

ATIVIDADE

# Projeto Oficina Maker

Felipe Ferro Ramires, Michael da Silva e Verônica Scheifer

# Sumário

| 1. Contextualização (Cenário do Projeto) | 3  |
|------------------------------------------|----|
| 2. Arquitetura do Projeto                | 3  |
| 3. Planejamento                          | 4  |
| 4. Coleta de Dados                       | 9  |
| 5. Preparação e Análise dos Dados        | 30 |
| 6. Modelagem, Treinamento e Otimização   | 61 |
| 7. Conclusão                             | 85 |
| 8. Referências                           | 86 |

# 1. Contextualização (Cenário do Projeto)

Após o incidente de segurança que expôs diversos dados sigilosos de clientes que o banco de Tóquio sofreu, foram designados vários inquéritos. O banco foi julgado e condenado a pagar uma multa milionária, onde o juiz compreendeu que não aconteceu um ato de má fé, mas que demonstrou negligência e portanto, condenou o banco a ressarcir os clientes por danos morais e também reverteu parte da multa para fins sociais. Para isso, o banco solicitou a diversos analistas e diretores o auxílio na tomada de decisões.

A nossa equipe é uma das responsáveis por realizar um estudo de Data Science, que foi definido após diversas reuniões com os diretores do banco para contribuir na tomada de decisões para investimento em uma atuação com fins sociais.

# 2. Arquitetura do Projeto

Com base no cenário apresentado pelo banco de Tóquio, a arquitetura apresentada pela disciplina que será seguida no projeto está representada na figura a seguir, a qual demonstra as principais atividades que serão realizadas durante todo o desenvolvimento do projeto.



Fonte: Template para material de apoio da disciplina Oficina Maker.

### 3. Planejamento

A primeira etapa do projeto é o planejamento, onde o grupo busca entender o contexto apresentado pelo problema a ser solucionado durante o projeto e verificar quais serão os principais caminhos a serem seguidos nas próximas semanas. Além de coletar todos os requisitos necessários para a definição do escopo e fazer a seleção do dataset e a construção do cronograma detalhado.

#### • Cronograma Detalhado:

| ID  | FASE                           | DESCRIÇÃO DA ATIVIDADE                                                                                                                 | INÍCIO   | TÉRMINO  |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| 1   | Planejamento                   | Planejamento de todas as semanas do projeto                                                                                            | 03/10/22 | 09/10/22 |
| 1.2 | Planejamento                   | Entendimento do problema                                                                                                               | 03/10/22 | 09/10/22 |
| 1.3 | Planejamento                   | Coleta de requisitos e definição do escopo                                                                                             | 03/10/22 | 09/10/22 |
| 1.4 | Planejamento                   | Seleção do Dataset                                                                                                                     | 03/10/22 | 09/10/22 |
| 2   | Coleta dos Dados               | Análise prévia dos dados                                                                                                               | 10/10/22 | 16/10/22 |
| 2.1 | Coleta dos Dados               | Análise das variáveis presentes no dataset                                                                                             | 10/10/22 | 16/10/22 |
| 2.2 | Coleta dos Dados               | Análise dos tipos de dados                                                                                                             | 10/10/22 | 16/10/22 |
| 2.3 | Coleta dos Dados               | Análise prévia para entender os dados presentes                                                                                        | 10/10/22 | 16/10/22 |
| 2.4 | Coleta dos Dados               | Escolha do framework de Big Data a ser utilizado para preparação e análise                                                             | 10/10/22 | 16/10/22 |
| 2.5 | Coleta dos Dados               | Construção do cronograma detalhado do projeto                                                                                          | 10/10/22 | 16/10/22 |
| 3   | Preparação e Análise dos Dados | Realização da análise exploratória dos dados (métricas de estatística descritiva, medidas de posição e dispersão, remoção de outliers) | 17/10/22 | 30/10/22 |
| 3.1 | Preparação e Análise dos Dados | Escolha e descrição dos principais experimentos de Big Data a serem realizados                                                         | 17/10/22 | 30/10/22 |
| 3.2 | Preparação e Análise dos Dados | Realização dos experimentos de Big Data utilizando 3 técnicas diferentes e resultados das primeiras perguntas selecionadas             | 17/10/22 | 30/10/22 |
| 3.3 | Preparação e Análise dos Dados | Entrega do relatório e projeto parcial (Somativa 1)                                                                                    | 17/10/22 | 30/10/22 |
| 4   | Modelagem e Treinamento        | Seleção do modelo que será utilizado                                                                                                   | 31/10/22 | 13/11/22 |
| 4.1 | Modelagem e Treinamento        | Construção e aplicação do modelo nas amostras selecionadas                                                                             | 31/10/22 | 13/11/22 |
| 4.2 | Modelagem e Treinamento        | Avaliação das principais estatísticas do modelo                                                                                        | 31/10/22 | 13/11/22 |
| 5   | Otimização do Modelo           | Realização de novos testes e otimização do modelo                                                                                      | 31/10/22 | 13/11/22 |
| 5.1 | Otimização do Modelo           | Reavaliação das principais estatísticas do modelo                                                                                      | 31/10/22 | 13/11/22 |
| 6   | Integração                     | Avaliação dos resultados e benefícios do projeto                                                                                       | 14/11/22 | 27/11/22 |
| 6.1 | Integração                     | Construção da conclusão                                                                                                                | 14/11/22 | 27/11/22 |
| 6.2 | Integração                     | Últimos ajustes no relatório final                                                                                                     | 14/11/22 | 27/11/22 |
| 6.3 | Integração                     | Criação do vídeo com os principais aspectos do projeto, relatório e resultados obtidos                                                 | 14/11/22 | 27/11/22 |
| 6.4 | Integração                     | Entrega do projeto (Somativa 2)                                                                                                        | 14/11/22 | 27/11/22 |

#### • Descrição do dataset:

o fonte/origem;

O dataset selecionado foi o <u>SiGesGuarda</u>, disponibilizado pela Prefeitura Municipal de Curitiba no Estado do Paraná – Brasil.

o apresentação do cenário (dataset);

O dataset é composto por dados das ocorrências que são recebidas e atendidas pela Guarda Municipal de Curitiba. O órgão responsável é a Defesa Social e Trânsito. O principal responsável é Sergio Roberto da Silva Cruz. O dataset possui uma frequência de atualização mensal, sendo um espectro temporal de 2009 até o momento da extração.

#### o tipo do dataset (semi ou não estruturado);

O dataset é semi estruturado, pois possui uma estrutura minimamente definida em arquivos csv ou xls, mas é necessário fazer um trabalho de tratamento, transformação e limpeza para que os dados estejam prontos para serem explorados e analisados.

o descrição do dataset (número de instâncias, variáveis, tipos de dado etc.);

O csv selecionado para análise que é referente ao mês de outubro de 2022 possui ao todo 35 colunas x 419072 linhas, com 8657547 dados. O dataset todo é composto por dados do tipo object, mas ao interpretar podemos ver alguns dados que podem ser transformados para tipos como datetime e boolean, por exemplo.

Alguns tipos de variáveis também podem ser percebidas: quantitativa contínua, como data, qualitativa nominal, como região e a qualitativa ordinal, ordinal como tipo de ocorrência.

```
RangeIndex: 419072 entries, 0 to 419071
Data columns (total 35 columns):
0
    ATENDIMENTO ANO
                               418983 non-null
                                                object
1
    ATENDIMENTO_BAIRRO_NOME
                               418927 non-null object
    EQUIPAMENTO URBANO NOME
2
                               150029 non-null
                                                object
    FLAG_EQUIPAMENTO URBANO
3
                               419072 non-null object
4
    FLAG_FLAGRANTE
                               419072 non-null object
5
    LOGRADOURO NOME
                               419072 non-null
                                                object
6
    NATUREZA1 DEFESA CIVIL
                               419072 non-null object
```

```
7
    NATUREZA1 DESCRICAO
                               419072 non-null object
8
    NATUREZA2_DEFESA_CIVIL
                               21842 non-null
                                                object
    NATUREZA2 DESCRICAO
                                                object
9
                               21842 non-null
10 NATUREZA3 DEFESA CIVIL
                               1646 non-null
                                                object
    NATUREZA3 DESCRICAO
                               1646 non-null
                                                object
12 NATUREZA4_DEFESA_CIVIL
                               280 non-null
                                                object
13 NATUREZA4 DESCRICAO
                               280 non-null
                                                object
14 NATUREZA5 DEFESA CIVIL
                               62 non-null
                                                object
15 NATUREZA5 DESCRICAO
                               62 non-null
                                                object
                               289866 non-null
16 SUBCATEGORIA1 DESCRICAO
                                                object
17 SUBCATEGORIA2 DESCRICAO
                               13447 non-null
                                                object
18 SUBCATEGORIA3 DESCRICAO
                               939 non-null
                                                object
19 SUBCATEGORIA4 DESCRICAO
                               135 non-null
                                                object
20 SUBCATEGORIA5 DESCRICAO
                               31 non-null
                                                object
21 OCORRENCIA_ANO
                               419072 non-null object
22 OCORRENCIA_CODIGO
                               419072 non-null
                                               object
23 OCORRENCIA DATA
                               419072 non-null object
24 OCORRENCIA_DIA_SEMANA
                               419072 non-null object
                               419072 non-null object
25 OCORRENCIA HORA
26 OCORRENCIA MES
                               419072 non-null object
27 OPERACAO DESCRICAO
                               306849 non-null object
28 ORIGEM_CHAMADO_DESCRICAO
                               419072 non-null object
29 REGIONAL FATO NOME
                               419061 non-null object
30 SECRETARIA NOME
                               419072 non-null object
31 SECRETARIA SIGLA
                               419072 non-null object
32 SERVICO_NOME
                               419072 non-null object
33 SITUACAO EQUIPE DESCRICAO 293395 non-null
                                                object
34 NUMERO_PROTOCOLO_156
                               12110 non-null
                                                object
dtypes: object(35)
```

#### o manipulação prévia do dataset;

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy import stats as sp

df = pd.read_csv("/content/2022-10-01_sigesguarda_-_Base_de_Dados.csv",
    sep=';', encoding='latin-1')
```

```
df.head()

df.describe()

df.info()
```

| FAZENDINHA BOSQUE DA FAZENDINHA SIM NÃO CARLOS KLEMTZ  UBERABA NaN NÃO NÃO DE PAULA MOURA BRITO  SÍTIO CERCADO NAN NÃO NÃO CAVALCANTI DE ALBUQUERQUE                    | df. | ↑ ↓ ⇔ 🗏 ‡ !           |                 |                         |                         |                         |                |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|-----------------|-------------------------|-------------------------|-------------------------|----------------|-----------------|
| FAZENDINHA BOSQUE DA FAZENDINHA SIM NÃO CARLOS KLEMTZ  UBERABA NaN NÃO NÃO DE PAULA MOURA BRITO  SÍTIO CERCADO NaN NÃO NÃO CAVALCANTI DE ALBUQUERQUE ALBUQUERQUE CAPLOS |     | QUANTIDADE_OCORRENCIA | ATENDIMENTO_ANO | ATENDIMENTO_BAIRRO_NOME | EQUIPAMENTO_URBANO_NOME | FLAG_EQUIPAMENTO_URBANO | FLAG_FLAGRANTE | LOGRADOURO_NOME |
| UBERABA NaN NÃO NÃO DO TO PAULA MOURA BRITCE SÍTIO CERCADO NAN NÃO NÃO NÃO CAVALCANTI DE ALBUQUERQUE                                                                    | 0   | 1                     | 2009.0          | CIDADE INDUSTRIAL       | NaN                     | NÃO                     | NÃO            |                 |
| UBERABA NAN NÃO NÃO DE PAUL<br>MOURA BRITC<br>SÍTIO CERCADO NAN NÃO NÃO CAVALCANT DI<br>ALBUQUERQUI                                                                     | 1   | 1                     | 2009.0          | FAZENDINHA              | BOSQUE DA FAZENDINHA    | SIM                     | NÃO            |                 |
| SÍTIO CERCADO NAN NÃO NÃO CAVALCANTI D ALBUQUERQU                                                                                                                       | 2   | 1                     | 2009.0          | UBERABA                 | NaN                     | NÃO                     | NÃO            | DE PAUL         |
| CARLO                                                                                                                                                                   | 3   | 1                     | 2009.0          | SÍTIO CERCADO           | NaN                     | NÃO                     | NÃO            | CAVALCANTI D    |
| TATUQUARA CENTRO DE ESPORTE E SIM NÃO MUNHOZ D<br>LAZER SANTA RITA SIM NÃO MUNHOZ D<br>ROCH                                                                             | 4   | 1                     | 2009.0          | TATUQUARA               |                         | SIM                     | NÃO            |                 |
| LAZER SANTA RITA                                                                                                                                                        |     | ows × 36 columns      | 2000.0          | Moderno                 | LAZER SANTA RITA        | O.III                   | TWAC           |                 |

# os df.info()

C <<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 419072 entries, 0 to 419071
 Data columns (total 35 columns):

| #  | Column                  | Non-Null Count  | Dtype  |
|----|-------------------------|-----------------|--------|
|    |                         |                 |        |
| 0  | ATENDIMENTO_ANO         | 418983 non-null | object |
| 1  | ATENDIMENTO_BAIRRO_NOME | 418927 non-null | object |
| 2  | EQUIPAMENTO_URBANO_NOME | 150029 non-null | object |
| 3  | FLAG_EQUIPAMENTO_URBANO | 419072 non-null | object |
| 4  | FLAG_FLAGRANTE          | 419072 non-null | object |
| 5  | LOGRADOURO_NOME         | 419072 non-null | object |
| 6  | NATUREZA1_DEFESA_CIVIL  | 419072 non-null | object |
| 7  | NATUREZA1_DESCRICAO     | 419072 non-null | object |
| 8  | NATUREZA2_DEFESA_CIVIL  | 21842 non-null  | object |
| 9  | NATUREZA2_DESCRICAO     | 21842 non-null  | object |
| 10 | NATUREZA3_DEFESA_CIVIL  | 1646 non-null   | object |
| 11 | NATUREZA3_DESCRICAO     | 1646 non-null   | object |
| 12 | NATUREZA4_DEFESA_CIVIL  | 280 non-null    | object |
| 13 | NATUREZA4_DESCRICAO     | 280 non-null    | object |
| 14 | NATUREZA5_DEFESA_CIVIL  | 62 non-null     | object |
| 15 | NATUREZA5_DESCRICAO     | 62 non-null     | object |
| 16 | SUBCATEGORIA1_DESCRICAO | 289866 non-null | object |
| 17 | SUBCATEGORIA2_DESCRICAO | 13447 non-null  | object |



#### o descrição das atividades realizadas no dataset;

A primeira manipulação no dataset foi a exclusão da primeira linha vazia que havia e também o acréscimo da coluna QUANTIDADE\_OCORRENCIA populada com o valor 1 para cada linha, já que cada linha representa o valor de 1 ocorrência, que irá auxiliar nas somas e agrupamentos realizadas no Python.

| QUANTIDADE_OCORRENCIA |      |                             |        |     |           | UREZ/ NATUREZ/ NATUREZ/ NATUREZ/ NATUREZ/ NATUREZ |       |
|-----------------------|------|-----------------------------|--------|-----|-----------|---------------------------------------------------|-------|
| 1                     |      | CIDADE INDUSTRIA            |        | NÃO | DAVI XAVI | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | FAZENDIN BOSQU              |        | NÃO | CARLOS K  | 0 Roubo                                           | Tran  |
| 1                     | 2009 | UBERABA                     | NÃO    | NÃO | DOUTOR J  | 0 Animais                                         | Cão   |
| 1                     | 2009 | SÍTIO CERCADO               | NÃO    | NÃO | EDGARD C  | 0 Animais                                         | Cão   |
| 1                     | 2009 | TATUQUA CENTRO              | DSIM   | NÃO | CARLOS N  | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | SÍTIO CERCADO               | NÃO    | NÃO | HUSSEIN I | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | SANTA CÂ CEMITÉ             | RICSIM | NÃO | NOVA DE   | 0 Trânsito                                        | Acid  |
| 1                     | 2009 | BOQUEIR <sup>2</sup> CENTRO | DSIM   | NÃO | CARLOS E  | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | CENTRO                      | NÃO    | SIM | PRESIDEN" | 0 Roubo                                           | Tran  |
| 1                     | 2009 | BOA VISTA CENTRO            | NSIM   | NÃO | SANTA ED  | 0 Invasão                                         | Inva  |
| 1                     | 2009 | TABOÃO PARQUI               | TSIM   | NÃO | OSWALDO   | 0 Apoio                                           | Apoi  |
| 1                     | 2009 | CENTRO                      | NÃO    | NÃO | TOBIAS DE | 0 Fundada Suspeita (Abordagem)                    |       |
| 1                     | 2009 | CENTRO                      | NÃO    | NÃO | TIRADENT  | O Substância Ilícita                              | Tráfi |
| 1                     | 2009 | CENTRO                      | NÃO    | NÃO | TOBIAS DE | 0 Atitude Suspeita                                |       |
| 1                     | 2009 | CIDADE INDUSTRIA            | AL NÃO | NÃO | MARIA HC  | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | XAXIM                       | NÃO    | NÃO | 1 DE MAIC | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | UBERABA LICEU D             | E (SIM | NÃO | OLINDO C  | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | PILARZINH CASA TI           | NCSIM  | NÃO | FREDOLIN  | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | REBOUÇAS                    | NÃO    | NÃO | ROCKEFEL  | 0 Alarmes                                         | Disp  |
| 1                     | 2009 | ÁGUA VERCATI ÁG             | iU/SIM | NÃO | ÁGUA VEF  | 0 Alarmes                                         | Disp  |

Após essa etapa carregou-se o csv no Google Colab para iniciar a etapa de trabalho diretamente na linguagem de programação Python. Para ler o csv importou-se a biblioteca de pandas que permite a manipulação dos dados e utilizou-se a função read csv() que lê o arquivo csv.

A primeira função utilizada para observar os dados foi a head() que apresenta por default os 5 primeiros registros de cada coluna do dataframe e assim pode-se

verificar se os dados foram carregados da forma correta e separados em colunas como em um arquivo excel.

A segunda função é a info() que mostra a quantidade de registros no arquivo, bem como a quantidade de colunas e dados não nulos em cada uma das colunas e também o tipo de dado presente em cada.

A terceira função para ter uma visão prévia dos dados é a describe() que apresenta algumas estatísticas de cada uma das colunas presentes no dataset.

#### 4. Coleta de Dados

#### Descrição dos experimentos iniciais:

o seleção das variáveis relevantes para o projeto;

O dataset selecionado possui 35 colunas no total e destas colunas foram selecionadas 12 variáveis, sendo elas:

ATENDIMENTO\_ANO,
OCORRENCIA\_ANO,
ATENDIMENTO\_BAIRRO\_NOME,
FLAG\_FLAGRANTE,
NATUREZA1\_DESCRICAO,
OCORRENCIA\_DATA,
OCORRENCIA\_DIA\_SEMANA,
REGIONAL\_FATO\_NOME,
QUANTIDADE\_OCORRENCIA,
OCORRENCIA\_HORA,
OCORRENCIA\_MES e
OCORRENCIA\_DIA.

o descrição dos experimentos iniciais sobre o dataset do projeto;

#### • Contagem de dados nulos

```
Contagem de dados nulos
def contagemNulos(tabela):
  for col in tabela.columns:
    if tabela[col].isnull().sum():
      total_null=tabela[col].isnull().sum()
      print('Column: {} total null {}, i.e. {}
```

```
%'.format(col,total_null,round(total_null*100/len(df),2)))
dfContagemNulos = contagemNulos(df)
```

```
Column: ATENDIMENTO_ANO total null 89, i.e. 0.02 %
Column: ATENDIMENTO BAIRRO NOME total null 145, i.e. 0.03 %
Column: EQUIPAMENTO_URBANO_NOME total null 269043, i.e. 64.2 %
Column: NATUREZA2_DEFESA_CIVIL total null 397230, i.e. 94.79 %
Column: NATUREZA2_DESCRICAO total null 397230, i.e. 94.79 %
Column: NATUREZA3_DEFESA_CIVIL total null 417426, i.e. 99.61 %
Column: NATUREZA3 DESCRICAO total null 417426, i.e. 99.61 %
Column: NATUREZA4_DEFESA_CIVIL total null 418792, i.e. 99.93 %
Column: NATUREZA4_DESCRICAO total null 418792, i.e. 99.93 %
Column: NATUREZA5_DEFESA_CIVIL total null 419010, i.e. 99.99 %
Column: NATUREZA5_DESCRICAO total null 419010, i.e. 99.99 %
Column: SUBCATEGORIA1_DESCRICAO total null 129206, i.e. 30.83 %
Column: SUBCATEGORIA2_DESCRICAO total null 405625, i.e. 96.79 %
Column: SUBCATEGORIA3_DESCRICAO total null 418133, i.e. 99.78 %
Column: SUBCATEGORIA4_DESCRICAO total null 418937, i.e. 99.97 %
Column: SUBCATEGORIA5_DESCRICAO total null 419041, i.e. 99.99 %
Column: OPERACAO_DESCRICAO total null 112223, i.e. 26.78 %
Column: REGIONAL FATO NOME total null 11, i.e. 0.0 %
Column: SITUACAO_EQUIPE_DESCRICAO total null 125677, i.e. 29.99 %
Column: NUMERO_PROTOCOLO_156 total null 406962, i.e. 97.11 %
```

#### Convertendo colunas de horas

```
df['OCORRENCIA_DATA'] = pd.to_datetime(df.OCORRENCIA_DATA,
format='%Y-%m-%d')

df['OCORRENCIA_DATA'] = df['OCORRENCIA_DATA'].dt.strftime('%Y-%m-%d')

df['OCORRENCIA_DATA']
```

```
0
          2009-01-01
          2009-01-01
2
          2009-01-01
          2009-01-01
          2009-01-01
          2022-10-01
419066
419067
          2022-10-01
419068
          2022-10-01
419069
          2022-09-30
419070
          2022-10-01
Name: OCORRENCIA_DATA, Length: 419071, dtype: object
```

#### Agrupando as colunas e criando o novo dataset

```
df2 = df.groupby(['ATENDIMENTO_ANO','OCORRENCIA_ANO',
  "ATENDIMENTO_BAIRRO_NOME", "FLAG_FLAGRANTE", "NATUREZA1_DESCRICAO",
  "OCORRENCIA_DATA", "OCORRENCIA_DIA_SEMANA", "REGIONAL_FATO_NOME"
])['QUANTIDADE_OCORRENCIA'].sum().reset_index()
```

|        | ATENDIMENTO_ANO | OCORRENCIA_ANO | ATENDIMENTO_BAIRRO_NOME | FLAG_FLAGRANTE | NATUREZA1_DESCRICAO                                   | OCORRENCIA_DATA | осо |
|--------|-----------------|----------------|-------------------------|----------------|-------------------------------------------------------|-----------------|-----|
| 0      | 2009.0          | 2009           | ABRANCHES               | NÃO            | AIFU                                                  | 2009-05-17      |     |
| 1      | 2009.0          | 2009           | ABRANCHES               | NÃO            | AIFU                                                  | 2009-05-28      |     |
| 2      | 2009.0          | 2009           | ABRANCHES               | NÃO            | AIFU                                                  | 2009-07-23      |     |
| 3      | 2009.0          | 2009           | ABRANCHES               | NÃO            | Alagamento                                            | 2009-11-16      |     |
| 4      | 2009.0          | 2009           | ABRANCHES               | NÃO            | Alarmes                                               | 2009-09-03      |     |
|        |                 |                |                         |                |                                                       |                 |     |
| 324458 | 2022.0          | 2022           | ÁGUA VERDE              | SIM            | Trânsito                                              | 2022-05-07      |     |
| 324459 | 2022.0          | 2022           | ÁGUA VERDE              | SIM            | Veículo                                               | 2022-03-24      |     |
| 324460 | 2022.0          | 2022           | ÁGUA VERDE              | SIM            | Violação de Medida<br>Protetiva Lei Maria da<br>Penha | 2022-03-26      |     |
| 324461 | 2022.0          | 2022           | ÁGUA VERDE              | SIM            | Violação de Medida<br>Protetiva Lei Maria da<br>Penha | 2022-04-11      |     |
| 324462 | 2022.0          | 2022           | ÁGUA VERDE              | SIM            | ZELADORIA URBANA                                      | 2022-03-16      |     |

324463 rows x 9 columns

### • Quantidade de ocorrências atendidas por ano (ATENDIMENTO\_ANO)

```
-- Quantidade de ocorrencias atendidas por ano (ATENDIMENTO_ANO)

ocorrenciasAtendidasPorAno = 
df.groupby(['ATENDIMENTO_ANO'])['QUANTIDADE_OCORRENCIA'].sum().reset_index()

ocorrenciasAtendidasPorAno = 
ocorrenciasAtendidasPorAno.rename({'QUANTIDADE_OCORRENCIA': 
'Quantidade_Ocorrencias_Atendidas_Por_Ano'}, axis=1)

ocorrenciasAtendidasPorAno
```



#### ocorrenciasAtendidasPorAno.describe()

|       | ATENDIMENTO_ANO | QUANTIDADE_OCORRENCIA |
|-------|-----------------|-----------------------|
| count | 14.0000         | 14.000000             |
| mean  | 2015.5000       | 29927.285714          |
| std   | 4.1833          | 12848.177108          |
| min   | 2009.0000       | 19778.000000          |
| 25%   | 2012.2500       | 22232.500000          |
| 50%   | 2015.5000       | 24685.500000          |
| 75%   | 2018.7500       | 31707.000000          |
| max   | 2022.0000       | 58726.000000          |

# • Quantidade de ocorrências recebidas por ano (OCORRENCIA\_ANO)

```
-- Quantidade de ocorrências recebidas por ano (OCORRENCIA_ANO)

ocorrenciasRegistradasPorAno =

df.groupby(['OCORRENCIA_ANO'])['QUANTIDADE_OCORRENCIA'].sum().reset_index()

ocorrenciasRegistradasPorAno =

ocorrenciasRegistradasPorAno.rename({'QUANTIDADE_OCORRENCIA':
 'Quantidade_Ocorrencias_Registradas_Por_Ano'}, axis=1)

ocorrenciasRegistradasPorAno
```



#### ocorrenciasRegistradasPorAno.describe()



```
-- Quantidade de ocorrencias por bairro (ATENDIMENTO_BAIRRO_NOME)

ocorrenciasPorBairro = 
df.groupby(['ATENDIMENTO_BAIRRO_NOME'])['QUANTIDADE_OCORRENCIA'].sum().reset_in dex()

ocorrenciasPorBairro = ocorrenciasPorBairro.rename({'QUANTIDADE_OCORRENCIA': 'Quantidade_Ocorrencias_Registradas_Por_Bairro'}, axis=1)

ocorrenciasPorBairro
```

|        | ATENDIMENTO_BAIRRO_NOME | Quantidade_Ocorrencias_Registradas_Por_Bairro |
|--------|-------------------------|-----------------------------------------------|
| 0      | JARDIM OSASCO           | 1                                             |
| 1      | JARDIM PEDRO DEMETE     | 1                                             |
| 2      | ABRANCHES               | 2143                                          |
| 3      | AFONSO PENA             | 1                                             |
| 4      | AFONSO PENA             | 1                                             |
|        |                         |                                               |
| 186    | VISTA ALEGRE            | 1499                                          |
| 187    | XAXIM                   | 6768                                          |
| 188    | fanny                   | 1                                             |
| 189    | ÁGUA VERDE              | 7634                                          |
| 190    | ÁGUAS BELAS             | 3                                             |
| 191 rd | ows x 2 columns         |                                               |

#### ocorrenciasPorBairro.describe()

|       | QUANTIDADE_OCORRENCIA |
|-------|-----------------------|
| count | 191.000000            |
| mean  | 2193.329843           |
| std   | 6505.865766           |
| min   | 1.000000              |
| 25%   | 1.000000              |
| 50%   | 2.000000              |
| 75%   | 1996.500000           |
| max   | 72247.000000          |

# • Quantidade de ocorrências com flagrante (FLAG\_FLAGRANTE)

```
-- Quantidade de ocorrencias com flagrante (FLAG_FLAGRANTE)

ocorrenciasFlagrante = 
df.groupby(['FLAG_FLAGRANTE'])['QUANTIDADE_OCORRENCIA'].sum().reset_index()

ocorrenciasFlagrante = 
ocorrenciasFlagrante.rename({'QUANTIDADE_OCORRENCIA': 
'Quantidade_Ocorrencias_Flagrante'}, axis=1)
```

#### ocorrenciasFlagrante

|   | FLAG_FLAGRANTE | Quantidade_Ocorrencias_Flagrante |
|---|----------------|----------------------------------|
| 0 | NÃO            | 400210                           |
| 1 | SIM            | 18861                            |

#### • Quantidade de ocorrências por tipo (NATUREZA1\_DESCRICAO)

```
-- Quantidade de ocorrencias por tipo (NATUREZA1_DESCRICAO)

ocorrenciasPorTipo = 
df.groupby(['NATUREZA1_DESCRICAO'])['QUANTIDADE_OCORRENCIA'].sum().reset_in 
dex()

ocorrenciasPorTipo = ocorrenciasPorTipo.rename({'QUANTIDADE_OCORRENCIA': 
'Quantidade_Ocorrencias_Por_Tipo'}, axis=1)

ocorrenciasPorTipo
```

|        | NATUREZA1_DESCRICAO  | Quantidade_Ocorrencias_Por_Tipo |
|--------|----------------------|---------------------------------|
| 0      | AIFU                 | 662                             |
| 1      | Abalo Sísmico        | 2                               |
| 2      | Abandono de função   | 4                               |
| 3      | Abandono de incapaz  | 157                             |
| 4      | Abuso de incapazes   | 51                              |
|        |                      |                                 |
| 182    | Vistoria             | 3751                            |
| 183    | ZELADORIA URBANA     | 1398                            |
| 184    | Óbito                | 156                             |
| 185    | Óbito (Defesa Civil) | 1                               |
| 186    | Órgãos acionados     | 77                              |
| 187 rd | ows × 2 columns      |                                 |

ocorrenciasPorTipo.describe()

|       | Quantidade_Ocor | rencias_Por_Tipo | 2 |
|-------|-----------------|------------------|---|
| count |                 | 187.000000       |   |
| mean  |                 | 2241.021390      |   |
| std   |                 | 7660.677328      |   |
| min   |                 | 1.000000         |   |
| 25%   |                 | 11.000000        |   |
| 50%   |                 | 69.000000        |   |
| 75%   |                 | 554.500000       |   |
| max   |                 | 67967.000000     |   |

• Quantidade de ocorrências por dia (OCORRENCIA\_DATA)

```
-- Quantidade de ocorrencias por dia (OCORRENCIA_DATA)

ocorrenciasPorDia = 
df.groupby(['OCORRENCIA_DATA'])['QUANTIDADE_OCORRENCIA'].sum().reset_index()

ocorrenciasPorDia = ocorrenciasPorDia.rename({'QUANTIDADE_OCORRENCIA': 'Quantidade_Ocorrencias_Por_Dia'}, axis=1)

ocorrenciasPorDia
```

|      | OCORRENCIA_DATA | Quantidade_Ocorrencias_Por_Dia |
|------|-----------------|--------------------------------|
| 0    | 2009-01-01      | 30                             |
| 1    | 2009-01-02      | 81                             |
| 2    | 2009-01-03      | 96                             |
| 3    | 2009-01-04      | 93                             |
| 4    | 2009-01-05      | 59                             |
|      |                 |                                |
| 5017 | 2022-09-27      | 135                            |
| 5018 | 2022-09-28      | 125                            |
| 5019 | 2022-09-29      | 149                            |
| 5020 | 2022-09-30      | 164                            |
| 5021 | 2022-10-01      | 8                              |
|      |                 |                                |

5022 rows x 2 columns

std

max

#### ocorrenciasPorDia.describe()

#### count 5022.000000 83.447033 mean 44.620405 min 2.000000

QUANTIDADE\_OCORRENCIA

25% 56.000000 50% 69.000000 75% 95.000000

 Quantidade de ocorrências dia da por semana (OCORRENCIA\_DIA\_SEMANA)

606.000000

```
-- Quantidade de ocorrencias por dia da semana (OCORRENCIA_DIA_SEMANA)
ocorrenciasPorDiaDaSemana =
df.groupby(['OCORRENCIA_DIA_SEMANA'])['QUANTIDADE_OCORRENCIA'].sum().reset_
index()
ocorrenciasPorDiaDaSemana =
```

```
ocorrenciasPorDiaDaSemana.rename({'QUANTIDADE_OCORRENCIA':
  'Quantidade_Ocorrencias_Por_Dia_Da_Semana'}, axis=1)
ocorrenciasPorDiaDaSemana
```

|   | OCORRENCIA_DIA_SEMANA Quantidade_Ocorrencias_Por_Dia_Da_Sem |       |
|---|-------------------------------------------------------------|-------|
| 0 | DOMINGO                                                     | 64524 |
| 1 | QUARTA                                                      | 57177 |
| 2 | QUINTA                                                      | 59549 |
| 3 | SEGUNDA                                                     | 53472 |
| 4 | SEXTA                                                       | 61533 |
| 5 | SÁBADO                                                      | 67692 |
| 6 | TERÇA                                                       | 55124 |

```
ocorrenciasPorRegional =
df.groupby(['REGIONAL_FATO_NOME'])['QUANTIDADE_OCORRENCIA'].sum().reset_index()

ocorrenciasPorRegional =
ocorrenciasPorRegional.rename({'QUANTIDADE_OCORRENCIA':
'Quantidade_Ocorrencias_Por_Regional'}, axis=1)

ocorrenciasPorRegional
```

|    | REGIONAL_FATO_NOME   | ${\tt Quantidade\_Ocorrencias\_Por\_Regional}$ |
|----|----------------------|------------------------------------------------|
| 0  | BAIRRO NOVO          | 29831                                          |
| 1  | BOA VISTA            | 43063                                          |
| 2  | BOQUEIRÃO            | 38847                                          |
| 3  | CAJURU               | 36306                                          |
| 4  | CIC                  | 31537                                          |
| 5  | Cajuru               | 1                                              |
| 6  | MATRIZ               | 131935                                         |
| 7  | PINHEIRINHO          | 29299                                          |
| 8  | PORTÃO               | 38078                                          |
| 9  | Pinheirinho          | 1                                              |
| 10 | Portão               | 1                                              |
| 11 | REGIÃO METROPOLITANA | 430                                            |
| 12 | SANTA FELICIDADE     | 29980                                          |
| 13 | TATUQUARA            | 9751                                           |

Para realizar a segunda etapa da análise exploratória que são algumas principais perguntas que o grupo construiu e também a etapa de modelagem, construiu-se um novo notebook e foi carregado novamente um dataframe do dataset e realizado algumas transformações como apresenta-se a seguir.

Nesta etapa utiliza-se novamente as funções info() e describe() para verificar as informações e métricas do dataset e também a função median() que retorna a mediana de um conjunto de dados e a var() para a variância, bem como a função value\_counts() que faz a contagem dos valores presentes.

#### • Importação das bibliotecas

```
import numpy as np
import pandas as pd # importando o pandas para manipularmos o dataset
import seaborn as sns # importando o Seaborn para visualizar o comportamento
dos dados
import matplotlib.pyplot as plt # importando o Matplotlib para o elbow method
from pandas_profiling import ProfileReport # importando o pandas-profiling para
fazer o profile do dataset
from scipy import stats as sp
```

```
from sklearn.model_selection import train_test_split # utilizado para o split
entre treinamento e teste
from sklearn.neighbors import KNeighborsRegressor # KNN para regressão
from sklearn.linear_model import LinearRegression # Regressão linear
from sklearn.svm import SVR # SVM para regressão
from sklearn.decomposition import PCA # PCA como aprendizagem
não-supervisionada
from sklearn.preprocessing import RobustScaler # utilizado para que todas as
entradas estejam na mesma escala numérica
from sklearn.preprocessing import StandardScaler
from pandas.core.frame import DataFrame
from matplotlib import pyplot as plt
%matplotlib inline

df = pd.read_csv('/content/teste.csv', sep=';', encoding='ISO-8859-1')
df
```

|                         | ATENDIMENTO_BAIRRO_NOME | NATUREZA1_DESCRICAO          | OCORRENCIA_ANO | OCORRENCIA_DIA_SEMANA | OCORRENCIA_HORA | OCORRENCIA_MES | OCORRENCIA_DIA |
|-------------------------|-------------------------|------------------------------|----------------|-----------------------|-----------------|----------------|----------------|
| 0                       | CIDADE INDUSTRIAL       | Alarmes                      | 2009           | QUINTA                | 15:14:00        | 1.0            | 1.0            |
|                         | FAZENDINHA              | Roubo                        | 2009           | QUINTA                | 15:22:00        | 1.0            | 1.0            |
| 2                       | UBERABA                 | Animais                      | 2009           | QUINTA                | 15:59:00        | 1.0            | 1.0            |
| 3                       | SÍTIO CERCADO           | Animais                      | 2009           | QUINTA                | 16:13:00        | 1.0            | 1.0            |
| 4                       | TATUQUARA               | Alarmes                      | 2009           | QUINTA                | 16:29:00        | 1.0            | 1.0            |
|                         |                         |                              |                |                       |                 |                |                |
| 249550                  | SÃO FRANCISCO           | Trânsito                     | 2019           | QUINTA                | 05:15:00        | 8.0            | 1.0            |
| 249551                  | CENTRO                  | Fundada Suspeita (Abordagem) | 2019           | QUINTA                | 07:15:00        | 8.0            | 1.0            |
| 249552                  | CIDADE INDUSTRIAL       | Apoio                        | 2019           | QUINTA                | 07:15:00        | 8.0            | 1.0            |
| 249553                  | CENTRO                  | Fundada Suspeita (Abordagem) | 2019           | QUINTA                | 07:35:00        | 8.0            | 1.0            |
| 249554                  | CENTRO                  | Fundada Suspeita (Abordagem) | 2019           | QUINTA                | 07:40:00        | NaN            | NaN            |
| 249555 rows x 7 columns |                         |                              |                |                       |                 |                |                |

#### df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 249555 entries, 0 to 249554
Data columns (total 7 columns):
                                       Non-Null Count
 # Column
                                                              Dtype
 0 ATENDIMENTO_BAIRRO_NOME 249410 non-null object
                                                              object
     NATUREZA1_DESCRICAO
                                        249555 non-null
      OCORRENCIA_ANO
                                        249555 non-null int64
                                       249555 non-null object
249555 non-null object
      OCORRENCIA_DIA_SEMANA
     OCORRENCIA_HORA
                                       249554 non-null float64
249554 non-null float64
     OCORRENCIA_MES
    OCORRENCIA_DIA
dtypes: float64(2), int64(1), object(4) memory usage: 13.3+ MB
```

# # \*\*Informação do dataset\*\* df['ATENDIMENTO\_BAIRRO\_NOME'].value\_counts()

```
38843
CENTRO
CIDADE INDUSTRIAL
                        17166
SÍTIO CERCADO
                        15471
CAJURU
                        12581
BOQUEIRÃO
                        11464
CAMPO PEQUENO
VILA PERNETA
CAMPO DE SÃO BENEDIT
QUATRO BARRAS
PLANTA DEODORO
Name: ATENDIMENTO_BAIRRO_NOME, Length: 144, dtype: int64
```

### df['NATUREZA1\_DESCRICAO'].value\_counts()

```
Apoio
                                      37220
                                      32576
Dano
Perturbação do sossego
                                      18804
                                      15559
Substância Ilícita
                                      15559
Corrupção ativa
Rompimento de Barragem
                                          1
Prostituição
Acidente Viatura
                                          1
Falsificação de documento Publico
Name: NATUREZA1_DESCRICAO, Length: 165, dtype: int64
```

#### df['OCORRENCIA\_ANO'].value\_counts()

```
2015
        25566
        25303
2014
2009
        24903
        24470
2013
        24153
2018
2010
        22531
        22137
2017
2011
        21484
2016
        21469
2012
        19776
2019
        17763
Name: OCORRENCIA_ANO, dtype: int64
```

```
df['OCORRENCIA_DIA_SEMANA'].value_counts()
```

```
SÁBADO 40386
DOMINGO 39905
SEXTA 36436
QUINTA 35361
QUARTA 33685
TERÇA 32323
SEGUNDA 31459
Name: OCORRENCIA_DIA_SEMANA, dtype: int64
```

## df['OCORRENCIA\_MES'].value\_counts()

```
23271
4.0
        22481
3.0
        22311
1.0
        22208
7.0
        21477
6.0
        20608
2.0
        20262
10.0
        20180
8.0
        19553
11.0
        19434
9.0
        18922
12.0
        18847
Name: OCORRENCIA_MES, dtype: int64
```

#### df['OCORRENCIA\_HORA'].value\_counts()

```
15:00:00
            1690
16:00:00
            1688
10:00:00
            1455
            1442
14:00:00
17:00:00
            1425
04:31:00
              26
06:56:00
              26
06:54:00
              26
06:57:00
              23
06:53:00
               20
Name: OCORRENCIA_HORA, Length: 1440, dtype: int64
```

#### df.describe()

|       | OCORRENCIA_ANO | OCORRENCIA_MES | OCORRENCIA_DIA |
|-------|----------------|----------------|----------------|
| count | 249555.000000  | 249554.000000  | 249554.000000  |
| mean  | 2013.908754    | 6.324848       | 15.780681      |
| std   | 3.113483       | 3.423156       | 8.789824       |
| min   | 2009.000000    | 1.000000       | 1.000000       |
| 25%   | 2011.000000    | 3.000000       | 8.000000       |
| 50%   | 2014.000000    | 6.000000       | 16.000000      |
| 75%   | 2017.000000    | 9.000000       | 23.000000      |
| max   | 2019.000000    | 12.000000      | 31.000000      |

#.median() Função Pandas retorna a mediana dos valores para o eixo solicitado. df.median()

OCORRENCIA\_ANO 2014.0
OCORRENCIA\_MES 6.0
OCORRENCIA\_DIA 16.0
dtype: float64

#.var() calcula a variância no Pandas através da função
df.var()

OCORRENCIA\_ANO 9.693779
OCORRENCIA\_MES 11.717994
OCORRENCIA\_DIA 77.261000
dtype: float64

A próxima parte é realizado novamente o tratamento de dados, onde realiza-se a limpeza de dados nulos, converte datas, colunas para inteiro e também algumas transformações e criações de label. Também utiliza-se a função std() para retornar o desvio padrão das colunas numéricas.

#### • Limpando dados nulos

# \*\*Tratamento de dados\*\*

```
## *Limpando dados nulos*
for col in df.columns:
  if df[col].isnull().sum():
    total_null=df[col].isnull().sum()
    print('Column: {} total null {}, i.e. {}
%'.format(col,total_null,round(total_null*100/len(df),2)))
```

```
Column: ATENDIMENTO_BAIRRO_NOME total null 145, i.e. 0.06 % Column: OCORRENCIA_MES total null 1, i.e. 0.0 % Column: OCORRENCIA_DIA total null 1, i.e. 0.0 %
```

```
#Limpando dados nulos
df.dropna(inplace = True)
df.isnull().sum()
```

```
ATENDIMENTO_BAIRRO_NOME 0
NATUREZA1_DESCRICAO 0
OCORRENCIA_ANO 0
OCORRENCIA_DIA_SEMANA 0
OCORRENCIA_HORA 0
OCORRENCIA_MES 0
OCORRENCIA_DIA 0
dtype: int64
```

#### • Convertendo para int e datetime

```
## *convertendo para int*

### *OCORRENCIA_HORA*

#converteu para datetime
df['OCORRENCIA_HORA'] = pd.to_datetime(df['OCORRENCIA_HORA'])

df['OCORRENCIA_HORA'].dt.time
```

```
15:14:00
1
          15:22:00
2
3
          15:59:00
          16:13:00
4
          16:29:00
249549
          03:20:00
249550
          05:15:00
249551
          07:15:00
249552
          07:15:00
249553
          07:35:00
Name: OCORRENCIA_HORA, Length: 249409, dtype: object
```

```
df['OCORRENCIA_HORA'] = df['OCORRENCIA_HORA'].dt.strftime('%H')

df['OCORRENCIA_HORA'] = df['OCORRENCIA_HORA'].astype(str).astype(int)

df['OCORRENCIA_HORA']
```

```
15:14:00
          15:22:00
2
          15:59:00
          16:13:00
          16:29:00
249549
          03:20:00
249550
          05:15:00
249551
          07:15:00
249552
          07:15:00
249553
          07:35:00
Name: OCORRENCIA_HORA, Length: 249409, dtype: object
```

```
df['OCORRENCIA_HORA'] = df['OCORRENCIA_HORA'].dt.strftime('%H')

df['OCORRENCIA_HORA'] = df['OCORRENCIA_HORA'].astype(str).astype(int)

df['OCORRENCIA_HORA']
```

```
0    15
1    15
2    15
3    16
4    16
...
249549    3
249550    5
249551    7
249552    7
249553    7
Name: OCORRENCIA_HORA, Length: 249409, dtype: int64
```

#### • Criação de labels e cálculo desvio padrão

```
### ATENDIMENTO BAIRRO NOME
df['ATENDIMENTO BAIRRO NOME'] =
df['ATENDIMENTO_BAIRRO_NOME'].replace({'CIDADE INDUSTRIAL':1,
'FAZENDINHA':2, 'UBERABA':3, 'SÍTIO CERCADO':4, 'TATUQUARA':5, 'SANTA
CÂNDIDA':6, 'BOQUEIRÃO':7, 'CENTRO':8, 'BOA VISTA':9, 'TABOÃO':10,
'XAXIM':11, 'PILARZINHO':12, 'REBOUÇAS':13, 'ÁGUA VERDE':14, 'BATEL':15,
'NOVO MUNDO':16, 'ALTO BOQUEIRÃO':17, 'CAPÃO RASO':18, 'JARDIM
BOTÂNICO':19, 'PORTÃO':20, 'ORLEANS':21, 'SANTA FELICIDADE':23,
'CASCATINHA':24, 'CAPÃO DA IMBUIA':25, 'BARREIRINHA':26, 'SEMINÁRIO':27,
'CAMPO COMPRIDO':28, 'PRADO VELHO':29, 'PINHEIRINHO':30, 'BUTIATUVINHA':31,
'CAMPINA DO SIQUEIRA':32, 'CAJURU':33, 'SÃO FRANCISCO':34, 'CENTRO
CÍVICO':35, 'SÃO BRAZ':36, 'UMBARÁ':37, 'CAXIMBA':38, 'JARDIM SOCIAL':39,
'BACACHERI': 40, 'CAMPO DE SANTANA': 41, 'SANTO INÁCIO': 42, 'JARDIM DAS
AMÉRICAS':43, 'LINDÓIA':44, 'GANCHINHO':45, 'PAROLIN':46, 'ABRANCHES':47,
'SÃO JOÃO':48, 'ATUBA':49, 'TARUMÃ':50, 'ALTO DA RUA XV':51,
'MOSSUNGUÊ':52, 'TINGUI':53, 'BIGORRILHO':54, 'BAIRRO ALTO':55, 'HAUER':56,
'VILA IZABEL':57, 'CABRAL':58, 'BOM RETIRO':59, 'GUAÍRA':60,
'CACHOEIRA':61, 'AUGUSTA':62, 'CRISTO REI':63, 'AHÚ':64, 'ALTO DA
GLÓRIA':65, 'GUABIROTUBA':66, 'MERCÊS':67, 'SANTA QUITÉRIA':68, 'SÃO
MIGUEL':69, 'SÃO LOURENÇO':70, 'FANNY':71, 'JUVEVÊ':72, 'VISTA ALEGRE':73,
'HUGO LANGE':74, 'RIVIERA':75, 'LAMENHA PEQUENA':76, 'INDICAÇÕES
CANCELADA':77, 'BAIRRO NAO INFORMADO':78, 'BAIRRO FICTÍCIO':79, 'fanny':80,
'TINGÜI':81, 'CIDADE JARDIM':82, 'VENEZA':83, 'PLANTA MEIRELES':84,
'TANGUA':85, 'MONTE REY':86, 'JD EUROPA':87, 'BORDA DO CAMPO':88, 'JARDIM
BOA VISTA':89, 'SÃO JOSE':90, 'JARDIM COLONIAL':91, 'MENINO DEUS':92, 'SÃO
JUDAS TADEU':93, 'VILA MARIA ANTONIETA':94, 'MARIA ANTONIETA':95, 'SANTO
ANTONIO':96, 'COLOMBO':97, 'CANGUIRI':98, 'NÃO ENCONTRADO':99,
'FERRARIA':100, 'SÃO CRISTOVÃO':101, 'JD SUISSA':102, 'VILA FORMOSA':103,
'FORMOSO':104, 'SÃO PEDRO':105, 'SAO JOSE DOS PINHAIS':106, 'CAMPO
```

```
PEQUENO':107, 'PINHAIS':108, 'VILA PERNETA ':109, 'SEM DADOS':110, 'CAMPO
DE SÃO BENEDIT':111, 'QUATRO BARRAS':112, 'LOT. MARINONI':113, 'SÃO
JORGE':114, 'BAIRRO NÃO LOCALIZAD':115, 'BRAGA':116, 'JARDIM LOANDA':117,
'NÃO INFORMADO ':118, 'SANTA TEREZINHA':119, 'SANTA TERESINHA':120, 'JARDIM
WEISSOPOLIS':121, 'SITIO DAS PALMEIRAS':122, 'CAMPO PEQUENO ':123,
'NI':124, 'THOMAS COELHO':125, 'NF':126, 'SÃO THOMAS':127, 'JARDIM
INDUSTRIAL':128, 'ROÇA NEGRA':129, 'SÃO THOMAZ':130, 'GRALHA AZUL':131,
'MARACANÃ':132, 'VILA BANCÁRIA':133, 'JARDIM BOM PASTOR':134, 'SAO
GERONIMO':135, 'RIO VERDE':136, 'JD IPE':137, 'IGUAÇÚ 1':138, 'AGUAS
BELAS':139, 'ÁGUAS BELAS':140, 'IGUAÇU 01':141, 'ESTADOS':142, 'CIC':143,
'JR TAISA':144, 'PLANTA DEODORO':145, 'MAUA':146, 'COLONIA FARIA':147,
'NAÇÕES':148, 'JARDIM SANTA MÔNICA':149, 'LOTEAMENTO SÃO GERÔN':150,
'TAMANDARE ':151, 'CAMPO LARGO':152, 'BOQUEIRÃO ':153, 'JARDIM BELA
VISTA':154, 'ESTANCIA PINHAIS ':155, 'COLONIA SAO VENANCIO':156, 'FRANCISCO
GORSKI':157, 'OSASCO':158, 'BARIGUI':159, 'GUATUPE ':160, 'PARQUE DAS
NASCENTES':161, 'CENTRO ':162, 'JD. ORESTES THÁ':163, 'PARQUE DAS
FONTES':164, 'PINEVILLE':165, 'BORDA DO CAMPO ':166, ' JARDIM OSASCO':167,
'JARDIM PRIMAVERA':168, 'JD DONA BELIZARIA':169, 'PIRAQUARA':170, 'JARDIM
RAFAELA':171, 'BARRO PRETO':172, 'BELAS AGUAS':173, 'EUCALIPTOS':174, 'VILA
GRAZIELA':175, 'CIDADE INDUSTRIAL DE':178, 'AFONSO PENA':179,
'PALMEIRINHA':180, 'IPE 2':181, 'SANTA MONICA':182, 'GUATUPE':183, 'AFONSO
PENA ':184, 'SAO SEBASTIAO':185, 'MAUÁ':186, 'SÃO GERONIMO':187, 'OURO
FINO':188, 'SANTO ANTÔNIO':189, 'CAMPINHA GRANDE DO S':190, ' JARDIM PEDRO
DEMETE':191, 'ROÇA GRANDE':192, 'TINDIQUERA':193, 'SÃO BENEDITO':194})
df['ATENDIMENTO BAIRRO NOME'] =
df['ATENDIMENTO BAIRRO NOME'].astype(str).astype(int)
### NATUREZA1 DESCRICAO
df['NATUREZA1_DESCRICAO'] = df['NATUREZA1_DESCRICAO'].replace({'Apoio':1,
'Alarmes':2, 'Invasão':3, 'Vistoria':4, 'Roubo':5, 'Perturbação do
sossego':6, 'Trânsito':7, 'Risco de acidente/à vida (Defesa Civil)':8,
'Violação de Medida Protetiva Lei Maria da Penha':9, 'Dano':10, 'Lesão
Corporal':11, 'Fundada Suspeita (Abordagem)':12, 'Substância Ilícita':13,
'Orientação':14, 'Alagamento':15, 'Animais':16, 'Furto':17,
'Desinteligência':18, 'Patrulha Maria da Penha':19, 'Atitude Suspeita':20,
'Atos obscenos/libidinosos':21, 'Vias de fato':22, 'Queima a céu
aberto':23, 'Ameaça':24, 'Averiguação':25, 'Encaminhamento':26,
'Estupro':27, 'Saturação':28, 'Agressão física/verbal':29, 'AIFU':30,
'Escolta':31, 'Incêndio':32, 'Risco de acidente / à vida':33,
'Desacato':34, 'Paciente/usuário alterado':35, 'Veículo':36, 'Pesca em
local proibido':37, 'Ronda':38, 'Destelhamento':39, 'Construção
```

Irregular':40, 'Crime ambiental':41, 'Risco de desabamento / desmoronamento':42, 'Tentativa':43, 'Fornecimento de Lona':44, 'Suicídio':45, 'Obstrução de via':46, 'Substância Lícita':47, 'Depósito irregular':48, 'Corte irregular de árvore':49, 'Achado':50, 'Queda de árvore':51, 'Disparo de arma':52, 'Órgãos acionados':53, 'Averiguação (Defesa Civil)':54, 'Antecedentes Criminais - Verificação':55, 'Injúria':56, 'Desaparecimento':57, 'Manifestação':58, 'Seqüestro e cárcere privado':59, 'Arrastão':60, 'Deslizamenton de Terra':61, 'ZELADORIA URBANA':62, 'Desabamento':63, 'Devolução de coisa achada':64, 'Conduta inconveniente':65, 'Uso indevido do cartão transporte':66, 'Maus tratos à pessoas':67, 'Extravio de Equipamento':68, 'Porte Ilegal':69, 'Rixa':70, 'Erosão':71, 'Importunação\xa0sexual':72, 'Situação de risco':73, 'Queda de fios de energia':74, 'Estelionato':75, 'Desobediência':76, 'Racismo':77, 'Homicídio':78, 'Queda de galho':79, 'Homofobia':80, 'Descumprimento lei 15799/2021 COVID-19':81, 'Fuga de aluno/interno':82, 'Menores abordando transeuntes':83, 'Abandono de incapaz':84, 'Risco de queda de árvore':85, 'Retirada de invasão':86, 'Banho em local impróprio':87, 'Abuso de incapazes':88, 'Contrabando ou descaminho':89, 'Criança perdida/desaparecida':90, 'Extravio, sonegação ou inutilização de livro ou doc.':91, 'Resistência':92, 'Aliciamento de menor':93, 'Apropriação indébita':94, 'Proteção ao patrimônio':95, 'Infiltração':96, 'Roubo, furto, extravio, recuperação, apreensão de armas de fogo.':97, 'Receptação':98, 'Ataque de insetos':99, 'Fiscalizações e Orientações':100, 'Vazamento ou derramamento de Produto Perigoso ou Infectante: 101, 'Falsidade ideológica (Falsa Identidade)':102, 'Câmera Off-Line':103, 'Poluição visual/ambiental':104, 'Óbito':105, 'Avaria em Equipamento/Patrimônio (não intencional)':106, 'Fuga de paciente':107, 'Moeda Falsa':108, 'Embriaguez':109, 'Queda de poste':110, 'Material abandonado':111, 'Calote':112, 'Quedas de objetos ou partes de construções':113, 'Acidente Viatura':114, 'Risco de queda de poste':105, 'Constrangimento ilegal':106, 'Comércio ambulante':107, 'Usar de uniforme, ou distintivo de função pública que não exerce':108, 'Envenenamento':109, 'Denúncia de bomba':110, 'Mendigar, por ociosidade ou cupidez':111, 'Extorsão':112, 'Atentado violento ao pudor':113, 'Verificação':114, 'Pragas Animais':115, 'Inundação/Enchente':116, 'Importunação ofensiva ao pudor':117, 'Jogo de Azar':118, 'Porte de artefato explosivo':119, 'Maus tratos a animais':120, 'Calúnia':121, 'Sedução':122, 'Violência arbitrária':123, 'Afogamento':124, 'Explosão':125, 'Câmeras de videomonitoramento':126, 'Bueiro aberto/sem tampa':127, 'Menor gazeando aula':128, 'Fornecimento de bebida alcoólica à menores':129, 'Vadiagem':130, 'Discriminação':131, 'Escrito ou objeto obsceno (panfletos pornográficos)':132, 'Favorecimento da prostituição':133, 'Peculato':134, 'Impedimento ou perturbação de cerimônia funerária':135, 'Risco de queda de fios de energia':136, 'Ataque cão

```
feroz':137, 'Abandono de função':138, 'Uso indevido do telefone
público':139, 'Aterro irregular':140, 'Risco de explosão':141, 'Obstrução
da Atividade Policial':142, 'Bueiro entupido':143, 'Corrupção de
menores':144, 'Queda de aeronave':145, 'Incendio/Explosão em
edificação':146, 'Vilipêndio a cadáver':147, 'Risco de queda de galho':148,
'Prostituição':149, 'Violação de sepultura/túmulo':150, 'Fingir-se
funcionário público':151, 'Trote Telefonico':152, 'Apologia de crime ou
criminoso':153, 'Falsificação de documento Publico':154, 'Denuncia
Improcedente':155, 'Quadrilha ou bando':156, 'Desabamento de
Telhado/Cobertura':157, 'Exploração de menores':158, 'Queda de Muro':159,
'Abalo Sísmico':160, 'Omissão de socorro':161, 'Rompimento de
Barragem':162, 'Liberação de pessoa presa/apreendida por recusa no
recebimento pela DP':163, 'Venda proibida de produtos específicos à
menores':164, 'Concussão':165, 'Charlatanismo':166, 'Difamação':167,
'RECUSAR SE IDENTIFICAR AO POLICIAL':168, 'Perseguição (stalking)':169,
'Enxurrada':170, 'Rufianismo':171, 'Incitação ao crime':172, 'Averiguação
(COSEDI)':173, 'Queda de Revestimento de Fachadas':174, 'Corrupção
ativa':175, 'Óbito (Defesa Civil)':176, 'Prevaricação':177})
df['NATUREZA1 DESCRICAO'] =
df['NATUREZA1_DESCRICAO'].astype(str).astype(int)
### OCORRENCIA DIA SEMANA
df['OCORRENCIA DIA SEMANA'] =
df['OCORRENCIA_DIA_SEMANA'].replace({'DOMINGO':1, 'SEGUNDA':2, 'TERÇA':3,
'QUARTA':4, 'QUINTA':5, 'SEXTA':6, 'SÁBADO':7})
df['OCORRENCIA DIA SEMANA'] =
df['OCORRENCIA_DIA_SEMANA'].astype(str).astype(int)
#.std() calcula o desvio padrão das colunas ou linhas numéricas
df.std()
```

| ATENDIMENTO_BAIRRO_NOME | 19.326657 |
|-------------------------|-----------|
| NATUREZA1_DESCRICAO     | 16.781344 |
| OCORRENCIA_ANO          | 3.113925  |
| OCORRENCIA_DIA_SEMANA   | 2.062074  |
| OCORRENCIA_HORA         | 6.611766  |
| OCORRENCIA_MES          | 3.423113  |
| OCORRENCIA_DIA          | 8.789952  |
| dtype: float64          |           |
|                         |           |

# 5. Preparação e Análise dos Dados

#### Análise exploratória do dataset do projeto:

o seleção das ferramentas, técnicas e métricas de estatística descritiva; instalação, configuração e ajustes das ferramentas de análise estatística; resultado da estimativa estatística utilizando as medidas de posição e dispersão; descrição do protocolo para remoção de outliers; apresentação do processo de análise exploratória, medidas e métricas estatísticas utilizadas.

Nessa próxima etapa realiza-se a análise descritiva e exploratória dos dados, para isso foram criadas e executadas algumas funções que calculam a média, mediana, variância, desvio padrão e quantis.

#### Média

```
# Análise descritiva de dados

tabelas = [ocorrenciasAtendidasPorAno, ocorrenciasRegistradasPorAno,
ocorrenciasPorBairro, ocorrenciasFlagrante, ocorrenciasPorTipo,
ocorrenciasPorDia, ocorrenciasPorDiaDaSemana, ocorrenciasPorRegional]

### **- Medidas de posição**

#Média

def calculaMedia(tabela):
    media = tabela.mean()
    media = pd.DataFrame({'metricas':media.index, 'media':media.values})
    return media

medias = []
for i in tabelas:
    medias.append(calculaMedia(i))
```

```
dfMedia = pd.concat(medias)
dfMedia
```

|   | metricas                                            | media         |
|---|-----------------------------------------------------|---------------|
| 0 | ATENDIMENTO_ANO                                     | 2015.500000   |
| 1 | Quantidade_Ocorrencias_Atendidas_Por_Ano            | 29927.285714  |
| 0 | OCORRENCIA_ANO                                      | 2015.500000   |
| 1 | Quantidade_Ocorrencias_Registradas_Por_Ano          | 29933.642857  |
| 0 | $Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro$ | 2193.329843   |
| 0 | Quantidade_Ocorrencias_Flagrante                    | 209535.500000 |
| 0 | Quantidade_Ocorrencias_Por_Tipo                     | 2241.021390   |
| 0 | Quantidade_Ocorrencias_Por_Dia                      | 83.447033     |
| 0 | Quantidade_Ocorrencias_Por_Dia_Da_Semana            | 59867.285714  |
| 0 | Quantidade_Ocorrencias_Por_Regional                 | 29932.857143  |

#### Mediana

```
#Mediana
def calculaMediana(tabela):
    mediana = tabela.median()
    mediana = pd.DataFrame({'metricas':mediana.index,
    'mediana':mediana.values})

    return mediana
medianas = []
for i in tabelas:
    medianas.append(calculaMediana(i))

dfMediana = pd.concat(medianas)
dfMediana
```

|   | metricas                                            | mediana  |
|---|-----------------------------------------------------|----------|
| 0 | ATENDIMENTO_ANO                                     | 2015.5   |
| 1 | Quantidade_Ocorrencias_Atendidas_Por_Ano            | 24685.5  |
| 0 | OCORRENCIA_ANO                                      | 2015.5   |
| 1 | Quantidade_Ocorrencias_Registradas_Por_Ano          | 24686.5  |
| 0 | $Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro$ | 2.0      |
| 0 | Quantidade_Ocorrencias_Flagrante                    | 209535.5 |
| 0 | Quantidade_Ocorrencias_Por_Tipo                     | 69.0     |
| 0 | Quantidade_Ocorrencias_Por_Dia                      | 69.0     |
| 0 | Quantidade_Ocorrencias_Por_Dia_Da_Semana            | 59549.0  |
| 0 | Quantidade_Ocorrencias_Por_Regional                 | 29905.5  |

#### Variância

```
#Variância (valores ao quadrado)
#Distância dos termos com relação a média
#Quanto menor, melhor e mais próximo a média
def calculaVariancia(tabela):
    var = tabela.var()
    var = pd.DataFrame({'metricas':var.index, 'var':var.values})

    return var

variancias = []
for i in tabelas:
    variancias.append(calculaVariancia(i))

dfVariancia = pd.concat(variancias)
dfVariancia
```

|   | metricas                                            | var          |
|---|-----------------------------------------------------|--------------|
| 0 | ATENDIMENTO_ANO                                     | 1.750000e+01 |
| 1 | Quantidade_Ocorrencias_Atendidas_Por_Ano            | 1.650757e+08 |
| 0 | OCORRENCIA_ANO                                      | 1.750000e+01 |
| 1 | Quantidade_Ocorrencias_Registradas_Por_Ano          | 1.651473e+08 |
| 0 | $Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro$ | 4.232629e+07 |
| 0 | Quantidade_Ocorrencias_Flagrante                    | 7.271353e+10 |
| 0 | Quantidade_Ocorrencias_Por_Tipo                     | 5.868598e+07 |
| 0 | Quantidade_Ocorrencias_Por_Dia                      | 1.990981e+03 |
| 0 | Quantidade_Ocorrencias_Por_Dia_Da_Semana            | 2.607052e+07 |
| 0 | Quantidade_Ocorrencias_Por_Regional                 | 1.133209e+09 |

#### • Desvio Padrão

```
#Desvio Padrão (√ Variância - mesma unidade media)
#Distância dos termos com relação à média
#Quanto menor, melhor e mais próximo a média

def calculateDesvioPadrao(tabela):
    desvioP = tabela.std()
    desvioP = pd.DataFrame({'metricas':desvioP.index,
    'desvioP':desvioP.values})
    return desvioP

desvios = []
for i in tabelas:
    desvios.append(calculateDesvioPadrao(i))

dfDesvio = pd.concat(desvios)
dfDesvio
```

|   | metricas                                            | desvioP       |
|---|-----------------------------------------------------|---------------|
| 0 | ATENDIMENTO_ANO                                     | 4.183300      |
| 1 | Quantidade_Ocorrencias_Atendidas_Por_Ano            | 12848.177108  |
| 0 | OCORRENCIA_ANO                                      | 4.183300      |
| 1 | Quantidade_Ocorrencias_Registradas_Por_Ano          | 12850.963637  |
| 0 | $Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro$ | 6505.865766   |
| 0 | Quantidade_Ocorrencias_Flagrante                    | 269654.463899 |
| 0 | Quantidade_Ocorrencias_Por_Tipo                     | 7660.677328   |
| 0 | Quantidade_Ocorrencias_Por_Dia                      | 44.620405     |
| 0 | Quantidade_Ocorrencias_Por_Dia_Da_Semana            | 5105.930007   |
| 0 | Quantidade_Ocorrencias_Por_Regional                 | 33663.175320  |

#### Quantis

```
def calculaQuantil(tabela):
   q1 = tabela.quantile(0.25)
    q1Df = pd.DataFrame({'metricas':q1.index, 'q1':q1.values})
   q2 = tabela.quantile(0.50)
   q2Df = pd.DataFrame({'metricas':q2.index, 'q2':q1.values})
    q3 = tabela.quantile(0.75)
    q3Df = pd.DataFrame({'metricas':q3.index, 'q3':q3.values})
    quantile = pd.concat([q1Df['metricas'], q1Df['q1'], q2Df['q2'],
q3Df['q3']], axis=1, ignore_index=True)
    quantile.columns = ['metricas', 'quantil1(25%)', 'quantil2(50%)',
'quantil3(75%)']
    return quantile
quantis = []
for i in tabelas:
  quantis.append(calculaQuantil(i))
dfQuantis = pd.concat(quantis)
dfQuantis
```

|   | metricas                                            | quantil1(25%) | quantil2(50%) | quantil3(75%) |
|---|-----------------------------------------------------|---------------|---------------|---------------|
| 0 | ATENDIMENTO_ANO                                     | 2012.25       | 2012.25       | 2018.75       |
| 1 | Quantidade_Ocorrencias_Atendidas_Por_Ano            | 22232.50      | 22232.50      | 31707.00      |
| 0 | OCORRENCIA_ANO                                      | 2012.25       | 2012.25       | 2018.75       |
| 1 | Quantidade_Ocorrencias_Registradas_Por_Ano          | 22235.50      | 22235.50      | 31713.00      |
| 0 | $Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro$ | 1.00          | 1.00          | 1996.50       |
| 0 | Quantidade_Ocorrencias_Flagrante                    | 114198.25     | 114198.25     | 304872.75     |
| 0 | Quantidade_Ocorrencias_Por_Tipo                     | 11.00         | 11.00         | 554.50        |
| 0 | Quantidade_Ocorrencias_Por_Dia                      | 56.00         | 56.00         | 95.00         |
| 0 | Quantidade_Ocorrencias_Por_Dia_Da_Semana            | 56150.50      | 56150.50      | 63028.50      |
| 0 | Quantidade_Ocorrencias_Por_Regional                 | 2760.25       | 2760.25       | 37635.00      |

A etapa seguinte cria-se e executa-se funções para gráficos, para poder visualizar todas as variáveis que foram selecionadas e observadas anteriormente. Os gráficos são: gráfico de distribuição, histograma com bins, gráfico de pizza, gráfico de linha e boxplot.

```
def criaHistogramaComBins(title, table, bins, color, collumn = None):
    plt.figure(figsize=(10,5))
    plt.title(title, fontsize =13)
    if collumn is None:
        plt.hist((table), bins = np.array(bins), alpha = 0.8, color = color)
    else:
        plt.hist((table[collumn]), bins = np.array(bins), alpha = 0.8, color = color)
    plt.show

def plotScatter(collumnX, collumnY, table, title, color):
    sns.set_style('white')
    plt.figure(figsize= (10, 10))
    plt.title(title, fontsize = 13)
```

```
sns.scatterplot(x=collumnX, y=collumnY, data= table, color = color)
    plt.show()
def criaGraficoPizza(table, y, label, title):
   mycolors = ['plum', 'bisque']
   plt.figure(figsize=(15,10), dpi=80)
    plt.pie(table[y], labels = table[label], autopct = '%1.1f%%', colors =
mycolors, frame = False)
   plt.title(title)
   plt.rcParams['axes.facecolor'] = 'white'
    plt.show()
def criaGraficoLinha(table, x, y, title, xLabel, yLabel):
    plt.figure(figsize=(10,5))
    plt.plot(table[x], table[y])
   plt.title(title)
   plt.xlabel(xLabel)
    plt.ylabel(yLabel)
   plt.show()
def criaGraficoDistribuicao(table, coluna):
    plt.figure(figsize=(10,5))
   sns.distplot(table[coluna])
def criaGraficoBoxplot(table, x):
    plt.figure(figsize=(10,5))
```

```
sns.boxplot(data=table, x=x)
```

# Visualizações dos dados

## • Ocorrências Atendidas Por Ano

```
## Visualizações dos dados

####**Ocorrencias Atendidas Por Ano**

criaGraficoLinha(ocorrenciasAtendidasPorAno, 'ATENDIMENTO_ANO',
  'Quantidade_Ocorrencias_Atendidas_Por_Ano',
  'Quantidade_Ocorrencias_Atendidas_Por_Ano', 'ATENDIMENTO_ANO', 'Quantidade
Ocorrencias')
```



criaGraficoDistribuicao(ocorrenciasAtendidasPorAno,
'Quantidade\_Ocorrencias\_Atendidas\_Por\_Ano')



criaGraficoBoxplot(ocorrenciasAtendidasPorAno,
'Quantidade\_Ocorrencias\_Atendidas\_Por\_Ano')



bins = [500, 10000, 20000, 30000, 40000]
criaHistogramaComBins('Quantidade\_Ocorrencias\_Atendidas\_Por\_Ano',
ocorrenciasAtendidasPorAno, bins, 'mediumaquamarine',
'Quantidade\_Ocorrencias\_Atendidas\_Por\_Ano')



```
bins = [50000, 60000, 70000, 80000, 100000]
criaHistogramaComBins('Quantidade_Ocorrencias_Atendidas_Por_Ano',
ocorrenciasAtendidasPorAno, bins, 'mediumaquamarine',
'Quantidade_Ocorrencias_Atendidas_Por_Ano')
```



```
criaGraficoLinha(ocorrenciasRegistradasPorAno, 'OCORRENCIA_ANO',
  'Quantidade_Ocorrencias_Registradas_Por_Ano',
  'Quantidade_Ocorrencias_Registradas_Por_Ano', 'OCORRENCIA_ANO', 'Quantidade
Ocorrencias')
```



# • Ocorrências Registradas Por Ano

criaGraficoDistribuicao(ocorrenciasRegistradasPorAno,
'Quantidade\_Ocorrencias\_Registradas\_Por\_Ano')



criaGraficoBoxplot(ocorrenciasRegistradasPorAno,
'Quantidade\_Ocorrencias\_Registradas\_Por\_Ano')



```
bins = [500, 10000, 20000, 30000, 40000]

criaHistogramaComBins('Quantidade_Ocorrencias_Registradas_Por_Ano',
ocorrenciasRegistradasPorAno, bins, 'mediumaquamarine',
'Quantidade_Ocorrencias_Registradas_Por_Ano')
```



bins = [50000, 60000, 70000, 80000, 100000]
criaHistogramaComBins('Quantidade\_Ocorrencias\_Registradas\_Por\_Ano',
ocorrenciasRegistradasPorAno, bins, 'mediumaquamarine',
'Quantidade\_Ocorrencias\_Registradas\_Por\_Ano')



## Ocorrências Por Bairro

```
####**Ocorrencias Por Bairro**

criaGraficoDistribuicao(ocorrenciasPorBairro,
   'Quantidade_Ocorrencias_Registradas_Por_Bairro')
```



criaGraficoBoxplot(ocorrenciasPorBairro,
'Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro')



bins = [500, 10000, 20000, 30000, 40000]
criaHistogramaComBins('Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro',
ocorrenciasPorBairro, bins, 'mediumaquamarine',
'Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro')



bins = [50000, 60000, 70000, 80000, 100000]

criaHistogramaComBins('Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro',
ocorrenciasPorBairro, bins, 'mediumaquamarine',
'Quantidade\_Ocorrencias\_Registradas\_Por\_Bairro')



# Ocorrências Flagrante

```
####**Ocorrencias Flagrante**

quantidadeOcorrenciasFlagranteGraficoPizza =
   criaGraficoPizza(ocorrenciasFlagrante, 'Quantidade_Ocorrencias_Flagrante',
   'FLAG_FLAGRANTE', 'Quantidade_Ocorrencias_Flagrante')
```



# • Ocorrências Atendidas Por Tipo

```
####**Ocorrencias Por Tipo**
criaGraficoDistribuicao(ocorrenciasPorTipo,
  'Quantidade_Ocorrencias_Por_Tipo')
```



## criaGraficoBoxplot(ocorrenciasPorTipo, 'Quantidade\_Ocorrencias\_Por\_Tipo')



## • Ocorrências Atendidas Por Dia

```
####**Ocorrencias Por Dia**

criaGraficoDistribuicao(ocorrenciasPorDia,
  'Quantidade_Ocorrencias_Por_Dia')
```



# criaGraficoBoxplot(ocorrenciasPorDia, 'Quantidade\_Ocorrencias\_Por\_Dia')



#### Ocorrências Atendidas Por Dia Da Semana

```
####**Ocorrencias Por Dia Da Semana**

criaGraficoLinha(ocorrenciasPorDiaDaSemana, 'OCORRENCIA_DIA_SEMANA',
   'Quantidade_Ocorrencias_Por_Dia_Da_Semana',
   'Quantidade_Ocorrencias_Por_Dia_Da_Semana', 'OCORRENCIA_DIA_SEMANA',
   'Quantidade Ocorrencias')
```



criaGraficoDistribuicao(ocorrenciasPorDiaDaSemana,
'Quantidade\_Ocorrencias\_Por\_Dia\_Da\_Semana')



criaGraficoBoxplot(ocorrenciasPorDiaDaSemana,
'Quantidade\_Ocorrencias\_Por\_Dia\_Da\_Semana')



# Ocorrências Atendidas Por Regional

```
####**Ocorrências Por Regional**

criaGraficoDistribuicao(ocorrenciasPorRegional,
   'Quantidade_Ocorrencias_Por_Regional')
```



criaGraficoBoxplot(ocorrenciasPorRegional,
'Quantidade\_Ocorrencias\_Por\_Regional')



Com base nas análises observadas anteriormente, foram criadas as perguntas a seguir para serem respondidas.

• Qual ano possui mais atendimento?

```
plt.figure(figsize=(20,20))
sns.displot(data=df, x='OCORRENCIA_ANO')
```



Resposta: 2021, 2020 e 2022

• Qual bairro possui mais atendimento?

```
plt.figure(figsize=(10,10))
sns.displot(data=df[df['ATENDIMENTO_BAIRRO_NOME']<20],
x='ATENDIMENTO_BAIRRO_NOME')</pre>
```



Resposta: 8: Centro, 1: CIC e 4: SÍTIO CERCADO

# Qual ano por bairro possui mais atendimento?

```
plt.figure(figsize=(100,80))
sns.displot(data=df[df['ATENDIMENTO_BAIRRO_NOME']<20],
x='ATENDIMENTO_BAIRRO_NOME', hue='OCORRENCIA_ANO', col='OCORRENCIA_ANO',
color='red')</pre>
```







#### Resposta:

2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 e 2019;

1ºlugar: 8, Centro.
2ºlugar: 1, CIC.

3ºlugar: 4: SÍTIO CERCADO.

#### 2020:

1ºlugar: 8, Centro.

2ºlugar: 4: SÍTIO CERCADO.

3ºlugar: 1, CIC.

2021: 2022

1ºlugar: 8, Centro.
2ºlugar: 1, CIC.

3ºlugar: 4: SÍTIO CERCADO.

Qual o tipo de natureza da ocorrência?

```
plt.figure(figsize=(20,20))
sns.displot(data=df[df['NATUREZA1_DESCRICAO']<20], x='NATUREZA1_DESCRICAO')</pre>
```



Resposta: 1: Apoio, 12: Fundada Suspeita (Abordagem) e 10: Dano

• Qual o tipo de natureza da ocorrência em cada bairro?

```
plt.figure(figsize=(20,20))
sns.displot(data=df[df['ATENDIMENTO_BAIRRO_NOME']<20],
x='NATUREZA1_DESCRICAO', hue='ATENDIMENTO_BAIRRO_NOME',
col='ATENDIMENTO_BAIRRO_NOME', color=['black'])
plt.xlim(1,20)</pre>
```











Resposta: foram utilizados só os 20 tipos de ATENDIMENTO\_BAIRRO\_NOME e ATENDIMENTO BAIRRO NOME, que se tem mais registro.

• Qual horário da ocorrência mais frequente?

```
plt.figure(figsize=(20,20))
sns.displot(data=df, x='OCORRENCIA_HORA')
```



Resposta: 15, 14 e 16

• Qual horário da semana e bairro mais frequentes?

```
plt.figure(figsize=(20,20))
sns.displot(data=df, x='OCORRENCIA_HORA', hue='OCORRENCIA_HORA',
col='OCORRENCIA_DIA_SEMANA')
```





Resposta: final de semana a mais ocorrência a tarde, 13h até umas 20h

plt.figure(figsize=(20,20))
sns.displot(data=df[df['ATENDIMENTO\_BAIRRO\_NOME']<20],
x='OCORRENCIA\_HORA', hue='OCORRENCIA\_DIA\_SEMANA',
col='ATENDIMENTO\_BAIRRO\_NOME', color=['black'])</pre>





Resposta: Bairro 8 que é o Centro tem mais registro de manhã e à tarde, 1 CIC e 4 SÍTIO CERCADO, se mantém igual com descanso só na madrugada

# • Descrição dos experimentos com os frameworks de big data:

# o descrição das ferramentas utilizadas;

A principal ferramenta utilizada para análise foi o PySpark, que é a API do Spark para Python. O Apache Spark é a estrutura de código aberto que proporciona o processamento em paralelo, ao mesmo tempo que demonstra a possibilidade do

suporte ao processamento na memória e auxilia no desempenho dos aplicativos que utilizam e analisam contextos de Big Data.

o apresentação da motivação do uso do framework;

A principal motivação para a utilização do framework de Big Data Apache Spark foi a relação com a velocidade de processamento e também da possibilidade processamento distribuído dos dados.

Durante o trabalho com o dataset um dos principais desafios foi o processamento dos dados. O dataset utilizado possui um total de 419072 linhas, o que torna o trabalho de processamento bastante custoso.

Sendo assim, optou-se pelo uso do Apache Spark, pois é uma estrutura rápida que possibilita o acesso a uma API que pode ser utilizada diretamente na linguagem Python, que é o PySpark.

o apresentação das técnicas utilizadas; descrição do protocolo experimental; comparação entre as diferentes técnicas de big data (mínimo três técnicas diferentes); análise dos resultados obtidos.

A primeira etapa para iniciar as análises e transformações é configurar o ambiente do Spark, para isso é necessário seguir todo o processo de instalação, importações e configurações a seguir.

Após todas as configurações necessárias, é preciso também criar uma sessão para inicializar todo o processo. Depois disso, basta criar o dataframe em Spark, passando o dataframe já utilizado anteriormente, utilizando spark.createDataFrame(). E então realiza-se o uso do método printSchema() para mostrar os tipos de dados e o show() para visualizar o dataframe carregado.

Sendo assim, é realizada também a utilização das funções já utilizadas anteriormente fora do Spark, como a describe() e head() para obter mais informações do dataset.

A primeira análise que é feita agora utilizando funções do Spark é a Contagem de colunas duplicadas e depois buscar colunas numéricas e categóricas e os valores nulos.

## **Análises com Spark**

• Configurando o Spark e Experimentos Iniciais com o Dataframe

```
## Análises com Spark
Configurando o Spark
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
# install spark (change the version number if needed)
!wget -q
https://archive.apache.org/dist/spark/spark-3.0.0/spark-3.0.0-bin-had
oop3.2.tgz
# unzip the spark file to the current folder
!tar xf spark-3.0.0-bin-hadoop3.2.tgz
import os
os.environ["JAVA HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK HOME"] = "/content/spark-3.0.0-bin-hadoop3.2"
!pip install -q findspark
import findspark
findspark.init()
import pyspark
from pyspark.sql import SparkSession
spark = SparkSession.builder\
        .master("local")\
        .appName("Colab")\
        .config('spark.ui.port', '4050')\
```

```
.getOrCreate()

sparkDF=spark.createDataFrame(df2)
sparkDF.printSchema()
sparkDF.show()
```

| OCORRENCIA_AN   ATENDIMENTO_B.   FLAG_FLAGRANT   NATUREZA1_DES<br>  OCORRENCIA_DAS<br>  OCORRENCIA_DI<br>  REGIONAL_FATO                                           | O: long (nulla<br>AIRRO_NOME: st<br>E: string (nul<br>CRICAO: string<br>TA: string (nu<br>A_SEMANA: stri<br>_NOME: string | ring (nullable = true)                                                                                                                                                                                                                                                                  |                                                                    |                                                                                                                                       | 1                                                                                | <b></b>        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------|
| ATENDIMENTO_ANO O                                                                                                                                                  | CORRENCIA_ANO                                                                                                             | ATENDIMENTO_BAIRRO_NOME                                                                                                                                                                                                                                                                 | FLAG_FLAGRANTE                                                     | NATUREZA1_DESCRICAO                                                                                                                   | OCORRENCIA_DATA                                                                  | OCORRENCIA_DIA |
| 2009.0 <br>  2009.0 | 2009<br>2009<br>2009<br>2009<br>2009<br>2009<br>2009<br>2009                                                              | ABRANCHES | NÃO<br>NÃO<br>NÃO<br>NÃO<br>NÃO<br>NÃO<br>NÃO<br>NÃO<br>NÃO<br>NÃO | AIFU AIFU AIFU AIFU Alagmento Alarmes Alarmes Animais | 2009-05-28<br>2009-07-23<br>2009-11-16<br>2009-09-03<br>2009-09-27<br>2009-11-07 |                |
| 2009.0 <br>  2009.0 <br>  2009.0 <br>+                                                                                                                             | 2009<br>  2009<br>  2009<br>                                                                                              | ABRANCHES<br>ABRANCHES<br>ABRANCHES                                                                                                                                                                                                                                                     | NÃO<br>NÃO<br>NÃO                                                  | Animais<br>Animais<br>Animais                                                                                                         | 2009-08-04<br>2009-08-27<br>2009-09-20                                           |                |

# sparkDF.head()

Row(ATENDIMENTO\_ANO=2009.0, OCORRENCIA\_ANO=2009, ATENDIMENTO\_BAIRRO\_NOME='ABRANCHES', FLAG\_FLAGRANTE='NÃO',
NATUREZA1\_DESCRICAO='AIFU', OCORRENCIA\_DATA='2009-05-17', OCORRENCIA\_DIA\_SEMANA='DOMINGO', REGIONAL\_FATO\_NOME='BOA
VISTA', QUANTIDADE\_OCORRENCIA=1)

# sparkDF.describe().show()

| ++<br> summary | ATENDIMENTO_ANO                                                          | OCORRENCIA_ANO                                 | ATENDIMENTO_BAIRRO_NOME                                | FLAG_FLAGRANTE                       | <br> NATUREZA1_DESCRICA0                           | OCORRENCIA_DATA                                    |
|----------------|--------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------------------------------|
|                | 324463 <br>2016.310155549323 <br>4.125360146979848 <br>2009.0 <br>2022.0 | 2016.3100600068421<br>4.12533333626811<br>2009 | 324463<br>null<br>null<br>JARDIM OSASCO<br>ÁGUAS BELAS | 324463<br>null<br>null<br>NÃO<br>SIM | 324463<br>null<br>null<br>AIFU<br>Órgãos acionados | 324463<br>null<br>null<br>2009–01–01<br>2022–10–01 |

## sparkDF.printSchema()

```
root
|-- ATENDIMENTO_ANO: double (nullable = true)
|-- OCORRENCIA_ANO: long (nullable = true)
|-- ATENDIMENTO_BAIRRO_NOME: string (nullable = true)
|-- FLAG_FLAGRANTE: string (nullable = true)
|-- NATUREZA1_DESCRICAO: string (nullable = true)
|-- OCORRENCIA_DATA: string (nullable = true)
|-- OCORRENCIA_DIA_SEMANA: string (nullable = true)
|-- REGIONAL_FATO_NOME: string (nullable = true)
|-- QUANTIDADE_OCORRENCIA: long (nullable = true)
```

Contagem de linhas duplicadas

```
Contagem de linhas duplicadas

import pyspark.sql.functions as funcs
sparkDF.groupby(sparkDF.columns).count().where(funcs.col('count') >
1).select(funcs.sum('count')).show()
```



Buscando colunas numéricas e categóricas

```
Achar colunas numéricas e categóricas

colunas_numericas = list()

colunas_categoricas = list()

for col_ in sparkDF.columns:
    if sparkDF.select(col_).dtypes[0][1] != "string":
        colunas_numericas.append(col_)

    else:
        colunas_categoricas.append(col_)
```

```
print("Colunas Numericas",colunas_numericas)
print("Colunas Categoricas",colunas_categoricas)
```

```
Colunas Numericas ['ATENDIMENTO_ANO', 'OCORRENCIA_ANO', 'QUANTIDADE_OCORRENCIA']
Colunas Categoricas ['ATENDIMENTO_BAIRRO_NOME', 'FLAG_FLAGRANTE', 'NATUREZA1_DESCRICAO', 'OCORRENCIA_DATA', 'OCORRENCIA_I
```

## Contagem de valores nulos

```
Contagem de valores nulos

from pyspark.sql.functions import *
print(sparkDF.select([count(when(isnan(c) | col(c).isNull(),
c)).alias(c) for c in sparkDF.columns]).show())
```

| ATENDIMENTO | +<br>_AN0 0C0RRE | ENCIA_ANO ATENDIME | +<br>NTO_BAIRRO_NOME FLAG_ | FLAGRANTE   NATUREZA | <br>1_DESCRICAO OCORRENC | IA_DATA OCORREN | CIA_DI# |
|-------------|------------------|--------------------|----------------------------|----------------------|--------------------------|-----------------|---------|
| į           | 0 j              | 0                  | <br>                       | 0 <br>               | 0 <br>                   | 0<br>           |         |
| None        |                  |                    |                            |                      |                          |                 |         |

#### Métricas

# sparkDF.summary().show()

| summary                                       | ATENDIMENTO_ANO                                                  | OCORRENCIA_ANO                                          | ATENDIMENTO_BAIRRO_NOME                         | FLAG_FLAGRANTE | NATUREZA1_DESCRICA0 O      |
|-----------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|----------------|----------------------------|
| count<br>  mean<br>  stddev<br>  min<br>  25% | 2016.2981706770934<br>  4.12142061320426<br>  2009.0<br>  2013.0 | 2016.2980749333653<br>4.121393441914671<br>2009<br>2013 | 323781<br>null<br>null<br>JARDIM OSASCO<br>null | null<br>null   | null <br>  null <br>  AIFU |
| 75%<br>  max                                  | 2020.0                                                           | 2020                                                    | null<br>null<br>ÁGUAS BELAS                     | null           | null                       |

# 6. Modelagem, Treinamento e Otimização

Para a etapa de modelagem foram testados diversos tipos de modelos, para verificar como os dados se comportam e qual deles tem o melhor desempenho na base de dados analisada.

A primeira etapa é a importação de todas as bibliotecas que serão utilizadas para análise e modelagem dos dados.

### • Importação das bibliotecas

```
!pip install category_encoders pyenchant
!pip download unidecode
!pip install unidecode
!pip install python-docx
!pip install pyenchant && sudo apt-get install python-enchant
```

```
import enchant
import numpy as np
from unidecode import unidecode
import unidecode
import pandas as pd # importando o pandas para manipularmos o dataset
import seaborn as sns # importando o Seaborn para visualizar o
import category encoders as ce # Wellington
import matplotlib.pyplot as plt # importando o Matplotlib para o
from category encoders import *
from pandas profiling import ProfileReport # importando o
pandas-profiling para fazer o profile do dataset
from scipy import stats as sp
from sklearn.model selection import train test split # utilizado para
from sklearn.neighbors import KNeighborsRegressor # KNN para
from sklearn.linear model import LinearRegression # Regressão linear
from sklearn.svm import SVR # SVM para regressão
from sklearn.decomposition import PCA # PCA como aprendizagem
from sklearn.preprocessing import RobustScaler # utilizado para que
todas as entradas estejam na mesma escala numérica
from sklearn.preprocessing import StandardScaler
from pandas.core.frame import DataFrame
```

```
from matplotlib import pyplot as plt
from sklearn import preprocessing
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.metrics import *
from sklearn.neighbors import KNeighborsClassifier

%matplotlib inline
```

A primeira etapa é a importação de todas as bibliotecas que serão utilizadas para análise e modelagem dos dados, que será realizada com a função read\_csv, separando por ; e utilizando o encoding ISO-8859-1.

Após essa etapa é realizada a utilização da função info() para verificar as informações dos dados de cada colunas e posteriormente value\_counts() para observar a quantidade dos valores de cada coluna. Essa etapa é realizada pois anteriormente foram refeitas novas transformações e limpezas nos dados e agora a coluna <a href="https://doi.org/10.1008/ncm/">ATENDIMENTO\_BAIRRO\_NOME</a> possui o total de 168 dados e não mais 191 como apresentados anteriormente na etapa da análise exploratória.

## Importação dos dados

```
df = pd.read_csv('/content/teste.csv', sep=';',
encoding='ISO-8859-1')
```

df

|           | ATENDIMENTO_BAIRRO_NOME | NATUREZA1_DESCRICAO          | OCORRENCIA_ANO | OCORRENCIA_DIA_SEMANA | OCORRENCIA_HORA | OCORRENCIA_MES | OCORRENCIA_DIA |
|-----------|-------------------------|------------------------------|----------------|-----------------------|-----------------|----------------|----------------|
| 0         | CIDADE INDUSTRIAL       | Alarmes                      | 2009           | QUINTA                | 15:14:00        |                |                |
| 1         | FAZENDINHA              | Roubo                        | 2009           | QUINTA                | 15:22:00        |                |                |
| 2         | UBERABA                 | Animais                      | 2009           | QUINTA                | 15:59:00        |                |                |
| 3         | SÍTIO CERCADO           | Animais                      | 2009           | QUINTA                | 16:13:00        |                |                |
| 4         | TATUQUARA               | Alarmes                      | 2009           | QUINTA                | 16:29:00        |                |                |
|           |                         |                              |                |                       |                 |                |                |
| 419066    | REBOUÇAS                | Apoio                        | 2022           | SÁBADO                | 01:15:00        | 10             |                |
| 419067    | CAPÃO DA IMBUIA         | Apoio                        | 2022           | SÁBADO                | 01:22:00        | 10             |                |
| 419068    | CIDADE INDUSTRIAL       | Fundada Suspeita (Abordagem) | 2022           | SÁBADO                | 00:38:00        | 10             |                |
| 419069    | BATEL                   | Apoio                        | 2022           | SEXTA                 | 22:30:00        | 9              | 30             |
| 419070    | CAPÃO RASO              | Apoio                        | 2022           | SÁBADO                | 01:42:00        | 10             |                |
| 419071 rd | ows × 7 columns         |                              |                |                       |                 |                |                |

## df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 419071 entries, 0 to 419070
Data columns (total 7 columns):
     Column
                              Non-Null Count
                                               Dtype
 0
     ATENDIMENTO_BAIRRO_NOME 418926 non-null
                                               object
 1
     NATUREZA1_DESCRICAO
                              419071 non-null
                                               object
     OCORRENCIA_ANO
 2
                              419071 non-null int64
 3
     OCORRENCIA_DIA_SEMANA
                              419071 non-null object
 4
     OCORRENCIA_HORA
                              419071 non-null object
 5
                              419071 non-null int64
     OCORRENCIA_MES
 6
     OCORRENCIA DIA
                              419071 non-null int64
dtypes: int64(3), object(4)
memory usage: 22.4+ MB
```

# df['ATENDIMENTO\_BAIRRO\_NOME'].value\_counts()

```
CENTR0
                       72247
CIDADE INDUSTRIAL
                       28776
SÍTIO CERCADO
                       25791
CAJURU
                       19367
BOQUEIRÃO
                      18875
JARDIM WEISSOPOLIS
                           1
SANTA TERESINHA
                           1
SÃO JORGE
                           1
LOT. MARINONI
                           1
SÃO BENEDITO
Name: ATENDIMENTO_BAIRRO_NOME, Length: 191, dtype: int64
```

## Aprendizado de Máquina

#### WOEEncoder

A primeira aplicação de aprendizado de máquina utilizada é o WOEEnconder, que é baseado no Teorema de Bayes e define o grau de crença em uma hipótese, após considerar evidências. A função basicamente é medir a força de todas as categorias presentes na feature, utilizando uma proporção entre classes negativas e positivas.

```
df['OCORRENCIA_FIM_SEMANA'] = df['OCORRENCIA_DIA_SEMANA'] <= 1
df['ATENDIMENTO_BAIRRO_NOME_FIXED'] =
ce.WOEEncoder().fit_transform(df['ATENDIMENTO_BAIRRO_NOME_FIXED'],
df['OCORRENCIA_FIM_SEMANA'])</pre>
```

```
df.drop('ATENDIMENTO_BAIRRO_NOME_FIXED', axis=1)
```

|           | ATENDIMENTO_BAIRRO_NOME | NATUREZA1_DESCRICAO | OCORRENCIA_ANO | OCORRENCIA_DIA_SEMANA | OCORRENCIA_HORA | OCORRENCIA_MES | OCORRENCIA_DIA | OCORRENCIA_FIM_S |
|-----------|-------------------------|---------------------|----------------|-----------------------|-----------------|----------------|----------------|------------------|
|           | 43                      |                     | 2009           |                       |                 |                |                |                  |
|           | 53                      |                     | 2009           |                       | 15              |                |                |                  |
| 2         |                         |                     | 2009           |                       |                 |                |                |                  |
| 3         | 147                     | 16                  | 2009           |                       | 16              |                |                |                  |
|           | 153                     |                     | 2009           |                       | 16              |                |                |                  |
|           |                         |                     |                |                       |                 |                |                |                  |
| 419066    | 120                     |                     | 2022           |                       |                 |                |                |                  |
| 419067    | 37                      |                     | 2022           |                       |                 | 10             |                |                  |
| 419068    | 43                      |                     | 2022           |                       |                 |                |                |                  |
| 419069    |                         |                     | 2022           |                       | 22              |                | 30             |                  |
| 419070    | 38                      |                     | 2022           |                       |                 |                |                |                  |
| 418926 rc | ows × 8 columns         |                     |                |                       |                 |                |                |                  |

Depois dessa etapa, são realizados dois testes, um com o scaler e outro sem o scaler nos primeiros modelos testados. Sendo eles: KNeighborsRegressor, LinearRegression, SVM.

#### Sem o scaler

#### Divisão entre treino e teste

```
# split entre treinamento e teste
X_train, X_test, y_train, y_test =
```

```
train_test_split(df.drop('ATENDIMENTO_BAIRRO_NOME', axis=1), # aqui
informamos os atributos

df['ATENDIMENTO_BAIRRO_NOME'], # aqui informamos as labels e na mesma
ordem dos atributos

test_size=0.20, # informamos a porcentagem de divisão da base.
Geralmente é algo entre 20% (0.20) a 35% (0.35)

random_state=0) # aqui informamos um "seed". É um valor aleatório é
usado para que alguns algoritmos i
```

### - KNeighbors Regressor

```
modelo_knn = KNeighborsRegressor().fit(X_train, y_train)
modelo_knn.score(X_test, y_test)
```

#### -0.12236316906201905

# - Linear Regression

```
modelo_lr = LinearRegression().fit(X_train, y_train)
modelo_lr.score(X_test, y_test)
```

#### 0.09663379738948774

#### - SVM

```
modelo_svm = SVR().fit(X_train, y_train)
modelo_svm.score(X_test, y_test)
```

#### Com o scaler

Divisão entre treino e teste

```
# split entre treinamento e teste
X_train, X_test, y_train, y_test =
```

```
train_test_split(RobustScaler().fit_transform(df.drop('ATENDIMENTO_BA
IRRO_NOME', axis=1)), # aqui informamos os atributos

df['ATENDIMENTO_BAIRRO_NOME'], # aqui informamos as labels e na mesma
ordem dos atributos

test_size=0.20, # informamos a porcentagem de divisão da base.
Geralmente é algo entre 20% (0.20) a 35% (0.35)

random_state=0) # aqui informamos um "seed". É um valor aleatório e
usado para que alguns algoritmos i
```

# - KNeighbors Regressor

```
modelo_knn = KNeighborsRegressor().fit(X_train, y_train)
modelo_knn.score(X_test, y_test)
```

#### 0.06822136943177604

# - Linear Regression

```
modelo_lr = LinearRegression().fit(X_train, y_train)
modelo_lr.score(X_test, y_test)
```

#### 0.09663379738948774

#### - SVM

```
modelo_svm = SVR().fit(X_train, y_train)
modelo_svm.score(X_test, y_test)
```

#### PCA

Nessa etapa é realizada a tarefa de pré-processamento não supervisionada: PCA. A tarefa é realizada antes de aplicar o algoritmo e é baseada na "transformação linear ortogonal", uma técnica matemática que possibilita a projeção de atributos em um novo sistema de coordenadas.

Basicamente o sistema de coordenadas coloca o primeiro atributo com maior variação como primeiro componente principal e fica localizado na primeira coordenada e todos os outros seguem o mesmo padrão.

Essa técnica possibilita a seleção dos atributos mais importantes de um conjunto de dados. O conjunto geralmente pode ser descrito por três componentes principais, que podem explicar até mais de 90% da variação.

```
pca =
PCA().fit(RobustScaler().fit_transform(df.drop('ATENDIMENTO_BAIRRO_NO
ME', axis=1)))
plt.plot(pca.explained_variance_ratio_)
```



```
plt.figure(figsize=(15, 5)) # criando um gráfico retangular para
facilitar a visualização
plt.plot(pca.explained_variance_ratio_, color='r') # colocando a
porcentagem de variância que cada componente nos trouxe
plt.xticks(np.arange(df.shape[1])) # mostrando todos os números no
eixo x
plt.show() # mostrando o gráfico final
```

```
0.4 - 0.3 - 0.2 - 0.1 - 0.0 - 1 2 3 4 5 6 7 8
```

```
# split entre treinamento e teste
X_train_win, X_test_win, y_train_win, y_test_win =
train_test_split(PCA(n_components=5).fit_transform(RobustScaler().fit_
transform(df.drop('ATENDIMENTO_BAIRRO_NOME', axis=1))), # aqui
informamos os atributos

df['ATENDIMENTO_BAIRRO_NOME'], # aqui informamos as labels e na mesma
ordem dos atributos

test_size=0.25, # informamos a porcentagem de divisão da base.
Geralmente é algo entre 20% (0.20) a 35% (0.35)

random_state=0) # aqui informamos um "seed". É usado um valor
aleatório
```

## - KNeighbors Regressor

```
modelo_knn = KNeighborsRegressor().fit(X_train, y_train)
modelo_knn.score(X_test, y_test)
```

#### 0.06822136943177604

#### - Linear Regression

```
modelo_lr = LinearRegression().fit(X_train, y_train)
```

```
modelo_lr.score(X_test, y_test)
```

#### 0.09663379738948774

#### - SVM

```
modelo_svm = SVR().fit(X_train, y_train)
modelo_svm.score(X_test, y_test)
```

### Mostrando as previsões

```
df_test = pd.DataFrame(X_test)
df_test['Quality_Real'] = y_test.values
df_test['Quality_Predicao_KNN'] = modelo_knn.predict(X_test)
df_test['Quality_Predicao_Linear'] = modelo_lr.predict(X_test)
#df_test['Quality_Predicao_SVM'] = modelo_svm.predict(X_test)
df_test
```

|          | 0            | 1         | 2     | 3         | 4         | 5         | 6         | 7   | Quality_Real | Quality_Predicao_KNN | Quality_Predicao_Linear |
|----------|--------------|-----------|-------|-----------|-----------|-----------|-----------|-----|--------------|----------------------|-------------------------|
| 0        | 0.000000     | -0.857143 | -0.50 | -1.666667 | -0.833333 | 0.400000  | -1.184319 | 1.0 | 41           | 41.0                 | 49.835526               |
| 1        | 2.545455     | 0.571429  | 0.75  | -0.111111 | 0.000000  | -0.400000 | -1.184319 | 0.0 | 41           | 56.8                 | 49.699750               |
| 2        | 2.363636     | 0.428571  | -0.25 | 0.222222  | -0.666667 | 0.400000  | -1.184319 | 0.0 | 41           | 80.4                 | 50.215436               |
| 3        | 0.181818     | 0.285714  | 0.00  | -0.888889 | -0.666667 | -0.333333 | -1.184319 | 0.0 | 41           | 41.0                 | 50.742242               |
| 4        | -0.818182    | -0.285714 | -0.50 | 0.777778  | -0.333333 | 0.533333  | 0.000000  | 1.0 | 43           | 21.6                 | 72.452248               |
|          |              |           |       |           |           |           |           |     |              |                      |                         |
| 83781    | 0.000000     | -1.000000 | 0.25  | -0.666667 | 0.666667  | -0.266667 | -0.389993 | 0.0 |              | 54.8                 | 64.615779               |
| 83782    | 0.363636     | 0.285714  | 0.50  | -0.666667 | -0.833333 | -0.466667 | 0.294471  | 0.0 | 17           | 51.2                 | 77.001572               |
| 83783    | -0.727273    | -1.285714 | -0.25 | 0.777778  | 0.833333  | 0.933333  | -0.379551 | 0.0 | 32           | 102.6                | 65.653588               |
| 83784    | 0.454545     | -1.000000 | -0.75 | 0.555556  | -0.333333 | -0.933333 | -0.412457 | 1.0 | 37           | 57.2                 | 64.249554               |
| 83785    | -0.818182    | -0.428571 | -0.50 | -0.777778 | 0.333333  | 0.933333  | -0.777419 | 1.0 | 48           | 55.6                 | 58.070839               |
| 83786 rd | ws × 11 colu | ımns      |       |           |           |           |           |     |              |                      |                         |

Na etapa seguinte são aplicados novos modelos, sendo eles: DecisionTreeRegressor, LGBMClassifier, RandomForestRegressor, XGBoost e suas respectivas métricas. E por fim, o modelo Prophet, - junto com as métricas de desempenho -, que é aplicado a base que estava sendo trabalhada com as transformações no Apache Spark.

## - DecisionTreeRegressor

```
X_train, X_test, y_train, y_test =
train_test_split(df.drop('ATENDIMENTO_BAIRRO_NOME', axis=1),
df['ATENDIMENTO_BAIRRO_NOME'], test_size=0.2, random_state=0)
```

```
# criando o modelo
modelo_dt = DecisionTreeRegressor().fit(X_train, y_train)
modelo_dt.score(X_test, y_test)
```

#### 0.9995795333375131

#### - LGBMClassifier

```
X_train, X_test, y_train, y_test =
train_test_split(df.drop('ATENDIMENTO_BAIRRO_NOME', axis=1),
df['ATENDIMENTO_BAIRRO_NOME'], test_size=0.2, random_state=0)
```

```
modelo_LGBM = LGBMClassifier(random_state=0).fit(X_train, y_train)
modelo_LGBM.score(X_test, y_test)
```

#### 0.1960112667987492

```
modelo_LGBM.predict(X_test)
```

```
array([41, 5, 41, ..., 41, 28, 41])
```

## • RandomForestRegressor e XGBoost

```
# split entre treinamento e teste
X_train, X_test, y_train, y_test =
```

```
train_test_split(df.drop('ATENDIMENTO_BAIRRO_NOME', axis=1), # aqui informamos os atributos

df['ATENDIMENTO_BAIRRO_NOME'], # aqui informamos as labels e na mesma ordem dos atributos

test_size=0.20, # informamos a porcentagem de divisão da base.
Geralmente é algo entre 20% (0.20) a 35% (0.35)

random_state=0) # aqui informamos um "seed". É um valor aleatório usado para que alguns algoritmos iniciem de forma aleatória a sua divisão.
```

# - RandomForestRegressor

```
modelo_rfr = RandomForestRegressor(random_state=0).fit(X_train,
y_train)
predicoes_rfc = modelo_rfr.predict(X_test)
modelo_rfr.score(X_test, y_test)
```

#### 0.9997674831763721

#### - XGBoost

```
modelo_xgb = XGBClassifier(random_state=0).fit(X_train, y_train)
predicoes_xgb = modelo_xgb.predict(X_test)
modelo_xgb.score(X_test, y_test)
```

## 0.999701620795837

```
resultados_classificacao = pd.DataFrame(y_test)
resultados_classificacao['Predicao_RandomForest'] = predicoes_rfc
resultados_classificacao['Predicao_XGBoost'] = predicoes_xgb
resultados_classificacao
```

|           | ATENDIMENTO_BAIRRO_NOME | Predicao_RandomForest | Predicao_XGBoost |
|-----------|-------------------------|-----------------------|------------------|
| 69969     | 41                      | 41.0                  | 41               |
| 404424    | 41                      | 41.0                  | 41               |
| 331276    | 41                      | 41.0                  | 41               |
| 270468    | 41                      | 41.0                  | 41               |
| 171597    | 43                      | 43.0                  | 43               |
|           |                         |                       |                  |
| 64754     | 5                       | 5.0                   | 5                |
| 266505    | 17                      | 17.0                  | 17               |
| 22812     | 32                      | 32.0                  | 32               |
| 53755     | 37                      | 37.0                  | 37               |
| 155643    | 48                      | 48.0                  | 48               |
| 83786 rov | vs × 3 columns          |                       |                  |

## - ROC, AUC e F1 score com KNeighborsClassifier

```
X_train, X_test, y_train, y_test =
train_test_split(df.drop('OCORRENCIA_FIM_SEMANA', axis=1),
df['OCORRENCIA_FIM_SEMANA'], test_size=0.2, random_state=0)
```

```
modelo = KNeighborsClassifier().fit(X_train, y_train)
```

```
# gerando as predições
y_pred = modelo.predict(X_test)
```

```
# matriz de confusão
plot_confusion_matrix(modelo, X_test, y_test)
plt.show()

# ROC
plot_roc_curve(modelo, X_test, y_test)
plt.show()
```

```
# AUC
display(f'AUC: {roc_auc_score(y_test, y_pred)}')
# F1 score
display(f'F1 Score: {f1_score(y_test, y_pred)}')
```





# - MAE, R2, MSE e RMSE DecisionTreeRegressor

```
X_train, X_test, y_train, y_test =
train_test_split(df.drop('ATENDIMENTO_BAIRRO_NOME', axis=1),
df['ATENDIMENTO_BAIRRO_NOME'], test_size=0.2, random_state=0)
```

```
# criando o modelo
modelo_dt = DecisionTreeRegressor().fit(X_train, y_train)
modelo_dt.score(X_test, y_test)
```

#### 0.9994747755883882

```
y_pred = modelo_dt.predict(X_test)
```

```
# MAE
display(f"MAE: {mean_absolute_error(y_test, y_pred)}")

# R2
display(f"R2: {r2_score(y_test, y_pred)}")

# MSE
display(f"MSE: {mean_squared_error(y_test, y_pred)}")

# RMSE
display(f"RMSE: {mean_squared_error(y_test, y_pred, squared=False)}")
```

```
'MAE: 0.016255699042799512'
'R2: 0.9994747755883882'
'MSE: 1.3666722364118111'
'RMSE: 1.1690475766245834'
```

### - ROC, AUC e F1 score com LGBMClassifier

```
# split entre treinamento e teste
X_train, X_test, y_train, y_test =
train_test_split(df.drop('OCORRENCIA_FIM_SEMANA', axis=1),
df['OCORRENCIA_FIM_SEMANA'], test_size=0.2, random_state=0)
```

```
# criando o modelo
modelo_LGBMC = LGBMClassifier(random_state=0).fit(X_train, y_train)
```

```
# gerando as predições
y_pred = modelo.predict(X_test)
```

```
# matriz de confusão
plot_confusion_matrix(modelo, X_test, y_test)
plt.show()

# ROC
plot_roc_curve(modelo, X_test, y_test)
plt.show()

# AUC
display(f'AUC: {roc_auc_score(y_test, y_pred)}')

# F1 score
display(f'F1 Score: {f1_score(y_test, y_pred)}')
```





#### - MSLE e MAPE

```
# MSLE
display(f"RMSE: {mean_squared_log_error(df['OCORRENCIA_DIA'],
    df['OCORRENCIA_MES'])}")

# MAPE
display(f"MAPE: {mean_absolute_percentage_error(df['OCORRENCIA_DIA'],
    df['OCORRENCIA_MES'])}")
```

'RMSE: 1.3840747489753946'
'MAPE: 0.8562573221960479'

### - Prophet

```
from pyspark.sql.functions import percent_rank
from pyspark.sql import Window

sparkDFModel = sparkDF.withColumn("rank",
    percent_rank().over(Window.partitionBy().orderBy("OCORRENCIA_ANO")))
```

#### sparkDFModel

DataFrame[ATENDIMENTO\_ANO: double, OCORRENCIA\_ANO: bigint, ATENDIMENTO\_BAIRRO\_NOME: string, FLAG\_FLAGRANTE: string, NATUREZA1\_DESCRICAO: string, OCORRENCIA\_DATA: string, OCORRENCIA\_DIA\_SEMANA: string, REGIONAL\_FATO\_NOME: string, QUANTIDADE\_OCORRENCIA: bigint, rank: double]

```
train_df = sparkDFModel.where("rank <= .8").drop("rank")
train_df.show()</pre>
```

| NDIMENTO_ANO OCOR | RENCIA_ANO ATENDI | MENTO_BAIRRO_NOME FLAG_ | FLAGRANTE   NATU | REZA1_DESCRICAO O | DRRENCIA_DATA OCORR | ENCIA_ |
|-------------------|-------------------|-------------------------|------------------|-------------------|---------------------|--------|
| <br>2009.0        | <br>2009          | ABRANCHES               | <br>NÃO          | AIFU              | <br>2009-05-17      |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | AIFU              | 2009-05-28          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | AIFU              | 2009-07-23          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Alagamento        | 2009-11-16          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Alarmes           | 2009-09-03          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Alarmes           | 2009-09-27          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Alarmes           | 2009-11-07          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Animais           | 2009-01-04          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Animais           | 2009-01-07          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Animais           | 2009-02-06          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Animais           | 2009-02-16          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO              | Animais           | 2009-04-07          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO Í            | Animais           | 2009-04-23          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO j            | Animais           | 2009-05-11          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO Í            | Animais           | 2009-06-27          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO j            | Animais           | 2009-07-03          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO j            | Animais           | 2009-07-22          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO Í            | Animais           | 2009-08-04          |        |
| 2009.0            | 2009              | ABRANCHES               | NÃO j            | Animais           | 2009-08-27          |        |
| 2009.0i           | 2009 i            | ABRANCHES İ             | NÃO İ            | Animaisİ          | 2009-09-20          |        |

```
test_df = sparkDFModel.where("rank > .8").drop("rank")
test_df.show()
```

| +                        |                |                         |                |                     |                              |  |  |
|--------------------------|----------------|-------------------------|----------------|---------------------|------------------------------|--|--|
| ATENDIMENTO_ANO          | OCORRENCIA_ANO | ATENDIMENTO_BAIRRO_NOME | FLAG_FLAGRANTE | NATUREZA1_DESCRICAO | OCORRENCIA_DATA OCORRENCIA_D |  |  |
| 2022.0                   | 2022           | JARDIM PEDRO DEMETE     | NÃO            | Apoio               | <br>  2022–07–01             |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Agressão física/v   | 2022-02-10                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Agressão física/v   | 2022-03-05                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Agressão física/v   | 2022-04-09                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Agressão física/v   | 2022-05-27                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Agressão física/v   | 2022-07-15                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Agressão física/v   | 2022-08-17                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Agressão física/v   | 2022-08-27                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Agressão física/v   | 2022-09-06                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Alarmes             | 2022-02-09                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Alarmes             | 2022-03-02                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Alarmes             | 2022-04-16                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Ameaça              | 2022-03-12                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Ameaça              | 2022-06-18                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Animais             | 2022-03-30                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Animais             | 2022-05-04                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Apoio               | 2022-01-13                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃO            | Apoio               | 2022-01-15                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃ0            | Apoio               | 2022-01-20                   |  |  |
| 2022.0                   | 2022           | ABRANCHES               | NÃ0            | Apoio               | 2022-01-21                   |  |  |
| only showing top 20 rows |                |                         |                |                     |                              |  |  |

```
train_df =
  train_df.groupBy('OCORRENCIA_DATA').sum('QUANTIDADE_OCORRENCIA')
```

```
train_df = train_df.withColumnRenamed("OCORRENCIA_DATA","ds") \
    .withColumnRenamed("sum(QUANTIDADE_OCORRENCIA)","y")
```

```
train_df.show()
```

```
уΙ
|2009-05-17| 87|
 2009-05-28 | 55 |
 2009-07-23 | 50 |
 2009-11-16 | 41 |
 2009-09-03 | 54 |
2009-09-27 | 107 |
 2009-11-07 | 96 |
|2009-01-04| 93|
 2009-01-07 | 70 |
 2009-02-06| 74|
2009-02-16 | 53 |
 2009-04-07 | 54 |
|2009-04-23| 60|
 2009-05-11 | 57 |
 2009-06-27 | 86 |
2009-07-03| 64|
|2009-07-22| 49|
|2009-08-04| 63|
 2009-08-27 | 49 |
|2009-09-20|112|
only showing top 20 rows
```

```
train_df = train_df.toPandas()
```

train\_df

```
ds
                   Y
      2009-05-17
  0
                  87
      2009-05-28
                  55
      2009-07-23
                  50
      2009-11-16
                  41
      2009-09-03
                  54
4743 2021-12-04 148
4744 2021-12-07 145
4745 2021-12-03 170
4746 2021-12-09 152
4747 2021-12-02 129
4748 rows x 2 columns
```

# from prophet import Prophet

```
m = Prophet()
m = Prophet(yearly_seasonality = True, daily_seasonality=True)
m.fit(train_df)
m.yearly_seasonality
m.daily_seasonality
```

```
future = m.make_future_dataframe(periods=124) #Prevê os próximos 90
dias para comparar com a realidade

forecast = m.predict(future) #Prevê
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail() #Mostra
as predições (yhat) e intervalos de confiança: máximo (yhat_upper) e
mínimo (yhat_lower)
```

|      | ds         | yhat       | yhat_lower | yhat_upper |
|------|------------|------------|------------|------------|
| 4867 | 2022-04-30 | 208.968225 | 173.412760 | 243.366437 |
| 4868 | 2022-05-01 | 204.863905 | 171.965964 | 239.563848 |
| 4869 | 2022-05-02 | 188.767131 | 155.346117 | 223.773896 |
| 4870 | 2022-05-03 | 190.888240 | 159.396108 | 224.613066 |
| 4871 | 2022-05-04 | 193.307337 | 159.020746 | 227.233597 |

fig = m.plot(forecast)



fig2 = m.plot\_components(forecast)



```
from prophet.diagnostics import cross_validation

#criamos o dataframe de validação

dfCrossValidation = cross_validation(m, horizon='180 days')
```

```
from prophet.plot import plot_cross_validation_metric
from prophet.diagnostics import performance_metrics

# extrai métricas de desempenho
dfPerformance = performance_metrics(dfCrossValidation)

# exibe métricas de desempenho em um gráfico
fig = plot_cross_validation_metric(dfCrossValidation, metric='mape')
```



dfPerformance

|                      | horizon  | mse         | rmse      | mae       | mape     | mdape    | smape    | coverage |
|----------------------|----------|-------------|-----------|-----------|----------|----------|----------|----------|
| 0                    | 18 days  | 809.770754  | 28.456471 | 17.361695 | 0.208333 | 0.173176 | 0.204159 | 0.745679 |
| 1                    | 19 days  | 780.258640  | 27.933110 | 17.217533 | 0.211068 | 0.173176 | 0.205127 | 0.741975 |
| 2                    | 20 days  | 651.117638  | 25.517007 | 16.853655 | 0.209461 | 0.171963 | 0.203969 | 0.746914 |
| 3                    | 21 days  | 619.291761  | 24.885573 | 16.814322 | 0.212357 | 0.176917 | 0.205509 | 0.741975 |
| 4                    | 22 days  | 625.482016  | 25.009638 | 16.933972 | 0.213101 | 0.176917 | 0.206282 | 0.734568 |
|                      |          |             |           |           |          |          |          |          |
| 158                  | 176 days | 1557.714262 | 39.467889 | 23.984745 | 0.273284 | 0.214027 | 0.264168 | 0.612346 |
| 159                  | 177 days | 1570.984395 | 39.635646 | 24.301819 | 0.276842 | 0.217701 | 0.267955 | 0.606173 |
| 160                  | 178 days | 1533.543369 | 39.160482 | 24.216031 | 0.277067 | 0.220457 | 0.267751 | 0.604938 |
| 161                  | 179 days | 1475.142364 | 38.407582 | 24.309637 | 0.281272 | 0.223604 | 0.271480 | 0.600000 |
| 162                  | 180 days | 1410.120298 | 37.551569 | 24.210060 | 0.283598 | 0.225037 | 0.272226 | 0.597531 |
| 163 rows x 8 columns |          |             |           |           |          |          |          |          |

#### 7. Conclusão

A ideia inicial do trabalho era contribuir na tomada de decisões para investimento em uma atuação com fins sociais. Para isso, a escolha do dataset norteou-se pela contribuição social e portanto, foi escolhido dataset SiGesGuarda da Prefeitura Municipal de Curitiba no Estado do Paraná no Brasil, em busca de encontrar possibilidades e melhorias na atuação social, também entender e responder perguntas relacionadas a segurança e prever e classificar possíveis novos casos de ocorrências.

Sendo assim, o primeiro objetivo foi entrevistar, pesquisar, explorar e analisar o dataset, buscando responder perguntas, entender e auxiliar a área de segurança, por meio de técnicas de Análise de Dados, Estatística e Frameworks de Big Data, como o Apache Spark (PySpark).

Buscando desenvolver e responder ao primeiro objetivo, o projeto respondeu diversas perguntas que buscam auxiliar a atuação social, como: Quantidade de ocorrências atendidas por ano, quantidade de ocorrências recebidas por ano, quantidade de ocorrências com flagrante, quantidade de ocorrências por tipo, quantidade de ocorrências por dia e também a quantidade de ocorrências por dia da semana.

E outras como: ano que possui mais atendimento, bairro que possui mais atendimento, ano por bairro que possui mais atendimento, o tipo de natureza da ocorrência, o tipo de natureza da ocorrência em cada bairro, o horário da ocorrência mais frequente, horário da semana e bairro mais frequentes.

Outro objetivo era buscar por modelos de machine learning para tentar prever e classificar as ocorrências е para isso foram utilizados os modelos: LinearRegression, KNeighborsRegressor. SVM, DecisionTreeRegressor, LGBMClassifier, RandomForestRegressor, XGBoost e Prophet. E para otimização WOEEnconder e PCA.

Neste objetivo, analisando os primeiros testes com e sem scaler com os modelos KNeighborsRegressor, LinearRegression, SVM, todos apresentaram um melhor desempenho utilizando o scaler e o que se mostrou melhor foi o LinearRegression. Ao utilizar o PCA, os modelos não demonstraram uma grande

diferença no desempenho, apresentando quase os mesmos resultados em todos os casos.

Com relação ao DecisionTreeRegressor, LGBMClassifier, RandomForestRegressor, XGBoost e Prophet, o LGBMClassifier e Prophet foram os que tiveram o menor score.

Quando avaliamos outras métricas, como ROC, AUC e F1 para o KNeighborsClassifier e para o LGBMClassifier, ambos obtiveram o mesmo score.

Ao observar MAE, R2, MSE, RMSE e MAPE para o DecisionTreeRegressor, todas tiveram um valor baixo e próximo a 1, demonstrando um bom desempenho do modelo.

86

#### 8. Referências

AHMED, Asif. **PySpark in Google Colab.** Medium: 2019. Disponível em: <a href="https://towardsdatascience.com/pyspark-in-google-colab-6821c2faf41c#:~:text=To%20">https://towardsdatascience.com/pyspark-in-google-colab-6821c2faf41c#:~:text=To%20">run%20spark%20in%20Colab,Jupyter%20Notebook%20of%20the%20Colab&text=Our%20Colab%20is%20ready%20to%20run%20PySpark>. Acesso em: 20/10/2022.

BARAD, Vishal. **Data Preprocessing Using Pyspark (Part:1).** Medium: 2021. Disponível em: <a href="https://medium.com/vedity/python-data-preprocessing-using-pyspark-cc3f709c3c23">https://medium.com/vedity/python-data-preprocessing-using-pyspark-cc3f709c3c23</a>>. Acesso em: 25/10/2022.

CETAX. **Tutorial Pyspark e MLlib.** Brasil: 2022. Disponível em: <a href="https://cetax.com.br/tutorial-pyspark-e-mllib/">https://cetax.com.br/tutorial-pyspark-e-mllib/</a>>. Acesso em: 28/10/2022.

Data Science. **Tutorial PySpark.** Sem data. Disponível em: <a href="https://datascience.eu/pt/programacao/tutorial-pyspark/">https://datascience.eu/pt/programacao/tutorial-pyspark/</a>. Acesso em: 20/10/2022.

LOPES, Alexandre. **Funcionamento do PySpark.** Medium: 2020. Disponível em <a href="https://medium.com/data-hackers/entendo-funcionamento-do-pyspark-2b5ab4321ab9">https://medium.com/data-hackers/entendo-funcionamento-do-pyspark-2b5ab4321ab9</a> >. Acesso em: 25/10/2022.

Microsoft. **O que é o Apache Spark?** Learn: 2022. Disponível em <a href="https://learn.microsoft.com/pt-br/dotnet/spark/what-is-spark">https://learn.microsoft.com/pt-br/dotnet/spark/what-is-spark</a>>. Acesso em: 15/10/2022.

Prefeitura Municipal de Curitiba. **Dados Abertos.** Sem data. Disponível em: <a href="https://www.curitiba.pr.gov.br/dadosabertos/busca/?termo=sigesguarda">https://www.curitiba.pr.gov.br/dadosabertos/busca/?termo=sigesguarda</a>>. Acesso em: 05/10/2022.

RAONIAR, RAHUL. **Introduction to PySpark.** Medium: 2021. Disponível em: <a href="https://medium.com/the-researchers-guide/introduction-to-pyspark-a61f7217398e">https://medium.com/the-researchers-guide/introduction-to-pyspark-a61f7217398e</a>>. Acesso em: 15/10/2022.

ROSEN, Josh. **PySpark Internals.** Wiki: 2016. Disponível em: <a href="https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals#:~:text=PySpark%20is%20built%20on%20top,JVM%20and%20create%20a%20JavaSparkContext.&text=RDD%20transformations%20in%20Python%20are,on%20PythonRDD%20objects%20in%20Java>. Acesso em: 15/10/2022.

SHAFIQUE, Ayesha. **Exploratory Data Analysis using Pyspark Dataframe in Python.** Medium: 2019. Disponível em: <a href="https://medium.com/@aieeshashafique/exploratory-data-analysis-using-pyspark-dataframe-in-python-bd55c02a2852">https://medium.com/@aieeshashafique/exploratory-data-analysis-using-pyspark-dataframe-in-python-bd55c02a2852</a>>. Acesso em: 18/10/2022.

Spark By Examples. **How to Convert Pandas to PySpark DataFrame.** 2022. Disponível em:

<a href="https://sparkbyexamples.com/pyspark/convert-pandas-to-pyspark-dataframe/">https://sparkbyexamples.com/pyspark/convert-pandas-to-pyspark-dataframe/</a>. Acesso em: 10/10/2022.

Spark By Examples. **PySpark Union and UnionAll Explained.** 2022. Disponível em: <a href="https://sparkbyexamples.com/pyspark/pyspark-union-and-unionall/">https://sparkbyexamples.com/pyspark/pyspark-union-and-unionall/</a>>. Acesso em: 10/10/2022.

SÔTO, Rubens. **Encapsulando Transformações em DataFrames com Pyspark.** Medium: 2020. Disponível em: <a href="https://medium.com/data-hackers/encapsulando-transformações-em-dataframes-com-pyspark-9543e0cc69f1">https://medium.com/data-hackers/encapsulando-transformações-em-dataframes-com-pyspark-9543e0cc69f1</a>>. Acesso em: 23/10/2022.

