UC Computer Science and Software Engineering

COSC362 Data and Network Security Semester Spring, 2021

Lab 5: Number Theory

Exercises from Lecture 10.

QUESTION 1

If possible (you need to check!), solve for x using the Chinese Remainder Theorem (CRT):

- (a) $x \equiv 5 \pmod{7}$ and $x \equiv 7 \pmod{10}$
- (b) $x \equiv 3 \pmod{7}$ and $x \equiv 7 \pmod{14}$
- (c) $x \equiv 2 \pmod{6}$ and $x \equiv 3 \pmod{11}$

Methodology: First find the GCD of p and q. If the GCD is equal to 1 (i.e. p and q are relatively prime) then a solution must exist; otherwise, there is no solution and CRT cannot be applied. If a solution exists, then use the CRT to find x.

More precisely, when gcd(p, q) = 1, we apply CRT as follows. Let p, q be relatively prime. Let n = pq be the modulus. Given integers c_1, c_2 , there exists a unique integer $x, 0 \le x < n$, s.t.:

$$x \equiv c_1 \pmod{p}$$
$$x \equiv c_2 \pmod{q}$$

Therefore, the CRT tells us that $x \equiv \frac{n}{p}y_1c_1 + \frac{n}{q}y_2c_2 \pmod{n}$ where:

$$y_1 \equiv \left(\frac{n}{p}\right)^{-1} \pmod{p}$$

 $y_1 \equiv q^{-1} \pmod{p}$
 $qy_1 \equiv 1 \pmod{p}$ [another way to write the above line]

and

$$y_2 \equiv \left(\frac{n}{q}\right)^{-1} \pmod{q}$$

 $y_2 \equiv p^{-1} \pmod{q}$
 $py_2 \equiv 1 \pmod{q}$ [another way to write the above line]

We observe that y_1 is the inverse of q modulo p. Similarly, y_2 is the inverse of p modulo q.

See in Lecture 3, the slide entitled "Modular Inverses using the Euclidean Algorithm". There exist 2 integers k_1, k_2 such that:

$$qy_1 + pk_1 = 1$$
$$py_2 + qk_2 = 1$$

Observe that the unknowns are y_1, y_2, k_1, k_2 . Then using back substitution, we find those values.

We replace y_1 and y_2 with the values that we have just found in:

$$x \equiv \frac{n}{p} y_1 c_1 + \frac{n}{q} y_2 c_2 \pmod{n}$$
$$\equiv q y_1 c_1 + p y_2 c_2 \pmod{n}$$

and we find x (do not forget to reduce modulo n!).

Example: Solve for x using the Chinese Remainder Theorem (CRT): $x \equiv 2 \pmod{5}$ and $x \equiv 3 \pmod{7}$.

Let p=5 and q=7, and the modulus n=pq=35. p and q are 2 prime numbers, so they are relatively prime, so a solution x must exist such that:

$$x \equiv 2 \pmod{5}$$
$$x \equiv 3 \pmod{7}$$

Here, $c_1 = 2$ and $c_2 = 3$.

We now find y_1 and y_2 such that:

$$qy_1 \equiv 1 \pmod{p}$$
$$7y_1 \equiv 1 \pmod{5}$$

and

$$py_2 \equiv 1 \pmod{q}$$
$$5y_2 \equiv 1 \pmod{7}$$

Let k_1, k_2 be 2 integers such that $7y_1 + 5k_1 = 1$ and $5y_2 + 7k_2 = 1$. We find that $y_1 = 3$ and $k_1 = -4$:

$$7y_{1} + 5k_{1} = 1$$

$$y_{1} = \frac{1 - 5k_{1}}{7}$$

$$= \frac{1 - 5 \times (-4)}{7}$$

$$= \frac{1 + 20}{7}$$

$$= \frac{21}{7}$$

$$= 3$$

and that $y_2 = 3$ and $k_2 = -2$:

$$5y_{2} + 7k_{2} = 1$$

$$y_{2} = \frac{1 - 7k_{2}}{5}$$

$$= \frac{1 - 7 \times (-2)}{5}$$

$$= \frac{1 + 14}{5}$$

$$= \frac{15}{5}$$

$$= 3$$

Now we use the values found for y_1 and y_2 in:

$$x \equiv \frac{n}{p} y_1 c_1 + \frac{n}{q} y_2 c_2 \pmod{n}$$

$$\equiv q y_1 c_1 + p y_2 c_2 \pmod{n}$$

$$\equiv (7 \times 3 \times 2) + (5 \times 3 \times 3) \pmod{35}$$

$$\equiv 42 + 45 \pmod{35}$$

$$\equiv 17 \pmod{35}$$

QUESTION 2

Find $\phi(20)$, $\phi(21)$, $\phi(22)$, $\phi(23)$, $\phi(24)$, $\phi(25)$.

From the lecture slides:

- ϕ is the Euler function.
- $\phi(p) = p 1$ where p is prime.

- $\phi(pq) = (p-1)(q-1)$ where p, q are distinct primes.
- $n = p_1^{e_1} \cdots p_t^{e_t}$ where p_i are distinct primes, then:

$$\phi(n) = \prod_{i=1}^{t} p_i^{e_i - 1} (p_i - 1)$$

QUESTION 3

Find the discrete logarithm of the number 3 with regard to base 2 for:

- (a) modulus p = 5
- (b) modulus p = 11
- (c) modulus p = 29

In other words, we need to find the value x such that $2^x = 3 \mod p$ for the above values of p. To do so, we calculate $2^1 \mod p$, $2^2 \mod p$, $2^3 \mod p$, $2^4 \mod p$, etc. until finding x such that $2^x = 3 \mod p$. More information can be found on slides 35 and 36 of Lecture 10.

QUESTION 4

Use the Fermat test to check whether the following numbers are prime or not:

- 979
- 983

Run the test **at most** 4 times with base values a equal to 2, 3, 11, 17. In particular, we check whether $a^{979-1} \mod 979$ is equal to 1 or not, for a = 2, 3, 11, 17. Similarly, we check whether $a^{983-1} \mod 983$ is equal to 1 or not, for a = 2, 3, 11, 17. Check slides 13 and 14 of Lecture 10.

Note that these base values a=2,3,11,17 are not random, and in practice, fixed bases are usually applied.

Hint: $ab \mod n = (a \mod n)(b \mod n) \mod n$, and in particular, $(a^m)^k \mod n = (a^m \mod n)^k \mod n$.

¹See for instance https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/fast-modular-exponentiation.

QUESTION 5

We first recall the Miller-Rabin algorithm. Let n and u be odd, and v s.t. $n-1=2^vu$:

- (a) Pick a at random s.t. 1 < a < n 1
- (b) Set $b = a^u \mod n$
- (c) If b=1 then return probable prime
- (d) For j = 0 to v 1:
 - If b = -1 then return probable prime
 - Else set $b = b^2 \mod n$
- (e) Return composite

Use the Miller-Rabin algorithm for:

(a) n = 17.

We can easily see that n is prime. Let us see what the Miller-Rabin test tells us.

(b) n = 15.

We know that $15 = 3 \times 5$, hence n is **not** prime. Let us see what the Miller-Rabin test tells us.