Forecasting Future Mesothelioma Incidences

Modern Peto Model

Executive Summary

- ARPC implemented the "Modern Peto" model
- Used nationally representative incidence data for males and females, 1973-2007
- Forecasted incidences for 2008-2050
- The estimated model fits the data well (R² = 85%)
- 72,012 additional mesothelioma cases are forecasted for the period 2008 through 2050 (actual number of cases from 1973 through 2007 was 85,419)

Data

Mesothelioma Incidence Data

- The National Cancer Institute (NCI) administers a data collection program called Surveillance, Epidemiology and End Results (SEER)
- A division of the Centers for Disease Control and Prevention (CDC), called National Program of Cancer Registries (NPCR) publishes data referred to as United States Cancer Statistics (USCS)

Population Data

Historical population counts were downloaded from the SEER website

Mortality Tables

Social Security Administration

Data Processing

- The model requires incidences by single year of age, whereas some of the data is more aggregated
 - Used cubic spline interpolation to fill in missing data
- Disparate population coverage in the various datasets
 - Scaled SEER data to make them nationally representative
- SEER data might be biased given the nonrandom location of registries
 - Scaled SEER data to match the (unbiased) USCS data for the period of overlap
- Forecasted US population by age, from 2008 through 2050, using mortality tables

Modern Peto Model

- A model with epidemiological foundations
 - The incidence rate is determined by the cumulative weighted exposure to asbestos
- The model follows closely the literature
 - □ Hodgson et al. (2005)
 - Tan and Warren (2009)

Number of incidences

• $Y_{A,T}$: The number of incidences at age A and year T is a random variable that follows a Poisson-distribution with mean $\lambda_{A,T}$

$$\Pr_{P_{\Gamma}} \left(Y_{A,T} = Y \right) = \frac{e^{-\lambda_{A,T}} \left(\lambda_{A,T} \right)^{y}}{v!} \qquad \text{for } y = 0,1,2,...$$

The likelihood of the data can be written as

$$I = \prod_{A,T} \frac{e^{-\lambda_{A,T}} \left(\lambda_{A,T}\right)^{Y_{A,T}}}{e^{-\lambda_{A,T}} \left(\lambda_{A,T}\right)^{Y_{A,T}}}$$

Mean incidence rate

Mean number of incidences is determined by the following formula

$$\lambda_{A,T} = (r_{A,T} + b) * Pop_{A,T}$$

- r_{A,T} incidence rate due to asbestos exposure
- b background incidence rate
- Pop_{A,T} population size of age A in year T

Incidence rate due to asbestos exposure

 The incidence rate due to asbestos exposure is determined by a theoretical model of cumulative asbestos exposure

$$r_{A,T} = \sum_{t=0}^{A} D_{T-t} W_{A-t} * max(t-L,0)^{k}$$

- D_T Overall population exposure in year T
- W_A Exposure potential at age A
- L Latency (assumed to be 10 years)
- k exponent of time since exposure

Exposure to asbestos

- How to model the exposure variables?
 - Overall population exposure (D_T)
 - Age-specific exposure potential (W_A)
- D_T was assumed to be a non-parametric function
 - We picked 11 gridpoints: 1910, 1920, 1925, 1930, 1940, 1950, 1960, 1970, 1980, and 1990.
 - The 11 associated function values were estimated
 - Other function values were determined by piecewise cubic interpolation
- W_A was assumed to be a parametric beta function
 - This function has two free parameters. We assumed symmetry: $W_{\alpha} = W_{\beta}$, so only one parameter had to be estimated

Maximum Likelihood Estimation

Estimate the model by maximum likelihood

$$L(\theta) = \prod_{A,T} \frac{e^{-\lambda_{A,T}(\theta)} (\lambda_{A,T}(\theta))^{Y_{A,T}}}{Y_{A,T}!}$$

$$\log L(\theta) = \sum_{A,T} -\lambda_{A,T}(\theta) + Y_{A,T} \log(\lambda_{A,T}(\theta)) - \log(Y_{A,T}!)$$

Parameter estimates

Number of observations: 3,255

Pseudo-R²: 0.85

Parameter	Coefficient	95% Confidence Interval	
		Lower Bound	Upper Bound
D_1910	0.0029	0.0000	0.0638
D_1920	0.0082	0.0000	0.0727
D_1925	0.3422	0.0753	0.4358
D_1930	0.0428	0.0000	0.3468
D_1940	0.7019	0.5030	0.8748
D_1950	0.7019	0.5363	0.9008
D_1960	0.6171	0.4834	0.8016
D_1970	0.4690	0.3521	0.5911
D_1980	0.1795	0.1088	0.2607
D_1990	0.0000	0.0000	0.0000
W_alpha = W_beta	3.0387	2.7522	3.3391
k	1.8928	1.8434	1.9492
b	0.0566	0.0486	0.0639

Note: Confidence intervals determined by parametric bootstrap (200 random draws)

Actual and Fitted, by year, for a specific birth cohort (1910-1914) male and female, entire US

Actual and Fitted, by year, for a specific birth cohort (1915-1919) male and female, entire US

Actual and Fitted, by year, for a specific birth cohort (1920-1924) male and female, entire US

Actual and Fitted, by year, for a specific birth cohort (1925-1929) male and female, entire US

Actual and Fitted, by year, for a specific birth cohort (1930-1934) male and female, entire US

Actual and Fitted, by year, for a specific birth cohort (1935-1939) male and female, entire US

Actual and Fitted, by year, for a specific birth cohort (1940-1944) male and female, entire US

Actual and Fitted, by year, for a specific birth cohort (1945-1949) male and female, entire US

Actual and Fitted, by year, for a specific birth cohort (1950-1954) male and female, entire US

Actual and Fitted, by year, for a specific age group (40-44) male and female, entire US

Actual and Fitted, by year, for a specific age group (45-49) male and female, entire US

Actual and Fitted, by year, for a specific age group (65-69) male and female, entire US

Actual and Fitted, by year, for a specific age group (70-74) male and female, entire US

Actual and Fitted, by year, for a specific age group (75-79) male and female. entire US

Actual and Fitted, by year, for a specific age group (80-84) male and female. entire US

Actual and Fitted, by year, for a specific age group (85-89) male and female. entire US

References

- Bell, F. C., and Miller, M. L. "Life Tables for the US Social Security Area 1900-2100"
- Hodgson, J., McElvenny, D., Darnton, A., Price, M., and Peto, J. (2005)
 "The Expected Burden of Mesothelioma Mortality in Great Britain from 2002 to 2050," *British Journal of Cancer* 4, 587-593
- Nicholson W. J., Perkel, G., and Selikoff, I. J. (1982) "Occupational Exposure to Asbestos: Population at Risk and Projected Mortality – 1980-2030," American Journal of Industrial Medicine 3, 259-311
- Peto, J., Henderson, B. E., and Pike, M. C. (1981) "Trends in Mesothelioma Incidence in the United States and the Forecast Epidemic Due to Asbestos Exposure during World War II"
- Tan, E., and Warren, N. (2009), "Projection of Mesothelioma Mortality in Great Britain," prepared by Health and Safety Laboratory for the Health and Safety Executive 2009

