Factors Influencing Salaries of Data Science Roles

Data Exploration

Dataset Overview

```
import pandas as pd

salaries_data_frame = pd.read_csv("data/jobs_salaries_2023.csv")
print(salaries_data_frame.shape)
```

```
(1500, 11)
```

```
column_types = salaries_data_frame.dtypes
print(column_types)
```

```
work_year
                         int64
experience_level
                        object
employment_type
                        object
job_title
                        object
                       float64
salary
salary_currency
                        object
salary_in_usd
                       float64
employee_residence
                       object
remote_ratio
                         int64
company_location
                        object
company_size
                        object
dtype: object
```

Work Year

```
import pandas as pd
import matplotlib.pyplot as plt

# Count occurrences of each work_year and sort by year
work_year_counts =
salaries_data_frame["work_year"].value_counts().sort_index()

# Calculate percentages
work_year_percent = (work_year_counts / work_year_counts.sum() *
```

```
100) round(2)
# Calculate mean and median salary per year
mean_salary = salaries_data_frame.groupby("work_year")
["salary in usd"].mean().round(2)
median salary = (
    salaries_data_frame.groupby("work_year")
["salary in usd"].median().round(2)
)
# Combine into one DataFrame for display
result = pd.DataFrame(
    {
        "count": work_year_counts,
        "percentage": work_year_percent,
        "mean_salary": mean_salary,
        "median_salary": median_salary,
    }
)
print(result)
```

```
count percentage mean_salary median_salary
work_year
2020
              75
                         5.0
                                 92266.67
                                                 72000.0
2021
             219
                        14.6
                                 95977.39
                                                 82500.0
2022
             714
                        47.6
                                129573.32
                                                130000.0
2023
             492
                        32.8
                                154600.18
                                                148500.0
```

```
# --- Pie Chart ---
plt.figure(figsize=(7, 7))
plt.pie(
    work_year_counts, labels=work_year_counts.index, autopct="%1.1f%",
startangle=90
)
plt.title("Distribution of Records by Work Year")
plt.show()
```

Distribution of Records by Work Year

Employment Type

```
import pandas as pd

# Define custom order
order = ["FL", "CT", "PT", "FT"]

# Count occurrences of each employment_type
employment_type_counts =
salaries_data_frame["employment_type"].value_counts()

# Reorder according to the custom order
employment_type_counts = employment_type_counts.reindex(order)

# Calculate percentages
employment_type_percent = (
    employment_type_counts / employment_type_counts.sum() * 100
).round(2)

# Calculate mean and median salary per employment_type
mean_salary = (
```

```
salaries_data_frame.groupby("employment_type")["salary_in_usd"]
    .mean()
    round(2)
    .reindex(order)
)
median salary = (
    salaries_data_frame.groupby("employment_type")["salary_in_usd"]
    .median()
    round(2)
    reindex(order)
)
# Combine into one DataFrame
result = pd.DataFrame(
    {
        "count": employment_type_counts,
        "percentage": employment_type_percent,
        "mean_salary": mean_salary,
        "median_salary": median_salary,
    }
)
print(result)
```

```
percentage mean salary median salary
                 count
employment_type
FL
                     6
                                0.4
                                        45420.50
                                                        40261.5
                     9
CT
                               0.6
                                       116052.11
                                                        60000.0
PT
                    12
                                0.8
                                        38112.83
                                                        20371.0
                              98.2
FT
                  1473
                                       132134.13
                                                       130000.0
```

```
# --- Pie Chart ---
import matplotlib.pyplot as plt

plt.figure(figsize=(7, 7))
plt.pie(
    employment_type_counts,
    labels=employment_type_counts.index,
    autopct="%1.1f%%",
    startangle=90,
    colors=["#66c2a5", "#fc8d62", "#8da0cb", "#e78ac3"],
)
plt.title("Distribution of Employment Types")
plt.show()
```

Distribution of Employment Types

Salary

```
import matplotlib.pyplot as plt
import seaborn as sns

salary_in_usd_series = salaries_data_frame["salary_in_usd"]

# --- 1. Descriptive statistics ---
mean_salary = salary_in_usd_series.mean()
median_salary = salary_in_usd_series.median()
min_salary = salary_in_usd_series.min()
max_salary = salary_in_usd_series.max()

print(f"Salary ranges from ${min_salary:,.0f} to ${max_salary:,.0f}")
print(f"Mean salary: ${mean_salary:,.0f}")
print(f"Median salary: ${median_salary:,.0f}")
```

```
# Skew check
skewness = salary_in_usd_series.skew()
print(f"Skewness: {skewness:.2f}")
```

```
Salary ranges from $5,409 to $450,000
Mean salary: $130,934
Median salary: $130,000
Skewness: 0.59
```

```
# --- 2. Histogram ---
plt.figure(figsize=(8, 5))
sns.histplot(salary_in_usd_series, bins=30, kde=True)
plt.axvline(
    mean_salary, color="red", linestyle="--", label=f"Mean =
{mean_salary:,.0f}"
)
plt.axvline(
    median_salary, color="blue", linestyle="--", label=f"Median =
{median_salary:,.0f}"
)
plt.title("Salary Distribution (USD)")
plt.xlabel("Salary")
plt.ylabel("Frequency")
plt.legend()
plt.show()
```



```
# --- 3. Boxplot (to reveal outliers) ---
plt.figure(figsize=(6, 3))
sns.boxplot(x=salary_in_usd_series)
plt.title("Salary in USD - Boxplot")
plt.xlabel("Salary in USD")
plt.show()
```


Experience Level (with Salary)

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Preprocessing
# =========
experience_level_order = ["EN", "MI", "SE", "EX"]
salaries data frame["experience level"] = pd.Categorical(
   salaries_data_frame["experience_level"],
   categories=experience_level_order,
   ordered=True,
)
# Counts and Percentages
# ==============
experience_level_counts = (
   salaries_data_frame["experience_level"].value_counts().sort_index()
experience_level_percent = (
   experience_level_counts / experience_level_counts.sum() * 100
) round(1)
result = pd.DataFrame(
   {"count": experience level counts, "percentage":
experience_level_percent}
)
# Mean and Median Salaries
summary_table = (
   salaries_data_frame.groupby("experience_level")["salary_in_usd"]
   .agg(Mean="mean", Median="median")
   round(∅)
)
# Combine Tables
# ===============
combined_table = result.join(summary_table)
print("Experience Level Summary:")
print(combined_table)
```

SE	922	61.5	151640.0	145000.0
EX	58	3.9	192463.0	188518.0

/var/folders/jh/z981c7zj0vz0gmyfc8mhdxdr0000gn/T/ipykernel_6856/674642401. py:33: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

salaries_data_frame.groupby("experience_level")["salary_in_usd"]

Distribution of Experience Levels


```
# =========
# Boxplot
plt.figure(figsize=(8, 6))
sns.boxplot(
    data=salaries_data_frame,
    x="experience_level",
    y="salary_in_usd",
    order=experience_level_order,
    palette="Set2",
    hue="experience_level",
    legend=False,
plt.title("Salary Distribution by Experience Level", fontsize=14)
plt.ylabel("Salary (USD)")
plt.xlabel("Experience Level")
plt.tight_layout()
plt.show()
```


Job Title (with Salary)

```
import pandas as pd
# Job title counts & percentages
job_counts = salaries_data_frame["job_title"].value_counts()
total_jobs = job_counts.sum()
# DataFrame with count and percentage
all_job_titles = job_counts.to_frame("count").reset_index()
all_job_titles.columns = ["job_title", "count"]
all_job_titles["percentage"] = (all_job_titles["count"] / total_jobs *
100) round(2)
# Add accumulated count and percentage
all_job_titles["accumulated_count"] = all_job_titles["count"].cumsum()
all_job_titles["accumulated_percentage"] = (
    all_job_titles["accumulated_count"] / total_jobs * 100
) round(2)
# ========
# Mean and median salary
```

```
salary_summary = (
   salaries_data_frame.groupby("job_title")["salary_in_usd"]
   .agg(Mean="mean", Median="median")
   round(∅)
   .reset_index()
)
# Combine tables
# ==========
all_job_titles = all_job_titles.merge(salary_summary, on="job_title",
how="left")
# Print summary
print(f"Number of unique job titles: {len(all_job_titles)}")
print("\nAll job titles with accumulation, mean & median salary:")
print(all_job_titles.to_string(index=False, line_width=10000))
```

Number of uniq	ue job titles: 69
All job titles	with accumulation, mean & median salary:
	job_title count percentage
accumulated_co	unt accumulated_percentage Mean Median
	Data Engineer 366 24.40
366	24.40 131523.0 130000.0
	Data Scientist 360 24.00
726	48.40 135659.0 141300.0
	Data Analyst 210 14.00
936	62.40 100195.0 100000.0
	Machine Learning Engineer 106 7.07
1042	69.47 145421.0 141942.0
	Analytics Engineer 53 3.53
1095	73.00 159451.0 152700.0
	Data Architect 39 2.60
1134	75.60 165886.0 167500.0
	Applied Scientist 30 2.00
1164	77.60 189030.0 184000.0
	Data Science Manager 29 1.93
1193	79.53 177154.0 175100.0
4222	Research Scientist 27 1.80
1220	81.33 127143.0 102772.0
	Machine Learning Scientist 17 1.13
1237	82.47 164900.0 180000.0
1051	Research Engineer 14 0.93
1251	83.40 184365.0 179500.0 Computer Vision Engineer 12 0.80
1263	Computer Vision Engineer 12 0.80 84.20 139076.0 147500.0
1203	ML Engineer 12 0.80
1275	85.00 114463.0 80682.0
1213	12 / 56

_		
1200	Data Analytics Manager 11	0.73
1286	85.73 133176.0 140000.0	0.67
1206	BI Data Analyst 10	0.67
1296	86.40 56665.0 51900.0	0.67
1200	AI Scientist 10	0.67
1306	87.07 89447.0 50448.0	0.67
1216	Director of Data Science 10	0. 67
1316	87.73 202086.0 180018.0	0.67
1226	Business Data Analyst 10	0.67
1326	88.40 80750.0 84566.0	0.60
1225	Applied Machine Learning Scientist 9	0.60
1335	89.00 114501.0 75000.0	0.60
1244	Big Data Engineer 9	0.60
1344	89.60 51565.0 48289.0	0.52
1252	ETL Developer 8	0. 53
1352	90.13 125192.0 93635.0	0.52
1260	Data Manager 8	0.53
1360	90.67 124000.0 117500.0	0.52
1260	Principal Data Scientist 8	0. 53
1368	91.20 198171.0 164630.0	0. 53
1276	Applied Data Scientist 8	0.55
1376	91.73 127158.0 89178.0 Head of Data 7	0. 47
1383	92.20 199780.0 230000.0	0.47
1303	Data Science Consultant 7	0.47
1390	92.67 69421.0 76833.0	0.47
1390	Data Specialist 7	0. 47
1397	93.13 130000.0 130000.0	0.47
1397	Data Operations Engineer 6	0.40
1403	93.53 80000.0 80000.0	0.40
1403	AI Developer 6	0.40
1409	93.93 169670.0 154000.0	0140
1403	Lead Data Engineer 6	0.40
1415	94.33 139230.0 120111.0	0140
1713	Lead Data Scientist 5	0.33
1420	94.67 87416.0 61566.0	0.33
	ne Learning Infrastructure Engineer 5	0.33
1425	95.00 127133.0 148800.0	
	Machine Learning Developer 5	0.33
1430	95.33 89726.0 76814.0	
	Data Quality Analyst 5	0.33
1435	95.67 92000.0 100000.0	
	Business Intelligence Engineer 4	0.27
1439	95.93 174150.0 171150.0	
	Computer Vision Software Engineer 4	0.27
1443	96.20 83705.0 82873.0	
	Head of Data Science 4	0.27
1447	96.47 146719.0 138938.0	
	Data Analytics Engineer 4	0.27
1451	96.73 64799.0 64598.0	
	Lead Data Analyst 4	0.27

1455	97.00 86152.0 77500.0	
	Product Data Analyst 3	0.20
1458	97.20 55357.0 20000.0	
	Data Science Engineer 3	0.20
1461	97.40 75803.0 60000.0	
	Principal Data Engineer 2	0.13
1463	97.53 192500.0 192500.0	
	Lead Machine Learning Engineer 2	0.13
1465	97.67 89720.0 89720.0	
	Cloud Data Engineer 2	0.13
1467	97.80 124647.0 124647.0	
	Principal Data Analyst 2	0.13
1469	97.93 122500.0 122500.0	
	ETL Engineer 2	0.13
1471	98.07 71394.0 71394.0	
	Data Operations Analyst 2	0.13
1473	98.20 73500.0 73500.0	
	Financial Data Analyst 2	0.13
1475	98.33 87500.0 87500.0	
	Data Modeler 2	0.13
1477	98.47 118900.0 118900.0	
	Machine Learning Research Engineer 2	0.13
1479	98.60 16086.0 16086.0	
	Data Strategist 2	0.13
1481	98.73 81000.0 81000.0	
	MLOps Engineer 2	0.13
1483	98.87 129000.0 129000.0	
	Data DevOps Engineer 1	0.07
1484	98.93 53654.0 53654.0	
	BI Data Engineer 1	0.07
1485	99.00 60000.0 60000.0	
	Staff Data Scientist 1	0.07
1486	99.07 105000.0 105000.0	
	Big Data Architect 1	0.07
1487	99.13 99703.0 99703.0	
	Staff Data Analyst 1	0.07
1488	99.20 15000.0 15000.0	
	Marketing Data Analyst 1	0.07
1489	99.27 88654.0 88654.0	
	3D Computer Vision Researcher 1	0.07
1490	99.33 5409.0 5409.0	
	Machine Learning Researcher 1	0.07
1491	99.40 50000.0 50000.0	
	Machine Learning Manager 1	0.07
1492	99.47 117104.0 117104.0	
	Applied Machine Learning Engineer 1	0.07
1493	99.53 69751.0 69751.0	
	Data Analytics Lead 1	0.07
1494	99.60 405000.0 405000.0	
	Compliance Data Analyst 1	0.07
1495	99.67 30000.0 30000.0	

1496	Data Analytics Consultant 1 99.73 113000.0 113000.0	0.07
1490	Head of Machine Learning 1	0.07
1497	99.80 76309.0 76309.0	
	NLP Engineer 1	0.07
1498	99.87 60000.0 60000.0	
	Cloud Data Architect 1	0.07
1499	99.93 250000.0 250000.0	
	Finance Data Analyst 1	0.07
1500	100.00 61896.0 61896.0	

```
import matplotlib.pyplot as plt
import pandas as pd
# Count all job titles and calculate percentages
job_counts = salaries_data_frame["job_title"].value_counts()
total_jobs = job_counts.sum()
# Keep top 10 job titles and group the rest as 'Other'
top_n = 10
top_jobs = job_counts.head(top_n)
other_count = total_jobs - top_jobs.sum()
# Use pd.concat to combine top jobs and 'Other'
job_counts_for_pie = pd.concat([top_jobs, pd.Series({"Other":
other_count})])
# Pie Chart
plt.figure(figsize=(8, 8))
plt.pie(
    job_counts_for_pie,
    labels=job_counts_for_pie.index,
    autopct="%1.1f%",
    startangle=90,
    colors=plt.cm.tab20.colors # color map for slices
plt.title(f"Top {top_n} Job Titles Distribution")
plt.show()
```

Top 10 Job Titles Distribution

Company Location

```
all_locations["accumulated_count"] / total_locations * 100
) round(2)
# Mean and Median Salaries
# ===============
salary_summary = (
   salaries data frame.groupby("company location")["salary in usd"]
   .agg(Mean="mean", Median="median")
   round(∅)
   .reset_index()
)
# Merge with main table
all_locations = all_locations.merge(salary_summary, on="company_location",
how="left")
# ===========
# Print summary
print(f"Number of unique company locations: {len(all_locations)}")
```

Number of unique company locations: 58

```
pd.set_option("display.max_rows", None) # Show all rows in output
print("\nAll company locations with salary stats:")
print(all_locations.to_string(index=False, line_width=10000))
```

```
All company locations with salary stats:
company_location count percentage accumulated_count
accumulated_percentage
                           Mean
                                  Median
                              73.40
              US
                   1101
                                                  1101
73.40 152070.0 145000.0
                               6.07
                                                  1192
79.47 83555.0 80036.0
                               3.33
                     50
                                                  1242
              CA
82.80 117373.0 97908.0
                               2.47
                                                  1279
              ΙN
                     37
85.27 33720.0 20670.0
              DE
                               2.33
                                                  1314
                     35
87.60 86249.0 76833.0
                     29
                               1.93
                                                  1343
              ES
89.53 50044.0 47282.0
                               1.33
                                                  1363
              FR
                     20
90.87
       61112.0 55196.0
              GR
                               0.87
                                                  1376
                     13
```

91.73 54786.0 52533.0 NL 11	0. 73	1387	
92.47 71873.0 69741.0	0.73	1307	
JP 6	0.40	1393	
92.87 114127.0 75682.0			
PT 6 93.27 40065.0 40062.0	0.40	1399	
BR 5	0.33	1404	
93.60 13975.0 12901.0			
AT 5	0.33	1409	
93.93 67765.0 61989.0 AU 5	0.33	1414	
94.27 100834.0 83864.0	0.55	1414	
PL 4	0.27	1418	
94.53 65587.0 40103.0	0.27	4.422	
BE 4 94.80 76865.0 83398.0	0.27	1422	
DK 4	0.27	1426	
95.07 45558.0 37252.0			
TR 4	0.27	1430	
95.33 21322.0 22586.0 PR 4	0.27	1434	
95.60 167500.0 167500.0	0127	1131	
NG 4	0.27	1438	
95.87 47500.0 40000.0 UA 4	0. 27	1442	
96.13 57850.0 55000.0	0.27	1442	
IE 3	0.20	1445	
96.33 117764.0 113750.0			
PK 3 96.53 13333.0 12000.0	0.20	1448	
90.33 13333.0 12000.0 FI 3	0.20	1451	
96.73 68793.0 68318.0			
LU 3	0.20	1454	
96.93 43943.0 59102.0 AE 3	0.20	1457	
97.13 100000.0 115000.0	0.20	1437	
CH 3	0.20	1460	
97.33 60940.0 56536.0	0.12	1462	
IT 2 97.47 36366.0 36366.0	0.13	1462	
RU 2	0.13	1464	
97.60 157500.0 157500.0			
SI 2	0.13	1466	
97.73 63831.0 63831.0 MX 2	0. 13	1468	
97.87 46756.0 46756.0	0.1.15	1100	
CF 2	0.13	1470	
98.00 48609.0 48609.0	A 12	1470	
CZ 2 98.13 50234.0 50234.0	0.13	1472	

SG 2	0.13	1474	
98.27 77276.0 77276.0 ID 2	0.13	1476	
98.40 34208.0 34208.0	0.13	1470	
AS 2	0.13	1478	
98.53 34026.0 34026.0			
CO 1	0.07	1479	
98.60 21844.0 21844.0	0.07	1400	
HU 1 98.67 35735.0 35735.0	0.07	1480	
KE 1	0.07	1481	
98.73 9272.0 9272.0			
TH 1	0.07	1482	
98.80 15000.0 15000.0	0.07	1402	
NZ 1 98.87 125000.0 125000.0	0.07	1483	
CL 1	0.07	1484	
98.93 40038.0 40038.0			
MD 1	0.07	1485	
99.00 18000.0 18000.0	0.07	1400	
HR 1 99.07 45618.0 45618.0	0.07	1486	
IL 1	0.07	1487	
99.13 119059.0 119059.0			
CN 1	0.07	1488	
99.20 100000.0 100000.0	0.07	1400	
EE 1 99.27 31520.0 31520.0	0.07	1489	
IQ 1	0.07	1490	
99.33 100000.0 100000.0			
R0 1	0.07	1491	
99.40 60000.0 60000.0	0.07	1402	
DZ 1 99.47 100000.0 100000.0	0.07	1492	
HN 1	0.07	1493	
99.53 20000.0 20000.0			
HK 1	0.07	1494	
99.60 65062.0 65062.0	0.07	1405	
MY 1 99.67 40000.0 40000.0	0.07	1495	
EG 1	0.07	1496	
99.73 22800.0 22800.0			
AR 1	0.07	1497	
99.80 50000.0 50000.0	0.07	4400	
PH 1 99.87 50000.0 50000.0	0.07	1498	
80 1	0.07	1499	
99.93 7500.0 7500.0			
MT 1	0.07	1500	
100.00 28369.0 28369.0			

Company Location Distribution


```
import pandas as pd
import matplotlib.pyplot as plt
# Count company locations
# ===========
location_counts = salaries_data_frame["employee_residence"].value_counts()
total_locations = location_counts.sum()
# Create DataFrame with count and percentage
all locations = location counts.to frame("count").reset index()
all_locations.columns = ["employee_residence", "count"]
all locations["percentage"] = (all locations["count"] / total locations *
100) round(2)
# Add accumulated count and percentage
all locations["accumulated count"] = all locations["count"].cumsum()
all locations["accumulated percentage"] = (
   all locations["accumulated count"] / total locations * 100
) round(2)
# ==========
# Mean and Median Salaries
salary_summary = (
   salaries data frame.groupby("employee residence")["salary in usd"]
   .agg(Mean="mean", Median="median")
   round(0)
   .reset index()
)
# Merge with main table
all_locations = all_locations.merge(salary_summary,
on="employee_residence", how="left")
# ===========
# Print summary
print(f"Number of unique company locations: {len(all_locations)}")
```

Number of unique company locations: 61

```
pd.set_option("display.max_rows", None) # Show all rows in output
print("\nAll company locations with salary stats:")
print(all_locations.to_string(index=False, line_width=10000))
```

			percentage accum	ulated_count	
accumu	rated_per	rcentage		4074	
	450064.0	US 1074	71.60	1074	
/1.60	153964.0		F 70	1160	
77 22	02552.0	GB 86	5.73	1160	
//.33	83552.0		2.20	4200	
00 50	440047.0	CA 48	3.20	1208	
80.53	118217.0		2.07	4254	
02.60	41.401.0	IN 46	3.07	1254	
83.60	41481.0	22124.0	2 07	1205	
05 67	F0777 A	ES 31	2.07	1285	
85.67	58///.0	48289.0	2.00	1215	
07 67	01712 0	DE 30	2.00	1315	
۷/ ، 0/	91/12.0	78015.0	1 60	1220	
00 27	E4E02 0	FR 24	1.60	1339	
09.2/	54593.0		1 00	1254	
00 27	E70E2 0	GR 15	1.00	1354	
90.27	5/953.0	52533.0	0.00	1266	
01 07	72066 0	NL 12	0.80	1366	
91.07	72966.0		0.67	1276	
01 72	48791.0	PT 10	0.07	1376	
91./3	40/91.0	40050.0 BR 8	0.53	1384	
02 27	42735.0		0.33	1364	
92.21	42/33.0	JP 7	0.47	1391	
02 72	103538.0		V • 47	1391	
32.73	10222010	PK 6	0.40	1397	
03 13	27036 0	16000.0	0.40	1397	
93.13	2703010	AU 6	0.40	1403	
03 53	05/11/ A	83518.0	0.40	1403	
93.33	3341410	NG 5	0.33	1408	
93.87	41000 A	30000.0	0133	1400	
55107	.100010	PR 5	0.33	1413	
94.20	166000.0	160000.0	0.55	1113	
		PL 4	0.27	1417	
94.47	55682.0	40103.0	0.27	2.27	
,		IT 4	0.27	1421	
94.73	61600.0	36366.0	¥ ·		
		TR 4	0.27	1425	
95.00	21322.0	22586.0	-		
, ,		AT 4	0.27	1429	
95.27	69339.0	68060.0			
		BE 4	0.27	1433	
95.53	76865.0	83398.0			
	-	RU 4	0.27	1437	
95.80	105750.0	72500.0			
	-	UA 4	0.27	1441	
96.07	57850.0	55000.0			
		B0 3	0.20	1444	

96.27	52500.0				
06 47	31193.0	DK 28600 0		0.20	1447
90.47	21192.0	2800910 AR		0.20	1450
96.67	52667.0				
		IE	3	0.20	1453
96.87	117764.0				
07.07		SG		0.20	1456
9/.0/	91203.0	89294.0 AE		0.20	1459
97.27	100000.0			0120	1439
		SI	2	0.13	1461
97.40	63831.0	63831.0			
07.50	00460 0	CH		0.13	1463
9/.53	88469.0	88469.0 CF		0.13	1465
97.67	48609.0			0.13	1403
3,10,	1000510	RO		0.13	1467
97.80	51419.0	51419.0			
		HK		0.13	1469
97.93	65542.0	65542.0 VN		0.13	1471
98.07	44200.0			0.13	14/1
30107		FI		0.13	1473
98.20	69030.0	69030.0			
		PH		0.13	1475
98.33	47880.0	47880.0 HU		0.13	1477
98.47	35997.0	_		0.13	14//
		RS		0.07	1478
98.53	25532.0	25532.0			
		JE		0.07	1479
98.60	100000.0	100000.0 KE		0.07	1480
98.67	9272.0			0.07	1400
		LU		0.07	1481
98.73	59102.0				
00.00	24044.0	CO		0.07	1482
98.80	21844.0	21844.0 NZ		0.07	1483
98.87	125000.0			0.07	1403
		CL	1	0.07	1484
98.93	40038.0				
00.00	10000 0	MD		0.07	1485
99.00	18000.0	18000.0 HR		0.07	1486
99.07	45618.0			0.07	1.00
		MX		0.07	1487
99.13	33511.0				
00.26	22000 0	EG	1	0.07	1488
99.20	22800.0	220UU.U			

		BG	1	0.07	1489
99.27	80000.0	80000.0			
		IQ	1	0.07	1490
99.33	100000.0	100000.0			
		DZ	1	0.07	1491
99.40	100000.0	100000.0			
		CZ	1	0.07	1492
99.47	69999.0	69999.0			
		TN	1	0.07	1493
99.53	30469.0	30469.0			
		HN	1	0.07	1494
99.60	20000.0	20000.0			
		EE	1	0.07	1495
99.67	31520.0	31520.0			
		MY		0.07	1496
99.73	200000.0	200000.0			
		ID		0.07	1497
99.80	15000.0	15000.0			
		D0		0.07	1498
99.87	110000.0	110000.0			
		TH		0.07	1499
99.93	15000.0	15000.0			
		MT		0.07	1500
100.00	28369.0	28369.0)		

Company Location Distribution

Remote Ratio (with Salary)

```
# Calculate percentages
remote_ratio_percent = (remote_ratio_counts / remote_ratio_counts.sum() *
100) round(2)
# ==========
# Mean and Median Salaries
salary summary = (
   salaries_data_frame.groupby("remote_ratio")["salary_in_usd"]
   .agg(Mean="mean", Median="median")
   round(∅)
   .reindex(order)
# Combine into one DataFrame
# ==========
result = pd.DataFrame(
   {
       "count": remote ratio counts,
       "percentage": remote_ratio_percent,
       "Mean": salary_summary["Mean"],
       "Median": salary_summary["Median"],
   }
)
print("Remote Work Ratio Summary:")
print(result)
```

```
Remote Work Ratio Summary:
              count percentage
                                     Mean
                                            Median
remote_ratio
                579
                          38.60 143867.0
                                          139430.0
50
                130
                          8.67
                                 81360.0
                                           65135.0
100
                791
                          52.73 129658.0
                                          131050.0
```

Remote Work Ratio Distribution

Company Size (with Salary)

```
salary_summary = (
   salaries_data_frame.groupby("company_size")["salary_in_usd"]
    .agg(Mean="mean", Median="median")
    round(∅)
    .reindex(order)
)
# Combine into one DataFrame
# ===============
result = pd.DataFrame(
   {
       "count": company_size_counts,
       "percentage": company_size_percent,
       "Mean": salary_summary["Mean"],
       "Median": salary_summary["Median"],
   }
print("Company Size Summary:")
print(result)
```

```
Company Size Summary:
              count percentage
                                    Mean
                                            Median
company_size
S
                107
                          7.13
                                77723.0
                                           61566.0
М
               1073
                          71.53 139114.0 137270.0
L
                320
                          21.33 121396.0 112300.0
```

Distribution of Company Size

Data Preparation and Model Training

Handling Data Issues

Missing Values Issues

```
# Drop rows with any missing values
salaries_data_frame = salaries_data_frame.dropna()
salaries_data_frame.shape
```

(1494, 11)

Employment Type Filter

```
# Keep only full-time employees
salaries_data_frame =
salaries_data_frame[salaries_data_frame["employment_type"] == "FT"] #
assuming "FT" is the code for full-time
salaries_data_frame.shape
```

```
(1467, 11)
```

Job Titles Filter

```
# ===== FILTER OUT JOB TITLES WITH FEWER THAN 100 RECORDS =====
threshold = 100
job_counts = salaries_data_frame["job_title"].value_counts()
salaries_data_frame =
salaries_data_frame[salaries_data_frame["job_title"].isin(job_counts[job_c
ounts >= threshold].index)]
salaries_data_frame.shape
```

```
(1030, 11)
```

Salary Distribution after Filter

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# --- 1. Descriptive statistics ---
salary_in_usd_series = salaries_data_frame["salary_in_usd"]

mean_salary = salary_in_usd_series.mean()
median_salary = salary_in_usd_series.median()
min_salary = salary_in_usd_series.min()
max_salary = salary_in_usd_series.max()

print(f"Salary ranges from ${min_salary:,.0f} to ${max_salary:,.0f}")
print(f"Mean salary: ${mean_salary:,.0f}")

# Skew check
skewness = salary_in_usd_series.skew()
print(f"Skewness: {skewness:.2f}")
```

```
Salary ranges from $5,679 to $412,000
Mean salary: $128,589
Median salary: $129,300
Skewness: 0.43
```

```
# --- 2. Histogram ---
plt.figure(figsize=(8, 5))
sns.histplot(salary_in_usd_series, bins=30, kde=True)
plt.axvline(
    mean_salary, color="red", linestyle="--", label=f"Mean =
{mean_salary:,.0f}"
)
plt.axvline(
    median_salary, color="blue", linestyle="--", label=f"Median =
{median_salary:,.0f}"
)
plt.title("Salary Distribution (USD)")
plt.xlabel("Salary")
plt.ylabel("Frequency")
plt.legend()
plt.show()
```



```
# --- 3. Boxplot (to reveal outliers) ---
plt.figure(figsize=(6, 3))
sns.boxplot(x=salary_in_usd_series)
plt.title("Salary in USD - Boxplot")
plt.xlabel("Salary in USD")
plt.show()
```

Salary in USD - Boxplot


```
# --- 4. Identify outliers using IQR rule ---
Q1 = salary_in_usd_series.quantile(0.25)
Q3 = salary_in_usd_series.quantile(0.75)
IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

outliers = salaries_data_frame[
    (salaries_data_frame["salary_in_usd"] < lower_bound)
    | (salaries_data_frame["salary_in_usd"] > upper_bound)
]

print(f"\nNumber of outliers: {len(outliers)}")
print("Outlier rows:")
print(outliers.sort_values("salary_in_usd").to_string(index=False, line_width=10000))
```

```
Number of outliers: 6
Outlier rows:
work_year experience_level employment_type
                                                               job_title
salary_salary_currency salary_in_usd employee_residence remote_ratio
company_location company_size
      2023
                          SE
                                           FT Machine Learning Engineer
304000.0
                      USD
                                304000.0
                                                          US
                                                                        100
US
              М
      2023
                          SE
                                           FΤ
                                                         Data Scientist
317070.0
                      USD
                                317070.0
                                                          US
                                                                          0
US
              М
      2023
                          SE
                                           FT Machine Learning Engineer
318300.0
                      USD
                                318300.0
                                                          US
                                                                        100
US
              Μ
```

2022		EX		FT	Data Engineer	٢
324000.0	ι	JSD	324000.0		US	100
US	M					
2023		SE		FT Machine Lea	rning Enginee	٢
342300.0	ι	JSD	342300.0		US	0
US	L					
2020		SE		FT I	Data Scientist	t
412000.0	ι	JSD	412000.0		US	100
US	L					

```
# --- 5. Remove outliers ---
print(f"\nData shape before removing outliers:
{salaries_data_frame.shape}")

salaries_data_frame = salaries_data_frame[
    (salaries_data_frame["salary_in_usd"] >= lower_bound)
    & (salaries_data_frame["salary_in_usd"] <= upper_bound)
].copy()

print(f"Data shape after removing outliers: {salaries_data_frame.shape}")</pre>
```

```
Data shape before removing outliers: (1030, 11)
Data shape after removing outliers: (1024, 11)
```

Model Training and Performance (Supervised Learning)

First Try

```
print(salaries_data_frame.shape)
# 2. Define features & target
categorical cols 1 = [
   "experience_level",
   "job title",
   "employee residence",
   "company_location",
   "company_size",
1
numeric_cols_1 = ["work_year", "remote_ratio"]
features = categorical_cols_1 + numeric_cols_1
X_1 = salaries_data_frame[features]
X_1.shape
y_1 = salaries_data_frame["salary_in_usd"]
y_1.shape
# 3. Split dataset
X_train_1, X_test_1, y_train_1, y_test_1 = train_test_split(
   X_1, y_1, test_size=0.2, random_state=42
# 4. Preprocess features
# ==============
preprocessor_1 = ColumnTransformer(
   transformers=[
       ("cat", OneHotEncoder(handle_unknown="ignore"),
categorical_cols_1),
      ("num", StandardScaler(), numeric_cols_1),
   ]
)
X_train_processed_1 = preprocessor_1.fit_transform(X_train_1)
X_test_processed_1 = preprocessor_1.transform(X_test_1)
# 5. Define models_1
models_1 = {
   "LinearRegression": LinearRegression(),
   "RandomForest": RandomForestRegressor(
       n_estimators=500,
      max_depth=10,
      min_samples_leaf=2,
      max_features="sqrt",
       random_state=42,
       n_jobs=-1,
```

```
),
    "GradientBoosting": GradientBoostingRegressor(
        n_estimators=500, learning_rate=0.05, max_depth=5, random_state=42
    ),
    "XGBoost": XGBRegressor(
        n estimators=500,
        learning_rate=0.05,
        \max depth=6,
        subsample=0.8,
        colsample_bytree=0.8,
        random_state=42,
    ),
    "LightGBM": LGBMRegressor(
        n_estimators=500,
        learning rate=0.05,
        \max depth=-1,
        num leaves=31,
        subsample=0.8,
        colsample bytree=0.8,
        random state=42,
        verbose=-1,
    ),
    "CatBoost": CatBoostRegressor(
        iterations=500, learning_rate=0.05, depth=6, random_state=42,
verbose=0
    ),
}
# ==========
# 6. Train & evaluate
results 1 = \{\}
true_avg_salary_1 = y_test_1.mean() # True average salary
for name, model in models_1.items():
    model.fit(X_train_processed_1, y_train_1)
    y_pred_1 = model.predict(X_test_processed_1)
    r2_1 = r2_score(y_test_1, y_pred_1)
    mae_1 = mean_absolute_error(y_test_1, y_pred_1)
    rmse_1 = root_mean_squared_error(y_test_1, y_pred_1)
    pred_avg_salary_1 = y_pred_1.mean() # Predicted average salary
    results_1[name] = {
        "R<sup>2</sup>": r2_1,
        "MAE": mae 1,
        "RMSE": rmse_1,
        "Predicted Avg Salary": pred_avg_salary_1,
        "True Avg Salary": true_avg_salary_1,
        "MAE % of Avg": (mae_1 / true_avg_salary_1) * 100,
        "RMSE % of Avg": (rmse_1 / true_avg_salary_1) * 100,
    }
# Convert to DataFrame for easy comparison
results_1_df = pd.DataFrame(results_1).T
```

```
results_1_df = results_1_df.sort_values(by="R2", ascending=False)
print(results_1_df.to_string(line_width=10000))
print("\nBest model based on R2 (first try):", results_1_df.index[0])
```

```
(1024, 11)
                       R^2
                                    MAE
                                                 RMSE Predicted Avg
Salary True Avg Salary MAE % of Avg RMSE % of Avg
LinearRegression 0.629053 27303.373122 35368.517685
120906.412330
                123309.063415
                                  22.142227
                                                 28.682821
                 0.616604 28005.258412 35957.105376
CatBoost
122872.555382
                123309.063415
                                  22.711436
                                                 29,160148
RandomForest
                0.606062 29080.926635 36448.131228
124015.973678
               123309.063415 23.583771
                                                 29.558355
LightGBM
                0.592627 29326.523212 37064.429899
122512.490878
                123309.063415
                                  23.782942
                                                 30.058155
GradientBoosting 0.588988 28621.231316 37229.615673
123475.372894
                123309.063415
                                  23,210971
                                                 30.192116
XGBoost
                 0.568748 29118.501412 38135.275702
123119.304688
                123309.063415
                                23.614243
                                                 30.926580
Best model based on R<sup>2</sup> (first try): LinearRegression
/opt/homebrew/lib/python3.13/site-
packages/sklearn/utils/validation.py:2739: UserWarning: X does not have
valid feature names, but LGBMRegressor was fitted with feature names
 warnings.warn(
```

Linear Regression

```
plt.scatter(y_test_1, y_pred_lin_1, alpha=0.5, edgecolor="k")
plt.plot(
    [y_test_1.min(), y_test_1.max()],
    [y_test_1.min(), y_test_1.max()],
    color="red",
    linewidth=2,
    label="Perfect Prediction",
)

plt.xlabel("Actual Salary (USD)")
plt.ylabel("Predicted Salary (USD)")
plt.title(f"Linear Regression: Predicted vs Actual (R² = {r2:.3f})")
plt.legend()
plt.tight_layout()
plt.show()
```

Linear Regression → RMSE: 35368.52, R²: 0.629

Features Importance

```
# ==========
# 7. Aggregate feature importances by original feature (LinearRegression)
# Get coefficients from LinearRegression
linreg_coefs_1 = models_1["LinearRegression"].coef_
# Use same OHE feature names as before
ohe_1 = preprocessor_1.named_transformers_["cat"]
ohe features 1 = ohe 1.get feature names out(categorical cols 1)
all_features_1 = list(ohe_features_1) + numeric_cols_1
# Map back to original columns
def map_to_original(feature_name_1):
    for col_1 in categorical_cols_1:
       if feature name 1.startswith(col 1 + " "):
           return col 1
   if feature_name_1 in numeric_cols_1:
       return feature_name_1
    return feature_name_1
original_features = [map_to_original(f) for f in all_features_1]
# Aggregate absolute coefficients as importance
feature importance salaries data frame 1 = (
    pd.DataFrame({"feature": original_features, "importance":
abs(linreg_coefs_1)})
    .groupby("feature")
    sum()
    .sort_values(by="importance", ascending=False)
    .reset_index()
)
print("\n=== Aggregated Feature Importances (LinearRegression
coefficients) ===")
print(feature_importance_salaries_data_frame_1)
```

```
=== Aggregated Feature Importances (LinearRegression coefficients) ===
             feature
                         importance
0
  employee_residence 861523.318181
1
     company_location 821887.349490
    experience_level 113766.160440
2
3
           job_title 65834.525101
4
        company_size 18510.995165
5
           work_year 4035.817322
6
        remote_ratio 871.710623
```


Second Training (Removing Work Year, Company Size and Remote Ratio)

```
GradientBoostingRegressor
from sklearn.metrics import root_mean_squared_error, r2_score,
mean absolute error
from sklearn.preprocessing import OneHotEncoder
print(salaries_data_frame.shape)
# 2. Define features & target
features_2 = ["experience_level", "job_title", "employee_residence",
"company_location"]
X = salaries data frame[features 2]
X. shape
y = salaries data frame["salary in usd"]
y.shape
# 3. Split dataset
X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(
   X, y, test_size=0.2, random_state=42
# ==============
# 4. Preprocess features
preprocessor 2 = ColumnTransformer(
   transformers=[("cat", OneHotEncoder(handle_unknown="ignore"),
features_2)]
)
X_train_processed_2 = preprocessor_2.fit_transform(X_train_2)
X_test_processed_2 = preprocessor_2.transform(X_test_2)
# 5. Define models_2
# ===============
models_2 = {
   "LinearRegression": LinearRegression(),
   "RandomForest": RandomForestRegressor(
       n estimators=500,
       max_depth=10,
       min_samples_leaf=2,
       max_features="sqrt",
       random_state=42,
       n_jobs=-1,
   ),
   "GradientBoosting": GradientBoostingRegressor(
       n_estimators=500, learning_rate=0.05, max_depth=5, random_state=42
   ),
```

```
"XGBoost": XGBRegressor(
        n estimators=500,
        learning_rate=0.05,
       max_depth=6,
        subsample=0.8,
        colsample bytree=0.8,
        random_state=42,
    ),
    "LightGBM": LGBMRegressor(
       n estimators=500,
        learning_rate=0.05,
       max depth=-1,
        num leaves=31,
        subsample=0.8,
        colsample bytree=0.8,
        random_state=42,
       verbose=-1,
    "CatBoost": CatBoostRegressor(
        iterations=500, learning_rate=0.05, depth=6, random_state=42,
verbose=0
   ),
}
# ==========
# 6. Train & evaluate
results 2 = \{\}
true_avg_salary = y_test_2.mean() # True average salary
for name, model in models 2.items():
    model.fit(X_train_processed_2, y_train_2)
    y_pred_2 = model.predict(X_test_processed_2)
    rmse_2 = root_mean_squared_error(y_test_2, y_pred_2)
    mae_2 = mean_absolute_error(y_test_2, y_pred_2)
    r2_2 = r2_score(y_test_2, y_pred_2)
    pred_avg_salary_2 = y_pred_2.mean() # Predicted average salary
    results_2[name] = {
       "R<sup>2</sup>": r2 2,
        "MAE": mae_2,
        "RMSE": rmse_2,
        "Predicted Avg Salary": pred_avg_salary_2,
    }
# Convert to DataFrame for easy comparison
results_df_2 = pd.DataFrame(results_2).T
results_df_2 = results_df_2.sort_values(by="R2", ascending=False)
print(results_df_2)
print("\nBest model based on R2:", results_df_2.index[0])
```

```
(1024, 11)
                        R^2
                                     MAE
                                                  RMSE Predicted Avg
Salary
LinearRegression 0.627127 27612.691817 35460.262713
120270.467793
CatBoost
                  0.615005
                            28061.036067 36032.043269
122543.885647
                  0.609749 27990.598879 36277.145824
GradientBoosting
123513.312532
XGBoost
                  0.601621 28507.822847 36652.996185
123548.078125
                  0.599430 29243.640004 36753.630485
RandomForest
123197.168178
                  0.588351 29757.696103 37258.456403
LightGBM
122402.832104
Best model based on R<sup>2</sup>: LinearRegression
/opt/homebrew/lib/python3.13/site-
packages/sklearn/utils/validation.py:2739: UserWarning: X does not have
valid feature names, but LGBMRegressor was fitted with feature names
  warnings.warn(
```

Third Try (Add Work Year Again)

```
# ==========
# 1. Import libraries
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressor
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor
from sklearn.metrics import root_mean_squared_error, r2_score,
mean absolute error
from sklearn.preprocessing import StandardScaler, OneHotEncoder
print(salaries_data_frame.shape)
# ===============
# 2. Define features & target
# ===============
categorical_cols_3 = [
   "experience_level",
```

```
"job_title",
   "employee residence",
   "company_location",
numeric cols 3 = ["work year"]
features = categorical_cols_3 + numeric_cols_3
X 3 = salaries data frame[features]
X 3.shape
y_3 = salaries_data_frame["salary_in_usd"]
y_3.shape
# 3. Split dataset
X_train_3, X_test_3, y_train_3, y_test_3 = train_test_split(
   X 3, y 3, test size=0.2, random state=42
# 4. Preprocess features
preprocessor_3 = ColumnTransformer(
   transformers=[
       ("cat", OneHotEncoder(handle_unknown="ignore"),
categorical_cols_3),
       ("num", StandardScaler(), numeric_cols_3),
)
X_train_processed_3 = preprocessor_3.fit_transform(X_train_3)
X_test_processed_3 = preprocessor_3.transform(X_test_3)
# 5. Define models 1
models_3 = {
   "LinearRegression": LinearRegression(),
   "RandomForest": RandomForestRegressor(
       n_estimators=500,
       max_depth=10,
       min_samples_leaf=2,
       max_features="sqrt",
       random_state=42,
       n_jobs=-1,
   ),
   "GradientBoosting": GradientBoostingRegressor(
       n_estimators=500, learning_rate=0.05, max_depth=5, random_state=42
   ),
   "XGBoost": XGBRegressor(
       n_estimators=500,
       learning_rate=0.05,
       max_depth=6,
```

```
subsample=0.8,
       colsample bytree=0.8,
       random_state=42,
    ),
   "LightGBM": LGBMRegressor(
       n estimators=500,
       learning rate=0.05,
       max depth=-1,
       num leaves=31,
       subsample=0.8,
       colsample_bytree=0.8,
       random_state=42,
       verbose=-1,
   ),
   "CatBoost": CatBoostRegressor(
        iterations=500, learning_rate=0.05, depth=6, random_state=42,
verbose=0
   ),
}
# ==============
# 6. Train & evaluate
# ===========
results 3 = \{\}
true_avg_salary_3 = y_test_3.mean() # True average salary
for name, model in models_3.items():
   model.fit(X_train_processed_3, y_train_3)
   y_pred_3 = model.predict(X_test_processed_3)
   r2_3 = r2_score(y_test_3, y_pred_3)
   mae_3 = mean_absolute_error(y_test_3, y_pred_3)
   rmse_3 = root_mean_squared_error(y_test_3, y_pred_3)
   pred_avg_salary_3 = y_pred_3.mean() # Predicted average salary
    results_3[name] = {
       "R^2": r2_3,
       "MAE": mae_3,
       "RMSE": rmse 3,
       "Predicted Avg Salary": pred_avg_salary_3,
       "True Avg Salary": true_avg_salary_3,
       "MAE % of Avg": (mae_3 / true_avg_salary_3) * 100,
       "RMSE % of Avg": (rmse_3 / true_avg_salary_3) * 100,
   }
# Convert to DataFrame for easy comparison
results_3_df = pd.DataFrame(results_3).T
results_3_df = results_3_df.sort_values(by="R2", ascending=False)
print(results_3_df.to_string(line_width=10000))
print("\nBest model based on R2 (third try):", results_3_df.index[0])
```

```
(1024, 11)
                       R^2
                                    MAE
                                                 RMSE Predicted Avg
Salary True Avg Salary MAE % of Avg RMSE % of Avg
LinearRegression 0.633920 27537.129602 35135.728152
120678.288725
                123309.063415
                                  22.331797
                                                 28,494035
CatBoost
                 0.627474 27833.232327 35443.753920
121734.009514
                123309,063415
                                  22.571927
                                                 28.743835
GradientBoosting 0.612539 28147.782603 36147.263382
122598.011727
                                  22.827018
               123309.063415
                                                 29.314361
RandomForest
                 0.606847 28923.872697 36411.778818
123142.905195
                123309,063415
                                  23.456404
                                                 29.528875
                 0.591634 29415.146085 37109.596027
LightGBM
121173.885429
                123309.063415
                                  23.854813
                                                 30.094784
XGBoost
                 0.581715 29218.391549 37557.537273
121785.054688
                123309.063415
                                  23.695251
                                                 30.458051
Best model based on R<sup>2</sup> (third try): LinearRegression
/opt/homebrew/lib/python3.13/site-
packages/sklearn/utils/validation.py:2739: UserWarning: X does not have
valid feature names, but LGBMRegressor was fitted with feature names
  warnings.warn(
```

Linear Regression

```
import matplotlib.pyplot as plt
# Fit Linear Regression only
lin_model = LinearRegression()
lin_model.fit(X_train_processed_3, y_train_3)
# Predictions
y_pred_lin_3 = lin_model.predict(X_test_processed_3)
# Evaluation
rmse = root_mean_squared_error(y_test_3, y_pred_lin)
r2 = r2_score(y_test_3, y_pred_lin_3)
print(f"Linear Regression → RMSE: {rmse:.2f}, R²: {r2:.3f}")
# ====== Plot Predicted vs Actual ======
plt.figure(figsize=(6, 6))
plt.scatter(y_test_1, y_pred_lin_3, alpha=0.5, edgecolor="k")
plt.plot(
    [y_test_3.min(), y_test_3.max()],
    [y_test_3.min(), y_test_3.max()],
    color="red",
    linewidth=2,
```

```
label="Perfect Prediction",
)

plt.xlabel("Actual Salary (USD)")
plt.ylabel("Predicted Salary (USD)")
plt.title(f"Linear Regression: Predicted vs Actual (R² = {r2:.3f})")
plt.legend()
plt.tight_layout()
plt.show()
```

Linear Regression \rightarrow RMSE: 35368.52, R²: 0.634

Feature Coefficent

```
# Get coefficients from LinearRegression
linreg_coefs_3 = models_3["LinearRegression"].coef_
# Use same OHE feature names as before
ohe 3 = preprocessor 3.named transformers ["cat"]
ohe_features_3 = ohe_3.get_feature_names_out(categorical_cols_3)
all features 3 = list(ohe features 3) + numeric cols 3
# Map back to original columns
def map_to_original(feature_name):
    for col_3 in categorical_cols_3:
        if feature_name.startswith(col_3 + "_"):
            return col 3
    if feature_name in numeric_cols_3:
        return feature_name
    return feature name
original_features_3 = [map_to_original(f_3) for f_3 in all_features_3]
# Aggregate absolute coefficients as importance
feature_importance_salaries_data_frame_3 = (
    pd.DataFrame({"feature": original_features_3, "importance":
abs(linreg_coefs_3)})
    .groupby("feature")
    sum()
    .sort_values(by="importance", ascending=False)
    .reset_index()
)
print("\n=== Aggregated Feature Importances (LinearRegression
coefficients) ===")
print(feature_importance_salaries_data_frame_3)
```

```
data=feature_importance_salaries_data_frame_3)
plt.title("Aggregated Feature Importances (LinearRegression
Coefficients)")
plt.xlabel("Importance (absolute coefficient)")
plt.ylabel("Feature")
plt.tight_layout()
plt.show()
```


Group Employees by Job Title, Experience Level, Employee Residence, Company Location

```
import pandas as pd

# Group by multiple columns
grouped = (
    salaries_data_frame.groupby(
        ["job_title", "experience_level", "employee_residence",
"company_location"]
    )["salary_in_usd"]
    .agg(count="count", mean_salary="mean", median_salary="median")
    .reset_index()
)

# Round salaries
grouped["mean_salary"] = grouped["mean_salary"].round(0)
grouped["median_salary"] = grouped["median_salary"].round(0)

# Add percentage column
total_count = grouped["count"].sum()
```

```
grouped["percentage"] = (grouped["count"] / total_count * 100).round(2)
# Remove rows with count = 0 (safety check)
grouped = grouped[grouped["count"] > 0]
# Sort by count (descending)
grouped = grouped.sort_values(by="count", ascending=False)
# Reorder columns
grouped = grouped[
        "job_title",
        "experience_level",
        "employee_residence",
        "company_location",
        "count",
        "percentage",
        "mean_salary",
        "median_salary",
]
# Show result
print(grouped.to_string(index=False, line_width=10000))
```

	_	-	=	e_level employee	
comp	any_lo	cation count p	_		_ ·
		Data Engineer		SE	US
US	216		154309.0		
		Data Scientist		SE	US
US	212	20.70	165500.0		
		Data Analyst		SE	US
US	114	11.13	121276.0	115467.0	
Mach	ine Lea	arning Engineer		SE	US
US	52	5.08	177997.0	183000.0	
		Data Engineer		MI	US
US	35	3.42	117558.0	110000.0	
		Data Analyst		MI	US
US	29	2.83	109606.0	110000.0	
		Data Scientist		MI	US
US	28	2.73	129219.0	130000.0	
		Data Engineer		MI	GB
GB	27	2.64	84430.0	82528.0	
		Data Engineer		EN	US
US	16	1.56	82625.0	82500.0	
		Data Scientist		MI	GB
GB	16	1.56	86411.0	78497.0	
		Data Analyst		EN	US
US	15	1.46	74620.0	72000.0	
		Data Engineer		EX	US

	40 407	205020 0	207222		
US	13 1.27				
		ist		US	
US	11 1.07				
		ist	SE	CA	
CA	10 0.98	169443.0	175500.0		
	Data Analy		MI	GB	
GB	9 0.88	50965.0	49253.0		
Mach.	ine Learning Engine	eer	EN	US	
US	8 0.78	137635.0	131500.0		
Mach.	ine Learning Engine	eer	MI	US	
US	7 0.68	203479.0	193900.0		
	Data Analy		SE	CA	
CA				-	
.		eer	MI	GR	
GR	6 0.59			O.K	
OI (eer	SE	GB	
GB		88682.0		QD.	
GБ		eer	MI	ES	
EC				E3	
ES	6 0.59			FC	
- C	Data Scient:		SE 42460 0	ES	
ES	6 0.59			TA 1	
		eer	EN	IN	
IN	5 0.49				
	Data Scient:		MI	IN	
IN	5 0.49				
		ist	MI	DE	
DE	5 0.49		88654.0		
	Data Scient:	ist	EN	FR	
FR	4 0.39	44382.0	44781.0		
	Data Scient:	ist	EX	US	
US	4 0.39	197188.0	192500.0		
	Data Scient:	ist	EN	IN	
IN	4 0.39	24712.0	25646.0		
	Data Scient:	ist	MI	NL	
NL		83265.0	81426.0		
	Data Analy		EN	CA	
CA		53221.0	52000.0	5	
	ine Learning Engine		MI	GB	
GB	3 0.29		116976.0	QD	
GD	Data Analy		MI	GR	
GR	•	31182 . 0	31520.0	UN	
				GB	
	ine Learning Engine		EN	UD	
GB		40168.0	35093.0	CD	
	Data Engine		EN	GB	
GB		45913.0	45390.0		
	Data Scient:		MI	ES	
ES		41137.0	38776.0		
	Data Engine		SE	PR	
PR	2 0.20	167500.0	167500.0		
	Data Scient:	ist	MI	CA	
CA	2 0.20	71686.0	71686.0		

ES	2		36773.0	36773.0	
	Dat	a Analyst		MI	CA
CA	2	0.20	80000.0	80000.0	
	Dat	a Analyst		EX	US
US	2	0.20	120000.0	120000.0	
Machine	Learning	Engineer		SE	IN
	_	_	45304.0	45304.0	
		Engineer		SE	PR
			167500.0		
		Scientist		EN	BE
BE			68030.0		
DL		Scientist		EN	CA
CA			51417.0		
CA					
DE		Scientist		EN FF007 0	DE
DE			55997.0		
		a Analyst		EN	FR
FR	2		43735.0		
		Engineer		SE	CA
CA	2		161600.0		
	Data	Engineer		MI	TR
TR	2	0.20	20060.0	20060.0	
	Data	Engineer		MI	DE
DE	2	0.20	62484.0	62484.0	
	Dat	a Analyst		SE	CF
CF	2		48609.0	48609.0	
	Dat	a Analyst		SE	GB
GB	2	0.20	73880.0	73880.0	
	Dat	a Analyst		SE	ES
ES		0.20		43602.0	
		Engineer		SE	AE
	_	_	92500.0	92500.0	
AL		Scientist		SE	FR
FR			65438.0	65438.0	
IN				SE	IE
TE		Scientist	142500.0		
IE	2			142500.0	
D.E.		Engineer		EN	PK
DE	2		55108.0	55108.0	
		Engineer		MI	FR
	2		67640.0	67640.0	
	_	Engineer		SE	CA
CA	2	0.20	105000.0	105000.0	
	Data	Scientist		SE	GB
GB	2	0.20	104663.0	104663.0	
	Data	Scientist		SE	TR
TR	1	0.10	20171.0	20171.0	
	Data	Scientist		MI	TR
				25000.0	
TR		0.10	25000 . 0	23000.0	
TR	1				
	1 Data	Scientist		SE	BR
US	1 Data		100000.0	SE	BR

611						
СН				56536.0	r.c	
GB		Scientist		SE 88256.0	ES	
GD		Scientist		SE	GR	
US				68428.0	UN	
03		Scientist		SE	АТ	
AT				91237.0	A I	
		Engineer		MI	FR	
	_	_		84053.0		
		Engineer		EN	CO	
CO	1	0.10	21844.0	21844.0		
Machine	Learning	Engineer		EN	DE	
DE	1	0.10	24823.0	24823.0		
Machine	Learning	Engineer		SE	PT	
US	1	0.10	150000.0	150000.0		
	_	Engineer		SE	NL	
				59888.0		
					IE	
				68293.0		
		Engineer		SE	HR	
				45618.0	F.T.	
		Engineer		SE 63040 0	FI	
		Engineer		63040 . 0 SE	DE	
	_	_		94564.0	νε	
		Engineer		SE	BE	
				82744.0	DL	
		Engineer		MI	SI	
				24823.0		
		Engineer		MI	PL	
PL	1	-	46597.0			
Machine	Learning	Engineer		MI	NL	
NL	1	0.10	96578.0	96578.0		
Machine	Learning	Engineer		MI	JP	
JP	1	0.10	74000.0	74000.0		
	_	Engineer		MI	IT	
IT	1	0.10	51064.0	51064.0		
	_	Engineer		MI	IN	
IN	1	0.10		20984.0	B.I.	
шс		Scientist		MI	RU	
US Machine	1	0.10		48000.0	ГC	
	1	Engineer 0.10		MI 47282.0	ES	
		Engineer		47282.0 MI	BE	
BE	1	0.10		88654.0	DL	
		Engineer		MI	AU	
	1		83864.0	83864.0	,10	
		Engineer		EN	NL	
DE	1	_	85000.0	85000.0		
		Engineer		EN	IN	
IN	1	0.10		20000.0		

		Data Scientist			SG	
IL	1	0.10				
		Data Analyst		EN	AR	
AR	1			50000.0	D.C.	
D.E.	4	Data Scientist		MI	RS	
DE	1				D.F.	
DE	1	Data Analyst		SE COROLL O	DE	
DE	1		63831.0		NII	
NL	1	Data Engineer		MI 45391 . 0	NL	
INL	T	Data Engineer		45591.0 MI	MT	
MT	1		28369.0		ri i	
MII		Data Engineer		28309 . 0	НК	
GB	1	_		66022.0	TIIX	
GD	_	Data Engineer		MI	ES	
US	1			130800.0	23	
	-	Data Engineer		MI	AT	
AT	1	_		74130.0		
		Data Engineer		EN	NL	
NL	1			59888.0		
		Data Engineer		EN	JP	
JP	1			41689.0		
		Data Engineer		EN	DE	
DE	1	0.10	65013.0	65013.0		
		Data Analyst		SE	PH	
PH	1	0.10	50000.0	50000.0		
		Data Analyst		SE	BG	
US	1	0.10	80000.0	80000.0		
		Data Engineer		MI	R0	
US	1	0.10	26005.0	26005.0		
		Data Analyst		MI	SG	
SG	1		65257.0	65257.0		
		Data Analyst		MI	PK	
PK	1	0.10	8000.0	8000.0		
TAI	4	Data Analyst	F722 A	MI	IN	
IN	1	0.10	5723.0	5723 . 0	ED.	
ED	1	Data Analyst	46759.0	MI 46759 . 0	FR	
FR	1	0.10 Data Analyst	40/59.0	46759.0 EN	PT	
PT	1	0.10	22809.0	22809.0	F1	
1 1		Data Analyst	2200910	EN	NG	
NG	1	0.10	10000.0	10000.0	140	
110	-	Data Analyst	1000010	EN	IN	
IN	1	0.10	6072.0	6072.0		
	_	Data Analyst	20.2.0	EN	ID	
ID	1	0.10	15000.0	15000.0		
		Data Analyst		EN	FR	
IN	1	0.10	6359.0	6359.0		
		Data Engineer		MI	PL	
PL	1	0.10	28476.0	28476.0		
		Data Engineer		SE	ES	

IIC	1	0 10	103000 0	193000.0		
05		Data Scientist			PL	
PL		0.10			r L	
F L		Data Scientist			CL	
CL		0.10			CL	
CL		Data Scientist			PH	
US		0.10			1 11	
0.5		Data Scientist		43700 . 0	NG	
NG		0.10			110	
110		Data Scientist			IN	
US		0.10			2.1	
	_	Data Scientist		MI	IN	
ID	1	0.10				
		Data Scientist			HU	
HU		0.10				
		Data Scientist			HK	
HK	1	0.10	65062.0	65062.0		
		Data Scientist			FR	
LU	1	0.10	62726.0	62726.0		
		Data Scientist		MI	FR	
FR	1	0.10	42197.0	42197.0		
		Data Scientist		MI	DE	
AT	1	0.10	61467.0	61467.0		
		Data Scientist			СН	
CH		0.10				
		Data Engineer			GR	
GR	1	0.10				
		Data Scientist			BR	
BR	1	0.10	12901.0			
		Data Analyst		EN	BR	
BR	1	0.10				
		Data Scientist		EN	UA	
UA	1	0.10				
BAN /		Data Scientist		EN	JP	
MY	1	0.10			50	
ГС	1	Data Scientist		EN 21520 0	ES	
ES	1	0.10		31520.0	A11	
A11	1	Data Scientist 0.10		EN 83171.0	AU	
AU	1	Data Engineer		631/1 . 0	ES	
ES	1	_			L3	
LJ	1	Data Engineer		79033.0 SE	R0	
GB	1	0.10			NO	
OD.	1	Data Engineer		70833 . 0	MX	
MX	1	0.10			11/1	
11/		Data Scientist		EN	US	
DE	1	0.10				
	_					

/var/folders/jh/z981c7zj0vz0gmyfc8mhdxdr0000gn/T/ipykernel_6856/3461952642 .py:5: FutureWarning: The default of observed=False is deprecated and will

be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

salaries_data_frame.groupby(

```
# 1. Create new samples with STRING values and updated realistic salary
fields
new samples = pd.DataFrame(
    [
        {
            "work year": 2023,
            "experience level": "SE",
            "employment_type": "FT",
            "job_title": "Data Scientist",
            "employee_residence": "US", ## United States
            "company_location": "US", ## United States
            "company_size": "M",
            "remote_ratio": 100,
            "salary": 160000,
            "salary_currency": "USD",
            "salary_in_usd": 160000,
        },
            "work year": 2023,
            "experience_level": "MI",
            "employment_type": "FT",
            "job_title": "Data Engineer",
            "employee_residence": "GB", ## United Kingdom
            "company_location": "GB", ## United Kingdom
            "company_size": "L",
            "remote_ratio": 50,
            "salary": 82528.0,
            "salary_currency": "USD",
            "salary_in_usd": 82528.0,
        },
            "work_year": 2023,
            "experience_level": "EN",
            "employment_type": "FT",
            "job_title": "Data Analyst",
            "employee_residence": "BR", ## Brazil
            "company_location": "BR", ## Brazil
            "company_size": "S",
            "remote_ratio": 0,
            "salary": 8000,
            "salary_currency": "USD",
            "salary_in_usd": 8000,
        },
    ]
)
```

```
# 2. Drop target columns (keep only features the model expects)
X_new = new_samples.drop(columns=["salary", "salary_currency",
"salary in usd"])
# 3. Apply the SAME preprocessing pipeline you used for training
X_new_processed = preprocessor_3.transform(X_new)
# 4. Predict using the trained model
predictions = models_3["LinearRegression"].predict(X_new_processed)
# 5. Attach predictions back
new_samples["predicted_salary_usd"] = predictions.round(2)
import numpy as np
# 6. Compute error percentage
new_samples["error_percentage"] = (
    (new_samples["predicted_salary_usd"] - new_samples["salary_in_usd"])
    / new samples["salary in usd"]
    * 100
) round(2)
# 7. Add comment about acceptability (e.g., <20% is okay in salary
prediction)
new_samples["comment"] = np.where(
    new_samples["error_percentage"].abs() <= 20, "▼ Acceptable", "△ High
Error"
)
# 8. Print results clearly
print(new_samples.to_string(index=False, line_width=10000))
```

```
work_year experience_level employment_type
                                              job_title
employee_residence company_location company_size remote_ratio
salary_currency salary_in_usd predicted_salary_usd error_percentage
comment
                                         FT Data Scientist
      2023
                         SE
                 US
US
                               М
                                           100 160000.0
                                                                    USD
160000.0
                     166271.88
                                            3.92 ✓ Acceptable
      2023
                         ΜI
                                         FT Data Engineer
GB
                 GB
                               L
                                            50 82528.0
                                                                    USD
82528.0
                     86858.68
                                           5.25 V Acceptable
      2023
                                              Data Analyst
                         ΕN
BR
                 BR
                               S
                                                 8000.0
                                                                    USD
8000.0
                   -13262.27
                                       -265.78 △ High Error
```