This is the eleventh homework assignment. Students should tick in TUWEL problems they have solved and upload their detailed solutions by 20:00 on Monday January 8, 2024.

1. Rolling die, part 1

A d-sided die with colored sides was rolled n times. The outcomes are stored in the file die.Rdata. (Each side appeared at least once.)

- (a) What are the sample size n and the number of sides d of the die rolled?
- (b) Visualize the relative frequencies in a colored barplot and add the standard error of each frequency.
- (c) Given your graphic, what is your opinion on the assertion: 'the die is fair'?

2. Rolling die, part 2

Test the null hypothesis that the die is fair with a χ^2 -test on the 5%-significance level, without using R-command chisq.test().

- (a) What are the observed (absolute) frequencies?
- (b) What are the expected frequencies under the null hypothesis?
- (c) What is the value x^2 of the χ^2 -statistic?
- (d) In the context of the associated model, how is the χ^2 -statistic X^2 distributed under the null hypothesis?
- (e) What is the rejection area R? Compute also the p-value. Do you reject the null hypothesis?
- (f) Interpret your result.

3. An experiment producing numerical data

Suppose we have an experiment that produces numerical data with the possible outcomes -2, -1, 0, 1, 2, 3 or more. We run 55 trials and count the frequency of each outcome, getting the following data:

Outcomes	-2	-1	0	1	2	3or more
Observed frequences	3	11	16	14	8	3

Use the χ^2 -test for goodness of fit to test the null hypothesis H_0 that the data is drawn from 55 trials of a binomial distribution B(8,0.5) against the alternative hypothesis H_A that the data is drawn from some other distribution with the level of significance $\alpha = 1\%$. Compute the p-value and give your decision on the test.

4. χ^2 -test for independence (without R)

120 students from major computer science of three Viennese Universities were randomly chosen and asked which lecture of mathematics (a: calculus, b: algebra, c: probability) they enjoyed most. The frequencies are given in the following table:

	Uni A	Uni B	Uni C
calculus	15	10	5
algebra	10	20	15
probability	20	10	m

Obtain the missing observed frequency m and perform a χ^2- test to test whether the preference for a lecture is independent from the university, on a 5% significance level. Only use the following table which gives the 95%-quantile q of the χ^2- distribution with df degrees of freedom.

							7		
q	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	16.92

5. χ^2 -test for independence (with R)

- (a) Solve the previous exercise using R.
- (b) Can you also reject for a significance level of $\alpha = 0.1\%$?
- (c) Double observed frequencies in each cell and perform the test on the 0.1% level. Did the decision change comparing to the one from (b)?