Передатчик

Элементы схемы:

Элемент питания — любой источник с напряжением 3...5 вольт.
Схемы передатчика и PIR детектора по желанию. Очень важно минимальное энергопотребление в ждущем режиме. Для PIR детектора — в случае срабатывания, на выходе (out) должна появляться лог.1 (можно однократно и кратковременно) все

остальное время на выходе должен присутствовать «0».

Передатчик – вход «IN» вход для модуляции, в отсутствии сигнала модуляции на выводе GPO постоянно присутствует «0».

При необходимости коммутации питания

передатчика (либо выходного каскада УВЧ) можно использовать вывод GP1 (перед отправкой кода модуляции на нем появляется «1»)

Алгоритм:

После включения датчик отправляет специальный код «Регистрация», затем код подтверждения «ОК» и переходит в цикличный режим отправки кода «ОК» через интервал времени «TX_sleep_time»*, во время которого процессор находится в режиме минимального энергопотребления. В течение периода (TX_sleep_time) код подтверждения отправляется дважды. Первый раз с одинаковым интервалом (TX_sleep_time) второй раз через случайный интервал времени (2 – 50 сек.).

Кроме случаев отправки кода подтверждения «ОК», выход из режима сна возможен только при поступлении лог.1 на вход PIR_data (сопровождается отправкой кода «Тревога») $*TX_sleep_time = ^1MuH$.

Настройка:

При программировании микроконтроллера необходимо рассчитать и внести данные для программирования энергонезависимой памяти (EEPROM). Это необходимо для корректного измерения уровня заряда батареи устройства, а также присвоения устройству уникального идентификационного номера (ID). Для упрощения процедуры расчета значений нужно воспользоваться Excel файлом «EEPROM_calculator.xls».

Точность измерения уровня заряда батареи, зависит от точности внесения данных о значении опорного напряжения (Vref). Для его измерения необходимо подключить затвор полевого транзистора (точка A) к «плюсу» источника питания (не забыв предварительно отключить его от вывода контроллера) и измерить напряжение в точке (B). Значение

следует записать (до сотых) и в последствии внести его в «EEPROM_calculator».

Алгоритм работы

Приемник

Элементы схемы:

Элемент питания – любой источник с напряжением 3...5 вольт.

Схемы приемника любая. Основное требование - минимально возможное потребление, т.к. приемник должен находится во включенном состоянии постоянно.

Светодиоды лучше располагать на некотором удалении друг от друга, для того, чтобы можно было быстро «считывать» информацию о номере датчика. Также следует учесть, что светодиоды с 1 по 5й задействованы для отображения заряда батареи устройства, поэтому их лучше располагать «в линейку».

IN_PORT – вход для приема кода

Button_1 – вход для кнопки «Проверка АКБ»/«Сброс статуса»/«Регистрация» (лог 0)

Button_2 – вход для кнопки «Проверка регистрации»/«Удаление датчика»/«Полный сброс» (лог 0)

Buzzer - выход для звукового пьезоизлучателя (либо на высокоомный вход ЗУ).

Alarm_out – выход дублирующий сигнал «Тревога» (лог 1)

Значение кнопок в разных режимах работы:

Кнопка	«Дежурство» -	Информирование о	Включение питания	Режим
	основной режим	событии: «Тревога»,	устройства (при	регистрации
	ожидания	«Низкий заряд	удержании кнопки в	датчика
		батареи датчика»,	нажатом состоянии)	
		«Датчик потерян»		
Кнопка	Проверка заряда АКБ	Сброс текущего	X	Регистрация
1	устройства	статуса события		датчика
		для датчика		
Кнопка	Проверка номеров	Удаление датчика из	Удаление всех	
2	зарегистрированных	списка	датчиков из списка	
	датчиков	зарегистрированных	зарегистрированных	

Алгоритм:

После включения процессор переходит в режим низкого энергопотребления (сон). Выход из режима сна возможен по сл. событиям:

- 1) Появление (лог.1) на IN PORT (прием и обработка кода)
- 2) Нажатие Кнопки 1 «Проверка АКБ» отображение уровня заряда АКБ (мерцающая линейка светодиодов 1-5)
- 3) Нажатие Кнопки 2 «Проверка номеров зарегистрированных датчиков» отображение номеров зарегистрированных датчиков
- 4) Время с момента получения кода «ОК» от любого зарегистрированного датчика превысило время RX_wait_time***

Все события сопровождаются свето/звуковыми сигналами:

- 1) При приеме кода «Регистрация» тройная вспышка соответствующего датчику светодиода с периодичностью ~1Гц.
- 2) При приеме кода «ОК» однократная вспышка светодиода, соответствующего датчику
- 3) При приеме кода «Низкий заряд батареи» двойная вспышка соответствующего датчику светодиода, с периодичностью ~1Гц.+ звуковой сигнал.
- 4) При приеме кода «Тревога» мигание соответствующего датчику светодиода, с частотой 1Гц. + звуковой сигнал.
- 5) Событие «Датчик потерян» при отсутствии кода «ОК» от зарегистрированного ранее датчика в течение «RX_wait_time» сопровождается тройной вспышкой соответствующего датчику светодиода с периодичностью ~1Гц. и звуковым сигналом.
- 6) При снижении напряжения источника питания устройства ниже уровня, указанного в «EEPROM_calculator.xls» для первого светодиода. Событие сопровождается звуковой и световой индикацией светодиоды 1-5 будут загораться по очереди (бегущий огонь) от пятого к первому.

При поступлении кодов событий «Низкий заряд батареи», «Тревога» или «Датчик потерян», устройство переходит в режим, при котором работает свето/звуковая индикация и не принимаются поступающие посылки от других датчиков сети, до момента нажатия кнопки «Сброс статуса». Нажатие кнопки «Сброс статуса» обнуляет только статус датчика, передавшего код события, но не удаляет регистрацию данного датчика в сети. Это означает что, если, например, получен код события «Низкий заряд батареи» после чего была нажата кнопка 1 «Сброс статуса» - следующая посылка с тем же кодом события от того же датчика вызовет повторное включение свето/звуковой индикации.

Соответственно, если в режиме свето/звуковой индикации кодов события «Низкий заряд батареи», «Тревога» или «Датчик потерян» нажать и удерживать кнопку 2 «Удаление датчика» - свето/звуковая индикация выключится и ID датчика, приславшего код события, будет удален из списка зарегистрированных (дальнейшие посылки от этого датчика будут игнорироваться). Для повторной регистрации датчика, потребуется выкл/вкл питание датчика и подтвердить регистрацию нажатием кнопки «Регистрация».

***RX wait time = ~3мин.

Настройка:

При программировании микроконтроллера, необходимо рассчитать и внести данные для программирования энергонезависимой памяти (EEPROM). Эта процедура выполняется в точности с описанием для передатчика (см. выше). В Excel файле «EEPROM_calculator.xls» есть таблица для приемника.

Порядок регистрации датчика

При включенном приемнике, включить питание датчика. В течение 2-3 секунды после включения датчика, приемник должен просигнализировать о получении кода события «Регистрация датчика». Регистрацию датчика необходимо подтвердить нажатием кнопки «Регистрация» в течение ~20 сек. Данная операция прописывает ID датчика в энергонезависимой памяти устройства (в EEPROM). Повторное откл/включение датчика (либо устройства) не сопровождается необходимостью выполнения процедуры регистрации, т.к. ID датчика уже хранится в энергонезависимой памяти устройства. Удаление конкретного датчика из энергонезависимой памяти возможно с помощью кнопки «Удаление датчика» при наступлении события «Низкий

заряд батареи», «Тревога» или «Датчик потерян» (описано выше). Также можно удалить все прописанные в энергонезависимой памяти датчики если выполнить процедуру полного сброса устройства.

Порядок выполнения полного сброса устройства

Процедура полного сброса устройства **обязательно** выполняется при первом включении устройства, а также в случае необходимости удаления всех ID ранее зарегистрированных датчиков в энергонезависимой памяти (EEPROM). Для выполнения процедуры необходимо просто включить устройство предварительно нажав и удерживая кнопку 2 «Полный сброс».

Проверка номеров зарегистрированных датчиков

В режиме «Дежурство» при нажатии на кнопку 2 «Проверка регистрации» запустится процесс отображения номеров зарегистрированных датчиков — тройная вспышка светодиодов, соответствующих номеру датчика (по очереди). После окончания проверки устройство автоматически перейдет в режим «Дежурство».

Проверка уровня заряда аккумуляторной батареи устройства

В режиме «Дежурство» нажать и удерживать кнопку 1 «Проверка АКБ». Светодиоды 1-5 будут отображать уровень заряда аккумулятора. В случае если уровень заряда ниже напряжения для первого светодиода (указывается в файле «EEPROM_calculator.xls») светодиоды 1-5 будут загораться по очереди (бегущий огонь) от пятого к первому.