

SAIRAM DIGITAL RESOURCES

YEAR SEI

MA8351

DISCRETE MATHEMATICS (Common to CSE & IT)

UNIT V

LATTICES AND BOOLEAN ALGEBRA

5.2 PROPERTIES OF LATTICES

SCIENCE & HUMANITIES

Properties of Lattices:

Theorem 1: Let (L, \leq) be a lattice with binary operations meet and join, denoted by * and \oplus . Then for any $a, b, c \in L$ the following are true.

1. Idempotent laws

$$a * a = a$$
 and $a \oplus a = a$

2. Commutative laws

$$a * b = b * a$$
 and $a \oplus b = b \oplus a$

3. Associative laws:

$$a*(b*c) = (a*b)*c$$
 and $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

4. Absorption laws:

$$a * (a \oplus b) = a$$
 and $a \oplus (a * b) = a$

Proof:

Given (L, \leq) is a lattice and so for any $a, b \in L$, a * b and $a \oplus b$ exist uniquely. $a * b = GLB \{a, b\}$, $a \oplus b = LUB \{a, b\}$

1. Let $a \in L$

$$a * a = GLB \{a, a\} = GLB \{a\} = a$$

$$a \oplus a = LUB \{a, a\} = LUB \{a\} = a$$

[Since $a \le a$, a is an upper bound and lower bound for a]

2. Since $\{a, b\} = \{b, a\}$ as sets,

$$a * b = GLB \{a, b\} = GLB \{b, a\} = b * a$$

and
$$a \oplus b = LUB \{a, b\} = LUB \{b, a\} = b \oplus a$$
.

3. We shall prove that a * (b * c) = (a * b) * c

For simplicity, let
$$x = a * (b * c)$$
 and $y = (a * b) * c$.

$$x = a * (b * c) = GLB \{a, b * c\} \le a, b * c.$$

$$\therefore$$
 $x \leq a \text{ and } x \leq b * c.$

But $b * c = GLB \{b, c\} \leq b, c$.

So, by transitivity $x \le b$, $x \le c$.

Thus
$$x \le a, x \le b, x \le c$$

 $\Rightarrow x \le a * b, x \le c$
 $\Rightarrow x \le (a * b) * c \Rightarrow x \le y$

Now $y = (a * b) * c \Rightarrow y \le a * b$, $y \le c$ (Proceeding as above)

$$\Rightarrow y \le a, \quad y \le b, \quad y \le c$$
$$\Rightarrow y \le a, \quad y \le b * c$$

$$\Rightarrow y \le a * (b * c) \Rightarrow y \le x$$

Thus $x \le y$ and $y \le x$.

As \leq is a partial order it is anti-symmetric.

$$\therefore x \le y \text{ and } y \le x \implies x = y$$

$$\Rightarrow a * (b * c) = (a * b) * c$$

Now we shall prove $a \oplus (b \oplus c) = (a \oplus b) \oplus c$.

Again, for simplicity, let $x = a \oplus (b \oplus c)$ and $y = (a \oplus b) \oplus c$.

$$x = a \oplus (b \oplus c) = LUB\{a, b \oplus c\} \implies a \le x, b \oplus c \le x.$$

As, $b \le b \oplus c$ and $c \le b \oplus c$.

So, by transitivity $b \le x$ and $c \le x$

Thus $a \le x$, $b \le x$, $c \le x$

$$\Rightarrow a \oplus b \leq x, c \leq x$$

$$\Rightarrow (a \oplus b) \oplus c \leq x \Rightarrow y \leq x$$

Now $y = (a \oplus b) \oplus c$

Proceeding as above we get $a \oplus b \le y$, $c \le y$

$$\Rightarrow a \leq y, b \leq y, c \leq y$$

$$\Rightarrow a \leq y, b \oplus c \leq y$$

$$\Rightarrow a \oplus (b \oplus c) \leq y \Rightarrow x \leq y$$

Thus, we have $y \le x$ and $x \le y$.

Since \leq is antisymmetric, we get

$$x = y \implies a \oplus (b \oplus c) \text{ and } y = (a \oplus b) \oplus c.$$

4. We shall prove $a * \{a \oplus b\} = a$

For any $a \in (L,)$ we have $a \leq a$

Since $a \oplus b = LUB \{a, b\}$, as an upper bound of a, b

We have $a \leq a \oplus b$

$$\therefore \ a \le a, \ a \le a \oplus b \ \Rightarrow a \le GLB \ \{a, a \oplus b\}$$

$$\Rightarrow a \leq a * (a \oplus b)$$

Now $a * (a \oplus b) = GLB \{a, a \oplus b\}.$

As a lower bound, we have $a * (a \oplus b) \le a$

Thus $a \leq a * (a \oplus b)$ and $a * (a \oplus b) \leq a$.

By antisymmetric of \leq , we get $a \oplus (a * b) = a$

Applying duality principle, we get $a \oplus (a * b) = a$

Theorem 2:

If (L, \leq) is a lattice in which meet and join are denoted by * and \oplus ,

then prove that for any $a, b \in L$, $a \leq b \Rightarrow a * b = a \Rightarrow a \oplus b = b$

Proof: First we shall prove that $a \le b \implies a * b = a$

Assume that $a \leq b$. We know that a < a.

$$\therefore a \leq GLB \{a, b\} \implies a \leq a * b$$

Now
$$a * b = GLB \{a, b\}$$

As a lower bound of a and b.

We have a * b < a

Thus $a \leq a * b$ and $a * b \leq a$.

So, by antisymmetric of \leq , we have a * b = a.

Hence
$$a \le b \Rightarrow a * b = a$$

... (1)

To prove the reverse implications, assume a * b = a

$$\Rightarrow a = GLB \{a, b\} \leq b$$

[as a lower bound of b]

$$a * b = a \implies a \le b$$

... (2)

From (1) and (2) we get $a \le b \Leftrightarrow a * b = a$

We shall now prove that $a \le b \Leftrightarrow a \oplus b = b$

Assume that $a \leq b$. We know that $b \leq b$.

$$\therefore LUB\{a,b\} \leq b \implies a \oplus b \leq b$$

Since $a \oplus b$ is an upper bound of a and b, we have

$$b \le a \oplus b$$

Thus $a \oplus b \le b$ and $b \le a \oplus b$.

So, by antisymmetric of \leq we have $a \oplus b = b$.

Thus
$$a \le b \implies a \oplus b = b$$

... (3)

Now assume $a \oplus b = b$.

Since $a \oplus b$ is an upper bound of a and b,

$$a \le a \oplus b \implies a \le b$$

Hence
$$a \oplus b = b \implies a \le b$$

... (4)

From (3) and (4) we get $a \le b \Leftrightarrow a \oplus b = b$

Note:

- 1. This theorem gives the following results.
 - (i) a * b = a if and only if $a \le b$.
 - (ii) $a \oplus b = b$ if and only if $a \le b$.
 - (iii) a * b = a if and only if $a \oplus b = b$.

2. This theorem gives a connection between the partial order ≤ and the binary operations * and ⊕ in lattice, which will enable us to define lattice as an algebraic system.

Theorem 3: (Isotonic property)

Let (L, \leq) be a lattice. For any $a, b, c \in L$ the following properties called isotonicity hold.

If
$$b \le c$$
 then (i) $a * b \le a * c$ (ii) $a \oplus b \le a \oplus c$

Proof: Given (L, \leq) is a lattice with the operations meet * and join \oplus defined.

By **theorem (2)** we know that $a \le b$ is equivalent to a * b = a.

So to prove $a * b \le a * c$, it is enough we prove that

$$(a * b) * (a * c) = a * b.$$

Now
$$(a*b)*(a*c) = a*(b*a)*c$$
 [associativity]
 $= a*(a*b)*c$ [commutativity]
 $= (a*a)*(b*c)$ [associativity]
 $= a*(b*c)$ [idempotent law]

Given $b \le c$, then by theorem (2), b * c = b

$$\therefore (a*b)*(a*c) = a*b.$$

Hence by **theorem (2)** $a * b \le a * c$

Thus, $b \le c \Rightarrow a * b \le a * c$.

In the same way we shall prove the 2nd part.

Given $b \le c$ then $b \oplus c = c$ by theorem 2

To prove $a \oplus b \le a \oplus c$, by theorem (2), it is enough we prove that $(a \oplus b) \oplus (a \oplus c) = a \oplus c$.

Now
$$(a \oplus b) \oplus (a \oplus c) = a \oplus (b \oplus a) \oplus c$$
 [associativity]
 $= a \oplus (a \oplus b) \oplus c$ [commutativity]
 $= (a \oplus a) \oplus (b \oplus c)$ [associativity]
 $= a \oplus (b \oplus c)$ [idempotent law]
 $= a \oplus c$ [by hypothesis]

 \therefore by theorem (2) $a \oplus b \le a \oplus c$

Thus, $b \le c \Rightarrow a \oplus b \le a \oplus c$.

Theorem 4: (Distributive inequalities)

Let (L, \leq) be a lattice. For any $a, b, c \in L$ the following inequalities known as distributive inequalities hold.

(i)
$$a \oplus (b * c) \leq (a \oplus b) * (a \oplus c)$$

(ii)
$$a * (b \oplus c) \ge (a * b) \oplus (a * c)$$

Proof: Given (L, \leq) is a lattice and $a, b, c \in L$.

We know $a \oplus b = LUB \{a, b\}$

 $\therefore a \oplus b$ is an upper bound of a

$$\therefore a \leq a \oplus b$$

Similarly, $a \leq a \oplus c$

 $\therefore a$ is a lower bound for $a \oplus b$, $a \oplus c$

$$\Rightarrow a \leq GLB \{a \oplus b, a \oplus c\}$$

$$\Rightarrow a \leq (a \oplus b) * (a \oplus c)$$

... (1)

Now $b * c = GLB \{b, c\} \le b$

But
$$b \le LUB\{a,b\} = a \oplus b$$

$$b * c \le a \oplus b$$
, by transitivity of \le

Similarly, $b*c = GLB\{b, c\} \le c \text{ and } c \le LUB\{a, c\} = a \oplus c$

$$b * c \leq a \oplus c$$

Thus $b * c \leq a \oplus b$ and $a \oplus c$

$$\Rightarrow b * c \leq GLB \{a \oplus b, a \oplus c\}$$

$$\Rightarrow b * c \le (a \oplus b) * (a \oplus c)$$

... (2)

From (1) and (2) we get $(a \oplus b) * (a \oplus c)$ is an upper bound for

$$a$$
 and $b * c$.

Hence
$$LUB = \{a, b * c \} \leq (a \oplus b) * (a \oplus c)$$

$$\Rightarrow a \oplus (b * c) \le (a \oplus b) * (a \oplus c).$$

(ii) By applying the principle of duality to (i) we get

$$a * (b \oplus c) \ge (a * b) \oplus (a * c)$$
, which is (ii).

Theorem 5: (Modular inequality)

Let (L, \leq) be a lattice. Then for any $a, b, c \in L$ the following inequality known as modular inequality holds. $a \leq c \Leftrightarrow a \oplus (b*c) \leq (a \oplus b)*c$

Proof:

Given (L, \leq) is a lattice and $a, b, c \in L$.

Assume $a \le c$ then $a \oplus c = c$

Now by distributive property, we have

$$a \oplus (b * c) \leq (a \oplus b) * (a \oplus c)$$

$$\Rightarrow a \oplus (b * c) \le (a \oplus b) * c$$

Thus
$$a \le c \Rightarrow a \oplus (b * c) \le (a \oplus b) * c$$
 ... (1)

For the reverse implication, assume $a \oplus (b * c) \leq (a \oplus b) * c$

Now $a \le a \oplus (b*c)$ and $(a \oplus b)*c \le c$, by definition of LUB and GLB

Since
$$a \oplus (b * c) \le (a \oplus b) * c$$
, by transitivity, we get $a \le c$

Hence
$$a \oplus (b * c) \le (a \oplus b) * c \Rightarrow a \le c$$

From (1) and (2),
$$a \le c \Leftrightarrow a \oplus (b * c) \le (a \oplus b) * c$$

The modular inequality can be expressed in different forms as below.

(i)
$$(a * b) \oplus (a * c) \le a * [b \oplus (a * c)]$$

(ii)
$$(a \oplus b) * (a \oplus c) \ge a \oplus [b * (a \oplus c)]$$

Proof:
$$(a*b) \oplus (a*c) = (a*c) \oplus (a*b)$$

$$\leq [(a*c) \oplus a] * [(a*c) b]$$

$$\leq [a \oplus (a*c)] * [b \oplus (a*c)]$$

[commutative law]

... (2)

[distributive law]

[commutative law]

But
$$a \oplus (a * c) = a$$
,

$$\therefore (a*b) \oplus (a*c) \leq a*[b \oplus (a*c)]$$

By applying principle of duality, we get

$$(a \oplus b) * (a \oplus c) \ge a \oplus [b * (a \oplus c)]$$

