MA1522 Notes

compiled by:

m. zaidan qianbo dong

for:

Academic Year 2023-2024, Semester 2

Contents

1	Linear Systems			
	1.1	Elementary Row Operations	4	
2	Mat	rices	5	
	2.1	Matrix multiplication	5	
	2.2	Representation of linear system	5	
	2.3	Inverses	6	
		2.3.1 Properties of invertible matrices	6	
		2.3.2 Finding the inverse	7	
	2.4	LU Decomposition	7	
	2.5	Partial pivoting	8	
	2.6	Elementary matrices	9	
	2.7	Determinant	9	
3	Vec	tor Spaces	11	
	3.1	Linear span	11	
	3.2	Solution space	11	
	3.3	Linear independence	11	
	3.4	Basis	12	
	3.5	Transition matrices	12	
	3.6	Row & column space	14	

	3.7	Finding a basis/extending basis	14
	3.8	Consistency	16
	3.9	Rank	16
	3.10	Nullspace	17
		3.10.1 Dimension theorem	17
4	Orth	nogonality	18
	4.1	Orthogonality	18
	4.2	Projection	21
	4.3	Gram-Schmidt Process	23
	4.4	Least Squares	24
	4.5	QR Decomposition	25
	4.6	Orthogonal Matrices	28
5	Eige	nvalues, eigenvectors & eigenspaces	30
	5.1	Eigenvalues & eigenvectors	30
	5.2	Characteristic equation	30
	5.3	Eigenspace	31
6	Diag	jonalization	33
	6.1	Diagonalizable matrices	33
	6.2	Algebraic and geometric multiplicity	33
	6.3	Criterion of diagonalizability	33
	6.4	Algorithm to find diagonalization	34
7	Orth	nogonal Diagonalization	35
	7.1	P^{-1}	35
	7.2	Orthogonally diagonalizable	35
	7.3	Algorithm to find orthogonal diagonalization	36
	7 /	Singular Value Decomposition	36

8	B Linear Transformations			
	8.1	Linearity	39	
	8.2	Change of Bases	40	
	8.3	Composition	42	
	8.4	Ranges	42	
	8.5	Kernel	43	

1 Linear Systems

1.1 Elementary Row Operations

Definition

1. **Type I**: Multiply a row by **non-zero** constant

2. **Type II**: Interchange two rows

3. Type III: Add a constant multiple of a row to another row

Inversing EROs

1. **Type I**: Divide scalar number

2. **Type II**: Interchange

3. **Type III**: Minus

$$A \xrightarrow{E_1} \cdot \rightarrow \dots \xrightarrow{E_k} B$$

$$A \xleftarrow{E_1^{-1}} \cdot \leftarrow \dots \xleftarrow{E_k^{-1}} B$$

$$E_k....E_1A = B$$

$$A = E_1^{-1} ... E_k^{-1} B$$

2 Matrices

2.1 Matrix multiplication

Definition

AB is the $m \times n$ matrix, such that its (i,j)-entry is

$$a_{i1}b_{1j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

To find the entry

- 1. Extract i^{th} row of A
- 2. Extract j^{th} column of b
- 3. Multiply componentwise
- 4. Add products

AB: **pre-multiplication** of A to B.

BA: post-multiplication of A to B.

2.2 Representation of linear system

$$Ax = b$$

A: coefficient matrix.

x: variable matrix (solution)

b: constant matrix

2.3 Inverses

Definition

Given a square matrix of order n A, if there exists square matrix B of order n

$$AB = BA = I_n$$

A is **invertible**, B is an **inverse** of A. If A is not invertible, it is **singular**.

2.3.1 Properties of invertible matrices

A square matrix A of order n is invertible \iff

- 1. A is row equivalent to I_n
- 2. A has n pivot columns (in REF)
- 3. Ax = 0 has only the trivial solution x = 0
- 4. Columns of *A* are linearly independent
- 5. $x \rightarrow Ax$ is one-to-one:

$$Ax = Ay \implies x = y$$

- 6. For each column vector $b \in \mathbb{R}^n$, Ax = b has an unique solution.
- 7. Columns of A span \mathbb{R}^n
- 8. $x \rightarrow Ax$ is surjection:

 $\forall T: \mathbb{R}^n \to \mathbb{R}^m$, all elements in \mathbb{R}^m can be expressed as Ax in \mathbb{R}^n

- 9. There exists square matrix of order n B such that $BA = I_n$
- 10. There exists square matrix of order $n\ B$ such that $AB=I_n$
- 11. A^T is invertible
- 12. Columns of A are a basis for \mathbb{R}^n
- 13. Column space of $A = \mathbb{R}^n$
- 14. Dimension of column space of A = n
- 15. Rank of A=0

- 16. Null space of $A = \{0\}$
- 17. 0 is not an eigenvalue of A.
- **18.** $det(A) \neq 0$
- 19. Row space of A is \mathbb{R}^n
- **20.** $c \neq 0, (cA)^{-1} = \frac{1}{c}A^{-1}$

2.3.2 Finding the inverse

Gauss-Jordan Elimination

- 1. Write matrix in form A|I
- 2. RREF to get $I|A^{-1}$

Adjoint Matrix

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

2.4 LU Decomposition

Definition

If exclusively Type III operations are used in Gaussian elimination for matrix \boldsymbol{A} , there exists

$$A = LU$$

 $\it L$: lower-triangular matrix $\it L$ with diagonal entries 1. $\it U$: row-echelon form of $\it A$

Finding matrices ${\it L}$ and ${\it U}$

- 1. A = LU
- 2. Find U by getting the REF of A.
- 3. L is the inverse EROs ($A=E_1^{-1}...E_k^{-1}U, L=E_1^{-1}...E_k^{-1}$)

Solving linear systems with LU decomposition

If A = LU, to solve Ax = b

- 1. We get LUx = b
- 2. Substituting y = Ux, we get Ly = b, where Ly is lower triangular
- 3. Solve for y, by solving $(L \mid b)$
- 4. Solve for x, by solving $(U \mid y)$

2.5 Partial pivoting

Definition

If interchanging of rows is needed (Type III operations),

$$A \stackrel{E_1^{-1}}{\longleftarrow} \cdot \leftarrow \dots \stackrel{E_i}{\longleftarrow} \cdot \leftarrow \dots \stackrel{E_k^{-1}}{\longleftarrow} U, E_i : R_i \leftrightarrow R_j$$

$$A = E_1^{-1} ... E_i ... E_k^{-1} U$$

$$E_i A = (E_i E_1^{-1} ...) E_i ... E_k^{-1} U$$

$$P = E_i, L = E_i E_1^{-1} ... E_i ... E_k^{-1}$$

For every matrix A, there exists,

- A permutation matrix P: Product of type II elementary matrices
 The matrix of all the Type II EROs
- L: lower-triangular matrix L with diagonal entries 1.
- U: row-echelon form of A

such that PA = LU

2.6 Elementary matrices

Definition

A matrix obtained by doing an ERO on an identity matrix.

2.7 Determinant

2 by 2 matrix

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$det(A) = |A| = ad - bc$$

3 by 3 matrix

$$\mathsf{Let} \ A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$det(A) = |A| = a(ei - fh) - b(di - fg) + c(dh - eg)$$

Elementary matrix of order 3

Let A be a square matrix of order 3, and E be an elementary matrix of order 3.

$$det(EA) = det(E)det(A)$$

If A is invertible, then R = I, det(R) = 1,

$$det(A) = det(E_1^{-1})....det(E_k^{-1})$$

Cofactor expansion

Let A_{ij} denote (i, j)-cofactor of A.

$$det(A) = a_{i1}A_{i1} + \dots + a_{in}A_{in}$$

General strategy:

Let
$$A = (a_{ij})_{n \times n}$$
.

- If A has a zero row/zero column, then det(A) = 0.
- If A is triangular, $det(A) = a_{ii}...a_{nn}$.
- Otherwise:
 - If n = 2, $det(A) = a_{11}a_{22} a_{12}a_{21}$
 - If row or column has many 0 entries, use cofactor.
 - Use Gaussian elimination:

 $det(A) = (-1)^t det(R)$, t is number of type II operations.

3 Vector Spaces

3.1 Linear span

Definition

Let $S = \{v_1..., v_k\}$ be a subset of \mathbb{R}^n .

The **linear span** is the set of all linear combinations

$$span(S) = \{c_1v_1 +c_kv_k \mid c_1, ...c_k \in \mathbb{R}\}$$

3.2 Solution space

Definition

The **solution space** of a homogenous linear system of n variables is the **solution set**.

3.3 Linear independence

Definition

Let $S = \{v_1..., v_k\}$ be a subset of \mathbb{R}^n .

Given the equation $c_1v_1 + ... + c_kv_k = 0$:

- · Non-trivial solution exists
 - ullet S is a linearly dependent set
 - $v_1, ..., v_k$ are linearly dependent.
- Non-trivial solution does not exist
 - S is a linearly independent set
 - $v_1, ..., v_k$ are linearly independent.
- S is linearly dependent \iff some v_i is a linear combination of other vectors in S

• S is linearly independent \iff no vector in S can be written as a linear combination of other vectors

3.4 Basis

Definition

Let S be a subset of vector space V.

S is a basis if it is the minimal subset of V where span(S) = V

To check if it is a basis

It is **sufficient** to show two of these conditions to prove S is a basis for V:

- 1. S is linearly independent
- 2. span(S) = V
- 3. dim(V) = |S|

3.5 Transition matrices

Definition

Coordinate vector, $(v)_S$ is a row vector that represents

the scalar coefficient of the basis, S, of a vector space V to represent vector v relative to basis, S.

$$v = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

$$(v)_S = (c_1, c_2, ..., c_k)$$

Coordinate vector, $[v]_S$ is the column vector form of $(v)_S$

i.e.
$$[v]_S = (v)_S^T$$

Suppose the column vectors of \boldsymbol{A} forms a basis for vector space \boldsymbol{V} , then

$$A[v]_S = v$$

Definition

Transition matrix, P is a matrix that transitions a coordinator vector, $[v]_S$, relative to basis S to a coordinator vector, $[v]_T$, relative to basis T.

Essentially, Switching the representation of a point in a vector space V from a particular basis S to another particular basis T.

Suppose S and T are basis for vector space V, $P[w]_S = [w]_T$

Properties of Transition Matrix

Transition matrix is transitive.

Suppose S_1,S_2,S_3 are bases for vector space V and P and Q be the transitive matrix from S_1 to S_2 and from S_2 to S_3 respectively. Then,

$$[v]_{S_1} \xrightarrow{P} [v]_{S_2} \xrightarrow{Q} [v]_{S_3}$$

$$[v]_{S_3} = QP[v]_{S_1}$$

 P^{-1} is the transition matrix from S_2 tp S_1

$$[v]_{S_1} \stackrel{P}{\to} [v]_{S_2} \stackrel{P^{-1}}{\to} [v]_{S_1}$$

Transition matrix from S to T

Used when span(S) = span(T) = vector space, V

Let
$$S = \{u_1, u_2, u_3\}$$
 and $T = \{v_1, v_2, v_3\}$
 $(T \mid S) = (v_1 \ v_2 \ v_3 \mid u_1 \mid u_2 \mid u_3) \xrightarrow{Gauss-Jordan} (I \mid P)$

3.6 Row & column space

Definition

Row space is the vector space spanned by the rows.

Let r_1, \dots be the rows of A.

Row space
$$= span\{r_1,...\}$$

Column space is the vector space spanned by the cols.

Let c_1, \dots be the column of A.

Column space
$$= span\{c_1,...\}$$

- $\bullet \ \ {\rm row \ space \ of} \ A = {\rm column \ space \ of} \ A^T \\$
- column space of $A = \text{row space of } A^T$

3.7 Finding a basis/extending basis

Using row vectors given a set of vectors

Let
$$V = span\{v_1,....,v_k\}$$

- 1. View each v_i as a row vector
- 2. Form a matrix $\begin{pmatrix} v_1 \\ \dots \\ v_k \end{pmatrix}$
- 3. Perform Gaussian elimination to get REF $\ensuremath{\mathit{R}}$
- 4. Non-zero rows of REF are the basis of the vector space

Using column vectors given a set of vectors

Let
$$V = span\{v_1,, v_k\}$$

- 1. View each v_i as a column vector
- 2. Form a matrix $\begin{pmatrix} v_1 & ... & v_k \end{pmatrix}$
- 3. Perform Gaussian elimination to get REF $\it R$
- 4. Columns in V that correspond to the pivot columns in R are a basis Note: The pivot columns in R form a basis for the column space of R

Extending a basis

Used when span(S) is smaller than \mathbb{R}^n

Let
$$S = \{v_1, ..., v_k\}$$

- 1. Gaussian elimination on R to reduce it to row-echelon form.
 - Remove vectors that are linearly dependent
 - Note columns that are not pivot
- 2. Add rows to R such that columns are all pivot

3.8 Consistency

Consistency

Let $b \in \mathbb{R}^m$

$$Ax = b$$
 is consistent $\iff Av = b$ for some $v \in \mathbb{R}^n$
 $\iff b$ is in the column space of A

Using dimension,

let R be a row echelon form of A.

Thus, row echelon form of $(A \mid b)$ is of the form $(R \mid b')$

$$Ax = b$$
 is consistent $\iff b'$ is non pivot in $(R \mid b')$ $\iff rank(R) = rank(R \mid b')$ $\iff rank(A) = rank(A \mid b)$

3.9 Rank

Definition

Let R be a row echelon form of A.

dim(row space of A) = number of nonzero rows of R

dim(column space of A) =number of pivot columns of R

rank(A) = dim(column space of A) = dim(row space of A)

Let A be a $m \times n$ matrix.

- $rank(A) = rank(A^T)$
- $rank(A) = 0 \implies A = 0$
- $rank(A) \leq min(m, n)$
- $rank(A) = min(m, n) \implies A$ is full rank

• A full rank $\iff A$ invertible

3.10 Nullspace

Definition

Let A be a $m \times n$ matrix. The **nullspace** of A is the solution space of Ax = 0.

$$\{v \in \mathbb{R}^n \mid Av = 0\}$$

$$nullity(A) = dim(nullspace of A)$$

Let R be a row-echelon form of A.

$$nullity(A) = nullity(R)$$

= the number of non-pivot columns of R

3.10.1 Dimension theorem

Dimension Theorem

Let A be a $m \times n$ matrix.

$$rank(A) + nullity(A) = n$$

Properties of product of matrix multiplication

Let A be a $m \times n$ matrix and B be an $n \times p$ matrix.

- column space of $AB \subseteq \text{column space of } A$
- row space of $AB \subseteq \text{row space of } A$
- $rank(AB) \le min(rank(A), rank(B))$

4 Orthogonality

4.1 Orthogonality

Definition

Dot Product (inner product) of u and v is defined as:

$$u \cdot v = u_1 v_1 + u_2 v_2 = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

= uv^T when u, v are viewed as row vectors

= $\mathbf{u}^T v$ when u, v are viewed as column vectors

When $u\cdot v$ is 0, u and v are perpendicular/orthogonal, denoted by $u\perp v$. (Special Case) When u=0, $0\cdot v=0\Rightarrow 0$ is orthogonal to every vector $v\in\mathbb{R}^n$ Angle between u and v is given by

$$\cos\,\theta = \frac{u\cdot v}{||u||||v||}, where\; u,v \neq 0$$

Length of a vector, u is given as:

$$||u|| = \sqrt{u_1^2 + \dots + u_n^2} = \sqrt{u \cdot u}, u \in \mathbb{R}^n$$

When ||u|| = 1, u is a unit vector.

Properties of dot product

- Commutative Law: $u \cdot v = v \cdot u$
- Distributive law: $(u+v) \cdot w = u \cdot w + v \cdot w = w \cdot (u+v)$
- Scalar: $(cu) \cdot v = u \cdot (cv) = c(u \cdot v), c \in \mathbb{R}$
- ||cv|| = |c|||v||
- $u \cdot u \ge 0$
- $u \cdot u = 0 \Leftrightarrow u = 0$
- $|u \cdot v| \le ||u|| \, ||v||$ (Cauchy-Schwaz ineqality)
- $||u+v|| \le ||u|| + ||v||$
- $d(u, w) \le d(u, v) + d(v, w)$ where d(s, e) represents distance from s to e

Definition

Let $S = \{v_1, ..., v_k\}$ be a subset of \mathbb{R}^n

S is **orthogonal** if every pair of distinct vectors in S are orthogonal:

$$v_i \cdot v_j = 0 , \forall i \neq j$$

S is **orthonormal** if every distinct vector in S is pairwise orthogonal and a unit vector

$$v_i \cdot v_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

- S orthonormal $\Rightarrow S$ orthogonal
- S orthogonal $\Rightarrow T \subseteq S$ is orthogonal
- S orthonormal $\Rightarrow T \subseteq S$ is orthonormal
- S orthogonal $\Rightarrow S \cup 0$ is orthogonal
- S orthonormal $\Rightarrow 0 \notin S$

Definition

Normalizing is the process of converting an orthogonal set of nonzero vectors in \mathbb{R}^n , $S=u_1,..,u_k$ to an orthonormal set of vectors, $T=v_1,..,v_k$.

$$u_i \mapsto v_i = \frac{u_i}{||u_i||}, \ u_i \in S, \ v_i \in T$$

Check if a set of vectors is orthogonal/orthonormal

Let
$$A=\{v_1,v_2,...,v_k\}$$
 be a subset of \mathbb{R}^n .
$$A^TA=\begin{cases} \text{diagonal matrix} & if A \text{ is orthogonal} \\ I_k & if A \text{ is orthonormal} \end{cases}$$

Linear Independance in orthogonal sets

- An orthogonal set of nonzero vectors is linearly independent.
- An orthonormal set of vectors is linearly independent

Orthogonal sets as basis

Let V = span(S), where S is a set of nonzero vectors in \mathbb{R}^n

- S is orthogonal set \Rightarrow S is a orthogonal basis for V
- S is orthonormal set \Rightarrow S is a orthonormal basis for V

Checking if S is a basis for V is made simpler as now you have to only check one of the following:

- |S| = dim(V)
- span(S) = V

The condition that S is linearly indepedent is covered as S is either a nonzero orthogonal set of vectors or a orthonormal set of vectors.

Let $S = \{u_1, ..., u_k\}$ be a basis for a vector space V.

$$\forall w \in V, w = c_1 u_1 + \dots + c_k u_k$$

 $(w)_S = (c_1, ..., c_k)$, the coordinate vector of w relative to S

$$c_i = \frac{w \cdot u_i}{u_i \cdot u_i} = \frac{w \cdot u_i}{||u_i||^2}$$

Thus, finding the solution, $[w]_S$ can be found easily.

4.2 Projection

Definition

Projection is the vector that is imposed onto a vector v by another vector u.

The project vector,
$$p = ||p|| \frac{v}{||v||} = ||u|| cos\theta \frac{v}{||v||} = ||u|| \frac{u \cdot v}{||u||||v||} \frac{v}{||v||} = \frac{u \cdot v}{||v||^2} v$$

If v is a unit vector, then $p = (u \cdot v)v$

Projection on orthogonal basis

Suppose $S=v_1,...,v_k$ be an orthonormal basis for vector space V The projection of w on V is

$$(w \cdot v_1)v_1 + (w \cdot v_2)v_2 + \dots + (w \cdot v_k)v_k$$

Suppose $S=u_1,...,u_k$ be an orthogonal basis for vector space V The projection of w on V is

$$(w \cdot \frac{u_1}{||u_1||^2})u_1 + (w \cdot \frac{u_2}{||u_2||^2})u_2 + \dots + (w \cdot \frac{u_k}{||u_k||^2})u_k$$

Projection on vector space

Suppse Ax = b where the column space of A is V Method 1:

- 1. Find a set S such that $V = span(S) \Rightarrow S =$ column vectors of A
- 2. Use Gram-Schmidt process to convert S to an orthogonal basis for V
- 3. Find projection p of b onto V

Method 2:

- 1. Let A be a matrix whose column space is V
- 2. Find a least squared solution u to Ax = b using $A^TAx = A^Tb$
- 3. The projection p = Au where u is the solution found in the previous step

4.3 Gram-Schmidt Process

Definition

Gram-Schmidt Process allows us to find an orthogonal basis from a given basis for a vector space.

Let $u_1, u_2, ..., u_k$ be a basis for a vector space V

$$\begin{aligned} v_1 &= u_1 \\ v_2 &= u_2 - \frac{u_2 \cdot v_1}{||v_1||^2} v_1 \\ &\vdots \\ v_k &= u_k - \frac{u_2 \cdot v_1}{||v_1||^2} v_1 - \dots - \frac{u_k \cdot v_{k-1}}{||v_{k-1}||^2} v_{k-1} \end{aligned}$$

 $\{v_1,v_2,...,v_k\}$ is an orthogonal basis for V.

After normalizing, $v_i\mapsto w_i=rac{v_1}{||v_1||}$ $\{w_1,w_2,...,w_k\}$ is an orthonormal basis for V.

4.4 Least Squares

Least Squared Solutions

If Ax=b is inconsistent, its least squared solution, u, is Au=p where p is the projection of b onto V

Method 1:

Steps:

- 1. Set the columns space of A as V
- 2. Use Gram-Schmidt process to find the orthogonal basis for V
- 3. Find the projection of b onto V
- 4. Solve for Ax = p, going to RREF

Method 2:

Solve the system $A^TAx = A^Tb$

The method is guaranteed to get a solution regardless of consistency of system.

Remark: From Method 2: $x = (A^T A)^{-1} (A^T b)$.

This can be used to find the projection of w on a vector space V given the basis of V, which would be A.

Remark: Given two least-squared solutions v_1, v_2 , if A has an eigenvalue 0,

$$A^{T}Av_{1} = A^{T}b$$

$$A^{T}Av_{2} = A^{T}b$$

$$A^{T}A(v_{1} - v_{2}) = A^{T}(b - b)$$

$$A^{T}A(v_{1} - v_{2}) = 0$$

 v_1-v_2 is thus in the nullspace of A^TA , making it an eigenvector associated to 0. Remark: Least-squared solutions are **non-unique**, unless the matrix A is linearly independent.

4.5 QR Decomposition

QR Decomposition

Let A be a $m \times n$ matrx whose column are linearly independent. Then there exist:

- an $m \times n$ matrix Q whose column form a orthonormal set
- an invertiable upper triangluar matrix R of order n

Steps:

1. Use Gram-Schmidt process to obTain an orthonormal basis $\{w_1,w_2,...,w_n\}$ for the column space of A

$$2. Q = \begin{pmatrix} w_1 & w_2 & \dots & w_n \end{pmatrix}$$

3.
$$R = \begin{pmatrix} w_1 \cdot u_1 & w_1 \cdot u_2 & \dots & w_1 \cdot u_n \\ 0 & w_2 \cdot u_2 & \dots & w_2 \cdot u_n \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_n \cdot u_n \end{pmatrix}$$

Application:

Suppose A has linearly independent columns with QR decomposition QR

$$Ax = b \Leftrightarrow QRx = b \Leftrightarrow Rx = Q^Tb$$

where u is the least squares solution to $Rx=Q^Tb$ which is also the least squares solution to Ax=b

Full QR Decomposition

Used when the basis may not be independent.

Suppose $V = span(S), S = \{u_1, u_2, ..., u_k\}$ where S may not be independent. \Rightarrow Gram-Schmidt process generates an orthonormal basis by ignoring the zero vector, 0.

$$v_1 = u_1$$

$$v_2 = u_2 - \frac{u_2 \cdot v_1}{||v_1||^2} v_1 = 0 \text{, Vector is ignored}$$

$$v_3 = u_3 - \frac{u_3 \cdot v_1}{||v_1||^2} v_1$$

$$\vdots$$

After normalizing, $v_i\mapsto w_i=\frac{v_1}{||v_1||}$ $\{w_1,w_3,...\}$ is an orthonormal basis.

Since v_2 is a zero vector, we need to extend the orthonormal basis by choosing a arbituary vector (preferably elementary vectors such as $e_1=(1,0,0)$) and process it through the above Gram-Schmidt process to obtain a hopefully non-zero orthogonal basis and normalise it to obtain the extended orthonormal basis.

Let A be an $m \times n$ matrix with $m \ge n$. Then there exist

- An orthogonal matrix Q of order m
- An invertible upper triangular matrix R' of order n

such that A=QR, where $R=\begin{pmatrix}R'\\0\end{pmatrix}$ is an $m\times n$ matrix

Let $\{u_1,u_2,...,u_m\}$ be the columns of A

- 1. Use Gram-Schmidt process to find an orthogonal basis.
- 2. Extend it to an orthonormal basis $\{w_1,...,w_m\}$ for \mathbb{R}^m if necessary.

$$3. \ Q = \begin{pmatrix} w_1 & \dots & w_m \end{pmatrix}$$

4.
$$R' = \begin{pmatrix} w_1 \cdot u_1 & w_1 \cdot u_2 & \dots & w_1 \cdot u_n \\ 0 & w_2 \cdot u_2 & \dots & w_2 \cdot u_n \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_n \cdot u_n \end{pmatrix} \text{ a upper triangular matrix.}$$

4.6 Orthogonal Matrices

Definition

Orthogonal Matrix is a square matrix where $A^TA=I$ or equivalently $A^{-1}=A^T$

Properties:

Let A and B be orthogonal matricies of the same order

$$(AB)^T(AB) = B^T A^T AB = I$$

AB is a orthogonal matrix

Let S =
$$\{v_1, ..., v_k\} \subseteq \mathbb{R}^n$$
 and $A = \begin{pmatrix} v_1 & \dots & v_k \end{pmatrix}$

$$A^T A = I_k \Leftrightarrow S$$
 is an orthonormal set

If k=n, then A is a square matrix and $|S|=dim(\mathbb{R}^n)\Rightarrow A$ is orthogonal $\Leftrightarrow A^TA=I_n\Leftrightarrow S$ is an orthonormal basis for \mathbb{R}^n

Let A now be a $m \times n$ matrix

 $A^TA=I_n\Leftrightarrow ext{columns of }A ext{ form an orthonormal set in }\mathbb{R}^m$ $AA^T=I_n\Leftrightarrow ext{rows of }A ext{ form an orthonormal set in }\mathbb{R}^n$

Specialised to a orthogonal matrix, A, of order n:

- \Leftrightarrow columns of A form an orthonormal set in \mathbb{R}^n
- \Leftrightarrow rows of A form an orthonormal set in \mathbb{R}^n

Premultiplication of Orthogonal matrix with another matrix

Let $A = (v_1 \ldots v_k)$ where v_1 to v_k represent the column vectors of A, $PA = \begin{pmatrix} Pv_1 & \dots & Pv_k \end{pmatrix}$ Then, $(PA)^T(PA) = A^TP^TPA = I \Rightarrow \{Pu_1, \dots, Pu_k\}$ is an orthonormal set

If A consist of orthonormal set of column vectors, then PA is also a orthonormal set of vectors

Essentially, the pre-multiplication of an orthogonal matrix converts an orthonormal set to another orthonormal set.

Transition matrix of orthogonal bases

Let $A = \{u_1, u_2, u_3\}$ and $B = \{v_1, v_2, v_3\}$ be orthonormal bases for V. Let $w \in V$

$$w = A[w]_S = B[w]_T$$

 $[w]_T = B^T B[w]_T = B^T A[w]_S \Rightarrow P = B^T A$ is transition matrix from S to T.

 $[w]_S = A^T A[w]_S = A^T B[w]_T \Rightarrow Q = A^T B$ is transition matrix from T to S.

 $P^{-1} = Q$ Both P and Q are orthogonal matrix.

... The transition matrix between orthonormal bases is an orthogonal matrix

5 Eigenvalues, eigenvectors & eigenspaces

5.1 Eigenvalues & eigenvectors

Definition

Let A be a square matrix of order n.

Suppose that for some $\lambda \in \mathbb{R}$ and nonzero $v \in \mathbb{R}^n$:

$$Av = \lambda v$$

Then,

- λ is an **eigenvalue** of A.
- v is an **eigenvector** of A associated to the eigenvalue λ .

5.2 Characteristic equation

 $\lambda \in \mathbb{R} \ \text{ is an eigenvalue of A} \ \iff Av = \lambda v \ \text{for some} \ 0 \neq v \in \mathbb{R}^n$ $\iff \lambda Iv - Av = 0 \ \text{for some} \ 0 \neq v \in \mathbb{R}^n$ $\iff (\lambda I - A)v = 0 \ \text{for some} \ 0 \neq v \in \mathbb{R}^n$ $\iff \lambda I - A \ \text{is singular}$ $\iff \det(\lambda I - A) = 0$

Additionally,

0 is not an eigenvalue of $A \iff A$ is an invertible matrix

Remark: Note that A^TA has the same nullspace as A.

Thus, if A has an eigenvalue of 0, the eigenvector v associated to eigenvalue 0 is in the nullspace of both A^TA and A.

Main Theorem for Invertible Matrices

A is an invertible matrix, if and only if any (and hence, all) of the following hold:

- columns of A form a basis for \mathbb{R}^n
- rank(A) = n
- nullity(A) = 0
- 0 is not an eigenvalue of A.

Definition

The characteristic polynomial of A:

$$det(\lambda I - A)$$

The characteristic equation of A:

$$det(\lambda I - A) = 0$$

Eigenvalues are the **roots** of the characteristic equation.

Special case for triangular matrices

Eigenvalues of a triangular matrix are its diagonal entries.

5.3 Eigenspace

Let A be a square matrix of order n, and let λ be an eigenvalue of A. For any nonzero vector $v \in \mathbb{R}^n$,

v is an eigenvector of A associated to $\lambda \iff Av = \lambda v$

$$\iff (\lambda I - A)v = 0$$

 $\iff v \in \text{ nullspace of } (\lambda I - A)$

Definition

Let λ be an eigenvalue of a square matrix A.

The **eigenspace** of A associated to λ , denoted $E_{A,\lambda}$ or E_{λ} , is the nullspace of $(\lambda I - A)$.

Note: $(\lambda I - A)$ is singular $: dim(E_{\lambda}) \ge 1$

Eigenvectors

Let λ be an eigenvalue of a square matrix A.

The eigenvectors of A associated to the eigenvalue λ are precisely all nonzero vectors in the eigenspace E_{λ} .

6 Diagonalization

6.1 Diagonalizable matrices

Definition

A square matrix A is **diagonalizable** if there is an invertible matrix P where $P^{-1}AP$ is a diagonal matrix.

6.2 Algebraic and geometric multiplicity

Definition

Algebraic multiplicity of λ , denoted $a(\lambda)$ is its multiplicity as a root of the characteristic polynomial of A.

e.g: If the characteristic equation is $(\lambda - 1)^3 = 0$, a(1) = 3

Geometric multiplicity of λ , **denoted** $g(\lambda)$ is the dimension of E_{λ} .

Algebraic & geometric multiplicity

Let A be a square matrix, λ be an eigenvalue of A. Then,

$$1 \le g(\lambda) \le a(\lambda)$$

6.3 Criterion of diagonalizability

Diagonalization Theorem

Let A be a square matrix of order n.

A is diagonalizable \iff A has n linearly independent eigenvectors.

 \iff sum of geometric multiplicities of eigenvalues of A=n

 \iff sum of algebraic multiplicities of eigenvalues of A=n

and for each eigenvalue $\lambda, g(\lambda) = a(\lambda)$.

If a square matrix A has n distinct eigenvalues, then A is diagonalizable.

Remark: The inverse is not true. If A is diagonalizable, A might not have n distinct eigenvalues.

Remark: The diagonal matrix D is not unique unless A only has one eigenvalue.

Remark: For this course, diagonalizable = diagonalizable over \mathbb{R}

6.4 Algorithm to find diagonalization

Algorithm

Let A be a square matrix of order n.

1. $det(\lambda I - A)$ cannot be completely factorized in $\mathbb R$

• A is not diagonalizable.

2. $det(\lambda I - A)$ can be completely factorized in $\mathbb R$

- Let $\lambda_1,...\lambda_k$ be distinct eigenvalues of A.
- Find basis S_i for eigenspace E_{λ_i} .
 - (a) $g(\lambda_i) < a(\lambda_i)$ for some i
 - A is not diagonalizable.
 - (b) $g(\lambda_i) = a(\lambda_i)$ for all i
 - A is diagonalizable.

7 Orthogonal Diagonalization

7.1 P^{-1}

Given $P^{-1}AP = D$, the inverse of P, P^{-1} is required for computations such as:

- Gauss-Jordan elimination: $(P|I) \rightarrow (I|P^{-1})$
- Adjoint matrix: $P^{-1} = \frac{1}{\det(P)} adj(P)$

Remark: P is orthogonal $\implies P^{-1} = P^T$

7.2 Orthogonally diagonalizable

Definition

A square matrix A is **orthogonally diagonalizable** if there exists an orthogonal matrix P such that P^TAP is a diagonal matrix.

All orthogonally diagonalizable matrices are symmetric

Let A be a square matrix.

A is orthogonally diagonalizable \implies A symmetric

$$P^T A P = D = D^T = (P^T A P)^T = P^T A^T P$$

Remark: Given that A is a symmetric matrix with all real entries,

- eigenvalues are all real
- for each eigenvalue λ of $A, g(\lambda) = a(\lambda) = dim(E_{\lambda})$
- eigenvectors associated to distinct eigenvalues are orthogonal.

7.3 Algorithm to find orthogonal diagonalization

Algorithm

Let A be a symmetric matrix of order n.

- 1. Find all eigenvalues of A by solving $det(\lambda I A) = 0$
- 2. For each eigenvalue λ_i of A,
 - (a) Solve $(\lambda_i I = A)x = 0$ to find basis S_i for eigenspace E_{λ_i}
 - (b) Use Gram-Schmidt to convert S_i to orthonormal basis T_i .
- 3. $T_i \cup ... \cup T_k = \{w_1,...,w_n\}$ is an orthonormal basis for \mathbb{R}^n .
 - $P = \{w_1, ..., w_n\}$ orthogonally diagonalizes A.

7.4 Singular Value Decomposition

Non-negativity of eigenvalues of A^TA

If λ was an eigenvalue of A^TA , and v was an associated eigenvector:

$$A^T A v = \lambda v \implies v^T A^T A v = v^T \lambda v \implies ||Av||^2 = \lambda ||v||^2 \ge 0$$

Thus,

let A be a $m \times n$ matrix.

The eigenvalues of A^TA are nonnegative.

Definition

Let A be a $m \times n$ matrix, and $\lambda_1, ...$ be its eigenvalues.

$$\sigma_1 = \sqrt{\lambda_1}$$
.....

These values are the **singular values** of A.

Algorithm: Singular Value Decomposition

Let A be an $m \times n$ matrix.

- 1. Find eigenvalues of $A^T A \lambda_1 > ... > \lambda_r + 1$
- 2. Find corresponding orthonormal set of eigenvectors of A^TA $\{v_1...v_n\}$.
- 3. Let $\sigma_i = \sqrt{\lambda_i}$, and $u_i = \frac{1}{\sigma_i} A v_i$ for i=1,...,r
- 4. Extend $\{u_i,...,u_r\}$ to orthonormal basis $\{u_i,...,u_m\}$ for \mathbb{R}^m

Let $U = \{u_1...u_m\}, V = \{v_1....v_n\}.$ U, V are orthogonal matrices.

$$\text{Let } \sum = \begin{pmatrix} \sigma_1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \sigma_r & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & \dots & 0 \end{pmatrix} \text{, a rectangular diagonal matrix.}$$

Then, $A = U \sum V^T$ is the singular value decomposition of A.

8 Linear Transformations

Definition

Linear tranformation can be seen as a mapping f, from domain of \mathbb{R}^n to a codomain of \mathbb{R}^m

A mapping $T: \mathbb{R}^n \mapsto \mathbb{R}$ can be defined by:

$$f(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n$$

is a linear transformation from \mathbb{R}^n to \mathbb{R}

A linear transformation can be viewed in the matrix form:

$$T(x) = Ax, x \in \mathbb{R}^n$$

A is called the **standard matrix** for T

Remark: T is called a linear operator on \mathbb{R}^n if dimension of domain = dimension of codomain

Linear operator

Identity operator is the mapping $T: \mathbb{R}^n$ to \mathbb{R}^n where I(x) = x for $x \in \mathbb{R}^n$

$$I(x) = x = I_n x \Rightarrow I_n$$
 is the standard matrix for $I(x)$

Zero transformation is the mapping $T: \mathbb{R}^n$ to \mathbb{R}^m where f(x) = 0 for $f(x) \in \mathbb{R}^n$

$$O(x) = O = 0_{m \times n} 0 \Rightarrow 0_{m \times n}$$
 is the standard matrix for $O(x)$

Remark: $T: \mathbb{R}^n$ to \mathbb{R}^n has a unique standard transformation

To show that a function $T\colon \mathbb{R}^n$ to \mathbb{R}^m is a linear transformation, it **suffices** to find an $m\times n$ matrix A such that $T(x)=Ax\quad \forall x\in \mathbb{R}^n$

8.1 Linearity

Linearity

Suppose T: \mathbb{R}^n to \mathbb{R}^m is a linear transformation and A is the standard matrix of T, i.e T(x) = Ax.

- T(0) = A0 = 0
- T(cv) = A(cv) = c(Av) = cT(v)
- T(u+v) = A(u+v) = Au + Av = T(u) + T(v)
- For any $v_1,...,v_k\in\mathbb{R}^n$ and $c_1,...,c_k\in\mathbb{R}$,

$$T(c_1v_1 + \dots + c_kv_k) = A(c_1v_1 + \dots + c_kv_k)$$

$$= A(c_1v_1) + \dots + A(c_kv_k)$$

$$= c_1(Av_1) + \dots + c_k(Av_k)$$

$$= c_1T(v_1) + \dots + c_kT(v_k)$$

which is the linear transformation of images

 $T(c_1v_1 + ... + c_kv_k)$ is completely determined by $T(v_1), ..., T(v_k)$

Determine mapping T is NOT a linear transformation

To show that a mapping T is not a linear transformation

- Show that $T(0) \neq 0$
- Find $v \in \mathbb{R}^n$ and $c \in \mathbb{R}$ such that $T(cv) \neq cT(v)$
- Find $v \in \mathbb{R}^n$ and $c \in \mathbb{R}$ such that $T(u+v) \neq T(u) + T(v)$

8.2 Change of Bases

Change of basis

Suppose $S=\{v_1,..,v_n\}$ be a basis for \mathbb{R}^n

$$\forall v \in \mathbb{R}^n, (v)_S = (c_1, ..., c_n)$$

$$v=c_1v_1+\ldots+c_nv_n=\begin{pmatrix}v_1&\ldots&v_n\end{pmatrix}[v]_S=P[v]_S$$

Suppose $T\colon\mathbb{R}^n$ to \mathbb{R}^m is a linear transformation

$$T(v) = c_1 T(v_1) + \dots + c_n T(v_n)$$

$$= \begin{pmatrix} T(v_1) & \dots & T(v_n) \end{pmatrix} [v]_S$$

$$= B[v]_S$$

$$= AP[v]_S$$

$$B = AP \Leftrightarrow A = BP^{-1}$$

To find the standard matrix of T:

$$(P|I) \xrightarrow[Elimination]{Gauss-Jordan} (I|P^{-1})$$

The standard matrix for T would be BP^{-1}

Suppose T: \mathbb{R}^n to \mathbb{R}^m and $S_1 = \{v_1, ..., v_n\}$ and $S_2 = \{u_1, ..., u_n\}$ are bases for \mathbb{R}^n

$$T(w) = B[w]_{S_1} = (T(v_1) \dots T(v_n))[w]_{S_1}$$

= $C[w]_{S_2} = (T(u_1) \dots T(u_n))[w]_{S_2}$

Let P be the transition matrix from S_1 tp S_2

$$P[w]_{S_1} = [w]_{S_2} \Rightarrow CP[w]_{S_1} = C[w]_{S_2} = T(w) = B[w]_{S_1}$$

$$B = CP$$

If $S_2 = E$ is the standard basis,

 $P = \begin{pmatrix} u_1 & \dots & u_n \end{pmatrix}$ and P^{-1} is the transition matrix from E to S

 ${\cal C}={\cal A}$ which is the standard matrix of ${\cal A}$

$$B = AP \Leftrightarrow A = BP^{-1}$$

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S = \{v_1, ..., v_n\}$ represented by P as $\begin{pmatrix} v_1 & ... & v_n \end{pmatrix}$. P is invertible.

$$v=P[v]_S$$

$$T(v)=P[T(v)]_S \text{ and } Av=AP[v]_S$$

$$P[T(v)]_S=A[v]_S\Rightarrow [T(v)]_S=P^{-1}AP[v]_S$$

T can be represented by $[v]_S \mapsto B[v]_S$ where $B = P^{-1}AP$. A and B are similar. A square matrix is diagonalisable \Leftrightarrow it is similar to a diagonal matrix.

8.3 Composition

Definition

Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations

Let
$$T \circ S \colon \mathbb{R}^n \mapsto \mathbb{R}^k$$
,

Composition of T with S: $(T \circ S)(u) = T(S(u)) \ \forall u \in \mathbb{R}^n$

Remark:
$$T \circ S \neq S \circ T$$

Let A and B be the standard matrix for the above mapping S and T respectively.

The standard matrix of $T \circ S = BA$

8.4 Ranges

Definition

Let $T: \mathbb{R}^n \mapsto \mathbb{R}^m$

The range of T is the set of all images of T: $R(T) = \{T(v) | v \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$

 $R(T) = span(T(v)) = span(T(v_1), ..., T(v_n))$ where $v_1, ..., v_n$ is any basis for \mathbb{R}^n

Since T has a standard matrix $A = \begin{pmatrix} T(e_1) & \dots & T(e_n) \end{pmatrix}$

- R(T) = (column space of A)
- rank(T) = dim(R(T)) = rank(A)

8.5 Kernel

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A

Kernel of T is the set of all vectors in \mathbb{R}^n whose image is $0 \in \mathbb{R}^m$

$$Ker(T) = \{v \in \mathbb{R}^n \mid T(v) = 0\}$$

$$= \{v \in \mathbb{R}^n \mid Av = 0\}$$

$$= \text{nullspace of } A$$

Remark: Since T(0) = 0, $(0 \in \mathbb{R}^n) \in Ker(T)$

The nullity of T, nullity(T) = dim(Ker(T)) = nullity(A)

Dimension Theorem for Linear Transformations

Let $T: \mathbb{R}^n \mapsto \mathbb{R}^m$ with standard matrix A

$$R(T) = column \ space \ of \ A$$

$$rank(T) = rank(A)$$

$$Ker(T) = nullspace \ of \ A$$

$$nullity(T) = nullity(A)$$

$$\therefore rank(T) + nullity(T) = n$$