*QUÍMICA GENERAL

2020

TEMA 2 FUNDAMENTOS DE QUIMICA INORGÁNICA

- o Número de oxidación.
- Compuestos inorgánicos: óxidos básicos y ácidos; hidróxidos, oxoácidos, hidruros metálicos y no metálicos. Sales binarias y ternarias.
- o Minerales. Cristales: tipos, formación.
- El mol. Estequiometría. Análisis cualitativo inorgánico.

*COMPUESTOS INORGÁNICOS.

*CONCEPTOS DE ESTEQUIOMETRÍA.

COMPUESTOS INORGÁNICOS. ESTEQUIOMETRÍA

- Todas las Familias de Compuestos Inorgánicos (su Formulación, Nomenclatura y Ecuaciones de Formación), lo vieron en las clases de problemas, por lo tanto, no lo veremos aquí nuevamente.
- Lo mismo ocurre con los conceptos Estequiométricos.
- ESO IMPLICA QUE EN EL FINAL SE PREGUNTEN ÉSTOS PUNTOS.

*MINERALES.

MINERAL

• Es un sólido homogéneo por naturaleza con una composición química definida (pero generalmente no fija) y una disposición atómica ordenada.

Fórmula química del *cuarzo*: SiO₂

Fórmula química de la dolomita: $Ca(Mg, Fe, Mn)(CO_3)_2$

MINERALES

LOCALIZACIÓN

• Suelo: material producido por los efectos de meteorización y la acción de plantas y animales sobre las rocas de la superficie de la tierra.

Componentes del suelo y promedios normales

CLASIFICACIÓN

• Silicatos: son aquellos minerales que contienen silicio en su composición.

Ejemplos:

- Cuarzo.
- Feldespato.
- Micas.
- Olivino.

CLASIFICACIÓN

Silicatos con estructuras tetraédricas tridimensionales → FELDESPATOS

CLASIFICACIÓN

• No Silicatos: son aquellos minerales que no contienen silicio en su composición.

Ejemplos:

- Elementos Nativos.
- Óxidos.
- Sulfuros, Sulfatos.
- Carbonatos.
- Haluros.

CLASIFICACIÓN QUÍMICA

1	Elementos nativos	Oro (Au) - Cobre (Cu) - Azufre (S)
2	Sulfuros	Galena PbS - Esfalerita ZnS - Pirita FeS ₂ - Calcopirita CuFeS ₂ - Argentita Ag ₂ S - Molibdenita MoS ₂
3	Haluros	Halita NaCl - Silvinita KCl - Fluorita CaF ₂
4	Óxidos e Hidróxidos	Cuarzo SiO ₂ - Corindón Al ₂ O ₃ - Hematita Fe ₂ O ₃ - Magnetita Fe ₃ O ₄ - Pirolusita MnO ₂
5	Carbonatos	Calcita CaCO ₃ - Dolomita CaMg(CO ₃) ₂
6	Sulfatos ,_Wolframatos, Molibdatos y Cromatos	Yeso (CaSO ₄ . 2H ₂ O) - Anhidrita (CaSO ₄) - Baritina (BaSO ₄)
7	Fosfatos , Arseniatos y Vanadatos	Apatita Ca ₅ [(F, Cl, OH)/PO ₄) ₃]
8	Silicatos	Feldespatos (SiO ₄) ⁴⁻

1	Elementos nativos	Oro	Fórmula: Au Dureza: 2,5 - 3 Densidad: 15,5 - 19,3 g/cm ³ Color: amarillo, dorado Brillo: metálico Sistema cristalino: cúbico
2	Sulfuros	1cm WG2002 Pirita	Fórmula: FeS ₂ Dureza: 6 – 6,5 Densidad: 5,1 g/cm ³ Color: dorado amarillo Color de la raya: pardo-oscuro verdoso Brillo: metálico Sistema cristalino: cúbico
3	Haluros	halita	Fórmula: NaCl Dureza: 2 Densidad: 2,1 – 2,2 g/cm³ Color: incoloro o blanco (puro), rosado Color de la raya: blanco Brillo: vítreo Sistema cristalino: cúbico
4	Óxidos e Hidróxidos	Cuarzo	Fórmula: SiO ₂ Dureza: 7 Densidad: 2,65 g/cm ³ Color: incoloro (cuarzo puro), blanco Color de la raya: blanco Brillo: vítreo, oleoso Sistema cristalino: hexagonal (>573°C), trigonal (< 573°C)

5	Carbonatos	calcita	Fórmula: CaCO ₃ Dureza: 3 Densidad: 2,7 g/cm ³ Color: incoloro, blanco o coloreado en tonos claros Color de la raya: blanco Brillo: vítreo, nacarado o mate Sistema cristalino: trigonal
6	Sulfatos , Wolframatos, Molibdatos y Cromatos	yeso	Fórmula: Ca[SO ₄] x 2 H ₂ O Dureza: 1,5 - 2 Densidad: 2,3 -2,4 g/cm ³ Color: blanco Color de la raya: blanco Brillo: vítreo Sistema cristalino: monoclínico
7	Fosfatos , Arseniatos y Vanadatos	apatita	Fórmula: Ca ₅ [(F, Cl, OH)/PO ₄) ₃] Dureza: 5 Densidad: 3,16 - 3,22 g/cm ³ Color: Variable (verdoso, azul, violeta) Color de la raya: blanco Brillo: vítreo o graso Sistema cristalino: hexagonal
8	Silicatos	feldespatos	Fórmula: KAISi ₃ O ₈ / NaAlSi ₃ O ₈ Dureza: 6 a 6,5 Densidad: 2,62 g/cm ³ Color: blanco, gris, verde, azul, rojizo Brillo: vítreo Sistema cristalino: triclínico

CARACTERÍSTICAS

• Son componentes naturales y materialmente individuales de la corteza terrestre rígida.

Principales características:

- Origen natural.
- Inorgánicos.
- Composición química definida.
- Sólidos.
- Homogéneos.
- Cristalinos (mayoría) u amorfos.

PROPIEDADES FÍSICAS

- Morfología.
- Dureza.
- Exfoliación y fractura.
- * Brillo.
- * Color.
- * Otras: densidad, solubilidad, conductividad eléctrica, magnetismo, luminiscencia, fluorescencia.

Morfología

• Un mineral siempre cristaliza en un mismo sistema cristalino y es consecuencia de la ordenación interna de las partículas (átomos, iones, moléculas, etc.) que lo componen.

Morfología. Sistemas Cristalinos

1. Poseen formas cristalográficas propias.

<u>Ejemplo</u>: el NaCl (*sal común*) cristaliza en el sistema cúbico. El *cuarzo* cristaliza en el sistema hexagonal.

Morfología. Sistemas Cristalinos

2. Se describen por sus ejes cristalográficos (7 sistemas).

Por los ángulos que respectivamente 2 de los ejes cristalográficos rodean, y por las longitudes de los ejes

Tetragonal

 $a = b \neq c$

 $\alpha = \beta = \gamma = 90^{\circ}$

cristalográficos

Monoclínica

 $\gamma \neq \alpha = \beta = 90^{\circ}$

 $a \neq b \neq c$

Triclínica

 $a \neq b \neq c$

 $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

Morfología. Hábito

- ✓ Lo que nosotros vemos a simple vista.
- ✓ Es el aspecto externo que presenta un mineral individual o un agregado de minerales, y que no está relacionado con la estructura atómica.

DUREZA

 Es la resistencia que opone un mineral a la deformación mecánica.

DUREZA

 La dureza de un mineral depende de su composición química y también de la disposición de sus átomos. Cuanto más grandes son las fuerzas de enlace, mayor será la dureza del mineral.

<u>Ejemplo</u>: los dos alótropos del carbono, el diamante y el grafito.

DUREZA. ESCALA DE MOHS

Dureza	Mineral	Comparación	Composición Química
1	Talco	La uña lo raya con facilidad	Mg ₃ Si ₄ O ₁₀ (OH) ₂
2	Yeso	La uña lo raya	CaSO ₄ .2H ₂ O
3	Calcita	La punta de un cuchillo lo raya con facilidad	CaCO ₃
4	Fluorita	La punta de un cuchillo lo raya	CaF ₂
5	Apatita	La punta de un cuchillo lo raya con dificultad	Ca ₅ (PO ₄) ₃ (OH-,Cl-,F-)
6	Feldespato Potásico	Un trozo de vidrio lo raya con dificultad	KAISi ₃ O ₈
7	Cuarzo	Puede rayar un trozo de vidrio y con ello el acero despide chispas	SiO ₂
8	Topacio	Puede rayar un trozo de vidrio y con ello el acero despide chispas	Al ₂ SiO ₄ (OH-,F-) ₂
9	Corindón	Puede rayar un trozo de vidrio y con ello el acero despide chispas	Al ₂ O ₃
10	Diamante	Puede rayar un trozo de vidrio y con ello el acero despide chispas	С

DUREZA

BRILLO

 Es la capacidad de un mineral de reflejar la luz incidente.

M	et	ál	ico

Vítreo

Nacarado

Graso

И	a	te	,		

Brillo		Comparación	
Metálico		Pirita, magnetita , hematita, grafito.	
Semimetálico		Uraninita (pechblenda, UO2), goethita	
	Vítreo	Cuarzo , olivino, nefelina, en las caras cristalinas, siderita.	
	Resinoso	Como la resina, p.ej. esfalerita.	
	Graso	Grasoso al tacto: cuarzo, nefelina de brillo gris graso.	
No	Oleoso	Olivino.	
metálico	Nacarado o Perlado	Como el brillo de las perlas, p.ej. talco , biotita, siderita.	
	Sedoso	Como el brillo de seda: yeso de estructura fibrosa, sericita, goethita.	
	Mate	Como el brillo de la tiza: creta, arcillas.	
	Adamantino	Brillante: diamante , rutilo.	

EXFOLIACIÓN Y FRACTURA

- La **exfoliación** es la propiedad de ciertos minerales de partirse en determinadas direcciones cuando son sometidos a esfuerzos.
- Estas superficies suelen coincidir con las caras cristalográficas dominantes de los minerales.
- La exfoliación puede ser: en una dirección (laminar), dos (prismática, tabular) o más (romboédrica, cúbica, rombododecaédrica, octaédrica, etc.).

EXFOLIACIÓN Y FRACTURA

• La **fractura** es la respuesta de ciertos minerales sometidos a presiones dirigidas, que se parten según secciones irregulares, que no guardan relación con su estructura interna (concoide, astillosa, irregular, etc.).

COLOR

1. Minerales Idiocromáticos: tienen colores característicos relacionados con su composición.

Mineral	Color
Magnetita	negro
Hematita	rojo
Epidota	verde
Clorita	verde
Lapis lazuli	azul oscuro
Turquesa	azul característico
Malaquita	verde brillante
Cobre nativo	rojo cobrizo

COLOR

1. Minerales Alocromáticos: presentan un rango de colores dependiendo de la presencia de impurezas o de inclusiones.

<u>Ejemplo</u>: Feldespato potásico, cuyo color varia de incoloro a blanco pasando por color carne hasta rojo intenso o incluso verde.

COLOR

magnetita

clorita

cobre

hematita

lapis lazuli

COLOR DE LA RAYA O DE LA HUELLA

• Es el color de un mineral pulverizado y extendido sobre una placa de porcelana blanca sin vitrificar.

• Es único en cada especie mineral, ya que en él no incide la existencia de elementos cromóforos que no formen parte de la

estructura del mineral.

DENSIDAD

• Densidad o peso específico: masa de un mineral / unidad de volumen.

- minerales ligeros (< 2,5 g/cm³)</p>
- minerales poco pesados (2,5-3,5 g/cm³)
- minerales pesados (3,5-7,0 g/cm³)
- minerales muy pesados (>7,0 g/cm³)

DENSIDAD

Densidad (g/cm³)	Mineral
2,65	Cuarzo
2,5	Feldespato
2,6-2,8	Plagioclasa
4,47	Baritina
4,9	Magnetita
5,0-5,2	Pirita
19,3	Oro

MÉTODOS DE ESTUDIO

- Técnicas para evaluar su sus **propiedades físicas** (dureza, peso específico y ciertas propiedades ópticas).
- Técnicas para evaluar la composición química.
- En el siglo XIX los cristalógrafos establecieron las leyes sobre la constancia de los ángulos en las caras cristalinas de un mismo mineral, permitiendo establecer las bases de una nueva rama de las ciencias: la cristalografía.

MÉTODOS DE ESTUDIO

• La verdadera revolución en mineralogía y cristalografía se produce con el desarrollo de los métodos analíticos de difracción de rayos X, el cual proporciona datos sobre las estructuras cristalinas y sobre la relación entre la morfología de los cristales y la composición químico-atómica de los minerales.

La **difracción de rayos X** se refiere a la dispersión de los rayos X debida a las unidades de un sólido cristalino. Gracias a los patrones de dispersión (o difracción) es posible deducir el ordenamiento de las partículas en la red solida.