

STM32F0-Discovery Training

Hanoi, Vietnam

Nov 2013

- Introduction
- Installation
- The STM32 F0 Part 1: Cortex-M0
- The STM32 F0 Part 2: Peripherals
- Hands-on Training
- Review
- Questions and Answers

Objectives 3

- Hands-on workshop to show you the steps needed to quickly get up and running with the STM32F0-Discovery kit
- An overview of the STM32 F0 Series
- Know where to go for documentation, firmware libraries and application notes and additional ecosystem support
- Know where to obtain additional technical support

Questions?

- The technical team is there to support you
- If you have an issue or a problem, please raise you left hand and make eye contact with one of the available members of the technical team who will assist you
- Feel free to ask you neighbor
- Please keep side conversations to whisper level
- For any product specific questions, please write them down and pass them to one of the members of the technical team.
- We will use the last 20 minutes of our time to answer.
 - Written questions
 - Any further questions you may have

Systems Check 5

- Everyone should have
 - A Windows Laptop (XP, Vista or Win 7)
 - STM32F0DISCOVERY kit
 - USB Cable
 - USB Flash Drive

• Ready to begin?

Step #1 - File Installation

- Insert the USB Flash Drive into your Laptop
- Copy the folder "d:\STM32F0DISCOVERY Kit" on the USB flash drive to your root "c:\" folder
 - C:\STM32F0DISCOVERY Kit\
- Enter this directory. You will find the following:
 - In the \Coocox directory: CoIDE v1.7.5.1 set-up file
 - In the \GCC Compiler: GCC ARM compiler set-up file
 - In the ST-LINK USB driver: ST-Link V2 USB driver set-up file
 - Documentation folder containing all relevant documentation for this training
 - Firmware Library folder

Hardware Preparation _____

- Download and install the ST-Link/V2 USB driver
 - http://www.st.com/web/en/catalog/tools/PF258167
- Take out the STM32 F0 Value Line Discovery board
- Connect the board to the PC with a Type-A to mini-B USB cable
- Allow Windows OS to detect and install the USB driver for the ST-Link/V2 debugger/programmer

Step #2 - Coocox CoIDE Preparation

Preparation – Installing ColDE and Drivers

- Download and install the latest CoIDE software development environment found at http://www.coocox.org/Tools/CoIDE-1.7.5.1.exe
- Configure GCC tool chain for CoIDE.
 - Download and install ARM GCC can be downloaded at
 - https://launchpad.net/gcc-arm-embedded/+download
 - Follow below steps to configure GCC tool chain.
 - After launching CoIDE, click "Select Toolchain Path" under the Project menu.
 - Click the "Browse" button; select the folder that contains the arm-none-eabi-gcc.exe and the other GCC execute files (You can find the folder where you install the ARM GCC tool chain). And Click "OK" button to save the setting.
 - Download and install ST-LINK/V2 USB driver found at http://www.st.com/web/en/catalog/tools/PF258167

Introducing the ARM Cortex-M0

Cortex-M processors binary compatible

Cortex-M0 processor microarchitecure ______

ARMv6M Architecture

- Thumb-2 Technology
- Integrated configurable NVIC
- Compatible with Cortex-M3

Microarchitecture

- 3-stage pipeline
- 1x AHB-Lite Bus Interfaces

Configurable for ultra low power

 Deep Sleep Mode, Opt. Wakeup Interrupt Controller (Not available for STM32F05)

Flexible configurations for wider applicability

- Configurable Interrupt Controller (1-32 Interrupts and Priorities)
- No Memory Protection Unit
- Optional Debug & Trace

Cortex-M feature set comparison

	Cortex-M0	Cortex-M3	Cortex-M4
Architecture Version	V6M	v7M	v7ME
Instruction set architecture	Thumb, Thumb-2 System Instructions	Thumb + Thumb-2	Thumb + Thumb-2, DSP, SIMD, FP
DMIPS/MHz	0.9	1.25	1.25
Bus interfaces	1	3	3
Integrated NVIC	Yes	Yes	Yes
Number interrupts available	1-32 + NMI	1-240 + NMI	1-240 + NMI
Interrupt priorities available	4	8-256	8-256
Breakpoints, Watch points	4/2/0, 2/1/0	8/4/0, 2/1/0	8/4/0, 2/1/0
Memory Protection Unit (MPU)	No	Yes (Option)	Yes (Option)
Integrated trace option (ETM)	No	Yes (Option)	Yes (Option)
Fault Robust Interface	No	Yes (Option)	No
Single Cycle Multiply	Yes (Option)	Yes	Yes
Hardware Divide	No	Yes	Yes
WIC Support	Yes (Option)	Yes	Yes
Bit banding support	No	Yes	Yes
Single cycle DSP/SIMD	No	No	Yes
Floating point hardware	No	No	Yes (Option)
Bus protocol	AHB Lite	AHB Lite, APB	AHB Lite, APB
CMSIS Support	Yes	Yes	Yes

Introducing STM32 F0 Series

STM32 F0 Series: Key Features

Real-time performance Cortex

48 MHz/38 DMIPS, 5 channels DMA mapped on 11 IPs + Bus Matrix allows Flash execution in parallel with DMA transfer

Power efficiency

5 μA in Stop mode 2 μA in standby mode 0.4 μA Vbat with RTC, 1.8 V or 2...3.6 V supply, Fast wake-up time

Superior and innovative peripherals

1Mbps I²C Fast mode+ with 4- to 16-bit data frame, HDMI CEC, 16-bit 3-phase MC timer

Maximum integration

Calendar RTC with independent supply, battery backed RAM, separate analog supply, safety

tools and software

ARM + ST ecosytem (eval board, discovery, SW library)

STM32 F0 series

L1, F0, F1, F2, F4 series: seamless migration amongst 300 pin-to-pin compatible part #s

Innovative Peripherals (%)

- Analog
 - 12 bit ADC with 1MSPS
 - 12 bit DAC
 - 2x Comparators
 - Separate supply for improved accurate
- HDMI Consumer Electronics Cor. (CEC)
- Touch-sensing
 - Up to 18 keys
 - Key, slider and wheel
- Advanced timers
 - 32-bit and 16-bit PWM timers with 17 capture/compare input/outputs mappe on up to 28 pins
- Motor control
 - Permanent Magnet Synchronous Motors (PMSM)

Maximum Integration (**)

- Meets industry safety specifications
 - Class B-ready for appliance
 - Hardware **RAM** parity check
 - Clock Security System (CSS) for switching to back-up internal RC in case of external clock failure
 - 2x Watchdogs (2x WDG) capable of real-time code execution monitoring and ensuring the application integrity independently from system clock
 - Cyclic Redundancy Check (CRC) with DMA support for embedded Flash-memory content-integrity checking

Great Fit for Applications

STM32F051/0/2 targeted applications 18

DAC, timers, I²C FM+, touch-sensing

Home appliances, motor control, power tools

Consumer appliances

A/V receivers, TVs, Blu-ray disk players

Printers

Gaming

USB RF dongle

Remote control

Cost competitive CEC, DAC

Great Fit for Appliances

Easy communication between front panel and power components with robust I²C FM+ with 20mA sink capability and fast IO toggling capability (25% faster than STM32F1 @ same frequency)

- 3 timers suit induction cooking apps
- 1 timer for **motor control** (complete reference designs avail)
- 1µs, 12-bit ADC with 12 channels for **efficient sensors**

Safety ready: optimized self-test routines for EN/IEC 60335-1 Class B Advanced system and peripheral set

- Real-time hardware RAM parity check and 16-bit CRC for FLASH-memory integrity checks
- Extended double watchdog system with autonomous clock, windowing and clock security system

1.8 V

Great Fit for Consumer

Optimized communication:

- CEC with dual clock domain allows flexible wakeup and synchronization
- Infrared remote-control decoder/encoder firmware libraries with optimum hardware implementation

Easy interface with 1.8 V IC (Application processors, for example): Keeps ADC, DAC and CMP advanced analog 3.6 V excursion via dual-voltage domains on STM32F0

Capacitive touch sensing: Touch-controller IP allows zero CPU load with charge transfer method supporting up to 18 keys and slider / wheel capability

SW Libraries Speed Time-to-Market

- Free STM32 Standard peripheral libraries
 - C source code for easy implementation of all STM32 peripherals in any application

- Free STM32 Infra-red software
- Free STM32 Motor-control library
- Free STM32 CEC software
 - Complete software supported by the STM320518-EVAL evaluation board providing an implementation of CEC high-level protocol and full-demonstration software

Visit www.st.com/stm32

Extensive Tools and SW

- Evaluation board for full product feature evaluation
 - Hardware evaluation platform for all interfaces
 - Possible connection to all I/Os and all peripherals
- Discovery kit for cost-effective evaluation and prototyping

STM320518-EVAL \$199

STM32F0DISCOVERY \$7.99

 Large choice of development IDE solutions from the STM32 and ARM ecosystem

STM32F0-DISCOVERY

STM32F051R8T6 24

- 48 MHz Cortex-M0
- 64-pin LQFP
- 64 Kbytes Flash/8 Kbytes RAM

Embedded ST-Link 25

- ST-Link programming and debugging tool integrated onboard the kit (STM32F103C8T6)
- Can be used two different ways
 - Program and debug the MCU on the board
 - Program an MCU on another application board
- Features
 - USB Connector
 - ST-LINK MCU
 - 5 to 3V Power regulator
 - CN2 MCU Program Jumper
 - CN3 Application SWD connector

LEDs/Push-Buttons/Extension Connector 26

LEDS LD1: Power indicator LD2: ST-LINK Comm indicator • LD3: User LED (PC9) • LD4: User LED (PC8) PCO PC3 PC11 Push-Buttons PC10 PAO PA15 PA2 B1: User/Wake-up (PA0) PF7 B2: Reset (NRST) PA12 PA11 PA7 Extension Connector P1 and P2 PB2 PB10 • All GPIOs are available for prototype LD4 PB12 Includes 5V, 3V and GND pins

Jumpers/User Manual/Firmware Library

Jumpers

- JP1: USART1 TX and RX (not fitted)
- JP2: I_{DD} for MCU current measurement (fitted by default)

Documentation

- UM1523 Getting started with software and firmware environments
- UM1525 STM32F0Discovery STM32F0 discovery kit

Firmware Library

- Contains STM32F0 Standard Firmware Library
- Contains example code
- AN4062 peripheral firmware examples

Step #3 - Install ST-Link Driver

- The STM32F0DISCOVERY board includes and ST-LINK/V2 embedded programming and debug tool
- Download and install the ST-Link/V2 USB driver
 - http://www.st.com/web/en/catalog/tools/PF258167
- Double-click on the file: ST-Link_V2_USBDriver.exe to install
- Click through the installation menu until the driver installation is complete

Step #4:

Connect the Discovery Kit/Enable ST-Link

- Using the USB cable, connect the mini-B male connector into the STM32F0DISCOVERY USB port and connect the A male connector into your Laptop
- Wait for Windows to recognize the ST-Link device and follow any step required to install the driver
- Upon successful driver recognition, the ST-Link device should be fully enumerated in Windows Device Manager as show:

- 1. Open Device Manager
- 2. Right-click on the STM32 ST-Link Driver icon
- 3. Select "Update Driver Software"

- 5. Select "Let me pick from a list of device drivers of my computer"
- 6. Click "Next"

4. Select "Browse my computer for driver software"

Update Driver Software - STM32 STLink		X
Browse for driver software on your computer		
Search for driver software in this location:		
C:\Users\Sean\Documents ▼	Browse	
☑ Include subfolders		
Let me pick from a list of device drivers on my This list will show installed driver software compatible with the driver software in the same category as the device.	20	
	Next	Cancel

- The "STMicroelectronics ST-Link dongle" should listed
- 7. Click "Next"

- A warning message may appear
- 8. Select "Install this driver software anyway"

 You should receive a message:
 "Windows has successfully updated your driver software"

 Re-check device manager to ensure STMicroelectronics ST-Link dongle is functioning normally

Documentation

- Main MCU web page: www.st.com/mcu
- STM32 web page: <u>www.st.com/stm32</u>
- STM32F0 specific web page: <u>www.st.com/stm32f0</u>
- Discovery board web page:
 - From <u>www.st.com/stm32f0</u> click on Resources -> Hardware -> STM32 MCU Eval Boards. Then select Discovery kit
 - The web page includes:
 - User Manual
 - Getting Started Manual
 - Schematics and Gerber files
 - Discovery Board Firmware Package

Documentation resources 37

- Main website page for the STM32 F0 Series
 - www.st.com/stm32f0
- You can find
 - Datasheets
 - Applications Notes
 - Errata
 - Technical Notes
 - Programming Manuals
 - Reference Manual
 - User Manuals
 - Firmware
- For all STM32 related products: <u>www.st.com/stm32</u>

Support resources 38

- Submit technical questions to ST Online Support:
 - Located on main <u>www.st.com</u> page under the Support tab Online Support
- ST Public Forums:
 - Located on main <u>www.st.com</u> page under Support tab ST e2e Communities

Process check 39

- ST-Link is recognized by your system
- LD1 and LD2 should on ON (indicating board power available and ST-Link is functional)
- LD3 (Green) should be flashing
- A brief test of the board
 - Press the USER Button
 - LD4 (Blue) should flash once
 - LD3 (Green) will blink slowly
 - Press the USER Button again
 - LD4 (Blue) should flash once
 - LD3 (Green) will shut off

Compile, Debug and Run

Coocox CoIDE Preparation 41

Preparation – Installing CoIDE and Drivers

- Download and install the latest CoIDE software development environment found at http://www.coocox.org/Tools/CoIDE-1.7.5.1.exe
- Configure GCC tool chain for CoIDE.
 - Download and install ARM GCC can be downloaded at
 - https://launchpad.net/gcc-arm-embedded/+download
 - Follow below steps to configure GCC tool chain.
 - After launching CoIDE, click "Select Toolchain Path" under the Project menu.
 - Click the "Browse" button; select the folder that contains the arm-none-eabi-gcc.exe and the other GCC execute files (You can find the folder where you install the ARM GCC tool chain). And Click "OK" button to save the setting.
 - Download and install ST-LINK/V2 USB driver found at http://www.st.com/web/en/catalog/tools/PF258167

Demo to "Create a CoIDE Project by Chip Mode"

Demo to "Create a CoIDE Project by Board Mode"

Demo to "Create a CoIDE Project using Discovery kit firmware package" and debug

Create Project using ST Firmware Package

Objective:

 Run codes on the STM32F0 Discovery board using sample codes included in the STM32F0 Discovery firmware package

Procedure:

- Refer to CoIDE Demo document
- Go to the STM32F0 Discovery website
 - http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/LN1199/PF252994
- Download the STM32F0 discovery firmware package and unzip the files
- Choose a particular example you want to try out from "\STM32F0-Discovery_FW_V1.0.0\Project\Peripheral_Examples" folder.
 - For example "Systick"
- Read the readme file for details regarding the example.
- Launch Coocox IDE and create and configure a workspace
- Add the following files into the environment.
 - Example files (main.c, stm32f0xx._it.c, system_stm32f0xx.c, etc)
 - Required Library files
 - Utility files from "\STM32F0-Discovery_FW_V1.0.\Utilities\STM32F0-Discovery" folder (stm32f0_discovery.c, stm32f0_discovery.h)

Firmware Project Overview

Project Files 47

User files

- main.c (program entry point)
- system_stm32f0xx.c (initial system configuration)
- stm32f0xx it.c (ISR's)
- stm32f0-discovery.c
 - Board specific functions
- STM32F0xx_StdPeriph_Driver
 - Contains peripheral library functions
- startup_stm32f0xx.s
 - System initialization, vector table, reset and branch to main()

startup_stm32f0xx.s 48

Main Characteristics

Initializes stack pointer

```
Stack Size
                        0x00000400
                AREA
                        STACK, NOINIT, READWRITE, ALIGN=3
Stack Mem
                SPACE
                        Stack Size
 initial sp
```

Contains the vector table for the part

```
; Vector Table Mapped to Address 0 at Reset
                       RESET, DATA, READONLY
               EXPORT
                       Vectors
               EXPORT
                       Vectors End
               EXPORT Vectors Size
                       initial sp
 Vectors
                                                    ; Top of Stack
                       Reset Handler
               DCD
                                                     ; Reset Handler
                       NMI Handler
               DCD
                                                     : NMI Handler
                       HardFault Handler
                                                     : Hard Fault Handler
```

- Contains Reset handler called on system reset
 - Calls SystemInit() function
 - Branches to main()

```
; Reset handler routine
Reset Handler
                  PROC
                 EXPORT
                          Reset Handler
                                                         [WEAK]
        IMPORT
                  main
        IMPORT
                SystemInit
                          RO, =SystemInit
                 LDR
                 LDR
                          RO, = main
                  BX
                  ENDP
```


system_stm32f0xx.c 49

SystemInit()

- This function is called at startup just after reset and before branch to main program. This call is made inside the "startup" stm32f0xx.s" file.
- Setups the system clock (System clock source, PLL Multiplier and Divider factors, AHB/APBx prescalers and Flash settings)

```
103 #define PLL SOURCE HSI
                                                           // HSI (~8MHz) used to clock the PLL, and the PLL is used as system clock source
                              104 //#define PLL SOURCE HSE
                                                          // HSE (8MHz) used to clock the PLL, and the PLL is used as system clock source
 Define PLL source
                              105 //#define PLL SOURCE HSE BYPASS // HSE bypassed with an external clock (8MHz, coming from ST-Link) used to clock
                                                              // the PLL, and the PLL is used as system clock source
                              151 void SystemInit (void)
     SystemInit()
                                  /* Set HSION bit */
                                  RCC - > CR \mid = (uint32 t) 0x00000001;
                                   /* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE and MCOSEL[2:0] bits */
                                   RCC->CFGR &= (uint32 t) 0xF8FFB80C;
                                   /* Configure the System clock frequency, AHB/APBx prescalers and Flash settings */
Call SetSysClock()
                                   SetSysClock();
                              271 static void SetSysClock(void)
                              273
                                    IO uint32 t StartUpCounter = 0, HSEStatus = 0;
                                   /* SYSCLK, HCLK, PCLK configuration -----*/
                              276 #if defined (PLL SOURCE HSI)
                                   /* At this stage the HSI is already enabled */
                                    /* Enable Prefetch Buffer and set Flash Latency */
Configure clock tree
                                   FLASH->ACR = FLASH ACR PRFTBE | FLASH ACR LATENCY;
                              282
                                   /* HCLK = SYSCLK */
                              283
                                   RCC->CFGR |= (uint32 t)RCC CFGR HPRE DIV1;
                              284
                                   /* PCLK = HCLK */
                                   RCC->CFGR |= (uint32 t)RCC CFGR PPRE DIV1;
                                   /* PLL configuration = (HSI/2) * 12 = ~48 MHz */
                                   RCC->CFGR &= (uint32 t)((uint32 t)~(RCC CFGR PLLSRC | RCC CFGR PLLXTPRE | RCC CFGR PLLMULL));
                                   RCC->CFGR |= (uint32 t) (RCC CFGR PLLSRC HSI Div2 | RCC CFGR PLLXTPRE PREDIV1 | RCC CFGR PLLMULL12);
```


Example main()

- Standard C main() function entry
- Start of application program

```
045 /**
    * @brief Main program.
047 * @param None
    * @retval None
048
      */
049
050 int main (void)
051
     RCC ClocksTypeDef RCC Clocks;
052
053
     /* Configure LED3 and LED4 on STM32F0-Discovery */
054
     STM EVAL LEDInit(LED3);
055
     STM EVAL LEDInit (LED4);
056
057
     /* Initialize User Button on STM32F0-Discovery */
058
     STM EVAL PBInit (BUTTON USER, BUTTON MODE GPIO);
059
060
```


- Contains Cortex-M0 Processor Exception Handlers (ISRs)
 - void NMI_Handler(void);
 - void HardFault Handler(void);
 - void SVC Handler(void);
 - void PendSV Handler(void);
 - void SysTick Handler(void);
- Contains the STM32F0xx Peripherals Interrupt Handlers (default is empty)
- Add the Interrupt Handler for the used peripheral(s) (PPP), for the available peripheral interrupt handler's name please refer to the startup_stm32f0xx.s
 - void PPP_IRQHandler(void) {};

stm32f0-discovery.c 52

- Contains board specific function and definition
- Defines Push-button and LED GPIO definitions
- Contains board specific funcitons
 - void STM_EVAL_LEDInit(Led_TypeDef Led);
 - void STM_EVAL_LEDOn(Led_TypeDef Led);
 - void STM_EVAL_LEDOff(Led_TypeDef Led);
 - void STM_EVAL_LEDToggle(Led_TypeDef Led);
 - void STM_EVAL_PBInit(Button_TypeDef Button, ButtonMode_TypeDef Button_Mode);
 - uint32_t STM_EVAL_PBGetState(Button_TypeDef Button);

STM32F0xx_StdPeriph_Driver

- Each file contains library functions that can be used for each peripheral
- Abstracts register manipulation and gives a standard API for access to peripheral functions
- Example:

```
STM32F0xx_StdPeriph_Driver

Stm32f0xx_syscfg.c

stm32f0xx_misc.c

stm32f0xx_adc.c

stm32f0xx_dac.c

stm32f0xx_dma.c

stm32f0xx_tma.c

stm32f0xx_exti.c

stm32f0xx_flash.c

stm32f0xx_gpio.c

stm32f0xx_i2c.c

stm32f0xx_i2c.c

stm32f0xx_rcc.c

stm32f0xx_rcc.c

stm32f0xx_rcc.c

stm32f0xx_spi.c
```

```
* @brief Sets the selected data port bits.
* @param GPIOx: where x can be (A, B, C, D or F) to select the GPIO peripheral.
* @param GPIO_Pin: specifies the port bits to be written.
* @note This parameter can be GPIO_Pin_x where x can be:(0..15) for GPIOA,
* GPIOB or GPIOC,(0..2) for GPIOD and(0..3) for GPIOF.

* @retval None
*/

void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

{
    /* Check the parameters */
    assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
    assert_param(IS_GPIO_PIN(GPIO_Pin));

GPIOx->BSRR = GPIO_Pin;
}
```


The STM32 F0 Series in Detail

STM32 F0 Series 64KB STM32F051

- ARM 32-bit Cortex-M0 CPU
- Operating Voltage:
 - VDD = 2.0 V to 3.6 V
 - VBAT = 1.6 V to 3.6 V
- Safe Reset System (Integrated Power On Reset (POR)/Power Down Reset (PDR) + Programmable voltage detector (PVD))
- Embedded Memories:

FLASH: up 64 KbytesSRAM: up 8 Kbytes

- CRC calculation unit
- 5 Channels DMA
- Power Supply with software configurable internal regulator and low power modes.
- Low Power Modes with Auto Wake-up
- Low power calendar RTC with 20 bytes of backup registers
- Up to 48 MHz frequency managed & monitored by the Clock Control w/ Clock Security System
- Rich set of peripherals & IOs
 - 1 x 12-bit DAC with output buffer
 - 2 low power comparators (Window mode and wakeup)
 - Dual Watchdog Architecture
 - 11 Timers w/ advanced control features (including Cortex SysTick and WDGs)
 - 7 communications Interfaces
 - Up to 55 fast I/Os all mapable on external interrupts/event
 - 1x12-bits 1Msps ADC w/ up to 16 external channels + Temperature sensor/ voltage reference/VBAT measurement

System

Power supply 1.8 V regulator POR/PDR/PVD

Xtal oscillators 32 kHz + 4 ~32 MHz

Internal RC oscillators 40 kHz + 8 MHz

PLL

Clock control

Calendar RTC

SysTick timer

2x window watchdogs (independent and system)

27/39/55 I/Os

Touch-sensing controller

Cyclic redundancy check (CRC)

ARM Cortex-M0 CPU 48 MHz

Nested vector interrupt controller (NVIC)

SW debug

Up to 64-Kbyte Flash memory

Up to 8-Kbyte SRAM HW parity checking

20-byte backup data

Connectivity

HDMI CEC

2x SPI (1x with I²S mode)

2x I²C (1x with Fast mode +)

2x USART with modem control (1x with LIN, smartcard, IrDA)

Control

1x 16-bit motor control PWM Synchronized AC timer

1x 32-bit timer 5x 16-bit PWM timers

1x 16-bit basic timer

AHB-Lite bus matrix

APB bus

5-channel DMA

Analog

1-channel 12-bit DAC

1x 12-bit ADC 16 channels / 1 MSPS

2x analog comparator

System Architecture 56

- ARM 32-bit Cortex-M0 **CPU**
- Nested Vector Interrupt Controller (NVIC)
- SWD
- **Bus Matrix**
- **5 Channels DMA**

System Power supply 1.8 V regulator POR/PDR/PVD Xtal oscillators $32 \text{ kHz} + 4 \sim 32 \text{ MHz}$ Internal RC oscillators 40 kHz + 8 MHz**PLL** Clock control Calendar RTC SysTick timer 2x window watchdogs (independent and system) 27/39/55 I/Os Touch-sensing controller Cyclic redundancy check (CRC)

Control 1x 16-bit motor control **PWM** Synchronized AC timer 1x 32-bit timer 5x 16-bit PWM timers 1x 16-bit basic timer

System architecture/DMA 57

- Cortex-M0 and DMA share the AHB bus matrix to allow parallel access
 - Multiply possibilities of bus access to SRAM, Flash, Peripheral, DMA
 - Von Neumann + Bus Matrix allows Flash execution in parallel with DMA transfer
 - Buses are not overloaded with data movement tasks.
- Increase peripheral speed for better performance
 - Advanced Peripheral Bus (APB) architecture up to 48 MHZ

Cortex-M NVIC (Nested Vector Interrupt Controller)

Interrupts are Fast AND Deterministic

Cortex-M0 Exception Types

No.	Exception Type	Priority	Type of Priority	Descriptions
1	Reset	-3 (Highest)	fixed	Reset
2	NMI	-2	fixed	Non-Maskable Interrupt
3	Hard Fault	-1	fixed	Default fault if other hander not implemented
4-10	Reserved	N.A.	N.A.	
11	SVCall	Programmable	settable	System Service call
12-13	Reserved	N.A.	N.A.	
14	PendSV	Programmable	settable	Pendable request for System Device
15	SYSTICK	Programmable	settable	System Tick Timer
16	Interrupt #0	Programmable	settable	External Interrupt #0
			settable	
47	Interrupt#31	Programmable	settable	External Interrupt #31

The NVIC supports up to 32 dynamically re-prioritizable interrupts each with 4 levels of priority

Memories:

Flash, SRAM, Back-up Data Registers

Embedded Memories:

• FLASH: up 64 Kbytes

• SRAM: up 8 Kbytes

20 bytes of backup registers

System

Power supply 1.8 V regulator POR/PDR/PVD

Xtal oscillators 32 kHz + 4 ~32 MHz

Internal RC oscillators 40 kHz + 8 MHz

PLL

Clock control

Calendar RTC

SysTick timer

2x window watchdogs (independent and system)

27/39/55 I/Os

Touch-sensing controller

Cyclic redundancy check (CRC)

ARM Cortex-M0 CPU 48 MHz

Nested vector interrupt controller (NVIC)

SW debug

Up to 64-Kbyte Flash memory

Up to 8-Kbyte SRAM HW parity checking

20-byte backup data

Connectivity

HDMI CEC

2x SPI (1x with I²S mode)

2x I²C (1x with Fast mode +)

2x USART with modem control (1x with LIN, smartcard, IrDA)

Control

1x 16-bit motor control PWM Synchronized AC timer

1x 32-bit timer 5x 16-bit PWM timers

1x 16-bit basic timer

AHB-Lite bus matrix

APB bus

5-channel DMA

Analog

1-channel 12-bit DAC

1x 12-bit ADC 16 channels / 1 MSPS

2x analog comparator

System 61

System

Power supply 1.8 V regulator POR/PDR/PVD

Xtal oscillators 32 kHz + 4 ~32 MHz

Internal RC oscillators 40 kHz + 8 MHz

PLL

Clock control

Calendar RTC

SysTick timer

2x window watchdogs (independent and system)

27/39/55 I/0s

Touch-sensing controller

Cyclic redundancy check (CRC)

ARM Cortex-M0 CPU 48 MHz

Nested vector interrupt controller (NVIC)

SW debug

Up to 64-Kbyte Flash memory

Up to 8-Kbyte SRAM HW parity checking

20-byte backup data

Connectivity

HDMI CEC

2x SPI (1x with I2S mode)

2x I²C (1x with Fast mode +)

2x USART with modem control (1x with LIN, smartcard, IrDA)

Control

1x 16-bit motor control **PWM** Synchronized AC timer

1x 32-bit timer 5x 16-bit PWM timers

1x 16-bit basic timer

AHB-Lite bus matrix

APB bus

5-channel DMA

Analog

1-channel 12-bit DAC

1x 12-bit ADC 16 channels / 1 MSPS

2x analog comparator

System: power supply

Operating Voltage:

- VDD = 2.0 V to 3.6 V
- VDDA = 2.0 V to 3.6 V
- VBAT = 1.6 V to 3.6 V
- Safe Reset System (Integrated Power On Reset (POR)/Power Down Reset (PDR) + Programmable voltage detector (PVD))
- Power Supply with software configurable internal regulator and low power modes.
- Low Power Modes with Auto Wake-up

System

Power supply 1.8 V regulator POR/PDR/PVD

Xtal oscillators 32 kHz + 4 ~32 MHz

Internal RC oscillators 40 kHz + 8 MHz

PLL

Clock control

Calendar RTC

SysTick timer

2x window watchdogs (independent and system)

27/39/55 I/Os

Touch-sensing controller

Cyclic redundancy check (CRC)

Low Power Modes 63

- STM32F05x Low Power modes: uses Cortex-M0 Sleep modes
 - SLEEP, STOP and STANDBY

Feature	STM32F05x typ IDD/IDDA (*)
RUN mode w/ execute from Flash on 48MHz (HSE bypass 8MHz x 6 PLL = 48MHz) All peripherals clock ON	22.9 / 0.166 (mA)
RUN mode w/ execute from Flash on 24MHz (HSE bypass 8MHz x 3 PLL = 24MHz) All peripherals clock ON	11.7 / 0.088 (mA)
RUN mode w/ execute from Flash on 8MHz (HSI) All peripherals clock ON	4.15 / 0.079 (mA)
Sleep mode w/ execute from Flash at 48MHz (HSI 8MHz / 2 x 12 PLL = 48MHz) All peripherals clock ON	12.9 / 0.243 (mA)
STOP w/ Voltage Regulator in low power All oscillators OFF, PDR on VDDA is OFF	3.6 / 1.34 (µA)
STANDBY w/ LSI and IWDG OFF PDR on VDDA is OFF	1.1 / 1.21 (µA)

On-chip oscillators 64

- Up to 48 MHz frequency managed & monitored by the Clock Control w/ Clock Security System
 - External Oscillators 32kHz (RTC) and 4-32MHz (System Clock)
 - Internal RC Oscillators 40kHz (IWDG) and 8MHz
 - PLL
- Low power calendar RTC
- Dual Watchdog Architecture
- Up to 55 fast I/Os all mapable on external interrupts/event
- Touch Sensing Controller with up to 18 touch sensing electrodes
- CRC calculation unit

System

Power supply 1.8 V regulator POR/PDR/PVD

Xtal oscillators $32 \text{ kHz} + 4 \sim 32 \text{ MHz}$

Internal RC oscillators 40 kHz + 8 MHz

PLL

Clock control

Calendar RTC

SysTick timer

2x window watchdogs (independent and system)

27/39/55 I/Os

Touch-sensing controller

Cyclic redundancy check (CRC)

Connectivity 65

7 communications Interfaces

System Power supply 1.8 V regulator POR/PDR/PVD Xtal oscillators $32 \text{ kHz} + 4 \sim 32 \text{ MHz}$ Internal RC oscillators 40 kHz + 8 MHz**PLL**

Clock control

Calendar RTC

SysTick timer

2x window watchdogs (independent and system)

27/39/55 I/Os

Touch-sensing controller

Cyclic redundancy check (CRC)

ARM Cortex-M0 CPU 48 MHz

> Nested vector interrupt controller (NVIC)

> > SW debug

Up to 64-Kbyte Flash memory

Up to 8-Kbyte SRAM HW parity checking

20-byte backup data

Connectivity

HDMI CEC

2x SPI (1x with I2S mode)

2x I2C (1x with Fast mode +)

2x USART with modem control (1x with LIN, smartcard, IrDA)

Control

1x 16-bit motor control **PWM** Synchronized AC timer

1x 32-bit timer 5x 16-bit PWM timers

1x 16-bit basic timer

AHB-Lite bus matrix

APB bus

5-channel DMA

Analog

1-channel 12-bit DAC

1x 12-bit ADC 16 channels / 1 MSPS

2x analog comparator

Analog

- 1 × 12-bit DAC with output buffer
- 1x12-bits 1Msps ADC w/ up to 16 external channels + Temperature sensor/ voltage reference/VBAT measurement
- 2 low power comparators (Window mode and wakeup)

System

Power supply 1.8 V regulator POR/PDR/PVD

Xtal oscillators 32 kHz + 4 ~32 MHz

Internal RC oscillators 40 kHz + 8 MHz

PLL

Clock control

Calendar RTC

SysTick timer

2x window watchdogs (independent and system)

27/39/55 I/Os

Touch-sensing controller

Cyclic redundancy check (CRC)

ARM Cortex-M0 CPU 48 MHz

Nested vector interrupt controller (NVIC)

SW debug

Up to 64-Kbyte Flash memory

Up to 8-Kbyte SRAM HW parity checking

20-byte backup data

Connectivity

HDMI CEC

2x SPI (1x with I²S mode)

2x I²C (1x with Fast mode +)

2x USART with modem control (1x with LIN, smartcard, IrDA)

Control

1x 16-bit motor control PWM Synchronized AC timer

1x 32-bit timer 5x 16-bit PWM timers

1x 16-bit basic timer

AHB-Lite bus matrix

APB bus

5-channel DMA

Analog

1-channel 12-bit DAC

1x 12-bit ADC 16 channels / 1 MSPS

2x analog comparator

Recap of action steps 67

- 1. Obtain an STM32F0-Discovery kit (or other)
- 2. Download documentation and firmware library from www.st.com
- 3. Select, download, and install an IDE
- Install the ST-Link Driver 4.
- 5. Connect your discovery kit to your PC with USB cable
- Select and open a firmware library project 6.
- Compile 7.
- 8. Debug
- Run 9.

Questions and Answers

Tips and Tricks: Using the Firmware Library

Tips and Tricks

- Start with the firmware library examples
- Basic peripheral configuration
 - Configure your clock tree (typically done with SystemInit() in system_stm32f0xx.c)
 - For each peripheral you plan on using:
 - Enable the PCLK to that peripheral (RCC_APB1PeriphClockCmd(...))
 - Determine GPIO usage
 - Enable GPIO PCLK(s); Alternate Function PCLK (if used)
 - Configure Alternate Function(s) and/or Remap(s) as needed
 - Configure GPIO(s) pins
 - Configure the peripheral
 - Enable the peripheral (if needed)
- Interrupt usage and mapping
 - Add ISR in stm32f0xx_it.c (copy name from startup_stm32f0xx.s)
 - Enable interrupt in NVIC
 - Enable interrupt source in the peripheral

www.st.com/stm32f0discovery

