

FACULDADE DE TECNOLOGIA SENAC RJ

ANÁLISE E DESENVOLVIMENTO DE SOFTWARE

SISTEMAS OPERACIONAIS

ENTRADA E SAÍDA - HARDWARE

Conteúdo

- 1. Dispositivos de Entrada e Saída
- 2. Componentes de um dispositivo
- 3. Barramentos
- 4. Interface de E/S
- 5. Endereçamento
- 6. Interrupções

^{*} conteúdo retirado do livro: Sistemas Operacionais – Conceitos e Mecanismos, Carlos Maziero, UFPR.

Interação da CPU com o mundo exterior.

Função: informações físicas informações digitais.

Grande variedade de dispositivos:

- Interação com o usuário: mouse, teclado, tela, fones
- Armazenamento de dados: discos, SSDs, CDROMs
- Impressão e captura de dados: impressora, scanner
- Comunicação com outros sistemas: ethernet, Bluetooth
- Gerência do sistema: tempo, energia, temperatura
- Localização: GPS, bússola, giroscópio
- ...

Dispositivos de E/S em um smartphone

Componentes de um dispositivo de E/S

Entrada de dados:

- Sensor: transforma grandeza física em sinal elétrico.
- Amplificador: aumenta e limpa o sinal elétrico.
- Conversor AD: converte o sinal em informação digital.

Saída de dados:

- Conversor DA: converte dados em sinais elétricos.
- Transdutor: transforma sinais elétricos em ações físicas.

Elementos comuns:

- Buffer: armazena dados coletados e/ou enviados.
- Controlador de barramento: permite acesso da CPU.
- Microcontrolador: gerencia o hardware do dispositivo.
- Firmware: código executado pelo controlador.

Um dispositivo de E/S de áudio

Conexão de periféricos com a CPU

Barramentos: caminhos de comunicação entre dois ou mais dispositivos

Barramentos em um PC típico

Barramentos

Barramento:

- via de comunicação: interliga CPU, memória e dispositivos de E/S
- parte do chipset da placa-mãe.

North-bridge: componentes rápidos

- CPU e RAM
- Portas AGP e PCI-express (vídeo)

South-bridge: componentes lentos

- PCI, USB, SATA
- BIOS, legacy controllers

Interface de acesso

Interação CPU device feita por portas de E/S.

Existem 4 tipos básicos de portas:

Tipo de porta	Sentido	Função
Entrada	CPU -> Disp	Enviar dados ao dispositivo.
Saída	Disp -> CPU	Receber dados do dispositivo.
Status	Disp -> CPU	Consultar o estado do dispositivo; Verificar o status de uma operação
Controle	CPU -> Disp	Enviar comandos ao dispositivo; Alterar configuração do dispositivo.

Exemplo: interface paralela

Interface muito antiga, já em desuso.

Usada para E/S em impressoras, scanners, plotadoras, etc.

Estrutura:

- Porta de dados (8 bits)
- Porta de status (8 bits)
- Porta de controle (8 bits)
- Portas dos modos estendidos

Exemplo: interface paralela

Po (data port): porta de saída/entrada, 8 bits

P₁ (status port), 8 bits

Error	há um erro interno na impressora
Select	a impressora está pronta (online)
Paper_out	falta papel na impressora
Ack	se 0, dado foi recebido
BUSY	controlador está ocupado

Exemplo: interface paralela

P2 (control port), 8 bits

Strobe	Há dados em Po
Auto_if	line_feed a cada carriage_return
reset	Inicia da impressora
select	Seleciona a impressora para uso
Enable_IRQ	Permite gerar interrupções
Bidirecional	Ativa modo bidirecional

Funcionamento da interface paralela

- Porta P₀: dados da CPU
 - Um byte por vez
- Porta *P*₁: status
 - busy
 - ack
- Porta P2: controle
 - strobe
 - enable_IRQ

Endereçamento

Como acessar os registradores da interface do dispositivo?

- Entrada/saída mapeada em portas
- Entrada/saída mapeada em memória
- Canais de entrada/saída

Entrada/saída mapeada em portas

Registradores acessados por instruções específicas.

Na família Intel: instruções IN e OUT.

```
IN %AL, $0x60 // lê caractere do teclado em AL
OUT $0x3f8, %AL // escreve byte em AL na saída paralela
```

Espaço de endereços de E/S:

- Separado da memória principal.
- Geralmente de 8 ou 16 bits.
- CPU usa um sinal IO/M no barramento de controle.

Tabela de endereços de portas (típico)

Dispositivo	Endereços
teclado e mouse PS/2	0060h e 0064h
barramento IDE primário	0170h a 0177h
barramento IDE secundário	01F0h a 01F7h
relógio de tempo real	0070h e 0071h
interface serial COM1	02F8h a 02FFh
interface paralela LPT1	0378h a 037Fh

No Linux, consultar arquivo /proc/ioports

Registradores dos dispositivos vistos como RAM:

- São mapeados em faixas de endereços de RAM.
- Podem ser usadas as instruções de acesso à memória.
- Usado para dispositivos de rede, áudio e vídeo.

No Linux, consultar arquivo /proc/iomem

Canais de entrada/saída

- Uso de um hardware independente com processador dedicado.
- Deixa o processador principal livre para outras tarefas.
- Adotada em sistemas de grande porte (mainframes).
- Usada em periféricos de alto desempenho (GPU vídeo).
- O canal de E/S não é diferente do Acesso Direto à Memória (DMA) nos computadores pessoais, apenas mais complexo e avançado.

Interrupções

As portas servem para as interações iniciadas pela CPU.

Como fazer para interações iniciadas pelo controlador?

Requisição de interrupção (IRq - Interrupt Request):

- Sinal elétrico enviado através do barramento de controle.
- Notifica o processador sobre algum evento importante.
- Desvia a execução para uma rotina de tratamento.

Roteiro de uma interrupção

Roteiro de uma interrupção

- 1. A CPU está executando um programa.
- O usuário aciona uma tecla do teclado.
- 3. O controlador gera uma interrupção.
- 4. A CPU recebe a interrupção e desvia sua execução para uma rotina de tratamento da interrupção.
- 5. A rotina interage com o controlador do teclado para buscar os dados do buffer.
- 6. A rotina conclui e o programa anterior retoma a execução.

Interrupções típicas

Dispositivo	Interrupção
teclado	1
mouse PS/2	12
barramento IDE primário	14
barramento IDE secundário	15
relógio de tempo real	8
interface serial COM1	4
interface paralela LPT1	7

Exceção	Descrição
0	divide error
3	breakpoint
5	bound range exception
6	invalid opcode
11	segment not present
12	stack fault
13	general protection
14	page fault
16	floating point error

PIC – Controlador de interrupções programável

Hardware dedicado no chipset da placa-mãe ou na CPU.

Organiza o sistema de interrupções de hardware:

- Recebe as interrupções dos dispositivos.
- Associa cada dispositivo a um número.
- Informa a CPU sobre cada interrupção ocorrida.
- Enfileira as interrupções não-tratadas (pendentes).
- Pode ser programado pela CPU.
- Pode ignorar/mascarar ou priorizar interrupções.

PIC – Controlador de interrupções programável

