Виктор Васильевич Лепин

• Управление крупными проектами связано с решением сложных проблем планирования,

- Управление крупными проектами связано с решением сложных проблем планирования,
- определения сроков начала и окончания отдельных работ,

- Управление крупными проектами связано с решением сложных проблем планирования,
- определения сроков начала и окончания отдельных работ,
- контроля за выполнением этих сроков.

- Управление крупными проектами связано с решением сложных проблем планирования,
- определения сроков начала и окончания отдельных работ,
- контроля за выполнением этих сроков.
- Все это осложняется тем, что работы должны выполняться в заданной технологической последовательности.

- Управление крупными проектами связано с решением сложных проблем планирования,
- определения сроков начала и окончания отдельных работ,
- контроля за выполнением этих сроков.
- Все это осложняется тем, что работы должны выполняться в заданной технологической последовательности.
- Одной из главных целей сетевого планирования является получение информации о плановых сроках выполнения отдельных работ проекта,

- Управление крупными проектами связано с решением сложных проблем планирования,
- определения сроков начала и окончания отдельных работ,
- контроля за выполнением этих сроков.
- Все это осложняется тем, что работы должны выполняться в заданной технологической последовательности.
- Одной из главных целей сетевого планирования является получение информации о плановых сроках выполнения отдельных работ проекта,
- что позволяет предвидеть возможные причины задержек.

• Сетевой график есть орграф G = (V, E), который отражает связи между всеми заданиями, необходимыми для окончания проекта.

- Сетевой график есть орграф G = (V, E), который отражает связи между всеми заданиями, необходимыми для окончания проекта.
- Дуги орграфа соответствуют работам,

- Сетевой график есть орграф G = (V, E), который отражает связи между всеми заданиями, необходимыми для окончания проекта.
- Дуги орграфа соответствуют работам,
- а вершины событиям.

- Сетевой график есть орграф G = (V, E), который отражает связи между всеми заданиями, необходимыми для окончания проекта.
- Дуги орграфа соответствуют работам,
- а вершины событиям.
- Событие это момент времени, когда можно начать выполнение новых работ.

- Сетевой график есть орграф G = (V, E), который отражает связи между всеми заданиями, необходимыми для окончания проекта.
- Дуги орграфа соответствуют работам,
- а вершины событиям.
- Событие это момент времени, когда можно начать выполнение новых работ.
- Для каждой работы (дуги) $(i, j) \in E$ известна ее продолжительность t_{ij} .

• Направления дуг определяются отношениями предшествования между работами.

- Направления дуг определяются отношениями предшествования между работами.
- ullet Помеченное ребро $i \stackrel{\mathrm{A}}{\longrightarrow} j$ означает:

- Направления дуг определяются отношениями предшествования между работами.
- Помеченное ребро $i \xrightarrow{A} j$ означает:
- \bullet *i*-е событие должно наступить до начала работы A, а

- Направления дуг определяются отношениями предшествования между работами.
- Помеченное ребро $i \xrightarrow{A} j$ означает:
- \bullet *i*-е событие должно наступить до начала работы A, а
- ullet *j*-е не может наступить до окончания работы A.

- Направления дуг определяются отношениями предшествования между работами.
- Помеченное ребро $i \xrightarrow{A} j$ означает:
- \bullet *i*-е событие должно наступить до начала работы A, а
- \bullet *j*-е не может наступить до окончания работы A.
- Иногда отношения предшествования между работами нельзя точно задать с помощью сети.

- Направления дуг определяются отношениями предшествования между работами.
- Помеченное ребро $i \xrightarrow{A} j$ означает:
- ullet *i*-е событие должно наступить до начала работы A, а
- ullet *j*-е не может наступить до окончания работы A.
- Иногда отношения предшествования между работами нельзя точно задать с помощью сети.
- Например, если работа G выполняется за работами B и C, а работа E за работой B, но не за C.

- Направления дуг определяются отношениями предшествования между работами.
- Помеченное ребро $i \xrightarrow{A} i$ означает:
- i-е событие должно наступить до начала работы A, а
- j-е не может наступить до окончания работы A.
- Иногда отношения предшествования между работами нельзя точно задать с помощью сети.
- Например, если работа G выполняется за работами B и C, а работа E – за работой B, но не за C.

Неправильное представл.:

Правильное представление:

• При сборке станка узлы 1 и 2 соединяются в узел 4,

- При сборке станка узлы 1 и 2 соединяются в узел 4,
- а объединение узлов 3 и 4 дает готовое изделие.

- При сборке станка узлы 1 и 2 соединяются в узел 4,
- а объединение узлов 3 и 4 дает готовое изделие.
- Так как необходимо согласовать некоторые детали узла 3 с соответствующими деталями узла 2,

- При сборке станка узлы 1 и 2 соединяются в узел 4,
- а объединение узлов 3 и 4 дает готовое изделие.
- Так как необходимо согласовать некоторые детали узла 3 с соответствующими деталями узла 2,
- то узел 3 нельзя собрать ранее, чем будут в наличии детали узла 2.

Пример: описание работ

Обозн.	Описание	Прод. (сут.)	Непоср. предш.
A	Закупка деталей узла 1	5	_
B	Закупка деталей узла 2	3	_
C	Закупка деталей узла 3	10	_
D	Изготовление узла 1	7	A
E	Изготовление узла 2	10	В
F	Изготовление узла 4	5	D, E
G	Изготовление узла 3	9	B, C
Н	Окончательная сборка	4	F,G
I	Испытания	2	Н

Сетевой график процесса изготовления станка

• Имеется одно начальное событие (вершина, в которую не входит ни одна дуга)

- Имеется одно начальное событие (вершина, в которую не входит ни одна дуга)
- и одно заключительное событие (вершина, из которой не выходит ни одна дуга).

- Имеется одно начальное событие (вершина, в которую не входит ни одна дуга)
- и одно заключительное событие (вершина, из которой не выходит ни одна дуга).
- В графике нет циклов.

- Имеется одно начальное событие (вершина, в которую не входит ни одна дуга)
- и одно заключительное событие (вершина, из которой не выходит ни одна дуга).
- В графике нет циклов.
- Поэтому события можна занумеровать таким образом, что каждая дуга (работа) начинается в вершине с меньшим номером и заканчивается в вершине с большим номером.

- Имеется одно начальное событие (вершина, в которую не входит ни одна дуга)
- и одно заключительное событие (вершина, из которой не выходит ни одна дуга).
- В графике нет циклов.
- Поэтому события можна занумеровать таким образом, что каждая дуга (работа) начинается в вершине с меньшим номером и заканчивается в вершине с большим номером.
- В дальнейшем будем считать, что $V = \{1, \dots, n\}$ и, если $(i,j) \in E$, то i < j.

• Ранний срок T_j^p наступления события j есть ранний срок окончания всех работ, которые лежат на путях между начальным событием 1 и событием j.

- Ранний срок T_j^p наступления события j есть ранний срок окончания всех работ, которые лежат на путях между начальным событием 1 и событием j.
- Таким образом, T_j^p есть максимальная длина пути из вершины 1 в вершину j, если длины дуг это продолжительности работ.

- Ранний срок T_j^p наступления события j есть ранний срок окончания всех работ, которые лежат на путях между начальным событием 1 и событием j.
- Таким образом, T_j^p есть максимальная длина пути из вершины 1 в вершину j, если длины дуг это продолжительности работ.
- Параметры T_j^p можно вычислить по формуле:

$$T_1^p = 0; \ T_j^p = \max_{ij \in E} (T_i^p + t_{ij}), \ j = 2, \dots, n.$$

- Ранний срок T_j^p наступления события j есть ранний срок окончания всех работ, которые лежат на путях между начальным событием 1 и событием j.
- Таким образом, T_j^p есть максимальная длина пути из вершины 1 в вершину j, если длины дуг это продолжительности работ.
- ullet Параметры T_j^p можно вычислить по формуле:

$$T_1^p = 0; \ T_j^p = \max_{ij \in E} (T_i^p + t_{ij}), \ j = 2, \dots, n.$$

• Ранний срок наступления последнего события n – это самый ранний срок окончания всего проекта,

- Ранний срок T_j^p наступления события j есть ранний срок окончания всех работ, которые лежат на путях между начальным событием 1 и событием j.
- Таким образом, T_j^p есть максимальная длина пути из вершины 1 в вершину j, если длины дуг это продолжительности работ.
- \bullet Параметры T^p_j можно вычислить по формуле:

$$T_1^p = 0; \ T_j^p = \max_{ij \in E} (T_i^p + t_{ij}), \ j = 2, \dots, n.$$

- Ранний срок наступления последнего события n это самый ранний срок окончания всего проекта,
- который равен максимальной длине пути из начального события 1 до заключительного события n.

- Ранний срок T_j^p наступления события j есть ранний срок окончания всех работ, которые лежат на путях между начальным событием 1 и событием j.
- Таким образом, T_j^p есть максимальная длина пути из вершины 1 в вершину j, если длины дуг это продолжительности работ.
- ullet Параметры T_j^p можно вычислить по формуле:

$$T_1^p = 0; \ T_j^p = \max_{ij \in E} (T_i^p + t_{ij}), \ j = 2, \dots, n.$$

- Ранний срок наступления последнего события n это самый ранний срок окончания всего проекта,
- который равен максимальной длине пути из начального события 1 до заключительного события n.
- Этот путь называется критический путем,

Ранние сроки наступления событий

- Ранний срок T_i^p наступления события j есть ранний срок окончания всех работ, которые лежат на путях между начальным событием 1 и событием j.
- Таким образом, T_i^p есть максимальная длина пути из вершины 1 в вершину j, если длины дуг – это продолжительности работ.
- Параметры T_i^p можно вычислить по формуле:

$$T_1^p = 0; \ T_j^p = \max_{ij \in E} (T_i^p + t_{ij}), \ j = 2, \dots, n.$$

- Ранний срок наступления последнего события n это самый ранний срок окончания всего проекта,
- который равен максимальной длине пути из начального события 1 до заключительного события n.
- Этот путь называется критический путем,
- ullet а его длина $T^{\mathrm{Kp}}=T_n^p$ критическим временем.

• Поздний срок T_j^{Π} наступления события j – это наиболее поздний срок наступления события j,

- Поздний срок T_j^{Π} наступления события j это наиболее поздний срок наступления события j,
- который не влияет на ранний срок окончания всего проекта в целом (критическое время).

- Поздний срок T_j^{Π} наступления события j это наиболее поздний срок наступления события j,
- который не влияет на ранний срок окончания всего проекта в целом (критическое время).
- Чтобы не увеличить ранний срок окончания проекта, событие j должно наступить не позже, чем в момент $T_i^{\Pi} = T^{\text{KP}} L_{jn}$

- Поздний срок T_j^{Π} наступления события j это наиболее поздний срок наступления события j,
- который не влияет на ранний срок окончания всего проекта в целом (критическое время).
- Чтобы не увеличить ранний срок окончания проекта, событие j должно наступить не позже, чем в момент $T_j^{\Pi} = T^{\text{KP}} L_{jn}$
- ullet где L_{jn} максимальная длина пути из j в n.

- Поздний срок T_j^{Π} наступления события j это наиболее поздний срок наступления события j,
- который не влияет на ранний срок окончания всего проекта в целом (критическое время).
- Чтобы не увеличить ранний срок окончания проекта, событие j должно наступить не позже, чем в момент $T_j^{\Pi} = T^{\text{KP}} L_{jn}$
- ullet где L_{jn} максимальная длина пути из j в n.
- Мы можем вычислить параметры T_j^{Π} по следующей рекурентной формуле: $T^{\Pi} = T^{\text{KP}}, T_i^{\Pi} = \min_{ji \in E} \{T_i^p t_{ij}\}, j = n-1, \dots, 1.$

• Резерв времени R_j события j – это максимальное время, на которое можно задержать наступление события без увеличения раннего срока окончания проекта, т.е. $R_j = T^\Pi - T_j^p$.

- Резерв времени R_j события j это максимальное время, на которое можно задержать наступление события без увеличения раннего срока окончания проекта, т.е. $R_j = T^{\Pi} T_j^p$.
- Событие с нулевым резервом времени находится на критическом пути.

- Резерв времени R_j события j это максимальное время, на которое можно задержать наступление события без увеличения раннего срока окончания проекта, т.е. $R_j = T^{\Pi} T_j^p$.
- Событие с нулевым резервом времени находится на критическом пути.
- Задержка наступления любого события на критическом пути приводит к задержке всего проекта.

- Резерв времени R_j события j это максимальное время, на которое можно задержать наступление события без увеличения раннего срока окончания проекта, т.е. $R_j = T^{\Pi} T_j^p$.
- Событие с нулевым резервом времени находится на критическом пути.
- Задержка наступления любого события на критическом пути приводит к задержке всего проекта.
- Наоборот, наступление события j, которое не лежит на критическом пути может быть задержано на R_j единиц времени,

- Резерв времени R_j события j это максимальное время, на которое можно задержать наступление события без увеличения раннего срока окончания проекта, т.е. $R_j = T^{\Pi} T_j^p$.
- Событие с нулевым резервом времени находится на критическом пути.
- Задержка наступления любого события на критическом пути приводит к задержке всего проекта.
- Наоборот, наступление события j, которое не лежит на критическом пути может быть задержано на R_j единиц времени,
- причем, это не приведет к увеличению раннего срока окончания всего проекта.

• Ранний срок $T_{\rm H}^p(i,j)$ начала работы (i,j) равен раннему сроку T_i^p наступления события i, посколько работа (i,j) не может быть начата, пока не наступит событие i.

- Ранний срок $T_{\rm H}^p(i,j)$ начала работы (i,j) равен раннему сроку T_i^p наступления события i, посколько работа (i,j) не может быть начата, пока не наступит событие i.
- Поздний срок $T_0^{\Pi}(i,j)$ окончания работы (i,j) это наиболее поздний срок окончания работы (i,j) без задержки срока окончания проекта: $T_{\Pi}^p(i,j) = T_{\Pi}^{\Pi}$.

- Ранний срок $T_{\rm H}^p(i,j)$ начала работы (i,j) равен раннему сроку T_i^p наступления события i, посколько работа (i,j) не может быть начата, пока не наступит событие i.
- Поздний срок $T_0^{\Pi}(i,j)$ окончания работы (i,j) это наиболее поздний срок окончания работы (i,j) без задержки срока окончания проекта: $T_{\Pi}^p(i,j) = T_{\Pi}^{\Pi}$.
- ullet Ранний срок $T^p_{
 m O}(i,j)$ окончания работы (i,j) определяется формулой $T^p_{
 m O}(i,j) = T^p_j + t_{ij}$.

- Ранний срок $T_{\rm H}^p(i,j)$ начала работы (i,j) равен раннему сроку T_i^p наступления события i, посколько работа (i,j) не может быть начата, пока не наступит событие i.
- Поздний срок $T_0^{\Pi}(i,j)$ окончания работы (i,j) это наиболее поздний срок окончания работы (i,j) без задержки срока окончания проекта: $T_{\Pi}^p(i,j) = T_{I}^m$.
- Ранний срок $T_{\rm O}^p(i,j)$ окончания работы (i,j) определяется формулой $T_{\rm O}^p(i,j) = T_j^p + t_{ij}$.
- ullet Поздний срок $T^{\Pi}_{\mathrm{H}}(i,j)$ начала работы (i,j) определяется формулой $T^{\Pi}_{\mathrm{H}}(i,j) = T^{\Pi}_j t_{ij}.$

• Суммарный резерв $R^{\text{сум}}(i,j)$ времени работы (i,j) – это максимальная задержка работы (i,j) без задержки срока выполнения всего проекта: $R^{\text{сум}}(i,j) = T_i^{\text{II}} - T_i^p - t_{ij}$.

- Суммарный резерв $R^{\text{сум}}(i,j)$ времени работы (i,j) это максимальная задержка работы (i,j) без задержки срока выполнения всего проекта: $R^{\text{сум}}(i,j) = T_i^{\text{II}} T_i^p t_{ij}$.
- Свободный резерв $R^{\text{CB}}(i,j)$ времени работы (i,j) это максимальная задержка работы (i,j), которая не влияет на начала последующих работ: $R^{\text{CB}}(i,j) = T_j^p T_i^p t_{ij}$.

- Суммарный резерв $R^{\text{сум}}(i,j)$ времени работы (i,j) это максимальная задержка работы (i,j) без задержки срока выполнения всего проекта: $R^{\text{сум}}(i,j) = T_i^{\text{II}} T_i^p t_{ij}$.
- Свободный резерв $R^{\text{CB}}(i,j)$ времени работы (i,j) это максимальная задержка работы (i,j), которая не влияет на начала последующих работ: $R^{\text{CB}}(i,j) = T_j^p T_i^p t_{ij}$.
- Гарантированный резерв $R^{\text{гар}}(i,j)$ времени работы (i,j) это максимальная задержка работы (i,j), которая не влияет на ранний срок окончания всего проекта, при условии что предшествующие работы выполнялись в свои поздние сроки $R^{\text{гар}}(i,j) = T_j^{\Pi} (T_i^{\Pi} t_{ij})$.

- Суммарный резерв $R^{\text{сум}}(i,j)$ времени работы (i,j) это максимальная задержка работы (i,j) без задержки срока выполнения всего проекта: $R^{\text{сум}}(i,j) = T_i^{\text{II}} T_i^p t_{ij}$.
- Свободный резерв $R^{\text{CB}}(i,j)$ времени работы (i,j) это максимальная задержка работы (i,j), которая не влияет на начала последующих работ: $R^{\text{CB}}(i,j) = T_j^p T_i^p t_{ij}$.
- Гарантированный резерв $R^{\text{гар}}(i,j)$ времени работы (i,j) это максимальная задержка работы (i,j), которая не влияет на ранний срок окончания всего проекта, при условии что предшествующие работы выполнялись в свои поздние сроки $R^{\text{гар}}(i,j) = T_i^{\text{п}} (T_i^{\text{п}} t_{ij})$.
- Независимый резерв $R^{\text{He3}}(i,j)$ времени работы (i,j) это такая задержка работы (i,j), которая не влияет на начало следующих работ, при условии что все предшествующие работы окончились в свои поздние сроки: $R^{\text{He3}}(i,j) = \max\{0, T_j^p T_j^\Pi T_{ij}^\Pi t_{ij}\}$

Результаты вычисл. по методу критического пути

	دم	Ħ	Сроки нач. и оконч.				Резервы			
Pa6.	Дуга	Прод.	$T_{\scriptscriptstyle m H}^{ m p}$	$T_{ m o}^{ m p}$	$T_{\scriptscriptstyle m H}^{\scriptscriptstyle m II}$	$T_{ m o}^{\scriptscriptstyle m II}$	R^{cym}	R^{CB}	R^{rap}	R^{He_3}
A	(1, 2)	5	0	5	2	7	2	0	2	0
В	(1,3)	3	0	3	1	4	1	0	1	0
C	(1, 4)	10	0	10	0	10	0	0	0	0
D	(1, 5)	7	5	12	7	14	2	1	0	0
E	(3,5)	10	3	13	4	14	1	0	0	0
G	(4, 6)	9	10	19	10	19	0	0	0	0
F	(5, 6)	5	13	19	14	19	1	1	0	0
Н	(6,7)	4	19	23	19	23	0	0	0	0
I	(7, 8)	2	23	25	23	25	0	0	0	0
K	(3,4)	0	3	3	10	10	7	7	0	0

Результаты вычисл. по методу критического пути

	دم	÷	Сро	Резервы						
Pa6.	Дуга	Прод.	$T_{\scriptscriptstyle m H}^{ m p}$	$T_{ m o}^{ m p}$	$T_{\scriptscriptstyle m H}^{\scriptscriptstyle m II}$	$T_{ m o}^{\scriptscriptstyle { m II}}$	R^{cym}	R^{CB}	R^{rap}	R^{He_3}
A	(1, 2)	5	0	5	2	7	2	0	2	0
В	(1,3)	3	0	3	1	4	1	0	1	0
C	(1, 4)	10	0	10	0	10	0	0	0	0
D	(1,5)	7	5	12	7	14	2	1	0	0
E	(3,5)	10	3	13	4	14	1	0	0	0
G	(4, 6)	9	10	19	10	19	0	0	0	0
F	(5, 6)	5	13	19	14	19	1	1	0	0
Н	(6,7)	4	19	23	19	23	0	0	0	0
Ι	(7, 8)	2	23	25	23	25	0	0	0	0
K	(3,4)	0	3	3	10	10	7	7	0	0

Результаты вычисл. по методу критического пути

		÷	Сроки нач. и оконч.				Резервы			
Pa6.	Дуга	Прод.	$T_{\scriptscriptstyle m H}^{ m p}$	$T_{ m o}^{ m p}$	$T_{\scriptscriptstyle m H}^{\scriptscriptstyle m II}$	$T_{ m o}^{\scriptscriptstyle m II}$	R^{cym}	R^{CB}	R^{rap}	R^{He_3}
A	(1, 2)	5	0	5	2	7	2	0	2	0
В	(1,3)	3	0	3	1	4	1	0	1	0
C	(1, 4)	10	0	10	0	10	0	0	0	0
D	(1,5)	7	5	12	7	14	2	1	0	0
E	(3,5)	10	3	13	4	14	1	0	0	0
G	(4, 6)	9	10	19	10	19	0	0	0	0
F	(5, 6)	5	13	19	14	19	1	1	0	0
Н	(6,7)	4	19	23	19	23	0	0	0	0
I	(7, 8)	2	23	25	23	25	0	0	0	0
K	(3,4)	0	3	3	10	10	7	7	0	0

Временная диаграмма проекта

Метод оценки и пересмотра планов

Метод оценки и пересмотра планов (ПЕРТ)

• До сих пор предполагалось, что продолжительности работ точно известны,

- До сих пор предполагалось, что продолжительности работ точно известны,
- что на практике далеко не всегда так.

- До сих пор предполагалось, что продолжительности работ точно известны,
- что на практике далеко не всегда так.
- В методе оценки и пересмотра планов (ПЕРТ) задаются три оценки продолжительности выполнения каждой работы (i,j):

- До сих пор предполагалось, что продолжительности работ точно известны,
- что на практике далеко не всегда так.
- В методе оценки и пересмотра планов (ПЕРТ) задаются три оценки продолжительности выполнения каждой работы (i,j):
 - **1** наиболее вероятное время выполения m_{ij} ;

- До сих пор предполагалось, что продолжительности работ точно известны,
- что на практике далеко не всегда так.
- В методе оценки и пересмотра планов (ПЕРТ) задаются три оценки продолжительности выполнения каждой работы (i,j):
 - **1** наиболее вероятное время выполения m_{ij} ;
 - **2** оптимистическая оценка времени выполения a_{ij} ;

Три оценки продолжительности

- До сих пор предполагалось, что продолжительности работ точно известны,
- что на практике далеко не всегда так.
- В методе оценки и пересмотра планов (ПЕРТ) задаются три оценки продолжительности выполнения каждой работы (i,j):
 - **1** наиболее вероятное время выполения m_{ij} ;
 - **2** оптимистическая оценка времени выполения a_{ij} ;
 - $oldsymbol{0}$ пессимистическая оценка времени выполения $b_{ij}.$

• В методе ПЕРТ предполагается, что время выполнения t_{ij} работы (i,j) есть случайная величина с бета-распределением,

- В методе ПЕРТ предполагается, что время выполнения t_{ij} работы (i,j) есть случайная величина с бета-распределением,
- стандартное отклонение которой определяется по формуле $\sigma_{ij} = (b_{ij} a_{ij})/6$.

- В методе ПЕРТ предполагается, что время выполнения t_{ij} работы (i,j) есть случайная величина с бета-распределением,
- стандартное отклонение которой определяется по формуле $\sigma_{ij} = (b_{ij} a_{ij})/6$.
- Математическое ожидание (средняя продолжительность работы (i,j)) случайной величины t_{ij} приближенно определяется по формуле:

$$E(t_{ij}) \approx \mu_{ij} = (a_{ij} + 4m_{ij} + b_{ij})/6.$$

- В методе ПЕРТ предполагается, что время выполнения t_{ij} работы (i,j) есть случайная величина с бета-распределением,
- стандартное отклонение которой определяется по формуле $\sigma_{ij} = (b_{ij} a_{ij})/6$.
- Математическое ожидание (средняя продолжительность работы (i,j)) случайной величины t_{ij} приближенно определяется по формуле:

$$E(t_{ij}) \approx \mu_{ij} = (a_{ij} + 4m_{ij} + b_{ij})/6.$$

• Продолжительность проекта (критическое время) T есть сумма продолжительностей работ, находящихся на критическом пути.

- В методе ПЕРТ предполагается, что время выполнения t_{ij} работы (i,j) есть случайная величина с бета-распределением,
- стандартное отклонение которой определяется по формуле $\sigma_{ij} = (b_{ij} a_{ij})/6$.
- Математическое ожидание (средняя продолжительность работы (i,j)) случайной величины t_{ij} приближенно определяется по формуле:

$$E(t_{ij}) \approx \mu_{ij} = (a_{ij} + 4m_{ij} + b_{ij})/6.$$

- Продолжительность проекта (критическое время) T есть сумма продолжительностей работ, находящихся на критическом пути.
- ullet Поэтому T также является случайной величиной.

• В методе ПЕРТ математическое ожидание E(T) случайной величины T вычисляется следующим образом.

- В методе ПЕРТ математическое ожидание E(T) случайной величины T вычисляется следующим образом.
- В качестве продолжительности каждой работы (i, j) берется ее средния продолжительность μ_{ij} .

- В методе ПЕРТ математическое ожидание E(T) случайной величины T вычисляется следующим образом.
- В качестве продолжительности каждой работы (i, j) берется ее средния продолжительность μ_{ij} .
- Для этих продолжительностей определяются критический путь

- В методе ПЕРТ математическое ожидание E(T) случайной величины T вычисляется следующим образом.
- В качестве продолжительности каждой работы (i, j) берется ее средния продолжительность μ_{ij} .
- Для этих продолжительностей определяются критический путь
- и E(T) полагается равным сумме средних продолжительностей работ, находящихся на критическом пути.

• В предположении, что продолжительности всех работ являются независимыми случайными величинами,

- В предположении, что продолжительности всех работ являются независимыми случайными величинами,
- дисперсия $\sigma^2(T)$ случайной величины T определяется равной сумме дисперсий работ, находящихся на критическом пути.

- В предположении, что продолжительности всех работ являются независимыми случайными величинами,
- дисперсия $\sigma^2(T)$ случайной величины T определяется равной сумме дисперсий работ, находящихся на критическом пути.
- Когда на критическом пути находится много работ, в

- В предположении, что продолжительности всех работ являются независимыми случайными величинами,
- дисперсия $\sigma^2(T)$ случайной величины T определяется равной сумме дисперсий работ, находящихся на критическом пути.
- Когда на критическом пути находится много работ, в
- ullet силу центральной предельной теоремы, случайная величина T имеет распределение близкое к нормальному

- В предположении, что продолжительности всех работ являются независимыми случайными величинами,
- дисперсия $\sigma^2(T)$ случайной величины T определяется равной сумме дисперсий работ, находящихся на критическом пути.
- Когда на критическом пути находится много работ, в
- ullet силу центральной предельной теоремы, случайная величина T имеет распределение близкое к нормальному
- с математическим ожиданием $\mu = E(T)$ и стандартным отклонением $\sigma = \sqrt{\sigma^2(T)}$.

- В предположении, что продолжительности всех работ являются независимыми случайными величинами,
- дисперсия $\sigma^2(T)$ случайной величины T определяется равной сумме дисперсий работ, находящихся на критическом пути.
- Когда на критическом пути находится много работ, в
- ullet силу центральной предельной теоремы, случайная величина T имеет распределение близкое к нормальному
- с математическим ожиданием $\mu = E(T)$ и стандартным отклонением $\sigma = \sqrt{\sigma^2(T)}$.
- По формуле

$$\mathbb{P}(T \le \bar{T}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\bar{T}} e^{-(x-\mu)^2/(2\sigma^2)} dx$$

- В предположении, что продолжительности всех работ являются независимыми случайными величинами,
- дисперсия $\sigma^2(T)$ случайной величины T определяется равной сумме дисперсий работ, находящихся на критическом пути.
- Когда на критическом пути находится много работ, в
- ullet силу центральной предельной теоремы, случайная величина T имеет распределение близкое к нормальному
- с математическим ожиданием $\mu = E(T)$ и стандартным отклонением $\sigma = \sqrt{\sigma^2(T)}$.
- По формуле

$$\mathbb{P}(T \le \bar{T}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{T} e^{-(x-\mu)^2/(2\sigma^2)} dx$$

ullet мы можем вычислить вероятность завершения проекта к заданному сроку $ar{T}.$

предш.		Оценки продолжительности				e	
Работа Непоср. пр работы	оптимис- тическая	наиболее вероятная	пессимис- тическая	Средняя продолжит.	Стандартное отклонение	Дисперсия	
	_	2	5	8	5	1	1
A B C D E F	A	6	9	12	9	1	1
C	A B,C A	6	7	8 7	7		1/9
D	$_{\mathrm{B,C}}$	1	4		4	1	1
\mathbf{E}	A	8	8	8	8		0
	C	3	12	21	12		9
G	C	4	7	13	$7\frac{1}{2}$		$2\frac{1}{4}$
Н	$_{\mathrm{D,E,F}}$	5	7	10	13		4
Ι	D,E,F	6	8	12	$8\frac{1}{3}$		4
J	$_{\mathrm{G,H}}$	3	6	9	6	1	1
K	I,J	3	8	11	8		1

	предш.	Оценки продолжительности				9 .	
Работа	Непоср. пр работы	оптимис- тическая	наиболее вероятная	пессимис- тическая	Средняя продолжит.	Стандартное отклонение	Дисперсия
	_	2	5	8	5	1	1
A B C D E F	Α	6	9	12	5 9 7		1
C	A B,C	6	7	8	7		1/9
D	B,C	1	4	7	4 8 12		1
E	A	8	8	8	8		0
	$^{\mathrm{C}}$	3	12	21	12	3	9
G	C	4	7	13	$7\frac{1}{2}$ 13		$2\frac{1}{4}$
Н	$_{ m D,E,F}$	5	7	10	13	2	4
I	$_{ m D,E,F}$	6	8	12	$8\frac{1}{3}$ 6		4
J	G,H	3	6	9			1
K	$_{\mathrm{I,J}}$	3	8	11	8		1

	предш.	Оценки продолжительности)e	
Работа	Непоср. пр работы	оптимис- тическая	наиболее вероятная	пессимис- тическая	Средняя продолжит.	Стандартное отклонение	Дисперсия
	_	2	5	8	5	1	1
A B C D E F	A	6	9	12	5 9 7 4 8 12	1	1
\mathbf{C}	A B,C A C	6	7	8	7	1/3	1/9
D	B,C	1	4 8	7	4	1	1
Ε	A	8	8	8	8	0	
F	$^{\mathrm{C}}$	3	12	21	12	3	9
	\mathbf{C}	4	7	13	$7\frac{1}{2}$	$1\frac{1}{2}$	$2\frac{1}{4}$
Η	$_{ m D,E,F}$	5	7	10	13	2	4
I	$_{ m D,E,F}$	6	8	12	$7\frac{1}{2}$ 13 $8\frac{1}{3}$ 6	2	4
J	G,H	3	6	9	6	1	1
K	$_{\mathrm{I,J}}$	3	8	11	8	1	1

предш.		Оценки продолжительности				e .	
A B C D E F G	Непоср. пр работы	оптимис- тическая	наиболее вероятная	пессимис- тическая	Средняя продолжит.	Стандартное отклонение	Дисперсия
A	_	2	5	8	5	1	1 1
В	Α	6	9	12	9	1	1
C	А В,С	6	7	8	7	1/3	1/9
D	В,С	1	4	7	4	1	1
\mathbf{E}	A C	8	8	8	8	0	0
F	С	3	12	21	12	3	9
	C	4	7	13	$7\frac{1}{2}$	$1\frac{1}{2}$ 2	$2\frac{1}{4}$
Η	$_{ m D,E,F}$	5	7	10	13	2	4
Ι	D,E,F	6	8	12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$ \begin{array}{c} 1 \\ 0 \\ 9 \\ 2\frac{1}{4} \\ 4 \\ 4 \end{array} $
J	G,H I,J	3	6	9	6	1	1
K	$_{\mathrm{I,J}}$	3	8	11	8	1	1

- Расчитываем параметры и находим критический путы
- Критическое время $T^{\rm kp} = 51$. Поэтому $\mu = E(T) = 51$

• и
$$\sigma^2(T) = 1 + 1/9 + 9 + 4 + 1 + 1 = 16\frac{1}{9}$$

а $\sigma = \sqrt{\sigma^2(T)} \approx 4.014$.

- Расчитываем параметры и находим критический путь.
- Критическое время $T^{\mathrm{kp}}=51$. Поэтому $\mu=E(T)=51$
- и $\sigma^2(T) = 1 + 1/9 + 9 + 4 + 1 + 1 = 16\frac{1}{9}$ а $\sigma = \sqrt{\sigma^2(T)} \approx 4.014$.

- Расчитываем параметры и находим критический путь.
- Критическое время $T^{\rm kp} = 51$. Поэтому $\mu = E(T) = 51$
- и $\sigma^2(T) = 1 + 1/9 + 9 + 4 + 1 + 1 = 16\frac{1}{9}$ а $\sigma = \sqrt{\sigma^2(T)} \approx 4.014$.

- Расчитываем параметры и находим критический путь.
- $\mu = E(T) = 51$, $\sigma^2(T) = 16\frac{1}{9}$, $\sigma \approx 4.014$.
- Вероятность того, что проект будет завершен за 58 дней:

$$\mathbb{P}(T \le 58) = \mathbb{P}\left((T - \mu)/\sigma \le \frac{58 - 51}{4.014} \right)$$
$$= \mathbb{P}((T - \mu)/\sigma \le 1.74) = 0.9591.$$

Критика ПЕРТ

Критика ПЕРТ

• Главное предположние метода ПЕРТ, что

- Главное предположние метода ПЕРТ, что
- математическое ожидание критического времени E(T) равно критическому времени проекта,

- Главное предположние метода ПЕРТ, что
- математическое ожидание критического времени E(T) равно критическому времени проекта,
- когда продолжительности всех работ равны математическим ожиданиям реальных (случайных) продолжительностей,

- Главное предположние метода ПЕРТ, что
- математическое ожидание критического времени E(T) равно критическому времени проекта,
- когда продолжительности всех работ равны математическим ожиданиям реальных (случайных) продолжительностей,
- в общем случае не верно.

• Проект состоит только из двух работ А и В, которые

- Проект состоит только из двух работ А и В, которые
- можно выполнять параллельно. Продолжительность

- Проект состоит только из двух работ А и В, которые
- можно выполнять параллельно. Продолжительность
- t_A работы A постоянна и равна 5, а

- Проект состоит только из двух работ А и В, которые
- можно выполнять параллельно. Продолжительность
- t_A работы A постоянна и равна 5, а
- продолжительность t_B работы B есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 3 или 7.

- Проект состоит только из двух работ А и В, которые
- можно выполнять параллельно. Продолжительность
- t_A работы A постоянна и равна 5, а
- продолжительность t_B работы B есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 3 или 7.
- Поскольку $E(t_A) = E(t_B) = 5$, то согласно ПЕРТ E(T) = 5.

- Проект состоит только из двух работ А и В, которые
- можно выполнять параллельно. Продолжительность
- t_A работы A постоянна и равна 5, а
- продолжительность t_B работы B есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 3 или 7.
- Поскольку $E(t_A) = E(t_B) = 5$, то согласно ПЕРТ E(T) = 5.
- Но критическое время $T = \max\{t_A, t_B\}$ есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 5 или 7.

Предположние метода ПЕРТ не верно: пример

- Проект состоит только из двух работ А и В, которые
- можно выполнять параллельно. Продолжительность
- t_A работы A постоянна и равна 5, а
- продолжительность t_B работы B есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 3 или 7.
- Поскольку $E(t_A) = E(t_B) = 5$, то согласно ПЕРТ E(T) = 5.
- Но критическое время $T = \max\{t_A, t_B\}$ есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 5 или 7.
- Поэтому $E(T) = \frac{1}{2}5 + \frac{1}{2}7 = 6 > 5$.

Предположние метода ПЕРТ не верно: пример

- Проект состоит только из двух работ А и В, которые
- можно выполнять параллельно. Продолжительность
- t_A работы A постоянна и равна 5, а
- продолжительность t_B работы B есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 3 или 7.
- Поскольку $E(t_A) = E(t_B) = 5$, то согласно ПЕРТ E(T) = 5.
- Но критическое время $T = \max\{t_A, t_B\}$ есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 5 или 7.
- Поэтому $E(T) = \frac{1}{2}5 + \frac{1}{2}7 = 6 > 5$.
- В этом простом примере мы отошли от предположения ПЕРТ, что продолжитетельности работ имеют бета-распределение, чтобы

Предположние метода ПЕРТ не верно: пример

- Проект состоит только из двух работ А и В, которые
- можно выполнять параллельно. Продолжительность
- t_A работы A постоянна и равна 5, а
- продолжительность t_B работы B есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 3 или 7.
- Поскольку $E(t_A) = E(t_B) = 5$, то согласно ПЕРТ E(T) = 5.
- Но критическое время $T = \max\{t_A, t_B\}$ есть дискретная случайная величина, которая с равной вероятностью принимает одно из двух значений 5 или 7.
- Поэтому $E(T) = \frac{1}{2}5 + \frac{1}{2}7 = 6 > 5$.
- В этом простом примере мы отошли от предположения ПЕРТ, что продолжитетельности работ имеют бета-распределение, чтобы
- не прятать идею за рутиной сложных вычислений.

• В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).
- По сути, в методах крит. пути и ПЕРТ предполагается, что ресурсы доступны в неограниченных объемах.

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).
- По сути, в методах крит. пути и ПЕРТ предполагается, что ресурсы доступны в неограниченных объемах.
- В реальной жизни это не так и для реализации проектов выделяется ограниченное количество ресурсов.

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).
- По сути, в методах крит. пути и ПЕРТ предполагается, что ресурсы доступны в неограниченных объемах.
- В реальной жизни это не так и для реализации проектов выделяется ограниченное количество ресурсов.
- В задаче поиска оптимального расписания для реализации проекта нужно

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).
- По сути, в методах крит. пути и ПЕРТ предполагается, что ресурсы доступны в неограниченных объемах.
- В реальной жизни это не так и для реализации проектов выделяется ограниченное количество ресурсов.
- В задаче поиска оптимального расписания для реализации проекта нужно
 - выполнить множество работ,

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).
- По сути, в методах крит. пути и ПЕРТ предполагается, что ресурсы доступны в неограниченных объемах.
- В реальной жизни это не так и для реализации проектов выделяется ограниченное количество ресурсов.
- В задаче поиска оптимального расписания для реализации проекта нужно
 - выполнить множество работ,
 - используя требуемые ресурсы,

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).
- По сути, в методах крит. пути и ПЕРТ предполагается, что ресурсы доступны в неограниченных объемах.
- В реальной жизни это не так и для реализации проектов выделяется ограниченное количество ресурсов.
- В задаче поиска оптимального расписания для реализации проекта нужно
 - выполнить множество работ,
 - используя требуемые ресурсы,
 - соблюдая отношения предшествования между работами,

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).
- По сути, в методах крит. пути и ПЕРТ предполагается, что ресурсы доступны в неограниченных объемах.
- В реальной жизни это не так и для реализации проектов выделяется ограниченное количество ресурсов.
- В задаче поиска оптимального расписания для реализации проекта нужно
 - выполнить множество работ,
 - используя требуемые ресурсы,
 - соблюдая отношения предшествования между работами,
 - при выполнении определенных ограничений, таких как выполнение отдельных работ в заданные сроки.

- В методах критического пути и ПЕРТ единственной характеристикой работы была ее продолжительность.
- Но для выполнения работ нужны еще и ресурсы (люди, машины, различные материалы, деньги и т. д.).
- По сути, в методах крит. пути и ПЕРТ предполагается, что ресурсы доступны в неограниченных объемах.
- В реальной жизни это не так и для реализации проектов выделяется ограниченное количество ресурсов.
- В задаче поиска оптимального расписания для реализации проекта нужно
 - выполнить множество работ,
 - используя требуемые ресурсы,
 - соблюдая отношения предшествования между работами,
 - при выполнении определенных ограничений, таких как выполнение отдельных работ в заданные сроки.
- Цель найти расписание, которое позволяет реализовать проект в минимальные сроки.

• Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.

- Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.
- В любой момент времени доступно R_k^r единиц возобновляемого ресурса $k, k = 1, \dots, q^r$.

- Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.
- В любой момент времени доступно R_k^r единиц возобновляемого ресурса $k, k = 1, \dots, q^r$.
- На выполнение проекта выделяется R_k^n единиц невозобновляемого ресурса $k, k = 1, \dots, q^n$.

- Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.
- В любой момент времени доступно R_k^r единиц возобновляемого ресурса $k, k = 1, \dots, q^r$.
- На выполнение проекта выделяется R_k^n единиц невозобновляемого ресурса $k, k = 1, \dots, q^n$.
- \bullet Проект состоит из n работ. Для работы j заданы:

- Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.
- В любой момент времени доступно R_k^r единиц возобновляемого ресурса $k, k = 1, \dots, q^r$.
- На выполнение проекта выделяется R_k^n единиц невозобновляемого ресурса $k, k = 1, \dots, q^n$.
- Проект состоит из n работ. Для работы j заданы:
 - l_j, u_j : раннее время начала и позднее время окончания;

- Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.
- В любой момент времени доступно R_k^r единиц возобновляемого ресурса $k, k = 1, \dots, q^r$.
- На выполнение проекта выделяется R_k^n единиц невозобновляемого ресурса $k, k = 1, \dots, q^n$.
- Проект состоит из n работ. Для работы j заданы:
 - l_j, u_j : раннее время начала и позднее время окончания;
 - p_j : время выполнения;

- Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.
- В любой момент времени доступно R_k^r единиц возобновляемого ресурса $k, k = 1, \dots, q^r$.
- На выполнение проекта выделяется R_k^n единиц невозобновляемого ресурса $k, k = 1, \dots, q^n$.
- Проект состоит из n работ. Для работы j заданы:
 - ullet $l_j,\,u_j$: раннее время начала и позднее время окончания;
 - p_j : время выполнения;
 - ρ_{jk}^r : необходимое кол-во возобновл. ресурса $k \in \{1, \dots, q^r\};$

- Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.
- В любой момент времени доступно R_k^r единиц возобновляемого ресурса $k, k = 1, \dots, q^r$.
- На выполнение проекта выделяется R_k^n единиц невозобновляемого ресурса $k, k = 1, \dots, q^n$.
- Проект состоит из n работ. Для работы j заданы:
 - ullet $l_j,\,u_j$: раннее время начала и позднее время окончания;
 - p_j : время выполнения;
 - ρ_{jk}^r : необходимое кол-во возобновл. ресурса $k \in \{1,\dots,q^r\};$
 - ρ^n_{jk} : необход. кол-во невозобновл. ресурса $k \in \{1,\dots,q^n\};$

- Для реалиции проекта используется q^r возобновляемых и q^n невозобновляемых ресурсов.
- В любой момент времени доступно R_{l}^{r} единиц возобновляемого ресурса $k, k = 1, \ldots, q^r$.
- На выполнение проекта выделяется R_{k}^{n} единиц невозобновляемого ресурса $k, k = 1, \ldots, q^n$.
- Проект состоит из n работ. Для работы j заданы:
 - l_i, u_i : раннее время начала и позднее время окончания;
 - p_i : время выполнения;
 - ρ^r_{ik} : необходимое кол-во возобновл. ресурса $k \in \{1, \ldots, q^r\};$
 - ρ_{ik}^n : необход. кол-во невозобновл. ресурса $k \in \{1, \dots, q^n\}$;
- Ацикл. орграф $G = (J = \{1, \dots, n\}, E)$ задает отношения предшествования между работами:
- для любой дуги $(j_1, j_2) \in E$ работа j_2 не может начаться пока не завершится работа i_1 . · 다 사 (리) 시 등) 시 등)

• Предполагается, что время дискретно, т. е. временной горизонт разделен на периоды:

- Предполагается, что время дискретно, т. е. временной горизонт разделен на периоды:
- ullet период t начинается в момент времени t и заканчивается к моменту времени t+1.

- Предполагается, что время дискретно, т. е. временной горизонт разделен на периоды:
- период t начинается в момент времени t и заканчивается к моменту времени t+1.
- Расписание выполнения отдельных работ проекта определяется значениями бинарных переменных x_{jt} , $t = l_j, \ldots, u_j p_j, j = 1, \ldots, n$.

- Предполагается, что время дискретно, т. е. временной горизонт разделен на периоды:
- период t начинается в момент времени t и заканчивается к моменту времени t+1.
- Расписание выполнения отдельных работ проекта определяется значениями бинарных переменных x_{jt} , $t = l_j, \ldots, u_j p_j, j = 1, \ldots, n$.
- Переменная x_{jt} принимает значение 1, если выполнение работы j начинается в период t; иначе $x_{jt} = 0$.

- Предполагается, что время дискретно, т. е. временной горизонт разделен на периоды:
- период t начинается в момент времени t и заканчивается к моменту времени t+1.
- Расписание выполнения отдельных работ проекта определяется значениями бинарных переменных x_{jt} , $t = l_j, \ldots, u_j p_j, j = 1, \ldots, n$.
- Переменная x_{jt} принимает значение 1, если выполнение работы j начинается в период t; иначе $x_{jt} = 0$.
- Для упрощения формулировки отношений предшествования введем семейство вспомогательных переменных s_j $(j=1,\ldots,n)$, где

- Предполагается, что время дискретно, т. е. временной горизонт разделен на периоды:
- период t начинается в момент времени t и заканчивается к моменту времени t+1.
- Расписание выполнения отдельных работ проекта определяется значениями бинарных переменных x_{jt} , $t = l_j, \ldots, u_j p_j, j = 1, \ldots, n$.
- Переменная x_{jt} принимает значение 1, если выполнение работы j начинается в период t; иначе $x_{jt} = 0$.
- Для упрощения формулировки отношений предшествования введем семейство вспомогательных переменных s_j $(j=1,\ldots,n)$, где
- s_j это время начала выполнения работы j.

- Предполагается, что время дискретно, т. е. временной горизонт разделен на периоды:
- период t начинается в момент времени t и заканчивается к моменту времени t+1.
- Расписание выполнения отдельных работ проекта определяется значениями бинарных переменных x_{jt} , $t = l_j, \ldots, u_j p_j, j = 1, \ldots, n$.
- Переменная x_{jt} принимает значение 1, если выполнение работы j начинается в период t; иначе $x_{jt} = 0$.
- Для упрощения формулировки отношений предшествования введем семейство вспомогательных переменных s_j $(j=1,\ldots,n)$, где
- ullet s_j это время начала выполнения работы j.
- И, наконец, введем еще одну переменную T для представления длины расписания, которая равна времени окончания выполнения поледней работы.

$T \rightarrow \min$

$$\sum_{t=l_j}^{u_j-p_j} x_{jt} = 1, \quad j = 1, \dots, n,$$

$$\sum_{j=1}^{n} \sum_{t=l_j}^{j} \rho_{jk}^n x_{jt} \le R_k^n, \quad k = 1, \dots, q^n,$$

Минимизируем длину расписания.

$$\sum_{j=1}^{n} \sum_{\tau=\max\{t-p_j+1,l_j\}}^{\min\{t,u_j-p_j\}} \rho_{jk}^r x_{j\tau} \le R_k^r, \quad t = L, \dots, U; \ k = 1, \dots, q^r,$$

$$s_j = \sum_{t=l_j}^{u_j - p_j} t \cdot x_{jt}, \quad j = 1, \dots, n,$$

$$s_{j_2}-s_{j_1}\geq p_{j_1},\quad (j_1,j_2)\in E,$$

$$T-s_j\geq p_j,\quad j=1,\ldots,n,$$

$$x_{jt} \in \{0,1\}, \quad t = l_j, \ldots, u_j - p_j; \ j = 1, \ldots, n.$$

$$T \to \min,$$

$$\sum_{u_j - p_j} x_{jt} = 1, \quad j = 1, \dots, n,$$

$$\sum_{i=1}^{n} \sum_{t=1}^{u_j-p_j} \rho_{jk}^n x_{jt} \le R_k^n, \quad k = 1, \dots, q^n,$$

Каждая работа должна начинаться только один раз.

$$\sum_{j=1}^{n} \sum_{\tau=\max\{t-p_j+1,l_j\}} \rho_{jk}^r x_{j\tau} \le R_k^r, \quad t = L, \dots, U; \ k = 1, \dots, q^r,$$

$$s_j = \sum_{t=1}^{n} t \cdot x_{jt}, \quad j = 1, \dots, n,$$

$$s_{j_2} - s_{j_1} \ge p_{j_1}, \quad (j_1, j_2) \in E,$$

 $T - s_j \ge p_j, \quad j = 1, \dots, n,$

$$x_{jt} \in \{0, 1\}, \quad t = l_j, \dots, u_j - p_j; \ j = 1, \dots, n.$$

i=1 $t=l_i$

$$T \to \min,$$

$$\sum_{t=l_j}^{u_j-p_j} x_{jt} = 1, \quad j = 1, \dots, n,$$

$$\sum_{t=l_j}^{n} \sum_{t=l_j}^{n} \rho_{jk}^n x_{jt} \le R_k^n, \quad k = 1, \dots, q^n,$$

Нельзя превышать лимиты на все невозобновляемые ресурсы.

$$\sum_{j=1}^{n} \sum_{\tau=\max\{t-p_{j}+1,l_{j}\}}^{\min\{t,u_{j}-p_{j}\}} \rho_{jk}^{r} x_{j\tau} \leq R_{k}^{r}, \quad t=L,\ldots,U; \ k=1,\ldots,q^{r},$$

$$s_{j} = \sum_{t=l_{j}}^{u_{j}-p_{j}} t \cdot x_{jt}, \quad j=1,\ldots,n,$$

$$s_{j_{2}} - s_{j_{1}} \geq p_{j_{1}}, \quad (j_{1},j_{2}) \in E,$$

$$T-s_{j_{2}} \geq p_{j_{1}}, \quad (j_{1},j_{2}) \in E,$$

 $\min\{t, u_j - p_j\}$

$$T \to \min,$$

$$\sum_{t=l_j}^{u_j-p_j} x_{jt} = 1, \quad j = 1, \dots, n,$$

$$\sum_{j=1}^{n} \sum_{t=l_j}^{u_j-p_j} \rho_{jk}^n x_{jt} \le R_k^n, \quad k = 1, \dots, q^n,$$

В любой момент времени нельзя превышать лимиты на все возобновляемые ресурсы.

$$\sum_{j=1}^{n} \sum_{\substack{t=\max \\ t-p_j+1, l_j \}}} \rho_{jk}^r x_{j\tau} \le R_k^r, \quad t = L, \dots, U; \ k = 1, \dots, q^r,$$

$$s_j = \sum_{\substack{u_j - p_j \\ t = l_j }} t \cdot x_{jt}, \quad j = 1, \dots, n,$$

$$s_{j_2} - s_{j_1} \ge p_{j_1}, \quad (j_1, j_2) \in E,$$

$$T - s_j \ge p_j, \quad j = 1, \dots, n,$$

$$x_{jt} \in \{0, 1\}, \quad t = l_j, \dots, u_j - p_j; \ j = 1, \dots, n.$$

i=1 $t=l_i$

$$T \to \min,$$

$$\sum_{t=l_j}^{u_j-p_j} x_{jt} = 1, \quad j = 1, \dots, n,$$

$$\sum_{t=l_j}^{n} \sum_{t=l_j}^{n} \rho_{jk}^n x_{jt} \le R_k^n, \quad k = 1, \dots, q^n,$$

Вычисляем время начала каждой работы.

$$\sum_{j=1}^{n} \sum_{\tau=\max\{t-p_{j}+1,l_{j}\}}^{\min\{t,u_{j}-p_{j}\}} \rho_{jk}^{r} x_{j\tau} \leq R_{k}^{r}, \quad t = L, \ldots, U; \ k = 1, \ldots, q^{r},$$

$$s_{j} = \sum_{t=l_{j}}^{u_{j}-p_{j}} t \cdot x_{jt}, \quad j = 1, \ldots, n,$$

$$s_{j_{2}} - s_{j_{1}} \geq p_{j_{1}}, \quad (j_{1},j_{2}) \in E,$$

$$T - s_{j} \geq p_{j}, \quad j = 1, \ldots, n,$$

$$T \to \min,$$

$$\sum_{t=l_j}^{u_j-p_j} x_{jt} = 1, \quad j = 1, \dots, n,$$

$$\sum_{j=1}^{n} \sum_{t=l_i}^{u_j-p_j} \rho_{jk}^n x_{jt} \le R_k^n, \quad k = 1, \dots, q^n,$$

Отношения предшествования.

$$\sum_{j=1}^{n} \sum_{\tau=\max\{t-p_{j}+1,l_{j}\}}^{\min\{t,u_{j}-p_{j}\}} \rho_{jk}^{r} x_{j\tau} \leq R_{k}^{r}, \quad t = L, \ldots, U; \ k = 1, \ldots, q^{r},$$

$$s_{j} = \sum_{t=l_{j}}^{u_{j}-p_{j}} t \cdot x_{jt}, \quad j = 1, \ldots, n,$$

$$s_{j_{2}} - s_{j_{1}} \geq p_{j_{1}}, \quad (j_{1}, j_{2}) \in E,$$

$$T - s_{j} \geq p_{j}, \quad j = 1, \ldots, n,$$

i=1 $t=l_i$

$$T \to \min,$$

$$\sum_{i=l_j}^{u_j-p_j} x_{jt} = 1, \quad j = 1, \dots, n,$$

$$\sum_{t=l_j}^{n} \sum_{i=l_j}^{n} \rho_{ik}^n x_{jt} \le R_k^n, \quad k = 1, \dots, q^n,$$

Длина расписания не меньше времени окончания каждой из работ.

$$\sum_{j=1}^{n} \sum_{\tau=\max\{t-p_{j}+1,l_{j}\}}^{\min\{t,u_{j}-p_{j}\}} \rho_{jk}^{r} x_{j\tau} \leq R_{k}^{r}, \quad t = L, \ldots, U; \ k = 1, \ldots, q^{r},$$

$$s_{j} = \sum_{t=l_{j}}^{u_{j}-p_{j}} t \cdot x_{jt}, \quad j = 1, \ldots, n,$$

$$s_{j_{2}} - s_{j_{1}} \geq p_{j_{1}}, \quad (j_{1}, j_{2}) \in E,$$

$$T - s_{j} \geq p_{j}, \quad j = 1, \ldots, n,$$

$$r_{j} \in \{0, 1\}, \quad t = l_{j}, \ldots, n,$$

$$T \to \min,$$

$$\sum_{t=l_j}^{u_j-p_j} x_{jt} = 1, \quad j = 1, \dots, n,$$

$$\sum_{j=1}^{n} \sum_{t=l_j}^{u_j-p_j} \rho_{jk}^n x_{jt} \le R_k^n, \quad k = 1, \dots, q^n,$$

Описываем переменные.

$$\sum_{j=1}^{n} \sum_{\tau=\max\{t-p_j+1,l_j\}}^{\min\{t,u_j-p_j\}} \rho_{jk}^r x_{j\tau} \leq R_k^r, \quad t = L, \dots, U; \ k = 1, \dots, q^r,$$

$$s_j = \sum_{t=l_j}^{u_j-p_j} t \cdot x_{jt}, \quad j = 1, \dots, n,$$

$$s_{j_2} - s_{j_1} \geq p_{j_1}, \quad (j_1, j_2) \in E,$$

$$T - s_j \geq p_j, \quad j = 1, \dots, n,$$

$$x_{jt} \in \{0, 1\}, \quad t = l_j, \dots, u_j - p_j; \ j = 1, \dots, n.$$