2nd Order, Linear, Homogeneous Differential Equations

Logan Grosz

February 3, 2018

Abstract

Abstract goes here...

1 Declarations

 $variable; {\it variable description}; variable \ \ domain \ \ and \ \ range, \ \ if \ \ applicable$

2 Rule

Math in text mode... $f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x}$

Display mode:

$$f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x}$$

3 Pre-Derivation

Anything that the derivation relies on goes here

4 Derivation

$$ay'' + by' + cy = 0$$

Where $a, b, y \in k$

Let
$$y = e^{mx}$$

 $\implies y' = m e^{mx}$
 $\implies y'' = m^2 e^{mx}$

$$a m^2 e^{m x} + b m e^{m x} + c e^{m x} = 0$$
 Substitution
$$e^{m x} (a m^2 + b m + c) = 0$$
 Distribution

$$\forall x (e^{m x}) \neq 0$$

$$\implies a m^2 + b m + c = 0$$

$$m = \frac{-b \pm \sqrt{b^2 - 4 \, a \, c}}{2 \, a}$$
 Quadratic Formula
 Let $\Delta = b^2 - 4 \, a \, c$ Discriminant

Case 1:
$$\Delta > 0 \implies m_1, m_2 \in \mathbb{R}$$

Case 2:
$$\Delta = 0 \implies m_1 = m_2 = \frac{-b}{2a}$$

Case 3:
$$\Delta < 0 \implies m_1, m_2 \in \mathbb{C}$$

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

Note: Case 2
$$\implies y_2 = y_1 \int \frac{e^{\int P(x)dx}}{{y_1}^2} dx$$

5 Exempli Gratia

Examples of important instances