Line Detection using Hough Transform

CSE 5005: CVIP

Detection of Lines

 Real-world images often show straight lines, such as edges of buildings, lane borders, or power poles

Detection of Lines

An edge detector is first used to map a given image into a binary edge map

How to describe a line?

Hough transform

- An early type of voting scheme
- General outline:
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

• A line in the image corresponds to a point in Hough space

• What does a point (x_0, y_0) in the image space map to in the Hough space?

- What does a point (x_0, y_0) in the image space map to in the Hough space?
 - Answer: the solutions of $b = -x_0 m + y_0$
 - This is a line in Hough space

• Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?

- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m
- Alternative: polar representation

Each point will add a sinusoid in the (θ, ρ) parameter space

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x,y) in the image
 For θ = 0 to 180
 ρ = x cos θ + y sin θ
 H(θ, ρ) = H(θ, ρ) + 1
 end
 end
 end

- Find the value(s) of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

Basic illustration

Other shapes

Several lines

A more complicated image

Effect of noise

Peak gets fuzzy and hard to locate

Incorporating image gradients

- •To deal with noise, Try to get rid of irrelevant features

 Take only edge points with significant gradient magnitude
 - Recall: when we detect an edge point, we also know its gradient direction
 - But this means that the line is uniquely determined!
 - Modified Hough transform:
 - For each edge point (x,y) θ = gradient orientation at (x,y) ρ = x cos θ + y sin θ $H(\theta, \rho)$ = $H(\theta, \rho)$ + 1 end

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$