Solution 1: Gradient Boosting

- (a) The loss is calculated by the negative log-likelihood by: $L(y, f) = -\ell(f) = -(const (\log_2(y) f)^2/2)$ (1P)
 - The pseudo residuals are then calculated by: $\tilde{r}(f) = -\partial L(y, f)/\partial f = (\log_2(y) f)$ (1P)
- (b) Use $\tilde{y} = \log_2(y) = (0, 1, 2)$ (1P)
 - (i) $\hat{f}^{[0]}(\boldsymbol{x}) = \bar{\tilde{y}} = 1$ as this is the optimal constant model for squared error. (1P)
 - (ii) $\tilde{r}^{[1]} = \log_2(y) \hat{f}^{[0]}(x) = (-1, 0, 1)$ (1P)
 - (iii) $R_t^{[1]}$, t = 1, 2 will split using \boldsymbol{x}_1 , as \boldsymbol{x}_2 carries no information. Since $x_1^{(1)} = x_1^{(2)}$,

$$R_1 = -0.5I(x_1 \ge 0.5)$$

and

$$R_2 = 1I(x_1 < 0.5).$$

(2P)

(iv)
$$\hat{f}^{[1]}(\mathbf{x}) = \hat{f}^{[0]}(\mathbf{x}) + 1(-0.5, -0.5, 1) = (0.5, 0.5, 2)$$
 (1P)

(v)
$$\tilde{r}^{[2]} = \log_2(y) - \hat{f}^{[1]}(\boldsymbol{x}) = (-0.5, 0.5, 0)$$
 (1P)

- (c) Nothing, because there is no information that can be used to further improve the model. (1P)
- (d) (i) M grows: capacity will increase and the algorithm may eventually overfit (1P)
 - (ii) n grows: capacity will stay the same and the algorithm may underfit (1P)