Spivak's Calculus Solutions

Sebastian Miles

Contents

1 Basic Properties of Numbers

5

4 CONTENTS

Chapter 1

Basic Properties of Numbers

1.1. (i) Suppose that ax = a and $a \neq 0$, then there exists a number a^{-1} . Multiplying a^{-1} on both sides yields

$$(a^{-1}a) \cdot x = a^{-1}a$$
$$x = 1$$

as desired.

(ii) Applying the distributive property on (x - y)(x + y) makes

$$(x - y)(x + y) = (x - y)x + (x - y)y$$

= $x^2 - yx + xy - y^2 = x^2 - y^2$

- (iii) If we have $x^2 = y^2$ then we certainly have $0 = x^2 y^2$. By (ii) we have 0 = (x y)(x + y), this implies that x y = 0 or x + y = 0, this is equivalent to saying that x = y or x = -y.
- (iv) Same method as (ii):

$$(x - y)(x^{2} + xy + y^{2}) = (x - y)x^{2} + (x - y)xy + (x - y)y^{2}$$
$$= x^{3} - yx^{2} + x^{2}y - xy^{2} + xy^{2} - y^{3}$$
$$= x^{3} - y^{3}$$

(v) We prove this by induction, the base case n=2 is already proven in (ii). Suppose $x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+\cdots+xy^{n-2}+y^{n-1})$ is true. Then

we equivalently have $x^n=(x-y)(x^{n-1}+x^{n-2}y+\cdots+xy^{n-2}+y^{n-1})+y^n$. We now prove the n+1 case:

$$x^{n+1} - y^{n+1} = x \cdot x^n - y^{n+1}$$

$$= x(x-y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}) + xy^n - y^{n+1}$$

$$= (x-y)(x^n + x^{n-1}y + \dots + x^2y^{n-2} + xy^{n-1}) + (x-y)y^n$$

$$= (x-y)(x^n + x^{n-1}y + \dots + xy^{n-1} + y^n)$$

The resulting relation concludes the finite induction, thus $x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1})$.

- (vi) We know from (iv) that $a^3 b^3 = (a b)(a^2 + ab + b^2)$, by letting a = x and b = -y we get $x^3 + y^3 = (x + y)(x^2 xy + y^2)$.
- 1.2. Multiplying by the multiplicative inverse of x y works only when $x y \neq 0$, that is $x \neq y$, however, the hypothesis explicitly states x = y. So it is not possible to find the multiplicative inverse of x y and thus the step is invalid.
- 1.3. (i) Say we have $\frac{a}{b}$ and $b \neq 0$ then the same fraction can be written as ab^{-1} . Suppose we also have a variable c such that $c \neq 0$, then we have $ab^{-1} \cdot (cc^{-1})$ and consequently $(ac)(b^{-1}c^{-1}) = \frac{ac}{bc}$. The final equality holds by (iii) which is proven below.
 - (ii) By (i) $\frac{ad}{bd} + \frac{bc}{db} = ad(bd)^{-1} + bc(bd)^{-1} = (ad + bc)(bd)^{-1} = \frac{ad+bc}{bd}$
 - (iii) ab exists if $a, b \neq 0$. Let $x = (ab)^{-1}$, then

$$x(ab) = (ab)^{-1}(ab) = (xa)b = 1$$
 (Multiply x with ab)
 $(xa)(bb^{-1}) = b^{-1} = xa = b^{-1}$ (Multiply by b^{-1})
 $x(aa^{-1}) = b^{-1}a^{-1} = x$ (Multiply by a^{-1})

- (iv) Suppose $b, d \neq 0$, then $\frac{a}{b} \cdot \frac{c}{d} = (ab^{-1}) \cdot (cd^{-1}) = (ac)(b^{-1}d^{-1}) = (ac)(bd)^{-1} = \frac{ac}{bd}$
- (v) Suppose $b, c, d \neq 0$, then $\frac{a}{b} / \frac{c}{d} = (ab^{-1})(cd^{-1})^{-1} = (ab^{-1})(c^{-1}d) = (ac)(bd)^{-1} = \frac{ac}{bd}$
- (vi) Suppose $b, d \neq 0$. Assume $\frac{a}{b} = \frac{c}{d}$, multiplying by bd on both side yields the relation ad = bc. For the converse multiply ad = bc by $(bd)^{-1}$.

- **1.4.** (i) $4-x < 3-2x \iff (4-4)+(-x+2x) < (3-4)+(2x-2x) \iff x < -1$.
 - (ii) $5 x^2 < 8 \iff -3 < x^2$. Note that $x^2 \ge 0$ and for every single value of x, so our solution is every x.
 - (iii) $5 x^2 < -2 \iff 7 < x^2 \iff \sqrt{7} < x \text{ or } -\sqrt{7} > x$.
 - (iv) The product is positive when x 1 > 0 and x 3 > 0 or when x 1 < 0 and x 3 < 0, that is when x > 3 or when x < 1.
 - (v) Complete the square $x^2 2x + 2 = (x 1)^2 + 1$. The product $(x 1)^2$ is always positive, and since we have the +1 as well in the inequality, this inequality must be true for every single x.
 - (vi) The inequality is equivalent to $x^2+x-1>0$. Completing the square $(x+\frac{1}{2})^2>\frac{5}{4}$. If $x\geq -\frac{1}{2}$ then $x>\frac{-1+\sqrt{5}}{2}$. If $x<-\frac{1}{2}$ then $x<\frac{-1-\sqrt{5}}{2}$. Thus, the solution is $x>\frac{-1+\sqrt{5}}{2}$ and $x<\frac{-1-\sqrt{5}}{2}$.
 - (vii) Equivalently we have $(x-\frac{1}{2})^2 > \frac{25}{4}$. If $x \ge \frac{1}{2}$ then x > 3 if $x < \frac{1}{2}$ then x < -2. The solution set is x > 3 and x < -2.
 - (viii) Equivalently $(x+\frac{1}{2})^2+\frac{3}{4}>0$. This is true for every x because $(x+\frac{1}{2})\geq$ and $\frac{3}{4}>0$. Adding them gives $(x+\frac{1}{2})^2+\frac{3}{4}>0$.
 - (ix) Let b = (x+5)(x-3). Then b is positive if x > 3 or x < -5 and negative if -5 < x < 3. Let $a = x \pi$. a is positive if $x > \pi$. ab is positive if both a and b are positive or if both are negative. So ab is positive if $x > \pi$ (b must be positive because x > 3). ab is negative if -5 < x < 3 (This implies $x < \pi$).
 - (x) If $x > \sqrt[3]{2}$ and $x > \sqrt{2}$ then the product is positive, thus the first solution is $x > \sqrt{2}$. If $x < \sqrt[3]{2}$ and $x < \sqrt{2}$ then the product is positive. The second solution is $x < \sqrt[3]{2}$.
 - (xi) Apply \log_2 on both sides: x < 3.
 - (xii) Suppose x < 1, we will show this is a solution. We have $3^x < 3^1 = 3$, adding x < 1 to the inequality we get $x + 3^x < 3 + 1 = 4$. Since both 3^x and x are strictly increasing expressions finding the inequality x < 1 suffices as all real solutions.

- (xiii) Noting that $x \neq 0$ and $x \neq 1$. Expanding the fractions we get $\frac{1-x}{x(1-x)} + \frac{x}{x(1-x)} = \frac{1}{x(1-x)} > 0$. The solutions depends on if the denominator is positive. Thus x(1-x) > 0 has the same solution set. The solutions are 0 < x < 1.
- (xiv) Note $x \neq -1$. Expand by (x+1): $\frac{(x-1)(x+1)}{(x+1)^2} > 0$. Since the denominator is always positive we can multiply this on both sides, $x^2 1 > 0$, Thus x < -1 and x > 1.
- 1.5. (i) Suppose a < b and c < d then we have b a > 0 and d c > 0 by property 11(b a) + (d c) > 0 which is the same as b + d > a + c.
 - (ii) Suppose a < b then $0 < b a \iff -b < (b b) a = -b < -a$.
 - (iii) Suppose a < b and c < d, by (ii): -c < -d, then by (i) we have a d < b d.
 - (iv) Suppose a < b then b a > 0. Assume c > 0, Using (P12) we know that c(b a) > 0 and consequently $bc ac > 0 \iff bc > ac$.
 - (v) Suppose a < b then b a > 0. Assume c < 0, then by (ii) we have -c > 0. Using P12 we know that -c(b a) > 0 and consequently $ac bc > 0 \iff ac > bc$.
 - (vi) Since a > 1 > 0 we apply (iv) by letting c = a. Thus $a^2 > a$.
 - (vii) Because a is positive, it follows by applying (iv) to a < 1 that $a^2 < a$.
 - (viii) Using (iv), multiply a < b with c and c < d with b. This means that we have ac < bc and bc < bd, this is the same as ac < bc < bd, thus ac < bd.
 - (ix) Using (viii) we multiply the same inequality twice, $a^2 < b^2$.
 - (x) Suppose $a, b \ge 0$, we prove the contra-positive, therefore $a \ge b$. Multiply by a and b respectively gives two inequalities $a^2 \ge ab$ and $ab \ge b^2$ which is the same as $a^2 \ge ab \ge b^2$. This concludes the contra-positive proof because $a^2 \ge b^2$ is the logical opposite of $a^2 < b^2$.
- **1.6.** (a) The base case is n=2 which was proven in problem 1.5. Assume $x^n < y^n$ for $0 \le x < y$. By problem 1.6. (viii) we have $x \cdot x^n < y \cdot y^n \iff x^{n+1} < y^{n+1}$. The induction is complete, thus if $0 \le x, y$ then $x^n < y^n$ for $n=1,2,\ldots$

- (b) Suppose x < y and n = 2k + 1, We have three cases.
 - (i) $x, y \ge 0$, this case has been proven in (a).
 - (ii) $x \le 0$ and $y \ge 0$. Consider x^n , because n is odd, it has the following property, $x^{2k+1} = x \cdot (x^k)^2 < 0$, because x is negative and $(x^k)^2$ is positive. However $y^n > 0$ because y is positive. This means we have $x^n < 0 < y^n$.
 - (iii) x, y < 0, by the inequality we have -x > 0 and -y > 0. We also have -y < -x, by (a) we have $(-y)^n < (-x)^n \iff -y^n < -x^n$ because n is odd. Finally we have $x^n < y^n$.
- (c) Suppose $x^n = y^n \iff x^n y^n = 0 = (x y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$ Then either x y = 0 or $x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1} = 0$ In the first case x = y, in the second case we first note that $x^n = y^n$ implies that x and y has the same sign and thus $x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1} \ge 0$ where the equality holds only when x, y = 0 then x = y is still true.
- (d) Let n be an even positive integer. Next we prove the contra-positive, suppose $|x| \neq |y|$ (x = y or x = -y is the same as saying |x| = |y|). Consequently this means either |x| < |y| or |x| > |y|. By (a) this means that either $|x|^n < |y|^n$ or $|x|^n > |y|^n$. Because n is even this is equivalent to $x^n < y^n$ or $x^n > y^n$ which is the logical complement of $x^n = y^n$.
- Suppose 0 < a < b, multiply by a then $a^2 < ab \iff a < \sqrt{ab}$. Next consider $(a-b)^2 > 0$ which is equivalent to $a^2 + b^2 + 2ab > 4ab \iff \frac{a+b}{2} > \sqrt{ab}$, this means that we have $a < \sqrt{ab} < \frac{a+b}{2}$ now remains the final inequality. By the premise we have $b-a>0 \iff b+a>2a \iff \frac{b+a}{2}>a$. We conclude by stating $a < \sqrt{ab} < \frac{a+b}{2} < b$.
- *1.8. (P10) Let b = 0 in P'10, then for every a one of the following properties apply
 - (i) a = 0
 - (ii) a < 0
 - (iii) a > 0

Because the collection P contains all the numbers x such that x > 0, we can see that (iii) states that a belongs to P. (ii) is equivalent to -a > 0, thus -a is in P.

- 10
- (P11) Suppose x and y are in P then 0 < x and 0 < y. By P'12 (Let a=0) we have x < y + x. By P'11 we get 0 < y + x which is in P.
- (P12) Suppose x and y are in P then 0 < x and 0 < y. Using P'13 we get 0 < xy, this means that xy is in P.
- 1.9. (i) $\sqrt{2} + \sqrt{3} \sqrt{5} + \sqrt{7}$.
 - (ii) Triangle inequality states that $|a+b|-|a|-|b| \le 0$. Therefore |a|+|b|-|a+b|.
 - (iii) Triangle inequality gives $|(a+b)+c|-|a+b|-|c| \le 0 \iff |a+b|+|c|-|a+b+c| \ge 0$. Our solution is therefore |a+b|+|c|-|a+b+c|.
 - (iv) $x^2 2xy + y^2 = (x y)^2 \ge 0$, thus $x^2 2xy + y^2$.
 - (v) $\sqrt{2} + \sqrt{3} + \sqrt{5} \sqrt{7}$
- **1.10.** (i) Suppose $a+b\geq 0$ and $b\geq 0$ then we have a+b-b=a. Suppose $a+b\geq 0$ and b<0 then a+b+b=a+2b. Suppose a+b<0 and $b\geq 0$ then -a-b-b=-(a+2b). Suppose a+b<0 and b<0 then -a-b+b=-a.
 - (ii) If $0 \ge x \ge 1$ then 1 x. If $-1 \ge x < 0$ then 1 + x. If 1 < x then x 1 then -x 1.
 - (iii) If $x \ge 0$ then $x x^2$, if x < 0 then $-x x^2$.
 - (iv) If $a \ge 0$ then a, if a < 0 then 3a.
- **1.11.** (i) Suppose x-3>0 then $x-3=8 \iff x=11$. Suppose x-3<0 then $3-x=8 \iff x=-5$.
 - (ii) Suppose $x-3 \ge 0$ then $3 \le x < 11$. Suppose x-3 < 0 then -5 < x < 3. Combining both inequalities -5 < x < 11.
 - (iii) Suppose $x + 4 \ge 0$ then x < -2, so $-4 \le x < -2$. If x + 4 < 0 then -6 < x < -4. Combining both inequalities gives -6 < x < -2.
 - (iv) Suppose $x \le 2$ then $x 1 + x 2 > 1 \iff x > 2$. This means x > 2 is always a solution. Suppose $1 \le x < 2$, then $x 1 x + 2 > 1 \iff 1 > 1$, which can not be true. Suppose x < 1, then $1 x x + 2 > 1 \iff x < 1$. The solution is x < 1 and x > 2.

- (v) Suppose $x \ge 1$ then $x-1+x+1 < 2 \iff x < 1$ which is a contradiction. Suppose $-1 \le x < 1$ then $1-x+x+1 < 2 \iff 2 < 2$, also contradiction. Suppose x < -1 then $1-x-x-1 < 2 \iff x > -1$, an x that satisfies the inequality is nonexistent.
- (vi) Suppose $x \ge 1$ then $x-1+x+1 < 1 \iff x < \frac{1}{2}$ which is a contradiction. Suppose $-1 \le x < 1$ then $1-x+x+1 < 1 \iff 2 < 1$, also a contradiction. Suppose x < -1 then $1-x-x-1 < 1 \iff x > -\frac{1}{2}$, similarly to (iv), there are no x that satisfy the inequality.
- (vii) We have $x 1 = 0 \iff x = 1$ or $x + 1 = 0 \iff x = -1$.
- (viii) Suppose $x \ge 1$ then $(x-1)(x+2) = 3 \iff x^2+x-5 = 0 \iff (x+\frac{1}{2})^2 = \frac{21}{4} \implies x = \frac{-1+\sqrt{21}}{2}$. Suppose $-2 \le x < 1$ then (1-x)(x+2) = 3 which is a polynomial with complex roots thus no solutions there. Suppose x < -2, then we get the same polynomial as in the first case because $(-1)^2 = 1$, so the other root is $x = \frac{-1-\sqrt{21}}{2}$ which is less than -2 because $\frac{-1-\sqrt{21}}{2} < \frac{-1-\sqrt{16}}{2} = \frac{-5}{2} < -2$. To conclude $x = \frac{-1\pm\sqrt{21}}{2}$
- **1.12.** (i) $|xy|^2 = (xy)^2 = x^2y^2 = |x|^2|y|^2 \iff |xy| = |x| \cdot |y|$
 - (ii) Consider $\left|\frac{1}{x}\right|$ for $x \neq 0$. This is the same as $\sqrt{\left(\frac{1}{x}\right)^2} = \sqrt{\frac{1}{x^2}} = \frac{1}{\sqrt{x^2}} = \frac{1}{|x|}$.
 - (iii) Suppose $y \neq 0$ then $\left| \frac{x}{y} \right| = \sqrt{\left(\frac{x}{y} \right)^2} = \frac{\sqrt{x^2}}{\sqrt{y^2}} = \frac{|x|}{|y|}$
 - (iv) Suppose a, b are real numbers, then the triangle inequality is $|a+b| \le |a| + |b|$. Let a = x and b = -y then $|x-y| \le |x| + |-y| = |x| + |y|$. The final equality is proven by $|-y| = \sqrt{(-y)^2} = \sqrt{(-1)^2 y^2} = \sqrt{y^2}$.
 - (v) Using the triangle inequality $|x| = |(x-y)+y| \le |x-y|+|y| \iff |x|-|y| \le |x-y|$
 - (vi) There are two cases from the inequality, $|x| |y| \le |x y|$ and $|y| |x| \le |y x|$, note that the last absolute value comes from the fact |x y| = |y x|. Both inequalities are identical to (v) (the second inequality has the variables interchanged).
 - (vii) We have $|(x+y)+z| \le |x+y|+|z| \le |x|+|y|+|z|$. Doing the case work for the equality is left to the reader.

- 1.13. We start by proving for max, let $x \ge y$ then $\max(x,y) = \frac{x+y+x-y}{2} = x$ Likewise if $y \ge x$ then $\max(x,y) = y$. Similar reasoning shows that the formula for $\min(x,y)$ is valid. Next we use substitution and get $\max(x,y,z) = \max(x,\max(y,z)) = \frac{y+z+2x+|y-z|+|y+z+2x+|y-z|}{4}$ and $\min(x,y,z) = \min(x,\min(y,z)) = \frac{y+z+2x+|y-z|-|y+z+2x+|y-z|}{4}$.
- **1.14.** (a) Suppose $a \ge 0$ then we have a = -(-a). The case for $a \le 0$ is then obvious because we have $(-a) \ge 0$ which can be used on the previously proven fact.
 - (b) (\Rightarrow) Suppose $-b \le a \le b$, this implies $a \le b$ and $-b \le a \iff -a \le b$ and consequently $|a| \le b$. (\Leftarrow) Suppose $|a| \le b$ then $a \le b$ and $-a \le b \iff -b \le a$, thus $-b \le a \le b$. Now we prove the last part. Suppose $|a| \le |a|$ then by the previously proven theorem we have $-|a| \le a \le |a|$.
 - (c) As proven earlier, for every a, b we have $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. Add these together gives $-(|a| + |b|) \le a + b \le |a| + |b|$, applying the theorem from (b) on (|a| + |b|) and (a + b) we get $|a + b| \le |a| + |b|$.
- *1.15. We prove first that if x = y and $x, y \neq 0$. The inequality is then $x^2 + x^2 + x^2 > 0 \iff x^2 > 0$ which is true because $x \neq 0$.

Suppose $x \neq y$, then the left side of inequality is equivalent to $(x^2 + xy + y^2) = \frac{x^3 - y^3}{(x - y)}$. Suppose x > y then $x^3 - y^3 > 0$ by problem 6 (b), since both the numerator and denominator are positive we know that $\frac{x^3 - y^3}{(x - y)} > 0$. Next we assume x < y which implies $x^3 - y^3 < 0$ by problem 6 (b). This means the numerator and denominator are both negative, thus $\frac{x^3 - y^3}{(x - y)} > 0$. In every case the inequality is positive, thus we have proven that $x^2 + xy + y^2 > 0$.

To prove that the second inequality holds we follow the same steps, suppose x=y which means the inequality is $5x^4>0$. Next suppose $x\neq y$ then we have $x^4+x^3y+x^2y^2+xy^3+y^4=\frac{x^5-y^5}{x-y}$. Suppose x-y>0 then $x^5-y^5>0$ which implies $\frac{x^5-y^5}{x-y}>0$. Assume x-y<0 then $x^5-y^5<0$ which implies $\frac{x^5-y^5}{x-y}>0$.

*1.16. (a) $(x+y)^2 = x^2 + 2xy + y^2 = x^2 + y^2 \iff xy = 0$ which implies x = 0 or y = 0. Next we have $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 = x^3 + y^3 \iff x^2y + xy^2 = 0 = xy(x+y)$. Which implies either x = 0 or y = 0 or x = -y.

- (b) Consider $3(x+y)^2 = 3x^2 + 6xy + 3y^3 \ge 0$, since $x, y \ne 0$ we have $x^2 > 0$ and $y^2 > 0$, adding these inequalities makes $4x^2 + 6xy + 4y^2 > 0$. If x, y = 0 then the statement would be false.
- (c) Equivalently we have $4x^3y + 6x^2y^2 + 4y^3x = xy(4x^2 + 6xy + 4y^2)$, left side indicates that it is equal to zero when x = 0 or y = 0. Thus $(x+y)^4 = x^4 + y^4$ when x = 0 or y = 0.
- (d) Subtract with $x^5 + y^5$ and since $xy \neq 0$ we divide by 5xy this makes $x^3 + 2x^2y + 2xy^2 + y^3 = 0 \iff (x+y)^3 = x^2y + y^2x = xy(x+y)$. Suppose $x+y \neq 0$ then $xy = (x+y)^2 \iff x^2 + xy + y^2 = 0$, this implies x, y = 0 by letting $p = x^2 + xy + y^2 \iff 2p = 2x^2 + 2xy + 2y^2 = x^2 + y^2 + (x+y)^2$, it then follows all the terms have to be zero because they are either zero or positive, x = 0 and y = 0, this contradicts the fact that xy = 0, thus it must be the case that x = -y.

Assume this time that x=0 then $(x+y)^5=x^5+y^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5 \iff y^5=y^5$. By interchanging x with y in the last sentence it follows that x=0 or y=0. To conclude, the solutions are x=-y or x=0 or y=0. My guess is that the same solutions apply to $(x+y)^n=x^n+y^n$ if n is odd and x=0 or y=0 if n is even.

- **1.17.** (a) $2x^2 3x + 4 = 2(x \frac{3}{4})^2 + y \implies y = \frac{32}{8} \frac{9}{8} = \frac{23}{8}$
 - (b) Subtract $2(y+1)^2$ this makes x^2-3x . Let $x^2-3x=(x-\frac{3}{2})+z$ then $z=-\frac{9}{4},\ z$ is the smallest value.
 - (c) Let m be the minimum number for a simple second degree polynomial, then it follows that $x^2+bx+c=0=(x+\frac{b}{2})^2+m=x^2+bx+\frac{b^2}{4}+m\iff m=c-\frac{b^2}{4}$

We have $x^2 + 4xy + 5y^2 - 4x - 6y + 7 = x^2 + (4y - 4)x + 5y^2 - 6y + 7$ The minimum is thus $m = 5y^2 - 6y + 7 - 4(y^2 - 2y + 1) = y^2 + 2y + 3 = (y + 1)^2 + 2$. This implies that 2 is in fact the minimum value.

- 1.18. (a) $x = \frac{-b \pm \sqrt{b^2 4c}}{2} \iff (2x+b)^2 = b^2 4c \iff 4x^2 + 4xb + b^2 b^2 + 4c = 0 \iff x^2 + bx + c = 0.$
 - (b) We complete the square, $x^2 + bx + c = 0 \iff 4(x + \frac{b}{2})^2 = b^2 4c$ this follows that $(x + \frac{b}{2})^2 \ge 0$, but $b^2 4c < 0$ which is a contradiction. It

also follows that $x^2 + bx + c > 0$ which means there are no real values of x that satisfy the equation.

- (c) We complete the square $(x+\frac{y}{2})^2+\frac{3y^2}{4}$. Since $\frac{3y^2}{4}>0$ because $y\neq 0$ it must be the case that $(x+\frac{y}{2})^2+\frac{3y^2}{4}>0$ which is the same as $x^2+xy+y^2>0$
- (d) Completing the square makes $(x + \frac{\alpha y}{2})^2 + y^2(1 \frac{\alpha^2}{4})$. The left term has the property $(x + \frac{\alpha y}{2})^2 \ge 0$ (just let $x = -\frac{\alpha y}{2}$). This means the right term must be positive. Let $1 \frac{\alpha^2}{4} > 0$ which implies $-2 < \alpha < 2$.
- (e) $ax^2 + bx + c = a(x^2 + \frac{bx}{a}) + c = a(x + \frac{b}{2a})^2 + c \frac{b^2}{4a^2}$. Since a > 0 the minimum must be when $x + \frac{b}{a} = 0$, so the minimum is $c \left(\frac{b}{2a}\right)^2$. (The first case is just a = 1)
- 1.19. (a) Suppose $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$ then the equality holds if $\lambda(y_1^2 + y_2^2) = \sqrt{\lambda^2(y_1^2 + y_2^2)} \sqrt{(y_1^2 + y_2^2)} \iff \lambda = |\lambda|$. Seems to be some kind of error (edition 3) because it does not hold if λ is negative. Let's assume $\lambda \geq 0$. The then equality holds. The equality also holds if $y_1 = y_2 = 0$ because both factors on both sides are equal to zero.

Assume y_1 and y_2 is not equal to zero. Then there does not exist a λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$, the problems states that this implies $\lambda^2(y_1^2 + y_2^2) - 2\lambda(x_1y_1 + x_2y_2) + (x_1^2 + x_2^2) > 0$. This equation is of the form $\lambda^2 + b\lambda + c > 0$ and since there does not exist any λ we have $b^2 < 4ac$ by noticing that dividing by a in the equation $ax^2 + bx + c = 0$ you can apply problem 18 (b), that is $(x_1y_1 + x_2y_2)^2 < (y_1^2 + y_2^2)(x_1^2 + x_2^2)$. This follows that $|x_1y_1 + x_2y_2| < \sqrt{y_1^2 + y_2^2}\sqrt{x_1^2 + x_2^2}$

To conclude we have

$$|x_1y_1 + x_2y_2| \le |x_1y_1 + x_2y_2| \le \sqrt{y_1^2 + y_2^2} \sqrt{x_1^2 + x_2^2}.$$

(b) We start with $(x-y)^2 \ge 0 \iff 2xy \le x^2 + y^2$. Suppose $x_1, x_2, y_1, y_2 \ne 0$ and let $x = \frac{x_i}{\sqrt{x_1^2 + x_2^2}}, y = \frac{y_i}{\sqrt{y_1^2 + y_2^2}}$ for i = 1, 2. It follows that

$$\begin{cases}
\frac{2x_1y_1}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \le \frac{x_1^2}{x_1^2 + x_2^2} + \frac{y_1^2}{y_1^2 + y_2^2} \\
\frac{2x_2y_2}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \le \frac{x_2^2}{x_1^2 + x_2^2} + \frac{y_2^2}{y_1^2 + y_2^2}
\end{cases}$$

Add both inequalities together, then it follows that $x_1y_1 + x_2y_2 \le \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}$.

If we assume $x_i = 0$ or $y_i = 0$ for i = 1, 2 then either all the terms will be zero or the resulting inequality is for example $0 \le y_1^2$ (let $x_1 = 0$).

- (c) $(x_1^2 + x_2^2)(y_1^2 + y_2^2)$ $= (x_1y_1)^2 + 2(x_1y_1)(x_2y_2) + (x_2y_2)^2 + (x_2y_1)^2 - 2(x_2y_1)(x_1y_2) + (x_1y_2)^2$ $= (x_1y_1 + x_2y_2)^2 + (x_2y_1 - x_1y_2)^2 \ge (x_1y_1 + x_2y_2)^2$ $\iff \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2} \ge |x_1y_1 + x_2y_2| \ge x_1y_1 + x_2y_2$
- (d) The problem is constructed to waste time, see (a) where we already proved it. It shows that if $y_1 = 0$ and $y_2 = 0$ or there exists a number λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$ then the equality holds, otherwise $|x_1y_1 + x_2y_2| < \sqrt{y_1^2 + y_2^2} \sqrt{x_1^2 + x_2^2}$.
- **1.20.** Add both inequalities, $|x-x_0|+|y-y_0|<\varepsilon$. We apply the triangle inequality which makes $|(x+y)-(x_0+y_0)|\leq |x-x_0|+|y-y_0|<\varepsilon$. For the second inequality, notice that that $|y-y_0|=|y_0-y|$. So the triangle inequality makes $|(x-y)-(x_0-y_0)|\leq |x-x_0|+|y_0-y|<\varepsilon$.
- *1.21. Suppose $|x-x_0|<\frac{\varepsilon}{2(|y_0|+1)}$, then $2|x-x_0|(|y_0|+1)<\varepsilon$. Now assume $|y-y_0|<\frac{\varepsilon}{2(|y_0|+1)}$ then $2|y-y_0|(|x_0|+1)<\varepsilon$. Sum the two similar inequalities

$$2|x - x_0|(|y_0| + 1) + 2|y - y_0|(|x_0| + 1) < 2\varepsilon$$

$$|x - x_0|(|y_0| + 1) + |y - y_0|(|x_0| + 1) < \varepsilon$$

$$|y_0||x - x_0| + |x - x_0| + |x_0||y - y_0| + |y - y_0| < \varepsilon$$

Now suppose $|x-x_0| < 1$ then we have $|y-y_0||x-x_0| < |y-y_0|$. Continuing on the expression above we get

>
$$|y_0||x - x_0| + |x_0||y - y_0| + |y - y_0|$$

> $(|y_0| + |y - y_0|)(|x - x_0|) + |x_0||y - y_0|$
 $\ge |y||x - x_0| + |x_0||y - y_0| \ge |xy - x_0y + x_0y - x_0y_0| = |xy - x_0y_0|$

Therefore we have $|xy - x_0y_0| < \varepsilon$.

16

*1.22. We first prove that $y \neq 0$. Suppose $|y - y_0| < \frac{|y_0|}{2}$ then by problem 12, we get $|y_0| < 2|y|$ by problem 12. By supposing y = 0 we get a contradiction because $0 < |y_0|$ thus it must be the case that $y \neq 0$.

Now we prove the latter. Suppose $|y-y_0| < \frac{\varepsilon |y_0|^2}{2}$. Then

$$\begin{aligned} |y - y_0| &< \varepsilon |y_0| |y| \\ \left| \frac{y_0 - y}{y_0 y} \right| &< \varepsilon \\ \left| \frac{1}{y_0} - \frac{1}{y} \right| &< \varepsilon \end{aligned}$$

as desired.

*1.23. We begin first by using problem 21. We can then state that if $y \neq 0$, $|y_0 \neq 0|$, $|\frac{1}{y} - \frac{1}{y_0}| < \frac{\varepsilon}{2(|x_0|+1)}$ and $|x - x_0| < \min\left(\frac{\varepsilon}{2(\left|\frac{1}{y_0}\right|+1)}, 1\right)$ then we have $\left|\frac{x}{y} - \frac{x_0}{y_0}\right| < \varepsilon$. Now we need to modify the hypothesis. We have that $y_0 \neq 0$ and $|y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\varepsilon|y_0|^2}{2}\right)$ implies $y \neq 0$ and the hypothesis earlier.

To conclude, $y_0 = 0$, $|y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\varepsilon |y_0|^2}{2}\right)$ and $|x - x_0| < \min\left(\frac{\varepsilon}{2(\left|\frac{1}{y_0}\right| + 1)}, 1\right)$ implies $y \neq 0$ and $\left|\frac{x}{y} - \frac{x_0}{y_0}\right| < \varepsilon$.

*1.24. (a) We prove the base case (k=2) with the associative law, $(a_1 + a_2) + a_3 = a_1 + (a_2 + a_3)$. Next we suppose P(k): $(a_1 + \cdots + a_k) + a_{k+1} = a_1 + \cdots + a_{k+1}$, then we prove for P(k+1):

$$(a_1 + \dots + a_{k+1}) + a_{k+2} = [(a_1 + \dots + a_k) + a_{k+1}] + a_{k+2}$$
$$(a_1 + \dots + a_k) + (a_{k+1} + a_{k+2}) = a_1 + \dots + a_{k+2}$$

This concludes the induction.

(b) We will prove this by induction on n, suppose $n \ge k$ and $(a_1 + \cdots + a_k) + (a_{k+1} + \cdots + a_n) = a_1 + \cdots + a_n$. The base case is n = k+1 which was proven in the previous problem. We will now show the equality holds for n + 1, we have

$$(a_1 + \dots + a_k) + (a_{k+1} + \dots + a_{n+1})$$

$$= (a_1 + \dots + a_k) + ((a_{k+1} + \dots + a_n) + a_{n+1})$$

$$= ((a_1 + \dots + a_k) + (a_{k+1} + \dots + a_n)) + a_{n+1}$$

$$= (a_1 + \dots + a_n) + a_{n+1}$$

$$= a_1 + \dots + a_{n+1}$$

We have now proven that for $n \geq k$ it follows that

$$(a_1 + \dots + a_k) + (a_{k+1} + \dots + a_n) = a_1 + \dots + a_n.$$

(c) We will show that $s(a_1, \ldots, a_k) = s(a_1) + \cdots + s(a_k)$ by induction on k. Let the base case be k = 1, then we obviously have an equality. Now we assume $s(a_1, \ldots, a_k) = s(a_1) + \cdots + s(a_k)$ and now prove for the k + 1 case.

$$s(a_1, \dots, a_{k+1}) = s(a_1, \dots, a_k) + s(a_{k+1})$$

= $s(a_1) + \dots + s(a_{k+1})$

Because $s(a_1) + \cdots + s(a_k) = a_1 + \cdots + a_k$, our proof is done.

- **1.25.** We suppose the rules of addition and multiplication given in the problem we then prove it is a field.
 - (i) Testing each case is tedious and will not be contained here, but we find that a + (b + c) = (a + b) + c works.
 - (ii) Suppose a = 0 then 0+0 = 0+0 = 0, and a = 1 implies 1+0 = 0+1 = 0
 - (iii) If a = 0 then then let -a = 0 and if a = 1 then -a = 1.
 - (iv) This works by exhaustion.
 - (v) If at least one variable is zero, then 0=0, otherwise $1 \cdot (1 \cdot) = (1 \cdot 1) \cdot 1 \iff 1=1$
 - (vi) Suppose a=0 then $1\cdot 0=1\cdot 0=0$, suppose a=1 then $1\cdot 1=1\cdot 1=1$
 - (vii) a = 0 is not allowed so we only prove for the a = 1 case which makes $a^{-1} = 1$.
 - (viii) If at least one variable is equal to zero then we have 0=0, otherwise $1\cdot 1=1\cdot 1$
 - (ix) Suppose a=0 then $0 \cdot (b+c)=0 \cdot b+0 \cdot c=0$. Suppose a=1 then $1 \cdot (b+c)=1 \cdot b+1 \cdot c=b+c$