Preamble

Data

▶ L, 9 cells hidden

Diffusion Coefficient

```
3 fig, (ax1, ax2) = plt.subplots(2, figsize = (12, 8), sharex=False, sharey=True, layout='constrained')
   . ## List of tracks sorted by size. Length of list determines the readability of the plots
6 ########## Slice the list length by changing the integer i; here [0:i] and here [0:i]
7 zipped_list = zip(np.arange(tracks_by_size.shape[0], dtype='int')[0:5], tracks_by_size.astype('int')[0:5])
 10 # plotting loop
 11 for i,j in zipped_list: # np.arange(tracks_by_size.shape[0]) # np.arange(0, 5)

12 t = np.arange(1, data_links['DISPLACEMENT'].loc[data_links['TRACK_ID'] == tracks_by_size[i]].shape[0]+1)*0.05

13 d = np.array(data_links['DISPLACEMENT'].loc[data_links['TRACK_ID'] == tracks_by_size[i]])*6.25*1e-4
          ax2.stackplot(t, d)
17
18 # combining all plots from the loop
19 ax1.legend(loc='upper center', bbox_to_anchor=(1.025, 1.1), ncol=1, fancybox=True, shadow=True, title='Tracks (ID)')
20 fig.supxlabel(r'Track length, $t$ [s]');
21 fig.supylabel(r'Displacement, $d$ [cm]');
22 fig.suptitle(r'Particle Displacement Versus Time')
23 plt.ticklabel_format(style='scientific', axis='y', scilimits=(0,0), useMathText=False)
```



```
1 # units are wrong; need to be corrected in ImageJ before analysis.
2 # Good guide from JMU: https://www.jmu.edu/microscopy/resources/basic-image-processing-imagej.pdf
3 # Also read best practices for data analysis and presentation!
6 #file_tracks.sort_values(by=['TRACK_DURATION'], ascending=False)
```

1 Label N splits Lgst ga Index ID N spots N gaps N merges N complex

```
1 # diffusion coefficient
2
3 # changing data units
4 index = file_tracks.index.tolist()
5 df = pd.DataFrame(file_tracks.TRACK_ID)
6 df['TRACK_DIRATION'] = file_tracks.TRACK_DIRATION  #*0.05 # has been calibrated # 50 ms/frame = 0.05 s/frame (20.0 frames/s)
7 df['TRACK_DISPLACEMENT'] = file_tracks.TRACK_DISPLACEMENT*6.25 # 512px / 81.92e-6 m = 6.25 px/µm; 0.16 µm/px (?)
8 df['TRACK_DISPLACEMENT'] = df['TRACK_DISPLACEMENT']*1e-4 # 1 µm = 1e-4 cm
9
10 # r-squared and D
11 df['r2'] = (df.TRACK_DISPLACEMENT ** 2)
12 df['r0'] = ( (df.TRACK_DISPLACEMENT ** 2) / ( 4 * df.TRACK_DURATION) )
13
14 # interpretting results: https://www.comsol.com/multiphysics/diffusion-coefficient
15 # In an aqueous (water) solution, typical diffusion coefficients are in the range of 1e-10 to 1e-9 m2/s
```

		TRACK_DURATION	TRACK_DISPLACEMENT		
3	0.0	1.30	0.000018	3.206829e-10	6.166979e-11
4	1.0	1.05	0.000057	3.285161e-09	7.821813e-10
5	2.0	0.85	0.000061	3.697803e-09	1.087589e-09
6	3.0	0.40	0.000127	1.612989e-08	1.008118e-08
7	4.0	1.65	0.000090	8.069883e-09	1.222710e-09
39540	39537.0	0.05	0.000032	1.046220e-09	5.231101e-09
39541	39538.0	0.05	0.000080	6.335039e-09	3.167520e-08
39542	39539.0	0.05	0.000057	3.298006e-09	1.649003e-08
39543	39540.0	0.05	0.000328	1.073826e-07	5.369132e-07
39544	39541.0	0.05	0.000067	4.435224e-09	2.217612e-08

39542 rows × 5 columns

```
1 # histogram using Seaborn + matplotlib
2
3 plot = sns.displot(data=df, x="D", kind="hist", kde=False, bins = 75, aspect = 1.5, legend=True)
4 plot.figure.subplots_adjust(top=0.9);
5 plt.xlim(-0.1e-6, None)
6 plot.figure.suptitle("Histogram of Diffusion Constants");
7 plot.set(xlabel=r'Diffusion Coefficient, $D$ $\left[ \mathrm{cm}^2]/\mathrm{s}{} \right]$', ylabel='Absolute Frequency', xlim=(None, 2.5e-6));
```



```
1 # histogram + kernel density estimate (KDE) plot
2
3 plot = sns.displot(data=df, x="D", kind="hist", kde=True, bins = 75, aspect = 1.5)
4 plot.figure.subplots_adjust(top=0.9);
5 plot.figure.suptitle("Histogram of Diffusion Constants With KDE Plot");
6 plt.xlim(-0.1e-6, None)
7 plot.set(xlabel=r'Diffusion Coefficient, $0$ $\left[ \mathrm{cm}{^2}/\mathrm{s}} \right]$', ylabel='Absolute Frequence
8 plt.legend(labels=["KDE","Histogram"]); # kernel density estimate (KDE) plot
```

