Software Engineering For Data Science (SEDS)

Class: 2nd Year 2nd Cycle

Branch: AIDS

Dr. Belkacem KHALDI ESI-SBA

Lecture 07:

Data Processing & Cleaning for Data Science: Exploratory Data Analysis and Visualization—Going Deeper

Data Processing & Cleaning for Data Science

Part III: Exploratory Data Analysis and Visualization –Going deeper

- 1. Performing EDA with Seaborn and pandas
- 2. Using EDA Python packages
- 3. Using visualization best practices
- 4. Making Spatial plots with Plotly

Exploratory Data Analysis

- **EDA**: A crucial step in any data science project
 - A tool to better understand your data to properly use it.
 - **EDA** is iterative and happens continually throughout a project.
 - We also need to incorporate more advanced
 EDA to deepen our understanding.
- □ **Visualization** goes hand in hand with **EDA**.

Performing EDA with Seaborn and Pandas

Dimensional Analysis (DA)

- □ DA → Technique of analyzing the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, ...) and common units of measure.
- ☐ Example of the Itune dataset:
 - o 'Milliseconds' → 'Minutes'
 - o 'Bytes' → 'MB'

				Bytes	UnitPrice	Genre	Album	Artist
o For	Those About To Rock (We Salute You)	Angus Young, Malcolm Young, Brian Johnson		11170334	0.99	Rock	For Those About To Rock We Salute You	AC/DC
1 F	out The Finger On You	Angus Young, Malcolm Young, Brian Johnson		6713451	0.99	Rock	For Those About To Rock We Salute You	AC/DC
2	Let's Get It Up	Angus Young, Malcolm Young, Brian Johnson	233926	7636561	0.99	Rock	For Those About To Rock We Salute You	AC/DC
3	Inject The Venom	Angus Young, Malcolm Young, Brian Johnson		6852860	0.99	Rock	For Those About To Rock We Salute You	AC/DC
4	Snowballed	Angus Young, Malcolm Young, Brian Johnson		6599424	0.99	Rock	For Those About To Rock We Salute You	AC/DC

```
df['Minutes'] = df['Milliseconds'] / (1000 * 60)
df['MB'] = df['Bytes'] / 1000000
df.drop(['Milliseconds', 'Bytes'], axis=1, inplace=True)
```

	Track	Composer	UnitPrice	Genre	Album	Artist	Minutes	ME
0	For Those About To Rock (We Salute You)	Angus Young, Malcolm Young, Brian Johnson	0.99	Rock	For Those About To Rock We Salute You	AC/DC	5.728650	11.170334
1	Put The Finger On You	Angus Young, Malcolm Young, Brian Johnson	0.99	Rock	For Those About To Rock We Salute You	AC/DC	3.427700	6.71345
2	Let's Get It Up	Angus Young, Malcolm Young, Brian Johnson	0.99	Rock	For Those About To Rock We Salute You	AC/DC	3.898767	7.63656
3	Inject The Venom	Angus Young, Malcolm Young, Brian Johnson	0.99	Rock	For Those About To Rock We Salute You	AC/DC	3.513900	6.85286
4	Snowballed	Angus Young, Malcolm Young, Brian Johnson	0.99	Rock	For Those About To Rock We Salute You	AC/DC	3.385033	6.59942

Performing EDA with Seaborn and Pandas

Making Boxplots and Letter-Value plots

□ Boxplots:

- Invented in 1970 by John Tukey.
- Helps to quickly see information about the distribution of a dataset and enables comparing subsets of data.
- Data are plotted according to the IQR formula:

```
Outliers

Outliers

Minimum
Q1 – 1.5 * IQR

Q2

Q3

Q3 + 1.5 * IQR

Q5th Percentile)

Outliers

Outliers
```

```
import seaborn as sns

fig, axes = plt.subplots(nrows=1, ncols=2)
sns.boxplot(y=df['Minutes'],ax=axes[0])
sns.boxplot(y=df['Minutes'],ax=axes[1])
plt.yscale('log')

axes[0].set_title("Default Scale")
axes[1].set_title("Logarithmic Scale")
```


df['Mi	<pre>nutes'].describe()</pre>
count	3503.000000

count	3503.000000
mean	6.559987
std	8.916757
min	0.017850
25%	3.454683
50%	4.260567
75%	5.360750
max	88.115883

Name: Minutes, dtype: float64

Performing EDA with Seaborn and Pandas

Making Boxplots and Letter-Value plots

☐ Letter-Value Plots:

- Invented around 2011 by Hadley
 Wickham.
- Helps improving the boxplot's shortcomings.
- Instead of showing outliers outside the IQR → Plotting outliers with a letter-value plot results in 5 to 8 outliers on the upper and lower extremes.
- Shows the distribution better by grouping data into more quantiles.

```
import seaborn as sns

fig, axes = plt.subplots(nrows=1, ncols=2)
sns.boxenplot(y=df['Minutes'],ax=axes[0])
sns.boxenplot(y=df['Minutes'],ax=axes[1])
plt.yscale('log')

axes[0].set_title("Default Scale")
axes[1].set_title("Logarithmic Scale")
```


Performing EDA with Seaborn and Pandas

Making histograms and violin plots

import seaborn as sns
sns.histplot(x=df['Minutes'], kde=True)

☐ Histograms Plots:

- Another way to see the distribution of data is using **histograms** and **Kernel Density Estimation** (KDE).
- KDE fits a line to the distribution of data and produces a smoothed histogram.
- The resulting plot shows bars that represent the density of the data bigger bars mean more points. The line is the KDE fit to the data.

Performing EDA with Seaborn and Pandas

Making histograms and violin plots

☐ Violin Plots:

- A violin plot is similar, but shows the KDE and a boxplot.
- The KDE is the main feature of the plot, and it is mirrored on the x axis.
- A small **boxplot** in the middle of the **mirrored** KDE distribution is also shown.

```
import seaborn as sns
sns.violinplot(data=df, x='Minutes')
```


Performing EDA with Seaborn and Pandas

Making histograms and violin plots

import seaborn as sns
sns.violinplot(data=top_5_data, x='Minutes', y='Genre')

□ Violin Plots:

- Possibility to plot by a few groups of data at once with a violin plot.
- o Example:
 - Plotting the top 5 genres by Minutes of songs length.

```
Rock - Jazz - Metal - Alternative & Punk - Latin - 5 10 15 20 25 Minutes
```

```
top_5_genres = df['Genre'].value_counts().index[:5]
top_5_data = data=df[df['Genre'].isin(top_5_genres)]
```

Performing EDA with Seaborn and Pandas

Making Scatter Plots

- □ Scatter plots → Essential EDA plot for continuous, numeric data.
 - Continuous data: data that can take any value between two bounds, such as length, or temperature.
 - Example: Let's take a look at song length versus size in MB.

```
import seaborn as sns
sns.scatterplot(data=df, x='Minutes', y='MB')
```


Performing EDA with Seaborn and Pandas

Making Scatter Plots

- □ Scatter plots → Essential EDA plot for continuous, numeric data.
 - Possibility to group by a column using the **hue** argument.
 - o Example:
 - Grouping by 'Genre' of the top five genres by song munites,

```
import seaborn as sns
sns.scatterplot(data=top_5_data, x='Minutes', y='MB', hue='Genre')
```


Performing EDA with Seaborn and Pandas

Making Correlograms & Examining Correlations

- □ A Correlogram → allows to analyze the relationship between each pair of numeric variables of a dataset.
- ☐ Can be gotten using one line of code using the seaborn **pairplot** built-function

sns.pairplot(data=df)

Performing EDA with Seaborn and Pandas

Making Correlograms & Examining Correlations

- ☐ We often want to see how strongly correlated different numeric columns are.
- □ Correlation Matrix can be gotten using **DataFrame.corr() pandas built-in function**. We can simply plot it as follows:

sns.heatmap(df.corr(), annot=True)

Performing EDA with Seaborn and Pandas

Making Correlograms & Examining Correlations

- ☐ Other types of correlations are available such as **Spearman** Correlation.
- □ Better suited for non-linear relationships.
- ☐ Spearman Correlation Matrix can be simply plotted with seaborn's heatmap as follows:

sns.heatmap(df.corr(method='spearman'), annot=True)

Performing EDA with Seaborn and Pandas

Making Missing Value Plots

- ☐ Missing values can be examined with pandas built-in functions:
 - DataFrame.isna().sum()
 - DataFrame.info()
- But, it can be easier to look at a visualization with the help of the missingno package.
- It shows a matrix of nonmissing values in gray and missing values in white.

Min, Max # of nomissing Values per Rows

Using EDA Python packages

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Using EDA Python packages

Making Missing Value Plots

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

17

Using EDA Python packages

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Using EDA Python packages

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Using EDA Python packages

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Using EDA Python packages

Making Missing Value Plots

- Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the **pandas**profiling EDA package.
 - A convenient package that EDA creates an **summary** with only a few lines of code from a pandas **DataFrame**

21

Using EDA Python packages

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Using EDA Python packages

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Using EDA Python packages

- □ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the **pandasprofiling EDA** package.
 - A convenient package that EDA creates an **summary** with only a few lines of code from a pandas **DataFrame**

Using EDA Python packages

Making Missing Value Plots

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Correlations

Using EDA Python packages

Making Missing Value Plots

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Missing values

Using EDA Python packages

Making Missing Value Plots

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Missing values

Using EDA Python packages

- ☐ Sometimes it's helpful to run an auto-EDA package on the dataset.
- We will cover the pandasprofiling EDA package.
 - A convenient package that creates an EDA summary with only a few lines of code from a pandas DataFrame

Using visualization best practices

Useful tips on creating visualization

- □ **Bar plots** for categorical plots
- ☐ **Histograms** for the distribution of continuous values
- ☐ **Line charts** for time series
- □ **Scatter plots** for relationships between two continuous variables
- ☐ **Heatmaps** for relationships between two continuous variables and correlations

Visualization with Plotly

Making Histograms Plots

- ☐ **Plotly** is another visualization libraries in Python. An advantage of Plotly
- **□** Advantage:
 - Visualization with extra toolbar
 - Visualizations can be automatically published and saved to Plotly's cloud.

```
import plotly.express as px
px.histogram(df, x='Minutes')
```


Visualization with Plotly

Choropleth Maps Visualization

- ☐ Advanced Geographic Maps plots can be plottd with **Choropleth**
 - o A representation of spatial variations of a quantity,
- ☐ More interactive dashbords can be developed (See: https://plotly.com/

	BillingCountry	InvoiceId	CustomerId	Total
0	Argentina	1729	392	37.62
1	Australia	1043	385	37.62
2	Austria	1568	49	42.62
3	Belgium	1428	56	37.62
4	Brazil	7399	329	190.10
5	Canada	11963	1309	303.96
6	Chile	1176	399	46.62
7	Czech Republic	3143	77	90.24
8	Denmark	1288	63	37.62
9	Finland	1757	308	41.62
10	France	7168	1435	195.10
11	Germany	4697	791	156.48
12	Hungary	1617	315	45.62
13	India	2758	760	75.26
14	Iroland	1/177	າາາ	45.60

31

Thanks for your Listening

