数学建模

建模过程——写论文

- 1. 理论基础
- 2. 推导过程
- 3. 最终结论
- 4. 通过文字描述, 数学公式, 图像表格表现

通过查文献以他人成果为基础

赛题类型

- 1.预测类
- 2.评价类
- 3.机理分析类
- 4.优化类

查文献

找数据

数据预处理

1.缺失值

删除

均值或众数插补

Newton插值法(固定公式构造近似函数)

样条插值法 (用分段光滑曲线插值)

2.异常值

用正态分布3σ原则

画箱型图 普遍适用

3.重复值

数模论文

- 1. <mark>摘要</mark>
- 2. 问题重述
- 3. 模型假设和符号说明

- 4. 模型的建立与求解(最主要内容)
 - 模型=一组公式+公式中每个变量的解释
- 5. 模型的优缺点与改进方法 (不必须)
- 6. 参考文献和附录

论文排版

公式编辑

word Mathpix

表格排版公式

word插入表格

左公式+右域代码(插入-文档部件-域)

word设计-去边框

三线表制作与编号

图片的绘制

最简单: ppt excel AxGlyph

编程类: Python MATLAB

专业类: CAD (工程制图)

1.流程图 思路图

2.函数关系图

3.物理示意图

分页符

word插入-分页(选项-显示-空格)

层次分析法模型

主要用于解决评价类问题

- 1.评价的目标
- 2.为达到这个目标有哪几种可选方案
- 3.评价的准则或指标(根据什么评价好坏)

方法思想

两两比较指标

- 一、分析系统中各因素之间的关系,建立系统的递阶层次结构
- 层次结构图
- 1.用ppt中SmartArt生成 (开始-提高列表等级)
- 2.专业软件: **亿图图示**

二、构造判断矩阵

准则层—方案层的判断矩阵的数值要结合实际来填写,如果题目中有其他数据,可以考虑利用这些数据进行计算。

例如:有一个指标是交通安全程度,现在要比较开放小区、半开放小区和封闭小区,而且你收集到了这些小区车流量的数据,那么就可以根据这个数据进行换算作为你的判断矩阵。

三、由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验

三种方法都使用——显得稳健

CR大于0.1怎么办——往一致矩阵上调整

四、计算各层元素对系统目标的合成权重,并进行排序

判断矩阵

此方法中构造的矩阵均为正互反矩阵

	景色	花费	居住	饮食	交通	
景色	1	1/2	4	3	3	
花费	2	1	7	5	5	
居住	1/4	1/7	1	1/2	1/3	
饮食	1/3	1/5	2	1	1	
交通	1/3	1/5	3	1	1	

标度	含义
1	同样重要性
3	稍微重要
5	明显重要
7	强烈重要
9	极端重要
2, 4, 6, 8	上述两相邻判断的中值
倒数	A和B相比如果标度为3, 那么B和A相比就是1/3

总结:上面这个表是一个 5×5 的方阵,我们记为A,对应的元素为 a_{ij} .这个方阵有如下特点:

- (1) a_{ij} 表示的意义是,与指标j相比,i的重要程度。
- (2) 当i = j时,两个指标相同,因此同等重要记为1,这就解释了主对角线元素为1。
- (3) $a_{ij} > 0$ 且满足 $a_{ij} \times a_{ii} = 1$ (我们称满足这一条件的矩阵为正互反矩阵)

一致矩阵

若正互反矩阵(判断矩阵)满足 $a_{ij} \times a_{jk} = a_{ik}$,则我们称其为一致矩阵。

引理: n阶正互反矩阵A为一致矩阵时当且仅当最大特征值 $\lambda_{\max} = n$. 且当正互反矩阵A非一致时,一定满足 $\lambda_{\max} > n$.

景色	苏杭	北戴河	桂林	
苏杭	1	2	a _A	
北戴河	1/2	1	2	
桂林	1/a	1/2	1	

判断矩阵越不一致时,最大特征值与n相差就越大。

$$a_{ij} = rac{i \, ext{nl} \, ext{ml} \, ext{glue}}{j \, ext{nl} \, ext{ml} \, ext{glue}}, \ a_{jk} = rac{j \, ext{nl} \, ext{ml} \, ext{glue}}{k \, ext{nl} \, ext{ml} \, ext{glue}}$$
 $a_{ik} = rac{i \, ext{nl} \, ext{ml} \, ext{glue}}{k \, ext{nl} \, ext{ml} \, ext{glue}} = a_{ij} imes a_{jk}$

一致性检验的步骤

在使用判断矩阵求权重前必须对其进行一致性检验

第一步: 计算一致性指标CI

$$CI = \frac{\lambda_{\max} - n}{n - 1}$$

第二步: 查找对应的平均随机一致性指标RI

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
RI	0	0	0.52	0.89	1.12	1.26	1.36	1.41	1.46	1.49	1.52	1.54	1.56	1.58	1.59

注:在实际运用中,n很少超过10,如果指标的个数大于10,则可考虑建立二级指标体系

第三步: 计算一致性比例CR

$$CR = \frac{CI}{RI}$$

如果CR < 0.1,则可认为判断矩阵的一致性可以接受;否则需要对判断矩阵进行修正。

一致性指标
$$CI = \frac{\lambda_{\max} - n}{n-1}$$
,一致性比例 $CR = \frac{CI}{RI} \begin{cases} < 0.1$,判断矩阵一致 ≥ 0.1 ,判断矩阵不一致

(1) 平均随机一致性指标RI怎么计算来的?

RI 的值是这样得到的,用随机方法构造 500 个样本矩阵:随机地从 1~9 及其倒数中抽取数字构造正互反矩阵,求得最大特征根的平均值 λ'_{max} ,并定义

$$RI = \frac{\lambda'_{\text{max}} - n}{n - 1} .$$

(2) 为什么要这样构造CI, 为什么要以0.1为划分依据?

大家有兴趣的话可以去查看作者的原论文, 作者是通过多次蒙特卡罗模拟得到的最佳的方案。

一致矩阵计算权重

权重一定要进行归一化处理

判断矩阵计算权重

方法一: 算术平均法

- 1.将判断矩阵按照列归一化 (每一个元素除以其所在列的和)
- 2.将归一化的各列相加
- 3.将相加得到的向量中每个元素除以n得到权重向量

假设判断矩阵
$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

那么算术平均法求得的权重向量 $\omega_i = \frac{1}{n} \sum_{j=1}^n \frac{a_{ij}}{\sum_{k=1}^n a_{kj}}$ (ω 读作omega)

$$(i=1,\ 2,\ \cdots,\ n)$$

方法二: 几何平均法

第一步: 将A的元素按照行相乘得到一个新的列向量

第二步:将新的向量的每个分量开n次方

第三步:对该列向量进行归一化即可得到权重向量

假设判断矩阵
$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

那么几何平均法求得的权重向量
$$\omega_i = \frac{(\prod\limits_{j=1}^n a_{ij})^{\frac{1}{n}}}{\sum\limits_{k=1}^n (\prod\limits_{j=1}^n a_{kj})^{\frac{1}{n}}}$$
 , $(i=1,\;2,\;\cdots,\;n)$

方法三: <mark>特征值法</mark>

一致矩阵有一个特征值为n,其余特征值均为0.

另外,我们很容易得到,特征值为n时,对应的特征向量刚好为 $k[\frac{1}{a_{11}},\frac{1}{a_{12}},\cdots,\frac{1}{a_{1n}}]^T$ $(k \neq 0)$ 这一特征向量刚好就是一致矩阵的第一列。

景色	苏杭	北戴河	桂林
苏杭	1	2	4
北戴河	1/2	1	2
桂林	1/4	1/2	1

注意,权重一定要进行归一化处理: 苏杭 = 1/(1+0.5+0.25) 北戴河 = 0.5/(1+0.5+0.25) 桂林 = 0.25/(1+0.5+0.25)

假设判断矩阵的一致性可以接受

- 1.求出矩阵A的最大特征值以及其对应的特征值向量
- 2.对求出的特征向量进行归一化处理得到权重

用MATLAB求

汇总结果得到权重矩阵

用权重矩阵计算得分

用excel算(选中单元格代号按f4锁定)

将计算结果填入权重表

层次分析法的局限性

- 1.评价的决策层不能太多,否则判断矩阵和一致矩阵差异可能会很大
- 2.如果决策层中的指标的数据是一致的,则不适合使用该模型

MATLAB基本界面和操作

.....to be continue

线性规划模型基本原理与编程实现

目标函数及约束条件均为线性函数

线性规划问题通常是在一组线性约束条件限制下,求一线性目标函数最大或最小的问题

选择适当的决策变量

·····to be continue