This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

Network01a 001 10.0 points

The volume of traffic (in average number of vehicles per minute) through three intersections is shown in

Find all possible values for x_2 in terms of a free variable s.

1.
$$x_2 = 70 + s$$

2.
$$x_2 = -5 + s$$

3.
$$x_2 = 35 + s$$

4.
$$x_2 = 15 + s$$
 correct

5.
$$x_2 = 20 + s$$

Explanation:

At each intersection flow in equals flow out. Thus

$$x_1 + 0x_2 + x_3 = 20,$$

 $0x_1 + x_2 - x_3 = 15,$
 $x_1 + x_2 + 0x_3 = 35.$

But as an augmented matrix,

$$\operatorname{rref} \begin{bmatrix} 1 & 0 & 1 & 20 \\ 0 & 1 & -1 & 15 \\ 1 & 1 & 0 & 35 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 1 & 20 \\ 0 & 1 & -1 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Thus x_3 is a free variable, say $x_3 = s$, and

$$x_1 = 20 - s$$
, $x_2 = 15 + s$.

$\begin{array}{c} Span02a \\ 002 & 10.0 \ points \end{array}$

For each of the following pairs of vectors $\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^3 determine whether

$$H = \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}\$$

is a line in \mathbb{R}^3 .

I:
$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -4 \\ 2 \\ -6 \end{bmatrix}$,

II:
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -6 \\ 2 \\ 4 \end{bmatrix},$$

III:
$$\mathbf{u} = \begin{bmatrix} -3 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

- 1. I and II
- **2.** I only
- 3. I and III correct
- 4. II only
- **5.** III only
- **6.** II and III

Explanation:

For vectors \mathbf{u} , \mathbf{v} in \mathbb{R}^3 , Span $\{\mathbf{u}, \mathbf{v}\}$ consists of all linear combinations

$$s\mathbf{u} + t\mathbf{v}$$
, $-\infty < s$, $t < \infty$.

Now if \mathbf{u} , \mathbf{v} are linearly dependent, then \mathbf{u} , \mathbf{v} are scalar multiples of each other, in which case

$$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\} = \{t\mathbf{v} : -\infty < t < \infty\},\$$

and $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is the line $\operatorname{Span}\{\mathbf{v}\}$ through the origin.

On the other hand, if \mathbf{u} , \mathbf{v} are linearly independent, then \mathbf{u} , \mathbf{v} are not scalar multiples of each other and $\mathrm{Span}\{\mathbf{u}, \mathbf{v}\}$ contains the *distinct* lines $\mathrm{Span}\{\mathbf{u}\}$ and $\mathrm{Span}\{\mathbf{v}\}$. In this case $\mathrm{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane through the origin.

For the given pairs $\{u, v\}$:

I: $\mathbf{v} = -2\mathbf{u}$,

II: \mathbf{v} is not a scalar multiple of \mathbf{u} ,

III $\{u, 0\}$ always is a linearly dependent set.

Consequently, only

I and III are lines

LinTrans02a 003 10.0 points

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\-2\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\-1\end{bmatrix},$$

determine $T(\mathbf{x})$ when $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

1.
$$T(\mathbf{x}) = \begin{bmatrix} 7 \\ -6 \end{bmatrix}$$

2.
$$T(\mathbf{x}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

3.
$$T(\mathbf{x}) = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$$

4.
$$T(\mathbf{x}) = \begin{bmatrix} 8 \\ -6 \end{bmatrix}$$

5.
$$T(\mathbf{x}) = \begin{bmatrix} 7 \\ -5 \end{bmatrix}$$
 correct

Explanation:

Since

$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

and T is a linear transformation,

$$T(\mathbf{x}) = T\left(\begin{bmatrix} 1\\0 \end{bmatrix} + 3\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$
$$= T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) + 3T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$
$$= \begin{bmatrix} 1\\-2 \end{bmatrix} + 3\begin{bmatrix} 2\\-1 \end{bmatrix}.$$

Consequently

$$T(\mathbf{x}) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 6 \\ -3 \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \end{bmatrix}$$

LinTrans03b 004 10.0 points

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that

$$T(x_1, x_2) = (4x_1 - 2x_2, -x_1 - 2x_2).$$

Determine A so that T can be written as the matrix transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$.

1.
$$A = \begin{bmatrix} 4 & -2 \\ -1 & -2 \end{bmatrix}$$
 correct

2.
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 0 & 1 & -1 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 4 & -1 \\ -2 & -2 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$

Explanation:

We can write \mathbb{R}^2 both as rows and column vectors

(i)
$$(x_1, x_2)$$
, (ii) $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

In row form

$$T(x_1, x_2) = (4x_1 - 2x_2, -x_1 - 2x_2),$$

while in column vector form

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

where A is the 2×2 matrix standard matrix

$$[T(\mathbf{e}_1) \ T(\mathbf{e}_2)]$$

of T. Now

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (1,0), \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (0,1)$$

so that

$$T(1, 0) = (4, -1) = \begin{bmatrix} 4 \\ -1 \end{bmatrix} = T(\mathbf{e}_1),$$

and

$$T(0, 1) = (-2, -2) = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = T(\mathbf{e}_2).$$

Consequently,

$$A = \begin{bmatrix} 4 & -2 \\ -1 & -2 \end{bmatrix}$$

InverseMatrix03a 10.0 points 005

Determine the product AB^{-1} when

$$A = \begin{bmatrix} 1 & 3 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -5 & 2 \\ -2 & 3 & -1 \end{bmatrix}.$$

- 1. $AB^{-1} = [1 -3 -3]$ correct
- **2.** $AB^{-1} = [3 -9 -2]$
- 3. $AB^{-1} = [1 -3 -2]$
- 4. $AB^{-1} = [3 -3 -3]$
- 5. $AB^{-1} = [1 -9 -3]$
- **6.** $AB^{-1} = [3 -3 -2]$

Explanation:

The inverse matrix B^{-1} can be computed by reducing the augmented matrix $\begin{bmatrix} B & I_3 \end{bmatrix}$ to row-reduced echelon form $[I_3 \quad B^{-1}].$

Now after row reduction downwards we see that

$$\begin{bmatrix} B & I_3 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 1 & 1 & 0 & 0 \\ 2 & -5 & 2 & 0 & 1 & 0 \\ -2 & 3 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (1,0), \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (0,1), \qquad \sim \begin{bmatrix} B & I_3 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & -3 & 1 & 2 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} B & I_3 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & -4 & 3 & 1 \end{bmatrix}.$$

But then after row reduction upwards we see that

$$\begin{bmatrix} B & I_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & -5 & 3 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & -4 & 3 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & -4 & 3 & 1 \end{bmatrix}.$$

Thus

$$B^{-1} = \begin{bmatrix} -1 & 0 & -1 \\ -2 & 1 & 0 \\ -4 & 3 & 1 \end{bmatrix}.$$

Consequently,

$$AB^{-1} = \begin{bmatrix} 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ -2 & 1 & 0 \\ -4 & 3 & 1 \end{bmatrix}$$

$$= [1 -3 -3]$$

Invertible TF01c 006 10.0 points

If A is an $n \times n$ matrix, when does the equation $A\mathbf{x} = \mathbf{b}$ have at least one solution for each **b** in \mathbb{R}^n ?

- 1. ALWAYS
- 2. NEVER

3. SOMETIMES correct

Explanation:

By the Invertible Matrix Theorem, an $n \times n$ matrix A will have the property that the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n if and only if A is invertible.

Consequently, the equation $A\mathbf{x} = \mathbf{b}$ will

have at least one solution for each **b** in \mathbb{R}^n , but not always.

LUDecomp05b 007 10.0 points

Determine the unique solution x_2 of the matrix equation

$$A\mathbf{x} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 12 \end{bmatrix}$$

when A has an LU-decomposition

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 1 & 2 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix}.$$

- 1. $x_2 = 3$ correct
- **2.** $x_2 = 2$
- $3. x_2 = 6$
- 4. $x_2 = 5$
- 5. $x_2 = 4$

Explanation:

Set $\mathbf{y} = U\mathbf{x}$. Then $A\mathbf{x} = L\mathbf{y} = \mathbf{b}$, and so $\mathbf{y} = L^{-1}\mathbf{b}$. Now

$$L^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -2 & 1 \end{bmatrix},$$

in which case $A\mathbf{x} = \mathbf{b}$ reduces to

$$U\mathbf{x} = L^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 12 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 4 \end{bmatrix}.$$

But then,

$$U\mathbf{x} = \begin{bmatrix} -3 & 1 & 2 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 4 \end{bmatrix}.$$

which is equivalent to the system

$$2x_3 = 4, 4x_2 - x_3 = 10,$$

and

$$-3x_1 + x_2 + 2x_3 = 4.$$

So by back substitution, $x_3 = 2$ and

$$x_2 = 3$$

NullSpace01a 008 10.0 points

Find a matrix A so that Nul(A) is the set of all vectors

$$H = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{c} a - 2b = 4c, \\ a = c + 3d, \end{array} \right\}$$

in \mathbb{R}^4 .

1.
$$A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ 1 & 0 & 1 & 3 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 1 & -2 & 4 & 0 \\ 1 & 0 & 1 & 3 \end{bmatrix}$$

$$\mathbf{3.} \ A = \begin{bmatrix} 1 & 2 & -4 & 0 \\ 1 & 0 & 1 & 3 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ 1 & 0 & -1 & -3 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -2 & -4 & 0 \\ 1 & 0 & -1 & -3 \end{bmatrix}$$
 correct

6.
$$A = \begin{bmatrix} 1 & -2 & -4 & 0 \\ 1 & 0 & -1 & 3 \end{bmatrix}$$

Explanation:

Rewrite the conditions

$$a-2b = 4c$$
, $a = c+3d$

as

$$a - 2b - 4c = 0,$$

$$a - c - 3d = 0,$$

and set

$$A = \begin{bmatrix} 1 & -2 & -4 & 0 \\ 1 & 0 & -1 & -3 \end{bmatrix}.$$

Then

$$A \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 & -2 & -4 & 0 \\ 1 & 0 & -1 & -3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
$$= \begin{bmatrix} a - 2b - 4c \\ a - c + 3d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

if and only if

$$a-2b-4c = 0,$$

$$a - c - 3d = 0.$$

Consequently,

$$Nul(A) = H$$

Rank02c 009 10.0 points

Determine the rank of the matrix

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 3 & 3 & -5 \\ 2 & 2 & -6 \end{bmatrix}.$$

- 1. rank(A) = 3
- **2.** rank(A) = 1
- 3. $\operatorname{rank}(A) = 4$
- 4. rank(A) = 2 correct
- **5.** rank(A) = 5

Explanation:

Since

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

the first two rows of rref(A) contain leading 1's, so

$$\operatorname{Rank}(A) = 2$$
.

SpanningT/F01a 010 10.0 points

Three vectors in \mathbb{R}^5 always span \mathbb{R}^5 . True or False?

- 1. FALSE correct
- 2. TRUE

Explanation:

The space \mathbb{R}^5 is 5-dimensional, so at least five vectors are needed to span \mathbb{R}^5 .

Consequently, the statement is

ComputeDeterminant01 011 10.0 points

Compute the determinant of the following elementary matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix}.$$

- **1.** 0
- 2. 1 correct
- **3.** 1 + k
- **4.** *k*
- **5.** 1 k

Explanation:

A cofactor expansion along row 1 gives

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 0 \\ k & 1 \end{vmatrix} = 1$$

Also since the matrix is triangular, the determinant is the product of the diagonal entries:

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{vmatrix} = (1)(1)(1) = 1$$

DetPropTF01c 012 10.0 points

If the columns of an $n \times n$ matrix A are linearly dependent, then $\det A = 0$.

True or False?

- 1. TRUE correct
- 2. FALSE

Explanation:

A square matrix A is invertible if and only if $\det A \neq 0$. Thus if $\det A = 0$, A is not invertible. On the other hand, a square matrix is not invertible if and only if its columns are linearly dependent.

Consequently, $\det A = 0$ when the columns of A are linearly dependent, so the statement is

TRUE .

SubspaceTF01 013 10.0 points

Let H be the set of points inside and on the unit circle in the xy-plane. That is, let $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}.$

H is a subspace of \mathbb{R}^2 . True or false?

- 1. TRUE
- 2. FALSE correct

Explanation:

If $\mathbf{u} = \begin{bmatrix} .5 \\ .5 \end{bmatrix}$ and c = 4, then \mathbf{u} is in H but $c\mathbf{u}$ is not in H. Since H is not closed under scalar multiplication, H is not a subspace of \mathbb{R}^2 . Consequently, the statement is

FALSE .

VectorSubSpaceTF01f 014 10.0 points

The set

$$H = \left\{ \begin{bmatrix} a+2b \\ a-b \\ 3b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$

is a subspace of \mathbb{R}^3 .

True or False?

- 1. FALSE
- 2. TRUE correct

Explanation:

By matrix algebra,

$$\begin{bmatrix} a+2b \\ a-b \\ 3b \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix},$$

with a, b in \mathbb{R} . Thus H consists of all linear combinations of the vectors

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

in \mathbb{R}^3 , and so H is the span of \mathbf{u} , \mathbf{v} in \mathbb{R}^3 . On the other hand, the span of any set of vectors is a vector space.

Consequently, the statement is

TRUE

 $\begin{array}{cc} Basis Null 02a \\ 015 & 10.0 \ points \end{array}$

Find a basis for the Null space of the matrix

$$A = \begin{bmatrix} 2 & -4 & 0 & 10 \\ 2 & -6 & 2 & 16 \\ 2 & -7 & 3 & 19 \end{bmatrix}.$$

$$\mathbf{1.} \left\{ \begin{bmatrix} 2\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\0\\1 \end{bmatrix} \right\}$$

$$\mathbf{2.} \; \left\{ \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix} \right\}$$

3.
$$\left\{ \begin{bmatrix} 1 \\ -3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$4. \left\{ \begin{bmatrix} -1 \\ -3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

5.
$$\left\{ \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\0\\1 \end{bmatrix} \right\}$$
 correct

$$\mathbf{6.} \left\{ \begin{bmatrix} -2\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\-3\\0\\1 \end{bmatrix} \right\}$$

Explanation:

We first row reduce $[A \ \mathbf{0}]$:

$$\operatorname{rref}([A \ \mathbf{0}]) = \begin{bmatrix} 1 & 0 & -2 & -1 & 0 \\ 0 & 1 & -1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

to identify the free variables for \mathbf{x} in the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

This shows that x_1 , x_2 are basic variables, while x_3 , x_4 are free variables. So set $x_3 =$ $s, x_4 = t$. Then

$$x_1 = 2s + t, \ x_2 = s + 3t,$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2s+t \\ s+3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ s \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 3 \\ 0 \\ 1 \end{bmatrix}. \qquad \mathbf{6.} \left\{ \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 6 \\ -3 \\ -3 \end{bmatrix} \right\}$$

Thus

$$\operatorname{Nul}(A) = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\0\\1 \end{bmatrix} \right\}.$$

Consequently,

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\0\\1 \end{bmatrix} \right\}$$

is a basis for Nul(A).

BasisCol01b 016 10.0 points

Find a basis for the column space of the matrix

$$A = \begin{bmatrix} 3 & 6 & 0 & -3 \\ -1 & -3 & 1 & 2 \\ -1 & -3 & 1 & -1 \end{bmatrix}.$$

1.
$$\left\{ \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 6 \\ -3 \\ -3 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix} \right\}$$
 correct

$$\mathbf{2.} \; \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$

3.
$$\left\{ \begin{bmatrix} -3\\2\\-1 \end{bmatrix} \right\}$$

$$4. \left\{ \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix} \right\}$$

$$5. \left\{ \begin{bmatrix} 6 \\ -3 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$

$$\mathbf{6.} \ \left\{ \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}, \ \begin{bmatrix} 6 \\ -3 \\ -3 \end{bmatrix} \right\}$$

Explanation:

We first row reduce A:

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

to identify the pivot columns of A. These are the first, second and fourth columns of A.

Consequently,

$$\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 6 \\ -3 \\ -3 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix} \right\}$$

is a basis for Col(A).

LinIndSetsTF01b 017 10.0 points

When $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p$ are vectors in \mathbb{R}^n and

$$H = \operatorname{Span}\{\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_p\},\,$$

then $\{\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_p\}$ is a basis for H.

True or False?

- 1. FALSE correct
- 2. TRUE

Explanation:

For the set $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p\}$ to be a basis for H, BOTH of the conditions

- (i) $H = \operatorname{Span}\{\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_p\}$,
- (ii) the set is linearly independent,

have to be satisfied. Consequently, the statement is

CoordVec02a 018 10.0 points

Find the vector \mathbf{x} in \mathbb{R}^3 having coordinate vector

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -4\\8\\-7 \end{bmatrix}$$

with respect to the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-5\\2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\3 \end{bmatrix} \right\}$$

for \mathbb{R}^3 .

$$\mathbf{1.} \ \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ -5 \end{bmatrix}$$

2. no such x exists

$$\mathbf{3.} \ \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$$

4.
$$\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}$$
 correct

$$\mathbf{5.} \ \mathbf{x} = \begin{bmatrix} 0 \\ -1 \\ 5 \end{bmatrix}$$

Explanation:

The coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of a vector \mathbf{x} in \mathbb{R}^3 with respect to a basis

$$\mathcal{B} = \{\mathbf{b}_1, \ \mathbf{b}_2, \ \mathbf{b}_3\}$$

for \mathbb{R}^3 satisfies the matrix equation

$$A[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}, \qquad A = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}.$$

Consequently, when

$$\mathcal{B} = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-5\\2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\3 \end{bmatrix} \right\},\,$$

and

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -4\\8\\-7 \end{bmatrix},$$

$$\mathbf{x} = \begin{bmatrix} -1 & 3 & 4 \\ 2 & -5 & -7 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} -4 \\ 8 \\ -7 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}$$

DimensionTF04d 019 10.0 points Let V be a vector space. If dim V = n and if S spans V, then S is a basis for V.

True or False?

1. FALSE correct

2. TRUE

Explanation:

Any basis for V must span V and have exactly n elements. Consequently, the answer is

RankTF03 020 10.0 points

When A is a 5×7 matrix, the largest possible dimension of the row space of A is 5.

True or False?

1. TRUE correct

2. FALSE

Explanation:

The dimension of the row space A is the number of pivot positions in A. But when A is a 5×7 matrix, each column will have 5 entries. So A will have at most 5 pivot positions because there is only one pivot position in each pivot column and each row. Thus the dimension of the row space of A is at most 5.

Consequently, the answer is

ChangeBasis01b 021 (part 1 of 2) 10.0 points

Determine the change of coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ to $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ of a vector space V when

$$\mathbf{b}_1 = 6\mathbf{c}_1 - 2\mathbf{c}_2, \quad \mathbf{b}_2 = 9\mathbf{c}_1 - 4c_2.$$

1.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 6 & -9 \\ 2 & -4 \end{bmatrix}$$

2.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 6 & 9 \\ -2 & -4 \end{bmatrix}$$
 correct

$$\mathbf{3.} \ P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} -9 & 6 \\ -4 & 2 \end{bmatrix}$$

4.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} -6 & 9 \\ -2 & 4 \end{bmatrix}$$

5.
$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 9 & 6 \\ -4 & -2 \end{bmatrix}$$

6.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 9 & -6 \\ 4 & -2 \end{bmatrix}$$

Explanation:

The change of coordinates matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is the 2×2 matrix

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} [\mathbf{b}_2]_{\mathcal{C}}].$$

Now

$$[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}, \quad [\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} 9 \\ -4 \end{bmatrix}.$$

Consequently,

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 6 & 9 \\ -2 & -4 \end{bmatrix}$$

022 (part 2 of 2) 10.0 points

Determine $[\mathbf{x}]_{\mathcal{C}}$ when

$$x = -3b_1 + 2b_2$$
.

1.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

2.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$$

3.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

4.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

5.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$

6.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$
 correct

Explanation:

Now

$$\mathbf{x} = -3\mathbf{b}_1 + 2\mathbf{b}_2$$

= $-3(6\mathbf{c}_1 - 2\mathbf{c}_2) + 2(9\mathbf{c}_1 - 4\mathbf{c}_2)$
= $0\mathbf{c}_1 - 2\mathbf{c}_2$.

Consequently,

$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}.$$

Eigenspace02a 023 10.0 points

Find a basis for the eigenspace of the matrix

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix},$$

corresponding to the eigenvalue $\lambda = -2$.

1.
$$\begin{bmatrix} -1\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ correct

$$\mathbf{2.} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\mathbf{4.} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

5.
$$\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

Explanation:

The eigenspace corresponding to an eigenvalue λ of A is the Null Space

$$Nul(A - \lambda I)$$

of all solutions of $(A - \lambda I) \mathbf{x} = \mathbf{0}$.

To determine a basis for $Nul(A - \lambda I)$ we row reduce $A - \lambda I$ with $\lambda = -2$:

$$\operatorname{rref}(A+2I) \ = \ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

so x_2 , x_3 are the free variables. Thus the eigenspace Nul(A+2I) has dimension two and

$$\operatorname{Nul}(A+2I) = \left\{ s \begin{bmatrix} -1\\1\\0 \end{bmatrix} + t \begin{bmatrix} -1\\0\\1 \end{bmatrix} : s, t \text{ in } \mathbb{R} \right\}.$$

Consequently,

$$\begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

is a basis for the eigenspace of A corresponding to $\lambda = -2$.

EigenTrans01a 024 10.0 points

The vectors \mathbf{u}_1 and \mathbf{u}_2 shown in

are eigenvectors corresponding to eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$ respectively for a 2×2 matrix A.

Which of the following graphs contains the vector $A(\mathbf{u}_1 + \mathbf{u}_2)$?

1.

4.

5.

6.

Explanation:

As the graph of \mathbf{u}_1 , \mathbf{u}_2 shows,

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

But then

$$A(\mathbf{u}_1 + \mathbf{u}_2) = A \mathbf{u}_1 + A \mathbf{u}_2 = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2$$
$$= 3\mathbf{u}_1 + 2\mathbf{u}_2 = \begin{bmatrix} 6 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \end{bmatrix}.$$

Consequently, $A(\mathbf{u}_1 + \mathbf{u}_2)$ is contained in the graph

$\begin{array}{cc} Eigenvalue TF02 a \\ 025 & 10.0 \ points \end{array}$

If A is an $n \times n$ matrix and $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then \mathbf{x} is an eigenvector of A.

True or False?

1. TRUE

2. FALSE correct

Explanation:

The vector \mathbf{x} in $A\mathbf{x} = \lambda \mathbf{x}$ must be nonzero for λ to be an eigenvalue because by definition an eigenvector must be nonzero.

Consequently, the statement is

Eigenvalue04a 026 (part 1 of 2) 10.0 points

Determine the Characteristic Polynomial of the matrix $\,$

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

1.
$$6 + 4\lambda - 10\lambda^2 + \lambda^3$$

2.
$$4 - 4\lambda + 10\lambda^2 - \lambda^3$$

3.
$$4-10\lambda+6\lambda^2-\lambda^3$$
 correct

4.
$$6 + 10\lambda - 6\lambda^2 + \lambda^3$$

5.
$$4 + 4\lambda - 10\lambda^2 - \lambda^3$$

6.
$$6 - 10\lambda + 6\lambda^2 + \lambda^3$$

Explanation:

The Characteristic polynomial of a matrix A is

$$\det(A - \lambda I)$$
.

But when

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix},$$

then

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 2 - \lambda \end{vmatrix}$$
$$= (2 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} + \begin{vmatrix} -1 & 1 \\ 0 & 2 - \lambda \end{vmatrix}.$$

But

$$(2 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix}$$

$$= (2 - \lambda)((2 - \lambda)^2 - 1)$$

$$= (2 - \lambda)(3 - 4\lambda + \lambda^2)$$

$$= 6 - 11\lambda + 6\lambda^2 - \lambda^3.$$

while

$$\begin{vmatrix} -1 & 1 \\ 0 & 2 - \lambda \end{vmatrix} = \lambda - 2.$$

Consequently, A has Characteristic polynomial

$$4 - 10\lambda + 6\lambda^2 - \lambda^3 \quad .$$

027 (part 2 of 2) 10.0 points

One eigenvalue of the matrix A in part (i) is $\lambda = 2$. Determine all the other eigenvalues.

1.
$$\lambda = 2 \pm 2\sqrt{2}$$

2.
$$\lambda = 2 \pm \sqrt{2}$$
 correct

3.
$$\lambda = 1 \pm 2\sqrt{2}$$

4.
$$\lambda = 2\sqrt{2} \pm 2$$

5.
$$\lambda = 1 \pm \sqrt{2}$$

6.
$$\lambda = 2\sqrt{2} \pm 1$$

Explanation:

The eigenvalues of A are the solutions of

$$\det[A - \lambda I] = 4 - 10\lambda + 6\lambda^2 - \lambda^3 = 0.$$

Given that $\lambda = 2$ is one solution, then there exist constants b, c such that

$$4 - 10\lambda + 6\lambda^2 - \lambda^3 = (2 - \lambda)(\lambda^2 + b\lambda + c).$$

Thus

$$2c = 4, -b = 4,$$

so the eigenvalues of A are the solutions of

$$\det[A - \lambda I] = (2 - \lambda)(\lambda^2 - 4\lambda + 2) = 0,$$

i.e., $\lambda=2,\,2\pm\sqrt{2}$. Consequently, the other eigenvalues of A are

$$\lambda = 2 - \sqrt{2}, \ 2 + \sqrt{2}$$

Diagonalize03a 028 10.0 points

Find a matrix P so that

$$P\begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix} P^{-1}, \quad d_1 \ge d_2$$

is a diagonalization of the matrix

$$A = \begin{bmatrix} -3 & -6 \\ 0 & -5 \end{bmatrix}$$

1.
$$P = \begin{bmatrix} 0 & -1 \\ -1 & -3 \end{bmatrix}$$

2.
$$P = \begin{bmatrix} -3 & -1 \\ -1 & 0 \end{bmatrix}$$

3.
$$P = \begin{bmatrix} -5 & -1 \\ -1 & 3 \end{bmatrix}$$

4.
$$P = \begin{bmatrix} -1 & -3 \\ 0 & -1 \end{bmatrix}$$
 correct

5.
$$P = \begin{bmatrix} -3 & -1 \\ 1 & -5 \end{bmatrix}$$

6.
$$P = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$$

Explanation:

To begin, we must find the eigenvectors and eigenvalues of A. To do this, we will use the characteristic equation, $\det(A - \lambda I) = 0$. That is, we will look for the zeros of the characteristic polynomial.

$$det(A - \lambda I) = (-3 - \lambda)(-5 - \lambda)$$
$$= \lambda^2 + 8\lambda + 15$$
$$= (\lambda + 3)(\lambda + 5) = 0.$$

So

$$D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 0 & -5 \end{bmatrix}.$$

Now to find the eigenvectors of A, we will solve for the nontrivial solution of the characteristic equation by row reducing the related augmented matrices:

$$[A - \lambda_1 I \quad \mathbf{0}] = \begin{bmatrix} -3+3 & -6 & 0 \\ 0 & -5+3 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -6 & 0 \\ 0 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\implies \mathbf{u}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix},$$

while

$$[A - \lambda_2 I \quad \mathbf{0}] = \begin{bmatrix} -3+5 & -6 & 0\\ 0 & -5+5 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -6 & 0\\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} -1 & 3 & 0\\ 0 & 0 & 0 \end{bmatrix}$$
$$\implies \mathbf{u}_2 = \begin{bmatrix} -3\\ -1 \end{bmatrix}.$$

So, $P = [\mathbf{u}_1 \ \mathbf{u}_2]$ and

$$A = PDP^{-1}$$

is a diagonalization of A.

Consequently,

$$D = \begin{bmatrix} -3 & 0 \\ 0 & -5 \end{bmatrix}, P = \begin{bmatrix} -1 & -3 \\ 0 & -1 \end{bmatrix}$$

DotProdOrthoTF01b 029 10.0 points

For **u** and **v** in \mathbb{R}^n and any scalar c,

$$\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$$

True or False?

1. TRUE correct

2. FALSE

Explanation:

By scalar multiplication and matrix multiplication,

$$\mathbf{u} \cdot (c\mathbf{v}) = \mathbf{u}^T(c\mathbf{v}) = c(\mathbf{u}^T\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v}).$$

Consequently, the statement is

OrthoProj04a 030 10.0 points

Determine the vector \mathbf{z} in \mathbb{R}^3 such that $\mathbf{y} - \mathbf{z}$ is the projection of \mathbf{y} in Span(\mathbf{u}) when

$$\mathbf{y} = \begin{bmatrix} 9 \\ 5 \\ 2 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}.$$

1.
$$\mathbf{z} = \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix}$$
 correct

$$\mathbf{2.} \ \mathbf{z} = \begin{bmatrix} 9 \\ 3 \\ -6 \end{bmatrix}$$

3.
$$\mathbf{z} = \begin{bmatrix} -9 \\ -3 \\ 6 \end{bmatrix}$$

$$\mathbf{4.} \ \mathbf{z} = \begin{bmatrix} -6 \\ -2 \\ 4 \end{bmatrix}$$

Explanation:

By definition,

$$\mathbf{y} \; = \; \mathrm{proj}_{\mathbf{u}} \mathbf{y} + \mathbf{z} \; = \; \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} + \mathbf{z} \, .$$

But

$$\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

$$= \left(\frac{(9)(1) + (5)(1) + (2)(2)}{1 + 1 + 4}\right) \begin{bmatrix} 1\\1\\2 \end{bmatrix}$$

$$= 3 \begin{bmatrix} 1\\1\\2 \end{bmatrix},$$

so after rearrangement, we see that

$$\mathbf{z} = \mathbf{y} - \operatorname{proj}_{\mathbf{u}} \mathbf{y}$$

$$= \begin{bmatrix} 9 \\ 5 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 6 \end{bmatrix}.$$

Consequently,

$$\mathbf{z} = \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix}$$

OrthogProj01a 031 10.0 points

Determine the orthogonal projection of

$$\mathbf{y} = \begin{bmatrix} 5 \\ 1 \\ -10 \end{bmatrix}$$

onto the subspace W of \mathbb{R}^3 spanned by

$$\mathbf{u}_1 = \begin{bmatrix} -2\\2\\1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1\\2\\-2 \end{bmatrix}.$$

$$\mathbf{1.} \ \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} 3 \\ -6 \\ 0 \end{bmatrix}$$

$$\mathbf{2.} \ \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} 7 \\ -6 \\ -8 \end{bmatrix}$$

3.
$$\operatorname{proj}_W \mathbf{y} = \begin{bmatrix} 7 \\ 2 \\ -8 \end{bmatrix}$$
 correct

4.
$$\operatorname{proj}_W \mathbf{y} = \begin{bmatrix} 3 \\ 2 \\ -8 \end{bmatrix}$$

Explanation:

Since \mathbf{u}_1 , \mathbf{u}_2 are non-zero othogonal vectors, they form a basis for W. Thus

$$\operatorname{proj}_{W} \mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\|\mathbf{u}_{1}\|^{2}}\right) \mathbf{u}_{1} + \left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\|\mathbf{u}_{2}\|^{2}}\right) \mathbf{u}_{2}.$$

But when

$$\mathbf{y} = \begin{bmatrix} 5 \\ 1 \\ -10 \end{bmatrix}, \ \mathbf{u}_1 = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix},$$

we see that

$$\left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\|\mathbf{u}_1\|^2}\right) \mathbf{u}_1 = -2 \begin{bmatrix} -2\\2\\1 \end{bmatrix},$$

while

$$\left(\frac{\mathbf{y} \cdot \mathbf{u}_2}{\|\mathbf{u}_2\|^2}\right) \mathbf{u}_2 = 3 \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}.$$

Consequently,

$$\operatorname{proj}_{W} \mathbf{y} = -2 \begin{bmatrix} -2\\2\\1 \end{bmatrix} + 3 \begin{bmatrix} 1\\2\\-2 \end{bmatrix} = \begin{bmatrix} 7\\2\\-8 \end{bmatrix}$$

GramSchmidt04a 032 10.0 points

Find an orthogonal basis for the column space of A when

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \\ 2 & -4 & -4 \end{bmatrix}$$

$$\mathbf{1.} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -20 \\ -7 \\ 17 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{v}_1 = \begin{bmatrix} 6 \\ -2 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

3.
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 13 \\ -14 \end{bmatrix}$$
 correct

$$\mathbf{4.} \ \mathbf{v}_1 = \begin{bmatrix} 6 \\ -2 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 13 \\ -14 \end{bmatrix}$$

5.
$$\mathbf{v}_1 = \begin{bmatrix} 6 \\ -2 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -20 \\ -7 \\ 17 \end{bmatrix}.$$

Explanation:

We begin by row reducing A.

$$A \sim \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Let $A = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]$. Because columns one and two both contain pivot positions, $\{\mathbf{x}_1, \mathbf{x}_2\}$ is a basis for the column space of A. From this information, we will follow the Gram-Schmidt process to make an orthogonal basis from these two vectors. So

$$\mathbf{v}_1 = \mathbf{x}_1$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1.$$

Hence,

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\2 \end{bmatrix}$$

and

$$\mathbf{v}_{2} = \mathbf{x}_{2} + \frac{11}{9}\mathbf{v}_{1}$$

$$= \begin{bmatrix} -1 \\ -1 \\ -4 \end{bmatrix} + \begin{bmatrix} \frac{11}{9} \\ \frac{22}{9} \\ \frac{22}{9} \end{bmatrix} = \begin{bmatrix} \frac{2}{9} \\ \frac{13}{9} \\ -\frac{14}{9} \end{bmatrix}.$$

Note that because scalar multiplication does not affect the orthogonality of vectors, the basis vectors can be simplified by scaling them.

Consequently, an orthogonal basis for the column space of A is

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 13 \\ -14 \end{bmatrix}.$$

LeastSquares02a 033 10.0 points

Find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ when

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -2 \\ 2 \\ -5 \end{bmatrix}.$$

1.
$$\begin{bmatrix} -19 \\ -13 \\ 19 \end{bmatrix}$$

2.
$$\begin{bmatrix} -11 \\ 7 \\ 2 \end{bmatrix}$$
 correct

3.
$$\begin{bmatrix} -2 \\ 3 \\ -5 \end{bmatrix}$$

4.
$$\begin{bmatrix} -2 \\ 2 \\ -5 \end{bmatrix}$$

5.
$$\begin{bmatrix} -23 \\ -9 \\ -13 \end{bmatrix}$$

Explanation:

The normal equations for a least-squares solution of $A\mathbf{x} = \mathbf{b}$ are by definition

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

Now,

$$A^{T}A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

and

$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \\ -5 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ -5 \end{bmatrix}.$$

Hence the least squares solution of $A\mathbf{x} = \mathbf{b}$ is the solution \mathbf{x} to the equation

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -2 \\ 3 \\ -5 \end{bmatrix}.$$

This can be solved with row reduction or inverse matrices to determine that the solution is

$$(A^T A)^{-1} (A^T \mathbf{b}) = \begin{bmatrix} 6 & -3 & -2 \\ -3 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ -5 \end{bmatrix}$$

$$= \begin{bmatrix} -11 \\ 7 \\ 2 \end{bmatrix}.$$

Consequently, the least squares solution to $A\mathbf{x} = \mathbf{b}$ is

$$\begin{bmatrix} -11 \\ 7 \\ 2 \end{bmatrix}.$$

RegressionLine01a 034 10.0 points

Find the x-intercept of the Least Squares Regression line y = mx + b that best fits the data points

$$(-1, 1), (0, -2), (1, 3).$$

1.
$$x$$
-intercept = $-\frac{1}{3}$

2.
$$x$$
-intercept = -1

3. x-intercept = $-\frac{2}{3}$ correct

4. x-intercept = $-\frac{4}{3}$

5. x-intercept = 0

Explanation:

The design matrix and list of observed values for the data

$$(-1, 1), (0, -2), (1, 3)$$

are given by

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}.$$

The least squares regression line for this data is y = mx + b where $\hat{\mathbf{x}}$ is the solution of the normal equation

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}, \qquad \hat{\mathbf{x}} = \begin{bmatrix} b \\ m \end{bmatrix}.$$

Now

$$A^T \mathbf{b} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix},$$

while

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}.$$

Thus the normal equation is

$$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

So

$$\begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1/3 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}.$$

Consequently, the Least Squares Regression line is

$$y = x + \frac{2}{3},$$

and it has

$$x$$
-intercept = $-\frac{2}{3}$

OrthogDiag01b 035 10.0 points

When

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

are eigenvectors of a symmetric 2×2 matrix A corresponding to eigenvalues

$$\lambda_1 = -1, \qquad \lambda_2 = -11,$$

find matrices D and P in an orthogonal diagonalization of A.

1.
$$D = \begin{bmatrix} -11 & 0 \\ 0 & -1 \end{bmatrix}, P = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

2.
$$D = \begin{bmatrix} -1 & 0 \\ 0 & -11 \end{bmatrix}$$
, $P = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$

3.
$$D = \begin{bmatrix} -11 & 0 \\ 0 & -1 \end{bmatrix}, P = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

4.
$$D = \begin{bmatrix} -1 & 0 \\ 0 & -11 \end{bmatrix}$$
, $P = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$

5.
$$D = \begin{bmatrix} -1 & 0 \\ 0 & -11 \end{bmatrix}, P = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$$

6.
$$D = \begin{bmatrix} -1 & 0 \\ 0 & -11 \end{bmatrix}, P = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$$

Explanation:

When

$$D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, \quad Q = [\mathbf{u}_1 \ \mathbf{u}_2],$$

then Q has orthogonal columns and $A = QDQ^{-1}$ is a diagonalization of A, but it is not an orthogonal diagonalization because Q is not an orthogonal matrix. We have to normalize \mathbf{u}_1 and \mathbf{u}_2 : set

$$\mathbf{v}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\-1 \end{bmatrix},$$

$$\mathbf{v}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}.$$

Then $P = [\mathbf{v}_1 \ \mathbf{v}_2]$ is an orthogonal matrix and so

$$A = PDP^{-1}$$

is an orthogonal diagonalization of A when

$$D = \begin{bmatrix} -1 & 0 \\ 0 & -11 \end{bmatrix}, \quad P = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \quad .$$