

Simulation of Alpha Cabin reverberant room to estimate absorption coefficient under diffuse sound field

Xavier Robin, <u>Eléonore Richard</u>, Maxime Raskin, Athanasios Poulos

Hexagon's Manufacturing Intelligence division

Introduction

Alpha cabin measurements

Typical result of absorption coefficient measured in an Alpha cabin

Typical result of absorption coefficient measured in an Alpha cabin

1.2

1.0

1.0

1.0

0.0

0.0

0.0

500

1000

Frequency (Hz)

Modeling Alpha cabin

Computational challenges:

- Cabin size
- Frequency range of interest

How can we overcome computational challenges and reproduce absorption coefficient results with simulation?

Simulation of the Measurement of the Diffuse

Outline

- Context
- Modelling Alpha cabins: Challenges and Solutions
 - Challenge 1: Frequency resolution
 - Challenge 2: Mesh size
 - Challenge 3: Diffuse sound field
- Results and comparison with experimental results
 - Low frequency range: standard approach and experimental post-processing
 - Mid-range frequencies: energetical approach
 - High frequencies: energetical approach with scaling
- Conclusions

Absorption coefficient of trims

To select trims, we study their absorption coefficient

How can we get absorption coefficient in representative conditions?

Context

Standardized methods to measure absorption coefficient

Kundt's tube (or impedance tube)

Cjp24 (https://commons.wikimedia.org/wiki/File:Impedance_tube.jpg), "Impedance tube", https://creativecommons.org/licenses/by-sa/3.0/legalcode

Reverberation room

Henry Mühlpfordt (https://commons.wikimedia.org/wiki/File:Hallraum_TU_Dresden_2009-06-21.jpg) "Hallraum TU Dresden 2009-06-21", https://creativecommons.org/licenses/by-sa/3.0/legalcode

Standardized methods can be limiting for industrial purposes

Measuring absorption coefficient with Alpha cabins

Small reverberant rooms called Alpha cabins are often used to evaluate absorption coefficient under diffuse field conditions

Characteristics:

- Small volume (6.5 m³)
- Complex shape
- Small sample (1.2 m²)

From: Bertolini C., Guj L. (2011). *Numerical Simulation of the Measurement of the Diffuse Field Absorption Coefficient in Small Reverberation Rooms*. SAE International

Absorption coefficient

Absorption coefficient α is computed as follows:

Absorption surface Cabin volume $\alpha = \frac{A}{S} = \frac{55.3}{Sc} \left[\frac{V}{RT_{60 \text{ porous}}} - \frac{V}{RT_{60 \text{ bare}}} \right]$ Top Sound speed surface of the sample

Reverberation time (RT₆₀) corresponds to the time needed for a decay of 60 dB after an excitation

The absorption coefficient is deduced from geometrical parameters and reverberation times in the cabin with and without porous sample

- reduce the number of experiments
- re-use results in another simulation
- understand the physics

Modelling Alpha Cabins

- Existing studies:
 - Finite Element method gives accurate results in the mid-low frequency range
 - Transfer Matrix Method can be used up to 10 kHz, but comparison with experimental results is not good

Is it possible to retrieve absorption coefficient results from 400 Hz to 10 kHz with Finite Element simulation?

MODELLING ALPHA CABINS: CHALLENGES AND SOLUTIONS

Modelling Alpha cabins

- **Goal:** reproduce absorption coefficient results with simulation
- To do so, we setup a model using the Finite Element method
- Actran acoustic simulation software suite is used

- Study takes place in frequency domain:
 - Frequency range from 400 Hz up to 10 kHz

Challenge 1: Frequency resolution

The challenge

 Time domain response is evaluated from an analysis in frequency domain

Length of the time response
$$T_{max} = \frac{1}{\Delta f}$$
 Frequency step

 The reverberation time in a bare alpha cabin is about 2.5 s

We need a 0.4 Hz frequency step

Solution: Energetical approach

We can express reverberation time as:

Energy contained in the cabin
$$RT_{60} = \frac{E(0)}{P(0)} \ln(10^6)$$
 Dissipated power in the cabin

 No Fourier transform is needed: no need of a small frequency step

If we compute RT₆₀ from energetical quantities, we do not need a 0.4 Hz frequency step

Challenge 2: Model size

The challenge

- To reach high frequencies, the cabin mesh needs to be sufficiently refined
- Common advice: at least 8 linear elements per wavelength → at 10 kHz element size should be 4 mm

Meshing the cabin (6.5 m³) with 4 mm elements would lead to ~100,000,000 degrees of freedom

Solution: Energetical approach with scaling

 Scaling the cabin volume reduces the element size without adding degrees of freedom

In the scaled cabin the mesh is refined, we can study higher frequencies

Challenge 3: Diffuse sound field

The challenge

- Energetical approach is only valid if the energy repartition in the cabin is homogeneous
- Below Schroeder frequency sound field in the cabin cannot be considered as diffuse

$$f_{Sch} \approx 2000 \left(\frac{RT_{60}}{V}\right)^{1/2}$$
 in an alpha-cabin $f_{Sch} \approx 1250 \ Hz$

We cannot use the energetical approach at low frequencies

Solution: Standard approach and experimental post-processing

 At low frequencies, RT₆₀ is computed as in the experiments from microphones time domain response

Summary

RESULTS

Low frequencies

Standard approach and experimental post-processing

Reverberation time is computed from time domain response at microphones

Studied porous sample

Biot-Allard parameters:

	Carpet felt 13 mm	
Structural density [kg/m³]	1480	
Porosity [-]	0.944	
Air-flow resistivity [Ns/m ⁴]	48600	
Tortuosity [-]	1.16	
Viscous char. Length [μm]	37.7	
Thermal char. Length [µm]	134	
Skeleton Young's modulus [Pa]	32700	
Skeleton Poisson's ratio [-]	0.01	
Skeleton loss factor [-] 0.173		

• From: Bertolini C., Guj L. (2011). *Numerical Simulation of the Measurement of the Diffuse Field Absorption Coefficient in Small Reverberation Rooms*. SAE International

Results

Mid-range frequencies Energetical approach

• With this approach RT₆₀ is evaluated from energetical quantities:

$$RT_{60} = -\frac{E(0)}{P(0)}\ln(10^6)$$

 The frequency step is not linked to RT₆₀ anymore, it is increased in order to have 5 frequency steps per third-octave band

Results

High frequencies

Energetical approach with scaling

 To reach high frequencies we scale the previous model

Only the cavity is scaled, not the porous sample

Two new configurations are added:

- Half model:
$$V2 = \frac{V1}{2}$$

- Reduced model:
$$V3 = \frac{V1}{(\sqrt{2})^3} = \frac{V1}{2.82}$$

Results (with correction)

Results on the whole frequency range

Full results with another porous sample

	Carpet felt 20 mm	
Structural density [kg/m³]	1471	
Porosity [-]	0.9584	
Air-flow resistivity [Ns/m ⁴]	27700	
Tortuosity [-]	1.14	
Viscous char. Length [μm]	51.7	
Thermal char. Length [µm]	168	
Skeleton Young's modulus [Pa]	22950	
Skeleton Poisson's ratio [-]	0.01	
Skeleton loss factor [-]	0.179	

Computational needs

	Standard approach and experimental post-processing	Energetical approach	Energetical approach with scaling
Number of process	24	4	
Memory needs (RAM)	170 GB	360 GB	
Computational time	5 h	1 h 30	

In 1 working day, we can perform the whole simulation

Conclusion

- **Goal:** reproduce absorption coefficient results with simulation
- Computational challenges overcome with a three-step procedure
- Enables to get absorption coefficient with simulation from 400 Hz to 10 kHz
- Good correlation with experimental results
- Whole Alpha cabin simulation in 1 working day

For questions, please contact: eleonore.richard@hexagon.com

APPENDIX

References

- Bertolini C., Guj L. (2011). Numerical Simulation of the Measurement of the Diffuse Field Absorption Coefficient in Small Reverberation Rooms. SAE International
- Duval A, Rondeau J.F, Dejaeger L., Sgard F., Attala N. (2010). Diffuse field absorption coefficient simulation of porous materials in small reverberant rooms: finite size and diffusivity issues. 10ème Congrès Français d'Acoustique
- Free Field Technologies (2021), Actran 2021.1 User's guide Volume 1 Installation,
 Operations, Theory and Utilities
- Hughes W.O., McNelis A.M., Nottoli C., Wolfram E. (2015). Examination of the measurement of absorption using the reverberant room method for highly absorptive acoustic foam. 29th Aerospace Testing Seminar.
- Schroeder M.R. (1965). *New method of measuring reverberation time*. The Journal of the Acoustical Society of America, 37