Profa. Edith Ranzini

GABARITO 3ª LISTA DE EXERCÍCIOS - AUTOMATOS FINITOS: DFA e NFA (Sem utilizar ε)

1) Seja a linguagem $L = \{ w \mid w \text{ inicia ou termina por } 01 \}.$

Ou seja :
$$\left\{ \begin{array}{c} 0.1 \\ 0.1 x \\ x 0.1 \\ 0.1 x 0.1 \end{array} \right\}$$
 onde x é sub-cadeia qualquer

a) projete um DFA que reconheça essa linguagem.

Solução determinística: DFA

b) projete um NFA que reconheça essa linguagem. Solução não determinística : NFA

Para esse enunciado, o NFA não é muito mais simples.

Simulação: Exemplos

1°) 0 0 0 1 0 (não aceita)

$$\begin{array}{c}
I \xrightarrow{0} q6 \xrightarrow{0} X \\
q3 \xrightarrow{0} q3 \xrightarrow{0} q3 \xrightarrow{1} q3 \xrightarrow{1} q3 \xrightarrow{0} q4 \\
\downarrow 0 \qquad \qquad q4 \xrightarrow{1} q5 \xrightarrow{0} X \\
q4 \xrightarrow{0} X
\end{array}$$

2°) 1 1 0 1 (aceita)

$$I \xrightarrow{1} q3 \xrightarrow{1} q3 \xrightarrow{0} q3 \xrightarrow{1} q3$$

$$q4 \xrightarrow{1} q5$$

c) Transforme esse NFA em DFA.

NFA

	0	1	
\rightarrow I	{q6,q3} {q3}		
q6	Ø	{q2}	
*q2	{q2}	{q2}	
q3	{q3,q4}	{q3}	
q4	Ø	{q5}	
*q5	Ø	Ø	

DFA

			_
	0	1	
→[I]	[q6 q3]	[q3]	
[q6 q3]	[q3 q4]	[q2 q3]	
[q3]	[q3 q4]	[q3]	
[q3 q4]	[q3 q4]	[q3 q5]	
* [q2 q3]	[q2 q3 q4]	[q2 q3]	≡s
* [q3 q5]	[q3 q4]	[q3]	
* [q2 q3 q4]	[q2 q3 q4]	[q2 q3 q5]	
* [q2 q3 q5]	[q2 q3 q4]	[q2 q3]	ľ

d) Como, no item (a), construímos o DFA para resolver esse problema, fica a dúvida: será que a tabela obtida na transformação realmente corresponde ao autômato do item (a)?

Observando a tabela, informalmente, verificamos a existência de estados equivalentes:

$${}^{*}[q_{2}q_{3}q_{5}] \equiv {}^{*}[q_{2}q_{3}] \equiv {}^{*}[q_{2}q_{3}q_{4}]$$

Eliminando os estados equivalentes e rebatizando-os, temos:

$$[q_{6} q_{3}] = q_{0}$$
 $[q_{3}] = q_{1}$
 $[q_{3} q_{4}] = q_{x0}$

$$* [q_{2} q_{3}] = *q_{01}$$

$$* [q_{3} q_{5}] = *q_{x01}$$

	0	1
\rightarrow I	q_0	q ₁
q ₀	q_{x0}	q_{01}
\mathbf{q}_{1}	q x0	q ₁
q x0	q _{x0}	q _{x01}
*q ₀₁	q ₀₁	q ₀₁
*q _{x01}	q x0	q ₁

A tabela obtida corresponde ao DFA do item a)

2) Reconhece cadeias iniciadas e terminadas por 01.

Ou seja:

$$\begin{array}{c} 0 \ 1 \\ 0 \ 1 \ x \ 0 \ 1 \end{array}$$

a) Solução determinística: DFA

b) Solução não determinística: NFA

c) Transformação NFA \rightarrow DFA

DFA **NFA** 0 1 0 1 \rightarrow [I] \rightarrow I { A } Ø [A] Ø [A] A { B } Ø Ø [B] { C } *B { D } * [B] [C] [D] \mathbf{C} { C } { B } [C] [C] [B] D { C } { D } [D] [C] [D] Ø Ø Ø

A tabela obtida para o DFA corresponde ao item a) , rebatizando os estados [A]= q_0 , [C] = q_{010} , [D] = q_{01x} , \varnothing = Lixo e *[B] = * q_{01})

3) Reconhece cadeias que começam e terminam por 1 e, sempre que há um 0, ele é precedido por, pelo menos, 2 UNS.

Exemplos de cadeias aceitas:

a) Solução determinística: DFA

b) Solução não determinística: NFA

c) Transformação NFA \rightarrow DFA

NFA		DFA					
	0	1				0	1
\rightarrow I	Ø	{ A }		(I)	→ [I]	Ø	[A]
*A	Ø	{ A,C }		(*q ₁)	* [A]	Ø	[A C]
С	Ι	Ø		(*q 11)	* [A C]	I	[A C]
			-	(Lixo)	Ø	Ø	Ø

4) Reconhece cadeias iniciadas por um número par de zeros, seguidos por um número par de uns, seguidos por 010 (fazer o NFA).

Exemplos: (Lembrar que par = 0,2,4,...)

$$\left.\begin{array}{c} 0\ 1\ 0 \\ 0\ 0\ 1\ 0 \\ 1\ 1\ 0\ 1\ 0 \\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0 \\ \end{array}\right\} \quad \text{ou seja} \quad \boxed{\begin{array}{c} P_{zeros}\,P_{uns}\ 0\ 1\ 0\ s\~{ao}\ cadeias\ aceitas} \\ \end{array}}$$

5) Idem, ao exercício 4, fazendo, diretamente, o DFA

6) Transforme o NFA do exercício 4 num DFA e compare o resultado com o DFA do exercício 5.

(sem gabarito)