# MAT-206: Sesión 4, Familia de contornos elípticos

# Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM



Considere  ${\cal U}$  una variable aleatoria con función de distribución  ${\cal F}.$  De este modo, la variable

$$X = U + a$$

tiene función de distribución

$$P(X \le x) = F(x - a),$$

para F fijo y  $a \in \mathbb{R}$  tenemos que X corresponde a la familia de posición.

Análogamente la familia de escala es generada por la transformación

$$X = bU, \qquad b > 0,$$

en cuyo caso

$$P(X \le x) = F(x/b), \qquad b > 0.$$



Considere  ${\cal U}$  una variable aleatoria con función de distribución  ${\cal F}.$  De este modo, la variable

$$X = U + a$$

tiene función de distribución

$$P(X \le x) = F(x - a),$$

para F fijo y  $a \in \mathbb{R}$  tenemos que X corresponde a la familia de posición.

Análogamente la familia de escala es generada por la transformación

$$X = bU, \qquad b > 0,$$

en cuyo caso,

$$\mathsf{P}(X \le x) = F(x/b), \qquad b > 0.$$



#### Definición 1:

Sea  ${\cal U}$  una variable aleatoria con función de distribución acumulada fija  ${\cal F}$  y considere la transformación

$$X = a + bU, \qquad a \in \mathbb{R}, b > 0.$$

Tenemos

$$P(X \le x) = F\left(\frac{x-a}{b}\right).$$

De este modo, X es conocida como familia de posición-escala.

## Observación:

Usualmente asociado a F tenemos una función de densidad f, dada por

$$f(x;a,b) = \frac{\mathsf{d}}{\mathsf{d}x} F\Big(\frac{x-a}{b}\Big) = \frac{1}{b} F'\Big(\frac{x-a}{b}\Big) = \frac{1}{b} f\Big(\frac{x-a}{b}\Big).$$



## Ejemplo:

Algunas familias de posición-escala corresponden a:

Normal,  $N(a, b^2)$ :

$$f(y; a, b) = \frac{1}{b} (2\pi)^{-1/2} \exp\left\{-\frac{1}{2} \left(\frac{y-a}{b}\right)^2\right\}.$$

**Laplace** (doble exponencial), Laplace(a, b):

$$f(y; a, b) = \frac{1}{2b} \exp\left\{-\frac{|y-a|}{b}\right\}.$$

ightharpoonup Cauchy( $a, b^2$ ):

$$f(y; a, b) = \frac{b}{\pi} \frac{1}{b^2 + (y - a)^2}.$$

Logística, Logística(a, b):

$$f(y; a, b) = \frac{1}{b} \frac{e^{-(y-a)/b}}{(1 + e^{-(y-a)/b})^2}.$$







#### Definición 2:

Un vector aleatorio p-dimensional, X tiene distribución normal con vector de medias  $\mu \in \mathbb{R}^p$  y matriz de covarianza  $\mathrm{Cov}(X) = \Sigma \geq 0$  si y sólo si, para todo vector t la variable aleatoria (uni-dimensional)  $t^{\top}X$  es normal y escribimos  $X \sim \mathsf{N}_p(\mu, \Sigma)$ .

#### Observación:

Note que en la definición anterior  ${f no}$  se ha hecho supuestos respecto de la independencia de los componentes de  ${m X}.$ 



#### Definición 3:

La función característica de  $oldsymbol{X} \sim \mathsf{N}_p(oldsymbol{\mu}, oldsymbol{\Sigma})$  está dada por

$$\varphi_X(t) = \exp(it^{\top} \mu - \frac{1}{2} t^{\top} \Sigma t).$$

En efecto, notando que  $Y = \boldsymbol{t}^{\top} \boldsymbol{X}$  tiene media y varianza dadas por,

$$\lambda = \mathsf{E}(Y) = \boldsymbol{t}^{\top}\boldsymbol{\mu}, \qquad \sigma^2 = \mathsf{var}(Y) = \boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t} \geq 0,$$

sigue que

$$\varphi_Y(\boldsymbol{t}) = \varphi_{\boldsymbol{t}^\top X}(1) = \exp(i\lambda - \tfrac{1}{2}\sigma^2) = \exp(i\boldsymbol{t}^\top \boldsymbol{\mu} - \tfrac{1}{2}\boldsymbol{t}^\top \boldsymbol{\Sigma} \boldsymbol{t})$$



Como un caso particular tenemos que la función característica para  $m{Z} \sim \mathsf{N}_p(\mathbf{0}, \sigma^2 m{I}_p)$ , es

$$\varphi_Z(\boldsymbol{t}) = \exp(-\tfrac{1}{2}\sigma^2\boldsymbol{t}^{\top}\boldsymbol{t}) = \prod_{i=1}^p \exp(-\tfrac{1}{2}\sigma^2t_i^2) = \prod_{i=1}^p \varphi_{Z_i}(t_i)$$

y de este modo, obtenemos

$$\boldsymbol{Z} \sim \mathsf{N}_p(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_p) \quad \Longleftrightarrow \quad Z_1, \dots, Z_p \; \mathsf{IID} \; \mathsf{N}(0, \sigma^2).$$

#### Resultado 1:

Si  $m{X} \sim \mathsf{N}_p(m{\mu}, m{\Sigma})$  y  $m{\Sigma}$  es definida positiva, entonces la densidad de  $m{X}$  es

$$f(\boldsymbol{x}) = |2\pi\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}.$$



#### Demostración:

Sea  $Z_1,\dots,Z_p$  variables aleatorias IID N(0,1). Entonces la densidad conjunta de  ${m Z}=(Z_1,\dots,Z_p)^{ op}$  es

$$f(\mathbf{z}) = \prod_{i=1}^{p} (2\pi)^{-1/2} \exp(-z_i^2/2) = (2\pi)^{-p/2} \exp(-\frac{1}{2} ||\mathbf{z}||^2).$$

Considere  $X=\mu+BZ$  con  $\mu\in\mathbb{R}^p$  y  $\Sigma=BB^{\top}$ , con B matriz de rango completo. Entonces, tenemos la transformación inversa

$$Z = g^{-1}(X) = B^{-1}(X - \mu),$$

y d $oldsymbol{Z}=$ d $oldsymbol{g}^{-1}(oldsymbol{X})=oldsymbol{B}^{-1}$ d $oldsymbol{X}$ , con matriz jacobiana D $oldsymbol{g}^{-1}(oldsymbol{X})=oldsymbol{B}^{-1}$ , como

$$|\mathsf{D} g^{-1}(X)|_{+} = |B|^{-1} = |BB^{\top}|^{-1/2},$$

obtenemos

$$\begin{split} f(\boldsymbol{x}) &= |\operatorname{D} \boldsymbol{g}^{-1}(\boldsymbol{x})| + f \boldsymbol{z} (\boldsymbol{g}^{-1}(\boldsymbol{x})) \\ &= (2\pi)^{-p/2} |\boldsymbol{B} \boldsymbol{B}^{\top}|^{-1/2} \exp\{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{B}^{-\top} \boldsymbol{B}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\}, \end{split}$$

notando que  $\mathbf{\Sigma}^{-1} = \mathbf{B}^{- op} \mathbf{B}^{-1}$  sigue el resultado deseado.







#### Definición 4:

Sea U vector aleatorio  $p \times 1$  con distribución uniforme sobre el conjunto

$$\mathcal{S}_p = \{ \boldsymbol{x} \in \mathbb{R}^p : \|\boldsymbol{x}\| = 1 \},$$

esto es  $\mathcal{S}_p$  denota la superficie de la esfera unitaria en  $\mathbb{R}^p$ . En cuyo caso anotamos  $U \sim \mathsf{U}(\mathcal{S}_p)$ .

#### Resultado 2:

Si  $Z_1,\dots,Z_p$  son variables aleatorias IID con distribución  $\mathsf{N}(0,1)$ , entonces  $\pmb{U}=(U_1,\dots,U_p)^{\top}$ , definido como:

$$\boldsymbol{U} = \frac{\boldsymbol{Z}}{\|\boldsymbol{Z}\|},$$

tiene distribución uniforme sobre la esfera unitaria.









(b) 
$$n = 3000$$



#### **Definition 5:**

Un vector aleatorio *p*-dimensional tiene distribución esférica si y sólo si su función característica satisface:

- a)  $\varphi(Q^{\top}t) = \varphi(t)$ , para todo  $Q \in \mathcal{O}_p$ .
- b) Existe una función  $\phi(\cdot)$  de una variable escalar tal que  $\varphi(t) = \phi(t^\top t)$ .

En este caso escribimos  $\boldsymbol{X} \sim \mathsf{S}_p(\phi)$ .

## Eiemplo:

Sea  $oldsymbol{X} \sim \mathsf{N}_p(\mathbf{0}, oldsymbol{I})$ , tenemos que

$$\varphi(\boldsymbol{t}) = \exp\left\{-\frac{1}{2}(t_1^2 + \dots + t_p^2)\right\} = \exp(-\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{t}).$$



## Resultado 3

Suponga que  $m{X} \sim \mathsf{S}_p(\phi)$ . Entonces  $m{X}$  tiene representación estocástica

$$\boldsymbol{X} \stackrel{\mathsf{d}}{=} R \boldsymbol{U},\tag{1}$$

donde  $U \sim U(S_p)$  y  $R \ge 0$  con distribución G, son independientes.

#### Resultado 4

Suponga que  $m{X} \stackrel{\mathrm{d}}{=} R \, m{U} \sim \mathsf{S}_p(\phi) \; (\mathsf{P}(m{X} = \mathbf{0}) = 0)$ , entonces

$$\|\boldsymbol{X}\| \stackrel{\mathsf{d}}{=} R, \qquad \frac{\boldsymbol{X}}{\|\boldsymbol{X}\|} \stackrel{\mathsf{d}}{=} \boldsymbol{U}.$$

Además  $\|X\|$  y  $X/\|X\|$  son independientes.



#### Resultado 5

El vector de medias y la matriz de covarianza de  $U \sim \mathsf{U}(\mathcal{S}_p)$  son:

$$\mathsf{E}(\boldsymbol{U}) = \boldsymbol{0}, \qquad \mathrm{Cov}(\boldsymbol{U}) = \frac{1}{p}\boldsymbol{I}_p,$$

respectivamente.

#### Demostración:

Sea  $X \sim \mathsf{N}_p(\mathbf{0}, I)$ , tenemos que  $X \stackrel{\mathsf{d}}{=} \|X\|U$ , con  $\|X\|$  independiente de U. Sabemos que  $\|X\|^2 \sim \chi^2(p)$ . Dado que

$$\mathsf{E}(\boldsymbol{X}) = \boldsymbol{0}, \; \mathsf{E}(\|\boldsymbol{X}\|) > 0, \quad \mathsf{y} \quad \mathsf{E}(\|\boldsymbol{X}\|^2) = p, \; \mathsf{Cov}(\boldsymbol{X}) = \boldsymbol{I}_p,$$

el resultado sigue.



#### Definición 6:

Un vector aleatorio  $p \times 1$ , X tiene distribución de contornos elípticos con parámetros  $\mu \in \mathbb{R}^p$  y  $\Sigma \geq 0$ , si

$$oldsymbol{X} \stackrel{\mathsf{d}}{=} oldsymbol{\mu} + oldsymbol{B} oldsymbol{Y}, \qquad oldsymbol{Y} \sim \mathsf{S}_k(\phi),$$

donde  $\boldsymbol{B} \in \mathbb{R}^{p \times k}$  es matriz de rango completo tal que,  $\boldsymbol{B}\boldsymbol{B}^{\top} = \boldsymbol{\Sigma}$  con  $\mathrm{rk}(\boldsymbol{\Sigma}) = k$ . En cuyo caso escribimos  $\boldsymbol{X} \sim \mathsf{EC}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \phi)$ .

#### Observación:

La función característica de  $m{X} \sim \mathsf{EC}_p(m{\mu}, m{\Sigma}; \phi)$  es de la forma:

$$\varphi(\boldsymbol{t}) = \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})\phi(\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t}).$$

Note además que la representación estocástica de  $oldsymbol{X}$  es dada por

$$X \stackrel{\mathsf{d}}{=} \mu + R B U$$
,

donde  $R \geq 0$  es independiente de  $\boldsymbol{U}$  y  $\boldsymbol{B}\boldsymbol{B}^{\top} = \boldsymbol{\Sigma}.$ 



#### Definición 7:

Se dice que el vector  $\boldsymbol{X}$  tiene distribución de contornos elípticos si su función de densidad es de la forma

$$f(\boldsymbol{x}) = |\boldsymbol{\Sigma}|^{-1/2} g((\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})), \qquad \boldsymbol{x} \in \mathbb{R}^p,$$

donde  $g:\mathbb{R} \to [0,\infty)$  es función decreciente, llamada función generadora de densidad, tal que:

$$\int_0^\infty u^{p/2-1}g(u)\,\mathrm{d}u<\infty.$$

En cuyo caso escribimos  $X \sim \mathsf{EC}_p(\mu, \Sigma; g)$ .



## Ejemplo:

La función generadora de densidad de un vector aleatorio con distribución t multivariada asume la forma

$$g(u) = \frac{\Gamma(\frac{\nu+p}{2})}{\Gamma(\frac{\nu}{2})(\pi\nu)^{p/2}} \left(1 + \frac{u}{\nu}\right)^{-(\nu+p)/2}, \qquad \nu > 0.$$

En cuyo caso escribimos,  $m{X} \sim t_p(m{\mu}, m{\Sigma}, 
u)$ .

En este caso, tenemos que  $R^2/p \sim F_{p,\nu}$ . Además, su función característica es dada por

$$\varphi(\boldsymbol{t}) = \frac{\|\sqrt{\nu}\boldsymbol{\Sigma}^{1/2}\boldsymbol{t}\|^{\nu/2}}{2^{\nu/2-1}\Gamma(\nu/2)} \, \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})K_{\nu/2}(\|\sqrt{\nu}\boldsymbol{\Sigma}^{1/2}\boldsymbol{t}\|), \qquad \boldsymbol{t} \in \mathbb{R}^p,$$

donde  $K_{
u}(x)$  denota la función de Bessel modificada de segundo tipo.



## Ejemplo:

Para la distribución Exponencial Potencia, la función generadora de densidades es dada por

$$g(u) = \frac{p\Gamma(\frac{p}{2})\pi^{-p/2}}{\Gamma(1 + \frac{p}{2\lambda})2^{1 + \frac{p}{2\lambda}}} \exp(-u^{\lambda}/2), \qquad \lambda > 0.$$

y es usual utilizar la notación  $X\sim \mathsf{PE}_p(\pmb{\mu},\pmb{\Sigma},\lambda)$ . En este caso tenemos que la variable aleatoria positiva R tiene densidad

$$h(r) = \frac{p}{\Gamma(1 + \frac{p}{2\lambda})2^{\frac{p}{2\lambda}}} r^{p-1} \exp(-r^{2\lambda}/2), \qquad r > 0.$$

Note también que  $R^{2\lambda} \sim \mathrm{Gama}(\frac{1}{2},\frac{p}{2\lambda}).$ 



#### Definición 8:

Sea  $\mu \in \mathbb{R}^p$ ,  $\Sigma$  matriz  $p \times p$  definida positiva y H función de distribución de una variable aleatoria positiva, W. Entonces, se dice que el vector aleatorio X sigue una distribución de mezcla de escala normal si su función de densidad asume la forma:

$$f(\boldsymbol{x}) = |2\pi \boldsymbol{\Sigma}|^{-1/2} \int_0^\infty \omega^{p/2} \exp(-\omega u/2) \, d\mathsf{H}(\omega),$$

donde  $u = (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$  y anotamos  $\boldsymbol{X} \sim \mathsf{SMN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \mathsf{H})$ .

#### Observación:

Un vector aleatorio  $X \sim \mathsf{SMN}_p(\mu, \Sigma; \mathsf{H})$  admite la representación:

$$\boldsymbol{X} \stackrel{\mathsf{d}}{=} \boldsymbol{\mu} + W^{-1/2} \boldsymbol{Z},\tag{2}$$

donde  $Z \sim \mathsf{N}_p(\mathbf{0}, \Sigma)$  y  $W \sim \mathsf{H}(\pmb{\delta})$  son independientes.



## Ejemplo:

Un vector aleatorio X tiene distribución Slash si su función de densidad es de la forma:

$$f(\boldsymbol{x}) = \nu |2\pi \boldsymbol{\Sigma}|^{-1/2} \int_0^1 \omega^{p/2+\nu-1} \exp(-\omega u/2) \, d\omega.$$

Tenemos que  $h(\omega) = \nu \omega^{\nu-1}$ , para  $\omega \in (0,1)$  y  $\nu > 0$ . Es decir,  $W \sim \mathrm{Beta}(\nu,1)$ .

# Ejemplo:

Se dice que un vector aleatorio  $\boldsymbol{X}$  tiene distribución Exponencial-Potencia $^1$ , si su función de densidad es dada por:

$$f(\boldsymbol{x}) = \frac{p\Gamma(\frac{p}{2})\pi^{-p/2}}{\Gamma(1+\frac{p}{2\lambda})2^{1+\frac{p}{2\lambda}}} |\boldsymbol{\Sigma}|^{-1/2} \exp(-u^{\lambda}/2), \qquad 0 < \lambda \le 1.$$

en cuyo caso anotamos  $X\sim \mathsf{PE}_p(\mu, \Sigma, \lambda)$ . Debemos destacar que la distribución de la variable mezcladora W tiene una representación en series y es de poco interés práctico.

<sup>&</sup>lt;sup>1</sup>Esta familia pertenece a la clase SMN cuando  $\lambda \in (0,1]$ .

### Observación:

La representación estocástica en (2), puede ser escrita de forma equivalente, como:

$$X|W \sim N_p(\mu, \Sigma/\omega), \qquad W \sim H(\delta).$$
 (3)

Esta representación permite, por ejemplo

$$\begin{split} \mathsf{E}(\boldsymbol{X}) &= \mathsf{E}(\mathsf{E}(\boldsymbol{X}|W)) = \boldsymbol{\mu} \\ &\operatorname{Cov}(\boldsymbol{X}) &= \mathsf{E}(\operatorname{Cov}(\boldsymbol{X}|W)) + \operatorname{Cov}(\mathsf{E}(\boldsymbol{X}|W)) = \mathsf{E}(W^{-1})\boldsymbol{\Sigma}. \end{split}$$

Además, la formulación condicional en (3) es muy útil para:

- ► Generación de dígitos pseudo-aleatorios.
- Estimación ML usando el algoritmo EM.



## Ejemplo:

Para  $\boldsymbol{X} \sim t_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu)$ , con  $\nu > 0$ , podemos escribir

$$X|W \sim N_p(\mu, \Sigma/\omega), \qquad W \sim \text{Gama}(\nu/2, \nu/2),$$

es decir,

$$h(\omega;\nu) = \frac{(\nu/2)^{\nu/2} \omega^{\nu/2-1}}{\Gamma(\nu/2)} \exp(-\nu\omega/2).$$

# Ejemplo:

Considere  $X \sim \mathsf{CN}_p(\mu, \Sigma, \epsilon, \gamma)$  donde  $0 \le \epsilon \le 1$  denota el porcentaje de contaminación y  $0 < \gamma < 1$  corresponde a un factor de inflación de escala. En este caso,

$$h(\omega; \boldsymbol{\delta}) = \begin{cases} \epsilon, & \omega = \gamma \\ 1 - \epsilon & \omega = 1 \end{cases}$$

con  $\boldsymbol{\delta} = (\epsilon, \gamma)^{\top}$ .

