April 11, 2022 (Due: 08:00 April 18, 2022)

- 1. Develop a quadrature rule for the integral $\int_a^b \cos(mx) f(x) dx$ such that it provides exact results for polynomials of degree up to three.
- 2. Determine the degrees of exactness of the following 2-D quadrature rules:

$$\int_0^1 \int_0^{1-y} f(x,y) \, dx \, dy \approx \frac{1}{6} \left(f\left(\frac{1}{2},0\right) + f\left(0,\frac{1}{2}\right) + f\left(\frac{1}{2},\frac{1}{2}\right) \right),$$

$$\int_0^1 \int_0^{1-y} f(x,y) \, dx \, dy \approx \frac{1}{6} \left(f\left(\frac{2}{3},\frac{1}{6}\right) + f\left(\frac{1}{6},\frac{2}{3}\right) + f\left(\frac{1}{6},\frac{1}{6}\right) \right).$$

Hint: Check whether the quadrature rules provide exact results for bivariate polynomials 1, x, y, x^2 , xy, y^2 , x^3 , x^2y , xy^2 , y^3 , ...

3. Let $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x + y \le 1, x \ge 0, y \ge 0\}$. Estimate

$$\iint_{\mathcal{D}} e^x \sin y \, dx \, dy$$

by partitioning \mathcal{D} with a triangular mesh and applying a composite quadrature rule. Compare your result with the exact one.

4. Use a linear combination of nine function values f(x+ih,y+jh) (for $i, j \in \{-1,0,1\}$) to approximate

$$\frac{\partial^2}{\partial x^2}f(x,y) + \frac{\partial^2}{\partial y^2}f(x,y)$$

(as accurate as you can). Estimate the truncation error.

5. Use Richardson extrapolation to estimate the derivative of $f(x) = x^3 e^x$ at x = 1. Keep a record for intermediate results. What happens if you iterate for many steps?