

AutoRegression Models

Introduction

Autoregression (AR) is a statistical modeling technique to predict future values based on past values within a time series. It finds extensive applications in finance, weather forecasting, and signal processing.

Autoregression is a fundamental building block for more advanced time series models like ARIMA and state-space models. It is essential for creating predictive systems that address diverse real-world challenges.

Background

Time series is a sequence of data points indexed in time order (e.g., stock prices, temperature reading)

Basics of AR models

AR models express the current value of the series as a linear combination of its previous values and a noise term:

$$X_{t} = \Phi_{1}X_{t-1} + \Phi_{2}X_{t-2} + ... + \Phi_{p}X_{t-p} + \epsilon_{t}$$

Where:

- φ_i: Coefficients of the AR model.
- ϵ_{t} : A white noise term representing random error.
- p: Order of AR model

Autoregression fundamentals

Stationarity:

- A stationary time series has a constant mean, variance, and autocorrelation over time.
- •Stationarity is critical for AR models to be effective.
- •Stationarity can be checked by methods like:
- Augmented Dickey-Fuller (ADF) Test.
- Visual inspection of the time series.

Root Conditions for Stationarity:

•An AR model is stationary if all roots of its characteristic equation have moduli greater than 1

Simulation of AR Models

AR(1) Model: An autoregressive model of order 1 (AR(1)) is defined as:

$$X_t = \phi_1 X_{t-1} + \epsilon_t$$

Where:

- ϕ_1 : Coefficient of the lagged term.
- ϵ_t : White noise or error term.

 $|\phi_1|$ < 0 for stationary series.

Special Case (φ₁=1):

When $\phi_1=1$, the AR(1) model simplifies to $X_t=X_{t-1}+\epsilon_t$ This is known as a **random walk**, where the current value X_t equals the previous value X_{t-1} plus a random noise term ϵ_t .

Application & Future perspective

Applications of AR Models:

- •Finance: Stock price predictions.
- •Weather: Temperature and rainfall forecasting.
- •Economics: GDP and inflation rate modeling.

Conclusion

- AR models are foundational tools in time series analysis and have versatile applications across industries.
- Their simplicity makes them a great starting point for understanding more complex time series models.

Reference

- 1. https://towardsdatascience.com/forecasting-with-simple-exponential-smoothing-dd8f8470a14c
- 2. https://www.quantstart.com/articles/White-Noise-and-Random-Walks-in-Time-Series-Analysis/
- 3. https://en.wikipedia.org/wiki/Autocorrelation