Feuille de TD 6 : Fonctions réciproques

Exercice 1. Images des fonctions

Donner, dans chacun des cas suivants, l'image des intervalles indiqués par les fonctions données.

- 1. Soit $f: x \mapsto x^2$. Calculer $f([-1, -1/2]), f([1, 3]), f([0, +\infty[), f([-1, 1]))$.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 2x si x > 0 et f(x) = 3 x si $x \le 0$. Calculer f([-2, 2]) et f([0, 1]).
- 3. Soit $f: x \mapsto x^2 1$. Calculer $f([0, +\infty[) \text{ et } f(\mathbb{R}).$
- 4. Soit $f: x \mapsto x^3 3x$. Calculer f([-3/2, 3/2]).
- 5. Calculer $tan(] \pi/2, \pi/2[)$.
- 6. Calculer $\cos([0, 2\pi])$.

Exercice 2. Vrai ou Faux?

- 1. Si f est continue sur I, alors elle a une fonction réciproque.
- 2. Si $f: I \to J$ a une fonction réciproque f^{-1} , alors $\forall x \in J \ f(f^{-1}(x)) = 1$.
- 3. Si $f: I \to J$ a une fonction réciproque f^{-1} , alors $\forall x \in I \ f(x)f^{-1}(x) = 1$.
- 4. Si $f: I \to J$ a une fonction réciproque f^{-1} , alors $\forall x \in I$ $f^{-1}(f(x)) = x$.
- 5. Si $f: I \to J$ a une fonction réciproque f^{-1} , alors $\forall x \in J \ f(f^{-1}(x)) = x$.
- 6. Si $f:]2, +\infty[\to \mathbb{R}$ est bijective et $\lim_{x\to 2} f(x) = +\infty$, alors $\lim_{x\to +\infty} f^{-1}(x) = 1/2$.
- 7. Une fonction continue croissante a une fonction réciproque.
- 8. Si f est bijective, alors f^{-1} est bijective.
- 9. Si f est bijective et bornée, alors f^{-1} est bornée.
- 10. Si f et g sont des bijections de \mathbb{R} dans \mathbb{R} , alors $(f \circ g)^{-1} = f^{-1} \circ g^{-1}$.

Exercice 3. fonction réciproque d'une fraction rationnelle

Sur quels intervalles la fonction $f: x \mapsto \frac{x^3}{1+3x^4}$ admet-elle une réciproque. On définit f^{-1} comme la réciproque de f sur l'intervalle [-1,1]. Sur quel ensemble f^{-1} est elle dérivable? Calculer cette dérivée en $f(\frac{1}{2})$.

Exercice 4. fonction réciproque

On définit $f \sup [\pi/3, \pi] \operatorname{par} f(x) = 2 \cos x - \cos(2x)$.

- 1. Montrer que f admet une fonction réciproque h dont on précisera l'intervalle de définition. En quels points h est-elle continue? Dérivable?
- 2. Calculer $h(\sqrt{2})$ et h(1), puis $h'(\sqrt{2})$ et h'(1).

Exercice 5. Développements limités et fonctions réciproques

- 1. Montrer que la fonction $f: x \mapsto x + \ln(1+x)$ définit une bijection de $]-1,+\infty[$ sur un intervalle J que l'on précisera.
- 2. On admet que f^{-1} a un DL à l'ordre 3 en 0. En écrivant $f^{-1}(f(x)) = x$, trouver ce DL.

Exercice 6. Développements limités des fonctions trigonométriques inverses

Donner les DL à l'ordre 5 en 0 de arccos, arcsin, arctan.

Exercice 7. fonctions trigonométriques et réciproques

Calculer $\arcsin(\sin \alpha)$, $\arccos(\cos \alpha)$ et $\arctan(\tan \alpha)$ dans les cas : $\alpha = \frac{\pi}{5}$, $\alpha = -\frac{\pi}{7}$, $\alpha = \frac{13}{5}\pi$.

Exercice 8. Identités

Vérifier les identités suivantes :

- 1. $Arcsin x + Arccos x = \frac{\pi}{2}$
- 2. Arctan $x + Arctan \frac{1}{x} = signe(x) \frac{\pi}{2}$

Exercice 9. Problème

On considère la fonction réelle f définie sur $I=]-\frac{\pi}{2},\frac{\pi}{2}[$ par :

$$f(x) = \frac{e^{\tan(x)} - e^{-\tan(x)}}{e^{\tan(x)} + e^{-\tan(x)}}.$$

- 1. Calculer f'(x) pour $x \in I$.
- 2. Déterminer l'image $J=f(]-\frac{\pi}{2},\frac{\pi}{2}[)$ de $]-\frac{\pi}{2},\frac{\pi}{2}[$ par f et montrer que f admet une application réciproque f^{-1} définie sur J.
- 3. Calculer $tan(f^{-1}(x))$ pour $x \in J$.
- 4. Déterminer la dérivée de la fonction f^{-1} .