INDIAN INSTITUTE OF TECHNOLOGY BHUBANESWAR

Introduction to Electronics Laboratory

School of Electrical Sciences

Name: Shorya Sharma Roll Number: 19EE01017

<u> AIM:-</u>

- To analyze Forward characteristics of all Diodes.
- To analyze Reverse characteristics of 4.7V Zener Diode.
- Drawing some conclusion from results

Part 1

Analyzing Forward characteristics of all Diodes

Silicon Diode

Circuit Diagram

The model of Silicon diode, I used here is 1N4148 which has breakdown voltage of 75volts.

Characteristics	of silicon diode		
Voltage across of	diode VD(volts)	Diode Forward	current ID(mA)
0		0	
0.24		0.00087	
0.4		0.0184	
0.48		0.11	
0.56		0.622	
0.64		3.3	
0.72		16.33	
0.751		28.06	
0.774		40	

Zener Diode

Circuit Diagram

The model of Zener diode, I used here is BZX84C10L which has breakdown voltage of 10volts.

16	Characteristics of Zenor diode Forward Bias						
17							
18	Voltage ac	ross Zenor	diode VD	(volts)	Diode For	ward curre	nt ID(mA)
19	0				0		
20	0.15				0.00069		
21	0.2				0.00143		
22	0.25				0.028		
23	0.3				0.092		
24	0.35				0.467		
25	0.4				2.955		
26	0.45				15.88		
27	0.473				30.078		
28	0.48				35		

LED(Light emitting Diode)

Circuit Diagram

The model of LED, I used here is NSPW500BS which has breakdown voltage of 5volts.

33	Characteris	tics of LED		
34				
35	Voltage across LED VD(volts)		LED Forward current ID(mA)	
36	0		0	
37	0.9		0.000045	
38	1.2		0.00025	
39	1.5		0.0013	
40	1.8		0.007	
41	2.1		0.042	
42	2.4		0.237	
43	2.7		1.255	
44	3		5.88	
45	3.12		10	
46	3.2		14.01	
47	3.23		16.31	

Results and Interpretation:

Forward Resistance = r_{on} = dV_D/dI_d = 1/mLn I_D = $(V_D/\eta V_T)$ + ln I_s (I_s is the saturation current) V_T = 26mV.

Silicon Diode

 $I_D = 30.77 \text{ mA}$ $V_D = 756.923 \text{ mV}$

Slope 'm' at the above mentioned point is 0.481.

 $r_{on} = 2.079 \text{ ohms.}$

Ln I_D v/s V_D plot

From the graph $1/\eta V_T = 20.456$

Therefore $\eta = 1.88$.

And $I_s = e^{-18.92}$

Zenor Diode

 $I_D = 30.77 \text{ mA}$ $V_D = 756.923 \text{ mV}$

Slope 'm' at the above mentioned point is 0.791.

 $r_{on} = 1.26$ ohms.

Ln I_D v/s V_D plot

From the graph $1/\eta V_T = 33.943$

Therefore $\eta = 1.133$.

And $I_s = e^{-19.505}$

LED (light emitting diode)

 $I_D = 30.77 \text{ mA}$ $V_D = 756.923 \text{ mV}$

Slope 'm' at the above mentioned point is 0.791.

 $r_{on} = 1.26$ ohms.

Ln I_D v/s V_D plot

From the graph $1/\eta V_T = 5.5728$

Therefore $\eta = 6.9956$.

And $I_s = e^{-21.8}$

Part 2

Analyzing Reverse characteristics of 4.7V Zener diode

Circuit Diagram

The model of Zener diode, I used here is 1N750 which has breakdown voltage of 4.7volts.

Characteristics of Zenor Dic	de Reverse Bias
Diode Reverse voltage VR(v	olts) Diode Reverse Current IR(m.
0	0
-1.495	-0.0005
-2	-0.00185
-2.5	-0.00672
-3	-0.024
-3.5	-0.088
-4	-0.324
-4.35	-0.8
-4.47	-1.2
-4.58	-3.21

Results:

From the LTspice simulation graph the cutoff voltage of the Zener diode is approximately around -4.65 V.

Discussion:

In the forward characteristics of the diodes used in the experiment are all non-linear. Semiconductor diodes are characterized by non-linear current—voltage characteristics as the current flowing through a forward-biased common silicon diode is limited by the ohmic resistance of the PN-junction. In each forward characteristic current is suddenly increased at a particular voltage difference across the diodes.

Conclusion:

Here we plotted the forward and reverse characteristics of various diodes. We found respective forward resistance and cutoff voltage of Zener diode. In all the graphs the current across the diode is increased suddenly at a particular voltage difference across the diode.

Generally, we don't use Breakdown voltage as a application but Zener diode is a special case. It behaves as normal diode in forward case.