IN (Interconnection Network)

IN in MIMD shared-memory systems

Bus – shared among connected components;

flexible, low cost but, contention problem

→ not efficient for connecting many components (not scalable)

Cross-bar (x-bar) – switched network

ex) 4 simultaneous comm.

P1 - M4

P2 - M3

P3 - M1

P4 - M2

Both bus and X-bar are dynamic topologies.

IN in MIMD distributed-memory systems

• Direct (static) IN – each switch is directly connected to a P-M pair;

ex) ring, mesh, torus, fully connected,

• Indirect (dynamic) IN – switches may not be directly connected to a node;

ex) X-bar (single stage),

Omega network (multi stages),

Benes network (multi stages)

Static (direct) topologies

Assumptions/symbols used below:

network size (N) - # of nodes in IN

node degree (d) – # of links per internal node

network diameter (D) – any node can go to any other node within D hops (i.e., at worst case (longest distance), best solution)

bisection width (connectivity) – # of simultaneous communications
between 2 halves of the network

(a) Completely connected

node degree d = N-1 (N-1 links/node)

network diameter D = 1

fault tolerant

routing: directly connect to dest (1 hop) – high HW cost

N=2

N=3

N=4

N=5

(b) Linear array

d = 2 links/node

D = N-1

not fault tolerant: one fault → disconnects the entire list

routing: compute 1-D tag value and perform E-W routing;

(c) Ring (bidirectional)

d = 2 links/node

$$D = \lfloor N/2 \rfloor$$

fault tolerant (partly) - both directions available

Routing: source_tag = dest_id - source_id;

 $new_tag = tag (+/- 1) MOD N;$

trace until tag = 0;

(d) Mesh

2-D mesh

 $N = n^k$, where k, n are dimension, size of 1-D

d= 2k = 4 links/node (inner nodes)

$$D = k(n-1)$$

fault tolerant

Routing: X-Y routing, tag = XY

source tag (2-D) = dest id – source id;

ex) souece_id = 00, dest_id = 22; → source tag = 22 trace until tag = 00; if a node is busy, take any available path;

3-D mesh

 $N = n^k$, where k, n are dimension, size of 1-D

$$D = k(n-1)$$

fault tolerant, expensive

Routing: X-Y-Z routing,

nodes) N/S E/W in/out
$$+1$$
 $+1$ $+1$

source tag value (3-D) = dest_id - source_id;

tag = XYZ

trace until tag = 000; if a node is busy, take any available path;

ex)
$$N = 27$$

 $d = 2k = 2*3 = 6$
 $D = k(n-1) = 3(3-1) = 6$

(e) Torus (2-D and 3-D)

d = 2k, where k is dimension, for all nodes symmetric node degree, i.e.,

2-D torus:
$$d = 2k = 2*2 = 4 links/node$$

3-D torus:
$$d = 2k = 2*3 = 6 links/node$$

D =
$$k \lfloor \frac{k\sqrt{N}}{2} \rfloor$$
 //ex) 2-D 3x3 torus, D = $2 \lfloor \frac{2\sqrt{9}}{2} \rfloor$ = $2* \lfloor 3/2 \rfloor$ = 2

reduced network diameter, e.g., N=9, 2-D mesh (D=4) vs. 2-D torus (D=2) 3-D torus used in Cray T3D/TSE

(f) Hypercube

network size
$$N = 2^k$$
, where k is dimension

diameter D = k

dimension(k) # of nodes(N) node degree(d) diameter(D)

0 (0 cube)	1	0 link/node	0
1 (1 cube)	2	1 link/node	1
2 (2 cube)	4	2 links/node	2 — —
3 (3 cube)	8	3 links/node	3
4 (4 cube)	16	4 links/node	4

Routing: gray coding for node id – adjacent node_id differs in only 1 bit;

repeat this with new source id until no links are available;

possible policies: take left-most (or, right-most) available link first;

if we use the policy of taking the left-most avail. one first, take link3: new soure_id = $\underline{1}10$, and perform

110 XOR 101 \rightarrow 0 1 1 (link2 and link1 are available); take link2: new source_id = 100, and perform

100 XOR 101 \rightarrow 0 0 1 (link1 is available); take link1: new source_id = 101, and perform

101 XOR 101 \rightarrow 000 (no links are available, stop)

4-D cube routing:

gray coding and do analogous operation;

ex) source_id = 0011, dest_id = 1100

0011 XOR 1100 \rightarrow 1111 (order of avail. link4,3,2,1)

4-D hypercube

(g) Cube-connected cycles (CCC)

3-D CCC (3-CCC)

k-CCC: k*2^k nodes

ex) 3-CCC,
$$3*2^3 = 24 \text{ nodes}$$

fixed node degree (independent from k), d=3 network diameter D = $2k - 1 + \lfloor k/2 \rfloor \approx 2k$

4-CCC: refined 4 nodes in each node of 4-cube

d = 3 (fixed)
D =
$$2k - 1 + \lfloor k/2 \rfloor = 2*4 - 1 + \lfloor 4/2 \rfloor = 9$$

(h) binary tree

node degree = 3 (3 links/node), diameter D = 2(k-1)

k-level binary tree:
$$N = \frac{2^k - 1}{2 - 1}$$
 nodes

k-level m-way tree: N =
$$\frac{m^{k}-1}{m-1}$$
 nodes

ex)
$$k=3 \rightarrow N=7$$
 nodes (Fig(h))

(k) star

node degree (internal node) d = N - 1diameter D = 2

Dynamic IN

Bus – not used in SIMD, used in shared-mem MIMD

X-bar (crossbar) – single stage – shared-mem (P-M, P-P), dist-mem(P/M-P/M)

MIN (multi-stage IN) Omega network based on multi-stage shuffling

Benes network

Figure F.8 (a) A shared-media network versus (b) a switched-media network. Ethernet was originally a shared media network, but switched Ethernet is now available. All nodes on the shared-media must dynamically share the raw bandwidth of one link, but switched-media networks can support multiple links, providing higher raw aggregate bandwidth.

Bus: a collection of wires/connectors for data transactions among processors, memory modules and peripheral devices.

system bus $(P \leftrightarrow M)$ – datapath, address/control lines; local bus – in each board (CPU board, mem board, I/O board); memory bus – local bus in the memory board;

disadvantages: time shared use: bus access – one at a time → contention; limited scalability;

processor bandwidth is a portion of the total bus bandwidth;

Crossbar switches

much higher bandwidth than bus;
single stage switched network via cross point on/off;
number of cross points → HW cost/complexity;
usage: P-P communication in SMP, MPP, COW;
P-M communication in SMP, PVP;

ex) 8x8 X-bar switch in general, n*m, where n,m = 2^x

The crossbar network requires N^2 crosspoint switches, shown as black dots

Concurrent communication is available, e.g., PE1 – M2 and PE3 – M1; uniform latency – only 1 set of switches in any path; contention case → one waits; operation of MIMD requires P-M IN be changed in a dynamic fashion;

Shuffling

perfect shuffle

Concept:

divide PEs into 2 groups, e.g., (0,1,2,3) and (4,5,6,7);

2 groups are then merged, s.t.,

0 is adjacent to 4;

1 is adjacent to 5;

2 is adjacent to 6;

3 is adjacent to 7;

reverse perfect shuffle

if i < N/2, shuffle (i) = 2*i if $i \ge N/2$, shuffle (i) = [(2*i) MOD N] + 1

node_id: x y z ex) F

ex) P0 (000) \rightarrow 000; P1 (001) \rightarrow 010; P2 (010) \rightarrow 100

2x2 X-bar switch operations

MIN (multi-stage IN)

dynamic switch connection (on/off);

fixed inter-stage connections between adjacent stages;

ex) Omega network, Benes network

Omega network

N x N Omega network with 2x2 X-bar switches:

- logN stages, each stage with $\frac{N}{2}$ 2x2 X-bar switches \rightarrow total (logN) * $\frac{N}{2}$ 2x2 X-bar switches;
- perfect shuffle between stages;
- packet switching (data, <u>dest-address</u>);

read in each switch

routing: dest id routing

 Any node to any node comm. is possible, but ∃ only 1 unique path from an input (source) to an output (dest).

problem: blocked case; → Sol: buffered in switch and wait

Benes network

- ∃ multiple paths between a source and a dest.;
 → reduced blocking, increased bandwidth;
- More complex HW;
- increased network latency;
 increased # of stages → complexity in routing path computation;
 so, suitable for circuit switching since the routing path computation takes a considerable amount of time.

of stages =
$$2(\log N) - 1$$

ex) N=8 \rightarrow 5 stages, N=16 \rightarrow 7 stages
total # of 2x2 switches = $\frac{N}{2}[2(\log N) - 1]$

total # of paths between a source and dest = $2^{\lfloor \text{total # of stages/2} \rfloor}$ ex) N=8 \rightarrow 2² = 4 paths

N=16 (16x16) Benes network

Figure F.12 Beneŝ network. A 16-port Clos topology, where the middle-stage switches shown in the darker shading are implemented with another Clos network whose middle-stage switches shown in the lighter shading are implemented with yet another Clos network, and so on, until a Beneŝ network is produced that uses only 2 x 2 switches everywhere.

 $2(\log N) - 1 = 7 \text{ stages}$

total # of paths between a source and a dest = $2^{\lfloor \text{total } \# \text{ of stages}/2 \rfloor} = 2^3 = 8$ total # of 2x2 switches = $\frac{N}{2}$ * [(2 logN) - 1] = 8*7 = 56 Uklesole distornen-widirect IN (dynamic)

Fig 2.14 A crossbar interconnect for distributed-memory

(444) dynamic - single stage

Fig 2.15 An omega network

dynanic multistage

Fig 2.16 A switch in an omega network (2×2)