CÁC THANH GHI SFRs & ĐỊA CHỈ IORs CƠ BẢN

Địa chỉ		Tên	
Bộ nhớ	I/O	Thanh ghi	
0x20	0x00	PINA	
0x21	0x01	DDRA	
0x22	0x02	PORTA	
0x23	0x03	PINB	
0x24	0x04	DDRB	
0x25	0x05	PORTB	
0x26	0x06	PINC	
0x27	0x07	DDRC	
0x28	0x08	PORTC	
0x29	0x09	PIND	
0x2A	0x0A	DDRD	
0x2B	0x0B	PORTD	
0x2C			
•••		Reserved	
0x34			
0x35	0x15	TIFR0	
0x36	0x16	TIFR1	
0x37	0x17	TIFR2	
0x38			
		Reserved	
0x3A			
0x3B	0x1B	PCIFR	
0x3C	0x1C	EIFR	
0x3D	0x1D	EIMSK	
0x3E	0x1E	GPIOR0	
0x3F	0x1F	EECR	
0x40	0x20	EEDR	
0x41	0x21	EEARL và	
0x42	0x22	EEARH	
0x43	0x23	GTCCR	
0x44	0x24	TCCR0A	
0x45	0x25	TCCR0B	
0x46	0x26	TCNT0	
0x47	0x27	OCR0A	
0x48	0x28	OCR0B	

•				
Địa chỉ Tên				
Bộ nhớ	I/O	Thanh ghi		
0x49		Reserved		
0x4A	0x2A	GPIOR1		
0x4B	0x2B	GPIOR2		
0x4C	0X2C	SPCR0		
0x4D	0x2D	SPSR0		
0x4E	0x2E	SPDR0		
0x4F	0x2F	Reserved		
0x50	0x30	ACSR		
0x51	0x31	OCDR		
0x52	0x32	Reserved		
0x53	0x33	SMCR		
0x54	0x34	MCUSR		
0x55	0x35	MCUCR		
0x56		Reserved		
0x57	0x37	SPMCSR		
0x58				
•••		Reserved		
0x5A				
0x5B	0x3B	RAMPZ		
0x5C		Reserved		
0x5D	0x3D	SPL và		
0x5E	0x3E	SPH		
0x5F	0x3F	SREG		
0x60		WDTCSR		
0x61		CLKPR		
0x62		Reserved		
0x63		Reserved		
0x64		PRR0		
0x65		Reserved		
0x66		OSCCAL		
0x67		Reserved		
0x68		PCICR		
0x69		EICRA		
0x6A		Reserved		

Địa	chỉ	Tên
Bộ nhớ	I/O	Thanh ghi
0x6B		PCMSK0
0x6C		PCMSK1
0x6D		PCMSK2
0x6E		TIMSK0
0x6F		TIMSK1
0x70		TIMSK2
0x71		Reserved
0x72		Reserved
0x73		PCMSK3
0x74		
		Reserved
0x77		
0x78		ADCL và
0x79		ADCH
0x7A		ADCSRA
0x7B		ADCSRB
0x7C		ADMUX
0x7D		Reserved
0x7E		DIDR0
0x7F		DIDR1
0x80		TCCR1A
0x81		TCCR1B
0x82		TCCR1C
0x83		Reserved
0x84		TCNT1L và
0x85		TCNT1H
0x86		ICR1L và
0x87		ICR1H
0x88		OCR1AL và
0x89		OCR1AH
0x8A		OCR1BL và
0x8B		OCR1BH
0x8C		
		Reserved
0xAF		

Địa chỉ		Tên	
Bộ nhớ	I/O	Thanh ghi	
0xB0		TCCR2A	
0xB1		TCCR2B	
0xB2		TCNT2	
0xB3		OCR2A	
0xB4		OCR2B	
0xB5		Reserved	
0xB6		ASSR	
0xB7		Reserved	
0xB8		TWBR	
0xB9		TWSR	
0xBA		TWAR	
0xBB		TWDR	
0xBC		TWCR	
0xBD		TWAMR	
0xBE		Reserved	
0xBF		Reserved	
0xC0		UCSR0A	
0xC1		UCSR0B	
0xC2		UCSR0C	
0xC3		Reserved	
0xC4		UBRR0L và	
0xC5		UBRR0H	
0xC6		UDR0	
0xC7		Reserved	
0xC8		UCSR1A	
0xC9		UCSR1B	
0xCA		UCSR1C	
0xCB		Reserved	
0xCC		UBRR1L và	
0xCD		UBRR1H	
0xCE		UDR1	
0xCF			
		Reserved	
0xFF			

CÁC KÝ HIỆU ĐƯỢC SỬ DỤNG TRONG TẬP LỆNH

Thanh ghi trạng thái SREG và các bit trong thanh ghi

SREG: thanh ghi trạng thái

C: Cò Carry

Z: Cò Zero

N: Cờ âm

V: Cờ tràn bù 2

S: Cờ dấu = $N \oplus V$

H: Cờ nhớ phân nữa

T: bit sao chép sử dụng trong các lệnh BLD và BST

I: Cò cho phép/không cho phép ngắt toàn cục

Các thanh ghi và toán hạng trong lệnh

Rd: thanh ghi đích trong tập thanh ghi

Rr: thanh ghi nguồn

R: kết quả sau khi thực thi lệnh

K: hằng số dữ liệu

k: hằng số địa chỉ

b: bit trong tập GPRs hoặc I/O REGs (3-bit)

s: Bit trong **SREG** (3-bit)

X,Y,Z: T.ghi địa chỉ gián tiếp

X=R27:R26,**Y**=R29:R28,**Z**=R31:R30

P: địa chỉ các I/O REGs cơ bản.

q: độ dời hoặc địa chỉ trực tiếp (6-bit)

INSTRUCTION SET SUMMARY

Mnemonics	Operands	Description	Operation	Flags	CK		
	ARITHMETIC AND LOGIC INSTRUCTIONS						
ADD	Rd, Rr {d,r: 0÷31}	Add two Registers	$Rd \leftarrow Rd + Rr$	H,S,V,N,Z,C	1		
ADC	Rd, Rr {d,r: 0÷31}	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	H,S,V,N,Z,C	1		
ADIW	Rdl,K {dl: 24,26,28,30- K:0÷63}	Add Immediate to Word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	S,V,N,Z,C	2		
SUB	Rd, Rr {d,r: 0÷31}	Subtract two Registers	Rd ← Rd - Rr	H,S,V,N,Z,C	1		
SUBI	Rd, K {d: 16÷31, K:0÷255}	Subtract Imemediate from Register	Rd ← Rd - K	H,S,V,N,Z,C	1		
SBC	Rd, Rr {d,r: 0÷31}	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	H,S,V,N,Z,C	1		
SBCI	Rd, K {d,r: 16÷31, K:0÷255}	Subtract Imemediate with Carry from Reg.	$Rd \leftarrow Rd - K - C$	H,S,V,N,Z,C	1		
SBIW	Rdl,K {dl: 24,26,28,30- K:0÷63}	Subtract Immediate from Word	$Rdh:Rdl \leftarrow Rdh:Rdl - K$	S,V,N,Z,C	2		
AND	Rd, Rr {d,r: 0÷31}	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	S,V=0,N,Z	1		
ANDI	Rd, K {d: 16÷31, K:0÷255}	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	S,V=0,N,Z	1		
OR	Rd, Rr {d,r: 0÷31}	Logical OR Registers	Rd ← Rd v Rr	S,V=0,N,Z	1		
ORI	Rd, K {d: 16÷31, K:0÷255}	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	S,V=0,N,Z	1		
EOR	Rd, Rr {d,r: 0÷31}	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	S,V=0,N,Z	1		
COM	Rd {d: 0÷31}	One's Complement	$Rd \leftarrow 0xFF - Rd$	S,V=0,N,Z,C=1	1		
NEG	Rd {d: 0÷31}	Two's Complement	$Rd \leftarrow 0x00 - Rd$	H,S,V,N,Z,C	1		
SBR	Rd,K {d: 16÷31, K:0÷255}	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	S,V=0,N,Z	1		
CBR	Rd,K {d: 16÷31, K:0÷255}	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	S,V=0,N,Z	1		
INC	Rd {d: 0÷31}	Increment	$Rd \leftarrow Rd + 1$	S,V,N,Z	1		
DEC	Rd {d: 0÷31}	Decrement	$Rd \leftarrow Rd - 1$	S,V,N,Z	1		
TST	Rd {d: 0÷31}	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	S,V=0,N,Z	1		
CLR	Rd {d: 0÷31}	Clear Register	$Rd \leftarrow Rd \oplus Rd$	S=0,V=0,N=0,Z=1	1		
SER	Rd {d: 16÷31}	Set Register	$Rd \leftarrow 0xFF$	None	1		
MUL	Rd, Rr {d,r: 0÷31}	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2		
MULS	Rd, Rr {d,r: 16÷31}	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2		
MULSU	Rd, Rr {d,r: 16÷23}	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2		
FMUL	Rd, Rr {d,r: 16÷23}	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2		
FMULS	Rd, Rr {d,r: 16÷23}	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2		
FMULSU	Rd, Rr {d,r: 16÷23}	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2		

	DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr {d,r:0÷31}	Move Between Registers	Rd ← Rr	None	1	
MOVW	Rd, Rr $\{d,r \in (0,2,4,28,30)\}$	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1	
LDI	Rd, K {d:16÷31, K:0÷255}	Load Immediate	$Rd \leftarrow K$	None	1	
LD	Rd, X {d:0÷31, X=R27:R26}	Load Indirect	$Rd \leftarrow (X)$	None	2	
LD	Rd, X + $\{d:0 \div 31\}$	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2	
LD	Rd, - X $\{d:0 \div 31\}$	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2	
LD	Rd, Y {d:0÷31, Y≡R29:R28}	Load Indirect	$Rd \leftarrow (Y)$	None	2	
LD	Rd, Y + { d:0÷31}	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2	
LD	Rd, - Y { d:0÷31}	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2	
LDD	Rd,Y+q {d:0÷31, q:0÷63}	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2	
LD	Rd, Z {d:0÷31, Z≡R31:R30}	Load Indirect	$Rd \leftarrow (Z)$	None	2	
LD	Rd, Z + { d:0÷31}	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2	
LD	Rd, -Z { d:0÷31}	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2	
LDD	Rd, Z + q {d:0÷31, q:0÷63}	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2	
LDS	Rd, k {d:0÷31, k:0÷8FFH}	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2	
ST	X, Rr {r:0÷31}	Store Indirect	$(X) \leftarrow Rr$	None	2	
ST	$X+, Rr \{r:0\div31\}$	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2	
ST	- X, Rr {r:0÷31}	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2	
ST	Y, Rr {r:0÷31}	Store Indirect	$(Y) \leftarrow Rr$	None	2	
ST	Y +, Rr {r:0÷31}	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2	
ST	- Y, Rr {r:0÷31}	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2	
STD	Y + q , Rr {r:0÷31,q:0÷63}	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2	
ST	Z, Rr {r:0÷31}	Store Indirect	$(Z) \leftarrow Rr$	None	2	
ST	Z +, Rr {r:0÷31}	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2	
ST	-Z, Rr {r:0÷31}	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2	
STD	Z + q,Rr {r:0÷31,q:0÷63}	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2	
STS	k, Rr {r:0÷31, k:0÷8FFH}	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2	
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3	
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3	
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3	
SPM		Store Program Memory	$(Z) \leftarrow R1:R0$	None	3	
IN	Rd, P {d:0÷31,P:0÷63}	In Port	$Rd \leftarrow P$	None	1	
OUT	P, Rr {r:0÷31,P:0÷63}	Out Port	P ← Rr	None	1	
PUSH	Rr {r:0÷31}	Push Register on Stack	STACK ← Rr	None	2	
POP	Rd {d:0÷31}	Pop Register from Stack	Rd ← STACK	None	2	

BRANCH INSTRUCTIONS						
RJMP	k {k:-2048÷2047}	Relative Jump	$PC \leftarrow PC + k + 1$	None	2	
IJMP		Indirect Jump to (Z), Z: 0÷3FFFH	$PC \leftarrow Z$	None	2	
JMP	k {k:0÷3FFFH}	Direct Jump	PC ← k	None	3	
RCALL	k {k: -2048÷2047}	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3	
ICALL		Indirect Call to (Z) ,Z: 0÷3FFFH	$PC \leftarrow Z$	None	3	
CALL	k {k:0÷3FFFH}	Direct Subroutine Call	$PC \leftarrow k$	None	4	
RET		Subroutine Return	PC ← STACK	None	4	
RETI		Interrupt Return	PC ← STACK	I	4	
CPSE	Rd,Rr {d,r: 0÷31}	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	
CP	Rd,Rr {d,r: 0÷31}	Compare	Rd – Rr	H,S,V,N,Z,C	1	
CPC	Rd,Rr {d,r: 0÷31}	Compare with Carry	Rd - Rr - C	H,S,V,N,Z,C	1	
CPI	Rd,K {d: 16÷31, K:0÷255}	Compare Register with Immediate	Rd – K	H,S,V,N,Z,C	1	
SBRC	Rr, b {r: 0÷31, b:0÷7}	Skip if Bit in Register is Cleared	if $(Rr(b)=0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	
SBRS	Rr, b {r: 0÷31, b:0÷7}	Skip if Bit in Register is Set	if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	
SBIC	P, b {P: 0÷31, b:0÷7}	Skip if Bit in I/O Register is Cleared	if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	
SBIS	P, b {P: 0÷31, b:0÷7}	Skip if Bit in I/O Register is Set	if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3	
BRBS	s, k {s: 0÷7, k:-64÷63}	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRBC	s, k {s: 0÷7, k:-64÷63}	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BREQ	k { k:-64÷63}	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRNE	k { k:-64÷63}	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRCS	k { k:-64÷63}	Branch if Carry Set	if $(C = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRCC	k { k:-64÷63}	Branch if Carry Cleared	if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRSH	k { k:-64÷63}	Branch if Same or Higher -Unsigned	if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRLO	k { k:-64÷63}	Branch if Lower -Unsigned	if $(C = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRMI	k { k:-64÷63}	Branch if Minus	if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRPL	k { k:-64÷63}	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRGE	k { k:-64÷63}	Branch if Greater or Equal- Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRLT	k { k:-64÷63}	Branch if Less Than Zero- Signed	if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRHS	k { k:-64÷63}	Branch if Half Carry Flag Set	if $(H = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRHC	k { k:-64÷63}	Branch if Half Carry Flag Cleared	if $(H = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRTS	k { k:-64÷63}	Branch if T Flag Set	if $(T = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRTC	k { k:-64÷63}	Branch if T Flag Cleared	if $(T = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRVS	k { k:-64÷63}	Branch if Overflow Flag is Set	if $(V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRVC	k { k:-64÷63}	Branch if Overflow Flag is Cleared	if $(V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRIE	k { k:-64÷63}	Branch if Interrupt Enabled	if ($I = 1$) then $PC \leftarrow PC + k + 1$	None	1/2	
BRID	k { k:-64÷63}	Branch if Interrupt Disabled	if ($I = 0$) then $PC \leftarrow PC + k + 1$	None	1/2	

	BIT AND BIT-TEST INSTRUCTIONS						
SBI	P, b {P: 0÷31, b:0÷7}	Set Bit in I/O Register	$I/O(P,b) \leftarrow 1$	None	2		
CBI	P, b {P: 0÷31, b:0÷7}	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2		
LSL	Rd {d: 0÷31}	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1		
LSR	Rd {d: 0÷31}	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1		
ROL	Rd {d: 0÷31}	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1		
ROR	Rd {d: 0÷31}	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1		
ASR	Rd {d: 0÷31}	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1		
SWAP	Rd {d: 0÷31}	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1		
BSET	s {s: 0÷7}	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1		
BCLR	s {s: 0÷7}	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1		
BST	Rr, b {r: 0÷31, b:0÷7}	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1		
BLD	Rd, b {d: 0÷31, b:0÷7}	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1		
SEC		Set Carry	C ← 1	C	1		
CLC		Clear Carry	C ← 0	C	1		
SEN		Set Negative Flag	N ← 1	N	1		
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1		
SEZ		Set Zero Flag	Z ← 1	Z	1		
CLZ		Clear Zero Flag	$Z \leftarrow 0$	Z	1		
SEI		Global Interrupt Enable	I ← 1	I	1		
CLI		Global Interrupt Disable	$I \leftarrow 0$	I	1		
SES		Set Signed Test Flag	S ← 1	S	1		
CLS		Clear Signed Test Flag	$S \leftarrow 0$	S	1		
SEV		Set Twos Complement Overflow.	V ← 1	V	1		
CLV		Clear Twos Complement Overflow	V ← 0	V	1		
SET		Set T in SREG	T ← 1	T	1		
CLT		Clear T in SREG	$T \leftarrow 0$	T	1		
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1		
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1		

	MCU CONTROL INSTRUCTIONS					
NOP	No Operation		None	1		
SLEEP	Sleep	(see specific descr. for Sleep function)	None	1		
WDR	Watchdog Reset	(see specific descr. for WDR/timer)	None	1		
BREAK	Break	For On-chip Debug Only	None	1		