derivation and explanation of the Bonferroni Correction.Rmd

Alan E. Berger March 17, 2020

This explanation / derivation of the Bonferroni correction follows the Wikipedia article (as of March 16, 2021): https://en.wikipedia.org/wiki/Bonferroni_correction with some commentary added. We are doing m statistical tests (and for the Bonferroni correction we do not need to assume they are independent). We are going to "declare" that, for any i, if the **p-value**, p_i for the ith test is $\leq \tilde{\alpha}$ then that result is **statistically significant**. We want to choose $\tilde{\alpha}$ such that **the probability of one or more false positives among the m tests is** $\leq \alpha$ (a false positive here meaning the null hypothesis was true for test i but $p_i \leq \tilde{\alpha}$ so we incorrectly declared this test result to be statistically significant). This is what is meant by **controlling the family-wise error rate (FWER) at level** α . Following the Wikipedia article, we calculate an upper bound for the probability of getting one or more false positives in the following way. By the definition of the p-value, the probability of getting $p_i \leq \tilde{\alpha}$ just by random chance when the null hypothesis is true is $\tilde{\alpha}$ (assuming the conditions for validity of the statistical test being used are satisfied). If the null hypothesis is true for only some $m_0 < m$ of the statistical tests we would only need to control for false positives for that smaller number m of all the tests being done. We will see that the appropriate choice to have the probability that one or more false positives occur be $\leq \alpha$ is to define

$$\tilde{\alpha} = \alpha/m$$

This is the Bonferroni correction procedure. To verify that this is sufficient, assume the null hypothesis is true for all m tests. Let T_i be the event that the p-value for test i is $\leq \tilde{\alpha}$ (giving a false positive test result). Then whether or not the tests are independent of each other, the probability that one or more of the T_i occur is

$$P(\cup_{i=1}^{m} T_i) \le \sum_{i=1}^{m} P(T_i) = m * \tilde{\alpha}$$

The inequality in the equation above is true by the properties of probability measures (see for example https://en.wikipedia.org/wiki/Boole%27s_inequality), and the equality in the equation above follows by the definition of a p-value. Hence if we set

$$\tilde{\alpha} = \alpha/m$$

then the probability of one or more false positives is bounded by α , so we have controlled the FWER at level α . So one can either check, for each i, if $p_i \leq \alpha/m$ (and declare that test i is statistically significant if that is true) **OR** equivalently, one can multiply p_i by m and declare test i to be statistically significant if $m * p_i \leq \alpha$.

Hope this helps explain how and why Bonferroni correction works.