

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

A 762,407

Transportation
Library
TF
217
.5445
1913

WORKS OF PROF. W. H. SEARLES

PUBLISHED BY

JOHN WILEY & SONS.

Field Engineering.

A Handbook of the Theory and Practice of Railway Surveying, Location, and Construction, designed for Class-room, Field, and Office Use, and containing a large number of Useful Tables, Original and Selected. 12mo, morocco, \$3,00.

The Railroad Spiral.

The Theory of the Compound Transition Curve reduced to Practical Formulæ and Rules for Application in Field Work, with complete Tables of Deflections, Ordinates, Tangents and Long Chords for five hundred Spirals. 12mo, morocco, \$1.50.

RAILROAD SPIRAL

THE THEORY OF THE

COMPOUND TRANSITION CURVE

REDUCED TO

COMPLETE TABLES OF DEFLECTIONS APRIMATED 27 ANGENTS
AND LONG CHORIS FOR FIVE HUNDRED SPIRALS.

WILLIAM H. SEARLES, C.E.,

MEMBER AMERICAN SOCIETY OF CIVIL ENGINEERS, AUTHOR "FIELD ENGINEERING."

SIXTH EDITION, REVISED AND ENLARGED.

THIRTEENTH THOUSAND.

NEW YORK
JOHN WILEY & SONS
LONDON
CHAPMAN & HALL, Ltd.

1913

Copyright, 1882, 1898, By JOHN WILEY & SONS.

•••

COPYRIGHT RENEWED,
1910,
By WILLIAM H. SEARLES.

PREFACE TO THE SIXTH EDITION.

THE favor with which the earlier editions of this book have been received by both professors in college and engineers on the track has induced the author to enlarge the work both in text and tables. The additional tables were in part suggested by Mr. Henry J. Horn, Jr., of the Northern Pacific Railroad, who had prepared a similar table in blue-print for use upon that road under the direction of Mr. W. L. Darling, Prin. Asst. Engr.

The new Table VII. gives at a glance the lengths of the two tangents and the long chord of each spiral, and also the clearance between the circular curve and tangent necessary to make room for the spiral in each case. The new Chapter VII. explains the uses of this table, and gives a number of problems that frequently occur in practice in connection with a change in the following tangent. The method of obtaining interpolated values is described, and a practical method of relocating old track is suggested, by which spirals may be introduced without tedious computations.

The application of the spiral to two curves of different radii is here treated for the first time, showing by examples the manner of selecting spirals and of applying them to form a gradual transition from one curve to the other. The methods of location are fully explained.

The radii of curvature of the spiral when the chordlength is 100 have been inserted in Table I. These are convenient in making certain interpolations. All new work has been thoroughly revised and checked, and will be found to be quite as trustworthy as the older parts of the book.

With the aids here given, the introduction of spirals upon location becomes so simple a matter that no good reason seems to remain for their omission on any line where smooth riding is desirable.

PREFACE.

THE object of this work is to reduce the well-known theory of the cubic parabola or multiform compound curve, used as a transition curve, to a practical and convenient form for ordinary field work.

The applicability of this curve to the purpose intended has been fully demonstrated in theory and practice by others, but the method of locating the curve on the ground has been left too much in the mazes of algebra, or else has been described as a system of offsets, or fudging. Where a system of deflection angles has been given, the range of spirals furnished has been much too limited for general practice. In consequence the great majority of engineers have contented themselves with locating circular curves only, leaving to the trackman the task of adjusting the track, not to the centres given near the tangent points, but to such an approximation to the spiral as he could give "by eye."

The method here described is that of transit and chain, analogous to the method of running circular curves; it is quite as simple in practice, and as accurate in result. No offsets need be measured, and the curve thus staked out is willingly followed by the trackmen because it "looks right," and is right.

The preliminary labor of selecting a proper spiral for a given case, and of calculating the necessary distances to locate it at the proper place on the line, is here explained, and reduced to the simplest method. Many of

CONTENTS.

CHAPTER I.

BECTION '1	PAGE
1. Objections to simple circular curves	I
2. Office of the spiral	2
CHAPTER II.	
THEORY OF THE SPIRAL.	
3. Description of the spiral	3
4. Co-ordinates of the spiral	3
5. Deflection angles from the main tangent	5
6. Deflection angles from an auxiliary tangent	6
7. The chord-length as a variable	. 9
8. Construction of Table of Co-ordinates	10
9. Elements of the spiral	10
10. Selection of a spiral	11
CHAPTER III.	
ELEMENTARY PROBLEMS.	
II. To find a long chord SL	13
12. To find the tangents SE and EL	13
13. To find a long chord QL	14
14. To find the tangents QE' and $E'L$	15
15. To find the tangent-distance $T_s = SV$	16
16. To find T _s approximately	17
17. To find the radius R' in terms of T_s and spiral	17
Vil	

SEC	TION	AGE
18.	To find diff. R' in terms of diff. T_{\bullet}	19
19.	To find the external distance E_s	20
20.	To find the radius R' in terms of E_s and spiral	21
21.	To find diff. R' in terms of diff. x for E_s constant	23
	GIVA DONNER AVI	
	CHAPTER IV.	
	SPECIAL PROBLEMS.	
22.	Given, a simple curve, to replace it by another with	
	spirals; length of line unchanged	25
	a_{\bullet} To find the radius R'	26
	b_{\bullet} To find the offset h	2 6
	c. To find the distance $d = AS$	27
	d. To find lengths of old and new lines	27
•	e. To select a suitable spiral	28
	f. To find diff. h in terms of diff. R'	29
2 3.	Given, a simple curve, to apply spirals without change of	
	radius	32
24.	Given, a simple curve, to compound it for spirals without	
	disturbing the middle portion	34
2 5.	Given, a compound curve, to replace it by another, with	
	spirals; length of line unchanged	30
2 6.	Given, a compound curve, to apply spirals without change	
	of radii	4
27.	Given, a compound curve, to introduce spirals without dis-	-
•	turbing the P. C. C	41
		-
	CHAPTER V.	
	FIELD WORK.	
28.	To locate a spiral from S to L	45
29.	To locate a spiral from L to S	46
30.	To interpolate the regular stations	47
31.	Choice of method for locating spirals	47
32.	To locate a spiral by ordinates	48
33.	Use of spirals on location work	48
34.	Description of line with spirals	48
35.	Elevation of outer rail on spirals	49
36.	Monuments	49
J-1	Keeping field-notes	40

CONTENTS.

CHAPTER VI.

	OFFICE WORK.	
SECTION		Page
38.	Plotting spirals	50
39.	Explanation of Table VI	50
40.	Paper location, tangents predominant	5 I
41.	Paper location, curves predominant	52
42.	Change of line in the field	52
43.	To find the tangent distance by p and q	52
44.	To find the distance $h \S 23$ by p and q	53
	CHAPTER VII.	
	ADDITIONAL PROBLEMS.	
45.	To locate a spiral by its tangents or long chords only.	54
47.	To fix upon a tangent at the end of a curve	55
48.	To find a suitable spiral in terms of D and p	56
50.	To compute spiral tangents and long chord for any value of c	59
51.	To change a curve with spirals so that it may terminate in a given parallel tangent	
52.	To find the degree of curve upon any chord when c is	59
53.	not a whole number	62
	a curve with spirals	62
54.	To join two curves by a spiral	63
	TABLES.	
I.	Elements of the spiral of chord-length 100	68
II.	Deflection angles for the spiral	70
III.	Co-ordinates and degree of curve of the spiral	76
IV.	Functions of the spiral angle s	95
	Selected spirals for unchanged length of line, § 22 Values of p and q for selected curves with proper	96
	spirals	104
VII	Spiral tangents long chord and offset	110

THE RAILROAD SPIRAL.

CHAPTER I.

INTRODUCTION.

T. On a straight line a railway track should be level transversely; on a curve the outer rail should be raised an amount proportional to the degree of curve. At the tangent point of a circular curve both of these conditions cannot be realized, and some compromise is usually adopted, by which the rail is gradually elevated for some distance on the tangent, so as to gain at the tangent point either the full elevation required for the curve, or else three-quarters or a half of it, as the case may be. The consequence of this, and of the abrupt change of direction at the point of curve, is to give the car a sudden shock and unsteadiness of motion, as it passes from the tangent to the curve.

The railroad spiral obviates these difficulties entirely, since it not only blends insensibly with the tangent on the one side, and with the circle on the other, but also affords sufficient space between the two for the proper elevation of the outer rail. Moreover, since the curvature of the spiral increases regularly from the tangent to the circle, and the elevation of the outer rail does the same, the one is everywhere exactly proportional to the other, as it should be. The use of the spiral allows

the track to remain level transversely for the whole length of the tangent, and yet to be fully inclined for the whole length of the circle, since the entire change in inclination takes place on the spiral.

2. The office of the spiral is not to supersede the circular curve, but to afford an easy and gradual transition from tangent to curve, or vice versa, in regard both to alignment and to the elevation of the outer rail. A spiral should not be so short as to cause too abrupt a rise in the outer rail, nor yet so long as to render the rise almost imperceptible, and therefore difficult of actual adjustment. Within these limits a spiral may be of any length suited to the requirements of the curve or the conditions of the locality. To suit every case in practice an extensive list of spirals is required from which to select.

CHAPTER II.

THEORY OF THE SPIRAL.

3. THE Railroad Spiral is a compound curve closely resembling the cubic parabola; it is very flat near the tangent, but rapidly gains any desired degree of curvature.

The spiral is constructed upon a series of chords of equal length, and the curve is compounded at the end of each chord. The chords subtend circular arcs, and the degree of curve of the first arc is made the common difference for the degrees of curve of the succeeding arcs. Thus, if the degree of curve of the first arc be 0° 10′, that of the second will be 0° 20′, of the third, 0° 30′, &c.

The spiral is assumed to leave the tangent at the beginning of the first chord, at a tangent point known as the *Point of Spiral*, and designated by the initials *P. S.*, or on the diagrams by the letter S.

4. To determine the co-ordinates of the several chord extremities, let the point S be taken as the origin of co-ordinates, the tangent through S as the axis of Y, and a perpendicular through S as the axis of X. Then x, y, will represent the co-ordinates of any point of compound curvature in the spiral, x being the perpendicular offset from the point to the tangent, and y the distance on the tangent from the origin to that offset.

For the purpose of calculation let us assume 100 feet as the chord-length, and 0° 10' as the degree of curve of

5. To calculate the deflection angles of the Spiral; Inst. at S. If in the diagram, Fig. 1, we

draw the long chords S2, S3, S4, &c., we may easily determine the angle *i*, which any long chord makes with the tangent by means of the co-ordinates of the further extremity of the chord, for

$$\tan i = \frac{x}{y}.$$

Having calculated a series of values of the angle *i*, we may lay out the spiral on the ground by transit deflections from the tangent, the transit being at the point S.

The statement of the calculation is \mathbf{x} as follows:

Fig. 1.

Point.	x	y	$\tan i = \frac{x}{y}.$	
1 2 3 4 &c.	.145 .727 2.036 4.363	100.000 199.998 299.989 399.968	.00145 .00364 .00679 .01091	0° 05′ 00′′ 12′ 30″ 23′ 20″ 37′ 30″ &c.

The values of i are more readily found by logarithms however, since

$$\log \tan i = \log x - \log y.$$

By this formula the first part of Table II. (Inst. at S)

the tar	igent at S a	nd a tangen	t at the last	point consid-
ered.	The series	of values of	the angle s	is as follows:

•
•
,
•
•

Since the values of a_i found above are deflections at point 1 from a parallel to the main tangent, it is evident that if we subtract from each the value of s for point 1, or 10', we shall have the deflections, j, from an auxiliary tangent through the point 1, which we require for use in the field. The statement is as follows:

Instrument at point 1;
$$(s = 10')$$
.

Point. Angle a_1 . Deflection j .

2 $20' 00''$ $10'$

3 $32' 30''$ $22' 30''$

4 $48' 20''$ $38' 20''$

&c., &c., &c.

The instrument will read zero on the auxiliary tangent through point 1 where it stands, and of course the back deflection over the circular arc S1 is 05'. Hence we have the complete table of deflections when the instrument is at point 1.

Similarly, if we suppose the instrument to be at point 2, we shall have the statement:

Point.
3
$$\tan a_2 = \frac{x_3 - x_2}{y_3 - y_2} = \frac{1.309}{99.991} = .01309.$$

4 $\tan a_2 = \frac{x_4 - x_2}{y_4 - y_2} = \frac{3.636}{199.970} = .01818.$
&c.,

the tan	igent at	S and	a tange	ent at	the last	point consid-
ered.	The se	ries of	values	of the	angle s	is as follows:

Point.	Angle under single chord.	Angle s.
S	o° oo′	o ′
1	Io'	10'
2	20′	30'
3	30'	1° 00'
4	40'	1° 40′
&c.,		&c.

Since the values of a_i found above are deflections at point i from a parallel to the main tangent, it is evident that if we subtract from each the value of s for point i, or io', we shall have the deflections, j, from an auxiliary tangent through the point i, which we require for use in the field. The statement is as follows:

Instrum	ent at point 1;	(s = ro').
Point.	Angle a_1 .	Deflection j.
2	20′ 00″	10′
3	32' 30"	22′ 30″
4	48′ 20″	38′ 20″
&c.,	&c.,	&c.

The instrument will read zero on the auxiliary tangent through point 1 where it stands, and of course the back deflection over the circular arc S1 is 05'. Hence we have the complete table of deflections when the instrument is at point 1.

Similarly, if we suppose the instrument to be at point 2, we shall have the statement:

Point.
3
$$\tan a_2 = \frac{x_3 - x_2}{y_3 - y_2} = \frac{1.309}{99.991} = .01309.$$

4 $\tan a_2 = \frac{x_4 - x_2}{y_4 - y_2} = \frac{3.636}{199.970} = .01818.$
&c.,

means of this table the entire spiral may be located, the transit being set over any chord-point desired, while the chain is carried around the curve in the usual manner; also, that the curve may be laid out in the reverse direction from any chord-point not above the 20th, since all the back deflections are also given.

7. Variation in the chord-length.

We have thus far assumed the spiral to be constructed upon chords of 100 feet, but it is evident that such a spiral would be entirely too long for practical use; it would be 1700 feet long before reaching a 3° curve.

We must, therefore, assume a shorter chord; but in so doing it will not be necessary to recalculate the angles and deflections, for these remain the same whatever be the chord-length. By shortening the chord-length we merely construct the spiral on a smaller scale. The values of x and y and of the radii of the arcs at corresponding points are proportional to the chord-lengths, and the degrees of curve for corresponding chords are (nearly) inversely proportional to the same.

Thus for any chord-length c we have:

$$x: x_{100} :: c: 100$$
, or $x = \frac{c}{100} x_{100}$
 $y: y_{100} :: c: 100$, or $y = \frac{c}{100} y_{100}$
 $R_{\bullet}: R_{100} :: c: 100$, or $R_{\bullet} = \frac{c}{100} R_{100}$

Let D_{\bullet} = the degree of curve due to radius R_{\bullet} , and $D_{1 \bullet \bullet}$ = the degree of curve due to radius $R_{1 \bullet \bullet}$; then,

$$R_{\bullet} = \frac{100}{2 \sin \frac{1}{2} D_{\bullet}'}$$
 and $R_{100} = \frac{100}{2 \sin \frac{1}{2} D_{100}}$;

whence

$$\sin \frac{1}{2} D_{i} = \frac{100}{6} \sin \frac{1}{2} D_{100},$$

means of this table the entire spiral may be located, the transit being set over any chord-point desired, while the chain is carried around the curve in the usual manner; also, that the curve may be laid out in the reverse direction from any chord-point not above the 20th, since all the back deflections are also given.

7. Variation in the chord-length.

We have thus far assumed the spiral to be constructed upon chords of 100 feet, but it is evident that such a spiral would be entirely too long for practical use; it would be 1700 feet long before reaching a 3° curve.

We must, therefore, assume a shorter chord; but in so doing it will not be necessary to recalculate the angles and deflections, for these remain the same whatever be the chord-length. By shortening the chord-length we merely construct the spiral on a smaller scale. The values of x and y and of the radii of the arcs at corresponding points are proportional to the chord-lengths, and the degrees of curve for corresponding chords are (nearly) inversely proportional to the same.

Thus for any chord-length c we have:

$$x: x_{100} :: c: 100$$
, or $x = \frac{c}{100} x_{100}$
 $y: y_{100} :: c: 100$, or $y = \frac{c}{100} y_{100}$
 $R_{c}: R_{100} :: c: 100$, or $R_{c} = \frac{c}{100} R_{100}$

Let D_{i} = the degree of curve due to radius R_{i} , and D_{100} = the degree of curve due to radius R_{100} ; then,

$$R_{\bullet} = \frac{100}{2 \sin \frac{1}{2} D_{\bullet}}$$
, and $R_{100} = \frac{100}{2 \sin \frac{1}{2} D_{100}}$;

whence

$$\sin \frac{1}{2} D_i = \frac{100}{6} \sin \frac{1}{2} D_{100},$$

at a regular chord-point of which the coordinates are known.

10. To select a spiral.

The terminal chord of a spiral must subtend a degree of curve less than that of the circular curve which follows, but the next chord beyond (were the spiral produced) must subtend a degree of curve equal to or differing but a little from that of the circular curve.

Thus, if the circle were a 10 degree curve, the spiral may consist of 5 chords 10 feet long (the degree of curve on the 6th chord being 10° 00′ 45″), or of 15 chords 26 feet long (the degree of curve on the 16th chord being 10° 16′ 09″), the length of spiral is 50 feet in one case and 390 in the other; between these limits the tables furnish 15 other spirals of intermediate length, all adapted to join a 10 degree curve.

We may therefore introduce one more condition which will fix definitely the proper spiral to employ. If the length of spiral be assumed, we seek in the tables those values of n and c which are consistent with the required value of D_c for (n+1), at the same time that their product, nc, equals as nearly as may be the assumed length of spiral. Thus, if with a 10 degree curve a length of about 130 feet were desirable, we should select either

$$n = 8$$
, $c = 15$, $D_{\bullet} = 10^{\circ} \text{ oo' } 45''$; $nc = 120 \text{ ft.}$; or $n = 9$, $c = 16$, $D_{\bullet} = 10^{\circ} 25' 51''$; $nc = 144 \text{ ft.}$

 D_n is always taken for (n + 1). When circumstances permit, a chord-length of about 30 feet will give the best proportioned spirals. With a 30 foot chord-length the length of spiral will be about 770 times the superelevation of the outer rail at a velocity of 35 miles per hour.

The value of s depends on the number of chords (n) and is independent of the chord-length. If the angle s were selected from the table, this would fix the number n, and we must then choose the chord-length c so as to give the proper value of D_{\bullet} . Thus, if s were assumed $= 9^{\circ}$ 10' then n = 10, and c = 18 ft. or 19 ft., giving $D_{\bullet} = 10^{\circ}$ 11' 54" or 9° 39' 36" to suit a 10 degree curve, and making the length (nc) of the spiral either 180 or 190 ft., according to the spiral selected.

The coordinates (x, y) depend on the values of both n and c. They are used in solving the problems of the spiral, being taken directly from Table III. for this purpose, under the value of c and opposite the value of c

CHAPTER III.

ELEMENTARY PROBLEMS.

II. To find the length C of any long chord beginning at the point of spiral S. Fig. 4. Let

L be the other extremity of the long chord, x, y the coordinates of L, and i the deflection angle YSL at S for the point L.

Then $C = \frac{y}{\cos i}$, or $C = \frac{x}{\sin i}$. (1.)

The values of x, y and i are found in Tables III. and II.

Example. In the spiral of chord-length = 30 ft. what is the length of x the long chord from S to the 10th point?

12. To find the lengths of the tangents from the points S and L to their intersection E. Fig. 4. Let x, y be the coordinates of L, and s the

spiral angle for the point L. Then s = the deflection angle between the tangents at E, and

$$LE = \frac{x}{\sin s} \qquad SE = y - x \cot s \quad . \quad . \quad (2.)$$

The values of x, y and s are found in Tables III. and IV.

Example. In the spiral of chord-length 40 extending to the 9th point, what are the tangents LE and SE?

From Table III.,

" IV.,
$$s ext{ 7}^{\circ} ext{ 30}'$$
 log sin

LE = 126.87

 $s ext{ 7}^{\circ} ext{ 30}'$ log sin

1.219075

 $s ext{ 7}^{\circ} ext{ 30}'$ log cot

1.219075

 $s ext{ 7}^{\circ} ext{ 30}'$ log cot

1.25.790

2.099646

2.099646

13. To find the length C of any long chord KL. Fig. 4. Let x, y be the coordinates of L, and x', y' the coordinates of K; and let a be the angle LKN which LK makes with the main tangent, and i the deflection angle KLE', and i' the deflection angle LKE'.

Then
$$a = (s - i)$$
 at the point L, $= (s' + i')$ at K.

$$KL = \frac{KN}{\cos LKN}$$
 or $C = \frac{y - y'}{\cos a}$ (3.)

Example. In the spiral of chord-length 18 what is the

length of the long chord from point 12 to point 20? Here K = 12 and L = 20 = n.

From Table III.,
$$y = 346.476$$

$$y' = 214.847$$

$$131.629 = \log 2.119352$$
From Table II., $s' = 13^{\circ}$

$$i' = 10^{\circ} \text{ o7}' 23''$$

$$a = 23^{\circ} \text{ o7}' 23'' \log \cos 9.963629$$

$$\therefore C = 143.13$$

$$2.155723$$

14. To find the lengths of the tangents from any two points L and K to their intersection at E'. Fig. 4. Let s, s' be the spiral angles for the points L and K respectively. Then (s - s') = the deflection angle between tangents at E'. Having first found C = LK by the last problem we have in the triangle LKE'

$$LE' = \frac{C \sin i'}{\sin (s - s')} \qquad KE' = \frac{C \sin i}{\sin (s - s')} . . (4.)$$

Example. In the spiral of chord-length 18 what are the tangents for the points 12 and 20?

By last example,
$$C$$
 log 2.155723
From Table IV.,
 $(s-s') \ 35^{\circ} - 13^{\circ} = 22^{\circ} \ \log \sin 9.573575$
2.582148
From Table II., i' 10° 07' 23" log sin 9.244927
... I.E' = 67.15
Again: 2.582148
Table II., i' 11° 52' 37" log sin 9.313468
... KE' = 78.635

15. Given: A circular curve and spirals joining two tangents, to find the tangent distance $T_* = VS$. Fig. 5.

Let S be the point of spiral, V the intersection of the tangents, SL the spiral, LH one half the circular curve, and O its centre. In the diagram draw GLI parallel to the tangent VS, and GN, LM, and OI perpendicular to VS. Join OL and OV.

Then

$$IOL = s$$
; $IOV = \frac{1}{2}\Delta$; $OL = R'$; $SM = y$; $LM = x$.

Now SV = SM + NV + MN.

But $NV = GN \cdot \tan VGN = x \tan \frac{1}{2} \triangle$.

$$MN = GL = OL \frac{\sin LOG}{\sin OGI} = R' \frac{\sin (\frac{1}{2}\Delta - s)}{\cos \frac{1}{2}\Delta}$$

Hence

$$T_{\bullet} = y + x \tan \frac{1}{2} \Delta + R' \frac{\sin \left(\frac{1}{2} \Delta - s\right)}{\cos \frac{1}{2} \Delta} . . (5)$$

Example. Let the degree of the circular curve be $D' = 7^{\circ}$ 20', and the angle between tangents, $\Delta = 42^{\circ}$. Let the spiral values be c = 23; n = 9 . $s = 7^{\circ}$ 30'. Then by the last equation and the tables,

$$R'$$
 7° 20' C log 2.893118
 $\frac{1}{2}\Delta - s$ 13° 30' log sin 9.368185
 $\frac{1}{2}\Delta$ 21° a. c. log cos 0.029848
... $T_{\bullet} = \frac{195.502}{405.784}$

16. When an approximate value of T_n is only required we may employ a more convenient formula derived from the fact that the line OI produced bisects the spiral SL very nearly, and that the ordinate to the spiral on the line OI, being only about $\frac{1}{8}x$, may be neglected. Thus,

Approx.
$$T_{\bullet} = R' \tan \frac{1}{2} \triangle + \frac{1}{2} nc.$$
 (6.)

Example. Same as above.

$$R'$$
 7° 2° C log 2.893118
 $\frac{1}{2}\Delta$ 21° log tan 9.584177
300.1 2.477295
 $\frac{1}{2}$ n $c = \frac{1}{2} \times 9 \times 23$ 103.5
... T_{\bullet} = approx. 403.6

Remark. This formula, eq. (6) when R' is taken equal to the radius corresponding to the degree of curve D_i for (n + 1), gives practically correct results. But as in practice, the value of R' will differ somewhat from the radius of D_i , so the value of T_i derived from this formula will differ more or less from the true value, as in the last example.

17. Given: the tangent distance $T_r = SV$, and the angle \triangle , and the length of spiral SL, to find the radius R' of the circular curve, LH, Fig. 5. The length

of spiral is expressed by nc, hence we have from the last equation.

approx.,
$$R' = (T_{\bullet} - \frac{1}{2}nc) \cot \frac{1}{2} \triangle . \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (7.)$$

After R' is thus found, the values of n and c are to be determined, such that, while their product equals the given length of spiral as nearly as may be, the value of D, for (n + 1) shall correspond nearly with R'. The values of n and c are quickly found by reference to Table III.

Example. Let $T_{\bullet} = 406$, $\Delta = 42^{\circ}$, and nc = 170.

$$T_* - \frac{1}{2}nc$$
 321 log 2.5065
 $\frac{1}{2}\Delta$ 21° log cot. 0.4158
... $R' = \text{say, } 6^{\circ} 5^{1'} \text{ curve,}$ 2.9223

By reference to Table III., we find that when n=8 and c=22, the product nc being 176, the value of D_c for (n+1) is 6° 49' 19", and this is the best spiral to use in this case. But as this spiral is longer than our assumed one, we should decrease the value of R' somewhat, if we would nearly preserve the given value of T_c . For instance, assume $R' = \text{radius of } 6^{\circ}$ 54' curve, and using the same spiral, calculate by eq. (5) the resulting value of T_c , and we shall find $T_c = 408.646$.

As this is an exact value of T for the values of R', n and c last assumed, and is also a close approximation to the value first given, it will probably answer the purpose completely. If, however, for any reason the precise value of $T_c = 406$ is required, we may find the precise radius which will give it by the following problem.

18. Given: a curve, and spiral, and tangent-distance,

T_n to find the difference in R' corresponding to any small difference in the value of T_n .

If in eq. (5) we assume a *constant spiral*, and give to R' two values in succession and subtract one resulting value of T, from the other, we shall find for their difference,

diff.
$$T_s = \frac{\sin(\frac{1}{2}\Delta - s)}{\cos\frac{1}{2}\Delta}$$
 diff. R' . . . (8.)

Hence

diff.
$$R' = \frac{\cos \frac{1}{2}\Delta}{\sin (\frac{1}{2}\Delta - s)}$$
 diff. T_s . . . (9.)

Example. When $R' = \text{rad. } 6^{\circ} 54' \text{ curve}$, n = 8, c = 22, $T_{\bullet} = 408.646$; what radius will make $T_{\bullet} = 406$ with the same spiral?

Eq. (9) diff.
$$T_s = 2.646$$
 log 0.422590 $\frac{1}{2}\triangle$, 21° log cos 9.970152 $(\frac{1}{2}\triangle - s)$, 15° a. c. log sin 0.587004

.: diff.
$$R'$$
 9.544 0.979746 R' 6° 54' 830.876

... Required radius = 821.332, or 6° 58' 49" curve.

Remark. Care must be taken to observe whether in thus changing the value of R', the value of D', the degree of curve, is so far changed as to require a different spiral according to the rule for the selection of spiral, § 10. Should this be the case (which is not very likely), we may adopt the new spiral, and proceed with a new calculation as before.

19. Given: a circular curve with spirals joining two tangents, to find the external distance $E_i = VH_i$, Fig. 5.

Let SL be the spiral, LH one-half the circular curve and O its centre.

Then VH = VG + GO - OH.

But
$$VG = \frac{GN}{\cos VGN} = \frac{x}{\cos \frac{1}{2}\Delta}$$
, and in the triangle

GOL, GO = LO
$$\frac{\sin \text{ OLI}}{\sin \text{ LGO}} = R' \frac{\cos s}{\cos \frac{1}{2}\Delta}$$
;

$$E_{s} = \frac{x}{\cos \frac{1}{2}\Delta} + R' \frac{\cos s}{\cos \frac{1}{2}\Delta} - R', \quad (10.)$$

or for computation without logarithms

$$E_s = \frac{x + R' \left(\cos s - \cos \frac{1}{2}\Delta\right)}{\cos \frac{1}{2}\Delta}. \quad . \quad (11.)$$

Example. Let $D' = 7^{\circ} 20'$, $\Delta = 42^{\circ}$, and for the spiral let n = 9, c = 23, giving $s = 7^{\circ} 30'$, and for (n + 1), $D_s = 7^{\circ} 15' 04''$.

Eq. (10)
$$x$$
 log 0.978743
 $\frac{1}{2}\Delta$ 21° a. c. log cos 0.029848

20. Given: The angle \triangle at the vertex and the distance $VH = E_n$, to determine the radius R' of a circular curve with spirals connecting the tangents and passing through the point H. Fig. 5.

Solving eq. (11) for R' we have

$$R' = \frac{E_s \cos \frac{1}{2} \Delta - x}{\cos s - \cos \frac{1}{2} \Delta} \cdot \ldots \cdot (12.)$$

But as this expression involves x and s of a spiral dependent on the value of R' we must first find R' approximately, then select the spiral, and finally determine the exact value of R' by eq. (12). The radius R of a simple curve passing through the point H is a good approximation to R'. It is found by eq. (27) Field Engineering:

$$R = \frac{E}{\operatorname{exsec} \frac{1}{2} \Delta},$$

or the degree of curve D may be found by dividing the external distance of a 1° curve for the angle Δ by the given value of E_* . But evidently the value of D' will be greater than D, and we may assume D' to be from 10′ to 1° greater according to the given value of Δ , the difference being more as Δ is less. We now select from Table III. a value of D_* suited to D' so assumed, and corresponding at the same time to any desired length of spiral. Since D_* so selected corresponds to (n + 1) we take the values of n and n from the next line above n in the table, find the value of n from Table IV., and by substituting them in eq. (12) derive the true value of n for the spiral selected.

Example. Let $\triangle = 42^{\circ}$ and $E_{\bullet} = 70$, to find the value of R' with suitable spirals.

From table of externals for 1° curve, when $\Delta = 42^{\circ}$ L = 407.64, which divided by 70 gives 5°.823; or D =

5° 50'. Assume D' say 20' greater, giving D' = 6° 10' approx. If we desire a spiral about 300 feet long we find, Table III., n = 10, c = 30, and for (n + 1) $D_{\bullet} = 6$ ° 06' 49". For n = 10, s = 9° 10'.

Proof. Take the exact radius of a 6° 20' curve and the above spiral and calculate E_i by eq. (10) or (11). We shall obtain $E_i = 69.97$. Again: if we desire a spiral of 200 feet, we find, Table III., n = 8, c = 25, and for (n + 1) $D_i = 6$ °, and by eq. (12) R' = rad. of (say) 6° 02' curve; and by way of proof we find $E_i = 69.96$. Again: if we desire a spiral of about 400 feet, we find, Table III., n = 12, c = 33, s = 13°, and for (n + 1) $D_i = 6$ ° 34' 07". Hence by eq. (12) R' = rad. of (say) 6° 50' curve. By way of proof we find eq. (10) $E_i = 69.95$.

Remark. It is thus evident that a variety of curves with suitable spirals will satisfy the problem, but D' is increased as the spiral is lengthened—for in the example, with a 200 ft. spiral, $D' = 6^{\circ}$ 02'; with a 300 ft. spiral, $D' = 6^{\circ}$ 20'; and with a 396 ft. spiral, $D' = 6^{\circ}$ 50'. Therefore the length of spiral, as well as the value of Δ , must be considered in first assuming the value of D' as compared with D of a simple curve.

21. In case the value of R', as calculated by eq. (12), should give a value to D' inconsistent with the spiral assumed, we may easily ascertain by consulting the table what spiral will be suitable. Choosing a spiral of the same number of chords, but of a different chord-length c, we may calculate R' (a new value) as before; or the work may be somewhat abbreviated by the following method:

Given: a change in the value of x, eq. (12) to find the corresponding change in the value of R'; n being constant.

If the values of E_s , \triangle , and s remain unchanged, we find, by giving to x any two values, and subtracting one resulting value of R' from the other,

$$\dim R' = \frac{-\dim x}{\cos s - \cos \frac{1}{2}\Delta} \quad . \quad . \quad . \quad (13.)$$

that is, R' increases as x decreases, and the differences bear the ratio of $\frac{1}{\cos s - \cos \frac{1}{2}\Delta}$.

Example. Let $\Delta = 42^{\circ}$, $E_s = 70$, and for the spiral let n = 10, c = 30, $s = 9^{\circ}$ 10', as in the last example, giving R' = 905.55; to find the change in R' due to changing c from 30 to 29.

Eq. (13) for
$$c = 30$$
, $x = 16.768$
for $c = 29$, $x = 16.209$
diff. x .559 log 9.7474
 $\cos s - \cos \frac{1}{2} \triangle$ (as before) .05365 log 8.7296
... diff. R' 10.42 1.0178
old value 905.55
... new R' 915.97 $D' = (\text{say}) 6^{\circ} 16'$,

which agrees well with $D_{i} = 6^{\circ} 19' 29''$ for (n + 1) in the new spiral.

If we prove this result by calculating the value of E_{\bullet} for these new values by eq. (10) we shall find $E_{\bullet} = 69.93$.

The slight discrepancy between these calculated values of E, and the original is due solely to assuming the value of D' at an exact minute instead of at a fraction.

Remark.—Formula (3) in Art. 13 gives the length of any long chord KL of a spiral. But if the long chord begins at the tangent point S, and extends to any point L, the formula for this case reduces to

$$SL = \frac{y}{\cos i}$$

in which i is taken from Table II., p. 56, and y is taken from Table III., opposite the chord-point n, which L represents in the given spiral.

The measurement of SL on the ground is an excellent check on the location of the spiral by points as described in Chapter V.

CHAPTER IV.

SPECIAL PROBLEMS.

22. Given: two tangents joined by a simple curve, to find a circular arc with spirals joining the same tangents, that will replace the simple curve on the same ground as nearly as may be, and preserve the same length of line. Fig. 6.

To fulfill these conditions it is evident that the new curve must be outside of the old one at the middle

point H, since the spirals are inside of the simple curve at its tangent points; also, the radius of the new curve must be less than that of the old one, otherwise the circle passing outgide of H would cut the given tangents.

Let SV, Fig. 6 be one tangent, and V the vertex.

Let AH be one half the simple curve, and O its centre. Let SL be one spiral, LH' one half the new circular arc, and O' its centre. Draw the bisecting line VO, the radii AO = R and LO' = R', and the perpendicular LM = x. Then MS = y. Produce the arc H'L to A' to meet the radius O'A' drawn parallel to OA, and let $\frac{1}{2}\Delta$ = the angle AOH = A'O'H'. Let s = the angle A'O'L = the angle of the spiral SL. Let h = the radial offset HH' at the middle point of the curve. Draw O'N and LF perpendicular to OA, LF intersecting O'A at I.

a. To find the radius R' of the new arc LH' in terms of a selected spiral SL.

We have from the figure AO = ML + FN + NO. But AO = R, ML = x, FN = LO' $\cos s = R' \cos s$ and NO = O'O $\cos \frac{1}{2} \triangle = (OH' - O'H') \cos \frac{1}{2} \triangle = (h + R - R') \cos \frac{1}{2} \triangle$; and substituting we have

$$R = x + R' \cos s + (h + R - R') \cos \frac{1}{2} \triangle$$
. (14.)

whence

$$R' = \frac{R \operatorname{vers} \frac{1}{2} \triangle}{\cos s - \cos \frac{1}{2} \triangle} - \frac{h \cos \frac{1}{2} \triangle + x}{\cos s - \cos \frac{1}{2} \triangle}. \quad (15.)$$

It is found in practice that h bears a nearly constant ratio to x for all cases under the conditions assumed in this problem. Let k = the ratio $\frac{h}{x}$ and the last equation may be written

$$R' = \frac{R \operatorname{vers} \frac{1}{2} \Delta}{\cos s - \cos \frac{1}{2} \Delta} - \frac{(k \cos \frac{1}{2} \Delta + 1) x}{\cos s - \cos \frac{1}{2} \Delta}$$
 (16.)

which gives the radius of the new arc LH' in terms of r and k

b. To find the offset h = HH': From eq. (14) we derive

$$h \cos \frac{1}{2} \triangle = R \left(\mathbf{1} - \cos \frac{1}{2} \triangle \right) - R' \left(\mathbf{1} - \operatorname{vers} s \right) + R' \cos \frac{1}{2} \triangle - x$$

$$= R \left(\mathbf{1} - \cos \frac{1}{2} \triangle \right) - R' \left(\mathbf{1} - \cos \frac{1}{2} \triangle \right) + R' \operatorname{vers} s - x$$

$$= \left(R - R' \right) \operatorname{vers} \frac{1}{2} \triangle + R' \operatorname{vers} s - x.$$

Hence

$$h = (R - R') \operatorname{exsec} \frac{1}{2} \Delta + \frac{R' \operatorname{vers} s}{\cos \frac{1}{2} \Delta} - \frac{x}{\cos \frac{1}{2} \Delta} \quad (17.)$$

which gives the value of h in terms of s, x and K'.

c. To find the value of d = AS:

We have from the figure SM = SA + NO' + IL. But SM = y, SA = d, $NO' = OO' \sin \frac{1}{2} \triangle$ and $IL = LO' \sin s$, and by substitution,

$$y = d + (h + R - R') \sin \frac{1}{2} \triangle + R' \sin s.$$

Hence

$$d = y - [(h + R - R') \sin \frac{1}{2} \triangle + R' \sin s]$$
 (18.)

which gives the distance on the tangent from the point of curve A to the point of spiral S.

d. To compare the lengths of the new and old lines:

$$SAH = SA + AH = d + 100 \frac{\frac{1}{2} \Delta}{D}$$
, . . (19.)

in which D is the degree of curve of AH;

$$SLH' = SL + LH' = n.c + 100 \frac{\frac{1}{2} \Delta - s}{D'}$$
 (20.)

in which D' is the degree of curve of LH'.

If the spiral and arc have been properly selected, the two lines will be of equal length or practically so.

The last two equations assume the circular curves to be measured by 100 foot chords in the usual manner, but when the curves are sharp it is often desirable that they should agree in the *length of actual arcs*, especially where the rail is already laid on the simple curve. For this purpose we use the formulæ

SAH (arc) =
$$d + R \cdot \frac{\Delta}{2} \cdot \frac{\pi}{180}$$
 . (21.)

SLH' (arc) =
$$n \cdot c + R' \left(\frac{\Delta}{2} - s\right) \frac{\pi}{180}$$
 (22.)

in which the angle is expressed in degrees and decimals. If the odd minutes in the angle cannot be expressed by an exact decimal of a degree, the angle should be reduced to minutes, and the divisor of π changed from 180 to 10800.

The value of
$$\frac{\pi}{180}$$
 is .0174533 log 8.241877 $\frac{\pi}{10800}$ is .00029089 " 6.463726.

The length of spiral is given by chord measure in the last equations, since the chords are so short and subtend such small angles that the difference between chord and arc is not material to the problem.

e. To select a spiral in a given case, we require to know approximately the value of D', and to select the spiral (n.c) such that the value of D, for (n+1) shall not differ greatly from the value of D'. To aid in find-

ing approximate values of D' and k, Table V. has been prepared for curves ranging from 2° to 16° and central angles (\triangle) ranging from 10° to 80° .

Assume s at pleasure (less than $\frac{1}{2}$ \triangle), which fixes the value of n. Then inspect Table V. opposite n for values of D and \triangle next above and below the values of D and \triangle in the given problem, and by inference or interpolation decide on the probable values of k and D'. Then in Table III. select that value of c which gives D_s for (n+1) most nearly agreeing with D'. Now calculate R' by eq. (16), and as this will usually give the degree of curve D' fractional, take the value of D' to the nearest minute only, and assume the corresponding value of R' as the real value of R'. A table of radii makes this operation very simple.

But should it happen that D' differs too widely from $D_{s(n+1)}$ to make an easy curve, increase or diminish the chord-length c by 1, thus giving a new value to x in eq. (16), and also a new value of $D_{s(n+1)}$ with which to compare the resulting D'. In changing x only the last term of eq. (16) is affected, and the first term does not require recalculation.

f. When the value of R' is decided, substitute it in eq. (17) and calculate h. But if it happens that the value of R' selected differs not materially from the result of eq. (16), we have at once h = kx; or in case the value of R' is changed considerably from the result of eq. (16), the corresponding change in h will be

diff.
$$h = -\frac{\cos s - \cos \frac{1}{2}\Delta}{\cos \frac{1}{2}\Delta}$$
 diff. R' , $(22\frac{1}{2})$

which may therefore be applied as a correction to h = kx, and we thus avoid the use of eq. (17). Eq. (22½) is de-

rived from eq. (15) by supposing h to have any two values, and subtracting the resulting values of R' from each other. Note that h diminishes as R' increases, and vice versa.

When R' and h are found, proceed to find d by eq. (18), and the length of lines by eq. (19), (20), or by (21), (22), as may be preferred. But to produce equality of actual arcs, k must be a little greater than when equality by chord-measure is desired.

Should the lines not agree in length so nearly as desired, a change of one minute \pm in the value of D' may produce the desired result, but any such change necessitates, of course, a recalculation of h and d.

The values of k in Table V. appear to vary irregularly. This is due to the selection of D' to the nearest minute, and also to the choice of spiral chord-lengths, c, not in an exact series. The reader is recommended to supplement this table by a record of the problems he solves, so that the values of R' and k may be approximated with greater certainty.

Example. Given a 6° curve, with a central angle of $\Delta = 50^{\circ}$ 12', to replace it by a circular arc with spirals, preserving the same length of line. Assume $s = 7^{\circ}$ 30' giving n = 9.

Since 6° is an average of 4° and 8° , while 50° 12' is nearly an average of 40° and 60° , we examine Table V. under 4° curve and 8° curve, and opposite $\Delta = 40^{\circ}$ and 60° on the same line as $s = 7^{\circ}$ 30', and take an average of the four values of $D_{s(n+1)}$, thus found; also of the four values of k; we thus find approx. k = .0885, and $D' = 6^{\circ}$ 18' \pm . Now looking in Table III., opposite n = 9, we find that when c = 26, $D_{s(n+1)} = 6^{\circ}$ 24' 48'', we therefore assume c = 26, and proceed to calculate R' by eq. (16).

Eq. (16) cos s 7° 30'	•99144		
$\cos \frac{1}{2} \triangle 25^{\circ} \circ 6'$	•90557		
	.08587	a.c. log	1.066159
R 6°	-	log	2.980170
vers $\frac{1}{2}\Delta$ 25° 06'		\log	8.975116
	1050.6	log	3.021445
$\cos s - \cos \frac{1}{2} \Delta$		a. c. log	1.066159
$1 + k \cos \frac{1}{2} \Delta = 1.$	08 0		0.033424
\boldsymbol{x}			1.031989
	135.4		2.131572
R' (say 6° 16')	915.2		
	9-3		
Eq. (17) $R 6^{\circ}$ $R' 6^{\circ} 16'$	955.366 914.750		
(R-R')	40.616	log	1.608697
exsec $\frac{1}{2}\Delta$ 25° 06'	•	log	
-	4.235	log	0.626891
R' 6° 16'		log	2.961303
vers s 7° $30'$ $\cos \frac{1}{2}\Delta$ 25° $06'$		log	7.932227
$\cos \frac{1}{2}\Delta$ 25° 06′		a. c. log	0.043079
	8.642	log	0.936609
	12.877		
\boldsymbol{x}	• •	log	1.031989
$\cos \frac{1}{2} \triangle 25^{\circ} \circ 6'$		a. c. log	0.043079
	11.887		1.075068
h	0.990		
Eq. (18) $(R - R')$	40.616		
	41.606	log	1.619156
$\sin \frac{1}{2} \Delta$ 25° 06'	•	\log	
	17.649	log	1.246726

Comparison of actual arcs.

Eq. (21) 25.1° log 1.399674 Eq. (22) 17.6° log 1.245513
1° log 8.241877
$$R$$
 6° log 2.980170 R' 6° 16' log 2.961303
418.525 log 2.621721 280.991 log 2.448693
280.991 log 2.448693 $n.c$ 234. $n.c$ 234. $n.c$ 234. $n.c$ 234. $n.c$ 234. $n.c$ 2514.991 $n.c$ 2065

23. Given: a simple curve joining two tangents, to move the curve inward along the bisecting line VO so that it may join a given spiral without change of radius. Fig. 7.

Let SL be the given spiral, AH one-half of the given curve, and HL a portion of the same curve in its new position, and compounded with the spiral at L.

To find the distance
$$h = HH' = OO'$$
:

Since the new radius is equal to the old one, or R'=R, we have from eq. (17) by changing the sign of h, since it is taken in the opposite direction,

$$h = \frac{x - R \operatorname{vers} s}{\cos \frac{1}{2} \Delta} \quad . \quad . \quad . \quad . \quad (23.)$$

To find the distance d = AS:

Changing the sign of h in eq. (18) and making R' =R we have

$$d = y - (R \sin s - h \sin \frac{1}{2} \Delta) \quad . \quad . \quad (24.)$$

This problem is best adapted to curves of large radius and small central angle.

Example. Given, a curve $D = 1^{\circ}$ 40' and $\Delta =$ 26° 40', and a spiral $s = 1^\circ$, n = 3, and c = 40, to find h and d and the length LH'.

Eq. (23)
$$R$$
 1° 40′ $\log 3.5363$
vers s 1° $\log 6.1827$
 $\cos \frac{1}{2} \triangle 13^{\circ}$ 20′ a. c. $\log 0.0119$

24. Given, a simple curve joining two tangents, to compound the curve near each end with an arc and spiral joining the tangent without disturbing the middle portion of the curve. Fig. 8.

Let H be the middle point of the given curve, Q the point of compounding with the new arc, and L the point where the new arc joins the spiral SL.

Let s = the spiral angle, and let $\theta =$ AOQ. Now in this figure AOQS will be analogous to AOH'S of Fig. 6, if in the latter we suppose H' to coincide with H or h = 0. If, therefore, in eq. (15) we write θ for $\frac{1}{2} \triangle$ and make h = 0, we have for the new radius O'Q,

$$R' = \frac{R \operatorname{vers} \theta - x}{\cos s - \cos \theta}, \quad . \quad . \quad . \quad . \quad . \quad . \quad (25.)$$

in terms of θ and the spiral assumed. But as the value of D' resulting is likely to be fractional and must be adhered to, it is preferable to assume R' a little less than R, select a suitable spiral and calculate the angle θ . Resolving eq. (17) after making $\hbar = 0$ and replacing $\frac{1}{2} \Delta$ by θ , we have

vers
$$\theta = \frac{x - R' \text{ vers } s}{R - R'}$$
 (26.)

The angle θ so found must be less than $\frac{1}{2} \triangle$, and indeed for good practice should not exceed $\frac{1}{3} \triangle$. If too large, θ may be reduced by assuming a smaller value of R', and repeating the calculation with a suitable spiral. Otherwise it will be preferable to use one of the foregoing problems in place of this. This problem is specially useful when the central angle is very large.

To find the distance d = AS, we have only to write θ for $\frac{1}{2} \triangle$ and make h = 0 in eq. (18), whence

$$d = y - [(R - R') \sin \theta + R' \sin s]$$
 . . . (27.)

Example. Given a curve $D = 2^{\circ} 30'$, $\triangle = 35^{\circ}$, to compound it with a curve $D' = 2^{\circ} 40'$ and a spiral $s = 2^{\circ} 30'$, n = 5, c = 37.

Eq. (26) R 2° 30' R' 2° 40'					
R - R'	143.22			log	2.156004
\boldsymbol{x}					0.471203
		•020663		log	8.315199
R - R'			a. c.	log	7.843996
vers s 2° 30'					6.978536
R' 2° 40'					3.332193
		.014280			8.154725
•• vers θ 6° 28'	3o"	.006383			
Eq. (27) $R - R'$				lor	2 156004
$\sin \theta = 6^{\circ} 28'$	"			rog	2.156004
Sin • 0 28	30				9.052192
		16.151			1.208196
R' 2° 40'					3.332193
sin s 2° 30'					8.639680
		93-729			1.971873
		109.880			
y		184.962			
•	•				
· . d		75.082			
\mathbf{AH}		700.			
SL, $= n \cdot c =$		185.00	775.0	82	
LQ, $o-s=$	3° 58′ 30″	149.06			
$QH, \frac{1}{2} \triangle - 0 =$	11° 01′ 30″	441.00	775.0	60	
	Difference		0	22	

25. Given: a compound curve joining two tangents, to replace it by another with spirals, preserving the same length of line. Fig. 9.

Let $\Delta_1 = AO_2P$, the angle of the arc AP, and $\Delta_1 =$ PO₁B, the angle of the arc PB. Let $R_1 = AO_2$, and $R_1 = BO_1$.

Adopting the method of § 22, the offset h must be made at the point of compound curve P instead of at the middle point. Considering first the arc of the larger radius AO, the formulæ of §22 will be made to

Fig. 9.

apply to this case by writing \triangle , in place of $\frac{1}{2}$ \triangle , and R, in place of R, whence eq. (16)

$$R_{2}' = \frac{R_{2} \operatorname{vers} \Delta_{2}}{\cos s - \cos \Delta_{2}} - \frac{(k \cos \Delta_{2} + 1) x}{\cos s - \cos \Delta_{2}} \dots (28.)$$

and eq. (17)

$$h = (R_2 - R_2) \operatorname{exsec} \Delta_2 + \frac{R_2' \operatorname{vers} s}{\cos \Delta_2} - \frac{x}{\cos \Delta_2} \quad (29.)$$

and eq. (18)

$$d = y - [(h + R_2 - R_2') \sin \Delta_2 + R_3' \sin s]$$
 . (30.)

But in considering the second arc PB, we must retain the value of h already found in eq. (29) in order that the arcs may meet in P'. We therefore use eq. (15) which, after the necessary changes in notation, becomes

$$R' = \frac{R_1 \operatorname{vers} \Delta_1}{\cos s - \cos \Delta_1} - \frac{h \cos \Delta_1 + x}{\cos s - \cos \Delta_1}, \ldots (31.)$$

which value of R_1 must be adhered to.

The spiral selected for use in the last equation is independent of the spiral just used in connection with R_2 . It should be so selected that while suitable for R_1 its value of x may be equal to $\frac{h}{k}$ as nearly as may be, the value of k being inferred from Table V. for D and $2 \Delta_1$.

Assuming the value of R_1 found by eq. (31), even though D_1 be fractional, we may verify the value of h by

$$h = (R_1 - R_1') \operatorname{exsec} \Delta_1 + \frac{R_1' \operatorname{vers} s}{\cos \Delta_1} - \frac{x}{\cos \Delta_1} (32.)$$

and then proceed to find d' = BS' by

$$d' = y - [(h + R_1 - R_1') \sin \Delta_1 + R_1' \sin s]$$
(33.)

Example. Given the compound curve $D_1 = 8^{\circ}$, $\Delta_1 = 29^{\circ}$ and $D_2 = 6^{\circ}$, $\Delta_2 = 25^{\circ}06'$: to replace it by another compound curve connected with the tangents by spirals.

Considering first the 6° branch of the curve, we may assume the spiral $s = 7^{\circ}30', n = 9, c = 26$. This part of the problem is then identical with the example given in § 22, by which we find h = .990 and d = 96.531.

To select a spiral for the 8° branch, having reference at the same time to this value of h; we find in Table V.

under $D=8^{\circ}$ and opposite $\Delta=2$ $\Delta_1=58^{\circ}$ or say 60°, that the given value of h falls between the tabular values of h for $nc=9\times 20$, and $nc=10\times 22$. We therefore infer that the spiral $nc=9\times 21$ is most suitable to this case. Adopting this, we have

Eq. (31)
$$\cos s \ 7^{\circ} 30' \cdot 99144$$

 $\cos \Delta_{1} 29^{\circ} \cdot 87462$

.11682 $\log 9.067517$ a.c. $\log 0.932483$
 $R_{1} \quad 8^{\circ}$ "2.855385
vers $\Delta_{1} 29^{\circ}$ "9.098229

.169.302 "2.886097

.1769.302 "2.886097

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.980458

.1769.302 "0.98045

For the methods of computing the lengths of lines, see § 22.

26. Given: a compound curve joining two tangents, to move the curve inward along the line PO₂ so that spirals may be introduced without changing the radii. Fig. 10.

The distance h = PP' is found for the arc of larger

Fig. 10.

radius AO₂ by the following formula derived by analogy from eq. (23):

$$h = \frac{x - R_2 \text{ vers } s}{\cos \Delta_2}; \quad . \quad . \quad (34.)$$

and for the distance d = AS we have analogous to eq. (24):

$$d = y - (R_2 \sin s - h \sin \Delta_2) \quad . \quad (35.)$$

Now the same value of h, found by eq. (34) must be used for the arc PB, and a spiral must be selected which will produce this value. To find the proper spiral, we have from eq. (34) after changing the subscripts,

$$x = R_1 \operatorname{vers} s + h \cos \Delta_1$$
 . (36.)

The last term is constant. The values of x and s must be consistent with each other, and approximately so with the value of R_1 . Assume s at any probable value, and calculate x by eq. (36). Then in Table III. look for this value of x opposite n corresponding to s, and note the corresponding value of the chord-length s. Compare s, of the table with s and if the disagreement is too great select another value of s and proceed as before.

The term R_1 vers s may be readily found, and with sufficient accuracy for this purpose, by dividing the value of R 1° vers s Table IV. by D_1 . If the calculated value of x is not in the Table III., it may be found by interpolating values of c to the one tenth of a foot, since for a given value of s or n the values of x and y are proportional to the values of c.

When the proper spiral has been found and the value of c determined, it only remains to find the value of d = BS' by

$$d = y - (R_1 \sin s - h \sin \Delta_1), \quad (37.)$$

in which the value of y will be taken according to the values of c and s just established.

Example. Given: $D_2 = 1^{\circ}40'$, $\Delta_2 = 13^{\circ}20'$, $D_1 = 3^{\circ}$, and $\Delta_1 = 22^{\circ}40'$, to apply spirals without change of radii. Fig. 10.

Assume for the 1° 40' arc the spiral s = 1°, n = 3, c = 40. This part of the problem is then identical with the example given in § 23, from which we find h = 0.299.

For the second part, if we assume $s = 1^{\circ}$ 40', n = 4, and find by Table IV. R_1 vers $s = \frac{2.424}{3} = 0.808$, we have by eq. (36)

$$x = 0.808 + 0.276 = 1.084,$$

the nearest value to which in Table III. is under c = 25, giving $D_0 = 2^{\circ} 40^{\circ}$, or for (n + 1), $D_0 = 3^{\circ} 20^{\circ}$, which is consistent with $D_1 = 3^{\circ}$. By interpolation we find that our value of x corresponds exactly to c = 24.84, n = 4, and therefore the spiral should be laid out on the ground by using this precise chord.

In order to find d = BS' we first find the value of y by interpolation for c = 24.84, when by eq. (37) we have

$$d = 99.360 - (55.554 - 0.115) = 43.921.$$

27. Given: a compound curve joining two tangents, to introduce spirals without disturbing

Fig. 11.

the point of compound curvature P. Fig. 11.

a. The radius
of each arc may
be shortened, giving two new arcs
compounded at
the same point
A. P. Having selected a suitable
spiral, we have
for the arc AP
by analogy from
eq. (15), since
h = 0

$$R_2' = \frac{R_2 \operatorname{vers} \Delta_2 - x}{\cos s - \cos \Delta_2}; \cdot \cdot \cdot \cdot \cdot (38.)$$

and, similarly, after selecting another spiral for the arc PB,

$$R_1' = \frac{R_1 \operatorname{vers} \Delta_1 - x}{\cos s - \cos \Delta_1} \cdot \cdot \cdot \cdot (39.)$$

From eq. (18) we have for the distance AS,

$$d = y - [(R_2 - R_2') \sin \triangle_2 + R_2' \sin s], . (40.)$$

and for the distance BS',

$$d = y - [(R_1 - R_1') \sin \Delta_1 + R_1' \sin s] \cdot (41.)$$

The values of D_1' and D_2' resulting from eq. (39) and (40) must be adhered to, even though involving a fraction of a minute.

b. Either arc may be again compounded at some point Q, leaving the portion PQ undisturbed, as explained in § 24. Fig. 12.

Let θ = the an-

Fig. 12.

gle AO₂Q, and we have from eq. (26), after selecting a suitable spiral and assuming R_2' ,

vers
$$\theta = \frac{x - R_2' \text{ vers } s}{R_1 - R_2'}$$
 (42.)

For the distance AS, we have from eq. (27)

$$d = y - [(R_2 - R_2') \sin \theta + R_2' \sin s]$$
 . (43.)

Similar formulæ will determine the angle $\theta = BO_1Q'$ and the distance BS' for the other arc PB in terms of a suitable spiral: thus,

$$\operatorname{vers} \theta = \frac{x - R_1' \operatorname{vers} s}{R_1 - R_1'} \quad . \quad . \quad . \quad . \quad (44.)$$

$$d = y - [(R_1 - R_1') \sin \theta + R_1' \sin s]$$
 (45.)

The method **a** may be adopted with one arc and the method **b** with the other if desired, since the point P is not disturbed in either case. The former is better adapted to short arcs, the latter to long ones.

These methods apply also to compound curves of more than two arcs, only the extreme arcs being altered in such cases.

CHAPTER V.

FIELD WORK.

28. HAVING prepared the necessary data by any of the preceding formulæ, the engineer locates the point S on the ground by measuring along the tangent from V or from A. He then places the transit at S, makes the verniers read zero, and fixes the cross-hair upon the tangent. He then instructs the chainmen as to the proper chord c to use in locating the spiral, and as they measure this length in successive chords, he makes in succession the deflections given in Table II. under the heading "Inst. at S," lining in a pin or stake at the end of each chord in the same manner as for a circle.

When the point L is reached by (n) chords, the transit is brought forward and placed at L; the verniers are made to read the first deflection given in Table II. under the heading "Inst. at n" (whatever number n may be), and a backsight is taken on the point S. If the verniers are made to read the succeeding deflections, the cross-hair should fall successively on the pins already set, this being merely a check on the work done, until when the verniers read zero, the cross-hair will define the tangent to the curve at L. From this tangent the circular arc which succeeds may be located in the usual manner.

In case it became necessary to bring forward the transit before the point L is reached, select for a transit-point the extremity of any chord, as point 4, for

heading "Inst. at 5," and on the line n corresponding to L; while the readings for points between 5 and S are found above the line 5 of the same table. The transit being placed at S, the reading for backsight on 5, the point just quitted, is found under "Inst. at S" and opposite 5, when by bringing the zeros together a tangent to the spiral at S will be defined.

30. Since the spiral is located exclusively by its chord-points, if it be desired to establish the regular 100-foot stations as they occur upon the spiral, these must be treated as plusses to the chord-points, and a deflection angle will be interpolated where a station occurs. To find the deflection angle for a station succeeding any chord-point: the differences given in Table II. are the deflections over one chord-length, or from one point to the next. For any intermediate station the deflection will be assumed proportional to the sub-chord, or distance of the station from the point. We therefore multiply the tabular difference by the sub-chord, and divide by the given chord-length, for the deflection from that point to the station. This applied to the deflection for the point will give the total deflection for the station.

This method of interpolation really fixes the station on a circle passing through the two adjacent chord-points and the place of the transit, but the consequent error is too small to be noticeable in setting an ordinary stake. Transit centres will be set only at chord-points, as already explained.

31. It is important that the spiral should join the main tangent perfectly, in order that the full theoretic advantage of the spiral may be realized. In view of this fact, and on account of the slight inaccuracies inseparable from field work as ordinarily performed, it is usually preferable to establish carefully the two points

of spiral S and S' on the main tangents, and beginning at each of these in succession, locate the spirals to the points L and L'. The latter points are then connected by means of the proper circular arc or arcs. Any slight inaccuracy will thus be distributed in the body of the curve, and the spirals will be in perfect condition.

- 32. A spiral may be located without deflection angles, by simply laying off in succession the abscissas y and ordinates x of Table III. corresponding to the given chord-length c. The tangent EL at any point L, Fig. 4, is then found by laying off on the main tangent the distance $YE = x \cot s$, and joining EL. In using this method the chord-length should be measured along the spiral as a check.
- 33. In making the final location of a railway line through a smooth country the spirals may be introduced at once by the methods explained in Chapter III. But if the ground is difficult and the curves require close adjustment to the contour of the surface, it will be more convenient to make the study of the location in circular curves, and when these are likely to require no further alterations, the spirals may be introduced at leisure by the methods explained in Chapter IV. The spirals should be located before the work is staked out for construction, so that the road-bed and masonry structures may conform to the centre line of the track.
- 34. When the line has been first located by circular curves and tangents, a description of these will ordinarily suffice for right of way purposes; but if greater precision is required the description may include the spirals, as in the following example:

"Thence by a tangent N. 10° 15'E., 725 feet to station 1132 + 12; thence curving left by a spiral of 8 chords, 288 feet to station 1135; thence by a 4° 12' curve (radius

- 1364.5 feet), 666.7 feet to the station 1141+66.7; thence by a spiral of 8 chords 288 feet to station 1144 + 54.7 P.T. Total angle 40° left. Thence by a tangent N. 29° 45′ W.," &c.
- 35. When the track is laid, the outer rail should receive a relative elevation at the point L suitable to the circular curve at the assumed maximum velocity. Usually the track should be level transversly at the point S, but in case of very short spirals, which sometimes cannot be avoided, it is well to begin the elevation of the rail just one chord-length back of S on the tangent.
- 36. Inasmuch as the perfection of the line depends on adjusting the inclination of the track proportionally to the curvature, and in keeping it so, it is extremely important that the points S and L of each spiral should be secured by permanent monuments in the centre of the track, and by witness-posts at the side of the road. The posts should be painted and lettered so that they may serve as guides to the trackmen in their subsequent efforts to grade and "line up" the track. The post opposite the point S may receive that initial, and the post at L may be so marked and also should receive the figures indicating the degree of curve.
- 37. The field notes may be kept in the usual manner for curves, introducing the proper initials at the several points as they occur. The chord-points of the spiral may be designated as *plusses* from the last regular station if preferred, as well as by the numbers 1, 2, 3, &c., from the point S. Observe that the chord numbers always begin at S, even though the spiral be run in the opposite direction.

CHAPTER VI.

OFFICE WORK.

- 38. When a railroad line has been located with spirals, it evidently cannot be plotted in the usual manner, and it is quite unnecessary to plot the spiral as a compound curve. The extreme points S and L of a spiral, must be located on the map in their proper positions, and after the circular curve has been constructed, the spiral may be drawn in by using an irregular curved rule. Should the map be on a large scale and the spiral quite long, an intermediate point may be first located by its co-ordinates x and y taken from Table III.
- 39. In Fig. 6, SL is a spiral followed by the circular curve LH'. Now if the latter be produced backward it will not reach the tangent SV, but it will touch a parallel tangent at the point A' when O'A' is perpendicular to the tangent. The perpendicular distance between the tangents is evidently (LM-IA'); but LM = x and IA' = LO' vers LO'A' = R' vers s; and calling the perpendicular distance between the parallel tangents p we have

$$p = x - R' \text{ vers } s. \tag{46}$$

Also if we let q = the distance from S to a point C on the tangent opposite the point A' we have

$$q=\mathrm{SM}-\mathrm{LI},$$
 or $q=y-R'\sin s.$ (47)

We then have q and p as the co-ordinates of the point

A' from S as an origin, so that if the field notes give us the position of S, that of A' and consequently of O' can be very readily plotted.

The values of q and p, also of R' sin s have been calculated for a series of the most convenient curves with their proper spirals, and will be found in Table VI. These curves are sufficiently numerous for ordinary practice, and if they are adopted to the exclusion of others on location, then Table VI. will afford all the quantities required for plotting. If, however, circumstances occasionally require the use of some curve not given in this table, the corresponding values of p and q can be quickly obtained by solving equations (46) (47). These equations do not contain the central angle Δ ; they are equally applicable to a simple curve and to the arc of a compound curve.

40. Table VI. is also serviceable in the work of projecting a location on paper before locating the line in the field. Thus, having drawn the tangents in desired positions, instead of joining them with a circular curve touching them in the usual manner, we first draw two parallels at the distance p from the tangents and let the desired circle touch the parallels. The value of p is of course selected from the table according to the degree of curve and the spiral employed. Then drawing a radius O'A' perpendicular to the tangent we define the point C on the tangent opposite A'; and laying off q in the proper direction from C on the tangent we locate the point of spiral S; and laying off $R' \sin s$ in the opposite direction we locate the point M, whence laying off x perpendicular to the tangent we locate the point L where the spiral joins the curve. The limits S and L of the spiral are thus fully defined on the map.

41. If the location is such that the curves predominate, these should be located first on the paper, and the process described in the preceding paragraph is simply reversed. It is advisable to prepare for this purpose a set of curve templets corresponding to the scale of the map and the degrees of curve given in Table VI. When the curves are satisfactorily adjusted to the topography of the map, instead of connecting them by tangents directly, find the proper value of p in each case and draw a parallel arc at this offset distance outside of each curve near the probable tangent point, and rule in a straight line touching these arcs, which will be the tangent required. A perpendicular upon the tangent through the centre of the curve will define the point C, from which lay off q and $R' \sin s$ to locate S and M as before.

Care must of course be taken to see that the distances q from adjacent curves do not overlap on the same tangent. Should this occur, shorter spirals must be selected or possibly sharper curves be employed. (See § 156 "Field Engineering.")

- 42. Similar processes may sometimes be adopted in the field (the curves and spirals being there drawn full size). For instance, in some change of line after location if we have two curves to be connected by a tangent with spirals, or two tangents to be connected by a circular curve with spirals, the above described methods may be employed, only using the transit instead of the ruler and the chain instead of a scale of parts.
- 43. Finally, Table VI. affords another method of calculating the tangent distance $T_s = VS$ for such curves as are given in the table.

For
$$VS = VC + CS$$

= O'C tan VO'C + CS,

or
$$T_{s} = (R' + p) \tan \frac{1}{2} \Delta + q$$
 (48)

or
$$T_s = T + q + p \tan \frac{1}{2} \Delta \tag{49}$$

in which T = the tangent distance of a simple curve of same radius and central angle, and may be obtained if preferred, by consulting Table VI. of "Field Engineering."

44. When a simple curve joins two tangents and it is desired to introduce spirals without changing the radius, as in § 23 Fig. 7, it is evident that the curve must first be moved bodily along the bisecting line VO a certain distance h = HH' = OO'. Therefore the point A must move an equal and parallel distance to A' (not shown).

Now the value of h is given by eq. (23) the numerator of which is the expression for p; therefore we may substitute p in this equation, finding the value of p in Table VI. whence we find h by

$$h = \frac{p}{\cos \frac{1}{2} \Delta}.$$
 (50)

A caution may be necessary to beginners not to confuse the points A, A', and C in their minds, as these points are apt to be not widely separated on the ground.

garan and section of

CHAPTER VII.

ADDITIONAL PROBLEMS AND SOLUTIONS.

45. The tangents and long chord of the spiral serve to locate it in connection with the main tangent and central curve without the necessity of setting the in-

FIG. 13.

termediate points of the spiral until they are required for laying the track

Table VII. contains the first tangent, SE, Fig. 13, of every spiral given in Table III.; also the second tangent, LE, and the long chord, SL. These quantities have been computed by equations (1) and (2) for the various combinations of n and c which go to make up the complete list of spirals.

Having selected a proper spiral and found the tangent point S on the tangent, we may locate the point L by deflecting the angle i, Table II., and laying off the long chord SL. Then at L we may deflect the angle SLE = i Table II., for the direction of the tangent EV' at L, from which the central curve may be run in the usual manner.

If we prefer we may produce the main tangent from S to E, taking the value of SE from Table VII. Then at E we may deflect the angle VEL = s, taken from Table IV., and lay off EL taken from Table VII., to locate the point L, and from L we may proceed as before.

46. On reaching the point L', where the closing spiral should begin, we may run out the short tangent L'E', as a test, to see if E' so found falls upon the tangent V'S, and if the angle L'E'V equals s as it should do. If found correct we have only to lay off E'S' along the tangent to locate the final tangent point S'.

Should any obstruction be met on the line L'E', we may use, as an alternative, the long chord L'S', or the offset L'M' = x, Table III., and lay off M'S' = y, Table III.

47. A circular curve is frequently located without particular reference to the following tangent, which is to be fixed upon afterward. In such cases it is usually best to produce the curve through the entire angle to

a parallel tangent at A", Fig. 13, and there measure outward an offset p, to the required tangent VS'. If this offset p can be made to agree with some value of p, taken from Table VI., for a spiral adapted to the given curve, we should adopt that spiral at once, and avoid computation.

For example: if we had run a five-degree curve, we find in Table VI. several values of p ranging from 0.51 to 6.04, one of which may answer our purpose. Suppose we decide that the offset 3.85 will give the final tangent the best position, we then prepare to locate the spiral $n \times c = 9 \times 33$. Since for n = 9 the angle $s = 7^{\circ}$ 30', we go back on our curve a distance A''L', sufficient to cover the central angle 7° 30', and from the point L' lay off the tangent L'E' = 104.67, and at E' deflect 7° 30' and lay off 192.69 feet to locate the tangent point S'; these measures being found in Table VII. under c = 33.

But if the degree of our curve is not found in Table VI., we may make use of Table VII. in the following manner:

- 48. Given: a located curve, of degree of curve D, and an offset p to the required tangent, to connect the curve and tangent by a suitable spiral.
- a. When the offset may be varied within certain limits:

Select from Table III. several spirals adapted to the given curve and note in Table VII. the corresponding values of p, and adopt the one most nearly agreeing with the given value. The spiral so selected and located from the curve as above described, will locate the tangent within the desired limits, if these are not too restricted.

If the result is doubted, the value of p may be computed before locating the spiral, by solving eq. (46).

Example. Let $D' = 6^{\circ}$ 30' and p be taken at about five feet, with a margin of one foot either way for the final position of the tangent.

We find by inspection of Table III., Table VII.

$$D_{s}(n+1)$$
 p
 $n \times c = 10 \times 28$ $6^{\circ} 33' \circ 3''$ 4.47
 $n \times c = 11 \times 31$ $6^{\circ} 27' 17''$ 6.44

It is obvious that the first one gives the best approximation, and that the resulting value of p will be a little less than 4.47, as our degree of curve is a little less than 6° 33' given by the table.

By computation we find,

$$n = 10$$
 s g° $10'$ $\log vers$ $\frac{2.945442}{8.106221}$ $\frac{11.263}{1.051663}$ $\frac{15.650}{4.387}$

This computation is unnecessary except to illustrate the theory.

b. When the offset must be exact:

Proceed as before in the selection of a spiral, but instead of adopting c a whole number, compute its exact value as follows:

Transforming eq. (46) we have

$$x = p + R'$$
 vers s (51)

which gives x in terms of p given and s derived from n selected.

Since for a fixed value of n we have x proportional to c, as explained in § 7, we have at once

$$c = 100 \frac{x}{X} \cdot \cdot \cdot \cdot \cdot \cdot (52)$$

in which X is taken from Table I. where c = 100. With this value of c the spiral may be located.

Example. Let $D' = 6^{\circ}$ 30' and p required to be exactly 5 feet.

As before, the proper value of n is 10, but to make f exact we must modify the value of c. By eq. (51)

$$n = 10$$
 s 9° $10'$ $log vers$ $\frac{2.945442}{8.106221}$ $\frac{p}{1.051663}$ therefore $x = log X$ Tab. I., $\frac{5}{16.263}$ $log 1.211201$ $\frac{1.747370}{1.051663}$

therefore c = 29.10 .29096 9.463831 and the required spiral has 10 chords, 29.10 feet each.

49. The offsets p given in Table VII. are computed by eq. (46), using the value of R' derived from D_n for n+1 in Table III.; that is to say, the circular arc produced to A', Fig. 13, is assumed to be the arc upon the next chord of the spiral beyond the point where the spiral is made to terminate. For convenience the offsets were first computed for c=100, as in Table I., and afterwards found for other values of c by proportion.

With any change of radius the value of p changes, even with the same spiral, as we have seen in the last example. However, since in practice the degree of curve of the central curve is made as near the tab-

ular value as may be, the resulting offset will never differ greatly from the offset given in Table VII. The table therefore furnishes a convenient guide in selecting a spiral that shall produce a given offset with a given curve.

50. To find the spiral tangents and long chord of a spiral for any value of c.

As already explained, these quantities may be computed by eqs. (1) and (2). But since for any one value of n they are proportional to the value of c, it will be more convenient, when c is not an integer, and is therefore not given in the table, to derive the required quantity by direct proportion from the first part of Table VII., where c equals 10.

In order that the results may be reliable the values are given to one more decimal place under chord c = 10 feet than in the rest of the table. The formulas are very simple and are as follows:

For any chord
$$c$$
, the first tangent, $SE = c \frac{t'}{10}$ the second tangent, $LE = c \frac{t''}{10}$ the long chord, $SL = c \frac{C'}{10}$ in which t' t'' are the tabular values of the tangent

in which t' t'' are the tabular values of the tangents given under c = 10 and C' is the tabular value of the long chord given under c = 10, all in Table VII., and opposite the selected value of n.

51. Given, a curve located with spirals terminating in a tangent, to change the curve so that it may terminate in a parallel tangent with a given perpendicular offset o.

angle s is changed the point L' must be changed on the curve to L", such that

$$L' OL'' = s' - s$$

or, in the second case when p' = p - o, L'OL" = s - s' and the point L" falls between L' and A".

If the offset o is quite small it may be possible to reach the required tangent by changing the value of c

only; in which case, since s remains unchanged, the point L' requires no change, and $x' = x \pm o$ from which we obtain the required value of c by using eq. (52). But any large change in the value of c is likely to

render the spiral unsuitable to the degree of curve unless the number of chords n is changed also.

52. To find the degree of curve upon any part of a spiral when the chord c is not a whole number.

We may arrive at an approximate answer by inspection of Table III. for the degree of curve under the chord value next greater and less than the given value of c, and opposite the assumed value of n. The required degree of curve may be found by interpolation between the two.

But the exact solution is equally simple, since the radius of curvature is proportional to the chord length c. Table I. gives the radius R when c = 100, consequently, for any other value of c the radius of curvature R' will be computed by the formula

from which the degree of curve may be obtained in any table of railroad curves.

53. The principles explained in this chapter may be applied to the class of problems treated in Chapter IV., viz. replacing the curves of old track with new curves combined with spirals.

Old track is so frequently out of line that it is not advisable to apply the methods of Chapter IV. without first surveying it to obtain accurate data upon which to proceed.

We may, however, begin at or near the middle point of an old curve, and run in either direction toward the tangent, using a radius slightly shorter than the old one is found to be, so as to make the curve fall somewhat short of the tangent, and having ascertained the resulting offset p, select the proper spiral with which to close the work.

If, at the same time, we assume our first point at the middle of the curve a little outside of the old centre line, as at H', Fig. 6, we may succeed in placing the new line practically over the old one, and in preserving the same length of line.

A careful study of the examples set forth in Table V. will enable one to make the necessary assumptions with considerable success, while it is always possible to close the work upon the tangent with one spiral or another. It is not likely, however, that the two spirals will be alike, and they usually have to be run with a fractional value of the chord ϵ , since this is the last thing computed.

- 54. To join two curves by a spiral. The spiral may be used for transition between two branches of a compound curve as readily as between a curve and tangent. An offset must be made at the point of compound curve to make room for the spiral, the sharper curve being inside of the flatter one. The amount of this offset depends upon the spiral selected to fit the given curves. In general the offset and spiral bisect each other, and the length of each may be obtained directly from the tables. The spiral may be located by transit and chain or by offsets made from either curve, the necessary quantities being taken directly from the tables. An example or two will best illustrate the method.
- 55. Example. Given, a compound curve in which $D = 6^{\circ}$ and $D' = 10^{\circ}40'$, to replace the PCC by a spiral.

In Table III., under c = 25, for n = 9 $D_s = 6^{\circ} + 1$

n = 15 $s = 20^{\circ}$. The difference or $12^{\circ}30'$ is the angle of the spiral, and this angle is to be divided between the two curves in proportion to their curvature. Thus for the 6° curve we have

$$\frac{D}{D+D'}(12^{\circ}30') = \frac{6^{\circ}}{16^{\circ}40'}(12^{\circ}30') = \frac{36}{100}(12^{\circ}30') = 4^{\circ}30',$$

and similarly for the 10°40' curve we find But 4°30' call for 75 feet on a 6° curve, and 8° call for 75 feet on a 10°40' curve, therefore the spiral is bisected at the PCC. We measure back 75 feet on the 6° curve to F, Fig. 15, which is point of the spiral, and from a tangent through that point make the several deflections given below the zeros in Table II.. Inst. at 9, ending with 5°45'49" for point 15 or H. Then setting up at H, and deflecting from HF 6°44'11" we have the direction of the tangent through H, from which we may proceed to locate the 10°40' curve; and this curve will be found to lie 1,02 feet inside of its former position; that is, the offset PP' is 1.02 feet, The offset or gap, PP', is equal to double the value of x found opposite the number n which expresses one half the length of the spiral used. In this example we have a spiral of 6 chords, and for n = 3 under c = 25 we find x = .509 and double this is 1.018, which is the gap.

When the spiral has an odd number of chords the middle chord will be bisected at the PCC, and a value of x may be found by interpolation. The following table gives the values of x when c = 100, from which the value of x for any other chord may be found by direct proportion.

	c = 100.	VALUES	OF x FOR	HALF-CHO	RDS.
n	\boldsymbol{x}	n	\boldsymbol{x}	n	\boldsymbol{x}
1.5	.364	4.5	5.999	7 .5	24.711
2.5	1.273	5· 5	10.397	8.5	35.200
3.5	3.054	6.5	16.538	9.5	48.288

To locate the spiral by offsets from the curves:

Consider the beginning point F of the spiral as zero and number the succeeding points $\mathbf{1}$, $\mathbf{2}$, etc., up to the PCC, and use for offsets the values of x given for these numbers under the selected chord-length in Table III. Then begin at H as zero, and, numbering the points backward, make the same offsets, but from the other curve in its new position. At the PCC the gap will be the sum of offsets made there, and since they are equal we have the rule for the gap given above.

If the intermediate points are not required the point H may be located from F by the long chord which is to be computed by eq. (3). In this example the chord extends from 9 to 15, and

$$C = \frac{224.595 - 370.311}{\cos(7^{\circ}30' + 5^{\circ}45'49'')} = 149.706.$$

56. Example. Given, a compound curve in which $D=4^{\circ}$, and $D'=12^{\circ}$, to replace the PCC by a spiral. In Table III., under c=21, we find for n=5 $D_s=3^{\circ}58'+$, and for n=15 $D'_s=11^{\circ}55'+$; so the spiral will extend from point 5 to point 14, or 9 chords; and between these points the spiral angle is $(17^{\circ}30'-2^{\circ}30')=15^{\circ}$, which is to be divided between the two curves in proportion to their curvature, or into $\frac{1}{4}$ and $\frac{3}{4}$ parts. Thus $3^{\circ}45'$ are taken from the 4° curve, and $11^{\circ}15'$ from the 12° curve. Each of these takes

a distance of 93.75 feet on its curve from the PCC, so that the length of the spiral will be 187.50 feet, which divided by 9 gives c = 20.833 as the proper length of chord.

To locate the spiral by deflections, make PF = 93.75 and since F is point 5, deflect from the tangent at F the angles given below the zeros under "Inst. at 5," Table II., until point 14 is reached. Then at 14, which is H, deflect from HF $8^{\circ}36'45''$ to get the tangent at H. Of course the spiral may also be located from H by deflecting from the tangent at H the angles given above the zeros under "Inst. at 14," Table II.

To locate the spiral by offsets from the curves:

Since there are 9 chords, take from the table in section 55 the value of x for n=4.5, double it and multiply by 20.833 and divide by 100; the result is the gap PP'=2.52. Having separated the curves by this amount and located the points F and H, call each of these zero, as in the previous example, and lay off the first four values of x under c=21 as offsets to locate the four points between the zero and the PCC. Strictly, the offsets x should be reduced in the ratio of 20.833: 27, but the correction is too small to be noticeable. If the long chord FH were computed for 21 it would require correction in the above ratio.

Other spirals might have been selected; for the first example we might have used $(7-11)\times 19$, or $(8-13)\times 22$; and in the second example $(4-11)\times 16$, or $(6-16)\times 24$. Usually the shorter spirals are preferred.

The field notes should be full and explicit, and monuments should mark the ends of each spiral employed.

TABLE

ELEMENTS OF THE SPIRAL

Point	Degree of curve	Spiral angle	Inclina- tion of chord to axis of Y.	Latitude of each chord.	Sum of the latitudes,
	o° 00′	o° 00′	o° 00′		
0					
I	10'	10'	05′	99.99989423	99.99989423
2	20'	1° 30'	20	99.99830769	199.99820192
3	30'	1° 40′	1° 20′	99.99143275	299.98963467
4	40'	1° 40′ 2° 30′		99.97292412	399.96255879
5	1° 50'	2° 30′	2° 05′	99.93390007	499 89645886
	I,	3° 30′	3°,	99.8629535	599.7594123
7 8	1° 10′	1 1 10	1 4 OE.	99.7461539	699.5055662
1	I° 20′		1 5 20	99.5670790	799.0726452
9	1° 30′	7° 30′	1 6° 45′	99.3068457	898.3794909
10	1° 40′	່ ດັ ເດັ	8° 20	98.944164	997.3236549
11	1° 50′	11,	10° 05′	98.455415	1095.779070
12	20	13"	12°	97.814760	1193 593830
13	2° 10′	15 10	14° 05'	96.994284	1290.588114
14	່າ°າດ′	17° 30'	16° 20'	05.064184	1386.552298
15	2° 20′	20°	18° 45'	94.693014	1481.245312
16	2° 10'	22° 40′	21° 20′	93.147975	1574.393287
17	2° 50'	25° 30	24° 05′	91.295292	1665.688579
1 18	20	28° 30′	27°	89.100650	1754.789229
	3° 10′	31° 40′	30° 05′	86.529730	1841.318959
19	3° 20′	35° 40	33° 20'	83.548780	
20	3° 20′	35	33 20	63.546760	1924.867739
	A	ι ?s	Point	$\operatorname{Log} \frac{x}{y} =$	Deflection angle,
			n.	log tan i.	i.
)	3437	77.5	ı	7.1626964	o° 05′ 00.″00
1	1718		2	7.5606380	0° 12′ 30.″00
	1145		3	7.8317091	0° 23′ 20 ′′00
i)4.42	4	8.0377730	0° 27′ 20 ′′00
		75.55		8.2041217	0° 54' 50 "07
l		13-33 19.65	5	8.3436473	
		, -			
		1.15	7 8	8.4638309	1° 39′ 59.″75 2° 07′ 29.″45
		7.28		8.5694047	2° 07′ 29.″45
1		9.83	9	8.6635555	2° 38′ 18.″90
J	j 343	37.87	10	8.7485340	3° 12′ 27.″95
<u>' </u>	,		ı	ı	1

L

OF CHORD-LENGTH, 100.

Departure of each chord,	Sum of the depart- ures,	Logarithm,	Logarithm,	Point	
r∞×sin Incl.	x.	log y.	log x.	n.	
		1		0	
.1454441	.1454441	1.9999995	9.1626960	I	
.5817731	.7272172	2.3010261	9.8616641	2	
1.3089593	2.0361765	2.4771063	0.3088154	3	
2.3268960	4.3630725	2.6020194	0.6397924	4	
3.6353009	7.9983734	2.6988800	0.9030017	5	
5.233596	13.231969	2.7779771	1.1216244		
7.120730	20.352699	2.8447911	1.3086220	7 8	
9.294991	29.647690	2.9025862	1.4719909		
11.75374	41,40143	2.9534598	1.6170153	9	
14.49319	55.89462	2.9988361	1.7473701	10	
17.50803	73.40265	3.0397231	1.8657117	11	
20.79117	94.19382	3.0768567	1.9740224	12	
24.33329	118.52711	3.1107877	2.0738177	13	
28.12251	146.64962	3.1419362	2.1662811	14	
32.14395	178.79357	3.1706269	2.2523519	15	
36.37932	215.17289	3.1971131	2.3327875	16	
40,80649	255.97938	3.2215938	2.4082049	17	
45.39905	301.37843	3.2442250	2.4791121	18	
50.12591	351.50434	3.2651291	2.5459307	19	
54.95090	406.45524	3.2844009	2.6090128	20	
Point	Log *=	Deflection an-	R_s		
n.	log tan i.	·I.			
11	8.8250886	3" 49' 56."39	3125.36		
12	8.8971657	4 30 43, 05			
13	8.9630300	5° 14' 50."28			
14	9.0243449	6 02 14. 93			
15	9.0817250	6° 52' 57. 31	2292.01		
16	9.1356744	7° 46' 56."71	2148.79		
17	9.1866111	8° 44′ 12.″26			
18	9.2348871	9 44 42. 92	1910.08		
19	9.2808016	10° 48′ 27.′′44 11° 55′ 24.′′34	1809.57		

TABLE II.

DEFLECTION ANGLES, FOR LOCATING SPIRAL CURVES IN THE FIELD.

Rule for finding a Deflection.

Read under the *heading* corresponding to the point at which the instrument stands, and on the *line* of the number of the point observed.

INSTRUMENT AT S. $s = 0$.						
No. of Point,	Deflection from Tangent,	Difference of Deflection.				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	00' 05 12 30" 23 20 37 30 55 00 1° 15 50 1 40 00 2 07 29 2 38 19 3 12 28 3 49 56 4 30 44 5 14 50 6 02 15 6 52 57 7 46 57 8 44 12 9 44 43 10 48 27 11 55 24	05' 07 30" 10 50 14 10 17 30 20 50 24 10 27 29 30 50 34 09 37 28 40 48 44 06 47 25 50 42 51 00 57 15 60 31 63 44 66 57				

TABLE II.-Deflection Angles.

INST. AT I. s = 0° 10'.			In	ST. AT 2. s =	o° 30'.
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection
0	05	05'	0	17' 30"	7′ 30″
I	00		I	10	
2	10	10 12 30"	2	00	10
3	22 30"	12 30"	3	15	15
4	38 20	15 50	4	32 30	17 30
5	57 30	19 10	5	53 20	20 50
6	1º 20 00	22 30	5 6	1º 17 30	24 10
7	I 45 50	25 50	7	I 45 00	27 30
8	2 15 00	29 10	8	2 15 50	30 50
9	2 47 29	32 29	9	2 49 59	34 09
10	3 23 18	35 49	10	3 27 20	37 30
11	4 02 27	39 09	11	4 08 18	40 49
12	4 44 55	42 28	12	4 52 26	44 08
13	5 30 42	45 47	13	5 39 54	47 28
14	6 19 47	49 05	14	6 30 40	50 46
	7 12 11	52 24	15	7 24 44	54 04
16	8 07 51	55 40	16	8 22 06	57 22
7.7		58 58		1 TO	60 39
17	9 06 49	62 12	17	9 22 45	63 54
10000	10 00 01	65 27	100	10 26 39	67 10
19	11 14 28	68 40	19	11 33 49	70 23
20	12 23 08		20	12 44 12	
In	ST. AT 3. s=	1° 00'.	IN	IST. AT 4. s =	10 40'.
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection
		Deflection.	No. of Point.	aux. tan.	Deflection
Point.	36' 40"	Deflection.	Point.	aux. tan.	Deflection 10' 50"
Point.	36. 40" 27. 30	9' 10" 12 30	Point.	aux. tan. 1° 02′ 30″ 51 40	10' 50"
Point. O I 2	36' 40"	9' 10" 12 30 15	Point.	aux. tan.	10' 50" 14 10 17 30
Point. O I 2 3	36. 40" 27. 30 15	9' 10" 12 30 15 20	Point. O I 2 3	aux. tan. 1° 02′ 30″ 51 40 37 30	10' 50" 14 10 17 30 20
Point. 0 1 2 3 4	36 40" 27 30 15 00 20	9' 10" 12 30 15 20 22 30	Point. 0 1 ,2 ,3 4	aux. tan. 1° 02′ 30″ 51 40 37 30 20 00	10' 50" 14 10 17 30 20 25
Point. O I 2 3	36 40" 27 30 15 00 20 42 30	9' 10" 12 30 15 20 22 30 25 50	Point. O I 2 3	aux. tan. 1° 02′ 30″ 51 40 37 30 20 00 25	10' 50" 14 10 17 30 20 25 27 30
Point. 0 1 2 3 4 5 6	aux. tan. 36' 40" 27 30 15 00 20 42 30 1° 08 20	9' 10" 12 30 15 20 22 30 25 50 29 10	90 int. 2 3 4 5 6	aux. tan. 1° 02′ 30″ 51 40 37 30 20 00 25 52 30	10' 50" 14 10 17 30 20 25 27 30 30 50
Point. 0 1 2 3 4 5 6 7	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30	Point. 0 1 2 3 4 5 6 7	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20	10' 50" 14 10 17 30 20 25 27 30 30 50 34 10
Point. 0 1 2 3 4 5 6 7 8	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00	9' 10" 12 30 15 20 22 30 25 50 29 10	Point. 0 1 2 3 4 5 6 7 8	aux. tan. 1° 02′ 30″ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30	10' 50" 14 10 17 30 20 25 27 30 30 50
Point. 0 1 2 3 4 5 6 7 8	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30	Point. 0 1 2 3 4 5 6 7 8	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 I 23 20 I 57 30 2 35 00	10' 50" 14 10 17 30 20 25 27 30 30 50 34 10
Point. 0 1 2 3 4 5 6 7 8 9 10	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50	Point. 0 1 2 3 4 5 6 7 8 9 10	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09
Point. 0 1 2 3 4 5 6 7 8 9 10 11	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 99 42 29 45 49	Point. 0 1 2 3 4 5 6 7 8 9 10 11	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 99 42 29	Point. 0 1 2 3 4 5 6 7 8 9 10 11 12	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 99 42 29 45 49	Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28 5 38 16	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25 6 34 52	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 49 08	Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28 5 38 16 6 32 24	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 41 09 47 29 50 48
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	36' 40" 27 30 15 00 20 42 30 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25 6 34 52 7 30 37	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 49 08 52 27	Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28 5 38 16 6 32 24 7 29 50	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	36' 40" 27 30 15 00 20 42 30 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25 6 34 52 7 30 37 8 29 40	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 99 42 29 45 49 49 08 52 27 55 45	Point. 0 1 2 3 4 5 6 77 8 9 10 11 12 13 14 15 16	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28 5 38 16 6 32 24 7 29 50 8 30 34	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08 57 26
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	36' 40" 27 30 15 00 20 42 30 1° 08 20 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25 6 34 52 7 30 37 8 29 40 9 32 01	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 09 42 29 45 49 49 08 52 27 55 45 50 03	Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28 5 38 16 6 32 24 7 29 50 8 30 34 9 34 36	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08 57 26 60 44
Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	36' 40" 27 30 15 00 20 42 30 1 37 30 2 10 00 2 45 50 3 24 59 4 07 28 4 53 17 5 42 25 6 34 52 7 30 37 8 29 40	9' 10" 12 30 15 20 22 30 25 50 29 10 32 30 35 50 39 99 42 29 45 49 49 08 52 27 55 45 59 03 62 21	Point. 0 1 2 3 4 5 6 77 8 9 10 11 12 13 14 15 16	aux. tan. 1° 02′ 30′′ 51 40 37 30 20 00 25 52 30 1 23 20 1 57 30 2 35 00 3 15 50 3 59 59 4 47 28 5 38 16 6 32 24 7 29 50 8 30 34	Deflection 10' 50" 14 10 17 30 20 25 27 30 30 50 34 10 37 30 40 50 44 09 47 29 50 48 54 08 57 26 60 44 64 02

TABLE II.—DEFLECTION ANGLES.

NST. AT 5. $s=2$	o 30'.	1	NST. AT 6. $s = 3$	° 30'.
Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection
1° 35′ 00′′	TO' 20"	0	2° 14′ 10′′	14' 10"
1 22 30		I	2 00 00	
I 06 40		2	I 42 30	17 30
47 30		3		20 50
				24 10
				27 30
1000	30			30
V	32 30		1.00	35
	35 50	6		37 30
	4.0			40 50
				44 IO
3 00 00		100	2 37 30	47 30
3 45 50	17	II	3 25 00	
4 34 59		12	4 15 49	50 49
5 27 28		13	5 00 58	54 09
				57 29
	2.5		100000000000000000000000000000000000000	60 48
				64 06
1.0	65 43		100000000000000000000000000000000000000	67 25
	69 01			70 42
2000	72 16	1 2 5	F. S. S. W. S. L. S.	73 59
C	75 32	1	7.4	77 14
13 0/ 20	1 1 1 1 1 1 1	20	13 01 41	
NST. AT 7. $s=4$	° 40′.	I	NST, AT $8. s = 6$	° co'.
Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection
30 00' 00"		0	30 52' 31"	
3° 00′ 00″ 2 41 10	15' 50"	0	3° 52′ 31″	
2 44 10	15' 50" 19 10	1	3 35 00	17' 31" 20 50
2 44 10 2 25 00		2	3 35 00 3 14 10	
2 44 10 2 25 00 2 02 30	19 10	1 2 3	3 35 00 3 14 10 2 50 00	20 50
2 44 10 2 25 00 2 02 30 1 36 40	19 10 22 30	1 2 3 4	3 35 00 3 14 10 2 50 00 2 22 30	20 50 24 10
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30	19 10 22 30 25 50	1 2 3 4 5	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40	20 50 24 10 27 30 30 50
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35	19 10 22 30 25 50 29 10 32 30	1 2 3 4 5 6	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30	20 50 24 10 27 30 30 50 34 10
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35	19 10 22 30 25 50 29 10 32 30 35	1 2 3 4 5 6	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40	20 50 24 10 27 30 30 50 34 10 37 30
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40	19 10 22 30 25 50 29 10 32 30 35 40	1 2 3 4 5 6	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30	20 50 24 10 27 30 30 50 34 10 37 30 40
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30	19 10 22 30 25 50 29 10 32 30 35 40 42 30	3 4 5 6 7 8	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40	20 50 24 10 27 30 30 50 34 10 37 30 40 45
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50	3 4 5 6 7 8	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10	3 4 5 6 7 8	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30 2 08 20	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30	3 4 5 6 7 8 9	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49	3 4 5 6 7 8 9 10	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30	24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09	1 2 3 4 5 6 7 8 9 10 11 12 13	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28	3 4 5 6 7 8 9 10 11 12 13	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 64 09
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58 6 47 26	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49 6 19 58	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58 6 47 26 7 53 14	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49 6 19 58 7 27 26	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 64 09
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58 6 47 26 7 53 14 9 02 19	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28 65 48	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49 6 19 58 7 27 26 8 38 13	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 64 09 67 28
2 44 10 2 25 00 2 02 30 1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58 6 47 26 7 53 14	19 10 22 30 25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28 65 48 69 05	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	3 35 00 3 14 10 2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49 6 19 58 7 27 26	20 50 24 10 27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 64 09 67 28 70 47
	1° 35′ 00′ 1 22 30 1 06 40 47 30 25 00 30 1 02 30 1 38 20 2 17 30 3 00 00 3 45 50 4 34 59 5 27 28 6 23 15 7 22 23 8 24 48 9 30 31 10 39 32 11 51 48 13 07 20 NST. AT 7: \$ = 4 Deflection from	aux. tan. 1° 35′ 00′ 1 22 30 1 06 40 47 30 22 30 25 00 30 30 30 30 30 30 30 30 3	aux, tan. Deflection. Point.	aux. tan. Deflection. Point. aux. tan. 1° 35′ 00′′ 12′ 30″ 1 2° 14′ 10″ 1 22 30 15 50 1 2 00 00 1 06 40 15 50 2 1 42 30 47 30 22 30 3 1 21 40 25 25 4 57 30 30 32 30 6 00 1 02 30 32 30 7 35 1 38 20 39 10 9 1 53 20 3 00 00 42 30 9 1 53 20 3 45 50 45 50 10 2 37 30 3 45 50 45 50 11 3 25 00 4 34 59 52 29 12 4 15 49 5 27 28 55 47 14 6 07 27 7 22 23 59 08 15 7 08 15 8 24 48 65 43 17 9 19 46 10 39 32 72 16 18 10 30 28 11 51 48 75 32 20 13 01 41 NST. AT 7. s = 4° 40′.

TABLE II.—DEFLECTION ANGLES.

Inst. at 9. $s = 7^{\circ} 30'$			1	NST. AT IO. $s = 9$	9° 10'.
No. of Point.	Deflection from aux, tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. o
0	4° 51′ 41″	-1-011	0	5° 57′ 32′′	ant wall
I	4 32 31	19' 10"	1	5 36 42	20' 50"
2	4 10 01	22 30	2	5 12 31	24 11
3	3 44 10	25 51	3	4 45 OI	27 30
4	3 15 00	29 10	4	4 14 10	30 51
5	2 42 30	32 30	5	3 40 00	34 10
6	2 06 40	35 50	6	3 02 30	37 30
7	I 27 30	39 10	7	2 21 40	40 50
8	45	42 30	8	I 37 30	44 10
9	00	45	9	50	47 30
10	50	50	10	00	50
II	1 42 30	52 30	7.1	55	55
12	2 38 20	55 50	12	I 52 30	57 30
13	3 37 30	59 10	13	2 53 20	60 50
14	4 40 00	62 30	14	3 57 30	64 10
15	5 45 49	65 49	15	5 05 00	67 30
16	6 54 57	69 08	16	6 15 49	70 49
17	8 07 25	72 28	17	7 29 57	74 08
18	9 23 11	75 46	18	8 47 24	77 27
10	10 42 16	79 05	19	10 08 10	80 46
20	12 04 38	82 22	20	11 32 14	84 04
I	NST. AT II. $s=1$	11° 00'.	I	NST. AT 12. s = 1	3° 00'.
-	Deflection from aux. tan.	Diff. of Deflection.	No. of Point	Deflection from aux, tan.	Diff. of
No. of Point,	Deflection from aux. tan.	Diff. of Deflection.	No. of Point	Deflection from aux, tan.	Diff. of Deflection
No. of Point.	Deflection from aux. tan.	Diff. of	No. of Point O	Deflection from aux, tan. 8° 29' 16"	Diff. of Deflection 24' 11"
No. of Point, O	Deflection from aux. tan. 7° 10′ 04″ 6 47 33	Diff. of Deflection. 22' 31" 25 51	No. of Point O	Deflection from aux. tan. 8° 29′ 16″ 8 05 05	Diff. of Deflection 24' 11" 27 31
No. of Point. O I	Deflection from aux. tan. 7° 10′ 04″ 6 47 33 6 21 42	Diff. of Deflection. 22' 31" 25 51 29 10	No. of Point O I 2	B° 29' 16" 8 05 05 7 37 34	Diff. of Deflection 24' 11" 27 31 30 51
No. of Point. O I 2 3	Deflection from aux. tan. 7° 10′ 04″ 6 47 33 6 21 42 5 52 32	Diff. of Deflection. 22' 31" 25 51 29 10 32 3,1	No. of Point O I 2 3	Deflection from aux. tan. 8° 29′ 16″ 8 05 05 7 37 34 7 06 43	Diff. of Deflection 24' 11" 27 31 30 51 34 11
No. of Point, O I 2 3 4	Deflection from aux. tan. 7° 10′ 04″ 6 47 33 6 21 42 5 52 32 5 20 01	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51	No. of Point O I 2 3 4	8° 29′ 16″ 8° 29′ 16″ 8° 05 05 7 37 34 7 06 43 6 32 32	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31
No. of Point, O I 2 3 4 5	Deflection from aux. tan. 7° 10′ 04″ 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10	No. of Point O I 2 3 4 5	Beflection from aux. tan. 8° 29' 16" 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50
No. of Point. O 1 2 3 4 5 6	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30	No. of Point O 1 2 3 4 5 6	Deflection from aux. tan.	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11
No. of Point, O I 2 3 4 5 6 7	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50	No. of Point O I 2 3 4 5	8° 29' 16" 8 ° 50 '5 '7 37 34 '7 °6 43 6 32 32 5 55 01 5 14 11 4 30 00	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30
No. of Point. O I 2 3 4 5 6 7 8	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10	No. of Point O I 2 3 4 5 6 7 8	8° 29' 16" 8 ° 29' 16" 8 ° 5 ° 55 7 ° 37 ° 34 7 ° 06 ° 43 6 ° 32 ° 32 5 ° 55 ° 01 5 ° 14 ° 11 4 ° 30 ° 00 3 ° 42 ° 30	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50
No. of Point. O I 2 3 4 5 6 7 8 9	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30	No. of Point O I 2 3 4 5 6 7 8 9	Deflection from aux. tan. 8° 29′ 16″ 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10
No. of Point. O I 2 3 4 5 6 7 8 9 10	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55	No. of Point O I 2 3 4 5 6 6 7 8 9 10	Deflection from aux. tan.	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30
No. of Point. O I 2 3 4 5 6 7 8 9 10 II	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55 00	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60	No. of Point O I 2 3 4 5 6 6 7 8 9 10 II	Deflection from aux. tan.	Diff. of Deflection 24' II" 27 31 30 51 34 II 37 31 40 50 44 II 47 30 50 50 54 10 57 30
No. of Point. O I 2 3 4 5 6 7 8 9 10 11 12	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55 00 1 00 00	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30	No. of Point O I 2 3 4 5 6 6 7 8 9 10 11 12	Deflection from aux. tan.	Diff. of Deflection 24' 11' 27' 31 30' 51 34' 11' 37' 31 40' 50 44' 11' 47' 30 50' 50 54' 10 57' 30 60 65
No. of Point. O 1 2 3 4 5 6 7 8 9 10 11 12 13	Deflection from aux. tan. 7° 10′ 04′′ 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55 00 1 00 00 2 02 30	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50	No. of Point 0 1 2 3 4 5 6 7 8 9 10 11 12 13	Deflection from aux. tan. 8° 29′ 16″ 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 1 57 30 1 00 00 00 1 05 00	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 60 65 67 30
No. of Point. O I 2 3 4 5 6 7 8 9 10 11 12 13 14	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55 00 1 00 00 2 02 30 3 08 20	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50 69 10	No. of Point O I 2 3 4 5 6 7 8 9 10 11 12 13 14	Deflection from aux. tan.	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 60 65 67 30 70 50
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55 00 1 00 00 2 02 30 3 08 20 4 17 30	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 55 60 62 30 65 50	No. of Point O I 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	Deflection from aux. tan.	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 65 67 30 70 50 74 10
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55 00 1 00 00 2 02 30 3 08 20 4 17 30 5 29 59	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 65 50 60 10 72 30 75 49	No. of Point O I 2 3 4 5 6 7 8 9 10 11 12 13 11 15 16	Deflection from aux. tan.	Diff. of Deflection 24' II" 27 31 30 51 34 11 37 31 40 50 44 II 47 30 50 50 54 10 57 30 60 65 67 30 70 50 74 10 77 29
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Deflection from aux. tan. 7° 10′ 04′′ 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55 00 1 00 00 2 02 30 3 08 20 4 17 30 5 29 59 6 45 48	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 65 50 60 10 72 30 75 49 79 09	No. of Point O I 2 3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17	Deflection from aux. tan. 8° 29′ 16″ 8 05 05 7 37 34 7 06 43 6 32 32 5 55 01 5 14 11 4 30 00 3 42 30 2 51 40 1 57 30 1 00 00 00 00 1 05 00 2 12 30 3 23 20 4 37 30 5 54 59	Diff. of Deflection 24' 11" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 65 67 30 70 50 74 10 77 29 80 49
No. of Point. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Deflection from aux. tan. 7° 10' 04" 6 47 33 6 21 42 5 52 32 5 20 01 4 44 10 4 05 00 3 22 30 2 36 40 1 47 30 55 00 1 00 00 2 02 30 3 08 20 4 17 30 5 29 59	Diff. of Deflection. 22' 31" 25 51 29 10 32 31 35 51 39 10 42 30 45 50 49 10 52 30 65 50 60 10 72 30 75 49	No. of Point O I 2 3 4 5 6 7 8 9 10 11 12 13 11 15 16	Deflection from aux. tan.	Diff. of Deflection 24' II" 27 31 30 51 34 11 37 31 40 50 44 11 47 30 50 50 54 10 57 30 60 65 67 30 70 50 74 10 77 29

TABLE II.—DEFLECTION ANGLES.

1	INST. AT 5. $s=2$	° 30′.	I	NST. AT 6 . $s=3$	° 30'.
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection
0	1° 35′ 00′′	12' 30"	0	2° 14′ 10′′	14' 10"
I	1 22 30		1	2 00 00	
2	I 06 40	15 50	2	I 42 30	17 30
3	47 30	19 10	3	I 2I 40	20 50
4	25	22 30	4	57 30	24 10
5	00	25	5	30	27 30
5	30	30	6	00	30
7	1 02 30	32 30	7	35	35
8		35 50	8		37 30
	1 38 20	39 10		I 12 30	40 50
9	2 17 30	42 30	9	I 53 20	44 IO
10	3 00 00	45 50	10	2 37 30	47 30
11	3 45 50	49 09	II	3 25 00	50 49
12	4 34 59	52 20	12	4 15 49	54 00
13	5 27 28		13	5 09 58	
14	6 23 15	55 47	14	6 07 27	57 29
15	7 22 23	59 08	15	7 08 15	60 48
16	8 21 48	62 25	16	8 12 21	64 06
17	9 30 31	65 43	17	9 19 46	67 25
18	10 39 32	69 01	18	10 30 28	70 42
19	11 51 48	72 16	01	11 44 27	73 59
20	13 07 20	75 32	20		77 14
I	NST. AT 7. & = 1	0 40'.	I	NST. AT 8. $s = 6$	° 00'.
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection
0	3° 00′ 00′′	111	0	3° 52′ 31″	
1	2 44 10	15' 50"	1	3 35 00	17' 31"
2	2 25 00	19 10	2	3 14 10	20 50
3	2 23 00				
	2 02 30	22 30			24 10
	2 02 30	22 30 25 50	3	2 50 00	24 10 27 30
4	1 36 40		3 4	2 50 00 2 22 30	
4	I 36 40 I 07 30	25 50	3 4 5	2 50 00 2 22 30 1 51 40	27 30
4 5 6	I 36 40 I 07 30 35	25 50 29 10	3 4 5 6	2 50 00 2 22 30 1 51 40 1 17 30	27 30 30 50
4 5 6 7	1 36 40 1 07 30 35 00	25 50 29 10 32 30	3 4 5 6 7	2 50 00 2 22 30 1 51 40 1 17 30 40	27 30 30 50 34 10 37 30
4 5 6 7 8	1 36 40 1 07 30 35 00 40	25 50 29 10 32 30 35	3 4 5 6 7 8	2 50 00 2 22 30 1 51 40 1 17 30 40	27 30 30 50 34 10 37 30 40
4 5 6 7 8 9	1 36 40 1 07 30 35 00 40 1 22 30	25 50 29 10 32 30 35 40 42 30	3 4 5 6 7 8 9	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45	27 30 30 50 34 10 37 30 40 45
4 5 6 7 8 9	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20	25 50 29 10 32 30 35 40 42 30 45 50	3 4 5 6 7 8 9	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30	27 30 30 50 34 10 37 30 40 45 47 30
4 5 6 7 8 9 10	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30	25 50 29 10 32 30 35 40 42 30 45 50 49 10	3 4 5 6 7 8 9 10	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20	27 30 30 50 34 10 37 30 40 45 47 30 50 50
4 5 6 7 8 9	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20	25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30	3 4 5 6 7 8 9	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10
4 5 6 7 8 9 10	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49	25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49	3 4 5 6 7 8 9 10	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30
4 5 6 7 8 9 10 11 12	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00	25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 99	3. 4 5. 6 7 8 9 10 11	2 50 00 2 22 30 I 51 40 I 17 30 40 00 45 I 32 30 2 23 20 3 17 30	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49
4 5 6 7 8 9 10 11 12 13	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49	25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28	3. 4 5. 6 7 8 9 10 11 12 13	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 64 09
4 5 6 7 8 9 10 11 12 13 14	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58 6 47 26	25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28 65 48	3 4 5 6 7 8 9 10 11 12 13	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49 6 19 58	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 64 09 67 28
4 5 6 7 8 9 10 11 12 13 14 15 16	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58 6 47 26 7 53 14	25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 99 62 28 65 48 69 05	3 4 5 6 7 8 9 10 11 12 13 11 15 16	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49 6 19 58 7 27 26	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 67 28 70 47
4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58 6 47 26 7 53 14 9 02 19	25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 09 62 28 65 48 66 05 72 24	3 4 5 6 7 8 9 10 11 12 13 14 15	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49 6 19 58 7 27 26 8 38 13	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 64 09 67 28 70 47 74 05
4 5 6 7 8 9 10 11 12 13 14 15 16	1 36 40 1 07 30 35 00 40 1 22 30 2 08 20 2 57 30 3 50 00 4 45 49 5 44 58 6 47 26 7 53 14 9 02 19	25 50 29 10 32 30 35 40 42 30 45 50 49 10 52 30 55 49 59 99 62 28 65 48 69 05	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 50 00 2 22 30 1 51 40 1 17 30 40 00 45 1 32 30 2 23 20 3 17 30 4 15 00 5 15 49 6 19 58 7 27 26	27 30 30 50 34 10 37 30 40 45 47 30 50 50 54 10 57 30 60 49 64 09 67 28 70 47

TABLE II.—Deflection Angles.

I	ST. AT 17. s = :	25° 30′.	INST. AT 18. s = 28° 30'.			
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection	
0	16" 45' 48'	201 2211	0	18° 45′ 17″		
I	16 13 11	32' 37"	1	18 10 59	34' 18"	
2	15 37 15	36 56	2	17 33 21	37 38	
3	14 57 59	39 16	3	16 52 23	40 58	
4	14 15 24	42 35	4	16 08 05	44 18	
5	13 29 29	45 55	5	15 20 28	47 37	
6	12 40 14	49 15	6	14 29 32	50 56	
7	11 47 41	52 33	7	13 35 17	54 15	
8	10 51 47	55 54	8	12 37 42	57 35	
9	9 52 35	59 12	9	11 36 49	60 53	
10	8 50 03	62 32	10	10 32 36	64 13	
II	7 44 12	65 51	II	9 25 03	67 33	
12	6 35 OI	69 11	12	8 14 12	70 51	
13	5 22 30	72 31	13	7 00 OI	74 II	
14	4 06 40	75 50	14		77 31	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	79 10			80 50	
15	11.0	82 30	15	100000000000000000000000000000000000000	84 10	
7.7.	1 25 00	85	16	2 57 30	87 30	
17	00	90	17	I 30 00	90	
18	I 30 00	92 30	18	00	95	
19	3 02 30	95 50	19	1 35 00	97 30	
20	4 38 20	27,5	20	3 12 30	,, ,	
I	ST. AT 19. s =	310 40'.	In	ST. AT 20. s = 3	5° 00'.	
No. of Point.	Deflection from aux. tan.	Diff, of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection	
0	20° 51′ 33″		0	23° 04′ 36″	T. 45	
1	20 15 32	36' 01"	I	22 26 52	37 44"	
2	19 36 11	39 21	2	21 45 48	41 04	
3	18 53 31	42 40	3	21 01 25	44 23	
4	18 07 31	46 00	4	20 13 42	47 43	
5	17 18 12	49 19	5	10 22 40	51 02	
6		52 39	6	18 28 10	54 21	
	-0 00	55 57			57 40	
7 8	15 29 36 14 30 20	59 16	7 8	17 30 39 16 20 40	60 59	
7.0	The second secon	62 36			64 17	
9	13 27 44	65 54	9	15 25 23	67 37	
10	12 21 50	69 14	10	14 17 46	70 55	
11	11 12 36	75 32	11	13 06 51	74 14	
12	10 00 04	75 52	12	11 52 37	77 33	
13	8 44 12	79 11	13	10 35 04	80 52	
14	7 25 01	82 31	14	9 14 12	84 11	
15	6 02 30	85 50	15	7 50 OI	87 31	
16	4 36 40	89 10	16	6 22 30	90 50	
17	3 07 30	92 30	17	4 51 40	94 10	
		9- 3-	+ 0	0 TH 00	94 10	
18	1 35	05	18	3 17 30	07 30	
18	1 35	95 100	19	1 40	97 30	

TABLE III.

Degree of Curve and Values of the Coordinates x and y, for each Chord-Point of the Spiral for Various Lengths of the Chord.

n.	nc.	Dr.	<i>y</i> .	x.	Log x.
1	10	1° 40′ 00″	10,000	0.0145	8.162696
2	20	3 20 02	20,000	.0727	8.861664
34 56	30	5 00 06	29.999	.2036	9.308815
4	40	6 40 13	39.996	-4363	9.639792
5	50	8 20 26	49.990	-7998	9.903002
	60	10 00 45	59.976	1.323	0.121624
7 8	70	11 41 12	69.951	2.035	0.308622
	80	13 21 48	79.907	2.965	0.471991
9	90	15 02 34	89.838	4.140	0.617015
10	100	16 43 31 18 24 42	99.732	5.589	0.747370
12	120		109.578	7.340	0.805712
13	130	20 06 07 21 47 48	119.359	9.419	0.974022
14	140	23 29 46	138.655	14.665	1.166281
15	150	25 12 02	148.125	17.879	1.252352
16	160	26 54 39	157.439	21.517	1.332788
17	170	28 37 38	166.569	25.598	1.408205
18	180	33 21 01	175.479	30.138	1.479112
19	190	32 04 48	184.132	35.150	1.545931
20	200	33 49 02 35 33 46	192.487	40.646	1.609013

TABLE III.

		c. CHO	RD-LENGT	H = 11.		
n.	nc.	D_s .	<i>y</i> .	x.	Log x.	
I	11	1° 30′ 55″	11.000	0.0160	8.20408g	
2	22	3 01 50	22,000	.0800	8.903057	
3	33	4 32 48	32.999	.2240	9.350208	
4	44	6 03 48	43.996	·4799	9 681185	
5 6	55	7 34 52	54.989	.8798	9-944394	
	66	9 0 6 0 1	65.974	1.456	0.163017	
7 8	77 88	10 37 16	76.946	2.239	0.350015	
		12 08 37	87.898	3.261	0.513384	
9	99	13 40 06	98.822	4.554	0.658468	
10	110	15 11 44	109.706	6.148	0.788763	
II	121	16 43 31	120.536	8.074	0.907104	
12	132	18 15 29	131.295	10.361	1.015415	
13	143	19 47 39	141.965	13.038	1.115210	
14	154	21 20 01	152.521	16.131	1.207674	
15 16	165	22 52 38	162.937	19.667 23.669	1.293745	
	176 187	24 25 29	173.183	23.009 28.158	1.374180	
17	198	25 58 36	183.226	-	1.449598	
	200	27 32 01	193.027.	33.152 38.665	1.520505 1.587323	
19 20	220	29 05 45 30 39 48	202.545 211.735	44.710	1.650405	
20	220	32 14 11	211./33	44.710	2.050405	
		J- 14 11				
		c. CHO	RD-LENGT	H = 12.		
n.	nc.	D_{s} .	y.	x.	Log x.	
I	12	1° 23′ 20″	12.000	0.0175	8.241877	
2	24	2 46 41	24.000	.0873	8.940845	
3	36	4 10 03	35.999	.2443	9.387997	
4	48	5 33 28	47.996	.5236	9.718974	
5 6	60	6 56 55	59.988	.9598	9.982183	
	72	8 20 26	71.971	1.588	0.200806	
7	84	9 44 01	83.941	2.442	0.387803	
8	96	11 07 42	95.889	3.558	0.551172	
9	108	12 31 28	107.806	4.968	0.696196	
10	120	13 55 21	119.679	6.707	0.826551	
II	132	15 19 22	131.493	8.808	0.944893	
12	144	16 43 31 18 07 48	143.231	11.303	1.053204	
13	156 168	, , ,	154.871	14.223	1.152999	
14	180	19 32 15	166.386	17.598	1.245402	
15	192	20 56 53	177.749	21.455 25.821	1.411969	
17	204	23 46 44	199.883	30.718	1.487386	
18	216	25 11 59	210.575	36.165	1.558293	
10	228	26 37 28	220.958	42.181	1.625113	
20	240	28 03 12	230.984	48.774	1.688194	
-		29 29 12	-55-4	1		

TABLE III.

	c. CHORD-LENGTH = 15.						
n.	nc.	Ds.	y.	x.	$\log x$.		
1	15	1° 06′ 40′′	15.000	0.0218	8.338787		
2	30	2 13 20	30,000	.1091	9.037755		
3	45	3 20 02	44.998	.3054	9.484907		
4	60	4 26 44	59-994	.6545	9 815884		
5 6	75	5 33 28	74.984	1.200	0.079093		
6	90	6 40 13	89.964	1.985	0.297716		
7	105	7 47 01	104.926	3.053	0.484713		
8	120	8 53 51	119.861	4.447	0.648082		
9	135	10 00 45	134.757	6.216	0.793107		
10	150	11 07 41	149.599	8.384	0 923461		
II	165	12 14 41	164.367	11.010	1.041803		
12	180	13 21 47	179.039	14.129	1.150114		
13	195	14 28 56	193.588	17.779	1.249909		
14	210	15 36 09	207.983	21.997	1.342372		
15	225	16 43 28	222.187	26.819	1.428443		
16	240	17 50 54	236, 159	32.276	1.508879		
17	255	18 58 25	249.853	38.397	1.584296		
18	270	20 06 02	263.218	45.207	1.655203		
19	285	21 13 47	276.198	52.726	1.722022		
20	300	22 21 39	288.730	60. 968	1.785104		
		23 29 48					
		c. CHO	RD-LENGT	$^{\circ}H = 16.$			
11.	nc.	D_s .	<i>y</i> .	x.	Log x.		
1	16	1° 02′ 30″	16 000	0.0233	8.366816		
2	32	2 05 00	32.000	.1164	9.065784		
3	48	3 07 31	47.998	.3258	9.512935		
4	64	4 10 03	63.994	.6981	9.843912		
5 6	80	5 12 36 6 15 11	79.983	1.280	0.107122		
	96		95.961	2.117	0.325744		
7	112	7 17 47	111.921	3.256	0.512742		
8	128	8 20 26	127.852	4.744	0.676111		
9	144	9 23 07	143.741	6.624	0.821135		
10	100	10 25 51	159.572	8.943	0.951490		
II	176	11 28 37	175.325	11.744	1.069832		
12	192	12 31 28	190.975	15.071	1.178142		
13	208	13 34 21	206.494	18.964	1.277938		
14	224	14 37 20	221.848	23.464	1.370401		
15	24C	15 40 21 16 43 28	236.999	28.607	1.456472		
('	256		251.903 266.510	34.428	1.536907		
17	272 288	17 46 40 18 49 57	280.766	40.957 48.221	1.683232		
IQ	304	18 49 57 19 53 20	294.611	56.241	1.750051		
20	320	20 56 49	307.979	65.032	1.813133		
1 20	320	22 00 23	371.919	J3.032			
					, ,		

TABLE III.

	c. CHORD-LENGTH = 17.						
n.	nc.	Ds.	<i>y</i> .	x.	Log x.		
I	17	o° 58′ 49″	17.000	0.0247	8.393145		
2	34	1 57 38	34.000	.1236	9.092113		
3	51	2 56 27	50.998	.3461	9.539264		
4	68	3 55 19	67.994	.7417	9.870241		
5 6	85	4 54 12	84.982	1.360	0.133451		
6	102	5 53 06 6 52 00	101.959	2.249	0.352073		
7	119	6 52 00	118.916	3.460	0.539071		
8	136	7 50 57	135.842	5.040	0.702440		
9	153	8 49 55	152.725	7.038	0.847464		
10	170	9 48 56	169.545	9.502	0.977819		
11	187	10 48 00	186.282	12.478	1.096161		
12	204	11 47 07	202.911	16.013	1.204471		
13	221	12 46 15	219.400	20.150	1.304267		
14	238	13 45 27	235.714	24.930	1.396730		
15	255	14 44 44	251.812	30-395	1.482801		
16	272	15 44 03	267.647	36.579	1.563236		
17	289	16 43 27	283.167	43.516	1.638654		
1 1	306	17 42 56 18 42 20	298.314	51.234	1.709561		
19	323		313.024 327.228	59.756	1.776380 1.839462		
20	340	19 42 07 20 41 49	327.220	69.097	1.039402		
		20 41 49					
		<i>c.</i> CHO	RD-LENGT	H = 18.			
n.	nc.	D_s .	<i>y</i> .	x.	Log x.		
I	18	o° 55′ 33″	18.000	0.0262	8.417968		
2	36	1 51 07	36.000	.1309	9.116937		
3	54	2 46 40	53.998	.3665	9.564088		
4	72	3 42 16	71.993	.7853	9.895065		
5	90	4 37 51	89.981	1.440	0.158274		
	108	5 33 28 6 29 05	107.957	2.382	0.376897		
7	126		125.911	3.663	0.563894		
8	144	7 24 45 8 20 26	143.833	5.337	0.727263 0.872288		
9	162 180	1	161.708 179.518	7.452 10.061	1.002643		
10	198	9 16 08	197.240	13.212	1.120084		
11	216	11 07 41	214.847	16.955	1.120984 1.229295		
13	234	12 03 31	232.3c6	21.335	1.329090		
14	252	12 59 24	249.579	26.397	1.421554		
15	270	13 55 20	266.624	32.183	1.507624		
16	288	14 51 18	283.391	38.731	1.588060		
17	306	15 47 20	299.824	46.076	1.663477		
18	324	16 43 27	315.862	54.248	1.734385		
IQ	342	17 39 37	331.437	63.271	1.801203		
20	360	18 35 51	346 476	73.161	1.864285		
/ /		19 32 08	1	\	\ ' '		

TABLE III.

		c. CHO	RD-LENGT	`H = 19.				
n.	nc.	Ds.	<i>y</i> .	x.	Log x.			
1	19	o° 52′ 38″	19.000	0.0276	8.441450			
2	38	1 45 16	38.000	.1382	9.140418			
3	57	2 37 54	56.998	.3869	9.587569			
4	76	3 30 34	75.993	.8290	9.918546			
5 6	95	4 23 13	94.980	1.520	0.181755			
	114	5 15 54 6 08 36	113.954	2.514	0.400378			
7	133	6 08 36	132.906	3.867	0.587376			
8	152	7 01 19	151.824	5.633	0.750744			
9	171	7 54 °3	170.692	7.866	0.895769			
IO	190	8 46 49	189 491	10.620	1.026124			
II	209	9 39 36	208.198	13.947	1.144465			
12	228	10 32 26	226.783	17.897	1.252776			
13	247	11 25 18	245.212	22.520	1.352571			
14	266	12 18 12	263.445	27.863	1.445035			
15	285	13 11 09	281.437	33.971	1.531105			
16	304	14 04 09	299.135	40.883	1.611541			
17	323	14 57 11	316.481	48.636	1.686958			
18	342	15 50 16	333.410	57.262	1.757866			
19	361	16 43 25	349.851	66.786	1.824684			
20	380	17 36 38	365.725	77.226	1.887766			
		18 29 54			<u></u>			
		c. CHO	RD-LENGT	H = 20.				
n.	nc.	D_s .	y.	x.	Log x.			
1	20	o° 50′ ∞′′	20,000	0.0291	8.463726			
2	40	1 40 00	40,000	.1454	9.162694			
3	6 0	2 30 01	59.998	.4072	9.609845			
4	80	3 20 02	79.993	.8726	9.940822			
5 6	100	4 10 03	99.979	1.600	0.204032			
	120	5 00 05	119.952	2.646	0.422654			
7	140	5 50 08 6 40 13	139.901	4.071	0.609652			
8	160		159.815	5.930	0.773021			
9	180	7 30 18	179.676	8.280	0.918045			
10	200	8 20 26	199.465	11.179	1.048400			
11	220	9 10 34	219.156	14.681	1.166742			
12	240	10 00 44	238.719	18.839	1.275052			
13	260	10 50 56	258.118	23.705	1.374848			
14	280	11 41 10	277.310	29.330	1.467311			
15	300	12 31 26	296.249	35.759	1.553382			
16	320	13 21 45	314.879	43 035	1.633817			
17 18	340	1	333.138	51.196 60.276	1.709235			
_	360 380	15 02 29	350.958 368.264	70.301	1.780142			
19 20	400	15 52 55 16 43 25	384.974	81.290	1.910043			
20	400	17 33 58	304.974	01.290	1.910043			
l	ı	1/ 33 50		Į.	1			

TABLE IIL

		c. CIIO	RD-LENGT	H = 21.	
n.	nc.	D_{s} .	<i>y</i> .	<i>x</i> .	Log. x.
I	21	'o° 47′ 3 7 ′′	21.000	0.0305	8.484915
2	42	1 35 14	42.000	.1527	9. 183883
3	63	2 22 52	62.998	.4276	9.631035
4	8.4	3 10 30	83.992	.9162	9.962012
5	105	3 58 08	104.978	1.680	0.225221
7	126	4 45 47	125.949	2.779	0.443844
8	147 168	5 33 27 6 21 08	146.896 167.805	4.274 6.226	0.630841
9	189	7 08 50	188.660	8.694	0.794210
10	210	7 56 33	209.438	11.738	1.009589
II	231	8 44 18	230.114	15.415	1.187031
12	252	9 32 03	250.655	19.781	1.206242
13	273	10 10 51	271.023	24.891	1.396037
14	294	11 07 40	291.176	30.796	1.488500
15	315	11 55 31	311.062	37.547	1.574571
16	336	12 43 24	330.623	45.186	1.655007
17	357	13 31 20	349.795	53.756	1.730424
18	378	14 19 17	368.506	63.289	1.801331
19	399	15 07 17	386.677	73.816	1.868150
		15 55 19			
		c. CHO	RD-LENGT	H = 22.	
n.	nc.	D_s .	٤٠٠.	x.	Log. x.
I	22	45′ 27″	22.000	0.0320	8.505119
2	44	1° 30 53	44.000	.1600	9 204087
3	66	2 16 22	65.998	.4480	9.651238
4	88	3 01 50	87.992	•9599	9.982215
5 6	110	3 47 18	109.977	1.760	0.215424
	132	4 32 48	131.947	2.911	0.464047
7	154	5 18 18 6 03 48	153.891	4.478	0.651045
8	176		175.796	6.522	0.814414
9	198 220		197.643	9.108	0.959438
10	212	7 34 51 8 20 25	219.411 241.071	12.29 7 16.149	1.089793
12	264	9 06 00	262.591	20.733	1.200134
13	286	9 51 36	283.929	26.076	1.310445
14	308.	10 37 13	305.012	32.263	1.508704
15	330	11 22 53	325.874	39.335	I.594775
16	352	12 08 34	346.367	47.338	1.675210
17	374	12 54 16	366.451	56.315	1.750623
ıś	396	13 40 OI	386.054	66.303	1.821535
10	1 399	: 13 40 01	300.034	00.303	1.021333

TABLE III.

c. CHORD-LENGTH = 23.

_					
n.	nc.	D_s .	y.	x.	Log. x.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	23 46 69 92 115 138 161 184 207 230 253 276 299 322 345 368	0° 43′ 29″ 1 26 58 2 10 26 2 53 56 3 37 26 4 20 56 5 04 26 5 47 58 6 31 30 7 15 04 7 58 38 8 42 13 9 25 49 10 09 27 10 53 06 11 36 47	23.000 46.000 68.998 91.991 114.976 137.945 160.886 183.787 206.627 229.384 252.020 274.527 296.835 318.907 340.686 362.110	0.0335 .1673 .4683 1.004 1.840 3.043 4.681 6.819 9.522 12.856 16.883 21.665 27.261 33.729 41.123 49.490	8.524424 9.223392 9.670543 0.001520 0.264729 0.483352 0.670350 0.833719 0.978743 1.109098 1.227439 1.335750 1.435545 1.528009 1.614080
17	391	12 20 29 13 04 13	383.108	58.875	1.769933

c. CHORD-LENGTH = 24.

nc.	D_{s} .	٤٠.	x.	Log. x.
24 48 72 96 120 144 168	41' 40" 1° 23 20 2 05 00 2 46 41 3 28 22 4 10 03 4 51 45	24.000 48.000 71.998 95.991 119.975 143.942 167.881	0.0349 .1745 .4887 1.047 1.920 3.176 4.885	8.542907 9.241875 9.689027 0.020004 0.283213 0.501836 0.688833
216	6 15 10	215.611	9.936	0.852202 0.997226 1.127581
264 288 312	7 38 39 8 20 25 9 02 12	262.987 286.463 309.741	17.617 22.607 28.446	1.245923 1.354234 1.454029
336 360 384 408	10 25 48 11 07 39 11 49 31	332.773 355.499 377.854 399.765	35.196 42.910 51.641 61.435	1.546492 1.632563 1.712999 1.788416
	24 48 72 96 120 141 168 192 216 240 264 288 312 336 360 384	24 41' 40" 48 1° 23 20 72 2 05 00 96 2 46 41 120 3 28 22 144 4 10 03 168 4 51 45 192 5 33 28 216 6 15 10 240 6 56 54 264 7 38 39 288 8 20 25 312 9 02 12 336 9 44 00 360 10 25 48 384 11 07 39	24 41' 40'' 24.000 48 1° 23 20 48.000 72 2 05 00 71.998 96 2 46 41 95.991 120 3 28 22 119.975 144 4 10 03 143.942 168 4 51 45 167.881 192 5 33 28 191.777 216 6 15 10 215.611 240 6 56 54 239.358 264 7 38 39 262.987 288 8 20 25 286.463 312 9 02 12 309.741 336 9 44 00 332.773 360 10 25 48 355.499 384 11 07 39 377.854 408 11 49 31 399.765	24

TABLE III.

c. CHORD-LENGTH = 25.

n.	nc.	D_s .	y.	` x.	Log. x.
1	25	o° 40′ 00′′	25.000	0.0364	8.560636
2	50	1 20 00	50.000	.1818	9.259604
3	75	2 00 00	74-997	.5090	9.706755
4	100	2 40 01	99.991	1.091	0.037732
5	125	3 20 02	124.974	2.000	0.300942
6	150	4 00 03	149.940	3.308	0.519564
7	175	4 40 04	174.876	5.088	0.706562
8	200	5 20 06	199.768	7.412	0.869931
9	225	6 00 09	224.595	10.350	1.014955
10	250	6 40 13	249.331	13.974	1.145310
II	275	7 20 17	273.945	18.351	1.263652
12	300	8 00 22	298.398	23.548	1.371962
13	325	8 40 28	322.647	29.632	1.471758
14	350	9 20 35	346.638	36.662	1.564221
15	375	10 00 43	370.311	44.698	1.650292
16	400	10 40 52	393.598	53.793	1.730727
, 1	(!	11 21 03	1	!	1

c. CHORD-LENGTH = 26.

n.	nc.	D_s .	у.	<i>x</i> .	Log. x.
I	26	o° 38′ 28″	26.000	0.0378	8.577669
2	52	1 16 56	52,000	.1891	9.276637
3	78	I 55 24	77-997	.5294	9.723789
4	104	2 33 52	103.990	1.134	0.054766
5	130	3 12 20	129.973	2.080	0.317975
6	156	3 50 48	155.937	3.440	0.536598
7	182	4 29 18	181.871	5.292	0.723595
8	208	5 07 48	207.759	7.708	0.886964
9	234	5 46 18	233.579	10.764	1.031989
10	260	6 24 48	259.304	14.533	1.162343
11	286	7 03 20	284.903	19.085	1.280685
12	312	7 41 52	310.334	24.490	1.388996
13	338	8 20 25	335-553	30.817	1.488791
14	364	8 58 59	360.504	38.129	1.581254
15	390	9 37 33	385.124	46.486	1.667325
		10 16 09			

TABLE III.

c. CHORD-LENGTH = 27.

n.	nc.	D_s .	<i>y</i> .	<i>x</i> .	Log. x.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	27 54 81 108 135 162 189 216 243 270 297 324 351 378 405	0° 37′ 02″ I 14 04 I 51 07 2 28 IO 3 05 I2 3 42 I5 4 I9 I9 4 56 23 5 33 28 6 10 32 6 47 38 7 24 44 8 01 51 8 38 59 9 16 07	27.000 54.000 80.997 107.990 134.972 161.935 188.866 215.750 242.562 269.277 295.860 322.270 348.459 374.369 399.936	0.0393 .1963 .5498 1.178 2.160 3.573 5.495 8.005 11.178 15.092 19.819 25.432 32.002 39.595 48.274	8.594060 9.293028 9.740179 0.071156 0.334365 0.552988 0.739986 0.903355 1.048379 1.178734 1.297075 1.405386 1.505181 1.597645 1.683716
		9 53 16	ļ		!

c. CHORD-LENGTH = 28.

n.	nc.	D_s^{s} .	y.	x.	Log. x.
1 2 3 4 5 6 7 8 9 10 11 12 13	28 56 84 112 140 168 196 224 252 280 308 336 364 392	0° 35' 42" 1 11 26 1 47 08 2 22 55 25 2 58 36 3 34 19 4 10 03 4 45 48 5 21 32 5 57 17 6 33 03 7 08 50 7 44 36 8 20 24 8 56 13	28.000 55.999 83.997 111.990 139.971 167.933 195.862 223.740 251.546 279.251 306.818 334.206 361.365 388.235	0.0407 .2036 .5701 1.222 2.240 3.705 5.699 8.301 11.592 15.650 20.553 26.374 33.188 41.062	8.609654 9.308822 9.755973 0.086950 0.350160 0.568782 0.755780 0.919149 1.064173 1.194528 1.312870 1.421180 1.520976 1.613439

TABLE IIL

c. CHORD-LENGTH = 29.

ĸ.	nc.	$D_{\mathbf{f}}$	<i>y</i> .	x.	Log. x.
1 2 3 4 5 6 7 8 9 10 11 12 13 14	29 58 87 116 145 174 203 232 261 290 319 348 377 406	0° 34′ 29″ 1 08 58 1 43 27 2 17 56 2 52 26 3 26 55 4 01 26 4 35 56 5 14 57 6 19 29 6 54 01 7 28 34 8 03 07 8 37 40	29.000 57.999 86.997 115.989 144.970 173.930 202.857 231.731 260.530 289.224 317.776 346.142 374.271 402.100	0.0422 .2109 .5905 1.265 2.320 3.837 5.902 8.598 12.006 16.209 21.287 27.316 34.373 42.528	8.625094 9.324062 9.771213 0.102190 0.365400 0.584022 0.771020 0.934389 1.079413 1.209768 1.328110 1.436420 1.536216 1.628679
			i	ı	1

c. CHORD-LENGTH = 30.

n.	nc.	D_s .	y.	x.	Log. x.
1 2 3 4 5 6 7 8	30 60 90 120 150 180 210	0° 33′ 20″ 1 06 40 1 40 00 2 13 20 2 46 41 3 20 02 3 53 22 4 26 44	30.000 59.999 89.997 119.989 149.969 179.928 209.852 239.722	0.0436 .2182 .6108 1.309 2.400 3.970 6.106 8.894	8.639817 9.338785 9.785937 0.116914 0.380123 0.598746 0.785743
9	270	5 00 05	269.514	12.420	1.094137
11 11 12	300 330 360	5 33 27 6 06 49 6 40 12	299.197 328.734 358.078	22.021 28.258	1.224491 1.342833 1.451144
13	390	7 i3 36 7 47 00	387.176	35-558	1.550939

TABLE IIL

c. CHORD-LENGTH = 31.

n.	nc.	D_{s} .	y.	х.	Log x.
1 2 3 4 5 6 7 8 9	31 62 93. 124 155 186 217 248 279	o° 32' 15" 1 04 31 1 36 47 2 09 02 2 41 18 3 13 34 3 45 50 4 18 07 4 50 24	31.000 61.999 92.997 123.988 154.968 185.925 216.847 247.713 278.498	0.0451 .2254 .6312 1.353 2.479 4.102 6.309 9.191 12.834	8.654058 9.353026 9.800177 0.131154 0.394363 0.612986 0.799984 0.963353 1.108377
10 11 12 13	310 341 372 403	5 22 41 5 54 59 6 27 17 6 59 35 7 31 53	309.170 339.692 370.014 400.082	17.327 22.755 29.200 36.743	1.238732 1.357073 1.465384 1.565179

CHORD-LENGTH = 32.

n.	nc.	Ds.	y.	x.	Log x.
1 2 3 4 5 6 7 8 9 10 11 12 13	32 64 96 128 160 192 224 256 288 320 352 384 416	0° 31' 15" 1 02 30 1 33 45 2 05 00 2 36 16 3 07 31 3 38 47 4 10 03 4 41 19 5 12 36 5 43 53 6 15 10 6 46 28	32,000 63,999 95,997 127,988 159,967 191,923 223,842 255,703 287,481 319,144 350,649 381,950 412,988	0.0465 .2327 .6516 1.396 2.559 4.234 6.513 9.487 13.248 17.886 23.489 30.142 37.929	8.667846 9.366814 9.813965 0.144942 0.408152 0.626774 0.813772 0.977141 1.122165 1.252520 1.370802 1.479172 1.578968
L	1	1 7 17 46	l .	I	1

TABLE III.

c. CHORD-LENGTH = 33.

n.	nc.	Ds.	у.	x.	Log. x.
1 2 3 4 5 6 7 8 9 10 11 12	33 66 99 132 165 198 231 264 297 330 363 396	0° 30′ 19″ 1 00 36 1 30 55 2 01 13 2 31 32 3 01 50 3 32 09 4 02 28 4 32 48 5 03 07 5 33 27 6 03 47 6 34 07	33.000 65.999 98.997 131.988 164.966 197.921 230.837 263.694 296.465 329.117 361.607 393.886	0.0480 .2400 .6719 1.440 2.639 4.367 6.716 9.784 13.662 18.445 24.223 31.084	8.681210 9.380178 9.827329 0.158306 0.421516 0.640138 0.827136 0.990505 1.135529 1.265884 1.384226 1.492536

c. CHORD-LENGTH = 34.

n.	nc.	D_s .	y.	x.	Log. x.
I	34	o° 29′ 25″	34.000	0.0495	8.694175
2	68	0 58 49	67.999	•2473	9.393143
3	102	1 28 14	101.996	.6923	9.840294
4	136	I 57 39	135.987	1.483	0.171271
5	170	2 27 04	169.965	2.719	0.434481
6	204	2 56 29	203.918	4.499	0.653103
7	238	3 25 55	237.832	6.920	0.840101
8	272	3 55 20	271.685	10.080	1.003470
9	306	4 24 46	305.449	14.076	1.148494
IÓ	340	4 54 12	339.090	19.004	1.278849
II	374	5 23 38	372.565	24.957	1.397191
12	408	5 53 05	405.822	32.026	1.505501
,) ']	6 22 11	' ' '	-	1

TABLE III.

c. CHORD-LENGTH = 35.

			,		
n.	nc.	D_s .	y.	x.	Log x.
1	35	0° 28' 34"	35.000	0.0509	8.706764
2	70	0 57 09	69.999	.2545	9.405732
3	105	1 25 43	104.996	.7127	9.852883
4	140	1 54 17	139.987	1.527	0.183860
5	175	2 22 52	174.964	2.799	0.447070
6	210	2 51 27	209.916	4.631	0.665692
7 8	245	3 20 0I	244.827	7.123	0.852690
	280	3 48 36	279.675	10.377	1.016059
9	315 350	4 17 12 4 45 47	314.433 349.063	14.490 19.563	1.161083
11	385	5 14 23	383.523	25.691	1.409780
12	420	5 43 00	417.758	32.968	1.518090
	l	6 09 36			

c. CHORD-LENGTH = 36.

n.	nc.	D_{s} .	y.	x.	Log x.
1 2 3 4 5 6 7 8 9	36 72 103 144 180 216 252 2:8 324 360 396	0° 27' 47" 0 55 33 1 23 20 1 51 07 2 18 54 2 46 41 3 14 28 3 42 15 4 10 03 4 37 51 5 05 39 5 33 27	36.000 71.999 107.996 143.987 179.963 215.913 251.822 287.666 323.417 359.037 394.480	0.0524 .2618 .7330 I.571 2.879 4.764 7.327 I0.673 I4.905 20.122 26.425	8.718998 9.417967 9.865118 0.196095 0.459304 0.677927 0.864924 1.028293 1.173318 1.303673 1.422014

TABLE III.

c. CHORD-LENGTH = 37.

n.	nc.	D_{s}	y.	x.	Log x.
I 2 3	37 74 111	0° 27′ 02″ 0 54 03 1 21 05	37.000 73.999 110.996	0.0538 .2691 •7534	8.730898 9.429866 9.877017
5 6	148 185 222	1 48 07 2 15 09 2 42 11	147.986 184.962 221.911	1.614 2.959 4.896	0.207994 0.471203 0.689826
7 8	259 296	3 09 13 3 36 15 4 03 17	258.817 295.657 332.400	7.530 10.970 15.319	0.876824 1.040193 1.185217
9 10	333 370 407	4 30 20 4 57 23 5 24 26	369.010 405.438	20.681 27.159	1.315572 1.433913

c. CHORD-LENGTH = 38.

n.	nc.	D_s .	y.	x.	Log x.
1 2 3 4 5 6 7 8 9 10	38 76 114 152 190 228 266 304 342 380 418	o° 26' 19" o 52 39 I 18 57 I 45 I6 2 II 35 2 37 54 3 04 I4 3 30 33 3 56 53 4 23 13 4 49 33 5 15 53	38.000 75.999 113.996 151.986 189.961 227.909 265.812 303.648 341.384 378.983 416.396	0.0553 .2763 .7737 1.658 3.039 5.028 7.734 11.266 15.733 21.240 27.893	8.742480 9.441448 9.888599 0.219576 0.482785 0.701408 0.888406 I.051774 I.196799 I.327154 I.445495

TABLE III.

_	CHOR	ית דרתי	NGTH =	- 20

n.	nc.	Ds.	y.	x.	Log x.
	39	o° 25′ 38″	39.000	0.0567	8.753761
2	78	0 51 17	77.999	.2836	9.452729
3	117	I 16 55	116.996	.7941	9.899880
4	156	I 42 34	155.985	1.702	0.230857
5 6	195	2 08 13	194.960	3.119	0.494066
6	234	2 33 51	233.906	5.160	0.712689
7 8	273	2 59 30	272.807	7.938	0.899687
8	312	3 25 09	311.638	11.563	1.063055
9	351	3 50 48	350.368	16.147	1.208080
10	390	4 16 28	388.956	21.799	1.338435
		4 42 07		}	

c. CHORD-LENGTH = 40.

n.	nc.	D_{s}	у.	x.	Log x.
1 2 3 4 5 6 7 8 9	. 40 80 120 160 200 240 280 320 360	0° 25′ 00′, 0 50 00 1 15 00 1 40 00 2 05 00 2 30 01 2 55 01 3 20 01 3 45 02	40.000 79.999 119.996 159.985 199.959 239.904 279.802 319.629 359.352	0.0582 .2909 .8145 1.745 3.199 5.293 8.141 11.859 16.561	8.764756 9.463724 9.910875 0.241852 0.505062 0.723684 0.910682 1.074051 1.219075
ΙÓ	400	4 10 03 4 35 03	398.929	22.358	1.349430

c. CHORD-LENGTH = 41.

n.	nc.	D_{s} .	y.	x.	Log x.
1	41	0° 24′ 24″	41.000	0.0596	8.775480
3	82 123	0 48 47 1 13 10	81.999 122.996	.2982 .8348	9.474448 9.921599
4	164 2 05	I 37 34 2 OI 57	163.985 204.958	1.789 3.279	0.252576 0.515786
5 6	246	2 26 21	245.901	5.425	0.734408
7	287 328	2 50 45 3 15 09	286.797 327.620	8.345 12.156	0.921406 1.084775
9	369	3 39 33	368.336 408.903	16.975	1.229799 1.360154
10	410	4 03 57 4 28 21	400.903	22.917	1.500154

TABLE III.

c. CHORD-LENGTH = 42

n.	nc.	D_{s} .	у.	x.	Log x
ī	42	o° 23′ 49″	42.000	0.0611	8.785945
2	84	0 47 37	83.999	.3054	9.484913
3	126	I II 26	125.996	.8552	9.932065
4	168	1 35 14	167.984	1.832	0.263042
5	210	1 59 02	209.957	3.359	0.526251
6	252	2 22 52	251.899	5-557	0.744874
7 8	294	2 46 41	293.792	8.548	0.931871
8	336	3 10 30	335.611	12.452	1.095240
9	378	3 34 19	377.319	17.389	1.240265
10	420	3 58 08	418.876	23.476	1.370619
	1	4 21 57	l	l	1

c. CHORD-LENGTH = 43.

n.	nc.	D_s .	y.	x.	Log x.
I 2 3 4 5 6 7 8	43	0° 23′ 15″	43.000	0.0625	8.796164
	86	0 46 31	85.999	.3127	9.495133
	129	1 09 46	128.996	.8755	9.942284
	172	1 33 02	171.984	1.876	0.273261
	215	1 56 17	214.955	3.439	0.536470
	258	2 19 33	257.897	5.690	0.755093
	301	2 42 48	300.787	8.752	0.942090
9	344	3 06 04	343.601	12.749	1.105459
	387	3 29 20	386.303	17.803	1.250484
	430	3 52 35	428.849	24.035	1.380839
	13-	4 15 50	, ,	1 . 33	55,

c. CHORD-LENGTH = 44.

n. nc.	$D_{\mathbf{s}\cdot}$	<i>y</i> .	<i>x</i> .	Log x.
1 44 2 88 3 132 4 176 5 220 6 264 7 308 8 352 9 396	0° 22' 44" 0 45 27 1 08 11 1 30 55 1 53 38 2 16 22 2 39 06 3 01 50 3 24 34	44.000 87.999 131.995 175.984 219.954 263.894 307.782 351.592 395.287	0.0640 .3200 .8959 1.920 3.519 5.822 8.955 13.045	8.806149 9.505117 9.952268 0.283245 0.546454 0.765077 0.952075 1.115444 1.260468

TABLE III.

c. CHORD-LENGTH = 45.

·—					
n.	nc.	D_s .	y.	х.	Log x.
1 2 3 4 5 6 7 8 9	45 90 135 180 225 270 315 360 405	0° 22' 13" 0 44 27 1 06 40 1 28 53 1 51 07 2 13 20 2 35 34 2 57 48 3 20 01	45.000 89.999 134.995 179.983 224.953 269.892 314.778 359.583 404.271	0.0655 ·3272 ·9163 1.963 3.599 5.954 9.159 13.341 18.631	8.815908 9.514877 9.962028 0.293005 0.556214 0.774837 0.961834 1.125203 1.270228
		3 42 15	i .		ļ

c. CHORD-LENGTH = 46.

					·
n.	nc.	D_s .	y.	x.	Log x.
	46	0° 21′ 44″	46.000	0.0669	8.825454
2	92	0 43 29	91.999	•3345	9.524422
3	138	1 05 13	137.995	.9366	9.971573
4	184	1 26 58	183.983	2.007	0.302550
5	230	1 48 42	229.952	3.679	0.565759
6	276	2 10 26	275.889	6.087	0.784382
7	322	2 32 11	321.773	9.362	0.971380
8	368	2 53 56	367.573	13.638	1.134749
9	414	3 15 40	413.255	19.045	1.279773
-		3 37 24			

c. CHORD-LENGTH = 47.

n.	nc.	Ds.	y.	x.	Log x.
<u> </u>	47	0° 21′ 16″	47.000	0.0684	8.834794
2	94	0 42 33	93.999	.3418	9.533762
3	141	1 03 50	140.995	.9570	9.980913
4	188	1 25 06	187.982	2.051	0.311890
5	235	1 46 23	234.951	3.759	0.575100
6	282	2 07 40	281.887	6.219	0.793722
7	329	2 28 57	328.768	9.566	0.980720
7 8	376	2 50 14	375.564	13.934	1.144089
9	423	3 11 31	422.238	19.459	1.289113
	l	3 32 48	f	l	ı

TABLE III.

c. CHORD-LENGTH = 48.

	i	Ī	1	i	ī
n.	nc.	Ds.	y.	x.	Log x.
I	48	o° 20′ 50″	48.000	0.0698	8.843937
2	96	0 41 40	95.999	.3491	9.542905
3	144	1 02 30	143.995	•9774	9.990057
4	192	I 23 20	191.982	2.094	0.321034
5	240	I 44 10	239.950	3.839	0.584243
6	288	2 05 00	287.885	6.351	0.802866
7	336	2 25 51	335.763	9.769	0.689863
8	384	2 46 41	383-555	14.231	1.153232
		3 06 31		{	

c. CHORD-LENGTH = 49.

n.	nc.	D_{s} .	y.	x.	Log x.
1 2 3 4 5 6 7 8	49 98 147 196 245 294 343 392	0° 20′ 25″ 0 40 49 1 01 14 1 21 38 1 42 03 2 02 27 2 22 52 2 43 17 3 03 31	49.000 97.999 146.995 195.982 244.949 293.882 342.758 391.546	0.0713 .3563 .9977 2.138 3.919 6.484 9.973 14.527	8.852892 9.551860 9.999011 0.329988 0.593198 0.811820 0.998818 1.162187

c. CHORD-LENGTH = 50.

n.	nc.	D_s .	y.	x.	Log x.
1 2 3 4 5 6 7 8	50 100 150 200 250 300 350 400	0° 20' 00'' 0 40 00 1 00 00 1 20 00 1 40 00 2 00 00 2 20 00 2 40 00 3 00 00	50.000 99.999 149.995 199.981 249.948 299.880 349.753 399.536	0.0727 .3636 1.018 2.182 3.999 6.616 10.176 14.824	8.861666 9.560634 0.007785 0.338762 0.601972 0.820594 1.007592 1.170961

TABLE IV.

FUNCTIONS OF THE ANGLE 3.

2									
2	n.	s.		cos s.	log vers s.	_	sin s.	log sin s.	<i>s</i> .
1	2	0 3	Ю	. 99996	5.580662	.218	.00873	7.940842	0 30
7 4 40 .99668 7.520498 18.994 .08136 8.910404 4 40 8 6 00 .99452 7.738630 31 388 .10453 9.019235 6 00 9 7 30 .99144 7.932227 49.018 .13053 9.115698 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 15098 7 30 30 3098 7 30988 7 30	4	I 4	ю	.99958	6.626392	2.424	.02908	8.463665	1 40
II	7 8 9	4 4 6 0 7 3	0	.99668 .99452 .99144	7.520498 7.738630 7.932227	18.994 31 388 49.018	.08136 .10453 .13053	8.910404 9.019235 9.115 6 98	4 40 6 00 7 30
16 22 40 .92276 8.887829 442.543 .38537 9.585877 22 40	11 12 13 14	11 0 13 0 15 1 17 3	000	.98163 ·97437 ·96517 ·95372	8.264176 8 408748 8.541968 8.665422	105 270 146.857 199.570 265.186	.19081 .22495 .26163	9.280599 9.352088 9.417684 9.478142	11 00 13 00 15 10 17 30
18 28 30 .87882 9.083441 694.335 .47716 9.678663 28 30 19 31 40 .85112 9.172846 853.050 .52498 9.720140 31 40 40 40 40 40 40 40 4	16 17 18	22 4 25 3 28 3 31 4	000	.922 7 6 .90259 .87882 .85112	8.887829 8.988625 9.083441 9.172846	442.543 558.153 694.335 853.050	. 38537 . 43051 . 47716 . 52498	9.585877 9.633984 9.678663 9.720140	22 40 25 30 28 30 31 40

TABLE

SEL	ECTED S	SPIRALS I	FOR A 2° C	URVE, G	IVING
Δ	s.	$n \times c$.	$D_{\delta(n+1)}$.	D'.	d.
10°	1° 00′	3 × 32	2° 05′ 00′′	2° 03′	41.12
10	I 40	4 × 39	2 08 13	2 09	61.04
10	2 30	5 × 43	2 19 33	2 18	73.69
10	3 30	6 × 45	2 35 34	2 33	78.81
10	4 40	7 × 44	3 01 50	2 40	70.47
20	1 00	3 × 33	2 01 13	2 01	45.28
20	I 40	4 × 41	2 01 57	2 02	73.85
20	2 30	5 × 48	2 05 00	2 05	99.99
20	3 30	6 × 50	2 20 00	2 06	109 52
30	1 00	3 × 34	I 57 39	2 01	46.14
30	1 40	4 × 41	2 01 57	2 01	75.16
30	2 30	5 × 49	2 02 27	2 02	109.78
30	3 30	6 × 50	2 20 00	2 02	115.63
30	3 30	6 × 50	2 20 00	2 03	110.90
40	1 00	3 × 35	1 54 17	2 01	46.90
40	1 40	4 × 42	I 59 02	2 01	76.96
40	2 30	5 × 50	2 00 00	2 OI	117.87

EQUAL LENGTHS BY CHORD MEASUREMENT.

old line.	new line.	Diff.	x.	h.	k.
291.12	291.12	.00	.6516	.040	.061
311.04	311.04	.00	1.702	.187	.110
323.69	323.70	+ .01	3.439	•354	.103
328.81	328.82	10. +	5.954	.590	.099
320.47	320.50	+ .03	8.955	.897	.100
545.28	545.28	.00	.6719	.122	.182
573.85	573.84	- .01	1.789	.118	.066
509.99	600.00	+ .01	3.839	.527	.137
609.52	609.52	.00	6.616	•554	.084
796.14	796.22	+ .08	.6923	.566	.082
825.16	825.16	.00	1.789	.227	.127
859.78	859.75	— .o3	3.919	-377	.096
865.63	865.57	06	6.616	.249	.038
860.90	860.98	+ .08	6.616	1.013	.153
1046.90	1047.15	+ .25	.7127	1.222	1.715
1076.96	1077.09	+ .13	1.832	.848	.463
1117.87	1117.77	10	3.999	.141	.035

SELECTED	SPIRALS	FOR	A 4	° CURVE.	GIVING

Δ	s.	# × c.	$D_{s(n+1)}$.	D'.	d.
10°	r° oo′	3 × 16	4° 10′ 03″	4° 07′	20.2
IO	I 40	4 × 19	4 23 13	4 16	20.1
10	2 30	5 × 22	4 32 48	4 39	38.7
10	3 30	6 × 23	5 04 26	5 17	41.3
20	1 40	4 × 20	4 10 03	4 04	34.9
20	2 30	5 × 24	4 10 03	4 09	50.7
20	3 30	6 × 27	4 19 19	4 17	63.6
20	4 40	7 × 30	4 26 44	4 31	78.0
20	6 00	8 × 31	4 50 24	4 46	81.8
20	7 30	9 × 32	5 12 36	5 16	85.4
30	I 40	4 × 20	4 10 03	4 02	35.5
30	2 30	5 × 25	4 00 03	4 04	57.3
30	3 30	6 × 28	4 10 03	4 07	72.3
30	4 40	7 × 32	4 10 03	4 14	93.0
30	6 00	8 × 35	4 17 12	4 23	110.3
30	7 30	9 × 37	4 30 20	4 34	122.2
30	9 10	10 × 38	4 49 33	4 47	126.8
40	2 30	5 × 25	4 00 03	4 02	58.9
40	3 30	6 × 28	4 10 03	4 04	73.7
40	4 40	7 × 32	4 10 03	4 08	94.6
40	6 00	8 × 36	4 10 03	4 12	121.3
40	7 30	9 × 39	4 16 28 4 28 21	4 17	142.8
40	9 10	10 × 41	4 28 21	4 26	154.3
60	2 30	5 × 25	4 00 03	4 01	59.6
60	3 30	6 × 29	4 01 26	4 02	81.0
60	4 40 6 00	7 × 32	4 10 03	4 03	99.5
60		8 × 36	4 10 03	4 05	125.8
60	7 30	9 × 40	4 10 03	4 08	154.4
8o	2 30	5 × 25	4 00 03	4 01	58.2
80	3 30	6 × 29	4 01 26	4 01	82.8
80	4 40	7 × 33	4 02 28	4 02	106.9
8o	6 00	8 × 37	4 03 17	4 03	135.6
80	7 30) 9 × 41	4 03 57	4 05	164.7

EQUAL LENGTHS BY CHORD MEASUREMENT.

	1 1				1
dold line.	1 new line.	Diff.	x.	h.	k.
145.22	145.17	05	.3258	.045	.135
154.12	154.13	+ .01	.8290	.080	.100
163.75	163.76	10. +	1.760	.177	.100
166.37	166.39	+ .02	3.043	.305	.100
284.92	284.92	.00	.8726	.081	.100
300.72	300.72	.00	1.920	. 184	.096
313.69	313.75	+ .06	3.573	.375	.105
328.07	328.08	10. +	6.106	.598	.098
332.88	331.92	+ .04	9.191	.910	.092
335.40	335-47	+ .07	13.248	1.310	.099
410.57	410.57	.00	.8726	.137	.157
432.39	432.38	· .01	2.000	.147	.074
447-37	447-35	— .02	3.705	.284	.077
468.09	468.09	.00	6.513	.687	.105
485.31	485.32	10. +	10.377	1.091	.105
497.20	497.23	+ .03	15.319	1.526	,100
501.86	501.95	+ .09	21.240	2.126	.100
558.91	558.88	03	2.000	, poi	.054
573.75	573.74	oi	3.705	.36í	.097
594.65	594.66	+ .01	6.513	•977	.150
621.38	621.33	05	10.673	.973	100.
642.86	642.83	— .o3	16.147	1.100	.086
654.34	654.36	+ .02	22.917	2.186	.095
8og.68	809.67	. 00.	2.000	.180	.000
831.04	831.03	o 1	3.837	.461	.120
849.59	849.52	— .07	6.513	.572	.088
875.8í	875.76	05	10.673	1.074	.106
904.42	904.36	– . 06	16.561	1.718	.104
1058.20	1058.61	+ .32	2.000	.979	.490
1082.82	1082.71	ĭı	3.837	.295	.074
1106.99	1107.03	+ .01	6.716	1.000	.149
1135.61	1135.51	10	10.970	1.199	.100
1164.79	1164.92	+ .13	16.075	2.440	.144
,	' '	<u></u>	"	• •	

SELE	SELECTED SPIRALS FOR AN 8° CURVE, GIVING								
Δ	s.	n×c.	$D_{8(n+1)}$.	D'.	đ.				
10°	2° 30′	5 × 11	9° 06′ 01″	9° 06′	19.95				
20	2 30	5 × 12	8 20 26	8 16	25.71				
20	3 30	6 × 14	8 20 26	8 34	34.86				
20	4 40	7 × 15	8 53 51	8 54	39.90				
20	6 00	8 × 16	9 23 07	9 24	45.52				
30	2 30	5 × 12 6 × 14	8 20 26	8 07	26.50				
30	3 30		8 20 26	8 14	36.16				
30	4 40	7 × 16	8 20 26	8 26	47.01				
30	6 00	8 × 17	8 49 55	8 36	53.13				
30	7 30	9 × 18	9 16 08	8 46	60.05				
30	9 10	10 × 19	9 39 36	9 14	65.70				
40	2 30	5 × 12	8 20 26	8 04	26.93				
40	3 30	6 × 14	8 20 26	8 o8	36.85				
40	4 40	7 × 16	8 20 26	8 14	48.25				
40	6 00	8 × 18	8 20 26	8 22	61.35				
40	7 30	9 × 19	8 46 49	8 30	68.07				
40	9 10	IO × 20	9 10 34	8 40	75.01				
40	11 00	II × 2I	9 32 03	8 54	82.13				
40	13 00	12 × 22	9 51 36	9 14	89.81				
60	2 30	5 × 12	8 20 26	8 02	27.30				
60	3 30	6 × 14	8 20 26	8 03	38.22				
60	4 40	7 × 16	8 20 26	8 o6 8 10	49.75				
60	6 00	8 × 18	8 20 26		62,87				
60 60	7 30	9 × 20 10 × 22	8 20 26 8 20 25	8 16 8 24	77.16				
60	9 10	10 X 22 11 X 23	8 42 13	8 31	93.05 101.08				
60	13 00	12 × 25	8 40 28	8 48	118.10				
60	15 10	13 × 26	8 58 59	9 02	127.21				
60	17 30	14 × 27	9 16 07	9 22	136.45				
80	4 40	7 × 17	7 50 57	8 04	57.04				
80	6 00	8 × 19	7 54 03	8 06	71.78				
80	7 30	9 × 20	8 20 26	8 084	79.18				
80	9 10	10 × 22	8 20 25	8 13	95.23				
80	11 00	II × 24	8 20 25	8 19	112.67				
80	13 00	12 × 26	8 20 25	8 28	130.86				
8o	15 10	13 × 27	8 38 59	8 34	140.88				
80	17 30	14 × 28	8 56 13	8 42	150.55				
	,	1	1	\ .	\				

100

EQUAL	LENGTH	S BY CH	ORD ME	ASURE M	ENT.
₹ old line.	hew line.	Diff.	х.	h.	k.
82.45	82.47	+ .02	.8798	.051	.058
150.71	150.72	+ .01	.9598	.051	.053
159.86	159.88	+ .02	1.852	.117	.063
164.90	164.92	+ .02	3.053	.185	.061
170.52	170.55	+ .03	4.744	.221	.047
214.00	214.00	.00	.9598	.049	.051
223.66	223.68	+ .02	1.852	.142	.077
234.51	234.53	+ .02	3.256	.260	.080
240.63	240.65	+ .02	5.040	.325	.065
24 7.55	247.55	•00	7.452	.287	.039
253.20	253.18	— .02	10.620	•5 9 0	.056
276.93	276.94	+ .01	.9598	.079	.082
286.85	286.87	+ .02	1.852	.181	.098
298.25	298.24	oi	3.256	.293	.090 .
311.35	311.33	02	5.337	.330	.062
318.07	318.06	oi	7.866	.472	.060
325.01	325.00	01	11.179	.629	.056
332.13	332.12	10. —	15.415	.840	.054
339.81	339.81	.00	20.723	1.024	.049
402.30	402.32	+ .02	.9598	.136	.142
413.22	413.19	– . 03	1.852	.083	.045
424.75	424.76	+ .01	3.256	.317	.097
437.87	437.88	10. +	5.337 8.280	.539	.ioi
452.16	452.18	+ .02		.863	.104
468.05 476.08	468.02 476.09	03 + .01	12.297 16.883	1.139	.093
493.19	4/0.09	+ .01 01	23.548	1.523 2.160	.090
502.21	502.21	.00	30.817	2.613	.085
511.45	511.45	.00	39.595	3.157	.080
557.04	557.02	- .02	3.460	.366	.106
571.78	571.75	03	5.633	.408	.072
579.18	579.18	.00	8.280	.860	.104
595.23	595.25	+ .02	12.297	1.346	.110
612.67	612.70	+ .03	17.617	1.719	.109
630.86	630.90	+ .04	24.490	2.738	.112
640.88	640.88	.00	32.002	3.119	.098
650.55	650.62	+ .07	41.062	3.809	.093
·					l

TABLE

SELECTED SPIRALS FOR A 16° CURVE,

Δ	<i>s</i> .	n × c.	$D_{\theta(n+1)}$.	D'.	ď.
30° 40	4° 40′	7 × 10 8 × 10	13° 21′ 48″ 15 02 34	18° 00′	33·59 36.14
60 60 60 60 60 60	7 30 9 10 11 00 13 00 15 10 17 30 20 00	9 × 10 10 × 11 11 × 12 12 × 12 13 × 13 14 × 13	16 43 31 16 43 31 16 43 31 18 07 48 18 01 18 19 19 14	16 32 16 48 17 14 17 22 18 10 18 12	38.47 46.40 54.62 54.11 62.88 62.85 72.14
80 80 80 80 80 80 80 80	7 30 9 10 11 00 13 00 15 10 17 30 20 00 22 40 28 30	9 × 10 10 × 11 11 × 12 12 × 13 13 × 14 14 × 14 15 × 15 16 × 15 18 × 16	16 43 31 16 43 31 16 43 31 16 43 30 16 43 29 17 55 44 17 50 54 18 58 25 19 53 20	16 16 16 26 16 38 16 56 17 22 17 24 18 06 18 08 19 42	39.74 47.49 56.19 65.24 74.72 75.02 85.15 85.18 95.84

GIVING EQUAL LENGTHS OF ACTUAL ARCS.

dolline.	1 new line.	Diff.	x.	h.	k.
127.64	127.64	.00	2.035	.388	.191
161.55	161.55	.00	2.965	.430	.145
226. 58 234. 50 242. 73 242. 25 250. 99 250. 96 260. 25 290. 55 298. 30 307 01 316.06 325. 53	226.56 234.45 246.67 242.26 250.99 250.97 260.25 290.47 298.27 306.96 316.03 325.54	020506 + .01 .00 + .01 .0008030503 + .01	4.140 6.148 8.808 11.303 15.409 19.064 25.031 4.140 6.148 8.808 12.245 16.594	.436 .576 .860 1.093 1.516 1.552 2.182 .328 .680 .943 1.384 1.973	.105 .094 .099 .097 .081 .087 .305 .111 .107
325.83 335.97 336.00 346.65	325.81 335.96 335.99 346.66	02 01 01 + .01	20.531 26.819 32.276 48.221	1.939 2.657 2.677 3.748	.094 .099 .083 .078

TABLE VI.—Selected Curves with their Proper Spirals giving the values of p and q. § 39.

C======						
D'.	n. c.		R' vers s.	R' sin s.	q.	p.
1° 40′ 1 40	3 40 4 50	1^,00′ 1 40	0.524 1.454	59·999 99·989	59·997 99·992	0.291 0.727
2 2 2	3 33 4 42 5 50	1 00 1 40 2 30	0.436 1.212 2.727	50.000 83.326 124.967	48.997 84.658 124.981	0.236 0.620 1.272
2 30 2 30 2 30 2 30	3 27 4 33 5 40 6 47	1 00 1 40 2 30 3 30	0.349 0 970 2.181	40.001 66.663 99.976	40.996 65.325 99.983 141.963	0.20I 0.470 I.018
3 3 3 3 3 3	3 22 4 28 5 33 6 38	I 00 I 40 2 30 3 30	4.275 0.291 0.808 1.818 3.563 6.332	33.335 55.554 83 317 116.607	32.663 56.436 81.649 111.302 152.381	0.157 0.414 0.821 1.465
•	7 44 8 50 3 20 4 25	4 40 6 00 I 00 I 40	0.332 10.464 0.262 0.727	30.003 50.000	199.878 199.995 49.991	2.623 4.360 0.145 0.364
3 20 3 20 3 20 3 20 3 20 3 20	5 30 6 35 7 40 8 45	2 30 3 30 4 40 6 00	1 636 3.207 5.699 9 417	74.987 104.950 139.865 179.697	74.982 104.966 139.937 179.886	0.764 1.424 2.412 3.924
4 4 4 4 4	4 21 5 25 6 29 7 33 8 37 9 41	1 40 2 30 3 30 4 40 6 00 7 30	0.606 1.364 2.672 4.750 7.848 12.257	41.669 62.493 87.463 116.561 149.757 187.003	42.323 62.481 86.467 114.276 145.900 181.333	0.310 0.636 1.165 1.966 3.122 4.718
4 10 4 10 4 10 4 10 4 10 4 10	4 20 5 24 6 28 7 32 8 36 9 40	1 40 2 30 3 30 4 40 6 00 7 30	0.582 1.309 2.565 4.560 7.535 11.867	40.003 59.994 83.966 111.901 143.769 179.526	39.990 59.981 83.967 111.941 143.897 179.826	0.291 0.611 1.140 1.953 3.138 4.694
5 5 5 5 5	5 20 6 23 7 27 8 30 9 33 10 37	2 30 3 30 4 40 6 00 7 30 9 10	1.091 2.138 3.800 6.279 9.807 14.639	50.000 69.979 93.260 119.819 149.619 182.610	49.979 67.966 95.606 119.903 146.846 186.400	0.509 0.905 1.695 2.615 3.855 6.042

TABLE VI.—Selected Curves with their Proper Spiral.s. § 39.

-			8 39.			
D'.	n. c.	s	R' vers s.	R' sin s.	q.	p.
5° 20' 5 20 5 20 5 20 5 20 5 20 5 20 5 20	5 19 6 22 7 25 8 28 9 31 10 34 11 37	2° 30′ 3 30 4 40 6 00 7 30 9 10 11 00	1.023 2.004 3.563 5.887 9.408 13.725 19.745	46.877 65.608 87.435 112.335 140.275 171.204 205.060	48.103 66.339 87.441 111.405 138.223 167.886 200.378	0.497 0.907 1.525 2.414 3.426 5.279 7.414
5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50	5 17 6 20 7 23 8 26 9 29 10 31 11 34	2 30 3 30 4 40 6 00 7 30 9 10 11 00	0.935 1.833 3.258 5.383 8.407 12.549 18.054	42.862 59.988 79.946 102.714 128.260 156.541 187.496	42.120 59.964 80.940 105.045 132.270 152.629 185.069	0.425 0.813 1.423 2.325 3.599 4.778 6.903
6 6 6 6 6 6	5 17 6 19 7 22 8 25 9 28 10 31 11 33	2 30 3 30 4 40 6 00 7 30 9 10 11 00	0.909 1.782 3.167 5.234 8.173 12.201 17.553	41.673 58.324 77.727 99.863 124.700 152.196 182.293	43.309 55.630 76.164 99.905 126.846 156.974 179.314	0.451 0.732 1.311 2.178 3.419 5.126 6.670
6 40 6 40 6 40 6 40 6 40 6 40	6 18 7 20 8 23 9 25 10 28 11 30 12 33	3 30 4 40 6 00 7 30 9 10 11 00 13 00	1.604 2.851 4.711 7.357 10.982 15.799 22.040	52.497 69.962 89.886 112.242 136.991 164.081 193.440	55.460 69.939 93.901 112.353 142.260 164.653 200.446	0.778 1.220 2.108 2.993 4.668 6.222 9.044
7 7 7 7 7	6 17 7 19 8 21 9 24 10 26 11 29 12 31	3 30 4 40 6 00 7 30 9 10 11 00 13 00	1.528 2.715 4.487 7.007 10.460 15.048 21.480	50.000 66.634 85.611 106.904 130.476 156.278 184.240	51.959 66.272 82.194 108.707 128.828 161.498 185.774	0.721 1.152 1.739 2.929 4.073 6.239 7.720
7 30 7 30 7 30 7 30 7 30 7 30 7 30	7 18 8 20 9 22 10 24 11 27 12 29 13 31	4 40 6 00 7 30 9 10 11 00 13 00 15 10	2.534 4.188 6.540 9.763 14.046 19.594 26.628	62.198 79.911 99.786 121.788 145.871 171.7976 200.011	63.713 79.904 97.857 117.570 149.989 174.166 200.071	1.129 1.742 2.568 3.652 5.773 7.722 10.115

TABLE VI.—Selected Curves with their Proper Spirals § 39.

	الار ق الاستان									
	,	D.	n.	с.		r.	R' vers s.	R' sin s.	q.	p.
	8°		7 8	19	6		2.376 3.927	58.316 74.924	60.600 76.900	I.084 I.706
	8		9 10	2I 23	7	30 10	6.132 9.154	93.558 114.188	95.102 115.196	2.562 3.702
	8		11	25	11	ю	13.169	136.768	137 177	5.182
	8		12 13	27 29	13	00	18.371 24.966	161.240 187.529	161.030 186.742	7.061 9.407
			-	-						
	8 8	20 ²	7 8	16 18	6	40 00	2.281 3.770	55.988 71.932	55.933 71.901	0.975 1.567
	8	20	9	20	7	30	5.887	89.822	89.854	2.393
	8	20	10	22		10	8.788	109.628	109.783	3 509
	8	20	11	24		00	12.643	131.306	131.681	4.974
Ì	8	20	12	26		00	17.637	154.801	155.533	6.853
	8	20	13	28	15	10	23.969	180.041	181.324	9.219
	9		7	15		40	2.113	51.848	53.078	0.940
	9		8	17		00	3.491	66.613	69.229	I.549
ı	9		9	19		30	5.452	83.181	87.511	2.414
	9		10	20		10	8.139	101.523	97.942	3.040
	9		II	22	II		11.779	121.598	119.473	4.440
1	9		12	24 26		00	16.333	143.356	143.107	8.620
	9		13 14	_	15	10	22.197	166.729 191.632	196.603	11.567
	9		**	20	1'	3 0	29.495	191.032	190.003	11.50/
	9	20	7	14		40	2.037	50.000	47.931	0.812
	9	20	8	16	-	00	3.367	64.240	63.612	I . 377
	9	20	9	18	7	30	5.258	80.217	81.491	2.194
	9	20		20	9	10	7.849	97.904	101.561	3.330
	9	20	11	21	1	00	11.291	117.264	112.850	4.124
	9	20	12	23		00	15.751	138.216	136.28 1 161.860	5.914 8.226
	9	20	13	25	15	10	21.406	160.787 184.803	189.566	
	9	20	14	27	• ′	30	28.444	104.003	109.500	11.151
	10		8	15	6	00	3.135	59. 96 6	59.895	1.312
	10		9	17		30	4.908	74.881	77.844	2.130
	10		10	18		10	7.326	91.392	88.126	2.735
į	10			20	11		10.540	109.465	109.691	4.141
	10		12	22		00	14.704	129.051	133.540	6.019
	10				15	10	19.982	150.092	146.743	7.279
	10			25	17	30	26.552	172.511	174.127	10.110
	10		15	27	20	00	34.597	196.212	203.724	13.677
	10	40	8	14	1	00	2.947	56.228	55.642	1.204
	10	40	9	16	7	30	4.603	70.213	73.528	2.021
/.	10	40	10		,	10	6.870	85.695	83.850	2.632
4	<i>TO</i> .	40 /	II	I9	II	00	9.883	102.639	105.559	4.064
_								<u> </u>		

TABLE VI.—Selected Curves with their Proper Spirals § 39.

_				9 - 7			
Z	γ.	n. c.	s.	R' vers s.	R' sin s.	q.	p.
10°	40' 40	12 20 13 22	13° 00′ 15 10	13.787	121.007	117.712	5.052 7·339
10	40	14 23	17 30	24.897	161.757	157.150	8.832
10	40	15 25	20 00	32.441	183.981	186.330	12.257
11	20	8 13	6 00	2.774	52.931	50.948	1.080
II	20	9 15	7 30	4.332	66.095	68.662	1.878
II	20	10 16	9 10	6.467	80.669	78.903	2.476
II	20	11 18	11 00	9.303	96.621	100.619	3.909
II	20	12 19	13 00	12.978	113.910	112.873	4.919
II	20	13 21	15 10	17.638	132.482	138.541	7.253
II	20	14 22	17 30	23.437	152.270	152.772	8.826
II	20	15 24	20 00	30.538	179.191	176.308	12.372
II	20	τό 25	22 40	39.111	195.142	198.456	14.682
12		9 14	7 30	4.092	62.436	63 337	1.704
12		IÓ 15	0 10	6.251	76.202	73 - 397	2.133
12		11 17	1Í 00	8.788	91.271	95 011	3.690
12		12 18	13 00	12.263	107.603	107.244	4.695
12		13 19	15 10	16.661	125.147	120.065	5.859
12		14 21	17 30	22.139	143.839	147.337	8.657
12		15 22	20 00	28.817	163.602	162.272	10.488
12		16 24	22 40	36.946	184.337	193.517	14.695
12	30	8 12	6 ∞	2.516	48.007	47.882	1.042
12	30	9 13	7 30	3.930	59.948	56.841	1.453
12	30	10 15	9 10	5.865 8.438	73.166	76.433	2.519
12	30	11 16	11 00	8.438	87.634	87.691	3.306
12	30	12 17	13 00	11.771	103.315	99.596	4.242
12	30	13 19	15 10	15.997	120.160	125.052	6.525
12	30	14 20	17 30	21.257	138.107	139.203	8 073
12	30	15 21	20 00	27.698	157.082	153.980	9.849
12	30	16 23	22 40	35 - 473	176.991	185.119	14.017
12	30	17 24	25 30	44.710	197.723	202.042	16.695
13	20	7 10	4 40	1.427	35.040	34.911	0.608
13	20	8 11	6 00	2.359	45.010	42.879	0.902
13	20	9 12	7 30	3.685	56.216	51.590	1.283
13	20	IÓ 14	9 10	5.500	68.612	71.013	2.325
13	20	11 15	11 00	7.913	82.179	82.188	3.097
13	20	12 16	13 00	11.039	96.884	94.091	4.032
13	20	13 17	15 10	15.001	112.680	106.720	5.149
13	20	14 18	17 30	19.934	129.511	120.068	6.463
13	20	15 20	20 00	25.974	146.968	149.281	9.785
13	20	16 21	22 40	33.266	165.974	164.649	11.920
13	20	17 23	25 30	41.955	185.416	197.692	16.920
L			1		l.		1

TABLE VI.—Selected Curves with their Proper Spirals. § 39.

D	<i>'</i> .	n.	c.	s	•	R' vers s.	R' sin s.	q.	p.
	10′	8	11	6°	-	2.221	42.384	45.514	1.040
	10	9	12	7	30	3.469	52.925	54.881	1.499
, ,	10		13	9	10	5.178	64.595	65.057	2.088
	10	II	14	11	00	7.467	77.368	76.041	2.809
14	10	12	15	13	00	10.392	91.212	87.827	3 · 737
14	10	13	16	15	10	14.123	106.083	100.411	4.841
14	10	14	18	17	30	18.767	121.928	127.651	7.630
14	10	15	19	20	တ	24 453	138.680	142.757	9.518
14	10	16	20	22	40	31.318	156.257	158.622	11.717
11	10	17	21	25	30	39 499	174.561	175.234	14.257
14	10	18	22	28	30	49.136	193.475	192.579	17.167
15		_	10	6	00	2.098	40.041	39.866	o.867
15	1	9	II	7	30	3.277	50.000	48.822	1.277
15		10	12	9	10	4.892	61.025	58.654	1.815
15		II	13	11	00	7.038	73.092	69.359	2.504
15		J 2	14	13	00	9.818	86.171	80.932	3.369
15		13	15	15	10	13.343	100.220	93.368	4.436
15		14	17	17	30	17.729	115.190	120.524	7.201
15		15	18	20	00	23.102	131.016	135.608	9.081
15		16	19	22	40	29.587	147.621	151.514	11.296
15		17	20	25	30	37.316	164.913	168.225	13.880
15		18	21	28	30	46.421	182.783	185.723	16.868
	40	9	10	7	30	2.951	45.030	44.808	1.189
	40	10	11	9	10	4.406	54.960	54 - 746	1.742
	40	11	12	II	00	6.338	65.827	65.666	2.470
	40	12	13	13	00	8.842	77.606	77.561	3.403
	40	13	14	15	10	12.016	90.259	90.423	4.578
16	40	14	15	17	30	15.967	103.740	104.243	6.030
	40	15	16	20	ന	20.805	117.994	119.005	7.802
	40	16	17	22	40	26.646	132.948	134.699	9.933
	40	17	18	25	30	33.607	148.522	151.302	12.469
	40	18	19	28	30	41.807	164.615	168.795	15.455
16	40	19	20	31	40	51.362	181.112	187.152	18.939
	20		10	9	ю	4.008	50.000	49.732	1.581
	20		11	11	00	5.767	59.887	60.649	2.307
	20	12	12	13	00	8.044	70.603	72.628	3.259
	20	13	13	15	10	10.932	82.115	85.661	4.477
	20	14	14	17	30	14.526	94.380	99 - 737	6.005
	20	15	15	20	00	18.928	107.347	114.840	7.891
	20	17	16	25	30	30.575	135.120	131.390	10.382
	20		17	28	30	38.034	149.760	148.554	13.200
	20	19	18	31	40	46.729	164.769	166.668	16.542
18 2	<i>:</i> 0 /	20	I9	<i>3</i> 5	00	56.761	180.023	185.702	20.465
	/		$-\bot$				l	<u>"</u>	<u> </u>

TABLE VI.—Selected Curves with their Proper Spirals. § 39.

20° 11 10 11° 00′ 5.290 54.941 54.637 2 20 12 11 13 00 7.380 64.772 66.523 2 20 13 12 15 10 10.029 75.333 79.538 4 20 16 14 22 40 22.240 110.962 109.453 7 20 17 15 25 30 28.049 123.961 125.892 10 20 18 16 28 30 34.893 137.392 143.374 13 20 19 17 31 40 42.869 151.161 161.863 16 20 18 35 00 52.073 165.154 181.322 21 22 30′ 12 10 13 00 6.569 57.653 61.706 2 22 30 14 11 17 30 11.862 77.068 75.453 4 22 30 15 12 20 00 15.456 87.657 90.092 8 22 30 16 13 22						
20	D'.	D'. n . c . s .	R' vers s.	R' sin s.	q.	p.
20	20	12 11 13	00 7.380	64.772	66.523	2.050 2.981
16						4.194 5.878
17 15 25 30 28.049 123.961 125.892 10.20 18 16 28 30 34.893 137.392 143.374 13.20 19 17 31 40 42.869 151.161 161.863 16.22 30 12 10 13 30 6.569 57.653 61.706 2.22 30 14 11 17 30 11.862 77.068 75.453 4.22 30 15 12 20 20 20 20 31.058 122.264 123.406 11.22 30 18 14 28 30 31.058 122.264 123.406 11.22 30 16 35 30 46.350 147.003 160.976 18.22 30 16 35 30 46.350 147.003 160.976 18.25 15 11 20 20 30.32 79.010 83.927 5.25 15 11 25 30 22.504 10.769 98.114 35 30 27.995 110.229 117.894 11.25 30 27.995 110.229 117.894 11.27 30 17 11 25 30 20.492 90.563 92.663 7.27 30 15 10 20 38.041 120.659 129.574 14.53 130 15 131 20 31.319 110.435 129.574 14.53 130 15 131 231 30 38.044 120.659 129.574 14.35 30 19 11 31 40 28.762 101.418 101.127 9.30 20 12 35 00 34.937 110.806 39.792 8.32 32.178 32.20 18 10 28 30 21.762 85.687 89.792 8.32 32.018 32.02 33.02 34.937 110.806 39.792 8.32 32.018 32.02 33.02 34.937 110.806 39.792 8.32 32.018 32.02 33.02 34.937 110.806 39.792 8.32 32.018 32.02 33.02 34.937 110.806 39.792 8.32 32.018 32.018 32.02 33.02 34.937 110.806 39.792 8.32 32.018						7.884
20		1 " " 1				10.348
20	20	18 16 28	30 34.893			13.328
22 30' 12 10 13 00 6.569 57.653 61.706 2. 22 30 14 11 17 30 11.862 77.068 75.453 4. 22 30 15 12 20 00 15.456 87.657 90.092 5. 22 30 16 13 22 40 19.795 98.767 105.904 8. 22 30 18 14 28 30 31.058 122.264 123.406 11. 22 30 19 15 31 40 38.158 134.547 141.651 14. 22 30 20 16 35 00 46.350 147.003 160.976 18. 25 14 10 17 30 10.692 69.466 69.189 3. 25 18 13 28 30 27.995 110.229 117.894 11.	20					16.887
22 30 14 11 17 30 11.862 77.068 75.453 4. 22 30 15 12 20 00 15.456 87.657 90.092 5. 22 30 16 13 22 40 19.795 98.767 105.904 8. 22 30 18 14 28 30 31.058 122.264 123.406 11. 22 30 19 15 31 40 38.158 134.547 141.651 14. 22 30 20 16 35 00 46.350 147.003 160.976 18. 25 14 10 17 30 10.692 69.466 69.189 3. 25 15 11 20 00 13.932 79.010 83.927 5. 25 17 12 25 30 22.504 101.769 98.114 8.	20	20 18 35	00 52.073	165.154	181.322	21.088
22 30 15 12 20 00 15.456 87.657 90.092 5.22 30 16 13 22 40 19.795 98.767 105.904 8.22 105.904 8.30 31.058 122.264 123.406 11.23.40	22 30'	30' 12 10 13		57.653	61.706	2.850
22 30 16 13 22 40 19.795 98.767 165.904 8 22 30 18 14 28 30 31.058 122.264 123.406 11. 22 30 19 15 31 40 38.158 134.547 141.651 14. 22 30 20 16 35 00 46.350 147.003 160.976 18 25 14 10 17 30 10.692 69.466 69.189 3.927 5. 25 17 12 25 30 22.504 101.769 98.114 8. 98.792 5. 25 18 13 28 30 27.995 110.229 117.894 11. 11. 83.977 15. 25 18 13 28 30 27.995 110.229 117.894 11. 11. 11. 11. 11. 11. 11.						4.269
22 30 18 14 28 30 31.058 122.264 122.406 11. 22 30 19 15 31 40 38.158 134.547 141.651 14. 22 30 20 16 35 00 46.350 147.003 160.976 18. 25 14 10 17 30 10.692 69.466 69.189 3. 25 15 11 20 13.932 79.010 83.927 5. 25 18 13 28 30 27.995 110.299 117.894 11. 25 18 13 28 30 27.995 110.299 117.894 11. 25 13 15 00 41.778 132.502 136.979 15. 27 30 17 11 25 30 20.492 90.563 92.663 7. 27 30 19 12 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>5.999</td>	-					5.999
22 30 19 15 31 40 38.158 134.547 141.651 14.651 14.262 14.062 14.063 147.003 160.976 18.160.976 18.160.976 18.17 18.17 18.17 19.01 19.01 19.01 18.01 19.01 18.01 19.01 18.01 19.01 18.01 19.01						8.177
22 30 20 16 35 00 46.350 147.003 160.976 18 25 14 10 17 30 10.692 69.466 69.189 3 25 15 11 20 00 13.932 79.010 83.927 5 25 18 13 28 30 27.995 110.229 117.894 11. 25 20 14 35 00 41.778 132.502 136.979 15. 27 30 15 10 20 00 12.628 71.948 76.177 5. 27 30 17 11 25 30 20.492 90.563 92.663 7. 27 30 19 12 31 40 31.319 110.435 110.523 10. 27 30 20 13 35 00 38.044 120.659 129.574 14. 30						11.135
25	-					14.568
25	22 30	30 20 10 35	40.350	147.003	100.970	18.682
25						3.973
25		1 9				5.735
25						8.214
27 30 15 10 20 00 12.628 71.948 76.177 5. 27 30 17 11 25 30 20.492 90.563 92.663 7. 27 30 19 12 31 40 31.319 110.435 110.523 10. 27 30 20 13 35 00 38.044 120.659 129.574 14. 30 17 10 25 30 18.819 83.168 83.401 6. 30 19 11 31 40 28.762 101.418 101.127 9. 30 20 12 35 00 34.937 110.806 120.178 13. 32 20 18 10 28 30 21.762 85.687 89.792 8.		1 0 1				11.184
27 30 17 11 25 30 20.492 90.563 92.663 7. 27 30 19 12 31 40 31.319 110.435 110.523 10. 27 30 20 13 35 00 38.044 120.659 129.574 14. 30	25	20 14 35	00 41.778	132.502	130.979	15.125
27, 30		3. -3				5.251
27 30 20 13 35 00 38.044 120.659 129.574 14. 30						7.666
30						10.862
30	27 30	30 20 13 35 0	38.044	120.059	129.574	14.795
30						6.779
32 20 18 10 28 30 21.762 85.687 89.792 8.						9.903
32 20 18 10 28 30 21.762 85.687 89.792 8.	30	20 12 35	00 34.937	110.806	120.178	13.837
lee ee lee ee lee ee lee eet lee ee lee l	32 20	20 18 10 28 3	30 21.762	85.687		8.376
32 20 20 11 35 00 32.470 103.001 108.734 12.	32 20	20 20 11 35 0	00 32.476	103.001	108.734	12.234
35 20 IO 35 00 30.07I 95.372 97.115 IO.	35	20 10 35 0	00 30.071	95 • 372	97.115	10.574

TABLE VII.—SPIRAL TANGENTS, LONG CHORD AND OFFSET, p.

	CHORD c, 10 FEET.									
n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset						
3	18.334	11.667	30.000	.07						
4	25.001	15.001	39.999	.15						
3 4 5 6	31.670	18.337	49.996	.25						
	38.339	21.674	59.991	.41						
7 8	45.017	25.016	69.98 0	.61						
8	51.700	28.363	79.962	.87						
9	58.390	31.719	89.933	1.20						
10	65.094	35.086	99.889	1.60						
II	71.816	38.469	109.824	2.08						
12	78.560	41.873	119.731	2.64						
13	85.333	45.304	129.602	3.30						
14	92.144	48.768	139.429	4.06						
15	99.001	52.276	149.200	4.92						
16	105.916	55-835	158.903	5.90						
17	112.902	59-459	168.524	6.99						
18	119.972	63.161	178.048	8.21						
19	127.144	66.956	187.457	9.56						
20	134.439	70.863	196.731	11.04						

CHORD c, 11 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	20.17	12.83	33.00	.08
	27.50	16.50	44.00	.16
4 5 6	34.84	20.17	55.00	.28
	42.17	23.84	65.99	.45
7 8	49.52	27.52	76.98	.67
8	56.87	31.20	87.96	.96
9	64.23	34.89	98.93	1.32
10	71.60	38.59	109.88	1.76
II	79.00	42.32	120.81	2.28
12	86.42	46.06	131.70	2.91
13	93 87	49.83	142.56	3.63
14	101.36	53.65	153.37	4.46
15	108.90	57.50	164.12	5.41
16	116.51	61.42	174.79	6.49
17	124.19	65.41	185.38	7.69
18	131.97	69.48	195.85	9 03
19	139.86	73 65	206.20	10.51
20 /	147.88	77.95	216.40	12.14

TABLE VII.

	СН	ORD c, 12 F	EET.	
n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	22.00 30.00 38.00 46.01 54.02 62.04 70.07 78.11 86.18 94.27 102.40 110.57 118 80 127.10 135.48 143.97 152.57 161.33	14.00 18.00 22.00 26.01 30.02 34.04 38.06 42.10 46.16 50.25 54.36 58.52 62.73 67.00 71.35 75.79 80.35 85.04	36.00 48.00 60.00 71.99 83.98 95.95 107.92 119.87 131.79 143.68 155.52 167.31 179.04 190.68 202.23 213.66 224.95 236.08	.09 .17 .31 .49 .73 1.05 1.44 1.92 2.49 3.17 3.96 4.87 5.90 7.08 8.39 9.85 11.47 13.24
	СН	ORD c, 13 F	EET.	·
n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	23.83 32.50 41.17 49.84 58.52 67.21 75.91 84.62 93.36 102.13 110.93 119.79 128.70 137.69 146.77 155.96 165.29	15.17 19.50 23.84 28.18 32.52 36.87 41.23 45.61 50.01 54.43 58.89 63.40 67.96 72.59 77.30 82.11 87.04 92.12	39.00 52.00 64.99 77.99 90.97 103.95 116.91 129.86 142.77 155.65 168.48 181.26 193.96 206.57 219.08 231.46 243.69 255.75	.09 .19 .33 .53 .79 1.13 1.56 2.08 2.70 3.43 4.29 5.27 6.40 7.67 9.09 10.67 12 42

TABLE VII.

CHORD c, 14 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset \$\dolsamble{p}\cdot\$.
3	25.67	16.33	42.00	.10
4	35.00	21.00	56.00	.20
4 5 6	44.34	25.67	69.99	.36
6	53.67	30.34	83.99	∙57
7 8	63 02	35.02	97.97	.86
8	72.38	39.71	111.95	1.22
9	81.75	44.41	125.91	1.68
ΙÓ	91.13	49.12	139.84	2.24
11	100.54	53.86	153.75	2.91
12	109.98	58.62	167.62	3.70
13	119.47	63.43	181.44	4.62
14	129.00	68.28	195.20	5.68
15	138.60	73. IQ	208.88	6.89
16	148.28	78.17	222.46	8.26
17	158.06	83.24	235.93	9.79
18	167.96	88.43	249.27	11.49
19	178.00	93.74	262.44	13.38
2Ó	188.21	99.21	275.42	15.45

CHORD c, 15 FEET.

				
n.	Tangent	Tangent	L. Chords	Offset
	SE.	LE.	SL.	<i>p</i>
3	27.50	17.50	45.00	.II
4	37.50	22.50	60.00	.22
5 6	47.51	27.51	74.99	.38
6	57.51	32.51	89.99	.61
7 8	67.53	37.52	104.97	.92
8	77.55	42.54	119 94	1.31
9	87.59	47.58	134.90	1.8o
10	97.64	52.63	149.83	2.40
11	107.72	57.70	164.74	3.11
12	117.84	62.81	179.60	3.96
13	128.00	67.96	194.40	4.95
14	138.22	73.15	209.14	6.09
15	148.50	78.41	223.80	7.38
16	158.87	83.75	238.35	8.85
17	169.35	89.19	252.79	10.49
18	179.96	94.74	267.07	12.31
19	190.72	100.43	281.19	14.33
' 20	201.66	106.29	295.10	16.55

TABLE VII.

CHORD c, 16 FEET.

	Tangent	Tangent	L. Chord	Offset
n.	SĔ.	LĚ.	SL.	p.
				· ·
3	29.33	18.67	48.00	.12
4	40.00	24.00	64.00	.23
4 5 6	50.67	29.34	79.99	.41
	61.34	34.68	95.98	.65
7 8	72.03	40.03	111.97	.98
8	82.72	45.38	127.94	1.40
9	93.42	50.75	143.89	1.92
10	104 15	56.14	159.82	2.56
II	114.90	61.55	175.72	3 32
12	125.70	67.00	191.57	4.23
13	136.53	72.49	207.36	5.28
14	147.43	78.03	223.09	6.49
15	158.40	83.64	238.72	7.87
16	169.47	89.34	254.24	9.43
17	180.64	95.14	269 64	11.19
18	191.96	101.06	284.88	13.13
19	203 43	107.13	299.93	15.29
20	215.10	113.38	314.77	17.65

CHORD c, 17 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	31.17	19.83	51.00	.12
4	42.50	25.50	68.00	.25
5 6	53.84	31.17	84.99	.43
6	65.18	36.8 5	101.98	.69
7 8	76.53	42.53	118.97	1.04
8	87.89	48.22	135.94	1.48
9	99.26	53.92	152.89	2.04
10	110.66	59.65	169.81	2.72
11	122.00	65.40	186.70	3.53
12	133.55	71.18	203.54	4.49
13	145.07	77.02	220.32	5.61
14	156.64	82.91	237 03	6.90
15	168.30	8 8.8 7	253.64	8.37
16	180.06	94.92	270.13	10.02
17	191.93	101.08	286.49	11.88
18	203 95	107.37	302.68	13.96
19	216.15	113.83	318.68	16.24
20	228.55	120 47	334-44	18.76

TABLE VII.

CHORD .	c, 1	[8]	FE.	ET.
---------	------	-----	-----	-----

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset p.
3	33.00	21.00	54.00	.13
4	45.00	27.00	72.00	.26
4 5 6	57.01	33.01	89 99	.46
6	69.01	39.01	107.98	.73
7 8	81.03	45.03	125.96	1.10
8	93.06	51.05	143.93	1.57
9	105.10	57.09	161.88	2.16
10	117.17	63.16	179.80	2.88
11	129.27	69.24	197.68	3.74
12	141.41	75.37	215.51	4.75
13	153.60	81.55	233.28	5.94
14	165.86	87.78	250.97	7.30
15	178.20	94.10	268.56	8.86
16	190.65	100.50	286.03	10.61
17	203 22	107.03	303.34	12.58
18	215.95	113.69	320.49	14.78
19	228.86	120.52	337.42	17.20
20	241.99	127.55	354.12	19.86

CHORD c, 19 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	34.83	22.17	57.00	.14
4 5 6	47.50 60.17	28.50 34.84	76.00 94.99	.28 .48
	72.84	41.18	113 98	-77
7 8	85.53 98.23	47.53 53.89	132 96 151.93	1.16 1.66
9	110.94	60.27	170.87	2.28
10 11	123 68	66.66	189.79 208.66	3.04
12	136 45 149.26	73.09 79.56	227.49	3.95 5.02
13	162.13	86.08	246.24	6.27
14 15	175.07	92.66 99.32	264.91 283.48	7.7I 9-35
16	201.24	106.09	301.92	11.20
17 18	214.51 227.95	112.97	320.20 338.29	13.28 15.60
19	241.57	127.22	356.17	18.16
20	255.43	134.64	373.79	20.97

TABLE VII.

CHORD	<i>c</i> .	20	FEET.	

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8 9 10 11 12 13 14	36.67 50.00 63.34 76.68 90.04 103.40 116.78 130.19 143.63 157.12 170.67 184.29 198.00	23.33 30.00 36.67 43.35 50.03 56.73 63.44 70.17 76.94 83.75 90.61 97.54	60 00 80.00 99.99 119.98 139.96 159.92 179.87 199.78 219.65 239.46 259.20 278.86 298.40	.15 .29 .51 .81 1.22 1.74 2.40 3.20 4 15 5.28 6.60 8.11 9.84
16 17 18 19 20	211 83 225.80 239.94 254.29 268.88	111 67 118.92 126.32 133.91 141.73	317.81 337.04 356.10 374.91 393 46	11.79 13.98 16.42 19.11 22.07

CHORD c, 21 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset \$\psi\$.
3	38.50	24.50	63.00	.15
4	52.50	31.50	84.00	.31
4 5 6	66.51	38 51	104.99	-53
6	80.51	45.52	125.98	.86
7 8	94.54	52.53	146.96	1.28
8	108.57	59.56	167.92	1.83
9	122.62	66 61	188.86	2.52
10	136.70	73.68	209 77	3.36
11	150.81	80.79	230.63	4.36
12	164.98	87.93	251.43	5.55
13	179.20	95.14	272.16	6.93
14	193.50	102.41	292.80	8.52
15	207.90	109.78	313.32	10.33
16	222.42	117.25	333.70	12.38
17	237.09	124.86	353.90	14.68
18	251.94	132.64	373.90	17.24
19	267 00	140.61	393.66	20.07
2 0	282.32	148.81	413.13	23.18

TABLE VII.

	CHORD c, 22 FEET.				
n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset	
3 4 5 6 7 8 9 10 11 12 13 14 15	40.33 55.00 69.67 84.35 99.04 113.74 128.46 143.21 157.99 172.83 187.73 202.72 217.80 233.02	25.67 33.00 40.34 47.68 55.04 62.40 69.78 77.19 84.63 92.12 99.67 107.29 115.01 122.84	66.00 88.00 109.99 131.98 153.96 175.92 197.85 219.76 241.61 263.41 285.12 306.74 328.24 349.59	.16 .32 .56 .90 1.34 1.92 2.64 3.52 4.57 5.81 7.26 8.93 10.83	
17 18	248.38 263.94	130.81 138.95	370.75 3 91.71	15.38 18.06	

CHORD c, 23 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8	42.17 57.50 72.84 88.18 103.54 118.91	26.83 34.50 42.17 49.85 57.54 65.24	69.00 92.00 114.99 137.98 160.95 183.91	.17 .33 .59 .94 1.40 2.01
9 10 11 12 13 14 15 16 17	134,30 149.72 165.18 180.69 196.27 211.93 227.70 243.61 259.67	72.95 80.70 88.48 96.31 104.20 112.17 120.23 128.42 136.76 145.27	206.85 229.74 252.59 275.38 298.08 320.69 343.16 365.48 387.61 400.50	2:76 3.68 4.78 6.08 7.59 9.33 11.32 13.56 16.08 18.88

TABLE VII.

CHORD c, 24 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset p.
3 4 5 6 7 8 9 10 11 12 13 14 15 16	44.00 60.00 76.01 92.01 108.04 124.08 140.14 156.23 172.36 188.54 204.80 221.15 237.60 254.20 270.06	28.00 36.00 44.01 52.02 60.04 68.07 76.13 84.21 92.33 100.50 108.73 117.04 125.46 134.01 142.70	72.00 96.00 119.99 143.98 167.95 191.91 215.84 229.73 263.58 287.35 311.04 334.63 358.08 381.37 404.46	.17 .35 .61 .98 1.47 2.09 2.88 3.84 4.98 6.34 7.92 9.74 11.81 14.15
•	'			ļ -

CHORD c, 25 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset \$\mu\$p\$.
3 4 5 6 7 8 9	45.83 62.50 79.18 95.85 112.54 129.25 145.98 162.74 179.54	29.17 37.50 45.84 54.19 62.54 70.91 79.30 87.72 96.17	75.00 100.00 124.99 149.98 174.95 199.91 224.83 249.72 274.56	.18 .36 .64 I.02 I.53 2.18 3.00 4.00 5.19
12 13 14 15 16	196.40 213 33 230.36 247.50 264.79 282.25	104.68 113.26 121.92 130.69 139.59 148.65	299.33 324.00 348.57 373.00 397.26 421.31	6.60 8.25 10.14 12.30 14.74 17.48

TABLE VII.

CHORD c, 26 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8 9 10 11 12 13 14 15	47.67 65.00 82.34 99.68 117.05 134.42 151.82 169.25 186.72 204.25 221.87 239.57 257.40	30.33 39.00 47.68 56.35 65.04 73.74 82.47 91.22 100.02 108.87 117.79 126.80 135.92 145.17	78.00 104.00 129.99 155.98 181.95 207.90 233.83 259.71 285.54 311.30 336.97 362.51 387.92 443.15	.19 .38 .66 1.06 1.59 2.27 3.12 4.16 5.40 6.87 8.58 10.55 12.79
	1			""

· CHORD c, 27 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset p.
3	49.50	31.50	81.00	.20
4	67.50	40.50	108.00	-39
4 5 6	85.51	49.51	134.99	.69
-	103.52	58.52	161.97	1.10
7 8	121.55	67.54	188.95	1.65
8	139.59	76.58	215.90	2.36
9	157.65	85.64	242.82	3.24
10	175.75	94.73	269.70	4.31
II	193.90	103.87	296.52	5.61
12	212.11	113.06	323.27	7.13
13	230.40	122.32	349.93	8.91
14	248.79	131.67	376.46	10.95
15	267.30	141.14	402.84	13.29

TABLE VII.

CHORD c, 28 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8 9 10 11 12	51.33 70.00 88.68 107.35 126.05 144.76 163.49 182.26 201.08 219.97 238.93	32.67 42.00 51.34 60.69 70.04 79.42 88.81 98.24 107.71 117.24 126.85	84.00 112.00 139.99 167.97 195.94 223.89 251.81 279.69 307.51 335.25 362.89	.20 .41 .71 1.14 1.71 2.44 3.36 4.47 5.81 7.40 9.24
14 15	258.00 277.20	136.55 146.37	390.40 417.76	11.36 13.78

CHORD c, 29 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4	53.17 72.50	33.83 43.50	87.00 116.00	.2I .42
4 5 6	91.84 111.18	53.18 62.86	144.99 173.97	·74 1.18
7 8	130.55 149.93	72.55 82.25	202.94 231.89	1.77 2.53
9	169.33	91.98	260.81 289.68	3.48 4.63
11	208.26	111.56	318.49	6.02
12	227.82 247.47	121.43	347.22 375.85	7.66 9.57
14	267.22	141.43	404.34	11.77

TABLE VII.

CHORD c, 30 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	55.00	35.00	90.00	.22
4	75.00	45.00	120.00	•44
4 5 6	95.01	55.01	149.99	.76
	115 02	65.02	179-97	1.22
7 8	135.05	75.05	209.94	1.83
8	155.10	85.09	239.89	2.62
9	175.17	95.16	269.80	3.60
10	195.28	105.26	299.67	4.79
11	215.45	115.41	329.47	6.23
12	235.68	125.62	359.19	7.92
13	256.00	135.91	388.81	9.90
14	276.43	146.31	418.29	12.17

CHORD c, 31 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset p.
3	56.83	36.17	93.00	.23
4 5 6	77.50	46.50	124.00	.45
5	98.18	56.84	154.99	•79
6	118.85	67.19	185.97	1.26
7 8	139.55	77-55	216.94	1.89
8	160.27	87.93	247.88	2.70
9	181.01	98.33	278.79	3.72
ΙÓ	201.79	108.77	309.66	4.95
II	222.63	119.25	340.45	6.44
12	243.53	129.81	371.16	8.19
13	264.53	140.44	401.77	10.23
	1	120		L

TABLE VII.

CHORD c, 32 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset \$\rho\$.
3	58.67	37.33	96.00	.23
4	80.00 101.35	48.00 58.68	128.00	·47 .81
5	122.60	69.36	159.99 191.97	1.30
	144.06	80.05	223.94	1.95
7 8	165.44	90.76	255.88	2.79
9	186.85	101.50	287.79	3.84
IO	208.30	112.28	319.64	5.11
II	229.81	123.10	351.44	6.65
12	251.39	133.99	383.14	8.45
13	273.07	144.97	414.73	10.56

CHORD c, 33 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset \$\overline{p}\cdot
3	60.50	38.50	99.00	.24
4	82.50	49.50	132.00	.48
5 6	104.51	60.51	164.99	.84
6	126.52	71.53	197.97	1.34
7 8	148.56	82.55	230.93	2.02
8	170.61	93.60	263.88	2.88
9	192.69	104.67	296.78	3.96
10	214.81	115.78	329.63	5.27
11	236.99	126.95	362.42	6.85
12	259.25	138. 18	395.11	8.72

TABLE VII.

CH	ORD	c.	34	F	ΈE	Т.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	62.33	39.67	102.00	.25
4	85.00	51.00	136.00	.49
5	107.68	62.34	169.99	.87
5 6.	130.35	73.69	203.97	1.38
7	153.06	85.05	237.93	2.08
8	175.78	96.44	271.87	2.97
9	198.53	107.84	305.77	4.08
10	221.32	119.29	339.62	5.43
11	244.17	130.80	373.40	7.06
12	267.10	142.37	407.08	8.98

CHORD c, 35 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	64.17	40.83	105.00	.25
4	87.50	52.50	140.00	.51
5	110.85	64.18	174.99	.89
6	134.19	75.86	209.97	1.43
7 8	157.56	87.56	244.93	2.14
8	180.95	99.27	279.87	3.05
9	204.37	111.02	314.77	4.20
10	227.83	122.80	349.61	5.59
11	251.35	134.64	384.38	7.27
12	274.96	146.56	419.06	9.24

CHORD c, 36 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	66.00	42.00	108.00	.26
4	90.01	54.00	144.00	.52
5	114.01	66.or	179.99	.92
6	138.02	78.03	215.96	1.47
7	162.06	90.06	251.93	2.20
8	186.12	102.11	287.86	3.14
9	210.21	114.19	323.76	4.32
IÓ	234.34	126.31	359.60	5.75
II	258.54	138.49	395.36	7.48
12 /	282.81	150.74	431.03	9.51

TABLE VII.

CHORD c, 37 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset か・
3	67.83	43.17	111.00	.27
4	92.51	55.50	148.00	.54
5	117.18	67.85	184.99	.94
6	141.86	80.20	221.97	1.51
7	166.56	92.56	258.93	2.26
8	191.29	104.94	295.86	3.23
9	216.04	117.36	332.75	4.44
10	240.85	129.82	369.59	5.91
II	265.72	142.34	406.35	7.68

CHORD c, 38 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	69.67	44.33	114.00	.28
4	95.01	57.00	151.99	•55
5	120.35	69.68	189.98	.97
5 6	145.69	82.36	227.96	1.55
7	171.07	95.06	265.92	2.32
8	196.46	107.78	303.86	3.31
9	221.88	120.53	341.75	4.56
ΙÓ	247.36	133.33	379.58	6.07
II	272.90	146.18	417.33	7.89

CHORD c, 39 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	71.50	45.50	117.00	.28
4	97.51	58.50	155.99	∙57
5 6	123.51	71.51	194.98	.99
6	149.52	84.53	233.96	1.59
7	175.57	97.56	272.92	2.38
8	201.63	110.62	311.85	3.40
9	227.72	123.70	350.74	4.68
10	253.87	136.84	389.57	6.23

TABLE VII.

CHORD c, 40 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	73.33	46.67	120.00	.29
4	100.01	60.01	159.99	.58
5	126.68	73.35	199.98	1.02
5 6	153.36	86.70	239 96	1.63
7	180.07	100.06	279.92	2.44
8	206.80	113.45	319.85	3.49
9	233.56	126.88	359.73	4.80
IO	260.38	140.34	399.56	6.39

CHORD c, 41 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	75.17	47.83	123.00	.30
4	102.51	61.51	163.99	.60
5	129.85	75.18	204.98	1.04
6	157.19	88.87	245.96	1.67
7	184.57	102.57	286.92	2.50
8	211.97	116.29	327.85	3.58
9	239.40	130.05	368.73	4.92
10	266.89	143.85	409.54	6.55

CHORD c, 42 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	77.00	49.00	126.00	.31
4	105.01	63.01	167.99	.61
5	133.02	77.01	209.98	1.07
5 6	161.02	91.03	251.96	1.71
1 7	189.07	105.07	293.92	2.56
] 8	217.14	119.13	335.84	3.66
9/	245.24	133.22	377.72	5.04
το /	273.40	147.36	419.53	6.71

TABLE VII.

		TABLE VI	1.	
	СН	IORD <i>c</i> , 43 I	FEET.	
n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8 9	78.83 107.51 136.18 164.86 193.58 222.31 251.08 279.91	50.17 64.51 78.85 93.20 107.57 121.96 136.39 150.87	129.00 171.99 214.98 257.96 300.91 343.84 386.71 429.52	.31 .63 1.09 1.75 2.63 3.75 5.16 6.87
	СН	IORD c, 44 I	EET.	
n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8 9	80.67 110.01 139.35 168.69 198.08 227.48 256.92 286.42	51.33 66.01 80.68 95.37 110.07 124.80 139.56	132.00 175.99 219.98 263.96 307.01 351.83 395.71 439.51	.32 .64 1.12 1.79 2.69 3.84 5.28 7.03
	СН	ORD c, 45 I	EET.	
n,	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8	82.50 112.51 142.52 172.53 202.58 232.65 262.76	52.50 67.51 82.52 97.54 112.57 127.63 142.73	135.00 179.99 224.98 269.96 314.91 359.83 404.70	.33 .65 1.15 1.83 2.75 3.93 5.40

	CH	IORD c, 46 F	FEET.	
n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8	84.33 115.01 145.68 170.36 207.08 237.82 268.60	53.67 69.01 84.35 99.70 115.07 130.47 145.91	138.00 183.99 229.98 275.96 321.91 367.83 413.69	.33 .67 1.17 1.87 2.81 4.01 5.52
	CI	IORD c, 47 I	FEET.	
n.	Tangent SE.	Tangent LE,	L. Chord SL.	Offset
3 4 5 6 7 8	86.17 117.51 148.85 180.19 211.58 242.99 274.43	54.84 70.51 86.18 101.87 117.58 133.31 149.08	141.00 187.99 234.98 281.96 328.91 375.82 422.69	.34 .68 1.20 1.91 2.87 4.10 5.64
	CH	IORD c, 48 1	FEET.	
n,	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3 4 5 6 7 8	88.00 120.01 152.02 184.03 216.08 248.16 280.27	56.00 72.01 88.02 104.04 120.08 136.14 152.25	144.00 191.99 239.98 287.95 335.90 383.82 431.68	.35 .70 1.22 1.95 2.93 4.19

TABLE VII.

CHORD c, 49 FEET.						
n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset		
3 4 5 6 7 8	89.83 122.51 155.18 187.86 220.58 253.33	57.17 73.51 89.85 106.20 122.58 138.98	147.00 195.99 244.98 293.95 342.90 391.82	.36 .71 1.25 2.00 2.99 4.27		

CHORD c, 50 FEET.

n.	Tangent SE.	Tangent LE.	L. Chord SL.	Offset
3	91.67	58.34	150.00	.36
4	125.01	75.01	199.99	.73
5	158.35	91.68	249.98	1.27
6	191.70	108.37	299.95	2.04
7	225.09	125.08	349.90	3.05
8	258.50	141.82	399.81	4.36

