Basis of a Vector Space

<u>Recall</u>: A set of vectors is linearly independent if the vector equation:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = 0,$$

only has the trivial solution where $c_1 = c_2 = ... = c_p = 0$. Or, if the vectors make up the columns of a matrix A and the matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution: \mathbf{x} . Note that this is two different ways of saying the exact same thing.

Example 17.1 - Polynomial and Function linear dependence

<u>Definition of Basis</u>:

Examples of Bases:

Example	17.2 :			
Theorem	5 (yes,	we skij	oped T	<u>hm 4)</u> :
1.				
2.				
Proof of '	Γheorei	n 5:		

Finding Bases for Nul A and Col A

Example 17.3:

$\underline{ \textbf{Theorem 6}}:$