ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation

SIGIR 2020

Alibaba & Ant Financial Services

Current Method

 explore independent meta-paths for user-item pairs over KG

(fails to capture info fully)

 employ GNN on whole KG to produce representations for users and items separately

(GNN enriches repre. U and I separately by neighbors, ignores mutual effect during propagation)

Core problem

Behav

Main Work

Propose a new framework,
 Adaptive Target-Behavior Relational Graph network

to **capture structural relations** of target user-item pairs over KG to associate the given target item with user behaviors over KG

Main Work

Graph connect and graph prune techniques
 to construct adaptive target-behavior relational graph

Improvement of 5.1% on CTR of Taobao App

ATBRG

- 1. Graph construction part
- 2. Model part

Graph construction

Algorithm 1 Graph construction

```
Input: Target item i; User behavior \mathcal{B}_{ui}; Knowledge graph \mathcal{G};
Output: G_{ui}: Adaptive target-behavior relational graph for \langle u, i \rangle;
 1: for item v \in [i, \mathcal{B}_{ui}] do:
         for entity e \in \phi(v) do:
 2:
              Construct path p = (e, r_k, e_k, ..., e_1, r_1, v);
 3:
              G_{ui}[entity] \leftarrow G_{ui}[entity] \cup p; > Graph connect.
  4:
         end for
 5:
 6: end for
  7: for entity e \in G_{ui} do:
         New item hash set s;
 8:
         for path p \in \mathcal{G}_{ui}[e] do:
 9:
              Collect item v on the path;
 10:
              s \leftarrow s \cup v;
11:
         end for
 12:
         if s.size = 1 then:
 13:
              Prune e in G_{ui};
                                                               ▶ Graph prune.
 14:
         end if
 15:
 16: end for
```


Graph Construction

Adaptive Target-Behavior Relational Graph

Model Part

- 1. Embedding layer
- 2. Relation-aware Extractor layer

• 3. Representation Activation Layer

• 4. Feature Interaction Layer

$$\hat{y}_{ui} = \sigma(f(f(f(\mathbf{x}_u \oplus \mathbf{x}_i \oplus \widetilde{\mathbf{x}}_u \oplus \widetilde{\mathbf{x}}_i)))),$$

Experiments

- Dataset:
- Taobao
- YELP

Model	Taobao		Yelp [†]	
	AUC	RI	AUC	RI
YoubtubeNet	0.6017	+2.72%	0.7109	+26.00%
DeepFM	0.6037	+2.38%	0.7334	+22.14%
DIN	0.6058	+2.03%	0.7520	+19.12%
DIEN	0.6061	+1.97%	0.7581	+18.16%
DSIN	0.6073	+1.77%	0.7774	+15.23%
RippleNet	0.5975	+3.44%	0.7324	+22.31%
KGAT	0.6062	+1.96%	0.7876	+13.73%
KPRN	0.6096	+1.39%	0.8260	+8.45%
ATBRG	0.6181*	7: 2	0.8958*	928