911 Hotspot Prediction

Author: Connell Phillipps

Is there any way to reduce 911 call response time by predicting services call locations?

DEPARTMENT SOLUTION OF THE PARTMENT SOLUTION O

Impact:

- Decreasing response time leads to increased public opinion.
- Increase public opinion leads to high crime reporting, more trust.
- Most crimes are not critical so decreasing response time doesn't really lead to less crime.
- Saving lifes, even if one life is saved with faster response is worth it!

The Data:

Data Dictionary:

Column Name	Description	Туре		
CAD_EVNT_ID	Unique identifier generated by the the ICAD 911 system	Plain Text	т	~
CREATE_DATE	Date of call	Date & Time	H	~
INCIDENT_DATE	Date of incident	Date & Time	11	v
INCIDENT_TIME	Time of incident	Plain Text	T	v
NYPO_PCT_CO	NYPO precinct call is in	Number	ø	v
BORO_NM	Borough call is in	Plain Text	T	v
PATRLBORO_NM	NYPO patrol Borough call is in	Plain Text	Т	V
GEO_CO_X	The X-Coordinate of the midblock of the street segment when.	Plain Text	T	~
GEO_CD_Y	The Y-Coordinate of the midblock of the street segment when	Plain Text	т	~
RADIO_CODE	NYPD code used to inform NYPD member of service the natur	Plain Text	Т	V
TYP_DESC	Description based on RADIO_CODE	Plain Text	т	V
CIP_JOBS	Flag indicating if the call relates to a Crime In Progress (CIP)	Plain Text	Т	v
ADO_TS	Timestamp of when the call was added to the system	Date & Time	11	~
DISP_TS	Timestamp of when the call was dispatched to a responding \boldsymbol{u}	Date & Time	::	v
ARRIVO_TS	Timestamp of when the responding unit arrived on the scene	Date & Time	н	V
CLOSNO,TS	Timestamp of when the call was marked closed	Date & Time	11	V
Latitude	The Latitude of the midblock of the street segment where the	Number	0	v
Longitude	The Longitude of the midblosk of the street segment where th	Number	ø	v

Merged Dataset:

Range	eIndex: 4247325	9 entries, 0 to 424	73258
Data	columns (total	20 columns):	
#	Column	Non-Null Count	Dtype
0	OBJECTID	6421740 non-null	float64
1	CAD_EVNT_ID	42473259 non-null	int64
2	CREATE_DATE	42473259 non-null	object
3	INCIDENT_DATE	42473259 non-null	object
4	INCIDENT_TIME	41025977 non-null	object
5	NYPD_PCT_CD	42473201 non-null	float64
6	BORO_NM	42473259 non-null	object
7	PATRL_BORO_NM	42473259 non-null	object
8	GEO_CD_X	42473259 non-null	int64
9	GEO_CD_Y	42473259 non-null	int64
10	RADIO_CODE	42473259 non-null	object
11	TYP_DESC	42473259 non-null	object
12	CIP_JOBS	42473259 non-null	object
13	ADD_TS	42473259 non-null	object
14	DISP_TS	42473257 non-null	object
15	ARRIVD_TS	27602480 non-null	object
16	CLOSNG_TS	42473130 non-null	object
17	Latitude	42473259 non-null	float64
18	Longitude	42473259 non-null	float64
19	Location	40667946 non-null	object

Preprocessed Dataset:

Dtype

RangeIndex: 41021298 entries, 0 to 41021297

3.2GB

41021298 non-null float64

Initial Findings: Call Distribution by Category

Initial Findings: Response Time by Category

Forecasting

Baseline MAPE: 38.8% (prediction is just mean number of calls) Model MAPE: 23.95% (without differencing added back in)

Evaluation Metric:

 Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|A_i - F_i|}{A_i}$$

A; is the actual value

Fi is the forecast value

n is total number of observations

Next Steps:

- Add the trend and seasonality back into the predictions for an hourly timescale
- Create a function to loop through columns of a database and create predictive models for each column
- Graph predictions on a heat map of NYC
- Create new predictive model to forecast based on lat/lon
- Build streamlit/Rshiny App