Zusammenfassung HM I — Übungsklausur 2

Paul Nykiel

2. Februar 2017

Inhaltsverzeichnis

Ι	Gı	renzwerte	4			
1	Gruppen und Körper					
	1.1	Gruppen	4			
	1.2	Körper	4			
	1.3	Angeordnete Körper	ţ			
		1.3.1 Gebräuchliche Definition zu angeordenten Körpern	ļ			
		1.3.2 Vollständig Angeordnete Körper	ļ			
	1.4	Minimum und Maximum	ţ			
	1.5	Obere und untere Schranke	(
	1.6	Supremum und Infimum	(
2	Folg	gen	(
	2.1	Konvergenz	7			
		2.1.1 Schreibweise	7			
	2.2	Bestimmte Divergenz	7			
	2.3	Beschränktheit	7			
		2.3.1 Beschränktheit nach oben/unten	-			
	2.4	Zusammenhang Konvergenz — Beschränktheit	,			
	2.5	Grenzwertrechenregeln	7			
	2.6	Sandwich Theorem u.a	8			
	2.7	Monotonie	8			
	2.8	Zusammenhang Monotonie und Beschränktheit	8			
3	Häi	ufungswerte	8			
	3.1	Teilfolgen	8			
	3.2	Teilfolgen einer Konvergenten Folge	ç			
	3.3	Häufungswerte	(
	3.4	Limes superior/inferior	ç			
	3.5	Konvergenz und limsup/liminf	Ç			
	3.6	Satz von Bolzano-Weierstraß	(
	3.7	Cauchy-Kriterium	ć			
4	Une	endliche Reihen	ç			
	4.1	Definition	(
	4.2	Cauchy-Kriterium für unendliche Reihen	10			
	4.3	Grenzwertrechenregeln für unendliche Reihen	10			
	4.4	Positive Folgen	11			
	4.5	Leibniz-Kriterium	11			
	4.6	Absolute Konvergenz	11			
	4.7	Majorantenkriterium	11			
	4.8	Minorantenkriterium	11			
	4.0	Wurzel- und Quotientenkriterium	11			

	4.10	Umordnung einer Reihe	12			
		Cauchy-Produkt	12			
5	Pote	enzreihen	12			
	5.1	Definition	12			
	5.2	Hadamard	12			
	5.3	Hinweis	13			
	5.4	Integration und Differentiation von Potenzreihen	13			
	5.5	Cauchy-Produkt für Potenzreihen	13			
	5.6	Wichtige Potenzreihen	13			
	5.7	Alternative Definiton der Exponentialfunktion	14			
6	Funktionsgrenzwerte 14					
	6.1	Bemerkung	14			
	6.2	Epsilon-Umgebung	14			
	6.3	Funktionsgrenzwerte (über Delta-Epsilon-Kriterium)	14			
	6.4	Folgenkriterium	15			
	6.5	Rechenregeln für Funktionsgrenzwerte	15			

Teil I

Grenzwerte

1 Gruppen und Körper

1.1 Gruppen

Eine Gruppe ist definiert als ein Tuppel aus einer (nicht-leeren) Menge und einer Gruppe. Eine Gruppe erfüllt die folgenden Axiome (seien $a,b,c\in\mathbb{G}$):

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 (Assoziativität)
 $a \circ \varepsilon = a$ (Rechtsneutrales Element)
 $a \circ a' = \varepsilon$ (Rechtsinverses Element)

Eine abelsche Gruppe erfüllt des weiteren:

$$a \circ b = b \circ a$$
 (Kommutativität)

1.2 Körper

Ein Körper ist definiert als eine Menge mit mindestens zwei Elementen (0 und 1) und zwei Verknüfungen.

$$\begin{array}{cccc} + : \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \\ & \cdot : \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \end{array}$$

 \mathbb{K} ist bezüglich der Addition und der Multiplikation (genauer: $\mathbb{K}\setminus\{0\}$) ein abelscher Körper, das heißt es gilt (seien $a,b,c\in\mathbb{K}$):

$$\begin{array}{ll} a+(b+c)=(a+b)+c & \text{(Assoziativit"at bez. der Addit"ion)} \\ a+0=a & \text{(Existenz einer Null)} \\ a+(-a)=0 & \text{(Existenz eines Inversen bez. der Addit"ion)} \\ a+b=b+a & \text{(Kommutativit"at bez. der Addit"ion)} \\ a\cdot(b\cdot c)=(a\cdot b)\cdot c & \text{(Assoziativit"at bez. der Multiplikat"ion)} \\ a\cdot 1=a & \text{(Existenz einer 1)} \\ a\cdot a^-1=1 & \forall a\neq 0 & \text{(Existenz eines Inversen bez. der Multiplikat"ion)} \\ a\cdot b=b\cdot a & \text{(Kommutativit"at bez"uglich der Multiplikat"ion)} \\ \end{array}$$

außerdem gilt:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 (Distributivgesetz)

Bem.: \mathbb{Q} , \mathbb{R} und \mathbb{C} sind Körper. \mathbb{Z} und \mathbb{N} nicht (kein additiv inverses bei \mathbb{N} , kein multiplikativ inverses bei beiden).

1.3 Angeordnete Körper

Ein Körper heißt angeordent wenn folgende Axiome erfüllt sind (seien $a,b,c\in\mathbb{K}$):

$$\begin{array}{ccc} a < b \lor & b < a & \lor a = b \\ a < b \land b < c & \Rightarrow & a < c \\ & a < b & \Rightarrow & a + c < b + c \\ a < b \land c > 0 & \Rightarrow & a * c < b * c \end{array}$$

Bem.: \mathbb{Q} und \mathbb{R} sind angeordnete Körper. Für \mathbb{C} kann keine Ordnungsrelation definiert werden so das alle Axiome erfüllt sind.

1.3.1 Gebräuchliche Definition zu angeordenten Körpern

Für gewöhnlich gilt 0 < 1.

Die Ordnungsrelation wird dann definiert durch:

$$\begin{array}{rcl}
2 & := & 1+1 \\
3 & := & 2+1 \\
4 & := & 3+1
\end{array}$$

Die Natürlichen Zahlen werden Induktiv definiert:

1.
$$1 :\in \mathbb{N}$$

2.
$$n \in \mathbb{N} \Rightarrow (n+1) \in \mathbb{N}$$

Bem: Aus 2. lässt sich direkt ableiten das \mathbb{N} nach oben unbeschränkt ist (Archimedisches Prinzip).

1.3.2 Vollständig Angeordnete Körper

Ein Körper heißt Vollständig, falls jede nach oben beschränkte, nicht-leere teilmenge ein Supremum besitzt.

 $\Rightarrow \mathbb{R}$ ist der einzige Vollständig angeordnete Körper.

Bem: \mathbb{Q} ist nicht vollständig angeordnet, da $A := \{x | x^2 \leq 2\} \subset \mathbb{Q}$ kein obere Schrank besitzt (obere Schranke ist $\sqrt{2} \notin \mathbb{Q}$).

1.4 Minimum und Maximum

Sei $\mathbb K$ ein angeord
nter Körper und $A\subset \mathbb K$ dann heißt m Minimum falls gilt:

- 1. $m \in \mathbb{K}$
- 2. $a \ge m \ \forall a \in A$

Analog ist das Maximum definiert: Sei $\mathbb K$ ein angeord
nter Körper und $A\subset \mathbb K$ dann heißt m Maximum falls gilt:

- 1. $m \in \mathbb{K}$
- $2. \ a \leq m \ \forall a \in A$

Schreibweisen: $m = \min(A)$ bzw. $m = \max(A)$

Bem.: Minimum und Maximum exisitieren nicht immer.

Beispiel: $A:=\{x|x>0\}\subset\mathbb{R}$ hat nicht 0 als Minimum da $0\notin A$ und kein beliebiges m da $\tilde{m}:=\frac{m}{2}< m\ \forall m\in A$

1.5 Obere und untere Schranke

Sei \mathbb{K} ein angeordenter Körper und $A \subset \mathbb{K}$ dann ist s untere Schranke falls gilt:

• $s \ge a \ \forall a \in A$

Analog ist die obere Schranke definiert: Sei $\mathbb K$ ein angeordenter Körper und $A\subset \mathbb K$ dann ist s obere Schranke falls gilt:

• $s \le a \ \forall a \in A$

Bem.: Hat eine Menge eine obere (bzw. untere) Schranke heißt er nach oben (bzw. unten) beschränkt. Ist eine Menge nach unten und oben beschränkt bezeichnet man sie als beschränkt.

1.6 Supremum und Infimum

s heißt Infimum (größte untere Schranke) falls gilt:

- \bullet s ist untere Schranke
- Falls \tilde{s} ebenfalls untere Schranke ist gilt $s \geq \tilde{s}$

Analog ist das Supremum definiert: s heißt Supremum (kleinste obere Schranke) falls gilt:

- s ist obere Schranke
- \bullet Falls \tilde{s} ebenfalls obere Schranke ist gilt $s \leq \tilde{s}$

Bem.: Wenn Minimum (bzw. Maximum) existieren sind diese gleich dem Infimum (bzw. Supremum).

Schreibweise: $s = \inf(A)$ bzw. $s = \sup(A)$

2 Folgen

Eine Folge a_n ist definiert als eine Funktion:

$$a_n := \varphi : \mathbb{N} \to \mathbb{M} \subset \mathbb{R}$$

oder auch $(a_n)_{n=1}^{\infty}$.

2.1 Konvergenz

Eine Folge a_n heißt konvergent wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : \ |a_n - a| < \varepsilon \ \forall n > n_0(\varepsilon)$$

Bem.: Der Grenzwert ist eindeutig, d.h. es existiert nur ein Grenzwert.

2.1.1 Schreibweise

Falls a_n gegen a konvergiert schreibt man:

$$\lim_{n \to \infty} a_n = a$$

2.2 Bestimmte Divergenz

Eine Folge a_n heißt bestimmt Divergent wenn gilt

$$\forall x \in \mathbb{R} \ \exists n(x): \ a_n > x \text{ bzw. } a_n < x$$

Schreibweise:

$$\lim_{n \to \infty} a_n = \infty \text{ bzw. } -\infty$$

2.3 Beschränktheit

Eine Folge heißt beschränkt wenn gilt:

$$|a_n| < c \ \forall n$$

2.3.1 Beschränktheit nach oben/unten

Eine Folge heißt nach oben (bzw. unten) beschränkt wenn gilt:

$$a_n < c \ \forall n \in \mathbb{N}$$
 bzw. $a_n > c \ \forall n \in \mathbb{N}$

2.4 Zusammenhang Konvergenz — Beschränktheit

Jede konvergente Folge ist beschränkt.

2.5 Grenzwertrechenregeln

Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ Folgen in $\mathbb C$ mit:

$$\lim_{n \to \infty} a_n = a \text{ und } \lim_{n \to \infty} b_n = b$$

Dann gilt:

$$\bullet \lim_{n \to \infty} |a_n| = |a|$$

- $\bullet \lim_{n \to \infty} (a_n + b_n) = a + b$
- $\bullet \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- Falls $b \neq 0$: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

2.6 Sandwich Theorem u.a.

Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ Folgen in \mathbb{R} mit:

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b \text{ und } \gamma \in \mathbb{R}$$

Dann gilt:

- $a_n \le \gamma \ \forall n \in \mathbb{N} \Rightarrow a \le \gamma$
- $a_n \ge \gamma \ \forall n \in \mathbb{N} \Rightarrow a \ge \gamma$
- $a_n \le b_n \ \forall n \in \mathbb{N} \Rightarrow a \le b$
- $a_n \le c_n \le b_n \ \forall n \in \mathbb{N} \land a = b \Rightarrow c = \lim_{n \to \infty} c_n = a = b$

2.7 Monotonie

Eine Folge $(a_n)_{n=1}^{\infty}$ in \mathbb{R} heißt:

- Monoton wachsend falls: $a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \nearrow$)
- Monoton fallend falls: $a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \searrow$)
- Streng monoton wachsend falls: $a_{n+1} > a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \uparrow$)
- Streng monoton fallend falls: $a_{n+1} < a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \downarrow$)

2.8 Zusammenhang Monotonie und Beschränktheit

Jede Monotone und beschränkte Folge konvergiert.

3 Häufungswerte

Häufungswerte sind Grenzwerte einer Teilfolge.

3.1 Teilfolgen

Eine Folge $(b_n)_{n=1}^{\infty}$ heißt Teilfolge von $(a_n)_{n=1}^{\infty}$, wenn eine streng monotone Funktion $\varphi: \mathbb{N} \to \mathbb{N}$ existiert mit $b_n = a_{\varphi(n)}$.

3.2 Teilfolgen einer Konvergenten Folge

Sei $(a_n)_{n=1}^{\infty}$ eine konvergente Folge in \mathbb{C} mit: $\lim_{n\to\infty} a_n = a$ und $(b_n)_{n=1}^{\infty}$ sei eine Teilfolge. Dann gilt $\lim_{n\to\infty} b_n = a$.

3.3 Häufungswerte

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} . Dann heißt $a \in \mathbb{C}$ ein Häufungswert einer Folge, falls eine Teilfolge gegen a konvergiert.

3.4 Limes superior/inferior

Sei $(a_n)_{n=1}^{\infty}$ eine reele Folge, dann heißt:

$$\lim_{n \to \infty} \sup a_n := \overline{\lim}_{n \to \infty} a_n := \sup \{ x \in \mathbb{R}, a_n > x \text{ } \infty\text{-oft} \}$$

der Limes superior von $(a_n)_{n=1}^{\infty}$ und

$$\lim_{n \to \infty} \inf a_n := \underline{\lim}_{n \to \infty} a_n := \inf \{ x \in \mathbb{R}, a_n < x \text{ } \infty\text{-oft} \}$$

der Limes inferior von $(a_n)_{n=1}^{\infty}$.

3.5 Konvergenz und limsup/liminf

Eine beschränkte Folge $(a_n)_{n=1}^{\infty}$ in \mathbb{R} konvergiert \Leftrightarrow

$$\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n$$

3.6 Satz von Bolzano-Weierstraß

Jede beschränkte Folge in $\mathbb C$ besitzt eine konvergente Teilfolge

3.7 Cauchy-Kriterium

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} , dann gilt

$$(a_n)_{n=1}^{\infty}$$
 konv. $\Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : |a_n - a_m| < \varepsilon \ \forall n, m > n_0(\varepsilon)$

Bem.: Im Gegensatz zur Definition der Folgenkonvergenz muss der Grenzwert nicht bekannt sein.

4 Unendliche Reihen

4.1 Definition

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} , dan heißt die durch

$$s_n = \sum_{k=1}^n a_k$$

definiert Folge $(s_n)_{n=1}^{\infty}$ eine Folge von Partialsummen der unendlichen Reihe:

$$\sum_{k=1}^{\infty} a_k$$

Falls die Folge $(s_n)_{n=1}^{\infty}$ konvergiert setzten wir:

$$\lim_{n \to \infty} s_n =: \sum_{k=1}^{\infty} a_k$$

4.2 Cauchy-Kriterium für unendliche Reihen

Sei $\sum_{k=1}^{\infty} a_k$ eine
 $\infty\text{-Reihe},$ dann gilt:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \left| \sum_{k=m}^n a_k \right| < \varepsilon \ \forall n, m > n_0(\varepsilon)$$

und:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Rightarrow \lim_{n \to \infty} a_n = 0$$

4.3 Grenzwertrechenregeln für unendliche Reihen

Seien

$$\sum_{k=1}^{\infty} a_k \text{ und } \sum_{k=1}^{\infty} b_k \text{ gegeben und } \alpha, \beta \in \mathbb{C}$$

dann gilt:

(a)

$$\sum_{n=1}^{\infty} a_k \text{ und } \sum_{n=1}^{\infty} b_k \text{ konv.:}$$

$$\Rightarrow \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) \text{ konv.}$$

$$\text{und: } \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{n=1}^{\infty} a_k + \beta \sum_{n=1}^{\infty} b_k$$

(b)
$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \sum_{k=1}^{\infty} \operatorname{Re}(a_k) \text{ und } \sum_{k=1}^{\infty} \operatorname{Im}(a_k) \text{ konv.}$$

(c)
$$\sum_{k=1}^\infty a_k \text{ konv.} \Leftrightarrow \text{ die Restreihe } R_n := \sum_{k=n}^\infty a_k \text{ konv. gegen } 0 \Rightarrow \lim_{n\to\infty} R_n = 0$$

4.4 Positive Folgen

Es sei $(a_n)_{n=1}^{\infty}$ eine Folge mit $(a_n)_{n=1}^{\infty} \in [0,\infty)$ dann gilt:

$$\sum_{k=1}^{\infty} a_k$$
konv. \Leftrightarrow Folge der Partialsummen $\sum_{k=1}^n a_k$ ist beschr.

4.5 Leibniz-Kriterium

Sei $(a_n)_{n=1}^{\infty}$ eine monoton fallende, stetige Folge. Dann gilt falls $\lim_{n\to\infty}a_n=0$ ist, konv. die sogennante alternierende Reihe

$$\sum_{k=1}^{\infty} \left(-1\right)^k a_k$$

4.6 Absolute Konvergenz

Eine Reihe $\sum_{k=1}^{\infty} a_k$ heißt absolut konvergent, wenn

$$\sum_{k=1}^{\infty} |a_k|$$

konvergiert.

Bem.: Jede absolut konvergente Reihe ist auch konvergent.

4.7 Majorantenkriterium

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ mit $b_k \geq 0$ gegeben. Wenn $\sum_{k=1}^{\infty} b_k$ konv. und ein c > 0 ex. mit

$$|a_k| \leq c \cdot |b_k|$$

für fast alle k
, dann konv. $\sum_{k=1}^{\infty}a_k$ absolut.

4.8 Minorantenkriterium

Falls ein c > 0 ex. mit $a_k \ge c \cdot b_k > 0$ für fast alle k, dann:

$$\sum_{k=1}^{\infty} b_k \text{ div. } \Rightarrow \sum_{k=1}^{\infty} a_k \text{ div.}$$

4.9 Wurzel- und Quotientenkriterium

Sei $\sum_{k=1}^{\infty} a_k$ gegeben. Dann gilt:

(a) Wenn

$$\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty} a_k$ absolut.

(b) Wenn $a_n \neq 0 \ \forall n \ \text{und}$

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty} a_k$ absolut.

4.10 Umordnung einer Reihe

Eine Reihe $\sum_{k=1}^{\infty} b_k$ heißt Umordnung der Reihe $\sum_{k=1}^{\infty} a_k$, wenn eine bij. Abb $\varphi: \mathbb{N} \to \mathbb{N}$ ex. mit $b_k = a_{\varphi(k)}$.

Bem.: Die Reihe konvergiert nur gegen den selben Wert, wenn $\sum_{k=1}^{\infty} a_k$ absolut konvergent ist.

4.11 Cauchy-Produkt

Die Reihen $\sum_{k=1}^{\infty} b_k$ und $\sum_{k=1}^{\infty} a_k$ seien absolut konv.. Dann gilt:

$$\left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j \cdot b_{k-j}\right) = \sum_{k=0}^{\infty} c_k$$

und $\sum_{k=0}^{\infty} c_k$ konv. ebenfalls absolut.

5 Potenzreihen

5.1 Definition

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in $\mathbb C$ und $z_0 \in \mathbb C$. Dann heißt

$$\sum_{k=0}^{\infty} a_k \cdot (z - z_0)^k$$

eine Potenzreihe mit Entwicklungspunkt z_0 und Koeffizienten a_n .

Bem.: Viele wichtige Funktionen können als Potenzreihen dargestellt werden.

5.2 Hadamard

Sei $\sum_{k=0}^{\infty} a_k (z-z_o)^k$ eine PR. Definiere

$$R := \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}$$

Dabei sei $R:=\infty$, falls $\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}=0$ und R=0 falls $\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}=\infty$.

Dann konv. die PR absolut, falls $|z - z_0| < R$ und divergiert falls $|z - z_0| > R$.

Bem. I: Für $|z - z_0| = R$ wird keine Aussage gemacht.

Bem. II: R heißt der Konvergenzradius der Potenzreihe.

5.3 Hinweis

Es gilt:

$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

5.4 Integration und Differentiation von Potenzreihen

Sei $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ mit Konvergenzradius R. Dann besitzen auch die Potenzreihen

$$\sum_{k=0}^{\infty} k \, a_k (z - z_0)^{k-1} \text{ und } \sum_{k=0}^{\infty} \frac{a_k}{k+1} (z - z_0)^{k+1}$$

den Konvergenzradius R.

5.5 Cauchy-Produkt für Potenzreihen

Seien $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ und $\sum_{k=0}^{\infty} b_k (z-z_0)^k$ Potenzreihen, die den Konvergenzradius R_1 bzw. R_2 besitzen. Dann besitzt

$$\sum_{k=0}^{\infty} c_k (z - z_0)^k \text{ mit } c_k = \sum_{l=0}^k a_l \cdot b_{k-l}$$

den Konvergenzradius $R = \min\{R_1, R_2\}.$

5.6 Wichtige Potenzreihen

(a) Die Expontentialfunktion ist definiert durch:

$$\exp: \mathbb{C} \to \mathbb{C} \quad z \mapsto \exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

(b) Die Trigonometrischen Funktionen sind definiert durch:

$$\sin: \mathbb{C} \to \mathbb{C} \quad z \mapsto \sin(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
$$\cos: \mathbb{C} \to \mathbb{C} \quad z \mapsto \cos(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

(c) Tangens und Cotangens sind dann definiert als:

$$\tan : \{z \in \mathbb{C} : \cos(z) \neq 0\} \to \mathbb{C} \quad z \mapsto \tan(z) := \frac{\sin(z)}{\cos(z)}$$
$$\cot : \{z \in \mathbb{C} : \sin(z) \neq 0\} \to \mathbb{C} \quad z \mapsto \cot(z) := \frac{\cos(z)}{\sin(z)}$$

5.7 Alternative Definiton der Exponentialfunktion

$$\forall z \in \mathbb{C} \text{ gilt } \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \exp\left(z\right)$$

6 Funktionsgrenzwerte

6.1 Bemerkung

In diesem Intervall bezeichnet I stehts ein offenes Intervall und \overline{I} dessen sog. Abschluss z.B.:

- (a) I = (a, b) und $\overline{I} = [a, b]$
- (b) $I = (-\infty, b)$ und $\overline{I} = (-\infty, b]$
- (c) $I = (a, \infty)$ und $\overline{I} = [a, \infty)$
- (d) $I = (\infty, \infty)$ und $\overline{I} = (\infty, \infty)$

6.2 Epsilon-Umgebung

Für $x_0 \in \mathbb{R}$ und $\varepsilon > 0$ heißt

$$U_e(x_0) := \{x \in \mathbb{R} : |x - x_0| < \varepsilon\} = (x_0 - \varepsilon, x_0 + \varepsilon)$$

die ε -Umgebung von x_0 . Und

$$\dot{U}_e(x_0) := U_e(x_0) \setminus \{0\} = (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)$$

die punktierte ε -Umgebung von x_0 .

6.3 Funktionsgrenzwerte (über Delta-Epsilon-Kriterium)

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$

(a) f konv. gegen ein $a\in\mathbb{R}$ für $x\to x_0$ (kurz: $\lim_{x\to x_0})f(x)=a)$ wenn gilt

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \ \text{mit} \ |x - x_0| < \delta(\varepsilon) \ \text{und} \ x \neq x_0$$

Schreibweise:

$$\lim_{x \to x_0} f(x) = a \text{ oder } f(x) = a \text{ für } x \to x_0$$

(b) Sei $x_o \in I$, dann konv. f einseitig von links gegen $a \in \mathbb{R}$ wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : \ |f(x) - a| < \varepsilon \ \forall x \in (x_0 - \delta \varepsilon, x_0)$$

Schreibweise:

$$\lim_{x \to x_{0^-}} f(x) = a$$

(c) Sei $x_o \in I$, dann konv. f einseitig von rechts gegen $a \in \mathbb{R}$ wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : \ |f(x) - a| < \varepsilon \ \forall x \in (x_0, x_0 + \delta \varepsilon)$$

Schreibweise:

$$\lim_{x \to x_{0^+}} f(x) = a$$

(d) Sei $I=(\alpha,\infty)$ (bzw. $I=(-\infty,\beta)$) dann konv. f gegen a für $x\to\infty$ (bzw. $x\to-\infty$) wenn gilt:

$$\forall \varepsilon > 0 \ \exists x_1(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in I : x > x_1(\varepsilon) \ (bzw. \ x < x_1(\varepsilon))$$

6.4 Folgenkriterium

Sei $f: I \to \mathbb{R}$ und $x_0 \in \overline{I}, u \in \mathbb{R}$ dann gilt $\lim_{x \to \infty} f(x) = a \Leftrightarrow$

Für eine beliebe Folge
$$(x_n)_{n=1}^{\infty}$$
 mit $(i)x_n \neq x_0 \forall n$ (ii) $\lim_{x \to \infty} x_n = x_0$ gilt stets: $\lim_{n \to \infty} f(x_n) = a$

6.5 Rechenregeln für Funktionsgrenzwerte

Seien $f, g: I \to \mathbb{R}$ und x_0 in I und gelte

$$\lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} g(x) = b$$

Dann gilt:

(a)
$$\lim_{x \to x_0} (\alpha \cdot f(x)) = \alpha \cdot a$$

$$\lim_{x \to x_0} (g(x) + f(x)) = a + b$$

(c)
$$\lim_{x \to x_0} (g(x) \cdot f(x)) = a \cdot b$$

(d)
$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{a}{b} \quad \text{falls } b \neq 0$$