פרק 6: התפלגות משותפת של משתנים מקריים (תרגילים) (20425 / 21.7.11)

- 1. בארגז גדול יש 10 נעליים שחורות מאותו דגם: 7 מהן ימניות והשאר שמאליות.
- מוציאים מהארגז נעל אחר נעל, ללא החזרה, עד שמתקבל זוג. (כלומר, עד שלראשונה יש מחוץ לארגז לפחות נעל אחת שמאלית.)
 - X יהיו שהוצאו מספר הנעליים הימניות שהוצאו
 - . מספר הנעליים השמאליות שהוצאוY
 - Yו א. מצא את פונקציית ההסתברות המשותפת של Xו וYו ואת פונקציות ההסתברות השולית של
 - $F_{XY}(2,2)$ ב. חשב את
 - Yוים: X האם X ו-Y בלתי-תלויים:
 - X+Y מצא את פונקציית ההסתברות של
 - . Y=2 ה. מצא את פונקציית ההסתברות המותנית של
 - X=1 ו. מצא את פונקציית ההסתברות המותנית של
 - 2. מטילים שתי קוביות תקינות.
 - ;4 מספר הקוביות שבהן התקבלה התוצאה X
 - מספר התוצאות הזוגיות שהתקבלו. Y
 - X ו-X ו-X
- 3. עידו הזמין למסיבה 20 אורחים -10 גברים ו-10 נשים. כל גבר יגיע למסיבה בהסתברות 0.8 וכל אישה תגיע למסיבה בהסתברות 0.8. אין תלות בין האנשים המוזמנים למסיבה.
 - מהי ההסתברות ש-18 אורחים יגיעו למסיבה!
- - האם גם המשתנים המקריים X ו- X+Y-Y בלתי-תלויים זה בזה!
- . בחצר יש שני כלובים. בכלוב 1- תרנגול אחד ותרנגולת אחת, ובכלוב 2- שני תרנגולים ושתי תרנגולות. בחצר יש שני כלובים באופן מקרי ומוציאים ממנו באקראי שני עופות ללא החזרה.
 - ;מספר הכלוב שנבחר N
 - . מספר התרנגולים (הזכרים) שהוצאו. Z
 - Zו N ו-Zו מצא את פונקציית ההסתברות המשותפת של
 - ב. האם N ו-Zבלתי-תלויים?
- $p_X(k) = p(1-p)^k$ ההסתברות מקריים בלתי-תלויים, שלכל אחד מהם פונקציית ההסתברות מקריים בלתי-תלויים, שלכל אחד מהם X_2 ויהי $X_1 = X_1 + X_2$ מצא את פונקציית ההסתברות של $X_2 = X_1 + X_2$ ויהי $X_1 = X_2 + X_3$ מצא את פונקציית ההסתברות של

- הפרמטרים מולטינומית משותפת מולטינומית מקריים בעלי פונקציית מקריים מקריים מקריים מקריים מקריים מחותפת מולטינומית עם הפרמטרים . p_r ,... , p_2 , p_1 . p_2 , p_3 . p_4 .
 - . אין צורך להוכיח את טענתך i=1,2,...,r אין אין של אורך להוכיח את טענתך.
 - ב. מהי לדעתך ההתפלגות של $(i \neq j)$ $X_i + X_j$ של את טענתך מהי לדעתך ההתפלגות של
 - ג. האם לדעתך המשתנים המקריים X_i ו- X_i בלתי-תלויים זה בזה!
 - . ד. מהי ההתפלגות המותנית של X_1 בהינתן $X_2 = j$ לכל $X_1 = j$ נמק את תשובתך.
- ה. יהי Y משתנה מקרי המוגדר על-ידי מספר הימים החולפים החל מה-1.1 (בכל שנה) ועד ליום הראשון , j=0,1,...,10 לכל $P\{Y=j\}=2^{-(j+1)}:$ בשנה שבו יורד גשם. פונקציית ההסתברות של Y נתונה על-ידי: $P\{Y>10\}=2^{-11}$
- הנח שאין תלות בין שנים שונות, וחשב את ההסתברות שבמהלך 20 השנים הבאות יהיו 13 שנים שבהן הנח שאין תלות בין ה-2.1 ל-5.1, 5 שנים שבהן הגשם הראשון יהיה ב-1.1 וביתר השנים ירד הגשם הראשון רק לאחר ה-5.1.
- 8. בסניף דואר מסוים יש שלושה אשנבים (1 2 ו-3). מספר האנשים הפונים לאשנב 1 במשך דקה הוא משתנה מקרי פואסוני עם מקרי פואסוני עם הפרמטר 2, מספר האנשים הפונים לאשנב 2 במשך דקה הוא משתנה מקרי פואסוני עם הפרמטר 4. הפרמטר 3 ומספר האנשים הפונים לאשנב 3 במשך דקה הוא משתנה מקרי פואסוני עם הפרמטר 4. אין תלות בין אנשים הנכנסים לסניף בדקות שונות, ואין תלות בין מספרי האנשים שפונים לאשנבים השונים.
 - א. מהי ההסתברות שבין 8:00 ל- 8:01 ייכנסו תשעה אנשים לסניף הדואר?
- ב. אם ידוע שבין 8:00 ל- 8:01 נכנסו תשעה אנשים לסניף הדואר, מהי ההסתברות ששלושה מהם פנו לאשנב 1?
- ג. אם ידוע שבין 8:00 ל- 8:01 נכנסו לסניף הדואר שלושה אנשים שפנו לאשנב 1, מהי ההסתברות שבסך-הכל נכנסו לסניף הדואר באותה הדקה תשעה אנשים?
- ד. אם ידוע שבין 8:00 ל-8:01 נכנסו תשעה אנשים לסניף הדואר, מהי ההסתברות ששלושה מהם פנו לאשנב 2 ושלושה לאשנב 2 ושלושה לאשנב 2 ושלושה לאשנב 2
- ה. אם אדם הפונה לאשנב 1 קונה בו בולים בהסתברות 0.6, מהי ההסתברות שבין האנשים הפונים ה. אם אדם הפונה 8:05 עד 8:05 יהיו 5 שיקנו בולים?
- 9. יהיו X_1, \dots, X_2, X_1 משתנים מקריים בלתי-תלויים, ונניח כי לכל X_1, \dots, X_2, X_1 משתנים מקריים בלתי-תלויים, ונניח כי לכל X_i המקרי וונית עם הפרמטר X_i
 - $X_{100}=n$ בתנאי בתנאי בתנאי המותנית של את ההתפלגות מצא את ההתפלגות המותנית ב
 - . $\sum_{i=1}^{100} X_i = n$ ב. מצא את ההתפלגות המותנית של בתנאי בתנאי
- . p -ו n_Y משתנה מקרי בינומי עם הפרמטרים n_X ו- p וויהי n_X משתנה מקרי בינומי עם הפרמטרים n_Y ו- n_Y אם n_Y משתנה מקרי בינומי עם הפרמטרים n_Y מהי ההתפלגות המותנית של n_X בהינתן n_Y בלתי-תלויים זה בזה, מהי ההתפלגות המותנית של n_X בהינתן n_Y בלתי-תלויים וו- n_X מהי ההתפלגות המותנית של n_X בהינתן n_Y ו- n_X מהי ההתפלגות המותנית של n_X משתנה מקרי בינומי עם הפרמטרים וו- n_X משתנה מקרי בינומי בי

- p הפרמטר עם היים היים התפלגות שלכולם בלתי-תלויים, מקריים מקריים מקריים משתנים איים אומטרית (11 X_n ,... , X_2 , X_1).
 - . j = 1,2,... לכל , $P\Bigl\{\max_{i=1,\dots,n}X_i\leq j\Bigr\}$ א. חשב את מצא את פונקציית ההסתברות של מצא את פונקציית
 - . $\min_{i=1,\dots,n} X_i$ ב. זהה את ההתפלגות של
 - . $P\{X=0 \mid Y=0\}=1$ ונניח שמגדירים $X \mid Y=j \sim B(j,p)$ וכי $Y \sim Po(\lambda)$.12
- א. מקבלת הריינו א פונקציית ההסתברות פונקציית ההסתברות , j ו ו- i א שבהם א , j וו- i א שבהם א פונקציית החסתברות המשותפת, דהיינו ערכים היוביים!
 - . Yו- . מצא את פונקציית ההסתברות המשותפת של
 - X ג. מצא את פונקציית ההסתברות השולית של X וזהה את ההתפלגות של

$$\sum_{i=0}^{\infty} \frac{a^i}{i!} = e^a$$
 זכור כי

- X-X בלתי-תלויים זה בזה, וזהה את ההתפלגות של X-X-X בלתי-תלויים זה בזה, וזהה את ההתפלגות של
- 13. מטילים 10 כדורים באופן אקראי לתוך 3 תאים ממוספרים. אחר-כך, מוציאים את הכדורים שנפלו לתא מספר 1, ומטילים אותם באופן אקראי לתוך 4 תאים ממוספרים אחרים.
 - Xיהיו בשלב בשלב מספר לתוך אופלו שנפלו הכדורים שנפלו בשלב מספר און יהיו שנפלו הכדורים שנפלו המ
 - . מספר הכדורים שנפלו לתוך תא מספר 2 בשלב השניY
 - X=i א. זהה את ההתפלגות של X ואת ההתפלגות של
 - ב. מצא את פונקציית ההסתברות המשותפת של X ו- Y
 - Y ג. מצא את ההתפלגות השולית של