רגרסיה ומודלים סטטיסטיים - תשפ"ד סמסטר ב' 52571 – בוחן אמצע – מועד ב'

הנחיות כלליות

- 1. זמן הבחינה: שעתיים אקדמיות
 - 2. חומר פתוח
- 3. מותר לצטט כל תוצאה שראינו בכיתה, אלא אם השאלה מבקשת במפורש לפתח או להוכיח את התוצאה

X_i בודד מסביר מסביר על משתנה א'-ד' עוסקים ברגרסיה ליניארית פשוטה של משתנה משתנה ליניארית פודד א'-ד' עוסקים ברגרסיה ליניארית פשוטה א

- א. X_i לבין לבין Y_i לבין את המודל הליניארי (שעבדנו איתו בכיתה) א. הקפידו לציין את המודל, ולציין מהם הפרמטרים הלא ידועים.
 - $?\beta_1$ ב. (15 נק׳) תחת המודל הליניארי, מהי הפרשנות של השיפוע
 - ג. (15 נק׳) תחת המודל הליניארי, חשבו את $\mathrm{Cov}(\hat{eta}_0,\hat{eta}_1)$ כאשר החת המודל הליניארי, חשבו את שבו את התוצאה ככל הניתן.

הערה: אתם יכולים לחשב את זה בכל דרך שתרצו. אחת הדרכים היא לכתוב את המודל בהצגה וקטורית, ולהשתמש בתוצאות מוכרות לגבי מטריצת השונויות של $\hat{m{\beta}}$. אם אתם בוחרים בדרך הזו, תוכלו להשתמש בנוסחה הכללית להופכי של מטריצה 2 imes 2:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 אם $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

. (השיפוע במודל) eta_1 תחת המודל הליניארי הנורמלי, בנו רווח-סמך ברמת בטחון 95~% עבור המודל הליניארי הנורמלי, בנו רווח-סמך ברמת המודל המודל הליניארי הנורמלי, בנו רווח-סמך ברמת בטחון

הסעיפים ה'-ז' מתייחסים לקובץ נתונים ספציפי.

(Y) המשתנים המסבירים: מדידות על שכרם של עובדים n=533 והמשתנים המסבירים:

 $X_1 =$ שנות ותק

 X_2 = תחום עיסוק \in {Clerical, Management, Professional, Sales, Service, Other} מצורפים פלט ניתוח רגרסיה של Y על X_1, X_2 , ותרשים פיזור של X_1 כנגד X_1 כשהנקודות מקודדות לפי תחום העיסוק (X_2).

- > fm <- lm(wage ~ experience + occupation)
 > summary(fm)
- Call:

lm(formula = wage ~ experience + occupation)

Residuals:

Min 1Q Median 3Q Max -11.4428 -2.9976 -0.8973 1.9859 19.4079

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	6.39640	0.52486	12.187	< 2e-16	***
experience	0.05838	0.01557	3.750	0.000196	***
occupationManagement	4.64523	0.74909	6.201	1.13e-09	***
occupationOther	0.97548	0.57045	1.710	0.087850	•
occupationProfessional	4.64863	0.62212	7.472	3.31e-13	***
occupationSales	0.11926	0.84432	0.141	0.887727	
occupationService	-1.03780	0.66085	-1.570	0.116922	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.411 on 526 degrees of freedom Multiple R-squared: 0.2013, Adjusted R-squared: 0.1922 F-statistic: 22.1 on 6 and 526 DF, p-value: < 2.2e-16

- ה. **(15 נק׳)** חשבו אומדן (ריבועים פחותים) לתוחלת השכר של עובד בתחום המכירות (sales) בעל 16 ה. שנות ותק. באופן כללי, מה התכונות של האומד הזה מבחינת תוחלת השגיאה הריבועית (MSE)?
- ו. (15 נק׳) מהסתכלות בלתי-אמצעית בתרשים, האם נראה באופן ברור שיש אינטראקציה בין תחום העיסוק לבין שנות ותק? הסבירו. מה הייתם מציעים לשנות במודל כדי לבדוק פורמלית את ההשערה הזאת?
 - ו- X_2 ו רבין אינטראקציה בין את המודלים את נשווה את נשווה את נשווה את נשווה את יכשיו (15) .ז

```
> fm <- lm(wage ~ experience + occupation)</pre>
```

נסמן \hat{eta}_1 את האומד למקדם של X_1 תחת המודל ללא אינטראקציה, וב- $\hat{\gamma}_1$ את האומד למקדם של X_1 תחת המודל עם אינטראקציה. באופן כללי (בלי להתחשב בפלט הספציפי הנתון), האם זה נכון תמיד שמתקיים $\hat{eta}_1=\hat{\gamma}_1$

בהצלחה!

> fm.int <- lm(wage ~ experience * occupation)</pre>