UNIVERSITETI I PRISHTINËS FAKULTETI I SHKENCAVE MATEMATIKE – NATYRORE DEPARTAMENTI I MATEMATIKËS

PROGRAMI: Shkenca Kompjuterike

LËNDA: Procesimi i imazheve

Studentët: Profesorët:

Auritë Bytyçi Artan Berisha

Bardh Shala Besnik Duriqi

Lorik Ramosaj

Abstrakt

Ky punim demonstron aftësitë e ndryshme të procesimit të imazheve me Octave/Matlab përmes zgjidhjes së katër problemeve të dallueshme. Problemi i parë përfshin krijimin e një funksioni që gjeneron katër lloje zhurmash: Rayleigh, Eksponenciale, Salt&Pepper dhe Erlang. Problemi i dytë kërkon shtimin manual të zhurmës periodike në një imazh dhe përdorimin e transformimeve Furie për të hequr atë zhurmë periodike. Problemi i tretë përfshin zhvillimin e një filtri që heq efektivisht frekuenca specifike nga një imazh. Së fundi, problemi i katërt përfshin krijimin e një elementi strukturor që vepron në një imazh për të krijuar një imazh të ri përmes konceptit të erozionit të imazhit.

Hyrje

Procesimi i imazheve ështv një fushë studimi që ka për qëllim analizimin dhe përmirësimin e imazheve dixhitale për aplikacione të ndryshme. Me avancimin e shpejtë të teknologjisë dixhitale, përpunimi i imazhit është bërë gjithnjë e më i rëndësishëm në fusha të ndryshme si mjekësia, inxhinieria dhe vizioni kompjuterik. Ky punim eksploron aftësitë e ndryshme të përpunimit të imazhit përmes zgjidhjes së katër problemeve të dallueshme.

Problemi i parë përfshin krijimin e një funksioni që gjeneron lloje të ndryshme zhurmash, duke përfshirë Rayleigh, Eksponenciale, LogNormal, Salt&Pepper dhe Erlang. Formula të ndryshme për gjenerimin e zhurmës janë përdorur për çdo lloj zhurme. Problemi i dytë kërkon shtimin manual të zhurmës periodike në imazhin lena.tif, pastaj heqjen e zhurmës duke krijuar një filtër specifik për atë imazh me ndihmën e transformimeve Furie. Problemi i tretë përfshin zhvillimin e një filtri duke ndjekur një formulë matematikore, ndërsa problemi i fundit kërkon krijimin e një elementi strukturor që vepron në një imazh për të gjeneruar një imazh të ri.

Gjatë gjithë këtij punimi, çdo problem u trajtua duke përdorur teknika të ndryshme të procesimit të imazhit, duke përfshirë analizën e Furierit, operacionet morfologjike dhe filtrat. Zgjidhjet që rezultojnë paraqiten si një demonstrim i gamës së larmishme të aftësive që ofron procesimi i imazheve. Duke hetuar këto katër probleme të dallueshme, ky punim ofron një pasqyrë gjithëpërfshirëse të metodologjive të ndryshme të përfshira në përpunimin e imazhit dhe aplikimet e tyre në zgjidhjen e problemeve të ndryshme.

Problemi 1

Problemi i parë kërkon krijimin e një funksioni të emëruar 'zhurma' i cili gjeneron zhurmë me shpërndarjet Rayleigh, Eksponenciale, LogNormal, Salt&Pepper dhe Erlang. Funksioni duhet të ketë opsionin e definimit të fushës se ku aplikohet filtri, numrin e shtresave dhe parametrat a dhe b te cilët nevojiten për shpërndarje të ndryshme.

Qasja në Problem

Gjenerimi ynë i zhurmës bëhet me anë të funksioneve të shpërndarjeve si dhe me ndihmën e funksioneve të gatshme të Octave/MATLAB. Për shpërndarjet e ndryshme janë përodur këto formula si gjenerator të zhurmës:

Rayleigh	$Z_{mn} = a + \sqrt{-b * \ln(1 - rand(z, k))}$
Eksponenciale	$Z_{mn} = -\frac{\ln(1 - rand(z, k))}{a}$
LogNormal	$Z_{mn} = a * e^{b*randn(z,k)}$
Salt&Pepper	
(<i>i</i> paraqet pixel ne	$Z_{mn} = {x_{11} \ x_{1n} \choose x_{m1} \ x_{mn}}, ku \ x_{ij} = \begin{cases} 0, & rand(0,1) < 0.05 \\ 1, & rand(0,1) > 0.95 \\ i, & 0.05 \le rand(0,1) \le 0.95 \end{cases}$
imazhin origjinal)	$(x_{m1} x_{mn})$ $(i, 0.05 \le rand(0,1) \le 0.95)$

Erlang
$$Z_{mn}^{1} = -\frac{\ln(1 - rand(z, k))}{a} Z_{mn}^{b} = \sum_{i=2}^{b} Z_{mn}^{i-1} - \frac{\ln(1 - rand(z, k))}{a}$$

Siç shihet, funksionet për gjenerim të zhurmës përdorin funksionet e gatshme rand(a,b) dhe randn(a,b) nga Octave/MATLAB të cilët gjenerojnë matricë të madhësisë (a,b) me numra të rastit të shpërndarë në mënyrë uniforme dhe në mënyrë normale, respektivisht.

Rezultatet

Rezultatet nga zhurma Rayleigh janë paraqitur në figurën 1.

Figura 1: a) imazhi origjinal, b)imazhi me zhurmë Rayleigh

Rezultatet nga zhurma Eksponenciale janë paraqitur në figurën 2.

Figura 2: a) imazhi origjinal, b)imazhi me zhurmë Eksponenciale

Rezultatet nga zhurma LogNormal janë paraqitur në figurën 3.

Figura 3: a) imazhi origjinal, b)imazhi me zhurmë LogNormal

Rezultatet nga zhurma Salt&Pepper janë paraqitur në figurën 4.

Figura 4: a) imazhi origjinal, b)imazhi me zhurmë Salt&Pepper

Rezultatet nga zhurma Erlang janë paraqitur në figurën 5.

Figura 5: a) imazhi origjinal, b)imazhi me zhurmë Erlang

Problemi 2

Problemi i dytë kërkon shtimin manual të zhurmës periodike te imazhi 'lena.tif' dhe pastaj largimin e tij me anë të transformimeve Furie.

Qasja në Problem

Fillimisht krijohet funksioni add_noise(img) i cili automatikisht shton zhurmën periodike në imazh:

```
function img_noise = add_noise(img)  [M,N] = size(img); \\ for i=1:M \\ for j=1:N \\ A(i,j)=20*cos((pi*i)/3+(pi*j)/7) + 23*sin((pi*i)/3+(pi*j)/8); \\ endfor \\ endfor \\ img_noise = img.+A;
```

Pastaj bëjmë transformimet Furie *fft2* dhe *fftshift* dhe analizojmë rezultatin. Krijojmë filterin i cili kundërvepron me pikat më të larta në imazhin e fituar. Procesi është i paraqitur në figurën 6.

Figura 6: a)imazhi i fituar nga transformimet Furie, b)imazhi i krijuar për të kundërvepruar

Vijat e drejta në filterin në figurën 6 janë krijuar me anë të funskionit *line_filter()*, ndërsa vija rrethore është krijuar me anë të funksionit *circle_filter()*. Imazhi a) në figurën 6 pastaj shumëzohet me filterin e krijuar me ç'rast ekzekutohen edhe transformimet inverse Furie *ifft2* dhe *ifftshift*.

Rezultatet

Në figurën 7 janë paraqitur imazhi me zhurmën e shtuar në a) dhe imazhi me zhurmë të larguar në b). Siç shihet, shumica e zhurmës është larguar, dhe me filtër më specifik mund të arrihen rezultate që i afrohen ende më shumë imazhit origjinal pa zhurmë të shtuar.

Figura 7: a) imazhi me zhurmë periodike, b) imazhi pas manipulimeve me transformime Furie

Problemi 3

Problemi i tretë kërkon krijimin e filterit kundërveprues me anë të funksionit të dhënë. Funksioni si input duhet të ketë madhësinë e imazhit dhe qendrën e njërës nga frekuencat që duhet të largohen.

Qasja në problem

Krijojmë funksionin Hg_filter:

```
function Hg = Hg_filter(img_size, u0, v0) 
% Llogaritja e madhesise se filterit 
[M, N] = size(img_size); 
for i=1:M 
for j=1:N 
D0=(sqrt(pow2(i-M/2+u0)+pow2(j-N/2+v0))); 
D1=(sqrt(pow2(i-M/2-u0)+pow2(j-N/2-v0))); 
D2=(sqrt(pow2(i-M/2+u0)+pow2(j-N/2+v0))); 
A(i,j)=1-exp(-(1/2)*(D1*D2)/D0); 
endfor 
endfor 
Hg=A; 
end
```

Siç shihet, në fillim të dy for loops llogarisim D_0 , D_1 dhe D_2 , pastaj llogarisim vlerën e filterit në pikselin (i,j) me anë të formulës së dhënë.

Rezultatet

Filteri i fituar është paraqitur në figurën 8, ndërsa paraqitja e filterit kundërveprues me anë të mesh është paraqitur në figurën 9:

Figura 8: Filteri i fituar me funksionin e dhënë Hg Figura 9: Paraqitja e filterit kundërveprues me anë të mesh

Problemi 4

Problemi i katërt ka të dhënë një imazh binar, dhe kërkohet veprimi me element strukturor mbi atë imazh për të fituar imazhin e ri.

Qasja në problem

Në figurën 10 është paraqitur imazhi origjinal mbi imazhin që duhet të fitohet. Gjithashtu, vlera *opacity* e imazhit origjinal është ulur në 50%, në mënyrë që të shihet imazhi nën të.

Figura 10:Imazhi origjinal dhe ai që duhet të fitohet mbi njëri tjetrin

Duke analizuar këtë imazh të fituar kuptojmë disa gjëra. Operacioni i performuar në imazhin origjinal duhet të jetë erozioni, pasi imazhi i fituar është më i vogël se imazhi origjinal. Nëse fokusohemi vetëm tek njëra kullë, shohim se origjina e elementit strukturor në aspketin horizontal duhet të jetë në mes të elementit strukturor, pasi pjesa e bardhë në imazhin e fituar ndodhet në mes të kullës në imazhin origjinal. Për të njëjtën arsye, origjina e elementit strukturor në aspektin vertikal nuk mund të jetë në mes të elementit strukturor, pasi pjesa e bardhë në imazhin e fituar nuk është në mes të kullës në imazhin origjinal. Nga analiza e teheve të të dy imazheve, shohim se elementi strukturor duhet të jetë i formës katërkëndore, dhe me këto të dhëna ndërtojmë elementin strukturor me 15 rreshta dhe 3 shtylla dhe me origjinë në pikën (13,2).

Rezultatet

Në figurën 11 janë paraqitur imazhet e fituara.

Figura 3: a) Imazhi origjinal, b) Imazhi i fituar