

## CS224n: Natural Language Processing with Deep Learning

(index.html)

## Schedule and Syllabus

Unless otherwise specified the course lectures and meeting times are:

Tuesday, Thursday 4:30-5:50

Location: NVIDIA Auditorium (https://campus-map.stanford.edu/?srch=NVIDIA+Auditorium)

| Event       | Date      | Description                                             | Course Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-----------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture     | Jan<br>10 | Introduction to<br>NLP and Deep<br>Learning             | Suggested Readings:  1. [Linear Algebra Review (http://cs229.stanford.edu/section/cs229-linalg.pdf)]  2. [Probability Review (http://cs229.stanford.edu/section/cs229-prob.pdf)]  3. [Convex Optimization Review (http://cs229.stanford.edu/section/cs229-cvxopt.pdf)]  4. [More Optimization (SGD) Review (http://cs231n.github.io/optimization-1/)]                                                                                                                                                       |
|             |           |                                                         | [python tutorial (http://cs231n.github.io/python-numpy-tutorial/)] [slides (lectures/cs224n-2017-lecture1.pdf)] [Lecture Notes 1 (lecture_notes/cs224n-2017-notes1.pdf)]                                                                                                                                                                                                                                                                                                                                    |
| Lecture     | Jan<br>12 | Word Vector<br>Representations:<br>word2vec             | Suggested Readings:  1. [Word2Vec Tutorial - The Skip-Gram Model (http://mccormickml.com/2016/04/19/word2vec-tutoria the-skip-gram-model/)]  2. [Distributed Representations of Words and Phrases and their Compositionality (http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf)]  3. [Efficient Estimation of Word Representations in Vector Space (http://arxiv.org/pdf/1301.3781.pdf)]                                                    |
|             |           |                                                         | [slides (lectures/cs224n-2017-lecture2.pdf)] Spotlight: [slides (lectures/cs224n-2017-lecture2-highlight.pdf)] [paper (https://openreview.net/pdf?id=SyK00v5xx)]                                                                                                                                                                                                                                                                                                                                            |
| A1 released | Jan<br>12 | Assignment #1 released                                  | [Assignment 1 (assignment1/index.html)][Written solution (assignment1/assignment1_soln.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lecture     | Jan<br>17 | Advanced Word<br>Vector<br>Representations              | Suggested Readings:  1. [GloVe: Global Vectors for Word Representation (http://nlp.stanford.edu/pubs/glove.pdf)]  2. [Improving Distributional Similarity with Lessons Learned fromWord Embeddings (http://www.aclweb.org/anthology/Q15-1016)]  3. [Evaluation methods for unsupervised word embeddings (http://www.aclweb.org/anthology/D15-1036)]                                                                                                                                                         |
|             |           |                                                         | [slides (lectures/cs224n-2017-lecture3.pdf)] [Lecture Notes 2 (lecture_notes/cs224n-2017-notes2.pdf)] Spotlight: [slides (lectures/cs224n-2017-lecture3-highlight.pdf)] [paper (https://arxiv.org/pdf/1601.03764v2.pdf)]                                                                                                                                                                                                                                                                                    |
| Lecture     | Jan<br>19 | Word Window<br>Classification<br>and Neural<br>Networks | Suggested Readings:  1. cs231n notes on [backprop (http://cs231n.github.io/optimization-2/)] and [network architectures (http://cs231n.github.io/neural-networks-1/)]  2. [Review of differential calculus (lecture_notes/cs224n-2017-review-differential-calculus.pdf)]  3. [Natural Language Processing (almost) from Scratch (https://arxiv.org/pdf/1103.0398v1.pdf)]  4. [Learning Representations by Backpropogating Errors (http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf)] |
|             |           |                                                         | [slides (lectures/cs224n-2017-lecture4.pdf)] [Lecture Notes 3 (lecture_notes/cs224n-2017-notes3.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                       |

| Lecture                    | Jan<br>24 | Backpropagation<br>and Project<br>Advice                              | Suggested Readings:  1. [Vector, Matrix, and Tensor Derivatives (http://cs231n.github.io/optimization-2/)]  2. Section 4 of [A Primer on Neural Network Models for Natural Language Processing (http://u.cs.biu.ac.il/~yogo/nnlp.pdf)]  [slides (lectures/cs224n-2017-lecture5.pdf)]  Spotlight: [slides (lectures/cs224n-2017-lecture5-highlight.pdf)] [paper (https://arxiv.org/pdf/1607.01759.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------|-----------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                    | Jan<br>26 | Dependency<br>Parsing                                                 | <ol> <li>Suggested Readings:         <ol> <li>Joakim Nivre. 2004. Incrementality in Deterministic Dependency Parsing (https://www.aclweb.org/anthology/W/W04/W04-0308.pdf). Workshop on Incremental Parsing.</li> <li>Danqi Chen and Christopher D. Manning. 2014. A Fast and Accurate Dependency Parser using Neural Networks (http://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf). EMNLP 2014.</li> <li>Sandra Kübler, Ryan McDonald, Joakim Nivre. 2009. Dependency Parsing (http://www.morganclaypool.com/doi/abs/10.2200/S00169ED1V01Y200901HLT002). Morgan and Claypool. [Free access from Stanford campus, only!]</li> <li>Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally Normalized Transition-Based Neural Networks (https://arxiv.org/pdf/1603.06042.pdf). ACL 2016.</li> </ol> </li> <li>Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre and Christopher D. Manning. 2014. Universal Stanford Dependencies: A cross-linguistic typology. Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014). Revised version for UD v1. (http://nlp.stanford.edu/~manning/papers/USD_LREC14_UD_revision.pdf)</li> <li>Universal Dependencies website (http://universaldependencies.org/)</li> </ol> |
|                            |           |                                                                       | [slides (lectures/cs224n-2017-lecture6.pdf)] [Lecture Notes 4 (lecture_notes/cs224n-2017-notes4.pdf)] Spotlight: [slides (lectures/cs224n-2017-lecture6-highlight.pdf)] [paper (https://levyomer.files.wordpress.com/2015/03/improving-distributional-similarity-tacl-2015.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A1 Due                     | Jan<br>26 | Assignment #1 due                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A2 Released                | Jan<br>26 | Assignment #2 released                                                | [Assignment 2 (assignment2/index.html)][Written solution (assignment2/assignment2-soln.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lecture                    | Jan<br>31 | Introduction to<br>TensorFlow                                         | Suggested Readings:  1. [TensorFlow Basic Usage (https://www.tensorflow.org/get_started/basic_usage)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |           |                                                                       | [slides (lectures/cs224n-2017-tensorflow.pdf)] [Lecture Notes Tensorflow (lecture_notes/cs224n-2017-tensorflow.pdf)] Spotlight: [slides (lectures/cs224n-2017-lecture7-highlight.pdf)] [paper (https://arxiv.org/pdf/1611.08669v2.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lecture                    | Feb<br>2  | Recurrent Neural<br>Networks and<br>Language<br>Models                | [slides (lectures/cs224n-2017-lecture8.pdf)] [vanishing grad example (lectures/vanishing_grad_example.html)] [vanishing grad notebook (lectures/vanishing_grad_example.ipynb)] Spotlight: [slides (lectures/cs224n-2017-lecture8-highlight.pdf)] [paper (http://www.petrovi.de/data/acl15.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lecture                    | Feb<br>7  | Machine<br>translation and<br>advanced<br>recurrent LSTMs<br>and GRUs | [slides (lectures/cs224n-2017-lecture9.pdf)] [Lecture Notes 5 (lecture_notes/cs224n-2017-notes5.pdf)] Spotlight: [slides (lectures/cs224n-2017-lecture9-highlight.pdf)] [paper 1 (http://www.fit.vutbr.cz/~imikolov/rnnlm/char.pdf)] [paper 2 (https://openreview.net/pdf?id=H1VyHY9gg)] [paper 3 (https://arxiv.org/abs/1602.02410)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Review                     | Feb       | Midterm Review                                                        | [slides (lectures/cs224n-midterm-review.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | Гоb       | Final project                                                         | [Project page (project.html)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Project<br>Proposal<br>Due | Feb<br>9  | proposal due                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| A3 Released | Feb<br>13 | Assignment #3 released                                              | [Assignment 3 (assignment3/index.html)][Written solution (assignment3/assignment3-soln.pdf)]                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-----------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Midterm     | Feb<br>14 | In-class<br>midterm                                                 | [Gradient Computation Notes (lecture_notes/cs224n-2017-gradient-notes.pdf)] Practice midterms: [Midterm 1 (lectures/cs224n-practice-midterm-1.pdf)] [Midterm 2 (lectures/cs224n-practice-midterm-2.pdf)] [Midterm 1 Solutions (restricted/cs224n-practice-midterm-1-sol.pdf)] [Midterm 2 Solutions (restricted/cs224n-practice-midterm-2-sol.pdf)]                                                                                                        |
| Lecture     | Feb<br>16 | Neural Machine<br>Translation and<br>Models with<br>Attention       | Suggested Readings:  1. [Sequence to Sequence Learning with Neural Networks (https://arxiv.org/pdf/1409.3215.pdf)]  2. [Neural Machine Translation by Jointly Learning to Align and Translate (https://arxiv.org/pdf/1409.0473.pdf)]  3. [Effective Approaches to Attention-based Neural Machine Translation (http://nlp.stanford.edu/pubs/emnlp15_attn.pdf)]                                                                                             |
|             |           |                                                                     | [slides (lectures/cs224n-2017-lecture10.pdf)] Spotlight: [slides (lectures/cs224n-2017-lecture10-highlight.pdf)] [paper (https://arxiv.org/abs/1611.04558)]                                                                                                                                                                                                                                                                                               |
| Lecture     | Feb<br>21 | Gated recurrent<br>units and further<br>topics in NMT               | Suggested Readings:  1. [On Using Very Large Target Vocabulary for Neural Machine Translation (https://arxiv.org/pdf/1412.2007.pdf)]  2. [Pointing the Unknown Words (https://arxiv.org/pdf/1603.08148.pdf)]  3. [Neural Machine Translation of Rare Words with Subword Units (https://arxiv.org/pdf/1508.07909.pdf)]  4. [Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models (https://arxiv.org/pdf/1604.00788.pdf)] |
|             |           |                                                                     | [slides (lectures/cs224n-2017-lecture11.pdf)] [Lecture Notes 6 (lecture_notes/cs224n-2017-notes6.pdf)] Spotlight: [slides (lectures/cs224n-2017-lecture11-highlight.pdf)] [paper (https://arxiv.org/pdf/1611.05358.pdf)]                                                                                                                                                                                                                                  |
| Lecture     | Feb<br>23 | End-to-end<br>models for<br>Speech<br>Processing                    | [slides (lectures/cs224n-2017-lecture12.pdf)]                                                                                                                                                                                                                                                                                                                                                                                                             |
| A3 Due      | Feb<br>25 | Assignment #3 due                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A4 Released | Feb<br>25 | Assignment #4 released                                              | Default final project [Assignment 4 (assignment4/index.html)]                                                                                                                                                                                                                                                                                                                                                                                             |
| Lecture     | Feb<br>28 | Convolutional<br>Neural Networks                                    | Suggested Readings:  1. [A Convolutional Neural Network for Modelling Sentences (http://www.aclweb.org/anthology/P14-1062)]  2. [Convolutional Neural Networks for Sentence Classification (http://www.aclweb.org/anthology/D14-1181)]  [slides (lectures/cs224n-2017-lecture13-CNNs.pdf)]  Spotlight: [slides (lectures/cs224n-2017-lecture13-highlight.pdf)] [paper (https://arxiv.org/pdf/1508.06615.pdf)]                                             |
| Lecture     | Mar<br>2  | Tree Recursive<br>Neural Networks<br>and<br>Constituency<br>Parsing | Suggested Readings:  1. [Parsing with Compositional Vector Grammars                                                                                                                                                                                                                                                                                                                                                                                       |
|             |           |                                                                     | [Lecture Notes 7 (lecture_notes/cs224n-2017-notes7.pdf)] Spotlight: [slides (lectures/cs224n-2017-lecture14-highlight.pdf)] [paper (https://arxiv.org/pdf/1606.01541.pdf)]                                                                                                                                                                                                                                                                                |

| Lecture       | Mar | Coreference           | Suggested Readings:                                                                                                              |
|---------------|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|
|               | 7   | Resolution            | <ol> <li>[Easy Victories and Uphill Battles in Coreference Resolution (http://www.aclweb.org/anthology/D13<br/>1203)]</li> </ol> |
|               |     |                       | 2. [Deep Reinforcement Learning for Mention-Ranking Coreference Models                                                           |
|               |     |                       | (http://cs.stanford.edu/people/kevclark/resources/clark-manning-emnlp2016-deep.pdf)]                                             |
|               |     |                       | [slides (lectures/cs224n-2017-lecture15.pdf)]                                                                                    |
| Lecture       | Mar | Dynamic Neural        | [slides (lectures/cs224n-2017-lecture16-DMN-QA.pdf)]                                                                             |
|               | 9   | Networks for          | [Lecture Notes 8 (lecture_notes/cs224n-2017-notes8.pdf)]                                                                         |
|               |     | Question              | Spotlight: [slides (lectures/cs224n-2017-lecture16-highlight.pdf)] [paper                                                        |
|               |     | Answering             | (http://www.jmlr.org/proceedings/papers/v37/piech15.pdf)]                                                                        |
| Lecture       | Mar | Issues in NLP         | [slides (lectures/cs224n-2017-lecture17.pdf)]                                                                                    |
|               | 14  | and Possible          | Spotlight: [slides (lectures/cs224n-2017-lecture17-highlight.pdf)] [paper                                                        |
|               |     | Architectures for NLP | (http://www.aclweb.org/anthology/N16-1181)]                                                                                      |
| Lecture       | Mar | Tackling the          | [slides (lectures/cs224n-2017-lecture18.pdf)]                                                                                    |
|               | 16  | Limits of Deep        | Spotlight: [slides (lectures/cs224n-2017-lecture18-highlight.pdf)] [paper 1                                                      |
|               |     | Learning for NLP      | (https://arxiv.org/pdf/1410.5401.pdf)] [paper 2                                                                                  |
|               |     |                       | (http://www.nature.com/nature/journal/v538/n7626/pdf/nature20101.pdf)]                                                           |
| Final Project | Mar | Final course          |                                                                                                                                  |
| Due           | 17  | project /             |                                                                                                                                  |
|               |     | Assignment #4         |                                                                                                                                  |
|               |     | due                   |                                                                                                                                  |
| Poster        | Mar | Final project         | 12:15-3:15, Lathrop Library Second Floor                                                                                         |
| Presentation  | 21  | poster                | [Piazza Post on Logistics (https://piazza.com/class/iw9g8b9yxp46s8?cid=2527)] [Facebook Event                                    |
|               |     | presentations         | (https://www.facebook.com/events/277533656001374/?                                                                               |
|               |     |                       | notif_t=plan_admin_added&notif_id=1489444386772633)]                                                                             |