Page 202 -

Bandeau de navigation

1. a) Pourquoi a-t-on choisi de passer par I à la ligne 2 ? À quoi correspond le nombre 9 dans la case «9

B > Algorithme de Dijkstra-Moore: recherche du plus court chemin

On considère le graphe ci-contre et on cherche le plus court chemin entre P et S. L'algorithme de Dijkstra-Moore réduit le temps de recherche par rapport à la méthode utilisée dans la partie A.

Le début de l'algorithme est consigné dans le tableau ci-dessous. L'origine du chemin est P.

- Ligne 1 : pour chaque sommet adjacent à P, écrire le poids de l'arête et P entre parenthèses ; si le sommet n'est pas adjacent à P, écrire ∞.
- Ligne 2 : remplacer P par le sommet adjacent de poids minimal de la ligne 1 : I. Écrire le poids total du chemin depuis P et I entre parenthèses pour chaque sommet adjacent à I; écrire ∞ si le sommet n'est pas adjacent à I.
- Ligne 3 : écrire le minimum de chaque colonne.

- b) À la ligne 5, pourquoi a-t-on conservé «9(I)» plu-
- tôt que «10(NY)» pour la colonne du sommet O? c) Quel sommet va-t-on choisir pour la ligne 6 ?
- Pourquoi? 2. Recopier ce tableau puis le terminer pour obtenir le chemin le plus

court entre P et S.

	Sommet	P	I	0	NY	С	D	M
1	Depuis P		1(P)	8	8	8	8	10(P)
2	Depuis P en passant par I			9(I)	8(I)	8	8	∞
3	Minimum depuis P			9(1)	_8(I)	8	∞	10(P)
4	Depuis P en passant par I et NY			10(NY)		12(NY)	8	∞
5	Minimum depuis P			9(1)		12(NY)	∞	10(P)
6	npy ex							

