

Art of Problem Solving 2002 USAMO

USAMO 2002

Day 1	May 3rd
1	Let S be a set with 2002 elements, and let N be an integer with $0 \le N \le 2^{2002}$. Prove that it is possible to color every subset of S either black or white so that the following conditions hold:
	(a) the union of any two white subsets is white;(b) the union of any two black subsets is black;(c) there are exactly N white subsets.
2	Let ABC be a triangle such that
	$\left(\cot\frac{A}{2}\right)^2 + \left(2\cot\frac{B}{2}\right)^2 + \left(3\cot\frac{C}{2}\right)^2 = \left(\frac{6s}{7r}\right)^2,$
	where s and r denote its semiperimeter and its inradius, respectively. Prove that triangle ABC is similar to a triangle T whose side lengths are all positive integers with no common divisors and determine these integers.
3	Prove that any monic polynomial (a polynomial with leading coefficient 1) of degree n with real coefficients is the average of two monic polynomials of degree n with n real roots.
Day 2	May 4th
4	Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that
	$f(x^2 - y^2) = xf(x) - yf(y)$
	for all pairs of real numbers x and y .
5	Let a, b be integers greater than 2. Prove that there exists a positive integer k and a finite sequence n_1, n_2, \ldots, n_k of positive integers such that $n_1 = a$, $n_k = b$, and $n_i n_{i+1}$ is divisible by $n_i + n_{i+1}$ for each i $(1 \le i < k)$.
6	I have an $n \times n$ sheet of stamps, from which I've been asked to tear out blocks of three adjacent stamps in a single row or column. (I can only tear along the perforations separating adjacent stamps, and each block must come out of the

www.artofproblemsolving.com/community/c4500 Contributors: MithsApprentice, Erken, rrusczyk

Art of Problem Solving 2002 USAMO

sheet in one piece.) Let b(n) be the smallest number of blocks I can tear out and make it impossible to tear out any more blocks. Prove that there are real constants c and d such that

$$\frac{1}{7}n^2 - cn \le b(n) \le \frac{1}{5}n^2 + dn$$

for all n > 0.

These problems are copyright © Mathematical Association of America (http://maa.org).