Modeling and dynamical systems

Master Lab in Autonomous driving - Motion planning and control

Paolo Falcone

Dipartimento di Ingegneria "Enzo Ferrari" Università di Modena e Reggio Emilia

• Illustrating the physical modeling and modeling from data paradigms

- Illustrating the physical modeling and modeling from data paradigms
- Examples of physical modeling

- Illustrating the physical modeling and modeling from data paradigms
- Examples of physical modeling
- Response of dynamical systems

- Illustrating the physical modeling and modeling from data paradigms
- Examples of physical modeling
- Response of dynamical systems
- Fundamental properties of dynamical systems

Objective. Deriving a mathematical object, either from basic physics law **(this course)** or input/output data, which describes the behavior of the system.

Objective. Deriving a mathematical object, either from basic physics law **(this course)** or input/output data, which describes the behavior of the system.

Physical modeling. Derive a set of equations from the physics laws underlying the operation of the system.

Objective. Deriving a mathematical object, either from basic physics law **(this course)** or input/output data, which describes the behavior of the system.

Physical modeling. Derive a set of equations from the physics laws underlying the operation of the system.

• *Pro.* A change in the system parameters is straightforwardly reflected into the model. The knowledge about the system is exploited to structure the model.

Objective. Deriving a mathematical object, either from basic physics law **(this course)** or input/output data, which describes the behavior of the system.

Physical modeling. Derive a set of equations from the physics laws underlying the operation of the system.

- *Pro.* A change in the system parameters is straightforwardly reflected into the model. The knowledge about the system is exploited to structure the model.
- *Cons.* Knowledge of the system is necessary. Some system params could be difficult to measure/estimate.

Objective. Deriving a mathematical object, either from basic physics law **(this course)** or input/output data, which describes the behavior of the system.

Physical modeling. Derive a set of equations from the physics laws underlying the operation of the system.

- *Pro.* A change in the system parameters is straightforwardly reflected into the model. The knowledge about the system is exploited to structure the model.
- *Cons.* Knowledge of the system is necessary. Some system params could be difficult to measure/estimate.

Data-driven modeling. Either a state-space or black-box model is guessed and its params (with no physical meaning) are fitted to the input/output data.

Objective. Deriving a mathematical object, either from basic physics law **(this course)** or input/output data, which describes the behavior of the system.

Physical modeling. Derive a set of equations from the physics laws underlying the operation of the system.

- *Pro.* A change in the system parameters is straightforwardly reflected into the model. The knowledge about the system is exploited to structure the model.
- *Cons.* Knowledge of the system is necessary. Some system params could be difficult to measure/estimate.

Data-driven modeling. Either a state-space or black-box model is guessed and its params (with no physical meaning) are fitted to the input/output data.

• *Pro.* Lack of knowledge about the system physics is less critical. Well established theory exists (System Identification).

Objective. Deriving a mathematical object, either from basic physics law **(this course)** or input/output data, which describes the behavior of the system.

Physical modeling. Derive a set of equations from the physics laws underlying the operation of the system.

- *Pro.* A change in the system parameters is straightforwardly reflected into the model. The knowledge about the system is exploited to structure the model.
- *Cons.* Knowledge of the system is necessary. Some system params could be difficult to measure/estimate.

Data-driven modeling. Either a state-space or black-box model is guessed and its params (with no physical meaning) are fitted to the input/output data.

- *Pro.* Lack of knowledge about the system physics is less critical. Well established theory exists (System Identification).
- *Cons.* Data is necessary. Experiments for data collection needs to be carefully designed. A change in the system params need the complete modeling procedure to be redone.

Examples of physical models. RL circuit

Examples of physical models. RL circuit

The variation of the concatenated flux $\phi_c(t) = LI_i(t)$ is equal to the voltage $V_u(t)$ applied to the inductance.

$$\frac{d}{dt}[\phi_c(t)] = V_u(t) \qquad \rightarrow \qquad L\frac{d}{dt}[I_i(t)] = V_i(t) - R\,I_i(t)$$

Examples of physical models. RL circuit

The variation of the concatenated flux $\phi_c(t) = LI_i(t)$ is equal to the voltage $V_u(t)$ applied to the inductance.

$$\frac{d}{dt}[\phi_c(t)] = V_u(t) \qquad \rightarrow \qquad L\frac{d}{dt}[I_i(t)] = V_i(t) - RI_i(t)$$

By setting $x(t) = I_i(t)$ (state variable), $u(t) = V_i(t)$ (input variable) and $y(t) = I_i(t)$ (output variable), the following dynamical model (ODE) *in the state-space* can be derived

$$\dot{x} = Ax + Bu, \quad y = Cx,$$

with

$$A = -\frac{R}{L}, \ B = \frac{1}{L}, \ C = 1.$$

The system is described by the following two differential equations:

$$\begin{cases}
L\dot{I}_a = -RI_a - K_e \omega_m + V \\
J\dot{\omega}_m = K_e I_a - b \omega_m - C_e
\end{cases}$$

Where $C_m = K_e I_a$, $E = K_e \omega_m$.

The system is described by the following two differential equations:

$$\begin{cases} L\dot{I}_a &= -RI_a - K_e \,\omega_m + V \\ J\dot{\omega}_m &= K_e I_a - b \,\omega_m - C_e \end{cases}$$

Where
$$C_m = K_e I_a$$
, $E = K_e \omega_m$.

By setting
$$x = \begin{bmatrix} I_a \\ \omega_m \end{bmatrix}$$
, $u = V$, $d = C_e$, $y = \omega_m$,

The system is described by the following two differential equations:

$$\begin{cases} L\dot{I}_a &= -RI_a - K_e \,\omega_m + V \\ J\dot{\omega}_m &= K_e I_a - b \,\omega_m - C_e \end{cases}$$

Where
$$C_m = K_e I_a$$
, $E = K_e \omega_m$.

By setting
$$x = \begin{bmatrix} I_a \\ \omega_m \end{bmatrix}$$
, $u = V$, $d = C_e$, $y = \omega_m$, we obtain the following state-space model

$$\dot{x} = Ax + Bu + B_d d, \quad y = Cx,$$

with
$$A = \begin{bmatrix} -\frac{R}{L} & -\frac{K_c}{L} \\ \frac{K_c}{I} & -\frac{b}{I} \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $B_d = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $C = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The solution of $\dot{x}(t) = Ax(t) + Bu(t)$ with initial condition $x(t_0)$ is

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-s)}Bu(s)ds$$
 (1)

The solution of $\dot{x}(t) = Ax(t) + Bu(t)$ with initial condition $x(t_0)$ is

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-s)}Bu(s)ds$$
 (1)

The response depends on the eigenvalues of the matrix A.

The solution of $\dot{x}(t) = Ax(t) + Bu(t)$ with initial condition $x(t_0)$ is

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-s)}Bu(s)ds$$
 (1)

The response depends on the eigenvalues of the matrix A.

Real eigenvalues corresponds to aperiodic responses.

The solution of $\dot{x}(t) = Ax(t) + Bu(t)$ with initial condition $x(t_0)$ is

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-s)}Bu(s)ds$$
 (1)

The response depends on the eigenvalues of the matrix A.

Real eigenvalues corresponds to aperiodic responses.

Conjugate complex eigenvalues corresponds to pseudo-periodic responses.

Since the system is linear, the *superposition principle holds*.

For a dynamical system, let a *nominal* state trajectory $\tilde{x}(t)$ be obtained from the i.c. \tilde{x}_0 and input $\tilde{u}(t)$.

For a dynamical system, let a *nominal* state trajectory $\tilde{x}(t)$ be obtained from the i.c. \tilde{x}_0 and input $\tilde{u}(t)$. Furthermore, let x(t) a *perturbed* state trajectory obtained from $\tilde{u}(t)$, starting from x_0 .

For a dynamical system, let a *nominal* state trajectory $\tilde{x}(t)$ be obtained from the i.c. \tilde{x}_0 and input $\tilde{u}(t)$. Furthermore, let x(t) a *perturbed* state trajectory obtained from $\tilde{u}(t)$, starting from x_0 .

Definition (*Stability*)

The trajectory $\tilde{x}(t)$ is stable if

$$\forall \ \varepsilon > 0, \ \exists \ \delta > 0: \ \|x_0 - \tilde{x}_0\| \le \delta, \ \Rightarrow \ \|x(t) - \tilde{x}(t)\| \le \varepsilon.$$

For a dynamical system, let a *nominal* state trajectory $\tilde{x}(t)$ be obtained from the i.c. \tilde{x}_0 and input $\tilde{u}(t)$. Furthermore, let x(t) a *perturbed* state trajectory obtained from $\tilde{u}(t)$, starting from x_0 .

Definition (*Stability*)

The trajectory $\tilde{x}(t)$ is stable if

$$\forall \ \varepsilon > 0, \ \exists \ \delta > 0: \ \|x_0 - \tilde{x}_0\| \le \delta, \ \Rightarrow \ \|x(t) - \tilde{x}(t)\| \le \varepsilon.$$

Definition (*Instability*)

The trajectory $\tilde{x}(t)$ is *unstable* if it is not stable.

For a dynamical system, let a *nominal* state trajectory $\tilde{x}(t)$ be obtained from the i.c. \tilde{x}_0 and input $\tilde{u}(t)$. Furthermore, let x(t) a *perturbed* state trajectory obtained from $\tilde{u}(t)$, starting from x_0 .

Definition (*Stability*)

The trajectory $\tilde{x}(t)$ is stable if

$$\forall \ \varepsilon > 0, \ \exists \ \delta > 0: \ \|x_0 - \tilde{x}_0\| \le \delta, \ \Rightarrow \ \|x(t) - \tilde{x}(t)\| \le \varepsilon.$$

Definition (*Instability*)

The trajectory $\tilde{x}(t)$ is *unstable* if it is not stable.

Definition (Asymptotic stability)

The trajectory $\tilde{x}(t)$ is asymptotically stable if

$$\forall \ \varepsilon > 0, \ \exists \ \delta > 0: \ \|x_0 - \tilde{x}_0\| \leq \delta, \ \Rightarrow \ \|x(t) - \tilde{x}(t)\| \leq \varepsilon,$$

and $\lim_{t\to\infty} ||x(t) - \tilde{x}(t)|| = 0$.

Stability of LTI systems

The linear, discrete time system

$$\dot{x} = Ax \tag{2}$$

is asymptotically stable (solutions converge to the origin) if and only if the eigenvalues of A lie in the left half-plane .

The position of the eigenvalues affect the behavior of the system.

Real poles in the lhp contribute with aperiodic stable responses.

Conjugate complex poles in the lhp contribute with pseudo-periodic stable responses.

Example. Step response of the following differential equation:

$$a\dot{y}(t) + by(t) = cu(t)$$

$$A = -\frac{b}{a}, \ B = \frac{C}{a}, \ C = 1.$$

Example. Step response of the following differential equation:

$$a\dot{y}(t) + by(t) = cu(t)$$

The state-space model has the following matrices:

$$A = -\frac{b}{a}, \ B = \frac{C}{a}, \ C = 1.$$

Example. Step response of the following differential equation:

$$a\dot{y}(t) + by(t) = cu(t)$$

The state-space model has the following matrices:

$$A = -\frac{b}{a}, \ B = \frac{C}{a}, \ C = 1.$$

Example. Step response of the following differential equation:

$$a\dot{y}(t) + by(t) = cu(t)$$

The state-space model has the following matrices:

$$A = -\frac{b}{a}, B = \frac{C}{a}, C = 1.$$

The response to a unitary step

$$y(t) = \frac{c}{b} \left(1 - e^{-\frac{b}{a}t} \right)$$

Example. Step response of the following differential equation:

$$a\dot{y}(t) + by(t) = cu(t)$$

The state-space model has the following matrices:

$$A = -\frac{b}{a}, B = \frac{C}{a}, C = 1.$$

The response to a unitary step

$$y(t) = \frac{c}{b} \left(1 - e^{-\frac{b}{a}t} \right)$$

Response of LDS. Conjugate complex poles

Example. Step response of the following differential equation:

$$\ddot{y} + 2\delta\omega_n^2 \dot{y} + \omega_n^2 y(t) = \omega_n^2 u(t)$$

Response of LDS. Conjugate complex poles

Example. Step response of the following differential equation:

$$\ddot{y} + 2\delta\omega_n^2 \dot{y} + \omega_n^2 y(t) = \omega_n^2 u(t)$$

The state-space model has the following matrices:

$$A = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\delta\omega_n^2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \omega_n^2 \end{bmatrix}, C = [10]$$

Response of LDS. Conjugate complex poles

Example. Step response of the following differential equation:

$$\ddot{y} + 2\delta\omega_n^2 \dot{y} + \omega_n^2 y(t) = \omega_n^2 u(t)$$

The state-space model has the following matrices:

$$A = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\delta\omega_n^2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \omega_n^2 \end{bmatrix}, C = [10]$$

Response of LDS. Conjugate complex poles

Example. Step response of the following differential equation:

$$\ddot{y} + 2\delta\omega_n^2 \dot{y} + \omega_n^2 y(t) = \omega_n^2 \, u(t)$$

The state-space model has the following matrices:

$$A = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\delta\omega_n^2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \omega_n^2 \end{bmatrix}, C = [10]$$

The response to a unitary step is

$$y(t) = 1 - \frac{e^{-\delta\omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$

$$\omega := \omega_n \sqrt{1 - \delta^2}$$

$$\sigma := \delta\omega_n$$

$$\varphi := \arccos \delta = \arctan \frac{\sqrt{1 - \delta^2}}{\delta}$$

$$y(t) = 1 - \frac{e^{-\delta \omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$

$$\omega := \omega_n \sqrt{1 - \delta^2}$$

$$\sigma := \delta \omega_n$$

$$\varphi := \arccos \delta = \arctan \frac{\sqrt{1 - \delta^2}}{\delta}$$

$$y(t) = 1 - \frac{e^{-\delta \omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$

$$\omega := \omega_n \sqrt{1 - \delta^2}$$

$$\sigma := \delta \omega_n$$

$$\varphi := \arccos \delta = \arctan \frac{\sqrt{1 - \delta^2}}{\delta}$$

• With $\delta = 1$, multiple real pole. The overshoot *S* is zero.

$$y(t) = 1 - \frac{e^{-\delta \omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$

$$\omega := \omega_n \sqrt{1 - \delta^2}$$

$$\sigma := \delta \omega_n$$

$$\varphi := \arccos \delta = \arctan \frac{\sqrt{1 - \delta^2}}{\delta}$$

- With $\delta = 1$, multiple real pole. The overshoot *S* is zero.
- With $\delta = 0$, the response tends to an undamped sinusoid.

$$y(t) = 1 - \frac{e^{-\delta \omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$

$$\omega := \omega_n \sqrt{1 - \delta^2}$$

$$\sigma := \delta \omega_n$$

$$\varphi := \arccos \delta = \arctan \frac{\sqrt{1 - \delta^2}}{\delta}$$

- With $\delta = 1$, multiple real pole. The overshoot *S* is zero.
- With $\delta = 0$, the response tends to an undamped sinusoid.
- Large $\sigma \to \text{large } \omega_n$. Fast decaying exp.

$$y(t) = 1 - \frac{e^{-\delta \omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$

$$\omega := \omega_n \sqrt{1 - \delta^2}$$

$$\sigma := \delta \omega_n$$

$$\varphi := \arccos \delta = \arctan \frac{\sqrt{1 - \delta^2}}{\delta}$$

- With $\delta = 1$, multiple real pole. The overshoot *S* is zero.
- With δ = 0, the response tends to an undamped sinusoid.
- Large $\sigma \to \text{large } \omega_n$. Fast decaying exp.
- Small $\varphi \to \text{large } \delta$. Fast decaying exp.

Main parameters of the step response

• Maximum overshoot S

- Maximum overshoot S
- \bullet *Delay time* T_r

- Maximum overshoot S
- *Delay time T_r*
- Rise time T_s

- Maximum overshoot S
- *Delay time T_r*
- Rise time T_s
- Settling time T_a

- Maximum overshoot S
- *Delay time T_r*
- Rise time T_s
- *Settling time T_a*
- *Instant of the maximum overshoot* T_m

A number of parameters of the step response can be related to δ and ω_n (hence to σ and ω).

A number of parameters of the step response can be related to δ and ω_n (hence to σ and ω).

• Peaks and peak times.

A number of parameters of the step response can be related to δ and ω_n (hence to σ and ω).

• Peaks and peak times. It can be shown that

$$y(t)\bigg|_{\substack{\max \\ \min}} = 1 - (-1)^n e^{\frac{-n\pi\delta}{\sqrt{1-\delta^2}}}$$

$$t = \frac{n\pi}{\omega_n \sqrt{1-\delta^2}} = \frac{n\pi}{\omega}$$

A number of parameters of the step response can be related to δ and ω_n (hence to σ and ω).

• Peaks and peak times. It can be shown that

$$y(t)\bigg|_{\substack{\max \\ \min}} = 1 - (-1)^n e^{\frac{-nn\delta}{\sqrt{1-\delta^2}}}$$

$$t = \frac{n\pi}{\omega_n} \frac{n\pi}{\sqrt{1-\delta^2}} = \frac{n\pi}{\omega}$$

Overshoot.

A number of parameters of the step response can be related to δ and ω_n (hence to σ and ω).

• Peaks and peak times. It can be shown that

$$y(t)\bigg|_{\substack{\max \\ \min}} = 1 - (-1)^n e^{\frac{-n\pi\delta}{\sqrt{1-\delta^2}}}$$

$$t = \frac{n\pi}{\omega_n \sqrt{1-\delta^2}} = \frac{n\pi}{\omega}$$

• Overshoot. It can be shown that

$$S = 100 \, \frac{(y_{\text{max}} - y_{\infty})}{y_{\infty}},$$

$$S = 100 e^{\frac{-\pi \delta}{\sqrt{1-\delta^2}}}$$

• *Overshoot*. The sector bounded by *b* and *b'* bounds the overshoot.

- *Overshoot*. The sector bounded by *b* and *b'* bounds the overshoot.
- *Settling time*. It can be shown that

$$T_a = \frac{3}{\delta \,\omega_n} = \frac{3}{|\sigma|}$$

- *Overshoot*. The sector bounded by *b* and *b'* bounds the overshoot.
- Settling time. It can be shown that

$$T_a = \frac{3}{\delta \,\omega_n} = \frac{3}{|\sigma|}$$

Hence, poles at the left of $\sigma = -a$ result into a settling time smaller than a desired T_a^d , with

$$a = \frac{3}{T_A^d}$$

- Overshoot. The sector bounded by b and b' bounds the overshoot.
- Settling time. It can be shown that

$$T_a = \frac{3}{\delta \,\omega_n} = \frac{3}{|\sigma|}$$

Hence, poles at the left of $\sigma = -a$ result into a settling time smaller than a desired T_a^d , with

$$a = \frac{3}{T_A^d} \quad \Rightarrow \quad \delta \omega_n \ge \frac{3}{T_A^d}$$

Effect of the *damping coefficient* δ .

Effect of the *damping coefficient* δ . Vary δ , while $\omega_n = \text{const.}$

$$0 < \delta < 1$$

$$\frac{\pi}{2} > \varphi > 0$$

 ω_n constant

Effect of the *damping coefficient* δ . Vary δ , while ω_n = const.

Effect of the *damping coefficient* δ . Vary δ , while $\omega_n = \text{const.}$

Effect of the *damping coefficient* δ . Vary δ , while ω_n = const.

Recall that

$$y(t) = 1 - \frac{e^{-\delta\omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$

Effect of the *damping coefficient* δ . Vary δ , while ω_n = const.

Recall that

$$y(t) = 1 - \frac{e^{-\delta\omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$
 and $S\% = 100 e^{-\frac{\pi \delta}{\sqrt{1 - \delta^2}}}$

$$S\% = 100 e^{-\frac{\pi\delta}{\sqrt{1-\delta^2}}}$$

Effect of the *natural frequency* ω_n .

Effect of the *natural frequency* ω_n . Vary ω_n , while δ = const.

 δ constant

$$\omega_n > 0$$

Effect of the *natural frequency* ω_n . Vary ω_n , while δ = const.

Effect of the *natural frequency* ω_n . Vary ω_n , while δ = const.

Effect of the *natural frequency* ω_n . Vary ω_n , while δ = const.

Recall that

$$y(t) = 1 - \frac{e^{-\delta\omega_n t}}{\sqrt{1 - \delta^2}} \sin(\omega t + \varphi)$$

Constant $\delta \omega_n$.

Constant $\delta \omega_n$. Vary δ and ω_n , while $\delta \omega_n = \text{const.}$

 $\delta\omega_n = \text{const.}$

Constant $\delta \omega_n$. Vary δ and ω_n , while $\delta \omega_n = \text{const.}$

Constant $\delta \omega_n$. Vary δ and ω_n , while $\delta \omega_n = \text{const.}$

Constant $\delta \omega_n$. Vary δ and ω_n , while $\delta \omega_n = \text{const.}$

Recall that
$$T_a = \frac{3}{\delta \omega_n}$$

Constant $\delta \omega_n$. Vary δ and ω_n , while $\delta \omega_n = \text{const.}$

Recall that
$$T_a =$$

$$T_a = \frac{3}{\delta\omega_n}$$

. The poles move along a locus of constant T_a

For *stable systems*, the **dominant pole** is the pole that is *closest to the imaginary axis*.

For *stable systems*, the **dominant pole** is the pole that is *closest to the imaginary axis*.

Non-dominant poles with negative real part much smaller than the "dominant" pole affect the time response very little.

For *stable systems*, the **dominant pole** is the pole that is *closest to the imaginary axis*.

Non-dominant poles with negative real part much smaller than the "dominant" pole affect the time response very little.

Non-dominant poles "10 times faster" than the dominant can be neglected.

For *stable systems*, the **dominant pole** is the pole that is *closest to the imaginary axis*.

Non-dominant poles with negative real part much smaller than the "dominant" pole affect the time response very little.

Non-dominant poles "10 times faster" than the dominant can be neglected.

1st order sys.

$$G_1(s) = \frac{10}{(s+1)(s+2)}, G_2(s) = \frac{20}{(s+1)(s+4)}, G_3(s) = \frac{50}{(s+1)(s+10)}$$

$$G_4(s) = \frac{500}{(s+1)(s+100)}, \, G_5(s) = \frac{5000}{(s+1)(s+1000)}, \, \left[G(s) = \frac{5}{(s+1)}\right]$$

For stable systems, the **dominant pole** is the pole that is closest to the imaginary axis.

Non-dominant poles with negative real part much smaller than the "dominant" pole affect the time response very little.

Non-dominant poles "10 times faster" than the dominant can be neglected.

1st order sys.

2nd order sys.

$$G_4(s) = \frac{500}{(s+1)(s+100)}, G_5(s) = \frac{5000}{(s+1)(s+1000)}, \left[G(s) = \frac{5}{(s+1)}\right]$$

18/23

Discrete-time models

Assume that the control signal u is piecewise constant (h is the sampling interval):

$$u(t) = u(kh), \quad kh \le t < (k+1)h$$

Discrete-time models

Assume that the control signal u is piecewise constant (h is the sampling interval):

$$u(t) = u(kh), \quad kh \le t < (k+1)h$$

By using this in (1) with t = (k + 1)h and $t_0 = kh$, we get the discrete time state equation

$$x(k+1) = e^{Ah}x(k) + \left(\int_0^h e^{As}B_c \, ds\right)u(k) = Ax(k) + Bu(k),$$

where, for simplicity of notation, h has been omitted from the time argument.

Discrete-time models

Assume that the control signal u is piecewise constant (h is the sampling interval):

$$u(t) = u(kh), \quad kh \le t < (k+1)h$$

By using this in (1) with t = (k + 1)h and $t_0 = kh$, we get the discrete time state equation

$$x(k+1) = e^{Ah}x(k) + \left(\int_0^h e^{As}B_c \, ds\right)u(k) = Ax(k) + Bu(k),$$

where, for simplicity of notation, h has been omitted from the time argument.

A compact version of the discrete state-space model in the case z = y is

$$x^+ = Ax + Bu$$
$$y = Cx$$

The response of

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k)$$

to an input signal [u(0), u(1), ..., u(k-1)], from an initial state x(0), can be calculated by recursively applying the state update equation

The response of

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k)$$

to an input signal [u(0), u(1), ..., u(k-1)], from an initial state x(0), can be calculated by recursively applying the state update equation

$$x(1) = Ax(0) + Bu(0)$$

$$x(2) = Ax(1) + Bu(1) = A^{2}x(0) + ABu(0) + Bu(1)$$

$$\vdots = \vdots$$

$$x(k) = A^{k}x(0) + \sum_{j=0}^{k-1} A^{k-j-1}Bu(j).$$

The response of

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k)$$

to an input signal [u(0), u(1), ..., u(k-1)], from an initial state x(0), can be calculated by recursively applying the state update equation

$$x(1) = Ax(0) + Bu(0)$$

$$x(2) = Ax(1) + Bu(1) = A^{2}x(0) + ABu(0) + Bu(1)$$

$$\vdots = \vdots$$

$$x(k) = A^{k}x(0) + \sum_{j=0}^{k-1} A^{k-j-1}Bu(j).$$

Example. Consider the system $x^+ = 0.1x$, x(0) = 1. How does the response look like?

Observability

A linear, discrete time system

$$x^+ = Ax$$
$$y = Cx$$

is observable if for some N, any x(0) can be determined from $\{y(0), y(1), \dots, y(N-1)\}.$

The system is observable if and only if any of the following, equivalent, conditions hold:

- The matrix $\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$ has full rank n
- The matrix $\begin{bmatrix} \lambda I A \\ C \end{bmatrix}$ has rank n for all $\lambda \in \mathbf{C}$

Note. A weaker condition is *detectability*, which requires that any unobservable modes are strictly stable.

Controllability

A linear, discrete time system

$$x^+ = Ax + Bu$$

is controllable if it is possible to steer the system from any state x_0 to any state x_f in finite time.

The system is controllable if and only if any of the following, equivalent, conditions hold:

- The matrix $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ has full rank n
- The matrix $\begin{bmatrix} \lambda I A & B \end{bmatrix}$ has rank n for all $\lambda \in \mathbf{C}$

Note. A weaker condition is *stabilizability* which requires that any uncontrollable modes are strictly stable.