Self directed activities 11 all qs

Josh Copeland (SID: 1444772)

2025-10-15

```
# Packages used:

# Library(tidyverse)

# Library(Lubridate)

# Library(janitor)

# Library(forecast)

# Library(vars)
```

```
dt <- read.csv("TGY.csv")
GDP <- ts(dt$GDP, start=c(1960,1), end=c(2024,2), frequency=4)
Tax <- ts(dt$Tax, start=c(1960,1), end=c(2024,2), frequency=4)
Govt <- ts(dt$Govt, start=c(1960,1), end=c(2024,2), frequency=4)

GDP <- window(GDP, start=c(1980,1), end=c(2019,4))
Tax <- window(Tax, start=c(1980,1), end=c(2019,4))
Govt <- window(Govt, start=c(1980,1), end=c(2019,4))

DGDP <- diff(GDP)*100  # pct growth per qtr
DTax <- diff(Tax)*100
DGovt <- diff(Govt)*100</pre>
```

Q1

Replicate the VAR model selection exercise in Lecture 11 for the trivariate model including Tax, Govt and GDP.

```
# Set up data frame with the variables to include in the VAR
DY <- data.frame(DTax=DTax, DGovt=DGovt, DGDP=DGDP)

# VAR() command can estimate with fixed lag length,
# or search over lag lengths like this:
VARp <- VAR(DY, lag.max=8, ic="AIC")

# Residual autocorrelation test:
print(serial.test(VARp, lags.pt=12)$serial)</pre>
```

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object VARp
## Chi-squared = 85.618, df = 81, p-value = 0.3415
```

Q2

Replicate the impulse response analysis in which a +1 unit impulse to DGDP is specified and responses to all three of DTax, DGovt and DGDP are calculated from the model.

```
## $DGDP
##
              DTax
                         DGovt
                                     DGDP
##
   [1,] 0.0000000 0.00000000 1.00000000
   [2,] 1.0140886 -0.18813224 0.31164414
   [3,] 1.1138927 -0.05280198 0.30767606
##
   [4,] 0.2287983 -0.22617349 0.20967897
##
##
   [5,] 0.6298350 -0.24736472 0.10145758
   [6,] 0.2904837 -0.17865732 0.05251712
##
   [7,] 0.2165424 -0.16362245 0.05400105
##
   [8,] 0.1909429 -0.15655978 0.02080831
##
   [9,] 0.1380602 -0.10138513 0.02213901
```

print(IRF\$Lower)

```
## $DGDP
##
               DTax
                         DGovt
                                      DGDP
   [1,] 0.00000000 0.0000000 1.00000000
##
   [2,] 0.47356362 -0.5729270 0.15067827
##
   [3,] 0.47139112 -0.4984241 0.11899391
   [4,] -0.47711323 -0.6578079 0.02537840
##
   [5,] 0.13078154 -0.5184675 -0.03978178
   [6,] -0.06330900 -0.4213221 -0.07174838
  [7,] -0.06355519 -0.3320403 -0.04690145
   [8,] -0.02796048 -0.3385352 -0.05631666
   [9,] -0.05722497 -0.2584474 -0.02216919
```

print(IRF\$Upper)

```
## $DGDP
##
             DTax
                         DGovt
                                     DGDP
   [1,] 0.0000000 0.000000000 1.00000000
##
##
   [2,] 1.5246334 0.257222183 0.45955827
##
  [3,] 1.6176475 0.262939179 0.41820511
   [4,] 0.7247245 0.146856830 0.32843229
##
##
   [5,] 0.8696703 -0.017891889 0.19245112
   [6,] 0.5901083 0.100046424 0.13870135
##
   [7,] 0.3937206 0.016305725 0.12860385
##
   [8,] 0.4147052 0.008150071 0.08856161
   [9,] 0.3152800 0.020324219 0.07679197
```

plot(IRF)

Impulse Response from DGDP

Q3

Obtain the estimated conditional covariance matrix for the VAR in question 1, and calculate its Choleski factorisation.

```
Sigma <- summary(VARp)$covres
C <- chol(Sigma)
```

Q4

Use the Choleski orthogonalisation approach to compute the impulse to DGDP implied by this model, and compute the impulse responses for all three variables. Compare to those in question 2.

Orthogonal Impulse Response from DGDP

Q5

Use the Choleski orthogonalisation approach to compute the impulse to DGovt implied by this model, and compute the impulse responses for all three variables.

Orthogonal Impulse Response from DGovt

Q6

Use the Choleski orthogonalisation approach to compute the impulse to DTax implied by this model, and compute the impulse responses for all three variables.

Orthogonal Impulse Response from DTax

