CS301 Assignment 2

Ahmet Bilal Yildiz

9 November 2022

1 Question 1

PART A:

To find the k smallest number in sorted order, I choose merge sort algorithm because it performs the best which is $\Theta(n \log n)$ among the comparison-based sorting algorithms. Then just choosing the k elements which are already sorted which is $\Theta(k)$.

```
The algorithm for this solution is: step1: start step2: declare array and position variables which are left, right and mid. step3: execute the merge function  \begin{aligned} &\text{if } left > right : \\ &\text{return} \\ &\text{mid} = (left + rigt)/2 \\ &\text{mergesort}(array, left, mid) \\ &\text{mergesort}(array, mid + 1, right) \\ &\text{merge}(array, left, mid, right) \end{aligned}  step4: stop step5: Get the first k element in the sorted list (\Theta(k)). As shown in the steps upper merge sort always splits data to 2 parts, so that merge sort is in the form:
```

 $T(n) = 2T(n/2) + \Theta(n)$ (merge operation takes $\Theta(n)$ time)

By the masters theorem:

since $\Theta(n) = \Theta(n^{\log_2 2})$, running time of the merge sort part is $\Theta(n \log n)$.

And the running time of the algorithm is: $\Theta(k + n \log n)$. Since $k \leq n$, $\Theta(k + n \log n) \leq \Theta(n + n \log n)$ and so the algorithm runs in $\Theta(n \log n)$ time.

PART B:

To find the k smallest number in sorted order, I choose Blum, Floyd, Pratt, Rivest, and Tarjan (1973) algorithm as order-statistics algorithm whose time complexity is $\Theta(n)$. Then partition around the kth smallest number. Then merge sort the numbers which are smaller than the kth smallest number which is also pivot and that takes $\Theta(k \log k)$ time.

The algorithm for this solution is:

Select(i, n):

step1: Divide the n elements into groups of 5, find the median of each 3-element group.

step2: Recursively Select the median X of the [n/5]group medians to be the pivot.

step3: Partition around the pivot X, let k = rank(X).

step4: If i = Xthen return X

Else if i < k:

Then recursively Select the ith smallest element in the lower part.

Else:

Recursively Select the (i - k)th smallest element in the upper part.

step5: sorting k elements which are smaller than the pivot (kth smallest element) by using merge-sort.

As shown in the upper steps, Blum, Floyd, Pratt, Rivest, and Tarjan (1973) algorithm is in the form of:

$$T(n) = T(n/5) + T(3n/4) + \Theta(n)$$

By substitution method:

Assume
$$T(n) \le cn$$
 Then,

$$T(n) \le \frac{1}{5}cn + \frac{3}{4}cn + \Theta(n)$$

$$= \frac{19}{20}cn + \Theta(n)$$

$$= cn - (\frac{1}{20}cn - \Theta(n))$$

 $\leq cn$, if c is chosen large enough to handle both the $\Theta(n)$ and initial conditions.

Therefore, this algorithm works in $\Theta(n)$ time. Since the running time of the merge sort for k elements is $\Theta(k \log k)$,

The time-complexity of this solution is: $\Theta(n + k \log k)$.

PREFERENCE: I prefer the second algorithm because this it is more efficient than the first one. Time complexity of this algorithm is depending on k and n values and when k is near to the n, running time of this algorithm is similar to the second algorithm. However, this algorithm performs better than the first algorithm when k is small and far from n. Therefore, the second algorithm is more efficient.

2 Question 2

PART A:

I can modify the radix sort algorithm by selecting the longest string as base, and converting all other strings suitable to sort in this base by adding \star characters on the right-most-ends of the

strings. While the comparison operation is running \star character has priority to any other characters to ensure that the letters are the same the smallest word has priority in lexicographical order.

Steps of the algorithms are:

step1: assign the base-length = length of the longest string step2: put \star character to the right-most-end of the strings whose lengths are smaller than the base until their length will be equal to base-length.

step3: implement radix sort to the strings just same as the radix sort for integers

From right-most character to the left-most character implement counting sort for the letters. Note that the (\star) character has priority to any other alphabetical character while doing the comparison.

PART B:

Passes are shown below according to the character numbers. The sorting order is from up to down in each step.

7th character:	6th character:	5th character:
$BATURAY GORKEM*^{1}$ $GIRAY **^{2}$ $TAHIR**^{3}$ $BARIS**^{4}$	$GORKEM \star GIRAY \star^{1} \star TAHIR \star^{2} \star BARIS \star^{3} \star BATURAY$	$GIRAY \star \star TAHIR^1 \star \star BARIS \star \star BATUR^2AY GORKEM \star$
4th character:	3th character:	2th character:
$GOR \c KEM \star$	$GIR^1AY\star\star$	$TA^1HIR\star\star$
$TAHI^1R\star\star$	$TAHIR \star \star$	$GIRAY \star \star$
BATURAY	$BAR^2IS\star\star$	$BA^2RIS\star\star$
$BARI^2S\star\star$	$GO_{\mathbf{R}}^{3}KEM\star$	$GORKEM\star$
$GIRAY \star \star$	BATURAY	BA^3TURAY

1th character: sorted list:

$TAHIR \star \star$	$BARIS \star \star$
$B^1ARIS \star \star$	BATURAY
$B^2ATURAY$	$GIRAY\star\star$
$G^{1}IRAY\star\star$	$GORKEM \star$
$G^2ORKEM \star$	$TAHIR\star\star$

PART C:

Running time of this algorithm is basically, base-length * running-time of the counting sort because we implement counting sort to the strings from right to left letter by letter. And the running time of the counting sort is $\Theta(n+k)$ where n represents number of strings and k represents the range which is from a-z and also we have * character, so the k = 27 in this algorithm. Therefore, the running time of the algorithm is:

$$\Theta(L*(N+27))$$

where:

L: base-length (length of the strings in the comparison)

N: number of strings that will be sorted

27: number of the range that a character can be in which is a-z and also \star .