

### 컴퓨터 구조

조합 논리 회로

고려대학교 세종캠퍼스 인공지능사이버보안학과 구 자 훈

### 목차

#### ❖ 학습 목표

- 조합 논리회로의 동작 표현 방법인논리식, 진리표, 논리회로도를 해석할 수 있다.
- 가산기, 비교기, 패리티 발생/검사기,
   인코더/디코더, 멀티플렉서/디멀티플렉서의 기능을 설명할 수 있다.

#### ❖ Part 1.

- 조합 논리회로 소개
- 산술 조합 논리회로
- 조합 논리회로 빌딩블록

#### ❖ Part 2.

- 퀴즈
- 요약



### Part 1

4.1 조합 논리회로 소개

4.2 산술 조합 논리회로

4.3 조합 논리회로 빌딩블록

### 4.1 조합 논리회로 소개

#### 학습 목표

- 조합 논리 회로의 동작을 표현하는 방법 이해
- 진리표, 논리식, 논리회로도 표현 방법 숙달

#### 논리 회로 (logic circuit)

- 논리게이트로 만든 논리적 회로
- 조합 논리회로 (combinational logic circuit) : 입력 조합에 따라 출력 결정
- 순차 논리회로 (sequential logic circuit) : 기억 소자를 포함한 회로



# 01 조합 논리회로 조합 논리회로의 동작 표현

#### 조합 논리회로 (combinational circuit)

◦ 입력신호의 조합에 따라 출력을 결정하는 회로

#### 동작 표현 방법 (입력/출력은 0 또는 1의 값만 갖음)

- 진리표 = 동작 특성표 = 특성표 (characteristic table)
  - 진리표: 입력신호 조합에 따라 출력신호를 표로 표현
- 논리식(logic equation) = 부울식(Bool equation) = 논리함수(logic function)
  - 논리식: 논리 변수를 부울 대수의 AND, OR, NOT과 같은 논리 연산자로 조합한 공식
- 논리 회로도(logic diagram)
  - 논리 회로도 : 논리식에 해당하는 논리 게이트 기호를 연결해서 표현한 그림



| 일련<br>번호          |                | 입력               | 신호 |       | 출력신호           |                  |  |                |
|-------------------|----------------|------------------|----|-------|----------------|------------------|--|----------------|
| 번호                | X <sub>n</sub> | X <sub>n-1</sub> |    | $X_1$ | Y <sub>m</sub> | Y <sub>m-1</sub> |  | Y <sub>1</sub> |
| 0                 | 0              | 0                | 0  | 0     |                |                  |  |                |
| 1                 | 0              | 0                | 0  | 1     |                |                  |  |                |
| 2                 | 0              | 0                | 1  | 0     |                |                  |  |                |
|                   |                |                  |    |       |                |                  |  |                |
| 2 <sup>n</sup> -1 | 1              | 1                | 1  | 1     |                |                  |  |                |

<n x m 조합 논리회로>

< m x n 조합 논리회로의 진리표 >

# 01 조합 논리회로 조합 논리회로의 동작 표현 방법



#### 수업에서의 설명 순서

- (1) 논리식 → 논리 회로도
- (2) 논리 회로도 → 논리식
- (3) 논리식 → 진리표
- (4) 진리표 → 논리식 : 최소항 (또는 최대항)에 의한 방법

# $01^{\frac{x^{\hat{u}} + 2 \hat{u} \hat{u} \hat{z}}$ 조합 논리회로 : 논리식 $\rightarrow$ 논리회로도

#### 논리식의 연산 우선 순위

◦ 괄호() > NOT(′) > AND > OR

#### 논리 회로도 그리는 방법



<F = x·y + x'·z 의 논리회로도>

- 1. 입력 신호를 왼편에, 출력 신호를 오른편에 배치한다.
- 2. 연산 우선순위에 따라 입력에서 출력 방향으로 게이트를 배치하고 입력과 출력을 연결한다.

# $01^{\frac{xt}{2}}$ 조합 논리회로 : 논리 회로도 $\rightarrow$ 논리식

#### 논리식 구하는 방법

- 1. 입력, 출력, 게이트의 출력에 논리 변수 할당
- 2. 입력단부터 출력단 방향으로 게이트의 논리식 적기
- 3. 출력단에 포함된 게이트의 출력을 입력 신호의 논리식으로 대치

#### 논리식 구하기 예제



#### ○ 1, 2 단계

$$g1 = x'$$
  $g2 = x \cdot y$   
 $g3 = g1 \cdot z$   $F = g2 + g3$ 

#### ○ 3 단계

$$F = g2 + g3$$
$$= x \cdot y + g1 \cdot z$$
$$= x \cdot y + x' \cdot z$$

# 

#### 논리식으로 진리표를 구하는 방법

- 1. 모든 입력신호의 조합을 2진수 순서로 표에 배치한다.
- 2. 논리식의 연산 우선순위에 따라 세부 항에 대한 출력을 구한다.

#### $F = x \cdot y + x' \cdot z$

| Х | У | Z | x' | х∙у | x′·z | F |
|---|---|---|----|-----|------|---|
| 0 | 0 | 0 | 1  | 0   | 0    | 0 |
| 0 | 0 | 1 | 1  | 0   | 1    | 1 |
| 0 | 1 | 0 | 1  | 0   | 0    | 0 |
| 0 | 1 | 1 | 1  | 0   | 1    | 1 |
| 1 | 0 | 0 | 0  | 0   | 0    | 0 |
| 1 | 0 | 1 | 0  | 0   | 0    | 0 |
| 1 | 1 | 0 | 0  | 1   | 0    | 1 |
| 1 | 1 | 1 | 0  | 1   | 0    | 1 |

# 02 <sup>조합 논리회로</sup> **시소항** (minterm)

#### 진리표로부터 논리식을 구하는 두 가지 방법

- 논리곱의 합(sum of products)으로 표현하는 방법
  - 진리표에서 출력이 1인 논리항을 찾아 논리식을 구함
- 논리합의 곱(product of sums)으로 표현하는 방법
  - 진리표에서 출력이 0인 논리항을 찾아 논리식을 구함



#### 논리곱과 최소항

- 논리곱: 논리변수들이 AND 연산으로 묶인 항.
- 최소항(minterm): 논리변수들이 모두 참여하는 논리곱.
- 예) 입력 변수가 x, y, z일 때
  - 논리곱의 예: yz, x'y'z', xy'z' 등
  - 최소항의 예: x'y'z', x'yz, xy'z 등

논리곱의 합 (sum of products)

- $F1(x,y,z) = x + y \cdot z$
- $F2(x,y,z) = x \cdot y + x' \cdot z$
- $F3(x,y,z) = x' \cdot y' \cdot z' + x \cdot y \cdot z$

# 02 <sup>조합 논리회로</sup> (minterm)

#### 입력 신호의 조합 중에서 출력이 하나만 1인 논리함수

• 출력이 1개만 1이라면 논리곱으로 모든 항을 사용한 최소항을 유추할 수 있다.

#### 입력 {x, y, z}에 대한 최소항

|   | 입력 |   | 최소항 (기호/논리식)             |                         |                         |                        |                         |                        |                        |                       |
|---|----|---|--------------------------|-------------------------|-------------------------|------------------------|-------------------------|------------------------|------------------------|-----------------------|
| Х | у  | Z | m <sub>0</sub><br>x'y'z' | m <sub>1</sub><br>x'y'z | m <sub>2</sub><br>x'yz' | m <sub>3</sub><br>x'yz | m <sub>4</sub><br>xy'z' | m <sub>5</sub><br>xy'z | m <sub>6</sub><br>xyz' | m <sub>7</sub><br>xyz |
| 0 | 0  | 0 | 1                        | 0                       | 0                       | 0                      | 0                       | 0                      | 0                      | 0                     |
| 0 | 0  | 1 | 0                        | 1                       | 0                       | 0                      | 0                       | 0                      | 0                      | 0                     |
| 0 | 1  | 0 | 0                        | 0                       | 1                       | 0                      | 0                       | 0                      | 0                      | 0                     |
| 0 | 1  | 1 | 0                        | 0                       | 0                       | 1                      | 0                       | 0                      | 0                      | 0                     |
| 1 | 0  | 0 | 0                        | 0                       | 0                       | 0                      | 1                       | 0                      | 0                      | 0                     |
| 1 | 0  | 1 | 0                        | 0                       | 0                       | 0                      | 0                       | 1                      | 0                      | 0                     |
| 1 | 1  | 0 | 0                        | 0                       | 0                       | 0                      | 0                       | 0                      | 1                      | 0                     |
| 1 | 1  | 1 | 0                        | 0                       | 0                       | 0                      | 0                       | 0                      | 0                      | 1                     |

### 02 최소항의 합

#### 논리식 구하기

- 1단계: 진리표에 대한 논리식을 최소항의 합으로 표현
  - F = 1이어야 논리곱의 합으로 결과를 유추할 수 있음
- 2단계: 간소화 (부울대수, 인접항 찾기)

#### 진리표에 대한 논리식

○ 최소항의 합

$$F(x,y,z) = x'y'z + x'yz + xyz' + xyz$$

○ 간소화

$$F(x,y,z) = x'z + xy$$

| х | У | Z | F | m <sub>1</sub><br>x'y'z | m <sub>3</sub><br>x'yz | m <sub>6</sub><br>xyz' | m <sub>7</sub><br>xyz |
|---|---|---|---|-------------------------|------------------------|------------------------|-----------------------|
| 0 | 0 | 0 | 0 | 0                       | 0                      | 0                      | 0                     |
| 0 | 0 | 1 | 1 | 1                       | 0                      | 0                      | 0                     |
| 0 | 1 | 0 | 0 | 0                       | 0                      | 0                      | 0                     |
| 0 | 1 | 1 | 1 | 0                       | 1                      | 0                      | 0                     |
| 1 | 0 | 0 | 0 | 0                       | 0                      | 0                      | 0                     |
| 1 | 0 | 1 | 0 | 0                       | 0                      | 0                      | 0                     |
| 1 | 1 | 0 | 1 | 0                       | 0                      | 1                      | 0                     |
| 1 | 1 | 1 | 1 | 0                       | 0                      | 0                      | 1                     |

### 03 무관 조건

#### 무관 조건(don't care condition)

- 특정한 입력 신호 조합이 절대로 발생하지 않거나
   입력 신호에 대한 출력이 회로의 동작에 영향을 주지 않는 조건
- 진리표에 x 또는 d로 표현
- 무관조건이 많을 수록 인접항도 많아질 가능성이 커지므로
  - 논리식이 간단해짐
  - 논리회로가 간단해짐

### 03 무관조건

#### 인에이블(enable)기능이 있는 디코더의 진리표

- 이 장치의 입력은 3비트 / 출력은 4비트
- 입력신호 enable은 장치의 동작 여부를 결정
- Enable = 0이면 장치는 동작하지 않음 / Enable = 1이면 장치가 동작함
- Enable = 0이면 입력신호 D<sub>1</sub>, D<sub>2</sub>는 회로 출력에 영향을 주지 않음
   (=이 두 비트의 입력은 입력 무관조건에 해당됨)

| 입력     |                |       | 출력             |                |         |                |       |  |
|--------|----------------|-------|----------------|----------------|---------|----------------|-------|--|
| Enable | $D_\mathtt{1}$ | $D_0$ | Y <sub>3</sub> | Y <sub>2</sub> | $Y_{1}$ | Y <sub>0</sub> | Valid |  |
| 0      | X              | X     | X              | X              | X       | X              | 0     |  |
| 1      | 0              | 0     | 0              | 0              | 0       | 1              | 1     |  |
| 1      | 0              | 1     | 0              | 0              | 1       | 0              | 1     |  |
| 1      | 1              | 0     | 0              | 1              | 0       | 0              | 1     |  |
| 1      | 1              | 1     | 1              | 0              | 0       | 0              | 1     |  |

< 무관 조건을 포함한 디코더의 진리표 >

### 03 <sup>조합 논리회로</sup> 7-Segment 표시장치



<7-세그먼트 장비> <sup>출처:위키백과</sup>



<7-세그먼트 표시>

#### 8421 BCD 7-세그먼트 표시장치 디코더

- LED 7개가 8자 모양으로 배치
- LED를 켜고 끄면서 숫자 0~9까지 출력하는 장치

#### 입력 신호

- 4개의 입력 신호가 있음 A,B,C,D (A는 MSB)
- 입력 신호는 BCD숫자이므로 0000 부터 1001 까지 10개의 조합 사용
- 1010 ~ 1111까지 6개의 조합은 사용되지 않음

#### 출력 신호

- 7개의 출력 신호 a,b,c,d,e,f,g가 존재
- 각 LED는 1이면 불이 켜지고 0이면 LED가 꺼짐
- 입력 1010 ~ 1111은 출력 무관 조건

### 03 <sup>조합 논리회로</sup> 7-Segment 표시장치

#### 8421 BCD 7-세그먼트 표시장치 디코더



| 16진수 | Α | В | С | D | а | b | С | d | е | f | g |
|------|---|---|---|---|---|---|---|---|---|---|---|
| 0    | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1    | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 2    | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 3    | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 4    | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 5    | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 6    | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 7    | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| 8    | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 9    | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| А    | 1 | 0 | 1 | 0 | X | X | X | X | X | X | X |
| В    | 1 | 0 | 1 | 1 | X | X | X | X | X | X | X |
| С    | 1 | 1 | 0 | 0 | X | X | X | X | X | X | X |
| D    | 1 | 1 | 0 | 1 | X | X | X | X | X | X | X |
| Е    | 1 | 1 | 1 | 0 | X | X | X | X | X | X | X |
| F    | 1 | 1 | 1 | 1 | X | X | X | X | X | X | X |

### 03 <sup>조합 논리회로</sup> 7-Segment 표시장치

8421 BCD 7-세그먼트 표시장치 회로도





### 4.2 산술 조합 논리회로

#### 학습 목표

- 조합 논리 회로로 만든 산술 회로의 동작 이해



## 01 사산기

#### 산술 연산(arithmetic operation)회로

• 2진수 사칙연산과 논리 연산을 수행하는 조합 논리회로

#### 가산기(adder)

- 두개의 이진수를 더하는 조합 논리
- 입력은 두개의 이진 수 / 출력은 합(sum)과 자리 올림(carry)

### 01 <sup>산술 조합 논리회로</sup> 가산기 : 가산기의 종류



반가산기 (HA, half adder)

1비트 2진수 A, B를 더해 S와 자리올림수 C를 구한다.

(a) 반가산기



전가산기 (FA, full adder)

1비트 2진수 A,B그리고 한자리 아래 자리올림수  $C_{in}$ 를 포함한 3개의 비트를 더해 자리올림수  $C_{out}$ 을 구한다.

(b) 전가산기

### 01 <sup>산술 조합 논리회로</sup> 가산기 : 가산기의 종류



C<sub>out</sub> S<sub>3</sub> S<sub>2</sub> S<sub>1</sub> S<sub>0</sub>

(c) 4비트 병렬가산기

병렬 가산기 (PA, parallel adder)

여러 비트 2진수 2개를 더해 합과 자리올림수를 구함

### 01 산술 조합 논리회로 반가산기

#### 반가산기 (half adder)

○ 두 비트(A, B)를 더하여 합(S)와 자리올림수(C)를 계산하는 회로

#### 입출력 변수

○ 입력

: A, B

○ 출력

: S(sum), C(carry)

#### 진리표

| 입 | 입력 |   | 력 | 설명            |  |
|---|----|---|---|---------------|--|
| А | В  | С | S | ; <u>11</u> 0 |  |
| 0 | 0  | 0 | 0 | 0 + 0 = 00    |  |
| 0 | 1  | 0 | 1 | 0 + 1 = 01    |  |
| 1 | 0  | 0 | 1 | 1 + 0 = 01    |  |
| 1 | 1  | 1 | 0 | 1 + 1 = 10    |  |

## 01 산술 조합 논리회로 반가산기

#### 논리식

- $\circ$  S = A $\bigoplus$  B
- $\circ$  C = A  $\cdot$  B

#### 논리회로도





### 01 산술 조합 논리회로 전가산기

#### 전가산기 (full adder)

○ 한 비트 2진수 두 개(A, B)와 아랫단에서 발생한 자리올림수( $C_{in}$ )까지 세 비트를 더하여 합(S)과 자리올림수( $C_{out}$ )를 계산하는 회로

#### 입출력 변수

- 입력
  - : A, B, C<sub>in</sub>(carry in)
- 출력
  - : S(sum), C<sub>out</sub>(carry out)

#### 진리표

|   | 입력 |                 | 출                | 력 | 설명             |
|---|----|-----------------|------------------|---|----------------|
| А | В  | C <sub>in</sub> | C <sub>out</sub> | S | 10             |
| 0 | 0  | 0               | 0                | 0 | 0 + 0 + 0 = 00 |
| 0 | 0  | 1               | 0                | 1 | 0 + 0 + 1 = 01 |
| 0 | 1  | 0               | 0                | 1 | 0 + 1 + 0 = 01 |
| 0 | 1  | 1               | 1                | 0 | 0 + 1 + 1 = 10 |
| 1 | 0  | 0               | 0                | 1 | 1 + 0 + 0 = 01 |
| 1 | 0  | 1               | 1                | 0 | 1 + 0 + 1 = 10 |
| 1 | 1  | 0               | 1                | 0 | 1 + 1 + 0 = 10 |
| 1 | 1  | 1               | 1                | 1 | 1 + 1 + 1 = 11 |

#### 01 <sup>산술 조합 논리회로</sup> 전가산기

#### 논리식

- $S = A \oplus B \oplus C_{in} = (A \oplus B) \oplus C_{in}$
- $C_{out}(carry\ out) = A \cdot B + A \cdot C_{in} + B \cdot C_{in} + A \cdot B \cdot C_{in} = A \cdot B + (A \oplus B) \cdot C_{in}$ .

#### 논리회로도



### 01 병렬 가산기

#### 병렬 가산기 (PA, parallel adder)

• 전 가산기를 여러 개 사용해 여러 비트를 더하는 가산기

#### Ex ) 4 비트를 더하는 가산기



자리올림수: 1110 입력 X 0011 입력 Y 1110 합: 0001

C<sub>0</sub>=0, X=0011, Y=1110일 때, 합(S) = 0001, 자리올림수(C)=1110

# 02 비교기

#### 비트 비교기 (comparator)

○ 두 비트를 비교하여 '크다, 같다, 작다'를 출력하는 회로

#### 입출력 변수



#### 진리표

| 입 | 력 |             |              | į           |       |
|---|---|-------------|--------------|-------------|-------|
| А | В | LT<br>(A'B) | EQ<br>(A⊕B)′ | GT<br>(AB') | 비고    |
| 0 | 0 | 0           | 1            | 0           | 0 = 0 |
| 0 | 1 | 1           | 0            | 0           | 0 < 1 |
| 1 | 0 | 0           | 0            | 1           | 1 > 0 |
| 1 | 1 | 0           | 1            | 0           | 1 = 1 |

# 02 비교기

#### 논리식

$$LT = (A'B)$$

$$// A=0, B=1$$

$$\circ$$
 GT = (AB')

• EQ = A'B' + AB = 
$$(A \oplus B)'$$
 // AB = 00 or 11

#### 논리 회로도



#### ※ 참고(XOR)회로도









### 02 4비트 비교기

#### 두 개의 4비트 2진수를 비교하여 크다(GT), 같다(EQ), 작다(LT) 출력

| 입                                              | <u></u> 력            |    | 출력 |    | 비고    |
|------------------------------------------------|----------------------|----|----|----|-------|
| $A_3A_2A_1A_0$                                 | $B_3B_2B_1B_0$       | LT | EQ | GT |       |
| $X_{3}X_{2}X_{1}0$                             | $X_{3}X_{2}X_{1}1$   | 1  | 0  | 0  |       |
| $X_3X_2$ 0 d                                   | $X_3X_21d$           | 1  | 0  | 0  | A . D |
| X <sub>3</sub> 0 d d                           | $X_3 1 d d$          | 1  | 0  | 0  | A < B |
| 0 d d d                                        | 1 d d d              | 1  | 0  | 0  |       |
| $X_3X_2X_1X_0$                                 | $X_3X_2X_1X_0$       | 0  | 1  | 0  | A=B   |
| X <sub>3</sub> X <sub>2</sub> X <sub>1</sub> 1 | $X_3 X_2 X_1 0$      | 0  | 0  | 1  |       |
| X <sub>3</sub> X <sub>2</sub> 1 d              | $X_3X_20 d$          | 0  | 0  | 1  | A > D |
| X <sub>3</sub> 1 d d                           | X <sub>3</sub> 0 d d | 0  | 0  | 1  | A > B |
| 1 d d d                                        | 0 d d d              | 0  | 0  | 1  |       |



아래 입력에 대한 출력은?

### 02 <sup>산술 조합 논리회로</sup> 4비트 비교기



# 03 패리티 발생기 / 검사기

#### 패리티 비트(parity bit)

- 2진 데이터에 포함된 1의 수를 짝수(또는 홀수)로 맞추도록 추가하는 비트
- 가장 간단한 오류 검출: 홀수 비트 오류 검출, 오류 수정 불가
- 통신: 송신부에서 패리티 생성, 수신부에서 패리티 검사
- XOR연산을 통해 패리티 검출기로 사용 가능

#### 아스키코드에 패리티를 추가한 예

| 아스키코드 | 7비트 코드   | 짝수 패리티     | 홀수 패리티     |
|-------|----------|------------|------------|
| 'A'   | 100_0001 | 0_100_0001 | 1_100_0001 |
| 'T'   | 101_0100 | 1_101_0100 | 0_101_0100 |

### 03 XOR 게이트

#### XOR: 홀수 함수

○ 1의 수가 홀수일 때, 출력 1

| А | В | С | XOR |
|---|---|---|-----|
| 0 | 0 | 0 | 0   |
| 0 | 0 | 1 | 1   |
| 0 | 1 | 0 | 1   |
| 0 | 1 | 1 | 0   |
| 1 | 0 | 0 | 1   |
| 1 | 0 | 1 | 0   |
| 1 | 1 | 0 | 0   |
| 1 | 1 | 1 | 1   |

#### 짝수 패리티 생성기(generator)

- 데이터에 1이 홀수면 1을 추가
- $P = X_6 \oplus X_5 \oplus X_4 \oplus X_3 \oplus X_2 \oplus X_1 \oplus X_0$

#### 짝수 패리티 검사기(checker)

- 데이터에 1이 홀수면 출력 1, 즉 오류 검출
- $\quad \quad \mathsf{C} = \mathsf{P} \oplus \mathsf{X}_6 \oplus \mathsf{X}_5 \oplus \mathsf{X}_4 \oplus \mathsf{X}_3 \oplus \mathsf{X}_2 \oplus \mathsf{X}_1 \oplus \mathsf{X}_0$

### 03 <sup>산술 조합 논리회로</sup> 조합 논리회로 블록빌딩 : XOR 게이트



### 4.3 조합 논리회로 빌딩 블록

#### 학습 목표

- 자주 사용되는 조합 논리회로 빌딩 블록의 동작 이해
- 빌딩 블록(building block) : 규모가 큰 논리회로의 설계를 용이하 게 하기 위해 미리 만들어진 부품



### 01 <sup>조합 논리회로 빌딩 블록</sup> 인코더와 디코더

#### 인코더와 디코더



#### 4비트 인코더

#### 4비트 디코더

| 기호         |       | 입     | 력              | 출력             |                | 코드             |    |
|------------|-------|-------|----------------|----------------|----------------|----------------|----|
|            | $X_3$ | $X_2$ | X <sub>1</sub> | X <sub>0</sub> | Y <sub>1</sub> | Y <sub>0</sub> |    |
| •          | 0     | 0     | 0              | 1              | 0              | 0              | 00 |
| $\Diamond$ | 0     | 0     | 1              | 0              | 0              | 1              | 01 |
| $\Diamond$ | 0     | 1     | 0              | 0              | 1              | 0              | 10 |
| *          | 1     | 0     | 0              | 0              | 1              | 1              | 11 |

| 코드 | 입력             |       |       | 기호    |       |       |            |
|----|----------------|-------|-------|-------|-------|-------|------------|
|    | Y <sub>1</sub> | $Y_0$ | $Z_3$ | $Z_2$ | $Z_1$ | $Z_0$ | 기오         |
| 00 | 0              | 0     | 0     | 0     | 0     | 1     | <b>^</b>   |
| 01 | 0              | 1     | 0     | 0     | 1     | 0     | $\Diamond$ |
| 10 | 1              | 0     | 0     | 1     | 0     | 0     | $\Diamond$ |
| 11 | 1              | 1     | 1     | 0     | 0     | 0     | *          |

### 01 조합 논리회로 빌딩 블록 인코더

#### 인코더 (encoder)

○ 집합의 원소(n개)에 대한 코드 [log2n] 생성

#### 우선순위 인코더(priority encoder)

- 인코더의 입력에 우선순위를 부여한 인코더
- o 예) 4비트 인코더
  - 입력의 모든 조합을 포함하지 않음
  - 입력 신호 중 반드시 1이 하나라도 있을 때 출력이 유효 (V)
  - 입력 신호 중 하나만 1이면 나머지를 살펴볼 필요가 없음

# 01 조합 논리회로 빌딩 블록 인코더

### Ex ) 4비트 우선순위 인코더

|       | 입     | 력              | 출력    |                |                |   |
|-------|-------|----------------|-------|----------------|----------------|---|
| $X_3$ | $X_2$ | X <sub>1</sub> | $X_0$ | Y <sub>1</sub> | Y <sub>0</sub> | V |
| 0     | 0     | 0              | 0     | X              | X              | 0 |
| 0     | 0     | 0              | 1     | 0              | 0              | 1 |
| 0     | 0     | 1              | X     | 0              | 1              | 1 |
| 0     | 1     | X              | X     | 1              | 0              | 1 |
| 1     | X     | X              | X     | 1              | 1              | 1 |

### 01 조합 논리회로 빌딩 블록 다코더

#### 디코더(decoder)

- n비트 코드에 대한 2<sup>n</sup>비트 2진수(one-hot) 출력
- One-hot: 비트 중 하나만 값이 다른 2진수
- 출력은 One-hot 형태로 0값을 갖는 값이 최종 결과로 출력

#### 인에이블 제어선이 있는 디코더

| Е | X <sub>1</sub> | $X_0$ | /Y <sub>3</sub> | /Y <sub>2</sub> | /Y <sub>1</sub> | /Y <sub>0</sub> |
|---|----------------|-------|-----------------|-----------------|-----------------|-----------------|
| 0 | X              | X     | 1               | 1               | 1               | 1               |
| 1 | 0              | 0     | 1               | 1               | 1               | 0               |
| 1 | 0              | 1     | 1               | 1               | 0               | 1               |
| 1 | 1              | 0     | 1               | 0               | 1               | 1               |
| 1 | 1              | 1     | 0               | 1               | 1               | 1               |



### 02 멀티플렉서와 디멀티플렉서



#### 멀티플렉서 & 디멀티플렉서

#### 1. 멀티플렉서 (multiplexer)

- 여러 개의 입력선 중에 하나를 선택하여 출력으로 전달
- 입력 2<sup>n</sup> (스위치 n)→ 출력 1

#### 2. 디멀티플렉서 (demultiplexer)

- 하나의 입력선을 여러 개의 출력선 중 하나로 전달
- 。 입력 1 (스위치 n)→ 출력 2<sup>n</sup>

Ex ) 신호 전달

- 멀티플렉서 선택선 S₁S₀=01
- □멀티플렉서 선택선 S₁S₀=11

$$\underline{X}_1 \underline{\longrightarrow} Y \to \underline{Z}_3 \underline{\qquad}$$

### 02 멀티플렉서와 디멀티플렉서

#### 멀티플랙서/디멀티플랙서 동작의 예



출처:위키백과

### 02 멀티플렉서

### EX ) 멀티플랙서 구현 (2X1)

| S | Υ              |
|---|----------------|
| 0 | $X_0$          |
| 1 | X <sub>1</sub> |

$$Y=S'X_0 + SX_1$$



<게이트로 구성>



<3상태 버퍼 구현 2×1 MUX>

# 02 멀티플렉서

### EX ) 멀티플랙서 구현 (4X1)



출처:위키백과

# 02 디멀티플렉서

### EX ) 디멀티플렉서 = 인에이블이 있는 디코더





| 인에이블 제어선이 있는 디코더 (출력 정논리) |                |       |                |                |                |                |  |  |  |
|---------------------------|----------------|-------|----------------|----------------|----------------|----------------|--|--|--|
| Е                         | X <sub>1</sub> | $X_0$ | Y <sub>3</sub> | Y <sub>2</sub> | Y <sub>1</sub> | Y <sub>0</sub> |  |  |  |
| 0                         | Χ              | Χ     | 0              | 0              | 0              | 0              |  |  |  |
| 1                         | 0              | 0     | 0              | 0              | 0              | 1              |  |  |  |
| 1                         | 0              | 1     | 0              | 0              | 1              | 0              |  |  |  |
| 1                         | 1              | 0     | 0              | 1              | 0              | 0              |  |  |  |
| 1                         | 1              | 1     | 1              | 0              | 0              | 0              |  |  |  |

| 디멀티플렉서         |       |       |                |       |                |  |  |  |  |
|----------------|-------|-------|----------------|-------|----------------|--|--|--|--|
| S <sub>1</sub> | $S_0$ | $Z_3$ | Z <sub>2</sub> | $Z_1$ | Z <sub>0</sub> |  |  |  |  |
| 0              | 0     | 0     | 0              | 0     | Е              |  |  |  |  |
| 0              | 1     | 0     | 0              | E     | 0              |  |  |  |  |
| 1              | 0     | 0     | E              | 0     | 0              |  |  |  |  |
| 1              | 1     | Е     | 0              | 0     | 0              |  |  |  |  |

# 02 디멀티플렉서

### EX ) 2X4 디멀티플렉서



출처:위키백과



### Part 2

4.4 퀴즈

4.5 요약

### 01 <sup>조합 논리회로</sup> 문제

#### 알파벳이 표현 가능한 7-세그먼트의 진리표를 작성하시오.



| 16진수 | Α | В | С | D | а | b | С | d | е | f | g |
|------|---|---|---|---|---|---|---|---|---|---|---|
| Α    | 1 | 0 | 1 | 0 |   |   |   |   |   |   |   |
| В    | 1 | 0 | 1 | 1 |   |   |   |   |   |   |   |
| С    | 1 | 1 | 0 | 0 |   |   |   |   |   |   |   |
| D    | 1 | 1 | 0 | 1 |   |   |   |   |   |   |   |
| E    | 1 | 1 | 1 | 0 |   |   |   |   |   |   |   |
| F    | 1 | 1 | 1 | 1 |   |   |   |   |   |   |   |

| L | L | L | 0 | 0 | 0 | l. | τ | τ | τ | τ | 4    |
|---|---|---|---|---|---|----|---|---|---|---|------|
| L | L | L | L | 0 | 0 | L  | 0 | τ | τ | τ | 3    |
| L | 0 | L | L | L | L | 0  | Ţ | 0 | τ | τ | а    |
| 0 | L | L | L | 0 | 0 | L  | 0 | 0 | τ | τ | Э    |
| L | L | L | L | L | 0 | 0  | τ | τ | 0 | τ | 8    |
| L | L | L | 0 | L | L | L  | 0 | Ţ | 0 | τ | A    |
| 3 | j | ә | р | э | q | 6  | а | Э | 8 | A | 수진91 |

급유

### 02 조합 논리회로 요약 소합 논리회로 요약

#### 4.1 조합 논리회로 소개

- 조합 논리회로의 동작 표현 : 진리표, 논리식, 논리회로도
- 무관 조건 : 출력에 영향을 주지 않는 입력 조건

#### 4.2 산술 조합 논리회로 소개

- 가산기 & 비교기
- 패리티 발생기 / 검사기

#### 4.3 조합 논리회로 빌딩 블록

- 인코더 & 디코더
- 멀티플렉서 & 디멀티플렉서

#### 제 5장 순차 논리소자

- 래치, 플립플롭 : 1비트 기억 소자
- 레지스터 : n비트 기억 소자

# 02 조합 논리회로 소개

#### 조합 논리회로와 동작 표현 방법





#### 진리표에서 논리식 구하는 방법

- 1. 논리식을 최소항의 합으로 표현한다.
- 2. 부울대수 공식으로 간소화 한다.

#### 무관조건 (don't care condition)

. • 회로의 동작에 영향을 주지 않는 입력 조합이나 출력

# 02 산술 논리회로

산술 회로

◦ 입력에 대한 출력이 항상 같다. 따라서 조합 논리회로.

#### 가산기

○ 반가산기

(Carry, Sum)  $\leq$  A + B

○ 전가산기

(Carry, Sum)  $\leftarrow$  A + B + C<sub>in</sub>

○ 병렬 가산기

(Carry,  $S_3S_2S_1S_0$ ) <=  $A_3A_2A_1A_0 + B_3B_2B_1B_0$ 

#### 비교기

○ 1비트 비교기

(LT, EQ, GT) <= (A==B)

○ 4비트 비교기

(LT, EQ, GT)  $<= (A_3A_2A_1A_0 == B_3B_2B_1B_0)$ 

#### 패리티 발생기 / 검사기

o XOR 게이트

홀수 발생기

# 02 조합 논리회로 빌딩블록

#### 인코더

- 코드를 만드는 회로
- 여러 장치가 프로세서로 전달하는 신호를 받아 코드를 전달

#### 디코더

- 코드를 푸는 회로
- 기억장치 주소를 입출력장치 선택선으로 변환

#### 멀티플렉서

- 여러 개의 입력 중 하나를 선택
- 신호를 시스템 버스로 연결

#### 디멀티플렉서

- 하나의 신호를 여러 곳 중 하나로 전달
- 시스템 버스의 신호를 여러 레지스터 중 하나로 연결