IMPLEMENTASI PENGGUNAAN ALGORITMA A* PADA PENENTUAN JARAK TERPENDEK DARI CILACAP KE YOGYAKARTA

¹Ahmad Satria Rizqi Maula, ^{2*}Tundo, ³Sopan Adrianto, ⁴Kastum, ⁵Nandang Sutisna

¹Program Studi Informatika Universitas Nahdlatul Ulama Al Ghazali Cilacap

^{2*, 3,4,5}Program Studi Teknik Informatika, Sekolah Tinggi Ilmu Komputer Cipta KaryaInformatika (STIKOM CKI)

¹satriariz4@gmail.com, ^{2*}asna8mujahid@gmail.com, ⁴sopan@stikomcki.ac.id, ⁵kastum@stikomcki.ac.id, ⁶nandang.sutisna@stikomcki.ac.id

*) Penulis Korespondensi

Abstrak

Penelitian ini bertujuan untuk meningkatkan efisiensi penentuan rute terpendek dari Cilacap ke Yogyakarta dengan menerapkan Algoritma A*. Metode penelitian ini melibatkan tahap pengumpulan data perjalanan untuk memahami kondisi jalan dan parameter lain yang memengaruhi perjalanan. Data tersebut kemudian digunakan untuk membentuk representasi graf, menciptakan suatu model yang merefleksikan koneksi antar lokasi dan memfasilitasi implementasi Algoritma A*. Penggunaan Algoritma A* memungkinkan penemuan jalur terpendek dengan meminimalkan biaya perjalanan. Hasil analisis menunjukkan bahwa implementasi ini berhasil meningkatkan efisiensi penentuan rute dengan perbedaan waktu tempuh yang signifikan dibandingkan dengan metode tradisional. Dalam konteks perancangan keputusan, penelitian ini mengintegrasikan kemampuan pengambilan keputusan otomatis berdasarkan analisis data, memungkinkan sistem untuk merespons perubahan kondisi jalan secara dinamis. Sehingga, penelitian ini tidak hanya meningkatkan akurasi penentuan rute tetapi juga berpotensi memberikan kontribusi pada pengembangan sistem navigasi yang adaptif dan efisien.

Kata Kunci: algoritma A*, cilacap, heuristik, rute, yogyakarta.

Abstract

This research aims to improve the efficiency of determining the shortest route from Cilacap to Yogyakarta by applying the A* Algorithm. The research method involves a travel data collectionstage to understand road conditions and other parameters that affect travel. The data is then used to form a graph representation, creating a model that reflects the connections between locations and facilitating the implementation of the A* Algorithm. The use of A* Algorithm enables the discovery of shortest paths by minimising travel costs. Analytical results show that this implementation successfully improves routing efficiency with a significant difference in travellingtime compared to traditional methods. In the context of decision design, this research integratesautomated decision-making capabilities based on data analysis, allowing the system to dynamically respond to changing road conditions. Thus, this research not only improves the accuracy of route determination but also has the potential to contribute to the development of adaptive and efficient navigation systems.

Keywords: A* algorithm, cilacap, heuristic, route, Yogyakarta.

PENDAHULUAN

Yogyakarta, atau sering dikenal dengan "Jogja" telah menjadi destinasi wisata favorit di Indonesia. Keberagaman seni, budaya, warisan sejarah, dan keindahan alam yang dimiliki membuat kota ini dikenal sebagai kota budaya. Segala aspek keindahannya berpengaruh besar pada minat para wisatawan lokal maupun mancanegara untuk berkunjung. Yogyakarta juga dikenal sebagi Kota Pelajar, tercatat 129.853 mahasiswa berkuliah di Yogyakarta per tanggal 22 Desember 2023. Banyaknya wisatawan dan mahasiswa dari Cilacap yang singgah dan tinggal di Yogyakarta membuat peneliti ingin berkontribusi untuk meningkatkan efisiensi perjalanan masyarakat. Kendala yang dihadapi oleh para pelancong yang akan menuju Yogyakarta dari Cilacap minimnya akses yang mereka terima terakait rute tersebut. Oleh karena itu, diperlukan suatu metode yang dapat membantu pengguna dalam menemukanlokasi dan kriteria makanan yang diinginkan [1]. Salah metode tersebut satu adalah menggunakan algoritma A* (A Star) yang dapat membantu dalam mencari rute terpendek untuk mencapai tujuan tertentu [2]. Algoritma A* merupakan salah satu algoritma pencarian rute yang dianggap optimal dan lengkap [3]. Keoptimalan terkait dengan kemampuannya menghasilkan rute terbaik, sedangkan kelengkapannya terkait dengan kemampuannya mencapai tuiuan yang diharapkan [4].

Algoritma A* (A Star) merupakan suatu metode pencarian yang digunakan untuk menemukan rute terpendek atau terbaik dari satu titik ke titik lain dalam suatu struktur grafik [5],[6]. Algoritma ini menggabungkan dua aspek utama dalam proses pencarian, yakni biaya aktual untuk mencapai suatu titik tertentu (g(n)) dan estimasi biaya yang diperlukan untuk mencapai tujuan dari titik tersebut (h(n)) [7]. Selain hal itu, perlu mempertimbangkan kedua faktor ini, A* berusaha untuk meminimalkan total biaya (f(n) = g(n) + h(n) [8]. Algoritma A* sendiri merupakan perkembangan dari algoritma BFS (Breadth First Search) yang menggabungkan Uniform Cost Search dan Greedy Best-First Search [9]. Dibandingkan dengan cara kerja BFS, A* memperkenalkan penilaian cost dari keadaan saat ini ke tujuan dengan menggunakan fungsi *heuristic*. Berbeda dengan BFS, A* juga mempertimbangkan total cost yang telah ditempuh dari keadaan awal ke keadaan saat ini.

Berikut ini beberapa penelitian serupa yang peneliti ambil sebagai bahan dalam pembuatan penelitian ini. Penelitian pertama menurut Andryana S.,dkk [10] melakukan penelitian tentang Penerapan Algoritma A-star dan Brute Force pada Aplikasi Jakvel (Jakarta Travel) Berbasis Android dengan akurasi pencarian jalur terpendek menggunakan algoritma A-star menghasilkan persentase sebesar 70%, pengujian menggunakan algoritma A-star ini berhasil di 7 lokasi dari 10 lokasi yang telah

melewati tahap pengujian dengan membandingkan jalur Google Maps berbasis Android. Kedua, menurut Arsyad, dkk [11] dalam pencarian rute terbaik menghasilkan kriteria yang cukup memuaskan dengan persentasi sebesar 100%. Sementara hasil dari penelitian ketiga dengan judul penelitian Implementasi Algoritma A* (A Star) Dalam Penentuan Rute Terpendek Yang Dapat Dilalui *Non Player Character* pada *Game Good Thief*, tingkat kepuasan yang didapat sebesar 83.22% [12].

Penelitian ini diharapkan dapat memberikan kontribusi positif dan solusi efektif untuk meningkatkan kualitas perjalanan antarkota serta memberikan pengalaman yang lebih nyaman bagi para pelancong dan mahasiswa yang mengunjungi Yogyakarta.

METODE PENELITIAN

Metode yang digunakan dalam penelitian ini mencakup pengumpulan data yang bersumber dari penentuan titik-titiklokasi yang dilalui menuju lokasi tuiuan menggunakan fitur My Map yang ada pada platform Google Maps, selanjutnya dengan melakukan eliminasi data yang kurang optimal pada tahapan Pre-Processing. Setelah data terkumpul dan tersaring, barulah memproses data yang telah ada dengan menggunakan algoritma A* [13]. Berikut ini penjelas masing-masing proses yang peneliti lakukan:

Pengumpulan Data

Dalam penelitian ini, pengumpulan data dilakukan melalui beberapa tahapan. Pertama, kami memanfaatkan fitur Google Maps untuk mengumpulkan informasi terkait jarak, waktu tempuh, dan rute yang diperlukan. Kemudian, kami melakukan analisis kondisi lalu lintas real-time sebagai dasar untuk perhitungan algoritma A*. Langkah terakhir adalah mendapatkan informasi terbaru tentang waktu tempuh rute.

Tahapan Algoritma A Star

Algoritma A* digunakan untuk menemukan jalur terpendek dengan biaya paling minimal. Algoritma ini merupakan kombinasi dari algoritma pencarian *Uniform Cost* dan *Greedy-Best First* [14]. Implementasinya mampu memberikan solusi optimal dengan efisiensi waktu.

Karakteristik membedakan yang algoritma A* adalah pengembangan dari konsep "daftar tertutup" yang mencatat area yang telah dievaluasi. Daftar tertutup ini berfungsi sebagai catatan untuk area sekitar yang telah dinilai, dengan menghitung jarak yang sudah ditempuh dari "titik awal" ke "titik tujuan" sebagai perhitungan estimasi [15]. Algoritma A* mengevaluasi node - n dengan menggabungkan g(n), yang merupakan biaya yang telah dikeluarkan untuk mencapai node, dan h(n), yang merupakan estimasi biaya untuk mencapai tujuan dimulai dari node tersebut.

Persamaan matematika yang menggambarkan evaluasi ini adalah tampak pada persamaan (1):

$$f(n) = g(n) + h(n) \tag{1}$$

Dimana f(n) adalah biaya estimasi total, g(n) adalah biaya yang telah dikeluarkan dari titik awal sampai keadaan node n, sedang h(n) adalah estimasi biaya untuk mencapai titik tujuan dimulai dari keadaan node n.

Analisis Data

Data yang sudah berhasil dikumpulkan kemudian dianalisis dengan perhitungan grid rute terdekat dimulai dari titik awal berangkat (Alun-Alun Cilacap) menuju ke titik akhir di Titik Nol KM Yogyakarta. Langkah selanjutnya dengan menggunakan perhitungan heuristic yang menjadikan algoritma A* lebih akurat perhitungannya dibanding dengan algoritma lain.

Tahapan penelitian

Perancangan sistem adalah menggambarkan sistem yang akan dilakukan dalam pencarian rute dari Cilacap menuju ke titik nol Yogyakarta. Adapun rancangan pada penelitian ini digambarkan dalam bentuk flowchart yang tampak pada Gambar 1.

Gambar 1 Flowchart Algroritma A*

HASIL DAN PEMBAHASAN

Rute perjalanan kota Cilacap menuju ke titik nol Yogyakarta. Diketahui bahwa terdapat beberapa kecamatan kabupaten yang dilalui. Setiap kecamatan yang dilewati kami beri beberapa node (titik), yang terlihat pada Gambar 2. Kemudian dari data pada Gambar 2, disajikan nilai jarak sebenarnya dari setiap kecamatan dari Kota Cilacap ke Yogyakarta yang disertai nilai h(n) dan f(n) yang tampak pada Tabel 1.

Gambar 2. Rute Cilacap ke Yogyakarta

Tabel 1. Nilai F(N) dari Setiap Kecamatan

Titik Node	Kecamatan	g(n)	h(n)	f(n)
1	Alun-Alun Kota Cilacap	0	174	174
2	Kecamatan Cilacap Utara	6,3	168	175.3
3	Kecamatan Kesugihan	13	164	177
4	Kecamatan Maos	25	164	189
5	Kecamatan Rawalo	30	159	189
6	Kecamatan Kroya	32	152	184
7	Kecamatan Kemranjen	42	142	184
8	Kecamatan Tambak	49	131	180
9	Kecamatan Sumpiuh	44	136	180
10	Kecamatan Patikraja	39	162	201
11	Kecamatan Purwokerto Selatan	48	167	215
12	Kecamatan Purwokerto Barat	48	171	219
13	kecamatan Banyumas	43	153	196
14	Kecamatan Sokaraja	51	161	212
15	Kecamatan Kalibagor	52	156	208
16	Kecamatan Kemangkon	62	156	218

17	Kecamatan Bukateja	64	149	213
18	Kecamatan Purwareja Klampok	61	142	203
19	Kecamatan Mandiraja	65	139	204
20	Kecamatan Purwanegara	76	135	211
21	Kecamatan Bawang	83	128	211
22	Kecamatan Banjarnegara	92	119	211
23	Kecamatan Sigaluh	106	104	210
24	Kecamatan Buayan	56	120	176
25	Kecamatan Gombong	62	118	180
26	Kecamatan Karanganyar	69	111	180
27	Kecamatan Sruweng	75	102	177
28	Kecamatan Pejagoan	85	100	185
29	Kecamatan Kebumen	81	99	180
30	Kecamatan Kutowinangun	92	89	181
31	Kecamatan Ambal	96	81	177
32	Kecamatan Prembun	99	82	181
33	Kecamatan Butuh	106	77	183
34	Kecamatan Kutoarjo	111	73	184
35	Kecamatan Bayan	114	68	182
36	Kecamatan Purwodadi	127	134	261
37	Kecamatan Leksono	111	99	210
38	Kecamatan Selomerto	118	92	210
39	Kecamatan Wonosobo	121	94	215
40	Kecamatan Kertek	126	85	211
41	Kecamatan Kertek Kecamatan Kejajar	137	100	237
42		141	81	222
43	Kecamatan Kledung Kecamatan Parakan	146	76	222
44	Kecamatan Bulu	143	76	219
44 45		156	65	219
46	Kecamatan Temanggung		40	201
40 47	Kecamatan Kranggan Kecamatan Candiroto	161	40 91	
48		151	100	242
	Kecamatan Bejen	163		263
49	Kecamatan Secang	169	54	223
50	Kecamatan Magelang Utara	170	46	216
51	Kecamatan Magelang Tengah	167	44	211
52	Kecamatan Magelang Selatan	111	42	153
53	Kecamatan Mertoyudan	166	39	205
54	Kecamatan Mungkid	170	34	204
55	Kecamatan Muntilan	172	28	200
56	Kecamatan Salam	180	21	201
57	Kecamatan Kokap	140	38	178
58	Kecamatan Temon	133	39	172
59	Kecamatan Pengasih	145	36	181
60	Kecamatan Wates	133	32	165
61	Kecamatan Sentolo	153	20	173
62	Kecamatan Sukorejo	173	106	279
63	Kecamatan Pagerruyung	173	110	283
64	Kecamatan Weleri	230	170	400
65	Kecamatan Ringinarum	233	128	361
66	Kecamatan Ngampel	170	164	334
67	Kecamatan Kaliwungu	256	147	403
68	Kecamatan Ampel	212	66	278
69	Kecamatan Boyolali	225	54	279

70	TZ + M ·	222	52	207
70	Kecamatan Mojosongo	233	53	286
71	Kecamatan Tempel	178	18	196
72	Kecamatan Sleman	182	14	196
73	Kecamatan Mlati	175	5.4	180.4
74	Kecamatan Kalasan	188	17	205
75	Kecamatan Godean	165	11	176
76	Kecamatan Gamping	166	5	171
77	Kecamatan Tegalrejo	172	4.1	176.1
78	Kecamatan Jetis	172	3.4	175.4
79	Ngampilan	170	1	171
80	Titik Nol Yogyakarta	170	0	170

Setelah proses pengumpulan data didapatkan, masuk ke tahap penentuan rute terpendek dan tercepat dari Cilacap ke Yogyakarta dengan tujuan akhir adalah titik 0 km Yogyakarta dengan menggunakan algoritma A* yang tampak sebagai berikut: Langkah I:

Menentukan tempat sebagai titik awal atautitik star untuk memulai perjalanan adapuntempat yang digunakan untuk memulai perjalanan adalah Alun-Alun Cilacap dengan titik kooordinator 1, perpindahan node darititik satu menuju titik 4 yaitu Kecamatan Maos, yang tampak pada Gambar 3.

Langkah II:

Langkah ke 2 pada titik node 4 mengalami percabangan yaitu titik node 5 dan 6 Pada bagian ini menurut perhitungan algoritma A* dihasilkan suatu **f(n)** =184 yang nilainya lebih kecil, yang terlihat pada Gambar 4.

Langkah III:

Langkah ke-3 pada titik node titik 61 mempunyai persimpangan antara node 75 dan 76 perhitungan algoritma ini menghasilkan f(n) =171 nilai terkecil maka titik 75 artinya *open*, yang terlihat pada Gambar 5.

Langkah IV:

Langkah IV adalah langkah terakhir melewati node tujuan, yang terlihat pada Gambar 6.

Gambar 3. Node Langkah 1

Gambar 4. Node Langkah 2

Gambar 5. Node Langkah 3

Gambar 6. Node Langkah 4

Berdasarkan rute perjalanan didapatkan nilai f(n) total adalah dari semua jalur. Karena pada open terdapat 2 simpul yaitu (4 dan 61), maka Nilai best node karena nilai f(n) paling

kecil (yaitu f= 170) karena best node tersebut merupakan goal berarti solusi telah ditemukan. Rute yang dihasilkan adalah $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow$ $6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 24 \rightarrow 25 \rightarrow 26 \rightarrow 27 \rightarrow 28$

 \rightarrow 29 \rightarrow 30 \rightarrow 31 \rightarrow 32 \rightarrow 34 \rightarrow 35 \rightarrow 36 \rightarrow $57 \rightarrow 58 \rightarrow 59 \rightarrow 61 \rightarrow 76 \rightarrow 80$ (Alun-Alun Cilacap → Cilacap Utara → Kesugihan → $Maos \rightarrow Korya \rightarrow Kemranjen \rightarrow Tambak \rightarrow$ Sumpiuh → Buayan → Gombong → Karanganyar → Sruweng → Pejagoan → Kebumen → Kutowinangun → Ambal → Prembun → Kutoarjo → Buayan → $Purwodadi \rightarrow Kokap \rightarrow Temon \rightarrow Pengasih$ \rightarrow Sentolo \rightarrow Gamping \rightarrow Titik Nol Yogyakarta) dengan total jarak dengan perhitungan algoritma A star yaitu 4.371,3 km. Berdasarkan hasil penelitian, kami berhasil menemukan rute tercepat dari Kota Cilacap ke Kota Yogyakarta dengan jarak 4.371, 3 Km, dan penelitian ini semakin menguatkan bahwa penggunaan algoritma a* lebih efektif dibanding dengan metode lain. Dikarenakan dicoba dengan menggunakan algoritma searching seperti Greedy Best First Search berdasar titik awal dan arah tujuan yang sama menghasilkan jarak tercepat adalah

KESIMPULAN DAN SARAN

4.574,3 Km.

Berdasarkan hasil pengujian kami, pencarian rute terdekat dapat disimpulkan dari pengkajian yang dilakukan pada algoritma secara manual dengan bantuan aplikasi Google Maps memiliki hasil yang baik dengan corak yang sama, yaitu berdasarkan perancangan dan hasil industri aplikasi yang dilakukan saat memberikan rekomendasi jalur dari Cilacap menuju ke Yogyakarta.

Sehingga adanya sistem informasi pencarian rute tercepat dapat mempersingkat jarak dan waktu tempuh perjalanan, dimana dalam penelitian ini rute tercepat dari Cilacap-Yogyakarta adalah 4.574,3 Km.

DAFTAR PUSTAKA

- [1] R. D. S. Purnama et al., "IMPLEMENTASI PENGGUNAAN ALGORITMA GREEDY BEST FIRST SEARCH UNTUK MENENTUKAN RUTE TERPENDEK DARI CILACAP KE YOGYAKARTA," JITET (jurnal Inform. dan Tek. Elektro Ter., vol. 12, no. 2, 2024.
- [2] N. Padila, B. Basri, and C. R. Sari, "Sistem informasi geografis dengan algoritma a-star untuk menentukan jalur terdekat," *J. Peqguruang Conf. Ser.*, vol. 5, no. 1, p. 370, 2023.
- [3] H. Mukhtar, Y. Hendri, and S. Soni, "Implementasi Algoritma a Star Dalam Pencarian Rute Terpendek (Shortest Path Problem) Pada Sistem Pencarian Kantor Pos Di Kota Pekanbaru," *J. Softw. Eng. Inf. Syst.*, vol. 2, no. 1, pp. 111–119, 2021.
- [4] W. Bismi, W. Gata, and T. Asra, "Penerapan Algoritma Hybrid Dalam Menentukan Rute Terpendek Antara Cabang Kampus," *Univ. Nusa Mandiri*, vol. 13, no. 1, pp. 1–9, 2021.
- [5] M. A. Muktadir Gasba, "Implementasi Algoritma A* (A Star) Dalam

- Menentukan Jarak Terpendek Menuju Rumah Sakit Rujukan COVID-19," *Bul. Sist. Inf. dan Teknol. Islam*, vol. 3, no. 3, pp. 203–212, 2022.
- [6] D. Marcelina and E. Yulianti, "Aplikasi Pencarian Rute Terpendek Lokasi Kuliner Khas Palembang Menggunakan Algoritma Euclidean Distance Dan a*(Star)," *J. Sisfokom (Sistem Inf. dan Komputer)*, vol. 9, no. 2, pp. 195–202, 2020.
- [7] R. Dwi Septiana, D. Abisono Punkastyo, and N. Nugroho, "Algoritma Greedy dan Algoritma A* Untuk Penentuan Cost Pada Routing Jaringan," *KLIK Kaji. Ilm. Inform. dan Komput. Implementasi*, vol. 3, no. 2, pp. 181–187, 2022.
- [8] M. Mayadi and R. Azhar, "Perbandingan Perhitungan Manual Dengan Algoritma a Star Dalam Pencarian Jalur Terpendek Untuk Pengiriman Pesanan Dodol Khas Lombok," *J. Inform. dan Rekayasa Elektron.*, vol. 2, no. 2, p. 27, 2019.
- [9] R. Idayat and I. Handayani, "Penerapan Algoritma A*Star Menggunakan Graph Untuk Menentukan Rute Terpendek Berbasis Web," *Pendidik. dan Inform.*, vol. 1, no. 1, pp. 7–14, 2022.
- [10] S. Andryana, A. Andrianingsih, and N. Farhan, "Penerapan Algoritma A-star dan Brute Force pada Aplikasi Jakvel (Jakarta Travel) Berbasis Android," *J. Media Inform. Budidarma*, vol. 5, no. 3,

- p. 879, 2021.
- [11] M. A. Arsyad, D. Supriyadi, A. Veronica, L. N. Hidayah, and D. P. Pratiwi, "Penerapan Algoritma A Star Untuk Pencarian Rute Terpendek Puskesmas Rawat Inap Di Banyumas," Conf. Electr. Eng. Telemat. Ind. Technol. Creat. Media 2019, pp. 74–82, 2019.
- [12] R. F. Oktanugraha and S. R. Nudin, "Implementasi Algoritma A* (A Star) dalam Penentuan Rute Terpendek yang Dapat Dilalui Non Player Character pada Game Good Thief," *J. Informatics Comput. Sci.*, vol. 2, no. 01, pp. 74–85, 2020.
- [13] Nurzaenab, A. Y. Muniar, and A. Taqwim, "SISTEM INFORMASI GEOGRAFIS PENCARIAN TOKO KERAJINAN TANGAN MENGGUNAKAN ALGORITMA A STAR (A*)," *J. Instek*, vol. 8, no. April, pp. 410–421, 2023.
- [14] B. T. D. Irianto, S. Andryana, and A. Gunaryati, "Penerapan Algoritma A-Star Dalam Mencari Jalur Tercepat dan Pergerakan NonPlayer Character Pada Game Petualangan Labirin Tech-Edu," *J. Media Inform. Budidarma*, vol. 5, no. 3, p. 953, 2021.
- [15] I. H. Santi and D. Budianti, "Penerapan Algoritma Greedy Dalam Mencari Rute Terdekat Lokasi SPBU Berbasis Web," *Metta J. Penelit. Multidisiplin Ilmu*, vol. 2, no. 1, pp. 1225–1234, 2023.