

DEVADHARSHAN S CH.SC.U4CSE24113 OBJECT ORIENTED PROGRAMMING (23CSE111) LAB RECORD

AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF COMPUTING, CHENNAI

BONAFIDE CERTIFICATE

This is to certify that the Lab Record work for 23CSE111- Object Programming Subject submitted by Oriented CH.SC.U4CSE24113 - DEVADHARSHAN S in "Computer Science and Engineering" is a Bonafide record of the work carried out under my guidance and supervision at Amrita School of Computing, Chennai.

This Lab examination held on

Internal Examiner 1 Internal Examiner 2

INDEX

S.NO	TITLE	PAGE.NO
	UML DIAGRAM	
1.	TELECOM APPLICATION	
	1.a) Use Case Diagram	4
	1.b) Class Diagram	5
	1.c) Sequence Diagram	5
	1.d) Object Diagram	6
	1.e) State-Activity Diagram	6
2.	E-COMMERCE APPLICATION	
	2.a) Use Case Diagram	7
	2.b) Class Diagram	8
	2.c) Sequence Diagram	8
	2.d) Object Diagram	9
	2.e) State-Activity Diagram	9
3.	BASIC JAVA PROGRAMS	
	3.a) Armstrong Number	10
	3.b) Sum of Even, Odd Digits	11
	3.c) Factorial	12
	3.d) Fibonacci Series	13
	3.e) LCM Calculator	14
	3.f) Number Pattern	15
	3.g) Palindrome Check	16
	3.h) Prime Checker	17
	3.i) Reverse Number	18
	3.j) Sum of Digits	19

UML DIAGRAMS 1.TELECOM APPLICATION

1.a) Use Case Diagram:

1.b) Class Diagram:

1.c) Sequence Diagram:

1.d) Object Diagram:

1.e) State-Activity Diagram:

2. E-COMMERCE APPLICATION

2.a) Use Case Diagram:

2.b) Class Diagram:

+PAYMENT ID: INT -PAYMENT GATEWAY()

2.c) Sequence Diagram:

2.d) Object Diagram:

2.e) State-Activity Diagram:

3. Basic Java Programs

3.a) Armstrong Number:

Code:

```
public class ArmstrongNumber {
    public static void main(String[] args) {
        int num = 153; int original = num; int sum = 0;
        while (num != 0) {
            int digit = num % 10;
            sum += digit * digit * digit;
            num /= 10;
        }
        if (sum == original) {
            System.out.println(original + " is an Armstrong
number.");
        } else {
            System.out.println(original + " is not an Armstrong
number.");
        }
    }
```

```
PS D:\00P\Exp 3 Basic Java Programs> javac ArmstrongNumber.java
PS D:\00P\Exp 3 Basic Java Programs> java ArmstrongNumber.java
153 is an Armstrong number.
PS D:\00P\Exp 3 Basic Java Programs>
```

3.b) Sum of Even, Odd Digits:

Code:

```
public class EvenOddSum {
    public static void main(String[] args) {
        int evenSum = 0; int oddSum = 0; int limit = 10;
        for (int i = 1; i <= limit; i++) {
            if (i % 2 == 0) {
                evenSum += i;
            } else {
                oddSum += i;
            }
        }
        System.out.println("Sum of even numbers from 1 to " + limit + ": " + evenSum);
        System.out.println("Sum of odd numbers from 1 to " + limit + ": " + oddSum);
    }
}</pre>
```

```
PS D:\00P\Exp 3 Basic Java Programs> javac EvenOddSum.java
PS D:\00P\Exp 3 Basic Java Programs> java EvenOddSum.java
Sum of even numbers from 1 to 10: 30
Sum of odd numbers from 1 to 10: 25
PS D:\00P\Exp 3 Basic Java Programs>
```

3.c) Factorial:

Code:

```
public class Factorial {
    public static void main(String[] args) {
        int num = 5;
        int factorial = 1;
        for (int i = 1; i <= num; i++) {
            factorial *= i;
        }
        System.out.println("Factorial of " + num + " is " + factorial);
    }
}</pre>
```

```
PS D:\00P\Exp 3 Basic Java Programs> javac Factorial.java
PS D:\00P\Exp 3 Basic Java Programs> java Factorial.java
Factorial of 5 is 120
PS D:\00P\Exp 3 Basic Java Programs>
```

3.d) Fibonacci Series:

Code:

```
public class FibonacciSeries {
   public static void main(String[] args) {
      int n = 10, first = 0, second = 1;
      System.out.print("Fibonacci Series: " + first + ", " + second);
      for (int i = 2; i < n; i++) {
        int next = first + second;
        System.out.print(", " + next);
        first = second;
        second = next;
      }
   }
}</pre>
```

Output;

```
PS D:\00P\Exp 3 Basic Java Programs> javac FibonacciSeries.java
PS D:\00P\Exp 3 Basic Java Programs> java FibonacciSeries.java
Fibonacci Series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34
PS D:\00P\Exp 3 Basic Java Programs> |
```

3.e) LCM Calculator:

Code:

```
public class LCMCalculator {
   public static void main(String[] args) {
      int a = 12; int b = 18;int lcm;
      int gcd = a;
      int tempB = b;
      while (tempB != 0) {
         int temp = tempB;
         tempB = gcd % tempB;
         gcd = temp;
      }
      lcm = (a * b) / gcd;
      System.out.println("LCM is " + lcm);
    }
}
```

```
PS D:\00P\Exp 3 Basic Java Programs> javac LCMCalculator.java
PS D:\00P\Exp 3 Basic Java Programs> java LCMCalculator.java
LCM is 36
PS D:\00P\Exp 3 Basic Java Programs> |
```

3.f) Number Pattern:

Code:

```
PS D:\OOP\Exp 3 Basic Java Programs> javac NumberPattern.java
PS D:\OOP\Exp 3 Basic Java Programs> java NumberPattern.java
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
PS D:\OOP\Exp 3 Basic Java Programs> |
```

3.g) Palindrome Check:

Code:

```
public class PalindromeCheck {
   public static void main(String[] args) {
      int num = 121; int original = num; int reversed = 0;
      while (num != 0) {
        int digit = num % 10;
        reversed = reversed * 10 + digit;
        num /= 10;
      }
      if (original == reversed) {
            System.out.println(original + " is a palindrome.");
      } else {
            System.out.println(original + " is not a palindrome.");
      }
    }
}
```

```
PS D:\00P\Exp 3 Basic Java Programs> javac PalindromeCheck.java PS D:\00P\Exp 3 Basic Java Programs> java PalindromeCheck.java 121 is a palindrome.
PS D:\00P\Exp 3 Basic Java Programs>
```

3.h) Prime Checker:

Code:

```
public class PrimeChecker {
    public static void main(String[] args) {
        int num = 29;
        boolean isPrime = true;
        if (num <= 1) {
            isPrime = false;
        } else {
            for (int i = 2; i * i <= num; i++) { // Removed
Math.sqrt()
                if (num \% i == 0) {
                    isPrime = false;
                    break;
                }
            }
        }
        if (isPrime) {
            System.out.println(num + " is a prime number.");
        } else {
            System.out.println(num + " is not a prime number.");
        }
    }
}
```

```
PS D:\00P\Exp 3 Basic Java Programs> javac PrimeChecker.java PS D:\00P\Exp 3 Basic Java Programs> java PrimeChecker.java 29 is a prime number.
```

3.i) Reverse Number:

Code:

```
public class ReverseNumber {
   public static void main(String[] args) {
      int num = 12345, reversed = 0;
      while (num != 0) {
        int digit = num % 10;
        reversed = reversed * 10 + digit;
        num /= 10;
      }
      System.out.println("Reversed Number: " + reversed);
   }
}
```

```
PS D:\00P\Exp 3 Basic Java Programs> javac ReverseNumber.java
PS D:\00P\Exp 3 Basic Java Programs> java ReverseNumber.java
Reversed Number: 54321
```

3.j) Sum of Digits:

Code:

```
public class SumOfDigits {
    public static void main(String[] args) {
        int num = 9876; int sum = 0;
        while (num != 0) {
            sum += num % 10;
            num /= 10;
        }
        System.out.println("Sum of digits: " + sum);
    }
}
```

```
PS D:\00P\Exp 3 Basic Java Programs> javac SumOfDigits.java
PS D:\00P\Exp 3 Basic Java Programs> java SumOfDigits.java
Sum of digits: 30
PS D:\00P\Exp 3 Basic Java Programs>
```