AArch64 Instructions

Index by Encoding

External Registers

CONTEXTIDR_EL1, Context ID Register (EL1)

The CONTEXTIDR EL1 characteristics are:

Purpose

Identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

- The debug logic, for Linked and Unlinked Context ID matching.
- The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configuration

AArch64 System register CONTEXTIDR EL1 bits [31:0] are architecturally mapped to AArch32 System register CONTEXTIDR[31:0].

Attributes

CONTEXTIDR EL1 is a 64-bit register.

Field descriptions

03 02 01 00 39 38 37 30 33 34 33 32 31 30 49 48 47 40 43 44 43 42 41 40 39 38 37 30 33 34 33 32
RESO
NESO
PROCID
TROCID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, res0.

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

Note

In AArch32 state, when TTBCR.EAE is set to 0, **CONTEXTIDR**.ASID holds the ASID.

In AArch64 state, CONTEXTIDR_EL1 is independent of the ASID, and for the EL1&0 translation regime either TTBR0_EL1 or TTBR1_EL1 holds the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing CONTEXTIDR_EL1

When <u>HCR_EL2</u>.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CONTEXTIDR_EL1 or CONTEXTIDR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CONTEXTIDR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1101	0b0000	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CONTEXTIDR_EL1
== '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x108];
    else
        X[t, 64] = CONTEXTIDR\_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        X[t, 64] = CONTEXTIDR\_EL2;
    else
        X[t, 64] = CONTEXTIDR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = CONTEXTIDR\_EL1;
```

MSR CONTEXTIDR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1101	0b0000	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CONTEXTIDR_EL1
== '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x108] = X[t, 64];
    else
        CONTEXTIDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        CONTEXTIDR_EL2 = X[t, 64];
    else
        CONTEXTIDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    CONTEXTIDR_EL1 = X[t, 64];
```

MRS <Xt>, CONTEXTIDR EL12

op0	op1	CRn	CRm	op2
0b11	0b101	0b1101	0b0000	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
then
        X[t, 64] = NVMem[0x108];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        X[t, 64] = CONTEXTIDR\_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
```

```
if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR_EL2.E2H == '1' then
    X[t, 64] = CONTEXTIDR_EL1;
else
    UNDEFINED;
```

MSR CONTEXTIDR_EL12, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b1101	0b0000	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
then
        NVMem[0x108] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        CONTEXTIDR_EL1 = X[t, 64];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR\_EL2.E2H == '1' then
        CONTEXTIDR_EL1 = X[t, 64];
    else
        UNDEFINED;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.