

LOS FLOTANTES

- Revisamos con mayor profundidad los números de punto (o coma) flotante
 - Representación de valores no enteros en la arquitectura de los computadores
 - Normalmente se usan las definiciones del estándar IEEE
 754
 - Con precisión simple en 32 bits
 - Con precisión doble en 64 bits
 - Valores se representan con un número fijo, predeterminado de bits

LOS FLOTANTES

Esta limitación significa:

 $\mathbb{F} \neq \mathbb{R}$

- Hay finitos flotantes, pero infinitos reales
 - Luego, un flotante representa a más de un real
 - Un valor real es aproximado por un flotante
 - Entre dos números reales hay infinitos números reales; entre dos flotante contiguos no hay ningún valor

3

LOS FLOTANTES

Esta limitación significa:

 $\mathbb{F} \neq \mathbb{R}$

- Dos flotantes están separados por un valor épsilon
 - E varía para cada flotante: son más densos cerca del cero y más dispersos para valores altos
 - Pero el **ε-relativo** es pequeño
- Pueden producirse desbordes
 - *Underflow* si es más pequeño que el menor número flotante
 - Overflow si es más grande que el mayor número flotante

LOS FLOTANTES

• Esta limitación significa:

 $\mathbb{F} \neq \mathbb{R}$

- Los flotantes incluyen valores especiales
 - Inf representa el valor infinito
 - Nan representa el valor inválido o indefinido
 - NA representa el valor desconocido
- Se pierden algunas propiedades de los reales
 - La asociatividad y la distributividad no están garantizadas

5

EL ENTORNO OCTAVE

- Algunos comandos que aprendimos:
 - Podemos cambiar explícitamente los tipos de datos
 - Tipos enteros con diferente tamaño (en bits): int8(), int16(), int32(), etc.
 - Tipos flotantes : single(), double()
 - Podemos conocer las limitaciones en la máquina
 - Épsilon: eps(), eps = eps(1)
 - Límites: realmin, realmax
 - Podemos desplegar mensajes en pantalla
 - Strings: 'texto' (otras comillas no compatibles con MatLab®)
 - Función disp(x), siempre agrega fin de línea

EL ENTORNO OCTAVE

- Algunos comandos que aprendimos:
 - Usamos raíz cuadrada: sqrt()
 - Desplegamos la representación binaria: format bin
 - Pudimos hacer bifurcaciones

```
if(<condición>)
   cuerpo-entonces
end
```

```
if(<condición>)
  cuerpo-entonces
else
  cuerpo-sino
end
```

```
if(<condición 1>)
  cuerpo-entonces 1
elseif(<condición 2>)
    cuerpo-entonces 2
. . .
elseif(<condición n>)
    cuerpo-entonces n
else
    cuerpo-sino
end
```

(Otras alternativas sintácticas no son compatibles con MatLab®)

7

EL ENTORNO OCTAVE

- Algunos comandos que aprendimos:
 - Pudimos hacer iteraciones y fijas y condicionadas

```
for <var> = <expresión>
    cuerpo
end
while(<condición>)
    cuerpo
end
```

(Otras alternativas sintácticas no son compatibles con MatLab®)

PELIGROS

- Nunca podemos olvidar las limitaciones de los flotantes:
 - Los errores pueden acumularse y/o propagarse
 - Pueden tener consecuencias nefastas
 - La disciplina llamada análisis numérico estudia cómo evitar estos problemas de la resolución numérica

9

PRÓXIMA CLASE

- Veremos más comandos para el entorno Octave
- Discutiremos cómo usarlos para resolver problemas de la ingeniería

