ESC201: Lecture 12

Dr. Imon Mondal

ASSISTANT PROFESSOR, ELECTRICAL ENGINEERING, IIT KANPUR

2024-25 SEM-I | ESC201 Introduction to Electronics

Digital Processing and Other Gates

- Recall that we only have two values: 0 & 1
 - Map naturally to logic TRUE (T) and FALSE (F)
 - Can also represent numbers

We need to realize all functions using 0 and 1

- Boolean logic (X, Y, Z are digital signals "0" and "1")
 - If X is true and Y is true then Z is true else Z is false
 - Z = X AND Y or Z = X. Y

Truth table

X	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

Enumeration of all possible input combinations

AND & OR Gates

AND of two logic values

AND:
$$y = x_1 \cdot x_2$$

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

OR of two logic values

OR:
$$y = x_1 + x_2$$

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

$$x_1$$
 OR y

Logic Gates

AND:
$$y = x_1$$
. x_2

$$x_1 \longrightarrow y$$

OR: $y = x_1 + x_2$

$$x_2 \longrightarrow y$$

NOT: $y = \overline{x}$
 $x_2 \longrightarrow y$

AND Gate?

AND of two logic values

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

 \triangleright No, the gain is always less than 1 => no noise immunity

OR Gate?

• OR of two logic values

OR:
$$y = x_1 + x_2$$

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

 \triangleright No, the gain is always less than 1 => no noise immunity

Elementary Logic Gates

Elementary Gates

AND:
$$y = x_1 \cdot x_2$$
 $x_2 \cdot x_2$

OR:
$$y = x_1 + x_2$$

$$X_1$$
 OR X_2 X_2 X_3 X_4 X_4 X_5 X_4 X_5 X_5 X_6 X_7 X_8 X

NOT:
$$y = x$$

NAND & NOR Gates

NAND:
$$y = \overline{x_1. x_2}$$
 x_1
 x_2
 x_1
 x_2
 x_3
 x_4
 x_2
 x_4
 x_2
 x_4
 x_4
 x_5
 x_5
 x_5
 x_6
 x_1
 x_2
 x_4
 x_5

NOR:
$$y = \overline{x_1 + x_2}$$

$$x_1 \longrightarrow \overline{x_1 + x_2}$$

$$x_2 \longrightarrow \overline{x_1 + x_2}$$

$$x_1 \longrightarrow \overline{x_1 + x_2}$$

$$x_2 \longrightarrow \overline{x_1 + x_2}$$

NAND & NOR Gates: Universal Gates

☐ NAND and NOR are universal gates.

NAND & NOR Gates: NMOS Implementation

□ NAND and NOR are universal gates.

Dr. Imon Mondal

Logic Gates

NAND:
$$y = \overline{x_1} \cdot \overline{x_2}$$

$$x_1 \quad x_2 \quad x_3 \quad y = \overline{x_1} \cdot \overline{x_2}$$

$$x_1 \quad x_2 \quad x_3 \quad y = \overline{x_1} \cdot \overline{x_2}$$

$$x_1 \quad x_2 \quad x_3 \quad y = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$

$$x_1 \quad x_2 \quad x_3 \quad y = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_4}$$

$$x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_7 \quad x_7 \quad y \quad x_8 \quad y \quad y \quad x_8 \quad$$

A typical intel core i7 processor has about 500 million (5x10⁸) logic gates

Gates with more than 2 inputs

AND:
$$y = x_1. x_2.x_3...$$

$$X_1$$
 X_2
 X_3
 X_3
 X_3

OR:
$$y = x_1 + x_2 + x_3 + \dots$$

Multiple-input NAND & NOR Gates Implementation

n-input NOR gate

Dr. Imon Mondal

Boolean Operators

Basic operators

AND:
$$y = x_1 \cdot x_2$$

$$y = x_1 \cdot x_2$$
 OR: $y = x_1 + x_2$ NOT: $y = x$

NOT:
$$y = x$$

Truth Tables shows all possible values of an output for all possible combinations of inputs

How to show equivalency of two expressions?

- Compare the truth table on both side
- Show x + x = x

$\boldsymbol{\mathcal{X}}$	$\boldsymbol{\mathcal{X}}$	x + x
0	0	0
1	1	1

How to show equivalency of two expressions?

Compare the truth table on both side

• Show $\overline{x \cdot y} = (\bar{x} + \bar{y})$

$\boldsymbol{\mathcal{X}}$	y	\overline{x} . \overline{y}	$(\bar{x}+\bar{y})$
0	0	1	1
1	0	1	1
0	1	1	1
1	1	0	0

Basic Postulates and Theorems

- Every algebra has basic theorems/postulates regarding operators
- OR & AND are not exactly like Addition & Multiplication operators
- Commutative

$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

Distributive

$$x.(y + z) = x.y + y.z$$

 $x + (y.z) = (x + y).(x + z)$

Basic Postulates and Theorems

P1.a:
$$x + 0 = x$$

P2.a:
$$x + y = y + x$$

P3.a:
$$x.(y+z) = x.y+x.z$$

P4.a:
$$x + \bar{x} = 1$$

P1.b:
$$x \cdot 1 = x$$

P2.b:
$$x \cdot y = y \cdot x$$

P3.b:
$$x+y.z = (x+y).(x+z)$$

P4.b:
$$x \cdot \bar{x} = 0$$

T1.a:
$$x + x = x$$

T2.a:
$$x + 1 = 1$$

T3.a:
$$\overline{(x)} = x$$

T4.a:
$$x + (y+z) = (x+y)+z$$

T5.a:
$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$

T6.a:
$$x+x.y = x$$

T1.b:
$$x \cdot x = x$$

T2.b:
$$x \cdot 0 = 0$$

T4.b:
$$x \cdot (y.z) = (x.y).z$$

T5.b:
$$\overline{(x.y)} = \overline{x} + \overline{y}$$

T6.b:
$$x.(x+y) = x$$

DeMorgan's Theorem

How to verify an expression?

- Using truth tables
- Showing using postulates

$$\overline{(x_1.x_2 + x_2.x_3)} = x_1. x_2 + \overline{x_2.x_2 + x_1} . \overline{x_3} + \overline{x_2.x_3}$$

Boolean Algebra

$$\overline{(\overline{x_1}.x_2 + \overline{x_2}.x_3)} = (\overline{\overline{x_1}.x_2}) \cdot (\overline{\overline{x_2}.x_3})$$

$$= (\overline{\overline{x_1}+\overline{x_2}}) \cdot (\overline{\overline{x_2}+\overline{x_3}})$$

$$= (x_1 + \overline{x_2}) \cdot (x_2 + \overline{x_3})$$

$$= x_1 \cdot x_2 + \overline{x_2}.x_2 + x_1 \cdot \overline{x_3} + \overline{x_2}.\overline{x_3}$$

$$= x_1 \cdot x_2 + x_1 \cdot \overline{x_3} + \overline{x_2}.\overline{x_3}$$

Calculation using Binary System

- Binary signals represent logic states
 - can implement any logic
 - logic consists of AND, OR & NOT condition
 - Boolean Algebra
- Binary signals can represent any numbers
 - We can do all arithmetic over it
 - Enables any calculations
 - Addition, Subtraction, Multiplication, Division, etc.
- Computers can do calculations
 - evaluate logic states and make decision over that

How to do such calculations?

Addition

Truth Table

$$S = \overline{a}.b + a.\overline{b}; C = a.b$$

How to get this expression?

How to get this gate implementation?

How to get an expression from truth table?

y = 1 when x_1 is 0 and x_2 is 1

Boolean expression

$$y = \overline{x_1} \cdot x_2$$

(NOT x_1) AND x_2

How to get an expression from truth table?

$$y = y_1 y_2 x_1 \cdot x_2 + x_1 \cdot x_2$$

(NOT x_1) AND (NOT x_2) OR x_1 AND x_2

Sum of Products (SOP) form

Here we are telling when

y will be false

Instead of writing expressions as sum of terms that make y equal to 1, we can also write expressions using terms that make y equal to 0

 $y = \overline{x_1} + \overline{x_2}$

Dr. Imon Mondal

Recall

 $\overline{x_1} + \overline{x_2} = \overline{x_1 \cdot x_2}$

Sum of Products (SOP) form

Product of Sum (POS) form

Digital Design

Calculation using Digital System

- Binary signals represent logic states
 - can implement any logic
 - logic consists of AND, OR & NOT condition
 - Boolean Algebra
- Binary signals can represent any numbers
 - We can do all arithmetic over it
 - Enables any calculations
 - Addition, Subtraction, Multiplication, Division, etc.
- Computers can do calculations
 - evaluate logic states and make decision over that

How to do such calculations?

Modular Approach

There are certain sub-systems or blocks that are used quite often such as:

- 1. Adder/Subtractors, Multipliers
- 2. Decoders, Encoders
- 3. Multiplexers, Demultiplexers
- 4. Comparators
- 5. Parity Generators

Binary Addition

1 bit Addition: Half Adder

Truth Table

$$S = \overline{a.b} + a.\overline{b}; C = a.b$$

Boolean Expression

Gate level implementation

Why a Modular Approach?

• Let us make a 2 bit adder circuit which can add two 2-bit numbers

$$\begin{array}{cccc} & x_1 & x_0 \\ + & y_1 & y_0 \\ z_2 & z_1 & z_0 \end{array}$$

- There are 4 inputs and 3 outputs
- Let us write down all possible combinations!
 - $2^4 = 16$ rows in the truth table
- ➤ Write down Boolean expressions and design implementation?
- What about 3 bits?
- ☐ Let us take the modular approach

Adder: First bit

Truth Table

$$S = \bar{a}.b + a.\bar{b}; C = a.b$$

Implementation

Adder: Second bit

But there can be carry from previous bits.

$$\begin{array}{cccc} & x_1 & 1 \\ + & y_1 & 1 \\ z_2 & z_1 & 0 \end{array}$$

Single Bit Full Adder

$$S = \overline{x.y.z} + \overline{x.y.z} + \overline{x.y.z} + x.y.z$$

$$C = x.y + x.z + y.z$$

_a	b	С	S	CY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Adder: Half Adder vs Full adder

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in};$$

$$C_{out} = \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.\overline{c_{in}} + a.b.c_{in}$$

Full Adder Circuit using Half Adders

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in}$$

$$S = C_{in} \oplus (a \oplus b)$$

$$C_{out} = \overline{a.b.C_{in}} + a.\overline{b.C_{in}} + a.b.\overline{C_{in}} + a.b.\overline{C_{in}} + a.b.C_{in}$$

$$C_{out} = C_{in}(a.\bar{b} + \bar{a}.b) + a.b = C_{in}.(a \oplus b) + a.b$$

Multi-bit Adder

$$\begin{array}{c|ccc} & x_1 & x_0 \\ + & y_1 & y_0 \\ z_2 & z_1 & z_0 \end{array}$$

Multi-bit Adder

- How to add two 4-bit numbers?
- Truth table would have 28=256 entries

 Instead, use already designed logic circuits as subsystems

> 1101 + 1110 11011

Addition/Subtraction Computation

Answer is in 2's

2's complement is 0011 = 3

2's complement is 0111 = 7

Overflow

Take care to detect overflow when adding

- Sum of positive numbers = negative
- Sum of negative numbers = positive

overflow

August 2016: Casino machine at Resorts World Casino printed a prize ticket of \$42,949,672.76 as a result of an overflow bug. The Casino refused to pay this amount calling it a malfunction. The Iowa Supreme Court ruled in favor of the Casino.

4-bit Adder

$A_3A_2A_1A_0$	$B_3B_2B_1B_0$	$S_3S_2S_1S_0$	C _{out}
0000	0000	0000	0
0000	0001	0001	0
0001	0000	0001	0
:		:	
:	i i	<u> </u>	

4-bit Subtractor

$$A - B = A + 2$$
's complement of B

$$A - B = A + 1$$
's complement of $B + 1$

$$A - B = A + \overline{B} + 1$$

$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

4-bit Adder and Subtractor

$$B_0 \oplus 0 = B_0.\overline{0} + \overline{B_0}.0 = B_0$$
$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

$$M = 0$$
 for Adder