Dr. Alexander Munteanu Dennis Köhn, Dr. Vibha Sahlot

4. Home Exercises

Efficient Algorithms

Ex. 1 (2 + 2 points)

Suppose you shuffle n pieces of paper labeled with $1, \ldots, n$ in an urn and draw one after another without replacement.

- a) What is the probability that the number drawn in the *i*-th round is larger than all previous numbers? Explain your answer. (Hint: You can also use backward analysis. Fix the largest number to be the one drawn in the *i*-th iteration. Then, calculate the probability that all the numbers drawn before it are smaller than this.)
- b) Compute the expectation of the number of rounds in which you draw a number that is larger than all previous numbers.

Ex. 2 (4 points)

In the analysis of the edge contraction algorithm it was used that

$$\Pr\left(\bigcap_{j=1}^{i} \{e_j \notin C\}\right) = \prod_{j=1}^{i} \Pr(e_j \notin C \mid C \subseteq E_{j-1}),$$

see Section 2.4.3. This is a consequence of the chain rule of probability theory, which states that for random variables X_1, X_2, \ldots, X_n we have that

$$\Pr(X_1 \cap X_2 \cap \ldots \cap X_n) = \Pr(X_1) \Pr(X_2 \mid X_1) \cdots \Pr(X_n \mid X_1, \ldots, X_{n-1}).$$

Prove the chain rule by induction.

Ex. 3 (4 points)

Recall that a spanning tree of a graph G=(V,E) is a subgraph without cycles that connects all vertices of G. In this exercise, we call a spanning tree α -good if it is an α -spanner of G.

Give an example of a graph for which there exists no α -good spanning tree with $\alpha \leq |V|/2$. Explain your answer.

Ex. 4 (
$$4 + 2 + 2 points$$
)

In this exercise we will look at $grid\ graphs$. The vertex set of a grid graph G of size n^2 is the set of points in the plane with coordinates (i,j) for $1 \le i \le n$ and $1 \le j \le n$. The edges of G are given by $\{(i,j),(i+1,j)\}$ and $\{(i,j),(i,j+1)\}$. Note that the number of edges of a grid graph with n^2 vertices is $(2-o(1))n^2$, where the o(1) factor is due to the vertices in the outermost layer of the graph having degree less than 4.

An example of a grid graph with 5^2 vertices is given in the figure below.

- a) Design an algorithm that computes a spanner of a grid graph. The number of edges of the spanner should be at most $(\frac{3}{2} + o(1))n^2$ (even fewer is of course also okay) and the stretch factor should be constant, i.e., it should not depend on n.
- b) Show that the number of edges of your spanner is indeed at most $(\frac{3}{2} + o(1))n^2$.
- c) Show that the stretch factor of your spanner is constant.