CLUSTERING

Bases de Datos Masivas

Temas

- ¿Qué es clustering?
- K-Means Clustering
- Hierarchical Clustering

¿QUÉ ES CLUSTERING?

Aprendizaje Supervisado vs. No Supervisado

- Aprendizaje Supervisado: tanto X como Y son conocidos
- Aprendizaje No Supervisado solo conozco X

Problema del agrupamiento

Dada una nube de **puntos** en un espacio, queremos entender cuál es la estructura de esa nube.

También podemos tener:

- Vectores
- Conjuntos

Problema del agrupamiento

Dado un **conjunto de puntos**, con una noción de **distancia** entre puntos, se agrupan los puntos en un **número determinado de** *clusters*, de modo que:

- Los miembros de un grupo están cerca (similares entre sí).
- Los miembros de los otros grupos son bien diferentes.

Generalmente:

- Los puntos están en un espacio de dimensión alta.
- La similitud se define utilizando una medida de distancia.

Euclidiana, coseno, Jaccard, distancia de edición, ...

Clustering: Problema Hard ¿Por qué?

- El agrupamiento en dos dimensiones parece fácil
- El agrupamiento de pequeñas cantidades de datos parece fácil
- Y en la mayoría de los casos, las apariencias no engañan

Pero la mayoría de los problemas no tienen 2 dimensiones, sino que pueden tener 10, 100 o miles de dimensiones

En espacios de alta dimensionalidad todo se ve diferente:

- La Maldición de la Dimensionalidad:
 - Una manifestación de la "maldición" es que en dimensiones altas, casi todos los pares de puntos están igualmente alejados unos de otros.

Problemas de Clustering: Galaxias

- Datos: Un catálogo de 2 mil millones de "cuerpos celestes" representados por su radiación en 7 dimensiones (bandas de frecuencia)
- Problema: Cluster en objetos similares, por ejemplo: galaxias, las estrellas cercanas, cuásares, etc.

Proyecto: Sloan Digital Sky Survey

Problemas de Clustering: CDs de música

- Intuitivamente: La música se divide en categorías, los clientes prefieren unas pocas categorías.
 - ¿Pero qué son realmente las categorías?
- Representar un CD por el conjunto de clientes que lo compraron:
- CDs similares tienen un conjunto de clientes similares y viceversa.

Problemas de Clustering: CDs de música

Espacio de todos los CDs:

- Piense en un espacio con una dimensión para cada cliente.
- Los valores en una dimensión pueden ser 0 o 1 solamente.
- Un CD es un punto en este espacio $(x_1, x_2, ..., x_k)$, donde $x_i = 1$ si y sólo si el i-ésimo cliente compró el CD

	$C_{_1}$	C_2	C ₃ .	C _k
CD_{1}	1	0	1	1
CD_2	0	1	0	0
CD ³	1	1	1	1
CD _n	0	1	0	0

Para Amazon, la dimensión es de decenas de millones

Tarea: Buscar *clusters* de CDs similares

Clustering

- Clustering hace referencia al conjunto de técnicas para buscar subgrupos (o clusters) en un conjunto de datos.
- Un buen clustering permite que las observaciones dentro de un grupo sean similares pero entre los grupos sean bien diferentes.
- El clustering también es llamado segmentación de datos en algunas aplicaciones.
 - Se realizan particiones de grandes conjuntos de datos, en clusters de acuerdo a su similitud.

Clustering

Figure 10.1 Clusters should have small within-cluster variation compared to the betweencluster variation.

(Larose, 2014)

Métodos de Clustering

Existen muchos tipos de métodos de agrupamiento diferentes.

Dos de los más utilizados son:
 K-Means Clustering
 Hierarchical Clustering

K-Means Clustering

- Para realizar un agrupamiento por K-Means, debemos especificar en primer lugar la cantidad de clusters (K) deseados.
- Entonces el algoritmo de K-means asignará cada una de las observaciones exactamente a uno solo de los K clusters κ₂ κ₃ κ₄

Métodos de Clustering

Jerárquico:

- Aglomerativo (de abajo hacia arriba):
 - Inicialmente, cada punto es un cluster
 - Combina repetidamente los dos grupos "más cercanos" en uno.
- Divisivo (de arriba abajo):
 - Comienza con un *cluster* y de forma recursiva lo va dividiendo.

Asignación de puntos (k-means):

- Se mantiene un conjunto de clusters
- Cada punto pertenece al grupo de "más cercano"

K-MEANS CLUSTERING

K-Means Clustering

- Para realizar un agrupamiento por K-Means, debemos especificar en primer lugar la cantidad de clusters (K) deseados.
- Entonces el algoritmo de K-means asignará cada una de las observaciones exactamente a uno solo de los K clusters κ₂ κ₃ κ₄

¿Cómo funciona K-medias?

Nos gustaría particionar ese conjunto de datos en K grupos

- Cada una de las observaciones pertenecen al menos a uno de los K clusters
- Los clusters no están solapados (non-overlapping), es decir, no hay observaciones que pertenezcan a más de un cluster
- El objetivo es tener una mínima variación dentro del *cluster*, es decir, los elementos dentro de un *cluster* deberían ser tan similares como sea posible.
- Una forma de lograr esto es reducir al mínimo la suma de todas las distancias euclidianas por pares al cuadrado entre las observaciones en cada cluster.

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

Algoritmo K-Means

- Paso Inicial: De forma aleatoria asignar cada observación a uno de los K clusters
- Iterar hasta que la asignación de clusters deje de modificarse:
 - Para cada uno de los K clusters, calcular el centroide. El centroide del k-ésimo cluster es la media de las observaciones etiquetadas como K.
 - Asigna cada una de las observaciones al cluster cuyo centroide es más cercano (donde "cercano" se define utilizando la distancia Euclidea)

Ejemplo del algoritmo K-means

Óptimos locales

- El algoritmo K-means puede atascarse en "óptimos locales" y no encontrar la mejor solución
- El resultado va a estar atado a la imputación inicial
- Para encontrar una buena solución tenemos que correr varias veces con distintas configuraciones iniciales.

HIERARCHICAL CLUSTERING

Clustering Jerárquico

- K-Means requiere elegir un número de clusters
- El problema de seleccionar un K está lejos de ser un tema simple.
- Ahora, si no queremos pasar por el proceso de selección de K podemos utilizar Clustering Jerárquico
- Los clusters jerárquicos son construidos a partir de una representación gráfica basada en árboles llamada Dendrograma

Clustering Jerárquico

- Clustering aglomerativos (Bottom-Up).
 - Comienzan el análisis con tantos clusters como observaciones se tienen.
 - A partir de las unidades iniciales se forman grupos, de forma ascendente hasta que queda un solo cluster.
- Clustering disociativos (Top-Down).
 - Comienzan con un único cluster que engloba a todas las observaciones.
 - Y se realizan repetidas divisiones hasta llegar a tantas agrupaciones como casos tratados.

Dendrograma

- Juntamos los puntos más cercanos Ejemplo: 5 y 7
- La altura de fusión (en el eje vertical) indica cuan similares son los puntos
- Luego de ser fusionados, se los trata como una simple observación y el algoritmo continúa.

Interpretación

Tenemos 45 observaciones

- Cada una de las hojas del dendrograma representa una de las 45 observaciones.
- En la parte de abajo del dendrograma cada una de las observaciones es una hoja distinta. Sin embargo, cuando nos movemos hacia arriba las hojas se van fusionando. Esto corresponde a observaciones que son similares unas a otras.
- A medida que avanzamos más arriba en el árbol, un creciente número de observaciones han fusionado.
- Las dos observaciones que se unieron previamente (más abajo) son las más similares entre si.
- Las observaciones que se fusionan al final, son muy diferentes de las primeras en fusionarse.

Elegir los Clusters

- Para elegir los clusters podemos trazar una línea que cruce el dendrograma.
- Podemos obtener un número de clusters dependiendo de las intersecciones de la línea.

Algoritmo (Enfoque aglomerativo)

- El dendrograma se genera de la siguiente manera:
 - Comienza con cada uno de los puntos como un cluster separado (n clusters)
 - Calcula una medida de disimilitud entre los puntos / clusters
 - Fusiona dos clusters que son más similares de manera que ahora tenemos n – 1 clusters.
 - A continuación fusiona los siguientes más similares entonces nos quedan ahora n – 2 clusters.
 - Continúa hasta que nos queda un solo cluster.

Un ejemplo

- Inicia con 9 clusters
- Une 5 y 7
- Une 6 y 1
- Une el cluster (5,7) con 8.
- Continua hasta que todas las observaciones están unidas.

¿Cómo definimos disimilitud?

- La implementación de clustering jerárquico implica resolver un problema obvio que es...
- ¿Cómo hacer para definir la disimilitud o amalgamiento (o linkage) entre un cluster cluster (5, 7) y el punto 8?
- Hay 4 opciones:
 - Complete Linkage
 - Single Linkage
 - Average Linkage
 - Centriod Linkage

Métodos de Linkage: Distancia entre Clusters

- Complete Linkage: Distancia máxima o similitud mínima entre observaciones
- Single Linkage: Distancia mínima o similitud máxima entre observaciones
- Average Linkage: Distancia promedio entre las observaciones
- <u>Centroid</u>: Distancias entre centroides de las observaciones.

Importancia del Linkage

- Aquí tenemos los tres resultados con los mismos datos.
- · La diferencia en los dendrogramas se atribuye al Linkage utilizado.
- Linkage Complete y Average tienden a producir racimos de tamaño uniforme mientras que Single Linkage tiende a producir racimos extendidos para que las hojas individuales se fusionen una a una.

Criterio de Distancia y Similitud

Distancia

$$d(C_i, C_j) = \min_{\substack{x_l \in C_i \\ x_m \in C_j}} \{ d(x_l, x_m) \} \quad l = 1, \dots, n_i \; ; \; m = 1, \dots, n_j$$

Similitud

$$s(C_i, C_j) = \max_{\substack{x_l \in C_i \\ x_m \in C_j}} \{ s(x_l, x_m) \} \quad l = 1, \dots, n_i \; ; \; m = 1, \dots, n_j$$

Ejemplo: Single Linkage

Matriz Inicial de distancias

	\mathbf{A}	В	\mathbf{C}	D	${f E}$	\mathbf{F}	\mathbf{G}
A	0						
В	2,15	0					
$ \mathbf{C} $	0,7	$1,\!53$	0				
\mathbf{D}	1,07	1,14	$0,\!43$	0			
\mathbf{E}	0,85	1,38	$0,\!21$	0,29	0		
\mathbf{F}	1,16	1,01	0,55	0,22	0,41	0	
\mathbf{G}	1,56	2,83	1,86	2,04	2,02	2,05	0

Nivel K=4

	A	В	((C,E),(D,F))	G
A	0			
В	2,15	0		
((C,E),(D,F))	0,7	1,01	0	
G	1,56	2,83	1,86	0

Nivel K=5

	(A,((C,E),(D,F)))	В	\mathbf{G}
(A,((C,E),(D,F)))	0		
В	1,01	0	
G	1,56	2,83	0

Nivel K=1

Nivel K=2

		\mathbf{A}	\mathbf{B}	(C,E)	\mathbf{D}	\mathbf{F}	\mathbf{G}
	\mathbf{A}	0					
4	В	2,15	0				ĺ
	(C,E)	0,7	1,38	0			
	D	1,07	1,14	$0,\!29$	0		
	\mathbf{F}	1,16	1,01	0,41	0,22	0	
	\mathbf{G}	1,56	2,83	1,86	2,04	2,05	0

Nivel K=6

L	$(\mathbf{B},(\mathbf{A},((\mathbf{C},\mathbf{E}),(\mathbf{D},\mathbf{F}))))$	G
(B,(A,((C,E),(D,F))))	0	
G	1,56	0

Nivel K=3

		A	В	(C,E)	(D,F)	G
ſ	\mathbf{A}	0				
+	В	2,15	0			
ı	(C,E) (D,F)	0,7	1,38	0		
ı	(D,F)	1,07	1,01	0,29	0	
	\mathbf{G}	1,56	2,83	1,86	2,04	0

Ejemplo: Single Linkage

Dendrograma Resultante en K=6

En la etapa K-ésima quedan formados n – K clusters

Medidas de distancia/similitud

Variables Numéricas

- Distancia Euclidea
- Distancia de Manhattan
- Distancia Minkowski

Variables Binarias: Coeficiente de Jaccard

Variables Categóricas

Variables Numéricas

Distancia Euclidea

$$d(i, j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{in} - x_{jn})^2},$$

Distancia de Manhattan

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \cdots + |x_{in} - x_{jn}|.$$

Distancia Minkowski

$$d(i, j) = (|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{in} - x_{jn}|^p)^{1/p},$$

Los requisitos para una función de distancia son:

- Las distancias son siempre **no negativas**
- Sólo la distancia entre un punto y sí mismo es 0.
- La distancia es simétrica; no importa en qué orden se tiene en cuenta los puntos al calcular su distancia.
- Las medidas de distancia obedecen a la **desigualdad triangular**; la distancia de X a Y a Z nunca es menor que la distancia que va desde X a Z directamente.

Coeficiente de Jaccard

A contingency table for binary variables.

		object j		
		1	0	sum
	1	q	r	q+r
object i	0	S	t	s+t
	sum	q + s	r+t	p

Distancia de dos variables binarias

$$d(i,j) = \frac{r+s}{q+r+s}.$$

Similitud

$$sim(i, j) = \frac{q}{q+r+s} = 1 - d(i, j).$$

sim(i, j) es conocido como coeficiente de Jaccard

Variables Categóricas

Distancia de dos variables categóricas

donde:

p: es el total de variables

m: es el total de coincidencias

A sample data table containing variables of mixed type.

object identifier	test-l (categorical)	test-2 (ordinal)	test-3 (ratio-scaled)
1	code-A	excellent	445
2	code-B	fair	22
3	code-C	good	164
4	code-A	excellent	1,210

$$d(i,j) = \frac{p-m}{p},$$

$$\begin{bmatrix} 0 & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ d(4,1) & d(4,2) & d(4,3) & 0 \end{bmatrix}$$

Ejemplo para test-l

$$\left[\begin{array}{cccc}
0 & & & \\
1 & 0 & & \\
1 & 1 & 0 & \\
0 & 1 & 1 & 0
\end{array}\right]$$

Evaluación: Coeficiente de Silueta

- El **coeficiente de Silueta** es una métrica para evaluar la calidad del agrupamiento obtenido con algoritmos de *clustering*.
- El objetivo de Silueta es identificar cuál es el número óptimo de agrupamientos.

$$S(i) = \frac{b-a}{max(b,a)}$$

Donde:

- a es el promedio de las disimilitudes (o distancias) de la observación i con las demás observaciones del cluster al que pertenece i
- **b** es la distancia mínima a otro cluster que no es el mismo en el que está la observación i.
 - Ese cluster es la segunda mejor opción para i y se lo denomina vecindad de i.

Evaluación: Coeficiente de Silueta

■ El valor de s(i) puede ser obtenido combinando los valores de a y b como se muestra a continuación:

$$s(i) = \begin{cases} 1 - \frac{a}{b}, & si \ a < b \\ 0, & si \ a = b \\ \frac{b}{a} - 1, & si \ a > b \end{cases}$$

■ El coeficiente de Silueta es un valor comprendido entre -1 y 1.

Resumiendo:

- s(i) ≈ 1, la observación i está bien asignada a su cluster
- s(i) ≈ 0, la observación i está entre dos cluster
- $s(i) \approx -1$, la observación i está mal asignada a su cluster

Evaluación: Coeficiente de Silueta

Gráfico de ancho de Silueta

REFERENCIAS

- Basado principalmente en: Clustering Chapter 10. IOM 530: Intro. to Statistical Learning. (Traducción Libre)
- Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques: concepts and techniques. Elsevier.
- •J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org