Disfluency Detection using Multiple-step Stacked Learning

Xian Qian and Yang Liu

Conceptos

Multiple step stacked learning

Disfluencia = Error al hablar

Ejemplo

I want a flight to Boston uh I mean to Denver

Ejemplo (estructura de disfluencia)

I want a flight to Boston uh I mean to Denver

Edited words

Filler words

Overview of the stack

M3N Classifier: Max-Margin Markov's Network.

Filler: Un-weighted hamming loss

Edited: Weighted hamming loss

Etiquetado: Edited words

I/O want/O a/O flight/O to/BE Boston/EE uh/O I/O mean/O to/O Denver/O

BE: Beginning of the multi-word edited region

<u>IE</u>: In the edited region

<u>EE</u>: End of the edited region <u>SE</u>: Single word edited region

O: Other

Evaluation metric for edited words

$$P = \frac{\# \text{correctly predicted edited words}}{\# \text{predicted edited words}}$$
 $R = \frac{\# \text{correctly predicted edited words}}{\# \text{gold standard edited words}}$
 $F = \frac{2 \times P \times R}{P + R}$

N-gram features

transitions

Filler word detection

unigrams	$w_0, w_{-1}, w_1, w_{-2}, w_2$
	$p_0, p_{-1}, p_1, p_{-2}, p_2, w_0 p_0$
bigrams	$w_{-1}w_0, w_0w_1, p_{-1}p_0, p_0p_1$
trigrams	$p_{-2}p_{-1}p_0, p_{-1}p_0p_1, p_0p_1p_2$
logic unigrams	$I(w_i, w_0), I(p_i, p_0), -4 \le i \le 4$
logic bigrams	$I(w_{i-1}w_i, w_{-1}, w_0)$
	$I(p_{i-1}p_i, p_{-1}p_0)$
	$I(w_iw_{i+1}, w_0w_1)$
	$I(p_i p_{i+1}, p_0 p_1), -4 \le i \le 4$

 $y_{-1}y_{0}$

Edited word detection

All ter	nplates in Table 1
unigrams	w_1', w_2', w_3', w_4'
bigrams	$p_0p_1', p_0p_2', p_0p_3', p_0p_4' \ w_0p_1', w_0p_2', w_0p_3', w_0p_4' \ w_0p_1, w_0p_2, w_0p_3, w_0p_4$
logic unigrams	$I(w_0, w_i'), \qquad 1 \le i \le 4$
transitions	$p_0 y_{-1} y_0$

w0, p0 denotan la palabra actual y el POS tag. *I*(a,b) indican si a o b son idénticas

3ra capa del stack. Refinamiento. Boundary Errors (1)

Correcto: The new type is prettier than what their/SE they used to look like

Posible output: The new type is prettier than what/BE their/EE they used to look like

than they es una expresión improbable y rara (incorrecta)

3ra capa del stack. Refinamiento. Boundary Errors (2)

<u>Coordinates</u>: They can't decide which are the good aspects and which are the bad aspects

Rough copies: It/BE 's/IE a/IE pleasure/IE to/EE it 's good to get outside

All templates	in Table 1, Table 2
word n-grams	$w_1^{\prime\prime},w_0w_1^{\prime\prime}$
in-between	$L_{AB}, w_0 b_{AB}, b_{AB}$

w"_i = Etiqueta de la palabra i posiciones a la derecha

L_AB = Longitud de la sub-sequencia en el patrón AB....AB

b AB = Indica si la palabra actual se encuentra en el medio de 2 bigramas iguales

Weight hamming loss Matrix for Max-Margin Markov's Network

predict	BE	IE	EE	SE	0
BE	0	1	1	1	2
IE	1	0	1	1	2
EE	1	1	0	1	2
SE	1	1	1	0	2
0	1	1	1	1	0

Table 4: Weighted hamming loss for M³Ns.

Comparison and Results

	CRF	AP	PA	M^3N	w. M ³ N
Baseline	78.8	79.0	78.9	79.4	80.1
Step 2	81.0	81.1	81.1	81.5	82.3
Step 3	82.9	83.0	82.8	83.3	84.1

Table 5: Effect of training strategy and recovered features for stacked learning. F scores are reported. AP = Averaged Perceptron, PA = online Passive Aggresive, M³N = un-weighted M³Ns, w. M³N = weighted M³Ns.

Preguntas?