Examenul de bacalaureat național 2015

Proba E. c) Matematică M_mate-info

BAREM DE EVALUARE SI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1 + z_2 = (2+3i) + (1-3i) =$	3p
	= 3, care este număr real	2 p
2.	g(1)=3	2p
	$(f \circ g)(1) = f(g(1)) = f(3) = 2$	3 p
3.	$4^x = 4^3$	2p
	x = 3	3 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 13 numere naturale de două cifre care sunt divizibile cu 7, deci sunt 13 cazuri favorabile	2p
	$n = \frac{\text{nr. cazuri favorabile}}{120} = \frac{13}{120}$	
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{90}$	2p
5.	Dreapta paralelă cu dreapta d are panta egală cu 4	2p
	Ecuația paralelei duse prin punctul A la dreapta d este $y = 4x - 8$	3 p
6.	$\sin(\pi - x)\sin x - \cos(\pi - x)\cos x = -\cos(\pi - x + x) =$	3p
	$=-\cos\pi=1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	1 0 1	
	$ \det A = 0 1 0 =$	2p
	$\det A = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = $	
	=1+0+0-1-0-0=0	3 p
b)	$\begin{pmatrix} 0 & 2x & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x & 0 \end{pmatrix}$	
	$A \cdot B(x) = \begin{pmatrix} 0 & 2x & 0 \\ x & 0 & x \\ 0 & 2x & 0 \end{pmatrix}, \ B(x) \cdot A = \begin{pmatrix} 0 & x & 0 \\ 2x & 0 & 2x \\ 0 & x & 0 \end{pmatrix}$	2p
	$\begin{pmatrix} 0 & 2x & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x & 0 \end{pmatrix}$	
	(0 3x 0) (0 x 0)	
	$A \cdot B(x) + B(x) \cdot A = \begin{vmatrix} 3x & 0 & 3x \end{vmatrix} = 3 \begin{vmatrix} x & 0 & x \end{vmatrix} = 3B(x)$, pentru orice număr real x	3р
	$A \cdot B(x) + B(x) \cdot A = \begin{pmatrix} 0 & 3x & 0 \\ 3x & 0 & 3x \\ 0 & 3x & 0 \end{pmatrix} = 3 \begin{pmatrix} 0 & x & 0 \\ x & 0 & x \\ 0 & x & 0 \end{pmatrix} = 3B(x), \text{ pentru orice număr real } x$	
c)	$\begin{pmatrix} 0 & 2x^3 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x^2 + x - 2 & 0 \end{pmatrix}$	
	$B(x)B(x)B(x) = \begin{pmatrix} 0 & 2x^3 & 0 \\ 2x^3 & 0 & 2x^3 \\ 0 & 2x^3 & 0 \end{pmatrix} \text{ si } B(x^2 + x - 2) = \begin{pmatrix} 0 & x^2 + x - 2 & 0 \\ x^2 + x - 2 & 0 & x^2 + x - 2 \\ 0 & x^2 + x - 2 & 0 \end{pmatrix}$	3n
	$\begin{bmatrix} B(x)B(x)B(x) & 2x & 3 & 0 \\ 0 & 2x^3 & 0 & 3 \end{bmatrix} \begin{bmatrix} A(x)B(x)B(x)B(x) & 2x & 3 \\ 0 & 2x^3 & 0 & 3 \end{bmatrix}$	J p
	$ \left(\begin{array}{ccc} 0 & 2x^2 & 0 \end{array} \right) \qquad \left(\begin{array}{ccc} 0 & x^2 + x - 2 & 0 \end{array} \right) $	
	$2x^3 = x^2 + x - 2, x \in \mathbb{R} \iff x = -1$	2p
2.a)	$f(0) = 0^3 - 2 \cdot 0^2 + 2 \cdot 0 + m =$	3p
	=0-0+0+m=m	2p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

b)	$x_1 + x_2 + x_3 = 2$, $x_1x_2 + x_1x_3 + x_2x_3 = 2$, $x_1x_2x_3 = 1$	3 p
	$\left(x_1 + x_2 + x_3\right) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = \frac{\left(x_1 + x_2 + x_3\right)\left(x_2 x_3 + x_1 x_3 + x_1 x_2\right)}{x_1 x_2 x_3} = \frac{2 \cdot 2}{1} = 4$	2 p
c)	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = 2^2 - 2 \cdot 2 = 0$	2 p
	Dacă polinomul f ar avea toate rădăcinile reale, am obține $x_1=x_2=x_3=0$, contradicție cu $x_1+x_2+x_3=2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{(2x-1)(x^2+x+1)-(2x+1)(x^2-x+1)}{(x^2+x+1)^2} =$	3p
	$= \frac{2x^2 - 2}{\left(x^2 + x + 1\right)^2} = \frac{2(x - 1)(x + 1)}{\left(x^2 + x + 1\right)^2}, \ x \in \mathbb{R}$	2p
b)	f(0)=1, f'(0)=-2	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x - 0) \Rightarrow y = -2x + 1$	3 p
c)	$\lim_{x \to +\infty} (f(x))^x = \lim_{x \to +\infty} \left(\frac{x^2 - x + 1}{x^2 + x + 1} \right)^x = \lim_{x \to +\infty} \left(1 - \frac{2x}{x^2 + x + 1} \right)^x =$	2p
	$= e^{\lim_{x \to +\infty} \frac{-2x^2}{x^2 + x + 1}} = e^{-2}$	3 p
2.a)	$\int_{0}^{1} (f(x) + 2x) dx = \int_{0}^{1} e^{x} dx =$	2p
	$=e^{x}\begin{vmatrix}1\\0=e-1\end{vmatrix}$	3 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = e^x - x^2 + c$, unde $c \in \mathbb{R}$	2 p
	$F(1) = e - 3 \Rightarrow c = -2$, deci $F(x) = e^x - x^2 - 2$	3 p
c)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} (e^{x} - 2x)^{2} dx = \pi \int_{0}^{1} (e^{2x} - 4xe^{x} + 4x^{2}) dx =$	2p
	$=\pi \left(\frac{1}{2}e^{2x} - 4(x-1)e^x + 4\frac{x^3}{3}\right)\Big _0^1 = \frac{\pi \left(3e^2 - 19\right)}{6}$	3р