PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-062488

(43) Date of publication of application: 04.03.1994

(51)Int.Cl.

H04R 3/12

H03H 17/02

(21)Application number : 04-214144

(71)Applicant: PIONEER ELECTRON CORP

(22)Date of filing:

11.08.1992

(72)Inventor: CHIYOU SHISEI

(54) SPEAKER EQUIPMENT

(57)Abstract:

PURPOSE: To easily control the directivity over a wide frequency band by driving a group of digital filters, to which a common input signal is supplied corresponding to individual speakers of a speaker group with characteristics changed for the purpose of controlling the directivity, by a required sampling frequency.

CONSTITUTION: A high frequency band audio signal passing an HPF 22 is supplied to digital filters DF1 to DFm of a filter unit 24 of the filter group. Filter characteristics of these filters DF1 to DFm are controlled to control the directivity of high frequency band sounds outputted from a high frequency band speaker unit 28 having corresponding plane arrangement type speakers SP1 to SPm. The control on the low frequency band side

is performed in the same manner. The filter unit 24 and a low-pass filter unit 32 are controlled through a controller (CPU) 38 and are driven by the sampling frequency corresponding to the reproducing frequency band of the corresponding speaker group, and the directivity is easily controlled over a wide frequency band by divisional control corresponding to the reproducing frequency band.

LEGAL STATUS

Searching PAJ Page 2 of 2

[Date of request for examination] 14.07.1999

[Date of sending the examiner's decision of 28.08.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 4 R 3/12

Z 7346-5H

H 0 3 H 17/02

G 7037-5 J

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号

特願平4-214144

(22)出願日

平成 4年(1992) 8月11日

(71)出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72)発明者 張 子青

東京都大田区大森西 4 丁目15番 5号 バイ

オニア株式会社大森工場内

(74)代理人 弁理士 石川 泰男 (外1名)

(54)【発明の名称】 スピーカ装置

(57)【要約】

【目的】 スピーカ装置に係り、特に平面配列型のスピーカ装置の指向性制御技術に関し、低域から高域までの 広帯域の再生帯域において指向性を容易に制御することができるスピーカ装置を提供することを目的とする。

【構成】 縦方向及び横方向に平面状に配置された複数のスピーカユニットを含み複数のスピーカユニットには、それぞれデジタルフィルタを介して共通入力信号が供給されるように構成されており、各デジタルフィルタの特性を変更することにより対応するスピーカユニットの指向性を制御するスピーカ装置において、共通入力信号の再生帯域に応じて分割配置されており、複数のスピーカ群と、各スピーカ群に接続されており、該スピーカ群内の複数のスピーカ群に接続されており、該スピーカ群内の複数のスピーカな行った。

対応していている。

「対応でいたサンプリング周波数で駆動されるように構成する。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 縦方向及び横方向に平面状に配置された 複数のスピーカユニットを含み、前記複数のスピーカユニットにはそれぞれデジタルフィルタを介して共通入力 信号が供給されるように構成されており、前記各デジタルフィルタの特性を変更することにより対応するスピーカユニットの指向性を制御するスピーカ装置において、 共通入力信号の再生帯域に応じて分割配置されており、 複数のスピーカユニットを有する複数のスピーカ群と、 前記各スピーカ群に接続されており、該スピーカ群内の 複数のスピーカユニットにそれぞれ接続された複数のデジタルフィルタを有する複数のデジタルフィルタ群と、 を有し前記複数のデジタルフィルタ群は、対応するスピーカ群の再生帯域に応じたサンプリング周波数で駆動されるように構成されていることを特徴とするスピーカ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、スピーカ装置に係り、 特に平面配列型のスピーカ装置の指向性制御技術に関す 20 る。

[0002]

【従来の技術】スピーカの性能を評価するための特徴の一つに指向性がある。指向性とは、方向によって音圧の大きさが相違する性質である。この指向性は、一般に、広い程良いといったものではなく、そのスピーカの用途、換言すれば、そのスピーカのサービス範囲によって求められるパターンが異なる。例えば、オーディオ用の場合は広い指向性を求められる場合が多いし、拡声用の場合にはハウリング防止等のために特定の方向のみ放射 30するよう狭指向性とすることが求められる。

【0003】一方、スピーカの指向性を決定する要因に は、単一のスピーカユニットの場合、コーン形であるか ホーン形であるか等のスピーカユニット自体の構造や、 コーン形スピーカの場合の振動板のコーンの深さ等があ る。また、複数のスピーカユニットを用いた直線配列型 (いわゆるトーンゾイレ形) のスピーカにより特定の方 向にのみ放射するものもある。いずれにしても、スピー カの指向性は当該スピーカユニット自体の物理的構造も しくは配置により決定される。しかし、要求される指向 40 性に合せたスピーカを作製するには手間がかかり、外形 寸法等においても制約を受ける場合が多い。そのため、 ディジタルフィルタを用いて指向性パターンを電気的に 制御するようにしたスピーカシステムが開発されている (特開平2-239798号公報)。そして、図2に は、このようなスピーカシステムのブロック回路が示さ れている。

【0004】図2において、符号10、12、14はそれぞれ、デジタルフィルタ群、アンプ群、スピーカ群を

【0005】以上の構成において、デジタルフィルタ16-1、16-2、…、16-nのフィルタ係数を調整することにより、スピーカユニット20-1、20-2、…、20-nの指向性が制御され、これにより、スピーカ群14全体として最適な指向性が得られるようになっている。

[0006]

【発明が解決しようとする課題】上記図2に示すような 従来のスピーカ装置において、スピーカユニットが低周 波信号により駆動されるときには、スピーカユニット は、前後に振動するので、規則正しい波面を発生する。 ところが、スピーカユニットが高周波信号により駆動さ れるときには、スピーカユニットは、その振動板が高周 波信号に追従できず、このため、振動板の表面に分割振 動が起こる。これにより、各方向に音波が発生するた め、スピーカの指向性が困難になり、あるいは制御不可 能になる。

【0007】また、デジタルフィルタをFIRフィルタで構成した場合に、サンプリング周波数が高いときに充分低い周波数まで指向性を制御しようとすると、多くのフィルタタップ数が必要になる。

【0008】本発明は、上記従来の課題に鑑みて為されたものであり、その目的は、低域から高域までの広帯域の再生帯域において指向性を容易に制御することができるスピーカ装置を提供することにある。

[0009]

【課題を解決するための手段】本発明は、縦方向及び横方向に平面状に配置された複数のスピーカユニットを含み前記複数のスピーカユニットには、それぞれデジタルフィルタを介して共通入力信号が供給されるように構成されており、前記各デジタルフィルタの特性を変更することにより対応するスピーカユニットの指向性を制御するスピーカ装置において、共通入力信号の再生帯域に応じて分割配置されており、複数のスピーカユニットを有する複数のスピーカ群と、前記各スピーカ群に接続されており、該スピーカ群内の複数のスピーカユニットにそ

のデジタルフィルタ群と、を有し前記複数のデジタルフィルタ群は、対応するスピーカ群の再生帯域に応じたサンプリング周波数で駆動されるように構成されていることを特徴とする。

[0010]

【作用】本発明において、共通入力信号の再生帯域に応じて複数のスピーカ群が分割配置され、例えば、高域再生用スピーカ群と中低域再生用スピーカ群とが配置される。共通入力信号は、前記スピーカ群に対して、対応するデジタルフィルタ群を介して供給される。デジタルフィルタ群は、対応するスピーカ群の再生帯域に応じたサンプリング周波数で駆動される。例えば、高域再生用スピーカ群に対応するデジタルフィルタ群に対しては、サンプリング周波数を高く設定し、一方、中低域再生用スピーカ群に対応するデジタルフィルタ群に対しては、サンプリング周波数を低く設定する。このように構成すると、低域から高域までの広帯域の再生帯域にわたって指向性を容易に制御できる。

[0011]

【実施例】以下、図面に基づいて本発明の実施例を説明する。図1には、本発明の実施例によるスピーカ装置が示され、(A)はそのブロック図を示し、(B)はスピーカの配置を示す。

【0012】図1(A)に示すように、スピーカ装置 は、一つの共通入力信号端子INを有しており、この共 通入力信号端子 I Nからハイパスフィルタ 2 2 を介して 複数の高域用スピーカユニットSP₁~SP_mのそれぞ れに分岐配線され、共通入力信号の高域成分により各ス ピーカユニット $SP_1 \sim SP_m$ が並列駆動されるように なっている。共通入力信号端子INからハイパスフィル タ22を介して各スピーカユニットSP₁ ~SP_m に到 る各分岐路の信号線には、図示するように、デジタルフ ィルタDF₁ ~DF_m およびこれと直列なアンプA₁ ~ A_m が各スピーカユニット $SP_1 \sim SP_m$ に一対一で対 応して挿入接続されている。以上の構成において、デジ タルフィルタ $DF_1 \sim DF_m$ 、アンプ $A_1 \sim A_m$ スピー カユニット $SP_1 \sim SP_m$ は、それぞれ、デジタルフィ ルタ群24、アンプ群26、高域用スピーカユニット群 28と称せされる。

【0015】図1(B)に示すように、高域用スピーカ ユニットSP₁ ~SP_m は、一方向(例えば、y座標軸 方向)に等間隔で直線状に配列されてスピーカアレイを 構成している。同様にして、中低域用スピーカユニット SP1 ~SPn は、一方向(例えばy座標軸方向)に等 間隔で直線状に配列されてスピーカアレイを構成してい る。なお、各高域用スピーカユニットSP₁~SP_mは 好ましくは同一物理的特性、例えば当然スピーカユニッ トの特性を規律する諸元(口径、最低共振周波数、振動 板質量等)の等しいものとする。同様に、中低域用各ス ピーカユニット $SP_1 \sim SP_n$ は好ましくは同一物理的 特性である。スピーカユニットの再生周波数範囲、すな わち、ウーファ、スコーカ、ツイータ、あるいはフルレ ンジタイプとするか否かは、用途に合せて適宜選択して よい。また図示しないが、各スピーカユニットを個々に エンクロージァに収納するか、一枚の連続バッフル板あ るいは壁等に取付けるかは、当該スピーカ装置の用途に よって異なるので、適宜、必要な構成とすればよい。な お、図1(B)において、x軸は音の放射方向、y軸は 横方向(もしくは水平方向)、および z 軸は高さ方向 (もしくは垂直方向)を表わすものとする。

【0016】デジタルフィルタDF1~DFm、DF1~DFnは、デジタル信号処理装置(DSP: digital signal processor)により実現され、一般的な直接型FIR(finite impulse response)フィルタで構成される。ハードウェア構成は、図示を省略するが、信号処理の中心となる算術演算や論理演算を行う演算ユニット(ALU: arithmetic logic unit)と、演算シーケンスを制御するためのシーケンサ(プログラムカウンタ、命令レジスタおよびデコーダを含む)と、必要なプログラムを格納するROM(read only memory)、データの格納を行うRAM(random access memory)およびデータの一時的格納を行うレジスタと、外部とのデータの授受を行うための入出力ポートと、および上記各要素を接

[0017] xx, \vec{r} \vec{v} \vec{p} \vec{v} \vec{r} \vec{v} \vec DF₁ ~DF_n の構成(タップ数、乗算器の係数)は同 じである。以上の構成において、共通入力信号端子IN からの共通入力信号は、ハイパスフィルタ(例えばfc =2.5KHz)22により高域成分が抽出され、該高 域成分は、デジタルフィルタDF₁ ~DF_m に供給さ れ、該デジタルD $F_1 \sim DF_m$ からの出力は、アンプA 1~Amを介して高域用スピーカユニットSPI~SP mに供給される。ここで、デジタルフィルタDF1~D F_m は、そのサンプリング周波数 $f_s = 20 \, \text{KH} \, z$ で駆 動させられ、2. 5KHz~10KHzの範囲で高域用 スピーカユニットSP₁~SP_mの指向性を制御する。 【0018】また、共通入力信号端子【Nからの共通入 力信号は、ハイカットフィルタ30により高域成分がカ ットされて中低域成分が抽出され、該中低域成分は、デ ジタルフィルタDF₁ ~DF_n に供給され、該デジタル フィルタDF₁~DF_nからの出力は、アンンプA₁~ A_n を介して中低域用スピーカユニット $SP_1 \sim SP_n$ に供給される。なお、ハイカットフィルタ30を設け ず、共通入力信号がデジタルフィルタDF₁ ~DF_n に 20 直接に供給されるようにしてもよい。前記デジタルフィ ν ρ DF₁ \sim DF_n は、そのサンプリング周波数F_s = 5KHzで駆動させられ、0~5KHzの範囲で中低域

【0019】上記本発明の実施例によるスピーカ装置においては、高域成分の再生を高域用スピーカユニットで行い、且つ、高域用スピーカユニットの指向性を制御するデジタルフィルタのサンプリング周波数を高く設定して高域成分の指向性を制御するようにしているので、中 50低域成分から高域成分までの全ての再生帯域にわたって指向性を容易に制御することができる。

用スピーカユニットSP₁ ~SP_n の指向性を制御す

【0020】また、各デジタルフィルタの乗算器の係数をそれぞれ同じにすると、この係数データを各デジタルフィルタに同時に送ることができるので、指向性を瞬時

に変更できる(データが転送が容易になる)。更に、デジタルフィルタのフィルタ係数を記憶しているテーブルが1つでよい。

【0021】なお、実施例においては、デジタルフィルタは、FIRフィルタで構成されているが、IIR (In finite Impulse Response) で構成されるようにしてもよい。

【0022】また、実施例においては、各デジタルフィルタの構成を同じにしているが、各デジタルフィルタの構成を異なるようにしてもよい。なお、実施例では、デジタルフィルタのフィルタ係数は、非直線最適化手法 (特願平3-197864号)により演算されているが、本発明は、最適化手法を用いないスピーカ装置 (例えば特開平2-239798号公報)にも適用可能である。

[0023]

【発明の効果】以上説明したように、本発明よれば、高域成分の再生を高域用スピーカ群で行い、且つ、高域用デジタルフィルタのサンプリング周波数を高く設定して高域の指向性を制御するようにしているので低域から高域までの広帯域の再生帯域にわたって指向性を容易に制御することができる。

【図面の簡単な説明】

【図1】本発明の実施例によるスピーカ装置を示し、 (A) はブロック図であり、(B) はスピーカの配置を 示す斜視図である。

【図2】従来のスピーカ装置のブロック図である。

【符号の説明】

- 24…デジタルフィルタ群
- > 26…アンプ群
 - 28…高域用スピーカユニット
 - 32…デジタルフィルタ群
 - 34…アンプ群
 - 36…中低域用スピーカユニット
 - IN…共通入力信号端子

【図2】

