

DA 2040: Data Science in Practice

Course Project Final Presentation

India's Air

Analysis and Prediction of Air Quality in Indian cities

Ashutosh Mishra, IISC, ashutoshmish@iisc.ac.in Neeraj K Shete, IISC, neerajshete@iisc.ac.in Tony P Joy, IISC, tonyjoy@iisc.ac.in Vivek H N, IISC, vivekhn@iisc.ac.in **Data Science Canvas**

Project:

India's Air

Analysis and Prediction of Air Quality in Indian cities

Ashutosh, Neeraj, Tony, Vivek

Execution & Evaluation

Data Selection &

Data Collection & Preparation

Data Collection

Using public dataset

Room for Air Quality

other government

Management data and

databases (like CPCB.

State Pollution Control

have relevant pollutant

data and should be

merge all city level

pollutants dataset

consistent.

Boards) and data should

CSV merger was used to

like the Central Control

Model Selection Model Requirements

Problem Statement

EDA - Visualization of AQI trends across cities and across seasons. EDA - Correlation of major air pollutants

- against AQI for different cities. EDA - Classification of major source of air pollution for different
- cities. Regression Modelling - To be able to predict the value of AQI for a given day and city. Timeseries
- Forecasting To be able to forecast AQI values for future dates. Prediction of live input
- data Simulation

To obtain a valid model for air quality index (AQI) prediction based on features, several requirements and considerations must be met:

- Data Quality. Consistency and accuracy Feature selection and
- transformation Data Preprocessing,
- Model selection

Software & Libraries

- Pandas,
- matplotlib and Seaborn for EDA
- Scikit-learn packages, implemented in Python for modelling
- Streamlit for GUI visualization
- PyTorch LSTM

Skills Few of the essential skills

Team:

domains are: Data Handling and management

required across various

- Feature engineering
- Statistical analysis Machine learning and
- modelling Programming and Tools frameworks
- Domain know how

Model Evaluation Key Indicators Requiring Quality Control

- RMSE, MAE, and R² for model accuracy.

- Correlation coefficients and feature importance for
- relationships. Trend line fit and seasonal analysis for AQI patterns.

Real-time monitoring is

pollutants and AQI

- essential if the system is designed for citizen alerts and real-time AQI predictions. Quality control over data feeds and model retraining will ensure the system remains reliable in real-world conditions.
- Handling of Real-time data and forecasting to be considered as stretch goal.

Requirements: Technical

Data Storytelling

Understanding:

- Real-World Application:
- Hands-on Insights:
- Data Visualization:
- Scalability and Optimization:

Communication approach: Clear Breakdown of

Analytical Process

(Data collection, data

preparation and feature engineering) Rationale behind model selection

cleaning and

- Interactive and visual elements
- Code and practical application (Code walkthrough and live demo
- Real world impact

Cleansing Air pollution concentration data (PMx, NHx, COx,

SOx. O3) AQI, Location data, Temporal data. Weather data

Yes, the data needs to be

cleaned up, Missing values needs to be addressed through interpolation, date and time should be in correct formats. Few columns need to be dropped

Data Integration

Data needs to be migrated into shared google drive as we are working with Google Colab.

Analysis Study of major

Explorative Data

- pollutants per city Study of
- Environmental Parameters per city Study of City wise AQI Values Impact on
- Environmental parameters on AQI
- Study of Vehicular and Industrial Pollution

Board, India.

Data Landscape

We need data containing

air pollutants taken from

the selected cities. This

Central Pollution Control

data is available from

the measurement of major

Business Case & Value

Analyze and understand

pollutants to calculate and

across the selected cities

in India. This analysis can

the levels of major air

predict the resultant

AQI(Air Quality Index)

be beneficial for taking

remediation measures.

precautionary and

Added

Adopted from: https://github.com/tomalytics/datasciencecanvas

Data Science Workflow

1	Problem Definition
2	Data collection and preparation
3	Data Exploration
4	Data Modeling
5	Reflection or Inference Phase
6	Communicating & Visualizing Results

Problem Definition

Data Collection and Preparation

Data Collection

Government Data – ("Central Control Room for Air Quality Management - All India")

Link: CCR (cpcb.gov.in)

Open and Free to use.

Well Maintained along with sufficient historical data.

Data Retrieval and Storage

Shortlisted 6 cities to focus on – Bengaluru, Hyderabad, Chennai, Mumbai, Kolkata and Delhi.

Collecting yearly dataset for each of these cities for the years 2019 through 2023 (hourly data).

~8k samples for a city per year.

Dedicated Train [2019 - 22] and Test [2023] Datasets.

Combined datasets to form train and test master datasets of all cities.

Stored in shared google drive.

Data Cleaning

Set threshold of 10% and delete columns based on missing value threshold

Imputed missing values with linear interpolation as we have time series data.

Convert Timestamp column to datetime format.

Feature Engineering

Rolling average computation using sliding window

Sub Index Calculation

AQI and AQI Class calculation

Vehicular and Industrial pollution calculation.

Data Exploration

Study of major pollutants per city • Average levels • Change over the years Monthly Averages • Seasonal Trends Study of Environmental Parameters per city Monthly Averages • Seasonal Trends. Study of City wise AQI Values • Monthly AQI Distribution • City Wise AQI Distribution Impact on Environmental parameters on AQI • Correlation Analysis • AQI Class Distribution • City wise distribution • Monthly and Yearly Average Trends

Model Development

Reflection and Inference: Data Preparation and EDA

Data Preparation and EDA metrics	Success Criteria	Results Shown		
Data Cleaning and Preprocessing	Achieve 90%+ clean, usable data across selected cities and pollutants	Successfully cleaned the dataset with 0% missing values.		
Distribution of Pollutants Across Cities	Understand the distribution of major pollutants for comparison across cities.	Observed flatter distributions in Delhi for PM pollutants; lower values in Bengaluru and Chennai.		
Average Value of Major Pollutants for Each City	Visualize and compare average pollutant values across cities.	Found airborne PM as the dominant pollutant; Delhi and Mumbai had the highest averages for most pollutants.		
Pollutant Trends (2019-2024)	Compare pollutant trends over the years and identify long-term patterns.	Chennai showed sustained control; Mumbai exhibited upward trends in pollutants; Delhi remained consistently high.		
Impact of Environmental Parameters on AQI	Identify relationships between AQI and environmental parameters like temperature, humidity, and wind.	Poor AQI linked to lower temperatures and higher humidity; higher wind speeds correlated with reduced pollution.		
Monthly Pollutant Levels (Seasonal Trends)	Identify seasonal changes and peak months for pollutants.	PM pollutants peaked in winter; NH3 and SO2 levels were highest during summer; monsoon reduced pollution.		
AQI Trends Across Cities	Assess monthly AQI trends and identify best and worst months for air quality.	Delhi worsened in winter; June to September showed healthy AQI in most cities except Delhi.		
Industrial vs. Vehicular Pollution	Determine dominant pollution sources for each city and their trends.	Industrial pollution exceeded vehicular in all cities; Delhi showed consistently high vehicular pollution levels.		
City-Specific Insights	Highlight unique trends for each city.	Chennai and Bengaluru maintained better air quality; Delhi and Mumbai had higher pollutant levels and poor AQI		

Reflection and Inference: Data Modelling

Models	RMSE		Training Accuracy		Testing Accuracy		Validation Accuracy	
	Achieved	Target	Achieved(%)	Target(%)	Achieved(%)	Target(%)	Achieved(%)	Target(%)
Linear Regression	39.07	35	79.81	80	80.53	75	79.51	75
Lasso Regression	39.08	35	79.80	80	80.58	75	79.50	75
Ridge Regression	39.06	35	79.81	90	80.53	75	79.51	75
Decision Tree Regressor	44.94	35	100	90	67.25	70	72.63	70
Random Forest with Grid Search	31.48	35	98.15	90	83.01	80	86.44	85
Random Forest with Randomised search	31.48	35	98.15	90	83.01	80	86.44	85
Catboost	32.1941	35	87.90	90	83.58	80	86.19	85
XGboost	31.79	35	93.02	90	83.01	80	86.53	85

Visualizing Results: EDA

Visualizing Results: EDA

Visualizing Results: Model

Visualizing Results: Model

Key observations

Deployment for Demo

Enhancements/Future work

City wise MODELS

Continuous Training and Integration

LIVE DASHBOARD

Forecasts, Prediction and Live Measurements

Thank You!!