Rasterisation

Dr. V Masilamani

masila@iiitdm.ac.in

Department of Computer Science and Engineering IIITDM Kancheepuram Chennai-127

Overview

- What & Why of Rasterisation
- 2 Types of Rasterization
 - Rasterisation of Points
 - Rasterisation of Boundary of Objects
 Rasterisation of Line
 Rasterization of Circle / Circle Drawing
 - Rasterisation of Ellipse

 - Rasterization of Region of Objects

What is Rasterisation

- ► The process of forming raster(2D-array of pixels) that represents given objects
 - Input: Mathematical representation of objects
 - Output: Digital image representing the objects
 - To draw line segment, the input: two end points of the line segment; output: digital image(raster) representing the line segment

Need of Rasterisation

- ▶ Goal of graphics is to synthesise image that represents a scene
- Scene consists of objects of different types
- Objects are in continuous domain in real world
- ▶ Sampling is required to represent such object in digital medium
- ► Sampling is called as **Rasterisation** or **Scan Conversion**
- Scan conversion: scans the object, and converts it into discrete representation

Need of Rasterisation (cont.)

Need of Rasterisation

Types of Rasterisation

- ► Rasterization of a point
- ► Rasterization of Boundary of Objects
 - Rasterization of a straight line segment
 - Rasterization of curves such as circle, ellipse etc.
- ► Rasterization of Region of Objects
 - Rasterization of a interior of ellipse along with boundary
 - Rasterization of interior of polygon along with boundary

Rasterisation of points

- ▶ Rasterisation a of point: Given a point (x,y) where $(x,y) \in R \times R$, find $(x',y') \in Z \times Z$ such that (x',y') is very close to (x,y)
- ▶ Approach 1: Given $(x, y) \in R \times R$, convert into $x' = \lfloor x \rfloor$, $y' = \lfloor y \rfloor$
- ▶ Approach 2: Given $(x, y) \in R \times R$, convert into $x' = \lceil x \rceil$, $y' = \lceil y \rceil$
- ▶ Approach 3: Given $(x, y) \in R \times R$, convert into $x' = \lfloor (x + 0.5) \rfloor$, $y' = \lfloor (y + 0.5) \rfloor$ -Round off

Rasterization of Line / LINE DRAWING

Rasterization of straight Line: Given the specification for a straight line, find the collection of locations of pixels(integer coordinates) which closely approximates the line.

Goals (not all of them are achievable with the discrete space of a raster device):

- Straight lines should appear straight.
- ► Lines should start and end **accurately**, matching endpoints with connecting lines.
- Lines should have **constant brightness**.
- Lines should be drawn as rapidly as possible.

Problems:

- ► How do we determine which pixels to illuminate to satisfy the above goals?
- ▶ Vertical, horizontal, and lines with slope = +/-1, are easy to draw.
- Others create problems: stair-casing/ jaggies/aliasing.
- Quality of the line drawn depends on the location of the pixels and their brightness

It is difficult to determine whether a pixel belongs to an object

Method 1: Direct(Brute Force) Method

- ► Given two end points (x_0, y_0) and (x_l, y_l) of the line y=mx+b, find m and b
- Assign values for x from x_0 to x_l , and calculate round(y) from the line equation, and then display the pixel (x, y)

Take an example, b = 1 (starting point (0,1)) and m = 3/5.

Then

$$x = 1$$
, $y = 2 = round(8/5)$

$$x = 2$$
, $y = 2 = round(11/5)$

$$x = 3$$
, $y = 3 = round(14/5)$

$$x = 4$$
, $y = 3 = round(17/5)$

$$x = 5$$
, $y = 4 = round(20/5)$

Ideal Case of a line drawn in a graph paper

Choice of pixels in the raster, as integer values

$$x = 1$$
, $y = 2 = round(8/5)$

$$x = 2$$
, $y = 2 = round(11/5)$

$$x = 3$$
, $y = 3 = round(14/5)$

$$x = 4$$
, $y = 3 = round(17/5)$

$$x = 5$$
, $y = 4 = round(20/5)$

Why is the direct method undesired?

- Floating point multiplication and additions are costly
- ► Round() function needed -Round() is also costly
- ► Can get gaps in the line (if slope > 1)

Take another example:

Take another example:
$$y = 10.x + 2$$

$$x=1, y=12;$$

$$x=2, y=22.$$

Solution to the gap issue:

When m > 1, Assign values for y from y_0 to y_i , and calculate round(x) from the line equation, and then display the pixel (x, y)

LINE DRAWING using DDA Algorithm

Method 2: DDA - Digital Difference Analyzer

- Let the input to draw the line be two end points (x_0, y_0) and (x_1, y_1)
- ► The slope of line y = mx + b: $m = (y_1 y_0) / (x_1 x_0)$
- ▶ The first point to be plotted is (x_0, y_0)
- Let (x_i, y_i) be the ith pixel drawn. The next pixel (x_{i+1}, y_{i+1}) can be computed as follows Since y = mx + c, $y_i = mx_i + b$ and $y_{i+1} = mx_{i+1} + b$ Therefore $y_{i+1} - y_i = m(x_{i+1} - x_i)$
- ► Case 1: $|m| \le 1$ When $|m| \le 1$, $x_{i+1} = x_i + 1$ Therefore $y_{i+1} - y_i = m(x_i + 1 - x_i) = m$ and hence $y_{i+1} = y_i + m$ ——————————(1)

LINE DRAWING using DDA Algorithm (cont.)

- ► Case 2: |m| > 1When |m| > 1, $y_{i+1} = y_i + 1$ Therefore $y_{i+1} - y_i = m(x_{i+1} - x_i)$ will become $y_i + 1 - y_i = m(x_{i+1} - x_i)$ and hence $x_{i+1} = x_i + 1/m$ —(2)
- ► The equations (1) and (2) provide an incremental algorithm for sampling the line
- ► Adv: (1) No floating point multiplication; (2) No rounding inside the loop
- ▶ Dis Adv: Floating point addition is still there

LINE DRAWING using DDA Algorithm


```
DDA( ((x_0, y_0), (x_1, y_1)) )
      void
3
          //find slope
4
          float m = (y_1 - y_0)/(x_1 - x_0);
5
          float rm = (x_1 - x_0)/(y_1 - y_0):
          //intialization
8
          int x = round(x_0), y = round(y_0);
         float yf = y_0, xf = x_0;
10
11
12
          //Draw first sample
13
          DrawPoint(x,y)
14
```

LINE DRAWING using DDA Algorithm


```
if (|m| <= 1) //Draw line when |slope| <= 1
2
          while (x < x_1)
3
            x=x+1; yf=yf+m:
5
            y=round(yf);
            DrawPoint(x,y) // display pixel (x,y)
8
        else //Draw line when |slope|>1
10
11
         while (y < y_1)
12
13
            y=y+1; x f=x+ rm;
14
            x=round(xf);
15
             DrawPoint(x,y) // display pixel (x,y)
16
17
18
          DDA ends
19
```

イロト (個)ト (意)ト (意)ト

Midpoint Line Drawing Algorithm

Motivation

- DDA algorithm was using floating point addition inside the loop, and hence it is slow.
- Is it possible to get rid of all floating point operations inside the loop?
- The "yes" answer is provided by the midpoint line drawing algorithm
- ► This algorithm draws line y = mx + b, when $0 \le m \le 1$, and use symmetry property to draw other lines

For each pixel (x,y) all possible pixels in 8 octants

Eight way symmetry of a Circle

MIDPOINT LINE ALGORITHM

Incremental Algorithm (Assume first octant)

Given the choice of the current pixel, which one do we choose next : ${\sf E}$ or ${\sf NE}$?

Consider the line equations: y=m*x+B

$$y = (dy/dx) * x + B$$

Rewrite as: y*dx=dy*x+dx*B

Let
$$F(x,y) = dy*x - dx*y + B*dx = 0$$

F(x,y) > 0 (ie y < m*x+B); if point (x,y) lies below the line

$$F(x,y) < 0$$
 (ie $y>m*x+B$); if $point(x,y)$ lies above the line

Criteria: Evaluate the mid-point, M, w.r.t. the equation of the line.

If Q is above M, select NE pixel as your next choice (since NE is closer to Q)

If Q is below M, select E pixel as your next choice (since E is closer to Q)

ALGO - for next choice:

If
$$F(M) > 0$$
 /*Q is above M */ then Select NE /*M is below the line*/else Select E :

$$/*$$
 also with $F(M) = 0 */$

Let (X_p, Y_p) be the pixel computed at iteration p.

Let us compute pixel in the next iteration (X_{p+1}, Y_{p+1}) in terms of (X_p, Y_p)

Let us define a decision variable $d_p = F(M_p)$, where M_p is the mid point at the iteration p, and given as $M_p = (x_{p+1}, (y_p + y_p + 1)/2) = (x_p + 1, y_p + 1/2)$ $d_p = F(X_p + 1, Y_p + 1/2) = dy(X_p + 1) - dx(Y_p + 1/2) + B dx$,

Based on the sign of d_p , you choose E or NE.

ie if $d_p < 0$ (Mp is above the line) then the next pixel is E: $(x_p + 1, y_p)$

if $d_p >= 0$ (Mp is below the line) then the next pixel is NE: $(x_p + 1, y_p + 1)$

Case I. Chosen E at iteration (p): The next pixel we get is $(x_{p+1}, y_{p+1}) = (x_p + 1, y_p)$

Hence in the next iteration p+1, the mid point E and NE of (x_p+1,y_p) will be

$$M_{p+1} = (x_p + 2, (y_p + y_p + 1)/2) = (x_p + 2, y_p + 1/2)$$

$$d_{p+1} = F(M_{p+1}) = F(X_p + 2, Y_p + 1/2) = \mathrm{dy}(X_p + 2) + -\mathrm{dx}(Y_p + 1/2) + \mathrm{B}$$
 dx

$$(\Delta d)_E = d_{p+1} - d_p = dy$$

$$d_{p+1} = d_p + dy$$

$$d_{p+1} \ = \ d_p + (\Delta d)_E$$

Case II. Chosen NE at iteration (p): The next pixel we get is $(x_{p+1}, y_{p+1}) = (x_p + 1, y_p + 1)$

Hence in the next iteration p+1, the mid point E and NE of (x_p+1,y_p+1) Will be

$$M_{p+1} = (x_p + 2, (y_{p+1} + y_{p+2})/2) = (x_p + 2, y_p + 3/2)$$

$$d_{p+1} = F(M_{p+1}) = F(X_p + 2, Y_p + 3/2) = dy(X_p + 2) + -dx(Y_p + 3/2) + B dx$$

$$(\Delta d)_{NE}=d_{p+1}$$
 - $d_p=/*= ext{dy}$ - $ext{dx}$ */

Let
$$(\Delta d)_{NE} = dy - dx$$

Update using
$$d_{p+1} = d_p + \Delta d_{NE}$$

Midpoint criteria

At iteration p $d_p = F(M_p) = F(X_p+1, Y_p+1/2);$ if $d_p > 0$ choose NE else /* if $d_p \le 0$ */choose E;

Case EAST:

▶ Let
$$(\Delta d)_E = dy$$

Case NORTH-EAST:

- $ightharpoonup d_{p+1} = F(M_{p+1}) = F(X_p + 2, Y_p + 3/2)$
- ▶ Let $(\Delta d)_{NE} = dy dx$

We have obtained iterative definition of d_p to chose E on NE at iteration p

What is d_0 ?

As the starting pixel is
$$(x_0, y_0)$$
, $M_0 = (x_0 + 1, (y_0 + y_0 + 1)/2) = (x_0 + 1, y_0 + 1/2)$ $d_0 = F(M_0) = F(x_0 + 1, y_0 + 1/2)$ $= dy(x_0 + 1) - dx(y_0 + 1/2) + B*dx$ $= (dy*x_0 - dx*y_0 + B*dx) + (dy - dx/2) = F(x_0, y_0) + (dy - dx/2)$ $= 0 + dy - dx/2$ (Assuming end points are integer coordinates) $= dy - dx/2$

Let's get rid of the fraction and see what we end up with for all the variables:

When d_0 is re-assigned as $d_0 = 2d_0$,

$$d_0=2\mathrm{dy}-\mathrm{dx}\;;$$

$$(\Delta d)_E = 2 dy$$
; (when $d_{p+1} = d_p + (\Delta d)_E$)

$$(\Delta d)_{NE}=2(\mathsf{dy}-\mathsf{dx})$$
 ; (when $d_{p+1}=d_p+(\Delta d)_{NE}$)

Note:
$$d_p > or < or = 0$$
 iff $2d_p > or < or = 0$ respectively

The Midpoint Line Algorithm

```
// Initialization:

x = x_0; y = y_0;

dy = y_1 - y_0; dx = x_1 - x_0;

d = 2dy - dx;

(\Delta d)_E = 2dy;

(\Delta d)_{NE} = 2(dy - dx);

//display the first point PlotPoint(x,y)
```


The Midpoint Line Algorithm(contd.)

```
//Plot the remaining points to display line
 1: while x < x_1 do
 2.
      if d < 0 then
                                                   d = d + (\Delta d)_E;
 3:
                                                  ▷ /* Choose NE */
 4:
    else
         d = d + (\Delta d)_{NE};
 5:
         v = v + 1
 6:
 7:
    end if
 8: x = x + 1;
      PlotPoint(x, y);
10: end while
```


Example:

Starting point: (5, 8) Ending point: (9, 11) Successive steps:

- ► d=2, (6, 9)
- ► d=0, (7, 9)
- ► d=6, (8, 10)
- ► d=4, (9, 11)

INIT: dy = 3; dx = 4; d_0 =2; $(\Delta d)_E$ = 6; $(\Delta d)_{NE}$ = -2;

We have considered lines in the first octant only. What about rest?

Midpoint Line Drawing Algorithm

- ▶ Octant 2: If a line is from (x_1, y_1) to (x_2, y_2) with $1 \le m \le \infty$ (theta is in the range 45 degree to 90 degree), then
 - (Mirror diagonally) Transformed it to line from (y_1, x_1) to (y_2, x_2) with $0 \le m \le 1$
 - Find pixel locations (x_i, y_i) for all i for the transformed line
 - Draw pixels (y_i, x_i) for all i
- Octant 3: If a line is from (x_1, y_1) to (x_2, y_2) with $11 \le m \le -\infty$ (angle is in the range 90 to 135) then
 - Mirror Vertically
 - Mirror diagonally
 - The transformed line will be with 0 < m < 1
 - find (x_i, y_i) for all i
 - DrawPoints after reversing operations: ie mirror diagonally and then mirror vertically

- Octant 4: If a line is from (x_1, y_1) to (x_2, y_2) with $-1 \le m \le 0$ (angle is in the range 135 deg to 180 deg) then
 - (Mirror Vertically) Transformed it to line from $(-x_1, y_1)$ to $(-x_2, y_2)$ with $0 \le m \le 1$
 - Find pixel locations (x_i, y_i) for all i for the transformed line
 - Draw pixels $(-x_i, y_i)$ for all i
- ▶ Octant 5: If the angle is in the range 180 deg to 225 deg, then
 - Replace x by -x and Replace y by -y
 - Find pixel locations (x_i, y_i) for all i for the transformed line (line in Octant 1)
 - Draw pixels $(-x_i, -y_i)$ for all i
- ▶ Octant 6: If the angle is in the range 225 deg to 270 deg, then
 - Replace x by -x and Replace y by -y (Results in Octant 2)

- Find pixel locations (x_i, y_i) for all i for the transformed line (line in Octant 2)
- Draw pixels $(-x_i, -y_i)$ for all i
- ▶ Octant 7: If the angle is in the range 270 deg to 315 deg, then
 - Replace x by -x and Replace y by -y (Results in Octant 3)
 - Find pixel locations (x_i, y_i) for all i for the transformed line (line in Octant 3)
 - Draw pixels $(-x_i, -y_i)$ for all i
- ▶ Octant 8: If the angle is in the range 315 deg to 360 deg, then
 - Replace x by -x and Replace y by -y (Results in Octant 4)
 - Find pixel locations (x_i, y_i) for all i for the transformed line (line in Octant 4)
 - Draw pixels $(-x_i, -y_i)$ for all i

Bresenham Line Drawing Algorithm Vs Mid-point Line Drawing Algorithm

- Criteria Used in Mid point algorithm:
 - Select E if mid point of E and NE is above the line
 - Select NE if mid point of E and NE is below the line
- Criteria Used in Bresenham algorithm:
 - Select E if d(E, Line) ≤ d(NE, Line)
 - Select NE if d(E, Line) > d(NE, Line)
- ▶ Both lead to the same updates to get next pixel (x_{i+1}, y_{i+1}) from (x_i, y_i)

Issues: Staircasing, Fat lines, end-effects and end-point ordering.

ANTI-ALIASING

Some Applications of Line Drawing: Drawing boundary of polygons and also filling polygons

Consider second octant

Now the choice is between pixels E and SE.

CIRCLE DRAWING

- ► Consider circles centered at the origin with integer radii.
- ► Translations can be applied to get non-origin centered circles.
- Explicit equation: $y = +/- \operatorname{sqrt}(R^2-x^2)$
- ► Implicit equation: $F(x,y) = x^2 + y^2 R^2 = 0$
- Implicit equations used extensively for advanced modeling (e.g., liquid metal creature from "Terminator 2") Symmetry of points in Circle: Rasterizing one point will produce rasterisation of 7 more points

(cont.)

Symmetry of points in Circle: Rasterizing one point will produce rasterisation of 7 more points

(cont.)

Use of Symmetry: Rasterize second octant. Rasterize other 7 octants as follows:

```
for each (x,y) \in 2^{nd}Octant DrawCircle(x,y) DrawCircle(x,y) begin Plotpoint (x,y); Plotpoint (y,x); Plotpoint (x,-y); Plotpoint (-y,x); Plotpoint (-x,-y); Plotpoint (-y,-x); Plotpoint (-x,y); Plotpoint (-y,x); end
```


MIDPOINT CIRCLE ALGORITHM

- ► What is special about 2nd octant
 - The first point to be drawn is (0, r) // assume r is integer
 - Since tangent at (0, r) is horizontal and tangent at (x, y) when x = y is diagonal at 135 degree, movement needs to either horizontal(E) or diagonal at 135 degree (SE)
 - After drawing (x_i, y_i), to draw (x_{i+1}, y_{i+1}), E or SE point of (x_i, y_i) needs to be chosen
- ► How to decide between E and SE
 - Circle Equation: $F(x,y) = x^2 + y^2 R^2 = 0$
 - F(x, y) > 0 if point is outside the circle
 - F(x, y) < 0 if point inside the circle.
 - At iteration p, Let M_p be the mid point of E and SE

(cont.)

- $d_p = F(M_p)$, where $M_p = (x_p + 1, (y_p + y_p 1)/2) = (x_p + 1, y_p 1/2)$;
- $d_p = F(M_p) = F(x_p + 1, y_p 1/2) = (x_p + 1)^2 + (y_p 1/2)^2 R^2$
- Mid Point Criteria: Choose SE when $d_p \ge 0$; Choose E when $d_p < 0$

Let us derive iterative definition for d_{p+1}

 d_{p+1} is dependent on d_p

Case: $d_p \geq 0$:

SE is chosen at iteration p. Therefore $x_{p+1} = x_p + 1$ and

 $y_{p+1} = y_p - 1$

next midpoint: M_{p+1} will be mid point of E and SE of

 (x_p+1,y_p-1)

which is $(x_p + 2, ((y_p - 1) + (y_p - 2))/2) = (x_p + 2, y_p - 3/2)$

 $d_{p+1} = F(M_{p+1}) = (x_p + 2)^2 + (y_p - 3/2)^- R^2$

 $d_{p+1} - d_p = 2x_p 2Y_p + 5$

Let $(\Delta d)_{SE} = d_{p+1} - d_p$

Hence $d_{p+1}=d_p+(\Delta d)_{SE}$, where $(\Delta d)_{SE}=2x_p-2y_p+5$

Case : $d_p < 0$:

E is chosen at iteration p. Therefore $x_{p+1} = x_p + 1$ and $y_{p+1} = y_p$

next midpoint: M_{p+1} will be mid point of E and SE of $(x_p + 1, y_p)$

which is
$$(x_p + 2, ((y_p) + (y_p - 1))/2) = (x_p + 2, y_p - 1/2)$$

 $d_{p+1} = F(M_{p+1}) = (x_p + 2)^2 + (y_p - 1/2)^- R^2$
 $d_{p+1} - d_p = 2X_p + 3$
Let $(\Delta d)_E = d_{p+1} - d_p$
Hence $d_{p+1} = d_p + (\Delta d)_E$, where $(\Delta d)_E = 2x_p + 3$
 $d_{start} = d_1 = F(M_1)$, where M_1 mid point of E and SE of $(0, R)$
 $= F((1+1)/2, (R+R-1)/2) = F(1, R-1/2)$
 $= 1 + (R-1/2)^2 - R^2 = 1 + R^2 - R + 1/4 - R^2$
 $= 5/4 - R$

Summary:

$$ightharpoonup d_{p+1}=d_p+(\Delta d)_{SE}$$
, where $(\Delta d)_{SE}=2X_p-2Y_p+5$ when $d_p>=0$

$$ightharpoonup d_{p+1} = d_p + (\Delta d)_E$$
, where $(\Delta d)_E = 2X_p + 3$ when $d_p < 0$

▶
$$d_1 = 5/4 - R$$
, which is approximated as $d_1 = 1 - R$

The Midpoint Circle algorithm

```
1: x = 0
2: y = R
3: d = 1 - R
4: DrawCircle(x, y);
5: while y > x do
      if d < 0 then
                                                  d = d + 2x + 3:
     else
                                                 ▷ /* Choose SE */
8:
         d = d + 2(x - y) + 5;;
9:
         y = y - 1
10.
      end if
11.
12.
      x = x + 1;
      DrawCircle(x, y);
13:
14: end while
```


Example: R = 10; Initial Values:d = 1 - R = -9; X = 0; Y = 10; 2X = 0; 2Y = 20.

р	2	3	4	5	6	7	8
d	-6	-1	6	-3	8	5	6
2X	0	2	4	6	8	10	12
2Y	20	20	20	20	18	18	16
(X,Y)	(1,10)	(2,10)	(3,10)	(4,9)	(5,9)	(6,8)	(7,7)

(cont.)

Observation:

- ▶ No floating point operation in side the loop
- Only integer addition, decrement, increment and shifting left (multiplication by 2) are used
- ightharpoonup Time complexity is O(n), where n is number of points to be drawn

SCAN CONVERTING ELLIPSES

Length of the major axis: 2a; and minor axis: 2b.

- Scheme: Rasterise and draw first quadrant, and then draw other quadrants using symmetry
 Let (x, y) be in first quadrant
 - (-x, y) will be in the second quadrant
 - (-x, -y) will be in the third quadrant
 - (x, -y) will be in the fourth quadrant

(cont.)

- ▶ Split the the first quadrant into two regions R1 and R2, where R1 consists of all points on ellipse from (0, b) to (x^*, y^*) s.t slope at (x^*, y^*) is -1
- ▶ Properties of points in R1: Angle of tangent at (0, b) is 180 degree (E) angle of tangent at (x^*, y^*) is 135 degree (SE). Therefore to move from p^{th} point to $(p+1)^{th}$ point, go to E or go to SE

(cont.)

(cont.)

- Properties of points in R2: angle of tangent at (x^*, y^*) is 135 degree(SE) and angle of tangent at (a, 0) is 90 degree(S). Therefore to move from p^{th} point to $(p+1)^{th}$ point, go to SE or go to S
- ► The choice of pixels in R1 is between E and SE, whereas in R2, the choice is between S and SE.
- ▶ We need to obtain the point on the contour where the slope of the curve is -1.

$$F(X,Y) = b^2 X^2 + a^2 Y^2 - a^2 b^2$$

The boundary point between R1 and R2 is (x, y) with slope = -1.

Hence at
$$(x, y)$$
, $dY/dX = -1$

WKT When F(X, Y)=0,
$$dY/dX = -\frac{\partial F}{\partial X}/\frac{\partial F}{\partial Y}$$

The slope of Ellipse from (0,b) to (a,0) monotonically decreases from 0 to $-\infty$

Therefore $\frac{\partial F}{\partial \mathbf{x}}/\frac{\partial F}{\partial \mathbf{y}}$ increases monotonically from 0 to ∞

For each point in R1, except the boundary point, $\frac{\partial F}{\partial X} / \frac{\partial F}{\partial Y} < 1$.

At the boundary point (x^*, y^*) , $\frac{\partial F}{\partial x} / \frac{\partial F}{\partial y} = 1$.

Hence in R1: $\frac{\partial F}{\partial Y} > \frac{\partial F}{\partial X}$ and in R2: $\frac{\partial F}{\partial X} > \frac{\partial F}{\partial Y}$

At the boundary,

$$\frac{\partial F}{\partial Y} = \frac{\partial F}{\partial X}$$

$$\frac{\partial F}{\partial X} = (2b^2X)$$

$$\frac{\partial F}{\partial Y} = (2a^2 Y)$$

Characterisation of movement from (x_p, y_p) to (x_{p+1}, y_{p+1}) in R1

- Let the current pixel be (x_p, y_p) ; $d_p = F(M_p)$, where M_p is the mid point of E and SE of (x_p, y_p) As $E = (x_p + 1, y_p)$ and $SE = (x_p + 1, y_p - 1)$, $M_p = (x_p + 1, y_p - 1/2);$
- $d_p = F(M_p) = F(x_p + 1, Y_p 1/2)$ $= b^2(x_0+1)^2 + a^2(y_0-1/2)^2 - a^2b^2$
- **Case 1:** When E was chosen at iteration $p(d_p < 0)$: $(x_{n+1}, y_{n+1}) = (x_n + 1, y_n)$ $M_{p+1} = (x_p + 2, (y_p + y_p - 1)/2)$ (Mid point of E and SE of $(x_{n}+1, y_{n})$ $d_{p+1} = F(M_{p+1}) = F(x_p + 2, y_p - 1/2)$ $=b^2(x_0+2)^2+a^2(y_0-1/2)^2-a^2b^2$ $d_{p+1} - d_p = b^2(2x_p + 3)$ $d_{n+1}=d_n+b^2(2x_n+3)$:

Let
$$(\Delta d)_{E1} = b^2 (2x_p + 3)$$

 $d_{p+1} = d_p + (\Delta d)_{E1}$

(cont.)

▶ Case 2: When SE was chosen at iteration p ($d_p >= 0$): $(x_{p+1}, y_{p+1}) = (x_p + 1, y_p - 1)$ $M_{p+1} = (x_p + 2, (y_p - 1 + y_p - 2)/2)$ (Mid point of E and SE of $(x_p + 1, y_p - 1)$) $d_{p+1} = F(M_{p+1}) = F(x_p + 2, y_p - 3/2)$ $= b^2(x_p + 2)^2 + a^2(y_p - 3/2)^2 - a^2b^2$ $d_{p+1} - d_p = b^2(2x_p + 3) + a^2(-2y_p + 2)$ $d_{p+1} = d_p + b^2(2x_p + 3) + a^2(-2y_p + 2)$; Let $(\Delta d)_{SE1} = b^2(2x_p + 3) + a^2(-2y_p + 2)$ $d_{p+1} = d_p + (\Delta d)_{SE1}$

Initial Condition:

```
In R1, first point is (0, b)
Let Initial value of d be (d_{init})_{e_1} = F(M_1), Where M_1 is mid point of
E and SE of (0,b)
ie M_1 is mid point of (1, b) and (1, b - 1)
(d_{init})_{R1} = F(1, b - 1/2) = b^2 + a^2(1/4 - b);
```

► Terminal condition: $\frac{\partial F}{\partial Y} = \frac{\partial F}{\partial X}$. ie Run the loop as long as $\frac{\partial F}{\partial Y} > \frac{\partial F}{\partial Y}$

Problem with a fractional (floating point) value for $(d_{init})_{R_1}$? can be resolved by converting to closest integer

Characterisation of movement from (x_p, y_p) to (x_{p+1}, y_{p+1}) in R2

- Let the current pixel be (x_p, y_p) ; $d_p = F(M_p)$, where $M_p = ((x_p + 1 + x_p)/2, y_p - 1)$ (Mid point of SE and S of (x_p, y_p) ;
- $d_p = F(M_p) = F(x_p + 1/2, y_p 1)$ $= b^2(x_p + 1/2)^2 + a^2(y_p - 1)^2 - a^2b^2$ Let us find d_{p+1}
- ▶ Case 1: When S was chosen at iteration $p(d_p >= 0)$: $(x_{n+1}, y_{n+1}) = (x_n, y_n - 1)$ $M_{p+1} = (x_p + 1/2, y_p - 2)$ (Mid point of S and SE of $(x_p, y_p - 1)$) $d_{p+1} = F(M_{p+1}) = F(x_p + 1/2, y_p - 2)$ $=b^2(x_p+1/2)^2+a^2(y_p-2)^2-a^2b^2$ $d_{p+1} - d_p = a^2(-2y_p + 3)$ $d_{n+1}=d_n+a^2(-2y_n+3)$: Let $(\Delta d)_{52} = a^2(-2Y_n + 3)$

$$d_{p+1} = d_p + (\Delta d)_{S2}$$

(cont.)

▶ case 2: When SE was chosen at iteration p (d_p < 0): $(x_{p+1}, y_{p+1}) = (x_p + 1, y_p - 1)$ $M_{p+1} = ((x_p + 2 + x_p + 1)/2, y_p - 2)$ (Mid point of E and SE of $(x_p + 1, y_p - 1)$) $d_{p+1} = F(M_{p+1}) = F(x_p + 3/2, y_p - 2)$ $= b^2(x_p + 3/2)^2 + a^2(y_p - 2)^2 - a^2b^2$ $d_{p+1} - d_p = b^2(2x_p + 2) + a^2(-2y_p + 3)$ $d_{p+1} = d_p + b^2(2x_p + 2) + a^2(-2y_p + 3)$; Let $(\Delta d)_{SE2} = b^2(2x_p + 2) + a^2(-2y_p + 3)$ $d_{p+1} = d_p + (\Delta d)_{SE1}$

► Initial Condition:

Let the last point in R1 be (x_k, y_k) , and hence the first point in R2 is $(x_{k+1}, y_{k+1}) = (x_k + 1/2, y_k - 1)$ (Mid point of E and SE of (x_k, y_k)) $(d_{init})_{R2} = F(x_k + 1/2, y_k - 1)$ $= b^2(x_k + 1/2)^2 + a^2(y_k - 1)^2 - a^2b^2$;

▶ Termination Condition: $y_p = 0$, hence run the loop as long as $y_p > 0$

Problem with a fractional (floating point) value for $(d_{init})_{R2}$? can be resolved by converting to closest integer


```
void MidPointEllipse(int a, int b, int value)
2 {
3
  //Intialization
  int d2;
   int X = 0;
   int Y = b:
   sa = sqr(a);
   sb = sqr(b);
    int d1 = sb - sa*b + 0.25*sa:
10
11
   //Draw four points using symmetry
12
    EllipsePoints(X, Y, value); /* 4-way symmetrical pixel
13
14
   while (sa*(Y - 0.5) > sb*(X + 1)) / *Region R1 */
15
16
      if (d1 < 0) /*Select E */
17
            d1 += sb*((X<<1) + 3);
18
```

(cont.)

```
(cont.)
```

```
else /* Select SE */
19
20
             d1 += sb*((X<<1) + 3) + sa*(-(Y<<1) + 2):
21
            Y— :
22
23
24
           EllipsePoints(X, Y, value);
25
26
27
    int d2 = sb*sqr(X + 0.5) + sa*sqr(Y - 1) - sa*sb;
28
29
    while (Y > 0) /*Region R2 */
30
31
      if (d2 < 0)/*Select SE */
32
33
             d2 += sb*((X<<1) + 2) +sa*(-(Y<<1) + 3);
34
            X++:
35
36
```

```
(cont.)
```

```
else /* Select S */
37
              d2 += sa*(-(Y<<1) + 3);
38
          Y-- :
39
           EllipsePoints(X, Y, value);
40
41
42 }
43
44
45 void EllipsePoints(int x, int y, int val)
46 {
47
     DrawPixel(x, y, val) //Q1
48
     DrawPixel(-x, -y, val) //Q3
49
     DrawPixel(-x, y, val) //Q2
50
     DrawPixel(x, -y, val) //Q4
51
52
53
54 }
```


In some cases the quality of the picture is not satisfactory

Possible Solution: 1) Increase resolution 2) Smooth the raster

Home Work

- ightharpoonup Generalize the circle drawing algorithm for given center (a, b)
- \triangleright Generalize the ellipse drawing algorithm for given center (a, b)
- ► Can you improve the midpoint ellipse drawing algorithm, avoiding multiplication inside the loop, without affecting the accuracy
- ► Trace the mid point line drawing algorithm for one line segment in each of the octants (The samples need to be plotted on graph sheet)
- ► Trace the mid point circle drawing algorithm for radius 5 and center (1,1)(The samples need to be plotted on graph sheet)
- ▶ Trace mid point ellipse drawing algorithm for the center (1,1) and a=4 and b=2(The samples need to be plotted on graph sheet)

Rasterization of Region of Objects

Brute Force Technique when regular geometry or region bounded by f(x, y) = 0 is given

- ► Rectangle:
 - Given diagonal vertices of a triangle, find bounding box of the rectangle
 - For each point (x, y) inside the rectangle, DrawPixel(x, y)
- ► Triangle:
 - Given the vertices of a triangle, find bounding box of the triangle
 - check for each point (x, y) inside the box if it lies inside the triangle.
 - if yes, DrawPixel(x,y)

Boundary-fill algorithm

Flood-fill algorithm

Scan-line fill algorithm

Acknowledgements

► The slides have been adopted from NPTEL Lectures by Prof. Sukhendu Das. The due credits are acknowledged.

Thank You! :)