```
(a)
      (X + Y)(X + Y') = X
       Using 8D: X + (YY') = X
       Using 5D: X + 0 = X
      Using 1D: X = X
(b)
      X(X+Y)=X
       Using 8: XX + XY = X
      Using 3D: X + XY = X
       Using 8: X (1 + Y) = X
       Using 2: X(1) = X
      Using 1D: X = X
(c)
      (X + Y')Y = XY
       Using 8: XY + YY' = XY
       Using 5D: XY + 0 = XY
      Using 1: XY = XY
(d)
       (X + Y)(X' + Z) = XZ + X'Y
       Using 8: (X + Y)X' + (X + Y)Z = XZ + X'Y
       Using 8: XX' + YX' + XZ + YZ = XZ + X'Y
       Using 5D: 0 + YX' + XZ + YZ = XZ + X'Y
       Using 1: X'Y + XZ + YZ = XZ + X'Y
       Using 1D: X'Y(1) + XZ(1) + YZ(1) = XZ + X'Y
      Using 5: X'Y (Z + Z') + XZ (Y + Y') + YZ (X + X') = XZ + X'Y
       Using 8: X'YZ + X'YZ' + XYZ + XYZ + XYZ + XYZ = XZ + X'Y
       Using 3: X'YZ + X'YZ' + XYZ + XY'Z = XZ + X'Y
       Using 8: X'Y (Z + Z') + XZ (Y + Y') = XZ + X'Y
       Using 5 and 1D: X'Y + XZ = XZ + X'Y
```

(a) W(A, B, C) = A'B + AB'

	7		. 4	Α
	0	1	0	1
С	0		0	1
		Е	3	

(b) W(A, B, C) = (A + B) (A' + B')

(c) W'(A, B, C) = A'B' + AB

(d) W'(A, B, C) = (A' + B)(A + B')

				Α	
	1	0	1	0	
С	1	0	1	0	
•			В		

(a) X(A, B, C) = BC+B'C'

				Δ			
	1	0	0	1			
С	0	1	1	0			
	B						

(b) X(A, B, C) = (B' + C) (B + C')

(c) X'(A, B, C) = B'C + BC'

(d) X'(A, B, C) = (B + C) (B' + C')

(a) Y(A, B, C, D) = A'B' + B'D'

			Δ	1	ı
	1	0	0	1	
	1	0	0	0	6
_	1	0	0	0	D
C	1	0	0	1	
		В			'

(b) $Y(A, B, C, D) = \overline{B} (\overline{A} + \overline{D})$

				1	1
	1	0	0	1	
Ì	1	0	0	0	_
	1	0	0	0	D
С	1	0	0	1	
		В			•

(c) Y'(A, B, C) = B + AD

			Δ	\	
	0	1	1	0	
	0	1	1	1	_
	0	1	1	1	D
С	0	1	1	0	
•		В			

(d) Y'(A, B, C) = (A + B) (B + D)

			Δ		ı			
	0	1	1	0				
	0	1	1	1	D			
_	0	1	1	1	D			
C	0	1	1	0				
B								

Month Code	d30	d31
0000	X	X
0001	0	1
0010	0	0
0011	0	1
0100	1	0
0101	0	1
0110	1	0
0111	0	1
1000	0	1
1001	1	0
1010	0	1
1011	1	0
1100	0	1
1101	X	X
111X	X	X

 $d30 = \Sigma m(4, 6, 9, 11) + \Sigma d(0, 13, 14, 15)$ => d30 = AD + A'BD'

 $d31 = \Sigma m(1, 3, 5, 7, 8, 10, 12) + \Sigma d(0, 13, 14, 15)$ => d31 = A'D + AD'

	Х	0	1	1	
	1	1	Х	0	D
ے	1	_1	х	0	ן "
С	0	0	x	1	
		В	3		

The following function implements the function in Figure Ex. 2.38 without using any NAND or NOR operations, as demonstrated by the figure.

$$F(A, B) = A'(A + B) + B'(A + B) = (A' + B')(A + B)$$

A minimized implementation using the fewest gates comes out to be the following function:

$$F(A, B) = (A' + B') (A + B) = (A'B + AB') = A \oplus B$$

2.4	·D	(a)						(b)				
ĺ	SHIFT	Ĩ0	71	0.	Ō,		IN	SELE	cr	00	01	ĺ
	0	٥	0	0	0		D	6		O	D	
	0	0	1	0	1		O)		0	O	
	0	_	0	1	0		l	0)	0	
	0	_	1					1		0		
	1	0	6	0	0							
	1	D	- 1	0	0		(0)					
	١	1	O	Ō		ļ	SELECT	īo	71	OUT		
		_		0	1		U	٥	O	0		
						•	O	0		D		
							0	- 1	0	- 1		
							0	1		1		
								0	0	0		
								0	-			
)	1	0	0		
								t	- (1		

