Dr. Andrey Soldatenkov

Exercises, Algebraic Geometry I – Week 8

Exercise 42. (2 points) Adjoint functors f^* and f_* .

Consider a morphism of ringed spaces $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$. Show that f^* is left adjoint to f_* , i.e. for all $\mathcal{F} \in \operatorname{Mod}(X, \mathcal{O}_X)$ and $\mathcal{G} \in \operatorname{Mod}(Y, \mathcal{O}_Y)$ there exists an isomorphism (functorial in \mathcal{F} and \mathcal{G}):

$$\operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G}, \mathcal{F}) \cong \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G}, f_*\mathcal{F}).$$

Exercise 43. (3 points) $M \mapsto \tilde{M}$ and adjunction.

Let X be an affine scheme $\operatorname{Spec}(A)$ and consider an A-module M and a sheaf \mathcal{F} of \mathcal{O}_{X} modules. Show that $(A\operatorname{-mod}) \to \operatorname{Mod}(X, \mathcal{O}_X)$, $M \mapsto \tilde{M}$ is left adjoint to $\operatorname{Mod}(X, \mathcal{O}_X) \to$ $(A\operatorname{-mod})$, $\mathcal{F} \mapsto \Gamma(X, \mathcal{F})$, i.e. that there exist functorial (in M and \mathcal{F}) isomorphisms

$$\operatorname{Hom}_A(M, \Gamma(X, \mathcal{F})) \cong \operatorname{Hom}_{\mathcal{O}_X}(\tilde{M}, \mathcal{F}).$$

Exercise 44. (3 points) f^* and \otimes are only left exact.

Let (X, \mathcal{O}_X) be a ringed space and consider $\mathcal{F}, \mathcal{G} \in \operatorname{Mod}(X, \mathcal{O}_X)$. Show that for all $x \in X$ there exists a natural isomorphism

$$(\mathcal{F} \otimes_{\mathcal{O}_{\mathbf{Y}}} \mathcal{G})_x \cong \mathcal{F}_x \otimes_{\mathcal{O}_{\mathbf{Y},x}} \mathcal{G}_x.$$

Prove that $\mathcal{F} \otimes_{\mathcal{O}_X}(\) \colon \operatorname{Mod}(X,\mathcal{O}_X) \to \operatorname{Mod}(X,\mathcal{O}_X)$ and $f^* \colon \operatorname{Mod}(Y,\mathcal{O}_Y) \to \operatorname{Mod}(X,\mathcal{O}_X)$ for a morphism of ringed spaces $f \colon (X,\mathcal{O}_X) \to (Y,\mathcal{O}_Y)$ are both right exact functors. Describe examples showing that in general they are not left exact.

Exercise 45. (3 points) Projection formula.

Consider a morphism of ringed spaces $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ and $\mathcal{F}\in\mathrm{Mod}(X,\mathcal{O}_X)$ and $\mathcal{G}\in\mathrm{Mod}(Y,\mathcal{O}_Y)$. Suppose \mathcal{G} is locally free of finite rank. Show that there exists a natural isomorphism

$$f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G}) \cong f_*\mathcal{F} \otimes_{\mathcal{O}_Y} \mathcal{G}.$$

Exercise 46. (5 points) Fibre dimension.

Let X be a Noetherian scheme and let \mathcal{F} be a coherent sheaf on X. We will consider the function

$$\varphi(x) := \dim_{k(x)} \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} k(x),$$

where $k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ is the residue field of the point $x \in X$. Use Nakayama lemma to prove the following statements.

- i) The function φ is upper semi-continuous, i.e. for any $n \in \mathbb{Z}$ the set $\{x \in X \mid \varphi(x) \geq n\}$ is closed.
- ii) If \mathcal{F} is locally free and X is connected, then φ is a constant function.
- iii) Conversely, if X is reduced and φ is constant, then \mathcal{F} is locally free.

Exercise 47. (2 points) Proper affine varieties.

Let A be a finite type k-algebra. Assume that the morphism $f: \operatorname{Spec}(A) \to \operatorname{Spec}(k)$ is proper. Prove that f is finite (equivalently, that $\dim_k(A) < \infty$).