Extensive Form Games

Nicolas Pastrian

June 5, 2022

University of Pittsburgh

Normal form games

- We have studied the simplest form of game so far
- However for several games, normal form is not enough
- Think about the game of chess, poker or any card game
- Sequences of actions are quite relevant
- Normal form of games is not suitable to capture the interactions in such games
- We will need to introduce the extensive form of games

Games over time

- We will need to identify
 - Players
 - Actions available for each player, each time she is called to play
 - An order of play
 - Outcomes

The extensive form

- A set of players N
- A history $h \in H$ is a sequence of actions performed by the players during the game
- The set of sequence or histories *H* such that
 - The empty sequence \varnothing is in H
 - For L < K, if $(a^1, a^2, ..., a^L, ..., a^K) \in H$ then $(a^1, a^2, ..., a^L) \in H$
- A history h is terminal if there is no a such that $(h, a) \in H$
- We denote the set of terminal histories by Z

The extensive form

An order of moves or player function

$$P: H \setminus Z \rightarrow N$$

which determines which player $P(h) \in N$ is called to play after a non-terminal history h

• For h such that P(h) = i, we can define the set of available actions for player i at h as

$$A(h) = \{a : (h, a) \in H\}$$

Payoffs are defined over terminal histories

$$u_i:Z\to\mathbb{R}$$

for each player i

The extensive form

• So, an extensive form game is completely defined by

$$\Gamma = \{N, H, P, (u_i)_{i \in N}\}$$

Finite games vs. finite horizon

- Two notions of finiteness in this context
- Finite horizon: if all possible histories in a game have finite length, i.e., if a game has a clear end
- Finite games: further requires both the set of players and the set of potential histories to be finite

Game trees

- Formally, (game) trees are a particular type of directed graphs
- A set of nodes X with a special node x₀ called the root or origin node
- A set of edges or precedence relation over nodes such that there is a unique path from x₀ to any other node x
 - These edges or precedence relation will determine whether x precedes x' or not
 - Nodes which doesn't precede any node are called terminal nodes

Game trees and extensive form

- We can alternatively define an extensive form game using a game tree
 - Nodes → Histories
 - $x_0 \rightarrow \emptyset$
 - Terminal nodes → Terminal histories
 - Edge linking x with $x' \iff$ there is an action a such that $h_{x'} = (h_x, a)$
 - And we can link the payoffs with terminal nodes instead of terminal histories

Extensive form BoS with perfect information

- Consider the BoS again, but suppose that your friend will arrive first to the restaurant
- There he ask for a phone and call you to let you know in which restaurant he is right now

Extensive form BoS with perfect information

Perfect information

- The previous definition could only handle games with perfect information
- Games in which each player knows exactly the point in the game in which he is whenever he is called to play
- This naturally excludes most card games!
- We will look at the more general case of games with imperfect information in the next class

Strategies

- Let's start with pure strategies
- Pure strategies in an extensive form games represent a complete plan of action for a player i
- That is, which action to perform at any possible history in which she is called to play
- Note this plan should include even histories which are never reached!

Extensive form BoS with perfect information

Mixed strategies

- Mixed strategies in an extensive form game will be probability distributions over pure strategies
- I.e., probability distributions over full plan of actions
- Usually, is easier to work with a different type of strategies which involve randomization called *behavioral strategies*

Behavioral strategies

 A behavioral strategy for player i is a collection of independent probability distributions over the actions available to him at each history she is called to play.

No loss in behavioral instead of mixed strategies

- There is no loss in using behavioral instead of mixed strategies in games of perfect information (and perfect recall)
- For each behavioral strategy we can find an equivalent mixed strategy and vice versa

Extensive form games in normal form

- We can represent extensive form games in normal form
- However, we will be losing relevant information

Entry deterrence

- Two firms, I and E
 - Firm I is an incumbent already in an industry or market
 - Firm E is an entrant deciding whether to enter the same industry or not
 - First, E chooses whether to enter or not
 - If *E* enters, then *I* could choose either to fight or not
 - If E enters and I fights, then E gets −1 as payoff while I gets a payoff of 1
 - If E enters and I doesn't fight, then E gets 2 as payoff while I gets a payoff of 3
 - If E doesn't enter then he gets 0 and I gets 5

Entry deterrence

Credible threats

- Note that in the entry deterrence game, I's threat of fighting is not credible
- After E, I will be better off by not fighting
- Hence Nash equilibrium is not enough to get an appealing prediction

Sequential rationality

Definition

Given s_{-i} , we say that s_i is sequentially rational if i is playing a best response to s_{-i} at each history in which she is called to play

 That is, we want players to choose the best action available when they are called to act

Backward induction

- Consider the following algorithm (for finite horizon games)
 - Pick a terminal node z, move to the (unique) node which precedes z.
 - What is the best action for the player moving in such node?
 - Move to the node preceding the previous node
 - Given the action taken in the previous step as given, what is the optimal action for the player moving in the current node?
 - · Repeat until the root is reached
 - Repeat for every terminal node
- The outcome of this algorithm will be a sequentially rational profile of strategies!

Entry deterrence

Subgames

- Note that starting from each node visited in the previous algorithm we can define a (smaller) game
 - We have a set of players
 - An order of play
 - · A set of histories
 - Some terminal histories
 - And payoffs over such terminal histories
- We refer to these smaller games as *subgames*

Subgames

- More formally, a subgame of an extensive form game $\Gamma = \{N, H, P, (u_i)\}$ starting at history h is an extensive form game $\Gamma|_h = \{N, H|_h, P|_h, (u_i|_h)\}$ such that
 - The set of players is N
 - The set of histories $H|_h$ contains all histories h' such that $(h,h')\in H$
 - Terminal histories $z|_h$ are such that $z(h, z|_h) \in Z$
 - The order of play $P|_h$ is such that $P|_h(h') = P(h, h')$
 - Payoffs u_i|h satisfy

$$u_i|_h(z|_h)=u_i(h,z|_h)$$

Subgames

 Very scary notation to say that a subgame starts at history h, picks everything after it and considers player and payoff functions restricted to histories following h

Subgame Perfect Equilibrium (SPE)

- Given a strategy s_i and a history h such that P(h) = i, we denote by $s_i(h)$ the action taken by player i after h
- Similarly, given a profile of strategies s and a non-terminal history h, we denote by s(h) the action taken after history h by player P(h)
- Given a profile of strategies s, we define $s|_h$ as the profile of strategies restricted to the subgame $\Gamma|_h$, that is $s|_h(h') = s(h,h')$ for all h' such that $(h,h') \in H \setminus Z$

Subgame Perfect Equilibrium (SPE)

Subgame Perfect Equilibrium

A profile of strategies s^* is a subgame perfect (Nash) equilibrium of Γ if for every subgame of $\Gamma|_h$, $s^*|_h$ is a Nash equilibrium of $\Gamma|_h$

- Note that NE in every subgame coincides with requiring s* being sequentially rational!
- The profile of strategies obtained using backward induction is indeed a SPE

Centipede game

- Two players move alternately in a game with 4 rounds
- In each round 2 coins are added to the pile
- At each round, a player could either take the pile or pass
- If she takes the pile the game ends, otherwise the game moves to the next round
- The game starts with a pile of 2 coins and player 1 moving.
- At round 4, if player 2 pass then 2 coins are added to the pile but the game ends with each player receiving half of the pile

Centipede game

Chain Store game

- A chain store (CS) has branches in K cities
- In each city there is a potential competitor *k*
- They play a sequence of entry deterrence games in which in each stage a new city is reached and a single competitor decides to enter the market or not
- The payoffs of each player are analogous to the ones in the original entry deterrence game

Chain Store game

Chain Store game

- Same setting as in Cournot but now firms move sequentially
- We call the first mover the leader and the second mover the follower
- What is the equilibrium in this game?

Existence of SPE

 For finite extensive form games with perfect information, we can guarantee existence of SPE even considering only pure strategies

Theorem

Finite extensive form games with perfect information have a SPE

One-shot deviation principle

- Looking for deviations in extensive form games could be cumbersome
- The following result greatly simplifies the procedure to check whether a profile of strategies is a SPE or not

One-shot deviation principle

 s^* is a SPE if and only if for all players $i \in N$ there not exist a history h and action $a' \in A(h)$ such that P(h) = i

$$u_i(s'_i, s^*_{-i}) > u_i(s^*)$$

where $s_i'(h)=a'$ and $s_i(h')=s_i^*(h')$ for all $h'\neq h$ such that P(h')=i