

Problem Submissions Leaderboard Editorial

RATE THIS CHALLENGE

* * * * *

Lena is preparing for an important coding competition that is preceded by a number of sequential preliminary contests. Initially, her luck balance is 0. She believes in "saving luck", and wants to check her theory. Each contest is described by two integers, L[i] and T[i]:

- $m{L}[m{i}]$ is the amount of luck associated with a contest. If Lena wins the contest, her luck balance will decrease by $m{L}[m{i}]$; if she loses it, her luck balance will increase by L[i].
- T[i] denotes the contest's importance rating. It's equal to 1 if the contest is important, and it's equal to 0 if it's unimportant.

If Lena loses no more than $m{k}$ important contests, what is the maximum amount of luck she can have after competing in all the preliminary contests? This value may be negative.

Example

$$k = 2$$

$$L=[5,1,4]$$

$$T = [1, 2, 0]$$

Contest	L[i]	T[i]	
1	5	1	
2	1	1	
3	4	Θ	

If Lena loses all of the contests, her will be 5+1+4=10. Since she is allowed to lose 2 important contests, and there are only 2 important contests, she can lose all three contests to maximize her luck at 10.

If k=1, she has to win at least 1 of the 2 important contests. She would choose to win the lowest value important contest worth 1. Her final luck will be

$$5+4-1=8$$

Function Description

Complete the luckBalance function in the editor below.

luckBalance has the following parameter(s):

- int k: the number of important contests Lena can lose
- int contests[n][2]: a 2D array of integers where each contests[i] contains two integers that represent the luck balance and importance of the ith contest

Returns

int: the maximum luck balance achievable

Input Format

The first line contains two space-separated integers $m{n}$ and $m{k}$, the number of preliminary contests and the maximum number of important contests Lena can lose. Each of the next $m{n}$ lines contains two space-separated integers, $m{L}[m{i}]$ and $m{T}[m{i}]$, the contest's luck balance and its importance rating.

Constraints

- $1 \le n \le 100$
- $0 \le k \le N$
- $1 \le L[i] \le 10^4$
- $T[i] \in \{0,1\}$

Sample Input

Sample Output

29

Explanation

There are n=6 contests. Of these contests, ${f 4}$ are important and she cannot lose more than ${f k}={f 3}$ of them. Lena maximizes her luck if she wins the ${f 3}^{rd}$ important contest (where L[i]=1) and loses all of the other five contests for a total luck balance of ${f 5}+{f 2}+{f 8}+{f 10}+{f 5}-{f 1}={f 29}$.

