Lecture 16: Sample Size and Power

Chapter 4.6

Last Time: Reedie Sleep Example

Tested number of hours of sleep:

- ► $H_0: \mu = 7$
- ► H_A : $\mu > 7$

Two-Sided Alternative Hypothesis

Say instead we had a two-sided alternative hypothesis:

- ► H_0 : $\mu = 7$
- \vdash $H_A: \mu \neq 7$

The the p-value would be double: $2 \times 0.007 = 0.014$. Picture:

Pre-specifying α

Say Dr. Q is conducting a hypothesis tests. They start with $\alpha = 0.05$.

They conduct the test and get p-value = 0.09. They then declare "having used an $\alpha = 0.10$, we reject the null hypothesis and declare our results to be significant."

What's not honest about this approach?

Ronald Fisher, the creator of p-values, never intended for them to be used this way: http://en.wikipedia.org/wiki/P-value#Criticisms

Goals for Today

- ▶ More in depth discussion of
 - ▶ 10% sampling rule
 - Skew condition to check to use the normal model
- How big a sample size do I need?
- Statistical power
- Statistical vs practical significance

10% Sampling Rule

Question: Why do we set $n \le 10\%$ of the population size N?

Intuition: Shouldn't we always sample as many people as we can?

Answer: Yes, if we only care about the mean. If we also care about the SE, then we need to be careful.

Issue: Sampling without vs with replacement.

Finite Population Correction

The finite population correction (FPC) to the SE accounts for the sampling without replacement:

$$SE = \frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} = \frac{\sigma}{\sqrt{n}} \times FPC$$

Say we have N = 10000.

▶ Let n = 100 (1%), then

$$FPC = \sqrt{\frac{10000 - 100}{10000 - 1}} = 0.995$$

Let n = 5000 (50%), then

$$FPC = \sqrt{\frac{10000 - 5000}{10000 - 1}} = 0.707$$

Finite Population Correction

$$SE = \frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} = \frac{\sigma}{\sqrt{n}} \times FPC$$

We've been ignoring the FPC. So when

- ▶ *n* is relatively small, the FPC ≈ 1 , so not a problem.
- ▶ *n* is relatively large, the FPC \longrightarrow 0. i.e. $\frac{\sigma}{\sqrt{n}}$ is not the true SE.

Conclusion: By capping $n \le 10\%$ of N, we have a rule of thumb for keeping the FPC "close" to 1.

Conceptual and Mathematical Notions of Sampling

Conceptual: If we sample everybody, we know the true μ .

and

Mathematical: If
$$n=N$$
 then $FPC=\sqrt{\frac{N-n}{N-1}}=0$ then $SE=\frac{\sigma}{\sqrt{n}}\times FPC=0$

i.e.

- lacktriangle the sampling distribution is just one point: the true $\mu.$
- if we repeat this procedure many times, we get the same value each time: 0 variability.

Sampling and the SE

Question: Why do we care that our SE is correct?

Answer: If not

- ▶ the SE in confidence intervals is off
- the z-scores of \overline{x} have the wrong denominator

Skew Condition to Check to Use Normal Model

Throughout the book, they talk about the condition for \overline{x} being nearly normal and using s in place of σ in $SE = \frac{\sigma}{\sqrt{n}}$:

- On page 164: the population distribution is not strongly skewed
- On page 167: the data are not strongly skewed
- ➤ On page 168: the distribution of sample observations is not strongly skewed
- ▶ On page 185: the population data are not strongly skewed

Skew Condition to Check to Use Normal Model

However, they all mean the same thing:

- 1. The true population distribution from which you are drawing your sample observations/data x_1, \ldots, x_n is not too skewed.
- 2. The histogram (visual estimate) of the sample observations/data x_1, \ldots, x_n is not too skewed.

Sample Size: Thought Experiment

Say you have two distributions with $\mu=$ 15 but different $\sigma.$

Which of the two distributions do you think will require a bigger n to estimate μ "well"?

Margin of Error

Recall our formula for a 95% confidence interval:

$$\left[\overline{x} - 1.96 \frac{s}{\sqrt{n}}, \ \overline{x} + 1.96 \frac{s}{\sqrt{n}}\right]$$

The margin of error is half the width of the CI.

Say we knew the true standard deviation σ , then

Margin of Error
$$=1.96\frac{\sigma}{\sqrt{n}}$$

Identify *n* for a Desired Margin of Error

To estimate the necessary sample size n for a maximum desired margin of error m, we set

$$m \ge z^* \frac{\sigma}{\sqrt{n}}$$

and solve for *n*.

Identify n for a Desired Margin of Error

Since

$$m \ge z^* \frac{\sigma}{\sqrt{n}}$$
$$\sqrt{n} \ge z^* \frac{\sigma}{m}$$
$$n \ge \left(z^* \frac{\sigma}{m}\right)^2$$

So

- As σ goes up, you need more n
- As z^* goes up, i.e. higher confidence level, you need more n
- ▶ As the desired margin of error goes down, you need more *n*

Back to Thought Experiment

For the same desired maximal margin of error m and same confidence level, we need a larger n to estimate the mean of the blue curve:

Type II Error Rate and Power

For a hypothesis test:

- ▶ The significance level α is the type I error rate: the rate at which we reject H_0 when it is true.
- ▶ The type II error rate β is the rate at which we fail to reject H_0 when H_A is true.
- ▶ 1β is called the statistical power: the rate at which we reject H_0 when H_A is true.

Type II Error Rate and Power

Say we are conducting N = A + B + C + D hypothesis tests.

Test conclusion

		do not reject H_0	reject H_0 in favor of H_A
Truth	H_0 true	А	В
	H_A true	С	D

- ► The Type I Error rate is $\alpha = \frac{B}{A+B}$: rate at which B occurs given H_0 is true.
- ► The Type II Error is $\beta = \frac{C}{C+D}$: rate at which C occurs given H_A is true.
- ► The power is $1 \beta = 1 \frac{C}{C+D} = \frac{D}{C+D}$: rate at which D occurs given H_A is true.