EIE 3112 Normalization

T. Connolly and C. Begg, "Database Systems: A Practical Approach to Design, Implementation, and Management," 6th Edition, Chapter 14, Pearson, 2015. (5th Edition is also fine)

Objectives

- The purpose of normalization.
- The potential problems associated with redundant data in base relations.
- The concept of functional dependency, which describes the relationship between attributes.
- How to identify functional dependencies for a given relation.
- How functional dependencies identify the primary key for a relation.
- How to undertake the process of normalization.
- How normalization uses functional dependencies to group attributes into relations that are in a known normal form.

Objectives

- ◆ How to identify the most commonly used normal forms, namely First Normal Form (1NF), Second Normal Form (2NF), and Third Normal Form (3NF).
- ◆ The problems associated with relations that break the rules of 1NF, 2NF, or 3NF.
- ◆ How to represent attributes shown on a form as 3NF relations using normalization.

Purpose of Normalization

- We have learned how to use ER modeling to design database
- Normalization is another database design technique
- ◆ It begins by examining the relationships (called functional dependencies) between attributes.
- ◆ It uses a series of tests (called normal forms) to identify the optimal grouping of the attributes.

Purpose of Normalization

- ◆ Characteristics of a suitable set of relations include:
 - attributes with a close logical relationship are found in the same relation;
 - minimal redundancy: each attribute is represented only once (except for the foreign keys).

Purpose of Normalization

- ◆ The benefits of having a normalized database with well-designed relations:
 - easier for users to access and maintain the data
 - take up minimal storage space on the computer (because of less data duplications)

How Normalization Supports Database Design

- ◆ Major aim of relational database design is to group attributes into relations to minimize data redundancy.
- Potential benefits:
 - Updates to the database are achieved with a minimal number of operations, thus reducing the opportunities for data inconsistencies.
 - Reduction in the file storage space required by the base relations thus minimizing costs.

With data redundancy:

Staff Branch

staffNo	sName	position	salary	branchNo	bAddress	
SL21	John White	Manager	30000	B005	22 Deer Rd, London	Redundant
SG37	Ann Beech	Assistant	12000	B003	163 Main St, Glasgow	/ data
SG14	David Ford	Supervisor	18000	B003	163 Main St, Glasgow	
SA9	Mary Howe	Assistant	9000	B007	16 Argyll St, Aberdeen	Redundant
SG5	Susan Brand	Manager	24000	B003	163 Main St, Glasgow	
SL41	Julie Lee	Assistant	9000	B005	22 Deer Rd, London 🗸	data data

Without data redundancy:

Staff

staffNo	sName	position	salary	branchNo
SL21	John White	Manager	30000	B005
SG37	Ann Beech	Assistant	12000	B003
SG14	David Ford	Supervisor	18000	B003
SA9	Mary Howe	Assistant	9000	B007
SG5	Susan Brand	Manager	24000	B003
SL41	Julie Lee	Assistant	9000	B005

Branch

branchNo	bAddress			
B005	22 Deer Rd, London			
B007	16 Argyll St, Aberdeen			
B003	163 Main St, Glasgow			

- ◆ StaffBranch relation has redundant data: The details of a branch are repeated for every member of staff.
- ◆ In contrast, the branch information appears only once for each branch in the Branch relation and only the branch number (branchNo) is repeated in the Staff relation.

- ◆ Relations that contain redundant information may potentially suffer from update anomalies.
- ◆ Types of update anomalies include
 - Insertion
 - Deletion
 - Modification

- ◆ Example of insertion anomaly:
 - Adding a new staff to StaffBranch requires adding the details of the branch where the new staff will be working.
 - Inserting details of a new branch that does not have any staff yet requires adding nulls to the entries corresponding to the staff. But it is not allowed to put null into the PK entries.

staffNo	sName	position	salary	branchNo	bAddress
SL21	John White	Manager	30000	B005	22 Deer Rd, London
SG37	Ann Beech	Assistant	12000	B003	163 Main St, Glasgow

- ◆ Example of deletion anomaly:
 - Deleting a row that represents the last member of staff in a branch will also remove all information of that branch in the database.

Staff Branch

	staffNo	sName	position	salary	branchNo	bAddress
Delete this row	SL21 SG37	John White Ann Beech	Manager Assistant	30000 12000	B005 B003	22 Deer Rd, London 163 Main St, Glasgow
	SG14 SA9	David Ford Mary Howe	Supervisor Assistant	18000 9000	B003 B007	163 Main St, Glasgow 16 Argyll St, Aberdeen
	SG5 SL41	Susan Brand Julie Lee	Manager Assistant	24000 9000	B003 B005	163 Main St, Glasgow 22 Deer Rd, London

- ◆ Example of modification anomaly:
 - Changing the branch address of a particular branch (e.g., B003) in StaffBranch requires changing the branch address of all staff working in B003.

Staff Branch

staffNo	sName	position	salary	branchNo	bAddress
SL21	John White	Manager	30000	B005	22 Deer Rd, London
SG37	Ann Beech	Assistant	12000	B003	163 Main St, Glasgow
SG14	David Ford	Supervisor	18000	B003	163 Main St, Glasgow
SA9	Mary Howe	Assistant	9000	B007	16 Argyll St, Aberdeen
SG5	Susan Brand	Manager	24000	B003	163 Main St, Glasgow
SL41	Julie Lee	Assistant	9000	B005	22 Deer Rd, London

◆ Another example: University database

StdSSN	StdCity	StdClass	OfferNo	OffTerm	OffYear	EnrGrade	CourseNo	CrsDesc
S1	SEATTLE	JUN	01	FALL	2006	3.5	C1	DB
S1	SEATTLE	JUN	02	FALL	2006	3.3	C2	VB
S2	BOTHELL	JUN	O3	SPRING	2007	3.1	C3	00
S2	BOTHELL	JUN	02	FALL	2006	3.4	C2	VB

Use one table for the entire database

Primary key: StdSSN, OfferNo

•	Insertion anomaly:
•	Update (Modification) anomaly:
•	Deletion anomaly:

StdSSN	StdCity	StdClass	OfferNo	OffTerm	OffYear	EnrGrade	CourseNo	CrsDesc
S1	SEATTLE	JUN	01	FALL	2006	3.5	C1	DB
S1	SEATTLE	JUN	02	FALL	2006	3.3	C2	VB
S2	BOTHELL	JUN	O3	SPRING	2007	3.1	C3	00
S2	BOTHELL	JUN	02	FALL	2006	3.4	C2	VB

- ◆ Anomalies occur when a table contains facts about two or more different themes
- **♦** Normalization
 - Every normalized relation has a single theme
 - Normalization is to break up relation

Functional Dependencies

- ◆ Functional dependency (FD) is an important concept associated with normalization.
- ◆ FD describes relationship between attributes.
- Definition of FD:
 - Assume that A and B are attributes of a relation
 - B is functionally dependent on A (denoted $A \rightarrow B$), if each value of A is associated with exactly one value of B.

A							
staffNo	sName	position	salary	branchNo			
SL21	John White	Manager	30000	B005			
SG37	Ann Beech	Assistant	12000	B003			
SG14	David Ford	Supervisor	18000	B003			
SA9	Mary Howe	Assistant	9000	B007			
SG5	Susan Brand	Manager	24000	B003			
SL41	Julie Lee	Assistant	9000	B005			

A	В
branchNo	bAddress
B005 B007 B003	22 Deer Rd, London 16 Argyll St, Aberdeen 163 Main St, Glasgow

Characteristics of Functional Dependencies

- ◆ A functional dependency (FD) is a constraint that specifies the relationship between two sets of attributes where one set can accurately determine the value of other sets.
- ◆ Diagrammatic representation.

- ♦ It is denoted as $A \rightarrow B$, where A is a set of attributes that is capable of determining the value of B.
- ◆ The attribute set on the left side of the arrow, **A** is called **Determinant**, while on the right side, **B** is called the **Dependent**.

An Example Functional Dependency

Functional Dependency that Holds for All Time

- ◆ Consider the values shown in staffNo and sName attributes of the Staff relation.
- ◆ Based on sample data, the following functional dependencies appear to hold.
 - staffNo → sName
 - sName → staffNo ???

staffNo	sName	position	salary	branchNo
SL21	John White	Manager	30000	B005
SG37	Ann Beech	Assistant	12000	B003
SG14	David Ford	Supervisor	18000	B003
SA9	Mary Howe	Assistant	9000	B007
SG5	Susan Brand	Manager	24000	B003
SL41	Julie Lee	Assistant	9000	B005

Functional Dependency that Holds for All Time

◆ However, the only functional dependency that remains true for all possible values for the staffNo and sName attributes of the Staff relation is:

staffNo → sName

staffNo	sName	position	salary	branchNo
SL21	John White	Manager	30000	B005
SG37	Ann Beech	Assistant	12000	B003
SG14	David Ford	Supervisor	18000	B003
SA9	Mary Howe	Assistant	9000	B007
SG5	Susan Brand	Manager	24000	B003
SL41	Julie Lee	Assistant	9000	B005

Tutorial Q8

Given the following table

a) Identify the functional dependencies.

CustNo	CustName	CustTel	ProdNo	ProdName	UnitCost	OrderNo	Qty
C 1	Peter	1234567	P1	Shoes	10	O1	1
C1	Peter	1234567	P2	Bottle	20	O 1	2
C1	Peter	1234567	P1	Shoes	10	O2	4
C2	Paul	7654321	P4	Cup	40	O3	2
C2	Paul	7654321	P5	Disk	50	O4	1
C2	Paul	7654321	P3	Dress	30	O4	1

Functional Dependencies:

Example of Partial Dependency

- ◆ Exists in the Staff relation staffNo, sName → branchNo
- ◆ True each value of (staffNo, sName) is associated with a single value of branchNo.
- ◆ However, branchNo is also functionally dependent on a subset of (staffNo, sName), namely staffNo. This is an example of partial dependency.

staffNo	sName	position	salary	branchNo
SL21	John White	Manager	30000	B005
SG37	Ann Beech	Assistant	12000	B003
SG14	David Ford	Supervisor	18000	B003
SA9	Mary Howe	Assistant	9000	B007
SG5	Susan Brand	Manager	24000	B003
SL41	Julie Lee	Assistant	9000	B005

Characteristics of Functional Dependencies

- ◆ There is a one-to-one relationship between the attribute(s) on the left-hand side (determinant) and those on the right-hand side of a functional dependency.
- ◆ Holds for all time.
- ◆ The determinant has the minimal number of attributes necessary to maintain the dependency with the attribute(s) on the right hand-side

Transitive Dependencies

◆Transitive dependency describes a condition where A, B, and C are attributes of a relation such that if A \rightarrow B and B \rightarrow C, then C is transitively dependent on A via B

$$A \rightarrow B$$
, $B \rightarrow C$, then $A \rightarrow C$

◆It is important to recognize a transitive dependency because its existence in a relation can potentially cause update anomalies

Example Transitive Dependency

- ◆ Consider functional dependencies in the StaffBranch relation.
 - staffNo → sName, position, salary, branchNo, bAddress branchNo → bAddress
- **◆** Transitive dependency:
 - staffNo → bAddress via branchNo.

staffNo	sName	position	salary	branchNo	bAddress
SL21 SG37 SG14 SA9 SG5 SL41	John White Ann Beech David Ford Mary Howe Susan Brand Julie Lee	Manager Assistant Supervisor Assistant Manager Assistant	30000 12000 18000 9000 24000 9000	B005 B003 B003 B007 B003 B005	22 Deer Rd, London 163 Main St, Glasgow 163 Main St, Glasgow 16 Argyll St, Aberdeen 163 Main St, Glasgow 22 Deer Rd, London

The Process of Normalization

◆ Formal technique for analyzing a relation based on its primary key and the functional dependencies between the attributes of that relation.

◆ Often executed as a series of steps. Each step corresponds to a specific normal form, which has known properties.

The Process of Normalization

◆ As normalization proceeds, the relations become progressively more restricted (stronger) in format and also less vulnerable to update anomalies.

The Process of Normalization

Data sources

Unnormalized Form (UNF)

◆ A table that contains one or more repeating groups.

- ◆ To create an un-normalized table
 - Transform the data from the information source (e.g. forms) into table format with columns and rows.

Unnormalized Form (UNF)

Example of UNF

SALESPERSON/PRODUCT table									
<u>Salesperson</u> <u>Number</u>	Product Number	Salesperson Name	Commission Percentage	Year of Hire	Department Number	Manager Name	Product Name	Unit Price	Quantity
137	19440 24013 26722	Baker	10	1995	73	Scott	Hammer Saw Pliers	17.50 26.25 11.50	473 170 688
186	16386 19440 21765 24013	Adams	15	2001	59	Lopez	Wrench Hammer Drill Saw	12.95 17.50 32.99 26.25	1745 2529 1962 3071
204	21765 26722	Dickens	10	1998	73	Scott	Drill Pliers	32.99 11.50	809 734
361	16386\ 21765 26722	Carlyle	20	2001	73	Scott	Wrench Drill Pliers	12.95 32.99 11.50	3729 3110 2738

Repeating group of attribute

First Normal Form (1NF)

◆ A relation in which the intersection of each row and column contains one and only one value.

SALESPERSON/PRODUCT table									
Salesperson Number	Product Number	Salesperson Name	Commission Percentage	Year of Hire	Department Number	Manager Name	Product Name	Unit Price	Quantity
137	19440	Baker	10	1995	73	Scott	Hammer	17.50	473
137	24013	Baker	10	1995	73	Scott	Saw	26.25	170
137	26722	Baker	10	1995	73	Scott	Pliers	11.50	688
186	16386	Adams	15	2001	59	Lopez	Wrench	12.95	1475
186	19440	Adams	15	2001	59	Lopez	Hammer	17.50	2529
186	21765	Adams	15	2001	59	Lopez	Drill	32.99	1962
186	24013	Adams	15	2001	59	Lopez	Saw	26.25	3071
204	21765	Dickens	10	1998	73	Scott	Drill	32.99	809
204	26722	Dickens	10	1998	73	Scott	Pliers	11.50	734
361	16386	Carlyle	20	2001	73	Scott	Wrench	12.95	3729
361	21765	Carlyle	20	2001	73	Scott	Drill	32.99	3110
361	26722	Carlyle	20	2001	73	Scott	Pliers	11.50	2738

UNF to 1NF

- ◆ Nominate an attribute or group of attributes to act as the key for the unnormalized table.
- ◆ Identify the repeating group(s) in the unnormalized table which repeats for the key attribute(s).
- ◆ Remove repeating groups by entering appropriate data into the empty rows.

Second Normal Form (2NF)

- ◆ For a table in 2NF, it must be in 1NF and each non-key attribute must be dependent on the whole key
- ◆ Table with single-column key is in 2NF.
- ♦ Violations
 - Part of the key → nonkey, e.g.,
 SalepersonNumber → SalepersonName
- **♦** Solution:
 - Split the table

Salesperson Number	Product Number	Salesperson Name
137	19440	Baker
137	24013	Baker
137	26722	Baker
186	16386	Adams

1NF to 2NF

- ◆ Identify the primary key for the 1NF relation.
- ◆ Identify the functional dependencies in the relation.
- ◆ If partial dependencies exist on the primary key remove them by placing them in a new relation along with a copy of their determinant.

(Keep a copy of determinant in the original table!)

1NF to 2NF

Functional Dependence

1NF to 2NF

Solution: Split the 1NF table into several 2NF tables to remove the partial dependencies

		SALESPERSON	table		
<u>Salesperson</u> <u>Number</u>	Salesperson Name	Commission Percentage	Year of Hire	Department Number	Manager Name
7		PRODUCT to	ble		11
Product Number		Product Name			Unit Price
		QUANTITY to	ible		
Salesperson Number		Product Number			Quantity

Tables in 2NF

Relations in 2NF

<u>K</u>	SALESPERSON table							
<u>Salesperson</u> <u>Number</u>	Salesperson Name	Commission Percentage	Year of Hire	Department Number	Manager Name			
137?	Baker	10	1995	73	Scott			
186	Adams	15	2001	59	Lopez			
204	Dickens	10	1998	73	Scott			
361	Carlyle	20	2001	73	Scott			

et.	PRODUCT table	
Product Number	Product Name	Unit Price
16386	Wrench	12.95
19440	Hammer	17.50
21765	Drill	32.99
24013	Saw	26.25
26722	Pliers	11.50

	QUANTITY table	
<u>Salesperson</u> <u>Number</u>	<u>Product</u> <u>Number</u>	Quantity
137	19440	473
137	24013	170
137	26722	688
186	16386	1745
186	19440	2529
186	21765	1962
186	24013	3071
204	21765	809
204	26722	734
361	16386	3729
361	21765	3110
361	26722	2738

Tables in 2NF

Third Normal Form (3NF)

◆ Based on the concept of transitive dependency.

- ◆ Transitive Dependency is a condition where
 - A, B and C are attributes of a relation such that if $A \rightarrow B$ and $B \rightarrow C$,
 - then C is transitively dependent on A through B.
 (Provided that A is not functionally dependent on B or C).

Third Normal Form (3NF)

- ◆ A relation is in 3NF if it is
 - in 1NF and 2NF and
 - none of the non-primary-key attribute is transitively dependent on the primary key.
- ◆ Therefore, there is no nonkey → nonkey via transitive dependence

2NF to 3NF

- ◆ Identify the primary key in the 2NF relation.
- ◆ Identify functional dependencies in the relation.
- ◆ If transitive dependencies exist on the primary key remove them by placing them in a new relation along with a copy of their determinants.

(Keep a copy of determinant in the original table!)

2NF to 3NF

Why violating 3NF?

- ManagerName is transitively dependent on SalespersonNumber
- 2. ManagerName depends on DepartmentNumber and SalespersonNumber

2NF to 3NF

Solution: Split the SALEPERSON table to move the ManagerName to a new table called DEPARTMENT

Relations in 3NF

SALESPERSON table						
<u>Salesperson</u> <u>Number</u>	Salesperson Name	Commission Percentage	Year of Hire	Department Number		
137	Baker	10	1995	73		
186	Adams	15	2001	59		
204	Dickens	10	1998	73		
361	Carlyle	20	2001	73		

DEPARIMENT table				
<u>Department</u> <u>Number</u>	Manager Name			
59	Lopez			
73	Scott			

	PRODUCT table		
Product Number	Product Name	Unit Price	
16386	Wrench	12.95	
19440	Hammer	17.50	
21765	Drill	32.99	
24013	Saw	26.25	
26722	Pliers	11.50	

QUANTITY Table					
<u>Salesperson</u> <u>Number</u>	Product Number	Quantity			
137	19440	473			
137	24013	170			
137	26722	688			
186	16386	1745			
186	19440	2529			
186	21765	1962			
186	24013	3071			
204	21765	809			
204	26722	734			
361	16386	3729			
361	21765	3110			
361	26722	2738			

Normal Forms: Review

- Unnormalized There are multivalued attributes or repeating groups
- 1 NF No multivalued attributes or repeating groups.
- 2 NF 1 NF plus no partial dependencies
- 3 NF 2 NF plus no transitive dependencies

More precisely, every non-key (including non-candidate key) attribute depends on the key (1NF), the whole key (2NF) and nothing but the key (3NF).

Tutorial Q8

b) Normalize the table to 3NF (Hints: you may need to use 4 tables and provide proper names for these tables).

CustNo	CustName	CustTel	ProdNo	ProdName	UnitCost	OrderNo	Qty
C1	Peter	1234567	P1	Shoes	10	O1	1
C1	Peter	1234567	P2	Bottle	20	O1	2
C1	Peter	1234567	P1	Shoes	10	O2	4
C2	Paul	7654321	P4	Cup	40	O3	2
C2	Paul	7654321	P5	Disk	50	O4	1
C2	Paul	7654321	P3	Dress	30	O4	1

Tutorial Q8 solution

1NF: (No multivalued attributes or repeating groups)	
2NF: (No partial dependencies)	
3NF: (No transitive dependencies)	