Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 25

Shortest Path Problems

- How can we find the shortest route between two points on a map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

 Goal: find a shortest path between two vertices (cities)

Shortest Path Problems

Input:

- Directed graph G = (V, E)
- Weight function $w : E \rightarrow \mathbf{R}$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$ $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$

Shortest-path weight from u to v:

 $\delta(\mathbf{u}, \mathbf{v}) = \min \left\{ \mathbf{w}(\mathbf{p}) : \mathbf{u} \stackrel{p}{\leadsto} \mathbf{v} \text{ if there exists a path from } \mathbf{u} \text{ to } \mathbf{v} \right\}$

• Shortest path **u** to **v** is any path **p** such that $w(p) = \delta(u, v)$

Variants of Shortest Paths

Single-source shortest path

G = (V, E) ⇒ find a shortest path from a given source vertex
 s to each vertex v ∈ V

Single-destination shortest path

- Find a shortest path to a given destination vertex t from each vertex v
- Reverse the direction of each edge ⇒ single-source

Single-pair shortest path

- Find a shortest path from $\bf u$ to $\bf v$ for given vertices $\bf u$ and $\bf v$
- Still have to solve the single-source problem

All-pairs shortest-paths

– Find a shortest path from ${\bf u}$ to ${\bf v}$ for every pair of vertices ${\bf u}$ and ${\bf v}$

Optimal Substructure of Shortest Paths

Given:

- A weighted, directed graph G = $(V, E) v_1$
- A weight function w: $E \rightarrow \mathbf{R}$,
- A shortest path $p = \langle v_1, v_2, \dots, v_k \rangle$ from v_1 to v_k
- A subpath of p: $p_{ij} = \langle v_i, v_{i+1}, \dots, v_i \rangle$, with $1 \le i \le j \le k$

Then: \mathbf{p}_{ij} is a shortest path from \mathbf{v}_i to \mathbf{v}_j

Proof:
$$p = v_1 \stackrel{p_{1i}}{\smile} v_i \stackrel{p_{ij}}{\smile} v_j \stackrel{p_{jk}}{\smile} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}'$ from v_i to v_j with $w(p_{ij}') < w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}) + w(p_{ij}) + w(p_{ik}) < w(p) contradiction!

Negative-Weight Edges

• $s \rightarrow a$: only one path

$$\delta(s, a) = w(s, a) = 3$$

• $s \rightarrow b$: only one path

$$\delta(s, b) = w(s, a) + w(a, b) = -1$$

s → c: infinitely many paths
 ⟨s, c⟩, ⟨s, c, d, c⟩, ⟨s, c, d, c, d, c⟩

_∞

weight edges?

What if we have negative-

cycle (c, d, c) has positive weight (6 - 3 = 3)

(s, c) is shortest path with weight $\delta(s, b) = w(s, c) = 5$

Negative-Weight Edges

- $s \rightarrow e$: infinitely many paths:
 - (s, e), (s, e, f, e), (s, e, f, e, f, e)
 - cycle (e, f, e) has negative weight:

$$3 + (-6) = -3$$

- can find paths from s to e with
 arbitrarily large negative weights
- $-\delta(s, e) = -\infty \Rightarrow$ no shortest path exists between s and e
- Similarly: δ(s, f) = -∞,

$$\delta(s, g) = -\infty$$

 $\delta(s, h) = \delta(s, i) = \delta(s, j) = \infty$

Negative-Weight Edges

 Negative-weight edges may form negative-weight cycles

• If such cycles are reachable from the source: $\delta(s, v)$ is not properly defined for any node v on the cycle

- Keep going around the cycle, and get $w(s, v) = -\infty$ for all v on the cycle

6

Cycles

- Can shortest paths contain cycles?
- Negative-weight cycles No!
- Positive-weight cycles: No!
 - By removing the cycle we can get a shorter path
- Zero-weight cycles
 - No reason to use them
 - Can remove them to obtain a path with same weight
- We will assume that when we are finding shortest paths, the paths will have no cycles

Shortest-Path Representation

For each vertex $v \in V$:

- $d[v] = \delta(s, v)$: a shortest-path estimate
 - Initially, d[v]=∞
 - Reduces as algorithms progress

- If no predecessor, $\pi[v] = NIL$
- $-\pi$ induces a tree—shortest-path tree
- Shortest paths & shortest path trees are not unique CS 477/677 - Lecture 25

Initialization

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- 1. for each $v \in V$
- 2. do $d[v] \leftarrow \infty$
- 3. $\pi[\vee] \leftarrow \text{NIL}$
- 4. $d[s] \leftarrow 0$

 All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

Relaxation

Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If
$$d[v] > d[u] + w(u, v)$$

we can improve the shortest path to v

 \Rightarrow update d[v] and π [v]

RELAX(u, v, w)

- if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)
 π[v] ← u
- All the single-source shortest-paths algorithms
 - start by calling INIT-SINGLE-SOURCE
 - then relax edges
- The algorithms differ in the order and how many times they relax each edge

Bellman-Ford Algorithm

- Single-source shortest paths problem
 - Computes d[v] and π [v] for all $v \in V$
- Allows negative edge weights and cycles
- Returns:
 - TRUE if no negative-weight cycles are reachable from the source s
 - FALSE otherwise ⇒ no solution exists
- Idea:
 - Traverse all the edges | V | 1 times, every time
 performing a relaxation step of each edge

BELLMAN-FORD(V, E, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s)
- 2. for $i \leftarrow 1$ to |V| 1
- 3. **do for** each edge $(u, v) \in \mathbb{P}^{0}$
- 4. **do** RELAX(U, V, W)
- 5. for each edge $(u, v) \in E$
- 6. **do if** d[v] > d[u] + w(u, v)
- 7. **then return** FALSE
- 8. **return** TRUE

E: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Example (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Detecting Negative Cycles

- for each edge $(u, v) \in E$
- **do if** d[v] > d[u] + w(u, v)
- then return FALSE
- return TRUE

Look at edge (s, b):

$$d[b] = -1$$

 $d[s] + w(s, b) = -4$

$$\Rightarrow$$
 d[b] > d[s] + w(s, b)

Single-Source Shortest Paths in DAGs

Given a weighted DAG: G = (V, E)
 solve the shortest path problem

- Topologically sort the graph
- Relax the edges according to the order given by the topological sort
 - for each vertex, we relax each edge that starts from that vertex
- Are shortest-paths well defined in a DAG?
 - Yes, (negative-weight) cycles cannot exist

DAG-SHORTEST-PATHS(G, w, s)

- 1. topologically sort the vertices of $G \leftarrow \Theta(V+E)$
- 2. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- for each vertex u, taken in topologically sorted order
- 4. **do for** each vertex $v \in Adj[u]$
- 5. **do** RELAX(**u**, **v**, **w**)

Running time: ⊖(V+E)

⊝(V)

Example

Example (cont.)

Example (cont.)

Dijkstra's Algorithm

- Single-source shortest path problem:
 - No negative-weight edges: $w(u, v) > 0 \forall (u, v) \in E$
- Maintains two sets of vertices:
 - S = vertices whose final shortest-path weights have already been determined
 - -Q =vertices in V S: min-priority queue
 - Keys in Q are estimates of shortest-path weights (d[v])
- Repeatedly select a vertex $u \in V S$, with the minimum shortest-path estimate d[v]

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s)
- 2. $S \leftarrow \emptyset$
- 3. $Q \leftarrow V[G]$
- 4. while $Q \neq \emptyset$
- 5. **do** $u \leftarrow EXTRACT-MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. for each vertex $v \in Adj[u]$
- 8. **do** RELAX(**u**, **v**, **w**)

Example

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- 2. $S \leftarrow \emptyset$
- 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap
- 4. while $Q \neq \emptyset \leftarrow$ Executed O(V) times
- 5. do $u \leftarrow EXTRACT-MIN(Q) \leftarrow O(IgV)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. for each vertex $v \in Adj[u]$
- 8. **do** RELAX(u, v, w) \leftarrow O(E) times; O(IgV)

Running time: O(VIgV + ElgV) = O(ElgV)

optional

ADDITIONAL SLIDES

Triangle inequality

For all $(u, v) \in E$, we have: $\delta(s, v) \le \delta(s, u) + w(u, v)$

 If u is on the shortest path to v we have the equality sign

Upper-bound property

We always have $d[v] \ge \delta(s, v)$ for all v.

Once $d[v] = \delta(s, v)$, it never changes.

 The estimate never goes up – relaxation only lowers the estimate

No-path property

If there is no path from s to v then $d[v] = \infty$ always.

$$-\delta(s, h) = \infty$$
 and $d[h] \ge \delta(s, h) \Rightarrow d[h] = \infty$

h, i, j not reachable from s

$$\delta(s, h) = \delta(s, i) = \delta(s, j) = \infty$$

Convergence property

If $s \sim u \rightarrow v$ is a shortest path, and if $d[u] = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $d[v] = \delta(s, v)$ at all times afterward

- If d[v] > δ(s, v) ⇒ after relaxation:
 d[v] = d[u] + w(u, v)
 d[v] = 5 + 2 = 7
 - Otherwise, the value remains unchanged, because it must have been the shortest path

Path relaxation property

Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from $s = v_0$ to v_k . If we relax, in order, (v_0, v_1) , $(v_1, v_2), \dots, (v_{k-1}, v_k)$, even intermixed with other relaxations, then $d[v_k] = \delta(s, v_k)$.

