Package 'fcfdr'

October 13, 2022		
Title Flexible cFDR		
Version 1.0.0		
Description Provides functions to implement the Flexible cFDR (Hutchinson et al. (2021) <doi:10.1371 journal.pgen.1009853="">) and Binary cFDR (Hutchinson et al. (2021) <doi:10.1101 2021.10.21.465274="">) methodologies to leverage auxiliary data from arbitrary distributions, for example functional genomic data, with GWAS pvalues to generate re-weighted p-values.</doi:10.1101></doi:10.1371>		
Imports locfdr, MASS, ggplot2, cowplot, fields, dplyr, spatstat.geom, polyCub, hexbin, bigsplines, data.table, grDevices, Hmisc		
Suggests stats, knitr, rmarkdown, digest, testthat (>= 3.0.0)		
License MIT + file LICENSE		
Encoding UTF-8		
LazyData true		
RoxygenNote 7.1.2		
VignetteBuilder knitr		
Depends R (>= $3.5.0$)		
Config/testthat/edition 3		
NeedsCompilation no		
Author Anna Hutchinson [aut, cre] (https://orcid.org/0000-0002-9224-4410), Chris Wallace [aut], Thomas Willis [ctb, aut], James Liley [ctb]		
Maintainer Anna Hutchinson <annahutchinson1995@gmail.com></annahutchinson1995@gmail.com>		
Repository CRAN		
Date/Publication 2022-02-07 09:00:05 UTC		
R topics documented:		
binary_cfdr		

2 3

2 binary_cfdr

```
      flexible_cfdr
      4

      log10pv_plot
      6

      match_ind_maf
      7

      parameters_in_locfdr
      7

      pv_plot
      9

      stratified_qqplot
      10

      T1D_application_data
      11
```

Index 12

binary_cfdr

Perform cFDR leveraging binary auxiliary covariates

Description

Perform cFDR leveraging binary auxiliary covariates

Usage

```
binary_cfdr(p, q, group)
```

Arguments

```
p p-values for principal trait (vector of length n)
q binary auxiliary data values (vector of length n)
group group membership of each SNP for leave-one-out procedure (vector of length n) (e.g. chromosome number or LD block)
```

Value

data.frame of p, q and v values

```
# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing functional genomic data).
# We use the parameters_in_locfdr() function to extract the parameters estimated by
# the locfdr function.

# generate p
set.seed(2)
n <- 1000
n1p <- 50
zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))

# generate q
q <- rbinom(n, 1, 0.1)</pre>
```

corr_plot 3

```
group <- c(rep("A", n/2), rep("B", n/2))
binary_cfdr(p, q, group)</pre>
```

corr_plot

Violin plot of p-values for quantiles of q

Description

Violin plot of p-values for quantiles of q

Usage

```
corr_plot(p, q, ylim = c(0, 1.5))
```

Arguments

```
p p values for principal trait (vector of length n)
q auxiliary data values (vector of length n)
ylim y-axis limits (-log10)
```

Details

Can be used to investigate the relationship between p and q

If this shows a non-monotonic relationship then the cFDR framework should not be used (because e.g. cFDR cannot simultaneously shrink v-values for high p and low p)

Value

ggplot object

```
# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing functional genomic data).
# We use the corr_plot() function to visualise the relationship between p and q.

# generate p
set.seed(1)
n <- 1000
n1p <- 50
zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))

# generate q</pre>
```

4 flexible_cfdr

```
mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5)
mixture_comp2 <- function(x) rnorm(x, mean = 2, sd = 1)
q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p))
corr_plot(p, q)</pre>
```

flexible_cfdr

Perform Flexible cFDR

Description

Performs Flexible cFDR for continuous auxiliary covariates

Usage

```
flexible_cfdr(
  p,
  q,
  indep_index,
  res_p = 300,
  res_q = 500,
  nxbin = 1000,
  gridp = 50,
  splinecorr = TRUE,
  dist_thr = 0.5,
 locfdr_df = 10,
 plot = TRUE,
 maf = NULL,
 check_indep_cor = TRUE,
  enforce_p_q_cor = TRUE
)
```

Arguments

р	p-values for principal trait (vector of length n)
q	continuous auxiliary data values (vector of length n)
indep_index	indices of independent SNPs
res_p	number of grid points in x-direction (p) for KDE estimation
res_q	number of grid points in y-direction (q) for KDE estimation
nxbin	number of bins in x-direction (p) for hex-binning
gridp	number of data points required in a KDE grid point for left-censoring
splinecorr	logical value for whether spline correction should be implemented
dist_thr	distance threshold for spline correction
locfdr_df	df parameter in locfdr function

flexible_cfdr 5

plot logical value for whether to produce plots to assess KDE fit

maf minor allele frequencies for SNPs to which p and q relate (optional and used to perform MAF matching)

check_indep_cor

check that sign of the correlation between p and q is the same in the independent subset as in the whole

enforce_p_q_cor

if p and q are negatively correlated, flip the sign on q values

Details

If maf is specified, then the independent SNPs will be down-sampled to match the minor allele frequency distribution.

Value

List of length two: (1) data.frame of p-values, q-values and v-values (2) data.frame of auxiliary data (q_low used for left censoring, how many data-points were left censored and/or spline corrected)

```
# this is a long running example
# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing functional genomic data).
# We use the flexible_cfdr() function to generate v-values using default parameter values.
# generate p
set.seed(1)
n <- 1000
n1p <- 50
zp \leftarrow c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))
# generate q
mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5)
mixture\_comp2 \leftarrow function(x) rnorm(x, mean = 2, sd = 1)
q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p))</pre>
n_{indep} < - n
flexible_cfdr(p, q, indep_index = 1:n_indep)
```

6 log10pv_plot

log10pv_plot

Plot -log10(p) against -log10(v) and colour by q

Description

```
Plot -log10(p) against -log10(v) and colour by q
```

Usage

```
log10pv_plot(p, q, v, axis_lim = c(0, 20))
```

Arguments

```
p p values for principal trait (vector of length n)
q auxiliary data values (vector of length n)
v values from cFDR
axis_lim Optional axis limits
```

Details

Can be used to visualise the results from Flexible cFDR

Value

ggplot object

```
# this is a long running example
# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing functional genomic data).
# We use the flexible_cfdr() function to generate v-values and then the log10pv_plot() function
# to visualise the results.

# generate p
set.seed(1)
n <- 1000
n1p <- 50
zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))

# generate q
mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5)
mixture_comp2 <- function(x) rnorm(x, mean = 2, sd = 1)
q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p))</pre>
```

match_ind_maf 7

```
n_indep <- n
res <- flexible_cfdr(p, q, indep_index = 1:n_indep)
log10pv_plot(p = res[[1]]$p, q = res[[1]]$q, v = res[[1]]$v)</pre>
```

match_ind_maf

Function to downsample independent SNPs to match MAF distribution of whole set.

Description

Matches MAF distribution of independent set of SNPs to MAF distribution of whole set of SNPs to avoid MAF-based confounding.

Usage

```
match_ind_maf(maf, indep_index)
```

Arguments

maf minor allele frequencies of (all) SNPs

indep_index indices of independent SNPs

Details

Must supply maf values from the whole data set, not just the independent SNPs.

Value

indices of independent SNP in chosen in sample

```
parameters_in_locfdr parameters_in_locfdr
```

Description

```
parameters_in_locfdr
```

parameters_in_locfdr

Usage

```
parameters_in_locfdr(
  p,
  q,
  indep_index,
  res_p = 300,
  res_q = 500,
  maf = NULL,
  check_indep_cor = TRUE,
  enforce_p_q_cor = TRUE
)
```

Arguments

```
p values for principal trait (vector of length n)
р
                   continuous auxiliary data values (vector of length n)
                  indices of independent SNPs
indep_index
                  resolution for p
res_p
                  resolution for q
res_q
                   minor allele frequencies for SNPs to which p and q relate (optional and used to
maf
                   perform MAF matching)
check_indep_cor
                   check that sign of the correlation between p and q is the same in the independent
                   subset as in the whole
enforce_p_q_cor
                  if p and q are negatively correlated, flip the sign on q values
```

Value

list of values used as input into locfdr::locfdr function intrinsically in flexible_cfdr

```
# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing functional genomic data).
# We use the parameters_in_locfdr() function to extract the parameters estimated by
# the locfdr function.

# generate p
set.seed(1)
n <- 1000
n1p <- 50
zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))

# generate q
mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5)</pre>
```

pv_plot 9

```
mixture_comp2 <- function(x) rnorm(x, mean = 2, sd = 1)
q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p))
n_indep <- n
parameters_in_locfdr(p, q, indep_index = 1:n_indep)</pre>
```

pv_plot

Plot p against v and colour by q

Description

Plot p against v and colour by q

Usage

```
pv_plot(p, q, v, axis_lim = c(0, 1))
```

Arguments

p	p values for principal trait (vector of length n)
q	auxiliary data values (vector of length n)
V	v values from cFDR
axis_lim	Optional axis limits

Details

Can be used to visualise the results from Flexible cFDR

Value

ggplot object

```
# this is a long running example

# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing functional genomic data).
# We use the flexible_cfdr() function to generate v-values and then the pv_plot() function
# to visualise the results.
# generate p
set.seed(1)
n <- 1000</pre>
```

10 stratified_qqplot

```
n1p <- 50
zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))

# generate q
mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5)
mixture_comp2 <- function(x) rnorm(x, mean = 2, sd = 1)
q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p))

n_indep <- n

res <- flexible_cfdr(p, q, indep_index = 1:n_indep)

pv_plot(p = res[[1]]$p, q = res[[1]]$q, v = res[[1]]$v)</pre>
```

stratified_qqplot

Stratified Q-Q plot.

Description

Stratified Q-Q plot.

Usage

```
stratified_qqplot(
  data_frame,
  prin_value_label,
  cond_value_label = NULL,
  thresholds = c(1, 0.1, 0.01, 0.001, 1e-04)
)
```

Arguments

Details

Can be used to investigate the relationship between p and q

Note that this function does not do the heavy lifting of styling the plot's aesthetics.

T1D_application_data

Value

ggplot object

Examples

```
# In this example, we generate some p-values (representing GWAS p-values)
# and some arbitrary auxiliary data values (e.g. representing GWAS p-values for a related trait).
# We use the stratified_qqplot() function to examine the relationship between p and q

# generate p
set.seed(1)
n <- 1000
n1p <- 50
zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1))
p <- 2*pnorm(-abs(zp))

# generate q
zq <- c(rnorm(n1p, sd=4), rnorm(n-n1p, sd=1.2))
q <- 2*pnorm(-abs(zq))

df <- data.frame(p, q)

stratified_qqplot(data_frame = df, prin_value_label = "p", cond_value_label = "q")</pre>
```

Description

A data.frame containing the rsID, chromosome (CHR19) and base pair position (BP19) in hg19, reference allele (REF), alternative allele (ALLT), type 1 diabetes GWAS p-value (T1D_pval), minor allele frequency (MAF), LDAK weight (LDAK_weight), rheumatoid arthritis GWAS p-value (RA_pval), binary regulatory factor binding site overlap (DGF), average H3K27ac fold change value in T1D-relevant cell types (H3K27ac) for 113,543 SNPs in the T1D GWAS (https://www.nature.com/articles/ng.3245)

Usage

T1D_application_data

Format

A data frame with 113543 rows and 11 variables:

Details

Minor allele frequencies estimated from the CEU sub-population samples in the 1000 Genomes Project Phase 3 data set. Missing values were replaced by drawing samples from the empirical distribution of MAFs

Index