1 Solvability by radicals and Galois theory II

Lemma 1.1. Let p be prime and $G \leq S_p$ such that G acts transitivley on $\{1, \ldots, p\}$. Then G contains a cycle of order p.

Theorem 1.2. Let char K = 0 and $f \in K[t] \setminus K$. Then $Gal_K(f)$ is soluble $\implies f$ is SBR.

Lemma 1.3 (Wooley 14.8). Let char K = 0, and suppose that L : K is a cyclic extension of degree n. Suppose also that K contains a primitive n-th root of 1. Then there exists $\theta \in K$ having the property that $t^n - \theta$ is irreducible over K, and L : K is a splitting field for $t^n - \theta$. Further, if β is a root of $t^n - \theta$ over L, then $L = K(\beta)$.

Theorem 1.4 (Abel-Galois). Let char K = 0 and $f \in K[t]$ be irreducible over K with deg f = p. Then following are equivalent

- 1. f is SBR over K;
- 2. $Gal_K(f)$ is conjugated to a subgroup of $Aff(\mathbb{F}_p)$;
- 3. for the splitting field L of f, one has $L = K(\alpha_i, \alpha_j)$ where α_i, α_j are any two destinct roots of f.

Lemma 1.5. Let $\{\text{Id.}\} \neq N \leq G \leqslant S_p$ for p prime. If G is a transitive group, then N is a transitive group.