Exercícios: suficiência mínima, completude e ancilaridade

Disciplina: Inferência Estatística (MSc) Instrutor: Luiz Carvalho

Julho/2022

Motivação: Ainda dentro da temática de "redução de dados", temos suficiência mínima¹, completude e ancilaridade. Podemos encarar suficiência mínima e ancilaridade como dois extremos em relação ao parâmetro de interesse, θ : se a suficiência mínima nos diz que a estatística T traz toda a informação sobre θ contida na amostra da maneira mais compacta possível, ancilaridade nos diz que a distribuição de T nem depende de θ . Já a completude é uma condição técnica, que pode ser útil para mostrar suficiência mínima (Bahadur) ou independência entre quantidades de interesse (Basu).

Notação: Como convenção adotamos $\mathbb{R}=(-\infty,\infty),\ \mathbb{R}_+=(0,\infty)$ e $\mathbb{N}=\{1,2,\ldots\}.$

Dos livros-texto:

- a) KN, Ch 3.7: 6, 7, 9b, 12, 15 e 16;
- b) CB, Ch6: 6.8, 6.9 e 6.31.

Extra:

- 1. Defina \mathcal{P}_{σ} como a família de todas as distribuições normais com desviopadrão $\sigma > 0$. Seja X_1, X_2, \dots, X_n uma amostra aleatória de \mathcal{P}_{σ} .
 - Mostre que a média amostral $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ é estatística <u>suficiente</u> e completa;
 - Mostre que a variância amostral,

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2,$$

é ancilar para μ .

• Conclua que \bar{X}_n e S_n^2 são independentes. O que acontece se considerarmos a família de todas as distribuições normais com média $\mu \in \mathbb{R}$ e desvio-padrão $\sigma > 0$ desconhecidos?

 $^{^1{\}rm Em}$ certo sentido, uma estatística suficiente mínima (ou minimal) é a representação mais "grossa" dos dados que ainda assim é suficiente.

2. Seja X_1,X_2,\ldots,X_n uma amostra aleatória de uma distribuição Cauchy com locação θ e escala $\gamma=1,$ com densidade comum (com respeito a Lebesgue)

$$f_{\theta}(x) = \frac{1}{\pi[1 + (x - \theta)^2]} \mathbb{I}(x \in \mathbb{R}).$$

Mostre que $T(\boldsymbol{X}_n) = (X_{(1)}, \dots, X_{(n)})$ é suficiente e não há como atingir nenhuma outra redução. **Dica:** ver exercícios de CB acima.

3. Seja X_1, X_2, \dots, X_n uma amostra aleatória de uma família dominada, cuja densidade comum (com respeito a Lebesgue) é

$$f_{\theta}(x) = \frac{\exp(-|x-\theta|)}{2} \mathbb{I}(x \in \mathbb{R}), \ \theta \in \mathbb{R}.$$

Mostre que $T(\boldsymbol{X}) = (X_{(1)}, X_{(2)}, \dots, X_{(n)})$ é suficiente mínima para este modelo.

4. **Desafio**: Suponha que X_1, X_2, \dots, X_n são i.i.d. com densidade comum com respeito a Lebesgue

$$f_{\theta}(x) = \frac{1}{\theta^2} \exp\left(-\frac{(x-\theta)}{\theta^2}\right) \mathbb{I}(x > \theta),$$

para $\theta > 0$.

- Encontre estatística suficiente mínima, T, para este modelo;
- Mostre que T não é completa.

Dica: Considere estatísticas de ordem.