

Sample preparation

Collection and storage

- Preservation
- Contamination

RNA /DNA shield, RNAlater Freeze/thaw

 Consider what you are doing at each step to optimize your desired sequence data output!

Extract

nucleic acid

- Biosafety
- Contamination

 Physical/chemical/ enzymatic disruption

- Quality check
- Contamination

Affects read length & concentration

Enrich?

- Improve abundance/ sensitivity
- Contamination

Pros and cons of different methods

Make a sequence library

- Input material -type and amount
- Contamination

Determines library kit choice

Approaches

Considerations

- Time
- Cost
- Sensitivity
- Detection power
- Readiness/portability

Metagenomics

Pros

- Gold standard
- Pathogen agnostic
- Unbiased

Cons

- Lower sensitivity
- More expensive
- Complex

Bait capture

Tolerant of diversity

Cons

- A priori knowledge
- Expensive
- Slow & complex

2. Hybridize

3. Immobilize hybridized complex to beads

 Attract beads to powerful magnet and rinse away non-target DNA and other impurities

5. Disassociate target DNA from probes

Winters et al (2017) Forensic Science International:

Culture enrichment

Pros

- Cheap
- Sensitive

Cons

- A priori knowledge
- Slow
- Specific expertise

(A)

PCR enrichment

- Pathogen
- Host background

Why did we choose this?

- Enriches samples with low viral material
- Helps with poor quality sampled (fragmented RNA)
- Cost-effective
- High sensitivity

Caveats:

- Requires a priori knowledge of pathogen
- Tolerant of limited diversity
- Potential for contamination

Designing primers

- What do I want to capture?
 - What pathogen
 - Location
 - Host variant
 - Whole or partial genome
- What a priori knowledge is available?

Challenges & potential solutions

 There is no existing data for study area

Solution: do some preliminary metagenomic sequencing to get a reference

There are only partial genomes

Solution: use to get minor clade assignments, then use most closely related public sequences as a reference

Diversity is too great

Solution: create multiple primer sets or try probes

Note: This is just advice not a hard set of rules!

Challenges & potential solutions

 There is no existing data for study area

Solution: do some preliminary metagenomic sequencing to get a reference

There are only partial genomes

Solution: use to get minor clade assignments, then use most closely related public sequences as a reference

Diversity is too great

Solution: create multiple primer sets or try probes

Note: This is just advice not a hard set of rules!