

Volume: 04 Issue: 05 | Sep-Oct 2023 ISSN: 2660-4159

<http://cajmns.centralasianstudies.org>

Оценка Взаимосвязи Показателей Вариабельности Сердечного Ритма У Больных Гипертонической Болезнью С Различными Типами Ремоделирования Левого Желудочка

1. Хасанжанова Ф. О.
2. Саидов М. А.
3. Низамов Х. Ш.
4. Аскаров И. К.

Received 2nd Aug 2023,
Accepted 19th Sep 2023,
Online 12th Oct 2023

¹ Самаркандский государственный медицинский университет

² Ташкентский национальный детский медицинский центр

^{3,4} Самаркандский региональный филиал Республиканского научно-практического медицинского центра кардиологии, Самарканд, Узбекистан

Аннотация: В данной научной работе оценено показатели суточной вариабельности сердечного ритма и установлено взаимосвязь с изменениями геометрической модели сердца у больных с артериальной гипертензией. В исследование было включено 75 пациентов, в возрасте от 45 до 75 лет (средний возраст $61,1 \pm 8,9$ лет), из них 44 мужчин (58,7%) и 31 (41,3%) женщина с эссенциальной артериальной гипертензией госпитализированных в отделение артериальной гипертензии Самаркандского регионального филиала Республиканского научно-практического медицинского центра кардиологии (СРФ РНПМЦК). У всех обследованных пациентов проводилось суточное мониторирование ЭКГ. Структурно-функциональные параметры ЛЖ оценивались с помощью эхокардиографии (ЭхоКГ). Анализ результатов нашего исследования показал, что при изучении показателей вариабельности ритма сердца в зависимости от типов ремоделирования левого желудочка в группе больных с концентрической гипертрофией показатели вариабельности ритма сердца самые низкие. В группе больных с нормальной геометрией отмечались незначительные изменения показателей вариабельности сердечного ритма.

Ключевые слова: вариабельность сердечного ритма, эксцентрическая, концентрическая, гипертрофия левого желудочка, артериальная гипертензия и др.

Актуальность

Артериальная гипертония (АГ) в большинстве развитых стран мира представляет собой одну из важнейших медико-социальных проблем. Важнейшими факторами риска возникновения и развития артериальной гипертонии являются нарушения функционального состояния центральной и вегетативной нервной системы (ВНС) [1, 5, 16]. В последние годы показано, что вариабельность ритма сердца (ВСР) является информативным методом оценки общей активности регуляторных механизмов, нейрогуморальной регуляции сердца, соотношения между симпатическим и парасимпатическим отделами ВНС [2, 6, 16]. Существует представление о том, что ВСР является выходным сигналом системы вегетативной регуляции сердца. Соответственно, вариабельность ритма сердца, отражает работу сердечно-сосудистой системы и работу механизмов регуляции целостного организма. Известно, что при АГ влияние гемодинамических и негемодинамических факторов приводит к развитию ремоделирования сердца [3, 7, 17].

Дисбаланс вегетативной нервной системы (ВНС) способствует формированию АГ и ее осложнений. Проведение исследования вариабельности сердечного ритма (ВСР) позволяет оценить состояние нейрогуморальной регуляции сердечного ритма больного, которое нужно учитывать при назначении лечения, так как известна связь снижения ВСР со смертностью от сердечно-сосудистых заболеваний, в том числе и при АГ [4, 8, 18]. Поэтому изучение ВСР и выявление специфических патофизиологических механизмов, влияющих на вегетативный статус больных АГ, является важной областью исследований. В проспективных исследованиях установлено, что концентрическая гипертрофия левого желудочка (КГЛЖ) ассоциирована с неблагоприятным прогнозом у больных АГ [3, 9, 19]. При анализе доступной литературы нами обнаружено несколько работ, где изучалась ВСР в зависимости от типа геометрии миокарда ЛЖ, но результаты их противоречивы [12, 14, 15]. К настоящему времени накоплено недостаточное количество информации о взаимосвязях ВСР с показателями диастолической функции ЛЖ [11, 20], о состоянии диастолической функции в зависимости от типа геометрии ЛЖ [13, 16], отсутствует информация о влиянии на ВСР состояния микроциркуляции (МЦ) при АГ. Несмотря на большое количество работ, посвященных ВСР у больных АГ, некоторые показатели спектрального анализа остаются недостаточно изученными. Так, мало внимания уделено исследованию волн очень низкой частоты (VLF). Предполагается, что они имеют отношение преимущественно к эрготропной нейрогенной регуляции и метаболическим процессам [4, 15]. По рекомендациям, выработанным Рабочей группой Европейского кардиологического общества и Североамериканского общества стимуляции и электрофизиологии (1996), их не следует учитывать при проведении интерпретации ВСР. Однако данные волны занимают большую часть спектра кардиоритма у больных АГ, и требуется определение их клинического значения у больных АГ [17, 20].

Ремоделирование сердца, представляющее собой процесс комплексного нарушения его структуры и функции, включает увеличение массы миокарда, дилатацию полостей и изменение геометрической характеристики желудочков, нарушение систолической и диастолической функций, которые являются предвестниками и одновременно предикторами декомпенсации сердечной деятельности [15, 19].

Изучению вариабельности ритма сердца при гипертонической болезни посвящено множество работ (Тарский Н.А. и соавт., 2000; Langewitz W. et al., 1994), однако большинство из них не уделяет внимания прикладному значению метода. Представляется актуальным возможность использования анализа вариабельности ритма сердца для оценки тяжести течения заболевания и подбора антигипертензивной терапии. Вопрос практического применения анализа 4

вариабельности ритма сердца у больных гипертонической болезнью изучен недостаточно [1, 18].

Цель исследования: оценка показателей суточной вариабельности сердечного ритма и установление взаимосвязи с изменениями геометрической модели сердца у больных с артериальной гипертензией.

Материал и методы исследования. В исследование было включено 85 пациентов, в возрасте от 45 до 75 лет (средний возраст $61,1 \pm 8,9$ лет), из них 44 мужчин (58,7%) и 41 (41,3%) женщина с эссенциальной артериальной гипертензией госпитализированных в отделение артериальной гипертензии Самаркандинского регионального филиала Республиканского научно-практического медицинского центра кардиологии (СРФ РНПМЦК). У всех обследованных пациентов проводилось суточное мониторирование ЭКГ. Структурно-функциональные параметры ЛЖ оценивались с помощью эхокардиографии (ЭхоКГ).

Вычисляли индекс массы миокарда левого желудочка (иММЛЖ) - отношение массы миокарда левого желудочка к величине площади поверхности тела больного, г/м². Рассчитывали относительную толщину стенок миокарда (ОТС), за повышение ОТС принимались значения 0,45 и более. На основании данного критерия проводилось распределение на концентрический и эксцентрический типы геометрии ЛЖ по рекомендации A. Ganau (1992). Геометрическую модель ЛЖ оценивали по показателям ОТС ЛЖ и индекса ММ ЛЖ (ИММ ЛЖ) [1, 13, 17]. При ИММ ЛЖ <показателей контрольной группы при ОТС ЛЖ <0,45 оценивали как НМ ЛЖ – нормальная масса миокарда. При ИММ ЛЖ> показателей контроля и ОТС ЛЖ <0,45 рассматривали как ЭГ ЛЖ. При ИММ ЛЖ> данных группы контроля и ОТС ЛЖ> 0,45 – как КГ ЛЖ. При ИММ ЛЖ <контрольных значений и ОТС ЛЖ> 0,45 оценивали как КР ЛЖ [17]. Гипертрофию миокарда ЛЖ диагностировали при показателях ИММ ЛЖ более или равных 125 г/м² для мужчин и 110 г/м² для женщин [1,5].

Всем исследуемым проводили суточное мониторирование ЭКГ (СМ ЭКГ). ХМЭКГ проводился с помощью компьютерной системы «CardioSens +V3.0» с непрерывной 24-часовой записью ЭКГ с последующим автоматизированным анализом на IBM PC совместимом компьютере. При оценке показателей ВСР опирались на рекомендации Европейского общества кардиологии и Североамериканского общества кардиостимуляции и электрофизиологии, где описаны стандарты измерения, физиологическая интерпретация и клиническое использование ВСР.

Результаты исследования: в результате проведенных исследований у подавляющего количества обследованных пациентов с АГ выявлены изменения геометрической модели сердца. Однако имелись определенные особенности РС в каждой группе больных. Доминировали больные с концентрической гипертрофией (КГ) ЛЖ 25 пациентов (33,3%). Эксцентрическая гипертрофия (ЭГ) ЛЖ была выявлена у 20 пациентов (20%), концентрическое ремоделирование (КР) ЛЖ – у 14 пациентов (18,7%). Нормальная геометрия сердца наблюдалась у 21 пациентов (28%). При анализе ВСР самый высокий показатель SDNN и SDANN отмечался у пациентов с нормальной геометрией ($105,6 \pm 24,9$ и $92,2 \pm 21,8$ соответственно). Достоверная разница в показателях SDNN ($58,1 \pm 13,4$) и SDANN ($44,8 \pm 12,2$) отмечалась в группе больных с концентрическим типом гипертрофией ($p < 0,05$). В группе больных с концентрическим ремоделированием и эксцентрической гипертрофией также отмечалось снижение показателей общей вариабельности ритма сердца, но эти результаты не были достоверными ($p > 0,05$).

При анализе показателей ТР (суммарная мощность спектра ВСР в мс²) выявлено, что в группе больных с нормальной геометрией он составил $1602,8 \pm 681,3$ мс², у больных с концентрическим типом ремоделирования $1358,7 \pm 563,6$ мс², в группе больных с эксцентрической гипертрофией

1110,7±652,3 мс², и наконец самый низкий показатель в группе с концентрической гипертрофией 1002,5±478,9 мс². Эта разница не является достоверной, хотя отмечается тенденция к снижению по показателям ТР в группе больных с концентрической гипертрофией, что свидетельствует о нарушении вегетативной регуляции и к снижению способности адаптации к стрессовым факторам у всех обследованных нами больных.

Показатель LF (мощность спектра низкочастотного компонента вариабельности) у больных с нормальной геометрией составил 448,3±99,2 мс², с концентрическим ремоделированием 242,7±59,1 мс², с эксцентрической гипертрофии 203,5±102,5 мс². Достоверная разница в показателе LF отмечалась в группе больных с концентрической гипертрофией и была равна 163,9±72,5 ($p<0,01$). Это указывает на умеренный уровень мобилизующего потенциала у больных с нормальной геометрией. Во всех остальных группах отмечался низкий уровень мобилизующего потенциала.

Результаты многих исследований свидетельствуют о значительном влиянии ремоделирования сердца (РС) на прогноз в отношении становления и прогрессирования сердечной недостаточности, возникновения аритмий. Значительная разница в разных группах больных наблюдалась и по показателю HF (мощность спектра высокочастотного компонента вариабельности): HF у больных с эксцентрической гипертрофией был почти в два раза ниже (72,8±24,4 мс²) чем у больных с нормальной геометрией (146,8±53,5 мс²), а у больных с концентрической гипертрофией – почти в три раза (56,9±19,9 мс²). Это свидетельствует о низком влиянии парасимпатической нервной системы и низком уровне восстановительного потенциала.

По показателям VLF (мощность спектра очень низкочастотного компонента вариабельности) данные в группах несколько отличаются. Самые высокие показатели отмечаются в группе больных с эксцентрической (855,8±215,2) и концентрической гипертрофией (1174,6±316,7). Данные по соотношению симпатической и парасимпатической нервной системы LF/HF (Отношение средних значений низкочастотного и высокочастотного компонента ВРС) достоверных отличий в группах не отмечалось. Самый высокий показатель отмечался в группе больных с нормальной геометрией (3,30±1,03), а самый низкий – в группе с концентрическим ремоделированием (2,45±0,62).

Выводы: таким образом, анализ результатов нашего исследования показал, что при изучении показателей вариабельности ритма сердца в зависимости от типов ремоделирования левого желудочка в группе больных с концентрической гипертрофией показатели вариабельности ритма сердца самые низкие. В группе больных с нормальной геометрией отмечались незначительные изменения показателей вариабельности сердечного ритма.

Список литературы:

1. Белов, Ю. В., and В. А. Вараксин. "Структурно-геометрические изменения миокарда и особенности центральной гемодинамики при постинфарктном ремоделировании левого желудочка." *Кардиология* 43.1 (2003): 19-19.
2. Бокерия, Л. А., et al. "Оценка ремоделирования левого желудочка." (2009).
3. Бокерия, Л. А., Ю. И. Бузиашвили, and И. В. Ключников. "Ишемическое ремоделирование левого желудочка (методологические аспекты, вопросы диагностики и лечения)." (2002).
4. Васюк, Ю. А., et al. "Особенности диастолической функции и ремоделирования левого желудочка у больных артериальной гипертензией и ишемической болезнью сердца." *Журнал сердечная недостаточность* 4.4 (2003): 190-192.

5. Волков, В. С., О. Б. Поселюгина, and С. А. Нилова. "Особенности ремоделирования левого желудочка сердца у больных артериальной гипертонией, потребляющих большое количество поваренной соли." *Кардиоваскулярная терапия и профилактика* 9.4 (2010): 32-35.
6. Иванов, А. П., and И. А. Выжимов. "Ремоделирование левого желудочка у больных артериальной гипертонией." *Клиническая медицина* 84.5 (2006): 38-42.
7. Иванова, С. В., et al. "Прогностическое значение ремоделирования левого желудочка у больных артериальной гипертензией." *Российский кардиологический журнал* 12 (140) (2016): 39-44.
8. Иванова, С. В., et al. "Прогностическое значение ремоделирования левого желудочка у больных артериальной гипертензией." *Российский кардиологический журнал* 12 (140) (2016): 39-44.
9. Калюжин, Вадим Витальевич, et al. "Ремоделирование левого желудочка: один или несколько сценариев?." *Бюллетень сибирской медицины* 15.4 (2016): 120-139.
10. Кобалава, Ж. Д., et al. "Эхокардиографическая оценка фиброза миокарда у молодых мужчин с артериальной гипертонией и разными типами ремоделирования левого желудочка." *Кардиология* 51.2 (2011): 34-39.
11. Кузнецов, Г. Э. "Клинико-морфологические параллели ремоделирования левого желудочка при хронической сердечной недостаточности." *Кардиология* 43.12 (2003): 19-22.
12. Мазур, В. В., Е. С. Мазур, and Ч. Б. Пун. "Особенности постинфарктного ремоделирования левого желудочка сердца у больных артериальной гипертонией." *Кардиология* 44.7 (2004): 53-56.
13. Муркамилов, Илхом Торобекович, et al. "Взаимосвязь гипертриглицеридемии и типов ремоделирования левого желудочка у больных хронической болезнью почек." *Терапевтический архив* 91.6 (2019): 95-101.
14. Пулатов, Шухрат Шуропович, Амира Асроровна Рузиева, and Фарида Одыловна Хасанжанова. "Аспекты Кардиопротекции Пациентов Хронической Сердечной Недостаточности, Как Последствие Инфаркта Миокарда." *Periodica Journal of Modern Philosophy, Social Sciences and Humanities* 17 (2023): 133-136.
15. Ризаев, Жасур Алимжанович, et al. "АНАЛИЗ УРОВНЯ ИНФОРМИРОВАННОСТИ БОЛЬНЫХ С КАРДИОВАСКУЛЯРНЫМИ ЗАБОЛЕВАНИЯМИ О ВЫСОКОТЕХНОЛОГИЧНОЙ МЕДИИНСКОЙ ПОМОЩИ В САМАРКАНДСКОЙ ОБЛАСТИ."
16. Ризаев, Жасур Алимжанович, Максуд Арифович Сайдов, and Фарида Одыловна Хасанжанова. "СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАСПРОСТРАНЕННОСТИ И ИСХОДА СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ СРЕДИ НАСЕЛЕНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН." *Journal of cardiorespiratory research* 1.1 (2023): 18-23.
17. Терегулов, Ю. Э., Терегурова, Е. Т., Маянская, С. Д., & Латипова, З. К. (2014). Ремоделирование левого желудочка: геометрические и электрокардиографические сопоставления. *Практическая медицина*, (3 (79)), 149-154.
18. Хасанжанова, Фарида Одыловна, and Мумин Шамсиевич Рофеев. "Часто встречающиеся факторы риска при инфаркте миокарда у мужчин молодого возраста при разных исходах заболевания." *Актуальные научные исследования в современном мире* 10-7 (2019): 87-90.

19. Хасанжанова, Фарида Одыловна, and X. A. Авазова. "Особенности Клинического Течения Инфаркта Миокарда С Хронической Сердечной Недостаточностью У Больных В Молодом Возрасте." *Central Asian Journal of Medical and Natural Science* 4.2 (2023): 637-640.
20. Хасанжанова, Фарида Одыловна, Улугбек Азимжон Угли Мардонов, and Тохиржон Шомирза Угли Юсупов. "Факторы, неблагоприятно влияющие на исход лечения больных с острым коронарным синдромом в молодом и пожилом возрасте." *Проблемы современной науки и образования* 11-1 (144) (2019): 94-97.

