FEUILLE D'EXERCICES nº 11

Polynômes à plusieurs indéterminées

Dans ce travail, on utilisera l'ordre lexicographique \prec_{lex} sur les monômes et aussi parfois l'ordre lexicographique gradué \prec_{grlex} .

On rappelle la définition des S-polynômes. Soit k un corps, et soit $A = k[x_1, x_2, \ldots, x_n]$. Soit $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$. On note $x^a = x_1^{a_1} \ldots x_n^{a_n}$. Soient g et h non nuls dans A. Soit $\alpha = (\alpha_1, \ldots, \alpha_n)$ le degré du terme dominant de g et soit $\beta = (\beta_1, \ldots, \beta_n)$ le degré du terme dominant de h. On note $\gamma = (\max(\alpha_1, \beta_1), \ldots, \max(\alpha_1, \beta_1))$. Alors on définit

$$S(g,h) = \frac{x^{\gamma}}{\operatorname{td}(g)}g - \frac{x^{\gamma}}{\operatorname{td}(h)}h.$$

Le théorème suivant fournit un critère pratique pour reconnaître ou pour construire une base de Gröbner.

Théorème 1. Un ensemble fini $G = \{g_1, \ldots, g_s\} \subset A$ est une base de Gröbner si et seulement si pour tout couple (i, j), où $1 \le i \le j \le s$, le reste de la division de $S(g_i, g_j)$ par (g_1, \ldots, g_s) est nul.

Exercice 1 – On utilise $\prec = \prec_{lex}$. Soient $f = xy^2 + 1$, $f_1 = xy + 1$ et $f_2 = y + 1$.

- 1) En divisant f par f_1 , puis par f_2 , décomposer f = g + r, où $g \in \langle f_1, f_2 \rangle$ et où aucun terme de r n'est divisible par le terme dominant de f_1 ni de f_2 .
- 2) Faire de même en divisant d'abord par f_2 , puis par f_1 .
- 3) Le polynôme f appartient-il à l'idéal engendré par f_1 et f_2 ?
- 4) Déterminer une base de Gröbner de l'idéal de $\mathbb{Q}[x,y]$ engendré par f_1 et f_2 .

Exercice 2 – On utilise $\prec = \prec_{lex}$. Soient $f = xy^2 - x$, $f_1 = xy + 1$ et $f_2 = y^2 - 1$.

- 1) Diviser f par f_1 .
- 2) Le polynôme f appartient-il à $\langle f_1, f_2 \rangle$?

Exercice 3 – On utilise $\prec = \prec_{\text{lex}}$. Soient $f = x^2y + xy^2 + y^2$, $f_1 = xy - 1$ et $f_2 = y^2 - 1$.

- 1) Écrire de deux façons différentes f = g + r, où $g \in f_1, f_2 > \text{et où aucun}$ terme de r n'est divisible par le terme dominant de f_1 ni de f_2 .
- 2) Calculer $f_3 = S(f_1, f_2)$. Peut-on diviser ce polynôme par f_1 ou f_2 ?
- 3) Montrer que (f_1, f_2, f_3) est une base de Gröbner de $I = \langle f_1, f_2 \rangle$.
- 4) Le polynôme f appartient-il à I?
- 5) On demande à sage une base de Gröbner de $\langle f_1, f_2 \rangle$. Il rend $[y^2 1, x y]$. Commenter.

Exercice 4 – On utilise $\prec = \prec_{\text{grlex}}$. Soient $g = x^3 - 2xy$, $h = x^2y - 2y^2 + x$, $G = \{g, h\}$ et $I = \prec G >$.

- 1) Montrer que $x^2 \in I$, que $x^2 \in \operatorname{td}(I) >$, mais que $x^2 \notin \operatorname{td}(G) >$.
- **2)** Trouver une base de Gröbner de I.
- 3) Trouver la base de Gröbner réduite de I.

Exercice 5 – Dans k[x, y, z], soient $f_1 = x - z^4$, $f_2 = y - z^5$ et $I = \langle f_1, f_2 \rangle$.

- 1) Trouver une base de Gröbner de I pour l'ordre lexicographique avec x>y>z. Soit B cette base.
- 2) Montrer que B n'est pas une base de Gröbner de I pour l'ordre lexicographique gradué avec x > y > z.

Exercice 6 – Soit k un corps. Montrer que les idéaux $I = \langle x+xy, y+xy, x^2, y^2 \rangle$ et $J = \langle x, y \rangle$ de k[x, y] sont égaux.

Exercice 7 – Soit K un corps. Soit x un élément algébrique sur K. On rappelle que le polynôme minimal m de x sur K est le polynôme unitaire de plus petit degré de K[x] tel que m(x) = 0. De plus, si $P \in K[x]$, alors P(x) = 0 si et seulement si m divise P.

- 1) Soit f un polynôme irréductible de K[x]. Soit $g \in K[x]$, et soit m le polynôme minimal de l'image de g dans K[x]/(f). Soit I l'idéal de K[x,y] engendré par g(x) y et f(x). Montrer que $I \cap K[y] = m(y)K[y]$.
- 2) Soit $f = x^3 + x + 1 \in \mathbb{Q}[x]$. Vérifier que f est irréductible dans $\mathbb{Q}[x]$. Soit a une racine de f dans \mathbb{C} . Quel est le polynôme minimal de $a^2 + a + 1$?