TD 05 : Langage VHDL machine à état

TD VHDL / FPGA

Dr. Lezzar

Objectifs	3
I - Exercice 01	4
II - Exercice 02	5
III - Exercice 03	6
IV - Exercice 04	7
V - Exercice 05	8
VI - Exercice 06	Q

Objectifs

- ı
- Transformer un problème en une machine à état

• Utilisation d'une machine moore et mealy.

On veut concevoir le diagramme d'états d'un système d'ouverture de porte avec code d'accès. La machine reçoit à son entrée X une série de chiffres tapée sur un clavier numérique. Si la machine reçoit la bonne séquence de chiffres (0,9,1,5) la porte est ouverte grâce au signal de sortie.

- Écrire le programme VHDL de se système.

🔑 Remarque

Il s'agit ici d'une machine d'état type moore, c'est à dire que la sortie est en relation avec l'état actuel seulement X est un signal integer

Rappel

Dans la programmation des machine d'état en utilisent la boucle case

Écrire le code VHDL pour la machine d'état suivante :

Remarque

Il s'agit ici d'une machine d'état type mealy, c'est à dire que la sortie est en relation avec l'état actuel et l'entrée

Complément

Il y a deux état dans cette exempla, on peut utilisé un codage de 0 pour état start et 1 pour état continue. pas besoin de crée un type.

Soit un système fonctionnant selon le graphe des états ci-dessous :

Ce système ayant une entrée principale P_in et une sortie P_out utilisée comme buffer (pour le test de passage d'un état vers un autre avec P_in), écrire le code VHDL

- Écrire le code VHDL pour la machine d'état .

🔑 Remarque

pb_out est un beffer donc en la trouve en entrée comme en sortie

Attention

pb_in et pb_out ne prennent pas des valeur binaire, c'est à dire il y a une relation entre elle.

Écrire le code VHDL pour la machine d'état suivante en complétant les états non utilises

Remarque

Une entrée est égale à X c'est à dire qu'elle soit 1 ou 0 c'est pareille.

* Conseil

Quand int1 =X ou int2=X en les prendra pas en considération dans la condition, parce que il n'y a pas de condition applicable.

Templément

On peut utiliser un signale de type vecteur pour coder les état comme montré dans la figure.

≰ Exemple

L'état s3, on peut dire case "010".

Nous allons considérer la situation ou il y a une machine qui vend les films pour 5\$. L'usager a le droit de mettre des pièces de 1\$ ou de 2\$ et des que le montant arrive a 5\$ ou plus, il y a un film qui sort. Il est aussi possible de l'usager mette 6\$ et dans ce cas, la machine donne un film et remet aussi la monnaie.

Méthode

Nous voulons faire une machine de Moore.

Tomplément

Une information de plus est que, si la personne mettait de l'argent pendant que le film sort, l'argent sera perdu.

Rappel

Une machine moore donc les sorties ne dépendent que le l'état.

Nous avons un capteur de température qui nous fournit la température ambiante sur 7 bits sous format signé complément à deux (l'intervalle de variation est de -64 à 63 degré). Le but est de contrôler la température ambiante et de la maintenir à une consigne donnée. Le contrôle se fait par un seul bit (tout ou rien) qui sera appliqué à un circuit de chauffage.

Méthode : L'algorithme à suivre est le suivant :

- 1- On mesure la température et on la compare avec la consigne.
- 2- Dans le cas où une différence positive est constatée (consigne plus chaude que la pièce), on envoie '1' en sortie "CHAUF" pendant la durée suivante : la durée en minute = 4 fois le montant de la différence de température.

👉 Exemple

Par exemple si

Tconsigne=25° et Tambiante=18°, on envoie '1' en sortie pendant (25-18)*4=28 minutes.

Méthode

- 3- A la fin de cette durée, on se met dans l'état attente pendant 15 minutes où la sortie reste à '0' et ensuite on repart à l'état initial où une nouvelle lecture de température sera faite.
 - Écrire l'entité

- Avant de programmer, dessiner la machine à état de votre système.
- Donner le programme VHDL correspondant au circuit.