Folien zum Verfahren der konjugierten Gradienten

Michael Bauer, 11. November 2013

Richtung des steilsten Abstiegs

Sei f wie in (1.1). Die Richtung des steilsten Abstiegs von f an der Stelle x, d.h. $s \in \mathbb{R}^n$ so, dass die Richtungsableitung

$$\frac{d}{dt}f(x+t\frac{s}{\|s\|_2})|_{t=0} = (\nabla f(x))^T(\frac{s}{\|s\|_2})$$
 (1.2)

minimal ist, wird durch $s = -\nabla f(x) = b - Ax$ gegeben.

Beweis:

Aus den Eigenschaften des Skalarproduktes wissen wir, dass $\langle x,y \rangle$ minimal wird genau dann, wenn y=-x. Da $\nabla f(x)=Ax-b$ und für festes x muss s in $\langle \nabla f(x),\frac{s}{\|s\|_2} \rangle$ zu $\nabla f(x)$ entgegengesetzte Richtung haben, also $s=-\nabla f(x) \Rightarrow$ Beh.

Projektionssatz aus Numerik 1

Für $U \subset V$, U sei ein n-dim. Teilraum von V und ϕ_j eine ONB. Dann existiert ein eindeutiges $u^* \in U$, welches $||u^* - v|| = \min_{u \in U} ||u - v||$ erfüllt. Für jedes $v \in V$ wird dieses Problem durch

$$P_U(v) := \sum_{j=1}^n \langle v, \phi_j \rangle \phi_j$$

gelöst. $P_U(v)$ ist die orthogonale Projektion bzgl. $\langle \cdot, \cdot \rangle$.

Krylovraum

$$\mathcal{K}_k(r,A) := span\{r, Ar, ..., A^{k-1}r\}$$
 mit $k \ge 1$
$$\mathcal{K}_k(r,A) := \{0\}$$
 mit $k = 0$

heißt Krylovraum zur Matrix A und zum Vektor r.

Iterative Krylovraum-Methoden zur Lösung eines GLS Ax = b mit $A \in \mathbb{R}^{n \times n}$ verlangen $x^k \in x^0 + \mathcal{K}_k(r^0, A)$ und $x^n = x^*$, wobei $r^0 = Ax^0 - b$.