```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

Podstawowe informacje

Dane poddane analizie pochodzą ze kilku korporacji oraz osób niezwiązanych z projektem. Zbiór został stworzony przez 4 naukowców na potrzeby implementacji systemu filtrującego pocztę mailową.

Głównym celem tworzenia zbioru danych było przewidywanie i klasyfikacja wiadomości email jako spam.

Charakterystyka danych

Liczba instancji - 4601

Liczba atrybutów - 57 - w tym

binarne

liczbowe

Brakujące wartości - 1582


```
In []: money_spam_count = ((df['Column24'] != 0) & (df['Column58'] == 1)).sum()
    no_money_spam_count = ((df['Column24'] == 0) & (df['Column58'] == 1)).sum()
    all_spam = (df['Column58'] == 1).sum()

categories = ['Spam with money', "Spam without money", 'All spam']
    values = [money_spam_count, no_money_spam_count, all_spam]
    plt.figure(figsize=(15, 6))
    plt.bar(categories, values)
    plt.ylabel('Count')
    plt.title('Spam statistics')
    plt.show()
```


Przygotowanie danych

```
In [4]: # Sprawdzamy kompletność danych
    print("Liczba brakujących wartości : ", df.isnull().sum().sum())
    Liczba brakujących wartości : 1582
In [5]: # Usuwamy wiersze zawierające brakujące wartości
    df.fillna(0, inplace=True)
    print("Liczba brakujących wartości : ", df.isnull().sum().sum())
    Liczba brakujących wartości : 0
In []: # Tworzymy mapę korelacji
    import seaborn as sns
    import matplotlib.pyplot as plt
    corr_matrix = df.corr()
```

```
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=False, cmap='coolwarm')
plt.show()

# znajdywanie 10 najlepszych korelacji
corr_last_column = corr_matrix[df.columns[-1]]
top_corr = corr_last_column.sort_values(ascending=False).head(11)
print(top_corr)

top_corr = corr_last_column.sort_values(ascending=True).head(11)
print(top_corr)
```



```
Column7 0.332117
       Column53 0.323629
       Column19 0.273651
        Column16 0.263215
       Column17 0.263204
       Column57 0.249164
        Column5
                 0.241920
        Column52 0.241888
        Name: Column58, dtype: float64
        Column25 -0.256723
       Column26 -0.232968
        Column37 -0.178045
       Column28 -0.158800
       Column35 -0.149225
        Column46 -0.146138
       Column45 -0.140408
        Column42 -0.136615
        Column36 -0.136134
        Column43 -0.135664
        Column29 -0.133523
        Name: Column58, dtype: float64
In [6]: # Osobna kolumna dla wartości do przewidywania
        is_spam_array = df['Column58']
        # Usuwamy wartość do przewidywania
        df = df.drop('Column58', axis=1)
        # Usuwamy kolumny z samymi zerami
        df = df.drop('Column4', axis=1)
        df = df.drop('Column47', axis=1)
```

Podział danych

Column58 1.000000 Column21 0.383234 Column23 0.334787

Ogólnie przyjętą praktyką jest stosowanie proporcji w zakresie 60-80% danych treningowych, 10-20% danych walidacyjnych i 10-20% danych testowych.

W naszym projekcie najlepsze rezultaty otrzymaliśmy przy wyborze:

- 70% dane treningowe
- 15% dane walidujące
- 15% dane testowe

```
In [7]: # Podział zbioru danych na dane treningowe, walidacyjne i testowe w proporcji
# 70%-15%-15%
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

data_train, data_rest, is_spam_train, is_spam_rest = train_test_split(
    df, is_spam_array, test_size=0.3, random_state=43)

data_test, data_validate, is_spam_test, is_spam_validate = train_test_split(
    data_rest, is_spam_rest, test_size=0.5, random_state=43)
```

Pierwsza próba stworzenia sieci

Przy pierwszej próbie tworzenia modelu sieci zdecydowaliśmy się na model 3 - warstwowy z jedną warstwą ukrytą o 16 neuronach. W warstwie ukrytej, jak i wejściowej funkcja aktywacji została ustawiona na "ReLU" która stosowana jest do uczenia się nieliniowych zależności między parametrami.

Trening sieci

Do uczenia naszej sieci wykorzystujemy algorytm optymalizatora "Adam" - łączy on cechy Stochastic Gradient Descent z adaptacyjnym skalowaniem współczynników uczenia się. Model uczy się na przestrzeni 10 epok, w przypadku większej ilości nie było widocznej poprawy dokładności sieci. Argument batch_size wskazuje co ile próbek danych wagi dopasowania są aktualizowane.

```
Epoch 1/10
     0.6112 - val_loss: 0.5637 - val_accuracy: 0.7800
     Epoch 2/10
     0.7891 - val loss: 0.6075 - val accuracy: 0.6990
     Epoch 3/10
     0.8311 - val_loss: 0.3668 - val_accuracy: 0.8726
     Epoch 4/10
     0.8519 - val_loss: 0.3422 - val_accuracy: 0.8813
     Epoch 5/10
     0.8727 - val loss: 0.3162 - val accuracy: 0.8929
     Epoch 6/10
     0.8854 - val_loss: 0.2887 - val_accuracy: 0.8900
     Epoch 7/10
     0.8904 - val_loss: 0.3045 - val_accuracy: 0.8886
     Epoch 8/10
     0.9009 - val_loss: 0.3601 - val_accuracy: 0.8698
     Epoch 9/10
     0.9022 - val_loss: 0.5739 - val_accuracy: 0.8437
     Epoch 10/10
     0.8829 - val_loss: 0.5775 - val_accuracy: 0.7974
In [ ]: import matplotlib.pyplot as plt
     # Wykres straty
     plt.figure(figsize=(12, 6))
     plt.subplot(1, 2, 1)
     plt.plot(fitting_progress.history['loss'], label='Train Loss')
     plt.plot(fitting_progress.history['val_loss'], label='Validation Loss')
     plt.title('Losses')
     plt.xlabel('Epoch')
     plt.ylabel('Loss')
     plt.xticks(range(0, epochs))
     plt.legend()
     # Wykres dokładności
     plt.subplot(1, 2, 2)
     plt.plot(fitting_progress.history['accuracy'], label='Train Accuracy')
     plt.plot(fitting_progress.history['val_accuracy'], label='Validation Accuracy')
     plt.title('Accuracy')
     plt.xlabel('Epoch')
     plt.ylabel('Accuracy')
     plt.xticks(range(0, epochs))
     plt.legend()
     plt.tight_layout()
     plt.show()
```


Jak widać na wykresach powyżej, sieć już w pierwszej wersji dobrze radzi sobie z powierzonym zadaniem, osiągając dokładność na poziomie 0.8829

```
In [ ]: # Przewidywanie prawdopodobieństw
        is_spam_prob = model.predict(data_test)
        22/22 [======== ] - 0s 1ms/step
       from sklearn.metrics import roc_curve, auc
In [ ]:
        # Obliczanie krzywej ROC
        fpr, tpr, thresholds = roc_curve(is_spam_test, is_spam_prob)
        # Obliczanie AUC (Area Under Curve)
        roc_auc = auc(fpr, tpr)
        # Rysowanie krzywej ROC
        plt.figure(figsize=(9, 7))
        plt.plot(fpr, tpr, color='darkorange', lw=2,
                 label='ROC curve (area = %0.2f)' % roc_auc)
        plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.01])
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title('Receiver Operating Characteristic')
        plt.legend(loc="lower right")
        plt.show()
```


Druga próba stworzenia sieci - dostrajanie parametrów

W drugim modelu sieci zdecydowaliśmy się na wariant 3 warstwowy z jedną warstwą ukrytą mającą 50 neuronów. Warstwa wejściowa została zaś rozszerzona do 1000 neuronów. Wybór takich wartości podyktowany był testami, w których najlepsze wyniki osiągaliśmy przy takiej dystrybucji neuronów. Liczba epok została zwiększona do 20, by dać sieci czas na lepszą "naukę" zależności.

```
from keras.models import Sequential
In [ ]:
        from keras.layers import Dense
        # Inicjalizacja modelu
        model = Sequential()
        # Dodanie warstw
        model.add(Dense(1000, input_dim=data_train.shape[1], activation='relu'))
        model.add(Dense(50, activation='relu'))
        model.add(Dense(1, activation='sigmoid'))
        # Kompilacja modelu
        model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
        # Trenowanie modelu
        epochs = 20
        fitting_progress = model.fit(data_train, is_spam_train, epochs=epochs,
                                      batch size=32,
                                      validation_data=(data_validate, is_spam_validate))
```

```
Epoch 1/20
   0.6696 - val_loss: 4.2917 - val_accuracy: 0.6122
   Epoch 2/20
   0.8040 - val loss: 3.5733 - val accuracy: 0.7641
   0.7963 - val_loss: 1.2416 - val_accuracy: 0.7916
   Epoch 4/20
   0.8671 - val_loss: 1.0212 - val_accuracy: 0.8307
   Epoch 5/20
   0.8854 - val loss: 0.4619 - val accuracy: 0.8365
   Epoch 6/20
   0.9009 - val_loss: 0.8579 - val_accuracy: 0.8495
   Epoch 7/20
   0.8519 - val_loss: 0.5519 - val_accuracy: 0.8712
   Epoch 8/20
   0.8876 - val_loss: 2.3336 - val_accuracy: 0.7959
   Epoch 9/20
   0.8581 - val loss: 0.3084 - val accuracy: 0.8958
   Epoch 10/20
   0.8689 - val_loss: 1.7362 - val_accuracy: 0.8177
   Epoch 11/20
   0.8842 - val loss: 0.3596 - val accuracy: 0.8538
   Epoch 12/20
   0.8814 - val_loss: 0.3266 - val_accuracy: 0.8871
   Epoch 13/20
   0.8866 - val_loss: 0.3737 - val_accuracy: 0.8828
   Epoch 14/20
   0.8907 - val loss: 0.4245 - val accuracy: 0.8726
   Epoch 15/20
   0.8975 - val_loss: 0.2547 - val_accuracy: 0.9059
   Epoch 16/20
   0.9171 - val_loss: 0.4192 - val_accuracy: 0.8813
   Epoch 17/20
   0.9043 - val loss: 0.3033 - val accuracy: 0.8987
   Epoch 18/20
   0.9217 - val_loss: 0.3138 - val_accuracy: 0.9030
   Epoch 19/20
   0.9155 - val_loss: 0.2108 - val_accuracy: 0.9276
   Epoch 20/20
   0.8953 - val_loss: 0.2368 - val_accuracy: 0.9175
In [ ]: import matplotlib.pyplot as plt
   # Wykres straty
```

```
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(fitting_progress.history['loss'], label='Train Loss')
plt.plot(fitting_progress.history['val_loss'], label='Validation Loss')
plt.title('Losses')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.xticks(range(0, epochs))
plt.legend()
# Wykres dokładności
plt.subplot(1, 2, 2)
plt.plot(fitting_progress.history['accuracy'], label='Train Accuracy')
plt.plot(fitting_progress.history['val_accuracy'], label='Validation Accuracy')
plt.title('Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.xticks(range(0, epochs))
plt.legend()
plt.tight_layout()
plt.show()
```


Tak jak przy pierwszej wersji sieci, druga sieć osiągneła wysoką dokładność. Zmiany w strukturze modelu miały niewielki wpływ na poprawę wyników, co wynika z silnej korelacji między atrybutami w naszym zbiorze danych

```
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.01])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
```


Jak widać, nasza sieć świetnie kalsyfikuje maile ze spamem jako spam. Dodanie znacznie większej liczby neuronów w warstwach oraz podwojenie liczby iteracji nieznacznie zwiększyło dokładność naszej sieci, która i tak już przy pierwszej próbie odznaczała się bardzo małym błędem.

Wnioski

Nasza sieć spełniła oczekiwania. Bardzo dobrze rozpoznaje maile jako spam na podstawie danych ze zbioru. Ostateczne pole pod krzywą ROC wyniosło 0,98, co jest świetnym wynikiem.