Mathematical Analysis. Assignment 2. Limits of functions. Continuity

- 1. (a) It is known that functions f(x) and g(x) do not have a limit as $x \to x_0$. Does it imply that functions f(x) + g(x) and f(x)g(x) do not have a limit as $x \to x_0$?
 - (b) It is known that function f(x) has a finite limit and g(x) does not have a limit as $x \to x_0$. Does it imply that functions f(x) + g(x) and f(x)g(x) do not have a limit as $x \to x_0$?
- 2. Formulate the following statements using $\delta \epsilon$ notation:
 - (a) $\lim_{x \to x_0^-} f(x) = a;$
 - (b) $\lim_{x \to x_0^+} f(x) = +\infty;$
 - (c) $\lim_{x \to -\infty} f(x) = \infty;$
 - (d) function f(x) has a finite limit as $x \to x_0$;
 - (e) function f(x) does not have a finite limit as $x \to x_0$.
- 3. Using the Cauchy definition of a limit prove that $\lim_{x \to a} x^3 = 64$.
- 4. Find the following limits:
 - (a) $\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 x 6}$;
 - (b) $\lim_{x \to 3} \frac{x^3 5x^2 + 3x + 9}{x^3 8x^2 + 21x 18};$
 - (c) $\lim_{x \to 1} \frac{x^4 2x + 1}{x^8 2x + 1}$;
 - (d) $\lim_{x \to 1} \left(\frac{x^2 4x + 6}{x^2 5x + 4} + \frac{x 4}{3x^2 9x + 6} \right);$
 - (e) $\lim_{x \to \infty} \frac{(x+1)^2(3-7x)^2}{(2x-1)^4}$;
 - (f) $\lim_{x \to \infty} \frac{(1+x^{11}+7x^{13})^3}{(1+x^4)^{10}};$
 - (g) $\lim_{x\to\infty} \left(\frac{x^2}{2x+1} + \frac{x^3+4x^2-2}{1-2x^2}\right);$
 - (h) $\lim_{x\to 3} \frac{\sqrt{x^2-2x+6}-\sqrt{x^2+2x-6}}{x^2-4x+3}$;
 - (i) $\lim_{x\to 0} \frac{\sqrt[3]{x+8}-2}{\sqrt{1+2x}-1}$;
 - (j) $\lim_{x\to\infty} \left(\sqrt{x^4 + 2x^2 1} \sqrt{x^4 2x^2 1}\right);$
 - (k) $\lim_{x \to -\infty} (\sqrt{x^2 + 8x + 3} \sqrt{x^2 + 4x + 3}).$

Answer: (a) $-\frac{2}{5}$; (b) 4; (c) $\frac{1}{3}$; (d) 1; (e) $\frac{49}{16}$; (f) 0; (g) $-\frac{9}{4}$; (h) $-\frac{1}{3}$; (i) $\frac{1}{12}$; (j) 2; (k) -2.

- 5. Find the following limits:
 - (a) $\lim_{x \to 0} \frac{\sin 3x}{x}$;
 - (b) $\lim_{x \to \infty} x \sin \frac{\pi}{x}$;
 - (c) $\lim_{x \to 0} \left(\frac{2}{\sin 2x \sin x} \frac{1}{\sin^2 x} \right);$
 - (d) $\lim_{x \to 1} \frac{\sin 7\pi x}{\sin 2\pi x}$;

```
(e) \lim_{x \to \infty} x^2 \left(\cos \frac{1}{x} - \cos \frac{3}{x}\right);
```

(f)
$$\lim_{x\to 0} \frac{\sqrt{1+2\sin 3x} - \sqrt{1-4\sin 5x}}{\sin 6x}$$
;

(g)
$$\lim_{x \to \infty} (\sin \sqrt{x^2 + 1} - \sin \sqrt{x^2 - 1});$$

(h)
$$\lim_{x \to \infty} \left(\frac{x}{2x+1}\right)^x$$
;

(i)
$$\lim_{x \to \infty} \left(\frac{x}{x+1}\right)^x$$
;

$$(j) \lim_{x \to 0^+} \frac{\arccos(1-x)}{\sqrt{x}};$$

(k)
$$\lim_{x \to -1^+} \frac{\sqrt{\pi} - \sqrt{\arccos x}}{\sqrt{x+1}}$$
.

Answer: (a) 3; (b) π ; (c) $\frac{1}{2}$; (d) $-\frac{7}{2}$; (e) 4; (f) $\frac{13}{6}$; (g) 0; (h) the limit does not exist; (i) $\frac{1}{e}$; (j) $\sqrt{2}$; (k) $\frac{1}{\sqrt{2\pi}}$.

6. Which of the following statements are true? Justify your answer.

(a)
$$x^3 = o(x), x \to 0;$$

(b)
$$x^3 = o(x), x \to \infty;$$

(c)
$$x = o(x^3), x \to 0;$$

(d)
$$x = o(x^3), x \to \infty$$
.

Answer: (a) and (d).

7. Let $x \to 0$, $n \in \mathbb{N}$, $k \in \mathbb{N}$, $n \ge k$. Show that

(a)
$$o(x^k) + o(x^n) = o(x^k);$$

(b)
$$o(x^k) \cdot o(x^n) = o(x^{n+k})$$
.

- 8. Prove that function $f(x) = \cos x$, $x \in \mathbb{R}$ is continuous¹.
- 9. Find the discontinuities of the following functions and determine their type:

(a)
$$y = \frac{1-\sqrt{x}}{x^2-1}$$
;

(b)
$$y = 2^{\frac{1}{x}};$$

(c)
$$y = \lg(x^2 + 3x)$$
.

- 10. Give an example of a function continuous on some open interval and (a) not bounded on this interval; (b) bounded on this interval but reaching neither its infimum nor its supremum.
- 11. Give an example of a discontinuous function determined on a closed interval and such that its range is also a closed interval.
- 12. Prove that the equation $x^5 3x = 1$ has at least three real roots, and that at least one of the roots belongs to (1; 2).
- 13. Prove that any polynomial of an odd degree has at least one real root. Does this statement hold for polynomials of even degrees?
- 14. Let f(x) be a continuous function determined on $[a; +\infty)$. Prove that if there exists a finite $\lim_{x \to +\infty} f(x)$ then f(x) is bounded on $[a; +\infty)$. Is the statement going to be true if an interval $[a; +\infty)$ is replaced with $(a; +\infty)$?

¹You might need the inequality $|\sin x| \leq |x|, x \in \mathbb{R}$.