The Link Layer

- Introduction to the Link Layer
- Error-detection and -correction Techniques
- Multiple Access Links and Protocols
- Switched Local Area Networks
- Link Virtualization: a Network as a Link Layer
- Data Center Networking
- Retrospective: A Day in the Life of a Web Page Request

Computer Networks

Multiple access links, protocols

two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch, host
 - PPP for dial-up access
- broadcast (shared wire or medium)
 - old-school Ethernet
 - upstream HFC in cable-based access network
 - 802.11 wireless LAN, 4G/4G. satellite

shared radio: satellite

humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel,
 i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: multiple access channel (MAC) of rate R bps desiderate:

- 1. when one node wants to transmit, it can send at rate R.
- 2. when *M* nodes want to transmit, each can send at average rate *R/M*
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R
 - no *a priori* coordination among nodes
- two or more transmitting nodes: "collision"
- random access protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - ALOHA, slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - *if no collision:* node can send new frame in next slot
 - *if collision:* node retransmits frame in each subsequent slot with probability *p* until success

randomization – why?

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
 - prob that given node has success in a slot = $p(1-p)^{N-1}$
 - prob that any node has a success = $Np(1-p)^{N-1}$
 - max efficiency: find p^* that maximizes $Np(1-p)^{N-1}$
 - for many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity, gives:

$$max\ efficiency = 1/e = .37$$

•at best: channel used for useful transmissions 37% of time!

Pure ALOHA

- unslotted Aloha: simpler, no synchronization
 - when frame first arrives: transmit immediately
- collision probability increases with no synchronization:
 - frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

pure Aloha efficiency: 18%!

CSMA (carrier sense multiple access)

simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission
- human analogy: don't interrupt others!

CSMA/CD: CSMA with collision detection

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection easy in wired, difficult with wireless
- human analogy: the polite conversationalist

CSMA: collisions

- collisions can *still* occur with carrier sensing:
 - propagation delay means two nodes may not hear each other's just-started transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in determining collision probability

 t_1

CSMA/CD:

- CSMA/CD reduces the amount of time wasted in collisions
 - transmission aborted on collision detection

Ethernet CSMA/CD algorithm

- 1. Ethernet receives datagram from network layer, creates frame
- 2. If Ethernet senses channel:

if idle: start frame transmission.

if busy: wait until channel idle, then transmit

- 3. If entire frame transmitted without collision done!
- 4. If another transmission detected while sending: abort, send jam signal
- 5. After aborting, enter binary (exponential) backoff:
 - after mth collision, chooses K at random from $\{0,1,2,...,2^m-1\}$. Ethernet waits K.512 bit times, returns to Step 2
 - more collisions: longer backoff interval

Flow diagram for the CSMA/CD

CSMA/CD: Procedure

- 1. Node has a frame to transmit
- 2. Sense the medium
 - I. If busy (not idle): wait until becomes free
 - II. If idle: transmit
- 3. After transmission, check weather collision has occurred
 - I. If collision has detected
 - a) Send a jam signal
 - b) Increment retransmission counter
 - c) Check maximum number of retransmission attempts. If yes, abort transmission
 - d) Based on number of collisions, calculate random backoff time and wait that time
 - e) Repeat from step 2 again
 - II. If no collision detected, transmission is successful
- 4. Retransmission counters are reset and end frame transmission

Energy level during transmission, idleness, or collision

- ☐ level of energy in a channel can have three values
 - □Zero: the channel is idle
 - Normal: The station has successfully captured the channel and is sending its frame
 - Abnormal: there is a collision and the level of the energy is twice the normal level
- □station that has a frame to send or is sending a frame needs to monitor the energy level to determine if the channel is idle, busy, or in collision mode

- Collision detection: If the signal, the sender reads back, is different from the signal it is putting out, it knows that a collision is occurring
- ☐ In fact, a received signal must not be tiny compared to the transmitted signal
- ☐ In CSMA/CD: a station needs to be able to receive while transmitting to detect a collision
- When there is **no collision**, the station receives **one signal**: its own signal
- ☐ When there is a collision, the station receives two signals: its own signal and the signal transmitted by a second station
- ☐ To distinguish between these two cases, the received signals in these two cases must be significantly different

- ☐ In a wired network, the received signal has almost the same energy as the sent signal because
- ☐ So in a collision, the detected energy almost doubles
- ☐ Popular CSMA scheme and its variant CSMA/CD developed for wired networks
 - ☐ Can not be used directly in wireless networks

CSMA/Collision Avoidance

CSMA/CD efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to 1
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

"Taking turns" MAC protocols

polling:

- centralized controller "invites" other nodes to transmit in turn
- typically used with "dumb" devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)
- Bluetooth uses polling

"Taking turns" MAC protocols

token passing:

- control token message explicitly passed from one node to next, sequentially
 - transmit while holding token
- FDDI: Fiber Distributed Data Interface, IEEE
 802.5 token ring protocol
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Cable access network: FDM, TDM and random access!

- multiple downstream (broadcast) FDM channels: up to 1.6 Gbps/channel
 - single CMTS transmits into channels
- multiple upstream channels (up to 1 Gbps/channel)
 - multiple access: all users contend (random access) for certain upstream channel time slots; others assigned TDM

Cable access network:

DOCSIS: Data Over Cable Service Interface Specification specifies cable data network architecture and protocols

- FDM over upstream (modem to CMTS), downstream (CMTS to modems) frequency channels (which are broadcast)
- TDM upstream: some slots assigned, some have contention
 - downstream MAP frame: assigns upstream slots
 - request for upstream slots (and data) transmitted random access (binary backoff) in

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - TDMA, FDMA
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - used in satellite, Ethernet, WiFi
- taking turns
 - polling from central site, token passing
 - Bluetooth (token ring)