Topic: Linear combinations and span

Question: How many linearly independent vectors are needed to span \mathbb{R}^4 ?

Answer choices:

A 1

B 2

C 3

D 4

Solution: D

Any n n-dimensional linearly independent vectors will span \mathbb{R}^n . So in order to span \mathbb{R}^4 , we'll need 4 linearly independent vectors.

Topic: Linear combinations and span

Question: Will the vectors span \mathbb{R}^2 ?

$$\overrightarrow{u} = (3,1)$$

$$\vec{v} = (6,2)$$

Answer choices:

- A Yes, because the vectors aren't parallel
- B Yes, because the vectors are parallel
- C No, because the vectors aren't parallel
- D No, because the vectors are parallel

Solution: D

The vectors $\overrightarrow{u} = (3,1)$ and $\overrightarrow{v} = (6,2)$ are parallel. We can tell this by sketching them, or by looking at the slope of each vector, where the slope of \overrightarrow{u} is 3/1 = 3, and the slope of \overrightarrow{v} is 6/2 = 3.

Parallel vectors can never span their space. So $\overrightarrow{u} = (3,1)$ and $\overrightarrow{v} = (6,2)$ can't span \mathbb{R}^2 because of the fact that they're parallel.

Topic: Linear combinations and span

Question: Can the standard basis vectors $\mathbf{i}=(1,0,0)$, $\mathbf{j}=(0,1,0)$ and $\mathbf{k}=(0,0,1)$ span \mathbb{R}^3 ?

Answer choices:

- A Yes, because three linearly independent vectors in \mathbb{R}^3 will span \mathbb{R}^3
- B Yes, because three linearly dependent vectors in \mathbb{R}^3 will span \mathbb{R}^3
- C No, because three linearly independent vectors in \mathbb{R}^3 won't span \mathbb{R}^3
- D No, because three linearly dependent vectors in \mathbb{R}^3 won't span \mathbb{R}^3

Solution: A

Any 3 three-dimensional linearly independent vectors will span \mathbb{R}^3 . The three-dimensional basis vectors \hat{i} , \hat{j} , and \hat{k} are linearly independent, which is why they span \mathbb{R}^3 .

