Parametry struktury przestrzennej RNA

Celem projektu jest implementacja modułu, który dla zadanej na wejściu struktury (plik .pdb lub .cif – program może działać tylko dla jednego z tych formatów) obliczy kąty torsyjne dla wszystkich nukleotydów oraz na podstawie odległości między atomami zidentyfikuje oddziaływania wewnątrzcząsteczkowe (kanoniczne i niekanoniczne).

Parameters of spatial structure of RNA

The purpose of the project is to implement a module that calculates the angular angles for all input structures (a .pdb or .cif file - the program can only work on one of these formats).

Nucleotides and on the basis of the distance between atoms will identify intramolecular interactions (canonical and non-canonical).

SPIS TRESCI:

- 1.Informacje wstępne
- 2.FORMAT PDB, CIF TXT CSV
- 3.OPIS PROJEKTU
- 4.PLAN
- 5.OPIS FUNKCJI
- 6.WYMAGANIA
- **7TESTY**
- 8WYNIKI
- 9.Podsumowanie
- 10.Bibliografia

1.Informacje wstępne

Program ma tworzyć plik z kątami torsyjnymi w cząsteczce zadanej n awejściu w pliku .pdb. Mój projekt zawiera wersje z wypisaniem do pliku .txt po kątach albo po numerach nukleotydów. Druga część zawiera oddziaływanie kanoniczne niekanoniczne po odległościach, jednak ta częścią zajmuję sie poprzez nauczanie maszynowe.

2.FORMAT PDB, CIF TXT CSV

Każdy z formatów (PDB, CIF TXT CSV) jest inny. Dlatego też zapis jest z plików .pdb lub .cif do .txt. lub .csv. Odczyt z nich wygląda inaczej.

3.OPIS PROJEKTU

Projekt składa się z paru części. Jedną z nich jest zidentyfikowanie odpowiednich atomów zarówno do kątów torsyjnych jak i oddziaływań oraz do zapisu do pliku w odpowiedniej formie. Jako, ze plik .csv zawiera kolumny i wiersze to inny jest zapis jak do .tx

4.PLAN

- 4.1. Założenia
- 4.2. Teoria
- 4.3. Pisanie kodu:
- a) Obliczanie kątów dwusiecznych
- b) Odczyt współrzędnych atomów (plik PDB)
- c) Obliczanie kątów torsyjnych (plik PDB)
- d) Obliczanie odległości między atomami
- e) Identyfikacja oddziaływań wewnątrzcząsteczkowych na podstawie odległości między atomami (plik PDB)
- 4.4. Testy
- 4.5. Kompatybilność w wersją Pythona 2.7
- 4.6. Dokumentacja kodu
- 4.7. Dokumentacja użytkownika
- 4.8. Realizacja punktów 3 7 dla formatu .cif

5.OPIS FUNKCJI

kat - oblicza kat, który jest podany. Przyjmuje 10 parametrów(pierwszy string i nr jego nukleotydu w stosunku do innych, drugi string i nr jego nukleotydu w stosunku do innych, trzeci string i nr jego nukleotydu w stosunku do innych, czwarty string i nr jego nukleotydu w stosunku do innych, oraz listę utworzoną w pliku .pdb składającą się z parametrów potrzebnych do identyfikacji i zczytania kątów torsyjnych w głównym łańcuchu, oraz długości tej listy)

wszystkiekaty - tworzy plik .txt składający się z informacji jaki to jest kąt torsyjny i jaką ma wartość w głównym łańcuchu. Jako parametr przyjmuje długość listy oraz samą listę, która stanowi przekształcony plik .pdb ograniczający się do atomów, które mogą tworzyć ów kąty.

6.WYMAGANIA

Wersja jest kompatybilna z wersja 2.7 oraz późniejszymi

7TESTY

Testy są online dla obliczania kątów torsyjnych

8.WYNIKI

Wyniki są w plikach .txt, apisane zgodnie z założeniami.

9.Podsumowanie

Program nie jest skończony jeśli chodzi o identyfikacje oddziaływań, ale kwestie kątów torsyjnych są poprawne patrząc na testy.

10.Bibliografia

http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc172

http://mmcif.pdb.org/

http://x3dna.org/highlights/torsion-angles-of-nucleic-acid-structures

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html

http://www.mathsisfun.com/geometry/dihedral-angles.html