Distributed and Anonymous Authentication for Unstructured P2P Networks

Group 13

E/15/350: Tennakoon T.M.P.B.

E/15/180: Karunathilaka V.M.B.S.S.V

Introduction

Authentication

- To make one person trust another one
- Who is talking to whom must be as valid as whom he/she claims to be
 - Is he/she the valid person who is searching a public database?
 - Is he/she the valid person who provide you a movie without virus?

Anonymity and Privacy

- The right to be let alone.
- Who is talking to whom should be confidential or private in the Internet.
 - Who is searching a public database?
 - Which movie are you downloading?

Tradeoff: Anonymity vs Authentication

- Anonymity hides accountability.
 - No fear of being identified.
 - No responsibility for actions.
- Authentication provide accountability.
 - Responsibility for actions.

Challenge: Anonymous authentication in P2P

- Lack of Authentication.
- Misbehaving entities
- Uncontrolled anonymity.

Background

Distributed & Anonymous Authentication for Unstructured P2P Networks

Related Works

Duo	N. 91	

Publication	Similarities	Differences

Complete system

key.

Pseudo Trust

CST

Authentication with controlled anonymity in

P2P systems

PPAA

Fair Blind Signature Based Authentication

FBST to hide identity

Use of reputation management

Merkle's puzzles to share a secret

Use of reputation management systems

Tags to hide identity

systems

Pseudonyms to hide identity

Collaboration signatures to hide Shamir's secret sharing to distribute a identity. key.

Shamir's secret sharing to distribute a

Zero knowledge proofs to authenticate

Zero knowledge proofs to authenticate

Zero knowledge proofs to authenticate

Cryptographic Primitives

Cryptographic Primitives

Zero Knowledge Proof

 Prove the possession of some secret without revealing any information related to the secret.

We utilize a Schnorr's non interactive zero knowledge proof.

Cryptographic Primitives

Ring Signatures

Sign a message behalf of a group.

Prove signer is a member of a group.

• Infeasible to find exactly which member.

Cryptographic Primitives

Shamir's Secret Sharing

Divide a secret into parts.

Reconstruct the original secret with a subset of the parts.

Network Design

Distributed Certificate Management

Challenges in Certificate Management in P2P

Absence of a central storage location.

Super peers can leave any time.

Solution: Shamir's Secret Sharing

1. Break the certificate into n parts.

- 2. Distributed the parts across the network.
- 3. Request the parts when needed

4. Reconstruct the certificate using r parts (1 < r < n)

Advantages

Size of each part does not is exceed the certificate.

Only require r parts to reconstruct the certificate.

Flexible

Demo

Anonymous Authentication Protocols

- 1. Ring Signature based approach
- 2. Key Sharing based approach
- 3. Zero Knowledge Proof based approach

Ring Signature based approach

Summary

 Prover collects a set of certificates and shuffle his certificate into the set.

• Verifier generate a random nonce and challenge prover to generate a ring signature using the set of certificates.

 The knowledge of atleast one private key is required to generate the ring signature.

Key Sharing based approach

Summary

 Prover collects a set of certificates and shuffle his certificate into the set.

 Verifier generate a random number and encrypt with each public key.

 Challenge prover to generate a shared key using this random number.

Key Sharing based approach

Summary

• Prove need to decrypt any of the cipher texts to generate the shared key.

• The knowledge of atleast one private key is required to decrypt any of the cipher text.

Zero Knowledge Proof base approach

Group Parameters

P, Q : Large Prime Numbers (Q | P - 1)

• a_{u} : Private Key ($a_{u} \in [1, Q-1]$)

• A_{...}= g^{au} mod P : Public Key

Zero Knowledge Proof based approach

Zero Knowledge Proof based approach

Zero Knowledge Proof based approach

Verifier

Prover

Security Analysis

Security Analysis

	Ring Signature base approach	Key Sharing based approach	Zero Knowledge proof based approach
Completeness	✓	✓	✓
Soundness	1	✓	1
impersonation	✓	✓	✓
Replay attacks	✓	✓	•
K - anonymity	✓	X	✓

Performance Analysis

Performance of authentication protocols

Drawbacks

Drawbacks

Drawbacks

 Reputation management system is incompatible with authentication protocol.

Conclusion and Future Works

 Modify the zero-knowledge proof-based approach for anonymity revocation

 Integrate the proposed authentication protocols in real-world peer to peer transactions

Background

