

EĞİTİCİLİ (GÖZETİMLİ) ÖĞRENME

SINIFLANDIRMA (CLASSIFICATION) YÖNTEMLERİ

- Destek Vektör Makineleri (Support Vector Machines)
- Ayrıştırma Analizi (Discriminant Analysis)
- Naif Bayes (Naive Bayes)
- En Yakın Komşu (Nearest Neighbor)

BAĞLANIM (REGRESSION) YÖNTEMLERİ

- Lineer Bağlanım
- Karar Ağaçları (Decision Trees)
- Yapay Sinir Ağları

EĞİTİCİSİZ (GÖZETİMSİZ) ÖĞRENME

KÜMELEME YÖNTEMLERİ

- · K-Ortalama, Bulanık C-Ortalama
- Gauss Karışımı (Gaussian Mixture)
- Saklı Markov Modeli (Hidden Markov Model)
- Yapay Sinir Ağları

Sigmoid

$$Sigmoid: a = \frac{1}{1 + e^{-z}}$$

Rectified Linear Unit

ReLU: a = max(0, z)

Hyperbolic Tangent

Tanh:
$$a = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Leaky ReLU

Leaky ReLU: $\alpha = max(0.01, z, z)$

$$f(x, y, z) = (x + y)z$$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1$ $\frac{\partial q}{\partial y} = 1$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z$ $\frac{\partial f}{\partial z} = q$

x -2 y 5 + 3 z -4

Zincir Kurali

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

 $\frac{\partial f}{\partial x}$

anford University- CS231n

$$f(x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \qquad \sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x)\sigma(x))$$
$$= (1.(-0.73).(0.73) = 0.20$$

Stanford University- CS231n

Parametreler:
$$w^{[1]}, b^{[1]}, w^{[2]}, b^{[2]}$$
 $n_x = n^{[0]}, n^{[1]}, n^{[2]} = 1$ $(n^{[1]}, n^{[0]}) (n^{[1]}, 1)(n^{[2]}, n^{[1]}) (n^{[2]}, 1)$

Maliyet Fonksiyonu:
$$J(w^{[1]}, b^{[1]}, w^{[2]}, b^{[2]}) = \frac{1}{m} \sum_{i=1}^{n} L(\widehat{y} - y)$$

Gradyan iniş algoritması:
$$dw^{[1]} = \frac{dJ}{dw^{[1]}}$$
, $db^{[1]} = \frac{dJ}{db^{[1]}}$... $w^{[1]} = w^{[1]} - \alpha \cdot dw^{[1]}$ $b^{[1]} = b^{[1]} - \alpha \cdot db^{[1]}$

İleri Yayılım Algoritması (Feed Forward Propagation)

$$Z^{[1]} = w^{[1]}x + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = w^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]}) = \sigma(Z^{[2]})$$

Geriye Yayılım Algoritması (Back Propagation)

$$dZ^{[2]} = A^{[2]} - Y$$

$$dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]T}$$

$$dZ^{[1]} = \underbrace{W^{[2]T} dZ^{[2]}}_{(n^{[1]}, m)} * \underbrace{g^{[1]} Z^{[1]}}_{(n^{[1]}, m)}$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]}_{k} X^{T}$$

Test/Geçerleme/Eğitim Kümesi Seçimi

Gelecekte elde etmeyi beklediğiniz verileri yansıtacak bir geçerleme kümesi ve test kümesi seçin.

Precision =
$$\frac{tp}{tp+fp}$$
 Accuracy = $\frac{tp+tn}{tp+tn+fp+fn}$

Recall (Kesinlik) = $\frac{tp}{tp+fn}$

Yakup Genç, GTU Derin Öğrenme Ders Notları

ÖĞRENME: OPTİMİZASYON PROBLEMİ

Hedef: Ağırlıkları ve biası güncelleyerek yitim fonksiyon çıkışını minimize etmek

Önerilen teknik: Küçük-Kümeleme gradyan iniş ya da stokastik gradyan iniş algoritması kullanılabilir.

AKTİVASYON FONKSİYONU SEÇİMİ

$$rac{d\sigma(x)}{dx} = \left(1 - \sigma(x)
ight)\sigma(x)$$

Parçalı türev adımları küçük seçildiğinde = Öğrenme yavaşlar

EĞİTİM TUR SAYISI (Epoch)

- Epoch sayısı arttıkça başarım bir süre artmaya devam eder.
- Başarımın artması azaldığında ya da durduğunda daha fazla epoch işlem yapmaya gerek yoktur.
- Bu gibi hiper parametreler eğitim süresini optimize eder.
- Epoch sayısı problemin türüne göre değişkendir.

Bias vs. Variance

Bias vs. Variance

Bias = modelin tahminlerindeki sistematik hata. Variance = eğitim setinde örnekleme gürültüsü tahminlerdeki gürültüye ne neden olur.

Düğüm Seyreltme (Dropout)

Hedef: Modeli genelleştirmeye yardımcı olur.

Düğüm seyreltme uygulandığı ve uygulanmadığı durumlarda başarım değişim örneği

Gürültü Ekleme İşlemi

Modelin girdilerine gürültü ekleme

Modelin gizli katmanlarına gürültü ekleme

Modelin ağırlık parametrelerine gürültü ekleme: Recurrent Neural Network (RNN)

Yitim fonksiyonuna, gürültüyü parametre olarak ekleme

Yoğun-Seyrek-Yoğun Ağ ile Eğitim (Dense-Sparse-Dense Training)

Aşırı uydurma- Az uydurma (Overfitting vs. Underfitting)

Aşırı Uydurmadan Önce Durdurma (Early Stopping)

TRANSFER ÖĞRENME (TRANSFER LEARNING)

