Lecture Note: Introduction to Artificial Intelligence Bài Giảng: Nhập Môn Trí Tuệ Nhân Tạo

Nguyễn Quản Bá Hồng*

Ngày 6 tháng 5 năm 2025

Tóm tắt nội dung

This text is a part of the series Some Topics in Advanced STEM & Beyond: URL: https://nqbh.github.io/advanced_STEM/.
Latest version:

• Lecture Note: Introduction to Artificial Intelligence - Bài Giảng: Nhập Môn Trí Tuệ Nhân Tạo.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/AI/lecture/NQBH_introduction_AI_lecture.pdf.

 $T_EX: \verb|URL:| https://github.com/NQBH/advanced_STEM_beyond/blob/main/AI/lecture/NQBH_introduction_AI_lecture.tex.| for the advanced of the property of the p$

- Codes:
 - ∘ C/C++:
 - Python: https://github.com/NQBH/advanced_STEM_beyond/tree/main/AI/Python.

Mục lục

	Basic	
2	Miscellaneous	•
Τà	ai liêu	•

1 Basic

1.1 Gradient – Độ đốc

Resources - Tài nguyên.

1. [Tiệ25]. Vũ Hữu Tiệp. Machine Learning Cơ Bản. Chap. 12: Gradient Descent.

Ví dụ 1 ([Tiệ25], p. 160). Xét hàm số $f(x) = x^2 + 5\sin x$, $f \in C(\mathbb{R} \text{ có đạo hàm } f'(x) = 2x + 5\cos x$. Giả sử xuất phát từ 1 điểm x_0 , quy tắc cập nhật tại vòng lặp thứ t là

$$x_{t+1} = x_t - \eta f'(x_t) = x_t - \eta (2x_t + 5\cos x_t).$$

Codes:

• Python:

```
import math
import numpy as np

# f(x) = x^2 + 5sin x
def f(x):
    return x**2 + 5*np.sin(x)

def df(x): # derivative f'(x) of f(x)
    return 2*x + 5 * np.cos(x)
```

^{*}A scientist- & creative artist wannabe, a mathematics & computer science lecturer of Department of Artificial Intelligence & Data Science (AIDS), School of Technology (SOT), UMT Trường Đại học Quản lý & Công nghệ TP.HCM, Hồ Chí Minh City, Việt Nam.

E-mail: nguyenquanbahong@gmail.com & hong.nguyenquanba@umt.edu.vn. Website: https://nqbh.github.io/. GitHub: https://github.com/NQBH.

```
x = float(input("x = "))
  print("f(x) = ", f(x))
  print("df(x) = ", df(x))
  tol = 1e-3 # tolerance: just a small number
  def gradient_descent(x0, eta): # x0: starting point, eta: learning rate
      x = [x0]
      for i in range(100):
           x_new = x[-1] - eta*df(x[-1]) # x_new: x_{t+1}, x[-1]: x_t
           if abs(df(x_new)) < tol:</pre>
               break
           x.append(x_new)
      return(x, i)
  x0 = float(input("x0 = "))
  eta = float(input("eta = "))
  if eta <= 0:
      print("error: eta must be positive!")
  else:
      print(gradient_descent(x0, eta))
Bài toán 1. Xét hàm số f(x) = x^3 + 3x^2 + 5\sin x - 7\cos x + \sqrt{2}e^{-2x}. Viết chương trình C/C++, Python để: (a) Tính hàm
f(x), f'(x) với x \in \mathbb{R} được nhập từ bàn phím. (b) Viết hàm gradient descent theo công thức
                                                  x_{t+1} = x_t - \eta f'(x_t),
v\acute{o}i \eta \in (0, \infty) được gọi là tốc độ học (learning rate).
Chứng minh. Dễ thấy f(x) là 1 hàm liên tục trên \mathbb{R}, i.e., f \in C(\mathbb{R}), & có đạo hàm f'(x) = 3x^2 + 6x + 5\cos x + 7\sin x - 2\sqrt{2}e^{-2x}.
   Code Python:
# f1(x) = x^3 + 3x^2 + 5\sin x - 7\cos x + sqrt{2}e^{-2x}
def f1(x):
    return x**3 + 3*x**2 + 5*np.sin(x) - 7*np.cos(x) + np.sqrt(2)*np.exp(-2*x)
    return 3*x**2 + 6*x + 5*np.cos(x) + 7*np.sin(x) - 2*np.sqrt(2)*np.exp(-2*x)
x = float(input("x = "))
print("f(x) = ", f(x))
print("df(x) = ", df(x))
tol = 1e-3 # tolerance: just a small number
def gradient_descent_f1(x0, eta): # x0: starting point, eta: learning rate
    x = [x0]
    for i in range(100):
         x_new = x[-1] - eta*df1(x[-1]) # x_new: x_{t+1}, x[-1]: x_t
         if abs(df1(x_new)) < tol:</pre>
             break
         x.append(x_new)
    return(x, i)
x0 = float(input("x0 = "))
eta = float(input("eta = "))
if eta <= 0:
    print("error: eta must be positive!")
else:
    print(gradient_descent_f1(x0, eta))
```

Remark 1. Có thể tham khảo các công thức tính đạo hàm ở Wikipedia/tables of derivatives.

Bài toán 2. Xét hàm số $f(x,y) = 2x^3y^2 + \frac{\sqrt{x^3}}{y} + \sin(x^2y) + e^{\cos(xy^2)}$. Viết chương trình C/C++, Python để: (a) Tính hàm $f(x,y), \nabla f(x,y)$ với $x,y \in \mathbb{R}$ được nhập từ bàn phím. (b) Viết hàm gradient descent cho 2 trường hợp:

$$(x_{t+1}, y_{t+1}) = (x_t, y_t) - \eta \nabla f(x_t, y_t),$$

or

$$\begin{cases} x_{t+1} = x_t - \boldsymbol{\alpha} \cdot \nabla f(x_t, y_t) = x_t - \alpha_1 \partial_x f(x_t, y_t) - \alpha_2 \partial_x f(x_t, y_t), \\ y_{t+1} = y_t - \boldsymbol{\beta} \cdot \nabla f(x_t, y_t) = x_t - \beta_1 \partial_x f(x_t, y_t) - \beta_2 \partial_x f(x_t, y_t), \end{cases}$$

Python:

```
# f(x,y) = 2x^3y^2 + sqrt(x^3)/y + sin(x^2y) + e^{cos(xy^2)}

def f(x, y):
    return 2*x**3*y**2 + np.sqrt(x**3)/y + np.sin(x**2 * y) + np.exp(np.cos(x * y**2))

def grad_f(x, y):
    df_dx = 6*x**2 * y**2 + (3/2) * x**0.5 / y + 2*x*y * np.cos(x**2 * y) - y**2 * np.sin(x * y**2) * np.exp(np.df_dy = 4*x**3 * y - np.sqrt(x**3) / y**2 + x**2 * np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x**2 * y) - 2*x*y * np.sin(x * y**2) * np.exp(np.cos(x * y
```

2 Miscellaneous

 $print("grad f(x,y) = ", grad_f(x,y))$

Tài liệu

[Tiê25] Vũ Khắc Tiêp. Machine Learning Cơ Bản. 2025, p. 422.