

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	Т «Информатика и системы управления»
I/	
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №2 по курсу «Моделирование» на тему: «Цепи Маркова»

Студент _	ИУ7-73Б (Группа)	(Подпись, дата)	Миронов Г. А. (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	Рудаков И. В. (И. О. Фамилия)

1 Задание

Реализовать программу, позволяющую определить время пребывания сложной системы, работающей на базе цепей Маркова, во всех ее состояниях, определить момент достижения вероятностной константы, а также ее значение.

2 Теоретическая часть

2.1 Марковский процесс

Случайный процесс, протекающий в системе S, называется Марковским, если он обладает следующим свойством: для каждого момента времени t_0 вероятность любого состояния системы в будущем (при $t > t_0$) зависит только от ее состояния в настоящем (при $t = t_0$) и не зависит от того, когда и каким образом система пришла в это состояние.

Вероятность того, что в момент t система будет находиться в состоянии S_i , называется вероятностью i-го состояния. Для любого момента t сумма вероятностей всех состояний равна единице.

2.2 Вычисление вероятностной константы

Для решения поставленной задачи, необходимо составить систему уравнений Колмогорова по следующим принципам:

- ullet в левой части каждого из уравнений стоит производная вероятности i-го состояния;
- в правой части сумма произведений вероятностей всех состояний, из которых идут стрелки в данное состояние, умноженная на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

2.3 Пример

Пусть дана матрица интенсивностей для системы S, имеющей три состояния:

$$\begin{pmatrix} 0 & \lambda_{01} & \lambda_{02} \\ \lambda_{10} & 0 & \lambda_{12} \\ \lambda_{20} & \lambda_{21} & 0 \end{pmatrix}$$
 (2.1)

Тогда соответствующая система уравнений Колмогорова имеет вид:

$$\begin{cases} p'_0 = -(\lambda_{01} + \lambda_{02})p_0 + \lambda_{10}p_1 + \lambda_{20}p_2 \\ p'_1 = -(\lambda_{10} + \lambda_{12})p_1 + \lambda_{01}p_0 + \lambda_{21}p_2 \\ p'_2 = -(\lambda_{20} + \lambda_{21})p_2 + \lambda_{02}p_0 + \lambda_{12}p_1 \end{cases}$$
(2.2)

Для нахождения вероятностных констант, то есть вероятностей в стационарном режиме работы при $t->\inf$, необходимо приравнять левые части уравнений к нулю.

Таким образом получается система линейных уравнений. Для решения полученной системы необходимо добавить условие нормировки:

$$\sum_{i} p_i = 1 \tag{2.3}$$

Кроме того, необходимо так же найти время, за которое достигается вероятностная константа.

В общем случае для решения данной задачи необходимо решить систему ОДУ 2.2 в общем виде.

Для решения данной задачи можно воспользоваться численным методом: найдем все значения вероятности как функции времени, с шагом в некотором интервале $[t_0, t_N]$. Когда вычисленная вероятность будет равна найденной ранее вероятностной константе с точностью до заданной погрешности, можно считать что искомое время найденно.

3 Результат работы

3.1 Общий случай

В таблице 3.1 приведена матрица интенсивностей для рассматриваемой системы.

Таблица 3.1 – Описание системы

Из / В	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
S_1	0.83	0.15	0.37	0.89	0.05	0.11	0.27	0.01
S_2	0.39	0.86	0.98	0.84	0.91	0.93	0.94	0.06
S_3	0.77	0.26	0.11	0.13	0.48	0.68	0.75	0.17
S_4	0.12	0.09	0.70	0.95	0.96	0.53	0.76	0.23
S_5	0.79	0.77	0.86	0.59	0.80	0.55	0.71	0.60
S_6	0.64	0.32	0.34	0.04	0.96	0.86	0.02	0.21
S_7	0.24	0.60	0.65	0.26	0.20	0.35	0.93	0.39
S_8	0.61	0.63	0.27	0.94	0.81	0.49	0.12	0.55

На рисурке 3.1 представлен граф, описывающий связи внутри рассматриваемой системы.

Рисунок 3.1 – Граф, описывающий систему

На рисунке 3.2 представлен график зависимости вероятности каждого из состояний от времени.

Рисунок 3.2 – Зависимость вероятности от времени

В таблице 3.2 представлены полные результаты работы программы для рассматрвиаемой системы.

Таблица 3.2 – Результаты работы

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
Стабильное состояние	0.150	0.100	0.129	0.140	0.145	0.134	0.141	0.062
Время	14.381	12.971	12.655	12.813	13.447	13.291	14.761	12.157

3.2 Кольцо

В таблице 3.3 приведена матрица интенсивностей для рассматриваемой системы.

Таблица 3.3 – Описание системы

Из / В	S_1	S_2	S_3	S_4
S_1	0.00	0.80	0.00	0.00
S_2	0.00	0.00	0.30	0.00
S_3	0.00	0.00	0.00	0.26
S_4	0.53	0.00	0.00	0.00

На рисурке 3.3 представлен граф, описывающий связи внутри рассматриваемой системы.

Рисунок 3.3 – Граф, описывающий систему

На рисунке 3.4 представлен график зависимости вероятности каждого из состояний от времени.

В таблице 3.4 представлены полные результаты работы программы для рассматрвиаемой системы.

Рисунок 3.4 – Зависимость вероятности от времени

Таблица 3.4 – Результаты работы

	S_1	S_2	S_3	S_4
Стабильное состояние	0.250	0.250	0.250	0.250
Время	12.171	13.003	12.171	13.003

4 Исходный код программы

Листинг 4.1 – Исходный код программы. Часть 1

```
import random
2
   import time
3
  import matplotlib.pyplot as plt
4
5 | import scipy.integrate as integrate
   import numpy as np
   import pandas as pd
   import networkx as nx
9
10 | random.seed(time.time())
11
12
   import ipywidgets as widgets
13
14
  states_number_input = widgets.BoundedIntText(value=0, min=0, max
      =100, step=1, layout=widgets.Layout(width="50px"))
15
16
  randomize_input = widgets.Checkbox(value=False, description='
      Случайное∟заполнение', indent=False)
17
18
   display(widgets.Label("Количество состояний в системе"))
   display(states_number_input)
19
20
  display(randomize_input)
21
22
  states_n = states_number_input.value
23
24 | matrix_inputs = []
   items = []
25
26
27
   items += [widgets.Label("Состояния")]
   items += [widgets.Label(f"$\\text{{B_{\sqcup}}}S_{\{\{i+1\}\}\}}$") for i in
      range(states_n)]
29
30
  for i in range(states_n):
31
       items += [widgets.Label(f"$$\\text{{\mu3_{\sqcup}}}S_{{{i+1}}}$$")]
32
33
       inputs = [
34
           widgets.BoundedFloatText(value= 0 if not randomize_input.
              value else round(random.random(), 2), min=0, max=1,
              step=0.01, layout=widgets.Layout(width="50px"))
35
           for _ in range(states_n)
36
37
       matrix_inputs += [inputs]
38
       items += inputs
```

Листинг 4.2 – Исходный код программы. Часть 2

```
display(widgets.GridBox(items, layout=widgets.Layout(
41
      grid_template_columns=f"repeat(\{states_n_{\sqcup}+_{\sqcup}1\},_\_1fr)", overflow
      ="auto")))
42
43
   def get_matrix():
       return np.array([[float(matrix_inputs[i][j].value) for j in
44
          range(states_n)] for i in range(states_n)])
45
46
  m = get_matrix()
47
48
  G = nx.from_numpy_matrix(m, create_using=nx.DiGraph)
   layout = nx.circular_layout(G)
49
50
51
  nx.draw(G, layout, node_size=600)
52
  nx.draw_networkx_labels(G, pos=layout, labels={i: f'S_{i+1}}' for
      i in range(states_n)}, font_color='yellow', font_size=12)
  nx.draw_networkx_edge_labels(G, pos=layout, edge_labels=nx.
53
      get_edge_attributes(G,'weight'), label_pos=0.2)
   plt.show()
54
55
  t_max_input = widgets.BoundedFloatText(value=0, min=0, max=1000,
56
      step=1, description="Tmax")
57
   t_n_input = widgets.BoundedIntText(value=0, min=0, max=10e4, step
      =1, description="N")
58
59
  |display(widgets.Label("Время∟моделирования"))
   display(t_max_input)
61
   display(t_n_input)
62
63
  eps = 1e-6
64 \mid dt = 0.1
   tn = t_n_input.value
66
  tmax = t_max_input.value
67
68 \mid m = get_matrix()
69
70
  m = m / m.sum(axis=1).reshape((-1, 1))
71
72
   def find_stable(matrix):
       b = [0] * (len(matrix) - 1) + [1]
73
74
75
       matrix_to_solve = matrix.copy().transpose()
76
       matrix_to_solve -= np.diag(matrix.sum(axis=1))
77
       matrix_to_solve[-1] = np.ones(len(matrix_to_solve))
78
79
       return np.linalg.solve(matrix_to_solve, b)
```

Листинг 4.3 – Исходный код программы. Часть 3

```
def solve_ode(matrix, start_probs, tn, tmax, steady_states):
81
82
        matrix_to_solve = matrix.copy().transpose()
83
        matrix_to_solve -= np.diag(matrix.sum(axis=1))
84
85
        ts = np.linspace(0, tmax, tn)
86
87
        results = integrate.odeint(vectorfields, start_probs, ts,
           args=(matrix_to_solve,), atol=1.0e-8, rtol=1.0e-6).
           transpose()
88
89
        steady_ts = []
90
91
        for i in range(len(results)):
92
            row = results[i]
            flag = True
93
94
            for j in range(len(row) - 1, -1, -1):
                 if abs(steady_states[i] - row[j]) > eps:
95
96
                     steady_ts.append(ts[j])
97
                     flag = False
98
                     break
99
            if flag:
100
                 steady_ts.append(0)
101
102
        return ts, results, steady_ts
103
104
    def vectorfields(w, _, matrix_to_solve):
105
        f = []
106
        for i in range(len(w)):
107
            f.append(0)
            for p, lambda_coeff in zip(w, matrix_to_solve[i]):
108
109
                 f[i] += p * lambda_coeff
110
111
        return f
112
113
    def find_stable_time(matrix, start_probs, tn, tmax):
114
        ps = find_stable(matrix)
115
        return solve_ode(matrix, start_probs, tn, tmax, ps)
```

Листинг 4.4 – Исходный код программы. Часть 4

```
stable = find_stable(m).reshape((1, -1))
117
118
119
   start_state_probs = m[0]
120
121
   ts, data, steady = find_stable_time(m, start_state_probs, tn,
      tmax)
122
123
   df = pd.DataFrame.from_dict({'Cтабильное_cостояние': find_stable(
      m), 'Bpems': steady}, orient='index', columns=[f"$S_{{i+1}}
      $$" for i in range(states_n)])
124
   df.style.format("{:.3f}")
   df.to_latex(float_format="%.3f")
125
126
   for i in range(len(data)):
127
128
        plt.plot(ts, data[i], label=f"$P_{{{i}}}$")
129
   plt.legend()
   plt.show()
130
```