Přednáška č. 4 Aproximační funkce a Numerická integrace pro jednorozměrné úlohy

Volba aproximace

Pro konvergenci¹ MKP je nezbytné, aby aproximační funkce splňovaly

- Podmínku kontinuity
- ► Podmínku úplnosti

Kontinuita zajišťuje, že aproximační a váhové funkce jsou dostatečně hladké. Požadavky na spojitost vyplývají z řádu derivací, které se objevují ve slabé formě.

Úplností rozumíme schopnost aproximace popsat danou funkci.

Pro konvergenci MKP je dostatečné, aby aproximační a váhové funkce (a jejich derivace až do řádu, který se objevuje ve slabém řešení) mohly nabývat konstantních hodnot. Např. pro pružnost pole posunutí a jeho první derivace musí být schopny reprezentovat konstantní funkci, takže jsou schopny reprezentovat přesně posunutí tělesa jako tuhého celku a stav konstantní deformace.

¹Konvergencí rozumíme fakt, že s klesající velikostí prvků aproximační řešení konverguje k řešení přesnému

Notace

- ▶ Aproximovanou funkci budeme značit $\phi(x)$, pro její MKP aproximaci použijeme označení $\phi^h(x)$, její část (restrikce) na prvku pak $\phi^e(x)$.
- Pro hodnoty v uzlech index označuje číslo uzlu. Pokud je hodnota vázána k prvku, označíme to horním indexem s číslem prvku, např. x₁^e značí x-ovou souřadnici prvního uzlu prvku e.

Na každém prvku budeme předpokládat aproximaci řešení polynomem

$$\phi^e = \alpha_0^e + \alpha_1^e x + \alpha_2^e x^2 + \dots,$$

kde koeficienty α_i^e je nutno volit tak, aby byla zajištěna potřebná spojitost aproximace (spojitost ϕ^h musí být zajištěna nejen na prvku ale i mezi prvky).

Lineární aproximace

Uvažujme aproximaci ve tvaru: $\phi^e(x) = \alpha_0^e + \alpha_1^e x$

Tato aproximace splňuje podmínku úplnosti:

- člen α₀^e dovoluje reprezentovat libovolnou konstantní funkci,
- člen α₁^ex pak libovolnou funkci s konstantní derivací.

Abychom zajistili C^0 spojitost, vyjádříme koeficienty prostřednictvím hodnot v uzlech. Pro aproximaci ϕ^e můžeme psát

$$\phi^{e}(x) = [1 \ x] \left\{ \begin{array}{c} \alpha_{0}^{e} \\ \alpha_{1}^{e} \end{array} \right\} = \boldsymbol{p}(x) \alpha^{e}$$

Pro hodnoty ϕ^e v uzlech platí

$$\begin{array}{c} \phi^{e}(\mathbf{X}_{1}^{e}) \equiv \phi_{1}^{e} = \alpha_{0}^{e} + \alpha_{1}^{e}\mathbf{X}_{1}^{e} \\ \phi^{e}(\mathbf{X}_{2}^{e}) \equiv \phi_{2}^{e} = \alpha_{0}^{e} + \alpha_{1}^{e}\mathbf{X}_{2}^{e} \end{array} \rightarrow \underbrace{\left\{ \begin{array}{c} \phi_{1}^{e} \\ \phi_{2}^{e} \end{array} \right\}}_{\mathbf{d}^{e}} = \underbrace{\left[\begin{array}{c} \mathbf{1} & \mathbf{X}_{1}^{e} \\ \mathbf{1} & \mathbf{X}_{2}^{e} \end{array} \right]}_{\mathbf{M}^{e}} \underbrace{\left\{ \begin{array}{c} \alpha_{0}^{e} \\ \alpha_{1}^{e} \end{array} \right\}}_{\mathbf{C}^{e}} \end{array}$$

kde d^e je vektor uzlových hodnot aproximované funkce ϕ . Hledané koeficienty α^e můžeme snadno spočítat z předchozí rovnice:

$$\alpha^e = (M^e)^{-1} d^e$$

a můžeme aproximaci ϕ^e vyjádřit ve tvaru

$$\phi^e = N^e(x)d^e$$
, kde $N^e(x) = p(x)(M^e)^{-1}$

Z výrazu pro matici Me plyne

$$(\mathbf{M}^e)^{-1} = \frac{1}{x_2^e - x_1^e} \begin{bmatrix} x_2^e & -x_1^e \\ -1 & 1 \end{bmatrix}$$

Odtud již dostáváme vyjádření pro matici Nº

$$\mathbf{N}^e = \left| \frac{x_2^e - x}{I^e}, \frac{x - x_1^e}{I^e} \right| = \left[N_1^e, N_2^e \right]$$

Aproximaci ϕ^e tedy zapisujeme ve tvaru $\phi^e = \mathbf{N}^e(x)\mathbf{d}^e$, kde \mathbf{N}^e je tzv. matice interpolačních funkcí elementu.

Předchozí vyjádření aproximace lze interpretovat jako lineární kombinaci bázových funkcí N_i^e : $\phi^e = \mathbf{N}^e(x)\mathbf{d}^e = \sum_i N_i^e d_i^e$

Vlastnosti interpolačních funkcí

• Kronecker delta property: $N_i^e(x_i^e) = \delta_{ij}$

$$\phi^{\mathbf{e}}(\mathbf{x}_{j}^{\mathbf{e}}) = \sum_{i=1}^{2} N_{i}^{\mathbf{e}}(\mathbf{x}_{j})^{\mathbf{e}} \phi_{i}^{\mathbf{e}} = \sum_{i=1}^{2} \delta_{ij} \phi_{i}^{\mathbf{e}} = \phi_{j}^{\mathbf{e}}$$

► $\sum_{i=1}^{2} N_i^e(x) = 1$ Pro aproximaci konstantní funkce $\phi(x) = c$, z předchozí vlastnosti plyne $\phi_i = c$, $\forall i$ a tedy máme

$$c = \sum_{i=1}^{2} N_{i}^{e} \phi_{i} = \sum_{i=1}^{2} N_{i}^{e} c = c(\sum_{i=1}^{2} N_{i}^{e})$$

Lagrangeovské interpolační funkce

Využívá Kronecker delta vlastnosti, proto *i*-tá bázová funkce musí být rovna nula ve všech uzlech vyjma *i*-tého.

čitatel zajišťuje Kronecker delta, že *i*-tá bázová funkce musí být rovna nula ve všech uzlech vyjma *i*-tého, jmenovatel pak normuje čitatel tak, aby hodnota bázové funkce v *i*-tém uzlu byla rovna jedné.

Kvadratické

$$N_1^e = \frac{(x - x_2^e)}{(x_1^e - x_2^e)},$$

$$N_1^e = \frac{(x - x_2^e)(x - x_3^e)}{(x_1^e - x_2^e)(x_1^e - x_3^e)},$$

$$N_2^e = \frac{(x - x_1^e)}{(x_1^e - x_2^e)}.$$

$$N_2^e = \frac{(x - x_1^e)(x - x_3^e)}{(x_2^e - x_1^e)(x_2^e - x_3^e)},$$

$$N_3^e = \frac{(x - x_1^e)(x - x_2^e)}{(x_2^e - x_1^e)(x_2^e - x_2^e)}.$$

Souřadnice vnitřních uzlů obyčejně volíme rovnoměrně uvnitř prvku. Pro kvadratické interpolační funkce pak např. platí:

$$\mathbf{N}^e = \frac{2}{le^2} \left[(x - x_2^e)(x - x_3^e), -2(x - x_1^e)(x - x_3^e), (x - x_1^e)(x - x_2^e) \right]$$

Přirozené souřadnice

Často bývá vhodné vyjádřit interpolační funkce v tzv. přirozených souřadnicích $\xi,\eta\in<-1,1>$. V našem případě jejich vyjádření obrdžíme snadno, pokud položíme $x_1^e=-1,\ x_2^e=1$.

Interpolační funkce pak budou mít následující vyjádření:

Lineární Kvadratické $N_1^e(\xi) = \frac{1}{2}(1-\xi) \qquad \qquad N_1^e(\xi) = \frac{1}{2}(1-\xi) - \frac{1}{2}(1-\xi^2),$ $N_2^e(\xi) = \frac{1}{2}(1+\xi) \qquad \qquad N_2^e(\xi) = (1-\xi^2),$ $N_3^e(\xi) = \frac{1}{2}(1+\xi) - \frac{1}{2}(1-\xi^2).$

Globální aproximace

Gloální aproximace hledané funkce je součtem příspěvků od jednotlivých prvků

$$\begin{split} \boldsymbol{\xi}^h &= \sum_{e=1}^{n_{el}} \mathbf{N}^e \mathbf{d}^e = \mathbf{N}^1 \mathbf{d}^1 + \mathbf{N}^2 \mathbf{d}^2 \\ \boldsymbol{\xi}^h &= [\underbrace{N_1^1}_{N_1}, \ \underbrace{N_2^1 + N_1^2}_{N_2}, \ \underbrace{N_2^2}_{N_2}] \left\{ \begin{array}{c} \xi_1 \\ \xi_2 \\ \xi_3 \end{array} \right\} \\ \boldsymbol{\xi}^h &= \mathbf{N} \mathbf{d} \end{split}$$

Srovnání klasické Ritzovy metody a MKP

- V klasické Ritzově metodě jsou bázové funkce voleny na celé řešené oblasti a jejich volba je poměrně obtížná (tvar oblasti, respektování okrajových podmínek)
- MKP volí bázové funkce velice jednoduše, jsou nenulové jen v besprostředním okolí daného uzlu (přesně řečeno jen na prvcích sdílejících daný uzel)
- V Ritzově metodě je zpřesnění dosaženo přidáním dalších lineárně nezávislých bázových funkcí. V MKP postupujeme podobně, oblast rozdělíme na větší počet prvků a tím na oblasti vznikne více bázových funkcí (více "kopečků")

Numerická integrace

Slabé řešení vyžaduje výpočet integrálů, jen výjimečně lze provést integraci analyticky, proto se používá integrace numerická. Existuje celá řada metod numerické integrace, zvlástě vhodná pro polynomy je Gaussova integrace.

Princip Gaussovy integrace

Uvažujme následující integrál:

$$I = \int_{-1}^{1} f(\xi) d\xi$$

Hodnotu integrálu budeme aproximovat jako

$$\hat{I} = \sum_{i=1}^{n} w_i f(\xi_i)$$

ldea spočívá v tom, že se snažíme stanovit hodnoty vah w_i a souřadnic integračních bodů ξ_i tak, abychom integrovali přesně polynom co nejvyššího řádu. Máme tedy celkem 2n parametrů, které můžeme zvolit.

Důsledkem toho je, že máme-li n integračních bodů, pak můžeme přesně integrovat polygon řádu $p \leq 2n-1$. Nutný počet integračních bodů pro přesnou integraci polynomu řádu p je tedy $n \geq \frac{p+1}{2}$.

Tabulka Gaussových integračních bodů a vah

n	ξ_i	W_i
1	0.0	2.0
2	$\pm 1/\sqrt{3}$	1.0
3	\pm 0.7745966692	0.555 555 5556
	0.0	0.888 888 8889
4	\pm 0.8611363116	0.347 854 8451
	$\pm \ 0.3399810436$	0.652 145 1549
5	\pm 0.9061798459	0.236 926 8851
	\pm 0.5384693101	0.478 628 6705
	0.0	0.568 888 8889
6	\pm 0.9324695142	0.171 324 4924
	$\pm\ 0.6612093865$	0.360 761 5730
	\pm 0.2386191861	0.467 913 9346

Příklad integrace polynomu

Úloha: určit hodnotu integrálu

$$I = \int_{-1}^{1} (x^4 + 4 * x^3 - 2 * x^2 - 2 * x + 1) d\xi$$

Přesné řešení:

$$I = \left[\frac{x^5}{5} + 4\frac{x^4}{4} - 2\frac{x^3}{3} - 2\frac{x^2}{2} + x\right]_{-1}^{1} = \frac{16}{15} = 1.0667$$

Gaussova integrace: pro přesnou integraci potřebujeme

$$n > \frac{p+1}{2} = \frac{5}{2} \Rightarrow n \geq 3$$
 $\hat{I} = \sum_{i=1}^{n} w_i f(\xi_i)$

$$n=1: \hat{l}_1 = f(0) * 2 = 2$$

n=2:
$$\hat{l}_2 = f(-1/\sqrt{3}) * 1 + f(1/\sqrt{3}) * 1$$

= 0.8889

n=3:
$$\hat{l}_3 = f(-0.7745966691) * 0.5555555556 + f(0) * 0.8888888889 + f(0.7745966691) * 0.5555555556$$

Izoparametrické prvky

Integrace se provádí v přirozených souřadnicích $\xi,\eta,...$ na intervalu <-1,1>. Proto je třeba geomerii prvku do těchto souřadnic transformovat. Často se pro aproximaci geometrie prvku používají stejné aproximační funkce jako pro aproximaci neznámých - izoparametrické prvky.

Např. pro tyčový prvek s lineární aproximací:

$$x^{e}(\xi) = N_{1}^{e}(\xi)x_{1}^{e} + N_{2}^{e}(\xi)x_{2}^{e} = \frac{1}{2}(1-\xi)x_{1}^{e} + \frac{1}{2}(1+\xi)x_{2}^{e};$$

Integrace na prvku se pak provede v přirozených souřadnicích:

$$\int_{x_1}^{x_2} f(x) dx = \int_{-1}^1 f(x(\xi)) Jd\xi \approx \sum_i f(x(\xi_i)) Jw_i,$$

kde
$$J = \frac{dx}{d\xi} = \frac{I^e}{2}$$
 je Jakobián transformace.