A random sample of download speed of network points of Subisu ISP give the following data in mbps: 70,120, 110, 101, 88, 83, 95, 107, 100,101, 105, 106, 107, 85, 96, 98, 89, 92,94, 99, 88, 86 and 98. Do these data support the average download speed is 100 mbps?

Working Expression:

Working Procedure:

Define variables downloadspeed variables view \rightarrow Type, numeric \rightarrow Label, Download Speed \rightarrow measure, scale \rightarrow input data in data view \rightarrow Analysis \rightarrow compare means \rightarrow one sample t-test \rightarrow put in test variables \rightarrow options, 95% \rightarrow continue \rightarrow test value=100 \rightarrow ok

SPSS OUTPUT:

One-Sample Test

	Test Value = 100									
	t	df	Sig. (2-tailed)	Mean Difference	95% Confidence Interval of the Difference					
					Lower	Upper				
DownloadSpeed	-2.149	97	.034	-3.276	-6.30	25				

Setting of Hypothesis:

H0: The Population mean is equal to 100 Mbps.

H1: The Population mean is not equal to 100 Mbps. (Two tailed test)

Level of significance

 $\alpha = 0.05$

Decision:

Here p-value (two tailed) (2p) = 0.034

Since p=0.034< α =0.05, we reject H0 and H1 is accepted.

Conclusion:

Hence, we conclude that the Population mean is not equal to 100 Mbps.

2. The table shows the corresponding values of three variables Y and and

I

Y	7	6	8	10	9	5	3	4
	39	52	49	46	61	35	25	55
	8	6	7	12	9	6	7	4

- i. Fit the linear regression model of Y on and.
- ii. Estimate Y when = 48 and = 9.
- iii. Compute the multiple determination, adjusted and standard error of the estimate.

Working Expression:

The regression line of Y on X1 and X2 is

Y = a + b1x1 + b2x2

Where, Y= dependent variable

A = y-intercept

B1 and b2 are regression coefficients

X1 and x2 are independent variable

Working Procedure:

Define variables in variable view -> Put data in variable view -> Analyze -> Regression -> Linear -> Put rent in dependent list -> Put room and distance in independent -> Goto statistics -> Level of

SPSS OUTPUT:

Model Summary

Model	R	R Square		Std. Error of the	
			Square	Estimate	
1	.957²	.916	.859	97.086	

a. Predictors: (Constant), Distance from downtown, Number of rooms

	Coe	efficients ^a				
Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence between	
В	Std. Error	Beta	t	Sia		Upper Bound
96.458	118.121		.817	.474	-279.454	472.37
100000000000000000000000000000000000000		.943	5.081	.015	50.991	221.97 42.69
	В	Unstandardized Coefficients B Std. Error 96.458 118.121 136.485 26.864	Unstandardized Coefficients Coefficients B Std. Error Beta 96.458 118.121 136.485 26.864 .943	Unstandardized Coefficients	Unstandardized Coefficients Standardized Coefficients B Std. Error Beta t Sig. 96.458 118.121 .817 .474 136.485 26.864 .943 5.081 .015	Unstandardized Coefficients Standardized Coefficients 95.0% Confidents B Std. Error Beta t Sig. Lower Bound 96.458 118.121 .817 .474 -279.454 136.485 26.864 .943 5.081 .015 50.991

Calculation:

Here, a = 96.45

b1 = 136.185

b2 = -2.403

The multiple model is

Y = a + b1x1 + b2x2

= 364.01

c) Multiple determination (R) = 0.196

= 91.6%

Which means that 91.6% of variation of dependent variable rent is explained by two independent rooms and distance

c-ii) Standard error of estimation is 97.08.

Conclusion:

In general, in this way we can obtain the estimated value of rent, coefficient of determination and standard error from the given data.

3. A study was conducted about RAM produced by company A and B. The following data reveal the RAM produced by company A and B. Is there any significant difference in the durability of RAM produced by company A and B?

Company A	10	12	13	11	14		
Company B	8	9	12	14	15	10	9

Q8)

Working Expression:

Working Procedure:

Define variables company A, company B and value in variable view \rightarrow label them as company and value \rightarrow assign type as numeric for company A and company B \rightarrow assign measure as scale \rightarrow go to analyze \rightarrow compare means \rightarrow independent sample t –test \rightarrow put values of company in test variables and values in grouping variable \rightarrow go to options give level of confidence 95% \rightarrow continue \rightarrow ok

SPSS OUTPUT:

Independent Samples Test

		Levene's Test for Equality of Variances		t-test for Equality of Means						
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Con Interval Differe	of the
									Lower	Upper
values of	Equal variances assumed	3.361	.097	.735	10	.479	1.000	1.361	-2.032	4.032
company	Equal variances not assumed			.804	9.759	.441	1.000	1.244	-1.781	3.781

Setting of Hypothesis:

Ho: There is no significant difference between the durability of RAM.

H1: There is significant difference between the durability of RAM. (two tailed test).

Level of significance

 $\alpha \approx 0.05$

Decision:

For Levene's test for equality of variances,

p- value = 0.097> α = 0.05, we accept Ho

Hence, equal variances assumed.

Since $2p = 0.479 > \alpha = 0.05$, we accept Ho.

Conclusion:

Hence, we conclude that there is no significant difference between the durability of RAM.

1022-28