Table of Inputs and Outputs Dynamic Optimization of Tensegrity Systems

Shyam Patel

May 5, 2020

Optimizer Input

Input	Range	Explanation
p	4 - 8	Number of units in the circumferential direction
q	4 - 8	Number of units in the vertical direction
L	0.5 - 1 m	Vertical length of structure
r_{ss}	0.0005 - 0.0025 m	Radius of surface strings
r_{si}	0.0005 - 0.0025 m	Radius of internal strings
r_b	0.0001 - 0.005 m	Radius of bars
C_2	-0.1 - 0.1	Concentration of vertical units
N_z	-0.4 - 0.4	Position of central load
$2R/L_{rcc}$	0.5 - 3.0	Ratio of diameter to length - cylinder
$2R/L_{por}$	0.5 - 3.0	Ratio of diameter to length - paraboloid
$2R/L_{elp}$	0.25 - 1.5	Ratio of diameter to length - ellipsoid
g_{max}	10 g	Max g-force ceiling

Environment Input

Input	Value	Explanation
h	1 m	Initial distance between bottom node and ground
v_0	-10 m/s	Initial vertical velocity
m_{load}	20 kg	Mass of central payload
$\mid g \mid$	-9.81 m/s^2	Earth gravity
θ_y	$0:\pi/6:\pi/2$	Rotations about y-axis
$\theta_{x_{sp}}$	$0:\pi/18:\pi/9$	Rotations about x -axis for sphere
$\theta_{x_{rcc}}$	$0:\pi/18:\pi/9$	Rotations about x -axis for cylinder
$\theta_{x_{por}}$	$0:\pi/18:\pi/9$	Rotations about x -axis for parabola

Environment Output

	*	
Output	Explanation	
m	Total system mass	
g_s	Max acceleration in G 's experienced by system	
σ_{ss_d}	Max stress exceeding surface string limit	
σ_{si_d}	Max stress exceeding internal string limit	
σ_{bc_d}	Max stress exceeding bar compressed stress limit	
σ_{bt_d}	Max stress exceeding bar tension stress limit	
V_c	Volume constraint magnitude	

Material Properties

Density of strings and bars $\rho_s = 1123 \text{ kg/m}^3, \ \rho_b = 4705 \text{ kg/m}^3$

Elastic modulus of strings and bars $E_s = 1 \times 10^8 \text{ Pa}, E_b = 60 \times 10^9 \text{ Pa}$

Damping coefficient of strings and bars $c_s = 5 \times 10^6 \text{ Pa}, c_b = 0 \text{ Pa}$

Bar Material - Titanium

String Material - Nylon

Optimization Function

$$f = m + p_g + p_{\sigma_{ss}} + p_{\sigma_{si}} + p_{\sigma_{bc}} + p_{\sigma_{bt}} + p_{V_c}$$

Where:

$$p_i = \lambda_i * \gamma_i$$

 λ_i is the conditional multiplier based on the magnitude of the fitness error. n_i Normalizes the fitness function errors.

Where:

$$\gamma_g = 1^{12}$$

$$\gamma_{\sigma_{ss}} = 1$$

$$\gamma_{\sigma_{si}} = 1$$

$$\gamma_{\sigma_{bc}} = 1$$

$$\gamma_{\sigma_{bc}} = 1$$

$$\gamma_{V_c} = 1^{14}$$

and,

$$\lambda_{g} = \begin{cases} 0, & \text{if } g_{s} \leq g_{max} \\ (g_{max} - g_{s})^{2}, & \text{if } g_{s} \geq g_{max} \end{cases}$$

$$\lambda_{\sigma_{ss}} = \begin{cases} 0, & \text{if } \sigma_{ss} \leq \sigma_{ss_{max}} \\ (\sigma_{ss_{max}} - \sigma_{ss})^{2}, & \text{if } \sigma_{ss} \geq \sigma_{ss_{max}} \end{cases}$$

$$\lambda_{\sigma_{si}} = \begin{cases} 0, & \text{if } \sigma_{si} \leq \sigma_{si_{max}} \\ (\sigma_{si_{max}} - \sigma_{si})^{2}, & \text{if } \sigma_{si} \geq \sigma_{si_{max}} \end{cases}$$

$$\lambda_{\sigma_{bc}} = \begin{cases} 0, & \text{if } \sigma_{bc} \leq \sigma_{bc_{max}} \\ (\sigma_{bc_{max}} - \sigma_{bc})^{2}, & \text{if } \sigma_{bc} \geq \sigma_{bc_{max}} \end{cases}$$

$$\lambda_{\sigma_{bt}} = \begin{cases} 0, & \text{if } \sigma_{bt} \leq \sigma_{bt_{max}} \\ (\sigma_{bt_{max}} - \sigma_{bt})^{2}, & \text{if } \sigma_{bt} \geq \sigma_{bt_{max}} \end{cases}$$

$$V_{c} = \begin{cases} 0, & \text{if } V_{c} \leq V_{c_{max}} \\ (V_{c_{max}} - V_{c})^{2}, & \text{if } V_{c} \geq V_{c_{max}} \end{cases}$$