769 A Appendix

Proposition 1. Given a temporal user query ρ and a trained MARL policy π , if Algorithm 1 returns YES, then the query ρ must be feasible under the policy π ; otherwise, Algorithm 1 generates correct and complete explanations \mathcal{E} .

774 *Proof.* We prove the following two cases.

Case 1: When Algorithm 1 returns YES, the policy ab-775 straction MMDP \mathcal{M} or the updated MMDP \mathcal{M}' satisfies the 776 PCTL* formula φ encoding the user query ρ , indicating that 777 there must exist a path through \mathcal{M} or \mathcal{M}' conforms with ρ . By construction, every abstract MMDP transition (s, a, s') in 779 \mathcal{M} or \mathcal{M}' with non-zero probability maps to at least one sam-780 pled decision $(\mathbf{x}, \mathbf{a}, \mathbf{x}')$ of the given MARL policy π . Thus, 781 there must exist an execution of policy π that conforms with 782 the user query ρ . By definition, the user query ρ is feasible 783 under the given MARL policy π . 784

Case 2: Algorithm 1 returns explanations \mathcal{E} generated via 785 Algorithm 3. As described in Section 4.4, Algorithm 3 termi-786 nates when all failures in the user query ρ have been explained 787 and fixed. Given a finite-length temporal query ρ , there is a fi-788 nite number of failures. For any failure in the query, if the tar-789 get states set V is non-empty, then the failure must be fixable 790 using a Quine-McCluskey minterm that represents a target state where the failed task is completed. If \mathcal{V} is empty, then 792 the failure is removed from the query. Thus, the termination 793 of Algorithm 3 is guaranteed. By definition, the generated 794 explanations are correct (i.e., identifying the causes of one 795 or more failures in ρ) and *complete* (i.e., finding the reasons 796 behind all failures in ρ). 797