Coordinación de Cálculo III y Cálculo Avanzado para el Módulo Básico de Ingeniería

Control 1 Cálculo III Grupos 1 y 3, versión B 29 de septiembre de 2022

Problema 1. Considerar las siguientes rectas en \mathbb{R}^3 :

- $\mathscr{L}_1 = \{(2, -1, 1) + t(1, 2, 1) : t \in \mathbb{R}\}$
- $\mathcal{L}_2 = \{(1,0,3) + t(2,1,-1) : t \in \mathbb{R}\}$
- $\mathcal{L}_3 = \{(-1,2,7) + t(-4,1,5) : t \in \mathbb{R}\}$

Probar que las tres rectas tienen un punto en común.

Solución. Para probar que tienen un punto en común, hallaremos la intersección de dos de ellas , por ejemplo \mathcal{L}_1 y \mathcal{L}_2 , sea $p \in \mathcal{L}_1 \cap \mathcal{L}_2$, luego existen números reales t_1 y t_2 , tales que:

 $p=(2,-1,1)+t_1(1,2,1)=(1,0,3)+t_2(2,1,-1)$. Examinando las componentes, vemos que en la segunda componente se da la siguiente ecuación: $-1+2t_1=0+t_2$, luego $t_2=-1+2t_1$. De la primera componente tenemos: $2+t_1=1+2t_2$, así $t_1=-1+2t_2$, multiplicando por 2 tenemos $2t_1=-2+4t_2$, así:

$$t_2 = -1 + 2t_1$$
$$2t_1 = -2 + 4t_2$$

Luego $t_2 = -1 + (-2 + 4t_2)$, así $t_2 = 1$, luego p = (1,0,3) + 1(2,1,-1) = (3,1,2) . Veamos si $p \in \mathcal{L}_3$.

(3,1,2)=(-1,2,7)+t(-4,1,5), entonces (4,-1,-5)=(3,1,2)-(-1,2,7)=t(-4,1,5), así t=-1, luego $p\in\mathcal{L}_3$. Por lo tanto $p\in\mathcal{L}_1\cap\mathcal{L}_2\cap\mathcal{L}_3$

Problema 2. Sea la función $f: \mathbb{R}^3 \to \mathbb{R}$, dada por:

$$f(x,y,z) = \begin{cases} \frac{xy + yz}{x^2 + y^2 + z^2} & ; (x,y,z) \neq (0,0,0) \\ 0 & ; (x,y,z) = (0,0,0). \end{cases}$$

Determine en que puntos esta función es continua.

Solución. Para $(x, y, z) \neq (0, 0, 0)$ tenemos que la función f es continua, por álgebra de funciones continuas.

Para (x, y, z) = (0, 0, 0) tenemos que demostrar que $\lim_{(x, y, z) \to (0, 0, 0)} f(x, y, z) = 0$. Primero veamos este límite en el siguiente camino $C_{m,n} = \{(x, y, z) \in \mathbb{R}^3 \mid y = mx, z = nx\}$, entonces:

$$\lim_{(x,y,z)\in C_{m,n}} f(x,y,z) = \lim_{x\to 0} f(x,mx,nx)$$

$$= \lim_{x\to 0} \frac{mx^2 + mnx^2}{x^2 + m^2x^2 + n^2x^2}$$

$$= \lim_{x\to 0} \frac{\cancel{x}^{2}(m+mn)}{\cancel{x}^{2}(1+m^2+n^2)}$$

$$= \frac{m+mn}{1+m^2+n^2}$$

y si m=n=0, tenemos que el límite es iguala 0 y si $m=1,\,n=0$, el límite nos da igual a $\frac{1}{2}$, o sea que claramente el límite depende de la dirección. Por lo tanto la función no es continua en (0,0,0).

Problema 3. Sea f(x,y) una función cuyas derivadas parciales de segundo orden existen en (0,0), tal que $f(0,0) = \frac{\pi}{3}$. Sea g(x,y) = sen(f(x,y)). Demuestre que

$$f_{xy}(0,0) - f_{yx}(0,0) = 2(g_{xy}(0,0) - g_{yx}(0,0)).$$

Indicación: El Teorema de Schwarz no es aplicable en este problema.

Solución.

$$g_{x}(x,y) = \cos(f(x,y))f_{x}(x,y)$$

$$g_{xy}(x,y) = -\sin(f(x,y))f_{y}(x,y)f_{x}(x,y) + \cos(f(x,y))f_{xy}(x,y)$$

$$g_{y}(x,y) = \cos(f(x,y))f_{y}(x,y)$$

$$g_{yx}(x,y) = -\sin(f(x,y))f_{x}(x,y)f_{y}(x,y) + \cos(f(x,y))f_{yx}(x,y).$$
(2)

Restando (2) de (1) y evaluando en (0,0), se obtiene

$$g_{xy}(0,0) - g_{yx}(0,0) = \frac{1}{2}(f_{xy}(0,0) - f_{xy}(0,0)),$$

que equivale a lo que se pedía a mostrar.