MC558 - Projeto e Análise de Algoritmos II Lista de Exercícios 3

Os exercícios sem marcas são (ou deveriam ser) relativamente simples. Os exercícios marcados com (*) exigem alguma reflexão.... Os exercícios marcados com (**) são mais difíceis.

- 1. (a) Mostre que toda árvore com grau máximo k possui pelo menos k folhas.
 - (b) Quais são as árvores com exatamente k folhas?

2. Prove que:

- (a) G é uma floresta se e somente se todo subgrafo induzido possui vértice de grau menor ou igual a 1;
- (b) G é uma floresta se e somente se todo subgrafo conexo é um subgrafo induzido.

Por que não posso dizer árvore em vez de floresta nas afirmações acima?

- 3. Seja F uma floresta geradora maximal de um grafo G um grafo. Mostre que m(F) = n(G) c(G).
- 4. Sejam d_1, \ldots, d_n inteiros positivos com $n \geq 2$. Mostre que existe uma árvore com sequência de graus (d_1, d_2, \ldots, d_n) se, e somente se, $\sum_{i=1}^n d_i = 2n 2$.
- 5. Um **centro** de um grafo G é um vértice u tal que $\max\{\operatorname{dist}(u,v):v\in V\}$ é mínimo.
 - (a) Seja T uma árvore com pelo menos três vértices e seja T' a árvore obtida de T removendose todas suas folhas. Mostre que T e T' têm os mesmos centros.
 - (b) Deduza que toda árvore ou tem exatamente um centro ou dois centros, sendo eles adjacentes.
- 6. Um vértice v é dito **paizão**¹ se não é uma folha e é adjacente a pelo menos d(v) 1 folhas. É verdade que toda árvore com $n \ge 3$ possui um vértice paizão?
- 7. Suponha que T seja uma árvore na qual todo vértice adjacente a uma folha tem grau pelo menos 3. Prove que T possui duas folhas adjacentes a um mesmo vértice.
- 8. (a) Sejam T_1 e T_2 subárvores de uma árvore T. Mostre que $T_1 \cap T_2$ e $T_1 \cup T_2$ são árvores se, e somente se, $T_1 \cap T_2$ é não vazio.
 - (b) (*) Seja \mathcal{T} uma família de subárvores de uma árvore T. Suponha que quaisquer dois membros de \mathcal{T} tem um vértice em comum. Mostre por indução em $|\mathcal{T}|$ que existe um vértice de T que pertence a todos os membros de \mathcal{T} . **Dica:** é preciso fazer duas induções.
 - (c) (*) Pode-se provar o resultado do item (b) por indução em |V(T)|. Considere uma folha u de T. Se u pertence a todas as árvores em \mathcal{T} , então nada há a fazer. Caso contrário, modifique T e \mathcal{T} para aplicar a indução.
- 9. Sejam T e T' árvores geradoras de um grafo G. Seja $e \in E(T) E(T')$. Mostre que existe $e' \in E(T') E(T)$ tal que ambas T + e e' e T e + e' são árvores geradoras de G.

¹Pura falta de imaginação.

- 10. Seja G um grafo conexo contendo um único circuito, digamos C. Determine o número de árvores geradoras de G.
- 11. Seja G um grafo conexo contendo exatamente dois circuitos C e C'. Determine o número de árvores geradoras de G. Dica: esses circuitos podem ter arestas em comum?
- 12. (* ou **) Mostre que o número de árvores geradoras de $K_{2,n}$ é $n2^{n-1}$ para $n \geq 2$. **Dica:** chame de x e y os vértices da menor parte. Note que em qualquer árvore geradora exatamente um dos vértices da outra parte tem que ser vizinho de x e de y enquanto cada um dos outros vértices é vizinho de x ou de y (mas não de ambos).
- 13. (**) Seja e uma aresta qualquer de K_n onde $n \ge 3$. Prove que o número de árvores geradoras de $K_n e$ é $(n-2)n^{n-3}$. **Dica:** note que por simetria, é irrelevante qual aresta de K_n é removida. Conte o número de pares (f,T) onde T é uma árvore geradora de K_n e $f \in E(T)$. Divida este resultado por ?? para obter o número de árvores geradoras de K_n que **contém** uma aresta fixa e. Finalmente, descubra o número de árvores geradoras de K_n que **não contém** e.