Simple interest & compound interest

BOND VALUATION AND ANALYSIS IN PYTHON

Joshua Mayhew
Options Trader

Simple interest

Simple interest depends only on the initial deposit or loan.

We deposit USD 1,000 in a savings account

The account pays 5% simple interest each month

How much interest will we have earned after 1 year?

How much will our account be worth?

Simple interest

PV = Present Value = how much our money is worth today

FV = Future Value = how much our money is worth in the future

r = Interest Rate Per Period

n = number of periods

Simple Interest Earned = $PV \times r \times n$

Future Value = Present Value + Simple Interest Earned

Simple interest

```
pv = 1000
r = 0.05
n = 12
interest = pv * r * n
print(interest)
```

600

```
fv = pv + interest
print(fv)
```

1600

Compound interest means earning interest on our interest!

Deposit USD 1,000 in a bank account earning 5% compound interest per month.

Month	Starting Amount	Interest Earned	Ending Amount
1	1,000.00	1,000.00 * 0.05 = 50.00	1,000.00 + 50.00 = 1,050.00
2	1,050.00	1,050.00 * 0.05 = 52.50	1,050.00 + 52.50 = 1,102.50
3	1,102.50	1,102.50 * 0.05 = 55.13	1,102.50 + 55.13 = 1,157.63
•••	•••	•••	•••
12	1,710.34	1,710.34 * 0.05 = 85.52	1,710.35 + 85.52 = 1,795.86

USD 1,795.86 – USD 1,000.00 = USD 795.86 in compound interest

For 1 Period:

1,000 + (1,000 * 0.05) = 1,000 * 1.05 = 1,050

For 2 Periods:

1,050 * 1.05

= 1,000 * 1.05 * 1.05

= 1,000 * 1.05 ^ 2

For n Periods:

1,000 * 1.05 ^ n

The General Formula:

$$FV = PV imes (1+r)^n$$

```
pv = 1000, r = 0.05, n = 12
fv = pv * (1 + r) ** n
print(fv)
```

Let's practice!

BOND VALUATION AND ANALYSIS IN PYTHON

Future value & compounding frequencies

BOND VALUATION AND ANALYSIS IN PYTHON

Joshua Mayhew
Options Trader

Compound interest with multiple cash flows

- USD 1,000 deposit
- 3% interest rate paid monthly
- USD 100 top ups (extra deposits) at the end of each month
- How much do we have after 3 months?

Compound interest with multiple cash flows

```
deposit_fv = 1000 * (1 + 0.03) ^ 3
topup_1_fv = 100 * (1 + 0.03) ^ 2
topup_2_fv = 100 * (1 + 0.03) ^ 1
topup_3_fv = 100
print(deposit_fv + topup_1_fv + topup_2_fv + topup_3_fv)
```

1401.82

```
print(deposit_fv + topup_1_fv + topup_2_fv + topup_3_fv - 1000 - 100 - 100 - 100)
```

The future value function

- Previous approach can get very repetitive
- NumPy Financial can help simplify these calculations

```
import numpy_financial as npf
?npf.fv
```

```
Signature: npf.fv(rate, nper, pmt, pv)

Given:

* an interest `rate` compounded once per period, of which there are

* `nper` total

* a (fixed) payment, `pmt`

* a present value, `pv`

Return:

the value at the end of the `nper` periods
```

The future value function

- Rate: 3% per period (per month)
- Number of periods: 3 months
- Payment: USD -100 top ups at the end of each month
- PV: USD -1,000 deposit

The future value function

```
npf.fv(rate=0.03, nper=3, pmt=-100, pv=-1000)
```


Compounding frequencies

How much do we have after 10 years investing \$1,000 (no top-ups) at:

- 5% annual interest paid annually
- 5% annual interest paid monthly
- 5% annual interest paid daily

Compounding frequencies

• The rate is divided by the frequency and the number of periods multiplied by the frequency

```
# Using annual compounding frequency
npf.fv(rate=0.05, nper=10, pmt=0, pv=-1000)
```

1628.89

```
# Using monthly compounding frequency
npf.fv(rate=0.05/12, nper=10*12, pmt=0, pv=-1000)
```

1647.01

```
# Using daily compounding frequency
npf.fv(rate=0.05/365, nper=10*365, pmt=0, pv=-1000)
```


Let's practice!

BOND VALUATION AND ANALYSIS IN PYTHON

More financial functions

BOND VALUATION AND ANALYSIS IN PYTHON

Joshua Mayhew
Options Trader

The nper() function

Tells you number of periods required to grow PV to FV

```
import numpy_financial as npf
?npf.nper
```

```
Signature: npf.nper(rate, pmt, pv, fv=0)

Compute the number of periodic payments.

Parameters
rate : Rate of interest (per period)
pmt : Payment
pv : Present value
fv : (optional) Future value
```

The nper() function

• How long to save USD 7,000 investing USD 270 per month at 5% per year compounded monthly?

```
import numpy_financial as npf
npf.nper(rate=0.05/12, pmt=-270, pv=0, fv=7000)
```

The pmt() function

Tells you the payment amount required to grow PV to FV

```
import numpy_financial as npf
?npf.pmt
```

```
Signature: npf.pmt(rate, nper, pv, fv=0)
Compute the payment against loan principal plus interest.
Given:
* an interest `rate` compounded once per period, of which there are
 * `nper` total
 * a present value, `pv` (e.g., an amount borrowed)
 * a future value, `fv` (e.g., 0)
Return:
   the (fixed) periodic payment.
```

The pmt() function

- We have borrowed USD 275,000 at an annual rate of 3.5% compounded monthly
- What monthly payment to pay off a mortgage in ten years?

```
import numpy_financial as npf
npf.pmt(rate=0.035/12, nper=10*12, pv=275000, fv=0)
```

-2719.36

The rate() function

Tells you interest rate required to grow PV to FV

```
import numpy_financial as npf
?npf.rate
```

```
Signature: npf.rate(nper, pmt, pv, fv)

Compute the rate of interest per period.

Parameters
nper : Number of compounding periods
pmt : Payment
pv : Present value
fv : Future value
```

The rate() function

- What investment return to retire in 30 years?
- You save USD 1,500 each month and want to end up with USD 1 million.
- Assume the investments you make have monthly compounding.

```
import numpy_financial as npf
12 * npf.rate(nper=30*12, pmt=-1500, pv=0, fv=1000000)
```

Let's practice!

BOND VALUATION AND ANALYSIS IN PYTHON

