean  $f_{p,max}$  has been used). All the  $f_p$  values for each depth are stored, this allows the next stage of the programme to take the average of all these unit shaft resistances along the length of the pile. The storage procedure is completed by the following code:

```
fpvalues(c)=fp; %Store the unit shaft resistance at each depth.
```

Now that fp has been identified and checked with fpmax there is another step before calculating the  $Q_s$  value. This step is taking the average of the unit shaft resistances at all the points along the length of the pile for that given depth/length. This is computed by the following code:

```
fpbar=sum(fpvalues(2:c,1))/(c-1); %Average, represented by fp bar fpbarvalues(c)=fpbar; %Storing this fp average
```

The value Q<sub>s</sub> can be calculated. This is computed by the following code:

```
As=pi*0.4*depth(c);
Qs=fpbar*As;
```

end

For each depth, the  $Q_{ult}$  of a single pile is calculated by simply summing  $Q_s$  and  $Q_b$  (the base resistance and shaft resistance). This is all within a 'for' loop which ranges over each depth, so it must have a final end present.

```
% calculating Qult at each depth
QultSingle(c,1)=Qb+Qs;
```

Finally, the last step is to apply a Factor of Safety of 2, to calculate the Q allowable. This is computed in the program as follows:

```
%Considering factor of safety 2; calculating Q allowable
QallSingle=QultSingle/2;
```

From analysing the Q allowable of a single pile, it was determined that a single pile is not sufficient (discussed in section 4). The upcoming code calculates the Q allowable for the group pile suggestion in sections 5 and 6). Note: there are two methods to calculate the group bearing capacity; Block failure and individual failure multiplied by the number of piles in used (4 in the suggested design).

The unit base resistance and unit shaft resistance has already been calculated and stored in vectors using the above code. The upcoming code will make use of these values but the shaft area and base areas will be increased (as it is now a group pile).

The block group bearing capacity is calculated using the upcoming code, where the base area and shaft area is idealised as a square and a cuboid respectively. The width of this idealised square is  $B_g = L_g$  which was determined based on the centre-to-centre spacing and diameters of the piles. A factor of safety of 2 is also used to change the ultimate bearing capacity of the block to the allowable bearing capacity. The code is as follows:

```
%BLOCK FAILURE GROUP PILES
QugBlock=zeros(leng,1);

for c=2:leng
    depthi=depth(c);
    QugBlock(c)=qbvalues(c)*Bg*Lg+fpvalues(c)*(Bg*4*depthi);
end
QallqBlock=QugBlock/2;
```

Next, is calculating the Group failure by considering individual piles capacity and the number of piles within the group. A factor of safety of 2 is also applied. The code for this is as follows:

```
%INDIVIDUAL PILE GORUP MEHTOD
QugIndividualGroup=zeros(leng,1);

for c=2:leng
    depthi=depth(c);
    QugIndividualGroup(c)=QultSingle(c)*4;
end
QallgIndividualGroup=QugIndividualGroup/2;
```

Finally, to check the efficiency of the pile group, eta is determined. This will also show if the centre-to-centre spacing of the pile group is poor, causing an overlap in the zone of influence of adjacent piles. This is coded as follows:

```
eta=QallgBlock./QallgIndividualGroup;
```

Finally, a quick check using the beta method is completed for a single pile, this code uses the beta method formula as described in section 4.2. Note human error may be present when extracting the values of beta and  $N_t$ . This code is designed for various soil types (which is present in the soil profile. The different soil types are analysed by using multiple 'for' loops.

```
QultB=zeros(leng,1); %Sizing the Q ult bearing capacity which will store
Beta method results
sigma v prime=Design3SoilProfileDataS2(1:61,12);
sigma v prime(1)=0;
for i=1:15 %Iterating for sands
QultB(i) = 0.8*sum(sigma_v_prime(1:i))*0.5*0.4/1000+60*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigma_v_prime(i)*pi*0.8*sigm
04;
end
for i=16:47 % Iterating for clays
               QultB(i) = QultB(15) -
60*sigma v prime(15)*pi*0.04+0.5*sum(sigma v prime(16:i))*0.5*0.4/1000+30*s
igma v prime(i)*pi*0.04;
end
for i=48:leng %Iterating for sands
               QultB(i) = QultB(47) -
30*sigma v prime(47)*pi*0.04+0.8*sum(sigma v prime(16:i))*0.5*0.4/1000+60*s
igma v prime(i)*pi*0.04;
end
Qall Beta MN=QultB/2000; % Dividing by FoS 2 and 1000 to convert from kPa
to MPa.
Qall Beta kN=Qall Beta MN*1000;
```

Note for reader: The code file has been attached in the document submissions along with this document, please feel free to download it, test it and read the results of the variables, matrices, and vectors.

Green represents the calculated  $f_p$  value is used. Yellow represents the  $f_{p,max}$  value has been used.

Table 18: fp (green) or fpmax (yellow) was used

| Depth (m) | fp values |
|-----------|-----------|
| 0         | 0         |
| 0.5       | 0.035     |
| 1         | 0.035     |
| 1.5       | 0.035     |
| 2         | 0.035     |
| 2.5       | 0.035     |
| 3         | 0.057     |
| 3.5       | 0.063     |
| 4         | 0.061     |
| 4.5       | 0.068     |
| 5         | 0.035     |
| 5.5       | 0.053     |
| 6         | 0.035     |
| 6.5       | 0.056     |
| 7         | 0.035     |
| 7.5       | 0.015     |
| 8         | 0.015     |
| 8.5       | 0.015     |
| 9         | 0.015     |
| 9.5       | 0.015     |
| 10        | 0.015     |
| 10.5      | 0.015     |
| 11        | 0.015     |
| 11.5      | 0.015     |
| 12        | 0.015     |
| 12.5      | 0.015     |
| 13        | 0.015     |
| 13.5      | 0.015     |
| 14        | 0.015     |
| 14.5      | 0.035     |
| 15        | 0.035     |
| 15.5      | 0.035     |
| 16        | 0.035     |
| 16.5      | 0.035     |
| 17        | 0.035     |
| 17.5      | 0.035     |
| 18        | 0.035     |
| 18.5      | 0.035     |
| 19        | 0.035     |
| 19.5      | 0.035     |

| İ          |              |
|------------|--------------|
| 20         | 0.035        |
| 20.5       | 0.035        |
| 21         | 0.035        |
| 21.5       | 0.035        |
| 22         | 0.035        |
| 22.5       | 0.035        |
| 23         | 0.035        |
| 23.5       | 0.06         |
| 24         | 0.12         |
| 24.5       | 0.12         |
| 25         | 0.12         |
| 25.5       | 0.12         |
| 26         | 0.12         |
| 26.5       | 0.12         |
| 27         | 0.12         |
| 27.5       | 0.12         |
| 28         | 0.12         |
| 28.5       | 0.12         |
| 29         | 0.12         |
| 29.5       | 0.12         |
| 30         | 0.12         |
| 29<br>29.5 | 0.12<br>0.12 |

| φ' (deg) | N <sub>c</sub> | $N_q$ | Ny    | $\phi'$ (deg) | N <sub>c</sub> | $N_q$  | Ny     |
|----------|----------------|-------|-------|---------------|----------------|--------|--------|
| 0        | 5.14           | 1.00  | 0.00  | 26            | 22.25          | 11.85  | 12.54  |
| 1        | 5.38           | 1.09  | 0.07  | 27            | 23.94          | 13.20  | 14.47  |
| 2        | 5.63           | 1.20  | 0.15  | 28            | 25.80          | 14.72  | 16.72  |
| 3        | 5.90           | 1.31  | 0.24  | 29            | 27.86          | 16.44  | 19.34  |
| 4        | 6.19           | 1.43  | 0.34  | 30            | 30.14          | 18.40  | 22.40  |
| 5        | 6.49           | 1.57  | 0.45  | 31            | 32.67          | 20.63  | 25.99  |
| 6        | 6.81           | 1.72  | 0.57  | 32            | 35.49          | 23.18  | 30.22  |
| 7        | 7.16           | 1.88  | 0.71  | 33            | 38.64          | 26.09  | 35.19  |
| 8        | 7.53           | 2.06  | 0.86  | 34            | 42.16          | 29.44  | 41.06  |
| 9        | 7.92           | 2.25  | 1.03  | 35            | 46.12          | 33.30  | 48.03  |
| 10       | 8.35           | 2.47  | 1.22  | 36            | 50.59          | 37.75  | 56.31  |
| 11       | 8.80           | 2.71  | 1.44  | 37            | 55.63          | 42.92  | 66.19  |
| 12       | 9.28           | 2.97  | 1.69  | 38            | 61.35          | 48.93  | 78.03  |
| 13       | 9.81           | 3.26  | 1.97  | 39            | 67.87          | 55.96  | 92.25  |
| 14       | 10.37          | 3.59  | 2.29  | 40            | 75.31          | 64.20  | 109.41 |
| 15       | 10.98          | 3.94  | 2.65  | 41            | 83.86          | 73.90  | 130.22 |
| 16       | 11.63          | 4.34  | 3.06  | 42            | 93.71          | 85.38  | 155.55 |
| 17       | 12.34          | 4.77  | 3.53  | 43            | 105.11         | 99.02  | 186.54 |
| 18       | 13.10          | 5.26  | 4.07  | 44            | 118.37         | 115.31 | 224.64 |
| 19       | 13.93          | 5.80  | 4.68  | 45            | 133.88         | 134.88 | 271.76 |
| 20       | 14.83          | 6.40  | 5.39  | 46            | 152.10         | 158.51 | 330.35 |
| 21       | 15.82          | 7.07  | 6.20  | 47            | 173.64         | 187.21 | 403.67 |
| 22       | 16.88          | 7.82  | 7.13  | 48            | 199.26         | 222.31 | 496.01 |
| 23       | 18.05          | 8.66  | 8.20  | 49            | 229.93         | 265.51 | 613.16 |
| 24       | 19.32          | 9.60  | 9.44  | 50            | 266.89         | 319.07 | 762.89 |
| 25       | 20.72          | 10.66 | 10.88 |               |                |        |        |

Figure 9.7: Bearing Capacity Analysis (Sedighi, 2022)

Table 19: FINAL RESULTS of: Single plie, group pile individual method, group pile block method, eta, beta method for all depths

| DEPTH |                   |                                        |                                             |     |                   |
|-------|-------------------|----------------------------------------|---------------------------------------------|-----|-------------------|
| (M)   | Single Pile (kPa) | Group Bearing Cap - Block Method (kPa) | Group Bearing Cap - Individual Method (kPa) | Eta | BETA Method (kPa) |
| 0     | 0.0               | 0.0                                    | 0.0                                         | 0   | 0.0               |
| 0.5   | 104.9             | 9538.3                                 | 419.5                                       | 23  | 24.8              |
| 1     | 120.8             | 10162.5                                | 483.4                                       | 21  | 49.4              |
| 1.5   | 114.2             | 8522.4                                 | 457.0                                       | 19  | 78.0              |
| 2     | 133.1             | 9430.8                                 | 532.3                                       | 18  | 102.9             |
| 2.5   | 167.2             | 11879.5                                | 668.9                                       | 18  | 132.1             |
| 3     | 213.6             | 14938.4                                | 854.5                                       | 17  | 159.5             |
| 3.5   | 244.3             | 16254.3                                | 977.2                                       | 17  | 183.6             |
| 4     | 272.7             | 17395.0                                | 1090.8                                      | 16  | 211.6             |
| 4.5   | 276.5             | 15872.1                                | 1105.8                                      | 14  | 239.4             |
| 5     | 280.8             | 15324.2                                | 1123.0                                      | 14  | 255.7             |
| 5.5   | 267.2             | 12487.7                                | 1069.0                                      | 12  | 283.7             |
| 6     | 290.7             | 13863.8                                | 1162.9                                      | 12  | 298.7             |
| 6.5   | 300.9             | 13314.9                                | 1203.4                                      | 11  | 347.1             |
| 7     | 299.0             | 12150.9                                | 1196.0                                      | 10  | 355.0             |
| 7.5   | 250.4             | 6855.1                                 | 1001.5                                      | 7   | 148.0             |
| 8     | 228.3             | 4219.8                                 | 913.2                                       | 5   | 161.5             |
| 8.5   | 233.3             | 4298.2                                 | 933.0                                       | 5   | 183.4             |
| 9     | 238.3             | 4385.1                                 | 953.2                                       | 5   | 196.5             |
| 9.5   | 243.4             | 4480.3                                 | 973.7                                       | 5   | 206.1             |
| 10    | 247.5             | 4466.4                                 | 989.9                                       | 5   | 218.7             |
| 10.5  | 252.3             | 4528.0                                 | 1009.1                                      | 4   | 223.7             |
| 11    | 257.7             | 4648.5                                 | 1030.6                                      | 5   | 228.6             |
| 11.5  | 261.5             | 4617.7                                 | 1046.1                                      | 4   | 236.7             |

| 12   | 266.8  | 4729.8   | 1067.3 | 4  | 237.7 |
|------|--------|----------|--------|----|-------|
| 12.5 | 272.0  | 4833.4   | 1088.2 | 4  | 242.2 |
| 13   | 279.3  | 5138.7   | 1117.1 | 5  | 247.1 |
| 13.5 | 284.6  | 5250.8   | 1138.3 | 5  | 249.8 |
| 14   | 315.7  | 7955.6   | 1262.9 | 6  | 253.2 |
| 14.5 | 358.8  | 11294.0  | 1435.1 | 8  | 294.9 |
| 15   | 386.6  | 13109.9  | 1546.5 | 8  | 303.6 |
| 15.5 | 405.7  | 14042.8  | 1622.7 | 9  | 306.6 |
| 16   | 446.1  | 17118.1  | 1784.4 | 10 | 319.6 |
| 16.5 | 437.9  | 15320.5  | 1751.8 | 9  | 312.4 |
| 17   | 463.4  | 16894.0  | 1853.5 | 9  | 329.2 |
| 17.5 | 447.5  | 14319.2  | 1789.9 | 8  | 322.7 |
| 18   | 459.9  | 14590.5  | 1839.7 | 8  | 331.7 |
| 18.5 | 506.7  | 18306.5  | 2027.0 | 9  | 355.5 |
| 19   | 492.2  | 15868.2  | 1968.7 | 8  | 341.3 |
| 19.5 | 532.5  | 18933.0  | 2130.0 | 9  | 366.5 |
| 20   | 539.7  | 18679.2  | 2158.9 | 9  | 363.5 |
| 20.5 | 520.0  | 15726.4  | 2080.2 | 8  | 352.2 |
| 21   | 560.8  | 18833.2  | 2243.1 | 8  | 392.2 |
| 21.5 | 585.9  | 20375.2  | 2343.6 | 9  | 395.2 |
| 22   | 594.1  | 20215.9  | 2376.3 | 9  | 386.4 |
| 22.5 | 607.0  | 20529.2  | 2427.8 | 8  | 398.5 |
| 23   | 622.7  | 21126.1  | 2490.7 | 8  | 408.0 |
| 23.5 | 905.0  | 47762.0  | 3619.9 | 13 | 432.8 |
| 24   | 1227.4 | 76739.8  | 4909.5 | 16 | 529.1 |
| 24.5 | 1484.3 | 99150.1  | 5937.2 | 17 | 537.7 |
| 25   | 1536.0 | 100976.9 | 6143.8 | 16 | 468.8 |

| 25.5 | 1563.9 | 100422.4 | 6255.5 | 16 | 500.1 |
|------|--------|----------|--------|----|-------|
| 26   | 1593.2 | 100008.4 | 6372.8 | 16 | 509.6 |
| 26.5 | 1629.5 | 100293.9 | 6518.0 | 15 | 583.0 |
| 27   | 1674.2 | 101420.0 | 6696.7 | 15 | 624.7 |
| 27.5 | 1702.1 | 100865.5 | 6808.4 | 15 | 696.1 |
| 28   | 1787.3 | 106052.7 | 7149.1 | 15 | 678.0 |
| 28.5 | 1844.5 | 108439.1 | 7378.1 | 15 | 713.2 |
| 29   | 1896.2 | 110265.2 | 7584.8 | 15 | 725.8 |
| 29.5 | 1922.7 | 109570.8 | 7690.9 | 14 | 740.6 |
| 30   | 1844.1 | 98332.7  | 7376.4 | 13 | 766.3 |

| Name<br>(Block Capitals) | Weighting to be applied to Group mark (indicate + or - %) | Discussed and agreed by all Group members (Yes or No) |
|--------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| JOSEPH JOLLEY            | 0                                                         | YES                                                   |
| JAMIE SHUTTLEWORTH       | 0                                                         | YES                                                   |
| JINHONG LI               | 0                                                         | YES                                                   |
| KARLA KANGHARA           | 0                                                         | YES                                                   |
| ALIMA ELFRIDA            | 0                                                         | YES                                                   |
| WENG TANG                | 0                                                         | YES                                                   |