$$\frac{1}{2\pi}\left(C\cdot x^{n}\right) = n\cdot C\cdot x^{n-1}$$

$$f(x) = x^3 - 4x + 1$$

$$f'(x) = 3x^2 - 4$$

$$f'(2) = 3(2)^2 - 4$$

= 8 What is the meaning of this number, 8?

Understanding its significance through a graph.

Forward Differentiation:

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

'h > step size > Assign some small value to h. The smaller the value, the move closer to actual value (more accurate)

Example:

$$f(x) = x^3 - 4x + 1$$

Find the value of f'(x) using forward differentiation at x=2, and

solution:

$$f'(x) = f(x+h) - f(x)$$
.

$$f'(2) = f(2+0.1) - f(2) = f(2.1) - f(2) = 8.61$$

Backward Differentiation:

$$f'(x) = \frac{f(x) - f(x-h)}{h}$$

Example:

$$f(x) = x^3 - 4x + 1$$

Find the value of f'(x) using Backward Differentiation at x=2, h=0.1

Solution:

$$f'(x) = \frac{f(x) - f(x-h)}{h}$$

$$f'(2) = f(2) - f(2-0.1) = f(2) - f(1.9) = 7.41$$

and the court of the

Central Differentiation:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

central difference gives less error than forward and backward differentiation.

Example:

$$f(x) = x^3 - 4x + 1$$

Find the value of f'(x) using centrall differentiation at x=2 h=0.1

Solution:

$$f'(\alpha) = \underbrace{f(\alpha + h) - f(\alpha - h)}_{2h}$$

$$f'(2) = \frac{f(2+0+1) - f(2-0+1)}{2(0+1)} = \frac{f(2+1) - f(1+9)}{0-2} = 8.01$$

Forward Difference

Interpolating a phynomial using χ , χ , χ , th

$$P_{1}(x) = f(x_{0}) l_{0}(x) + f(x_{1}) l_{1}(x)$$

$$= \frac{\chi - \chi_{1}}{\chi_{1} - \chi_{0}} f(x_{0}) + \frac{\chi - \chi_{0}}{\chi_{1} - \chi_{0}} f(x_{1})$$

$$f(\alpha) = \frac{\chi - \chi_1}{\chi_0 - \chi_1} f(\alpha_0) + \frac{\chi - \chi_0}{\chi_1 - \chi_0} f(\alpha_1) + \frac{f''(\S)}{2} (\alpha - \chi_0) (\alpha - \chi_1)$$

$$\frac{\chi_0 - \chi_1}{\chi_0 - \chi_1} f(\alpha_0) + \frac{\chi_0 - \chi_0}{\chi_1 - \chi_0} f(\alpha_1) + \frac{\chi_0 - \chi_0}{2} error$$

$$f'(2) = \left(\frac{1}{\chi_{0} - \chi_{1}} f(\chi_{0}) + \frac{1}{\chi_{1} - \chi_{0}} f(\chi_{1})\right) + \left(\frac{f'''(\xi)}{2} \frac{1\xi}{4\pi} (\chi - \chi_{0}) (\chi - \chi_{1})\right) + \frac{f'''(\xi)}{2} (\chi - \chi_{0} - \chi_{0})$$

Plugging x = 20

$$F'(\chi_0) = \frac{F(\chi_1) - f(\chi_0)}{\chi_1 - \chi_0} + \frac{f''(\xi)}{2} (\chi_0 - \chi_1)$$

$$=\frac{f(x_0+h)-f(x_0)}{26000h}+\underbrace{\left[\frac{f''(\xi)}{2}(-h)\right]}_{\text{error.}}$$

Example:

$$f(\alpha) = \ln(\alpha)$$

$$f'(2) = \frac{1}{2} = 0.5$$

using Forward differentiation:

h	f'(Z.)	Truncation Error	
	$\frac{\int f(x_0+h) - f(x_0)}{h}$ $\frac{\ln (2+h) - \ln(2)}{h}$	Actual value - Formard dix	
1	0.405465	0.09 45349.	F(2)
9.1	0. 487 902	0.0120984	Decreasing on a
0.01	0.498754	0.00124585	scale of
0.00	0.499875	0.00012	10, V just like h
[if hi	is divided by 10, error also	gets divided by 10]	lluein

Backward Differentiation:

Error &h [Derivation same as Forward Difference]

Central Differentiation:

Error
$$\angle h^2$$
 $\left[\frac{f(x+h)-f(x+h)}{2h}-\frac{f'''(x+h)}{3!}h^2\right]$

For central differentiation, error becomes small when h < 1.

Example

$$f(x) = \ln(x)$$

$$f'(x) = \frac{1}{x}$$

$$f'(2) = \frac{1}{2} = 0.5$$

i. error d h²

h	f'(20)	Truncation Error
	$f(x_0+h)-f(x_0-h)$ $2h$	Actual value - central diff value
1	0.549 306	0.0493061
0.1	0-500417	0.000417293
0.01	9-5000 004	On 4.16673 × 10-6
0-001	0-5000060	4.16666 × 10 -8
TTF h is	divided by 10, error gets	divided by 1007