Project Report SQL

Xindi Sun xs2359, Rose dn2450, Leo Li sl4513, Smriti sv2577, Jingyi Zhang jz3021

Problem statement

Our client is the United States Citizenship and Immigration Services (USCIS). USCIS is responsible for the issuance and administration of H1B visa, which allows companies in the United States to temporarily employ foreign workers. Currently, USCIS operates according to immigration laws and foreign policies, yet it lacks the ability to contribute to the policy making process or to improve on its day-to-day administration of H1B. Therefore, USCIS aims to increase its business intelligence capacity in order to make evidence-driven decisions impacting H1B policies and application processes. There are two main groups of stakeholders: the analysts and executive-level managers (C-suite). The analysts' goal is to establish a database that allows them to generate insights from historical H1B application data. The C-suite will then review the key insights obtained from analyses and make informed decisions on future H1B related issues.

Proposal

Our group proposes that USCIS should establish a relational database from the H1B application dataset in PostgresQL with ETL process automated using Python and key insights reported using Metabase. The relational database will allow the analysts to perform analyses with improved speed and sophistication. The automated ETL process allows the analysts to quickly input historical data and also continue to enrich the database with future data. Finally, the dashboard will report key insights concerning trends and patterns in the H1B applications to C-suite, who can then make evidence-based decisions to improve H1B application process and make policy suggestions.

Team structure and Timeline

Agreed Weekly Meeting Time: Every Friday 3-5pm

Tasks and Responsibilities:

Checkpoint 2 - Nov 11

Task1 - Create preliminary tables from dataset: The whole team

Task2 - Construct team contract: The whole Team

Checkpoint 3 - Nov18

Task1 - database schema: The whole team

Task2 - ER diagram:Rose, Smriti

Task 3 - SQL code: Xindi Sun, Jingyi Zhang

Checkpoint 4 - Nov 25

Task1 - Transforming and entering the data to your database system: Leo Li, Jingyi

Zhang, Xindi Sun

Task2 - Explanations and reasoning: Leo Li, Rose, Smriti

Checkpoint 5 - Dec 2

Task1 - plan for how customers will interact with the database system designed: The

Whole team

Task2 - implement for analysts (direct querying): The Whole Team

Task3 - Report: Leo Li, Jingyi Zhang, Xindi Sun

Task4- Visualization: Smriti, Rose

Database Schema

Our dataset contains 54 columns. After initial cleaning, we eliminated two columns which contain only NAs. The ER-diagram below illustrates our relational database schema. The detailed reasonings for each table are listed after the diagram. The SQL code for generating tables is attached to the appendix.

- **Job_Title**: In this table, we have job_title_id which is the primary key and an integer since its an ID. We also have Job_Title_name and that's varchar with a 200 character limit. The Job_title_name is NOT NULL but job_title_id is not as it's not null by default being the primary key.
- SOC: This table has SOC_Code and SOC_Name. For SOC_Code we've used varchar with a character limit of 20. SOC codes have hyphens in them that cannot be categorized as integers and hence we have used varchar for them. SOC_Name is varchar(100) and not null. SOC_Code is not defined as not null as it's not null by default being the primary key.
- Prevailing_wages: In this table, we have PW_ID as integer and that is the
 primary key, hence not defined as not null. Prevailing_wage is categorized as
 a float as the wages depicts money and can have multiple decimals.

PW_Unit_Of_Pay is if the pay is annual, weekly, monthly or hourly. This is depicted by varchar (10) and has a check to ensure only these units are entered. There is no not null constraint here as the dataset has null values for this column. PW_wage_level is varchar(10) and shows what is the wage level of the employee. So far we have level I, II, III, IV. PW_Source is varchar(8) and has data to see where the wage data is obtained from. PW_Source_Year is an integer and PW_Source_Other is varchar(300); this data shows if data is collected from the other source in the PW_Source. The data type is varchar and not text as the values are repeating and short in value.

- Wages: In this table, we have wage_case_id which is an integer and the primary key, hence not null by default, wage_rate_of_pay_from which Is float and not null; this column depicts money which can have multiple decimals; same for the column wage_rate_of_pay_to, wage_unit_of_pay is varchar(10) and not null. There is also a check to ensure that the values entered are one of the following: 'Year','Month', 'Week', 'Hour','Bi-Weekly'.
- Worksite: This table has worksite_ID as primary key and data type is an integer and it's not defined as not null as it's not null by default being the primary key. Worksite_city is varchar(50) and not null. Worksite_county is also varchar(50) but not marked as not null as the database has null values in this column. Worksite_state is char(2) and not null to ensure that only the state code is used for this entry. Worksite_postal_code is varchar(10), not null and not char(5) as expected as the dataset shows postal codes that vary from 3 digits to 10 digits.
- *Employer_address:* In this table employer_address_id is integer and primary key. And it's not defined as not null as it's not null by default being the primary key. The employer address is varchar(200) and not null. The data type is varchar and not text as the values are repeating and short in value. Employer city is varchar(50) and not null, employer_state is char(2) and not null to ensure that only the state code is used for this entry. Employer_postal_code is varchar(20), not null and not char(5) as expected as the dataset shows postal codes that vary from 3 digits to 20 digits. Employer_Country is varchar(50) and not null, this column so far holds only the United States of America as data. Employer_province is varchar(100) as the data in this column is very varied with integers and characters.
- Agent_Attorney: This table has agent_attorney_ID as primary key and data type is an integer, it's not defined as not null as it's not null by default being the primary key. Agent_attorney_name is varchar(100), agent_attorney_state

- is char(2) to ensure that only the state code is used for this entry. Agent_attorney_City is varchar(50).
- NAICS: NAICS_ID is integer and integrity constraint is Unique to ensure that
 no duplication. It is also the primary key and by default not null. The ID is
 unique to each code that is used by each business that is classified into a sixdigit NAICS code number based on the majority of activity at the business.
 NAICS_code is varchar(6) and not null to ensure that each code has its own
 ID.
- H1B_Request_Record: H1B_Request_Record_ID is primary key and data type is integer. Total_workers is an integer and not null. The dataset shows numbers from 1-40 randomly for this column. New_employment is an integer and not null and, in this column, shows numbers from 1-50 randomly. Continued_employment is an integer and not null, the data in the column range from 0-15. CHANGE_PREVIOUS_EMPLOYMENT is an integer and not null. The data in this column ranges from 0-25.
 NEW_CONCURRENT_EMPLOYMENT is an integer and not null. The data in this column ranges from 0-5. CHANGE_EMPLOYER is an integer and not null. The data in this column ranges from 0-15. AMENDED_PETITION is integer not null. The data in this column ranges from 0-15.
- Employer: Employer_ID is an integer and primary key. It's not defined as not null as it's not null by default being the primary key. Employer_name is varchar(200). There is no not null constraint here as the dataset has some null values. EMPLOYER_BUSINESS_DBA is varchar(100). NAICS_ID is an integer and is a foreign key in the table that references NAICS ID in the NAICS table. H1B_DEPENDENT is char(1) and depicts either Y or N in the dataset. WILLFUL_VIOLATOR is char(1) and depicts either Y or N in the dataset. SUPPORT_H1B is char(1) and depicts either Y or N in the dataset. LABOR_CON_AGREE is char(1) and depicts either Y or N in the dataset.
- Employer_Phone: Employer_Phone_ID is an integer and primary key. It's not defined as not null as it's not null by default being the primary key. EMPLOYER_PHONE is varchar(15) and not null. The 15 character limit causes the numbers in the dataset range from 9 digits to 15 digits. EMPLOYER_PHONE_EXT is varchar(8) and there is no not null here as some of the phones do not have an extension. EMPLOYER_ID is an integer and is a foreign key here. There is no employer_phone_ID referenced in the employer column as then there would be duplicate data populated and if there is a change in phone numbers we want to reflect in this column.

- ORIGINAL_CERT_DATE is a timestamp. EMPLOYMENT_START_DATE is timestamp and not null to ensure that all employment start dates are captured. EMPLOYMENT_END_DATE is timestamp and not null to ensure that all employment start dates are captured. EMPLOYMENT_END_DATE is timestamp and not null to ensure that all employment end dates are captured. CASE_STATUS is varchar(20) and there is a check status implemented to ensure that only 'CERTIFIED','CERTIFIED-WITHDRAWN','DENIED', 'WITHDRAWN' can be entered for this column. VISA_CLASS is varchar(16) to accommodate entries of H1B-Singapore and H1B-Australia as well. JOB_TITLE_ID is an integer and foreign key and references Job_Title_ID in the Job_Title table. SOC_CODE is varchar(20) and foreign key and references SOC_CODE in the SOC table. FULL_TIME_POSITION is char(1) to show N or Y. PW_ID is an integer and foreign key that references PW_ID in the PREVAILING_WAGES table. WAGE_CASE_ID is an integer and foreign key that references WAGE_CASE_ID in the Wages table.
- WORKSITE_BOOK: This table has Case_Number, varchar(20), and Worksite_ID, integer, as composite key and both are foreign keys that are referenced from Cases table and worksite table respectively.
- EMPLOYER_ADDRESS_BOOK: In this table, we have Employer_ID and Employer_address_ID as composite keys. Both have data types as an integer. Employer ID is foreign key referenced from employer table and employer_address_ID is foreign key referenced from employer_address table
- CASE_SUBMISSION: Here we have case number as primary key and data type is varchar(20) to accommodate the hyphens that are part of the case number. The case number is also a foreign key that is referenced from the cases table. EMPLOYER_ID is an integer and foreign key referenced from the employer table. CASE_SUBMITTED_DATE is timestamp and it captures when the case was submitted for approval. DECISION_DATE is timestamp and it captures when the decision was made about the case.

 AGENT_REPRESENTING_STATUS is char(1) to show either N or Y.

 AGENT_ATTORNEY_ID is an integer and foreign key that references the agent_attorney table.
- H1B_RECORD_BOOK: EMPLOYER_ID and H1B_REQUEST_RECORD_ID
 are integers and composite keys for this table. Both are also foreign keys that
 are referenced from the employer table and the H1B_REQUEST_RECORD
 table respectively.

Extract, Transform, Load

First we create the prevailing_wages table with 6 columns getting from the original dataset: "prevailing_wage", "pw_unit_of_pay", "pw_wage_level", "pw_source", "pw_source_year", "pw_source_other". Then we create id for each prevailing_wage and push data to the database.

Next, we create wages table with 3 columns: "wage_rate_of_pay_from",

"wage_rate_of_pay_to", "wage_unit_of_pay" getting from the original dataset, generate id for each row under "pw_id" and push wages data to the database.

Because the soc_code are shown as date in excel so we find the soc_code from SOC website and create soc_code column that matches with SOC name. Then we create SOC tables with two columns "soc_code", "soc_name" and push data into the database. Then we create the job_title table with the job_title column from the original dataset, renamed into job_title_name and ID column and push data into the database.

In the next step, we gathered all cases relevant columns from original data frame into a dataframe called "cases". Then we merge this dataframe with "prevailing_wages" data frame on all columns to get the ID column of "prevailing_wages". We also merge "cases" data frame with "wages" dataframe on all columns in "wages" data frame to get ID column of "wages". We then merge "cases" data frame with "job_title" dataframe on all columns in "job_title" dataframe to get ID column of "job_title". Now the "cases" data frame has all foreign keys included so we get needed columns from this dataframe to create the "cases" table and push data to the database.

Moving on, we create worksite table by getting these 4 columns: "worksite_city", "worksite_county", "worksite_state", "worksite_postal_code" from the original dataset and generate ID as a new column and push data to database.

The "worksite_book" has "case_number" and "worksite_id" so we first create a dataframe that has "case_number" and all columns from the worksite tables. After that, in order to get the "worksite_id" we merge table "worksite_book" with table "worksite" on all same columns and create final worksite_book by getting only 2 columns needed, which serve as primary keys. Then push the worksite_book data to the database. For the NAICS table, we select column 'naics_code' from the original database and generate id for each row. Then push NAICS table into the database.

In the next step we create the "h1b_request_record" table by getting needed columns 'total_workers', 'new_employment', 'continued_employment',

'change_previous_employment', 'new_concurrent_employment', 'change_employer', 'amended_petition' from the original dataframe and generate new id for each row, then push data to the database.

"Employer_address" table has all information relating to the employer's physical location so we select all relevant columns from original data frame 'employer_address',

'employer_city', 'employer_state', 'employer_postal_code', 'employer_country', 'employer_province' and generate ID for each address. Then we push "Employer_address" to the database.

In the next step, we create an "employer" dataframe with these columns 'employer_name', 'employer_business_dba', 'h1b_dependent', 'willful_violator', 'support_h1b', 'labor_con_agree', 'employer_phone', 'employer_phone_ext', 'naics_code' and merge with NAICS dataframe on 'naics_code' to get the NAICS ID. Then generate id for each employer and populate the "employer" table into the database.

The "employer_phone" table has 4 columns 'employer_phone', 'employer_phone_ext', employer_phone_id and the employer_id as a foreign key.So first we create a dataframe that has 3 columns 'employer_name', 'employer_phone',

'employer_phone_ext' got from original dataframe, then merge with "employer" table on 'employer_name' to get 'employer_id' column. After that we generate unique ID for each phone number and gather needed columns into a table to push to the database.

To create the agent_attorney table, we gather "agent_attorney_name",

'agent_attorney_city', 'agent_attorney_state' from the original dataset and generate id for each agent, then populate data into the database.

The employer_address_book has "employer_ id" and "employer_address_id" as both composite primary key and foreign key so we create a table includes these columns 'employer_name', 'employer_address', 'employer_city', 'employer_state', 'employer_postal_code', 'employer_country', 'employer_province' from original dataframe. Then merge this table with 'employer' table on 'employer_name' to get 'employer_id' and merge with employer_address on all columns in 'employer_address' table to get 'employer_address_id' so that we can create final table with 2 needed columns and push data into the database.

For the case_submission table we create a dataframe with all relevant columns from the original dataset and merge with employer on shared columns to get 'employer_id', merge with 'agent_attorney' to get 'agent_attorney_id'. After that we gather all relevant columns into "case submission" table and push data into the database.

Lastly, we create the 'h1b_record_book' data by gathering all relevant columns into a dataframe ,merge that dataframe with 'h1_request_record' data frame to get 'h1b_request_record_id' and merge again with 'employer' to get the 'employer_id' column. Then create 'h1b_record_book' table with 'h1b_request_record_id' and 'employer_id' columns and push to the database.

Analytics Applications

We came up with 10 scenarios and provided sample queries for answering the key questions.

1. Who are the employers who submitted the most cases (list top 5)?

Queries

SELECT DISTINCT(employer.employer_name),

COUNT(case_submission.employer_id)

from employer, case_submission

WHERE employer.employer_id = case_submission.employer_id

GROUP BY employer.employer_id, employer_name

ORDER BY COUNT desc

LIMIT 5;

Insights

Employer Name	Number of Cases	
Infosys limited	405	
Tata Consultancy Services	245	
Capgemini America Inc	186	
Accenture LLP	142	
Microsoft Corporation	130	

Percentage of cases in each case status? Queries select case_status, count(*) as cnt, round(count(*) * 100.0/ sum(count(*)) over (), 2) as percent from cases

group by case_status;

Insights

3. Top 5 job titles get submitted and approved Top 5 submitted: code:

select j.job_title_name, count(j.job_title_name)
from job_title j
join cases c on j.job_title_id=c.job_title_id
group by j.job_title_name
order by count desc
limit 5;
result:
programmer analyst--793
software engineer--399
software developer--229

system analyst--197

senior software engineer--164

Top 5 approved:
code:
select j.job_title_name, count(j.job_title_name)
from job_title j
join cases c on j.job_title_id=c.job_title_id
where c.case_status='CERTIFIED'
group by j.job_title_name
order by count desc
limit 5;
result:
programmer analyst--593
software engineer--296
software developer--154
senior software engineer--143
system analyst--141

		Case Status
Job Title	F	CERTIFIED
PROGRAMMER ANALYST		593
SOFTWARE ENGINEER		296
SOFTWARE DEVELOPER		154
SENIOR SOFTWARE ENGI		143
SYSTEMS ANALYST		141

4. Top 5 Job title with highest average wages SELECT j.job_title_name,tmp_rk.avg_wage,tmp_rk.rk FROM

(SELECT job_title_id,avg_wage,RANK() OVER(ORDER BY avg_wage DESC) AS rk FROM (SELECT c.job_title_id,AVG(w.wage_rate_of_pay_from) avg_wage FROM cases c, wages w WHERE c.wage_case_id=w.wage_case_id GROUP BY c.job_title_id)tmp) as tmp_rk, job_title AS j WHERE tmp_rk.rk<=5 AND j.job_title_id=tmp_rk.job_title_id

5. Top 5 SOC names with highest average wages SELECT soc.soc_name, avg(wages.wage_rate_of_pay_from), RANK() OVER (ORDER BY avg(wages.wage_rate_of_pay_from) DESC) AS wage_rank FROM (soc natural join cases) join wages using (wage_case_id) group by soc.soc_name limit 5;

It turned out that Anesthesiologists, Surgeons, Environmental Science Teachers - Postsecondary, Chief Executives and Internists - General are the positions with the highest average wages.

- 6. Top 5 attorney get highest number of cases approved select agent_attorney_id, agent_attorney_name, count(*) as num from case_submission natural join agent_attorney natural join cases where case_status = 'CERTIFIED' group by agent_attorney_id, agent_attorney_name order by num desc limit 5;
- 7. Top 5 worksite city with most H1B cases submitted select worksite_id, count(*), worksite_city, worksite_state from worksite_book natural join worksite group by worksite_id, worksite_city, worksite_state order by count desc limit 5;
- 8. The month that gets the most h1b applications code: select extract(month from case_submitted_date) as month, count(extract(month from

case_submitted_date))
from case_submission
group by month
order by count desc
limit 1;

result:

September--4861

Average waiting time to get the decision
 SELECT AVG (decision_date-case_submitted_date) DAYS
 FROM case_submission
 days

10. Which wage level gets maximum number of certified cases?
I also looked into which wage level gets maximum number of certified cases. select pw.pw_wage_level, count(c.case_status) from prevailing_wages as pw natural join cases as c where c.case_status = 'CERTIFIED' group by c.case_status, pw.pw_wage_level order by count(c.case_status) DESC limit 1;

The result shows that employees with level II wage level gets max number of certified cases.

A list of agents' name and city for cases that have an agent represent employees with ranking

SELECT a.agent_attorney_name,a.agent_attorney_city,rk.rank_agent FROM (SELECT *, RANK () OVER (ORDER BY ct DESC) as rank_agent FROM

(SELECT agent_attorney_id,COUNT(agent_attorney_id) ct FROM case_submission WHERE agent_representing_status = 'Y' GROUP BY agent_attorney_id)as tmp) as rk, agent_attorney a WHERE a.agent_attorney_id=rk.agent_attorney_id

Appendix

Python code for Extract, Transform, Load

Import necessary packages: import pandas as pd from sqlalchemy import create_engine import matplotlib.pyplot as plt import numpy as np

Connect to the database and read the csv file:

```
conn_url =
```

'postgresql://postgres:y6pj86qh@f19server.apan5310.com:50206/h1b_formal' engine = create_engine(conn_url)

connection = engine.connect()

df = pd.read_csv('H-1B.csv')

df.columns = map(str.lower, df.columns) #This is because all table names are automatically turned into lower case in codio, so we make sure our code align with that.

Construct prevailing wages table and populate the data into table:

```
prevailing_wages = df[["prevailing_wage", "pw_unit_of_pay",
```

"pw_wage_level","pw_source", "pw_source_year", "pw_source_other"]]

prevailing_wages = prevailing_wages.drop_duplicates()

prevailing_wages.insert(0, 'pw_id', range(1, 1 + len(prevailing_wages)))

prevailing_wages.to_sql(name='prevailing_wages',con=engine,

if_exists='append',index=False)

Construct wages table and populate data:

```
wages = df[["wage_rate_of_pay_from", "wage_rate_of_pay_to", "wage_unit_of_pay"]]
```

wages = wages.drop_duplicates()

wages.insert(0, 'wage case id', range(1, 1 + len(wages)))

wages.to_sql(name='wages',con=engine, if_exists='append',index=False)

Construct soc table:

In Excel, some soc_code is shown in the data format, the code below is to reverse those columns into the correct form:

```
df['soc_code']=np.where(df['soc_name']=='ADVERTISING AND PROMOTIONS
```

MANAGERS','11-2011',df['soc_code'])

df['soc_code']=np.where(df['soc_name']=='ADMINISTRATIVE SERVICES

MANAGERS','11-3012',df['soc_code'])

MANAGERS','11-9111',df['soc_code'])

df['soc_code']=np.where(df['soc_name']=='MARKETING MANAGERS','11-

2021',df['soc_code'])

df['soc_code']=np.where(df['soc_name']=='SALES MANAGERS','11-

2022',df['soc code'])

df['soc_code']=np.where(df['soc_name']=='PUBLIC RELATIONS AND FUNDRAISING MANAGERS','11-2030',df['soc_code'])

```
df['soc_code']=np.where(df['soc_name']=='COMPUTER AND INFORMATION
SYSTEMS MANAGERS','11-3021',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='FINANCIAL MANAGERS','11-
3031',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='INDUSTRIAL PRODUCTION
MANAGERS','11-3051',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='PURCHASING MANAGERS','11-
3061',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='TRANSPORTATION, STORAGE, AND
DISTRIBUTION MANAGERS','11-3071',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='HUMAN RESOURCES MANAGERS','11-
3121',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='TRAINING AND DEVELOPMENT
MANAGERS','11-3131',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='FARMERS, RANCHERS, AND OTHER
AGRICULTURAL MANAGERS', '11-9013', df['soc_code'])
df['soc code']=np.where(df['soc name']=='CONSTRUCTION MANAGERS','11-
9021',df['soc code'])
df['soc code']=np.where(df['soc name']=='EDUCATION ADMINISTRATORS,
ELEMENTARY AND SECONDARY', '11-9032', df['soc code'])
df['soc code']=np.where(df['soc name']=='EDUCATION ADMINISTRATORS,
POSTSECONDARY', '11-9033', df['soc code'])
df['soc_code']=np.where(df['soc_name']=='EDUCATION ADMINISTRATORS,
PRESCHOOL AND CHILDCARE', '11-9031', df['soc code'])
df['soc code']=np.where(df['soc name']=='EDUCATION ADMINISTRATORS, ALL
OTHER','11-9039',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='ARCHITECTURAL AND ENGINEERING
MANAGERS','11-9041',df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='FOOD SERVICE MANAGERS','11-
9051',df['soc code'])
df['soc code']=np.where(df['soc name']=='LODGING MANAGERS','11-
9081',df['soc code'])
df['soc code']=np.where(df['soc name']=='NATURAL SCIENCES MANAGERS','11-
9121',df['soc code'])
df['soc_code']=np.where(df['soc_name']=='PROPERTY, REAL ESTATE, AND
COMMUNITY ASSOCIATION', '11-9141', df['soc_code'])
df['soc_code']=np.where(df['soc_name']=='SOCIAL AND COMMUNITY SERVICE
MANAGERS','11-9151',df['soc_code'])
```

```
df['soc_code']=np.where(df['soc_name']=='MANAGERS, ALL OTHER','11-
9199',df['soc_code'])
Some of rows of soc name have typo, for example, missing 's' at the end, so we find
out which rows have this problem and then change their names to the correct ones:
df['soc_name']=np.where(df['soc_code']=='15-1121','COMPUTER SYSTEMS
ANALYSTS', df['soc_name'])
df['soc_name']=np.where(df['soc_code']=='15-1131','COMPUTER PROGRAMMERS'.
df['soc_name'])
df['soc_name']=np.where(df['soc_code']=='15-1199','COMPUTER OCCUPATIONS, ALL
OTHER', df['soc name'])
df['soc_name']=np.where(df['soc_code']=='13-1111','MANAGEMENT ANALYSTS',
df['soc_name'])
df['soc_name']=np.where(df['soc_code']=='15-1199.02','COMPUTER SYSTEMS
ENGINEERS/ARCHITECTS', df['soc_name'])
df['soc_name']=np.where(df['soc_code']=='25-2021','ELEMENTARY SCHOOL
TEACHERS, EXCEPT SPECIAL', df['soc_name'])
df['soc name']=np.where(df['soc code']=='41-9031', 'SALES ENGINEERS',
df['soc name'])
df['soc name']=np.where(df['soc code']=='17-2072', 'ELECTRONICS ENGINEERS,
EXCEPT COMPUTER', df['soc_name'])
df['soc name']=np.where(df['soc code']=='15-1132','SOFTWARE DEVELOPERS,
APPLICATIONS', df['soc name'])
df['soc name']=np.where(df['soc code']=='15-1022','COMPUTER PROGRAMMERS,
NON R&D', df['soc_name'])
df['soc_name']=np.where(df['soc_code']=='15-1142','NETWORK AND COMPUTER
SYSTEMS ADMINISTRATORS', df['soc_name'])
df['soc_name']=np.where(df['soc_code']=='15-1034','SOFTWARE DEVELOPERS,
APPLICATIONS, NON R&D', df['soc_name'])
df['soc name']=np.where(df['soc code']=='17-3023', 'ELECTRICAL AND ELECTRONIC
ENGINEERING TECHNICIANS', df['soc_name'])
df['soc name']=np.where(df['soc code']=='17-2141','MECHANICAL ENGINEERS',
df['soc name'])
Populate data into soc table:
soc = df[["soc_code", "soc_name"]]
soc = soc.drop_duplicates()
soc.to_sql(name='soc',con=engine, if_exists='append',index=False)
```

```
Construct job_title table and populate data:
job_title = df[["job_title"]]
job_title = job_title.drop_duplicates()
job_title.insert(0, 'job_title_id', range(1, 1 + len(job_title)))
job_title = job_title.rename(columns = {"job_title": "job_title_name"})
job_title.to_sql(name='job_title',con=engine, if_exists='append',index=False)
Construct & deal with data in cases table:
In this step we first select all columns, including those in foreign key tables, so that we
can join these columns in the future steps:
cases = df[["case_number", "original_cert_date", "employment_start_date",
"employment_end_date", "case_status", "visa_class", "soc_code", "full_time_position",
"wage_rate_of_pay_from", "wage_rate_of_pay_to", "wage_unit_of_pay",
"prevailing_wage", "pw_unit_of_pay", "pw_wage_level", "pw_source",
"pw_source_year", "pw_source_other", "job_title"]]
Merge the needed columns to get id for different tables:
cases = pd.merge(cases, prevailing wages, how='left', on=["prevailing wage",
"pw unit of pay", "pw wage level", "pw source", "pw source year",
"pw source other"])
cases = pd.merge(cases, wages, how='left', on=["wage rate of pay from",
"wage_rate_of_pay_to", "wage_unit_of_pay"])
job_title = job_title.rename(columns = {"job_title_name": "job_title"})
cases = pd.merge(cases, job title, how='left', on=["job title"])
Rename columns to make sure they have aligned names:
cases = cases[["case_number", "original_cert_date", "employment_start_date",
"employment_end_date", "case_status", "visa_class", "job_title_id", "soc_code",
"full time position", "pw id", "wage case id"]]
cases.to sql(name='cases',con=engine, if exists='append',index=False)
Construct worksite table:
worksite = df[["worksite_city", "worksite_county", "worksite_state",
"worksite_postal_code"]]
worksite = worksite.drop duplicates()
worksite.insert(0, 'worksite_id', range(1, 1 + len(worksite)))
worksite.to_sql(name='worksite',con=engine, if_exists='append',index=False)
```

```
Construct worksite_book table:
worksite_book = df[["case_number", "worksite_city", "worksite_county",
"worksite_state", "worksite_postal_code"]]
worksite_book = pd.merge(worksite_book, worksite, how = "left", on = ["worksite_city",
"worksite_county", "worksite_state", "worksite_postal_code"])
worksite_book = worksite_book[["case_number", "worksite_id"]]
worksite_book.to_sql(name='worksite_book',con=engine,
if exists='append',index=False)
Construct naics (North American Industry Classification System) table:
naics = df[['naics_code']]
naics = naics.drop_duplicates()
naics.insert(0, 'naics_id', range(1, 1 + len(naics)))
naics.to_sql(name='naics',con=engine, if_exists='append',index=False)
Construct h1b_request_record table:
h1b request record = df[['total workers', 'new employment', 'continued employment',
'change previous employment', 'new concurrent employment', 'change employer',
'amended petition']]
h1b request record = h1b request record.drop duplicates()
h1b request record.insert(0, 'h1b request record id', range(1, 1 +
len(h1b request record)))
h1b request record.to sql(name='h1b request record',con=engine,
if exists='append',index=False)
Construct employer address table:
employer_address = df[['employer_address', 'employer_city', 'employer_state',
'employer_postal_code', 'employer_country', 'employer_province']]
employer address = employer address.drop duplicates()
employer_address.insert(0, 'employer_address id', range(1, 1 +
len(employer address)))
employer address.to sql(name='employer address',con=engine,
if exists='append',index=False)
Construct employer table, merge with nacis table to have 'naics code' column:
employer = df[['employer name', 'employer business dba', 'h1b dependent',
'willful_violator', 'support_h1b', 'labor_con_agree', 'employer_phone',
'employer_phone_ext', 'naics_code']]
```

```
Merge on NAICS:
employer = pd.merge(employer, naics, how='left', on=['naics_code'])
employer = employer[['employer_name', 'employer_business_dba', 'naics_id',
            'h1b dependent', 'willful_violator', 'support_h1b', 'labor_con_agree']]
Populate data:
employer = employer.drop_duplicates()
employer.insert(0, 'employer_id', range(1, 1 + len(employer)))
employer.to_sql(name='employer',con=engine, if_exists='append',index=False)
Construct employer_phone and populate data:
employer_phone = df[['employer_name','employer_phone', 'employer_phone_ext']]
employer_phone = employer_phone.drop_duplicates()
employer_phone = pd.merge(employer_phone, employer, how='left',
on=['employer_name'])
employer_phone.insert(0, 'employer_phone_id', range(1, 1 + len(employer_phone)))
employer phone = employer phone[["employer phone id", "employer id",
"employer phone", "employer phone ext"]]
employer phone.to sql(name='employer phone',con=engine,
if exists='append',index=False)
Construct agent attorney table and populate data:
agent attorney = df[["agent attorney name", 'agent attorney city',
'agent attorney state']]
agent_attorney = agent_attorney.drop_duplicates()
agent_attorney.insert(0, 'agent_attorney_id', range(1, 1 + len(agent_attorney)))
agent_attorney.to_sql(name='agent_attorney',con=engine,
if_exists='append',index=False)
Construct employer address book table and populate data:
employer address book = df[['employer name', 'employer address', 'employer city',
'employer state', 'employer postal code', 'employer country', 'employer province']]
employer address book = pd.merge(employer address book, employer, how='left',
on=['employer name'])
employer_address_book = pd.merge(employer_address_book, employer_address,
how='left', on=['employer_address', 'employer_city', 'employer_state',
'employer_postal_code', 'employer_country', 'employer_province'])
employer_address_book = employer_address_book.drop_duplicates()
```

```
employer_address_book = employer_address_book[["employer_id",
"employer_address_id"]]
employer_address_book.to_sql(name='employer_address_book',con=engine,
if_exists='append',index=False)
```

Construct case_submission table:

Merge with employer and agent_attorney table:

```
case_submission = df[["case_number", 'employer_name', 'employer_business_dba',
'naics_code', 'h1b_dependent', 'willful_violator', 'support_h1b', 'labor_con_agree',
"case_submitted", "decision_date", "agent_representing_employer",
"agent_attorney_name", 'agent_attorney_city', 'agent_attorney_state']]
Merge with employer table to get corresponding
case_submission = pd.merge(case_submission, employer, how='left',
on=['employer_name', 'employer_business_dba', 'h1b_dependent', 'willful_violator',
'support_h1b', 'labor_con_agree'])
case submission = case submission.drop duplicates(subset = ["case number",
"employer name"])
case submission = pd.merge(case submission, agent attorney, how='left',
on=["agent attorney name", 'agent attorney city', 'agent attorney state'])
case submission = case submission[["case number", "employer id",
"case submitted", "decision date", "agent representing employer",
"agent attorney id"]]
case submission =
case submission.rename(columns={"agent representing employer":
"agent_representing_status", "case_submitted": "case_submitted_date"})
case submission.to sql(name='case submission',con=engine,
if_exists='append',index=False)
```

Construct h1b record book table:

Merge with h1b_request_record table to get corresponding h1b_request_record_id:
h1b_record_book = df[['employer_name', 'employer_business_dba', 'h1b_dependent',
'willful_violator', 'support_h1b', 'labor_con_agree', 'total_workers', 'new_employment',
'continued_employment', 'change_previous_employment',
'new_concurrent_employment', 'change_employer', 'amended_petition']]
h1b_record_book = pd.merge(h1b_record_book, h1b_request_record, how='left',
on=['total_workers', 'new_employment', 'continued_employment',

'change_previous_employment', 'new_concurrent_employment', 'change_employer', 'amended_petition'])
h1b_record_book = pd.merge(h1b_record_book, employer, how='left', on=['employer_name', 'employer_business_dba', 'h1b_dependent', 'willful_violator', 'support_h1b', 'labor_con_agree'])
h1b_record_book = h1b_record_book[["employer_id", "h1b_request_record_id"]]
h1b_record_book = h1b_record_book.drop_duplicates()
h1b_record_book.to_sql(name='h1b_record_book',con=engine, if_exists='append',index=False)