Type of Query	SQL	Description	Dether and
Create table	CREATE TABLE table_name (A1D1, AnDn,	Description Create DataFrame from pa	Python code n- data = {col1:[11, 12, 13], {col2:[21,22,23]}
	IC1, ICn)	das series	uata = \(\text{coi1.[11, 12, 10], \(\text{coi2.[21,22,20]}\)}
Delete relation	DROP TABLE table_name	das series	df = pd.DataFrame(data)
Add column	ALTER TABLE table_name ADD COLUMN	Create DataFrame from da	
Add record	column_name INSERT INTO table_name(A1,An) VALUES	matrix	cols = [col1, col2, col3]
51.	(V1,Vn)		df = pd.DataFrame(data, columns = cols)
Delete record based on condition	DELETE FROM table_name WHERE condition	Create DataFrame from	$df = pd.read_csv('file.csv')$
Delete all records	DELETE FROM table_name	CSV file	
Update records based on	UPDATE table_name SET Ai = Vi WHERE	Create DataFrame from E	workbook = pd.ExcelFile('file.xlsx')
condition	Aj = Vj	cei me	df = workbook.parse(sheet_name)
Select records based on	SELECT A1, An FROM table_name WHERE	Get index and datatyp	- '
condition	condition	from DataFrame	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Select without duplicates	SELECT DISTINCT A1, An FROM ta- ble_name WHERE condition	Get first n rows from	m df.head(n)
Select with duplicates	SELECT ALL A1, An FROM table_name	DataFrame	If t = :1()
gereet with dapheates	WHERE condition	Get last n rows fro DataFrame	om df.tail(n)
Select all attributes	SELECT * FROM table_name WHERE condi-		for df.describe()
	tion	DataFrame	
Selection resulting in a	SELECT 'value'	Extract row n by index	df.iloc[n,:]
1 by 1 relation of given value		Extract column n by index	1 2 3
Selection resulting in a	SELECT 'value' FROM table_name	Extract column by name Extract rows based on cone	df.col_name or df["col_name"] df.loc[df.col==value, [C1,Cn]]
n-row relation containing	DEED T VALUE THOM CONTINUE	tion	ii- dr.ioc[dr.coi==varue, [C1,Cn]]
given value		Display number of column	s print(len(df.columns))
Rename attribute name	SELECT A1 AS name	Display number of rows	print(len(df))
Selection with arithmetic	SELECT A1 (+,-,*,/) FROM table_name	Find number of non-null va	al- df.count()
expression Logical operators	AND, NOT, OR	ues for each column	
Comparisons	=, <>, <, >, <=, >=	Display number of distinuable values for column	ct print(len(df.unique()))
Select Cartesian product	SELECT * FROM table1, tablen	Date type of column	df['column'].dtype
Rename table name	SELECT * FROM table AS name	Aggregate query	df['column'].mean() (.min(), .max(), .me-
Left outer join	SELECT * FROM t1 LEFT OUTER JOIN t2		dian(), .std())
Right outer join	ON t1.a = t2.a SELECT* FROM t1 RIGHT OUTER JOIN t2	Concatenate row-wise	$union_df = pd.concat([df1, df2])$
rtight outer join	ON $t1.a = t2.a$	Concatenate column-wise Join operation	union_df = pd.concat([df1, df2], axis=1) merge_df = pd.merge(df1, df2, on='col')
Full outer join	SELECT * FROM t1 FULL OUTER JOIN t2	Join operation	$merge_df = pd.merge(df1, df2, ofi = cof)$ $merge_df = pd.merge(df1, df2, ofi = cof)$
	ON $t1.a = t2.a$		left_on='df1_col', right_on='df2_col')
Inner join	SELECT * FROM t1 INNER JOIN t2 ON t1.a	Find column name by inde	
String matching	= t2.a SELECT * FROM table WHERE a LIKE	Find number of missing va	al- df.col.isnull().sum()
String matering	"_abc%"	ues in col	
Range query	SELECT * FROM table WHERE a BE-		ı
_	TWEEN x AND y	Functional dependencies Reflexivity Axiom	$\begin{array}{c} \\ \text{If } X \subset Y, then Y \longmapsto X \end{array}$
Set operations	UNION, INTERSECT, EXCEPT SELECT * FROM table WHERE a IS NULL	Augmentation Axiom	$\begin{array}{c} \text{If } X \subset I, then I \longmapsto X \\ \text{If } X \longmapsto Y, then AX \longmapsto AY \end{array}$
Select where attribute is null	SELECT * FROM table WHERE a IS NULL	Transivity Axiom	$If X \longmapsto Y and Y \longmapsto W, then X \longmapsto W$
Select record where at-	SELECT * FROM table WHERE a IN (v1, vn)	First Normal Form	Relation contains only atomic values (no mul-
tribute matches one of		(1NF)	tiple values in one cell)
multiple values		Second Normal Form	Relation is in 1NF and all non-key attributes
Aggregate values	AVG, MIN, MAX, SUM, COUNT	(2NF)	are fully functional dependent on the primary key
Select average value of an attribute	SELECT AVG(a) FROM table	Third Normal Form	Relation is in 2NF and there is no transitive
Group by values within	SELECT * FROM table GROUP BY a	(3NF)	dependency
an attribute		Boyce Codd Normal	Relation is in 3NF and for functional depen-
Group by values within	SELECT * FROM table GROUP BY a HAV-	Forme (BCNF)	dency $X \longmapsto Y, XmustbeaSuperKey$
an attribute and specify	ING condition		
condition Data types	CHAR(n), VARCHAR(n), INT, SMALLINT,	String similar-	
Data types	NUMERIC(p,d), REAL, FLOAT(n)	ity Levenshtein Minimun	n number of single-character edits required to
Specify primary key	CREATE TABLE table_name (A1D1, AnDn,	l l	ne string into the other
upon creation	PRIMARY KEY (Ai))		$c(S1,S2) = \frac{1}{2}(\frac{C}{S1} + \frac{C}{S2} + \frac{C-T}{S2})$. C=number of
Specify foreign key upon	CREATE TABLE table_name (A1D1, AnDn,	ity common	$c(S1,S2) = \frac{1}{3}(\frac{C}{S1} + \frac{C}{S2} + \frac{C-T}{C})$, C=number of characters, T=number of transpositions/2, S1
creation	FOREIGN KEY A: REFERENCES table2)		respective lengths of the strings
Referential integrity	FOREIGN KEY AI REFERENCES ta- ble2 ON DELETE/UPDATE NO AC-		(2) = JaroSim * P * L * (1 - JaroSim), P=Scaling
	TION/CASCADE/SET DEFAULT		.1 default), L=length of common prefix up to
Check clause	CREATE TABLE table_name (A1D1 CHECK	Soundex maximum Phonetic	algorithm that indexes names by their sounds
	condition)		onounced in English
		l I	
Relational algebra symbo		Set similarity	
· · · · · · · · · · · · · · · · · · ·	difference, σ select, π projection, \times cartesian	Jaccard Simi- Finds the	similarity between sets by dividing the intersec-
product M notural join	a rename δ duplicate elimination α grouping	lowiter	$C_1 \cap C_2$

product, \bowtie natural join, ρ rename, δ duplicate elimination, γ grouping and aggregation, τ sorting.

Relational algebra examples:

Q: Find the titles of courses in the Comp. Sci. department that have 3 credits. A: $\pi_{title}(\sigma_{dept_name='Comp.Sci.' \land credits=3}(course))$ Q: Find the IDs of all students who were taught by an instructor named

A: $\pi_{ID}(takes \bowtie \pi_{course_id}(teaches \bowtie \sigma_{name='Einstein'}(instructor)))$

Q: Find the highest salary of any instructor.

A: $\gamma_{max(salary)}(instructor)$ Q: Find all instructors earning the highest salary (there may be more than one with the same salary).

A: $\sigma_{salary=\gamma_{max(salary)}(instructor)}(instructor)$

larity Jaccard Dis-

tion over the union, $J_{sim}(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$ Finds the dissimilarity (or distance) between sets, $J_{dis}(C_1, C_2) = 1 - J_{sim}(C_1, C_2)$

Counts the repitition of elements (The similarity between ${a,a,a,b}$ and ${a,a,b,b,c} = 3/9 = 1/3$ Finds the similarity between sets by dividing two times

the intersection over the total number of elements, $CC(C_1,C_2)=\frac{2*|C_1\cap C_2|}{|C_1|+|C_2|}$ Finds the similarity between sets by dividing the intersec-

Overlap Coefficient

Jaccard Bag

Sørensen Co-

Similarity

efficient

Tversky

Index

tance

tion over the amount of elements of the set with the least amount of elements, $OC(C_1, C_2) = \frac{|C_1 \cap C_2|}{MIN(|C_1|, |C_2|)}$ A generalized form of Jaccard and Sørensen $S(C_1, C_2) =$

 $\frac{|C_1\cap C_2|}{|C_1\cap C_2|+\alpha|C_1-C_2|+\beta|C_2-C_1|}, \text{Jaccard similarity: } \alpha=\beta=1, \text{Sørensen: } \alpha=\beta=0.5$

Hashing example $h3 = 2x+4 \mod 5$		Visualtization & EDA		
$h4 = 3x-1 \mod 5$		Grammar of	Map raw data to: Aesthetics, Geometric objects, Scales	
Element 0	S1 S2 S3 S4 h3 h4 0 1 0 1 4 4	Graphics	Facets. Additionaly can apply: Statistical transformation, Coordinate system	
) <u> </u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gestalt princi-	Proximity, Smilarity, Connection, Continuity, Closure	
2	1 0 0 1 3 0	ples of relat- edness	Figure and ground, Common fate	
3 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tufte data to	The ratio between the amount of information the plo	
<u> </u>		ink ratio prin- ciple	shows and the amount of "ink" being used, principle is to maximize this ratio (within reason)	
h3	3 1 0 2	Types of anal-	Exploratory Analysis and Confirmatory Analysis	
h4		ysis Exploratory	Generate new insights, Create new hypotheses, Analysis	
		Analysis	may depend on data	
Data preparation Handling Missing	Ignore, Fill in (manually, automatically (global con-	Confirmatory Analysis	Test theory, A priori hypotheses, Analysis predefined	
Data	stant, mean, etc.))	Tukey's ap-	Look at center and spread. Find comparisons. "Straight	
Handling Noisy Data	Binning, Regression, Clustering, Combined computer and human inspection	proach to EDA	ening and flattening": use logarithms and other trans forms, use models and residuals	
Equidepth bins	Each bin has same amount of elements and different	Peng's EDA	1. Formulate your question, 2. Read in your data, 3	
Equidistance bins	range Each bin has same range and different amount of elements	checklist	Check the packaging, 4. Look at the top and bottom of your data, 5. Check your "n"s, 6. Validate with at least one external source, 7. Try the easy solution first, 8 Challenge your solution, 9. Follow up	
Outlier detection				
Outlier	Observation which deviates so much from other observations as to arouse suspicions that it was	R	$ggplot(data = df) + geom_point(mapping =$	
T. 6	generated by a different mechanism		aes(x=a1, y=a2, color=a3, size=a4))	
Types of outliers Outlier Detection	Global, contextual, collective Statistical approach, Distance-based approach,	$\begin{array}{c} { m Subplots} \\ { m Head} \end{array}$	+ facet_wrap(~a1 nrow=n) df %>% head	
Approaches	Density-based approach, Model-Based approach	Check n	df %>% group_by (a1) %>% summarize(n())	
Local Outlier Facto (LOF)	or Quantifies the local density of a data point, with the use of a neighborhood of size k	Filter Create df	df %>% filter(a1 == value) $df <- tibble(col1 = data1, coln = datan)$	
,		Create formula	formula $<$ - outcome \sim pred1 + pred2	
Data normalization	n Formula	Create linear r object	$\begin{array}{c c} model & lm_ses <- lm(formula = medv \sim lstat, data = data) \end{array}$	
nethod Min-max normaliza	$v' = \frac{v - min}{max - min}(new_max - new_min) + new_min$	Predict from mo	. ,	
tion		Read CSV Other geoms	df <- read_csv('file.csv') geom_density, geom_bar, geom_line	
Z-score normalization Decimal scaling nor nalization			geom_histogram, geom_rug, geom_boxplot geom_col, geom_smooth, geom_ribbon	
D : 1 ::		Term	Definition	
Data reduction Principal Componen	nt Dimensionality reduction by finding a projection	OSEMN framew CRISP-DM	ork Obtain, Scrub, Explore, Model, iNterpret Cross Industry Standard Process for Data Mining	
Analysis (PCA)	that captures the largest amount of variation in	KDD Process	Knowledge Discovery in Databases	
Attribute Subset Se	data. Works for numeric data only. Dimensionality reduction by removing redundant	Data Wrangling	An iterative process to convert the raw data into a more understandable format. Discovering, Struc	
lection Model-Based Dat	attributes and removing irrelevant attributes a Data reduction by modeling to a straight line		turing, Cleaning & Transformation, Enriching	
Reduction Dat	(linear regression, multiple regression, log-linear	Data Formats	Validating, Publishing Structured Data, Unstructured Data, Semistruc	
Historyon for Dat	model) a Divide data into buckets and store the average for	M () (tred Data	
Histogram for Dat Reduction	each bucket	Metadata Data Models	Data about data Mathematical representation of the data. Collec	
Clustering-Based Data Reduction	Partition dataset into clusters based on similarity, and store cluster representation		tion of tools describing relationships, semantics	
Sampling-Based	Obtain a small sample to represent the whole	Main Componer	constraints, operations. nts of Structures, Constraints, Operations	
Oata Reduction Simple random sam	dataset - Equal probability of selecting any particular item	a Data Model	Dala Justania Calania	
oling	Equal probability of selecting any particular item	Parts of the tional Model	Rela- Instance, Schema	
Sampling without replacement	Once an object is selected, it is removed from the population	Types of keys Constraints	Superkey, Candidate key, Primary key, Foreign key Guard against accidental damage to the data, En	
Sampling with re	* *	Constraints	sure that authorized changes to the data don't vi	
placement	tion	D 1 1 CC1	olate consistency	
Stratified sampling Cluster sampling Concept Hierarch Generation	partition. Used in conjunction with skewed data.	Drawback of file tem as data stor	0 0	
	hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set	Databases	offer solutions to all these problems. Traditionally: systems that contain records about real world entities Today: covers all the larges	
S1 1 ···		Database levels	sources of data (web search, data mining, etc.) of ab- Physical level, Logical level, View level	
Cloud computing 5Vs of Big Data	Big Data Characteristics: Volume, Variety, Veloc-	straction Data Definition		
J	ity, Veracity, Value	guage (DDL)	schema	
Cloud Computing	A compilation of technologies, packaged within a infrastructure paradigm that offers improved scal- ability, elasticity, business agility, faster startup time, reduced management costs and just-in-time	Data Manipul Language (DML Supervised learn	Also known as query language	
	availability of resources	Unsupervised	*	
Chamati-ti Dil		*		
	rs Efficiency, Accessibility, Ultra-Reliability, On-	ing	ingful information Develop an agent that improves its performance	
Characteristic Pillar of Cloud Computing Cloud Deploymen Models Cloud delivery mod	Efficiency, Accessibility, Ultra-Reliability, Ondemand, Elasticity, Scalability, Sustainability Public Cloud, Private Cloud, Hybrid Cloud, Community Cloud	*		