ПЛАН-КОНСПЕКТ ЛАБОРАТОРНОГО ЗАНЯТТЯ з дисципліни «Математичні основи ІТ»

Викладач: студент групи 641м Бужак Андрій

Дата проведення: 30.09.2021

Група: 143(3)

Вид заняття: лабораторна робота **Тривалість пари:** 80 хвилин

Тема: Матричні рівняння. СЛАР та їх застосування.

Мета: ознайомлення студентів із основними поняттями та алгоритмами розв'язування матричних рівнянь та СЛАР; набуття практичних навичок побудови математичних моделей задач; оволодіння методикою розв'язування вищевказаних задач з використанням прикладних пакетів MathCad ma/aбo SMath Studio.

ХІД ЗАНЯТТЯ

1. Актуалізація опорних знань, повідомлення теоретичного матеріалу (до 20 хв.).

🧣 Теоретичні відомості

Для розв'язування матричних рівнянь у *MathCad/SMath Studio* використовуються стандартні матричні операції знаходження оберненої матриці та множення матриць.

Нагадаємо алгоритм розв'язування матричних рівнянь (за умови, що відповідні обернені матриці існують):

Рівняння 1-го типу
 Рівняння 2-го типу
 Рівняння 3-го типу

$$A \cdot X = B$$
 $X \cdot A = B$
 $C \cdot X \cdot A = B$
 $A^{-1} \cdot A \cdot X = A^{-1} \cdot B$
 $X \cdot A \cdot A^{-1} = B \cdot A^{-1}$
 $(C^{-1} \cdot C) \cdot X \cdot (A \cdot A^{-1}) = C^{-1} \cdot B \cdot A^{-1}$
 $X = A^{-1} \cdot B$
 $X = B \cdot A^{-1}$
 $X = C^{-1} \cdot B \cdot A^{-1}$

Для реалізації у $MathCad/SMath\ Studio$ потрібно ввести відомі матриці (A, B для рівнянь 1-го та 2-го типів або A, B, C - для рівняння третього типу) та формулу, за якою знаходиться невідома матриця X. Наприклад, покажемо, як у $MathCad/SMath\ Studio$ реалізується розв'язування матричного рівняння

$$\begin{pmatrix} 4 & 3 \\ 5 & 4 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}.$$

Очевидно, це рівняння 3-го типу з

$$C = \begin{pmatrix} 4 & 3 \\ 5 & 4 \end{pmatrix}, A = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}.$$

Тому невідома матриця X знаходиться за формулою $X = C^{-1} \cdot B \cdot A^{-1}$. Програмна реалізація у $MathCad/SMath\ Studio\$ наведена на рис. 1.1.

Якщо матриця, до якої потрібно знайти обернену, є виродженою, то

розв'язок відповідного матричного рівняння не буде знайдено, натомість *MathCad/SMath Studio* видаєть повідомлення про виявлену сингулярність, тобто операцію ділення на нуль (рис. 1.2)

Розв'язати матричне рівняння

Puc. 1.1. Реалізація розв'язування матричного рівняння в MathCad/SMath Studio

Розв'язати матричне рівняння

Рис. 1.2. Випадок розв'язування матричного рівняння в MathCad/SMath Studio, коли одна із відомих матриць у лівій частині рівняння ϵ виродженою

У прикладі з рис. 1.2 матриця C є виродженою, тому обернена матриця C^{-1} до матриці C підсвічується червоним і $MathCad/SMath\ Studio$ видає підказку про знайдену сингулярність.

Щодо розв'язування СЛАР, то у MathCad для цього ϵ більше можливостей, ніж у $SMath\ Studio$. Однаково в обох пакетах реалізуються матричний метод та метод Крамера (їх реалізація можлива у випадку, коли кількість рівнянь m в системі дорівнює кількості невідомих n і головна матриця A системи AX = B ϵ невиродженою).

- \square Для розв'язування СЛАР $A \cdot X = B$ з квадратною невиродженою матрицею A матричним методом у MathCad/SMath Studio потрібно виконати наступний алгоритм:
 - 1. Задати матриці A та B (головну матрицю системи та вектор-стовпчик правих частин).

Розв'язати задану СЛАР матричним методом:

$$x1 + 2x2 + 3x3 = 7$$

 $x1 - 3x2 + 2x3 = 5$
 $x1 + x2 + x3 = 3$

Дана СЛАР еквівалентна матричному рівнянню АХ=В, де

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 1 & -3 & 2 \\ 1 & 1 & 1 \end{pmatrix} \qquad B := \begin{pmatrix} 7 \\ 5 \\ 3 \end{pmatrix}$$

Puc. 2.1. Реалізація матричного методу розв'язування СЛАР в MathCad/SMath Studio: введення матриць

- 2. Побудувати обернену матрицю A^{-1} (можна не виводити $\ddot{\text{i}}$ окремо).
- 3. Знайти вектор-стовпчик невідомих $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ за формулою $X = A^{-1} \cdot B$.

Тоді:
$$X := A^{-1} \cdot B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
 тобто $x1 = 1, x2 = 0, x3 = 2$

Puc. 2.2. Реалізація матричного методу розв'язування СЛАР в MathCad/SMath Studio: знаходження розв'язку СЛАР

4. Зробити перевірку (підставити знайдені числові значення x_1 , x_2 ,..., x_n у кожне рівняння заданої СЛАР і переконатись, що отримуються тотожності або обчислити добуток матриць AX і порівняти його з матрицею B):

Перевірка:
$$x1 := 1$$
 $x2 := 0$ $x3 := 2$
$$x1 + 2x2 + 3x3 = 7 \\ x1 - 3x2 + 2x3 = 5 \\ x1 + x2 + x3 = 3$$
 або $A \cdot X = \begin{pmatrix} 7 \\ 5 \\ 3 \end{pmatrix}$ $B := \begin{pmatrix} 7 \\ 5 \\ 3 \end{pmatrix}$

Puc. 2.3. Реалізація матричного методу розв'язування СЛАР в MathCad/SMath Studio: перевірка

- \square Для розв'язування СЛАР $A \cdot X = B$ з квадратною невиродженою матрицею A методом Крамера в SMath Studio/ Math Cad потрібно:
 - 1. Задати матриці A та B, що ϵ відповідно головною матрицею заданої системи рівнянь та матрицею-стовпчиком правих частин.

Програмну реалізацію проілюструємо на прикладі СЛАР

$$\begin{cases} 5x + 6y + 2z + 5t = 5, \\ 4x + 3y + z + 5t = 1, \\ 2x - 2y + 5z + 3t = 6, \\ 4x + 3y + z + t = 1. \end{cases}$$

Puc. 3.1. Реалізація методу Крамера в SMath Studio/MathCad: введення початкових даних

2. Обчислити визначники: головний визначник системи Δ та допоміжні визначники Δ_1 , Δ_2 ,..., Δ_n . Для обчислення допоміжних визначників можна скористатись функцією **augment** (A; B; C), яка формує масив (матрицю), шляхом приписування справа до матриці A послідовно матриць B та C, тобто формує матрицю, яка склеює матриці A, B, C у заданому порядку. При цьому матриці A, B, C повинні мати однакову кількість рядків.

Puc. 3.2. Реалізація методу Крамера в SMath Studio/MathCad: обчислення визначників

3. Обчислити елементи вектор-стовпчика $X = (x_1, x_2, ..., x_n)^T$ за формулами

Крамера:
$$x_j = \frac{\Delta_j}{\Delta} \ (j \in \overline{1,n}).$$

Рис. 3.3. Реалізація методу Крамера в SMath Studio/MathCad: Знаходження розв'язку СЛАР за формулами Крамера

4. Зробити перевірку.

Рис. 3.4. Реалізація методу Крамера в SMath Studio/MathCad: перевірка

<u>Зауваження 1.</u> У *MathCad*, на відміну від *SMath Studio*, при використанні функції *augment(A,B,C, ...)* матриці, які підлягають "склеюванню" у функції *augment*, перелічуються через кому. Крім того, стовпці матриці у *MathCad* та *SMath Studio* виводяться по-різному. Так, наприклад:

Пакет	Реалізація обчислення першого допоміжного визначника у методі Крамера	
MathCad	$\Delta 1 := \left \operatorname{augment}(B, A^{\langle 2 \rangle}, A^{\langle 3 \rangle}) \right $	
	n=3	
SMath Studio	$\Delta 1 := \operatorname{augment}(B; \operatorname{col}(A; 2); \operatorname{col}(A; 3); \operatorname{col}(A; 4)) $ $n = 4$	

<u>Зауваження 2.</u> У *MathCad*, на відміну від *SMath Studio*, є вбудовані функції для розв'язування СЛАР: це блок *Given...Find()* та функція *Isolve(A, b)*. Розглянемо їх застосування на прикладі знаходження розв'язку СЛАР з попереднього прикладу (з алгоритму методу Крамера).

Puc. 4. Розв'язання СЛАР у MathCad з допомогою блоку Given...Find

Вхідними параметрами для функції lsolve(A,b) є головна матриця A заданої СЛАР та вектор-стовпчик b правих частин системи.

Рис. 5. Розв'язання СЛАР у MathCad з допомогою функції Isolve

Обидві розглянуті функції повертають розв'язок СЛАР у вигляді векторстовпчика $X = (x_1, x_2, ..., x_n)^T$.

☑ Для дослідження СЛАР за теоремою Кронеккера-Капеллі у MathCad/SMath Studio потрібно:

- 1. Задати матриці A та $Ar = \overline{A}$, що ϵ відповідно головною матрицею заданої системи рівнянь та матрицею-стовпчиком правих частин.
- 2. Знайти ранг матриці A та розширеної матриці $Ar = \overline{A}$.
- 3. Порівняти знайдені ранги і зробити висновок:

- \square якщо $rg(A) \neq rg(\overline{A})$ система несумісна;
- \square якщо $rg(A) = rg(\overline{A}) = r$ система сумісна, причому:
 - \square при r = n (ранг дорівнює кількості невідомих) система має *єдиний* розв'язок;
 - \square при r < n система має безліч розв'язків. Базисні змінні, коефіцієнти при яких увійшли в базисний мінор, виражаються лінійно через небазисні (вільні) змінні. Такий запис називається загальним розв'язком системи.

Puc. 6. Приклад дослідження СЛАР на сумісність за допомогою теореми Кронеккера- Капеллі в SMath Studio/MathCad

Зауваження 3. У MathCad СЛАР AX=B (з довільним співвідношенням між кількістю m рівнянь та невідомих n у системі) можна розв'язати методом Гаусса, використовуючи вбудовану функцію rref(M), яка зводить матрицю M=(A|B) до діагонального вигляду, тобто реалізує прямий та зворотній ходи метода Гаусса. У $SMath\ Studio$ ця функція не реалізована.

Puc. 7. Вбудована функція rref(M) у MathCad, яка зводить матрицю M до діагонального вигляду

Наведемо приклад розв'язування СЛАР методом Гаусса в MathCad.

Розв'язування СЛАР методом Гаусса

1. Задаємо А та В

2. Досліджуємо на сумісність за теоремою Кронеккера-Капеллі ORIGIN := 1

$$AR := augment(A,B)
ightarrow egin{pmatrix} 1 & 0 & -2 & 2 \\ 5 & 2 & 1 & 1 \\ 3 & 1 & 0 & 0 \end{pmatrix}$$
 Розширена матриця

$$n := 3$$

$$rank(A) \rightarrow 3 \qquad rank(AR) \rightarrow 3$$

Оскільки ранг основнї матриці дорівнює рангу розширеної матриці і дорівнює кількості невідомих, то за теоремою Кронеккера-Капеллі СЛАР має єдиний розв'язок

3. Знайдемо розв'язок методом Гаусса

 $G:= {
m rref}\,(AR)
ightarrow egin{pmatrix} 1 & 0 & 0 & -4 \ 0 & 1 & 0 \ 0 & 0 & 1 & -3 \end{pmatrix}$ Розширена матриця системи після проведення елементарних перетворень

$$X := G^{\langle 4 \rangle} = \begin{pmatrix} -4 \\ 12 \\ -3 \end{pmatrix}$$

4. Перевірка

$$A \cdot X = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

Рис. 8. Розв'язування СЛАР методом Гаусса в MathCad

Діагональній матриці G з рис. 8 відповідає СЛАР $\begin{cases} x_1 = -4, \\ x_2 = 12, \text{, тобто справді у} \\ x_3 = -3 \end{cases}$

такому випадку останній стовпець розширеної матриці дає нам вектор-стовпець розв'язків заданої СЛАР.

Для випадку, коли СЛАР невизначена (має безліч розв'язків) реалізація методу Гаусса виглядатиме так:

+

Дослідити СЛАР на сумісність та знайти її розв'язок (якщо він існує) методом Гаусса:

$$x1 + x2 - 7x3 - 2x4 = -1$$

 $-x1 + 2x2 - 5x3 - 7x4 = -5$
 $2x1 + x2 - 10x3 - x4 = 0$
 $-3x1 + 2x2 + x3 - 9x4 = -7$

Виписуємо головну матрицю системи та вектор-стовпчик правих частин

$$A := \begin{pmatrix} 1 & 1 & -7 & -2 \\ -1 & 2 & -5 & -7 \\ 2 & 1 & -10 & -1 \\ -3 & 2 & 1 & -9 \end{pmatrix}$$
 головна матриця $B := \begin{pmatrix} -1 \\ -5 \\ 0 \\ -7 \end{pmatrix}$ вектор-стовпчик правих частин

Утворюємо розширену матрицю системи

$$Ar := augment(A,B) = \begin{pmatrix} 1 & 1 & -7 & -2 & -1 \\ -1 & 2 & -5 & -7 & -5 \\ 2 & 1 & -10 & -1 & 0 \\ -3 & 2 & 1 & -9 & -7 \end{pmatrix}$$
 розширена матриця системи

Знаходимо ранги головної та розширеної матриць

$$r1 := rank(A) = 2$$
 $r2 := rank(Ar) = 2$

<u>Висновок</u>: оскільки ранги головної та розширеної матриць СЛАР рівні між собою (r1=r2=r=2), то дана СЛАР має розв'язок. Але при цьому 2=r<n=4 (ранг менший від кількості змінних у СЛАР), отже, дана СЛАР невизначена, тобто має безліч розв'язків.

Рис. 9.1. Розв'язування СЛАР методом Гаусса в MathCad: висновок про розв'язність

На першому етапі знайдено ранги головної та розширеної матриць СЛАР, зроблено їх порівняння та висновок про сумісність системи і кількість розв'язків. Оскільки СЛАР невизначена, то маємо визначити базисні змінні (їх у нашому прикладі буде r=2) та вільні змінні (n-r=4-2=2) і записати загальний розв'язок, виражаючи базисні змінні через вільні:

Зведемо розширену матрицю до діагонального вигляду і визначимо базисні змінні

Тоді загальний розв'язок даної СЛАР має вигляд (виражаємо базисні змінні через небазисні):

Рис. 9.2. Розв'язування СЛАР методом Гаусса в MathCad: зведення розширеної матриці до діагонального вигляду

Загальний розв'язок у такому випадку можна записати також із використанням функції *solve*.

$$A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = B \text{ solve}, x_1, x_2 \rightarrow (3 \cdot x_3 - x_4 + 1 \cdot 4 \cdot x_3 + 3 \cdot x_4 - 2)$$

Рис. 9.3. Розв'язування СЛАР методом Гаусса в MathCad: побудова загального розв'язку СЛАР

У відповіді ми отримали вектор, де на першому місці знаходиться символьне значення змінної x_1 , а на другому - змінної x_2 , тобто $x_1 = 3x_3 - x_4 + 1$, а $x_2 = 4x_3 + 3x_4 - 2$, де x_3 , x_4 - довільні сталі.

Функція *solve* знаходиться на панелі інструментів "Символьні перетворення з ключовими словами" (рис. 10).

Puc. 10. Вбудована функція solve у MathCad

Після виклику цієї функції у лівий місцезаповнювач (зліва від *solve*) вписується нерівність або рівняння (знак "дорівнює" у рівнянні ставиться з допомогою логічного (потовщеного) знака рівності з панелі "*Булева алгебра*" або з допомогою клавіш Ctrl та =), а після *solve* через кому вказується змінна/змінні, відносно яких потрібно розв'язати задану нерівність/рівняння.

Насамкінець, покажемо, як можна розв'язувати прикладні задачі, математичною моделлю яких ϵ СЛАР, використовуючи $MathCad/SMath\ Studio$.

3. Скласти математичну модель задачі. Розв'язати її будь-яким способом.

З деякого листового матеріалу потрібно викроїти 170 заготовок типу А, 170 заготовок типу Б і 80 заготовок типу В. При цьому застосовують три способи розкрою. Кількість заготовок, які можна отримати з кожного листа при кожному способі розкрою, зазначена в таблиці.

	Т	Кількість отримуваних заготовок за способами розкрою			
	Тип розкрою	I	II	III	
	A	4	2	3	
-[Б	1	5	2	
-[В	3	1	1	

 x_1 – кількість листів матеріалу, які розкроюють першим способом;

 x_2 – кількість листів матеріалу, які розкроюють другим способом;

 x_3 — кількість листів матеріалу, які розкроюють третім способом.

Кількість заготовок типу A: $4x_1 + 2x_2 + 3x_3 = 170$,

Кількість заготовок типу E: $x_1 + 5x_2 + 2x_3 = 170$,

Кількість заготовок типу B: $3x_1 + x_2 + x_3 = 80$.

1. Запишемо математичну модель задачі:

$$\begin{cases} 4x_1 + 2x_2 + 3x_3 = 170, \\ x_1 + 5x_2 + 2x_3 = 170, \\ 3x_1 + x_2 + x_3 = 80. \end{cases}$$

2.Розв'яжемо систему матричним методом:

Задаємо матриці А і В

$$A := \begin{bmatrix} 4 & 2 & 3 \\ 1 & 5 & 2 \\ 3 & 1 & 1 \end{bmatrix} \qquad B := \begin{bmatrix} 170 \\ 170 \\ 80 \end{bmatrix}$$

$$X := A - 1 \cdot B$$

Побудуємо обернену матрицю до матриці А

$$A^{-1} = \begin{bmatrix} -0,15 - 0,05 & 0,55 \\ -0,25 & 0,25 & 0,25 \\ 0,7 & -0,1 & -0,9 \end{bmatrix}$$

Обчислимо Х

$$X = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$
 Відповідь: $x_1 := X = 10$ $x_2 := X = 20$ $x_3 := X = 30$

11

Рис. 11. Розв'язання прикладної задачі, що зводиться до СЛАР, y SMath Studio/ MathCad

2. Повідомлення завдань для самостійного розв'язування, виконання студентами цих завдань із консультацією викладача (55 хв.) Завдання для самостійного виконання (лабораторна робота №2):

- **1.** Розв'язати матричні рівняння (матриці A і B задано у табл. 1):
 - **a)** XA = B.
 - ☑ Завдання оцінюється в 0,5 бала.
 - **б)** AXB = E (непарні варіанти), BXA = E (парні варіанти); E одинична матриця відповідного порядку.
 - **☑** Завдання оцінюється в *0,5 бала*.

Таблиця 1

$N_{\underline{o}}$	Матриці	$\mathcal{N}\!\underline{o}$	Матриці Матриці
1	$A = \begin{pmatrix} 2 & -1 & -3 \\ 8 & -7 & -6 \\ -3 & 4 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 & -2 \\ 3 & -5 & 4 \\ 1 & 2 & 1 \end{pmatrix}$	11	$A = \begin{pmatrix} 6 & 9 & 4 \\ -1 & -1 & 1 \\ 10 & 1 & 7 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 4 & 3 \\ 0 & 5 & 2 \end{pmatrix}$
2	$A = \begin{pmatrix} 3 & 5 & -6 \\ 2 & 4 & 3 \\ -3 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 8 & -5 \\ -3 & -1 & 0 \\ 4 & 5 & -3 \end{pmatrix}$	12	$A = \begin{pmatrix} 1 & 0 & 3 \\ 3 & 1 & 7 \\ 2 & 1 & 8 \end{pmatrix}, B = \begin{pmatrix} 3 & 5 & 4 \\ -3 & 0 & 1 \\ 5 & 6 & -4 \end{pmatrix}$
3	$A = \begin{pmatrix} 2 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 & 6 & 0 \\ 2 & 4 & -6 \\ 1 & -2 & 3 \end{pmatrix}$	13	$A = \begin{pmatrix} 5 & 1 & -2 \\ 1 & 3 & -1 \\ 8 & 4 & -1 \end{pmatrix}, B = \begin{pmatrix} 3 & 5 & 5 \\ 7 & 1 & 2 \\ 1 & 6 & 0 \end{pmatrix}$
4	$A = \begin{pmatrix} -6 & 1 & 11 \\ 9 & 2 & 5 \\ 0 & 3 & 7 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 7 \\ 1 & -3 & 2 \end{pmatrix}$	14	$A = \begin{pmatrix} 5 & 4 & 1 \\ -3 & 7 & 1 \\ 2 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 5 & 3 & 0 \\ 3 & -2 & 1 \\ 2 & 0 & -1 \end{pmatrix}$
5	$A = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 & 2 \\ 2 & 1 & 1 \\ 3 & 7 & 1 \end{pmatrix}$	15	$A = \begin{pmatrix} 6 & 3 & 0 \\ -4 & 7 & 1 \\ 1 & 1 & -1 \end{pmatrix}, B = \begin{pmatrix} 4 & 1 & -2 \\ 3 & 0 & 5 \\ -2 & 2 & 4 \end{pmatrix}$
6	$A = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 3 & -1 \\ 4 & 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 2 & -1 \\ 3 & 1 & 2 \\ 5 & 3 & 0 \end{pmatrix}$	16	$A = \begin{pmatrix} 3 & -1 & 2 \\ 4 & 5 & 6 \\ -2 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 & 7 \\ 2 & 0 & 3 \\ -1 & 7 & 1 \end{pmatrix}$
7	$A = \begin{pmatrix} 6 & 7 & 3 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 5 \\ 4 & -1 & -2 \\ 4 & 3 & 7 \end{pmatrix}$	17	$A = \begin{pmatrix} 8 & 1 & 4 \\ 4 & -3 & 2 \\ 0 & 3 & -1 \end{pmatrix}, B = \begin{pmatrix} 4 & 1 & -3 \\ 2 & 2 & 7 \\ 5 & 1 & 4 \end{pmatrix}$
8	$A = \begin{pmatrix} -2 & 3 & 4 \\ 3 & -1 & -4 \\ -1 & 2 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 & 3 & 1 \\ 0 & 6 & 2 \\ 1 & 9 & 2 \end{pmatrix}$	18	$A = \begin{pmatrix} 3 & -2 & 1 \\ 4 & 3 & 5 \\ -1 & 7 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 & 3 \\ 1 & 0 & 3 \\ -3 & 5 & 3 \end{pmatrix}$
	$A = \begin{pmatrix} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 6 & 5 & 2 \\ 1 & 9 & 2 \\ 4 & 5 & 2 \end{pmatrix}$		$A = \begin{pmatrix} 2 & 3 & -2 \\ 1 & 0 & 5 \\ -3 & 4 & 7 \end{pmatrix}, B = \begin{pmatrix} 4 & 1 & -2 \\ 3 & -3 & 2 \\ 6 & 0 & 5 \end{pmatrix}$
10	$A = \begin{pmatrix} 2 & 6 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & -3 & 2 \\ -4 & 0 & 5 \\ 3 & 2 & -3 \end{pmatrix}$	20	$A = \begin{pmatrix} 3 & 5 & 6 \\ -1 & 1 & 3 \\ 7 & 4 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 & -2 \\ 4 & 1 & 0 \\ 3 & -2 & 7 \end{pmatrix}$

2. Задано СЛАР (див. табл. 2).

2.1. Знайти ранги матриць A та $\overline{A} = (A \mid B)$ (розширена матриця системи). Зробити висновок про розв'язність СЛАР (дослідити СЛАР на сумісність, використовуючи теорему Кронеккера-Капеллі).

☑ Завдання оцінюється в *0,5 бала*.

Таблиця 2

_			Таблиця 2
$N_{\underline{o}}$	СЛАР	$N_{\underline{o}}$	СЛАР
	$\int 2x_1 + x_2 + 4x_3 + 3x_4 = 9,$		$3x_1 + x_2 + 4x_3 + 4x_4 = 6,$
1	$3x_1 - x_2 + 2x_4 = 4,$	11	$2x_1 + 4x_2 + x_4 = 3,$
1	$-2x_1 + x_2 + 4x_3 + x_4 = 5,$	11	$\int -x_1 + 3x_2 + 2x_3 + 2x_4 = -2,$
	$3x_1 + x_2 + 2x_3 - 5x_4 = 6.$		$x_1 + 4x_2 + x_3 + 3x_4 = 0.$
	$\int 4x_1 + 2x_2 + 3x_3 + x_4 = 1,$		$\int x_1 + 2x_2 + 3x_3 + 4x_4 = 7,$
2	$\int 5x_1 + x_2 + 2x_3 + 2x_4 = 3,$	12	$2x_1 + x_2 + 4x_3 = 0,$
2	$\int 6x_1 + 2x_2 + 4x_3 + x_4 = 0,$	12	$3x_1 + x_2 + 3x_3 + 2x_4 = 1,$
	$3x_1 - x_2 + 2x_3 + 2x_4 = 1.$		$-x_1 + 2x_2 + 2x_3 + x_4 = 6.$
	$\int 2x_1 + 5x_2 + 3x_3 + x_4 = 5,$		$3x_1 + x_2 + 2x_3 + 4x_4 = 2,$
3	$\int x_1 + 4x_2 + 2x_3 - x_4 = 3,$	13	$\int 2x_1 + 4x_2 - 2x_3 + 3x_4 = -2,$
	$3x_1 + 4x_2 + x_4 = 3,$	13	$-x_1 + 2x_2 + 3x_3 + 5x_4 = 9,$
	$2x_1 - x_2 + 3x_3 + 5x_4 = 5.$		$2x_1 + 3x_2 + x_3 + 3x_4 = 3.$
	$\int 5x_1 + 2x_2 + 6x_3 + x_4 = 0,$		$2x_1 + 2x_2 + 3x_3 + 6x_4 = 6,$
4	$\int 4x_1 + 3x_2 - 4x_3 = 2,$	14	$-x_1 + 4x_2 + 3x_4 = -5,$
7	$\int 6x_1 + x_2 - 3x_3 + 2x_4 = -2,$	17	$2x_1 - 2x_2 + x_3 + 5x_4 = 6,$
	$\left[-x_1 + 2x_2 + 4x_3 + 4x_4 = 9. \right]$		$3x_1 + x_2 + 2x_3 + 3x_4 = 6.$
	$\int x_1 + 2x_2 + 3x_3 + 5x_4 = 7,$	15	$4x_1 + x_2 + 2x_3 + 2x_4 = 3,$
5	$\int -2x_1 + 4x_2 + 3x_3 - 4x_4 = 12,$		$\int 5x_1 + 3x_2 + 2x_3 + 2x_4 = 5,$
	$3x_1 + 2x_2 - x_3 + 6x_4 = -3,$		$x_1 + 2x_2 + 3x_3 + 2x_4 = 3,$
	$4x_1 - 3x_2 + 2x_3 + x_4 = -3.$		$4x_1 + 2x_2 + 3x_3 + x_4 = 1.$
	$\int -2x_1 + 2x_2 + 4x_3 + 3x_4 = 4,$		$3x_1 + 4x_2 + 2x_3 + 2x_4 = 6,$
6	$\int x_1 + 5x_2 + 2x_3 + 6x_4 = 0,$	16	$x_1 + 5x_2 + 4x_3 + 3x_4 = 3,$
	$4x_1 + 3x_2 + 2x_3 + 2x_4 = 5,$	10	$3x_1 + 6x_2 + 4x_3 + 5x_4 = 5,$
	$5x_1 + 5x_2 + x_4 = 0.$		$x_1 + 4x_2 + 2x_3 + x_4 = 3.$
	$\int 3x_1 + 2x_2 - x_3 + 4x_4 = 11,$	17	$\begin{cases} x_1 - x_2 + x_3 - x_4 = 4, \end{cases}$
7	$\int 4x_1 + x_3 - 2x_4 = -5,$		$\int x_1 + 2x_2 - 3x_3 + x_4 = 0,$
,	$2x_1 + 4x_2 + 4x_3 + x_4 = 2,$		$3x_1 + x_2 - x_3 - 2x_4 = 9,$
	$3x_1 + 2x_2 - x_3 + 3x_4 = 9.$		$2x_1 + x_2 - x_3 - x_4 = 6.$
	$\int 2x_1 + 5x_2 - x_3 - x_4 = 1,$		$7x_1 + 2x_2 + x_3 + x_4 = 3,$
8	$\int x_1 - 2x_2 + x_3 + 2x_4 = 2,$	18	$\int 5x_1 - x_2 + x_3 - x_4 = -1,$
	$3x_1 + 2x_2 - 3x_3 + x_4 = 0,$		$x_1 + x_2 + 2x_3 - x_4 = 0,$
	$x_1 - 3x_2 + 2x_3 = 3.$		$3x_1 + 3x_2 + 2x_3 + x_4 = 4.$

9	$\begin{cases} 2x_1 + x_2 - x_3 + 2x_4 = 1, \\ 3x_1 + 2x_2 + x_3 - 2x_4 = -8, \\ x_1 - x_2 + 2x_3 + 2x_4 = 1, \\ -x_1 + 2x_2 - x_3 - x_4 = 2. \end{cases}$	19	$\begin{cases} x_1 + x_2 - x_3 + x_4 = 5, \\ 2x_1 + x_2 + x_3 - x_4 = 4, \\ x_1 + x_2 + 2x_3 + x_4 = 8 \\ x_1 - x_2 + 2x_4 = 2. \end{cases}$
10	$\begin{cases} 3x_1 + x_2 - x_3 + x_4 = 3, \\ 4x_1 + 2x_2 - x_3 + 2x_4 = 6, \\ 2x_1 + 3x_2 - x_3 - x_4 = 2, \\ x_1 - x_2 + x_3 + 3x_4 = 5. \end{cases}$	20	$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ 2x_1 - x_2 + x_3 - x_4 = -4, \\ 2x_2 - x_3 - 4x_4 = 3, \\ 4x_1 - 2x_2 + x_3 + 3x_4 = 0. \end{cases}$

- 2.2. Розв'язати СЛАР методом:
- а) матричним
- **☑** Завдання оцінюється в *0,5 бала*.
- **б)** Крамера
- **☑** Завдання оцінюється в *1 бал*.
- **3.** Скласти математичну модель задачі відповідно до свого варіанту. Розв'язати її будь-яким способом.
- **☑** Завдання оцінюється в *1 бал*.

<u>Непарні варіанти</u>: Швацька фабрика протягом трьох днів випускала костюми, плащі та куртки, витративши на випуск продукції 176 + N, 168 + 2N та 184 + N тис. грн у перший, другий та третій день відповідно (N - номер варіанту). Щоденний обсяг випуску продукції наведено у таблиці.

Лош	Обсяг випуску продукції (одиниць)			
День	Костюми, шт	Плащі, шт	Куртки, шт	
Перший	50	10	30	
Другий	35	25	20	
Третій	40	20	30	

Знайти собівартість одиниці продукції кожного виду.

Парні варіанти: Завод спеціалізується на випуску трьох видів виробів P_1 , P_2 , P_3 , використовуючи при цьому сировину трьох видів S_1 , S_2 , S_3 . Витрати на сировину на 1 день складають 8N ум.од. для S_1 , 15 ум.од. для S_2 та 22N ум.од. для S_3 (N - номер варіанту). Норми витрат сировини на одиницю продукції кожного виду подано у таблиці.

D., 3	Обсяг випуску продукції (одиниць)			
Вид сировини	P_1	P_2	P_3	
S_1	N	2 <i>N</i>		
S_2		1	1	
S_3	8 <i>N</i>		2 <i>N</i>	

Знайти щоденний обсяг випуску продукції кожного виду.

3. Підведення підсумків заняття, оголошення домашнього завдання (до 5 хв.)