Forget the Remote: Increasing Human-Computer Bandwidth with Neural Networks and Under-Utilized Input Devices

By Sebastian Rosado Mustafa

Problem - The Hardware 'Anchor'

- Old Tangible User Interfaces (TUIs)
 - \circ Infrared TV Remote & Keyboard PCs \rightarrow 1980s
- User 'tied' to input device
 - TV Remote
 - Laptop Keyboard
- Hardware can be lost
 - ~ 2 weeks (371 hrs) of viewer's lifetime
 lost looking for the remote
- Too much deadweight loss!

Solution - Computers that Can See

- Control music, movies and shows from some distance with simple hand signs.
 - Neural networks and webcam live-streaming
- Become the remote
 - Now the device looks for you
 - Minimum required proximity to input device increased
 - Roku infrared transmission irrelevant
 - Marginal increases in model latency offset by elimination of last-meter travel time to remote or keyboard.
- Save time, look cool

Process Summary

Wrangle

Load & transform images into NumPy

arrays

 Convert to grayscale, binarize and subtract the background with OpenCV

 Custom model and VGG16 implementation with 4 additional dense layers

Train

 Trained in the cloud with GCP

 Cross-tested model on Kaggle Dataset

Evaluate

• F-1 Score: 98%

• Precision: 98%

Recall: 98%

 Python script with custom gesture bindings for PC media

Deploy

 Python script with custom gesture bindings for Roku
 TV

Wrangling

Introducing the Data

- Hand Gesture Recognition Database Kaggle
 - Motion sensor
 - 10 gestures, 10 subjects
 - o 20,000 images
- Brenner Heintz Databricks
 - Webcam (Preprocessed)
 - o 5 gestures, one subject

Wrangling

Data Processing Pipeline

Training & Evaluation

Modeling Flow

F-1 Score: 98% Precision: 98%

Recall: 98%

1. Original Kaggle Dataset

2. Processed Kaggle Dataset

3. Heintz Dataset

4. Heintz Models on Kaggle Data

Custom VGG-16 (1)

Perfect confusion matrix & classification report on its test set. Poorest potential for generalization.

Custom VGG-16 (1), Fully Custom Model (1)

Perfect confusion matrix & classification report on its test set. Poor potential for generalization.

Custom VGG-16 (2), Fully Custom Model (2)

Good confusion matrix & classification report on its test set. Highest potential for generalization.

All Heintz Dataset Models

Varying confusion matrix & classification report results on Kaggle test set. From poor to excellent generalization.

Training & Evaluation

Best Model

- VGG16 + Custom Dense Layers
 - Imagenet weights
 - 4 additional dense layers
 - Frozen base layers
 - 0.5 Dropout rate
 - Softmax activation
 - Adam optimizer
 - o 20 epochs
 - o Batches of 64

Deployment Demonstration

Points for Improvement

- Background subtraction refresh
- Reconsider background subtraction altogether
- Add gestures and bindings
- Expand output device offerings
- Conditionals to avoid double-execution of gesture-key bindings
- Reduce barriers to adoption
 - \circ E.g. Plotly Dash \rightarrow Docker \rightarrow GCP / AWS

Thank You

sebastianrosado

in/srosadomustafa