

ADA 0 79424

THEORETICAL FEASIBILITY OF DIGITAL COMMUNICATION OVER OCEAN AREAS BY GH EREQUENCY RADIO

George W. Haydon Charles M. Rush Larry R. Teters

U.S. DEPARTMENT OF COMMERCE
NATIONAL TELECOMMUNICATIONS AND
INFORMATION ADMINISTRATION
Institute for Telecommunication Sciences
Boulder CO 80303

NOVEMBER 1979 FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Office of Systems Engineering Management Washington DC 20591

80 1 15 002

JUC FILE COPY

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

ERRATA SHEET

Report No. FAA-EM-79-10

THEORETICAL FEASIBILITY OF DIGITAL

COMMUNICATION OVER OCEAN AREAS BY

HIGH FREQUENCY RADIO

By
U.S. Department of Commerce
National Telecommunications and
Information Administration
Institute for Telecommunication Sciences
Boulder CO 80303

Change report number to FAA-EM-79-20 on front cover and technical report documentation page.

Issued November 1979

19 79-24

Technical Report Documentation Page

7) . /	2. Government Access	sion No.	3. Recipient's Catalog No	.		
FAA-EM-79-10		1				
4. Title and Subtitle	1		Report Date	·,		
	and the second contract of the second	11	November 1979	<i>[</i>		
THEORETICAL FEASIBILITY OF	DIGITAL COMMUN	ICATION \	. Performing Organization	n Code		
OVER OCEAN AREAS BY HIGH F	REQUENCY RADIO)				
			Portorming Organizatio	n Report No.		
George W. Haydon, Charles	M. Rush La	rv R. /Teters	TSC-FAA-79	1-26		
9. Performing Organization Name and Addr	O. Work Um No. (TRAIS					
U.S. Department of Commerc National Telecommunication		Ĺ	FA089/R0134			
Information Administrati	on	[1]	11. Contract or Grant No. RA 78-15			
Institute for Telecommunic	ation Sciences	<u> </u>	3. Type of Report and Pr	eriod Covered		
Boulder CO, 80303 12. Sponsoring Agency Name and Address						
U.S. Department of Transpo	rtation	(9)	Final Reports	, , , , , , , , , , , , , , , , , , ,		
Federal Aviation Administra		$\mathcal{A}_{\mathcal{A}}$	August 278-Ju			
Office of Systems Engineer	ing Management	! '	TIA/ITS	ode		
Washington DC 20591	1					
U.S. D	d performed unde epartment of Tra	ansportation		~ · · · · · · · · · · · · · · · · · · ·		
Resear	ch and Special lortation Systems	Programs Adminis	stration (1	1881		
Cambri	dge MA 02142			<u> </u>		
16. Abstract						
The theoretical reliability	y of digital dat	ta transmission	via high-freque	ncy radio		
examined for typical air t	raffic routes in	n the Atlantic a	and Pacific area	s to assis		
the U.S. Department of Tra						
traffic control over ocean	areas. The exp	pected performan	ice of a referen	ce high-		
frequency data transmission	n system of 1200	oits per secon	id with a permis	sible erro		
given theoretical reliabil	rate of one in a thousand binary error is expressed as a percentage of time that a given theoretical reliability will be equaled or exceeded.					
given theoretical retrability will be equaled or exceeded.						
	•					
The expected performance o	f air-to-air HF	systems is also	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an			
cluded that these systems	f air-to-air HF should work for	systems is also the reference of	considered, an communication sylercraft.			
cluded that these systems the line-of-sight range of 17. Key Words Digital HF Communication	f air-to-air HF should work for	systems is also the reference c or high-flying s	considered, an communication sy dircraft.	stem out t		
cluded that these systems the line-of-sight range of 17. Key Words Digital HF Communication HF Propagation	f air-to-air HF should work for about 800 km fo	systems is also the reference or high-flying a 18. Distribution Statem DOCUMENT	considered, an communication sy ircraft.	stem out t		
cluded that these systems the line-of-sight range of 17. Key Words Digital HF Communication	f air-to-air HF should work for about 800 km fo	systems is also the reference or high-flying a 18. Distribution Statem DOCUMENT	o considered, an communication system of the considered of the considered of the constant of the conservice, spring files on Service, spring files	stem out t		
cluded that these systems the line-of-sight range of 17. Key Words Digital HF Communication HF Propagation Ionospheric Disturbance Eff	f air-to-air HF should work for about 800 km fo	systems is also the reference or high-flying so this stribution Statem DOCUMENT THROUGH THROUG	o considered, an communication system of the considered of the considered of the constant of the conservice, spring files on Service, spring files	stem out t		
cluded that these systems the line-of-sight range of 17. Key Words Digital HF Communication HF Propagation	f air-to-air HF should work for about 800 km fo	systems is also the reference or high-flying son high-flying s	considered, an communication sylincraft. Incraft. Is available to the HE NATIONAL TECHNIC ON SERVICE, SPRINGFIRE	PUBLIC CAL ELD.		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

401 082

10 =

Preface

As part of the increasing concern to improve air traffic control of oceanic regions, the Department of Transportation's Transportation Systems Center is investigating various methods to effect such improvement. One such method involves the use of HF data transmissions between aircraft and ground stations.

The report presented herein was prepared by the Institute for Telecommunication Sciences. It is one of two reports describing the potential usefulness of HF data transmissions for oceanic ATC improvement.

This report was completed under the direction of TSC Program Manager, Leslie Klein.

Access	ion For					
RTIS	GNA&I	Z				
DUC TA	В					
Unnuno	unced					
Jestif	ication					
Ev						
Distri	Distribution/					
Aveil	Avrilability Codes					
	Availar					
Dist	specia					
U						
1 1	1					

	i	114) **	**	h}	• 1
	ifric Manageres To Pine			H	lind annual press press press caber tea caber tea caber tea	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Approximate Conversions from Metric Manueces Then You East Mottibit by To Find	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	AND THE STATE OF	0.00 0.00 2.2 1.1	VOLUME 0 00 12 12 12 12 12 12 12 12 12 12 12 12 12 1	PERPERATURE (GENECI) TO CO
	Abproximeta Co. When the Know	Antimotes Continues Contin	American continues of the continues of t	1 00:1 value	melicitors from from from from from from from from	Colema management Colema management Colema C
	Frebe	ffees	ינכנ	•1.	Feedy	, lan
3111	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ninamaninaminininininininininininininini	and malement out on the last tracking	akini nganilininin nahini		luminalimi motta li mili mili mili mili mili mili mili
1.	`		ין ין יון יון ין יוי	Latalala	istololololololololololololololololololol	
1419449	Ĭ.	Continue per concentration con means of its billion con its period con means of its period con i	Parcel Continues of the State o	-7.		
tions to Metric Montyres	ž	7 A C 2		1	multiness multin	Colons and Colons
Terrament Commission	: ! !	liti	2522	Notes of the second sec	TEMPERATURE	ES (community of the community of the co
]	feli	m,	. 1	!!h?	

TABLE OF CONTENTS

Section			Page
1.	INT	RODUCTION	1
2.	ASSU	IMPTIONS	2
3.	FACT	S BEARING ON THE PROBLEM	3
4.	DISC	CUSSION	4
	4.1 4.2 4.3 4.4	Overall System Performance of Skywave Systems	4 12 18
	4.5 4.6	of Skywave Circuits Ionospheric Disturbance	18 31 33
5.	CON	CLUSIONS	43
6.	REF	ERENCES	44
APPENDI	ХА	BASIC SIGNAL-TO-NOISE RATIO REQUIREMENTS FOR DIGITAL COMMUNICATION SYSTEMS	45
APPENDI	ХВ	TABULATION OF THE THEORETICAL RELIABILITY OF THE REFERENCE CIRCUIT	57

LIST OF ILLUSTRATIONS

Figure		Page
1.	Sample Chart Showing How Changing Frequency During the Day Helps to Maintain Circuit Reliability - North Atlantic - Distance 500 km	10
2.	Sample Chart Showing How Changing Frequency During the Day Helps to Maintain Circuit Reliability - North Atlantic- Distance 1500 km	11
3.	Contours of Optimum Frequency (in MHz) Showing How Seasonal and Diurnal Changes in Frequency are Required for Operation	13
4.	Sample Chart Showing How Communication Reliability is Maintained When Skywave Communication May be to Either End of the Air Route	14
5.	Overall Distance Variation of Theoretical Circuit Reliability- North Atlantic Air Route	15
6.	Over Distance Variation of Theoretical Circuit Reliability - North Pacific Air Route	16
7.	Chart to Estimate Circuit Reliability When Circuit Performance is Known Relative to a Reference Circuit (Skywave Propagation)	17
8.	Summary Graph Showing Percentage of Time/Location Samples Where Reference Circuit Reliability May be Expected to Equal or Exceed the Ordinate	19
9.	Chart Showing Percentage of Time/Location Samples Vs Circuit Reliability as a Function of Required S/N Ratio - New York to Shannon - Entire Solar Cycle	20
10.	Chart Showing Percentage of Time/Location Samples Vs Circuit Reliability as a Function of Required S/N Ratio - San Francisco to Honolulu - Entire Solar Cycle	21
11.	Analysis of Utility of Frequency Assignments in 24-hr Period, 1960 km Path	26
12.	Analysis of Utility of Frequency Assignments in 24-hr Period, 540 km Path	27
13.	Analysis of Utility of Frequency Assignments in 24-hr Period, 330 km Path	28
14	Daytime HE Environment	20

LIST OF ILLUSTRATIONS (CONTINUED)

<u>Figure</u>		Page
15.	Nighttime HF Environment	30
16.	Sample Chart Showing a Sample Frequency Distribution of High-Frequency Skywave Disturbances	34
17.	Sample Chart Showing a Sample Frequency Distribution of High-Frequency Skywave Disturbances	35
18.	Sample Graph Which Could be Used to Assist in the Selection of a Theoretically Optimum Aeronautical Channel	39
19.	Chart Showing Theoretical Air-to-Air Range at 3 MHz	40
20.	Chart Showing Theoretical Air-tc-Air Range at 6 MHz	41
21.	Chart Showing Theoretical Air-tc-Air Range at 18 MHz	42
A-1.	Basic Performance of "On-Off" Binary Digit System for Transmission Rate of One Baud With Nonfading Carrier and Random Noise	47
A-2.	Degradation Due to Rayleigh-Fading Carrier: "On-Off" System	48
A-3.	Basic Performance of Limiter-Discriminator FSK Binary Digit System for Transmission Rate of One Baud with Nonfading Carrier and Random Noise	49
A-4.	Degradation Due to Rayleigh-Fading Carrier: Limiter- Discriminator FSK	50
A-5.	Basic Performance of Dual-Filter FSK Binary Digit System for Transmission Rate of One Baud with Nonfading Carrier and Random Noise	51
A-6.	Degradation Due to Rayleigh-Fading Carrier: Dual-Filter FSK	52
A-7.	Basic Performance of Differentially Coherent PSK Binary Digit System for Transmission Rate of One Baud with Nonfading Carrier and Random Noise	53
A-8.	Degradation Due to Rayleigh-Fading Carrier: Differentially	5.4

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
A-9.	Element Error Probabilities in a Single-Channel NCFSK System Under Stable Conditions. (Signal-To-Noise Ratio is the Ratio of Signal Power to Average Noise Power, and V _d is the Ratio or RMS to Average of the Noise Envelope Voltage, Both Measured at the Input to the Limiter in a Limiter-Discriminator Demodulator, and Measured in a Bandwidth Equivalent to the Sum of the Bandwidths of the Two Filters in a Dual-Filter Demodulator. Modulation Index is Assumed to be not Less Than Unity, and No Low-Pass Filter is used Before the Decision-Making Circuit.)	55
A-10.	Element Frror Probabilities in an Single-Channel NCFSK System Under Rayleigh-Fading Conditions with no Diversity and Dual Selection-Switching Diversity. (Median Signal-To-Noise Ratio, is the Ratio of Median Signal Power to Average Noise Power, and V _d is the Ratio of RMS to Average of the Noise Envelope Voltage, Both Measured at the Input to the Limiter in a Limiter-Discriminator Demodulator and Measured in a Bandwidth Equivalent to the Sum of the Bandwidths of the Two Filters in a Dual-Filter Demodulator. Modulation Index is Assumed to be Not Less than Unity, and No Low-Pass Filter is Used Before the Decision-Making Circuit.)	56

LIST OF TABLES

Table		<u>Page</u>
1.	SAMPLE COMPUTER OUTPUT SHOWING THE THEORETICAL RELIABILITY OF A SKYWAVE COMMUNICATIONS SYSTEM IN THE NORTH ATLANTIC DISTANCE 500 km - DECEMBER - LOW SOLAR ACTIVITY (UT = 02, 04, 06, 08)	7
2.	SAMPLE COMPUTER OUTPUT SHOWING THE THEORETICAL RELIABILITY OF A SKYWAVE COMMUNICATIONS SYSTEM IN THE NORTH ATLANTIC DISTANCE 500 km - DECEMBER - LOW SOLAR ACTIVITY (UT = 18, 20, 22, 24)	8
3.	SAMPLE COMPUTER OUTPUT SHOWING THE THEORETICAL RLIABILITY OF A SKYWAVE COMMUNICATIONS SYSTEM IN THE NORTH ATLANTIC DISTANCE 1500 km - DECEMBER-LOW SOLAR ACTIVITY (UT = 18, 20, 22, 24)	9
4.	THEORETICAL REQUIRED SIGNAL-TO-NOISE DENSITY RATIO (dB) FOR RADIO SIGNALS IN THE PRESENCE OF GAUSSIAN NOISE FOR SELECTED DATA TRANSMISSION SYSTEM (NO SIGNAL PROCESSING OR ERROR CORRECTING CODES)	22
5.	SAMPLE CHART SHOWING THE INTER-RELATIONSHIP BETWEEN DISTURBANCE DEPTH AND DISTURBANCE DURATION OF HIGH-FREQUENCY SKYWAVE SIGNALS.	36
6.	ASSESSMENT OF BRITISH BROADCASTING CORPORATION RADIO PROPAGATION DISTURBANCES	37
7.	SAMPLE COMMENTS OF AERONAUTICAL RADIO, INC. CONCERNING RECENT RECEPTION ON SKYWAVE SIGNALS AT MIAMI	38
B-1.	THEORETICAL RELIABILITY NORTH ATLANTIC PATH	58
B-2.	THEORETICAL RELIABILITY NORTH PACIFIC PATH	69

INTRODUCTION

At the present time an international group is considering the future communications system for oceanic air traffic control (ATC). This group is examining a range of technical solutions including improvement of the present high frequency (HF) radio system, satellites, air-to-air relay, and other technical approaches which show promise of satisfying future aeronautical communications requirements for oceanic ATC.

As a participant in this international activity, the U.S. Department of Transportation is examining the potential of the present HF radio system to carry digital data communications with high reliability and with low bit and message error rates. To assist in the evaluation of such a system, it appears that theoretical studies are required to answer the following questions:

- 1) What is the theoretical reliability of digital data transmission via HF radio?
- 2) How does this reliability vary with data rates?
- 3) What are typical HF ground wave ranges between aircraft?
- 4) How may these ranges be expected to vary with time, season, and geographic location?
- 5) How useful are sounders or other techniques to assist in channel selection?
- 6) What improvement in reliability can be expected if modern coding is used?

2. ASSUMPTIONS

The theoretical feasibility of digital communication over ocean areas may be estimated from a sample of two areas: (1) the North Atlantic and (2) the Pacific. The North Atlantic area is of particular interest. Since high frequency skywave communication can be expected to be better in most other areas, the theoretical reliability of digital systems in the North Atlantic should be exceeded in most other ocean areas.

A satisfactory reference data rate requirement for Air Traffic Control (ATC) is 1200 bits per second. Theoretical system reliability at other data rates is needed as part of this study. The basic uncorrected permissible bit error rate is 10^{-3} . Reliability as a function of error rate is required.

There will be a continuing requirement of oceanic ATC via HF radio. Time sample periods to estimate the long term reliability may be taken as:

four seasons (March, June, September, and December); and three solar activity levels (twelve-month average Zurich sunspot numbers of 10, 60, and 110).

Dividing of the currently authorized frequencies for the Major World Air Route Area into nine groups (3.0, 3.5, 4.7, 5.6, 6.6, 8.9, 11.3, 13.3, and 18.0 MHz) will approximate the propagation characteristics.

The diurnal variation of system reliability may be estimated by computation at each even hour of Greenwich Mean Time (GMT).

Aircraft equipment can be represented by antennas with 0 dB gain relative to an isotropic antenna, and aircraft transmitters will operate at 400 watts.

Ground station antennas will have a 6 dB gain relative to an isotropic antenna.

The aircraft-to-ground link is normally weaker than the ground-to-aircraft link. System performance computations based on the aircraft-to-ground link will provide an adequate estimate of the overall reliability of the system.

The frequency selection capability will be such that the best of the available frequencies will be used at all times.

The ground station will be in a man-made noise area typical of rural man-made noise as defined by the International Radio Consultative Committee (CCIR); i.e., -148 dBW in one hertz bandwidth at 3 MHz.

The study will involve two ground stations for each area: New York City and Shannon, Ireland, for the North Atlantic, and San Francisco and Honolulu for the North Pacific. If more ground stations were available, the reliability would be expected to improve. The system reliability will be the better of the reliabilities to the ground stations.

Aircraft locations will be sampled at 200 km from the ground terminals and at 500 km intervals along the great circle path between the ground terminals.

3. FACTS BEARING ON THE PROBLEM

Techniques for predicting the performance of skywave communication systems have been available for many years (CRPL, 1948; Laitinen and Haydon, 1962; Haydon and Lucas, 1966). Recent experience in predicting the performance of over-the-horizon radars have permitted an improvement in these predictions (J. Lloyd, Private Communications).

Predicting the performance of skywave systems involves a representation of the ionosphere with geographic and time variations of each of the regions (Leftin, 1976; CCIR, 1966). The degree of ionization in the various regions determines whether a radio frequency will be propagated via the skywave, defines the path of the propagation, and permits an estimate of the losses involved in the propagation process. When ionospheric characteristics are combined with equipment characteristics (i.e., transmitter power, antenna gain patterns, etc.), it is possible to estimate the signal power that is expected to be available at the receiver terminals. This available power has marked variability, depending not only upon path length but also upon frequency, time of day, season of year, and solar activity level. After the best available estimates of the influence of these factors have been made, the resultant available signal power still needs to be expressed statistically. Normally in high-frequency, skywave predictions, this statistical expression is divided into two parts: (1) the short-term variations of the signal, i.e., minute-tominute fading with the hour, and (2) a longer term variation, the variation of hourly median signal levels from day-to-day at a given hour within the month.

The short term (minute-to-minute) variation is often adequately described by the Rayleigh distribution (a combination of an infinite number of vectors of random phase and amplitude), while the day-to-day variation has been empirically determined and is estimated as a function of path length, geographic location and time.

The statistical description of the available signal power needs to be combined with a statistical description of the expected noise power to obtain an estimate of the available signal-to-noise ratio. The expected noise power is a combination of atmospheric noise and cosmic noise levels (CCIR, 1964), and man-made noise (CCIR, 1975). This combination involves median and upper and lower deciles of each noise source. The resultant noise level has a frequency, geographic, and time variation similar to the available signal levels.

The short term (e.g., minute-to-minute or less) variations of the signal and the noise, as well as the relative magnitude of the signal-to-noise with short term periods, are normally associated with the quality of the signal (e.g., error rates for digital systems), while the long term variations (day-to-day) are associated with the reliability of the circuit, i.e., the percentage of days within the month that a specified quality may be expected to be equaled or exceeded.

After the long term distribution of the available signal-to-noise ratio has been estimated (at a given hour, season, solar activity level, frequency, equipment availability, and path length), it is necessary to enter this distribution with a required signal-to-noise ratio to estimate the system reliability (Lucas and Haydon, 1966).

The required signal-to-noise ratio will depend not only upon the type of service involved (e.g., voice or teletype), but also upon the transmission speed and permissible error rates.

4. DISCUSSION

4.1 BASIC SKYWAVE RADIO PROPAGATION PREDICTIONS

When the assumptions made in Section 2 are combined with the techniques discussed in Section 3, a prediction of the expected reliability of a skywave system is possible. Table 1 is a sample of the computer output used in

estimating reliability for this report. Table 1 may be described as follows: The first line gives the particular method of the prediction model used--Method 23 of the latest Institute for Telecommunication Sciences' HF Prediction Model (IONCAP 78.03) -- the page number is the numerical sequence of the sample chosen for this illustration. The second line gives the month and the solar activity level for which the prediction applies (December - low solar activity, i.e., SSN 10). The 1978 date is superfluous. The third and fourth lines indicate the circuit terminals involved: New York (40.67N; 73.83N) toward Shannon to an aircraft location, 43.37N; 68.93N, at an azimuth of 5.155 degrees East of North, the 234.60 degrees is the azimuth of New York relative to the aircraft location. The azimuths are followed by the great circle distance involved, i.e., 270 nautical miles or 500 kilometers. The fifth, sixth, and seventh lines identify the antennas and antenna-gain prediction methods used -- a transmitter antenna equivalent to an isotropic radiator (i.e., 0 dB gain) and a receiving antenna with a gain 6 dB above an isotropic antenna. The eighth line shows the transmitter power used (400 watts) and the man-made noise level at the receiving location (-148 dBW at 3 MHz). The man-made noise level at other frequencies is an internal computer calculation from an established frequency dependence of man-made noise. The Req. Rel. = .90 is used only if lowest useful frequency computations are required and is not used in the analysis. The final entry of the eighth line is the required signal-to-noise ratio (hourly median signal-to-hourly average noise density for the reference service requirement: a 10^{-3} bit error rate for a 1200 bit per second dual-filter frequency-shift teletype system). (See Appendix A for a more detailed description of this 57 dB signal-to-noise density requirement.)

The ninth and tenth lines provide the caption for the body of the computer tabulation. The first column is the Universal Time involved (UT); the second column caption shows the classically defined Maximum Useful Frequency (MUF) for the circuit. The balance of the table captions in the tenth line are frequencies representing the high frequency bands available for the Aeronautical Mobile Service. All frequencies are in megahertz.

The right hand stubs for the table describe the entries in the body of the table. The first stub (FREQ) identifies the column captions for the table. The second line designates the dominant propagation mode; i.e., one hop via the E layer (1E), one hop via the Sporadic-E layer (1ES), one hop via the F2 region (1F2), etc. The third line is the expected signal level of the receiver input, the monthly median of the hourly median signal in decibels relative to one watt. The fourth line is a combination of the atmospheric, man-made, and cosmic noise levels expressed as monthly medians of hourly median noise density (dB relative to one watt for a one-hertz bandwidth). The fifth line is the monthly median of the hourly median signal-to-noise density ratio. The sixth line is an estimate of the number of days within the month that the required signal-to-noise (S/N) ratio will be equaled or exceeded. This is the circuit reliability, the system parameter of primary interest in this analysis. The remaining lines, SIG LW, SIG UP, SNR LW, and SNR UP, are measures of expected signal and signal-to-noise ratio distribution (i.e., the dB distances to the upper and lower deciles of the signal and the signal-to-noise ratio).

As noted above, the circuit reliability is of principal interest in the study. It should be noted that this reliability depends markedly upon the operating frequency and that in Table 1 for the times shown (night) the aeronautical bands of 3.0 and 3.5 MHz are the most reliable. Table 2 is the same as Table 1 except for a different time (late afternoon). Note that the optimum communication channels have changed from 3.0 and 3.5 MHz to higher channels and that the optimum frequencies are rapidly changing with time. Table 3 is for the same time period as Table 2 but for a greater distance. Note that optimum frequencies change markedly with distance as well as with time of day. Figure 1 shows the diurnal variation of circuit reliability for those aeronautical bands with reliability greater than 40 percent at a distance of 500 kilometers. Note that, to maintain a high circuit reliability, it is necessary to change frequency. At some times, several frequencies have a high reliability, while at other times there is only one. Figure 5 is similar to Figure 1 except that the diurnal variation at a distance of 1500 kilometers is shown. Note that, although the frequencies with the higher reliability are different, the necessity for frequency changes is similar to that shown in Figure 1. Optimum frequencies depend not only upon distance and time of day, but also upon season and solar activity. Figure 3 illustrates this inter-relationship as a function of the time of day and season of the year.

SAMPLE COMPUTER OUTPUT SHOWING THE THEORETICAL RELIABILITY Table 1. OF A SKYWAVE COMMUNICATIONS SYSTEM IN THE NORTH ATLANTIC DISTANCE 500 km - DECEMBER - LOW SOLAR ACTIVITY (UT = 02, 04, 06, 08)

METHOD 23 IONCAP 78.03 PAGE 103

0.0

6.0

```
DEC ,1978
                                 SSN = 10.
NEW YORK TO SHANNON
                                              AZIMUTHS
                                                                   N. HI.
          73.83 W - 43.37 N
                                 68.98 W
                                              51.55 234.80
                                                                   270.2
                                                                             500.4
                                                    . DEGREES
                                 MINIMUM ANGLE
ITS- 1 ANTENNA PACKAGE
       2.0 TO 30.0 CONST. GAIN H
2.0 TO 30.0 CONST. GAIN H
                                                                   0.0 OFF AZ
                                            0.00 L
                                                        0.00 A
RCVR
                                            0.00 L
                                                        0.00 A
                                                                   0.0 OFF AZ
POWER =
            .400 KW 3 MHZ NCISE = -148.0 DBW
                                                  REQ. REL = .90 REQ. SNR = 57.0
UT HUF
     3.5
                           5.6
                                 6.6
                                      8.9 11.3 13.3 18.0
                                                             0.0
                                                                   0.0 FREQ
     1F2
           1F2
                1F2
                     1ES
                           1ES
                               1ES 1ES 1F2 1F2
                                                      1F2
                                                                       HODE
     -74
           -69
                -74
                           -93 -101 -139 -144 -146
                      -86
                                                      -148
                                                                       S DSW
    -148
          -146
               -148
                     -151 -153 -155 -159 -163 -165
                                                      -169
                                                                       N DBW
     74.
           77.
                74.
                      65.
                            60.
                                 53.
                                       20.
                                            18.
                                                  19.
                                                        21.
                                                                       SNR
                                                  .00
     .92
           . 98
                .92
                      .76
                                            .00
                                                        .00
                                                                       REL
                           .60
                                 . 42
                                       .02
                                                  7.
     13.
                                             7.
                                                        7.
                                                                       SIG LW
           10.
                13.
                      12.
                            13.
                                 16.
                                       10.
      4.
            2.
                 4.
                      10.
                           13.
                                 20.
                                       22.
                                             1.
                                                   1.
                                                         1.
                                                                       SIG UP
     15.
           12.
                15.
                      14.
                            14.
                                 17.
                                       12.
                                            10.
                                                  10.
                                                        10.
                                                                       SNR LW
     10.
            9.
                10.
                      14.
                           16.
                                 22.
                                                                       SNR UP
                                                                   0.0 FREQ
4.0
    3.3
           3.0
                3.5
                      4.7
                            5.6
                                       8.9 11.3 13.3 18.0
                                                             0.0
                                 6.6
     1F2
           1F2
                1F2
                     1ES
                           1ES
                                1 ES
                                     1F2 1F2 1F2
                                                      1F2
                                                                       MODE
                                                                       S 09W
     -73
           -70
                -75
                            -95 -106 -141 -144 -145
                                                                       N DBW
    -147
          -146
               -147
                     -151 -153 -155 -159
                                           -163 -165
                                                      -169
                            57.
                                                                       SNR
     73.
           76.
                72.
                      62.
                                 49.
                                       17.
                                            19.
                                                  20.
                                                        21.
     .91
           • 96
                 .88
                      - 59
                            .51
                                 . 35
                                       .00
                                             .00
                                                  .00
                                                        .00
                                                                       REL
                           13.
                                                         9.
           12.
                      12.
                                        9.
                                             9.
                                                   9.
                                                                       SIG LW
                14.
                                 16.
      4.
            2.
                 5.
                      11.
                           16.
                                 25.
                                        4.
                                             1.
                                                         1.
                                                                       SIG UP
     16.
                                                                       SNR LH
           14.
                           15.
                16.
                      14.
                                 18.
                                       11.
                                            11.
                                                  11.
                                                        11.
            9.
                      14.
                            19.
                                                                       SNR UP
     10.
                10.
                                 26.
                                        q.
                                             q.
                                                         q.
                                                                   0.0 FREQ
    3.8
           3.0
                                       8.9 11.3 13.3 18.0
                                                             0.0
     1F2
                1F2
                     1F2
                           155
                                1ES
                                     1F2 1F2 1F2
                                                      1F2
                                                                       MODE
           1FZ
           -73
                                                      -154
                      -89 -103 -119 -148 -150 -151
     -79
                -76
                                                                       S DBW
    -148
         -146
               -147
                     -151 -153 -155 -160 -163 -165
                                                      -169
                                                                       N DBW
                                                        15.
                                                                       SNR
     68.
           72.
                71.
                      61.
                            50.
                                 36.
                                       12.
                                            14.
                                                  14.
     .91
           .99
                .97
                      .65
                            .35
                                 . 15
                                       .00
                                             .00
                                                  .00
                                                        .00
                                                                       REL
            3.
                                                   2.
                                                         2.
      8.
                 6.
                      12.
                           12.
                                 17.
                                        2.
                                             Z.
                                                                       SIG LW
      8.
            4.
                 5.
                      13.
                           22.
                                 25.
                                        4.
                                             4.
                                                   4.
                                                         4.
                                                                       SIG UP
                                             7.
                                                         7.
                                                                       SNR LW
                 9.
                                 19.
                                        7.
     11.
            8.
                      14.
                            14.
                                                   7.
           10.
                10.
                      16.
                           23.
                                                         9.
                                                                       SNR UP
     11.
                                 26.
                                                                   0.0 FREQ
    4.1
           3.0
                3.5
                      4.7
                           5.6
                                 6.6
                                       8.9 11.3 13.3 18.0
                                                             0.0
           1F2
     1F2
                1F2
                     1F2
                           1F2
                                1 E S
                                       1F2
                                           1F2 1F2
                                                       1F2
                                                                       MODE
     -80
           -74
                -75
                      -97 -102 -121 -148 -150 -151
                                                                       S DBW
    -149
          -146
               -148
                     -151 -153 -155
                                     -160 -163 -165
                                                      -169
                                                                       N DSW
     69.
           72.
                72.
                      64.
                            51.
                                 34.
                                       12.
                                            13.
                                                  14.
                                                        15.
                                                                       SNR
     .88
           .99
                 .99
                      .63
                            .36
                                 .13
                                       .00
                                             .00
                                                  .00
                                                        .00
                                                                       REL
            3.
                            20.
     11.
                 5.
                      16.
                                 23.
                                        2.
                                             2.
                                                   2.
                                                         2.
                                                                       SIG LW
      7.
            5.
                      12.
                           21.
                                 25.
                                                                       SIG UP
                                        4.
                                             4.
                                                   4.
                                        7.
                                             7.
                                                   7.
                                                         7.
            8.
                 9.
                                 24.
     13.
                      17.
                                                                       SNR LH
                            21.
     11.
           10.
                10.
                      14.
                            23.
                                 26.
                                        Э.
                                              9.
                                                   9.
                                                         9.
                                                                       SNR UP
```

TABLE 2. SAMPLE COMPUTER OUTPUT SHOWING THE THEORETICAL RELIABILITY OF A SKYWAVE COMMUNICATIONS SYSTEM IN THE NORTH ATLANTIC DISTANCE 500 km - DECEMBER - LOW SOLAR ACTIVITY (UT = 18, 20, 22, 24)

IONCAP 78.03 PAGE 105 METHOD 23 DEC ,1978 SSN = 10. NEW YORK TO SHANNON **AZIMUTHS** N. MI. KN 51.55 234.80 .E .O DEGREES 500.4 40.67 N 73.83 W - 43.37 N 68.98 W 270.2 MINIMUM ANGLE ITS- 1 ANTENNA PACKAGE XMTR 2.0 TO 30.0 CONST. GAIN H RCVR 2.0 TO 30.0 CONST. GAIN H 0.00 L 0.0C A 0.0 OFF AZ 0.0 0.00 A 0.0 OFF AZ 0.00 L 6.0 POWER = .400 KH 3 MHZ NOISE = -148.0 DBW REQ. REL = .90 REQ. SNR = 57.0 UT 18.0 9.1 3.0 3.5 4.7 5.6 6.6 8.9 11.3 13.3 18.0 0.0 0.0 FREQ 1F1 1F2 1 E 1 E 1F2 1F2 1F2 1F2 1F2 1F2 HODE -92 -94 -91 -86 -86 -87 -87 -124 -160 -161 S DBW -160 -148 -149 -153 -155 -157 -160 -162 -163 -168 N DBW 68. 53. 57. 70. 73. 38. SNR 66. 64. .77 .31 •51 .85 .92 . 96 . 39 .16 .00 .00 REL 9. 7. 15. 6. 17. 6. 25. 6. SIG LW 6. 6. 7. 5. 7. 5. 18. STG UP A. 5. 5. 6. 23. 9. 19. 9. 10. 11. 10. 9. 17. 26. 9. SNR LW SNR UP 12. 10. 10. 11. 11. 10. 11. 25. 10. 3.0 3.5 8.9 11.3 13.3 18.0 0.0 FREQ 20.0 8.1 4.7 5.6 6.6 0.0 1F2 1F2 1F2 1 % 1F2 1F2 1F2 1F2 1F2 1F2 HODE -90 -80 -80 -82 -53 -83 -98 -150 -158 -160 S DBW -164 -168 -159 -147 -149 -153 -155 -157 -160 -162 N DBW 69. 67. 69. 78. 71. 72. 62. ь. 8. SNR 12. .00 .83 .93 .96 RFL .97 . 98 . 99 • 61 .02 - 00 5. 5. 5. 5. SIG LW 14. 5. 21. 12. 5. 5. 5. 5. 5. 13. 25. 5. 5. SIG UP 8. 6. 6. 8. 9. 9. 9. 9. 22. 14. 8. 8. SNR LH 16. 11. 26. SNR UP 12. 11. 10. 10. 10. 16. 10-10. 22.0 6.3 3.0 3.5 4.7 5.6 8.9 11.3 13.3 16.0 0.0 0.0 FREQ 1FZ 1F2 1F2 1F2 1F2 1F2 MODE 1F2 1F2 1F2 1F2 -89 -152 -155 -77 -78 -79 -98 -156 -159 -85 S DBW -156 -147 -149 -153 -154 -156 -159 -162 -164 -169 N DBW 69. 70. 71. 73. 73. 66. 8. 7. 8. 10. SNR .90 . 33 .99 1.00 1.00 .77 .01 . 00 .00 REL 10. 0. 2. 14. 3. 1. 1. SIG LW 1. 1. 1. 5. 5. 10. 24. SIG UP 8. 5. 5. 4. 4. 4. 7. 7. 12. 7. 7. 7. 8. 15. 7. 7. SNR LW 12. 10. 10. 10. 10. 13. 26. 10. 10. 10. SNR UP 3.C 0.0 FREQ 24.0 4.3 3.5 4.7 5.6 6.6 8.9 11.3 13.3 16.0 0.0 1F2 1F2 1F2 1F2 1F2 1ES 1F2 1F2 1F2 1 F 2 HODE -80 -74 -83 -94 -108 -147 -151 -152 -155 -75 S DBW -151 -147 -149 -152 -154 -156 -159 -162 -165 -169 N DBW 70. 73. 73. 65. 59. 48. 12. 12. 13. 14. SNR .57 .00 -00 -00 RFL .93 1.00 1.00 485 .33 -00 9. 1. 3. 11. 13. 13. 2. 1. 1. 1. SIG LW 16. 7. 4. 5. Э. 25. 19. 3. 3. 3. SIG UP 7. SNR LW 11. 7. 8. 13. 15. 15. 7. 7. 7.

21.

14.

26.

10.

10.

13.

SNR UP

TABLE 3. SAMPLE COMPUTER OUTPUT SHOWING THE THEORETICAL RELIABILITY OF A SKYWAVE COMMUNICATIONS SYSTEM IN THE NORTH ATLANTIC DISTANCE 1500 km - DECEMBER - LOW SOLAR ACTIVITY UT = 18, 20, 22, 24,)

HETHOD 23 IONCAP 78.03 PAGE 111

```
DEC ,1978
                                  SSN = 10.
NEW YORK TO SHANNON
                                                                    N. HI.
                                                AZIMUTHS
            73.83 W - 48.05 N
                                  57.97 W
 40.67 N
                                                51.55 242.70
                                                                    809.8
                                                                             1499.7
                                  MINIMUM ANGLE
                                                     .O DEGREES
 ITS- 1 ANTENNA PACKAGE
        2.0 TO 30.0 CONST. GAIN H
2.0 TO 30.0 CONST. GAIN H
                                                                    0.0 OFF AZ
0.0 OFF AZ
 XMTR
                                             0.00 L
                                                         0.00 A
                                                                                     0.0
 RCVR
                                             0.00 L
                                                         0.00 A
                                                                                     6.0
 POWER =
             .400 KM 3 MHZ NOISE = -148.0 DBW REQ. REL = .90 REQ. SNR = 57.0
  UT
18.0 16.7
           3.0
                3.5
                     4.7 5.6 6.6
                                       8.9 11.3 13.3 18.0
                                                                    0.0 FREQ
                                                              0.0
      1F2
                1ES
                     1ES 1 E
                                                  1F2
          1 E
                                 1 E
                                       1F 1
                                            1F2
                                                        1F2
                                                                         HODE
      -98 -123 -113 -107 -103 -102
                                        -97
                                              -96
                                                                         S DBW
                                                   -99 -118
     -167 -148 -149 -153 -155 -157
                                       -160 -162
                                                                         N DBW
                                                  -163
                                                       -168
      68.
            24.
                  36.
                       46.
                             51.
                                  55.
                                        63.
                                              66.
                                                         50.
                                                                         SNR
                                                   64.
      . 75
            -00
                  .01
                       . 89
                             .23
                                  . 39
                                        .77
                                              .91
                                                         .32
                                                                         REL
                                                   .86
      19.
             5.
                              6.
                  5.
                        6.
                                   6.
                                         8.
                                              5.
                                                    5.
                                                         25.
                                                                         SIG LW
             5.
                              5.
       8.
                   5.
                        5.
                                   6.
                                         6.
                                               7.
                                                    5.
                                                         18.
                                                                         SIG UP
             9.
                              9.
      21.
                   9.
                        9.
                                    9.
                                        10.
                                               9.
                                                    9.
                                                         26.
                                                                         SNR LW
      12.
            10.
                  10.
                       10.
                             10.
                                                                         SNR UP
                                              11.
                                                   10.
                                                         20.
            3.0
                  3.5
                       4.7
                             5.6
                                  6.6
                                        8.9 11.3 13.3 18.0
                                                               0.0
                                                                    0.0 FREQ
                      1 E
      1F2
                 1 E
          1 E
                            1 F
                                  1F2
                                                                         HODE
                                        1F2
                                             1F2
                                                  1F2
                                                       1F2
      -97 -101
                       -95
                 -97
                            -94
                                  - 93
                                        -95
                                              -96
                                                   -96 -171
                                                                         S OBW
                                       -160
                                                        -169
     -165 -147 -149 -153 -155 -157
                                            -162
                                                  -164
                                                                         N DBW
      67.
            47.
                  52.
                       57.
                             61.
                                  63.
                                                         -2.
                                                                         SNR
                                        64.
                                              66.
                                                   67.
      .74
            .10
                  .27
                       .51
                                        .86
                                                   .90
                                                                         REL
                                  . 83
                                              . 91
                                                         .00
                              4.
      19.
             5.
                   5.
                        5.
                                   5.
                                         5.
                                               5.
                                                    8.
                                                         25.
                                                                         SIG LW
      10.
             6.
                   6.
                        6.
                              6.
                                   6.
                                         6.
                                               6.
                                                    7.
                                                         25.
                                                                         SIG UP
             8.
                   9.
                        9.
                              9.
                                         9.
      21.
                                    9.
                                               9.
                                                   10.
                                                         26.
                                                                         SNR LW
      13.
            11.
                  11.
                       11.
                             11.
                                                                         SNR UP
                                  11.
                                        11.
                                             10.
                                                         26.
                                                   11.
22.0 10.5
            3.0
                 3.5
                       4.7
                             5.6
                                  6.6
                                        8.9 11.3 13.3 18.0
                                                               0.0
                                                                    0.0 FREQ
                                  1F2
      1F2
            1 E
                 1 E
                       1F2
                            1F2
                                                                         MODE
                                        1F2
                                            1F2
                                                  1ES
                                                        1ES
      -92
            -87
                 -88
                       -90
                             -90
                                  -91
                                        -91 -110 -129 -194
                                                                         S DBW
     -162 -147 -149 -152 -154 -156 -160 -163 -165 -169
                                                                         N DBW
      69.
            60.
                  61.
                       62.
                             64.
                                  65.
                                        67.
                                                   36.
                                                       -25.
                                                                         SNR
                                              52.
                                                                         ₽EL
      .83
            .69
                  .77
                       . 82
                             .59
                                  . 92
                                        .97
                                              . 38
                                                   .16
                                                         .00
             0.
                  1.
                              1.
                                                                         SIG LW
      14.
                        1.
                                    1.
                                         1.
                                              18.
                                                   18.
                                                         24.
       9.
                  7.
                                                         25.
                                                                         SIG UP
             6.
                        6.
                              6.
                                    6.
                                         5.
                                             18.
                                                   25.
             7.
                                         7.
      15.
                  7.
                        7.
                              7.
                                   7.
                                              19.
                                                   19.
                                                         25.
                                                                         SNR LW
      12.
            11.
                                              20.
                                                                         SNR UP
                       11.
                             11.
                                  11.
                                        10.
                                                   26.
                                                         26.
24.0 7.3
            3.0
                  3.5
                       4.7
                             5.6
                                                                    0.0 FREQ
                                  6.6
                                        8.9 11.3 13.3 18.0
                                                               0.0
      1F2
            1F2
                  1F2
                       1F2
                             1F2
                                  1F2
                                       1ES
                                            1ES
                                                  1ES
                                                        1ES
                                                                         MODE
            -83
      -84
                 -84
                       -82
                            -53
                                  -85 -100 -108 -115 -150
                                                                         S DBW
     -157
           -147
                 149
                      -152
                            -154
                                  -156
                                       -160
                                            -163
                                                  -165
                                                        -163
                                                                         N DBW
      73.
                  65.
                       69.
                                  70.
                                                                         SNR
            64.
                             70.
                                        59.
                                              55.
                                                   50.
                                                         19.
      .85
            . 94
                  .90
                       .97
                                  - 90
                                                                         PEL
                             . 96
                                        - 58
                                              - 43
                                                   .32
                                                         .03
                                        11.
      18.
             4.
                  3.
                        5.
                              7.
                                  11.
                                              12.
                                                   16.
                                                         25.
                                                                         SIG LW
       6.
             4.
                   5.
                        2.
                              1.
                                   3.
                                        11.
                                             12.
                                                   18.
                                                         25.
                                                                         SIG UP
      19.
             ٩.
                  8.
                        9.
                             10.
                                              14.
                                                   18.
                                                         26.
                                                                         SNR LW
                                  13.
                                        13.
            10-
                              9.
                                              15.
      11.
                  10-
                                                                         SNR UP
                                        14.
                                                   20.
                                                         26.
```

500 KM FROM NEW YORK DECEMBER - LOW SOLAR ACTIVITY

FIGURE 1. SAMPLE CHART SHOWING HOW CHANGING FREQUENCY DURING THE DAY HELPS TO MAINTAIN CIRCUIT RELIABILITY - NORTH ATLANTIC - DISTANCE 500 km

1500 KM FROM NEW YORK DECEMBER - LOW SOLAR ACTIVITY

FIGURE 2. SAMPLE CHART SHOWING HOW CHANGING FREQUENCY DURING THE DAY HELPS TO MAINTAIN CIRCUIT RELIABILITY - NORTH ATLANTIC-DISTANCE 1500 km

4.2 DISTANCE DEPENDENCE OF SKYWAVE CIRCUIT RELIABILITY

Generally, system reliability decreases as circuit distance increases, and for long-distance air routes, communication reliability will be better if communication may be to either terminal. Figure 4 shows a sample of the theoretical reliability if operation is on the optimum frequency to either end of the air route and illustrates how communication to either terminal tends to maintain a high reliability over the entire route.

Appendix B is an extract of the more pertinent information from the basic computation. The optimum communication frequency, circuit reliability, and associated terminal are shown for each of the sample locations and sample time used in the analysis. Figure 5 summarizes the North Atlantic data from Appendix B to estimate the overall distance dependence of circuit reliability for the reference service. Percentage of samples (time periods) associated with a specified reliability are shown as a function of distance. Note that the lowest reliability occurs near mid-path and that the theoretical reliability may be as low as 35 percent at this location during some sample period. (According to Appendix B, this time period is established as 1400 GMT, June, high solar activity). Figure 6 summarizes the North Pacific data from Appendix B to estimate distance dependence circuit reliability in the same manner as Figure 5 for the North Atlantic. Note that communication reliability may be expected to be somewhat better in the North Pacific. Figure 7 is designed to estimate the expected reliability of a circuit when the circuit parameters (e.g., tranmitter power, antenna gain, transmission speed, modulation type, tolerable error rated, coding gains, etc.) differ from the reference circuit. Figure 7 is not rigorous, the actual change in the circuit reliability complex being a function of operating frequency, geographic location, etc. Figure 7, however, is considered a useful estimate of the typical change in circuit reliability as the effective system gain of any circuit is known relative to a reference circuit. To use Figure 7, select a circuit reliability of a reference circuit for a situation of interest and determine the effective system gain required to obtain a desired reliability. For example, Figure 5 shows that the theoretical reliability for the North Atlantic may be as low as 35 percent within the sample periods used for the analysis. To use Figure 7, enter the chart with the reliability of the reference circuit (abscissa) and the desired reliability (e.g., 99 percent on the ordinate). Read +20 dB from the body of the chart.

1000 KM FROM SAN FRANCISCO SSN - 10

FIGURE 3. CONTOURS OF OPTIMUM FREQUENCY (in MHz) SHOWING HOW SEASONAL AND DIURNAL CHANGES IN FREQUENCY ARE REQUIRED FOR OPERATION

DECEMBER - SSN 10 12 GMT DISTANCE FROM HONOLULU - KM

FIGURE 4. SAMPLE CHART SHOWING HOW COMMUNICATION RELIABILITY IS MAINTAINED WHEN SKYWAVE COMMUNICATION MAY BE TO EITHER END OF THE AIR ROUTE

FIGURE 5. OVERALL DISTANCE VARIATION OF THEORETICAL CIRCUIT RELIABILITY - NORTH ATLANTIC AIR ROUTE

FIGURE 6. OVER DISTANCE VARIATION OF THEORETICAL CIRCUIT RELIABILITY - NORTH PACIFIC AIR ROUTE

FIGURE 7. CHART TO ESTIMATE CIRCUIT RELIABILITY WHEN CIRCUIT PERFORMANCE IS KNOWN RELATIVE TO A REFERENCE CIRCUIT (SKYWAVE PROPAGATION)

The conclusion which may be drawn is that, if a system gain of 20 dB relative to the reference system was available (lower transmission speeds, coding, higher tolerable error rates, etc.), the theoretical reliability across the North Atlantic would equal or exceed 99 percent. Remember that the theoretical reliability is based on a short-term Rayleigh signal distribution, and the long-term statistics are normal distributions which may fail to account adequately for ionospheric disturbances which exceed the normal day-to-day variations.

4.3 OVERALL SYSTEM PERFORMANCE OF SKYWAVE SYSTEMS

Figure 8 summarizes the expected system performance by ranking the time and location sample points as shown in Appendix B into distributions as a function of circuit location (North Pacific or North Atlantic) and solar-activity level (SSN 10 or 110). It should be noted there is very little difference between high and low solar activity (low is theoretically slightly better), but there is a noticeable difference between the Atlantic and Pacific areas, the Pacific being the better. Figure 9 combines the data from Figure 8 with the data from Figure 7 to illustrate the expected reliability distribution as a function of required S/N ratio for the North Atlantic Circuit. Figure 10 is s similar presentation for the North Pacific. The tabulation in Table 4 shows the theoretical required S/N ratio for simple data transmission systems as a function of transmission rate and tolerable error rate.

Required S/N ratios from Table 4 may be used with Figures 9 and 10 to estimate the overall expected performance of skywave systems in the North Atlantic and North Pacific except when ionospheric storms or disturbances cause the minute-to-minute signal variations to depart markedly from the typical Rayleigh distribution or when the hourly median signal levels fall outside the typical day-to day variations used in this study.

4.4 RF SOUNDING AS A MEANS OF IMPROVING SPECTRUM UTILIZATION OF SKYWAVE CIRCUITS

There have been many investigations undertaken in order to improve the performance of skywave radio communications circuits by using soundings of the ionosphere. The underlying philosophy behind these studies is that by using sounding techniques the radio propagation conditions at any time and any frequency (subject, of course, to the frequency being within the sounding

FIGURE 8. SUMMARY GRAPH SHOWING PERCENTAGE OF TIME/LOCATION SAMPLES WHERE REFERENCE CIRCUIT RELIABILITY MAY BE EXPECTED TO EQUAL OR EXCEED THE ORDINATE

FIGURE 9. CHART SHOWING PERCENTAGE OF TIME/LOCATION SAMPLES VS CIRCUIT RELIABILITY AS A FUNCTION OF REQUIRED S/N RATIO - NEW YORK TO SHANNON - ENTIRE SOLAR CYCLE

FIGURE 10. CHART SHOWING PERCENTAGE OF TIME/LOCATION SAMPLES VS CIRCUIT RELIABILITY AS A FUNCTION OF REQUIRED S/N RATIO - SAN FRANCISCO TO HONOLULU - ENTIRE SOLAR CYCLE

TABLE 4. THEORETICAL REQUIRED SIGNAL-TO-NOISE DENSITY RATIO (dB) FOR RADIO SIGNALS IN THE PRESENCE OF GAUSSIAN NOISE FOR SELECTED DATA TRANSMISSION SYSTEM (NO SIGNAL PROCESSING OR ERROR CORRECTING CODES)

		SIGNAL			
	BITS	STI	EADY	RAYLE	IGH
	PER	Binary E	rror Rate	Binary E	rror Rate
SYSTEM	SECOND	10-2	10 ⁻³	10 ⁻²	10 ⁻³
	1200	44	47	57	69
	600	41	43	54	66
ON-OFF	300	38	40	51	63
	30	28	30	41	53
LIMITER	1200	41	43	51	61
DISCRIMINATOR	600	38	40	48	58
FREQUENCY	300	35	37	45	55
SHIFT KEYING	30	25	27	35	45
DUAL	1200	42	44	53	63
FILTER	600	39	41	50	60
FREQUENCY	300	36	38	47	57
SHIFT KEYING	30	26	28	37	47
DIFFERENTIALLY	1200	37	39*	46	57*
COHERENT	600	34	36	43	54
PHASE	300	31	33	40	51
SHIFT KEYING	30	21	23	30	41

Reference required S/N used in the analysis

interval) can be readily determined from the sounding observations. Having this information, a radio or communications engineer could then choose to operate his radio equipment at a frequency that is optimally based on sounding data.

There are, however, certain factors that must be taken into consideration when applying sounding to HF frequency management and frequency selection operational scenarios. In order for the sounding data to be directly useful, it is necessary that the radio paths over which communications are to be effected are the same paths for which sounding data are available. There is a dearth of information concerning just how applicable propagation parameters are for paths that differ from paths that were used in deriving the parameters. The degree to which data from one path could be used to infer propagation conditions on another path is dependent upon the mode of propagation. Because the E-region tends to be more stable than the F-region, one would anticipate that E modes could be used to infer propagation conditions on more widely separated paths than F modes. This is borne out somewhat by the work of Rush and Gibbs (1973), for example, in which it is shown that changes in the E-region critical frequency are correlated over larger distances than changes in the F-region.

Another factor that must be considered in using sounding is the problem of transmitting the information obtained from the soundings to both ends of a communication circuit. It matters little that the transmitter end of a circuit is optimized for communication performance if the receiver end does not have knowledge of the frequencies being used. Obviously, there are systematic approaches that could be adopted in order to assure that both ends of the circuit are aware of the frequency used for transmission. (The receiver could cycle through the available frequency allocations in a pre-arranged manner). However, such approaches may be costly and cumbersome, particularly in an experimental program.

Because the ionosphere varies on temporal as well as spatial scales, it is necessary that any information derived from sounding be forwarded to the appropriate control centers with enough time to permit the results to be usefully employed. In the late 1960's, the Institute for Telecommunication Sciences (Slutz et al., 1969) conducted a program to assess how much improvement results when near real-time vertical incidence sounding data were used

to modify HF predictions for circuits operating in the tropics. This study showed that vertical incidence data lead to better or improved predictions only when it was used to predict ionospheric-dependent circuit performance for circuits within one hour of the sounding observations.

Another factor to consider in the employment of soundings for frequency management purposes is the potential interference to selected classes of radio service that could result from the sounding. In recent years, studies have been conducted, primarily by the U. S. Air Force and the Barry Research Corporation, that demonstrate the improvement in communication circuit performance using FM-CW (Chirp) oblique incidence soundings. In some instances, these studies were motivated more from a point of view of assessing the interference environment rather than the application of sounding to improve communication circuit performance.

Data have been collected during a test in the southeastern United States in which a large portion of the HF spectrum was temporarily made available for non-interference sharing among test participants and assigned users. Three radio paths (ranges 1760, 540, and 330 km) were operated 24 hours per day for a five-day period. A double sideband, suppressed-carrier modulation format was used with a 16-tone radio teletype on one sideband and an order-wire voice channel on the other. The sidebands used were reversed each 15 minutes to allow identification of test interference by other spectrum users. During the five-day period, 1049 frequency changes were made using 745 different center frequencies. Although several spectrum users with potentially impacted frequency assignments were notified of test operations before test commencement, only two interference reports were logged, and these were on idle channels which were being monitored but were not transmitting. The key to operating so successfully on a non-interference basis was to automatically scan the entire HF spectrum each ten seconds with a specially configured, microprocessor-controlled receiver (a spectrum monitor). This unit sampled and stored received signal power levels, integrating these values over 5minute and 30-minute periods.

Figures 11, 12, and 13 display channel occupancy and availability on each of three paths over a 24-hour test period. The shaded region represents the number of available channels out of the 56 frequencies specifically assigned for test use. An available channel is defined to be within the band of

propagating frequencies (determined by an oblique ionospheric sounder) and also clear of interference. It is readily apparent that sounding does not adversely impact on the performance of communication circuits through received interference.

The concept of sounding in an aircraft was used for frequency selection in another test involving a demonstration of an automatic adaptive frequency management system, which was performed from July to September of 1977. Signal-to-noise data were collected automatically using a modified oblique ionospheric sounder which made scans of "candidate" operating frequencies, especially searching for high noise or interference level. After processing the propagation and noise data, the system provided a choice of ten best frequencies from an assigned frequency complement of 133 assignments. These frequencies were printed on a teletype at the sounder receiver's location and automatically transmitted via radio teletype to the sounder transmitter's location. The recommended frequencies were used and evaluated manually to check the reliability of the automatic frequency selection procedure.

The data shown in Figures 14 and 15 were taken during tests in Europe demonstrating real-time spectrum management concepts on a smaller scale than the preceding U. S. tests. This exercise used only a given block of specifically assigned frequencies, but shared these among several test members. The nighttime spectrum covers only 2.25 to 4.35 MHz since these were the only frequencies capable of supporting propagation over the paths used. Notice the display of power thresholds in the figures; the nighttime measurements used a considerably less sensitive threshold which was still surpassed over 90 percent of the time at most frequencies. This congestion of the spectrum at nighttime is typical in most parts of the world.

The above data taken from Air Force-sponsored tests provide some indication that sounding can be employed to improve HF communication circuit performance. However, in order to test this hypothesis, a study with dedicated aircraft and specialized equipment must be employed. Also, specific message codes would have to be used. There is no technical reason why the above-mentioned experiments could not be undertaken by trans-oceanic aircraft operating under FAA scenarios. In fact, a simpler experiment in which aircraft with receivers tuned to only the frequencies available for communication could be

1 1

ŗ.

FIGURE 11. ANALYSIS OF UTILITY OF FREQUENCY ASSIGNMENTS IN 24-HR PERIOD, 1960 km PATH

1

FIGURE 12. ANALYSIS OF UTILITY OF FREQUENCY ASSIGNMENTS IN 24-HR PERIOD, 540 km PATH

DAYTIME HF ENVIRONMENT - DENMARK

15 NOV 77 1200 LOCAL LAST 30 MINUTES

FIGURE 14. DAYTIME HF ENVIRONMENT

هيد، الراق

NIGHTTIME HF ENVIRONMENT - BELGIUM

FREQUENCY (MHz)

25 OCT 77 2030 GMT

- E 7

LAST 5 MINUTES

FIGURE 15. NIGHTTIME HF ENVIRONMENT

devised. By continuously monitoring the signal quality from a transmitter at a specific location, the aircraft could see the changes in propagation conditions as applied to the available frequencies. Again, this would require dedicated aircraft. It appears at this time, however, that such aircraft would not be available for the experiments, and from a practical viewpoint, the demonstration of sounding to improve HF channel selection does not appear feasible in the near future for FAA applications.

4.5 IONOSPHERIC DISTURBANCE

The ionosphere exhibits considerable systematic variability. If minute-to-minute variations within the hour and the day-to-day variations within the month are averaged, the remaining temporal variations (i.e., diurnal, seasonal, and solar cycles) become well behaved. When the minute-to-minute and day-to-day variations are averaged, the remaining variations characterize what is normally referred to as the quiet ionosphere because the percentage of disturbed days in the month is usually relatively small. Although relatively rare, these disturbances, however, can be quite severe with the severity dependent primarily upon the excess of the available signal-to-noise ratio relative to the required signal-to-noise ratio at the onset of the disturbance.

An indication of the distribution of ionospheric disturbances is shown in Figure 16 with a corresponding representation of their duration shown in Figure 17. Table 5 is a tabulation showing the correlation between intensity of disturbance and disturbance duration. Unfortunately statistics do not appear to be available as to the percentage of time fading was below a specified depth. Table 6, based upon an evaluation of the shortwave broadcast operations of the British Broadcasting Corporation, shows a qualitative evaluation of those disturbances which were considered "noticeable" relative to those considered to be severe. It should be noted that during some periods, apparently during periods of low solar activity, the disturbances were considered negligible to these broadcast operations. It is of interest and of practical importance that disturbances appear most severe during high solar activity since during periods of high solar activity the useful frequency range is greater. Therefore, point-to-point circuits which have an ability to choose between frequencies or use more than one

frequency should be subject to less difficulty than those with a more limited frequency range. In summary, we can conclude that the chances of moving in frequency to minimize the effects of a disturbance are best during the periods that the likelihood of a disturbance is the highest.

It must be emphasized that the severity of ionospheric disturbances depends upon the circuit parameters. Table 7 is an example of comments of radio operators on air-ground circuits as received at Miami, Florida. In Table 7, the circuit evaluation is qualitative and no direct comparison between air-ground operations and broadcast operations is possible. Normally disturbances tend to be most noticeable on those circuits having the lower available signal margins. It should also be noted that frequency changes during disturbances often offer some advantage and, when used, should minimize the fade duration and depth occurrences such as are shown in Figures 16, and 21, and Table 5, or the qualitative signal evaluations of Tables 6 and 7.

In order to combat disturbances, it is desirable that circuits be operating on the theoretically most desirable signal at the onset of the disturbance. Figure 18 shows a sample graph which can be used to develop an operational schedule. To find the optimum frequency (and terminal with which successful communication is most probable), it is necessary only to enter a chart of this type for the proper month and solar-activity level with the GMT and distance from the terminal and to note the theoretically best aeronautical high frequency band. Schedules may be prepared when the flight time is known by drawing a time distance line on the chart (i.e., distance from San Francisco as a function of GMT). This line will yield an operational schedule. If communication fails due to a disturbance, it is useful to have planned frequency changes. Normally, these planned changes would involve trying the next lower aeronautical frequency band first followed by trying the next higher aeronautical frequency band.

. Many disturbances are predictable, and a warning service used to be operated by the U. S. Department of Commerce. With the acquisition of better geophysical data (e.g., by the use of satellites), there appears to be a good opportunity to develop a warning system based on these data which would be much better than before. The geophysical data are here (solar-X ray emission, other solar emission, magnetic field disturbances, etc.); the need is to translate these phenomena into their effects within an appropriate time frame.

4.6 AIR-TO-AIR RANGE

To complement or as a back-up to skywave communication between aircraft and ground terminals, it appears desirable to establish the theoretical feasibility of message relay between aircraft. For aircraft flying at 30,000 feet (10 km), it appears reasonable to expect that propagation will essentially free space out to about 800 kilometers. Beyond the free space range, the signal levels will decrease rapidly depending somewhat upon atmospheric conditions. Figures 19, 20, and 21 illustrate the expected distance variation of available signal level and the range of required signal levels to bracket the normal seasonal and diurnal variations of expected noise levels. The required signal-to-noise density ratio of 39 dB corresponds to a 10^{-3} binary error rate at a 1200 bits-per-second transmission rate in a differentially coherent phase shift keying system without diversity reception. The atmospheric noise level is derived from CCIR Report 322 and is based on hourly median noise not exceeded more than 10 percent of the days. A 400-watt transmitter power and antennas equivalent to an isotropic antenna on the aircraft are assumed. Figure 19, 20, and 21 suggest that the theoretical range extends to the limit of free space propagation with a better than 20 dB margin of error at 3 and 6 MHz and with a better than 30 dB margin of error at 18 MHz. HIGH FREQUENCY FADES: CINCINNATI, OHIO - WASHINGTON, D. C.
1943 THROUGH 1949
6 MHZ, SAMPLE OF 705 FADES

MAXIMUM SOLAR ACTIVITY YEAR (1947) = 186 FADES

FIGURE 16. SAMPLE CHART SHOWING A SAMPLE FREQUENCY DISTRIBUTION OF HIGH-FREQUENCY SKYWAVE DISTURBANCES

HIGH FREQUENCY FADES CINCINNAII, OHIO - WASHINGTON, D. C. 1943 THROUGH 1949

FIGURE 17. SAMPLE CHART SHOWING A SAMPLE FREQUENCY DISTRIBUTION OF HIGH-FREQUENCY SKYWAVE DISTURBANCES

TABLE 5. SAMPLE CHART SHOWING THE INTER-RELATIONSHIP BETWEEN DISTURBANCE DEPTH AND DISTURBANCE DURATION OF HIGH-FREQUENCY SKYWAVE SIGNALS

HIGH FREQUENCY FADES
CINCINNATI, OHIO - WASHINGTON, D. C.
1943 THROUGH 1949
6 MHz

6 MHz
SAMPLE OF 705 FADES
MAX SOLAR ACTIVITY YEAR (1947) = 186 FADES

	וישא	30L	AR AC		127	W \ 1 2	, , ,			
>180		0	0	0	0	0	0	0	1	9
180		0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 1 0 0 0 0 0 0	0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 1 1 0 2 1 1 0 3
120		0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 1 1 0 0 1 2 1 2	1 0 0 0 0 0 0 0 0 2 1 0	0 0 1 0 0 0 0 0 0	1 0 0 1 0 0 1 0 1 3 1	1 0 0 0 1 0 2 0 2 0	3 7 1 2 3 3 3 9 6 4 6
		0 0 0 0 0 0 1 0 1	0 1 1 1 2 4 11 5 6 0	2 1 5 4 8 7 18 22 12 6 9	2 4 8 5 18 9 26 24 28 17 6	5 1 5 5 9 15 12 11 11 8 2	0 1 2 3 2 5 3 6 6 1	3 3 4 3 4 1 2 2 2 3 0	3 2 2 3 7 2 1 1 4 1	13 12 13 14 15 15 17 10 8 3 1
0	_		5		5	20	25	30	35	40 >40
		DISTURBANCE DEPTH (dB)								

TABLE 6. ASSESSMENT OF BRITISH BROADCASTING CORPORATION † RADIO PROPAGATION DISTURBANCES

Percentage of Days Per Year

Year	Noticeable Disturbance (%)	Severe Disturbance(%)
1944	2.5	n*
1945	2.2	n*
1946	14.3	6.0
1947	25.5	9.3
1948	21.6	6.0
1949	19.2	6.0
1950	8.5	1.6
1951	8.5	4.9
1952	1.6	0.3
1953	0.3	0.3
1954	0	0
1955	1.9	0.5
1956	15.1	7.4
1957	20.8	12.6
1958	14.3	8.2
1959	12.6	7.7
1960	8.2	4.8
1961	2.2	1.6
1962	1.1	0.8
1963	1.9	0.8
1964	0	0
1965	0	0
1966	5.2	2.2
1967	4.7	0.8
1968	4.9	3.6
1969	7.9	3.8
1970	8.2	5.8
1971	2.2	1.1
1972	4.4	3.3
1973	2.7	1.6

*NOT AVAILABLE

[†]Source: Louis J. Prechner, External Broadcasting Engineering Department, BBC Annual Report 1973: Ionospheric Statistics and So Forth, Feb 1974.

TABLE 7. SAMPLE COMMENTS OF AERONAUTICAL RADIO, INC.* CONCERNING RECENT RECEPTION ON SKYWAVE SIGNALS AT MIAMI

HF PROPAGATION DISTURBANCES - MIAMI

	GI	MT (HRS)		
1978	TIME START	TIME END	SEVERITY	COMMENTS
MAY				
26	1300	2200	MODERATE	High frequencies best; 8 MHz & lowerpoor.
28	1300	1600	MODERATE	Signals vary - generally weak
29-30	2000	0300	MODERATE	11 MHz remained in primary use
JUNE				
01	1300	1900	MODERATE	All frequencies unstable and weak
02	1 300	1900	MODERATE	All frequencies unstable and weak
22	1630	1835	MODERATE	Fade and skip all frequencies
22	1700	1800	MODERATE	Unable work any gnd stnsno signals
22	2100	2400	SLIGHT	Signals weak all frequencies
23	2300	0015	SLIGHT	Weak signals
24	1100	1900	SLIGHT	Weak signals, particularly after 1500 Z
25	1800	2300	MODERATE	Unstable all frequencies, in and out
26	1915	2300	MODERATE	Weak signals
27	1430	1630	SLIGHT	Signals weak, fair during remainder of day
30	1500	1745	MODERATE	Signals distorted with fade, ground & air
30	1840	2330	MODERATE	Weak sigs. all freqs.,slight improve.2300/30
JULY				
05	1905	2200	MODERATE	NYC and SJU weak
11	1100	1900		Signals almost normal; Static and rain static
AUGUST				
01	1500	2200	MODERATE	Signals not solid; Has interruptions
02	1500	2200	SEVERE	Signals dropping out sharply
04	1950	2035	MODERATE	All sigs. weak. SJU unhrd. NYC 1 to 2
05	2000	2155	SEVERE	NYC, SJU, and some acft very weak
05	1700	1845	MODERATE	Heavy static makes evaluation impossible.
11	1500	1700	MODERATE	Signals depressed
12	1844	2045	MODERATE	Signals weak with some skip
19	1050	1810	SLIGHT	Signals weak with some skip
22	1100	1900	SLIGHT	Signals weaker than normal

*Source: Memorandum letter from Richard J. Covell, Manager of Air-Ground Projects, 18 August 1978.

OPTIMUM AERONAUTICAL BAND FOR COMMUNICATION ON THE SAN FRANCISCO HONOLULU ROUTE DECEMBER - HIGH SOLAR ACTIVITY

FIGURE 18. SAMPLE GRAPH WHICH COULD BE USED TO ASSIST IN THE SELECTION OF A THEORETICALLY OPTIMUM AERONAUTICAL CHANNEL

THEORETICAL AIR-TO-AIR RANGE - 3.0 MHZ LINE-OF-SIGHT DISTANCE

A1RCRAFT AT 30,000 FT ~ 800 KM 40,000 FT ~ 900 KM

FIGURE 19. CHART SHOWING THEORETICAL AIR-TO-AIR RANGE AT 3 MHz

THEORETICAL AIR-TO-AIR RANGE - 6.0 MHZ LINE-OF-SIGHT DISTANCE AIRCRAFT AT 30,000 FT $_{\sim}$ 800 KM 40,000 FT $_{\sim}$ 900 KM

FIGURE 20. CHART SHOWING THEORETICAL AIR-TO-AIR RANGE AT 6 MHz

THEORETICAL AIR-TO-AIR RANGE - 18.0 MHZ
LINE-OF-SIGHT DISTANCE
AIRCRAFT AT 30,000 FT ~ 800 KM
40,000 FT ~ 900 KM

FIGURE 21. CHART SHOWING THEORETICAL AIR-TO-AIR RANGE AT 18 MHz

5. CONCLUSIONS

Maintaining air-traffic contact via high-frequency skywave digital communication systems appears theoretically attractive and could merit experimental verification.

The likelihood of success appears to be dependent upon:

- 1) using the best frequencies;
- 2) communicating between the aircraft and ground terminals at either end of the circuit; and
- determining by experiment the effects of ionospheric disturbances on air-traffic communications.

6. REFERENCES

- Central Radio Propagation Laboratory (CRPL, 1948), Ionospheric radio propagation, NBS Circular 462.
- CCIR (1964), World distribution and characteristics of atmospheric radio noise, Rept. 322, Documents of the Xth Plenary Assembly, Geneva, 1963.
- CCIR (1966), Atlas of ionospheric characteristics, Rept 340-1, Oslo, ITU, Geneva, Switzerland.
- 4. CCIR (1975), Man-made radio noise, Rept 258-2, Doc. of XIII Plenary Assembly, Geneva, 1974.
- Haydon, G. W., M. Leftin, and R. K. Rosich (1976), Predicting the Performance of high frequency skywave telecommunication systems, OT Rept 76-102, Boulder, CO.
- Laitinen, P. O., and G. W. Haydon (1962), Analysis and prediction of skywave field intensities in the high frequency band, U. S. Army Signal Radio Propagation Agency Tech. Report No. 9, Rev. Oct. (RPU 203).
- 7. Leftin, M. (1976), Numerical representation of monthly median critical frequencies of the regular E region (foE), OT Rept 76-88, Boulder, CO.
- 8. Lucas, D. L., and G. W. Haydon (1966), Predicting statistical performance indexes for high frequency telecommunication systems, ESSA Tech. Rept IER 1-ITSA 1, U. S. Dept of Commerce, Boulder, CO.
- Rush, C. M., and J. Gibbs (1973), Predicting the day-to-day variability
 of the mid-latitude ionosphere for application to HF propagation
 predictions, Air Force Cambridge Research Laboratories, AFCRL-TR73-0335.
- Slutz, R. J., T. N. Gautier, and M. Leftin (1969), Short-term radio propagation forecasts in Southeast Asia, Environmental Sciences Services Administration, ESSA Tech. Rept, ERL-96-ITS-71.

APPENDIX A

BASIC SIGNAL-TO-NOISE RATIO REQUIREMENTS FOR DIGITAL COMMUNICATION SYSTEMS

Required signal-to-noise ratios depend not only upon the characteristics of the signal and of the noise, but also upon the type of modulation and detection used. ("Required Signal-to-Noise Ratios for HF Communication Systems," Hiroshi Akima, Gene G. Ax, Wesley M. Beery, ESSA Technical Report, ERL-131-ITS92, August 1969.) This appendix considers four basic digital systems:

- On-Off Binary Digital System,
- Limiter/Discriminator Frequency Shift Keying,
- Dual Filter Frequency Shift Keying,
- Differentially Coherent Phase Shift Keying.
- On-Off Binary Digital System

Figure A-1 shows the basic performance of an On-Off Binary Digital System, and Figure A-2 shows the expected degradation of the system in the presence of a Rayleigh fading signal.

- Limiter/Discriminator FSK Binary Digit System
- Figure A-3 shows the basic performance, and Figure A-4 shows the Rayleigh fading degradation.
- Dual-Filter FSK Binary Digit System
 Figure A-5 shows the basic performance, and Figure A-6 the Rayleigh fading degradation.
- 4. Differentially-Coherent PSK Binary Digit System

Figure A-7 shows the basic performance, and Figure A-8 shows the Rayleigh degradation.

Figures A-I through A-8 assume a Gaussian noise with no diversity in the reception of the signal. The S/N requirements change somewhat depending upon the type of noise and also change markedly if diversity reception systems are used. Figure A-9 shows the theoretical effect of other noise types (V_d is an index of the impulse nature of the noise) upon a steady state (direct wave) signal, while Figure A-10 shows the theoretical effect of other noise types on the Rayleigh fading (skywave) signal including the interaction with diversity systems. Figures A-9 and A-7, which apply to noncoherent frequency shift keying (NCFSK) systems, illustrate the importance of noise type

and the use of diversity systems at the higher data rates. Similar effects occur for other digital systems.

Table 4 in the body of the report is based on Figures A-1 through A-8, adjusted for various transmission rates.

FIGURE A-1. BASIC PERFORMANCE OF "ON-OFF" BINARY DIGIT SYSTEM FOR TRANSMISSION RATE OF ONE BAUD WITH NONFADING CARRIER AND RANDOM NOISE

FIGURE A-2. DEGRADATION DUE TO RAYLEIGH-FADING CARRIER: "ON-OFF" SYSTEM

FIGURE A-3. BASIC PERFORMANCE OF LIMITER-DISCRIMINATOR FSK BINARY DIGIT SYSTEM FOR TRANSMISSION RATE OF ONE BAUD WITH NONFADING CARRIER AND RANDOM NOISE

FIGURE A-4. DEGRADATION DUE TO RAYLEIGH-FADING CARRIER: LIMITER-DISCRIMINATOR FSK

FIGURE A-5. BASIC PERFORMANCE OF DUAL-FILTER FSK BINARY DIGIT SYSTEM FOR TRANSMISSION RATE OF ONE BAUD WITH NONFADING CARRIER AND RANDOM NOISE

FIGURE A-6. DEGRADATION DUE TO RAYLEIGH-FADING CARRIER: DUAL-FILTER FSK

FIGURE A-7. BASIC PERFORMANCE OF DIFFERENTIALLY COHERENT PSK BINARY DIGIT SYSTEM FOR TRANSMISSION RATE OF ONE BAUD WITH NONFADING CARRIER AND RANDOM NOISE

FIGURE A-8. DEGRADATION DUE TO RAYLEIGH-FADING CARRIER: DIFFERENTIALLY COHERENT PSK SYSTEM

FIGURE A-9. ELEMENT ERROR PROBABILITIES IN A SINGLE-CHANNEL NCFSK SYSTEM UNDER STABLE CONDITIONS. (SIGNAL-TO-NOISE RATIO IS THE RATIO OF SIGNAL POWER TO AVERAGE NOISE POWER, AND Vd IS THE RATIO OR RMS TO AVERAGE OF THE NOISE ENVELOPE VOLTAGE, BOTH MEASURED AT THE INPUT TO THE LIMITER IN A LIMITER-DISCRIMINATOR DEMODULATOR, AND MEASURED IN A BANDWIDTH EQUIVALENT TO THE SUM OF THE BANDWIDTHS OF THE TWO FILTERS IN A DUAL-FILTER DEMODULATOR. MODULATION INDEX IS ASSUMED TO BE NOT LESS THAN UNITY, AND NO LOW-PASS FILTER IS USED BEFORE THE DECISION-MAKING CIRCUIT.)

FIGURE A-10. ELEMENT ERROR PROBABILITIES IN AN SINGLE-CHANNEL NCFSK SYSTEM UNDER RAYLEIGH-FADING CONDITIONS WITH NO DIVERSITY AND DUAL SELECTION-SWITCHING DIVERSITY. (MEDIAN SIGNAL-TO-NOISE RATIO IS THE RATIO OF MEDIAN SIGNAL POWER TO AVERAGE NOISE POWER, AND V_d IS THE RATIO OF RMS TO AVERAGE OF THE NOISE ENVELOPE VOLTAGE, BOTH MEASURED AT THE INPUT TO THE LIMITER IN A LIMITER-DISCRIMINATOR DEMODULATOR AND MEASURED IN A BANDWIDTH EQUIVALENT TO THE SUM OF THE BANDWIDTHS OF THE TWO FILTERS IN A DUAL-FILTER DEMODULATOR. MODULATION INDEX IS ASSUMED TO BE NOT LESS THAN UNITY, AND NO LOW-PASS FILTER IS USED BEFORE THE DECISION-MAKING CIRCUIT.)

APPENDIX B

TABULATION OF THE THEORETICAL RELIABILITY OF THE REFERENCE CIRCUIT

Tabulation of the theoretical reliability of the reference circuit as a function of time and distance includes the optimum aeronautical channel (frequency) and the receiving terminal.

Table B-1. North Atlantic Path (Shannon-New York) Pages 58-68. Table B-2. North Pacific Path (Honolulu-San Francisco) Pages 69-77.

TABLE B-1. THEORETICAL RELIABILITY -- NORTH ATLANTIC PATH

RELIABILITY TABLE SHANNON TO NEW YORK PATH

SOLAR ACTIVITY LEVEL
SSN = 10 SSN = 110

MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
HAR	200	2	NEW YORK	3.0	.98	NEW YORK	3.0	. 35
		4	NEW YORK	3.0	• 92	NEW YORK	3,0	. 39
		6	NEW YORK	3.0	• 92	NEW YORK	3.0	. 84
		8	NEW YORK	3.0	• 79	NEW YORK	3.0	• 3.8
		10	NEW YORK	3.0	• 95	NEW YORK	3.0	• 92
		12	NEW YORK	3.0	• 96	NEW YORK	4.7	• 95
		14	NEW YORK	4.7	- 89	NEW YORK	6.6	- 91
		16	NEW YORK	4.7	. 73	NEW YORK	6.6	-81
		16	NEW YORK	3.5	• 76	NEW YORK	8.9	.83
		20	NEW YORK	4.7	• 91	NEW YOPK	6.6	. 95
		22 24	NEW YORK	3.5	• 96	NEW YORK	4.7	.97
	500	2	NEW YORK NEW YORK	3.0 3.0	• 98 • 99	NEW YORK New York	4.7 4.7	. 98
	760	<u>,</u>	NEW YORK	3.0	•97	NEW YORK	4.7	• 9 9
		6	NEW YORK	3.0	.93	NEW YORK	4.7	• 98 • 95
		8	NEM YORK	3.0	. 94	NEW YORK	3.5	• 96
		10	NEW YORK	3.0	.97	NEW YORK	3.5	• 96
		12	NEW YORK	3.0	.99	NEW YORK	5.6	• 95
		14	NEW YORK	5.6	. 94	NEW YORK	8.9	.87
		16	NEW YORK	6.6	.98	NEW YORK	4.9	82
		18	NEW YORK	5.6	. 92	NEW YORK	á • 9	-84
		20	NEW YORK	5.6	. 97	NEW YORK	8.9	. 94
		22	NEW YORK	3.5	.99	NEW YORK	6.6	96
		24	NEW YORK	3.0	•99	NEW YORK	4.7	• 97
	1000	2	NEW YORK	3.0	. 95	NEW YORK	6.6	. 97
		ü	NEW YORK	3.0	•92	NEW YORK	5.6	93
		6	NEW YORK	3.0	. 88	NEW YORK	5.6	. 92
		e	NEW YORK	3.0	. 94	NEW YORK	4.7	. 74
		10	NEW YORK	3.0	. 94	NEW YORK	3.5	. 93
		12	NEW YORK	5.6	• 38	NEW YORK	6.6	. 90
		14	NEW YORK	8.9	• 93	NEW YORK	11.3	. 88
		16	NEW YORK	8.3	. 37	Nº W YORK	13.3	.89
		18	NEW YORK	8.3	• 30	NEW YORK	11.3	. 88
		20	NEW YORK	8.9	• 96	NEW YORK	11.3	. 04
		22	NEW YOPK	5.6	• 93	NEW YORK	11.3	. 94
		24	NEW YORK	5.6	.97	NEW YORK	8.9	• 96
	150)	2	NEW YORK	4.7	• 39	NEM YORK	3.9	. 34
		4	NEW YORK	4.7	. 86	NEW YORK	8.9	• : 3
		6	NEW YORK	4.7	• 91	NEW YORK	6.6	. 38
		8	NEW YORK	3.5	. 84	NEW YORK	6.6	. 88
		10	NEW YORK	4.7	. 33	NEW YORK	4.7	. 37
		12	NEW YORK	6.6	. 48	NEW YORK	8.9	• 82
		14	NEW YORK	11.3	. 99	NEW YORK	13.3	• + 3
		16	NEW YORK	11.3	. 83	NEW YORK	18.0	.73
		1.6	NEW YORK	11.3	. 36	NIW YORK	13.3	• 9 0
		S 0	HEM YORK	8.3	• 30	NEW YORK	13.3	. 83
		22	NEW YORK	6.6	• 36	NEW YORK	13.3	• > 1
		24	NEW YORK	6.6	• 31	NEM AOBK	11.3	• 96

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

RELIABILITY TABLE SHANNON TO NEW YORK PATH

	SOLAR	ACTIVITY	LEVEL	
2 M22	1 0		SSN :	: 110

MANTH	D.T.C.T.A.110.C	****	TERMINAL	FREQ	REL	TERMINAL	FREQ	REL
HONTH	DISTANCE	TIME	TERMINAL	FREU	RCE	-		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
MAF	2000	2	NEW YORK	6.6	. 81	NEW YORK	8.9	.85
		4	NEW YORK	5.6	.77	NEW YORK	8.9	. 83
		6	NEW YORK	5.6	.76	NEW YORK	8.9	. 63
		e	NEW YORK	4.7	. 80	NEH YORK	6.6	.79
		1 G	NEW YORK	5.6	. 86	NEW YORK	8 • 9	.79 .69
		12	NEW YORK	8.9	. 85	NEW YORK New York	11.3 18.3	.68
		14	NEW YORK	13.3	. 73	NEW YORK	10.0	.74
		16	NEW YORK New York	13.3 11.3	.71 .76	NEW YORK	18.0	.74
		16 20	NEW YORK	11.3	. 83	NEW YORK	13.0	.78
		22 2 u	NEW YORK	11.3	.79	NEW YORK	13.3	. 74
		24	NEW YORK	8.9	. 92	NEW YORK	11.3	. 39
	2500	Ş	NEW YORK	8.9	.58	NEW YORK	11.3	. 75
	2730	Ĭ,	NEW YORK	6.6	.49	NEW YORK	11.3	.74
		6	SHANNON	6.6	•60	NEW YORK	4.9	• 73
		8	NEW YORK	6.6	.59	NEW YORK	5.9	• 63
		10	NEW YORK	8.9	.57	NEW YOPK	11.3	• 62
		12	NEW YORK	13.3	•56	NEW YORK	19.0	•53
		14	NEW YORK	13.3	. 42	NEW YORK	18.0	•61
		16	NEW YORK	13.3	. 40	N.W YORK	18.Û	.53
		1.6	NEW YORK	13.3	•55	NEW YORK	13.0	•63
		20	NEW YORK	11.3	.58	NEW YORK NEW YORK	18.0 19.0	•64 •69
		25	NEW YORK	13.3	.64	NEW YORK	13.3	. 74
		24	NEW YORK	8.9 5.6	.66 .68	SHANNON	3.9	-65
	3000	5	SHANNON Shannon	4.7	.68	SHANNON	6.6	.68
		4 5	SHANNON	3.5	.64	NEW YOPK	٠.٩	.72
		8	SHANNON	6.6	.70	SHANNON	5.9	.7.
		10	SHANNON	8.9	.59	NEW YORK	11.3	. 55
		12	SHANNON	13.3	.59	SHANNON	10.0	. 55
		14	SHANNON	13.3	•55	SHANNON	18.0	•61
		16	SHANNON	13.3	•60	SHANNON	13.0	• 59
		1.8	SHANNON	13.3	• 56	SHANNON	18.0	.53
		20	SHANNON	8.9	•58	SHANNCH	13.3	•62
		5.5	SHANNON	6.6	. 64	SHANNON	3.9	.70
		24	SHANNON	5.6	. 70	SHANNON	3.9	-68
	3500	5	SHANNON	3.5	. 82	SHANNON	5.6	. 8 :
		4	SHANNON	3.5	. 79	SHANNON Shannon	5 • 6 4 • 7	•77 •73
		6	SHANNON	3.5	. 79	SHANNON	5 . 6	.67
		8	SHANNON	5.6	.73 .73	SHANNON	11.3	70
		10	NONNAH2 NONNAH2	8.9 11.3	.70	SHANNON	13.3	63
		12 14	SHANNON	11.3	.70	NONMARS	13.3	.63
		14 16	SHANNON	11.3	.69	SHANNON	13.3	.71
		18	SHANNON	8.9	.62	SHANNON	13.3	.62
		20	SHANNON	6.6	.74	SHANNON	9.9	.77
		5.5	SHANNON	5.6	. 75	SHANNON	5.6	.77
		24	SHATINON	4.7	.79	SHANNON	5.6	. 75

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

RELIABILITY TABLE SHANNON TO NEW YORK PATH

			SSN	SOLAR ACTIVITY LEVEL SSN = 10 SSN = 11				
MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FPEQ	REL
помти	DISTANCE	1145	TERMINAL	FREG	REL	LERUTIANT	FFEU	KEL
(1)	(5)	(3)	(4)	(5)	(6)	(7)	(6)	(9)
MAR	4000	2	SHANNON	3.0	.89	SHANNON	4.7	.83
		4	SHANNON	3.0	. 89	SHANNON	3.5	. 87
		6	SHANNON	3.0	• 92	SHANNON	3.5	•81
		8	SHANNON	4.7	- 51	SHANNON	6.6	. 81
		10	SHANNON	6.6	.79	SHANNON	8.9	.70
		12	SHANNON	8.9	. 79	SHANNON	11.3	. 77
		14	SHANNON	8.9	•77	SHANNON	11.3	• 76
		16	SHANNON	8.9	• 75	SHANNON	11.3	.76
		18 20	SHANNON	5.6	. 69	SHANNON	9.9	. 67
		22	SHANNON SHANNON	5.6	• 93	SHANNON	6.6	• 55
		24	SHANNON	3.5	• 82	SHANNON	4.7	. 84
	4500	2	SHANNON	3.0 3.0	• 36	SHANNON	4.7	. 84
	4500	4	SHANNON	3.0	.88	SHANNON Shannon	3.0 3.0	. 93
		6	SHANNON	3.0	•31 •78	SHANNON	3.0	• 34 • 83
		9	SHANNON	3.5	.33	SHANNON	5.6	•71
		10	SHANNON	4.7	•72	SHANNON	6.6	67
		12	SHANNON	5.6	.7G	SHANNON	3.9	.78
		14	SHANNON	5.6	• 66	SHANNON	3.9	.68
		16	SHANNON	4.7	•73	SHANNON	8.9	.75
		18	SHANNON	5.6	.73	SHANNON	5.6	.72
		20	SHANNON	3.5	.91	NONNAHZ	4.7	. 91
		2.5	SHANNON	3.0	- 38	SHANNON	3.5	. 39
		24	SHANNON	3.0	.86	SHANNON	3.0	.90
	4745	2	SHANNON	3.0	.73	SHANNON	3.0	.81
		4	SHANNON	3.0	. 62	SHANNON	3.0	.83
		6	SHANNON	3.0	• 65	SHANNON	3.0	. 75
		e	SHANNON	3.5	.71	SHANNON	4.7	.73
		10	SHANNON	4.7	•56	SHANNON	5.6	.70
		12	SHANNON	4.7	.68	SHANNON	6.6	.70
		14	SHANNON	4.7	. 65	SHANNON	6.6	.69
		16	SHANNON	4.7	• 75	SHANNON	5.6	.79
		18	SHANNON	3.5	.74	SHANNON	5.6	. 75
		20	SHANNON	3.0	.82	SHANNON	3.5	. 91
		22	SHANNON	3. ũ	. 82	SHANNON	3.0	.73
		24	SHANNON	3.0	. 75	SHANNON	3.0	.74
JUN	200	2	NEW YORK	3.0	-98	NEW YORK	4.7	. 9 a
		4	NEW YORK	3 - 0	. 97	NEW YORK	4.7	. 96
		6	NEH YORK	3.0	. 75	NEW YORK	3.5	. 79
		8	NEW YORK	3.0	.77	NEW YOPK	3.0	.37
		10	NEW YORK	3.0	.97	NEW YORK	3.5	. 94
		12	NEW YORK	3.0	• 98	NEW YORK	3.5	• 91
		14	NEW YORK	3.5	.94	NEW YORK	5.6	. 74
		16	NEW YORK	4.7	• 32	NEW YORK	5.6	•65
		16	NEW YORK	4 • 7	• 90	NEW YORK	5.6	. 63
		2 0	NEW YORK	3.5	• 32	NEM YORK	5 •6	.74
		22	NEW YORK	4.7	• 95	NEW YORK	5.6	• 55
		24	NEW AUDA	1. 7	0.0	H.H AUDK	1. 7	3.4.

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

	SOLAR ACTIVITY LEVEL							
			SSN	= 10		SSN =	110	
HONTH	DISTANCE	TIME	TERHINAL	FREQ	REL	TERMINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(3)
אטע	500	2	NEW YORK	4.7	1.00	NEW YORK	4.7	.99
		4	NEW YORK	3.0	. 98	NEW YORK	4.7	.98
		6 8	NEW YORK	3.0 3.0	•90 •95	NEW YORK New York	4.7 3.5	.88 .94
		10	NEW YORK NEW YORK	3.0	• 39	NEW YORK	3.5	.99
		12	NEW YORK	4.7	.99	NEW YORK	5.6	.97
		14	NEW YORK	5.6	. 37	NEW YORK	6.6	• 92
		16	NEW YORK	5.6	-96	NEW YORK	6.6	.87
		18	NEW YORK	5.6	• 96	NEW YORK	6.6	.87
		20	NEW YORK	5.6	. 98	NEW YORK	5.6	. 91
		22	NEW YORK	4.7	. 97	NEW YORK	5.6	• 93
		24	NEW YORK	5.6	• 98	NEW YORK	6.6	• 98
	1000	2	NEW YORK	6.6	-98	NEW YORK	3.9	. 38
		4	NEW YORK	4.7	. 93	NEW YORK	6.6	• 95
		6	NEW YORK	4.7	. 91	NEW YORK	5.6	• 8.9
		8	NEW YORK	3.0	• 93	NEW YORK	3.5	. 94
		10	NEW YORK	5.6	- 98	NEW YORK	6.6	• 95
		12	NEW YORK	6.6	• 95	NEW YORK	8.9	• 92
		14	NEH YORK	8.9	. 39	NEW YORK	€.9	. 30
		16	NEW YORK	8.9	- 58	NEW YORK	11.3	. 84
		15	NEW YORK	8.9	.88	NEW YORK	11.3	• 82
		20	NEW YORK	8.9	• 89	NEW YORK	8.9	. 90
		22 24	NEW YORK NEW YORK	6.6 8.9	. 33	NEW YORK New York	€.9	• 33
	1500	5	NEW YORK	5.9	• 95 • 96	NEW YORK	8.9 11.3	. 95 . 96
	1900	4	NEW YORK	6.6	. 89	NEW YORK	8.9	• 93
		6	NEW YORK	5.6	. 82	NEW YORK	6.6	. 86
		8	NEW YORK	4.7	. 35	NEW YORK	4.7	• 91
		10	NEW YORK	6.6	• 96	NEW YORK	1.9	.91
		12	NEW YORK	8.3	.93	NEW YORK	11.3	43
		14	NEW YORK	11.3	. 90	NEW YORK	13.3	. 86
		16	NEW YORK	11.3	• 31	NEW YORK	11.3	. 74
		18	NEW YORK	11.3	.50	NEW YORK	11.3	.76
		20	NEW YORK	8.9	• 3 3	NEW YORK	11.3	. 91
		22	NEW YORK	8.9	• 91	NEW YORK	11.3	• 93
		24	NEW YORK	11.3	• 33	NEW YORK	11.3	. 94
	2003	2	NEW YORK	8.9	• 90	NEW YORK	11.3	.93
		4	NEW YORK	6.6	- 80	NEW YORK	11.3	- 97
		6	NEW YORK	6.6	. 79	NEM YORK	8.9	. 86
		9	NEW YORK	5.6	•91	NEW YORK	6.6	• 96
		10	NEW YORK	8.9	• 92	NEW YORK	8.3	. 89
		12	NEW YORK	11.3	. 53	NEW YORK	13.3	• 31
		14	NEW YORK	11.3	. 93	NEW YORK	13.3	.78
		16 19	NEW YORK New York	13.3 13.3	.78 .74	NEW YORK New York	18.0 13.3	•73 •73
		50	NEW YORK	11.3	.78	NEW YORK	13.3	
		2.5	NEW YORK	11.3	• 92	NEW YORK	13.3	•7: •87
			HER TURK	44 7	- 15	HER TOPK	4 7 9 7	• 7 /

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

		SOLAR	ACTIVITY	LEVEL		
SSN	Ξ	1.0		N 22	=	110

MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
NUL	2500	2	NEW YORK	11.3	• 72	NEW YORK	13.3	. 85
		4	NEW YORK	8.9	•62	NEW YORK	11.3	. 92
		6	NEW YORK	8.9	. 56	NEW YORK	11.3	.73
		8	NEW YORK	8.9	•66	NEW YORK	11.3	. 61
		10	NEW YORK	11.3	. 65	NEW YORK	11.3	. 70
		12	NEW YORK	13.3	• 67	SHANNON	10.0	.54
		14	NEW YORK	13.3	• 53	NEW YORK	18.0	. 35
		16	SHANNON	13.3	• 43	SHANNON	13.0	- 46
		18	NEW YORK	13.3	.50	SHANNON	13.3	. 37
		20	NEW YORK	13.3	. 62	NEW YORK	13.3	• 46
		55	NEW YORK	11.3	•59	NEW YORK	13.0	- 68
	3000	24	NEW YORK	13.3	.79	NEW YORK	13.3	• 75
	3000	2 4	SHANNON Shannon	6.6	•69 •69	NEW YORK Shannon	13.3 8.9	.74 .74
		6	SHANNON	6.6 6.6	.75	SHANNON		.76
		8	SHANNON	11.3	.72	SHANNON	8.9 11.3	.72
		10	SHANNON	11.3	.74	SHANNON	13.3	.73
		12	SHANNON	13.3	.79	NONNAHE	13.3	.73
		14	SHANNON	11.3	.71	SHANNON	13.3	.76
		16	SHANNON	13.3	.70	SHANNON	13.3	•68
		18	SHANNON	11.3	.72	SHANNON	13.3	.70
		20	SHANNON	13.3	. 63	SHANNON	11.3	.70
		22	SHANNON	13.3	•66	SHANNON	13.3	.70
		24	SHANNON	8.9	• 69	SHANNON	11.3	.76
	3500	2	SHANNON	5.6	. 87	SHANNON	6.9	. 88
		4	SHANNON	6.6	. 85	SHANNON	6.6	. 82
		6	SHANNON	6.6	. 95	SHANNON	5.9	. 81
		8	SHANNON	8.9	• 57	SHANNON	11.3	. 80
		10	SHANNON	11.3	• 0	SHANNON	11.3	.77
		12	SHANNON	11.3	.87	SHANNON	13.3	• 9 3
		14	SHANNON	11.3	. 78	SHANNON	13.3	.77
		16	SHANNON	11.3	•77	THANNON	13.3	. 74
		18	SHANNON	8.9	. 82	CHANNON	11.3	• 7 -
		20	SHANNON	11.3	• 71	CHANNON	11.3	•73
		22 24	SHANNON	8.9	. 75	SHANNON	11.3	. 78
	4.000		SHANNON	6.6	• 30	SHANNON	3.9	• 33
	4000	2 4	SHANNON Shannon	3.5 4.7	• 92 • 32	SHANNON SHANNON	5 • 6	. 94
		6	SHANNON	5.6	• 19	SHANNON	4.7 6.5	• 30 • 87
		8	SHANNON	6.6	90	SHANNON	9.9	. 84
		10	SHANNON	8.3	• 32	SHANNON	3.9	• 52
		12	SHANNON	8.9	• 90	SHANNON	8.9	• 52
		14	SHANNON	6.9	.81	SHANNON	11.3	.76
		16	SHANNON	8.9	. 79	SHANNON	8.9	.79
		18	SHANNON	6.6	. 97	SHANNON	3.3	• 32
		20	SHANNON	5.6	. 82	SHANNON	8.9	.82
		22	SHANNON	6.6	- 84	CHANNON	8.9	. 34
		24	SHANNON	4.7	.88	SHANNON	5.6	. 93

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

SOLAR ACTIVITY LEVEL
SSN = 10 SSN = 110

HONTH	DISTANCE	TIME	TERNINAL	FREQ	REL	TERMINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(5)	(9)
JUN	4500	2	SHANNON	3.0	.97	SHANNON	3.5	. 97
		4	SHANNON	3.0	• 96	SHANNON	3.5	. 94
		6	SHANNON	3.5	. 90	SHANNON	4.7	. 85
		8	SHANNON	4.7	- 90	SHANNON	5.6	. 54
		10	SHANNON	5.6	. 89	SHANNON	6.6	- 50
		12	SHANNON	5.6	.94	SHANNON	6.6	. 82
		14	SHANNON	5.6	. 85	SHANNON	6.6	. 76
		16	SHANNON	5.6	- 85	SHANNON	6.6	.77
		18	SHANNON	4.7	. 89	SHANNON	5.6	- 8 2
		20 22	SHANNON Shannon	5.6 4.7	•91 •92	SHANNON	5 • 6 5 • 6	•88 •91
		24	SHANNON	3.0	. 94	SHANNON Shannon	4.7	.94
	4745	5	SHANNON	3.0	.96	SHANNON	3.0	.90
	4143	4	SHANNON	3.0	.97	SHANNON	3.5	.91
		6	SHANNON	3.5	.89	SHANNON	4.7	.77
		8	SHANNON	3.0	. 87	SHANNON	5.6	.72
		10	SHANNON	4.7	.61	SHANNON	5.6	. 65
		12	SHANNON	3.5	. 84	SHANNON	5.6	•62
		14	SHANNON	3.5	.73	SHANNON	5.6	.55
		16	SHANNON	3.5	.78	SHANNON	5.6	. 61
		18	SHANNON	4.7	. 84	SHANNON	5.6	.74
		20	SHANNON	4.7	. 93	SHANNON	4.7	. 51
		22	SHANNON	3.5	. 93	SHANNON	4.7	- 80
		24	SHANNON	3.0	. 95	SHANNON	3.5	. 84
SEP	200	2	NEW YORK	3.0	. 97	NEW YORK	3.5	. 96
		4	NEW YORK	3.0	. 87	NEW YOPK	3.5	• 91
		6	NEW YORK	3.0	• 74	NEW YORK	3.5	.86
		8	NEW YORK	3.0	• 64	NEW YORK	3.0	. 38
		10	NEW YORK	3.0	. 84	NEW YORK	3.0	. 89
		12	NEW YORK	3.5	• 96	NEW YORK	4.7	• 93
		14	NEW YORK	4.7	. 95	NEW YORK	6.6	• 95
		16	NEW YORK	4.7	•71	NEW YORK	6.6	.72
		18 20	NEW YORK New York	3.5 3.0	. 81 . 32	NEW YORK New York	6.6 5.6	. 76 . 33
		22	NEW YORK	3.5	• 36	NEW YORK	5.6	. 96
		24	NEW YORK	3.0	.97	NEW YORK	4.7	• 97
	500	5	NEW YORK	3.0	.98	NEW YORK	4.7	.99
	703	į.	NEW YORK	3.0	. 35	NEW YORK	4.7	98
		6	NEW YORK	3.0	. 90	NEW YORK	4.7	.96
		ě	NEW YORK	3.0	. 34	NEW YORK	3.5	- 95
		10	NEW YORK	3.0	. 95	NEW YORK	3.5	95
		12	NEW YORK	3.5	. 39	NEW YORK	6.6	36
		14	NEW YORK	5.6	. 95	NEW YORK	6.6	. 81
		16	NEW YORK	5.6	. 88	NEW YORK	5.9	. 75
		1.5	NEW YORK	5.6	. 93	NEW YORK	8.9	.77
		20	NEW YORK	4.7	. 98	NEW YORK	6.6	. 91
		22	NEW YORK	4.7	. 39	NEM YORK	5.6	. 97
		24	NEW YORK	4.7	• 99	NEW YORK	5.6	. 9 4

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

SSN = 10 SSN = 110

				224 = 10			•	
MANA						S	SN = 110	
NONTH	DISTANC	E TIME						
		- I Ang	E TERHIN	AL FREC				
(1)	12)) REL	TERMIN	AL FREG	
	•••	(3)	(4)	453				REL
				(5)	(6)	(7)		
SEP	4000					***	(8)	19)
	1000	2	NEH YOR	\				
		4	NEW YOR	K 3.5	- 94	NEW YOR		
		6	NEU VO	3.4	. 91	NEW YOR	CK 6.6	• 97
		8	NEH YOR	3.8	-89	NEW YOR	5 · 6	. 94
		10	NEW YOR	K 3.0	• 90	NEW YOR	K 5.6	. 94
		12	NEH YOR	K 3.5	• 92	NEH YOR	K 4.7	• 93
		14	NEH YOR	K 2 2	. 97	NEW YOR	K	• 91
		16	NEH YOR	K		NEW YOR	KSA	
		18	NEW YOR		• 88	NEW YOR	K 4	-96
			NEW YOR		• 82	NEW YOR	K 11 2	•90
		20	NEW YOR	٠	. 54	NEW YOU	K 11.3	. 84
		25	NEW YORK		• 38	NEW YORK	K 44 2	• 30
	1500	24	NEW YORK		• 92	NEW YORK		• 90
	4700	2	NEW YORK		• 95	NEW YORK		• 94
		4	NEH YORK		• 90	NEW YORK		• 98
		6	NEH YORK		• 97	NEW YORK	,,	• 95
		8	NEH YORK		• 52	NEH YORK		• 92
		10	NEW YORK	3.0	- 82	NEW YORK	5.5	• 92
		12	MEN YORK	4.7	. 91	NEW YORK	5.6	. 88
		14	NEW YORK	8.9	• 93	NEH YORK	5.6	. 37
		16	NEW YORK	11.3	• 36	NEW YORK	11.3	• 33
		16	NEW YORK	11.3	. 76	NEH YORK	13.3	-83
		28	NEH YORK	11.3	. 93	NEW YORK	13.3	• 6 J
		52	NEW YORK	8.9	• 31	NEW YORK	13.3	• 66
			NEN YORK	8.9	-	NEW YORK	13.3	-
	2003	24	NEW YORK	6.6	• 37	NEW YORK	13.3	• 66
		2	NEW YORK	6.6	• 98	NEM YORK	11.3	• 35
		4	NEW YORK	5.6	. 82	N-N YORK		• 97
		6	NEW YORK		- 31	NEW YORK	8,9	.87
		8	NEH YORK	4.7	• 75	NEW YORK	8.9	• 46
		10	NEH YORK	3.0	•75	NEH YORK		• A4
		12	NEW YORK	5.5	. 84	NEH YORK	6.6	• 77
		14	NEW YORK	11.3	• 55	NEW YORK	8.9	. 88
		16	NEH YORK	13.3	. 75	NEH YORK	13.3	• 3 J
		18	NEH YORK	13.3	. 73	NEW YORK	18.0	. 73
		20	NEW YORK	11.3	75	NEH YORK	15.0	71
		2.5	NEW YORK	11.3	33	NEW YORK		73
	_	24	MEN TORK		83	MEM ADEK	13.3	79
	2 5)0	2	NEW YORK		35	NEH YORK		84
		Ğ	NEW YORK		71	NEW YORK	4 4 -	90
		6	NEW YORK		58	NEW YORK		79
		8	NEW YORK	• • •	61	NEW YORK		76
		10	NEW YORK		54	NEW YORK		77
		12	NEH YORK			NEW YORK	· ·	
		_	NEW YORK		52	NEW YORK		71
		14	NEW YORK		53	NEW YORK		-
		16	SHANNON			NEM AGER	40.0	
		10	NEH YORK	• • • • • • • • • • • • • • • • • • • •		SHANNON		
		€ U	NEW VACA	13.3 .5			18.0 .5	
		ς <i>ζ</i>	MEN MAA.	11.3 .6	6 1	MEH VAR.	19.0	6
	;	24	NEW VAA	13.3	6	MEH VAN.	18.0 .6	ı
			TORK	11.3 ,7	3	MEM WAS. '	19.0 .6	
						TORK	13.3 .8	
								-

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

SOLAR ACTIVITY LEVEL SSN = 1 (SSN = 110 HONTH FREQ DISTANCE TIME TERMINAL TERMINAL REL FRED REL (1) (2) (3) (4) (5) (6) (7) (8) (9) SEP 3000 2 SHANNON EITHER 5.6 .69 11.3 .63 SHANNON 4.7 . 75 SHANNON 6.6 .74 6 SHANNON 4.7 .69 NEW YORK 8.9 .65 8 SHANNON SHANNON .70 6.6 .68 8.9 10 SHANNON SHANNON 11.3 . 60 13.3 . 62 12 SHANNON SHANNON .53 13.3 .60 18.0 14 SHANNON 13.3 -60 SHANNON 18.0 .61 16 SHANNON .67 SHANNON 13.3 .65 11.3 18 SHANNON .58 SHANNON 18.0 . 59 11.3 SHANNON 20 SHANNON 11.3 . 60 13.3 .64 22 SHANNON 8.9 •65 SHANNON 11.3 .70 24 SHANNON .68 NEW YORK 13.3 . 70 6.6 3500 2 . 93 SHANNON SHANNON 4.7 5.6 .83 SHANNON SHANNON 5.6 3.5 . 53 . 82 6 SHANNON 4.7 .77 SHANNON 5.6 .71 9.9 8 EITHER 3.5 .72 SHANNON .72 SHANNON .72 SHANNON 10 8.9 11.3 .71 12 SHANNON •69 SHANNON .73 11.3 13.3 SHANNON SHANNON 14 11.3 . 70 13.3 .71 16 SHANNON 11.3 .68 SHANNON 11.3 .76 18 SHANNON SHANNON 8.9 • 65 13.3 .66 . 75 20 SHANNON 8.9 SHANNON .73 11.3 SHANNON NONNAHZ 22 . 75 5.6 3.9 .77 SHANNON 24 SHANNON 4.7 .78 6.6 .77 4000 2 SHANNON 3.0 .90 SHANNON . 90 3.5 • 39 • 79 SHANNON 3.0 .90 SHANNON 4.7 Б SHANNON SHANNON 3.5 4.7 . 34 SHANNON 8 5.6 .79 SHANNON 5.6 .74 10 SHANNON .77 SHANNON 8.9 .76 6.6 12 SHANNON 8.9 .75 SHANNON .76 11.3 SHANNON .70 SHANNON 8.9 14 11.3 .76 .77 SHANNON SHANNON 16 6.6 . 84 4.9 18 SHANNON 5.6 .73 SHANNON 3.9 .73 20 SHANNON .83 SHANNON 5.6 6.6 . 54 . 93 22 SHANNON SHANNON . 33 4.7 5.6 SHANNON SHANNON 3.0 24 . 96 4.7 . 55 .89 4500 2 SHANNON 3.0 SHANNON 3.0 • 95 SHANNON 3.0 . 35 SHANNON 3.0 . 95 SHANNON . 65 6 SHANNON 3.0 . 30 3.0 . 77 A SHANNON . 90 SHANNON 3.5 4.7 10 SHANNON SHANNON 5.6 .72 6.6 .70 12 SHANNON 5.6 .79 SHANNON .64 14 SHANNON 5.6 .78 SHANNON 6.6 .63 16 SHANNON .81 SHANNON 4.7 6.6 .71 SHANNON .80 SHANNON .73 4.7 6.6 SHANNON SHANNON 20 3.5 .90 4.7 . 31 . 19

3.3

. 38

SHANNON

CHANNON

. 89

. 91

3.5

3.0

SHANNON

SHANNON

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

SOLAR ACTIVITY LEVEL
SSN = 10
SSN = 110

			•	- 10		SSN	= 110	
HONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	EREA	
(1)	12)	(3)	(4)	(5)	(6)	(7)	FREQ (6)	
						、 ,,	101	(9)
SEP	4745	z	SHANNON			_		
		4	SHANNON	3. Q 3. Q	.77	SHANNON	3.0	. 85
		6	SHANNON	3.0	•62	SHANNON	3.0	. 35
		8	SHANNON	3.5	• 73	SHANNON	3.0	•76
		10	SHANNON	3.0	• 75 • 66	SHANNON	4.7	-68
		12	SHANNON	3.5	• 64	SHANNON	6.6	.63
		14	SHANNON	3.5	•63	SHANNON	6.6	.63
		16	SHANNON	3.0	.70	SHANNON	6.6	• 62
		18	SHANNON	3.5	.74	SHANNON Shannon	6.6	.72
		50	SHANNON	3.0	. 36	SHANNON	4.7	.73
		55	SHANNON	3.0	. 38	SHANNON	4.7	. 32
DEC	200	24	SHANNON	3.0	. 81	SHANNON	3.0 3.0	• 82
	200	Ş	NEW YORK	3.0	493	NE I YORK	3.D	. 54
		4 6	NEW YORK	3.J	. 88	NEW YORK	3.U 3.0	• 98
		8	NEH YORK	3.0	•97	NEW YORK	3.0	• 36 • 96
		10	NEW YORK	3.0	•99	NEW YORK	3.0	• 96
		12	NEW YORK	3.0	• 94	NEW YORK	3.0	• 99
		14	NEW YORK	3.0	1.00	NEW YORK	4.7	.98
		16	NEW YORK	4.7	• 38	NEW YORK	5 • 6	• 98
		15	NEW YORK	5.6	. 98	NEW YORK	8.9	.99
		20	NEH YORK NEH YORK	5.6	- 98	NEW YORK	8.9	99
		22	NEW YORK	4.7	• 99	NEW YORK	5.6	. 99
		24	NEW YORK	3.0	. 99	NEW YORK	4.7	99
	500	2	NEW YORK	3.0 3.0	• 99	NEW YORK	3.0	- 98
		,	NEW YORK	3.0	• 98	NEW YORK	3.0	• 99
		6	NEW YORK	3.0	• 96	NEW YORK	3.0	. 99
		8	NEW YORK	3.0	. 99 . 39	N-M YORK	3.5	.99
		10	NEW YORK	3.0	• 99	NEW YORK	3.0	. 93
		12	NEW YORK	3.5	1.00	NEW YORK	3.D	.99
		14	NEW YORK	5.6	. 99	NEW YORK	4.7	• 99
		16	NEW YORK	6.6	95	NEW YORK	8.9	. 97
		18	NEW YORK	6.6	. 96	NEW YORK New York	11.3	. 34
		Sa	NEW YORK	6.6	. 99	NEW YORK	11.3	. 95
		55	NEW YORK	4.7	1. Ja	NEW YORK	4.9	• 99
	1000	24	NEW YORK		1.00	NEW YORK	5.6	• 98
	7000	S	NEW YORK	3.0	• 97	NEW YORK	3.5 6.6	• 39
		4	NEH YORK	3.0	• 96	NEH YORK	4.7	• 99
		6	NEW YORK	3.0	• 98	NEW YORK	5.6	. 94
		5 10	NEW YORK	3.0	. 36	NEW YORK	4.7	• 99 • 98
		12	NEW YORK	3.0	. 98	NEW YORK	4.7	. 95
		14	NEW YORK	5.6	• 98	NEW YORK	3.9	• 97
		16	NEW YORK	8.9	• 37	NEW YORK	13.3	•91
		10	NEW YORK NEW YORK	11.3	. 93	NEW YORK	18.0	. 96
		SG		11.3	. 34	NEH YORK	13.3	. 93
		22	NEW YORK NEW YORK	8.9	•98	NEW YORK	11.3	.97
		24	NEW YORK	6.6	.99	NEW YORK	11.3	. 97
				3.5	. 99	NEW YORK	8.9	. 99

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

SOLAR ACTIVITY LEVEL
SSN = 10 SSN = 110

MONTH	DISTANCE	TIHE	TERMINAL	FREQ	REL	TERMINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	127			(),	107	•••	107	• • • •
DEC	1500	2	NEW YORK	4.7	• 90	NEW YORK	8.9	.98
		4	NEW YORK	4.7	• 92	NEW YORK	6.6	. 96
		6	NEW YORK	4.7	. 96	NEW YORK	9.9	• 38
		8	NEW YORK	4.7	• 97	NEW YORK	5.6	• 96
		10	NEW YORK	4.7	• 95	NEW YORK	6 • 6	• 95
		12	NEW YORK	8.9	• 93	NEW YORK	11.3	. 96
		14	NEW YORK	13.3	• 95	NEW YORK	18.0	• 93
		16	NEW YORK	13.3	. 83	NEW YORK	18.0	• 90
		18	NEW YORK	11.3	• 91	NEW YORK	18.0	• 93
		50	NEW YORK	11.3	• 31	NEW YORK	19.0	• 93
		22	NEW YORK	8.9	• 97	NEW YORK	13.3	• 95
		24	NEW YORK	4.7	• 97	NEW YORK	11.3	- 98
	2000	2	NEW YORK	5.6	-83	NEW YORK	8.9	. 94
		4	NEW YORK	5.6	• 86	NEW YORK	8.9	- 94
		6	NEW YORK	5.6	• 91	NEW YORK	8.9	. 94
		8	NEW YORK	5.6	• 91	NEW YORK	9.9	. 87
		10	NEW YORK	5.6	. 89	NEW YORK	6.6	. 84
		12	NEW YORK	8.9	. 94	NEW YORK	13.3	-89
		14	NEW YORK	13.3	• 82	NEW YORK	18.0	. 85
		16	NEW YORK	18.0	. 80	NEW YORK	15.0	• 60
		18	NEW YORK	18.0	• 77	NEW YORK	18.0	. 86
		20	NEW YORK	13.3	- 34	NEW YORK	13.0	-86
		5.5	NEW YORK	8.9	•90	NEW YORK	13.3	• 91
	2000	24	NEW YORK	5.6	• 90	NEW YORK	11.3	. 96
	2503	2	NEW YORK	6.6	•69	NEW YORK	11.3	.67
		4	NEW YORK	6.6	•69	NEW YORK	11.3	- 83
		6	NEW YORK New York	6.6	• 72	NEW YORK	11.3	.87
		8 10	_	6.6	. 72	NEW YORK	8.9	.80
		12	NEW YORK NEW YORK	6.6	•67 •71	NEW YORK Shannon	4.9 15.0	.77 .79
		14	NEW YORK	11.3 18.0	.72	NEW YORK	18.0	.79
		16	NEW YORK	18.0	.74	SHANNON	18.0	.83
		18	NEW YORK	18.0	.76	NEW YORK	19.0	• 91
		20	NEW YORK	13.3	.73	NEW YORK	18.0	. 82
		22	NEW YORK	8.9	.73	NEW YORK	16.0	. 94
		24	NEW YORK	6.6	•62	NEW YORK	13.3	89
	3000	2	SHANNON	4.7	. 85	SHANNON	6.6	. 97
	3000	4	SHANNON	4.7	. 63	SHANNON	6.6	• 55
		6	SHANNON	4.7	.80	SHANNON	5.6	- 30
		ě	SHANNON	5.6	•77	SHANNON	8.9	.85
		10	NEW YORK	4.7	.73	SHANNON	13.3	.73
		12	SHANNON	11.3	. 57	SHANNON	18.0	. 84
		14	SHANNON	11.3	.78	SHANNON	15.0	. 83
		16	SHANNON	11.3	-30	SHANNON	18.0	.39
		18	SHANNON	6.9	. 82	SHANNON	13.3	.79
		20	SHANNON	5.6	.78	SHANNON	11.3	. 90
		22	SHANNON	4.7	. 90	SHANNON	5.9	• 35
		24	SHANNON	4.7	. 85	SHANNON	5.6	. 30

TABLE B-1. NORTH ATLANTIC PATH (CONT.)

SSN = 10 SSN = 110

			J	31 x 10	'			
MONTH						22	N = 110	
HINDH	DISTANCE	TIME	TEPHINA		_			
(1)			, u 11 MM	L FRE	Q REL	TERMINA	50-0	
`*,	(5)	(3)	(4)			I - I - I - I - I - I - I - I - I -	L FREQ	REL
			14,	(5)	(6)	(7)	(5)	
DEC	7500					•••	(8)	(9)
	3500	2	SHANNON					
		•	SHANNON		- 74	SHANNON	5.6	
		6	SHANNON	3.5 3.0		SHANNON		• 94
		. 8	NONNAHZ	3.5		SHANNON	4.7	• 94
		10	SHANNON	6.6	- 10	SHANNON	5.6	• 89
		12	SHANNON	8.9		SHANNON	13.3	• 8 :
		14	SHANNON	11.3	• 93	SHANNON	19.3	• 93
		16	NONNAH?	8.9	• 86	SHANNON	18.0	• 91 • 94
		18	SHANNON	5.5	• 92	SHANNON	18.0	• 94
		20	SHANNON	3.5	•91	SHANNON	11.3	• 88
		55	SHANNON	3.5	• 56	SHANNON	3.9	• 34
	4300	24	NONNAHE	3.5	•88 •91	SHANNON	5.6	.93
	,,,,,	2	SHANNON	3. 0	• 96	SHANNON	4.7	•95
		4	SHANNON	3.0	• 97	NONNAHE	4.7	197
		6 8	SHANNON	3.0	• 92	SHANNON	4.7	. 97
		10	SHANNON	3.0	•90	SHANNON	3.0	95
		12	SHANNON	5.6	• 95	SHANNON	6.6	92
		14	SHANNON	8.9	93	SHANNON	11.3	. 85
		16	SHANNON	8.9	. 94	SHANNON	13.3	• 92
		18	SHANNON	5.6	97	SHANNON	13.3	• 35
		20	SHANNON	4.7	.97	SHANNON	11.3	96
		22	SHANNON	3.0	• 95	SHANNON	8.9	. 94
		24	SHANNON	3.0	- 34	HONNAHE	5.6	. 97
	4500	2	SHANNON	3.3	• 96	NCHMAHE	4.7	. 97
		4	SHANNON	3.0	• 96	SHANNON	3.5	-98
		6	SHANNON	3.0	• 95	SHANNON	3.0	•99
		8	SHANNON	3.0	. 74	SHANNON	3.Q	. 99
		10	SHANNON	3.0	e 96	SHANNON	3.0	. 93
		12	SHANNON	3.5	• 93	SHANNON	4.7	• 92
		14	SHANNON	5.6	. 94	nonmah2 Nonmah2	5.6	. 37
		16	SHANNON	5.6	• 96	SHANNON		• 96
		18	SHANNON	4.7	. 99	SHANNON	6.3	• 38
		20	SHANNON	3.0	• 99	SHANNON		. 99
		22	SHANNON	3.0	. 86	SHANNON		96
		24	SHANNON	3.0	. 94	SHANNON		99
	4745	2	SHANNON	3.0	• 94	SHANNON	3.5	99
		4	SHANNON	3.0	• 37	SHANNON		99
		6	SHANNON		-81	SHANNON		32
		8	SHANNON		• 43	HONNAH		91
		10	SHANNON		• 90	CHANNON		7.6
		12	SHANNON		. 87	NONNAHE		86
		14	SHANNON		93	CHANNON		91
		16	SHANNON		97	SHANNON		97
		9	NONNAHZ		98	SHANNON	_	99
		0	SHANNON	•	18	CHANNA		39
		2	SHANNON		68	SHANNON		
	2	4	SHANNON		61	SHANNON		
				•••	84	CALL LINE.	_ : • •	
							5.8 .9	739

TABLE B-2. THEORETICAL RELIABILITY -- NORTH PACIFIC PATH

SSN = 10

SOLAR ACTIVITY LEVEL

SSN = 110

RELIABILITY TABLE HONOLULU TO SAN FRAN PATH

HONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERHINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
MAR	200	2	SAN FRAN	3.0	• 97	SAN FRAN	4.7	-98
		4	SAN FRAN	3.0	.97	SAN FRAN	3.5	. 98
		6	SAN FRAN	3.0	. 93	SAN FRAN	3.5	. 94
		8	SAN FRAN	3.0	.90	SAN FRAN	3.0	• 92
		10	SAN FRAN	3.0	. 89	SAN FRAN	3.0	. 91
		12	SAN FRAN	3.0	.91	SAN FRAN	3.0	.94
		14	SAN FRAN	3.0	. 94	SAN FRAN	3.5	. 94
		16	SAN FRAN	3.5	. 36	SAN FRAN	5.6	• 96
		18	SAN FRAN	4.7	. 39	SAN FRAN	6.6	. 92
		20	SAN FRAN	5.6	.77	SAN FRAN	8.9	.99
		22	SAN FRAN	5.6	- 50	SAN FRAN	5.9	. ∌0
		24	SAN FRAN	4.7	. 95	SAN FRAN	6.6	. 36
	500	2	SAN FRAN	4.7	. 37	SAN FRAN	6.6	. 97
	3.00	ī.	SAN FRAN	3.0	.99	SAN FRAN	5.6	.97
		Ė	SAN FRAN	3.0	- 90	SAN ERAN	4.7	95

The second of the second of the second

TABLE B-2. NORTH PACFIC PATH (CONT.)

				SOLA	R ACTIVE	TTY LEVEL		
			SSN			SSN 1	110	
MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FREQ	REL
(1)	(5)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
HAR	2000	2	HONOLULU	18.0	• 91	SAN FRAN	18.0	• 90
•		4	HONOLULU	13.3	• 90	HONOLULU	19.0	• 92
		6	HONOLULU	8.9	. 86	HONOLULU	18.0	.94
		10	HONOLULU	4.7	• 86	HONOLULU	13.3	• 90
		12	HONOLULU	4.7	• 91	HONOLULU	8.9	. 87
		14		5.6	. 35	HONOLULU	11.3	-84
		16	HONOLULU	4.7 6.6	• 76 • 88	HONOLULU	8.9	. 79
		18	HONOLULU	11.3	• 91	SAN FRAN Honolulu	19.0 18.0	•88 •85
		20	HONOLULU	13.3	. 56	HONOFOFO	15.0	.77
		22	HONOLULU	18.0	.39	SAN FRAN	13.0	.76
		24	HONOLULU	18.0	-84	SAN FRAN	13.0	• 31
	2500	2	HONOLULU	18.0	.97	HONOLULU	18.0	92
		4	HONOLULU	13.3	95	HONOLULU	15.0	96
		6	HONOLULU	6.6	. 95	HONOLULU	11.3	- 96
		8	HONOLULU	3.5	. 93	HONOLULU	8.9	. 94
		10	HONOLULU	3.5	•91	HONOLULU	11.3	. 92
		12	HONOLULU	4.7	• 91	HONOLULU	4.9	. 89
		14	HONOLULU	3.5	. 58	HONOLULU	4.7	. 93
		16	HONOLULU	5.6	• 95	HCNOLULU	8.9	. 88
		18	HONOLULU	8.9	• 96	HCNOLULU	18.0	• 93
		20	HONOLULU	13.3	• 96	HONOLULU	18.0	• 90
		22	HONOLULU	13.3	. 88	HONOLULU	19.0	. 57
		24	HONOLULU	18.0	• 35	HONOLULU	13.0	• 31
	3000	5	HONDEULU	13.3	• 98	HONOLULU	19.0	• 97
		4	HONOLULU	11.3	• 39	HONOLULU	11.3	• 96
		6	HONOLULU	4.7	• 99	HONOLULU	8.9	* 3ª
		8	HONOLULU	3.5	•98	HONOLULU	8.9	• 97
		10	HONOLULU	3.0	• 37	HCNOLULU	6.6	• 95
		12	HONOLULU	3.0	•96	HONOLULU	5.6	• 93
		14	HONOLULU	3.0	• 96	HONOLULU	4.7	• 97
		16 18	HONOLULU	3.5 6.9	• 95 • 98	HONGLULU	4.7	• 35
		20	HONOLULU	11.3	•37	HONOLULU	13.3	• 96
		22	HONOLULU	11.3	• 96	HONOLULU	18.0	•91 •34
		24	HONOLULU	13.3	• 36	HONOLULU	13.0	
	3500	. 5	HONOLULU	8.9	.98	HONGLULU	11.3	• 95 • 98
	3703	i	HONOLULU	4.7	.99	HONOLULU	5 • 6	-98
		6	HONOLULU	3.5	1.30	HONOLULU	6.6	. 99
		ě	HONOLULU	3.0	. 39	HONOLULU	5.6	.98
		10	HONOLULU	3.0	. 99	HCNOLULU	5.6	• 97
		12	HONOLULU	3.0	. 39	HONOLULU	3.0	. 95
		14	HONOLULU	3.0	.98	HONOLULU	3.0	• 96
		16	HONOLULU	3.0	. 96	HONOLULU	3.0	. 98
		15	HONOLULU	5.6	. 39	HONOLULU	8.9	. 97
		20	HONOLULU	6.6	•97	HCNOLULU	11.3	.97
		22	HONOLULU	8.9	• 35	HONOLULU	13.3	. 93
		24	HONOLULU	11.3	. 37	HONOLULU	13.3	• 36

TABLE B-2. NORTH PACIFIC PATH (CONT.)

		SOLAR	ACTIVITY	LEVEL		
SSN	=	10		SSN	=.	110

MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERHINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
MAR	3643	?	HONOLULU	6.6	-98	HONOLULU	11.3	. 99
		4	HONOLULU	4.7	.99	HONOLULU	5.6	• 99
		6	HONOLULU	3.0	1.00	HCNOLULU	4.7	• 93
		8	HONOLULU	3.0	1.00	HONOLULU	4.7	-98
		10	HONOLULU	3.0	• 39	HONOLULU	4.7	.98
		12	HONOLULU	3.0	• 97	HONOLULU	3.5	. 97
		14	HONOLULU	3.0	. 35	HONOLULU	3.0	• 95
		16	HONOLULU	3.0	• 89	HONOL UL U	3.0	• 92
		18 20	HONOLULU	4.7	- 97	HONOLULU	6.6	-98
		22	HONOLULU	5.6	• 94	HONOLULU	8.9	. 98
		24	HONOLULU	6.6	• 86	HONOLULU	11.3	• 95
JUN	200	2	HONOLULU	8.9	• 96	HONOLULU	11.3	• 97
•••	200	4	SAN FRAN San Fran	4.7	•99	SAN FRAN	5 .6	. 97
		6	SAN FRAN	3•5 3•5	• 99	SAN FRAN	4.7	• 99
		8	SAN FRAN	3.0	1.00	SAN FRAN	4.7	1.00
		10	SAN FRAN	3.0	1.00	SAN FRAN	3.0	• 99
		12	SAN FRAN	3.0	• 99	SAN FRAN	3.0	• 99
		14	SAN FRAN	3.5	99	SAN FRAN San Fran	3.5	• 99
		16	SAN FRAN	3.0	. 38	SAN FRAN	4.7	• 95
		18	SAN FRAN	4.7	• 91	SAN FRAN	5.6 5.6	• 91
		20	SAN FRAN	4.7	.80	SAN FRAN	6.6	.78 .65
		22	SAN FRAN	4.7	• 92	SAN FRAN	6.6	.72
		24	SAN FRAN	4.7	. 95	SAN FRAN	6.6	. 34
	500	2	SAN FRAN	4.7	.99	SAN FRAN	6.6	.93
		4	SAN FRAN	5.6	1.00	SAN FRAN	5.6	•99
		6	SAN FRAN	3.5	1-00	SAN FRAN	4.7	1.00
		8	SAN FRAN	3.0	• 99	SAN FRAN	3,5	1.00
		10	SAN FRAN	3.0	• 39	SAN FRAN	4.7	1.05
		12	SAN FRAN	3.0	1.00	SAN FRAN	3.5	.99
		14	SAN FRAN	3.5	1.00	SAN FRAN	4.7	.99
		16 18	SAN FRAN	4.7	• 99	SAN FRAN	5.6	.97
		50	SAN FRAN	5.6	. 95	SAN FRAN	6.6	. 94
		22	SAN FRAN San Fran	5.6	•90	SAN FRAN	6 • 6	.79
		24	SAN FRAN San Fran	5.6	• 95	SAN FRAN	6.6	. 34
	1030	2	SAN FRAN	5.6	-98	SAN FRAN	6.6	• 95
	2000	4	SAN FRAN	6.6	. 99	SAN FRAN	5.9	و و.
		6	SAN FRAN	6.6 6.6	• 99	SAN FRAN	3.9	• 99
		8	SAN FRAN	5.6	1.00 .38	SAN FRAN	6.6	1.00
		10	SAN FRAN	4.7	• 90	SAN FRAN	4.7	• 39
		12	SAN FRAN	3.0	- 76	SAN FRAN San Fran	4.7	• 99
		14	SAN FRAN	5.6	39	SAN FRAN	3.5	• 97
		16	SAN FRAN	6.6	.47	SAN FRAN	6.6	. 98
		18	SAN FRAN	8.9	• 91	SAN FRAN	5.9 8.9	. 37
		20	SAN FRAN	8.9	. 80	SAN FRAN	11.3	• 87 • 35
		22	SAN FRAN	8.9	. 91	SAN FRAN	11.3	• 30
		24	SAN FRAN	8.9	. 96	SAN FRAN	6.9	-96
							- • ,	• 70

1ABLE B-2. NORTH PACIFIC PATH (CONT.)

SOLAR ACTIVITY LEVEL
SSN = 110 SSN = 110

MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FREQ	₹EL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
NUL	1500	S	SAN FRAN	11.3	.97	SAN FRAN	11.3	•95
		4	SAN FRAN	11.3	• 98	SAN FRAN	13.3	• 98
		6 8	SAN FRAN	8.9	•99	SAN FRAN	8.9	• 99
		10	SAN FRAN San Fran	6.6 6.6	• 95 • 35	SAN FRAN San Fran	8.9 6.9	. 99 . 99
		12	SAN FRAN	5.6	. 34	SAN FRAN	6.6	. 99 . 34
		14	SAN FRAN	6.6	.98	SAN FRAN	8.9	.34
		16	SAN FRAN	8.9	. 97	SAN FRAN	11.3	•96
		18	SAN FRAN	11.3	.90	SAN FRA	13.3	.91
		20	SAN FRAN	13.3	.84	SAN FRAN	13.3	. 15
		22	SAN FRAN	11.3	.90	SAN FRAN	13.3	.90
		24	SAN FRAN	11.3	•96	SAN FRAN	11.3	. 94
	2000	2	HONOLULU	18.J	. 93	SAN FRAN	13.3	. 93
		4	HONOLULU	18.3	- 98	HONOLULU	18.0	• 95
		6	SAN FRAN	11.3	. 98	EITHER	13.3	• 98
		8	HONOLULU	8.9	• 97	EITHER	11.3	• 98
		10	HONOLULU	8.9	.97	EITHER	11.3	.98
		12	HONOLULU	8.9	. 37	HONOLULL	8 • 9	•97
		14	SAN FRAN	6.6	• 93	HONOLULU	11.3	.93
		16	HONOLULU	8.9	• 35	HONOLULU	11.3	• 34
		18	HONOLULU	11.3	.98	HONOLULU	13.3	. 95
		5 <i>5</i> 50	HONOLULU	13.3	• 96	HONOLULU	18.3	. 74
		24	SAN FRAN San Fran	13.3	• 58 • 91	HONOLULU	10.8	. 93
	2500	5	HONOLULU	13.3	.97	SAN FRAN Honolulu	18.0	• 95 • 95
	2300	4	HONOLULU	13.3	.97	HONOLULU	18.0	.93
		6	HONOLULU	11.3	-39	HONOLULU	11.3	.33
		8	HONOLULU	8.9	.99	HONOLULU	8.9	. 99
		10	HONOLULU	4.7	.98	HONOLULU	8.9	. 99
		12	HONOLULU	5.6	.98	HONOLULU	5.6	. 99
		14	HONOLULU	6.6	.97	HONOLULU	R.9	. 37
		16	HONOLULU	6.6	• 96	HONOLULU	8.9	. 98
		18	HONOLULU	8.9	. 33	HONOLULU	11.3	• 9à
		20	HONOLULU	11.3	. 89	HONOLUL U	13.3	• 95
		22	HONOLULU	13.3	• 92	HONGLULU	13.3	.77
		24	HONOLULU	13.3	• 97	HONOLULU	15.0	• 3 =
	3000	2	HONOLULU	11.3	• 99	HONOLULU	13.3	• 98
		4	HONDLULU	8.9	.99	HONOLULU	3.9	. 99
		6	HONOLULU	6.6	1.00	HONOLULU	P.3	1.00
		A 0	HONOLULU	4.7	• 39	HONOLULU	5.6	1.30
		10 12	HONOLULU	3.5 3.5	•99 •99	HONOLULU	5.6 5.6	1.00
		16	HONOLULU	3.5	.99	HONOLULU	5.6	.99
		16	HONOLULU	5.6	. 38	HONOLULU	7.0 6.6	. 99
		1.0	HONOLULU	6.6	. 35	HONOLULU	6.9	39
		27	HOROLULU	8.9	. 21	HONOLULU	11.3	• 35
		7)	-240L JLU	8.9	. 71	HONOLULU	13.3	95
		76	ベンドクレリレノ	11.3	. 19	HONOLULU	13.3	. +7

TABLE B-2. NORTH PACIFIC PATH (CONT.)

SOLAR ACTIVITY LEVEL
SSN = 10 SSN = 110

HONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
אטנ	3500	2	HONOLULU Honolulu	6.6	.99	HONOLULU	8.9	.98
		6	HONOLULU	5.6 4.7	1.00	HONOLULU HONOLULU	6.6 4.7	1.00 1.00
		8	HONOLULU	3.0	1.00	HONOLULU	4.7	1.00
		10	HONOLULU	3.0	1.00	HONOLULU	4.7	1.30
		12	HONOLULU	3.0	1.00	HONOLULU	4.7	1.05
		14	HONOLULU	3.0	1.00	HONOLULU	4.7	1.03
		16	HONOLULU	3.0	. 99	HONOLULU	5.6	• 99
		18	HONOLULU	4.7	• 98	HONOLULU	5.6	.98
		20	HONOLULU	5.6	. 94	HONOLULU	8.9	. 93
		22	HONOLULU	6.6	- 89	HONOLULU	9.9	.77
	764.7	24	HONOLULU	8.9	. 95	HONOLULU	11.3	-89
	3643	2 4	HONOLULU	6.6	.99 1.00	HONOLULU	4.5	• 95
		6	HONOLULU	5.6 3.0	1.00	HONOLUL U	6.6 4.7	•99 •93
			HONOLULU	3.0	1.00	HONOLULU	3.6	• 38
		10	HONOLULU	3.0	1.00	HCNOLULU	3.5	-95
		12	HONOLULU	3.0	1.30	HONOLULU	3.0	.97
		14	HONOLULU	3.0	1.06	HONOLULU	3.5	. 93
		16	HONOLULU	3.0	. 39	HONOLULU	4.7	. 99
		18	HONOLULU	4.7	.99	HONOLULU	5.6	. 97
		20	HONOLULU	3.5	. 59	HONOLULU	6.6	• 95
		22	HONOLULU	6.6	. 82	HONOLULU	8.9	. 75
		24	HONOLULU	6.6	• 92	HONOLULU	٠.9	. 33
SEP	200	5	SAN FRAN	3.5	. 98	SAN FRAN	4.7	• 97
		4	SAN FRAN	3.0	• 39	SAN FRAN	3.5	• 97
		6 4	SAN FRAN San Fran	3.) 3.0	•98 •96	SAN FRAN San Fran	3.0	. 94
		10	SAN FRAN	3.0	• 92	SAN FRAN	3.0 3.0	• 32
		12	SAN FRAN	3.0	. 93	SAN FRAN	₹.0	•92
		14	SAN FRAN	3.0	.97	SAN FRAN	3.5	.92
		16	SAN FRAN	3.5	• 35	SAN FRAN	5.6	.93
		1.5	SAN FRAN	4.7	. 95	SAN FRAN	5.6	. 83
		20	SAN FRAN	5.6	.68	SAN FRAN	6.9	.63
		22	SAN FRAN	5 • 6	. 76	SAN FRAN	6.6	.75
		24	SAN FRAN	4.7	. 94	SAN FRAN	6.6	, 75
	5 G O	5	SAN FRAN	4.7	• 99	SAN FRAN	6.6	• 3 •
		4	SAN FRAN	3 • 5	• 99	SAN FRAN	4.7	• 99
		6 9	SAN FRAN	3.0	•99	SAN FRAN	3.5	• 3.5
			SAN FRAN	3.0	• 98	SAN FRAN	3.5	. 98
		10 12	SAN FRAN San Fran	3.0 3.J	•97 •97	SAN FRAN San Fran	3.5	• 34
		14	SAN FRAN	3.0	• 37	SAN FRAN	3.5 4.7	, 97 , 45
		16	SAN FRAN	4.7	• 98	SAN FRAN	6.6	. 94
		18	SAN FRAN	5.6	. 34	HONOLULU	13.3	. 71
		50	SAN FRAN	6.6	• 36	SAN FRAN	5.9	75
		22	SAN FRAN	6.6	. 89	SAN FRAN	+ • 5	.62
		24	SAN FRAN	4.7	. 38	SAN FRAN	8.9	.93
							-	

TABLE B-2. NORTH PACIFIC PATH (CONT.)

		SOLAR	ACTIVITY	LEVEL		
SSN	¥	10		SSN	=	110

MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FREQ	REL
(7)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
SEP	1000	2	SAN FRAN	8.9	. 98	SAN FRAN	11.3	•99
		4	SAN FRAN	6.6	- 98	SAN FRAN San Fran	8.9	•99
		6 9	SAN FRAN San Fran	4.7 4.7	•97 • 95	SAN FRAN	6.6 6.6	• 99 • 98
		10	SAN FRAN	4.7	. 94	SAN FRAN	5.6	. 97
		12	SAN FRAN	3.5	• 32	SAN FRAN	5.6	• 96
		14	SAN FRAN	4.7	.97	SAN FRAN	6.6	. 96
		16	SAN FRAN	6.6	. 99	SAN FRAN	8.3	. 96
		18	SAN FRAN	8.9	. 95	SAN FRAN	11.3	• 96
		20	SAN FRAN	8.9	. 83	SAN FRAN	13.3	. 39
		22	SAN FRAN	8.9	•91	SAN FRAN	11.3	. 89
		24	SAN FRAN	8.9	• 96	SAN FRAN	11.3	• 96
	1500	2	SAN FRAN	11.3	• 36	SAN FRAN	13.3	• 37
		4	SAN FRAN	8.9	• 96	SAN FRAN	11.3	.98
		6	SAN FRAN	6.6	• 94	SAN FRAN	6.9	.98
		8	SAN FRAN	5.6	• 90	SAN FRAN San Fran	8.9	. 96
		10	SAN FRAN San Fran	5.6 5.6	. 89 . 88	SAN FRAN	8.3 6.6	•35 • 93
		12 14	SAN FRAN	5.6	.93	SAN FRAN	3.9	. 95
		16	SAN FRAN	8.9	.97	SAN FRAN	11.3	.97
		18	SAN FRAN	11.3	.89	HONOLULU	13.0	.70
		20	SAN FRAN	11.3	. 93	SAN FRAN	13.3	. 75
		52	SAN FRAN	11.3	. 82	SAN FRAN	13.3	.80
		24	SAN FRAN	11.3	• 96	SAN FRAN	13.3	• 96
	2030	2	HONOLULU	18.J	• 96	SAN FRAN	18.0	. 94
		4	HONOLULU	13.3	• 96	HONOLULU	10.0	. 36
		6	HONOLULU	8.9	• 94	HONOLULU	18.0	. 99
		8	HONOLULU	6.6	• 90	HONOLULU	3.9	.98
		10	HONOLULU	5.6	• 56	HONOLULU	8.9	. 96
		12	HONOLULU	5.6	. 35	EITHER	5.9	. 32
		14	HONOLULU	6.6	• 62 • 90	HONOLULU	13.3	. 92
		16 18	SAN FRAN Honolulu	8.9 11.3	• 93	HONOLULU	19.0	.e.
		20	HONOLULU	13.3	.90	HONOLULU	19.0	. 87
		5.5	SAN FRAN	13.3	.77	SAN FRAN	16.0	.79
		24	SAN FRAN	13.3	. 90	SAN FRAN	18.0	.87
	2500	2	HONOLULU	18.0	. 39	HONOLULU	19.0	.98
		4	HONOLULU	13.3	. 99	HONOLULU	18.3	1.00
		6	HONOLULU	5,6	. 37	HONGLULU	3.9	• 40
		e	HONOLULU	5.6	• 95	UJUJONCH	۶.۶	• 99
		10	HONDLULU	4.7	. 93	HONOLULU	h • 9	• 99
		12	HONOLULU	6.6	. 94	HONOLULU	8.9	. 98
		14	HONOLULU	4.7	. 30	HCNOLULU	5.9	. 94
		16	HONOLULU	6.6	• 96	HONOLULU	11.3	. 97
		16	HONOLULU	8.9	.97	HONOLULU HONOLULU	1÷.0	• 34 • 35
		22 20	HONOLULU	11.3 13.3	. 93 . 94	HONOLULU	13.0	. 35
		24	HONOLULU	13.3	25	HONOLULU	1:.0	. 96
		€ ₩	HONOLOGO		• 77	1101105050	* C 4 A	0

TABLE B-2. NORTH PACIFIC PATH (CONT.)

	SOLAR	ACTIVITY	LEVEL		
SSN =	10		SSN	=	110

HONTH	DISTANCE	TIHE	TERMINAL	FREQ	REL	TERHINAL	FREQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
SEP	3000	2	HONOLULU	11.3	• 99	HONOLULU	18.0	1.00
		4	HONOLULU	11.3	1.00	HONOLULU	11.3	1.00
		6	HONOLULU	4.7	. 99	HONOLULU	8.9	1.00
		8	HONOLULU	3.0	• 94	HONOLULU	8.9	1.30
		10	HONOLULU	3.0	• 97	HONOLULU	8.9	1.00
		12	HONOLULU	3.5	. 96	HONOLULU	6.6	.99
		14 16	HONOLULU	3.0	• 95	PONOLULU	4.7	• 96
		16	HONOLULU	4.7	• 96	HONOLULU	5.6	• 95
		20	HONOLULU	6.6	•98 •96	HONOLULU	13.3	. 99
		22	HONOLULJ	8.9 11.3	• 98	HONOLULU	13.3	.97
		24	HONOLULU	11.3	• 98	HONOLULU	13.3	. 99
	3500	2	HONOLULU	8.9	1.30	HONOLULU	11.3	.99
	3700	4	HONOLULU	5.6	1.00	HONOLULU	8.9	1.00
		6	HONOLULU	3.0	1.30	HONOLULU	5.6	1.03
		ě	HONOLULU	3.0	. 99	HONOLULU	5.6	.99
		10	HONOLULU	3.0	.9é	HONOLULU	4.7	.97
		12	HONOLULU	3.0	.98	HONOLULU	4.7	. 95
		14	HONOLULU	3.0	. 96	HONOLULU	3.5	9 6
		16	HONOLULU	3.0	. 96	HONOL UL U	4.7	. 97
		18	HONOLULU	4.7	.99	HONOLULU	a . 9	. 95
		20	HONOLULU	5.6	. 97	HONOLULU	8.9	. 94
		22	HONOLULU	8.9	. 55	HONOLULU	11.3	. 43
		24	UJUJCNOH	8.3	• 98	HONOLULU	11.3	. 94
	3643	2	HONOLULU	6.6	. 99	HONOLULU	3.9	.98
		4	HONOLULU	3.5	• 39	HONOLULU	5.6	. 99
		6	HONOLULU	3.0	1.30	HONOLULU	4.7	. 97
		e	HONOLULU	3.0	• 39	HONOLULU	4.7	• 97
		10	HONOLULU	3.0	• 39	HONOLULU	4.7	. 96
		12	HONOLULU	3.0	• 98	HONOLULU	4.7	. 95
		14	HONOLULU	3.0	• 33	HONOLULU	3.0	• 93
		16	HONOLULU	3.3	. 95	HONOLULU	3.5	• 92
		18	HONOLULU	4.7	• 36	HONOLULU	6.6	• 37
		20	HONOLULU	5.6	.93	HONOLULU	9.9	. 94
		55	HONOLULU	6.6	. 93	HONOLULU	11.3	. 34
DEC	2.00	24	UJUJCNOH	6.6	• 33	HONOLULU	11.3	• 35
DEC	500	2 (,	SAN FRAN San Fran	3.0	1.00 .32	SAN FRAN	3.5	• 9 3
		6	SAN FRAN	3.0 3.0	. 95	SAN FRAN San Fran	3.J 3.D	• 33
		8	SAN FRAN	3.0	• 98	SAN FRAN	3.0	• 33
		10	SAN FRAN	3.0	.99	SAN FRAN	3.0	• 95
		12	SAN FRAN	3.0	• 37	SAN FRAN	3.0	• 97
		14	SAN FRAN	3.0	. 39	SAN FRAN	3.0	96
		16	SAN FRAN	3.5	. 99	SAN FRAN	4.7	. 79
		18	SAN FRAN	4.7	. 38	SAN FRAN	6.6	99
		20	SAN FRAN	5.6	• 97	SAN FRAN	3.9	. 93
		22	SAN FRAN	5.6	. 98	SAN FRAN	4.9	99
		24	SAN FRAN	3.5	. 99	SAN FRAN	5.6	. 9 5

TABLE B-2, NORTH PACIFIC PATH (CONT.)

		SOLAR ACTIVITY LEVEL						
			SSN	= 10			= 110	
MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FREQ	REL
(1)	(5)	(3)	(4)	(5)	16)	(7)	(8)	(9)
DEC	503	2	SAN FRAN	3.0	1.90	SAN FRAN	4.7	. 99
		4	SAN FRAN	3.0	.99	SAN FRAN	3.5	1.00
		6	SAN FRAN	3.0	.98	SAN FRAN	3.5	1.03
		8 10	SAN FRAN	3.0	+99	SAN FRAN	3.5	1.00
		12	SAN FRAN San Fran	3.0	1.30	SAN FRAN	3.5	1.03
		14	SAN FRAN	3.0 3.0	. 99 . 98	SAN FRAN	3.0	. 99
		16	SAN FRAN	3.0	.99	SAN FRAN SAN FRAN	3.0	. 33
		18	SAN FRAN	6.6	.39	SAN FRAN	5 • 6 8 • 9	•98 •98
		20	SAN FRAN	6.6	. 96	SAN FRAN	11.3	•98 •97
		22	SAN FRAN	6.6	. 98	SAN FRAN	11.3	98
		24	SAN FRAN	5.6	1 - 00	SAN FRAN	8.9	.99
	1000	2	SAN FRAN	4.7	.99	SAN FRAN	11.3	1.00
		4	SAN FRAN	3.0	.98	SAN FRAN	5.6	. 99
		6	SAN FRAN	3.0	• 98	SAN FRAN	4.7	• 99
		8 10	SAN FRAN	3.0	. 98	SAN FRAN	4.7	• 99
		12	SAN FRAN San Fran	3.5	• 99	SAN FRAN	4.7	• 99
		14	SAN FRAN	3.5 3.5	•98 •98	SAN FRAN	4.7	.98
		16	SAN FRAN	6.6	• 36	SAN FRAN San Fran	3.0	. 97
		18	SAN FRAN	8.9	.97	SAN FRAN	8.9 13.3	•96 •95
		20	SAN FRAN	11.3	.97	SAN FRAN	13.3	90
		22	SAN FRAN	11.3	. 98	SAN FRAN	13.3	.92
		24	SAN FRAN	8.9	• 39	SAN FRAN	11.3	. 39
	1500	2	SAN FRAN	8.9	. 98	SAN FRAN	13.3	. 99
		4	SAN FRAN	4.7	• 96	SAN FRAN	11.3	. 99
		6 8	SAN FRAN	4.7	• 95	SAN FRAN	5.6	. 97
		10	SAN FRAN San Fran	4.7 4.7	. 35	SAN FRAN	6.6	. 37
		12	SAN FRAN	5.6	• 36 • 95	SAN FRAN San Fran	6.6	• 37
		14	SAN FRAN	4.7	• 93	SAN FRAN	5.6 5.6	• 96
		16	SAN FRAN	8.9	. 96	SAN FRAN	11.3	• 93 • 96
		16	SAN FRAN	13.3	. 36	SAN FRAN	19.0	. 93
		20	SAN FRAN	13.3	• 96	SAN FRAN	18.0	. 89
		22	SAN FRAN	13.3	• 90	SAN FRAN	15.0	. 91
	7010	24	SAN FRAN	13.3	.98	SAN FRAN	18.0	. 98
	2033	2	HONOLULIJ	18.0	• 37	SAN FRAN	14.9	. 97
		4 6	HONOLULU San Fran	8.9	. 34	HONOLULU	15.3	• 35
		ř	SAN FRAN	5.6 5.6	.91 .90	HONOLULU	13.3	. 95
		10	SAN FRAN	5.6	. 89	HONOLULU HONOLULU	11.3	• 97
		12	HCNOLULU	5.6	.30	HONOLULU	8.9 6.6	. 95
		14	HONOLULU	5.6	. 86	HONOLULU	6.6	• 1 1
		16	SAN FRAN	11.3	.91	SAN FRAN	13.3	• 31
		18	HONOLULU	13.3	. 91	HONOLULU	18.3	. 89
		50	HONOLULU	18.0	• 90	EITHER	1 2 . 0	. 44
		22	HONOLULU	18.3	• 36	HONOLULU	1 3 . 0	. 75
		24	HONOLULU	18.0	-91	SAN FRAN	1 0	. 91

TABLE B-2. NORTH PACIFIC PATH (CONT,)

SOLAR ACTIVITY LEVEL
SSN = 10 SSN = 110

MONTH	DISTANCE	TIME	TERMINAL	FREQ	REL	TERMINAL	FPEQ	REL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
DEC	2500	2	HONOLULU	13.3	. 97	HONOLULU	16.0	. 99
		4	HONOLULU	8.9	• 98	HONOLULU	11.3	•99
		6	HONOLULU	5.6	•91	HONOLULU	8.9	• 99
		8 10	HONOLULU	4.7	• 90	HONOLULU	11.3	. 99
		1 u 1 2	HONOLULU HONOLULU	3.5 4.7	• 97 • 94	HONCLULU	5 • 6 5 • 6	• 96
		14	HONOLULU	4.7	.39	HONOLULU	4.7	•96 •95
		16	HONOLULU	4.7	.98	HONOLULU	5.6	.94
		18	HONOLULU	11.3	. 97	HONOLULU	18.0	. 96
		20	HONOLULU	13.3	. 96	HONOLULU	18.0	. 89
		22	HONOLULU	13.3	• 35	HONOLULU	18.0	. 94
		24	HONOLULU	18.0	• 98	HONOLULU	18.0	. 94
	3000	5	HONOLULU	8.9	• 39	HONOLULU	11.3	. 99
		4	HONOLULU	5.6	• 99	HONOLULU	4.9	1.03
		6	HONOLULU	3.5	• 97	HONOLULU	6 • 6	1.00
			HONOLULU	3.0	. 95	HONOLULU	5.6	•99
		10 12	HONOLULU	3.0	. 94	HONOLULU	4.7	.90
		14	HONOLULU	3.5 3.0	• 98 • 93	HONOLULU	5.6 3.0	• 33 • 98
		16	HONOLULU	3.0	• 95	HONOLULU	3.5	•97
		18	HONOLULU	8.9	.99	HONOLULU	13.3	.97
		20	HONOLULU	13.3	. 99	HONOLULU	18.0	98
		22	HONOLULU	11.3	• 38	HONOLULU	13.3	. 92
		24	HONOLULU	11.3	. 36	HCNOLULU	13.3	91
	350)	2	HONOLULU	6.6	1.00	HONDLULU	8.9	. 99
		4	HONOLULU	3.5	1.00	HONDLULU	4.7	. 93
		6	HONDLULU	3.0	1.00	HONOLULU	5.6	1.00
		8	HONOLULU	3.0	• 38	HCNOLULU	4.7	• 3ª
		10	HONOLULU	3.0	• 33	HONOLULU	3 • C	• 99
		12	HONOLULU	3.0	.99	HONOLULU	3.0	• 9 3
		14	HONOLULY	3.0	. 33	HONOLULU	3.0	. 39
		15 18	HONOLULU	3.0	.91	HONOLULU HONOLULU	3.0 5.9	• 9±
		20	HONOLULU	5.6 8.9	1.00 .99	HONOLULU	11.3	.95
		22	HONOLULU	8.9	• 33	HONOLULU	11.3	• 92
		24	HONOLULU	8.9	. 99	HONOLULU	11.3	. 96
	3643	5	HONOLULU	5.6	1.00	HCNOLULU	3.9	.99
		į.	HONOLULU	3.0	1.30	HONOLULU	4.7	99
		6	HONOLULU	3,0	1.30	HONOLULU	3.0	. 93
		9	HONOLULU	3.0	. 37	HONOLULU	3.0	. 97
		1 G	HONOLULU	3.0	- 38	HONOLULU	3 . 0	• 96
		12	HONOLULU	3.0	• 98	HONDLULU	3.3	. 95
		14	HONOLULU	3.0	. 49	HONOLULU	3.0	• 96
		16	HONOLULJ	3.1	. 94	HONOLULU	3.0	• 36
		18	HONOLULU	3.5	. 97	HONGLULU	6.6	• 99
		2 2 2 2	HONOLULU	6.6	• 36 • 90	HONOLULU	9.9 8.9	• 99
		24	HONOLULU	6.6 6.6	• 90 • 96	MONOLULU	3.9	• 92
		ć 4	HOHOLOLD	0.0	• 70	M. HOLOLO	7 9 7	• 77

220 Copies

U.S. DEPARTMENT OF TRANSPORTATION RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION TRANSPORTATION SYSTEMS CENTER MEMBRING MAINTER MEMBRING MAINTER MAINTENAMENT SOUNDE CAMBRIDGE, MA. 02142

OFFICIAL BUSINESS
PRIMATY FOR PRIVATE USE, 1300

Postage and Fles Paid U.S. Department of Transportation 613

