Universidade de São Paulo escola de engenharia de são carlos

Projeto de Circuitos Integrados Analógicos - SEL0618

Projeto 8

Aluno: Lucas A. M. Magalhães

N'umero~USP:~7173347

Aluno: Luiz H. G. Patire Número USP: 7126667

SUM'ARIO

Sumário

latório		2
Questão 1		2
Questão 2		2
Questão 3		2
Questão 4		3
Questão 5		4
Questão 6		4
Questão 7		-
Questão 8		6
Questão 9		7
Questão 10		8
Questão 11		G
Questão 12		Ĉ
Questão 13	1	. 1
Questão 14	1	. 1
Questão 15	1	.4
Questão 16	1	. 5
Questão 17	1	7
Questão 18	1	G
Questão 19	2	20

Relatório

Questão 1

Procure o *layout* da célula **DL1** e o abra no IcStation. Levante e **desenhe o circuito esquemático** desta célula (não precisa determinar as dimensões dos transistores). Observe com cuidado o *layout* feito.

A Figura 1 mostra o esquemático do circuito da célula DL1.

Figura 1: Esquemático feito a partir do Layout da Célula DL1

Questão 2

Observe que na célula **DL1** as linhas dos sinais de V_{DD} e V_{SS} correm nas extremidades superior e inferior. Qual é a dimensão vertical destas linhas e qual a distância entre elas. Abra outra célula da biblioteca e verifique as dimensões das linhas de V_{DD} e V_{SS} e a distância entre elas. São iguais em todas as células? Seria/é interessante que fossem/sejam iguais?

A dimensões das linhas de V_{DD} e V_{SS} são ambas 1,8 μm , e a distância entre elas é de 9,4 μm . Isso se repete para todas as células da biblioteca.

Essa padronização permite uma economia de espaço e material na organização do circuito, uma vez que, para associar duas células diferentes, basta juntar suas regiões de V_{DD} e V_{SS} .

Questão 3

Considere o circuito da **Figura 2**. Desenhe seu **esquemático** utilizando as células **DF3**, **NAND22**. Como sinal de entrada deve colocar o clock e D; como sinal de saída, Q.Gere o símbolo para a célula e faça todas as verificações necessárias. Certifique-se que não haja erros ou warnings.

Figura 2: Exemplo de esquemático

O esquemático é apresentado na Figura 3.

Figura 3: Esquemático do Circuito Divisor de Frequência

Questão 4

A partir das informações dos blocos que compõe este circuito estime o valor máximo da freqüência do clock que o circuito pode suportar (considere a entrada D = "1", utilize o pior caso entre subida e descida das portas e considere sinais rápidos). Apresente os cálculos.

Para fazer o cálculo da máxima frequência basta encontrar o atraso da porta no pior caminho do sinal. No esquemático da Figura 2 existem dois caminhos que tem a mesma fórmula. O tempo de atraso é calculado, então, pela equação 1, em que T_{DFF} e T_{NAND} são dados pelo tempo de delay da porta.

$$T = T_{SET-UP} + T_{DFF} + T_{NAND} \tag{1}$$

A documentação da biblioteca *CoreLIB* que usamos no trabalho não dá a especificação dos tempos para quaisquer capacitâncias de carga assim é assumido que o tempo varia linearmente com a capacitâncias de carga. Por aproximação linear, tem-se os tempos das portas para as cargas capacitivas corretas de cada porta de entrada apresentados na Tabela

1. Para definir a capacitância de carga das portas basta achar a capacitância equivalente das portas, no caso colocar as capaciâncias em paralelo.

Tabela 1: Valores de delay e capaciâncias usados

Porta	Delay (ns)	Capacitância (pF)
DFF	0,621	0,013
NAND	0,077	0,005

Fazendo a soma em 1 tem-se T=0,698~ns assim, como a frequência máxima é $f=\frac{1}{T}$ para T igual ao máximo atraso, a frequência máxima é f=1,43~GHz.

Questão 5

O que significam tempos de *holding* e de *set-up* em *flip-flops*. Qual seria o valor máximo do *clock*, do exercício acima, caso o tempo de *set-up* fosse de 0,1 ns.

Tempo de holding é o tempo que a entrada da porta deve ficar estável depois do clock para que o sinal se propague corretamente. Tempo de set-up é o tempo que a entrada deve ficar estável antes do clock para que o sinal se propague corretamente.

No caso do tempo de set-up ser 0, 1 ns, o atraso seria acrecido desse valor assim, T = 0.797 ns. A frequência máxima seria, então, f = 1.25 GHz.

Questão 6

Gere, a partir do esquemático, um arquivo *netlist* para o ELDO. Simule o circuito com os parâmetros típicos e determine a **máxima velocidade** (*clock*) do circuito. Considere

- a entrada D = "1";
- $V_{DD} = 3 V$;
- o sinal de clock com (tempo de subida) = (tempo de descida) = 0,1*Período.

Apresente as linhas de comando e sinais utilizados.

A simulação feita é descrita pelo Listing~1. Nela é feita uma simulação variando a frequência e calculando a relação entre a frequência de saída e a frequência de entrada, como visto na linha 143 do arquivo chamada "Relação entre Frequências". A Figura 4 mostra o gráfico da "Relação entre Frequências"X frequência de entrada. Observa-se neste gráfico que, para frequências maiores que 1,43~GHz, o circuito para de funcionar, pois a relação que deveria ser de 0.5 cai para valores abaixo desse esperado.

Listing 1: "Modelo de Simulação do Divisor de Frequência a Partir do Esquemático"

*

* MAIN CELL: Component pathname : \$proj3/default.group/logic.views/logic1

Figura 4: Relação entre Frequências X Frequência de entrada, simulado a partir do Netlist

Gere agora o *layout* para o circuito(use para isso o *designviepoint* não o *schematic*). Neste *layout* deve-se tomar cuidado com:

- a área total do circuito;
- o uso correto dos metais e poli como camadas de conexão;

- a posição e o tamanho dos ports de entrada e saída;
- a largura das linhas de V_{DD} e V_{SS} , não inferiores a 1 μm (use $Route ARoutre \ NEt \ Classe$).

Faça a verificação com o **DRC** (CALIBRE), passe o **LVS** e elimine todos os erros. **Apresente a figura do** *layout* no relatório.

O layout do circuito é apresentado na Figura 5

Figura 5: Layout do Divisor de Frequências

Questão 8

Faça a extração do circuito via o Calibre com a opção $\mathbf{C}+\mathbf{CC}$ (deve ser usada uma configuração que garanta que o nome dos nós venha do schematic). Simule o circuito com parâmetros típicos e determine sua máxima velocidade. Utilize as mesmas condições do exercício 6.

A simulação feita tem a mesma configuração da questão 6, porém neste caso foi feita a extração C+CC do layout. A Figura 6 mostra o gráfico da "Relação entre Frequências" X frequência de entrada. Observa-se neste gráfico que, para frequências maiores que 1,07~GHz, o circuito para de funcionar, pois a relação que deveria ser de 0.5, cai para valores abaixo desse esperado.

Figura 6: Gráfico da "Relação entre Frequências" X
 Frequência de Entrada (Hz), Extração $\mathrm{C}{+}\mathrm{C}\mathrm{C}$

Extraia agora com a opção **R+C+CC**. Simule o circuito com parâmetros típicos e determine sua máxima velocidade. Utilize as mesmas condições do exercício 6.

A simulação feita tem a mesma configuração da questão 6, porém neste caso foi feita a extração R+C+CC do layout. A Figura 7 mostra o gráfico da "Relação entre Frequências" X frequência de entrada. Observa-se neste gráfico que, para frequências maiores que 1,05~GHz, o circuito para de funcionar, pois a relação que deveria ser de 0.5 cai para valores abaixo desse esperado.

Figura 7: Gráfico da "Relação entre Frequência" X
 Frequência de Entrada (Hz), Extração $\mathbf{R} + \mathbf{C} + \mathbf{C} \mathbf{C}$

Monte uma tabela com os resultados obtidos nos exercícios 4, 6, 8 e 9. Compare e comente os resultados.

A Tabela 2 compara as máximas frequências de funcionamentos para as questões 4, 6, 8 e 9.

Tabela 2: Máximas frequências para circuito da questão 3

Extração	Frequência Máxima (GHz)
Cálculo dos atrasos manualmente	1,43
Netlist	1,43
C+CC	1,07
R+C+CC	1,05

Pode-se observar que a frequência calculada a partir dos dados fornecidos pelo fabricante são idênticos à frequência simulada pelo *netlist* gerado a partir do esquemático. Em simulações mais precisas (C+CC e R+C+CC), que consideram cargas parasitas do circuito, pode-se

perceber que a frequência máxima sofre uma queda significativa (principalmente por causa de capacitâncias acrescidas à simulação).

Questão 11

Determine a área total do circuito que desenhou.

O Listing 2 mostra o report da tela feito pelo IC Studio. A célula tem dimensões 48,0 μm x 14,2 μm , o que resulta em uma área de 681,6 pm.

Listing 2: "Report de Tela do Layout do Divisor de Frequências"

```
Report Windows
   Selectable Layers: 0-4097, 4101, 4104-4106, 4109-4112, 4117-4167, 4190-4224
   TC Windows
                 Minor Major
                                 Grid
                                                 Offset
          Snap
                                                              Cull Active Iconified
                                 Snap (X,Y)
                                                 (X,Y)
10
   IC 0
                        10
                                 0.050, 0.050
                                                 0.000, 0.000
                                                                    Yes
                                                                            Window
         -- View Extent:
                             [[-2.616, 7.886],[45.916,42.514]]
                            [[-2.350, 18.100],[45.650,32.300]]
          - Cell Extent:
           Top Cell:
                             $proj3/default.group/layout.views/logic1/logic1
15
        --- Displayed Cell: $proj3/default.group/layout.views/logic1/logic1
        --- Visible Layers: 0-4098, 4100-4102, 4104-4106, 4109-4132, 4158-4189, 4193-4224
```

Questão 12

A partir dos dados dos blocos que compõe o divisor 4/5 estime o máximo *clock* que o circuito pode suportar (considere que são usados na implementação os blocos **DF1**, **NAND23** e **NOR23** e utilize o pior caso entre subida e descida das portas). Apresente os cálculos.

Figura 8: Prescaler 32/33

No divisor 4/5 da Figura 8 existem quatro caminhos críticos para o cálculo do *Clock*. Eles estão indicados pelos números de 1 a 4 na Figura 9:

Figura 9: Divisor 4/5 - Sinais Críticos e Componentes

Os tempos totais de cada caminho estão representados nas equações de 2 a 5, nas quais t_{DX} é o tempo de delay do componente X do circuito:

$$T_1 = t_{DB} \tag{2}$$

$$T_2 = t_{DC} + t_{DD} \tag{3}$$

$$T_3 = t_{DC} + t_{DA} \tag{4}$$

$$T_4 = t_{DE} + t_{DA} \tag{5}$$

Os tempos de *delay* de cada componente é calculado utilizando os dados presentes na ficha técnica de cada bloco do circuito (que permitem encontrar a relação linear entre a carga de saída e o atraso do bloco) e a carga de saída resultante de cada bloco. Os valores encontrados para cada bloco se encontra na Tabela 3.

Tabela 3: Tempo de Atraso de Cada Bloco do Circuito

Bloco	Carga	Atraso
A	$0,005~\mathrm{pF}$	0,083 ns
В	$0,005~\mathrm{pF}$	0,680 ns
С	0,041 pF	0,864 ns
D	0,005 pF	0.073 ns
D	0,020 pF	0,757 ns

Os tempos resultantes de cada caminho se encontra na Tabela 4:

Tabela 4: Tempo de Atraso de Cada Caminho

Caminho	Atraso Total
1	0,680 ns
2	0.937 ns
3	0,947 ns
4	$0.840 \ {\rm ns}$

Como o caminho com o maior atraso total é o caminho 3, com um atraso de $0,947 \, ns$, ele assume posição como limitante do clock do sistema inteiro. Assim, o valor máximo do clock é de $1,05 \, GHz$.

Questão 13

Desenhe o **esquemático** do divisor 4/5 utilizando as células **DF1**, **NAND23** e **NOR23**. Como sinal de entrada deve ter o **clock** e MC; como sinal de saída o **sinal** $\neg \mathbf{Q}$ **do D-FF mais a esquerda**. Gere o símbolo para a célula e faça a verificação do esquemático e do símbolo. Certifique-se que não haja erros ou mesmo warnings.

O esquemático feito é apresentado na Figura 10.

Figura 10: Esquemático do Divisor 4/5

Questão 14

Gere, a partir do esquemático, um arquivo *netlist* para o ELDO. Simule o circuito com parâmetros típicos e determine a máxima velocidade e consumo do circuito (consumo em mW/GHz). Considere

 \bullet MC = "0", para o circuito fazer a divisão por 5;

- $V_{DD} = 3 \text{ V};$
- o sinal de clock com (tempo de subida) = (tempo de descida) = 0,1*Periodo.

Apresente as linhas de comando e sinais utilizados.

A simulação feita é descrita pelo Listing~3. Nela é feita uma simulação variando a frequência e é calculada a relação entre a frequência de saída e a frequência de entrada, como visto na linha 20 do arquivo. A Figura 11 mostra o gráfico de "Relação entre Frequências" X frequência de entrada. Observa-se neste gráfico que, para frequências maiores que 1, 18~Ghz, o circuito para de funcionar, pois a relação que deveria ser de 0, 2, cai para valores abaixo desse esperado.

Na Figura 12, vemos que o consumo da celula é de 1, $18 \ mW/GHz$. Para fazer esse gráfico, foi calculada a relação entre a potência despendida pelo circuito em cada frequência de entrada e a própria frequência de entrada, linhas 22 e 23 do *Listing* 3.

Listing 3: "Modelo de Simulação do Divisor 4/5"

```
* MAIN CELL: Component pathname: $proj3/default.group/logic.views/div45
3
           X_NOR231 N$10 MC N$6 NOR23
           X_NAND231 N$9 N$6 N$8 NAND23
           X_DF13 N$7 N$8 CLK N$10 DF1
           X_DF12 N$5 N$6 CLK QN DF1
           X_DF11 N$4 QN CLK N$9 DF1
   .param f = 500 MEG , T = '1/f', ts = '0.01 * T' , td = ts
  VM MC O O
  VD VDD 0 3V
  VS VSS 0 0V
  VCLK CLK 0 PULSE( 0 3V 0 ts td '0.5*T-0.5*ts-0.5*td' T )
   .tran 0 100n 0 100p SWEEP f 1G 1.5G 10MEG
  .meas tran periodo TRIG V(QN) val=1.5 fall=2 targ V(QN) val=1.5 fall=3
   .meas tran outFreq PARAM='1/periodo'
   .meas tran rel PARAM='outFreq/f'
   .meas tran Int AVG I(VD) FROM=T TO='2*T'
   .meas tran Pot PARAM='Int*-3'
  .meas tran Consumo PARAM='Pot/f'
   .probe tran V(CLK) V(QN)
```


Figura 11: Relação entre frequências x Frequência de entrada, simulado a partir do Netlist

Figura 12: Consumo (mW/GHz) x Frequência de entrada (Hz), simulado a partir do Netlist

Gere agora o *layout* do circuito. Neste *layout* deve tomar cuidado com:

- a área total do circuito;
- o uso correto dos metais e poli como camadas de conexão;
- a posição e o tamanho dos ports de entrada e saída;
- a largura das linhas de V_{DD} e V_{SS} , não inferiores a 1 μm .

Faça a verificação com o **DRC** (CALIBRE), passe o **LVS** e elimine todos os erros. **Apresente a figura do** *layout* no relatório.

O layout do circuito é apresentado na Figura 13.

Figura 13: Layout do circuito divisor 4/5

Faça a extração do circuito via o Calibre com a opção C+CC. Simule o circuito com parâmetros típicos e determine a máxima velocidade e consumo do circuito. Considere as mesmas condições do exercício 14.

A simulação feita nas mesmas condições da questão 14, porém com extração C+CC feita a partir do layout. Nela é feita uma simulação variando a frequência e é calculada a relação entre a frequência de saída e a frequência de entrada. A Figura 14 mostra o gráfico da relação entre frequências X frequência de entrada. Observa-se neste gráfico que, para frequências maiores que 0,9~GHz, o circuito para de funcionar, pois a relação que deveria ser de 0,2 cai para valores abaixo desse esperado.

Na Figura 15 vemos que o consumo da celula em é de 1,81~mW/GHz. Para fazer esse gráfico, foi calculada a relação entre a potência despendida pelo circuito em cada frequência de entrada e a própria frequência de entrada.

Figura 14: Relação entre frequências x
 Frequência de entrada, simulado a partir da extração $\mathrm{C}{+}\mathrm{C}\mathrm{C}$

Figura 15: Consumo (mW/GHz) x Frequência de entrada (Hz), simulado a partir da extração C+CC

Extraia agora com a opção R+C+CC. Simule o circuito com parâmetros típicos e determine a máxima velocidade e consumo do circuito. Considere as mesmas condições do exercício 14.

A simulação feita nas mesmas condições da questão 14, porém com extração R+C+CC feita a partir do layout. Nela é feita uma simulação variando a frequência e é calculada a relação entre a frequência de saída e a frequência de entrada. A Figura 16 mostra o gráfico de relação entre frequências X frequência de entrada. Observa-se neste gráfico que, para frequências maiores que $0,88\ GHz$, o circuito para de funcionar, pois a relação que deveria ser de 0,2 cai para valores abaixo desse esperado.

Na Figura 17, vemos que o consumo da celula em é de 1,8~mW/GHz. Para fazer esse gráfico, foi calculada a relação entre a potência despendida pelo circuito em cada frequência de entrada e a própria frequência de entrada.

Figura 16: Relação entre frequências x
 Frequência de entrada, simulado a partir da extração $\mathrm{C}{+}\mathrm{C}\mathrm{C}$

Figura 17: Consumo (mW/GHz) x Frequência de entrada (Hz), simulado a partir da extração C+CC

Monte uma tabela com os resultados obtidos nos exercícios 14, 16, 18 e 19. Compare e comente os resultados.

Tabela 5: Máximas frequência e consumo para circuito da questão 12

Extração	Frequência Máxima (GHz)	Consumo (mW/GHz)
Cálculo dos atrasos manualmente	1,05	-
Netlist	1,18	1,29
C+CC	0,9	2,06
R+C+CC	0,88	1,8

Pode-se observar que a frequência calculada a partir dos dados fornecidos pelo fabricante é um pouco menor do que a frequência simulada pelo *netlist* gerado a partir do esquemático. Em simulações mais precisas (C+CC e R+C+CC), que consideram cargas parasitas do circuito, pode-se perceber que a frequência máxima sofre uma queda significativa (principalmente por causa de capacitâncias acrescidas à simulação).

O consumo aumenta da simulação feita a partir do *netlist* para as simulações mais precisas (C+CC e R+C+CC), porém a simulação C+CC obteve o maior consumo do que todas as outras.

Questão 19

Determine a área total do circuito que desenhou.

O Listing 4 mostra o report da tela feito pelo IC Studio. A celula tem tamanho dimensões $47,3~\mu m \times 34,5~\mu m$, que resulta em uma área total de 1631,85~pm.

Listing 4: "Report de Tela do Layout do Divisor de Frequências"

```
Report Windows
   Selectable Layers: 0-4097, 4101, 4104-4106, 4109-4112, 4117-4167, 4190-4224
   IC Windows
          Snap
                 Minor Major
                                 Grid
                                                 Offset
                                                             Cull Active Iconified
                                 Snap (X,Y)
                                                 (X,Y)
                        10
                                 0.050, 0.050
                                                 0.000, 0.000
12
                                                                    Yes
                                                                            Window
        --- View Extent:
                             [[124.284, 128.722],[184.950,172.008]]
        --- Cell Extent:
                             [[131.400, 134.500],[178.693,167.950]]
                            $proj3/default.group/layout.views/div45/div45
        --- Displayed Cell: $proj3/default.group/layout.views/div45/div45
        --- Visible Layers: 0-4098, 4100-4102, 4104-4106, 4109-4132, 4158-4189, 4193-4224
```