Lycée Buffon TD 22
MPSI Année 2020-2021

Applications linéaires

Exercice 1 : On considère \mathbb{C} en tant que \mathbb{R} -ev.

- 1. Prouver que tout endomorphisme de $\mathbb C$ est de la forme $z\mapsto az+b\overline{z}$ avec $(a,b)\in\mathbb C^2$
- 2. Déterminer les automorphismes de \mathbb{C} .

Exercice 2 : Soit E un \mathbb{K} -ev et $f, g \in \mathcal{L}(E)$. Montrer que $f(\operatorname{Ker}(g \circ f)) = \operatorname{Ker} g \cap \operatorname{Im} f$.

Exercice 3 : Soit $f \in \mathcal{L}(E, F)$, E' un sev de E et F' un sev de F.

- 1. Exprimer $f(f^{-1}(F'))$ en fonction de F' et Im f.
- 2. Exprimer $f^{-1}(f(E'))$ en fonction de E' et Kerf.

Exercice 4:

- 1. Soit $f \in \mathcal{L}(E)$ tel que $f^2 4f + 3\mathrm{Id}_E = 0$. Prouver que $E = \mathrm{Ker}(f - \mathrm{Id}_E) \oplus \mathrm{Ker}(f - 3\mathrm{Id}_E)$.
- 2. Soient F et G tels que $E=F\oplus G$. Prouver qu'il existe un unique endomorphisme g de E tel que $F=\mathrm{Ker}(g-\mathrm{Id}_E)$ et $G=\mathrm{Ker}(g-3\mathrm{Id}_E)$. Vérifier que $g^2-4g+3\mathrm{Id}_E=0$.

Exercice 5 : Soit p un projecteur de E et $q = \mathrm{Id}_E - p$. Soit $F = \{f \circ p, \ f \in \mathcal{L}(E)\}$ et $G = \{f \circ q, \ f \in \mathcal{L}(E)\}$ Prouver que $\mathcal{L}(E) = F \oplus G$.

Exercice 6 : Soit $f \in \mathcal{L}(E)$.

On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $f^n = 0_{\mathcal{L}(E)}$ et $f^{n-1} \neq 0_{\mathcal{L}(E)}$

- 1. Prouver que la famille $(f^k)_{0 \le k \le n-1}$ est libre.
- 2. Prouver qu'il existe $x_0 \in E$ tel que la famille $(x_0, f(x_0), ..., f^{n-1}(x_0))$ soit libre.

Exercice 7: Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$.

- 1. Montrer que $C(f) = \{g \in \mathcal{L}(E) : f \circ g = g \circ f\}$ est un \mathbb{K} -ev.
- 2. Montrer que pour tout $r \in \mathbb{N}$ et pour tout $(a_0, ..., a_r) \in \mathbb{K}^r$, on a :

$$a_0 \text{Id}_E + a_1 f + \dots + a_r f^r = \sum_{k=0}^r a_k f^k \in \mathcal{C}(f).$$

3. On suppose qu'il existe $x_0 \in E$ tel que la famille $(x_0, f(x_0), ..., f^{n-1}(x_0))$ soit une base de E. Prouver que $C(f) = \left\{ \sum_{k=0}^{n-1} a_k f^k, (a_0, ..., a_{n-1}) \in \mathbb{K}^n \right\}$

Exercice 8 : Soient E, F et G des \mathbb{K} -espaces vectoriels. On suppose que tout sousespace vectoriel de l'un de ces espaces possède un supplémentaire.

- 1. Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(E, G)$. Montrer que $\operatorname{Ker}(f) \subset \operatorname{Ker}(g) \Leftrightarrow \exists h \in \mathcal{L}(F, G) : g = h \circ f$.
- 2. Soient $h \in \mathcal{L}(F,G)$ et $g \in \mathcal{L}(E,G)$. Montrer que $\operatorname{Im}(g) \subset \operatorname{Im}(h) \Leftrightarrow \exists f \in \mathcal{L}(E,F) : g = h \circ f$.
- 3. Soit $f \in \mathcal{L}(E)$ Montrer qu'il existe un projecteur p de E et un isomorphisme g de E tels que $f = g \circ p$.

 Montrer qu'il existe un projecteur q de E et un isomorphisme h de E tels que $f = q \circ h$.