SYSC 4001 Sample Midterm 1 Duration: 60 minutes Instructor: T. Kunz

Name: Student number:

Question 1. Bakery Algorithm (20 marks)

The *bakery algorithm* provides mutual exclusion to a number of processes, based on the practice observed in bakeries and other shops in which every customer receives a numbered ticket on arrival, allowing each to be served in turn. The algorithm is as follows:

The arrays *choosing* and *number* are initialized to *false* and 0, respectively. The *i*th element of each array may be read and written by process *i* but only read by other processes. The notation (a,b) < (c,d) is defined as:

```
(a < c) or (a = c \text{ and } b < d)
```

- a) Describe the algorithm in words
- b) Show that this algorithm avoids deadlocks
- c) Show that it enforces mutual exclusion

Question 2. Producer/Consumer Problem with Bounded Buffer (10 marks)

The solution of the bounded buffer problem with finite buffer presented in class allows only at most n-1 entries in the buffer. For your information, the code is included below again:

Initialization: S.count:=1; N.count:=0; E.count:=k;

Producer:	Consumer:	append(v):
Repeat	repeat	b[in]:=v;
produce v;	wait(N);	in:=(in+1)
wait(E);	<pre>wait(S);</pre>	mod k;
wait(S);	w:=take();	
append(v);	signal(S);	take():
signal(S);	<pre>signal(E);</pre>	w:=b[out];
signal(N);	consume(w);	out:=(out+1)
forever	forever	mod k;
		return w;

- a) Explain why this is the case.
- b) Modify the algorithm to remedy this deficiency.

Question 3. Banker's Algorithm (10 marks)

a) Consider a system with a total of 150 units of memory, allocated to three processes as shown:

Process	Max	Hold
1	70	45
2	60	40
3	60	15

Apply the banker's algorithm to determine whether it would be safe to grant each of the following requests. If yes, indicate a sequence of terminations that could be guaranteed possible. If no, show the reduction of the resulting allocation table and identify the processes involved in a deadlock:

- i) A fourth process arrives, with a maximum memory need of 60 and an initial need of 25 units.
- ii) A fourth process arrives, with a maximum memory need of 60 and an initial need of 35 units.
- b) Evaluate the banker's algorithm for its usefulness in real life.