

UNIVERSITÄT BAYREUTH Physik

Theoretische Physik

Physikalisches Rechnen Stoffsammlung

> von Moritz Schramm

Inhaltsverzeichnis

1	Grundlegendes		1
	1.1	Skalare, Vektoren und Matrizen	1
	1.2	Determinante	3
	1.3	Eigenwerte und Eigenvektoren	4
	1.4	Totale Ableitung	4
	1.5	Taylorreihe	4
	1.6	Fourier Reihen	4
	1.7	Dirac-Delta-Funktion	5
	1.8	Fourier Transformation	5
2	Mel	hrdimensionale Integration und Differentiation	7
	2.1	Differentiation	7
	2.2	Krummlinige Bewegung	7
	2.3	Nabla Kalkül	8
	2.4	Krummlinige Koordinaten	8
	2.5	Kurvenintegrale	8
	2.6	Volumen- und ebene Flächenintegrale	8
	2.7	Flächenintegrale	8
	2.8	Integralsätze	
3	Diff	erentialgleichungen	9
	3.1	Gewöhnliche Differentialgleichunge (ODEs)	9
	3.2	Partielle Differentialgleichungen (PDEs)	

Kapitel 1

Grundlegendes

1.1 Skalare, Vektoren und Matrizen

Ein Skalar a ist eine gewöhnliche Zahl aus einem beliebigen Körper (z.B. \mathbb{R} oder \mathbb{C}). Ein Vektor \mathbf{a} ist ein Element eines Vektorraums (z.B. \mathbb{R}^3). Eine Matrix \mathbf{A} besteht aus n Spalten und m Reihen (also $\mathbf{A} \in \mathbb{R}^{m \times n}$). Im Folgenden wird nur der dreidimensionale Vektorraum \mathbb{R}^3 betrachtet.

Für den Betrag gilt $a=|\mathbf{a}|=\sqrt{a_1^2+a_2^2+a_3^2}$. Der nomierte Vektor $\hat{\mathbf{a}}=\frac{1}{|\mathbf{a}|}\mathbf{a}$ hat immer die Länge 1.

Definition 1. Skalarprodukt

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Es gilt:

 $\mathbf{a} \cdot \mathbf{b} = a b \cos \alpha$, wenn α der Winkel zwischen \mathbf{a} und \mathbf{b} ist.

$$\Box \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

$$(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$$

$$\Box \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

$$\mathbf{a} \cdot \mathbf{b} = 0 \iff \mathbf{a} \perp \mathbf{b}$$

Definition 2. Kreuzprodukt

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Definition 3. Spatprodukt

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Gibt das Volumen, das durch die drei Vektoren aufgespannt wird an.

Definition 4. Matrix (3×3)

$$\mathbf{A} = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Definition 5. Matrixmultiplikation

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{C} = (c_{ik}) = \sum_{j=1}^{3} a_{ij} b_{jk}$$

Der Eintrag in der i-ten Reihe und k-ten Spalte in \mathbf{C} ist das Skalarprodukt der i-ten Reihe der Matrix \mathbf{A} und der k-ten Spalte der Matrix \mathbf{B} .

Hinweis: A muss von der Form $m \times n$ und B von der Form $n \times p$ sein. C hat dann die Form $m \times p$.

Definition 6. Dyadisches Produkt

$$\mathbf{ab} = \mathbf{a} \cdot \mathbf{b}^t = \begin{pmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{pmatrix}$$

Definition 7. Inverse einer Matrix

Eine Matrix \mathbf{A}^{-1} heißt Inverse einer quadratischen Matrix \mathbf{A} , wenn $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbb{I}$

Es gilt:

$$\Box \mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{pmatrix}$$

$$\Box \alpha \mathbf{A} = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} \\ \alpha a_{31} & \alpha a_{32} & \alpha a_{33} \end{pmatrix}$$

$$\Box \text{ Transposition: } \mathbf{A}^t = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^t = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

$$\Box \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

$$\Box \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

 \Box im Allgemeinen: $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

$$\Box (\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$$

1.2 Determinante

Definition 8. Entwicklung nach erster Zeile

Sei $\mathbf{A} = (a_{ij}) \in \mathbb{C}^{n \times n}$.

$$\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{1+k} a_{1k} \det(\mathbf{A}_{1k})$$

wobei \mathbf{A}_{jk} die Matrix \mathbf{A} ist, bei der die j-te Zeile und k-te Spalte entfernt wurden (also $\mathbf{A}_{jk} \in \mathbb{C}^{(n-1)\times (n-1)}$).

Satz 1. Regel von Sarrus für 3×3 Matrizen

$$\det(\mathbf{A}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Formel 2. Entwicklung nach beliebiger Zeile oder Spalte

Entwicklung nach k-ter Zeile:

$$\det(\mathbf{A}) = \sum_{j=1}^{n} (-1)^{k-j} a_{kj} \det(\mathbf{A}_{kj})$$

Entwicklung nach k-ter Spalte:

$$\det(\mathbf{A}) = \sum_{i=1}^{n} (-1)^{i-k} a_{ik} \det(\mathbf{A}_{ik})$$

Hinweis: Wenn k ungerade wird mit einem positiven Vorzeichen angefangen, welches dann alterniert wird. Wenn k gerade wird mit einem negativen Vorzeichen angefangen und dann alterniert.

Satz 3. Multiplikationstheorem

Sei
$$C = A \cdot B$$
. Dann gilt: $det(C) = det(A \cdot B) = det(A) det(B)$.

Eigenschaften von Determinanten

1.3 Eigenwerte und Eigenvektoren

Definition 9. Eigenwerte und Eigenvektoren

 λ heißt Eigenwert zu einem Eigenvektor \mathbf{x} , wenn $\mathbf{x} \neq 0$ und $\mathbf{A} \cdot \mathbf{x} = \lambda \mathbf{x}$.

Formel 4. Charakteristisches Polynom

$$\chi_n(\lambda) = \det(\mathbf{A} - \lambda \mathbb{I})$$

Die Eigenwerte λ_i sind die Nullstellen des charakteristischen Polynoms. Es gibt n Eigenwerte, die jedoch auch komplex und entartet $(\lambda_i = \lambda_j \text{ für } i \neq j)$ sein können. Zu jedem Eigenwert gibt es einen Eigenvektor \mathbf{x}_i .

1.4 Totale Ableitung

Formel 5. Totale Ableitung einer Funktion

$$\frac{\mathrm{d}f(x_1(t),\dots,x_n(t),t)}{\mathrm{d}t} = \frac{\partial f}{\partial x_1} \frac{\mathrm{d}x_1}{\mathrm{d}t} + \dots + \frac{\partial f}{\partial x_n} \frac{\mathrm{d}x_n}{\mathrm{d}t} + \frac{\partial f}{\partial t}$$

1.5 Taylorreihe

Formel 6. Taylorreihe

$$T_{N,f}(x;x_0) = \sum_{k=0}^{N} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Formel 7. Taylorentwicklung in mehreren Variablen

$$T_{f(x,y)} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} f \bigg|_{(x_0,y_0)} \frac{1}{n!m!} (x - x_0)^n (y - y_0)^m$$

1.6 Fourier Reihen

Formel 8. Fourier Reihe

Meistens ist $L = \pi$. Dann ist die Fourier Reihe von f:

$$f(x) = \sum_{n = -\infty}^{\infty} c_n \exp\left(\frac{inx\pi}{L}\right) \quad \text{mit } c_n = \frac{1}{2L} \int_{-L}^{L} dx \, f(x) \, \exp\left(\frac{-inx\pi}{L}\right)$$

4

1.7 Dirac-Delta-Funktion

Definition 10. Als Ableitung der Stufenfunktion Θ

$$\delta(x) = \frac{\mathrm{d}}{\mathrm{d}x}\Theta(x)$$

Definition 11. Als Limes einer geeigneten Funktionenschar

$$\delta(x) = \lim_{\tau \to 0} \delta_{\tau}(x)$$

Definition 12. Durch integrale Eigenschaft

$$\int_{x_1}^{x_2} dx \, \delta(x - x_0) \, g(x) = \begin{cases} g(x_0) & \text{falls } x_1 < x_0 < x_2 \\ 0, & \text{sonst} \end{cases}$$

Rechenregeln:

 \Box Gerade Funktion: $\delta(x) = \delta(-x)$

 $\Box \ \delta(\alpha x) = \frac{1}{|\alpha|} \delta(x)$

 $\delta(f(x)) = \sum_{i} \frac{1}{|f'(x_i)|} \delta(x - x_i)$ wobei x_i die Nullstellen von f sind. (Es muss $f'(x_i) \neq 0$ gelten)

1.8 Fourier Transformation

Formel 9. Fourier Transformation

Transformation in reziproken Raum (Fourier Raum):

$$\tilde{f}(k) = \int_{-\infty}^{\infty} dx \, f(x) \, e^{-ikx} =: \mathcal{F} f(x)$$

Rücktransformation:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, \tilde{f}(k) \, e^{+ikx} =: \mathcal{F}^{-1} \, \tilde{f}(k)$$

5

Eigenschaften:

 \Box Linearität: $\mathcal{F}(af(x)+bg(x))=a\,\mathcal{F}\,f(x)+b\,\mathcal{F}\,g(x)$

 \Box Identität: $(\mathcal{F}^{-1} \circ \mathcal{F}) f(x) = f(x)$

 \Box Differentiation: $\frac{\mathrm{d}}{\mathrm{d}x}f = \mathcal{F}^{-1}ik\,\mathcal{F}\,f(x)$

 \Box Faltung: $(f\star g)(x)=\int_{-\infty}^{\infty}\mathrm{d}x'f(x')g(x-x')=\tilde{f}(k)\tilde{g}(k)$

 $_{\square}$ Verschobene Funktion: Sei $g(x)=f(x-x_{0}).$ Dann: $\tilde{g}(k)=\exp(-ikx_{0})\tilde{f}(k)$

Formel 10. Mehrdimensionale Fourier-Transformation

Seien $\mathbf{r}, \mathbf{k} \in \mathbb{R}^d$.

$$\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^d} d\mathbf{r} f(\mathbf{r}) e^{-i \, \mathbf{k} \cdot \mathbf{r}}$$

$$f(\mathbf{r}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} d\mathbf{k} \, \tilde{f}(\mathbf{k}) \, e^{i\mathbf{k}\cdot\mathbf{r}}$$

Kapitel 2

Mehrdimensionale Integration und Differentiation

2.1 Differentiation

Formel 11. Differentiation mit Vektoren und Differentialen

(i)
$$\frac{d}{dt}(\mathbf{a} + \mathbf{b}) = \frac{d}{dt}\mathbf{a} + \frac{d}{dt}\mathbf{b}$$

(ii)
$$\frac{d}{dt}(\mathbf{a} \cdot \mathbf{b}) = \frac{d}{dt}\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \frac{d}{dt}\mathbf{b}$$

(iii)
$$\frac{d}{dt}(\mathbf{a} \times \mathbf{b}) = \frac{d}{dt}\mathbf{a} \times \mathbf{b} + \mathbf{a} \times \frac{d}{dt}\mathbf{b}$$

(iv)
$$\frac{\mathrm{d}}{\mathrm{d}t}(f\mathbf{b}) = \frac{\mathrm{d}}{\mathrm{d}t}f \mathbf{a} + f \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{a}$$

Alle Regeln gelten auch für Differentiale, z.B. $d(\mathbf{a} \cdot \mathbf{b}) = d\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot d\mathbf{b}$

2.2 Krummlinige Bewegung

Formel 12. Grundlegende Bewegungsvektoren

Tangenteneinheitsvektor:

$$\mathbf{t} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}s} = \frac{\mathrm{d}\mathbf{r}/\mathrm{d}t}{|\mathrm{d}\mathbf{r}/\mathrm{d}t|}$$

Normaleneinheitsvektor (Hauptnormale):

$$\mathbf{n} = \frac{\mathrm{d}\mathbf{t}/\mathrm{d}s}{|\mathrm{d}\mathbf{t}/\mathrm{d}s|}$$

Binormale:

$$\mathbf{b} = \mathbf{t} \times \mathbf{n}$$

Krümmung κ und Krümmungsradius ρ :

$$\kappa = \left| \frac{\mathrm{d}\mathbf{t}}{\mathrm{d}s} \right| \quad \rho = \frac{1}{\kappa}$$

2.3 Nabla Kalkül

Formel 13

Nabla Operator:

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)^t$$

- 2.4 Krummlinige Koordinaten
- 2.5 Kurvenintegrale
- 2.6 Volumen- und ebene Flächenintegrale
- 2.7 Flächenintegrale
- 2.8 Integralsätze

Kapitel 3

Differentialgleichungen

- 3.1 Gewöhnliche Differentialgleichunge (ODEs)
- 3.1.1 Trennung der Variablen
- 3.1.2 Variation der Konstanten
- $3.1.3 \quad {\bf Differential gleichungs systeme}$
- 3.2 Partielle Differentialgleichungen (PDEs)