

Semester One Examination, 2020 Question/Answer Booklet

MATHEMATICS METHODS ATAR Year 12 Section Two: Calculator-assumed

ATAR Year 12 Section Two: Calculator-assumed		
Student Name:		
Please circle your teacher's nam	e	
Teacher: Miss Long	Miss Rowden	Ms Stone
Time allowed for this pa Reading time before commencin Working time for paper:	•	
Materials required/recor To be provided by the super This Question/Answer Booklet Formula Sheet (retained from Se	rvisor	Number of additional answer booklets used (if applicable):

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener,

correction fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, notes on two unfolded sheets of A4

paper, and up to three calculators approved for use in this

examination

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Suggested working time (minutes)	Marks available	Percentage of examination
Section One: Calculator free	8	8	50	52	35
Section Two: Calculator-assumed	13	13	100	98	65
				Total	100

Instructions to candidates

- NOT WRITTHE THE SOUTH ACOUNT THE ATAR COURSE examinations are detailed in the Year 12 Information Handbook 2020. Sitting this examination implies that you agree to abide by these rules.
 - 2. Write your answers in this Question/Answer booklet.
 - 3. You must be careful to confine your answers to the specific questions asked and to follow any instructions that are specific to a particular question.
 - 4. Supplementary pages for the use planning/continuing your answer to a question have been provided at the end of the Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
 - 5. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
 - 6. It is recommended that you do not use pencil, except in diagrams.
 - 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

Section Two: Calculator-assumed

This section has thirteen (13) questions. Answer **all** questions. Write your answers in the spaces provided.

Supplementary pages for the use of planning/continuing your answer to a question have been provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.

Working time: 100 minutes.

Question 9 (7 marks)

In a sample of 1325 university students, $64\,\%$ said that they never look at their phone while driving.

(a) Show how to use the figures from this sample to construct the 95% confidence interval for the proportion of university students who never look at their phone while driving.

(3 marks)

(b) According to a newspaper article, "70% of university students never look at their phone while driving". Explain whether the interval from (a) supports this claim. (2 marks)

(c) Another source claims that "more than half of university students never look at their phone while driving". Explain whether the interval from (a) supports this claim.

(2 marks)

Question 10 (6 marks)

- (a) Function f is defined by $f(x)=7\log_4(x+16)-3$ over its natural domain. Determine
 - (i) the value of the *y*-intercept of the graph of y=f(x). (1 mark)

(ii) the equation of the asymptote of the graph of y=f(x). (1 mark)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

(b) Function g is defined by $g(x) = \log_n x$ over its natural domain, where n is a constant greater than 1. The graphs shown below have equations y = g(x), y = a - g(x) and y = g(x+b), where a and b are constants. Determine the value of n, a and b. (4 marks)

Question 11 (7 marks)

The percentage distribution of the number of cans of soft drink per order placed with a takeaway food company over a long period of time are shown in the following table.

Number of cans per order	0	1	2	3	4 or more
Percentage of orders	10	27	39	13	11

In the following questions, you may assume that all orders are placed with the company at random and independently.

(a) Determine the probability that the next 4 orders all include no more than 3 cans of soft drink. (2 marks)

- (b) During a weekday, a total of 180 orders were placed. Determine the probability that
 - (i) 130 of these orders included fewer than 3 cans of soft drink. (3 marks)

(ii) less than 80 of these orders included 2 cans of soft drink. (2 marks)

	CAL	CULAT	OR-ASSUMED	7	MATHEMATICS MET	HODS
	Que	estion 1	2			(7 marks)
		_	of girls H in a large stu 5 cm and a standard de	•	dren are normally distributed w	ith a
	(a)	Deterr	mine the probability that	a randomly selected	d girl from the study has a heigl	nt
		(i)	greater than 95 cm.			(1 mark)
DO	NOT WF	RITE IN	THIS AREA AS IT WILL	BE CUT OFF		
		(ii)	of at least 90 cm give	n that they are short	ter than 94.5 cm.	(2 marks)
	(b)		hortest 1.5% of girls we of a girl to be classified		sually short. Determine the grea	itest (1 mark)
	(c)	shorte	,	height less than 90.	ributed with mean of 96.4 cm and 2 cm, were classified as unusuallys' heights.	

Question 13

The diagram shows a flag design, with dimensions in centimetres.

The shaded region is bounded by the y-axis, y=f(x), y=g(x)and y = h(x) where

$$f(x) = \frac{x}{3}$$

$$g(x)=8+4\sqrt{2}\sin\left(rac{\pi x}{24}
ight)$$
 and

$$h(x) = 12 + 4\cos\left(\frac{\pi x}{12}\right).$$

- Let A be the area of another region on the graph, where $A = \int_{24}^{30} [f(x) g(x)] dx$. (a)
 - (i) Clearly mark the region on the diagram with the letter A.

(1 mark)

(ii) Determine the value of A, rounded to one decimal place. (1 mark)

Using calculus determine the exact area of the shaded region. (b)

(5 marks)

9

MATHEMATICS METHODS

Question 14 (6 marks)

A student was set the task of determining the proportion of people in their suburb who use public transport at least once a week.

- (a) Briefly discuss the main source of bias in each of the following sampling methods.
 - (i) The student invites people via social media to respond to their survey. (1 mark)

DO NOT WRITE(ii)N THTSe\stedentasks\eversone\sheomeets until she has a large enough sample.

(1 mark)

(b) The student noted that 39 out of all those sampled said they used public transport at least once a week and went on to construct the confidence interval (0.49, 0.81). Determine the level of confidence of this interval. (4 marks)

Question 15 (8 marks)

A cooling system maintains the temperature T of an integrated circuit between $0.5\,^{\circ}C$ and $1\,^{\circ}C$. At any instant, T is a continuous random variable defined by the probability density function

$$f(t) = \begin{cases} \frac{a}{t} & 0.5 \le t \le 1\\ 0 & \text{elsewhere.} \end{cases}$$

(a) Determine the exact value of the constant a.

(2 marks)

(b) Determine a decimal approximation for the probability that a temperature taken at random exceeds $0.85\,^{\circ}C$. (2 marks)

(c) Determine decimal approximations for the mean and standard deviation of the temperature of the integrated circuit. (4 marks)

11

Question 16 (8 marks)

A charged capacitor discharges through a resistor. Some readings of the deflection D cm of a galvanometer scale in the circuit t seconds after the discharge began are shown on the semilogarithmic graph below.

The relationship between the variables is of the form $D = ae^{kt}$, where a and k are constants.

(a) Use the above relationship to obtain an expression for $\ln D$ in terms of a, k and t and hence explain why plotting the data using a logarithmic scale on the vertical axis aligns the points in a straight line. (2 marks)

(b) Show how to use the relationship and the galvanometer readings at t=20 and t=60 to determine estimates for a and k. (4 marks)

12

- (c) Determine
 - (i) the deflection after 90 seconds.

(1 mark)

(ii) the time for the deflection to reach 1 mm.

(1 mark)

13

Question 17 (10 marks)

Random samples of 165 people are taken from a large population. It is known that $8\,\%$ of the population have blue eyes.

(a) Use a discrete probability distribution to determine the probability that the proportion of people in one sample who have blue eyes is less than 7%. (3 marks)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

(b) Ten consecutive random samples are taken. Determine the probability that the proportion of those with blue eyes is less than 7% in exactly half of these samples.

(2 marks)

A large number of random samples of 165 people are taken, the proportion of blue eyed people calculated for each sample and the distribution of these sample proportions analysed.

(c) Describe the continuous probability distribution that these sample proportions approximate, including any parameters. (3 marks)

(d) Describe how two factors affect the closeness of the approximate distribution in (c) to the true distribution of proportions. (2 marks)

Question 18 (8 marks)

A particle moves in a straight line according to the function $x(t) = \frac{t+3}{t+1}$, $t \ge 0$, where t is in seconds and x is the displacement of the particle from a fixed point O, in metres.

(a) Determine the velocity function, V(t), for the particle. (1 mark)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

(b) Determine the displacement of the particle at the instant it is stationary. (2 marks)

(c) Show that the acceleration of the particle is always positive. (2 marks)

(d)

After five seconds, the particle has moved a distance of k metres.

Explain why $k \neq \int_{0}^{5} v(t) dt$ (i)

(1 mark)

(ii) Calculate k. (2 marks)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

Question 19 (8 marks)

The cross section of a triangular prism with a volume of 54 cm^3 is an equilateral triangle of side length x cm.

(a) Show that the surface area S cm of the prism is given by $S = \frac{\sqrt{3}x^2}{2} + \frac{216\sqrt{3}}{\overline{x}}$.

(4 marks)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

(b) Use calculus to determine the minimum surface area of the triangular prism. (4 marks)

The voltage generated by a circuit at time t seconds is given by $V(t) = e^{0.2t} \cos(3t)$ for

(8 marks) (2 marks)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

 $0 \le t \le 4$.

Show that the voltage is initially increasing. (a)

Using a graphical method, or otherwise, determine the voltage at the instant the rate of (b) change of voltage first starts to increase. (3 marks)

Use the increments formula to estimate the change in voltage in the one hundredth of a (c) second after t=2. (3 marks) Question 21 (8 marks)

19

When a customer plays an online game of chance, a computer randomly picks one letter from those in the word LUCKY, another from those in the word BOIST, and a third from those in the word GAMER. For example, the computer might pick KSR, YBG, and so on. The customer can see the words but does not know the computer's picks and has to guess the letter it has chosen from each word. The random variable X is the number of letters correctly guessed by a customer in one play of the game.

(a) State the distribution of X including its parameters.

(1 marks)

(b) Complete the table below to show the probability distribution of X.

(2 marks)

DO NOT WRITE	IN THIS AREA	AS IT WILL BE C	UT OFF	2	3
	P(X=x)				

Each game costs a player 25 cents. A player wins a prize of \$14 if they guess all three letters correctly, \$1.40 if they guess two out of three letters correctly but otherwise wins nothing.

(c) Determine E(Y) and Var(Y), where the random variable Y is the gain, in cents, made by the customer in one play of the game. (4 marks)

(d) If an average of 250 people from around the world play the game once every 20 seconds, calculate the gross profit expected by the game owners in any 24-hour period. (1 mark)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

Supplementary page

Question number:

	CALCULATOR-ASSUMED Supplementary page	21	MATHEMATICS METHODS
	Question number:		
DO	NOT WRITE IN THIS AREA AS IT WILL BE	CUT OFF	