ENGR-065: Circuit Theory Lecture 1: Electrical Engineering Overview and International System of Units

Derek Hollenbeck
Mechanical Engineering Department
University of California, Merced
dhollenbeck@ucmerced.edu

Summer 2022

Topics

- 1. The overview of electrical systems
- 2. International system of units (SI)
 - Covered in Sections 1.1, 1.2, and 1.3

Why Do We Learn Circuit Theory?

- Electrical devices and systems have become a part of our life. This course will provide you with basic knowledge and skills to analyze, design, and develop these electrical devices and systems.
- The course is designed to introduce the fundamental principles (three laws) and the technical skills of how to apply these principles to circuit analysis.

Why Do We Learn Circuit Theory?

• The circuit theory is a fundamental and core course for the related higher division courses.

Overview of Electrical Engineering

The five major electrical systems are:

- Communication systems
- Computer systems
- Control systems
- Power systems
- Signal processing systems

Communication System

1. Communication systems generate, transmit, and

distribute information.

Computer Systems

2. Computer systems process information from word processing to mathematical solutions.

Control Systems

3. A control system can manage, direct, command, and regulate the behavior of a device or process.

Power Systems

4. Power systems are used to generate, distribute, and use electric power.

Signal Processing Systems

5. Signal processing systems use electrical signals to represent information through analyzing, modifying and converting the physical information such as sound, images and scientific measurements.

International System of Units

Quantity	Basic Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	degree kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

International System of Units

Quantity	Unit Name (Symbol)	Formula
Frequency	hertz (Hz)	s^{-1}
Force	newton (N)	$kg \cdot m/s^2$
Energy or work	joule (J)	$N\cdot m$
Power	watt (W)	J/s
Electric charge	coulomb (C)	$A \cdot s$
Electric potential	volt (V)	J/C
Electric resistance	ohm (Ω)	V/A
Electric conductance	siemens (S)	A/V
Electric capacitance	farad (F)	C/V
Magnetic flux	weber (Wb)	$V \cdot s$
Inductance	henry (H)	Wb/A

International System of Units

TABLE 1.3 Standardized Prefixes to Signify Powers of 10

Prefix	Symbol	Power
atto	a	10^{-18}
femto	f	10^{-15}
pico	p	10^{-12}
nano	n	10^{-9}
micro	μ	10^{-6}
milli	m	10^{-3}
centi	С	10^{-2}
deci	d	10^{-1}
deka	da	10
necto	h	10^{2}
kilo	k	10^{3}
mega	M	10^{6}
giga	G	10^{9}
tera	T	10^{12}

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Summary

- Introduced some examples of electrical systems.
- Went through international system of units.

In next lecture, we will discuss

- □ Voltage, current, power, and energy
- ☐ Ideal basic circuit elements
- ☐ The passive sign convention
- □ Reference polarities/directions

Questions

