# 인공지능 강의 머신러닝 활용 데이터 분석1



# Al 기술의 인플레이션

# "더 이상 코딩을 할 필요가 없는 시대가 도래할 것"



# 대작 (代作)

# "아이디어와 산출물만 남는 시대"



\*모든 자료에 대한 권한은 메타코드에 있으며, 무단으로 자료를 복제 및 배포 등 유료목적으로 활용하시면 별도의 조치가 들어갈 수 있습니다.

# 스토리작가

# "Data Science를 통해 산출물을 만든다는 관점"

스토리작가 (만화의 뼈대와 스토리구성)



작화가 (그림을 그리는 사람)



Data Scientist / Machine Learning Engineer

# 스토리작가

#### "Data Science를 통해 산출물을 만든다는 관점"

스토리작가 (만화의 뼈대와 스토리구성)



작화가 (그림을 그리는 사람)



AI모형을 만드는 AI







# Citizen Data Scientist의 덕목

Data Scientist로 현실의 문제를 풀기 위해서
Context를 이해하고 적절한 '선택'을 할 수 있어야함

어떤 알고리즘? 어떤 모형? 어떻게 학습 & 제공 어떻게 평가 및 활용

# 창발성이란?

- 단순한 규칙들이 상호작용을 통해 놀라운 성능을 발휘함
  - ML알고리즘은 생각보다 '간단'



집단 행동

# 머신러닝의 특수성



\*모든 자료에 대한 권한은 메타코드에 있으며, 무단으로 자료를 복제 및 배포 등 유료목적으로 활용하시면 별도의 조치가 들어갈 수 있습니다.

# 줄기세포의 사상



# 머신러닝의 사상



#### '학습'을 어떻게 할지가 우리의 핵심

- Objective(Loss) function
- Hyper-Parameter
- Train, Validation, Test Sets
- Evaluation Metrics

# Machine Learning 이란?

# 데이터 기반 접근 방식

- 불확실성
- 적응성과 진화
- 블랙박스
- 데이터 의존성
- 도메인 독립성



SVM K-NN Decision-Tree Artificial Neural Diffusion

# 근간이 되는 알고리즘을 배워봅시다

'알고리즘' is 단순한 규칙 동작원리를 이해해야 판단과 최선의 의사결정을 할 수 있음







# **Decision Tree**의 장점**1**

#### "가성비가 좋은 알고리즘"



< DL모형 >

# **Decision Tree**의 장점**1**

#### "가성비가 좋은 알고리즘"



#### < Tree 계열 모형 >

\*모든 자료에 대한 권한은 메타코드에 있으며, 무단으로 자료를 복제 및 배포 등 유료목적으로 활용하시면 별도의 조치가 들어갈 수 있습니다

#### **Decision Tree**의 장점2

# "Excel을 다루는 업무에 최적화된 모델 작은 테이블 형태의 데이터(tabular data)에 특화"

#### 장점

- 작은 데이터에서 강함
- 변수 타입에 유연성
- 스케일에 불변성
- 결측값 처리
- 해석가능성



#### 단점

- 과적합
- 이미지, 텍스트에 취약
- 낮은 표현력(expressiveness)

# Decision-Tree 개념

- Key Idea: 데이터가 최대한 비슷해지도록 분할하는 것
- 비슷한 정도: **불순도**라고 정의
  - 이것을 수학적으로 표현하기 위해 'Entropy'라는 물리학 공식을 빌려옴
  - Entropy: 비슷한게 많으면 값이 커지고, 비슷한게 적으면 값이 작아지는 특성



\*모든 자료에 대한 권한은 메타코드에 있으며, 무단으로 자료를 복제 및 배포 등 유료목적으로 활용하시면 별도의 조치가 들어갈 수 있습니다

# 분할여부 결정



X2를 0.5 기준으로 분할

# 분할여부 결정



어떤 값을 기준으로 분할하는 것이 가장 불순도가 감소할까?

# 분할여부 결정



# **Entropy (Shannon)**

# 물리학의 공식을 빌려와 불순도를 '수식'으로 표현



$$H = -\sum p(x)\log p(x)$$

P(x)는 집단에서 'x'일 확률

최소값은: 0

최대값은 : log2n

0은 모두 균일한 경우 (같은 값)

집단이 불순하면 값이 커지고 집단이 순수하면 값이 작아지는 특성

# **Entropy (Shannon)**

# 꼭 Shannon Entropy를 써야하나요?

집단이 불순하면 값이 커지고 집단이 순수하면 값이 작아지는 특성만 표현 가능하면 무엇이든지 가능

"gini", "entropy", "log\_loss"

#### Gini

- 빠른 계산, 대용량 데이터셋
- 균형 잡힌 클래스 분포

#### **Entropy**

- 분포가 불균형한 데이터셋
- 과적합에 강함

#### log\_loss

- 이진분류모형
- 해석의 편리함 (확률로 해석가능)

#### **Decision-Tree Process**

# 목적: 데이터를 순수한 부분집합으로 분할하는 것이 목표





#### 언제까지 나무를 키워야 할까?

# "데이터에 노이즈(불확실성)이 전혀 없는 이상적인 상황이라면, Decision Tree를 크게 만드는 것이 성능을 극대화"



• • •

# **Overfitting**

# "현실의 데이터는 노이즈와 변동성이 가득함 의미 있는 패턴만 학습해야 함"

Decision Tree가 너무 깊으면 노이즈나 변동성까지 학습하여 과적합(Overfitting) 발생

과적합: 학습하면 안되는 것까지 학습한 상태



# Hyperparameter

#### '하이퍼파라미터는 모델의 학습 과정을 제어하는 사용자 설정 변수"

학습 옵션(Option)'이라고 이해 설정을 안하면 Default로

Criterion: 불순도 기준

Splitter: 각 노드에서 분할을 수행 방법

max\_depth: 트리의 최대 깊이

min\_samples\_split: 노드의 최소 샘플 수

min\_samples\_leaf: 리프의 최소 샘플 수

max\_features: 사용할 특성의 최대 개수

min\_impurity\_decrease: 최소 불순도 감소량

class\_weight: 클래스 가중치

random\_state: 난수 생성기의 시드

최적의 Option은?



# **Hyperparameter Tunner**

# '최선의 옵션을 찾아주는 방법'

Criterion: 불순도 기준

Splitter: 각 노드에서 분할을 수행 방법

max\_depth: 트리의 최대 깊이

min\_samples\_split: 노드의 최소 샘플 수

min\_samples\_leaf: 리프의 최소 샘플 수

max\_features: 사용할 특성의 최대 개수

min\_impurity\_decrease: 최소 불순도 감소량

class\_weight: 클래스 가중치

random\_state: 난수 생성기의 시드

# Criterion: 'gini' Splitter: 'best' max\_depth: 5 min\_samples\_split: 10 min\_samples\_leaf: 5 max\_features: 'sqrt' min\_impurity\_decrease: 0.01 class\_weight: None random\_state: 42

# XAI (설명가능한 인공지능)

# "인공지능 모델의 내부 작동 원리를 **사람이 해석 가능한 형태**로 제공하여 모델의 동작 방식을 파악할 수 있게 하는 것"

# **Feature Importance** '모델'에 대한 각 변수의 기여도 오렌지 & 사과 분류





\*모든 자료에 대한 권한은 메타코드에 있으며, 무단으로 자료를 복제 및 배포 등 유료목적으로 활용하시면 별도의 조치가 들어갈 수 있습니다