BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-113172

(43) Date of publication of application: 24.04.2001

(51)Int.CI.

B01J 23/38 B01D 53/94 B01J 23/60 B01J 23/68 B01J 23/89 B01J 29/22

B01J 33/00

(21)Application number: 11-293803

(71)Applicant: TOYOTA MOTOR CORP

(22) Date of filing:

15.10.1999

(72)Inventor: OGURA YOSHITSUGU

(54) EXHAUST GAS CLEANING CATALYST

(57)Abstract:

PROBLEM TO BE SOLVED: To suppress the sulfur poisoning of an exhaust gas cleaning catalyst of an NOx occluding and reducing type.

SOLUTION: In the exhaust gas cleaning catalyst provided with an NOx occluding catalyst bed containing an alkali or alkaline-earth metal, a barrier layer as a layer formed by depositing a noble metal and a transition metal on an inorganic oxide for suppressing the diffusion of SOx into the NOx occluding catalyst bed is provided on the surface layer of the NOx occluding catalyst bed. Further, an SOx absorbing and desorbing material layer as a zeolite layer carrying a noble metal is preferably provided on the upper layer of the barrier layer.

LEGAL STATUS

[Date of request for examination]

18.06.2001

[Date of sending the examiner's decision of

29.06.2004

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-113172 (P2001-113172A)

(43)公開日 平成13年4月24日(2001.4.24)

				_				
(51) Int.Cl.7		酸別記号		FΙ			5	·-7]-}*(参考)
B01J	23/38	ZAB		B 0 1	l J 23/38		ZABA	4D048
B01D	53/94				23/60		Λ	4G069
B 0 1 J	23/60				23/68		Λ	
	23/68				23/89		Λ	
	23/89				29/22			
			審查請求	未請求	請求項の数3	OL	(全 7 頁)	最終頁に続く

(21)出願番号

特顏平11-293803

(22) 出顧日

平成11年10月15日(1999.10.15)

(71)出願人 000003207

トヨタ自動車株式会社 愛知県豊田市トヨタ町1番地

(72)発明者 小倉 義次

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(74)代理人 10007:/517

弁理士 石田 敬 (外3名)

最終頁に続く

(54) 【発明の名称】 排気ガス浄化用触媒

(57)【要約】

【課題】 NOx 吸蔵還元型の排気ガス浄化用触媒の硫 黄被毒を抑制する。

【解決手段】 アルカリもしくはアルカリ土類金属を含む NO_x 吸蔵型触媒層を備えた排気ガス浄化用触媒において、 NO_x 吸蔵型触媒層の表層に、 SO_x の NO_x 吸蔵型触媒層への拡散を抑制する無機酸化物に貴金属及び遷移金属が担持された層であるバリヤ層を設ける。好ましくは、前記バリヤ層の上層に、貴金属が担持されたゼオライト層である SO_x 吸放出材層をさらに設ける。

図 1

【特許請求の範囲】

【請求項1】 担体上に浄化触媒金属と共に NO_x 吸蔵材としてアルカリもしくはアルカリ土類金属を含む NO_x 吸蔵型触媒層を有し、前記 NO_x 吸蔵型触媒層の表面に、 SO_x の NO_x 吸蔵材への拡散を抑制するバリヤ層を備え、前記バリヤ層が貴金属及び遷移金属が担持された無機酸化物からなる層であることを特徴とする排気ガス浄化触媒。

【請求項2】 前記バリヤ層の上層にSOx 吸放出材層を備えた請求項1に記載の排気ガス浄化触媒。

【請求項3】 前記 SO_X 吸放出材層が、貴金属が担持されたゼオライト層である請求項2に記載の排気ガス浄化触媒。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車などの内燃機関から排出される排気ガスを浄化するための排気ガス 浄化触媒に関し、詳しくは、リーンバーンエンジンからの排気ガスを浄化するのに適する改良されたNO_x吸蔵 還元型の排気ガス浄化触媒に関する。

[0002]

【従来の技術】近年、地球保護の観点より、自動車等の内燃機関から排出される二酸化炭素(CO₂)の総量を抑えることが世界的な課題となり、排気ガス規制及び燃費規制が年々強化されつつある。この対応策として、燃費向上の目的でリーンバーンエンジンが開発され、その排気ガスを浄化する目的で、従来の三元触媒にリーン雰囲気でNO_xを吸蔵する機能を付加させたNO_x吸蔵還元型三元触媒が開発され、上記課題に対して一定の成功を収めている。

【0003】このリーンバーンエンジンは、燃料を、常時は空燃比(A/F)がリーン(空気過剰)の条件下で燃焼させ、一時的にストイキ(理論空燃比)~リッチ(燃料過剰)の条件下で燃焼させる。排気ガス中のHCやCOは、リーン側で酸化性雰囲気と触媒の作用により効率的に燃焼除去され、一方、 NO_X はリーン側では吸蔵材に捕捉され、それが一時的なストイキ~リッチ条件下において放出され、その一時的還元性雰囲気と触媒の作用により還元浄化される。これらの空燃比制御と NO_X 吸蔵型三元触媒の作用により、全体として、燃費を向上させると同時に排気ガス中のHC、CO、 NO_X を効率よく浄化することができる。

[0004]

【発明が解決しようとする課題】しかしながら、燃料中には微量ながら硫黄成分が含まれており、これが燃焼時に酸化され、又は触媒上で酸化されて SO_x が生成する。この SO_x は酸性であり、 NO_x 吸蔵材は塩基性であることから、 SO_x は NO_x 吸蔵材と反応して硫酸塩を形成する。この硫酸塩は、結合が強固であるため SO_x が NO_x 吸蔵材から容易に離脱せず、その結果、 NO_x の

 χ 吸蔵材の NO_{χ} 吸蔵能力が失われ、 NO_{χ} 浄化能力が 経時的に低下する。この現象は NO_{χ} 吸蔵材の硫黄被毒 として知られており、吸蔵材を使用したリーンバーンシ ステムにおける最大の問題の一つである。

【0005】このような吸蔵還元型 NO_x 触媒の耐硫黄 被毒性を向上させるための対応策として、特開平8-99034号に TiO_2 、 SiO_2 又は ZrO_2 と Al_2 O $_3$ を混合又は複合化した系が提案されている。このような系は、 NO_x 吸蔵材への SO_x の付着を抑制する効果、及び排気ガスのA/F変動(リーン→リッチ)に伴って付着した SO_x の脱離を促進する効果が確認されている。しかしながら、付着した SO_x の脱離を効率的に行うためには、通常の運転状態を上回る高温を要するため、長期間使用すると徐々に NO_x 吸蔵材の被毒が進み、 NO_x 浄化性能が低下するという問題がある。

【0006】また、特開平11-156159号に、N O_x 吸蔵層に加えて、排気ガス中の SO_x をリーン側で吸収しストイキ〜リッチ側でそれを放出するセリア等の酸化物からなる機能層を排気ガス接触側に設け、 NO_x 吸蔵層に SO_x が到達するのを抑える触媒構造が提案されている。しかしながら、かかるセリア層は、 SO_x を捕捉・放出する性能が不足するため、一部の SO_x が O_x 吸蔵層まで到達し、下層の NO_x 吸蔵層の浄化性能が短期間に著しく低下するという問題がある。

【0007】従って、本発明は、 SO_x を強固に捕捉するバリヤ層を設けることで SO_x が NO_x 吸蔵層に到達することを抑え、 NO_x 吸蔵層の性能を最大限に維持させる改良された NO_x 吸蔵還元型排気ガス浄化触媒を提供することを目的とする。

[0008]

【課題を解決するための手段】上記課題を解決するため、担体上に浄化触媒金属と共に NO_x 吸蔵材としてアルカリもしくはアルカリ土類金属を含む NO_x 吸蔵型触媒層を有し、前記 NO_x 吸蔵型触媒層の表面に、 SO_x の NO_x 吸蔵材への拡散を抑制するバリヤ層を備え、前記バリヤ層が貴金属及び遷移金属が担持された無機酸化物からなる層であることを特徴とする排気ガス浄化触媒が提供される。

【0009】本発明で特定するバリヤ層は、無機酸化物に貴金属と遷移金属の双方が担持された層である。このバリヤ層に含まれる貴金属は、リーン側で SO_x を酸化し、その酸化された SO_x を遷移金属が強固に捕捉することにより、 SO_x が NO_x 吸蔵材に到達することを阻止する作用をする。また、バリヤ層の貴金属はストイキ~リッチ側でこの酸化された SO_x を還元する作用を行い、ストイキ~リッチ側で遷移金属との結合が切れ、 SO_x はバリヤ層から放出される。

【0010】遷移金属は、リーン側で酸化されたSOxを強固に捕捉するけれどもストイキ〜リッチ側ではSOxを放出することが可能であり、従って、バリヤ層のS

 O_X 吸収能力は飽和することなく、 NO_X 吸蔵型触媒層への SO_X の到達を安定して抑制することができる。 【0011】本発明の好ましい態様において、前記バリヤ層の上層に SO_X 吸放出材層をさらに備える。好ましくは、 SO_X 吸放出材層は、貴金属が担持されたゼオライト層である。この SO_X 吸放出材層は、貴金属が、リ

イト僧である。この SO_X 吸放出杯僧は、賃金属か、リーン側で SO_X を酸化し、それをゼオライト等が捕捉し、かつストイキ〜リッチ側でこの酸化された SO_X を還元し、ゼオライト等との結合が切れ、 SO_X が SO_X 吸放出材層から放出される。

【0012】 SO_x 吸放出材層は、バリヤ層よりも広範囲な条件、とりわけ広い温度範囲で SO_x を捕捉することができるものであり、 SO_x は先ず SO_x 吸放出材層で捕捉される。しかし、 SO_x 吸放出材層はバリヤ層よりも SO_x を捕捉する力が弱いため、 SO_x が SO_x 吸放出材層を通り抜けることがある。このように SO_x 吸放出材層を通り抜けた SO_x を強い結合力で捕捉する。こうして、バリヤ層の上に SO_x 吸放出材層を設けることによって、 SO_x の NO_x 吸蔵材への到達をより完全に抑制することができる。

[0013]

【発明の実施の形態】図1は、本発明の排気ガス浄化用 触媒の部分拡大断面図である。この排気ガス浄化用触媒 1は、担体基材2とその担体基材表面に被覆されたNO x 吸蔵型触媒層3から構成されている。担体基材として は、コーデェライト等の耐熱セラミックからなるモノリ ス担体基材が好ましい。

【0014】担体基材2は、 NO_X 吸蔵型触媒層3で被覆される。この NO_X 吸蔵型触媒層は、浄化触媒金属と共に NO_X 吸蔵材としてアルカリもしくは/およびアルカリ土類金属を含んでなるもので、好ましくは、アルミナ、シリカ、ジルコニア、シリカーアルミナ、ゼオライト等の無機酸化物多孔質体に担持された貴金属とアルカリもしくはアルカリ土類金属からなる層である。

【0015】この浄化触媒金属は、リーン側で、NOx をアルカリ金属等で捕捉され易いNO3 - の形まで酸化 させ、ストイキ〜リッチ側でそれを還元する作用をす る。その担持量は、NOx吸蔵型触媒層3の重量あたり 0.5~5wt%が好ましく、浄化触媒金属には、白金、 金、ルテニウム、ロジウム、パラジウムが例示される。 【0016】NOx 吸蔵型触媒層には、NOx 吸蔵材と してのアルカリもしくはアルカリ土類金属が含まれる。 この吸蔵材は、リーン側でNOxを捕捉し、ストイキ~ リッチ側でそれを放出する作用をする。アルカリ金属と しては、リチウム、ナトリウム、カリウム、ルビジウ ム、セシウム、フランシウムが例示される。アルカリ土 類金属としては、ベリリウム、マグネシウム、カルシウ ム、ストロンチウム、バリウムが例示される。アルカリ もしくはアルカリ土類金属の担持量は、担体基材の1リ ットルあたり0.05~0.5モルが好ましい。

【0017】このNOx 吸蔵型触媒層3の表層は、バリヤ層4で被覆される。このバリヤ層は、無機酸化物に貴金属及び遷移金属が担持された層である。無機酸化物には、アルミナ、シリカ、ジルコニア、シリカーアルミナ、ゼオライト等が用いられ、好ましくは、活性アルミナである。貴金属には、白金、金、ルテニウム、ロジウム、パラジウムが例示され、好ましくは白金である。遷移金属は、周期律表の3A~7A族、8族、及び1B族の元素であり、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、元オブ、ランタン、セリウムが例示され、好ましくは、硫酸塩の分解し易さから、マンガン、鉄、コバルト、ニッケル、銅である。

【0018】このバリヤ層4は、バリヤ層の重量あたり少なくとも0.3wt%の貴金属を含み、好ましくは0.5~5wt%の貴金属を含む。また、遷移金属の量は、バリヤ層の重量あたり少なくとも0.3×10⁻³モル/g、好ましくは0.5×10⁻³~1.0×10⁻³モル/gである。また、バリヤ層の厚さは、少なくとも3 μ mであり、好ましくは10~20 μ mである。

【0019】本発明における好ましい態様において、バリヤ層の上にさらに SO_x 吸放出材層5を設ける。この SO_x 吸放出材層は、好ましくは、モルデナイト等のゼオライトの上に白金等の貴金属が担持された層である。貴金属の量は、バリヤ層の重量あたり少なくとも0.3 wt%、好ましくは0.5~5wt%であり、バリヤ層の厚さは少なくとも3 μ mであり、好ましくは10~20 μ mである。

【0020】本発明の排気ガス浄化触媒は、NOx吸蔵型触媒層とバリヤ層を備え、好ましい態様としてSOx吸放出材層をさらに備えるが、これらの層は次のような機能をするものと考えられる。

【0021】 NO_x 吸蔵材は、リーン条件下で含まれる浄化触媒金属によって NO_x を NO_3 の形まで酸化させ、アルカリ金属等の作用によってこれを捕捉する。このように、 NO_x 吸蔵材は、リーン条件下で NO_x を吸収するが、排気ガス中には微量ながら SO_x が含まれており、例えば SO_2 は、貴金属の表面上で酸化されて SO_3 となり、さらに雰囲気下で酸化されて SO_4 の形で吸蔵層を拡散しながら、硫酸塩を生成する。この硫酸塩は硝酸塩より分解し難く、ストイキ~リッチ条件下においても分解されずにそのまま残り、従って、吸蔵材層には経時的に硫酸塩が増大し、吸蔵材で捕捉し得る NO_x 量が低下することになる。

【0022】バリヤ層は、かかる NO_x 吸蔵材の性能低下を抑えるものであり、バリヤ層に含まれる貴金属と遷移金属の作用により、 NO_x 吸蔵型触媒層の手前で SO_x を強固に捕捉することにより、 NO_x 吸蔵材の硫黄被毒を防止するものである。即ち、バリヤ層は、 NO_x 吸蔵型触媒層に対して、 SO_x が到達することを防ぐ SO_x

 χ 遮蔽作用を提供するが、これは、リーン条件下で、貴金属が SO_{χ} を SO_{3} に酸化し、それが酸化性雰囲気下で SO_{4} の形に変わり、バリヤ層に存在する遷移金属がその SO_{4} を強く捕捉するためである。一方、ストイキ〜リッチ条件下では、貴金属が SO_{4} の排気ガス中のHCやCOとの還元反応を促進し、再び SO_{4} が SO_{χ} の形態となって排気ガス中に放出される。

【0023】言い換えると、遷移金属は SO_4 と強固に結合することができる一方、その結合は、 NO_X 吸蔵型触媒層の NO_X 吸蔵材と SO_4 との結合とは異なり、貴金属の存在下の還元雰囲気の中では切れることができ、 SO_X が排気ガス中に放出されため、バリヤ層の SO_X 捕捉性能は飽和することはない。従って、バリヤ層は、 NO_X 吸蔵型触媒層に対して、経時的に安定して SO_X 遮蔽作用を提供することができるのである。

【0024】また、 NO_x に関して、バリヤ層に含まれる貴金属の作用で NO_x の少なくとも一部は NO_3 の形まで酸化されるが、遷移金属はそれを強固に捕捉する結合力を有しない。従って、バリヤ層は、 NO_x に対して SO_x を優先的に捕捉することにより、 NO_x 吸蔵材に対するバリヤ層として作用するのである。

【0025】このようにして、 SO_x は NO_x 吸蔵型触媒層の上層のバリヤ層で吸着・離脱を繰り返し、 SO_x の捕捉効率が飽和することなく、 NO_x 吸蔵材への拡散が抑制されるため、 NO_x 吸蔵型触媒層の被毒を経時的に安定して抑えることが可能となる。

【0026】本発明における好ましい態様において、バリヤ層の上にさらに SO_X 吸放出材層5を設ける。この SO_X 吸放出材層では、リッチ条件下で SO_X 吸放出材層に含まれる貴金属が SO_X を SO_3 に酸化し、それが酸化性の雰囲気下で SO_4 の形に変わるため、それをゼオライトが捕捉することで SO_X がバリヤ層に到達することを防ぐ。一方、ストイキ〜リッチ条件下では、貴金属の触媒作用によって SO_4 を排気ガス中のHCやCOと反応を促進させて再び SO_X の形態で排気ガス中に放出することができる。

【0027】ここで、この SO_x 吸放出材層は、主として遷移金属とゼオライト等との成分の相違により、バリヤ層よりも SO_x の捕捉力が弱く、従って、バリヤ層よりも SO_x 捕捉効率が低いが、バリヤ層よりも広い温度範囲で SO_x を捕捉できる。この SO_x 吸放出材層をバリヤ層の排気ガス側に設けることで、バリヤ層の SO_x 捕捉の負担が軽減されると同時に SO_x の捕捉が可能な温度範囲が広がり、全体として SO_x 捕捉効率をより高くすることができる。

【0028】加えて、バリヤ層と SO_x 吸放出材層の双方が貴金属を含んでいることから、排気ガス中の NO_x がバリヤ層と SO_x 吸放出材層の双方を通って NO_x 吸蔵型触媒層に到達するときは、 NO_x は高い割合で捕捉され易い NO_3 の形まで酸化されており、従って、N

Ox吸蔵効率も高くなる。

【0029】なお、本発明者らにより、前述した先行技術のセリア等の酸化物からなり貴金属を含まない層を備えた触媒構成においては、 SO_X を捕捉する効率が低く、かかる層が SO_X を飽和した後は有意な SO_X 吸放出効果が見られないことが確認されている。これは、セリア単独では SO_X を SO_3 にする触媒作用が低いことから、 SO_X が捕捉され易い SO_4 に転化されず、また、セリア単独では、一部に転化されて捕捉された SO_4 の SO_X への還元作用も低いことから、 SO_X を放出する効率も劣るためと考えられる。

[0030]

【実施例】実施例1

【0031】実施例2

実施例1と同様な操作で、モノリス担体上にPtとBa が担持された NO_X 吸蔵型触媒層を形成し、その表面にPt、Mn、及びA1 $_2$ O $_3$ からなるバリヤ層を形成した。このとき、 NO_X 吸蔵型触媒層には触媒容積1リットルあたり2gのPtと0. 2モルのBaが担持され、バリヤ層は2ωt%のPt、0. 1モルのMnを含み、コート量は約30gであった。

【0032】実施例3

実施例1と同様な操作で、触媒容積1リットルあたり2 gのPtと0. 2モルのBaが担持された NO_X 吸蔵型触媒層を形成し、その表面に触媒容積1リットルあたり0. 1モルのFeと2ut%のPt、及びA1 $_2$ O_3 からなるバリヤ層を形成した。バリヤ層のコート量は、触媒容積1リットルあたり約30 gであった。

【0033】実施例4

実施例1と同様な操作で、モノリス担体上にPtとBa が担持された NO_X 吸蔵型触媒層を形成し、その表面にPt、Ni、及VA I_2 O_3 からなるバリヤ層を形成した。このとき、 NO_X 吸蔵型触媒層には触媒容積1リットルあたり2gのPtと0. 2モルのBaが担持され、バリヤ層は2wt%のPt、0. 1モルのNi を含み、コート量は約30gであった。

【0034】実施例5

実施例 1 と同様な操作で、モノリス担体上にPtとBaが担持された NO_X 吸蔵型触媒層を形成し、その表面にPt、Cu、及びA 1_2 O_3 からなるバリヤ層を形成した。このとき、 NO_X 吸蔵型触媒層には触媒容積 1 リットルあたり 2 gのPt 2 と 0 . 2 モルのBaが担持され、バリヤ層は 2 wt%のPt、0 . 1 モルのCuを含み、コート量は約 3 O g であった。

【0035】実施例6

実施例1と同様な操作で、モノリス担体上にPtとBa が担持された NO_x 吸蔵型触媒層を形成し、その表面にPt、Zn、及びA1 $_2$ O $_3$ からなるバリヤ層を形成した。このとき、 NO_x 吸蔵型触媒層には触媒容積1リットルあたり2gのPtと0. 2モルのBaが担持され、バリヤ層は2ωt%のPt、0. 1モルのZnを含み、コート量は約3Ogであった。

【0036】実施例7

実施例1と同様な操作で、モノリス担体上にPtとBa が担持された NO_X 吸蔵型触媒層を形成し、その表面に Pt、Ce、及びA1 $_2$ O $_3$ からなるバリヤ層を形成した。このとき、 NO_X 吸蔵型触媒層には触媒容積1リットルあたり2gのPtと0. 2モルのBaが担持され、バリヤ層は2ωt%のPt、0. 1モルのCeを含み、コート量は約3Ogであった。

【0037】実施例8

実施例1と同様な操作で、モノリス担体上にPtとBa が担持された NO_X 吸蔵型触媒層を形成し、その表面にPt、Co、及びA1 $_2$ O $_3$ からなるバリヤ層を形成した。このとき、 NO_X 吸蔵型触媒層には触媒容積1リットルあたり2gのPtと0. 2モルのBaが担持され、バリヤ層は2ωt%のPt、0. 1モルのCoを含み、コート量は約3Ogであった。

【0038】次に、予め2wt%のPtが担持されたモルデナイト粉末、イオン交換水、バインダー、及び安定剤を含むスラリーを調製し、このスラリーをウォッシュコートしてバリヤ層上に第3層のSOx吸放出材層を形成した。Pt/Mor(白金が担持されたモルデナイト)

層のコート量は、触媒容積1リットルあたり20gであり、Ptは2wt%であった。

【0039】比較例1

直径 $30\,\mathrm{mm}\times$ 長さ $50\,\mathrm{mm}$ の円筒状モノリス担体に、活性 Al_2 O_3 からなるウォッシュコート層を形成し、触媒容積1 リットルあたり2 g のP t を担持した。次に酢酸バリウム水溶液を用いて、触媒容積1 リットルあたり0. 2 モルのB a を担持し、 $500\,\mathrm{C}$ で1 時間焼成した。

【0040】比較例2

実施例1と同様な操作で、モノリス担体上にPtとBa が担持された NO_x 吸蔵型触媒層を形成し、その表面にPt、Mg、及びA1 $_2$ O $_3$ からなるバリヤ層を形成した。このとき、 NO_x 吸蔵型触媒層には触媒容積1リットルあたり2gのPtと0. 2モルのBaが担持され、バリヤ層は2ωt%のPt、0. 1モルのMgを含み、コート量は約30gであった。

【0041】比較例3

比較例1と同様な操作で、直径30mm×長さ50mmの円筒状モノリス担体に、活性A1203からなるウォッシュコート層を形成し、触媒容積1リットルあたり2gのPtを担持した。次に酢酸バリウム水溶液を用いて、触媒容積1リットルあたり0.2モルのBaを担持し、500℃で1時間焼成した。次に実施例8と同様な操作で、このNOx吸蔵型触媒層の表面にPt/Mor層を形成した。Pt/Morコート量は触媒容積1リットルあたり20gであり、Ptは2ωt%であった。

【0042】評価法

実施例1~9、及び比較例1~3について、第1表に示すモデルガス中で耐硫黄被毒性を評価した。具体的には、触媒に入るガス温度を400℃として、30秒間のリッチガスと60秒間のリーンガスを交互に触媒に導入し、1時間経過した後、各触媒のNOx吸蔵材に付着した硫黄分の定量分析を行った。これらの結果を第2表に示す。

[0043]

【表1】

第1表

	co	HC	NO	CO ₂	02	SO ₂	H₂O
リッチ ガス	0.60%	2000ppmC	500ppm	10%	0.40%	0	4 %
リーン ガス	0.10%	2000ppmC	500ppm	10%	6.50%	100ppm	4 %

[0044]

【表2】

第2表

	吸蔵還元型 触媒層	バリヤ層	SOx吸放出層	S 被毒 割合 (%)
実施例 1	Pt. Ba/Al ₂ O ₃	Pt. Co/Al ₂ O ₃	なし	37. 8
実施例 2	Pt.Ba/Al ₂ O ₃	Pt.Mn/Al ₂ O ₈	なし	37. 2
実施例3	Pt. Ba/Al ₂ O ₃	Pt.Fe/Al ₂ O ₃	なし	38. 7
実施例 4	Pt, Ba/Al ₂ O ₃	Pt. Ni/Al ₂ O ₃	なし	36. 5
実施例 5	Pt.Ba/Al ₂ O ₃	Pt, Cu/Al ₂ O ₃	なし	40.4
実施例 6	Pt, Ba/Al ₂ O ₃	Pt. Zn/Al ₂ O ₃	なし	54
実施例7	Pt, Ba/Al ₂ O ₃	Pt. Ce/Al ₂ O ₃	なし	54.6
実施例8	Pt, Ba/Al ₂ O ₃	Pt, Co/Al ₂ O ₃	Pt/モルデナイト	26.6
比較例 1	Pt. Ba/Al ₂ O ₃	なし	なし	63. 8
比較例 2	Pt. Ba/Al ₂ O ₃	Pt. Mg/Al ₂ O ₃	なし	62. 2
比較例3	Pt, Ba/Al ₂ O ₃	なし	Pt/モルデナイト	50. 5

注)S被毒割合; 100×S付着量(モル)/ NOx吸蔵材量(モル)

【0045】表2から分かるように、実施例1~5は、 モノリス基材にウォッシュコートされたAl₂O₃にN Ox 吸蔵材として Baと浄化触媒金属として Ptを担持 し、その吸蔵層の表面にバリヤ層としてPtと遷移金属 を含むA12 〇3 をコーティングした触媒であるが、こ れらはいずれも、バリヤ層を含まない従来構成の触媒 (比較例1)に比べ、テスト後のNOx 吸蔵材に付着し た硫黄分が明らかに少ない結果を呈した。

【0046】実施例6と7は、実施例1~5とは別の希 土類金属を含むA 12 O3 をバリヤ層としてコーティン グした触媒であるが、あまり良好な結果は得られていな い。これは、バリヤ層に含まれる元素の硫酸塩の分解し 易さに起因するものと考えられる。一方、バリヤ層の上 にSOx吸放出機能の優れたモルデナイト層をさらに形 成した実施例9は、さらに良好な結果を示している。こ れは、前述のバリヤ層とSO、吸放出材層の二重の効果 によるものと考えられる。

[0047]

【発明の効果】本発明の排気ガス浄化用触媒において は、SOxのNOx吸蔵型触媒層への到達が抑制され、 NO_X 吸蔵還元の性能低下が抑えられる。

【図面の簡単な説明】

【図1】本発明の排気ガス浄化用触媒の部分拡大断面図 である。

【図2】本発明の好ましい態様における排気ガス浄化用 触媒の部分拡大断面図である。

【符号の説明】

1…排気ガス浄化用触媒

2…担体基材

3…NOx 吸蔵型触媒層

4…バリヤ層

5…SOx 吸放出材層

【図1】

【図2】

図 1

图 2

!(7) 001-113172 (P2001-113172A)

フロントページの続き

(51) Int. Cl. 7		識別記号	FΙ			(参考)
B01J	29/22		B O 1 J	33/00	ZABA	
	33/00	ZAB	B 0 1 D	53/36	102B	
					102H	

Fターム(参考) 4D048 AA02 AA06 AB02 BA03X

BA09X BA15X BA28X BA30X BA30Y BA31Y BA32Y BA33Y BA34Y BA35X BA35Y BA36X BA37X BA38X BB02 CC46

EA04

4G069 AA03 AA08 BA01B BA07A BA07B BB15B BC01A BC08A BC13B BC31B BC35B BC43B BC62B BC67B BC68B BC69A BC75B CA03 CA09 CA12 CA13 DA06 ED07 EE01 EE08 FA02 FB19

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
A FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.