OBAuTK A*

Ковалев Алексей

Задача А*

Лемма 1. Элементы с конечным порядком абелевой группы G образуют подгруппу H. Проверим замкнутость H относительно операции: $\forall g,h \in G$: ord $g < +\infty$, ord $h < +\infty$

- ullet очевидно $e \in H$
- ord $g = \operatorname{ord} g^{-1} < +\infty \Rightarrow g^{-1} \in H$
- пусть ord q=n, ord h=m, тогда $(qh)^{nm}=q^{nm}h^{nm}=e\Rightarrow \operatorname{ord} qh\mid nm\Rightarrow \operatorname{ord} qh<+\infty$

Отсюда $H \neq \varnothing$ и H замкнуто относительно операции, значит H – подгруппа G.

Лемма 2. В любой абелевой группе G, где есть элемент g: ord g – максимален, $\forall h$ ord h | ord g. Предположим $\exists h \in H$: ord $h \nmid$ ord g. Тогда $\exists p, \alpha \colon p^{\alpha} \mid$ ord h, $p^{\alpha} \nmid$ ord g. Обозначим за β наибольшее натуральное число, такое что $p^{\beta} \mid$ ord g. Тогда $\alpha > \beta$. Рассмотрим $a = h^{\operatorname{ord}(h)/p^{\alpha}} \in G$, $b = g^{p^{\beta}} \in G$. По доказанному ранее в задаче 1

$$\operatorname{ord} a = \frac{\operatorname{ord} h}{\operatorname{ord}(h)/p^{\alpha}} = p^{\alpha}$$
$$\operatorname{ord} b = \frac{\operatorname{ord} g}{p^{\beta}}$$

Так как ord a и ord b взаимнопросты, по доказанному в задаче 5

$$\operatorname{ord} ab = \operatorname{ord} a \cdot \operatorname{ord} b = p^{\alpha} \cdot \frac{\operatorname{ord} g}{p^{\beta}} = p^{\alpha - \beta} \operatorname{ord} g > \operatorname{ord} g$$

To есть ord $ab = p^{\alpha-\beta}$ ord g > ord $g \Rightarrow g$ не является элементом, порядок которого максимален – противоречие. Значит $\forall h \in H \text{ ord } h \mid \text{ord } g$.

Доказательство. Чтобы доказать утверждение задачи, остается лишь применить лемму 1 к данной абелевой группе G и лемму 2 к подгруппе конечных ее элементов.