a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then $\frac{1}{2\pi i} \int_{\gamma} f = \sum_{i=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k).$

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities

Theorem 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a

continuous function on
$$G^-$$
 which is analytic in G . Then
$$\max\{|f(z)|:z\in G^-\}=\max\{|f(z)|:z\in\partial G\}.$$

 $\max\{|f(z)| : z \in G^-\} = \max\{|f(z)| : z \in \partial G\}.$

 $a\alpha b\beta c\partial d\delta e \epsilon f \zeta \xi g \gamma h h h i i j j k κ λ l \ell \lambda m n η θ θ ο σ ς φφρρρο grst τ π u μν υ υ ω ω χ χ ψ <math>z \sim \infty 0$ d δ \ni