Five-Point Algorithms for Estimating Pose and Velocity

Nicholas Gans

Kaveh Fathian

Yujie Zhang

Cody Lundberg

Mohammadreza Davoodi

Bardia Mojra

Sunday, August 8, 2021

CCTA 2021 Workshop

The Confluence of Vision and Control

- Part II

Outline

- Vision-Based Motion Estimation
- QuEst Quaternion-Based Pose Estimation
- VEst Velocity Estimation
- Combining Quest and Vest (current work, needs a catchy acronym)

Objective:

Given images from two cameras (or one moving camera) of the same scene/object, find the relative rotation and translation (i.e., pose) and linear & angular velocity between the two cameras

Objective:

Given images from two cameras (or one moving camera) of the same scene/object, find the relative rotation and translation (i.e., pose) and linear & angular velocity between the two cameras

Applications:

 \mathbf{R} , $\mathbf{t} = ?$

Objective:

Given images from two cameras (or one moving camera) of the same scene/object, find the relative rotation and translation (i.e., pose) and linear & angular velocity between the two cameras

Existing solutions:

Longuet-Higgins Nature 1981 (8pt algorithm)

Hartley ECCV, 1994 (4pt homography)

Objective:

Given images from two cameras (or one moving camera) of the same scene/object, find the relative rotation and translation (i.e., pose) and linear & angular velocity between the two cameras

Existing Pose solutions:

Longuet-Higgins	Nature 1981	(8pt algorithm)
Hartley	ECCV, 1994	(4pt homography)
Nister	CVPR 2003	(5pt algorithm)
Stewenius et al.	JPRS 2006	(Gröbner basis)
Li, Hartley	ICPR 2006	(Speeded up 5pt)

Objective:

Given images from two cameras (or one moving camera) of the same scene/object, find the relative rotation and translation (i.e., pose) and linear & angular velocity between the two cameras

Existing velocity solutions:

Ma, et al

Invitation to
3D Vision, 1994 (8pt continuous essential)

(4pt continuous homography)

Soatto & Perona IJCV 1997 (EKF + Jacobean)

Dani, et al ITAC 2012 (4pt Homography & nonlinear estimators)

Tick, et al. ITCyb (4pt continuous and discrete homography + EKF)

Objective:

Given images from two cameras (or one moving camera) of the same scene/object, find the relative rotation and translation (i.e., pose) and linear & angular velocity between the two cameras

In our work

- A direct solution to the pose and velocity estimation problem
- It eschews the essential and homography matrices
- It uses 5 matched/tracked points (the provable minimum)
- 5 points can be in an configuration (planar or nonplanar)
- It works in cases of 0 translation or 0 rotation
- There is no necessary a priori knowledge
 - We can only recover up to an unknown scale factor without additional knowledge)

The Rigid Motion Constraints

Depths of the 3D point

Homogeneous feature point coordinates and optical flow

\mathcal{U}	depth of point m at time 0	
R	Rotation between camera frame at current	u
	time and time 0	
m	feature coordinates at time 0	
t	Translation between camera frame at	
	current time and time 0	m
ν	depth of point n at current time	n
n	feature coordinates at current time	
$\boldsymbol{\omega}_{ imes}$	skew symmetric angular velocity matrix at	\searrow D +
	current time	R, t
V	linear velocity of camera at current time	ω, ν

The Rigid Motion Constraints

Example:

$$u_1 \mathbf{R} \begin{bmatrix} -0.3 \\ 0.22 \\ 1 \end{bmatrix} + \mathbf{t} = v_1 \begin{bmatrix} -0.35 \\ 0.23 \\ 1 \end{bmatrix}$$

$$u_2 \mathbf{R} \begin{bmatrix} -0.07 \\ 0.19 \\ 1 \end{bmatrix} + \mathbf{t} = v_2 \begin{bmatrix} -0.1 \\ 0.2 \\ 1 \end{bmatrix}$$

etc.

The Rigid Motion Constraints

Example:

$$u_{2}\boldsymbol{\omega}_{\times} \begin{bmatrix} -0.6535 \\ -0.0010 \\ 1 \end{bmatrix} + \mathbf{v} = u_{2} \begin{bmatrix} -0.0193 \\ -0.0041 \\ 0 \end{bmatrix} + \dot{u}_{2} \begin{bmatrix} -0.6535 \\ -0.0010 \\ 1 \end{bmatrix}$$
$$u_{3}\boldsymbol{\omega}_{\times} \begin{bmatrix} -0.1230 \\ -0.0561 \\ 1 \end{bmatrix} + \mathbf{v} = u_{3} \begin{bmatrix} 0 \\ 0.0020 \\ 0 \end{bmatrix} + \dot{u}_{3} \begin{bmatrix} -0.1230 \\ -0.0561 \\ 1 \end{bmatrix}$$

Quaternions

$$u \mathbf{R} \mathbf{m} + \mathbf{t} = v \mathbf{n}$$

Rotation matrices can be expressed as a function of four elements $\{w, x, y, z\}$ are known as quaternions

$$R = \begin{bmatrix} w^2 + x^2 - y^2 - z^2 & 2(xy - wz) & 2(xz + wx) \\ 2(xy + wz) & w^2 - x^2 + y^2 - z^2 & 2(yz - wy) \\ 2(xz - wx) & 2(yz + wy) & w^2 - x^2 - y^2 + z^2 \end{bmatrix}$$
$$w^2 + x^2 + y^2 + z^2 = 1$$

"Quaternions came from Hamilton after his really good work had been done; and though beautifully ingenious, have been an unmixed evil to those who have touched them in any way, including Maxwell."

- Lord Kelvin

Quaternions

$$u \mathbf{R} \mathbf{m} + \mathbf{t} = v \mathbf{n}$$

Rotation matrices can be expressed as a function of four elements $\{w, x, y, z\}$ are known as quaternions

$$R = \begin{bmatrix} w^2 + x^2 - y^2 - z^2 & 2(xy - wz) & 2(xz + wx) \\ 2(xy + wz) & w^2 - x^2 + y^2 - z^2 & 2(yz - wy) \\ 2(xz - wx) & 2(yz + wy) & w^2 - x^2 - y^2 + z^2 \end{bmatrix}$$
$$w^2 + x^2 + y^2 + z^2 = 1$$

"Symmetrical equations are good in their place, but 'vector' is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature."

- Lord Kelvin

[Fathian et al., RAL 2018]

Step 1: Subtract constraints

$$u \mathbf{R} \mathbf{m} + \mathbf{t} = v \mathbf{n}$$

for any 2 feature points to eliminate t.

Example:

$$u_{1} \mathbf{R} \begin{bmatrix} -0.3 \\ 0.22 \\ 1 \end{bmatrix} + \mathbf{t} = v_{1} \begin{bmatrix} -0.35 \\ 0.23 \\ 1 \end{bmatrix}$$

$$u_{2} \mathbf{R} \begin{bmatrix} -0.07 \\ 0.19 \\ 1 \end{bmatrix} + \mathbf{t} = v_{2} \begin{bmatrix} -0.1 \\ 0.2 \\ 1 \end{bmatrix}$$
subtract

$$u_1 \mathbf{R} \begin{bmatrix} -0.3 \\ 0.22 \\ 1 \end{bmatrix} - v_1 \begin{bmatrix} -0.35 \\ 0.23 \\ 1 \end{bmatrix} - u_2 \mathbf{R} \begin{bmatrix} -0.07 \\ 0.19 \\ 1 \end{bmatrix} + v_2 \begin{bmatrix} -0.1 \\ 0.2 \\ 1 \end{bmatrix} = 0$$

Step 2: Eliminate depths using 3 feature points

Previous operation performed for points 1&2 and 1&3

$$\Rightarrow \begin{bmatrix} \begin{bmatrix} \mathbf{R} \begin{bmatrix} -0.3 \\ 0.22 \\ 1 \\ -0.23 \\ 1 \end{bmatrix} & \begin{bmatrix} 0.07 \\ -0.19 \\ -1 \end{bmatrix} & \begin{bmatrix} -0.1 \\ 0.2 \\ 1 \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \begin{bmatrix} 0.06 \\ 0.26 \\ -1 \end{bmatrix} & \begin{bmatrix} -0.15 \\ -0.25 \\ 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix} = \mathbf{0}$$

$$\begin{bmatrix} w^2 + x^2 - y^2 - z^2 \\ 2(xy + wz) \\ 2(xy + wz) \end{bmatrix} \begin{bmatrix} 2(xy - wz) \\ w^2 - x^2 + y^2 - z^2 \\ 2(yz - wy) \\ 2(xz - wx) \end{bmatrix} \begin{bmatrix} 2(xz + wx) \\ 2(xy + wz) \\ 2(xy + wz) \end{bmatrix}$$

$$\begin{bmatrix} w^2 + x^2 + y^2 + z^2 = 1 \end{bmatrix}$$

Note that **M** is not full rank. The determinant of **M must** be zero

$$\det(\mathbf{M}) = 0 \implies -0.1 \, w^4 + 0.4 \, w^3 x + 5.2 \, x^2 y^2 + \dots + 0.3 \, z^4 = 0 \quad (3)$$

- Every set of 3 feature points generate a polynomial equation.
- 5 points generate $\binom{5}{3} = 10$ equations.

Example:

$$-0.1 w^{4} + 0.4 w^{3}x + 5.2 x^{2}y^{2} + \dots + 0.3 z^{4} = 0$$

$$1.4 w^{4} + 2.2 w^{3}x - 1.7 x^{2}y^{2} + \dots + 0.6 z^{4} = 0$$

$$\vdots$$

$$2.3 w^{4} + 2.7 w^{3}x + 4.3 x^{2}y^{2} + \dots - 8.1 z^{4} = 0$$

$$w^{2} + x^{2} + y^{2} + z^{2} = 1$$

$$11 \text{ equations}$$

4 unknown variables: w, x, y, z

- Rotation $q = \langle w, x, y, x \rangle$ is recovered by solving the polynomial system.
- This is not a simple problem in itself, but multiple ways to do it
 - Relinearization, Grobner Bases
 - Our novel approach (Fathian et al, RAL 2018)

- With ${\bf q}$ recovered, we recover ${\bf R}$ and then can recover ${\bf t}$ and depths u_i and v_i , $\forall i$
- Using the rigid body motion equation $u_i \mathbf{R} \mathbf{m} + \mathbf{t} = v_i \mathbf{n}$

 $\mathbf{C} \in \mathbb{R}^{15 \times 13}$ all terms are measured or estimated

- Note that 15x13 would generally have no right nullspace
- Take the right singular vector corresponding to the smallest singular value

		Rotation erBenchmarks Translation error* × 10										
							QuEst					QuEst
KITTI	Med	0.4697	0.3197	0.898	0.3197	0.2933	0.2155	0.0669	2.4635	2.4635	0.084	0.0596
	Q1	0.2378	0.1801	0.4321	0.1801	0.1724	0.1318	0.0383	1.1119	1.1119	0.0443	0.0358
	Q3	0.9129	0.647	1.906	0.647	0.4913	0.3452	0.1256	4.09	4.09	0.1899	0.1063
TUM	Med	1.8289	1.3069	2.0601	1.3069	1.0415	1.0099	2.3068	2.9565	2.9565	2.1682	1.455
	Q1	1.0999	0.8096	1.2689	0.8096	0.6559	0.6371	1.2453	1.5268	1.5268	1.0206	0.7945
	Q3	3.012	2.1642	3.3846	2.1642	1.6797	1.5916	3.4994	4.083	4.083	3.4727	2.5377
	Med	1.0092	0.8155	1.1879	0.8155	0.6545	0.6202	2.2591	2.5963	2.5963	2.0429	1.4507
ICL	Q1	0.6093	0.5135	0.7424	0.5135	0.4049	0.3937	1.3115	1.3794	1.3794	1.0151	0.7085
	Q3	1.6024	1.2928	1.9744	1.2928	0.9601	0.9356	3.3328	3.7566	3.7566	3.043	2.3593
NAIST	Med	0.8191	1.0008	0.8487	1.0008	0.748	0.4759	0.2827	2.3717	2.3717	0.5727	0.27
	Q1	0.4885	0.4454	0.5012	0.4454	0.3941	0.2607	0.1773	1.0819	1.0819	0.2681	0.1555
	Q3	1.3768	2.0418	1.6832	2.0418	1.2932	0.8338	0.4212	4.0515	4.0515	1.4121	0.4614

*Error metric:
$$\rho(q, \bar{q}) \coloneqq \int \frac{1}{\pi} \arccos(\langle q, \bar{q} \rangle) \in [0,1]$$

*Error metric:
$$\rho(t, \bar{t}) \coloneqq \int \frac{1}{\pi} \arccos\left(\left\langle \frac{t}{||t||}, \frac{\bar{t}}{||\bar{t}||}\right\rangle\right) \in [0,1]$$

Benchmarks

Our approach:

Step 1: UAVs extract feature points of onboard camera images

Step 2: Feature point *data* are communicated to neighboring UAVs

Communication bandwidth for each neighbor*: 5.2 KB/s

*Based on

Pixel coordinates: 2 single precision numbers

Descriptor: 64 single precision numbers

Number of features: 500 pts

Feature extraction time: 50ms

Step 3: Points are matched and used in QuEst to estimate the relative pose

Step 4: Recovered pose is used in the formation control strategy

Notes:

Scaled translation does not affect the convergence

Simulation Results

Can we perform the same procedure based on the continuous rigid body motion equations to estimate angular and linear velocity?

$$v \omega_{\times} \mathbf{n} + \mathbf{v} = v \dot{\mathbf{n}} + \dot{v} \mathbf{n}$$

Yes!

In fact it is a bit simpler since ω has only 3 unknowns

The steps are exactly the same...

[Zhang et al., ACC 2020]

Step 1: Subtract constraints

$$v \omega_{\times} \mathbf{n} + \mathbf{v} = v \dot{\mathbf{n}} + \dot{v} \mathbf{n}$$

for any 2 feature points to eliminate v.

Example:

$$u_{2}\boldsymbol{\omega}_{\times} \begin{bmatrix} -0.6535 \\ -0.0010 \\ 1 \end{bmatrix} + \mathbf{v} = u_{2} \begin{bmatrix} -0.0193 \\ -0.0041 \end{bmatrix} + \dot{u}_{2} \begin{bmatrix} -0.6535 \\ -0.0010 \\ 1 \end{bmatrix}$$

$$u_{3}\boldsymbol{\omega}_{\times} \begin{bmatrix} -0.1230 \\ -0.0561 \\ 1 \end{bmatrix} + \mathbf{v} = u_{3} \begin{bmatrix} 0 \\ 0.0020 \\ 0 \end{bmatrix} + \dot{u}_{3} \begin{bmatrix} -0.1230 \\ -0.0561 \\ 1 \end{bmatrix}$$
subtract

$$\begin{bmatrix} \boldsymbol{\omega}_{\times} \begin{bmatrix} -0.4177 \\ -0.0775 \end{bmatrix} - \begin{bmatrix} -0.0051 \\ -0.0010 \end{bmatrix} \end{bmatrix} u_1 - \begin{bmatrix} -0.4177 \\ -0.0775 \end{bmatrix} \dot{u}_1 - \begin{bmatrix} -0.6535 \\ -0.0010 \end{bmatrix} - \begin{bmatrix} -0.0193 \\ 1 \end{bmatrix} \end{bmatrix} u_2 + \begin{bmatrix} -0.6535 \\ -0.0010 \end{bmatrix} \dot{u}_2 = 0$$

Step 2: Eliminate depths using 3 feature points

$$v_1 \omega_{\times} n_1 - v_2 \omega_{\times} n_2 = v_1 \dot{n}_1 + \dot{v}_1 n_1 - v_2 \dot{n}_2 - \dot{v}_2 n_2$$

 $v_1 \omega_{\times} n_1 - v_3 \omega_{\times} n_3 = v_1 \dot{n}_1 + \dot{v}_1 n_1 - v_3 \dot{n}_3 - \dot{v}_3 n_3$

Previous operation For points 1,2 &1,3

Rewrite in matrix form

Rewrite in matrix form
$$\begin{bmatrix} \boldsymbol{\omega}_{\times} \boldsymbol{n}_{1} - \dot{\boldsymbol{n}}_{1} & -\boldsymbol{n}_{1} & -\boldsymbol{\omega}_{\times} \boldsymbol{n}_{2} + \dot{\boldsymbol{n}}_{2} & -\boldsymbol{n}_{2} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{\omega}_{\times} \boldsymbol{n}_{1} - \dot{\boldsymbol{n}}_{1} & -\boldsymbol{n}_{1} & \boldsymbol{0} & \boldsymbol{0} & -\boldsymbol{\omega}_{\times} \boldsymbol{n}_{3} + \dot{\boldsymbol{n}}_{3} & -\boldsymbol{n}_{3} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_{1} \\ \dot{\boldsymbol{v}}_{1} \\ \boldsymbol{v}_{2} \\ \dot{\boldsymbol{v}}_{2} \\ \boldsymbol{v}_{3} \end{bmatrix} = \boldsymbol{0}$$

Note that **M** is not full rank. The determinant of **M must** be zero

$$\det(\mathbf{M}) = 0 \implies a \,\omega_x^3 + b \,\omega_y^3 + c \,\omega_z^3 + d \,\omega_x^2 \omega_y + e \,\omega_x^2 \omega_z + \dots + s \omega_z + t = 0$$

Every set of 3 feature points generate a polynomial equation.

$$a \omega_x^3 + b \omega_y^3 + c \omega_z^3 + d \omega_x^2 \omega_y + e \omega_x^2 \omega_z + \dots + s \omega_z + t = 0$$

- 5 points generate $\binom{5}{3} = 10$ equations.
- Rotation $\omega = [\omega_x, \omega_y, \omega_z]^{\mathsf{T}}$ is recovered by solving the polynomial system.
- Can be solved in any number of ways See ACC 2020 paper to see our method
- From the rigid velocity equation, use SVD to solve for linear velocity v and depths v_i

linear velocity
$$\mathbf{v}$$
 and depths \mathbf{v}_i

$$\begin{bmatrix} I & \omega_{\times} n_1 - \dot{n}_1 & -n_1 & 0 & 0 & \cdots & 0 & 0 \\ I & 0 & 0 & \omega_{\times} n_2 - \dot{n}_2 & -n_2 & \cdots & 0 & 0 \\ I & 0 & 0 & 0 & \cdots & 0 & 0 \\ I & 0 & 0 & 0 & \dot{\cdots} & 0 & 0 \\ I & 0 & 0 & 0 & \cdots & \omega_{skew} n_5 - \dot{n}_5 & -n_5 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ v_1 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_2 \\ \dot{v}_2 \\ v_3 \\ \dot{v}_3 \\ v_4 \\ \dot{v}_4 \\ v_5 \\ \dot{v}_5 \end{bmatrix}$$

Tests

QuEst and VEst Fusion

- Solve for **R** and ω independently
- Solve the translation, velocity and depths together
- This helps ensure the scale factor between QuEst and Vest is the same

30

QuEst and VEst Fusion

- **q** and **ω** should "agree" over time
- t and v should also "agree" over time
 - E.g. if you integrate v, you should get t
- We explored the use of extended Kalman filters to enforce ODE constraints between ${\bf q}, {\bf \omega}, {\bf t},$ and ${\bf v}$
- Results were mixed
 - Addition / subtraction of quaternions is not a group action
 - Need innovations should be the Lie Algebra
 - Multiplication of rotations is not commutative
 - Non commutative algebra cannot be represented by vectors as in EKF

$$e = q_1 - q_2$$

$$e = q_1 \otimes q_2^{-1}$$

$$w = \log e$$

- For systems on Lie groups, the Invariant EKF (IEKF) was introduced in Bonnabel "Left-invariant extended Kalman filter and attitude estimation" 2007 CDC
- A specific IEKF for quaternions (QEKF) was introduced in Bloesch et al., "State estimation for legged robots consistent fusion of leg kinematics and IMU," Robotics 2013
- Many other interesting related papers in IEKF and QEKF

QuEst and VEst Fusion

- We adapted a method by Rotella et al., "State estimation for a humanoid robot" IROS 2014
- Prediction step τ is step time.

$$\begin{aligned} \mathbf{t}_{k+1}^- &= \mathbf{t}_k^+ + \tau \mathbf{v}_k^+ \\ \mathbf{v}_{k+1}^- &= \mathbf{v}_k^+ \\ \mathbf{q}_{k+1}^- &= \exp(\tau \omega_{\mathbf{k}_k}^+) \otimes \mathbf{q}_k^+ \\ \end{aligned} \quad \otimes -\text{quaternion multiplication}, \quad \exp()\text{-exponential map}$$

Update step

$$\begin{aligned} \mathbf{t}_{k+1}^+ &= \mathbf{t}_{k+1}^- + \Delta x_{\mathrm{t}}, \quad \mathbf{v}_{k+1}^+ &= \mathbf{v}_{k+1}^- + \Delta x_{\mathrm{v}}, \quad \boldsymbol{\omega}_{k+1}^+ &= \boldsymbol{\omega}_{k+1}^- + \Delta x_{\omega}, \\ \boldsymbol{q}_{k+1}^+ &= \exp(\Delta \phi) \otimes \boldsymbol{q}_k^+ \quad \Delta \phi \text{ is a function of } \boldsymbol{e}_q \end{aligned}$$

Results

Papers and Code

- K. Fathian, J. Jin, S. Wee, D. Lee, Y. Kim, N. R. Gans, "Camera Relative Pose Estimation for Visual Servoing using Quaternions" Elsevier Robotics and Autonomous Systems, 2018.
- K. Fathian, J. P. Ramirez, E. A. Doucette, J. W. Curtis, N. R. Gans., "QuEst: A
 Quaternion-Based Approach for Camera Motion Estimation from Minimal Feature
 Points," IEEE Robotics and Automation Letters
- Y. Zhang, K. Fathian, N.R. Gans, "An Efficient Solution to the Camera Velocity Estimation from Minimal Feature Points," Proc. American Controls Conference, 2020, Paper ThC12.6, 17:40-18:00
- https://sites.google.com/view/kavehfathian/code
 - MATLAB code available
 - C++ code exists and being standardized to OpenMVG
 - ROS packages being written