Криптография

Лекция 10. Мобильная связь.

Дмитрий Яхонтов

"Кочерга", 2019

Поколения сотовой связи

1G	2G	2.5G	3G	4G	5G
1980-е аналоговые	1991 19.5 кбит/с	2000 400 кбит/с	2001 10 Мбит/с	2009 100 Мбит/с	??? 1 Гбит/с
AMPS NMT TACS	GSM CDMA-1	HSCSD GPRS EDGE	UMTS WCDMA HSPA	LTE WiMAX	

Структура сети GSM

Идентификация абонента

IMEI (International Mobile Equipment Identity) — международный идентификатор мобильного оборудования. Уникальный номер мобильного устройства.

MSISDN (Mobile Subscriber Integrated Services Digital Number) — телефонный номер вида 7-916-1234567. Ассоциирован с IMSI.

IMSI (International Mobile Subscriber Identity) — международный идентификатор мобильного абонента. Включает в себя код страны, код мобильной сети и собственно ID пользователя. Хранится на SIM. Передается при первой регистрации в сети.

TMSI (Temporary Mobile Subscriber Identity) — временный идентификатор мобильного абонента. Назначается случайно после успешной аутентификации абонента. Действует в пределах зоны обслуживания данного VLR.

Аутентификация и шифрование в GSM

Алгоритмы А3 и А8 (СОМР128)

Функции АЗ и А8 одновременно выполняет один алгоритм. Старшие 32 бита результата используются как SRES, младшие 64 бита — как Кс.

COMP128 v1 — хеш-функция разрядностью 128 бит, 8 раундов.

COMP128 v2 COMP128 v3 — усиленные версии.

COMP128 v4 (Milenage) — основан на алгоритме AES

Уязвимости COMP128 v1

- Недостаточный лавинный эффект
- Наличие коллизий
- Уязвимость к дифференциальному криптоанализу
- 1998 г, вскрытие Кі за примерно 150 000 запросов к SIM (8 часов)
- 2002 г, атака с использованием побочного канала (анализ потребляемого тока SIM), вскрытие Кі за 250–1000 запросов (секунды)

Алгоритм А5/1

Три сдвиговых регистра с длинами 19, 22 и 23.

Каждый регистр (биты 8, 10 и 10) управляет тактированием двух остальных регистров

Инициализация: ХОК младшего бита каждого регистра с битом ключа (64 такта), затем аналогично с номером кадра (22 такта)

Алгоритм А5/2 (ослабленная версия)

Добавлен четвертый регистр для управления тактированием

Изменена формула подсчета выходного значения

Изменена процедура инициализации

Уязвимости А5/1

- Малая длина ключа 64 бита
- 10 бит ключа принудительно занулены
- Наличие слабых ключей, дающих малую длину гаммы
- Передача нулевых кадров в начале сеанса связи (возможна атака по открытому тексту)
- 1997 г, атака по 64 битам гаммы, сложность 2⁴⁰ (десятки минут часы)
- 1999 г, атака по 64 битам гаммы, сложность 2¹⁷ (секунды), 2 ТБ памяти
- 2002 г, корреляционная атака по 2000 кадрам, без предвычислений
- 2008 г, первая практическая демонстрация атаки

Алгоритм A5/3 (KASUMI)

Аутентификация в 3G-сетях

Шифрование в 3G-сетях

Поддельные базовые станции

На основе телефонов Motorola C123

Ha основе SDR (Software Defined Radio) bladeRF

Ссылки

- Обратная связь:
 - android.ruberoid@gmail.com
 - @androidruberoid
- Анонсы:
 - facebook.com/kocherga.club
 - w vk.com/kocherga club
 - w vk.com/kocherga_prog
- Материалы лекций:
 - github.com/notOcelot/Kocherga_crypto
- Видео:
 - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

