Контрольна робота з математичного аналізу Розділ. Визначений інтеграл.

№1 Обчислити інтеграли

$1.1. \int_{4}^{9} \left(\frac{\sqrt{x} + 1}{\sqrt{x}} \right)^{2} dx$	1.5. $\int_{0}^{\frac{1}{2}} \frac{x dx}{\sqrt{1-x}}$
1.2. $\int_{0}^{1} \frac{x dx}{1 + \sqrt{x}}$	1.6. $\int_{0}^{1} \frac{\sqrt{x} dx}{1+x}$
$\int_{0}^{3} \sqrt{1-9x^2}$	$1.7. \int_{0}^{9} \frac{x-1}{\sqrt{x}+1} dx$
1.4. $\int_{3}^{8} \frac{x dx}{\sqrt{1+x}}$	1.8. $\int_{4}^{9} \frac{\sqrt{x} dx}{\sqrt{x} - 1}$

№2 Обчислити інтеграли

2.1. $\int_{1}^{e^{3}} \frac{dx}{x\sqrt{1+\ln x}}$	$2.5. \int_{0}^{\frac{\pi}{2}} \sin^3 x \cos x dx$
2.2. $\int_{0}^{\frac{\pi}{3}} \sin x \cos^{2} x dx$	2.6. $\int_{1}^{e} \frac{1 + \lg x}{x} dx$
2.3. $\int_{1}^{2} \frac{e^{\frac{1}{x}} dx}{x^{2}}$	$2.7. \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin x dx$
2.4. $\int_{0}^{\frac{\pi}{3}} \sin^3 x dx$	$2.8. \int_{0}^{\frac{\pi}{6}} \cos x \sin^2 x dx$

№3 Обчислити інтеграли

$3.1. \int_{0}^{\frac{\pi}{2}} x \cos x dx$	$3.5. \int_{0}^{\frac{\pi}{4}} arctgx dx$
3.2. $\int_{1}^{2} x \ln x dx$	3.6. $\int_{1}^{2} (3x+2) \ln x dx$
3.3. $\int_{0}^{e-1} \ln(x+1) dx$	$3.7. \int_{0}^{1} \arccos x dx$
$3.4. \int_{0}^{1} \operatorname{arctgx} dx$	$3.8. \int_{0}^{1} \arcsin x dx$

№4 Обчислити інтеграли

4.1. $\int_{0}^{2} x^{2} - 1 dx$	4.5. $\int_{0}^{2} 1-x dx$
4.2. $\int_{0}^{3} 1-x dx$	4.6. $\int_{-3}^{2} x-1 dx$
4.3. $\int_{-1}^{3} x^2 - 4 dx$	47. $\int_{0}^{3} 2-x dx$
4.4. $\int_{-3}^{0} x+2 dx$	4.8. $\int_{0}^{2} \left 1 - x^{2} \right dx$

№ 5. Знайти площу фігури, обмеженої лініями. Зробити малюнок.

the of should have been played and the should have been a should have been been been been been been been be				
5.1 . <i>xy</i> =4, <i>x</i> =1, <i>x</i> =4, <i>y</i> =0	5.5. $y = 0$, $y = (x+1)^2$, $y = 5-x$			
5.2. $y=\ln x$, $x=e$, $y=0$	5.6. $y = -x$, $y = 2x - x^2$			
$5.3. y = x^2, y = 2 - x^2$	5.7 . <i>y</i> =sin <i>x</i> , <i>y</i> =cos <i>x</i> (один криволінійний трикутник)			
5.4. $y = x^3$. $y = 8$, $x = 0$	5.8 . $y = \frac{x^2}{2}$, $y = \frac{1}{1+x^2}$ (локон Ан'єзі)			

№ 6. Знайти площу фігури, обмеженої лінією. Зробити малюнок

$\textbf{6.1.} \ \ x = a \cdot \cos^3 t; \ \ y = a \cdot \sin^3 t$	6.5 . Слимаком Паскаля $\rho = 2(2 + \cos \varphi)$
6.2. $r^2 = a^2 \cos 2\varphi$	$6.6. \ \rho = a \cdot \sin 3\theta$
$\textbf{6.3.} \ \ r = a(1 + \cos\varphi)$	6.7. $x = p \cdot \cos^3 t$; $y = p \cdot \sin^3 t$
$6.4. r = a \cdot \sin 3\varphi$	6.8 . $\rho = a(1 + \cos\theta)$

№ 7.

- **7.1**. Обчислити довжину дуги $\rho = a \cos^4 \frac{\varphi}{4}$.
- **7.2**. Знайти об'єм тіла, одержаного від обертання навколо осі ОХ фігури, обмеженої віссю абсцис та дугою синусоїди $y=\sin x$, що відповідає пів періоду.
- **7.3**. Обчислити площу катеноїда поверхні, утвореної обертанням ланцюгової лінії $y = a \cdot ch \frac{x}{a} = \frac{a}{2} \cdot \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}}\right)$ навколо осі абсцис (від $x_1 = 0$ до $x_2 = a$).
- **7.4.** Поверхня, одержана від обертання навколо осі ОХ ланцюгової лінії $y = a \cdot ch \frac{x}{a} = \frac{a}{2} \cdot \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}}\right)$ називається катеноїдом. Знайти об'єм тіла, обмеженого

катеноїдом і двома площинами на відстані a та b від початку координат і перпендикулярними до осі OX.

- **7.5**. Обчислити площу поверхні, утвореної обертанням кубічної параболи $3y x^3 = 0$ навколо осі абсцис (від $x_1 = 0$ до $x_2 = a$).
- **7.6**. Знайти довжину астроїди $x = a \cdot \cos^3 t$; $y = a \cdot \sin^3 t$.
- **7.7**. Обчислити площу поверхні, утвореної обертанням навколо осі ОХ дуги параболи $y^2 = 2x$ між точками перетину з прямою 2x=3.
- **7.8**. Знайти об'єм тіла, яке утворюється при обертанні навколо осі ОХ фігури, обмеженої кривою $x = a(t \sin t), \ y = a(1 \cos t), \ t \in [0; 2\pi].$

Варіанти завдань для контрольної роботи

Варіант	№ 1	№2	№3	№4	№5	№6	№7
1	1.1	2.1	3.1	4.1	5.1	6.1	7.1
2	1.2	2.2	3.2	4.2	5.2	6.2	7.2
3	1.3	2.3	3.3	4.3	5.3	6.3	7.3
4	1.4	2.4	3.4	4.4	5.4	6.4	7.4
5	1.5	2.5	3.5	4.5	5.5	6.5	7.5
6	1.6	2.6	3.6	4.6	5.6	6.6	7.6
7	1.7	2.7	3.7	4.7	5.7	6.7	7.7
8	1.8	2.8	3.8	4.8	5.8	6.8	7.8
9	1.3	2.4	3.5	4.2	5.3	6.4	7.5
10	1.4	2.1	3.2	4.3	5.5	6.1	7.3
11	1.5	2.6	3.7	4.8	5.1	6.2	7.8
12	1.6	2.7	3.8	4.1	5.2	6.8	7.2
13	1.7	2.8	3.1	4.2	5.3	6.4	7.5
14	1.8	2.9	3.5	4.6	5.7	6.8	7.4
15	1.1	2.2	3.6	4.7	5.8	6.5	7.1