1. Borel-lefedés

A Borel-lemma azt állítja, hogy egy korlátos és zárt valós intervallum tetszőleges lefedéséből kiválasztható véges lefedés is.

1.1. Lemma: Borel-féle lefedési lemma

Legyen $[a,b] \subset \mathbb{R}$ egy korlátos és zárt intervallum, vagyis $a,b \in \mathbb{R},\ a < b$. Ha van olyan $\Gamma \neq \emptyset$ indexhalmaz, hogy az I_{γ} $(\gamma \in \Gamma)$ nyílt intervallumokra

$$[a,b] \subseteq \bigcup_{\gamma \in \Gamma} I_{\gamma}$$

teljesül, akkor kiválasztható olyan $\Gamma_0 \subseteq \Gamma$ véges indexhalmaz, amellyel

$$[a,b] \subseteq \bigcup_{\gamma \in \Gamma_0} I_{\gamma}.$$

 $Bizony \acute{i}t\acute{a}s.$ Indirekt tegyük fel, hogy nincs ilyen $\Gamma_0 \subseteq \Gamma$ véges halmaz.

Felezzük meg az [a,b]intervallumot. Ekkor valamelyik félintervallumot nem tudjuk lefedi véges sok I_{γ} felhasználásával, mert ha mindkét rész lefedhető lenne, akkor a lefedések egyesítése lefedné az [a,b] intervallumot.

Hasonlóan, ezt a nem lefedhető félintervallumot újból megfelezve kapjuk, hogy legalább az egyik negyedintervallum nem fedhető le véges sok I_{γ} -val.

Ezen konstruktív módon definiált (J_n) zárt intervallumsorozatra

$$J_{n+1} \subset J_n \subset [a,b], \qquad |J_n| = \frac{b-a}{2^n} \qquad (n \in \mathbb{N}).$$

Ekkor a Cantor-tétel alapján egyetlen olyan $\alpha \in [a, b]$ szám létezik, hogy

$$\bigcap_{n=0}^{\infty} J_n = \{\alpha\}.$$

Mivel az [a, b] intervallum lefedhető, ezért van olyan $\delta \in \Gamma$ index, hogy

$$\alpha \in I_{\delta}, \quad \alpha \in J_n \qquad (n \in \mathbb{N}).$$

Viszont a (J_n) intervallumok hossza nullához tart, ezért

$$\exists n \in \mathbb{N} : J_n \subset I_{\delta}.$$

Ez pedig ellentmondás, hiszen a konstrukciója miatt J_n nem lefedhető véges sok I_γ segítségével, ennek ellenére az egyetlen I_δ intervallum lefedi.

2. A Riesz-féle felépítés

Bizonyos szempontból a legsúlyosabb hiányossága a Riemann-integrálnak a határátmenettel szembeni "nehézkes" viselkedése. Ezt a szempontot helyezte a középpontba Riesz Frigyes, amikor a Lebesgue-féle gondolat egy új interpretálását fogalmazta meg. Az alábbiakban röviden vázoljuk a Riesz-féle felépítés alapgondolatát.

Tétel (Cantor-tétel). Amennyiben a

$$J_{n+1} \subseteq J_n, \quad |J_n| \to 0 \quad (n \to \infty)$$

egy korlátos és zárt intervallumsorozat, akkor létezik olyan $A \in \mathbb{R}$ szám, hogy

$$\bigcap_{n=0}^{\infty} J_n = \{A\}.$$

2.1. Definíció: Lépcsősfüggvény

Legyen $[a,b]\subseteq\mathbb{R}$ korlátos és zárt intervallum, az $f:[a,b]\to\mathbb{R}$ korlátos.

Azt mondjuk, hogy az f egy **lépcsősfüggvény**, ha van olyan

$$a = x_0 < x_1 < \dots < x_n = b$$

felosztás és $c_0,\dots,c_{n-1}\in\mathbb{R}$ konstansok, hogy minden $k=0,\dots,n-1$ -ra

$$f(x) = c_k$$
 $(x_k < x < x_{k+1}).$

Ekkor az előbbi f lépcsősfüggvény **integrálja** legyen

$$\int_{a}^{b} f := \sum_{k=0}^{n-1} c_k \cdot (x_{k+1} - x_k) \in \mathbb{R}.$$

Megjegyzések:

- i) Az osztópontokban felvett $h(x_k)$ helyettesítési értékek tetszőlegesek lehetnek.
- ii) Világos, hogy minden lépcsősfüggvény Riemann-integrálható és az integrál definíciója megegyezik a Riemann-integrál értékével.

A továbbiakban legyen a lépcsősfüggvények halmaza

$$C_0 := \{ f : [a, b] \to \mathbb{R} \mid f \text{ lépcsősfüggvény } \}.$$

2.2. Lemma: A-lemma

Legyen (h_n) egy olyan C_0 -beli függvénysorozat, amelyre

- i) minden $x \in [a, b]$ helyen és $n \in \mathbb{N}$ indexre $0 \le h_{n+1}(x) \le h_n(x)$;
- ii) valamilyen nullamértékű $\mathcal{N} \subset [a,b]$ halmazzal

$$\lim_{n \to \infty} h_n(x) = 0 \qquad (x \in [a, b] \setminus \mathcal{N}).$$

Ekkor létezik

$$\lim_{n \to \infty} \int_{a}^{b} h_n = 0.$$

Bizonyítás. Mivel a (h_n) tagok osztópontjai legfeljebb megszámlálhatóan sokan vannak, így ezek nullamértékű halmazt alkotnak. Egyesítsük ezeket a pontokat \mathcal{N} -el. Az így kapott nullamértékű halmazt a továbbiakban \mathcal{R} jelöli. Vagyis amennyiben az $\varepsilon > 0$ rögzített, akkor létezik olyan (I_n) nyílt intervallumsorozat, hogy

$$\mathcal{R} \subseteq \bigcup_{n=0}^{\infty} I_n$$
 és $\sum_{n=0}^{\infty} |I_n| < \varepsilon$.

Ekkor a ii) feltétel szerint minden $x \in [a, b] \setminus \mathcal{R}$ helyen

$$\lim_{n \to \infty} h_n(x) = 0.$$

A konvergencia definíciója alapján van olyan $N_x \in \mathbb{N}$ küszöbindex, hogy

$$h_n(x) < \varepsilon$$
 $(N_x \le n \in \mathbb{N}).$

Ugyanakkor az x nem osztópontja h_{N_x} -nek, ezért van olyan $J_x \subset [a,b]$ nyílt intervallum, ahol a $h_{N_x}|_{J_x}$ függvény konstans. Továbbá az i) feltétel miatt

$$h_n(t) \le h_{N_x}(t) < \varepsilon \qquad (n > N_x, \ t \in J_x).$$
 (*)

is feltehető. Világos, hogy ekkor

$$[a,b] \subseteq \left(\bigcup_{n \in \mathbb{N}} I_n\right) \cup \left(\bigcup_{x \in \mathcal{R}^c} J_x\right).$$

ezért a Borel-lemma szerint vannak olyan

$$A \subset \mathbb{N}, \quad B \subset [a, b] \setminus \mathcal{R}$$

véges halmazok, amelyekkel

$$[a,b] \subseteq \left(\bigcup_{n \in A} I_n\right) \cup \left(\bigcup_{x \in B} J_x\right).$$

Az előbbi véges lefedésében szereplő intervallumok [a,b]-beli végpontjai (ha szükséges, akkor az a,b pontok hozzátételével) egy

$$a = z_0 < z_1 < \dots < z_s = b$$

felosztást határoznak meg valamilyen $s\in\mathbb{N}$ mellett. Legyen

$$\mathcal{I} := \left\{ k = 0, \dots, s-1 \mid \exists n \in A : (z_i, z_{i+1}) \subseteq I_n \right\}, \quad \mathcal{J} := \{0, \dots, s-1\} \setminus \mathcal{I}.$$

Végül legyenek

$$N := \max\{N_x : x \in B\}, \quad N < n \in \mathbb{N}, \quad h_n \le C \in \mathbb{R}.$$

Ekkor a soron következő becslés van érvényben

$$0 \le \int_a^b h_n = \sum_{i=0}^{s-1} \int_{z_i}^{z_{i+1}} h_n = \sum_{i \in \mathcal{I}} \int_{z_i}^{z_{i+1}} h_n + \sum_{j \in \mathcal{J}} \int_{z_j}^{z_{j+1}} h_n$$
$$\le C \cdot \sum_{i \in \mathcal{I}} (z_{i+1} - z_i) + \varepsilon \cdot \sum_{j \in \mathcal{J}} (z_{j+1} - z_j)$$
$$< C \cdot \sum_{n=0}^{\infty} |I_n| + \varepsilon \cdot (b - a)$$
$$= \varepsilon \cdot (C + b - a).$$

Mindez azt jelenti, hogy valóban létezik a $\lim \left(\int_a^b h_n \right) = 0$ határérték.

2.3. Lemma: B-lemma

Legyen (h_n) egy olyan C_0 -beli függvénysorozat, amelyre

- i) minden $x \in [a, b]$ helyen és $n \in \mathbb{N}$ indexre $h_n(x) \le h_{n+1}(x)$;
- ii) az integrálok $\left(\int_a^b h_n\right)$ sorozata korlátos.

Ekkor van olyan nullamértékű $\mathcal{M} \subset [a, b]$ halmaz, hogy

$$\lim_{n \to \infty} h_n(x) < +\infty \qquad (x \in [a, b] \setminus \mathcal{M}).$$

2.4. Definíció

Ha a (h_n) függvénysorozat eleget tesz a B-lemma feltételeinek, akkor legyen

$$C_1 := \left\{ h : [a, b] \to \mathbb{R} \mid h(x) = \lim_{n \to \infty} h_n(x) \text{ (m.m. } x \in [a, b] \right\}.$$

Továbbá egy ilyen $h \in C_1$ függvény **integrálja** legyen

$$\int_a^b h := \lim_{n \to \infty} \int_a^b h_n.$$

Megjegyzések:

- i) Az integrál értéke nem függ a h-t közelítő sorozat megválasztástól.
- ii) Világos, hogy $C_0 \subseteq C_1$ fennáll, valamint az integrál értéke változatlan.

2.5. Definíció

Legyen a Lebesgue-integrálható függvények halmaza

$$C_2 := \{ f := g - h \mid g, h \in C_1 \},\$$

valamint az ilyen függvények Lebesgue-integrálja legyen

$$\int_a^b f := \int_a^b g - \int_a^b h.$$

Megjegyzések:

i) A Lebesgue-integrál értéké független az $f \in C_2$ előállításától, azaz ha

$$f = a - h = G - H$$

fennáll valamilyen $g, h \in C_1$ illetve $G, H \in C_1$ függvényekre, akkor

$$\int_a^b f = \int_a^b g - \int_a^b h = \int_a^b G - \int_a^b H.$$

- ii) Világos, hogy $C_1\subseteq C_2$ fennáll, valamint az integrál értéke változatlan.
- iii) Nem minden Lebesgue-integrálható függvény Riemann-integrálható, hiszen

$$f: [0,1] \to \mathbb{R}, \qquad f(x) \coloneqq \begin{cases} 1, & \text{ha } x \in \mathbb{Q}, \\ 0, & \text{ha } x \notin \mathbb{Q} \end{cases}$$

nem Riemann-integrálható. Ugyanakkor, ha tekintjük a [0,1]-beli racionális számoknak egy (r_n) sorozatát, akkor az

$$f_n(x) := \begin{cases} 1, & \text{ha } x \in \{r_0, \dots, r_n\}, \\ 0, & \text{ha } x \notin \{r_0, \dots, r_n\} \end{cases} \quad (x \in [0, 1], n \in \mathbb{N})$$

függvénysorozat eleget tesz a B-lemma feltételeinek és $f = \lim(f_n)$, ezért

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_n = 0.$$