Chapitre 12 : Coordonnées d'un vecteur - Vecteurs colinéaires

I Coordonnées d'un vecteur

1) Définition

(O; I, J) est un repère et \vec{u} est un vecteur donné. La translation de vecteur \vec{u} associe au point O un unique point M. On sait que $\vec{u} = \overrightarrow{OM}$.

DÉFINITION Dans un repère (O ; I, J), les coordonnées d'un vecteur \vec{u} sont les coordonnées du point M tel que $\vec{u} = \overrightarrow{OM}$.

Le vecteur \vec{u} a pour coordonnées (5 ; – 1).

Autre notation d'un repère

Bien souvent, au lieu de noter (O; I, J) un repère, on le note (O; \vec{i} , \vec{j}) avec $\vec{i} = \overrightarrow{OI}$ et $\vec{j} = \overrightarrow{OJ}$.

PROPRIÉTÉ Deux vecteurs sont égaux si, et seulement si, ils ont les mêmes coordonnées dans un repère.

Autrement dit, dans un repère, les vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$ sont égaux, si, et seulement si, x = x' et y = y'.

DÉMONSTRATION

La translation de vecteur \vec{u} associe, au point O, le point M.

La translation de vecteur \vec{v} associe, au point O, le point M'.

Ainsi, $\vec{u} = \vec{v}$ si, et seulement si, M = M', c'est-à-dire M et M' ont les mêmes coordonnées, autrement dit \vec{u} et \vec{v} ont les mêmes coordonnées.

2) Coordonnées du vecteur AB

PROPRIÉTÉ Dans un repère, $A(x_A; y_A)$ et $B(x_B; y_B)$ sont deux points. Les coordonnées du vecteur \overrightarrow{AB} sont $(x_B - x_A; y_B - y_A)$.

DÉMONSTRATION

Dans un repère (O; \vec{i} , \vec{j}), on note M le point tel que $\overrightarrow{AB} = \overrightarrow{OM}$ c'est-à-dire tel que les segments [OB] et [AM] ont le même milieu I.

De même, $y_M = y_B - y_A$. Or le vecteur \overrightarrow{AB} a pour coordonnées celles de M c'est-à-dire $(x_B - x_A; y_B - y_A)$.

EXEMPLE

A(-15;50), B(28;26). Les coordonnées du vecteur AB sont (43;-24).

En effet:
$$x_B - x_A = 28 - (-15) = 43$$
 et $y_B - y_A = 26 - 50 = -24$

abscisse de l'extrémité – abscisse de l'origine

ordonnée de l'extrémité – ordonnée de l'origine

II Coordonnées de la somme de deux vecteurs

PROPRIÉTÉ Dans un repère, on donne les vecteurs $\vec{u}(a;b)$ et $\vec{v}(a';b')$. Alors les coordonnées du vecteur $\vec{u} + \vec{v}$ sont (a + a'; b + b').

DÉMONSTRATION

Dans un repère d'origine O, la translation de vecteur \vec{u} (a; b) associe au point O, le point M (a;b).

La translation de vecteur $\vec{v}(a';b')$ associe au point M, le point N. Alors $\vec{u} + \vec{v} = \overrightarrow{ON}$; on cherche donc les coordonnées de N. Les coordonnées de \overrightarrow{MN} sont $(x_N - a; y_N - b)$. Or $\overrightarrow{MN} = \overrightarrow{v}$ c'est-àdire $x_N - a = a'$ et $y_N - b = b'$. Donc $x_N = a + a'$ et $y_N = b + b'$. D'où $\vec{u} + \vec{v}(a + a'; b + b')$.

EXEMPLE

 \vec{u} (-3;5) et \vec{v} (10;-8). Alors \vec{u} + \vec{v} (7;-3).

En effet: -3 + 10 = 7 et 5 + (-8) = -3.

PROPRIÉTÉS Pour tous vecteurs \vec{u} , \vec{v} , \vec{w} :

(1)
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

(2)
$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$

(1)
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 (2) $\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$ (3) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

III Produit d'un vecteur par un réel

<u>Définition</u>: Soit k un nombre réel et $\overrightarrow{u}(x; y)$ un vecteur dans un repère.

Le vecteur $k \vec{u}$ est le vecteur de coordonnées (kx; ky).

Remarque sur la notation: Le vecteur \overrightarrow{v} obtenu par multiplication du vecteur \overrightarrow{u} par le réel k, ne se note pas $k \times \overrightarrow{u}$ mais $k \cdot \overrightarrow{u}$ (utilisation du point ·) ou plus simplement $k\overrightarrow{u}$.

Propriété: $\vec{u} = AB$ est un vecteur non nul donné et k est un réel. Le point C tel que $AC = k \ \vec{u}$ est tel que :

- Si k > 0, $C \in [AB)$ et AC = kAB.
- Si k < 0, C est aligné avec A et B, mais $C \notin [AB)$ et AC = -kAB.

Propriétés :

* Pour tout vecteur \overrightarrow{u} ,	* Pour tout réel <i>k</i> ,	* Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} ,
$0 \cdot \overrightarrow{u} = \overrightarrow{0}$,	$k \cdot \vec{0} = \vec{0}$.	pour tous réels a et b,
$1 \cdot \overrightarrow{u} = \overrightarrow{u}$,		$a \cdot (b \cdot \overrightarrow{u}) = (a \times b) \cdot \overrightarrow{u}$
$-1 \cdot \overrightarrow{u} = -\overrightarrow{u}$.		$(a-b)\cdot \overrightarrow{u} = a\cdot \overrightarrow{u} - b\cdot \overrightarrow{u}$
		$a \cdot (\overrightarrow{u} - \overrightarrow{v}) = a \cdot \overrightarrow{u} - a \cdot \overrightarrow{v}$

Exemple:

IV Colinéarité de deux vecteurs

DÉFINITION • Dire que deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** signifie qu'il existe un nombre réel λ tel que $\vec{v} = \lambda \vec{u}$.

• Le vecteur nul est colinéaire à tout vecteur.

PROPRIÉTÉS • Trois points A, B, C sont alignés si, et seulement si, les vecteurs AB et AC sont colinéaires.

• Deux droites (AB) et (CD) sont parallèles si, et seulement si, les vecteurs AB et CD sont colinéaires.

 $\underline{\text{D\'efinition}:} \text{ Soient } \overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix} \text{ deux vecteurs du plan.}$

Le **déterminant** de \overrightarrow{u} et \overrightarrow{v} est le nombre réel xy' - yx'. On le note det $(\overrightarrow{u}; \overrightarrow{v})$

Propriété: Traduction analytique de la colinéarité

Deux vecteurs $\overrightarrow{u}\begin{pmatrix} x\\y \end{pmatrix}$ et $\overrightarrow{v}\begin{pmatrix} x'\\y' \end{pmatrix}$ sont colinéaires si et seulement si leur déterminant est nul c'est-à-dire si et seulement si xy' - yx' = 0

Deux Applications fondamentales:

• Parallélisme de 2 droites :

Soient les points A (5; 3); B (10; 7); C (3; -2); D (13; 6)

Pour savoir si les droites (AB) et (CD) sont parallèles on détermine si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires ou non.

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 5\\4 \end{pmatrix}$ \overrightarrow{CD} $\begin{pmatrix} 10\\8 \end{pmatrix}$ et $5\times8-4\times10=0$

Donc \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires et (AB) // (CD).

• Alignement de 3 points :

Soient les points A (1; 3); B (-3; -5); C(6; 13)

Pour savoir si les points A, B et C sont alignés on détermine si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ou non

$$\overrightarrow{AB}$$
 $\begin{pmatrix} -4 \\ -8 \end{pmatrix}$ \overrightarrow{AC} $\begin{pmatrix} 5 \\ 10 \end{pmatrix}$ et -4×10 - $(-8) \times 5 = 0$

 \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires et les points A, B, et C sont donc alignés.