LOISIRS

MENSUEL DE L'ÉLECTRONIQUE POUR TOUS

PAR LA PRATIQUE nº8

Sécurité: Clef électronique à clavier

Mesure: Inductancemètre simple

LECTRONIQUE

Vidéo: Fondu pour magnétoscope

France 27 F - DOM 35 F EU 5,5 € - Canada 4,95 \$C

MOD 52 ou 70 265 F (40,40 €)

l50 (10,21 €)

BS220 59 F (8,99 €)

3V 4,5V 6V 7,5V 9V 12V / 1A 260 F (39,64 €)

+ et - 15V / 400mA 300 F (45,73 €)

6 ou 12V / 5A en = et ~ 820 F (125,01 €)

6 ou 12 V / 10A ou 24V / 5A en = et ~ 1600 F (243,92 €)

0 à 30V / 0 à 2A et charg. de Bat. 990 F (150,92 €)

0 à 15V / 0 à 3A et charg. de Bat. 950 F (144,83 €)

△ AL 924 A 0 à 30V / 0 à 10A 2750 F (419,23 €)

Je souhaite recevoir une documentation sur:

AL 781 NX 0 à 30V / 0 à 5A 2100 F (320,14 €)

1500 F (228,67 €) 0 à + et - 15V /1A et 2V à 5V / 3A et -15 à +15V / 200mA

△ AL 936 2 x 0 à 30V / 0 à 2,5A ou 0 à 60V / 0 à 2,5A ou 0 à 30V / 0 à 5A et 5V / 2,5A ou 1 à 15V / 1A 3600 F (548,82 €)

59, avenue des Romains - 74000 Annecy Tél. 33 (0)4 50 57 30 46 - Fax 33 (0)4 50 57 45 19

En vente chez votre fournisseur de composants électroniques ou les spécialistes en appareils de mesure

SOMMAIRE

9 9 1 1 1			
Editorial	4	Un générateur DTMF à microcontrôleur	49
Shop' Actua	5	Ce nouveau circuit est conçu pour la génération des 16 tonalités standards DTMF. Très compact et de réalisation simple, il utilise un PIC16C84 à	
Informatique pour électroniciens (8) Depuis le début de cette série d'articles, nous nous sommes principalement intéressés à ce qu'Inter-	8	la place du classique UM95087. Le microcontrô- leur permet de lire le clavier matricé et de produi- re un signal modulé grâce à l'utilisation d'une routine appropriée.	
net pouvait apporter à l'électronicien. Nous allons maintenant commencer une nouvelle série d'articles visant à exploiter les ressources que nous avons pu y découvrir en apprenant à réaliser un prototype et en utilisant des outils informatiques téléchargés sur le web. Pour ce faire, nous utiliserons une idée de réalisation que nous transformerons progressivement en appareil fini. Cette première partie traitera l'étape initiale d'un projet : la définition de l'objet technique.		Comment réaliser un inductancemètre simple	62
Un microphone de scène sans fil sur 433 MHz Ce microphone radio utilise, à la place des traditionnels quartz, des résonateurs à ondes de surface (SAW). Tout comme son récepteur, il fonctionne dans la bande des 433 MHz et peut être utilisé comme microphone de scène sans fil ou pour la réception de confort d'un téléviseur ou d'une chaîne HI-FI. Bien entendu, il trouvera également son utilité dans de nombreuses autres applications.	12	La mémorisation de la courbe d'un filtre HF Avec l'Analyseur de Spectre décrit dans les premiers numéros d'ELECTRONIQUE et Loisirs magazine, il est possible de mémoriser 4 courbes différentes de filtres. En rappelant ces courbes, on pourra leur superposer les courbes d'autres filtres et, ainsi, être à même de vérifier les différences existant entre les unes et les autres.	7
Un scanner de réception audio/vidéo	22	Microcontrôleurs PIC De la théorie aux applications - 7e partie (1/2)	78
pour satellites TV (2/2) Voici la fin de la description du scanner de réception audio/vidéo. Vous trouverez dans cette partie tous les éléments nécessaires à sa réalisation. Bien entendu, ce récepteur satellite, accompagné d'une parabole portable, peut également servir de téléviseur d'appoint pour la maison de vacances, le camping, le caravaning ou le mobile-home !	22	Dans les précédents numéros, nous avons étudié la structure hardware des microcontrôleurs PIC, en faisant tout particulièrement référence au modèle PIC 16F84 qui présente, une mémoire de programme de type EEPROM Flash. Nous allons aujourd'hui analyser en détail les instructions dont nous disposons pour écrire un programme en assembleur pour les PIC. Nous examinerons, à travers un exemple pratique, quels sont les pas nécessaires à la rédaction d'un programme, et verrons de quelle façon le microcontrôleur se	
Un système de fondu pour cassettes vidéo	32	comporte face aux diverses instructions.	
d'un ou plusieurs magnétoscopes. Celui qui s'intéresse à l'électronique est toujours à la recherche d'un circuit lui permettant d'améliorer, dans la mesure du possible, la qualité des images. Il cherche également à les enrichir en copiant certaines séquences à partir d'autres cassettes vidéo. Le montage que nous vous proposons dans cet article est un système de fondu permettant de faire un enchaînement doux entre un sujet et un autre.		Cours d'électronique en partant de zéro (8) Le transformateur est un composant employé dans pratiquement tous les appareils électroniques. Il sert à augmenter ou à réduire la valeur de n'importe quelle tension alternative. Grâce au transformateur, il est possible d'élever la tension alternative du secteur 220 volts ou bien de la réduire. En fait, un transformateur permet de transformer n'importe quelle tension alternative en n'importe quelle autre tension également alternative.	8
Digicode, une clef électronique à clavier Sûre et fiable, cette clef électronique à clavier trouvera ses applications dans la commande de systèmes d'alarme, de portes à ouverture électrique, de portails motorisés, etc. Le code (à 6 chiffres), se compose sur un petit clavier matricé. Le reste, est confié à un nouveau microcontrôleur Microchip qui, à lui tout seul, gère toutes les fonctions et assure la commande d'un relais en sortie.	40	A travers cette leçon, vous apprendrez comment déterminer la puissance en watts d'un transformateur ainsi que le courant en ampères pouvant être prélevée sur ses enroulements secondaires, courant qui dépend, entre autres, du diamètre du fil de cuivre utilisé. La plupart des appareils électroniques étant alimentés par une tension continue, nous vous apprendrons à transformer une tension alternative en tension continue en utilisant des diodes au silicium ou des ponts redresseurs. Nous verrons également la raison pour laquelle il est nécessaire de toujours monter un condensateur électrolytique de capacité éle-	
Un régulateur de charge universel	45	vée sur la sortie de la tension alternative redressée.	
rant de sortie des panneaux solaires, ce régula- teur de charge peut être employé partout où il est		Les Petites Annonces	92
nécessaire de stabiliser une tension fournie par une alimentation continue et d'en limiter le cou-		L'index des annonceurs se trouve page	
rant débité à une charge ou à une batterie.		Ce numéro a été routé à nos abonnés le 21 décembre 19	999

L'entrée dans l'an 2000 vaut bien un petit édito! Comme tout le monde en parle, joignons-nous au concert de congratulations pour vous souhaiter une bonne et heureuse année, un bon nouveau siècle, et un bon prochain millénaire!

Avec tout ça, vous êtes blindés pour le restant de vos jours!

En cette période de fêtes, il y a, parmi les bonnes nouvelles, de très bonnes nouvelles. Quelque peu bousculés par un certain confrère auprès des annonceurs, nous avons demandé aux Nouvelles Messageries de la Presse Parisienne (les fameuses NMPP), qui distribuent votre magazine jusque chez le marchand de journaux, un sondage afin de confirmer ce que nous supposions être notre position sur le marché et de pouvoir le clamer haut et fort, documents à l'appui. Eh bien, c'est pratiquement du merveilleux : au numéro 5, donc au mois d'octobre, (il y a toujours une certaine inertie due au temps de remontée de l'information sur les ventes) nous nous étendions, parmi les 4 plus importants titres de la presse électronique, sur 38 % des parts de lectorat! 38 %, ce n'est pas rien d'autant que dans ce chiffre, il y a plus de 25 % de nouveaux lecteurs!

En clair, cela signifie que nous avons bien pris un peu de lectorat à nos confrères mais que, surtout, nous avons élargi, grâce à vous, le marché d'un bon guart!

Oui, il faut bien le constater, l'électronique de loisir intéresse beaucoup de monde, beaucoup plus que certains fâcheux voudraient le faire croire.

Alors, à vous, lecteurs, notre force vive, merci!
Comme vous avez pu le voir dans les annonces de la revue, nous étions présents sur le salon EDUCATEC. Nous avons eu le plaisir d'y rencontrer de nombreux professeurs qui nous ont confirmé l'intérêt du cours d'électronique en partant de zéro et du cours sur les PIC. Entrer dans l'Education Nationale ne peut être que bénéfique au monde de l'électronique en général. C'est en effet dans cette institution que se trouve le vivier des électroniciens du futur.

Dans la ligne des efforts, le site est réouvert. Il est loin d'être aussi complet que nous aimerions, mais le site est d'abord un "service plus" offert au lecteur. Nous ferons tout ce qu'il faut, au fil des mois, pour "coller" à votre demande et l'améliorer au fur et à mesure pour qu'il devienne vraiment votre site.

Ceci m'amène à parler de la philosophie de la revue. Electronique et Loisirs magazine a choisi d'être en permanence à l'écoute du lecteur, d'être sa "bouée" s'il rencontre un problème et de l'aider, grâce à la Hot Line, entre autres, à réussir le ou les montages qu'il entreprend.

Justement, afin d'assurer un potentiel de succès proche des 100 % à nos lecteurs désireux de réaliser tel ou tel montage, nous publions exclusivement des articles provenant d'auteurs appartenant à des bureaux d'études, seule garantie d'une parfaite reproductibilité des circuits présentés.

Ces circuits sont ensuite testés en laboratoire par des ingénieurs afin que ces derniers soient en mesure de vous répondre sur la Hot Line.

Outre la formation, un des principaux objectifs de la revue

est de proposer des montages intéressants et réalisables par tous. Pour parvenir à ce résultat "plug and play" nous éliminons pour vous les principales sources d'erreurs et de pannes qui pourraient entraîner un échec (comme le circuit imprimé double face, toujours à trous métallisés, et l'éventuel programme).

Présenter, dans la revue, un circuit imprimé double face à trous métallisés nous paraît inutile pour au moins trois raisons :

- Très peu de lecteurs disposent du matériel nécessaire pour réaliser ce type de circuit imprimé. Si d'aucuns y parvenaient et si beau soit le circuit, y monter les composants resterait encore un problème à surmonter (pas de sérigraphie, "via" à souder, qualité des pistes, etc.).
- Financièrement, compte tenu du matériel à mettre en œuvre, il est préférable d'acheter ce type de circuits tout fait et sérigraphié, d'autant qu'ils sont disponibles chez certains de nos annonceurs, à des prix très compétitifs.
- Pour finir, la surface utilisée dans la revue pour présenter des circuits qu'une toute petite minorité pourrait réaliser, le serait au détriment d'autres articles.

Il en est de même pour les composants programmés. Ils sont très nombreux et très variés : PIC divers, PLD, microcontrôleurs Thomson, Motorola, etc. Nous ne publions les programmes que rarement car, d'une part, peu de lecteurs possèdent l'outil "ad hoc" pour les exploiter et, d'autre part, là encore, la surface utilisée pour une publication lisible, grèverait d'autant l'espace réservé aux autres articles.

Cette philosophie, n'est aucunement commerciale ni destinée à faire gagner de l'argent à tel ou tel revendeur (qui d'ailleurs aurait beaucoup de mal à y parvenir en vendant des PIC et des circuits imprimés à quelques dizaines de francs), mais elle a pour but d'assurer ce potentiel de succès proche des 100 %, raison majeure de l'intérêt que vous portez à revue. La réussite dont nous sommes crédités est la preuve que cette philosophie est très bien ressentie par la très grande majorité de nos lecteurs.

Il me reste à vous parler de nos annonceurs. Faire confiance à une jeune revue et y placer tout ou partie de son budget de publicité est un risque important, même s'il est mesuré! En achetant de l'espace publicitaire, nos annonceurs participent au développement de la revue, développement dont vous bénéficiez! Faites leur également confiance en leur donnant la préférence de vos achats.

Abordons cette année 2000 avec joie. Nos cartons sont pleins de projets tous plus intéressants les uns que les autres et prêts à être publiés. Surveillez les rayons de votre marchand de journaux ou, si vous craignez de manquer un numéro, abonnez-vous!

Toute l'équipe d'Electronique et Loisirs magazine se joint à moi pour vous présenter nos vœux de santé et de bonheur.

Electroniquement vôtre,

James PIERRAT, Directeur de publication elecwebmas@aol.com

Shop' Actua

Dans cette rubrique, vous découvrirez, chaque mois, une sélection de nouveautés. Toutes vos informations sont les bienvenues.

> Shop' Actua **ELECTRONIQUE** magazine **BP29** 35890 LAILLÉ

INFORMATIQUE

Yamaha vient de mettre sur le marché un graveur de CD-R/RW multifonctions, à hautes performances, garantissant une grande fiabilité en même temps qu'une totale compatibilité avec les lecteurs de CD, ainsi qu'un enregistrement audio de qualité. Le CRW8424S VK Ultra SCSI-3 est basé sur l'écriture en 8x (1,2 Mo/s) en CD-R, 4x (0,6 Mo/s) en CD-RW et 24x en lecture CD-ROM (soit 3,2 Mo/s). Il est commercialisé dans un pack contenant les logiciels Easy CD Creator standard, Direct CD, Take Two. La technologie PPLS (Pure Phase Laser System) est intégrée directement dans le bloc optique du graveur. La technologie triple faisceau améliore le suivi de piste et réduit par la même occasion le "track jumping" lors de la

gravure et de la lecture des données. Les graveurs Yamaha intègrent la fonction OPC (Optical Power Control) qui permet de reconnaître automatiquement le média et d'adapter le laser suivant ses caractéristiques, garantissant l'intégrité maximale des données. Il se positionne ainsi comme étant le graveur multifonctions le plus complet et le plus polyvalent du marché.

Le kit contient un graveur CRW8424S à installer en interne (Ultra SCSI-3), les logiciels Adaptec Easy CD Creator standard, Direct CD, Take Two, 1 CD-RW Yamaha certifié 4x, 1 CD-R YAMAHA 8x, nappe SCSI, visserie, cordon audio, mode d'emploi et guide logiciel en français.

www.yamaha.com •

GRAND PUBLIC

Ou'allez vous faire de vos étrennes? Si vous n'avez pas d'idée, en voici une : Dicolettres créé par Lexibook. Spécialisé dans

les jeux de lettres, Dicolettres résoudra pour vous toutes les énigmes, de la plus simple à la plus compliquée au Scrabble, Boggle, Mot le Plus Long, Letmaster... Sa base de données contient 128000 mots. Elle remplace avantageusement le plus gros des dictionnaires et vous apprendra probablement des mots que

chez LEXIBOOK

vous ne connaissiez même pas! Incollable sur l'orthographe, Dicolettres servira d'arbitre à vos parties les plus mouvementées. De plus, il tient à jour les scores des jeux, joueur par joueur, et

dispose d'une fonction "minuteur" décomptant précisément le temps imparti à chacun. Dicolettres, votre prochain partenaire (ou arbitre) dans les jeux de lettres, est disponible dans les magasins spécialisés et les grandes surfaces au prix de 249 FF.

www.lexibook.com •

INFORMATIQUE

Olitec sort une nouveauté unique au monde! Le WaveMemory V90/K56 est le premier modem Internet sans fil! Proposé au prix de 1990 F TTC, il permet une utilisation en toute liberté, partout dans la maison (ou au bureau), jusqu'à 50 m de la prise téléphonique. Grâce à la liaison radio, il n'y a plus besoin de câble contraignant entre l'ordinateur et le modem. La technologie DECT garantit à la fois qualité de transmission, performance et confidentialité. La fonction "multimobiles" permet d'utiliser plusieurs modems, disposés dans différentes pièces, avec une seule et même base. La recherche du meilleur canal disponible entre la base et le mobile évite toute interférence avec un autre modem. Un dispositif de codage de la ligne, à plusieurs milliers de combinaisons, assure une protection maximale. Même lorsque l'ordinateur est éteint, Base WaveMemory accomplit sa tâche de véritable fax-répondeur et vous pouvez recevoir et stocker fax, emails, messages. De plus, le modem est interrogeable à distance. Faisant aussi office de minitel couleur, il est livré avec une offre Internet (Wanadoo), Netscape Pro et un jeu "Monaco Grand Prix" en version complète.

www.olitec.com •

GRAND PUBLIC

Clavier

Comment entrer et éditer du texte sans ordinateur? Avec un clavier AlphaSmart 2000 par exemple!

C'est une solution économique pour les établissements scolaires qui ne veulent pas multiplier le nombre d'ordinateurs, ou les particuliers qui ne souhaitent pas acheter une seconde machine.

AlphaSmart 2000 permet la saisie et l'édition de texte puis son transfert vers un PC ou un Macintosh, à l'aide d'un cordon spécifique, grâce à une procédure très simple. Aucune installation de logiciel n'est à prévoir (sauf si l'on veut effectuer le transfert inverse). De plus, l'appareil a une mémoire de 128000 caractères (environ 64 pages de texte) partagée en 8 zones permettant l'introduction d'autant de fichiers différents. Ainsi, 8 élèves pourront utiliser, à tour de rôle et sans interférer, le même clavier.

La visualisation se fait sur un LCD de 4 lignes de 40 caractères. Alimenté par 3 piles alcalines AA, l'AlphaSmart a une autonomie de 120 à 300 heures. Sa mémoire est automatiquement sauvegardée grâce à une pile au lithium de longue durée. De ce fait, aucune perte de donnée n'est à craindre, même lorsque les piles AA sont usées. AlphaSmart 2000 fonctionne avec toutes les applications couramment utilisées telles que Claris Works, Microsoft Word, Works, etc.

Grâce à une forme spécialement étudiée, plusieurs claviers AlphaSmart peuvent être empilés sans risque, facilitant rangement et transport.

Il existe de nombreux accessoires dont une housse de rangement. Le prix public est voisin de 2000 FF (réduction à prévoir pour les établissements scolaires).

www.alphasmart.com •

GRAND PUBLIC

PIONEER

Pioneer vient de sortir le tout premier graveur de DVD (DVD-R et DVD-RW) pour répondre à l'engouement que suscite ce nouveau type de support. Le DVR-S201, c'est son nom, est évidemment compatible avec les lecteurs de DVD-ROM et les DVD Vidéo.

L'interface est du type SCSI-2, le chargement se fait par tiroir. On pourra y stocker jusqu'à 6 heures d'enregistrement

(capacité 3,95 ou 4,7 Go par face) en une ou plusieurs fois (Disc-at-Once ou Incremental recording).

INFORMATIQUE

AKG

Le K105 UHF est un mini émetteur délivrant un maximum de puissance pour l'utilisation d'un casque Hi-Fi.

Des basses percutantes aux fréquences élevées cristallines, toute la gamme (18 à 20000 Hz) retransmise avec un maximum d'efficacité par l'émetteur est reproduite avec fidélité par le casque. Ce dernier, confortable, dispose d'un serre-tête ajustable.

Sur le côté gauche se trouve l'interrupteur marche-arrêt et la LED indiquant l'état de fonctionnement, les contrôles de volume et d'accord en fréquence étant situés sur le côté droit. La finition métallique est du plus bel effet.

Côté émetteur, le boîtier plat ne laisse pas dépasser l'antenne, cette dernière étant intégrée. Trois canaux sont sélectionnables par l'utilisateur.

C'est dans l'émetteur, alimenté par un bloc secteur, que l'on rechargera la batterie qui alimente le casque. La portée de l'ensemble est d'une centaine de mètres.

www.akg-acoustics.com •

Les disques vierges seront proposés pour une trentaine de dollars US (environ 200 FF actuels) mais ces prix baisseront sans aucun doute avec la fabrication en masse...

Disponible au Japon, on devrait le voir arriver en Europe au printemps mais il faudra prévoir un peu d'attente car la demande semble importante!

www.pioneerusa.com •

NOUVEAUTÉS

GRAND PUBLIC

AKA

Akaï propose une gamme de lecteurs de DVD de la nouvelle génération. C'est la

série DV-P4000 déclinée sous les références suivantes :

DV-P4100C avec changeur 3 disques; DV-P4100CK avec changeur 3 disques et fonction Karaoke;

DV-P4500 avec décodeur Dolby Digital:

DV-P4500K avec décodeur Dolby Digital et fonction Karaoke;

DV-P4000;

DV-P4000K avec fonction Karaoke.

Equipés de convertisseurs digitaux analogiques de la dernière génération, ces

lecteurs offrent une image d'une impressionnante qualité et d'une remarquable résolution. Le processeur vidéo est sur 10 bits, à 27 MHz; le processeur audio travaille sur 24 bits, à 96 MHz offrant une dynamique exceptionnelle et un son proche de celui du master.

Les modèles européens disposent d'une sortie RGB.

www.akai.com •

COMPOSANTS

CADDOCK

Caddock Electronics annonce la mise sur le marché de résistances de puissance non-inductives (c'est très important si vous travaillez en HF), en boîtier TO-247, que l'on peut monter sur dissipateur : il s'agit du modèle MP9100. Le maintien de la température du boîtier à 25°C permet la dissipation d'une puissance maximale de 100 W. L'élément résistif est isolé de la surface de montage (tension d'isolement 1500 V AC). La série proposée comprend les valeurs standards entre 0.05 et 100 ohms, avec une tolérance de 1 %.

www.caddock.com/ ◆

KITS

VELLEMAN

Le MK115 est un kit sonomètre de poche permettant une évaluation du niveau sonore, indiqué par 5 LED rouges. Facile à monter, peu encombrant, il dispose d'une sensibilité réglable. Le MK115 est doté de son propre microphone. L'alimentation s'effectue par une pile (non fournie) de 3V, type CR2032.

www.velleman.be •

1

avec FITEC

Le Groupe FITEC propose plusieurs logiciels d'enseignement assisté par ordinateur (EAO) diffusés sur CD-ROM (pour PC). De nombreux thèmes sont abordés, parmi lesquels on citera: Logique combinatoire et séquentielle, Convertisseurs Analogique/Numérique, Amplificateurs opérationnels.

Microprocesseur et mémoires, Microprocesseurs, microcontrôleurs et circuits complexes, Electronique de puissance, Technique de transmission de données via les réseaux téléphoniques, Conception et simulation de schémas en électrotechnique, etc. La liste complète est disponible sur le site Internet dont l'adresse est indiquée ciaprès. Chaque cours est divisé en plusieurs modules. Ainsi, pour les amplis opérationnels, 5 modules sont proposés : Découverte de l'ampli-op, fonctions linéaires analogiques simples, fonctions linéaires analogiques complexes, fonctions non linéaires, applications industrielles simples. Ces cours permettent l'acquisition et le perfectionnement des connaissances ainsi qu'une auto-évaluation avec correction instantanée des réponses. Ils se composent de pages écrans contenant des animations graphiques et des questions interactives ainsi que de nombreux exercices d'entraînement. Les dernières normes européennes, en matière de symboles, sont respectées. Une fonction dictionnaire permet d'obtenir instantanément la définition des termes techniques. Les niveaux scolaires concernés sont les classes de 1ère et terminale scientifiques et techniques, BEP Electronique, Bac Pro EIE, Génie Electronique et Electrotechnique. Des démos sont disponibles en téléchargement sur le site : www.fitec.fr/ ◆

Conception et réalisation d'un prototype

1ère partie : Le cahier des charges

Depuis le début de cette série d'articles, nous nous sommes principalement intéressés à ce qu'Internet pouvait apporter à l'électronicien. Nous allons maintenant commencer une nouvelle série d'articles visant à exploiter les ressources que nous avons pu y découvrir. Nous allons notamment apprendre à réaliser un prototype en utilisant des outils informatiques (voir article précédent) téléchargés sur le web. Pour ce faire, nous utiliserons une idée de réalisation que nous transformerons progressivement en appareil fini. Cette première partie traitera l'étape initiale d'un projet : la définition de l'objet technique.

ui n'a jamais rêvé de réaliser de A à Z sa propre idée de montage électronique? Souvent mal organisé ou bloqué par le manque d'outils de travail, l'électronicien amateur se décourage vite et abandonne le projet. Dans cette nouvelle série

d'articles, nous allons décrire les différentes étapes de conception d'un prototype afin d'offrir à chacun la possibilité de faire sa propre réalisation.

De plus, nous utiliserons l'informatique comme outil de travail. L'utilisation de freeware et de shareware permettra, à moindre coût, de bénéficier d'une aide précieuse dans cette réalisation. L'idée de base, qui servira de trame de fond, a été choisie en fonction de l'intérêt croissant pour le domaine de la vidéo et de la télésurveillance. Il s'agit d'un séquenceur audio/vidéo 4 voies, que nous appellerons dès à présent "SEQ4".

Représentée en figure 2, une des premières applications est une utilisation en manuel pilotée par un ordinateur. L'opérateur peut sélectionner la source vidéo à commuter. De plus, si l'ordinateur possède une carte d'acquisition vidéo, l'opérateur pourra visualiser et entendre directement la source choisie sur l'ordinateur. Les caméras peuvent être directement reliées par câbles ou bien par voie hertzienne à l'aide d'émetteurs-récepteurs vidéo.

INFORMATIQUE

La figure 3 présente le second mode de fonctionnement : l'utilisation en automatique. Dans ce mode, SEQ4 est complètement autonome et commute une après l'autre les voies selon un temps préprogrammé. Ce mode et ce temps de séquencement se programment par l'ordinateur. La mémorisation des paramètres permet de garder la configuration même après une coupure secteur. Dans les deux cas, on peut relier la sortie du SEQ4 sur un émetteur TV travaillant en VHF afin d'éliminer les fils superflus. Une utilisation "sans fil" est possible si l'on insère un émetteurrécepteur vidéo sur les caméras.

La flexibilité de branchement permettra à chacun d'entre-vous d'imaginer une application adaptée à votre besoin.

Mais, assez épilogué, entrons dans le vif du sujet en commençant par la première étape de toute réalisation électronique : le cahier des charges.

LE CAHIER DES CHARGES

Souvent négligée (mais étape initiale incontournable), la définition du cahier des charges minimise les erreurs de conception et permet de "cadrer" précisément l'étendue de l'objet technique final. Ce document peut revêtir plusieurs formes selon les habitudes du concepteur.

Pour cette initiation, nous utiliserons le plan minimum suivant :

- Description générale
- Spécifications fonctionnelles
- Spécifications techniques
- Spécifications esthétiques
- Définition du coût.

Alimentation 230 Vac / 50 Hz 12Vcc/100mA galvanique et 5Vcc/100mA Entrée audio/vidéo 1 Sortie Vidéo Entrée audio/vidéo 2 Entrée audio/vidéo 3 Sortie Audio Entrée audio/vidéo 4 X4 Indic ations Microcontrôleur avec EEPROM lumineuses Ordinateur Figure 4 : Schéma fonctionnel où sont représentées les fonctions secondaires.

Description générale

"Le séquenceur SEQ4 permet de commuter l'une de ses quatre voies d'entrée audio/vidéo vers la voie de sortie audio/vidéo. Pouvant fonctionner en automatique (sélection consécutive des voies selon un intervalle de temps prédéfini) ou en manuel (sélection de la voie à commuter à partir d'un ordinateur), SEQ4 s'introduit dans un système de télésur veillance multicaméra".

La description générale a pour but de définir le domaine d'application de l'objet ainsi que sa fonction à partir de quelques phrases simples.

Spécifications fonctionnelles

Après cette description sommaire, les spécifications fonctionnelles énoncent toutes les fonctions du système. La rigueur impose une décomposition en deux grands groupes : les fonctions principales et les fonctions secondaires. Associée à des schémas appelés "Schémas fonctionnels" cette analyse permet aussi de définir les entrées et les sorties de notre système.

Fonction principale

Le schéma fonctionnel porté sur la figure 1 représente la fonction principale.

INFORMATIQUE

Fonction principale: commuter l'une des quatre voies vers la voie de sortie, chaque voie étant composée d'un signal audio et d'un signal vidéo.

Fonctions secondaires

La figure 4 présente le schéma fonctionnel incorporant les fonctions secondaires.

Fonction secondaire 1:

Filtrage de la source audio pour une amélioration de la qualité sonore.

Fonction secondaire 2:

Télégestion du système par un ordinateur.

- En manuel : sélection de la voie à commuter.
- En automatique : paramétrage du temps de séquencement.

Fonction secondaire 3

Mémorisation des paramètres de fonctionnement en mémoire non volatile pour une utilisation ultérieure.

Fonction secondaire 4

Bloc d'alimentation pour le fonctionnement général de la carte.

- Entrées : 4 entrées audio / 4 entrées vidéo / 1 entrée alimentation
- Sorties: 1 sortie audio / 1 sortie vidéo / 4 indications lumineuses de la voie utilisée.
- Liaison bilatérale : 1 connexion vers un ordinateur.

Quelquefois et surtout dans les systèmes à microcontrôleur, on peut dessiner un organigramme pour apporter de plus amples informations sur le fonctionnement du système. La figure 5 montre l'organigramme général de SEQ4.

Spécifications techniques

Dans cette partie, le concepteur apporte toutes les caractéristiques techniques de l'appareil.

Alimentation : secteur 230 V / 50 Hz par cordon secteur.

Mise en fonctionnement du système par interrupteur bipolaire ON/OFF. Protection par fusible et écrêteur.

Classe de sécurité : I (terre obligatoire). Entrées audio : ±1 volt max. par fiche RCA.

Entrée vidéo : vidéo composite 1 volt / 75 ohms par fiche RCA.

Sortie audio : ±1 Volt - filtrage entre 300 Hz et 3 kHz - connexion par fiche RCA

Sortie vidéo : vidéo composite 1 volt / 75 ohms par fiche RCA.

Liaison ordinateur : Protocole liaison série 9 600 bps par RS232.

Indications lumineuses : Led rouges pour mise en service. Quatre LED vertes pour indication de la voie active. Mémorisation : mémorisation du mode de fonctionnement, du temps de séquencement et de la voie en cours. Température de fonctionnement : -10°

à 50 °C.

Spécifications esthétiques

Comme dans tout projet, les connaissances du milieu d'utilisation et du devenir de l'appareil restent fondamentales. En effet, la réalisation ne pourra aboutir si I'on ignore les conditions d'utilisations comme, par exemple, la température ambiante, le degré d'humidité, la sécurité requise, le lieu d'installation, etc. Toutes ces considérations détermineront "l'habillage" de l'appareil. Dans notre cas, il conviendra d'utiliser un boîtier en plastique (on apporte la tension secteur sur la carte!) avec une sérigraphie indiquant les diverses entrées/sorties et les caractéristiques de l'appareil. Une utilisation en intérieur évite l'utilisation de boîtier étanche. Les indications lumineuses (appareil sous tension et la sélection de la voie) ainsi que de toutes les connexions d'entrées/sorties (hormis la liaison vers l'ordinateur) seront portées sur l'avant du boîtier. L'arrière comprendra l'entrée du câble secteur ainsi que le connecteur pour la liaison vers le PC.

Définition du coût

Ce critère définit la faisabilité financière du projet ainsi que la qualité finale du produit. Pour notre application d'amateur nous nous fixerons arbitrairement un budget maximum 400 F (nous éviterons les connecteurs plaqués or et les supports tulipes!).

Voilà notre machine tout à fait "cadrée"! Il ne reste maintenant plus qu'à réfléchir pour trouver la meilleure solution technique à ce cahier des charges. Mais avant cela, revenons à nos outils informatiques et intéressonsnous au logiciel qui a permis de réaliser tous les schémas présentés dans cette première partie.

LE LOGICIEL "SMART DRAW"

Téléchargeable à l'adresse http:// www.smartdraw.com/freecopy.htm cet utilitaire graphique de 1,8 Mo possède toutes les fonctions pour réaliser des schémas blocs, organigrammes, illustrations techniques, plans mécaniques, etc. Son installation reste très simple : après le téléchargement, l'installation consiste à exécuter le fichier chargé sur le disque dur. Dès le lancement du programme, Smart Draw demande le domaine d'application du nouveau graphique et configure automatiquement les librairies en fonction du choix. Son utilisation intuitive permet, après quelques minutes de maniement, de dessiner un graphique correct.

Nous avons particulièrement aimé les quelques points suivants :

- Gestion automatique de la taille du texte dans un cadre : Lorsque vous créez un rectangle, le logiciel vous permet d'y inscrire du texte en activant l'onglet "A" dans la barre d'outils. En plus du choix de positionnement du texte à l'intérieur du cadre, la taille des caractères peut être ajustée selon les dimensions fixes du cadre. Il est aussi possible d'imposer la taille des caractères et de demander un redimensionnement automatique du cadre.

INFORMATIQUE

- Gestion de groupe et de couche : Lorsque vous dessinez, chaque élément ajouté (trait, rectangle, texte, etc.) est isolé et peut être sélectionné par la souris. Lorsque le graphique devient important, il est nécessaire de "grouper" plusieurs objets pour n'en former qu'un. Ceci permet, en outre, de déplacer ou de redimensionner tout un ensemble du graphique. Pour cela, vous devez tout d'abord sélectionner avec la souris le premier élément à grouper, puis en maintenant la touche "shift" appuyée, sélectionner tous les autres éléments à grouper. Pour finir, il faut actionner la commande "Group" située dans le menu "Arrange" (on remarquera la commande "Ungroup" pour réaliser l'opération inverse).

La gestion des "couches" est aussi un élément important dès que le graphique utilise plusieurs blocs imbriqués. En effet, grâce à cette option, on peut repousser un objet en arrière plan ou, au contraire, l'amener en premier plan. Ceci évite bien souvent la "disparition" d'objet, caché tout simplement derrière un autre. Ces deux commandes sont accessibles dans le menu "Arrange" puis "Bring to front" et "Send to back" en ayant pris soin de sélectionner l'objet à déplacer.

- Importation/Exportation de fichier graphique : Smart Draw intègre des convertisseurs de fichiers graphiques permettant d'ouvrir ou de sauver tout type standard: WMF, PCX, BMP, TIF, GIF, JPG pour la version démo et en plus EPS, CGM, DXF, DWG, HGL, VSD, DRW, AI, CDR et PDF pour la version complète. Vous trouverez sûrement les formats qui vous intéressent.

Dans le pire des cas, vous pouvez toujours vous rabattre sur un copier/coller à partir d'une autre application. Smart Draw convertit le presse-papiers en image WMF (Window Métafile) puis colle l'image sur le graphique.

- Librairies : Plusieurs librairies de formes prédéfinies sont disponibles à partir du menu "librairie". Il est possible d'en modifier leurs contenus ou de les personnaliser. Vous pourrez même trouver quelques ClipArt simples.
- Extrémités des traits : Particulièrement bien soigné, le tableau de gestion des extrémités comporte un choix important de formes différentes. Chaque forme peut être dessinée selon trois tailles différentes.

Pour les points négatifs, nous noterons toutefois un manque de paramétrage de l'attraction des règles (il n'est pas possible de désactiver la fonction!) ainsi qu'une gestion des "zooms" peu pratique.

Le mois prochain nous continuerons cette réalisation en transformant ce cahier des charges en schéma électronique (attention les neurones!), plus connu sous le nom de "schéma structurel". Nous apprendrons aussi à simuler des fonctions de notre séquenceur à partir d'un logiciel de simulation téléchargé sur le web (bien sûr!).

M. A.

luds - BP 1241 04 42 82 96 38 - 13783 AUBAGNE C - Fax 04 42 82 96 51 http://www.comelec.

SPÉCIAL PIC... SPÉCIAL PIC

PROGRAMMATEUR UNIVERSEL POUR PIC.

Permet de programmer tous microcontrôleurs MICROCHIP, à l'exception des PIC16C5x et des PIC17Cxx.

FT284 (Kit complet + câble PC + SFW 284)455 F MF284 (PIC 12C508 programmé seul)82 F

Développé par MICROCHIP, le PICSTARTPLUS vous permet d'éditer et d'assembler le programme source des PIC 12c5xx, PIC 14000, PIC 16Cxx, PIC 17Cxx. Le starter kit comprend, en plus du programmateur proprement dit, un CD de programmes (MPLAB, MPASM, MPLAP-SIM) avec toute la documentation technique nécessaire, un câble RS232 pour le raccordement à un PC, une alimentation secteur et un échantillon de microcontrôleur PIC.

......1690,00 F **PICSTARTPLUS**

Un compilateur sérieux est enfin disponible (en COMPILATEUR BASIC POUR PIC Basic par rapport au langage assembleur sont évidents : l'apprentissage des commandes est

8 bits. Avec ces softwares il est possible "d'écrire" un quelconque programme en utilisant des instructions Basic que le compilateur transformera en codes machine, ou en instructions prêtes pour être simulées par MPLAB ou en instructions transférables directement dans la mémoire du micro. Les avantages de l'utilisation d'un compilateur immédiat; le temps de développement est considérablement réduit; on peut réaliser des programmes complexes avec peu de lignes d'instructions; on peut immédiatement réaliser des fonctions que seul un expert programmateur pourrait réaliser en assembleur. (pour la liste complète des instructions basic : www.melabs.com)

PIC BASIC COMPILATEUR: Permet d'utiliser des fonctions de programmation avancées, commandes de saut (GOTO, GOSUB), de boucle (FOR... NEXT), de condition (IF... THEN...), d'écriture et de lecture d'une mémoire (POKE, PEEK) de gestion du bus I2E (I2CIN, I2COUT), de contrôle des liaisons séries (SERIN, SEROUT) et naturellement de toutes les commandes classiques du BASIC. La compilation se fait très rapidement, sans se préoccuper du langage machine.

PBC (Pic Basic Compiler)

PIC BASIC PRO COMPILATEUR: Ajoute de nombreuses autres fonctions à la version standard, comme la gestion des interruptions, la possibilité d'utiliser un tableau, la possibilité d'allouer une zone mémoire pour les variables, la gestion plus souple des routines et sauts conditionnels (IF... THEN... ELSE...). La compilation et la rapidité d'exécution du programme compilé sont bien meilleures que dans la version standard. Ce compilateur est adapté aux utilisateurs qui souhaitent profiter au maximum de la puissance des PIC.

PBC PBC PRO

Un microphone de scène sans fil

sur 433 MHz

Ce microphone radio utilise, à la place des traditionnels quartz, des résonateurs à ondes de surface (SAW). Tout comme son récepteur, il fonctionne dans la bande des 433 MHz et peut être utilisé comme microphone de scène sans fil ou pour la réception de confort d'un téléviseur ou d'une chaîne HI-FI. Bien entendu, il trouvera également son utilité dans de nombreuses autres applications.

es petits modules subminiatures d'émetteur et de récepteur FM, utilisant des filtres SAW (résonateurs à ondes de surface), sont disponibles dans le commerce mais leur documentation n'indique pas si ce sont des modules HI-FI, ni quelles adaptations il faudrait faire pour obtenir une réponse linéaire entre 20 Hz et 20 kHz.

Par ailleurs, leur portée maximale, supposée atteindre 200 ou 300 mètres, n'est jamais indiquée clairement. En fait cette donnée est optimiste, car en réalité et dans des conditions idéales, ils couvrent seulement 60 à 70 mètres. Cette portée est plus que suffisante pour réaliser des microphones radio pour des chanteurs, ou pour écouter sur un casque la sortie audio d'un téléviseur.

Ce microphone radio, peut également servir à des guides touristiques pour permettre à tous les touristes d'un groupe, et en particulier aux plus éloignés, d'écouter les commentaires et les explications de leur guide.

Sur les figures 1 et 2, vous pouvez voir les dimensions réelles des deux modules ainsi que leurs caractéristiques techniques.

Nous allons, dans cet article, vous expliquer ce qu'il convient d'ajouter à ces modules, pour obtenir un excellent microphone-émetteur et son récepteur HI-FI.

Schéma électrique de l'émetteur

Comme cela apparaît sur le schéma électrique de la figure 5, sur le module KM01.41 (voir IC3), nous avons inséré, entre les broches 6 et 7, un filtre de préaccentuation, composé des résistances R14 et R15 et du condensateur C11, permettant d'obtenir un meilleur rapport signal/bruit.

Pour éviter que l'émetteur ne demeure en émission permanente, même en l'absence de sons ou de paroles, déchargeant ainsi rapidement la pile, nous l'avons muni d'un

squelch en utilisant deux circuits intégrés de type TS27M2 équivalents aux TLC27M2 (voir IC1A/B et IC2A/B). Il ne faut pas remplacer ces circuits intégrés par des TL082 sinon le montage ne fonctionnera pas.

Commençons la description du circuit par la prise d'entrée du microphone.

A cette entrée, vous pouvez connecter un petit microphone préamplifié (micro électret) et, pour l'alimenter, il est nécessaire de positionner le petit cavalier femelle sur le connecteur mâle J1 du côté marqué B-C.

Si vous appliquez le signal BF prélevé sur la prise casque d'un téléviseur ou d'un amplificateur HI-FI sur cette entrée, le cavalier femelle sera positionné sur le côté A-B de J1 afin d'éviter que la tension positive de polarisation du microphone, présente sur R2, n'atteigne la prise de la sortie TV ou celle de l'amplificateur.

Le trimmer R4, présent sur l'entrée, sert au réglage de la sensibilité du microphone.

Le signal préamplifié, prélevé de la broche de sortie de IC1/A, est appliqué sur la broche 4 du module émetteur IC3.

Le même signal BF, présent sur la sortie de IC1/A, passe à travers le condensateur C7 et rejoint la broche non-inver-

Figure 1 : Caractéristiques et photographie taille réelle du module émetteur KM01.41.

Dimensions = 40,6 x 26 mm SAW d'émission = 433,8 MHz Largeur bande passante = 75 kHz Bande audio = de 20 Hz à 25 kHz Tension d'alimentation = de 11 à 13 volts

Consommation en émission = 15 mA

Puissance fournie = + 10 dBm (10 milliwatts)

Impédance d'entrée = 10 000 ohms Impédance de sortie HF = 50 ohms

Figure 2 : Caractéristiques et photographie taille réelle du module récepteur KM01.40.

Dimensions = 50,8 x 20 mm SAW de réception = 423,1 MHz Moyenne fréquence = 10,7 MHz Bande audio = de 20 Hz à 25 kHz environ

Tension d'alimentation = 3 volts Consommation en réception = 15 mA Sensibilité = -100 dBm (environ 2 microvolts)

Impédance d'entrée HF = 50 ohms

seuse de l'amplificateur opérationnel IC1/B utilisé comme amplificateur redresseur avec un gain d'environ 100.

Comme vous le savez déjà, le gain d'un amplificateur opérationnel utilisant l'entrée non-inverseuse d'un ampli opérationnel se calcule avec la formule suivante :

Gain = (R1 : R10) + 1

Avec la résistance R1 valant 1 mégohm (soit 1 000 k Ω) et la résistance R10

de 10 k Ω , nous obtenons en pratique un gain de :

(1000:10)+1=101

Ce gain élevé, permet d'obtenir en sortie une tension positive d'environ 12 volts. C'est cette tension qui sera transmise à travers IC2/A et IC2/B et qui servira à alimenter la broche 2 du module émetteur IC3.

En fait, le module IC3, ne fonctionne que lorsqu'une tension positive de 12

Figure 3 : Le petit émetteur doit être alimenté par l'extérieur avec une tension de 12 volts, par contre, le coffret du récepteur dispose d'un compartiment pouvant contenir une pile de 9 volts miniature.

Figure 4 : Schéma synoptique du module KM01.41 et indication de son brochage. Ne touchez pas le trimmer placé sur le module, car vous déplaceriez la fréquence d'émission.

Figure 5 : Schéma électrique de l'étage émission que nous avons référencé LX.1388. Le petit cavalier J1 est positionné sur B-C uniquement si vous utilisez un petit microphone électret visible sur la figure 7. Si vous utilisez un microphone classique, il faut positionner J1 sur B-A.

Figure 6 : Schéma d'implantation des composants de l'étage émetteur. Les broches du module KM01.41 sont insérées et soudées dans les trous présents en bas du circuit imprimé.

Liste des composants du LX.1388

 $22 k\Omega$ R1 $22 \text{ k}\Omega$ R2 R3 $4.7 k\Omega$ R4 1 M Ω trimmer R5 $10 \text{ k}\Omega$ R6 $8,2 k\Omega$ $1.8 \text{ k}\Omega$ R7 R8 $180 \text{ k}\Omega$ R9 $68 \text{ k}\Omega$ R10 $10 \text{ k}\Omega$ R11 $1 M\Omega$ R12 $10 k\Omega$ 1 MO R13 R14 22 kΩ R15 $4.7 k\Omega$ R16 $1.2 \text{ k}\Omega$ C1 10 µF électrolytique C2 10 µF électrolytique C3 22 nF polyester C.410 µF électrolytique C5 10 µF électrolytique C6 15 pF céramique C7 22 nF polyester **C8** 100 nF polyester C9 100 nF polyester C10 22 µF électrolytique C11 5,6 nF polyester C12 10 µF électrolytique Diode 1N4150 DS1 DL1 Diode LED IC1 Intégré TS27M2CN IC2 Intégré TS27M2CN Module KM01.41 IC3

Cavalier **MICRO** Microphone préampl.

Sauf spécification contraire, toutes les résistances sont des 1/4 W à 5 %.

volts parvient sur la broche 2. Dans le cas contraire, il n'émet pas et, de ce fait, ne consomme aucun courant.

Ainsi, dès que le microphone capte un quelconque signal BF, l'amplificateur opérationnel IC2/B permet la mise en marche de l'émetteur.

Sur la sortie de l'amplificateur opérationnel IC2/B, a également été câblée une LED (voir DL1) qui s'allume lorsque la tension de 12 volts est présente.

Pour alimenter ce microphone radio, il est nécessaire d'utiliser une tension de 12 volts, qui peut être obtenue en reliant en série 8 piles de 1,5 volt (type R6).

Si vous pensez utiliser ce microphone radio pour écouter le son du téléviseur au casque, il sera alors plus avantageux d'utiliser une petite alimentation secteur en mesure de fournir 12 volts stabilisés (évidemment bien régulée et bien filtrée pour éviter les ronflements).

J1

Schéma électrique du récepteur

Comme vous pouvez le voir sur le schéma électrique de la figure 9, pour réaliser ce récepteur, vous devez utiliser, outre le module KM01.40, un circuit intégré amplificateur BF TDA7052/B, un transistor PNP BC327 ou BC328 et un régulateur intégré 78L05 nécessaire pour obtenir une tension de 3 volts à appliquer sur les broches 1 et 19 du module récepteur.

Pour ceux qui objecteront que le régulateur 78L05 stabilise la tension appliquée sur son entrée à une valeur de 5 volts, nous répondons immédiatement que sur la sortie de ce régulateur nous avons une diode LED verte (DL1) qui introduit une chute de tension de 2 volts, c'est pour cette raison que le module sera donc bien alimenté en 3 volts.

Il ne faut surtout pas remplacer cette diode LED de couleur verte par une LED de couleur rouge, car ces dernières n'introduisent qu'une chute de tension de 1,6 volt et, dans ce cas, le module serait alimenté en 3,4 volts et non en 3 volts.

Le transistor TR1, relié à la broche 18 du module IC1, réalise la fonction de MUTING (silence).

Lorsque l'émetteur est en pause, la broche 18 de lC1 est reliée à la masse à l'intérieur du module et, ainsi, la résistance R3 polarise la base du transistor TR1, qui est un PNP, ce qui le met en conduction. Le collecteur transmet le signal BF vers l'émetteur du transistor l'empêchant ainsi d'atteindre la broche 2 de l'étage final lC2.

Lorsque l'émetteur radio est actif, sur la broche 18 nous avons une tension positive. Ainsi, la base du transistor TR1 n'étant plus polarisée, la liaison collecteur/émetteur est éliminée et le signal BF peut atteindre normalement la broche

Figure 7 : Pour envoyer le signal microphonique sur l'entrée de l'émetteur, vous devrez utiliser une fiche mâle.

Figure 8 : Schéma synoptique du module récepteur KM01.40 et indication de son brochage. Ne touchez pas au trimmer placé sur le module car vous pourriez dérégler le module récepteur.

Figure 9 : Schéma électrique de l'étage récepteur que nous avons référencé LX.1389. La prise de sortie BF doit être utilisée pour relier un éventuel magnétophone ou un amplificateur de puissance externe.

Figure 10 : Schéma d'implantation des composants de l'étage récepteur. Le module KM01.40 est inséré dans le connecteur femelle préalablement soudé sur le côté gauche (voir figure 14).

EZZA-VIZ EZZA-VIZ 1163 Sa63100 -1163 EZZA-VIZ -1163 EZZA-VIZ

Figure 11 : Voici comment se présente le montage terminé de l'étage émetteur LX.1388. Le trimmer disposé sur la droite du circuit imprimé sert pour modifier et ajuster la sensibilité du microphone. La diode LED DL1, peut, si vous le désirez, ne pas être montée sur le circuit.

2 de IC2. Ce circuit intégré IC2 permet d'écouter au casque le signal émis par l'émetteur. Signalons toute-fois que IC2 doit être obligatoirement un TDA7052/B, le suffixe "B" étant obligatoire. Si vous le remplacez par un TDA7052, le circuit ne fonctionnera pas.

Dans le récepteur, nous avons également prévu une sortie supplémentaire, utile pour relier un magnétophone ou bien un amplificateur de puissance externe.

Pour alimenter ce récepteur, il faut utiliser une petite pile de 9 volts type 6F22XC.

L'antenne émettrice et réceptrice

Sur l'émetteur, comme antenne, il faut utiliser un morceau de fil d'une lon-

Liste des composants du LX.1389

R1 = $10 \text{ k}\Omega$ pot. lin.

 $R2 = 10 k\Omega$

 $R3 = 10 \text{ k}\Omega$

R4 = $4.7 \text{ k}\Omega$ R5 = $100 \text{ k}\Omega$

 $R6 = 1 M\Omega \text{ pot. lin.}$

RO = 1 MS2 pot.

 $R7 = 100 \text{ k}\Omega$

 $R8 = 1 k\Omega$

C1 = $10 \mu F$ électrolytique

C2 = 100 nF polyester

C3 = $10 \mu F$ électrolytique

C4 = 4,7 nF polyester C5 = 470 nF polyester

C5 = 470 nF polyester C6 = 470 nF polyester

C7 = 100 nF polyester

C8 = $10 \mu F$ électrolytique

 $C9 = 100 \mu F$ électrolytique

C10 = $10 \mu F$ électrolytique

C11 = 100 nF polyester

DL1 = Diode LED verte

TR1 = Transistor PNP BC327

ou BC328

IC1 = Module KM01.40

IC2 = Intégré TDA7052B

IC3 = Régulateur MC78L05

S1 = Interrupteur sur R6

Sauf spécification contraire, toutes les résistances sont des 1/4~W à 5 %.

gueur exacte de 16,5 centimètres égale à 1/4 d'onde. Pour augmenter légèrement la portée, il peut s'avérer nécessaire d'utiliser un fil d'une longueur de 3/4 d'onde, soit 49,5 centimètres. Toutefois, pour certaines applications, cette longueur peut devenir excessive.

Sur le récepteur, le fil d'antenne devra avoir une longueur de 17 centimètres exactement, égale à 1/4 d'onde.

Mais, toujours dans le but d'augmenter légèrement la portée du récepteur, il est possible d'utiliser un fil d'une longueur de 3/4 d'onde, soit 51 centimètres.

Si vous utilisez des longueurs différentes, la portée sera réduite car l'impédance de l'antenne ne sera plus adaptée sur la valeur de 50 ohms requise par ces deux modules.

Réalisation pratique de l'émetteur

Pour réaliser l'émetteur, il faut monter tous les composants visibles figure 6 sur le circuit imprimé référencé LX1388. Pour commencer, nous vous conseil-

Figure 12 : Avant d'insérer le circuit imprimé à l'intérieur du boîtier, il faut percer le petit panneau frontal pour installer la prise d'alimentation, faire sortir la LED rouge et la prise pour le microphone.

Figure 13 : Après avoir soudé les broches du module KM01.41 sur le circuit imprimé, il faut le replier en "L" afin de pouvoir assurer la fermeture du couvercle du boîtier. Le fil d'antenne est soudé sur le picot situé près du condensateur C7 (voir figure 6).

lons d'insérer les deux supports pour les circuits intégrés IC1 et IC2 et après en avoir soudé toutes les broches sur les pistes du circuit imprimé, de monter toutes les résistances et le trimmer R4

Après avoir terminé cette opération, insérez le petit connecteur J1 et poursuivez le montage par la mise en place des condensateurs en faisant attention à la polarité des condensateurs électrolytiques.

Sur la gauche du support de IC1, placez la diode DS1, en orientant son repère de positionnement vers C10 comme cela est clairement indiqué sur la figure 6.

A ce point, vous pouvez insérer les circuits intégrés dans leur support respectif, en orientant leur repère détrompeur en forme de "U" vers le bas.

Vérifiez de bien avoir placé toutes les broches en regard du support car il arrive fréquemment que l'une d'elles se plie et ainsi n'établisse pas le contact ou, pire, se rompe.

Prenez ensuite le module émetteur IC3 et insérez-le dans les trous disposés en bas sur le circuit imprimé, sans toutefois l'appuyer complètement contre le circuit imprimé.

En fait, pour que l'on puisse fermer le couvercle du petit boîtier en plastique, ce module devra être légèrement plié. Evidemment, si vous utilisez un boîtier plus haut, vous pouvez le laisser dans sa position verticale initiale.

Pour compléter le circuit, insérez la prise pour le microphone, qui n'est indispensable que dans le cas où vous utilisez un microphone externe, ou bien, si vous désirez entrer un signal BF prélevé sur la prise casque d'un téléviseur.

Pour le cas où vous utiliseriez un microphone préamplifié (micro électret) vous pouvez agrandir le trou du panneau frontal de manière à y faire entrer le corps du microphone.

Bloquez ensuite le tout avec une goutte de colle-contact ou autre et n'oubliez pas de positionner le cavalier femelle du connecteur J1 sur la position B-C.

Le curseur du trimmer R4, ne sera réglé qu'après avoir monté le récepteur, de façon à trouver la sensibilité désirée.

Réalisation pratique du récepteur

Pour réaliser le récepteur, vous devez monter tous les composants repré-

sentés figure 10 sur le circuit imprimé LX.1389.

Nous vous conseillons de commencer le montage par la mise en place du support pour le circuit intégré IC2. Après avoir soudé toutes ses broches sur les pistes du circuit imprimé, vous pouvez monter, sur la gauche, le connecteur femelle à 20 broches. Ce connecteur est utilisé pour monter le module récepteur IC1.

Après avoir terminé cette opération, vous pouvez monter toutes les résistances et les condensateurs polyester.

Comme cela est indiqué sur le schéma d'implantation des composants, les trois condensateurs électrolytiques C1, C2 et C3 doivent êtres montés horizontalement et non sans avoir correctement positionné leurs pattes qui sont polarisées.

Poursuivez le montage par la mise en place du transistor TR1, en orientant la partie plate de son boîtier vers la gauche. Au-dessus de ce dernier, montez le circuit intégré régulateur IC3 en orientant la partie plate de son boîtier vers le condensateur électrolytique C9.

En haut à droite, montez la diode LED verte (DL1), en insérant la patte la plus

Figure 14 : Voici comment se présente l'étage récepteur LX.1389 une fois terminé. Sur les deux axes des potentiomètres insérez les deux boutons crantés. Sur la gauche du circuit imprimé sera soudé le connecteur 20 broches femelles pour le montage du module de réception.

longue dans le trou de gauche indiqué "A" (anode). Si la LED n'est pas montée correctement, non seulement elle ne s'allumera pas, mais le module IC1 ne sera pas alimenté.

Près de la diode DL1, installez les deux prises de sortie BF. Celle située à droite vous servira pour relier le casque et celle de gauche pour prélever un signal à appliquer à un magnétophone ou bien à l'entrée d'un amplificateur de puissance. Cette dernière est bien pratique pour une utilisation du microphone radio par des chanteurs ou des musiciens.

En dernier, montez le potentiomètre de volume. Il est équipé d'un interrupteur de mise en marche (voir R6 + S1). Placez ensuite le potentiomètre qui règle le squelch (R1).

Sur l'axe de ces potentiomètres, il convient de placer les deux boutons en forme de disques crantés.

Procédez à la mise en place de IC2 dans son support, en prenant bien soin de respecter le sens de son repère en forme de "U" qui sera dirigé vers la gauche.

Prenez ensuite le module récepteur, insérez-le dans le connecteur 20 broches et pliez-le avec soin afin que vous puissiez refermer le couvercle du boîtier sans difficultés.

Comme vous pouvez le voir sur le schéma pratique de câblage de la figure 10, les broches 1, 2 et 3 doivent êtres insérées dans la partie haute du connecteur et les broches 18-19-20 dans la partie basse du connecteur.

Le boîtier en matière plastique étant livré non usiné, vous devrez pratiquer trois petits trous circulaires à l'aide

Figure 15 : Avant de mettre le circuit imprimé en place dans le boîtier, vous devez percer et découper ce dernier en vous inspirant de la figure 17 dans laquelle vous trouverez toutes les dimensions des perçages et découpes.

Figure 16: Les broches du module récepteur KM01.40 sont insérées dans le connecteur femelle à 20 broches disposé sur le circuit imprimé. Ce module sera également replié en "L" avec les composants dirigés vers le haut, comme cela peut se voir sur la photographie.

d'un foret de diamètre approprié sur le petit côté qui deviendra ainsi la face avant. Pour ce faire, reportez-vous aux cotes données dans la figure 17.

Cette opération ne présente aucune difficulté étant donné la matière utilisée pour le boîtier.

Sur le côté du boîtier, il faut faire apparaître les deux boutons crantés des potentiomètres. Pour cela il faut pratiquer deux découpes (voir figure 17) en se reportant aux cotes indiquées sur le dessin. Pour ces découpes, il faut procéder de la façon suivante :

A l'aide d'une lame de scie à métaux, pratiquez quatre entailles verticales sur le rebord du coffret aux dimensions indiquées. Pliez à plusieurs reprises d'avant en arrière les deux parties centrales et, après la rupture, finissez les découpes à l'aide d'une petite lime fine.

Où trouver les composants?

La liste des composants étant fournie, vous pouvez vous approvisionner, de préférence, auprès de nos annonceurs. Un kit complet est disponible.

Les circuits imprimés double face à trous métallisés, les modules KM01.40 et KM01.41 sont également disponibles séparément. Voir publicités dans la revue.

♠ N. E.

Figure 18 : Connexions des deux circuits intégrés TS27M2/CN et TDA7052/B vus de dessus, du transistor BC327 équivalent au BC328 et du régulateur MC78L05 vus de dessous.

Lorsque vous souderez le câble blindé sur les pattes du

Lorsque vous souderez le câble blindé sur les pattes du microphone, rappelez-vous que la patte de masse est celle qui se trouve en contact avec le corps métallique du microphone.

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet : http://www.comelec.fr

LES KITS DU MOIS

SCANNER DE RECEPTION AUDIO/VIDEO POUR SATELLITES TV et ATV de 950 MHz à 1,9 GHz

La recherche peut être effectuée soit manuellement soit par scanner. Un afficheur permet d'indiquer la fréquence de la porteuse vidéo ainsi que celle de la porteuse audio.

Un second afficheur (LCD couleur 4") permet de visualiser l'image reçue. L'alimentation s'effectue à partir d'une batterie 12 V interne pour une utilisation en portable (ajustement de parabole sur un toit). Deux connexions (type RCA) arrières permettent de fournir le signal audio et vidéo pour une utilisation externe. Un commutateur permet de sélectionner la polarisation de la parabole (horizontale ou verticale).

LX 1415/K	En kit sans batterie et sans é	cran LCD1 290 F
BAT 12 V / 3 A	Batterie 12 volts, 3 ampères	154 F
MTV40	Moniteur LCD	890 F

UNE CLEF ELECTRONIQUE: DIGICODE

FT 305/K	Kit complet avec clavier	227 F
FT 305/M	Kit monté avec clavier	267 F

INDUCTANCEMETRE 10 µH à 10 mH

À l'aide de ce simple inductancemètre, vous pourrez mesurer des selfs comprises entre 10 microhenry et 10 millihenry. La lecture de la valeur se fera sur un multimètre analogique ou numérique (non fourni).

LX 1422/K	Kit complet avec coffret	256 F
	the contract of the contract o	
I X 1422/M	Kit monté avec coffret	299 F

FONDU POUR MAGNETOSCOPE

On trouve désormais des magnétoscopes dans toutes les maisons.

Ce kit vous permet d'enchaîner progressivement deux séquences vous évitant le désagréable saut d'image.

LX	1406	Kit complet avec coffret sans alim198 F	
LX	1335	Kit alimentation pour LX1406106 F	

MICROPHONE HF DE SCENE ET SON RÉCEPTEUR

Cet ensemble RX/TX travaille en FM sur la bande des 433 MHz. Sa portée de 60 à 70 mètres est plus que suffisante pour réaliser un micro de scène pour artistes, ou pour écouter au casque le son de la télé.

LX 1388Kit émetteur avec coffret	239 F
LX 1389Kit récepteur avec coffret	300 F

GENERATEUR DTMF

Il permet de produire les 16 tons DTMF standards (0-1-2-3-4-5-6-7-8-9-A-B-C-D-*-#). Le kit comprend tous les composants, le circuit imprimé et le clavier.

FT 295/K	Kit complet	175 F
		199 F

REGULATEUR UNIVERSEL DE CHARGE

Tension d'entrée 4,5 à 40 Vcc
Tension de sortie 1,4 à 37 Vcc
Intensité de sortie (max) 500 mA
Plage d'intensité (protection) 10 à 500 mA

т	276/K	Kit complet75	F
т	276/M	Kit monté99	F

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet : http://www.comelec.fr

TV, ATV ET MESURE

Prix en kit8 200 F*

Prix monté......8900 F

*Prix de lancement

Module RF seul (KM 1400)5990 I

ANALYSEUR DE SPECTRE DE 100 KHZ À 1 GHZ

Gamme de fréquences	
Impédance d'entrée	. 50 Ω
Résolutions RBW	. 10 - 100 - 1 000 kHz
Dynamique	. 70 dB
Vitesses de balayage	
Span	
Pas du fréquencemètre	. 1 kHz
Puissance max admissible en entrée	. 23 dBm (0.2 W)
Mesure de niveau	. dBm ou dBµV
Marqueurs de référence	
Mesure	. du ∆ entre 2 fréquences
Mesure de l'écart de niveau	. entre 2 signaux en dBm ou dBµV
Echelle de lecture	
Mémorisation	. des paramètres
Mémorisation	des graphiques
Fonction RUN et STOP	de l'image à l'écran
Fonction de recherche du pic max	. (PEAK ŠRC)
Fonction MAX HOLD	(fixe le niveau max)
Fonction Tracking	
Niveau Tracking réglable de	−10 à −70 dBm
Pas du réglage niveau Tracking	
Impédance de sortie Tracking	
impedance de sortie naciting	. 50 22

* La fréquence maximale garantie est de 1 GHz mais, en pratique, vous devriez pouvoir la dépasser de plusieurs dizaines de MHz.

SCANNER DE RECEPTION AUDIO/VIDEO TV et ATV de 950 MHz à 1.9 GHz

La recherche peut être effectuée soit manuellement soit par scanner. Un afficheur permet d'indiquer la fréquence de la porteuse vidéo ainsi que celle de la porteuse audio. Un second afficheur (LCD couleur 4") permet de visualiser l'image reçue. L'alimentation s'effec-

tue à partir d'une batterie 12 V interne pour une utilisation en portable (ajustement de parabole sur un toit). Deux connexions (type RCA) arrières permettent de fournir le signal audio et vidéo pour une utilisation externe. Un commutateur permet de sélectionner la polarisation de la parabole (horizontale ou verticale).

LX1415/K	En kit sans batterie et sans	écran LCD1 290 F
BAT 12 V / 3	A Batterie 12 volts, 3 ampères	154 F
MTVAO	Monitour I CD	900 E

UN COMPTEUR GEIGER PUISSANT ET PERFORMANT

Cet appareil va vous permettre de mesurer le taux de radioactivité présent dans l'air, les aliments, l'eau, etc. Le kit est livré complet avec son coffret sérigraphié.

LX1407	Kit complet avec boîtier	771 F
LX1407	/MKit monté	939 F
CI1407	Circuit imprimé seul	89 F

FREQUENCEMETRE NUMERIQUE 10 HZ - 2 GHZ

-Sensibilité (Volts efficaces)

0003

6 . . 6

2,5 mVde 10 Hz à 1,5 MHz 3,5 mVde 1,6 MHz à 7 MHz 10 mVde 8 MHz à 60 MHz 5 mVde 70 MHz à 800 MHz -Alimentation : 220 Vac -Base de temps sélectionnable

(0,1 sec. - 1 sec. - 10 sec.)
-Lecture sur 8 digits.

8 mVde 800 MHz à 2 GHz

LX1374/KKit complet1270 F

LX1374/MMonté1778 F

FREQUENCEMETRE PORTABLE 10 HZ À 2,8 GHZ

• Résolution BF : 1 Hz jusqu'à 16 MHz

Résolution SHF : 1 kHz jusqu'à 2,8 GHz

• Impédance d'entrée : 50 Ω

• Alim. externe : 9 à 14 V. Alim. interne : pile 9 V

 Sensibilité: 27 MHz < 2 mV 150 MHz < 0,9 mV 400 MHz < 0,8 mV 700 MHz < 2,5 mV 1,1 GHz < 3,5 mV 2 GHz < 40 mV 2,5 GHz < 100 mV 2,8 GHz < 110 mV

Livré complet avec coffret sérigraphié et notice de montage en français.

et notice de montage en mançais.

FP3 Kit1195 F FP3 Monté1380 I

AMPLIFICATEUR VHF FM 140 - 146 MHz E: 0,04 W - S: 10 W

Caractéristiques :

Fréquence de travail ..135 à 160 MHz Courant max. absorbé......2,5 A Puissance max. d'entrée0,04 W

LX1418/KKit complet avec refroidisseur407 F LX1418/MKit monté avec refroidisseur510 F

TRANSISTOR PIN-OUT CHECKER

Ce kit va vous permettre de repérer les broches E, B, C d'un transistor et de savoir si c'est un NPN ou un PNP. Si celui-ci est défectueux vous lirez sur l'afficheur "bAd".

LX1421/K

Kit complet avec boîtier249 F

LX1421/M

Kit monté avec boîtier338 F

Un scanner de réception audio/vidéo

pour satellites TV

(suite et fin)

Voici la fin de la description du scanner de réception audio/vidéo. Vous trouverez dans cette partie tous les éléments nécessaires à sa réalisation. Bien entendu, ce récepteur satellite, accompagné d'une parabole portable, peut également servir de téléviseur d'appoint pour la maison de vacances, le camping, le caravaning ou le mobile-home!

La partie alimentation

Pour alimenter notre scanner, trois tensions sont nécessaires : une de 25 volts, une de 12 volts et une de 5 volts, que nous prélevons du secondaire de l'étage alimentation composé de IC1, MFT1 et T1.

Cet étage, alimenté à l'aide d'une batterie de 12 volts, est une alimentation à découpage stabilisée en

tension, qui fonctionne sur une fréquence de 40 kHz.

Par le fait que nous ayons utilisé une batterie étanche de 12 volts 3 ampères, sachant que le circuit complet consomme environ 1 ampère, nous aurons une autonomie d'environ 3 heures, ce qui est plus que suffisante pour installer dans le courant de journée 2 ou 3 paraboles!

En série, sur le positif de l'alimentation, nous avons installé une simple protection composée du fusible F1 et le la diode DS1. Ainsi, si par erreur nous inversons la polarité de la batterie, le fusible sautera. Nous n'avons pas placé la diode DS1 en série sur le positif de l'alimentation, pour éviter la chute de tension d'environ 0,7 volt qu'elle provoquerait.

La tension de la batterie, que nous récupérons après le fusible F1, est appliquée, à travers le diviseur formé par R58 et R59, sur la broche 19 du microcontrôleur qui l'utilise pour faire apparaître sur l'afficheur LCD l'inscription «LOBATT», lorsque la tension de la batterie descend sous le

seuil des 9,5 volts. Cette alerte nous avise qu'il est temps de penser à la recharge.

Pour ceux qui voudraient se servir de ce scanner comme d'un récepteur pour satellites TV, nous conseillons de le connecter à une petite alimentation stabilisée en mesure de fournir 12 volts sous 2 ampères plutôt que d'utiliser la batterie interne qu'il faudra recharger au bout de 3 ou 4 heures.

Quant aux installateurs qui veulent utiliser le scanner de nombreuses heures consécutives, nous leur suggérons de recharger la batterie chaque soir pour ne pas se trouver, le jour suivant, sur un toit et au beau milieu d'un réglage, avec une batterie déchargée!

Figure 16 : Photo de la platine LX.1415 équipée de tous ses composants. Notez la surface de masse sur la zone centrale du circuit imprimé. Pour relier cette platine à la platine afficheur, il faut utiliser le petit câble en nappe, fourni dans le kit, équipé d'un connecteur à chacune de ses extrémités.

Figure 17 : Photo de la platine LX.1415/B vue du côté où sont installés le circuit intégré IC9, le connecteur CONN.1 et les deux potentiomètres.

Figure 18 : Photo de la platine LX.1415/B vue du côté où sont fixés l'afficheur, les quatre boutons poussoirs et les trois inverseurs.

Le chargeur de batterie ne doit être relié au scanner que lorsque celui-ci est éteint.

Pour terminer, ajoutons que ce scanner fonctionne également avec un moniteur noir et blanc. En choisissant cette solution, vous pourrez réduire le coût de la réalisation de quelques centaines de francs, sachant que vous pourrez toujours acquérir un moniteur couleur par la suite.

Réalisation pratique

Pour réaliser ce scanner pour satellites TV, il faut deux circuits imprimés double face à trous métallisés référencés LX.1415 et LX.1415/B. Ces circuits

Figure 19 : Sur le fond du coffret, fixez la platine LX.1415 et sur la face avant, la platine de l'afficheur et du moniteur LCD couleur. La batterie d'alimentation est fixée sur le panneau arrière, en utilisant un cadre métallique que vous trouverez dans le kit.

Figure 20 : Le petit haut-parleur est fixé sur le couvercle du coffret au moyen de deux pièces métalliques échancrées pour épouser le profil du haut-parleur.

sont, bien entendu disponibles. Consultez les publicités dans la revue.

Sur le circuit le plus grand (LX.1415), il faut monter tous les composants visibles sur la figure 15. Sur celui de dimensions inférieures (LX.1415/B), l'afficheur, les quatre boutons poussoirs, les trois inverseurs et les deux potentiomètres.

Montage de la platine LX.1415

Si vous commencez le montage par le circuit imprimé LX.1415 (voir figure 15), nous vous conseillons d'insérer en premier lieu les 7 supports pour circuits intégrés ainsi que le connecteur « CONN. 1 » en orientant vers le bord du circuit le côté comportant la découpe.

Après avoir soudé toutes les broches sur les pistes, il est conseillé de procéder à un petit contrôle, car il arrive parfois d'oublier de souder une broche. Ne rigolez pas, ça nous est arrivé! Il faut, d'ailleurs, faire ce contrôle chaque fois qu'il faut souder un grand nombre de pattes, comme sur les supports de circuits intégrés ou les divers connecteurs.

Vous pouvez maintenant insérer toutes les résistances, en vérifiant attentivement le code des couleurs peint sur leur corps afin d'éviter de commettre une erreur.

Après les résistances, insérez tous les condensateurs céramique et polyester.

Poursuivez le montage en mettant en place toutes les diodes avec un corps en plastique. Comme vous pouvez le voir sur la figure 15, la bague blanche de repère de la diode DS1 est dirigée vers le haut, celle de la diode DS2, vers le bas et celle des diodes DS3 et DS4 vers la droite.

La diode varicap DV1, située près de l'inductance JAF5, est positionnée de manière à ce que la bague de repère soit dirigée vers le condensateur C41.

Après les diodes, vous pouvez mettre en place les transformateurs moyenne fréquence. MF1 a un noyau de couleur rose et MF2 a un noyau de couleur verte.

Près de MF1, insérez le filtre céramique FC1.

Montez ensuite toutes les inductances haute fréquence JAF sans oublier de contrôleur la valeur notée sur leur corps :

- sur JAF1, de 47 microhenrys, est marqué le nombre 47,
- sur JAF2, de 56 microhenrys, est marqué le nombre 56,
- sur JAF5, de 2,2 microhenrys, est marqué le nombre 2.2,
- sur JAF3, JAF4 et JAF6, de 10 microhenrys, est marquée le nombre 10,
- sur JAF7, de 22 microhenrys, est marqué le nombre 22.

Près du support de IC8 insérez, en position horizontale, le quartz de 8 MHz (XTAL) en le bloquant sur la piste de masse du circuit imprimé avec une goutte de soudure mais sans surchauffer.

Figure 21 : Les quatre fils qui sortent sur la droite du moniteur LCD, sont reliés aux quatre picots situés sur la platine LX.1415, sous le condensateur C32 (voir figure 16), en veillant à ne pas les inverser. Les trimmers, situés au-dessus des sorties du moniteur, servent à retoucher le contraste, la couleur et la luminosité.

Figure 22 : Photo du moniteur LCD et de la platine LX.1415/B déjà fixés sur la face avant.

Figure 23 : Pour fixer le moniteur LCD et la platine LX.1415/B, il faut utiliser des entretoises métalliques mâle-femelle que vous trouverez dans le kit (voir dessin de la figure 24).

Près du condensateur électrolytique C52 et de la résistance R54, située près du tuner Sharp, soudez le picot TP1, qui servira pour régler l'audio.

Des picots sont également à souder dans les trous d'où partent les câbles des potentiomètres, des prises audiovidéo et du haut-parleur. Les composants suivants, que nous vous conseillons de monter, sont les FET et les autres transistors. Après avoir lu leur référence sur leur boîtier, il faut les mettre en place dans le bon sens. Le boîtier de ces composants est en forme de demi-lune, il faut toujours orienter le côté plat comme cela est indiqué sur le schéma d'implantation

des composants représenté figure 15 ainsi que sur la sérigraphie du circuit imprimé. Souvenez-vous du truc pour souder les transistors bien droits sur le circuit imprimé : soudez d'abord une patte, retournez le circuit et mettez bien droit votre transistor, revenez au circuit imprimé et soudez les deux pattes restantes.

Figure 24 : Sur la face avant sont fixés des goujons filetés qui servent à visser les entretoises métalliques. Sur la partie mâle des entretoises, il faut insérer la platine LX.1415/B et le châssis du moniteur LCD. Le tout est maintenu en place par de petits écrous.

Vous pouvez maintenant monter tous les condensateurs électrolytiques, en prenant soin de bien insérer la patte la plus longue, correspondant au positif, dans le trou marqué «+». Dans le schéma d'implantation des composants, C20 n'apparaît pas car il se trouve derrière le tuner Sharp; par contre, sur la sérigraphie du circuit imprimé, il est bien représenté.

A ce stade, il ne reste plus à monter sur le circuit imprimé, que les trois borniers et le porte-fusible.

Sur la gauche, installez le MOSFET MFT1 et le circuit intégré IC3, lesquels, comme vous pouvez le voir sur le schéma d'implantation des composants de la figure 15, sont fixés en position horizontale sur un petit dissipateur en aluminium anodisé noir.

A proximité du MOSFET MFT1, fixez le transformateur d'alimentation T1 et, en haut à droite, insérez le tuner Sharp et soudez toutes ses broches, y compris les deux broches de masse, sur les pistes du circuit imprimé.

Il faut à présent insérer les différents circuits intégrés dans leur support respectif, en orientant leur repère-détrompeur vers la gauche, à l'exclusion de IC8, dont le repère-détrompeur est dirigé vers le haut.

Avant d'enfoncer complètement les circuits intégrés dans leur support, contrôlez que toutes les broches se trouvent en face de leur orifice respectif car si une ou plusieurs de ces broches sont écartées, elles pourraient se tordre sous la pression ou, en tout cas, ne pas se placer correctement dans les trous du support.

Comme vous l'avez constaté, le montage de cet appareil ne présente pas de grandes difficultés, car même sur le circuit imprimé, vous disposez d'une sérigraphie complète de chaque composant avec la représentation de sa forme et l'identification dans la liste des composants.

Montage de la platine LX.1415/B

Après avoir terminé le montage de la platine de base, prenez le second circuit imprimé référencé LX.1415/B (voir figures 13 et 14) et montez tous les composants.

Pour commencer, nous vous conseillons d'insérer le support pour le circuit intégré IC9 et le connecteur CONN.1, en orientant le côté où se trouve la découpe vers le haut, comme cela est visible sur la figure 13.

Insérez ensuite, sur le côté opposé, les deux connecteurs femelles à 20 broches, en barrette sécable, que vous utiliserez comme support pour l'afficheur LCD.

Prendre ensuite les trois inverseurs à levier S1, S2 et S3 et, après avoir appuyé à fond leurs trois broches dans les trous du circuit imprimé, soudez-les sur les pistes.

Insérez ensuite les quatre boutons poussoirs P1, P2, P3 et P4, la résistance

R61 et les deux condensateurs C65-C66.

Les deux potentiomètres R56 et R39 sont également montés sur ce circuit imprimé, mais avant de les fixer, il faut raccourcir leur axe à 18 mm (voir figure 14).

Le montage terminé, insérez le circuit intégré IC9 dans son support, en orientant le repère-détrompeur vers le condensateur 66, non sans avoir vérifié le parfait positionnement de toutes ses broches sur le support.

Avant d'installer l'afficheur dans ses deux connecteurs, il faut vérifier sur quel côté est placé le repère détrompeur, car si celui-ci est mal monté, aucun affichage n'apparaîtra.

Ce repère détrompeur est matérialisé par une petite protubérance sur le verre ou bien par un signe < sur le cadre interne (voir figure 14).

Montage dans le coffret

Les deux circuits imprimés sont fixés à l'intérieur du coffret plastique (voir figure 19). Fixez le circuit imprimé LX.1415 sur le fond du coffret, à l'aide de 4 vis.

Sur le couvercle du coffret, fixez le hautparleur avec les deux petites plaques d'aluminium comme vous pouvez le voir en fique 20.

Sur la face avant, il faut visser les entretoises métalliques fournies dans le kit (voir figure 24).

Figure 25 : Après avoir fixé, sur la face avant, le moniteur LCD couleur et la platine LX.1415/B, il faut connecter cette dernière à la platine LX.1415, en insérant, dans les deux connecteurs CONN.1, les connecteurs femelles sertis sur le câble en nappe.

Sur ces entretoises, fixez le circuit imprimé de l'afficheur LX.1415/B et le moniteur couleur LCD.

Pour serrer les entretoises de 12 mm de longueur, il faut utiliser une clé-tournevis de la bonne dimension, que l'on trouve dans toutes les quincailleries.

Après avoir fixé le circuit imprimé LX.1415/B sur le panneau, soudez les câbles blindés aux bornes des potentiomètres, en reliant la tresse de blindage aux bornes disposées en haut du potentiomètre comme indiqué sur la figure 13.

Sur les deux picots qui sortent près de l'inverseur S1 (figure 13 en bas à droite, au-dessus du potentiomètre R39), soudez le câble bifilaire dont l'extrémité est reliée au bornier situé sur le côté droit du porte-fusible F1 (figure 15 en haut à gauche).

Après avoir glissé le panneau dans les guides du coffret, soudez les extrémités des câbles blindés sur les picots situés à proximité de IC6 et IC7 (voir figure 15).

Quand vous soudez les extrémités des fils qui sortent du moniteur couleur LCD, rappelez-vous que le fil rouge (alimentation 12 volts) est soudé sur la broche de gauche (voir figure 15) et que le fil opposé, qui est celui du signal vidéo, est soudé sur la broche de droite.

Sur le panneau arrière, sont fixées les deux prises de sorties audio-vidéo pour un éventuel moniteur externe ou pour enter dans la prise péritélévision de votre téléviseur couleur (voir figure 4).

Toujours sur le panneau arrière, fixez la prise pour le chargeur de batterie. Avant de raccorder cette prise au bornier du circuit imprimé vérifiez, après y avoir inséré une fiche mâle reliée au chargeur, sur laquelle de ses deux bornes sort la tension positive.

La liaison entre les circuits imprimés LX.1415 et LX.1415/B est assurée par le câble en nappe à 10 conducteurs, terminé à chaque extrémité par une prise déjà sertie, reliant entre eux les deux connecteurs CONN.1.

Toutes les liaisons terminées et vérifiées, fixez la batterie sur la face arrière du coffret en utilisant le cadre métallique fourni dans le kit.

Réglages

Reliez ce scanner à une parabole déjà convenablement orientée vers un satellite. Placez l'inverseur «FREQ» (S3) sur la position «VIDEO». En appuyant sur les poussoirs P1 ou P2 marqués «FREQUENCY», vous vous syntoniserez successivement sur tous les émetteurs TV transmis par ledit satellite.

Chaque fois que vous vous arrêterez sur une émission, vous verrez, sur le moniteur, apparaître les images transmises.

Comme vous pourrez le noter, la valeur de la fréquence qui entre dans le tuner Sharp apparaîtra sur l'afficheur.

En déplaçant l'inverseur «FREQ» (S3) sur «AUDIO», vous verrez apparaître sur l'afficheur, la fréquence de la porteuse audio. Cette fréquence peut varier de 6,10 à 8,88 MHz, en tournant le bouton du potentiomètre «FREQ. AUDIO» (R39) disposé sur la face avant.

Après avoir syntonisé un émetteur, si vous tournez lentement le bouton de ce potentiomètre de façon à lire sur l'afficheur 6,50 MHz environ, vous pouvez écouter l'audio.

Certainement que le son reçu, sera faible ou distordu car les noyaux de MF1 et MF2 n'ont pas encore été réglés.

Pour régler le noyau de MF1, il faut relier les pointes de touche d'un multimètre, positionné en voltmètre sur l'échelle 10 volts en tension continue, entre le picot TP1 (situé près de C52 et R54) et une masse. La pointe de touche à relier à la masse, peut également être appuyée sur le boîtier métallique du tuner, lui-même étant relié à la masse.

Avec un tournevis d'alignement, tournez le noyau de MF1 jusqu'au moment où vous lirez la tension maximale sur le voltmètre qui sera d'environ 3,5 à 4 volts

Ensuite, tournez le noyau de MF2, jusqu'au moment où vous recevrez un son parfaitement clair et sans aucune distorsion.

Si, après avoir effectué ces réglages vous tournez lentement le poten-

tiomètre «FREQ. AUDIO» sur les fréquences des autres porteuses, sur 7,02, 7,20 MHz ou bien sur 7,38, 7,56 MHz, vous entendrez le même signal audio ou de la musique ou une langue différente par rapport à celle qui est transmise sur 6,50 MHz.

Après avoir constaté que tout fonctionne convenablement, vous pouvez fermer le coffret.

Les derniers conseils

Le scanner étant dans la plupart des cas utilisé près de la parabole, il faut se procurer un morceau de câble coaxial d'une longueur d'environ deux mètres sur lequel vous installerez une prise de type "F" à chaque extrémité.

Ce câble servira à relier la sortie du LNB à l'entrée du tuner Sharp.

Pour rechercher la position d'un satellite, il faut d'abord mémoriser la figure de bruit du LNB en procédant de la manière suivante :

- 1 Lorsque la parabole n'est encore orientée vers aucun satellite, avant d'allumer le scanner, déplacez l'inverseur « SCAN » (S2) en position "ON".
- 2 Allumez le scanner. Sur l'afficheur vous verrez apparaître les signes "– –", lesquels, après quelques secondes, disparaîtront pour laisser place à la valeur d'une fréquence.
- 3 Déplacez l'inverseur «FREQ.» (S3) en position «VIDEO» et appuyez simultanément sur les poussoirs P1 et P2. Sur l'afficheur vous verrez que la fréquence partant d'un minimum d'environ 870 MHz atteindra la valeur maximale de 1985 MHz, puis repartira de nouveau de 870 MHz. Cette scrutation de la bande se répétera jusqu'au

moment où la parabole sera orienté vers un satellite et qu'un émetteur sera recu.

- 4 Dès qu'un émetteur est reçu, le scanner s'arrête automatiquement. Sur le moniteur couleur LCD une image apparaît et l'afficheur indique la valeur de sa fréquence.
- 5 En appuyant de nouveau sur P1 et P2, le scanner s'arrêtera sur le second émetteur transmis par le satellite.
- 6 Quand apparaît une image sur le moniteur, vous pourrez la syntoniser plus finement en appuyant soit sur le bouton poussoir P1 soit sur P2.

Comme nous l'avons déjà expliqué plus avant, pour rechercher un satellite, il suffit de déplacer la parabole dans le sens horizontal ou vertical jusqu'au moment où le scanner fera apparaître une image sur le moniteur.

Figure 26 : Pour trouver un satellite, il suffit de déplacer la parabole dans le sens horizontal, puis dans le sens vertical, jusqu'au moment où le scanner fera apparaître une image sur l'écran du moniteur. Si l'image est pleine de bruit, déplacez la parabole de quelques millimètres dans le sens horizontal ou vertical jusqu'au moment où les images seront de qualité parfaite.

Figure 27 : Si dans la recherche d'un satellite vous voulez que le scanner s'arrête automatiquement sur le premier émetteur qu'il parvient à syntoniser, avant de l'allumer et avant d'avoir pointé la parabole vers un satellite, déplacez l'inverseur «SCAN» (S2) sur «ON». Mettez ensuite le scanner sous tension. Sur l'afficheur apparaîtront deux petites lignes "- -" et, après quelques secondes, la fréquence d'accord s'affichera. En appuyant simultanément sur P1 et P2, dès que le récepteur capte un signal vidéo, vous verrez l'image sur le moniteur.

Après avoir trouvé le satellite, pour positionner la parabole de façon parfaite, soit dans le sens horizontal, soit dans le sens vertical, il suffit de la déplacer de quelques millimètres jusqu'à la disparition complète, sur l'image, de tous les points générés par le bruit.

Note importante

Si vous déplacez l'inverseur « SCAN » (S2) en position «ON» lorsque la parabole est déjà dirigée vers un satellite et que vous allumez le scanner, vous verrez apparaître les signes "--" sur l'afficheur. Après quelques secondes la scrutation démarrera en faisant apparaître rapidement tous les émetteurs que vous pourrez capter. En pratiquant ainsi, vous mémorisez, non pas la figure de bruit du LNB, mais le signal maximal de ces émetteurs. Lorsque vous appuierez sur P1 et P2, le scanner ne s'arrêtera sur aucun émetteur car vous aurez mémorisé un niveau de seuil égal à celui desdits émetteurs!

En effet, ce n'est que si vous allumez le scanner, lorsque la parabole n'est dirigée vers aucun satellite, que vous mémoriserez le seuil du niveau de bruit du LNB. Partant de là, tous les signaux vidéo qui dépasseront ce niveau de seuil seront en mesure d'arrêter le scanner.

Le moniteur couleur LCD

Les moniteurs LCD n'ont pas la définition élevée des tubes cathodiques traditionnels.

C'est la raison pour laquelle une petite différence sera toujours remarquable, spécialement dans la gamme des rouges.

Sur le moniteur LCD, vous avez trois petits trimmer situés latéralement. Ils permettent de doser la couleur, la luminosité et le contraste (voir figure 21) que le constructeur a déjà réglés sur les valeurs idéales.

Avant de retoucher ces trimmers, cherchez à vous syntoniser sur un émetteur qui transmet des dessins animés car, les couleurs ayant une meilleure définition que sur un film ou sur du studio, vous apprécierez mieux la réaction des réglages.

Le petit inverseur à glissière, situé audessus de ces trimmers, doit être positionné vers le haut, car s'il était placé vers le bas vous verriez des images inversées comme dans un miroir.

Cet inverseur peut être utile uniquement dans le cas où vous voudriez placer en face du moniteur un miroir positionné avec un angle de 45°.

Nous vous conseillons de relire avec attention l'article « Comment bien utiliser un moniteur LCD couleur » paru dans le numéro 6 de la revue, pages 54 et suivantes.

Figure 28 : Disposition des broches de l'afficheur LCD utilisé dans le scanner.

Comme repère de positionnement, sur le côté de l'afficheur vous voyez un petit bossage sur le verre (côté gauche) ou bien un petit signe "<" sur le cadre interne de l'afficheur (voir figure 14).

Figure 30 : Les brochages des circuits intégrés utilisés dans ce projet, vus de dessus. Uniquement pour les transistors BC328, BC547 et pour le FET J310 ces brochages sont vus de dessous. Pour ce qui concerne le régulateur LM317 et le transistor P321 (équivalent au MMP3055) les brochages sont vus de face. Le brochage des deux circuits intégrés UC3843 et NE602 est reproduit sur la figure 11.

Voici la modif à apporter au scanner TV pour recevoir le son sur les satellites TELECOM 2A et 2B :

- Insérer une capacité de 4,7 pF en parallèle sur la diode varicap DV1. Ceci a pour conséquence de pouvoir régler la fréquence d'accord de la sous-porteuse son de 5,75 MHz à 7,9 MHz (la sous-porteuse son de TELECOM 2A et 2B étant de 5,8 MHz).

La position des satellites

Donner la position des satellites serait un travail de titan, bien inutile par ailleurs! Nous vous recommandons de lire notre confrère «TELE Satellite» qui offre chaque mois, dans un cahier central, près d'une vingtaine de pages de tableaux de tous les satellites que l'on peut capter en France.

Où trouver les composants

Vous pouvez acquérir les circuits imprimés double face à trous métallisés (LX.1415 - LX.1415/B) et le microcontrôleur (EP.1415) séparément. Un kit complet LX.1421 est également disponible. Voir publicités dans la revue.

♠ N. E.

HOT LINE TECHNIQUE

Vous rencontrez un problème lors d'une réalisation? Vous ne trouvez pas un composant pour un des montages décrits dans la revue?

UN TECHNICIEN EST À VOTRE ÉCOUTE le matin de 9 heures à 12 heures : les lundi, mercredi et vendredi sur la HOT LINE TECHNIQUE d'ELECTRONIQUE magazine au

04 42 82 30 30

SAINT-SARDOS IT-SARDOS 8 Tél: 05.63.64.46 SUR GARONNE 63.64.38.39

> **SUR INTER** rauie.fr/ anadoo.f e-mail: arquie

C.Mos. 4001 B 200 4007 B 220 4009 B 3.40 4011 B 200 401 B 3.80 401 B 3.80 401 B 3.80 401 B 3.80 401 B 3.50 402 B 3.50 403 B 6.00 403 B 6.00 403 B 3.50 403 B 6.00 403 B 3.50 404 B 3.40 403 B 3.50 403 B 6.00 404 B 3.40 404 B 3.40 403 B 3.50 403 B 6.00 404 B 3.50	S
4002 B 2.00 4007 B 2.20 4009 B 3.40 4011 B 2.00 11.062 4.9 4012 B 2.40 11.064 5.8 4014 B 2.00 11.064 5.8 4014 B 3.00 10.6615 B 3.6 4016 B 3.70 11.071 3.5 4021 B 3.50 11.074 3.5 4022 B 3.40 11.084 3.5 4022 B 3.40 11.084 3.5 4024 B 3.6 3.6 4024 B 3.6 4025 B 3.10 4027 B 2.90 4028 B 3.90	
4009 B	
1014 B 3.80 UM 66F6BL 8.8	00
4023 B 2.40 TL 084 5.6 4024 B 3.40 SSI 202 31.5 4025 B 2.10 MAX 232 14.5 4027 B 2.90 TLC 271 5.6 4028 B 3.00 TLC 272 8.7	20
4023 B 2.40 TL 084 5.6 4024 B 3.40 SSI 202 31.5 4025 B 2.10 MAX 232 14.5 4027 B 2.90 TLC 271 5.6 4028 B 3.00 TLC 272 8.7	50
4023 B 2.40 TL 084 5.6 4024 B 3.40 SSI 202 31.5 4025 B 2.10 MAX 232 14.5 4027 B 2.90 TLC 271 5.6 4028 B 3.00 TLC 272 8.7	90
4023 B 2.40 TL 084 5.6 4024 B 3.40 SSI 202 31.8 4025 B 2.10 MAX 232 14.3 4027 B 2.90 TLC 271 5.6 4028 B 3.00 TLC 272 8.7 4029 B 3.50 TLC 274 9.9 4030 B 2.30 LM 308 8.4	90
4025 B	30 50
4028 B 3.00 TLC 272 8.7 4029 B 3.50 TLC 274 9.9 4030 B 2.30 LM 308 8.4	5U
4030 B 2.30 LM 308 8.4	90
4033 B	30
4029 B 3.50 TLC 274 9.9 4030 B 2.30 LM 308 B.4 4033 B 6.00 LM 311 2.6 4041 B 2.00 LM 324 2.5 4042 B 2.00 LM 3342 B.4 4042 B 2.00 LM 3342 B.4 4046 B 3.90 LM 339 B.4 4046 B 3.90 LM 339 B.4 4049 B 2.60 LF 355 5.5 4049 B 2.60 LF 355 5.6	10
4043 B	70
4046 B	90
4049 B 2.60 LF 353 5.9 4050 B 2.40 LF 356 6.8 4051 B 3.90 LF 357 7.9 4052 B 3.60 LM 358 2.6	30
4051 B	30
4049 B	00 30
4068 B 2.30 LF 411 9.5	0
4070 B 2.40 TL 431 CP 8B 6.5	50 50
4071 B 2.20 TL 494 9.4 4073 B 2.20 NE 555 2.5 4075 B 2.20 NE 556 3.4 4076 B 3.60 NE 567 4.2	50
4075 B	20
4077 B 2.50 LMC 567 CN 16.5 4078 B 2.50 SLB 0587 31.8 4081 B 2.10 NE 592 8b 5.8 4082 B 2.40 SA 602N 19.0	30 30
4082 B 2.40 SA 602N 19.0	00
4094 B 3.50 µA 723 4.5 4098 B 3.90 LM 741 2.5	50
4510 B 4.20 SAF 800 41 5	00
4511 B	
4514 B 10.60 TBA 810 S 8.4 4516 B 4.70 TBA 820M 8p 3.7 4518 B 3.40 TCA 965 41.0 4520 B 3.50 TDA 1010A 11.5	00
4521 B 6.80 ISD 1416P 89.0 4528 B 3.90 ISD 1420P 96.0 4532 B 4.40 TDA 1023 18.8 4538 B 4.00 TEA 1039 21.8)()
4532 B	2O
4538 B 4.00 TEA 1039 21.8 4541 B 3.90 TEA 1100 49.0 4543 B 4.40 LM 1458 4.5 4553 B 10.80 MC 1488 P 4.4	00
	30
40103 B 4.80 TDA 1514A 44.0 40106 B 2.90 TDA 1518 33.0 40174 B 4.50 TDA 1524 29.0	00
I M 1001 20.0	00
TDA 2002 9.5	50
	50 30
MC145027 17.00 TDA 2005 20.5	00
MC145026 13.00 IUA 2004 21.1 74 HC. 1704 1704 1704 1704 1704 1704 1704 1704	00
74 HC 00 2.40 TDA 2030 12.7 74 HC 02 2.40 TDA 2030 12.7 74 HC 04 2.40 XR 206 31.8 74 HC 04 2.40 XR 206 31.8 74 HC 08 2.40 XR 2010P 27.7 74 HC 14 2.50 U 2400B 17.5 74 HC 30 2.40 ISD 2590 689.7 74 HC 30 2.40 ISD 2590 689.7 74 HC 32 2.50 TDA 2600 69.7 74 HC 74 2.90 ULN 2803 5.8 74 HC 68 2.50 ULN 2803 5.8	
74 HC 04 2.40 XR 2206 38.5 74 HC 08 2.40 XR 2211CP 27.7 74 HC 14 2.50 U 2400B 17.3 74 HC 20 2.80 TDA 2579A 35.6 74 HC 32 2.50 TDA 2800 20.0 74 HC 32 2.50 TDA 2800 20.0 74 HC 32 2.50 TDA 2800 35.6	30
74 HC 30 2.40 ISD 2590 169.0 74 HC 32 2.50 TDA 2800 20.0 74 HC 74 2.90 ULN 2803 5.8	
74 HC 74 2.90 ULN 2803 5.8 74 HC 86 2.50 ULN 2804 5.8	30 30
74 FIG 66 2.50 ULN 2804 5.8	70
74 HC 125 3.40 LM 2904 3.7 74 HC 132 2.90 LM 2917 8h 23.5	50
74 HC 125 3.40 LM 2904 3.7 74 HC 132 2.90 LM 2917 8b 23.5 74 HC 138 2.60 SAA 3049P 56.5	30
74 HC 125 3.40 LM 2904 3.7 74 HC 132 2.90 LM 2917 8b 23.5 74 HC 138 2.60 SAA 3049P 56.5	30 30
74 HC 125 3.40 LM 2904 3.7 74 HC 132 2.90 LM 2917 8b 23.5 74 HC 138 2.60 SAA 3049P 56.5	30 30 30 30 30 50
74 HC 125 3.40 LM 2904 3.7 74 HC 132 2.90 LM 2917 8b 23.5 74 HC 138 2.60 SAA 3049P 56.5	30 30 30 30 30 50 50
74 HC 125	30 30 30 30 30 30 30 50
74 HC 125	500 500 500 500 500 500 500 500

2600 VERD	IIN SUR GA
.91 Fax:	ŬN SUR GA 05.63.64.38
NET http://wv	ww.arquie.fr/
-composants	s@wanadoo.f
Condens.	Cond. LCC
	Petits jaunes 63V Pas de 5.08
Chimiques axiaux 22 µF 25V	De 1nF à 100nF (Préciser la valeur)
220 μF 25V 2.40 470 μF 25V 4.00 1000μF 25V 6.00	Le Condensateur 1.00
2200 µF 25V 10.00 4700 µF 25V 14.00	150 nF 63V 1.20 220 nF 63V 1.40 330 nF 63V 1.40
22 μF 40V 1.70	150 nF 63V 1.20 220 nF 63V 1.40 330 nF 63V 1.40 470 nF 63V 1.40 680 nF 63V 2.20 1 µF 63V 2.20
22 μF 40V 1.70 47 μF 40V 1.90 100 μF 40V 2.30 220 μF 40V 2.40 470 μF 40V 5.40 1000 μF 40V 7.50 2200 μF 40V 14.00 4700 μF 40V 22.00	Régula-
470 μF 40V 5.40 1000 μF 40V 7.50	teurs
4700 µF 40V 22.00	POSITIFS TO220 7805 1 5A 5V 3 30
1 μF 63V 1.40 2.2 μF 63V 1.40 4.7 μF 63V 1.40 22 μF 63V 1.80 74 μF 63V 1.90 100 μF 63V 2.90 1000 μF 63V 12.00	7805 1.5A 5V 3.30 7806 1.5A 6V 3.40 7808 1.5A 8V 3.40 7809 1.5A 9V 3.40 7812 1.5A 12V 3.30 7815 1.5A 15V 3.40 7824 1.5A 24V 4.50
22 μF 63V 1.80 47 μF 63V 1.90 100 μF 63V 2.90	7808 1.5A 8V 3.40 7809 1.5A 9V 3.40 7812 1.5A 12V 3.30 7815 1.5A 15V 3.40 7824 1.5A 24V 4.50
1000 μF 63V 12.00 Chimiques radiaux	78M05 0.5A 5V 3.50
	7805S 1.5A 5V Isol. 6.00 78T05 3A 5V 18.00 78T12 3A 12V 18.00
100 μF 25V 0.80 220 μF 25V 1.40	78T12 3A 12V 18.00 NEGATIFS TO220
22 μF 25V 0.50 47 μF 25V 0.50 100 μF 25V 0.80 220 μF 25V 1.40 470 μF 25V 2.40 1000 μF 25V 4.10 2200 μF 25V 6.50 4700 μF 25V 11.80	7905 1.5A -5V . 4.40
4700 μF 25V 11.80 10 μF 35/50V . 0.70	7905 1.5A -5V. 4.40 7912 1.5A -12V 4.40 7915 1.5A -15V 4.40 7924 1.5A -24V 4.40
22 µF 35/50V . 0.70 47 µF 35/50V . 0.90	POSITIFS TO92 78L05 0.1A 5V 2.80
220 µF 35/50V 1.90 470 µF 35/50V 3.80	78L05 0.1A 5V 2.80 78L06 0.1A 6V 3.10 78L08 0.1A 8V 2.80 78L09 0.1A 9V 3.10
10 μF 35/50V . 0.70 22 μF 35/50V . 0.70 27 μF 35/50V . 0.90 100 μF 35/50V 1.40 220 μF 35/50V 1.90 4770 μF 35/50V 3.80 1000 μF 35/50V 5.90 2200 μF 35/50V 5.90 4700 μF 35/50V 23.00	78L05 0.1A 5V 2.80 78L06 0.1A 6V 3.10 78L08 0.1A 8V 2.80 78L09 0.1A 9V 3.10 78L10 0.1A 10V 3.10 78L12 0.1A 12V 2.80 78L15 0.1A 15V 3.10
1 μF 63V 0.50 2.2 μF 63V 0.50	NEGATIFS TO92
1 μF 63V 0.50 2.2 μF 63V 0.50 4.7 μF 63V 0.90 10 μF 63V 0.90 22 μF 63V 0.90	79L05 0.1A -5V 3.40 79L12 0.1A -12V 3.40 79L15 0.1A -15V 3.40
47 μF 63V 1.50 100 μF 63V 1.90 220 μF 63V 3.00	VARIABLES
470 μF 63V 4.40 1000 μF 63V 8.30	L 200 2A 13.00 LM 317T TO220 4.60 LM 317LZ TO92 4.50
1 µF 63V 0.50 2.2 µF 63V 0.50 4.7 µF 63V 0.90 10 µF 63V 0.90 22 µF 63V 0.90 22 µF 63V 0.90 22 µF 63V 1.90 10 µF 63V 1.90 100 µF 63V 3.90 100 µF 63V 6.90 100 µF 63V 6.	LM 317LZ TO92 4.50 LM 317K TO3 20.00 LM 337T TO220 7.50
	TO 220 FAIBLE DDP
1 nF 400V 1.30 2.2nF 400V 1.30 3.3nF 400V 1.30 4.7nF 400V 1.30 10 nF 400V 1.30 15 nF 400V 1.30 22 nF 400V 1.30	L4940 5V 1.5A 14.00 L4940 12V 1.5A 14.00 L4960 32.00
4.7nF 400V 1.30 10 nF 400V 1.30 15 nF 400V 1.30	Supports
22 nF 400V 1.30 33 nF 400V 1.40 47 nF 400V 1.40	de C.I.
68 nF 400V 1.90 100nF 400V 1.90 220nF 400V 3.20	Contacts lyre
1 nF 400V 1.30 2.2nF 400V 1.30 3.3nF 400V 1.30 3.3nF 400V 1.30 4.7nF 400V 1.30 10 nF 400V 1.30 15 nF 400V 1.30 15 nF 400V 1.30 22 nF 400V 1.30 23 nF 400V 1.30 23 nF 400V 1.30 23 nF 400V 1.90 22 nF 400V 1.90 22 nF 400V 1.90 23 nF 400V 3.20 33 nF 400V 3.20 33 nF 400V 3.30 1 nF 400V 4.30 1 nF 400V 5.90 20 nF 400V 4.30 2	8 Br. 0.80 14 Br. 0.90 16 Br. 1.00
Classe X2 C330	16 Br. 1.00 18 Br. 1.20 20 Br. 1.30 24 Br. Etroit 1.90
47nF 250V 15mm 2.50 100nF 250V 15 3.20 220nF 250V 15 4.70	28 Br. Large 1.70 28 Br. Etroit 1.80
Classe X2 C330 470F 250V 15mm 2.50 1000F 250V 15 3.20 2200F 250V 15 4.70 470F 250V 15 9.00 1µF 250V 15mm 13.50	32 Br. Large 2.00 40 Br 1.90 Contacts tulipe
MKH Siemens 1 nF 400V 1.00 4.7 nF 400V 1.70	8 Br 1.30
22 pE 250V 1 70	1 14 Br 1.80

Tantales

2.2 µF 16V 4.7 µF 16V 10 µF 16V 22 µF 16V 47 µF 16V

0.1 μF 35V 0.47μF 35V 1 μF 35V 2.2μF 35V

Céramiques monocouches

1.10 1.10 1.20 1.70 2.30 3.90

8 Br. 0.80 14 Br. 0.90 16 Br. 1.00 18 Br. 1.20 20 Br. 1.30 24 Br. Etroit 1.90 28 Br. Large 1.70 28 Br. Large 2.00 40 Br. 1.90	BUK 455-60A 13.50 BUT 11AF TO220 7.7 BUT 18AF SAT186 13.00
Contacts tulipe	IRF 9530 TO220 13.50 IRF 9540 TO220 23.00
8 Br. 1.30 14 Br. 1.80 16 Br. 2.60 18 Br. 2.90 20 Br. 3.20 28 Br.Large 3.70 28 Br.Etroit 4.00 40 Br. 6.00 68 Br. 6.00 84 Br. 5.20	MJ 15004 TO3 24.50 MJ 15024 TO3 29.00 MJ 15025 TO3 30.00 TIP 29C TO220 4.80 TIP 30C TO220 4.50 TIP 32C TO220 4.60 TIP 32C TO220 4.60 TIP 36C TOP3 1.45.50 TIP 36C TOP3 1.90 TIP 41C TO220 5.80 TIP 42C TO220 4.60
Barettes sécables	TIP 121 TO220 . 6.00 TIP 126 TO220 . 4.30
32 Br.Tulipe 6.10 32 Br.Tul. A Wrapper 19.00	TIP 127 TO220 . 5.00 TIP 142 TOP3 . 13.00 TIP 147 TOP3 . 11.80 TIP 2955 TOP3 8.80
Supports à force d'insertion nulle 28 broches 72.00	MINI PR

l	
	ors
	sist
<u> </u>	Trar

	2N 3440 TO5 BC 107B TO18 . BC 109B TO18 . BC 177B TO18 . BC 237B TO92 .	4.80 2.40 2.40 2.70 0.90
000000000000000000000000000000000000000	BC 237C TO92 BC 238B TO92 BC 238C TO92 BC 307B TO92 BC 309B TO92 BC 327B TO92 BC 337B TO92 BC 368 TO92 BC 369 TO92	1.10 0.90 0.90 0.90 0.90 0.90 0.90 2.40 2.40
00.00	BC 516 TO92 BC 517 TO92 BC 546B TO92 .	2.30 2.30 0.90
0	BC 547B TO92 . BC 547C TO92 . BC 548B TO92 . BC 549C TO92 . BC 550C TO92 .	0.90 0.90 0.90 0.90 0.90
0 0 0 0	BC 556B TO92 . BC 557B TO92 . BC 557C TO92 . BC 558B TO92 . BC 559C TO92 . BC 639 TO92 BC 639 TO92	0.90 0.90 0.90 0.90 0.90 0.90
000000000000000000000000000000000000000	BC 639 TO92 BC 847B CMS BD 135 TO126 BD 136 TO126 BD 139 TO126 BD 140 TO126 BD 237 TO126 BD 238 TO126 BD 238 TO126 BD 239 TO220	1.90 0.80 1.70 1.70 2.00 2.10 3.30 3.50 4.20
	BD 240 TO220 . BD 242C TO220	4.20

40 broches 82.00

Modèles "PRO" dans

EXTRAIT DES PROMOTIONS ACTUELLES

Insoleuse KF (livrée à monter) Dim. utiles 160X260mm Comprend: la valise-chassis 4 tubes 8 w. ballasts, douilles inter et

Poids:

3,3 Kg

Quickroute 4.0

Livré avec Quickroute 4 logiciel de CAO

Microcontroleurs x10, x25, x60 ..

TX-FM Audio RX-FM Audio TX433SAWS RX290A-433 MAV-VHF224 US40-AS (ult

Galvanomètre

LCD 2000 Pts

58.00 F

Les 2 90.00 F

Modules "MIPOT" Emet stand. AMTX12B Récepteur AMRXSTD Emet. miniature TX433 Emet. AMTXACC12B Récep. AM Sup.H. SH5B Antenne flexible

Graveuse double face

Prix catalogue PROMOTION

275,00 L'ensemble 824,00 760,00 F N° 11694 Insoleuse 4 tubes KF 499.00 N° 13020 Quickroute version démo 50,00

Logiciel de C.A.O. EN FRANÇAIS. Création de shémas, simulation, saisie, autoroutage. Prise en main facile. Enfin un logiciel de CAO à la portée de

l'amateur et des PME. Version démo 100% opérationnelle limitée à 40 broches N°13021 Quickroute 4 twenty 300b 1200.00 N° 13024 Quickroute 4 twenty 800b 1995.00

EXT	RAIT DES PROMOTIONS AG	CTUELLES	N°22
	Prix Unit Epoxy 1F 200x300 prés. 16/10 . 48.50 F Epoxy 1F 100X160 prés. 16/10 14.00 F	PROMOTION Les 3 120.00F Les 3 40.50F	N° 68 N° 68 N° 68
	Borniers 2 plots. Pas de 5 mm 1.90 F Borniers 3 plots. Pas de 5 mm 2.90 F	Les 10 13.00F Les 10 23.00F	N°71 N°71 N°71 N°71
N°2820	Condensateur LCC 100nF 63V $\underline{\text{1.00 F}}$	Les 10 16.00F	N°71 N°71
N°1640	Barette HE14 2x40 droit. 2.54 <u>5.30 F</u>	Les 10 39.00F	N°8 N°8
	Inter inverseur 1 pole 3A/250V 3.60 F Inter inverseur bipol. 3A/250V 6.00 F	Les 10 24.00F Les 10 37.00F	N° 8 N° 8 N° 62 N° 62
N°5512	Relais DIL 2RT 6V 1.2A 67Ω 16.40 F Relais DIL 2RT 12V 1.2A 270Ω 16.40 F Relais Typ.40 1RT 12V 10A 200Ω 19.00 F	Les 3 42.00F Les 3 42.00F Les 3 44.00F	N° 63 N° 63 N° 63
N°1032	Barette TULIPE 32 Pts sécable 6.10 F	Les 10 39.00F	N°54 N°54

N°1032 Barette TULIPE 32 Pts sécable 6.10 F	Les 10 39.00F
N°50109 SUB D droit mâle 9b3.40 F	Les 10 26.00F
N°50125 SUB D droit mâle 25b3.90 F	Les 10 29.00F
N°50209 SUB D droit femelle 9b 3.50 F	Les 10 26.00F
N°50225 SUB D droit femelle 25b 3.80 F	Les 10 29.00F
N°51009 SUB D capot plastique 9b 3.40 F	Les 10 26.00F
N°51025 SUB D capot plastique 25b 3.90 F	Les 10 29.00F
BASIC STAMP	
N°1032 Stater Kit Stampl pour BS1 1224.00F	1099.00 F

Le STATER KIT 1 comprend : Le manuel BASIC STAMP I / STAMP II, un cordon ele, un BS I, un circuit imprimé BS I, le logiciel PARALLAX éditeur de

N°8682 Module BASIC Stamp II . BS2-SX .. 549.00 F

ROMMASTER II Programmateur universel. Connection sur le port parralléle d'un PC. Logiciel sous DOS avec menus déroulants, fenêtres et boites de dialogues, gestion de la souris. Editeur de texte, modification possible des fichiers JEDEC, HEX et vecteurs de tests. Macros pour les taches répétitives. Livré avec alimentation 9V 2A. Support 32b ZIF. Programme

plus de 840 composants: EPROMS / EEPROMS / FLASH EPROMS: 10C, 11C, 12C, 14C, 15C, 17, 20C, 22C, 24, 24C, 24LC, 25,27, 27C, 27CP, 27CX, 27H, 27L, 27P, 27S, 28, 28C, 28EE, 28F, 28HC, 28LV, 28PC, 28SF, 29C, 29EE, 29F, 29LE, 46, 48, 48F, 52, 54, 55, 57C, 58C, 59C, 68, 7C, 85C, 87C, 93C, 93CS, 93LS, 97, 98. *PLD*: 5A, 5C, 85C, ATF,

CPL, CY, EP, GAL, PALCE, PEEL, PL, PLC, PLS. MICROCONTROLEURS: AT92C, PIC12C, PIC16C, PIC16F, TESTE ET INDENTIFIE plus de 260 composants :

DRAM / SRAM. TTL 74xxx. CMOS 40xx, 45xx umentation détaillée sur demande N° 13031 Programmateur ROMMASTER II 2850.00 F

LPC-2b PROGRAMMATEUR D'EPROMS/EEPROMS/

En externe sur le port parallèle d'un PC (détection automatique). Tension de prog. 5V,12V, 12.5V, 21V,25V. Livré avec cable, alimentation, logiciel et doc en français

8 autres modèles dans le catalogue

OGRAMMATEUR DE PIC

(12C508, 16F84, 24C16...) sur port série de PC. Avec

giciel, cable série.et mode d'emploi. Livré monté. PIC -01: **390.00**

KITS VELLEMAN: plus de 140 kits référencés dans notre catalogue

CONDITIONS DE VENTE	PAR CORRESPONDANCE UNIQUEMENT.	NOS PRIX SONT T T C (T.V.A 20.6% comprise)

- PAIEMENT A LA COMMANDE PAR CHEQUE, MANDAT OU CCP
- -FRAIS DE PORT ET D'EMBALLAGE: 43.00 F (Assurance comprise) -PORT GRATUIT AU DESSUS DE 900 F PAR CARTE BANCAIRE: DONNER LE NUMERO , LA DATE DE VALIDITE, UN NUMERO DE TELEPHONE ET SIGNER
- CONTRE REMBOURSEMENT: JOINDRE UN ACOMPTE MINIMUM DE 20% (TAXE de C.R. EN PLUS: 28.00F)
- DETAXE A L'EXPORTATION. NOUS ACCEPTONS LES BONS DE COMMANDE DE L'ADMINISTRATION

TOUS NOS COMPOSANTS SONT GARANTIS NEUFS ET DE GRANDES MARQUES

	Prénom:

Un système de fondu pour cassettes vidéo

Pratiquement tout le monde dispose aujourd'hui d'un ou plusieurs magnétoscopes. Celui qui s'intéresse à l'électronique est toujours à la recherche d'un circuit lui permettant d'améliorer, dans la mesure du possible, la qualité des images. Il cherche également à les enrichir en copiant certaines séquences à partir d'autres cassettes vidéo. Le montage que nous vous proposons dans cet article est un système de fondu permettant de faire un enchaînement doux entre un sujet et un autre.

Figure 1 : Le fondu pour cassette vidéo prêt à fonctionner.

ans notre numéro 3 (page 30), nous avions déjà réalisé le montage du kit FT282 qui est un filtre électronique pour magnéto-

scope. Nous avons donc pu constater que ce kit permettait de dupliquer pratiquement tous les types de cassettes vidéo. A ce propos, bien que nous ne l'ayons pas précisé dans l'article, ce filtre permet la duplication en système Secam aussi bien qu'en Pal.

Si ce circuit permet d'effectuer des copies brutes de bonne qualité en "nettoyant" le signal, il ne permet pas pour autant de travailler "manuellement" sur l'enregistrement. Lors du transfert de diverses séquences isolées d'une cassette vidéo vers une autre, le brusque changement d'image que l'on voit lors de la substitution du signal est extrêmement désagréable pour le téléspectateur.

Pour éviter cet inconvénient, la seule solution est de réaliser un fondu. Cette opération consiste à atténuer graduellement l'amplitude du signal de la première image, depuis son maximum vers son minimum, puis d'insérer la seconde image en augmentant progressivement l'amplitude de son signal du minimum vers son maximum. Pour celui qui a cherché dans le commerce un circuit capable d'effectuer des fondus vidéo, la seule annonce du prix l'aura rebuté ou décidé à le construire par ses propres moyens. Pour cela, il suffit d'utiliser un simple potentiomètre en quise

d'atténuateur, puisque s'il peut atténuer un signal BF, il pourra également atténuer un signal vidéo.

Figure 2 : Photo de la carte électronique. Comme vous pouvez le voir, le potentiomètre à glissière est monté au bas du circuit imprimé.

Figure 3 : En agissant sur le potentiomètre vous pouvez réduire le contraste d'une image jusqu'à la rendre complètement noire. Après quoi vous pouvez insérer une seconde image sur la bande.

Une fois réalisé ce type d'atténuateur, on se rendra pour tant compte que, même quand on effectue une atténuation minimum, l'image du téléviseur commence à flotter pour, finalement, se transformer en bandes croisées

Un peu de théorie...

En fait, tout le monde ne sait pas qu'un signal vidéo est composé des signaux suivants :

- Synchronisation (horizontale et verticale).
- Burst couleur à 4,43 MHz.
- Image vidéo.

Comme on peut le constater sur la figure 4, le signal vidéo part d'un niveau de 0,3 volt, qui est le niveau du noir, pour atteindre une amplitude de 1 volt, qui est le niveau du blanc.

Ce signal vidéo est précédé du signal burst couleur ainsi que du signal de synchronisation.

Le signal de synchronisation part du niveau du noir, c'est-à-dire de 0,3 volt, puis descend brusquement à 0 volt. Il y reste pendant une durée de 4,7 microsecondes pour ensuite revenir à 0,3 volt.

0,8 microseconde après, le signal du burst est lancé (compris entre 0,2 volt et un maximum de 0,4 volt) pendant une durée de 2,5 microsecondes avant de revenir à 0,3 volt. 2,5 microsecondes après, la ligne vidéo est lancée.

La durée totale du signal est de 10,5 microsecondes depuis le démarrage de la synchronisation jusqu'au lancement de la ligne vidéo.

Quand la valeur de la tension de l'image est de 0,3 volt par rapport au

niveau de synchronisation, l'écran du téléviseur devient noir. Puis, petit à petit, quand la tension augmente, il passe au gris pour devenir entièrement blanc lorsque la valeur maximum de 1 volt est atteinte.

Par conséquent, lorsqu'on atténue un signal vidéo à l'aide d'un potentiomètre seulement, on atténue aussi, automatiquement, l'amplitude des signaux de synchronisation.

Lorsque l'amplitude de synchronisation passe sous 0,3 volt, et étant donné que le téléviseur utilise ce signal pour positionner l'image vidéo sur l'écran, ce dernier ne pourra plus faire apparaître une image parfaitement synchronisée.

Pour réduire le contraste de l'image jusqu'à la rendre complètement noire, il est donc nécessaire d'atténuer le signal vidéo tout en laissant intacte l'amplitude des signaux de synchronisation ainsi que, bien sûr, l'amplitude du burst couleur.

Pour obtenir ces conditions, il faut utiliser un circuit qui permette de séparer :

- la synchronisation verticale,
- la synchronisation composite (verticale et horizontale),
- le burst,
- l'image vidéo.

Une fois que l'on a obtenu cette séparation, nous pouvons alors récupérer le signal vidéo pour l'atténuer jusqu'à son niveau minimum, c'est-à-dire au niveau du noir.

Puis, avant de l'appliquer sur l'entrée du téléviseur, on doit insérer à nouveau le signal de synchronisation, tout en respectant son amplitude ainsi que les temps exacts, sinon on obtiendrait une image asynchrone.

Figure 4 : Le signal vidéo descend brusquement de 0,3 volt à 0 volt pour y rester pendant une durée de 4,7 microsecondes (signal de synchronisation). 0,8 microseconde après, le signal de burst est lancé, puis 2,5 microsecondes plus tard apparaît le signal de la ligne vidéo pour une durée de 52 microsecondes. Pour faire varier le contraste d'une image, vous devez seulement modifier l'amplitude du signal vidéo mais laisser intacte l'amplitude des signaux de synchronisation et de burst.

Figure 5 : Schéma électrique du circuit permettant d'atténuer l'amplitude du signal vidéo sans pour autant modifier l'amplitude des signaux de synchronisation et de burst. Ce circuit est alimenté par une tension stabilisée de 5 volts (voir figure 14).

Figure 6 : Quand on applique un signal vidéo sur l'entrée du circuit, l'interrupteur électronique IC2/C laisse passer uniquement les signaux de synchronisation et de burst.

Figure 7 : Le second interrupteur électronique IC2/D laisse passer seulement le signal vidéo que vous aurez préalablement atténué mais aussi dépourvu de tout signal de synchronisation et de burst.

Schéma électrique

Ouand on observe le schéma électrique, en figure 5, on peut voir que seuls 4 intégrés et 3 transistors sont nécessaires pour réaliser ce circuit.

Commençons sa description par la prise d'entrée sur laquelle sera appliqué le signal vidéo à atténuer.

Le signal qui passe au travers du condensateur C1 rejoint l'entrée inverseuse du premier amplificateur opérationnel IC1/A utilisé comme dispositif d'alignement (clamp). Il sert à positionner le créneau, ou niveau haut de la synchronisation, à une valeur d'environ 3 volts. Ce même signal appliqué sur l'entrée est envoyé, au travers du condensateur C8, sur la broche d'entrée 2 de IC3. Ce dernier est un intégré de type LM1881 permettant de séparer les signaux de synchronisation du signal vidéo.

- Le signal de synchronisation correspondant au burst couleur est disponible sur la broche de sortie 5.
- Le signal de synchronisation composite est disponible sur la broche de sortie 1.
- Le signal de synchronisation vertical est disponible sur la broche de

Ces signaux sont tous de type TTL, ce qui signifie qu'ils démarrent de 0 volt pour atteindre un maximum de 5 volts. Ces signaux servent à diriger, en parfaite synchronisation et dans les temps exprimés en microsecondes, les quatre interrupteurs électroniques que nous avons nommés IC2/A, IC2/B, IC2/C, IC2/D.

Ces interrupteurs électroniques se ferment, laissant ainsi passer le signal de la broche d'entrée vers la broche de sortie lorsqu'une tension positive, ou niveau logique 1, se présente sur leurs broches d'entrée de contrôle 13, 5, 12 et 6. En revanche, ils s'ouvrent lorsque leurs broches de contrôle sont mises à la masse, c'est-à-dire au niveau logique 0.

Lorsqu'un signal vidéo est appliqué sur la prise d'entrée, l'interrupteur IC2/C se ferme aussitôt, alors que l'interrupteur IC2/D s'ouvre dans le même temps. Par conséquent, seuls les signaux de synchronisation et de burst atteignent la base de TR2 (voir figure 6).

10,5 microsecondes après, l'interrupteur IC2/C s'ouvre, alors que dans le même temps, l'interrupteur IC2/D se ferme automatiquement. Seul le signal vidéo atteint alors la base du transistor TR2 (voir figure 7).

Lorsque le signal de l'image est achevé, l'interrupteur IC2/D s'ouvre, alors que, bien entendu, l'interrupteur IC2/C se ferme pour laisser passer à nouveau les signaux de synchronisation et de burst.

Par conséquent, la base du transistor TR2 reçoit tous les signaux de synchronisation avec l'amplitude requise, suivis du signal vidéo dont l'amplitude aura été auparavant réglée par le potentiomètre R7 relié à la broche de sortie de IC1/B (broche 7).

Dans ce circuit, l'élément IC1/B est utilisé comme détecteur de pic afin que la tension de référence pour le niveau du noir soit maintenue à un niveau stable.

Figure 8 : Une fois la ligne vidéo terminée, l'interrupteur IC2/C permet de réinsérer les signaux de synchronisation et de burst sans aucune modification d'amplitude (voir figure 4).

Ainsi, en tournant le potentiomètre relié sur la sortie de IC1/B, on peut atténuer l'image jusqu'au niveau minimum du noir. De ce fait l'écran du téléviseur devient très sombre, sans toutefois perdre les signaux de synchronisation. Tous les temps d'ouverture et de fermeture des interrupteurs électroniques sont rigoureusement respectés.

Les Nand IC4/A – IC4/B – IC4/C autorisent la fermeture de l'interrupteur IC2/C jusqu'à l'arrivée des signaux de synchronisation et de burst sur le signal vidéo. Lorsque ceux-ci auront terminé leur cycle, ces mêmes Nand déclencheront l'ouverture de IC2/C.

La quatrième Nand IC4/D est connectée en porte inverse sur la sortie de

Figure 9 : Plan d'implantation des composants. Cette platine sera fixée sur la façade de l'appareil au moyen de deux entretoises métalliques.

Figure 10 : Vue de dessus du brochage des intégrés, avec leur repère-détrompeur en U tourné vers la gauche. Dans le cas des deux transistors BC557 et BC547 seulement, les connexions sont vues de dessous.

Liste des composants LX.1406

 $\begin{array}{lll} \text{R1} & = & 75 \ \Omega \\ \text{R2} & = & 22 \ k\Omega \\ \text{R3} & = & 22 \ k\Omega \\ \text{R4} & = & 1 \ k\Omega \end{array}$

 $R5 = 100 \Omega$ $R6 = 10 M\Omega$

R7 = $1 k\Omega$ pot. linéaire

 $\begin{array}{rcl} R8 & = & 2,2 \text{ k}\Omega \\ R9 & = & 2,2 \text{ k}\Omega \\ R10 & = & 2,2 \text{ k}\Omega \\ R11 & = & 220 \Omega \\ R12 & = & 220 \Omega \end{array}$

R13 = 220Ω R14 = 75Ω R15 = $820 k\Omega$ R16 = $4.7 k\Omega$

 $R17 = 220 \Omega$

C1 = 1 µF polyester C2 = 100 nF polyester C3 = 1 µF électrolytique C4 = 22 µF électrolytique C5 = 1 µF polyester

 $C6 = 1 \mu F \text{ polyester}$ C7 = 100 nF polyesterC8 = 100 nF polyester

C9 = 100 nF polyester C10 = 100 nF polyester

DS1 = Diode 1N4148 DL1 = Diode LED

IC1 = Intégré TL082 IC2 = C-Mos 4066 IC3 = Intégré LM1881

IC4 = C-Mos 4011 TR1 = Transistor NPN BC547

TR2 = Transistor NPN BC547 TR3 = Transistor PNP BC557

Sauf spécification contraire, toutes les résistances sont des 1/4 W à 5 %.

Composants LX.1335

C1 = 1 000 μF électrolytique C2 = 100 nF polyester

C3 = 100 nF polyester C4 = 470 µF électrolytique

RS1 = Pont redresseur 100 V 1 A

IC1 = Intégré μ A7805

T1 = Transform. 5 W (T005.01)

sec. 8 V 0,5 A

S1 = Interrupteur

IC4/C. Il est évident que lorsqu'il y a un niveau logique 1 sur l'interrupteur IC2/C, on trouvera un niveau logique 0 sur l'interrupteur IC2/D et inversement.

Le bloc final, composé des deux transistors TR2 et TR3, permet d'amplifier le signal vidéo afin d'obtenir une tension 1 volt de crête à crête nécessaire pour la connexion sur l'entrée d'un magnétoscope ou d'un téléviseur.

Lorsque le magnétoscope est débranché, on trouve sur la prise de sortie un signal qui tourne aux alentours des 2 volts. Ce signal descend à 1 volt crête à crête quand on raccorde le magnétoscope.

Ne pensez pas qu'en court-circuitant ou en éliminant la résistance R14 de 75 ohms, branchée en série sur la prise de sortie, vous amélioreriez l'efficacité du système. En fait, vous obtiendriez l'effet inverse avec le risque de mettre hors

Figure 11 : A l'intérieur de l'appareil, un emplacement est réservé pour insérer le bloc d'alimentation LX.1335 qui est reproduit sur la figure 14.

Figure 12 : Pour mélanger deux images, il faut disposer de deux magnétoscopes. Dans le premier, vous devez insérer la cassette à partir de laquelle vous voulez prélever différentes images. Dans le second, vous mettrez la cassette sur laquelle vous désirez recopier ces images au moyen du procédé de fondu.

d'usage les transistors TR2 et TR3 si d'aventure la prise de sortie était court-circuitée dans le même temps. Cette résistance permet d'éviter un tel risque. Le circuit, quant à lui, est alimenté avec une tension stabilisée de 5 volts et, à ce propos, nous vous conseillons d'utiliser le kit LX.1335 dont vous trouverez le schéma de principe ainsi que le plan d'implantation en figure 14.

MAGNÉTOSCOPE LX.1406

Figure 13 : On peut également prélever des images depuis la sortie vidéo d'un caméscope, pour les travailler et les transférer dans le magnétoscope. Grâce à la caméra, il est également possible de repiquer des titres à partir d'un dessin et de les insérer dans votre montage par fondu.

Réalisation pratique

Vous devez monter tous les composants visibles sur la figure 9 sur le circuit imprimé LX.1406. Commencez par insérer les supports pour les intégrés en soudant leurs broches sur les pistes cuivre du circuit imprimé. Une fois cette opération terminée, montez toutes les résistances, après avoir contrôlé leur valeur ohmique d'après leurs couleurs sérigraphiées.

La diode DS1, dont le corps est entouré d'une bague noire, doit être tournée vers le condensateur électrolytique C3. Continuez le montage en insérant tous les condensateurs polyester, puis les chimiques dont la polarité +/- de leurs pattes doit être respectée.

Vous pouvez à présent monter les trois transistors. Prenez les deux NPN BC547 et insérez leurs pattes dans les trous TR1 et TR2 en veillant à ce que la partie plate de leur corps soit tournée vers la gauche. Puis, c'est au tour du transistor PNP BC557 dont les pattes seront insérées dans les trous TR3, mais en tournant la partie plate de son corps vers la droite.

Après les transistors, soudez le potentiomètre à glissière R7 sur le circuit imprimé, insérer les intégrés dans leurs supports respectifs en prenant

soin de tourner leur repère-détrompeur en U vers le haut, comme cela est indiqué sur la figure 9.

Pour terminer le montage, prenez la face avant de l'appareil et fixez-y les deux prises RCA pour l'entrée et la sortie du signal vidéo, l'interrupteur de mise en marche qui commande l'alimentation ainsi que le cabochon chromé à l'intérieur duquel vous placerez la LED DL1. Le circuit imprimé LX.1406 sera fixé sur la face avant au moyen de deux entretoises métalliques de 18 mm. Les deux prises RCA ainsi que les deux pattes de la LED seront reliées au circuit imprimé en suivant le plan d'implantation figure 9. Fixez la platine d'alimentation LX.1335 sur le fond de l'appareil en utilisant quatre entretoises plastiques auto-adhésives.

Une fois le câblage terminé, vous pouvez refermer l'appareil. Le circuit est prêt à fonctionner.

Comment utiliser le fondu pour cassettes vidéo?

Pour mélanger deux images il faut, bien entendu, disposer de deux magnétoscopes. Dans le premier, vous mettrez la cassette à partir de laquelle vous voulez prélever les images, et dans le second vous insérerez la cassette sur laquelle vous désirez enregistrer lesdites images (voir figure 12).

Si vous désirez copier une image depuis la cassette A et une autre depuis la cassette B, vous devez mettre la cassette A dans le magnétoscope 1, puis appuyer sur le bouton "lecture" et ensuite sur le bouton "enregistrement" du magnétoscope 2. Ensuite, faites glisser le potentiomètre R7 du minimum vers le maximum. Pour superposer une seconde image sur la première, mettez le potentiomètre R7 au minimum puis éteignez les deux magnétoscopes.

Insérez la cassette B dans le magnétoscope 1 à partir duquel vous voulez prélever la seconde image, puis appuyez sur le bouton "lecture". Appuyez ensuite sur le bouton "enregistrement" du magnétoscope 2 et faites glisser lentement le potentiomètre R7 du minimum vers le maximum. Grâce à ce principe de fondu, vous pouvez également prélever le signal vidéo à partir d'un caméscope (voir figure 13) pour le travailler et le transférer pour votre montage dans le magnétoscope.

Ce circuit vous sera également très utile quand, après avoir effectué plusieurs prises de vue au caméscope, vous décidez de toutes les regrouper sur une seule cassette, en les classant par ordre chronologique ou encore en fonction des sujets filmés. De plus, et sans devoir dépenser des sommes folles pour l'acquisition d'une table de mixage vidéo, vous pourrez aussi filmer des dessins reproduisant des titres, des dates, etc. afin de les intégrer dans votre cassette. Vous pourrez donc faire succéder différents films sans aucune interruption ou pause intempestive.

Où trouver les composants?

La liste des composants étant fournie, vous pouvez vous approvisionner, de préférence, auprès de nos annonceurs. Un kit complet est disponible. Le circuit imprimé double faces à trous métallisés est également disponible séparément. Voir publicités dans la revue.

♠ N. E.

OSCILLOSCOPES

Plus de 34 modèles portables, analogiques ou digitaux couvrant de

5 à 150 MHz, simples ou doubles traces.

ALIMENTATIONS

Quarante modèles digitaux ou analogiques couvrant tous les besoins en alimentation jusqu'à 250 V et 120 A.

AUDIO, VIDÉO, HF

Générateurs BF, analyseurs,

millivoltmètres, distortiomètre, etc...Toute une gamme de générateurs de laboratoire couvrant de 10 MHz à 2 GHz.

DIVERS

Fréquencemètres, Générateurs de fonctions ainsi qu'une gamme complète

d'accessoires pour tous les appareils de mesures viendront compléter votre laboratoire.

GENERALE 205, RUE DE L'INDUSTRIE Zone Industrielle – B.P. 46
ELECTRONIQUE 77542 SAVIGNY-LE-TEMPLE Cedex Tél.: 01.64.41.78.88
SERVICES Télécopie: 01.60.63.24.85

ET 6 MAGASINS GES À VOTRE SERVICE

ENFIN LA DOMOTIQUE ADAPTÉE AU BESOIN RÉEL

DOMOTIQUE GT2000 - Gestion universelle par ordinateur, téléphone, GSM, télécommande, commande vocale* et modem, de l'habitation intelligente et de l'entreprise, sans câblage, par transmission HF codée.

MODULE MAITRE DE GESTION GT2001:

- émission HF codée sans fil
- gère les modules esclaves (plages horaires, marche arrêt, journalier)
- paramétrage avec le micro ordinateur par liaison RS232
 - · autonome, fonctionne PC éteint
- possibilité de mettre "n" modules esclaves
- système évolutif
- cédérom d'installation compatible Win 3,11; 95; 98; NT

MODULE COMMANDE VOCALE **OPTION**

 se connecte au module GT2001 et pilote la partie esclave

S.A.R.L. DOMOS-COMPUTER - 56, rue du Général de Gaulle 27200 GAILLON - tél 02.32.52.19.31 - fax 02.32.53.50.57

MODULE TÉLÉPHONE GT2002: OPTION

- se connecte au module GT2001 et pilote la partie esclave
- transforme votre téléphone intérieur sans fil en télécommande générale
- de l'extérieur, commande les modules esclaves avec tous téléphones (cabines publiques,

COURANT GT2004 :

• réception HF sans fil

manuelle

réveil

laquelle il est connecté

• commande la prise de courant sur

• entrée marche/arrêt pour commande

ex : chauffage d'appoint, ventilateur,

éclairage, machine à laver, cafetière,

chaine hi-fi, ballon d'eau chaude, radio

MODULE ESCLAVE UNIVERSEL GT2005:

- réception HF sans fil
- identique GT2004 avec la possibilité de recevoir des informations de sonde thermométrique et hygrométrique ex : zones de chauffage, arrosage, VMC, extracteur, ...
- entrées pour sondes (sondes en option)

MODULE ESCLAVE DE GESTION DE réception HF sans fil

- commande : la montée et la descente des volets roulants, des stores, l'ouverture et la fermeture des portails
- entrée pour commande manuelle

Circuits imprimés fabriqués chez ECM - 756 route d'Uzes - 30500 ST-AMBROIX - tél : 04.66.24.18.03. - fax : 04.66.24.36.24.

MODULE CENTRALE D'ALARME AL2000 • 4 zones avec auto protection • sécurité positive • paramétrable par le PC • fonctionne PC éteint MODULE TRANSMETTEUR TÉLÉPHONIQUE AL2001 • compatible AL2000 • classe 2 • matricule à synthèse vocale • 2 nos d'appels • paramétrable PC

BON DE COMMANDE À RETOURNER À DOMOS-COMPUTER 6, RUE DE LAUNAY 27600 GAILLON

PRODUITS	PU TTC QTE	TOTAL TTC	Règlement comptant par chèque ou CCP joint à l'ordre de
GT2001	1 399 frs	frs	DOMOS-COMPUTER ,
GT2002	1 090 frs	frs	Nom-Prénom :
GT2004	498 frs	frs	A Jacobs
GT2005	702 frs	frs	Adresse:
GT2006	604 frs	frs	
Boîtier prise GT2004	198 frs	frs	Code Postal : Ville :
Sonde thermique	299 frs	frs	Code Postal ville
Sonde hygrom.	405 frs	frs	Tél: Fax:
AL2000	1 290 frs	frs	* Commande vocale : nous consulter.
AL2001	1 200 frs	frs	** Frais de port hors France métropolitaine : nous consulter.
Frais de port France**	54 frs1	54frs	TOTAL DE MA COMMANDE FRANCS

Digicode Une clef électronique à clavier

Sûre et fiable, cette clef électronique à clavier trouvera ses applications dans la commande de systèmes d'alarme, de portes à ouverture électrique, de portails motorisés, etc. Le code (à 6 chiffres), se compose sur un petit clavier matricé. Le reste, est confié à un nouveau microcontrôleur Microchip qui, à lui tout seul, gère toutes les fonctions et assure la commande d'un relais en sortie.

'accès à votre bureau ou à votre maison est, bien entendu, limité

à quelques personnes dûment autorisées. Il en est

de même pour l'activation ou la désacti-

vation des alarmes qui protègent ces lieux. En général, des clefs sont remises à ces personnes. Les clefs, toute-fois, ont de nombreux inconvénients. Elles se perdent, s'oublient, peuvent être reproduites par n'importe qui... Remplacer une serrure à clef par une serrure électronique à clavier est solution efficace et sûre. C'est la raison d'être du système que nous vous proposons dans ces pages.

Ce projet peut s'avérer utile pour de nombreuses applications. Nous traitons en fait d'un système somme toute assez traditionnel. Pourtant, la nouveauté est dans la simplicité du circuit, (un seul circuit intégré) et dans la réalisation mécanique résolue avec un clavier à touches souples, petit et fiable.

L'unique circuit intégré utilisé est le nouveau microcontrôleur de Microchip PIC12CE674*, un petit boîtier de huit broches contenant un CPU RISC (Reduced Instruction Set CPU) avec une architecture 8 bits, 2 kbits de mémoire de programme (pour des instructions sur 14 bits!) 128 K x 8 bits de RAM et 16 octets d'EEPROM destinés, dans notre cas, à la mémorisation du code.

Entre autres particularités de ce circuit, signalons l'oscillateur interne à 4 MHz programmable, qui évite le quartz externe et son réseau de compensation.

Cela dit, passons immédiatement au circuit proposé dans ces pages, en nous reportant au schéma électrique de la figure 1.

Vous noterez une structure simple, où le composant principal n'est autre que le microcontrôleur U1.

Ce dernier doit gérer et donc lire le clavier matricé afin de détecter la fermeture des différentes touches qui le composent puis, suivant la saisie, procéder aux actions appropriées. En outre, il s'occupe de la procédure d'apprentissage du code de la clef, que vous pouvez introduire par l'intermédiaire de la fermeture de l'interrupteur S1 tout en appuyant la touche 5 durant les deux secondes qui suivent la mise en service de la platine.

* Vous trouverez la notice technique complète du PIC12CE674 en format .pdf sur le site electronique-magazine.com

SÉCURITÉ

En détail, les choses se passent de la façon suivante :

Le programme

Dès l'application de la tension d'alimentation entre les points + et -Val, le microcontrôleur effectue une remise à zéro et commence à exécuter le programme mémorisé après avoir initialisé les I/O (entrées/sorties). Les broches 2, 7, 6, 4 sont des entrées, les broches 3 et 5 sont des sorties. En premier lieu, le microcontrôleur teste le niveau logique sur la broche 4, qui est équivalent à la situation de S1.

Rôle de S1 à la mise sous tension

Si S1 est fermé, le programme exécute la routine d'effacement de la mémoire EEPROM. Celle-ci élimine le code précédent et le remplace par défaut par le code 1, 2, 3, 4, 5, 6. Pour le valider, il convient d'ouvrir S1 (broche 4 de U1 au niveau logique 1), d'éteindre et de rallumer le dispositif.

Si S1 est ouvert, le programme se place dans une boucle d'attente de 2 secondes (allumage fixe de la LED rouge) durant laquelle il est possible de rentrer dans la phase de programmation d'un nouveau code simplement en appuyant sur la touche 5.

En procédant ainsi, la routine de mémorisation est activée (clignotement rapide de LD1), le microcontrôleur attend que soient composés sur le clavier les 6 chiffres formant le nouveau code puis envoie 2 impulsions de niveau haut sur la broche 3. Ces deux impulsions ont pour effet de faire clignoter autant de fois la LED LD1 indiquant ainsi à l'utilisateur que le nouveau code est bien mémorisé.

Si, durant les deux premières secondes, la touche 5 n'a pas été activée, le programme se déroule normalement. Ce programme est celui où le microcontrôleur attend simplement que soit composé le bon code d'accès. A la suite de quoi, le relais de sortie est activé durant environ deux secondes.

Le schéma électrique

Dans le détail, notez que si le code à 6 chiffres composé dans son ordre exact est identique à celui mémorisé, le microcontrôleur fait passer sa broche 5 au niveau haut pendant 2 secondes. Ce niveau haut polarise la base du transistor T1, ce dernier passe en saturation et alimente la bobine du petit relais RL1. Les contacts de celui-ci sont disponibles sur le bornier afin de permettre de relier les appareils de votre choix (serrure électrique, alarme, machine, ordinateur, etc.). Il faut se rappeler que le pouvoir de coupure de ce relais est de 1 ampère sous 250 volts. Si la puissance à commuter était plus importante, il faudra utiliser ce relais pour commander un relais de puissance.

Le microcontrôleur PIC12C674

Ce nouveau composant Microchip est extrêmement intéressant car, à la différence du fameux PIC12C508, il dispose en interne de 16 octets de mémoire de données EEPROM.

Issus d'une nouvelle famille de PIC, celui que nous avons utilisé est un des nouveau-nés de Microchip, réalisé suivant une architecture RISC à 8 bits (le jeu d'instructions se compose de 35 instructions). Il est pourvu d'un générateur interne d'horloge fonctionnant jusqu'à 10 MHz, d'un compteur/timer à 8 bits utilisable comme diviseur de fréquence jusqu'à 1/64, d'un convertisseur A/D (analogique/numérique), lui aussi à 8 bits, avec la possibilité d'être relié à une des lignes d'entrées sorties.

La mémoire de programme est une Flash-EPROM de 2 048 mots de 14 bits (au lieu des 8 habituels) pour pouvoir contenir des programmes écrits en PicBasic. Il y a ensuite 128 bytes (le bytes est un mot de "n" bits, 14 dans ce cas) de RAM et 16 octets d'EEPROM.

Le registre des I/O (entrées/sorties) compte 6 lignes externes, qui sont : GPO (broche 7), GP1 (6), GP2 (5), GP3 (4), GP4 (3) et GP5 (2) en plus de deux autres internes dépourvues de connexions avec l'extérieur. Ces dernières servent pour le dialogue entre le CPU et l'EEPROM qui a la particularité d'être un bus I²C réalisé dans

le circuit lui même. Les lignes SCL et SDA sont respectivement GP7 et GP6. Notez que les lignes I/O GP0, GP1 et GP3 peuvent avoir des résistances de pull-up (mise au niveau haut) interne,

pouvant êtres insérées par logiciel. GP3 peut servir en programmation de remise à zéro (MCRL au zéro logique) ou de Vpp (tension de programmation) au niveau haut.

Figure 4 : Schéma synoptique interne du PIC12C674.

Figure 5 : Brochage du PIC12C674.

Le clavier : 3 entrées pour gérer 9 touches

Il est intéressant de noter le mode particulier de lecture du clavier utilisé dans cette application. Principalement parce que les microcontrôleurs de la série PIC16CE67x ne disposent pas de suffisamment d'entrées sorties pour adopter la classique méthode de scrutation de lignes et colonnes. En pratique les claviers 9 touches disposent au moins de 6 fils (3 pour les lignes, 3 pour les colonnes) or, nous avons utilisé seulement 3 broches du microcontrôleur U1.

Comme vous pouvez le voir sur le schéma de principe, seules les lignes R1, R2, et R3 du clavier sont reliées à U1. Les trois autres (C1, C2 et C3) sont

respectivement reliées à la masse par l'intermédiaire du condensateur C1 et des résistances R1, R2 et R3. En procédant de la sorte, la lecture n'est pas effectuée par une scrutation, mais par le relevé de la durée de l'impulsion attribuée à chaque colonne.

En fait le condensateur C1, initialement chargé, fait en sorte que si une touche

Pour gérer cette clef à clavier, nous utilisons un seul microcontrôleur programmé de façon à lire les touches, vérifier ou mémoriser les chiffres introduits, activer les signalisations et commander un relais. L'organigramme permet de comprendre le fonctionnement du programme.

En pratique, à la mise en service et après l'initialisation des entrées sorties, c'est l'état de la broche 4 qui est vérifié, pour voir si l'interrupteur S1 est fermé ou ouvert.

Dans le premier cas, la mémoire EEPROM de 16 octets est effacée et le code par défaut 1, 2, 3, 4, 5, 6 est mis en place.

Ensuite, c'est la touche 5 qui est vérifiée. Si elle a été appuyée, le programme appelle une sous-routine d'apprentissage et de mémorisation, avec laquelle l'utilisateur peut introduire son propre code à 6 chiffres.

Dans le cas contraire, le système entre dans le mode de fonctionnement normal, il attend en boucle que soit appuyée une des touches 1 à 9.

Il faut noter que le programme teste une seule fois l'interrupteur S1 et peut entrer en apprentissage/mémorisation du code seulement 2 secondes après la mise en service. En fait la boucle du programme regarde seulement la comparaison des codes.

Ainsi, si vous voulez reprogrammer le code, il faut éteindre l'appareil et le rallumer.

SÉCURITÉ

est pressée, une impulsion de niveau bas soit produite sur la ligne concernée (par exemple pour 1, 2, 3, sur la première, pour 4, 5, 6 sur la seconde et 7, 8, 9 sur la dernière).

Les valeurs des résistances R2, R3 et R4 sont très différentes, les constantes de temps attribuées à chaque colonne sont donc différentes également et par là même facilement reconnaissables par le logiciel.

Ainsi, si une impulsion est reçue sur la première ligne, le micro-contrôleur peut savoir si elle vient de l'intersection de la première colonne (touche 1), de la seconde colonne (touche 2) ou de la troisième colonne (touche 3). Le même raisonnement s'applique pour les deux autres lignes.

L'ensemble du circuit fonctionne avec une tension continue comprise entre 10 et 15 volts à appliquer aux contacts Val.

La diode D1 protège le montage contre les éventuelles inversions de polarité. Le régulateur U2 permet d'obtenir la tension de 5 volts parfaitement stabilisée nécessaire au microcontrôleur.

Réalisation pratique

Après la description du schéma électrique, passons à la construction de la clef à clavier.

La première chose à faire est de préparer le circuit imprimé. Il suffit pour cela de photocopier sur une feuille de calque ou de mylar transparent le tracé du circuit imprimé représenté à l'échelle 1 dans la revue. Insolez aux ultraviolets, révélez et gravez la plaque au perchlorure de fer.

Après gravure, percez la plaque à l'aide d'un foret de 0,8 mm, agrandissez les trous à 1 mm pour les composants plus importants (relais, borniers, diodes D1, D2).

Le montage des composants peut commencer. Insérez tout d'abord les résistances, les diodes au silicium et le support pour le circuit intégré. Orientez le repère-détrompeur du support vers S1. Installez le tran-

Figure 2 : Schéma d'implantation de la clef électronique.

Figure 3 : Dessin du circuit imprimé à l'échelle 1.

Liste des composants

R1 = 560Ω R2 = $2.2 k\Omega$

R3 = $1.5 \text{ k}\Omega$

 $R4 = 100 \Omega$

 $R5 = 47 k\Omega$

 $R6 = 4.7 k\Omega$

 $R7 = 47 k\Omega$

C1 = 100nF multicouche

C2 = 220 μ F 25 V électrolytique

C3 = 100nF multicouche

C4 = $220 \mu F 25 V$ électrolytique

U1 = PIC12CE674 programmé (MF305)

U2 = Régulateur 78L05

D1 = Diode 1N4007

D2 = Diode 1N4007

S1 = Inter pour ci

T1 = Transistor NPN BC547B

RL1 = Relais miniature 12 V (voir texte)

Divers:

1 Clavier 9 touches (TST09)

Support 2 x 4 broches

2 Barette sécable 9 broches

1 Bornier 3 sorties

1 Bornier 2 sorties

1 Circuit imprimé (S305)

Sauf spécification contraire, toutes les résis-

tances sont des 1/4 W à

5 %.

sistor T1 et le régulateur U2 (78L05), en les orientant comme cela est indiqué sur le plan d'implantation des composants. Le côté arrondi de U2 vers C2, le côté arrondi de T1 vers R7. Montez le relais miniature RL1 (type ITT-MZ 12 v ou équivalent) et les borniers permettant d'alimenter le circuit et de le relier à l'appareil à commander. Pour terminer, il faut monter deux rangées de 5 picots mâles au pas de 2,54 mm à l'emplacement du circuit marqué "clavier". Cette double rangée de picots sert à insérer le connecteur du clavier matricé. Dans ces picots, il a été prévu également la liaison à la petite LED incluse dans le clavier.

Dans tous les cas, il faut utiliser un clavier à trois lignes et trois colonnes. Si vous utilisez un clavier différent de celui que nous vous proposons, pour ne pas vous tromper dans les connexions, identifiez au préalable les différents contacts en vous aidant de la documentation fournie par le vendeur ou en repérant les différents contacts à l'aide d'un ohmmètre.

Lorsque tous les composants sont soudés, vous pouvez insérer le microcontrôleur programmé dans sont support en faisant attention à son orientation.

Maintenant, la clef est prête à l'emploi, tout au moins pour un premier essai.

Alimentez la platine avec une alimentation capable de délivrer 10 à 15 volts sous 70 à 80 milliampères en appliquant le positif sur + Val et le négatif sur – (masse).

Dès la mise sous tension, la LED rouge s'allume et s'éteint après 2 secondes.

La première opération qu'il convient d'effectuer, est de débrancher l'alimentation, et de fermer l'interrupteur S1. Remettre sous tension, afin d'effacer la mémoire EEPROM et avoir accès au code mémorisé par défaut.

La LED rouge s'allume et si ensuite aucune opération n'est

SÉCURITÉ

Notre serrure électronique est réalisée sur un petit circuit imprimé de 6,5 x 4 centimètres. Le clavier à touches souples est relié à la platine par un câble en nappe imprimé sur mylar.

Le clavier est du type matricé avec trois lignes et trois colonnes. Il mesure 4 x 5 centimètres, il est étanche et les touches présentent un effet tactile.

Après avoir terminé le montage, vous pouvez installer le système à l'endroit qui vous paraîtra le plus adapté à votre usage.

La fixation du clavier ne présente pas de difficultés particulières, celui-ci étant autocollant, il suffit de retirer la pellicule de protection et de le coller sur le support souhaité (coffret ou directement sur l'appareil à commander).

effectuée durant 2 secondes, la clef est opérationnelle. Pour vérifier sont fonctionnement, il suffit de composer le code par défaut chargé par le programme dans l'EEPROM. Composez donc le code 1, 2, 3, 4, 5, 6. Vous devez voir la LED rouge s'allumer et entendre le relais se coller, puis se décoller après 2 secondes.

Essayez de remplacer le code par défaut avec un code de votre choix en procédant comme nous l'avons expliqué précédemment dans le paragraphe "Rôle de S1".

Où trouver les composants

Dessin du circuit imprimé, liste des composants et organigramme étant fournis, vous pouvez vous approvisionner, de préférence, auprès de nos annonceurs. Un kit complet (FT305) est disponible. Le microcontrôleur préprogrammé (MF305), le circuit imprimé (S305), le clavier (TST09) sont également disponibles séparément. Voir publicités dans la revue.

♠ A. G.

- 13783 AUBAGNE C - Fax 04 42 82 96 51 uds - BP 1241 04 42 82 96 38 http://www.comelec.

MODULES AUREL

TX-433-SAW

Transmetteur SAW à antenne externe, haute qualité et basse émission d'harmoniques. Fréquence de travail : 433,92 MHz. Sortie HF : 10 mW / 50 Ω et 50 mW en antenne sous 12 V. Dim.: 12,2 x 38,1 mm. Connexions au pas de 2,54 mm.

TX-433-SAW 122 F

PLA-05W-433

Booster UHF 433,92 MHz pouvant délivrer 400 mW. Version SIL à 15 broches en boîtier métallique pouvant être fixé sur radiateur. Il dispose de deux entrées, la première pour des signaux inférieurs à 1 mW et la seconde pour des signaux de 10 à 20 mW. Modulation: AM, FM ou numérique.

PLA-05W-433 195 F

Fax: 04 42 82 96 51 MAV-VHF-224

Recherchons revendeurs

L'hybride inclut un double modulateur audio/vidéo très stable, réglé à 224,5 MHz (canal TV H2) tandis que le signal audio est à 5,5 MHz avec une déviation FM de +/-70 kHz. Connexions au pas de 2,54 mm.

MAV-VHF-224

170 F

TX-433-SAW-BOOST

Transmetteur hybride SAW à 433.92 MHz en mesure de fournir une puissance HF de 400 mW en antenne sous 12 V. Modulation AM en mode On/Off, avec des signaux TTL (0 - 5 V). Dim: 31,8 x 16,3 x 3 mm. Connexions au pas de 2,54 mm. Alimentation: 12 V.

TX-433-SAW-**BOOST: 154 F**

RF-290A-433

Récepteur 433,92 MHz de type superhétérodyne. Sensibilité d'entrée : -100 dBm (2,24 µV). Bande passante +/-1 MHz, plage d'accord +/-10 MHz. Sortie signaux carrés avec Fmax. de 2 kHz. Dim.: 31,8 x 16,3 x 4,5 mm. Connexions au pas de 2,54 mm.

RF-290A-433 73 F

Amplificateur classe A pour signaux TV fonctionnant sur le canal 12 VHF (224,5 MHz). Il peut fournir une puissance de 50 mW avec un signal d'entrée de 2 mW (idéal pour le MAV-VHF-224). Son impédance de sortie est de $50\,\Omega$ et sa consommation est de $100\,\text{mA}$ max. sous 12 V. Dim: 38,2

x 25,5 x 4,2 mm.

MCA: 140 F

DEMANDEZ NOTRE NOUVEAU CATALOGUE 32 PAGES ILLUSTRÉES AVEC LES CARACTÉRISTIQUES DE TOUS LES KITS NUOVA ELETTRONICA ET COMELEC Expéditions dans toute la France. Moins de 5 kg : Port 55 F. Règlement à la commande par chèque, mandat ou carte bancaire. Bons administratifs acceptés. Le port est en supplément. De nombreux kits sont disponibles, envoyez votre adresse et cinq timbres, nous vous ferons parvenir notre catalogue général.

SRC pub

Régulateur de charge universel

Conçu à l'origine pour réguler la tension et le courant de sortie des panneaux solaires, ce régulateur de charge peut être employé partout où il est nécessaire de stabiliser une tension fournie par une alimentation continue et d'en limiter le courant débité à une charge ou à une batterie.

arce qu'ils captent l'énergie du soleil, les photons, sans altérer la composition chimique et physique de l'environnement où ils se trouvent, les panneaux solaires constituent, aujourd'hui, la méthode la plus écologique pour générer de l'électricité. Ils sont plus écologiques encore que les centrales hydroélectriques qui, bien qu'elles ne polluent pas, ne constituent pas des sources d'énergie tout à fait naturelles. La déviation des cours d'eau et la création des bassins de rétention artificiels nécessaires à leur fonctionnement entraînent des changements environnementaux plus ou moins dommageables.

Le solaire, pourquoi et pour quoi faire?

De par leur structure et grâce à leur simplicité intrinsèque, les panneaux solaires sont tout indiqués pour générer du courant électrique sur des sites où on ne peut disposer des 220 volts du réseau traditionnel. Bien entendu, tout est une question de surface exposée! Si l'on reste dans des dimensions raisonnables, il sera possible de faire fonctionner des émetteurs de moyenne puissance, des appareils radio, des

systèmes d'alarmes, de petits ordinateurs portables, des instruments de mesures, etc.

Un panneau, composé de simples bandes de silicium, est suffisant pour fournir une certaine quantité d'énergie, prête à être emmagasinée, le cas

échéant, dans des accumulateurs de capacité appropriée, pour la restituer par la suite à la demande, à la tombée de la nuit, par exemple. Dans le désert, en rase campagne ou à bord d'un voilier, l'énergie lumineuse diurne est toujours présente et l'exploiter ne coûte (presque) rien.

L'utilisation des panneaux solaires, commode et économique, pose quand même certains problèmes, heureusement peu importants, mais qui doivent être abordés correctement. Avant tout, la tension qu'ils produisent varie sensiblement selon la variation de l'intensité lumineuse du soleil.

Si, avec ces panneaux, on alimente un dispositif électronique qui demande une tension stabilisée, ou tout du moins comportant peu de variations, il est nécessaire d'intercaler un régulateur capable de maintenir, en sortie, un potentiel insensible aux variations de l'entrée. C'est ce que fait le circuit dont nous allons parler dans cet article.

out in

Données principales

Les réglages s'effectuent par l'intermédiaire de deux trimmers présents sur le circuit et à l'aide d'un simple multimètre.

Veillez au refroidissement de U1 car le radiateur utilisé doit être dimensionné pour une tension d'entrée maximale de 20 Vcc.

Le régulateur de charge dans son boîtier.

Pourquoi universel?

Il s'agit d'un stabilisateur réglable, autant en tension qu'en intensité. Par conséquent, il est universel et adapté non seulement pour interfacer les panneaux solaires mais également à une grande variété d'autres systèmes.

Par exemple, ce dispositif peut imposer une limite en courant, très utile pour la charge à courant constant des batteries au plomb.

En fait, à tension constante, une caractéristique des accumulateurs est justement d'absorber de forts courants lorsque la batterie est déchargée et d'avoir un courant d'absorption de plus en plus faible au fur et à mesure que la batterie se charge. Si bien que, dans la majeure partie des cas, on limite l'intensité grâce à une résistance montée en série. La meilleure méthode pour charger correctement une batterie est sans aucun doute celle qui consiste à réguler son courant et, pour ce faire, il faut agir sur la tension du chargeur.

Notre dispositif stabilisateur est très simple et permet d'assurer la régulation en sortie pour des valeurs de 1,4 à 37 volts, ceci pour une intensité comprise entre 10 et 500 mA. En entrée, on peut appliquer de 5 à 40 V, toujours en courant continu, bien entendu.

Ce système peut être utilisé pour de petites batteries, mais aussi comme régulateur de tension pour alimenter de petits appareils tels que caméscopes CCD, récepteurs radio, enregistreurs, appareils utilisés dans les voitures et, bien sûr, pour des panneaux solaires de petites dimensions.

Rapide coup d'œil au schéma

Pour ce qui concerne la structure du circuit, plutôt qu'un long discours, mieux vaut se référer au schéma donné en figure 1.

Décrivons-le tout de suite.

Les composants utilisés sont peu nombreux, étant donné que tout se base sur le célèbre régulateur intégré LM317T (en version TO220) vendu dans le commerce depuis quelques décennies! Il est utilisé dans tous les cas où on a besoin d'un stabilisateur linéaire et précis.

Notre dispositif permet d'ajuster finement la différence de potentiel en sortie, ceci pour des valeurs comprises entre 1,25 et 37 volts environ, avec un maximum de 40 volts.

Ce circuit intégré, produit par National Semiconductor (mais également par Motorola, ST, etc.), est en fait un régulateur de tension continu positif, facile à mettre en œuvre à l'aide de la formule mathématique fournie par le constructeur.

Extérieurement, il se présente dans un boîtier plastique ou métallique TO220 comme celui des transistors de puissances.

Ses trois broches sont IN, OUT et ADJ:

- IN (entrée) reçoit la tension d'entrée,
- OUT (sortie) fournit la tension stabilisée choisie en fonction du potentiel appliqué sur la troisième,
- ADJ (réglage) est polarisée de façon à fixer la tension de sortie.

Dans notre montage, ce régulateur travaille dans une configuration typique, avec une référence déterminée par R1, R6 et par la résistance dynamique générée par le transistor T1. Ce dernier, sert également de limiteur de courant puisqu'il intervient sur l'entrée ADJ en la mettant immédiatement à la masse lorsqu'il apparaît une surconsommation.

Pour comprendre le fonctionnement du régulateur, il faut avant tout considérer le concept de base qui lie la tension de sortie (Vo) à la tension interne (Vref) et aux autres paramètres décrits ci dessous :

Vo = Vref x (1 + R2/R1) + (ladj x R2)

Vref est une constante de 1,25 volt interne propre au LM317 et constitue le potentiel de référence, ladj est le courant qui circule sur la broche ADJ, alors que les résistances R1 et R2 sont respectivement situées entre OUT et ADJ et entre ADJ et la masse d'entrée. Dans cette formule, R2 représente, pour notre application, l'ensemble R6, T1, R2, R3, R5, R4. Le calcul donne un résultat en volts si Vref est en volts, ladj en ampères et R1 et R2 en ohms.

Pour donner un exemple, si nous prenons deux résistances égales à

10 kilohms, nous voyons que le composant fournit :

Vo = 1,25 V x (1 + 10 kΩ/10 kΩ) + (100 mA x 10 kΩ) = 1,25 V x (1 + 1) + 1 V = 2,5 V + 1 V = 3,5 V

De ce rapide calcul, nous pouvons faire deux observations : avant tout, la sortie dépend étroitement du rapport entre la résistance ADJ/masse et celle OUT/ADJ, ce qui signifie que plus cette dernière est grande plus la tension de sortie Vo va tendre vers Vref + (ladj x R2).

La valeur de R2 influe, au contraire, beaucoup plus sur l'intensité circulant sur la broche ADJ.

Son action sur la tension de sortie est plus prépondérante que celle de R1.

Le transistor T1

T1 fonctionne en résistance variable et interrupteur. Il va permettre, d'une part, en fonction du réglage de R6, d'agir sur le courant ladj afin de stabiliser la tension de sortie malgré les variations de charge et, d'autre part, en cas de court-circuit sur la sortie, de réduire la différence de potentiel jusqu'à un minimum de 1,5 V.

La résistance R6

Comme nous venons de l'expliquer, R6 sert à la stabilisation et au réglage de la tension de sortie.

La résistance R5

Celle-ci sert à réguler le courant de charge. A l'aide de R5 vous pourrez maintenir un courant de charge jusqu'à 500 mA au maximum.

Si, par exemple, vous réglez R5 pour avoir un courant de charge de 300 mA, le réseau T1, R2, R3, R5 et R4 compensera la tension Vadj/masse pour maintenir ce courant même si la charge varie.

Réalisation pratique

Maintenant que nous avons commenté le schéma électrique, passons à la description de la construction du régulateur. La première chose à faire, est de réaliser le circuit imprimé en se ser-

Figure 2.

Figure 3.

Liste des composants

R1 = 270Ω R2 = 100Ω R3 = 330Ω

R4

 $R5 = 500 \Omega$ trimmer multitour

1 Ω

 $R6 = 10 \text{ k}\Omega$ trimmer multitour

C1 = 470 µF 35V électrolytique

 $C2 = 470 \mu F 35V$ électrolytique

C3 = 100 nF multicouche

D1 = Diode 1N4007

D2 = Diode 1N4007

U1 = LM317T

T1 = Transistor NPN BC547B

Divers:

- 2 Borniers 2 pôles
- 1 Radiateur pour TO220
- 1 Circuit imprimé réf. S276

Sauf spécification contraire, toutes les résistances sont des 1/4 W à 5 %.

Voici un panneau solaire de 12 volts, 2 watts adapté pour être contrôlé par notre régulateur puisque l'intensité maximale de sortie du module ne dépasse pas les 500 mA.

Simple schéma de connexion pour utiliser le dispositif comme régulateur de charge pour des équipements solaires. Réglez R5 et R6 de façon à obtenir la tension et l'intensité désirées.

Figure 4 : Application du régulateur dans la charge d'une batterie par panneau solaire.

Voici comment utiliser notre régulateur comme un stabilisateur de tension précis et fiable. Il convient de fixer la sortie dans un intervalle compris entre 1,4 et 37 volts. L'intensité peut être limitée à une valeur comprise entre 10 et 500 mA. La tension d'entrée continue (au moins 3 volts au-dessus de celle désirée en sortie) provient d'une alimentation quelconque et la «charge» est un système qui peut être un appareil radio portable, un instrument de mesure, etc. Le trimmer R6 régule la tension et R5, l'intensité.

Figure 5 : Application du régulateur comme stabilisateur de tension.

vant du dessin représenté à l'échelle 1 en figure 3. Pour cela il faut faire une photocopie de bonne qualité sur mylar ou sur papier calque afin d'obtenir le film nécessaire à la photogravure.

Une fois le circuit imprimé gravé et percé, insérez et soudez les résistances ainsi que les deux diodes en respectant le dessin donné dans le plan de câblage.

Puis c'est au tour des deux trimmers et des condensateurs dont il faut bien respecter la polarité. Insérez ensuite le transistor T1 qui doit être positionné comme sur le schéma d'implantation des composants.

Le régulateur LM317T doit être monté couché en prenant soin d'en appuyer la partie métallique sur un petit dissipateur de chaleur en aluminium profilé en forme «U».

Pour terminer, insérez et soudez les deux borniers bipolaires au pas de 5 mm sur les emplacements marqués «OUT» et «IN».

Dès à présent votre appareil est prêt à fonctionner. Pour l'essayer, vous pouvez l'alimenter à l'aide d'une batterie de 12 volts ou avec la sortie d'une alimentation non stabilisée en lui injectant un maximum de 40 Vcc.

Evidemment, la polarité est positive sur le +Vin et négative sur la masse (-Vin). En cas d'inversion de polarité, la diode D1 protège le circuit.

Prenez ensuite un voltmètre positionné en continu sur 40 volts pleine échelle et connectez-en la pointe de touche du positif au + Vout et celle du négatif au -Vout. Lisez la valeur et essayez de tourner le curseur du trimmer R6 avec un petit tournevis plat. La tension doit varier et s'arrêter à 15 volts si vous alimentez la carte en 18 volts. La tension de sortie fera toujours 3 volts de moins que celle appliquée à l'entrée.

Pour l'emploi du régulateur, rappelezvous toujours que quel que soit le Vout que vous voulez obtenir, la tension d'entrée doit la dépasser d'au moins trois volts. Pour régler le courant, vous devez insérer, en série sur la sortie, un ampèremètre sur le calibre 1 A, puis, ceci fait, en agissant sur le trimmer R5, notez que l'on peut régler facilement la valeur du court-circuit entre 10 et 500 mA.

Si vous devez charger une batterie en limitant l'intensité à 0,2 A par exemple, réglez le curseur R5 jusqu'à ce que vous lisiez 200 mA. Vous serez ainsi certain qu'un tel seuil ne sera jamais dépassé. Evidemment, il est nécessaire de calibrer R6 de façon à avoir en sortie du circuit une tension légèrement supérieure (15 % en plus suffisent...) à la tension nominale de l'accumulateur. Si ce dernier est de 6 volts imposez environ 7 volts, s'il est de 12 volts, donnez-lui en un peu moins de 14 volts, etc.

Naturellement le réglage de R6 est toujours fait à vide c'est-à-dire avec la sortie déconnectée.

Où trouver les composants?

La liste des composants étant fournie, vous pouvez vous approvisionner, de préférence, auprès de nos annonceurs. Un kit complet (FT276) est disponible. Le circuit imprimé (S276) est également disponible séparément. Voir publicités dans la revue.

♦ A.B.

Générateur DTMF à microcontrôleur

Ce nouveau circuit est conçu pour la génération des 16 tonalités standards DTMF. Très compact et de réalisation simple, il utilise un PIC16C84 à la place du classique UM95087. Le microcontrôleur permet de lire le clavier matricé et de produire un signal modulé grâce à l'utilisation d'une routine appropriée.

ême si aujourd'hui pratiquement tous les téléphones fixes, tous
les téléphones
cellulaires (GSM) disposent
de la composition des
numéros en multifréquence, avoir à portée

de main un petit clavier DTMF peut être utile pour

ceux qui sont équipés d'un standard électronique avec plusieurs combinés sans fil (comme le Siemens Gigaset par exemple), qui ont à tester des appareils téléphoniques de modèles variés ou qui ont à commander des serrures, des répondeurs, etc.

Comme vous pouvez le constater à la vue du schéma électrique, le générateur de paires de fréquences (c'est ce qui caractérise les signaux DTMF) n'est pas le très commun UM95087 ou UM95089, mais bien un microcontrôleur Microchip programmé pour gérer un clavier classique à matrice de 4 lignes et 4 colonnes et générer en conséquence les tonalités DTMF adéquates.

Le circuit est très simple, compact et facilement réalisable par tout un chacun. Couplé à un décodeur DTMF, il permet de construire un excellent appareil de laboratoire.

Le schéma électrique

Commençons donc par l'analyse du schéma électrique représenté dans ces pages.

La tache confiée à U1 (PIC16C84), est celle de gérer le

fonctionnement du dispositif. Il s'occupe en effet de scruter les lignes et les colonnes du clavier afin de détecter la pression d'une touche et de générer le signal DTMF correspondant. Celui-ci, disponible sur la broche 1 de U1, est mis en forme par le filtre passe-bas d'ordre 2 qui le rend quasiment sinusoïdal.

Bien que théoriquement cela paraisse très simple, nous avons dû réaliser un programme complexe. Pour l'occasion il a été écrit en Basic et ensuite chargé dans le microcontrôleur grâce au compilateur basic "PIC Basic Compiler". Vous trouverez ce programme dans ces pages ainsi que sur le site electronique-magazine.com.

C'est l'instruction DTMFOUT qui nous intéresse particulièrement car c'est sur cette instruction, que la routine de génération des tonalités DTMF est basée.

Voyons d'abord le fonctionnement externe en commençant par expliquer ce qui se passe à la mise en route du système.

Le PIC16C84 paramètre ses I/O (entrées/sorties) en disposant ses broches 6, 7, 8 et 9 comme entrées (lignes) et ses broches 10, 11, 12 et 13 comme sorties (colonnes).

Figure 1 : Schéma électrique du générateur DTMF à microcontrôleur.

La broche 1, quant à elle, est la sortie du signal analogique.

Pour effectuer la scrutation du clavier et lire la fermeture éventuelle d'une touche, le programme du microcontrô-leur active les colonnes séquentiellement, une seule à la fois, en mettant au niveau bas les broches 13 (colonne 1), 12 (colonne 2), 11 (colonne 3) et 10 (colonne 4), lesquelles sont normalement au niveau haut.

Simultanément et en synchronisme avec cette scrutation, il contrôle ce qui se passe sur les broches 9, 8, 7 et 6, cherchant la présence d'un éventuel niveau bas.

Si un niveau bas est trouvé, cela signifie qu'une touche a été appuyée. Pour savoir quelle est la touche en question, le microcontrôleur vérifie sur quelle ligne est arrivée la séquence d'activation des colonnes. Ainsi, si par exemple il a relevé un zéro logique sur la broche 8 (ligne 2) pendant que la colonne 1 (broches 12, RB6...) est au niveau bas, il s'agit évidemment de la touche 5 puisqu'elle se trouve à l'intersection entre la colonne 2 et la ligne 2 (broche 8 du microcontrôleur).

Si la concordance des contacts se fait entre les broches 13 et 6, la touche activée est l'astérisque (*) pour la touche 9, il s'agit de la ligne 3 et de la colonne 3, etc. En somme, quelle que soit la touche concernée, le programme active la routine de génération des tonalités DTMF, en forçant l'émission de celle relative au choix de l'utilisateur.

Cette procédure est réalisée par la commande Basic DTMFOUT, avec laquelle le PIC16C84 est en mesure de générer les 16 tonalités du standard multifréquence.

Cette instruction contient les paramètres suivants :

- Broche de sortie, durée, intervalle de temps avant répétition et numéro de la touche de 0 à 15 (0=0, 1=1 ... 15=D)

Ainsi, à chaque détection de touche, le programme fait appel à la commande DTMFOUT. Comme vous pouvez le voir dans le listing du programme, les paramètres qui suivent la fonction DTMFOUT sont tous identiques, à l'exception de celui concernant la tonalité spécifique à chaque touche. Ainsi, si nous appuyons sur la touche 5, le paramètre Tone est 5, avec l'astérisque (*), le paramètre Tone est 10, etc.

Le filtre R/C

Pour ce qui concerne l'aspect matériel (hardware), le microcontrôleur est en mesure de synthétiser assez bien les tonalités en produisant à chaque fois une paire de signaux sinusoïdaux reconstitués, obtenus en modulant de manière appropriée la largeur des impulsions compatibles TTL émises par la broche 1.

Pour piloter directement des transformateurs de ligne à 300 ou 600 ohms, ou un petit haut-parleur de 16 à 32 ohms, il suffit de connecter un transistor comme le montre le schéma.

La résistance d'émetteur peut être choisie entre 1 et 1,5 kilohm.

Avec le trimmer du circuit, vous pouvez régler à votre convenance le niveau BF de la nouvelle sortie.

Figure 4 : Schéma de l'amplificateur de sortie.

Figure 2: Plan d'implantation des composants.

Figure 3 : Dessin du circuit imprimé à l'échelle 1.

En série avec cette broche, programmée en sortie, il est nécessaire d'intercaler un filtre passe bas R/C du second ordre. Son rôle est d'arrondir et de niveler le signal afin de le rendre compréhensible à la quasi totalité des dispositifs standard DTMF présents sur le marché.

Rappelez-vous cependant que sur ce type de filtre la résistance de charge joue un rôle prépondérant sur les caractéristiques de celui-ci. Plus la résistance de charge est grande, moins elle

perturbe le filtre. C'est pour cette raison que nous avons utilisé l'amplificateur opérationnel U2, un CA3140 utilisé simplement comme suiveur.

L'amplificateur opérationnel U2

1

Son entrée haute impédance (broche 3) permet d'isoler le filtre du reste du montage et sa sortie (broche 6) garantit le courant nécessaire que le double filtre ne pourrait fournir sans altérer la qualité de son signal de sortie.

Le condensateur C8 et la résistance série R4 transfèrent les tonalités DTMF aux bornes du trimmer R5 avec lequel nous pouvons régler le niveau à la sortie (OUT) de la platine.

De par sa conception, le dispositif est destiné à piloter des circuits à haute impédance (Z > 1 kilohm) et non un haut-parleur traditionnel de 8 à 32 ohms

Comment générer les double tonalités

3

A

Le programme du microcontrôleur a été écrit en Basic, de manière à pouvoir utiliser une commande appropriée en mesure de générer des tonalités DTMF (sous forme d'im-

pulsions bien calibrées). Nul besoin d'écrire de complexes routines de synthèse des différents signaux. Nous parlons de l'instruction DTMFOUT, disponible parmi d'autres dans le PICBasic Compiler. La syntaxe en est la suivante :

DTMFOUT Pin, {Onms, Offms,} [Tone {,Tone...}]

A la place de "Pin", il faut spécifier la broche parmi les I/O de laquelle on désire faire sortir le signal (dans notre cas, c'est la 1, RA2). "Onms" et "Offms" sont les

temps en millisecondes, voulus pour la durée de chacune des tonalités et l'intervalle minimal entre l'une et l'autre. Notez que si aucune valeur n'est sélectionnée, le compilateur, par défaut, impose une durée de 200 millisecondes pour le premier et de 50 millisecondes pour le deuxième (durées acceptées par tous les appareils téléphoniques standards).

Quant au paramètre "Tone", à la place de celui mis entre crochets, il faut insérer un numéro entre 0 et 15 (les tonalités DTMF sont au nombre de 16) correspondant au numéro que l'on veut faire reproduire au PIC16C84. En

se référant au tableau standard simplifié reproduit ci-dessous, nous avons:

En pratique une commande de genre :

DTMFOUT PORTB.1, 300, 60, [11]

produit sur la broche 1 une tonalité correspondant au signe dièse (#), durant 0,3 seconde, forçant un intervalle de 60 millisecondes avant une éventuelle répéti-

tion.

Comme l'instruction DTMFOUT utilise l'instruction FREQ OUT pour générer les tonalités (autre instruction du PIC-Basic compiler) et que cette dernière fait produire au microcontrôleur une série d'impulsions modulées en largeur, il convient de filtrer, de façon adéquate, la sortie de manière à donner au signal une enveloppe quasi sinusoïdale et donc similaire à celle des véritables générateurs DTMF.

Cette précaution permet de rendre le signal compatible à tous les appareils standards.

Liste des composants

= 22 pF céramique R1 $= 4.7 k\Omega$ C6 Sauf spécification contraire, toutes $= 4.7 k\Omega$ C7 22 pF céramique les résistances sont des 1/4 W à R2 $= 4.7 k\Omega$ $= 100 \, \text{nF}$ 5 % R3 C8 $= 1 k\Omega$ multicouche R4 = $100 \text{ k}\Omega$ trimmer M.H. R5 D1 Diode 1N4007 Divers: $= \mu C PIC16C84-04$ C1= 220 µF 35 V électrolytique IJ1 2 Borniers 2 pôles = 100 nF multicouche 1 Support CI 2 x 9 broches C2 programmé (MF295) C3 = 220 µF 35 V électrolytique U2 = Intégré CA3140 1 Support CI 2 x 4 broches C4 = 100 nF polyester U3 = Régulateur 7805 1 Clavier matriciel à 16 touches C₅ = 100 nF polyester 01 = Quartz 4 MHz 1 Circuit imprimé réf. L033

aux bornes duquel l'amplitude serait insuffisante pour obtenir une écoute décente.

Ceci n'est pas un problème car, dans la plupart des applications, il faut injecter les tonalités à des appareils qui chargent très peu la sortie OUT. Mais, toutefois, si vous aviez besoin d'un peu plus de signal, vous pouvez recourir à une

Listing du programme du générateur DTMF à microcontrôleur

HIGH COL4 ENDIF '* File: DTMFGEN.BAS Data: 5/4/99 'PROGRAMME PRINCIPAL HIGH COL2 '* GENERATEUR DE TONS DTMF '* de Ghezzi Alberto. MAIN: '...POUR LA COLONNE 3 'MISE A L'ETAT BAS COLONNE 1 LOW COL3 'CONTRÖLE CHAOUE LIGNE; DEFINE OSC 4 'SI LA LIGNE EST A 0 ON EMET IF RIGA1=0 THEN 'LE SON DTMF CORRESPONDANT A DTMFOUT DTMF, 200, 0, [3] 'DEFINITIONS DES VARIABLES LA TOUCHE DETECTEE ENDIF 'LIGNES ET COLONNES POUR 'CLAVIER MATRICIEL LOW COL1 IF RIGA2=0 THEN DTMFOUT DTMF, 200, 0, [6] SYMBOL RIGA1=PORTB.3 IF RIGA1=0 THEN ENDIF DTMFOUT DTMF,200,0,[1] SYMBOL RIGA2=PORTB.2 ENDIF SYMBOL RIGA3=PORTB.1 IF RIGA3=0 THEN SYMBOL RIGA4=PORTB.0 DTMFOUT DTMF, 200, 0, [9] IF RIGA2=0 THEN ENDIF SYMBOL COL1=PORTB.7 DTMFOUT DTMF, 200, 0, [4] SYMBOL COL2=PORTB.6 ENDIF IF RIGA4=0 THEN DTMFOUT DTMF, 200, 0, [11] SYMBOL COL3=PORTB.5 SYMBOL COL4=PORTB.4 IF RIGA3=0 THEN ENDIF DTMFOUT DTMF, 200, 0, [7] 'SORTIE DTMF HIGH COL3 ENDIF '... POUR LA COLONNE 4 SYMBOL DTMF=PORTA.2 IF RIGA4=0 THEN DTMFOUT DTMF, 200, 0, [10] 'ACTIVATION DES PULL-UP ENDIF TOW COT4 'DU PORTB 'REMISE A L'ETAT HAUT IF RIGA1=0 THEN POKE \$81,0 'DE LA COLONNE 1 DTMFOUT DTMF, 200, 0, [12] 'DEFINITION DES BITS HIGH COL1 'D' ENTREE ET SORTIE IF RIGA2=0 THEN 'ON RECOMMENCE LA PROCEDURE DTMFOUT DTMF, 200, 0, [13] INPUT RIGA1 ' POUR LA COLONNE 2 ENDIF INPUT RIGA2 INPUT RIGA3 LOW COL2 IF RIGA3=0 THEN INPUT RIGA4 DTMFOUT DTMF, 200, 0, [14] IF RIGA1=0 THEN ENDIF DTMFOUT DTMF,200,0,[2] OUTPUT COL1 OUTPUT COL2 IF RIGA4=0 THEN OUTPUT COL3 DTMFOUT DTMF, 200, 0, [15] OUTPUT COL4 IF RIGA2=0 THEN ENDIF DTMFOUT DTMF, 200, 0, [5] OUTPUT DTMF ENDIF HIGH COL4 'MISE A L'ETAT HAUT IF RIGA3=0 THEN 'ON RECOMMENCE LA SCRUTATION 'DES COLONNES DTMFOUT DTMF, 200, 0, [8] 'DU DEBUT (COL1) ENDIF HIGH COL1 GOTO MAIN HIGH COL2 IF RIGA4=0 THEN HIGH COL3 DTMFOUT DTMF, 200, 0, [0]

petite modification qui consiste à la mise en place d'un transistor NPN (un BC547, par exemple) avec la base sur le curseur du trimmer de réglage de niveau (R5) et le collecteur à la sortie de régulateur intégré U3 (voir la figure 4).

L'alimentation

Le montage s'alimente en appliquant une tension continue de 9 à 15 volts entre les bornes marquées –V et +V du bornier.

A partir de là, la tension est filtrée par l'intermédiaire du condensateur C1, rejoint le régulateur U3 (7805) qui restitue sur sa sortie une tension stabilisée de 5 volts.

Ces 5 volts sont nécessaires au fonctionnement du microcontrôleur. Le signal d'horloge est fabriqué par l'oscillateur interne couplé au quartz de 4 MHz. La valeur du quartz, n'est pas choisie au hasard. Elle découle des notes d'applications du manuel "PIC-Basic Compiler" présentes dans la rubrique concernant la génération des signaux DTMF.

Réalisation pratique

Dans cet article, vous trouverez le tracé côté cuivre du circuit imprimé à l'échelle 1/1 (figure 3), qui vous sera utile pour préparer la gravure.

Utilisez la méthode habituelle de photocopie sur calque ou sur mylar translucide, insolation aux tubes ultraviolets, révélation et gravure au perchlorure de fer. Après gravure de la plaque, il ne reste plus qu'à la percer afin qu'elle soit prête à recevoir les composants. Commencez le montage par la mise en place des résistances, de la diode D1 en faisant attention à son positionnement, la bague de repérage indiquent la cathode doit être dirigée vers l'angle du circuit imprimé.

Montez ensuite les supports des deux circuits intégrés U1 et U2, en les positionnant comme cela est indiqué sur le schéma pratique de câblage.

Installez le trimmer R5, les condensateurs en prenant garde à la bonne orientation des deux électrolytiques, le quartz et le régulateur en boîtier TO220, qui sera soudé avec sa partie métallique vers l'extérieur du circuit imprimé.

Pour la connexion OUT et pour l'alimentation, soudez deux borniers à deux plots, pour circuit imprimé au pas de 5 millimètres.

Pour ce qui concerne le clavier, l'idéal est de le relier avec un morceau de câble en nappe de 8 fils. Après les avoir dénudés, il suffit de les souder aux pastilles marquées C1, C2, C3, C4, R1, R2, R3 et R4.

Faites de même pour l'autre côté du câble en nappe après avoir identifié les contacts des lignes et des colonnes à l'aide de la documentation du clavier.

Après avoir réalisé toutes les soudures, vous pouvez insérer chaque circuit intégré dans son support en faisant attention au sens de montage. Le repèredétrompeur du PIC16C84 est dirigé vers le condensateur C3 et le CA3140 doit avoir son repère-détrompeur dirigé vers C8.

Procédez à un contrôle minutieux de tout votre travail avant de passer aux essais.

Il suffit de fixer au bornier marqué Val, les deux fils d'un connecteur utilisé pour les petites piles de 9 volts, dont le fil rouge est le positif à relier au "+" et le fil noir, le négatif, à relier au "-".

Réglages et essais

Placez une pile neuve et le système est prêt à l'emploi. Si vous voulez l'essayer immédiatement, il vous suffit de le relier à l'entrée BF d'une clef DTMF ou bien à un décodeur de tonalités DTMF. Pour l'utilisation, vous ne devriez pas rencontrer de problèmes. Après avoir appliqué l'alimentation, il suffit d'appuyer une des touches du clavier pour obtenir immédiatement un ton correspondant

Si vous testez l'appareil avec une clef DTMF, il convient de taper le code exact. Si vous utilisez un décodeur de tonalités DTMF à afficheur, le chiffre tapé sur le clavier doit être visible sur l'afficheur.

Si tout se passe bien, vous êtes prêts pour toutes les applications, de la télécommande à l'activation de charges à distance.

Il faut toutefois régler le trimmer R5 afin d'obtenir un niveau suffisant, pour lequel toutes les tonalités sont reconnues, même à travers la ligne téléphonique.

Le raccordement à la ligne téléphonique, peut être effectué par l'intermédiaire de deux condensateurs de 100 nanofarads, l'un connecté entre la masse et un fil de la paire téléphonique et l'autre, entre le curseur de R5 et l'autre fil de la paire téléphonique, sans aucun risque de saturation des étages d'entrée des dispositifs utilisés.

Après l'avoir terminé, vous pouvez installer le générateur DTMF dans un coffret, dans lequel vous prendrez soin de percer un trou en regard du trimmer R5 afin de permettre sont réglage.

Un coffret comportant un petit compartiment permettant de loger une pile de 9 volts est souhaitable et très pratique à l'usage, compte tenu de la faible consommation du montage, environ 10 mA.

Naturellement, vous pouvez alimenter le circuit avec un bloc secteur délivrant de 3 à 12 volts. Il suffit de respecter la polarité, même si l'entrée est protégée par la diode D1.

Où trouver les composants?

La liste des composants étant fournie, vous pouvez vous approvisionner, de préférence, auprès de nos annonceurs. Un kit complet est disponible. Le circuit imprimé (L033) et le microcontrôleur préprogrammé (MF295) sont également disponibles séparément. Voir publicités dans la revue.

Le prototype une fois le montage terminé.

ET LOISIRS LE MENSUEL DE L'ÉLECTRONIQUE POUR TOUS

ÉLECTRONIQUE

PRIX

REF. JE023
PRIX 110 F
ÉLECTRONIQUE

REF. JEJ27

Des alimentations, il en faut pour toutes les tensions, fixes ou variables, sous des courants plus ou moins importants, avec diverses protections. Cet ouvrage fait le tour du problème : transformation, redressement et filtrage, stabilisation et régulation, protections. Les alimentations à découpage ne sont pas oubliées, de même que sont traités les problèmes liés aux parasites et aux harmoniques. L'ouvrage est très dense, abondamment documenté, fortement appuyé sur la théorie, avec des exemples pratiques, étage par étage, ce qui permettra aisément d'extrapoler un montage pour l'adapter à d'autres besoins. Bien entendu, l'aspect pratique des choses n'est pas

oublié, avec des astuces, des conseils de dépannage, des

oscillogrammes et relevés de signaux.

.189 F

ÉLECTRONIQUE

135 F

198^F

RÉF. JEJA008-1
PRIX130 F
ÉLECTRONIQUE

Rff. JE026

ÉLECTRONIQUE

169F

L'AMPLIFICATEUR OPÉRATIONNEL

REF. JEUSS **275** F **ÉLECTRONIQUE**

ÉLECTRONIQUE

RÉF. JE067-2
PRIX147 F
ÉLECTRONIQUE

REF. JEJ18
PRIX198 F
ÉLECTRONIQUE

RÉF. JEJA94
PRIX149 F
ÉLECTRONIQUE

cations.

LISTE COMPLÈTE

1 - IFS LIVRES

	1 - LES LIVRE	5	
REF	DÉSIGNATION	PRIX	PRIX
		EN F	EN €
	ÉLECTRONIQUE		
JEJ75	27 MODULES D'ÉLECTRONIQUE ASSOCIATIFS	225 F	34,30€
JEJ12	350 SCHÉMAS HF DE 10 KHZ À 1 GHZ	198 F	30,18€
JEA12	ABC DE L'ÉLECTRONIQUE	50 F	7,62€
JEJ27	ALIMENTATIONS ÉLECTRONIQUES		39,94€
JEO24	APPRENEZ LA CONCEPT° DES MONTAGES ÉLECT	95 F	14,48€
JEO23	APPRENEZ LA MESURE DES CIRCUITS ÉLECT	110F	16,77€
JEJ83	ASTUCES ET MÉTHODES ÉLECTRONIQUES	135 F	20,58€
JEJ84	CALCUL PRATIQUE DES CIRCUITS ÉLECT		20,58€
JEJ85	CALCULER SES CIRCUITS		15,09€
JEO70	COMPRENDRE ET UTLISER L'ÉLECT. DES HF		37,96€
JEI09	COMPRENDRE L'ÉLECT. PAR L'EXPÉRIENCE		14,94€
JEO15	CRÉATIONS ÉLECTRONIQUES		19,67€
JEJ99	DÉPANNAGE DES RADIORÉCEPTEURS		25,46€
JEI05	DÉPANNAGE EN ÉLECTRONIQUE		30,18€
JEJA003 JEJA005	ÉLECTRICITÉ PRATIQUEÉLECTRONIQUE DIGITALE		17,99€ 19.51€
	ÉLECTRONIQUE LABORATOIRE ET MESURE (T.1)		19,51€ 19,82€
	ÉLECTRONIQUE LABORATOIRE ET MESURE (T.2)		19,82€
JE043	ÉLECTRONIQUE : MARCHÉ DU XXIÈME SIÈCLE		41,01€
JEJA011	ÉLECTRONIQUE PRATIQUE		19,51€
JEJ21	FORMATION PRATIQUE À L'ÉLECT. MODERNE		19,06€
JEU92	GETTING THE MOST FROM YOUR MULTIMETER		6,10€
JE058-1	GUIDE DES APPLICATIONS (T.1)		30,18€
JE058-2	GUIDE DES APPLICATIONS (T.2)		30,34€
JEO14	GUIDE DES CIRCUITS INTÉGRÉS		28,81€
JEJ68	LA RADIO ? MAIS C'EST TRÈS SIMPLE!	.160 F	24,39€
JEJ15	La restauration des récepteurs à lampes \dots	.148 F	22,56€
JEO26	L'ART DE L'AMPLIFICATEUR OPÉRATIONNEL	169 F	25,76€
JEO13	LE COURS TECHNIQUE		11,43€
JEO35	LE MANUEL DES GAL		41,92€
JE040	LE MANUEL DU BUS I2C		39,49€
JEJA101 JEJ71	LE SCHÉMA D'ÉLECTRICITÉ		10,98€
JEJA040	LE TÉLÉPHONE		44,21€ 24,39€
JEO38	LOGIQUE FLOUE & RÉGULATION PID		30,34€
JEO67-1	MESURES ET ESSAIS T.1		21,50€
JE067-2	MESURES ET ESSAIS T.2		22,41€
JEJA057	MESURES ET ESSAIS D'ÉLECTRICITÉ		14,94€
JEJA068	MODEMS	130 F	19,82€
JEJA069	MODULES DE MIXAGE	.164 F	25,00€
JEJA071	MONTAGES AUTOUR DU 68705		28,97€
JEU91	More advanced uses of the multimeter \ldots		6,10€
JEO34	MULTIMEDIA ? PAS DE PANIQUE !		22,71€
JEJ33-1	PARASITES ET PERTURBATIONS DES ÉLECT. (T.1) .		24,39€
JEJ33-2	PARASITES ET PERTURBATIONS DES ÉLECT. (T.2) .		24,39€
JEJ33-3	PARASITES ET PERTURBATIONS DES ÉLECT. (T.3) .		24,39€
JEJ33-4 JEU98	PARASITES ET PERTURBATIONS DES ÉLECT. (T.4) .		24,39€
	PRACTICAL OSCILLATOR CIRCUITS PRATIQUE DES OSCILLOSCOPES		10,67€ 30,18€
JEJ18	PRINCIPES ET PRATIQUE DE L'ÉLECT. (T.1)		30,18€ 29,73€
JEJ63-1 JEJ63-2	PRINCIPES ET PRATIQUE DE L'ÉLECT. (T.2)		29,73€ 29,73€
JEJ03-2 JEJ29	RÉCEPTION DES HAUTES FRÉQUENCES (T.1)		29,73€ 37,96€
JEJ29-2	RÉCEPTION DES HAUTES FRÉQUENCES (T.2)		37,96€
JEJ04	RÉUSSIR SES RÉCEPTEURS TOUTES FRÉQUENCES.		22,87€
JEJA091	SIGNAL ANALOGIQUE ET CAPACITÉS COMMUTÉES .		32,01€
JEJA094	TÉLÉCOMMANDES		22,71€
JEO25	THYRISTORS ET TRIACS	199 F	30,34€
JEJ36	TRACÉ DES CIRCUITS IMPRIMÉS	.155 ^F	23,63€
JEO30-1	TRAITÉ DE L'ÉLECTRONIQUE (T.1)	249 F	37,96€

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE
TARIF EXPÉDITIONS : 1 LIVRE 35 (5,34€), DE 2 À 5 LIVRES 45 (6,86€), DE 6 À 10 LIVRES 70 (10,67€), PAR QUANTITÉ, NOUS CONSULTER

....129 F 19,67€

LIBRAIRIE

ET LOISIRS LE MENSUEL DE L'ÉLECTRONIQUE POUR TOUS LE MENSUEL DE L'ÉLECTRONIQUE POUR TOUS

Réaliser un circuit imprimé par ses propres

moyens reste pour de nombreux amateurs une tâche complexe. L'objet de cet ouvrage est de démontrer qu'il n'en est rien, pour peu que l'on adopte un minimum de méthode et que l'on exclut les solutions fantaisistes, causes de pertes de temps et d'argent. Toutes les étapes de la fabrication sont détaillées, ponctuées comme il se doit de fréquents rappels à la sécurité. Qu'il s'agisse d'une simple carte réalisée

par un débutant aux moyens modestes ou d'une

série confiée à un sous-traitant, rien n'y est lais-

sé au hasard. A noter qu'une part importante de

RÉF. JEJ42-2 RIX**118** ^F **DEBUTANTS**

PRIX159 F

ce livre est réservée à la CAO.

RÉF. JEJ11 Prix**165** f **Montages**

128F

RÉF. JE032169 F MONTAGES

Réf. JEJ79
PRIX......95 F
MONTAGES

RÉF. JEJAU15 RIX**128** F **MONTAGES**

RÉF. JEJA073
PRIX......85 F
MONTAGES

RÉF. JEJA102 RIX**225** F **INFORMATIQUE**

REF. JE055-1
PRIX249 F
INFORMATIQUE

RÉF. JE055-2 IX**249** F **Informatique**

ı	JEO30-2	TRAITÉ DE L'ÉLECTRONIQUE (T.2)	249 F	37,96€
ı	JE063	TRAITEMENT NUMÉRIQUE DU SIGNAL		48,63€
į	JE031-1	TRAVAUX PRATIQUE DU TRAITÉ (T.1)		45,43€
ı	JE031-1	TRAVAUX PRATIQUE DU TRAITÉ (T.2)		45,43€
	JEO31-2 JEO27			
	JEU27	UN COUP ÇA MARCHE, UN COUP ÇA MARCHE PAS	2491	37,96€
i		DÉBUTANTS		
ı	JEJ82	APPRENDRE L'ÉLECTRONIQUE FER EN MAIN	148 F	22,56€
1	JEJ02	CIRCUITS IMPRIMÉS		21,04€
ı	JEJA104	CIRCUITS IMPRIMÉS EN PRATIQUE		19,51€
ı	JEO48	ÉLECT. ET PROGRAMMATION POUR DÉBUTANTS		16,77€
ı	JEJ57	GUIDE PRATIQUE DES MONTAGES ÉLECTRONIQUES		
ı				13,72€
į	JEJ42-1	L'ÉLECTRONIQUE À LA PORTÉE DE TOUS (T.1)		17,99€
	JEJ42-2	L'ÉLECTRONIQUE À LA PORTÉE DE TOUS (T.2)		17,99€
ı	JEJ31-1	L'ÉLECTRONIQUE PAR LE SCHÉMA (T.1)		24,09€
ı	JEJ31-2	L'ÉLECTRONIQUE PAR LE SCHÉMA (T.2)		24,09€
ı	JE022-1	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (T.1)		25,76€
ı	JE022-2	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (T.2)		25,76€
ı	JE022-3	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (T.3)		25,76€
ı	JEJA039	L'ÉLECTRONIQUE ? RIEN DE PLUS SIMPLE!	97 F	14,79€
ı	JEJ38	LES CELLULES SOLAIRES	128 F	19,51€
ı	JEJ45	MES PREMIERS PAS EN ÉLECTRONIQUE	119 ^F	18,14€
ı	JEJ55	OSCILLOSCOPES FONCTIONNEMENT UTILISATION	192 F	29,27€
ı	JEJ39	POUR S'INITIER À L'ÉLECTRONIQUE	148 F	22,56€
	JEJ44	PROGRESSEZ EN ÉLECTRONIQUE	159 F	24,24€
ı		IONITA OFC ÉL FOTBONIOL		
į		IONTAGES ÉLECTRONIQU		
į	JEJ74	1500 SCHÉMAS ET CIRCUITS ÉLECTRONIQUES		41,92€
į	JEJ11	300 SCHÉMAS D'ALIMENTATION		25,15€
	JE016	300 CIRCUITS		19,67€
ı	JE017	301 CIRCUITS		19,67€
	JE018	302 CIRCUITS		19,67€
1	JE019	303 CIRCUITS		25,76€
į	JE020	304 CIRCUITS		25,76€
į	JE021	305 CIRCUITS		25,76€
į	JE032	306 CIRCUITS		25,76€
ı	JEJ77	75 MONTAGES À LED		14,79€
ı	JEJ40	ALIMENTATIONS À PILES ET ACCUS		19,67€
	JEJ79	AMPLIFICATEURS BF À TRANSISTORS		14,48€
	JEJ81	APPLICATIONS C MOS		22,11€
į	JEJ90	CIRCUITS INTÉGRÉS POUR THYRISTORS ET TRIACS		25,61€
ı	JEJA015	FAITES PARLER VOS MONTAGES		19,51€
ı	JEJA022	JEUX DE LUMIÈRE		22,56€
ı	JEJ24	LES CMS		19,67€
ı	JEJA043	LES INFRAROUGES EN ÉLECTRONIQUE		25,15€
1	JEJA044	LES JEUX DE LUMIÈRE ET SONORES POUR GUITARE		11,43€
į	JEJ41	MONTAGES À COMPOSANTS PROGRAMMABLES		19,67€
ı	JEJ22	MONTAGES AUTOUR D'UN MINITEL		21,34€
į	JEJA073	MONTAGES CIRCUITS INTÉGRÉS		12,96€
ı	JEJ37	MONTAGES DIDACTIQUES		14,94€
ı	JEJA074	MONTAGES DOMOTIQUES		22,71€
	JEJ26	MONTAGES FLASH		14,94€
ı	JEJ26 JEJ43	MONTAGES SIMPLES POUR TÉLÉPHONE		20,43€
į	JEJA 103	RÉALISATIONS PRATIQUES À AFFICHAGE LED		22,71€
	JEJA089	RÉUSSIR 25 MONTAGES À CIRCUITS INTÉGRÉS	.95 F	14,48€
	ÉLEC	TRONIQUE ET INFORMA	TIQL	JE
ı	JEU51	AN INTRO. TO COMPUTER COMMUNICATION		9,91€
١	JE036	AUTOMATES PROGRAMMABLES EN BASIC		37,96€
	JEO42	AUTOMATES PROGRAMMABLES EN MATCHBOX		41,01€
ĺ	JEJA102	BASIC POUR MICROCONTRÔLEURS ET PC		34,30€
ĺ	JEJ87	CARTES À PUCE		34,30€
	JEJ88	CARTES MAGNÉTIQUES ET PC		30,18€
١	JE054	COMPILATEUR CROISÉ PASCAL		68,60€
١	JEO65	COMPATIBILITÉ ÉLECTROMAGNÉTIQUE		57,78€
	IEOEE 1	DÉDANNEZ LES ODDI (ET LE MAT NILMÉDIQUE T.1)		27.046

DÉPANNEZ LES ORDI. (ET LE MAT.NUMÉRIQUE T.1) 249 F 37,96€

DÉPANNEZ LES ORDI. (ET LE MAT. NUMÉRIQUE T.2)249 F 37,96€

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE
TARIF EXPÉDITIONS: 1 LIVRE 35^F (5,34€), DE 2 À 5 LIVRES 45^F (6,86€), DE 6 À 10 LIVRES 70^F (10,67€), PAR QUANTITÉ, NOUS CONSULTER

JE055-1

JE055-2

JEQ04

229F

Ce manuel démontre que l'apprentissage du langage de programmation c++ ne présuppose pas de connaissances très étendues ni surtout d'étude préalable de l'informatique : après quelques pages seulement, le lecteur pourra rédiger de petits programmes, les enregistrer, les compiler et les exécuter. Le succès des premiers pas, programmé, est garanti et rien ne peut mieux motiver la poursuite. Le manuel est construit comme un cours, en quarante leçons qui commencent chacune par la définition claire des objectifs puis s'achèvent sur un résumé des connaissances acquises. L'apprentissage sans contact direct avec le logiciel serait toutefois trop théorique, c'est pourquoi ce manuel propose sur son CD-ROM un environnement de programmation complet (Turbo C++ Life de Borland).

Réf. JEJA099 RÉE JEJA034 .189 F TECHNOLOGIE **TECHNOLOGIE**

.210¹

PRIX

PRIX **TECHNOLOGIE**

Réf. JEJ60

INFORMATIQUE

Maintenance

IF IAOSE

INFORMATIOUE

230F

.230 F INFORMATIQUE

REE IF IAOSA PRIX .230F INFORMATIOUE

.215 F

REF IF IANAF .275 F

.242 F **TECHNOLOGIE**

Composants électroniques

programmables

110^f MICROCONTRÔLEURS

153⁻ MICROCONTRÔLEURS

Réf. JEJA066 190 F PRIX MICROCONTRÔLEURS

198 F PRIX MICROCONTRÔLEURS

Réf. JEJ94	Prix	198 ^F
Cet ouvrage pro	opose des technic	ques permettant
	t produire, manue	
	uits intégrés intro	
	re une présentat	
	milles de compo	
	e fournit tous le	
	cessaires à leur n	
	cé des circuits in jui n'était pas da	
La disquette (q	jui ii etait pas ua	iis i edition pre-

cédente) rassemble tous les programmes nécessaires à leur pilotage, et même quelques logiciels professionnels : compilateur logique, éditeur de fichier, etc.

JEJA020	INSTRUMENTATION VIRTUELLE POUR PC	198 F	30,18€
JEJA021	INTERFACES PC	198 F	30,18€
JEO11	J'EXPLOITE LES INTERFACES DE MON PC		25,76€
JEO12	JE PILOTE L'INTERFACE PARALLÈLE DE MON PC		23,63€
JEJA024	LA LIAISON SÉRIE RS232	230F	35,06€
JEO45	LE BUS SCSI		37,96€
JEQ02	LE GRAND LIVRE DE MSN		25,15€
JEA09	LE PC ET LA RADIO		11,43€
JEJ60	LOGICIELS PC POUR L'ÉLECTRONIQUE		35,06€
JEJA055	MAINTENANCE ET DÉPANNAGE PC ET MAC		32,78€
JEJA056	MAINTENANCE ET DÉPANNAGE PC WINDOWS 95 .	230F	35.06€
JEJ48	MESURE ET PC		35,06€
JEJA072	MONTAGES AVANCÉS POUR PC		35,06€
JEJ23	MONTAGES ÉLECTRONIQUES POUR PC	225 F	34,30€
JEJ47	PC ET CARTE À PUCE	225 F	34,30€
JEJ59	PC ET DOMOTIQUE		30,18€
JEJA077	PC ET ROBOTIQUE		35,06€
JEJA078	PC ET TÉLÉMESURES		34,30€
JEJA084	PSPICE 5.30		45.43€
JEO73	TOUTE LA PUISSANCE DE C++		34,91€
•	CHNOLOGIE ÉLECTRONI		
JEJ78	ACCESS.BUS		38,11€
JEJA099	CIRCUITS LOGIQUES PROGRAMMABLES		28,81€
JEJA031	LE BUS CAN THÉORIE ET PRATIQUE		38,11€
	LE BUS CAN APPLICATIONS		38,11€
JEJA032	LE BUS I2C		38,11€
JEJA033	LE BUS I2C PAR LA PRATIQUE		32,01€
JEJA034	LE BUS IEE-488		32,01€
JEJA035	LE BUS VAN		22,56€
JEJA037	LE MICROPROCESSEUR ET SON ENVIRONNEMENT.		23,63€
JEJ35	LES DSP		25,92€
JEJA051	LES MICROPROCESSEURS COMMENT CA MARCHE		13,42€
JEJA064	MICROPROCESSEUR POWERPC		25,15€
JEJA065	MICROPROCESSEURS		41,92€
JEJ32-1	TECHNOLOGIE DES COMPOSANTS ÉLECT. (T.1)		30,18€
JEJ32-2	TECHNOLOGIE DES COMPOSANTS ÉLECT. (T.2)		30,18€
JEJA097	THYRISTORS, TRIACS ET GTO	.242	36,89€
	MICROCONTRÔLEURS		
JEO52	APPRENEZ À UTILISER LE MICROCONTRÔLEUR 805	1 110 F	16,77€
JEJA019	INITIATION AU MICROCONTRÔLEUR 68HC11	.225F	34,30€
JEO59	JE PROGRAMME LES MICROCONTRÔLEURS 8051	303 F	46,19€
JEO33	LE MANUEL DES MICROCONTRÔLEURS	.229 F	34,91€
JEO44	LE MANUEL DU MICROCONTRÔLEUR ST62	.249 F	37,96€
JEJA048	LES MICROCONTRÔLEURS 4 ET 8 BITS	.178 F	27,14€
JEJA049	LES MICROCONTRÔLEURS PIC		22,87€
JEJA050	LES MICROCONTRÔLEURS PIC APPLICATIONS	.186 ^F	28,36€
JEJA108	LES MICROCONTRÔLEURS ST7	.248 F	37,81€
JEJA038	LE ST62XX		30,18€
JEJA058	MICROCONTRÔLEUR 68HC11 APPLICATIONS	.225 F	34,30€
JEJA059	MICROCONTRÔLEUR 68HC11 DESCRIPTION		27,14€
JEJA061	MICROCONTRÔLEURS 8051 ET 8052		24,09€
JEJA062	MICROCONTRÔLEURS 80C535, 80C537, 80C552		24,09€
JEO47	MICROCONTRÔLEUR PIC À STRUCTURE RISC		16,77€
	MICROCONTRÔLEURS 6805 ET 68HC05 (T.1)		23,32€
	MICROCONTRÔLEURS 6805 ET 68HC05 (T.2)		23,32€
JEJA063	MICROCONTRÔLEURS ST623X		30,18€
JEJA066	MISE EN ŒUVRE DU 8052 AH BASIC		28,97€
JEO46	PRATIQUE DES MICROCONTRÔLEURS PIC		37,96€
JEJA081	PRATIQUE DU MICROCONTRÔLEUR ST622X	.198 F	30,18€
	COMPOSANTS		

APPRIVOISEZ LES COMPOSANTS ÉLECTRONIQUES.. 130 F 19.82€

COMPOSANTS ÉLECT. PROGRAMMABLES POUR PC 198 F 30,18€

CONNAITRE LES COMPOSANTS ÉLECTRONIQUES......98 F 14,94€

COMPOSANTS ÉLECT. : TECHNO. ET UTILISATION ..198 F

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE TARIF EXPÉDITIONS : 1 LIVRE 35 (5,34€), DE 2 à 5 LIVRES 45 (6,86€), DE 6 à 10 LIVRES 70 (10,67€), PAR QUANTITÉ, NOUS CONSULTER

JEJ34

JEJ62

JEJ94

JEJ95

JEI03

DOCUMENTATION

PRIX

128F

des tubes BF

REF. JE064
PRIX189 F
DOCUMENTATION

FE_JF074 PRIX......**299** F

Pour amplifier les signaux musicaux, beaucoup d'amateurs éclairés considèrent les amplificateurs à tubes comme le nec plus ultra. L'association de récentes techniques traditionnelles et de composants modernes a favorisé une véritable renaissance du tube dans les circuits basses-fréquences. L'auteur de cet ouvrage consacre depuis une quinzaine d'années l'essentiel de ses efforts à améliorer les transformateurs de sortie toriques qu'il a mis au point, et qu'il utilise dans ses schémas d'amplificateurs pour repousser les limites de la bande passante et réduire la distorsion. Les schémas des amplificateurs à tubes ont la réputation d'être extrêmement simples, du moins à première vue. Un examen plus attentif révèle pourtant des détails inédits qui font l'intérêt des circuits modernes, notamment ceux, selon les modèles, qui présentent une puissance de 10 à 100 W.

DEMANDEZ LE CATALOGUE ELECTRONIQUE AVEC LA DESCRIPTION DÉTAILLÉE DE CHAQUE OUVRAGE

(ENVOI CONTRE 4 TIMBRES À 3 FRANCS)

REF. JEJ50
PRIX......98 F
DOCUMENTATION

RÉF. JEO28 Prix**145** F **DOCUMENTATION**

REF. JEJA017
PRIX......98 F
AUDIO, MUSIQUE, SON

RÉF. JEJA023
PRIX138 F
AUDIO, MUSIQUE, SON

RÉF. JEJ64
PRIX150 F
AUDIO, MUSIQUE, SON

RÉF. JEJA093
PRIX169 F
AUDIO, MUSIQUE, SON

REF. JEJ / 3 PRX 188 F VIDEO, TELEVISION

REF. JEJ86 RIX**105** ^F **VIDEO, TELEVISION**

	DOCUMENTATION		
JEJ53	AIDE-MÉMOIRE D'ÉLECTRONIQUE PRATIQUE	128F	19,51€
JEU03	ARRL ELECTRONICS DATA BOOK		24,09€
JEJ96	CONVERSION, ISOLEMENT ET TRANSFORM. ÉLECT.		17,99€
JEJ54	ÉLECTRONIQUE AIDE-MÉMOIRE		35,06€
JEJ56	ÉQUIVALENCES DIODES		26,68€
JEJA013	ÉQUIVALENCES CIRCUITS INTÉGRÉS	295 F	44,97€
JEJA014	ÉQUIVALENCES THYRISTORS, TRIACS, OPTO	180F	27,44€
JEO64	GUIDE DES TUBES BF		28,81€
JEJ52	GUIDE MONDIAL DES SEMI CONDUCTEURS		27.14€
JEJ50	LEXIQUE DES LAMPLES RADIO		14,94€
	LISTE DES ÉQUIVALENCES TRANSISTORS (T.1)		28,20€
	LISTE DES ÉQUIVALENCES TRANSISTORS (T.2)		26,68€
JEJ07	MÉMENTO DE RADIOÉLECTRICITÉ	75 ^F	11,43€
JEO10	MÉMO FORMULAIRE	76 F	11,59€
JEO29	MÉMOTECH ÉLECTRONIQUE	247 F	37,65€
JEJA075	OPTO-ÉLECTRONIQUE		23,32€
JEO28	RÉPERTOIRE DES BROCHAGES DES COMPOSANTS.		22,11€
JEJA090	SCHÉMATHÈQUE		24,39€
JEJAU9U			24,39€
	AUDIO, MUSIQUE, SON		
JEJ76	400 SCHÉMAS AUDIO, HIFI, SONO BF		30,18€
JE074	AMPLIFICATEURS À TUBES DE 10 W À 100 W		45,58€
JE053	AMPLIFICATEURS À TUBES POUR GUITARE HI-FI		34,91€
JE033	AMPLIFICATEURS HIFI HAUT DE GAMME		34,91€
JEJ58	CONSTRUIRE SES ENCEINTES ACOUSTIQUES		22,11€
JEO37	ENCEINTES ACOUSTIQUES & HAUT-PARLEURS		37,96€
JEJA016	GUIDE PRATIQUE DE LA DIFFUSION SONORE	98 F	14,94€
JEJA017	GUIDE PRAT. DE LA PRISE DE SON D'INSTRUMENTS	.98F	14,94€
JEJA105	GUIDE PRATIQUE DU MIXAGE	98 F	14,94€
JEJ51	INITIATION AUX AMPLIS À TUBES		25,92€
JEJ69	JARGANOSCOPE - DICO DES TECH. AUDIOVISUELLE		38,11€
JEJA023	LA CONSTRUCTION D'APPAREILS AUDIO		21,04€
JEJA023 JEJA029	L'AUDIONUMÉRIQUE		
JEJA029 JEJ67-1			53,36€
	LE LIVRE DES TECHNIQUES DU SON (T.1)		53,36€
JEJ67-2	LE LIVRE DES TECHNIQUES DU SON (T.2)	350 F	53,36€
JEJ67-3	LE LIVRE DES TECHNIQUES DU SON (T.3)		59,46€
JEJ72	LES AMPLIFICATEURS À TUBES	149 F	22,71€
IF 166	LES HAUT-PARLEURS	195 F	29,73€
JEJA045	LES LECTEURS OPTIQUES LASER		28,20€
JEJ70	LES MAGNÉTOPHONES		25,92€
JEJ64	MINI STUDIO, MIDI STUDIO		22,87€
JE041			
	PRATIQUE DES LASERS		41,01€
JE062	SONO ET STUDIO		34,91€
JEJA092	SONORISATION PROFESSIONNELLE		35,83€
JEJA093	TECHNIQUES DE PRISE DE SON		25,76€
JEJ65	TECHNIQUES DES HAUT-PARLEURS ET ENCEINTES	.280 F	42,69€
	VIDÉO, TÉLÉVISION		
JEJ73	100 PANNES TV	190 F	28,66€
JEJ25	75 PANNES VIDÉO ET TV		19,21€
JEJ80	ANTENNES ET RÉCEPTION TV		27,44€
JEJ86	CAMESCOPE POUR TOUS		16,01€
JEJ86 JEJ91-1	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.1)	115 F	17,53€
JEJ91-2	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.2)	115F	17,53€
JEJ91-3	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.3)	115 ^F	17,53€
JEJ91-4	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.4)		17,53€
JEJ91-5	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.5)		17,53€
IE IO1 6	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.6)		17,53€
JEJ91-6 JEJ91-7 JEJ91-8			
JEJ9 I-/	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.7)		17,53€
JEJ91-8	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.8)		17,53€
JEJ91-9	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.9)		17,53€
JEJ91-10	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.10)		17,53€
JEJ92	CIRCUITS INTÉGRÉS TÉLÉVISION LES 9 TOMES	775 F	118,15€
JEJ98-1	COURS DE TÉLÉVISION (T.1)		30,18€
	COURS DE TÉLÉVISION (T.2)		30,18€
JEJ98-2 JEJ28	DÉPANNAGE MISE AU POINT DES TÉLÉVISEURS		30,18€
JEJZ8 JEJA018	GUIDE RADIO-TÉLÉ		
JEJAU I 8	GUIDE KADIO-IELE	1201	18,29€

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE
TARIF EXPÉDITIONS : 1 LIVRE 35 (5,34€), DE 2 À 5 LIVRES 45 (6,86€), DE 6 À 10 LIVRES 70 (10,67€), PAR QUANTITÉ, NOUS CONSULTER

DVB (Digital Vidéo Broadcasting).

lutions des 20 derniers mois.

Cet ouvrage n'a pas pour ambition de faire du lecteur un expert de la télévision numérique, mais de décrire et d'expliquer de manière aussi simple que possible, les différents aspects du problème très complexe que pose la définition du système de transmission de programmes de télévision numérique à usage grand public, et les solutions retenues pour le standard européen

De plus, cette nouvelle édition prend en comp-

te la plus grande partie des nouveautés et évo-

169 F

Réf. JEJA025-1
PRIX 230 ^F
VIDEO, TELEVISION

Réf. JEJA046 230F VIDEO, TELEVISION

Réf. JEJA076 .149 F VIDEO, TELEVISION

MAISON ET LOISIRS

PRIX
MA

130^F AISON ET LOISIRS

Réf. JCD036	
PRIX 1 2	20 F
CD-ROM	

PRIX.. REF. JE JA067 135 Grâce à de nombreux montages simples mais aussi plus élaborés, l'auteur familiarise le modéliste ferroviaire avec l'électronique et lui permet d'animer et d'automatiser son réseau de trains miniatures.

Extrait du sommaire : Feux de fin de convoi. Clignotant pour passage à niveau. Générateur trois sirènes. Bruiteur vapeur. Feux de travaux. Feux tricolores routiers. Échange constant pour train miniature. Alimentation pour canton avec bloc automatique deux feux. Adaptateur trois feux lumineux. Bloc automatique trois feux.

JEJ69	JARGANOSCOPE - DICO DES TECH. AUDIOVISUELLES 250 F	38,11€
	LA TÉLÉVISION EN COULEUR (T.1)230 F	35,06€
	LA TÉLÉVISION EN COULEUR (T. 2)230 F	35,06€
	LA TÉLÉVISION EN COULEUR (T.3)198 F	30,18€
JEJA025-4	LA TÉLÉVISION EN COULEUR (T.4)169 F	25,76€
JEJA026	LA TÉLÉVISION NUMÉRIQUE198 F	30,18€
JEJA027	LA TÉLÉVISION PAR SATELLITE178 F	27,14€
JEJA028	LA VIDÉO GRAND PUBLIC175 F	26,68€
JEJA036	LE DÉPANNAGE TV ? RIEN DE PLUS SIMPLE!105 F	16,01€
	LES CAMESCOPES (T.1)215 F	32,78€
JEJA042-2	LES CAMESCOPES (T.2) 335 F	51,07€
JEJA046	MAGNÉTOSCOPES VHS PAL ET SECAM230 F	35,06€
JEJ46	MONTAGES ÉLECTRONIQUES POUR VIDÉO139 F	21,19€
JEJA076	PANNES TV149 F	22,71€
JEJA080	PRATIQUE DES CAMESCOPES168 F	25,61€
JEJ20	RADIO ET TÉLÉVISION MAIS C'EST TRÈS SIMPLE 154 F	23,48€
JEJA085	RÉCEPTION TV PAR SATELLITES148 F	22,56€
JEJA088	RÉSOLUTION DES TUBES IMAGE150 F	22,87€
JEJA098	VOTRE CHAÎNE VIDÉO178 F	27,14€
	СВ	
JEJ05	MANUEL PRATIQUE DE LA CB98 F	14.94€
JEJA079	PRATIQUE DE LA CB98 F	14,94€
	MANICON ET LOICIDE	
15040	MAISON ET LOISIRS ALARME ? PAS DE PANIQUE!95 F	
JE049		14,48€
JE050	CONCEVOIR ET RÉALISER UN ÉCLAIRAGE HALOGÈNE 110 F	16,77€
JEJ16 JEJ97	CONSTRUIRE SES CAPTEURS MÉTÉO	17,99€
JEJ97 JEJA001	COURS DE PHOTOGRAPHIE	26,68€
JEJAOU I JEJ49	ÉLECTRICITÉ DOMESTIQUE128 F	22,11€ 19,51€
JEJ49 JEJA004	ÉLECTRONIQUE AUTO ET MOTO	19,51€
JEJA004 JEJA006	ÉLECTRONIQUE AUTO ET MOTO130 ÉLECTRONIQUE ET MODÉLISME FERROVIAIRE139 F	19,82€
JEJA000 JEJA007	ÉLECTRONIQUE JEUX ET GADGETS139	19,82€
JEJA007 JEJA009	ÉLECTRONIQUE MAISON ET CONFORT130 F	19,82€
JEJA009 JEJA010	ÉLECTRONIQUE POUR CAMPING CARAVANING144 F	21,95€
JEJAO 10	ÉLECTRONIQUE POUR MODÉL. RADIOCOMMANDÉ 149 F	21,95€
JEJA012	ÉLECTRONIQUE PROTECTION ET ALARMES130 F	19,82€
JEJA052	LES RÉPONDEURS TÉLÉPHONIQUES140 F	21.34€
323/1002	LEG NEI GROEGING TELET HOMIQUES	21,544
IF IAO67	MODÉLISME FERROVIAIRE 135 F	20 584
JEJA067 JFO71	MODÉLISME FERROVIAIRE	20,58€ 22,71€
JEJA067 JEO71	MODÉLISME FERROVIAIRE	20,58€ 22,71€

2 - LES CD-ROM

				,
į	JCD023-2	300 CIRCUITS VOLUME 2	119 F	18,14€
	JCD023-3	300 CIRCUITS VOLUME 3	119 F	18,14€
	JCD036	DATA BOOK : CYPRESS	120 F	18,29€
	JCD037	DATA BOOK : INTEGRATED DEVICE TECHNOLOGY	120 F	18,29€
	JCD038	DATA BOOK : HAIL SENSORS	120 F	18,29€
	JCD039	DATA BOOK : LIVEARVIEW	120 F	18,29€
į	JCD040	DATA BOOK : MAXIM	120 F	18,29€
į	JCD041	DATA BOOK : MICROCHIP	120 F	18,29€
	JCD042	DATA BOOK : NATIONAL	140 F	21,34€
ı	JCD043	DATA BOOK: SGS-THOMSON	120 F	18,29€
	JCD044	DATA BOOK : SIEMENS	120 F	18,29€
1	JCD045	DATA BOOK : SONY	120 F	18,29€
į	JCD046	DATA BOOK : TEMIC	120 F	18,29€
į	JCD022	DATATHÈQUE CIRCUITS INTÉGRÉS	.229 F	34,91€
ı	JCD035	E-ROUTER	.229 F	34,91€
	JCD024	ESPRESSO	117F	17,84€
	JCD030	ELEKTOR 95	320 F	48,78€
ı	JCD031	ELEKTOR 96	267 F	40,70€
1	JCD032	ELEKTOR 97	267 F	40,70€
į	JCD027	SOFTWARE 96/97	123 F	18,75€
	JCD028	SOFTWARE 97/98	229 F	34,91€
	JCD025	SWITCH	289 F	44,06€
	JCD026	THE ELEKTOR DATASHEET COLLECTION	149 F	22,71€

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE TARIF EXPÉDITIONS : 1 LIVRE 35 (5,34€), DE 2 à 5 LIVRES 45 (6,86€), DE 6 à 10 LIVRES 70 (10,67€), PAR QUANTITÉ, NOUS CONSULTER

SRC/ELECTRONIQUE magazine – Service Commandes B.P. 88 - 35890 LAILLÉ - Tél.: 02 99 42 52 73+ Fax: 02 99 42 52 88

CONDITIONS DE VENTE:

REGLEMENT: Pour la France, le paiement peut s'effectuer par virement, mandat, chèque bancaire ou postal et carte bancaire. Pour l'étranger, par virement ou mandat international (les frais étant à la charge du client) et par carte bancaire. Le paiement par carte bancaire doit être effectué en francs français.

COMMANDES: La commande doit comporter tous les renseignements demandés sur le bon de commande (désignation de l'article et référence). Toute absence de précisions est sous la responsabilité de l'acheteur. La vente est conclue dès acceptation du bon de commande par notre société, sur les articles disponibles uniquement.

PRIX: Les prix indiqués sont valables du jour de la parution de la revue ou du catalogue, jusqu'au mois suivant ou jusqu'au jour de parution du nouveau catalogue, sauf erreur dans le libellé de nos tarifs au moment de la fabrication de la revue ou du catalogue et de variation importante du prix des fournisseurs ou des taux de change.

la journée de réception, sauf en cas d'indisponibilité temporaire d'un ou plusieurs produits en attente de livraison. SRC ÉDITIONS ne pourra être tenu pour responsable des retards dus au transporteur ou résultant de mouvements sociaux.

retards dus au transporteur ou resultant de mouvements sociaux.

TRANSPORT: La marchandise voyage aux risques et périls du destinataire. La livraison se faisant soit par colis postal, soit par transporteur. Les prix indiqués sur le bon de commande sont valables dans toute la France métropolitaine. Pour les expéditions vers la CEE, les DOM/TOM ou l'étranger, nous consulter. Nous nous réservons la possibilité d'ajuster le prix du transport en fonction des variations du prix des fournisseurs ou des taux de change. Pour bénéficier des recours possibles, nous invitons notre aimable clientèle à opter pour l'envoi en recommandé. A réception des colis, toute détérioration delt être signalés directement au transporteur. doit être signalée directement au transporteur.

LIVRAISON: La livraison intervient après le règlement. Nos commandes sont traitées de	marchandises et nous être adressée par lettre recommandée avec accusé de réception
JE PEUX COMMANDER PAR TÉLÉPHONE AU AVEC UN RÈGLEMENT PAR CARTE BANCAIRE	<mark>2 99 42 52 73</mark>
DÉSIGNATION	RÉF. QTÉ PRIX UNIT. S/TOTAL
JE COMMANDE ET J'EN PROFITE POUR M'ABONNER	SOUS-TOTAL
JE REMPLIS LE BULLETIN SITUÉ AU VERSO ET JE BÉNÉFICIE IMMÉDIATEMENT	REMISE-ABONNÉ x 0,95
DE LA REMISE DE 5 % SUR TOUT LE CATALOGUE D'OUVRAGES TECHNIQUES ET DE CD-ROM	SOUS-TOTAL ABONNÉ
JE SUIS ABONNÉ, POUR BÉNÉFICIER DE LA REMISE DE	+ PORT*
5%, JE JOINS	* Tarifs expédition CEE / DOM-TOM / Étranger NOUS CONSULTER
OBLIGATOIREMENT MON ÉTIQUETTE ADRESSE	*Tarifs expédition FRANCE : 1 livre : 35 F (5,34 €) 2 à 5 livres : 45 F (6,86 €) 6 à 10 livres : 70 F (10,67 €) autres produits : se référer à la liste
DEMANDEZ NOTRE CATALOGUE description détaillée de chaque ouvrage (envoi contre 4 timbres à 3 F)	RECOMMANDÉ FRANCE (facultatif) : 25 F (3,81€) ☐ RECOMMANDÉ ÉTRANGER (facultatif) : 35 F (5,34€) ☐
Je joins mon règlement à l'ordre de SRC chèque bancaire	TOTAL:
JE PAYE PAR CARTE BANCAIRE	VEUILLEZ ECRIRE EN MAJUSCULES SVP, MERC NOM : PRÉNOM : ADRESSE :
Signature > Date de commande	CODE POSTAL : VILLE : TÉLÉPHONE (Facultatif) :

Ces informations sont destinées à mieux vous servir. Elles ne sont ni divulguées, ni enregistrées en informatique.

et profitez de vos privilèges

sur tout le catalogue d'ouvrages techniques et de CD-ROM.*

* à l'exception des promotions et des références BNDL

S'ABONNER C'EST:

- L'assurance de ne manguer aucun numéro.
- L'avantage d'avoir **ELECTRONIQUE magazine directement** dans votre boîte aux lettres près d'une semaine avant sa sortie en kiosques. Recevoir un CADEAU*!

* pour un abonnement de deux ans uniquement. (délai de livraison : 4 semaines)

OUI, Je m'abonne à ELECTRO	A PARTIR DU N°
Ci-joint mon règlement de F corres Adresser mon abonnement à : Nom Adresse	•
Code postalVille Je joins mon règlement à l'ordre de JMJ chèque bancaire	TARIFS FRANCE 6 numéros (6 mois) au lieu de 162 FF en kiosque, soit 26 FF d'économie
Je désire payer avec une carte bancaire Mastercard – Eurocard – Visa	soit 26 FF d'économie 20,73€ 12 numéros (1 an) au lieu de 324 FF en kiosque, soit 68 FF d'économie 39,03€

12 numéros

Signature obligatoire >

Avec votre carte bancaire, vous pouvez vous

306^{FF} 46,65€

au lieu de 648 FF en kiosque, soit 152 FF d'économie

75,61€ Pour un abonnement de 2 ans. cochez la case du cadeau désiré.

DOM-TOM/ETRANGER: NOUS CONSULTER

Bulletin à retourner à : JMJ - Abo. ELECTRONIQUE B.P. 29 - F35890 LAILLÉ - Tél. 02.99.42.52.73 - FAX 02.99.42.52.88

DF 2 ANS

Gratuit:

- ☐ Une torche de poche
- 🖵 Un outil 7 en 1 🖵 Une pince à dénuder

Avec 24 FF uniquement en timbres :

- 🖵 Un multimètre
- 🖵 Un fer à souder
- l Un agenda électronique

(délai de livraison : 4 semaines)

Pour le contrôle et l'automatisation industrielle, une vaste gamme parmi les centaines de cartes professionnelles

GPC® 154

GPC® 884

84C15 avec un quartz de 20MHz code AMD 188E5 (core de 16 bits compatible avec Ordinateur) de compatible 280 ; jusqu'à 512K RAM; 26 au 40 MHz de la Série 4 de 5x10 cm. Comparez les jusqu'à 512 K EPROM au FLASH ; E⁻ caractéristiques et le prix avec la concurrence. 512K RAM avec Jusqu'a 312 K EPROM ou FLASH ; Effectives (18 or 18 o

Une toute nouvelle série de microcartes professionnelles, d'à peine 5x10 cm, à un prix exceptionnel.

Pourquoi perdre un temps précieux à concevoir un carte CPU quand elle existe déjà dans la nouvelle Série 4 ? Ces cartes, réalisées sur des circuits multicouche, sont disponibles avec les µP les plus répandus comme : 80C32 ; 89C52 ; 80C320 ; 89C520 , 80C151 ; 89S8252 ; 89C55 ; 80C552 ; 280 ; 84C15 ; Z180 ; 68HC11; 80C188ES; AVR; etc. Elles peuvent être montées en Piggy-Back sur votre circuit ou bien on peut les ajouter directement au même mag cas pour les ZBR xxx; ZBT xxx; ABB 05; etc. Un vaste choix de tools et de kits de développement logiciel comme Compilateurs C; BASIC; PASCAL; Assembler; etc.

GPC® 011 General Purpose Controller 84C011

Aucun système de développement extérieur n'est nécessaire. 84C011 de 16MHz compatible avec le code Z80; jusqu'à 256K RAM avec batterie au Lithium; jusqu'à 256K EPROM ou FLASH; RTC avec batterie au Lithium; 4 lignes

de A/D converter de 11 bits; 40 lignes de I/O; 2 lignes série; 1 RS 232 plus 1 RS 232, RS 422 ou RS 485; Watch-dog; fimer; counter; etc. En plein travail ne consomme que 0,48 W. Alimentateur incorporé de 220Vac et magasin de barre à Omega. Peut piloter le display LCD et le clavier directement. Le système borre a Umega. Peur piloter le disploy LCD et le colvere directement. Le systeme opératif FGDOS gère RAM disk et ROM disk et programme directement la FLASH de bord avec le programme utilisateur. Langages de programmation: Pascal, C, BASIC, FORTH, FGDS, etc. 2.327,38 FF 354.81 €

PREPROM-02aLV

GPC® x94 Controllers en version relais comme R94 ou avec transistors comme T94. Ils font partie de la Série M et sont equipés du magasin de barre à Omega. 9 lignes d'entrées optocouplées et 4 Darlington optocouplés de sortie de 3A ou relais de 5A; LED de visualisation de l'état des I/O; ligne série RS 232, RS 422, RS 485 ou current loop; horloge avec batterie au Lithium et RAM

tamponée; E² série; alimentateur switching incorporé; CPU 89C4051 avec 4K FLASH. Plusieurs tools de développement logiciel comme Bascom-LT, Ladder, etc. représentent le choix optimal. Un programme de télécontrole il est aussi disponible parmi ALB et il est geré directement de la ligne série de l'ordinateur. Plusieurs exemples sont egalement fournis.

Prix à partir de

Quick Terminal Panel - 3 Touches. Vous pouvez enfin doter aussi vos applications les plus économiques d'une interface Utilisateur optimale. Il semble un display série normal, mais au contraire il s'agit d'un terminal vidéo complet. Si vous avez besoin de touches en plus, la QTP 4x6 gère jusqu'à 24 touches. Disponible avec display LCD rètroèclairé ou fluorescent dans les formats 2x20 ; 4x20 ou 2x40 caractères ; 3 touches exté rieures; ou clavier 4x6; Buzzer ligne série que l'on peut configu

rer au niveau TTL ou RS232; E² capable de contenir 100 messages, etc. 437,02 FF A partir de

PASCAL

Environnement complet de développement integré pour language PASCAL pour Windows 95, 98 ou NT. Cet compilateur est compatible avec le très puissant Borland DELPHI. Il génère un code optimisé qu occupe très peux d'espace. Il a aussi un simulateur très rapide. Cet compilateur permet l'integration des sources PASCAL avec l'Assembler. Le Demo est disponible sur notre web-site. Le compilateur est disponi ble dans la version pour Z80 et Z180; 68HC11; ATMEL AVR; 8052 et 1.243,30 FF 189.54€

QTP G26 **Quick Terminal Panel LCD Graphique**

Panneau opérateur professionnel, IP65, avec display LCD rètroèclairé Alphanumérique 30 caractères par ligne sur 16 lignes ; Graphique de 240x128 pixels. 2 lignes série et CAN Controller isolées d'un point de vue galvanique. Poches de personnalisation pour touches, LED et nom du panneau 26 touches et 16 LED Buzzer; alimentateur incorporé

Compilateur Micro-C

DDS Micro-C. Grand choix de Tools, à bas prix, pour Développement Logiciel pour les µP de la fam. 68HC08, 6809, 68HC11, 68HC16, 8080, 8085, 8086, 8096, Z8, Z80, 8051, AVR, etc. Vous trouverez des assembleurs, des compilateurs C, des Monitors debugger, des Simulateurs, des Désassembleurs, etc Demandez la documentation. 677,55 FF 103.29 € Demandez la documentation.

LADDER-WORK

Compilateur LADDER bon marché pour cartes et Micro de la fam 805 . Il crée un code machine efficace et compact pour résoudre rapidement toute problématique. Vaste documentation avec exemples. Idéal également pour ceux qui veulent commencer. Outils de 338,77 FF 182,00€

SIM 2051

Si vous envisagez de commencer à vous servir d'uP économiques et puissants, c'est l'article qu'il vous faut. Il vous permet de travailler 89C2051; 89C4051 de

ATMEL à 20 broches qui a 4K de FLASH intérieure et qui est un code compatible avec la famille très célèbre 8051. Il sert aussi bien de In-Circuit Emulator que de Programmateur de FLASH de l'µP. Il comprend l'assembler Free-Ware. 1.090,85 FF 166.30 €

PIKprog - 51&AVRprog

Programmateur, à Bas Prix, pour µP PIC ou pour MCS51 et Atmel AVR. Il est de plus à même de programmer les EEPROM sérielles en IIC, Microwire et SPI. Fourni avec logiciel et alimentateur 1.134,89 FF 173.00 €

BASCOM

Voici le tool de développement Windows le plus complète et le plus économique pour travailler avec le µP ATMEL. Le BASCOM (dans notre page Web le démo est disponible) génère immédiatement le code machine compact. Cet tool de

développement est disponible en plusieurs versions soit
pour les µP de la fam.
8051 que pour les
RISC AVR. Le

compilateur BASIC est compatible avec le Microsoft QBA-SIC avec en plus des commande spécialisés pour

la géstion de l'I°C-BUS; 1WIRE; SPI; des Displays LCD, etc... Il incorpore un Simulateur sophistiqué pour le Debugger Symbolique au niveau de source BASIC du programme. Meme pour ceux quis' y mettent pour a première fois, travailler avec una moopouce n'a jamais été aussi simple, économique et rapid. 294,73 FF € 44,91 ple, économique et rapid.

CD Vol 1 Le seul CD dédié aux microcontrôleurs. Des centaines de listes de programmes pinout, utility, description des puces pour les µP les plus connus comme 8051, 8952, 80553, PIC, 68K, 68HC11, H8, Z8, etc. 340 FF 62.00 €

SIMEPROM-01B

Simulateur pour EPROM 2716.....27512 800 FF 129.11€ SIMEPROM-02/4 Simulateur pour EPROM 2716... 27C040

2.500 FF

GPC® F2

General Purpose Controller 80C32 Ceux qui souhaitent travailler avec la famille 8051 peuvent disposer d'un kit. L'intérêt est qu'à cette occasion, on a dressé un panorama complet des ressources S/H pour les utilisateurs voulant commencer à travailler avec un micro 8051. Outre d'une multitude de programmes Demo, vous pouvez disposer des manuels des cartes, en anglais, des schémas électriques, de nombreux exemples de programmes, etc. Nous vous conseillons de jeter un coup d'œil à notre site. De cette manière, vous vous rendrez compte de son grand

intérêt. Tous les renseignements vous sont four-nis en italien comme en anglais sur deux sites différents de l'açon à faciliter la liaison. http://www.grifo.it/OFFER/uk_F2_kit.htm http://www.grifo.com/OFFER/uk_F2_kit.htm À ceux qui désirent chercher des exemples de programmation simples avec des solutions à bas prix, nous signalons l'adresse suivante :

http://www.grifo.it/OFFER/uk TIO kit.htm http://www.grifo.com/OFFER/uk TIO kit.htm Le Kit contient un Circuit imprimé GPC® F2; 2 PROM programmés; quartz de 11,0592 MHz ; disquette avec manuel, schémas, monitors MO52, 18.08 € exemples, etc.

40016 San Giorgio di Piano (BO) - Via dell'Artigiano, 8/6 Tel. +39 051 892052 (4 linee r.a.) - Fax +39 051 893661

E-mail: grifo@grifo.it - Web au site: http://www.grifo.it - http://www.grifo.com GPC® -- oboc- grifo® sont des marques enregistrées de la société grifo®

Comment réaliser un inductancemètre simple

En réalisant ce montage, vous pourrez mesurer n'importe quelle inductance, en partant d'une valeur minimale de 10 microhenrys jusqu'à une valeur maximale de 10 millihenrys. Pour connaître ces valeurs, il suffit de relier sur les douilles de sortie de cet instrument un multimètre, analogique ou digital, réglé sur l'échelle 100 microampères.

Figure 1: Sur la position 1 (100 microhenrys), vous pourrez mesurer n'importe quelle inductance, en partant d'un minimum de 10 microhenrys jusqu'à un maximum de 100 microhenrys. Sur la position 2 (1 millihenry), vous pourrez mesurer n'importe quelle inductance allant d'un minimum de 0,1 millihenry, jusqu'à un maximum de 1 millihenry. Enfin, sur la position 3 (10 millihenrys), vous pourrez mesurer n'importe quelle inductance allant d'un minimum de 1 millihenry, jusqu'à un maximum de 10 millihenrys.

onsieur de La Palisse aurait dit "Plus on dispose d'instruments de mesure sur son plan de travail et plus nombreuses sont les mesures que l'on peut effectuer". Bien entendu, pour que cette lapalissade puisse devenir réalité, il faut que les appareils de mesure restent d'un coût sup-

portable. C'est le cas du montage que nous vous proposons dans ces lignes. Sa réalisation est très économique car nous utilisons un multimètre pour assurer la partie affichage de la mesure.

C'est dans le but de répondre à l'attente des débutants, qui ne peuvent pas toujours se permettre d'acquérir des instruments de mesure coûteux, que nous vous proposons cet inductancemètre économique.

Sachant qu'en appliquant une tension à une inductance quelconque, le courant absorbé atteint son maximum en un temps proportionnel à la valeur de l'inductance, nous nous sommes servis de cette caractéristique pour réaliser cet inductancemètre simple.

En effet, pour mesurer la valeur d'une self en microhenry ou en millihenry, on applique sur ses broches une tension de forme carrée avec une fréquence déterminée, puis on mesure le courant qui circule pendant la phase de charge.

Nous obtenons de ce courant une tension qui nous servira pour alimenter les portes Nand IC1/C et IC1/D et, ensuite, nous relions la sortie de la dernière porte Nand sur la broche R d'un Flip-Flop de type D.

Avant d'analyser le schéma électrique, analysons l'étage concernant les Nand IC1/B, IC1/C et IC1/D, représenté sur la figure 4.

En appliquant un signal carré sur les deux entrées du Nand IC1/B, on retrouvera ce même signal sur sa broche de sortie 8, reliée en série avec une inductance (LX) de valeur inconnue. Cela signifie que le courant circulant à l'intérieur de cette inductance atteindra sa valeur de saturation dans un temps proportionnel à la valeur de l'inductance (voir les figures 2 et 3).

Pour vous citer un exemple, si nous introduisons dans notre circuit une inductance de 10 microhenrys, il faudra 30 nanosecondes pour atteindre la valeur de saturation, tandis qu'avec une inductance de 100 microhenrys,

il faudra au moins 300 nanosecondes.

Par conséquent, sur la résistance R5, reliée en série à cette inductance (LX), nous retrouverons une tension qui atteindra sa valeur maximale en 30 nanosecondes, si la valeur de l'inductance est de 10 microhenrys, et en 300 nanosecondes, si elle est de 100 microhenrys.

Etant donné que la broche 1 du Nand IC1/C est reliée sur la résistance R5, lorsque la tension qui l'alimente atteindra une valeur d'environ 3 volts, il commutera le niveau logique de sa sortie de 1 à 0.

Le Nand IC1/D, qui suit le Nand IC1/C, est utilisé comme inverseur. Quand on trouve sur son entrée un niveau logique 0, on retrouve sur sa sortie un niveau logique 1 et vice-versa. Ce signal est ensuite appliqué sur la broche R du Flip-Flop IC3/B.

Si l'inductance a une faible valeur en microhenry ou en millihenry (et cela dépend de l'échelle que nous avons choisie grâce au commutateur S1/A), il lui faudra moins de temps pour pouvoir atteindre le seuil de 3 volts. Dans ce cas, le front montant du signal carré qui arrive sur la broche R du Flip-Flop IC3/B fournira en sortie de la broche Q un signal carré très étroit (voir figure 2).

Si l'inductance a une valeur élevée en microhenry ou en millihenry, il lui faudra plus de temps pour pouvoir atteindre le seuil de 3 volts.

Le front montant du signal carré qui arrive sur la broche R du Flip-Flop IC3/B, fournira en sortie de la broche Q un signal carré plus large (voir figure 3).

C'est pourquoi la largeur positive du signal carrée sortant de la broche Q est strictement proportionnelle à la valeur de l'inductance reliée en série à la résistance R5.

Comme vous pouvez le remarquer, on applique sur les entrées CK du Flip-Flop IC3/A et IC3/B :

- une fréquence de 1 MHz, si l'inductance à mesurer ne dépasse pas 100 microhenrys,
- une fréquence de 100 kHz, si l'inductance à mesurer ne dépasse pas 1 millihenry,
- une fréquence de 10 kHz, si l'inductance à mesurer ne dépasse pas 10 millihenrys.

Par contre, on applique sur la broche R du Flip-Flop IC3/B le signal carré prélevé sur la broche de sortie 6 du Nand IC1/D.

Avant de poursuivre, il est bon que vous sachiez à quoi correspondent les marquages sur le Flip-Flop :

Figure 2 : En appliquant un signal carré sur la broche CK du Flip-Flop IC3/B, sa sortie Q passera au niveau logique 1. Si l'inductance reliée sur la sortie du Nand IC1/B possède une faible valeur en µH ou en mH, on retrouvera, après un temps très court, une tension de 3 volts aux bornes de la résistance R5. Cette tension portera à saturation le Nand IC1/C qui enverra un niveau logique 1 sur la broche R du Flip-Flop IC3/B, ce qui fera basculer la broche Q au niveau logique 0.

Figure 3 : Si l'inductance reliée sur la sortie du Nand IC1/B possède une valeur élevée en µH ou en mH, il faudra un temps plus important pour obtenir la tension de 3 volts aux bornes de la résistance R5.

Donc, le Nand IC1/C se saturera avec du retard et produira en sortie de la broche Q un signal carré plus large que le précédent.

D	signifie Data
CK	signifie Clock (horloge)
R	signifie Reset
S	signifie Set

Etant donné que la broche D du Flip-Flop IC3/B est reliée au positif de l'alimentation, dès que le front montant de l'onde carrée prélevée du Flip-Flop IC3/A atteint la broche CK, la broche de sortie Q du Flip-Flop IC3/B bascule instantanément au niveau logique 1.

Si on applique un signal carré sur la broche d'entrée R, son front montant fera commuter la sortie Q au niveau logique O et restera ainsi jusqu'à ce que le front montant du signal carré suivant atteigne la broche CK.

Si le front montant du signal carré qui atteint la broche R est légèrement en retard par rapport au front montant du signal carré qui atteint la broche CK, on prélèvera sur la broche de sortie Q un signal carré qui restera au niveau logique 1, pendant un temps très réduit (voir figure 2).

Si le front montant du signal carré qui atteint la broche R a un retard plus important par rapport au front montant du signal carré qui atteint la broche CK, on prélèvera sur la broche de sortie Q un signal carré qui restera au niveau logique 1 pendant un temps plus long (voir figure 3).

Pour convertir les impulsions de taille variable, provenant de la sortie Q d'IC3/B, en une tension continue, il suffit de placer, sur cette sortie, un circuit d'intégration, composé d'une résistance et d'un condensateur (voir R6 et C6 sur la figure 4).

Si ces impulsions sont très étroites, on lira sur le multimètre une faible tension, mais plus ces impulsions s'élargiront, plus la valeur de la tension augmentera.

Donc, en lisant la valeur de cette tension, on pourra facilement connaître la valeur en microhenry ou en millihenry de l'inductance placée sur les douilles d'entrée de l'instrument.

Schéma électrique

Après avoir vu comment on parvient à envoyer sur la broche R un signal carré, décalée par rapport à celui atteignant la broche CK, on peut passer à la description complète du schéma électrique représenté sur la figure 4.

Pour obtenir une certaine précision dans la lecture, nous avons besoin d'une fréquence très stable, comme celle produite par un oscillateur au quartz.

En montant un quartz de 2 MHz dans la base du transistor TR1, nous retrouvons sur son collecteur une onde pratiquement sinusoïdale, que le Nand IC1/A convertit en un signal parfaitement carré.

Ce signal carré de 2 MHz est appliqué sur la position 1 du commutateur rotatif S1/A et sur la broche d'entrée 2 du circuit intégré IC2, un CD4518, contenant deux étages diviseurs par 10.

Figure 4a : Connexions, vues du dessus, des trois circuits intégrés. Note : la broche 2 du Flip-Flop IC3/B (4013) n'est pas utilisée. Connexions, vues du dessous, du régulateur 78L05 et du transistor BC547.

Sur broches 6 et 10, on récupère, divisée par 10, la fréquence appliquée sur l'entrée, c'est-à-dire :

2 : 10 = 0,2 MHz équivalent à 200 kHz

Tandis que sur la broche de sortie 14, on récupère, divisée par 100, la fréquence appliquée sur l'entrée, c'est-àdire:

2 : 100 = 0,02 MHz équivalent à 20 kHz

Ces deux fréquences sont appliquées sur les positions 2 et 3 du commutateur S1/A.

- La position 1 du commutateur S1/A est utilisée pour mesurer les inductances dont la valeur ne dépasse pas 100 microhenrys.
- La position 2 du commutateur S1/A est utilisée pour mesurer les inductances dont la valeur ne dépasse pas 1 millihenry.
- La position 3 du commutateur S1/A est utilisée pour mesurer les inductances dont la valeur ne dépasse pas 10 millihenrys.

Etant donné que pour la mesure on a besoin de disposer d'un signal carré ayant un coefficient d'utilisation de 50 % (cela signifie que le temps durant lequel le signal reste au niveau logique 1 doit être parfaitement identique au temps durant lequel il reste au niveau logique 0), on utilise le Flip-Flop IC3/A qui permet également de diviser par 2 la fréquence appliquée sur la broche d'entrée CK.

Quand on tourne le commutateur S1/A sur la position 1, on retrouve sur les deux broches de sortie Q du Flip-Flop IC3/A, une fréquence de :

2:2 = 1 MHz

Quand on tourne le commutateur S1/A sur la position 2 (200 kHz), on retrouve sur les deux broches de sortie Q du flip-flop IC3/A, une fréquence de :

200 : 2 = 100 kHz

Quand on tourne le commutateur S1/A sur la position 3 (20 kHz), on retrouve sur les deux broches de sortie Q du flip-flop IC3/A, une fréquence de :

20:2 = 10 kHz

Nous rappelons que le signal carré provenant de la broche 12 de IC3/A a une polarité inversée par rapport à celle provenant de la broche 13.

Le signal carré qui provient de la broche 13 atteint l'entrée du Nand IC1/B, qui fournit un courant plus que suffisant pour alimenter l'inductance reliée sur sa broche de sortie.

Comme la résistance R5 est reliée en série avec cette inductance, on retrouve à ses bornes une tension qui, partant de 0 volt, augmente rapidement jusqu'à atteindre la valeur d'alimentation.

En pratique, cette tension n'atteint jamais la valeur de 5 volts, car la résistance R5 provoque une petite chute de tension.

Lorsque la tension sur les broches de la résistance R5 atteint environ 3 volts, la sortie du Nand IC1/C passe au niveau logique 0 et le Nand IC1/D inverse ce niveau logique, de façon à ce que la broche R du Flip-Flop IC3/B, soit au niveau logique 1.

Nous avons déjà signalé le fait que pour transformer le signal carré provenant de la broche 1 de IC3/B en une tension qui soit proportionnelle à sa largeur, on utilise le circuit d'intégration composé de la résistance R6 et du condensateur C6.

: <mark>65</mark> r

Les diodes DS1 et DS2, placées en parallèle avec le condensateur C6, évitent d'envoyer violemment l'aiguille à fond d'échelle, sur un multimètre analogique, pendant le calibrage du trimmer R7.

Comme nous vous l'expliquerons par la suite, les trimmers R7 et R8 devront être réglés une seule fois pour la lecture sur le multimètre. Le trimmer R8 sera calibré pour faire dévier l'aiguille de l'instrument sur 0 lorsque nous choisirons l'échelle 100 microhenrys.

Pour alimenter ce circuit, il faut disposer d'une tension stabilisée de 5 volts. Comme il ne consomme qu'un courant dérisoire (environ 20 mA), nous l'avons alimenté avec une pile de 9 volts et nous avons stabilisé cette tension sur la valeur de 5 volts grâce au circuit intégré IC4.

Réalisation pratique de l'inductancemètre

Montez tous les composants nécessaires sur le circuit imprimé LX.1422, en les disposant comme indiqué sur la figure 5.

Pour commencer, nous vous conseillons de monter les trois supports pour les circuits intégrés IC1, IC2 et IC3. Après avoir soudé toutes les broches sur les pistes en cuivre du circuit imprimé, insérez les résistances et les deux trimmers et, afin d'éviter toute erreur, retenez que sur le corps du trimmer R8 se trouve le numéro 202 (2 000 ohms), tandis que sur le corps du trimmer R7, vous trouverez indiqué 103 (10 000 ohms).

Poursuivez le montage en insérant les trois diodes en dirigeant la bague noire de DS1 vers la résistance R9 et les bagues noires des diodes DS2 et DS3 vers le condensateur C6 (voir figure 5).

Figure 5 : Plan d'implantation des composants. Les broches du commutateur S1 et de l'interrupteur S2 doivent être directement insérées dans les trous prévus sur le circuit imprimé (voir figure 7).

Figure 6 : Sur cette photo, vous pouvez voir comment se présente le circuit une fois le montage des composants terminé.

Figure 7 : Avant de mettre en place le commutateur S1 sur le circuit imprimé, vous devez couper son axe à une longueur de 13 mm. Lorsque vous insérez la diode LED, vous devez la maintenir à une distance de 24 mm du circuit imprimé, en dirigeant sa patte la plus longue vers l'interrupteur S2.

Cette opération terminée, insérez tous les condensateurs céramiques et polyesters, puis les deux électrolytiques C7 et C10, en dirigeant leur broche positive vers le bas.

A présent, vous pouvez également insérer le petit circuit intégré stabilisateur 78L05 dans les trois trous marqués IC4, en dirigeant le côté plat de son corps vers la diode LED DL1.

Le transistor BC547 doit être inséré dans les trois trous marqués TR1, en dirigeant le côté plat de son corps vers le quartz XTAL qui devra être monté en position horizontale, comme sur la figure 5.

Insérez, sur le circuit imprimé également, l'interrupteur S2 et le commutateur rotatif S1, mais avant de souder ce dernier, vous devrez réduire la longueur de son axe à environ 13 mm (voir figure 7).

Pour compléter le montage, soudez les fils de la prise-pile et des douilles bananes, puis la diode LED DL1, en la maintenant à 24 mm de la surface du circuit imprimé pour pouvoir faire sortir sa tête de la face avant de l'inductancemètre. Quand vous insérez cette diode LED, souvenez-vous que la patte la plus longue (A) doit être dirigée vers l'interrupteur S2 comme indiqué sur la figure 7.

Installez les supports des trois circuits intégrés en dirigeant leurs encochesdétrompeurs en U comme indiqué sur le plan d'implantation.

Ensuite, prenez le boîtier plastique et placez le panneau d'aluminium, déjà

préperçé et sérigraphié, sur son couvercle. Au travers du panneau d'aluminium, vous devez tracer les contours des sept trous, à l'aide d'un crayon papier, pour les reporter sur le couvercle plastique, le couvercle de ce boîtier n'étant pas lui-même préperçé. Il faudra donc vous procurer un foret de 7 mm pour faire le trou de passage de l'axe du commutateur S1, un foret de 5,5 mm pour faire les trous pour les douilles et pour l'interrupteur S2 et un foret de 3 mm pour faire sortir la tête de la diode LED.

Le panneau d'aluminium sera maintenu sur le couvercle du boîtier grâce aux écrous des douilles bananes.

Avant de mettre en place les douilles sur la face avant, vous devrez retirer la bague plastique, que vous enfilerez du côté intérieur du couvercle avec les écrous de fixation (voir figure 8).

Liste des composants

R1 = $1 k\Omega$

R2 = $47 \text{ k}\Omega$

R3 = 330Ω

 $R4 = 10 k\Omega$

 $R5 = 1 k\Omega$

 $R6 = 1 k\Omega$

R7 = $10 \text{ k}\Omega \text{ trimmer}$

R8 = $2 k\Omega$ trimmer

R9 = $2.2 \text{ k}\Omega$

R10 = $22 \text{ k}\Omega$

R11 = 820Ω

C1 = 47 pF céramique

C2 = 47 pF céramique

C3 = 100 nF polyester

C4 = 100 nF polyester

C5 = 100 nF polyester

C6 = 100 nF polyester

C7 = $22 \mu F$ électrolytique

C8 = 100 nF polyester

C9 = 100 nF polyester

C10 = $47 \mu F$ électrolytique

XTAL = Quartz 2 MHz

DS1 = Diode 1N4148

DS2 = Diode 1N4148

DS3 = Diode 1N4148

DL1 = Diode LED

TR1 = Transistor NPN BC547

IC1 = Intégré TTL 74HC132

IC2 = Intégré C/Mos 4518

IC3 = Intégré C/Mos 4013

IC4 = Régulateur 78L05

S1 = Commutateur rotatif

2 C, 3 P

S2 = Interrupteur

Sauf spécification contraire, toutes les résistances sont des $1/4~W~\grave{a}$ 5 %.

Le calibrage

Une fois le montage terminé, il ne vous reste plus qu'à calibrer une seule fois les deux trimmers R7 et R8.

Le premier trimmer à calibrer est R8. Pour ce faire, procédez ainsi :

- Reliez sur les douilles de sortie votre multimètre (analogique ou digital), réglé sur l'échelle 100 microampères courant continu.
- Placez S1/A sur la position 1 (100 microhenrys), puis court-circuitez les deux douilles sur lesquelles vous pla-

Figure 8 : Le circuit imprimé sera fixé sur la partie du boîtier pourvue de l'emplacement pour la pile de 9 volts. Vous fixerez, sur l'autre partie, la face avant en aluminium, déjà prépercée et sérigraphiée. Comme le boîtier plastique n'est pas prépercé lui-même, vous pourrez prendre comme référence les trous présents sur le panneau en aluminium. Pour isoler les douilles du panneau métallique, avant de les mettre en place, vous devrez retirer de leur corps la bague plastique que vous placerez ensuite côté intérieur du boîtier.

ceriez normalement l'inductance à mesurer avec un morceau de fil de cuivre le plus court possible. Finalement, tournez le trimmer R8 jusqu'à ce que l'aiguille du multimètre se positionne en début d'échelle, c'est-à-dire sur 0. Ce réglage éliminera toutes les éventuelles inductances parasites dues au câblage.

Ce calibrage n'est nécessaire que sur la position 1 (100 microhenrys). En effet, sur les deux positions supérieures il est inutile car nous ne trouverons jamais une inductance parasite de 1 ou 2 microhenrys.

Pour calibrer le trimmer R7, procédez ainsi :

- A l'aide de votre multimètre, toujours relié sur les douilles de sortie, réglez S1/A sur la position 1 (100 microhenrys).
- Prenez l'inductance de référence (100 microhenrys), incluse dans le kit ou procurez-vous une inductance de cette valeur dont vous êtes sûr. Reliez-la sur les douilles d'entrée. Ensuite, calibrez le trimmer R7 jusqu'à faire dévier l'aiguille du multimètre sur 100 microampères.

Après avoir calibré ce second trimmer, l'instrument est prêt à l'utilisation.

Comment utiliser votre inductancemètre?

Reliez l'inductance dont vous voulez connaître la valeur sur les douilles d'entrée. Démarrez toujours depuis la position 3 correspondant à 10 millihenrys.

Si l'aiguille dévie au-delà du fond d'échelle du calibre 100 microampères, cela signifie que l'inductance en examen a une valeur supérieure à 10 millihenrys et donc que vous ne pourrez pas la mesurer avec cet appareil.

Si vous remarquez que l'aiguille dévie vers 5 microampères, vous pouvez sélectionner la position 2 ou 1, pour obtenir une mesure beaucoup plus précise.

En admettant que, sur la position 1, l'aiguille du multimètre s'arrête sur 50 microampères, vous saurez déjà que la valeur de l'inductance est de 50 microhenrys, tandis que si elle s'arrête sur 10 microampères, la valeur de l'inductance sera de 10 microhenrys.

Si vous tournez le commutateur S1 sur la position 2, vous devrez diviser par 100 les microampères lus par l'instrument car, avec cette échelle, on peut lire jusqu'à un maximum de 1 millihenry. Donc, si l'aiguille de l'instrument s'arrête sur 50 microampères, la valeur de l'inductance sera de :

50 : 100 = 0,5 millihenry

Tandis que si l'aiguille s'arrête sur 10 microampères, la valeur de l'inductance sera de :

10: 100 = 0,1 millihenry

Si vous tournez le commutateur S1 sur la position 3, vous devrez diviser par 10 les microampères lus sur le multimètre, car avec cette échelle on peut lire jusqu'à un maximum de 10 millihenry. Donc, si l'aiguille de l'instrument s'arrête sur 50 microampères, la valeur de l'inductance sera de :

50 : 10 = 5 millihenrys

tandis que si l'aiguille s'arrête sur 20 microampères, la valeur de l'inductance sera de :

20 : 10 = 2 millihenrys

Si vous utilisez un multimètre digital, vous pouvez lire la valeur de l'inductance en cours de mesure directement sur son afficheur et avec une plus grande précision qu'avec un multimètre analogique.

Si vous mesurez des inductances dont la valeur est portée sur le corps, vous vous rendrez compte que ces composants ont une tolérance d'environ 10 %.

Où trouver les composants

La liste des composants étant fournie, vous pouvez vous approvisionner, de préférence, auprès de nos annonceurs. Le circuit imprimé double face à trous métallisés est disponible séparément. Un kit complet (LX.1422) est également disponible. Voir publicités dans la revue.

♦ N. E.

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet: http://www.comelec.fr

MONITEURS COULEURS LCD

Solutions idéales pour réaliser des systèmes de contrôles vidéo portables, compatibles avec toutes nos caméras et n'importe quels appareils délivrant un signal vidéo composite.

MONITEUR 6,4" LCD HI-RES

Nouveau LCD TFT couleur de 6,4" à haute résolution pour une vision parfaite de l'image. Module en version « Super Slim », épaisseur 16 mm seulement.

Système de fonctionnement : Pal. Principe de fonctionnement : TFT à matrice active. Dimension de l'affichage: 16 cm (6,4"). Nombre de pixels: 224640. Résolution: 960 (I) x 234 (L). Configuration pixels: RVB Delta. Rétro-éclairage : CCFT.

FR123 .. (sans coffret) .. 3090 F

Signal vidéo d'entrée : 1 Vpp / 75 Ω . Tension d'alimentation : 12 VDC. Consommation: 8 watts. Dimensions: 156 (I) x 16 (P) x 118 (H) mm. Température de travail : - 20 °C à + 40 °C. Durée garantie : 10 000 heures.

FR123/cof .. (avec coffret) .. 3 450 F

MONITEUR 4" LCD TFT HI-RES

Système de fonctionnement : Pal. Principe de fonctionnement : TFT à matrice active. Dimension de l'affichage: 10 cm (4"). Nombre de pixels : 112320. Résolution : 480 (I) x 234 (L). Configuration pixels: RVB Delta. Rétro-éclairage : CCFT. Signal vidéo d'entrée : 1 Vpp / 75 Ω. Tension d'alimentation : 12 VDC.
Consommation : 7 watts. Consommation : Dimensions: 122 (I) x 36 (P) x 84 (H) mm. Température de travail : -5 °C à + 40 °C. Durée garantie : 10 000 heures.

FR122 1550 F

MONITEUR 4" LCD TFT

Système de fonctionnement : Pal. Principe de fonctionnement : TFT à matrice active. Dimension de l'affichage : 10 cm (4"). Nombre de pixels : 89622. Résolution : 383 (I) x 234 (L). Configuration pixels: RVB Delta. Rétro-éclairage : CCFT. Signal vidéo d'entrée : 1 Vpp / 75 Ω. Tension : 12 d'alimentation VDC. Consommation watts. Dimensions: 125 (I) x 60 (P) x 83 (H) mm. Température de travail : -5 °C à + 40 °C. Durée garantie : 10 000 heures.

MTV40 890 F

SYSTEMES DE TRANSMISSION AUDIO/VIDÉO

EMETTEURS TV AUDIO/VIDÉO

Permettent de retransmettre en VHF (224 MHz) une image ou un film sur plusieurs téléviseurs à la fois. Alimentation 12 V, entrée audio et entrée vidéo par fiche RCA.

FT272/K	 Kit	complet	245	F
FT272/M	 Kit	monté	285	F

Version 1 mW

(Description complète dans ELECTRONIQUE et Loisirs magazine n° 2)

FT292/K	 Kit	complet	403	F
FT292/M	Kit	monté	563	F

Version 50 mW

(Description complète dans ELECTRONIQUE et Loisirs magazine n° 5)

Recherchons revendeurs Fax: 04 42 82 96 51

TX/RX AUDIO/VIDEO A 2,4 GHz

Nouveau système de transmission à distance de signaux audio / vidéo travaillant à 2,4 GHz. Les signaux transmis sont d'une très grande fidélité et le rapport qualité/prix est excellent.

Récepteur 4 canaux

Récepteur audio/vidéo livré complet avec boîtier et antenne. Il dispose de 4 canaux sélectionnables à l'aide d'un cavalier. Sortie vidéo: 1 Vpp sous 75 Ω. Sortie

audio: 2 Vpp max.

FR137 990 F

Emetteur 4 canaux

Module émetteur audio/vidéo offrant la possibilité (à l'aide d'un cavalier) de travailler sur 4 fréquences différentes (2,400 - 2,427 - 2,457 - 2,481 GHz). Puissance de sortie 10 mW sous 50 Ω , entrée audio 2 Vpp max. Tension

d'alimentation 12 Vcc. Livré avec une antenne accordée.

FR135 854 F

SYSTEME TRX AUDIO/VIDEO MONOCANAL 2,4 GHz

Système de transmission à distance audio/vidéo à 2,4 GHz composé de deux unités, d'un émetteur d'une puissance de 10 mW et d'un récepteur. Grâce à l'utilisation d'une antenne directive à gain élevé incorporée dans chacune des unités, la

portée du système est d'environ 400 mètres en dégagé. Fréquence de travail : 2430 MHz. Bande passante du canal audio : 50 000 à 17 000 Hz. Alimentation des deux modules 12 volts. Consommation de 110 mA pour l'émetteur et de 180 mA pour le récepteur. A l'émetteur on peut appliquer un signal vidéo provenant d'une quelconque source (module caméra, magnétoscope, sortie SCART TV, etc.) de type vidéo composite de 1 Vpp / 75 Ω et un signal audio de 0,8 V / 600 Ω . Les connecteurs utilisés sont des fiches RCA. Le récepteur dispose de deux sorties standard audio/vidéo. Dimensions: 150 x 88 x 40 mm. Alimentation secteur et câbles fournis

FR120 1 109 F

Ampli 2,4 GHz / 50 mW

Petite unité d'amplification HF à 2,4 GHz qui se connecte au transmetteur 10 mW permettant d'obtenir en sortie une puissance de 50 mW sous 50 Ω . L'amplificateur est

alimenté en 12 V et il est livré sans son antenne.

FR136 691 F

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél: 04 42 82 96 38 - Fax 04 42 82 96 51 Internet: http://www.comelec.fr

RADIOCOMMANDE ET VIDÉO

RADIOCOMMANDE 32 CANAUX PILOTÉE PAR PC

Ce kit va vous permettre de piloter de votre PC, 32 récepteurs différents. Vous pouvez utiliser tous les récepteurs utilisant les circuits intégrés type MM53200 ou UM86409. Pour radiocommande. Très bonne portée. Le nouveau module AUREL permet, en champ libre, une portée entre 2 et 5 km. Le système utilise un circuit intégré codeur MM53200 (UM86409). Décrit dans ELECTRONIQUE n° 4.

FT 270/K ..Kit complet (cordon PC + Logiciel)317 F FT 270/M ..Kit complet monté avec cordon + log. 474 F AS433Antenne accordée 433 MHz99 F

RADIOCOMMANDE CODÉE 4 CANAUX (6561 COMBINAISONS)

Ce kit est constitué d'un petit émetteur et d'un récepteur capable de piloter deux ou quatre relais. Le récepteur est alimenté en 220 V, il possède une antenne télescopique et un coffret avec une face avant sérigraphiée.

LX1409	Kit emetteur complet	
	CI + comp. + pile + boîtier	127 F
LX1411/K2	Kit récepteur complet	
	version 2 relais (sans coffret)	423 F
LX1411/K4	Kit récepteur complet	
	version 4 relais (sans coffret)	471 F
MO1410	Coffret plastique avec sérigraphie	77 F

Les circuits imprimés peuvent être achetés séparément, consultez-nous!

FILTRE ÉLECTRONIQUE POUR CASSETTES VIDÉO

Ce kit vous permet de dupliquer vos cassettes. Ce filtre permet de réaliser des enregistrements de qualité en PAL comme en SECAM. Indispensable pour dupliquer correctement vos cassettes vidéo.

Décrit dans ELECTRONIQUE n° 3.

FT282/K	Kit comp	olet)3	98 F
		é)5	

MODULATEUR UHF POUR TV SANS PRISE SCART (PÉRITEL)

Ce modulateur TV reçoit sur ses entrées un signal Vidéo et un signal Audio. Il dispose en sortie d'un signal (60 dBµV) qui peut être directement appliqué sur l'entrée antenne d'un téléviseur démunie de prise SCART.

LX1413 (Kit: composants, CI et boîtier)......143

CLÉ DTMF 4 OU 8 CANAUX

Pour contrôler à distance via radio ou téléphone la mise en marche ou l'arrêt d'un ou plusieurs appareils électriques. Elle est gérée par un microcontrôleur et munie d'une EEPROM. En l'absence d'alimentation, la carte gardera en mémoire toutes les informations nécessaires à la clé : code d'accès à 5 chiffres, nombre de sonneries, états des canaux, etc. Les relais peuvent

fonctionner en ON/OFF ou en mode impulsions. Le code d'accès peut être reprogrammé à distance. Interrogation à distance sur l'état des canaux et réponse différenciée pour chaque commande. Le kit 8 canaux est constitué de 2 platines : une platine de base 4 canaux et une platine d'extension 4 canaux. Décrit dans ELECTRONIQUE n° 1.

FT110K (4C en kit)	.395 F	FT110M (4C monté).	470 F
FT110EK (extension 4C))		68 F
FT110K8 (8C en kit)	.463 F	FT110M8 (8C monté)	590 F

TX ET RX CODÉS MONOCANAL

Pour radiocommande. Très bonne portée. Le nouveau module AUREL permet, en champ libre, une portée entre 2 et 5 km. Le système utilise un circuit intégré codeur MM53200 (UM86409). Décrit dans ELECTRONIQUE n° 1

LL	LOTTONIQUE II I.	
ICH IP	FT151K (émetteur en kit)	190 F
	FT152K (récepteur en kit)	
	FT151M (émetteur monté)	240 F
	FT152M (récepteur monté)	

FILTRE ÉLECTRONIQUE POUR MAGNÉTOSCOPES

En cas de duplication de vos images les plus précieuses, il est important d'apporter un filtrage correctif pour régénérer les signaux avant duplication. Fonctionne en PAL comme

en SECAM. Correction automatique des signaux de synchronisation vidéo suivants. Synchronisation : composite, verticale. Signal du burst couleur. Signal d'entrelacement. Permet aussi la copie des DVD.

LX1386/K	(kit complet	avec boîtier)473 F
LX1386/M	(kit monté)		699 F

CAMÉRA ÉTANCHE N&B TRÈS SENSIBLE

Une caméra de surveillance, étanche et robuste, qui saura vous protéger pendant longtemps, c'est la FR-129. Enfermée dans un boîtier cylindrique en aluminium épais, d'un diamètre de 28 mm pour une longueur de 102 mm, elle pèse 600 g. Elle est livrée avec un support de fixation à rotule, permettant une orientation facile dans toutes les directions. La FR-129 est également fournie avec un câble de liaison de 30 mètres, terminé

par des connecteurs RCA et une prise d'alimentation. Le bloc d'alimentation secteur est, par ailleurs, fourni avec la caméra. La FR-129 utilise un capteur "Hyper HAD CCD" de Sony et offre une résolution horizontale de 420 lignes TV. Très sensible, elle fonctionnera même en faible lumière (0,05 lux), de –15° C à +55° C. Etanche, elle résiste à 3 atmosphères. La consommation électrique est de 1,3 W.

FT-129Mod	dele noir et blanc	1 550 F
FT-130Mod	dèle couleur	2503 F

DÉTECTEURS DE MÉTAUX

Pour rechercher des pièces de monnaies ou tout objet métallique caché sous terre. Disponible en deux versions, économique (FR142) et professionnel (FR143). Les deux modèles disposent d'une sonde de recherche étanche. Caractéristiques techniques FR143:

Caractéristiques techniques FR142 :

- prise casque.
- manche réglable en longueur
- alim.: 6 x 1.5V (batteries non comprises)
- poids : 1 kg
- Dim. : 67 x 18 x 11,5 cm.

FR142.....699 F

- prise casque.

- manche réglable en longueur

- alim.: 3 x 9 V (batteries non comprises).

- poids : 2,5 kg

- Dim. : 72 x 23 x 16 cm.

- Discriminateur à trois sons, discriminateur pour terrain ferreux. FR1431190 F

Discriminateur de métaux ferreux et non ferreux.

La mémorisation de la courbe d'un filtre HF

Avec l'Analyseur de Spectre décrit dans les premiers numéros d'ELECTRONIQUE et Loisirs magazine, il est possible de mémoriser 4 courbes différentes de filtres. En rappelant ces courbes, on pourra leur superposer les courbes d'autres filtres et, ainsi, être à même de vérifier les différences existant entre les unes et les autres. Dans cet article, nous avons pour objectif de vous apprendre comment mémoriser des courbes de référence et comment les utiliser.

I arrive souvent aux installateurs d'antennes TV de se retrouver avec un coupleur dont les filtres sont complètement déréglés. Comme la calibration d'un tel coupleur est pratiquement impossible sans un analyseur de spectre, la seule solution restante est le remplacement pur et simple.

Au contraire, si l'on dispose d'un analyseur de spectre capable de mémoriser la courbe d'un filtre correctement réglé, il est toujours possible de la rappeler pour lui superposer celle du filtre déréglé. On peut ainsi visualiser sur l'écran de l'analyseur deux courbes différentes, ce qui permettra de régler les différents filtres, jusqu'à obtenir une courbe identique à celle de référence.

Lors de l'acquisition de nouveaux filtres, toujours grâce à l'analyseur de spectre, il sera également possible de contrôler, par rapport aux données mémorisées d'un filtre témoin, s'ils sont trop étroits au point de ne pas laisser passer le signal du télétexte, ou bien s'ils atténuent de façon exagérée le signal appliqué sur leur entrée.

En ayant à sa disposition un instrument permettant de mémoriser 4 courbes différentes, celui qui travaille en haute fréquence et qui réalise des filtres passe-bande, passe-haut et passe-bas pour émetteurs et récepteurs, pourra, non seulement, voir comment varie la courbe selon la capacité des condensateurs ou la valeur des inductances, mais il pourra également connaître les valeurs d'atténuation en dB.

Comment visualiser une courbe

Supposons que vous ayez un filtre passe-bande dont vous ignorez à la fois la fréquence centrale et sa largeur. Pour visualiser sa courbe, et ensuite la mémoriser, vous devez procéder comme suit.

Si le filtre est de type passif, il suffit de relier sur son entrée le signal prélevé sur la prise BNC TRACKING et de relier ensuite sa sortie sur la prise BNC INPUT (voir figure 2).

Si le filtre est de type actif, il faut, en plus, l'alimenter avec une tension externe (voir figure 3), car sans cela, vous ne verrez aucune courbe.

Etant donné que vous ignorez la fréquence de travail du filtre, vous devez, pour la trouver, effectuer ces opérations très simples.

Une fois l'analyseur allumé, réglez-le de façon à faire apparaître ces données :

SPAN = 1000.0 RBW = 1 M SWP = .5 Sec.

Activez ensuite le "tracking", en appuyant sur les touches F1, 5 et ENTER, puis la touche "+" jusqu'à faire apparaître "- 30" sur la ligne TRCK.

Le tracé d'un signal, comme celui représenté sur la figure 4 pourrait très bien s'afficher à l'écran.

Pour en connaître la fréquence de travail, vous devez activer le Marker 1, en appuyant sur les touches F2 et 0, puis la touche ENTER avant de positionner le curseur du Marker 1 sur le sommet du pic de façon à pouvoir lire la fréquence sur la ligne Marker 1.

Dans le cas de l'exemple reproduit sur la figure 4, vous lirez 205 000 kHz équivalents à 205 MHz.

Une fois la fréquence connue, désactivez le Marker 1 en appuyant sur les touches F2, 0 puis ENTER.

Figure 1 : Touches de commande présentes sur la face avant. Pour sélectionner les différentes fonctions indiquées sur le panneau, appuyez sur la touche fonction F1 ou F2, puis sur la touche numérique désirée.

Pour élargir ce tracé, appuyez sur les touches F1, 1 puis tapez "10" sur la ligne SPAN puis ENTER.

Vous verrez alors automatiquement s'afficher "100 kHz" sur la ligne RBW et "200 ms" sur la ligne SWP (Sweep).

Pour établir la fréquence lue dans l'exemple de la figure 4, appuyez sur les touches F1 et 0 pour accéder à la ligne CENTER, puis tapez le nombre 205 et pour finir, ENTER.

Une fois toutes ces opérations effectuées, vous verrez s'afficher la courbe de la figure 5 et, puisqu'elle est trop large, il faudra augmenter la valeur de la ligne SPAN.

Toutefois, avant de l'augmenter, il est préférable que vous alliez sur la ligne PEAK src et que vous appuyez sur ENTER de façon à déplacer la courbe au centre de l'écran.

Ensuite, appuyez sur les touches F1 et 1 afin de reporter le curseur sur la ligne SPAN, tapez 20 et appuyez sur ENTED

Si vous désirez ultérieurement resserrer la courbe, il suffit de tourner le bouton de l'encodeur jusqu'à ce que la courbe apparaisse entièrement à

Figure 2 : Si le filtre à contrôler est de type passif, c'està-dire dépourvu d'étages amplificateurs, vous pouvez le relier directement entre la sortie TRACKING et l'entrée INPUT.

Figure 3 : Si le filtre à contrôler est de type actif, vous devez appliquer sur la ligne d'alimentation la tension positive qui servira à alimenter les transistors internes.

Figure 4 : Pour visualiser une fréquence, démarrez toujours avec une valeur de SPAN de 1 000 MHz, puis placez le Marker 1 sur le tracé du signal.

Figure 5 : Si vous démarrez avec une valeur de SPAN de 10 MHz et que la courbe apparaît trop large, choisissez une valeur de SPAN de 20 MHz pour la réduire.

Figure 6 : Quand la courbe s'affiche entièrement à l'écran, vous devez mesurer la fréquence centrale, en utilisant le Marker 1.

l'écran, comme sur la figure 6. Positionnez le curseur du Marker 1 sur le sommet de la courbe, et, en admetant que vous lisiez 202 000 sur la ligne CENTER, appuyez sur les touches F1 et 0 puis tapez 202 000 sur la ligne CENTER et appuyez sur ENTER de façon à déplacer la courbe à nouveau au centre de l'écran (voir figure 6).

Pour voir la largeur de bande de ce filtre, vous devez également activer le Marker 2 en appuyant sur F2 et 1, puis ENTER et déplacer les deux curseurs sur les deux côtés de la courbe (voir figure 7).

Sur la ligne Marker 1, vous lirez alors la valeur en dB de l'atténuation ou du gain, ainsi que la fréquence du point de positionnement du marqueur 1.

Sur la ligne Marker 2, vous lirez la valeur en dB de l'atténuation ou du gain

et la fréquence du point de positionnement du marqueur 2.

Sur la dernière ligne en bas, c'est-àdire le M Delta, vous lirez la largeur de bande et l'écart en dB entre les deux points de positionnement des marqueurs :

Marker 1 = -31 dB 201 053 kHz Marker 2 = -31 dB 203 815 kHz M Delta = -0 dB 2762 kHz

Si vous calculez la différence entre la fréquence du Marker 2 et celle du Marker 1, vous obtiendrez exactement 2762 kHz, égal à 2,762 MHz.

En regardant les données indiquées sur la figure 7, vous pourriez penser que le filtre en examen réduit le signal de -31 dB, mais il n'en est rien, car l'analyseur prend comme référence les -30 dBm du TRCK (tracking) et donc l'atténuation réelle présente sur les deux points de positionnement

des marqueurs, est de 31 - 30 = 1 dB.

Pour connaître avec précision l'atténuation d'un signal de -3 dB, vous devez placer le curseur du Marker 1 sur le sommet de la courbe (voir figure 8), de façon à ce que la fréquence centrale soit de :

Marker 1 = -28 dB 202 434 kHz

Vous devez donc déplacer le Marker 2 jusqu'à obtenir une valeur de M Delta = -3 dB (voir figure 8) et vous lirez sur les trois lignes de gauche :

Marker 1 = -28 dB 202 434 kHz Marker 2 = -31 dB 203 815 kHz M Delta = -3 dB 1 381 kHz

Pour connaître la largeur de bande passante totale, il suffit de positionner le curseur du Marker 1 sur la gauche de la courbe, jusqu'à obtenir une valeur de M Delta = -0 dB et vous

Figure 7 : En positionnant sur les deux côtés de la courbe les Marker 1 et 2, vous pouvez connaître l'atténuation en dB du filtre et sa largeur de bande.

Figure 8 : Pour savoir si il y a bien, entre les deux marqueurs, une différence de -3 dB, positionnez le Marker 1 sur le sommet de la courbe (lire le texte).

Figure 9: En déplaçant les deux marqueurs à -10 dB par rapport au centre, vous pouvez voir la nouvelle largeur de bande sur M Delta.

Figure 10 : Pour mémoriser la courbe qui s'affiche à l'écran, placez le curseur sur MEM, puis appuyez sur ENTER.

Figure 11 : Quand ce menu apparaîtra, allez sur la ligne STORE 1, placée sous "FIGURE", puis appuyez sur la touche FNTFR.

Figure 12 : En phase de mémorisation vous verrez apparaître en haut à droite "STORE" ainsi qu'une valeur, qui se changera ensuite en "STORED".

verrez à nouveau apparaître à l'écran :

Marker 1 = -31 dB 201 053 kHz Marker 2 = -31 dB 203 815 kHz M Delta = -0 dB 2 762 kHz

En général, pour définir la largeur de bande, on prend comme référence les deux points placés à -3 dB (voir figure 7). On a donc, dans notre exemple, une largeur de bande de 2762 kHz.

Pour connaître la largeur de bande à –10 dB, il faut répéter les mêmes opérations que celles décrites précédemment. Donc, sachant que l'extrémité supérieure de la courbe est à –28 dB (voir figure 8), vous devez positionner les deux curseurs sur –38 dB et vous verrez alors apparaître à l'écran ces nouvelles données (voir figure 9) :

Marker 1 = -38 dB 198 085 kHz Marker 2 = -38 dB 205 900 kHz M Delta = -0 dB 7 095 kHz

Ce filtre aura donc une bande passante de 7 000 kHz, équivalant à 7 MHz, mais avec une atténuation de –10 dB.

Comment mémoriser une courbe

Appuyez sur les touches du CURSOR en croix pour vous positionner sur la ligne MEM (voir figure 10), puis sur la touche ENTER pour voir apparaître à l'écran le menu de la figure 11.

Toujours en utilisant les touches du CURSOR, sélectionnez la ligne STORE 1, placée sous la ligne "FIGURE" et appuyez sur ENTER.

En haut à droite, vous verrez apparaître un numéro qui, en partant de 0, comptera jusqu'à une valeur indéfinie. Une fois la mémorisation terminée, vous verrez apparaître le mot "STORED" (mémorisé).

Pour mémoriser une courbe, il faut en moyenne 10 secondes (voir figure 12).

A la fin du comptage, la courbe sera mémorisée avec tous ses paramètres : le SPAN, le RBW, le SWP et le CENTER (fréquence centrale).

Quand vous éteindrez l'analyseur, toutes ces données mémorisées, c'est-à-dire les paramètres et la courbe, ne seront pas effacées et vous pourrez donc les rappeler, même après plusieurs années!

Dans la mémoire du STORE, se trouvant à gauche, on peut mémoriser 4 courbes différentes.

Comment mémoriser une seconde courbe

Pour mémoriser une seconde courbe, vous devez procéder comme suit.

Placez le curseur sur la ligne MAIN et appuyez sur la touche ENTER de façon à revenir au menu principal. Après avoir visualisé à l'écran la seconde courbe, positionnez-vous grâce, aux touches en croix du CURSOR, sur la ligne MEM, puis appuyez sur ENTER: vous verrez alors apparaître le menu de la figure 11.

Toujours en utilisant les touches en croix du CURSOR, allez sur la ligne STORE 1 et appuyez sur la touche "+"

de façon faire apparaître STORE 2, puis appuyez sur ENTER.

Sur la droite de l'écran, vous verrez apparaître à nouveau un numéro qui, en partant de 0, comptera jusqu'à une valeur indéfinie et lorsque la courbe sera complètement mémorisée, vous verrez apparaître le mot "STORED".

Pour retourner au premier menu, il suffit d'aller sur la ligne MAIN et d'appuyer sur ENTER.

Comment rappeler une courbe mémorisée

Pour afficher à l'écran une courbe mémorisée, il suffit de sélectionner à l'aide des touches du CURSOR la ligne MEM et appuyer sur ENTER, puis sélectionner la ligne RECALL 1 et appuyer à nouveau sur ENTER. Vous verrez alors apparaître la courbe mémorisée sur STORE 1 (voir figure 13).

Pour rappeler la courbe mémorisée sur STORE 2, STORE 3 ou STORE 4, quand vous vous trouvez sur la ligne RECALL 1, appuyez sur la touche "+" afin de faire apparaître RECALL 2, RECALL 3 ou RECALL 4, après quoi vous pouvez appuyer sur la touche ENTER.

Le tracé de la courbe mémorisée apparaît à l'écran avec une faible luminosité pour vous permettre de la distinguer du tracé que vous lui superposerez.

Après avoir appuyé sur ENTER, le mot "RECALL 1" se change en "CLEAR" (voir figure 14), le curseur se place automatiquement sur la ligne MAIN et donc en appuyant sur ENTER, vous retournerez au menu principal.

Figure 13 : Pour rappeler la courbe mémorisée, il suffit de positionner le curseur sur la ligne RECALL 1, puis d'appuyer sur ENTER.

Figure 14: Le curseur se placera automatiquement sur la ligne MAIN et le mot "CLEAR" viendra à remplacer "RECALL 1".

Figure 15 : Si vous positionnez le curseur sur la ligne CLEAR et que vous appuyez sur ENTER, vous ferez apparaître à l'écran la courbe mémorisée.

Comment effectuer un calibrage avec une courbe de référence

En admettant que vous deviez rappeler la courbe de la figure 9, déjà mémorisée sur STORE 1, parce qu'elle vous sert pour calibrer un filtre ayant les mêmes caractéristiques, vous devez procéder comme suit.

Quand vous vous trouvez dans le menu de la figure 4, reliez le filtre à calibrer entre la sortie TRACKING et l'entrée INPUT comme sur les figures 2 et 3.

Allez ensuite sur la ligne MEM et appuyez sur la touche ENTER de façon à faire apparaître le second menu, puis en utilisant les touches en croix du CURSOR, allez sur la ligne RECALL 1 et appuyez sur ENTER.

Apparaîtra alors à l'écran, la courbe mémorisée sur STORE 1 qui, comme vous le remarquerez, sera moins lumineuse (voir figure 13) par rapport à celle du filtre que vous voulez calibrer.

A présent, tournez les compensateurs de calibrage placés dans le nouveau filtre jusqu'à superposer les deux courbes (voir figure 16 et 17).

Quand la courbe du nouveau filtre apparaîtra parfaitement superposée à celle de référence (voir figure 18), le filtre sera calibré.

Pour retourner au menu principal, il suffit d'aller sur la ligne MAIN et d'appuyer sur ENTER.

Une nouvelle courbe sur STORE 2

Si vous ne voulez pas effacer la courbe présente sur STORE 1 (voir figure 10), et que vous voulez au contraire mémoriser celle de la figure 19 sur STORE 2, effectuez les opérations suivantes.

Appuyez sur les touches du CURSOR pour aller sur la ligne MEM, puis sur ENTER: vous verrez alors apparaître à l'écran les paramètres de la figure 11.

Toujours en utilisant les touches du CUR-SOR, allez sur la ligne STORE 1 et appuyez sur la touche "+" de façon à faire apparaître "STORE 2" (voir figure 19), puis sur la touche ENTER. Quand "STORED" apparaît sur la droite (voir figure 20), la courbe est mémorisée avec tous ses paramètres sur STORE 2.

Une fois la courbe mémorisée, pour pouvoir la rappeler, appuyez sur les touches du CURSOR pour vous positionner sur la ligne RECALL 1 et appuyez sur la touche "+" afin de faire apparaître RECALL 2. A présent, en appuyant sur la touche ENTER, vous verrez apparaître le tracé que vous avez mémorisé (voir figure 21).

Figure 16: La courbe d'un nouveau filtre à calibrer peut être superposée à une courbe mémorisée déjà rappelée à l'écran (lire l'article).

Figure 17 : En tournant les condensateurs du filtre (voir figure 2 et 3), essayez de faire coïncider cette courbe avec celle mémorisée.

Figure 18 : Quand les courbes se superposeront, le second filtre sera calibré avec les mêmes caractéristiques que celles du filtre de référence.

Figure 19 : Pour mémoriser une seconde courbe, allez sur STORE 1 puis appuyez sur la touche "+" de façon à faire apparaître STORE 2.

Figure 20: En appuyant sur la touche ENTER une fois la courbe mémorisée, vous verrez s'afficher sur la ligne en haut à droite, le mot "STORED".

Figure 21 : Pour rappeler cette nouvelle courbe, il faut aller sur RECALL 1 et appuyer sur la touche "+" de façon à faire apparaître RECALL 2.

Comment effacer une courbe mémorisée

Pour retirer de l'écran une courbe mémorisée, il suffit de porter le curseur sur la ligne MEM, puis d'appuyer sur ENTER: apparaîtra alors le menu de la figure 14. En positionnant le curseur sur la ligne CLEAR et en appuyant sur ENTER, la courbe disparaîtra de l'écran (voir figure 15), mais vous ne l'aurez pas effacée de la mémoire et donc vous pourrez toujours la rappeler en cas de besoin.

Si vous voulez remplacer cette courbe par une nouvelle, vous devrez avant tout la faire apparaître à l'écran. En appuyant sur les touches en croix du CURSOR, vous devez vous positionner sur la ligne MEM (voir figure 10), puis appuyer sur ENTER et vous verrez alors apparaître à l'écran le second menu de la figure 11. Toujours à l'aide

Figure 22: Pour effacer la courbe mémorisée en STORE 1 et la remplacer par celle de la figure 10, vous devez positionner le curseur sur STORE 1 et appuyer sur ENTER (lire le texte).

des mêmes touches, positionnez-vous sur la ligne STORE 1, placée sous la ligne "FIGURE", et appuyez sur ENTER.

En haut à droite, vous verrez apparaître un numéro qui, en partant de O, comptera jusqu'à une valeur indéfinie et lorsque la mémorisation sera terminée, le mot "STORE" apparaîtra. Grâce à cette opération, vous aurez remplacé la première courbe par la nouvelle (voir figure 22).

♦ Suite et fin le mois prochain

Pour vos achats. choisissez de préférence nos annonceurs. C'est auprès d'eux que vous trouverez les meilleurs tarifs et les meilleurs services.

Vous venez de découvrir

t vous désirez ous procurer les anciens numéros...

Les n°1, n°2 et n°4 sont disponibles

sur CD-ROM

Les 6 premiers numéros en intégralité sur un CD-ROM ELECTRONIO 136F le CD-ROM

Les revues n°3, n°5, n°6 et n°7

sont toujours disponibles...

adressez votre commande à :

JMJ/ELECTRONIQUE - B.P. 29 - 35890 LAILLÉ avec un règlement par Chèque à l'ordre de JMJ ou au Tél.: 02 99 42 52 73 - Fax: 02 99 42 52 88 avec un règlement par Carte bancaire.

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet : http://www.comelec.fr

CARTES MAGNETIQUES ET CARTES À PUCE

Dispositifs réalisés avec différentes technologies pour le contrôle d'accès et l'identification digitale.

Lecteurs/enregistreurs de cartes magnétiques

MAGNÉTISEUR MANUEL

Programmateur et lecteur manuel de carte. Le système est relié à un PC par une liaison série. Il permet de travailler sur la piste 2, disponible sur les cartes standards ISO 7811. Il est alimenté par la liaison RS232-C et il est livré avec un logiciel.

MAGNÉTISEUR MOTORISÉ

alimenté en 220 V et il est livré avec son logiciel.

PRB33...... 10500 F

LECTEUR À DÉFILEMENT

Le dispositif contient une tête magnétique et un circuit amplificateur approprié capable de lire les données présentes sur la piste ISO2 de la carte et de les convertir en impulsions digitales. Standard de lecture ISO 7811; piste de travail (ABA);

méthode de lecture F2F (FM); alimentation 5 volts DC; courant absorbé max. 10 mA; vitesse de lecture de 10 à 120 cm/sec.

Programmateur et lecteur de

carte motorisé. Le système

s' interface à un PC et il est

en mesure de travailler sur

toutes les pistes disponibles

sur une carte. Standard utilisé ISO 7811. Il est

LECTEUR AVEC **SORTIE SÉRIE**

Nouveau système modulaire de lecteur de carte avec sortie série : étudié pour fonctionner avec des

lecteurs standards ISO7811. Vous pouvez connecter plusieurs systèmes sur la même RS232 : un commutateur électronique et une ligne de contrôle permettent d'autoriser la communication entre le PC et la carte active, bloquant les autres.

FT221..... Kit complet

(avec lecteur + carte) 590 F

CARTES MAGNETIQUES

Carte magnétique ISO 7811 vierge ou avec un code inscrit sur la piste 2.

Carte vierge.....BDG01BDG01

Carte progr. pour FT127 et FT133 DG01/M9 F

CONTRÔLEUR D'ACCÈS À CARTE

Lecteur de cartes magnétiques avec autoapprentissage des codes mémorisés sur la carte (1.000.000 de combinaisons possibles). Composé d'un lecteur à « défilement » et d'une carte à microcontrôleur pilotant un relais. Possibilité de mémoriser 10 cartes différentes. Le kit comprend 3 cartes magnétiques déjà program-mées avec 3 codes d'accès différents.

FT127/K..... Kit complet (3 cartes + lecteur) 507 F

Recherchons revendeurs - Fax: 04 42 82 96 51

LECTEUR / ENREGISTREUR DE CARTE À PUCE 2K

FT269/K	Kit carte de base	321 F
FT237/K	Kit interface	74 F
CPCK	Carte à puce 2K	35 F

PROTECTION POUR PC AVEC CARTE À PUCE

Ce dispositif utilisant une carte à puce permet de protéger votre PC. Votre ordinateur reste bloqué tant que la carte n'est pas introduite dans le lecteur. Le kit comprend le circuit avec tous ses composants, le micro déià programmé, le lecteur de carte à puce et une carte de 416 bits.

FT187	Kit complet	317 F
CPC416	Carte à puce de 416 bits	35 F

MONNAYEUR À CARTE À PUCE

Monnayeur électronique à carte à puce 2 Kbit. Idéal pour les automatismes. La carte de l'utilisateur contient : le nombre de crédits (de 3 à 255) et la durée d'utilisation de chaque crédit (5 à 255 secondes). En insérant la carte dans le lecteur, s'il reste du crédit, le relais s'active et reste excité tant que le crédit n'est pas égal à zéro ou que la carte n'est pas retirée. Ce kit est constitué de trois cartes, une platine de base (FT288), l'interface (FT237) et la platine de visualisation (FT275). Pour utiliser ce kit, vous devez posséder les cartes "Master" (PSC,

FT288...... Kit carte de base 305 F CPC2K-MP Master PSC..... 50 F CPC2K-MC Master Crédit 68 F

Crédits, Temps) ou les fabriquer à l'aide du kit FT269.

Microcontrôleurs PIC

7ème partie (1/2)

Dans les précédents numéros, nous avons étudié la structure hardware des microcontrôleurs PIC, en faisant tout particulièrement référence au modèle PIC 16F84 qui présente, parmi ses nombreuses caractéristiques, une mémoire de programme de type EEPROM Flash. Nous allons aujourd'hui analyser en détail les instructions dont nous disposons pour écrire un programme en assembleur pour les PIC. Nous examinerons, à travers un simple exemple pratique, quels sont les pas nécessaires pour la rédaction d'un programme, et verrons de quelle façon le microcontrôleur se comporte face aux diverses instructions. Cette partie étant très longue, elle sera publiée sur 2 numéros.

omme nous l'avons déjà dit dans les parties précédentes de ce cours, le lan-

gage qui est normalement utilisé pour les microcontrôleurs est l'assembleur.

Rappelons que tous les dispositifs digitaux interprètent et travaillent en utilisant un langage particulier qui est défini par le standard binaire. Ce dernier reconnaît seulement deux états : "1", c'est-à-dire présence de tension, et "0", absence de ten-

sion. Si vous deviez écrire un programme au moyen de ce type de langage, nous vous laissons imaginer les difficultés que vous rencontreriez pour le rédiger et l'interpréter. C'est pour venir à votre secours qu'une interface a été imaginée. Cette interface est le langage assembleur, qui vous simplifiera énormément le travail de programmation.

Un programme écrit en assembleur, (variant selon le type de microcontrôleur), est composé d'une série de phrases, appelées "statement" (déclarations) qui peuvent chacune représenter une série d'informations :

- des "labels" (étiquettes),
- un code opératoire (souvent appelé aussi mnémonique) qui représente en fait les instructions que le PIC doit exécuter,
- des opérandes, c'est-à-dire les éléments (registres, positions de mémoire) sur lesquels les instructions doivent aller agir,

- des commentaires, c'est-à-dire des indications qui ne sont pas exécutées par le microcontrôleur mais qui aident la personne qui lit le programme à en interpréter le sens.

Afin de mieux comprendre ce que l'on vient d'exposer, nous

vous proposons de prendre en considération un programme simple (voir tableau 1) qui nous permet d'allumer deux LED alternativement. Les deux LED sont reliées aux deux lignes RBO

et RB1 du PIC 16F84, lignes qui partent des pattes 6 et 7. Un schéma possible de cette application est donné dans la figure 1.

Voyons maintenant le listing complet du programme en mesure de réaliser cette fonction. Pour l'instant nous nous limiterons à en comprendre le fonctionnement dans ses grandes lignes, puis nous verrons en détail chaque instruction. Quoi qu'il en soit, ce listing est un programme complet et opérationnel, vous pouvez donc vous essayer à la réalisation de ce dispositif.

Nous rappelons à ceux qui disposent déjà d'un programmateur pour PIC 16F84, qu'au moment de la programmation des paramètres, le microcontrôleur doit être configuré avec l'oscillateur RC et le "watchdog" (WDT) désactivé.

ER'S GL

with MPLINK ?

TECHNOLOGIE

;*****	******	******	********	MAIN	MOVLW	B'00000001'	;Led A allumé				
;****	FIL	E : LEDBLINK	.XXX - DATE 22.11.99 *****		MOVWF	PORT_B	;Led B éteint				
;****		EXEMPLE	POUR COURS PIC *****		CALL	DELAY	;Routine de retard				
;*****	******	******	********		MOVLW	B'00000010'	;Led B allumé				
					MOVWF	PORT_B	;Led A éteint				
PORT_B	EQU	06	;Port B = registre 06h		CALL	DELAY					
TMR0	EQU	01	Registre du timer = 01h		GOTO	MAIN					
COUNT_1	EQU	0C	;Compteur								
COUNT_2	EQU	0D	;Compteur								
PIC84	EQU	0000	;Vecteur de reset pour PIC 84	;****	Routine	de retard	*********				
;****	Initial	isation	*******	DELAY	DECFSZ	COUNT_1,1	;Décrémente count_1				
					GOTO	DELAY	;Si ce n'est pas 0				
	ORG	PIC84					;aller à delay				
	GOTO	INIT			MOVLW	050	and the second of				
	ODG	000511			MOVWF	COUNT_1	;Recharge count_1				
INIT	ORG MOVLW	0005H 00	;Mets en W le nombre 0		DECFSZ	COUNT_2,1	;Décrémente count_2				
TNTI	TRIS	PORT B	;Port B configuré en sortie		GOTO	DELAY	;Si ce n'est pas 0 ;aller à delay				
	MOVLW	050	; Mets en W le nombre 50h		MOVLW	050	raffer a delay				
	MOVLW	COUNT 1	; Mets W en Count 1		MOVEW	COUNT 1	;Recharge count 1				
	MOVLW	050	/Mets w en count_1		MOVLW	050	Recharge Count_1				
	MOVWF	COUNT 2			MOVWF	COUNT 2	;Recharge count 2				
	MOVWE	COUNT_Z			MOVWE	COUNT_Z	/Recharge Count_2				
;****	Program	me principal	*******		RETURN		;Reviens au programme principal				
	Tableau 1 : Listing complet du programme.										

Le programme : commentaires instruction par instruction

On insère généralement, au début de chaque listing, une présentation descriptive contenant certaines informations telles que le nom du fichier, la date de réalisation, une description sommaire du contenu, l'auteur, etc.

Les "labels" sont des mots qui sont utilisés comme des "renvois" dans le programme ou bien des constantes qui seront remplacées par le compilateur dans la production du code machine. Généralement, la première partie d'un programme écrit en assembler contient différents "labels" qui serviront pour simplifier l'écriture du programme même. Dans notre cas, les cinq premières lignes associent "labels" PORT_B, TMRO. COUNT_1, COUNT_2 et PIC84, les valeurs 06, 01, 0C, 0D et 0000, qui sont bien évidemment exprimées en hexadécimal. Le mot EQU n'est pas une instruction du PIC mais une directive du compilateur, qui dit justement d'associer à un "label" une certaine valeur. Pour générer le code final en langage machine, quand le programme est rédigé en assembleur, le compilateur, à chaque fois qu'il rencontrera par exemple le mot PORT_B, le remplacera par sa valeur effective, c'està-dire 06.

Dans la pratique, le fait de déclarer des constantes de cette façon au lieu d'en écrire directement la valeur à l'intérieur du programme présente deux avantages essentiels :

- il sera beaucoup plus facile d'écrire un programme, dans la mesure où il est plus simple d'utiliser un "label" qui rappelle la signification d'une certaine constante, plutôt que sa valeur numérique.
- il sera plus facile et plus rapide d'effectuer des modifications au programme. Dans notre cas, par exemple, les deux "labels" COUNT_1 et COUNT_2 déterminent par leur valeur la fréquence à laquelle s'allument et s'éteignent alternativement les deux LED.

Si vous devez modifier cette fréquence, il suffit d'aller modifier leur valeur associée par la EQU, et toutes les valeurs qui leur sont associées à l'intérieur du programme seront automatiquement changées. Si l'on n'avait pas utilisé de tels "labels", il aurait fallu changer différentes lignes du programme afin d'obtenir le même résultat.

Les autres "labels" présents dans le programme sont : INIT, MAIN et DELAY.

Si vous parcourez le programme, vous découvrirez différentes instructions du type GOTO INIT, GOTO MAIN, CALL DELAY, etc. Ces instructions servent à faire avancer le programme jusqu'au "label" associé. Ainsi, lorsque vous arriverez à GOTO MAIN, le programme ira exécuter les instructions à partir du "label" MAIN. Rappelez-vous que

les étiquettes doivent toujours être écrites en partant de la première ligne.

Les commentaires constituent une partie importante du programme. Pour ajouter des commentaires, il vous suffira de mettre un point-virgule avant le commentaire lui-même. Le compilateur ignorera alors automatiquement tout ce qui est écrit après le point-virgule. Même s'ils ne servent pas directement au programme, les commentaires sont cependant d'une extrême importance pour la compréhension même de ce dernier. Il est de règle d'insérer fréquemment des commentaires, par exemple pour les constantes utilisées dans le programme, pour les routines, etc.

Après la première partie concernant la déclaration des constantes, on trouve le véritable programme, qui commence au label INIT. La première instruction que vous rencontrez est ORG 0005h. Celle-ci, comme la EQU que nous avons déjà vue, n'est pas une instruction du PIC, mais une directive de l'assembleur. En fait, elle "dit" à l'assembleur que la partie du programme qui suit devra être compilée en mémoire à partir de la position hexadécimale 0005h. Vous trouverez une autre directive ORG au début du programme. Celle-ci fait insérer l'instruction GOTO INIT, c'està-dire allez à l'étiquette INIT, qui représente le début du programme, à l'adresse 0000. En effet, lorsque le PIC est mis sous tension ou lorsqu'il sort d'une situation de reset, le "program counter" part de la première position mémoire, qui, dans le 16F84, est

TECHNOLOGIE

représentée par la position à l'adresse 0000. Il est donc nécessaire d'insérer à cette position un renvoi au début véritable du programme. On fait parfois référence à ce renvoi en parlant de vecteur de reset du microcontrôleur.

Après la ORG, le programme véritable commence, avec différentes instructions. Presque toutes ces instructions sont constituées de deux parties : l'instruction véritable, qui dit au microcontrôleur le type d'opération à exécuter et les opérandes, c'est-à-dire ce sur quoi l'instruction doit aller agir. Considérons par exemple la première instruction :

MOVLW 00 ; Mets en W le nombre 0

Cette instruction sert à transférer une donnée dans le registre W, qui est, nous le rappelons, un registre de travail particulier utilisé par beaucoup d'instructions. Il faut bien sûr spécifier la donnée qui doit être mise dans ce registre, dans notre cas 00, ce dont s'occupe l'opérande. Le résultat de cette instruction est donc d'avoir chargé le nombre 00 dans le registre W.

Vous trouverez une autre instruction du même type quelques lignes plus loin :

MOVLW B'0000001'

Elle sert à nouveau à charger une donnée dans le registre W, mais cette foisci, la donnée est inscrite en nombre binaire. En effet, si rien n'est spécifié, comme dans le cas de la "MOVLW 00", on comprend que la donnée soit exprimée en hexadécimal (qui est le mode standard d'écriture, et qui peut de toute façon être reformulé différemment). Si, pour des raisons pratiques, vous désirez écrire un nombre dans une base autre que l'hexadécimale, il vous faudra utiliser une notation du type de celle que nous venons de voir. Le B placé

+5V O 0 R1 14 3,9Kn MI CE 16 U1 RB0 X RB1 GNID LED LED В 220pf GND C 777. Figure 1 : Schéma du module d'essai à LED.

devant le nombre informe l'assembleur que le nombre que l'on est en train d'écrire est exprimé en notation binaire. Il est également possible d'utiliser des nombres en base décimale ou octale, du moment que vous utilisez les lettres D ou O devant le nombre mis entre quillemets.

Fonctionnement du programme

Avant de nous plonger dans la description détaillée de toutes les instructions que le PIC 84 est en mesure d'exécuter, nous allons essayer de comprendre comment fonctionne notre programme destiné à allumer et à éteindre alternativement deux LED. Normalement, avant d'écrire la séquence d'instructions qui compose un programme, on décrit le programme que le microcontrôleur devra exécuter à travers un organigramme, pour exprimer le type d'opérations que le microcontrôleur devra exécuter. Dans notre cas, l'organigramme pourrait être celui de la figure 2.

Comme vous le voyez, le microcontrôleur, après avoir exécuté une première partie dite d'initialisation, dans laquelle il configurera le port B comme port de sortie (c'est à lui que sont reliées les LED), effectue indéfiniment une boucle dans lequel il allume et éteint alternativement les deux LED : le programme pourrait sembler fini ainsi. Si cependant nous faisions tourner ce programme, nous nous apercevrions qu'en réalité les deux LED ne s'allument pas alternativement, mais nous les verrions toutes les deux toujours allumées. Ceci s'explique parce que nous n'avons pas tenu compte de la vitesse avec laquelle un microcontrôleur effectue ces opérations. Sans entrer maintenant dans un calcul précis que nous étudierons plus tard, on peut cependant déjà ima-

> giner que si l'on alterne l'allumage et l'extinction des milliers de fois par seconde, le résultat sera que l'on verra les LED toujours allumées. C'est justement pour éviter cela qu'il est nécessaire d'introduire quelque chose qui ralentisse le cycle d'exécution du programme. C'est à cela que sert la routine que nous avons appelé DELAY, c'est-à-dire temporisation (figure 3). Une routine est une partie de programme qui peut être rappelée à chaque

Figure 2 : Organigramme du programme de pilotage du module d'essai à LED.

Figure 3 : Organigramme du sousprogramme de temporisation (DELAY).

fois que cela est nécessaire. Dans notre programme, cette routine est rappelée à chaque fois qu'une LED est allumée ou éteinte. Pour appeler cette routine, on utilise l'instruction CALL.

A suivre... ♦ R. N.

Apprendre l'électronique en partant de zéro

Transformateurs de tension pour alimentation

Grâce à la dernière expérience que nous vous avons proposée à travers les pages consacrées aux électroaimants (voir leçon n° 7), nous avons vu qu'il est possible de transférer par induction une tension alternative d'une bobine à une autre, dès lors qu'elles contiennent un noyau en fer.

Cette propriété est utilisée en électronique pour réaliser les transformateurs de tension pour alimentation.

On appelle l'enroulement sur lequel est appliquée la tension à transformer le "primaire" et l'enroulement duquel la tension transformée est prélevée, le "secondaire" (voir figure 224).

La tension alternative pouvant être prélevée de l'enroulement secondaire est proportionnelle au nombre de spires bobinées. Le transformateur est un composant employé dans pratiquement tous les appareils électroniques. Il sert à augmenter ou à réduire la valeur de n'importe quelle tension alternative. Il peut être monté directement sur le circuit imprimé, sur le châssis ou dans le boîtier mais il peut également être externe.

Grâce au transformateur, il est possible d'élever la tension alternative du secteur 220 volts à des valeurs de 400, 500 ou 1000 volts, par exemple, ou bien de la réduire à des valeurs de 5, 12, 18, 25 ou 50 volts, toujours par exemple. En fait, un transformateur permet de transformer n'importe quelle tension alternative en n'importe quelle autre tension également alternative.

Bien que ceux qui réalisent eux-mêmes les transformateurs soient peu nombreux, et bien qu'il soit possible d'en trouver ayant toutes les valeurs de tension nécessaires dans le commerce, nous avons malgré tout souhaité consacrer une leçon à ces composants car, avant de les utiliser, il est indispensable de bien les connaître.

A travers cette leçon, vous apprendrez comment déterminer la puissance en watts d'un transformateur ainsi que le courant en ampères pouvant être prélevée sur ses enroulements secondaires, courant qui dépend, entre autres, du diamètre du fil de cuivre utilisé.

La plupart des appareils électroniques étant alimentés par une tension continue, nous vous apprendrons à transformer une tension alternative en tension continue en utilisant des diodes au silicium ou des ponts redresseurs. Nous verrons également la raison pour laquelle il est nécessaire de toujours monter un condensateur électrolytique de capacité élevée sur la sortie de la tension alternative redressée.

Figure 224 : Un transformateur est toujours composé d'un enroulement "primaire", sur lequel on applique la tension inductive et d'un enroulement "secondaire", duquel on prélève la tension induite. La tension alternative que nous prélevons sur l'enroulement secondaire est toujours proportionnelle au nombre de spires bobinées. Les transformateurs sont toujours représentés, dans les schémas électriques, comme sur la figure 225.

Il en découle que, si on enroule 100 spires sur l'enroulement primaire et que l'on a le même nombre de spires sur l'enroulement secondaire, on devrait, théoriquement, trouver sur le secondaire une tension identique à la tension appliquée sur le primaire.

Donc, en appliquant une tension alternative de 10 volts sur l'enroulement primaire, on devrait, en théorie, trouver 10 volts sur l'enroulement secondaire (voir figure 225).

Si l'enroulement du secondaire comporte le double de spires du primaire, c'est-à-dire 200, on devrait alors y trouver une tension double, c'est-à-dire 20 volts (voir figure 226).

Si l'enroulement du secondaire ne comporte que la moitié des spires du primaire, c'est-à-dire 50, on devrait alors n'y trouver que la moitié de la tension, c'est-à-dire 5 volts (voir figure 227).

En variant le rapport des spires entre l'enroulement primaire et le secondaire, on obtiendra de l'enroulement secondaire du transformateur, n'importe quelle valeur de tension.

Si on applique sur un enroulement primaire composé de 1 100 spires, une tension de secteur 220 volts, on obtiendra un rapport spires/volts égal à :

1 100 : 220 = 5 spires par volt

C'est pourquoi, si on voulait obtenir sur l'enroulement secondaire une tension de 12 volts, on devrait, en théorie, bobiner :

$5 \times 12 = 60 \text{ spires}$

Si, au contraire, on voulait obtenir sur le secondaire une tension de 35 volts, on devrait, en théorie, bobiner :

$5 \times 35 = 175 \text{ spires}$

Dans la pratique, pour compenser les pertes de transfert intervenues entre l'enroulement primaire et le secondaire,

le nombre de spires par volt de l'enroulement secondaire doit être multiplié par 1,06. Donc, pour obtenir une tension de 12 volts, on ne devrait plus enrouler 60 spires, mais :

$5 \times 12 \times 1,06 = 63,6 \text{ spires}$

Résultat que l'on peut facilement arrondir à 64 spires car cette 0,4 spire nous donnera 12,07 volts au lieu de 12,00 volts (voir figure 228), c'est-à-dire une différence dérisoire.

De même que pour obtenir une tension de 35 volts, on ne devra plus enrouler 175 spires, mais :

 $5 \times 35 \times 1,06 = 185,5$ spires

Résultat que l'on peut arrondir à 185 ou bien à 186, car une demie spire ne détermine une différence, en plus ou en moins, que de 0,1 volt.

Remarque: En mesurant la tension d'un secondaire à vide, c'est-à-dire sans le relier à un circuit absorbant du courant électrique, on trouvera une tension légèrement supérieure à ce que l'on a calculé. Dès que l'on reliera cet enroulement à un circuit absorbant du courant, la tension tombera à la valeur nécessaire.

Les transformateurs sont généralement utilisés pour abaisser la tension du secteur 220 volts à des valeurs de 9, 12, 18, 24 ou 35 volts de façon à pouvoir

Figure 225 : Si l'on applique une tension alternative de 10 volts sur un transformateur dont le primaire se compose de 100 spires, sur son secondaire, également composé de 100 spires, on prélèvera une tension de 10 volts, car le nombre de spires est identique.

Figure 226 : Si nous bobinons un secondaire de 200 spires sur le même transformateur, nous devrions, en théorie, obtenir une tension double, c'est-à-dire de 20 volts alternatifs. En pratique, nous obtiendrons une tension légèrement inférieure en raison des pertes de transfert.

Figure 227 : Si nous bobinons un secondaire de 50 spires, toujours sur le même transformateur, nous devrions, en théorie, obtenir une tension réduite de moitié, c'est-à-dire de 5 volts alternatifs. En effet, sur le primaire de 100 spires nous appliquons 10 volts et sur le secondaire, qui n'en possède que la moitié, nous prélevons 5 volts (aux pertes près).

Figure 228 : Si l'on applique une tension alternative de 220 volts sur un transformateur dont le primaire se compose de 1 100 spires, sur son secondaire, composé de 64 spires, on prélèvera une tension alternative de 12 volts.

Figure 229 : Si l'on applique une tension alternative de 12 volts sur le secondaire de 12 volts du transformateur de la figure 228, on obtiendra, sur le primaire, une tension de 207 volts.

220 V

220 V

20 volts 2 ampères

50 volts 0,5 ampère

Figure 230 : Plusieurs secondaires capables de débiter des tensions et des courants différents peuvent être présents à l'intérieur d'un même transformateur. En additionnant les puissances en watts fournies par chaque secondaire, on obtient la puissance totale du transformateur.

alimenter des transistors, des circuits intégrés, des relais, des écrans, etc.

Un transformateur peut parfois être utilisé pour obtenir le résultat inverse, c'est-à-dire fournir au secondaire une tension supérieure à celle appliquée sur le primaire. Bien sur, dans ce cas aussi, il faut tenir compte des pertes de tension de transfert.

Imaginons, par exemple, que l'on veuille utiliser à l'envers, un transformateur normalement pourvu d'un primaire adapté à une tension secteur de 220 volts et capable de fournir une tension de 12 volts sur son secondaire. En théorie, si on applique une tension alternative de 12 volts sur le secondaire, on devrait alors obtenir 220 volts sur l'enroulement primaire (voir figure 229).

En pratique, ce n'est pas possible en raison des pertes de transfert, la tension que l'on prélèvera sera donc seulement d'environ :

220 : 1,06 = 207 volts

Un transformateur peut aussi disposer de plusieurs secondaires capables de fournir des tensions différentes de façon à pouvoir satisfaire toutes les exigences d'un montage. On peut donc trouver dans le commerce des transformateurs équipés d'un primaire 220 volts et de plusieurs secondaires capables de fournir respectivement 12, 20, 50 volts, etc. (voir figure 230).

Les enroulements primaire et secondaire(s) d'un transformateur "abaisseur" de tension se reconnaissent facilement :

 l'enroulement primaire est formé de beaucoup de spires de fil fin et de ce fait a une meilleure résistance ohmique, le ou les secondaires sont formés de peu de spires de gros fil et donc ont une faible résistance ohmique.

Dimensions et puissance

Les dimensions des transformateurs varient selon leur puissance.

A caractéristiques de tensions primaire et secondaire équivalentes, les transformateurs de petites dimensions ne peuvent évidemment fournir que de petites puissances. Plus leur taille augmente, plus la puissance augmente.

Figure 231 : Le type de tôle au silicium le plus utilisé est celui qui se compose d'un E et d'un I (EI). Ces lamelles sont placées à l'intérieur du support sur lequel sont bobinés les enroulements primaire et secondaire(s). Pour obtenir un bon rendement, on monte les tôles de façon alternée, c'est-à-dire E – I, puis I – E, etc. En plaçant tous les E d'un même côté et tous les I du côté opposé, on réduit le rendement du transformateur.

Il est possible de déterminer, en fonction du courant et de la tension que l'on peut obtenir sur ses secondaires, la puissance en watts d'un transformateur.

Si l'on a un transformateur équipé de deux secondaires, l'un capable de fournir 12 volts sous 1,3 ampère et l'autre 18 volts sous 0,5 ampère, pour connaître sa puissance, il suffit de multiplier la tension par le courant donc les volts par les ampères (V x A = W):

> 12 x 1,3 = 15,6 watts 18 x 0,5 = 9 watts

puis d'additionner la puissance débitée par les deux enroulements :

Figure 232 : Les tôles en C, que l'on trouve déjà façonnées et compactées comme montré sur la figure, nous permettent d'obtenir des rendements qui peuvent atteindre 88 %.

Quand on introduit ces blocs dans le support, il faut toujours diriger leurs points colorés les uns face aux autres, parce que leurs surfaces sont meulées en couple afin de réduire au minimum l'entrefer.

15,6 + 9 = 24,6 watts au total

Si l'on a un transformateur qui débite les mêmes tensions que le précédent, mais un courant supérieur, par exemple 12 volts sous 3,5 ampères et 18 volts sous 1,5 ampère, en multipliant les volts par les ampères, on obtiendra :

 $12 \times 3.5 = 42$ watts $18 \times 1.5 = 27$ watts

en additionnant les puissances des deux enroulements, on obtiendra une puissance en watts de :

42 + 27 = 69 watts au total

Si l'on a un enroulement calculé pour débiter un maximum de 3,5 ampères, on pourra également prélever des tensions de courant inférieures, par exemple 0,1, 0,5, 2 ou 3 ampères, mais on ne pourra jamais dépasser les 3,5 ampères, car autrement le transformateur surchauffera et par conséquent, s'endommagera.

Le noyau d'un transformateur

Le noyau d'un transformateur n'est jamais constitué d'un bloc de fer compact ou d'un boulon, comme celui que nous vous avons fait installer dans les électroaimants de la leçon numéro 7, car lorsqu'un noyau compact est soumis à un champ magnétique alternatif, il surchauffe sous l'effet des courants parasites qui se déplacent à l'intérieur.

Pour neutraliser ces courants, qui réduisent de façon considérable le rendement du transformateur, le noyau s'obtient en superposant de fines lamelles de fer et de silicium, séparées des deux côtés par un oxyde, de façon à parfaitement les isoler les unes des autres. Ces lamelles sont généralement appelées "tôles" (voir figure 231).

La puissance réelle en watts

La puissance réelle en watts d'un transformateur ne se calcule pas en additionnant les watts débités par chaque secondaire, mais en calculant les dimensions du noyau qui se trouve à l'intérieur du support sur lequel se trouvent les enroulements (voir les figures 233 et 234).

Pour calculer la puissance réelle, on utilise généralement la formule donnée dans le tableau A :

Formule dans laquelle:

- Sec. est la section en millimètres carrés (mm²) du noyau formé par l'empilage des lamelles de tôle en fer,
- 0,95 est le coefficient utilisé pour connaître la section nette (Sn) du noyau,
- Weber est la perméabilité en Weber que l'on peut lire dans le tableau 16.
- **140** est un nombre fixe.

Comme il est rare de connaître la valeur en Weber des lamelles de fer utilisées, on pourra utiliser la formule simplifiée donnée dans le tableau B:

Formule dans laquelle :

- **Sec.** est section en millimètres carrés (mm²) du noyau des tôles,
- 13500 est un nombre fixe,
- 0,83 est le rendement moyen en % entre une tôle de qualité moyenne et une de tôle de qualité supérieure.

Pour connaître la section du noyau, qui correspond généralement au passage qui lui est réservé au centre des bobinages, on mesure la largeur que l'on multiplie par la hauteur (voir figure 233). Nous signalons que la longueur du noyau n'a aucune incidence sur la puissance du transformateur.

Exemple: Imaginons que nous disposions d'un transformateur dont le noyau a les dimensions suivantes:

L = 22 millimètres, H = 38 millimètres.

Maintenant, à l'aide de ces paramètres, supposons que l'on veuille connaître sa puissance en watt, en ignorant les caractéristiques des tôles utilisées.

Solution: Comme première opération, calculons la section du noyau en multipliant L x H:

22 x 38 = 836 mm²

Etant donné que nous voulons utiliser la formule simplifiée, nous élevons à la puissance deux le résultat obtenu :

836 x 836 = 698 896

A présent, divisons ce chiffre par la valeur fixe 13500 :

698896 : 13500 = 51,77 watts

Pour terminer, multiplions ce résultat en watts par le coefficient de rendement 0,83 et nous obtenons ainsi :

51,77 x 0,83 = 42,96 watts réels

Ne connaissant pas les caractéristiques exactes des tôles, nous devons considérer que la puissance en watts pourrait être égale à :

$$51,77 \times 0,80 = 41,4 \text{ watts}$$

lorsqu'il s'agit de tôles standards, ou égale à :

$51,77 \times 0.86 = 44.5$ watts

s'il s'agit de tôles de type à grains orientés, tandis que, si le transformateur a des tôles de type C (voir figure 232), la puissance s'élèverait à plus de :

Tableau 16

 $51,77 \times 0,88 = 45,5 \text{ watts}$

Type de lamelle	rendement (%)	Weber
Silicium de type standard	0,80	1,10
Silicium de qualité moyenne	0,82	1,15
Silicium de qualité supérieure	0,84	1,20
Silicium en grains orientés	0,86	1,25
Silicium avec noyau en C	0,88	1,30

Figure 233 : Pour connaître la puissance en watt d'un transformateur, nous devons calculer la section du noyau en multipliant sa hauteur H de par sa largeur L.

Figure 234 : La section du noyau se calcule également en mesurant la "fenêtre" du support. En connaissant la surface en millimètres carrés, nous pouvons calculer la puissance du transformateur.

Donc, un transformateur ayant un noyau de 836 millimètres carrés, n'aura jamais une puissance inférieure à 41 watts.

S'il était constitué de tôles en C, sa puissance pourrait atteindre une valeur comprise entre 45 et 46 watts.

Spires par volt du primaire

Le nombre de spires par volt de l'enroulement primaire est proportionnel à la puissance en watt de son noyau.

La formule à utiliser, qui nous permet de connaître ce nombre de spires par volt à bobiner sur le primaire, est indiquée sur le tableau C.

nue en multipliant la section totale du noyau par 0,95.

La valeur Hz indique la fréquence de travail qui, pour tous les transformateurs reliés à la tension secteur 220 volts, est toujours égale à 50 Hz.

Les valeurs en Weber peuvent varier entre 1,1 et 1,3, comme vous pouvez le voir dans le tableau 16.

Lorsqu'on ignore les caractéristiques des tôles constituant le noyau, il est possible d'utiliser la valeur de 1,15 qui correspond au type de lamelles le plus fréquemment utilisé.

Exemple: Nous avons un transformateur ayant L = 22 mm et H = 40 mm.

Donc, comme première opération, calculons la section, c'est-à-dire la surface du noyau:

$22 \times 40 = 880 \text{ mm}^2$

Ensuite, élevons-la à la puissance deux:

880 x 880 = 774 400

Après l'avoir divisée par 13500, multiplions-la par le coefficient de rendement 0,83:

(774 400 : 13 500) x 0,83 = 47,6 watts

Pour connaître le nombre de spires par volt à enrouler sur le circuit primaire, utilisons la formule suivante :

spires par volt = 10000 : (0,0444 x Hz x Sn x Weber)

Commençons par calculer la section nette (Sn) en multipliant la surface totale du noyau, égale à 880 millimètres carrés, par le coefficient 0,95 :

$880 \times 0.95 = 836 \text{ mm}^2$

Pour calculer le nombre de spires par volt, nous utilisons la formule indiquée précédemment et, puisque nous ignorons les caractéristiques des lamelles, nous utilisons la valeur de Weber de 1,15 :

$0.0444 \times 50 \times 836 \times 1.15 = 2134$

Maintenant, divisons 10 000 par ce nombre:

10000:2134 = 4,686 spires par volt.

Donc, pour réaliser un enroulement primaire capable d'accepter les 220 volts

Dans cette formule:

- 0,0444 est une valeur fixe,
- Hz est la fréquence de travail (50 hertz).
- Sn est la surface nette du novau en millimètres carrés.
- est la valeur extraite du Weber tableau 16 en fonction de la qualité des tôles.

La valeur Sn (section nette ou réelle) indiquée dans cette formule, est obte-

Nous voulons connaître sa puissance en watts, le nombre de spires à bobiner sur le primaire pour pouvoir le relier sur la tension secteur 220 volts et le nombre de spires à bobiner sur le secondaire, afin d'obtenir une tension de 18 volts.

Solution: Pour connaître la puissance en watts, utilisons la formule simplifiée :

Puissance (watts) = [(section x section) : 13 500] x 0,83

ELECTRONIQUE

secteur, nous devrons bobiner le nombre de spires suivant :

$4,686 \times 220 = 1030 \text{ spires}$

Puisque les transformateurs sont presque toujours utilisés pour abaisser la tension secteur 220 volts 50 Hz, pour le calcul du nombre de spires par volt, on pourra utiliser les formules données dans le tableau D.

watts, nous voudrons connaître le nombre d'ampères disponibles sur le secondaire débitant 18 volts.

Solution: Pour connaître ce paramètre, nous devons tout simplement diviser la puissance par la tension donc les watts par les volts :

47,6:18=2,6 ampères

Note : la valeur Sn s'obtient en multipliant la section totale du noyau par 0,95.

A présent, nous voulons vérifier la formule donnée dans le tableau D concernant les tôles de type :

- Silicium qualité moyenne donc Spires / volt = 3910 : Sn

On obtient environ le même nombre de spires:

> 3910:836 = 4,677 spires par volt

 $4,66 \times 220 = 1028 \text{ spires}$

Vous devez considérer au'une différence d'une spire sur un total de 1 000 spires représente une valeur dérisoire.

Pour connaître le nombre de spires que nous devrons bobiner sur le secondaire afin d'obtenir une tension de 18 volts, nous devons effectuer cette opération:

$4,677 \times 18 \times 1,06 = 89,2 \text{ spires}$

Nous arrondissons ce nombre à 89.

Comme nous l'avons déjà expliqué, la valeur 1,06 sert à compenser les pertes de transfert.

Exemple: En sachant que notre transformateur a une puissance de 47,6

... Et avec des tôles de meilleure qualité?

Dans les exemples que nous vous avons montrés jusqu'ici, nous avons supposé que les tôles, ayant une section nette de 836 millimètres carrés, avaient une qualité moyenne.

Que ce passerait-il alors si ces lamelles étaient d'une qualité standard ou à grains orientés?

En faisant référence aux formules simplifiées, nous pouvons calculer les spires par volt pour chaque type de

Type standard	= 4100:836	= 4,904 spires / volt
Type moyen	= 3910:836	= 4,677 spires / volt
Type super	= 3750:836	4,485 spires / volt
Type grains	= 3600:836	= 4,306 spires / volt
Noyau en C	= 3470:836	= 4,150 spires / volt

Donc, pour 220 volts, nous aurons ces différences:

 $4,904 \times 220 = 1078 \text{ spires totales}$ $4,677 \times 220 = 1029 \text{ spires totales}$ $4,485 \times 220 = 986 \text{ spires totales}$ $4,306 \times 220 = 947 \text{ spires totales}$ $4,150 \times 220 = 913 \text{ spires totales}$

Si la tôle était de type standard plutôt que de type moyen, comme nous l'avions supposé, nous aurions bobiné 49 spires en moins et cela aurait entraîné l'inconvénient d'une augmentation de la température du noyau audelà de la valeur normale.

Si la tôle était de type à grains orientés plutôt que de type moyen, comme nous l'avions supposé, nous aurions bobiné 82 spires en plus, ce qui aurait évité au transformateur de chauffer, même après plusieurs heures de fonctionnement.

Nous vous signalons que la température d'un transformateur est considérée comme normale lorsqu'elle reste comprise entre 40 et 50 degrés après 1 heure de fonctionnement.

Diamètre du fil pour les enroulements

Le diamètre du fil à utiliser pour l'enroulement primaire à relier à la tension secteur 220 volts, doit être calculé en fonction de la puissance en watts du noyau.

En connaissant la puissance en watts, nous devons avant tout calculer le courant maximal en ampères qui doit traverser le fil, en utilisant la formule suivante:

ampères = watts : 220 volts

Ensuite, nous pouvons calculer le diamètre du fil de cuivre en millimètres avec la formule :

mm =
$$0.72 \times \sqrt{amperes}$$

Note: Si le support n'offre pas suffisamment de place pour pouvoir enrouler toutes les spires, vous pouvez remplacer la valeur fixe 0,72 par 0,68 ou 0,65.

Exemple: Nous avons deux transformateurs, l'un de 30 watts et l'autre de

100 watts, et nous voulons connaître le diamètre du fil à utiliser pour l'enroulement primaire des 220 volts.

Solution : Pour connaître le diamètre du fil pour le transformateur de 30 watts. nous calculons la valeur maximale en ampères que le primaire doit absorber pour débiter cette puissance : 30 : 220 = 0,136 ampère. Ensuite, nous pouvons calculer le diamètre du fil :

$0.72 \times \sqrt{0.136} = 0.26 \text{ millimètre}$

Pour connaître le fil devant être utilisé pour l'enroulement du transformateur

de 100 watts, calculons rapidement la valeur maximale en ampères que le primaire doit absorber pour débiter cette puissance :

100 : 220 = 0,454 ampère

Ensuite, calculons le diamètre du fil :

 $0,72 \times \sqrt{0,454} = 0,48 \text{ millimètre}$

Comme vous l'aurez remarqué, plus la puissance en watts augmente, plus le diamètre du fil utilisé est important.

De même, le diamètre du fil utilisé pour l'enroulement secondaire doit être calculé en fonction du courant en ampères que l'on désire obtenir.

Si nous avons un transformateur de 30 watts et que sur celui-ci nous voulons bobiner un secondaire capable de four-nir une tension de 12 volts, nous pouvons connaître le courant maximum pouvant être prélevé sur ce secondaire grâce à la formule :

watts : volts = ampères

30 : 12 = 2,5 ampères

Si nous utilisons un transformateur de 100 watts, nous pourrons prélever un courant maximum de : watts : volts = ampères

100 : 12 = 8,33 ampères

En connaissant le courant en ampères, nous pouvons calculer le diamètre du fil à utiliser, grâce à la formule précédemment indiquée :

 $0,72 \times \sqrt{2,5} = 1,1 \text{ mm}$ pour les 30 watts

 $0,72 \times \sqrt{8,33} = 2 \text{ mm}$ pour les 100 watts

Secondaires en série ou en parallèle

Il est possible de relier en série deux secondaires d'un transformateur afin d'en augmenter la tension, ou de les relier en parallèle pour en augmenter le courant

En reliant en série deux enroulements débitant 12 volts 1 ampère (voir figure 235), nous pourrons obtenir 12 + 12 = 24 volts sous 1 ampère sur les deux extrémités.

Si les deux enroulements 12 volts 1 ampère étaient reliés en parallèle, on obtiendrait une tension de 12 volts 2 ampères.

Lorsque deux enroulements sont reliés en parallèle, il est absolument nécessaire qu'ils débitent la même tension car, dans le cas contraire, l'enroulement qui débite la tension la plus grande se déchargerait sur l'enroulement débitant une tension inférieure, endommageant ainsi le transformateur.

Quand deux enroulements sont reliés en série, il est important de vérifier que les deux tensions soient de même phase. Dans le cas contraire, les tensions s'annuleront au lieu de s'additionner et on obtiendra 0 volt en sortie (voir figure 236).

En pratique, on obtient le même résultat qu'en reliant en série deux piles sans respecter les polarités positives et négatives des deux bornes (voir leçon 1, figure 40).

Pour mettre en phase deux enroulements reliés en série, le plus simple est de mesurer à l'aide d'un voltmètre la tension présente sur les deux fils opposés. Si aucune tension est mesurée, cela veut dire qu'il suffira d'inverser les fils de l'un des deux enroulements.

Comme pour les piles, nous pouvons aussi relier en série deux tensions différentes, par exemple 12 volts et 18 volts, en obtenant en sortie une tension égale à leur somme, soit, dans notre cas :

12 + 18 = 30 volts

En reliant en série deux enroulements de 12 volts 1 ampère, nous obtiendrons une tension de 24 volts 1 ampère.

En reliant en série deux enroulements, l'un de 12 volts 1 ampère et l'autre de 12 volts 0,5 ampère, nous obtiendrons en sortie une tension de 24 volts mais nous disposerons d'un courant maximum qui ne pourra pas dépasser le courant le plus faible, soit 0,5 ampère.

Figure 235 : En reliant en série deux enroulements débitant 12 volts, on obtient en sortie une tension égale à la somme des deux enroulements, c'est-à-dire 24 volts.

Figure 236 : Si l'on ne respecte pas les "phases" des deux enroulements, on obtient 0 volt en sortie. Pour les remettre en phase, il suffit d'inverser les extrémités d'un seul enroulement.

Comment rendre continue une tension alternative

La tension alternative prélevée sur le secondaire d'un transformateur ne pourra jamais être utilisée pour alimenter les transistors ou les circuits intégrés d'un appareil électronique, car ces composants demandent une tension continue semblable à celle fournie par une pile.

Pour rendre continue une tension alternative, il est nécessaire d'utiliser des diodes de redressement.

Une diode pour redresser une demi-alternance

Une diode reliée en série avec un enroulement secondaire, comme montré sur la figure 237 (remarquez la bague blanche placée sur une seule extrémité du corps), laisse passer seulement les demi-alternances positives de la tension alternative.

Si nous dirigeons la bague blanche vers le secondaire du transformateur, la diode laisse passer les seules demialternances négatives de la tension alternative (voir figure 238).

La tension redressée que nous prélevons sur la sortie de ces diodes n'est pas parfaitement continue mais pulsée, c'est-à-dire que la demi-alternance positive bascule d'une valeur minimale de 0 volt à une valeur maximale de 12 volts pour redescendre encore sur 0 volt.

Dans l'intervalle de temps occupé par la demi-alternance négative, la tension en sortie restera égale à 0 volt.

Cette tension pulsée ne peut pas être utilisée telle quelle car, pendant le temps où la tension alternative bascule sur la demi-alternance négative, l'alimentation de l'appareil est interrompue.

Pour éliminer cet inconvénient, on place, sur la sortie de la diode, un condensateur électrolytique ayant une capacité relativement élevée, par exemple 1 000 ou 2 000 microfarads (voir figure 242).

Pendant que la demi-alternance positive sort de la diode, elle alimente les transistors ou les intégrés présents sur le circuit électronique mais charge

Figure 237 : Si on relie, sur l'enroulement secondaire d'un transformateur, une diode de redressement en disposant sa cathode vers la sortie, on prélèvera sur cette cathode les demi-alternances positives seulement tandis que sur l'extrémité opposée de l'enroulement, on prélèvera les demi-alternances négatives seulement. Cette tension redressée ne peut pas être utilisée directement pour alimenter les circuits électroniques car elle est pulsée. Pour la rendre continue, on devra la stabiliser à l'aide d'un condensateur électrolytique.

Figure 238 : Si on relie sur l'enroulement secondaire d'un transformateur d'alimentation une diode de redressement en disposant son anode vers la sortie, on prélèvera sur cette anode les demi-alternances négatives seulement tandis que sur l'extrémité opposée de l'enroulement, on prélèvera les demi-alternances positives seulement. Pour rendre une tension pulsée parfaitement continue, on devra relier un condensateur électrolytique sur la sortie (voir figure 242).

Figure 239 : En utilisant un transformateur avec prise centrale et deux diodes de redressement, la demi-alternance positive présente sur le point A, est redressée par la diode DS1 tandis que lorsqu'elle est présente sur le point B, elle est redressée par la diode DS2.

également le condensateur électrolytique.

Lorsqu'aucune tension ne sort de la diode en raison de la présence de la demi-alternance négative sur sa sortie, le condensateur électrolytique débite la tension qu'il avait accumulée et alimente ainsi les composants électroniques du circuit.

Durant le délai entre les deux demialternances positives le condensateur électrolytique a une légère décharge. De ce fait, on ne trouvera pas, en sortie, une tension continue stable mais une tension ondulée (voir figure 242).

Pour que le condensateur électrolytique puisse fournir la tension exacte demandée, même pendant la sortie de la demi-alternance négative, on redresse les deux demi-alternances en utilisant un transformateur avec double enroulement et point milieu (voir figure 239).

Si, sur les extrémités des enroulements A et B d'un transformateur doté d'un secondaire de 12 + 12 volts, on relie deux diodes en dirigeant leurs

Figure 240 : Pour redresser les deux demi-alternances d'un enroulement dépourvu de prise centrale, on devra utiliser un pont redresseur. Lorsque la demi-alternance positive se trouve sur A et la négative sur B, la tension sera redressée par les deux diodes DS2 et DS3.

Figure 241 : Lorsque la demi-alternance négative se trouve sur A et la positive sur B, la tension sera redressée par les deux diodes DS1 et DS4. En redressant les deux demialternances, la tension que l'on obtiendra sera toujours pulsée mais à 100 Hz et non plus à 50 Hz.

cathodes vers le positif, on y prélèvera une tension continue de 12 volts beaucoup plus stable que celle obtenue en redressant une seule demi-alternance, car on a redressé les deux demi-alternances.

Le circuit fonctionne de la façon suivante : quand une demi-alternance positive est présente sur le point A du transformateur, la demi-alternance négative est présente sur le point opposé B et vice-versa (voir figure 239).

Lorsque la demi-alternance positive est présente sur le point A, la diode DS1 fournit la tension d'alimentation à l'appareil. La demi-alternance négative étant présente sur le point B, la diode DS2 reste inactive. Lorsque la demi-alternance négative est présente sur le point A du transformateur, la diode DS1 reste inactive et puisque la demi-alternance positive est présente sur le point opposé B, la diode DS2 alimente l'appareil.

En redressant les deux demi-alternances, nous éliminerons le délai de la demi-alternance négative comme c'est le cas sur la figure 237. En effet, avec deux diodes et un transformateur

à point milieu, nous parvenons à redresser les deux demi-alternances (voir figure 239).

En redressant les deux demi-alternances, la fréquence de charge du condensateur électrolytique placé sur la sortie ne sera plus de 50 Hz mais bien de 100 Hz.

En chargeant le condensateur électrolytique dans un laps de temps réduit de moitié (voir figure 242 et 243), il sera capable de restituer la tension accumulée sans jamais descendre en dessous de la valeur demandée. La tension que nous obtiendrons en sortie sera donc beaucoup plus stable.

Il est possible de redresser les deux demi-alternances sans utiliser un transformateur à double enroulement de 12 + 12 volts, mais en reliant en pont 4 diodes comme montré sur la figure 240. Quand la demi-alternance positive est présente sur le point A du transformateur et celle négative sur le point B :

- la diode DS2 redresse la demialternance positive,
- la diode DS3 redresse la demialternance négative.

Quand la demi-alternance négative est présente sur le point A du transformateur et la positive sur le point B :

- la diode DS1 redresse la demialternance négative,
- la diode DS4 redresse la demialternance positive.

Ces 4 diodes se trouvent dans le commerce déjà incluses dans un boîtier plastique appelé "pont redresseur",

Figure 242: En reliant un condensateur électrolytique de bonne valeur sur la sortie d'une diode de redressement, on parvient à rendre parfaitement "continue" n'importe quelle tension pulsée. En effet, pendant que la diode redresse les demi-alternances positives, le condensateur électrolytique accumule cette tension positive pour la restituer lorsque la diode est inactive. La tension aux bornes du condensateur à toujours une valeur supérieure à la tension alternative appliquée sur la diode.

Figure 243 : En utilisant un "pont redresseur", on obtient une tension redressée pulsée de 100 Hz et de cette façon, nous éliminons le délai occupé par les demialternances négatives. Etant donné que le condensateur électrolytique relié au pont doit restituer la tension accumulée pendant un délai inférieur par rapport à une tension pulsée redressée par une seule diode (voir figure 242), la tension continue sera beaucoup plus stable.

Figure 244: En mesurant une tension alternative à l'aide d'un multimètre, on relève la seule valeur "efficace", et non la valeur "crête" de la demi-alternance. Une tension "efficace" de 12 volts correspond à une tension "crête" de 12 x 1,41 = 16.92 volts

On peut comparer les volts "crête" à la hauteur maximale d'un cône de glace. Si on fait fondre ce cône dans un récipient, on obtient une hauteur nettement inférieure, équivalente, en pratique, aux volts "efficaces".

doté de 4 broches (voir la photo d'illustration et la figure 246).

Les deux broches indiquées avec le symbole "~" de la tension alternative, doivent être reliées aux points A et B du transformateur.

Sur la broche indiquée avec le symbole "+", on prélève la tension positive, tandis que sur celle indiquée avec le symbole "-", on prélève la tension néga-

Si, par erreur, nous invertissons les 4 broches, sur la sortie du pont redresseur nous n'obtiendrons aucune tension.

Tous les ponts redresseurs sont construits pour accepter, sur leurs entrées, une valeur de tension alternative déterminée et pour fournir, en sortie, un courant de valeur déterminée.

Si nous disposons d'un pont redresseur de 100 volts 1 ampère, nous pouvons appliquer sur son entrée une valeur de tension alternative allant iusqu'à 100 volts maximum et nous pourrons prélever sur sa sortie un courant maximum de 1 ampère.

Sur l'entrée d'un pont redresseur de 100 volts nous pourrons appliquer des tensions alternatives de 5, 10, 25, 50, 70, 90 et 100 volts par exemple, mais iamais de 110 volts et nous pourrons prélever sur sa sortie des courants de 0,1, 0,3, 0,8 et 1 ampère par exemple, mais pas des courants supérieurs à 1 ampère.

Sur l'entrée d'un pont redresseur de 50 volts 15 ampères, nous pouvons appliquer une tension alternative quelconque, pourvu qu'elle ne

Figure 245 : Un condensateur électrolytique relié sur la sortie d'une diode ou d'un pont redresseur se charge toujours sur la tension "crête" de la demi-alternance alternative. Cette tension accumulée est restituée par le condensateur pour alimenter le circuit pendant que la demi-alternance positive reste à 0 volt. Pour cette raison, la tension "continue" aux bornes du condensateur électrolytique reste toujours 1,41 fois supérieure à la tension "efficace".

dépasse pas les 50 volts et sur sa sortie nous pouvons prélever un courant maximum de 15 ampères mais pas plus.

Utile à savoir

Une diode de redressement provoque une chute de tension d'environ 0,7 volt.

C'est pourquoi, en appliquant sur son entrée une tension alternative de 12 volts, nous ne retrouverons sur sa sortie qu'une tension de :

12 - 0.7 = 11.3 volts

Un pont redresseur provoque une chute de 1,4 volt parce qu'il inclut deux diodes, l'une redressant les demi-alternances positives et l'autre les négatives.

En appliquant donc sur l'entrée du pont une tension alternative de 12 volts, nous n'obtiendrons sur sa sortie au'une tension de :

12 - 1.4 = 10.6 volts

Si I'on mesure la tension aux bornes du condensateur électrolytique relié sur la tension redressée, nous serons étonnés de remarquer que la tension n'aura pas une valeur de 11,3 volts ou de 10,6 volts mais qu'elle sera de:

15,9 volts ou de 14,9 volts

c'est-à-dire une valeur de tension supérieure à celle appliquée sur ses entrées.

La raison de cette augmentation de la tension est que la tension alternative atteint une pointe de 1,41 fois supérieure à la valeur de la tension efficace.

Pour mieux comprendre la différence entre la tension crête et la tension efficace, donc les volts crêtes et les volts efficaces, nous pouvons considérer la tension efficace comme la surface totale d'une demi-alternance (voir figure 144).

Le condensateur électrolytique ne se charge pas sur la valeur de la tension efficace mais sur la valeur crête (voir figure 245) et, pour cette raison, on obtient une tension supérieure.

Pour calculer la valeur de la tension réelle présente aux bornes du condensateur électrolytique, on devra d'abord savoir si l'on utilise une diode de redressement ou un pont redresseur et ensuite, utiliser les deux formules suivantes:

Dans laquelle:

- Vcc est la tension en volts courant continu aux bornes du condensateur,
- est la tension en volts - Vac efficaces de la tension alternative,
- est la chute de tension de - 0,7 la diode.
- 1,41 est une valeur fixe pour obtenir les volts crête.

Dans laquelle:

- Vcc est la tension en volts courant continu aux bornes du condensateur,
- Vac est la tension en volts efficaces de la tension alternative,
- 1,4 est la chute de tension dans le pont de diodes,
- 1,41 est une valeur fixe pour obtenir les volts crête.

En redressant une tension alternative de 12 volts avec une seule diode de redressement, on obtiendra une tension continue qui atteindra une valeur de :

$(12 - 0.7) \times 1.41 = 15.9 \text{ volts}$

En redressant une tension alternative de 12 volts avec un pont redresseur, on obtiendra une tension continue qui atteindra une valeur de :

$(12 - 1.4) \times 1.41 = 14.9 \text{ volts}$

C'est pourquoi, indépendamment de la tension alternative à redresser, nous retrouverons sur les bornes du condensateur électrolytique une tension toujours égale à la tension appliquée sur l'entrée moins la chute de tension dans les diodes de redressement, multipliée par 1,41.

Si on utilise les schémas des figures 237 et 239, on devra soustraire 0,7 volt, tandis qu'avec le schéma de la figure 243, utilisant le pont redresseur, on devra soustraire 1,41 volt.

La capacité du condensateur électrolytique

La capacité minimale, en microfarad, du condensateur électrolytique placé à la suite d'une diode de redressement ou un pont redresseur, ne doit jamais être choisie au hasard mais en fonction du courant maximum absorbé par l'appareil, de façon à réduire au minimum le bruit parasite de la tension alternative.

Si l'on redresse une tension alternative avec une seule diode de redressement (voir figure 242), on peut utiliser cette formule :

microfarads (μF) = 40 000 : (volts : ampères)

Si l'on redresse une tension alternative avec un pont redresseur (voir figure 243), on peut utiliser cette autre formule :

microfards (µF) = 20 000 : (volts : ampères)

Exemple: Nous avons réalisé une alimentation qui débite 12 volts sous 1,3 ampère et nous voudrons connaître la valeur de la capacité du condensateur

électrolytique dans le cas où nous utilisions une seule diode de redressement ou un pont redresseur.

Solution: Avec une seule diode de redressement, nous devons utiliser un condensateur électrolytique ayant une capacité d'environ:

40 000 : (12 : 1,3) = 4 333 microfarads

Etant donné que cette valeur n'est pas une valeur standard, nous utiliserons une capacité d'une valeur supérieure, c'est-à-dire de 4 700 microfarads, ou nous pourrons relier en parallèle deux condensateurs de 2 200 microfarads.

Avec un pont redresseur, nous devons utiliser un condensateur électrolytique qui ait une capacité d'environ :

20 000 : (12 : 1,3) = 2 166 microfarads

Etant donné que cette valeur n'est pas une valeur standard, nous utiliserons une capacité d'une valeur plus élevée, c'est-à-dire de 2 200 microfarads.

Nous vous déconseillons d'utiliser des valeurs de capacité inférieures à celles résultant de l'utilisation des formules que nous vous avons données. En effet, dans les appareils qui amplifient les signaux audio, comme les amplificateurs, les récepteurs, etc., vous retrouveriez un bruit de fond généré par les résidus mal filtrés de la tension alternative.

♦ G. M.

Figure 246 : Voici comment se présentent les diodes de redressement et les ponts redresseurs.

Les diodes de redressement et les ponts redresseurs sont conçus pour accepter sur leurs entrées des tensions pouvant aller de quelques volts à plusieurs milliers de volts et pour pouvoir débiter des courants allant de quelques ampères à plusieurs dizaines d'ampères.

Leur taille est généralement proportionnelle au courant qu'ils sont en mesure de débiter. Le voltage n'a qu'une faible influence sur leur taille. De ce fait, il est impératif de connaître les caractéristiques d'une diode ou d'un pont redresseur avant de l'utiliser dans une alimentation. Si le "surdimensionnement" est sans risque, le "sousdimensionnement" sera toujours catastrophique!

PETITES ANNONCES

Cause décès vends composants électroniques, documentation technique et matériels très divers, à trier sur place. Idéal pour club ou amateur débutant. Prix très intéressant. Téléphoner 01.64.35.93.37.

Cause arrêt activité, vends 300 cond. Chimiques BT, 1000 résistances, 100 diodes 1N4004, 100 zeners, 100 leds, le tout neuf. Prix: 250 F franco. 300 tubes miniature noval, octal, 6AU6, 12AT7, 6 E8 à 8,50 F plus de 80 types dif. Liste contre enveloppe timbrée self-adressée à J. Reynes, 13, résidence Beauregard, 86100 Chatellerault. Téléphoner au 05.49.21.56.93.

COMPOSANTS ÉLECTRONIQUES À UN PRIX DE LIQUIDATION

LISTE SUR DEMANDE À: MEDELOR SA, 42800 TARTARAS

TÉL. 04.77.75.80.56 FAX 04.77.83.72.09. Vends wattmètre. Prix: 200 F. Lot composants électroniques + connecteurs divers. Prix: 50 F. Téléph. au 01.47.80.30.43.

Vends bandes magnétiques de marque ø 18 549M en boîte d'origine, servis une fois. Prix: 200 F les 10. Magnétophone bandes ø 27 Akaï GX630D révisé avec noyaux et notice d'utilisation. Faire offre prix de magnétophone ø 18 Uher Royal avec deux jeux de têtes neufs. Téléphoner au 02.33.52.20.99.

HOT LINE

Vous rencontrez un problème lors d'une réalisation? Vous ne trouvez pas un composant pour un des montages décrits dans la revue?

UN TECHNICIEN EST À VOTRE ÉCOUTE

le matin de 9 heures à 12 heures les lundi, mercredi et vendredi sur la HOT LINE TECHNIQUE d'ELECTRONIQUE magazine au

04 42 82 30 30

TECHNIQUE

Distribution **Inspection - Gestion des ventes**

Axe Media Services Alain LESAINT 01 44 83 94 83 01 44 83 94 84

Hot Line Technique 04 42 82 30 30

Directeur de Publication

James PIERRAT elecwebmas@aol.com

Direction - Administration JMJ éditions

La Croix aux Beurriers - B.P. 29

35890 LAILLÉ

Tél.: 02.99.42.52.73+

Rédaction

Rédacteur en Chef James PIERRAT

Publicité

A la revue

Secrétariat Abonnements - Ventes

Francette NOUVION

Vente au numéro

A la revue

Maquette - Dessins

Composition - Photogravure

SRC sarl

Béatrice JEGU

Marina LE CALVEZ

Impression

SAJIC VIEİRA - Angoulême

Fax: 02.99.42.52.88

Web

http://www.electronique-magazine.com

e-mail

elecwebmas@aol.com

EN COLLABORATION AVEC:

Elettronica In

JMJ éditions

Sarl au capital social de 50 000 F RCS RENNES: B 421 860 925 - APE 221E Commission paritaire: 1000T79056 ISSN : En cours Dépôt légal à parution

Ont collaboré à ce numéro : Florence Afchain, Michel Antoni, Denis Bonomo, Alberto Ghezzi, Giuseppe Montuschi, Roberto Nogarotto, Arsenio Spadoni, Carlo Vignati.

MPORTANT Reproduction totale ou partielle interdite sans accord écrit de l'Editeur. Toute utilisation des articles de ce magazine à des fins de notice ou à des fins commerciales est soumise à autorisation écrite de l'Editeur. Toute utilisation non auto risée fera l'Objet de poursuites. Les opinions exprimées ain-si que les articles n'engagent que la responsabilité de leurs auteurs et ne reflètent pas obligatoirement l'opinion de la rédaction. L'Editeur décline toute responsabilité quant à la te-neur des annonces de publicités insérées dans le magazine et des transactions qui en découlent. L'Editeur se réserve le droit de refuser les annonces et publicités sans avoir à jus-tifier ce refus. Les noms, prénoms et adresses de nos abon-nés ne sont communiqués qu'aux services internes de la sociélé, ainsi qu'aux organismes liés contractuellement pour le routage. Les informations peuvent faire l'objet d'un droit d'accès et de rectification dans le cadre légal.

NNONGEZ-VOUS

VOTRE ANNONCE POUR SEULEMENT 3 TIMBRES À 3 FRANCS!

LIGNES	VE							OTI					บบเ	scı	JLE		LAI		ΕZ	UN	BL.	AN(C EI	NTF		.ES	MC	OTS	
1		ı	ı	ı	1	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	ı	ı	ı	ı	ı		ı	ı
2		I	ı	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı		1	1	ı	ı	ı	ı	ı	ı	ı	ı	
3		ı		1	1	1	1	1	1	1	1	1		1	1	1	1		1	1		1	1	1					
4		ı			1	ı	1	1	1	1	1	1		1	1	ı	1	1	1	1	1	1		ı					
5		1			1		1	1	1		1	1		ı			1		1	1	1	1		1					
6					1			1						1			1		1		1			1					
7																													
8										_																		_	
9				_		_		<u> </u>						·				_											
10		· 	 I			· 	<u> </u>	<u> </u>		<u> </u>		· · ·		I	· ·		<u> </u>						· ·	I			I		

Particuliers: 3 timbres à 3 francs - Profession	nels : La ligne : 50 F TTC - PA avec photo : + 250 F - PA encadrée : + 50 F
Nom	Prénom
Adresse	
Code postalVille	
Toute annonce professionnelle doit être	accompagnée de son règlement libellé à l'ordre de JMJ éditions.

Envoyez la grille, éventuellement accompagnée de votre règlement à : ELECTRONIQUE magazine • Service PA • BP 88 • 35890 LAILLÉ

ABONNEZ-VOUS A LE MENSUEL DES PASSIONNÉS DE RADIOCOMMUNICATION

DEPUIS NOVEMBRE 1982 : 202 NUMÉROS!

. et tous les mois, retrouvez vos rubriques :

- Actua, CW, Packet, Internet. Satellite...
- Un carnet de trafic bourré d'infos pour les DX'eurs.
- Des réalisations d'antennes. de transceivers, d'interfaces et de nombreux montages électroniques du domaine des radiocommunications.
 - Des bancs d'essai, des nouveaux produits commerciaux, pour bien choisir votre matériel.
- Des centaines de petites annonces.

TARIFS CEE/EUROPE

☐ 12 numéros

306^{FF}

46,65€

Bulletin à retourner à : SRC — Abo. MEGAHERTZ

OUI, Je m'abonne à M202/E	A PARTIR DU N°
Ci-joint mon règlement deF corre	espondant à l'abonnement de mon choix.
Adresser mon abonnement à : Nom	Prénom
Adresse	
Code postalVille	
Je joins mon règlement à l'ordre de SRC ☐ chèque bancaire ☐ chèque postal ☐ mandat	TARIFS FRANCE 6 numéros (6 mois) au lieu de 162 FF en kiosque, soit 26 FF d'économie 136 FF
☐ Je désire payer avec une carte bancaire Mastercard – Eurocard – Visa	20,73€ 12 numéros (1 an) au lieu de 324 FF en kiosque,
Date d'expiration : U U U U U U U U U U U U U U U U U U	soit 68 FF d'économie 39,03€
Signature obligatoire > Avec votre carte bancaire, vous pouvez vous abonner par téléphone.	au lieu de 648 FF en kiosque, soit 152 FF d'économie

Pour un abonnement de 2 ans.

cochez la case du cadeau désiré.

DOM-TOM/ETRANGER:

NOUS CONSULTER

CADEAL au choix parmi les 6 POUR UN ABONNEMENT DF 2 ANS

Gratuit:

75,61€

- ☐ Une torche de poche 🖵 Un outil 7 en 1
- ☐ Une pince à dénuder
- Avec 24 FF

uniquement en timbres :

- Un multimètre
- Un fer à souder
- Un agenda électronique

(délai de livraison : 4 semaines)

PETITES ANNONCES

Vends oscillo Hameg HM603, 2 fois 60 MHz, 2 bases de temps, ligne retard, comme neuf, cause santé. Prix: 4500 F + port. Robert Sénéchal, R.P.A. Le Clos de Censé, 60600 Clermont. Téléphoner au 03.44.50.53.78. prendre rendez-vous.

Recherche assembleur et/ou doc. technique, jeu d'instructions pour microcontrôleurs "NEC" famille 78K3 (783XX). Offre bon prix. Téléphoner ลน 04.68.63.39.71 OLL ап 04.68.51.41.89.

Recherche documentation et schéma sur amplis FM VHF 300 watts et 500 watts ainsi que le RDS et la DAB en émission et réception. Faire offre (rémunérée) à l'adres-

INDEX DES ANNONCEURS ARQUIE COMPOSANTS · «Composants» 31 COMELEC · «TV, ATV et mesure» 21 COMELEC · «Cartes magnétiques et à puce» 77 COMELEC · «Kits du mois» 20 COMELEC · «Modules Aurel» 44 COMELEC · «Moniteurs» 69 COMELEC · «Moniteurs» 69 COMELEC · «Radiocommandes et vidéo» 70 COMELEC · «Radiocommandes et vidéo» 70 COMELEC · «Radiocommandes et vidéo» 70 DOMOS COMPUTER · «Domotique» 39 ECE/IBC · «Composants» 96 ELC · «Alimentations» 02 GES · «Mesure Kenwood» 38 GRIFO · «Contrôle automatisation industrielle» 61 JMJ · «Anciens numéros» 76 JMJ · «Anciens numéros» 94 JMJ · «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM · «EDWin 32» 30 MICRELEC · «Logiciels : schémas et CI» 68 MULTIPOWER · «Proteus IV» 19 SELECTRONIC · «Robotique, » 95 SRC · «Lisez MEGAHERTZ MAGAZINE» 93 SRC · «Lisez MEGAHERTZ MAGAZINE» 57 SRC · «Lisez in raine de commande» 57 SRC · «Librairie» 52-56		
COMELEC - «TV, ATV et mesure » 21 COMELEC - «Cartes magnétiques et à puce » 77 COMELEC - «Kits du mois » 20 COMELEC - «Modules Aurel » 44 COMELEC - «Moniteurs » 69 COMELEC - «Radiocommandes et vidéo » 70 COMELEC - «Radiocommandes et vidéo » 70 COMELEC - «Radiocommandes et vidéo » 70 DOMOS COMPUTER - «Domotique » 39 ECE/IBC - «Composants » 96 ELC - «Alimentations » 02 GES - «Mesure Kenwood » 38 GRIFO - «Contrôle automatisation industrielle » 61 JMJ - «Anciens numéros » 76 JMJ - «Anciens numéros » 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE » 60 MERCURE TELECOM - «EDWin 32 » 30 MICRELEC - «Logiciels : schémas et Cl » 68 MULTIPOWER - «Proteus IV » 19 SELECTRONIC - «Robotique, » 95 SRC - «Lisez MEGAHERIZ MAGAZINE » 93 SRC - «Bon de commande » 57	INDEX DES ANNONCEURS	
COMELEC - «Cartes magnétiques et à puce» 77 COMELEC - «Kits du mois» 20 COMELEC - «Modules Aurel» 44 COMELEC - «Moniteurs» 69 COMELEC - «Moniteurs» 69 COMELEC - «Radiocommandes et vidéo» 70 COMELEC - «Radiocommandes et vidéo» 70 DOMOS COMPUTER - «Domotique» 39 ECE/IBC - «Composants» 96 ELC - «Alimentations» 02 GES - «Mesure Kenwood» 38 GRIFO - «Contrôle automatisation industrielle» 61 JMJ - «Anciens numéros» 76 JMJ - «Anciens numéros» 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et CI» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERIZ MAGAZINE» 93 SRC - «Bon de commande» 57	ARQUIE COMPOSANTS - « Composants »	31
COMELEC - «Kits du mois» 20 COMELEC - «Modules Aurel» 44 COMELEC - «Moniteurs» 69 COMELEC - «PIC» 11 COMELEC - «Radiocommandes et vidéo» 70 COMELEC - «Radiocommandes et vidéo» 70 DOMOS COMPUTER - «Domotique» 39 ECE/IBC - «Composants» 96 ELC - «Alimentations» 02 GES - «Mesure Kenwood» 38 GRIFO - «Contrôle automatisation industrielle» 61 JMJ - «Anciens numéros» 76 JMJ - «Anciens numéros» 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et Cl» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERTZ MAGAZINE» 93 SRC - «Bon de commande» 57	COMELEC - «TV, ATV et mesure»	21
COMELEC - «Modules Aurel» 44 COMELEC - «Moniteurs» 69 COMELEC - «PIC» 11 COMELEC - «Radiocommandes et vidéo» 70 COMELEC - «Radiocommandes et vidéo» 70 DOMOS COMPUTER - «Domotique» 39 ECE/IBC - «Composants» 96 ELC - «Alimentations» 02 GES - «Mesure Kenwood» 38 GRIFO - «Contrôle automatisation industrielle» 61 JMJ - «Anciens numéros» 76 JMJ - «Anciens numéros» 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et Cl» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERTZ MAGAZINE» 93 SRC - «Bon de commande» 57		77
COMELEC - «Moniteurs » 69 COMELEC - «PIC » 11 COMELEC - «Radiocommandes et vidéo » 70 COMELEC - «Radiocommandes et vidéo » 70 DOMOS COMPUTER - «Domotique » 39 ECE/IBC - «Composants » 96 ELC - «Alimentations » 02 GES - «Mesure Kenwood » 38 GRIFO - «Contrôle automatisation industrielle » 61 JMJ - «Anciens numéros » 76 JMJ - «Anciens numéros » 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE » 60 MERCURE TELECOM - «EDWin 32 » 30 MICRELEC - «Logiciels : schémas et Cl » 68 MULTIPOWER - «Proteus IV » 19 SELECTRONIC - «Robotique, » 95 SRC - «Lisez MEGAHERIZ MAGAZINE » 93 SRC - «Bon de commande » 57	COMELEC - «Kits du mois»	20
COMELEC - «PIC» 11 COMELEC - «Radiocommandes et vidéo» 70 COMELEC - «Radiocommandes et vidéo» 70 DOMOS COMPUTER - «Domotique» 39 ECE/IBC - «Composants» 96 ELC - «Alimentations» 02 GES - «Mesure Kenwood» 38 GRIFO - «Contrôle automatisation industrielle» 61 JMJ - «Anciens numéros» 76 JMJ - «Anciens numéros» 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et Cl» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERTZ MAGAZINE» 93 SRC - «Bon de commande» 57	COMELEC - «Modules Aurel»	44
COMELEC - «Radiocommandes et vidéo» 70 COMELEC - «Radiocommandes et vidéo» 70 DOMOS COMPUTER - «Domotique» 39 ECE/IBC - «Composants» 96 ELC - «Alimentations» 02 GES - «Mesure Kenwood» 38 GRIFO - «Contrôle automatisation industrielle» 61 JMJ - «Anciens numéros» 76 JMJ - «Anciens numéros» 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et Cl» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERTZ MAGAZINE» 93 SRC - «Bon de commande» 57	COMELEC - «Moniteurs»	69
COMELEC - «Radiocommandes et vidéo» 70 DOMOS COMPUTER - «Domotique» 39 ECE/IBC - «Composants» 96 ELC - «Alimentations» 02 GES - «Mesure Kenwood» 38 GRIFO - «Contrôle automatisation industrielle» 61 JMJ - «Anciens numéros» 76 JMJ - «Anciens numéros» 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et Cl» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERTZ MAGAZINE» 93 SRC - «Bon de commande» 57		
DOMOS COMPUTER - « Domotique » 39 ECE/IBC - « Composants » 96 ELC - « Alimentations » 02 GES - « Mesure Kenwood » 38 GRIFO - « Contrôle automatisation industrielle » 61 JMJ - « Anciens numéros » 76 JMJ - « Anciens numéros » 94 JMJ - « Bulletin d'abo à ELECTRONIQUE MAGAZINE » 60 MERCURE TELECOM - « EDWin 32 » 30 MICRELEC - « Logiciels : schémas et Cl » 68 MULTIPOWER - « Proteus IV » 19 SELECTRONIC - « Robotique, » 95 SRC - « Lisez MEGAHERTZ MAGAZINE » 93 SRC - « Bon de commande » 57		70
ECE/IBC - «Composants» 96 ELC - «Alimentations» 02 GES - «Mesure Kenwood» 38 GRIFO - «Contrôle automatisation industrielle» 61 JMJ - «Anciens numéros» 76 JMJ - «Anciens numéros» 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et Cl» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERIZ MAGAZINE» 93 SRC - «Bon de commande» 57		
ELC - «Alimentations »	DOMOS COMPUTER - « Domotique »	39
GES - «Mesure Kenwood » 38 GRIFO - «Contrôle automatisation industrielle » 61 JMJ - «Anciens numéros » 76 JMJ - «Anciens numéros » 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE » 60 MERCURE TELECOM - «EDWin 32 » 30 MICRELEC - «Logiciels : schémas et Cl » 68 MULTIPOWER - «Proteus IV » 19 SELECTRONIC - «Robotique, » 95 SRC - «Lisez MEGAHERTZ MAGAZINE » 93 SRC - «Bon de commande » 57		, 0
GRIFO - «Contrôle automatisation industrielle» 61 JMJ - «Anciens numéros» 76 JMJ - «Anciens numéros» 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et CI» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERTZ MAGAZINE» 93 SRC - «Bon de commande» 57		~-
JMJ - «Anciens numéros »		
JMJ - «Anciens numéros » 94 JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE » 60 MERCURE TELECOM - «EDWin 32 » 30 MICRELEC - «Logiciels : schémas et Cl » 68 MULTIPOWER - «Proteus IV » 19 SELECTRONIC - «Robotique, » 95 SRC - «Lisez MEGAHERTZ MAGAZINE » 93 SRC - «Bon de commande » 57		٠.
JMJ - «Bulletin d'abo à electronique magazine» 60 MERCURE TELECOM - «EDWin 32» 30 MICRELEC - «Logiciels : schémas et CI» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez megahertz magazine» 93 SRC - «Bon de commande» 57		
MERCURE TELECOM · «EDWin 32» 30 MICRELEC · «Logiciels : schémas et CI» 68 MULTIPOWER · «Proteus IV» 19 SELECTRONIC · «Robotique,» 95 SRC · «Lisez megahertz magazine» 93 SRC · «Bon de commande» 57		, ,
MICRELEC - «Logiciels : schémas et CI» 68 MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERTZ MAGAZINE» 93 SRC - «Bon de commande» 57		-
MULTIPOWER - «Proteus IV» 19 SELECTRONIC - «Robotique,» 95 SRC - «Lisez MEGAHERTZ MAGAZINE» 93 SRC - «Bon de commande» 57		
SELECTRONIC - «Robotique,»		
SRC - «Lisez megahertz magazine»		
SRC - «Bon de commande» 57		
SRC - «Librairie»		٠,
	SRC - «Librairie»	-56

se suivante : Marc Lollien, 136 avenue de Paris, 92390 Châtillon. Téléphoner au 06.85.14.42.94. Vends diodes tunnel neuves 1N3717-3718 et 3719, afficheurs points, géné à wobulé, oscillo mémoire numérique Gould, oscillos 2 x 50 et 2 x 175, double BT, garantis 6 mois, filtre de fréquences simple et double, transfos de séparation 350 VA et 2 x 16 volts, 10 ampères. Téléphoner 02.48.64.68.48.

Vends analyseur de spectre 1,5 GHz Hewlett Packard 8558B + 182T révisé et étalonné chez HP, état absolument parfait. Prix : 9000 Francs. Girard, tél. 02.32.57.68.96 HB

Recherche tuner FM Technics ST-610L ou Luscman T-120L. Tél. 05.63.58.08.70, le soir, demander Richard.

Bricoleur amateur cherche appareils de mesure tous genres, pas trop vieux, bas prix. Vends lampes

TSF 1930 à 60, nombreux modèles. Ecrire à M. Largier, 20 rue de l'Abbaye, 42700 Firminy. Téléphoner au 04.77.56.58.33.

Cours théorique sur les caractéristiques, lois et phénomènes qui régissent les liaisons radioélectriques: nature des signaux à transmettre, unités utilisées, ondes électromagnétiques, etc.

Utilisez le bon de commande page 59

Vous venez de découvrir

JMJ/Electronique BP29 - 25890 LAILE 90 42 52 73 - Fm - 62 99

t vous désirez vous procurer les anciens numéros...

sur CD-ROM

nº

la revue ou le CD-ROM port compris

Les 6 premiers numéros en intégralité sur un CD-ROM ELECTRONIO 136F le CD-ROM

Les n°1, n°2 et n°4 sont disponibles

sont toujours disponibles...

Les revues n°3, n°5, n°6 et n°7

adressez votre commande à :

JMJ/ELECTRONIQUE - B.P. 29 - 35890 LAILLÉ avec un règlement par Chèque à l'ordre de JMJ ou au Tél.: 02 99 42 52 73 - Fax: 02 99 42 52 88 avec un règlement par Carte bancaire.

01/2000

qnd

SRC

ROBOTIOUE

Toute une gamme de ROBOTS en kit et accessoires

(pilotables par BASIC Stamp ou autre)

BASIC STAMP BUG

753..4093 570^F00 86,90 €

AROBOT

HEXAPOD II

FLEXINOL

Toutes tailles disponibles

À partir de 100^F00 le m

15,24 €

CIRCUITS INTÉGRÉS SPÉCIAUX "ROBOTIOUE"

Contrôleurs de servos ou de moteurs pas à pas par liaison SERIE

EDE 702 (Cf. ELEKTOR n° 253-254) Circuit d'interface série/parallèle pour afficheur LCD standard.2400/9600 bauds. 753..8608 **85**^F00 12,96€

EDE 1400 (Cf. ELEKTOR n° 253-254) Entré série 2400 bauds. Sortie parallèle selon protocole CENTRONICS 753..8612 149^F00 22,71 €

www. elabinc.com

CIRCUITS DE CONTRÔLE POUR MOTEURS PAS À PAS

EDE 1200 Unipolaire (Cf. ELEKTOR n° 253-254) **753..8609 75^F00 11,43** € **EDE 1204** Bipolaire (Cf. ELEKTOR n° 253-254) **753..8610 75^F00 11,43** €

CONTRÔLE D'ACCÈS

Commande d'ouverture de porte par lecteurde badge à distance

EMULATEURS EN "CIRCUIT"

À partir de 6.790^F00 1.035,13 €

À partir de 1.975^F00 301,09 €

AFFICHEUR LCD

À ENTRÉE SÉRIE

Entrée TTL - RS 232 - 4 lignes de 20 caract. - STN - Backlight - 146 x 63 mm

PROMO

753..6640

495^F00 75,46 €

MODULES AUREL

La grande NOUVEAUTÉ **ΜΔV-VHF224** ·

Transmission Vidéo + Audio sur 224,5 MHz

753..2863 **159**^F00

L'OSCILLOSCOPE **DE POCHE HPS5**

Le HPS-5 livré avec une sonde SL-60S (offre valable jusqu'au 31/01/2000)

velleman

753.1600-1 1.249F00 190,41 €

NOUVEAU

AWC Electronics

Les compléments de vos BASIC STAMP 1 et 2 (ou tout autre microcontrôleur)

Les PAKs sont fournis avec résonateur céramique et : manuel + CD-ROM en anglais (1) - ou fiche technique en anglais (2)

Coprocesseur mathématique à virgule flottante sur 32 bits

- Racines, exponentielles, sin, cos, tg, log et antilog, etc- Compatible avec format IEEE754 - Horloge 10 MHz - 8 E/S supplémentaires - Boîtier 18 pin DIP 753..9464 33,54 € Le PAK-1 fourni avec (1)

PAK-2 Comme PAK-1 sauf :

- Horloge 20 MHz- 16 E/S supplémentaires- Boîtier 28 pin DIP Le PAK-2 fourni avec (1) 753..9469

PAK-4 Processeur d'extension d'E/S

- Gère jusqu'à 16 E/S supplémentaires avec toutes les commandes usuelles

- Horloge 20 MHz - 96 octets de RAM - Boîtier 28 pin DIP

310F00 Le PAK-4 fourni avec (1) 753..9475

PAK-5 Processeur PWM

- Gère jusqu'à 8 sorties PWM simultanément- Interface série RS232 directe ou inversée - 2400 ou 9600 bds - Mode proportionnel- Horloge 50 MHz - Boîtier 18 pin DIP Le PAK-5 fourni avec (2) 753..9479 44.97 €

PAK-6 Processeur d'interface

- Pour clavier PS2 ou AT, souris, track pad, etc. - Interface série RS232 - 9600 bds

- Buffer 16 touches - Horloge 50 MHz - Boîtier 18 pin DIP

Le PAK-6 fourni avec (2)

753..9633

41.16 €

41.16 €

47.26 €

86, rue de Cambrai - B.P 513 - 59022 LILLE Cedex Tél. **0 328 550 328** Fax : 0 328 550 329

Internet www.selectronic.fr

Catalogue Général **2000**

Envoi contre 30F (timbres-Poste ou chèque)

Conditions générales de vente : Réglement à la commande : frais de port et d'emballage 28F, FRANCO à partir de 800F. Contre-remboursement : + 60F Tous nos prix sont TTC

Nos magasins:

PARIS: 11, place de la Nation - Paris XIe (Métro Nation) LILLE: 86 rue de Cambrai (Près du CROUS)

LECTRONIOL

66, rue de Montreuil **75011 Paris Métro Nation**

Tel: 01.43.72.30.64 Fax: 01.43.72.30.67 BUNNE ANNEE

2000

BONNE ANNE 2000

Jeu pour téléphone et applications multimédia + **Microphone** 85.00 Frs

Kit pour débutant en électronique 189.00 Frs

CD Rom vierges avec boîtier cristal 9.00 Frs Pièce

Outil compact fonctions multiples 19 en 1 169.00 Frs

Cross Dancer controlées par la

Analyseur

2495.00 Frs

Caméra N/B étanche 599.00 Frs

musique 1099.00 Frs

549.00 Frs

Graveuse

Verticale

Horloge DCF projection de l'heure sur le plafond ou le mur 339.00 Frs

Sirène Piezo Miniature 35.00 Frs

Oscilloscope PersonalScope 1249.00 Frs

439.00 Frs

à Fumée

Pointeur laser de poche 650 nm.imw Class II a 79.00 Frs

Moniteur 4"TFT LCD Couleur avec Hautparleurs 1299.00 Frs

Vente

demi-gros

et détail

130.00 frs

Oscilloscope METRIX OX520 Promo 3490.00 Frs

Mallette Perceuse

159.00 Frs

Programmateur de PIC en kit 12C508/509 et 16F84 avec affichage digital Livré complet avec notice de montage et programme sur disquette Exclusif ... 249F

Option insertion nulle 90 F Revendeurs: nous consulter

DREMIERO NCO.TY

Dépositaire : ALTAI - APPA - CEBEK CRC INDUSTRIE - EWIG - HAMEG HR - IBC - KONIG ELECTRONIC MANUDAX - MMP - METRIX **OFFICE DU KIT - OK INDUSTRIE - RONT** TEKO - VELLEMAN - WAVETEK

Nos prix sont donnés à titre indicatif, Pouvant êtres modifiés sans préavis. Tous nos prix sont TTC. Les produits actifs ne sont ni repris ni échangés. Forfait de port 40 F. Port gratuit au-dessus de 1 500 F d'achats. Forfait contre remboursement 72 F. Chronopost aux tarifs en vigueur. Télépaiement par Carte bancaire.