

every Hilbert space has an orthonormal basis

 ${\bf Canonical\ name} \quad {\bf Every Hilbert Space Has An Orthonormal Basis}$

Date of creation 2013-03-22 17:56:05 Last modified on 2013-03-22 17:56:05 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 4

Author asteroid (17536)

Entry type Theorem Classification msc 46C05

Theorem - Every Hilbert space $H \neq \{0\}$ has an orthonormal basis.

Proof: As could be expected, the proof makes use of Zorn's Lemma. Let \mathcal{O} be the set of all orthonormal sets of H. It is clear that \mathcal{O} is non-empty since the set $\{x\}$ is in \mathcal{O} , where x is an element of H such that $\|x\| = 1$.

The elements of \mathcal{O} can be ordered by inclusion, and each chain \mathcal{C} in \mathcal{O} has an upper bound, given by the union of all elements of \mathcal{C} . Thus, Zorn's Lemma assures the existence of a maximal element B in \mathcal{O} . We claim that B is an orthonormal basis of H.

It is clear that B is an orthonormal set, as it belongs to \mathcal{O} . It remains to see that the linear span of B is dense in H.

Let $\overline{\operatorname{span} B}$ denote the closure of the span of B. Suppose $\overline{\operatorname{span} B} \neq H$. By the orthogonal decomposition theorem we know that

$$H = \overline{\operatorname{span} B} \oplus (\overline{\operatorname{span} B})^{\perp}$$

Thus, we conclude that $(\overline{\operatorname{span} B})^{\perp} \neq \{0\}$, i.e. there are elements which are http://planetmath.org/OrthogonalVectorsorthogonal to $\overline{\operatorname{span} B}$. This contradicts the maximality of B since, by picking an element $y \in (\overline{\operatorname{span} B})^{\perp}$ with ||y|| = 1, $B \cup \{y\}$ would belong belong to \mathcal{O} and would be greater than B.

Hence, $\overline{\text{span }B} = H$, and this finishes the proof. \square