7. CNN

박경미

목차

- tensorflow Neural Network
- relu/ one-hot encoding/softmax
- ❖ 컨보루션 연산. 폴링. 패팅
- ❖ 필터를 통해 데이터 특징을 추출하는 원리

tensorflow Neural Network

relu/ one-hot encoding/softmax

컨보루션 연산. 폴링. 패팅

❖ 아키텍처 비교(NN vs. CNN)

컨볼루션층 개요 conv / pooling

- ➤ conv (컨볼루션, convolution)
 - 입력데이터(A1, A2…)와 <u>가중치들의 집합체인 다양한 필터(filter)</u>와의 **컨볼루션 연산**을 통해 입력데이터의 특징(feature)을 추출하는 역할을 수행함 ⇒ [다음 강의에서 자세히 설명]

- ➤ pooling (풀링)
 - 입력 정보를 최대값 최소값 평균값 등으로 압축하여 데이터 연산량을 줄여주는 역할 수행

컨볼루션(convolution) 연산- 특징 추출

rel 연산 / pooling 연산

패팅(Padding)

- ❖ 컨볼루션 연산을 수행하기 전에 입력 데이터 주변을 특정 값(예를 들면 0)으로 채우는 것, 컨볼루션 연산에서 자주 이용되는 방법
 - 컨볼루션 연산을 수행하면 데이터 크기(shape)이 줄어드는 단점을 방지

컨볼루션 연산을 통한 출력 데이터 크기 계산

❖ 입력 데이터 크기(H,W), 필터 크기(FH,FW), 패딩 P, 스트라이드 S일 때 출력 데이터 크기 (OH, OW)

$$OH = \frac{H + 2P - FH}{S} + 1$$

$$OW = \frac{W + 2P - FW}{S} + 1$$

[예1] 입력 (4, 4), 필터 (3, 3), 패딩 1, 스트라이드 1 ⇒ 출력 (4, 4)

$$OH = \frac{4 + 2*1 - 3}{1} + 1 = 4$$

$$OH = \frac{4 + 2*1 - 3}{1} + 1 = 4 \qquad OW = \frac{4 + 2*1 - 3}{1} + 1 = 4$$

[예2] 입력 (7, 7), 필터 (3, 3), 패딩 0, 스트라이드 2 ⇒ 출력 (3, 3)

$$OH = \frac{7 + 2*0 - 3}{2} + 1 = 3$$

$$OH = \frac{7 + 2*0 - 3}{2} + 1 = 3 \qquad OW = \frac{7 + 2*0 - 3}{2} + 1 = 3$$

[예3] 입력 (28, 31), 필터 (5, 5), 패딩 2, 스트라이드 3 ⇒ 출력 (10, 11)

$$OH = \frac{28 + 2*2 - 5}{3} + 1 = 10$$

$$OW = \frac{31 + 2 \cdot 2 - 5}{3} + 1 = 11$$

컨볼루션 층(convolution layer) 역할

	conv 출력	relu 출력	pooling 출력	컨볼루션 층 역할
컨볼루션층1	A1 ★ F2 + b2 = C2 - 입력 필터 바이어스 특징 맵 (feature map)	C2>0, C2 C2<=0, 0	Max pooling	입력데이터 A1과 <u>가중치들의 집합체인</u> 1개 이상의 필터 F2와 컨볼루션 연산을 통해 <mark>입력데이터 A1의 특징(feature)을</mark> 추출하는 역할을 수행함
컨볼루션층2	A2 ③ F3 + b3 = C3 - 입력 필터 바이어스 특징 맵 (feature map)	C3>0, C3 C3<=0, 0	Max pooling	입력데이터 A2과 <u>가중치들의 집합체인</u> 1개 이상의 필터 F3와 컨볼루션 연산을 통해 <mark>입력데이터 A2의 특징(feature)을</mark> 추출하는 역할을 수행함

컨볼루션 층(convolution layer) 역할

- ① 입력데이터와 1개 이상의 필터들과 컨볼루션 연산을 통해서
- ② 입력데이터 특징(feature)을 추출하여 특징맵(feature map)을 만들고
- ③ 특징맵에서 초대 값을 뽑아내서 다음 층으로 전달

필터를 통해 데이터 특징을 추출?

특징추출과장

입력데이터 1개 (숫자 2)에 필터 3개 (가로, 대각선, 세로 필터) 적용 (계산 편의를 위해 패딩 적용하지 않음) 컨볼루션 (\star) 특징 맵 relu ■ 최대값 연산결과 바이어스 activation max feature function pooling 가로필터 map 입력데이터 컨볼루션 (*)특징 맵 최대값 relu 1 연산결과 activation max feature 바이어스 function pooling 대각선필터 입력데이터 map 컨볼루션 relu 1 최대값 (\star) 연산결과 feature activation 바이어스 max 세로필터 입력데이터 function map pooling [참고] 입력데이터와 필터 0 0 1 0 0 1 1 0 000 0 0 1 0 0 0 가로필터 대각선필터 세로필터 입력데이터 (숫자 2)

이미지참조(재구성) : 처음 배우는 딥러닝 수학

가로필터를 통한 입력데이터 측징추출(스트라이트1,패딩없음)

대각선필터를 통한 데이터 특징 추출

새로필터를 통한 입력데이터 특징추출

필터를 통한 입력데이터 특징 추출원리-특징 맵이 압축된 풀링 값

- ▶ 컨볼루션 연산 결과인 특징 맵(feature map) 값을 압축하고 있는 풀링 값을 보면,
 - 대각선 필터에 대한 풀링 값이 가로와 세로필터의 풀링 값 보다 큰 값으로 구성되어 있는데.
 - 풀링 값이 크다는 것은, 데이터 안에 해당 필터의 특징(성분)이 많이 포함되어 있는 것을 의미함.
 즉, 특징 맵 값이 압축되어 있는 풀링 결과 값을 통해 데이터의 특징(성분)을 추출 할 수 있음
 - 위의 예제를 보면, 입력 데이터 '2'는 대각선 특징이 가로나 세로 특징보다 더욱 많이 포함되어 있으며 이러한 특징을 추출하는데 대각선 필터가 가로나 세로보다 유용하다는 것을 알 수 있음

CNN(컨볼루션 신경망) 아키텍처

	conv 출력	relu 출력	pooling 출력	TensorFlow API
컨볼루션층1	A1 (*) F2 + b2 = C2 -	→ Z2 —	→ A2	conv tf.nn.conv2d(···)
컨볼루션층2	A2 * F3 + b3 = C3 -	→ Z3 —	→ A3	relu tf.nn.relu(···)
컨볼루션층3	A3 ★ F4 + b4 = C4 -	→ Z4 —	→ A4	pooling tf.nn.max_pool(···)

	역할	TensorFlow API	
완전연결층	컨볼루션 층의 3차원 출력 값을 1차원 벡터로 평탄화 작업 수행하여 일반 신경망 연결처럼 출력층의 모든 노드와 연결시켜주는 역할 수행	FLATTEN tf.reshape(A4,)	
출력층	입력받은 값을 출력으로 0~1사이의 값으로 모두 정규화하며 출력 값들의 총합은 항상 1이 되도록 하는 역할 수행	softmax tf.nn.softmax(Z5)	