mul src, desix # desix dest x src add erc, dest # dest = dest + erc Sub Syr, clast # desi - 8xc dix 8rc, dest * 8 bit - n1 + 8 bit -n1 8 bit -n2 Max - 9 bit mcx - 16 6if * 16 6,7 - n1 16 bit - NI + 16 617- m2 17 6it 32 bit 32 bit - NI \$ 32 br - m 32 612 - n2 39-67 C4-61/

mul 8rc, dest X Oliv 8rc, dest X	
div number register eax [mul number] eax = Extended accumulator register eax *	
"implied operand	
n1 * n2.	
$R_0 \leftarrow n_1$ $R_0 \leftarrow n_2$	
mul n2 Ro X N2 mul n1	
m/m2 eax + Dividend div divisor m/m2 ms + n1 div m?	

number-1 * number-2.
Step-I: Moy either number-1 on number.2
Step-II: Give the other number to mul.
1) Inumber-1 2) mul number-2
1) Inumber-2 2) mul number-1
number-1 / number-2. Dividend = number 1 Divisor = number 2 Number-1 2) div number-2 To
Resulte
1) Multiplication can produce result upto 64-bits.
into 64-bit number:
5. n (

60 X 54 6 multiplication Stoned 8 byte (8 bute misimit as mist Eurut Dicier onst. RESIN 21 1 dat 8 byte 421 Fas at 64 18 2 421 32MNUT 19219 HENT ZOND taka) 64 bits 32- bit dowar no lower. VIE Leppon 31.

6125 7	325,75
vesult.	8f result
multiplicand.	
constant/reg	ister/memons
mull constant	
mull register	
divi divisor	
Canstant/resist	er/memory
div constant	
div/ registar	
In case of divi	S9N,
Step- 7: load die	idend (= number
Step- 7° load din	ivided) in mo.
ro & dividence	A

Step II? Write diy instruction and write divisor as an operand to divi instruction, The operand must be constant or register (but not memory). d'ul divisor (ces constant or in register) Result: after dix1 instruction no == Quotient ri == Remander.

opcode 4 1 Hreg & rogister number involved

opcode 4 0 Constant multiplicand

opcode 4 1 Hreg

I multiplicand

involved

invol