Teoria del potenziale scalare: campi vettoriali e forme differenziali

Lucrezia Bioni

Lavoro del campo lungo una curva

Dato un campo vettoriale \mathcal{F} di classe \mathcal{C}^0 su Ω aperto di \mathbb{R}^n e data una curva regolare a tratti $\varphi : [a, b] \to \Omega$, si chiama lavoro del campo lungo la curva data il numero:

$$\int_{\gamma} \langle \mathcal{F}, \tau \rangle \ ds := \int_{a}^{b} \sum_{j=1}^{n} \mathcal{F}_{j}(\varphi(t)) \cdot \varphi_{j}'(t) \ dt$$

Integrale di una forma differenziale lungo una curva

Data ω forma differenziale su Ω di classe \mathcal{C}^0 , $\omega = \sum_{j=1}^n a_j dx_j$ e data una curva regolare a tratti φ : $[a,b] \to \Omega$, si chiama integrale di ω lungo φ la quantità

$$\int_{\gamma} \omega = \int_{\gamma} \sum_{j=1}^{n} a_{j} dx_{j} := \int_{a}^{b} \sum_{j=1}^{n} a_{j}(\varphi(t)) \varphi'_{j}(t) dt = \int_{\gamma} \langle \mathcal{F}_{\omega}, \tau \rangle ds$$