

DSASelf Paced

Detailed Course Syllabus

1) Introduction

Analysis of Algorithm

a) Background analysis through a Program and its functions.

Order of Growth

- a) A mathematical explanation of the growth analysis through limits and functions.
- b) A direct way of calculating the order of growth

Asymptotic Notations

• Best, Average and Worst case explanation through a program.

Big O Notation

- o Graphical and mathematical explanation.
- Calculation
- Applications at Linear Search

Omega Notation

- Graphical and mathematical explanation.
- Calculation.

Theta Notation

- Graphical and mathematical explanation.
- Calculation.

Analysis of common loops

Single, multiple and nested loops

Analysis of Recursion

Various calculations through Recursion Tree method

• Space Complexity

- Basic Programs
- Auxiliary Space
- Space Analysis of Recursion
- Space Analysis of Fibonacci number

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

2) Mathematics

Mathematics

- Count Digits
- o Palindrome Numbers
- Factorial of Numbers
- GCD of Two Numbers
- LCM of Two Numbers
- o Check for Prime
- Prime Factors
- Sieve of Eratosthenes
- Computing Power

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

3) Bit Magic

• Bitwise Operators in C++

- Operation of AND, OR, XOR operators
- o Operation of Left Shift, Right Shift and Bitwise Not

• Bitwise Operators in Java

- Operation of AND, OR
- Operation of Bitwise Not, Left Shift
- Operation of Right Shift and unsigned Right Shift

• Problem(With Video Solutions): Check Kth bit is set or not

- Method 1: Using the left Shift.
- Method 2: Using the right shift

Problem(With Video Solutions): Count Set Bits

- Method 1: Simple method
- o Method 2: Brian and Kerningham Algorithm
- Method 3: Using Lookup Table

Problems(With Video Solutions):

- o To check whether a number is a power of 2 or not
- Odd occurrences in an array.
- Two numbers having odd occurrences in an array.
- Generate power set using bitwise operators.

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

4) Recursion

- Introduction to Recursion
- Applications of Recursion
- Writing base cases in Recursion
 - Factorial
 - o N-th Fibonacci number
- Various problems on Recursion(With Video Solutions)
 - o Print n to 1
 - Print 1 to n
 - Tail Recursion
 - Checking Palindrome
 - Sum of digits
 - Rod cutting
 - Subsets of a set
 - o Tower of Hanoi Problem
 - o Josephus Problem

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

5) Arrays

- Introduction and Advantages
- Types of Arrays
 - Fixed-sized array
 - Dynamic-sized array
- Operations on Arrays
 - Searching
 - Insertions
 - o Deletion

- Arrays vs other DS
- Reversing Explanation with complexity

Problems(With Video Solutions)

- Left Rotation of the array by 1
- Check if Sorted
- Left Rotation of the array by D places
- Leaders in an Array
- Maximum Difference Problem
- Frequencies in Sorted Array
- Stock Buy and Sell Problem
- Trapping Rainwater Problem
- Maximum Consecutive 1s
- Maximum Subarray Sum
- Longest Even-Odd Subarray
- Maximum Circular sum subarray.
- Majority Element
- Minimum Consecutive Flips
- Sliding Window Technique
- Prefix Sum Technique

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

6) Searching

- Binary Search Iterative and Recursive
- Binary Search and various associated problems(With Video Solutions)
 - Index of First Occurence in Sorted Array
 - Index of Last Occurence in Sorted Array
 - Count of occurrences of x in sorted element
 - Count of 1s in a binary sorted array
 - Find an element in sorted and rotated array
 - Peak element
 - Find an element in an infinite sized sorted array
 - The square root of an integer

• Two Pointer Approach Problems(With Video Solutions)

- Find pair in an unsorted array which gives sum X
- Find pair in a sorted array which gives sum X

- Find triplet in an array which gives sum X
- Problems(With Video Solutions)
 - Median of two sorted arrays
 - Majority Element
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

7) Sorting

- Implementation of C++ STL sort() function in Arrays and Vectors
 - Time Complexities
- Sorting in Java
- Arrays.sort() in Java
- Collection.sort() in Java
- Stability in Sorting Algorithms
 - Examples of Stable and Unstable Algos
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Problems(With Video Solutions)
 - Intersection of 2 sorted arrays
 - Union of 2 sorted arrays
 - Count Inversions in arrays
- Partitions(With Video Solutions)
 - Naive
 - Lomuto
 - Hoare
- Quick Sort
 - Using Lomuto and Hoare
 - o Time and Space analysis
 - Choice of Pivot and Worst case
 - o Tail call elimination
- Problems(With Video Solutions)
 - Kth Smallest element
 - Chocolate Distribution Problem
 - Sorting arrays with 2 and3 types of elements

- Merge Overlapping Intervals
- Meeting the Maximum Guests
- Heap Sort
- Cycle Sort
- Counting Sort
- Radix Sort
- Bucket Sort
- Overview of Sorting Algorithms
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

8) Matrix

- Introduction to Matrix in C++ and Java
- Multidimensional Matrix
- Pass Matrix as Argument
- Printing matrix in a snake pattern
- Transposing a matrix
- Rotating a Matrix
- Check if the element is present in a row and column-wise sorted matrix.
- Boundary Traversal
- Spiral Traversal
- Matrix Multiplication
- Search in row-wise and column-wise Sorted Matrix
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

9) Hashing

• Introduction and Time complexity analysis

- Application of Hashing
- Discussion on Direct Address Table
- Working and examples on various Hash Functions
- Introduction and Various techniques on Collision Handling
- Chaining and its implementation
- Open Addressing and its Implementation
- Chaining V/S Open Addressing
- Double Hashing
- C++
 - Unordered Set
 - Unordered Map

Java

- HashSet
- HashMap

Problems(With Video Solutions):

- Count Distinct Elements
- Count of the frequency of array elements
- The intersection of two arrays
- Union of two unsorted arrays
- Pair with given sum in an unsorted array
- Subarray with zero-sum
- Subarray with given sum
- Longest subarray with a given sum
- o Longest subarray with an equal number of 0's and 1's
- Longest common span with the same sum in a binary array
- Longest Consecutive Subsequence
- Count Distinct elements in every window
- More than n/k Occurences
- Optimized More than n/k Solution

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

10) Strings

- Discussion of String DS
- Strings in CPP
- Strings in Java

• Problems(With Video Solutions):

- o Given a string, check if they are an anagram of each other.
- Given a string, find the leftmost character that repeats.
- Given a string, find the leftmost character that does not repeat.
- Given a string, find the lexicographic rank of it in O(n) time.
- Implementation of the previously discussed lexicographic rank problem.
- Given a text string and a pattern string, find if a permutation of the pattern exists in the text.
- o Given two strings, check if they are rotations of each other or not.
- Various Pattern Searching Algorithms.
- Palindrome Check
- Rabin Karp Algorithm
- KMP Algorithm
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

11) Linked List

Introduction

- Implementation in CPP
- o Implementation in Java
- Comparison with Array DS
- Doubly Linked List
- Circular Linked List
- Loop Problems
 - Detecting Loops
 - Detecting loops using Floyd cycle detection
 - Detecting and Removing Loops in Linked List

• Problems(With Video Solutions):

- Middle of Linked List
- Nth node from the end of linked list
- Deleting a Node without accessing Head pointer of Linked List
- An iterative method to Reverse a linked list
- Recursive method to reverse a linked list
- Reverse in group of size k
- o Recursive Traversal in a Singly Linked List

- Segregating even-odd nodes of linked list
- The intersection of two linked list
- Pairwise swap nodes of linked list
- Clone a linked list using a random pointer
- LRU Cache Design
- Merge two Sorted Linked Lists
- Palindrome Linked List
- Recursive Traversal in a Singly Linked List
- o Remove Duplicates from a Sorted Singly Linked List
- Sorted Insert in a Singly Linked List
- Reverse a Doubly Linked List

Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

12) Stack

- Understanding the Stack data structure
- Applications of Stack
- Implementation of Stack in Array and Linked List
 - o In C++
 - o In Java

Problems(With Video Solutions):

- Balanced Parenthesis
- Two stacks in an array
- K Stacks in an array
- Stock span problem with variations
- Previous Greater Element
- Next Greater Element
- Largest Rectangular Area in a Histogram
- Understanding getMin() in Stack with O(1)
- Infix, Prefix and Postfix Introduction
 - Infix to Postfix (Simple Solution)
 - Infix to Postfix (Efficient Solution)
 - Evaluation of Postfix
 - Infix to Prefix (Simple Solution)

- Infix to Prefix (Efficient Solution)
- Evaluation of Prefix

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

13) Queue

- Introduction and Application
- Implementation of the queue using array and LinkedList
 - o In C++ STL
 - o In Java
 - Stack using queue
- Problems(With Video Solutions)
 - Reversing a Queue
 - Generate numbers with given digits
 - First Circular Tour

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

14) Deque

- Introduction and Application
- Implementation
 - o In C++ STL
 - o In Java
- Problems(With Video Solutions)
 - Maximums of all subarrays of size k
 - ArrayDeque in Java
 - Design a DS with min max operations
- Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

15) Tree

Introduction

- Tree
- Application
- Binary Tree
- Tree Traversal

• Implementation of:

- Inorder Traversal
- Preorder Traversal
- Postorder Traversal
- Level Order Traversal (Line by Line)
- Tree Traversal in Spiral Form

Problems(With Video Solutions):

- Size of Binary Tree
- Maximum in Binary Tree
- Height of Binary Tree
- Print Nodes at K distance
- Print Left View of Binary Tree
- Children Sum Property
- Check for Balanced Binary Tree
- Maximum Width of Binary Tree
- Convert Binary Tree to Doubly Linked List
- Construct Binary Tree from Inorder and Preorder
- Tree Traversal Spiral Form
- The diameter of a Binary Tree
- LCA problem with an efficient solution
- Burn A Binary Tree from a Leaf
- Count Nodes in a complete Binary Tree
- Serialize and Deserialize a Binary tree
- o Iterative Inorder Traversal
- Iterative Preorder Traversal (Simple)
- o Iterative Preorder Traversal (Space Optimized)

Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

16) Binary Search Tree

- Background, Introduction and Application
- Implementation of Search in BST
 - o In CPP
 - o In Java
- Insertion in BST
 - o In CPP
 - o In Java
- Deletion in BST
 - o In CPP
 - o In Java
- Floor in BST
 - o In CPP
 - o In Java
- Self Balancing BST
- AVL Tree
- Red Black Tree
- Set in C++ STL
- Map in C++ STL
- BST Introduction
- TreeSet in java
- TreeMap in Java
- Problems(With Video Solutions):
 - The ceiling of a key in BST
 - Ceiling on the left side in an array
 - Find Kth Smallest in BST
 - Check for BST
 - Fix BST with Two Nodes Swapped
 - Pair Sum with given BST
 - Vertical Sum in a Binary Tree
 - Vertical Traversal of Binary Tree
 - Top View of Binary Tree
 - Bottom View of Binary Tree
- Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

17) Heap

- Introduction & Implementation
- Binary Heap
 - Insertion
 - Heapify and Extract
 - Decrease Key, Delete and Build Heap
- Heap Sort
- Priority Queue in C++
- PriorityQueue in Java
- Problems(With Video Solutions):
 - Sort K-Sorted Array
 - Buy Maximum Items with Given Sum
 - K Largest Elements
 - Merge K Sorted Arrays
 - Median of a Stream
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

18) Graph

- Introduction to Graph
- Graph Representation
 - Adjacency Matrix
 - Adjacency List in CPP and Java
 - Adjacency Matrix VS List
- Breadth-First Search
 - Applications
- Depth First Search
 - Applications

- Problems(With Video Solutions):
 - Shortest Path in an Unweighted Graph
 - Detecting Cycle
 - In the Undirected Graph
 - In the Directed Graph
 - Topological Sorting
 - Kahn's BFS Based Algorithm
 - DFS Based Algorithm
- Shortest Path in Directed Acyclic Graph
- Prim's Algorithm/Minimum Spanning Tree
 - Implementation in CPP
 - o Implementation in Java
- Dijkstra's Shortest Path Algorithm
 - Implementation in CPP
 - Implementation in Java
- Bellman-Ford Shortest Path Algorithm
- Kruskal's Algoritm
- Kosaraju's Algorithm
- Articulation Point
- Bridges in Graph
- Tarjan's Algorithm
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

19) Greedy

- Introduction
- Activity Selection Problem
- Fractional Knapsack
- Job Sequencing Problem
- Huffman Coding
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

20) Backtracking

- Concepts of Backtracking
- Rat In a Maze
- N Queen Problem
- Sudoku Problem
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

21) Dynamic Programming

- Introduction
- Dynamic Programming
 - Memoization
 - Tabulation
- Problems(With Video Solutions):
 - Longest Common Subsequence
 - Coin Change Count Combinations
 - Edit Distance Problem
 - Naive Approach
 - DP Approach
 - Longest Increasing Subsequence Problem
 - Naive Approach
 - Efficient Approach
 - Maximum Cuts
 - Minimum coins to make a value
 - Minimum Jumps to reach at the end
 - 0-1 knapsack problem
 - Naive Approach
 - Efficient Approach
 - Optimal Strategy for a Game
 - Variation of Longest Common Subsequence
 - Variation of Longest Increasing Subsequence
 - Egg Dropping Problem
 - Count BST with nkeys
 - Maximum Sum with No Consecutive
 - Subset Sum Problem

- Matrix Chain Multiplication
- Palindrome Parititioning

• Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

22) Trie

• Introduction

- Representation
- Search
- Insert
- Delete
- Count Distinct Rows in a Binary Matrix
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

23) Segment Tree

- Introduction
- Construction
- Range Query
- Update Query
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

24) Disjoint Set

- Introduction
- Find and Union Operations
- Union by Rank
- Path Compression

• Kruskal's Algorithm

Practice Problems

 This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

25) Projects

Sudoku Solver

Write a program to solve a Sudoku puzzle by filling the empty cells. A sudoku solution must satisfy all of the following rules

• Shortest Path Finder

The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of the segment.

Tic Tac Toe

A game in which two players alternately put Xs and Os in compartments of a figure formed by two vertical lines crossing two horizontal lines and each tries to get a row of three Xs or three Os before the opponent does

• N Queen Visualizer

Visualization of solving the N-Queens puzzle using recursive algorithm. The N-Queens puzzle is the problem of placing N chess queens on an N×N chessboard so that no two queens threaten each other