PEDRO HENRIQUE DOS SANTOS DIAS LIMA



# LPAA: ALGORITMOS DE MACHINE LEARNING.

Dataset: Doenças cardiovasculares.

# indice.

- 3. DATASET
- 4. TRATAMENTO DE DADOS
- 5. ANÁLISE DE DADOS
- 6. PLOTAGEM DE GRÁFICOS
- 7. TESTES E TREINAMENTOS
- 8. ALGORITMOS
- 9. RESULTADOS
- 10. ALGORITMO ESCOLHIDO

#### **Dataset: SAHeart**

- Pesquisa realizada pelo CRFS (Coronary Risk Factor Study).
- Local: África do Sul.
- Ano: 1983.
- 462 homens brancos consultados.
- Objetivo: explorar o banco de dados para verificar se um paciente apresenta risco de contrair doenças de coração.

# TRATAMENTO DE DADOS

| 1 | A                                                                         |
|---|---------------------------------------------------------------------------|
|   | row.names,sbp,tobacco,ldl,adiposity,famhist,typea,obesity,alcohol,age,chd |
|   | 1,160,12.00, 5.73,23.11,Present,49,25.30, 97.20,52,1                      |
|   | 2,144, 0.01, 4.41,28.61,Absent,55,28.87, 2.06,63,1                        |
|   | 3,118, 0.08, 3.48,32.28,Present,52,29.14, 3.81,46,0                       |
|   | 4,170, 7.50, 6.41,38.03,Present,51,31.99, 24.26,58,1                      |
|   | 5,134,13.60, 3.50,27.78,Present,60,25.99, 57.34,49,1                      |
|   | 6,132, 6.20, 6.47,36.21,Present,62,30.77, 14.14,45,0                      |
|   | 7,142, 4.05, 3.38,16.20,Absent,59,20.81, 2.62,38,0                        |
|   | 8,114, 4.08, 4.59,14.60, Present, 62,23.11, 6.72,58,1                     |
| ) | 9,114, 0.00, 3.83,19.40, Present, 49,24.86, 2.49,29,0                     |
|   | 10,132, 0.00, 5.80,30.96, Present, 69,30.11, 0.00,53,1                    |
| 2 | 11,206, 6.00, 2.95,32.27,Absent,72,26.81, 56.06,60,1                      |
| 3 | 12,134,14.10, 4.44,22.39,Present,65,23.09, 0.00,40,1                      |
| 1 | 13,118, 0.00, 1.88,10.05,Absent,59,21.57, 0.00,17,0                       |
| 5 | 14,132, 0.00, 1.87,17.21,Absent,49,23.63, 0.97,15,0                       |
| 5 | 15,112, 9.65, 2.29,17.20,Present,54,23.53, 0.68,53,0                      |



# Sem separação de colunas



Números e letras



Informações irrelevantes



Dataset desorganizado

# ratamento de dados



# Separação de colunas



Unificação de tipo de termos (N°)



Remoção de dados irrelevantes

#### Datafarme tratado

|     | sbp | tobacco | 1d1   | adiposity | famhist | typea | obesity | alcohol | age | chd |
|-----|-----|---------|-------|-----------|---------|-------|---------|---------|-----|-----|
| 0   | 160 | 12.00   | 5.73  | 23.11     | 1       | 49    | 25.30   | 97.20   | 52  | 1   |
| 1   | 144 | 0.01    | 4.41  | 28.61     | 0       | 55    | 28.87   | 2.06    | 63  | 1   |
| 2   | 118 | 0.08    | 3.48  | 32.28     | 1       | 52    | 29.14   | 3.81    | 46  | 0   |
| 3   | 170 | 7.50    | 6.41  | 38.03     | 1       | 51    | 31.99   | 24.26   | 58  | 1   |
| 4   | 134 | 13.60   | 3.50  | 27.78     | 1       | 60    | 25.99   | 57.34   | 49  | 1   |
|     |     |         |       |           |         |       |         |         |     |     |
| 457 | 214 | 0.40    | 5.98  | 31.72     | 0       | 64    | 28.45   | 0.00    | 58  | 0   |
| 458 | 182 | 4.20    | 4.41  | 32.10     | 0       | 52    | 28.61   | 18.72   | 52  | 1   |
| 459 | 108 | 3.00    | 1.59  | 15.23     | 0       | 40    | 20.09   | 26.64   | 55  | 0   |
| 460 | 118 | 5.40    | 11.61 | 30.79     | 0       | 64    | 27.35   | 23.97   | 40  | 0   |
| 461 | 132 | 0.00    | 4.82  | 33.41     | 1       | 62    | 14.70   | 0.00    | 46  | 1   |

Desta maneira, conseguimos dar início ao estudo do conjunto de dados.

# Análise de dados

#### Gráfico de dispersão



# Análise de dados

Idade de pessoas que estão com IMC acima de 30 (Obesos)

#### Gráfico de dispersão



## Histograma com frequência de cada coluna



# Porcentagem de presença de doenças cardíacas no histórico familiar



# Idade de pessoas que ingerem alcool



Pessoas menores de idade que ingerem álcool

| 13  | 0.97  |
|-----|-------|
| 48  | 38.98 |
| 64  | 2.06  |
| 70  | 0.60  |
| 110 | 2.49  |
| 156 | 1.03  |
| 196 | 0.51  |
| 260 | 0.26  |
| 268 | 17.14 |
| 285 | 2.42  |
| 288 | 2.78  |
| 290 | 3.50  |
| 291 | 5.19  |
| 330 | 11.83 |
| 432 | 2.06  |
| 434 | 3.87  |
| 435 | 2.06  |
| 436 | 6.51  |
| 437 | 2.49  |

#### <u>Treinamentos e testes</u>

#Os codigos anteriores, eram referentes a tratamento de dados conforme a primeira unidade.

#Agora partiremos para segunda unidade, onde exploramos ferramentas de Machine Learning

#Essa parte do código fará uma divisão dos dados em conjuntos de treinamento e teste usando a função train\_test\_split do scikit-learn (sklearn)

from sklearn.model\_selection import train\_test\_split #importando a função

#agora dividindo os dados em conjunto de treinamento e teste:

X\_train,X\_test,y\_train,y\_test = train\_test\_split(X,y,train\_size=0.8)

#x é o conjunto de features e y o conjunto de rotulos.

#o train\_size especifica a porcentagem de dados que serao usados para treinamento (80%), restando 20% para teste.

80% dos dados destinados a treinamento e 20% destinados a teste.

```
#mo codigo abaixo, aplicaremos duas técnicas de pré-processamento de dados aos conjuntos de treinamento e teste.
#utilizaremos as classes StandardScaler e MinMaxScaler do scikit-learn (sklearn).

from sklearn.preprocessing import StandardScaler, MinMaxScaler #importando as classes

scale_columns = [col for col in X.columns if col!='famhist'] #definindo as columas escaladas, excluindo "famhist"

scaler = StandardScaler() #objeto standscaler

min_max_scaler = MinMaxScaler() #objeto minmaxscaler

X_train[scale_columns] = scaler.fit_transform(X_train[scale_columns]) #padronizando columas de train com standscaler

X_test[scale_columns] = scaler.transform(X_test[scale_columns]) #padronizando columas de test com standscaler

#agora aplica a escala min-max (normalização) às mesmas columas, tanto nos conjuntos de train quanto nos test, usando MinMaxScaler

X_train[scale_columns] = min_max_scaler.fit_transform(X_train[scale_columns])

X_test[scale_columns] = min_max_scaler.transform(X_test[scale_columns])
```

#### Tipos de Algoritmos

- Regressão Logística.
- Random Forest
- KNN

Nesse caso, o objetivo seria prever com base nos dados informados a probabilidade de uma pessoa ter doença cardiovascular.







## Algoritmos

#### Regressão Logística

• Iteração máxima de 300

#### Resultados obtidos

```
accuracy score : 0.7419354838709677
precision_score : 0.5
recall score : 0.583333333333333334
f1_score : 0.5384615384615384
roc_auc_score : 0.6902173913043479
```

## Algoritmos

#### Random Forest

#### Resultados obtidos

```
accuracy score : 0.6344086021505376
precision_score : 0.39285714285714285
recall score : 0.39285714285714285
f1_score : 0.39285714285714285
roc_auc_score : 0.5656593406593408
```

# Algoritmos

K-N-N

#### Resultados obtidos

#### Comparação de resultados:

#### Regressão Logística

```
accuracy score : 0.7419354838709677
precision_score : 0.5
recall score : 0.58333333333333334
f1 score : 0.5384615384615384
```

roc\_auc\_score : 0.6902173913043479

#### Random Forest

accuracy score : 0.6344086021505376
precision\_score : 0.39285714285714285
recall score : 0.39285714285714285
f1\_score : 0.39285714285714285
roc\_auc\_score : 0.5656593406593408

K-N-N

f1 score: 0.4150943396226415

roc\_auc\_score : 0.59500000000000001

# Gráfico de comparação de resultados:



#### Plotagem da Curva ROC



# Algoritmo escolhido



