UCSC Silicon Valley Extension Advanced C Programming

Shortest Paths Algorithms

Instructor: Radhika Grover

Overview

- Shortest-paths properties
- Dijkstra's algorithm
- A* algorithm
- Grid graphs

Walks

Any route from vertex to vertex

Paths

A walk that does not include any vertex twice (but starting vertex may be same as ending vertex)

Cycle

A path that begins and ends on the same vertex

Trail

A walk that does not pass over same edge twice

Circuit

A trail that begins and ends on the same vertex

Length of a Path

Sum of the weight of edges in the path

Path from 0 to 5 Length = 6 + 4 + 3 + 10 = 23

Shortest - Paths

- Path with shortest length
- May not be unique
- Cannot contain cycles

Shortest-Path from 0 to 5 Length = 6 + 4 + 3 + 2 + 1 = 16

Shortest - Paths Problem

Find shortest-paths

All Pairs - from all source vertices to all destination vertices

Notations

w(u, v) weight of edge (u, v)

 $w(P_{xy})$ sum of weights on path P from x to y

 $\delta(u, v)$ shortest distance from u to v

shortest path from u to v

Shortest-Paths Property: Optimal subpath

Lemma: Any subpath of a shortest path is a shortest path

Given : P is the shortest path from u to v

$$\delta(u, v) = w(P) = w(P_{ux}) + w(P_{xy}) + w(P_{yy})$$

Proof by contradiction : Assume that P'_{xy} is a shortest path between x and y

Then
$$w(P') = w(P_{ux}) + w(P'_{xy}) + w(P_{yy}) < w(P)$$

=> P cannot be a shortest path and our assumption is incorrect

Shortest-Paths Property: Triangle inequality

If (u, v) is an edge, then $\delta(s, v) \le \delta(s, u) + w(u, v)$. If p is a path from u to v, then $\delta(s, v) \le \delta(s, u) + w(p)$.

Proof:

 $\delta(s, v)$ = weight of shortest path $s \sim v \leq \text{weight of any path}$ from s to v.

Weight of path $p = \delta(s, u) + w(p)$

Shortest-Paths Property: Upper - Bound

 $d\left[v\right]$ (shortest path estimate) upper bound on the weight of a shortest path from source s to v

 $d[v] \ge \delta(s, v)$ for all v

After $d[v] = \delta(s, v)$, it will never change

Shortest-Paths Property: No - Path

If $\delta(s, v) = \infty$, then $d[v] = \infty$ always

Idea: d[v] cannot be less than $\delta(s, v)$

Proof: $d[v] \ge \delta(s, v) = \infty => d[v] = \infty$

Shortest-Paths Property: Convergence

If $s \searrow u \rightarrow v$ is a shortest-path, and if $d[u] = \delta(s, u)$. Then after RELAX u = v, $d[v] = \delta(s, v)$.

Proof: Follows from optimal subpath property.

If s to u is shortest path and s to v is a shortest-path, then u to v is a shortest-path

Single - source shortestpath algorithm

1. shortest - path estimate : d[v]

$$d[v] = \infty$$
 at source

 $d[v] \ge \delta(s, v)$ as algorithm progress

2. P [v] = predecessor of v on a shortest path from source s

Relaxing an edge (u, v)

Tighter estimate of shortest-path distance of v from source

```
if (d[v] > (d[u] + w(u, v))) {
    d[v] = d[u] + w (u, v);
    P[v] = u;
}
```

Shortest-Path algorithm

Let $P = (v_0, v_1, v_2, \dots, v_k)$ be a shortest-path from $s = v_0$ to v_k . If we relax in order, (v_0, v_1) , (v_1, v_2) , (v_{k-1}, v_k) , even intermixed with other relaxations, then $d[v_k] = \delta(s, v_k)$

Proof by induction: show that $d[v_i] = \delta(s, v_i)$ after (v_{i-1}, v_i) is relaxed

Basic: i = 0, $d[v_0] = \delta(s, v_0) = \delta(s, s) = 0$

Induction Step : Assume that $d[v_{i-1}] = \delta(s, v_{i-1})$

When (v_{i-1}, v_i) is relaxed, $d[v_i] = \delta(s, v_i)$ (by convergence property)

Shortest - Path algorithm

Dijkstra's algorithm

- Weighted directed graph with non-negative weights
- Greedy but gives optimal solution

Bellman-Ford

- Weighted directed graph
- Weights may be negative

Dijkstra's algorithm

- 1. Source vertex u has minimum shortest-path estimate
- 2. Perform a BFS starting from u and get shortest-path estimates of adjacent vertices
- 3. Pick new vertex u with minimum shortest-path estimate and repeat step 2

$$Q = V - SOL$$

id 0 1 2 3 4

d 0 ∞ ∞ ∞ ∞ ∞ p -1 -1 -1 -1 -1

id	
d	
p	

$$Q = V - SOL$$

id	1	2	3	4
d	6	8	8	8
p	0	-1	0	-1

SOL = optimal solution set

id	0
d	0
p	-1

$$Q = V - SOL$$

id	1	2	3	4
d	6	8	8	8
p	0	-1	0	-1

id	0
d	0
p	-1

Q = V - SOL

id	2	3	4
d	10	7	∞
p	1	1	-1

id	0	1
d	0	6
p	-1	0

Q = V - SOL

id	2	3	4
d	10	7	∞
p	1	1	-1

id	0	1
d	0	6
p	-1	0

Q = V - SOL

id	2	4
d	10	14
p	1	3

id	0	1	3
d	0	6	7
p	-1	0	1

Q = V - SOL

id 2 4
d 10 14
p 1 3

id	0	1	3
d	0	6	7
p	-1	0	1

$$Q = V - SOL$$

id	4
d	14
р	3

id	0	1	3	2
d	0	6	7	10
p	-1	0	1	1

$$Q = V - SOL$$

id	4
d	14
p	3

id	0	1	3	2
d	0	6	7	10
p	-1	0	1	1

$$Q = V - SOL$$

id	
d	
p	

id	0	1	3	2	4
d	0	6	7	10	14
p	-1	0	1	1	3

Dijkstra's algorithm solution

id	0	1	3	2	4
a	0	6	7	10	14
p	-1	0	1	1	3

Dijkstra's algorithm pseudocode

```
Dijkstra (G, w, s){ // G is graph, w is weight, s is source vertex
    for each v ∈ V { // initialize vertices with d = ∞
      d[v] = \infty ;
      p[v] = -1;
    d[s] = 0;  //source has distance 0
    Sol = NULL; //store the solution set
    Q = v; //initialize heap Q to all vertices in G
    while Q ≠ NULL {
        u = EXTRACT-MIN (Q); // remove vertex with smallest d from Q
        Sol = Sol U \{u\}; //put u is S
        for each vertex v adjacent to u {
              RELAX (u, v, w);
```

RELAX algorithm

```
RELAX (u, v, w){
    // Relaxes edge (u, v) by tightening shortest-
    distance estimate d of vertex v
    if(d[v] > d[u] + w(u, v)){
        d[v] = d[u] + w(u, v);
        p[v] = u;
    }
}
```

Breadth-first search (non - greedy approach)

Breadth-first search (non - greedy approach)

V

V

Solution with breadth-first search (non - greedy approach)

Vertex 4 has incorrect path

Example

No, 3 cannot be discovered in Dijkstra's algorithm because 5 must be explored first

Theorem

Given G = (V, E) with non negative weight paths, d[u] = δ (s, u) \forall u \in V

Proof by induction:

Base case: Add the source vertex to solution SOL, then this vertex has the shortest path.

Hypothesis. Assume true for SOL with k vertices, where $k \ge 1$.

Let v be the next node added to SOL, and let u-v be the corresponding edge.

The shortest s-u path plus (u,v) is an s-v path of length len(s, v).

Consider any other s-v path P - we need to show that is cannot be shorter than len(s, v)

Suppose that we have another path P: s->x ->y ->v

 $len(P) >= len(s, x) + len(x, y) >= \delta(s, x) + len(x, y)$ (by inductive hypothesis)

 $>=\delta$ (s, y) $>=\delta$ (s, v) (Dijkstra chooses v instead of y)

Analysis (Dijkstra's) - Array

- 1. Extract vertex v with minimum d from array O(V) repeat V times
- 2. For each edge decrease weight d O(1) repeat at most E times

Total time complexity = $O(E + V^2)$

Analysis (Dijkstra's) - Using binary heap

1. Extract vertex V with minimum d from heap O(log V) - repeat E times

Total time complexity = O(E log V)

Dijkstra's algorithm

- Requires all nodes to be inserted initially into priority queue
- RELAX operation performs a decrease key operation
 - Heaps don't efficiently support the find operation for arbitrary nodes

- Only keep starting vertex initially in priority queue Q
- Insert a vertex into the priority queue every time it is updated by RELAX
 - Increases size of priority queue to E, but easier to implement
- Similar to Uniform Cost Search algorithm

Arrays

known[i]: true if shortest distance to vertex i is known

path[i]: predecessor of vertex i on shortest path

d[i]: shortest-distance estimate of vertex i

_	d	Path	Known
0	8	-1	F
1	8	-1	F
2	8	-1	F
3	8	-1	F
4	8	-1	F

Remove vertex with smallest d from Q(0)

Update each vertex v adjacent to 0 if known [v] is false

Remove vertex with smallest d from Q

Update each vertex v adjacent to 1 if known[v] is false

Remove vertex with smallest d from Q(3)

Update each vertex v adjacent to 3 if known[v] is false

Remove vertex with smallest d from Q(3) Known[3] is true, discard 3

Remove vertex with smallest d from Q(2)

Update vertex 4 adjacent to 2, but new distance from 2 is not shorter: so 4 is not updated

Remove vertex with smallest d from Q(4)

•	d	Path
0	0	-1
1	6	0
2	10	1
3	7	1
4	14	3

Solution

Dijkstra's algorithm

```
void dijkstra(Graph myGraph, BinaryHeap heap, bool *known, int *distance, int *path) {
        cout << "Dijkstra's algorithm" << endl;</pre>
        while (!heap.isEmpty()) {
            Node * node = heap.deleteMin();
            int u = node->value; // vertex with minimum distance
            known[u] = true; // shortest path to u has been found
            cout << "Deleted min key with id " << u << " and distance " << node->distance << " from heap" << endl;
            // check each vertex w adjacent to v in adjacency list
            ListNode *ptr = myGraph.getAdjListHead(u);
            while (ptr != NULL) {
                int v = ptr->value;
                if (!known[v]) {
                    cout << "Adjacent vertex of node with id " << u << " is " << v << endl;</pre>
                    if (distance[u]+ ptr->weight < distance[v]) {    // update distance[v] if this is shorter</pre>
                            distance[v] = distance[u] + ptr->weight;
                            path[v] = u;
                            cout << "updated distance of " << v << " to " << distance[v] << endl;</pre>
                            Node * newNode = new Node();
                            newNode->value = v;
                            newNode->distance = distance[v];
                            cout << "Inserting new node into heap " << newNode->value << " " << newNode->distance << endl;</pre>
                            heap.insert(newNode);
                            heap.print();
                ptr = ptr->next;
```


	0	1	2	3	4
0			2		
1		2	1	2	
2	2	1	S	1	2
3		2	1	2	
4			2		D

	0	1	2	3	4
0		3	2	3	
1	3	2	1	2	3
2	2	1	S	1	2
3	3	2	1	2	3
4		3	2	3	D

	0	1	2	3	4
0	4	3	2	3	4
1	3	2	1	2	3
2	2	1	S	1	2
3	3	2	1	2	3
4	4	3	2	3	D

References

- Cormen, Thomas H., et al. *Introduction to Algorithms*. The MIT Press, 2014.
- https://en.wikipedia.org/wiki/A*_search_algorithm

