Contrôle 4: Analyse 2

Cours de mathématiques spéciales (CMS)

16 Juin 2017 Semestre de printemps ID: -999

(écrire lisiblement s.v.p)	
Nom:	
Prénom:	
Groupe:	

Question	Pts max.	Pts
1	5	
2	5	
3	5	
4	5	
Total	20	

Note (barème sur 20 points) :

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues **agrafées**.

Formulaire

- $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n + o(x^n).$
- $\cos(x) = 1 \frac{1}{2!}x^2 + \ldots + \frac{(-1)^n}{(2n)!}x^{2n} + o(x^{2n+1}).$
- $\cosh(x) = 1 + \frac{1}{2!}x^2 + \ldots + \frac{1}{(2n)!}x^{2n} + o(x^{2n+1}).$

Les questions

Soient les polynômes $P,Q\in\mathbb{C}[Z]$ donnés par

$$P(Z) = 2Z^4 - 2Z^3 - 2Z^2 - 2Z - 4$$

$$Q(Z) = 3Z^3 - 6(1+i)Z^2 + (12i-3)Z + 6.$$

- (a) (4 points) Trouvez le PGCD de P(Z) et de Q(Z).
- (b) (1 point) Cherchez les racines de P(Z) et de Q(Z).

Réponse à la question 1:

laisser la marge vide

Question 2 Points obtenus: (laisser vide)

(a) (4 points) Calculer les trois premiers termes **non nuls** du développement limité autour de $x_0=0$ de

$$f(x) = \frac{1}{\sqrt{2}} \sqrt{\sqrt[3]{\cosh^2(x)} + \sqrt{\cos^3(x)}}.$$

(b) (1 point) Calculez

$$\lim_{x \to 0} \frac{f(x) - 1}{x^2}.$$

R'eponse à la question 2:

laisser la marge vide

ID: -999

Analyse 216 Juin 2017

Question 3
ID: -999

Question 3 (à 5 points)

Points obtenus: (laisser vide)

Trouvez le polynôme $P(X) \in \mathbb{R}[X]$ de quatrième degré tel que

- 7 + 2i est une racine complexe de P(X).
- La division de P(X) par X-6 a un reste de 1.
- P'(7) = 0.
- P''(7) = 0.

Que vaut P''''(7)?

Réponse à la question 3:

laisser la marge vide

ID: -999

Question 4 Points obtenus: (laisser vide)

Etablissez pour z = x + iy les relations suivantes :

- (a) (2 points) $|\sin(z)|^2 = \frac{1}{2}(\cosh 2y \cos 2x)$
- (b) (2 points) $|\cos(z)|^2 = \frac{1}{2}(\cosh 2y + \cos 2x)$
- (c) (1 point) Est-ce que

$$f: \mathbb{C} \to \mathbb{C},$$

 $x + iy \mapsto f(x + iy) = \sinh(x)$

est holomorphe (complexe dérivable)?

Réponse à la question 4:

laisser la marge vide

ID: -999

