Funció contractiva

Marco Praderio 1361525

Sigui (E,d) un espai mètric complet i $g: E \to E$ una aplicació tal que, per algun m pertanyent a \mathbb{N}, g^m és contractiva amb constant de contracció k < 1 (donats u,v pertanyents a E aleshores $\mathrm{d}(g(u),g(v)) \le k\mathrm{d}(u,v)$). Demostreu que g te un únic punt fix α pertanyent a E i, per a cada x_0 pertanyent a E, α és el límit de $n \to \infty$ de x_n on $x_n = g(x_{n-1})$ per a cada n pertanyent a \mathbb{N} .

Per realitzar aquesta demostració serà necessari demostrar abans el següent lema immediat. Tota funció contractiva és continua.

Agafem (E,d) un espai mètric i g una funció contractiva amb constant de contracció k<1 (donats u,v pertanyents a E aleshores $\mathrm{d}(g(u),g(v))\leq k\mathrm{d}(u,v)$). tenim per definició que per a tot $\varepsilon>0$ si $\mathrm{d}(u,v)<\frac{\varepsilon}{k}$ aleshores $\mathrm{d}(g(u),g(v))\leq k\mathrm{d}(u,v)<\varepsilon$ i, per tant, g és continua.

Ara podem començar amb la demostració

Agafem x_0 un punt Qualsevol pertanyent a E i la successió $\{x_n\}$ definida de forma recursiva per $x_{n+1} = g^m(x_n)$ i obtindrem que, per a tot s,t,n_0 pertanyents a $\mathbb N$ tals que $s>t>n_0$ es complirà

$$d(x_s, x_t) \le \sum_{i=0}^{s-t-1} d(x_{t+i}, x_{t+i+1}) \le \sum_{i=0}^{s-t-1} k^i d(x_t, x_{t+1}) \le d(x_t, x_{t+1}) \sum_{i=0}^{\infty} k^i =$$

$$= \frac{d(x_t, x_{t+1})}{1-k} \le fracd(x_{n_0}, x_{n_0+1}1 - k \le \frac{d(x, g(x))k^{n_0}}{1-k}$$

per tant, com que podem fer $\frac{\mathrm{d}(x,g(x))k^{n_0}}{1-k}$ arbitràriament petit solament augmentant el valor de n_0 aleshores queda demostrat que la successió $\{x_n\}$ és de Cauchy i, com que E és complet, aleshores existeix el límit d'aquesta sèrie que anomenarem α . A més a més, com que g^m és contractiva i, per tant, continua, es compleix

$$g^{m}(\alpha) = g^{m}(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} g^{m}(x_n) = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n = \alpha$$

per tant α és un punt fix per g^m . A més a més és l'únic punt fix per g^m en quant, si existís β un altre punt fix diferent tindríem que $d(\alpha, \beta) > 0$ i es compliria

$$d(\alpha, \beta) = d(g^m(\alpha), g^m(\beta)) \le kd(\alpha, \beta) < d(\alpha, \beta)$$

i arribaríem a contradicció. Ara bé, a també és un punt fix per g perquè en cas contrari tindríem $g(\alpha) = \beta$ amb α diferent de β i $g^m(\beta) = g^{m+1}(\alpha) = g(\alpha) = \beta$ i tindríem un punt fix per g^m diferent de α cosa que acabem de veure que no és possible.

Per últim cal dir que α és l'únic punt fix per g en quant tots els punts fixes per g també ho són per g^m i tan sols tenim un punt fix per g^m .