Hash Table

Dictionary

Dictionary:

- Dynamic-set data structure for storing items indexed using keys.
- Supports operations Insert, Search, and Delete.
- Applications:
 - Symbol table of a compiler.
 - Memory-management tables in operating systems.
 - Large-scale distributed systems.

Hash Tables:

- Effective way of implementing dictionaries.
- Generalization of ordinary arrays.

Hash Function

- Determines position of key in the array.
- Assume table (array) size is N
- Function f(x) maps any key x to an int between 0 and N-1

• For example, assume that N=15, that key x is a non-negative integer between 0 and MAX_INT, and hash function f(x) = x % 15.

Hash Function

Let
$$f(x) = x \% 15$$
. Then,
if $x = 25 129 35 2501 47 36$
 $f(x) = 10 9 5 11 2 6$

Storing the keys in the array is straightforward:

Thus, delete and find can be done in O(1), and also insert, except...

Collision

What happens when you try to insert: x = 65?

$$x = 65$$

$$f(x) = 5$$

This is called a collision.

Handling Collisions

- Separate Chaining
- Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing

Separate Chaining

Let each array element be the head of a chain.

Where would you store: 29, 16, 14, 99, 127?

Separate Chaining

Let each array element be the head of a chain:

Where would you store: 29, 16, 14, 99, 127?

New keys go at the front of the relevant chain.

Separate Chaining: Disadvantages

- Parts of the array might never be used.
- As chains get longer, search time increases to O(n) in the worst case.
- Constructing new chain nodes is relatively expensive (still constant time, but the constant is high).
- Is there a way to use the "unused" space in the array instead of using chains to make more space?

Let key x be stored in element f(x)=t of the array

What do you do in case of a collision?

If the hash table is *not full*, attempt to store key in the next array element (in this case (t+1)%N, (t+2)%N, (t+3)%N ...)

until you find an empty slot.

Where do you store 65?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 47 35 36 65 129 25 2501
$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad$$
 attempts

Where would you store: 29?

If the hash table is *not full*, attempt to store key in array elements (t+1)%N, (t+2)%N, ...

Where would you store: 16?

If the hash table is *not full*, attempt to store key in array elements (t+1)%N, (t+2)%N, ...

Where would you store: 14?

If the hash table is *not full*, attempt to store key in array elements (t+1)%N, (t+2)%N, ...

Where would you store: 99?

If the hash table is *not full*, attempt to store key in array elements (t+1)%N, (t+2)%N, ...

Where would you store: 127?

If the hash table is *not full*, attempt to store key in array elements (t+1)%N, (t+2)%N, ...

- Eliminates need for separate data structures (chains), and the cost of constructing nodes.
- Leads to problem of clustering. Elements tend to *cluster* in dense intervals in the array.

```
••••••
```

- Search efficiency problem remains.
- Deletion becomes trickier....

Deletion problem

- H=KEY MOD 10
- Insert 47, 57, 68, 18, 67

0	
1	
2	
2 3 4 5 6 7	
4	
5	
6	
8	
9	

0	18
1	67
2	
2 3 4 5 6	
4	
5	
6	
7	47
8	57
9	68

Deletion problem

- H=KEY MOD 10
- Now say you have deleted 57.
- Now when you will go for 67 deletion, the cursor will look at 7th position. Not match. It will move to next 8th position. No data there. So it will think that 67 is not there. As correct position for 67 should be 8th position.

0	18
1	67
2	
2 3 4 5 6	
4	
5	
6	
7	47
8	
9	68

Deletion Problem -- SOLUTION

- "Lazy" deletion
- Each cell is in one of 3 possible states:
 - active
 - empty
 - deleted
- For Find or Delete
 - only stop search when EMPTY state detected (not DELETED)

Deletion-Aware Algorithms

• Insert

- Cell empty or deleted
- Cell active

insert at H,
$$cell = active$$

H = (H + 1) mod TS

Find

- cell empty
- cell deleted
- cell active

NOT found

$$H = (H + 1) \mod TS$$

if key == key in cell -> FOUND
else
$$H = (H + 1) \mod TS$$

Delete

- cell active; key != key in cell
- cell active; key == key in cell
- cell deleted
- cell empty

$$H = (H + 1) \mod TS$$

$$H = (H + 1) \mod TS$$

NOT found

Let key x be stored in element f(x)=t of the array

What do you do in case of a collision?

If the hash table is *not full*, attempt to store key in array elements $(t+1^2)\%N$, $(t+2^2)\%N$, $(t+3^2)\%N$... until you find an empty slot.

Where do you store 65 ? f(65)=t=5 (reason 65 mod 15=5) Check for 5, $(5+1^2=6)$, $(5+2^2=9)$, $(5+3^2=14)$

Where would you store: 29?

If the hash table is *not full*, attempt to store key in array elements $(t+1^2)\%N$, $(t+2^2)\%N$... Check for 14, $(14+1^2=15, 15\%15=0)$

Where would you store: 16?

If the hash table is *not full*, attempt to store key in array elements $(t+1^2)\%N$, $(t+2^2)\%N$...

Check for 1

Where would you store: 14?

If the hash table is *not full*, attempt to store key in array elements $(t+1^2)\%N$, $(t+2^2)\%N$...

Where would you store: 99?

If the hash table is *not full*, attempt to store key in array elements $(t+1^2)\%N$, $(t+2^2)\%N$... Check for 9, $(9+1^2=10, 10\%15=10)$, $(9+2^2=13, 13\%15=13)$

Where would you store: 127?

If the hash table is *not full*, attempt to store key in array elements $(t+1^2)\%N$, $(t+2^2)\%N$... *Check for 7*

Where would you store: 127?

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 29 16 47 14 35 36 127 129 25 2501 99 65 t attempts
```

- Tends to distribute keys better than linear probing
- Runs the risk of an infinite loop on insertion, unless precautions are taken.
- E.g., consider inserting the key 16 into a table of size 16, with positions 0, 1, 4 and 9 already occupied.
- Therefore, table size should be prime.

- Use a hash function for the decrement value
 - Hash(key, i) = $H_1(\text{key}) (H_2(\text{key}) * i)$
- Now the decrement is a function of the key
 - The slots visited by the hash function will vary even if the initial slot was the same
 - Avoids clustering
- Theoretically interesting, but in practice slower than quadratic probing, because of the need to evaluate a second hash function.

Let key x be stored in element f(x)=t of the array

What do you do in case of a collision?

Define a second hash function $f_2(x)=d$. Attempt to store key in array elements (t+d)%N, (t+2d)%N, (t+3d)%N...

until you find an empty slot.

Typical second hash function

$$f_2(x)=R-(x\% R)$$

where R is a prime number, $R < N (max \ size)$

Where do you store 65? f(65)=t=5

Let $f_2(x) = 11 - (x \% 11)$, $f_2(65) = 11 - (65\%11) = 11 - 10 = 1$, So, d = 1

Note: Prime number R=11, max size N=15

Attempt to store key in array elements (t+d)%N, (t+2d)%N, (t+3d)%N ... So try for 5, (5+1)%15=6, (5+2)%15=7

Array:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
47 35 36 65 129 25 2501
↑↑↑↑
t t+1 t+2
attempts
```

If the hash table is *not full*, attempt to store key in array elements (t+d)%N, (t+2d)%N ...

Let
$$f_2(x) = 11 - (x \% 11)$$
, $f_2(29) = 11 - (29\%11) = 11 - 7 = 4$
 $f_2(29) = d = 4$

Where would you store: 29?

Check 29%15=14

Array:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
47 35 36 65 129 25 2501 29
t
```

If the hash table is *not full*, attempt to store key in array elements (t+d)%N, (t+d)%N ...

Let
$$f_2(x) = 11 - (x \% 11)$$
 $f_2(16) = d = 6$

Where would you store: 16?

Check 16% 15=1

Array:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
16 47 35 36 65 129 25 2501 29
t
attempt
```

Where would you store: 14?

If the hash table is *not full*, attempt to store key in array elements (t+d)%N, (t+d)%N ...

Let
$$f_2(x) = 11 - (x \% 11)$$
 $f_2(14) = d = 8$
Check $14\% 15 = 14$, $(14+1*8)\% 15 = 7$, $(14+2*8)\% 15 = 0$

Array:

Where would you store: 99?

If the hash table is *not full*, attempt to store key in array elements (t+d)%N, (t+d)%N ... Let $f_2(x) = 11 - (x \% 11)$ $f_2(99) = d = 11$ Check 99% 15=9, (99+1*11)% 15=5, (99+2*11)%15=1, (99+3*11)%15=12Array: 14 29 ++22 t+11 t+33 attempts

Where would you store: 127?

If the hash table is *not full*, attempt to store key in array elements (t+d)%N, (t+d)%N ...

Let
$$f_2(x) = 11 - (x \% 11)$$
 $f_2(127) = d = 5$
Check $127\%15 = 7$, $(127+1*5)\%15 = 12$, $(127+2*5)\%15 = 2$, $(127+3*5)\%15 = 7$, $(127+4*5)\%15 = 12$, $(127+5*5)\%15 = 2$

Array:

Infinite loop!

Performance

Load factor = % of table that's occupied.

Unsuccessful Search

