RUSSIA - KAZAN

International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day2 1

paintCountry: ARM

Ներկել ըստ թվերի

«Ներկել ըստ թվերի» խաղը հայտնի գլուխկոտրուկ է։ Մենք կդիտարկենք այդ գլուխկոտրուկի պարզ մեկ-չափանի տարբերակը։ Խաղացողին տրվում է n վանդակների շարք։ Վանդակները ձախից աջ համարակալված են 0-ից n-1 թվերով։ Խաղացողը պետք է յուրաքանչյուր վանդակ ներկի սև կամ սպիտակ գույնով։ Սև վանդակները կնշանակենք 'X' սիմվոլով, սպիտակները` '_' սիմվոլով։

Խաղացողին տրվում է k ամբողջ թվերի` <code>pubulphtph</code>, $c=[c_0,\ldots,c_{k-1}]$ հաջորդականություն։ Նա պետք է ներկի վանդակներն այնպես, որ սև վանդակները կազմեն ճիշտ k հատ բլոկներ, այսինքն, սև գույնով ներկված անընդհատ կտորներ։ Ավելին, ձախից սկսած i-րդ բլոկի (համարակալումը 0-ից սկսած) վանդակների քանակը պետք է լինի c_i ։ Օրինակ, եթե բանալիների հաջորդականությունը c=[3,4] է, գլուխկոտրուկի լուծումը պետք է բաղկացած լինի հաջորդական սև վանդակների ճիշտ երկու բլոկներից` մեկը a0, մյուսը` a0 երկարության։ Այսպիսով, եթե a10 և a10 և a20, հետևյալ շղթան բանալիներին բավարարող լուծում է. "_XXX_XXXX"։ Նկատենք, որ "XXXX_XXXX_" շղթան չի բավարարում բանալիներին, որովհետև սև վանդակների բլոկները ճիշտ կարգով չեն դասավորված։ "_XXXXXXXX_" շղթան նույնպես լուծում չէ. այստեղ սև վանդակների մեկ բլոկ է, ոչ թե երկու առանձին բլոկներ։

Տրված է մասնակիորեն լուծված «Ներկել ըստ թվերի» գլուխկոտրուկ։ Այսինքն տրված են n-ը և c-ն, բացի այդ որոշ վանդակների մասին հայտնի է, որ նրանք սև են և որոշների մասին հայտնի է, որ նրանք սպիտակ են։ Ձեր խնդիրն է դուրս բերել լրացուցիչ ինֆորմացիա վանդակների մասին։

Լուծումը թույլատրելի է, եթե այն բավարարում է բանալիներին, և հայտնի վանդակների գույները համընկնում են։ Ձեր ծրագիրը պետք է գտնի այն վանդակները, որոնք բոլոր թույլատրելի լուծումներում սև գույնով են ներկված և այն վանդակները, որոնք բոլոր թույլատրելի լուծումներում սպիտակ գույնով են ներկված։

Մուտքային տվյալներն այնպիսին են, որ միշտ գոյություն ունի առնվազն մեկ լուծում։

Իրականացման մանրամասներ

Պետք է իրականացնել հետևյալ ֆունկցիան.

- string solve puzzle(string s, int[] c).
 - \circ s -- n երկարության տող։ Յուրաքանչյուր i -ի ($0 \leq i \leq n-1$) համար մուտքային տողի i -րդ սիմվոլը
 - \circ 'X' E , tpt i-nn dwunwun wtwp E u L jhuh,
 - \circ ' ' է, եթե i -րդ վանդակը պետք է սպիտակ լինի,
 - \circ '.' է, եթե i-րդ վանդակի մասին ինֆորմացիա չկա։
 - o c -- k երկարության զանգված, որը պարունակում է բանալիներ, ինչպես նկարագրված է վերևում,
 - \circ ֆունկցիան պետք է վերադարձնի n երկարության տող։ Յուրաքանչյուր i -ի ($0 \le i \le n-1$) համար ելքային տողի i -րդ սիմվոլը պետք է լինի.
 - \circ 'X', եթե i -րդ սիմվոլը սև է բոլոր թույլատրելի լուծումներում,
 - \circ ' ', եթե i -րդ սիմվոլը սպիտակ է բոլոր թույլատրելի լուծումներում,
 - \circ '?', մնացած դեպքերում (այսինքն, եթե գոյություն ունեն երկու թույլատրելի լուծումներ, որոնցից մեկում i-րդ վանդակը սև է, իսկ մյուսում սպիտակ է)։

Այս խնդրում օգտագործված սիմվոյների ASCII կոդերն են.

- 'X': 88,
- ' ': 95.
- '.': 46,
- '?': 63:

Օրինակներ

Օրինակ 1

```
solve_puzzle("....", [3, 4])
```

Ստորև բերված են բոլոր լուծումները.

```
"XXX_XXXX__","XXX__XXXX_","XXX__XXXX","_XXX_XXXX_","_XXX__XXXX","_XXX__XXXX".
```

Կարելի է նկատել, որ 2, 6 և 7 համարներով վանդակները (համարակալումը սկսած 0-ից) բոլոր լուծումներում սև են։ Մնացած բոլոր վանդակները միշտ չէ որ ունեն նույն գույնը։ Հետևաբար ճիշտ պատասխանն է "??X???XX??"։

Օրինակ 2

```
solve puzzle("....", [3, 4])
```

Այս դեպքում միայն մեկ թույլատրելի լուծում կա, և ճիշտ պատասխանն է "XXX XXXX"։

Օրինակ 3

```
solve_puzzle("..._, [3])
```

Այս օրինակում կարելի է եզրակացնել, որ 4 համարի վանդակը պետք է սպիտակ լինի, քանի որ 3 և 5 համարի վանդակների միջև հնարավոր չէ տեղադրել 3 երկարության սև վանդակների բլոկ։ <ետևաբար, ճիշտ պատասխանն է "??? ????"։

Օրինակ 4

```
solve_puzzle(".X....", [3])
```

Գոյություն ունի միայն երկու թույլատրելի լուծում։

```
"XXX_____","_XXX____".
```

Այսպիսով, ճիշտ պատասխանն է "?XX?_____"։

Եևթախնդիրներ

Բոլոր ենթախնդիրներում $1 \leq k \leq n$, և $1 \leq c_i \leq n$ յուրաքանչյուր $0 \leq i \leq k-1$ համար։

- 1. (7 միավոր) $n \leq 20$, k=1 , s-ը պարունակում է միայն '.' սիմվոլներ (դատարկ գյուխկոտրուկ),
- 2. (3 միավոր) $n \leq 20$, s -ը պարունակում է միայն ' \cdot ' սիմոլներ,
- 3. (22 միավոր) $n \leq 100$, s -ը պարունակում է միայն '.' սիմվոլներ,
- 4. (27 միավոր) $n \leq 100$, s -ը պարունակում է միայն '.' և '_' սիմվոլներ (ինֆորմացիա կա միայն սպիտակ վանդակների վերաբերյալ),
- 5. (21 միավոր) n < 100,
- 6. (10 միավոր) $n \leq 5\,000$, $k \leq 100$,
- 7. (10 ປիավոր) $n < 200\,000$, k < 100 .

Գրելդերի օրինակ

Գրեյդերին մուտքային տվյալները տրվում են հետևյալ ֆորմատով`

- Snn 1: s unn,
- \circ Տող 2։ k ամբողջ թիվ, որին հաջորդում են k հատ c_0,\dots,c_{k-1} ամբողջ թվեր։