Analysis I (WS 18/19)

Pavel Zwerschke

7. November 2018

Inhaltsverzeichnis

0	Organisatorisches	2
1	Was ist Analysis?	3
2	Etwas Logik 2.1 Grundbegriffe	3 5
3	Die reellen Zahlen 3.1 Körperaxiome (engl. field)	10 14 15
4	Funktionen und Abbildungen 4.1 Funktion als Abbildung	19

0 Organisatorisches

Dozent

Prof. Dr. Dirk Hundertmark (20.30, 2.028)

dirk.hundertmark@kit.edu

Übungsleiter

Dr. Markus Lange (20.30, 2.030)

markus.lange@kit.edu

Übungszettel

Ausgabe:

donnerstags unter www.math.kit.edu/iana1/lehre/ana12018w/

Abgabe:

bis mittwochs um 19:00 in den Abgabekästen des Foyers des Mathematikgebäudes (20.30)

getackert, mit Namen, Matrikelnummer, Tutoriennummer und Deckblatt (optional) in das Fach mit der richtigen Kennzeichnung legen

Zettel dürfen zu zweit abgegeben werden

Übungsschein

Jede K-Aufgabe wird mit 4 Punkten bewertet. Einen Übungsschein erhält wer 50% der Punkte aller K-Aufgaben erzielt.

Klausur

Die Anmeldung findet über das Online-Portal statt. Die Klausur findet in KW 8 2019 statt. Der Übungsschein ist Voraussetzung für die Teilnahme an der Klausur.

1 Was ist Analysis?

Zentrale Begriffe:

Grenzwerte von Folgen und Reihen, Funktionen, stetig, differenzierbar, integrieren, Differential- und Integralrechnung, Differentialgleichungen (Newton, Maxwell, Schrödinger), unendlich dimensionale Räume

Beispiel.
$$S = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \dots$$

 $2S = 1 + \frac{1}{2} + \dots + \frac{1}{2} + \dots$
 $2S = 1 + S$

S entspricht der Wahrscheinlichkeit, dass irgendwann mal Kopf in einem Münzwurf kommt.

Vorsicht!

$$S = 1 + 2 + 4 + \dots$$

 $2S = 2 + 4 + 8 + \dots = -1 + 1 + 2 + 4 + \dots = -1 + S$
 $S = -1$

Natürlich Quatsch!

Formales Rechnen kann gefährlich sein!

- Was sind mathematische Aussagen?
- Wie macht man Beweise, wie findet man sie? (learning by doing)
- logische Zusammenhänge

2 Etwas Logik

Eine (mathematische) Aussage ist ein Ausdruck, der wahr oder falsch ist. z. B.

- 1. A: 1 + 1 = 2. (auch 1 + 1 = 3, 1 + 1 = 0)
- 2. B: "Es gibt unendlich viele Primzahlen."
- 3. C: "Es gibt unendlich viele Primzahlen p für die p+2 auch eine Primzahl ist."
- 4. D: "Die Gleichung $m\ddot{x}=F$ hat geg. $\dot{x}(0)=v_0, x(0)=x_0$ immer genau eine Lösung."
- 5. E : "Jede gerade natürliche Zahl größer als 2 ist die Summe zweier Primzahlen."
- 6. F: "Morgen ist das Wetter schön."

- 7. G: "Ein einzelnes Atom im Vakuum mit der Kernladungszahl Z kann höchstens Z + 1 Elektronen binden."
- 8. H(k, m, n): "Es gilt: $k^2 + m^2 = n^2$ " (z. B. H(3, 4, 5) ist wahr.)

Gegeben für natürliche Zahlen n, Aussagen A(n), dann gilt:

Für jede nat. Zahl n ist A(n) wahr, genau dann, wenn

- 1. A(1) ist wahr.
- 2. Unter der Annahme, dass A(n) wahr ist, folgt, dass A(n+1) wahr ist.

Beispiel.
$$A(n): 1+2+3+\cdots+n = \frac{n(n+1)}{2}$$
.

Beweis. Vollständige Induktion

Induktionsanfang:

$$1 = \frac{1(1+1)}{2} \checkmark$$

Induktionsschluss:

Wir nehmen an, dass A(n) wahr ist (für $n \in \mathbb{N}$)

D. h. Induktionsannahme:

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Dann folgt:

Dann loigt:

$$\underbrace{1+2+\cdots+n}_{=\frac{n(n+1)}{2}} + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)+2(n+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2}$$

Bemerkung. Gaußscher Trick:

1)
$$S = 1 + 2 + 3 + \dots + n = n + (n - 1) + (n - 2) + \dots + 2 + 1$$

$$2S = \underbrace{(n + 1) + (n + 1) + \dots + (n + 1)}_{n-m+1} \Leftrightarrow S = \frac{n(n+1)}{2}.$$

$$S_n = 0 + 1 + 2 + \dots + n$$

 \approx Fläche eines rechtwinkligen Dreiecks = $\frac{1}{2} * n * n$.

Also: Ansatz ("geschicktes Raten", "scientific guess", englisch: ansatz):
$$S_n = \underbrace{a_2 n^2 + a_1 n + a_0}_{\text{Polynom 2. Grades in n}}$$

$$a_2 = \frac{1}{2}$$

Wie bekommt man
$$a_0, a_1, (a_2)$$
? $n = 0$: $S_0 = 0 = a_2 * 0^2 + a_1 * 0 + a_0 \Rightarrow a_0 = 0$. $n = 1$: $S_1 = 1 = a_2 * 1^2 + a_1 * 1^2 = a_2 + a_1 = \frac{1}{2} + a_1$.

also:
$$a_1 = \frac{1}{2}$$

$$\Rightarrow$$
 Raten: $S_n = \frac{1}{2}n^2 + \frac{1}{2}n = \frac{n(n+1)}{2}$.

2.1Grundbegriffe

Aussagen: Notation "so, dass gilt" "es gibt mindestens ein", "es existiert" "für alle" "impliziert"($A \Rightarrow B$ "aus A folgt B") "genau dann, wenn" \Leftrightarrow $\neg A$ nicht A $A \wedge B$ A und B $A \vee B$ $A ext{ oder } B$ $A := B \mid A \text{ ist per Definition gleich } B$

Satz 2.1.1. Folgende Aussagen sind allein aus logischen Gründen immer $\neg(\neg A) \Leftrightarrow A \quad Gesetz \ der \ doppelten \ Verneinung$

 $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$ Kontraposition

 $A \Rightarrow B \Leftrightarrow (\neg (A \land \neg B))$ beim Widerspruchsbeweis wahr. $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B) \quad de \; Morgan$ $\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B) \quad de \ Morgan$

Bemerkung. $A \Rightarrow B \Leftrightarrow B$ ist mindestens so wahr wie $A \Leftrightarrow A$ ist mindestens so falsch wie $B \Leftrightarrow \neg B \Rightarrow \neg A$.

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B \land B \Rightarrow A).$$

Beispiel. $n \in \mathbb{N}$ ist gerade, falls $k \in \mathbb{N}$ existiert mit n = 2k.

 $n \in \mathbb{N}$ ist ungerade, falls $\exists k \in \mathbb{N}_0 : \forall n = 2k + 1$.

Dann gilt: n ist gerade $\Leftrightarrow n^2$ ist gerade.

Beweis. " \Rightarrow ": $n \text{ gerade} \Rightarrow n = 2k$, für $k \in \mathbb{N}$ $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$ ist gerade.

Umgekehrt müssen wir zeigen:

 $, \Leftarrow$ ": n^2 gerade $\Rightarrow n$ gerade

Kontraposition: n ungerade $\Rightarrow n^2$ ungerade

Also sei $n = 2k+1, k \in \mathbb{N}_0 \Rightarrow n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = \underbrace{2(2k^2 + 2k)}_{\text{gerade}} + 1 \Rightarrow$

 n^2 ist ungerade.

Mengen (nach Cantor)

informell: Eine Menge ist eine Sammlung von Objekten (Elemente) zu einem neuen Objekt.

Vorsicht: Russels Paradox

genaue Definition von Zermelo-Fraenkel Axiome (\rightarrow Logik Mengenlehre)

 $a \in M : a \text{ ist Element von } M$

```
a \notin M: aist kein Element von Mz.B.: M = \{1,4\} 1 \in M 5 \notin M
```

Angabe von Mengen durch

- Auflistung $M = \{x_1, x_2, x_3, \dots, x_{17}\}$
- Eigenschaft $M = \{a | a \text{ hat Eigenschaft } E\}$

z.B.:

- $\mathbb{N} := \{1, 2, 3, \dots\}$
- $\mathbb{Z} := \{x | x \in \mathbb{N} \lor x \in -\mathbb{N} \lor x = 0\}$
- $\bullet \ -\mathbb{N} := \{-n|n \in \mathbb{N}\}\$

Definition 2.1.1. Sei M eine Menge und A(x) Aussagen mit $x \in M$

 $\forall x \in M : A(x)$ ist wahr, falls alle A(x) wahr sind.

 $\exists x \in M : A(x)$ ist wahr, falls mindestens eine Aussage A(x) wahr ist.

Achtung: Zusammensetzen: Reihenfolge ist wichtig!

Beispiel. Töpfe := Menge der Töpfe

Deckel := Menge der Deckel

 $A: \forall T \in \text{T\"{o}pfe } \exists D \in \text{Deckel}: D \text{ passt auf } T$

(Für jeden Topf gibt es einen Deckel, der passt)

 $B: \exists D \in \text{Deckel } \forall T \in \text{T\"{o}pfe}: D \text{ passt auf } T$

(Es existiert mindestens ein Deckel, der auf alle Töpfe passt)

Negation:

$$\neg(\forall x \in M : A(x))$$

$$\Leftrightarrow \exists x \in M : \neg A(x)$$

$$\neg(\exists x \in M : A(x))$$

$$\Leftrightarrow \forall x \in M : \neg A(x)$$

Definition 2.1.2 (wichtige Mengen). Seien M, N Mengen.

 $\emptyset := \text{ die Menge ohne Elemente (leere Menge)}$

 $M \cap N := \{x | x \in M \land x \in N\}$ (Schnitt)

 $M \cup N := \{x | x \in M \lor x \in N\}$ (Vereinigung)

 $M \setminus N := \{x | x \in M \land x \notin N\}$ (Differenzmenge)

 $\mathcal{P}(M) := \{A | A \subset M\}$ die Menge aller Teilmengen von M (Potenzmenge)

Sei I eine Menge und für $i \in I$ eine Menge M_i .

$$\bigcap_{i \in I} M_i := \{x | \forall i \in I : x \in M_i\}.$$
$$\bigcup_{i \in I} M_i := \{x | \exists i \in I : x \in M_i\}.$$

Ist $M \cap N = \emptyset$, so heißen M und N divergent. $M \subset N$, falls $\forall x \in M : x \in N$ (M Teilmenge von N). M = N, falls M und N dieselben Elemente haben. Insbesondere ist $(M = N) \Leftrightarrow M \subset N \land N \subset M$. $M \subseteq N : M \subset N \land M \neq N$ (M echte Teilmenge von N).

Beispiel.
$$\emptyset \subset M$$

 $M = \{1, 2\} \Rightarrow \mathcal{P}(M) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

- 1. Eigenschaften von "⊂"
 - (a) $\emptyset \subset M$
 - (b) $M \subset M$
 - (c) $M = N \Leftrightarrow M \subset N \land N \subset M$
 - (d) $A \subset B \land B \subset C \Leftrightarrow A \subset C$
- 2. Assoziativität
 - (a) $(A \cup B) \cup C = A \cup (B \cup C)$
 - (b) $(A \cap B) \cap C = A \cap (B \cap C)$
- 3. Kommutativität
 - (a) $A \cup B = B \cup A$
 - (b) $A \cap B = B \cap A$
- 4. Distributivgesetz
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

3 Die reellen Zahlen

3.1 Körperaxiome (engl. field)

 \mathbb{K} : Menge mit zwei Operationen "+"und "·". $\forall a, b \in \mathbb{K}$ ist $a + b \in \mathbb{K} \land a \cdot b \in \mathbb{K}$ erklärt sollen kompatibel sein.

Definition 3.1.1 (Körperaxiome). In einem Körper gelten diese Axiome:

- 1. Kommutativität: $\forall a, b \in \mathbb{K} : a + b = b + a, a \cdot b = b \cdot a$
- 2. Assoziativität: $\forall a, b, c \in \mathbb{K} : a + (b + c) = (a + b) + c, a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. Existenz des neutralen Elements:

$$\exists 0 \in \mathbb{K} : a+0 = 0 + a = a \forall a \in \mathbb{K} \\ \exists 1 \in \mathbb{K} : a \cdot 1 = 1 \cdot a = a \forall a \in \mathbb{K}$$

4. Existenz eines inversen Elements:

$$\forall a \in \mathbb{K} \exists -a \in \mathbb{K} : a + (-a) = 0$$
$$\forall a \in \mathbb{K} \setminus \{0\} \exists \frac{1}{a} \in \mathbb{K} : a \cdot \frac{1}{a} = 1$$
Es gilt: $0 \neq 1$.

5. Distributivgesetz: $\forall a, b, c \in \mathbb{K} : a \cdot (b+c) = a \cdot b + a \cdot c$

Beispiel. $\mathbb{Q} = \frac{m}{n}, n \in \mathbb{N}, m \in \mathbb{Z}$ ist ein Körper.

Bemerkung. .

- 1. Somit ist ein Körper \mathbb{K} mit "+"eine kommutative Gruppe und $\mathbb{K} \setminus \{0\}$ mit "·"auch eine kommutative Gruppe.
- 2. Die neutralen Elemente sind eindeutig bestimmt. z.B.: angenommen, 0_1 und 0_2 sind neutrale Elemente mit "+". $\Rightarrow 0_1 \stackrel{(3)}{=} 0_1 + 0_2 \stackrel{(1)}{=} 0_2 + 0_1 \stackrel{(2)}{=} 0_2$ analog für Multiplikation

Definition 3.1.2. Zu $a \in \mathbb{K}$ ist -a das Inverse bzgl. der Addition schreibe a - b := a + (-b). Zu $a \in \mathbb{K} \setminus \{0\}$ sei $a^{/1}$ das Inverse bzgl. der Multiplikation.

Ist $b \neq 0$, so schreiben wir $\frac{a}{b} := a \cdot b^{-1} = b^{-1} \cdot a$. schreibe $(ab) := a \cdot b$.

Lemma 1 (Rechnen in einem Körper). .

- 1. Umformen von Gleichungen $\forall a, b, c \in \mathbb{K}$: $aus \ a + b = c \ folgt \ a = c b$ $aus \ a \cdot b = c, \ b \neq 0 \ folgt \ a = \frac{c}{b}$
- 2. Allgemeine Rechenregeln -(-a) = a $(a^{-1})^{-1} = a, \text{ falls } a \neq 0$ -(a+b) = (-a) + (-b) $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1} = a^{-1} \cdot b^{-1}$ $a \cdot 0 = 0$ a(-b) = -(ab), (-a)(-b) = ab a(b-c) = ab ac $ab = 0 \Leftrightarrow a = 0 \lor b = 0 \text{ (Nullteiler freiheit)}$

Beweis.
$$0 = a + (-a) = (-a) + a$$

 $\Rightarrow -(-a) = a$
 $(a+b) + ((-a) + (-b)) = (a+(-a)) + (b+(-b)) = 0 + 0 = 0$
 $\Rightarrow -(a+b) = (-a) + (-b)$
benutzen wir auch Eindeutigkeit des inversen Elements

analog zeigt man $(a^{-1})^{-1} = a$ und $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$ z.B.: $(ab) \cdot (b^{-1}a^{-1}) = a(b \cdot b^{-1})a^{-1} = (a \cdot 1)a^{-1} = a \cdot b^{-1} = 1$ Ferner $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 = a \cdot 0 + 0$ $\Rightarrow a \cdot 0 = a \cdot 0 - a \cdot 0 = 0$ $\Rightarrow a \cdot b + a \cdot (-b) = a \cdot (b + (-b)) = a \cdot 0 = 0$ Eind. d. Inv. -ab = a(-b)

Somit auch (-a)(-b) = -((-a)b) = -(b(-a)) = (-ba) = -(-ab) = ab und a(b-c) = a(b+(-c)) = ab + a(-c) = ab + (-ac) = ab - ac. ist ab = 0 und $a \neq 0 \Rightarrow 0 = (ab)\frac{1}{a} = \frac{1}{a} \cdot (ab) = (\frac{1}{a} \cdot a)b = 1b = b$ also ist b = 0.

Satz 3.1.1 (Bruchrechnen). $a, b, c, d \in \mathbb{K}, c \neq 0, d \neq 0$. Dann gilt

$$1. \ \frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

2.
$$\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$$

3.
$$\frac{a/c}{b/d} = \frac{ad}{bc}$$
, falls auch $b \neq 0$ ist.

Beweis. Übung

Beispiel. rationale Zahlen sind ein Körper schreiben ($\mathbb{K}, +, \cdot$) für einen Körper

3.2 Die Anordnungsaxiome

Definition 3.2.1. Sei \mathbb{K} (genauer $(\mathbb{K},+,\cdot)$) ein Körper. Dann heißt > eine Anordnung falls

- 1. Für jedes $a \in \mathbb{K}$ gilt genau eine der Aussagen a > 0, a = 0, -a > 0 (wenn $a \in \mathbb{K}$, mit a > 0 positiv)
- 2. Aus a > 0 und b > 0 folgt a + b > 0 und $a \cdot b > 0$

Wir nennen $(\mathbb{K}, +, \cdot, >)$ einen angeordneten Körper.

Bemerkung. Statt -a > 0 schreiben wir a < 0 Statt a - b > 0 schreiben wir a > b Bild:

Statt a - b < 0 schreiben wir a < b.

$$a \ge b$$
, falls $a > b \lor a = b$

$$a \le b$$
, falls $a < b \lor a = b$.

Satz 3.2.1. Sei $(\mathbb{K},+,\cdot,>)$ ein angeordneter Körper. Dann gilt

- 1. $f\ddot{u}r\ a,b \in \mathbb{K}$ gilt genau eine der Relationen a>b,a=b,a< b (Trichotromie)
- 2. Aus a > b, b > c folgt a > c (Transitivität)
- 3. Aus a > b folgt:

$$\begin{cases} a+c > b+c, \forall c \in \mathbb{K} \\ ac > bc, \ falls \ c > 0 \\ ac < bc, \ falls \ c < 0 \end{cases}.$$

4. Aus a > b und c > d folgt: $\begin{cases} a + c > b + d \\ ac > bd, \text{ falls } b, d > 0 \end{cases}$

5. Für $a \neq 0$ ist $a^2 > 0$.

6. Aus
$$a > 0$$
 folgt $\frac{1}{a} > 0$.

7. Aus
$$a > b > 0$$
 folgt $0 < \frac{1}{a} < \frac{1}{b}$.

8. Aus
$$a > b, 0 < \lambda < 1$$
 folgt $b < \lambda b + (1 - \lambda)a < a$.

Bemerkung. Auf \mathbb{F}_2 kann es keine Anordnung geben!

Beweis. 1. Direkt aus (A.1) und Def. von a > b.

2.
$$a - c = \underbrace{(a - b)}_{>0} + \underbrace{(b - c)}_{>0} \stackrel{\text{(A.2)}}{>} 0.$$

3.
$$(a+c) - (b+c) = a-b > 0$$

 $ac - bc = (a-b) \cdot c \stackrel{\text{(A.2)}}{>} 0$, falls $c > 0$
Ist $c < 0$, so ist $-c > 0$
 $\Rightarrow bc - ac = (a-b) \cdot (-c) \stackrel{\text{(A.2)}}{>} 0$
 $ac - bd = ac - bc + bc - bd = (a-b) \cdot c + b \cdot (c-d) \stackrel{\text{(A.2)}}{>} 0$.

4.
$$(a+c) - (b+d) = (a-b) + (c-d) > 0$$
 nach (A.2)
 $ac - bd = ac - bc + bc - bd = (a-b)c + b(c-d)$
Ist $b = 0 \Rightarrow a > b = 0 \Rightarrow ac > 0 = bd$
Ist $b < 0 \Rightarrow (-b)d > 0 \Rightarrow -bd > 0 \Rightarrow bd < 0 \Rightarrow ac < -bd \Rightarrow (-bd) > 0$

5. Fallunterscheidung:

ist
$$a > 0 \Rightarrow a^2 = a \cdot a > 0$$
 (A.2)
ist $a < 0 \Rightarrow a^2 = (-a) \cdot (-a) > 0$ (A.2)

6. sei a > 0:

$$\stackrel{5_{\cdot}}{\Rightarrow} \left(\frac{1}{a}\right) > 0 \Rightarrow \frac{1}{a} = \underbrace{\left(\frac{1}{a}\right)^{2}}_{>0} \cdot \underbrace{a}_{>0} > 0.$$

7. aus
$$a > b > 0$$

$$\Rightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{b}(a - b)\frac{1}{a} > 0.$$

8.
$$a > b, 0 > \lambda > 1 \Rightarrow \lambda > 0 \land 1 - \lambda > 0$$

 $b = \lambda b + \underbrace{(1 - \lambda)b}_{<(1 - \lambda)a}$
 $< \lambda b + (1 - \lambda)a < \lambda a + (1 - \lambda)a = a$
 $\Rightarrow b < \lambda b + (1 - \lambda)a = a$.
Insbesondere $\lambda = 1/2 \Rightarrow b < 1/2b + 1/2a = \frac{a+b}{2} < a$.

Definition 3.2.2 (Betrag). Sei $(\mathbb{K}, +, \cdot, >)$ ein angeordneter Körper. Betrag von $a \in \mathbb{K}$ ist gegeben durch

$$|a| := \begin{cases} a, \text{ falls } a \ge 0\\ -a, \text{ falls } a < 0 \end{cases}$$
auch noch $a, b \in \mathbb{K}$

$$\max(a, b) := \begin{cases} a, & \text{falls } a \ge b \\ b, & \text{falls } a < b \end{cases}$$
$$\min(a, b) := \begin{cases} a, & \text{falls } a \le b \\ b, & \text{falls } a > b \end{cases}$$

Bemerkung. .

1.
$$a, b \in \mathbb{K}$$

 $|a - b| = \text{Abstand von } a \text{ zu } b.$
 $|a| = |a - 0| = \text{Abstand von } a \text{ zu } 0.$

2.
$$|a| = \max(a, -a)$$
.

Satz 3.2.2. $(\mathbb{K}, +, \cdot, >)$ ang. Körper Dann qilt $\forall a, b \in \mathbb{K}$:

1.
$$|-a| = |a| \text{ und } a \le |a|$$

2.
$$|a| \ge 0$$
 und $|a| = 0 \Leftrightarrow a = 0$

3.
$$|ab| = |a| |b|$$

4.
$$|a+b| \le |a| + |b|$$
 (Dreiecksungleichung)

5.
$$||a| - |b|| \le |a - b|$$
 (umgekehrte Dreiecksungleichung)

Beweis. .

1.
$$|-a| = \begin{cases} -a, -a \ge 0 \\ -(-a), -a \le 0 \end{cases} = \begin{cases} -a, a \le 0 \\ a, a \ge 0 \end{cases} = |a|$$

$$|a| - a = \begin{cases} a - a, a \ge 0 \\ -a - a, a < 0 \end{cases} = \begin{cases} 0, a \ge 0 \\ -(a + a), a < 0 \end{cases} \ge 0.$$
alternativ: $a < \max(a, -a) = |a|$.

2.

3. Hier ändern sich die linke und rechte Seite
 nicht, wenn man a bzw. b durch -a bzw. -b ersetzt.

Also, o.B.d.A. können wir annehmen, dass $a, b \ge 0$. $\Rightarrow |ab| = ab = |a||b|$.

5.
$$|a| = |a - b + b| = |(a - b) + b| \stackrel{(4)}{\leq} |a - b| + |b|$$

 $|a| - |b| \leq |a - b| \, \forall a, b \in \mathbb{K}$.
Jetzt: Symmetrieargument. (Vertausch von a und b)
 $\Rightarrow |b| - |a| \leq |b - a| = |(-b - a)| = |a - b|$
also $|b| - |a| \leq |a - b|$
 $|a| - |b| \leq |a - b|$
 $|a| - |b|| = \max(|a| - |b|, -(|a| - |b|)) = \max(|a| - |b|, |b| - |a|) \leq |a - b|$.

. 1

Beispiel. Sei $a,b\in\mathbb{K}$ ein angeordneter Körper. Aus $|b-a|\leq b/2, 2=1+1$ folgt $a\geq b/2$ Bild:

Beweis.
$$b-a \le |b-a| \le b/2 \Rightarrow a \ge b-b/2 = b/2$$
.

Korollar 1 ("geometrisch-arithmetische Ungleichung"). Sei $(\mathbb{K}, +, \cdot, >)$ ein ang. Körper, $a, b \in \mathbb{K}$

$$\Rightarrow ab \le \left(\frac{a+b}{2}\right)^2.$$

Wenn Glèichheit gilt, so folgt a = b.

Beweis. In Übung

Fakt:

- In jedem angeordneten Körper gilt 0 < 1!
- Es gibt keine Anordnung, die \mathbb{F}_2 zu einem angeordneten Körper macht. (H.A.)

3.3 Obere und untere Schranken, Supremum und Infimum

Notation: a ist nicht negativ, falls $a \ge 0$.

natürlich $a = b \Leftrightarrow a \leq b \land a \geq b$.

Im Folgenden ist \mathbb{K} immer ein angeordneter Körper. $A, B \subset \mathbb{K}, A, B \neq \emptyset$ und $\gamma \in \mathbb{K}$, so bedeutet $A \leq \gamma : \forall a \in A : a \leq \gamma \ (\gamma \text{ it obere Schranke für } A).$

 $B \ge \beta : \forall b \in B : b \ge \beta$ (β ist untere Schranke für B).

Analog sind $a < \gamma, A > \gamma, A < B$, usw. definiert.

Hat A eine obere Schranke, so heißt A nach oben beschränkt. Hat B eine untere Schranke, so ist B nach unten beschränkt. A ist beschränkt, falls es nach oben und unten beschränkt ist.

Ist $A \leq \alpha$ und $\alpha \in A$, so heißt α größtes (maximales) Element von A, schreibe $\alpha = \max A$ (Maximum).

Ist $B \ge \beta$ und $\beta \in B$, so heißt B kleinstes (minimales) Element von B, schreibe $\beta = \min B$ (Minimum).

Man zeige, dass max und min eindeutig sind, sofern sie existieren.

 $[0,1):=\{x\in\mathbb{K}|0\leq x\leq 1\}$ hat kein Maximum bzw. kein maximales Element.

Definition 3.3.1. Sei $A \subset \mathbb{K}$, $A \neq \emptyset$. Dann ist $\gamma \in \mathbb{K}$ die kleinste obere Schranke (oder Supremum), falls $A \leq \gamma$ und aus $A \leq n$ folgt $\gamma \leq n$. Schreibe $\gamma = \sup A = \sup(A)$.

Analog: β it die größte untere Schranke von A (Infimum), falls $\beta \leq A$ und aus $\eta \leq A$ folgt $\eta \leq \beta$

Schreibe $\beta = \inf A = \inf(A)$.

Beispiel.
$$P := \{x \in \mathbb{K} | x > 0\}$$

 \Rightarrow

- 1. P ist nicht nach oben beschränkt.
- 2. P hat kein Minimum, aber inf P = 0.

Beweis. .

- 1. Ang. γ ist obere Schranke für P. D.h. $\forall x \in P$ folgt $0 < x \le \gamma \Rightarrow \gamma > 0 \Rightarrow \gamma \in P \Rightarrow 0 < \gamma = \gamma + 0 < \gamma + 1 \in P \Rightarrow \gamma + 1 \in P$ und $\gamma + 1 > \gamma \gamma$ ist nicht obere Schranke für P (Widerspruch!) $\mathcal E$
- $2. \ 2 := 1 + 1 > 1 > 0$

Ang. min $P:=\eta$ existiert. $\Rightarrow \eta \in P, \eta > 0, \tilde{x}:=\frac{\eta}{2}=\frac{0+\eta}{2}<\eta$. Es gilt $0=\inf P$.

Sicherlich 0 < P, also ist 0 eine untere Schranke für P.

0 ist die größte untere Schranke, denn nach obigem Argument ist jede Zahl > 0 keine untere Schranke für P!

Lemma 2. $A \subset \mathbb{K}, A \neq \emptyset$.

1. $\alpha := \sup A \Leftrightarrow \alpha \ge A \land \forall \varepsilon > 0 \exists a \in A : \alpha - \varepsilon < a$.

2. $\beta := \inf B \Leftrightarrow \beta < B \land \forall \varepsilon > 0 \exists b \in B : b < \beta + \varepsilon$.

Beweis. .

1. "⇒": Sei $\alpha = \sup A$. Also α ist die kleinste obere Schranke für A. D.h. $\alpha \geq A$ und $\forall \varepsilon > 0$ ist $\varepsilon > 0 < \alpha$, also ist $\alpha - \varepsilon$ keine obere Schranke für A. D.h. $\exists a \in A : \alpha - \varepsilon < a$.

" \Leftarrow ": Sei $\alpha \ge A \land \forall \varepsilon > 0 \exists a \in A : \alpha - \varepsilon < a$. Also ist α eine obere Schranke für A. Sei $\tilde{\alpha} < \alpha$.

Setze $\varepsilon := \alpha - \tilde{\alpha} > 0 \Rightarrow \exists a \in A : \tilde{\alpha} = \alpha - \varepsilon < a \Rightarrow \tilde{\alpha}$ ist keine obere Schranke für $a. \Rightarrow \alpha$ ist die kleinste obere Schranke.

2. $A := -B = \{-b | b \in B\}$. Beachte: $\sup A = \sup(-B) = -\inf B$.

3.4 Das Vollständigkeitsaxiom

Definition 3.4.1. Ein angeordneter Körper $(\mathbb{K}, +, \cdot, >)$ erfüllt das Vollständigkeitsaxiom, falls

Jede nichtleere, nach oben beschränkte Teilmenge hat ein Supremum.

Solch einen Körper nennt man ordnungsvollständig. \mathbb{R} , der Körper der reellen Zahlen, ist <u>der</u> ordnungsvollständige Körper. (Im Wesentlichen gibt es nur einen!)

$$\mathbb{Q}; A := \{r \in \mathbb{Q} | r^2 < 2\}$$
 Notation: $a, b \in \mathbb{R}$ $a < b$
$$[a, b] := \{x \in \mathbb{R} | a \leq x \leq b\} \text{ abgeschlossenes Intervall}$$

$$(a, b) := \{x \in \mathbb{R} | a < x < b\} \text{ offenes Intervall}$$

$$[a, b) := \{x \in \mathbb{R} | a \leq x < b\} \text{ nach rechts halboffenes Intervall}$$

$$(a, b] := \{x \in \mathbb{R} | a < x \leq b\} \text{ nach links halboffenes Intervall}$$
 Intervalllänge: $b - a$ unbeschränkte Intervalle:
$$(-\infty, a] := \{x \in \mathbb{R} | x \leq a\}$$

$$[a, \infty) := \{x \in \mathbb{R} | x \geq a\}$$

$$[-\infty, a) := \{x \in \mathbb{R} | x < a\}$$

$$(-\infty, a) := \{x \in \mathbb{R} | x < a\}$$

$$(a, \infty) := \{x \in \mathbb{R} | x > a\}.$$

3.5 Die natürlichen Zahlen \mathbb{N}

(als Teilmenge von
$$\mathbb{R}$$
)
 n natürliche Zahl, $n = \underbrace{1 + 1 + \ldots + 1}_{n - \text{mal}}$ (zirkulär \mathcal{I})

Definition 3.5.1. Eine Teilmenge $M \subset \mathbb{R}$ heißt induktiv, falls

- 1. $1 \in M$
- 2. Aus $x \in M$ folgt $x + 1 \in M$

Beispiel. $[1, \infty)$ ist induktiv.

 \mathbb{R} ist induktiv.

 $(1, \infty)$ ist nicht induktiv.

$$\{1\} \cup [1+1,\infty)$$
 ist induktiv.

Beobachtung: Ein beliebiger Schnitt induktiver Mengen ist wieder induktiv.

$$J: \text{Indexmenge } A_0 \text{ induktiv } \forall j \in J \\ \Rightarrow \forall i \in J: 1 \in A_j \Rightarrow 1 \in \bigcap_{j \in J} A_j \\ \text{Ist } x \in \bigcap_{j \in J} A_j \Rightarrow \forall j \in J: x \in A_j \Rightarrow x+1 \in A_j \Rightarrow x+1 \in \bigcap_{j \in J} A_j.$$

Definition 3.5.2 (natürliche Zahlen). .

$$\mathbb{N}:=\{x\in\mathbb{R}: \text{ für jede induktive Teilmenge }M\in\mathbb{R} \text{ gilt }x\in M\}:=\bigcap_{M\subset\mathbb{R} \text{ ist induktiv}}M$$

Bemerkung. \mathbb{N} ist induktiv und \mathbb{N} ist die kleinste induktive Teilmenge von \mathbb{R} .

Satz 3.5.1 (Archimedisches Prinzip für \mathbb{R}).

- 1. \mathbb{N} ist (in \mathbb{R}) nicht nach oben beschränkt!
- 2. $\forall x \in \mathbb{R} \ mit \ x > 0 \exists n \in \mathbb{N} : \frac{1}{n} < x$.

Beweis. 1. Angenommen, $\mathbb{N} \subset R$ ist nach oben beschränkt.

$$\mathbb{N} \neq \emptyset \text{ (da } 1 \in \mathbb{N})$$

Vollständigkeitsaxiom $\Rightarrow \alpha := \sup \mathbb{N} \in \mathbb{R}$.

Setze $\varepsilon = 1$ in Lemma 3.3.2

 $\alpha - 1$ ist nicht obere Schranke für N.

 $\exists n \in \mathbb{N} : n > \alpha - 1$

 $\Rightarrow n+1 > \alpha \in \mathbb{N}$ fzu α ist obere Schranke von \mathbb{N} .

2. Sei
$$x > 0 \stackrel{\text{Satz 3.2.1 (6)}}{\Rightarrow} \frac{1}{x} > 0 \Rightarrow \exists n \in \mathbb{N} : n > \frac{1}{x} \underset{\text{Satz 3.2.1 (7)}}{\Rightarrow} x = \frac{1}{1/x} > \frac{1}{n}.$$

Satz 3.5.2 (Induktionsprinzip). Sei $M \subset \mathbb{N}$ mit

- 1. $1 \in M$
- 2. Ist $x \in M \Rightarrow x + 1 \in M$

Dann ist $M = \mathbb{N}$.

Beweis. $\Rightarrow M$ ist induktiv. \mathbb{N} kleinste induktive Teilmenge von \mathbb{R} $\Rightarrow \mathbb{N} \subset M$

 $M \subset \mathbb{N} \wedge \mathbb{N} \subset M \Leftrightarrow M = \mathbb{N}.$

Korollar 2 (Vollständige Induktion). Für $n \in \mathbb{N}$ seien A(n) Aussagen. Es gelte:

- 1. A(1) ist wahr.
- 2. aus A(n) ist wahr folgt A(n+1) ist wahr.

Beweis. Definiere $M := \{n \in \mathbb{N} | A(n) \text{ ist wahr}\} \subset \mathbb{N}$.

- $1. \Rightarrow 1 \in M$, da A(1) wahr ist
- 2. \Rightarrow sei $n \in M$, d.h. A(n) ist wahr $\Rightarrow A(n+1)$ ist wahr, d.h. $n+1 \in M$.

Ind.prinzip Satz 4 $M = \mathbb{N}$, also sind alle A(n) wahr!

Notation: Induktive Definition von Summen und Produkten.

 $a_1 + a_2 + \ldots + a_n$ vage \ldots

Summe:

Beweis. .

- 1. Gegeben $m \in \mathbb{N} : A := \{n \in \mathbb{N} | n + m \in \mathbb{N}\} \subset \mathbb{N}$ dann ist A induktiv, also $\mathbb{N} \subset A \Rightarrow A = \mathbb{N}$.
- 2. Def: $B := \{n \in \mathbb{N} | n = 1 \lor (n 1 \in \mathbb{N} \land n 1 \ge 1)\} \subset \mathbb{N}$ Dann ist B induktiv, denn
 - (a) $1 \in B$
 - (b) Sei $n \in B$. Fallunterscheidung
 - $n = 1 \Rightarrow n + 1 = 1 + 1 > 1$. und $(n + 1) - 1 = (1 + 1) - 1 = 1 \in \mathbb{N}$
 - $n \in B \land n \neq 1 \Rightarrow n-1 \in \mathbb{N}[ODER B?] \land n-1 \geq 1$ $\Rightarrow n = \underbrace{(n-1)}_{\in \mathbb{N}} + 1 \in \mathbb{N}$ $\Rightarrow n+1-1 = n \in \mathbb{N}$ und $(n+1)-1 = n \in \mathbb{N}$ und $(n+1)-1 = n = (n-1)+1 \geq 1+1 \geq [ODER >?]1$. $\Rightarrow n+1 \in B$.
- 3. $C := \{ n \in \mathbb{N} | \forall m \in \mathbb{N} \text{ mit } m \leq n \text{ ist } n m \in \mathbb{N}_0 \} \Rightarrow$
 - (a) $1 \in C$, dann ist $m \in \mathbb{N}$ und m = 1. folgt nach b): m = 1 $\Rightarrow n - m = 1 - 1 = 0 \in \mathbb{N}_0$.
 - (b) ang. $n \in C$ und $m \in \mathbb{N}$ mit $m \le n + 1$. Fallunterscheidung:
 - $n = 1 \Rightarrow n + 1 m = (n+1) 1 = n \in \mathbb{N}.\checkmark$ $\Rightarrow n + 1 \in C.$
 - n > 1 (und $m \le n + 1$) $\stackrel{b)}{\Rightarrow} m - 1 \in \mathbb{N}$ und $m - 1 \le (n + 1) - 1 = n$ Da $n \in C, m - 1 \in \mathbb{N}, m - 1 \le n \Rightarrow \underbrace{n - (m - 1)}_{=(n+1)-m} \in \mathbb{N}_0$ $\Rightarrow n + 1 \in C.$
- 4. H.A.

4 Funktionen und Abbildungen

4.1 Funktion als Abbildung

Definition 4.1.1. Eine Funktion (oder Abbildung) von einer Menge A in eine Menge B ordnet jedem Element $a \in A$ ein <u>eindeutiges</u> Element $b \in B$ zu.

Wir schreiben:

$$f: A \to B, a \mapsto f(a) \quad (=b)$$

A: Definitionsbereich

B: Zielbereich (Target(space))

z.B. $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$

Die Abbildung $f: A \to B$ ist

injektiv | aus $f(a) = f(a'), a, a' \in A$, folgt a = a'

surjektiv $\forall b \in B \exists a \in A : b = f(a)$

bijektiv | sie ist injektiv und surjektiv

Bemerkung. $f: A \to B$ injektiv $\Leftrightarrow a, a' \in A, a \neq a' \Rightarrow f(a) \neq f(a')$

 $f: A \to B$ ist bijektiv $\Rightarrow \forall b \in B \exists ! a \in A : f(a) = b$.

Definiere $f^{-1}: B \to A, b \mapsto a, a \in A: f(a) = b$ (inverse Funktion).

Ist $f: A \to B$ nicht bijektiv. (Verallgemeinerte Inverse)

 $f^{-1}: P(B) \to P(A), M \mapsto \{a \in A | f(a) \in M\}$

Verkettung:

gegeben: $f: A \to B, g: B \to C$

 $g \circ f : A \to C$ $g \circ f(a) := g(f(a)).$

 $A \stackrel{f}{\rightarrow} B \stackrel{g}{\rightarrow} C$

 $f: A \to B$ ist bijektiv $\Rightarrow f^{-1} \circ f = \mathrm{id}_A, f \circ f^{-1} = \mathrm{id}_B$

 $id_A: A \to A, a \mapsto a.$

4.2 Abbildungen als Graph

Definition 4.2.1. Seien A, B Mengen. Dann ist (a, b) ein sog. <u>Tupel.</u> in der Mengenlehre: $(a, b) := \{\{a\}, \{a, b\}\}.$

Beachte: Reihenfolge ist wichtig! im Allg. $(a, b) \neq (b, a)$

Menge $A \times B := \{(a, b) | a \in A, b \in B\}$

heißt kartesisches Produkt (von A und B)

z.B. $\mathbb{R} \times \mathbb{R}$

2. Abbildungen Projektionen

 $\Pi_1 = \Pi_A : A \times B \to A, (a, b) \mapsto a$ (Projektion auf 1. Koordinate)

 $\Pi_2 = \Pi_B : A \times B \to B, (a, b) \mapsto b$ (Projektion auf 2. Koordinate)

 $\Pi_A(a,b) = a$

 $\Pi_B(a,b) = b$

n-Tupel: Mengen $A_1, \ldots, A_n, n \in \mathbb{N}$.

 $A_1 \times A_2$ wie vorhin

 $A_1 \times \cdots \times A_{n+1} := (A_1 \times \cdots \times A_n) \times A_{n+1}, n \in \mathbb{N} \text{ (induktiv)}$

Beobachtung:

 $\overline{(A \times B) \times C} = A \times (B \times C) + \{(a, b, c) | a \in A, b \in B, c \in C\} = ((a, b), c) = (a, (b, c))$

Genauer: \exists Bijektion $\Phi: (A \times B) \times C \rightarrow A \times (B \times C)$

Definition 4.2.2 (Graph einer Abbildung). Geg: $f:A\to B$ Funktion

 $\Gamma := \Gamma_f := \{(a,b) \in A \times B : b = f(a)\} \subset A \times B$

 $P \subset A \times B$ ist der Graph einer Funktion genau dann, wenn aus $(a_1, b_1), (a_2, b_2) \in \Gamma$ folgt $b_1 = b_2$. (und $\forall a \in A \exists b \in B : (a, b) \in \Gamma$)

```
Satz 4.2.1. \Gamma \subset A \times B ist genau dann Graph einer Abbildung f: A \to B, wenn die Projektion \Pi_A|_{\Gamma}: \Gamma \to A bijektiv ist.
Notation: g: D \to E, X \subset D g|_X: X \to E, x \mapsto g(x)
```

Beweis. Sei $\Gamma = \Gamma_f$ mit $f: A \to B$ Funktion $(a,b) \in \Gamma_f \Leftrightarrow b = f(a)$ $\forall a \in A$ existiert genau ein $b \in B$ mit f(a) = b. $\Rightarrow \Pi_A|_{\Gamma}$ ist bijektiv. Umgekehrt: Sei $\Pi_A|_{\Gamma} \to A$ bijektiv. D.h. ist $(a_j,b_j) \in \Gamma, j \in \{1,2\}$ und $\Pi_A(a_1,b_1) = \Pi_A(a_2,b_2) \Rightarrow (a_1,b_1) = (a_2,b_2)$ $\Leftrightarrow a_1 = a_2, b_1 = b_2$

 \Rightarrow zu $a \in A \exists ! b \in B, (a, b) \in \Gamma$. Da $b = \Pi_B(a, b) = \Pi_B((\Pi_A|_{\Gamma})^{-1}(a))$

Definiere $f := \Pi_B \circ (\Pi_A|_{\Gamma})^{-1} : A \to B$ ist Funktion

nachrechnen $\Gamma = \Gamma_f$

Bemerkung. In Satz 3 gilt $f = \Pi_B \circ (\Pi_A|_{\Gamma})^{-1}$

Beispiel. Ist $f: A \to B$ bijektiv

$$b = f(a), \quad f^{-1}(b) = a$$

Dann gilt:
$$\Gamma_f^{-1} = \{(b, f^{-1}(b)) | b \in B\}$$

 $= \{(f(a), a) : a \in A\} = S(\Gamma_f), S : A \times B \to B \times A \text{ (swap)}, (a, b) \mapsto (b, a).$

 $\Gamma_{f^{-1}} =$ Spiegeln von Γ_f an Winkelhalbierenden.

4.3 Schubfachprinzip und endliche Mengen