Universidade Federal de Pernambuco Centro de Informática Processamento Gráfico – 2013.1

Especificação do Segundo Projeto (3 alunos)

Objetivo:

Parte Geral: Implementar o método de visualização de objetos triangulados, através do algoritmo de conversão por varredura, com métodos de interpolação de Phong, com a visibilidade garantida pelo algoritmo do "z-buffer".

Parte Específica: Produzir textura aleatória através da manipulação da cor do objeto.

Descrição: O usuário, através de arquivos-texto ou interface gráfica, entra com dados do objeto (triangulado, com lista dos vértices e da conectividade, que determina os triângulos, de um arquivo-texto), atributos do objeto (k_a , k_d e k_s , pontos flutuantes entre 0 e 1, η , ponto flutuante positivo e O_d , tripla de pontos flutuantes entre 0 e 1,), atributos da cena (I_a , I_L , triplas de ponto flutuante entre 0 e 255, P_L , tripla de ponto flutuante) e os atributos da câmera virtual (C, N e V, triplas de pontos flutuantes, d, h_x , e h_y , pontos flutuantes positivos). Se desejado, o usuário pode dar como entrada um fator de aleatorização (f) e a escolha de 1 ou mais canais, entre R,G e B. O seu sistema deve preparar a câmera, ortogonalizando V e gerando U, e depois os normalizando, fazer a mudança de coordenadas para o sistema de vista de todos os vértices do objeto e da posição da fonte de luz P_{I} , gerar as normais dos triângulos e gerar as normais dos vértices (como recomendado em sala de aula). Para cada triângulo, calculam-se as projeções dos seus vértices e inicia-se assim a sua conversão por varredura. Para cada pixel (x, y_{scan}) , calculam-se suas coordenadas baricêntricas com relação aos vértices projetados, e multiplicam-se essas coordenadas pelos correspondentes vértices do triângulo 3D original para se obter uma aproximação para o ponto 3D original correspondente ao pixel atual. Após uma consulta ao z-buffer, se for o caso, calcula-se uma aproximação para a normal do ponto utilizando-se mesmas coordenadas baricêntricas multiplicadas pelas normais dos respectivos vértices originais. Calculam-se também os demais vetores (L, V e R) e os substitui na equação do modelo de iluminação de Phong produzindo a cor do pixel atual. Se for para produzir a textura, o O_d deve ser perturbado de forma aleatória. Os valores de entrada das componentes de O_d sofrerão uma atenuação através do produto por valores entre 0 e 1 valores estes que devem ser obtidos de um gerador de números pseudo-aleatórios. O fator de aleatorização determina a amplitude desta atenuação. A atenuação estará sempre no intervalo [1-f, 1], com f entre 0 e 1, e ela atuará apenas no canal ou canais escolhido(s) pelo usuário.

Observações:

Alguns arquivos de objetos serão providos. O padrão do arquivo deve ser o dos que serão providos. O sistema deve poder aceitar a troca dos objetos sem necessariamente ser reinicializado. O seu sistema deve tratar de casos especiais de posições relativas de fonte de luz, câmera e ponto a ser observado no objeto.

Esteja preparado para modificar o código no momento da apresentação. A modificação a ser feita será divulgada no momento da apresentação, e todos os componentes serão convocados. As notas poderão ser diferentes, dependendo do

desempenho na modificação. Tipicamente, os decrementos na nota por erros no sistema são: i)falhas em seguir a especificação, estouro de memória na execução repetida, falhas de ordem geométrica, falhas de modelo: 1 pt. por falha; ii)falhas de iluminação: 0,5 pt. por falha