Problem Set on Differential Equations: Solutions

Pascal Michaillat

Solution to Problem 1.

We multiply both sides of the differential equation by the integrating factor $\mu(t) = e^{-r \cdot t}$. We obtain

$$\dot{a}(t) \cdot e^{-r \cdot t} - r \cdot a(t) \cdot e^{-r \cdot t} = s \cdot e^{-r \cdot t}$$
$$\frac{d \left[a(t) \cdot e^{-r \cdot t} \right]}{dt} = s \cdot e^{-r \cdot t}$$

Integrating from time 0 to t,

$$\int_0^t d\left[a(t) \cdot e^{-r \cdot t}\right] = \int_0^t s \cdot e^{-r \cdot t} dt$$
$$a(t) \cdot e^{-r \cdot t} - a(0) = -\frac{s}{r} \cdot e^{-r \cdot t} + \frac{s}{r}.$$

Therefore, as $a(0) = a_0$, the solution to the initial value problem must satisfy

$$a(t) = a_0 \cdot e^{r \cdot t} + \frac{s}{r} \left(e^{r \cdot t} - 1 \right).$$

Solution to Problem 2.

The integrating factor is now

$$\mu(t) = \exp\left(-\int_0^t r(w)dw\right).$$

Notice that the derivative of the integrating factor satisfies

$$\dot{\mu}(t) = -r(t) \cdot \mu(t)$$

(which is why we picked this specific integrating factor). We multiply both sides of the differential equation by the integrating factor. The differential equation becomes

$$\dot{a}(t) \cdot \mu(t) - a(t) \cdot r(t) \cdot \mu(t) = s(t) \cdot \mu(t)$$

$$\dot{a}(t) \cdot \mu(t) - a(t) \cdot \dot{\mu}(t) = s(t) \cdot \mu(t)$$

$$\frac{d \left[a(t) \cdot \mu(t) \right]}{dt} = s(t) \cdot \mu(t).$$

Integrating from time 0 to t,

$$a(t) \cdot \mu(t) - a(0) \cdot \mu(0) = \int_0^t s(z) \cdot \mu(z) dz$$

$$a(t) = \frac{a_0}{\mu(t)} + \int_0^t s(z) \cdot \frac{\mu(z)}{\mu(t)} dz$$

$$a(t) = a_0 \cdot \exp\left(\int_0^t r(z) dz\right) + \int_0^t s(z) \cdot \exp\left(\int_z^t r(w) dw\right) dz.$$

This equation reduces to the solution of Problem 6 when both r and s are constant.

Solution to Problem 3.

A. We are facing a linear, two-variable, homogenous system of first-order differential equations. To find the general solution of the system, we need the eigenvalues and eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 1 & 1 \\ 4 & 1 \end{array} \right].$$

First, we determine the eigenvalues. The eigenvalues λ are the roots of the polynomial $\det(\mathbf{A} - \lambda \cdot \mathbf{I})$. So the eigenvalues λ solve

$$\det \begin{bmatrix} 1-\lambda & 1 \\ 4 & 1-\lambda \end{bmatrix} = 0$$

Hence, the eigenvalues λ are solutions to

$$(1-\lambda)^2-4=0$$

So there are two distinct eigenvalues: $\lambda_1 = 3$ and $\lambda_2 = -1$.

Second, we determine the eigenvectors. The eigenvector $[\alpha,\beta]$ associated with the eigenvalue λ solves

$$\begin{bmatrix} 1-\lambda & 1 \\ 4 & 1-\lambda \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

To determine the eigenvector associated with λ_1 = 3, we solve

$$\begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

which reduces to the single equation

$$-2 \cdot \alpha + \beta = 0$$

3

thus $\beta = 2 \cdot \alpha$, and the eigenvector corresponding to $\lambda_1 = 3$ is

$$z_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
.

Similarly, the eigenvector corresponding to λ_2 = -1 is

$$z_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
.

Using the eigenvalues and eigenvectors that we have determined, we conclude that the general solution of the system is

$$\mathbf{x}(t) = c_1 \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot e^{3 \cdot t} + c_2 \cdot \begin{bmatrix} 1 \\ -2 \end{bmatrix} \cdot e^{-t},$$

where c_1 and c_2 are arbitrary constants.

- B. To determine a specific solution, we would need two boundary conditions that would allow us to determine the two constants c_1 and c_2 .
- C. Since the linear, two-variable, homogenous system has two eigenvalues of opposite sign, the trajectories of the system have the origin as a saddle point. See the treatment of the two-variable linear system with two eigenvalues of opposite sign in the lecture notes.

Solution to Problem 4.

- A. $f(k) = k^{\alpha}$ with $\alpha \in (0, 1)$ satisfies the Inada conditions.
- B. Steady-state capital k^* is implicitly determined by

$$s \cdot f(k^*) = \delta \cdot k^*.$$

C. Plot k on the x-axis. Draw two curves $y = s \cdot f(k)$ and $y = \delta \cdot k$. The $y = s \cdot f(k)$ curve is the saving curve. It is increasing and concave. The $y = \delta \cdot k$ curve is the depreciation curve. It is an increasing straight line. The intersection of these two curves is the steady state. Starting from an initial k_0 , k(t) converge to k^* . This is because if k(t) is to the left of k^* , k > 0 so k(t) increases to k^* ; and if k(t) is to the right of k^* , k < 0, so k(t) decreases to k^* .

Solution to Problem 5.

- A. See lecture notes.
- B. The Jacobian matrix at the steady state is

$$\mathbf{J}^* = \begin{bmatrix} \rho & -1 \\ \alpha \cdot (\alpha - 1) \cdot A \cdot k^{\alpha - 2} & 0 \end{bmatrix}$$

- C. To show that the steady state is a saddle point locally, we must show that the eigenvalues of the Jacobian matrix evaluated at the steady state have opposite sign. The determinant of the Jacobian matrix is $\det(\mathbf{J}^*) = \alpha \cdot (\alpha 1) \cdot A \cdot k^{\alpha 2} < 0$. As explained in the lecture notes, the two eigenvalues have opposite sign and the steady state is a saddle point locally.
- D. An unanticipated decrease in ρ at time t_0 means that the $\dot{c}=0$ locus shifts to the right at time t_0 . The new steady state is (k^{**},c^{**}) with $k^{**}>k^*$ and $c^{**}>c^*$. There is a new saddle path for the new steady state. Given that k is predetermined, it must remain at its steady-state level at t_0 : $k(t_0)=k^*$. Only consumption adjusts to bring the economy on the new saddle path. Thus at time t_0 , the economy jumps to a point $(k^*,c(t_0))$ on the new saddle path. Then it moves along the saddle path to converge to the new steady state.

Solution to Problem 6.

A. We plot the phase diagram in a (k, q) plane. The $\dot{k}(t) = 0$ locus is horizontal. The $\dot{q}(t) = 0$ locus is described implicitly by

$$f''(k) \cdot \frac{\partial k}{\partial q} = r - \frac{q-1}{\chi}.$$

There is no clear sign for the slope of the $\dot{q}(t) = 0$ locus. However, if we are close to the steady state, q is close to 1. So the $\dot{q}(t) = 0$ locus must be downward sloping.

B. The two differential equations show that k(t) increases if we are to the right of the $\dot{k}(t) = 0$ locus, and q(t) increases if we are above the $\dot{q}(t) = 0$ locus. Again, we have a saddle point locally.

Solution to Problem 7.

A. By definition

$$\Delta k = f(k) - \delta \cdot k - c$$

$$\Delta c = \left[\beta \cdot \left(f'(k) + 1 - \delta\right) - 1\right] \cdot c.$$

Hence, the locus $\Delta k = 0$ is defined by

$$c = f(k) - \delta \cdot k,$$

and the locus $\Delta c = 0$ is defined by

$$f'(k) = \frac{1}{\beta} - 1 + \delta.$$

The intersection of these two curves is the steady state (k^*, c^*) . The $\Delta k = 0$ locus is concave in the (k, c) plane while the $\Delta c = 0$ locus is a vertical line passing through k^* .

B. Follow the same procedure as that described in the lecture notes to analyze systems of nonlinear differential equations.

Solution to Problem 8.

A. c(t) and l(t) are the control variables. k(t) and h(t) are the state variables.

B. The present-value Hamiltonian is

$$\mathcal{H}(t) = e^{-\rho \cdot t} \cdot \ln(c(t)) + \lambda^k(t) \cdot \left[y(t) - c(t) - \delta \cdot k(t) \right] + \lambda^h(t)B \cdot (1 - l(t)) \cdot h(t),$$

where $\lambda^h(t)$ and $\lambda^k(t)$ are the co-state variables associated with the law of motion of human capital h(t) and physical capital k(t).

C. The optimality conditions are

$$\begin{split} \frac{\partial \mathcal{H}(t)}{\partial c(t)} &= 0\\ \frac{\partial \mathcal{H}(t)}{\partial l(t)} &= 0\\ \frac{\partial \mathcal{H}(t)}{\partial k(t)} &= -\dot{\lambda}^k(t)\\ \frac{\partial \mathcal{H}(t)\nu}{\partial h(t)} &= -\dot{\lambda}^h(t). \end{split}$$

These conditions simplify to

(1)
$$e^{-\rho \cdot t} \cdot \frac{1}{c(t)} = \lambda^k(t)$$

(2)
$$\lambda^{k}(t) \cdot \beta \cdot \frac{y(t)}{l(t)} = \lambda^{h}(t) \cdot B \cdot h(t)$$

(3)
$$\lambda^{k}(t) \cdot \left[\alpha \cdot \frac{y(t)}{k(t)} - \delta \right] = -\dot{\lambda}^{k}(t)$$

(4)
$$\lambda^{k}(t) \cdot \beta \cdot \frac{y(t)}{h(t)} + \lambda^{h}(t) \cdot B \cdot [1 - l(t)] = -\dot{\lambda}^{h}(t).$$

D. The growth rate of c(t) follows from the combination of equations (1) and (3).

E. The equality of equation (2) holds for interior solution only, i.e. 0 < l < 1. When B = 0, the optimal solution is l = 1.

9

F. The dynamic equations of the equilibrium are:

$$\dot{k} = A \cdot k^{\alpha} \cdot h_0^{\beta} - c - \delta \cdot k$$

$$\dot{c} = \alpha \cdot A \cdot k^{\alpha - 1} \cdot h_0^{\beta} - (\delta + \rho)$$

$$\dot{h} = 0$$

Since h_0 is simply a constant, this system has a steady state (k^*, c^*) where $\dot{k} = \dot{c} = 0$. The steady state satisfies

$$\alpha \cdot A \cdot \left(k^*\right)^{\alpha-1} \cdot h_0^{\beta} = \delta + \rho.$$

To draw the phase diagram from here, see lecture notes.

- G. To show that the steady state is a saddle point graphically, see lecture notes.
- H. The Jacobian is given by

$$\boldsymbol{J}^{*} = \begin{bmatrix} \frac{\partial \dot{k}}{\partial k} \Big|_{(k^{*},c^{*})} & \frac{\partial \dot{k}}{\partial c} \Big|_{(k^{*},c^{*})} \\ \frac{\partial \dot{c}}{\partial k} \Big|_{(k^{*},c^{*})} & \frac{\partial \dot{c}}{\partial c} \Big|_{(k^{*},c^{*})} \end{bmatrix} = \begin{bmatrix} \rho & -1 \\ (\alpha - 1) \alpha \cdot A \cdot (k^{*})^{\alpha - 2} h_{0}^{\beta} & 0 \end{bmatrix}$$

I. It follows that the steady state is a saddle point locally because the determinant of the Jacobian matrix is negative:

$$\det (\mathbf{J}^*) = (\alpha - 1) \cdot \alpha \cdot A (k^*)^{\alpha - 2} \cdot h_0^{\beta} < 0,$$

which implies that the two eigenvalues of the system have opposite sign.