

DIALOG(R)File 352:Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

01522228 **Image available**

WPI Acc No: 2003-283140/200328

XRAM Acc No: C03-074322

XRPX Acc No: N03-225033

Quinoxaline derivatives useful for organic electroluminescent devices with high luminance, high luminescent efficiency and long life

Patent Assignee: IDEMITSU KOSAN CO LTD (IDEK)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 2003040873	A	20030213	JP 2001223867	A	20010725	200328 B

Priority Applications (No Type Date): JP 2001223867 A 20010725

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
JP 2003040873 A		12	C07D-241/42	

Abstract (Basic): JP 2003040873 A

NOVELTY - A quinoxaline derivative (I) is new.

DETAILED DESCRIPTION - The quinoxaline derivative is of formula (I);

R1-R6=H, halo, 1-6C alkyl, 1-6C alkoxy, 6-20C aryloxy, 1-6C alkylthio, 6-40C arylthio, 1-6C alkylsulfonyl, 1-6C alkylsulfinyl, 6-40C arylsulfonyl, 6-40C arylsulfinyl, cyano, optionally substituted 6-40C aryl or optionally substituted 6-40C heteroaryl; or adjacent R1-R4 completes a ring optionally substituted;

Ar1,Ar2=H, halo, 1-6C alkyl, 1-6C alkoxy, 6-40C aryloxy, 1-6C alkylthio, 6-40C arylthio, 1-6C alkylsulfonyl, 1-6C alkylsulfinyl, 6-40C arylsulfonyl, 6-40C arylsulfinyl, 6-40C aryl optionally substituted by cyano or optionally substituted 6-40C heteroaryl; k,l=0-2;

m,n=0-5; provided that the case with R2=R3=H, phenyl or alkyl-substituted phenyl and m=n=0 is excluded.

An INDEPENDENT CLAIM is also included for organic electroluminescent devices containing (I) especially in the organic luminescent layer or the electron implantation layer constituting part of the organic compound layers containing an organic luminescent layer.

USE - (I) are useful for organic electroluminescent devices.

ADVANTAGE - Organic electroluminescent devices using (I) have high luminance, high luminescent efficiency and long life owing to improved adhesion to electrodes.

pp; 12 DwgNo 0/0

Title Terms: QUINOXALINE; DERIVATIVE; USEFUL; ORGANIC; DEVICE; HIGH; LUMINOUS; HIGH; LUMINESCENT; EFFICIENCY; LONG; LIFE

Derwent Class: E13; L03; U11; X26

International Patent Class (Main): C07D-241/42

International Patent Class (Additional): C09K-011/06; H05B-033/14;

H05B-033/22

File Segment: CPI; EPI

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

07547033

NEW QUINOXALINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT UTILIZING THE SAME

PUB. NO.: 2003-040873 [JP 2003040873 A]

PUBLISHED: February 13, 2003 (20030213)

INVENTOR(s): YAMAMOTO HIROSHI

IWAKUMA TOSHIHIRO

MATSUURA MASAHIDE

APPLICANT(s): IDEMITSU KOSAN CO LTD

APPL. NO.: 2001-223867 [JP 20011223867]

FILED: July 25, 2001 (20010725)

INTL CLASS: C07D-241/42; C09K-011/06; H05B-033/14; H05B-033/22

ABSTRACT

PROBLEM TO BE SOLVED: To provide a new quinoxaline derivative by which brightness of organic electroluminescent elements and efficiency of luminescence thereof can be heightened and long life of these elements can be attained by improvement of deposition of electrodes and to provide an organic electroluminescent element utilizing the derivative.

SOLUTION: This new quinoxaline derivative has a specific structure. This organic electroluminescent element has an organic luminescent layer or an organic luminescent layer composed of a plurality of layers containing an organic luminescent layer between a pair of electrodes and contains the new quinoxaline derivative in which at least one layer of the organic compound layer has the specific structure.

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2003-40873

(P 2 0 0 3 - 4 0 8 7 3 A)

(43) 公開日 平成15年2月13日(2003.2.13)

(51) Int.C1.	識別記号	F I	テーマコード (参考)
C07D241/42		C07D241/42	3K007
C09K 11/06	650	C09K 11/06	650
H05B 33/14		H05B 33/14	B
33/22		33/22	B

審査請求 未請求 請求項の数 6 O L (全12頁)

(21) 出願番号 特願2001-223867(P 2001-223867)

(22) 出願日 平成13年7月25日(2001.7.25)

(71) 出願人 000183646
出光興産株式会社
東京都千代田区丸の内3丁目1番1号
(72) 発明者 山本 弘志
千葉県袖ヶ浦市上泉1280番地
(72) 発明者 岩隈 俊裕
千葉県袖ヶ浦市上泉1280番地
(72) 発明者 松浦 正英
千葉県袖ヶ浦市上泉1280番地
(74) 代理人 100078732
弁理士 大谷 保
F ターム(参考) 3K007 AB02 AB03 AB04 AB11 AB15
CA01 CB01 DA01 DB03 EB00

(54) 【発明の名称】新規キノキサリン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

(57) 【要約】

【課題】 有機エレクトロルミネッセンス素子の高輝度化、高発光効率化及び電極の付着改善による長寿命化が可能な新規なキノキサリン誘導体及びそれを利用した有機エレクトロルミネッセンス素子を提供する。

【解決手段】 特定の構造を有する新規なキノキサリン誘導体、並びに一対の電極間に有機発光層又は有機発光層を含む複数層からなる有機化合物層を有する有機エレクトロルミネッセンス素子であって、該有機化合物層の少なくとも一層が前記特定の構造を有する新規なキノキサリン誘導体を含有する有機エレクトロルミネッセンス素子である。

【特許請求の範囲】

【請求項1】 下記一般式(I)で示される新規なキノ

(式中、R¹～R⁴は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1～6のアルキル基、炭素数1～6のアルコキシ基、炭素数6～20のアリールオキシ基、炭素数1～6のアルキルチオ基、炭素数6～40のアリールチオ基、炭素数1～6のアルキルスルホニル基、炭素数1～6のアルキルスルフィニル基、シアノ基、置換もしくは無置換の炭素数6～40のアリール基、又は置換もしくは無置換の炭素数6～40のヘテロアリール基を表す。R⁵～R⁸は、隣同士で互いに結合して環を形成していてもよく、置換されていてもよい。Ar¹及びAr²は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1～6のアルキル基、炭素数1～6のアルコキシ基、炭素数6～40のアリールオキシ基、炭素数1～6のアルキルチオ基、炭素数6～40のアリールチオ基、炭素数1～6のアルキルスルホニル基、炭素数1～6のアルキルスルフィニル基、炭素数6～40のアリールスルホニル基、炭素数6～40のアリールスルフィニル基、シアノ基を有してもよい炭素数6～40のアリール基、又は置換もしくは無置換の炭素数6～40のヘテロアリール基を表す。k及びlは、それぞれ独立に、0～2の整数を表し、m及びnは、それぞれ独立に、0～5の整数を表す。ただし、R¹及びR²が同時に水素原子、フェニル基又はアルキル基置換フェニル基であり、かつm=n=0である場合を除く。)

【請求項2】 有機エレクトロルミネッセンス素子に含有される前記一般式(I)で表される請求項1に記載の新規なキノキサリン誘導体。

【請求項3】 一対の電極間に有機発光層又は有機発光層を含む複数層からなる有機化合物層を有する有機エレクトロルミネッセンス素子であって、該有機化合物層の少なくとも一層が請求項1に記載の前記一般式(I)で表されるキノキサリン誘導体を含有する有機エレクトロルミネッセンス素子。

【請求項4】 前記一般式(I)で表されるキノキサリン誘導体を、主として発光帯域に含有させてなる請求項3に記載の有機エレクトロルミネッセンス素子。

キサリン誘導体。

【化1】

【請求項5】 前記一般式(I)で表されるキノキサリン誘導体を、有機発光層に含有させてなる請求項3又は4に記載の有機エレクトロルミネッセンス素子。

【請求項6】 前記有機化合物層が電子注入層を有し、該電子注入層が前記一般式(I)で表されるキノキサリン誘導体からなる請求項3に記載の有機エレクトロルミネッセンス素子。

20 【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は新規なキノキサリン誘導及びそれを利用する有機エレクトロルミネッセンス素子に関し、特に高輝度化、高発光効率化及び電極の付着改善による長期安定化を達成できる新規なキノキサリン誘導及びそれを利用する有機エレクトロルミネッセンス素子に関するものである。

【0002】

【従来の技術】 従来、有機エレクトロルミネッセンス素子（以下、有機EL素子）に電子注入層を設けて発光効率を高める試みがなされてきた。しかし、エキサイブルックスの形成が見られたり、高輝度の発光は得られるものの発光寿命が短いという欠点があった。また、長時間の通電により金属電極と有機層の剥離が発生したり、有機層と電極が結晶化し白濁化して発光輝度が低下するため、このような現象を防ぐ必要があった。これを解決するための試みとして、米国特許第5077142号明細書に、有機EL素子の構成成分としてピラジン化合物、キノリン化合物、キノキサリン化合物、例えば、2,

3, 5, 6-テトラフェニルピラジン、2, 3, 4-トリフェニルキノリン及び2, 3-ジフェニルキノキサリンを用いることが記載されている。しかしながら、これらの化合物は融点が低いため、有機EL素子のアモルファス薄膜層として使用しても結晶化がすぐに起こり、ほとんど発光しなくなるという問題があった。また、通電により金属電極と有機層の剥離が発生し、有機EL素子の寿命が短くなるという問題があった。

【0003】

【発明が解決しようとする課題】 本発明は、前記の課題50 を解決するためになされたもので、有機EL素子の高輝

度化、高発光効率化及び電極の付着改善による長寿命化が可能な新規なキノキサリン誘導体及びそれを利用した有機EL素子を提供することを目的とする。

【0004】

【課題を解決するための手段】本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の構造を有する新規なキノキサリン誘導体を、有機化合物層の少なくとも一層、特に、電子注入層に用いることにより、

(式中、R¹～R⁴は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1～6のアルキル基、炭素数1～6のアルコキシ基、炭素数6～20のアリールオキシ基、炭素数1～6のアルキルチオ基、炭素数1～6のアルキルスルホニル基、炭素数1～6のアルキルスルフィニル基、炭素数6～40のアリールスルホニル基、炭素数6～40のアリールスルフィニル基、シアノ基、置換もしくは無置換の炭素数6～40のアリール基、又は置換もしくは無置換の炭素数6～40のヘテロアリール基を表す。R¹～R⁴は、隣同士で互いに結合して環を形成していてもよく、置換されていてもよい。Ar¹及びAr²は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1～6のアルキル基、炭素数1～6のアルコキシ基、炭素数6～40のアリールオキシ基、炭素数1～6のアルキルチオ基、炭素数6～40のアリールチオ基、炭素数1～6のアルキルスルホニル基、炭素数1～6のアルキルスルフィニル基、炭素数6～40のアリールスルホニル基、炭素数6～40のアリールスルフィニル基、シアノ基を有してもよい炭素数6～40のアリール基、又は置換もしくは無置換の炭素数6～40のヘテロアリール基を表す。k及びlは、それぞれ独立に、0～2の整数を表し、m及びnは、それぞれ独立に、0～5の整数を表す。ただし、R¹及びR²が同時に水素原子、フェニル基又はアルキル基置換フェニル基であり、かつm=n=0である場合を除く。)

【0006】また、本発明は、一对の電極間に有機発光層又は有機発光層を含む複数層からなる有機化合物層を有する有機EL素子であって、該有機化合物層の少なくとも一層が前記一般式(I)で表されるキノキサリン誘導体を含有する有機EL素子を提供するものである。

【0007】

高輝度化、高発光効率化及び電極の付着改善による長期安定化が達成された有機EL素子が得られることを見出した。本発明は、かかる知見に基づいて完成したものである。

【0005】すなわち、本発明は、下記一般式(I)で示される新規なキノキサリン誘導体を提供するものである。

【化2】

(II)

【発明の実施の形態】本発明の前記一般式(I)で表される新規キノキサリン誘導体において、R¹～R⁴は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1～6のアルキル基、炭素数1～6のアルコキシ基、炭素数6～20のアリールオキシ基、炭素数1～6のアルキルチオ基、炭素数6～40のアリールチオ基、炭素数1～6のアルキルスルホニル基、炭素数1～6のアルキルスルフィニル基、炭素数6～40のアリールスルホニル基、炭素数6～40のアリールスルフィニル基、シアノ基、置換もしくは無置換の炭素数6～40のアリール基、又は置換もしくは無置換の炭素数6～40のヘテロアリール基を表す。前記一般式(I)において、R¹～R⁴は、隣同士で互いに結合して環を形成していてもよく、置換されていてもよい。

【0008】ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。炭素数1～6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数1～6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数6～40のアリールオキシ基としては、例えば、フェノキシ基、ビフェニルオキシ基などが挙げられる。炭素数1～6のアルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。

【0009】炭素数6～40のアリールチオ基としては、例えば、フェニルチオ基、ビフェニルチオ基などが

挙げられる。炭素数1～6のアルキルスルホニル基としては、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘキシルスルホニル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数1～6のアルキルスルフィニル基としては、例えば、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、ブチルスルフィニル基、ペンチルスルフィニル基、ヘキシルスルフィニル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数6～40のアリールスルホニル基としては、フェニルスルホニル基、ビフェニルスルホニル基などが挙げられる。炭素数6～40のアリールスルフィニル基としては、フェニルスルフィニル基、ビフェニルスルフィニル基などが挙げられる。

【0010】置換もしくは無置換の炭素数6～40のアリール基としては、例えば、フェニル基、ビフェニル基、ナフチル基、フルオランテニル基、ピレニル基などが挙げられ、置換基としては、R¹～R⁶として例示したものと同じものを挙げることができ、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、sec-ブトキシ基などの炭素数1～6のアルコキシ基、フッ素、塩素、臭素、ヨウ素などのハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ベンチルチオ基、ヘキシルチオ基などの炭素数1～6のアルキルチオ基、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、ブチルスルフィニル基、ペンチルスルフィニル基、ヘキシルスルフィニル基などの炭素数1～6のアルキルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘキシルスルホニル基などの炭素数1～6のアルキルスルホニル基などが挙げられる。

【0011】置換もしくは無置換の炭素数6～40のヘテロアリール基としては、例えば、酸素原子を含むフリル基、硫黄原子を含むチエニル基、又は上記アリール基の一部の炭素原子を窒素に置き換えたもの、ピリジル基、キノリル基などが挙げられる。また、R¹～R⁶は、アミノ基を有してはならない。これは、電子輸送性を阻害するからである。

【0012】本発明の前記一般式(I)で表される新規キノキサリン誘導体において、A r¹及びA r²は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1～6のアルキル基、炭素数1～6のアルコキシ基、炭素数6～40のアリールオキシ基、炭素数1～6のアルキルチオ基、炭素数6～40のアリールチオ基、炭素数1～6のアルキルスルホニル基、炭素数1～6のアルキルスルフ

イニル基、炭素数6～40のアリールスルホニル基、炭素数6～40のアリールスルフィニル基、シアノ基を有していてもよい炭素数6～40のアリール基、又は置換もしくは無置換の炭素数6～40のヘテロアリール基を表す。

【0013】ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。炭素数1～6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられ、炭素

10 数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数1～6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数6～40のアリールオキシ基としては、例えば、フェノキシ基、ビフェニルオキシ基などが挙げられる。

【0014】炭素数1～6のアルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ

20 基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数6～40のアリールチオ基としては、例えば、フェニルチオ基、ビフェニルチオ基などが挙げられる。炭素数1～6のアルキルスルホニル基としては、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘキシルスルホニル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数1～6のアル

30 キルスルフィニル基としては、例えば、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、ブチルスルフィニル基、ペンチルスルフィニル基、ヘキシルスルフィニル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。

【0015】炭素数1～6のアルキルスルホニル基としては、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘキシルスルホニル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数1～6のアルキルスルフィニル基としては、例えば、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、ブチルスルフィニル基、ペンチルスルフィニル基、ヘキシルスルフィニル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。

40 【0016】炭素数1～6のアルキルスルホニル基としては、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘキシルスルホニル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数1～6のアルキルスルフィニル基としては、例えば、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、ブチルスルフィニル基、ペンチルスルフィニル基、ヘキシルスルフィニル基などが挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。炭素数6～40のアリールスルホニル基としては、フェニルスルホニル基、ビフェニルスルホニル基などが挙げられる。炭素数6～40のアリールスルフィニル基としては、フェニルスルフィニル基、ビフェニルスルフィニル基などが挙

げられる。

【0016】シアノ基を有していてもよい炭素数6～40のアリール基としては、例えば、フェニル基、ビフェニル基、ナフチル基、フルオランテニル基、ビレニル基などが挙げられ、置換基としては、R¹～R⁴として例示したものと同じものを挙げることができ、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-アブトキシ基、イソアブトキシ基、t-アブトキシ基、sec-アブトキシ基などの炭素数1～6のアルコキシ基、フッ素、塩素、臭素、ヨウ素などのハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ベンチルチオ基、ヘキシルチオ基などの炭素数1～6のアルキルチオ基、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、ブチルスルフィニル基、ベンチルスルフィニル基、ヘキシルスルフィニル基などの炭素数1～6のアルキルスルフィニル基、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ベンチルスルホニル基、ヘキシルスルホニル基などの炭素数1～6のアルキルスルホニル基などが挙げられる。

【0017】置換もしくは無置換の炭素数6～40のペテロアリール基としては、例えば、酸素原子を含むフリル基、硫黄原子を含むチエニル基、又は上記アリール基の一部の炭素原子を窒素に置き換えたもの、ピリジル基、キノリル基などが挙げられる。前記一般式(I)において、k及びlは、それぞれ独立に、0～2の整数を表し、m及びnは、それぞれ独立に、0～5の整数を表す。また、前記一般式(I)において、R²及びR³が同時に水素原子、フェニル基又はアルキル基置換フェニル基であり、かつm=n=0である場合を除く。

【0018】本発明の有機EL素子は、有機発光層又は有機発光層を含む複数層からなる有機化合物層の少なくとも一層が、上記一般式(I)で表されるキノキサリン誘導体を含有するものであって、その素子構成としては、陽極／正孔注入層／発光層／電子注入層／陰極、陽極／発光層／電子注入層／陰極、陽極／正孔注入層／発光層／陰極、陽極／発光層／陰極型などが挙げられる。本発明の有機EL素子は、本発明のキノキサリン誘導体を、主として発光帯域に含有させると好ましく、有機発光層に含有させるとさらに好ましい。また、電子注入層が前記キノキサリン誘導体からなると特に好ましい。本発明の有機EL素子の素子構成においては、正孔注入層や電子注入層は必要ではないが、これらの層を有する素子は発光性能が向上する利点がある。また、一対の電極間に上記正孔注入層、発光層、電子注入層を混合させた形で挟持させてもよい。さらに、各成分を安定に存在させるため、高分子化合物などのバインダーを用いて混合層を作製してもよい。

【0019】ここで、本発明の有機EL素子として、陽

50 極／正孔注入層／発光層／電子注入層／陰極型を例にして説明する。本発明の素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来の有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。この有機EL素子の正極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の

10 具体例としては、Auなどの金属、CuI、ITO、SnO_x、ZnOなどの導電性透明材料が挙げられる。該正極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより作製することができる。この電極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、電極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm～1μm、好ましくは10～200nmである。

【0020】一方、陰極としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、マグネシウム-銀合金、リチウム、マグネシウム/銅混合物、マグネシウム-インジウム合金、Al/Al_{1-x}O_x、インジウム、アルミニウム-リチウム合金などが挙げられる。陰極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより、作製することができる。また、電極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10～500nm、好ましくは50～200nmである。なお、発光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光効率が向上し好都合である。

【0021】本発明の素子における発光層の発光材料としては、本発明の一般式(I)で表されるキノキサリン誘導体が好ましい。発光材料が本発明のキノキサリン誘導体である場合には、発光層の発光材料について、特に制限されることではなく、従来公知の化合物の中から任意のものを選択して用いることができる。この発光材料としては、例えば、多環縮合芳香族化合物、ベンゾオキサゾール系、ベンゾチアゾール系、ベンゾイミダゾール系などの蛍光増白剤、金属キレート化オキサノイド化合物、ジスチリルベンゼン系化合物など薄膜形成性の良い化合物を用いることができる。上記多環縮合芳香族化合物としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、クリセン、ペリレン骨格を含む縮合環発光物質や、約8個の縮合環を含む他の縮合環発光物質などを挙げることができる。具体的には、1,1,4,4'-テトラフェニル-1,3-ブタジエン又は4,4'-(2,2-ジフェニルビニル)ビフェニルなどを

用いることができる。発光層は、これらの発光材料一種又は二種以上からなる一層で構成されてもよく、前記発光層とは別種の化合物からなる発光層を積層したものであってもよい。

【0022】本発明の有機EL素子の正孔注入層は、正孔伝達化合物からなるものであって、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入され、さらに、発光層に陰極又は電子注入層より注入された電子は、発光層と正孔注入層の界面に存在する電子の障壁により、発光層内の界面に累積され発光効率が向上するなど発光性能の優れた素子となる。このような正孔注入層に用いられる正孔伝達化合物は、電界を与えられた2個の電極間に配置されて陽極から正孔が注入された場合、正孔を適切に発光層へ伝達しうるものであり、例えば104～106V/cmの電界印加時に少なくとも 10^{-6} cm²/V・秒の正孔移動度を有するものが好適である。この正孔伝達化合物は、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において、正孔の電荷注入輸送材料として慣用されているものや有機EL素子の正孔注入層に使用される公知のものの中から任意のものを選択して用いることができる。

【0023】前記正孔伝達化合物としては、例えば、銅フタロシアニンや、N, N, N', N' - テトラフェニル-4, 4' - ジアミノフェニル、N, N' - ジフェニル-N, N' - ジ(3-メチルフェニル)-4, 4' - ジアミノビフェニル(TPDA)、2, 2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1, 1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン及びN, N, N', N' - テトラ-p-トリル-4, 4' - ジアミノビフェニルなどが挙げられ、Si, SiC, CdSなどの無機物半導体の結晶、非晶材料も用いることができる。正孔注入層は、これらの正孔注入材料一種又は二種以上からなる一層で構成されてもよく、前記正孔注入層とは別種の化合物からなる正孔注入層を積層したものであってもよい。

【0024】本発明の有機EL素子の電子注入層は、電子注入材料からなるものであって、陰極より注入された電子を発光層に伝達する機能を有している。本発明においては、電子注入材料として、本発明の一般式(I)で表されるキノキサリン誘導体を用いていることが好ましい。本発明の有機EL素子は、電子を輸送する領域または陰極と有機層の界面領域に、還元性ドーパントを含有していてもよい。また、本発明の有機EL素子は、前記一般式(I)で表されるキノキサリン誘導体に加え還元性ドーパントを含有すると好ましい。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質であり、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金

属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質であると好ましい。

【0025】さらに具体的な好ましい還元性ドーパントとしては、例えば、Na(仕事関数: 2. 36eV)、K(仕事関数: 2. 28eV)、Rb(仕事関数: 2. 16eV)及びCs(仕事関数: 1. 95eV)からなる群から選択される少なくとも一つのアルカリ金属、又はCa(仕事関数: 2. 9eV)、Sr(仕事関数: 2. 0～2. 5eV)及びBa(仕事関数: 2. 52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられ、仕事関数が2. 9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、Rb及びCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、Rb又はCsであり、最も好ましのはCsである。

【0026】これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2. 9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組合せも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。またアルカリ金属の他にアルカリ金属カルコゲナイト、アルカリ土類金属カルコゲナイト、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用しても同様な効果が得られ、アルカリ金属有機錯体、アルカリ土類金属有機錯体を用いても同様な効果が得られる。

【0027】本発明の有機EL素子は、陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けてよい。これにより、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲナイト、アルカリ土類金属カルコゲナイト、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲナイト等で構成されていると、電子注入性をさらに向上させることができる。アルカリ金属カルコゲナイトとしては、例えば、Li₂O、Li₂O₂、Na₂S、Na₂Se

およびNaOが挙げられ、アルカリ土類金属カルコゲナイトとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられ、アルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられ、アルカリ土類金属のハロゲン化物としては、例えば、CaF₂、BaF₂、SrF₂、MgF₂及びBeF₂などのフッ化物や、フッ化物以外のハロゲン化物が挙げられる。

【0028】また、電子輸送層を構成する半導体としては、例えば、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されれば、より均質な薄膜が形成されるため、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、上述したアルカリ金属カルコゲナイト、アルカリ土類金属カルコゲナイト、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられる。

【0029】本発明の有機EL素子における電子注入層は、該キノキサリン誘導体を、例えば、真空蒸着法、スピントコート法、キャスト法、LB法などの公知の薄膜化法により製膜して形成することができる。電子注入層としての膜厚は、特に制限はないが、通常は5nm～5μmである。電子注入層は、一種又は二種以上の電子注入材料からなる一層で構成されてもよく、前記電子注入層とは別種の化合物からなる電子注入層を積層したものであってもよい。さらに、無機物であるp型-Si、p型-SiCの正孔注入材料、n型α-Si、n型α-SiCの電子注入材料を電子注入層に用いることができ、例えば、国際公開WO90/05998に開示されている無機半導体などが挙げられる。

【0030】次に、本発明の有機EL素子を作製する好適な例を説明する。例として、前記の陽極／正孔注入層／発光層／電子注入層／陰極からなる有機EL素子の作製法について説明すると、まず適当な基板上に、所望の電極物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10～200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、発光層、電子注入層の材料からなる薄膜を形成させる。

【0031】この薄膜化の方法としては、前記の如くスピントコート法、キャスト法、蒸着法などがあるが、均質な膜が得られやすく、かつピンホールが生成しにくいなどの点から、真空蒸着法が好ましい。薄膜化に、真空蒸着法を採用する場合、その蒸着条件は使用する化合物の 50

種類、分子堆積膜の目的とする結晶構造、会合構造などにより異なるが、一般にポート加熱温度50～400℃、真空度10⁻⁶～10⁻³Pa、蒸着速度0.01～50nm/秒、基板温度50～300℃、膜厚5nm～5μmの範囲で適宜選ぶことが望ましい。これらの層の形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50～200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリングなどの方法により形成させて陰極を設けることにより、所望の有機EL素子が得られる。なお、この有機EL素子の作製においては、作製順序を逆にして、陰極、電子注入層、発光層、正孔注入層、陽極の順に作製することも可能である。

【0032】また、一对の電極間に正孔注入層、発光層、電子注入層を混合させた形で挟持させた陽極／発光層／陰極からなる素子の作製方法としては、例えば、適当な基板の上に、陽極用物質からなる薄膜を形成し、正孔注入材料、発光材料、電子注入材料、ポリビニルカルバゾール、ポリカーボネート、ポリアリレート、ポリエチテル、ポリエーテルなどの接着剤などからなる溶液を塗布するか、又はこの溶液から浸漬塗工法により薄膜を形成させて発光層とし、その上に陰極用物質からなる薄膜を形成させるものがある。ここで、作製した発光層上に、さらに発光層や電子注入層の材料となる素子材料を真空蒸着し、その上に陰極用物質からなる薄膜を形成させてもよい。

【0033】このようにして得られた有機EL素子に、直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧3～50V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、正極が+、負極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。本発明の一般式(I)で表されるキノキサリン誘導体の代表例を以下に例示するが、本発明はこれらの例によってなんら制限されるものではない。

【化3】

【0034】
【化4】

【0035】
【化5】

【0036】

【化6】

【0037】

【化7】

【0038】

【実施例】次に、実施例を用いて本発明をさらに詳しく説明する。

合成実施例1（化合物（1））

・2, 3-ビス(4'-ブロモフェニル)キノキサリンの合成

4, 4'-ジブロモベンジル5. 0 g (14mmol)、1, 2-フェニレンジアミン1. 5 g (14mmol)をアルゴンガス雰囲気下で、エタノール20ミリリットル中で、3. 5時間加熱還流した。反応終了後、ろ過し、得られた結晶をエタノールで洗浄し、2, 3-ビス(4'-ブロモフェニル)キノキサリン5. 5 g (収率93%)を得た。

・化合物（1）の合成

2, 3-ビス(4'-ブロモフェニル)キノキサリン2. 0 g (4.5mmol)、1-ナフタレンボロン酸2. 0 g (12mmol)、テトラキス(トリフェニルホスフィン)パラジウム0. 21 g をアルゴンガス雰囲気下で、トルエン50ミリリットルに溶かし、2. 0 M炭酸ナトリウム水溶液20ミリリットル (40mmol)を加えて、7時間加熱還流した。反応終了後、ろ過し、トルエン、水で洗浄し、黄白色粉末を得た。このものは、マススペクトル(MS)分析の結果、前記化合物（1）であり、分子量534. 21に対し、M/S=534であった。また、NMR測定を行ったところ、以下の結果であつた。

¹H-NMR(CDCl₃, TMS), 7.3-7.6(m, 12H), 7.7-8.0(m, 12H), 8.26(m, 2H)

【0039】合成実施例2（化合物（8））

・化合物（8）の合成

合成実施例1において、1-ナフタレンボロン酸の代わりに2-ナフタレンボロン酸を用いた以外は同様にして化合物（8）2. 1 g (収率87%)を得た。このものは、MS分析の結果、前記化合物（8）であり、分子量534. 21に対し、M/S=534であった。また、NMR測定を行ったところ、以下の結果であつた。

¹H-NMR(CDCl₃, TMS), 7.48(m, 2H), 7.6-7.9(m, 22H), 8.22(m, 2H)

【0040】合成実施例3（化合物（2））

・1, 2-ビス-(4-ナフタレン-1-イルフェニル)-エタン-1, 2-ジオンの合成

4, 4'-ジブロモベンジル2. 0 g (5. 4mmol)、1-ナフタレンボロン酸2. 4 g (14mmol)、テトラキス(トリフェニルホスフィン)パラジウム0. 25 g をアルゴンガス雰囲気下で、トルエン50ミリリットルに溶かし、2. 0 M炭酸ナトリウム水溶液20ミリリットルを加えた。そして、4時間加熱還流した。

反応終了後、ろ過し、有機層を分取し、無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去した。得られた結晶をエタノールで洗浄し、1, 2-ビス-(4-ナフタレン-1-イルフェニル)-エタン-1, 2-ジオン2. 5 g (収率99%)を得た。

・化合物（2）の合成

1, 2-ビス-(4-ナフタレン-1-イルフェニル)-エタン-1, 2-ジオン3. 1 g (6. 8mmol)

4, 5-ジメチル-1, 2-フェニレンジアミン0. 92 g (6. 8mmol)をエタノール30ミリリットル中で、6時間加熱還流した。反応終了後、ろ過し、得られた結晶をエタノールで洗浄し、化合物（2）2. 7 g (収率72%)を得た。このものは、MS分析の結果、前記化合物（2）であり、分子量562. 24に対し、M/S=562であった。また、NMR測定を行ったところ、以下の結果であつた。

¹H-NMR(CDCl₃, TMS), 2.54(s, 6H), 7.3-8.0(m, 24H)

【0041】合成実施例4（化合物（4））

・化合物（4）の合成

合成実施例 3において、4, 5-ジメチル-1, 2-フェニレンジアミンの代わりに、2, 3-ジアミノナフタレンを用いた以外は同様にして、化合物(4) 3. 4 g (収率95%)を得た。このものは、MS分析の結果、前記化合物(4)であり、分子量634. 24に対し、M/S=634であった。また、NMR測定を行ったところ、以下の結果であった。

¹H-NMR(CDCl₃, TMS), 7.3-7.7(m, 14H), 7.8-8.0(m, 10H), 8.15(m, 2H), 8.8(s, 2H)

【0042】合成実施例5 (化合物(5))

・化合物(5)の合成

合成実施例3において、4, 5-ジメチル-1, 2-フェニレンジアミンの代わりに、9, 10-ジアミノナフタレンを用いた以外は同様にして、化合物(5) 3. 5 g (収率82%)を得た。このものは、MS分析の結果、前記化合物(5)であり、分子量634. 24に対し、M/S=634であった。また、NMR測定を行ったところ、以下の結果であった。

¹H-NMR(CDCl₃, TMS), 7.4-7.7(m, 10H), 7.8-8.1(m, 18H), 8.75(m, 2H)

【0043】合成実施例6 (化合物(3))

・6, 7-ジブロモ-2, 3-ビス-(4-ナフタレン-1-イルフェニル)キノキサリンの合成

1, 2-ビス-(4-ナフタレン-1-イルフェニル)-エタン-1, 2-ジオン 2. 0 g (2. 9 mmol)、4, 5-ジブロモ-1, 2-フェニレンジアミン 1. 1 g (4. 3 mmol) をエタノール 20ミリリットル中で、24時間加熱還流した。反応終了後、ろ過し、得られた結晶をエタノールで洗浄し、6, 7-ジブロモ-2, 3-ビス-(4-ナフタレン-1-イルフェニル)キノキサリン 2. 8 g (収率99%)を得た。

・化合物(3)の合成

6, 7-ジブロモ-2, 3-ビス-(4-ナフタレン-1-イルフェニル)キノキサリン 2. 8 g (4.0 mmol)、フェニルボロン酸 1. 3 g (1.1 mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム 0. 13 g をアルゴンガス雰囲気下で、1, 2-ジメトキシエタン 30ミリリットルに溶かし、2. 0 M炭酸ナトリウム水溶液 15ミリリットルを加えて、6時間加熱還流した。反応終了後、ろ過し、有機層を分取し、無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去した。得られた結晶をエタノールで洗浄し、化合物(3)

2. 6 g (収率94%)を得た。このものは、MS分析の結果、化合物(3)であり、分子量686. 27に対し、M/S=686であった。また、NMR測定を行ったところ、以下の結果であった。

¹H-NMR(CDCl₃, TMS), 7.1-7.3(m, 10H), 7.3-7.6(m, 10H), 7.7-8.0(m, 12H), 8.34(s, 2H)

【0044】応用実施例1

25mm×75mm×1. 1mm厚のITO透明電極付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚60nmのN, N'-ビス(N, N'-ジフェニル-4-アミノフェニル)-N, N-ジフェニル-4, 4'-ジアミノ-1, 1'-ビフェニル膜(TPD232膜)を成膜した。このTPD232膜は、正孔注入層として機能する。次に、このTPD232膜上に膜厚20nmの4, 4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル膜(NPD膜)を成膜した。このNPD膜は正孔輸送層として機能する。さらに、このNPD膜上に膜厚40nmの下記ホスト材料(E1)を蒸着し成膜した。同時に発光分子として、スチリル基を有する下記アミン化合物(D1)を(E1)に対し重量比3:40で蒸着した。この膜は、発光層として機能する。この膜上に膜厚10nmの6, 7-ジメチル-2, 3-ビス-(4-ナフタレン-1-イルフェニル)-キノキサリン(DMNQ)を薄膜状に成膜した。DMNQ膜は、電子注入層として機能する。この後、還元性ドーパントであるLi(Li源:サエスゲッター社製)とDMNQを二元蒸着させ、電子注入層(陰極)としてDMNQ:Li膜(膜厚10nm)を形成した。このA1q:Li膜上に金属Alを蒸着させ金属陰極を形成し有機EL素子を製造した。この素子は、直流電圧6. 0Vで発光輝度118cd/m²、発光効率9. 95cd/Aの青色発光が得られた。初期1000cd/m²にて一定電流駆動を行ったところ輝度が半減する時間(半減寿命)2000時間(初期500cd/m²換算では4000時間)であった。これらの結果を表1に示す。

【0045】

【化8】

【0046】応用実施例2

応用実施例1において、DMNPQの代わりに、2, 3-ビス(4-ナフタレン-1-イルフェニル)-キノキサリン(NPQ1)を用いた以外は同様にして有機EL素子を製造した。また、直流電圧7.5Vとした以外は応用実施例1と同様にして、発光輝度、発光効率、半減寿命を測定し、発光色を観察した結果を表1に示す。

【0047】応用実施例3

応用実施例1において、DMNPQの代わりに、2, 3-ビス(4-ナフタレン-2-イルフェニル)-キノキサリン(NPQ2)を用いた以外は同様にして有機EL素子を製造した。また、直流電圧6.5Vとした以外は応用実施例1と同様にして、発光輝度、発光効率、半

減寿命を測定し、発光色を観察した結果を表1に示す。

【0048】比較例1

応用実施例1において、DMNPQの代わりに、2, 3, 6, 7-テトラフェニルキノキサリン(TPQ)を用いた以外は同様にして有機EL素子を製造した。この素子は、直流電圧15.0Vで、発光最大波長は475nm、発光輝度88cd/m²、発光効率0.1cd/Aの青色発光が得られた。初期500cd/m²にて一定電流駆動を行ったところ通電後、24時間で発光しなくなり、短絡箇所が生じていた。これは、TPQが結晶化したことによる。これらの結果を表1に示す。

【0049】

【表1】

表 1

	電子注入層の材料	電圧(V)	電流密度(mA/cm ²)	発光輝度(cd/m ²)	発光効率(cd/A)	半減寿命(初期500cd/m ² 換算)
応用実施例1	DMNPQ	6.0	1.20	118	9.95	4000
応用実施例2	NPQ1	7.5	2.50	135	5.40	2000
応用実施例3	NPQ2	6.5	2.50	144	5.76	2000
比較例1	TPQ	15.0	18.3	88	0.1	24時間で発光せず、短絡が生じた

【0050】

【発明の効果】以上詳細に説明したように、本発明の新規キノキサリン誘導体は、有機EL素子の構成成分として有用な新規な化合物である。このキノキサリン誘導体

を有機化合物層の少なくとも一層に用いることにより、有機EL素子の高輝度化、高発光効率化及び電極の付着改善による長期安定化が可能である。