Ранжування текстових документів

Тарас Шевченко

Rails Reactor / Giphy

Компанії, які займаються пошуком

Як ознайомлювати себе із задачею/кодовою базою

Як ознайомлювати себе із задачею/кодовою базою

- 1. Пошук у ширину з випадкового місця.
- 2. Пошук у глибину з випадкового місця.
- 3. Декомпозувати на компоненти та опанувати кожен окремо, а потім зрозуміти як вони зв'язані.
- 4. Прослідкувати за формуванням результату.

Ранжування. Спискова видача. Google

Ранжування. Спискова видача. Youtube

Ранжування. Динамічна сітка. Pinterest

Ранжування. Динамічна сітка. Giphy

Спрощений погляд на пошук

Література

- 1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.
- 2. Christopher Manning, Hinrich Schütze, Foundations of Statistical Natural Language Processing, The MIT Press
- 3. Stefan Büttcher, Charles L. A. Clarke, Gordon V. Cormack, Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press
- 4. Hang Li, A Short Introduction to Learning to Rank.

Компоненти системи інформаційного пошуку

7.2 Components of an information retrieval system

Приклад результатів ранжування

Doc ID	Score
12	153.3
23	135.2
31	93.12
41	80.12
54	40.12
61	30.12
27	25.12
38	25.12
99	25.12

Найпростіша формула ранжування, яка може дати прийнятний результат

$$BM25(D,Q) = \sum_{i=1}^{n} \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} * \frac{f(q_i, D)(k_1 + 1)}{f(q_i, D) + k_1(1 - b + b\frac{|D|}{avgdl})}$$

Символ	Пояснення
N	кількість документів у колекції
n	кількість слів у запиті
q _i	і-те слово запиту
$n(q_i)$	кількість документів, в яких зустрічається слово q_i .
$f(q_i, D)$	скільки разів зустрічається слово qі у документі.
D	довжина документу D
avgdl	серденя довжина документу
k _i	[1.2, 2.0]
Ь	0.75

Недоліки Okapi BM25

- 1. не враховує позицію в документі;
- 2. не праховує особливостей мови

Okapi

Структура логу записів

Doc ID	Score	Query
12	153.3	чай
23	135.2	чай
31	93.12	чай
41	80.12	чай
54	40.12	чай
61	30.12	чай
27	25.12	чай
38	25.12	чай
99	25.12	чай

Структура логу записів

ts	DID	S	Query	QL	RID	SID	MID	А	UID	IP	CC
13	12	95	чай	UK	e1q	fbde	1	V	13	-	UA
13	23	94	чай	UK	e1q	fbde	1	V	13	-	UA
13	31	93	чай	UK	e1q	fbde	1	V	13	-	UA
13	41	80	чай	UK	e1q	fbde	1	V	13	-	UA
13	54	40	чай	UK	e1q	fbde	1	V	13	-	UA
13	61	30	чай	UK	e1q	fbde	1	V	13	-	UA
13	27	25	чай	UK	e1q	fbde	1	V	13	-	UA
13	38	24	чай	UK	e1q	fbde	1	V	13	-	UA
13	99	23	чай	UK	e1q	fbde	1	V	13	-	UA

Вибір ключу для сортування логу запитів

Ключ	Переваги		
<ts, rid="" sid,=""></ts,>	Швидкість запису		
<a, rid="" sid,="" ts,=""></a,>	Відсутність необхідності сканувати дані для дій,		
\A, tS, SIU, IIU>	які не беруть участь у запиті.		
<a, ql,="" rid="" sid,="" ts,=""></a,>	Дозволяє ефективніше програховувати запити		
`A, qı, ıs, sıu, nu>	різних мов.		

Розмітка даних

The Search Result

I'd love to see the great views on Naboo again.

The Query: {search_query}

- Please rate the relevance of the Pin to: {search_query}.
 Make your judgement based primarily on the image, using the description below the image only as complementary information.
- Very Relevant
- Relevant
- Not relevant
- 2. Please check all boxes that apply.
- The Pin is missing
- The Pin contains adult or offensive content
- ☐ The Pin (image or text below) is in a foreign language

Note: If you're stuck on a certain Pin, please use the training guide to review a few nuanced cases.

Поради стосовно розмітки даних

- 1. випадково обирайте запити для тренувальної вибірки, враховуючи частість запитів;
- 2. обирайте документи так, щоб покрити якомога ширший діапазон значень ваших ознак, які будете використовувати;
- 3. власноруч розмітьте кілька сотень пар;
- 4. обирайте від трьох до 5-ти мір релевантності;
- 5. враховуйте специфіку вашої предметної області (можливо, варто внести варіант виду "аксесуар до пристрою, який згадувався у запиті").
- 6. застосовуйте статистичні методи оцінки узгодженості результатів

Поради стосовно розмітки даних

- 1. правильно підбирайте тестові запитання;
- 2. слідкуйте за процесом розмітки;
- 3. вимагайте як мінімум 3 голоси для оцінки якості пари;
- 4. обирайте не менше десяти документів для 1-го запиту.

Оцінка поточного алгоритму сортування

Nº	Doc ID	Query	Score	Rel
1	12	чай	153.3	1
2	23	чай	135.2	2
3	31	чай	93.12	3
4	41	чай	80.12	4

Nº	Doc ID	Query	Score	Rel
1	41	чай	80.12	4
2	31	чай	93.12	3
3	23	чай	135.2	2
4	12	чай	153.3	1

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{r_i} = \frac{1}{1} * (\frac{1}{3})$$

$$nDCG_p = \frac{DCG_p}{IDCG_p} = \frac{\sum_{i=1}^{p} \frac{rel_i}{log_2(i+1)}}{\sum_{i=1}^{p} \frac{rel_{x_i}}{log_2(i+1)}} = \frac{\frac{1}{log_22} + \frac{2}{log_23} + \frac{3}{log_24} + \frac{4}{log_25}}{\frac{4}{log_23} + \frac{2}{log_24} + \frac{1}{log_25}} \approx \frac{5.48}{7.32} \approx 0.75$$

$$PairAccuracy = \frac{1}{|\{(i,j)|rel_i \prec rel_j\}|} \sum_{\{(i,j)|rel_i \prec rel_j\}} [score_i \prec score_j] =$$

$$= ([153.3 < 135.2] + [153.3 < 93.12] + [153.3 < 80.12] +$$

+ [135.2 < 93.12] + [135.2 < 80.12] + [93.12 < 80.12])/6 = 0.0

Оцінка поточного алгоритму сортування. Інші методи.

Точність
$$Precision = \frac{|relevant\ retrieved\ documents|}{|retrieved\ documents|} = \frac{tp}{tp+fp}$$
Повнота $Recall = \frac{|relevant\ retrieved\ documents|}{|relevant\ documents|} = \frac{tp}{tp+fp}$

F-score $F = \frac{1}{\alpha \frac{1}{p} + (1-\alpha) \frac{1}{R}}$

MAP $MAP = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk})$

Ранжування. Формулювання задачі

- · D колекція документів
- Q множина пошукових запитів
- · $D_q \subseteq D$ множина документів, знайдених за запитом q
- $X = Q \times D$ об'єкти начальної вибірки (пари <запит, документ>)
- Ү множина оцінок пар
- $y: X \to R$ оцінки релеванотності, y(q, d) оцінка релевантності документу d для запиту q
- $\cdot x(q,d) = \{f_1(q,d), ..., f_n(q,d)\}\$
- $(q, d_i) \prec (q_j)$

Ознаки ранжування

Категорія	Категорія	
	Квантилі СТR, Індекс якості документу, кількість	
Для документа	посилань, довжина документу,	
	авторитетність автора	
Для запиту	Квантилі IDF, популярність запиту,	
для запиту	сумарна частота слів	
Для запиту	Кількість кліків для запиту, LCS, LCCS, BM25,	
та документу	LCS-BM25, wclccs, LMIR, MinHitPos, MinBestSpanPos	

Підходи до ранжування

- Поточковий застосування алгоритмів регресії та класифікація на парах запит-документ
- Попарний алгоритм фокусується ге на апроксимації релевантності, а на попарних відношеннях релевантностей.
- Списковий алгоритм фокусується на визначенні міри релевантності для документів, які видані для певного запиту.

Приклади алгоритмів ранжування

Підхід	Алгоритми
Поточковий	Лінійна регресія, преспетрон,
ПОТОЧКОВИИ	косинусна функція врат, TFRank
Попарний	RankSVM, SortNet, RankNet, FRank,
Попарнии	RankBoost, GBRank, MHR, LambdaRank
Списковий	SoftRank, Smooth Rank, AdaRank, ListNet,
СПИСКОВИИ	ListMLE, BoltzRank

Швидке нагадування про SVM

$$\sum_{i=1}^{m} (1 - y_i(\langle \vec{x}_i, \vec{w} \rangle - w_0))_+ + \frac{1}{2C} ||\vec{w}||^2 \approx$$
 (1)

$$\approx \sum_{i=1}^{m} \log_2 \left(1 + e^{1 - y_i (\langle \vec{x}_i, \vec{w} \rangle - w_0)} \right) + \frac{1}{2C} \|\vec{w}\|^2 \to \min_{w, w_0}$$
 (2)

$$\vec{w} \in R^n$$
 - вектор ваг (3)

$$w_0 \in R$$
 - зміщення (4)

$$\vec{X}_i \in \mathbb{R}^n$$
 - вектори ознак (5)

$$y_i \in \{-1, 1\}$$
 - мітки (6)

$$(\vec{x}_i, \vec{w}) - w_0 > 0$$
 - функція прийняття рішень (7)

Іграшковий приклад

```
1: x = np.array([[36.3], [36.4], [36.6], [37.0], [38.0], [39.0]])
   y = np.array([0, 0, 0, 1, 1, 1])
   svc = LinearSVC(dual=False, C=2.0**31).fit(x, v)
   assert np.all(svc.predict(x) == y)
   plt.plot(x[v == 0], np.zeros(np.sum(v == 0)), "bo") # negative
   plt.plot(x[y == 1], np.zeros(np.sum(y == 1)), "ro") # positive
   middle = (-svc.intercept [0] / svc.coef )[0]
   assert 36.8 - 1.0e-6 < middle and middle < 36.8 + 1.0e-6
   plt.plot(middle, [0], "go") # "hyperplane"
   x \text{ test} = \text{np.array}([[36.5,], \text{ middle} - 1.0e-6, \text{ middle} + 1.0e-6, [38.7]])
   v test = svc.predict(x test)
   plt.plot(x test[y test == 0], np.repeat(1, np.sum(y test == 0)), "bo") # negative
   plt.plot(x test[v test == 1], np.repeat(0.5, np.sum(v test == 1)), "ro") # positive
    1.0
    0.8
    0.6
    0.4
    0.2
          36.5
                 37 0
                        37.5
                               38.0
                                      38.5
```

Попарний підхід. Ranking SVM

Постановки задач SVM для попарного підходу

$$Q(a) = \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i \prec j} (1 - \langle w, x_j - x_i \rangle)_+$$
 (8)

Еквівалентна постановка задачі у термінах квадтратичного програмування:

$$\begin{cases} \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i \prec j} \xi_{ij} \to \min_{\vec{w}, \xi}; \\ \langle w, x_j - x_i \rangle \ge 1 - \xi_{ij}, \ i \prec j; \\ \xi_{ij} \ge 0, \ i \prec j \end{cases}$$