Parallel Beam Reconstruction

SS 2022

Y. Huang, F. Wagner, J. Maier, A. Preuhs, C. Syben, A. Maier Pattern Recognition Lab (CS 5)

Friedrich-Alexander University Erlangen-Nuremberg

Topics

Tomography

Projection

Hints for Implementation

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Hints for Implementation

Basic Principles of Tomography

• $\pi \mathbf{O} \mu \mathbf{O} \sigma$ = tomos = slice

Basic Principles of Tomography (2)

• Idea: Observe object of interest from multiple sides

Topics

Tomography

Projection

Hints for Implementation

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Hints for Implementation

Projection – Physical Observations

- X-ray Attenuation: $I = I_0 e^{-(\int f(x,y)dI)}$
 - I₀: initial X-ray beam intensity
 - f(x, y): absorption coefficient of material at position (x, y). (x, y) lies on beam line I

Projection – Physical Observations (2)

Observed Signal $I = I_0 e^{-p}$

Projection – Physical Observations (4)

Line Integral Data $p = \log(I/I_0)$

Projection Formation

Projection – Mathematical Formulation

$$p(s,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x \cos \theta + y \sin \theta - s) dx dy$$

Topics

Tomography

Projection

Hints for Implementation

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Hints for Implementation

Parallel Beam Sinogram (Ray_rDriven)

Parallel Beam Sinogram (Ray Driven)

Parallel Beam Sinogram (Ray₋Driven)

Rotation angle and detector index determines one ray.

Parallel Beam Sinogram (Ray₋Driven)

The real detector is equivalent to a detector passing origin.

Parallel Beam Sinogram (Ray_rDriven)

Rotation angle θ and detector index s determines one ray.

Parallel Beam Sinogram (Ray_□Driven)

The ray orientation is orthogonal to the detector orientation, determined by θ . Sampling along the ray for each distance Δt and sum them up as integral.

Topics

Tomography

Projection

Hints for Implementation

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Hints for Implementation

Reconstruction – Simple Example

Solve the puzzle

Reconstruction – Simple Example

· Solve the puzzle

$$x_1+x_3=7$$

$$x_2 + x_4 = 2$$

$$x_1+x_2=5$$

$$x_3 + x_4 = 4$$

Reconstruction – Simple Example

· Solve the puzzle

$$x_1 + x_3 = 7$$

 $x_2 + x_4 = 2$
 $x_1 + x_2 = 5$
 $x_3 + x_4 = 4$

$$x_1 = 3$$

$$x_2 = 2$$

$$x_3 = 4$$

$$x_4 = 0$$

Reconstruction – Simple Example (2)

· Projection can be formulated in matrix notation

$$\mathbf{P} = \mathbf{AX}$$

$$\mathbf{P} = \begin{pmatrix} 7 \\ 2 \\ 5 \\ 4 \end{pmatrix}, \qquad \mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

Reconstruction – Simple Example (2)

Solve with matrix inverse?

$$A^{-1}P = X$$

· Common problem size:

$$m{A} \in \mathbb{R}^{512^3 \times 512^2 \times 512}$$
 $512^6 \cdot 4 \; \text{Byte} = 2^{9 \cdot 6} \cdot 2^2 \; \text{B} = 2^6 \cdot 2^{50} \; \text{B}$ $= 64 \; \text{PB} = 65536 \; \text{TB}$

Reconstruction – Example Projection

Reconstruction - Example Backprojection

Image: Zeng, 2009

Reconstruction – Example Backprojection (2)

Reconstruction – Example Backprojection (3)

Reconstruction – Example "Negative Wings"

Reconstruction – Example Reconstruction

Topics

Tomography

Projection

Hints for Implementation

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Hints for Implementation

Fourier Transform

1D Fourier transform:

$$P(\omega) = \int_{-\infty}^{\infty} p(s) e^{-2\pi i s \omega} \mathrm{d}s$$

• 1D inverse Fourier transform:

$$p(s) = \int_{-\infty}^{\infty} P(\omega) e^{2\pi i s \omega} d\omega$$

Convolution

· Convolution:

$$(f*g)(t) = \int_{-\infty}^{\infty} f(au)g(t- au) \mathrm{d} au = \int_{-\infty}^{\infty} f(t- au)g(au) \mathrm{d} au$$

Convolution theorem:

$$q(s) = f(s) * g(s)$$

$$Q(\omega) = F(\omega) \cdot G(\omega)$$

Topics

Tomography

Projection

Hints for Implementation

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Hints for Implementation

Central Slice Theorem

Image: Zeng, 2009

Idea for Reconstruction

Image: Zeng, 2009

Topics

Tomography

Projection

Hints for Implementation

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Hints for Implementation

Filtered Backprojection

- Transform between polar coordinates and Cartesian coordinates, the Jacobian coefficient ω

$$\omega_{x} = \omega \cos \theta, \quad \omega_{y} = \omega \sin \theta$$

Fourier transform in polar coordinates:

$$f(x,y) = \int_0^{2\pi} \int_0^{\infty} F_{\text{polar}}(\omega,\theta) e^{2\pi i \omega (x \cos \theta + y \sin \theta)} \omega d\omega d\theta$$

• Multiplication with $H(\omega) = |\omega|$ in Fourier domain

Convolution with h(s) in image domain

Filtered Backprojection - Practical Algorithm

· Apply Filter on the detector row:

$$q(s,\theta) = h(s) * p(s,\theta)$$

Backproject q(s, θ):

$$f(x,y) = \int_0^{\pi} q(s,\theta)|_{s=x\cos\theta+y\sin\theta} d\theta$$

Backprojection means to add the detector value to each pixel
 → For each pixel at each rotation, you need to find the
 corresponding detector position and read its value.

Discrete Spatial Form of the Ramp Filter

- Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega = \frac{1}{2}$

Discrete Spatial Form of the Ramp Filter

- Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega=rac{1}{2}$

$$h(s) = \int_{-\frac{1}{2}}^{\frac{1}{2}} |\omega| e^{2\pi i \omega s} d\omega$$

Discrete Spatial Form of the Ramp Filter

- Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega = \frac{1}{2}$

$$h(s) = \int_{-\frac{1}{2}}^{\frac{1}{2}} |\omega| e^{2\pi i \omega s} d\omega$$

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

• Convert to discrete form: Let $s = n \cdot s_0$ (*n* integer, s_0 spacing)

$$h(n \cdot s_0) = \left\{ egin{array}{ll} rac{1}{4s_0^2} & n = 0 \ 0 & n ext{ even} \ -rac{1}{n^2\pi^2s_0^2} & n ext{ odd} \end{array}
ight.$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

• Convert to discrete form: Let $s = n \cdot s_0$ (*n* integer, s_0 spacing)

$$h(n \cdot s_0) = \left\{ egin{array}{ll} rac{1}{4s_0^2} & n = 0 \ 0 & n ext{ even} \ -rac{1}{n^2\pi^2s_0^2} & n ext{ odd} \end{array}
ight.$$

Also known as the "Ramachandran-Lakshminarayanan" convolver

Discrete Spatial Form of the Ramp Filter (3)

Topics

Tomography

Projection

Hints for Implementation

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Hints for Implementation

Get each pixel position x, y.

According to rotation angle θ , determine detector orientation.

Want to calculate the position s, where the ray hits the detector.

s can be calculated simply as the vector p projected to the direction vector v.