

## INTELIGÊNCIA ARTIFICAL

LUCAS GEORGES HELAL

## **MOTIVAÇÃO**



"Aprendizagem de Máquina é a próxima internet."

(Tony Tether, Diretor, DARPA)

#### **OBJETIVOS**



- Demonstrar os conceitos de Aprendizagem de Máquina.
- Apresentar os tipos de aprendizagem.

### O QUE É AM?



- Aprendizagem de Máquina AM (do inglês, Machine Learning) é uma subárea da Inteligência
   Artificial cujo objetivo é:
  - Desenvolver técnicas computacionais sobre o processo de aprendizagem;
  - Construir sistemas capazes de adquirir conhecimento de forma automática.

Por que aprender?

## O QUE É AM?



- Aprendizagem de Máqu Artificial cujo objetivo é:
  - Desenvolver técn
  - Construir sistema

Por que aprender?



g) é uma subárea da Inteligência

o de aprendizagem;

de forma automática.

#### **POR QUE "APRENDER"?**



- Não há necessidade de usar AM para se fazer um sistema que calcule uma folha de pagamento;
- A AM é usada quando:
  - O conhecimento humano n\u00e3o existe (p.e., navega\u00e7\u00e3o em marte);
  - Os humanos não conseguem explicar seu conhecimento (p.e., reconhecimento de fala, de escrita, etc.);
  - A solução muda com o tempo (p.e., roteamento em uma rede de computadores, navegação de um robô, etc.).
- Podemos usar AM quando:
  - Existe um padrão a ser aprendido;
  - Não há como formalizar esse padrão de forma direta;
  - Existem dados disponíveis sobre o problema em questão.

## O QUE SE ENTENDE POR APRENDIZADO NO CONTEXTO DE AM?



- "Mudar para fazer melhor" quando uma situação similar a outra anterior acontecer:
  - "Fazer melhor" de acordo com um dado <u>critério de desempenho</u>.
- Pode ser caracterizado como a "capacidade de melhorar o desempenho pela experiência";
- Generalizar um comportamento a partir de experiências particulares:
  - Diferente de memoriza.

"Um programa aprende a partir da **experiência E**, em relação a uma classe de **tarefas T**, com medida de **desempenho P**, se seu desempenho em T, medido por P, melhora com E"

Mitchell, 1997

# O QUE SE ENTENDE POR APRENDIZADO NO CONTEXTO DE AM?



- Exemplo: Diagnóstico de doenças respiratórias:
  - Tarefa T: classificar pacientes como tendo gripe, rinite ou sinusite de acordo com os sintomas apresentados;
  - Medida de desempenho P: porcentagem de pacientes classificados corretamente;
  - Experiência E: uma base de dados histórica na qual pacientes conhecidos tiveram seus sintomas descritos e seus diagnósticos (gripe, rinite ou sinusite) registrados.

"Um programa aprende a partir da **experiência E**, em relação a uma classe de **tarefas T**, com medida de **desempenho P**, se seu desempenho em T, medido por P, melhora com E"

Mitchell, 1997

# O QUE SE ENTENDE POR APRENDIZADO NO CONTEXTO DE AM?



- Em geral, dados são baratos e abundantes;
- Conhecimento é caro e escasso;
  - Exemplo:
    - Pessoas que compram "Da Vinci Code" também compram "The Five People You Meet in Heaven" (www.amazon.com).

 Podemos não conhecer todo o processo de geração dos dados (p.e., comportamento de compra do consumidor), mas podemos construir um modelo que seja uma aproximação útil.

### **APRENDIZAGEM DE MÁQUINA**



#### Sistema clássico



Fonte: Slides de aula do Prof. Luiz Eduardo Soares de Oliveira, UFPR.

#### **DATA MINING**



- É a aplicação de métodos de AM a grandes bases de dados:
  - Analogia com uma "mina" a partir de uma grande quantidade de terra e outros materiais brutos se extrai uma pequena quantidade de material precioso.
- Várias áreas de aplicação:
  - Medicina: diagnóstico médico;
  - Finanças: análise de risco de crédito, detecção de fraudes, análise do mercado de ações;
  - Varejo: previsão de comportamento de compra, recomendações de produtos;
  - Telecomunicações;
  - o Bioinformática;
  - o Etc.

#### TIPOS DE APRENDIZAGEM



- Supervisionada ou preditiva
  - Classificação;
  - o Regressão.
- Não-supervisionada ou descritiva
  - Associação
  - Agrupamento
- Por reforço.

• Que tipo usar? Depende dos dados que se tem e dos objetivos que se quer alcançar.



- Dada uma entrada X e uma saída Y, a tarefa é aprender um mapeamento entre X e Y, sendo que os valores de X e Y foram fornecidos por um "supervisor";
- Previsão de casos futuros: Uso de um modelo para prever a saída para futuras entradas;
- Extração de conhecimento: É mais fácil entender um modelo do que um conjunto de dados;
- Compressão: O modelo é mais simples do que os dados que ele explica;
- Qual é a forma desse modelo?
  - Pode ser uma árvore de decisão, uma ou mais regras, uma função, uma rede neural,
     SVM, etc.



Máquina de vendas:





## CLASSIFICAÇÃO



- Exemplo: Análise de crédito;
- Diferenciar entre clientes de baixo risco e alto risco com base em seus ganhos (income) e

economias (savings);

- Supondo que se deseja aprender uma regra:
  - Regra de classificação:

IF  $ganhos > \theta_1$  AND economias  $> \theta_2$  THEN baixo-risco ELSE alto-risco



#### **REGRESSÃO**



- Exemplo: Predição de preço para carros usados;
- Prever o preço (um valor real) de um carro usado com base em sua quilometragem (*milage*);

A partir dos dados de carros vendidos, deseja-se encontrar uma f' que preveja o preço para um

carro qualquer.



#### **REGRESSÃO**



- Exemplo: Predição de preço para carros usados;
- Prever o preço (um valor real) de um carro usado com base em sua quilometragem (*milage*);

A partir dos dados de carros vendidos, deseja-se encontrar uma f' que preveja o preço para um

carro qualquer.





- Não é fornecida uma saída;
- O objetivo é aprender "o que acontece regularmente" e criar um modelo descritivo dos dados;
- Associação: Encontrar associações (co-ocorrência) que sejam relevantes;
- Agrupamento (clustering): Agrupar instâncias que sejam similares.



• Se tem a entrada, mas não se conhece a saída:





Se tem a entrada, mas não se conhece a saída:







Se tem a entrada, mas não se conhece a saída:



## **ASSOCIAÇÃO**



- Exemplo: Cesta de compras (Basket analysis);
- Estimar a probabilidade P (Y|X) de que alguém que compra X também compra Y;
- P (salgadinhos|cerveja) = 0,7 A partir dessas probabilidades, podemos definir regras:
  - o 70% dos consumidores que compram cerveja também compram salgadinhos.

|   | Leite | Cerveja | Salgadinho | • • • |
|---|-------|---------|------------|-------|
| 1 | Não   | Sim     | Sim        |       |
| 2 | Sim   | Sim     | Sim        | •••   |
| 3 | Não   | Sim     | Sim        |       |
| 4 | Sim   | Sim     | Sim        |       |
| 5 | Não   | Não     | Não        |       |
| 6 | Não   | Não     | Sim        |       |
| 7 | Não   | Sim     | Não        |       |
|   | ***   |         |            |       |

### APRENDIZADO POR REFORÇO



- O objetivo é aprender uma política de ações: uma sequência de ações (saídas) que maximize os ganhos de acordo com uma medida de desempenho:
  - O algoritmo deve aprender a partir do resultado de ações passadas e gerar uma política para ações futuras.
- Principais aplicações:
  - Jogos: um único movimento bom não ganha o jogo;
  - Navegação de robôs: descobrir a melhor sequência de passos para alcançar um objetivo.

### APRENDIZADO POR REFORÇO



#### Descrição do problema:

- Um agente em um ambiente:
  - A cada instante de tempo:
    - o agente está em um estado s
    - executa uma ação a
    - vai para um estado s'
    - recebe uma recompensa r
- O objetivo é encontrar uma política de ações que maximize o total de recompensas recebidas pelo agente.



### REFERÊNCIAS



• Slides de aula: Aprendizado de Máquina - Professora: Dra. Valéria Delisandra Feltrim.