ВЫСШАЯ ШКОЛА МАЙНОР

Институт инфотехнологии Веб программирование

Александр Мочёнов IT-3-Q-V-Tal

Система слежения за положением лица человека (на основе нейронной сети? (и облостей с кожным покровом?))

Дипломная работа

Руководитель:Jelena Faronova, MSc

Оглавление

Введение				3
2	Предлагаемый метод решения			5
	2.1	Модул	в нахождения лица	5
		2.1.1	Нормализация контраста и баланс белого	5
		2.1.2	Поиск зон с цветом кожного прокрова	5
		2.1.3	Выделение и объединение областей с цветом кожного покрова .	6
		2.1.4	Фильтрация по пропорциям и заполненности	6
		2.1.5	Классификация	7
	2.2	Выбор	р цели для слежения	8
	2.3	Механ	ическая часть	8
		2.3.1	описание установки для демонстрации	8
		2.3.2	Подсчёт вектора движения	8
		2.3.3	Arduino	8
3	Результаты работы (Испытания?)			9
	3.1	3.1 Автоконтраст и баланс белого		9
	3.2	2 Поиск зон с кожным покровом		9
	3.3	3 Объединение областей		9
	3.4	(Резул	ьтаты) работа с ИНС	9
		3.4.1	Различные представления	9
		3.4.2	(Результаты) обучения и тестирования	10
	3.5	Выбор	лица и arduino	10
	3.6	Испыт	гание всей системы	10
3a	ключ	нение и	выводы	11
A	При	іложені	ие. Отчёт по курсовой практике	12
Литература				12

РЕЗЮМЕ

ВВЕДЕНИЕ

Роботы в различных вариациях являются частью жизни человека. Робототехника уже давно применяются, например, в индустриальном производстве, в детских игрушках, авиации и многих других местах. Так же роботы применяются в военными (беспилотные самолёты, роботы-сапёры), медицине и даже в космосе¹

Тем не менее, применение роботов в сфере обслуживания сегодня не так распространенно. Оно находится на рубеже науки робототехники и пока ещё широко не применяется. В данной работе автор разрабатывает небольшую часть робота, функционирующего в сфере обслуживания, главной целью которого является общение с человеком.

В частности цель работы - создать интерактивную систему слежения за человеческим лицом подобием головы робота, которая оборудована веб-камерами на месте глаз и серво-приводами, способными поворачивать её по двум осям. Вся система состоит из 3 модулей:

- Нахождение местоположения и размеры лиц людей на изображении с веб-камеры
- Выбор лица из найденных, за которым необходимо следовать
- Вычисления вектора движения и само общение с серво-приводами

Самой сложной из задач является поиск лица человека. В работе автор предлагает последовательный алгоритм поиска, который состоит из 3 подзадач, где результат предыдущей является источником данных для последующего:

- Предварительная обработка и подготовка изображения;
- Поиск, сегментация и кластеризация участков кадра, в которых высока вероятность нахождения лица;
- Применение искусственных нейронных сетей для окончательной классификации (лицо или нет) по нескольким представлениям данного изображения;

Подобная система может применяться в любых роботах, обладающих подобием головы. Например: робот-консьерж в отеле, робот-официант или робот-домохозяйка. Это может упростить и улучшить впечатление от общения человека с машиной.

http://robonaut.jsc.nasa.gov/default.asp

1 ВВЕДЕНИЕ В ПРЕДМЕТНУЮ ОБЛАСТЬ

Теоретическая часть.

Про Computer Vision в целом.

Где и зачем применяется face detection?

- * Обзор методов и решений. (способы face detection'a) (для каждого подпункт?) (С ROI, с цветом одежды, с отделением фона, с выделением движ. объектов)
- * целые системы подобно реализуемой (голова робота и всё такое)
- * про real-time

2 ПРЕДЛАГАЕМЫЙ МЕТОД РЕШЕНИЯ

Краткое описание всей системы. Диаграмма.

Модульность. Какие-то части могут быть реализованы по разному - но сами модули такие как тут.

используемые програмные библиотеки: OpenCV, PyBrain, ...

2.1 Модуль нахождения лица

2.1.1 Нормализация контраста и баланс белого

(предобработка)

Описание алгоритма.

Много примеров, гистограмм, псевдокод. (без особых результирующих картинок)

2.1.2 Поиск зон с цветом кожного прокрова

Общая информация о проблеме.

- зачем применяют
- -про поиск картинок для взрослых
- –для face detetection

Возможные пути решения

Уже существующие различные методы нахождения цвета кожного покрова. Описание тут.

Проблема выбора цветового пространства

Про цветовые пространства. Про информативность каждого из них.

Метод статического диапозона

В работе реализуется он. Почему? (просто, быстро, достаточно эффективный) Описание метода, псевдокод?

Сравнение двух реализованных моделей.

2.1.3 Выделение и объединение областей с цветом кожного покрова

Общии слова переходного характера.

Выделение найденных областей

Описание алгоритма (сжатие, расширение) - избавление от шума, более адекватные замкнутые области.

Кластеризация

Обоснование необходимости. Зачем объеденять.

Почему обычный k-mean не подходит? примеры.

Описание метода кластеризации через минимальное оставное дерево. Что такое оставное дерево?

Примеры мест (ситуаций), где это необходимо. Где лицо состоит из нескольких небольших участков и полезно объеденять.

Псевдокод, диаграммы процесса.

2.1.4 Фильтрация по пропорциям и заполненности

Описание возможного постпроцессинга для отфильтровывания неподходящих участков.

2.1.5 Классификация

Описание проблеммы классификации в целом. Опять о том какие методы бывают. О том, что сейчас применяют чаще.

Выбор метода ИНС для классификации

Почему выбрал ann? (real-time, простота понимания и использования)

Как это делают другие?

Описание сети

Несколько сетей для разных представлений. B/w, Edges

О проблемах недофитинга и overfit'инга.

Описание структуры ИНС. Почему именно такая.

bias'ы, преждевременная остановка, ...

Код с сосзданием сети.

Обучение сети

Первый этап.

Проблема и важность выбора примеров для обучения.

Применяемые базы лиц, усреднённые лица, возможная рамочка

Проблема выбора "не лиц".

Описание подготовки выборок для тренировки и тестирования.

Код PyBrain по тренеровки сети.

Применение сети

Сохранение и загрузка обученной сети.

Понятие порога.

sliding window алгоритм. диаграмы, код.

Кластеризация всех найденных лиц в группы, что бы отсечь случайные Flase positives. Overlap'ы и всё такое.

2.2 Выбор цели для слежения

найти наибольшее лицо

искать ближайшее к тому, за которым уже следим

2.3 Механическая часть

Работа с сервоприводами

2.3.1 описание установки для демонстрации

arduino, сервоприводы, камеры

2.3.2 Подсчёт вектора движения

2.3.3 Arduino

коммуникация с РС

листинги кода, диаграммы (этого нет =/)

3 РЕЗУЛЬТАТЫ РАБОТЫ (ИСПЫТАНИЯ?)

3.1 Автоконтраст и баланс белого

Когда работает? А когда не очень? примеры и того и того.

Возможные пути решения.

3.2 Поиск зон с кожным покровом

Когда работает? А когда не очень? примеры и того и того.

Пути решение. (Другой метод, выбор более узкой области диапазонов. - пример возможного приложения для сбора образцов)

О том что хорошо, что больше false negative, чем false positive

3.3 Объединение областей

Примеры хорошой и плохой работы.

Как можно улучшить. (выбор другого алгоритма выбора цвета кожи, подгонка параметров кластеризации)

3.4 (Результаты) работа с ИНС

3.4.1 Различные представления

Почему представление с пограничными областями не работает. Усреднённые морды где видно проблему. Как-то улучшить алгоритм выявления пограничных областей? Какие-то другие представления?

3.4.2 (Результаты) обучения и тестирования

Цифры, проценты результативности на тестовых данных. False positive, False negative. Примеры неузнанных лиц, примеры узнанных не лиц. Усреднённые нелица, усреднённые ненайденные лица. Как можно улучшить?

- Правильная структура сети, выделяющая характеристики (features)
- Более тщательный подбор примеров (глаза на одном месте, одна ореинтация)
- Разные классы для разных поз (направление взгляда прямо, вверх, вниз, вправо, влево)
- Икрементальный процесс обучения (где все falses из тестового набора добавляются обратно в набор обучения)

3.5 Выбор лица и arduino

Так и не успел закончить эту часть. Что писать в результатах пока не знаю.

3.6 Испытание всей системы

результаты испытаний.

небольшие ошибка на всех уровнях в итоге дают неудовлетворительный результат. улучшать необходимо каждый из элементов в отдельности.

- о проблеме 2-7 процентах на 97 000 примерах с одного кадра. Много false positive. Сложно настроить правильные порог.
- о проблеме со скорость. Решение оптимизация и использование psyco.

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

А ПРИЛОЖЕНИЕ. ОТЧЁТ ПО КУРСОВОЙ ПРАКТИКЕ