Choosing explanatory variables

INTRODUCTION TO STATISTICAL MODELING IN R

Danny Kaplan
Instructor

Design choices in statistical models

- The data to use for training
- The response variable
- The explanatory variables
- The model architecture: lm(), rpart(), and others

```
model_1 <- lm(wage ~ educ + exper, data = CPS85)
model_2 <- rpart(wage ~ educ + exper, data = CPS85)</pre>
```

Response and explanatory variables are specified in the formula

- Make predictions about an outcome
- Run experiments to study relationships between variables
- Explore data to identify relationships among variables

Basic choices in model architecture

- Categorical response variable (e.g. yes or no, infected or not)
 - o Use rpart()
- Numerical response variable (e.g. unemployment rate)
 - Use lm() for gradual, proportional
 - Use rpart() for dichotomous, discontinuous

Comparing prediction results for variable selection

```
# Specify two models
base_model <- lm(wage ~ sector + exper, data = CPS85)
augmented_model <- lm(wage ~ sector + exper + age, data = CPS85)</pre>
```

- Train both models and compare them
- If augmented_model predicts better, include age

Let's practice!

INTRODUCTION TO STATISTICAL MODELING IN R

Cross validation

INTRODUCTION TO STATISTICAL MODELING IN R

Danny Kaplan
Instructor

Training and testing data

name	sex	height
Josi	М	172
Nicole	F	163
Lore	F	170
Anna	F	166
Tom	M	179
Jen	F	151
Leo	M	186
Wes	M	183

Training and testing data

name	sex	height

Nicole F 163

Anna	F	166
Tom	М	179

Wes	M	183
-----	---	-----

name	sex	height
Josi	M	172

Lore	F	170
	_	

Jen	F	151
Leo	М	186

Training and testing data

name	sex	height
Nicole	F	163
Anna	F	166
Tom	M	179
Wes	M	183

name	sex	height
Josi	M	172
Lore	F	170
Jen	F	151
Leo	М	186

Training

Testing

Using training and testing data

```
# Train base and extended models
mod_1 <- lm(wage ~ sector + exper, data = Training_data)
mod_2 <- lm(wage ~ sector + exper + age, data = Training_data)

# Calculate model outputs
preds_1 <- predict(mod_1, newdata = Testing_data)
preds_2 <- predict(mod_2, newdata = Testing_data)</pre>
```

Comparing model outputs to actual values

```
# Train base and extended models
mod_1 <- lm(wage ~ sector + exper, data = Training_data)</pre>
mod_2 <- lm(wage ~ sector + exper + age, data = Training_data)</pre>
# Calculate model outputs
preds_1 <- predict(mod_1, newdata = Testing_data)</pre>
preds_2 <- predict(mod_2, newdata = Testing_data)</pre>
# Compare model output to actual data
errors_1 <- Testing_data$wage - preds_1
errors_2 <- Testing_data$wage - preds_2
```

Mean square error (MSE)

```
# Prediction errors for mod_1
head(errors_1)
```

```
2 3 4 5 7 8
-1.347412 -2.343323 1.969980 4.374695 3.554991 8.064577
```

```
# Squared prediction errors for mod_1
head(errors_1^2)
```

```
      2
      3
      4
      5
      7
      8

      1.815519
      5.491162
      3.880823
      19.137959
      12.637958
      65.037399
```

Mean square error (MSE)

```
# MSE for mod_1
mean(errors_1^2)
 21.39825
# MSE for mod_2
mean(errors_2^2)
 18.91559
```


Let's practice!

INTRODUCTION TO STATISTICAL MODELING IN R

