Question 1

Part a

Disproof. Let $A = \{1, 2\}$, $B = \{2, 3\}$, $C = \{1, 3\}$. Indeed, $A \subseteq B \cup C$, but $A \nsubseteq B$ and $A \nsubseteq C$. Thus, the statement is false.

Part b

Proof. Let A, B, and C be sets. Assume that $A \subseteq B \cap C$. Let x be an element of A. Since A is a subset of $B \cap C$, $x \in B \cap C$. By definition of intersection, $x \in B$ and $x \in C$. Since x was arbitrary, we have that $A \subseteq B$ and $A \subseteq C$. \square

Question 2

Proof. Let A and B be subsets of a universal set \mathcal{U} . Then,

$$(A \cap B) \cup (A - B) = (A \cap B) \cup (A \cap \overline{B})$$
 (by definition of set difference)
= $A \cap (B \cup \overline{B})$ (by distributive law)
= $A \cap \mathcal{U}$
= A .

Thus, $(A \cap B) \cup (A - B) = A$.

Question 3

Proof. Let A be a set. Seeking a contradiction, assume that $A - A \neq \emptyset$. Then, there exists an element $x \in A - A$. By definition of set difference, A - A is equivalent to $A \cap \overline{A}$. Thus, $x \in A$ and $x \in \overline{A}$. However, this is a contradiction, as A and \overline{A} are disjoint. Therefore, $A - A = \emptyset$.

Question 4

$$\begin{split} R &= \{2,8,J,Q,A\}, \ S = \{\heartsuit,\diamondsuit\} \\ R \times S &= \{(2,\heartsuit),(2,\diamondsuit),(8,\heartsuit),(8,\diamondsuit),(J,\heartsuit),(J,\diamondsuit),(Q,\heartsuit),(Q,\diamondsuit),(A,\heartsuit),(A,\diamondsuit)\} \end{split}$$

Question 5

Proof. Let A, B, and C be sets. Then,

$$(x,y) \in A \times (B \cap C) \Longleftrightarrow x \in A \wedge y \in B \cap C \quad \text{(by definition of cartesian product)}$$

$$\Longleftrightarrow x \in A \wedge y \in B \wedge y \in C \quad \text{(by definition of intersection)}$$

$$\Longleftrightarrow (x \in A \wedge y \in B) \wedge (x \in A \wedge y \in C) \quad \text{(by identity and commutative laws)}$$

$$\Longleftrightarrow (x,y) \in A \times B \wedge (x,y) \in A \times C$$

$$\Longleftrightarrow (x,y) \in (A \times B) \cap (A \times C).$$

Therefore, $(x, y) \in (A \times B) \cap (A \times C)$.

Question 6

Part a

The cardinality of the cartesian product of two sets is the product of the cardinalities of the two sets.

$$\begin{aligned} |\{2,4,6,\ldots,20\} \times \{a,b,c,d,e,f\}| &= |\{2,4,6,\ldots,20\}| \cdot |\{a,b,c,d,e,f\}| \\ &= 10 \cdot 6 \\ &= 60. \end{aligned}$$

Part b

The cardinality of the power set of a set A is $2^{|A|}$.

$$|\mathcal{P}(\mathcal{P}(A))| = 2^{|\mathcal{P}(A)|}$$

= $2^{2^{|A|}}$
= 2^{2^3}
= 2^8
= 256.

Question 7

Let $A = \{1, \{2, \{3\}\}\}.$

- (a) The elements of A are 1 and $\{2, \{3\}\}$.
- (b) $\mathcal{P}(A) = \{\emptyset, \{1\}, \{\{2, \{3\}\}\}, \{1, \{2, \{3\}\}\}\}\}.$
- (c) False.

Question 8

Proof. Let A and B be sets, and assume that $A \subseteq B$. Let x be an element of A. Then $\{x\} \subseteq A$, so $\{x\} \in \mathcal{P}(A)$. Since $A \subseteq B$, $\{x\} \subseteq B$, so $\{x\} \in \mathcal{P}(B)$. Therefore, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Question 9

For $i \in \mathbb{Z}^+$, let $A_i = [i-4, i]$.

Part a

$$\bigcup_{i=4}^{7} A_i = A_4 \cup A_5 \cup A_6 \cup A_7$$

$$= [4-4,4] \cup [5-4,5] \cup [6-4,6] \cup [7-4,7]$$

$$= [0,4] \cup [1,5] \cup [2,6] \cup [3,7]$$

$$= [0,7].$$

Part b

$$\bigcap_{i=4}^{7} A_i = [0,4] \cap [1,5] \cap [2,6] \cap [3,7]$$

$$= [1,4] \cap [2,6] \cap [3,7]$$

$$= [2,4] \cap [3,7]$$

$$= [3,4].$$