Bioinformatics for High Throughput Sequencing

Materials

Course chat

Course materials

German Ashniev @SciKey

Game Rules

HW == Homework (from 0 to 10)

Quiz == Exam (from 0 to 10)

if grade.count() < 3:
 IdontCare = True
 return("See You on retakes")</pre>

HW1 and HW2 deadline 1 week after assignment

HW3 deadline 2 weeks after assignment

^{*}There are always "good" and "bad" options

Оценка по 10-балльной шкале	Оценка по 5-балльной шкале за экзамен	Оценка в приложении к диплому НИУ ВШЭ		Оценка за зачет
10	отлично (существенно превосходит ожидания)	A ++	Excellent	зачтено
9	отлично (превосходит ожидания)	A +	Very good	зачтено
8	отлично	Α	Very good	зачтено
7	хорошо	B +	Good	зачтено
6	хорошо	В -	Good	зачтено
5	удовлетворительно	C+	Satisfactory	зачтено
4	удовлетворительно	C-	Satisfactory	зачтено
3	неудовлетворительно	F	Fail	не зачтено
2	неудовлетворительно	F	Fail	не зачтено
1	неудовлетворительно	F	Fail	не зачтено

Использование оценки "0"

Преподаватель имеет право поставить оценку "0" в следующих случаях:

- если студент не приступал к выполнению элемента контроля на занятии или в период сессии (например: сдал пустой лист, отказался от ответа, не явился на экзамен без уважительной причины);
- при обнаружении нарушений академических норм^{*}, предусмотренных <u>Правилами внутреннего распорядка обучающихся НИУ ВШЭ</u>, таких как: списывание при выполнении письменной работы или при подготовке к ответу в устной форме, двойная сдача письменных работ, наличие <u>плагиата</u> в письменных работах, совершение подлога при выполнении письменных и устных работ, фабрикация данных и/или результатов работы, использование подсказок, применение технических средств для выполнения письменных или устных работ;
- незадекларированное использование генеративных моделей в соответствии с Регламентом организации проверки письменных учебных работ на наличие плагиата, использования генеративных моделей и размещения выпускных квалификационных работ обучающихся по программам бакалавриата, специалитета и магистратуры на корпоративном сайте (портале) НИУ ВШЭ;
- в иных случаях, установленных Положением об организации промежуточной аттестации и текущего контроля успеваемости студентов НИУ

 ВШЭ (например: использование материалов, запрещенных преподавателем, попытка общения с иными лицами, несанкционированные перемещения студентов и т.п.).

1) Overview lecture with introduction and course structure. 04.04.2025 3) Applications of Sequencing in various fields of knowledge. 1) Evolution of DNA Sequencing Methods - Historical milestones - Comparative analysis: Throughput, accuracy, read length, and cost trends over time. - Emerging technologies: Single-molecule sequencing and epigenetic applications. 2) Sequencing Data File Formats - BCL - FASTQ - FAST5 3) Platform-Specific Data Structures 4) Sequencing Quality Assessment & Error Correction: - FastQC - MultiQC 11.04.2025 - Error Correction Tools 5) Read Alignment & Coverage Analysis - Short reads: BWA-MEM, Bowtie2. - Long reads: Minimap2, NGMLR. - samtools depth, mosdepth. 6) Reference Genomes and Model organisms 7) Mutation Databases - ClinVar, COSMIC, gnomAD, dbSNP 8) NGS Platform Errors & Comparative Analysis - Substitution errors. - PCR duplicates. - Homopolymers. - High indel rates. Introduction to Linux for Bioinformatics - Why Linux? 18.04.2025 - Core commands - Hands-on examples 1) Major Steps in Sample Preparation for WGS and WES. 2) Required Equipment and Reagents. 3) DNA and RNA Extraction Methods. 25.04.2025 4) Quality assessment. 5) Nucleic Acid Purification and Ribosomal RNA (rRNA) Depletion. 6) Library Preparation (Fragmentation and Tagmentation).

Тема Занятия Подробно

IV МОДУЛЬ 2025

Course plan part_1

	1) Sanger Sequencing (First-Generation Sequencing)	
	2) Next-Generation Sequencing (NGS) Platforms:	
09.05.2025	- Solexa (Pre-2006) Sequencing	
	- Illumina (Post-2006) Sequencing	
	- Ion Torrent (Thermo Fisher Scientific)	
16.05.2025	- 454 Sequencing (Roche)	_
	- SOLiD Sequencing (Thermo Fisher Scientific)	Course plan
	3) Third-Generation Sequencing (Single-Molecule Sequencing)	Course plan
23.05.2025	- PacBio SMRT Sequencing	
	- Oxford Nanopore Sequencing	part 2
	4) Emerging Sequencing Technologies	• —
	- Helicos Biosciences (True Single-Molecule Sequencing)	
30.05.2025	- BGI (DNBSEQ)	
	- Quantum Sequencing (Quantapore)	
	- Single-Molecule Fluorescence Sequencing (Genia, Stratos Genomics)	
06.06.2025	Targeted sequencing methods and clinical applications (Exome, panels).	
00.00.2025	Interesting cases from publications.	
13.06.2025	Экзамен	

02.05.2025

DNA sequencing - a laboratory technique in order determine the exact sequence of nucleotides, or bases, in a DNA molecule.

NGS Research Fields and Publication Distribution

Sequencing Application Examples- Inherited Conditions

Inherited Conditions-Challenges and Opportunities

Structural aberrations

Epigenetic factors

Imprinting effects

Opportunities

Example:
Multifactorial disease

Risk loci more often in non-coding or inter-gene regions Pathogenicity of variants often unclear- less testing vs. monogenic disease

Reference human genome cataloguing of variants = more test offerings

Sequencing Application Examples-Neoplastic Conditions

Cancer susceptibility genes

Risk assessment Risk management

Somatic/driver mutations

Micro-RNAs

Methylation Epigenetic changes

Patient stratification

Predictions of therapeutic response during personalized treatment

Therapeutic monitoring

Prognosis

Alterations in gene expression

Molecular profiling

Tumor sub-typing

Sequencing Application Examples-Neoplastic Conditions

- Mutation panel screening
- Exome and transcriptome screening
- Genome sequencing-comparison to normal tissue/reference sample

Sequencing Application Examples-Other Considerations

Different NGS platforms have different capabilities

RNA and DNA sequence changes

DNA copy number variations

DNA rearrangements

RNA expression profiles

Methylation

A single method usually provides only part of this variety of information - cost , specimen type, and application considerations important

Collection of Samples

DNA Isolation

Fragmentation

Adaptor Ligation / Barcoding DNA Sequencing

Data Analysis

Base Calling Read Alignment Variant Calling Variant Annotation Functional and / or Taxonomic Classification

High Accurate classification resolution of taxa

Discrimination between species and strain level

Library Preparation

Sequencing/Analysis

Bioinformatics Workflow

NGS Application Examples-Other Considerations

NGS- significant false positive rate

Mutation confirmation
Usually by Sanger sequencing-will
platform evolution eliminate?

Variable % tumor cells and variable % tumor cells with (presumably) secondary mutation

May overlap with NGS false positive rate

Low level mutations- not easily confirmed by Sanger sequencing (higher detection threshold ≈ 15-20%) without more sensitive mutation screening - DGGE, dHPLC, pyrosequencing or mutation enrichment- i.e. COLD PCR

Numerous heterogeneous aberrationsi.e. oncologic applications need algorithm development

Clinical Utility

- Balance of net health benefits vs. harm
- NGS –transformative for personalized treatment of disease
- Clinical indication includes test rationale, patient population and clinical scenarios
- Principles of comparative effectiveness- requires individualized evidence-based approach for each patient

Clinical Utility-Challenges

NGS data density = frequently encountered variants of unknown significance

Which variants are clinically actionable?

Development of evidence-based scientific standards to evaluate utility in in different patient populations for accurate risk estimation

Careful selection of patients for genome sequencing and genetic counseling-crucial

Sequencing. Main problems

- Sample Contamination (salts, proteins, and other chemicals)
- Impure Template DNA (contaminants from reagents or environmental sources)
- Failed Sequencing Reactions (universal primers may not work with certain plasmids)
- Errors in Sequencing Data (positive and negative errors)
- Chimeric Fragments
- Computational Complexity (NP-hard)
- Inhibitors in Reagents (inhibition of DNA polymerase)
- Quality Control Issues (labor-intensive)

Sample Contamination

*Nasopharyngeal samples from Thailand.

Impure Template DNA

- a) The PCoA plot appears to show age-related clustering; however,
- b) extraction kit lot explains the pattern better.
- c) When coloured by age, the plot shows the loss of the initial clustering pattern after excluding contaminant OTUs from ordination.
- d) The proportion of reads attributed to contaminant OTUs for each sample, demonstrating that the first two kits were the most heavily contaminated.
- e) Genus-level profile of contaminant OTUs for each kit used.

Failed Sequencing Reactions Errors in Sequencing Data

Severely low signal intensity due to hardware failure or a failed reaction

Chimeric Fragments

There was branch migration reaction during the MDA processing, because of there exists same sequence (green line in a,b)

- In (a), the 3' end of a displaced strand attaches to another template. Here, the 3' end (marked by a red arrow) pairs with a sequence on the 5' strand (green line), leading to the formation of an inverted chimera.
- In **(b)**, the displaced 3' end pairs with a sequence on the 3' strand (green line), resulting in a **direct chimera**.

Inhibition of DNA polymerase

Informed Consent and Ethical Considerations

- Create patient awareness of benefits and harms
- No specific guidance exists- institutional policies vary
- Potential for anxiety and uncertainty exist especially for variants of unknown significance
- Discovery of incidental findings unrelated to the disease in question

Analytical Considerations-Regulation, Assay Validation, and Reference Materials

- Sequences are not truly complete gaps in reads, GC rich regions, bioinformatics limitations with indel variant calling
- "gold standard" comparison- Sanger sequencing, however the technical capabilities are dwarfed by NGS
- Regardless all NGS steps must be evaluated, and quality control metrics must be in place- is sequencing portions of a reference genome(s) sufficient?
- Development of reference materials (RMs) for meaningful validation is key