Algoritmos Evolutivos Fundamentos e Aplicações

Prof. Juan Moisés Mauricio Villanueva

jmauricio@cear.ufpb.br

www.cear.ufpb.br/juan

Conteúdo

- Introdução
- Algoritmos Genéticos (AG) ->> Binarias
- Estratégias Evolutivas (EE) ->> Decimais
- Aplicações
- Conclusões

Introdução

- Diversos problemas de ciência e engenharia requerem aplicar técnicas de optimização.
 - ✓ Optimização de parâmetros
 - ✓ Consideração de restrições dos parâmetros
 - ✓ Um amplo espaço de busca de soluções

Introdução

- Exemplos de problemas em que se requer implementar procedimentos de optimização
 - ✓ Optimização de funções matemáticas
 - ✓ Problema do carteiro viajante
 - ✓ Optimização de rotas de veículos
 - ✓ Optimização de projeto de circuitos eletrônicos
 - ✓ Optimização de planejamento e distribuição

Optimização de Funções Matemáticas

Maximizar a função F6(x,y)

$$F6(x, y) = 0.5 - \frac{\left(sen\sqrt{x^2 + y^2}\right)^2 - 0.5}{\left(1 + 0.001\left(x^2 + y^2\right)\right)^2}$$

$$-100 \le x \le 100$$

$$-100 \le y \le 100$$

Max=1

Problema do Caixeiro Viajante

 Se desejam visitar as cidades desde um ponto de partida, com a menor distância e sem passar dois vezes pela mesma cidade

Rotas Distintas =
$$\frac{(N-1)!}{2}$$

Para N = 50 cidades

Rotas Distintas =
$$\frac{(50-1)!}{2} \approx 3.0414 \times 10^{62}$$

Cidade de partida

Problema do Caixeiro Viajante

Optimização de Projeto de Circuitos Eletrônicos

 Para uma resposta de saída desejada, é possível otimizar o projeto do circuito eletrônico usando AG

Amplificador Ganho =10

Optimização Planejamento e Distribuição

 Planejamento e maximização de Atividades em Universidades/Empresa em função das disponibilidades/restrições dos funcionários e salas disponíveis

Introdução

- ✓ Optimização de funções matemáticas
- ✓ Problema do caixeiro viajante
- ✓ Optimização de rotas de veículos
- ✓ Optimização de projeto de circuitos eletrônicos
- ✓ Optimização de planejamento e distribuição

- ➤ Uma grande quantidade de possíveis soluções
- ➤ Restrições das variáveis
- ➤ Problemas de Minimização/Maximização
- ➤Não se ter uma solução matemática (determinística) para resolver o problema

Algoritmos Genéticos (AG)

 Algoritmo de busca e optimização inspirado na seleção natural e reprodução genética

Seleção do mais apto

Reprodução Genética

Paradigma utilizado para a implementação de algoritmos evolutivos para optimização

Problema de minimização de uma função matemática

$$y = x^{2}$$

$$y = \min \{ f(x) \}$$

$$-31 \le x \le 31$$

$$0 \le y \le 961$$

População (nicial de Indivíduos

X	Codificação	Avaliação $y=f(x)=x^2$	
10	0 01010	100	
8	0 01000	64	
-3	1 00011	9	\
7	0 00111	49	
-6	1 00110	36	
	<u> </u>		_

População Inicial de Tamanho "N"

Função de Avaliação das Solução "Função de Adaptação" "Fitness"

Pais

Operador de Seleção "Roleta"

Rand<0.1

População Inicial de Indivíduos

X	Codificação	Avaliação <i>y=f(x)</i>
10	0 01010	100
8	0 01000	64
-3	1 00011	9
7	0 00111	49
-6	1 00110	36

Operador de Seleção

Operador de Cruzamento

11 =-7

Reprodução

Pais

Operador de Mutação

$y_1 = f(-7) = 49$
$y_2 = f(-2) = 4$
$y_3 = f(-23) = 529$

Avaliação dos Filhos

Função de	
Adaptabilidade	
(Fitness)	

y=f(x)

00111 = -7

Filhos

 $1 \ 0 \ 0 \ 0 \ 1 \ 0 = -2$

10111 = -23

Operador de Mutação

Operador de

Seleção

Reprodução

Pais

Pseudo-Código de um AG padrão

```
Algoritmo Genético Padrão
Início
•t←0;
•Inicialize P(t);
•Avalie P(t);
Enquanto (não condição de parada) Faça
Início
        • t←t+1;
        • Selecione P(t) a partir de P(t-1);
        • Cruzamento P(t);
        • Mutação P(t);
         • Avalie P(t);
         Substituição
Fim
•Retorna a melhor solução;
Fim
```

Evolução do AG

 A evolução da optimização é observada através da função de fitness (Função de Avaliação)

- Algoritmo de busca e optimização inspirado na seleção natural e reprodução genética
- Algoritmos Genéticos empregam um processo adaptativo e paralelo de busca de soluções em problemas complexos
- Combina a sobrevivência do individuo mais apto e o cruzamento aleatório da informação

Aplicações de AGs

- ✓ Optimização de funções matemáticas
- ✓ Problema do carteiro viajante
- ✓ Optimização de rotas de veículos
- ✓ Optimização de projeto de circuitos eletrônicos
- ✓ Optimização de planejamento e distribuição

Conclusões

- Algoritmos Genéticos permitem encontrar soluções ótimas e em tempos curtos quando o espaço de busca é muito amplo.
- Os AGs realizam buscas de soluções de forma direcionada de forma adaptativa e paralela.
- Deve-se considerar a construção de uma função de adaptação (Fitness) que permita diferenciar aos indivíduos mais aptos.

Conclusões

 Os AGs não garantem uma solução global (Problema de estagnação)

