A new formula for the nth prime

The Riemann Hypothesis is false. View project

Article ·	Article · July 2004					
Source: arXiv						
CITATIONS	;	READS				
2		2,097				
1						
1 author	:					
3	Sebastián Martín Ruiz					
	I. E.S. Caepionis					
	32 PUBLICATIONS 146 CITATIONS					
	SEE PROFILE					
Some of the authors of this publication are also working on these related projects:						

A new formula for the n-th prime: Sebastián Martín Ruiz

Avda. de Regla 43, Chipiona 11550 Spain smruiz@telefonica.net

Using the below expression for the Characteristic Function of Prime Numbers:

$$\left| \frac{lcm(1,2,...,j)}{j \cdot lcm(1,2,...,j-1)} \right| = \begin{cases} 1 & \text{if } j \text{ is prime} \\ 0 & \text{if } j \text{ is composite} \end{cases}$$

(This function is complementary to the Smarandache Prime Function [1], defined as: P(n) = 0, if n is prime, and P(n) = 1 otherwise.

It is easy to prove this expression studying it in detail.

I have obtained this expression this last month (March 2004) but I do not know if already it is known.)

we obtain the following formula for the n-th prime [2],[3],[4],[5],[6]:

$$p_{n} = 1 + \sum_{k=1}^{\lfloor 2n \log n + 2 \rfloor} \left(1 - \left\lfloor \frac{1}{n} \sum_{j=2}^{k} \left\lfloor \frac{lcm(1, 2, ..., j)}{j \cdot lcm(1, 2, ..., j - 1)} \right\rfloor \right\rfloor \right)$$

The Proof is the same of the previous articles.

It is necessary to see the references for a complete comprehension of the formulas.

We can see that this formula is faster than the previous:

Comparative table of times:

Prime	Prob 38	Lem	Prob 38 mod	Lcm mod
P10=29	0,2 sec	0,06 sec	0,04 sec	0,02 sec
P20=71	2,5 sec	0,8 sec	0,4 sec	0,1 sec
P30=113	12,2 sec	3,7 sec	1,3 sec	0,4 sec
P40=173	36,5 sec	10,5 sec	2,9 sec	0,7 sec
P50=229	84 sec	24 sec	5,5 sec	1,3 sec
P100=541			41 sec	6,9 sec
P200=1223			299 sec	39 sec

^{*}Prob 38: [6] It is the original formula without modifying.

The time complexity of this algorithm is O(nlog n)^3

The time complexity of this algorithm is $O(n \log n)^{(3/2)}$.

Which is the time complexity of this algorithm?

^{*}Lcm: Is the new formula.

^{*}Prob 38 Mod: [6] It is the original formula with the modifications.

^{*}Lcm mod: It is the new formula calculating lcm (1,2, ..., j) of way recurrent.

The code in Mathematica:

L[1]=1;

L[n]:=L[n]=LCM[L[n-1],n]

LG[n]:=L[n]/L[n-1]

FL[n]:=Quotient[LG[n],n]

 $Pii[n]:=Sum[FL[i], \{i,2,n\}]$

PrimeLCM[n]:=1+Sum[1-Quotient[Pii[k],n], $\{k,1,Floor[2*n*Log[n]+2]\}$]

Do[Print[n," ", Timing[PrimeLCM[n]]," ",Prime[n]], {n,200,200}]

200 1223 1223

{39.438 Second}

We can accelerate it more enough of the following form:

Using the bound of Rosser and Schoenfeld for p_n [7]:

$$c_n = n \log n + n(\log(\log n) - 1/2)$$

and modifying the formula considering that $p_n > \lfloor n \log n \rfloor$ [7] we obtain for n> 1:

$$p_{n} = \left\lfloor n \log n \right\rfloor + \sum_{k=|n \log n|}^{\lfloor C_{n}+3 \rfloor} \left(1 - \left\lfloor \frac{1}{n} \sum_{j=2}^{k} \left\lfloor \frac{lcm(1,2,...,j)}{j \cdot lcm(1,2,...,j-1)} \right\rfloor \right) \right)$$

This is a nice expression that relates the n-th prime number with the approximation obtained with the prime number theorem $n \log n$ adding a term of error.

The new times are:

Prime	Prob 38 mod	Lcm mod	RS acceleration
P10=29	0,04 sec	0,02 sec	0 sec
P20=71	0,4 sec	0,1 sec	0,02 sec
P30=113	1,3 sec	0,4 sec	0,05 sec
P40=173	2,9 sec	0,7 sec	0,09 sec
P50=229	5,5 sec	1,3 sec	0,15 sec
P100=541	41 sec	6,9 sec	0,86 sec
P200=1223	299 sec	39 sec	4,59 sec

Which is the time complexity of this algorithm?

References:

- [1]: E. Burton, "Smarandache Prime and Coprime Functions" http://www.gallup.unm.edu/~smarandache/primfnct.txt
- [2]: S. M. Ruiz, The general term of the prime number sequence and the Smarandache Prime Function, *Smarandache Notions Journal* 11 (2000) 59.
- [3]: S. M. Ruiz, A functional recurrence to obtain the prime numbers using the Smarandache Prime Function, *Smarandache Notions Journal* 11 (2000) 56.
- [4]: S. M. Ruiz, Applications of Smarandache Functions and Prime and Coprime Functions, American Research Press, Rehoboth, 2002.
- [5]: S. M. Ruiz & J. Sondow, Formulas for $\pi(x)$ and the nth Prime. *Mathematics Magazine for Grades 1-12.* 4/2004 http://www.mathematicsmagazine.com/corresp/Formulaspipn2.htm
- [6]: C. Rivera, The Prime Puzzles and Problems Connections, Problem 38 http://www.primepuzzles.net/problems/prob 038.htm
- [7]: J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, *Ill. J. Math.* 6 (1962) 64-94.