## Configurations with Geogebra!

Jake Kettinger

Colorado State University

14 November 2024

# What is a configuration?

#### Definition

A set of points and lines in the plane is a **configuration** if every point is on the same number of lines and every line contains the same number of points.



Figure: The left is a configuration, but the right is not.

#### **Notation**

We use the notation  $(a_b, c_d)$  to refer to configurations comprising a points with b lines per point, and c lines with d points per line. If a = c and b = d, we can just call it an  $(a_b)$ -configuration.



Figure: The left is a  $(16_3, 12_4)$ -configuration, the right is  $(12_3)$ .

Jake Kettinger (CSU) Math Day! 14 Nov 2024 3/10

## Geometric and combinatorial configurations

We can label the points and lines of a configuration like so and make a table.



| A | B | C | D | E | F | G | H  | I | J | K | L | M | N | 0 | P |
|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|
| a | e | a | b | c | e | c | a  | a | g | d | c | f | b | b | d |
| b | f | i | g | f | i | e | d  | g | j | j | h | h | d | i | h |
| c | a | i | 1 | i | 1 | k | е. | h | k | 1 | 1 | i | f | k | k |

This is a **combinatorial configuration**, as opposed to a **geometric configuration**.

 Jake Kettinger (CSU)
 Math Day!
 14 Nov 2024
 4 / 10

## Can we go the other way?

Let's take a look at the table

| Α | В | С | D | Ε | F | G |
|---|---|---|---|---|---|---|
| a | a | a | b | b | С | С |
| b | d | f | d | e | d | e |
| С | е | g | f | g | g | f |

This is a combinatorial  $(7_3)$ -configuration. But is it geometrically realizable?

#### Can we go the other way?

Let's take a look at the table

| Α | В | С | D | Ε | F | G |
|---|---|---|---|---|---|---|
| a | а | a | b | b | С | С |
| b | d | f | d | e | d | e |
| С | e | g | f | g | g | f |

This is a combinatorial  $(7_3)$ -configuration. But is it geometrically realizable? No! This is a special configuration called the **Fano plane**, and it is only realizable in special geometric spaces, not in the regular Euclidean plane.



# Cyclic Configurations

Given any number  $n \ge 7$  and a starting seed of (0,1,3), you can make a combinatorial  $(n_3)$  configuration that places point  $p_1$  at the intersection of lines 0, 1, and 3, and point  $p_i$  at the intersection of lines  $i \mod n$ ,  $1+i \mod n$ , and  $3+i \mod n$ . Like so:

| $p_0$ | $p_1$ | <i>p</i> <sub>2</sub> | <i>p</i> <sub>3</sub> | <i>p</i> <sub>4</sub> | <i>p</i> <sub>5</sub> | <i>p</i> <sub>6</sub> | <i>p</i> <sub>7</sub> | <i>p</i> <sub>8</sub> |
|-------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 0     | 1     | 2                     | 3                     | 4                     | 5                     | 6                     | 7                     | 8                     |
| 1     | 2     | 3                     | 4                     | 5                     | 6                     | 7                     | 8                     | 0                     |
| 3     | 4     | 5                     | 6                     | 7                     | 8                     | 0                     | 1                     | 2                     |

This is called a **cyclic** configuration, denoted  $C_3(n)$ .

#### **Pappus**

The smallest geometric  $(n_3)$ -configurations are  $(9_3)$ . One of them is  $C_3(9)$ . Another is known as the Pappus configuration.



Figure: Pappus' configuration

# Augmenting an $(n_3)$

Below is a table for the Pappus configuration we saw:

| 1 | 2 | 3 | 4 | <mark>5</mark> | 6           | 7 | 8 | 9 |
|---|---|---|---|----------------|-------------|---|---|---|
| Α | D | G | Α | В              | С           | Α | С | В |
| В | E | Н | D | E              | F           | F | E | D |
| С | F | 1 | G | Н              | C<br>F<br>1 | Н | G | 1 |

We can add a new point and line and reconfigure this to get a new  $(10_3)$ -configuration:

| 1 | 2  | 3      | 4 | 5  | 6  | 7 | 8 | 9 | 10 |   |
|---|----|--------|---|----|----|---|---|---|----|---|
| Α | D  | G      | Α | В  | С  | Α | С | В | E' | - |
| В | E' | G<br>H | D | 1' | F  | F | J | D | 1' |   |
| C | F  | E'     | G | Н  | 1' | Н | G | J | J  |   |

# Augmenting an $(n_3)$

Below is a table for the Pappus configuration we saw:

| 1 | 2 | 3 | 4 | <mark>5</mark> | 6           | 7 | 8 | 9 |
|---|---|---|---|----------------|-------------|---|---|---|
| A | D | G | Α | В              | С           | Α | С | В |
| В | E | Н | D | E              | F           | F | E | D |
| С | F | 1 | G | Н              | C<br>F<br>1 | Н | G | 1 |

We can add a new point and line and reconfigure this to get a new  $(10_3)$ -configuration:

| 1 | 2  | 3  | 4 | 5         | 6  | 7 | 8 | 9 | 10 |
|---|----|----|---|-----------|----|---|---|---|----|
| A | D  | G  | Α | В         | С  | Α | С | В | E' |
| В | E' |    | D | <i>I'</i> | F  | F | J | D | 1' |
| С | F  | E' | G | Н         | I' | Н | G | J | J  |

Undoing an augmentation is **reducing**. Some  $(n_3)$  configurations are **irreducible**.

## Configurations in 3D!

We can also make configurations in 3D! Two of the best known are the Reye configuration and the Schläfli double six.



Figure: The  $(12_4,16_3)$  Reye configuration (left) and the  $(30_2,12_5)$  Schläfli double six (right)

Jake Kettinger (CSU) Math Day! 14 Nov 2024 9 / 10

# Thanks for coming!

#### Happy Math Day!



Figure: A floral  $(120_5, 150_4)$ -configuration