Design block diagram

- > The interface protocol between firmware, user project and testbench
 - Testbench: 透過 flash control 將資料傳達給 CPU 執行 firmware code

● Firmware(參考 fir.c):

```
reg_wb_enable = 1;

// Flag - Start latency-timer (in testbench)

reg_mprj_datal = (@xA5<<16);

// FlR - data length
reg_fir_data_length = data_length;

// FlR - data_length = data_length;

// FlR - tap coefficient
reg_fir_coeff(n) = taps[n];

// FlR - ap_start
reg_fir_control = (1 << bits_control_ap_start);

int y = 0;

for (int n = 0; n < M ata_length; n++)

// FlR - ap_start
reg_fir_control = (1 << bits_control_xreadyWrite)) ≠ (1 << bits_control_xreadyWrite));

// Wait for FlR ready to write x
while((reg_fir_control & (1 << bits_control_xreadyWrite)) ≠ (1 << bits_control_xreadyWrite));

// Wait for FlR ready to read y
while((reg_fir_control & (1 << bits_control_yreadyRead)) ≠ (1 << bits_control_yreadyRead));

// Wait for FlR ready to read y
while((reg_fir_control & (1 << bits_control_yreadyRead)) ≠ (1 << bits_control_yreadyRead));

// FlR - ap_idle
// FlR - ap_idle
// FlR - ap_idle (1 << bits_control_ap_idle)) ≠ (1 << bits_control_ap_idle));

// FlR - ap_idle (1 << bits_control_ap_idle)) ≠ (1 <</bi>
```

程式前面定義各個 ip 的位置,以下解說程式

112:

reg_mprj_datal 有 32bit,前 16 -> CPU ; 後 16 -> user_project 因為在 cpu 運作所以需要左移 16bits

125:

ap_start signal

127~147 :

用 bits_control => ap_start , ap_done, ap_idle 這邊的訊號會透過 mprj 傳輸到 fir.v

User project

- Waveform and analysis of the hardware/software behavior.
 Software:
 - 1. 將 Firmware 放在 SPI Flash 運行 從傳送 X[n]至接收 Y[n] 約歷經 26 μs

將 Firmware 放在 User RAM 運行 (0x3800_xxxx)
 從傳送 X[n]至接收 Y[n] 約歷經 4.5 μs

3. 結論

由於 Firmware 主掌資料流的控制權,意味著 Firmware 的效能限縮硬體的運算速度,從接收到發送歷經上百個 cycle, 皆超出計算單筆資料的運算時間,因此我們使用 Lab3 中資源使用最少的 FIR 作為本次實驗的硬體端設計。

Hardware:

- 0x3800 for exmem-FIR

- 0x3000 for FIR-AXILITE(BRAM) & FIR-AXISTREAM(BRAM)

What is the FIR engine theoretical throughput, i.e. data rate? Actually measured throughput? data rate? Actually measured throughput?

Ap start assert at 1425 ns ,and Ap done assert at 641775 ns

以 Lab3 結果而言,最理想的情況下可以在 640350 ns 內完成 600 筆資料的運算(每筆資料相當於 11 次乘法,10 次加法)。

Data rate = 9370000

Throughput = 196,770,000

```
Start latency-timer
Stop latency-timer
Elapsed time:
                959150 [ns]
Correct, ans = 118, golden_ans = 118
---- Times# 2 -----
Start latency-timer
Stop latency-timer
                970900 [ns]
Elapsed time:
Correct, ans = 118, golden_ans = 118
Start latency-timer
Stop latency-timer
                970900 [ns]
Elapsed time:
Correct, ans = 118, golden_ans = 118
```

但是實際上量測到的結果,在 970900 ns 內只能完成 64 筆資料的運算

Data rate = 65920

Throughput = 1,384,320

➤ What is latency for firmware to feed data?

ignals————————————————————————————————————	Waves	
Time	2513 us 2514 us	251:
sm_tready =0		
sSRAM dataReady =1		
,		_
	16262500 ps Cursor: 2513509 ns	~
m: 0 sec To: 449606250(Super Control	
	16262500 ps Cursor: 2513509 ns Waves 2513 us 2514 us 2515	us 2516 us

Latency: 2,550 ns

What techniques used to improve the throughput?

由於目前效能受限於 Firmware,可以嘗試以下方法提升 throughput

- 1. 增加資料傳輸效率,以本次實驗為例,單筆 x[n]不會用到 32bits,所以可以合併多筆 x[n]一次傳送,假設 x[n]的範圍為 $1\sim64$,代表只需要使用到 7bits,可以讓 data[31:25]代表 x[n],data[24:18]代表 x[n+1],以此類推,Y[n]的部分也可以仿效。
- 2. 增加 Input/Output Buffer,如此一來可以配合 CPU 節奏收發資料。
- 3. 加快 Caraval SoC 運作頻率

Does bram12 give better performance, in what way?

多出更多 RAM 能讓運算更有彈性,減少 control 負擔,但在本次實驗中成效有限,因為硬體做再快也會受限於韌體速度。

Bram12 多了一個記憶體位置,可以當作 Buffer 使用,也就是說當 FIR 還未完成當前運算的期間,CPU 就能先將下一次運算需要的 x[n]寫入,並且不會覆蓋掉可能需要用到的資料。

Can you suggest other method to improve the performance?

進一步推廣單次傳送多筆資料的想法,並且推廣至更廣泛的數值,譬如使用 BF16 格式進行 資料傳輸,單次傳輸可以傳送 2 筆資料,而且數值範圍廣泛,雖然增加硬體負擔,需要多進 行一個解碼、編碼的任務,但以上百個 cycle 內完成的前提下硬體依舊游刃有餘。 使用 Share memory 進行資料傳輸, CPU 不必等待 FIR 接收資料,可以事先將多筆 x[n]資料儲存在共用記憶體,等到 FIR 需要時再讀取,反之 FIR 也能將運算完成的 Y[n]存放在共享記憶體,等 CPU 有空再去讀取。

Any other insights ?

對比將 Firmware 存放在 SPI Flash 以及 User RAM 之運行時間 Initial :8063625ns

```
λ make
Reading counter_la_fir.hex
counter_la_fir.hex loaded into memory
Memory 5 bytes = 0x6f 0x00 0x00 0x0b 0x13
VCD info: dumpfile counter_la_fir.vcd opened for output.
Start latency-timer
Stop latency-timer
Elapsed time: 8063625 [ns]
counter_la_fir_tb.v:196: $finish called at 9050387500 (1ps)
```

Improved:970900 ns

控制 feedback 的時間,如下圖

TIME REPORT

Setup		Hold		Pulse Width
Worst Negative Slack (WNS):	0.530 ns	Worst Hold Slack (WHS):	0.132 ns	Worst Pulse Width Slack (WPWS):
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TP)
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:
Total Number of Endpoints:	416	Total Number of Endpoints:	416	Total Number of Endpoints:
All user specified timing cons	traints are	met.		

Site Type Site Type Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes F8 Muxes	Used F	0 0 0 0 0 0	Prohibited 0 0 0 0 0	Available Available 53200 53200 17400 106400	0.71 0.71 0.71 0.00 0.38
Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes	380 380 380 0 400 260 140 0	0 0 0 0 0	0 0 0 0 0	 53200 53200 17400 106400	0.71 0.71 0.71 0.00 0.38
Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes	380 380 380 0 400 260 140 0	0 0 0 0 0	0 0 0 0 0	 53200 53200 17400 106400	0.71 0.71 0.71 0.00 0.38
LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes	380 0 400 260 140 0	0 0 0 0 0	0 0 0 0	53200 17400 106400	0.71 0.00 0.38
LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes	380 0 400 260 140 0	0 0 0 0 0	0 0 0 0	53200 17400 106400	0.71 0.00 0.38
LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes	0 400 260 140 0	0 0 0 0	0 0 0	17400 106400	0.00 0.38
Slice Registers Register as Flip Flop Register as Latch F7 Muxes	400 260 140 0	0 0 0	0	106400	0.38
Register as Flip Flop Register as Latch F7 Muxes	260 140 0	0		406400	
Register as Latch F7 Muxes	0		i	106400	0.24
F7 Muxes		0		106400	0.13
F8 Muxes	a i		0	26600	0.00
	0	0	0	13300	0.00
				+	
Warning! The Final LUT co			sical optimiz	ations and fu	ıll impleme
ompleted, for a more reali	stic coun	ıt.			
.1 Summary of Registers by	Type				
Total Clock Enable Sy	nchronous	Acv	nchronous I		
Total Clock Ellable 3y	ilcili ollous	Hay	, nem onous		
ø i i					
0 -			Set		
0 -			Reset		
0 -	Set	. i _			
0 -	Reset				
0 Yes					
7 Yes			Set		
375 Yes			Reset		
0 Yes	Set	: i _			
18 Yes	Reset				

```
∨ 🖨 Design Sources (2)
   \checkmark \cong Non-module Files (1)

√ ■ ... user_project_wrapper (user_project_wrapper.v) (2)

√ ● mprj : user_proj_example (user_project.v) (4)
           bram_fir_exmem : bram (bram.v)
           • fir_DUT : fir (fir.v)
           tap_RAM : bram (bram.v)
           data_RAM : bram (bram.v)
      ✓ ■ counter: user_proj_counter (user_proj_example.counter.v) (1)
           user_bram : bram (bram.v)
∨ 🗁 Constraints (1)
   ∨ 🖨 constrs 1 (1)
        system_xdc.xdc (target)
\checkmark \sqsubseteq Simulation Sources (2)
   ∨ 🖨 sim_1 (2)
      ∨ 🔚 Non-module Files (1)
           counter.v
      ∨ ● ... user_project_wrapper (user_project_wrapper.v) (2)
         > mprj : user_proj_example (user_project.v) (4)
          > • counter: user_proj_counter (user_proj_example.counter.v) (1)
∨ 🚞 Utility Sources (1)
   ∨ 🗀 utils_1 (1)
      ∨ 🗁 Design Checkpoint (1)
           user_proj_counter.dcp
```