Driving Different Motorswith Arduino

Ben Cheng

RISD ID

April 20, 2024

Outline I

1 Basic AC/DC Motor

Basics of Motors Analog Control Digital Control

2 Stepper Motor

1 Basic AC/DC Motor

Basics of Motors Analog Control Digital Control

2 Stepper Motor

Basics of Motors

Basic Principle of Motors

Theorem (Biot-Savart Law)

$$\mathbf{B} = \frac{\mu_0}{4\pi} \oint_{C_1} \frac{Id\mathbf{I}' \times \hat{\mathbf{R}}}{R^2}$$

Theorem (Lorentz's equation)

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$$

Basics of Motors

AC vs DC Motors

Figure: Simple dc motor. (Inan 2015)

Basics of Motors

Torque and Power

How much torque is needed to lift this?

Theorem (Torque)

$$\tau = \mathbf{F} \times \mathbf{r}$$

(Linear Motion Tips)

How much power do I need to drive this motor?

Theorem (Power)

$$P = I \times V$$

(Energy per unit time)

Analog Control

Theorem (Ohm's Law)

$$V = A \times R$$

, or

$$A = \frac{V}{R}$$

- Simple, accurate, predictable
- Power source = control unit
- Hard to implement on microcontroller

Digital Control: PWM

Pulse Width Modulation

- Easy to implement on microcontroller
- Easy manipulation
- Inaccurate approximation
- Power and control unit saperated

Digital Control

PWM Approximation

(Thomson Linear)

Motors

Saperated Power and Control Unit

- Scale of current:
 - 2A: Fry a human
 - 0.35A: DC Motor
 - 20*mA*: Arduino Pinout
- Saperate power and signal circuit
 - MOSFET
 - Bipolar Junction Transistor
 - Relay
 - H-Bridge

BJT. (Hambly 2018)

L298N Motor Driver

- ENA to pin 9 (PWM)
- IN1, IN2 to pin 5, 6
- GND and 12V to pwr supply
- OUT1, OUT2 to motor

(HowToMechatronics.com)

Digital Control

PWM Implementation

```
int speed = 255:
    String inputStr = "";
    bool clean = false:
4
5
    void setup() {
6
        inputStr.reserve(200);
        Serial.begin(9600);
8
        // put your setup code here, to run once:
        pinMode(5, OUTPUT);
10
        pinMode(6. OUTPUT):
11
        pinMode(9, OUTPUT);
12
13
        digitalWrite(5, 1);
14
        digitalWrite(6, 0):
15
```

analogWrite()

```
void loop() {

// put your main code here, to run repeatedly:

if (clean) {
    analogWrite(9, inputStr.toInt());
    Serial.println(inputStr.toInt());
    // clear the string:
    inputStr = "";
    clean = false;
}

inputStr = "";
clean = false;
}
```

1 Basic AC/DC Motor

Basics of Motors Analog Control Digital Control

2 Stepper Motor

Stepper Motor

(monolithicpower.com)

28BYJ-48 Stepper Motor

- 4 coils
- 32 steps per revolution
- plus 64:1 gear ratio
- 2048 steps per revolution
- 5 pins

Motors

(lastminuteengineering.com)

Stepper vs DC Motor

- Stepper is very accurate
- More difficult to control
- More power draw, more heat generation
- Stepper is suitable for short period, precise application.
- DC motor is for continuous, powerful application.

ULN2003

- 7 Darlington pair (BJT)
- 500mA emitter current

(Texas Instrument)

Stepper Library

```
#include <Stepper.h>
2
3
   // initialize the stepper library on pins 8 through 11:
   Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);
5
   void setup() {
        // set the speed at 6 rpm:
8
        mvStepper.setSpeed(6):
9
        // initialize the serial port:
10
        Serial.begin(9600);
11
   ?
12
13
   void loop() {
14
        // step one revolution in one direction:
15
        Serial.println("clockwise");
        myStepper.step(2048);
16
17
        delav(500):
18
```

19/20

1 Basic AC/DC Motor

Basics of Motors Analog Control Digital Control

2 Stepper Motor