Selected Problems in CLRS

Section 4

Notifications

Problem Difficulty (count with star)

- 1. you can solve w/o the brain
- 2. you can solve if you think a bit
- 3. you can solve if you think carefully
- 4. you might solve if you push yourself
- 5. you can solve if you use other's brain

Exercise

4.1-1 **

What does Find-Maximum-Subarray return when all elements of A are negative?

4.1-3 **

Implement both the brute-force and recursive algorithms for the maximum-subarry problem on your own computer.

Note: There are template for this problem in Algo/src/algo.cpp

4.1-4 **

How would you change any of the algorithms that do not allow empty subarrays to permit an empty subarray to be the result?

Write non-recursive, linear-time algorithm for the maximum-subarray problem.

Note: Skip 4.2 which deal with strassen

$4.3-1 \star \star \text{ (solve fomally)}$

Show that the solution of T(n) = T(n-1) + n is $O(n^2)$

$4.3-3 \star \star \star \text{ (solve fomally)}$

Show that $T(n) = 2T(\lfloor n/2 \rfloor) + n$ is $\Theta(n \lg n)$

$4.3-6 \star \star \star \text{ (solve fomally)}$

Show that the solution to T(n) = 2T(|n/2| + 17) + n is $O(n \lg n)$

$4.3-7 \star \star \star \text{ (solve fomally)}$

Show that the solution to T(n) = 4T(n/3) + n is $T(n) = \Theta(n^{\log_3 4})$ without the master method

$4.3-9 \star \star \star \text{ (solve fomally)}$

Solve the recurrence $T(n) = 3T(\sqrt{n}) + \log n$. Your solution should be asymptotically tight.

4.4-3 **

Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n^2$. Use the substitution method to verify your answer.

4.4-5 * * *

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = T(n-1) + T(n/2) + n. Use the substitution method to verify your answer.

4.4-8,9 **

Use a recursion tree to give an asymptotically tight solution to the recurrence

$$T_1(n) = T_1(n-a) + T_1(a) + cn$$
 $T_2(n) = T_2(\alpha n) + T_2((1-\alpha)n) + cn$

where $a \ge 1$, c > 0 and $0 < \alpha < 1$ are constants.

4.5-5 * * *

Consider the regularity condition $af(n/b) \le cf(n)$ for some constant c < 1, which is part of case 3 of master theorem. Give an example of constant $a \ge 1$ and b > 1 and a function f(n) that satisfies all the conditions in case 3 of the master theorem except the regularity condition.

Note: think carefully why case 3 needs regularity condition.

4.6-3 * * * *

Show that case 3 of the master theorem is overstated, in the sense that the regularity condition $af(n/b) \le cf(n)$ for some constant c < 1 implies that there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$

Problems

4-3 ***

1.
$$T(n) = 4T(n/3) + n \lg n$$

2.
$$T(n) = 3T(n/3) + n/\lg n$$

3.
$$T(n) = 4T(n/2) + n^2\sqrt{n}$$

4.
$$T(n) = 3T(n/3 - 2) + n/2$$

5.
$$T(n) = 2T(n/2) + n/\lg n$$

6.
$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

7.
$$T(n) = T(n-1) + 1/n$$

8.
$$T(n) = T(n-1) + \lg n$$

9.
$$T(n) = T(n-2) + 1/\lg n$$

10.
$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$