Comparative Difficulty of X-Sudoku and Sudoku Stripe

Caitlin Lagrand and Hunter McKnight

The Puzzles

In addition to ordinary sudoku rules...

- X-sudoku
 - Requires that both main diagonals contain the digits 1-9
- Sudoku Stripe
 - Requires that the digits 1-9 occur in ascending or descending order at least once
 - o Can occur in any row, column, or region

Examples

4	7	8	1	9	5	3	2	6
5	2	6	4	8	3	7	1	9
9	3	1	6	7	2	4	5	8
2	5	9	8	6	7	1	3	4
3	6	4	2	5	1	9	8	7
1	8	7	3	4	9	5	6	2
7	1	2	9	3	8	6	4	5
6	9	3	5	2	4	8	7	1
8	4	5	7	1	6	2	9	3

Solved X-Sudoku

							10	
6	2	7	8	9	1	3	4	5
5	4	3	6	7	2	1	9	8
9	1	8	3	4	5	7	2	6
4	5	6	1	2	3	8	7	9
7	8	9	4	5	6	2	3	1
2	3	1	7	8	9	6	5	4
3	6	5	9	1	7	4	8	2
8	7	2	5	6	4	9	1	3
1	9	4	2	3	8	5	6	7

Solved Sudoku Stripe

Figure 1: Example Solutions

Motivation

The x-condition

- Expressible more compactly in plain English
- Is easier to check in a proposed solution
- Is stricter (only one way to satisfy)

• The stripe condition

- Expressible less compactly in plain English
- Is harder to check in a proposed solution
- Is less strict (many ways to satisfy)

Hypothesis

Stripe sudoku is harder for a SAT solver than x-sudoku is.

Explication

- Harder how?
 - Solver may search longer to find a model or determine none exists
 - Metrics: max decision level, total decisions, conflict clauses added
- What basis for comparison?
 - Same puzzles, same solver, similar encodings
 - Require the solver to make at least one decision
 - Compare average and maximum results across the entire dataset

The Dataset

- 49,151 nonequivalent 9 x 9 sudoku puzzles with exactly 17 hints each
- Maintained by Gordon Royle at the University of Western Australia
- http://staffhome.ecm.uwa.edu.au/~00013890/sudokumin.php

The Solvers

- zChaff
 - Maintained by Princeton University
 - https://www.princeton.edu/~chaff/zchaff.html
- CaDiCaL
 - Maintained by Armin Biere
 - https://github.com/arminbiere/cadical

Minimal Encoding

$$Sudoku = Cell \bigwedge Row \bigwedge Column \bigwedge Region \bigwedge Hints$$

$$Cell = \bigwedge_{r=1}^{n} \bigwedge_{c=1}^{n} \bigvee_{v=1}^{n} (r, c, v)$$

$$Row = \bigwedge_{r=1}^{n} \bigwedge_{v=1}^{n} \bigvee_{c_{i}=1}^{n} \bigvee_{c_{j}=c_{i}+1}^{n} \neg (r, c_{i}, v) \vee \neg (r, c_{j}, v)$$

$$Column = \bigwedge_{c=1}^{n} \bigwedge_{v=1}^{n} \bigvee_{r_{i}=1}^{n} \bigvee_{r_{j}=r_{i}+1}^{n} \neg (r_{i}, c, v) \vee \neg (r_{j}, c, v)$$

$$Region = \bigwedge_{r_{b}=1}^{n} \bigwedge_{c_{b}=1}^{n} \bigwedge_{n=1}^{n} \bigwedge_{r_{i}=1}^{n} \bigwedge_{c_{i}=1}^{n} \bigvee_{r_{j}=r_{i}+1}^{n} \bigcap_{c_{j}=1}^{n} \neg (r_{b} * \sqrt{n} + r_{i}, c_{b} * \sqrt{n} + c_{i}, v) \vee \neg (r_{b} * \sqrt{n} + r_{j}, c_{b} * \sqrt{n} + c_{j}, v)$$

$$Hints = \bigwedge_{r_{b}=1}^{\#Hints} (r, c, v)$$

$$(5)$$

X Encoding

$$\begin{aligned} Diagonal_Left_Right &= \bigwedge_{i_i=1}^n \bigwedge_{v=1}^n \bigwedge_{i_j=i_i+1}^n \neg(i_i,i_i,v) \lor \neg(i_j,i_j,v) \\ Diagonal_Right_Left &= \bigwedge_{i_i=1}^n \bigwedge_{v=1}^n \bigwedge_{i_j=i_i+1}^n \neg(i_i,n-i_i,v) \lor \neg(i_j,n-i_j,v) \end{aligned}$$

Stripe Encoding

$$Stripe = RowsStripe \lor ColumnsStripe \lor RegionsStripe$$

$$RowsStripe = \bigvee_{r=1}^{n} (\bigwedge_{c=1}^{n} (r, c, c)) \vee (\bigwedge_{c=1}^{n} (r, c, n - c))$$

$$RowsStripe = \bigvee_{r=1}^{n} row_r$$

$$Ascending = \bigwedge_{c=1}^{n} (r, c, c) \leftrightarrow (r, 1, 1) \land y_{1}$$

$$y_{1} \rightarrow \bigwedge_{c=2}^{n-1} (r, c, c) \leftrightarrow \neg y_{1} \lor (\bigwedge_{c=2}^{n-1} (r, c, c)) \leftrightarrow \bigwedge_{c=2}^{n-1} (\neg y_{1} \lor (r, c, c))$$

$$Descending = \bigwedge_{c=1}^{n} (r, c, n - c) \leftrightarrow (r, 1, n - 1) \land y_{2}$$

$$y_{2} \rightarrow \bigwedge_{c=2}^{n-1} (r, c, n - c) \leftrightarrow \neg y_{2} \lor (\bigwedge_{c=2}^{n-1} (r, c, n - c)) \leftrightarrow \bigwedge_{c=2}^{n-1} (\neg y_{2} \lor (r, c, n - c))$$

$$row_r \to ((r,1,1) \land y_1) \lor ((r,1,n) \land y_2) \leftrightarrow (\neg row_r \lor (r,1,1) \lor y_2) \land (\neg row_r \lor (r,1,n) \land y_1)$$

Results: Aggregated

Results: Statistics

zChaff Statistics

3	Maximum depth		Number	of decisions	Added conflict clauses	
	X	stripe	X	stripe	X	stripe
Mean	17.78	28.51	169.37	319.64	83.09	142.76
Standard deviation	9.10	9.06	223.79	249.05	118.11	135.93
Max	67	77	7876	3535	2900	1791

Results: Statistics

CaDiCaL Statistics

	Number	of decisions	Added conflict clauses		
	X	stripe	X	stripe	
Mean	112.72	171.84	553.62	704.84	
Standard deviation	161.77	173.01	1033.87	932.15	
Max	2715	2849	20669	19236	

Conclusion

- Relative to a fixed dataset and SAT-solver:
 - Sudoku stripe seems more difficult than x-sudoku in the average case.
 - But how strong is this experiment's support?
 - Sudoku stripe is not necessarily more difficult in the worst case.
 - The hardest x-instance may be as hard or harder than the hardest stripe-instance.

Future Work

- Different Solvers
- Different settings
- Different puzzles

Github

Clone our repository and try our experiment for yourself!

https://github.com/huntermcknight/x-stripe

YouTube

Watch our presentation at:

https://youtu.be/msFuuGF-dZs