GAME THEORY 1

Exercise 5

The exercise is due 16/5/2021 at 22:00.

A set $A \subseteq \mathbb{R}^n$ is said to be **convex** if for every $p, q \in A$ and $0 \le \lambda \le 1$, $\lambda p + (1 - \lambda)q \in A$. (In other words, if p and q are in A then the segment which connects p and q is also in A.)

- 1. Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be a family of convex sets in \mathbb{R}^n . Prove that $\bigcap_{{\alpha}\in I}A_{\alpha}$ is convex.
- 2. Let $x_1, ..., x_m \in \mathbb{R}^n$ and $\lambda_1, ..., \lambda_m \in \mathbb{R}$ such that $\lambda_i \geq 0$ for every $1 \leq i \leq m$ and $\sum_{i=1}^m \lambda_i = 1$. A linear combination of the form

$$\lambda_1 x_1 + \dots + \lambda_m x_m$$

is called a **convex combination** of $x_1, ..., x_m$. Note that the convex combinations of x_1 and x_2 is are exactly the points on the segment which connects x_1 and x_2 . Similarly, the convex combinations of x_1, x_2, x_3 are the points on the surface of the triangle whose vertices are x_1, x_2, x_3 and so on. Let $A \subseteq \mathbb{R}^n$ be a convex set and $x_1, ..., x_m \in A$. Prove that any convex combination of $x_1, ..., x_m$ is in A.

Hint: Use the fact that

$$\lambda_1 x_1 + \dots + \lambda_m x_m = \lambda_1 x_1 + (1 - \lambda_1) \left(\frac{\lambda_2}{1 - \lambda_1} x_2 + \dots + \frac{\lambda_m}{1 - \lambda_1} x_m \right)$$

whenever $\lambda_1 \neq 1$ and induction on m.

- 3. Let $A \subseteq \mathbb{R}^n$ (not necessarily convex). Prove that the following definitions for the **convex closure** conv(A) of A are equivalent:
 - (a) $\operatorname{conv}_1(A)$ is the intersection of all convex sets which contains A. That is, $\operatorname{conv}_1(A) = \bigcap_{A \subseteq B, B \text{ is convex}} B$.
 - (b) $\operatorname{conv}_2(A)$ is the minimal convex set which contains A. That is, for every $B \subseteq \mathbb{R}^n$, if B is convex and $A \subseteq B$, then $\operatorname{conv}_2(A) \subseteq B$.
 - (c) $\operatorname{conv}_3(A) := \{ \sum_{i=1}^m \lambda_i x_i \mid m \in \mathbb{N}, \lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1, x_i \in A \}$. Namely, $\operatorname{conv}_3(A)$ is the set of all convex combinations of points in A.
- 4. Let $n \in \mathbb{N}$ and $e_1, ..., e_n \in \mathbb{R}^n$ be the standard basis. Let $\Delta_n = \text{conv}(e_1, ..., e_n) \subseteq \mathbb{R}^n$. Prove that Δ_n is compact.
- 5. Prove that the convex of any finite set of points in \mathbb{R}^n is compact. **Hint:** use the previous question and the fact that the image of a compact set under a continuous function is compact.