d^(m)-трансформация

Теорема. Пусть последовательность $\{a_n\} \in b^{(m)}$, и пусть $\sum_{k=1}^{\infty} a_k$ сходится с s, предположим также, что

$$\lim \left(\Delta^{j-1} p_k(n) \right) \left(\Delta^{k-j} a_n \right) = 0, k = j, j+1, ..., m, \qquad j = 1, 2, ..., m$$

и что

$$\sum_{k=1}^{m} l(l-1) \dots (l-k+1) \bar{p}_k \neq 1, l = \pm 1, 2, 3, \dots,$$

где

$$\bar{p}_k = \lim_{n \to \infty} n^{-k} p_k(n), \qquad k = 1, \dots, m.$$

Тогда

$$S_{n-1} = S(\{a_k\}) + \sum_{k=0}^{m-1} n^{\rho_k} (\Delta^k a_n) g_k(n)$$

для некоторых чисел $\rho_k \le k+1$, и функций $g_k \in A_0^{(0)}$, $k=0,1,\dots,m-1$.

Так как $g_k \in A_0^{(0)}$, то они имеют асимптотическое расширение вида:

$$g_k(n) \sim \sum_{i=0}^{\infty} g_{ki} n^{-i}$$
 при $n \to \infty$

Важным условием в данной теореме является принадлежность последовательности к множеству $b^{(m)}$, если $\{a_n\} \in b^{(m)}$, и даёт асимптотическое расширение для S_{n-1} .

Сопоставим $S_{n-1} \sim S(y)$, $\phi_k(y) \sim n^{\rho_{k-1}} (\Delta^{k-1} a_n)$, однако для того, чтобы применить GREP требуется решить следующую проблему: числа ρ_k зависят от разностного уравнения, которое мы не знаем; незнание ρ_k приводит нас к тому, что мы не знаем о $\phi_k(y)$. Её решить очень просто, мы заменяем ρ_k на верхний предел, т.е. на k+1:

$$S_{n-1} = S + \sum_{k=0}^{m-1} n^{k+1} (\Delta^k a_n) n^{\rho_k - k - 1} g_k(n) = S(\{a_k\}) + \sum_{k=0}^{m-1} n^{k+1} (\Delta^k a_n) h_k(n).$$

Причём функции $h_k(n) \in A_0^{(\rho_k-k-1)} \subset A_0^{(0)}$ и

$$h_k(n) \sim \sum_{i=0}^{\infty} h_{k_i} n^{-i} \equiv 0 * n^0 + \dots + 0 * n^{\rho_k - k} + g_{k_0} n^{\rho_k - k - 1} + \dots$$
 при $n \to \infty$.

По итогу получаем, что у нас есть новые $\phi_k(y) \sim n^k(\Delta^{k-1}a_n)$, которые легко выражаются через члены ряда и не требуют знания чисел ρ_k .

Добавим a_n к обоим частям, чтобы привести к удобному виду:

$$S_n = S + n(h_0(n) + n^{-1})a_n + \sum_{k=1}^{m-1} n^{k+1} (\Delta^k a_n) h_k(n),$$

 $h_0(n) + n^{-1} \in A_0^{(0)}$, потому асимптотическое расширение S_n той же формы, что и S_{n-1} :

$$S_n \sim S + \sum_{k=0}^{m-1} \left[[n^{k+1} (\Delta^k a_n) \sum_{i=0}^{\infty} \frac{h_{ki}}{n^i} \right]$$
, при $n \to \infty$.

Расширим функции $h_k(n)$ отрицательными степенями $n+\beta$, где β – константа.

Асимптотическое расширение тогда предполагает форму:

$$S_n \sim S + \sum_{k=0}^{m-1} \left[n^{k+1} (\Delta^k a_n) \sum_{i=0}^{\infty} \frac{\tilde{h}_{k_i}}{(n+\beta)^i} - \right], \qquad n \to \infty.$$

На основе асимптотического расширения S_n , можно дать определение d-трансформации Левина-Сиди для аппроксимации суммы бесконечного ряда.

Возьмём последовательность целых чисел

$${R_l}_{l=0}^{\infty}$$
, $1 \le R_0 < R_1 < R_2 < \cdots$.

Пусть $n\equiv (n_1,\dots,n_m)$, где $n_1\in\mathbb{N}_0$. Тогда аппроксимации $d_n^{(m,j)}$ к S определены линейной системой:

$$S_{R_{l}} = d_{n}^{(m,j)} + \sum_{k=1}^{m} \left[R_{l}^{k} (\Delta^{k-1} a_{R_{l}}) \sum_{i=0}^{n_{k}-1} \frac{\overline{\beta_{ki}}}{(R_{l} + B)^{i}} \right], j \leq l \leq j + N; N = \sum_{k=1}^{m} n_{k},$$

 $\beta > -R_0$ — параметр, которым мы можем изменять $\overline{\beta_{kl}}$ — дополнительные N неизвестных.

Аналогичную трансформацию можно получить для факториального ряда, если переписать асимптотическое расширение $h_k(n)$ при помощи символов Почхаммера:

$$h_k(n) \sim \sum_{i=0}^{\infty} \frac{h_{ki}}{(n)_i}.$$

Можно получить факториальную $d^{(m)}$ -трансформацию:

$$S_{R_{l}} = d_{n}^{(m,j)} + \sum_{k=1}^{m} \left[R_{l}^{k} (\Delta^{k-1} a_{R_{l}}) \sum_{i=0}^{n_{k}-1} \frac{\overline{\beta_{ki}}}{(R_{l} + \beta)_{i}} \right], j \leq l \leq j+N; N = \sum_{k=1}^{m} n_{k}.$$

Полученная трансформация есть ничто иное как GREP, только для бесконечных рядов и последовательностей. У $d^{(m)}$ -трансформации есть несколько особенностей:

- 1) для трансформации необходимо определить число т;
- 2) так как мы свободны выбирать числа R_1 то мы можем их использовать как для улучшения ускорения сходимости, так и для численной стабильности; это огромное преимущество этой трансформации;
- 3) из того, как мы определили $d^{(m)}$ -трансформацию, следует, что трансформация не зависит от принадлежности последовательности к $b^{(m)}$, поэтому трансформацию можно использовать и для последовательностей не из класса, однако тогда мы полностью зависим от асимптотического поведения a_n ;
- 4) несмотря на нагромождённый вид формулы для $d^{(m)}$ -трансформации, её можно имплементировать, используя весьма эффективные алгоритмы например, W-алгоритм, если m=1, и $W^{(m)}$ -алгоритм, если m>1.

Частные случаи d⁽¹⁾-трансформации

 \mathcal{L} – *трансформация*. Если выбрать $R_1=n$ в формуле для $\mathbf{d}^{(1)}$ -трансформации, то мы получим \mathcal{L} –трансформацию:

$$S_n = d_k^{(1,n)} + \omega_n \sum_{j=0}^{n-1} \frac{\bar{\beta}_j}{(\beta + n)^j}, \qquad \omega_r = r^{\rho} a_r, \qquad d_k^{(1,n)} \to \mathcal{L}_k^{(n)}.$$

Получим:

$$S_n = \mathcal{L}_k^{(n)}(\beta, S_n, \omega_n) + \omega_n \sum_{j=0}^{k-1} \frac{\bar{\beta}_j}{(n+\beta)^j}.$$

Перепишем в другом виде:

$$(n+\beta)^{k-1} \frac{S_n - \mathcal{L}_k^{(n)}(\beta, S_n, \omega_n)}{\omega_n} = \sum_{j=0}^{k-1} \bar{\beta}_j (n+\beta)^{k-j-1}.$$

Наибольшая степень n в правой части равна k-1 Многочлен степени k-1 от n будет обнулён оператором Δ^k . Поскольку оператор разности Δ^k линеен равенство принимает форму:

$$\mathcal{L}_{k}^{(n)}(\beta, S_{n}, \omega_{n}) = \frac{\Delta^{k} \left[\frac{(n+\beta)^{k-1} S_{n}}{\omega_{n}} \right]}{\Delta^{k} \left[\frac{(n+\beta)^{k-1}}{\omega_{n}} \right]}.$$

Благодаря формуле для Δ^k :

$$\mathcal{L}_{k}^{(n)}(\beta, S_{n}, \omega_{n}) = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \frac{(\beta + n + j)^{k-1}}{(\beta + n + k)^{k-1}} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \frac{(\beta + n + j)^{k-1}}{(\beta + n + k)^{k-1}} \frac{1}{\omega_{n+j}}}.$$

 $(\beta + n + j)^{k-1}$ — множитель, введённый в формулу, чтобы уменьшить магнитуду слагаемых числителя и знаменателя чтобы понизить риск возникновения ошибки переполнения.

Данная формула удобна так как из неё легко выводится рекуррентное отношение.

Пусть

$$X_k^{(n)}(\beta) = \begin{cases} (n+\beta)^{k-1} \frac{S_n}{w_n} \\ (n+\beta)^{k-1} \frac{1}{w_n} \end{cases}$$

$$X_{k}^{(n)}(\beta) = (\beta + n)X_{k-1}^{(n)}(\beta), \qquad k \ge 1, n \ge 0,$$

$$\Delta^{k}(\beta + n) - (\beta + n)\Delta^{k} = kE\Delta^{k-1},$$

$$P_{k}^{(n)}(\beta) = \Delta^{k}X_{(k)}^{(n)} = \{kE + (\beta + n)\Delta\}\Delta^{k}X_{k-1}^{(n)}(\beta) = \{kE + (\beta + n)\Delta\}P_{k-1}^{(n)}(\beta)$$

$$= (\beta + n + k)P_{k-1}^{(n+1)}(\beta) - (\beta + n)P_{(k-1)}^{(n)}(\beta).$$

Для стабильности лучше вычислять уменьшенные значения:

$$\mathcal{L}_{k}^{(n)}(\beta) = \frac{P_{k}^{(n)}(\beta)}{(\beta + n + k)^{k-1}}.$$

Используя минимизированные значения, получается рекуррентное отношение формы:

$$\mathcal{L}_{k+1}^{(n)} = \mathcal{L}_k^{(n+1)} - \frac{(\beta+n)(\beta+n+k)^{k-1}}{(\beta+n+k+1)^k} \mathcal{L}_k^{(n)}.$$

 $\mathcal{S}-$ трансформация. Если в факториальной $\mathrm{d}^{(1)}$ -трансформации мы выбираем $R_1=n$, то получаем трансформацию

$$S_n = d_k^{(1,n)} + \omega_n \sum_{j=0}^{n-1} \frac{\overline{\beta_j}}{(\beta + n)_j}, d_k^{(1,n)} \to S_k^{(n)}.$$

Перепишем в другом виде:

$$\frac{(n+\beta)_{k-1} \left[S_n - S_k^{(n)}(\beta, S_n, \omega_n) \right]}{\omega_n} = \sum_{j=0}^{n-1} \overline{\beta_j} (n+j+\beta)_{k-j-1}.$$

Применим к обоим частям оператор, действующий на *n*:

$$\Delta^{k} \left(\frac{(n+\beta)_{k-1} \left[S_{n} - S_{k}^{(n)}(\beta, S_{n}, \omega_{n}) \right]}{\omega_{n}} \right) = 0.$$

Используя линейность оператора Δ^k , получаем:

$$S_k^{(n)}(\beta, S_n, \omega_n) = \frac{\Delta^k \left[\frac{(n+\beta)_{k-1} S_n}{\omega_n} \right]}{\Delta^k \left[\frac{(n+\beta)_{k-1}}{\omega_n} \right]}$$

Применяя формулу для оператора Δ^k получаем репрезентацию $\mathcal S$ в виде отношения двух конечных сумм:

$$S_k^{(n)}(\beta, S_n, \omega_n) = \frac{\sum_{j=0}^k (-1)^j \binom{k}{j} \frac{(\beta+n+j)_{k-1}}{(\beta+n+j)_{k-1}} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^k (-1)^j \binom{k}{j} \frac{(\beta+n+j)_{k-1}}{(\beta+n+j)_{k-1}} \frac{1}{\omega_{n+j}}}.$$

Множитель $(\beta + n + j)_{k-1}$ был введён для того, чтобы уменьшить порядок слагаемых в сумме, тем самым снизив риск возникновения при вычислении ошибки переполнения \mathcal{S} . Можно также вычислить, используя рекуррентное отношение, полученное из выведенной ниже формулы.

Числитель и частное $S_k^{(n)}(\beta, S_n, \omega_n)$ имеют форму:

$$Q_{k}^{(n)} = \Delta^{k} Y_{k}^{(n)},$$

$$Y_{k}^{(n)}(\beta) = \begin{cases} (n+\beta)_{k-1} \frac{S_{n}}{\omega_{n}} \\ (n+\beta)_{k-1} \frac{1}{\omega_{n}} \end{cases}$$

$$Y_{k}^{(n)}(\beta) = (\beta+n+k-2)Y_{k-1}^{(n)}(\beta), \quad k \ge 1, n \ge 0,$$

$$Q_{k}^{(n)}(\beta) = \Delta^{k} Y_{(k)}^{(n)}(\beta) = \{kE + (n+\beta+k-2)\Delta\}\Delta^{k} Y_{k-1}^{(n)}(\beta) =$$

$$= \{kE + (\beta+n+k-2)\Delta\}Q_{k-1}^{(n)}(\beta) =$$

$$= (\beta+n+2k-2)Q_{k-1}^{(n+1)}(\beta) - (\beta+n+k-2)Q_{(k-1)}^{(n)}(\beta).$$

Такое соотношение работает для:

$$S_k^{(n)}(\beta, S_n, \omega_n) = \frac{\sum_{j=0}^k (-1)^j \binom{k}{j} (\beta + n + j)_{k-1} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^k (-1)^j \binom{k}{j} (\beta + n + j)_{k-1} \frac{1}{\omega_{n+j}}}.$$

Если же используется более численно стабильная версия, т.е.

$$S_k^{(n)} = \frac{Q_k^{(n)}}{(\beta + n + i)_{k-1}}.$$

То рекурсивное отношение принимает вид:

$$S_k^{(n)} = S_k^{(n+1)} - \frac{(\beta + n + k)(\beta + n + k - 1)}{(\beta + n + 2k)(\beta + n + 2k - 1)} S_k^{(n)}.$$