

Trigonometric Functions

• If in a circle of radius r, an arc of length l subtends an angle of θ radians, then $l = r\theta$.

• Radian measure = $\frac{\pi}{180}$ ×Degree measure

• Degree measure = $\frac{180}{\pi}$ ×Radian measure

• A degree is divided into 60 minutes and a minute is divided into 60 seconds. One sixtieth of a degree is called a minute, written as 1', and one sixtieth of a minute is called a second, written as 1".

Thus, $1^{\circ} = 60'$ and 1' = 60''

• Signs of trigonometric functions in different quadrants:

Trigonometric function	Quadrant I	Quadrant II	Quadrant III	Quadrant IV
sin <i>x</i>	+ ve (Increases from 0 to 1)	+ ve (Decreases from 1 to 0)	-ve (Decreases from 0 to -1)	-ve (Increases from -1 to 0)
cos x	+ ve (Decreases from 1 to 0)	-ve (Decreases from 0 to -1)	-ve (Increases from -1 to 0)	+ ve (Increases from 0 to 1)
tan <i>x</i>	+ ve (Increases from 0 to ∞)	-ve (Increases from -∞ to 0)	+ ve (Increases from 0 to ∞)	-ve (Increases from -∞ to 0)
cot x	+ ve (Decreases from ∞ to 0)	–ve(Decreases from 0 to -∞)	+ ve (Decreases from ∞ to 0)	–ve (Decreases from 0 to -∞)
sec x	+ ve (Increases from 1 to ∞)	-ve (Increases from -∞ to -1)	-ve (Decreases from -1 to -∞)	+ ve (Decreases from ∞ to 1)
cosec x	+ ve (Decreases from ∞ to 1)	+ ve (Increases from 1 to ∞)	-ve (Increases from -∞ to -1)	–ve (Decreases from -1 to -∞)

Example 1:

If $\sin \theta = -\frac{1}{\sqrt{3}}$, where $\pi < \theta < \frac{3\pi}{2}$, then find the value of $3 \tan \theta - \sqrt{3} \sec \theta$.

Solution:

Since θ lies in the third quadrant, therefor tan θ is positive and $\cos \theta$ (or $\sec \theta$) is negative.

$$\cos^2\theta + \sin^2\theta = 1$$

$$\Rightarrow \cos \theta = \pm \sqrt{1 - \sin^2 \theta}$$

$$\Rightarrow \cos \theta = \pm \sqrt{1 - \left(-\frac{1}{\sqrt{3}}\right)^2} = \pm \sqrt{1 - \frac{1}{3}} = \pm \sqrt{\frac{2}{3}}$$

$$\cos \theta = -\sqrt{\frac{2}{3}}$$

$$\Rightarrow$$
 sec $\theta = -\sqrt{\frac{3}{2}}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\frac{1}{\sqrt{3}}}{-\sqrt{\frac{2}{3}}} = \frac{1}{\sqrt{2}}$$

∴3tan
$$\theta - \sqrt{3} \sec \theta = 3 \times \frac{1}{\sqrt{2}} - \sqrt{3} \times \left(-\sqrt{\frac{3}{2}} \right) = \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}} = 3\sqrt{2}$$

Example 2: Find the value of $\cos 390^{\circ} \cos 510^{\circ} + \sin 390^{\circ} \cos (-660^{\circ})$. **Solution:**

$$\cos 390^\circ = \cos (2 \times 180^\circ + 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\cos 510^{\circ} = \cos (3 \times 180^{\circ} - 30^{\circ}) = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

$$\sin 390^\circ = \sin (2 \times 180^\circ + 30^\circ) = \sin 30^\circ = \frac{1}{2}$$

$$\cos(-660^\circ) = \cos 660^\circ = \cos (4 \times 180^\circ - 60^\circ) = \cos 60^\circ = \frac{1}{2}$$

∴cos 390°cos 510° + sin 390° cos (- 660°)

$$= \frac{\sqrt{3}}{2} \times \left(-\frac{\sqrt{3}}{2} \right) + \left(\frac{1}{2} \right) \times \left(\frac{1}{2} \right)$$

$$=-\frac{3}{4}+\frac{1}{4}$$

$$=-\frac{2}{4}$$

$$=-\frac{1}{2}$$

• Domain and Range of trigonometric functions:

Trigonometric function	Domain	Range
sin <i>x</i>	R	[-1, 1]
cos x	R	[-1, 1]
tan <i>x</i>	$\mathbf{R} - \left\{ x : x = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$	R
cot x	$\mathbf{R} - \{x : x = n\pi, n \in \mathbf{Z}\}$	R
sec x	$\mathbf{R} - \left\{ x : x = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$	R - [-1, 1]
cosec x	$\mathbf{R} - \{x : x = n\pi, n \in \mathbf{Z}\}$	R - [-1, 1]

Trigonometric identities and formulas:

o cosec
$$x = \frac{1}{\sin x}$$

o sec $x = \frac{1}{\cos x}$

$$_{o}$$
 sec $x = \frac{1}{\cos x}$

$$\int_{0}^{\infty} \tan x = \frac{\sin x}{\cos x}$$

o
$$\tan x = \frac{\sin x}{\cos x}$$

o $\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$

$$\circ \cos^2 x + \sin^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

•
$$1 + \cot^2 x = \csc^2 x$$

•
$$\sin(2n\pi + x) = \sin x, n \in \mathbb{Z}$$

$$\circ$$
 $\sin(-x) = -\sin x$

$$\circ$$
 cos $(-x)$ = cos x

$$\circ \quad \cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\circ \quad \cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\circ \sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\circ \sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\circ \quad \sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\circ \quad \cos (\pi - x) = -\cos x$$

$$\circ \sin(\pi - x) = \sin x$$

$$\circ \quad \cos (\pi + x) = -\cos x$$

$$\circ \sin(\pi + x) = -\sin x$$

$$\circ \quad \cos (2\pi - x) = \cos x$$

$$\circ$$
 sin $(2\pi - x) = -\sin x$

• If none of the angles x, y and $(x \pm y)$ is an odd multiple of $\frac{\pi}{2}$, then

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$
, and $\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$

o If none of the angles
$$x$$
, y and $(x \pm y)$ is a multiple of π , then $\cot(x + y) = \frac{\cot x \cot y - 1}{\cot y + \cos x}$, and $\cot(x - y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

cos 2x = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x =
$$\frac{1 - \tan^2 x}{1 + \tan^2 x}$$

o In particular, cos x = cos² $\frac{x}{2}$ - sin² $\frac{x}{2}$ = 2cos² $\frac{x}{2}$ - 1 = 1 - 2sin² $\frac{x}{2}$ = $\frac{1 - \tan^2 x}{1 + \tan^2 \frac{x}{2}}$

o
$$\sin 2x = 2\sin x \cos x = \frac{2\tan x}{1+\tan^2 x}$$

• In particular,
$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}$$

o
$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

o In particular,

General solutions of some trigonometric equations:

•
$$\sin x = 0 \Rightarrow x = n \pi$$
, where $n \in \mathbf{Z}$

•
$$\cos x = 0 \Rightarrow x = (2n + 1) \frac{\pi}{2}$$
, where $n \in \mathbf{Z}$

∘
$$\sin x = \sin y \Rightarrow x = n\pi + (-1)^n y$$
, where $n \in \mathbf{Z}$

∘
$$\cos x = \cos y \Rightarrow x = 2n\pi \pm y$$
, where $n \in \mathbf{Z}$

∘
$$\tan x = \tan y \Rightarrow x = n\pi + y$$
, where $n \in \mathbf{Z}$

Example 1: Solve $\cot x \cos^2 x = 2 \cot x$ Solution:

$$\cot x \cos^2 x = 2 \cot x$$

$$\Rightarrow$$
 cot x cos² x – 2cot x = 0

$$\Rightarrow \cot x (\cos^2 x - 2) = 0$$

$$\Rightarrow$$
 cot $x = 0$ or $\cos^2 x = 2$

$$\Rightarrow \frac{\cos x}{\sin x} = 0 \text{ or } \cos x = \pm \sqrt{2}$$

$$\Rightarrow$$
 cos $x = 0$ or cos $x = \pm \sqrt{2}$

Now,
$$\cos x = 0 \Rightarrow x = (2n + 1)\frac{\pi}{2}$$
, where $n \in \mathbb{Z}$

and
$$\cos x = \pm \sqrt{2}$$

But this is not possible as $-1 \le \cos x \le 1$

Thus, the solution of the given trigonometric equation is $x = (2n + 1)\frac{\pi}{2}$ where $n \in Z$.

Example 2: Solve $\sin 2x + \sin 4x + \sin 6x = 0$. Solution:

$$\sin 4x + (\sin 2x + \sin 6x) = 0$$

$$\Rightarrow \sin 4x + 2\sin\left(\frac{2x+6x}{2}\right)\cos\left(\frac{2x-6x}{2}\right) = 0$$

$$\Rightarrow$$
 sin 4x + 2 sin 4x cos 2x = 0

$$\Rightarrow \sin 4x(1+2\cos 2x)=0$$

$$\Rightarrow$$
 sin $4x = 0$ or $1 + 2\cos 2x = 0$

$$\Rightarrow \sin 4x = 0 \text{ or } \cos 2x = -\frac{1}{2}$$

$$\sin 4x = 0$$

$$\Rightarrow 4x = n\pi, n \in \mathbb{Z}$$

$$\Rightarrow x = \frac{n\pi}{4}, n \in \mathbb{Z}$$

$$\cos 2x = -\frac{1}{2}$$

$$\Rightarrow \cos 2x = \cos \frac{2\pi}{3}$$

$$\Rightarrow 2x = 2m\pi \pm \frac{2\pi}{3}, m \in \mathbb{Z}$$

$$\Rightarrow x = m\pi \pm \frac{\pi}{3}, m \in \mathbb{Z}$$

Thus,
$$X = \frac{n\pi}{4}$$
 or $X = m\pi \pm \frac{\pi}{3}$, where $m, n \in \mathbf{Z}$