Hashing

### Plan

- "Classical" hashing
  - hashing by chaining
  - hashing by open addressing
- Universal hashing
- Perfect hashing (quick review)
- Cuckoo hashing
- Bloom filters
- Locality-sensitive hashing

### Example 1: path finding

- Assume you want to implement A\* shortest path search on a graph of 1000 nodes. You can allocate an array of size 1000 to store distances
- What about search on Rubik's cube graph (order of  $10^6$  for  $2\times2\times2$  cube,  $10^{19}$  for  $3\times3\times3$  cube)?

### Example 2: data bases

Maintain a set of employees (students, messenger users, ...), each identified by a social security number (student ID, phone number, ...)

### Example 3: deduplication

In a programming language compiler, how to store userdeclared identifiers?

 Construct an index of a book with all terms pointing to their first occurrence in the book

### Hash tables: suppored operations

- A generalization of arrays ("direct addressing")
- Goal: maintain a (possibly evolving) set of objects belonging to a large "universe" (e.g. configurations, ID numbers, words, etc.)
- Applications: deduplication, indexing, path finding, file integrity test (checksum), etc.

### Hash tables: suppored operations

- A generalization of arrays ("direct addressing")
- Goal: maintain a (possibly evolving) set of objects belonging to a large "universe" (e.g. configurations, ID numbers, words, etc.)
- Applications: deduplication, indexing, path finding, file integrity test (checksum), etc.
- ▶ INSERT: add a new object
- DELETE: delete existing object
- ▶ LOOKUP: check for an object

possibly specified by a *key* "associative array"

"Dictionary" data structure

### Naive solutions

- Bit array (bitmap)
  - still too big for huge applications
  - does not support access to objects
  - ▶ BUT ... (cf Bloom filters at the end of this lecture)

#### Linked list

look-up too slow

#### Search trees

better but still slow and memory demanding

### Hash tables

#### Notation

- V: universe of all possible keys (Ex: strings, IP addresses, game configurations, ...)
- ightharpoonup K: subset of keys (actually stored in the dictionary),  $|K| \ll |U|$
- |K| = n
- Use a table of size proportional to |K|: hash table
  - we lose the direct-addressing ability
  - hash function maps keys to entries of the hash table (buckets or slots)



### Hash functions

▶ Hash function h: Mapping from U to the slots of a hash table T[0..m-1].

$$h: U \to \{0,1,...,m-1\}$$



- With direct addressing, key k maps to slot A[k]
- With hash tables, key k maps or "hashes" to bucket T[h[k]]
- $\blacktriangleright h[k]$  is the hash value (or simpy hash) of key k

### Hashing and collisions



### Collisions: birthday "paradox"

What is the probability that two people from this class (100 students) have their birthday the same day?

# Collisions: birthday "paradox"

- What is the probability that two people from this class (100 students) have their birthday the same day?
- ▶ Answer: ≈0.9999997

- Birthday paradox: in a group of 23 people, there is about 50% chance that two people have the same bithday
- ▶ 40 people: 89%, 60 people: 99.4%
- Conclusion: collisions are frequent

### I. Collision Resolution by Chaining



# Collision Resolution by Chaining



# Hashing with chaining

- ▶ INSERT(T.k): O(1)
- ▶ DELETE(T.k), LOOKUP(k):  $O(list\ length)$
- $\Rightarrow$  a good hash function should distribute keys into buckets as uniformly as possible
- random hashing  $\Rightarrow$  expected list length is  $\alpha = n/m$  (load factor)
- the average time of DELETE and LOOKUP is  $O(1 + \alpha)$  $\Rightarrow O(1)$  if n = O(m) (practical case)

### Good hash functions

- Hash function should be easy to compute
- Designing good hash functions is tricky. It is easy to design a bad hash function
- **Examples:** Phone numbers. Benford's law (e.g. prices, population sizes, ...)
- Keys are usually considered as natural numbers
- **Example:** Interpret a character string as an integer expressed in some radix notation. Suppose the string is CLRS:
  - ▶ ASCII values: C=67, L=76, R=82, S=83.
  - ▶ There are 128 basic ASCII values.
  - So, CLRS =  $67 \cdot 128^3 + 76 \cdot 128^2 + 82 \cdot 128^1 + 83 \cdot 128^0 = 141,764,947$

### Division Method

Map a key k into one of the m slots by taking the remainder of k divided by m. That is,

$$h(k) = k \mod m$$

- Example: m = 31 and  $k = 78 \Rightarrow h(k) = 16$
- Advantage: Fast, since requires just one division operation
- $\blacktriangleright$  Disadvantage: Have to avoid certain values of m.
  - Don't pick certain values, such as  $m=2^p$  (as the hash won't depend on all bits of k)
- ▶ Good choice for *m*:
  - Primes, not too close to power of 2 (or 10) are good.

### Multiplication Method

- If 0 < A < 1,  $h(k) = \lfloor m (kA \mod 1) \rfloor = \lfloor m(kA \lfloor kA \rfloor) \rfloor$  where  $(kA \mod 1) = kA \lfloor kA \rfloor$ : the fractional part of kA
- Disadvantage: Slower than the division method.
- ▶ Advantage: Value of *m* is not critical.
  - Typically chosen as a power of 2, i.e.,  $m=2^p$ , which makes the implementation easy
- Example: m = 1000, k = 123, A = 0.6180339887...  $h(k) = \lfloor 1000(123 \cdot 0.6180339887 \ mod \ 1) \rfloor = \lfloor 1000 \cdot 0.018169... \rfloor = 18$

### II. Collision Resolution by Open Addressing

- All elements are stored in the hash table itself
- $\rightarrow n \leq m$ , no pointers
- ▶ hash function h(k, i) where i = 0, 1, 2, ..., m 1, and < h(k, 0), h(k, 1), ..., h(k, m 1) > is a permutation
- when inserting/looking up k, probe h(k,0), h(k,1), ... (probe sequence) until
  - $\blacktriangleright$  we find k, or
  - the bucket contains nil, or
  - b m buckets have been unsuccessfully probed
- deletion is complicated, needs a special key "deleted", time may not be dependent on the load factor

# Open Addressing: Linear probing

- The colliding item is placed in a different cell of the table
- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell  $h(k,i) = (h'(k) + i) \mod m$
- Each table cell inspected is referred to as a "probe"
- Colliding items clump together, causing future collisions to cause a longer sequence of probes

- **Example:** 
  - $h'(k) = k \mod 13$
  - Insert keys18, 41, 22, 44, 59, 32, 31, 73,in this order



### Example (cont.)

$$h'(k) = k \mod 13$$



# Quadratic probing

 $h(k,j) = (h'(k) + c_1 \cdot j + c_2 \cdot j^2) \mod m$ 

- for example,  $h(k,j) = (h'(k) + \frac{1}{2} \cdot j + \frac{1}{2} \cdot j^2) \mod m$ •  $h(k,0), h(k,1), \dots, h(k,m-1)$  is a permutation if m is a power of 2
- quadratic probing works better than linear probing (less clumping)

# Double Hashing

Double hashing uses a secondary hash function d(k) and handles collisions by placing an item in the first available cell of the series

$$h(k,j) = (h(k) + jd(k)) \mod m$$
  
for  $j = 0,1,...,m-1$ 

- The secondary hash function d(k) cannot have zero values
- m should be relatively prime to d(k), e.g.  $m = 2^q$  and d(k) odd, or m is prime and d(k) < m
- Double hashing is usually more efficient than linear and quadratic probing

# Example of Double Hashing

 Consider a hash table storing integer keys that handles collision with double hashing

$$m = 13$$

- $h(k) = k \bmod 13$
- $d(k) = 7 k \mod 7$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

| k                                      | h(k) | d(k) | Pro | bes |   |
|----------------------------------------|------|------|-----|-----|---|
| 18                                     | 5    | 3    | 5   |     |   |
| 41                                     | 2    | 1    | 9   |     |   |
| 22                                     | 9    | 6    | 9   |     |   |
| 44                                     | 5    | 5    | 5   | 10  |   |
| 59                                     | 7    | 4    | 7   |     |   |
| 32                                     | 6    | 3    | 6   |     |   |
| 18<br>41<br>22<br>44<br>59<br>32<br>31 | 5    | 4    | 5   | 9   | 0 |
| 73                                     | 8    | 4    | 8   |     |   |



# Performance of Open Addressing

Assuming that < h(k,0), h(k,1), ..., h(k,m-1) > is a random permutation (uniformly drawn), the expected number of probes in an insertion (or unsuccessful search) with open addressing is

$$1/(1-\alpha)$$
,

where  $\alpha = n/m$  the load factor

#### **Explanation:**

let 
$$p_i = P[i \text{ first buckets are full}] = \alpha^i \quad (p_0 = 0)$$

$$E[\text{number of probes}] = 1 + \sum_{i=1..m-1} i \cdot P[i \text{ full buckets followed by an empty one}] = 1 + \sum_{i=1..m-1} i \cdot (p_{i-1} - p_i) = 1 + \sum_{i=1..m-1} p_i \approx 1 + \alpha + \alpha^2 + \alpha^3 + \dots = 1/(1-\alpha)$$

### Performance of Open Addressing

Assuming that < h(k,0), h(k,1), ..., h(k,m-1) > is a random permutation (uniformly drawn), the expected number of probes in an insertion (or unsuccessful search) with open addressing is

$$1/(1-\alpha)$$
,

where  $\alpha = n/m$  the load factor

The expected number of probes for a successful search is  $(1/\alpha) \log(1/(1-\alpha))$ 

### Historical remarks







Hashing by open addressing: Analysed by Donald Knuth in 1962 (invention attributed to Andrei Ershov)

### Hashing: some conclusions

- Chaining:
  - easy implementation
  - fast in practice
  - uses more memory
- Open addressing:
  - uses less memory
  - more complex removals
- Implemented in standard libraries, e.g. std::unordered map in C++

# Linear probing vs Double hashing

#### comparison of average number of operations



successful search



unsuccessful search

### Exercise

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length m=11 using open addressing with the primary hash function  $h'(k)=k \mod m$ . Illustrate the result of inserting these keys using linear probing, using quadratic probing with  $c_1=1$  and  $c_2=3$ , and using double hashing with  $h_2(k)=1+(k \mod (m-1))$ .