SEQUENCE LISTING <110> Jørgensen, Steen Troels Rasmussen, Michael Dolberg Andersen, Jens Tønne Olsen, Carsten <120> Multiple insertion of genes <130> 10022.204-US <160> 50 <170> PatentIn version 3.1 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1 30 gactaagctt ctgcatagtg/agagaagacg <210> 2 67 <211> <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 2 gactgaattc aga#ctgcgg ccgcacgcgt gtcgacagta ctgaaataga ggaaaaaata 60 67 agttttc <210> 3 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Pr/imer <400> 33 gactgaattc cgtatccatt cctgcgatat gag <210> <211> 41 <212> DNA Artificial Sequence <213>

<220> <223> Primer	
<400> 4 gactggatcc agatcttatt acaaccctga tgaatttgtc g	41
<210> 5 <211> 60 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 5 gactggatcc agatctgcta gcatcgatcc gcggctattt ccattgaaag cgattaattg	60
<210> 6 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 6 tatttcccga gattctgtta tcgactcgct c	31
<210> 7 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 7 gttttcggcc gctgtccgtt cgtcttt	27
<210> 8 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 8 gtgtgacgga taaggccgcc gtcattg	27
<210> 9 <211> 28 <212> DNA	

<213>	Artificial Sequence	
<220> <223>	Primer	
<400> ctcttg	9 toto ggagootgca ttttgggg	28
<210> <211> <212> <213>	26	
<220> <223>	Primer	
	10 - attc ttcgaagtcg cattgg	26
<210><211><211><212><213>		
<220> <223>	Primer	
<400> ttaaga	11 tott ttttatacaa ataggottaa caataaagta aatoo	45
<210> <211> <212> <213>	3342 DNA	
<220> <221> <222> <223>	(1303)(2469)	
<220> <221> <222> <223>	$(268\overline{5})(2685)$	
<400> gcgtac	12 cgtt aaagtcgaac agcggtttct tcctttttac atccatggat taaaaagggg	60
ttgaaa	aaag gtgagaaaaa gctttgtttt gcttttaacg gggctgcatg taatccttat	120
gctttc	tgcc tgcggccaaa aatcgcaaga agatgttgtg acggggctcg acaagaaggc	180
222772	atac acqtectata aqqcaaaaqc qaaaatqacc attqaaacqq qqaatqaccc	240

gcaggagtac	aacataaa	aa toto	acataa		acct	tct	cttt	accac	aa t	ctat	ttgga	300
												360
aaacccgaaa												
gactccgtcg												420
ggtatactta	ttcgaatc	gc tcgt	aaagga	a tgt	caaa	aat	gatg	gggaa	ag c	ttct	ttttc	480
cgcaaaggat	tcaaaata	ca tttt	tgaaac	gaa	aacg	aat	tato	agcat	ta a	tcaç	atgct	540
gccgactcag	gaaatcgt	tt tcca	taaaaa	a gad	catg	gct	cctt	catc	gg t	taaa	ıgtgat	600
ggataccgac	cgcaaacc	ga tggt	aaaggt	t tga	gttt	aca	agct	ttgaa	at t	cgat	aagcc	660
gctcgataaa	gactcttt	tg atga	aaagaa	a aaa	atatg	acg	ctgt	ctcaa	aa t	tgac	gtagc	720
gacaagcgct	gacgtgtc	ag acto	tttcgc	tgt	caaa	acg	ccgc	tcgat	tg t	gcct	caggg	780
cgtgaaaaag	cttgaaga	ga aaga	gatggo	c gad	ctgaa	gac	ggca	aacg	ga t	cgto	atcac	840
atatggcggt	gaaaaato	ct ttac	attgat	t tca	aggaa	aaa	gccc	gcgt	cg c	caaa	acatc	900
cacttccgta	tccatgaa	cg gaga	gcccgt	t tga	accto	ggc	ttca	cggt	cg g	gcgca	ctgac	960
ggataaatcg	ttgtcatg	ıga cata	tgacg	g agt	cgat	tac	ttta	tctca	at d	cagaa	igatct	1020
ttctcaagat	gaacttct	ga tggt	tgcaaa	a aaq	gcato	ıcag	ggad	agtc	tt d	cgaaa	tagac	1080
tgtgccgtat	ccggcago	ct gttt	tccgc	c cg	gaago	gga	aago	aggc	tt t	ttta	tattt	1140
gcgtcgcaag	cgtatgat	tt cgad	agctt	t tco	cgtaa	aat	gtat	accg	tg d	ccago	caattt	1200
ttcttttgtt	cagggct	gat gate	ccgtg	c aaa	aattt	ccc	tttc	ctccga	aa d	ctttt	tagta	1260
tgatgggaag	gacgagto	jaa acaa	ggaaca	a gga	aagto	gtca	tg a	1et S	gc t er I	ta a Leu I	aaa Lys	1314
cca ttc ta Pro Phe Ty 5	t aga aaq r Arg Lys	aca to Thr Ti	g gcc p Ala	gaa Glu	atc Ile	gat Asp 15	tta Leu	acg (gct Ala	tta Leu	aaa Lys 20	1362
gaa aac gt Glu Asn Va	c cgc aat l Arg Ası 25	atg aan Met Ly	ıg cgg ⁄s Arg	cac His	atc Ile 30	ggc Gly	gag Glu	cat (gtc Val	cgc Arg 35	ctg Leu	1410
atg gcc gt Met Ala Va	c gtt aaa 1 Val Lys 40	a gcg aa s Ala As	nt gcc sn Ala	tac Tyr 45	gga Gly	cac His	ggg Gly	Asp .	gca Ala 50	cag Gln	gta Val	1458
gcg aag gc Ala Lys Al 55	g gct ct a Ala Le	gca ga 1 Ala Gi	a ggg u Gly 60	gcg Ala	tcc Ser	att Ile	ctt Leu	gct Ala 65	gtg Val	gct Ala	tta Leu	1506
ttg gat ga Leu Asp Gl 70	a gcg cti u Ala Lei	t tog c i Ser Le 7	eu Arg	gcg Ala	cag Gln	ggg Gly	att Ile 80	gaa Glu	gaa Glu	ccg Pro	att Ile	1554

						ccg Pro										1602
						ggc Gly										1650
						gcc Ala										1698
						cgc Arg										1746
						acc Thr 155										1794
						gcc Ala										1842
						cgc Arg										1890
						cat His										1938
						aat Asn										1986
						gaa Glu 235										2034
						cat His										2082
						agc Ser										2130
						gtc Val										2178
						gaa Glu										2226
ata	gca	ggg	aga	atc	tgc	atg	gac	cag	ttc	atg	att	tcc	ctt	gcc	gaa	2274

Ile Ala Gly Arg Ile Cys Met Asp Gln Phe Met Ile Ser Leu Ala Glu 310 315 320	
gaa tac cct gtc ggc aca aag gtt acc ttg atc gga aag caa aaa gac Glu Tyr Pro Val Gly Thr Lys Val Thr Leu Ile Gly Lys Gln Lys Asp 325 330 335 340	2322
gaa tgg atc tca gtc gac gaa atc gcc caa aat ttg cag acg atc aat Glu Trp Ile Ser Val Asp Glu Ile Ala Gln Asn Leu Gln Thr Ile Asn 345 350 355	2370
tat gaa att acc tgt atg ata agt tca agg gtg ccc cgt atg ttt ttg Tyr Glu Ile Thr Cys Met Ile Ser Ser Arg Val Pro Arg Met Phe Leu 360 365 370	2418
gaa aat ggg agt ata atg gaa ata agg aat ccg atc ttg cct gat caa Glu Asn Gly Ser Ile Met Glu Ile Arg Asn Pro Ile Leu Pro Asp Gln 375 380 385	2466
tcc tgaaaattga tgaattagcg gaaaaacaac tttgcttgcg aaaagaataa Ser	2519
tgatatgatt atgaatggaa tggatagagt gttgtatccg taagtttggt ggaggtgtat	2579
gtttttgtct gaatccagcg caacaactga aatattgatt cgcttgccag aagctttagt	2639
atcagaactg gatggtgtcg tcatgcgaga taaccgggag cagganatga actgatttta	2699
ccaagccaca aaaatgtagg aacgcgaacg caaaaaatcg acaaattcgg ggaatcgatg	2759
agaageggtt atatggagat ggccaagate caatttgaae atetettetg aggeteaatt	2819
tgcagagtat gaggctgaaa acacagtaga gcgcttacta agcggatgat aatcatttga	2879
ttgttaaacg cggcgatgtt tattttgctg acctatctcc tgttgttggc tcagaacaag	2939
gcggggtgcg cccggtttta gtgattcaaa acaacatcgg caatcgcttc agcccaactg	2999
ctattgttgc agccataaca gcccaaatac agaaagcaaa attacctacc cacgtcgaaa	3059
ttgatgcgaa acgctacggt tttgaaagag actccgttat attgctcgaa caaattcgga	3119
cgattgacaa gcaaagatta acggacaaaa tcacccatct cgatgatgaa atgatggaaa	3179
aggtcaacga agccttacaa atcagtttgg cactcattga tttttaatat tgatgaaagt	3239
tgctcgaggc gaaagagcaa cttttttgt gttcaaaaat aacaatacga tataatggta	3299
actgttagtc ctaaaaatgt tagccagatg tagtcagggg gat	3342

<220>

<210> 13 <211> 389 <212> PRT

<213> Bacillus licheniformis

<221> misc feature

 $\langle 222 \rangle$ $(268\overline{5})...(2685)$

<223> n denotes an undetermined nucleotide

<400> 13

Met Ser Leu Lys Pro Phe Tyr Arg Lys Thr Trp Ala Glu Ile Asp Leu 1 5 10 15

Thr Ala Leu Lys Glu Asn Val Arg Asn Met Lys Arg His Ile Gly Glu 20 25 30

His Val Arg Leu Met Ala Val Val Lys Ala Asn Ala Tyr Gly His Gly 35 40 45

Asp Ala Gln Val Ala Lys Ala Ala Leu Ala Glu Gly Ala Ser Ile Leu 50 55 60

Ala Val Ala Leu Leu Asp Glu Ala Leu Ser Leu Arg Ala Gln Gly Ile 65 70 75 80

Glu Glu Pro Ile Leu Val Leu Gly Ala Val Pro Thr Glu Tyr Ala Ser 85 90 95

Ile Ala Ala Glu Lys Arg Ile Ile Val Thr Gly Tyr Ser Val Gly Trp \$100\$ \$105\$ \$110

Leu Lys Asp Val Leu Gly Phe Leu Asn Glu Ala Glu Ala Pro Leu Glu 115 120 125

Tyr His Leu Lys Ile Asp Thr Gly Met Gly Arg Leu Gly Cys Lys Thr 130 135 140

Glu Glu Glu Ile Lys Glu Met Met Glu Met Thr Glu Ser Asn Asp Lys 145 150 155 160

Leu Asn Cys Thr Gly Val Phe Thr His Phe Ala Thr Ala Asp Glu Lys 165 170 175

Asp Thr Asp Tyr Phe Asn Met His Leu Asp Arg Phe Lys Glu Leu Ile 180 185 190

Ser Pro Phe Pro Leu Asp Arg Leu Met Val His Ser Ser Asn Ser Ala 195 200 205 Ala Gly Leu Arg Phe Arg Glu Gln Leu Phe Asn Ala Val Arg Phe Gly 210 220

Ile Gly Met Tyr Gly Leu Ala Pro Ser Thr Glu Ile Lys Asp Glu Leu 225 230 235 240

Val Lys Lys Ile Lys Lys Gly Glu Ser Val Ser Tyr Gly Ala Thr Tyr 260 265 270

Thr Ala Gln Arg Asp Glu Trp Ile Gly Thr Val Pro Val Gly Tyr Ala 275 280 285

Asp Gly Trp Leu Arg Arg Leu Ala Gly Thr Glu Val Leu Ile Asp Gly 290 295 300

Lys Arg Gln Lys Ile Ala Gly Arg Ile Cys Met Asp Gln Phe Met Ile 305 310 315 320

Ser Leu Ala Glu Glu Tyr Pro Val Gly Thr Lys Val Thr Leu Ile Gly 325 330 335

Lys Gln Lys Asp Glu Trp Ile Ser Val Asp Glu Ile Ala Gln Asn Leu 340 345 350

Gln Thr Ile Asn Tyr Glu Ile Thr Cys Met Ile Ser Ser Arg Val Pro 355 360 365

Arg Met Phe Leu Glu Asn Gly Ser Ile Met Glu Ile Arg Asn Pro Ile 370 380

Leu Pro Asp Gln Ser 385

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 14

gatgaacttc tgatggttgc

Artificial Sequence	
Primer	
15	
	26
accos octgactaca cocygo	
16	
Artificial Sequence	
Primer	
	20
ggccg cgagactgtg acggatgaat tgaaaaagc	39
17	
32	
DNA	
Artificial Sequence	
Primer	
17	
attcg tgaaatcagc tggactaaaa gg	32
18	
32	
DNA	
Artificial Sequence	
Primer	
18	
atoco goaagcaaag ttgtttttoo go	32
19	
30	
DNA	
Artificial Sequence	•
Primer	
a a	26 DNA Artificial Sequence Primer 15 tccc cctgactaca tctggc 16 39 DNA Artificial Sequence Primer 16 gccg cgagactgtg acggatgaat tgaaaaagc 17 32 DNA Artificial Sequence Primer 17 ttcg tgaaatcagc tggactaaaa gg 18 32 DNA Artificial Sequence Primer 18 tccc gcaagcaaag ttgtttttcc gc 19 30 DNA Artificial Sequence

	<400>	19	20
	aaaggta	accg aaagacatgg gccgaaatcg	30
	<210>	20	
	<211>	32	
	<212>		
		Artificial Sequence	
	(213)	Michigan Soque	
	<220>		
	<223>	Primer	
	<400>	20	
		accg gtaatgactc tctagcttga gg	32
	, ,		
	<210>	21	
	<211>	33	
]	<212>	DNA	
D	<213>	Artificial Sequence	
٥			
	<220>		
₩ Fi	<223>	Primer	
			
J	<400>	21	
=	caaatc	gatc atcaccgaaa cgcggcaggc agc	33
d			
3	<210>	22	
ā	<211>	31	
₩.	<212>		
*	<213>	Artificial Sequence	
1	<220>		
å	<223>	Primer	
	<400>	22	31
	attaag	cttg atatgattat gaatggaatg g	ŞΙ
	4010s		
	<210>	23	
	<211>	30	
	<212>	DNA	
	<213>	Artificial Sequence	
	40005		
	<220>	Duiman	
	<223>	Primer	
	<400>	23	
		agca tececetgae tacatetgge	30
	aaayut	ayoa tooocotyac tacatotyyo	
	<210>	24	
	<211>		
	<211>		
		Artificial Sequence	
	1213/	incinional podacioo	
	<220>		
	\V		

<223> I	Prim	er					
	24 gtt	aaagtcgaac	agcg				24
<211> 3 <212> 1	25 30 DNA Arti	ficial Sequ	ence				
<220> <223>	Prim	ner					
	25 gca	tccccctgac	tacatctggc				30
<211> <212> I	26 5761 DNA Baci	llus licher	niformis				
	26 ccg	ggcgttttgt	cggcaacgtc	tgtatatttc	agccttgaaa	ggcccttgat	60
tccttca	tgg	atgatcgctt	tcataaaaaa	attcccccca	ttcgagttgg	ttgtgttaaa	120
ttatgga	cat	gaatgaaggt	aaatgtaaaa	tgatttgccc	ggggccgctt	agaggccttc	180
tgtttta [.]	taa	aggattgcaa	tgaggcggaa	attccattag	tgtaatacag	aagcaagcta	240
gcaagtg	aag	gagatggaac	atgagttttc	acgatcaaaa	tattttacct	gcggtacgca	300
atatgaa	gca	gttcgataca	ttcctggaca	gcccttttc	atacggggtg	ctgcttgaca	360
tccatct	tgg	acagctggga	ggcgtgatca	gcgcggcaag	atcccatggg	aaaaaaatgt	420
ttgttca	cgt	cgatctgatc	caaggaatta	agcatgatga	atacggtgcg	gaattcattt	480
gccagga	aat	gaaaccggcg	ggcattcttt	ctacgagatc	aagcgttatc	gccaaagcaa	540
agcagaa	gaa	agtgtatgcg	atccagcgca	tgtttttaat	agacacaagc	gccatgaaga	600
agagcat	tga	attggtgaaa	aagcacagac	ccgactatat	agaagtgctt	cccggagtag	660
tgccgga	att	gatcagggaa	gtcaaagaaa	taaccggcat	tccgatcttt	gcgggcgggt	720
ttatccg	tac	cgaaaaagac	gtcgagcagg	cgcttgcagc	aggggcgtcc	gcagtcacca	780
cctcaga	cac	tgatttatgg	aaaaaatact	ggaactaaaa	atttaaaatg	tgaaaaatta	840
ttgacaa	cgc	tttcactata	cgatacgatc	ttactaagtt	aatacattgt	gacggagacc	900
cggagac	cac	agcagttctt	tactcagtat	gatgtaaaga	aagtttgctg	tgtttttta	960
taatatt	++>	ascsestaa	agaaggtgaa	cttatggcgt	tcatctatta	gaataatact	1020

tcataataga ttttaggagg gatagccttg acagcatttt ggggggaagt tatcggaacg 1080 atgctgctca tcgtctttgg agctggagtt tgtgcaggag ttaatttgaa aaaatcgctg 1140 tcccatcaat ccggatggat tgtgatcgtc ttcggctggg ggcttggcgt ggccatggcg 1200 gtatatgccg tcggcggcat cagcggagcg catttaaatc cggccgttac attggggctg 1260 gcatttgtcg gagattttcc ttgggaagaa gtgccttcat atattttggg acagatgatc 1320 ggcgcatttt taggagcggt gctcgttttt cttcactact tgccgcactg gaaagaaacc 1380 gaggatcaag gcgcgaagct tggagtattt tcgacaggtc cggcgattcc aaatacattt 1440 1500 gcaaacctgt tcagtgaaac attggggact tttattctcg ttctcggact tttaacgatc 1560 ggtgcaaaca agtttactga cggactgaat cctcttgttg tcggatttct gatcgtggcg 1620 atcqqtatct cqctcqqcqq aacaacaggc tatqcqatta accctqcccq cqatctqqqq 1680 ccqaqaattq cccattttqt ccttccqatt gcaggcaaag ggagttcaaa ctggaagtac gcgtggatcc ctgttttagg accggcgctt ggcggttcat ttgcaggcgt tttttacaac 1740 1800 gccgtattca aagggcatat cacaaacaca ttttggattg taagcgttat actagttgtg 1860 atattgttag gtttctatat tcatatgaaa aaacaagcag ttgatcaatc ggtcaacatt 1920 taaaaaaaag caatcttaac agacatataa gggggagttt caaaatggaa aagtacattt tgtctcttga tcaaggcacc acaagcacaa gggcgattgt tttcaacaaa gcaggcgaaa 1980 2040 tcgtccatat tgcgcaaaag gaattccagc aatattttcc aaaccccggc tgggttgaac 2100 acaatgcaaa cgaaatctgg ggctctgttc tgtcggtgat cgcttcagcg ctttcagaat 2160 cggggatcga agccggacaa attgccggaa tcgggatcac aaaccagcgg gaaacgaccg 2220 tggtttggga taaacatacc ggcaaaccgg tctacaacgc gattgtgtgg cagtcccgcc 2280 aatcggctga gatatgccag gaattaaaag agaaaggcta tgaagagacg atcagagaaa 2340 aaacagggct tttaatcgat ccttattttt caggcacgaa agtgaaatgg atcctggatc 2400 atgtggaagg ggcaagggag aaagccgaaa acggcgacct tctcttcggt acgatcgatt 2460 cttggctgat ctggaaaatg tccggcggaa aagcgcatgt gacagattat tcaaacgcct 2520 caaqaacatt gatgttcaac atctatgacc taaaatggga tgatgaactt ctcgatattc 2580 tcggcgtgcc gaaatcgatg gttccggaag tcaagccttc atcgcatgta tacgctgaaa 2640 cggtcgatta tcatttcttc ggcaaaaaca ttccgattgc aggtgcagcc ggcgaccagc aggcagcatt gttcgggcag gcttgctttg aagaaggaat ggttaagaac acgtatggaa 2700 2760 caggetgett tatgetgatg aacaceggeg agaaagegat taaateagag caeggeetge

2820 tgacgacaat cgcttggggc atcgacggaa aggtggaata tgcgctggaa ggcagcgtct tcgtcgcggg ttccgctatt caatggctgc gtgatgggct gagaatgttt aaagacgcca 2880 aagaaagtga aaaatacgct gtaagagcag aatctgccga tggtgtttat gtggtccctg 2940 3000 catttgtagg tttaggcacg ccttattggg acagcgatgt ccgcggcgct gtattcggac tgacccgggg tacgacgaaa gagcatttta tcagagcaac gcttgaagcg cttgcctatc 3060 3120 aaacgaaaga cgtgctggac gcaatgaagg aagactccgg gatcccggtt aaaacgctga 3180 gagtcgacgg cggagctgtc aaaaacaact tcctgatgga ttttcagggc gacattttag 3240 atgtccctgt agaacgtcct gaaatcaatg aaacaacagc gcttggttca gcctatttag 3300 cgggccttgc tgtcggcttc tggagcgatc gttccgagat caaagaccag tggcagcttg 3360 acaaacgttt tgaaccgaaa atggaagaaa aagagcgtga gagcctgtac aacgggtgga 3420 agaaagctgt aaatgcagct agggctttta aataagctgc atgtatgtta caatctaatt aagttaatag aaacggttgg agaagaggag agaccgcaga caccaaagca gtatcagcgc 3480 3540 tttggatgtt tgtggtctct ttttctattt tttaccgtga caacaaggga ggacatgaaa 3600 catggaatca ttattttcaa gccgtaaacg ggacgacatt ttacagaata tgacgaagca gaagtatgac gtgtttatta tcggcggagg tattactggg gctgggacgg cattggatgc 3660 3720 cqcatcqcqc ggaatgaaaa cggcgctttg cgaaatgcag gactttgcag ccggaacgtc aagccgttcc acgaaacttg tacacggcgg gcttcgctat ttaaagcaat ttgaagtgaa 3780 3840 aatggtagcc gaggtcggca aagagcgggc gatcgtctat gaaaacgggc cgcacgttac 3900 aacgcccgaa tggatgctgc ttccgatgca taagggaggg actttcggca aattcagcac 3960 ttcaatcgga ctgagggtgt acgacttttt ggcaggcgtc aaaaaagctg agcggaggag 4020 catgctgact gccgaagaaa cgcttcaaaa agagccgctc gtgaaaaaga acggcctgaa 4080 gggcggcggc tattatgtcg aataccggac ggatgatgcc agattgacga tcgaagtcat 4140 gaaagaagcc gttaaattcg gagccgaggc cgtcaattat gcaaaagtaa gcgattttat 4200 atatqaaaac ggcaaggtca ccggcgtggt cattgaagac gtcttcacga aaaaaacgta 4260 ccgcgtctac gcgaaaaaaa ttgtcaatgc cgcggggccg tgggtcgacc gtctgcggga aaaagaccat tcaaaagaag gcaaacacct tcagcataca aaaggcgtgc atcttgtttt 4320 4380 tgatcaatcg gtctttcctt taaaacaagc cgtttatttt gatacgcctg acggccgcat ggtgttcgcc attccgagag acggaaaggc atatgtcggc acaacagaca ccgtctacaa 4440 cgagaatttg gaacaccctc gaatgacgac agcagacagg gattatgtca tcaatgcaat 4500

caactatatg	ttccctgaac	ttggaatcaa	agccgaagat	gtcgaatcaa	gctgggctgg	4560
cctcagaccg	ctgattcatg	aagaaggaaa	agacccgtcc	gagatttccc	gaaaagatga	4620
gatctggact	tctgaatccg	gactgatcac	gatcgccggc	ggaaagctga	caggctacag	4680
aaaaatggct	gagcatatcg	tcgatcttgt	cagagaccga	ttaaaagaag	agggcgacag	4740
agacttcggg	ccttgcagaa	caaaaacgat	gccgatttca	ggcggccata	tcggcggctc	4800
caaaaatctg	gaggctttta	ttcaagcgaa	agcagccgaa	gggattgagg	ccggactgtc	4860
cgaagagacg	gccaaacaaa	tcgccgcacg	atacggttcg	aacgcagacc	gcctgtttga	4920
tcgtattcca	tcgctgaaag	atgaagcagc	aaaacgccgc	atccctgtcc	atgtactagc	4980
agaaatggat	tacgggatcg	aggaagaaat	ggcagccgtc	ccggcagact	tcttcgtccg	5040
cagaaccggt	gcgctgttct	ttgacatcaa	ttgggtccgc	acttacaaag	agagccttac	5100
ggactacatg	agcgagaagc	tgaactggga	tggcgaaacg	aaggcccggc	atgtcaaggc	5160
attggaagga	ctactacacg	atgctgttgt	cccgctggaa	agcaaatgat	ttattaggtc	5220
aaataacctt	ggtgaatttt	cgttaataat	caatcgaatg	gcccggcgtg	aggctgtctt	5280
gaacaggcag	cctcattttt	ttcatttggc	atgctaaatt	tggacaaagc	ggcggtttgt	5340
cgatatgata	aaagaaaagc	tgcaattact	tagctagaac	attggaggta	atcatgagct	5400
ggagaacgag	ctatgaacgc	tggagaaaca	aagaaaactt	agattccgaa	ttaaaagcgc	5460
ttcttttgga	agcggaagga	aatgaaaaag	aactagagga	ttgcttttat	aaaaaacttg	5520
agtttggtac	agccggtatg	cgcggtgaga	tcggaccggg	cccgaaccgc	atgaacgttt	5580
atacggttcg	caaagcatcg	gcgggccttg	ccgcatacat	aggagcgaac	ggcggcgaag	5640
caaaaaagcg	cggcgttgtg	atcgcgtacg	attcccgcca	caaatcgcct	gaatttgcaa	5700
tggaagctgc	taagacgctc	gcagaaaacg	gcgttcaaac	gtacgtgttt	gagcgtaact	5760
g						5761

```
<210> 27
<211> 34
<212> DNA
<213> Artificial Sequence
```

<220> <223> Primer

<400> 27
gactgaattc gcaatttgaa gtgaaaatgg tagc

<210> 28

	33 DNA Artificial Sequence	
<220> <223>	Primer	
<400> gactgga	28 atcc agatctcatc ttttcgggaa atc	33
	29 56 DNA Artificial Sequence	
<220> <223>	Primer	
<400> gactgaa	29 attc agatctgcgg ccgcacgcgt agtactcccg gcgtgaggct gtcttg	56
<212>	30 32 DNA Artificial Sequence	
<220> <223>	Primer	
<400> gactaa	30 gctt cagttacgct caaacacgta cg	32
<212>	31 47 DNA Artificial Sequence	
<220> <223>	Primer	
	31 tttc ccgaaaagat gaaatttgga cttctgaatc cggactg	47
<210><211><211><212><213>	50	
<220> <223>	Primer	
	32	50

<210> <211> <212> <213>	33 31 DNA Artificial Sequence	
<220> <223>	Primer	
<400> gactaaq	33 gctt gtgaaggaga tggaacatga g	31
<210> <211> <212> <213>		
<220> <223>	Primer	
<400> gactgga	34 atcc agatctgcgg ccgcacgcgt cgacagtact atttttagtt ccagtatttt	60
ttcc		64
<210><211><212><212><213>		
<220> <223>	Primer	
<400> gagctc	35 taga tetteggegg cateagegga ge	32
<210><211><211><212><213>	36 28 DNA Artificial Sequence	
<220> <223>	Primer	
<400> gactgaa	36 attc cttttgcgca atatggac	28
<210> <211> <212> <213>	37 58 DNA Artificial Sequence	
<220> <223>	Primer	

<400> 37 gagctctaga	tctgctagca	tcgatccgcg	gttaaaatgt	gaaaaattat	tgacaacg	58
<210> 38 <211> 150 <212> DNA <213> Bac	0 illus lichen	niformis				
<400> 38 atcagcgata	gggctcgcat	cgacagaccg	gatttcatcc	ggccaatggc	gggatgacgg	60
gctggtcatc	aggtcgacat	ccggcgatca	gtttaatgcc	attgaccctg	atctggtcat	120
tgacaaagac	ggaaagccct	ggctctcatt	cggttccttc	tggagcggca	ttaagctgac	180
aaggcttgat	aaaaacacga	tgaaaccgac	gggaagcctg	tattcgatcg	cctcaaggcc	240
gaataacgga	ggagcggttg	aagccccgaa	cattacctac	aaagacggct	actattactt	300
atttgtctcg	tttgacagct	gctgcaaagg	ggtggacagc	acatataaaa	tagcctatgg	360
ccgttcaacg	agcattacgg	gaccctatta	tgataaaagc	ggcaaaaata	tgatgaacgg	420
cggagggacg	atcctggact	ccggcaatga	ccgctggaaa	gggccgggac	atcaggatgt	480
tctgaacaac	tcgatccttg	tcaggcatgc	ttacgacgcg	ctggacaatg	gtgtatcaaa	540
gctgctcatc	aatgacttgt	actgggattc	ccaaggatgg	ccgacttatt	aacagcagat	600
gacgggcggt	ttccgcccgg	tttttttgt	tctgaaatct	gtcaaaaaaa	aataaaaaac	660
ataccggaaa	ttaaattgac	agttttttc	ataatgatat	aatgaagttg	ttcgtacaaa	720
tatgttttt	atgttagttg	tacgtacata	taatcgcgat	acagtttgag	atcaaggtat	780
gatttatgtt	tttttgtaag	cgttttaata	gtttgctatt	ctacacagac	accataaaga	840
cgaggaggag	gaagctattt	gattcaggca	aagacgcatg	tgttttggtt	tgtgacaggc	900
agccagcatt	tatatggcga	agaggcggta	caagaggtag	aagagcattc	caaaatgatc	960
tgcaacggat	taaatgacgg	agatttaagg	tttcaagtcg	agtacaaagc	ggtggccact	1020
tcgctggacg	gcgtcagaaa	actgtttgaa	gaggcgaacc	gggacgatga	gtgcgcaggc	1080
atcatcacct	ggatgcatac	gttttcaccg	gccaaaatgt	ggattcccgg	cctttccgag	1140
ctgaataagc	cgctgctcca	ttttcatacc	cagtttaacc	gggacattcc	gtgggataaa	1200
atcgacatgg	atttcatgaa	tattaatcag	tctgcccacg	gcgaccgcga	atacggtttt	1260
atcggagcga	gattgggcat	tcctcgaaaa	gtaatcgccg	gatattggga	agacagagaa	1320
gtaaagcgct	cgatcgacaa	atggatgagc	gcagcggtcg	catatattga	aagccgccat	1380
atcaaagtcg	cccgatttgg	ggacaacatg	cggaatgtgg	cggtaacaga	aggagataag	1440

	attgaa	gcgc agattcagct tggctggtct gtcgacggat atggaatcgg cgatctcgt	c 1500				
	<210> 39 <211> 32 <212> DNA <213> Artificial Sequence						
	<220> <223>	Primer					
	<400> gactaa	39 gctt catccggcga tcagtttaat gc	32				
olico II I fand tand tand tand tandi	<210><211><211><212><213>	40 65 DNA Artificial Sequence					
	<220> <223>	Primer					
	<400> gactga	40 attc agatctgcgg ccgcacgcgt cgacagtact atttttttt gacagattt	c 60				
2 2 3	agaac		65				
An Lund Hour Sto Lund Start	<210> <211> <212> <213>	41 37 DNA Artificial Sequence					
	<220> <223>	Primer					
	<400> gactgg	41 atcc agatctagtc gagtacaaag cggtggc	37				
	<210><211><211><212><213>	42 31 DNA Artificial Sequence					
	<220> <223>	Primer					
	<400> gactgaa	42 attc gaccagccaa gctgaatctg c	31				
	<210><211><211><212>	4078					

. 188

<400> 43 60 tttccggcgt agcacccgaa gcgaacctat taatcgtcaa ggtgctcggc ggtgaagacg gcagcgggga ttatgaatgg atcatcaacg ggatcaacta cgccgttgag caaaaagccg 120 acattatttc aatgtcgctc ggcggtcctg ccgacgttcc ggagttgaag gaagcggtga 180 caaacqccqt qaaqaqcqqa qtqctcqtcq tctqcqccqc aggaaacqaa gqcqacqqca 240 300 atgaccgtac agaggagtac tcataccctg ctgcatacaa cgaagtcatc gccgtcggat 360 ccgtgtcatt gacgcgtgag tcttccgaat tttcaaatgc gaacaaagaa attgaccttg 420 ttgcacctgg agaagaaatc ctctctacat tgcccgacca tcaatacgga aagctgacgg 480 gaacatcgat ggctacaccg cacgtcagcg gcgcgctcgc tctcatcaag tcagctgaag aagaggegtt taaacggaaa ctgacagaac ccgaactgta tgctcagtta atccgccgca 540 cccttcctct tgattactca aaagcgctga tcggcaacgg attcttatat ttgtcagcgc 600 cggaggtact ggcggaaaaa gccggcgaag caaaacttct ttccctttaa cagtctaaag 660 720 gaggetgeeg acaatgtegg eggeettttt catggeeatg tataaagetg aatettttta 780 attgcaagaa ttcaaaaatt attttgacta aaagatcgcg gcggtatata atctactaaa caatttcatc gccgggaaca tggtaatcta acgaggttag attttaaaag ggaagtttgg 840 900 tgaaaatcca acgcggtccc gccactgtga atgaggaggt tatttcataa aacccactgt 960 ttctatatgg gaaggggaa ataaccgtcg attcatgagc caggagacct gcctgttctg acqcaccata aacctacqqt cqataqqaqq tqttcqaqtt gacqtaacaa tcqctacqtt 1020 1080 tatttctcgt tcgcaacatg ctgttttcag gcattcacct tctcattgtc cgaagtgtga gtgtcttttt ttattgaaca ctaaaaggag gagaccagac atgactaatg taaaaacgag 1140 1200 cagcttgggc tttccaagaa tcggcttgaa cagagaatgg aaaaaatcgc ttgaggctta ttggaaagga aacacggacc gcgagacctt tttgaaagaa atggatgaac aatttttagc 1260 1320 agcgctccag actcagcttg atcagcaaat cgatatcata ccggtttccg actttacaat 1380 gtacgaccat gttcttgaca cggcggtgat gttcaactgg attccagatc gattcaagga 1440 tataaacqat ccqttaqata cttatttcqc aatgqcqaqa gqcacqaaaq atqctqtatc 1500 qaqtqaaatq acaaaatqqt ttaatacaaa ctaccattat attgtgcctg aatatgaaaa 1560 aggtgcacaa taccgcgtga cgagaaacaa accgcttcaa gattaccaaa gagcaaaagc agcattggga acagaaacga agcccgtcat actcggcctt tacactttcg tagcccttgc 1620 aaaaggctat gaacaacagg atattaaaga tatttataac caaatgacac ctctttacat 1680

1740 ccaggttttg aaagagcttg agcaggaagg cgtcaaattg gtgcaaattg acgagcctgc 1800 tcttgtgacg gcttcacctg aagaagcggc tgctgtcaaa gaaatctatc agacgattac agaagaagtc tctgaactga acatccttct gcaaacctac tttgactcgg ttgatgctta 1860 tgaagagctg atatcgtttc ctgtcgcagg aattggtctt gattttgttc atgataaagg 1920 gaaaaacttc gaacacctga aagcgcacgg ttttcctaaa gacaaagtcc ttgccgccgg 1980 2040 cattttagac ggacgcaaca tttggaaagc caatctcgaa gagcgcctcg acctgacgct tgaactgatc cagagagcgg gtgttgacga agtctggatt cagccttcaa acagcctgct 2100 2160 tcatgtccct gtcgcaaaac acccgggcga acatcttgcc gacgatctct tgaacggttt 2220 atctttcgca aaagagaaac ttctggagct tacactgctg aagaacggac ttgtttccgg 2280 aaaagcggcc atccaagcgg aaatcgatga agcgcacgga caccttcaag atctcaaaca gtacggtgca gcgacaaatt cggcctttgc cgaagaaaga ggcaagctga ctgaggaaga 2340 2400 ctttaaacgc ccgacagctt ttgaagaaag gctgcggatt caaaatgact ctctcggact 2460 teceetattg eegacaacaa egateggeag etteeegeag aeggeggatg tgeggagege 2520 gcggcaaaaa tggcggaaaa aagaatggtc cgacgagcag tatgaagcat ttattcagga 2580 agaaacaaag aaatggattg atattcagga agatctcgga cttgacgttc tcgttcacgg 2640 agaattegaa eggacagaca tggttgagta ttteggegaa aageteggag gattegeett 2700 tactaaatac gcctgggttc agtcatacgg ttcccgctgc gtccggccgc cggtcatcta 2760 cggagatgtc gagtttaaag agccgatgac ggtaaaagaa acggtttacg cccaatcctt 2820 gacctcgaag aaagtcaagg gcatgctgac agggcctgtt accattttaa actggtcctt 2880 tgcccgctat gacctgccga gaaaagagat cgccttccaa atcgcctgcg ccctccgcaa 2940 agaggttgaa gcgcttgaaa aagcaggaat tcaaatcatt caggtcgatg aacctgcctt gagagaaggc ctgccgctta aagaacggga ttgggacgag tatctcaaat gggctgcaga 3000 3060 agcgttcaga ctgtccactt catctgtgga agatacgacg caaatccata cgcatatgtg 3120 ctacagcaac tttgaagata tcgtagacgc gatcgaagat cttgacgcag acgtcattac gatcgagcac agcagaagcc acggcggatt tcttgattat ctggaacagc acccttacct 3180 3240 gaaagggctt ggtcttggcg tatatgatat tcacagccct cgcgtccctt ccagcgatga aatgctcacg atcatagaag acgcgctgaa agtctgcccg gctgatcgct tctgggtaaa 3300 3360 ccctgactgc ggtttaaaaa cgagacagcc agaggaaacg atcgcagcgc ttaagaatat 3420 ggttgaagca gccaaacaag caagaggcaa actggctcag actgtttaat ttcacaaaaa

<210> <211> <212> <213>	47 45 DNA Artificial Sec	quence				
<220> <223> Primer						
<400> tttttt	47 stttt ccatcgcact	gggatatcag	ctcttcataa	gcatc		45
<210><211><212><213>		eniformis				
<400>	48 acgtt tecetetege	r caatcggage	ctacacgaca	ccaagctacg	agctgagcct	60
	ataaa atggtgaago					120
	catc ggattaacga					180
	actta tggcctctcc					240
cacgto	ccgtt ccagggggaa	aagtcaggcc	gagcatcgtt	catccgagaa	accgctccag	300
acagco	cgtga agccggcatt	cgaagaggct	tttccccggg	gaaaagcctc	tttttcaata	360
atcgaa	attec ggtetttgag	taccgatgcc	tttgtattca	ttggcagaga	tcgcgactgc	420
ccggag	ggctg cagatgttgt	tctgtcttct	gatcggatag	acgacataca	gcatttcgcg	480
gccgta	acggg tcaatcgttg	acgaatgaag	gaaaacctca	gttcctctcc	gccaaaatct	540
cgtatt	cgcc ggagctgtaa	taatctgccc	ttcataaggc	tcataaattc	tctgttcata	600
atgcgc	cagee ggetgataag	gggcgtatac	atcttcaggt	gcatagccgg	gagcgggggt	660
gtaggg	gataa cgatttggat	acatatgata	acctctttcc	cacttcgttt	tttggttttc	720
atctt	taaga ttatattcag	gtaaatgcct	atttgtatgg	gcgaaaatct	cagcttttcg	780
gctctt	tttt tattgaatgg	acgttgtgta	tgcctatttc	tatcaagcgc	tgttttctgt	840
tattct	ataa tcaatagaat	ggattagttg	tttagggaat	catttccttt	ataaatcaag	900
aaaatt	tgga caaatggtgg	tttagttttt	aaaacgaaat	gttataatac	aacataagaa	960
tegead	ctatc atgaagccgg	aagatgcatc	gggcagcaac	cggagcgccc	cttgcacctt	1020
tgtcga	ataga gaaagaggga	atgacaattg	tttttacacg	gtactagcag	acaaaatgaa	1080
agaggg	gcacc tcgaaatcgg	cggtgtcgat	gttctatcat	tggcagaaag	atacggaaca	1140
cctctt	tatg tatacgatgt	cgcgctgatt	agagagcgcg	cccgaaaatt	ccagaaggca	1200

1260 ttcaaggaag ccggtttaaa agcgcaggta gcgtatgcaa gcaaggcgtt ttcatcggtt gccatgattc agcttgccga acaagagggg ctgtctctgg atgtggtatc gggaggagag 1320 1380 cttttcactg cgatcaaagc agggttccca gctgagcgga ttcattttca cggaaacaat aagagccctg aagaactagc catggcgctg gagcatcaaa tcggctgcat cgtgctcgat 1440 1500 aactttcacg agatcgccat tacagaagat ctttgcaagc gatcaggaca aactgtagac 1560 gttttgctca gaatcactcc gggagttgaa gcgcacacgc acgattatat tacgacgggg caggaagatt ccaaattcgg ttttgatctg cataatggac aggtcgaaca agccatcgaa 1620 1680 caagtccgcc gctcgtctgc gtttaagctc ctcggcgtgc actgccacat cggttcgcaa atttttgata cggcaggatt tgtccttgca gcagacaaga ttttcgagaa gcttgcggaa 1740 1800 tggcgggaga cttactcttt cattccggaa gtgctcaatc ttggcggggg cttcggcatc cgctatacaa aagacgacga gccgcttgca gctgatgttt atgttgaaaa aatcatcgag 1860 gcggtcaaag caaatgccga gcatttcggc tttgacatcc ctgagatttg gatcgaacca 1920 1980 ggccggtctc tcgtcggtga tgcggggact acgctgtaca cgatcggttc tcaaaaagag 2040 gtgccgggca ttcgcaaata tgtagccatc gacggcggca tgagcgataa tatcaggccg 2100 gcgctttatg aggcaaaata tgaagcagcc gtcgccaaca ggatgaacga tgcttgtcat 2160 gataccgcat caatcgcagg aaaatgctgc gaaagcggag atatgctgat ttgggatttg 2220 gaaatccccg aagttcgcga cggagatgtg ctcgccgttt tctgcaccgg tgcgtacggc 2280 tacagcatgg ccaacaacta caaccgcatt ccgcgcccgg ccgtcgtctt tgtcgaggac 2340 ggggaagege agetegteat teagagagag aegtatgagg atategteaa getggatetg 2400 ccgctgaaat cgaaagtcaa acaataaaaa aatggagatt ccctaagagg ggggtctcca 2460 tttttaattc aagcacgaaa aacacttccc ggtgatcggg aggtgttttt tgttaaaaag atcatgacat gcatagaaca gcgaccgggc tagttgtata taatattgtg aatttaacaa 2520 2580 aaaatttaca aaggagatga taaaggcaat gaccagggtg aaaaggatga gatttgctga 2640 tttgttggat ttagaggcgg agtagatgaa accggccaaa gtatccctac tccaccgatt 2700 gctccagtgc ctgaagcaat gtgttgattg taacacagta aatcgtttta cagcaataaa catttttgtg aatattttat tgattttggc tgtgatctca ttcccatatt ctgctgcggc 2760 2820 ccatggcgca acacagtccg gcgatcaata ttcaagcttt gaagaattgg agcggaatga 2880 agatccagct tcttaccgaa ttacggagaa gaacgcaaga gtgccgatgc tcatcatggc 2940 catccatgga ggcgcatcg aacccggaac gagcgaaatc gccaatgaag tgtccaaaaa

ctattccctg	tacttgtttg	aagggctgaa	atcatcaggc	aatacggacc	ttcacattac	3000
aagcacgcgt	tttgacgagc	cagcggcgct	cgcaattact	gcaagccacc	agtatgtcat	3060
gtcgctccac	ggctattaca	gtgaagaccg	cgatattaaa	gtaggcggca	cagaccgcgc	3120
taaaatcaga	atattggttg	atgagctgaa	ccgctcgggg	tttgccgctg	aaatgctggg	3180
gacagatgac	aagtatgccg	gaacccatcc	gaataacatc	gccaacaagt	cgctttccgg	3240
gctgagcatt	cagcttgaaa	tgagcacggg	tttccgcaaa	tctttattcg	accggtttac	3300
actaaaagac	agggcggcga	cgcaaaacga	aacgttttac	cgatttacaa	agctgctgac	3360
agattttatt	catgaaaact	atgaagaaga	cggaggggat	ttcccctctg	caaaaataaa	3420
acaccccctt	caagtgaaaa	aaggaggtgt	ttcggcggtt	gtgttaaccg	ttggactctg	3480
aggtgccgcc	gccggtgaat	acggaaacga	tggcgttcca	cagagacaca	aagaagtcga	3540
tcagtttttg	aagaaagttt	tgtccttctt	cagaatccaa	gaatttcgtg	attttatcct	3600
ttgctttgtc	aagctggtct	ccaacctggt	tccagtcgat	attaatattt	ttcatgttat	3660
taaataaaga	tataagagag	tttttctgat	cttctgtgag	tgtcacgcca	agttcggaag	3720
cagccgaatc	aatcgttttc	tccaattcct	cttttgactc	gggaactccg	tttttcgaga	3780
tttcttcctt	gactttggcc	atcagcgctg	acgcgttttc	actgccgatt	ttctcgccaa	3840
gctctgaagt	ggtgacaagc	tcttcattcg	cgaccttttt	cacatcttcg	gaaattttt	3900
cgcccgaagt	cgtttcatac	gctttcatca	atccggttaa	agcggctgtg	cc	3952

<210> 49 <211> 6837 <212> DNA

<213> Plasmid pMOL1642

<220>

<221> misc_feature <222> (669)..(669)

<223> n denotes an undetermined nucleotide

caaataaata aatattgggt ttttaatgtt aaaaggttgt tttttatgtt aaagtgaaaa 3840 3900 aaacagatgt tgggaggtac agtgatggtt gtagatagaa aagaagagaa aaaagttgct 3960 qttactttaa qacttacaac agaagaaaat gagatattaa atagaatcaa agaaaaatat aatattagca aatcagatgc aaccggtatt ctaataaaaa aatatgcaaa ggaggaatac 4020 qqtqcatttt aaacaaaaaa agatagacag cactggcatg ctgcctatct atgactaaat 4080 tttqttaaqt qtattaqcac cgttattata tcatgaqcga aaatgtaata aaagaaactg 4140 aaaacaagaa aaattcaaga ggacgtaatt ggacatttgt tttatatcca gaatcagcaa 4200 4260 aagccgagtg gttagagtat ttaaaagagt tacacattca atttgtagtg tctccattac atgataggga tactgataca gaaggtagga tgaaaaaaga gcattatcat attctagtga 4320 tgtatgaggg taataaatct tatgaacaga taaaaataat tacagaagaa ttgaatgcga 4380 ctattccgca gattgcagga agtgtgaaag gtcttgtgag atatatgctt cacatggacg 4440 atcctaataa atttaaatat caaaaagaag atatgatagt ttatggcggt gtagatgttg 4500 atqaattatt aaaqaaaaca acaacagata gatataaatt aattaaagaa atgattgagt 4560 ttattgatga acaaggaatc gtagaattta agagtttaat ggattatgca atgaagttta 4620 4680 aatttgatga ttggttcccg cttttatgtg ataactcggc gtatgttatt caagaatata 4740 taaaatcaaa toggtataaa totgacogat agattttgaa tttaggtgto acaagacact 4800 cttttttcgc accagcgaaa actggtttaa gccgactgcg caaaagacat aatcgactct agaggateet tttagteeag etgattteae tttttgeatt etacaaactg cataacteat 4860 4920 atqtaaatcq ctccttttta ggtggcacaa atgtgaggca ttttcgctct ttccggcaac cacttccaag taaagtataa cacactatac tttatattca taaagtgtgt gctctgcgag 4980 gctgtcggca gtgccgacca aaaccataaa acctttaaga cctttcttt ttttacgaga 5040 aaaaagaaac aaaaaaacct gccctctgcc acctcagcaa aggggggttt tgctctcgtg 5100 5160 ctcqtttaaa aatcagcaag ggacaggtag tattttttga gaagatcact caaaaaatct 5220 ccacctttaa acccttqcca atttttattt tqtccqtttt qtctaqctta ccgaaagcca qactcaqcaa qaataaaatt tttattgtct ttcggttttc tagtgtaacg gacaaaacca 5280 5340 ctcaaaataa aaaaqataca aqaqaqqtct ctcqtatctt ttattcaqca atcqcqcccq attqctqaac aqattaataa tgagccgcgg atatcgatgc cttgtcagag agattcctga 5400 agagcggcag gataaggtat ttagaatgat taatgtgctg atcttaattt tattgatctc 5460 atcattcatt gagatttcct ttacggtgta aagaaaaagg atagctgccg atcgtattga 5520

120

cqqtcqqcqq aaatqaaqqc ctgcggcgag tgcgggcctt ctgttttgag gattataatc

