#001 Kaggle - Titanic - Machine Learning from Disaster

👺 Primeira submissão para competição no Kaggle. - https://www.kaggle.com/competitions/titanic

Nesse projeto a ideia é conhecer as bibliotecas matplotlib e seaborn, # E as ferramentas sklearn e RandomForestClassifier, que nunca tive contato.

INTRODUÇÃO

data\gender submission.csv

data\test.csv data\train.csv

In [1]:

In [3]:

Out[3]:

In [4

In [5]:

In [10]:

In [11]:

In [13]:

III EXPLORANDO OS DADOS # Importar as bibliotecas.

In [2]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

import warnings warnings.filterwarnings("ignore") %matplotlib inline # Os arquivos base estão na pasta "/data/" # Comando para listar todos os arquivos que serão utilizados import os

for dirname, _, filenames in os.walk('data'): for filename in filenames: print(os.path.join(dirname, filename))

Após listar os arquivos, setamos a base de dados TRAIN.CSV utilizando Pandas, que usaremos para treinar nosso train data = pd.read csv("data/train.csv") train data.head() PassengerId Survived Pclass Sex Age SibSp Parch Cabin Embarked Name Ticket Fare 0 7.2500 S Braund, Mr. Owen Harris male 22.0 A/5 21171 NaN

female 38.0

PC 17599 71.2833

1 3101298 12.2875

C85

Cumings, Mrs. John Bradley (Florence

3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0

					briggs m								
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
4]:	# Após ar	quivo de	e trein	10,	setamos o arquivo que preci	saremo	s testar	em no	osso mo	odelo			
	test_data	= pd.re	ad_csv	7 ("d	ata/test.csv")								

test data.head() PassengerId Pclass Name Sex Age SibSp Parch **Ticket** Fare Cabin Embarked 892 3 330911 7.8292 Kelly, Mr. James male 34.5 NaN Q

Out[4]: 893 female 47.0 7.0000 Wilkes, Mrs. James (Ellen Needs) 363272 NaN 2 894 2 Myles, Mr. Thomas Francis male 62.0 240276 9.6875 NaN Q 3 895 Wirz, Mr. Albert 27.0 315154 8.6625 male NaN

Precisamos agora começar a mapear nossos arquivos, entender quais dados podem ser relevantes para nosso modelo # Vamos começar com a separação por gênero In [6]: sexo = train data['Sex'].value counts() print(sexo) sexo['male'] + sexo['female']

homens = sexo['male'] mulheres = sexo['female'] masc porc = sexo['male']/(sexo['male'] + sexo['female'])*100 femi porc = sexo['female']/(sexo['male'] + sexo['female'])*100 print('Homens: {} ({:.2f}%)'.format(homens, masc porc)) print('Mulheres: {} ({:.2f}%)'.format(mulheres, femi porc))

male 577 314 female Name: Sex, dtype: int64 Homens: 577 (64.76%) Mulheres: 314 (35.24%) In [7]: # Com nossos primeiros dados separados, vamos apresentá-los usando matplotlib e seaborn In [8]: # Configuração do seaborn cores genero = ['#87CEFA','#FF69B4'] cores tipo vitima = ["#b08d57", "#C0C0C0", "#FFD700"]

paleta genero = sns.color palette(cores genero) paleta tipo vitima = sns.color palette(cores tipo vitima) In [9]: sns.set(font_scale=2) fig = plt.figure(figsize=(4,4)) sns.set_style('ticks') sexo = train_data['Sex'].value_counts() $sexo_num = [sexo[0], sexo[1]]$ plt.pie(sexo_num, labels=['Homens','Mulheres'],colors=paleta_genero) plt.title('Gênero no navio', fontsize=21); Gênero no navio Homens

Mulheres

df['idade mulher'] = df['idade mulher'].values.astype(int)

sns.countplot('idade homem',color='#6495ED',data=df) sns.countplot('idade mulher',color='#FF69B4',data=df)

df['idade homem'] = df[df['Sex'] == 'male']['Age'] #idade das vitimas masculinas df['idade homem'] = df['idade homem'].values.astype(int) #Transformar em int

df['idade mulher'] = df[df['Sex'] == 'female']['Age'] #idade das vitimas femininas

fig = plt.figure(figsize=(19,7))

fig = plt.figure(figsize=(10,5)) y = train data['Pclass'].count()

plt.xlabel('Classe', fontsize=15) plt.ylabel('Passageiros', fontsize=15);

plt.title('Passageiros por Classe',fontsize=21)

plt.xlim(-0.5, 2.5)

500

400

300

plt.xticks(fontsize=14) plt.yticks(fontsize=15)

sns.set style('whitegrid')

df = train data

% de mulheres que sobreviveram: 0.7420382165605095 % de homens que sobreviveram: 0.18890814558058924

plt.title('Sobreviventes por Gênero', fontsize=21);

plt.pie(sexo_num, labels=['Homens','Mulheres'],colors=paleta_genero)

Homens

sns.set(font_scale=2)

sns.set_style('ticks')

Mulheres

fig = plt.figure(figsize=(4,4))

sexo_num = [sum(men), sum(women)]

Sobreviventes por Gênero

sns.countplot('Pclass', order=[3,2,1], palette=paleta_tipo_vitima, data=train_data)

Passageiros por Classe

Montando modelo de ML In [14]: from sklearn.ensemble import RandomForestClassifier

Percebemos que o número de mulheres é significantemente maior que o número de homens.

y = train data["Survived"] features = ["Pclass", "Sex", "SibSp", "Parch"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) model = RandomForestClassifier(n estimators=100, max depth=5, random state=1) model.fit(X, y) predictions = model.predict(X_test) output = pd.DataFrame(('PassengerId': test data.PassengerId, 'Survived': predictions)) output.to csv('resultado.csv', index=False) print("Modelo salvo como 'resultado.csv'") Modelo salvo como 'resultado.csv'

Out[15]:

0

0

1

2

3

4

894

895

896

Explorando o resultado

resultado = pd.read_csv("resultado.csv")

	resul	tado.he	ead()
]:	Pass	engerld	Survived
(0	892	O
	1	893	1