作业 1

提交截止: 2012年10月20日, 23:59

在线测试: http://thudsa.3322.org/oj

第1题	记分牌(Scoreboard) 20 分	:	1
第2题	祖玛 (Zuma) 20 分		2
第 3 题	上帝爱玩多米诺(Godplay) 20 分		3
第4题	魔山(Zauberberg) 20分	4	4
第 5 题	数字游戏(Numerology)20分	(6

提交截止: 2012年10月20日, 23:59

【题目描述】

比赛中记分牌上的得分数,由标有数字 0~9 的 10 类卡片组合而成,例如,得分 225 由两张标有 2 的卡片和一张标有 5 的卡片组合而成。

然而,在一场比赛前,粗心的记分员只拿了包含 0 在内的 m 类卡片(假定每类卡片数目无限)。为了不延误比赛,记分员决定用这 m 类卡片表示比赛分数,表示规则为:按从小到大的顺序,用第 i 个能以这 m 类卡片表示的十进制数代表得分 i , 其中 i \geq 0。例如,若所带卡片只有 $\{0, 2, 4, 5\}$ 四类,则可组合成的十进制数从小到大分别为

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots\}$$

当这 m 类卡片所组合成数字的位数很多时,记分员自己也不知道到底现在分数是多少,请你编写程序帮助他/她计算准确的得分。

【输入】

共计三行。第一行为正整数 m,表示目前可用数字卡片的种类数。第二行为 m 个各不相同的一位阿拉伯数字,从小到大排列,以空格分隔,且其中肯定包含 0。表示 m 种可用的卡片。第三行为积分排上的一个非负整数 X,其所有数位均取自第二行给定的 m 个数字,且最高位非 0。

【输出】

共计一行。一个十进制非负整数,对应于 X 所表示的十进制得分。

【输入样例】

【输出样例】

1

0 2 4 7

27

【限制】

 $2 \leq m \leq 10$

 $0 \leq X < 2^31$

【提示】

进制转换

【题目描述】

祖玛是一款曾经风靡全球的游戏,其玩法是:在一条轨道上初始排列着若干个彩色珠子,其中任意三个相邻的珠子不会完全同色;此后,你可以发射珠子到轨道上并加入原有序列中。一旦有三个或更多同色的珠子变成相邻,它们就会立即消失。这类消除现象可能会连锁式发生,其间你将暂时不能发射珠子。

开发商最近准备为玩家写一个游戏过程的回放工具。他们已经在游戏内完成了过程记录的功能,而回放功能的实现则委托你来完成。

提交截止: 2012年10月20日, 23:59

游戏过程的记录中,首先是轨道上初始的珠子序列,然后是玩家接下来所做的一系列操作。你的任务是,在各次操作之后及时计算出新的珠子序列。

【输入】

第一行是轨道上初始的珠子序列,每颗珠子的颜色各用一个大写字母表示。

第二行是一个数字 n,表示整个回放过程共有 n次操作。

接下来的 n 行依次对应于各次操作。每次操作由一个数字 k 和一个大写字母 c 描述 ,以空格分隔。其中 , c \in ['A'~'Z']为新珠子的颜色;若插入前共有 m 颗珠子 , 则 k \in [0, m]表示新珠子嵌入之后 (尚未发生消除之前)在轨道上的位序。

【输出】

输出共 n 行,依次给出各次操作(及可能随即发生的消除现象)之后轨道上的珠子序列。 如果轨道上已没有珠子,则以"-"表示。

【输入样例】

AC	CCBA
5	
1	В
0	Α
2	В
4	C
0	A

【限制】

 $0 < n < 10^4$ $0 \le m < 10^4$

【提示】

链表

【输出样例】

ABCCBA
AABCCBA
AABBCCBA
A

第3题 上帝爱玩多米诺 (Godplay)

20分

【题目描述】

传说中上帝造题只要 5 分钟,于是不到 deadline 前 5 分钟他就懒得出手,多出的时间百无聊赖,便勒令 L 君弄出一个玩物。L 君不慌不忙,从肚皮的口袋里掏出了 N 块多米诺骨牌和一卷 2*N 的棋盘。他双手轻轻抹开棋盘,铺展在地。每块骨牌的尺寸均为 1×2,恰好覆盖棋盘上相邻的两格。N 块骨牌若能摆放合理,便可恰好覆盖整个棋盘,比如当 N=3 的时候,共有以下 3 种覆盖方案:

提交截止: 2012年10月20日, 23:59

图中显示了骨牌的摆放方式,可以横着也可以竖着。所有骨牌外观一致,可视作没有区别。

上帝希望你用程序帮助他验证自己所得的摆放方案总数,他知道这个数可能非常非常大,以致你的计算机根本无法承受,所以只要求你给出方案总数对 M 取模之后的余数即可。

【输入】

仅一行,两个空格隔开的正整数,依次为N和M。

【输出】

仅一行,为 N 个骨牌完全覆盖 2*N 棋盘的方案数对于 M 的余数。

【输入样例】

【输出样例】

1481 19880921

12377431

【限制】

对于 50%的数据 , 1 ≤ N ≤ 1,000,000

对于 100%的数据 , 1 ≤ N ≤ 1,000,000,000, 1 ≤ M ≤ 19880921

【提示】

减治递推

提交截止: 2012年10月20日, 23:59

【题目描述】

住在魔山上的生物,近来纷纷染上某种怪病。NC 检疫局认为,住得越高的生物,得病的概率越大。于是他们企图通过削平山顶,灭杀掉某一海拔以上(含)的所有生物——尽管其中有些的确已经染病(杀中),有些其实尚未染病(误杀);而在这一海拔以下的生物中,有些仍可能已经染病(漏杀)。当然,他们既不希望误杀过多,也不愿意漏杀太多。于是为制定可行的灭杀方案,需兼顾两项指标:

杀中率 = 杀中数量/染病生物总数

误杀率 = 误杀数量/健康生物总数

可行的灭杀方案须满足的条件是:杀中率不低于某一指定下限(记作 P_{hit}),而且误杀率不高于某一指定上限(记作 P_{false})。

实际上,我们已知魔山上所有生物的普查数据,即它们各自居住的海拔高度以及目前是否染病。注意,同一海拔上可能同时住有多个生物,且他们在不同高度上的分布完全随机,没有任何规律可循。现在,对于检疫局需要考察的多种(Phit, Pfalse)组合,请你尽快算出对应的可行灭杀方案。

【输入】

第1行两个正整数:N为魔山上生物总数,H为魔山高度。

接下来 N 行,分别给出某一生物的信息,包括一个非负整数(居住高度)和一个字符('+'表示阳性染病,'-'表示阴性无病)。

然后是一个正整数 M,表示需要制定的灭杀方案总数。

最后 M 行,各用两个以空格分隔的实数(精确到 6 位 小数)给出一个(P_{hit}, P_{false})的组合条件,取值范围均为[0,1]。

【输出】

共 M 行, 依次给出 M 个灭杀方案。

如果存在可行方案,则对应的行包含以空格分隔的两个非负整数 $h_L \le h_H$,表示按照对应的(P_{hit} , P_{false})组合条件,从 h_L 到 h_H 均可作为灭杀的起始高度。否则,对应的行仅含一个整数-1。

【输入样例1】

5 12 10 + 8 -7 + 6 + 5 -3 0.500000 1.000000 0.300000 0.500000 0.300000 0.100000

【输出样例1】

0 7

6 10

9 10

【输入样例 2】

10 10

4 +

6 +

0 +

9 +

2 +

3 -

9 -

7 -

9 -

5 -

15

0.818784 0.971310

0.828424 0.955460

0.197642 0.972830

0.209844 0.000000

0.367560 0.826768

0.197130 0.608106

0.183518 0.182270

0.192008 0.581226

0.208676 0.000000

0.435384 0.770400

0.395772 0.850256

0.214818 0.000000

0.209772 1.000000
0.207724 0.414344

0.196300 0.613776

【限制】

2 ≤ N ≤ 100,000, 其中染病和健康的生物至少各有一个

 $1 \leq H \leq 10^9$

 $1 \leq M \leq 200,000$

【提示】

排序, 查找

【输出样例 2】

提交截止: 2012年10月20日, 23:59

-1

-1

4 9

-1

0 -

-1

8 9

-1

-1

4 6 -1

0 6

-1

6 9

提交截止: 2012年10月20日, 23:59

【题目描述】

2012 末日预言落空之后,世界太平一切照旧,转眼又是六十有六年。话说这年水木大学招收了一名特长生,学籍编号 2078-12-3456。该生的过人之处令人叹服——每次选课不选则已,一选必中。这不,他又轻而易举地选上了数据结构。

终于,某次酣饮之后他不慎道出了个中奥妙:实际上,选课成功与否,完全取决于你的学号与课号之间是否"有缘"。比如,他之所以顺利地选上了数据结构,只不过是因为:

$$(20 \times (7 - (8 + 1)!) - 2) / 3 \times 4 + (5 + 6)! = 30240184$$

具体而言,即在不改变学号各数位次序的前提下,可否通过在其间插入适当的运算符,使之成为合法的算术表达式,而且——最重要地——其值恰好等于拟选课程的编号。

这一秘诀不胫而走,惊动了届时已是资深算法设计师的你。为节省同类们宝贵的脑力——你早已将此作为自己神圣的天职和使命——你决定编写一个辅助占卜程序,对于任意给定的学号与课号,判断二者之间是否"有缘"。

很遗憾,几番尝试之后你就意识到自己低估了问题的难度,于是只好做些简化:将可使用的运算符限定于加号和乘号两种,且它们之间既没有优先级次序也不得使用括号(故计算总是自左向右进行),而且禁止学号中出现数字 0。

作为补偿,你决定加入另一功能:按上述条件若判定"无缘",则从大于拟选课程编号的课程中, 找出与你"有缘"的最小者。当然,假设水木大学开设了无数门课,且每一编号都有课程与之对应。

【输入】

共计2行,描述一次占卜。

第一行两个正整数,分别为学号的位数 N(不见得是 10),以及待选课程的编号 D(不见得是 8位,且前缀字符'0'均已清除)。

第二行为以空格分隔的 N 个数字,依次给出学号的各个数位。

【输出】

若有缘,则输出一个对应的算术表达式,其中的数字及运算符之间不含白空格。存在多个这样的表达式时,只需任给其一。

若无缘,则需输出两行:第一行为字符串"No",第二行为大于拟选课程编号且与所给学号有缘的最小课号——若这样的课号不存在,则输出 0。

【输入样例 1】	【输出样例 1】
5 230	34+12*5
3 4 1 2 5	
【输入样例 2】	【输出样例 2】
3 600	No
9 9 9	729

【限制】

 $1~\leq~N~\leq~24$

 $1 \le D < 2^60$

【特别说明】

无缘时,若仅输出"No"而未能给出替代的课号,该测试点仍可获得不超过50%的分数。

【提示】

搜索 + 剪枝

搜索过程中数值可能溢出,请留意此类情况的处理

提交截止: 2012年10月20日, 23:59