# 第2章 数据分析

## 2.1 数据处理流程

## 2.1.1 数据解包、信息提取

DPU 通过 SiTCP 上传的数据文件格式为.dat,每个文件包含一次测量的所有数据帧。数据帧有两种类型,一种是波形信息,另一种是时间幅度提取信息,两种信息的数据帧格式如图 2.1 所示。



(a) 包含波形信息的数据帧(一个数据帧包括一个电子学通道的 1024 个波形数据点)



(b) 包含时间幅度提取信息的数据帧(一个数据帧包括一个电子学通道波形的幅度、半峰值时间、峰值时间提取信息)

图 2.1 数据帧格式

将上述感兴趣的数据统一存入名为 Packet 的结构体中, 其结构如下:

```
struct Packet

uint8_t u8Type = 0;

uint32_t u32EventID = 0;

uint8_t u8TrigChaNum = 0;

uint8_t u8ChannelIndex = 0;

uint16_t au16ADC[Config::ADCPOINTS] = {};

uint16_t u16Amplitude = 0;

uint16_t u16HalfTime = 0;

uint16_t u16PeakTime = 0;

uint16_t u16PeakTime = 0;
```

如果数据帧为波形信息,先判断波形数据是否饱和,如果饱和则将饱和部分的数据点进行拟合。其中波形前沿使用线性拟合,波形后沿使用指数拟合,拟合函数如下:

$$f(x) = \begin{cases} a \cdot x + b, & x \leq x_0, \\ c \cdot \exp(-d \cdot x) + e, & x > x_0. \end{cases}$$
 (2.1)

然后,对波形数据进行信息提取,包括波形的幅度、半峰值时间、峰值时间等信息。最后,将波形提取信息或时间幅度提取信息存入名为 TreeEntry 的结构体中,再将其以以下结构写入 ROOT 文件中。

```
8 tTree->Branch("EventIndex", &sTreeEntry.iEventIndex,
      Form("EventIndex/I"));
9 tTree->Branch("MeanOfBaseline",
      sTreeEntry.aiMeanOfBaseline,
      Form("MeanOfBaseline[%d]/I", Config::CHANNELNUM));
tTree->Branch("SubMeanOfBaseline",
   ⇔ sTreeEntry.aiSubMeanOfBaseline,
   ← Form ("SubMeanOfBaseline[%d]/I",
   ⇔ Config::CHANNELNUM));
tTree->Branch("SigmaOfBaseline",
   ⇔ sTreeEntry.aiSigmaOfBaseline,
   ← Form("SigmaOfBaseline[%d]/I",
   ⇔ Config::CHANNELNUM));
12 tTree->Branch("Amplitude", sTreeEntry.aiAmplitude,
      Form("Amplitude[%d]/I", Config::CHANNELNUM));
tTree->Branch("HalfTime", sTreeEntry.aiHalfTime,
      Form("HalfTime[%d]/I", Config::CHANNELNUM));
 tTree->Branch("PeakTime", sTreeEntry.aiPeakTime,
      Form("PeakTime[%d]/I", Config::CHANNELNUM));
 tTree->Branch("Peak2Peak", sTreeEntry.aiPeak2Peak,
      Form("Peak2Peak[%d]/I", Config::CHANNELNUM));
 tTree->Branch("SumOfAmplitude",
    &sTreeEntry.iSumOfAmplitude,
    Form("SumOfAmplitude/I"));
```

### 2.1.2 反符合剔除

将 2.1.1 节中保存的 ROOT 文件中的数据进行反符合剔除,剔除方法为: 依次遍历每个事例,再对每个事例中的每个通道的通道号进行判断,如果通道号对应的 Map 为反符合通道,则将该事例整体剔除。剔除后的数据保存在新的 ROOT 文件中。

#### 2.1.3 特征提取

#### 1. 特征

对 2.1.2 剔除后的数据或 2.1.1 的数据进行特征提取, 提取的特征包括:

• 事例总幅度

- X 维击中数
- Y 维击中数
- X&Y 维击中数矢量和
- X&Y 维击中数差
- 事例各通道最大峰值时间和最小峰值时间之差
- X 维最远击中位置
- Y 维最远击中位置
- 事例最大能量沉积的相对时间位置
- θ 入射角
- φ 入射角
- X 维 Pearson 相关系数
- Y 维 Pearson 相关系数
- X 维径迹长度
- Y 维径迹长度
- 单位距离能量沉积
- 是否击中边缘通道

#### 2. 数据筛选

对特征提取后的数据进行筛选,筛选条件为: X/Y 维击中数为 0、X&Y 维径 迹长度小于 2(这里径迹长度的算法有问题,待修正)和击中位置在膜窗外的事例。筛选后的数据保存在新的 ROOT 文件中。

#### 2.1.4 TMVA 训练

使用 BDT(Bosted Decision Tree) 方法进行训练,训练的特征包括:

- 事例总幅度
- X 维击中数
- Y 维击中数
- 事例各通道最大峰值时间和最小峰值时间之差
- X 维最远击中位置
- Y 维最远击中位置
- 事例最大能量沉积的相对时间位置
- θ 入射角
- X 维 Pearson 相关系数
- Y 维 Pearson 相关系数
- X 维径迹长度
- Y 维径迹长度

• 单位距离能量沉积

## 2.1.5 TMVA 测试

用 TMVA 训练好的 BDT 方法对测试数据进行测试,测试数据的特征提取方法与训练数据相同。测试结果保存在 ROOT 文件中。

## 2.2 数据分析结果

### 2.2.1 使用前期阳极条两两合并的数据进行训练

表 2.1 阳极条两两合并的数据训练结果

| 源类型                    | <sup>90</sup> Sr | 本底             |
|------------------------|------------------|----------------|
| 工作气体                   | $C_{4}H_{10}$    | $C_4H_{10}$    |
| 高压 [V]                 | 370              | 370            |
| 时间戳                    | 20240804231807   | 20240807112240 |
| 测试时间                   | 2min             | 9h             |
| 原始计数                   | 150293           | 299061         |
| 去除反符合计数                | 147597           | 227822         |
| 去除单维事例计数               | 147597           | 227812         |
| 去除短径迹、膜窗外计数            | 142647           | 41313          |
| BDT 筛选后计数 (率)          | 85637(714 cps)   | 4339(8.0 cpm)  |
| 发射率 [s <sup>-1</sup> ] | _                | _              |
| 效率 [%]                 | 57               | 98.5           |
| 阈值                     | 0.06             | 0.06           |
| 类型                     | WV 训练数据          | WV 训练数据        |

## 2.2.2 使用太原标准源中心阳极条测试数据进行训练

表 2.2 太原标准  $^{90}\mathrm{Sr}$  源中心阳极条测试数据训练结果

| 源类型                    | <sup>90</sup> Sr  | 本底                               | <sup>90</sup> Sr  | 本底             |
|------------------------|-------------------|----------------------------------|-------------------|----------------|
| 工作气体                   | $CO_2$            | $CO_2$                           | $CO_2$            | $CO_2$         |
| 高压 [V]                 | 540               | 540                              | 540               | 540            |
| 时间戳                    | 20240906172844    | 20240923194604<br>20240924214355 | 20240906181811    |                |
|                        | 20240906180546    |                                  | 20240906185136    |                |
|                        | 20240906180839    |                                  | 20240906185441    | 20240925200257 |
|                        | 20240906181151    |                                  | 20240906185732    |                |
|                        | 20240906181440    |                                  | 20240906190011    |                |
| 测试时间                   | 10 min            | 24 h                             | 10 min            | 12 h           |
| 原始计数                   | 592221            | 449884                           | 591632            | 225801         |
| 去除反符合计数                | 587572            | 412595                           | 586741            | 207047         |
| 去除单维事例计数               | 586408            | 321045                           | 585652            | 160728         |
| 去除短径迹、<br>膜窗外计数        | 568140            | 146392                           | 567579            | 74081          |
| BDT 筛选后计数(率)           | 397135(661.9 cps) | 1544(1.1 cpm)                    | 398677(664.5 cps) | 888(1.2 cpm)   |
| 发射率 [s <sup>-1</sup> ] | 1190              | _                                | 1190              | = -            |
| 效率 [%]                 | 55.6              | 99.6                             | 55.8              | 99.6           |
| 阈值                     | 0.12              | 0.12                             | 0.12              | 0.12           |
| 类型                     | TQ 训练数据           | WV 训练数据                          | TQ 测试数据           | WV 测试数据        |

表 2.3 太原标准 <sup>36</sup>Cl 源中心阳极条测试数据训练结果

| 源类型             | <sup>36</sup> Cl  | 本底                               | <sup>36</sup> Cl  | 本底             |
|-----------------|-------------------|----------------------------------|-------------------|----------------|
| 工作气体            | $CO_2$            | $CO_2$                           | $CO_2$            | $CO_2$         |
| 高压 [V]          | 540               | 540                              | 540               | 540            |
|                 | 20240906182240    | 20240923194604<br>20240924214355 | 20240906183738    |                |
|                 | 20240906182634    |                                  | 20240906184015    |                |
| 时间戳             | 20240906182953    |                                  | 20240906184257    | 20240925200257 |
|                 | 20240906183223    |                                  | 20240906184537    |                |
|                 | 20240906183458    |                                  | 20240906184819    |                |
| 测试时间            | 10 min            | 24 h                             | 10 min            | 12 h           |
| 原始计数            | 283263            | 449884                           | 284321            | 225801         |
| 去除反符合计数         | 280745            | 412595                           | 281692            | 207047         |
| 去除单维事例计数        | 279594            | 321045                           | 280569            | 160728         |
| 去除短径迹、<br>膜窗外计数 | 268472            | 146392                           | 269790            | 74081          |
| BDT 筛选后计数(率)    | 172816(288.0 cps) | 1617(1.1 cpm)                    | 174151(290.3 cps) | 920(1.3 cpm)   |
| 发射率 [s-1]       | 502               | _                                | 502               | =              |
| 效率 [%]          | 57.4              | 99.6                             | 57.8              | 99.6           |
| 阈值              | 0.12              | 0.12                             | 0.12              | 0.12           |
| 类型              | TQ 训练数据           | WV 训练数据                          | TQ 测试数据           | WV 测试数据        |