Dinamika alaptörvényének vizsgálata Fletcher-kocsival

Mérést végezte: Kalló Bernát. Mérőpár neve: Magony Miklós.

Mérés dátuma: 2012. 03. 21. Leadás dátuma: 2012. 03. 28.

A mérés célja. Newton második törvényét ($\Sigma F = ma$) szeretnénk igazolni egy két tömegpontból álló pontrendszerben: a vízszintesen mozgó kocsi (tömege M_i) és a lógó súly (tömege μ_j) egy csigán át egy kötéllel van összekötve. Ekkor ha felírjuk a törvényt a két testre, a következő mozgásegyenletek lesznek, ha figyelembe vesszük, hogy az őket összekötő kötél nyújthatatlan:

$$\begin{array}{rcl} \mu_j g - K & = & \mu_j a_{ij} \\ K & = & M_i a_{ij} \end{array}$$

Ebből

$$\mu_j g = a_{ij}(\mu_j + M_i).$$

A $\mu_j + M_i$ összeget még korrigálnunk kell a kerekek tehetetlenségi nyomatékából adódó fiktív m_e tömeggel, ami 18 g. Az így kapott három tömeg összege $\mu_j + M_i + m_e =: m_{ij}$. Az

$$m_{ij}a = \mu_j g$$

összefüggést szeretnénk kísérletileg igazolni.

Mérőeszközök. Egy fénykapuból és egy lyukas csigából álló jeladónk van egy számítógépre kötve. A számítógépen lévő programmal megmérjük a kocsi sebességét, és erre egyenest illesztve megkapjuk a gyorsulását. Minden i, j párra háromszor mértünk, az átlagból kapott gyorsulás értékeket tartalmazza a következő táblázat:

	terhelés nélkül		1 nehezékkel terhelve		2 nehezékkel terhelve	
$\mu_j(g)$	$M_i(kg)$	$a_{ij}(\mathrm{m/s^2})$	$M_i(kg)$	$a_{ij}(\mathrm{m/s^2})$	$M_i(kg)$	$a_{ij}(\mathrm{m/s^2})$
0.011	0.5	0.1706	1.0	0.0669	1.5	0.0372
0.021	0.5	0.3515	1.0	0.1646	1.5	0.1004
0.031	0.5	0.5199	1.0	0.2545	1.5	0.1639
0.041	0.5	0.6728	1.0	0.3464	1.5	0.2262
0.051	0.5	0.8490	1.0	0.4349	1.5	0.2884
0.061	0.5	1.0037	1.0	0.5235	1.5	0.3481

1. táblázat. A kocsi gyorsulása

Kiértékelés. A következő grafikonon ábrázoltuk az $m_{ij}a_{ij} = (\mu_j + m_e + M_i)a_{ij}$ értékeket a $\mu_j g$ függvényében. Itt mindhárom mért értéket feltüntettük.

Az ábrán jól látszik, hogy a mérési pontok három, egymás alatti 45°-os egyenesen helyezkednek el, a terhelés mértéke szerint. Tehát az

$$m_{ij}a_{ij} = \mu_j g$$

összefüggés helyett inkább egy

$$m_{ij}a_{ij} = \mu_i g - F_i$$

összefüggés érvényes, ahol $F_i > 0$ a terhelés mértékétől (i-től) függ.

Ez valóban így van, F_i a súrlódásnak megfelelő tag, és a sebességgel ellentétes nagyságú, tehát az előjele stimmel. Az ábrán az is látszik, hogy nagyon jó közelítéssel egyenesen arányos a kocsi súlyával (egyenlő terhelés-különbségek mellett egyenlő távolságokkal kerül lejjebb a vonal).jjjjjjjjjj

 $1.\ {\rm abra}.\ {\rm A}$ tömeg és gyorsulás szorzata a húzó
erő függvényében