ASSIGNMENT 2

M.SNEHA

1. Importing Required Package

import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as pt

In [2]:

In [1]:

%matplotlib inline

2. Loading the Dataset

df = pd.read_csv('C:\\Users\\Sandhya Jayaraman\\Downloads\\Churn_Modelling.csv')
df

RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimate
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	

RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimate
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

10000 rows × 14 columns

3. Visualizations

3.1 Univariate Analysis

sns.displot(df.Tenure)

In [8]:

Out[8]:

<seaborn.axisgrid.FacetGrid at 0x1f11cee0b48>

3.2 Bi-Variate Analysis

df.plot.line()

Out[9]:
<AxesSubplot:>

In [9]:

3.3 Multi - Variate Analysis

In [10]:

 $\verb|sns.lmplot("Age", "NumOfProducts", df, hue="NumOfProducts", fit_reg=False|); \\$

c:\users\sandhya jayaraman\appdata\local\programs\python\python37\lib\site-packages\seaborn_decorato rs.py:43: FutureWarning: Pass the following variables as keyword args: x, y, data. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke yword will result in an error or misinterpretation.

RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.0000000	10.0000000	250898.090000	4.000000	1.000000	1.000000	199992.480000	1.000000

5. Handle the Missing values

data = pd.read_csv('C:\\Users\\Sandhya Jayaraman\\Downloads\\Churn_Modelling.csv')
pd.isnull(data["Gender"])
0 False

```
False
False
False
False
False
False
False
9995
False
9997
False
9998
False
9999
False
```

6. Find the outliers and replace the outliers

7. Check for Categorical columns and perform encoding

```
pd.get dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"]).head()
```

RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember		Gender_78	Gender_79	Gender_80	Gender_81
0	1	15634602	Hargrave	619	France	2	0.00	1	1	1		0	0	0
1	2	15647311	Hill	608	Spain	1	83807.86	1	0	1		0	0	0
2	3	15619304	Onio	502	France	8	159660.80	3	1	0		0	0	0
3	4	15701354	Boni	699	France	1	0.00	2	0	0		0	0	0
4	5	15737888	Mitchell	850	Spain	2	125510.82	1	1	1		0	0	0
		Gender_82	Gender_83	Gender_84	Gender_	_85 Gend	er_88 Gender_92							
		0	0	0		0	0 0							
		0	0	0		0	0 0							
		0	0	0		0	0 0							
		0	0	0		0	0 0							

8. Split the data into dependent and independent variables

8.1 Split the data into Independent variables

```
X = df.iloc[:, :-2].values
print(X)
[[1 15634602 'Hargrave' ... 1 1 1]
  [2 15647311 'Hill' ... 1 0 1]
  [3 15619304 'Onio' ... 3 1 0]
  ...
  [9998 15584532 'Liu' ... 1 0 1]
  [9999 15682355 'Sabbatini' ... 2 1 0]
  [10000 15628319 'Walker' ... 1 1 0]]
```

8.2 Split the data into Dependent variables

```
import pandas as pd
df = pd.read_csv('C:\\Users\\Sandhya Jayaraman\\Downloads\\Churn_Modelling.csv')
Y = df.iloc[:, -1].values
print(Y)
[1 0 1 ... 1 1 0]
```

9. Scale the independent variables

```
      9997
      0.9998
      15584532
      Liu
      709
      France
      Female
      36

      9998
      0.9999
      15682355
      Sabbatini
      772
      Germany
      Male
      42

      9999
      1.0000
      15628319
      Walker
      792
      France
      Female
      28

      Tenure Balance NumOfProducts HasCrCard IsActiveMember \
         2 0.00 1 1 1
1 1 83807.86 1 0
2 8 159660.80 3 1
3 1 0.00 2 0
4 2 125510.82 1
                                                                                          1
9995 5 0.00 2 1
9996 10 57369.61 1 1
9997 7 0.00 1 0
9998 3 75075.31 2 1
9999 4 130142.79 1 1
                                                                                          1
                                                                                          1
      EstimatedSalary Exited
         101348.88 1
0
               112542.58
1
          112542.55
113931.57 1
93826.63 0
79084.10 0
9995 96270.64 0
9996 101699.77 0
9997 42085 58
 9998
                92888.52
                38190.78 0
 9999
 [10000 rows x 14 columns]
```

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
train_size=0.8
X = df.drop(columns = ['Tenure']).copy()
y = df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
(8000, 13)
(8000,)
```

```
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(None, None)
```

Out[20]: