3 幂级数和 Taylor 级数

知识点回顾:

- 幂级数的收敛半径和收敛域; 幂级数在收敛半径内可以逐项积分和逐项求导
- Taylor 级数的计算

问题 3.1. 求下列幂级数的收敛半径和收敛域:

(1)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n;$$

(2)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} (x-2)^n;$$

(3)
$$\sum_{n=1}^{\infty} 4^{n^2} x^{n^2}$$
;

$$(4) \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1} = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \cdots;$$

(5)
$$\sum_{n=1}^{\infty} \left(\frac{a^n}{n} + \frac{b^n}{n^2} \right) x^n; \not \perp \psi \ a, b > 0.$$

(6)
$$\sum_{n=1}^{\infty} \frac{1}{2n+1} \left(\frac{1-x}{1+x} \right)^n$$
.

Solutions. (1) 通项系数为 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$. 因 $\lim \frac{a_{n+1}}{a_n} = 1$, 故收敛半径为 1, 收敛区间为 (-1,1). 下面来看端点处的收敛, 当 $x = \pm 1$ 时, 通项不趋于 0, 故发散. 综上收敛半径为 1, 收敛域为 (-1,1).

(2) 通项系数为 $a_n = n! \, n^{-n}$. 因 $\lim \frac{a_{n+1}}{a_n} = \frac{1}{e}$, 故收敛半径为 e, 收敛区间为 (2 - e, 2 + e). 下面来看端点处的收敛, 当 $x - 2 = \pm e$ 时, 利用斯特林公式可知 $\frac{n!}{n^n} e^n = O(\sqrt{n})$, 从而通项不趋于 0, 故发散. 综上收敛半径为 e, 收敛域为 (2 - e, 2 + e).

(3)
$$\[\exists a_n(x) = (4x)^{n^2}, \] \]$$

$$\left| \frac{a_{n+1}(x)}{a_n(x)} \right| = |4x|^{2n+1} \to \begin{cases} 0, & \text{\pm |} |x| < 1/4 \text{ pt}, \\ 1, & \text{\pm |} |x| = 1/4 \text{ pt}, \\ \infty, & \text{\pm |} |x| > 1/4 \text{ pt}. \end{cases}$$

因此当 |x| < 1/4 时幂级数收敛, 当 |x| > 1/4 时幂级数发散, 从而收敛半径为 1/4. 在端点处, 即 $x = \pm 1/4$ 时, 通项不趋于 0, 故发散. 综上收敛半径为 1/4, 收敛域为 (-1/4, 1/4).

(4)
$$\[\vec{a}\]$$
 $a_n(x) = \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}, \[\vec{b}\]$

$$\left| \frac{a_{n+1}(x)}{a_n(x)} \right| = \frac{(2n+1)^2}{(2n+2)(2n+3)} x^2 \to x^2 \begin{cases} < 1, & \exists |x| < 1 \text{ by}, \\ = 1, & \exists |x| = 1 \text{ by}, \\ > 1, & \exists |x| > 1 \text{ by}. \end{cases}$$

因此当 |x| < 1 时幂级数收敛, 当 |x| > 1 时幂级数发散, 从而收敛半径为 1. 在端点处, 即 $x = \pm 1$ 时, 由 $\frac{(2n-1)!!}{(2n)!!} = O(n^{-1/2})$ (见问题 1.2 (2) 或书上习题 10.3 的 1(6)), 可知级数收敛. 综上收敛半径为 1, 收敛域为 [-1,1].

(5) 拆分成两个幂级数 $\sum \frac{a^n}{n} x^n$ 和 $\frac{b^n}{n^2} x^n$, 这两个幂级数收敛半径分别为 $\frac{1}{a}$ 和 $\frac{1}{b}$, 因此整体幂级数的收敛半径为 $R = \min\left(\frac{1}{a}, \frac{1}{b}\right)$.

下面考虑端点处的收敛性:

- 若 $a \ge b$, 即 $R = \frac{1}{a}$. 当 $x = \frac{1}{a}$ 时, 因 $\sum \frac{1}{n}$ 发散, $\sum \frac{(b/a)^n}{n^2}$ 绝对收敛, 故整体发散; 当 x = -1/a 时, 因 $\sum \frac{(-1)^n}{n}$ 条件收敛, $\sum \frac{(-b/a)^n}{n^2}$ 绝对收敛, 故整体收敛. 因此收敛域为 $\left[-\frac{1}{a}, \frac{1}{a}\right) = [-R, R)$.
- 若 a < b, 即 $R = \frac{1}{b}$. 当 $x = \pm \frac{1}{b}$ 时, 因 $\sum \frac{(a/b)^n}{n}$ 收敛, $\sum \frac{1}{n^2}$ 绝对收敛, 故整体收敛. 因此收敛域为 $\left[-\frac{1}{b}, \frac{1}{b}\right] = [-R, R]$.

综上, 收敛半径为 $R=\min\left(\frac{1}{a},\frac{1}{b}\right)$. 当 $a\geq b$ 时, 收敛域为 [-R,R); 当 a< b 时, 收敛域为 [-R,R].

(6) 令 $y = \frac{1-x}{1+x}$, 则关于 y 的幂级数的收敛半径为 1, 收敛域为 $y \in [-1,1)$. 从而原级数收敛域为 $(0,+\infty)$.

问题 3.2. 求下列幂级数的和函数:

(1)
$$\sum_{n=1}^{\infty} (-1)^n (2n-1)x^{2n-2};$$

(2)
$$\sum_{n=1}^{\infty} \frac{n(n+1)}{2} x^{n-1};$$

(3)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}.$$

Solutions.(1) 容易求出该幂级数的收敛半径为 1, 收敛域为 (-1,1). 设和函数为 F(x), 对于 $x \in (-1,1)$, 逐项积分可得

$$\int_0^x F(t) \, \mathrm{d}t = \sum_{n=1}^\infty (-1)^n x^{2n-1} = \frac{1}{x} \sum_{n=1}^\infty (-x^2)^n = \frac{-x}{1+x^2}, \quad (|x| < 1).$$

因此 $F(x) = \left(\frac{-x}{1+x^2}\right)' = \frac{x^2-1}{(1+x^2)^2}$.

(2) 容易求出该幂级数的收敛半径为 1, 收敛域为 (-1,1). 设和函数为 F(x), 对于 $x \in (-1,1)$, 逐项积分可得

$$\int_0^x F(t) dt = \sum_{n=1}^\infty \frac{n+1}{2} x^n := H(x).$$

对 H(x) 逐项积分,

$$\int_0^x H(t) \, \mathrm{d}t = \sum_{n=1}^\infty \frac{1}{2} x^{n+1} = \frac{x}{2} \sum_{n=1}^\infty x^n = \frac{x^2}{2(1-x)}, \quad (|x| < 1).$$

故
$$H(x) = \left(\frac{x^2}{2(1-x)}\right)' = \frac{2x-x^2}{2(1-x)^2}, F(x) = H'(x) = \frac{1}{(1-x)^3}.$$

(3) 容易求出该幂级数的收敛半径为 $\sqrt{2}$, 收敛域为 $(-\sqrt{2},\sqrt{2})$. 设和函数为 F(x), 对于 $x\in (-\sqrt{2},\sqrt{2})$, 逐项积分可得

$$\int_0^x F(t) \, \mathrm{d}t = \sum_{n=1}^\infty \frac{1}{2^n} x^{2n-1} = \frac{1}{x} \sum_{n=1}^\infty \left(\frac{x^2}{2} \right)^n = \frac{x}{2 - x^2}, \quad (|x| < \sqrt{2}).$$

因此
$$F(x) = \left(\frac{x}{2-x^2}\right)' = \frac{x^2+2}{(2-x^2)^2}$$
.

问题 3.3. 利用幂级数的和, 求下列级数的值:

$$(1) \sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n};$$

(2)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$$
.

Solutions. (1) 考虑幂级数 $F(x) = \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n-1}$. 其收敛半径为 1, 故在 (-1,1) 内可以逐项求导, 从而

$$F'(x) = \sum_{n=1}^{\infty} x^{2n-2} = \sum_{n=0}^{\infty} x^{2n} = \frac{1}{1-x^2}, \quad |x| < 1.$$

由 F(0) = 0 可知,

$$F(x) = \int_0^x \frac{1}{1 - t^2} dt = \frac{1}{2} \log \left(\frac{1 + x}{1 - x} \right), \quad |x| < 1.$$

特别地, 在 $x = \frac{1}{\sqrt{2}}$ 处有,

$$\sum_{n=1}^{\infty} \frac{\sqrt{2}}{(2n-1)2^n} = F\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2}\log\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) = \log(\sqrt{2}+1).$$

因此, $\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n} = \frac{1}{\sqrt{2}} \log(\sqrt{2} + 1)$

(2) 由问题 3.2(3), 取
$$x = 1$$
, 得 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} = 3$.

问题 3.4. (1) 求 $\cos x$ 在 $x = -\frac{\pi}{4}$ 处的 Taylor 展开式;

(2) 求
$$\frac{\log(1+x)}{1+x}$$
 在 $x=0$ 处的 Taylor 展开式.

Solutions. 书上P319例4和P320例6.

问题 3.5. 求下列函数在 x = 0 处的 Taylor 展开式:

- (1) $\sin^3 x$;
- (2) $\log(x + \sqrt{1 + x^2});$ (3) $\int_0^x \frac{\sin t}{t} dt;$

Solutions. (1) 利用三倍角公式 $\sin 3x = 3 \sin x - 4 \sin^3 x$ 和 $\sin x$ 的展开式, 可得

$$\sin^3 x = \frac{3}{4}\sin x - \frac{1}{4}\sin 3x = \frac{3}{4}\sum_{n=0}^{\infty} (-1)^n \frac{1 - 3^{2n}}{(2n+1)!} x^{2n+1}, \quad x \in \mathbb{R}.$$

$$(2)$$
 令 $f(x) = \log(x + \sqrt{1 + x^2})$,则

$$f'(x) = (1+x^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \frac{(2n-1)!!}{(2n)!!} x^{2n}, \quad |x| \le 1.$$

逐项积分,可得

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}, \quad |x| \le 1.$$

(3) 利用 $\sin x$ 的展开和逐项积分, 可得

$$\int_0^x \frac{\sin t}{t} \, \mathrm{d}t = \int_0^x \sum_{n=0}^\infty (-1)^n \frac{t^{2n}}{(2n+1)!} \, \mathrm{d}t = \sum_{n=0}^\infty (-1)^n \frac{1}{(2n+1)!} \frac{x^{2n+1}}{2n+1}, \quad x \in \mathbb{R}.$$

问题 3.6. 证明积分恒等式:
(1)
$$\int_0^1 \frac{\log(1+x)}{x} dx = \sum_{n=0}^\infty \frac{(-1)^n}{(n+1)^2};$$

(2)
$$\int_0^1 e^x \log x \, \mathrm{d}x = \sum_{n=0}^\infty \frac{-1}{(n+1)(n+1)!}.$$

Sketch of Proof. (1) 利用 log(1+x) 的展开式和逐项积分.

(2) 验证函数项级数 $(e^x - 1) \log x = \sum_{n=1}^{\infty} \frac{x^n}{n!} \log x$ 在 [0, 1] 上一致收敛, 然后逐项积分即可.

问题 3.7. 考虑幂级数 $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n^2}$, 证明对于任意 $x \in (0,1)$ 有

$$f(x) + f(1-x) + \log x \log(1-x) = \sum_{n=1}^{\infty} \frac{1}{n^2} \qquad \left(= \frac{\pi^2}{6} \right).$$

Sketch of Proof. \diamondsuit $F(x) = f(x) + f(1-x) + \log x \log(1-x)$, \mathbb{M}

$$F'(x) = f'(x) - f'(1-x) + \frac{\log(1-x)}{x} - \frac{\log x}{1-x}$$
$$= \sum_{n=1}^{\infty} \left(\frac{x^{n-1}}{n} - \frac{(1-x)^{n-1}}{x}\right) + \frac{\log(1-x)}{x} - \frac{\log x}{1-x}.$$

在结合 $\log(1-x)$ 在 x=0 处对 Taylor 展式和 $\log x$ 在 x=1 处的 Taylor 展式, 证明 $F'\equiv 0$.

问题 3.8. 利用 Taylor 展开求 $f(x) = \cos(\sin x)$ 在 x = 0 处的前 5 阶导数.

Solution. 注意到 f 是偶函数, 故 $f^{(2n+1)}(0) = 0$, 我们只需计算 f''(0) 和 $f^{(4)}(0)$. 即只关注 f 的 Taylor 展开的 x^2 和 x^4 项系数.

因 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$, $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$, 故

$$\begin{aligned} \cos(\sin x) &= 1 - \frac{1}{2!} \left(x - \frac{x^3}{3!} + O(x^5) \right)^3 + \frac{1}{4!} \left(x + O(x^3) \right) + O(x^6) \\ &= 1 - \frac{1}{2} x^2 + \frac{5}{24} x^4 + O(x^6). \end{aligned}$$

由 Taylor 级数的唯一性, f''(0)/2 = -1/2, $f^{(4)}(0)/4! = 5/24$, 得 f''(0) = -1, $f^{(4)}(0) = 5$.