- 1. Квантование простых потенциалов: собственные значения и волновые функции.
- Дираковская гребенка.
- Периодическая потенциальная яма конечной глубины.
- Проквантовать сферически симметричный потенциал $\frac{A}{r} \frac{B}{r^2}$
- Проквантовать сферически симметричную потенциальную яму $\begin{cases} -U_0, R_1 < r < R_2; \\ 0 \end{cases}$

Сферически симметричная система

$$V(r) = \begin{cases} U, & R_1 < x < R_2 \\ 0 & \end{cases}$$

$$-\frac{1}{2}\frac{\partial^2}{\partial r^2}\psi(r) + V(\vec{r})\cdot\psi(r) + \frac{l(l+1)}{2\cdot r^2}\psi(r) = E\cdot\psi(r)$$

Сферическая потенциальная яма конечной глубины

Два линейно независимых решения

$$\sqrt{r}I_{l+1/2}(kr) \qquad \qquad \sqrt{r}K_{l+1/2}(kr)$$

модифицированная функция Бесселя первого и второго рода (Инфельда и МакДональда)

Модуль волновой функции вероятности.

Сферически симметричная система

Сферическая потенциальная яма

$$V(r) = \begin{cases} U, & R_1 < x < R_2 \\ 0 & \end{cases}$$

 R_1 =1 au, R_2 = R_1 +1 au, U_0 =-10 au

$$-\frac{1}{2}\frac{\partial^2}{\partial r^2}\psi(r) + V(\vec{r})\cdot\psi(r) + \frac{l(l+1)}{2\cdot r^2}\psi(r) = E\cdot\psi(r)$$

одномерная

 U_0 =10 au, D=1 au

Как меняется положение уровней с изменением R₁, R₂-R₁?