演習11に残るなるら原うの原発を

Exercise 1 Evaluate the number of Si atoms in 1 cm³.

$\frac{8 \text{ atoms}}{(0.543 \text{ nm})^3} = \frac{8}{(0.543 \times 10^{-7} \text{cm})^3}$ $= 5 \times 10^{22} / \text{cm}^3$

演習2 ダイヤモ・上本華をお草で計算せよ。

Exercise 2

Derive the volume fraction occupied by atomic spheres in the diamond structure.

$$\frac{4\pi r^{3} \times 8}{1^{3}}$$

$$= \frac{\sqrt{3}\pi}{16} \sim 0.34$$

$$= \frac{15}{16} \approx 0.34$$

$$= \frac{34\%}{34\%}$$

半事体。バンド構造、電子構造 Electronic structure anti-bonding state molecule FEFTE bonding state 塘原子 共解語 covalent bond hybridization

11-广播追加形成 Band structure of Si

定文度 Deusity of states (conduction band)

TE 态度 Deusity of states (conduction band) Nc = 2.86×1019/cm3 (Si) effective density of states (valence band) 個青萍。有市长思春度 Hv= 2.66x1018/cm3 (Si) DLED 那额 dencity of states

Carrier generation (heat, light)

Conduction electron

Carrier density

Atomic number

原義 5 Atomic number

Impurity state p-type semiconductor

hole density

777709-ali-70. doping with acceptors

Exercise

Evaluate the concentration of P atoms (at%), which is necessary to increase the conduction electron density in Si at room temperature to 1×10^{16} /cm³.

(室温におけるSiの伝導電子密度を 1 x 10¹⁶ /cm³ とするために必要なP原子の 濃度 (at%) を計算せよ。)