Interrogation n°1 - U21

Exercice 1:

Présenter la table de vérité de l'expression suivante: (P ^ (P => Q)) => Q

P	B	P=>Q	P1(P=>6)	P1(P=0)=> Q
0	6		0	
0	١	1	0	
1	0	0	0	
	1			

Exercice 2:

A l'aide d'une table de vérité, montrer que : $(\bar{P} \wedge \bar{R}) \Leftrightarrow (((\bar{P} \wedge Q) \wedge \bar{R}) \vee (\bar{P} \wedge (\bar{Q} \wedge \bar{R})))$

							- NEEDE	CX)		
P	Q	R	P	R	PAR	PNG	(PAQ)AR	\$	QNR	PN(GAR)	X
0	0	0	1	1		0	0	1			1
O	0	T		0	0	0	0	1	0	0	0
0	1	0	T.	1	1	1	1	0	0	0	(
0	1	1	1	0	0		0	0	0	0	0
1	0	0	0	1	0	0	٥	1	1	0	0
	0	¥2.	O	0	0	0	0	1	0	0	0
1	1	0	0	1	0	0	0	0	0	0	0
		1	0	0	0	0	0	0	0	0	0

Exercice 3:

On pose les propositions suivantes :

P: il pleut

 \mathcal{Q} : il prend un parapluie

R: il est protégé

Ecrire symboliquement les phrases suivantes :

a)	S'il pleut alors il prend son parapluie.	PSO
b)	S'il prend son parapluie, alors il pleut.	932
c)	S'il prend son parapluie, alors il est protégé.	9 => R
d)	S'il ne pleut pas, alors il ne prend pas son parapluie	<u>6</u> ⇒ €
e)	S'il ne pleut pas ou qu'il prend son parapluie, alors il est protégé.	(5/6) => R

Exercice 4:

1. Les propositions suivantes, sont-elles vraies ou fausses? Justifier

A: (2 = 3) => (1 + 1 = 2)

B: (2 = 3) => (1 = 5)0 => 0

C: (1 + 1 = 2) => (2 = 3)

: (1	T 1	- 2)		(2 -
	1	-	=>	0

D: (1 + 1 = 2) = (6 = 2 + 4)

2. En utilisant les lois de Morgan, écrire les négations des propositions suivantes (on ne demande pas leur valeur de vérité):

 $E: (x^2 < 3) \lor (y \ge 7)$

 $G: (y > 9) \land (y \le 12)$

H: Elle n'aime ni les fruits, ni les légumes

3. En utilisant la contraposée, écrire une proposition similaire à chacune des propositions suivantes :

I: (y = x + 3) = > (x < 5)

 $J: Si \times > 4 alors \times^2 > 16$

Exercice 5:

- 1. Soit f une fonction de la variable x, définie sur IR. On considère l'énoncé suivant : « il existe (au moins) un réel x tel que $f(x) \ge 0$ ».
 - a) Ecrire cette proposition en écriture symbolique (c'est à dire à l'aire des quantificateurs).

b) Ecrire la négation de cette proposition, d'abord en écriture symbolique, puis en français.

7(X)<0

On considère l'énoncé suivant : «∃x ∈ IR, ∀ y ∈ IN, x ≠ y».

Ecrire la négation de cette proposition.