

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

MATEMÁTICAS PARA LAS CIENCIAS APLICADAS 1

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN

4TA LISTA DE PROBLEMAS

Cuarto Parcial

Autores:

Ramírez Mendoza Joaquín Rodrigo Villalobos Juárez Gontrán Eliut Treviño Puebla Héctor Jerome

4ta lista de problemas

Ramírez Mendoza Joaquín Rodrigo Treviño Puebla Héctor Jerome Villalobos Juárez Gontrán Eliut

November 24, 2024

Evaluar la integral

$$\int \frac{x}{(x^2 - 1)\sqrt{x^4 - 2x^x}} dx$$

haciendo la sustitución $u = x^2 - 1$

Ejercicios capitulo 5 ABD Grupo 3

Ejercicio 42

Calcular el área bajo la curva $y=\frac{1}{x}$ en el intervalo $[1,e^3]$. El área bajo la curva está dada por la integral definida:

$$\int_{1}^{e^3} \frac{1}{x} dx$$

Plantear la integral

Tenemos:

$$\int_{1}^{e^3} \frac{1}{x} dx$$

Calcular la integral indefinida

Sabemos que:

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

Evaluar la integral definida

Sustituimos los límites de integración:

$$\int_{1}^{e^{3}} \frac{1}{x} dx = [\ln x]_{1}^{e^{3}}$$

Sustituir los límites

Evaluamos en los límites:

$$[\ln x]_1^{e^3} = \ln(e^3) - \ln(1)$$

Simplificar

Sabemos que:

$$ln(e^3) = 3$$
 y $ln(1) = 0$

Por lo tanto:

$$\ln(e^3) - \ln(1) = 3 - 0 = 3$$

Resultado final

El área bajo la curva es:

Ejercicio 64

Encontrar el valor promedio de $f(x)=e^x+e^{-x}$ en el intervalo $[\ln \frac{1}{2}, \ln 2]$.

El valor promedio de una función está dado por:

$$f_{\text{promedio}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

En este caso, $f(x) = e^x + e^{-x}$, $a = \ln \frac{1}{2}$ y $b = \ln 2$.

Planteamiento

Sustituimos en la fórmula:

$$f_{\text{promedio}} = \frac{1}{\ln 2 - \ln \frac{1}{2}} \int_{\ln \frac{1}{2}}^{\ln 2} (e^x + e^{-x}) dx$$

Simplificar los límites del denominador

Sabemos que:

$$\ln 2 - \ln \frac{1}{2} = \ln 2 - \ln 2^{-1} = \ln 2 + \ln 2 = 2 \ln 2$$

Por lo tanto:

$$f_{\text{promedio}} = \frac{1}{2 \ln 2} \int_{\ln \frac{1}{2}}^{\ln 2} (e^x + e^{-x}) \, dx$$

Calcular la integral indefinida

$$\int (e^x + e^{-x}) \, dx = \int e^x \, dx + \int e^{-x} \, dx$$

Resolviendo cada término:

$$\int e^x dx = e^x, \quad \int e^{-x} dx = -e^{-x}$$

Por lo tanto:

$$\int (e^x + e^{-x}) dx = e^x - e^{-x} + C$$

Evaluar la integral definida

Sustituimos los límites:

$$\int_{\ln \frac{1}{2}}^{\ln 2} (e^x + e^{-x}) \, dx = \left[e^x - e^{-x} \right]_{\ln \frac{1}{2}}^{\ln 2}$$

Sustituir los límites en la función

Evaluamos:

$$\left[e^{x} - e^{-x}\right]_{\ln\frac{1}{2}}^{\ln 2} = \left(e^{\ln 2} - e^{-\ln 2}\right) - \left(e^{\ln\frac{1}{2}} - e^{-\ln\frac{1}{2}}\right)$$

Simplificamos:

$$e^{\ln 2} = 2$$
, $e^{-\ln 2} = \frac{1}{2}$, $e^{\ln \frac{1}{2}} = \frac{1}{2}$, $e^{-\ln \frac{1}{2}} = 2$

Por lo tanto:

$$\left(e^{\ln 2} - e^{-\ln 2}\right) - \left(e^{\ln \frac{1}{2}} - e^{-\ln \frac{1}{2}}\right) = \left(2 - \frac{1}{2}\right) - \left(\frac{1}{2} - 2\right)$$

Simplificamos:

$$\left(2 - \frac{1}{2}\right) - \left(\frac{1}{2} - 2\right) = \frac{3}{2} + \frac{3}{2} = 3$$

Calcular el valor promedio

Sustituimos en la fórmula del promedio:

$$f_{\text{promedio}} = \frac{1}{2 \ln 2} \cdot 3 = \frac{3}{2 \ln 2}$$

Resultado final

El valor promedio es:

$$\frac{3}{2\ln 2}$$

Ejercicio 76

La función de velocidad dada es:

$$v(t) = \frac{2}{5}\sqrt{5t+1} + \frac{8}{5}.$$

Queremos calcular el **desplazamiento** y la **distancia** recorrida por la partícula en el intervalo [0, 3].

Desplazamiento

El desplazamiento se calcula como la integral de la velocidad:

Desplazamiento =
$$\int_0^3 v(t) dt$$
.

Sustituimos v(t) en la integral:

$$\int_0^3 v(t) dt = \int_0^3 \left(\frac{2}{5} \sqrt{5t+1} + \frac{8}{5} \right) dt.$$

Separando la integral:

$$\int_0^3 v(t) dt = \frac{2}{5} \int_0^3 \sqrt{5t+1} dt + \frac{8}{5} \int_0^3 1 dt.$$

Primera integral: $\int_0^3 \sqrt{5t+1} dt$

Sea u = 5t + 1, por lo tanto:

$$du = 5 dt$$
 y $dt = \frac{1}{5} du$.

Cuando t = 0, u = 1; y cuando t = 3, u = 16. Sustituyendo:

$$\int_0^3 \sqrt{5t+1} \, dt = \int_1^{16} \sqrt{u} \cdot \frac{1}{5} \, du = \frac{1}{5} \int_1^{16} u^{1/2} \, du.$$

La integral de $u^{1/2}$ es:

$$\int u^{1/2} \, du = \frac{2}{3} u^{3/2}.$$

Entonces:

$$\frac{1}{5} \int_{1}^{16} u^{1/2} du = \frac{1}{5} \left[\frac{2}{3} u^{3/2} \right]_{1}^{16} = \frac{2}{15} \left[u^{3/2} \right]_{1}^{16}.$$

Evaluamos los límites:

$$\frac{2}{15} \left[16^{3/2} - 1^{3/2} \right] = \frac{2}{15} \left[(16)^{3/2} - 1 \right].$$

Sabemos que $16^{3/2} = (16^{1/2})^3 = 4^3 = 64$, entonces:

$$\frac{2}{15} \left[64 - 1 \right] = \frac{2}{15} \cdot 63 = \frac{126}{15} = \frac{42}{5}.$$

Segunda integral: $\int_0^3 1 dt$

La integral es directa:

$$\int_0^3 1 \, dt = [t]_0^3 = 3 - 0 = 3.$$

Combinando ambas integrales

Sustituyendo los resultados en la expresión original:

$$\int_0^3 v(t) dt = \frac{2}{5} \cdot \frac{42}{5} + \frac{8}{5} \cdot 3 = \frac{84}{25} + \frac{24}{5}.$$

Simplificamos $\frac{24}{5}$ a denominador 25:

$$\frac{24}{5} = \frac{120}{25}.$$

Entonces:

$$\int_0^3 v(t) \, dt = \frac{84}{25} + \frac{120}{25} = \frac{204}{25}.$$

Por lo tanto, el desplazamiento es:

$$\boxed{ \text{Desplazamiento} = \frac{204}{25} \, \text{m} }$$

Distancia recorrida

La distancia recorrida es la misma que el desplazamiento, ya que $v(t) \ge 0$ en todo el intervalo [0, 3]. Entonces:

Distancia =
$$\int_0^3 |v(t)| dt = \int_0^3 v(t) dt = \boxed{\frac{204}{25} \text{ m}}$$

Capitulo 6 ABD Grupo 3

Ejercicio 16

Dada la curva $27x - y^3 = 0$ entre y = 0 y y = 2, queremos encontrar la superficie generada en tres casos distintos.

Parte (a): Revolución alrededor del eje x

La fórmula general para la superficie de revolución alrededor del eje x es:

$$S = \int 2\pi y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy.$$

De la ecuación de la curva, despejamos x:

$$x = \frac{y^3}{27}.$$

Derivamos x respecto a y:

$$\frac{dx}{dy} = \frac{3y^2}{27} = \frac{y^2}{9}.$$

Sustituimos en la fórmula de S:

$$S = \int_0^2 2\pi y \sqrt{1 + \left(\frac{y^2}{9}\right)^2} \, dy.$$

Parte (b): Revolución alrededor del eje y

La fórmula general para la superficie de revolución alrededor del eje y es:

$$S = \int 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx.$$

De la ecuación de la curva, despejamos y:

$$y = (27x)^{1/3}.$$

Derivamos y respecto a x:

$$\frac{dy}{dx} = \frac{1}{3}(27x)^{-2/3} \cdot 27 = 9x^{-2/3}.$$

Sustituimos en la fórmula de S:

$$S = \int_0^{8/27} 2\pi x \sqrt{1 + \left(9x^{-2/3}\right)^2} \, dx.$$

Parte (c): Revolución alrededor de la línea y=-2

Cuando la rotación es alrededor de y = -2, ajustamos la distancia al eje de rotación sumando 2 a y. La fórmula de la superficie es:

$$S = \int 2\pi (y+2) \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy.$$

Sustituimos:

$$S = \int_0^2 2\pi (y+2) \sqrt{1 + \left(\frac{y^2}{9}\right)^2} \, dy.$$

Capitulo 7 ABD Grupo 3

Ejercicio 33

Queremos resolver la integral:

$$\int \frac{1}{x^3 - x} \, dx.$$

Parte (a): Sustitución $x = \sec \theta$

Sea $x = \sec \theta$, entonces:

$$dx = \sec \theta \tan \theta \, d\theta$$
.

La expresión $x^3 - x$ se transforma en:

$$x^3 - x = \sec^3 \theta - \sec \theta = \sec \theta (\sec^2 \theta - 1) = \sec \theta \tan^2 \theta$$
.

Sustituyendo todo en la integral:

$$\int \frac{1}{x^3 - x} dx = \int \frac{\sec \theta \tan \theta d\theta}{\sec \theta \tan^2 \theta} = \int \frac{1}{\tan \theta} d\theta = \int \cot \theta d\theta.$$

La integral de $\cot \theta$ es:

$$\int \cot \theta \, d\theta = \ln|\sin \theta| + C.$$

Regresamos a la variable x:

$$\sin\theta = \sqrt{\frac{x^2-1}{x^2}}, \quad \text{por lo tanto: } \ln|\sin\theta| = \ln\sqrt{\frac{x^2-1}{x^2}} = \frac{1}{2}\ln\left(\frac{x^2-1}{x^2}\right).$$

Finalmente:

$$\int \frac{1}{x^3 - x} \, dx = \ln \sqrt{\frac{x^2 - 1}{x^2}} + C = \ln \frac{\sqrt{x^2 - 1}}{|x|} + C$$

Esta expresión es válida para |x| > 1.

Parte (b): Sustitución $x = \sin \theta$

Sea $x = \sin \theta$, entonces:

$$dx = \cos\theta \, d\theta$$
.

La expresión $x^3 - x$ se transforma en:

$$x^3 - x = \sin^3 \theta - \sin \theta = \sin \theta (\sin^2 \theta - 1) = -\sin \theta \cos^2 \theta$$

Sustituyendo todo en la integral:

$$\int \frac{1}{x^3 - x} dx = \int \frac{\cos \theta d\theta}{-\sin \theta \cos^2 \theta} = -\int \frac{1}{\sin \theta \cos \theta} d\theta = -\int \csc \theta d\theta.$$

La integral de $\csc \theta$ es:

$$\int \csc\theta \, d\theta = \ln|\csc\theta - \cot\theta| + C.$$

Regresamos a la variable x:

$$\csc \theta = \frac{1}{x}, \quad \cot \theta = \sqrt{\frac{1 - x^2}{x^2}}, \quad \text{entonces:}$$
$$\ln|\csc \theta - \cot \theta| = \ln\left|\frac{1}{x} - \sqrt{\frac{1 - x^2}{x^2}}\right| = \ln\left|\frac{1 - \sqrt{1 - x^2}}{x}\right|.$$

Por lo tanto:

$$\int \frac{1}{x^3 - x} dx = \ln \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + C$$

Esta expresión es válida para 0 < |x| < 1.

Parte (c): Fracciones parciales

Factorizamos $x^3 - x$:

$$x^3 - x = x(x-1)(x+1).$$

Escribimos la fracción como suma de fracciones parciales:

$$\frac{1}{x^3 - x} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}.$$

Resolviendo para A, B, y C, obtenemos:

$$\frac{1}{x^3 - x} = \frac{1}{x} - \frac{1}{2(x-1)} + \frac{1}{2(x+1)}.$$

Entonces:

$$\int \frac{1}{x^3 - x} \, dx = \int \frac{1}{x} \, dx - \frac{1}{2} \int \frac{1}{x - 1} \, dx + \frac{1}{2} \int \frac{1}{x + 1} \, dx.$$

Resolvemos las integrales:

$$\int \frac{1}{x} dx = \ln|x|, \quad \int \frac{1}{x-1} dx = \ln|x-1|, \quad \int \frac{1}{x+1} dx = \ln|x+1|.$$

Por lo tanto:

$$\int \frac{1}{x^3 - x} \, dx = \ln|x| - \frac{1}{2} \ln|x - 1| + \frac{1}{2} \ln|x + 1| + C$$

Problema planteado por el maestro

Se perfora una esfera de metal de radio R $\stackrel{.}{,}$ 6 mm haciéndole un "túnel" cilíndrico de 6 mm de largo que pasa por el centro de la esfera y que deja un sólido con forma de "anillo". Mostrar que el volumen del sólido no depende de R y que es igual a 36Pi mm³:

$$f(3) = \sqrt{R^2 - x^2} \Big|_{x=3} = \sqrt{R^2 - 3^2} = \sqrt{R^2 - 9}$$

$$2 \cdot 2\pi \int_{f(3)}^{R} x \sqrt{R^2 - x^2} \, dx$$

$$= 4\pi \int_{9}^{0} -\frac{1}{2} \sqrt{u} \, du = -2\pi \int_{9}^{0} \sqrt{u} \, du$$
Sustituyendo: $u = R^2 - x^2$, $du = -2x \, dx$, $x \, dx = -\frac{1}{2} du$

$$u(f(3)) = u(\sqrt{R^2 - 9}) = R^2 - (R^2 - 9) = 9$$

$$u(R) = R^2 - R^2 = 0$$

$$-2\pi \int_{9}^{0} \sqrt{u} \, du = 2\pi \int_{0}^{9} \sqrt{u} \, du$$

$$2\pi \int_{0}^{9} u^{1/2} \, du = 2\pi \left[\frac{2u^{3/2}}{3} \right]_{0}^{9}$$

$$= 2\pi \left(\frac{2(9)^{3/2}}{3} - \frac{2(0)^{3/2}}{3} \right)$$

$$= \frac{4\pi \cdot 9^{3/2}}{3} = \frac{4}{3}\pi(27) = 9 \cdot 4\pi = 36\pi$$