RAPPORT DE LA SEANCE 4

Les composants que j'ai utilisés aujourd'hui sont en vert dans le tableau récapitulatif :

COMPOSANT	NUMERO SUR LA	REFERENCE DU	Placement dans la
	PHOTO	COMPOSANT	maison
Servomoteur pour	6	MG91	Sur un carré de bois
ouverture des volets			collé au mur extérieur
			en dessous de
			l'ouverture de la
			maison
Capteur de luminosité	7	GY-302/BH 1750	(1) à l'intérieur
Photorésistance			à l'extérieur,
			remplace le capteur
			de luminosité (2)
Capteur de température	3	AM2302 DHT22 Sensor	Fixé sur un mur
			intérieur à mi-hauteur
			(pas près du plafond)
			avec de la pâte à fixe
Capteur de particules	1	Infrared Dust Sensor	Fixé sur un mur
pour la qualité de l'air		Module M501A Air	intérieur au niveau
		Detection Sensor Air	d'une hotte avec de la
		Quality Tester	pâte à fixe (coin
			« cuisine »)
Capteur de CO2 pour la	2	MQ-2 Sensor	Fixé sur un mur
qualité de l'air			intérieur avec pâte à
			fixe à hauteur
			humaine, pas près de
			la porte/fenêtre
Digicode	4	ZRX-543	Fixé sur le mur
			extérieur à hauteur
			humaine avec de la
			pâte à fixe côté
			gauche/droit de la
			porte d'entrée
Capteur de présence	8	1652	Fixé sur le mur
			extérieur à hauteur
			humaine avec de la
			pâte à fixe côté
			gauche/droit de la
			porte d'entrée
ESP32 pour le site web	5		
LED			Fixée avec du scotch
			ou de la pate à fixe au
			plafond

Dans le tableau ci-dessus, une modification est à noter. Le deuxième capteur de luminosité (2), celui devant être à l'extérieur est remplacé par une photorésistance. (Sa résistance variant en fonction de la lumière perçue, il est ainsi possible d'obtenir des valeurs en lux pour la luminosité extérieure grâce à cette photorésistance).

I. Détermination d'une valeur seuil pour le capteur de particules

Ce capteur utilise une méthode de comptage pour mesurer la concentration en poussières, (pas une méthode de pesée), et l'unité est <u>pcs/L (pièces par litre)</u>. La plage de concentration détectable s'étend de 0 à 28 000 pièces/L. Voici un graphique de la concentration en poussières mesurée dans un bureau :

D'après ce graphique, on voit que la concentration en particules est bien plus élevée dans les horaires de travail de l'après-midi. On décide de choisir comme valeur seuil à ne pas dépasser pour notre maison celle de 2 000 pièces/L.

II. <u>Test du fonctionnement du capteur de présence (avec le code mis sur Github</u> « capteur_presence »)

Rappel du câblage:

Pin de sortie : 2, GND, 5V

Code:

```
capteur_presence | Arduino 1.8.19 (Windows Store 1.8.57.0)
Fichier Édition Croquis Outils Aide

capteur_presence
const int buttonPin = 2; // broche du capteur PIR

int buttonState = 0; // etat de la sortie du capteur

void setup()
{Serial.begin(9600);
   pinMode(buttonPin, INPUT); //la broche du capteur est mise en entree
}

void loop()
{
   buttonState = digitalRead(buttonPin); //lecture du capteur
   Serial.println(buttonState);
}
```

Test avec affichage sur le moniteur série :

Le moniteur renvoi bien l'état LOW « 0 » tout le temps sauf quand je passe ma main devant le capteur pour créer un mouvement par exemple, l'état HIGH « 1 » est bien renvoyé.

Rappel du câblage :

En m'aidant de ce site : https://www.instructables.com/Connecting-a-4-x-4-Membrane-Keypad-to-an-Arduino/

Après avoir installé la bibliothèque « Keypad », j'ai pu tester le bon fonctionnement du digicode. En effet, j'ai vérifié que, sur le terminal, chaque symbole de la touche que j'ai enfoncée apparait sur le moniteur série de l'IDE Arduino.

Code:

```
odigicode | Arduino 1.8.19 (Windows Store 1.8.57.0)
Fichier Édition Croquis Outils Aide
 digicode
#include <Keypad.h>
const byte ROWS = 4; //four rows
const byte COLS = 4; //four columns
char keys[ROWS][COLS] = {
 {'1','2','3','A'},
{'4','5','6','B'},
{'7','8','9','C'},
{'*','0','#','D'}
byte rowPins[ROWS] = {5, 4, 3, 2}; //connect to the row pinouts of the keypad
byte colPins[COLS] = {9, 8, 7, 6}; //connect to the column pinouts of the keypad
Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
void setup(){
   Serial.begin(9600);
void loop(){
  char key = keypad.getKey();
  if (key){
    Serial.println(key);}}
```

Test avec affichage sur le moniteur série :

```
COM6

1
2
3
4
5
6
7
8
9
*
0

#
D
C
B
IA

Défilement automatique Afficher l'horodatage
Reypau Reypau
```