





# **Princeton University**

GEOMETRIC AND PERFORMANCE CHARACTERISTIC

of

COMMERCIAL CARGO SHIPS

by

T. E. Sweeney

Part I\*, Summer, 1975 AMS Report No. 1241



PROPERTY

OF THE

ENGINEERING LIBRARY

FRANCETCH UNIVERSITY

Department of Aerospace and Mechanical Sciences



This document has been approved for public release and sale; its distribution is unlimited.

83 09 02 066

# GEOMETRIC AND PERFORMANCE CHARACTERISTICS of COMMERCIAL CARGO SHIPS

by

T. E. Sweeney

Part I\*, Summer, 1975

AMS Report No. 1241

\* Covering the decades 1930 through 1950



This decurrent has a improved for public soin, and sale, its distribution is unitarities.

#### FOREWORD

This paper, dealing with particular characteristics of commercial cargo ships of the 1930 - 1950 era, is but the first of a planned several part series of studies aimed at a preliminary evaluation of the potential of a sailing cargo ship.

Laboratory of Princeton University has, over the past decade or so, developed a rather unique sail of very high efficiency. It has been used (successfully) as wings for airplanes and as rotor blades for windmills. Its applicability as a sail for a cargo ship is, at this time, not yet determined - hence this study. It is quite probable that the reader will be either nautically or aeronautically orientated in his thinking, therefore, there may be some problem in the semantics of the matter, however, every effort is made to define the expressions of the two related disciplines as they occur in the text.

It should be kept in mind that the facts listed herein and the deductions made are but "homework" on the part of the author to establish a "first pass" as to the feasibility of the scheme of a partial reversion to the age of sail.



Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Judification

By
Distribution/
Availability Codes

Avail and/or
Dist
Special

# TABLE OF CONTENTS

| FOREWORD           | Page |
|--------------------|------|
| INTRODUCTION       | . 1  |
| DISCUSSION         | - 2  |
| CONCLUDING REMARKS | - 7  |
| REFERENCE          | - 7  |
| TABLES             | - 9  |
| FIGURES            | . 23 |

#### INTRODUCTION

In order to determine the validity of the notion of reapplying sail power to an effective cargo ship on the basis of its competitiveness in the modern world the answers to many questions must be determined. Not least among these are:

- 1. What is the geometry of a currently acceptable commercial cargo ship?
- 2. What is the performance of a modern motor or steam cargo ship?

Of course, many other vital matters must be considered and they are planned to be studied in future papers - the two questions posed above, however, are undertaken to be answered here for the decades of the 30's, 40's and 1950's. Since many ships built during those years are still in active use the results of the study should shed considerable light on the subject. It is planned that a second group of ships - those built during the 1970's, 60's and overlapping back into the 50's will be similarly investigated in a following paper using as nearly as possible the techniques developed here.

#### DISCUSSION

The important geometric characteristics of the type ship under consideration are:

- 1. Length (L)
- 2. Beam (B).
- 3. Draft (d)
- 4. Depth (freeboard) (D)
- 5. Displacement
- 6. Fineness Ratio (L/B)
- 7. Beam/draft (B/d)
- 8. Depth/draft  $(^{D}/d)$

By the careful selection of ships of a general type (not necessarily class) it appears not unreasonable that a geometric composite ship may be intellectually derived.

The performance characteristics necessary in order to make a first approximation of the load carrying capability and speed of such a composite ship are:

- 1. Dead wt. capacity (pay load)
- 2. Normal speed (cruise speed)
- 3. Speed length ratio  $(V/L^{\frac{1}{2}})$
- 4. Number of Propellers
- 5. Propeller efficiency (72)
- 6. Total Shaft Horsepower (100% power)
- 7. Normal Shaft Horsepower (@ 75% power)

8. Assumptions relative to wave drag

Tables 1 through 13 tabulate the geometry and performance of thirteen vessels built during the time period of present interest, therefore, most of the required information as outlined above may be gleaned from them. The resultant composite ship and its performance will be derived in both geometrical terms and in its load carrying capability, speed and thrust required.

In order to calculate the items of speed vs. thrust the total drag of the ship must be determined in non-dimensional terms. It is, therefore, of importance to make, at this point two vital assumptions:

- 1. The propeller efficiency of a single propeller ship may be as high as 0.80, however 0.75 has been assumed (Information Ref. 1).
- 2. The wave making drag of a ship with a speed-length ratio  $({}^{V}/L^{\frac{1}{2}})$  substantially less than 1.0 may be generally neglected. This is a convenience in this case that will not seriously impair the results.

It will be noted that among the characteristics listed on Tables 1 through 13 are the total installed shaft horsepower (SHP) $_{\rm T}$  and the "normal" (SHP) $_{\rm N}$ . The value of (SHP) $_{\rm T}$  was obtained from Reference 1 while (SHP) $_{\rm N}$  was calculated on the basis of 75% power for the cruise condition. Thus:

Thrust horsepower must take into consideration the propeller efficiency which has been assumed as mentioned earlier to be 75%.

| CT17. |     |     |    |   |
|-------|-----|-----|----|---|
| Τ'n   | ere | ≥£o | re | • |

THP = 
$$(SHP)_N \gamma_P = .75 (SHP)_N - ... 2$$
  
and THP =  $RV/550$   
so R =  $550$  THP/V =  $\frac{.75(SHP)_N (550)}{V}$   
since  $C_R = R / \frac{e}{2} V^2 Bd$   
then  $C_R = (550)(.75)(SHP)_N / \frac{e}{2} V^3 Bd - ... 3$   
since  $Q = \frac{8}{6} = 2$ ,  $\frac{9}{2} = 1.0$   
Therefore  $C_R = (SHP)_N (412.5)/\sqrt{3} Bd - ... 4$ 

This then is the derivation of the expression for  $C_R$  which appears on each of the Tables 1 through 13 and upon which the actual value of the resistance coefficient has been calculated. It should be understood that these computed values of  $C_R$  include all forms of drag to which the ship is subjected.

Table 14 is a summary of the thirteen ships studied two of which (Liberty and Victory) were class type vessels. It will be noted that only nine of the thirteen ships studied are considered for the determination of the appropriate values of the composite cargo ship. The first three, the America, Queen Mary and the Bremen have been included in the study as a matter of interest but eliminated on the basis of tonnage and their speed length ratio. So also has the Quaker been eliminated because of her high value of speed-length ratio.

Averaging those values of ships of similar, but low values of V/L<sup>2</sup> (No.'s 4 through 12 of Table 14) yields the overall geometric and performance characteristics of a composite cargo ship. These appear in the last line of Table 14, and are again tabulated in Figure 1.

It is now possible to relate velocity in knots versus thrust required in pounds by means of the fundamental relationship:

$$R = CR \frac{9}{2} V^{2}Bd$$
where: 
$$\frac{9}{2} = 1.0$$

$$V = \frac{4}{5} + \frac{1}{5} = 0.$$

These calculations appear in Table 15.

These values of thrust (or resistance) in pounds versus velocity in knots are shown plotted in Figure 2, curve a. As discussed earlier thrust was determined by the assumed value of a propeller efficiency (7p) of 75%, however, again from Reference 1 that value could be as low as 60% depending upon the fairing of the aft hull lines immediately forward of the propeller. From equations 2 and 4 it is apparent that the coefficient of resistance is a direct and linear function of propeller efficiency, therefore curve b of Figure 2, representing a propeller efficiency of 60%, has been constructed proportionally. It is reasonable to expect that the truth lies somewhere in the cross hatched area between the two curves - if the original assumption that "normal speed" is approximately 75% full power. It is not

reasonable (by aeronautical standards) that it would be higher, therefore, it is considered that the thrust required as shown in Figure 2 is conservatively high. This statement is based upon the reasoning that if normal speed related to a lower than 75% installed shaft horsepower then the coefficient of resistance and thus thrust required for a given speed would be lower.

It is alsmost irresistable not to proceed beyond this point and to show that a simple variation of the Princeton Sailwing can produce (without excessive sail area) the thrust necessary in a 20 kt. wind to easily compete with the powered vessel. This temptation, however, has been resisted simply because it is too early in the overall study to make a sufficiently strong case for the sailing vessel. Even so, it is admitted that preliminary calculations have been made which support the validity of sail power over other types of power for cargo vessels.

It is planned that a following paper will include a study of more modern cargo ships. Subsequent to that work a detailed analysis of the sails will be made. This will be intended to relate sail area; type of sail; sail setting relative to course, ship and wind; sail control and the arrangement of the sails for the various points of sailing.

#### CONCLUDING REMARKS

This has been but a preliminary study intended only as a beginning of an organized thought process to ultimately determine the validity of the notion of once again powering ocean going vessels by sail.

The paper will have only limited distribution - to selected persons for critical review of the work and to, hopefully, make helpful suggestions for the next phase. The reader is asked to be tolerant of this rather schoolboyish approach to what will become a complex problem. It is justified on the basis that one must start at the very beginning in an alien field.

#### REFERENCE

1. Lionel S. Marks, <u>Mechanical Engineers Handbook</u>, Fifth Edition, McGraw-Hill Book Company.

TABLE 1

| Item<br>1. | Name of VesselAMERICA          |        |      |
|------------|--------------------------------|--------|------|
| 2.         | W.L. Length (L)                | 690    | ft.  |
| 3.         | Beam (B)                       | 93.5   | ft.  |
| 4.         | Depth (D)                      | 55.5   | ft.  |
| 5.         | Draft (d)                      | . 32.5 | ft.  |
| 6.         | Displacement                   | 35,440 | Tons |
| 7.         | Dead Wt. Capacity              | 14,330 | Tons |
| 8.         | Block Coefficient              | 0.59   |      |
| 9.         | Normal Speed                   | 22     | Kts. |
| 10.        | V/L <sup>1/2</sup>             | 0.84   |      |
| 11.        | Propellers (No.)               | 2      |      |
| 12.        | Propeller RPM                  | 128    |      |
| 13.        | Total Shp                      | 34,000 |      |
| 14.        | Normal Shp. (@ .75 total Shp.) | 25,500 |      |
| 15.        | Engine Type:                   | Steam  |      |
| 16.        | Admiralty Coeff                |        |      |
| 17.        | Machinery Wt. (1bs./Shp.)      |        |      |
| 18.        | Fineness Ratio (L/B)           | 7.38   |      |
| 19.        | Beam/draft ( <sup>B</sup> /d)  | 2.88   |      |
| 20.        | Depth/draft (D/d)              | 1.71   |      |
|            | CR = SPN (412.5)               |        |      |

d

32.5

B

93.5

VEPS.B

51479

9/2

CR

.067

VKN.

22

Veps. N

37.2

SKPN

25,500

#### TABLE 2

| Item<br>1. | Name of VesselQUEEN MARY       |         |      |
|------------|--------------------------------|---------|------|
| 2.         | W.L. Length (L)                | 1004    | ft.  |
| 3.         | Beam (B)                       | 118     | ft.  |
| 4.         | Depth (D)                      | 92.5    | ft.  |
| 5.         | Draft (d)                      | 38.8    | ft.  |
| 6.         | Displacement                   | 77,400  | Tons |
| 7.         | Dead Wt. Capacity              |         | Tons |
| 8.         | Block Coefficient              | 0.59    |      |
| 9.         | Normal Speed                   | 29      | Kts. |
| 10.        | V/L <sup>1/2</sup>             | 0.92    |      |
| 11.        | Propellers (No.)               | 4       |      |
| 12.        | Propeller RPM                  | 180     |      |
| 13.        | Total Shp                      | 158,000 |      |
| 14.        | Normal Shp. (@ .75 total Shp.) | 118,500 |      |
| 15.        | Engine Type:                   | Steam   |      |
| 16.        | Admiralty Coeff                | -       |      |
| 17.        | Machinery Wt. (1bs./Shp.)      | -       |      |
| 18.        | Fineness Ratio (L/B)           | 8.51    |      |
| 19.        | Beam/draft (B/d)               | 3.04    | A-   |
| 20.        | Depth/draft (D/d)              | 2.38    |      |
|            | CR = StPN (412.5)              |         |      |

B

118

d

38.8

VEPS.3

118,000

9/2

= 1.0

CR

0.090

SIPN

118,500

VK N.

29

Veps. N

#### TABLE 3

| Item<br>1. | Name of VesselBREMEN           |               |                 |      |
|------------|--------------------------------|---------------|-----------------|------|
| 2.         | W.L. Length (L)                |               | 900             | ft.  |
| 3.         | Beam (B)                       |               | 102             | ft.  |
| 4.         | Depth (D)                      |               | 79.4            | ft.  |
| 5.         | Draft (d)                      |               | 33.9            | ft.  |
| 6.         | Displacement                   |               | 54,750          | Tons |
| 7.         | Dead Wt. Capacity              |               | 14,390          | Tons |
| ŝ.         | Block Coefficient              |               | 0.625           |      |
| 9.         | Normal Speed                   |               | 27              | Kts. |
| 10.        | V/L <sup>1/2</sup>             |               | 0.90            |      |
| 11.        | Propellers (No.)               | ш             | 4               |      |
| 12.        | Propeller RPM                  | , <del></del> | 182             |      |
| 13.        | Total Shp                      |               | 100,000         |      |
| 14.        | Normal Shp. (@ .75 total Shp.) |               | 75,000          |      |
| 15.        | Engine Type:                   |               | Steam           |      |
| 16.        | Admiralty Coeff                |               | -               |      |
| 17.        | Machinery Wt. (lbs./Shp.)      |               | -               |      |
| 18.        | Fineness Ratio (L/B)           |               | 8.82            |      |
| 19.        | Beam/draft (B/d)               |               | 3.01            |      |
| 20.        | Depth/draft (D/d)              |               | 2.34            |      |
|            | CR = SIPN (412.5)              |               |                 |      |
| 5PN        | VKN. VFPS.N B d V              | , g<br>662°2  | <sup>Q</sup> /2 | CR   |
|            |                                |               |                 |      |

75,000

27

# TABLE 4

| Item<br>1. | Name of V          | Vessel                  | BEAVERO      | CLEN |                     |          |      |
|------------|--------------------|-------------------------|--------------|------|---------------------|----------|------|
| 2.         | W.L. Leng          | gth (L)                 |              |      | -                   | 481      | ft.  |
| 3.         | Beam (B)           | :                       |              |      |                     | 64       | ft.  |
| 4.         | Depth (D)          |                         |              |      |                     | 42.7     | ft.  |
| 5.         | Draft (d)          |                         |              |      | -                   | 29.6     | ft.  |
| 6.         | Displace           | ment                    |              |      |                     | -        | Tons |
| 7.         | Dead Wt.           | Capacity ·              |              |      | -                   | 11,000   | Tons |
| 8.         | Block Coe          | efficient ·             |              |      | -                   | _        |      |
| 9.         | Normal Sp          | oeed                    |              |      | -                   | 16       | Kts. |
| 10.        | V/L <sup>1/2</sup> |                         |              |      | -                   | .073     |      |
| 11.        | Propeller          | cs (No.)                |              |      |                     | 1        |      |
| 12.        | Propeller          | RPM                     |              |      | •                   | 108      |      |
| 13.        | Total Sh           | ) ·                     |              |      | -                   | 9000     |      |
| 14.        | Normal Sh          | np. (@ .75              | total Sh     | .)   | -                   | 6750     |      |
| 15.        | Engine Ty          | /pe:                    |              |      |                     | Steam    |      |
| 16.        | Admiralty          | Coeff                   |              |      | -                   | 347      |      |
| 17.        | Machinery          | Wt. (lbs.               | ·/Shp.) -    |      | -                   | 213 #/SH | 2    |
| 18.        | Fineness           | Ratio (L/1              | B)           |      | -                   | 7.5      |      |
| 19.        | Beam/drai          | Et ( <sup>B</sup> /d) - |              |      |                     | 2.16     |      |
| 20.        | Depth/dra          | aft (D/d)               |              |      | -                   | .44      |      |
|            | CR                 | = SHN (                 | 412.5)<br>Bd |      |                     |          |      |
| SPN        | VK N.              | Veps. N                 | В            | d    | Λ <sub>g</sub> es's | 9/2      | CH   |
| 6750       | 16                 | 27                      | 64           | 29.6 | 19683               | = 1.0    | .075 |

## TABLE 5

| Item<br>1. | Name of Vessel         | VICTORY CLASS |        |      |
|------------|------------------------|---------------|--------|------|
| 2.         | W.L. Length (L)        |               | 445    | ft.  |
| 3.         | Beam (B)               |               | 63.0   | ft.  |
| 4.         | Depth (D)              |               | 38.0   | ft.  |
| 5.         | Draft (d)              |               | 28.5   | ft.  |
| 6.         | Displacement           |               | 15,200 | Tons |
| 7.         | Dead Wt. Capacity      |               | 10,750 | Tons |
| s.         | Block Coefficient      |               | 0.67   | _    |
| 9.         | Normal Speed           |               | 15.5   | Kts. |
| 10.        | V/L <sup>1/2</sup>     |               | 0.74   |      |
| 11.        | Propeilers (No.)       |               | 11     |      |
| 12.        | Propeller RPM          |               | 100    |      |
| 13.        | Total Shp              | <u>·</u>      | 6000   |      |
| 14.        | Normal Shp. (@ .75 tot | tal Shp.)     | 4500   |      |
| 15.        | Engine Type:           |               | Steam  |      |
| 16.        | Admiralty Coeff        |               |        |      |
| 17.        | Machinery Wt. (1bs./Sh | np.)          | -      |      |
| 18.        | Fineness Ratio (L/B) - | <u> </u>      | 7.1    |      |
| 19.        | Beam/draft (B/d)       |               | 2.21   |      |
| 20.        | Depth/draft (D/d)      |               | 1.33   |      |
|            | CR = SHR (412          | 2.5)          |        |      |

d

28.5

B

63

V= 195.3

17,987

9/2

= 1.0

CR

.057

SHON

4500

VK N.

15.5

Veps. N

26.2

TABLE 6

| Item<br>1. | Name of VesselRED_JACKET                 |        |      |
|------------|------------------------------------------|--------|------|
| 2.         | W.L. Length (L)                          | 435    | ft.  |
| 3.         | Beam (B)                                 | 63     | ft.  |
| 4.         | Depth (D)                                | 40.5   | ft.  |
| 5.         | Draft (d)                                | 25.8   | ft.  |
| 6.         | Displacement                             | 13,900 | Tons |
| 7.         | Dead Wt. Capacity                        | 7,620  | Tons |
| 8.         | Block Coefficient                        | 0.69   |      |
| 9.         | Normal Speed                             | 15.5   | Kts. |
| 10.        | V/L <sup>1/2</sup>                       | 0.75   |      |
| 11.        | Propellers (No.)                         | 1      |      |
| 12.        | Propeller RPM                            | 92     |      |
| 13.        | Total Shp                                | 6000   |      |
| 14.        | Normal Shp. (@ .75 total Shp.)           | 4500   |      |
| 15.        | Engine Type:                             | Steam  |      |
| 16.        | Admiralty Coeff                          | 448    |      |
| 17.        | Machinery Wt. (1bs./Shp.)                | -      |      |
| 13.        | Fineness Ratio ( $^{L}/B$ )              | 6.9    |      |
| 19.        | Beam/draft (B/d)                         | 2.44   |      |
| 20.        | Depth/draft (D/d)                        | 1.57   |      |
|            | $C_{R} = \frac{SH_{N}(412.5)}{V^{3} Bd}$ |        |      |

d

25.8

B

63

V \$ ps.3

17.987

9/2

= 1.0

CR

.063

SIPN

4.00

VK N.

15.5

Vers. N

26.2

# TABLE 7

| liem<br>l. | Name of VesselAC        | WIMONTE |        |      |
|------------|-------------------------|---------|--------|------|
| 2.         | W.L. Length (L)         |         | 395    | ft.  |
| 3.         | Beam (B)                |         | 60     | ft.  |
| 4.         | Depth (D)               |         | 37.5   | ft.  |
| 5.         | Draft (d)               |         | 27.5   | ft.  |
| 6.         | Displacement            |         | 12,860 | Tons |
| 7.         | Dead Wt. Capacity       |         | 9,100  | Tons |
| 8.         | Block Coefficient       |         | 0.69   |      |
| 9.         | Normal Speed            |         | 14     | Kts. |
| 10.        | V/I1/2                  |         | 0.70   |      |
| 11.        | Propellers (No.)        |         | 1      |      |
| 12.        | Propeller RPM           |         | 90     |      |
| 13.        | Total Shp               |         | 4000   |      |
| 14.        | Normal Shp. (@ .75 tota | 1 Shp.) | 3000   |      |
| 15.        | Engine Type:            |         | Steam  |      |
| 16.        | Admiralty Coeff         |         | -      |      |
| 17.        | Machinery Wt. (1bs./Shp | .)      |        |      |
| :3.        | Fineness Ratio (L/B) -  |         | 6.58   |      |
| 19.        | Beam/draft $(^B/d)$     |         | 2.18   |      |
| 20.        | Depth/draft (D/d)       |         | 1.36   |      |
|            | CR = SPN (412.          | 5)      |        |      |

 $C_{R} = \frac{SP_{N}(412.5)}{V^{3} Bd}$ 

| SIPN | VKN. | Veps. N | В  | d    | Ag <sup>662</sup> '3 | 9/2   | CR   |  |
|------|------|---------|----|------|----------------------|-------|------|--|
| 3000 | 14   | 23.7    | 60 | 27.5 | 13,312               | = 1.0 | .056 |  |

# TABLE 8

| Item<br>1. | Name of Vessel          | SEA FOX |        |      |
|------------|-------------------------|---------|--------|------|
| 2.         | w.L. Length (L)         |         | 473    | ft.  |
| 3.         | Beam (B)                |         | 69.5   | ft.  |
| 4.         | Depth (D)               |         | 42.5   | ft.  |
| 5.         | Draft (d)               |         | 27.3   | ft.  |
| 6.         | Displacement            |         | 17,600 | Tons |
| 7.         | Dead Wt. Capacity       |         | 11,920 | Tons |
| 8.         | Block Coefficient       |         | -      |      |
| 9.         | Normal Speed            |         | 16.5   | Kts. |
| 10.        | V/I1/2                  |         | -      |      |
| 11.        | Propellers (No.)        |         | 1      |      |
| 12.        | Propeller RPM           |         | 85     |      |
| 13.        | Total Shp               |         | 8500   |      |
| 14.        | Normal Shp. (@ .75 tota | 1 Shp.) | 6370   |      |
| 15.        | Engine Type:            |         | Steam  |      |
| 16.        | Admiralty Coeff         |         |        |      |
| 17.        | Machinery Wt. (1bs./Shp | .)      | -      |      |
| 18.        | Fineness Ratio (L/B) -  |         | 6.8    |      |
| 19.        |                         |         | 2.55   |      |
| 20.        | Depth/draft (D/d)       |         | 1.56   |      |
|            | CR = SHN (412.          | 5)      |        |      |

THE PROPERTY OF THE PROPERTY O

| SIPN | V× N. | Veps. N | В    | d .  | Λ <sub>3</sub> 668.3 | 9/2   | CR    |
|------|-------|---------|------|------|----------------------|-------|-------|
| 6370 | 16.5  | 27.9    | 69.5 | 27.3 | 21,718               | = 1.0 | 0.064 |

#### TABLE 9

| Item<br>1. | Name of Vessel Black Falcon    |          |      |
|------------|--------------------------------|----------|------|
| 2.         | W.L. Length (L)                | 390      | ft.  |
| 3.         | Beam (B)                       | 54       | ft.  |
| 4.         | Depth (D) - ·                  | 32.0     | ft.  |
| 5.         | Draft (d)                      | 24.3     | ft.  |
| ó.         | Displacement                   | 11,200   | Tons |
| 7.         | Dead Wt. Capacity              | 7,500    | Tons |
| 3.         | Block Coefficient              | .745     |      |
| 9.         | Normal Speed                   | 13.2     | Kts. |
| 10.        | V/L <sup>1/2</sup>             | 0.67     |      |
| 11.        | Propellers (No.)               | 1        |      |
| 12.        | Propeller RPM                  | 99.5     |      |
| 13.        | Total Shp                      |          |      |
| 14.        | Normal Shp. (@ .75 total Shp.) |          |      |
| 15.        | Engine Type:                   | Steam    |      |
| 16.        | Admiralty Coeff                | <u>-</u> |      |
| 17.        | Machinery Wt. (1bs./Shp.)      | -        |      |
| 18.        | Fineness Ratio (L/B)           | 7.22     |      |
| 19.        | Beam/draft (B/d)               | 2,22     |      |
| 20.        | Depth/draft (D/d)              | 1.32     |      |
|            | CR = SPN (412.5)               |          |      |
|            | VE Bd                          |          |      |

SIPN

2230

Vx N.

13.2

Veps. N

22.3

V F. 5. 3

9/2

CR

B

1

#### TABLE 10

| Item<br>1. | Name of V            | /essel     | ANG          | GELINA |                                   |        |             |
|------------|----------------------|------------|--------------|--------|-----------------------------------|--------|-------------|
| 2.         | W.L. Leng            | gth (L) -  |              |        | -                                 | 390    | ft.         |
| 3.         | Beam (B)-            |            |              |        | -                                 | 55     | ft.         |
| 4.         | Depth (D)            |            |              |        | -                                 | 30.5   | ft.         |
| 5.         | Draft (d)            |            |              |        | -                                 | 24.6   | ft.         |
| 6.         | Displacen            | ment       |              |        | -                                 | 10,530 | Tons        |
| 7.         | Dead Wt.             | Capacity   |              |        | -                                 | 7,250  | Tons        |
| 8.         | Block Coe            | efficient  |              |        | •                                 | 0.70   | <del></del> |
| 9.         | Normal Sp            | need       |              |        | -                                 | 13     | Kts.        |
| 10.        | V/L <sup>1/2</sup> - |            |              |        | -                                 | 0.66   |             |
| 11.        | Propeller            | cs (No.)   |              |        | -                                 | 1      |             |
| 12.        | Propeller            | RPM        |              |        | _                                 | 90     |             |
| 13.        | Total Sh             | ·          |              |        |                                   | 3150   |             |
| 14.        | Normal Sh            | np. (@ .75 | total Shp    | ).)    |                                   | 2363   |             |
| 15.        | Engine Ty            | /pe:       |              |        |                                   | Steam  |             |
| 16.        | Admiralty            | Coeff      |              |        | -                                 | -      |             |
| 17.        | Machinery            | Wt. (1bs   | •/Shp.) -    |        |                                   |        |             |
| 18.        | Fineness             | Ratio (L/  | B)           |        | -                                 | 7.1    |             |
| 19.        | Beam/draf            | Et (P/d) - |              |        | ·                                 | 2.2    |             |
| 20.        | Depth/dra            | aft (D/d)  |              |        | -                                 | 1.2    |             |
|            |                      | = N3 (     | 412.5)<br>Bd |        |                                   |        |             |
| SIPN       | VK N.                | Vers.N     | В            | d      | V <sup>3</sup> <sub>6,75</sub> ,3 | 9/2    | CR          |
| 2363       | 13                   | 22         | 55           | 24.6   | 10,648                            | = 1.0  | .068        |

### TABLE 11

| Item | C Wassel LTBER                           | TY CLASS |        |      |
|------|------------------------------------------|----------|--------|------|
| 1.   | Name of VesselLIBER  W.L. Length (L)     |          | 428    | ft.  |
| 2,   |                                          |          |        |      |
| 3.   | Beam (B)                                 |          | 56.9   | ft.  |
| 4.   | Depth (D)                                |          | 37.3   | ft.  |
| 5.   | Draft (d)                                |          | 27.7   | ft.  |
| 6.   | Displacement                             |          | 14,250 | Tons |
| 7.   | Dead Wt. Capacity                        |          | 10,844 | Tons |
| 5.   | Block Coefficient                        |          | 0.74   |      |
| 9.   | Normal Speed                             |          | 11.5   | Kts. |
| 10.  | V/L <sup>1/2</sup>                       |          | .0.56  |      |
| 11.  | Propellers (No.)                         |          | 1      |      |
| 12.  | Propeller RPM                            |          | 76     |      |
| 13.  | Total Shp                                |          | 2300   |      |
| 14.  | Normal Shp. (@ .75 total S               | hp.)     | 1725   |      |
| 15.  | Engine Type:                             |          | Steam  |      |
| 16.  | Admiralty Coeff                          |          | -      |      |
| 17.  | Machinery Wt. (1bs./Shp.)                |          | _      |      |
| 13.  | Fineness Ratio (L/B)                     |          | 7.5    |      |
| 19.  | Beam/draft (B/d)                         |          | 2.05   |      |
| 25.  | Depth/draft (D/d)                        |          | 1.35   |      |
|      | $C_{R} = \frac{SP_{N}(412.5)}{V^{2} Bd}$ |          |        |      |

d

27.7

V<sup>2</sup>,05.3

7,301

9/2

= 1.0

CR

.062

VK N.

11.5

VERS. N

19.4

5

56.9

18

SHON

1:25

#### TABLE 12

| Item<br>1. | Name of VesselRC WEAR          |       |               |
|------------|--------------------------------|-------|---------------|
| 2.         | W.L. Length (L)                | 360   | ft.           |
| 3.         | Beam (B)                       | 57.5  | ft            |
| 4.         | Depth (D)                      | 26.8  | ft.           |
| 5.         | Draft (d)                      | 22.2  | ft.           |
| 6.         | Displacement                   | 9,060 | Tons          |
| 7.         | Dead Wt. Capacity              | 7,000 | Tons          |
| 8.         | Block Coefficient              | 0.70  |               |
| 9.         | Normal Speed                   | 12.1  | Kts.          |
| 10.        | V/L <sup>1/2</sup>             | 0.64  |               |
| 11.        | Propellers (No.)               | 1     |               |
| 12.        | Propeller RPM                  | 72.5  |               |
| 13.        | Total Shp                      | 1900  |               |
| 14.        | Normal Shp. (@ .75 total Shp.) | 1425  | <del></del> . |
| 15.        | Engine Type:                   | Steam |               |
| 16.        | Admiralty Coeff                | 430   |               |
| 17.        | Machinery Wt. (1bs./Shp.)      |       |               |
| 13.        | Fineness Ratio (L/B)           | 6.3   |               |
| 19.        | Beam/draft (B/d)               | 2.6   |               |
| 20.        | Depth/draft (D/d)              | 1.21  |               |
|            | CR = SPN (412.5)               |       |               |

57.5 22.2 8615 = 1.0 .053

V 575.3

9/2

CR

d

B

VK N.

12.1

1.25

Veps.N

20.5

#### 13 TABLE\_

| ltem<br>i. | Name of Vessel QUAKER          |       |      |
|------------|--------------------------------|-------|------|
| 2.         | W.L. Length (L)                | 280   | ft.  |
| 3.         | Beam (B)                       | 48.5  | ft.  |
| 4.         | Depth (D)                      | 32.2  | ft.  |
| 5.         | Draft (d)                      | 18.5  | ft.  |
| 6.         | Displacement                   | 4215  | Tons |
| 7.         | Dead Wt. Capacity              | 2050  | Tons |
| 3.         | Block Coefficient              | 0.585 |      |
| 9.         | Normal Speed                   | 16.5  | Kts. |
| 10.        | V/L <sup>1/2</sup>             | 0.99  |      |
| 11.        | Propellers (No.)               | 1     |      |
| 12.        | Propeller RPM                  | 120   |      |
| 13,        | Total Shp                      | 4000  |      |
| 14,        | Normal Shp. (@ .75 total Shp.) | 3000  |      |
| :5.        | Engine Type:                   | Steam | ·    |
| 16.        | Admiralty Coeff                | -     | ~    |
| 17.        | Machinery Wt. (1bs./Shp.)      | -     |      |
| 18.        | Finéness Ratio ( $^{L}/B$ )    | 5.8   |      |
| 19.        | Beam/draft (B/d)               | 2.52  |      |
| 20,        | Depth/draft (D/d)              | 1.74  |      |
|            | CR = SPR (412.5)               |       |      |

| SIP <sub>N</sub> | Vx N. | N. Veps. N B d |      | V <sup>2</sup> ,55.3 | 9/2   | CR    |      |
|------------------|-------|----------------|------|----------------------|-------|-------|------|
| 1000             | 16.5  | 27.9           | 48.5 | 18.5                 | 21718 | = 1.0 | .063 |

| From y NAME TABLE   | 1 AMERICA               | 2 QUEEN MARY | 3 BRENEN | 4 BEAVERGLEN | S VICTORY CLASS                       | 6 RED JACKET            | 7 AGNIMONTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 SEA FOX            | 9 RLACK FALCON  | 10 ANGELIKA              | 11 LIBERTY CLASS | 12 ARC WEAR                                   | 13 QUAKUR | •    |
|---------------------|-------------------------|--------------|----------|--------------|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------------------|------------------|-----------------------------------------------|-----------|------|
| 13                  | the same entre entre of | RY           |          | EN           |                                       | CONTRACTOR AND          | en de la compania del la compania de | The second second    | LCON CEED STATE | Company Charles (Transm. | CLASS            | the contract of the second second             |           |      |
| TYPE                | p ~ C                   | D - C        | р - с    | C            | C C C C C C C C C C C C C C C C C C C | C Comment of the second | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C Contract Contracts | ပ               | o,                       | C Company        | D D                                           | J         |      |
| h, ft.              | 069                     | 1004         | 006      | 481          | 445                                   | 435                     | 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 473                  | 390             | 390                      | 428              | 360                                           | 280       | 7.00 |
| Drsp.<br>Tons       | 35,440                  | 77,400       | 54,750   | 15,500%      | 15,200                                | 13,900                  | 12,860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17,600               | 11,200          | 10,530                   | 14,250           | 090'6                                         | 4,215     | 000  |
| v Kts.              | 22.0                    | 29.0         | 27.0     | 16.0         | 15,5                                  | 15.5                    | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.5                 | 13.2            | 13.0                     | 11.5             | 12.1                                          | 16,5      | 7, 0 |
| $z_i^T I_{\Lambda}$ | 0.84                    | 0.92         | 0.90     | 0.73         | 0.74                                  | 0.75                    | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.76                 | 0.67            | 0.66                     | 0.56             | 0.64                                          | 0.99      | 0.7  |
| C<br>R              | 290                     | 060.         | 760.     | .075         |                                       | . 063                   | 056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 790.                 | . 063           | 390.                     | .062             | . 053                                         | . 063     | 670  |
| L/B                 | 7.38                    | 8.5]         | 8.82     | 7.50         | 7.10                                  | 6.90                    | 6,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.80                 | 7.22            | 7.10                     | 7.50             | 6.30                                          | 5.8(0     |      |
| I. f.t.             | 93,5                    | 118          | 102      | 79 79        | 63 (53                                | 63                      | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69.5                 | 54<br>24        | 55                       | 56.9             | 57.5<br>man per receipt beautiful part and an | 48.5      | 0    |
| d ft.               | 32.5                    | <b>8</b>     | 33.9     | 29.6         | 28.5                                  | 25.8                    | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.3                 | 24.3            | 24.6                     | 27.7             | 22.2                                          | 18.5      | 7 70 |

p - Passenger c - Cargo

TABLE 14

TABLE 15

| V KTS. | V FPS. | v <sup>2</sup> FPS <sup>2</sup> | CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B d av.           | T(R).   |
|--------|--------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| 2      | 3.38   | 11.42                           | .062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1592              | 1,127   |
| 4      | 6.76   | 45.70                           | And the state of t | To project on the | 4,511   |
| 6      | 10.14  | 102.80                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 10,146  |
| 8      | 13.52  | 182.80                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 18,042  |
| 10     | 16.90  | 285.60                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 28,189  |
| 12     | 20.28  | 411.30                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 40,595  |
| 14     | 23.66  | 559.80                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 | 55,252  |
| 18     | 30.42  | 925.40                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 91,336  |
| 22     | 37.18  | 1382.60                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ý                 | 136,462 |

FIG. 1



# MAJOR DIMENSIONS AND PERFORMANCE CHARACTERISTICS OF THE COMPOSITE CARGO SHIP OF THE 1930's, 40's AND 50's

LENGTH - - - - - 422 Ft.

BEAM - - - - - - 60.3 Ft.

DRAFT - - - - - 26.4 Ft.

FINENESS RATIO - - - - 7.0

DISPLACEMENT - - - 13,300 Tons

NORMAL SPEED - - - 14.2 Kts.

SPEED/LENGTH RATIO - - - - 0.69



# FILMED)

9-83

DTIC