Lec 10 (MRI: the role of B_0 and B_1 fields)

- A nucleus with either an <u>odd number of protons</u> or <u>odd</u> <u>number of neutrons</u> will have a net magnetic moment.
- Why does ¹⁴N have a net magnetic moment then?

Nuclide	Number of Protons	Number of Neutrons
¹ H	1	0
² H	1	1
¹³ C	6	7
¹⁴ N	7	7
¹⁷ O	8	9
¹⁹ F	9	10
²³ Na	11	12
³¹ P	15	16
³⁹ K	19	20

Net bulk magnetization is along B_o

Bulk magnetization:
$$\mathbf{M} = \sum_{i=1}^{N} \mathbf{m}_{i}$$

$$< M_z > \neq 0, < M_x > = 0, < M_y > = 0$$

What happens during MRI? (1)

1. Hydrogen nuclei in tissue have "spin angular momentum" and associated magnetic moment.

2. In an external magnetic field (B_o), M_z lines up with B_o (along z-axis).

3. A rotating magnetic field (B₁) pulse is applied along x-axis.

What happens during MRI? (2)

4. B_1 pulls away magnetization (M_z) from the z-axis with an angle α .

5. M_z rotates around z-axis at the "Larmor frequency".

What happens in $B_1(t)$ field?

Magnetization in X-Y plane: RF field

- Apply RF pulse (10-100 MHz) B₁ along x-axis.
- $B_1 (\sim \mu T- mT) << B_o (\sim T)$.

Net magnetization in xy plane (for $\pi/2$ pulse).

- M_z starts rotating about z-axis
- M_z returns to its equilibrium position along z-axis when RF field is turned off

If the magnitude of B_1 is much smaller (\sim mT) than B_o (\sim T), then how is it possible that B_1 can flip some spins?

How do we detect M_z ?

Can't detect constant M_z (with B_o alone).

Can detect <u>time-varying</u> flux of M_z (generated using B_o and B_1)

RF coils for generating B_1 can also detect the voltage signal (Faraday induction).

$$V \sim - d\Phi/dt$$

Rotating Frame

• In reality, each spin sees a slightly different magnetic field. Solving equations (that describe the time evolution of the magnetization vector, **M**) becomes a nightmare.

У

• All MRI hardware has been designed to work assuming a rotating reference frame.

Frame rotates about z-axis with Larmor frequency.

Lab frame coordinates: x, y, z

Rotating frame coordinates: x', y', z'

What do we see if we are sitting on the rotating frame?

B₁ is constant. B₀ vanishes.

