See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/6328215

Negombins A–I, New Chlorinated Polyfunctional Diterpenoids from the Marine Sponge Negombata Species

ARTICLE in ORGANIC LETTERS · JULY 2007	
Impact Factor: 6.36 · DOI: 10.1021/ol070633j · Source: PubMed	
CITATIONS	READS
8	35

3 AUTHORS, INCLUDING:

Yehuda Benayahu Tel Aviv University

197 PUBLICATIONS 3,829 CITATIONS

SEE PROFILE

2007 Vol. 9, No. 12 2337–2340

Negombins A—I, New Chlorinated Polyfunctional Diterpenoids from the Marine Sponge *Negombata* Species

Amira Rudi,† Yehuda Benayahu,‡ and Yoel Kashman*,†

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences and Department of Zoology, Tel Aviv University, Ramat Aviv Tel Aviv 69978, Israel

kashman@post.tau.ac.il

Received March 21, 2007

ABSTRACT

Nine novel compounds designated negombins A–I (1–9) were isolated, together with latrunculin, from the Tanzanian sponge *Negombata* sp. The nine are sacculatane type diterpenes, previously only known from liverworts. The structures of the compounds were elucidated by interpretation of MS and 1D and 2D NMR spectra. A possible biogenesis initiated by the naturally rare chloronium ion is suggested, possibly hinting to a guest microorganism as the source of the compounds. Compound 4 is toxic to brine shrimp larvae.

In the framework of searching for bioactive compounds from marine invertebrates^{1,2} and our long-standing interest in the metabolites of the sponge *Latrunculia magnifica*³(presently *Negombata* sp.),⁴ we investigated three specimens of this sponge collected at Pemba Island, Tanzania⁵

The ethyl acetate extract of the freeze-dried sponge (5 g dry weight) was separated by sequential chromatographies on Sephadex LH-20 (eluting with hexane/CHCl3/MeOH 2:1:1) and silica gel (eluting with hexane/ethyl acetate) to afford negombins A-I (1-9) in quantities of 2-12 mg each.

The EIMS of 1^6 exhibited a molecular ion [M]⁺ at m/z 352 for which a formula of $C_{20}H_{29}O_3Cl$, with six degrees of unsaturation, was determined by HRMS. The IR (1725, 1708, 1678 cm^{-1}) together with the 1H NMR spectra (δ_H 9.56s,

^{9.70}d) suggested the presence of two aldehyde groups. The 1 H NMR and 13 C NMR experiments (Table 1) revealed in addition to the two CHO groups (δc 193.0d, 203.8d), the presence of two trisubstituted double bonds (δc 138.2s, 152.8d, most likely conjugated to a CO, and 123.7d, 132.1s; $\delta_{\rm H}$ 7.05q and 5.07t) a hydroxymethine (δc 72.0d, $\delta_{\rm H}$ 3.68q) and, in agreement with the MS peak-cluster, a chloromethine group (δc 61.0d, $\delta_{\rm H}$ 4.55dd). The above functionalities account for four of the six degrees of unsaturation of 1, suggesting a bicyclic structure for negombin A. The COSY spectrum revealed the presence of three spin systems (a–c) as shown in Figure 1. HMBC correlation, (Table 1 and Figure 1) established the complete planar structure of 1. Key starting points for interpretation of the CH correlations were the ones

^{*} To whom correspondence should be addressed. Phone: 972-3-6408419. Fax: 972-3-6409293.

[†] School of Chemistry.

Department of Zoology

⁽¹⁾ Chill, L.; Rudi, A.; Benayahu, Y.; Schleyer, M.; Kashman, Y. Org. Lett. 2004, 6, 755-758.

⁽²⁾ Sorek, H.; Rudi, A.; Gueta, S.; Reyes, F.; Martin, J. M.; Aknin, M.; Gaydou, E.; Vacelet, J.; Kashman, Y. *Tetrahedron* **2006**, 62, 8838–8843.

⁽³⁾ Spector, I.; Shochet, N.; Kashman, Y.; Groweiss, A. *Science* **1983**, 219 (4584) 493–495.

⁽⁴⁾ Kelly-Borges, M.; Vacelet, J. Memoris Queensland Museum 1995, 38, 477-503.

⁽⁵⁾ The red orange sponge is growing on steep reef walls exposed to strong water currents and was collected at a depth of 22–25 m. Voucher specimens (ZMTAU PO 25464-25466) are deposited at the Zoological Museum, Tel Aviv University, Israel. A new collection and comprehensive work is required for identification of the sponge which is close to Sigmosceptrella another genus, besides the Negombata, of the Podospongiidae family.

⁽⁶⁾ Negombin A (1), an oil. $[\alpha]^{20}_{\rm D}$ –10.8 (c 0.9 CHCl₃) (for 1 H and 13 C NMR see Table 1). IR (CHCl₃) $\nu_{\rm max}$ 3054, 2986, 2036, 1708, 1678, 1272 cm⁻¹. EIMS m/z 352 [M]⁺(20), 334 [M – H₂O]⁺ (35), 309 (20), 281 (20), 221 (43), 157 (50), 69 (100). HREIMS m/z [M – H₂O]⁺ 334.1687 (calcd for C₂₀H₂₇O₂Cl, 334.1693).

Table 1. NMR Data of Negombin A $(1)^{a,b}$

position	$\delta_{ m C}$	$\delta_{ m H}(J~{ m in~Hz})$	HMBC (C to H) ^c
1	$72.0~\mathrm{CH}$	3.68q (4.9)	OH, 3, 2a, 2b, 13
2	$35.3~\mathrm{CH}_2$	2.25m 2.24m	
3	$61.0~\mathrm{CH}$	4.55dd (10.0, 6.6)	9, 5, 2a, 2b, 14, 15b
4	$41.6~\mathrm{C}$		14
5	$38.5~\mathrm{CH}$	1.95dd (9.7, 9.5)	13, 14
6	$25.8~\mathrm{CH_2}$	$2.52 \text{m} \ 2.50 \text{m}$	
7	$152.8~\mathrm{CH}$	7.05q (3.6)	12
8	$138.2~\mathrm{C}$		6a, 6b, 11, 12
9	$52.6~\mathrm{CH}$	3.50q (2.9)	7, 11, 12, 13
10	$41.7~\mathrm{C}$		13
11	$193.0~\mathrm{CH}$	9.70d (4.8)	7
12	$203.8~\mathrm{CH}$	9.56s	9
13	$15.5~\mathrm{CH3}$	1.00s	1
14	$17.0~\mathrm{CH_3}$	1.05s	3
15	$38.2~\mathrm{CH_2}$	1.62m 1.40ddd	14
		(15.6, 11.9, 5.3)	
16	$21.3~\mathrm{CH_2}$	2.02m 1.80m	
17	$123.7~\mathrm{CH}$	5.07t (6.8)	19, 20
18	$132.1~\mathrm{C}$		17, 19, 20
19	$25.9~\mathrm{CH_3}$	1.69s	17, 20
20	$17.5~\mathrm{CH_3}$	1.61s	17, 19

^a Data recorded in CDCl₃ on Bruker Avance 400 and 500 MHz instruments (100 MHz for ¹³C and 500 MHz for all other spectra). ^b The CH correlations were assigned by an HSQC experiment. ^c The letters a and b for a methylene pair denote the upper (a) and lower (b) field protons.

from the four methyl groups, two aldehydes, and the hydroxyl- and chloromethine functionalities.

Figure 1. COSY and key HMBC correlations of 1.

The relative stereochemistry of **1** was determined by analysis of the coupling constants of the protons of the functional groups (Table 1) and NOE cross-peaks (Figure 2). NOEs

Figure 2. Key NOEs of negombin A.

between H-9 α (β assigned for the methyl side), H-5 α and OH(1); between H-1 β and CH₃-13; between Me-14 and -13 and H-2 β ; and between H-5 α and H-3 α established the configuration of the OH and Cl groups and the trans ring fusion. A 9.7 Hz coupling constant of H-5 α , 10.0 Hz of H-3 α , and 4.9 Hz of H-1 β confirmed their axial, axial, and equatorial configurations, respectively, completing the relative stereochemistry of 1. Tentatively, based on the known absolute stereochemistry of the drimane-class terpenoids, for example, that of sacculatnes and polygodial, the same stereochemistry was suggested for 1–9.

Close in structure to negombin A was negombin B (2).⁷ The only difference between the two being replacement of the CHO(12) group by a carbomethoxy group (δc 168.0s, 52.0q, $\delta_{\rm H}$ 3.80s, 3H). A change which, as expected, influenced the resonances of the Δ^7 -bond (δc 139.9 and 142.1, $\delta_{\rm H-7}$ 7.22). Similar NOEs to those observed for 1 pointed to the same stereochemistry.

Negombin C (3), the second, after 1, most abundant compound,⁸ exhibited the highest peak at m/z 370, agreeing

2338 Org. Lett., Vol. 9, No. 12, 2007

⁽⁷⁾ Negombin B (2), an oil. $[\alpha]^{20}_D$ -38.7 (c 0.16 CHCl₃) (for 1H and 13 C NMR data see Supporting Information). CIMS m/z 383 $[MH]^+$ (100), 367 (30), 351 (65), 299 (55). HRCIMS m/z 383.1975 (MH⁺) (calcd for $C_{21}H_{32}O_4Cl$, 383.1981).

⁽⁸⁾ Negombin C (3), an oil. $[\alpha]^{20}_D + 36.3$ (c 0.9 CHCl₃) (for ¹H and ¹³C NMR data see Supporting Information). CIMS m/z 371 [MH]⁺ (30), 353 [MH - H₂O]⁺ (100), 335 (35), 317 (75). HRCIMS m/z [MH - H₂O]⁺ 353.2245 (calcd for C₂₁H₃₄O₂Cl, 353.2239).

with $C_{21}H_{35}O_3C1$ [M]⁺. NMR experiments revealed the presence of a methyl ester (δc 51.3q, δ_H 3.70s, 3H), replacing the 11-CHO group of **1** and **2**, and a tertiary alcohol group (δc 70.2s) instead of the 12-aldehyde of **1**. The C-12 position of the additional methyl group (δ_H 1.12s) was determined from its HMBC correlations from C-9, C-8 (δc 70.2s), and C-7 (Table 1). Further $^2J_{CH}$ and $^3J_{CH}$ HMBC correlations, to H-9, -13, and -21 (C-11 to H-9, -21; C-12, -13 to H-9; and C-1, -5, -9, -10 to H-13), were in full agreement with the suggested structure. In addition to the above changes the 1-hydroxyl group of **1** and **2**, in the second ("right") ring, was absent in **3** ($\delta_{C(1)H2}$ 40.4t; δ_H 1.35, 1.40).

The stereochemistry of the two, C-8 and -9, chiral centers were determined from NOE cross-peaks between the CO_2CH_3 protons and methyls-13 (on the β -side) and methyl-12; between H-9 α , H-7 α , H-5 α , and CH₃-12 on the α -side (Figure 2), hence, both CH₃-12 and the CO₂CH₃ group on the trans decalin ring system (confirmed by a NOE between CH₃-13 and -14), are equatorial. The EIMS of negombin D

Figure 3. Key NOEs of negombin C.

(4)⁹ exhibited a [M - H₂O]⁺ ion at m/z 336 (C₂₀H₂₉O₂Cl), HRMS. Loss of a molecule of water became evident from the requirement of 20 carbon atoms (13 C NMR) and three oxygen atoms for a lactol and a hydroxyl group¹⁰ (see below). Half of the molecule of **4**, the "right" portion, was identical with the corresponding half (C₁₋₄-C₂₀) in **1** and **2**. The other "left" cyclohexene ring is fused to a five-membered lactol ($\delta_{\rm C-11}$ 98.7d, $\delta_{\rm H-11}$ 5.30d (J = 5.6 Hz), and $\delta_{\rm C-12}$ 69.2t, $\delta_{\rm H-12}$ 4.25d and 4.50d, J = 11.5 Hz). Vicinal coupling between H-9 and the lactol proton H-11, and allylic-coupling between the AB system of CH₂(12) and H-7 confirmed the position of the lactol ring. NOEs between H-11 β and CH₃-13 and between OH(11 α) and H-9 α established the suggested C-11 stereochemistry.

An additional pair of compounds were the epimeric negombins E and F [5] and [6] which could not be

completely separated from each other (each was obtained in ca. 80% purity). Both **5** and **6** exhibited the same pseudomolecular $[M-H_2O]^+$ peak. Loss of water was deduced from the 21 carbon resonances in the ¹³C NMR spectrum and the need of four oxygen atoms (a lactol and a CO₂CH₃ group). The difference between **5** and **6** and negombin B (**2**) was the replacement of the 1-hydroxy-9-carboxaldehyde functionality of **2** by a lactol group (δ_{C-11} 101.7 and 97.0 and δ_{H-11} 5.22d (J=4.5 Hz), 5.61dd (J=5.3, 2.2 Hz) for **5** and **6**, respectively). As far as could be judged from the NMR spectra of **2**, **5**, and **6**, they are not in equilibrium in CDCl₃. Jones oxidation of both **5** and **6** afforded the corresponding lactone **10**. ¹²

Three other compounds, negombins G-I (7-9) were obtained in minute quantities only. Negombins G and H possess the same substituted decalin system as negombin B (2), and negombin I possesses the same bicyclic system as negombin D (4); the three differ from 2 and 4 in the side chains.

The EIMS spectrum of $\mathbf{7}^{13}$ exhibited a [M - H₂O]⁺ ion at m/z 380. The molecular formula was determined by HRMS of the [M - H₂O] peak and ¹³C-resonances to be C₂₁H₃₁O₅Cl. The NMR data of the bicyclic system was almost identical to those of $\mathbf{2}$; differences were only observed in the side chain, namely, replacement of the -CH=C(CH₃)₂ terminus of $\mathbf{1}-\mathbf{6}$ by a -CH(OH)C(CH₃)=CH₂ functionality (δ_{C-17} 76.3d, δ_{C-18} 147.3s, and δ_{C-19} 111.3t; δ_{H-17} 4.00t, δ_{H-19} 4.95s and 4.88s, and δ_{H-20} 1.70s).

Negombin H (8)¹⁴ possesses the same formula as 7, and the NMR data of the ring system were found to be almost identical to those of 2 and 7. Differences were observed in the NMR of the side chain suggesting a $-CH_2CH=CH-C(CH_3)_2OH$ terminus (δ_C 142.9d, 120.3d, 70.6s, δ_H 5.56dt (15.5, 7.3), 5.75d(15.5), 1.31s(3H), 1.30s(3H)).

Negombin I (9),¹⁵ m/z 352 [M - H₂O]⁺, C₂₀H₂₉O₃Cl, comprises the ring system of **4** and the side chain of **7** (δ _C 79.0s, 145.0s, 115.0t, 17.6q; δ _H 3.86t, 5.10s and 5.05s 1.70s).

Outstanding in the structure of the negombins is the chlorine atom. A suggested biogenesis, shown in Scheme 1,

Scheme 1. Suggested Biogenesis for the Negombins

GeGePP

RO

$$Ox$$
 OHC
 OHC

starts with a chloronium ion. While isoprenoid cyclizations initiated by bromonium ion are well-known in the marine environment, electrophilic attack of a double bond by Cl⁺

Org. Lett., Vol. 9, No. 12, 2007

⁽⁹⁾ Negombin D (4), an oil. $[\alpha]^{20}_D$ –1.7 (c 0.5 CHCl₃) (for 1 H and 13 C NMR data see Supporting Information). EIMS m/z 336 [M – H₂O]⁺ (75), 321 (100). HREIMS m/z 336.1849 [M – H₂O]⁺ (calcd for C₂₀H₂₉O₂Cl, 336.1853).

⁽¹⁰⁾ Acetylation of **4** with Ac₂O/pyridine at room temperature overnight afforded the expected 9,11-diacetate [δ_{H} 2.04, 2.16, 3H each 6.05d (H-11), 4.90bs (H-9)].

⁽¹¹⁾ Negombin E and F (**5**, **6**), an oil (for 1 H and 13 C NMR data see Supporting Information). CIMS m/z 365 [MH - H₂O]⁺ (100). HRCIMS m/z [MH - H₂O]⁺ 365.1883 (calcd for C₂₁H₂₉O₃Cl, 365.1876).

is rare and is only reported for cyanobacteria. ^{16,17} Hence, isolating the negombins only from the Tanzanian *Negombata* sponge ¹⁸ suggests their origin may be a guest microorganism within the sponge. The latter notion receives further support

from the isolation of the pungent tasting bioactive polygodial, with a drimane-skeleton, ¹⁹ and sacculatol, with the same skeleton as the negombins, from liverworts. ²⁰ Negombin D (4) exhibited toxicity in concentration of 0.1 mg/mL to brine shrimp larvae. ²¹ The small available amounts of material prevented further tests.

Supporting Information Available: NMR data (¹H NMR, and ¹³C NMR) for negombins A—I including COSY, HSQC, and HMBC for negombin A. This material is available free of charge via the Internet at http://pubs.acs.org.

OL070633J

2340 Org. Lett., Vol. 9, No. 12, 2007

⁽¹²⁾ Jones oxidation (Na₂Cr₂O₇ in acetone) of compounds **5** and **6** afforded the corresponding lactone **10** (replacement of the anomeric C-11 signal by lactone resonances: δ_C 174.0 (C-11), 53.6 (C-1), 83.1 (C-9); δ_H 3.40s (H-1) and 4.33bs (H-9).

⁽¹³⁾ Negombin G (7), an oil (for ^{1}H and ^{13}C data see Supporting Information). EIMS m/z 380 [M - $H_{2}O$]⁺ (10), 348 (10), 319 (25), 251(55), 215 (100). HREIMS m/z 380.1752 [M⁺ - $H_{2}O$]⁺ (calcd for $C_{21}H_{29}O_{4}Cl$, 380.1747).

⁽¹⁴⁾ Negombin H (8), an oil (for 1 H and 13 C data see Supporting Information). EIMS m/z 380 [M - H₂O] $^{+}$ (15), 348 (10), 319 (25). HREIMS m/z 380.1741 [M - H₂O] $^{+}$ (calcd for C₂₁H₂₉O₄Cl, 380.1747). (15) Negombin I (9), an oil (for 1 H and 13 C NMR see Supporting

⁽¹⁵⁾ Negombin I (9), an oil (for 1 H and 13 C NMR see Supporting Information). EIMS m/z 352 [M - H₂O]⁺ (30), 334 (30), 319 (40), 253 (40), 235 (45). HREIMS m/z 352.6767 [M - H₂O]⁺ (calcd for C₂₀H₂₉O₃Cl, 352.6771).

⁽¹⁶⁾ Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.; Patterson, G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. *J. Am Chem. Soc.* **1994**, *116*, 9935–9942.

⁽¹⁷⁾ Radical chlorination, on the other hand, is well known, for example, hydrogen substitution of methyl protons to produce mono-, di- and trichloromethyl groups.

⁽¹⁸⁾ Dozens of studied Red Sea Negombata sp. were never found to contain negombins.

⁽¹⁹⁾ Paul, V. J.; Seo, Y.; Cho, K. W.; Rho, J.-R.; Shin, T.; Bergquist, P. R. *J. Nat Prod.* **1997**, *60*, 1115–1120 and references therein.

⁽²⁰⁾ Feld, H.; Hertewich, U. M.; Zapp, J.; Becker, H. *Phytochemistry* **2005**, *66*, 1094–1099.

⁽²¹⁾ Meyer, N. B.; Ferringini, N. R.; Putnam, J. E.; Nichols, D. E.; McLaughlin, J. L. *Med. Plant Res.* **1982**, *45*, 31–34.