

Digital Logic Lecture Content

- **Boolean Algebra**
- **Gates & Circuits**
- **Combinational Circuits**
- **Minimizing Circuits**
- **Sequential Circuits**

Digital Logic Learning Objectives

- Understand the basic operations of Boolean algebra
- Distinguish among the different types of flip-flops
- Use Karnaugh maps and the Quine-McCluskey method to simplify Boolean expressions

Boolean Algebra

- Mathematical discipline used to design and analyze the behavior of the digital circuitry in digital computers and other digital systems
 - Named after George Boole
 - Proposed basic principles of the algebra in 1854
- Claude Shannon suggested Boolean algebra could be used to solve problems in relay-switching circuit design
- Is a convenient tool:
 - Analysis: It is an economical way of describing the function of digital circuitry
 - Design: Given a desired function, Boolean algebra can be applied to develop a simplified implementation of that function

Boolean Variables and Operations

- As in any algebra, we have variables and operations
 - A variable may take on the value 1 (TRUE) or 0 (FALSE)
- AND $(A \cdot B)$
 - Yields true (binary value 1) if and only if both of its operands are true
 - The AND operation takes precedence over the OR operation
 - Can be represented by simple concatenation instead of the dot operator
- OR(A+B)
 - Yields true if either or both of its operands are true
- NOT (\overline{A})
 - Inverts the value of its operand

Boolean Operators

With two input variables:

Р	Q	NOT P (\overline{P})	P AND Q $(P\cdot Q)$	P OR Q (P + Q)	P NAND Q $(\overline{P\cdot Q})$	P NOR Q $(\overline{P+Q})$	P XOR Q $(P \oplus Q)$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

Extended to more than input variables:

Operation	Expression	Output = 1 if
AND	<i>A</i> ⋅ B ⋅	All of the set $\{A, B, \dots\}$ are 1.
OR	$A + B + \cdots$	Any of the set $\{A, B, \dots\}$ are 1.
NAND	$\overline{A \cdot B \cdot}$	Any of the set $\{A, B, \dots\}$ are 0.
NOR	$\overline{A+B+\cdots}$	All of the set $\{A, B, \dots\}$ are 0.
XOR	$A \oplus B \oplus \cdots$	The set $\{A, B,\}$ contains an odd number of 1.

Basic Algebraic Transformations

Basic Postulates						
$A \cdot B = B \cdot A$	A + B = B + A	Commutative Laws				
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \bullet C) = (A + B) \cdot (A + C)$	Distributive Laws				
$1 \cdot A = A$	0 + A = A	Identity Elements				
$A \cdot \bar{A} = 0$	$A + \overline{A} = 1$	Inverse Elements				
	Other Identities					
$0 \cdot A = 0$	1 + A = 1					
$A \cdot A = A$	A + A = A					
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	Associative Laws				
$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A+B} = \bar{A} \cdot \bar{B}$	DeMorgan's Theorem				

Digital Logic Lecture Content

- **Boolean Algebra**
- **Gates & Circuits**
- **Combinational Circuits**
- **Minimizing Circuits**
- **Sequential Circuits**

Basic Electronic Circuits

- A gate is an electronic circuit that produces an output signal that is a simple Boolean operation on its input signals.
- We say that to **assert** a signal is to cause a signal line to make a transition from its logically false (0) state to its logically true (1) state.

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A B	F = A • B or F = AB	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	$A \longrightarrow F$	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	$A \longrightarrow F$	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	AB————————————————————————————————————	$F = \overline{AB}$	A B F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	$A \longrightarrow F$	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	$A \longrightarrow F$	F = A⊕B	A B F 0 0 0 0 1 1 1 0 1 1 1 0

Using NAND and NOR Only

Digital Logic Lecture Content

- **Boolean Algebra**
- **Gates & Circuits**
- **Combinational Circuits**
- **Minimizing Circuits**
- **Sequential Circuits**

Combinational Circuits

- An interconnected set of gates whose output at any time is a function only of the input at that time
 - The appearance of the input is followed almost immediately by the appearance of the output, with only gate delays
 - Consists of *n* binary inputs and *m* binary outputs
- Can be defined in three ways:
 - Truth table
 - For each of the 2^n possible combinations of input signals, the binary value of each of the m output signals is listed
 - **Graphical symbols**
 - The interconnected layout of gates is depicted
 - Boolean equations
 - Each output signal is expressed as a Boolean function of its input signals

Small Example: A Truth Table

Α	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Small Example: Boolean Function

- We can transform the truth table easily into a boolean expression
 - We simply look at the position where F is true:
 - $\blacksquare \bar{A}B\bar{C}$
 - *ĀBC*
 - $\blacksquare AB\bar{C}$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Small Example: Boolean Function

- We can transform the truth table easily into a boolean expression
 - We simply look at the position where F is true:
 - $\blacksquare \bar{A}B\bar{C}$
 - *ĀBC*
 - \blacksquare $AB\bar{C}$
 - This results in the following expression:

$$F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$$

	This	is called	Sum of	Products	(SOP)	
--	------	-----------	--------	-----------------	-------	--

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Small Example: Circuit Implementation

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- We could also look at the positions where F is false:
 - $\bar{A}\bar{B}\bar{C}$
 - $\bar{A}\bar{B}C$
 - $A\bar{B}\bar{C}$
 - \bullet $A\bar{B}C$
 - $\bar{A}\bar{B}\bar{C}$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- We could also look at the positions where F is false:
 - $\bar{A}\bar{B}\bar{C}$
 - $\bar{A}\bar{B}C$
 - $A\bar{B}\bar{C}$
 - $A\bar{B}C$
 - $\bar{A}\bar{B}\bar{C}$
- The output is 1 when all of these terms are false:

$$F = \overline{(\bar{A}\bar{B}\bar{C})} \cdot \overline{(\bar{A}\bar{B}C)} \cdot \overline{(\bar{A}\bar{B}\bar{C})} \cdot \overline{(\bar{A}\bar{B}\bar{C})} \cdot \overline{(\bar{A}\bar{B}\bar{C})}$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- We can also say that the output is 1 if none of the input combination producing 0 is true:
 - $\bar{A}\bar{B}\bar{C}$
 - $\bar{A}\bar{B}C$
 - $A\bar{B}\bar{C}$
 - \bullet $A\bar{B}C$
 - ABC
- The output is 1 when all of these terms are false:

$$F = \overline{(\bar{A}\bar{B}\bar{C})} \cdot \overline{(\bar{A}\bar{B}C)} \cdot \overline{(\bar{A}\bar{B}\bar{C})} \cdot \overline{(\bar{A}\bar{B}C)} \cdot \overline{(\bar{A}\bar{B}C)}$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Following DeMorgan:

$$F = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

Digital Logic Lecture Content

- **Boolean Algebra**
- **Gates & Circuits**
- **Combinational Circuits**
- **Minimizing Circuits**
- **Sequential Circuits**

Small Example: Circuit Implementation

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

The last function is called **Product of Sums (POS)**

Observations:

- There are several possibilities to express the same function
- Some are more clever than others

Considerations:

- We could use the function with less gates
- Or it may be preferable to use only NANDs or NORs
- But very often, there is an much smaller expression than SOP or POS

Small Example: Simplified Implementation

The given Function can also be expressed as

$$F = B(\overline{A} + \overline{C})$$

c —	
B $\frac{A}{\overline{c}}$	
B C	F
$B \overline{\overline{\overline{c}}}$	
$\overline{B} \frac{\overline{A}}{\overline{C}}$	

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

How to Find Simplified Expressions

- By algebraic simplifications
 - Kind of cumbersome, hard to find

Karnaugh Maps

- Very easy
- Only up to 4 variables (more are possible but then it gets complicated again)

Quine-McCluskey Tables

- Algorithmic Approach
- Works for more than four variables

Karnaugh Maps

(d) Simplified Labeling of Map

Karnaugh Maps: How Does This Help Us?

- The Maps show the variables and their connection
- We can write a simple algebraic expression by looking at the arrangement of the 1s on the map
- Observation:
 - Whenever two 1s are adjacent, then the corresponding product terms differ in only one variable.
 - In such a case, the two terms can be merged by eliminating that variable.
- Example:

$$RX + R\overline{X} = R$$

Karnaugh Maps: Usage

- Find the largest block of size 1, 2, 4, or 8 in each dimension
- Select additional blocks (as large as possible and as few as possible) until all 1s are marked
- No non-1 must be selected
- Each one can be member of several blocks
- Write down the equation corresponding to the blocks

Karnaugh Maps: Our Example

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Another Example: Decimal Incrementer

		Inp	out				Out	put	
Number	Α	В	С	D	Number	W	X	Υ	Z
0	0	0	0	0	1	0	0	0	1
1	0	0	0	1	2	0	0	1	0
2	0	0	1	0	3	0	0	1	1
3	0	0	1	1	4	0	1	0	0
4	0	1	0	0	5	0	1	0	1
5	0	1	0	1	6	0	1	1	0
6	0	1	1	0	7	0	1	1	1
7	0	1	1	1	8	1	0	0	0
8	1	0	0	0	9	1	0	0	1
9	1	0	0	1	0	0	0	0	0
	1	0	1	0		d	d	d	d
	1	0	1	1		d	d	d	d
	1	1	0	0		d	d	d	d
	1	1	0	1		d	d	d	d
	1	1	1	0		d	d	d	d
	1	1	1	1		d	d	d	d

Don't care!

Karnaugh Maps: Decimal Incrementer

- The Karnaugh Maps are very inconvenient for more than 4 variables
- Other methods are required: The Quine-McCluskey Method
- Let's assume we have the following term:

$$F = ABCD + AB\overline{C}D + AB\overline{C}\overline{D} + A\overline{B}CD + \overline{A}BCD + \overline{A}BCD + \overline{A}B\overline{C}D$$

$$+ \overline{A}BC\overline{D} + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D$$

- In the first step, we order the terms in groups:
 - We count the number of complemented variables
 - Terms with the same number of complemented variables form a group

$\overline{A}\overline{B}\overline{C}D$	$AB\overline{C}\overline{D}$	$AB\overline{C}D$	ABCD
	$\overline{A}BC\overline{D}$	$A\overline{B}CD$	
	$\overline{A}B\overline{C}D$	$\overline{A}BCD$	

- We now look for term differing in only one variable
- They can be replaced by one term without the differing variable
- Because of the ordering: Potential terms can only be in the group to the right

 $\overline{A}\overline{B}\overline{C}D$ $AB\overline{C}\overline{D}$ $AB\overline{C}D$ **ABCD** $\overline{A}BC\overline{D}$ $A\overline{B}CD$ $\overline{A}B\overline{C}D$ $\overline{A}BCD$

$\overline{A}\overline{B}\overline{C}D$	$AB\overline{C}\overline{D}$	$AB\overline{C}D$	ABCD
	$\overline{A}BC\overline{D}$	$A\overline{B}CD$	
	$\overline{A}B\overline{C}D$	$\overline{A}BCD$	

 $\overline{A}\overline{B}\overline{C}D$ $AB\overline{C}\overline{D}$ $AB\overline{C}D$ **ABCD** $\overline{A}BC\overline{D}$ $A\overline{B}CD$ $\overline{A}B\overline{C}D$ $\overline{A}BCD$

 $\overline{A}\overline{B}\overline{C}D$ $AB\overline{C}\overline{D}$ $AB\overline{C}D$ **ABCD** $\overline{A}BC\overline{D}$ $A\overline{B}CD$ $\overline{A}B\overline{C}D$ $\overline{A}BCD$

$\overline{A}\overline{B}\overline{C}D$ \checkmark	$AB\overline{C}\overline{D}$	$AB\overline{C}D$	ABCD
	$\overline{A}BC\overline{D}$	$A\overline{B}CD$	
	$\overline{A}B\overline{C}D \checkmark$	$\overline{A}BCD$	

 $\overline{A}\overline{C}D$

$\overline{A}\overline{B}\overline{C}D$ \checkmark	$AB\overline{C}\overline{D}$	$AB\overline{C}D$	ABCD
	$\overline{A}BC\overline{D}$	$A\overline{B}CD$	
	$\overline{A}B\overline{C}D \checkmark$	$\overline{A}BCD$	

 $\overline{A}\overline{C}D$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$

$$\overline{A}BC\overline{D} A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD$$

 $\overline{A}\overline{C}D$ $AB\overline{C}$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$

$$\overline{A}BC\overline{D} A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD$$

 $\overline{A}\overline{C}D$ $AB\overline{C}$

$$\overline{A}\overline{B}\overline{C}D \checkmark \qquad AB\overline{C}\overline{D} \checkmark \qquad AB\overline{C}D \checkmark \qquad ABCD$$

$$\overline{A}BC\overline{D} \qquad A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \qquad \overline{A}BCD$$

 $\overline{A}\overline{C}D$ $AB\overline{C}$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$
 $\overline{A}BC\overline{D} A\overline{B}CD$
 $\overline{A}B\overline{C}D \checkmark \overline{A}BCD$
 $\overline{A}B\overline{C}D \checkmark \overline{A}BCD$
 $\overline{A}B\overline{C}D \checkmark AB\overline{C}$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$
 $\overline{A}BC\overline{D} A\overline{B}CD$
 $\overline{A}B\overline{C}D \checkmark \overline{A}BCD$
 $\overline{A}B\overline{C}D \checkmark \overline{A}BCD$
 $\overline{A}B\overline{C}D \checkmark AB\overline{C}$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$

$$\overline{A}BC\overline{D} A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD$$

 $AB\overline{C}$

 $\overline{A}\overline{C}D$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$

$$\overline{A}BC\overline{D} \checkmark A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD \checkmark$$

$$\overline{ACD}$$
 $AB\overline{C}$ \overline{ABC}

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$

$$\overline{A}BC\overline{D} \checkmark A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD \checkmark$$

$$\overline{ACD}$$
 $AB\overline{C}$ \overline{ABC} $B\overline{CD}$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$

$$\overline{A}BC\overline{D} \checkmark A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD \checkmark$$

$$\overline{ACD}$$
 $AB\overline{C}$ \overline{ABC} $B\overline{CD}$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD$$

$$\overline{A}BC\overline{D} \checkmark A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD \checkmark$$

 $\overline{A}\overline{C}D$ $AB\overline{C}$ $\overline{A}BC$ $B\overline{C}D$ $\overline{A}BD$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD \checkmark$$

$$\overline{A}BC\overline{D} \checkmark A\overline{B}CD$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD \checkmark$$

 $\overline{A}\overline{C}D$ $AB\overline{C}$ ABD $\overline{A}BC$ $B\overline{C}D$ $\overline{A}BD$

$$\overline{A}\overline{B}\overline{C}D \checkmark AB\overline{C}\overline{D} \checkmark AB\overline{C}D \checkmark ABCD \checkmark$$

$$\overline{A}BC\overline{D} \checkmark A\overline{B}CD \checkmark$$

$$\overline{A}B\overline{C}D \checkmark \overline{A}BCD \checkmark$$

 $\overline{A}\overline{C}D$ $AB\overline{C}$ **ABD** $\overline{A}BC$ **ACD** $B\overline{C}D$ $\overline{A}BD$

$$\overline{A}\overline{B}\overline{C}D \checkmark \qquad AB\overline{C}\overline{D} \checkmark \qquad AB\overline{C}D \checkmark \qquad ABCD \checkmark$$

$$\overline{A}BC\overline{D} \checkmark \qquad A\overline{B}CD \checkmark \qquad \overline{A}BCD \checkmark$$

 $\overline{A}\overline{C}D$ $AB\overline{C}$ **ABD** $\overline{A}BC$ **ACD** $B\overline{C}D$ **BCD** $\overline{A}BD$

ĀBCD ✓	$AB\overline{C}\overline{D} \checkmark$ $\overline{A}BC\overline{D} \checkmark$ $\overline{A}B\overline{C}D \checkmark$	ABCD ✓ ABCD ✓ ĀBCD ✓	ABCD ✓	
	$\overline{A}\overline{C}D$	$AB\overline{C}$	ABD	
		ĀBC B C D	ACD BCD	
		$\overline{A}BD$	DUD	

ĀBCD✓	$AB\overline{C}\overline{D} \checkmark$ $\overline{A}BC\overline{D} \checkmark$ $\overline{A}B\overline{C}D \checkmark$	ABCD ✓ ABCD ✓ ĀBCD ✓	ABCD ✓
	Ā C D	ABC ĀBC BCD ✓ ĀBD ✓	ABD ✓ ACD BCD ✓

BD

ĀBCD✓	$AB\overline{C}\overline{D} \checkmark$ $\overline{A}BC\overline{D} \checkmark$ $\overline{A}B\overline{C}D \checkmark$		ABCD ✓
	ĀCD	ABC ĀBC BCD ✓ ĀBD ✓	ABD ✓ ACD BCD ✓

BD

We have already reduced the number of terms to 5:

$$F = BD + \bar{A}\bar{C}D + \bar{A}BC + AB\bar{C} + ACD$$

Some of might still be redundant

	ABCD	$AB\overline{C}D$	$AB\overline{C}\overline{D}$	$A\overline{B}CD$	ABCD	$\overline{A}BC\overline{D}$	$\overline{A}B\overline{C}D$	$ \overline{A}\overline{B}\overline{C}D $
BD								
$\overline{A}\overline{C}D$								
ABC								
$AB\overline{C}$								
ACD								

- First, we mark all those cells which intersecting terms are compatible
- That is, the variables in the row have the same value as in the column

	ABCD	$AB\overline{C}D$	$AB\overline{C}\overline{D}$	$A\overline{B}CD$	$\overline{A}BCD$	$\overline{A}BC\overline{D}$	$\overline{A}B\overline{C}D$	$ \overline{A}\overline{B}\overline{C}D $
BD	0	0			0		0	
$\overline{A}\overline{C}D$							0	0
ABC					0	0		
$AB\overline{C}$		0	0					
ACD	0			0				

Now, we mark all those o's, which are alone in their column:

	ABCD	$AB\overline{C}D$	$AB\overline{C}\overline{D}$	$A\overline{B}CD$	$\overline{A}BCD$	$\overline{A}BC\overline{D}$	$\overline{A}B\overline{C}D$	$ \overline{A}\overline{B}\overline{C}D $
BD	0	0			0		0	
$\overline{A}\overline{C}D$							0	X
ABC					0	X		
$AB\overline{C}$		0	X					
ACD	0			X				

Now, we mark all those x in which row there is already a marked x:

	ABCD	$AB\overline{C}D$	$AB\overline{C}\overline{D}$	$A\overline{B}CD$	$\overline{A}BCD$	$\overline{A}BC\overline{D}$	$\overline{A}B\overline{C}D$	$ \overline{A}\overline{B}\overline{C}D $
BD	0	0			0		0	
$\overline{A}\overline{C}D$							X	X
A BC					X	X		
$AB\overline{C}$		X	X					
ACD	Х			X				

If all columns are covered, we have a final result:

$$F = \bar{A}\bar{C}D + \bar{A}BC + AB\bar{C} + ACD$$

If there would be an uncovered column, we have to select further rows until all rows are covered

	ABCD	$AB\overline{C}D$	$AB\overline{C}\overline{D}$	$A\overline{B}CD$	$\overline{A}BCD$	$\overline{A}BC\overline{D}$	$\overline{A}B\overline{C}D$	$ \overline{A}\overline{B}\overline{C}D $
BD	0	0			0		0	
$\overline{A}\overline{C}D$							X	X
ABC					X	X		
$AB\overline{C}$		X	X					
ACD	Х			X				

Some More Important Circuits

Multiplexer:

- Connects multiple inputs to one output.
- At any time, only one input is connected to the output
- Used for signal or data routing

Decoder:

- Has a number of output lines of which only one is asserted
- Generally, they have n inputs and 2^n output lines

Adders:

Pretty obvious

A Multiplexer

Decoder

Use of Decoders

Truth Table of A One Bit Adder

C _{in}	Α	В	Sum	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Combined One Bit Adder

Problems with this Design

- Each Adder has to wait for the Carry signal of the other adders
- This delay becomes unacceptable for larger adders

Problems with this Design

- Each Adder has to wait for the Carry signal of the other adders
- This delay becomes unacceptable for larger adders

Carry Look Ahead:

For each bit, we can already determine the carry bit:

$$C_0 = A_0 B_0$$

$$C_1 = A_1 B_1 + A_1 A_0 B_0 + B_1 A_0 B_0$$

$$C_2$$

$$= A_2 B_2 + A_2 A_1 B_1 + A_2 A_1 A_0 B_0 + A_2 B_1 A_0 B_0 + B_2 A_1 B_1$$

$$+ B_2 A_1 A_0 B_0 + B_2 B_1 A_0 B_0$$

Problems with this Design

Carry Look Ahead:

For each bit, we can already determine the carry bit:

$$C_0 = A_0 B_0$$

$$C_1 = A_1 B_1 + A_1 A_0 B_0 + B_1 A_0 B_0$$

$$C_2$$

$$= A_2 B_2 + A_2 A_1 B_1 + A_2 A_1 A_0 B_0 + A_2 B_1 A_0 B_0 + B_2 A_1 B_1$$

$$+ B_2 A_1 A_0 B_0 + B_2 B_1 A_0 B_0$$

- Each carry bit can be expressed this way in a SOP
- They are getting increasingly complex:
 - A n-Bit adder requires $2^n 1$ AND gates and an OR gate with $2^n 1$ inputs
 - This is normally only done up to 8 Bit
 - Larger Adder are then built of 8-Bit adders

Digital Logic Lecture Content

- **Boolean Algebra**
- **Gates & Circuits**
- **Combinational Circuits**
- **Minimizing Circuits**
- **Sequential Circuits**

Sequential Circuits

- Combinatorial Circuits implement most important function of computers
- But they are state-less, thus they only depend on the input
- No memory function available
- **Sequential Circuits:**
 - The current output depends on the current input and the current state of that circuit

Flip-Flop

Simplest form of sequential circuit

- There are a variety of flip-flops, all of which share two properties:
 - The flip-flop is a bistable device. It exists in one of two states and, in the absence of input, remains in that state. Thus, the flip-flop can function as a 1-bit memory.
 - The flip-flop has two outputs, which are always the complements of each other.

S-R Latch

S-R Latch

Characteristic Table of the S-R Latch

SR	Q_n	Q_{n+1}
00	0	0
00	1	1
01	0	0
01	1	0
10	0	1
10	1	1
11	0	-
11	1	-

S	R	$ Q_{n+1} $
0	0	Q_n
0	1	0
1	0	1
1	1	-

Clocked S-R Flip-Flop & D Flip-Flop

J-K Flip-Flop

Flip-Flop Overview

Name	Graphical Symbol	Truth Table
S-R	S Q — >Ck — R Q	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ј-К	J Q	$\begin{array}{c cccc} J & K & Q_{n+1} \\ \hline 0 & 0 & Q_n \\ 0 & 1 & 0 \\ 1 & 0 & \frac{1}{Q_n} \\ 1 & 1 & \overline{Q_n} \end{array}$
D	D Q	$\begin{array}{c c} D & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \\ \end{array}$

8-Bit Parallel Register

5-Bit Shift Register

