1. (1 point) Indicate, for each pair of expressions (A,B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Your answer should be in the form of the table with "yes" or "no" written in each box. No proof is required.

, ,	A	В	0	o	Ω	ω	Θ
(a)	n^3+4n	$(\lg n)^{2022}$	VO	NO	467	Asz	no
(b)	n ⁹	1.01 ⁿ	her	yeı	10	NU	10
(c)	$n^{1.5}$	$n \lg n$	۸۷	NO	467	yes	NO
(d)	2 ⁿ	3 ⁿ	247	As7	Nυ	NO	NO
(e)	$\lg(n^4)$	$\lg(n^8)$	467	10	467	no	AGZ
(f)	n^{10}	$n^{\lg n}$	yes	447	no	NO	N

a)
$$(|gn|^k = o(n^l) |b|k, d > 0$$
 (by lemma 2.2.4 i))
 $(|gn|^{2002} = o(n^s + 4n)$
 $n^3 + 4n = \omega((|gn|^{2012}))$ (by complementably property)

b)
$$n^{3} = o(u^{n})$$
 $b J > 0$, $u > 1$ (by learner $2 \cdot 2 \cdot 4 \cdot ii)$)
$$n^{9} = o(l \cdot v \mid ^{n})$$

c)
$$\lim_{n\to\infty} \frac{n^{\frac{1}{5}}}{n \lg n} = \lim_{n\to\infty} \frac{n^{\frac{1}{2}}}{\lg n} = \lim_{n\to\infty} \frac{1}{\lg 4/n} = \lim_{n\to\infty} \frac{n^{\frac{1}{2}}}{2 \lg 4/n} = \lim_{n\to\infty} \frac{n^{\frac{1}{2$$

d)
$$\lim_{n\to\infty} \frac{2^n}{3^n} = \lim_{n\to\infty} \left(\frac{2}{3}\right)^n = 0$$

e)
$$\lim_{n\to\infty} \frac{\lg(n^4)}{(g(n^2))} = \lim_{n\to\infty} \frac{4\lg n}{4\lg n} = \frac{1}{2}$$

$$\lg(n^4) = O(\lg(n^3))$$

f)
$$\lim_{n\to a} \frac{\sqrt{19^n}}{\sqrt{19^n}} = \lim_{n\to a} \frac{1}{\sqrt{19^n}} = \lim_{n\to a} \frac$$

suppore
$$f(n) = O(g(n))$$

Is it always time that $2^{f(n)} = O(2^{g(n)})$?

Boot by counter example:

(ed
$$f(n) = 2n$$
 $2n = O(n)$
 $g(n) = n$

However,
$$\lim_{n\to 0} \frac{2^{f(n)}}{2^{g(n)}} = \lim_{n\to 0} \frac{2^{2n}}{2^n} = \lim_{n\to 0} 2^n = \infty$$

$$2^{f(n)} = \omega(2^{g(n)}) \neq 0(2^{g(n)})$$

: It is not always true that $2^{f(n)} = O(2^{g(n)})$ when f(n) = O(g(n))

$$f(2)=2$$

 $f(n)=2f(\frac{n}{2})+n$ $n=2^{2}$ for all muger $i\geq 1$

shove by induction that f(n) = nlyn

Bare can:
$$f(2) = 2 = 2 |g|^2 / 2$$

Bare can:
$$f(2) = 2 = 2y^{2}$$

Inductive step: Assume $f(2^k) = 2^k |y|^2$

$$f(2^{ki}) = 2f(\frac{2^{ki}}{2}) + 2^{ki}$$

$$= 2f(2^{k}) + 2^{ki}$$

$$= 2 \cdot (2^{k} | y \ge^{k}) + 2^{ki}$$

$$= k \cdot 2^{ki} - 1 \cdot 2^{ki}$$

$$= (ki) \cdot 2^{ki}$$

$$= 2^{ki} | y \ge^{ki}$$

$$= 2^{ki} | y \ge^{ki}$$

conclusion: For all integers $2^{2} = 1 = 1 = 2^{2}$ powers of 2, $f(n) = n \lg n$