Summary of the Previous Lecture

- Linear operator
 - Matrix representation
 - Completeness relation & projection operator
 - Outer product and construction of a new mapping
- Adjoint of an operator
 - Adjoint of an operator Ω is defined as a new operator Ω^{\dagger} that can transform $\langle V |$ to $\langle \Omega V |$ such that $\langle V | \Omega^{\dagger} = \langle \Omega V |$ when $\Omega | V \rangle = | \Omega V \rangle$.
 - In terms of matrix elements, corresponds to transpose & complex conjugation \rightarrow $\left(\Omega^{\dagger}\right)_{ij}=\Omega_{ji}^{*}$
- Hermitian $\Leftrightarrow \Omega^{\dagger} = \Omega \rightarrow \text{similar to symmetric matrix}$
- Unitary $\Leftrightarrow UU^{\dagger} = I \Rightarrow$ similar to orthogonal matrix
- Trace of a matrix \Leftrightarrow Tr $(\Omega) = \sum_{i=1}^{n} \Omega_{ii}$
- Eigenvalue Problem

$$\begin{array}{ccc} & \Omega |V\rangle = \omega |V\rangle \Leftrightarrow \begin{bmatrix} \Omega_{11} - \omega & \Omega_{12} & \dots \\ \Omega_{21} & \Omega_{22} - \omega & \dots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix} \Leftrightarrow \det(\Omega - \omega I) = 0$$

Degeneracy

- Example: find out the eigenvalues & eigenvectors for $\Omega = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
 - $\det(\Omega \omega I) = \begin{vmatrix} 1 \omega & 0 & 1 \\ 0 & 2 \omega & 0 \\ 1 & 0 & 1 \omega \end{vmatrix} = -(\omega 2)^2 \omega = 0$
 - For $\omega = 0$, corresponding eigenvector is $|\omega = 0\rangle = \frac{1}{2^{1/2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$
 - For $\omega = 2$,

We have freedom in choosing x_2 as long as $x_1 = x_3$ is satisfied.

$$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

- For example, $|\omega = 2$, first $\rangle = \frac{1}{3^{1/2}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $|\omega = 2$, second $\rangle = \frac{1}{6^{1/2}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ are another possibility.
- For eigenvectors with the same eigenvalue, we need an additional label such as α for the eigenvector like $|\omega,\alpha\rangle$

Properties of Hermitian Operators

- Theorem 9: the eigenvalues of a Hermitian operator are real.
 - Let $\Omega|\omega\rangle = \omega|\omega\rangle$
 - Apply $\langle \omega |$ on both sides: $\langle \omega | \Omega | \omega \rangle = \omega \langle \omega | \omega \rangle$
 - Take complex conjugation of both sides: $\langle \omega | \Omega^{\dagger} | \omega \rangle = \omega^* \langle \omega | \omega \rangle = \langle \omega | \Omega | \omega \rangle = \omega \langle \omega | \omega \rangle$
 - Because $\langle \omega | \omega \rangle \neq 0$, ω should be real.
- When there is no degeneracy, two eigenvectors of a Hermitian operator with different eigenvalues are orthogonal.
 - Let $\Omega|\omega_i\rangle = \omega_i|\omega_i\rangle$ and $\Omega|\omega_j\rangle = \omega_j|\omega_j\rangle$

 - Take complex conjugation of $\langle \omega_i | \Omega | \omega_i \rangle$, then $\omega_i \langle \omega_i | \omega_j \rangle = \omega_i \langle \omega_i | \omega_j \rangle$.
- **Theorem 10**: To every Hermitian operator Ω , there exists (at least) a basis consisting of its orthonormal eigenvectors. It is diagonal in this eigenbasis and has its eigenvalues as its diagonal entries.
 - $\begin{bmatrix} \omega_1 & 0 & 0 \\ 0 & \omega_2 & \vdots \\ 0 & \dots & \ddots \end{bmatrix}$
 - Full proof is in page 36 of the reference.

Properties of Unitary Operators

- Theorem 11: the eigenvalues of a unitary operator are complex numbers of unit modulus.
- Theorem 12: the eigenvectors of a unitary operator are mutually orthogonal (assuming there is no degeneracy).
 - Let $U|u_i\rangle=u_i|u_i\rangle$ and $U|u_j\rangle=u_j|u_j\rangle$

 - If i = j, $u_i^* u_i = 1$. \rightarrow Theorem 11
 - If $i \neq j$, $\langle u_i | u_i \rangle = 0$. \rightarrow Theorem 12
- Orthogonality of unitary and Hermitian operator
 - Normal operator $\Leftrightarrow AA^{\dagger} = A^{\dagger}A$ (p. 70 of the textbook)

Basis Transformation of an Operator

- Assume that \mathbb{O} is a matrix representation of an operator Ω in some orthonormal basis $|1\rangle, |2\rangle, ..., |n\rangle$.
- If we switch the basis from $|1\rangle, |2\rangle, ..., |n\rangle$ to a new orthonormal basis $|I\rangle, |II\rangle, ..., |N\rangle$, the new matrix representation \mathbb{O}' of an operator Ω in the new orthonormal basis can be obtained by $\mathbb{O}' = \mathbb{U}^{\dagger} \mathbb{O} \mathbb{U}$.
- U is a matrix representation of $U = \sum_{m=1}^{n} |M\rangle\langle m|$ in the original basis $|1\rangle, |2\rangle, ..., |n\rangle$.

Euler Relation

- $e^{ix} = \cos x + i \sin x$
- Proof
 - From Taylor expansion:

•
$$f(x) = f(0) + \frac{df}{dx}\Big|_{x=0} x + \frac{1}{2!} \frac{d^2f}{dx^2}\Big|_{x=0} x^2 + \frac{1}{3!} \frac{d^3f}{dx^3}\Big|_{x=0} x^3 + \cdots$$

$$\sin x = 0 + \frac{1}{1!}x + \frac{-0}{2!}x^2 + \frac{-1}{3!}x^3 + \frac{0}{4!}x^4 + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}$$

$$\cos x = 1 + \frac{-0}{1!}x + \frac{-1}{2!}x^2 + \frac{0}{3!}x^3 + \frac{1}{4!}x^4 + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n}$$

$$e^{z} = 1 + z + \frac{1}{2!}z^{2} + \frac{1}{3!}z^{3} + \frac{1}{4!}z^{4} + \dots = \sum_{n=0}^{\infty} \frac{z}{n!}$$

• If
$$z = ix$$
,

•
$$e^{ix} = 1 + ix - \frac{1}{2!}x^2 - i\frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \cdots$$

$$= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \cdots + i\left(x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \cdots\right)$$

$$= \cos x + i\sin x$$