

Pytorch Geometric most common classes for Data handling and manipulation (**torch_geometric.data**):

- Data
- Dataset (InMemoryDataset)
- ClusterData, ClusterLoader
- Batch
- NeighborSampler
- DataLoader

Pytorch Geometric most common classes for Data handling and manipulation (**torch_geometric.data**):

- Data
- Dataset (InMemoryDataset)
- ClusterData, ClusterLoader
- Batch
- NeighborSampler
- DataLoader

Available datasets in PyG (torch_geometric.datasets)

- Planetoid
- TUDataset
- Cora
- ...and many others

Pytorch Geometric most common classes for Data handling and manipulation (**torch_geometric.data**):

- Data
- Dataset (InMemoryDataset)
- ClusterData , ClusterLoader
- Batch
- NeighborSampler
- DataLoader

Available datasets in PyG (torch_geometric.datasets)

- Planetoid
- TUDataset
- Cora
- ...and many others

Pytorch Geometric most common classes for Data handling and manipulation (**torch_geometric.data**):

- Data
- Dataset (InMemoryDataset)
- ClusterData , ClusterLoader
- Batch
- NeighborSampler
- DataLoader

Available datasets in PyG (torch_geometric.datasets)

- Planetoid
- TUDataset
- Cora
- ...and many others

Especially recent benchmarks!

TABLE OF CONTENTS

Open Graph Benchmark

04 Benchmarking GNNs

02 Load a new dataset

We are going to load a dataset from scratch, implementing it as an **InMemoryDataset**.

The dataset of choice is called **FRANKENSTEIN**, a mix of graphs representing molecules whose vertices are **MNIST** images (instead of atom symbols).

The dataset is available at the <u>networkrepository</u> site, there are plenty of graph datasets available for free!

Let's switch to the jupyter notebook...

03 Graphs' benchmarks

In 2020, two main works on graph benchmarks were released:

- Open Graph Benchmark¹
- Benchmarking GNNs²

¹Hu, Weihua, et al. "Open graph benchmark: Datasets for machine learning on graphs." *arXiv preprint arXiv:2005.00687* (2020).

²Dwivedi, Vijay Prakash, et al. "Benchmarking graph neural networks." *arXiv preprint arXiv:2003.00982* (2020).

03 Graphs' benchmarks

In 2020, two main works on graph benchmarks were released:

- Open Graph Benchmark¹
- Benchmarking GNNs²

There are several advantages in using benchmarks:

- The repository provides a collection of datasets
- Standardized train/validation/test split
- Leaderboards

This helps reproducibility and comparison between different methods. Both frameworks provide datasets and code infrastructure to run the models.

¹Hu, Weihua, et al. "Open graph benchmark: Datasets for machine learning on graphs." *arXiv preprint arXiv:2005.00687* (2020).

²Dwivedi, Vijay Prakash, et al. "Benchmarking graph neural networks." *arXiv preprint arXiv:2003.00982* (2020).

03 Open Graph Benchmark

The datasets are chosen based on three main (orthogonal) aspects:

- Scale
- Tasks
- Domains

03 Open Graph Benchmark

The datasets are chosen based on three main (orthogonal) aspects:

Task

Large

- Scale
- Tasks
- Domains

Image taken from the OGB site

		-nago				
Domain	Nature	Society	Information			
Small		arxiv				
Medium	proteins	products	mag			
Large		papers100M				
Task		Link property prediction				
Domain	Nature	Society	Information			
Small	ddi	collab	biokg			
Medium	ppa	citation2	wikikg2			
Large						
Task	Graph property prediction ogbg-					
Domain	Nature	Society	Information			
Small	molhiv					
Medium	molncha / nna		code2			

Node property prediction

04 Benchmarking GNNs

- Focused on small and medium-scale datasets (6K to 7M nodes)
- Node, edge and graph classification; graph regression
- 8 datasets of from different domains
- Solid code base for comparing GNNs using Pytorch and DGL (Deep Graph Library)

Domain & Construction	Dataset	#Graphs	#Nodes	Total #Nodes	Task	
Chemistry: Real-world molecular graphs	ZINC	12K	9-37	277,864	Graph Regression	
Mathematical Modelling: Artificial graphs generated from Stochastic Block Models	PATTERN CLUSTER	14K 12K	44-188 41-190	1,664,491 1,406,436	Node Classification	
Computer Vision: Graphs constructed with SLIC super-pixels of images	MNIST CIFAR10	70K 60K	40-75 85-150	4,939,668 7,058,005	Graph Classification	
Combinatorial Optimization: Uniformly generated artificial Euclidean graphs	TSP	12K	50-500	3,309,140	Edge Classification	
Social Networks: Real-world citation graph	COLLAB	1	235,868	235,868	Edge Classification	
Circular Skip Links: Isomorphic graphs with same degree	CSL	150	41	6,150	Graph Classification	

Table taken from the publication

