Fourier Transform

Jérémy Dubut 7th December 2022

Intuition of the Fourier transform

from a measurement of

the whole beam?

Formal definition

If we have a Lebesgue integrable function:

$$f: \mathbb{R} \to \mathbb{C}$$

Its Fourier transform is a function:

$$\mathcal{F}\{f\}: \mathbb{R} \to \mathbb{C}$$

 $\mathcal{F}\{f\}\colon \mathbb{R} \to \mathbb{C} \qquad \mathcal{F}\{f\}(\xi) = |\mathcal{F}\{f\}(\xi)| \cdot \mathrm{e}^{i\phi_f(\xi)} \\ |\mathcal{F}\{f\}(\xi)| \colon \mathrm{magnitude} \\ \phi_f(\xi) \colon \mathrm{phase} \qquad \qquad \phi_f(\xi) = |\mathcal{F}\{f\}(\xi)| \cdot \mathrm{e}^{i\phi_f(\xi)} \\ |\mathcal{F}\{f\}(\xi)| \mapsto |\mathcal{F}\{f\}(\xi)| \mapsto |\mathcal{F}\{f\}(\xi)| \mapsto |\mathcal{F}$

Defined by the integrals:

$$\mathcal{F}\{f\}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-i2\pi\xi x} dx$$

Example 1: one principal wavelength

Example 1: one principal wavelength

Example 1: one principal wavelength

Example 2: two in-phase principal wavelengths

Example 4: rectangle signal

Basic properties: Linearity

If we have:

$$f,g: \mathbb{R} \to \mathbb{C} \text{ and } a,b \in \mathbb{C}$$

Then:

$$\mathcal{F}\{a.f+b.g\} = a.\mathcal{F}\{f\} + b.\mathcal{F}\{g\}$$

Proof: Linearity of integrals.

Basic properties: Time shift

If we have:

$$g(t) = f(t - t_0)$$

Then:

$$\mathcal{F}\{g\}(\xi) = e^{-2\pi i \xi t_0} \cdot \mathcal{F}\{f\}(\xi)$$

That is: same magnitude, but different (drifted) phase

Proof: If
$$u = t - t_0$$
,
$$\mathcal{F}\{g\}(\xi) = \int_{-\infty}^{+\infty} g(t) e^{-i2\pi\xi t} dt = \int_{-\infty}^{+\infty} f(u) e^{-i2\pi\xi(u+t_0)} du = e^{-2\pi i\xi t_0} \cdot \mathcal{F}\{f\}(\xi)$$

Basic properties: Time drift

If we have:

$$g(t) = f(at)$$
 for $a \neq 0$

Then:

$$\mathcal{F}\{g\}(\xi) = \frac{1}{|a|} \cdot \mathcal{F}\{f\}\left(\frac{\xi}{a}\right)$$

Proof: If u = at,

$$\mathcal{F}\lbrace g\rbrace(\xi) = \int_{-\infty}^{+\infty} g(t) \mathrm{e}^{-i2\pi\xi t} dt = \int_{-\infty}^{+\infty} \frac{1}{|a|} f(u) \mathrm{e}^{-i2\pi\xi \frac{u}{a}} du = \frac{1}{|a|} \cdot \mathcal{F}\lbrace f\rbrace \left(\frac{\xi}{a}\right)$$

Basic properties: conjugate

If we have:

$$g = \bar{f}$$

Then:

$$\mathcal{F}\{g\}(\xi) = \overline{\mathcal{F}\{f\}(-\xi)}$$

Proof: If
$$u = -t$$
,

$$\mathcal{F}\{g\}(\xi) = \int_{-\infty}^{+\infty} \overline{f(t)} e^{-i2\pi\xi t} dt = \int_{-\infty}^{+\infty} f(t) e^{i2\pi\xi t} dt = \int_{-\infty}^{+\infty} f(-u) e^{-i2\pi\xi u} du = \overline{\mathcal{F}\{f\}(-\xi)}$$

Basic properties: consequences

If $f: \mathbb{R} \to \mathbb{R}$ (that is, purely real) then $\mathscr{F}\{f\}(-\xi) = \overline{\mathscr{F}\{f\}(\xi)}$ (that is, Hermitian).

If $f: \mathbb{R} \to \mathbb{R}$ is even, then $\mathscr{F}\{f\}: \mathbb{R} \to \mathbb{R}$ (that is, purely real)

If $f \colon \mathbb{R} \to \mathbb{R}$ is odd, then $\mathscr{F}\{f\}$ is purely imaginary

Basic properties: consequences

If $f \colon \mathbb{R} \to \mathbb{R}$ (that is, purely real) then \mathcal{S} Hermitian).

Function cos(2*pi*3*t)*exp(-pi*t**2)

(1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-0.75
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.50
-1.00
-1.00
-1.00
-1.00
-1.00
-1

If $f\colon \mathbb{R} \to \mathbb{R}$ is even, then $\mathscr{F}\{f\}\colon \mathbb{R} \to \mathbb{R}$ (that is, pu

If $f \colon \mathbb{R} \to \mathbb{R}$ is odd, then $\mathscr{F}\{f\}$ is purely imaginary

Basic properties: consequences

If $f: \mathbb{R} \to \mathbb{R}$ (that is, purely real) ther Hermitian).

Function $\sin(2*pi*3*t)*\exp(-pi*t**2)$ 0.75 0.50 0.25 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00

If $f\colon \mathbb{R} \to \mathbb{R}$ is even, then $\mathscr{F}\{f\}\colon \mathbb{R} \to \mathbb{R}$ (that is, \mathfrak{p}

If $f\colon \mathbb{R} \to \mathbb{R}$ is odd, then $\mathscr{F}\{f\}$ is purely imaginary

Inversion theorem

Assume that f and $\mathcal{F}\{f\}$ are Lebesgue integrable.

Then, for almost every t:

$$f(t) = \mathcal{F}^{-1}\{\mathcal{F}\{f\}\}(t) \text{ where } \mathcal{F}^{-1}\{g\}(t) = \int_{-\infty}^{+\infty} g(\xi)e^{2\pi i\xi t}d\xi$$

Furthermore, if f is continuous, then the equality is for every t.

We want to prove
$$f(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}dsd\xi$$

Trick: consider $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}e^{-2\pi^2 \epsilon^2 \xi^2}dsd\xi$
 $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}e^{-2\pi^2 \epsilon^2 \xi^2}d\xi \xrightarrow{\epsilon \to 0} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}d\xi$
 $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} f(s)g_{\epsilon}(t-s)ds \xrightarrow{\epsilon \to 0} f(t)$

Idea of the proof when f is continuous.

Warning: we cannot use Fubini directly!

We want to prove
$$f(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}dsd\xi$$

Trick: consider $I_e(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}e^{-2\pi^2 e^2\xi^2}dsd\xi$
 $I_e(t) = \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}e^{-2\pi^2 e^2\xi^2}d\xi \xrightarrow{e \to 0} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}d\xi$
 $I_e(t) = \int_{-\infty}^{+\infty} f(s)g_e(t-s)ds \xrightarrow{e \to 0} f(t)$

We want to prove
$$f(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}dsd\xi$$

Trick: consider $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}e^{-2\pi^2 \epsilon^2 \xi^2}dsd\xi$
 $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}e^{-2\pi^2 \epsilon^2 \xi^2}d\xi \xrightarrow{\epsilon \to 0} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}d\xi$
 $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} f(s)g_{\epsilon}(t-s)ds \xrightarrow{\epsilon \to 0} f(t)$

We want to prove
$$f(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}dsd\xi$$

Integration over s

$$I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}e^{-2\pi^2 \epsilon^2 \xi^2}dsd\xi$$

$$I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}e^{-2\pi^2 \epsilon^2 \xi^2}d\xi \xrightarrow{\epsilon \to 0} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}d\xi$$

$$I_{\epsilon}(t) = \int_{-\infty}^{+\infty} f(s)g_{\epsilon}(t-s)ds \xrightarrow{\epsilon \to 0} f(t)$$

We want to prove
$$f(t) = \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}dsd\xi$$

Trick: consider $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \frac{\text{Dominated convergence}}{\int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}ds}e^{2\pi i\xi t}d\xi$
 $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}e^{-2\pi^2 e^2 \xi^2}d\xi \xrightarrow{\epsilon \to 0} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}d\xi$
 $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} f(s)g_{\epsilon}(t-s)ds \xrightarrow{\epsilon \to 0} f(t)$

We want to prove
$$f(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}dsd\xi$$

Trick: consider $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}e^{-2\pi^2\epsilon^2\xi^2}dsd\xi$

Integration over ξ

$$\{(\xi)e^{2\pi i\xi t}e^{-2\pi^2\epsilon^2\xi^2}d\xi \xrightarrow{\epsilon \to 0} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}d\xi$$

$$I_{\epsilon}(t) = \int_{-\infty}^{+\infty} f(s)g_{\epsilon}(t-s)ds \xrightarrow{\epsilon \to 0} f(t)$$

We want to prove
$$f(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i\xi s}e^{2\pi i\xi t}dsd\xi$$

Trick: consider $I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)e^{-2\pi i}$

Using that f is continuous

$$I_{\epsilon}(t) = \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}e^{-2\pi^2\epsilon^2\xi^2}d\xi \xrightarrow{\epsilon \to 0}$$

$$I_{\epsilon}(t) = \int_{-\infty}^{+\infty} f(s)g_{\epsilon}(t-s)ds \xrightarrow{\epsilon \to 0} f(t)$$

Inversion theorem

Assume that f and $\mathcal{F}\{f\}$ are Lebesgue integrable.

Then, for almost every t:

$$f(t) = \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}d\xi$$

Furthermore, if f is continuous, then the equality is for every t.

Inversion theorem

Assume that f and $\mathcal{F}\{f\}$ are Lebesgue integrable. Inconvenient...

Then, for almost every t:

$$f(t) = \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi)e^{2\pi i\xi t}d\xi$$

Furthermore, if f is continuous, then the equality is for every t.

Schwarz space

A function $f\colon \mathbb{R} \to \mathbb{C}$ is Schwartz if it is smooth (C^∞) and for

all $n, m \in \mathbb{N}$:

$$\sup |x^n f^{(m)}(x)| < + \infty$$

That is, f and all its derivatives collapse to 0 quickly.

Examples

Non-example

Properties of Schwartz functions

 \cdot If f is Schwartz then all its derivative are Schwartz.

• If f is Schwartz then f is Lebesgue integrable.

• If f is Schwartz then $\mathscr{F}\{f\}$ and $\mathscr{F}^{-1}\{f\}$ are Schwartz.

• ${\mathscr F}$ is an isomorphism on Schwartz functions, with inverse ${\mathscr F}^{-1}$.

Fourier transform for L^2 functions

Everything I said can be extended to L^2 functions by density, by extending the Fourier transform and its inverse:

$$\mathcal{F}\{f\}(\xi) = \lim_{R \to +\infty} \int_{-R}^{+R} f(x) e^{-i2\pi\xi x} dx$$

$$\mathcal{F}^{-1}{f}(\xi) = \lim_{R \to +\infty} \int_{-R}^{+R} f(x)e^{i2\pi\xi x} dx$$

Basic properties: derivation

If $f: \mathbb{R} \to \mathbb{C}$ is Schwartz, then

$$\mathcal{F}\{f^{(n)}\}(\xi) = (2\pi i \xi)^n \mathcal{F}\{f\}(\xi)$$

Proof: If f is Schwartz, then all its derivative $f^{(n)}$ are Schwartz. By Fourier inversion,

$$f^{(n)}(t) = \frac{d^n}{dt^n} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi = \int_{-\infty}^{+\infty} \frac{\partial^n}{\partial t^n} \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi = \int_{-\infty}^{+\infty} (2\pi i \xi)^n \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi$$

By Fourier inversion again, we obtain the result.

Basic properties: derivation

If $f: \mathbb{R} \to \mathbb{C}$ is Schwartz, then

$$\mathcal{F}\lbrace f^{(n)}\rbrace(\xi) = (2\pi i \xi)^n \mathcal{F}\lbrace f\rbrace(\xi)$$

Differentiation under the integral Proof: If f Possible because $\mathcal{F}\{f\}$ is Schwartz are Schwartz.

By Fourier inversion,
$$f^{(n)}(t) = \frac{d^n}{dt^n} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi = \int_{-\infty}^{+\infty} \frac{\partial^n}{\partial t^n} \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi = \int_{-\infty}^{+\infty} (2\pi i \xi)^n \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi$$

By Fourier inversion again, we obtain the result.

Basic properties: derivation

If $f: \mathbb{R} \to \mathbb{C}$ is Schwartz, then

$$\mathcal{F}\{f^{(n)}\}(\xi) = (2\pi i \xi)^n \mathcal{F}\{f\}(\xi)$$

Proof: If f is Schwartz, then all its derivative $f^{(n)}$ are Schwartz. By Fourier inversion,

$$f^{(n)}(t) = \frac{d^n}{dt^n} \int_{-\infty}^{+\infty} \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi = \int_{-\infty}^{+\infty} \frac{\partial^n}{\partial t^n} \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi = \int_{-\infty}^{+\infty} (2\pi i \xi)^n \mathcal{F}\{f\}(\xi) e^{2\pi i \xi t} d\xi$$

By Fourier inversion again, we obtain the result.

Convolution

When $f,g:\mathbb{R}\to\mathbb{C}$ are Lebesgue integrable, the function

$$f \otimes g(t) = \int_{\mathbb{R}} f(x)g(t-x)dx$$

Is defined almost everywhere and is Lebesgue integrable (by Fubini-Tonelli).

When f and g are Schwartz, then the convolution is defined everywhere and is Schwartz.

When f is L^1 and g is L^2 , then the convolution is L^2 (by Young's inequality)

Example: smoothening

Imagine that f is a noisy signal and g is a window function (that is, with compact support and integral 1). Then $f \otimes g(t)$ can be thought as averaging the values of f around t, the average being weighted by g.

Discrete view:
$$g(0) = 0.5$$
, $g(1) = g(-1) = 0.25$, then $f \otimes g(t) = 0.25 f(t-1) + 0.5 f(t) + 0.25 f(t+1)$

A typical example of window function:

Hann function
$$\frac{2}{L}\cos^2\left(\frac{\pi t}{L}\right)$$
 on $\left[-\frac{L}{2},\frac{L}{2}\right]$

Example of smoothening

Convolution theorem

When all the objects are well defined almost everywhere

$$\mathcal{F}\{f \otimes g\} = \mathcal{F}\{f\} . \mathcal{F}\{g\}$$

Proof: In the case when f and g are L^1 , by Fubini.

If furthermore the inversion theorem applies, almost everywhere:

$$f \otimes g = \mathcal{F}^{-1} \{ \mathcal{F} \{ f \} . \mathcal{F} \{ g \} \}$$

Computation: Fast Fourier Transform

Assume that you can measure N samples of f:

$$f(t_0), f(t_0 + \Delta_t), \dots, f(t + \Delta_t(N-1))$$

We can approximate the Fourier transform by:

$$\mathcal{F}\{f\}(\xi) \simeq \int_{t_0}^{t_0 + N\Delta_t} f(t)e^{-2\pi i \xi t} dt \simeq \sum_{k=0}^{N-1} \Delta_t f(t_0 + k\Delta_t)e^{-2\pi i \xi (t_0 + N\Delta_t)}$$

A priori, to compute the approximation of N values of $\mathcal{F}\{f\}$, N^2 operations are needed, but efficient algorithms are in $O(N \ln N)$.

Computation, in pictures

Computation, in pictures

