EDC 3b

S A Aravind Eswar

September 28, 2025

MOSFET Analysis 1

Performing small signal analysis, we get the following, $g_m = \frac{i_{out}}{v_{out}}$ $R_o = \frac{v_o u t}{i_o u t}$ Let's do a reverse feedback analysis,

Figure 1: Reverse Feedback

The operating point we get is, $V_G S = 2.1853273V$ Performing a DC sweep about this, $g_m = 246m\Omega^{-1}$ $r_o = 100\Omega$

```
\begin{aligned} gain &\approx -24 \\ \text{Now, finding it analytically} \\ g_m &= 335 m \Omega^{-1} \\ r_o &= 100 \Omega \\ gain &\approx -33 \end{aligned}
```

2 MOSFET Amplifier

2.1 Common Source

Figure 2: Common Source

```
In simulation, g_m = 0.24\Omega^{-1} r_o = 100\Omega gain \approx 21 With small signal analysis, g_m = 0.275\Omega^{-1} r_o = 100\Omega gain \approx 27.5 DC operating point about 2V
```


Figure 3: Common Source DC plot

2.2 Common Drain

Figure 4: Common Drain

In simulation, $g_m = 45.11 m \Omega^{-1} \\ gain \approx 0.95$

```
With small signal analysis, g_m = 110m\Omega^{-1} gain = 0.98 DC operating point about 3V
```


Figure 5: Common Drain DC Plot

2.3 Common Gate

Figure 6: Common Gate

In simulation, $g_m = 217m\Omega^{-1}$

```
gain=21 With small signal analysis, g_m=276m\Omega^{-1} gain=27.6 DC operating point about -2V
```


Figure 7: Common Gate DC Plot