Fennick Tree

arr: 32-12 95-8 9 32 13-2-310 7

			B. SumTiUIS	8. SamTil	! 11 Ssum
10000 7 16			Indices of	indies	4 6
51111	10	16]	1111		
6111	-3	14	1110		
31101	-2	3			
21100	3	12-	†		
11011	1	Ĭ.	1 0 0	1 1011	
01010	2	10		1010	
1 & O 1 (v	3		1	+	
8001	4	8	1000	1000	
11105	-8	7			
0110	5	6			0110
50101	9	5			Ť
70100	2	1			0100
300tl	-1	3			
0010	3	2			
10001	22				
	0	7	1 6000	1 6000	† 0000

return ans;

pange
$$S$$
 nm $(2,3 + 0 + 5,6)$ $\rightarrow S$ nm T ill $(5,6)$ $- S$ nm T ill $(5,3)$ $- S$ nm T ill $(2,6)$ $+ S$ nm T ill $(2,3)$

SumTill
$$(6,6)$$
 \Rightarrow $\dot{e}=110$ $\dot{j}=110$ $\dot{i} > 0$ $\dot{i}-=(i\,\ell-i)$
 $\dot{e} \to 110$ $\dot{e} \to 100$ $\dot{i} \to 0$ $\dot{j} > 0$ $\dot{j}-=(j\,\ell-j)$
 $\dot{j} \to 110$, 100 , 100 , 100 , 110 , 100 , 110 ,

rectury ans;

update (1,2) void update From (int
$$x$$
, int y , int diff)

1 01 10 z

for (; $x < n+1$; $x + = (x + -x)$)

2 10 100 y

for (; $y < n+1$; $y + = (y + -y)$)

1000

fer Tree [x][y] += diff;

