A (quick) Introduction to Using Python Notebooks for Ocean Science Research Day 2

Sage Lichtenwalner
2020 Data Labs Virtual REU
June 2020

datalab.marine.rutgers.edu

Today's Agenda

- Quick Intro to Data Visualization
- Data Visualization in Python
 - Customizing Plots
 - More visualization types
- Bonus Activity 4 More plots
 - A new dataset Argo Floats
 - Profile plots
 - T-S Diagrams
 - Maps

What is "Visualization"?

Visual Analysis

Data Visualization

Info Aesthetics

Information Design

Explorative Visualization

Visual Analytics

Infographics

Visualization

Information Visualization (InfoVis)

Charting

Data Art

Infoporn

Information Art

Bioinformatics

Cartography

Mapping

Chart Junk

Pragmatic Visualization

Graphing

Scientific Illustration

Artistic Visualization

"Visual analysis is not primarily about the pictures, but about finding ways to use our powerful visual systems to analyze data. It's analysis done in a visual way. It's visual exploration, visual data analysis, and visual presentation of results."

Robert Kosara, eagereyes.org

The World's Greatest Chart?

Reference: https://xkcd.com/388/

Lots more xkcd charts:

https://www.explainxkcd.com/wiki/index.php/Category:Charts

Mount St. Helens

"It's a good mountain, but it really peaked in the 80s."

https://xkcd.com/2308/https://www.explainxkcd.com/wiki/index.php/2308:_Mount_St._Helens

Sea Surface Temp

https://marine.rutgers.edu/cool/sat_data/?product=sst_comp®ion=bigbight¬humbrsr=0 -740' -720' -700' -680' -660' -640'

Global Biosphere 2008 Chlorophyll Concentration (mg/m3) 0.01 0.1 Vegetation Index 10 50 0.4 0.6 0.8 0.2 $\underline{https://earthobservatory.nasa.gov/world-of\text{-}change/Biosphere}$

Data Wrangling

A "linear" process?

Kandel, S., et al (2011), Research directions in data wrangling: Visualizations and transformations for usable and credible data, Inf. Vis., 10(4), 271–288.

Common Data Visualizations

91%

Simple text

	А	В	С
Category 1	15%	22%	42%
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4	30%	29%	26%
Category 5	55%	30%	58%
Category 6	11%	25%	49%

Table

	А	В	С
Category 1	15%	22%	
Category 2			20%
Category 3		17%	
Category 4			
Category 5			58%
Category 6	11%	25%	

Heatmap

Scatterplot

Line

Slopegraph

Horizontal bar

Stacked vertical bar

Stacked horizontal bar

Waterfall

Square area

http://www.storytellingwithdata.com/books

Data Visualization Taxonomy

Data to Viz Poster

https://www.data-to-viz.com

Python Gallery

https://python-graph-gallery.com

Visual Encodings

https://blog.qlik.com/visual-encoding

Visual Encoding & Cognitive Research

Example	Encoding	Ordered	Useful values	Quantitative	Ordinal	Categorical	Relational
	position, placement	yes	infinite	Good	Good	Good	Good
1, 2, 3; A, B, C	text labels	optional alpha or num	infinite	Good	Good	Good	Good
	length	yes	many	Good	Good		
. •	size, area	yes	many	Good	Good		
/_	angle	yes	medium	Good	Good		
	pattern density	yes	few	Good	Good		
===	weight, boldness	yes	few		Good		
	saturation, brightness	yes	few		Good		
	color	no	few (<20)			Good	
	shape, icon	no	medium			Good	
	pattern texture	no	medium			Good	
	enclosure, connection	no	infinite			Good	Good
====	line pattern	no	few				Good
	line endings	no	few				Good
	line weight	yes	few		Good		

https://www.oreilly.com/library/view/designing-data-visualizations/9781449314774/ch04.html

Pre-attentive Attributes

https://help.tableau.com/current/blueprint/en-us/bp_why_visual_analytics.htm

Choose Appropriate Colors & Colormaps

https://agilescientific.com/blog/2017/12/14/no-more-rainbows

New Research: Color Scaling

- Feature identification
 - Pinpointing outliers
 - Determining relationships
- Exploration
- Communication

https://eos.org/features/visualizing-science-how-color-determines-what-we-see

Key Chart Elements

- Chart Title(s)
- X & Y Labels
- X & Y Tickmarks
 - Often automatic
- Grid lines
- Line/Marker color
- Line/Marker style, width
- Legend
- Subplots

This is a somewhat long figure title

https://matplotlib.org/gallery/subplots_axes_and_figures/figure_title.html#sphx-glr-gallery-subplots-axes-and-figures-figure-title-py

Mini-Project Expectations

- Work in your group of 3
- Choose one or more NDBC stations
 - You can try either "stmet" or "ocean" station types
- Find some events (e.g. storm), processes (e.g. daily, seasonal, long-term) or other comparisons (e.g. geographic) that interest you
- Create figures to tell a story of what you found
 - If helpful, search the web or literature for more background
- Explain your analysis and conclusions
- Create a ~10 min presentation where each of you can contribute

Mid-workshop Group Report

Here are a few topics your group should think about for our report out on Monday to the full team. Feel free to use this slide as a template.

- Group members (name?)
- What is your question? Is it testable or more descriptive?
- What dataset(s) will you use?
- What analysis will you do?
- What is your expectation of what you hope to find after analyzing the data?
- Other things to discuss, but not needed for the report:
 - What are the tasks for each group member?
 - What challenges do you have you may need help with?

Conductivity Temperature Depth (CTD) Profiles

NY Harbor Estuary

CDOM is conservative which allows for water mass discrimination

