1 Basic Linear Algebra

- $\bullet \ \boldsymbol{A}^{-T} \triangleq \left(\boldsymbol{A}^{T}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{T}$
- $\bullet \ (\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$
- $(AB)^{-1} = B^{-1}A^{-1}$, iff A and B are invertible
- trace:
 - $\operatorname{Tr}\left(\boldsymbol{A}^{T}\right) = \operatorname{Tr}\left(\boldsymbol{A}\right)$
 - $\operatorname{Tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{A}) + \operatorname{Tr}(\boldsymbol{B})$
 - Tr $(\mathbf{A}\mathbf{B}^T)$ = Tr $(\mathbf{A}^T\mathbf{B})$ = $\sum_{i,j} (\mathbf{A} \circ \mathbf{B})_{(i,j)}$
 - $\operatorname{Tr}(ABC) = \operatorname{Tr}(CAB) = \operatorname{Tr}(BCA)$
- determinant:
 - $\det \mathbf{A}^T = \det \mathbf{A}$
 - $\det \mathbf{A}^{-1} = (\det \mathbf{A})^{-1}$
 - $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$, for square matrices of equal size.
 - If \mathbf{A} is a triangular matrix (lower triangular or upper triangular),

$$\det \mathbf{A} = \prod_{i} A_{(i,i)}$$

2 Cholesky decomposition

The Cholesky decomposition of a positive-definite matrix A is a decomposition of the form:

$$\Sigma = LL^T$$

where \boldsymbol{L} is a lower triangular matrix

- $\bullet \ \boldsymbol{\Sigma}^{-1} = \left(\boldsymbol{L}\boldsymbol{L}^T\right)^{-1} = \boldsymbol{L}^{-T}\boldsymbol{L}^{-1}$
- $\bullet \; \; \boldsymbol{L} \setminus \boldsymbol{x} \triangleq \boldsymbol{L}^{-1} \boldsymbol{x}$
- $\Sigma^{-1} x = L^T \setminus L \setminus x$
- $\bullet \ \boldsymbol{x}^T\boldsymbol{\Sigma}^{-1}\boldsymbol{x} = \left\|\boldsymbol{L} \setminus \boldsymbol{x}\right\|_2^2$

• $\operatorname{Tr}\left(\boldsymbol{\Sigma}_{b}^{-1}\boldsymbol{\Sigma}_{a}\right) = \left\|\boldsymbol{L}_{b} \setminus \boldsymbol{L}_{a}\right\|_{F}^{2}$ Proof:

$$\operatorname{Tr}\left(\boldsymbol{\Sigma}_{b}^{-1}\boldsymbol{\Sigma}_{a}\right) = \operatorname{Tr}\left(\left(\boldsymbol{L}_{b}\boldsymbol{L}_{b}^{T}\right)^{-1}\boldsymbol{L}_{a}\boldsymbol{L}_{a}^{T}\right)$$

$$= \operatorname{Tr}\left(\boldsymbol{L}_{b}^{-T}\boldsymbol{L}_{b}^{-1}\boldsymbol{L}_{a}\boldsymbol{L}_{a}^{T}\right) = \operatorname{Tr}\left(\boldsymbol{L}_{a}^{T}\boldsymbol{L}_{b}^{-T}\boldsymbol{L}_{b}^{-1}\boldsymbol{L}_{a}\right)$$

$$= \operatorname{Tr}\left(\left(\boldsymbol{L}_{b}^{-1}\boldsymbol{L}_{a}\right)^{T}\left(\boldsymbol{L}_{b}^{-1}\boldsymbol{L}_{a}\right)\right) = \|\boldsymbol{L}_{b} \setminus \boldsymbol{L}_{a}\|_{F}^{2}$$

• $\log(|\mathbf{\Sigma}|) = 2\sum_{i} \log(L_{(i,i)}) = 2\text{Tr}(\log(\mathbf{L}))$

3 Inverse

$$(I + P)^{-1} = I - (I + P)^{-1} P$$
 (1)

$$(I + PQ)^{-1}P = P(I + QP)^{-1}$$
(2)

3.1 Matrix inversion lemma (Sherman-Morrison-Woodbury)

•

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$
 (3)

- $(A + BCD)^{-1} = A^{-1} A^{-1}B(I + CDA^{-1}B)^{-1}CDA^{-1}$
- $(A + XBX^{T})^{-1} = A^{-1} A^{-1}X(B^{-1} + X^{T}A^{-1}B)^{-1}X^{T}A^{-1}$
- $(\boldsymbol{A} + \boldsymbol{B}\boldsymbol{C}\boldsymbol{D})^{-1}\boldsymbol{B}\boldsymbol{C} = \boldsymbol{A}^{-1}\boldsymbol{B}\left(\boldsymbol{C}^{-1} + \boldsymbol{D}\boldsymbol{A}^{-1}\boldsymbol{B}\right)^{-1}$, using 3 and 1 2
- $(A+B)^{-1} = A^{-1} (A^{-1} + B^{-1})^{-1} B^{-1}$
- $(A^{-1} + B^{-1})^{-1} = A(A^{-1} + B^{-1})B$ where A and B are square and invertible matrices.

4 square

$$\boldsymbol{x}^{T}\boldsymbol{M}\boldsymbol{x} - 2\boldsymbol{b}^{T}\boldsymbol{x} = (\boldsymbol{x} - \boldsymbol{M}^{-1}\boldsymbol{b})^{T}\boldsymbol{M}(\boldsymbol{x} - \boldsymbol{M}^{-1}\boldsymbol{b}) - \boldsymbol{b}^{T}\boldsymbol{M}^{-1}\boldsymbol{b}$$
(4)

A Notation

Notation	Description
$\underline{\mathbf{X}} \in \mathbb{R}^{I_1 imes I_2 imes \cdots imes I_N}$	Tensor of order N
$x, \boldsymbol{x}, \boldsymbol{X}$	Scalar, vector and matrix. Non-bold letters do not strictly represent scalars, in many cases their meaning should be extracted from context
$x_{i_1,i_2,\ldots,i_N}, \ \underline{\mathbf{X}}_{(i_1,i_2,\ldots,i_N)}$	$(i_1, i_2,, i_N)$ th entry of $\underline{\mathbf{X}}$
$oldsymbol{x}_{:,i}, \ oldsymbol{X}_{(:,i)}$	i th column of the matrix \boldsymbol{X} . Colons are used for indexing an entire dimension.
$oxed{x_{:,i_2,,i_N},\ \underline{\mathbf{X}}_{(:,i_2,,i_N)}}$	Mode-1 fiver of $\underline{\mathbf{X}}$
$oldsymbol{X}_{:,:,,i_N},\; oldsymbol{\underline{\mathbf{X}}}_{(:,:,,i_N)}$	Frontal slice of $\underline{\mathbf{X}}$
<u>X</u> (+,:,,:)	Partial sum-reduction over first dimension
<u>X</u> (+)	Sum-reduction over all elements in the tensor
1	Tensor whose elements are equal to one. Their order and size is usually extracted from context
$\underline{\mathbf{A}}\odot\underline{\mathbf{B}}$	Element-wise product between tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$
$\underline{\mathbf{C}}_{(i,j)} = \underline{\mathbf{A}}_{(i,k)}\underline{\mathbf{B}}_{(k,j)}$	Tensor contraction using Einstein notation. In this case is just the matrix multiplication between $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$

Table 1: Notation for vectors, matrices and tensors