Ответы на вопросы по курсу «Теория Вероятностей» *

Колодзей Дарья, 394^{\dagger} осенний семестр 2014

Содержание

1	Вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$. Аксиомы Колмогорова.	1
2	Дискретные вероятностные пространства. Классическое определение вероятности. Примеры. Геометрические вероятности. Примеры. 2.1 Дискретные вероятностные пространства	E 5
	*Лектор: Жуковский Максим Евгеньевич Место: ФИВТ МФТИ	

Спасибо Дмитрию Иващенко за печатные конспекты

[†]Спасибо Алексею Журавлёву за конспекты и билеты Спасибо Павлу Ахтямову за конспекты

3	Условные вероятности. Формула полной вероятности. Формула Байеса. Примеры	
4	Теорема о непрерывности в «нуле» вероятностной меры	17
5	Алгебры, σ -алгебры, π - и λ -системы. Наименьшая алгебра (σ -алгебра), порождённая системой множеств. Борелевские σ -алгебры в $\mathbb R$ и в $\mathbb R^n$	
1	Вероятностное пространсти $(\Omega, \mathcal{F}, \mathbf{P})$. Аксиом Колмогорова.	
np	гобы дать определение вероятностно постранству, нам понадобится несколи помогательных определений.	-

2.2 Геометрические вероятности

12

1. $\Omega \in \mathcal{A}$

2. Если A, B — пара множеств, принадлежащих \mathcal{A} ,

Определение 1 (Алгебра). Пусть Ω — произвольное множество. Система его подмножеств $\mathcal{A} \subset 2^{\Omega}$ называется алгеброй, если выполнены условия:

TO

$$A \cup B \in \mathcal{A}, A \cap B \in \mathcal{A}$$

3.
$$A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$$

Определение 2 (σ -алгебра). Пусть Ω — произвольное множество. Система его подмножеств $\mathcal{F} \subset 2^{\Omega}$ называется σ -алгеброй, если выполнены условия:

- 1. $\Omega \in \mathcal{F}$
- 2. Если $\{A_i\}$ последовательность множеств, принадлежащих \mathcal{F} , то

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}, \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$$

3.
$$A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}$$

Определение 3 (Измеримое пространство). Измеримым пространством называют пару $\langle \Omega, \mathcal{A} \rangle$, где Ω — произвольное множество, а \mathcal{A} — алгебра его подмножеств.

Определение 4 (Конечно-аддитивная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию \mathbf{P} : $\mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной мерой данного пространства, если выполнены свойства:

1.
$$\forall A \in \mathcal{A} \mathbf{P}(A) \geq 0$$

2.
$$A, B \in \mathcal{A}, A \cap B = \emptyset \Rightarrow \mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$$

Определение 5 (Конечно-аддитивная конечная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной конечной мерой данного пространства, если она является конечно-аддитивной мерой данного пространства и $\mathbf{P}(\Omega) < \infty$.

Определение 6 (Конечно-аддитивная вероятностная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной вероятностной мерой данного пространства, если она является конечно-аддитивной мерой данного пространства и $\mathbf{P}(\Omega)=1$.

Определение 7 (Счётно-аддитивная вероятностная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют счётно-аддитивной вероятностной мерой данного пространства, если выполнены свойства:

- 1. $\forall A \in \mathcal{A} \mathbf{P}(A) \geq 0$
- 2. $P(\Omega) = 1$
- 3. Пусть $\{A_i\}$ последовательность попарнонепересекающихся множеств, принадлежащих \mathcal{A} . Пусть их объединение также лежит в \mathcal{A} . Тогда верно

$$\mathbf{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Счётно-аддитивную вероятностную меру над $\langle \Omega, \mathcal{A} \rangle$ также называют:

- вероятностью над $\langle \Omega, \mathcal{A} \rangle$
- ullet распределением вероятностей над Ω
- распределением над $\langle \Omega, \mathcal{A} \rangle$

Определение 8 (Вероятностное пространство в широком смысле). Тройку $\langle \Omega, \mathcal{A}, \mathbf{P} \rangle$, где

- Ω произвольное множество
- \mathcal{A} алгебра над Ω
- \mathbf{P} вероятность над $\langle \Omega, \mathcal{A} \rangle$

называют вероятностным пространством в широком смысле. Элементы \mathcal{A} называют событиями. Событие Ω называют достоверным событием, событие \varnothing называют невозможным событием.

Определение 9 (Вероятностное пространство). Тройку $\langle \Omega, \mathcal{A}, \mathbf{P} \rangle$, где

- Ω произвольное множество
- $\mathcal{A}-\sigma$ -алгебра над Ω
- \mathbf{P} вероятность над $\langle \Omega, \mathcal{A} \rangle$

называют вероятностным пространством.

Аксиомы Колмогорова — это аксиомы, которым должно удовлетворять вероятностное пространство. В нашем случае аксиомы Колмогорова зашиты внутрь определения вероятностного пространства.

- 2 Дискретные вероятностные пространства. Классическое определение вероятности. Примеры. Геометрические вероятности. Примеры.
- 2.1 Дискретные вероятностные пространства

Определения

Определение 10 (Дискретное вероятностное пространство). Вероятностное пространство $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ называется дискретным вероятностным пространством, если Ω не более чем счётно.

Определение 11 (Классическое определение вероятности). Вероятностное пространство $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ называется классическим вероятностным пространством, если:

- Ω конечно, $|\Omega| = n$
- $\mathcal{F}=2^{\Omega}$
- $\forall \omega \in \Omega \ \mathbf{P}(\omega) = \frac{1}{n}$

Примеры классических вероятностных пространств

Пример 1 (Бросок кубика). Бросок идеального игрального кубика принято описывать вероятностным пространством $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ следующего вида:

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{F}=2^{\Omega}$
- $\mathbf{P}(\{\omega\}) = \frac{1}{6}$, где $\omega \in \Omega$

Пример 2 (Равновероятный выбор из n объектов). В случае равновероятного выбора из n объектов соотвествующее вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$ имеет вид:

- $\Omega = \{1, \ldots, n\}$
- $\mathcal{F} = 2^{\Omega}$
- $\mathbf{P}(\{\omega\}) = \frac{1}{n}$, где $\omega \in \Omega$

Пример 3 (Упорядоченный k-кратный выбор из n объектов с возвращением). Упорядоченный k-кратный выбор из n объектов с возвращением описывается вероятностным пространством $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ следующего вида:

•
$$\Omega = \{a_1 a_2 \dots a_k | a_i = 1, \dots, n\}$$

•
$$\mathcal{F} = 2^{\Omega}$$

•
$$\mathbf{P}(\{\omega\}) = \frac{1}{n^k}$$
, где $\omega \in \Omega$

Пример 4 (Упорядоченный k-кратный выбор из n объектов без возвращения). Упорядоченный k-кратный выбор из n объектов без возвращения описывается вероятностным пространством $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ следующего вида:

•
$$\Omega = \{a_1 a_2 \dots a_k | a_i = 1, \dots, n, i \neq j \Rightarrow a_i \neq a_j\}$$

•
$$\mathcal{F} = 2^{\Omega}$$

•
$$\mathbf{P}(\{\omega\}) = \frac{1}{\frac{n!}{(n-k)!}}$$
, где $\omega \in \Omega$

Пример 5 (Неупорядоченный k-кратный выбор из n объектов с возвращением). Неупорядоченный k-кратный выбор из n объектов с возвращением описывается вероятностным пространством $(\Omega, \mathcal{F}, \mathbf{P})$ следующего вида:

•
$$\Omega = \{a_1 a_2 \dots a_k | a_i = 1, \dots, n \mid i < j \Rightarrow a_i \le a_j\}$$

•
$$\mathcal{F}=2^{\Omega}$$

•
$$\mathbf{P}(\{\omega\}) = \frac{1}{C_{n+k-1}^k}$$
, где $\omega \in \Omega$

Пример 6 (Неупорядоченный k-кратный выбор из n объектов без возвращения). Неупорядоченный k-кратный выбор из n объектов без возвращения описывается вероятностным пространством $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ следующего вида:

•
$$\Omega = \{a_1 a_2 \dots a_k | a_i = 1, \dots, n, i < j \Rightarrow a_i < a_j\}$$

•
$$\mathcal{F} = 2^{\Omega}$$

•
$$\mathbf{P}(\{\omega\}) = \frac{1}{C_n^k}$$
, где $\omega \in \Omega$

Примеры конечных (неклассических) дискретных вероятностных пространств

Пример 7 (Распределение Бернулли). Вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$ следующего вида

•
$$\Omega = \{0, 1\}$$

•
$$\mathcal{F} = 2^{\Omega}$$

•
$$\mathbf{P}(\{1\}) = p, \mathbf{P}(\{0\}) = q,$$
 где $q = 1 - p$

описывает некоторый однократный эксперимент, в котором $\{1\}$ соответствует успеху, p — вероятности успеха, а $\{0\}$ и q — провалу и его вероятности. Распределение вероятностей $\mathbf{P}: \{\varnothing, \{0\}, \{1\}, \{0, 1\}\} \to \{0, q, p, 1\}$ называют распределением Бернулли.

Пример 8 (Схема Бернулли). Опыт, состоящий в n-кратном повторении некоторого эксперимента с вероятностью успеха p, и соответствующее ему вероятностное пространство

•
$$\Omega = \{a_1 a_2 \dots a_n \mid a_i = 0, 1\}$$

•
$$\mathcal{F} = 2^{\Omega}$$

•
$$\mathbf{P}(\{\omega\}) = p^k q^{n-k}$$
, где $q = 1 - p$, $k = |\omega|_1$

называют схемой Бернулли

Пример 9 (Испытание с разновероятными исходами). Для описания эксперимента с несколькими возможными исходами используют такое вероятностное пространство $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$:

•
$$\Omega = \{1, 2, \dots, n\}$$

•
$$\mathcal{F} = 2^{\Omega}$$

•
$$\mathbf{P}(\{i\}) = p_i$$
, где $\sum_{i=1}^n p_i = 1$

Пример 10 (Повторение испытания с разновероятными исходами). Пусть теперь мы повторяем k раз эксперимент, в котором возможно n разновероятных исходов (ещё можно думать об этом, как о k-кратном выборе с возвращением из коробки с шарами n цветов).

•
$$\Omega = \{a_1 a_2 \dots a_k | a_i = 1, \dots, n \mid i < j \Rightarrow a_i \le a_j\}$$

•
$$\mathcal{F}=2^{\Omega}$$

•
$$\mathbf{P}(\{a_1a_2\dots a_k\}) = p_1^{t_1}p_2^{t_2}\dots p_n^{t_n}$$
, где $\sum_{i=1}^n p_i = 1$, а $t_i = |a_1a_2\dots a_k|_i$

Впоследствии мы определим на этом пространстве многомерную случайную величину «количество исходов каждого вида» («количество шаров каждого цвета»). У этой случайной величины будет распределение, которое мы назовём мультиномиальным.

Пространство из следующего примера явся классическим вероятностным пространством, но помещено здесь, потому что перекликается с предыдущим примером.

Пример 11 (Выбор разноцветных шаров без возвращения). Пусть в коробке лежит M шаров n цветов. Пусть шаров цвета i будет p_i штук. Пусть мы k раз вытаскиваем без возвращения шары из этой коробки.

•
$$\Omega = \{a_1 a_2 \dots a_k | a_i = 1, \dots, M, i \neq j \Rightarrow a_i \neq a_j\}$$

•
$$\mathcal{F} = 2^{\Omega}$$

•
$$\mathbf{P}(\{\omega\}) = \frac{1}{M^k}$$

Впоследствии мы определим на этом пространстве многомерную случайную величину «количество шаров каждого цвета», которая будет иметь более

сложную структуру, чем аналогичная величина из предыдущего примера. Её распределение носит название *многомерного гипергеометрического*, или просто *гипергеометрического*, в случае, когда всего 2 пвета.

Примеры бесконечных дискретных вероятностных пространств

Пример 12 (Геометрическое распределение). Вероятностное пространство $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ следующего вида

- $\Omega = 0 \cup \mathbb{N}$
- $\mathcal{F} = 2^{\Omega}$
- $\mathbf{P}(k) = pq^k$, где $q = 1 p, k \in 0 \cup \mathbb{N}$

описывает бесконечное повторение эксперимента до тех пор пока не случится успех. Элементарное событие k соответствует получению первого успеха после k неудачных попыток. Соответствующее распределение вероятностей называют seomempuческим pacnpeделением.

2.2 Геометрические вероятности

Определение 12. Вероятностное пространство $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$, где

- $\Omega \subset \mathbb{R}^n$
- ${\cal F}$ имеющие объём (измеримые по Жордану) подмножества Ω
- $\mathbf{P}(A) = \frac{|A|}{|\Omega|}$, т. е. частному соответствующих объёмов

называется геометрическим вероятностным пространством.

С помощью геометрической вероятности можно решать следующую задачу: пусть есть два студента. Пусть про каждого студента известно, что он приходит в столовую в случайное время в течение часа и обедает в течение 15 минут. Спрашивается вероятность встречи этих студентов. Решение заключается в том, чтобы отложить по координатным осям времена прихода студентов, отметить область точек, внутри которой студенты встречаются, и посчитать площадь этой области.

Говоря о геометрических вероятностях, можно упомянуть метод Монте-Карло (способ подсчёта чегонибудь, (например, отношения площадей) с помощью многократного моделирования случайного процесса (например, бросания точки на фигуру)).

3 Условные вероятности. Формула полной вероятности. Формула Байеса. Примеры

Определение 13 (Условная вероятность). Пусть $(\Omega, \mathcal{F}, \mathbf{P})$ —вероятностное пространство, $A, B \in \mathcal{F}$. Тогда условной вероятностью события A при условии, что произошло событие B, называют величину

$$\mathbf{P}(A|B) = rac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)},$$
если $\mathbf{P}(B) > 0$

$$\mathbf{P}(A|B) = 0$$
, если $\mathbf{P}(B) = 0$

Утверждение 1. Пусть $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ — вероятностное пространство. Пусть $B \in \mathcal{F}$, $\mathbf{P}(B) > 0$. Тогда $\mathbf{P}(\cdot|B)$: $\mathcal{F} \to \mathbb{R}$ является счётно-аддитивной вероятностной мерой над измеримым пространством $\langle \Omega, \mathcal{F} \rangle$.

Доказательство. Проверим, что для $\mathbf{P}(\cdot|B)$ выполняется определение вероятностной меры. Действительно:

$$\forall A \in \mathcal{F} \ \mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} \ge 0$$

$$\mathbf{P}(\Omega|B) = \frac{\mathbf{P}(\Omega \cap B)}{\mathbf{P}(B)} = 1$$

Пусть $\{A_i\}$ — последовательность попарно непересекающихся событий. Поскольку \mathcal{F} — σ -алгебра, то их объединение A тоже принадлежит \mathcal{F} . Проверим, что

$$\mathbf{P}(A|B) = \sum_{i=1}^{\infty} \mathbf{P}(A_i|B)$$

Действительно,

$$\sum_{i=1}^{\infty} \mathbf{P}(A_i|B) = \sum_{i=1}^{\infty} \frac{\mathbf{P}(A_i \cap B)}{\mathbf{P}(B)} =$$

$$= \frac{1}{\mathbf{P}(B)} \sum_{i=1}^{\infty} \mathbf{P}(A_i \cap B) = \frac{1}{\mathbf{P}(B)} \mathbf{P}(A \cap B) =$$

$$= \mathbf{P}(A|B) \quad (1)$$

Теорема 1 (Формула полной вероятности). Пусть $(\Omega, \mathcal{F}, \mathbf{P})$ — вероятностное пространство. Пусть $\Omega = \bigsqcup_{i=1}^{\infty} B_i$, пусть $A, B_1, B_2, \ldots \in \mathcal{F}$. Тогда

$$\mathbf{P}(A) = \sum_{i=1}^{\infty} \mathbf{P}(A|B_i)\mathbf{P}(B_i)$$

Доказательство. Заметим, что $\mathbf{P}(A \cap B_i) = \mathbf{P}(A|B_i)\mathbf{P}(B_i)$ является верным равенством и в

случае, когда $\mathbf{P}(B_i)=0$, и в случае, когда $\mathbf{P}(B_i)>0$. А значит

$$\sum_{i=1}^{\infty} \mathbf{P}(A|B_i)\mathbf{P}(B_i) = \sum_{i=1}^{\infty} \mathbf{P}(A \cap B_i) = \mathbf{P}(A)$$

Заметим, что в конечных случаях формула полной вероятности тоже работает.

Теорема 2 (Формула Байеса). Пусть $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ — вероятностное пространство. Пусть $\Omega = \bigsqcup_{i=1}^{\infty} B_i$, пусть $A, B_1, B_2, \ldots \in \mathcal{F}$. Пусть также $\mathbf{P}(A) > 0$ Тогда

$$\mathbf{P}(B_k|A) = \frac{\mathbf{P}(A|B_k)\mathbf{P}(B_k)}{\sum_{i=1}^{\infty} \mathbf{P}(A|B_i)\mathbf{P}(B_i)}$$

Доказательство.

$$\mathbf{P}(A \cap B_k) = \mathbf{P}(A|B_k)\mathbf{P}(B_k)$$

$$\mathbf{P}(A \cap B_k) = \mathbf{P}(B_k|A)\mathbf{P}(A)$$

$$\mathbf{P}(B_k|A)\mathbf{P}(A) = \mathbf{P}(A|B_k)\mathbf{P}(B_k)$$

$$\mathbf{P}(B_k|A) = \frac{\mathbf{P}(A|B_k)\mathbf{P}(B_k)}{\mathbf{P}(A)}$$

осталось расписать $\mathbf{P}(A)$ по формуле полной вероятности и получить желаемое.

Смысл формулы Байеса можно понимать так: B_i — это гипотезы, а A — результат эксперимента. Нам известна априорная вероятность $\mathbf{P}(A|B_i)$ получения результата A при выполнении гипотезы B_i . Теперь, зная результат эксперимента, мы хотим узнать апостериорную вероятность того, что гипотеза B_k верна.

Например, с помощью формулы Байеса можно решать какую-нибудь задачу про смерть лорда Вайла, которого хотят отравить или зарезать дворецкий, сын и жена.

Приведём ещё пример решения задачи про шары помощью формулы Байеса.

Пример 13. Пусть в ящике n шаров, из них k белых. Шары извлекаются без возвращений равновероятно. Какова вероятность на j-ом шаге вытащить белый шар?

Итак, вероятностное пространство, соотвествующее j-кратному выбору без возвращения таково:

•
$$\Omega = \{a_1 a_2 \dots a_i | a_i = 1, 2, \dots, n\}$$

•
$$\mathcal{F} = 2^{\Omega}$$

•
$$P(\{a_1 a_2 \dots a_j\}) = \frac{1}{\frac{(n)!}{(n-j)!}}$$

Доказывать будет индукцией по числу шаров и шагов. Обозначим за $A_{j,n,k}$ событие «вытащить белый шар на j-ом шаге, если в урне изначально было

n шаров, из которых k белых» и за $B_{j,n,k}$ событие «вытащить чёрный шар на j-ом шаге, если в урне изначально было n шаров, из которых k белых».

База. $A_{1,n,k} = \frac{k}{n}$. Доказательство перехода.

$$\mathbf{P}(A_{j,n,k}) = \\ = \mathbf{P}(A_{j,n,k}|A_{1,n,k})\mathbf{P}(A_{1,n,k}) + \mathbf{P}(A_{j,n,k}|B_{1,n,k})\mathbf{P}(B_{1,n,k}) = \\ = \mathbf{P}(A_{j-1,n-1,k-1})\mathbf{P}(A_{1,n,k}) + \mathbf{P}(A_{j-1,n-1,k})\mathbf{P}(B_{1,n,k})$$
(2)

4 Теорема о непрерывности в «нуле» вероятностной меры

Теорема 3 (О непрерывности в нуле вероятностной меры). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство (Ω — множество, \mathcal{A} —алгебра, но не σ -алгебра). Пусть \mathbf{P} — конечно-аддитивная вероятностная мера на $\langle \Omega, \mathcal{A} \rangle$. Тогда следующие утверждения равносильны:

• Р счётно-аддитивная вероятностная мера

$$\mathbf{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

где $\{A_i\}$ — последовательность попарно непересекающихся множеств, чьё объединение лежит в \mathcal{A} .

• Р непрерывна сверху

$$\lim_{i \to \infty} \mathbf{P}(A_i) = \mathbf{P}(\bigcup_{i=1}^{\infty} A_i)$$

где $\{A_i\}$ — «неубывающая» последовательность вложенных множеств $(A_i \subset A_{i+1})$, чьё объединение лежит в A.

• Р непрерывна снизу

$$\lim_{i \to \infty} \mathbf{P}(A_i) = \mathbf{P}(\bigcap_{i=1}^{\infty} A_i)$$

где $\{A_i\}$ — «невозрастающая» последовательность вложенных множеств $(A_i \supset A_{i+1})$, чьё пересечение лежит в \mathcal{A} .

• Р непрерывна в нуле

$$\lim_{i \to \infty} \mathbf{P}(A_i) = 0$$

где $\{A_i\}$ — «невозрастающая» последовательность вложенных множеств $(A_i \supset A_{i+1})$, чьё пересечение является пустым множеством.

Эту теорему можно найти в Ширяеве с. 147. Ниже конспект доказательства.

Доказательство. $1 \Rightarrow 2$ Пусть $\{A_i\}$ — «неубывающая» последовательность вложенных множеств $(A_i \subset A_{i+1})$, чьё объединение лежит в \mathcal{A} . Покажем, что

$$\lim_{i \to \infty} \mathbf{P}(A_i) = \mathbf{P}(\bigcup_{i=1}^{\infty} A_i)$$

Действительно,

$$\bigcup_{i=1}^{\infty} A_i = A_1 \sqcup (A_2 \setminus A_1) \sqcup (A_3 \setminus A_3) \dots$$

значит

$$\mathbf{P}(\bigcup_{i=1}^{\infty} A_i) =$$

$$= \mathbf{P}(A_1) + \sum_{i=1}^{\infty} \mathbf{P}(A_{i+1} \setminus A_i) =$$

$$= \mathbf{P}(A_1) + \sum_{i=1}^{\infty} (\mathbf{P}(A_{i+1}) - \mathbf{P}(A_i)) =$$

$$= \lim_{i \to \infty} \mathbf{P}(A_i) \quad (3)$$

 $2 \Rightarrow 3$

Посмотрим на последовательность $\{A_1 \setminus A_i\}$. Она удовлетворяет условиям из (2), а значит

$$\lim_{i\to\infty} \mathbf{P}(A_1 \setminus A_i) = \mathbf{P}(\bigcup_{i=1}^{\infty} A_1 \setminus A_i)$$

Тогда

$$\lim_{i \to \infty} \mathbf{P}(A_i) =$$

$$= \mathbf{P}(A_1) - \lim_{i \to \infty} \mathbf{P}(A_1 \setminus A_i) =$$

$$= \mathbf{P}(A_1) - \mathbf{P}(\bigcup_{i=1}^{\infty} A_1 \setminus A_i) =$$

$$= \mathbf{P}(A_1) - \mathbf{P}(A_1 \setminus \bigcap_{i=1}^{\infty} A_i) =$$

$$= \mathbf{P}(\bigcap_{i=1}^{\infty} A_i) \quad (4)$$

 $3 \Rightarrow 4$. Кэп.

 $4 \Rightarrow 1$. Пусть $\{A_i\}$ — последовательность попарно непересекающихся событий, чьё объединение A лежит в A.

$$\sum_{i=1}^{\infty} \mathbf{P}(A_i) = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \mathbf{P}(A_i) \right) =$$

$$= \lim_{n \to \infty} \left(\mathbf{P}(\bigcup_{i=1}^{n} A_i) \right) = \lim_{n \to \infty} \left(\mathbf{P}(\bigcup_{i=1}^{\infty} A_i) - \mathbf{P}(\bigcup_{i=n+1}^{\infty} A_i) \right) =$$

$$= \mathbf{P}(\bigcup_{i=1}^{\infty} A_i) - \lim_{n \to \infty} \mathbf{P}(\bigcup_{i=n+1}^{\infty} A_i)) = \mathbf{P}(\bigcup_{i=1}^{\infty} A_i) \quad (5)$$

Поскольку последовательность $\{(\bigcup_{i=n+1}^{\infty} A_i)_n\}$ является «невозрастающей» последовательностью

множеств, чьё пересечение пусто, а значит $\lim_{n\to\infty} \mathbf{P}(\bigcup_{i=n+1}^\infty A_i))=0.$