

LES CAPTEURS TOUT OU RIEN

Les capteurs

SOMMAIRE

Généralités	3
Caractéristiques générales	4
Les capteurs mécaniques : principe	5
Les capteurs mécaniques : avantages et utilisation	6
Les capteurs mécaniques : les têtes de détection	7
Les capteurs mécaniques : choix	8
Les capteurs inductifs : principe	9
Les capteurs inductifs : avantages	10
Les capteurs inductifs : choix	11
Les capteurs capacitifs : principe	12
Les capteurs capacitifs : avantages	13
Les capteurs capacitifs : choix	
Les cellules photoélectriques: la cellule en barrage	
Les cellules photoélectriques: la cellule reflex	
Les cellules photoélectriques: la détection par proximité	17
Les cellules photoélectriques: avantages	18
Les cellules photoélectriques: choix	19
Le choix d'un détecteur : critères généraux	. 20
Le choix d'un détecteur : démarche phase 1	
Le choix d'un détecteur : démarche phase 2	
Raccordement d'un contact sec	
Raccordement d'un détecteur 2 fils	
Raccordement d'un détecteur 3 fils	. 25
Autre capteurs Tout ou Rien	. 26

Identification		Page
Capteurs		2

<u>Généralités</u>

Constitution

ils sont constitués

- d'un élément sensible mécanique ou électrique
- d'un ou plusieurs contacts de type NF (normalement fermé = à ouverture) ou de type NO (normalement ouvert = à fermeture)

Les capteurs sont des composants d'automatisme qui ont pour but de récolter une information sur la partie opérative et de la retransmettre à la partie commande qui pourra ainsi la traiter.

Les capteurs Tout ou Rien (TOR) délivrent une information binaire à la partie commande : l'information adopte l'état 0 ou l'état 1. Chaque état possède une signification dans le contexte du système.

On distingue essentiellement les capteurs de type mécanique et ceux de proximité (cellules, inductifs ou capacitifs)

Identification		Page
Capteurs		3

Caractéristiques générales

Symbolisation

contact NO

inductif / capacitif

photoélectrique

contact NC

Caractéristiques

- nature de la détection(mécanique optique, inductif, capacitif)
- distances de détection
- tension d'alimentation (valeur, continu ou alternatif)
- type de raccordement (2 fils ou 4 fils, PNP ou NPN)
- nombre et types de contacts
- noyable, non noyable (inductifs ou capacitifs)
- type de raccordement (vis, connecteur)
- taille et encombrement mécanique

Identification		Page
Capteurs		4

Les capteurs mécaniques : principe

L'objet à détecter touche physiquement l'élément mobile du capteur.

Le contact ouvre ou ferme le circuit d'information.

Un contact est dit "sec" s'il est libre de potentiel : le potentiel est donné par la partie opérative.

Identification		Page
Capteurs		5

Les capteurs

Les capteurs mécaniques : avantages et utilisation

Utilisation:

- la détection de pièces machines (cames, butées, pignons...)
- la détection de balancelles, chariots, wagons,
- la détection directe d'objets, etc.

Les avantages en sont les suivants :

- sécurité de fonctionnement élevée : fiabilité des contacts et manœuvre positive d'ouverture
- bonne fidélité sur les points d'enclenchement (jusqu'à 0,01 mm)
- séparation galvanique des circuits
- bonne aptitude à commuter les courants faibles combinée à une grande endurance électrique
- tension d'emploi élevée
- mise en oeuvre simple
- grande résistance aux ambiances industrielles

Identification		Page
Capteurs		6

Les capteurs

Les capteurs mécaniques : les têtes de détection

Identification		Page
Capteurs		7

Les capteurs mécaniques : choix

Choix du corps:

Normalisé CENELEC (Comité Européen de Normalisation ELECtrotechnique) ou à encombrement réduit, fixe ou embrochable, métallique (IP65/66/67) ou plastique (IP 65), à une ou plusieurs entrées de câble, le corps, choisi parmi diverses versions, permet de s'adapter aux contraintes de montage, aux caractéristiques d'environnement (température, humidité, poussières,...) et au type de contact recherché (à rupture brusque ou à action dépendante).

Choix de la tête :

La tête de commande et le dispositif d'attaque sont déterminés à partir de :

- la forme de l'objet,
- la trajectoire de l'objet : frontale, latérale, multidirectionnelle,
- la précision de guidage.

Caractéristiques de l'application	Tête de commande
Présence de l'objet en butée mécanique	Rectiligne à poussoir
Came à 30°	
Guidage précis (précision < I mm) Trajectoire linéaire	Rectiligne à levier à galet ou à poussoi
Came à 30°	
Guidage peu précis (précision ~ 5 mm)	Angulaire à levier à galet
Cible à face plane ou cylindrique	
Trajectoire linéaire ou angulaire	Angulaire à tige
Guidage imprécis (précision ~ 10 mm)	
Cible de forme quelconque	
Trajectoire multidirectionnelle	Multidirectionnelle
Guidage très imprécis (précision > à 10 mm)	

Identification		Page
Capteurs		8

Les capteurs inductifs : principe

La détection de fait sans contact. Un circuit électronique à effet inductif transforme une perturbation magnétique due à la présence de l'objet en commande d'ouverture ou de fermeture statique (par transistor) du circuit d'information.

La face sensible crée un champ magnétique local. Lorsque l'objet pénètre dans le champ magnétique, l'oscillateur se met en route et la sortie est activée.

Identification		Page
Capteurs		9

Les capteurs inductifs : avantages

objet à détecter

- pas de contact physique avec l'objet (pas d'usure),
 possibilité de détecter la présence d'objets fraîchement
 peints ou de surfaces fragiles
- cadences de fonctionnement élevées en parfaite adéquation avec les modules ou les automatismes électroniques
- grandes vitesses d'attaque pour la prise en compte d'informations de courte durée
- produits entièrement enrobés dans une résine, pour une très bonne tenue aux environnements industriels agressifs
- produits statiques (pas de pièces en mouvement) pour une durée de vie indépendante du nombre de cycles de manœuvres
- visualisation de l'état de la sortie

Identification		Page
Capteurs		10

Les capteurs

Les capteurs inductifs : choix

Outre les données du tableau, le choix final prend en compte deux paramètres supplémentaires :

- la portée : elle doit être supérieure à la distance de l'objet à détecter
- le raccordement : 2 fils (continu ou alternatif) ou 3 fils (continu PNP ou NPN) pour des vitesses de commutation élevées

Caractéristiques	s de l'application	Technologies conseillées	s Points fo	rts	
Туре	Tête du détecteur intégrée dans le support de fixation métallique	Appareil noyable Appareil noyable à portée augmentée	Appareil protégé contre métalliques autour de la		
de fixation	Tête du détecteur dégagée de tout support métallique	Appareil non noyable	Encombrement identique, portée supérieure o 50 % à la version noyable		
IIXarion					
	Place disponible restreinte Ambiance IP67 maxi	Boîtier cylindrique court	Appareil pour applications en 24VCC		
Type De	Conformité aux normes CENELEC Ambiance IP68	Boîtier cylindrique long normalisé CENELEC	Appareil aux caractéristiques étendues, adapté aux environnements difficiles	Le filetage permet un positionnement mécanique plus fin	
boîtier	Place disponible restreinte Ambiance IP67 maxi	Boîtier rectangulaire miniature ou compact Boîtier rectangulaire	Adapté aux applications de robotique, codage	Face de détection	
	Conformité aux normes CENELEC	normalisé CENELEC	Adapté aux applications de manutention	Grandes portées	
Nature	Applications en environnement sain	Laiton nickelé	Appareils les plus utilisés	3	
du	Environnement difficile	Inox	Résistance chimique et mécanique accrue		
boîtier	Environnement chimique agressif	Plastique	Résistant aux produits chimiques corrosifs Montage mécanique à protéger		
Туре	Raccordement sur un bornier distant	Par câble	Existe en standard de 2 m et 5 m Etanchéité IP67 ou IP68		
de	Maintenance facilitée Câble adapté par le client	Par connecteur Par bornier	Aucun risque d'erreur de branchement		
raccordement	cable adapte par le client	Tu bornier	Permet l'utilisation du câble adapté à l'application et de la bonne longueur		

Identification		Page
Capteurs		11

Les capteurs capacitifs : principe

La détection de fait sans contact. Un circuit électronique à effet capacitif transforme une perturbation électrique due à la présence de l'objet en commande d'ouverture ou de fermeture statique (par transistor) du circuit d'information.

La face sensible crée un champ électrique local. Lorsque l'objet pénètre dans le champ électrique, l'oscillateur se met en route et la sortie est activée.

Identification		Page
Capteurs		12

Les capteurs capacitifs : avantages

- pas de contact physique avec l'objet (pas d'usure), possibilité de détecter la présence de tous types d'objets
- cadences de fonctionnement élevées en parfaite adéquation avec les modules ou les automatismes électroniques
- grandes vitesses d'attaque pour la prise en compte d'informations de courte durée
- produits entièrement enrobés dans une résine, pour une très bonne tenue aux environnements industriels agressifs
- produits statiques (pas de pièces en mouvement) pour une durée de vie indépendante du nombre de cycles de manœuvres
- visualisation de l'état de la sortie.

Identification	Page
Capteurs	13

Les capteurs

Les capteurs capacitifs : choix

Caractéristiques de	Matériaux à	Technologies
l'application	détecter	conseillées
détection à faible distance	matériaux isolants	versions noyables
(quelques mm) d'un objet	: bois, carton,	
quelconque directement ou	papier, verre,	
au travers d'une paroi	plastique, poudres	
isolante	et granulés	
détection à plus forte	matériaux	versions non noyables
distance (<= 1 cm) d'un	conducteurs :	
matériau conducteur	métaux et liquides	
directement ou au travers		
d'une paroi isolante		

Identification	Page
Capteurs	14

Les cellules photoélectriques: la cellule en barrage

Les cellules en barrage sont composées d'un émetteur et d'un récepteur séparés.

L'émetteur envoie le faisceau vers le récepteur. Le faisceau est coupé par l'objet à détecter.

La distance de détection peut atteindre 30 m

Identification		Page
Capteurs		15

Les cellules photoélectriques: la cellule reflex

Les cellules reflex sont composées d'un émetteur/récepteur (dans le même boîtier) et d'un catadioptre (réflecteur).

L'émetteur envoie le faisceau qui revient vers le récepteur après s'être réfléchi sur le catadioptre. L'objet à détecter coupe le faisceau.

Si l'objet à détecter est réfléchissant, il convient d'utiliser un système reflex polarisé : le récepteur n'est pas sensible à la lumière renvoyée par l'objet

La distance de détection est 2 à 3 fois inférieure au système en barrage.

Identification		Page
Capteurs		16

Les cellules photoélectriques: la détection par proximité

les cellules à détection par proximité sont dotées d'un émetteur qui envoie le faisceau. Celui-ci se réfléchit directement sur l'objet à détecter lui-même avant de retourner au récepteur.

L'objet doit être réfléchissant et guidé.

Variante : système avec effacement de l'arrière plan : la détection est focalisée (par réglage avec un potentiomètre) en un point précis, évitant ainsi la détection de l'arrière plan.

La distance de détection (assez faible) et son efficacité dépendent de la couleur et de la taille de l'objet à détecter.

Identification		Page
Capteurs		17

Les cellules photoélectriques: avantages

- détection d'objets de toutes formes et de matériaux de toutes natures
- détection à très grande distance,
- sortie statique pour la rapidité de réponse ou sortie à relais pour la commutation de charges jusqu'à 2 A
- généralement en lumière infrarouge invisible, indépendante des conditions d'environnement

Identification		Page
Capteurs		18

Les cellules photoélectriques: choix

Autres critères de choix :

- la portée
- la forme du boîtier
- la charge à commander
- le raccordement
- les fonctions complémentaires (fonction claire ou sombre, temporisation, sortie d'alarme, ...)

Type de cellule	Critères	Application
(1)		
Système barrage	Objet opaque et/ou surface brillante Fidélité de commutation < 1 mm Grande portée < 100 m Ambiance polluée Toutes dimensions d'objets Espace de montage suffisant	Détection directe d'objets
2		
Système reflex	Objet opaque et surface non réfléchissante Fidélité de commutation < 10 mm Portée moyenne < 15 m Objet volumineux Ambiance propre	Détection liée à la manutention
3		
Système reflex polarisé	Surface de l'objet brillante	Chariots, sacs, produits en vrac
4		
Système de proximité	Objet à surface claire Distance de détection courte (quelques cm) Ambiance propre L'objet peut être transparent	Détection de personnes, de véhicules, d'animaux
Système de proximité à effacement de l'arrière-plan	La couleur de l'objet peut varier Présence d'un arrière-plan	
6		
Système à fibres optiques	Objet très petit (qq. mm) Espace disponible faible Fidélité de commutation élevée Ambiance propre	Détection directe de pièces machines ou d'objets

Identification		Page
Capteurs		19

Le choix d'un détecteur : critères généraux

Parmi les principaux et nombreux facteurs qui interviennent dans le choix d'un détecteur, citons :

- les conditions d'exploitation, caractérisées par la fréquence de manœuvres, la nature, la masse et la vitesse du mobile à contrôler, la précision et la fidélité exigées, ou encore l'effort nécessaire pour actionner le contact
- la nature de l'ambiance, humide, poussièreuse, corrosive, ainsi que la température
- le niveau de protection recherché contre les chocs, les projections de liquides
- le nombre de cycles de manœuvres
- la nature du circuit électrique
- le nombre et la nature des contacts
- la place disponible pour loger, fixer et régler l'appareil

Identification		Page
Capteurs		20

Le choix d'un détecteur : démarche phase 1

extrait du catalogue industriel SCNEIDER

Phase 1 : détermination de la famille de détecteurs adaptée à l'application

L'identification de la famille recherchée s'effectue par un jeu de questions/réponses chronologiquement posées, portant sur des critères généraux et fondamentaux s'énonçant en amont de tout choix :

- nature de l'objet à détecter : solide, liquide, pulvérulent, métallique ou non
- contact possible avec l'objet
- distance objet/détecteur
- masse de l'objet
- vitesse de défilement
- cadences de manœuvre
- espace d'intégration du détecteur dans la machine

Identification	Page
Capteurs	21

Le choix d'un détecteur : démarche phase 2

Phase 2 : détermination du type et de la référence du détecteur recherché :

Cette deuxième phase tient compte de paramètres liés, selon les familles, à :

- l'environnement : température, humidité, poussières, projections diverses,...
- la source d'alimentation : alternative ou continue
- le signal de sortie : électromécanique, statique
- le type de raccordement : câble, bornier, connecteur

Identification		Page
Capteurs		22

Raccordement d'un contact sec

Ce type de détecteur comporte généralement 2 contacts électriques (un NO et un NF).

Ils peuvent être utilisés sous différentes tensions (inférieure à la tension maximum admissible) et ne sont pas polarisés.

Il est souple d'utilisation mais subit l'usure des contacts électriques.

Identification	Page
Capteurs	23

Raccordement d'un détecteur 2 fils

Utilisation en courant continu

Utilisation en courant alternatif

Ce type de détecteur comporte un circuit électronique qui commande une ou plusieurs sorties statiques.

Il existe des détecteurs pour tension continue, d'autres pour tension alternative mais on rencontre aussi des détecteurs qui se branchent indifféremment sur une tension alternative ou continue.

Malgré la nécessité d'alimenter en énergie le circuit électronique, ce type de détecteur ne comporte que deux fils.

Il est souple d'utilisation puisqu'il se connecte comme un détecteur à contacts secs.

Il est pratiquement inusable car il ne comporte pas de contacts électriques mobiles.

Il est utilisé lorsqu'il n'y a pas nécessité d'une grande fréquence de commutation. Dans le cas contraire, on préférera un détecteur 3 fils.

Identification	Page
Capteurs	24

Raccordement d'un détecteur 3 fils

Montage 3 fils PNP La charge est placée entre le signal et le - (logique positive)

Montage 3 fils NPN La charge est placée entre le signal et le + (logique négative)

Ce type de détecteur comporte un circuit électronique qui commande une ou plusieurs sorties statiques. S'il ne comporte qu'une seule sortie statique, c'est un détecteur 3 fils sinon ça sera un 4 fils (2 sorties statiques).

Il fonctionne uniquement en tension continue. Il peut être de polarité PNP ou NPN. Il est pratiquement inusable car il ne comporte pas de contacts électriques mobiles.

Il est utilisé lorsqu'il y a nécessité d'une grande fréquence de commutation. L'entrée automate et le détecteur doivent être du même type PNP ou NPN.

Identification	Page
Capteurs	25

Autre capteurs Tout ou Rien

Les capteurs magnétiques (ILS)

Ils sont principalement utilisés pour détecter la position d'un vérin: la tige du vérin est munie d'un aimant permanent; quand l'aimant passe à proximité du capteur, le contact est attiré et se ferme.

Les capteurs de seuil de pression

Egalement appelés pressostat, le capteur de pression informe la partie commande du franchissement d'un seuil de pression préréglé : ex : le capteur délivre le signal 1 si la pression est audessus du seuil. O sinon.

Les capteurs de seuil de vide

Egalement appelés vacuostat, le capteur de vide informe la partie commande du franchissement d'un seuil de vide préréglé : ex : le capteur délivre le signal 1 si la pression de vide est audessus du seuil, 0 sinon.

Les capteurs manuels

Il s'agit en fait d'interfaces opérateur tels que :

- boutons poussoirs à contacts à ouverture ou à fermeture
- commutateurs
- roues codeuses

Identification		Page
Capteurs		26