Skripta za algebro2

Filip Koprivec

2. november 2015

— C. S. Lewis

Kazalo

1	Osn	ovne algebrske strukture	3
	1.1	Binarne operacije	3
	1.2	Polgrupe in monoidi	5
	1.3	Grupe	8
	1.4	Kolobarji	9
	1.5	Vektorski prostori	3
	1.6	Algebre	4
	1.7	Podgrupe, podkolobarji in druge podstrukture	5
		1.7.1 Podgrupe	5
		1.7.2 Podkolobarji	7
		1.7.3 Podprostori	7
		1.7.4 Podalgebre	8
		1.7.5 Podpolje	8
		1.7.6 Logične operacije nad (pod)strukturami	9
	1.8	Generatorji	9
		1.8.1 Generatorji grup	9
		1.8.2 Generatorji kolobarja	0
		1.8.3 Generatorji vektorskih prostorov	0
		1.8.4 Generatorji algeber	1

1 Osnovne algebrske strukture

1.1 Binarne operacije

Definicija 1: Binarna Operacija (tudi dvočlena operacija) \circ na množici \mathcal{S} je preslikava iz $\mathcal{S} \times \mathcal{S}$ v \mathcal{S} .

 $Torej \circ : \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$

Primer:

Osnovna zgleda binranih operacij na \mathbb{Z} sta:

- 1. Seštevanje: $(n, m) \mapsto n + m$
- 2. Množenje: $(n, m) \mapsto n \times m$

Skalarni produkt v \mathbb{R}^2 ni binarna operacija. Vektorski produkt v \mathbb{R}^3 je binarna operacija.

Definicija 2: Operacija o je asociativna, če ustreza enačbi

$$\forall x, y, z \in \mathcal{S}. \ (x \circ y) \circ z = x \circ (y \circ z) \tag{1}$$

Enakost 1 imenujemo Zakon o asociativnosti

Operacije, ki jih bomo obravnavali bodo praviloma asociativne.

Definicija 3: Elementa $x, y \in \mathcal{S}$ komutirata, če velja

$$\forall x, y \in \mathcal{S}.x \circ y = y \circ x \tag{2}$$

Enakost 2 imenujemo **Zakon o komutativnosti**

Opomba: Kadar je iz konteksta razvidno, o kateri operaciji govorimo, pogosto namesto " \circ je komutativna rečemo tudi $\mathcal S$ je komutativna"

Primer:

- 1. Operacija + na $\mathbb Z$ je tako asociatitivna in komutativna
- 2. Operacija * na $\mathbb Z$ je tako asociatitivna in komutativna
- 3. Operacija na \mathbb{Z} ni niti asociativna niti komutativna

Opomba: Na opracijo odštevanja gledamo kot na izpeljano operacijo in ne kot na samostojna operacijo, saj jo vpeljemo preko seštevanja in pojma nasprotnega elementa.

4. Naj bo $\mathcal X$ poljubna neprazna množica. Z $F(\mathcal X)$ označimo množico vseh preslikav iz $\mathcal X$ v $\mathcal X$. Naj bosta $f,g\in\mathcal X,$ potem je $(f,g)\mapsto f\circ g$ (kompozitum funkcij) binarna operacija na $F(\mathcal X).$

Opomba: Operacija je asociativna, in kadar $|\mathcal{X}| \geq 2$ ni komutativna

Definicija 4: Naj bo o binarna operacija na na S in $e \in S$. e se imenuje nevtralni element, če velja

$$\forall x \in \mathcal{S}.e \circ x = x \circ e = x \tag{3}$$

Primer:

- 1. 0 je nevtralni element za seštevanje na \mathbb{Z} .
- 2. 1 je nevtralni element za množenje na \mathbb{Z} .
- 3. id_x (identična preslikava) je nevtralni element za $F(\mathcal{X})$

Opomba: Nevtralni element nima zagotovljenega obstoja (recimo + na \mathbb{N} ali * na sodih celih številih).

Trditev 1: Če nevtralni element obstaja je en sam

Dokaz. Naj bosta $f, e \in \mathcal{S}$ nevtralna elementa.

 $e=e\circ f$ // Ker je f
 nevtralni element $e\circ f=f$ // Ker je e nevtralni element

e = f

Definicija 5: Element e' je levi nevtralni element, če velja:

$$\forall x \in \mathcal{S}.e' \circ x = x \tag{4}$$

Definicija 6: Element e" je desni nevtralni element, če velja:

$$\forall x \in \mathcal{S}.x \circ e'' = x \tag{5}$$

Opomba: Levih in desnih nevtralnih elementov je lahko več **Primer:**

 $1. \ \circ : (x,y) \mapsto y.$

Vsak element je levi nevtralni element

2. 0 je desni nevtralni element za odštevanje v $\mathbb Z$

Trditev 2: Naj bo za operacijo $\circ e'$ levi nevtralni element, e'' pa desni nevtralni element. Tedaj velja $e' = e'' = e(\text{Sta si levi in desni nevtralni element enaka in je(sta) nevtralni element)$

Dokaz.

$$e' = e' \circ e'' = e''$$

Definicija 7: Naj bo \circ operacija na \mathcal{S} in naj bo $\mathcal{T} \subseteq \mathcal{S}$. Rečemo, da je \circ notranja operacija na \mathcal{T} ali da je množica \mathcal{T} zaprta za \circ na \mathcal{T} , če velja

$$\forall t, t' \in \mathcal{T}.t \circ t' \in \mathcal{T} \tag{6}$$

Primer:

Množica \mathbb{N} je zaprta za operaciji + in *, ni pa zaprta za operacijo -.

Definicija 8: Preslikavi iz $K \times S$ v S kjer K! = S rečemo **Zunanja binarna** operacija

Primer:

1. Množenje vektorja s skalarjem

$$(\lambda, \vec{x}) \mapsto \lambda \vec{x}$$
, kjer je $(K = \mathbb{R}, S = \mathbb{R}^n)$
 $\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$

1.2 Polgrupe in monoidi

Definicija 9: Algebrska struktura je množica, opremljena z eno ali več operacijami (notranjimi ali zunanjimi), ki im ajo določene lastnosti

Definicija 10: Polgrupa je par množice S skupaj z asociativno binarno operacijo. Pišemo: (S, \circ)

Opomba: Kadar je jasno o kateri operaciji govorimo, pogosto govorimo kar o polgrupi $\mathcal S$

Primer:

1.
$$(\mathbb{N},+), (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{N},*), \dots$$
Niso samo polgrupe ampak kar grupe

Naj bo (S, \circ) polgrupa, po zakonu 1 o asociativnosti velja:

$$\forall x, y, z \in \mathcal{S}. (x \circ y) \circ z = x \circ (y \circ z)$$

zato lahko okepaje spuščamo in vse to pišemo kot $x\circ y\circ z$. Kaj pa če imamo več kot tri elemente. Ali velja tudi:

$$(x_1 \circ x_2) \circ (x_3 \circ x_4) = ((x_1 \circ x_2) \circ x_3) \circ x_4 = x_1 \circ (x_2(\circ x_3 \circ x_4)) = \dots$$

Trditev 3: Naj bo (S, \circ) polgrupa, $n \in \mathbb{N}$ in naj bo $x_1, x_2, \ldots, x_n \in S$. Tedaj je za vsak n enakost izpolnjena na glede na postavitev oklepajev (izraz ima smisel, tudi kadar ne pišemo oklepajev).

$$x_1 \circ x_2 \circ \cdots \circ x_n = (\dots (x_1 \circ x_2) \circ \cdots \circ x_n) = x_1 \circ (x_2 (\circ \cdots \circ x_n) \dots) = \dots$$

Dokaz.Zgolj skica dokaza

Definirajmo: $x := x_1 \circ (x_2(\circ \cdots \circ x_n) \dots)$ in

y := naj bo kombinacija elementov $x_1 \dots x_n$, z drugače postavljenimi oklepaji Indukcija na n:

 $n \leq 3$: Očitno

Ker
$$n \le 2$$
 velja $y = \underbrace{(u)}_{x_1, \dots, x_k} \circ \underbrace{(v)}_{x_{k+1}, \dots, x_n}$ Iz $k < n$ sledi:
 $y = (x_1 \circ w) \circ v = x_1 \circ (w \circ v)$

Po I.P.
$$(w \circ v \text{ ima } n-1 \text{ elementov}): x = x_1 \circ (x_2 \circ \cdots \circ x_{n-1})$$

Zato lahko oklepaje izpuščamo in pišemo kar: $x_1 \circ x_2 \circ \cdots \circ x_4$

Definicija 11: *Potenca elementa x.* Naj bo $n \in \mathbb{N} - \{0\}$ in $x \in \mathcal{S}$

$$x^n := \underbrace{x \circ x \circ \dots \circ x}_{nelementov} \tag{7}$$

Opomba: Brez asociativnosti ni definirano niti x^3

Opomba:

Očitno velja:

 $\forall n, m \in \mathbb{N}.x^n \circ x^m = x^{n+m}$ in $\forall n, m \in \mathbb{N}.(x^n)^m = x^{nm}$

Definicija 12: Polgrupa z nevtralnim elementom se imenuje monoid.

Primer:

- 1. $(\mathbb{N},+)$ ni monoid, $(\mathbb{N}\cup\{0\},+)$ pa je.
- 2. $(\mathbb{N}, *)$ je monoid
- 3. $(F(\mathcal{X}), \circ)$ je monoid, nevtralni element je $id_{\mathcal{X}}$

Definicija 13: Naj bo (S, \circ) monoid z nevtralnim elementom e. Element y je levi inverz elementa x, če velja: $y \circ x = e$.

Definicija 14: Naj bo (S, \circ) monoid z nevtralnim elementom e. Element y je desni inverz elementa x, če velja: $x \circ y = e$.

Opomba: Levi in desni inverz nimata zagotovljenega obstoja, če pa obstajata ni nujno, da sta enolično določena.

Primer:

1. $f \in F(\mathcal{X})$ ima levi inverz $\iff f$ je injektivna

Če f ni surjektivna ima lahko več levih inverzov, ki so izven \mathcal{Z}_f lahko poljubno definirani.

- 2. $f \in F(\mathcal{X})$ ima desni inverz $\iff f$ je surjektivna
- 3. $f \in F(\mathcal{X})$ ima levi in desni inverz $\iff f$ je bijektivna

Definicija 15: Element y iz monida S je inverz elementa x Če velja:

$$x \circ y = y \circ x = e \tag{8}$$

Elementu, ki ima inverz rečemo da je **obrnljiv** in njegov inverz označimo z x^{-1} (To ni čisto korektno, saj bomo šele malo naprej pokazali, da ima vsak element en sam inverz). In tako dobimo

$$x \circ x^{-1} = x^{-1} \circ x = e \tag{9}$$

Opomba: Če je operacija o komutativna potem levi inverz, desni inverz in inverz za posamezen element sovpadajo

Trditev 4: Naj bo (S, \circ) monoid, Če je y levi inverz elementa x in je z njegov desni inverz, potem $z = y = x^{-1}$

Dokaz.
$$y = y \circ e = y \circ (x \circ z) = (y \circ x) \circ z = e \circ z = z$$

Posledica: Obrnljiv element monoida ima natanko en inverz.

Posledica: Ce je x obrnljiv element monoida S potem iz $y \circ x = e$ sledi $x \circ y = e$. **Trditev 5:** Če sta x in y obrnljiva, potem je obrnljiv tudi element $(x \circ y)$ in je njegov inverz $y^{-1} \circ x^1$

Dokaz. To je desni inverz:

Dokaz. To je desni inverz:
$$(x\circ y)\circ (y^{-1}\circ x^{-1})=x\circ (y\circ y^{-1})\circ x^{-1}=x\circ e\circ x^{-1}=x\circ x^{-1}=e$$
 in tudi levi inverz:

$$(y^{-1} \circ x^{-1}) \circ (x \circ y) = y^{-1} \circ (x^{-1} \circ x) \circ y = y^{-1} \circ e \circ y = y^{-1} \circ y = e \qquad \Box$$

Opomba: Seveda velja za n elementov

$$(x_1 \circ x_2 \circ \dots \circ x_n)^{-1} = x_n^{-1} \circ \dots \circ x_2^{-1} \circ x_1^{-1}$$
(10)

Primer:

- 1. $(\mathbb{N} \cup \{0\}, +)$: edini obrnljiv element je 0.
- 2. $(\mathbb{N}, *)$: edini obrnljiv element je 1
- 3. $(\mathbb{Z},*)$: edina obrnljiva elementa sta 1 in -1
- 4. $(\mathbb{Q},*)$: Obrnljivi so vsi element razen 0
- 5. $(F(\mathcal{X}), \circ)$: obrnljive so vse bijektivne preslikave

Opomba: Poseben primer zadnje formule kadar je x obrnljiv je tudi: $(x^n)^{-1}$ $(x^{-1})^n$ za $n \in \mathbb{N}$

Definicija 16:

$$n \in \mathbb{N}.x^{-n} := (x^n)^{-1} = (x^{-1})^n$$
 (11)

Definicija 17:

$$x^0 := e \tag{12}$$

Tako kadar je x **obrnljiv** veljata enačbi

$$\forall n, m \in \mathbb{Z}.x^n \circ x^m = x^{n+m} \tag{13}$$

$$\forall n, m \in \mathbb{Z}. (x^n)^m = x^{nm} \tag{14}$$

Trditev 6: Če je x obrnljiv element monida S potem velja pravilo krajšanja:

$$x \circ y = x \circ z \implies y = z \tag{15}$$

In tudi

$$y \circ x = z \circ x \implies y = z \tag{16}$$

Dokaz.

$$x \circ y = x \circ z \implies x^{-1} \circ x \circ y = x^{-1} \circ x \circ z \implies y = z$$

Druga enačba podobno

Opomba: Iz enačbe $x\circ y=z\circ x$ v splošnem **ne** slediy=z

1.3 Grupe

Dogovor: V grupi bomo namesto \circ uporabljali kar operacijo 'krat', torej se bo operacija imanovala kar množenje. Prav tako bomo izpuščali operator, ko bo le mogoče in pisali kar xy.

Tako xyimenujemo 'produkt' x in ynevtrali element pa označimo z 1 in mu rečemo kar enota.

Definicija 18: Monoid v katerem je vsak element obrnljiv, se imenuje grupa. Grupa, v kateri je vsaka operacija komutativna se umenuje komutativna grupa ali Abelova grupa.

Ki je ekvivalenta bolj čisti definiciji:

Definicija 19: Množica \mathbb{G} skupaj z binarno operacijo $*: \mathbb{G} \times \mathbb{G} \to \mathbb{G}$, $(x,y) \mapsto xy$ je **grupa** če zanjo velja:

 G_1 :

$$\forall x, y, z \in \mathbb{G}. (xy)z = x(yz)$$

 G_2 :

$$\exists 1 \in \mathbb{G}. \ \forall x \in \mathbb{G}. \ 1x = x1 = x$$

 G_3 :

$$\forall x \in \mathbb{G}. \ \exists x^{-1} \in \mathbb{G}. \ xx^{-1} = x^{-1}x = 1$$

Če velja tudi:

$$\forall x, y \in \mathbb{G}. \ xy = yx$$

Potem grupo G imanujemo **Abelova** grupa.

Grupe delim na komutativne in nekomutativne(glede na lastnosti operacije) ter na končne in neskončne(glede na število elementov).

Primer:

- 1. $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$
- 2. $(\mathbb{N} \cup \{0\}, +)$ **ni** grupa
- 3. $(\mathbb{R},*)$: **ni** grupa, ker 0 ni obrnljiv

Opomba: Vsak monoid 'skriva' grupo.

Definicija 20: $S \mathcal{S}^*$ označujemo množico vseh obrnljivih elementov monoida S.

Trditev 7: Če je S monoid je S grupa.

 $Dokaz.~x,y\in\mathcal{S}^*\implies x\circ y\in\mathcal{S}^*~//$ Obrn
ljiv je tudi njun produkt, torej je množica je zaprta za *

Ker je * asociativen na S je asociativen tudi na S^*

 $e \in \mathcal{S}^*$ saj je enota inverz sami sebi

$$x \in \mathcal{S}^* \implies x^{-1} \in \mathcal{S}^*$$
 // Inverz inverza je kar element sam

Primer:

- 1. $(\mathbb{N} \cup \{0\}, +)$: $(\mathbb{N} \cup \{0\}, +)^* = 0$
- 2. $(\mathbb{Z}, +)$: $(\mathbb{Z}, +)^* = -1, 1$
- 3. $(\mathbb{Q}, *)$: $(\mathbb{Q}, *)^* = \mathbb{Q} 0$

Opomba: Grupam z enim elementom pravimo trivialne grupe.

4. $(F(\mathcal{X}), \circ)$: $(F(\mathcal{X}), \circ)^* = \{f : \mathcal{X} \to \mathcal{X} | f \text{ je bijekcija}\}$

Definicija 21: $Množico\ Sim(\mathcal{X})\ imenujemo\ simetrična\ grupa\ (množice\ \mathcal{X}).$

$$Sim(\mathcal{X}) := \{ f : \mathcal{X} \to \mathcal{X} | f \text{ je bijekcija} \}$$
 (17)

Njene emelente(bijektiven preslikave iz \mathcal{X} v \mathcal{X} pa imenujemo **permutacaije** (množice \mathcal{X}).

Opomba: Če je množica končna jo praviloma označimo z $\{1, 2, \ldots, n\}$, njej pripadajočo grupo permutacij pa z

$$S_n := Sim(\{1, 2, \dots, n\}) \tag{18}$$

Včasih bomo operacije na grupah vendarle označevali s + ('seštevanje'). Taki grupi bomo rekli **aditivna grupa**. Nevtralni element bomo označevali z 0 in inverzni element pa bom oimenovali 'nasprotni element' in ga označevali z -x. Namesto x + (-y) bom tako pisali x - y (razlika x in y). S tem smo v aditivno grupo vpeljeli odštevanje. Prav tako bom namesto x^n pisali nx. Primer takih grup so Abelove grupe. (x + y = y + x)

1.4 Kolobarji

 $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ so aditivne grupe, v katerih je naravno definirano tudi množenje, za katerega so monoidi.

Definicija 22: Množica K skupaj z binarnima operacijama seštevanja + : $(x,y) \mapsto x + y$ in množenja * : $(x,y) \mapsto xy$ se imenuje **kolobar** če velja

 K_1 : (K, +) je **Abelova grupa**

 K_2 : (K,*) je monoid

 K_3 : Izpolnjena sta oba distributivnostna zakona

$$\forall x, y, z \in \mathcal{K}. \ z(x+y) = zx + zy \tag{19}$$

$$\forall x, y, z \in \mathcal{K}. \ (x+y)z = xz + yz \tag{20}$$

Opomba: Oba zakona potrebujemo zaradi ne nujne komutativnosti množenja v monoidu

Opomba: Poznamo tudi kolobarje brez enote(kjer je $(\mathcal{K},*)$ zgolj monoid. Recimo

$$2\mathbb{Z} := \{2n | n \in \mathbb{Z}\}\$$

Trditev 8:V poljubnem kolobarju veljajo naslednje lastnosti:

(a) $\forall x \in \mathcal{K}. \ 0x = x0 = 0$

Dokaz.

$$0x = (0+0)x = 0x + 0x$$

$$\downarrow 0 = 0x$$

Podobno za x0 = 0

(b)
$$\forall x, y \in \mathcal{K}. \ (-x)y = x(-y) = -(xy)$$

Dokaz.

(c) $\forall x, y, z \in \mathcal{K}. \ x(y-z) = xy - xz \ \land \ (y-z)x = yx - zx$

Dokaz.

$$x(y-z) = x(y + (-z)) = xy + x(-z)$$

Podobno za drugo stran

(d) $\forall x, y \in \mathcal{K}. \ (-x)(-y) = xy$

Dokaz.

$$(-x)(-y) = -(x(-y)) = -(-xy) = xy$$

(e)
$$\forall x \in \mathcal{K}. \ (-1)x = x(-1) = -x$$

Sledi iz (b) če vzamemo y = -1

Kolobar K je komutativen, če za množenje velja zakon komutativnosti (2).

Primer:

- 1. \mathbb{Z} (tipičen primer kolobarja)
- 2. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ (to niso tipični primeri kolobarjev, saj so kar polja)
- 3. Trivialni ali ničelni kolobar:

{0}

Trditev 9:

Kolobar \mathcal{K} je ničelen \iff 1 = 0

Dokaz.

$$\implies$$
: Očitno \iff : $\forall x \in \mathcal{K}$. $x = 1x = 0x = 0$

4. Matrični kolobarji $(M_n(\mathbb{R}), M_n(\mathbb{C}))$ z običajnim seštevanjem in množenjem,

$$0 = \underbrace{\begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix}}_{n}; \ 1 = \underbrace{\begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix}}_{n}$$

Ta kolobar je nekomutativen za
$$n \geq 2$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \implies AB = B, \ BA = 0$$

A in B ne komutirata, prav tako pa smo videlo da je lahko produkt dveh neničelnih elementov 0.

Definicija 23: Element $x \neq 0$ kolobarja K, je **levi deljitelj niča**, če obstaja $tak \ y \neq 0, \in \mathcal{K}, \ da \ velja: \ xy = 0.$

Definicija 24: Element $x \neq 0$ kolobarja K, je **desni deljitelj niča**, če obstaja $tak \ y \neq 0, \in K$, da velja: yx = 0.

Definicija 25: Element x je delitelj niča, če je hkrati levi in desni delitelj niča.

Opomba:

$$\mathcal{K}$$
 ima leve deljitelje niča $\iff \mathcal{K}$ ima desne deljitelje niča (21)

Dokaz.

 \implies : Obstajata taka y! = 0, x! = 0, imamo dve možnosti

- 1. $xy = 0 \implies \text{Dokaz je končan}$
- 2. $xy \neq 0$: x(yx) = 0 in je yx desni deljitelj niča

V Kolobarju brez deliteljev niča velja:

$$\forall x, y \in \mathcal{K}. \ xy = 0 \implies x = 0 \lor y = 0 \tag{22}$$

V takih kolobarjih velja pravilo krajšanja:

$$xy = xz \land x \neq 0 \implies y = z$$

 $yx = zx \land x \neq 0 \implies y = z$
 $xy = xz \iff x(y - z) = 0$
 $yx = zx \iff (y - z)x = 0$

Kolobar je monoid za množenje zato lahko goviromo o obrnljivih elementih. **Primer:**

- 1. V \mathbb{Z} sta obrnljiva 1, -1.
- 2. V $\mathbb{Q},\mathbb{R},\mathbb{C}$ so obrn
ljivi vsi elementi razen0

Definicija 26: Kolobar, v katerem $1 \neq 0$ in v katerem so vsi neničelni elementi obrnljivi se imenuje obseg.

Definicija 27: Komutativni obseg se imenuje polje

Primer:

- 1. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, so polja
- 2. Nekomutativne obsege bomo dodali kasneje

Trditev 10: Obrnljiv element kolobarja ni levi(ali desni) delitelj niča. Obsegi so zato kolobarji brez deliteljev niča.

Dokaz.
$$x$$
 je obrnljiv: $xy=0$
 $y=1y=(x^{-1}x)y=x^{-1}(xy)=x^{-1}0=0$ Torej x ni deljitelj niča.

1.5 Vektorski prostori

Definicija 28: Naj bo \mathcal{F} polje. Množica \mathcal{V} skpaj z (notranjo) binarno operacijo seštevanje $+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ in zunanjo binarno operacijo $\mathcal{F} \times \mathcal{V} \to \mathcal{V}$ imenovano množenje s skalarji in označeno z (λ, v) $\mapsto \lambda v$ se imenuje vektorski prostor nad poljem \mathcal{F} , če zanj velja:

 V_1 : Za seštevanje je V Abelova grupa

 V_2 : Velja distributivnost v vektorskem faktorju

$$\forall \lambda \in \mathcal{F}. \ \forall u, v \in \mathcal{V}. \ \lambda(u+v) = \lambda u + \lambda v \tag{23}$$

 V_3 : Velja distributivnost v skalarnem faktorju

$$\forall \lambda, \mu \in \mathcal{F}. \ \forall v \in \mathcal{V}. \ (\lambda + \mu)v = \lambda v + \mu v \tag{24}$$

 V_4 : Velja zakon homogenosti

$$\forall \lambda, \mu \in \mathcal{F}. \ \forall v \in \mathcal{V}. \ (\lambda \mu)v = \lambda(\mu v) \tag{25}$$

 V_5 : Enota

$$\forall v \in \mathcal{V}. \ 1v = v \tag{26}$$

Za vsak vektorski prostor očitno veljajo naslednje trditve

•

$$\forall \lambda \in \mathcal{F}. \ \lambda 0 = 0$$

•

$$\forall u, v \in \mathcal{V}. \ 0x = 0$$

•

$$\forall \lambda, \mu \in \mathcal{F}. \ \lambda \mu = 0 \implies \lambda = 0 \lor \mu = 0$$

•

$$\forall \lambda, \mu \in \mathcal{F}. \ (-\lambda)\mu = \lambda(-\mu) = -(\lambda\mu)$$

Opomba: Elementom polja \mathcal{F} pravimo skalarji, elementom \mathcal{V} pa vektorji

- $\mathcal{F} = \mathbb{R}$: Realni vektorski prostor
- $\mathcal{F} = \mathbb{C}$: Kompleksni vektorski prostor

Primer:

1. Splošni prostor \mathcal{F}^n , kjer vpeljemo operacji:

Sešetavnje

$$(u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n) \mapsto (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$
 (27)

Množenje s skalarjem

$$\lambda(u_1, u_2, \dots, u_n) \mapsto (\lambda u_1, \lambda u_2, \dots, \lambda u_n)$$
 (28)

- 2. Trivialni vektorski prostor: {0}
- 3. Vektorski prostor polniomov stopnje največn,kjer seštevanje in množenje definiramo na običajen način
- 4. \mathbb{C} je vektorski prostor nad \mathbb{R} (za + je Abelova grupa, množenje pa definiramo po komponentah, tako je nad \mathbb{C} to 2-dimenzionalen, nad \mathbb{R} pa 1-dimenzionalen)

1.6 Algebre

Mnogi pomembni primeri kolobarjev so hkrati tudi vektorski prostori, dejansko so algebre

Definicija 29: Naj bo \mathcal{F} polje (komutativen obseg). Množica \mathcal{A} skupaj z (notranjima) binarnima operacijama + (seštevanje) in * (množenje) ter zunanjo binarno operacijo $\mathcal{F} \times \mathcal{A} \to \mathcal{A}$ (množenje s skalarji) je **Algebra na poljem** \mathcal{F} ali \mathcal{F} -algebra, če velja:

 V_1 : Za seštevanje in množenje s skalarji je A vektorski prostor

 V_2 : Za množenje je A monid

 V_3 : Veljata neke vrste levi in desni distributivnostni zakon

$$\forall x, y, z \in \mathcal{A}. \ \forall \lambda, \mu \in \mathcal{F}. \ (\lambda x + \mu y)z = \lambda(xz) + \mu(yz)$$

$$\forall x, y, z \in \mathcal{A}. \ \forall \lambda, \mu \in \mathcal{F}. \ z(\lambda x + \mu y) = \lambda(zx) + \mu(zy)$$

Opomba: Za $\lambda = \mu = 1$ je to navadna distributivnost. Torje je Algebra kolobar, ki je hkrati vekroski prostor, v katerem velja še:

$$\lambda(xz) = (\lambda x)z = x(\lambda z)$$

Primer:

1. Vektorski prostor \mathcal{F}^n postane algebra, če definiramo množenje, najlažje kar po komponentah:

$$(x_1, x_2, \dots, x_n)(y_1, y_2, \dots, y_n) \mapsto (x_1 y_1, x_2 y_2, \dots, x_n y_n)$$
 (29)

2. Kolobar $M_n(\mathbb{R})$ postane algebra, če definiramo množenje s skalarji

$$\lambda(a_{ij}) = (\lambda a_{ij}) \tag{30}$$

3. Vektorski prostor polinomov postane algebra, če vpeljemo množenje polinomov na standardni način

Opomba: 'Teorija kolobarjev' in 'teorija kolobarjev in algeber' se razlikujeta zgolj v povdarku.

1.7 Podgrupe, podkolobarji in druge podstrukture

 $(\mathbb{R},+)$ in $(\mathbb{C},+)$ sta različni strukturi, a očitno povezani Abelovi grupi. Operacija je seštevanje in $\mathbb{R}\subseteq\mathbb{C}$. Rečemo: $(\mathbb{R},+)$ je podgrupa $(\mathbb{C},+)$. Podobno rečemo $(\mathbb{R},+,*)$ je podkolobar $(\mathbb{C},+,*)$ In ker sta to tudi polji rečemo kar kar $(\mathbb{R},+,*)$ je podpolje $(\mathbb{C},+,*)$

1.7.1 Podgrupe

Definicija 30: Neprazna podmnožica \mathcal{H} grupe \mathcal{G} je podgrupa grupe \mathcal{G} , če je za isto operacijo(zožitev na $\mathcal{H} \times \mathcal{H}$) tudi sama grupa.

Primer:

1. Vsaka grupa \mathcal{G} ima vsaj dve podgrupi: \mathcal{G} in $\{1\}$

Opomba: {1} se imenuje trivialna podgrupa

Opomba: Vsaka od $\mathcal G$ različna podgrupa se imenuja prava podgrupa

Trditev 11: Za naprazno podmnožico $\mathcal H$ grupe $\mathcal G$ so naslednje trditve ekvivalentene:

(i)
$$\mathcal{H} \text{ je podgrupa } \mathcal{G}$$

(ii)
$$\forall x, y \in \mathcal{H}. \ xy^{-1} \in \mathcal{H}$$

(iii)
$$\forall x, y \in \mathcal{H}. \ xy \in \mathcal{H} \land x^{-1} \in \mathcal{H}$$

Dokaz.

(i) \implies (ii) : Očitno iz definicije da je $\mathcal H$ grupa

 $(ii) \implies (iii)$:

$$x\in\mathcal{H}\Longrightarrow 1=xx^{-1}\in\mathcal{H}\Longrightarrow x^{-1}=1x^{-1}\in\mathcal{H}\ //$$
 Zaprta za inverz
$$x,y\in\mathcal{H}\Longrightarrow xy=x(y^{-1})^{-1}\in\mathcal{H}$$
 Zaprta za poljubna dva

 $(iii) \implies (i)$:

Očitno zaprata za množenje, asociativna, ker velja na večji množici (\mathcal{G})

$$1 = xx^{-1} \in \mathcal{H}$$
$$x \in \mathcal{H} \implies x^{-1} \in \mathcal{H}$$

Govorimo 'grupa \mathcal{H} ' ali 'podgrupa \mathcal{H} ' označimo:

$$\mathcal{H} \leq \mathcal{G}$$

Primer:

- 1. $\mathbb{R} \{0\}$ je podgrupa ($\mathbb{C} \{0\}$)
- 2. $\{x \in \mathbb{R} | x < 0\}$ je podgrupa $(\mathbb{C} \{0\})$
- 3. $\{1, -1, i, -i\}$ je podgrupa ($\mathbb{C} \{0\}$)
- 4. $\{z\in\mathbb{C}|\ |z|=1\}$ je podgrupa ($\mathbb{C}-\{0\})$
- 5. $\{x \in \mathbb{R} | |x| > 1\}$ ni podgrupa $(\mathbb{C} \{0\})$
- 6. $\{z \in \mathbb{C} \{0\} | |z| \le 1\}$ **ni** podgrupa $(\mathbb{C} \{0\})$

Opomba:

V aditivni grupi velja

- (ii): $\forall x, y \in \mathcal{H}. \ x y \in \mathcal{H}$ in
- (iii): $\forall x, y \in \mathcal{H}. \ x + y \in \mathcal{H} \land -x \in \mathcal{H}$

Primer:

Pogdgrupe $(\mathbb{Z}, +)$

- 1. Trivialna primera podgrup sta \mathbb{Z} in $\{0\}$
- $2. \ 2\mathbb{Z} = \{2n | n \in \mathbb{Z}\}\$
- 3. $k\mathbb{Z} = \{kn | n \in \mathbb{Z}\} // k \in \mathbb{Z}$

Definicija 31: Elementa a, b iz grupe G sta si konjugirana, če velja:

$$\exists c \in \mathcal{G}. \ b = cac^{-1} \tag{31}$$

Opomba: Relacija 'elementa sta si konjugirana' je ekvivalenčna

Definicija 32: Če je $c \in \mathcal{H} \leq \mathcal{G}$ je

$$c\mathcal{H}c^{-1} := \{chc^{-1} | h \in \mathcal{H}\} \tag{32}$$

 $konjugirana \ podgrupa \ podgrupe \ \mathcal{H}.$

Trditev 12:

$$chc^{-1}ch'c^{-1} = c\underbrace{hh'}_{\in\mathcal{H}}c^{-1} \in \mathcal{H}$$
$$(chc^{-1})^{-1} = (c^{-1})^{-1}h^{-1}c^{-1} = c\underbrace{h^{-1}}_{\in\mathcal{H}}c^{-1} \in \mathcal{H}$$

Opomba: Pojem konjugiranih podgrup ima smisel v nekomutativnih grupah

1.7.2Podkolobarji

Definicija 33: Podmonžica \mathcal{L} kolobarja \mathcal{K} je **podkolobar** kolobarja \mathcal{K} , če vsebuje enoto (1) kolobarja K in če je kolobar za isti operaciji.

Primer: 1.
$$\mathcal{L} = \{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \mid x \in \mathbb{R} \}$$

Sicer je kolobar za isti operaciji, a ne podeduje enote(ima svojo) torej ni podkolobar

Trditev 13: Podmnožica \mathcal{L} kolobarja \mathcal{K} je podkolobar natanko tedaj, ko velja

$$1 \in \mathcal{L} \land \forall x, y \in \mathcal{L}. \ x - y \in \mathcal{L}$$
 (33)

Dokaz.

 \Longrightarrow : Sledi iz definicije

 \Leftarrow Iz predpostavke sledi, da je \mathcal{L} podgrupa za +.

Prav tako je $(\mathcal{L}, *)$ monoid

Izpolnjevanje distributivnih zakonov pa sledi iz tega da so izpolnjeni tudi na $\mathcal K$ Opomba: Uporabili smo tridtev (11) in (ii) pogoj zamenjali z (iii)

Primer:

- 1. Kolobar \mathbb{Z} je podkolobar \mathbb{Q} .
- 2. Kolobar \mathbb{Q} je podkolobar \mathbb{R} .

1.7.3 Podprostori

Definicija 34: Podmnožica U vektorskega prostora V je podprostor V, če je za isti operaciji tudi sama vektorski prostor.

Trditev 14:Za neprazno podmnožico \mathcal{U} vektorskega prostora \mathcal{V} so naslednje trditve ekvivalentne

(i)

 \mathcal{U} je podprostor \mathcal{V}

(ii)

$$\forall x, y \in \mathcal{U}. \ \forall \lambda, \mu \in \mathcal{F}. \ \lambda x + \mu y \in \mathcal{U}$$

(iii)

$$\forall x, y, \in \mathcal{U}. \ x + y \in \mathcal{U} \land \forall x \in \mathcal{U}. \ \forall \lambda \in \mathcal{F}. \ \lambda x \in \mathcal{U}$$

Dokaz. Očitno

Primer:

Edini podprostori vektorskega prostora \mathbb{R}^3 so:

- $\{0\}, \mathbb{R}^3$
- premice skozi izhodišče
- ravnine skozi izhodišče

Podalgebre

Definicija 35: Podmnožica \mathcal{B} algebre \mathcal{A} je **podalgebra** \mathcal{A} , če je za iste operacije tudi sama algebra in vsebuje enoto (1) iz algebre A.

Trditev 15:Neprazna podmnožica \mathcal{B} algebre \mathcal{A} je podalgebra algebre \mathcal{A} natanko tedaj ko zanjo velja:

$$1 \in \mathcal{B} \land \forall x, y \in \mathcal{B}. \ \forall \lambda \in \mathcal{F}. \ \underbrace{x + y, \lambda x}_{podprostor}, xy \in \mathcal{B}$$
 (34)

Torej je zaprta za seštevanje, množenje in množenje s skalarji

Dokaz. Enako kot za podkolobarje

Primer: 1.
$$A = \mathcal{M}_2(\mathbb{R})$$
 $B = \{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} | a_{ij} \in \mathbb{R} \}$

1.7.5 Podpolje

Definicija 36: Podmoćica \mathcal{F} polja \mathcal{E} je **podpolje** polja \mathcal{E} , če je za isti operaciji tudi sama polje

Opomba: Podpolje nujno vsebuje isto enoto 1 kot polje \mathcal{E} , naj bo $e \in \mathcal{F}$ enota. $e^2 = e \implies e(\underbrace{1}_{enota}\underbrace{-e}) = 0$ Ker v poljih ni deliteljev niča, velja e = 1.

Trditev 16:Podmnožica $\mathcal{F} \neq \{0\}$ polja \mathcal{E} je podpolje natanko tedaj ko velja

$$\forall x, y \in \mathcal{F}. \ xy, x - y \in \mathcal{F} \land 0 \neq x \in \mathcal{F}. \ x^{-1} \in \mathcal{F}$$
 (35)

Dokaz. Podobno kot prej

Praši muhata!!!!!

Definicija 37: Polje \mathcal{E} je razširitev polja \mathcal{F} če je \mathcal{F} podpolje \mathcal{E} .

Primer:

- 1. \mathbb{R} je podpolje \mathbb{C}
- 2. \mathbb{C} je razširitev \mathbb{R} , ki je razširitev \mathbb{Q}

1.7.6 Logične operacije nad (pod)strukturami

Če so \mathcal{H}_i podgrupe grupe \mathcal{G} je tudi njihov presek $\cap \mathcal{H}_i$ podgrupa. **Opomba:** Družina \mathcal{H}_i je **lahko končna ali neskončna** torej poljubna

Presek algebrskih struktur (podgrup, podkolobarjev, podprostorov, podalgeber, podpolji) **ohrani lastnosti** te algebrseke strukture.

Unija algebrskih struktur praviloma **ne ohrani** lastnosti te lagebrske strukture. **Primer:**

1. $2\mathbb{Z} = \{2n | n \in \mathbb{Z}\}$ in $3\mathbb{Z} = \{3n | n \in \mathbb{Z}\}$ sta podgrupi \mathbb{Z} , njuna unija pa ni podgrupa(saj ni grupa), ker $2+3=5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$

1.8 Generatorji

 \mathbb{R}^3 je generiran z vektorji: (1,0,0),(0,1,0),(0,0,1). Edini podprostor, ki te vektorje vsebuje je namreč \mathbb{R}^3 sam. Seveda je generiran tudi z drugimi vektorji: (1,1,0),(0,1,0),(0,0,1).

Vekotrja (1,0,0),(0,1,0) pa generirata ravnino: z=0.

1.8.1 Generatorji grup

Naj bo \mathcal{X} neprazna podmnožica grupe \mathcal{G} , Vzemimo množico vseh elementov oblike $x_1x_2...x_n$, kjer velja $x, x^{-1} \in \mathcal{X}$ in jo označimo z $< \mathcal{X} >$.

Če je $\mathcal{X} = \{y_1, y_2, \dots, y_n\}$ pišemo tudi $\mathcal{X} = \langle y_1, y_2, \dots, y_n \rangle$. Tako $\langle x, y \rangle$ sestoji iz elementov kot so: $1, x, y, x^2, x^3, x^{-1}, x^{-2}, x^{-1}y, y^{-1}, x^5y^{-1}x^3y^{-3}xy^2, \dots$ **Opazimo**, da je $\langle \mathcal{X} \rangle$ podgrupa

$$u, v \in \langle x \rangle \Longrightarrow uv \in \langle \mathcal{X} \rangle \land u^{-1} \in \langle x \rangle$$

 $(x_1,\ldots,x_n)^{-1}=x_1^{-1}\ldots x_n^{-1}$, ki vsebuje množico \mathcal{X} .

Velja pa tudi obratno: vsaka podgrupa grupe \mathcal{G} , ki vsebuje \mathcal{X} vsebuje tudi to podgrupo($<\mathcal{X}>$).

Torej je $<\mathcal{X}>$ najmanjša podgrupa, ki vsebuje \mathcal{X} . Pravimo ji **podgrupa**, **generirana z** \mathcal{X} .

Če velja $\langle \mathcal{X} \rangle = \mathcal{G}$, rečemo, da je \mathcal{G} generirana z množico \mathcal{X} , elemente iz \mathcal{X} pa imenujemo **generatorji** grupe \mathcal{G} , množici \mathcal{X} pa **množica generatorje**v.

Primer:

1. \mathbb{Q}^+ je grupa za množenje. Velja: $\langle \mathbb{N} \rangle = \mathbb{Q}^+$, ker $\langle 2, 3 \rangle = \{2^i 3^j | i, j \in \mathbb{Z}\}$

Opomba: V aditivni grupi < \mathcal{X} > za komponiranje elementov uporabljamo drugo operacijo, vse ostalo ostane isto.

Primer:

1. Grupa (\mathbb{Z} ,+) je generirana z < 1 > in prav tako zudi z < -1 >. Velja \mathbb{Z} =< 1 >=< -1 >.

Opomba: Grupe generirane z enim samim elementom imenujemo **ciklične**.(< $2>=<4,6>=2\mathbb{Z}$)

Cilj je poiskati najmanjše množice generatorjev
(očitno $<\mathcal{G}>=\mathcal{G}$).

Definicija 38: Grupa je **končno generirana** če je generirana s kako končno množico.

1.8.2 Generatorji kolobarja

Naj bo \mathcal{K} kolobar, $\emptyset \neq \mathcal{X} \subseteq \mathcal{K}$.

Označimo z $\overline{\mathcal{X}}$ podgrupo za seštevanje \mathcal{K} , ki vsebuje vse produkte elementov iz $\mathcal{X} \cup \{1\}$.

Opazimo: $\overline{\mathcal{X}}$ je podkolobar, ki vsebuje \mathcal{X} in je vsebovan v vsakem podkolobarju, ki \mathcal{X} vsebuje. Zato mu rečemo **podkolobar generiran z množico** \mathcal{X} .

Primer:

- 1. $\mathcal{K} = \mathbb{C}$
 - $\overline{\{1\}} = \mathbb{Z}$
 - $\overline{\{i\}} = \{n + mi | n, m \in \mathbb{Z}\} = \mathbb{Z}[i]$ (Kolobar Gaussovih celih števil)

Opomba: Pojme, kot so generator kolobarja, končno generiran kolobar,... definiramo enako kot za grupo.

1.8.3 Generatorji vektorskih prostorov

Definicija 39: Naj bo V vektorski prostor nad \mathcal{F} . Vsakemu vektorju v oblike

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n; \lambda_i \in \mathcal{F} \land v_i \in \mathcal{V}$$
(36)

pravimo linearna kombinacija vektorjev v_1, v_2, \ldots, v_n .

Definicija 40: Naj bo $\emptyset \neq \mathcal{X} \subseteq \mathcal{V}$. Podprostor generiran $z \mathcal{X}$, torej podprostor, ki \mathcal{X} vsebuje in je vsebovan v vsakem podprostoru, ki vsebuje \mathcal{X} je množica $\mathcal{L}(\mathcal{X})$, vseh linearnih kombinacij vektorjev iz \mathcal{X} , $\mathcal{L}(\mathcal{X})$ imenujemo **linearna lupina** množice \mathcal{X} .

Definicija 41: Naj bo \mathcal{X} množica generatorjev za \mathcal{V} tedaj \mathcal{X} imenujemo **ogrodje** \mathcal{V} , velja še $\mathcal{L}(\mathcal{X}) = \mathcal{V}$.

Opomba: Posebnost vektorskega prostora je v tem, da imamo pojem **linearne neodvisnosti**, preko katerega vpeljemo pojem **baze** vektorskega prostora.

1.8.4 Generatorji algeber

Definicija 42: Naj bo \mathcal{A} algebra na \mathcal{F} , naj bo $\emptyset \neq \mathcal{X} \subseteq \mathcal{A}$. **Podalgebra** generirana z \mathcal{X} je množica, ki sestoji iz elementov x oblike

$$x = \lambda 1 x_{11} x_{12} \dots x_{1n_1} + \dots + \lambda_r x_{r1} x_{rn_r}; \lambda_i \in \mathcal{F} \land x_i \in \mathcal{X} \cup \{1\}$$
 (37)

Primer:

- 1. $\mathcal{A} = \mathcal{M}_2(\mathbb{R})$
 - Podalgebra generirana z:

$$e_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, e_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

je algebra diagonalnih matrik:

$$\begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}; \lambda, \mu \in \mathbb{R}$$

• Podalgebra generirana z:

$$e_{11} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \, e_{22} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

pa je celotna algebra $\mathcal{M}_2(\mathbb{R}).(torej je generirana samo z dvema elementoma!)$

Ker velja:

 $e_{12}e_{21} = e_{11}$ in $e_{21}e_{12} = e_{22}$, vidimo, da e_{12}, e_{21} generirata algebro $\mathcal{M}_2(\mathbb{R})$. $\{e_{12}, e_{21}, e_{11}, e_{22}\}$ je baza algebre $\mathcal{M}_2(\mathbb{R})$

Opomba:

Za primerjavo: podkolobar $\mathcal{M}_2(\mathbb{R})$ generiran z e_{12} in e_{21} pa je

$$\mathcal{M}_2(\mathbb{Z}) = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}; u_{ij} \in \mathbb{Z}$$