Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

An Equation For ESTIMATING The

(VALUE And VOLUME) Of

(Western Larch Trees)

Contents

			Page
INTRODUCTION	•	.• •	. 1
STUDY PROCEDURES			. 1
HOW THE SYSTEM PERFORMS			. 4
HOW TO USE THE SYSTEM	•	•	. 8
CONCLUSIONS	•	•	. 9
APPENDIX I			
APPENDIX II			. 12
Lumber Yield Data			
APPENDIX III	•		. 29
Characteristics			29

AN EQUATION FOR ESTIMATING THE VALUE AND VOLUME OF WESTERN LARCH TREES

Reference Abstract

Plank, Marlin E., and Thomas A. Snellgrove.
1978. An equation for estimating the value and volume of western larch trees. USDA For. Serv. Res. Pap. PNW-231, 29 p., illus. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

This paper describes an equation for estimating the total sales value or the volume for western larch trees. The equation requires four easy-to-measure characteristics. Both the development and the application of the system are discussed.

KEYWORDS: Tree value, volume estimation, grading systems, western larch, Larix occidentalis.

RESEARCH SUMMARY

Research Paper PNW-231 1978

This paper describes a system for estimating the lumber selling value and the total volume of western larch trees in a manner which is more accurate and more practical to apply than the conventional method of placing logs in discrete classes.

From a total sample of 576 trees selected from 21 different areas in northeastern Washington and north-western Montana, 506 were used to develop a prediction model equation. The remaining 70 trees plus 100 trees from a followup study in northwestern Montana were used to test the equation.

The model contains four tree characteristics:

- 1. tree diameter,
- 2. tree height,
- 3. the number of limb-free and defect-free faces in the butt 16-foot log, and
- 4. total tree defect.

The prediction equations account for 86 percent of the total variation in tree value and 89 percent of the total lumber volume variation as measured by the R² values.

When the system was applied to the 70 trees withheld from the original data, the prediction was 2.8 percent above the actual total dollar value and 1.8 percent above the volume recovered in lumber. The supplemental 100-tree study showed a predicted value of 2.7 percent less than the actual, and the volume estimate was 0.9 percent greater than that actually recovered.

The system is faster and more objective than log grading, and training and checking of cruisers is easier.

Introduction

This paper is a continuation of a successful effort to improve methods of estimating the value and volume of sawtimber in the Western United States. A system is described which estimates the lumber selling value or volume of western larch (Larix occidentalis Nutt.) trees in a manner which is simpler and easier to apply than the conventional method of placing logs in discrete classes.

Two other papers describe similar systems which are now being used to appraise Inland Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western white pine (Pinus monticola Dougl.). These papers document the advantages of using a continuous variable system; likewise they show a number of reasons why the method of using discrete log grades is often inadequate.

The following describes the system, its development, and illustrates its performance with western larch.

Study Procedures

SAMPLE

This tree grading system was developed by studying the quality-related characteristics and lumber yield from two western larch lumber recovery studies. These studies were conducted in northwestern Montana and northeastern Washington (fig. 1). The Montana study included 297 trees selected from 11 areas on the Flathead National Forest. This resulted in 1,469 sawn logs with a lumber tally volume of 187,303 board feet. In the Washington study, 279 trees were selected from 10 areas on the Okanogan National Forest and the lumber yield from the 1,341 logs was 201,092 board feet.

The sample areas were chosen to represent differences in tree size, stem quality, and site characteristics. Within each sample area, individual trees were selected on the basis of d.b.h. The average d.b.h. and height for the trees in the Montana study area were 19.8 inches and 109 feet. For the Washington study, average d.b.h. was 23.5 inches, and average height was 113 feet. Over both samples, the d.b.h. range was from 8 to 43 inches. The study trees were felled and bucked into saw logs according to normal industry practice. The visible surface characteristics of each log were recorded in detail after the logs were spread out in the mill yard.

Lane, Paul H., Marlin E. Plank, and John W. Henley. 1970. A new and easier way to estimate the quality of Inland Douglas-fir sawtimber. USDA For. Serv. Res. Pap. PNW-101, 9 p., illus. Pac. Northwest For. and Range Exp. Stn., Portland, Oreg.

Snellgrove, Thomas A., Marlin E. Plank, and Paul H. Lane. 1973. An improved system for estimating the value of western white pine. USDA For. Serv. Res. Pap. PNW-166, 19 p. Pac. Northwest For. and Range Exp. Stn., Portland, Oreg.

BRITISH COLUMBIA

WASHINGTON

OREGON

IDAHO

Figure 1.--Range of western larch (shaded) and general locations (cross-hatched) of the 21 areas from which study trees were cut.

The study logs were processed at two sawmills which were considered representative of those processing western larch. The logs were sawn under normal production conditions, that is, sawing the particular mill's usual lumber items with the intent of obtaining the highest value from each log. The lumber tally values and volumes were based on kiln-dried, surfaced lumber tally according to general industry practice.

DEVELOPING THE PREDICTION MODEL

The determination of those tree characteristics most highly correlated with total value and volume of lumber began with the screening of 62 variables. Previous studies on other species have indicated which variables or combinations should be included in the screening process. A list of the independent variables that were examined can be found in appendix I. The principal methods used were the forward stepwise regression procedure and all possible regressions. The stepwise regression procedure was used to identify those individual tree characteristics that best represented the factors of tree volume, defect, and quality, and which were correlated with tree value or tree lumber tally volume. After this screening, the independent variables that had little or no correlation with tree value or volume or were too difficult or impossible to quantify in cruising were

omitted from further analysis. The remaining variables, along with alternative forms of the same variable, were further screened by means of the all possible regression procedure to choose the final variables for the model.

As previously mentioned, two separate studies were conducted. Separate analyses of the two studies were done concurrently. The same variables surfaced as being the most practical for application in timber appraisals and statistically accounting for the most variation in lumber volume and value. Consequently, the same model was chosen for the two studies.

Although the regression equations were statistically different for the two studies, a common regression was fitted to the data from both. A common regression line was chosen to provide a broader inference to the entire range of western larch, and the difference between the regression equations for the two studies is probably not of practical significance.

Four measurable characteristics survived as the most practical for application in timber appraisals and accounted for the most variation in lumber volume and value. They are:

- 1. tree diameter at breast height,
- total tree height,
- 3. number of limb- and defect-free faces on the butt 16-foot log, and
- 4. estimated tree defect expressed as a percentage of gross volume.

These four characteristics together with several transformations 2 of the same characteristics were selected as the best independent variables for the model. These variables along with lumber yield information were used to develop the regression equations for predicting total tree value (dollars) and lumber tally volume (board feet) on a tree basis. Total tree value (dependent variable) is determined by multiplying the lumber yield data found in appendix II by an appropriate price.

The following model equations are used for predicting total tree value and total lumber volume:

Total tree value =
$$b_0 + b_1(DEF)(D^2H) + b_2(NLDF16) + b_3(D) + b_4(H) + b_5(DEF^2)(D^2H) + b_6(D^2) + b_7(H/D) + b_8(D^2H)$$

^{2/} Transformations are constructed variables designed to account for interactions of independent variables, e.g., height over diameter (H/D).

Total lumber volume = $b_0 + b_1 (DEF) (D^2H) + b_2 (NLDF16) + b_3 (D^2) + b_4 (H) + b_5 (DEF^2) (D^2H) + b_6 (H^2) + b_7 (H/D) + b_8 (H/D)^2 + b_9 (D^2H)$;

where, b is the Y intercept constant, b. is the regression coefficient where i goes from 1 to 9,

D is tree diameter at breast height (inches),

H is total tree height (feet),

NLDF16 is the number of limb-free and defect-free faces in the 16-foot log, and

DEF is the estimated tree defect expressed as a percentage of gross cruise volume.

Coefficients for the value equation may be determined according to the steps in the section: How to Use the System.

Coefficients for the volume equation are as follows:

Constant = + 80.453880(DEF) (D²H) = - .000088720520NLDF16 = + 2.4064027D² = + .67704661H = -5.5433410(DEF²) (D²H) = -.00000041939578H² = + .033906473H/D = + .077834676(D²H) = + .077834676= + .0083360138

The equations developed from the two lumber recovery studies account for 86 percent of the total variation in total dollar value, 89 percent of the total variation in lumber volume.

How the System Performs

From the total sample of 576 trees, a subsample of 70 trees was randomly selected to test the performance of the estimating equations. The 70 trees were not used in the development of the equations. The four quality criteria measurements (d.b.h., height, faces, and defect) were recorded for each of the 70 trees. Predictions of the lumber selling value and lumber tally volume were then calculated.

Table 1 shows comparisions of estimated and actual values for the 70 test trees. Plots of the actual versus estimated tree values and volumes of individual trees are

Table 1-- A comparison of estimated and actual lumber selling value and lumber tally volume for 70 western larch trees

Unit	Estimated	Actual	Percent difference
Total value (dollars)	3,429.96	3,337.23	+2.8
Total lumber tally volume (board feet)	47,913	47,068	+1.8

shown in figures 2 and 3. As shown in these figures, the estimates of value and volume are about equally split by the 45-degree line.

In 1971, a lumber recovery study was held in Troy, Montana, in which the four quality criteria were recorded for each of the 100 trees in the sample. Predictions of the lumber selling value and lumber tally volume were made using the coefficients developed from the two base studies.

Figure 2.--Plot of actual overestimated tree value. 70-tree sample.

Figure 3.--Plot of actual overestimated tree lumber tally volume. 70-tree sample.

Table 2 shows the comparisons of the estimated and actual values for the 100 trees.

Figures 4 and 5 show plots of the actual versus estimated values and volumes for those trees.

Table 2-- A comparison of estimated and actual lumber selling value and lumber tally volume for 100 western larch trees

Unit	Estimated	Actual	Percent difference
Total value (dollars)	4,123.44	4,239.29	-2.7
Total lumber tally volume (board feet)	53,624	53,159	+0.9

Figure 4.--Plot of actual over-estimated tree lumber tally volume. 100-tree sample.

Figure 5.--Plot of actual over-estimated tree value. 100-tree sample.

How to Use the System

Efficient use of this system requires computer facilities for making regression analyses. The tree characteristic data (the four quality criteria), the lumber grade yield data for each of the trees in the base study, and appropriate prices are needed in a form suitable for computer use. A listing of the data and the card format for the 506 trees is illustrated in appendix II.

To estimate the total lumber tally volume of a tree or group of trees, simply solve the following equation using the coefficients shown:

Total lumber tally volume (board foot) = $+80.453880 - .000088720520 (DEF) (D^2H) + 2.4064027 (NLDF16) + .67704661 (D^2) - 5.5433410 (H) - .00000041939578 (DEF^2) (D^2H) + .033906473 (H^2) + <math>8.9652163 (H/D) + .077834676 (H/D)^2 + .0083360138 (D^2H)$.

The step-by-step procedure for estimating the selling value for a group of trees such as a sample for appraisal is as follows:

- 1. Select sample trees.
- 2. Measure and record for each sample tree the four characteristics:
 - a. Tree diameter,
 - b. Tree height,
- c. Number of limb-free and defect-free faces in the butt 16-foot log, and
 - d. Tree defect.
- 3. Assign current or desired lumber price(s) such as those available from several industry price reporting services to each of the lumber grades recorded in the original base study.
- 4. Multiply these lumber prices by the lumber yield information shown in appendix II to obtain a total dollar value for each of the trees that are in the base study(s).
- 5. Use an appropriate multiple regression program such as the BMD program series $\frac{3}{2}$ to develop the value equation coefficients for the 506 trees. Use the computed

Dixon, W. J., ed. 1964. BMD biomedical computer programs. Health Sciences Computing Facility, Department of Preventative Medicine and Public Health, School of Medicine, University of California at Los Angeles, Calif.

total dollar value (step 4) and the four tree characteristics and the following transformations:

Dependent Variables:

Total dollars/D²H.

Independent Variables:

DEF DEF 2 NLDF16/D 2 H D/D 2 H H/D 2 H D 2 /D 2 H H/D/D 2 H 1/D 2 H

The dependent variable is divided by D^2H to equalize variance, and all of the independent variables except DEF and DEF² are divided by D^2H so that when the equation is untransformed it will appear as that on page 3 and 4. DEF and DEF² are not divided by D^2H because they are already expressed as a percent of total volume.

- 6. Make a covariance analysis of the two base study value equations that result from applying new prices to obtain appropriate coefficients for the common equation (i.e., to obtain the weighted average equation applicable to the two base studies). If base studies are to be applied individually, use the appropriate equation for each area.
- 7. Solve the value equation for the selected sample trees in step 1 using coefficients developed in step 6.

Conclusions

Field application tests of the system have demonstrated that it has a number of advantages over the conventional log grading method. It is faster to apply and thus more economical; it contains fewer judgment factors and therefore requires less experience by the cruiser and simplifies the training and checking of cruisers. Selling price is computed directly, the significant quality characteristics of each sample tree are recognized, and the computation procedures are relatively simple.

This system is similar to others which have been used successfully by the U.S. Forest Service in computing selling value on commercial timber sales in the northern Rocky Mountains. The performance and acceptance by both timber buyers and sellers indicate these systems are relatively

simple yet accurate methods for estimating the quality of sawtimber. The tests conducted thus far indicate that this system is applicable throughout the Inland Empire. Due to the expanse of the sample, it is the authors' opinion that it could be applied throughout the entire range of western larch.

Appendix I

INDEPENDENT VARIABLES

Defect related variables

- 1. defect percent
- 2. defect percent squared

Presence or absence of:

- 3. bumps and burls
- 4. burls over 4 inches
- 5. conks
- 6. basal wounds
- 7. nonbasal wounds
- 8. all wounds

Length of:

- 9. basal wounds
- 10. nonbasal wounds
- 11. all wounds
- 12. basal wounds squared
- 13. nonbasal wounds squared
- 14. all wounds squared
- 15. total diameter of burls
- 16. total number of conks
- 17. total number of conks squared
- 18. number of knot clusters in butt 16-foot log
- 19. number of knot clusters in butt 32-foot log

Quality related variables

- 20. height to the first dead limb
- 21. height to the first live limb
- 22. size of the first dead limb
- 23. size of the first live limb
- 24. size of the largest limb in the butt 16-foot log
- 25. size of the largest limb in the butt 32-foot log
- 26. height to the start of the crown
- 27. crown ratio
- 28. crown length
- 29. height of clear bole allowing no defect
- 30. height of clear bole allowing defect
- 31. height of limb-free bole allowing no defect

- 32. height of limb-free bole allowing defect
- 33. total length of clear face in 4-foot minimum units in the butt 16-foot log
- 34. total length of clear face in 4-foot minimum units in the butt 32-foot log
- 35. total length of clear face in 8-foot minimum units in the butt 16-foot log
- 36. total length of clear face in 8-foot minimum units in the butt 32-foot log
- 37. number of 4-foot clear panels on the butt 16-foot log
- 38. number of 4-foot clear panels on the butt 32-foot log
- 39. number of clear 8-foot panels on the butt 16-foot log
- 40. number of clear 8-foot panels on the butt 32-foot log
- 41. number of clear 8-foot panels on the butt 16-foot log not allowing defect
- 42. number of clear 8-foot panels on the butt 16-foot log allowing defect
- 43. number of clear faces on the butt 16-foot log allowing defect
- 44. number of clear faces on the butt 16-foot log not allowing defect
- 45. number of clear faces on the butt 32-foot log allowing defect
- 46. number of clear faces on the butt 32-foot log not allowing defect
- 47. number of limb-free faces on the butt 16-foot log allowing defect
- 48. number of limb-free faces on the butt 16-foot log not allowing defect
- 49. number of limb-free faces on the butt 32-foot log allowing defect
- 50. number of limb-free faces on the butt 32-foot log not allowing defect

Volume related variables

51.	d.b.h D		H/D
52.	total height = H		D ²
53.	16-foot form class	59.	H ²
54.	taper	60.	(D/H) ²
55.	DH	61.	$(H/D)^2$
56.	D/H	62.	1/D ² H

Appendix II

TREE QUALITY CHARACTERISTICS AND LUMBER YIELD DATA

The tree quality characteristics and lumber yield data for each of the 576 trees from the two base studies are listed according to the card format shown below.

LIST OF CHARACTERISTICS

Columns	Data
1 2-4 5-7 8-10 11-13 14	study identifier tree number d.b.h. total height defect percent number of limb-free and defect-free faces in the butt 16-foot log
15-18 19-22 23-26 27-30 31-34 35-38 39-42 43-46 47-50 51-54 55-58 59-62 63-66 67-72	volume of B Select lumber volume of C Select lumber volume of D Select lumber volume of 1 Common lumber volume of 2 Common lumber volume of 3 Common lumber volume of 4 Common lumber volume of 5 Common lumber volume of 5 Common lumber volume of Select Structural lumber volume of Construction lumber volume of Standard lumber volume of Utility lumber volume of Economy lumber total lumber tally volume

LIST OF DATA CARDS

	TOTAL	2050	807	685	1179	766	662	161	1337	944	335	636	242	206	525	622	836	949	308	1252	192	815	536	684	373	458	843	817	813	712	421	716	471	365	394	245	878	196	620	534	909
	ECON	601	861	39	126	120	7.		172	54	68	JE	9 9	123	£4		17		£43	123	32	48	91		61	63		66	9 -	30	- 0	45	12	6	27	67	62		-		20
	UTIL	30+	3 6	131	102	151	25	=	192	56		73	102	135	00-	1 26	53	127	771	243	94	94	38	75	8	26	20	86	4	76	136	30	6.8	37	37	83	208	12	3	58	103
	STAND	607	601	211	=======================================	285	37	23	183	123	91	228	95	3	<u> </u>	<u>-</u>	185	198	0,1	223	91	133	58	63	20	7.7	1.38	=	270	156	32	136	56	82	137	54	155	121	1 18	6 8	125
	CONST	139	202	128	154	001	277	9 -	296	0 7 1	73	128	133	M	107	212	283	173	20	267	S	195	139	217	59	11	234	212	542	641	12	6 61	215	126	74	235	124	236	150	169	130
w	S-STR	90		32			27		112								91	21					=	21	53		123	2	53			21		32	91	Ξ	49	27		35	43
Σ ⊃	5-COM	۲۰	17		32	6	<u>-</u>	S	6 0	3	32	S.		<u>~</u>		S	m		3	92		15	28	=	\$	<u>6</u>			თ	30	20	9 \$	₩			13	9 +			9	<u>۳</u>
0	H00-7	116	7.0	9	98	- 1	58	σ	4.8	0 + 0	36	52	72	53	45	S	745	32	26	Ξ	20	150	31	25	45	7	=	19		745	28	29	15	27	25	20		3	48	9	55
>	3-COM				147			w	72	38		70	85	51	5 e	24	7.0	77	<u>6</u>	105	12	7	52	62	<u>o</u>	32	-0	26	747	30	33	7.0	53	30	33	22	29	83	25	7	22
	2-COM	80	ю					^		2		22		=			<u>~</u>			54		8	=	6 0		i	54		92			54	54			r	30	12	=	22	12
	I -COM																																								
	D-SEL	212	33	21	308	30	44	6 0	101	56	9	56	2	<u>-</u>	53	37	<u>-</u>	6 7	œ	00	Ω.	£ 9	<u>*</u>	9 0 (59	5,	124	69	49	0 -	6 3	9	P)	22	9	28	36	128	96	14	63
	C-SEL				-15		36		132	10 (<u>.</u>	<u>~</u> :	~	∞		-3				30		53			_	40	-	_	_			ш,	6 0			9		147	<u>6</u>	- 1	=
	8-SEL	8.3			=		თ		21			2											=			•	24		-3				27				30	43	=		
	NE 16	3		m	2	m	2	\$.	ו נייי	w 7 ,	ا جي	m.	J 1	Y D	4	.	J (M.	ŧ	†	m	PAT)	4 (m	~	‡	.	m	P F7	4	2	m	(~)	4	m	2	4	t	ŧ	4
e S	026	12	15	<u> </u>	5 ·	=	٩	~	2 1	= -	.	# :	=	<u> </u>	-	22	<u>.</u>	<u>.</u>	22	œ	<u>+</u>	7	0	ِ ف	- 5	m i	0	9	9	۰	_	20		4	27	7	<u>~</u>	9	<u>m</u>	S	0
101	Ī	_	_	_	_	_	_		_	5 :			_		_	_	_	_	_	_		_	_	_			_	_	_	_	_	_					_	_	_	_	_
	озн	336	225	227	336	235	202	941	273	173	791	239	201	9 6	20	233	213	212	191	260	136	247	202		176	174	238	227	228	223	183	226	- 2	162	192	225	241	258	207	201	203
	TREE	-	2	\$	S.	9	7	٥	ത	<u> </u>	= :	2 !	~	- :	<u>.</u>	- 1	60	<u>ත</u>	20	7	22	23	54	25	56	27	25	30	~	35	34	35	38	39	0 %	3	745	43	**	42	94
	STUDY	-	-	-	_	-	-	-	_			- ·	_		-	_	-	_	-	-	-	-	_	- ·	_		_	_	-	-		-	-	-	-	_	-	-	-	-	_

	TOTAL	1486	1354	310	155	117	985	206	563	53	174	121	599	184	156	0 7 7	1112	652	574	180	609	926	196	1066	381	115	241	1258	9011	201	37.0	813	7701	367	1154	161	649	1236	72	867	1033
	ECON	9	407		55	87	63	F 7	27	1	80	54		59	99	7		5	4	22	63	7.4	06	21	75	7	27		32	9 6	n ;	24	28	=	29	6	=	54	6	22	S
	UTIL	27.2	543	7	38	g)	160	59	63		9	9	53	106	346	65	120	124	24	43	152	191	130	277	96	961	88	0	143	300	5	24	170	73	173	29	53	474	=	170	36
	STAND	242	152	16	22	=	348	96	901	91	9		125	130	223	53	179	224	33	†M	180	130	293	282		37	2 5	317	243	2	16	2	228	11	154	9#	96	284	22	0 7 1	260
	CONST	3.00	89	59	9		151	107	202	7	91	32	P 1	0.5	95	203	155	115	12	35	102	123	135	133	32	53	9	379	296	276	C 5 5	- C	225	551	482	65	1.82	187	=	195	361
L LI	S-STR	53		=				32	91						32		16		60		6	37		9+		21		96	155		9	22	5	Ξ		σ	59		=	6 7	96
Σ	5-COH		6		m	^	80	15	8	M	r.			80		9		M	-	<u>-</u>		13	23	30		2		©	- 2			0.				0	0	6	2	æ -	54
7 0	#-CO#	52	979	15	1		3.1	29	12	3	60	Ξ		99	M M	28	23	6 -	2	60	11	83	58	29	23	62	17	25	,	9 !		0.9	27	34	25	7	56	2.1	PO	23	2 1
>	3-00	54	53	5.9	12		82	17	94		9	S)	32	r.	99	20	37	7.0	æ	7	30	107	# B	9 	M J	20	0 %	134	100	. C	202	7.3	2	22	1 8	9	120	175		- 4	55
	2-COM			=				38	54			J.						13				=	=						:	~		_	27	7	21		=				
	¥ 00 -																																								
	C-SEL	134	4	8	5	4	58	37	24	6	1 9	2	0 4	27	73		69		σ	7	24	101	16	Ξ	105	20	=	155	<u>6</u> :	9 6	212	58	158	2	0		N) \$	62		153	112
	C-SEL	9	9	20			38	33	13		01	8	Φ	26	9	- 8	37				6	5	11	0 %	2	5 4		20				Y: (Y		9	52		3.8			25	
	8-SEL	6.3	7									•	٠					7				31	70	21				23		L	· ;	= :	-3								=
	NLF16	۳.	· 123	7	2	2	3	4	\$	M	t	t	1	3	1	4	m	ĸ	7	m	\$	\$	\$	J	\$	8	-	1	ν.	† †	o .	J .	3	m	\$	m	3	М	7	7	ţ
	PCNI	13	£ :	4	32	45	<u>5</u>	-3		20	œ	45	6		0	r.	4	15		25	12	9	<u>-</u>	- 1	59		9	- 2	- (ייכ	٥ :	3 !	2		S	30		σ		2	9
	101 H1	_	_		95		_															_		_	_			_			- '	_	_	_	_	_	_	_		_	
	H80	240	302	641	153	194	255	061	761	106	137	152	130	18	256	761	216	207	197	132	209	564	253	262	302	207	121	265	231		600	507	257	35	549	125	161	544	106	514	233
	TREE	74	4.8	64	20	51	55	53	54	52	96	25	58	59	9	9	62	63	65	99	29	99	69	7.0	7	72	73	74	5;	10		80	6.4	80	82	83	40	85	98	47	88
	Acn.	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_						_	_	_	_	_		_	_	

	TOTAL	8 0 0	37 U	020	1872	687	1618	1262	1659	1193	1607	0.84	1436	\$ D T	559	770	2229	630	F - 17	239	259	200	723	483	683	162	610	317	298	1087	605	431	M M	397	584	145	893	297	273
	ECON	27	3 T	0 0	22	72	728	=	218	80	172	54	\$ C	9 !	φ •	30	315	36	69	58	3 0	n 4	6	60	127	25	96			139	=	£3	12	53	Ξ	œ		7.0	
	UTIL	178	55	* 0	522	225	374	04	288	168	743	134	280	52	77	- 3	560	84	147	989	99	<u>.</u> <u>.</u>	115	58	228	82	-	49	-	65	- 0	107	45	34	75	7 5	158		34
	STANE	152	0 # U	400	222	90	176	345	252	262	36	7	478	182	121	\$	201	9	S M	4 5	:	75	200	7.0	84	45	601	5.0	∞ .	234	*		0 -	66	59	43	121	50	9
	CONST	~	31.8	- 00	50 S	175	218	336	337	513	123	- 39	1 9 5 1	222	ED	372	281	234	170	12	7	261	157	128	69	53	96	123	9	272	236	641	9	0 -	75	12	549	102	641
u	S-STR	12	80		8	;	7		27	90	9 1	P) +	<u>a</u> ;	942			43						5 -				69	2 :	9	95	27	22	9 -	52	9		96		9
⊃ ¥	5-COH	œ	G	ю	7	. K	9	7			.J	αCI		ν:	= :	=	35			† -	თ (ນແ	23	0+	10	9	<u> </u>					2		15			œ		2
0	4-COM	54	60 P	20) 4 † (C	30	45	52	7 7	ŀΩ	53	36	9 1	` ;	2	M	24	J.	∞	<u>-</u>	2 1	~ r	, en	45	21	- 1	2	54	21	o 3	35	<u>-</u>	S	7	25	5	17	- 8	
>	3-CDM	7.8	5 -	20 C	15 C	62	=	504	124	26	77	M) (M	55	121	63	001	153	9	თ	,	2	- v	22 52	15	54	30	12	12	0 0	24	9 4	29	2	9	Ē	თ	-	23	30
	2-COM	<u>m</u>			4			=						9		35		S	6 0	m	9			Ξ			6-	&	_					œ	6 0	~	34	=	
	H00																																						
	0-SEL	101	9 6	> -	- t	52	36	= 3	237	51	0 †	-	į	\$: 5 :	24	33	150	<u>-</u>	12	ľ	Φ.	20 LT - 1	3.6	54	86	ထ	68	ٍ ف	3.0	0	0	28		0			129	M N	23
	C-SEL	2.1	'n		77	:		25	Ξ		ı	S.		9			132					٠ ٢	,		6 7	15	6		t	29		œ	<u> </u>						
	B-SEL							-3					į	34																=									
	3LF16	. #	4 t	ກເ	U M) Pri	1	t	t	M	.	~	~ .	t	.	t	m	C I	4	N	-d* 1	אן כי	· —	4	\$	4	m	(19	\$	4	m	†	4	2	æ	-	٧	m	. #
F 20	DEF	יט	<u> </u>	0 0	ب م	9	76	9	12	Ξ	6 0	70 I	23	*	21	r.	-3	Q	0	33	ر د	- ^	٠.	12	36	39	~	12	23	~	20	=	30	=	0	3.	\$	<u>†</u>	51
101	D T	137	30	132	1) t	9	35	136	147	143	<u>-</u>	125	156	0 9 1	34	125	138	120	107	50	† O -	0 7 7	126	7 -	9) 8)	105	130	0	0 8	130	*	3	0.8	102	000	88	126	107	0 =
	08H	242	226	374	3 1 6	7 7 7	402	261	327	239	283	155	27 B	255	228	203	334	180	158	137	0 7	201	214	165	255	177	198	691	172	258	184	168	153	152	55	77	208	152	77
	TREE	89	06	- c	7 m	7 E	95	96	9.6	66	00	132	03	10	0.2	90-	107	138	601	-	= :	2 -	7 -	115	911	117	<u> </u>	121	122	123	124	126	127	128	129	130	3	132	133
	STUBY	-		- .				_	_	_	_	_			_	_	_	_	_	_				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-

	TOTAL	235	244	226	718	452	404	232	554	655	1045	1901	707	370	295	866	615	788	927	309	629	161	384	1006	653	1217	363	200	36	430	139	64	261	556	613	227	923	687	706	1122
	ECON	59	61		54	68	16	32		98	64	51	123	15	54	26		37	15	31	34		30	21	σ	83	13	J =	=	2	!	12		27	8.0		17	0	55	34
	UTIL	99	101	62	88	9	91	91	68	27	110	235	200	20	745	569	121	128	542		163	91	29	298	27	9 S	9 6	264	e e	7.1	· o	33	45	20	20		85	44	129	260
١	STAND	91	64	=	133	19	69	43	104	11	194	186	122	14	9 9	157	198	176	297	88	152	9	73	173	172	309	20	20) M:	52	l	32	33	170	59	190	93	178	226
	CONST	#) -\$	160	102	235	121	123	16	196	203	551	314	121	134	152	218	85	150	235	99	68	P) 60	Ξ	193	142	339	9 -	77	4	9 0	6.0	,	†01	192	49	136	238	314	161	429
μ	S-STR				=				99	21	16	37			37	49	53	53	2.0		58		32	9	69	27	22	2 -	-	Ξ	•		32	53	48		19	21	£ 3	
Σ Э	5-COM	54	0 -	Ξ	23	œ	M	r	4	14	17	īv	r.		80	2.1	12	6 0	Ŋ		r.				- 3	20	τ	a	o u	١			æ			3	Ξ	0 -		1.2
0 [#00-7	^	94	12	39	7	24	4	0-	43	5	21	35	0 -	6 4	59	54	20	15	0 -	13	3		37	35	34	,	- 21	;	25	00	•	=	2.0	54	27	99	26	\$ 0	55
>	3-COH	7	£3	σ	68	28	47	20	25	62	1 +	96	35	59	25	91	54	0 4	36	37	3.7	7	30	48	99	63	9 1	- 2	-	4	0	3	7	56	9 4	61	7.6	9.0	7.2	34
	2-COM			15		Φ				27	-13	91	4	22		භ	9	22	22	91	9		œ	=		ند. ر و	2,5	* ·		. 9						4		8	13	æ
	1-C0M																																							
	0-SEL	m	c O	7	33	54	31	15	23	7.0	213	£ 43	12	9	96	25	9	62	27	9	6 0	20	23	6.4	Ξ	90	3 4	. v	~	u.	,		22	115	75	Ф	7.8	59	112	45
	C-SF1				- 3	27		9	Ξ	æ	96	25	=	ī	9	-	20	42	0	32	33		5-	76	Ξ	55	-	-	fr:	3					22				42	
	8-SEL										72				в					-13						96									32		43		- 3	
	9127N	m	M	2	m	3	M	m	3	2	3	\$	3	M	7	5	3	7	4	3	43	.	Ŧ	#	4	J .	# 4	r M) 4	- 1	•	_	3	4	t	3	J	3	\$	ತ
0	DEF	<u>6</u>	9	7	0	0	7	5	0	3	10	ĸ	30		ತು	9	~	7	=	15	<u>~</u>	22	=	9	9	9		-	-					~	15		m	യ	20	9
101	<u> </u>																									125														
	ОВН	143	158	124	214	191	168	125	195	196	255	237	197	162	196	229	189	209	227	158	229	164	162	226	195	273	151	120		175	601	48	1 7	176	214	134	215	195	253	233
	TREE	34	135	136	137	138	1 39	140	142	143	144	145	147	148	541	150	121	153	155	156	157	156	159	160	191	162	201	2 0	200	167	168	59	170	171	172	174	175	176	176	179
	STUDY		_	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-	_	_	-	_		- -		-	-	_	_	_	-	-	-	-	_	-	-

	TOTAL	1378	9171	303	384	324	176	36	299	138	716	8 1 1	432	216	142	195	161	755	352	272	436	682	166	555	837	1399	650	289	276	2089	1067	1863	1972	1236	1653	297	488	200	96	335	142
	ECON	82	131	80	601	Ŋ	Ξ	=		23	23	-	73	12	7	32	32	23	6	54	171	106	25	9	150	32	59		6 4	430	95	634	412	194	442	=			=		22
	UTIL	941	198	849	36	99	59	=	28	32	183	43	115	364	<u>*</u>	29	37	80	3 6	92	თ	6	546	83	318	359	99	52	9	4 8	290	471	649	427	381	16		12	=	=	
	STAND	297	343	102	88	132	\$ \$		172	=	188	179	128	241		- 3		103	56	2.0	28	147	1.08	49	76	304	158	69		214	543	341	231	189	286	43	130	91	=	53	9
	CONST	121	235	59	27	=	9		210	32	171	96	24	160	=	=	8 0	231	32	39	9 1	205	154	168	136	288	214	60	121	59€	30	103	225	25	268	64	134	Ξ		142	59
le)	S-STR			37					21		6 4	4.8		9	37			80				21		4 8	23			43		27	5	32	93		78	32	40	91	6	27	43
Σ	5-C0M	32	54		=	m	<u>-</u>	5	60	ī.	a O	J.	=	20	9				-3			23	5		თ	თ	=		9	-	~			15			Ŋ		Ŋ		S.
0	4-COM		102			1 2		M)	2.0			37	22	9	23	თ	15	30	-3	0	22	64	22	28	32	39	20	-3	0	80	40	64	5 5	53	65	15	20	5	5	œ	20
>	3-COM	25	134	31	54	34	1	m	23		137	89	2.8	113	თ	91	a 0	U T	51	ľ	65	59	54	17		554	o 4	M O	38	29	90-	123	52	53	49	27	63	21		8	22
	2-COM	=		S		=								80	=							9	-13				-3		a 0					<u>m</u>		9	2 +	80		œ	9
	-CO3-																																								
	0-SEL	9	129	αO	M)	54		M	66	=	132	79	5	52	20	61	r.	75	33	<u> </u>	17	55	88	47	59	123	95	55	- 3	103	00+	48	84	130	27	23	45	=	4	37	28
	C-SEL	176	107			2.0			55		42				σ			34		5	œ	7	51	39	12	2.1		54		7.0			46	7.0		39				2.0	
	8-SEL	29	-13			9			92		45							12											9	68		7.7	77	29		Ξ				=	5
	NF 16	₩	~	m	2	м	m	2	1	₩ĵ	4	ţ	t	t	2	m	Ŧ	.	. *	m	ر چا	4	t		J	ĸ	4	4	4	.5	(*)		4	m	ľΩ	4	4	J	[4]	\$	7
F 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	a)	22		54	20	<u>+</u>	26	9	30.	15	9	37	=	- +	30	7	15		=	54	22	=	m	37	- 2	=	56	r.	34	20	34	45	53	39	4	7				0
101	Ē	9	130	93	87	93	35	49	0	30	108	108	46	96	0.5	76	7 8	911	98	87	0	5 -	104	103	501	1.05	96	76	95	6.7	130	153	139	145	126	102	109	9.0	77	98	26
	D8H	278	285	142	207	164	136	103	213	137	232	217	216	222	158	159	135	223	168	166	177	237	202	183	249	311	228	184	152	325	255	321	377	279	345	133	181	1 8	94	191	139
	TREE	180	- 0	183	185	186	137	188	196	192	194	195	9	S,	Ŧ	J	c	C	9	0	C	3	-	_	_	213	_	_	_	_	_	\sim	~	~	2	~	\sim	2	2	3	3
	STUDY	_	-	-	_	_	-	_	-	-	_	_	-	-	_	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	_	-	_	-	_	***	_

	TOTAL		197	278	7 7 7	126	300	126	538	367	319	180	684	721	5.5	151	658	341	63	m	365	2 .0	10	1372	_	_	615	īο 1	m	m i	554	101	711	221	484			338
	ECON	٢	` =	9		15		20	33	22	91	=		:	=	7	30	7	თ	=	_ 5	22	48	0 7 0		80	69	;	- :	თ (_	©	25	64		=	126	j D
	UTIL	2	70	22	=	91	22	32	32	თ	31	\$	73	rv s	7 :	9	0 60	27		20	31	'n	63	148	<u>6</u>	99	2	26	9 .	12	53	59	135	52	21	7.8	139	69
	STAND		27		27	32	9 1	3 -	7	9	£43		76	64	=	:	99	91		21	79	12	98	;	0 4	145	126	293	20 (- (107	6/	8 - 8	3	2	82	Ξ	63	5 2 2
	CONST	9	0 7 6	102	27	סי	1.8	35	123	85	96	0.4	<u>-</u>	9 •	- 3	P (7)	155	87	-	=	0.0	76	273	283	112	203	213	346	341	212	208	227	289	24	133	124	50.	80
E	S-STR	,	20	9	27	23	=		37	32	32	=			7		99	43			27	5 6	P 37	Ξ	32	75	75	130	12	12	0	80	9		2.0	80	21	71
ב	5-COM	u	n ~) LO	=	9	80	5		M	3	6	7	0 -	2 -	,		5		2	<u>.</u>	™ 7	· 100	53		N.	2		\$ (ע ו	ď		Ξ:	<u> </u>			ω <u>r</u>	2
0 6	4-COH			36			2	80	- 8	4	30	<u> </u>	4.5	= `	9 6	2 -	42	53		Ω.	- 2	S =	52	3.0	0	6 1	5.0		7.	3 -	9	O	9 6	22	=	<u>o</u>	વ દ જ =	7 5
>	3-COM	7.2	2 6	23.2	1	91	30	2	95	52	= :	0	99	9 9	0 %	-	7.0	33	m	1	5. C	2	7.8	6.0	99	50 0	U F	_ Ω Ω	200	3 -	3 -	9	33	ac v	99	47	m e	26
	2-COM		~	9 00	5		80		35	27				v ,	- 4	•	=	25	S.	S	∞ •	52		4 8		4	× :	=		=:			e 3		28	ဆ	æ	
	H00																																		_			
	0-SEL	7.2	2 6	. ES	5		တ္	!	m	.5			ν (กแ	7	. 2	M	-	2	S (۵ h	. ~	.#						0.0			ь.	t	1	ກ່	65	24	M 4
							4		4	8	37		3	_	"	-	100	<u>u</u> 1			~ α	, rv	7	96	J .	9	35	20	, i	36	200	י מ						
	C-SEL (9	- C	- 2	=	2				9			3 37	٥		-	8			,	37 2	P 90	9	m	ъ.	_	•	121 00	_	35	v	ת		, c	951	м. М	S = 2	9 PO
	-SEL	0	n m - 0	2 - 1 - 2	=	2	8)			w			J (٥			8	8		,	~ 1	P 90	9	m	ъ.	_	•	- -	_	~ ~	v	ת		,	19 36	,	27 4.3	-
	-SEL C-SEL		- ^	_	-		28		=	9	5 1 5	·	37	<u>0</u>	_	. ~	86	18		!	7 37	2 C C	36	13 83	<u>د</u> د	1.	c o	no	3.1	~ ~ -	2	T -			6 6	26 3	- 3	; —
	DEF NLF16 B-SEL C-SEL		- ^	_	-	3	28	M		9	5 1 5		3	3 2	7	2 5	4 98	18	*	J .	7 37	5 (8	36	13 83	. t.	1.		no no	- 0	2.	2	5 d d d d d d d d d d d d d d d d d d d	2 **	, e	6.	4 26 3	7.2	-
Q	DEF NLF16 B-SEL C-SEL	7 70		13 4	7 56	86 9 ¢	106 8 2 28	86 10 3	108 8 4 11	608 3 4	106 4 5 15	***	108 6 3 24	00	7 4 4	4 61 OF	108 20 4 98	105 4 18	4 40	36 25 4	100 8 4 37	104 4 28	111 4 3 36	130 4 13 83	5 7 70	124 5 4 71			2 071	22 6 2	2 0 0 0 0 0	64 11 4 / 971	150 (3 2	200	2 5 50	119 3 4 26 3	117 6 4 27 4	5 5 211
Q	DEF NLF16 8-SEL C-SEL	70 171	201 261	169 91 13 4	112 95 4 1	105 86 9 4	136 106 8 2 28	116 86 10 3	165 108 8 4 11	165 108 3 4 6	143 (06 4 5 15	2	1/2 108 6 3 24		20 00 00 00 00 00 00 00 00 00 00 00 00 0	139 50 19 4 7	235 108 20 4 98	163 105 4 18	7 7 7 011	107 36 25 4	200 100 8 4 37	174 104 4 28	221 111 4 3 36	281 130 4 13 83	168 194 4	12 24 5 4 71	25. 135		2 021 281	20 20 00 00 00 00 00 00 00 00 00 00 00 0	21 2 2 21 22	64 11 4 / 821 912	132 100 3 2	20 100 201	169 109 5 2 69 3	179 119 3 4 26 3	184 111 10 8	7 7 2 11 881
Q	BH HT DEF NUFIG 8-SEL C-SEL	70 171	201 261	169 91 13 4	112 95 4 1	105 86 9 4	136 106 8 2 28	116 86 10 3	165 108 8 4 11	165 108 3 4 6	143 (06 4 5 15	2	1/2 108 6 3 24		20 00 00 00 00 00 00 00 00 00 00 00 00 0	139 50 19 4 7	235 108 20 4 98	163 105 4 18	7 7 7 011	107 36 25 4	200 100 8 4 37	174 104 4 28	221 111 4 3 36	281 130 4 13 83	168 194 4	12 24 5 4 71	25. 135		2 021 281	20 20 00 00 00 00 00 00 00 00 00 00 00 0	21 2 2 21 22	64 11 4 / 821 912	132 100 3 2	20 100 201	169 109 5 2 69 3	179 119 3 4 26 3	117 6 4 27 4	7 7 2 11 881

	TOTAL	294	519	267	1035	231	1237	319	762	612	1010	443	569	204	583	351	191	1629	228	393	564	437	333
	ECON	Ŋ	σ	91	30		9 %		174		62	†	21	23		7	22	738	б	60		23	
	UTIL	42	105	147	74	32	27	37	115	83	150	49	52	91	105	44		†0 †	43	96	6	69	54
	STANO	74	98		160	25	206	7.0	131	19	232	16	213	9	66	64	=	175	17	1 9	27	<u>.</u>	6.0
	CONST	7.0	186	141	104	112	346	8	139	311	366	150	187	32	0 #	- 6	96	741	96	145	151	182	0.0+
w i	S-STR	43			- 6	٠	175	48	9	27	2.1			91	107	49		27		9	27	32	37
2	5-COM				2			S	27		αü	ю	=	5	7			50	ß		ţ	6	
0	#003-4	60	25	20	34	6	34		25	91	7 7	54	<i>*</i>	<u>-</u>	9	6 0		32	7	Ŋ		=	54
>	3-60#	45	25	0	72	8-	134	34	32	38	29	39	7	1	22	56	22	39	12	27	31	20	33
	2-COM		80	Ŋ				80	<u>8</u>		æ	S	61	0	60		S		5	5		9	=
	-COM							80															
	0-SEL	P=-	72	28	129	35	501	28	7.1	72	27	39	80		14	23	5	20	<u></u>	53	9	4	*
	C-SEL		m		31		120		61	7	6 0	7 -		=	12	24							
	B-SEL				60		21																
	NLF16	4	4	4	7	4	4	*	-	™	4	ю	-	m	\$	8	m	ţ	М	\$	-	2	₩
FNCO	065	7	2	5	4		9	ŧ	0	S	6	۲~	ß	- 3	(v)	90		σ		4	თ	9	4
101	Ė	0	125	122	132	107	135	12	127	126	133	107	+ 0 e	88	7	105	96	120	-	0	103	136	70 65
	08н	147	184	159	237	123	278	147	247	189	242	185	219	143	204	166	= 3	325	152	171	156	190	163
	TREE	276	277	276	279	280	281	282	283	284	235	301	302	303	364	305	307	308	309	310	312	313	314
	STUDY	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	TOTAL	956	624	2271.	1209	9001	258	<u> </u>	1008	1039.	646	014	1694.	406	1171	1506	2515	1539	750	1259	1191	1279.	1156	155	111	332	128	352.	34	1024	550	603	590	339	1120	1703	1579.	9611	2596	1721	2230
	ECON	45		179	31	27		<u> </u>		91		27	87	<u>*</u>			611	7.		5 6	27	17			43								_		Ξ	43	53	991	176	94	78
	UTIL	961	21	472	217	17	20	12	25	365	9.4	66	193	=	99	275	301	518	53	258	247	32	9.0		35	=	91		6		51	33		80	95	204	486	9 -	877	386	169
	STAND	163	6	141	215	178	9		283	212	320	88	326	122	252	372	250	474	185	191	162	310	121		641		38		=	64	70	75	7.0	9	285	371	961	Ξ	245	278	531
	CONST	16	176	135	23	204	66	35	298	45	96	9	229	72	300	69	236	20	277	156	388	275	237		8	131	23			227	1 76	201	265	122	240	273	9.6	178	40	7.7	82
E	S-STR	27	45	96		0.0					21	-13	32	12		21	42	32	27		99				20	4 8	9 -			9	160	33	82			28			32		
ם	5-C0M	35	1.7	105	96	m	7	6	34	£			25	32	9	1.2	63	56	=	55	2	34	30	9				<u>•</u>				1 2	9	28	12	84	65	45	69	109	42
0 L	#-COH	107	64	213	0%1	29	31	9	9.2	138	47	6	161	\$ \$	128	217	202	105	77	134	174	143	157	52	20	M	M	99		96		6 3	43	56	90	250	259	77	296	185	220
>	3-C0H	57	46	358	661	40	32	33	<u>-</u>	0 1 1	123	36	96	29	†0	253	285	177	73	3 C	273	195	-45	36	191	4.8	5	81	r.	172	-9	745	55	27	174	191	242	121	276	284	280
	2-COM	3	6-	30		- 2	21	S	91		21	60			43	2	38	€	8	51	<u>~</u>	84	55		53	3-	- 2	*	6	52	m	34	24	20	64	6	39	30	32	37	3.8
	H03-1																																								
	D-SEL	1.2	69	173	911	98	9		9	77	120	36	163	30	26	26	167	117	20	142	82	147	186		7.8	34		3.6		195	34	31	22	<u> </u>	4	142	09	101	166	126	132
	C-SEL	122	43	363	170	219	35		87	84	130	*-	321	0 %	167	=	815	200	8 -	227	54	178	74-	12	101		2			285									- 3	155	136
	B-SEL																																								
	NLF 16	m	m	m	2	2	\$	m	*	\$	-		\$	~	4	2	M	m	-	t	2	ŧ	\$	m	2	.	-	2		\$	m	4		2	2	٣	\$	2	m	\$	m
2	DEF	23	37	-	28	23	20	20	æ	0	22	53	61	22	7						-				ß			26	95	2		15		S	<u>-</u>	27	22	<u> </u>	-	12	8
*0 *	<u> </u>	5 -	123	136	123	126	93	66	0 %	123	1 20	1 05	134	Ξ	134	134	142	124	901	134	55	64	0 %	1 20	130	2	103	130	66	134	124	154	127	Ξ	0 % -	150	135	128	133	136	138
	D8H	268	217	362	300	279	182	209	298	281	276	190	325	198	289	303	416	331	235	270	313	308	564	260	252	178	9 -	282	190	259	96	208	241	17.8	289	37.8	345	308	381	370	379
	TREE	-	2	4	S	9	_	∞	σ	-	=	15	<u>~</u>	<i>3</i>	- 2	9	- 1	<u>©</u>	6-	20	5.1	22	23	54	52	56	27	59	30	3-	32	37	38	39	0 5	-	\$	45	94	24	8 4
	STUBY	8	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

	TOTAL		7 0 0 0	1752	1286	917	1345	1806	873	1621	841	79	1117	1336	064	778	251	871	309	782	014	925	813	1625	641	2767	1307	1777	799	558	346	595	620	351	1459	1.15	913	69	863	1003	191
	ECON	ď	9	211	3.0	26	641	96	22	040	53		86	145		ស						9 1	27	28	32	248	42	29		23	72	9	21		319	91	88		49	121	
	UTIL	:	- 0	200	236	4	205	212	126	120	186		85	244	84	38	32	69	91	100	30	107	8	212	126	750	183	376		107	21		243		101	37	961	12	197	289	105
	STAND	14		202	284	252	9	290	180	6	160	\$ 5	54	061	29	218	2	761	7.0	306	42	243	209	553	257	235	260	637	258	243	106	88	137	06		•	163	-	243	0 † 0	263
	CONST	2.6	77.0	138	0 80	225	26	36	20	36	160	=	€0	36	29	188	96	260	155	172	Ξ	280	214	961	6	137	347	152	256	124	64	137	569	69	55	28	163	28	189	9	103
ш	S-STR		9	00	601	14	:	36			0-				27	27	51	101			150	29	74	43		<u>+</u>				91		96	£ 43	51			56			32	
E D	5-COM		C U	n ur	5 1	t	85	103	30	278	48		222	9		20			0-	-	M			73	-	16		8	7		<u>~</u>	53		12	181		4			43	
0 6	4-COH	9	- 1	227	179	4	268	293	1.2	430	157	ī.	262	143	12	74	12	42	0-	9	6	\$ \$	96	961	78	634	83	184	102	6	27	29		22	301	5	58	ı,	58	187	59
>	3-COM	6	, d	233	9 6	, -	12	263	164	241	46	М	87	188	159	50	54	118	32	9 6	3.0	123	102	218	89	154	29	781	127	33	0 7	77	53	7.2	195	80	001	M	54	121	108
	2-C0M		Ċ	7 -	· 0	90	25	132	5	45	2	<u>.</u>		22	46	2.0	12	51	12		=	35	5	6 ^			7	<u>\$</u>	27		r.	6	7	5.0	<u>†</u>	Ω.	æ			36	ıv
	1-00M																																								
	0-SEL	20	7 1	8.4	7.) M	147	125	2.8	229	7		103	20	7 7	53		47		8-	91	58	32	9	25	134	2	7.9	15		ಹ	56	22	89	66		20	ı,		34	47
	C-SEL			2 -	σ.	001		250	σ	183	S)		240	6.0	23	94	8	-3	ţ	m	80		- 3		9	73	=	7.8	_	4		53			188	Œ.	25	S.		2.0	
	8-SEL																																								
	NLF16	c	J .	t t	· 4	3	. 2	₩.	8	2		2	M	ю	2	2	-				8	4	2		2	₩			-		2	2			2			4		-	-
E G	DEF	a d	1 0	0 %	× ×	^	9 3	26	1	64	1 2		62	3-	37	6		ţ		*	2 1	m	-	9	- 5	54	თ	6	1 2	27	\$	12	-		147	80	23	8	53	6	14
1	Ē	d d	j (e 0 	77	2.4	6-	130	130	641	127	72	147	122	121	(= 1	35	77	100	9	1 02	9	125	138	-	£	- 3	134	130	<u>@</u>	† -	120	- 3	<u>+</u>	134	96	112	73	123	126	- 3
	08H	u a	0 0	- M	357	25.8	359	359	229	4.01	265	= 2	376	355	544	286	142	242	159	255	621	240	220	329	265	455	280	306	225	224	178	201	161	691	124	134	271	166	314	245	25
	TREE	3	1 0	. L	5.5	, R C	3	55	S P	58	53	99	9	62	63	49	69	99	29	69	2.0	7.1	7.2	33	14	7.5	76	17	78	79	8 0	8	83	84	85	98	87	88	σ, «	9.0	93
	STUDY	c	u c	۰ ۸	۸ ر	۰ ۸	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	5	2	2	2	(V	2	2	2	2	2	2	2	2	2	2	2

1	TOTAL	130	133	1187	264	155	889	322	0101	116	211	642	341	304	413	211	0 1 5	684	487	1107	453	444	1285	575	75	118	693	370	95	378	6	736	303	1020	1075	152	1321	1345	1080	1070	370
	ECON				39		91		28			55			4				0 %	99		91	85		J.		1 20							21	*			13	129	20	7-
	UTIL		32	235	N	15	69			66		170		16	91		103	•	31	115	91	53	661				164					63		193	126	59	68	115	96	103	-
	STAND			296	2	52	158	6	322	325		92		2.1	142	44	68	137	9	108	28	132	188	123	7	33	112	80	_	21		200	37	211	151		-	330	2	8	23
	CONST		54	183	54	-	178	155	115	5	72	128	105	175	173	0.2	42	159	011	148	254	103	77	93	21	91	91	58		220		147	98	23	22	06	30	265	107	178	165
ш	S-STR			80				14			53		2.1	91			2.1		12		37	91		52				21				21					91				5
ב כ	5-COM		4			2	59	9 1	100	12	7	23	- 5	r.				7		23		\$	3.		2		- 2			#				59				38		6	
0 6	H-C04	75	2.1	107	17	٣	59	- 3	6.2	115	22	51	92	7	۳	4	12	77	55	7.1	13	2	254	S	8	7	35	9 !	<u>2</u>	ı	ç	17		277	113	Ξ	229	143	32	24	6.0
>	3-00M	15	2.0	115	31	44	157	36	63	- 4 8	27	7 8	62	77	28	7 7	53	19	44	89	33	55	142	104	0 1	2	65	30	97	62	_	98	30	63	136	9	519	7	137	0 -	2.0
	2-COM	m					25			33		æ	64	Ξ	23	28	3.9	54	61	46	20	61	2.1	32	r.	27	15	35	25	35	2	5	99	-	7.7	0 4	53	=		54	
	1-C04																																								
	0-SEL		9	58	61		85	2.1	69	34	M	- 4		9	20		36	8	58	212	3	8	163	99	m	5	36	e .	7 -	34	!	7.7	3-	2	129	- 2	132	66	154	158	<u>ε</u>
	C-SEL	r		5	23	2	801	5	0 4	35	8-	12	13		4	21	7	130	4	229	12		125		m		6.8	۰ و		÷ ,			9	202	~			142		m	
	9-SEL																																								
	NLF16	2	m	4	4	2	4	2	-	2	4	2	m		2	€	~	m	₩	2	₩;	~)	۳	ا تم	2	m	\$	_ ^	o M	0 14	o .	ا خ	ر د	M) .	±	2	4	P)	2	\$	7
PCNT	OEF	83	6 0	7	Ξ		σ		5 9			28			80	7	1.5	Ξ	- 3	3	æ		5	~		27	9	_ a	-	າ (V 1	ه ۱۲	© 1	5.3	<u>-</u>	2	36	5	~	9	34
101	Ξ	1.06	95	132	104	96	136	120	132	128	102	112	0	16	104	89	107	122	115	- 38	.)	601	12.8	122	22	\$	÷ .	40-	u :	÷ 0		- 6	r .	~ :	25	33	125	124	1 26	126	70 -
	ОВН	272	14	295	169	139	229	9 6	27 9	287	160	272	182	192	212	150	8.2	203	217	314	17.8	509	347	217	90	137	349	202	0 0	70	- 0	522	36	\$68	286	021	295	340	298	30 5	234
	TREE	46	95	96	98	66	102	163	104	105	901	601	0 -	Ξ	112	= 3	112	117	- 3	6 -	120	122	123	124	125	127	22	62	- 6	7 2 7	2 .	7 .	200	50	137	138	3.9	0 +	- t	145	7
	STUDY	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	~ (2	∾ (7 6	v	ى ر	٥ ر	J C	7 6	V	v	Ν (~ (Ν (Ν (2 (2 0	N

	TOTAL	834 419 245	166	355	133	115	221	94	412	25	309	994	549	375	269	206	431	665	- 4	364	121	692	398	169	678	428	459	883	583	1035	645	912	382	104
	ECON	<u> </u>				6			*		12				6 0	91								12	9	32	9	r		48		43		
	UTIL	62 21 44	=	33	4	72	T F				42	123		66	35	49		4 4	, 0	23		91		21	60	5	36	64	42	168	7	151	91	
	STAND	96	90 23	56 46	13	171	29	;	9	7	9.4	4.6	06	51	28	9	0	218	43	133		9.4	69	182	104	131	36	273	82	364	86	426	94	91
	CONST	160	26 57	135	99	50 -	9 3	!	=	8	1 26	128	0 8	641	67	137	177	169	070	00	59	259	83	190	330	117	121	76	193	55	230	55	† 6 l	89
ш	S-STR	21		9			21					35			5 1	43	2 8	23	1			20				2.1	91	27		27	80	5	2.1	4
D D	5-COM	23	9 ~		m	= •	O PT	,	*		S	m	S.		σ	6	~	-	œ	,		3			\$	5	m	12	12	49		4	5	
0 6	4-C OM	22	<u>m</u> 6	13	<u>c</u>	32	= e0	m	94	12	15	28	<u> </u>	31	m	45	23	4.8	1 4	29	28	28	64	137	٣	12	35	42	- 4	120	100	24	54	17
>	3-COM	9 0 1	77	37	20	77	0 K	2.1	65	~	<u>*</u>	56	-	33	5	36	56	52	ין ה	36	46	911	6.0	0 % =	72	39	5.2	147	93	131	88	26	45	89
	2-COM	55 25	27 21	3+	2 5	~ ~	6 ~	2	32	3	æ	-	36	S	22	1.5	2	31) ('n			£ 3										23	
	1-COM																																	
	0-SEL	74	m	15 28	ſ	23	2	12	35	ę,		6	ı	~	æ	~ ;	- 1	0, 50 0, 50 0, 50	200	21	5	37	61	9	45		43	58	45	5	0+0	25		38
	C-SEL	243	2 9	25	m	91	2 -		22	M	S	- 2	_			<u>.</u>		4 5 7	- 2	1	- 3	95	37	0	54	54	0 4	53			<u> </u>		Œ)	39
	B-SEL																																	
	NLF 16	2 - 8	2 2	- m		- 4	r m	-	-	2	2	3	∾ .	_	-	_ (7 1	۳ ۸	۸ ر	2	2	2	₩)	m	±	ţ	\$	4	m		4	2	ŧ	.
F 12 C	DEF	27	30	50	33		80	7 7	27	20	ac :	= :	- 5	6 0 !		۲.	7 .	m =	, C	2 4	37	12	~		-	~		12		6 2	2	æ	or I	r,
F 0	Ē	123	99	105	33	701	46	92	117	73	03	60	28	96	1 02	_ ;	20.	9 M	=	5 -	ı,	6-	115	120	120		9	123	-8	777	115	122	9	4
	08H	189	131	199	175	182	33.4	150	211	134	76	160	5.5	186	0 2 1	214	200	235	961	213	156	259	210	232	205	177	193	253	212	369	215	791	061	971
	TREE	7 t t	14 B	120	151	154	157	158	159	160	9 !	163	4 0	165	991	168	 	7.7	175	176	178	179	0.8	ac	182	+ 83	- 84	185	- H6	187	188	68	061	-6-
	STUDY	222	2 2	2 2	2 2	2 0	2 د	2	2	2	2	2	~ 0	2	2	~ ~	7 (N C	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

	TOTAL	4 97	303	1549	1739	1611	8 0 0	72	53	756	1259	1078	1134	4 1 8	1608	1339	1184	1855	329	280	168	158	1348	273	369	1452	1505	1012	4 36	1564	108	8 04	704	1606	1528	1199	7.85	451	888	486	421
	ECON	04		30	174								<u> </u>		21	53	95	342	24					7		217	15			222		=	23	260			4	53	74	0 7	r.
	UTIL		2	6-10	503	104	58	8		43	61	21	164		96	641	644	429	59				164			290	-13	28	601	582	99	37	99	604	156	4		91	96	112	29
	STAND	7	24	235	434	161	144		7	120	311	201	226	68	575	396	168	348	57	30	91	23	264	24		230	0 9 4	356	139	11	191	178	83	645	387	227	49	7.0	19	96	106
	CONST	162	7.8	311	133	300	156		91	53	138	270	27	183	212	262	20	r.	82	155			88	90	101	49	252	370	33	147	334	96	261	0 47	228	236	641	122	15	100	916
Li .	S-STR	2.1	2.1	6.0	7-	49	7.0	28	91	53	43	91		4-		27						32		9	96			35		į	32	27	53	9	7.0	43	2.1				
Σ D	5-COM	r	2	2	5.0	6	Ξ	5			Ξ	80	24		6.0	2	2.0	130		6		2	7.8		w	96	37		0	164	n	22		83		<u>۳</u>	64		5-	2	
0 (4-COM	34	Ξ	38	176	146	64			54	0 %	122	180	4	125	125	142	102	- 4	50	20	60	233	35	22	237	-8-	9	12	246	26	-0-	22	106	4.8	35	34	2.1	94	37	2
>	3-604	0 47	7	247	229	941	132	21	5-	16.0	641	941	259	35	202	153	198	183	64	Ξ	58	43	116	3.	ម្ច	162	219	36	5	107	108	95	34	641	152	189	160	9	1.97	36	96
	2-COM	0	54	2.0	9	448	35	60		168	46	91	13	42	32	4 8	91	61		9	63	2.0	50	80	26	9	<u> </u>	39	i	ן מי	25	23	94	-8	9.0	Ξ	83	56	24		6.0
	1-C04																																								
	D-SEL	72	35	96	12	136	7.1	2		66	98	104	73	Ξ	173	84	64	120	2.1		23	91	124	9	28	0.0	7	23	9	- 2	145	72	57	601	132	7.0	53	15	8 1	56	2.1
	C-SEL		30		80	53	14			96	268	185	131	9	112	0 %	27	172	29	6	80	m		56		0.9	92	<u>-</u>					2	9	\sim	191	9		252		Ξ
	B-SEL																																								
	NLF 16	4	ю	47	-	-	М	-	2	8	3	m	4	4	2	M	m	4	4	М	М	2	\$	3	4		- 1	י כא	7 (2 .	ţ	4	4	~	3	ż	m	m	4	٣	2
Tago	DEF	z,	7	9	21	17	- 3	45		9	7-	0					20		- 9	15	15	3	25	m	23	45	34	12	5 .	0 (3)	30	23	=	39	6	6	9	22		2	
TOT	Ŧ	124	104	1 32	136	133	121	84	92	122	137	117	121	107	124	117	1 26	1 29	1 02	001	66	16	124	103	95	94	3	1 29	9.	53	121	120	*	1.34	124	130	117	0	126	103	00
	D8H	194	184	320	351	285	233	132	- 8	225	288	261	287	202	31	275	282	341	210	217	-	129	320	171	20€	390	559	262	7 1	375	303	266	223	420	299	301	218	504	254	206	210
	TREE	192	193	195	196	197	198	199	200	201	202	203	204	205	206	202	209	210	211	212	213	214	215	216	211	218	219	220	1 77	222	223	224	225	226	227	228	229	230	231	232	233
	STUDY	2	~	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	~	2	2	2	2	2	2 0	7 (N (V (2 (7	2	2	2	2	2	2	2	2	2	2

	TOTAL	954	1198	427	587	1335	1107	172	445	116	744	914	1415	245	367	1902	709	350	1212	1226	363	244	466	550	915	269	983	73	2.59	3	45	130	50	Ξ	20	63	177	335	160	† -	5 99
	EC ON		=							\$			88		91	53			=	45	21																7				€0
	UTIL	96		&	25	75		<u> </u>		96	'n	27	174			191	<u> </u>		73	336	99	<u>8</u>		21	6 0	43	135	- 1	<u>.</u>	9	20	7			2		44		32		8 4
	STAND	170	202		66	358	274	=	53	147	127	91	62		51	424	129	04	165	163	45	64	61	95	28	544	359	•	20 2°	39		9	Ξ		+		=	49	6	54	9
	CONST	226	549	514	202	145	330	66	187	661	178	177		95	62	438	274	112	132	73	91	156	174	162	150	80	52	i	٥	*		22		77			69	85	91	25	79
ш	S-STR	42	51	9	27		1 9		32	23	12	91			12	28	8 \$	12		7.4		12	9			2.0		I	37	9							91	6	9		
₽	5-COM	Ξ	4		12	9			5			2	155	=		32			52			'n				6	5.8													M	
0 1	MOD-4	99	7.8	39	ø	Ξ	901	23	2	93	59	52	194	7	'n	150	39	9	171	891	36	12			52	29	153		<u>s</u>	ν.	Ξ		4	=	M	13		61	01	7	91
>	3-COM	96	77	52	15	- - -	611	58	5 G	105	180	26	226	35	63	180	74	75	584	0.81	88	58	32	53	66	911	167	2 -	3	ر م	*	12	20	28	2	33	15	- *	59	27	9
	2-€0#	6	53	<u>~</u>	m	25	<u> </u>		ნ ქ	59	9 7	er,	25	68	4 2	-	12	20	8.2	61	12	22	6.0	9	135	Ξ	1	85 ·	2	_ '	Z.		0-	1.7	7	27	2	- 3	- 1	23	92
	I-COM																																								
	D-SEL	112	6.8	<u>.</u>	25	191	73	2	61	86	88	<u>2</u>	8	17	<u>-</u>	134	38	9	121	74	15	21	68	62	56	69	38	ν,	3 0	% 1	87	12		\$	9	5		59		3	59
	C-SEL	~	212				2		0 %	211	0 4	33	001	15	6.2	514	72	20	811	42	21	17	55	- 4	37		<u>e</u>					5	5	7		2	80	37	3	2	32
	8-SEL																																								
	NLF16	-	ŧ	m	-	m	4	_	4	#	4	4	m	4	4	м	r	m	#	4	٣	m	M	m	2	4	M	٠ ر د	_		-	2	2	M	М	m	m	4	_	173	m
F 7 6	DEF	54	7	<u>m</u>	17	œ	12	28	ស	~	ŧ	12	99	.	S	7	=	6	Ξ	52	22	13	m	2	61	<u>oʻ</u>	34		,	2.0	3.3	∞	17	23	17	12	9	M	9	©	12
-	Ē	120	133	1 20	*	132	130	73	611	124	1	-1	3 7 -	=	0	143	126	0 -	128	118	115	911	-15	1 20	121	117	128	50 G	<u> </u>	ეი I	11	72	33	92	67	73	92	93	46	78	60 60
	D8 H	290	310	174	239	309	1 22	152	198	215	264	186	412	137	175	320	216	178	323	288	961	183	187	208	661	516	305	ς : -	3	D (- 58	131		127	601	131	77	182	147	134	168
	TREE	234	235	236	237	239	240	241	242	243	544	545	246	247	248	249	250	251	252	254	255	256	257	258	529	261	262	263	197	592	992	267	268	269	270	172	272	273	274	275	276
	STUDY	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2 0	V (7	2	2	2	2	2	2	2	2	2	2	2

	TOTAL	1.13
	ECON	
	UTIL	σ
V O L U M E	D-SEL 1-60M 2-60H 3-60M 4-60M 5-60M S-STR GONST STAND UTIL	14 7 32 32 28
	CONST	8 1 69 <u>9</u>
ш	S-STR	9 9
™	5-COM	3
V O L U M	M05-4	4 2
>	3-COM	м м <u>ө</u>
	2-COM	25 26 36
	H-COM	
	D-SEL	27.5
		25 4 2 3 3 4 5 5
	NLF16	типа
TNEG	DEF	2
TOT	Ŧ	76 88 87
	08H	2
	TREE	277 278 279 280
	STUDY	~~~~

Appendix III

INSTRUCTIONS FOR MEASURING TREE CHARACTERISTICS

Instructions for measuring and recording the western larch tree characteristics used in the equations are shown below.

- 1. Tree diameter (D) is measured and recorded to the nearest 0.1 inch at 4-1/2 feet above ground on the uphill side on the tree.
- 2. Tree height (H) is total tree height measured from the ground on the uphill side of the tree and recorded to the nearest foot. This height includes a dead top if one exists and the projected height if the tree has a broken top.
- 3. Number of limb-free and defect-free faces in the butt 16-foot log (NLDF16), where a face is one-fourth the circumference of the tree for the full 16-foot length of the butt 16-foot log (butt 16-foot log defined as the first 16.5 feet of the tree above normal stump height). Any limb or limb stub other than epicormic limbs removes a face. Any scalable defect removes the face in which the defect occurs. All size knot indicators are allowed. The variable is coded as 0-4 faces.
- 4. Scalable defect (DEF) is expressed as a percent of the gross cruise volume. The estimate includes deductions made from the gross cruise volume for visible abnormalities such as crook, conks, cankers, burls, and bumps. It also includes the estimated volume loss from unknown sources such as logging breakage and hidden or internal defects such as rot or pitch rings.

GPO 985-451

PNW-231, 29 p., illus. Pacific Northwest Forest and 1978. An equation for estimating the value and volume of western larch trees. USDA For. Serv. Res. Pap. Range Experiment Station, Portland, Oregon. Plank, Marlin E., and Thomas A. Snellgrove.

FILE FOR CLEPTICE FOR CHERTICAL FOR CHERTICAL FOR CHERTICAL

The equation requires four easy-to-measure characteristics. Both the development and the application of the system are This paper describes an equation for estimating the total sales value or the volume for western larch trees. discussed.

Tree value, volume estimation, grading systems, western larch, Larix occidentalis. KEYWORDS:

1978. An equation for estimating the value and volume PNW-231, 29 p., illus. Pacific Northwest Forest and of western larch trees. USDA For. Serv. Res. Pap. Range Experiment Station, Portland, Oregon. Plank, Marlin E., and Thomas A. Snellgrove.

The equation requires four easy-to-measure characteristics. Both the development and the application of the system are This paper describes an equation for estimating the total sales value or the volume for western larch trees. discussed. Tree value, volume estimation, grading systems, western larch, Larix occidentalis. KEYWORDS:

PNW-231, 29 p., illus. Pacific Northwest Forest and 1978. An equation for estimating the value and volume of western larch trees. USDA For. Serv. Res. Pap. Range Experiment Station, Portland, Oregon. Plank, Marlin E., and Thomas A. Snellgrove.

The equation requires four easy-to-measure characteristics. Both the development and the application of the system are This paper describes an equation for estimating the total sales value or the volume for western larch trees. discussed.

KEYWORDS: Tree value, volume estimation, grading systems, western larch, Larix occidentalis.

Plank, Marlin E., and Thomas A. Snellgrove. 1978. An equation for estimating the value and volume

of western larch trees. USDA For. Serv. Res. Pap. PNW-231, 29 p., illus. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

The equation requires four easy-to-measure characteristics. Both the development and the application of the system are This paper describes an equation for estimating the total sales value or the volume for western larch trees. discussed

Tree value, volume estimation, grading systems, western larch, Larix occidentalis. KEYWORDS:

The mission of the PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION is to provide the knowledge, technology, and alternatives for present and future protection, management, and use of forest, range, and related environments.

Within this overall mission, the Station conducts and stimulates research to facilitate and to accelerate progress toward the following goals:

- 1. Providing safe and efficient technology for inventory, protection, and use of resources.
- 2. Developing and evaluating alternative methods and levels of resource management.
- 3. Achieving optimum sustained resource productivity consistent with maintaining a high quality forest environment.

The area of research encompasses Oregon, Washington, Alaska, and, in some cases, California, Hawaii, the Western States, and the Nation. Results of the research are made available promptly. Project headquarters are at:

Fairbanks, Alaska Juneau, Alaska Bend, Oregon Corvallis, Oregon La Grande, Oregon Portland, Oregon Olympia, Washington Seattle, Washington Wenatchee, Washington

Mailing address: Pacific Northwest Forest and Range
Experiment Station
P.O. Box 3141
Portland, Oregon 97208

The FOREST SERVICE of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives — as directed by Congress—to provide increasingly greater service to a growing Nation.

The U.S. Department of Agriculture is an Equal Opportunity Employer. Applicants for all Department programs will be given equal consideration without regard to race, color, sex or national origin.