Двудольные графы, паросочетания и функции

домашнее задание

Костылев Влад, Б01-208

24 октября 2022 г.

№1

- 1. $Dom(h) = \{1, 2, 3, 4, 5, 6, 8\}$
- 2. Range(h) = $\{b, c, e, f\}$
- 3. $h({0, 1, 2, 3, 4}) = {b, c, e}$
- 4. $h^{-1}(\{a, b, c\}) = \{1, 2, 3, 5\}$
- 5. $h({0, 1, 2, 6, 7, 8}) = {b, c, e, f}$ $h^{-1}({b, c, e, f}) = {1, 2, 3, 4, 5, 6, 8}$
- 6. $h^{-1}(\{a, b, c, d, e\}) = \{1, 2, 3, 4, 5, 6\}$ $h(\{1, 2, 3, 4, 5, 6\}) = \{b, c, e\}$

№2 Рассмотрим все $x \in X$:

Если x - составное число \Rightarrow y него нет прообраза.

Если x - простое число \Rightarrow y него может быть не более $\lfloor \sqrt{x} \rfloor$ прообразов $(y > \sqrt{x})$, то $y^2 > x$ и x не подходит под условие, что $x > y^2$).

Значит у всех $x \in X$ либо 0, либо конечное число прообразов, и т.к. X конечно, то суммарно будет тоже конечное кол-во прообразов $\Rightarrow f^{-1}(X)$ конечен.

№3 $f^{-1}(f(A)) \not\subseteq A$: $a_1 \in X, a_2 \in X, a_1 \in A, a_2 \not\in A, b_1 \in Y, f(a_1) = b_1, f(a_2) = b_1 \Rightarrow$ не все элементы прообраза $f^{-1}(f(A))$ (включающий в себя a_1, a_2) принадлежат A.

 $f^{-1}(f(A)) \not\supseteq A$: $a_1 \in X, a_1 \in A$, но a_1 не определена на f, а значит не существует $f(a_1)$ и $a_1 \not\in f^{-1}(f(A))$.

 $f^{-1}(f(A)) \neq A$: по доказанному выше \Rightarrow никакой из знаков сравнения нельзя поставить вместо ?.

№4 Пусть
$$A \cap B = C$$
 $f(A \setminus B) = D, f(C) = E, f(B \setminus A) = F$
Тогда $f(A) = D \cup E$
 $f(B) = F \cup E$
 $f(A) \setminus f(B) = (D \cup E) \setminus (F \cup E) = D \setminus F$

Наше утверждение превращается в D ? $D \setminus F \Rightarrow$? - \supseteq

№6 Неверно:

№7 Неверно:

$$X = \{1, 2\}$$

 $Y = \{a, b, c, d\}$
 $B = \{a, d\} \subseteq Y$

$$f^{-1}(B) = X$$
, но $B \neq Y$

№8

$$\begin{aligned} \mathbf{X} &= \{1,\,2\} \\ \mathbf{Y} &= \{\mathbf{a},\,\mathbf{b},\,\mathbf{c},\,\mathbf{d}\} \\ \mathbf{B} &= \{\mathbf{b},\,\mathbf{c}\} \subseteq Y \\ \mathbf{B} &\neq \emptyset \\ f^{-1}(B) &= \emptyset \end{aligned}$$