Практическое занятие №4

Реляционная алгебра. Реляционные исчисления

Аспекты реляционного подхода

Реляционная модель состоит из **трех частей**, описывающих разные аспекты реляционного подхода:

- 1) структурной части;
- 2) манипуляционной части;
- 3) целостной части.

Аспекты реляционного подхода

- **1.** В **структурной части** модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-aphoe отношение.
- 2. Существуют два направления манипулирования данными: реляционная алгебра и реляционное исчисление.

Реляционные алгебра и исчисление

Реляционная алгебра и реляционное исчисление являются формальными языками (это абстрактные языки запросов), они не являются дружественными к пользователю.

Они имеют значение поскольку:

- Иллюстрируют базовые операции, требующиеся от любого языка
- Выступают в роли стандарта для сравнения других реляционных языков

Основные операции реляционной алгебры

- 1)Традиционные (теоретико-множественные)
- Объединение
- Пересечение
- Разность
- Декартово произведение

- 2)Специальные (реляционные)
- Проекция
- Селекция (выборка)
- Соединение
- Частное (деление)

Схема отношения

Реляционная модель описывает представление данных в виде двумерной таблицы, называемой отношением.

Понятию схема отношения соответствует описание структуры двумерной таблицы (имена столбцов).

Схемой отношения R называется перечень имен атрибутов (конечное множество имен атрибутов) данного отношения с указанием домена, к которому они относятся:

$$S_R = (A_1, A_2, A_n), A_i \subseteq D_i$$

n - арность схемы отношения.

Исходные множества D1, D2, ..., Dn являются доменами.

Выборка (Selection), или сокращение (Restriction)

• Эта операция выполняется на одном отношении R и определяет отношение, которое содержит только те кортежи исходного отношения R, которые удовлетворяют заданному условию (предикату).

• К. Дейт использует такое обозначение: **R** WHERE p

• Некоторые другие авторы — такое: $\sigma_{\text{predicate}}(\mathbf{R})$

• Выражение р — это предикат, или условие сокращения

Графическое представление:

Примеры.

Students WHERE record_book = 55500
Students WHERE record_book = 55500 OR record_book = 55800
Progress WHERE acad year = '2017/2018' AND term = 1

Выборка

Выборка на отношении A - отношение C, построенное по той же схеме что и отношение A и содержащее подмножество кортежей отношения A, удовлетворяющих условию выборки.

C = A WHERE условие выборки;

Пример: Книги художественного отдела (A)

Номер книги	Место хранения	Название	Книги о	с номерами от 20	00 do 3000 (C)
2106	Художественный отдел	Черкасов А. «Хмель»	Номер	Место хранения	Название
2184	Художественный отдел	Толстой А. «Петр Первый»	книги		
3012	Художественный отдел	Брэдбери Р. «Марсианские хроники»	2106	Художественный отдел	Черкасов А. «Хмель»
3145	Художественный отдел	Пушкин А.С. «Евгений Онегин»	2184	Художественный отдел	Толстой А. «Петр Первый»

C = A WHERE (Номер книги > 2000) AND (Номер книги < 3000);

Проекция (Projection)

- Эта операция выполняется на одном отношении R, которое имеет атрибуты X, Y,..., Z (и, возможно, другие атрибуты) и определяет отношение, которое содержит вертикальное подмножество исходного отношения R, извлекая значения указанных атрибутов и отбрасывая дубликаты полученных кортежей. В таком случае проекция отношения R по атрибутам X, Y,..., Z определяется с помощью следующего выражения (К. Дейт): R { X, Y,..., Z }.
- Его заголовок формируется из заголовка отношения R путем удаления всех атрибутов, не указанных в множестве { X, Y, . . . , Z }.
- Некоторые авторы используют обозначение: $\Pi_{a_1 ..., a_n}(\mathbf{R})$

Графическое представление:

Пример.
Progress { acad year, term }

Учебный год	Семестр
(acad_year)	(term)
2017/2018	1
2017/2018	2

Проекция

Проекция отношения A - отношение C, схема которого состоит из подмножества атрибутов, по которым производится проекция, а кортежи содержат соответствующие значения из кортежей отношения A.

C = A [проецируемые атрибуты];

Пример:

Книги художественного отдела (А)

Номер книги	Место хранения	Название
2106	Художественный отдел	Черкасов А. «Хмель»
2184	Художественный отдел	Толстой А. «Петр Первый»
3012	Художественный отдел	Брэдбери Р. «Марсианские хроники»
3145	Художественный отдел	Пушкин А.С. «Евгений Онегин»

Инвентеризация книг (С)

	Номер книги	Название
>	2106	Черкасов А. «Хмель»
	2184	Толстой А. «Петр Первый»
	3012	Брэдбери Р. «Марсианские хроники»
	3145	Пушкин А.С. «Евгений Онегин»

С = А [Номер книги, Название];

Объединение (Union)

- Объединением отношений R и S является отношение того же типа с телом, которое состоит из всех кортежей, присутствующих в R или в S, или в обоих отношениях. При этом кортежи-дубликаты устраняются.
- Отношения R и S должны принадлежать к **одному типу**. Они должны быть совместимыми по объединению (union compatible), т. е. иметь одинаковые заголовки (количество и порядок следования атрибутов в них должны совпадать).

К. Дейт использует такое обозначение: R UNION S

Некоторые другие авторы — такое:

R U S

R R S

Пример.
Students1 UNION Students2
(предположим, что оба эти отношения имеют тот же тип, что и отношение Students)

Объединение

Объединение двух односхемных отношений A и B - отношение C, построенное по той же схеме и содержащее все кортежи отношения A и все кортежи отношения B.

C = A UNION B;

Пример:

Книги художественного отдела

Номер книги	Место хранения	Название
2106	Художественный отдел	Черкасов А. «Хмель»
2184	Художественный отдел	Толстой А. «Петр Первый»
3012	Художественный отдел	Брэдбери Р. «Марсианские хроники»
3145	Художественный отдел	Пушкин А.С. «Евгений Онегин»

Книги отдела технической литературы

Номер книги	Место хранения	Название
3161	Отдел технической литературы	К.Дж.Дейт «Введние в системы БД»
3142	Отдел технической литературы	Гладун В.П. «Планирование решений»
4024	Отдел технической литературы	Качко Е.Г. «Программирование на С++»

Книги отделов технической и художественной литературы

	Номер книги	Место хранения	Название
	2106	Художественный отдел	Черкасов А. «Хмель»
	2184	Художественный отдел	Толстой А. «Петр Первый»
	3012	Художественный отдел	Брэдбери Р. «Марсианские хроники»
	3145	Художественный отдел	Пушкин А.С. «Евгений Онегин»
>	3161	Отдел технической литературы	К.Дж.Дейт «Введние в системы БД»
	3142	Отдел технической литературы	Гладун В.П. «Планирование решений»
	4024	Отдел технической литературы	Качко Е.Г. «Программирование на С++»

Пересечение (Intersection)

- Пересечением отношений R и S является отношение того же типа с телом, которое состоит из всех кортежей, присутствующих одновременно в R и в S.
- Отношения R и S должны принадлежать к **одному типу**. Они должны быть совместимыми по объединению (union compatible), т. е. иметь одинаковые заголовки.

• К. Дейт использует такое обозначение: \mathbf{R} INTERSECT \mathbf{S}

• Некоторые другие авторы — такое: $\mathbf{R} \cap \mathbf{S}$

R R S

Пример.

Students1 INTERSECT Students2 (предположим, что оба эти отношения имеют тот же тип, что и отношение Students)

Пересечение

Пересечение двух **односхемных** отношений A и B - отношение C, построенное по той же схеме и содержащее только те кортежи отношения A, которые есть в отношении B.

C = A INTERSECT B;

Пример:

Пациенты поликлиники № 26

ФИО	Номер паспорта
Иванов И.И.	MK 234561
Петров П.П.	MH 562311
Сидоров С.С.	КП 673421

Сотрудники университета

ФИО	Номер паспорта
Андреев А.А.	MK 435676
Николаев Н.Н.	KM 112344
Петров П.П.	MH 562311
Сидоров С.С.	КП 673421

Сотрудники университета, обслуживаемые в поликлинике № 26

ФИО	Номер паспорта
Петров П.П.	MH 562311
Сидоров С.С.	КП 673421

Разность (Set difference)

- Разностью отношений R и S (в указанном порядке) является отношение того же типа с телом, которое состоит из всех кортежей, присутствующих в R, но не присутствующих в S.
- Отношения R и S должны принадлежать к **одному типу**. Они должны быть совместимыми по объединению (union compatible), т. е. иметь одинаковые заголовки.
- Важно: оператор MINUS характеризуется направленностью (некоммутативностью), так же, как вычитание в обычной арифметике.

• К. Дейт использует такое обозначение:

R MINUS S

• Некоторые другие авторы — такое:

$$R - S$$

Пример.

Students1 MINUS Students2 (предположим, что оба эти отношения имеют тот же тип, что и отношение Students)

Разность

Разность двух односхемных отношений A и B - отношение C, построенное по той же схеме и содержащее те кортежи отношения A, которых нет в отношении B.

C = A EXCEPT B;

Пример: Сотрудники предприятия

ФИО	Номер паспорта
Иванов И.И.	MK 234561
Андреев А.А.	MK 435676
Николаев Н.Н.	KM 112344
Петров П.П.	MH 562311
Сидоров С.С.	КП 673421

Сотрудники предприятия, прошедшие медосмотр

ФИО	Номер паспорта
Иванов И.И.	MK 234561
Петров П.П.	MH 562311
Сидоров С.С.	КП 673421

Сотрудники предприятия, не прошедшие медосмотр

ФИО	Номер
	паспорта
Андреев А.А.	MK 435676
Николаев Н.Н.	KM 112344

Декартово произведение (Cartesian product)

- Декартово произведение отношений R и S, не имеющих общих атрибутов это отношение, заголовок которого представляет собой (теоретико множественное) объединение заголовков отношений R и S, а тело состоит из всех кортежей t, таких, что t является (теоретико-множественным) объединением кортежа, принадлежащего к отношению R, и кортежа, принадлежащего к отношению S. Следует отметить, что кардинальность результата равна произведению кардинальностей входных отношений, R и S, а степень результата сумме степеней входных отношений.
- Если необходимо сформировать декартово произведение двух отношений, имеющих общие имена атрибутов, то следует вначале воспользоваться оператором RENAME, чтобы переименовать атрибуты должным образом.
- К. Дейт использует такое обозначение: R TIMES S
- Некоторые другие авторы такое: $\mathbf{R} \times \mathbf{S}$

Декартово произведение

Декартово произведение двух отношений A и B - отношение C, схема которого включает все атрибуты отношений A и B, а тело отношения состоит из всех возможных сцеплений кортежей отношений A и B.

«арности (степени) складываются, мощности умножаются»

Пример:

Студенты

ФИО
Иванов И.И.
Петров П.П.
Сидорова С.С.

Экзамены

Дисциплина	Дата	Оценка	
Мат.анализ	10.01.07		
Ин. яз.	15.01.07		

Экзаменационная ведомость

ФИО	Дисциплина	Дата	Оценка
Иванов И.И.	Мат.анализ	10.01.07	
Иванов И.И.	Ин. яз.	15.01.07	
Петров П.П.	Мат.анализ	10.01.07	
Петров П.П.	Ин. яз.	15.01.07	
Сидорова С.С.	Мат.анализ	10.01.07	
Сидорова С.С.	Ин. яз.	15.01.07	

Декартово произведение (пример 2)

Отношение **R**

Отношение S

Last_name	First_name
Иванов	Петр
Петров	Иван

Discipline	Exam_date
Web-программирование	12.01.2018
Базы данных	15.01.2018
Язык С	21.01.2018

Отношение R × S

Last_name	First_name	Discipline	Exam_date
Иванов	Петр	Web-программирование	12.01.2018
Иванов	Петр	Базы данных	15.01.2018
Иванов	Петр	Язык С	21.01.2018
Петров	Иван	Web-программирование	12.01.2018
Петров	Иван	Базы данных	15.01.2018
Петров	Иван	Язык С	21.01.2018

Соединение (Join)

- Соединение равносильно выполнению операции выборки (selection) над результатом декартова произведения: R ▷ < S = R JOIN S = (R TIMES S) WHERE p
- Имеются следующие виды соединений:
 - θ-соединение (тета-соединение)
 - Эквисоединение (частный случай θ-соединения)
 - о Естественное соединение
 - о Внешнее соединение
 - о Полусоединение
- **0-соединение** определяет отношение, которое содержит кортежи из декартова произведения отношений R и S, удовлетворяющие предикату p. Предикат p имеет форму $R.a_i \theta S.b_i$, где θ может являться одним их операторов сравнения (<, \leq , >, \geq , =, \neq), а $R.a_i \bowtie S.b_i$ атрибуты отношений R и S соответственно.
- **Эквисоединение** это частный случай θ-соединения. Он имеет место, когда в качестве оператора сравнения используется только проверка на равенство (=).
- **Естественное соединение** это частный случай эквисоединения. Он имеет место, когда отношения R и S соединяются по всем общим атрибутам. Один экземпляр каждого из общих атрибутов исключается из результирующего отношения.

20

Пример тета-соединения

Мужчины (А)

man_fio	man_age
Иванов Иван Иванович	35
Сергеев Сергей Сергеевич	40
Петров Петр Петрович	27
Николаев Николай Николаевич	56

Женщины (В)

woman_fio	woman_age
Алексеева Алена Алексеевна	29
Светлова Светлана Сергеевна	25
Петрова Полина Петровна	36
Александрова Александра Александровна	38
Зинченко Зинаида Ивановна	54

Возможные пары (С)

man_fio	man_age	woman_fio	woman_age
Иванов Иван Иванович	35	Алексеева Алена Алексеевна	29
Иванов Иван Иванович	35	Светлова Светлана Сергеевна	25
Иванов Иван Иванович	35	Петрова Полина Петровна	36
Сергеев Сергей Сергеевич	40	Петрова Полина Петровна	36
Сергеев Сергей Сергеевич	40	Александрова Александра Александровна	38
Петров Петр Петрович	27	Светлова Светлана Сергеевна	25
Николаев Николай Николаевич	56	Зинченко Зинаида Ивановна	54

Соединение (Join)

Естественное соединение

Таблицы «Студенты» (Students) и «Успеваемость» (Progress) Общий атрибут – record_book

Students JOIN Progress эквивалентно следующему выражению:

(Students TIMES (Progress RENAME record_book AS p_record_book))
WHERE record_book = p_record_book

Степень результата естественного соединения равна сумме степеней отношений R и S минус число общих атрибутов этих отношений.

Номер зачетной книжки	Ф. И. О.	Серия паспорта	Номер паспорта	Предмет	Учебный год	Сем естр	Оце нка
55500	Иванов Иван Петрович	0402	645327	Физика	2017/2018	1	5
55500	Иванов Иван Петрович	0402	645327	Математ ика	2017/2018	1	4
55800	Климов Андрей Иванович	0402	673211	Физика	2017/2018	1	4
55800	Климов Андрей Иванович	0402	673211	Физика	2017/2018	2	5

Естественное соединение

Отделения банка (А)

Банковские счета (В)

Номер_отделения	Район	Округ
324	Арбат	ЦАО
315	Тверской	ЦАО
211	Аэропорт	CAO

Номер_отделения	Номер	ФИО	Сумма
	счета		
324	123	Петрова А.И.	105000
315	134	Федоров С.М.	30000
111	422	Васина Е.Д.	250000
432	12	Семенов П.Р.	500000

Ведомость вкладов (С)

Номер	Район	Округ	НО	Номер	ФИО	Сумма
отделения				счета		
324	Арбат	ЦАО	324	123	Петрова А.И.	105000
315	Тверско	ЦАО	315	134	Федоров	30000
	й				C.M.	

C = A JOIN B = (A TIMES (B RENAME Homep_отделения AS HO)) WHERE Homep_отделения = HO

Естественное соединение

Отделения банка (А)

Банковские счета (В)

Номер_	Район	Округ
отделения		
324	Арбат	ЦАО
315	Тверской	ЦАО
211	Аэропорт	CAO
243	Беговой	CAO

Номер_	Номер	ФИО	Сумма
отделения	счета		
324	123	Петрова А.И.	105000
211	134	Федоров С.М.	30000
324	422	Васина Е.Д.	250000

Ведомость вкладов (С)

Номер	Район	Округ	НО	Номер счета	ФИО	Сумма
отделения						
324	Арбат	ЦАО	324	123	Петрова А.И.	105000
211	Аэропорт	CAO	211	134	Федоров С.М.	30000
324	Арбат	ЦАО	324	422	Васина Е.Д.	250000

C = A JOIN B = (A TIMES (В RENAME Homep_отделения AS HO)) WHERE Homep_отделения = HO)

Внешнее соединение

Применяется при соединении двух отношений, столбцы которых имеют несовпадающие значения.

Внешнее соединение: левое, правое, полное:

▶ Левое внешнее соединение: R ¬¬S

в результирующем отношении содержатся все кортежи левого отношения, R, в том числе те, которые не имеют совпадающих значений в общих столбцах отношения S (отсутствующие значения помечаются определителем NULL).

- Правое внешнее соединение: в результирующем отношении содержатся все кортежи правого отношения.
- > Полное внешнее соединение: в результирующем отношении содержатся все кортежи из обоих отношений. Для обозначения несовпадающих значений кортежей используются определители NULL.

Левое внешнее соединение

Отделения банка (А)

Банковские счета (В)

Номер	Район	Округ
отделения		
324	Арбат	ЦАО
315	Тверской	ЦАО
211	Аэропорт	CAO

Номер	Номер	ФИО	Сумма
отделения	счета		
324	123	Петрова А.И.	105000
315	134	Федоров С.М.	30000
111	422	Васина Е.Д.	250000
432	12	Семенов П.Р.	500000

Ведомость вкладов (С)

Номер	Район	Округ	НО	Номер	ФИО	Сумма
отделения				счета		
324	Арбат	ЦАО	324	123	Петрова А.И.	105000
315	Тверской	ЦАО	315	134	Федоров С.М.	30000
211	Аэропорт	CAO	NULL	NULL	NULL	NULL

Правое внешнее соединение

Отделения банка (А)

Банковские счета (В)

Номер	Район	Округ
отделения		
324	Арбат	ЦАО
315	Тверской	ЦАО
211	Аэропорт	CAO

Номер	Номер	ФИО	Сумма
отделения	счета		
324	123	Петрова А.И.	105000
315	134	Федоров С.М.	30000
111	422	Васина Е.Д.	250000
432	12	Семенов П.Р.	500000

Ведомость вкладов (С)

Номер	Район	Округ	НО	Номер	ФИО	Сумма
отделения				счета		
324	Арбат	ЦАО	324	123	Петрова А.И.	105000
315	Тверской	ЦАО	315	134	Федоров С.М.	30000
NULL	NULL	NULL	111	422	Васина Е.Д.	250000
NULL	NULL	NULL	432	12	Семенов П.Р.	500000

Полное внешнее соединение Отделения банка (А)

Банковские счета (В)

Номер	Район	Округ
отделения		
324	Арбат	ЦАО
315	Тверской	ЦАО
211	Аэропорт	CAO

Номер	Номер	ФИО	Сумма
отделения	счета		
324	123	Петрова А.И.	105000
315	134	Федоров С.М.	30000
111	422	Васина Е.Д.	250000
432	12	Семенов П.Р.	500000

Ведомость вкладов (С)

Номер	Район	Округ	Номер	Номер	ФИО	Сумма
отделения			отделения	счета		
324	Арбат	ЦАО	324	123	Петрова А.И.	105000
315	Тверской	ЦАО	315	134	Федоров С.М.	30000
211	Аэропорт	CAO	NULL	NULL	NULL	NULL
NULL	NULL	NULL	111	422	Васина Е.Д.	250000
NULL	NULL	NULL	432	12	Семенов П.Р.	500000

Полусоединение

- Полусоединение определяет отношение, которое содержит кортежи из отношения R, которые участвуют в соединении R и S, удовлетворяющие предикату p.
- R SEMIJOIN S
- Полусоединение выполняет соединение двух отношений, а затем выполняет проекцию по атрибутам первого операнда.
- Таблицы «Студенты» (Students) и «Успеваемость» (Progress)
 Общий атрибут record_book
 (Students TIMES (Progress RENAME record_book AS p_record_book))
 WHERE (record_book = p_record_book AND discipline = 'Математика')
 {record_book, name, psp_ser, psp_name}

Номер	Ф. И. О.	Серия	Номер
зачетной		паспорта	паспорта
книжки			
55500	Иванов Иван Петрович	0402	645327

Деление

это отношение с заголовком $(X_1, X_2, ..., X_n)$ и телом, содержащим множество кортежей $(x_1, x_2, ..., x_n)$, таких, что для всех кортежей $(y_1, y_2, ..., y_m) \in B$ в отношении $A(X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_m)$ найдется кортеж $(x_1, x_2, ..., x_n, y_1, y_2, ..., y_m)$. Здесь B – отношение с атрибутами $(Y_1, Y_2, ..., Y_m)$. Ни один из атрибутов X_i (i = 1, 2, ..., n) не имеет одинакового имени с любым из атрибутов Y_i (j = 1, 2, ..., m).

C = A DIVIDEBY B

Пример: Ве∂омость (A)

		•
ФИО	Дисциплина	Оценка
Иванов И.И.	Мат.анализ	Отлично
Иванов И.И.	Ин. яз.	Отлично
Петров П.П.	Мат.анализ	Хорошо
Петров П.П.	Ин. яз.	Отлично
Сидорова С.С.	Мат.анализ	Отлично
Сидорова С.С.	Ин. яз.	Удовлетворит.
Андреев А.А.	Мат.анализ	Отлично

Условие повышения стипендии (В)

Дисциплина	Оценка
Мат.анализ	Отлично
Ин. яз.	Отлично

Список студентов для повышения стипендии (С)

ФИО	
Иванов И	1.И.

Свойства основных операций реляционной алгебры и ограничения их выполнения

Операция	Мощность	Степень	Ограничения	
C=A UNION B	$R(C) \le R(A) + R(B)$	S(C)=S(A)	S(A)=S(B)	
C = A INTERSECT B	Если (R(A) <r(b)), то R(C)<=R(A)</r(b)), 	S(C)=S(A)	Домены А и В должны совпадать	
C=A MINUS B	$R(C) \le R(A)$	S(C)=S(A)	должны совпадать	
C= A TIMES B	R(C) <= R(A) * R(B)	S(C)=S(A)+S(B)	Все атрибуты различны	
C=A WHERE(a1>=0)	$R(C) \le R(A)$	S(C)=S(A)	а1 – атрибут А	
C=A(a1)	R(C)=R(A)	S(C) <s(a)< td=""><td>Степень результата – количество проецируемых атрибутов</td></s(a)<>	Степень результата – количество проецируемых атрибутов	
C=A JOIN B	R(C) <= R(A) * R(B)	S(C)=S(A)+S(B)-1	А и В имеют одинаковые атрибуты	
C= A DIVIDEBY B	$R(C) \le R(A)/R(B)$	S(C)=S(A)-S(B)	S(B) <s(a) и<br="">R(B)<r(a)< td=""></r(a)<></s(a)>	

Прикладная ветвь формальной теории, носящей название «исчисления предикатов первого порядка». В основе лежат понятие переменной с определенной для неё областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы.

Наряду с реляционной алгеброй является способом получения результирующего отношения в реляционной модели данных. В зависимости от того, что является областью определения переменной, различают:

- > Исчисление кортежей
- Исчисление доменов

Это непроцедурный язык описательного или декларативного характера, содержащий лишь информацию о желаемом результате.

Процесс получения этого результата скрыт от пользователя. К языкам такого типа относятся SQL (Structured Query Language — структурированный язык запросов), QBE (Query By Example - язык запросов по образцу).

SQL основан на реляционном исчислении кортежей, QBE - на реляционном исчислении доменов.

Предикат в логике первого порядка — истинностная функция с параметрами.

Суждение — выражение, которое принимает функция после подстановки значений вместо параметров.

Суждение: истинное и ложное.

Пусть: Р - предикат;

х - переменная.

<u>Тогда</u>: $\{x \mid P(x)\}$ - множество всех значений x, при которых суждение P – истина.

Предикаты могут соединяться с помощью логических операторов: \land (AND), \lor (OR) и $\bar{}$ (NOT) с образованием составных предикатов.

Для указания количества экземпляров, к которым может быть применен предикат, используются два типа кванторов.

- 1. Квантор существования ∃ используется в формуле, которая должна быть истинна хотя бы для одного экземпляра;
- 2. Квантор всеобщности ∀ -используется в формуле, которая должна быть истинна для всех экземпляров.

Примеры:

 $(\exists x) P(x)$ - существует хотя бы один x, для которого предикат P(x) истинен.

 $(\forall x) P(x)$ - предикат P(x) истинен для всех x.

Реляционное исчисление кортежей

Исчисление кортежей — направление реляционного исчисления, где областями определения переменных являются тела отношений базы данных, то есть допустимым значением каждой переменной является кортеж некоторого отношения.

Задача реляционного исчисления кортежей: нахождение кортежей, для которых предикат является истинным.

Исчисление основано на переменных кортежа.

Переменные кортежа - переменные, областью определения которых является указанное отношение.

Свободные переменные кортежа - переменные, которые не квалифицируются кванторами. Иначе они называются связанными.

В реляционном исчислении формулы - только недвусмысленные и небессмысленные последовательности.

Правила построения формулы в исчислении предикатов:

- 1. Если **Р** n-арная формула (предикат с n аргументами),
 - t1, t2,..., tn константы или переменные,
 - <u>то</u> P(t1, t2,..., tn) правильно построенная формула.
- 2. Если t и t2 константы или переменные из одного домена,
 - Θ один из операторов сравнения (<, <=, >, >=, -=),
 - то t1⊙ t2 правильно построенная формула.
- 3. Если F1, F2 формулы,
 - то F1 ^F2 конъюнкция формул,
 - F1 $^{\vee}$ F2 дизьюнкция,
 - F отрицание.
- Если F1 формула со свободной переменной X,
 - $\underline{\text{то}}$ \exists **F**(**X**) и \forall **F**(**X**) также формулы.

Пример.

Для указания отношения Студенты в качестве области определения некоторой переменной R применяется форма записи:

RANGE OF R IS Студенты

В каждый момент времени переменная R является некоторым кортежем отношения Студенты.

Запрос «найти все множество кортежей R, для которых P(R) является истинным, записывается следующим образом:

 $\{R \mid P(R)\}$

Задача. Записать утверждение «Выбрать все атрибуты для всех студентов, у которых рейтинг больше или равен 80 баллов.

Решение: RANGE OF R IS Студенты

{R | R.Рейтинг >= 80}

При использовании переменных в формулах можно ссылаться на значение атрибута переменной.

Например, можно сослаться на атрибут «Номер_зачетной_книжки» переменной R: R.Номер_зачетной_книжки.

Задача. Записать утверждение «Выбрать атрибуты Номер_зачетной_книжки, ФИО для всех студентов, у которых рейтинг больше или равен 80 баллов.

Решение: RANGE OF R IS Студенты

{R.ФИО, R.Номер_зачетной_книжки | R.Рейтинг >= 80}

Более сложные запросы строятся с использованием операций конъюнкции, дизъюнкции, отрицания и кванторов существование и всеобщности.

Записать утверждение «Выбрать атрибуты Номер_зачетной_книжки, ФИО для всех студентов, для которых в отношении «Студенты» существует хотя бы один кортеж, у которого значение атрибута Номер_зачетной_книжки совпадает со значением данного атрибута в отношении «Информация», и кроме того, для такого кортежа рейтинг больше или равен 80 баллов или значение атрибута Город из отношения «Информация» равно 'Воронеж'.

Решение: RANGE OF R IS Студенты

RANGE OF I IS Информация

 $\{R.ФИО, R.Номер_зачетной_книжки | ∃I (R.Номер_зачетной_книжки = I.Номер_зачетной_книжки) ∧ (R.Рейтинг >= 80 ∨ I.Город = 'Воронеж')}$

Реляционное исчисление доменов

Основным формальным отличием *исчисления доменов* от *исчисления кортежей* является наличие дополнительного множества *предикатов*, позволяющих выражать так называемые *условия принадлежности*.

Если R - это n -арное отношение с атрибутами a_1, a_2, \ldots, a_n , то условие принадлежности имеет вид

 $R(a_{i1}:v_{i1},a_{i2}:v_{i2},...,a_{im}:v_{im})$ (m <= n), где v_{ij} - это либо литерально задаваемая константа, либо имя доменной переменной.

Условие принадлежности принимает значение true в том и только в том случае, если в отношении R существует кортеж, содержащий указанные значения указанных атрибутов.

Если v_{ij} - константа, то на атрибут a_{ij} накладывается жесткое условие, не зависящее от текущих значений доменных переменных;

если же v_{ij} - имя доменной переменной, то *условие принадлежности* может принимать разные значения при разных значениях этой переменной.

Реляционное исчисление доменов

1. Создать список всех программистом, зарплата которых не превышает 30000 рублей.

```
\{R1, R2 \mid \exists \ 3арпл \ (Сотрудники (Таб_номер: R1, ФИО: R2, Должность: 'программист', Зарплата: Зарпл) <math>\land Зарпл <= 30000) \}
```

В случае исчисления кортежей:

RANGE OF R IS Compy∂ник

```
\{R. Ta6\_номер, R. ФИО \mid R. Должность = 'программист' <math>\land R. 3арплата <= 30000\}
```

2. Создать список всех сотрудников, которые отвечают за работу отделения в Воронеже

```
{R1 | ∃Тномер, ∃Сотр, ∃Должн, ∃Зарпл (Сотрудник (Таб_номер: Тномер, ФИО: Сотр, Должность: Должн, Зарплата: Зарпл) ∧ Отделение (Номер: Тномер, Город: 'Воронеж') }
```

В случае исчисления предикатов:

RANGE OF R IS Compyдник

RANGE OF D IS Отделение

 $\{R \mid \exists D (D.Homep = R.Ta6_homep) ∧ D.Гopo∂ = 'Bopoheж'\}$

Упражнение 1 (реляционная алгебра).

Даны отношения. Выполнить (по вариантам: N = (Номер по журналу % 5) + 1; % - остаток от деления):

1. Объединение.

Вариант 1

В		
С		
D		
Е		
F		
G		
Н		
R2		
В		
Α		
С		
Н		
K		

Вариант 2

R1		
Α	В	
A 3	С	
4	D	
10	L	
11	Z	
5	E	
6	F	
7	G	
8	Н	
R2		
A	В	
1	Α	
3	С	
5	Е	
9	K	

Вариант 3

R1		
A	В	
3	С	
4	D	
10	L	
11	Z	
R2		
A	В	
1	Α	
3	С	
9	K	
5	Е	
6	F	
7	G	

Вариант 4

R	R1	
A	В	
3	С	
4	D	
10	L	
7	G	
8	Н	
R	2	
A	В	
1	Α	
3	С	
9	K	
5	Е	

R1		
Α	В	
1	Α	
2	В	
3	С	
4	D	
5	Е	
6	F	
7	G	
8	Н	
9	K	
R2		
Α	В	
A 3	С	
4	D	
10	L	
7	G	

2. Пересечение.

Вариант 1

R1		
Α	В	
3	С	
4	D	
10	L	
11	Z	
5	Е	
6	F	
7	G	
8	Н	
R	2	
Α	В	
1	Α	
3	С	
9	K	
5	Е	
6	F	
7	G	
8	Н	

Вариант 2

R1		
Α	В	
3	С	
4	D	
10	L	
11	Z	
R2		
Α	В	
1	Α	
3	С	
9	K	
5	Е	
6	F	
7	G	
8	Н	

Вариант 3

R1		
A	В	
3	С	
4	D	
10	L	
11	Z	
5	Е	
6	F	
7	G	
8	Н	
R2		
A	В	
1	Α	
3	С	
9	K	
5	Е	

Вариант 4

R1	
A	В
3	С
4	D
5	Е
6	F
7	G
8	Н
R	2
A	В
1	Α
3	С
8	Н
9	K

I	<u></u> -		
R	1		
A	В		
1	Α		
2	В		
3	С		
4	D		
5	Е		
6	F		
7	G		
R	R2		
A	В		
1	Α		
3	С		
8	Н		
9	K		

3. Разность.

Вариант 1

R1		
A	В	
1	Α	
2	В	
3	С	
4	D	
5	Е	
6	F	
7	G	
8	Н	
9	K	
R2		
Α	В	
A 3	С	
4	D	
10	L	
7	G	
8	Н	

Вариант 2

R1		
Α	В	
A	Α	
2	В	
3	С	
4	D	
5	Е	
6	F	
7	G	
R2		
A	В	
A	Α	
3	С	
8	Н	
9	K	

Вариант 3

R1		
A	В	
3	С	
4	D	
5	Е	
6	F	
7	G	
8	Н	
R2		
A	В	
1	Α	
3	С	
8	Н	

Вариант 4

R1			
Α	В		
3	С		
4	D		
10	L		
11	Z		
5	Е		
6	F		
7	G		
8	Н		
R	R2		
Α	В		
A	Α		
3	С		
9	K		
5	Е		
6	F		
7 8	G H		

R1		
Α	В	
A 3	С	
4	D	
10	L	
11	Z	
5	Е	
6	F	
7	G	
8	Н	
R2		
Α	В	
A	Α	
3	C	
9	K	
5	Е	

4. Декартово произведение.

Вариант 1

- Dapriairi		
R1		
Α	В	
3	С	
4	D	
8	Н	
R2		
Α	В	
1	Α	
9	K	
5	Е	

Вариант 2

R1		
Α	В	
1	Α	
5	Е	
6	F	
7	G	
R2		
A	В	
3	С	
8	Н	
9	K	

Вариант 3

R1		
A	В	
1	Α	
2	В	
6	F	
7	G	
R2		
R	2	
A	2 B	
_		
A	В	
A	B A	

Вариант 4

sapriairi i			
R	R1		
A	В		
11	Z		
5	Е		
6	F		
7	G		
8	Н		
R	R2		
A	В		
1	Α		
3	C		
9	K		

R1		
В		
Α		
В		
K		
R2		
В		
С		
D		
L		
G		
Н		

5. Выборку.

R1		
Номер	Название	Количество
1	а	10
2	b	15
3	С	20
4	d	25
5	е	30
6	g	40
7	С	50
8	е	55
9	b	70
10	е	35
11	g	55
12	k	50

Вариант 1.

Название а или g; Количество <=12 или >=70 **Вариант 2.**

Название а или g ; Количество >=12 и <=70 **Вариант 3.**

Название е или с; Количество <=12 или >=50 **Вариант 4.**

Название а или с; Количество <=12 или >=70 **Вариант 5.**

Название а или е; Количество <=5 или >=40

Исходное отношение:

Отношение R			
R.a1	R.a2	R.a3	R.a4
A	1	ab	abc
A	2	bc	bcd
В	1	dc	bca
В	3	bc	dca
В	4	ab	abc
В	1	bc	bcd
C	1	bc	dca

Вариант 1.

 $\Pi_{a1, a2}$ (R).

Вариант 2.

 $\Pi_{a1, a4}$ (R).

Вариант 3.

 Π_{a4} (R).

Вариант 4.

 Π_{a3} (R).

Вариант 5.

 $\Pi_{a1, a3}$ (R).

7. Соединение

Отношение R		
R.a1	R.a2	
X	1	
X	2	
Y	1	
Y	3	
Y	4	

Отношение \$	
S.b1	S.b2
1	р
2	g
3	р
5	h

Вариант 1.

Соединение по эквивалентности.

Левое внешнее соединение.

Вариант 2.

Естественное соединение.

Правое внешнее соединение.

Вариант 3.

Левое внешнее соединение.

Соединение по эквивалентности.

Вариант 4.

Правое внешнее соединение.

Естественное соединение.

Вариант 5.

Соединение по эквивалентности.

Полное внешнее соединение.

Соединение по эквивалентности эквисоединение

8. Деление

Выполнить деление отношений R÷S

Вариант 1.

Отношение R

A	В
a	1
a	2
b	1
b	2
c	1
d	1
d	2
d	3

Отношение S

В
1
2
3

Вариант 2.

Отношение R

Α	В
p	5
p	6
q	5
q	6
h	5
j	5
j	6
j	7

Отношение S

	В
ľ	5
	6
	7

В	
5	
6	
7	

Вариант 3.

Отношение R

В	A
a	5
a	6
b	5
b	6
c	5
d	5
d	6

Отношение S

A
5
6

Вариант 4.

Отношение R

В	A
p	1
p	2
q	1
q	2
h	1
j	1
j	2
j	3

Отношение S

Α
1
2
3

Вариант 5.

Отношение R

A	В
p	5
p	6
q	5
q	6
h	5
Отношение S	

В
5
6

Упражнение 2 (реляционное исчисление), задача 1

Изучить главу 8 учебника К.Дж.Дейта «Введение в системы баз данных» (см. на кампусе https://campus.fa.ru/course/view.php?id=10183 в разделе «Литература», в задачах с 15 по 26 использованы отношения из учебника.

С помощью реляционного исчисления кортежей и реляционного исчисления доменов записать утверждение (вариант выбирается по формуле: Номер_по_журналу % 26 + 1, % - операция взятия остатка от деления):

- Выбрать всех студентов из отношения «Студенты», возраст которых не больше 17 или рейтинг не равен 90.
- 2. Выбрать атрибуты Номер_зачетной_книжки, ФИО, Номер_читательского_билета для всех студентов, для которых в отношении «Студенты» существует хотя бы один кортеж, у которого значение атрибута Номер_зачетной_книжки совпадает со значением данного атрибута в отношении «Абонемент», и кроме того, для такого кортежа значение атрибута Количество_книг из отношения «Абонемент» больше 5 и значение атрибута «Задолженность» равно 1.
- 3. Выбрать имена студентов, которые записаны на курс с кодом 'CS101' (отношения «Студенты», «Курсы»).
- 4. Выбрать всех менеджеров из отношения «Сотрудники», у которых значения атрибута Табельный_номер совпадает с хотя бы одним значением этого атрибута в отношении «Льготники» и значение атрибута Номер_льготы равно 3.
- 5. Найти имена менеджеров, которые работают в отделе с кодом 'D005' (отношения «Менеджеры», «Отделы»).
- 6. Выбрать номера заказов для всех заказов, сделанных клиентами из города 'Москва' (отношения «Клиенты», «Заказы»).
- 7. Найти названия книг, написанных автором 'Толстой' (отношения «Книги», «Авторы»).
- 8. Найти магазины, которые продают товар с кодом 'T123' (отношения «Магазины», «Товары»).
- 9. Найти отделы, в которых работают больше 10 сотрудников (отношения «Отделы», «Сотрудники»).
- 10. Найти студентов, которые сдали экзамен по курсу 'Math101' (отношения «Студенты», «Экзамены»).
- 11. Найти всех врачей, которые лечат пациентов с диагнозом 'Диабет' (отношения «Врачи», «Пациенты»).
- 12. Выбрать всех студентов, записанных на более чем три курса (отношения «Студенты», «Курсы»).
- 13. Найти все продукты, принадлежащие к категории 'Электроника' (отношения «Продукты», «Категории»).
- Найти все товары на складе, количество которых превышает 100 (отношения «Товары», «Склады»).
- 15. Определить номера поставщиков из Парижа со статусом больше 20.
- 16. Найти все такие пары номеров поставщиков, в которых два поставщика находятся в одном городе.
- 17. Определить имена поставщиков по крайней мере одной детали красного цвета.
- 18. Определить имена поставщиков, которые поставляют хотя бы один тип деталей, поставляемых поставщиком с номером S2.
- 19. Определить имена поставщиков, которые поставляют детали всех типов.
- 20. Определить имена поставщиков, которые не поставляют деталь с номером РЗ.
- 21. Определить номера поставщиков, которые поставляют, по меньшей мере, детали всех типов, поставляемых поставщиком с номером S3
- 22. Получить номера деталей, которые либо весят более 25 кг, либо поставляются поставщиком с номером S2, либо соответствуют и тому, и другому условию
- 23. Определить номера поставщиков, имеющих статус меньше того, который в данное время является максимальным в таблице S
- 24. Определить максимальное и минимальное количество деталей с номером Р3
- 25. Получить имена поставщиков всех типов деталей
- 26. Определить номера поставщиков, по крайней мере, тех деталей, которые поставляет поставщик с номером S2.

Упражнение 2 (реляционное исчисление), задача 2

С помощью реляционного исчисления кортежей и реляционного исчисления доменов записать утверждение (вариант выбирается по формуле: Номер_по_журналу % 27 + 1, % - операция взятия остатка от деления):

- 1. Создать список всех сотрудников (отношение «Сотрудник»), которые больше не пойдут в отпуск в текущем году (информация об отпусках хранится в отношении «Отпуск»).
- 2. Найти сотрудников, которые работают над проектами с бюджетом выше среднего бюджета всех проектов (отношения «Проекты», «Сотрудники»).
- 3. Найти всех поставщиков, которые поставляют хотя бы один товар, общий для двух и более складов (отношения «Поставщики», «Товары» и др).
- 4. Найти студентов, которые сдали все курсы с оценкой выше среднего балла по каждому курсу (отношения «Студенты», «Курсы», «Оценки»).
- 5. Найти всех пациентов, которые были выписаны из более чем одной больницы в течение последнего года («Пациенты», «Больницы», «Выписки»)
- 6. Найти все автомобили, которые ремонтировались более одного раза в течение последних шести месяцев (отношения «Машины», «Ремонты»)
- 7. Найти все фирмы, которые заключили контракты на общую сумму выше 1000000 в этом году (отношения «Фирмы», «Контракты»).
- 8. Найти товары, на которые была предоставлена самая высокая скидка за последний месяц (отношения «Товары», «Скидки»).
- 9. Найти здания, которые имеют арендные договоры с компаниями, занимающимися более чем одной деятельностью (отношения «Здания», «Аренда», «Компании»).
- 10. Найти клиентов, которые сделали заказы на сумму выше 10,000, но не более 5 раз в течение последнего года (отношения «Клиенты», «Заказы»)
- 11. Найти преподавателей, которые преподают курсы, на которые записано менее 10 студентов, но на которых средняя оценка выше 80 (отношения «Преподаватели», «Курсы»).
- 12. Найти фирмы, в которых работают сотрудники, имеющие как минимум два сертификата, один из которых был получен в течение последних двух лет (отношения «Фирмы», «Сотрудники», «Сертификаты»)
- 13. Найти заказы, которые были выполнены несколькими поставщиками, при этом хотя бы один из них поставил товары на сумму больше 5000 (отношения «Заказы», «Поставки»).
- 14. Найти магазины, в которых хотя бы один клиент совершил покупку на сумму больше средней суммы всех покупок в этом магазине (отношения «Магазины», «Покупки»).
- 15. Найти авторов, которые написали книги, опубликованные в разных издательствах, и хотя бы одно издательство публиковало книгу в последние два года (отношения «Авторы», «Книги»).
- 16. Найти врачей, которые лечат пациентов с редкими диагнозами (диагноз встречается у менее чем 5 пациентов) (отношения «Врачи», «Пациенты»).
- 17. Найти учебные группы, которые имеют более двух преподавателей, преподающих курсы, по которым все студенты сдали экзамены (отношения «Группы», «Преподаватели», «Студенты», «Экзамены»).
- 18. Найти товары, которые поставлялись поставщиками с разными регионами, и хотя бы один из них поставил товар с задержкой (отношения «Товары», «Поставки»).
- 19. Найти товары, которые поставлялись поставщиками из разных регионов, и хотя бы один из этих поставщиков доставил товар с задержкой (отношения «Товары», «Поставки»).
- 20. Найти сотрудников, которые получили премии в размере выше среднего по компании за текущий год (отношения «Сотрудники», «Премии»).
- 21. Найти студентов, которые сдали все курсы, по которым были записаны в текущем семестре, с оценкой выше средней (отношения «Студенты», «ЗаписьНаКурс», «Экзамены»).
- 22. Найти книги, которые продавались в течение последнего месяца и чья цена выше средней по всем проданным книгам (отношения «Книги», «Продажи»).
- 23. Найти проекты, над которыми работают сотрудники с зарплатой выше средней по компании (отношения «Проекты», «Сотрудники»).
- 24. Найти врачей, которые лечат пациентов с диагнозами, встречающимися менее чем у 10% всех пациентов (отношения «Врачи», «Пациенты», «Диагнозы»).
- 25. Найти компании, которые заключили контракты на общую сумму выше среднего за последние три года (отношения «Компании», «Контракты»).
- 26. Найти преподавателей, которые преподают курсы, по которым хотя бы 80% студентов сдали экзамен на «отлично» (отношения «Преподаватели», «Курсы», «Экзамены»).
- 27. Найти сотрудников, которые получили премии в размере ниже среднего по компании за текущий год (отношения «Сотрудники», «Премии»).