| Nome:               | Cognome:                                  | Matricola: |
|---------------------|-------------------------------------------|------------|
| Tinelegia: 🗆 Lesen  | ero - 🗆 II esonero - 🗀 so                 | ritto      |
| ripologia. 🗆 i eson | ero - $\square$ ii esonero - $\square$ so | LIILLO     |

## **ESAME SCRITTO FISICA II - 15/06/2021**

- Chi svolge tutto lo scritto ha **due ore** per svolgere gli esercizi
- Chi recupera uno dei due esoneri ha **un'ora** per svolgere gli esercizi
- Scrivete nome, cognome e matricola sui fogli che consegnate
- Chi si vuole ritirare può farlo ma deve consegnare questo foglio (che non verrà corretto)
- Sono vietati i telefoni: chiunque venga trovato ad utilizzare il telefono dovrà abbandonare l'aula

## **Elettricità**

Tre piani isolanti paralleli sono disposti come in figura (a): i due piani a sinistra sono carichi positivamente con densità di carica superficiale  $\sigma=10^{-7}~{\rm C/m^2}$ , mentre quello più a destra è carico negativamente con densità di carica superficiale  $-\sigma$ . La distanza tra il secondo e il terzo piano è uguale a  $d=10~{\rm cm}$ . Il punto A è posto sulla superficie del piano di mezzo, il punto B è disposto a metà tra il secondo e il terzo piano mentre il punto C è posto sulla superficie del piano più a destra.



- 1. Calcolare la differenza di potenziale tra i punti A e C (5 punti).
  - $\circ$  In ogni punto dello spazio il campo è la somma dei campi generati dai diversi piani. Tra A e C i campi generati da tutti i piani sono equiversi (verso destra), quindi il modulo del campo totale è

$$E=rac{3\sigma}{2\epsilon_0}=1.7 imes 10^4 \, \mathrm{V/m}.$$

Ricordando che  $\Delta V = Ed$  si trova

$$\Delta V = rac{3\sigma d}{2\epsilon_0} = 1.7 imes 10^3 \, \mathrm{V}$$

- 2. Una particella di carica  $q=10^{-9}$  C e massa m=1 g viene posta in B al tempo t=0 e poi lasciata libera di muoversi. Quale piano va a colpire? Dopo quanto tempo? **(6 punti)**.
  - $\circ$  Poiché la carica è positiva tenderà a muoversi verso destra e quindi colpirà il piano negativo dopo aver percorso una distanza d/2. Poiché parte da ferma, questa condizione si può scrivere

$$\frac{1}{2}at^2=\frac{1}{2}\frac{qE}{m}t^2=d/2$$

da cui ricaviamo

$$t = \sqrt{rac{dm}{qE}} = 2.42\,\mathrm{s}$$

- 3. Il sistema viene modificato inserendo tra A e B una lastra di materiale conduttore come in figura (b). Determinare, motivando la risposta, se (ed, eventualmente, come) varia il tempo calcolato al punto precedente (5 punti).
  - Poiché il conduttore non è posto sulla traiettoria della particella e al suo esterno non genera alcun campo elettrico aggiuntivo (poiché le due superfici hanno la stessa carica ma di segno opposto), il comportamento della particella non varia in alcuna maniera.

## Magnetismo

Un solenoide di sezione rettangolare (lati  $a=10~{\rm cm}$  e b=2a) ha una densità di spire  $n=100~{\rm m}^{-1}$  in cui scorre una corrente i=1 A ed è riempito da un materiale di permeabilità magnetica relativa  $\mu_r=2$ . Una particella di carica  $q=-1.602\times 10^{-19}~{\rm C}$  e massa  $m=9.11\times 10^{-31}~{\rm Kg}$  entra nel solenoide a metà del lato lungo con velocità perpendicolare al lato stesso (vedi figura), ed esce dallo spigolo in basso a destra (indicato con A in figura).



**Nota Bene:** la figura a destra contiene un *esempio* di angolo di uscita per mostrare esplicitamente la definizione di  $\theta$ .

- 1. Determinare il verso in cui scorre la corrente nelle spire del solenoide e l'intensità del campo magnetico al suo interno (4 punti).
  - o Poiché la carica della particella è negativa, affinché la forza di Lorentz abbia direzione  $-\vec{y}$  il campo deve essere entrante, e quindi la corrente che lo genera deve scorrere in verso orario (guardando il sistema dalla direzione indicata in figura). Il modulo del campo è invece dato da  $B=\mu ni=2.5\times 10^{-4}$  T.
- 2. Calcolare la velocità d'entrata della particella (7 punti).

 $\circ$  Chiamando r il raggio della traiettoria e utilizzando la usuale costruzione geometrica basata su triangoli rettangoli si trova

$$r^2 = a^2 + (r - a)^2$$

da cui ricaviamo r=a=10 cm. Poiché r=mv/qB si trova

$$v=rac{rqB}{m}=rac{rq\mu ni}{m}=4.42 imes 10^6 \, \mathrm{m/s}$$

- 3. Determinare l'angolo  $\theta$  che la traiettoria di uscita della particella forma con l'asse x (5 punti).
  - o Ricordiamo che l'angolo che la traiettoria forma con l'asse x è uguale all'angolo spazzato dalla traiettoria rispetto al centro della circonferenza. L'angolo richiesto si può trovare da considerazioni geometriche notando che, poiché R=a, il centro della traiettoria è lo spigolo in basso a sinistra e quindi l'angolo non può che essere di  $90^\circ$ . Si trova lo stesso risultato se si considera che l'angolo spazzato dalla traiettoria si può calcolare, applicando la trigonometria, tramite la relazione  $r\sin\theta=a$  e quindi  $\sin\theta=a/r=1$ , cioè  $\theta=90^\circ$ .