Homework3

Qinglin Li, 5110309074

Problem 1

$$\forall a \nmid b, \mu(a,b) = 0$$

$$\forall a \mid b, \mu(a,b) = \mu(1,\frac{b}{a})$$

$$\mu(a,b) = -1 \Longleftrightarrow \frac{b}{a} \text{ is the product of odd number of distinct prime numbers}$$
 Calculated by MATLAB, there are 179 pairs So the probability is $\frac{179}{10000}$

Problem 2

 $s(n,k) = (-1)^{n-k}c(n,k) \Rightarrow s(n,k)$ is even iff c(n,k) is even By induction.

- 1. n = 1, k = 0, c(n, k) = 0 is even
- 2. Suppose $\forall n' < n, 2k' < n', c(n', k')$ is even c(n, k) = (n-1)c(n-1, k) + c(n-1, k-1) If n is even, $2k < n \Rightarrow 2k < n-1$. c(n, k) is even by hypothesis. If n is odd, n-1 is even and $2k < n \Rightarrow 2(k-1) < n-1$, c(n, k) is even

So
$$s(n,k)$$
 is even

Problem 3

T is the coefficient of x^{50} in $x(x-1)\cdots(x-99)$ So

$$T = \sum_{X \in \binom{[99]}{50}} \prod_{x \in X} -x$$

If a multiple is in X, $\prod_{x \in X} -x = 0$

Since there are 33 numbers equals $1 \mod 3$ and 33 numbers equals $2 \mod 3$

$$T = \sum_{i=0}^{33} {33 \choose i} {33 \choose 50-i} 2^i = \sum_{i=17}^{25} {33 \choose i} {33 \choose 50-i} 2^i + \sum_{i=17}^{24} {33 \choose i} {33 \choose 50-i} 2^{50-i} \mod 3$$

By calculating, it is found that $17 \le i \le 25, \binom{33}{i} = 0 \mod 3$ Thus $T = 0 \mod 3$

Problem 4

Let $S = \{p | p \text{ is a permutation of } [2n]\}$ Let $S_i = \{p | p \text{ is a permutation of } [2n] \text{ and } x_i + x_{i+1} = 2n + 1\}$ $S_i \cap S_{i+1} = \emptyset$ because each element can appear only once There are $\binom{2n-i}{i}$ ways not to choose i sets consecutively

$$|S - \bigcup_{i=0}^{i \le 2n-1} S_i| = \sum_{i=1}^n (-1)^i \sum_{X \in \binom{[2n-1]}{i}} |\bigcap_{j \in X} S_j| = \sum_{i=0}^n (-1)^i \binom{2n-i}{i} \binom{n}{k} (2n-2k)! k! 2^k$$

Problem 5

The coefficient of x^{n-k} is $\sum_{t_1+\dots+t_k=n-k} \prod_{i=1}^k i^{t_i}$

Consider a process of inserting 1 to n into k sets $S_1 \cdots S_k$ in k rounds Initially, all sets are empty

In round i, insert $t_i + 1$ numbers. The first number is inserted into S_i . And the other t_i numbers can be inserted into any of $S_1 \cdots S_i$. So there are i^{t_i} ways to insert them

Thus,
$$\sum_{t_1+\dots+t_k=n-k} \prod_{i=1}^k i^{t_i} = S(n,k)$$