Characterizing evolutionary dynamics on a broader scale: a strain-space model for SARS-CoV-2

Peter C. Jentsch, PhD ^{1,4} Finlay Maguire, PhD ^{3,5} Samira Mubareka, MD, FRCPC ^{1,2}

¹Sunnybrook Research Institute, Toronto, Canada

²University of Toronto, Toronto, Canada

³Dalhousie University, Halifax, Canada

⁴Simon Fraser University, Burnaby, Canada

⁵Shared Hospital Laboratory, Toronto, Canada

August 11, 2022

Infection spread with compartmental models

- $lue{S}(t)$ fraction of susceptible hosts at t
- $\blacksquare I(t)$ fraction of infected hosts at t
- $\blacksquare R(t)$ fraction of recovered hosts at t
- 1 = S(t) + I(t) + R(t) is constant

Broad use of genomic data in dynamical epidemic models has been limited

Modeling multiple infections is challenging

[Alizon and van Baalen, 2008]

How to incorporate more data?

A useful approximation

J.R. Gog · J. Swinton

A status-based approach to multiple strain dynamics

Received: 5 April 2000 / Revised version: 24 July 2001 / Published online: 8 February 2002 – © Springer-Verlag 2002

Infections provide cross-immunity to nearby strains

Cross-immunity to nearby strains

Mutation to adjacent strains

[Gog and Grenfell, 2002]

Extending the strain lattice to 2 dimensions

[Gog and Grenfell, 2002]

Extending the strain lattice to 2 dimensions

[Gog and Grenfell, 2002]

Projecting points to low dimensions while preserving distances

[Pedregosa et al., 2011]

Projecting to low dimensions while preserving distances

[Pedregosa et al., 2011]

Approximating genomic data in 2 dimesions

Mapping SARS-CoV-2 in 2D

[Wilks et al., 2022]

Mapping SARS-CoV-2 in 2D

[Wilks et al., 2022]

Methods of adding more genomes: polyclonal antibody binding studies

[Greaney et al., 2022]

- 1. Find the closest lineages in existing antigenic map to g_i , and g_j , and corresponding points x_i and x_j
- 2.
- 3.
- 4.

- 1. Find the closest lineages in existing antigenic map to g_i , and g_j , and corresponding points x_i and x_j
- 2. Determine difference in polyclonal binding affinity $B(g_i, g_j)$
- 3.
- 4.

- 1. Find the closest lineages in existing antigenic map to g_i , and g_j , and corresponding points x_i and x_j
- 2. Determine difference in polyclonal binding affinity $B(g_i, g_j)$
- 3. Distance between g_i and g_j is $||x_i x_j|| + B(g_i, g_j)$
- 4.

- 1. Find the closest lineages in existing antigenic map to g_i , and g_j , and corresponding points x_i and x_j
- 2. Determine difference in polyclonal binding affinity $B(g_i, g_j)$
- 3. Distance between g_i and g_j is $||x_i x_j|| + B(g_i, g_j)$
- 4. Use these distances as inputs to multidimensional scaling

Antibody Binding map

Homoplasic mutations map

Evaluating the MDS approximation

Model parameters/variables

Symbol	Description
\overline{N}	Size of variant grid
K	Total population
S_{ij}	Population susceptible to variant $(i, j) \in [0, N]^2$
I_{ij}	Population infected by variant $(i, j) \in [0, N]^2$
R_{ij}	Recovered from variant $(i, j) \in [0, N]^2$
V_{ij}	Immune by vaccination to variant $(i, j) \in [0, N]^2$
σ_{ijkl}	Probability that exposure to variant (i, j) causes
	immunity
	to variant (k, l)
eta_{ij}	Transmission rate of variant (i, j)
$v_{ij}(t)$	vaccination rate at time t against variant (i, j)
s(t)	stringency at t
ξ	Recovery rate of all strains
γ	Rate of immunity loss of all strains

Table of symbols for Model $2\,$

Model Equations

$$\frac{S_{ij}}{dt} = -\sum_{kl} s(t)\beta_{kl}\sigma_{ijkl}S_{ij}I_{kl} + \gamma(R_{ij} + V_{ij}) - v_{ij}(t)S \qquad (1)$$

$$\frac{I_{ij}(t)}{dt} = s(t)\beta_{ij}S_{ij}I_{ij} - \xi I_{ij} + M\left(-4I_{ij} + I_{i-1,j} + I_{i+1,j} + I_{i,j-1} + I_{i,j+1}\right)$$
(2)

$$\frac{R_{ij}(t)}{dt} = \sum_{kl \neq ij} s(t)\beta_{kl}\sigma_{ijkl}S_{ij}I_{kl} + \xi I_{ij} - \gamma R_{ij} + v_i j(t)S$$
 (3)

$$\frac{V_{ij}(t)}{dt} = v_{ij}(t)S - \gamma V_{ij} \tag{4}$$

Model Dynamics

Further work

- More detailed methods for interpolation of additional genome data
- Differentiate between antigenic and genomic space
 - \rightarrow non-local diffusion
- Model fitting
- Applications
 - Simple inference on antigenic space
 - ▶ VoC-aware NPI usage and vaccination

Alizon, S. and van Baalen, M. (2008).

Multiple infections, immune dynamics, and the evolution of virulence.

The American Naturalist, 172(4):E150–E168.

Gog, J. R. and Grenfell, B. T. (2002). Dynamics and selection of many-strain pathogens. Proceedings of the National Academy of Sciences, 99(26):17209–17214.

Greaney, A. J., Starr, T. N., and Bloom, J. D. (2022). An antibody-escape estimator for mutations to the sars-cov-2 receptor-binding domain.

Virus evolution, 8(1):veac021.

Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L., Daly, J. M., Mumford, J. A., and Holmes, E. C. (2004). Unifying the epidemiological and evolutionary dynamics of pathogens.

science, 303(5656):327-332.

Lapedes, A. and Farber, R. (2001).
The Geometry of Shape Space: Application to Influenza.

Journal of Theoretical Biology, 212(1):57–69.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830.

Smith, D. J., Lapedes, A. S., de Jong, J. C., Bestebroer, T. M., Rimmelzwaan, G. F., Osterhaus, A. D. M. E., and Fouchier, R. A. M. (2004).

Mapping the Antigenic and Genetic Evolution of Influenza Virus.

Science, 305(5682):371-376.

Wilks, S. H., Mühlemann, B., Shen, X., Türeli, S., LeGreslev, E. B., Netzl, A., Caniza, M. A., Chacaltana-Huarcaya, J. N., Daniell, X., Datto, M. B., Denny, T. N., Drosten, C., Fouchier, R. A. M., Garcia, P. J., Halfmann, P. J., Jassem, A., Jones, T. C., Kawaoka, Y., Krammer, F., McDanal, C., Pajon, R., Simon, V., Stockwell, M., Tang, H., van Bakel, H., Webby, R., Montefiori, D. C., and Smith, D. J. (2022). Mapping SARS-CoV-2 antigenic relationships and serological responses.

Preprint, Immunology.

Mutation homoplasy

