

فصل دوم (جبر ماتریسی)

توجه:

- این تمرین از مباحث مربوط به فصل دوم (جبر ماترسی) طراحی شده است که شامل ۴ مساله و یک تمرین شبیه سازی می باشد.
- كلاس تدريسيار هفته بعد از موعد تحويل مربوط به رفع مشكلات اين تمرين است. تا زمان كلاس سوالات خود را از طريق ايميل زير بپرسيد.

aut.la 2018@gmail.com

- مساله ها را در یک فایل pdf و فایل کد های مربوط به تمرین های شبیه سازی و گزارش های آنها را به طور مجزا در یک پوشه قرار دهید.
 - پاسخ های تمرین را در قالب یک فایل به صورت الگوی زیر آپلود کنید.

 $9531000_Gabriel_Batistuta_HW2.zip$

• مهلت تحویل جمعه ۲۵ اسفند ۱۳۹۶ ساعت ۲۳:۵۴

مسئلهی ۱.

الف) اگر $\begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}$ و $u = \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}$ باشند. مساحت متواضى الاضلاع ساخته شده توسط u و v و v و v را بدست بیاورید. v دترمینان v را بدست آورده و با مساحت متواضى الاضلاع مقایسه کنید.

درایه اول بردار v را با یک مقدار دلخواه جایگزین کنید و تغیرات را مشاهده و تحیلل کنید.

ب) نشان دهید معادله یک خط در \mathbb{R}^7 که از دو نقطه مشخص (x_1,y_1) و (x_7,y_7) میگذرد را میتوان به صورت زیر نوشت:

$$det(\begin{bmatrix} 1 & x & y \\ 1 & x_1 & y_1 \\ 1 & x_1 & y_1 \end{bmatrix}) = \bullet$$

مسئلەي ٢.

معکوس ماتریسهای زیر را به روش گوس جردن بدست بیاورید و مراحل آن را نیز بنویسید.

$$A = \begin{bmatrix} \mathbf{V} & \mathbf{Y} & \mathbf{1} \\ \mathbf{\cdot} & \mathbf{Y} & -\mathbf{1} \\ -\mathbf{Y} & \mathbf{Y} & -\mathbf{Y} \end{bmatrix} B = \begin{bmatrix} \mathbf{1} & -\mathbf{Y} & \mathbf{1} \\ \mathbf{Y} & -\mathbf{V} & \mathbf{Y} \\ -\mathbf{Y} & \mathbf{S} & -\mathbf{Y} \end{bmatrix}$$

مسئلهي ٣.

درستی یا نادرستی گزاره های زیر را مشخص کنید و درصورت نادرست بودن مثال نقض ارائه دهید و در صورت درست بودن آن را اثبات کنید:

- است. A برابر B برابر A برابر A برابر A
- . اگر B=C ، $(B-C)D={}^{ullet}$ ماتریسهایی m imes n باشند و D معکوس پذیر باشد و داشته باشیم C ماتریسهایی C
 - ۳. اگر A=BCD و داشته باشیم که A معکوسپذیر است. D و D و B هر سه معکوس پذیرند.
 - . اگر ماتریس B یک ماتریس $T \times T$ باشد، $T \times B$ باشد، $A = B^{\dagger} + TB^{\dagger} + TB^{\dagger} + TB^{\dagger}$ معکوس پذیر است.

مسئله ی Υ . به روش تجزیه UFactorization ماتریس زیر را تجزیه کرده و ماتریسهای L و U را به دست آورید.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 7 & -1 \\ 7 & 0 & 7 \end{bmatrix}$$

سوالات شبيه سازى

مسئلەي ۵.

ماتریس متراکم (ماتریسی که بیشتر درایه های آن _ مثلا بیش از نیمی از آنها_ غیر صفر باشد) و معکوس پذیر A با ابعاد $n \times n$ را در نظر بگیرید، روش استاندارد حل دستگاه معادله خطی $n \times n$ به صورت زیر است:

- A = LU . تجزیه LU ماتریس A را بیاید: LU
- ۲. اگر u از طریق جایگزینی پیشرو $\hat{x} = b$ سیستم $\hat{x} = u$ (که در آن L یک ماتریس پایین مثلثی است) را از طریق جایگزینی پیشرو (forwardsubstitution) حل کنید.
- ۳. سیستم بالا مثلثی $ux=\hat{x}$ را (که در آن $ux=\hat{x}$ ماتریس بالا مثلثی است) از طریق جایگزینی عقب گرد (backsubstitution) حل کنید.
- (a) تابعی بنویسید که تجزیه LU ماتریس A را پیدا کند. فرض کنید که می توان ماتریس A را بدون استفاده از عمل جا به جایی دو سطر vow-interchange از بین اعمال سطری مقدماتی به ماتریس بالا مثلثی vow-interchange را به عنوان ورودی بگیرد و ماتریس پایین مثلثی vow و ماتریس بالا مثلثی vow را باز گرداند.

```
\begin{array}{lll} Function & [L,\ U] = lu\_factor\,(A)\\ [n\ ,\ n1] = size\,(A)\,;\\ & \textbf{if}\ n \sim = n1\\ & & \textbf{error}\ (\text{``A must be square''})\\ & \textbf{end}\\ L = \textbf{eye}\ (n)\\ U = \textbf{zeros}\ (n)\\ & \dots \end{array}
```

return;

در کد بالا شما باید قسمت را تکمیل کنید. برای این منظور تنها مقادیر بالای قطر اصلی ماتریس U که مقدار اولیه صفر گرفته است و مقادیر پایین قطر اصلی ماتریس L که برابر ماتریس همانی است را آپدیت کنید.

تابع دیگری بنویسید که معادله b = Ax را از طریق مراحل ۱ و ۲ و ۳ را که در بالا ذکر شده است، حل کند. تابع شما باید به شکل زیر باشد:

```
function x = linear_sys_solver(A,b)
% compute the LU factorization of A
% Solve Ly = b for y by forward substitution
% Solve Ux = y by back substitution
return;
```

می توانید از کد خود مروبط به سوال ۸ تمرین اول در این بخش استفاده کنید

lu factor را برای محاسبه وارون ماتریس A با سایز $n \times n$ بنویسید. توجه کنید که باید از تابع myinverse و $n \times n$ بنویسید. توجه کنید که باید از تابع $n \times n$ بنویسید. توجه کنید و $n \times n$ بنویسته اید استفاده $n \times n$ و $n \times n$ و $n \times n$ با استفاده که در بخش های قبل یا تمرین قبل نوشته اید استفاده کنید. فرض کنید که $n \times n$ به ازای $n \times n$ به ازای $n \times n$ به در آن $n \times n$ ستون کنید. فرض کنید که $n \times n$ با استفاده کنید. (توجه کنید که شما تنها یک بار می تواند از تجزیه LU ماتریس $n \times n$ را محاسبه کنید)

(d) ماتریس هیلبرت یک ماتریس مربعی است به گونه ای که $\frac{1}{1+i+j}=\frac{1}{1+i+j}$ ماتریس هیلبرت A از مرتبه A و ۱۰ و ۱۵ و ۲۰ را بسازید و ماتریس وارون آنها A^{-1} را از طریق توابع آماده (مثلا در متلب از طریق تابع inv) به دست آورید. سپس ماتریس وارون آن را از طریق تابع myinverse که در بخش قبل نوشته اید به دست آورید (آن را AA^{-1} بنامید) مقادیر AA^{-1} و AA^{-1} را به دست آورید و نتایج را مقایسه و تحلیل کنید. (راهنمایی: به ویژگی های ماتریس های ill-conditioned توجه کنید)