3 Limbaje formale

Orice problemă de decizie (adică cu răspuns "da" sau "nu") din informatică poate fi redusă la determinarea apartenenței la un limbaj. De exemplu, verificarea că un număr k este prim, se poate face verificând dacă cuvântul $\underline{aaa} \dots \underline{aaa}$ aparține limbajului $\{a^p \mid p \text{ prim }\}$.

k ori

3.1 Limbaje regulate

Cum le recunoaștem: Principala limitare a DFA/NFA/ λ -NFA este că nu au memorie. În formula pentru limbajele regulate pot apărea doar condiții liniare, de forma a^{nk+m} , și dacă apar mai mulți indici la putere, aceștia nu sunt corelați.

Un DFA care acceptă limbajul $\mathcal{L} = \{ a^{2k+1} \mid k \in \mathbb{N} \}$

Observație. Orice limbaj finit este regulat. Putem construi un DFA care să aibă câte o stare finală pentru fiecare cuvânt. Astfel se obține un trie.

Proprietăți: închise la intersecție, reuniune, complement, diferență de mulțime. Sunt închise și la concatenare și la stelare, și la morfisme și morfisme inverse.

3.2 Limbaje independente de context

Cum le recunoaștem: Putem avea indici corelați (de exemplu $a^{2k}b^{3k}$).

Dacă apar mai mulți indici corelați, aceștia ar trebui să se grupeze asemenea parantezelor corect închise. De exemplu, se poate arăta că $a^nb^mc^md^n$ este independent de context dar $a^nb^mc^nd^m$ nu este.

De asemenea, nu pot fi mai mult de două variabile corelate. De exemplu $a^nb^nc^n$ este exemplul clasic de limbaj care **nu** este independent de context.

Proprietăți: închise la toate operațiile menționate mai sus **cu excepția** intersecție, complement, sau diferență. Sunt închise totuși la intersecția *cu un limbaj regulat* (acest lucru ne ajută în exerciții).