IN THE CLAIMS

Please AMEND the claims as follows:

1-38. (Cancelled)

39. (Withdrawn) A DNA construct comprising a coding sequence for a *Cuphea* KAS factor A protein, and one or more coding sequences for a plant medium-chain thioesterase protein.

- 40. (Withdrawn) The DNA construct according to claim 39, wherein said one or more coding sequences for a plant medium-chain thioesterase protein are selected from the group consisting of *Cuphea hookeriana* FatB2, *Cuphea pulcherrima* FatB1, and *Umbellularia californica* FatB1.
- 41. (Withdrawn) The DNA construct according to claim 39, wherein said coding sequence for a *Cuphea* KAS factor A protein is set forth in a sequence selected from the group consisting of SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 13, and SEQ ID NO: 15.
- 42. (Withdrawn) The DNA construct according to claim 39, wherein said coding sequence for a *Cuphea* KAS factor A protein is set forth in SEQ ID NO: 5.
- 43. (Withdrawn) A DNA construct comprising a coding sequence for a *Cuphea* KAS factor A protein, and a coding sequences for *Garcinia mangostana* FatA1 thioesterase protein.

44-49. (Cancelled)

- 50. (Currently Amended) The method of Claim [[49]] 112, wherein said *Cuphea* species is *C. hookeriana* or *C. pulcherrima*.
- 51. (Previously Presented) The method of Claim 50 wherein said KAS factor A protein comprises a coding sequence as set forth in SEQ ID NO:5.
- 52. (Previously Presented) The method of Claim 50 wherein said KAS factor A protein comprises a coding sequence encoding an amino acid sequence as set forth in SEQ ID NO:6.

Page 3

53. (Previously Presented) The method of Claim 50 wherein said synthase factor A protein

comprises a coding sequence encoding an amino acid sequence set forth in residues 125-466 of

SEQ ID NO:6.

54. (Withdrawn) A method of altering the medium-chain fatty acid composition in plant

seeds expressing one or more heterologous plant medium-chain thioesterase proteins, wherein

said method comprises

providing for expression of a plant synthase factor protein heterologous to said transgenic

plant in conjunction with expression of a plant medium-chain thioesterase protein heterologous to

said transgenic plant, whereby the composition of medium-chain fatty acids produced in said seeds

is modified as compared to the composition of medium-chain fatty acids produced in seeds

expressing said plant medium-chain thioesterase protein in the absence of expression of said plant

synthase factor protein.

55. (Withdrawn) The method of Claim 54 wherein said one or more heterologous plant

medium-chain thioesterase proteins is a Cuphea hookeriana FatB2 protein.

56. (Withdrawn) The method of Claim 54 wherein said one or more heterologous plant

medium-chain thioesterase proteins is a Cuphea pulcherrima FatB1 protein.

57. (Withdrawn) The method of Claim 54 wherein said one or more heterologous plant

medium-chain thioesterase proteins is a Umbellularia californica FatB1 protein.

58. (Withdrawn) The method of Claim 54 wherein said one or more plant medium-chain

thioesterase proteins is a Cuphea hookeriana FatB2 protein and a Cuphea pulcherrima FatB1

protein.

59. (Withdrawn) The method of Claim 54 wherein said plant synthase factor protein is a

KAS factor A protein from a Cuphea species.

60. (Withdrawn) The method of Claim 59 wherein said Cuphea species is C. hookeriana or

C. pulcherrima.

Page 4

61. (Withdrawn) The method of Claim 54 wherein said fatty acid composition is enriched for C10 fatty acids.

- 62. (Withdrawn) The method of Claim 54 wherein said fatty acid composition is enriched for C12 fatty acids.
- 63. (Withdrawn) The method of Claim 54 wherein said fatty acid composition is enriched for at least one medium chain fatty acid and at least one other medium chain fatty acid is decreased.
- 64. (Withdrawn) The method of Claim 63 wherein said enriched fatty acid is C12 and said decreased fatty acid is C14.
- 65. (Withdrawn) The method of claim 54, wherein said altered fatty acid composition comprises an increased ratio of C10 fatty acids to C8 fatty acids.
- 66. (Withdrawn) The method of claim 54, wherein said altered fatty acid composition comprises an increased total content of C10 fatty acids and C8 fatty acids.
- 67. (Withdrawn) A transformed plant comprising a coding sequence for a thioesterase protein, and a coding sequence for a KAS factor A protein, wherein said coding sequence for a KAS factor A protein is derived from a species from the genus *Cuphea*.
- 68. (Withdrawn) The transformed plant of claim 67, wherein said thioesterase protein is selected from the group consisting of *Cuphea hookeriana* FatB2, *Cuphea pulcherrima* FatB1, *Umbellularia californica* FatB1, and *Garcinia mangostana* FatA1.
- 69. (Withdrawn) The transformed plant of claim 67, wherein said thioesterase protein is *Cuphea hookeriana* FatB2.
- 70. (Withdrawn) The transformed plant of claim 67, wherein said thioesterase protein is *Cuphea pulcherrima* FatB1.

Page 5

71. (Withdrawn) The transformed plant of claim 67, wherein said thioesterase protein is *Umbellularia californica* FatB1.

- 72. (Withdrawn) The transformed plant of claim 67, wherein said coding sequence for said KAS factor A protein is set forth in a sequence selected from the group consisting of SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:13 and SEQ ID NO:15.
- 73. (Withdrawn) The transformed plant of claim 67, wherein said coding sequence for said KAS factor A protein is set forth in SEQ ID NO:5.
- 74. (Withdrawn) The transformed plant of claim 67, wherein said KAS factor A protein has the amino acid sequence set forth in a sequence selected from the group consisting of SEQ ID NO:6, residues 125-466 of SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:14, and residues 127-546 of SEQ ID NO:14.
- 75. (Withdrawn) The transformed plant of claim 67, wherein said KAS factor A protein has the amino acid sequence set forth in SEQ ID NO:6.
- 76. (Withdrawn) The transformed plant of claim 67, wherein said KAS factor A protein has the amino acid sequence set forth in residues 125-466 of SEQ ID NO:6.
- 77. (Withdrawn) The transformed plant of claim 67, wherein said transformed plant has an altered composition of medium-chain fatty acids relative to an untransformed plant.
- 78. (Withdrawn) The transformed plant of claim 77, wherein said fatty acid composition is enriched for C10 fatty acids.
- 79. (Withdrawn) The transformed plant of claim 77, wherein said fatty acid composition is enriched for C12 fatty acids.
- 80. (Withdrawn) The transformed plant of claim 77, wherein said fatty acid composition is enriched for at least one medium chain fatty acid and at least one other medium chain fatty acid is decreased.

81. (Withdrawn) The transformed plant of claim 77, wherein said enriched fatty acid is C12 and said decreased fatty acid is C14.

- 82. (Withdrawn) The transformed plant of claim 77, wherein said transformed plant has an increased ratio of C10 fatty acids to C8 fatty acids relative to an untransformed plant.
- 83. (Withdrawn) The transformed plant of claim 77, wherein said transformed plant has an increased total content of C10 fatty acids and C8 fatty acids relative to an untransformed plant.
- 84. (Withdrawn) A transformed plant comprising a coding sequence for a *Cuphea hookeriana* FatB2, a coding sequence for a *Cuphea pulcherrima* FatB1, and a coding sequence for a KAS factor A protein, wherein said coding sequence for a KAS factor A protein is derived from a species from the genus *Cuphea*.
- 85. (Withdrawn) The transformed plant of claim 84, wherein said transformed plant has an altered composition of medium-chain fatty acids relative to an untransformed plant.
- 86. (Withdrawn) The transformed plant of claim 85, wherein said fatty acid composition is enriched for C10 fatty acids.
- 87. (Withdrawn) The transformed plant of claim 85, wherein said fatty acid composition is enriched for C12 fatty acids.
- 88. (Withdrawn) The transformed plant of claim 85, wherein said fatty acid composition is enriched for at least one medium chain fatty acid and at least one other medium chain fatty acid is decreased.
- 89. (Withdrawn) The transformed plant of claim 85, wherein said enriched fatty acid is C12 and said decreased fatty acid is C14.
- 90. (Withdrawn) The transformed plant of claim 85, wherein said transformed plant has an increased ratio of C10 fatty acids to C8 fatty acids relative to an untransformed plant.

Application No. 10/635,822

Atty Docket: 16518.131 Page 7

91. (Withdrawn) The transformed plant of claim 85, wherein said transformed plant has an

increased total content of C10 fatty acids and C8 fatty acids relative to an untransformed plant.

92. (Withdrawn) An isolated polynucleotide comprising SEO ID NO: 13 or complement

thereof.

93. (Withdrawn) The isolated polynucleotide of claim 92 consisting of SEQ ID NO:13.

94. (Withdrawn) An isolated polynucleotide encoding a polypeptide sequence of SEQ ID

NO: 14.

95. (Withdrawn) The isolated polynucleotide of claim 94, wherein said polynucleotide

comprises the sequence of SEQ ID NO: 13.

96. (Withdrawn) A recombinant nucleic acid construct comprising a promoter functional in a

host cell operably linked to a nucleic acid sequence of SEQ ID NO: 13.

97. (Withdrawn) The recombinant nucleic acid construct according to claim 96, wherein said

nucleic acid sequence is operably linked in an orientation relative to said promoter selected from

the group consisting of sense and antisense.

98. (Withdrawn) The recombinant nucleic acid construct according to claim 97, wherein said

nucleic acid sequence is operably linked to a second recombinant nucleic acid construct having a

second nucleic acid sequence encoding a desaturase enzyme.

99. (Withdrawn) The recombinant nucleic acid construct according to claim 98, wherein said

second nucleic acid sequence encoding a desaturase enzyme encodes a delta-9 desaturase

enzyme.

100. (Withdrawn) A host cell having a heterologous nucleic acid molecule comprising a

nucleic acid sequence of SEQ ID NO: 13.

101. (Withdrawn) The host cell of claim 100, wherein said heterologous nucleic acid

molecule comprises a promoter functional in a host cell.

Page 8

- 102. (Withdrawn) The host cell of claim 100, wherein said host cell is present in a plant.
- 103. (Withdrawn) The host cell of claim 100, wherein said host cell is present in a plant seed.
- 104. (Withdrawn) A host cell modified by introducing a nucleic acid construct comprising a promoter functional in a host cell operably linked to the nucleic acid sequence of SEQ ID NO: 13.
- 105. (Withdrawn) The host cell of claim 104, wherein said host cell is a plant host cell.
- 106. (Withdrawn) A transgenic plant, or any part thereof, having a cell having a heterologous nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 13.
- 107. (Withdrawn) The transgenic plant, or any part thereof of claim 106, wherein said heterologous nucleic acid molecule comprises a promoter functional in said cell.
- 108. (Withdrawn) The transgenic plant, or any transgenic part thereof of claim 106, wherein said transgenic plant is selected from the group consisting of soybean and corn.
- 109. (Withdrawn) A transgenic plant, or any part thereof, comprising a cell modified by introducing a nucleic acid construct comprising a promoter functional in a host cell operably linked to the nucleic acid sequence of SEQ ID NO: 13.
- 110. (Withdrawn) The transgenic plant, or any transgenic part thereof, of claim 109, wherein said transgenic plant is selected from the group consisting of soybean and corn.
- 111. (Withdrawn) A transgenic seed comprising a cell having a heterologous nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 13.
- 112. (Currently Amended) A method for producing medium-chain fatty acids in transgenic plant seeds by expression of one or more plant medium-chain thioesterase proteins heterologous to said transgenic plant, comprising
- (a) providing for expression of a plant synthase factor protein heterologous to said transgenic plant, wherein said synthase is a β -ketoacyl-ACP synthase (KAS) factor A protein

Page 9

from a Cuphea species;

(b) providing for expression of said one or more plant medium-chain thioesterase proteins in conjunction with (a),

whereby the percentage of medium-chain fatty acids produced in said transgenic plant seeds expressing both said plant synthase factor protein and said one or more plant medium-chain thioesterase proteins is increased as compared to the percentage of medium-chain fatty acids produced in seeds expressing only said one or more plant medium-chain thioesterase proteins.