Высшая математика

Лисид Лаконский

October 2022

Содержание

1	Вы	сшая 1	математика - 03.10.2022	3					
	1.1 Предел функции								
	1.2	неопределенностей	3						
		1.2.1	Heoпределенность вида $\frac{0}{0}$	3					
		1.2.2	Неопределенность вида $\frac{\infty}{\infty}$	4					
		1.2.3	Неопределенность вида $(0*\infty)$ или $(\infty-\infty)$	4					
		1.2.4	Hеопределенность вида 1^{∞}	5					
		1.2.5	Неопределенность вида 0^0 или ∞^0	5					
2	Вы	Высшая математика - 14.10.2022							
	2.1	онечно большие и бесконечно малые функции	6						
		2.1.1	Применение бесконечно малых к вычислению пределов	6					
		2.1.2	Таблица эквивалентных бесконечно малых	6					
		2.1.3	Некоторые соображения и примеры	7					
	2.2	r i							
		2.2.1	Свойства производных	7					
		2.2.2	Дифференцируемость функций	8					
		2.2.3	Геометрический смысл производной	8					
		2.2.4	Уравнение касательной и нормали к графику функции	8					
		2.2.5	Производная сложной функции	8					
		2.2.6	Обратная функция и ее производная	9					
3	Вы	Высшая математика - 18.10.2022							
	3.1	Асим	птоты функции	10					
		3.1.1	Вертикальные асимптоты	10					
		3.1.2	Наклонные асимптоты	10					
		3.1.3	Примеры	10					
	3.2	зводные функции	11						
		3.2.1	Свойства производных функции	11					
		3.2.2	Таблица производных	11					
		3.2.3	Гиперболические функции	11					
		3.2.4	Уравнение гиперболы	12					
		3.2.5	Показательно-степенная функция	12					

		3.2.6 Примеры	12		
4	Высшая математика - 26.10.2022				
	4.1	Производная функции, заданной параметрически	13		
		4.1.1 Примеры	13		
	4.2	Производная обратной функции	13		
	4.3	Производная функции, заданной неявно	13		
	4.4	Уравнение касательной и нормали к графику	13		
		4.4.1 Примеры	14		
5	Вы	сшая математика - 28.10.2022	15		
	5.1	Производная неявно заданной функции	15		
		5.1.1 Примеры	15		
	5.2	Производная параметрически заданной функции	15		
		5.2.1 Примеры	15		
	5.3	Метод логарифмического дифференцирования	16		
		5.3.1 Примеры	16		
	5.4	Производные и дифференциалы высших порядков	17		
		5.4.1 Примеры	17		
	5.5	Дифференциалы высших порядков	17		

1 Высшая математика - 03.10.2022

1.1 Предел функции

- 1. Любую константу мы можем вынести за предел
- 2. Предел от суммы двух функций f(x) + g(x) дает в нам результате разложения сумму двух пределов
- 3. Предел от произведения двух функций разлагается на произведение двух пределов
- 4. Предел частного от двух функций $(g(x) \neq 0)$ равен частному двух пределов, если нет неопределенности

1.2 Виды неопределенностей

Основные виды неопределенностей: $\frac{0}{0}$, $\frac{\infty}{\infty}$, $(0*\infty)$, $(\infty-\infty)$, 1^∞ , 0^0 , ∞^0 Раскрывать неопределенности позволяет:

- 1. Упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножения на сопряженные выражения с последующим сокращением и тому подобное)
- 2. Использование замечательных пределов
- 3. Применение правила Лопиталя
- 4. Использование замены бесконечно малого выражения ему эквивалентным

1.2.1 Неопределенность вида $\frac{0}{0}$

Пробуем преобразовать и упростить выражение. Если есть выражение вида $\frac{\sin(kx)}{kx}$ или $\frac{kx}{\sin(kx)}$, то применяем первый замечательный предел. Если не помогает, то используем правило Лопиталя или таблицу эквивалентных бесконечно малых.

Правила раскрытия неопределенности:

- 1. Для того, чтобы определить предел дробно-рациональной функции $(\lim x \to a f(x))$, надо числитель и знаменатель дроби разделить на x-a и перейти к пределу. Если и после этого числитель и знаменатель новой дроби имеют пределы, равные нулю, то надо произвести повторное деление на x-a
- 2. Для того, чтобы определить предел, в котором числитель или знаменатель иррациональны, следует избавиться от иррациональности, умножив и числитель и знаменатель дроби на одно и то же выражение, приводящее к формулам сокращенного умножения. Неопределенность устраняется после сокращения дроби.

В случае, когда под знаком предела стоят тригонометрические функции,

используется первый замечательный предел:
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 Его различные формы: $\lim_{x\to 0} \frac{x}{\sin x} = 1$, $\lim_{x\to 0} \frac{\tan x}{x} = 1$, $\lim_{x\to 0} \frac{x}{\tan x} = 1$

Неопределенность вида $\frac{\infty}{\infty}$

Правила раскрытия неопределенности:

- 1. Чтобы раскрыть неопределенность вида $\frac{\infty}{\infty}$ заданную отношением двух многочленов, надо и числитель и знаменатель почленно разделить на переменную величину в наибольшей степени.
- 2. Для раскрытия неопределенности вида $\frac{\infty}{\infty}$, заданную отношением иррациональных функций, надо и числитель и знаменатель почленно разделить на переменную величину в наибольшей степени с учетом степеней корней.

Если не помогает, то используем правило Лопиталя

$$\lim x \to \infty \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b^{m-1} x^{m-1} + \dots + b_1 x + b_0} = \begin{cases} 0, n < m \\ \frac{a_n}{b_m}, n = m\infty, n > m \end{cases}$$

Пример №1 Найти предел
$$\lim_{x\to\infty}\frac{3x^3-x^2+14}{x^2-4}$$
 $\lim_{x\to\infty}\frac{3x^3-x^2+14}{x^2-4}=\{\frac{\infty}{\infty}\}=\infty$, так как $n=3,\ m=2,\ n>m$

Неопределенность вида $(0*\infty)$ или $(\infty-\infty)$

Преобразуем неопределенность к виду $\frac{0}{0}$ или $\frac{\infty}{\infty}$, затем разбираемся с новой неопределенностью.

Пусть
$$\lim x \to af(x) = 0$$
, $\lim_{x \to a} g(x) = \infty$, тогда

$$\lim x \to af(x)g(x) = \{0*\infty\} = \begin{cases} \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} = \{\frac{0}{0}\} \\ \mathbf{или} \\ \lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}} = \{\frac{\infty}{\infty}\} \end{cases}$$

Неопределенность вида $(\infty - \infty)$, получающаяся в результате алгебраической суммы двух дробей, устраняется или сводится к неопределенности вида $\frac{0}{0}$ путем приведения дроби к общему знаменателю. Пусть $\lim_{x \to a} f(x) = \infty$, $\lim_{x \to a} g(x) = \infty$, тогда

$$\lim_{x \to a} (f(x) - g(x)) = \{ \infty - \infty \} = \lim_{x \to a} \frac{1}{\frac{1}{f(x)}} - \frac{1}{\frac{1}{g(x)}} = \lim_{x \to a} \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)} * \frac{1}{g(x)}} = \{ \frac{0}{0} \}$$

Неопределенность вида $(\infty - \infty)$, получающаяся в результате алгебраической суммы иррациональных выражений, устраняется или сводится к неопределенности вида $\frac{\infty}{\infty}$ путем домножения и деления на одно и то же выражение, приводящее к формулам сокращенного умножения. В случае квадратных корней разность домножается на сопряженное выражение и применяются формулы сокращенного умножения.

1.2.4 Неопределенность вида 1^{∞}

Применяем второй замечательный предел: $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$ Его различные формы: $\lim_{x\to0}(1+x)^{\frac{1}{x}}=e, \lim_{x\to0}\frac{\ln(1+x)}{x}=\{\frac{0}{0}\}=1,$ $\lim_{x\to0}\frac{a^x-1}{x}=\{\frac{0}{0}\}=\ln a, \lim_{x\to0}\frac{e^x-1}{x}=\{\frac{0}{0}\}=1, \lim_{x\to0}\frac{(1+x)^p-1}{x}=\{\frac{0}{0}\}=p$

1.2.5 Неопределенность вида 0^0 или ∞^0

Логарифмируем выражение и используем равенство $\lim_{x\to x_0} \ln(f(x)) = \ln(\lim_{x\to x_0} f(x))$

2 Высшая математика - 14.10.2022

Бесконечно большие и бесконечно малые функции

Функция называется бесконечно малой при $x \to x_0$, если $\lim_{x \to x_0} f(x) = 0$.

Функция называется бесконечно большой при $x \to x_0,$ если $\lim_{x \to x_0} f(x) = \inf.$

Теорема 1. $\alpha+\beta, \alpha-\beta$ - бесконечно малые, если α, β - бесконечно малые

Теорема 2. Произведение бесконечно малой на ограниченую функцию является бесконечно малой

Определение. Если $\alpha(x), \beta(x)$ бесконечно малы при $x \to x_0$, то

 $\exists\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=\mathrm{const}\neq 0\neq \pm\inf,$ то α и β - бесконечно малые одного порядка

Если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$, то α, β - эквивалентные бесконечно малые

Если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, то α - бесконечно малое более высокого порядка малости по сравнению с β .

Если, наоборот, $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = \inf$, то говорят, что β более высокого порядка малости, чем α .

Например, $\alpha = x^3 + 2x^2$, $\beta = 2x + 3x^2$, $\lim_{x \to 0} \frac{x^3 + 2x^2}{3x^2 + 2x} = \lim_{x \to 0} \frac{x^2(x+2)}{x(3x+2)} = \lim_{x \to 0} \frac{x+2}{3x+2}$

 $\exists\lim_{x o x_0} rac{eta(x)}{lpha^k(x)} = C
eq 0
eq \pm \inf$, то $eta, lpha^k$ - бесконечно малые одного порядка.

Например, $\alpha=sin^3x, \beta=x, \lim_{x\to 0}\frac{\sin^3x}{x^3}=\lim(\frac{\sin x}{x})^3=1\neq 0\neq \pm\inf, \sin^3x$ величина такого же порядка малости, как x^3 .

Применение бесконечно малых к вычислению пределов

Если при $x \to x_0$ $f(x) \sim f_1(x), g(x) \sim g_1(x)$, то $\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} \Longrightarrow \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$

$$\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} \implies \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$$

Например, $\lim_{x\to 0} \frac{\sin^3(4x)}{x^2+3x} = \dots$

Допустим, $\lim_{x\to 0} \frac{x^2+3x}{x} = \lim(x+3) = 3.$

Допустим, $\lim_{x\to 0} \frac{x^2+3x}{x^2} = \lim_{x\to 0} \frac{x(x+3)}{x} = \inf.$

Посчитали без толку, теперь продолжим, ... = $\lim_{x\to 0} \frac{(4x)^3}{x(x+3)} = \lim_{x\to 0} \frac{64x^2}{x+3} = 0$.

Таблица эквивалентных бесконечно малых

 $\sin x \sim x, \tan x \sim x, \arcsin x \sim x, \arctan x \sim x, \ln(x+1) \sim x, e^x - 1 \sim x, a^x - 1 \sim x \ln a, \sqrt[n]{1+x} - 1 \sim \frac{x}{n}, 1 - \cos x \sim \frac{x^2}{2}, \cos x \ 1 - \frac{x^2}{2}$

Это все подходит к умножению или делению, но никак не к сложению или вычитанию.

2.1.3 Некоторые соображения и примеры

При $x \to \inf f(x) = x^3 + 2x + 1$ больший вклад вносит x^3 , при $x \to 0$ $f(x) = x^3 + x^2$ больший вклад вносит x^2

Пример. $\lim_{x\to 0} \frac{\sqrt[3]{1+4x}-1}{\ln(1+2x)} = \lim_{x\to 0} \frac{\frac{4x}{3}}{2x} = \frac{2}{3}$ - применение таблицы эквивалентных бесконечно малых

O(x) - бесконечно малая более высокая порядка малости.

2.2 Производные и дифференциалы функции

Тут есть рисунок, который мне тяжело воспроизвести. Поэтому его тут нет. Но на нем показаны Δx (приращение аргумента), Δf (приращение функции), касательная к функции.

$$\mathrm{d}f=f'(x)\,\mathrm{d}x$$
 - дифференциал функции, $\Delta f=\mathrm{d}f+O(\Delta x)$

Производной функции называется $\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$. Производная равна пределу приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Пример. Пусть у нас $y=x^3+2x-1$. Попробуем вычислить производную. $y(x+\Delta x)=(x+\Delta x)^3+2(x+\Delta x)-1=x^3+3x^2*\Delta x+3x(\Delta x)^2+(\Delta x)^3+2x+2\Delta x-1$ $y'(x)=\lim_{\Delta x\to 0}\frac{x^3+3x^2*\Delta x+3x(\Delta x)^2+(\Delta x)^3+2x+2\Delta x-1-x^2-3x+1}{\Delta x}=\lim_{\Delta x\to 0}(3x^2+3x(\Delta x)+(\Delta x)^2+2)=3x^2+2$

Другой пример. Попробуем доказать, что производная $y'(\sin x) = \cos x$ $y(x+\Delta x) = \sin(x+\Delta x)$

$$y'(x) = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x)}{\Delta x} = \text{вспоминайте формулы} = \dots = \lim_{\Delta x \to 0} \frac{2\sin\frac{x + \Delta x - x}{\Delta x}}{\Delta x} = \lim_{x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \Delta x)}{\Delta x} = \lim_{x \to 0} \frac{2\cos x}{2} = \cos x$$

Поздравляю, вы написали такую простыню. Вы великолепны.

2.2.1 Свойства производных

1.
$$(u \pm v)' = u' \pm v'$$

2.
$$(u*v)' = u'v + vu'$$
, $(u*v*w)' = u'vw + u*v'w + u*v*w'$

3.
$$(cu)' = cu'$$

4.
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

2.2.2 Дифференцируемость функций

Если функция y=f(x) имеет производную в точке x_0 , то есть $\exists\lim_{x\to x_0} \frac{\Delta f(x)}{\Delta x}=\lim_{x\to x_0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$, то функция дифференцируема в точке x_0 .

Теорема. Если функций y=f(x) дифференцируема в точке x_0 , то она в этой точке непрерывна.

Замечание. Обратное высказывание может быть и неверным.

Пример функции непрерывной в какой-то точке, но не дифференцируемой в ней.

2.2.3 Геометрический смысл производной

Производная - это тангенс угла наклона касательной... $\lg \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

2.2.4 Уравнение касательной и нормали к графику функции

Пусть у нас есть y = kx + b, дана какая-то точка $M_0(x_0; y_0)$

Уравнение касательной. $y - y_0 = y'(x_0)(x - x_0)$

Уравнение нормали. $y-y_0=-\frac{1}{y'(x_0)}(x-x_0)$

2.2.5 Производная сложной функции

Пусть функция u=u(x) имеет в некоторой точке производную $u_x'(x)$, а функция y=y(u) имеет при соответствующем значении u производную y_u' . Тогда сложная функция y(x)=y(u(x)) имеет производную $y_x'=y_u'*u_x'$

Пример 0. Например, у нас есть y(x) = y(g(f(x))), то $y_x' = y_g' * g_f' * f_x'$

Пример 1.
$$y = 2x^2 + 3x, y' = 4x + 3$$

Пример 2.
$$y = \cos(2x^2 + 3x), y' = \sin(2x^2 + 3x) * (4x + 3)$$

Пример 3.
$$y = \sqrt{\cos(2x^2 + 3x)}, y' = \frac{1}{2\sqrt{\cos 2x^2 + 3x}} * (-\sin(2x^2 + 3x)) * (4x + 3)$$

Пример 4.
$$y=\operatorname{tg}\sqrt{\cos(2x^2+3x)}, y'=\frac{1}{\cos^2(\sqrt{\cos(2x^2+3x)}}*\frac{1}{2\sqrt{\cos(2x^2+3x)}}*(-\sin(2x^2+3x))*(4x+3)$$

2.2.6 Обратная функция и ее производная

Пусть у нас есть функция $y=f(x),\, x=a, x=b,\,$ а $y(a)=c, y(b)=d,\,$ где [a;b] - область определения, [c;d] - область изменения функции.

Теорема. Если для y=f(x) существует обратная функция $x=\phi(y),$ у которой $\phi'(y)\neq 0$ в некоторой точке $y_0,$ то $f'(x)=\frac{1}{\phi'(y)}$

Пример 1.
$$y = \arcsin x$$
, функция обратная к ней $x = \sin y, x' = \cos y$. Таким образом, $(\arcsin x)' = \frac{1}{\cos x} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-\sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}}$

3 Высшая математика - 18.10.2022

3.1 Асимптоты функции

Асимптоты функции могут быть:

- Вертикальные
- Наклонные (в том числе горизонтальные)

3.1.1 Вертикальные асимптоты

Если функция f(x) имеет точку разрыва, в которой хотя бы один односторонний предел бесконечен, то вертикальная прямая, параллельная оси ординат, проходящая через эту точку, называется **вертикальной асимптотой**.

Вертикальных асимптот у функции может быть бесконечное множество.

Например,
$$f(x) = \operatorname{tg} x, x = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$

3.1.2 Наклонные асимптоты

Если следующие пределы: $\lim_{x\to +\infty} \frac{f(x)}{x} = k$, $\lim_{x\to +\infty} (f(x)-kx) = b$ существуют и конечны, то прямая, заданная уравнением y=kx+b является наклонной асимптотой функции f(x) при $x\to \infty$.

Если k = 0, то асимптота называется горизонтальной.

Наклонных асимптот у функции может быть только две.

3.1.3 Примеры

Пример 1. Найти асимптоты функции $f(x) = \frac{x}{1 + e^{-x}}$.

Найдем вертикальные асимптоты данной функции. Для начала найдем точки разрыва.

Данная функция **непрерывна**, так как знаменатель не может быть равен нулю.

Следовательно, вертикальных асимптот нет.

Найдем наклонные асимптоты: посчитаем пределы.

$$k_{+} = \lim_{x \to +\infty} \frac{x}{x(1+e^{-x})} = 1, k_{-} = \lim_{k \to -\inf} \frac{x}{x(1+e^{-x})} = 0$$

$$b_{+} = \lim_{x \to +\infty} \left(\frac{x}{1+e^{-x}} - x\right) = \lim_{x \to +\infty} \frac{x - x - xe^{-x}}{1+e^{-x}} = 0, b_{-} = \lim_{x \to -\infty} \left(\frac{x}{1+e^{x}}\right) = 0$$

При $x \to +\infty$, y = x - наклонная асимптота.

При $x \to -\infty, y = 0$ - горизонтальная асимптота.

3.2 Производные функции

Определение. Если для f(x) существует предел

Определение. Если для
$$f(x)$$
 существует предел
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$
 то он называется производной функции

$$y=f(x)$$
 в точке x , и обозначается $y'=f'(x)=rac{\mathrm{d}f(x)}{\mathrm{d}x}=rac{\mathrm{d}}{\mathrm{d}x}; f(x)=rac{\mathrm{d}y}{\mathrm{d}x}.$

3.2.1 Свойства производных функции

Принятые обозначения: c - константа, u, v - функции.

1.
$$(c)' = 0$$

2.
$$(cu)' = c * u'$$

3.
$$(u \pm v)' = u' \pm v'$$

4.
$$(u*v)' = u'v + uv'$$

5.
$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$$

6. Если
$$y = f(u), u = \phi(x),$$
 то $(f(\phi(x)))' = f'(u) * u'.$

Пример:
$$\cos 3x = -\sin 3x * 3 = -3\sin x$$

Пример:
$$\cos 3x = -\sin 3x * 3 = -3\sin x$$

Еще один пример: $\lg^{2x} e^x = 2 \lg e^x * \frac{1}{\cos^2 e^x} * e^x$

3.2.2 Таблица производных

1.
$$(u^a)' = a * u^{a-1} * u', a \in R$$

 $(\frac{1}{u}) = (u^{-1})' = -1 * \frac{1}{u^2} * u'$
 $(\sqrt{u})' = (u^{\frac{1}{2}})' = \frac{1}{2\sqrt{u}} * u'$

2.
$$(a^u) = a^u * \ln a * u'$$

 $(e^u)' = e^u * u'$

3.
$$(\log_a u)' = \frac{1}{u} \log_a e * u' = \frac{1}{u \ln a} * u'$$
 4. $(\sin u)' = \cos x$ $(\ln u)' = \frac{1}{u} * u', (\ln |u|)' = \frac{1}{u} * u'$

$$4. \ (\sin u)' = \cos x$$

$$5. (\cos u)' = -\sin x$$

6.
$$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} * u'$$

7.
$$(\operatorname{ctg} u)' = -\frac{1}{\sin^2 u} * u'$$

8.
$$(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} * u'$$

9.
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} * u'$$

10.
$$(\operatorname{arctg} u)' = \frac{1}{1+u^2} * u'$$

11.
$$(\operatorname{arcctg} u)' = -\frac{1}{1+u^2} * u'$$

12.
$$(\sinh u)' = \cosh u * u'$$

13.
$$(\cosh u)' = \sinh u * u'$$

14.
$$(\tanh u)' = \frac{1}{\cosh^2 u} * u'$$

15.
$$(\coth u)' = -\frac{1}{\sinh^2 u} * u'$$

16.
$$(u(x)^{v(x)})' = v(x) * u(x)^{v(x)-1} * u'(x) + u(x)^{v(x)} * \ln u(x) * v'(x)$$

3.2.3 Гиперболические функции

1.
$$\cosh u = \frac{e^u + e^{-u}}{2}$$

2.
$$\sinh u = \frac{e^u - u^{-u}}{2}$$

3.
$$\tanh u = \frac{\sinh u}{\cosh u}$$

4.
$$\coth u = \frac{\cosh u}{\sinh u}$$

11

3.2.4 Уравнение гиперболы

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\begin{cases} x = a \coth t \\ y = b \cosh t \end{cases} \tag{1}$$

3.2.5 Показательно-степенная функция

Производную показательно-степенной функции можно найти следующим образом:

$$(u^{v})' = v * u^{v-1} * u' + u^{v} \ln u * v'$$

3.2.6 Примеры

Пример 1.
$$y = \operatorname{tg} 3x + 5x^2$$
, $y' = \frac{3}{\cos^2 3x} + 10x$

Пример 2.
$$y = \cos(3x^2 + x), y' = -\sin(3x^2 + x) * (6x + 1)$$

Пример 3.
$$y = x^3 * \cos x$$
, $y' = 3x^2 \cos x - x^3 \sin x$

Пример 4.
$$y=\frac{x^2+1}{x^2-1},\ y'=\frac{2x(x^2-1)-2x(x^2+1)}{(x^2-1)^2}=\frac{-4x}{(x^2-1)^2}$$

Пример 5.
$$y = \ln(2x^2 + x - 1), y' = \frac{1}{2x^2 + x - 1} * (4x + 1)$$

Пример 6.
$$y = \operatorname{tg}^3(x + e^{-x^2}), y' = 2\operatorname{tg}^3(x + e^{-x^2}) * \frac{1}{\cos^2(x + e^{-x^2})} * (1 + e^{-x^2})$$

Пример 7.
$$y = (\cos x)^{x^2}$$
, $y' = x^2(\cos x)^{x^2-1} * (-\sin x) + (\cos x)^{x^2} * \ln(\cos x) * 2x$

Пример 8.
$$y = 2\sqrt[3]{x} + \frac{3}{x^2}$$
, $y' = 2 * \frac{1}{3} * x^{\frac{1}{3}-1} * x^{-1} = \frac{2}{3\sqrt[3]{x^2}} - \frac{6}{x^3}$

Пример 9.
$$y = (x^2 + 5x + 7)^8$$
, $y' = 8(x^2 + 5x + 7)^7 * (2x + 5)$

4 Высшая математика - 26.10.2022

4.1 Производная функции, заданной параметрически

$$\begin{cases} x = x(t) \\ y = y(t), y'_{x} = \frac{(y_{t})'}{(x_{t})'}, y''_{xx} = \frac{(y_{t})''}{(x_{t})'} \end{cases}$$
 (2)

Вторую производную функции, заданной параметрически, также можно найти следующим образом:

$$y_{x^2}'' = \frac{y_{t^2}'' * x_t' - y_t' * x_{t^2}''}{(x_t')^3}$$

4.1.1 Примеры

Пример 1.

$$\begin{cases} x = \operatorname{arctg} t \\ y = t^2 + 2 \end{cases} \tag{3}$$

$$y = f'(x) = \frac{dy}{dx} = y'_x = \frac{2t}{\frac{1}{1+t^2}} = 2t + 2t^3$$

$$y_{xx}'' = \frac{2+6t^2}{\frac{1}{1+t^2}} = 2(1+3t^2)(1+t^2)$$

Решим ее другим способом: $y'_t = 2t$, $y''_{t^2} = 2$, $x'_t = \frac{1}{1+t^2} = (1+t^2)^{-1}$, $x''_{t^2} = -\frac{1*2t}{2}$

$$x_{t^2}'' = -\frac{1*2t}{(1+t^2)^2}$$

$$y_{x^2}'' = \frac{2*\frac{1}{1+t^2} - 2t*(-\frac{2t}{(1+t^2)^2})}{(\frac{1}{1+t^2})^3} = \dots = 2(1+3t^2)(1+t^2)$$

4.2 Производная обратной функции

$$y=f(x)$$
 и $x=\phi(y)$ - обратные, то $x_y'=rac{1}{y_x'}$

4.3 Производная функции, заданной неявно

F(x,y)=0 - функция, заданная неявно Для нахождения y' дифференцируем F(x,y)=0, считая x независимой переменной, а y - функцией

4.4 Уравнение касательной и нормали к графику

Уравнение касательной к графику дифференцируемой функции y=f(x) в точке x_0 выглядит следующим образом:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Уравнение нормали к графику:

$$\begin{cases} y = f(x_0) - \frac{1}{f'(x_0)} * (x - x_0) \\ x = x_0 \text{ при } f'(x_0) = 0 \end{cases}$$
 (4)

4.4.1 Примеры

Пример 1.
$$\sqrt{x} + \sqrt{y} = 3$$
, т. $x_0 \ (x_0; y) = (1; 4)$

$$y=f(x),\sqrt{x}+\sqrt{f(x)}=3, (\sqrt{x}+\sqrt{f(x)})'=(3)', \frac{1}{2\sqrt{x}}+\frac{1*f'(x)}{2\sqrt{f(x)}}=0$$

$$f'(x)=\frac{\sqrt{f(x)}}{\sqrt{x}}=-\frac{\sqrt{f(x_0)}}{\sqrt{x}}=-\frac{\sqrt{y}}{\sqrt{x}}=-2, \ y=0.5x+3.5 \text{ - уравнение нормали}.$$

$$f'(x) = \frac{\sqrt{f(x)}}{\sqrt{x}} = -\frac{\sqrt{f(x_0)}}{\sqrt{x}} = -\frac{\sqrt{y}}{\sqrt{x}} = -2, y = 0.5x + 3.5$$
 - уравнение нормали.

$$y = 4 + (-2)(x - 1) = -2x + 6$$
 - уравнение касательной

Высшая математика - 28.10.2022 5

Производная неявно заданной функции

Неявно заданная функция - это функция, заданная неявно (очень полезное определение).

Например, y = y(x) - явный вид; $y^2 + xy - \sin x = 0$, F(x, y) - неявный вид.

Берем производную всего выражения, при этом помним, что y является функцией от x.

5.1.1 Примеры

Пример 1.

$$y^{2} + xy - \sin x = 0$$

$$2y * y'_{x} + 1 * y + x * y'_{x} - \cos x = 0$$

$$2y * y' + xy' = \cos x - y$$

$$y'(2y + x) = \cos x - y$$

$$y' = \frac{\cos x - y}{2y + x}$$

$$2y * y'_x + 1 * y + x * y'_x - \cos x = 0$$

$$2y' * y' + 2y * y'' + y' * y' + xy'' + \sin x = 0$$

$$y''(2y + x) = -(\sin x + 3y')$$

$$y'' = -\frac{(\sin x + 3y')}{2y + x}$$

Пример 3.

5.2Производная параметрически заданной функции

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 (5)

 $y_x' = \frac{y_t'}{x_t'}$ - производная функции, заданной параметрически $y_{xx}'' = (y_x')' = \frac{(y_x')_t'}{x_t'} = \frac{y_{tt}''*x_t'-y_t'*x_{tt}''}{(x_t')^3}$ - вторая производная функции, заданной параметрически

5.2.1 Примеры

Пример 1.

$$\begin{cases} x = 3\cos t \\ y = 4\sin t \end{cases} \tag{6}$$

Editor note: добавить табличку с значениями t и график

Эту же функцию можно задать неявно: $\frac{x^2}{9} + \frac{y^2}{16} = 1$

Пример 2.

$$\begin{cases} x = 3t \\ y = 6t - t^2 \end{cases}$$
 (7)

Выразим из уравнения t, получим: $y = 2x - \frac{x^2}{9}$ - уравнение параболы.

$$x'_t = 3, y'_t = 6 - 2t, y'_x = \frac{6 - 2t}{3} = 2 - \frac{2t}{3} = 2 - \frac{2x}{9}$$

Пример 3.

$$\begin{cases} x = \cos t \\ y = \sin t \end{cases} \tag{8}$$

$$y = \sqrt{1 - x^2} = \frac{-2x}{2\sqrt{1 - x^2}} = -\frac{x}{\sqrt{1 - x^2}}$$
$$y'_x = \frac{y'_t}{x'_t} = -\frac{\cos t}{\sin t} = -\frac{\cos t}{\sqrt{1 - \cos^2 t}}$$

5.3 Метод логарифмического дифференцирования

5.3.1Примеры

Пример 1.

Имеем функцию $y(x)=\frac{\sqrt{x+1}*\sqrt[3]{2x+5}}{(x^2+6)^5(x-4)^6}.$ Пользуясь свойствами логарифмов, максимально упростим данную запись:

$$\ln y = \ln \frac{\sqrt[3]{y}}{\sqrt[3]{5}()^6}$$

$$\ln y = \frac{1}{2}\ln(x+1) + \frac{1}{3}\ln(2x+5) - 5\ln(x^2+6) - 6\ln(x-4)$$

Берем производную от обеих частей этого равенства, помня о том, что $\ln y$ является сложной функцией:

$$\begin{array}{l} \frac{1}{y}*y'(x) = \frac{1}{2}\frac{1}{x+1} + \frac{1}{3}\frac{2}{2x+5} - 5\frac{2x}{x^2+6} - 6\frac{1}{x-4} \\ y'(x) = y(\ldots) = \frac{\sqrt{x+1}\sqrt[3]{2x+5}}{(x^2+6)^5(x-4)^6} \left(\frac{1}{2(x+1)} + \frac{2}{3(2x+5)} - \frac{10x}{x^2+6} - \frac{6}{x-4}\right) \end{array}$$

Пример 2.

Имеем функцию $y = x^{\operatorname{tg} x}$

$$\begin{split} & \ln y(x) = \ln x^{\lg x} \\ & \ln y(x) = \lg x * \ln x \\ & \frac{1}{y} * y'(x) = \frac{1}{\cos^2 x} \ln x + \lg x * \frac{1}{x} \\ & y'(x) = y(\ldots) = x^{\lg x} (\frac{\ln x}{\cos^2 x} + \frac{\lg x}{x}) \end{split}$$

5.4 Производные и дифференциалы высших порядков

Имеем функцию y = f(x), определенную на интервале [a;b]. Предполагаем, что ее производная не имеет никаких необычных свойств на данном отрезке: не имеет острых углов, разрывов и так далее. В этом случае мы эту производную y' = f'(x), если она дифференцируема на отрезке [a;b], можем дифференцировать.

$y = e^x$	$y = \frac{1}{x}$	$y = \sin x$
$y' = e^x$	$y' = -\frac{1}{x^2}$	$y' = \cos x$
$y'' = e^x$	$y'' = \frac{2^x}{x^3}$	$y'' = -\sin x$
$y''' = e^x$	$y''' = -\frac{2*3}{x^4}$	$y''' = -\cos x$
$y'''' = e^x$	$y'''' = \frac{2*3*4}{x^5}$	$y'''' = \sin x$
$y''''' = e^x$	$y''''' = -\frac{x^3 + 4 + 5}{x^6}$	$y''''' = \cos x$
$y^{(n)} = e^x$	$y^{(n)} = (-1)^n \frac{n!}{x^{n+1}}$	$y^{(n)} = \sin(x + \frac{\pi n}{2})$

Работая с производными и дифференциалами высших порядков, следует пользоваться следующими свойствами:

1.
$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$

2.
$$(Cu)^{(n)} = Cu^{(n)}$$

3.
$$(uv)^n=u^{(n)}v+nu^{(n-1)}+\frac{n(n-1)}{2!}u^{(n-2)}v''+\ldots+nu'v^{(n-1)}+uv^{(n)}=\sum_{k=1}^n=C_n^ku^{(k)}v^{(n-k)},$$
 где $C_n^k=\frac{n!}{k!(n-k)!}$ - формула Лейбница

5.4.1 Примеры

Пример 1.

Найти производную 10-го порядка функции $f(x) = (3x^2 + 2x + 1)\sin x$

$$u = \sin x$$

$$u' = \cos x$$

$$v = 3x^{2} + 2x + 1$$

$$v' = 6x + 2$$

$$v'' = 6$$

$$f'(x) = (\sin x)^{(10)} (3x + 2x + 1) + 10(\sin x)^{(9)} (6x + 2) + \frac{10*9}{2} (\sin x)^{(8)} * 6$$

$$u^{(8)} = \sin x, \ u^{(9)} = \cos x, \ u^{10} = (-\sin x)$$

$$f'(x) = (-\sin x)(3x + 2x + 1) + 10(\cos x)(6x + 2) + \frac{10*9}{2} (\sin x) * 6$$

5.5 Дифференциалы высших порядков

$$\mathrm{d}(\mathrm{d}y)=\mathrm{d}(f'(x)\,\mathrm{d}x)=(f'(x)\,\mathrm{d}x)'\,\mathrm{d}x=\mathrm{d}^2f=f''(x)\,\mathrm{d}x^2$$
 - дифференциал второго порядка $\mathrm{d}^nf=f^{(n)}(x)\,\mathrm{d}x^{(n)}$

Если для дифференциала первого порядка можно говорить об инвариантности формы, то для дифференциалов высших порядков инвариантности формы нет, и вышеизложенные равенства верны только если x - независимая переменная.