1. Логика

"Колега, ми то логично..."

Юли 2024

1 Преговор

Дефиниция 1.1. Логически константи - Т (true) и F (false)

Дефиниция 1.2. Прости съждения (логически променливи) - твърдения, които са или истина, или лъжа

Забележка. Въпросителни, възклицателни, подбудителни изречения, както и такива от вида "това изречение е лъжа", неможещи да бъдат нито истина, нито лъжа (защото съдържат противоречие), не са съждения

Дефиниция 1.3. Съставни съждения - такива, образувани от други съждения и логически константи, посредством логически съюзи

Дефиниция 1.4 (Логически операци).

	p	q	$\neg p$	$p \wedge q$	$p \vee q$	$\mathrm{p}\oplus q$	$p \rightarrow q$	$\mathbf{p} \leftrightarrow q$
	F	F	Τ	F	F	F	Т	Τ
.	F	Т	Т	F	Т	Т	Т	F
	Т	F	F	F	Т	Т	F	F
Ì	Т	Т	F	Т	Т	F	Т	Т

Свойство 1.1 (Приоритет на логиеските операции).

- 1. негация ¬
- 2. конюнкция ∧
- 3. изкючващо или \oplus , дизюнкция \vee
- 4. импликация \rightarrow
- 5. биимпликация \leftrightarrow

Забележка. Разбира се, при наличие на скоби те са с най-голям приоритет

Малко повече за (би)импликацията. нека p, q са произволни съждения в импликация $p \to q$

- р се нарича антецедент, q консеквент
- на импликацията може да се гледа като обещание: нека съм ви дал дума: "Ако изкарате 100% на контролното, ще получите оценка 6" ако антецедентът е истина (изкарали сте 100%), то вие ще очаквате да имате 6 (т.е. и консеквентът да е истина), в противен случай обещанието не е изпълнено; ще кажете, че не съм удържал на думата си (т.е. импликацията е лъжа). Разбира се, ако не сте изкарали 100% (антецедентът е лъжа), няма как да говорим за неспазено обещание, т.е. без значение каква оценка ще получите (независимо консеквента), аз все пак съм казал истината.
- антецедентът (р) е свързан с достатъчното условие, а консеквентът с необходимото (q); Пр. "Ако съм човек, дишам" - да си човек е достатъчно, за да твърдим, че дишаш, но не и необходимо (животни и растения също дишат). Обратно, дишането е необходимо условие, за да кажем, че нещо е човек - ако не диша, то не е човек (или в най-добрия случай само е било...), но пък не е достатъчно условие.

• импликацията може да се зададе чрез различни езикови конструкции: "ако p, (то) q", но "p, само ако q";

"q (тогава), когато р", но "р само (тогава,) когато q";

"р влече q", "q следва от р", "р е достатъчно условие за q", "q е необходимо условие за р"

Забележка. Забележете, че "само" променя смисъла на казаното!

• биимпликацията е нещо като двойна импликация (т.е. тук р е и необходимо, и достатъно условие за q, както и обратно), неслучайно отговаря на езиковата конструкция "тогава и само тогава, когато", също и на "точно тогава, когато"

Забележете, че "точно" променя смисъла на казаното, без него щеше да е просто импликация!

Дефиниция 1.5. Всеки ред от таблицата на истинност (отговарящ на точно една възможна комбинация от стойности F/T на променливите) наричаме валюация

Дефиниция 1.6.

- тавтология съставно съждение, чиято стойност е Т за всяка валюация на просите му съждения
- противоречие съставно съждение, чиято стойност е F за всяка валюация
- условност съждение, което приема, както стойност Т, така и F

Дефиниция 1.7. две съждения A и B са еквивалентни (A \equiv B, A \Leftrightarrow B), тстк съждението A \leftrightarrow B е тавтология

Забележка. A=B би означавало друго - че имат еднаква синтактична структура, т.е. и изглеждат еднакво

 $3абележка. \equiv, \Leftrightarrow не$ са логически съюзи

Теорема 1.1 (еквивалентности). *Нека p, q и r са произволни съждения. Следните еквивалентности са в сила:*

- ullet свойство на константите: $p \lor T \equiv T, \ p \land T \equiv p, \ p \lor F \equiv p, \ p \land F \equiv F$
- ullet свойства на отрицанието: $p \wedge \neg p \equiv F, \ p \vee \neg p \equiv T$
- идемпотентност: $p \lor p \equiv p, \ p \land p \equiv p$
- закон за двойното отрицание: $\neg(\neg p) \equiv p$
- комутативност: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$, $p \oplus q \equiv q \oplus p$
- acoциативност: $(p \lor q) \lor r \equiv p \lor (q \lor r), (p \land q) \land r \equiv p \land (q \land r), (p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$
- $\partial ucmpu \delta ymu \lor hocm: p \lor (q \land r) \equiv (p \lor q) \land (p \lor r), p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- закони на De Morgan: $\neg(p \land q) \equiv \neg p \lor \neg q$, $\neg(p \lor q) \equiv \neg p \land \neg q$ Забележка. Законите на De Morgan лесно могат да се обобщят за много променливи (как?)
- поглъщане (absorption law): $p \lor (p \land q) \equiv p \equiv p \land (p \lor q)$
- Apyeu noneshu: $p \to q \equiv \neg q \to \neg p, \ p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q, \ p \leftrightarrow q \equiv \neg (p \oplus q),$ $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q), \ \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q,$ $p \lor q \equiv \neg p \to q, \ p \land q \equiv \neg (p \to \neg q), \ p \land \neg q \equiv \neg (p \to q),$ $(p \to q) \land (p \to r) \equiv p \to (q \land r), \ (p \to r) \land (q \to r) \equiv (p \land q) \to r,$ $(p \to q) \lor (p \to r) \equiv p \to (q \lor r), \ (p \to r) \lor (q \to r) \equiv (p \land q) \to r \equiv p \to (q \to r)$

Забележка. На контролни (особено семестриално и изпит) не може да ползвате послендите наготово - изключение правят първите три от тях като по-очевдини и често използвани

Полезно. Доказване на (не)еквивалентност

- еквивалентност можде да се докаже с:
 - таблица на истинност
 - еквивалентни преобразувания
- нееквивалентност можде да се докаже с:
 - таблица на истинност
 - контрапример (подходящ избор на стойности за променливите, за който дадените не са еквивалентни)

Дефиниция 1.8. Казваме, че q следва логически от p, ако $p \to q$ e тавтология, бележим $p \vdash q$, също и $p \Rightarrow q$

 $\it Забележка.$ ⊢ / \Rightarrow $\it нe$ са логически съюзи, така че изводът $\it p$ ⊢ $\it q$ не е съждение, да не се бърка с импликацията!

Дефиниция 1.9 (извод в съждителната логика). Извод наричаме последователност от съждения $p_1, p_2, ..., p_n, q / n > 0/$, където $p_1, ..., p_n$ са предпоставки (premises), а q е следствие (conclusion). Изводът се счита за валиден, когато, допускайки, че всички предпоставки са верни (m.e. $p_1 \land p_2 \land ... \land p_n \equiv T$), и следствието е вярно $(q \equiv T)$.

Горната дефиниция ни казва, че когато $p_1, \dots p_n$ са едновременно T, искаме и следствието да е T. Това може да се гледа като еквивалентно на това да искаме $p_1 \wedge p_2 \wedge \dots \wedge p_n \to q \equiv T$, защото ако някоя от предпоставките е F, то по дефиниция импликацията отново ще е T. В крайна сметка, за да кажем, че изводът е валиден, ще изискваме просто $p_1 \wedge p_2 \wedge \dots \wedge p_n \to q$ да е тавтология

Дефиниция 1.10. Едноместен предикат е съждение, в което има "празно място", в което се слага обект от предварително зададена област, наречена домейн. За всеки обект от домейна, предикатът е или истина, или лъжа.

Забележка. Самият предикат (без да е свързан с обект) още не е съждение, т.е. не е Т, нито F

Дефиниция 1.11 (квантори). Често ще ползвате следните (особено по дис):

- yниверсален квантор \forall 3a всяко
- екзистенциален квантор ∃ съществува

Забележка. Кванторите имат по-висок приоритет от логическите съюзи

Свойство 1.2. Ако P(x) е предикат над домейн A, състоящ се от обекти $a_1, ..., a_n$, то:

- $\exists x \in A : P(x) \equiv P(a_1) \lor P(a_2) \lor \cdots \lor P(a_n)$
- $\forall x \in A : P(x) \equiv P(a_1) \land P(a_2) \land \cdots \land P(a_n)$

2 Основни задачи

за произволни съждения p, q, r, s:

Задача 1. Съждения ли са изразите: $p \equiv q, p \Leftrightarrow q, p \vdash q, p \Rightarrow q$?

Задача 2. Ако тази задача е под номер 3, вярно ли е, че \oplus е символът за конюнкция?

Задача 3. Докажете чрез еквивалентни преобразувания закона за поглъщане: $p \lor (p \land q) \equiv p \equiv p \land (p \lor q)$

Задача 4. Докажете чрез еквивалетни преобразувания следните:

- $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
- $p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q)$

$$\bullet \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Дефиниция 2.1. Множество от логически операции наричаме функционално затворено/завършено, ако за всяко съждение съществува еквивалетно съждение, съставено само чрез логическите променливи и константи, и въпросните операции. Т.е. всяко съждение можде да се запише, ползвайки само тези операции

Задача 5. Докажете, че множеството от логическите операции ¬, ∨, ∧ е функционално затворено

Задача 6. Докажете, че множеството от логическите операции \neg , \lor е функционално затворено. А какво може да се каже за това от операциите \neg , \land ?

Задача 7 (Семестриално КН 21). Използвайки еквивалентни преобразувания, докажете следните еквивалентности:

- $(p \to q) \land (p \to r) \equiv p \to (q \land r)$
- $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
- $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
- $(p \to r) \lor (q \to r) \equiv (p \land q) \to r \equiv p \to (q \to r)$

Задача 8. Колко предиката ще ползваме, ако разглеждаме твърдението "Ботев и Вазов са поети" на езика на предикатната логика?

Решение. Един, идеята е да разбрем, че тук предикатът е "... е поет", а просто обектите са два. В крайна сметка, ако домейнът са хората и предикатът P(X) е "X е поет", то твърдението ще придобие вида $P(x) \wedge P(y)$, или в конкретния случай $P(\text{Ботев}) \wedge P(\text{Вазов})$

Задача 9. Нека P(x, y), Q(x) са предикати над някакъв домейн. Докажете или опровергайте:

- $\neg \exists x : Q(x) \equiv \forall x : \neg Q(x)$
- $\neg \forall x : Q(x) \equiv \exists x : \neg Q(x)$
- $\forall x \forall y : P(x,y) \equiv \forall x \forall y : P(y,x)$
- $\exists x \exists y : P(x,y) \equiv \exists x \exists y : P(y,x)$
- $\forall x \exists y : P(x,y) \vdash \exists x \forall y : P(x,y)$
- $\exists x \forall y : P(x,y) \vdash \forall x \exists y : P(x,y)$

Задача 10. Ако P(x), Q(x) са предикати над някакъв домейн, да се докаже, че:

- $\forall x (P(x) \land Q(x)) \equiv \forall x (P(x)) \land \forall x (Q(x))$
- $\exists x (P(x) \lor Q(x)) \equiv \exists x (P(x)) \lor \exists x (Q(x))$

Забележка. Тоест универсалният квантор има дистрибутивно свойство спрямо конюнкцията, а екзистенциалният спрямо дизюнкцията

Решение. Ще разгледаме само първото. Ако a_1, \dots, a_n са обектите от домейна, то от свойство 1.2 $\forall x (P(x) \land Q(x)) \equiv (P(a_1) \land Q(a_1)) \land \dots \land (P(a_n) \land Q(a_n))$, от асоциативността и комутативността на конюнкцията:

$$(P(a_1) \wedge Q(a_1)) \wedge \cdots \wedge (P(a_n) \wedge Q(a_n)) \equiv (P(a_1) \wedge \cdots \wedge P(a_n)) \wedge (Q(a_1) \wedge \cdots \wedge Q(a_n)) \equiv \forall x (P(x)) \wedge \forall x (Q(x)) \quad \Box$$

Задача 11. Нека P(x, y), Q(x, y), R(x, y) са предикати над някакъв домейн. Напишете отрицанието на следните твърдения така, че знакът за отрицание да не се среща вляво от кванторите

- $\forall x \exists y ((P(x,y) \land Q(x,y)) \rightarrow R(x,y))$
- $\exists x \forall y (P(x,y) \rightarrow (P(x,y) \lor Q(x,y)))$

3 Задачи за подготовка

Задача 12 (Семестриално И 24). Ако p, q, r, s, t, x, y и z са съждения, докажете, че изразът: $(p \to q) \lor (((p \land t) \lor (q \land x) \lor (r \land y)) \to ((t \to y) \to z) \to p) \lor (q \to r)$ е тавтология

Задача 13 (Семестриално КН 22). Докажете или опровергайте (само чрез еквивалентни преобразувания), че изразът $(\neg p \land (p \lor q) \rightarrow q) \rightarrow r$ е тавтология

Задача 14 (Семестриално И 21). Нека р, q и г са произволни съждения. Докажете чрез еквивалентни преобразувания, че:

- $(p \land q) \lor (p \land q \land r) \equiv p \land q$
- $(p \lor q) \land (p \lor q \lor r) \equiv p \lor q$

Задача 15 (Семестриално И 23). Докажете с табличен метод и с еквивалентни преобразувания, че следните са еквивалентни:

$$A = \neg((p \to q) \land (\neg(p \to r) \lor (\neg q \land \neg r)))$$

$$B = (\neg p \land q) \lor (p \land \neg q) \lor r$$

Задача 16 (Семестриално КН 16). Вярно ли е, че:

- от $\forall x(P(x)) \vee \forall x(Q(x))$ следва $\forall x(P(x) \vee Q(x))$
- ullet от $\forall x(P(x) \lor Q(x))$ следва $\forall x(P(x)) \lor \forall x(Q(x))$

Задача 17. Нека P(x,y) е предикатът " $x^2 + y^2 > 2xy$ ". Вярно ли е, че:

- Р(-1,2), ако домейнът са всички цели числа
- $\exists x \in \mathbb{N} \exists y \in \mathbb{N} : P(x, y)$
- $\forall x \in \mathbb{R} \exists y \in \mathbb{N} : P(x, y)$
- $\forall x \in \mathbb{R}^+ \forall y \in \mathbb{R}^- : P(x,y)$
- $\forall x$ четно $\exists y$ нечетно: $\neg P(x,y)$
- $\exists x$ четно $\forall y$ нечетно: P(x,y)
- $\forall x \in \mathbb{R} \forall y \in \mathbb{R}, y > x : P(x, y)$
- $\forall x \in \mathbb{R} \exists y \in \mathbb{N} : \neg P(x, y)$
- $\exists x \in \mathbb{R} \exists y \in \mathbb{R}, y \neq x : \neg P(x, y)$
- $\neg \exists x \in \mathbb{R}, \forall y \in \mathbb{Q} : P(x, y)$

Решение. Задачата става лесна, след като направим наблюдението, че $x^2 + y^2 > 2xy$ е същото като $(x-y)^2 > 0$, което се случва тогава и само тогава, когато $x \neq y$ (*при реални числа). Ето защо:

- да
- да, достатъчно е $x \neq y$
- да, достатъчно е $x \neq y$
- ullet да, защото тук винаги $x \neq y$
- \bullet не; уточнихме, че знакът винаги е > (или =), равенство получаваме само при х=у, което е невзъможно, когато са с различна четност
- да, всъщност, което и да е четно върши работа
- \bullet да, защото тук винаги $x \neq y$
- не, ако х не е естествено, няма как да изберем у=х, така че да "счупим" неравенството
- не, в началото уточнихме защо

• не; ако вземем произволно иррационално число x (т.е. $x \notin \mathbb{Q}$), например $x = \pi$, за кое да е у рационално, $x \neq y$, а оттук и $(x - y)^2 > 0$

Задача 18. Обяснете защо е същото дали ще имаме извод с предпоставки $p_1, ... p_n$ и следствие q, или извод с единствена предпоставка $(p_1 \wedge ... \wedge p_n)$ и следствие q. Тоест $\frac{p_1 \ ... \ p_n}{\therefore q}$ е същото като $\frac{(p_1 \wedge ... \wedge p_n)}{\therefore q}$

Задача 19 (#бонус). Да се докаже, че изводът с предпоставки $p_1,...,p_n$ и следствие $q\to r$ е валиден, ако изводът с предпоставки $p_1,...,p_n,q$ и следствие r е валиден

Решение. Ще покажем два начина (всъщност начинът е един, но формализирането на решението изглежда различно):

1 H.

Искаме да покажем, че $\frac{p_1 \cdots p_n}{\therefore q \to r}$. По условие имаме, че: $\frac{p_1 \cdots p_n - q}{\therefore r}$, което според *дефиниция* 1.9 е същото като $(p_1 \wedge \cdots \wedge p_n \wedge q) \to r \equiv T$ (*) (т.е. е тавтология) . От (*):

$$(p_1 \wedge \dots \wedge p_n \wedge q) \rightarrow r \equiv \\ \neg (p_1 \wedge \dots \wedge p_n \wedge q) \vee r \equiv \\ (\neg (p_1 \wedge \dots \wedge p_n) \vee \neg q) \vee r \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee \neg q \vee r \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (q \rightarrow r) \equiv \\ (p_1 \wedge \dots \wedge p_n) \rightarrow (q \rightarrow r)$$

Сега според дефиницията за извод (1.9) $(p_1 \wedge \cdots \wedge p_n) \to (q \to r) \equiv T$ ни носи $\frac{p_1 \cdots p_n}{\therefore q \to r}$, което и искаме. \square

2 н.)

Тъй като искаме да покажем, че изводът с предпоставки $p_1,...,p_n$ и следствие $q \to r$ е валиден, то можем да използваме даденото по условие, а именно втория извод (този с предпоставки $p_1,...,p_n,q$ и следствие r), за който знаем е валиден, като предпоставка за първия. Тоест искаме:

$$p_1 \wedge \cdots \wedge p_n /= p/$$
 $(p_1 \wedge \cdots \wedge p_n \wedge q) \to r$ /втория извод ползваме като предпоставка/ \vdots $q \to r$

 $\it Забележка.$ За олекотавяне на записа можем да считаме, че $p_1 \wedge \cdots \wedge p_n$ е една голяма предпоставка $\equiv p$

- 1. $p \wedge q \rightarrow r \equiv \neg p \vee \neg q \vee r$ /свойство на импликацията/
- 2. $\neg p \lor \neg q \lor r \equiv \neg p \lor \neg (q \lor r) / \text{асоциативност на дизюнкцията} /$
- 3. р (предпоставка)
- 4. $\neg (q \lor r)$ /от 2., 3. и дизюнктивен силогизъм/
- 5. $\neg (q \lor r) \equiv q \to r$ /свойство на импликацията/ \square