TOPIC 4 INTRODUCTION TO MEDIA COMPUTATION: DIGITAL PICTURES

Notes adapted from Introduction to Computing and Programming with Java: A Multimedia Approach by M. Guzdial and B. Ericson, and instructor materials prepared by B. Ericson.

Outline

- Digital media
- Vision and colours
- Colour chooser
- □ Digital cameras, monitors
- □ Pixel
- Black and white
- □ Digital picture storage
- □ Picture objects

Computing with media

- 3
 - □ Media computation is the processing of some collection of
 - Picture elements
 - Sound fragments
 - Movie frames
 - Text files
 - Web (HTML) pages

Digital media

- 4
- Digital data refers to the encoding of information in bits (0's and 1's)
- Digital media are electronic media that record a numeric encoding (as opposed to recording continuous (analog) signals)
 - Example: a digital camera captures and stores photos as digital data on a memory card rather than on film
 - Example: CDs and DVDs sample sound waves and record numbers that represent the sound at the time of that sample

Human vision

- 5
- Our eyes contain
 - Rods that allow us to see black, white, and shades of gray
 - Cones that allow us to see in color
 - Cones are sensitive to red, green, and blue light
 - All other colors are combinations of these
- Our eyes and brain work together to make sense of what we see

The RGB model

- 6
 - On a computer, we can produce white light as a combination of the full intensities of red, green, and blue combined
 - □ **Black** is the absence of all light
 - No red, green or blue light
 - All other colors are combinations
 - of red, green, and blue
 - of different intensities

In Dr Java

7

- In DrJava's Interactions pane type ColorChooser.pickAColor();
- Click on the RGB tab and move the sliders to change the intensity of red, green, and blue
 - Note that each intensity is represented by a number between 0 and 255
 - Why is it between 0 and 255?
- Make white, black, red, blue, green, yellow, violet, and orange

Digital cameras

- There are red, green, and blue filters that capture the amount of each color at each of many positions in a grid
- These positions are called picture elements or pixels
 - A grid of 640 x 480 pixels is low resolution
 - A grid of 1600 x 1200 is high resolution
- The more pixels, the better the picture (in theory); it can be enlarged without it looking grainy

Computer displays

- - A display has pixels (picture elements)
 - □ Each pixel has a red, green, and blue component
 - Combinations of red, green, and blue of different intensities give the resulting color
 - Black is 0 red, 0 green and 0 blue
 - White is 255 red, 255 green, and 255 blue

Pictures are made up of pixels

- Digital cameras record light as pixels
- Monitors display pictures using pixels
- Our limited vision actually helps us to see the discrete pixels as a smooth picture
 - If we blow up the picture, however, we can see the pixels

Storing pictures

11

- □ The **intensity** of the red, green, and blue colors at each pixel is stored as a set of three numbers, typically
 - □ 1 byte (8 bits) for red
 - 1 byte for green
 - 1 byte for blue
- □ What numbers can be stored in 1 byte?
 - 8 bits can hold 256 bit patterns
 - □ These can represent the numbers 0 to 255

From black to white

- □ Black is stored as 0, 0, 0
- □ White is stored as 255, 255, 255
- □ What about red?
 - □ Pure red is 255, 0, 0
 - But 100,0,0 is also red (a darker red)
- □ The gray at the right is stored as 200, 200, 200
 - How would a darker gray be stored?

Storing digital pictures

13

- □ To store a 640 x 480 picture, we need nearly 1 million bytes!
- □ To store an image from a 1 megapixel (million pixel) camera, we need 3 million bytes!
- □ Most commonly stored in .jpg (JPEG) files
 - A lossy compression format
 - lossy means not all data is stored (but what is lost isn't that important)
 - **compression** makes the images use less space
- Other formats for storing digital pictures are GIF and BMP

Digital pictures in Java

1.4

- □ Java supports the use of digital pictures
- □ The textbook provides a Picture class
 - To use pictures, we create **picture objects** (objects of the Picture class)
 - The Picture class contains methods we can use to show and manipulate our pictures

Creating Picture objects

15

□ We can create a picture object, for example:

```
Picture picture1 = new Picture();
System.out.println(picture1);
```

- This creates a picture object, and prints information about it, but doesn't actually show any picture yet
- □ To **show the picture**, do the following:

```
picture 1.show();
```


Better picture objects

16

We pick a file name and save a reference to it in a variable called fileName (a file name is a string):

```
String fileName = FileChooser.pickAFile();
```

□ Next, we create a Picture object from the file, and save a reference to it in a variable called pictureObj:

```
Picture pictureObj = new Picture(fileName);
```

□ Now we call the show() method on the picture object:

pictureObj.show();

| Property | Prince |

Summary

18

- Pictures are made up of a collection of pixels
- Pixels are made up of intensity values for red, green and blue that range from 0 to 255
- All of these at maximum intensity is white
- All of these at zero is black
- Changing the intensity values changes the colour
- To make a picture object:

String fileName = FileChooser.pickAFile(); Picture pictureObj = new Picture(fileName); pictureObj.show();

Don't forget that fileName and pictureObj are variables \rightarrow you can pick any name you want! You do not have to use those exact names