```
plot(Ou(1,:),Ou(2,:),'-*b',Ov(1,:),Ov(2,:),'-*b',...
    Ow(1,:),Ow(2,:),'-*g')
text(u(1)/2,u(2)/2,'\bf u')
text(v(1)/2,v(2)/2,'bf v')
text(w(1)/2,w(2)/2,'bf w')
hold on
plot(PP1(1,:),PP1(2,:),':r')
grid on
title(['u=[',num2str(u(1)),';',num2str(u(2)),'],',...
   v=[',num2str(v(1)),';',num2str(v(2)),'],',...
   'w=[',num2str(w(1)),';',num2str(w(2)),']'])
xlabel(['w = (',num2str(xx(1),2),...]))
    ') u + (',num2str(xx(2),2),') v'])
axis square
a=axis;
axis([min(a([1,3])), max(a([2,4])), min(a([1,3])), max(a([2,4]))])
hold off
```

Una vez que se haya escrito la función en un archivo con nombre *lincomb.m*, dé el comando doc lincomb para tener una descripción de este archivo con extensión *m*.

Sean \mathbf{u} y \mathbf{v} dos vectores de 2×1 que no son paralelos. Sea $\mathbf{w}=5*(2*rand(2,1-1))$. Dé lincomb $(\mathbf{u},\mathbf{v},\mathbf{w})$. Primero verá graficados \mathbf{u} , \mathbf{v} y \mathbf{w} . Oprima cualquier tecla y aparecerá la geometría de \mathbf{w} escrita como una combinación lineal de \mathbf{u} y \mathbf{v} . Repita para diferentes vectores \mathbf{w} , \mathbf{u} y \mathbf{v} .

4.2 El producto escalar y las proyecciones en \mathbb{R}^2

En la sección 2.2 se definió el producto escalar de dos vectores. Si $\mathbf{u} = (a_1, b_1)$ y v (a_2, b_2) , entonces

$$\mathbf{u} \cdot \mathbf{v} = a_1 a_2 + b_1 b_2 \tag{4.2.1}$$

Ahora se verá la interpretación geométrica del producto escalar.

Definición 4.2.1

Ángulo entre vectores

Sean ${\bf u}$ y ${\bf v}$ dos vectores diferentes de cero. Entonces el **ángulo** ${\boldsymbol \varphi}$ **entre u** y ${\bf v}$ está definido como el ángulo no negativo más pequeño* entre las representaciones de ${\bf u}$ y ${\bf v}$ que tienen el origen como punto inicial. Si ${\bf u}=\alpha {\bf v}$ para algún escalar α , entonces $\varphi=0$ si $\alpha>0$ y $\varphi=\pi$ si $\alpha<0$.

Esta definición se ilustra en la figura 4.11. Observe que φ siempre se puede elegir para que sea un ángulo no negativo en el intervalo $[0, \pi]$.

^{*} Este ángulo estará en el intervalo $[0, \pi]$.