

Modelling Text

Embeddings via Vector Spaces

Co-occurrence Matrices

- We represent how often a word occurs in a document
 - Term-document matrix

Term-document matrix

- Each cell: count of word w in a document d
 - Each document is a count vector in $\mathbb{N}^{|V|}$: a column below
 - where |V| is the size of the vocabulary (number of unique words)

	As You Like	lt	Twelfth Night	Julius Caesar	Henry V
battle		1	1	8	15
soldier		2	2	12	36
fool	3.	7	58	1	5
clown		6	117	0	0

Similarity in term-document matrices

Two documents are similar if their vectors are similar

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

For now we have any similarity metric, such as the cosine or the euclidean

The words in a term-document matrix

- Each word has a count vector in $\mathbb{N}^{|D|}$: a row below
- where |D| is the number of documents

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

The words in a term-document matrix

• Two words are similar if their vectors are similar

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

The word-word or word-context matrix

- Instead of entire documents, use smaller contexts
 - Paragraph
 - Window of \pm 4 words
- A word is now defined by a vector over counts of context words
- Instead of each vector being of length |D|
- Each vector is now of length |V|
- The word-word matrix is $|V| \times |V|$

Word-Word matrix Sample contexts \pm 7 words

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**.

preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from for the purpose of gathering data and **information** necessary for the study authorized in the

	aardvark	computer	data	pinch	result	sugar	•••
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Word-word matrix

- We showed only 4x6, but the real matrix is 50,000 x 50,000
 - So it's very sparse
 - Most values are 0
 - That's OK, since there are lots of efficient algorithms for sparse matrices
- The size of windows depends on your goals
 - The shorter the windows , the more **syntactic** the representation \pm 1-3 very syntacticy
 - The longer the windows, the more **semantic** the representation \pm 4-10 more semanticy

2 kinds of co-occurrences between 2 words

(Schütze and Pedersen, 1993)

- First-order co-occurrence (syntagmatic association):
 - They are typically nearby each other
 - wrote is a first-order associate of book or poem.
- Second-order co-occurrence (paradigmatic association):
 - They have similar neighbours
 - wrote is a second- order associate of words like said or remarked

Vector Semantics

Positive Pointwise Mutual Information (PPMI)

Problem with raw counts

- Raw word frequency is not a great measure of association between words
 - It's very skewed
 - "the" and "of" are very frequent, but maybe not the most discriminative
- We'd rather have a measure that asks whether a context word is particularly informative about the target word
 - Positive Pointwise Mutual Information (PPMI)

Pointwise Mutual Information

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

$$PMI(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

PMI between two words: (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent?

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

Positive Pointwise Mutual Information

- PMI ranges from $-\infty$ to $+\infty$
- But the negative values are problematic
 - Things are co-occurring less than we expect by chance
 - Unreliable without enormous corpora
 - Imagine w₁ and w₂ whose probability is each 10⁻⁶
 - Hard to be sure $p(w_1, w_2)$ is significantly different than 10^{-12}
 - Plus it's not clear people are good at "unrelatedness"
- So we just replace negative PMI values with 0
- Positive PMI (PPMI) between word₁ and word₂:

$$PPMI(word_1, word_2) = \max \left(\log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}, 0 \right)$$

Computing PPMI on a term-context matrix

- Matrix F with W rows (words) and C columns (contexts)
- f_{ij} is # of times w_i occurs in context c_j

$$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}} \qquad ppmi_{ij} = \begin{cases} pmi_{ij} & \text{if } pmi_{ij} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Computing PPMI on a term-context matrix

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

		Co	unt(w			
	computer		data	pinch	result	sugar
apricot	0		0	1	0	1
pineapple	0		0	1	0	1
digital	2		1	0	1	0
information	1		6	0	4	0

$$p(w = information, c = data) = \frac{6}{19} \approx 0.316$$

$$p(w = information) = \frac{11}{19} \approx 0.579$$

$$p(c = data) = \frac{7}{19} \approx 0.368$$

$$p(w_i) = \frac{\sum_{j=1}^{C} f_{ij}}{N}$$
 $p(c_j) = \frac{\sum_{i=1}^{W} f_{ij}}{N}$

p(w,context)							
	computer	data	pinch	result	sugar		
apricot	0.000	0.000	0.053	0.000	0.053	0.105	
pineapple	0.000	0.000	0.053	0.000	0.053	0.105	
digital	0.105	0.053	0.000	0.053	0.000	0.211	
information	0.053	0.316	0.000	0.211	0.000	0.579	

	p(w,context)					p(w)	
		computer	data	pinch	result	sugar	
	apricot	0,000	0,000	0,053	0,000	0,053	0,105
	pineapple	0,000	0,000	0,053	0,000	0,053	0,105
n	digital	0,105	0,053	0,000	0,053	0,000	0,211
$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*i}}$	information	0,053	0,316	0,000	0,211	0,000	0,579
$P_{i^*}P_{^*j}$	p(context)	0,158	0,368	0,105	0,263	0,105	

$$pmi(information, data) = \log_2\left(\frac{0.316}{0.579 * 0.368}\right) \approx 0.57$$

PPMI(w,context)

	computer	data	pinch	result	sugar
apricot	-	-	2,25	-	2,25
pineapple		-	2,25	-	2,25
digital	1,66	0,00	-	0,00	_
information	0,00	0,57	-	0,47	-

Weighting PMI

- PMI is biased toward infrequent events
 - Very rare words have very high PMI values
- Two solutions:
 - Give rare words slightly higher probabilities
 - Use add-one smoothing (which has a similar effect)

Weighting PMI: Giving rare context words slightly higher probability

• Raise the context probabilities to $\alpha = 0.75$:

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0)$$

$$P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}}$$

- This helps because $P_{\alpha}(c) > P(c)$ for rare c
 - Consider two events, P(a) = 0.99 and P(b) = 0.01

•
$$P_{\alpha}(a) = \frac{0.99^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.97, \ P_{\alpha}(b) = \frac{0.01^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.03$$

Laplace (add-1) smoothing

Laplace Smoothed Count(w,context)

	computer	data	pinch	result	sugar
apricot	1	1	2	1	2
pineapple	1	1	2	1	2
digital	3	2	1	2	1
information	2	7	1	5	1

	p(w)					
	computer	data	pinch	result	sugar	
apricot	0.026	0.026	0.051	0.026	0.051	0.179
pineapple	0.026	0.026	0.051	0.026	0.051	0.179
digital	0.077	0.051	0.026	0.051	0.026	0.231
information	0.051	0.179	0.026	0.128	0.026	0.410
p(context)	0.179	0.282	0.154	0.231	0.154	

Use Add-2 smoothing

add-2 Smoothed Count(w,context)

	computer	data	pinch	result	sugar
apricot	2	2	3	2	3
pineapple	2	2	3	2	3
digital	4	3	2	3	2
information	3	8	2	6	2

	p(w,context) [add-2]					p(w)
	computer	data	pinch	result	sugar	
apricot	0,034	0,034	0,051	0,034	0,051	0,203
pineapple	0,034	0,034	0,051	0,034	0,051	0,203
digital	0,068	0,051	0,034	0,051	0,034	0,237
information	0,051	0,136	0,034	0,102	0,034	0,356
p(context)	0,186	0,254	0,169	0,220	0,169	

PPMI versus add-2 smoothed PPMI

PPMI(w,context)

	computer	data	pinch	result	sugar
apricot	-	-	2.25	-	2.25
pineapple	_	-	2.25	-	2.25
digital	1.66	0.00	-	0.00	-
information	0.00	0.57	-	0.47	-

		PPMI(w,context)[add-2]			
	computer	data	pinch	result	sugar
apricot	0,00	0,00	0,56	0,00	0,56
pineapple	0,00	0,00	0,56	0,00	0,56
digital	0,62	0,00	0,00	0,00	0,00
information	0,00	0,58	0,00	0,37	0,00

Vector Semantics

Measuring similarity:

the cosine

Cosine for computing similarity

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} |\vec{w}| = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

- -1: vectors point in opposite directions
- +1: vectors point in same directions
- 0: vectors are orthogonal

Cosine similarity

Geben Sie hier eine Formel ein. Which pair of words is more similar?

Word/Word	large	data	computer
apricot	2	0	0
digital	0	1	2
information	1	6	1

$$cosine(apricot, information) = \frac{2+0+0}{\sqrt{4+0+0}\sqrt{1+36+1}} = \frac{2}{\sqrt{4\sqrt{38}}} = 0.16$$

cosine(digital, information) =
$$\frac{0+6+2}{\sqrt{0+1+4}\sqrt{1+36+1}} = \frac{8}{\sqrt{5\sqrt{38}}} = 0.58$$

$$cosine(apricot, digital) = \frac{0+0+0}{\sqrt{4+0+0}\sqrt{0+1+4}} = 0$$

Visualizing vectors and angles

Other possible similarity measures

$$\begin{aligned} & \text{sim}_{\text{cosine}}(\vec{v}, \vec{w}) &= \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_{i} \times w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}} \\ & \text{sim}_{\text{Jaccard}}(\vec{v}, \vec{w}) &= \frac{\sum_{i=1}^{N} \min(v_{i}, w_{i})}{\sum_{i=1}^{N} \max(v_{i}, w_{i})} \\ & \text{sim}_{\text{Dice}}(\vec{v}, \vec{w}) &= \frac{2 \times \sum_{i=1}^{N} \min(v_{i}, w_{i})}{\sum_{i=1}^{N} (v_{i} + w_{i})} \\ & \text{sim}_{\text{JS}}(\vec{v}||\vec{w}) &= D(\vec{v}|\frac{\vec{v} + \vec{w}}{2}) + D(\vec{w}|\frac{\vec{v} + \vec{w}}{2}) \end{aligned}$$

Vector Semantics

Dense Vectors

Sparse versus dense vectors

- PPMI vectors are
 - **long** (length |V|= 20,000 to 50,000)
 - sparse (most elements are zero)
- Alternative: learn vectors which are
 - **short** (length 200-1000)
 - dense (most elements are non-zero)

Sparse versus dense vectors

- Why dense vectors?
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails
 to capture similarity between a word with car as a neighbour and a word with
 automobile as a neighbour

Three methods for getting short dense vectors

- Singular Value Decomposition (SVD) (short)
 - A special case of this is called LSA Latent Semantic Analysis
- "Neural Language Model"-inspired predictive models
 - skip-grams and CBOW
- Brown clustering/GloVe

Vector Semantics

Dense Vectors via SVD

Intuition

- Approximate an N-dimensional dataset using fewer dimensions
- By first rotating the axes into a new space
- In which the highest order dimension captures the most variance in the original dataset
- And the next dimension captures the next most variance, etc.
- Many such (related) methods:
 - PCA principle components analysis
 - Factor Analysis

Dimensionality reduction

Dimensionality reduction

Singular Value Decomposition

W: Rows corresponding to original but m columns represents a dimension in a new latent space, such that

- m column vectors are orthogonal to each other
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for

S: Diagonal $m \times m$ matrix of **singular values** expressing the importance of each dimension

C: Columns corresponding to original but m rows corresponding to singular values

