

HDL Based Design ME620138

FINITE STATE MACHINES

 Moore machine's outputs are a function of the present state only

 Mealy machine's outputs are a function of the present state and present inputs

Finite State Machine

Next State function

State register

Output function

Moore Machine

Mealy Machine

State diagrams offers an abstract graphical representation of the operation of FSM

Mealy machine

Moore machine

Present State	Input	Next State	Output
A	0	A	0
Α	1	В	0
В	0	A	0
В	1	В	1

Mealy machine

Mealy Recognising Sequence "10"

Mealy Recognising Sequence "10"

Moore Recognising Sequence "10"

Moore Recognising Sequence "10"

reset_bar 0 Α 0 В

Mealy machine

Moore machine

Mealy: output <= '1' when (state = B and input = '1') else '0';

Moore: output <= '1' when state = C else '0';

VHDL outline for Moore Machine

```
type statemachine is (S0, S1, ..., SX);
signal state: statemachine;
Moore: process (clock, reset)
begin
     if (reset = '1') then state <= $0;
     elsif (clock = '1' and clock'event) then
          case state is
          when S0 =>
               if input = '1' then state <= S1;</pre>
               else
                                   state \leq S0;
               end if:
          when S1 =>
          end case;
     end if;
end process;
output <= '1' when state = SX else '0';
                                                                                  aran yilopisto
```

University of Turku

VHDL outline for Mealy Machine

```
type statemachine is (S0, S1, ..., SX);
signal state: statemachine;
Mealy: process(clock, reset)
begin
     if (reset = '1') then state <= $0;
     elsif (clock = '1' and clock'event) then
          case state is
          when S0 =>
                if input = '1' then state <= S1;</pre>
               else
                                     state \leq S0;
               end if:
          when S1 =>
          end case;
     end if:
end process;
output \leq '1' when (state = SX and input = '0|1') else '0';
                                                                                     <del>ıurun yı</del>lopisto
```

University of Turku

Mealy vs Moore

- Can be functionaly equivalent
- Mealy usually requires smaller number of states
- Mealy reacts one clock cycle sooner than Moore
- Moore does not have a combinational path from input to output

Read Ex4

Start doing it

