

SWISS-MODEL Homology Modelling Report

Model Building Report

This document lists the results for the homology modelling project "Untitled Project" submitted to SWISS-MODEL workspace on Dec. 30, 2020, 3:34 p.m..The submitted primary amino acid sequence is given in Table T1.

If you use any results in your research, please cite the relevant publications:

- Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1), W296-W303 (2018).
- Guex, N., Peitsch, M.C., Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30, S162-S173 (2009).
- Bienert, S., Waterhouse, A., de Beer, T.A.P., Tauriello, G., Studer, G., Bordoli, L., Schwede, T. The SWISS-MODEL Repository new features and functionality. Nucleic Acids Res. 45, D313-D319 (2017).
- Studer, G., Rempfer, C., Waterhouse, A.M., Gumienny, G., Haas, J., Schwede, T. QMEANDisCo distance constraints applied on model quality estimation. Bioinformatics 36, 1765-1771 (2020).
- Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., Schwede, T. Modeling protein quaternary structure of homo- and heterooligomers beyond binary interactions by homology. Scientific Reports 7 (2017).

Results

The SWISS-MODEL template library (SMTL version 2020-12-23, PDB release 2020-12-18) was searched with BLAST (Camacho et al.) and HHBlits (Steinegger et al.) for evolutionary related structures matching the target sequence in Table T1. For details on the template search, see Materials and Methods. Overall 2478 templates were found (Table T2).

Models

The following models were built (see Materials and Methods "Model Building"):

Model #02	File	Built with	Oligo-State	Ligands	GMQE	QMEAN
	PDB	ProMod3 3.2.0	monomer	2 x ZN: ZINC ION;	0.21	-4.95

Template	Seq Identity	Oligo- state	QSQE	Found by	Method	Resolution	Seq Similarity	Range	Coverage	Description
4nqa.2.B	39.30	monomer	0.00	HHblits	X-ray	3.10Å	0.39	437 - 820	0.46	Liver X nuclear receptor beta

Included Ligands

Ligand	Description				
2 x ZN	ZINC ION				

Excluded ligands

Ligand Name.Number	Reason for Exclusion	Description					
965.4 Binding site not conserved.		[3-(3-{[2-CHLORO-3-(TRIFLUOROMETHYL)BENZYL](2,2-DIPHENYLETHYL)AMINO}PROPOXY)PHENYL]ACETIC ACID					
9CR.1 Binding site not conserved.		(9CIS)-RETINOIC ACID					
ZN.2 Binding site not conserved.		ZINC ION					

Ligand Name.Number	Reason for Exclusion	Description
ZN.3	Binding site not conserved.	ZINC ION

Target 4nqa.2.B	MNLSPMMYRLNHAQGQKLPMAAEQQQQQSQQHPQQQQQPTTTPQTTPPTPTQSQQQQIIPSHILLQQQLDAASANTNSSN
Target 4nqa.2.B	SNTTISNSHSITHHSNNEPVFLNNFTEQESNTPLALRQASNASSTSNSALLHTIHQHHSHTHQAPPTPPNHSRLIHSTAA
Target 4nqa.2.B	NNLVITNAAAAAALVAASAAAAAAAQVDVLSSNSSVEENLKLLKTAIKSEPLPHDLNSASNSNHNNHNNVNNLSSNKEDL
Target 4nqa.2.B	ISLAACSALANVVIPASSANAVASSSTSVSSTMSSAKANVLKNVSTSALSNAITQVALAAGAGNGGSVSASGGVVSAAAG
Target 4nqa.2.B	SVAGAGGSGGEALTSSNGSMVFVPSKRARMELREEWISTPSPGSVPSTAPLSPSSASQNHMYGANMSNGYASPMSAGSYD
Target 4nqa.2.B	PFSPNGKTGRDDLSPSSSLNGFSTSDASDVKKIKKGPAPRLQEELCLVCGDRASGYHYNALTCEGCKGFFRRSVTKNA
Target 4nqa.2.B	VYCCKFGHACEMDMYMRRKCQECRLKKCLAVGMRPECVVPENQCAMKRREKKAQKEKDKIQTSVCATEIKKEILDLMTCE RYACRGGGTCQMDAFMRRKCQQCRLRKCKEAGMREQCVLSEEQIRKKKIRKQQQQESQSQSPVGPQGSSSSASG
Target 4nqa.2.B	PPSHPTCPLLPEDILAKCQARNIPPLSYNQLAVIYKLIWYQDGYEQPSEEDLKRIMSSPDENESQHDVSFRHITEI PGASPGGSEAGSQGSGEGEGVQLTAAQELMIQQLVAAQLQCNKRSFSDQPKVTPWPLGADPQSRDARQQRFAHFTEL
Target 4nqa.2.B	TILTVQLIVEFAKGLPAFTKIPQEDQITLLKACSSEVMMLRMARRYDHNSDSIFFANNRSYTRDSYKMA-GMADNIEDLL AIISVQEIVDFAKQVPGFLQLGREDQIALLKASTIEIMLLETARRYNHETECITFLKDFTYSKDDFHRAGLQVEFINPIF
Target 4nqa.2.B	HFCRQMYSMKVDNVEYALLTAIVIFS-DRPGLEEAELVEAIQSYYIDTLRIYILNRHCGDPMSLVFFAKLLSILTELRTL EFSRAMRRLGLDDAEYALLIAINIFSADRPNVQEPGRVEALQQPYVEALLSYTRIKRPQDQLRFPRMLMKLVSLRTL
Target 4nqa.2.B	GNQNAEMCFSLKLKNRKLPKFLEEIWDV SSVHSEQVFALRLQDKKLPPLLSEIWDV

Model #01	File	Built with	Oligo- State	Ligands	GMQE	QMEAN
	PDB	ProMod3 3.2.0	monomer	1 x P1A: 2,3,14,20,22-PENTAHYDROXYCHOLEST-7- EN-6-ONE;	0.16	-0.41

Ter	mplate	Seq Identity	Oligo- state	QSQE	Found by	Method	Resolution	Seq Similarity	Range	Coverage	Description
40	zt.1.A	68.49	monomer	0.00	BLAST	X-ray	2.70Å	0.50	581 - 820	0.29	Ecdysone receptor

Included Ligands

Ligand	Description
1 x P1A	2,3,14,20,22-PENTAHYDROXYCHOLEST-7-EN-6-ONE

Excluded ligands

Ligand Name.Number	Reason for Exclusion	Description
NEQ.2	Binding site not conserved.	N-ETHYLMALEIMIDE

Target 4ozt.1.A	MNLSPMMYRLNHAQGQKLPMAAEQQQQQSQQHPQQQQQPTTTPQTTPPTPTQSQQQQIIPSHILLQQQLDAASANTNSSN
Target 4ozt.1.A	SNTTISNSHSITHHSNNEPVFLNNFTEQESNTPLALRQASNASSTSNSALLHTIHQHHSHTHQAPPTPPNHSRLIHSTAA
Target 4ozt.1.A	NNLVITNAAAAAALVAASAAAAAAANQVDVLSSNSSVEENLKLLKTAIKSEPLPHDLNSASNSNHNNHNNVNNLSSNKEDL
Target 4ozt.1.A	ISLAACSALANVVIPASSANAVASSSTSVSSTMSSAKANVLKNVSTSALSNAITQVALAAGAGNGGSVSASGGVVSAAAG
Target 4ozt.1.A	SVAGAGGSGGEALTSSNGSMVFVPSKRARMELREEWISTPSPGSVPSTAPLSPSSASQNHMYGANMSNGYASPMSAGSYD
Target 4ozt.1.A	PFSPNGKTGRDDLSPSSSLNGFSTSDASDVKKIKKGPAPRLQEELCLVCGDRASGYHYNALTCEGCKGFFRRSVTKNAVY
Target 4ozt.1.A	CCKFGHACEMDMYMRRKCQECRLKKCLAVGMRPECVVPENQCAMKRREKKAQKEKDKIQTSVCATEIKKEILDLMTCEPP
Target 4ozt.1.A	SHPTCPLLPEDILAKCQARNIPPLSYNQLAVIYKLIWYQDGYEQPSEEDLKRIMSSPDENESQHDVSFRHITEITILTVQVKPISPEQEELIHRLVYFQNEYEQPSDEDLKRISNTPSEGEDQSDLNFRHITEITILTVQ
Target 4ozt.1.A	LIVEFAKGLPAFTKIPQEDQITLLKACSSEVMMLRMARRYDHNSDSIFFANNRSYTRDSYKMAGMADNIEDLLHFCRQMY LIVEFAKRLPGFDKLLREDQIALLKACSSEVMMLRMARRYDVGSDSILFANNQPYTRDSYSLAGMGETVDDLLRFCRQMY
Target 4ozt.1.A	SMKVDNVEYALLTAIVIFSDRPGLEEAELVEAIQSYYIDTLRIYILNRHCGDPMSLVFFAKLLSILTELRTLGNQNAEMC GMKVDNAEYALLTAIVIFSERPSLIEGWKVEKIQEIYLEALKVYVDNRRKPASGTIFAKLLSVLTELRTLGNLNSEMC
Target 4ozt.1.A	FSLKLKNRKLPKFLEEIWDV FSLKLKNKKLPPFLAEIWDV

Materials and Methods

Template Search

Template search with BLAST and HHBlits has been performed against the SWISS-MODEL template library (SMTL, last update: 2020-12-23, last included PDB release: 2020-12-18).

The target sequence was searched with BLAST against the primary amino acid sequence contained in the SMTL. A total of 1151 templates were found.

An initial HHblits profile has been built using the procedure outlined in (Steinegger et al.), followed by 1 iteration of HHblits against Uniclust30 (Mirdita, von den Driesch et al.). The obtained profile has then be searched against all profiles of the SMTL. A total of 1360 templates were found.

Model Building

Models are built based on the target-template alignment using ProMod3. Coordinates which are conserved between the target and the template are copied from the template to the model. Insertions and deletions are remodelled using a fragment library. Side chains are then rebuilt. Finally, the geometry of the resulting model is regularized by using a force field. In case loop modelling with ProMod3 fails, an alternative model is built with PROMOD-II (Guex et al.).

Model Quality Estimation

The global and per-residue model quality has been assessed using the QMEAN scoring function (Studer et al.).

Ligand Modelling

Ligands present in the template structure are transferred by homology to the model when the following criteria are met: (a) The ligands are annotated as biologically relevant in the template library, (b) the ligand is in contact with the model, (c) the

ligand is not clashing with the protein, (d) the residues in contact with the ligand are conserved between the target and the template. If any of these four criteria is not satisfied, a certain ligand will not be included in the model. The model summary includes information on why and which ligand has not been included.

Oligomeric State Conservation

The quaternary structure annotation of the template is used to model the target sequence in its oligomeric form. The method (Bertoni et al.) is based on a supervised machine learning algorithm, Support Vector Machines (SVM), which combines interface conservation, structural clustering, and other template features to provide a quaternary structure quality estimate (QSQE). The QSQE score is a number between 0 and 1, reflecting the expected accuracy of the interchain contacts for a model built based a given alignment and template. Higher numbers indicate higher reliability. This complements the GMQE score which estimates the accuracy of the tertiary structure of the resulting model.

References

BLAST

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L. BLAST+: architecture and applications. BMC Bioinformatics 10, 421-430 (2009). [M] [doi>]

HHhlits

Steinegger, M., Meier, M., Mirdita, M., Vöhringer, H., Haunsberger, S. J., Söding, J. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).

Uniclust30

Table T1:

Primary amino acid sequence for which templates were searched and models were built.

MNLSPMMYRLNHAQGQKLPMAAEQQQQQSQQHPQQQQQPTTTPQTTPPTTQSQQQQIIPSHILLQQQLDAASANTNSSNSNTTISNSHSITHHSNNEPV FLNNFTEQESNTPLALRQASNASSTSNSALLHTIHQHHSHTHQAPPTPPNHSRLIHSTAANNLVITNAAAAAALVAASAAAAAANQVDVLSSNSSVEENL KLLKTAIKSEPLPHDLNSASNSNHNNHNNVNNLSSNKEDLISLAACSALANVVIPASSANAVASSSTSVSSTMSSAKANVLKNVSTSALSNATTQVALAA GAGNGGSVSASGGVVSAAAGSVAGAGGSGGEALTSSNGSMVFVPSKRARMELREEWISTPSPGSVPSTAPLSPSSASQNHMYGANMSNGYASPMSAGSYD PFSPNGKTGRDDLSPSSSLNGFSTSDASDVKKIKKGPAPRLQEELCLVCGDRASGYHVNALTCEGCKGFFRRSVTKNAVYCCKFGHACEMDMYMRRKCQE CRLKKCLAVGMRPECVVPENQCAMKRREKKAQKEKDKIQTSVCATEIKKEILDLMTCEPPSHPTCPLLPEDILAKCQARNIPPLSYNQLAVIYKLIWYQD GYEQPSEEDLKRIMSSPDENESQHDVSFRHITEITILTVQLIVEFAKGLPAFTKIPQEDQITLLKACSSEVMMLRMARRYDHNSDSIFFANNRSYTRDSY KMAGMADNIEDLHFCRQMYSMKVDNVEYALLTAIVIFSDRPGLEEAELVEAIQSYYIDTLRIYILNRHCGDPMSLVFFAKLLSILTELRTLGNQNAEMC FSLKLKNRKLPKFLEEIWDV

Table T2:

Template	Seq Identity	Oligo- state	QSQE	Found by	Method	Resolution	Seq Similarity	Coverage	Description
4nqa.2.B	39.30	monomer	-	HHblits	X-ray	3.10Å	0.39	0.46	Liver X nuclear receptor beta
4nqa.1.B	39.30	monomer	-	HHblits	X-ray	3.10Å	0.39	0.46	Liver X nuclear receptor beta
3dzy.1.B	27.22	monomer	-	HHblits	X-ray	3.10Å	0.34	0.44	Peroxisome proliferator- activated receptor gamma
3e00.1.B	27.22	monomer	-	HHblits	X-ray	3.10Å	0.34	0.44	Peroxisome proliferator- activated receptor gamma
3dzu.1.A	34.62	monomer	-	BLAST	X-ray	3.20Å	0.37	0.44	Retinoic acid receptor RXR- alpha
3dzu.1.B	27.22	monomer	_	HHblits	X-ray	3.20Å	0.34	0.44	Peroxisome proliferator- activated receptor gamma
3dzy.1.A	34.62	monomer	-	BLAST	X-ray	3.10Å	0.37	0.44	Retinoic acid receptor RXR- alpha
5uan.1.B	35.44	monomer	-	BLAST	X-ray	3.51Å	0.38	0.41	Retinoic acid receptor beta
4nqa.1.B	38.36	monomer	-	BLAST	X-ray	3.10Å	0.39	0.45	Liver X nuclear receptor beta
4nqa.2.B	38.36	monomer	-	BLAST	X-ray	3.10Å	0.39	0.45	Liver X nuclear receptor beta
3e00.1.A	34.62	monomer	_	BLAST	X-ray	3.10Å	0.37	0.44	Retinoic acid receptor RXR- alpha
4iqr.2.A	33.23	homo- dimer	0.05	HHblits	X-ray	2.90Å	0.36	0.39	Hepatocyte nuclear factor 4- alpha
4iqr.1.A	33.23	homo- dimer	0.03	HHblits	X-ray	2.90Å	0.36	0.39	Hepatocyte nuclear factor 4- alpha
4iqr.2.B	33.23	homo- dimer	0.05	HHblits	X-ray	2.90Å	0.36	0.39	Hepatocyte nuclear factor 4- alpha
5uan.1.A	34.91	monomer	-	BLAST	X-ray	3.51Å	0.37	0.41	Retinoic acid receptor RXR- alpha
4nqa.1.A	34.91	monomer	-	BLAST	X-ray	3.10Å	0.37	0.41	Retinoic acid receptor RXR- alpha

Template	Seq Identity	Oligo- state	QSQE	Found by	Method	Resolution	Seq Similarity	Coverage	Description
4iqr.1.B	33.23	homo- dimer	0.03	HHblits	X-ray	2.90Å	0.36	0.39	Hepatocyte nuclear factor 4- alpha
3dzy.1.B	32.40	monomer	-	BLAST	X-ray	3.10Å	0.37	0.44	Peroxisome proliferator- activated receptor gamma
1z5x.1.B	62.24	monomer	-	BLAST	X-ray	3.07Å	0.48	0.36	Ecdysone receptor ligand binding domain
6fx0.1.A	33.03	monomer	-	HHblits	X-ray	1.90Å	0.37	0.40	Retinoic acid receptor gamma
3dzu.1.B	32.40	monomer	-	BLAST	X-ray	3.20Å	0.37	0.44	Peroxisome proliferator- activated receptor gamma
3e00.1.B	32.40	monomer	-	BLAST	X-ray	3.10Å	0.37	0.44	Peroxisome proliferator- activated receptor gamma
2nxx.1.B	68.09	monomer	-	BLAST	X-ray	2.75Å	0.50	0.29	Ecdysone Receptor (EcR, NRH1)
4nqa.2.A	34.91	monomer	-	BLAST	X-ray	3.10Å	0.37	0.41	Retinoic acid receptor RXR- alpha
1r1k.1.A	69.83	monomer	-	BLAST	X-ray	2.90Å	0.51	0.30	Ecdysone receptor
1r20.1.B	70.25	monomer	-	BLAST	X-ray	3.00Å	0.51	0.30	ECDYSONE RECEPTOR
4ozt.1.A	68.49	monomer	-	BLAST	X-ray	2.70Å	0.50	0.29	Ecdysone receptor
3ixp.1.D	70.25	monomer	-	BLAST	X-ray	2.85Å	0.51	0.30	Ecdysone receptor
2r40.2.C	69.83	monomer	-	BLAST	X-ray	2.40Å	0.51	0.30	Ecdysone Receptor
3ipu.1.A	40.51	homo- dimer	0.17	BLAST	X-ray	2.40Å	0.40	0.29	Oxysterols receptor LXR-alpha
1r20.1.B	74.49	monomer	-	HHblits	X-ray	3.00Å	0.52	0.24	ECDYSONE RECEPTOR
3fal.1.B	40.93	monomer	-	BLAST	X-ray	2.36Å	0.40	0.29	Oxysterols receptor LXR-alpha
3ipq.1.A	40.51	homo- dimer	0.16	BLAST	X-ray	2.00Å	0.40	0.29	Oxysterols receptor LXR-alpha
3fal.1.D	40.93	monomer	-	BLAST	X-ray	2.36Å	0.40	0.29	Oxysterols receptor LXR-alpha
2acl.2.B	41.03	monomer	-	BLAST	X-ray	2.80Å	0.40	0.29	Oxysterols receptor LXR-alpha
2acl.1.B	41.03	monomer	-	BLAST	X-ray	2.80Å	0.40	0.29	Oxysterols receptor LXR-alpha
2acl.3.B	41.03	monomer	-	BLAST	X-ray	2.80Å	0.40	0.29	Oxysterols receptor LXR-alpha
2nxx.1.B	73.20	monomer	-	HHblits	X-ray	2.75Å	0.51	0.24	Ecdysone Receptor (EcR, NRH1)
5avi.1.A	40.51	homo- dimer	0.18	BLAST	X-ray	2.70Å	0.40	0.29	Oxysterols receptor LXR-alpha
1z5x.1.B	70.47	monomer	_	HHblits	X-ray	3.07Å	0.51	0.24	Ecdysone receptor ligand binding domain
1r1k.1.A	73.98	monomer	-	HHblits	X-ray	2.90Å	0.52	0.24	Ecdysone receptor
3ixp.1.D	74.49	monomer	_	HHblits	X-ray	2.85Å	0.52	0.24	Ecdysone receptor
4iqr.2.B	36.84	homo- dimer	-	BLAST	X-ray	2.90Å	0.38	0.32	Hepatocyte nuclear factor 4- alpha
2r40.2.C	73.98	monomer	-	HHblits	X-ray	2.40Å	0.52	0.24	Ecdysone Receptor
4ozt.1.A	73.20	monomer	-	HHblits	X-ray	2.70Å	0.52	0.24	Ecdysone receptor
4iqr.2.A	36.84	homo- dimer	-	BLAST	X-ray	2.90Å	0.38	0.32	Hepatocyte nuclear factor 4- alpha
4iqr.1.B	36.84	homo- dimer	_	BLAST	X-ray	2.90Å	0.38	0.32	Hepatocyte nuclear factor 4- alpha
4iqr.1.A	36.84	homo- dimer	-	BLAST	X-ray	2.90Å	0.38	0.32	Hepatocyte nuclear factor 4- alpha
4ozr.1.A	69.90	monomer	-	BLAST	X-ray	2.70Å	0.50	0.24	Ecdysone receptor
3hzf.1.A	32.04	monomer	_	BLAST	X-ray	2.50Å	0.36	0.25	Thyroid hormone receptor, alpha isoform 1 variant

The table above shows the top 50 filtered templates. A further 1,332 templates were found which were considered to be less suitable for modelling than the filtered list.

1a28.1.A, 1a28.2.A, 1a52.1.A, 1a52.1.B, 1a6y.1.C, 1a6y.1.D, 1bsx.1.A, 1by4.1.C, 1by4.1.D, 1by4.2.C, 1by4.2.D, 1cit.1.C, 1dkf.1.A, 1dkf.1.B, 1dsz.1.C, 1dsz.1.D, 1e3g.1.A, 1ere.1.A, 1err.1.B, 1exa.1.A, 1fby.1.A, 1fcx.1.A, 1fcy.1.A, 1fm6.1.B, 1fm6.2.A, 1fm6.2.B, 1g1u.1.A, 1g1u.1.B, 1g1u.1.C, 1g1u.1.D, 1g2n.1.A, 1g50.1.A, 1g5y.1.B, 1ga5.1.D, 1gdc.1.A, 1glu.1.C, 1glu.1.D, 1gs4.1.A, 1gwq.1.A, 1gwr.1.A, 1h9u.1.A, 1hcp.1.A, 1hcq.1.C, 1hcq.2.C, 1hcq.2.D, 1hg4.1.A, 1hj1.1.A, 1hlz.1.C, 1hra.1.A, 1i37.1.A, 1i38.1.A, 1i7g.1.A, 1i7i.1.A, 1i7i.2.A, 1ilh.1.A, 1k4w.1.A, 1k74.1.A, 1k74.1.B, 1k7l.1.A, 1k7l.3.A, 1k7l.4.A, 1kb2.1.C, 1kb4.1.D, 1kb6.1.C, 1kkq.1.A, 1kkq.2.A, 1kkq.3.A, 1kkq.4.A, 1knu.1.A, 1knu.1.B, 1kv6.1.A, 1l2i.1.A, 1l2i.1.A, 1lat.1.C, 1lat.1.D, 1lo1.1.C, 1lv2.1.A, 1m13.1.A, 1m2z.1.A, 1m2z.1.C, 1m7w.1.A, 1m7w.1.B, 1m7w.2.A, 1m7w.2.B, 1mv9.1.A,

1n46.1.A, 1n46.1.B, 1n4h.1.A, 1nav.1.A, 1nav.1.A, 1nde.1.A, 1nhz.2.B, 1nq0.1.A, 1nq1.1.A, 1nq2.1.A, 1nq7.1.A, 1nuo.1.A, 1nyx.1.A, 1nyx.1.B, 1osh.1.A, 1osv.1.A, 1osv.2.A, 1ot7.1.A, 1ot7.2.A, 1ovl.1.A, 1ovl.1.B, 1ovl.1.C, 1ovl.1.D, 1p8d.1.A, 1p8d.2.A, 1p93.1.A, 1p93.4.A, 1pcg.1.A, 1pdu.1.A, 1pk5.1.A, 1pk5.2.A, 1pq6.1.B, 1pq6.3.B, 1pq6.3.C, 1pq9.2.A, 1pq9.3.B, 1pq9.3.D, 1prg.1.A, 1prg.1.B, 1pzl.1.A, 1q4x.1.A, 1qkm.1.A, 1qkn.1.A, 1qkt.1.A, 1qku.1.A, 1r0n.1.C, 1r0n.1.D, 1r0o.1.C, 1r0o.1.D, 1r1k.1.B, 1r20.1.A, 1r4i.1.C, 1r4i.1.D, 1r4o.1.C, 1r4o.1.D, 1r4r.1.C, 1r4r.1.D, 1r5k.1.A, 1r5k.1.B, 1r5k.2.A, 1r6g.1.A, 1rdt.1.A, 1rdt.1.C, 1rgd.1.A, 1rkg.1.A, 1rxr.1.A, 1s0x.1.A, 1s9p.1.A, 1s9p.1.B, 1s9p.2.A, 1s9p.2.B, 1s9q.1.A, 1s9q.1.B, 1sj0.1.A, 1skx.1.A, 1sqn.1.A, 1sqn.2.A, 1t5z.1.A, 1t7f.1.A, 1tfc.1.A, 1u3q.1.A, 1u3q.1.B, 1u3q.2.A, 1u9e.1.A, 1u9e.2.A, 1uhl.1.A, 1uhl.1.B, 1upv.1.A, 1vjb.1.A, 1vjb.1.B, 1wm0.1.A, 1x7e.1.A, 1x7j.1.A, 1x7j.1.B, 1x7r.1.A, 1xap.1.A, 1xb7.1.A, 1xdk.1.A, 1xdk.1.B, 1xiu.1.A, 1xiu.1.B, 1xls.1.A, 1xls.1.B, 1xnn.1.A, 1xnx.1.A, 1xnx.1.B, 1xq3.1.A, 1xqc.1.A, 1xqc.1.B, 1xqc.2.B, 1xv9.1.A, 1xv9.1.B, 1xzx.1.A, 1y0s.1.A, 1y9r.1.A, 1y9r.2.A, 1ya3.1.A, 1ya3.2.A, 1ya3.3.A, 1yje.1.A, 1ymt.1.A, 1ynw.1.C, 1ynw.1.D, 1yok.1.A, 1yow.1.A, 1yp0.1.A, 1yye.1.A, 1yye.1.B, 1z5x.1.A, 1z95.1.A, 1zaf.1.A, 1zaf.1.B, 1zdt.1.A, 1zdt.2.A, 1zdu.1.A, 1zeo.1.A, 1zeo.1.B, 1zgy.1.A, 1zh7.1.A, 1zky.1.A, 1zky.1.B, 1zuc.1.A, 1zuc.1.B, 2a3i.1.A, 2a66.1.C, 2aa5.1.A, 2aa6.1.A, 2abi.1.A, 2abi.2.A, 2abi.3.A, 2acl.1.A, 2acl.1.B, 2acl.2.B, 2acl.3.B, 2acl.4.A, 2acl.4.B, 2ama.1.A, 2ath.1.A, 2ath.1.B, 2awh.1.A, 2ax6.1.A, 2ax8.1.A, 2b23.1.A, 2b50.1.A, 2bj4.1.A, 2bj4.1.B, 2c7a.1.A, 2c7a.1.B, 2ebl.1.A, 2env.1.A, 2ewp.1.A, 2ewp.1.B, 2fai.1.A, 2fai.1.B, 2ff0.1.C, 2fsz.1.A, 2g0g.1.A, 2g0h.1.A, 2g0h.1.B, 2g44.1.A, 2g44.1.B, 2g5o.1.A, 2gda.1.A, 2giu.1.A, 2gl8.1.A, 2gl8.1.B, 2gpo.1.C, 2gpp.1.A, 2gpu.1.A, 2gpv.2.D, 2gwx.1.A, 2gwx.2.A, 2h77.1.A, 2h79.1.A, 2han.1.C, 2han.1.D, 2hfp.1.A, 2hvc.1.A, 2i0j.1.A, 2i4p.1.A, 2iog.1.A, 2iok.1.A, 2j14.1.A, 2j4a.1.A, 2j7x.1.A, 2jf9.1.C, 2jfa.1.B, 2lbd.1.A, 2lze.1.A, 2nll.1.C, 2nll.1.D, 2npa.1.A, 2nv7.1.A, 2nv7.1.B, 2nxx.1.A, 2o9i.1.A, 2o9i.2.A, 2oax.1.A, 2oax.3.A, 2oax.4.A, 2oax.5.A, 2oax.6.A, 2ocf.1.A, 2om9.2.A, 2ouz.1.A, 2ovh.2.A, 2oz7.1.A, 2p4y.1.A, 2p4y.1.B, 2p54.1.A, 2p7z.1.A, 2pin.1.A, 2pin.1.B, 2pjl.1.A, 2pob.1.A, 2prg.1.A, 2prg.2.A, 2pv0.1.A, 2pv0.2.A, 2pv0.3.A, 2pvc.1.A, 2pvc.3.A, 2q1h.1.A, 2q3y.1.A, 2q59.1.A, 2q59.1.B, 2q5g.1.A, 2q5g.2.A, 2q5p.1.A, 2q5p.1.B, 2q5s.1.A, 2q5s.1.B, 2q60.1.A, 2q60.1.B, 2q60.1.C, 2q60.1.D, 2q6j.1.A, 2q6j.1.B, 2q6r.1.A, 2q70.1.A, 2q7i.1.A, 2q7k.1.A, 2q8s.1.A, 2q8s.1.B, 2qa6.1.B, 2qa8.1.A, 2qa8.1.B, 2qh6.1.A, 2qmv.1.A, 2qpy.1.A, 2qr9.1.A, 2qw4.1.A, 2qw4.3.A, 2qw4.4.A, 2qxs.1.A, 2qxs.1.B, 2qzo.1.A, 2r40.2.B, 2r6w.1.A, 2r6w.1.B, 2rew.1.A, 2v0v.1.A, 2v0v.2.A, 2v0v.3.A, 2v0v.4.A, 2v7c.1.A, 2v7c.2.A, 2vst.1.A, 2vst.2.A, 2vv0.2.A, 2vv1.2.A, 2vv2.2.A, 2vv4.2.A, 2xhs.1.A, 2xkw.1.A, 2xkw.2.A, 2xyj.2.A, 2xyw.1.A, 2yat.1.A, 2yfe.1.A, 2yfe.2.A, 2yja.1.B, 2yjd.1.A, 2ylo.1.A, 2ylq.1.A, 2yly.1.A, 2yly.1.B, 2z4b.1.A, 2z4j.1.A, 2zbs.1.A, 2zk0.2.A, 2zk0.2.B, 2zk1.2.A, 2zk1.2.B, 2zk3.2.A, 2zk3.2.B, 2zk6.2.A, 2znn.1.A, 2znp.1.A, 2znp.1.B, 2zvt.1.A, 2zvt.1.B, 2zxm.1.A, 3a1a.1.A, 3a2h.1.A, 3a2i.1.A, 3a2j.1.A, 3a9e.1.A, 3a9e.1.B, 3ads.2.A, 3adt.1.A, 3adt.1.B, 3adu.1.B, 3adv.1.B, 3adw.1.B, 3an3.1.A, 3an3.1.B, 3b0q.1.A, 3b0q.1.B, 3b0t.1.A, 3b0w.1.A, 3b1m.1.A, 3bej.1.A, 3bej.2.A, 3bqd.1.A, 3cbb.1.C, 3cbb.1.D, 3cjw.1.A, 3cld.1.A, 3cqv.1.A, 3cs6.1.A, 3cs8.1.A, 3ctb.1.A, 3ctb.2.A, 3cwd.1.A, 3cwd.2.A, 3d24.1.A, 3d24.1.C, 3d57.1.A, 3d5f.2.A, 3d5f.3.A, 3d90.1.A, 3d90.2.A, 3dct.1.A, 3dr1.1.A, 3dt3.1.A, 3dt3.1.B, 3dy6.2.B, 3dzu.1.A, 3dzy.1.A, 3e00.1.A, 3e7c.1.A, 3e94.1.A, 3ert.1.A, 3et0.2.A, 3et1.1.A, 3et1.2.A, 3et2.1.A, 3et2.2.A, 3et3.1.A, 3eyb.1.A, 3f5c.1.A, 3f5c.1.B, 3f5c.1.C, 3f7d.1.A, 3fal.1.A, 3fal.1.B, 3fal.1.C, 3fal.1.D, 3fc6.1.A, 3fei.1.A, 3fs1.1.A, 3fs1.1.A, 3fxv.1.A, 3g0w.1.A, 3g6p.1.C, 3g6p.1.D, 3g6q.2.A, 3g6r.1.D, 3g6t.1.A, 3g6t.1.B, 3g8i.1.A, 3g8n.1.A, 3g8n.1.B, 3g8o.1.A, 3g8u.1.A, 3g8x.1.B, 3g9e.1.A, 3g9i.2.A, 3g9m.1.A, 3g9m.1.B, 3g9o.1.B, 3gd2.1.A, 3gn8.1.A, 3gws.1.A, 3gwx.1.A, 3gwx.1.B, 3gyt.1.A, 3gz9.1.A, 3h0a.1.A, 3h0a.1.B, 3h52.1.A, 3h52.1.B, 3h52.2.A, 3h52.2.B, 3hc6.1.A, 3hlv.1.A, 3hlv.1.B, 3hm1.1.A, 3hm1.1.B, 3hod.1.A, 3hod.1.B, 3hq5.1.A, 3hzf.1.A, 3ilz.1.A, 3imy.1.A, 3ipq.1.A, 3ipu.1.A, 3ixp.1.A, 3jzb.1.A, 3jzc.1.A, 3k23.1.A, 3k23.2.A, 3k23.3.A, 3k6p.1.A, 3k8s.1.A, 3k8s.1.B, 3kba.1.A, 3kba.2.A, 3kdt.1.A, 3kfc.1.A, 3kfc.1.B, 3kfc.2.B, 3kmg.1.A, 3kmg.2.A, 3kmr.1.A, 3kmz.1.A, 3kyt.1.A, 3l03.1.A, 3l03.1.B, 3I0e.1.A, 3I0j.1.A, 3I0l.1.A, 3I1b.1.A, 3I3x.1.A, 3m7r.1.A, 3m9e.1.A, 3m9e.1.B, 3m9e.2.A, 3m9e.2.B, 3mne.1.A, 3mno.1.A, 3mnp.1.A, 3n00.1.A, 3noa.1.B, 3nsq.1.A, 3nsq.1.B, 3okh.1.A, 3oki.1.A, 3oki.2.A, 3omp.1.A, 3os8.1.A, 3osi.1.A, 3osi.2.A, 3oz0.1.A, 3ozj.1.A, 3p0u.1.A, 3p0u.1.B, 3p88.1.A, 3p89.1.A, 3p8x.1.A, 3pba.1.A, 3pba.2.A, 3pcu.1.A, 3plz.1.A, 3prg.1.A, 3q95.1.A, 3q95.2.A, 3qt0.1.A, 3r29.1.A, 3r29.1.B, 3r2a.1.A, 3r2a.1.B, 3r2a.1.C, 3r2a.1.D, 3r5n.1.A, 3r8a.1.A, 3r8a.2.A, 3r8i.1.A, 3rlj.1.A, 3rll.1.A, 3rut.1.A, 3rvf.1.A, 3ry9.1.A, 3ry9.2.A, 3s9s.1.A, 3sp6.1.A, 3sp9.1.A, 3sz1.1.A, 3sz1.2.A, 3t03.1.A, 3t03.2.A, 3t9k.1.A, 3t9k.2.A, 3tx7.1.B, 3ty0.1.A, 3up0.1.A, 3up3.1.A, 3uuc.1.A, 3uuc.1.B, 3uud.1.A, 3uud.1.B, 3uvv.1.A, 3uvv.1.B, 3v3e.1.A, 3v3e.1.B, 3v3q.1.B, 3v4a.1.A, 3v9y.1.A, 3vhu.1.A, 3vhv.1.A, 3vji.1.A, 3vji.1.B, 3vn2.1.A, 3vt3.1.A, 3vt7.1.A, 3vtc.1.A, 3w0g.1.A, 3w0h.1.A, 3wff.1.A, 3wfg.1.A, 3wgp.1.A, 3wj4.1.A, 3wj4.1.B, 3wt6.1.A, 3wwr.1.A, 3x1i.2.A, 3zra.1.A, 3zra.2.A, 4aa6.1.A, 4aa6.1.B, 4aa6.2.A, 4aa6.2.B, 4b7w.1.A, 4b7w.1.B, 4bcr.1.A, 4ci4.1.A, 4ci5.1.A, 4ci5.2.A, 4cn2.1.C, 4cn2.1.D, 4cn3.1.A, 4cn3.1.B, 4cn3.2.A, 4cn3.2.B, 4cn5.1.A, 4cn5.1.B, 4cn7.1.A, 4cn7.1.B, 4cn7.2.A, 4csj.1.A, 4dk8.1.A, 4dk8.1.C, 4dm6.1.A, 4dm6.2.A, 4dma.1.A, 4dma.1.B, 4dor.1.A, 4dor.1.B, 4dos.1.A, 4dqm.1.A, 4e2j.1.A, 4e4q.1.B, 4em9.1.A, 4em9.2.A, 4ema.1.A, 4ema.2.A, 4f9m.1.A, 4fgy.1.A, 4fhh.1.A, 4fn9.1.B, 4fne.1.A, 4g2i.1.A, 4hee.1.A, 4hn5.1.A, 4hn5.1.D, 4hn6.1.A, 4hn6.1.D, 4is8.1.A, 4is8.2.A, 4iu7.1.A, 4iu7.2.A, 4iui.1.C, 4iwc.1.A, 4j26.1.A, 4j5w.1.A, 4j5w.1.B 4j5w.1.C, 4j5w.1.D, 4j5x.1.A, 4j5x.1.C, 4j5x.1.D, 4jaz.1.A, 4jgv.1.A, 4jgv.1.B, 4jyg.1.B, 4jyg.1.B, 4k7a.1.A, 4kzj.1.A, 4kzj.2.A, 4kzm.1.A, 4kzm.2.A, 4l96.1.A, 4l98.1.A, 4log.1.A, 4log.1.B, 4lsj.1.A, 4ltw.1.A, 4m8h.1.A, 4mdd.1.A, 4mg5.1.A, 4mg5.1.B, 4n1y.1.A, 4n5g.1.A, 4n5g.1.C, 4n73.1.A, 4nb6.1.A, 4nie.1.A, 4nqa.1.A, 4nqa.2.A, 4nuf.1.A, 4ny9.1.A, 4o8f.1.A, 4o8f.1.B, 4oar.1.A, 4oc7.1.A, 4oea.1.A, 4ogh.1.A, 4oiv.1.A, 4oiv.1.B, 4oj4.1.A, 4ojb.1.A, 4oln.1.A, 4oln.1.B, 4ond.1.A, 4ond.2.B, 4oni.1.A, 4oni.2.A, 4oor.1.A, 4oor.2.A, 4ozr.1.A, 4ozr.1.B, 4ozt.1.B, 4p6w.1.A, 4p6x.1.A, 4p6x.2.A, 4p6x.3.A, 4p6x.5.A, 4pld.1.A, 4ple.4.A, 4pp6.1.A, 4prg.1.A, 4prg.1.B, 4prg.1.D, 4pvu.1.A, 4pvu.1.B, 4pwl.1.A, 4pwl.1.B, 4pxm.1.A, 4q0a.1.A 4q13.1.A, 4q13.1.B, 4q50.1.A, 4q50.1.B, 4q50.3.A, 4q50.4.B, 4qbq.1.A, 4qbq.1.B, 4qbr.1.A, 4qbs.1.A, 4qe6.1.A, 4qe8.1.A, 4qe8.2.A, 4qjr.1.A, 4ql8.1.A, 4qm0.3.B, 4r06.1.A, 4r06.1.B, 4r2u.1.A, 4r2u.1.B, 4r6s.1.A, 4r6s.1.B, 4rak.1.B, 4ref.1.A, 4ref.2.A, 4rmd.1.A, 4ruj.1.A, 4rwv.1.A, 4rze.1.B, 4rzf.1.B, 4rzf.1.B, 4rzg.1.B, 4rzg.1.B, 4s0s.1.A, 4s14.1.A, 4s15.1.A, 4s15.2.A, 4tnt.1.A, 4tnt.1.B, 4u7p.1.A, 4u7t.1.A, 4uda.1.A, 4udb.1.A, 4udc.1.A, 4udd.1.A, 4umm.1.A, 4umm.1.D, 4umm.1.E, 4wlb.1.A, 4wpf.1.A, 4wqp.1.A, 4wvd.1.B, 4wvd.2.B, 4xai.1.A, 4xai.1.C, 4xaj.1.A, 4xaj.1.B, 4xaj.2.A, 4xaj.2.B, 4xhd.2.B, 4xi3.1.A, 4xld.1.A, 4xuh.2.A, 4y29.1.A, 4ymq.1.A, 4ynk.1.A, 4ypq.1.A, 4zi1.1.A, 4zjr.1.A, 4zjw.1.A, 4zjw.2.A, 4zn7.1.A, 4zn7.1.B, 4zn9.1.A, 4znh.1.A, 4znv.1.A, 4zo1.1.A, 4zo1.1.B, 4zom.1.A, 5a86.1.A, 5a86.1.B, 5aau.1.A, 5aav.1.A, 5aav.1.B, 5acc.1.A, 5ak2.1.A, 5apk.1.A, 5avi.1.A, 5ayg.1.A, 5azt.1.A, 5azt.2.A, 5b5b.1.A, 5c4o.1.A, 5c4t.1.A, 5cbx.1.A, 5cbx.1.B, 5cbx.2.B, 5cby.1.A, 5cby.1.B, 5cbz.1.A, 5cbz.1.B, 5cbz.2.A, 5cbz.2.B, 5cc0.1.A, 5cc0.1.D, 5cc1.1.A, 5cc1.1.B, 5cj6.1.A, 5dks.1.A, 5dlr.1.B, 5dsh.1.A, 5duh.1.A, 5dv8.1.A, 5dvc.1.A, 5dwl.1.A, 5dx3.1.A, 5dx3.1.B, 5dxp.1.A, 5dxp.1.B, 5dyb.1.A, 5e0w.1.B, 5e0x.1.B, 5e15.1.A, 5e15.1.B, 5e1c.1.A, 5e1c.1.B, 5e69.1.A, 5e69.1.D, 5e6a.1.D, 5e6b.1.A, 5e6c.1.B, 5e6d.1.D, 5ec9.1.A, 5ejv.1.A, 5emp.1.A, 5emp.1.B, 5eth.1.A, 5f9b.1.A, 5f9b.1.B, 5fqs.1.A, 5g43.1.A, 5gic.1.A, 5gid.1.A, 5gie.1.A, 5gtn.1.A, 5gto.1.A, 5gtr.1.A, 5hcv.1.A, 5hjp.1.A, 5hjp.1.B, 5hjp.2.A, 5hjp.2.B, 5hyk.1.A, 5hyr.1.A, 5hzc.1.B, 5i4v.1.A, 5i4v.1.B, 5iaw.1.A, 5iaw.2.A, 5ick.1.A, 5ick.2.A, 5ixk.1.A, 5iz0.1.A, 5iz0.2.A, 5ji0.1.A, 5ji0.1.B, 5jjm.1.A, 5jy3.2.A, 5jy3.2.B, 5k13.1.A, 5k38.1.A, 5k3I.1.A, 5k3I.2.A, 5k3m.1.A, 5k3n.1.A, 5k3n.2.A, 5k6e.1.A, 5k6e.2.A, 5k74.2.A, 5kce.1.B, 5kcu.1.B, 5krb.1.B, 5krb.1.D, 5kya.1.A, 5kya.1.B, 5l0m.1.A, 5l11.1.A, 5l7g.1.A, 5lga.1.A, 5lsg.1.A, 5lsg.2.A, 5lwp.1.A, 5m24.1.A, 5m96.1.A, 5m96.2.A, 5mj5.1.A, 5mk4.1.A, 5mku.1.A, 5mwp.1.A, 5nft.1.A, 5ni5.1.A, 5nma.1.C, 5nti.1.A, 5ntk.1.A, 5ntk.2.A,

5ntp.1.A, 5ntq.1.A, 5ntq.2.A, 5q0i.1.A, 5q0k.1.A, 5q0m.1.A, 5q0q.2.A, 5q0r.1.A, 5q0z.2.A, 5q10.1.A, 5q11.1.A, 5q12.1.A, 5q13.1.A, 5q13.2.A, 5q1b.1.A, 5q1q.1.A, 5q1h.4.A, 5q1i.1.A, 5syz.1.A, 5t1z.1.A, 5t8e.1.A, 5t92.1.A, 5tbp.3.A, 5tlm.1.A, 5tm4.1.A, 5tm7.1.B, 5tm8.1.A, 5tn9.1.A, 5tnb.1.B, 5toa.1.B, 5two.1.A, 5u2b.1.A, 5u2b.1.B, 5u2b.2.B, 5u2b.3.A, 5u2b.3.B, 5u41.1.A, 5u42.2.A, 5u46.1.A, 5uan.1.A, 5uan.1.B, 5uc1.1.A, 5uc3.1.A, 5ufr.1.A, 5ufr.1.A, 5ufr.2.A, 5ufr.3.A, 5ufr.3 5ugm.1.A, 5uhi.1.A, 5uhi.2.A, 5unj.1.A, 5v39.1.A, 5v8q.1.A, 5va0.1.A, 5va0.1.D, 5va7.1.A, 5va7.1.D, 5vo4.1.A, 5w4r.1.A, 5w4r.1.B, 5w4v.1.A, 5w9c.1.A, 5w9d.1.B, 5wzx.1.A, 5wzx.2.A, 5x0r.1.A, 5x8g.1.A, 5x8s.1.B, 5x8u.1.A, 5x8w.1.A, 5xmx.1.A, 5xpl.1.A, 5xzh.1.A, 5y1j.1.A, 5y2o.1.A, 5y2o.1.B, 5y2t.1.A, 5y41.2.A, 5y44.1.A, 5y49.1.A, 5y7x.1.A, 5ycn.1.A, 5yd6.1.A, 5yd6.4.A, 5yp6.1.A, 5yt2.1.A, 5yxb.1.A, 5yxd.1.A, 5yxj.1.A, 5yxj.2.A, 5yxl.1.A, 5z12.2.A, 5z12.2.B, 5z5s.1.A, 5za1.1.A, 5za1.2.A, 5zgu.1.A, 5zgu.1.B, 6a22.2.A, 6a22.4.A, 6a5w.1.A, 6a5x.1.A, 6a5y.1.A, 6a5z.1.A, 6a5z.1.B, 6a60.1.A, 6a6k.3.A, 6a6p.1.A, 6a6p.2.A, 6ad9.1.A, 6an1.1.A, 6an1.1.B, 6aug.1.A, 6aug.2.A, 6avi.1.A, 6avi.2.A, 6b30.1.A, 6b31.1.A, 6b33.1.A, 6bn6.1.A, 6bns.1.A, 6bqu.1.A, 6bqu.1.D, 6br2.1.A, 6br3.1.A, 6bse.1.A, 6bse.1.B, 6bsf.1.A, 6bsf.1.D, 6c1i.1.A, 6c1i.1.B, 6c42.1.A, 6c5q.1.A, 6c5t.1.A, 6cbz.1.A, 6cbz.1.B, 6cfn.1.A, 6cfn.2.A, 6cfn.3.A, 6cfn.4.A, 6cfn.5.A, 6cfn.6.A, 6cfn.8.A, 6cht.1.A, 6cht.1.B, 6cht.1.D, 6cht.1.E, 6cht.1.G, 6cht.1.H, 6cht.1.I, 6cht.1.J, 6cht.2.B, 6cht.2.D, 6cht.2.E, 6cht.2.G, 6cht.2.H, 6cht.2.I, 6cht.2.J, 6chw.1.A, 6chz.1.A, 6cn5.1.A, 6cn5.2.A, 6cn6.1.A, 6cvh.1.A, 6d3e.1.A, 6d3e.1.B, 6d8x.1.A, 6d94.1.A, 6dbh.1.A, 6dbh.2.A, 6dcu.1.A, 6dcu.2.A, 6dda.1.A, 6df6.1.A, 6df6.1.B, 6dgl.2.A, 6dgo.1.A, 6dgo.1.B, 6dgp.1.A, 6dgq.1.A, 6dgq.2.A, 6dgr.1.A, 6dgr.1.B, 6dh9.1.A, 6dh9.2.A, 6dha.1.A, 6dxk.1.A, 6e3e.1.A, 6e3g.1.A, 6enq.1.A, 6enq.1.B, 6esn.1.A, 6eu9.1.A, 6eu9.1.B, 6eu9.2.A, 6eu9.2.B, 6f2l.1.A, 6f2l.1.B, 6fbq.1.A, 6fbr.1.A, 6fbr.1.B, 6fgq.1.A, 6fgq.2.A, 6fx0.1.A, 6fzf.1.A, 6fzg.1.A, 6fzj.1.A, 6fzp.1.A, 6fzy.1.A, 6g07.2.A, 6g07.4.A, 6gev.1.A, 6ggg.1.A, 6hj2.1.A, 6hl0.1.A, 6hl1.1.A, 6hn6.1.A, 6i61.1.A, 6i62.1.A, 6iar.1.A, 6icj.1.A, 6ijr.2.A, 6ijs.1.A, 6itm.1.A, 6itm.2.A, 6ivx.4.A, 6j1l.1.A, 6j1l.3.A, 6j3n.1.A, 6jio.1.A, 6jno.1.C, 6jnr.2.A, 6k0t.2.A, 6k3n.1.A, 6k9g.2.A, 6k9m.2.A, 6kba.1.A, 6kkb.1.A, 6kke.1.A, 6knr.1.A, 6knv.1.A, 6knv.1.A, 6knv.1.A, 6ktm.1.A, 6ktn.1.A, 6kxx.1.A, 6l36.2.A, 6l6l.1.A, 6l6q.1.A, 6l88.1.A, 6l89.1.B, 6l8b.1.A, 6l8b.1.B, 6l96.1.A, 6lb5.1.C, 6lc1.1.B, 6lc1.1.D, 6lit.1.A, 6ln4.1.A, 6lxb.1.A, 6md0.2.A, 6md1.1.A, 6md1.2.A, 6md4.2.A, 6ms7.1.A, 6nad.1.A, 6nad.2.A, 6nwk.1.A, 6nws.1.A, 6nwt.1.A, 6nwt.2.A, 6nwu.1.A, 6o3z.1.A, 6o67.1.A, 6o67.2.A, 6o68.1.A, 6o68.2.A, 6o98.2.A, 6oni.1.A, 6onj.1.A, 6oqx.1.A, 6oqy.1.A, 6owc.1.A, 6owc.1.B, 6p9f.1.A, 6pdz.1.A, 6pdz.1.C, 6pfm.1.A, 6pfm.1.B, 6pit.1.A, 6psj.1.A, 6psj.1.B, 6q2w.1.A, 6q6m.1.A, 6r7a.1.A, 6s41.1.A, 6s41.1.B, 6s4n.1.A, 6s4n.2.A, 6s4n.3.A, 6s4n.4.A, 6s4t.1.A, 6s4u.2.A, 6s5k.1.A, 6sal.1.A, 6sbo.1.A, 6sbo.1.B, 6sjm.1.A, 6slz.1.A, 6sq0.1.B, 6t4i.1.A, 6t4u.1.A, 6t6b.1.A, 6t9c.1.A, 6t9c.1.B, 6tdc.1.A, 6tlm.1.A, 6u04.1.A, 6v87.1.B, 6v8t.1.B, 6vig.1.A, 6vj1.1.A, 6vmu.1.A, 6vpf.1.A, 6vsw.1.A, 6vsw.2.A, 6vvp.2.B, 6w9k.1.A, 6w9m.1.A, 6xfv.2.A, 6xwg.1.C, 6xwg.1.D, 6xwh.1.C, 6xwh.1.D, 6zly.1.A, 6zly.1.B, 7a77.1.A, 7a78.1.A, 7a79.1.A, 7ahj.1.A, 7ahj.1.B, 7awd.1.A, 7bq0.2.A, 7d42.1.A, 7jh2.2.A, 7jhd.1.A, 7kbs.1.A, 7kcd.1.A