In [1]	<pre>import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import scipy as sp import sklearn as skl import statsmodels.formula.api as smf from statsmodels.tools import add_constant from sklearn.experimental import enable_iterative_imputer</pre>
In [2]	<pre>from sklearn.impute import IterativeImputer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, ConfusionMatrixDisplay, roc_curve, roc_auc_score, root_mean_squ from sklearn.model_selection import RandomizedSearchCV, train_test_split, cross_val_score, StratifiedKFold, cross_val_predict from scipy.stats import randint, kstest gen_sub = pd.read_csv('gender_submission.csv') data_train = pd.read_csv('train.csv') data_test = pd.read_csv('test.csv')</pre>
Out[2]	0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S 1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C85 C 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 O STON/O2. 3101282 7.9250 NaN S
In [3] Out[3]	
	1 893 3 Wilkes, Mrs. James (Ellen Needs) female 47.0 1 0 363272 7.0000 NaN S 2 894 2 Myles, Mr. Thomas Francis male 62.0 0 0 240276 9.6875 NaN Q 3 895 3 Wirz, Mr. Albert male 27.0 0 0 315154 8.6625 NaN S 4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0 1 1 3101298 12.2875 NaN S
In [4]	Removendo variáveis irrelevantes As variáveis "Name", "Ticket" e "Cabin" não serão úteis para a nossa análise. # removendo variáveis inúteis data_train = data_train.drop(['Name', 'Ticket', 'Cabin'], axis = 1) data_test = data_test.drop(['Name', 'Ticket', 'Cabin'], axis = 1)
Out[4]	# concatenando os dois bancos data = pd.concat([data_train, data_test]).reset_index(drop = True) data.head() Passengerld Survived Pclass Sex Age SibSp Parch Fare Embarked 0 1 0.0 3 male 22.0 1 0 7.2500 S 1 2 1.0 1 female 38.0 1 0 71.2833 C
	2 3 1.0 3 female 26.0 0 0 7.9250 S 3 4 1.0 1 female 35.0 1 0 53.1000 S 4 5 0.0 3 male 35.0 0 0 8.0500 S Imputação de valores faltantes
In [5] Out[5]	# 1 NA em Fare # 2 NAs em Embarked
	Age 263 SibSp 0 Parch 0 Fare 1 Embarked 2 dtype: int64 Temos alguns dados faltantes: 263 na variável "Age", 1 na variável "Fare" e 2 na variável "Embarked".
In [6] Out[6]	Embarked S 914
In [7] In [8] Out[8]	
In [9]	Imputação da variável Age Como a variável Age é contínua vamos analisar se podemos imputar a mediana. Iremos verificar a distribuição dos dados para cada categoria da variável Sex sem os outliers. Caso as distribuições de Age em cada categoria de Sex forem diferentes, não podemos imputar com a mediana. # verificando a distribuição dos dados de Age para as categorias de Sex fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (12,4))
	sns.histplot(x = 'Age', hue = 'Sex', data = data, ax = ax1) sns.boxplot(x = 'Age', y = 'Sex', data = data, ax = ax2, showfliers = False) plt.show() # aparentemente tem a mesma distribuição, então imputar a mediana não vai comprometer os dados print('median global age = ', data['Age'].median()) Sex male
	80 - Male
	20 - 10 20 30 40 50 60 70 80 female - 0 10 20 30 40 50 60 Age
In [10] Out[10]	AgeFemale = data['Age'][data['Sex'] == 'female'].dropna() kstest(AgeMale, AgeFemale).pvalue
In [11] Out[11]	<pre>data.isna().sum()</pre>
	Parch 0 Fare 1 Embarked 0 dtype: int64 Imputação da variável Fare Faremos o mesmo que fizemos na variável Age, na variável Fare.
	<pre>: # verificando a distribuição dos dados de Fare para as categorias de Sex fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (12,4)) sns.histplot(x = 'Fare', hue = 'Sex', data = data, ax = ax1) sns.boxplot(x = 'Fare', y = 'Sex', data = data, ax = ax2, showfliers = False) : <axes: ,="" xlabel="Fare" ylabel="Sex"></axes:></pre>
	300 - 250 - 200 - 150 -
	100 - 50 - 6emale - 60 80 100 120 Fare
	Fare
In [14]	MICE para imputar na observação faltante já que não há problemas em usar. Antes de utilizarmos o MICE precisamos remover as variáveis que não podemos usar (Passengerld, pois é somente um índice; e Survived, pois é nossa variável resposta, logo comprometeria nosso modelo preditivo) e colocar as variáveis categóricas (Sex, Pclass e Embarked) como dummies. # imputando para Fare usando MICE x = data.drop(['PassengerId', 'Survived'], axis = 1) x = pd.get_dummies(x, columns = ['Sex', 'Pclass', 'Embarked'], drop_first = True)
Out[14]	0 1 0.0 22.0 1.0 0.0 7.2500 1.0 0.0 1.0 0.0 1.0
In [15]	1
Out[15]	Survived 418 Age 0 SibSp 0 Parch 0 Fare 0 Sex_male 0 Pclass_2 0 Pclass_3 0
In [16]	Embarked_S 0 dtype: int64
In [17]	<pre>Criação do modelo : # criando uma Random Forest features = ['Age', 'SibSp', 'Parch', 'Fare', 'Sex_male', 'Pclass_2', 'Pclass_3', 'Embarked_Q', 'Embarked_S'] y_train = data_train['Survived'] x_train = data_train[features] y_test = gen_sub['Survived']</pre>
In [18]	<pre>x_test = data_test[features] model = RandomForestClassifier(random_state = 28051996) modelFit = model.fit(x_train, y_train) Precisamos validar nosso modelo, portanto faremos a cross validation utilizando 5 Kfolds estratificados para diminuir a variabilidade dentro dos subdatasets, dando maior confiabilidade à avaliação do modelo. : # dividindo o dataset de treino em 5 cv = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 28051996)</pre>
	<pre># fazendo cross validation para cada método de avaliação do modelo crossval_acc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'accuracy') crossval_prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'precision') crossval_rc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'recall') def intervalo_acc(crossval): mean = crossval_acc.mean() dv = crossval_acc.std() print('\nAcurácia média: {:.2f}%'.format(mean*100))</pre>
	<pre>print('Desvio-padrão da acurácia: {:.2f}%'.format(dv*100)) print('Intervalo da acurácia: [{:.2f}% - {:.2f}%]\n'.format((mean-2*dv)*100, (mean + 2*dv)*100)) def intervalo_prec(crossval): mean = crossval.mean() dv = crossval.std() print('\nPrecisão média: {:.2f}%'.format(mean*100)) print('\nPrecisão da precisão: {:.2f}%'.format(dv*100)) print('Intervalo da precisão: [{:.2f}% - {:.2f}%]\n'.format((mean-2*dv)*100, (mean + 2*dv)*100))</pre>
	<pre>def intervalo_rc(crossval): mean = crossval.mean() dv = crossval.std() print('\nRecall médio: {:.2f}%'.format(mean*100)) print('Desvio-padrão do recall: {:.2f}%'.format(dv*100)) print('Intervalo do recall: [{:.2f}% - {:.2f}%]\n'.format((mean-2*dv)*100, (mean + 2*dv)*100)) # os modelos são moderados, mas pode melhorar intervalo_acc(crossval_acc) intervalo_prec(crossval_prec)</pre>
	intervalo_rc(crossval_rc) Acurácia média: 81.93% Desvio-padrão da acurácia: 3.89% Intervalo da acurácia: [74.16% - 89.71%] Precisão média: 77.18% Desvio-padrão da precisão: 4.77% Intervalo da precisão: [67.64% - 86.73%]
	Recall médio: 75.15% Desvio-padrão do recall: 7.07% Intervalo do recall: [61.01% - 89.30%] Para a quantidade e tipos de dados no banco de dados, a acurácia está boa, a precisão nem tanto e, como esperado, o recall está mais baixo.
In [19]	<pre>Importância das variáveis # calculando a taxa de importância de cada feature y_pred = model.predict(x_test) importancias = pd.DataFrame({ 'Features' : features, 'Importância': model.feature_importances_ })</pre>
	<pre>print(importancias) print('\nDefault params: ') ax = sns.barplot(x = 'Features', y = 'Importância', data = importancias) plt.xticks(rotation = 45) plt.show() Features Importância 0 Age 0.252150 1 SibSp 0.048542</pre>
	2 Parch
	0.25 - 0.20 -
	0.15 - 0.10 - 0.05 -
	0.00 Rose SibSP Parch Fare Set Trade Actass 7 Robers 7 Robert 7 Robers 7 Robert 7 Ro
In [20]	Temos 3 variáveis que suas importâncias se sobressaem em relação às outras. Age, Fare e Sex Avaliação dos hiperparâmetros Podemos melhorar o modelo fazendo uma investigação em alguns hiperparâmetros. # preparando uma avaliação dos melhores valores para alguns hiperparâmetros
	<pre>n_estimators = range(50,500,50) max_depth = range(2, 30, 2) min_samples_split = [2, 5, 10] max_features = [2, 5, 10] bootstrap = [True, False] param_dist = dict(</pre>
	<pre>max_depth = max_depth) # verificando os valores rand_search = RandomizedSearchCV(model,</pre>
	<pre># fit do melhor modelo rand_result = rand_search.fit(x_train, y_train) best_params = rand_result.best_params_ print('Best Score: ', rand_result.best_score_) print('Best Params: ', rand_result.best_params_) Best Score: 0.8361810306948717 Best Params: {'n_estimators': 100, 'min_samples_split': 10, 'max_features': 2, 'max_depth': 14, 'bootstrap': False}</pre>
In [21]	Comparação das matrizes de confusão dos modelos inicial e o otimizado : # comparação das matrizes de confusão y_best_pred = rand_result.predict(x_test) cm = confusion_matrix(y_test, y_pred) # matriz de confusão do ajuste com os primeiros valores de hiperparâmetros cm_best = confusion_matrix(y_test, y_best_pred) # matriz de confusão do ajuste com os melhores valores de hiperparâmetros fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (12,4)) ConfusionMatrixDisplay(confusion_matrix=cm).plot(ax = ax1) ax1.set_title('Default parameters') ConfusionMatrixDisplay(confusion_matrix=cm_best).plot(ax = ax2)
Out[21]	ax2.set_title('Best parameters') Text(0.5, 1.0, 'Best parameters') Default parameters Best parameters -225
	0 - 229 37 0 - 240 26 - 200
	- 200