浙江大学 20_15_ - 20_16_ 学年_夏_学期

《 大学物理甲1 》课程期末考试试卷(A)

课程号: __061B0211__, 开课学院: __物理系___

考试试卷: A √卷、B 卷 (请在选定项上打 √)

考试形式:闭√、开卷(请在选定项上打√)

考试日期: _2016 年 06 月 27 日, 考试时间: _120 _

允许带_无存储功能的计算器_入场

诚信考试,沉着应考,杜绝违纪。								
考生姓名_	学号		所属院系		任课老师		_组号	
题序	填空	计1	计2 计3	计 4	计 5	计6	总 分	
得分		/						

气体摩尔常量 R=8.31 J·mol⁻¹·K⁻¹,

玻尔兹曼常量 $k = 1.38 \times 10^{-23} \text{ J·K}^{-1}$

真空介电常数 & = 885×10⁻¹²C²/(N·m²),

真空中光速 $c=3\times10^8$ m/s

基本电荷 e=1.6×10-0°C

- 一、填空题: (12题, 共48分)
- 1. (本题 4分) 0016

评卷人

一物体作斜抛运动,初速度 \bar{v}_0 与水平方向夹角为 θ ,如图所

示. 物体轨道最高点处的曲率半径p为_

2. (本题 4分) 0449

质量为 0.25 kg 的质点,受力 $\bar{F}=t$ (SI)的作用,式中 t 为时间. t=0 时该质点以 $\bar{v}=2\bar{j}$ (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是_______.

3. (本题 4分) 0716

质量分别为 m_1 、 m_2 的两个物体用一劲度系数为k的轻弹簧相联,放在水平光滑桌面上,如图所示. 当两物体相距x时,系统由静止释放. 已知弹簧的自然长度为 x_0 ,则当物体相距 x_0 时, m_1 的速度大小为

4. (本题 4分) 0680

5. (本题 4 分) 4730 α粒子在加速器中被加速,当其质量为静止质量的 5 倍时,其动能为静止能量的倍.
6. (本题 4 分) 4734
7. (本题 4分) 3053 如图所示,一质量为 m 的滑块,两边分别与劲度系数为 k ₁ 和 k ₂ 的轻弹簧联接,两弹簧的另外两端分别固定在墙上. 滑块 m 可在光滑的水平面上滑动, a 点为系统平衡位置. 将滑块 m 向右移动到 x ₀ ,自静止释放,并从释放时开始计时. 取坐标如图所示、则其振动方程为
8. (本题 4 分) 3420 —
9. (本题 4 分) 3329 一频率为 400Hz 的声源以 2.0m/s 的速度正对一高墙运动,声音在空气中的速度为 330m/s. 在声源后面站在地面上的人听到的声音的拍频为
10. (本题 4分) 4670 一定质量的理想气体,先经过等体过程使其热力学温度升高一倍,再经过等温过程使 其体积膨胀为原来的两倍,则分子的平均自由程变为原来的
11. (本题 4 分) 4338
12. (本题 4 分) 1258

一半径为R的带有一缺口的细圆环,缺口长度为d(d<<R)环上均匀带有正电,电荷为q,如图所示,则圆心O处的场强大

小 *E* = ________,场强方向 为_______

二、计算题: (6题, 共52分)

1. (本题 10分) 0561

质量分别为m和2m、半径分别为r和2r的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m的重物,如图所示. 求盘的角加速度的大小.

2. (本题 8分) 0913

如图所示,一长为 l,质量为 M的均匀细棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为 m 的子弹以水平速度 \bar{v}_0 射向棒的中心,并以 $\bar{v}_0/2$ 的速度穿出棒。若碰撞后棒能够达到的最大偏转角恰为 90° ,试求 \bar{v}_0 的大小.

3. (本题 8分) 3335

一简谐波,振动周期 T=(1/2) s,波长之 10 m,振幅 A=0.1 m. 当 t=0 时,波源振动的位移恰好为正方向的最大值. 若坐标原点和波源重合,且波沿 Ox 轴正方向传播,求:

- (1) 此波的表达式;
- (2) $t_1 = T/4$ 时刻, $x_1 = \lambda/4$ 处质点的位移;
- (3) $t_2 = T/2$ 时刻, $x_1 = \lambda/4$ 处质点的振动速度.

4. (本题 8 分) 5793

已知某粒子系统中粒子的速率分布曲线如图所示,相应的速率分布函数为

$$f(v) = \begin{cases} kv^3 & (0 \le v \le v_0) \\ 0 & (v_0 < v < \infty) \end{cases} \quad \overrightarrow{\text{id}} \, \overrightarrow{\text{X}} :$$

- (1)比例常数 k;
- (2)粒子的平均速率 \overline{v} 和方均根速率 $\sqrt{v^2}$;
- (3)速率在 $0\sim v_1$ 之间的粒子数占总粒子数的 1/16 时, v_1 为多大? (答案均以 v_0 表示)

5. (本题 10分) 5077

1 mol 刚性双原子分子的理想气体,开始时处于 p_1 =1.01×10⁵ Pa, V_1 =10⁻³ m³ 的状态. 然后经图示直线过程 1 变到 p_2 =4.04×10⁵ Pa, V_2 =2×10⁻³ m³ 的状态. 后又经过程方程为 $pV^{1/2}$ =C (常量)的过程 II 变到压强 p_3 = p_1 的状态. 求:

- (1) 在过程 I 中气体吸的热量.
- (2)整个过程气体吸的热量.

6. (本题 8分) y001

半径为 R 的无限长圆柱,柱内电荷体密度为 $\rho=ar-br^2$,r 为某点到圆柱轴线的距离,a、b 为常量. 试求带电圆柱内外电场分布.

