Если точка подвеса маятника движется с ускорением \vec{a} , то период колебаний маятника можно рассчитывать по формуле $T=2\pi\sqrt{\frac{l}{g'}}$, где $\vec{g}'=\vec{g}+\left(-\vec{a}\right)-$ «эффективное» ускорение маятника в неинерциальной системе отсчета.

Для маятника, поднимающегося (опускающегося) вертикально,

$$T = 2\pi \sqrt{\frac{l}{g \pm a}};$$

для маятника, движущегося в вагоне горизонтально с ускорением, модуль которого a,

$$T = 2\pi \sqrt{\frac{l}{\sqrt{g^2 + a^2}}}.$$

Механической волной называется процесс распространения колебаний в упругой среде, сопровождающийся переносом энергии.

Длина волны λ — расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

$$\lambda = vT = \frac{v}{v},$$

где v — скорость распространения волны. Различают волны *поперечные*, в которых колебания частиц происходят перпендикулярно направлению распространения, и *продольные*. Поперечные волны распространяются только в твердом теле, а продольные волны — в твердом теле, жидкости и газе. Типичными продольными волнами являются звуковые волны.

Tect A1

- 1. Если амплитуда гармонических колебаний материальной точки $A=20\,\mathrm{cm}$, то модуль перемещения колеблющейся точки за один период колебаний равен:
 - 1) 80 см;
- 3) 40 см;
- 5) 0 см.

- 2) 60 см;
- 4) 20 cm;
- **2.** Точка, совершающая гармонические колебания, проходит за два полных колебания путь s=100 см. Амплитуда колебаний точки равна:
 - 1) 6,30 см;
- 3) 25,0 см;
- 5) 100 см.

- 2) 12,5 см;
- 4) 50,0 см;

На рисунке 24.1 приведен график зависимости координаты х колеблющейся точки от времени. Уравнение гармонических колебаний имеет вил:

2)
$$x = 0.60 \sin 0.5\pi t$$
 (M);

3)
$$x = 1.2 \sin 0.5 \pi t$$
 (M);

4)
$$x = 1.2 \sin \pi t$$
 (M);

5)
$$x = 0.60 \sin \left(0.5\pi t + \frac{\pi}{2} \right)$$
 (M).

Puc. 24.1

- 4. В начальный момент времени колеблющееся тело находится в положении максимального отклонения. Амплитуда колебаний $A = 0.2 \,\mathrm{M}$, период колебаний $T = 0.1 \, \text{с}$. Уравнение колебаний имеет вид:
 - 1) $y = 0.2\cos 20\pi t$:
 - 2) $y = 0.2 \sin 20\pi t$;
 - 3) $y = 0.2 \sin 2\pi t$;
 - 4) $y = 0.2\cos 2\pi t$;

5)
$$y = 0.2\cos\left(20\pi t + \frac{\pi}{2}\right)$$
.

5. Тело совершает гармонические синусоидальные колебания с амплитудой $A=20\,\mathrm{cm}$ и начальной фазой $\phi_0=\frac{\pi}{6}.$ Смещение x_0 тела от

положения равновесия в начальный момент времени $t = 0 \, \mathrm{c}$ равно:

- 1) 0 cm;
- 3) 10 см;
- 5) 20 cm.

- 2) 5,0 cm;
- 4) 15 cm;
- **6.** Гармонически колеблющееся тело имеет период колебаний $T=0.10\,\mathrm{c}$ и амплитуду A = 0.20 м. Модуль максимальной скорости колеблющегося тела равен:
 - 1) 2.0 cm/c;
- 3) $\pi \, \text{m/c}$;
- 5) $4\pi \text{ M/c}$.

- 2) 2.0 m/c;
- 4) $2\pi \text{ m/c}$:
- 7. Тело совершает гармонические колебания по закону $x = 20 \sin 8\pi t$ (см). Период и частота колебаний равны:
 - 1) $4 c; \frac{1}{4} c^{-1};$
- 3) $4\pi c; \frac{1}{4\pi} c^{-1};$ 5) $\frac{1}{8\pi} c; 8\pi c^{-1}.$

». 2018

- 2) $\frac{1}{4}$ c; 4 c⁻¹; 4) $\frac{1}{4\pi}$ c; 4π c⁻¹;

- **8.** Период колебаний тела на пружине равен T_0 . Если две такие пружины соединить последовательно и подвесить то же тело, то период колебаний будет равен:
 - 1) $2T_0$;

3) T_0 ;

5) $\frac{T_0}{2}$.

- 2) $T_0 \sqrt{2}$;
- 4) $\frac{T_0}{\sqrt{2}}$;
- 9. Период колебаний маятника на пружине равен T_0 . Если две такие пружины соединить, как показано на рисунке 24.2, то период колебаний станет равным (опора гладкая):

Puc. 24.2

1) 2*T*₀;

- 4) $\frac{T_0}{\sqrt{2}}$;
- 2) $T_0 \sqrt{2}$;
- 5) $\frac{T_0}{2}$.

- 3) T_0 ;
- **10.** В каком направлении движется поперечная волна, если частица в точке B (рис. 24.3) смещается вверх?

Puc. 24.3

- 1) Вправо;
- 2) вверх;
- 3) влево;
- 4) вниз;
- 5) зависит от длины волны.

Тест А2

- 1. Пренебрегая потерями механической энергии и временем соударения, определите период колебаний упругого мяча, падающего с высоты h=4.9 м на твердую горизонтальную поверхность:
 - 1) 4,0 c;
- 3) 1.0 c:
- 5) 0.25 c.

- 2) 2,0 c;
- 4) 0,50 c;
- **2.** Модуль ускорения гармонически колеблющегося тела изменяется по закону $a = 0.36\cos 3t \; (\text{m/c}^2)$. Амплитуда колебаний тела равна:
 - 1) 1,1 m;
- 4) 0,040 м;
- 2) 0,36 м;
- 5) 0,020 м.
- 3) 0,12 м;

». 2018

3. На рисунке 24.4 приведен график зависимости смещения колеблющейся точки от времени. Проекция на ось *х* скорости гармонически колеблющейся точки от времени описывается уравнением:

Puc. 24.4

- 1) $v = \pi \cos 2.5\pi t$;
- 2) $v = -\pi \cos 2.5\pi t$;
- 3) $v = \pi \sin 2.5\pi t$;
- 4) $v = -\pi \sin 2.5\pi t$;
- 5) $v = -\pi \sin 5\pi t$.
- **4.** Полная энергия гармонически колеблющегося тела равна W_0 , модуль максимальной силы, действующей на тело, равен F_0 . Период колебаний тела T, начальная фаза колебаний ϕ_0 . Уравнение гармонических колебаний можно записать следующим образом:
 - 1) $x = \frac{W_0}{F_0} \cos \left(\frac{2\pi}{T} t + \varphi_0 \right);$
 - $2) x = \frac{F_0}{W_0} \cos\left(\frac{2\pi}{T}t + \varphi_0\right);$
 - 3) $x = \frac{F_0}{2W_0} \cos\left(\frac{2\pi}{T}t + \varphi_0\right);$
 - 4) $x = \frac{2W_0}{F_0} \cos\left(\frac{2\pi}{T}t + \varphi_0\right);$
 - $5) x = \frac{W_0}{2F_0} \cos\left(\frac{2\pi}{T}t + \varphi_0\right).$
- **5.** Модуль максимальной скорости материальной точки, движение которой описывается уравнением $x = 2.0\cos\left(5.0t \frac{\pi}{4}\right)$ (см), равен:
 - 1) 1,0 cm/c;
- 3) 4,0 cm/c;
- 5) 10 cm/c.

- 2) 2,0 cm/c;
- 4) 8.0 cm/c;
- **6.** Груз неподвижно висит на пружине, когда она растянута на x. Период свободных вертикальных колебаний такого маятника равен:
 - 1) $2\pi\sqrt{gx}$;
- 3) $\frac{x}{\sigma}$

5) $2\pi \frac{x}{g}$.

- $2) \ 2\pi \sqrt{\frac{x}{g}};$
- 4) $\pi\sqrt{\frac{x}{g}}$;

- 7. Маятник подвешен к потолку лифта и имеет период колебаний T, когда лифт неподвижен. Если лифт движется вверх с постоянным ускорением, модуль которого a, то период свободных колебаний маятника равен:
 - 1) T; 3) $\frac{T}{\sqrt{1-\frac{a}{g}}}$; 5) $T\sqrt{1+\frac{a}{g}}$. 2) $\frac{T}{\sqrt{1+\frac{a}{g}}}$; 4) $T\left(1+\frac{a}{g}\right)$;
- **8.** Чтобы растянуть легкую пружину на x = 10 см, требуется приложить силу, модуль которой F = 10 Н. К пружине подвесили тело массой m = 4,0 кг. Период свободных вертикальных колебаний тела равен:
 - 1) $0,2\pi$;

- 3) $2,5\pi$;
- 5) 50π .

2) $0,1\pi;$

- 4) 0.4π ;
- **9.** В каком направлении смещаются частицы в точках A и B (рис. 24.5), если поперечная волна движется вправо?

- 1) Обе частицы вниз;
- 2) A и B смещаются вправо;
- 3) A вниз, B вверх;
- 4) A вверх, B вниз;
- 5) обе частицы вверх.
- **10.** Лодка качается на волнах от проходящего катера. Модуль скорости распространения волны $v = 4.0 \, \text{м/c}$. Расстояние между ближайшими гребнями волн $\lambda = 6.0 \, \text{м}$. Частота колебаний лодка равна:
 - 1) 1,5 Гц;
- 3) 0,55 Гц;
- 5) 0,33 Гц.

- 2) 0,67 Гц;
- 4) 0,50 Гц;

Тест В1

1. Материальная точка совершает гармонические колебания вдоль оси x около положения равновесия (x=0). В начальный момент точка находится в положении равновесия. Амплитуда колебаний A=8,0 см, период $T=\sqrt{3}$ с. Модуль скорости точки при смещении $x=\frac{A}{2}$ равен ... см/с.

- **2.** Материальная точка массой m=43 г колеблется по закону $x=0{,}060\sin\left(\frac{\pi}{4}t+\frac{\pi}{3}\right)$ (м). В момент времени t=40 с кинетическая энергия точки равна ... мкДж.
- **3.** Модули максимального ускорения и максимальной скорости тела, совершающего гармонические колебания, $a_0=3,14\,\mathrm{m/c^2}$ и $v_0=1,0\,\mathrm{m/c}$. Период колебаний равен ... с.
- **4.** Материальная точка массой m=5,0 г колеблется по закону $x=4,0\sin 10\pi t$ (см). Модуль силы, действующей на точку в момент времени $t=\frac{1}{60}$ с, равен ... мН.
- 5. Период колебаний пружинного маятника T=1,00 с. Пружинный маятник вывели из положения равновесия и отпустили. Промежуток времени, через который кинетическая энергия W_{κ} колеблющегося тела будет равна потенциальной энергии W_{π} пружины, составит ... с.
- 6. Математический маятник длиной $l=100\,\mathrm{cm}$ совершает колебания параллельно вертикальной стенке. Ниже подвеса на расстоянии $\frac{l}{2}$ в точке A в стенку забит тонкий гвоздь (рис. 24.6). Период колебаний такого маятника равен ... с.

- 7. К пружине, верхний конец которой закреплен, подвешен груз массой m=0,20 кг. Коэффициент упругости пружины k=60 Н/м. В начальный момент времени груз оттянули от положения равновесия вниз на расстояние x=10 см и сообщили скорость, модуль которой v=3,0 м/с, направленную вверх. Амплитуда возникших колебаний равна ... см.
- **8.** Математический маятник длиной l=1,00 м подвешен в вагоне, движущемся горизонтально с ускорением, модуль которого a=2,00 м/с² (ускорение свободного падения g=9,81 м/с²). Период колебаний такого маятника равен ... с.
- 9. Звуковой генератор, погруженный в море, возбуждает волны длиной $\lambda = 2,50$ м и частотой $\nu = 580$ Гц. Модуль скорости этих волн в воде равен ... км/с.
- **10.** В воде находится источник колебаний, который испускает волны с частотой $\nu=28$ Гц. Модуль скорости звука в воде $v=1400\,\mathrm{m/c}$. Расстояния от источника колебаний до точек A и B равны 80 м и 105 м.

© « », 2018

Отношение разности хода Δx звуковой волны в точках A и B к длине волны λ равно

Тест В2

- **1*.** Материальная точка совершает гармонические колебания по закону $x = 5.0 \sin 2t$ (м). Модуль возвращающей силы, действующей на точку, впервые достигнет значения F = 5.0 мH, а потенциальная энергия системы $W_{\pi} = 6.0$ мДж в момент времени, равный ... с.
- 2. Полная энергия гармонически колеблющегося тела $W=3,0\cdot 10^{-5}~\rm Дж,$ модуль максимальной силы, действующей на тело, $F=1,5\cdot 10^{-3}~\rm H,$ и за одну минуту тело совершает полные колебания в количестве N=30. Если начальная фаза $\phi_0=30^\circ$, то смещение x тела от положения равновесия в момент времени $t=\frac{1}{6}~\rm c$ от начала колебаний равно ... см.
- **3.** Шарик подвешен на длинной нити. Один раз его поднимают по вертикали до точки подвеса, другой раз отклоняют на небольшой угол. Отношение времени возврата шарика к начальному положению в первом случае t_1 к t_2 во втором случае равно
- **4*.** На рисунке 24.7 показано положение равновесия колебательной системы (математический маятник массой m=1000 г длиной l=400 мм с пружинной связью с жесткостью k=100 Н/м). Период малых колебаний такой системы равен ... мс.
- **5*.** Груз массой m = 200 г висит на пружине, жесткость которой k = 60 H/м. От груза отвалилась часть массой $\Delta m = 50$ г. Модуль максимальной скорости колебаний оставшейся части будет равен ... см/с.

Puc. 24.7

- **6.** Коробка массой M=2 кг стоит на горизонтальном столе. В коробке на пружине жесткостью $k=2000\,\mathrm{H/m}$ подвешен груз массой m=M. Коробка начнет подпрыгивать на столе, если амплитуда колебаний груза составит ... см.
- 7. Платформа совершает гармонические колебания в горизонтальной плоскости с частотой v=1 Γ ц. На платформе находится тело с коэффициентом трения скольжения по платформе $\mu=0,2$. Минимальная амплитуда колебаний платформы, чтобы груз начал скользить, должна быть равна ... см.

- **8*.** Два бруска массами $m_1=0.20~\rm kr$ и $m_2=0.40~\rm kr$, соединенные легкой пружиной, жесткость которой $k=21~\rm H/m$, удерживаются в сжатом состоянии нитью. Бруски находятся на гладкой горизонтальной поверхности. Если нить пережечь, то бруски приходят в гармоническое колебательное движение. Период гармонических колебаний бруска массой m_1 равен ... с.
- **9.** Поплавок удочки качается на волнах, распространяющихся по воде с некоторой скоростью. Расстояние между ближайшими гребнями волны $\lambda = 5$ м. Период колебаний поплавка T = 2,5 с. Модуль скорости волн на воде равен ... м/с.
- **10.** Точки, лежащие на одном луче и удаленные от источника звука на расстояния $l_1=14,0$ м и $l_2=14,2$ м, колеблются с разностью фаз $\frac{2}{3}\pi$. Модуль скорости звука в воздухе $v=340\,\mathrm{m/c}$. Частота колебаний равна ... Гц.

§ 25. Электромагнитные колебания

Электромагнитные колебания — это периодические изменения со временем заряда q(t), силы тока I(t), напряжения U(t), напряженности электрического поля $\vec{E}(t)$ и индукции магнитного поля $\vec{E}(t)$.

Период T свободных электромагнитных колебаний в идеальном контуре определяется формулой Томсона

$$T = 2\pi\sqrt{LC}$$
,

где L — индуктивность контура; C — емкость его.

Зависимость заряда q и напряжения U на обкладках конденсатора от времени t имеют вид:

$$q = q_0 \cos(w_0 t + \varphi_0),$$

$$U = U_0 \cos(w_0 t + \varphi_0),$$

где $q_{\scriptscriptstyle 0}$ и $U_{\scriptscriptstyle 0}$ — амплитудные значения заряда и напряжения на обкладках конденсатора. Сила тока в контуре

$$I = q_t' = -q_0 w \sin(w_0 t + \varphi_0),$$

где $q_{\,0}w=I_{\,0}$ — максимальная сила тока в контуре; $w=\frac{1}{\sqrt{LC}}$ — циклическая частота.

© « », 2018

Энергия W в контуре состоит из энергии электростатического поля в конденсаторе $W_{\text{\tiny эл}}=\frac{CU^2}{2}$ и энергии магнитного поля в катушке индуктивности $W_{\text{\tiny м}}=\frac{LI^2}{2}$:

$$W = \frac{CU^2}{2} + \frac{LI^2}{2} = \frac{CU_0^2}{2} = \frac{LI_0^2}{2}.$$

Часть энергии расходуется на излучение электромагнитных волн — электромагнитного поля, распространяющегося в пространстве с конечной скоростью

$$v = \frac{c}{\sqrt{\varepsilon \mu}}$$

где $c=3\cdot 10^8\,\mathrm{m/c}$ — скорость электромагнитной волны в вакууме; ε и μ — диэлектрическая и магнитная проницаемости среды.

Длина электромагнитной волны в вакууме $\lambda = cT = \frac{c}{v}$

Tect A1

- 1. Зависимость силы тока I от времени t в колебательном контуре приведена на рисунке 25.1. Закон изменения силы тока от времени имеет вид:
 - 1) $I = 0.1\sin(100\pi t + \pi)$;
 - 2) $I = 0.1\sin(50\pi t + \pi)$;
 - 3) $I = 0.1\sin 100\pi t$;
 - 4) $I = 0.1\sin(200\pi t + \pi)$;
 - 5) $I = 0.1\sin 50\pi t$.

Puc. 25.1

- 2. Конденсатор емкостью C зарядили до напряжения U_0 , а затем замкнули на катушку индуктивностью L. Напряжение на конденсаторе через время, равное $\frac{1}{6}$ части периода электромагнитных колебаний
 - в контуре, составит:

1)
$$\frac{1}{4}U_0B$$
;

3)
$$\frac{1}{3}U_0B$$
;

5)
$$\frac{U_0}{2}$$
.

2)
$$\frac{U_0\sqrt{3}}{3}$$
;

4)
$$\frac{U_0\sqrt{2}}{2}$$
;

- **3.** Емкость конденсатора и индуктивность катушки колебательного контура C=5 мк Φ и $L=5\cdot 10^{-6}$ Гн. Период электромагнитных колебаний в контуре равен:
 - 1) $\pi \cdot 10^{-3}$ c;
- 3) 10^{-5} c;
- 5) $5 \cdot 10^{-5}$ c.

- 2) $\pi \cdot 10^{-5}$ c;
- 4) 10⁻⁶ c;
- **4.** Если в колебательном контуре емкость конденсатора увеличить в 25 раз, а индуктивность уменьшить в 16 раз, то частота собственных колебаний контура:
 - 1) увеличится в 1,25 раза;
 - 2) увеличится в $\frac{25}{16}$ раза;
 - 3) уменьшится в 1,25 раза;
 - 4) уменьшится в 20 раз;
 - 5) увеличится в 20 раз.
- **5.** Если увеличить расстояние между обкладками воздушного конденсатора колебательного контура в k=2 раза и погрузить конденсатор в жидкость с диэлектрической проницаемостью $\varepsilon=8$, то частота колебаний в контуре:
 - 1) уменьшится в 2 раза;
 - 2) уменьшится в 4 раза;
 - 3) увеличится в 2 раза;
 - 4) увеличится в 4 раза;
 - 5) не изменится.
- **6.** Напряжение на конденсаторе колебательного контура изменяется по закону $U = 40.0\cos\left(6\pi \cdot 10^6 t\right)$ В. Длина электромагнитной волны, на которую настроен контур, равна:
 - 628 м;
- 3) 100 м;
- 5) $\frac{100}{2\pi}$ M.

- 2) 314 m;
- 4) 80,0 м;
- 7. Чтобы перейти от длины волны λ к длине волны $\frac{\lambda}{4}$, в приемном колебательном контуре нужно емкость конденсатора:
 - 1) увеличить в 4 раза;
 - 2) уменьшить в 4 раза;
 - 3) увеличить в 16 раз;
 - 4) уменьшить в 16 раз;
 - 5) уменьшить в 8 раз.

- 8. Морской сигнал бедствия SOS передается на длине волны $\lambda = 0,60$ км. Частота передаваемого сигнала равна:
 - 1) 1,8·10¹¹ Гц;
- 3) 600 Гц;
- 5) 1,8·10⁶ Гц.

- 2) 2,0·10⁻⁶ Гц;
- 4) 5,0·10⁵ Γιι;
- **9.** Сила тока в колебательном контуре радиопередатчика изменяется по закону $I = 0.200 \cdot \sin \left(3\pi \cdot 10^6 \, t \right)$ А. Длина электромагнитной волны, излучаемая передатчиком, равна:
 - 1) 200π m;
- 3) $\frac{200}{\pi}$ M;
- 5) 300 м.

- 2) 200 м;
- 4) 400 m;
- **10.** Если длину электромагнитной волны в вакууме увеличить в 3 раза, то скорость распространения электромагнитной волны:
 - 1) увеличится в 3 раза;
 - 2) увеличится в $\sqrt{3}$ раз;
 - 3) увеличится в 9 раз;
 - 4) уменьшится в $\sqrt{9}$ раз;
 - 5) не изменится.

Тест А2

- 1. На графике (рис. 25.2) представлена зависимость от времени заряда q(t) на обкладках конденсатора колебательного контура. Амплитудное значение силы тока I_0 равно:
 - 1) 15,7 A;
- 3) 157 A;
- 5) 5,00 A.

». 2018

- 2) 1,57 A;
- 4) $\frac{15.7}{2\pi}$ A

Puc. 25.2

2. Напряжение на конденсаторе $U_{\scriptscriptstyle 0}$. К конденсатору подключают катушку индуктивностью L. Частота возникших электромагнитных

колебаний в контуре равна v. Сила тока I в колебательном контуре изменяется по закону:

- 1) $\frac{U_0}{2\pi^2 v^2 I} \sin 2\pi vt$;
- 4) $-\frac{U_0}{2\pi vL}\cos 2\pi vt;$ 5) $\frac{U_0}{2\pi^2 v^2 L}\cos 2\pi vt.$
- 2) $\frac{U_0}{4\pi^2 v^2 I} \cos 2\pi vt$;
- 3) $-\frac{U_0}{2\pi v^I}\sin 2\pi vt$;
- 3. Колебательный контур состоит из индуктивности и двух конденсаторов одинаковой емкости, соединенных параллельно. Период электромагнитных колебаний в таком контуре T = 9.0 мкс. Если эти конденсаторы соединить последовательно, то период колебаний станет равным:
 - 1) 4,5 mkc;
- 3) 18 мкс;
- 5) 3,0 мкс.

- 2) 6.0 MKC:
- 4) $\sqrt{3.0}$ MKC:
- 4. Если сила тока в цепи идеального колебательного контура изменяется по закону $I = 1.0 \sin 10^4 t$ мA, а индуктивность катушки контура $L = 10 \,\mathrm{mT}$ н, то емкость конденсатора равна:
 - 1) $2\pi \cdot 10^{-6}$ Φ ;

4) $1.0 \cdot 10^{-7} \Phi$;

2) $1.0 \cdot 10^{-6} \Phi$;

5) 1.0·10⁻⁸ Φ.

- 3) $\frac{1}{2\pi} \cdot 10^{-6} \Phi$;
- 5. В идеальном колебательном контуре емкость конденсатора $C = 2.0 \,\mathrm{mk}\Phi$, а амплитуда напряжения на нем $U = 10 \,\mathrm{B}$. Максимальная энергия магнитного поля катушки в таком контуре равна:
 - 1) 0,10 мДж;
- 3) 20 мДж;
- 5) 1,0 Дж.

- 2) 10 мДж;
- 4) 0,10 Дж;
- 6. В электрическом колебательном контуре индуктивность катушки $L = 4.0 \,\mathrm{MT}$ н, а максимальная сила тока в ней $I_0 = 100 \,\mathrm{MA}$. В момент, когда сила тока в катушке I = 50 мA, энергия электрического поля конденсатора равна:
 - 1) 15 мкДж;
- 3) 31 мкДж;
- 5) 54 мкДж.

- 2) 25 мкДж; 4) 40 мкДж;
- 7. Приемный контур прибора состоит из катушки с индуктивностью $L = 4.00 \,\mathrm{mk} \, \Gamma$ н и конденсатора с емкостью $C = 100 \,\mathrm{n} \, \Phi$. Контур лучше всего реагирует на электромагнитную волну длиной, равной:
 - 1) 18,8 м;
- 3) 75,4 м;
- 5) 88,4 m.

- 2) 37,7 m;
- 4) 60.0 m:

- 8. Емкость переменного конденсатора входного колебательного контура радиоприемника можно изменять в пределах от C до 16C. При емкости конденсатора, равной 4C, контур настроен на длину волны $\lambda = 28$ м. Диапазон длин волн, принимаемых приемником, равен:
 - 1) от 7,0 до 112 м;
- 4) от 7,0 до 56 м;
- 2) от 14 до 112 м;
- 5) от 7,0 до 28 м.
- 3) от 14 до 56 м;
- **9.** Передатчик работает на длине волны $\lambda = 60$ м. Индуктивность колебательного контура передатчика L = 1,5 мГн. Емкость колебательного контура равна:
 - 2,7 πΦ;
- 3) $0.68 \, \text{m}$ Φ ;
- 5) 0,17 πΦ.

- 1,4 πΦ;
- 4) $0.34 \, \text{n}\Phi$;
- 10. Частота повторения импульсов радиолокатора v = 1000 Гц, длительностью самого импульса можно пренебречь. Максимальная дальность обнаружения цели локатором равна:
 - 1) 30,0 км;
- 3) 300 км;
- 5) $3,00 \cdot 10^3$ км.

- 2) 150 км;
- 4) $1,50 \cdot 10^3$ км;

Тест В1

- 1. Кривая зависимости силы тока I от времени t в колебательном контуре приведена на рисунке 25.3. Сила тока в момент времени t=0.0117 с равна ... мкA.
- 2. Частота колебаний в колебательном контуре $\mathbf{v} = 10 \, \mathrm{к} \Gamma$ ц. Амплитудное значение силы тока в контуре $I_0 = 0,\!10 \, \mathrm{A}$. Максимальный заряд на обкладках конденсатора равен ... мкКл.

- **3.** Заряд на обкладках конденсатора входного контура приемника изменяется по закону $q=4.0\cdot 10^{-6}\sin 6.25\cdot 10^6 \, t$. Емкость входного контура приемника C=80 пФ. Индуктивность входного контура приемника равна ... мГн.
- **4.** В электрическом колебательном контуре индуктивность катушки L=5,0 мкГн. Если частота электромагнитных колебаний в контуре $\nu=50$ кГц, то емкость конденсатора в контуре равна ... мк Φ .

- **5.** Максимальная сила тока в идеальном колебательном контуре $I_0 = 1,0$ мА, а максимальный заряд на обкладке конденсатора в этом контуре $q_0 = \frac{10}{\pi}$ мкКл. Частота электромагнитных колебаний, происходящих в контуре, равна ... с⁻¹.
- 6. Энергия заряженного конденсатора в идеальном колебательном контуре через $\frac{1}{6}$ периода свободных колебаний после подключения конденсатора к катушке индуктивности уменьшится в ... раз (раза).
- 7. Энергия электромагнитных колебаний в колебательном контуре W=0.50 мДж, частота колебаний v=400 кГц. Если максимальный заряд на обкладках конденсатора $q_0=50$ нКл, то индуктивность катушки, включенной в контур, составляет ... мГн.
- 8. В начальный момент времени конденсатор полностью заряжен. Период электромагнитных колебаний T=0,0020 с. Наименьший промежуток времени, через который энергия электромагнитных колебаний в контуре распределится поровну между катушкой и конденсатором, составляет ... мс.
- **9.** В колебательном контуре радиоприемника происходят свободные электромагнитные колебания. Если максимальный заряд конденсатора q=10,0 нКл, а максимальный ток I=0,100 А, то длина волны, на которую настроен контур, равна ... м.
- **10.** Локатор испускает импульсы частотой $v = 4.0 \, \mathrm{к} \, \mathrm{\Gamma}$ ц. Период электромагнитной волны $T = 2.0 \, \mathrm{mkc}$. Максимальная и минимальная дальности обнаружения цели локатором равны ... км.

Тест В2

- 1. График зависимости силы тока I в колебательном контуре от времени t приведен на рисунке 25.4. Заряд на обкладках конденсатора в момент времени t = 0.025 с составляет ... мКл.
- 2. Катушка с индуктивностью L = 31мГн присоединена к плоскому конденсатору с площадью пластин S = 20 см 2 и расстоянием между ними d = 1 см. Если амплитуда силы тока получив-

Puc. 25.4

шегося контура $I_0=0.2$ мА, а амплитуда напряжения $U_0=10~\mathrm{B},$ то диэлектрическая проницаемость среды, заполняющей конденсатор, составляет

- 3. Максимальное напряжение U в идеальном колебательном контуре, состоящем из катушки индуктивностью L=6,00 мкГн и конденсатора емкостью C=2600 пФ, равно 12,0 В. Число витков в катушке N=40. Максимальное значение магнитного потока равно ... нВб.
- **4.** В электрическом колебательном контуре сила тока изменяется по закону $I=0,10\cos 500t$. Емкость конденсатора в контуре C=4,0 мкФ. Максимальное напряжение на обкладках конденсатора равно ... В.
- 5. Конденсатор подключили к источнику постоянного тока с ЭДС $\mathscr{C}=10,0$ В. Затем его отсоединили от источника и подключили к идеальной катушке, индуктивность которой L=20 мГн. В образовавшемся колебательном контуре возникли электромагнитные колебания с частотой $\mathbf{v}=660$ Гц. Максимальное значение силы тока в колебательном контуре равно ... А.
- **6*.** В электрическом колебательном контуре напряжение на обкладках конденсатора и сила тока в катушке индуктивности изменяются по законам: $U = 3.0\cos\left(6.0\cdot10^3\,t\right)$ В и $I = 2.0\sin\left(6.0\cdot10^3\,t\right)$ А. Индуктивность катушки равна ... мГн.
- 7. Заряженный конденсатор замкнули на катушку индуктивности. Период электромагнитных колебаний в контуре T=0,12 мс. Энергия магнитного поля в катушке будет в 3 раза больше энергии электрического поля в конденсаторе через время после подключения, равное ... мкс.
- 8. Колебательный контур состоит из катушки индуктивностью L=0,20 Гн и конденсатора емкостью C=10 мкФ. Конденсатор зарядили до напряжения $U_0=4,0$ В и он начал разряжаться. В момент, когда энергия контура поровну распределится между электрическим и магнитным полями, сила тока в контуре составит ... мА.
- **9.** Длина волны, на которую настроен приемный контур с конденсатором, емкость которого C=6,0 п Φ , если в катушке контура при скорости изменения силы тока $\frac{\Delta I}{\Delta t}=4,0$ А/с возникает ЭДС самоиндукции $\mathscr{C}_{si}=0,30$ В, равна ... км.
- **10***. В колебательном контуре радиоприемника при резонансе отношение максимальных значений напряжения на конденсаторе к току в катушке индуктивности k = 3.0, а электроемкость конденсатора $C = 50 \, \mathrm{h}\Phi$. Радиоприемник настроен на длину волны, равную ... км.

§ 26. Переменный электрический ток

Переменный ток получают при помощи генератора переменного тока, принцип действия которого состоит во вращении рамки в магнитном поле. Модуль ЭДС индукции \mathscr{C}_i в рамке из N витков, вращающейся в магнитном поле с модулем индукции B, определяется выражением

$$\mathcal{E}_i = BSwN \sin wt$$
,

где S- площадь рамки; w- угловая скорость вращения. Амплитуда (максимальное значение) ЭДС индукции $\mathscr{C}_0=BSwN$.

Если концы рамки замкнуты на резистор сопротивлением R, то сила тока $I=\frac{BSNw}{R}\sin wt$; амплитуда силы тока $I_0=\frac{BSNw}{R}$.

Под ∂ ействующим значением I_{π} силы переменного тока (напряжения U_{π}) понимают силу (напряжение) такого постоянного тока, при прохождении которого в цепи выделялось бы за 1 с такое же количество теплоты, как при прохождении переменного тока:

$$I_{\scriptscriptstyle \rm I} = \frac{I_{\scriptscriptstyle 0}}{\sqrt{2}}, \qquad U_{\scriptscriptstyle \rm I} = \frac{U_{\scriptscriptstyle 0}}{\sqrt{2}}.$$

Средняя мощность переменного тока за длительный промежуток времени

$$\langle P \rangle = \frac{I_0^2 R}{2} = \frac{U_0^2}{2R} = \frac{I_0 U_0}{2} = I_{\pi} U_{\pi} = I_{\pi}^2 R = \frac{U_{\pi}^2}{R}.$$

Конденсатор и катушка индуктивности в цепи переменного тока ограничивают силу тока, оказывая сопротивление прохождению тока.

Емкостное сопротивление конденсатора

$$X_C = \frac{1}{wC},$$

где w — циклическая частота переменного тока; C — емкость конденсатора. *Индуктивное сопротивление* X_L = wL, где L — индуктивность катушки.

Если в цепь переменного тока последовательно включить резистор сопротивлением R, конденсатор емкостью C и катушку индуктивностью L, то полное сопротивление цепи переменного тока

$$Z = \sqrt{R^2 + \left(wL - \frac{1}{wC}\right)^2}.$$

© « », 2018

Сила тока в такой цепи $I_{_{\rm A}} = \frac{U_{_{\rm A}}}{2}$.

Если $wL - \frac{1}{wC} = 0$, то сопротивление цепи минимальное, а сила тока

максимальная.

Это явление называется резонансом напряжения, а $w_{\text{pea}} = \frac{1}{\sqrt{IC}}$ резонансной частотой.

Для преобразования напряжения и силы переменного тока служит трансформатор.

Отношение числа n_1 витков в первичной катушке к числу витков n_2 во вторичной катушке называется коэффициентом трансформации:

$$k = \frac{n_1}{n_2} = \frac{U_{\text{Al}}}{U_{\text{n2}}} = \frac{I_{\text{A2}}}{I_{\text{n1}}}.$$

Tect A1

- **1.** Циклическая частота переменного тока $w = 200\pi$ рад/с. Период переменного тока равен:
 - 1) 0,020 c;
- 3) 0,0050 c;
- 5) 0,0020 c.

- 2) 0,010 c;
- 4) 0,0025 c;
- **2.** Напряжение зажигания неоновой лампы $U_3 = 280 \, \text{B}$. Вольтметр показывает, что в сети переменного тока частотой v = 50 Гц напряжение U = 220 В. При таком напряжении происходит следующее:
 - 1) лампа гореть не будет;
 - 2) лампа будет гореть прерывисто;
 - 3) лампа будет гореть непрерывно;
 - 4) в сети переменного тока неоновая лампа вообще не горит;
 - 5) недостаточно данных для решения.
- 3. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону $\mathscr{E} = 80 \sin 100 \pi t$. Действующее значение напряжения U_{π} и время T одного оборота рамки равны:

 - 1) 80 B; 0,02 c; 3) $\frac{80}{\sqrt{2}}$ B; 0,04 c; 5) $\frac{80}{\sqrt{2}}$ B; 0,01 c.
 - 2) $\frac{80}{\sqrt{2}}$ B; 100π c; 4) $\frac{80}{\sqrt{2}}$ B; 0.02 c;

22	6 КОЛЕБАНИЯ И ВОЛНЫ
4.	Рамка из десяти проволочных витков вращается в однородном магнитном поле. Магнитный поток, пронизывающий рамку, изменяется по закону $\Phi = 0.020\cos 100\pi t$. Зависимость модуля возникающей при этом Θ от времени имеет вид: 1) $6.3\cos 100\pi t$; 3) $6.3\sin 100\pi t$; 5) $98\sin 100\pi t$. 2) $63\cos 100\pi t$; 4) $63\sin 100\pi t$;
5.	Начальная ЭДС индукции в рамке, вращающейся в магнитном поле, равна нулю. Если амплитудное значение ЭДС в рамке $\mathscr{C}_0 = 100$ В, то через промежуток времени $t = \frac{1}{12}T$, где T — период вращения,

мгновенное значение ЭДС равно: 1) 100 B; 3) 70,7 B; 5) 41,4 B. 2) 86,6 B; 4) 50,0 B;

6. Прямоугольная рамка площадью $S=100\,\mathrm{cm}^2$ имеет витки в количестве N=200 и вращается в однородном магнитном поле, модуль индукции которого $B=0,020\,\mathrm{Tn}$. Ось вращения рамки перпендикулярна силовым линиям магнитного поля. Амплитудное значение ЭДС индукции $\mathcal{C}_{\mathrm{max}}$, возникающей в рамке, равно 0,5 В. Частота вращения рамки равна:

1) 10 o6/c; 3) 6 o6/c; 5) 2 o6/c. 2) 8 o6/c; 4) 4 o6/c;

7. Напряжение на первичной обмотке трансформатора $U_1=220~\mathrm{B},$ сила тока $I_1=0.50~\mathrm{A}.$ На клеммах вторичной обмотки трансформатора напряжение $U_2=22~\mathrm{B},$ сила тока во вторичной цепи $I_2=4.0~\mathrm{A}.$ КПД трансформатора равен:

1) 75 %; 3) 85 %; 5) 92 %. 2) 80 %; 4) 90 %;

8. В сеть переменного тока частотой v включены конденсатор емкостью C и катушка с индуктивностью L. Отношение индуктивного сопротивления к емкостному равно:

1) $2\pi v^2 LC$; 3) $\frac{v^2 LC}{4\pi^2}$; 5) $\frac{L}{C}$. 2) $4\pi^2 v^2 LC$; 4) $\frac{v^2 LC}{2\pi^2}$;

9. Действующее значение напряжения на клеммах катушки индуктивностью L=1,2 Гн $U_{_{\rm J}}=220$ В. Частота переменного тока ${\rm v}=50$ Гц. Амплитудное значение силы тока в катушке равно:

1) 0,58 A; 3) 1,0 A; 5) 1,7 A. 2) 0,83 A; 4) 1,2 A;

© « », 2018

10.	Трансформатор содержит в первичной обмотке витки в количестве
	$n_{\!\scriptscriptstyle 1}=840$ и повышает напряжение от $U_{\scriptscriptstyle 1}=220$ В до $U_{\scriptscriptstyle 2}=660$ В. Число
	витков во вторичной обмотке равно:

1) 280;

3) 2,70·10³; 4) 2,80·10³;

5) $5.04 \cdot 10^3$.

2) $2.52 \cdot 10^3$:

Tect A2

1. Рамка из двадцати витков площадью $S = 300 \, \text{см}^2$ каждый вращается в однородном магнитном поле с угловой скоростью ω = 31,4 рад/с вокруг оси, перпендикулярной вектору индукции B магнитного поля, модуль которого B = 0.100 Тл. В начальный момент нормаль к плоскости рамки составляет α = 60° с линиями магнитной индукции. ЭДС индукции на концах рамки зависит от времени по закону:

1) $\mathcal{E} = 1.88 \sin\left(3.14t + \frac{\pi}{6}\right) B;$ 4) $\mathcal{E} = 18.8 \sin\left(31.4t + \frac{\pi}{3}\right) B;$ 2) $\mathcal{E} = 1.88 \sin\left(3.14t + \frac{\pi}{3}\right) B;$ 5) $\mathcal{E} = 18.8 \sin\left(31.4t + \frac{\pi}{6}\right) B.$

3) $\mathscr{E} = 1.88 \sin \left(31.4t + \frac{\pi}{3} \right) B;$

2. Полагая, что напряжение в сети изменяется по закону синуса и начальная фаза $\phi_0 = \frac{\pi}{12}$, определите мгновенное значение напряжения в момент времени $t = \frac{1}{1200}$ с. Действующее напряжение $U_{_{\rm I}} = 220$ В,

частота $v = 50 \Gamma_{\rm H}$.

1) 102,4 B;

3) 155,6 B:

5) $220\sqrt{2}$ B.

2) 124,6 B;

4) 220 B:

3. В начальный момент времени напряжение на клеммах генератора переменного тока равно амплитудному, $U_0 = 100 \text{ B}$. Частота переменного тока v = 50 Гц. Напряжение на клеммах генератора через $\Delta t = \frac{1}{300}$ c pabho:

1) 40 B;

2) 60 B; 3) 87 B; 4) 50 B;

5) 71 B.

4. В сеть переменного тока напряжением $U = 220 \,\mathrm{B}$ и частотой $v = 50 \,\mathrm{\Gamma u}$ включили конденсатор. Амплитудное значение силы тока в конденсаторе $I_0 = 0.20$ А. Емкость этого конденсатора равна:

2,0 мкΦ;

3) $9.1 \cdot 10^{-4} \text{ MK}\Phi$; 5) $5.0 \cdot 10^{-3} \text{ MK}\Phi$.

2) 2.9 MKΦ:

4) 7.8 MKΦ:

 $U = 311\sin 314t$, равно:

1) 264 кДж;

2) 528 кДж;

», 2018

5) 460 кДж.

	тивлением обмотки $R = 25,0$ Ом включен вначале в сеть постоянного тока, а затем в сеть переменного тока частотой $v = 50$ Гц. Дейст-			
	вующее значение напряжения в сети переменного тока равно на-			
	пряжению в сети постоянного тока. Отношение сил токов $\frac{I_1}{I_2}$ равно:			
	1) 1,26; 2) 1,41;	3) 1,48; 4) 1,61;	5) 2,23.	
7.	ки в количестве $N=200$, ток в ней $I_1=0,50\mathrm{A}$ и к ней подведена мощность $P=1,0$ кВт. Напряжение на вторичной обмотке $U_2=200\mathrm{B}$. Число витков во вторичной обмотке равно:			
	1) 10; 2) 20;	3) 40; 4) 50;	<i>3)</i> 2,0·10 .	
8.				
	 0,050 рад; 0,1π рад; 		5) 0,4π рад.	
9.	форматора составляет 12,5. Если сила тока в нагрузке $I_{_{\rm H}}$ = 2,0 Å, то			
	сила тока в первичн 1) 6,3 A; 2) 50 A;	ои оомотке идеально 3) 1,8 A; 4) 25 A;	ого трансформатора равна: 5) 13 A.	
10. Трансформатор с коэффициентом трансформации $k=10$ понижает напряжение с $U_1=10$ кВ до $U_2=800$ В. Если действующее значение силы тока во вторичной обмотке $I_2=2$ А, то ее сопротивление R_2 равно:				
	1) 0,1 кОм; 2) 0,2 кОм;	3) 0,3 кОм; 4) 0,4 кОм;	5) 0,5 кОм.	

5. Количество теплоты, которое выделяется за время t = 10.0 мин в кипятильнике сопротивлением R = 110 Ом, включенном в сеть переменного тока, напряжение в которой изменяется по закону

6. Соленоид, индуктивность которого $L = 100 \,\mathrm{mTh}$, с активным сопро-

3) 373 кДж;

4) 412 кДж;

Тест В1

- 1. Квадратная рамка со стороной a=10 см вращается в однородном магнитном поле с угловой скоростью $w=300\,\mathrm{pag/c}$. Модуль индукции магнитного поля $B=20\,\mathrm{mTm}$. Сопротивление рамки $R=10\,\mathrm{Om}$, ось вращения рамки перпендикулярна к линиям магнитной индукции. Максимальная сила тока в рамке равна ... мА.
- **2*.** К участку цепи переменного тока приложено напряжение $U_{_{\rm R}}=220~{\rm B.}$ Сопротивления резисторов $R_{_{1}}=1000~{\rm OM},$ $R_{_{2}}=200~{\rm OM},$ $R_{_{3}}=500~{\rm OM}.$ В цепь включен идеальный диод D (рис. 26.1). Средняя мощность, выделенная в такой цепи, равна ... Вт.

Puc. 26.1

- во теплоты $Q=13.5\,\mathrm{Д}$ ж, то сопротивление R нагрузки равно ... Ом.
- 4. В цепь переменного тока частотой v = 4000 Гц включены последовательно соединенные конденсатор, резистор и катушка. Индуктивность катушки L = 0.12 Гн. Резонанс напряжений в такой цепи наблюдается, если емкость конденсатора равна ... н Φ .
- 5. В сеть переменного тока с действующим напряжением $U=220~{\rm B}$ и циклической частотой $\omega=314~{\rm pag/c}$ последовательно включены резистор с сопротивлением $R=200~{\rm Om}$, конденсатор емкостью $C=22~{\rm mk}\Phi$ и катушка индуктивностью $L=2,0~{\rm Fh}$. Амплитуда тока в цепи равна ... A.
- 6. Цепь переменного тока состоит из последовательно соединенных резистора R=80,0 Ом, индуктивного и емкостного сопротивления, величины которых $x_L=x_C=800$ Ом. Напряжение в цепи переменного тока U=1000 В. Падение напряжения на индуктивном и емкостном сопротивлениях равно ... кВ.
- 7. Конденсатор, подключенный к электрической цепи переменного тока с частотой $\mathbf{v}_1=50$ Гц и действующим напряжением U=220 В, имеет сопротивление $x_C=800$ Ом. Если частоту увеличить до $\mathbf{v}_2=400$ Гц, то максимальное значение силы тока через конденсатор составит ... А.

- **8*.** Неоновая лампа включена в сеть на время t = 30 мин. Лампа зажигается и гаснет, когда напряжение на ее электродах равно действующему. Такая лампа будет гореть ... мин.
- **9.** Чтобы от электростанции мощностью $P = 5.00 \; \mathrm{MBr}$ было передано 99.5% энергии, в линии электропередачи сопротивлением $R=36\,\mathrm{Om}$ необходимо повысить напряжение до ... кВ.
- **10.** Силовой трансформатор рассчитан на мощность $P = 10.0 \, \text{кВт. КПД}$ трансформатора $\eta = 95,0\%$. Напряжение на вторичной обмотке трансформатора $U_2 = 230\,$ В. Сила тока во вторичной обмотке трансформатора равна ... А.

Тест В2

- 1. В начальном положении нормаль к рамке совпадает с направлением силовых линий индукции магнитного поля. Рамка площадью $S = 100 \text{ cm}^2$ состоит из витков в количестве N = 200 и вращается в магнитном поле, модуль индукции которого B = 10.0 мTл, совершая 10 оборотов в секунду. ЭДС индукции \mathscr{C}_i в рамке через время $\Delta t = \frac{1}{120}$ с после начального положения рамки равна ... В.
- 2. В сеть переменного тока с действующим напряжением U = 220 B включена схема, состоящая из двух идеальных диодов и трех одинаковых резисторов сопротивлением $R = 5.0 \,\mathrm{кOm}$ каждый (рис. 26.2). Мощность, которая выделяется на резисторах, составляет ... Вт.
- **3*.** Резистор сопротивлением $R_2 = 240$ Ом включен в цепь переменного тока с действующим напряжением $U_{\pi}=220~\mathrm{B}.$ Сопротивления резисторов в приведенной схеме (рис. 26.3) $R_1 = 120 \,\text{Om}, R_3 = R_4 = 300 \,\text{Om}.$ В цепь включен идеальный диод *D*. Мощность, которая выделится на резисторе R_2 , равна ... Вт.
- Puc. 26.3 **4.** Лампочку мощностью P = 60 Вт, рассчитанную на напряжение $U_{\pi 1} = 127$ В, нужно включить в сеть переменного тока с действующим напряжением $U_{\pi^2} = 220 \,\mathrm{B}$. Индуктивность катушки, которую нужно включить по-

Puc. 26.2

следовательно с лампочкой, чтобы лампочка горела полным накалом, составляет ... Гн. Частота переменного тока $\nu = 50$ Гц.

- 5. Лампочку мощностью $P=60\,$ Вт, рассчитанную на напряжение $U_{\rm д1}=120\,$ В, нужно включить в сеть переменного тока частотой ${\rm v}=50\,$ Гц и напряжением $U_{\rm д2}=220\,$ В. Для того чтобы лампочка горела полным накалом, нужно последовательно включить конденсатор емкостью ... мк Φ .
- 6. В цепь последовательно включены резистор $R=50\,\mathrm{Om}$, катушка индуктивностью $L=100\,\mathrm{m}$ Гн и конденсатор емкостью $C=10\,\mathrm{mk}$ Ф. Напряжение в цепи $U=400\,\mathrm{B}$. Резонанс напряжений наступит при частоте переменного тока, равной ... кГц. При резонансе напряжений сила тока равна ... А.
- 7. Неоновая лампочка включена в электросеть. Лампочка загорается и гаснет при напряжении на ее электродах, в n=2 раза меньшем амплитудного значения напряжения в сети. В этом случае продолжительность одной вспышки лампочки больше промежутка между вспышками в ... раз (раза).
- 8. Вольтметр, подключенный к электродвигателю переменного тока, показал $U=220~{\rm B}$, а амперметр $I=12~{\rm A}$. Ваттметр, подключенный к двигателю, показал мощность $P=2400~{\rm Br}$. Сдвиг фаз между током и напряжением равен ... град.
- 9. В пункте A установлен повышающий трансформатор, в пункте B понижающий. Сопротивление соединяющей их линии R=15 Ом. Коэффициент трансформации понижающего трансформатора k=10, в цепи его вторичной обмотки потребляется мощность $P=9.5\,\mathrm{kBt}$ при действующей силе тока $I=80\,\mathrm{A}$. Действующее напряжение на вторичной обмотке повышающего трансформатора равно ... кВ.
- 10. От подстанции к потребителю передается мощность $P_1=62$,0 кВт. Электропередача осуществляется при напряжении $U_1=6200~{\rm B}.$ Мощность P_2 , которую получит потребитель, если сопротивление линии электропередачи $R=5{,}00~{\rm Om},$ составляет ... кВт.

Обобщающий тест № 7 _

1. Если уравнение движения тела, совершающего гармонические колебания, имеет вид $x=0.1\sin\left(10\pi t+\frac{\pi}{3}\right)$ (м), то амплитуда и частота

колебаний равны:

- 1) 0,1 м; 1 Гц;
- 3) $0,1 \text{ м}; 5\pi \Gamma \text{ц};$
- 5) 0,1 м; 10 Гц.

- 2) 0,1 см; 5 Гц;
- 4) 0,1 м; 5 Гц;

2. Материальная точка совершает гармонические колебания по закону $x = 0.20 \sin \left(4\pi t + \frac{\pi}{3} \right)$ (м). Модуль максимальной скорости равен:

1) $0.80\pi \text{ M/c}$;

3) $0.40\pi \text{ M/c}$;

5) 0.20 m/c.

2) 0.80 m/c;

4) 0.40 m/c;

3. Масса горизонтального пружинного маятника $m=0.50\,\mathrm{kr}$, жесткость пружины $k=100\,\mathrm{H/m}$. Тело сместили из положения равновесия на величину $x_0=10\,\mathrm{cm}$ и толкнули, сообщив ему скорость $v_0=1.0\,\mathrm{m/c}$. Амплитуда колебаний такого маятника равна:

1) 6,0 см;

3) 10 см;

5) 24 см.

2) 9,0 cm;

4) 12 cm;

4. Для того чтобы периоды колебаний одного и того же тела маятника длиной $l=20\,\mathrm{cm}$ и пружинного маятника с жесткостью пружины $k=30\,\mathrm{H/m}$ были одинаковы, масса колеблющегося тела должна быть равна:

1) 0,20 кг;

3) 0,45 кг;

5) 0,90 кг.

2) 0,30 kg;

4) 0,60 кг;

5. Вагон массой m = 80 т имеет четыре рессоры. Жесткость каждой рессоры k = 203 кH/м. Чтобы вагон сильно раскачивало, толчки от ударов о стыки рельсов должны повторяться через промежутки времени, равные:

1) 1,0 c; 2) 1,5 c; 3) 2,0 c; 4) 2.5 c: 5) 4,0 c.

6. Разность фаз колебаний точек, координаты которых $x_1 = 1,0$ м, $x_2 = 4,0$ м, в плоской поперечной волне (рис. 1), распространяющейся вдоль оси Ox (источник колебаний находится в точке O), равна:

Puc. 1

 $\frac{\pi}{2}$;

π

3) $\frac{3\pi}{2}$;

 $4) 2\pi$

5) $\frac{5\pi}{2}$.

7. Разность фаз между двумя точками звуковой волны $\Delta \phi = 5\pi$ рад. Разность хода этих точек от источника колебаний $\Delta r = 25$ см. Если модуль скорости звуковой волны v = 340 м/с, то частота колебаний источника равна:

1,2 κΓι;

3) 3,4 кГц;

5) 6,8 кГц.

2) 2,4 кГц;

4) 5,6 кГц;

1) 1,5 км;

2) 2,3 км;

1) $3.1 \cdot 10^{-6}$ c;

2) $6.3 \cdot 10^{-6}$ c;

10. В колебательном контуре напряжение на обкладках конденсатора и сила тока в катушке индуктивности изменяются по законам $U = 3.0\cos 6.0 \cdot 10^3 t$ В и $I = 2.0\sin 6.0 \cdot 10^3 t$ А. Индуктивность катушки равна:				
1) 12 мкГн; 3) 2) 0,12 мГн; 4)		5) 1,1 мГн.		
11. Максимальная сила тока в идеальном колебательном контуре $I_0=1,0\mathrm{MA},$ а максимальный заряд на обкладках конденсатора $q_0=\frac{10}{\pi}\mathrm{MkK}$ л. Частота электромагнитных колебаний, происходящих в контуре, равна:				
1) 50 Γιι; 3) 2) 0,10 κΓιι; 4)		5) 1,0 кГц.		
12. Если сила тока в цепи и ся по закону $I = 1,0 \sin(\theta)$ = 10мГ н, то емкость кон 1) $0,50 \text{мк}$ Ф; 3) 2) $1,0 \text{мк}$ Ф; 4)	(10 ⁴ <i>t</i>) (мА), а ин нденсатора конту 2,4 мкФ;	дуктивность і гра равна:		
13. Колебательный контур радиоприемника содержит катушку индуктивностью $L=10,0$ мГн и два параллельно соединенных конденсатора емкостями $C_1=36,0$ нФ и $C_2=4,00$ нФ. Контур настроен на длину волны: 1) $56,5$ км; 3) $2,52$ км; 5) 360 м.				
2) 37,7 км; 4) 1,67 км; 14. Максимальный заряд от пришедшей электромагнитной волны на конденсаторе колебательного контура $q_0=10,0\mathrm{HK}$ л, а максималь-				
	(© «	», 2018	

8. При измерении глубины моря с помощью эхолота от посылки звукового сигнала до его возвращения прошло время t = 1.8 с. Если модуль скорости звука в воде v = 5000 м/с, то глубина моря равна:

9. Если емкость конденсатора C = 5.0 мк Φ , а индуктивность катушки колебательного контура $L = 5.0 \cdot 10^{-6}$ Гн, то период электромагнит-

5) 7,0 км.

5) 3,1·10⁻⁴ c.

3) 4,5 км;

4) 5,0 km;

3) $3.1 \cdot 10^{-5}$ c;

4) 6,3·10⁻⁵ c;

ных колебаний в контуре составляет:

1) 64,5 м;

2) 129 м;

», 2018

15.	тивность, которую д	олжен иметь колеба ить на длину волны	контура $C_1 = 56$ нФ. Индук- ительный контур, чтобы его $\lambda_1 = 40$ м, составляет: 5) 12 нГн.		
16.	3. По международному соглашению длина радиоволны для экстренной связи $\lambda = 0.60$ км. Поэтому корабли передают сигнал бедствия SOS на частоте v, равной:				
	1) 0,50 МГц; 2) 1,5 МГц;	*	5) 6,0 МГц.		
17.	17. Действующее значение напряжения в сети переменного тока $U_{_{\rm I}}=220{\rm B}.$ В начальный момент времени напряжение $U=0.$ Через $\frac{1}{8}$ периода напряжение в сети равно:				
	1) 110 B; 2) 141 B;	3) 156 B; 4) 169 B;	5) 220 B.		
18.	3. Рамка площадью $S=200\mathrm{cm}^2$ вращается в однородном магнитном поле, модуль индукции которого $B=0,10\mathrm{Tn}$. Число витков в рамке $N=200$, а частота вращения $\mathrm{v}=10\mathrm{c}^{-1}$. Действующее значение ЭДС индукции, возникающей в рамке, равно:				
	1) 18 B; 2) 24 B;	3) 36 B; 4) 72 B;	5) 94 B.		
19.	. Трансформатор включен в сеть с действующим напряжением $U_{{}_{\rm M}{}^1}=$ = 220 В и обеспечивает в нагрузке действующее значение силы тока $I_{{}_{\rm M}{}^2}=$ 6,0 А. Отношение числа витков вторичной и первичной обмо-				
	ток $\frac{n_2}{n_1}$ = 0,25. Если потерями энергии в первичной обмотке можно				
	пренебречь и сопротивление вторичной обмотки $R_2 = 3{,}00$ Ом, то действующее значение напряжения на вторичной обмотке транс-				
	форматора составля 1) 24 В;		5) 64 B.		
	1) 24 B; 2) 37 B:	3) 42 B; 4) 56 B:	o) 04 D.		

ная сила тока в контуре $I_0 = 0,100$ А. Длина волны, на которую на-

5) 834 м.

строен колебательный контур, составляет:

3) 188 м;

4) 236 m;

20. В цепь к клеммам 1-2 приложено переменное напряжение, действующее значение которого $U_{_{\rm J}}=220$ В. Сопротивления резисторов $R_{_{\rm I}}=R_{_{\rm Z}}=R_{_{\rm 3}}=0.20\,$ кОм, диод Д — идеальный (рис. 2). Мощность, которая выделяется в данной цепи, равна:

- 1) 0,10 кВт;
- 3) 0,70 кВт;
- 2) 0,30 кВт;
- 4) 1,2 κBτ;
- 5) 1,5 кВт.