classification

(categorical (not numeric)

ground truth for given x,

P(Xo) = P(Y=11 X=Xo)

Yandownness

Some Xo Can give different
values of Y

vieducible error

want F(Xo) -> returns the category of Y

want f(x₆) —) returns the category of y most likely at x₆

measure error

misclassification rate: \(\frac{1}{2} \) 1 \{Y, \frac{1}{2}, \}
between 0 and 1

accuracy = 1- misclassification rate

Confusion matrix (k=2)

pred 1 a b c

$$a = #$$
 samples where $Y_i = 1$ and $Y_i = 1$
 $b = ...$ $\hat{Y}_i = 1$ $Y_i = 0$
 $c = ...$ $\hat{Y}_i = 0$ $\hat{Y}_i = 1$
 $d = ...$ $\hat{Y}_i = 0$ $\hat{Y}_i = 0$
 $\hat{Y}_i = 0$ $\hat{Y}_i = 0$

misclassification rate = $\frac{b+c}{h}$ accuracy = $\frac{a+d}{h}$

before, used CV to estimate MSPE now use CV to estimate misclassification vate

k=2

Compute $P(\hat{Y}=1|X)$, $P(\hat{Y}=0|X)$ predict $\hat{Y}=1$ if $P(\hat{Y}=1|X)>0.5$ c threshold

Why not consider different values of threshold?
might want to consider different threshold.

L, can get smaller misclassification error with different threshold