Exemplos resolvidos de parte do conteúdo da primeira prova

[1] Calcule f'(x) e f''(x) para $f(x) = 3.x^3-4.x^2+5.x-1$, no ponto x = 5, com $\varepsilon = 0.01$ e iniciando com h =1.

Para cada iteração, a aproximação de f'(x) é p = [f(x+h)-f(x-h)]/[2.h].

Então, p = $[(3.(5+h)^3-4.(5+h)^2+5.(5+h)-1)-(3.(5-h)^3-4.(5-h)^2+5.(5-h)-1)]/[2.h]$.

Para cada iteração, a aproximação de f''(x) é $p = [f(x+2.h)-f(x)+f(x-2.h)]/[4.h^2]$.

 $Ent \~ao, \ p = [(3.(5+2.h)^3-4.(5+2.h)^2+5.(5+2.h)-1)-(3.(5)^3-4.(5)^2+5.(5)-1)+(3.(5-2.h)^3-4.(5-2.h)^2+5.(5-2.h)-1)]/[4.h^2].$

Resolvendo numericamente com auxílio de tabelas.

k	h	p _k	p _k -p _{k-1}	
1	1	193		
2	0,1	190,03	2,97	
3	0,01	190,0003	0,0297	
4	0.001	190,000003	0.000297	p _k -p _{k-1} <e< td=""></e<>

k	h	p _k	p _k -p _{k-1}	
1	1	82		
2	0,1	<mark>82</mark>	7,24754E-13	p _k -p _{k-1} <ε

Resolvendo analiticamente para conferir os resultados.

Com $f(x) = 3.x^3 - 4.x^2 + 5.x - 1$, $f'(x) = 9.x^2 - 8.x + 5$ e f''(x) = 18.x - 8.

No ponto x = 5, f'(5) = 190 e f''(x) = 82.

[2] Calcule $\nabla f(x)$ para $f(x) = 3.x_1^3 - 4.x_2^2 + 10.x_1.x_2$, no ponto $x^T = (5.2)$ com $\epsilon = 0.01$ e iniciando com h = 1.

Para cada iteração, a aproximação de $\partial/\partial x_1 f(x_1, x_2)$ é p = $[f(x_1+h,x_2)-f(x_1-h,x_2)]/[2.h]$.

Então, p = $[(3.(5+h)^3-4.2^2+10.(5+h).2)-(3.(5-h)^3-4.2^2+10.(5-h).2)]/[2.h]$.

Para cada iteração, a aproximação de $\partial/\partial x_2$ f(x₁, x₂) é p = [f(x₁,x₂+h)-f(x₁,x₂-h)]/ [2.h].

Então, $p = [(3.5^3-4.(2+h)^2+10.5.(2+h))-(3.5^3-4.(2+h)^2+10).5.(2+h)]/[2.h].$

Resolvendo numericamente com auxílio de tabelas.

k	h	p_k	$ p_{k}-p_{k-1} $	
1	1	248		
2	0,1	245,03	2,97	
ω	0,01	245,0003	0,0297	
4	0,001	<mark>245,000003</mark>	0,000297	p _k -p _{k-1} <ε

k	h	p_k	p _k -p _{k-1}	
1	1	34		
2	0,1	<mark>34</mark>	5,68434E-14	p _k -p _{k-1} <ε

Resolvendo analiticamente para conferir os resultados.

Com $f(x) = 3.x_1^3 - 4.x_2^2 + 10.x_1.x_2$, $\partial/\partial x_1 f(x_1, x_2) = 9.x_1^2 + 10.x_2 e \partial/\partial x_2 f(x_1, x_2) = -8.x_2 + 10.x_1$.

No ponto $x^T = (5 \ 2)$, $\frac{\partial}{\partial x_1} f(5, 2) = 245$ e $\frac{\partial}{\partial x_2} f(5, 2) = 34$.

[3] Utilizando o Método da Busca Uniforme separe as raízes de f(x) = 2.5.sen(x).ln(x+1)-1, no intervalo [0, 8], com $\Delta = 0.5$.

	Х	f(x)	
$\Delta = 0.5$	0,0	-1,000	
	0,5	-0,514	
	1,0	0,458	[0,5,1,0]
	1,5	1,285	
	2,0	1,497	
	2,5	0,874	
	3,0	-0,511	[2,5 , 3,0
	3,5	-2,319	
	4,0	-4,045	
	4,5	-5,166	
	5,0	-5,295	
	5,5	-4,302	
	6,0	-2,359	
	6,5	0,084	[6,0,6,5
	7,0	2,415	
	7,5	4,018	
	8,0	4,435	

01

01

51

[4] Utilizando o Método da Busca Uniforme separe a primeira raiz de f(x) = 2.5.sen(x).ln(x+1)-1, no intervalo [0, 8], com Δ = 0,5 e calcule a primeira raiz, com δ = 0,1.

•		•
	Х	f(x)
$\Delta = 0.5$	0,0	-1,000
	0,5	-0,514
	1,0	0,458
$\delta = 0,1$	0,5	-0,514
	0,6	-0,337
	0,7	-0,145
	0,8	0,054

[0,7,0,8]

[0,5,1,0]

Resultado:

x = (0.7+0.8)/2 = 0.75

f(x) = -0.046

Veja o gráfico, ao final do texto, onde podem ser vistos os intervalos onde existem raízes.

[5] Utilize o Método da Divisão ao Meio e calcule a raiz de f(x) = 2.5.sen(x).ln(x+1)-1, no intervalo [2, 4], com $\epsilon = 0.01$.

k	а	b	b-a	f(a)	f(b)	р	f(p)	f(a)*f(p)
1	2	4	2	1,497	-4,045	3	-0,511	-0,765051407
2	2	3	1	1,497	-0,511	2,5	0,874	1,309277335
3	2,5	3	0,5	0,874	-0,511	2,75	0,261	0,228344726
4	2,75	3	0,25	0,261	-0,511	2,875	-0,108	-0,028172513
5	2,75	2,875	0,125	0,261	-0,108	2,8125	0,081	0,021227478
6	2,8125	2,875	0,0625	0,081	-0,108	2,84375	-0,012	-0,000990269
7	2,8125	2,84375	0,03125	0,081	-0,012	2,828125	0,035	0,00283141
8	2,828125	2,84375	0,015625	0,035	-0,012	2,8359375	0,011	0,000396967
9	2,8359375	2,84375	0,0078125	0,011	-0,012	2,83984375	0,000	

Como $|b_9-a_9| < \varepsilon$, pode-se parar com x = 2,8359375 e f(x) = 0,000396967.

Continuando a iteração desta última linha, encontra-se x = 2,83984375 e f(x) = 0,000.

[6] Utilize o Método das Cordas e calcule a raiz de f(x) = 2.5.sen(x).ln(x+1)-1, no intervalo [2, 4], com $\epsilon = 0.01$.

k	а	b	b-a	f(a)	f(b)	р	f(p)	f(a)*f(p)
1	2	4	2	1,497	-4,045	2,540340551	0,788	1,179736531
2	2,540340551	4	1,459659449	0,788	-4,045	2,778290499	0,181	0,142548935
3	2,778290499	4	1,221709501	0,181	-4,045	2,830597404	0,027	0,004963391
4	2,830597404	4	1,169402596	0,027	-4,045	2,838474406	0,004	0,000102997
5	2,838474406	4	1,161525594	0,004	-4,045	2,839551531	0,001	

Só o extremo a está mudando de valor. Portanto, não é possível utilizar $|b_k-a_k| < \epsilon$ como critério de parada. Neste caso, deve-se verificar se f(p) está próximo de zero. Para isto será utilizada a tolerância $\epsilon/10 = 0,001$. Como $|f(p_5)| < \epsilon/10$, pode-se parar com x = 2,838474406 e f(x) = 0,004.

[7] Utilize o Método de Newton e calcule a raiz de $f(x) = 2.x^4-16.x^3+40.x^2-32.x+3$, no intervalo [0, 4], com $\varepsilon = 10^{-5}$ e partindo do ponto x = 1.

Para $f(x) = 2.x^4 - 16.x^3 + 40.x^2 - 32.x + 3$, $f'(x) = 8.x^3 - 48.x^2 + 80.x - 32$.

Para cada iteração, $p_{k+1} = p_k - f(p_k)/f'(p_k)$.

k	p _k	$f(p_k)/f'(p_k)$	$ f(p_k)/f'(p_k) $	p _{k+1}	f(p _{k+1})
1	1	-0,375	0,375	1,375	0,180175781
2	1,375	0,022390777	0,022390777	1,352609223	-0,001604081
3	1,352609223	-0,000195916	0,000195916	1,352805139	-1,1406E-07
4	1,352805139	-1,39328E-08	1,39328E-08	1,352805153	0
5	1,352805153				

Como $|f(p_4)/f'(p_4)| < \varepsilon$, pode-se parar com x = 1,352805153 e f(x) = 0.

Figura da função f(x) = 2.5.sen(x).ln(x+1)-1 utilizada nos exemplos 3, 4, 5 e 6.

Exemplo 3 Intervalos [0,5 , 1,0], [2,5 , 3,0] e [6,0 , 6,5]

Exemplo 4 Primeira raiz x = 0.75; f(x) = -0.046

Exemplo 5 Raiz entre 2 e 4 x = 2,83984375; f(x) = 0,000

Exemplo 6 Raiz entre 2 e 4 x = 2,839551531; f(x) = 0,001

Figura da função $f(x) = 2.x^4-16.x^3+40.x^2-32.x+3$ utilizada no exemplo 7.

Raiz partindo do ponto x = 1x = 1,352805153; f(x) = 0

Gastando mais uma página, só para informar que não precisa mais do que duas páginas para fazer a prova É isto mesmo. Imagine que estivesse fazendo esta prova em sala de aula e recebesse, por motivos ecológicos, apenas uma folha com as questões Você poderia utilizar apenas a folha das questões, frente e verso, para resolver a prova.
Resumindo, não é uma prova longa ou trabalhosa.
Gráficos Os gráficos ao final da segunda página servem para ajudar a verificar se as respostas são compatíveis com as funções dadas. Em uma prova, o gentil e simpático aluno poderia marcar alguns pontos (4, 5 ou 6), calcular a função nestes pontos e traçar uma curva ligando os pontos para ter uma ideia da função. Aqui eu utilizei o programa da nossa Patricinha.
Fale a verdade - também conhecido como pesquisa de opinião pública É o fim do mundo o professor fazer uma prova modelo para os alunos. Não é? Sim, fico até envergonhado. Não, eu não tenho vergonha nenhuma. Sou assim mesmo.
ATENÇÃO Estes exemplos foram feitos para ajudá-lo a estudar. Espera-se que você reproduza os exemplos, refazendo todos os cálculos.

Se encontrar algum erro de cálculo, basta corrigir e, caso queira, me informe.

É possível que existam erros de cálculo, pois fiz todos mentalmente, enquanto digitava o texto.

Note que escrevi todas as equações exatamente para não utilizar calculadora ao desenvolver o texto.

Em resumo, foi feito para ajudar e se estiver atrapalhando, interrompa a leitura e não utilize este texto.