Normal versus abnormal behaviour

FRAUD DETECTION IN PYTHON

Charlotte Werger
Data Scientist

Fraud detection without labels

- Using unsupervised learning to distinguish normal from abnormal behavior
- Abnormal behavior by definition is not always fraudulent
- Challenging because difficult to validate
- But...realistic because very often you don't have reliable labels

What is normal behavior?

- Thoroughly describe your data: plot histograms, check for outliers, investigate correlations and talk to the fraud analyst
- Are there any known historic cases of fraud? What typifies those cases?
- Normal behavior of one type of client may not be normal for another
- Check patterns within subgroups of data: is your data homogeneous?

Customer segmentation: normal behavior within segments

SOURCE: BAIN/MAINSPRING ONLINE RETAILING SURVEY

Let's practice!

FRAUD DETECTION IN PYTHON

Clustering methods to detect fraud

FRAUD DETECTION IN PYTHON

Charlotte Werger
Data Scientist

Clustering: trying to detect patterns in data

K-means clustering: using the distance to cluster centroids

K-means clustering: using the distance to cluster centroids

K-means clustering: using the distance to cluster centroids

K-means clustering in Python

```
# Import the packages
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
# Transform and scale your data
X = np.array(df).astype(np.float)
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
# Define the k-means model and fit to the data
kmeans = KMeans(n_clusters=6, random_state=42).fit(X_scaled)
```

The right amount of clusters

Checking the number of clusters:

- Silhouette method
- Elbow curve

```
clust = range(1, 10)
kmeans = [KMeans(n_clusters=i) for i in clust]
score = [kmeans[i].fit(X_scaled).score(X_scaled) for i in range(len(kmeans))]
plt.plot(clust,score)
plt.xlabel('Number of Clusters')
plt.ylabel('Score')
plt.title('Elbow Curve')
plt.show()
```

The elbow curve

Let's practice!

FRAUD DETECTION IN PYTHON

Assigning fraud versus non-fraud

FRAUD DETECTION IN PYTHON

Charlotte Werger
Data Scientist

Starting with clustered data

Assign the cluster centroids

Define distances from the cluster centroid

Flag fraud for those furthest away from cluster centroid

Flagging fraud based on distance to centroid

```
# Run the kmeans model on scaled data
kmeans = KMeans(n_clusters=6, random_state=42,n_jobs=-1).fit(X_scaled)
# Get the cluster number for each datapoint
X_clusters = kmeans.predict(X_scaled)
# Save the cluster centroids
X_clusters_centers = kmeans.cluster_centers_
# Calculate the distance to the cluster centroid for each point
dist = [np.linalg.norm(x-y) for x,y in zip(X_scaled,
X_clusters_centers[X_clusters])]
# Create predictions based on distance
km_y_pred = np.array(dist)
km_y_pred[dist>=np.percentile(dist, 93)] = 1
km_y_pred[dist<np.percentile(dist, 93)] = 0</pre>
```

Validating your model results

- Check with the fraud analyst
- Investigate and describe cases that are flagged in more detail
- Compare to past known cases of fraud

Let's practice!

FRAUD DETECTION IN PYTHON

Other clustering fraud detection methods

FRAUD DETECTION IN PYTHON

Charlotte Werger
Data Scientist

There are many different clustering methods

And different ways of flagging fraud: using smallest clusters

In reality it looks more like this

DBSCAN versus K-means

- No need to predefine amount of clusters
- Adjust maximum distance between points within clusters
- Assign minimum amount of samples in clusters
- Better performance on weirdly shaped data
- But..higher computational costs

Implementing DBSCAN

```
from sklearn.cluster import DBSCAN

db = DBSCAN(eps=0.5, min_samples=10, n_jobs=-1).fit(X_scaled)

# Get the cluster labels (aka numbers)

pred_labels = db.labels_

# Count the total number of clusters

n_clusters_ = len(set(pred_labels)) - (1 if -1 in pred_labels else 0)

# Print model results

print('Estimated number of clusters: %d' % n_clusters_)
```

Estimated number of clusters: 31

Checking the size of the clusters

```
# Print model results
print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X_scaled, pred_labels)

Silhouette Coefficient: 0.359

# Get sample counts in each cluster
counts = np.bincount(pred_labels[pred_labels>=0])
print (counts)
```

```
    [ 763
    496
    840
    355
    1086
    676
    63
    306
    560
    134
    28
    18
    262
    128
    332
    22

    22
    13
    31
    38
    36
    28
    14
    12
    30
    10
    11
    10
    21
    10
    5]
```

Let's practice!

FRAUD DETECTION IN PYTHON

