Software Architecture

Software component diagram

• Core Components

Core Components is a library that provides basic and common utilities for a robotic framework. It should provide factory classes for motion planning, end effector.

- o General Utility Components
 - Xml Reader/Writer C++ Object serialization/ deserialization library. It should provide the base class
 to read/ write all the data types like int, unsigned int, float, double, strings, buffer, maps, lists, vector,
 pair, images
 - Logger It should support the ability to log all the basic data types like int, float strings with different flags/enum like warning, info, debug etc. It should allow the user to add own flags/enum. it can be turned; on and off during different software life cycle.
 - Simulation
- Factory classes
 - Kinematics should deal with motion control, motion planning, collision avoidance mechanism, end effector support. It has to provide all base classes for end effector, motion planning etc
- o Controller -
- State machine -basic default statemachine
- Custom Components,
 - State machine implementation specifically for meril robot
 - Custom motion movements implementation for meril robot
 - Communication
 - IPC
 - RS 232
- GUI components
 - Uls for surgeon or support staff
 - 3D/2D Viewer with state machine, zoom facility
 - Login user
 - Training App with simulation ui, with haptic devices, allows the surgeons to practice in simulated environment.
 - UI to set speed of haptic devices
 - Uls for analysis, configuration, and debugging
 - Simulation UI 3 D render ui, moves the simulation for dragger movements or haptic device

- movements
- Haptic Device mapping UI UI to map each buttons or controls in haptic device to tools or manipulator link
- Log ui It displays the useful information to the ui from the backend
- Alerts quick alerts to get user attention specifically for collision or singularity
- Joint Configuration UI to set joint limits, speed etc
- Analysis tools to study the ability of surgeon or derive any data model out of it
- Collision configuration ability to configure dynamic collision between different manipulators or collision between links of a manipulator
- Haptic device checker ability to check the performance of the haptic device for example, for given movement x of a particular device moves the arm in the same way always
- Hardware debugging Tools to find the error state of the hardware

User Interface

Extensibility

The software should support all types of robots, whether it requires preplanned manipulation movements or dynamic movements as per haptic devices.

Reusable

The software components should be modularised such that the components can be reusable.

Process interaction Diagram

<TODO>

How many daemon are going to be there and where it is going to run? How many start up UIs?

State Diagram