Chapter 1 Elementary analysis

Advanced algorithms on March 16, 2019

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and

Algorithm

Complexity Formulas

Basic methods for asymptotic behaviour analysis

Counting number of elementary operations

Huynh Tuong Nguyen Faculty of Computer Science and Engineering University of Technology - VNUHCM

Contents

Elementary analysis

Huynh Tuong Nguyen

1 Definition and notations

Algorithm Complexity Formulas

2 Basic methods for asymptotic behaviour analysis

Counting number of elementary operations

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Algorithm

What is an algorithm?

An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and

notations Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour

Algorithm

What is an algorithm?

An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.

Properties of algorithms

- Input from a specified set,
- Output from a specified set (solution),
- Definiteness of every step in the computation,
- Correctness of output for every possible input,
- Finiteness of the number of calculation steps,
- Effectiveness of each calculation step and
- Generality for a class of problems.

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity Formulas

Basic methods for asymptotic behaviour analysis

Complexity

- Generally, not much interested in time and space complexity for small inputs.
- Given two algorithms A and B for solving problem P.

Input size	Algorithm A	Algorithm B		
n	5000 n	1.2^{n}		
10	50,000	6		
100	500,000	2,817,975		
1,000	5,000,000	1.5×10^{79}		
100,000	5×10^8	1.3×10^{7918}		

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

ompically

Formulas

Basic methods for asymptotic behaviour analysis

Complexity

- Generally, not much interested in time and space complexity for small inputs.
- Given two algorithms A and B for solving problem P.

Input size	Algorithm A	Algorithm B	
n	5000 n	1.2^{n}	
10	50,000	6	
100	500,000	2,817,975	
1,000	5,000,000	1.5×10^{79}	
100,000	5×10^8	1.3×10^{7918}	

- *B* cannot be used for large inputs, while *A* is still feasible.
- So what is important is the growth of the complexity functions.
- Growth of time and space complexity with increasing input size n
 is a suitable measure for the comparison of algorithms.

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

• Exact formulas, e.g., C(n) = n(n-1)/2.

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

- Exact formulas, e.g., C(n) = n(n-1)/2.
- Formula indicating order of growth with specific multiplicative constant e.g., C(n) ≈ 0.5n².

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Elementary analysis Huynh Tuong Nguyen

- Exact formulas, e.g., C(n) = n(n-1)/2.
- Formula indicating order of growth with specific multiplicative constant e.g., $C(n) \approx 0.5n^2$.
- Formula indicating order of growth with unknown multiplicative constant e.g., $C(n) \approx c.n^2$

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

- Exact formulas, e.g., C(n) = n(n-1)/2.
- Formula indicating order of growth with specific multiplicative constant e.g., C(n) ≈ 0.5n².
- Formula indicating order of growth with unknown multiplicative constant e.g., $C(n) \approx c.n^2$
- Most important: Order of growth within a constant multiple as $n \to \infty$

Contents

Definition and

Algorithm

Rasic methods for asymptotic behaviour analysis

notations

Complexity

Formulas

Counting number of

elementary operations

- Exact formulas, e.g., C(n) = n(n-1)/2.
- Formula indicating order of growth with specific multiplicative constant e.g., $C(n) \approx 0.5n^2$.
- Formula indicating order of growth with unknown multiplicative constant e.g., $C(n) \approx c.n^2$
- Most important: Order of growth within a constant multiple as $n \to \infty$

Asymptotic growth rate

A way of comparing functions that ignores constant factors and small input sizes

- O(g(n)): class of functions f(n) that grow no faster than g(n)
- $\Theta(q(n))$: class of functions f(n) that grow at the same rate as g(n)
- $\Omega(g(n))$: class of functions f(n) that grow at least as fast as g(n)

Complexity classes - a small vocabulary

- Constant: O(1) (independing on the input size)
- Sub-linear or logarithmic: $O(\log n)$
- Linear: O(n)
- Quasi-linear: $O(n \log n)$
- Quadratic: $O(n^2)$
- Cubic: $O(n^3)$
- Polynomial: $O(n^p)$ ($O(n^2)$, $O(n^3)$, etc)
- Quasi-polynomial: $O(n^{\log(n)})$
- Exponential: $O(2^n)$
- Factorial: O(n!)

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Asymptotic upper bound - worst case

Asymptotic upper bound "big O"

$$T(n) = O(f(n))$$
 iif $\exists c \in R^+$, $c > 0$ and $\exists n_0 \in N$, $n_0 > 0$ such that $\forall n > n_0$: $T(n) \le c \times f(n)$

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Asymptotic upper bound - worst case

Asymptotic upper bound "big O"

T(n) = O(f(n)) iif $\exists c \in R^+$, c > 0 and $\exists n_0 \in N$, $n_0 > 0$ such that $\forall n > n_0$: $T(n) \le c \times f(n)$

Example

Let $T(n) = 2n + 3n^3 + 5$. T(n) is in $O(n^3)$ with:

• $(c = 8 \text{ and } n_0 = 1) \text{ or } (c = 5 \text{ and } n_0 = 2)$

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Asymptotic upper bound - worst case

, ,

Elementary analysis

Huynh Tuong Nguyen

Asymptotic upper bound "big O"

$$T(n) = O(f(n))$$
 iif $\exists c \in R^+$, $c > 0$ and $\exists n_0 \in N$, $n_0 > 0$ such that $\forall n > n_0$: $T(n) \le c \times f(n)$

Example

Let $T(n) = 2n + 3n^3 + 5$. T(n) is in $O(n^3)$ with:

• $(c=8 \text{ and } n_0=1) \text{ or } (c=5 \text{ and } n_0=2)$

Principle: the lower-order terms are negligible.

Contents

Definition and

Algorithm

Complexity

Basic methods for asymptotic behaviour analysis

Asymtotic lower bound - best case

Elementary analysis

Huynh Tuong Nguyen

"big Omega"

$$T(n)=\Omega(f(n))$$
 iif $\exists c\in R^+$, $c>0$ and $\exists n_0\in N$, $n_0>0$ such that $\forall n>n_0\colon T(n)\geq c\times f(n)$

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Asymtotic lower bound - best case

Elementary analysis

Huynh Tuong Nguyen

"big Omega"

$$T(n)=\Omega(f(n))$$
 iif $\exists c\in R^+$, $c>0$ and $\exists n_0\in N$, $n_0>0$ such that $\forall n>n_0\colon T(n)\geq c\times f(n)$

Example

Let $T(n) = 2n + 3n^3 + 5$. T(n) is in $\Omega(n^3)$ with:

•
$$(c = 1 \text{ and } n_0 = 1)$$

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Asymtotic approximating bound - average case

"big Theta"

$$\begin{split} &T(n)=\Theta(f(n)) \text{ iif } \exists c_1,c_2\in R^+,\ c_1>0,\ c_2>0 \text{ and } \exists n_0\in N,\\ &n_0>0\\ &\text{such that } \forall n>n_0\colon c_1\times f(n)\leq T(n)\leq c_2\times f(n) \end{split}$$

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and

notations Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Asymtotic approximating bound - average case

"big Theta"

$$T(n) = \Theta(f(n))$$
 iif $\exists c_1, c_2 \in R^+$, $c_1 > 0$, $c_2 > 0$ and $\exists n_0 \in N$, $n_0 > 0$ such that $\forall n > n_0$: $c_1 \times f(n) \leq T(n) \leq c_2 \times f(n)$

Property

$$T(n) = O(f(n))$$
 and $T(n) = \Omega(f(n)) \Longrightarrow T(n) = \Theta(f(n))$

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

"big Theta"

$$\begin{split} & T(n) = \Theta(f(n)) \text{ iif } \exists c_1, c_2 \in R^+, \ c_1 > 0, \ c_2 > 0 \text{ and } \exists n_0 \in N, \\ & n_0 > 0 \\ & \text{such that } \forall n > n_0 \colon c_1 \times f(n) \leq T(n) \leq c_2 \times f(n) \end{split}$$

Property

$$T(n) = O(f(n))$$
 and $T(n) = \Omega(f(n)) \Longrightarrow T(n) = \Theta(f(n))$

Example

Let
$$T(n)=2n+3n^3+5$$
.
So, $T(n)$ is in $O(n^3)$ and in $\Omega(n^3)$.
Consequently, $T(n)$ is in $\Theta(n^3)$.

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Other properties

Not transitive

- $f(n) = n^2$; g(n) = n
- $\bullet \ \Rightarrow f(n) = O(n^2) = g(n) \text{ but } f(n) \neq g(n)$

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Contents

Definition and

Algorithm

Basic methods for asymptotic behaviour

Counting number of

notations

Complexity

Formulas

analysis

elementary operations

Not transitive

- $f(n) = n^2$; g(n) = n
- $\Rightarrow f(n) = O(n^2) = g(n)$ but $f(n) \neq g(n)$

Transitivity

- $f(n) = O(q(n)) \& q(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
- $f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
- $f(n) = \Theta(q(n)) \& q(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

•
$$\Rightarrow f(n) = O(n^2) = g(n)$$
 but $f(n) \neq g(n)$

Transitivity

- f(n) = O(g(n)) & $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
- $f(n) = \Omega(g(n))$ & $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
- $f(n) = \Theta(g(n))$ & $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

Additivity

- f(n) = O(h(n)) & $g(n) = O(h(n)) \Rightarrow f(n) + g(n) = O(h(n))$
- $f(n) = \Omega(h(n))$ & $g(n) = \Omega(h(n)) \Rightarrow f(n) + g(n) = \Omega(h(n))$
- $f(n) = \Theta(h(n))$ & $g(n) = \Theta(h(n)) \Rightarrow f(n) + g(n) = \Theta(h(n))$

BK TP.HCM

Contents

Definition and notations

Complexity

ormulas

Basic methods for asymptotic behaviour analysis

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and

notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

•
$$T(n) = 3 + 5n^2 \Rightarrow T(n) = \Theta(n^2)$$
 ?

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

•
$$T(n) = 3 + 5n^2 \Rightarrow T(n) = \Theta(n^2)$$
 ?

• if
$$T(n)=\left\{ \begin{array}{cccc} 2n+5 & if & n & \text{is even} \\ n^2-n+1 & if & n & \text{is odd} \end{array} \right.$$
 , then $T(n)=O(?)$ and $T(n)=\Omega(?)$.

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour

Compare the asymptotic behaviours of

- $1 2^n$ and 10^n
- $2 \log_2 n$ and $\log_{10} n$

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and

notations

Algorithm

Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Compare the asymptotic behaviours of

- 1 2^n and 10^n
- $\log_2 n$ and $\log_{10} n$

- 1 Prove that for any positive functions f and g, f(n) + g(n) and max(f(n);g(n)) are asymptotically equivalent.
- 2 Give a (necessary and sufficient) condition on positive functions f and g to ensure that f(n) + g(n) and f(n) are asymptotically equivalent.

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity Formulas

Basic methods for asymptotic behaviour analysis

Common asymptotic behaviours

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Size	Approximate computational time						
n	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n \log n)$	$\Theta(n^2)$	$\Theta(2^n)$	$\Theta(n!)$	
10	3.10^{-9} s	10^{-8} s	3.10^{-8} s	10^{-7} s	10^{-6} s	3.10^{-3} s	
10^{2}	7.10^{-9} s	10^{-7} s	7.10^{-7} s	10^{-5} s	4.10^{13} y	*	
10^{3}	10^{-8} s	10^{-6} s	10^{-5} s	10^{-3} s	*	*	
10^{4}	$1,3.10^{-8}$ s	10^{-5} s	10^{-4} s	10^{-1} s	*	*	
10^{5}	$1,7.10^{-8}$ s	10^{-4} s	2.10^{-3} s	10s	*	*	
10^{6}	2.10^{-8} s	10^{-3} s	2.10^{-2} s	17m	*	*	

Elementary analysis

Huynh Tuong Nguyen

- **1. Var** int: d = 0
- **2)** For i from 1 to n do
 - d = d + 1
 - $a[i] = a[i] \times a[i] + d \times d$
- 3 Endfor

Contents

Definition and notations

Algorithm

Formulas

Basic methods for asymptotic behaviour analysis

- Elementary analysis
- Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Counting number of

elementary operations

- **1)** (1) **Var** int: d = 0
- **2** For i from 1 to n do
 - 0 d = d + 1
 - $a[i] = a[i] \times a[i] + d \times d$
- 3 Endfor

- Elementary analysis
- Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity Formulas

Basic methods for asymptotic behaviour analysis

Counting number of

elementary operations

- **(1) Var** int: d = 0
- (n) For i from 1 to n do
 - 0 d = d + 1
 - $2 a[i] = a[i] \times a[i] + d \times d$
- 3 Endfor

Elementary analysis

Huynh Tuong Nguyen

- (1) Var int: d = 0
- (n) For i from 1 to n do
 - (1)d = d + 1
 - $a[i] = a[i] \times a[i] + d \times d$
- 3 Endfor

Contents

Definition and notations

Algorithm

Complexity Formulas

Basic methods for asymptotic behaviour analysis

- Elementary analysis
- Huynh Tuong Nguyen

(1) Var int: d = 0

$$(n)$$
 For i from 1 to n do

$$(1)d = d + 1$$

$$(1)a[i] = a[i] \times a[i] + d \times d$$

3 Endfor

Contents

Definition and notations

Algorithm

Formulas

Basic methods for asymptotic behaviour analysis

- Elementary analysis
- Huynh Tuong Nguyen

- **1)** (1) **Var** int: d = 0
- 2) (n) For i from 1 to n do
 - (1)d = d + 1
 - **2** $(1)a[i] = a[i] \times a[i] + d \times d$
- 6 Endfor

Contents

Definition and notations

Algorithm

Complexity Formulas

analysis

Basic methods for asymptotic behaviour

Counting number of

elementary operations

Number of elementary operations: $1 + n \times (1 + 1) = 2n + 1$.

Linear loop example

- Elementary analysis
- Huynh Tuong Nguyen

- Contents
- Definition and notations
- Algorithm
- Complexity Formulas
- Basic methods for asymptotic behaviour analysis

Counting number of

elementary operations

- 1 Var int: i = 1
- **2** While $i \leq n$ do
 - 1. Write "Bonjour"
 - 2 i = i + 1
- 3 EndWhile

Linear loop example

- **Elementary analysis**
- Huynh Tuong Nguyen

- 1 Var int: i = 1
- **2** While $i \leq n$ do
 - 1. Write "Bonjour"
 - 2 i = i + 1
- 3 EndWhile

- **10** Var int: i = n
- 2 While i > 1 do
 - 1 Write "Bonjour"
 - i = i 1
- 3 EndWhile

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Linear loop example

- Elementary analysis Huynh Tuong Nguyen

- 1 Var int: i=1
- 2) While $i \leq n$ do
 - 1 Write "Bonjour"
 - 2 i = i + 1
- 3 EndWhile

- 1 Var int: i = n
- 2 While i > 1 do
 - Write "Bonjour"
 - 2 i = i 1
- 3 EndWhile

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Counting number of elementary operations

Number of elementary operations: 2n + 1.

Logarithmic loop example

- Elementary analysis
- Huynh Tuong Nguyen

- Contents
- Definition and notations
- Algorithm
- Complexity Formulas
- Basic methods for asymptotic behaviour analysis
- Counting number of
- elementary operations

- 1 Var int: i = 1
- 2 While $i \leq n$ do
 - 1. Write "Bonjour"
 - $i = i \times 2$
- 3 EndWhile

Logarithmic loop example

- Elementary analysis
- Huynh Tuong Nguyen

- \bigcirc Var int: i=1
- 2 While $i \leq n$ do
 - 1 Write "Bonjour"
 - $2i = i \times 2$
- 3 EndWhile

- \bigcap Var int: i = n
- 2 While i > 1 do
 - 1 Write "Bonjour"
 - 2 i = i/2
- 3 EndWhile

Contents

Definition and notations

Algorithm

Complexity

Basic methods for asymptotic behaviour analysis

Logarithmic loop example

- Huynh Tuong Nguyen
 - ВК

Elementary analysis

- 1 Var int: i = 1
- **2** While $i \leq n$ do
 - 1 Write "Bonjour"
 - $2i = i \times 2$
- 3 EndWhile

- 1. Var int: i = n
- 2 While i > 1 do
 - ① Write "Bonjour"
 - i = i/2
- 6 EndWhile

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Counting number of elementary operations

Number of elementary operations: $1 + \log_2(n)$.

Nested loop example

Nb of iterations = nb of iterations of external loop \times nb of iterations of internal loop

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Nested loop example

Nb of iterations = nb of iterations of external loop \times nb of iterations of internal loop

- 1. Var int: i = 1
- 2 While $i \leq n$ do
 - **1)** Var int: i = 1
 - **2** While $j \leq n$ do
 - 1. Write "Bonjour"
 - $j = j \times 3$
 - 3 EndWhile
 - **4.** i = i + 1
- 3 EndWhile

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Nested loop example

Nb of iterations = nb of iterations of external loop \times nb of iterations of internal loop

- \bigcirc Var int: i=1
- 2 While $i \leq n$ do
 - **1** Var int: j = 1
 - **2** While $j \leq n$ do
 - 1 Write "Bonjour"
 - $2 j = j \times 3$
 - 3 EndWhile
 - 4 i = i + 1
- 3 EndWhile

Number of elementary operations: $1 + n + n \times \log_3(n)$.

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

Complexity Formulas

Rasic methods for asymptotic behaviour analysis

Counting number of

elementary operations

Function XYZ(array: a[])

- 1 Var int: i
- **2** For i from 1 to n do
 - 1. Var int: t = a[i]
 - 2 Var int: j
 - **3** For j from i-1 to 0 do
 - a[j+1] = a[j]
 - 4. EndFor
 - **5.** a[j+1] = t
- 6 EndFor

Huynh Tuong Nguyen

Elementary analysis

Function XYZ(array: a[])

- (1)Var int: i
- **2** For i from 1 to n do
 - 1. Var int: t = a[i]
 - 2 Var int: j
 - **3** For j from i-1 to 0 do
 - a[j+1] = a[j]
 - 4. EndFor
 - **5.** a[j+1] = t
- 6 EndFor

Contents

Definition and notations

Algorithm

analysis

Complexity Formulas

Rasic methods for asymptotic behaviour

Counting number of

Function XYZ(array: a[])

- **1)** (1) Var int: *i*
- (n) For i from 1 to n do
 - 1. Var int: t = a[i]
 - **2 Var** int: *j*
 - 3 For j from i-1 to 0 do
 - a[j+1] = a[j]
 - 4. EndFor
 - **5** a[j+1] = t
- 3 EndFor

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Counting number of

Function XYZ(array: a[])

- **1)** (1) Var int: *i*
- (n) For i from 1 to n do
 - (1) Var int: t = a[i]
 - 2 Var int: j
 - 3 For j from i-1 to 0 do
 - a[j+1] = a[j]
 - 4. EndFor
 - **6.** a[j+1] = t
- 3 EndFor

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

analysis

Complexity Formulas

Basic methods for asymptotic behaviour

Counting number of

Elementary analysis Huynh Tuong Nguyen

RK

Function XYZ(array: a[])

- (1)Var int: i
- (n) For i from 1 to n do
 - (1) Var int: t = a[i]
 - (1)Var int: j
 - 3 For j from i-1 to 0 do
 - a[j+1] = a[j]
 - 4. EndFor
 - **5.** a[j+1] = t
- 3 EndFor

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Counting number of

Huynh Tuong Nguyen

Function XYZ(array: a[])

- (1)Var int: i
- (n) For i from 1 to n do
 - (1) Var int: t = a[i]
 - (1)Var int: j
 - **3** (?) For i from i-1 to 0 do
 - a[j+1] = a[j]
 - 4. EndFor
 - **5** a[j+1] = t
- 6 EndFor

Elementary analysis

Contents

Definition and notations

Algorithm

analysis

Complexity Formulas

Basic methods for asymptotic behaviour

Counting number of

Function XYZ(array: a[])

- (1)Var int: i
- (n) For i from 1 to n do
 - (1) Var int: t = a[i]
 - (1)Var int: j
 - **3** (?) For i from i-1 to 0 do
 - (1)a[j+1] = a[j]
 - 4. EndFor
 - **5** a[j+1] = t
- 6 EndFor

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm Complexity

Formulas

Basic methods for asymptotic behaviour analysis

Counting number of

Function XYZ(array: a[])

- (1)Var int: i
- (n) For i from 1 to n do
 - (1) Var int: t = a[i]
 - (1)Var int: j
 - **3** (?) For i from i-1 to 0 do
 - (1)a[j+1] = a[j]
 - 4. EndFor
 - **5.** (1)a[j+1] = t
- 6 EndFor

Elementary analysis

Huynh Tuong Nguyen

Contents

Definition and notations

Algorithm

analysis

Complexity Formulas

Basic methods for asymptotic behaviour

Counting number of

Homeworks

Elementary analysis Huynh Tuong Nguyen

Give algorithms having number of elementary operations as below.

- $T_1(n) = 3 + 5n$
- $T_2(n) = n \log_2 n$
- $T_3(n) = n^3$
- $T_4(n) = (3n)!$
- $T_5(n) = \log_2(3n)$
- $T_6(n) = 2\log_3(2n)$
- $T_7(n) = n^2 \log_4 n$
- $T_8(n) = \sqrt{n}$
- $T_9(n) = \sqrt[3]{n^2}$
- $T_{10}(n) = 2^n$
- $T_{11}(n) = n!$

Contents

Definition and notations

Algorithm

analysis

Complexity Formulas

Basic methods for asymptotic behaviour