EDA gh.v2

Barbara E. Mottey

11/8/2020

Load data

```
gh_data <- readRDS("named_datagh.rds")</pre>
##birth weight and fuel
gh.data <- gh_data
attach(gh.data)
summary(c_weight) # 28,699 NAs Min is 500 and max is 9000
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                        NA's
                                               Max.
##
       500
              2800
                      3100
                               3205
                                       3500
                                               9000
                                                       28699
table(fuel_bin) # 801 NAs
## fuel_bin
##
       0
    2868 16700
\#(k < -gh.data \%)\% group_by(year) \%\% summarise(observations= n()))
filter(gh_data, c_weight> 5500) %>% summarise(n=n()) # 34 obs are greater than 5500
##
      n
## 1 34
#bw 5884, 1971 not weighed (coded 9996), dont know 543 NA 3
#2008 2903 2290 613 weighed
## read in, filter by bw<=5500 and compare with what the FRQ file has.
```

refine data

```
# remove bw above 5500 and bw NA's
gh.data <- gh.data %>% filter(c_weight <= 5500) #28746 total removed
#filter data from year 2000
filter(gh.data, year_cmc> 2000) %>% summarise(n=n()) # total of 4299 data
```

```
##    n
## 1 4299

gh.data <- gh.data %>% filter(year_cmc > 2000)

#save data
saveRDS(gh.data, "model_datagh.rds")
```

birth weight distribution

 ${\tt ggplot(gh.data,\ aes(c_weight)) + geom_histogram(binwidth = 10.5,\ alpha = 1.0) +\ ylim(0,800) + stat_bin(bins=0.5,\ alpha = 1.0) +\ ylim(0,800) +$

birthweight vs year per region

ggplot(gh.data)+ aes(as.factor(year_cmc), c_weight)+geom_point()+ facet_wrap(~region, labeller=(as_labe

Scatter plot of birthweight per region

ggplot(gh.data)+ aes(as.factor(year_cmc), c_weight)+geom_boxplot()+ facet_wrap(~region, labeller=(as_labeller=))

Boxplot of birthweight per region

ggplot(gh.data, aes(c_weight))+geom_histogram(binwidth = 10.5, alpha = 1.0)+ ylim(0,100)+stat_bin(bins=

Histogram of birthweight per region

boxplots for fuel types

```
gh.data$fuel_bin[gh.data$fuel_bin == 2]<- NA
gh.data$fuel_bin <- as.factor(gh.data$fuel_bin)

ggplot(na.omit(gh.data), aes(x= fuel_bin, y= c_weight))+geom_boxplot(outlier.shape = NA)+ ylim(0,6000)
    scale_x_discrete(labels = c("0" = "Clean", "1" = "Solid"))</pre>
```


Generally, people who use solid fuel tend to have babies with lower birthweights comparatively. ##per region

```
{\tt ggplot(na.omit(gh.data),\ aes(x=\ fuel\_bin,\ y=\ c\_weight))+geom\_boxplot(outlier.shape=NA)+\ ylim(0,6000)+constant (all outlier.shape=NA)+constant (all o
```

Boxplot of fuel type used vs birthweight per region

Stratified by region, there seems to be no difference in birthweights for babies with mothers that use solid or clean fuel.

fuel type vs wealth

```
gh.data$residence<- as.factor(gh.data$residence)
gh.data$wealth <- as.factor(gh.data$wealth)

ggplot(na.omit(gh.data)) + geom_mosaic(aes(product(wealth, fuel_bin), fill = wealth)) + facet_wrap(~res</pre>
```



```
ggplot(na.omit(gh.data)) + geom_mosaic(aes(product(residence, wealth), fill = residence)) +
  facet_wrap(~fuel_bin, labeller=(as_labeller(c("0" = "Clean fuel", "1" = "Solid fuel")))) +labs(x= "w
```

fuel type (clean/solid) used based on residence type and wealth

#Facet by Residential Among urban residents, a higher proportion of those who use clean fuels are the rich people. About the 80% of those who use solid fuel are at least average people in terms of wealth. However among the rural residents, a larger proportion (about 90%) use solid fuel. Most of those who use sold fuel in the rural setting are poor where as those who use clean fuel (about 98%) have at least average wealth.

#Facet by Fuel The higher the wealth index, the more likely the residence is urban for the clean fuel users.

Fuel vs wealth

```
ggplot(na.omit(gh.data))+ geom_boxplot(aes(wealth, c_weight, fill = fuel_bin, alpha = fuel_bin))+
labs(x = "wealth", y = "Birth weight", title = "birth weight vs wealth")+
scale_x_discrete(labels = c("1"= "Poorest", "2"= "Poor", "3" = "Middle", "4" = "Rich", "5" = "Richest scale_alpha_ordinal(name = "fuel type", labels = c("clean", "solid"))+
scale_fill_discrete(name = "fuel type", labels = c("clean", "solid"))
```

birth weight vs wealth

 $\#\# \mathrm{Fuel}$ vs education

```
gh.data$education <- as.factor(gh.data$education)
ggplot(na.omit(gh.data)) + geom_mosaic(aes(product(education, fuel_bin), fill = education)) + labs(x= ".")</pre>
```


Most of the women that use clean fuel have a secondary education; same applies to those who use solid fuel. About 50% of those who use solid fuel have at most primary education.

fuel vs smoking

```
gh.data$smoke <- as.factor(gh.data$smoke)

ggplot(na.omit(gh.data)) + geom_mosaic(aes(product(smoke, fuel_bin), fill = smoke)) + labs(x= "fuel type")</pre>
```


Smoking status would not be a covariate. Most women do not smoke.

##education vs birth weight

ggplot(na.omit(gh.data), aes(x= education, y= c_weight))+geom_boxplot(outlier.shape = NA)+ ylim(0,6000)

Those with no education or primary education seem to have babies with a lower mean weight. ##birth weight vs wealth

```
{\tt ggplot(na.omit(gh.data),\ aes(x=\ wealth,\ y=\ c\_weight))+geom\_boxplot(outlier.shape=NA)+\ ylim(0,6000)+schape=NA)+\ ylim(0,6000)+schape=NA)+\
```


The mean birth weight for each category seem to be lower for those who are poorest or poor.

birth weight vs residence

```
ggplot(na.omit(gh.data), aes(x= residence, y= c_weight))+geom_boxplot(outlier.shape = NA)+ ylim(0,6000)
```


Average Birth weights for those in rural settings seem to be quite lower than those in the urban setting.

birth weight vs gender

```
gh.data$gender <- as.factor(gh.data$gender)
ggplot(na.omit(gh.data), aes(x= gender, y= c_weight))+geom_boxplot(outlier.shape = NA)+ ylim(0,6000)+ 1</pre>
```


boys seem to have a higher average birth weight than girls