지능로봇 실제 (Intelligent Robot Practice)

과정 소개

김 곤 우 gwkim@cbnu.ac.kr 교육관 314호, T. 043-261-2486

- 강의 개요
 - 지능형 로봇 구현을 위한 다양한 핵심 이론을 학습하고,
 - 로봇 운영체제 ROS를 중심으로 지능형 로봇 설계 및 운영에 관련된 제어 시스템에 대한 실습을 함

- 강의 목표
 - 지능로봇의 핵심 이론을 설명할 수 있다.
 - ROS 노드와 패키지를 작성할 수 있다.

■ 강의 내용

주별	강의 주제	강의 방법	강의내용
1	개요	출석 수업	지능로봇 시스템
2	로봇 시스템	원격 수업	로봇 시스템의 구성 (Lab: ROS 환경구축)
3	로봇 기구학	원격 수업	로봇 기구학
4	센서: 원리	원격 수업	센서: 원리 (Lab: ROS 시스템 구성)
5	센서: 응용 및 인식	원격 수업	센서: 응용 및 인식
6	센서: 영상 인식	원격 수업	센서: 영상 인식 (Lab: ROS 시스템 구성)
7	실습(ROS)	출석 수업	Lab: ROS 시뮬레이션 실습, ROS 메시지 실습, ROS 노드, 패키지 실습
8		평가 (중간 시험)	
9	모션 및 센싱	원격 수업	모션 및 센싱
10	지도 작성	원격 수업	지도 작성
11	실습(인식)	출석 수업	Lab: 터틀봇3 패키지 활용 실습, ROS perception 실습
12	위치 추정	출석 수업	위치 추정: EKF-Localization, AMCL (Lab: Localization & Navigation 실습)
13	SLAM, 경로 계획	출석 수업	SLAM, 경로 계획 (Lab: ROS SLAM 실습, Path Planning 실습)
14	프로젝트 실습	출석 수업	자율주행 시스템 설계 (자율주행 시뮬레이션 실습)
15		평가 (기말 시험)	

- 과제 및 프로젝트
 - 과제는 실습 과정에서 부여될 예정임
 - 프로젝트
 - 총 2회 프로젝트 예정 (추후 일정에 따라 변경될 수 있음)

- 실습 환경
 - 노트북 or PC
 - HDD용량 30GB 이상 확보 권장
 - 운영체제
 - Ubuntu 20.04 LTS 설치 (ROS Noetic Ninjemys)
 - 단독, 듀얼 부팅 사용환경 권장 가상 머신 x
 - 개발 언어
 - C++, Python (C++ 권장)

- ■시간표
 - 화요일 19:00 ~ 22:00 (E8-7, 439)

- 수업 자료 및 과제 공지
 - 충북대학교 스마트교육플랫폼에 공지(eCampus)
 - https://cbnu.blackboard.com/
- ■평가 기준
 - 시험: 30%
 - 과제 및 프로젝트: 60%
 - 출석: 10%

