"Programozás" beadandó feladat

Készítette: Bekovics Dániel Neptun-azonosító: G9E74R E-mail: g9e74r@inf.elte.hu

Kurzuskód: IT-18PROGEG Gyakorlatvezető neve: Menyhárt László Gábor

2024. január 12.

Tartalom

Felhasználói dokumentáció	3
Feladat	3
Futási környezet	3
Használat	3
A program indítása	3
A program használata billentyűzetről való bevitel esetén	3
A program használata fájlból való bevitel esetén	3
A program kimenete	4
Minta bemenet és kimenet	4
Hibalehetőségek	4
Fejlesztői dokumentáció	5
Feladat	5
Tervezés	5
Specifikáció	5
Visszavezetés	5
Algoritmus	6
Fejlesztői környezet	6
Forráskód	7
Megoldás	7
Függvénystruktúra	7
A kód	7
Tesztelés	10
Érvényes tesztesetek	10
Érvénytelen tesztesetek	11
Feilesztési lehetőségek	11

Felhasználói dokumentáció

Feladat

Legváltozóbb települések

A meteorológiai intézet az ország N településére adott M napos időjárás előrejelzést, az adott településen az adott napra várt legmagasabb hőmérsékletet.

Készíts programot, amely megadja azokat a településeket, ahol az előrejelzés szerint egyik napról a másikra a lehető legnagyobb a változás!

Futási környezet

ELF fájl futtatására alkalmas, 64-bites operációs rendszer. Nem igényel egeret.

Használat

A program indítása

A program az Beadando3/bin/Release/Beadando3 néven található a tömörített állományban.

A program használata billentyűzetről való bevitel esetén

A Beadando3 fájl elindításával a program az adatokat a billentyűzetről olvassa be a következő sorrendben:

#	Adat	Magyarázat
1.	Települések száma (N)	Nemnegatív szám
2.	Napok száma (M)	Nemnegatív szám
3.	1. településen az 1. napon mért legmagasabb hőmérséklet	-50 és 50 közötti egész szám
4.	1. településen az 2. napon mért legmagasabb hőmérséklet	
•••		
	1. településen az M. napon mért legmagasabb hőmérséklet	
	2. településen az 1. napon mért legmagasabb hőmérséklet	
	N. településen az M. Napon mért legmagasabb hőmérséklet	

A program használata fájlból való bevitel esetén

Lehetőségünk van az adatokat **fájl**ban is megadni. Ekkor a programot *parancssorban* a következőképpen kell indítani, feltételezve, hogy a bemeneti fájlok mellette helyezkednek el:

Beadando3 < bel.txt

A fájl felépítésének a következő formai követelményei vannak. A fájl első sorában a települések száma (N) és a napok száma (M) van. A következő N sor mindegyikében M darabszám szerepel, közülük az i-edik sorban a j-edik szám az i-edik településen a j-edik napon mért legmagasabb hőmérséklet. Például:

```
3 4
12 -7 33 -25
-41 18 4 9
37 -14 -3 22
```

A program kimenete

A program kiírja azoknak a településeknek a darabszámát és a sorszámait, ahol a legmagasabb volt két, egymást követő nap maximum hőmérsékletének a különbsége.

Minta bemenet és kimenet

```
bin/Release/net7.0/Beadando3
Települések száma = 3
Napok száma = 5
1. telepulés 1. napján mért legnagyobb hőmérséklet = 10
1. telepulés 2. napján mért legnagyobb hőmérséklet = 15
1. telepulés 3. napján mért legnagyobb hőmérséklet = 12
1. telepulés 4. napján mért legnagyobb hőmérséklet = 10
1. telepulés 5. napján mért legnagyobb hőmérséklet = 10
2. telepulés 1. napján mért legnagyobb hőmérséklet = 11
2. telepulés 2. napján mért legnagyobb hőmérséklet = 11
2. telepulés 3. napján mért legnagyobb hőmérséklet = 11
2. telepulés 4. napján mért legnagyobb hőmérséklet = 11
2. telepulés 5. napján mért legnagyobb hőmérséklet = 20
3. telepulés 1. napján mért legnagyobb hőmérséklet = 25
3. telepulés 2. napján mért legnagyobb hőmérséklet = 16
3. telepulés 3. napján mért legnagyobb hőmérséklet = 16
3. telepulés 4. napján mért legnagyobb hőmérséklet = 16
3. telepulés 5. napján mért legnagyobb hőmérséklet = 20
2 db településen lesz egyik napról a másikra nagy hőmérséklet változás, melyek a következő sorszámúak: 2, 3
```

Hibalehetőségek

Az egyes bemeneti adatokat a fenti mintának megfelelően kell megadni. Hiba, ha bármelyik megadandó adat nem természetes szám. Hiba esetén a program azzal jelzi a hibát, hogy újra kérdezi azt.

Mintafutás hibás bemeneti adatok esetén:

```
btwPad @ ~/.../progalap/Beadando3
>_ bin/Release/net7.0/Beadando3
Települések száma = -1
0-nál nagyobb természetes szám kell!
Települések száma = ketto
0-nál nagyobb természetes szám kell!
Települések száma = öt
0-nál nagyobb természetes szám kell!
Települések száma = 2
Napok száma = 5
1. település 1. napján mért legnagyobb hőmérséklet = -75
-50 és 50 közötti egész szám kell! (A negatívak egybeirandók!)
1. település 1. napján mért legnagyobb hőmérséklet = 120
-50 és 50 közötti egész szám kell! (A negatívak egybeirandók!)
1. település 1. napján mért legnagyobb hőmérséklet = kilenc
-50 és 50 közötti egész szám kell! (A negatívak egybeirandók!)
1. település 1. napján mért legnagyobb hőmérséklet = [
```

Fejlesztői dokumentáció

Feladat

Legváltozóbb települések

A meteorológiai intézet az ország N településére adott M napos időjárás előrejelzést, az adott településen az adott napra várt legmagasabb hőmérsékletet.

Készíts programot, amely megadja azokat a településeket, ahol az előrejelzés szerint egyik napról a másikra a lehető legnagyobb a változás!

Tervezés

Specifikáció

Bemenet:

```
N \in \mathbb{N}
M \in \mathbb{N}
dat \in \mathbb{Z}^{N*M}
```

Ki:

```
cTemp \in \mathbb{N} kivalasztottak \in \mathbb{Z}^*
```

Előfeltétel:

```
1 \le N \le 100

1 \le M \le 1000

\forall i \in [1,1000] : \forall j \in [1,1000] : dat_{i,j} \in [-50,50]

Segéd:

sor = \forall i \in [1,N] = dat_i

diffs = \forall i \in [2,M] : sor_i - sor_{i-1}

diffsMax = \forall i \in [1,N] : (, diffsMax_i) = MAX(k = 1..M, diffs_k)

(,max) = MAX(i = 1..N, diffsMax_i)
```

Utófeltétel:

```
(cTemp, kivalasztottak) = KIVÁLOGAT(i = 1..N, diffsMax_i = max, i)
```

Visszavezetés

KIVÁLOGATÁS

```
db \sim cTemp

y \sim kivalasztottak

T(i) \sim diffsMax_i = max

f(i) \sim i

e.z \sim 1..N
```

MAX (diffsMax) $max\acute{e}rt \sim diffsMax_i$ $e..u \sim 1..M$ $f(i) \sim diffs_k$ MAX(max) $max\acute{e}rt \sim max$ $e..u \sim 1..N$ $f(i) \sim diffsMax_i$

Algoritmus

Fejlesztői környezet

ELF fájl futtatására alkalmas, 64-bites operációs rendszer. .NET Core 7.0.

Forráskód

A teljes fejlesztői anyag –kicsomagolás után– az Beadando3 nevű könyvtárban található meg. A fejlesztés során használt könyvtár-struktúra:

Állomány	Magyarázat
Beadando3/bin/Release/net7.0/Beadando3	futtatható kód (a futtatáshoz szükséges
	fájlokkal)
Beadando3/obj/	mappa fordításhoz szükséges kódokkal
Beadando3/Program.cs	C# forráskód
Beadando3/bemenetek/be1.txt	teszt-bemeneti fájl ₁
Beadando3/bemenetek/be2.txt	teszt-bemeneti fájl ₂
Beadando3/bemenetek/be3.txt	teszt-bemeneti fájl ₃
Beadando3/bemenetek/be4.txt	teszt-bemeneti fájl ₄
Beadando3/bemenetek/be5.txt	teszt-bemeneti fájl ₅
Beadando3/doksi/bd_complex_2.pdf	dokumentációk (ez a fájl)

Megoldás

Függvénystruktúra

A kód

```
A Program.cs fájl tartalma:
using System;
using System.Collections.Generic;
namespace Beadando
{
    class Program
    {
        public static void Main(string[] args)
        {
            int N;
            int[] diffsMax;
            beolvas(out N, out diffsMax);
```

```
int max = getMax(diffsMax, N);
     int cTemp;
     List<int> kivalasztottak;
     kivalogat(N, diffsMax, max, out cTemp, out kivalasztottak);
     kiir(cTemp, kivalasztottak);
}
static int getMax(int[] arr, int N)
{
     int max = arr[0];
     for (int i = 1; i < N; i++)
     {
          if (arr[i] > max) max = arr[i];
     }
     return max;
}
static void beolvas(out int N, out int[] diffsMax)
{
     if (Console.IsInputRedirected)
     {
          int M;
          string[] fline = Console.ReadLine()!.Split(" ");
          int.TryParse(fline[0], out N);
          int.TryParse(fline[1], out M);
          diffsMax = new int[N];
          for (int i = 0; i < N; i++)
          {
               string[] line = Console.ReadLine()!.Split(" ");
               int[] sor = new int[M];
               for (int j = 0; j < M; j++)
               {
                    sor[j] = int.Parse(line[j]);
               }
               int[] diffs = new int[M];
```

```
int k = 0;
         for (int j = 1; j < M; j++)
          {
              diffs[k] = Math.Abs(sor[j] - sor[j - 1]);
              k++;
          }
         diffsMax[i] = getMax(diffs, M);
    }
}
else
{
    bool jo;
    do
     {
         System.Console.Write("Települések száma = ");
         jo = int.TryParse(Console.ReadLine()!, out N);
         jo = jo \&\& N >= 1;
         if (!jo)
          {
              Console.ForegroundColor = ConsoleColor.Red;
              System.Console.WriteLine("0-Természetes szám kell!");
              Console.ResetColor();
          }
     }
    while (!jo);
    int M;
     do
     {
          System.Console.Write("Napok száma = ");
         jo = int.TryParse(Console.ReadLine()!, out M);
         jo = jo \&\& M >= 1;
         if (!jo)
          {
```

```
Console.ForegroundColor = ConsoleColor.Red;
                              System.Console.WriteLine("0-nál nagyobb természetes szám kell!");
                              Console.ResetColor();
                         }
                    } while (!jo);
                    diffsMax = new int[N];
                    for (int i = 0; i < N; i++)
                    {
                         int[] sor = new int[M];
                         for (int j = 0; j < M; j++)
                         {
                              do
                              {
                                   System.Console.Write((i + 1) + ". telepulés " + (j + 1) + ". napján
mért legnagyobb hőmérséklet = ");
                                   jo = int.TryParse(Console.ReadLine()!, out sor[j]);
                                   jo = jo \&\& sor[j] >= -50 \&\& sor[j] <= 50;
                                   if (!jo)
                                   {
                                        Console.ForegroundColor = ConsoleColor.Red;
                                        System.Console.WriteLine("-50 és 50 közötti egész szám
kell! (A negatívak egybeirandók!)");
                                        Console.ResetColor();
                                   }
                              } while (!jo);
                         }
                         int[] diffs = new int[M];
                         int k = 0;
                         for (int j = 1; j < M; j++)
                         {
                              diffs[k] = Math.Abs(sor[j] - sor[j - 1]);
                              k++;
                         }
                         diffsMax[i] = getMax(diffs, M);
```

```
}
               }
          }
         static void kivalogat(int N, int[] diffsMax, int max, out int cTemp, out List<int>
kivalasztottak)
          {
              cTemp = 0;
              kivalasztottak = new List<int>();
              for (int i = 0; i < N; i++)
               {
                   if (diffsMax[i] == max)
                    {
                        cTemp++;
                        kivalasztottak.Add(i + 1);
                    }
               }
          }
         static void kiir(int cTemp, List<int> kivalasztottak)
          {
              if (Console.IsOutputRedirected)
               {
                   System.Console.WriteLine(cTemp + " " + String.Join(" ", kivalasztottak));
               }
              else
               {
                   System.Console.WriteLine(cTemp + " db településen lesz egyik napról a másikra
nagy hőmérséklet változás, melyek a következő sorszámúak: " + String.Join(", ", kivalasztottak));
               }
          }
     }
}
```

Tesztelés

Érvényes tesztesetek

1. teszteset: be1.txt

Bemenet – nincs helyseg, nincs madarfaj	
3 5	
10 15 12 10 10	
11 11 11 11 20	
25 16 16 16 20	
Kimenet	
2 2 3	

2. teszteset: be2.txt

Bemenet – 1 helység, 1 madárfaj, 1 darab	
1000 1000	
33 37 19	
7 9 1210	
Kimenet	
976 1 2 3 1000	

3. teszteset: be3.txt

Bemenet – 1 helység, 1 madárfaj, nincs madár	
3 4	
12 -7 33 -25	
-41 18 4 9	
37 -14 -3 22	
Kimenet	
1 2	

4. teszteset: be4.txt

	Bemenet –
4 3	
10 25 -45	
6 17 38	
-22 11 -9	
10 25 -45 6 17 38 -22 11 -9 33 -30 4	
	Kimenet
1 1	

5. teszteset: be5.txt

Bemenet –

2 5
-7 19 -36 28 15 -42 9 -20 41 -3
-42 9 -20 41 -3
Kimenet
1 1

Érvénytelen tesztesetek

Billentyűzetes bevitel esetén

6. teszteset

Bemenet – szöveges adat	
Települések száma = 11tizenegy	
Kimenet	
Újrakérdezés:	
Települések száma =	

7. teszteset

Bemenet – Negatív szám	
Települések száma = -1	
Kimenet	
Újrakérdezés:	
Települések száma =	

Fejlesztési lehetőségek

- 1. Többszöri futtatás megvalósítása
- 2. Települések nevének megadása
- 3. Átirányítás helyett parancssori argumentumként olvasott fájlnév