WUPES

DAA IAB-3 Report File

Name: Divyansh Sundriyal

Batch: B-33

REPOSITRY

https://github.com/Divxcode-177/DAA_LAB_DIVYANSH_SUNDRIYAL_590014264

Divxcode-177/
DAA_LAB_DIVYANSH_SU...

A 1 Contributor ⊙ 0

☆ 0

양 0

Forks

Divxcode-177/DAA_LAB_DIVYANSH_SUNDRIYAL_590014264

Contribute to Divxcode-177/DAA_LAB_DIVYANSH_SUNDRIYAL_590014264 development by creating an account on GitHub.

C GitHub

LAB-3

Lab Experiment 3 – Implement the celebrity problem and analyze its time complexity.

Objective:

Implement the celebrity problem and analyze its time complexity. programming language (C, C++, Java). Also attach plagiarism report in the end.

CODE:

```
import java.util.Scanner;
import java.util.Stack;
public class celebrityproblem1{
 public static int celebrityProblemFunction(int[][] arr, int n) {
  Stack<Integer> stack = new Stack<>();
  for (int i = 0; i < n; i++) {
   stack.push(i);
  while (stack.size() > 1) {
   int a = stack.pop();
   int b = stack.pop();
   if (arr[a][b] == 1) {
    stack.push(b);
   } else {
   stack.push(a);
  int candidate = stack.pop();
  for (int i = 0; i < n; i++) {
  if (i != candidate && (arr[candidate][i] == 1 || arr[i][candidate] == 0)) {
    return -1;
   }
  return candidate;
```

CODE:

```
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
final int n = 2;
int[][] arr = new int[n][n];
System.out.println("Enter the 2x2 matrix:");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
arr[i][j] = sc.nextInt();
}
int celeb = celebrityProblemFunction(arr, n);
if (celeb == -1) {
System.out.println("No celebrity found");
} else {
System.out.println("Celebrity is person " + celeb);
sc.close();
```



```
PS C:\Users\dell\Documents\GitHub\DAA_LAB_DIVYANSH_SUNDRIYAL_590014264\LAB3\CODE> java celebrityproblem1.java
Enter the 2x2 matrix:
1 0
0 1
PS C:\Users\dell\Documents\GitHub\DAA_LAB_DIVYANSH_SUNDRIYAL_590014264\LAB3\CODE> java celebrityproblem1.java
Enter the 2x2 matrix:
1 1
1 1
No celebrity found
PS C:\Users\dell\Documents\GitHub\DAA_LAB_DIVYANSH_SUNDRIYAL_590014264\LAB3\CODE> java celebrityproblem1.java
Enter the 2x2 matrix:
1 2
3 4
Celebrity is person 1
```

PS C:\Users\dell\Documents\GitHub\DAA_LAB_DIVYANSH_SUNDRIYAL_590014264\LAB3\CODE>

LAB-3

Analyze time complexity of Celebrity Problem

Time Complexity Analysis

- Step I (Candidate finding): Each iteration eliminates one person \rightarrow O(n).
- Step 2 (Verification): Check all other n-I people \rightarrow O(n).

Total = O(n) time, O(I) space

Celebrity algorithm works in two phases:

- I. Candidate Selection (using stack):
 - Push all n people in stack → O(n)
 - While stack size > I: Pop two, push one back → eliminates one person each iteration → n-I comparisons → O(n)
- 2. Candidate Verification:
 - \circ Check candidate against all n-I people \to O(n)

Total iterative implementation: O(n + n) = O(n)

PAGE NO .: DATE: Analyse of Celebrity problem Time Complexity .: Using Tree method: I(n) -2(1) T(n-1) basecase equation can be unjour of, T(n)=1 (n-1) + o(1) ~ any constate

onto companis pro level : T(n)= O(n) Since, work at each und, 14 | + 1++ --- (n-1) +mes a(n) +a(n-1 o(n) + -- o(n (n-1) +mg 7·~= a(m)=) a(n) Itenie, T. (= T(n)=Q(n)

	PAGE NO.: DATE: / /
2	Using Substitution Method:
	Since, T(n)= T(n-1)+0(1), 7(n=0(1)
	T(n) = T(n-1)+1
	put n= n-1 then,
9	T(n-n = T(n-n-1)+2
	T(n-1) = T(n-2)+1
	put n= n-2 then,
9)	T(N-2) = T(N-3)+B-2 (CASM.
	T(n) = 0(n)
	as linearly loop moving
(3)	Masky's theoram:
3	As per the egn we will appy:
3	T(n)= at (n/b) + f(n)
	now by comparing by
	T(n)= T(n-1)+O(1) we get
•	k=0, $a=1$, $b=1$, $F(n)=o(1)=(cn start then,$
	by the gren comparision we get,
	T(-) (cg, a, L)
	$T(n) = C(n^{\log_b \alpha}, \log_n \alpha) = c(n)$ $T(n) = C(n^{\log_b \alpha}, \log_a \alpha)$
9	
2	$\tau(n) = O(n)$ as $(\sigma_q = 1)$
2	Henre proed.
3	
2	