Exp. No.: Date:

TRANSISTOR CE CHARACTERISTICS (INPUT & OUTPUT)

AIM : To obtain the input and output characteristics of a Transistor in CE configuration and also determine the hybrid parameters.

APPARATUS:

S.No.	Name of the Apparatus	Range	Quantity
1.	BC107	-	1No.
2.	Power Supply	0-30V	2No.
3.	Ammeter	0-50μA, 0-10mA	Each 1No.
4.	Voltmeter	0-10V	2No.
5.	Resistor	100ΚΩ	1No.

CIRCUIT DIAGRAM:

PROCEDURE:

- 1. Connect the circuit as shown in figure.
- 2. For output characteristics Keep $I_B=10\mu A$ by varying V_{BB} .
- 3. Vary V_{CC} in steps and note down I_{C} and V_{CE} .
- 4. Repeat step 3 for $I_B=20\mu A$ and $30\mu A$
- 5. Draw the output characteristics by taking V_{CE} on X-axis and I_{C} on Y-axis for different values of $I_{\text{B.}}$
- 6. For input characteristics Keep $V_{\text{CE}}{=}0$, Vary V_{BB} in steps and note down I_{B} and V_{BE} .
- 7. Repeat step 6 for $V_{CE} = 1V$ and $V_{CE} = 2V$
- 8. Draw the input characteristics by taking V_{BE} on X-axis and I_B on Y-axis for different values of V_{CE} .

Exp. No.:

READINGS:

a: Output Characteristics

I _B = 10μA		I _B = 20μA		I _B = 30μA	
V _{CE} (V)	I _c (mA)	V _{CE} (V)	I _c (mA)	V _{CE} (V)	I _c (mA)

b: Input Characteristics

Date:

$V_{CE} = 0V$		V _{CE} = 1V		V _{CE} = 2V	
V _{BE} (V)	I _B (mA)	V _{BE} (V)	I _B (mA)	V _{BE} (V)	I _B (mA)

MODEL GRAPHS:

Input Characteristics:

$$h_{ie} = \frac{\Delta V_{BE}}{\Delta I_{B}} \bigg|_{V_{CE} cons \tan t} =$$

$$h_{re} = \frac{\Delta V_{BE}}{\Delta V_{CE}} \bigg|_{I_B cons \tan t} =$$

Output Characteristics:

$$h_{fe} = \frac{\Delta I_C}{\Delta I_B} \Big|_{V_{CE} cons \tan t} =$$

$$h_{oe} = \frac{\Delta I_C}{\Delta V_{CB}} \bigg|_{I_B cons \tan t} =$$

RESULTS:

- 1. Input Impedance, h_{ie}=
- 2. Output admittance, h_{oe} =
- 3. Forward current gain, h_{fe} =
- 4. Reverse voltage gain, h_{re}=