Isomorphisms, continued

- <u>Recall</u>: An isomorphism 4:G→H
 - is a "dictionary" between them. If this exists, then G and H are "essentially the same group."
- Video: If I an isomorphism 4:674, we say G is isomorphic to H
 (G=H).

In this case, they share all their group-theoretic properties.

- Punchline: How to know if GZH:
 - To prove G≅H, find an isomorphism
 9:G→H.
 - To prove G≠H, find a grouptheoretic property one has but not the other.

Worksheet 21: Isomorphisms, continued

Math 335

Reporter:	Properties
Recorder:	· Abelian
Equity Manager:	· Cyclic

For each of the following pairs of groups G and H, is $G \cong H$? If so, try to write down an isomorphism $\varphi:G\to H$. If not, try to think of a group-theoretic property that one group has but the other does not.

1. $G = \mathbb{Z}_6$ (under addition modulo 6) and $H = S_3$ (under composition)

No:
$$\mathbb{Z}_6$$
 is abelian and \mathbb{S}_3 isn't.

2. $G = \mathbb{Z}_6$ (under addition modulo 6) and $H = \{1, g, g^2, g^3, g^4, g^5\}$ (under multiplication), where g is a complex number of order 6

Yes: an isomorphism is

$$\varphi: \mathbb{Z}_6 \longrightarrow H$$
 $\varphi(k) = g^k$

This is an isomorphism because:

 $0 \text{ It's a bijection } \sqrt{2}$
 $2 \longrightarrow g^2$
 $3 \longrightarrow g^3$
 $5 \longrightarrow g^5$

3. $G = \mathbb{Z}$ (under addition) and $H = \mathbb{R}$ (under addition)

No: Z is cyclic and R isn't.

(Alternatively, if you know about countability: Z is countable and R isn't, so Z a bijection between them.)

4. $G = \mathbb{Z}$ (under addition) and $H = \{\text{even integers}\}\$ (under addition)

This is an isomorphism be cause

Tt's a bijection (e.g. because 4': H > G)

It's a bijection (is 4-1(x)=\frac{1}{2}x)

5. (Challenge/Discussion Question) I claim that any cyclic group with finitely elements is isomorphic to \mathbb{Z}_n for some n (under addition modulo n), and any cyclic group with infinitely many elements is isomorphic to \mathbb{Z} (under addition). Does this match with the cyclic groups you can think of? Do you have any thoughts on how you might prove this statement?

• Finite case:
$$G = \langle g \rangle = \{e, g, g^2, ..., g^{n-1}\}$$