NEURAL NETWORKS

ARTIFICIAL NEURAL NETWORK

• 인간의 뇌 시스템을 모방

• 뉴런은 연결된 다른 뉴런의 '입력' 들을 받고, 그 결과 가 '어느이상'의 자극이 될 시 이를 다른 뉴런에 전달

• 입력 : XW^T+ b

• '어느이상' 자극의 기준 : Activation function f()

DEEP NEURAL NETWORK

• 2개 이상의 hidden layer 를 가지면 DNN 이라 함

거의

• 실무에 활용되는 모든 NN 모델은 DNN 이라고 보면 됨

• 단순한 Linear 연산의 조합 이 되지 않도록, activation function 단계가 있음

hidden layer

$$y_0 = \phi(\sum_{i=0}^{2} x_{0i} w_{0i})$$

$$y_1 = \phi(\sum_{i=0}^{2} x_{1i} w_{1i})$$

$$i=0$$

. . .

activation

input layer

hidden lay

$$Y = \phi(XW^T + b)$$

input layer

hidden lay

$$Y = \phi(XW^T + b)$$

MATRIX REPRESENTATION OF SINGLE LAYER FORWARDING

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z)=z$	Adaline, linear regression	-
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\psi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Rasehka 2016 [http://sebastianraschka.com)	$\phi(z) = \ln(1+e^z)$	Multi-layer Neural Networks	

ACTIVATION FUNCTIONS

PROPAGATIONS

Forwards / Backwards

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$$

THE CHAIN RULE

FORWARDS

GET LOCAL GRADIENTS

BACKWARDS

NOW, DO IT URSELF:)

APPENDIX

VISUALIZED PLAYGROUND

 https://developers.google.com/machine-learning/ crash-course/introduction-to-neural-networks/ playground-exercises?hl=ko

WHY MATRIX REPRESENTATION?

- TC of matmul : $\sim O(N^2.3xx)$
 - https://en.wikipedia.org/wiki/
 Coppersmith%E2%80%93Winograd_algorithm
- Massive parallel executions on GPU
 - CPU: # of cores (~hundreds)
 - NVIDIA GPU: # of CUDA cores (>thousands)

REFERENCES

- http://cs23 In.github.io/neural-networks- I/
- http://rasbt.github.io/mlxtend/user_guide/general_concepts/activation-functions/
- https://medium.com/spidernitt/breaking-down-neural-networks-an-intuitive-approach-to-backpropagation-3b2ff958794c
- https://deeplearningzerotoall.github.io/season2/