1. (24%) Let A be a randomized algorithm whose output is either "Yes" or "No." Everytime we run A on an input x, with probability

$$\begin{cases} 2/3 & \mathcal{A}(x) \text{ is correct} \\ 1/3 & \mathcal{A}(x) \text{ is incorrect} \end{cases}$$

where the correctness of $\mathcal{A}(x)$ only relies on the random seed. You may assume that the outcomes of multiple execution of $\mathcal{A}(x)$ are mutually independent. Give an algorithm that can decide whether x is a "Yes"-instance or an "No"-instance with probability at least $1-\varepsilon$, analyze the running time, and prove its correctness. Note that your algorithm has running time as a function of ε . The faster your algorithm runs, the more credit you get.

- 2. (20%) Given an input stream of n real numbers, devise an O(1/c)-pass $O(n^{1/c} \log n)$ space deterministic algorithm for every constant integer $c \ge 1$ to compute the k-th smallest number in the input where k is some integer in [1, n].
- 3. (10%+10%) Let X_1, X_2, \ldots, X_k be k random variables.
 - (a) For each integer $k \geq 2$, prove or disprove there exist X_1, X_2, \ldots, X_k that are pairwise independent but not mutually independent.
 - (b) Let $X = \sum_{i=1}^{k} X_i$ where X_1, X_2, \dots, X_k are pairwise independent. Prove that

$$Var[X] = \sum_{i=1}^{k} Var[X_i].$$

- 4. (10%+10%) Let G=(V,E) be a simple undirected graph in which each edge e has weight $\omega(e)$. Let $\mathrm{MSF}(G)$ be the set of edges in the minimum spanning forest of G and let $\mu(G)=\sum_{e\in\mathrm{MSF}(G)}\omega(e)$.
 - (a) Prove that $\mu(G) = \mu\left(G' = (V, (E \setminus E_r) \cup F_r)\right)$ where E_r is any subset of E and $F_r = \mathsf{MSF}(G_r = (V, E_r))$.
 - (b) Devise an $O((m+n)\log n)$ -time semi-streaming algorithm to compute the minimum spanning forest for any n-node m-edge undirected graph. That is, m edges are given one by one as the input, and the working space is restricted to $O(n \operatorname{polylog} n)$.
- 5. (16%) Let G be an arbitrary n-node m-edge undirected graph. Give a deterministic algorithm that can return n different cuts of G so that each cut partition the node set into two and the number of crossing edges is at least $(1 \varepsilon)m/2$ for an arbitrary small constant $\varepsilon > 0$.