CPE301 - SPRING 2019

MIDTERM 2

Student Name: Shaquille Regis

Student #: 2000686590

Student Email: regis@unlv.nevada.edu

Primary Github address: https://github.com/regis-shaquille/submissions-SR

Directory: https://github.com/regis-shaquille/submissions-SR/tree/master/Midterms

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/Midterm, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmega328P Xplained Mini Microcontroller ESP 8266 Wifi Module APDS9960 Ambient Light Sensor

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
Midterm2.c
 * Created: 5/12/2019 4:17:39 PM
 * Author : regis
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdbool.h>
#include "i2c master.h"
#include "APDS9960 def.h"
void APDS9960 Init()/* Gyro initialization function */
     delay ms(150);/* Power up time >100ms */
    i2c_start(0x39);/* Start with device write address */
    i2c write (APDS9960 ENABLE); /* Write to power on register */
    i2c_write(0x03);/* Device On, ALS Enable */
i2c_start(0x39);/* Start with device write address */
    i2c write (APDS9960 ATIME); /* Write to sample rate register */
    i2c write(0xFF); /* 1KHz sample rate */
    i2c stop();
    i2c_start(0x39);
    i2c write (APDS9960 CONTROL); /* Write to gain control register */
    i2c_write(0x01);/* 4x gain */
    i2c stop();
oid APDS9960 writereg(uint8 t reg, uint8 t val)
    i2c start(APDS9960 I2C ADDR+i2c write());
    i2c_write(reg); // go to register e.g. 106 user control i2c_write(val); // set value e.g. to 0100 0000 FIFO enable
    i2c stop(); // set stop condition = release bus
uint16 t APDS9960 readreg(uint8 t reg)
    int raw;
    i2c_start(APDS9960_I2C_ADDR+i2c_write()); // set device address and write mode
    i2c_write(reg); // ACCEL_XOUT
i2c_start(APDS9960_I2C_ADDR+i2c_readReg); // set device address and read mode
    raw = i2c_read_ack(); // read one intermediate byte
    raw = (raw<<8) | i2c read nack(); // read last
```

```
i2c_stop();
    return raw;
void ADC init(void) //initialize ADC
    ADMUX = (0<<REFS1) | // Reference Selection Bits
    (1<<REFS0) | // AVcc - external cap at AREF
    (0<<ADLAR) | // ADC Left Adjust Result
(0<<MUX2) | // ADAC Channel Selection Bits
(1<<MUX1) | // ADC2 (PC2 PIN25)
    (0<<MUX0);
    ADCSRA = (1<<ADEN) | // ADC ENable
    (0<<ADSC) | // ADC Start Conversion
    (0<<ADATE) | // ADC Auto Trigger Enable
    (0<<ADIF)| // ADC Interrupt Flag
(0<<ADIE)| // ADC Interrupt Enable
    (1<<ADPS2) | // ADC Prescaler Select Bits
    (0<<ADPS1)|
    (1<<ADPS0);
   TIMSK1 |= (1<<TOIE1);
   TCCR1B |= (1<<CS12) | (1<<CS10); // native clock
   TCNT1 = 49911;
                                         //((16MHz/1024)*1)-1 = 15624
void readADC(void) {
    adc_temp = 0; //initialize
    while (i--) {
    ADCSRA |= (1<<ADSC);
         while (ADCSRA & (1<<ADSC));
        adc temp+= ADC;
        delay ms(50);
    adc temp = adc temp / 4; // Average a few samples
void USART_init( unsigned int ubrr ) {
    UBRROH = (unsigned char) (ubrr>>8);
    UBRROL = (unsigned char)ubrr;
UCSROB |= (1 << TXENO) | (1 << RXENO)| ( 1 << RXCIEO); // Enable receiver, transmitter & RX interrupt
    UCSROC |= (1<<UCSZ01) | (1 << UCSZ00);
void USART tx string( char *data ) {
    while ((*data != '\0')) {
        while (!(UCSROA & (1 <<UDREO)));
UDRO = *data;</pre>
        data++;
```

```
ISR(TIMER1 OVF vect) //timer overflow interrupt to delay for 1 second
    char TEMP[256];
    unsigned char AT[] = "AT\r\n"; //AT Commands
    unsigned char CWMODE[] = "AT+CWMODE=1\r\n"; //Set operation MODE
    unsigned char CWJAP[] = "AT+CWJAP=\"SSID\",\"PASSWORD\"\r\n"; // Do not turn in
    unsigned char CIPMUX[] = "AT+CIPMUX=0\r\n";
unsigned char CIPSTART[] = "AT+CIPSTART=\"TCP\",\"184.106.153.149\",80\r\n";
    unsigned char CIPSEND[] = "AT+CIPSEND=100\r\n";
     delay ms(200);
    USART tx string(AT); //send commands
    delay ms (5000);
    USART tx string(CWMODE); //set operation mode
    delay_ms(5000);
    USART tx string(CWJAP); //connect to WIFI
     delay_ms(15000);
    USART tx string(CIPMUX); //select MUX
     delay ms(10000);
    USART tx string (CIPSTART);//connect TCP
     delay ms(10000);
    USART tx string (CIPSEND); //send size
    delay ms(5000);
    PORTC^=(1<<5);
    readADC(); //read ADC
    snprintf(out, sizeof(out), "GET
nttps://api.thingspeak.com/update?api key=9HD0YXSMDWBFG6Q7&field2=%3d\r\n",
adc_temp);// print
    USART tx string(out);//send data
    _delay_ms(10000);
TCNT1 = 49911; //reset
int main (void)
    char buffer[20], float [10];
    i2c init();/* Initialize I2C */
    APDS9960_Init();/* Initialize MPU6050 */
    USART_init(9600);/* Initialize USART with 9600 baud rate */
    while (1)
        Xa = Acc_x/16384.0;
        dtostrf( Xa, 3, 2, float_ );
sprintf(buffer," Ax = %s g\t",float_);
        USART_tx_string(buffer);
```

3. ESP8266 Setup

```
AT+GMR
AT version:1.1.0.0(May 11 2016 18:09:56)
SDK version:1.5.4(baaeaebb)
Ai-Thinker Technology Co. Ltd.
Jun 13 2016 11:29:20
OK
```

4. ThingSpeak Account

Insert only the modified sections here

MIDTERM			
Channel ID: 752337 Author: shaqregis Access: Private		Midterm 1 Channel	
Private View Pub	lic View Channel Settings	Sharing API Keys	Data Import / Export
Write API Key			Help
Key	9HDØYXSMDWBFG6Q7		API keys enable you to write data to a channel or read data from a private channel. API keys are auto-generated when you create a new channel. API Keys Settings
	Generate New Write API Key		 Write API Key: Use this key to write data to a channel. If you feel your key has been compromised, click Generate New Write API Key. Read API Keys: Use this key to allow other people to view your private channel feeds and charts. Click Generate New Read API Key to generate an additional read key for the channel.
Read API Keys			 Note: Use this field to enter information about channel read keys. For example, add notes to keep track of users with access to your channel.
Key	NKKJD39ZAQ8SG0ED		API Requests
Note			Update a Channel Feed GET https://api.thingspeak.com/update?api_key=9HD0YXSMDwBFG6Q7&field ↓ ▶

5. SCHEMATICS

- 6. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)
- 7. SCREENSHOT OF EACH DEMO (BOARD SETUP)

8. VIDEO LINKS OF EACH DEMO

9. GITHUB LINK OF THIS DA

https://github.com/regis-shaquille/submissions-SR/tree/master/Midterms/Midterm%202

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Shaquille Regis