

카드사이탈고객예측머신러닝모델링

2조_김희진/김용호/문세웅/박민지/안영훈/안성준/

- 1.프로젝트 배경
- 2.팀 구성 및 역할
- 3.수행 절차 및 방법
- 4.결론 및 향후 과제
- 5.느낀점

01. 프로젝트 배경

1.프로젝트 주제

카드사 이탈 고객 예측을 위한 머신러닝 모델링

2.프로젝트 개요

- 카드 회사들은 고객 유치를 위해 많은 프로모션을 진행
- 새로운 고객을 유치하는 것보다 기존 고객을 유지하는 것이 경제적 효과큼
- 기존 고객의 이탈 여부를 사전에 예측 가능한 모델 구축

카드사 실질회원 2%p 감소...휴면카드 1200만장 돌파

58%)의 경우 오히려 실질**회원** 비중이 커졌다. 휴면**신용카**드 수 증가 규모로도 하나**카**드 18만2000장(22.6... 한편 신규 체크**카**드 발급 수도 올해 2분기 중 1조749...

01. 프로젝트 배경

3.프로젝트 구조

출처 : Kaggle

데이터 수집

- Numpy 및 Pandas
- Seaborn 및 matplotlib
- sklearn

데이터 처리 및 분석

<u>Git 프로젝트 저장소</u>

머신러

02. 팀 구성 및 역할

1.팀 구성 및 역할

김희진(팀장)

- 데이터 수집
- 스케일링 / 전처리 함수화

김용호

- 지도학습 모델링
- ppt 디자인

문세응

- 수치형 변수 전처리
- 상관관계 도출

박민지

- 범주형 변수 전처리
- 시각화

안성준

- 통계 분석
- 깃 헙 협업 관리

안영훈

- 발표
- 하이퍼 파라미터 튜닝 및 성능 향상

1. 데이터 정보

데이터 정보

- ~'CLIENTNUM' : 고객 식별 번호~
- 'Attrition_Flag' : 신용 카드 이탈 여부 Target 값
 - Existing Customer : 잔류
 - Attrited Customer : 이탈
- 'Customer_Age' : 고객 나이
- 'Gender' : 성별
- 'Dependent_count' : 부양 가족 수
- 'Education_Level' : 학력 수준
- 'Marital_Status' : 결혼 여부
- 'Income_Category' : 연 소득 구간
- 'Card_Category' : 카드 등급
- 'Months_on_book' : 카드 할부 기간
- 'Total_Relationship_Count' : 가입 상품 수
- 'Months_Inactive_12_mon': 1년 동안 카드 결재 내역이 없는 비활성 기간(개월)
- 'Contacts_Count_12_mon' : 연락 빈도
- 'Credit_Limit' : 신용 한도
- 'Total_Revolving_Bal' : 할부 잔액
- ~'Avg_Open_To_Buy' : 평균 실 사용 가능 금액 : 'Credit_Limit' 'Total_Revolving_Bal'~
- ~'Total_Amt_Chng_Q4_Q1'~: 결제 대금 기준 1분기 대비 4분기 (비율)
- ~'Total_Trans_Amt'~: 실제 사용 총액
- 'Total_Trans_Ct' : 실제 사용 횟수
- 'Total_Ct_Chng_Q4_Q1': 1분기 대비 4분기 결제 대금 횟수 비율
- ~'Avg_Utilization_Ratio' : 'Total_Revolving_Bal'/ 'Credit_Limit' (할부 비율)~

2. 결측치 확인

결측치 확인

- isnull().sum() 코드에서는 결측치가 존재하지 않는 것을 확인
- 각각의 피처를 분석해서 결측치 존재 여부 확인 필요

결측치 존재 X (각 피쳐마다 추가적인 정보 확인 필요) df.isnull().sum()

CLIENTNUM	0	
Attrition_Flag	0	
Customer_Age	0	
Gender	0	
Dependent_count	0	
Education_Level	0	
Marital_Status	0	
Income_Category	0	
Card_Category	0	
Months_on_book	0	
Total_Relationship_Count	0	
Months_Inactive_12_mon	0	
Contacts_Count_12_mon	0	
Credit_Limit	0	
Total_Revolving_Bal	0	
Avg_Open_To_Buy	0	
Total_Amt_Chng_Q4_Q1	0	
Total_Trans_Amt	0	
Total_Trans_Ct	0	
Total_Ct_Chng_Q4_Q1	0	
Avg_Utilization_Ratio	0	
dtype: int64		

3. 타겟 데이터 라벨 인코딩

레이블 인코딩

"Existing Cumstomer" : 0 (카드 잔존)"Attrited Customer" : 1 (카드 탈퇴)

주의하여 관측해아할 것이 "탈퇴"여부이기 때문에 탈퇴를 1, 잔존을 0으로 하여 인코딩

4. Unknown 값 결측치 처리

```
In [57]: df["Education Level"].replace({"Unknown":np.nan,
                                          "Graduate":0,
                                          "Post-Graduate":1,
                                          "Uneducated":2,
                                          "College":3,
                                          "Doctorate":4,
                                          "High School":5,
                                           },inplace=True)
In [58]: df["Marital Status"].replace({"Unknown":np.nan,
                                          "Married":0,
                                          "Single":1,
                                          "Divorced":2,
                                           },inplace=True)
In [59]: df["Income Category"].replace({"Unknown":np.nan,
                                          "Less than $40K":0,
                                          "$40K - $60K":1,
                                          "$60K - $80K":2,
                                          "$80K - $120K":3,
                                          "$120K +":4,
                                           },inplace=True)
```

"Unknown"에 대한 처리 방법은

- 1. "Unknown"도 하나의 category로 해석
- 2. "Unknown"값이 있는 행을 삭제하거나, 칼럼 자체(피처)를 삭제
- 3. 모델링을 활용하여 대체
- 4. 최빈값으로 대체

여러 가지 시도후 최적화된 값 구하기

5. 결측치로 처리된 Unknown을 최빈값으로 대체

6. 수치형 변수 간 상관관계 파악 (1) 히트맵

```
plt.subplots(figsize=(20,9))
plt.tick_params(axis='x',labelcolor='white')
plt.tick_params(axis='y',labelcolor='white')
sns.heatmap(df[Numerics].corr(),annot = True )
```

<AxesSubplot:>

1) Month_on_book과 Customer_Age

상관계수는 0.79로 높지만, 삭제 X 각각의 피처 할부기간, 고객 나이를 의미 도메인 관점에서 분석하면 각각의 상관관계가 없기때문에 삭제하지 않음

2) 같은 변수에서 파생된 변수 들은 상관관계 낮더라도 drop

- 1. 'Avg_Open_To_Buy' = 'Credit_Limit' 'Total_Revolving_Bal'
- 2. 'Avg_Utilization_Ratio' = 'Total_Revolving_Bal'/ 'Credit_Limit'
- 3. Total_Trans_Amt와 Total_Trans_Ct

6. 수치형 변수 간 상관관계 파악 (2) 파생변수와 타겟 변수간의 상관관계

타겟 변수인 Attrition_Flag(범주형)과 수치형 피처 변수들의 상관관계를 파악

●범주형 - 수치형 상관계수를 파악하기 위해 pointbiserialr 사용

```
from scipy.stats import pointbiserialr
   features = ['Avg_Open_To_Buy', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Utilization_Ratio', 'Total_T
   print("Attrition_Flag를 기준으로 상관관계 분석")
   print('----
   print('')
   for feature in features:
       target_feature_corr, target_feature_pvalue = pointbiserialr(df['Attrition_Flag'], df[feature])
       print(feature, "와 Attrition_Flag의")
       print('상관관계 : {0:.4f}'.format(target_feature_corr))
       print('P-value : {0:.8f}'.format(target_feature_pvalue))
       print('')
   Attrition_Flag를 기준으로 상관관계 분석
   Avg_Open_To_Buy 와 Attrition_Flag의
   상관관계 : -0.0003
   P-value : 0.97711609
   Credit_Limit 와 Attrition_Flag의
   상관관계 : -0.0239
   P-value: 0.01628536
   Total Revolving Bal 와 Attrition_Flag의
   사과과게 • _0 7621
```

6. 수치형 변수 간 상관관계 파악 (3) 타겟과의 상관도가 낮은 피처는 drop

7. 편향된 피처 데이터 로그 변환

편향이 심한 Credit_Limit은 로그 변환을 해주도록한다. df["Credit_Limit"]=np.log1p(df["Credit_Limit"])

8. Standard Scaling

수치형 변수를 표준화 스케일링을 진행

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

for numeric in ['Customer_Age','Credit_Limit','Total_Revolving_Bal','Total_Ct_Chng_Q4_Q1','Total_Trans_Ct']:
    df[numeric] = scaler.fit_transform(df[numeric].values.reshape(-1,1))
```

수치형 데이터 표준화 확인 df[Numerics]

Customer_Age	Dependent_count	Months_on_book	Total_Relationship_Count	Months_Inactive_12_mon	Contacts_Count_12_mon	Credit_Limit	Total_Revo
-0.165406	3.0	39.0	5.0	1.0	3.0	0.905210	-0.473422
0.333570	5.0	44.0	6.0	1.0	2.0	0.444695	-0.366667
0.583058	3.0	36.0	4.0	1.0	0.0	-0.499786	-1.426858
-0.789126	4.0	34.0	3.0	4.0	1.0	-0.533199	1.661686
-0.789126	3.0	21.0	5.0	1.0	0.0	-0.155051	-1.426858
0.458314	2.0	40.0	3.0	2.0	3.0	-0.330596	0.844455
-0.664382	2.0	25.0	4.0	2.0	3.0	-0.259693	1.255524
-0.290150	1.0	36.0	5.0	3.0	4.0	-0.008217	-1.426858
-2.036565	2.0	36.0	4.0	3.0	3.0	-0.033865	-1.426858
-0.414894	2.0	25.0	6.0	2.0	4.0	0.690732	0.979433

8. 전처리 과정을 함수화

피처엔지니어링 함수화

```
# Unknown을 결측치로 처리 함수
def Unknown to nan(df):
   df.replace({"Unknown": np.nan},inplace=True) # 데이터 전체에 존재하는 "Unknown"을 결측치로 처리
# 레이블 인코딩 수행 함수
def format features(df):
    from sklearn.preprocessing import LabelEncoder
    features=['Education Level','Income Category','Card Category','Marital Status','Gender']
    for feature in features:
           le = LabelEncoder()
           le = le.fit(df[feature])
           df[feature] = le.transform(df[feature])
    return df
# # Unknown도 무응답으로 인지 후 더미화
# def format features(df):
     features=['Education_Level','Income_Category','Card_Category','Marital_Status','Gender']
     for feature in features:
         feature OH = pd.get dummies(df[feature])
         df = pd.concat([df, feature OH], axis=1)
         df.drop(feature,axis=1,inplace=True)
     return df
# 결측치를 대표값으로 대체하는 함수
def fill(df):
    # 대표값 이용 결측치 대체 모듈
    from sklearn.impute import SimpleImputer
    # 각 데이터에 사용할 인스턴스 생성
    SI_mode =SimpleImputer(strategy = 'most_frequent') # 대표값 중 최빈값으로 결측치를 대체해준다.
   SI_mode.fit(df)
    df = pd.DataFrame(SI mode.transform(df),
                          columns = df.columns)
    return df
# 데이타 타입을 수치형으로 바꿔주는 함수
def toNumerics(df):
    df[Numerics]=df[Numerics].astype("float")
    df[Labels]=df[Labels].astype("int")
    df[Orders]=df[Orders].astype("int")
    df["Attrition_Flag"]=df["Attrition_Flag"].astype("int")
    return df
```

```
# 머신러닝 알고리즘에 불필요한 속성 제거
def drop_features(df):
   df.drop(["CLIENTNUM", # 식별자 삭제
        "Avg Open To Buy",
         "Avg Utilization Ratio",
         "Total Trans Amt",
         "Total_Amt_Chng_Q4_Q1"], axis=1,inplace=True)
   return df
# 로그변화 항수
def log transformation(df):
  df["Credit Limit"]=np.log1p(df["Credit_Limit"])
  return df
# 수치형 변수 표준화 스케일링
def Standared scaling(df):
    from sklearn.preprocessing import StandardScaler
   scaler = StandardScaler()
   for numeric in ['Customer Age', 'Credit Limit', 'Total Revolving Bal', 'Total Ct Chng Q4 Q1', 'Total Trans Ct']:
       df[numeric] = scaler.fit transform(df[numeric].values.reshape(-1,1))
# 전처리 함수 호출
def transform features(df):
   #df = Unknown to nan(df)
   df = format features(df)
   df = fill(df)
   df = toNumerics(df)
   df = drop_features(df)
   df = log transformation(df)
   df = Standared scaling(df)
   return df
```

향후 입력되는 데이터를 바로 전처리 할 수 있도록 전처리 과정을 하나의 함수화

10. 모델링 (1) Score

```
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recal
from sklearn.metrics import roc auc score
# 수정된 get clf eval() 함수
def get clf eval(y test, pred=None, pred proba=None):
   confusion = confusion matrix(y test, pred)
   accuracy = accuracy score(y test , pred)
   precision = precision score(y test, pred)
   recall = recall score(y test, pred)
   f1 = f1 score(y test,pred)
     # ROC-AUC 추가
    roc auc = roc auc score(y test, pred proba)
   print('오차 행렬')
   print(confusion)
   # ROC-AUC print 추가
   print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현율: {2:.4f},\
    F1: {3:.4f}'.format(accuracy, precision, recall, f1)) #, roc auc))
```

```
# 테스트를 수행할 모든 임곗값을 리스트 객체로 저장.

thresholds = [0.05,0.11,0.2,0.3, 0.4, 0.45, 0.50, 0.55, 0.60]

def get_eval_by_threshold(y_test , pred_proba_c1, thresholds):
# thresholds list객체내의 값을 차례로 iteration하면서 Evaluation 수행.

for custom_threshold in thresholds:
    binarizer = Binarizer(threshold=custom_threshold).fit(pred_proba_c1)
    custom_predict = binarizer.transform(pred_proba_c1)
    print('\n임곗값:',custom_threshold)
    get_clf_eval(y_test , custom_predict)
```

get_clf_eval 함수

모델의 성능 (정확도, 재현율, 정밀도, F1)을 측정할 함수를 미리설정

성능 측정 지표 설정 기준

(1) 정확도 신뢰 불가

우리가 선택한 데이터는 타겟 비율이 85:15 정도로 편향이 있어서 정확도는 높게 나올수 밖에 없는 데이터라 정확도는 신뢰할 수 없기 때문에 정확도 보다는 재현율과 정밀도를 관찰하였다.

(1) 정밀도 0.75 유지 & 재현율을 높이는 방향

잔존고객을 이탈고객으로 판단하였을 경우에는 손실이 없으나, 이탈고객(양성)을 잔존(음성)으로 잘못 판단하였을 경우에는 손실이 크기 때문에, 재현율을 중점으로 관측하였다. 정밀도가 0.75이상이면서도 재현율의 성능을 높이기 위해 하이퍼 파라미터를 조정하였다.

10. 모델링 (1) 기본 모델 성능

	정확도	재현율	정밀도
DecisionTreeClassifier	0.8890	0.6591	0.6413
RandomForestClassifier	0.9246	0.8750	0.6192
LogisticRegression	0.8965	0.7736	0.5037
KNeighborsClassifier	0.8894	0.8159	0.4029
LGBMClassifier	0.9293	0.8393	0.6929
XGBClassifier	0.9273	0.8369	0.6806
SVC	0.8867	0.8659	0.3489

10. 모델링 (2) 업샘플링 (smote)

Smote (업샘플링)

```
smote = SMOTE(random_state=11)
X_train_over, y_train_over = smote.fit_resample(X_train, y_train)
print('SMOTE 적용 전 학습용 피처/레이블 데이터 세트', X_train.shape, y_train.shape)
print('SMOTE 적용 전 학습용 피처/레이블 데이터 세트', X_train_over.shape, y_train_over.shape)
```

SMOTE 적용 전 학습용 피처/레이블 데이터 세트 (7595, 15) (7595, 1) SMOTE 적용 전 학습용 피처/레이블 데이터 세트 (12750, 15) (12750, 1)

타겟 변수의 비율이 85:15 로 한쪽으로 치우쳐져 있기 때문에 업샘플링이나 다운샘플링으로 비율을 1:1로 맞춤.

데이터가 만개 정도로 크지 않기 때문에 업샘플링 진행

10. 모델링 (3) 업샘플링후 모델 성능

	정확도	재현율	정밀도
DecisionTreeClassifier	0.8811	0.6152	0.6953
RandomForestClassifier	0.9238	0.7876	0.7199
LogisticRegression	0.8298	0.4810	0.7445
KNeighborsClassifier	0.8096	0.4444	0.7371
LGBMClassifier	0.9261	0.7926	0.7322
XGBClassifier	0.9301	0.8159	0.7297
SVC	0.8377	0.4967	0.7371

10. 모델링 (4) 하이퍼 파라미터 튜닝 (GridSearchCV)

https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html

```
: from sklearn.model_selection import GridSearchCV
      #'min_gain_to_split':[0,1,2,3,4,8,10,12,20],
      'max_depth':[6,8,10,12,16,20,24],
      'num_leaves':[5,10,15,20,25,30,31,35,40,41]
  grid cv = GridSearchCV(lgbm clf, param grid=params, scoring='recall', cv=5, verbose
  grid cv.fit(X train, y train)
  print('GridSearchCV 최고 평균 재현율 수치 : {0:.4f}'.format(grid_cv.best_score_))
  print('GridSearchCV 최적 하이퍼 파라미터 :',grid_cv.best_params_)
 : GridSearchCV(cv=5,
                estimator=XGBClassifier(base score=0.5, booster='gbtree',
                                        colsample bylevel=1, colsample bynode=1,
                                        colsample_bytree=1, gamma=0, gpu_id=-1,
                                        importance_type='gain',
                                        interaction constraints='',
                                        learning_rate=0.300000012,
                                        max_delta_step=0, max_depth=6,
                                        min child weight=1, missing=nan,
                                        monotone_constraints='()',
                                        n_estimators=100, n_jobs=12,
                                        num parallel tree=1, random state=0,
                                        reg_alpha=0, reg_lambda=1,
                                        scale pos weight=1, subsample=1,
                                        tree method='exact', validate parameters=1,
                                        verbosity=None),
                param_grid={'max_depth': [3, 4, 5, 6, 7, 8, 9, 10],
                            'max_leaf_nodes': [2, 4, 8, 16, 32, 64]},
                scoring='recall')
  GridSearchCV 최고 평균 재현율 수치 : 0.9272
  GridSearchCV 최적 하이퍼 파라미터 : {'max_depth': 9, 'max_leaf_nodes': 2}
 : best_xgb_wrapper = grid_cv.best_estimator_
   pred1 = best xgb wrapper.predict(X test)
   pred_probal = best_xgb_wrapper.predict_proba(X_test)[:,1]
   dt_results = get_clf_eval(y_test, pred1, pred_probal)
  [[2048 77]
   [ 110 297]]
  정확도: 0.9261, 정밀도: 0.7941, 재현율: 0.7297,
```

10. 모델링 (5) 하이퍼 파라미터 튜닝 후 성능

	정확도	재현율	정밀도
DecisionTreeClassifier	0.8949	0.6536	0.7371
RandomForestClassifier	0.9250	0.7909	0.7248
LogisticRegression	0.8294	0.4801	0.7420
KNeighborsClassifier	0.8104	0.4458	0.7371
LGBMClassifier	0.9301	0.8125	0.7346
XGBClassifier	0.9261	0.7941	0.7297

10. 모델링 (6) 최종 모델 선택

	정확도	재현율	정밀도
LGBMClassifier	0.9301	0.8125	0.7346

최종적으로 이상적인 정밀도 0.8125 하에서 0.7366의 재현율을 보여준 LightGBM 분류기를 선택

- 1. 업샘플링(smote) 과정과, 하이퍼 파라미터 튜닝 과정을 거치지 않았을 때와 비교하면 조금 성능이 나아 지기는 했지만, 결과적으로 재현율이 0.04 정도 상승했을 뿐 전반적인 성능에는 차이 없음.
- 1. Voting분류기나, XGMClassifier와 비교하였을 때 시간이 덜걸리면서도 비교적 나은 성능을 보여줌

Thank U

데이터 출처

- 프로젝트 GIT 저장소 : https://github.com/Ahn-seongjun/DS_team2 < 데이터 및 코드 >
- KAGGLE: https://www.kaggle.com/sakshigoyal7/credit-card-customers