一、填空题、选择题(18%)

1. 设矩阵
$$D = \begin{bmatrix} 4 & -1 & 5 \\ -3 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$
, 则 $|D^{T}| =$ _______

2. 设A是 3×2 矩阵,B是 4×2 矩阵,则下列运算有意义的是

$$(A) A^T E$$

$$(B)$$
 AB

$$(C) AB^{2}$$

$$(A) A^{\mathsf{T}}B \qquad (B) AB \qquad (C) AB^{\mathsf{T}} \qquad (D) A^{\mathsf{T}}B^{\mathsf{T}}$$

2②. n 元齐次线性方程组 Ax = 0 有非零解的充分必要条件是

3. 设向量
$$\alpha = (1,-3,6)^{T}$$
与 $\beta = (4,0,-2)^{T}$,则内积 $[\alpha,\beta] =$ _______

4. 齐次方程组
$$Ax = 0$$
 只有零解,则有

- (A) A的行向量线性无关. (B) A的列向量线性无关.

- (C) A的行向量线性相关. (D) A的列向量线性相关.

4②. A 是三阶矩阵,有特征值1,-1,2 则下列矩阵可逆的是

$$(A) E - A$$

$$(B) E + A$$

(A)
$$E - A$$
 (B) $E + A$ (C) $2E - A$

(D)
$$2E + A$$

5. 设 3 阶方阵 A 的征值分别为 $-1, 1, 2 且 B = 3A^2, 则 |B| = ...$

6. 设A,B为n阶方阵,满足AB=O则有

$$(B) |A| = 0$$
 或 $|B| = 0$

$$(C) A + B = C$$

(D)
$$|A| + |B| = 0$$

二、计算题(36%)

2. 计算行列式
$$D = \begin{vmatrix} 1 & 2 & 1 & 4 \\ 2 & -1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix}$$
.

3. 已知
$$A = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 2 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$
, 且 $AX = A + 3X$, 求 X .

三、解答题(36%)

1. 判断线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = -1 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = -5 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 2 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = -7 \end{cases}$$
 是否有解?若有解,试求其解.

2. 设向量组
$$A: \alpha_1 = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 0\\-1\\1\\2 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1\\-2\\4\\4 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} 2\\-1\\4\\2 \end{bmatrix}$, $\alpha_5 = \begin{bmatrix} 2\\-1\\6\\2 \end{bmatrix}$

试判断向量组 A 的线性相关性,求出向量组 A 的一个最大无关组,并将其 余向量用最大无关组表示.

3、已知矩阵
$$A = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{pmatrix}$$
,求正交矩阵 Q ,使得 $Q^{-1}AQ = Q^{T}AQ$ 为对角阵.

四、证明、四、计算题(10%)

1. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\beta_1 = \alpha_1 - \alpha_2 + 2\alpha_3$, $\beta_2 = \alpha_2 - \alpha_3$, $\beta_3 = 2\alpha_1 - \alpha_2 + 3\alpha_3$ 。证明: $\beta_1, \beta_2, \beta_3$ 线

2. 设
$$\xi = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的一个特征向量,试确定参数 a,b 及特征向量 ξ 所对应的特征

值. A是否相似于对角阵?说明理由.

2②. 设矩阵
$$A = \begin{pmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{pmatrix}$$
, 行列式 $|A| = -1$,又 A^* 有一个特征值 λ_0 ,属于 λ_0 的一个特

征向量为 $\alpha=(-1,-1,1)^T$,求a,b,c及 λ_0 的值.