Álgebra Booleana e Circuitos Lógicos

Tópicos II

Thiago Silva Vilela

Álgebra Booleana

Operações básicas:

– OU (adição booleana):

$$A \longrightarrow A$$

– E (multiplicação booleana):

$$A \longrightarrow Y$$

- Complementação (Negação):

Avaliação de expressões boolenas

- Expressões booleanas: expressões algébricas formadas por variáveis lógicas.
- Avaliação de expressões booleanas: encontrar a tabela verdade de certa expressão booleana.
- A ordem de precedência dos operadores deve ser seguida.
 - E tem precedência sobre OU.
 - OU e OU Esclusivo (XOR) possuem a mesma precedência.

Avaliação de expressões boolenas

Exemplo: avaliação de F = X + !Y . Z

Х	Υ	Z	Y	$\overline{Y} \cdot Z$	$X + \overline{Y} \cdot Z$
0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0	1 0 0 1 1 0	0 1 0 0 1 0	0 1 0 1 1

Leis Fundamentais e Propriedades da Álgebra Booleana

• Teoremas de Morgan:
$$\overline{A+B+C}=\overline{A}.\overline{B}.\overline{C}$$
 $\overline{A.B.C}=\overline{A}+\overline{B}+\overline{C}$

• Comutatividade: A + B = B + A

$$A.B = B.A$$

- Associatividade: A + (B + C) = (A + B) + CA.(B.C) = (A.B).C
- Distributividade: A.(B+C) = A.B + A.C

Derivação de Expressões Booleanas

- Problema inverso da avaliação de expressões booleanas.
- A partir de uma tabela verdade, derivar a expressão booleana geradora.
- Existem dois métodos para definir uma função booleana:
 - soma de produtos;
 - produto de somas.

- Para uma função booleana de n entradas teremos 2ⁿ possíveis valores.
- A cada combinação de entradas podemos associar um termo produto.
 - No termo produto, se uma entrada vale 0, ela aparece negada;
 - Se a entrada vale 1, ela aparece n\u00e3o negada.
- Cada termo produto é denominado mintermo, ou minitermo.

АВС	mintermo
0 0 0	$\overline{A} \cdot \overline{B} \cdot \overline{C}$
0 0 1	$\overline{A} \cdot \overline{B} \cdot C$
0 1 0	$\overline{A} \cdot B \cdot \overline{C}$
0 1 1	$\overline{A} \cdot B \cdot C$
1 0 0	$A \cdot \overline{B} \cdot \overline{C}$
1 0 1	$A \cdot \overline{B} \cdot C$
1 1 0	$A \cdot B \cdot \overline{C}$
1 1 1	$A \cdot B \cdot C$

- Para um dado mintermo:
 - Se subtistuirmos os valores da entradas associadas, obteremos 1;
 - Se substituirmos as entradas com qualquer outra combinação de valores, obteremos 0.
- Para encontrar a equação relativa a certa tabela verdade, basta montar um **OU** entre os mintermos que valem 1.

 Exemplo: encontrar a equação em soma de produtos para a função F, descrita por:

АВС	F
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
1 0 0	0
1 0 1	1
1 1 0	1
1 1 1	0

$$F = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

- O método de derivação usando produtos de somas é o dual (oposto) da soma de produtos.
 - A cada combinação das variáveis de entrada associamos um termo soma;
 - Se a variável correspondente vale 1, ela aparece negada no termo soma;
 - Se a variável correspondente vale 0, ela aparece não negada no termo soma.
- Cada termo soma é denominado maxtermo ou maxitermo.

АВС	maxtermos
0 0 0	A+B+C
0 0 1	$A + B + \overline{C}$
0 1 0	$A + \overline{B} + C$
0 1 1	$A + \overline{B} + \overline{C}$
1 0 0	$\overline{A} + B + C$
1 0 1	$\overline{A} + B + \overline{C}$
1 1 0	$\overline{A} + \overline{B} + C$
1 1 1	$\overline{A} + \overline{B} + \overline{C}$

- Para um dado maxtermo:
 - Se subtistuirmos os valores da entradas associadas, obteremos 0;
 - Se substituirmos as entradas com qualquer outra combinação de valores, obteremos 1.
- Para encontrar a equação relativa a certa tabela verdade, basta montar um E entre os maxtermos que valem 0.

 Exemplo: encontrar a equação em produto de somas para a função F, descrita por:

АВС	F
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
1 0 0	0
1 0 1	1
1 1 0	1
1 1 1	0

$$F = (A + B + C)(A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + \overline{C})$$

Formas Canônicas e Padrão

 As representações de expressões em soma de produtos e produto de somas são denominadas formas padrão.

 Se cada maxtermo e mintermo apresentam todas as variáveis da função, a expressão também está na forma canônica.

- Existe uma forma mais concisa de representar expressões canônicas:
 - associamos cada combinação das variáveis de entrada a seu valor em decimal;
 - cada mintermo é representado por m_i, onde i é o decimal associado;
 - cada maxtermo é representado por M_i, onde i é o decimal associado.

АВС	mintermo	maxtermo
0 0 0	m_0	M_0
0 0 1	\mathbf{m}_1	M_1
0 1 0	m_2	M_2
0 1 1	m_3	M_3
1 0 0	m_4	M_4
1 0 1	m_5	M_5
1 1 0	m_6	M_6
1 1 1	\mathbf{m}_7	M_7

A expressão:

$$F = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

pode ser representada como:

$$F = m_2 + m_3 + m_5 + m_6$$

ou:

$$F = \sum (2,3,5,6)$$

A expressão:

$$F = (A + B + C)(A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + \overline{C})$$

pode ser representada como:

$$F = M_0 \cdot M_1 \cdot M_4 \cdot M_7$$

ou:

$$F = \prod (0,1,4,7)$$

Forma não-padrão

- Formas canônicas nem sempre são práticas:
 - número de elementos de um circuito lógico depende diretamente do número de operações booleanas.
- Pode ser necessário reduzir o número de operações.
 - redução é obtida eliminando litarais da expressão;
 - basta aplicar propriedades da álgebra booleana;
 - o processo é denominado simplificação.

Forma não-padrão

Exemplo:

$$F = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

$$F = \overline{A}B(\overline{C} + C) + A\overline{B}C + AB\overline{C}$$

$$F = \overline{A}B + A\overline{B}C + AB\overline{C}$$

Equação Mínima

 Quando são feitas todas as simplificações possíveis em uma expressão booleana, a equação resultante é chamada de equeação mínima.

Considere a seguinte tabela verdade, na qual estão definidas quatro entradas – A, B, C e D – e uma saída S. Qual é a menor expressão de chaveamento representada por uma soma de produtos correspondente à saída S?

Α	ВС		D	S
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Esse exercício tem mais de uma solução.

 Podemos encontrar a solução simplificando a expressão booleana ou por Mapas de Karnaugh.

- As soluções são:
 - -A'D'+AB'C'+ABC+AB'D
 - A'D'+AB'C'+ABC+ACD

- Fazendo a simplificação pela expressão:
 - A'B'C'D'+A'B'CD'+A'BC'D'+A'BCD'+AB'C'D'+AB'C'D+AB'CD +ABCD'+ABCD
 - A'B'C'D'+A'B'CD'+A'BC'D'+A'BCD'+AB'C'D'+AB'C'D+AB'CD +ABCD'+ABCD
 - AB'CD pode ser simplificado com ABCD ou AB'C'D. Devemos escolher um deles e duplicá-lo na expressão.
 - A'B'C'D'+A'B'CD'+A'BC'D'+A'BCD'+AB'C'D'+AB'C'D+AB'C'D +AB'CD+ABCD'+ABCD
 - A'B'D'+A'BD'+AB'C'+AB'D+ABC
 - -A'D'+AB'C'+AB'D+ABC
- Não existem mais simplificações. A equação é mínima.

Usando Mapas de Karnaugh:

	CD					
	00 01 11 10					
AB	00	1	0	0	1	
	01	1	0	0	1	
	11	0	0	1	1	
	10	1	1	1	0	

- O último 1 não agrupado possui dois agrupamentos possíveis, e a solução final depende do agrupamento escolhido. Podemos ter:
 - A'D'+AB'C'+ABC+AB'D ou
 - A'D'+AB'C'+ABC+ACD

Analise o circuito de quatro variáveis a seguir:

Considerando esse circuito, quais são as funções **f** e **g**, na forma canônica?

- Uma forma de resolver essa questão é derivando a tabela verdade do circuito e, a partir dela, obter a forma canônica das funções f e g.
- Quando **f** é 1?
 - quando $x_1=1$ e $x_3=1$ ou quando $x_3=0$ e $x_2=1$
- Quando g é 1?
 - quando $x_3=0$ **ou** $x_1=1$ e $x_4=1$.

x 1	x2	хЗ	х4	f	g
0	0	0	0	0	1
0	0	0	1	0	1
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	0
1	1	1	1	1	1

• Resposta: $\sum m(4,5,10,11,12,13,14,15)$ e $\sum m(0,1,4,5,8,9,11,12,13,15)$

ou

 $\prod M(0, 1, 2, 3, 6, 7, 8, 9)$ e $\prod M(2, 3, 6, 7, 10, 14)$

 No circuito mostrado, que possui cinco entradas — A, B, C, D e E — e uma saída f (A, B, C, D, E), qual opção apresenta uma expressão lógica equivalente à função f (A, B, C, D, E)?

- (A) $\overline{A.B} + \overline{C.D} + D.E$
- (B) (A+B).(C+D)+D.E
- (C) $\overline{A.B} + \overline{C.D} + D + E$
- (D) A.B+C.D+D+E
- (E) A.B+C.D+D.E

- Resposta: letra e.
- Basta construir a expressão booleana e aplicar o Teorema de Morgan.

entradas		saídas			
S ₁	So	О	1	2	3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Considere o bloco decodificador ilustrado acima, o qual opera segundo a tabela apresentada. Em cada item a seguir, julgue se a função lógica mostrada corresponde ao circuito lógico a ela associado.

 Para resolver essa questão, basta construir a tabela verdade de cada circuito e comparar o resultado com a tabela verdade da expressão.

 Resposta: Os 3 itens possuem o circuito equivalente à expressão.