Ondrej Harnúšek, ID: 79545 utorok 18:00

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **010001** (postupnosti sa môžu prekrývať, v tomto prípade 0100010001 je možné chápať ako dve postupnosti). Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp. LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnot'te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Ondrej Harnúšek, ID: 79545

utorok 18:00

Riešenie

Zadaná postupnosť: 010001

Prechodová tabuľka pre automat Mealy

	Nový	Nový stav		Y	Čo je
stav	x=0	x=1	x=0	x=1	splnené?
S0	S 1	S0	0	0	Nič
S 1	S 1	S2	0	0	"0"
S2	S 3	S0	0	0	"01"
S 3	S4	S2	0	0	"010"
S4	S5	S2	0	0	"0100"
S5	S 1	S2	0	1	"01000"

Zostrojíme prechodový graf stavového automat typu Mealy

Prechodový graf typu Mealy

(hodnota hrany reprezentuje hodnotu vstupnej premennej/hodnotu výstupnej premennej).

Kódovanie stavov

		_z3		
		z2		
	S0	S5	S1	X
z 1	S2	S4	S3	X

Stav	$Z_1Z_2Z_3$
S0	000
S1	011
S2	100
S 3	111
S4	110
S5	010

Ondrej Harnúšek, ID: 79545 utorok 18:00

Prechodová tabuľka pre automat Mealy po dosadení zakódovaných stavov

	Nový	stav	Y		
stav	x=0	x=1	x=0	x=1	
000	011	000	0	0	
011	011	100	0	0	
100	111	000	0	0	
111	110	100	0	0	
110	010	100	0	0	
010	011	100	0	1	

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

			<u>z</u> 3	
		z 2		
	011	011	011	XXX
z1	111	010	110	XXX
	000	100	100	XXX
	000	100	100	XXX
		D1,D2	2,D3	
			z3	
		z2		
	0	0	0	X
z 1	1	0	1	X X X X
	0	1	1	X
	0	1	1	X
		D	1	
			z3	
		z 2		
_	1	1	1	X
z 1	1	1	1	X X X X
	0	0	0	X
	0	0	0	X
		D	2	
			z3	
		z 2		
	1	1	1	X
	⊢ 1	0	0	X
z 1	1		0	
z1	0	0	0	X X X

D3						
			z3			
		z2		_		
	0	0	0	X		
z 1	0	0	0	X		
	0	0	0	X		
X	0	1	0	X		
$Y = \overline{z1}. z2. \overline{z3}. X$						

Budiace funkcie pre JK preklápacie obvody (JK-PO)

Espresso

```
Výstup z ESPRESSO:
Vstup pre ESPRESSO:
                                          J1 = (z2&X);
.i 4
.0 7
                                          K1 = (z2&!z3&!X) | (!z2&X);
.ilb z1 z2 z3 X
                                          J2 = (!z2&!X);
.ob J1 K1 J2 K2 J3 K3 Y
                                          K2 = (z2&X);
                                          J3 = (!z1&!X) | (!z2&!X);
.type fr
.p 12
                                          K3 = (z1) | (z2&X);
0000 0-1-1-0
                                          Y = (!z1&z2&!z3&X);
0001 0-0-0-0
0100 0--01-0
0101 1--10-1
0110 0--0-00
0111 1--1-10
1000 -01-1-0
1001 -10-0-0
1100 -1-00-0
1101 -0-10-0
1110 -0-0-10
1111 -0-1-10
```

Riešenia sú ekvivalentné, obvod je rovnako veľký (13 logických členov) a má rovnaký počet vstupov (25). (Skupinová minimalizácia v tomto prípade nie je veľmi účinná.)

Prepis na NAND s využitím Shefferovej operácie:

$$J1 = (X.Z2)$$

$$= \overline{(X.Z2) + (X.Z2)}$$

$$= (X \uparrow Z2) \uparrow (X \uparrow Z2)$$

$$= (X \uparrow Z2) \uparrow (X \uparrow Z2)$$

$$K1 = (X.\overline{Z2}) + (\overline{X}.Z2.\overline{Z3})$$

$$= \overline{(X.\overline{Z2}) + (\overline{X}.Z2.\overline{Z3})}$$

$$= (X \uparrow (Z2 \uparrow)) \uparrow ((X \uparrow) \uparrow Z2 \uparrow (Z3 \uparrow))$$

$$J2 = (X \uparrow)$$

$$K2 = X$$

$$J3 = (\overline{X}.\overline{Z1}) + (\overline{X}.\overline{Z2})$$

$$= (\overline{X}.\overline{Z1}) + (\overline{X}.\overline{Z2})$$

$$= (\overline{X}.\overline{Z1}) + (\overline{X}.\overline{Z2})$$

$$= ((X \uparrow)) \uparrow (Z1 \uparrow) \uparrow ((X \uparrow) \uparrow (Z2 \uparrow))$$

$$K3 = X + Z1$$

$$= \overline{X}.\overline{Z1}$$

$$= X \uparrow Z1$$

$$= X \uparrow Z1$$

$$Y = (\overline{Z1}.Z2.\overline{Z3}.X) + (\overline{Z1}.Z2.\overline{Z3}.X)$$

$$= ((Z1 \uparrow) \uparrow Z2 \uparrow (Z3 \uparrow) \uparrow X) \uparrow ((Z1 \uparrow) \uparrow Z2 \uparrow (Z3 \uparrow) \uparrow X)$$

$$= ((Z1 \uparrow) \uparrow Z2 \uparrow (Z3 \uparrow) \uparrow X) \uparrow ((Z1 \uparrow) \uparrow Z2 \uparrow (Z3 \uparrow) \uparrow X)$$

Vyjadrenie k počtu logických členov obvodu: 12 členov NAND a 3 preklápacie obvody JK.

Vyjadrenie k počtu vstupov do logických členov obvodu: 39 (27 v kombinačnej časti a 12 v pamäťovej časti.

Zhodnotenie

Našou úlohou bolo navrhnúť synchrónny sekvenčný obvod so vstupom X a výstupom Y, pričom výstup Y bude 1 vždy vtedy, keď sa vo vstupnej postupnosti vyskytne daná postupnosť 010001. (postupnosti sa môžu prekrývať)

Zadanie sme riešili pomocov stavového automatu Mealy, takže sme zostrojili prechodovú tabuľku a graf pre automat a jednotlivé stavy sme optimálne zakódovali v dvojkovej sústave. (splnili sme 7 z 13 požiadaviek)

Do Karnaughových máp sme podľa prechodovej tabuľky zapísali výstupnú funkciu a budiace funkcie pre D preklápacie obvody (D-PO) z ktorých sme podľa určených pravidiel (uvedenej tabuľky) zostavili mapy budiacich funkcií pre JK preklápacie obvody (JK-PO).

Ondrej Harnúšek, ID: 79545 utorok 18:00

S využitím skupinovej minimalizácie sme z máp vypísali budiace funkcie v tvare MDNF, ktoré sme overili programom ESPRESSO. Riešenia boli ekvivalentné, obvod bol rovnako veľký (13 logických členov) a mal rovnaký počet vstupov (25).

B-funkcie v tvare MDNF sme použitím pravidiel (dvojitá negácia a De Morganovo pravidlo) upravili na Shefferovu normálnu formu.

Vytvorili sme schému obvodu výhradne zo Shefferových funkcií a simuláciou sme overili správne zobrazenie postupnosti, pričom sme použili : 12 členov NAND a 3 preklápacie obvody JK, 39 vstupov (27 v kombinačnej časti a 12 v pamäťovej časti).