Midterm 2

Math 112

Winter 2021

You have 50 minutes to complete this exam (plus 10 minutes to account for the time it takes to scan and upload it). You may use a scientific calculator, but no other resources. When you're finished, first check your work if there is time remaining, then scan the exam and upload it to Canvas. If you have a question, don't hesitate to ask— I just may not be able to answer it.

Formulas

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

$$\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}$$

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{2}}$$

$$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos(\theta)}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \frac{\sin(\theta)}{1 + \cos(\theta)}$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

- 1. (32 points) Multiple choice. You don't need to show your work.
- a) (8 points) The slope of a line that passes through the origin and a point on the unit circle with angle θ is
 - A) $\sin(\theta)$.
 - B) $tan(\theta)$.
 - C) $sec(\theta)$.
 - D) $\cos(\theta)$.
- b) (8 points) The angle measure of $\frac{\pi}{5}$ in degrees is
 - A) 36° .
 - B) 50°.
 - C) 72°.
 - D) 100°.
- c) (8 points) To find θ in the following triangle in **one step**, we must use

- A) The Pythagorean theorem.
- B) The tangent function.
- C) The Law of Cosines.
- D) The Law of Sines.
- d) (8 points) The function $f(x) = 3\sin(2(x+2))$ has
 - A) Amplitude 3, period 2, and midline 2.
 - B) Amplitude 3, period π , and midline 0.
 - C) Amplitude 3, period π , and midline 2.
 - D) Amplitude 3, period 2, and midline 0.

- 2. (32 points) Miscellaneous questions. These don't make sense as full-length problems, so the four parts here are unrelated to one another.
- a) (8 points) Find an exact value for $\tan\left(\frac{2\pi}{3}\right)$. Show all your work if you use a reference angle, you must draw a picture.

b) (8 points) Find the exact value of $\sin(105^\circ)$. Show all your work.

c) Write the equation of a sinusoidal function f(x) with amplitude 2, midline $-\sqrt{3}$, and period 2π , such that f(0) = 0.

d) Find all solutions to the equation $\cos(\theta) = \frac{\sqrt{3}}{2}$. Show all your work.

- **3.** (32 points) Let $g(\theta) = 1 \tan(3\theta)$.
- a) (12 points) Find $g\left(\frac{\pi}{4}\right)$. Leave your answer in exact form, and show all your work specifically, how you calculate the tangent.

- b) (8 points) Sketch a graph of g. Label at least three points.
- .

c) (12 points) For what values of θ is $g(\theta)$ = 0? List all of the values, and express your answers in radians (in exact value).

4. (32 points) Consider the following triangle with sides a, b, and c, and angles α , β , and γ .

a) (12 points) Given that a = 4, b = 5, and $\gamma = 60^{\circ}$, find c. Leave your answer in exact form.

b) (12 points) Use your answer to part a) to find α .

c) (8 points) Now find β .

d) (Extra credit — 8 points) Find the area of this triangle. (Hint: pick one side to be the base, then draw a line perpendicular to that base that reaches to the opposite vertex to split the triangle into two right triangles. Then use trig functions to find the length of that line.)