Binarne operacije

October 14, 2021

Unarna operacija skupa A je svaka funkcija $':A\longrightarrow A$.

Binarna operacija skupa
$$A$$
 je svaka funkcija $*: A^2 \longrightarrow A$.

Uobičajeno je da se za unarne operacije koriste simboli: -, $^{-1}$, ' i slično, a za binarne: +, \cdot , \oplus , \odot , * i slično.

Takođe se umesto *(a, b) piše a*b, na primer, umesto +(1, 2) = 3 piše se 1+2=3.

Ako je * binarna operacija nepraznog skupa A uređen par $\mathcal{A}=(A,*)$ se naziva **grupoid**.

Uređen par (A,*) je grupoid ako je $A \neq \emptyset$ i operacija * zatvorena u skupu A, tj. važi $\forall x,y \in A \Longrightarrow x*y \in A.$

Primer: Da li su sledeći uređeni parovi grupoidi?

$$(\mathbb{N},+)$$
 fewer

$$(\mathbb{N},\cdot)$$
 yewse

$$(\mathbb{Z},-)$$
 full

$$(\mathbb{Z},\cdot)$$
 fewe

$$(\mathbb{Z}\setminus\{0\},:)$$
 the approx 1:2 \notin \mathbb{Z}

$$(\mathbb{R}\setminus\{0\},:)$$
 yewe

$$(\{-2,-1,0,1,2\},\cdot)$$
 Hugh $2\cdot 2=4\notin \{-2,-1,0,1,2\}$

Binarne operacije se obično zadaju (definišu) korišćenjem:

2.3=6 1 × 3 = 6

1 k 2 = mun {3 3}=3

Kejlijevih tablica.

Pomoću Kejlijevih tablica se mogu zadati unarne i binarne operacije na konačnom skupu A. Na primer neka je $A = \{0, 1, 2, 3\}$

,		(*)	0	1	2	3	
0		0	0	1	2	3	
7 1 2	3	1	1	2	3	3	
2	2	2	2	(3)	3	3 🖟	
3	1	3	3	3	3	3 3 3	

Poznatih binarnih operacija .

Pomoću poznatih operacija mogu se zadati nove unarne i binarne operacije. Na primer na skupu $A = /\{0,1,2,3\}$ su sa

$$-x' = \begin{cases} 0, & x = 0 \\ 4 - x, & x \neq 0 \end{cases} \qquad i \qquad x \stackrel{\text{(*)}}{x} = \min\{x + y, 3\}$$

definisane iste operacije ' i * koje su definisane Kejlijevim tablicama

datim iznad. A =
$$\{1,2,3\}$$
 $1 \pm 2 = 1$ $2 \pm 3 = 2$ $1 \pm 3 = 1$

x *y

Osobine grupoida.

Neka je A neprazan skup.

• Grupoid (A, *) je asocijativan (polugrupa) ako

$$\forall x,y,z\in A,\ x*(y*z)=(x*y)*z.$$

► Grupoid (A, *) je komutativan ako

$$\forall x, y \in A, \ x * y = y * x.$$

► Grupoid (A, *) je idempotentan ako

$$\forall x \in A. \ x * x = x.$$

$$2+(3+5)=(2+3)+5^{-}$$

$$2-(3+5)\neq(2-3)+5$$

 $2-(3-5)\neq(2-3)-5$

• Grupoid (A, *) je sa levim neutralnim elementom ako

$$\overbrace{\exists e \in A, \forall x \in A, e * x = x}.$$

Grupoid (A,*) je sa desnim neutralnim elementom ako

$$\exists e \in A, \forall x \in A, x * e = x.$$

(N, ·) 1. x = X x-1= X 1 & H.E

Elemenat $e \in A$ je neutralni elemenat grupoida (A, *) ako je on istovremeno i levi i desni neutralni elemenat.

Joez,
$$\forall x \in \mathcal{X}$$
, $\forall x \in \mathcal{X}$, $\forall x \in \mathcal{$

lacktriangle Neka je $\underline{e \in A}$ levi neutralni element grupoida (A,*). Ako

za neki elemenat
$$x \in A$$
, $\exists x' \in A$, $x' * x = e$

tada je x' levi inverzni elemenat elementa x.

Neka je $e \in A$ desni neutralni element grupoida (A,*). Ako

za neki elemenat
$$x \in A$$
, $\exists x' \in A$, $x * x' = e$

tada je x' desni inverzni elemenat elementa x.

Neka je $e \in A$ neutralni element grupoida (A,*). Ako za neki elemenat $x \in A$ postoji elemenat $x' \in A$ koji je istovremeno i levi i desni inverzni elemenat elementa x, tada je elemenat x' inverzni elemenat, elementa x.

$$(R_{,\bullet}) \qquad \qquad \Gamma \cdot \frac{1}{5} = 1$$

$$(-\frac{5}{7})' = -7$$

$$(-\frac{5}{7})' = -7$$

$$(-X) + X = C$$

$$2 + (-2) = 0$$
$$(-2) + 2 = 0$$

▶ Grupoid (A,*) je kancelativan ako za $\forall x, y, z \in A$, važi

$$x*y=x*z\Longrightarrow y=z\quad \text{(levi zakon kancelacije)},$$

$$y * x = \cancel{z} * x \Longrightarrow y = z$$
 (desni zakon kancelacije).

lacktriangle Grupoid (A,*) je sa levim nilpotentnim elementom ako

$$\exists\, 0\in A,\ \forall x\in A,\ 0*x=0.$$

Grupoid (A, *) je sa desnim nilpotentnim elementom ako

$$\exists 0 \in A, \ \forall x \in A, \ x * 0 = 0.$$

Elemenat $0 \in A$ je nilpotentni elemenat grupoida (A, *) ako je on istovremeno i levi i desni nilpotentni elemenat.

$$2 \cdot x = 2 \cdot y$$

$$\Rightarrow x = y$$

$$x \cdot 2 = y/2$$

$$\Rightarrow x = y$$

$$(x, y)$$

0.X=0

Ako postoji neutralni element, on je jedinstven.

Ako postoji inverzni element, on je jedinstven.

Ako je grupoid komutativan, levi neutralni element mora biti i desni, levi inverzni element mora biti i desni, levi nilpotentni element mora biti i desni, tj. pri ispitivanju neutralnog, nilpotentnog i inverznih elemenata dovoljno je ispitivati samo leve, odnosno samo desne.

Ako u asocijativnom grupoidu postoje i neutralni i inverzni elementi on je kancelativan.

Ako je neka operacija zadata preko poznatih binarnih i unarnih operacija, tada se pri ispitivanju njenih osobina koriste poznate osobine operacija preko kojih je definisana.

Neka je $\mathcal{A}=(A,*)$ grupoid, i neka je B neprazan podskup skupa A. Ukoliko je $\mathcal{B}=(B,*)$ grupoid, tj. ako je operacija * zatvorena u skupu B, tada je \mathcal{B} **podgrupoid** grupoida \mathcal{A} .

Operacija * grupoida $\mathcal B$ je ustvari restrikcija operacije * grupoida $\mathcal A$, ali je uobičajeno da se one isto označavaju.

Zakonitosti u kojima od kvantifikatora figuriše samo \forall (na primer komutativnost i asocijativnost) prenose se sa grupoida na svaki njegov podgrupoid.

 $(R \rightarrow)$

(M (+)

(MI) /2 L

(t,+)