LANGIAGE DDOCESSING CHATBOTS

THIRUMURUGAN.R

What do you mean by a chat-bot?

Goal-oriented:

- Narrow domain
- Specific questions and tasks
- Example: call center
- Model: usually retrieval-based

Chit-chat:

- General conversation
- Human-like experience
- Example: entertaining bot
- Model: generative

Models pros and cons

Retrieval-based models

- use a repository of predefined responses
- no grammatical mistakes

 unable to handle unseen cases

Generative models

- generate new responses from scratch
- can make mistakes (especially on longer sentences)
- impression you're talking to a human

Sequence to sequence

- LSTMs for encoder and decoder
- Attention (or at least reversed input)
- Beam search for the best reply

Padding

EOS: End of sentence

PAD : Filler

GO: Start decoding

UNK: Unknown; word not in vocabulary

Q: How are you?

A: I am fine

Q: [PAD,PAD,PAD,PAD,PAD,PAD,"?","you","are", "How"]

A: [GO, "I", "am", "fine", "", EOS, PAD, PAD, PAD, PAD]

Bucketing

Bucketing solves the problem of high variance of the length of sentences by putting them into buckets of different sizes.

Buckets for the length intervals (0, 5], [5, 10], (10, 20], ...

Q: How are you?

A: I am fine

Q: [PAD, "?", "you", "are", "How"]

A: [GO, "I", "am", "fine", ".", EOS, PAD, PAD, PAD, PAD]

Trained on movies subtitles

Human: what is the purpose of living?

Machine: to live forever.

Human: what is the purpose of existence?

Machine: to find out what happens when we get to the planet earth.

Human: where are you now?

Machine: i'm in the middle of nowhere.

It works! It has some problems though:

- Unrealistic topics
- Too dramatic responses

Trained on calls

Machine: hi

Human: hi

Machine: could you please let me know what is the operating system you are using?

Human: linux

Machine: ok this is the issue with the system performance, nasser, tools.

Human: what is that?

Machine: is it a windows machine?

Human: i am using linux

Machine: let me take a remote of your machine and check if issue has been pushed properly.

Human: ok

Context of the conversation

RNN to keep track of the intents:

Human: hi

Machine: how may i help you today?

Human: my computer is not responding

Machine: oh! i sorry to hear that. are you getting an error

message?

Human: yes

Machine: what recent changes did you made with this

computer?

Human: i updated my computer

Machine: i see . is this on windows 7?

Human: no it is on linux

Machine: ok . are you using the affected computer right now?

Human: no

Coherent personality

4-layer seq2seq trained on 25 million Twitter snippets:

Human: Where do you live now?

Machine: I live in Los Angeles.

Human: In which city do you live now?

Machine: I live in Madrid.

Human: In which country do you live now?

Machine: England, you?

Persona-based model:

Human: Where are you from?

Machine: I'm from England.

Human: In which city do you live now?

Machine: I live in London.

Diversity of the responses

Always popular responses:

- I love you!
- I don't know

Top-3 responses (not much choice!)

- How about tomorrow?
- Wanna get together tomorrow?
- I suggest we meet tomorrow.

Intents clustering

Email message

Feature node

Seed semantic intent

(response type)

Learned semantic intent

(response type)

Google Smart Reply

Query	Top generated responses				
Hi, I thought it would be	I can do Tuesday.				
great for us to sit down	I can do Wednesday.				
and chat. I am free	How about Tuesday?				
Tuesday and Wenesday.	I can do Tuesday!				
Can you do either of	I can do Tuesday. What				
those days?	time works for you?				
	I can do Wednesday!				
Thanks!	I can do Tuesday or				
	Wednesday.				
-Alice	How about Wednesday?				
	I can do Wednesday. What				
	time works for you?				
	I can do either.				

Still not a human

There are demos, and if you cherry-pick the conversation, it looks like it's having a meaningful conversation, but if you actually try it yourself, it quickly goes off the rails.

Andrew Ng

Task-oriented dialog system

You can talk to a personal assistant:

- Apple Siri
- Google Assistant
- Microsoft Cortana
- Amazon Alexa
- ...

You can solve these tasks:

- Set up a reminder
- Find photos of your pet
- Find a good restaurant
- Send a message

• ...

Task-oriented dialog system

You can write to a chat bot:

- To book tickets
- To order food
- To contest parking tickets
- To track expenses
- ...

Utterance

Intent classification

- · What does the user want?
- Which predefined scenario is the user trying to execute?

Intent: nav.time.closest

There're many intents

- · And you need to classify them to give correct answers
- This is a classification task and you can measure accuracy

Intent: nav.directions.closest

And one more example

This time assistant needs additional information and initiates dialog

© Apple Sin

Intent: nav.directions

io Apple Siri

Form filling approach to dialog management

- Think of an intent as a form that a user needs to fill in.
- Each intent has a set of fields (slots) that must be filled in to execute the request.

- Example: nav.directions intent
 - @FROM slot: defaults to current geolocation
 - @TO slot: required

We need a slot tagger to extract slots from utterance.

Form filling approach to dialog management

- · Think of an intent as a form that a user needs to fill in.
- Each intent has a set of fields (slots) that must be filled in to execute the request.
- Example: nav.directions intent
 - @FROM slot: defaults to current geolocation
 - @TO slot: required
- We need a slot tagger to extract slots from utterance.

Slot filling/tagging

- You train it as a sequence tagging task in BIO scheme
- A slot is considered to be correct if its range and type are correct
- Recall = $\frac{\text{# correct slots found}}{\text{# true slots}}$
- Precision = $\frac{\text{# correct slots found}}{\text{# found slots}}$
- You can evaluate slot tagger with $F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$

Form filling dialog manager (single turn)

- User: Give me directions to San Francisco
 - Intent classifier: nav.directions
 - Slot tagger: @TO{San Francisco}
 - Dialog manager: all slots are filled, here's the route
- Agent (assistant): Here's the route

Form filling dialog manager (multi-turn)

- User: Give me directions from Los Angeles
 - Intent classifier: nav.directions
 - Slot tagger: @FROM{Los Angeles}
 - Dialog manager: required slot is missing, where to?
- Agent (assistant): Where do you want to go?
- User: San Francisco
 - Intent classifier: nav.directions
 - Slot tagger: @TO{San Francisco}
 - Dialog manager: okay, here's the route
- Agent (assistant): Here's the route

Google Maps

- Dialog manager: required slot is missing, where to?
- Agent (assistant): Where do you want to go?
- User: San Francisco
 - Intent classifier: nav.directions
 - Slot tagger: @TO{San Francisco}
- Dialog manager: okay, here's the route
- Agent (assistant): Here's the route

How to track context (an easy way)

- Both intent classifier and slot tagger need context (what happened before)
- · Let's add simple features to both of them:
 - Previous utterance intent as a categorical feature
 - Slots filled in so far with binary feature for each possible slot

We need context here

Google

Maps

- Improves slot tagger F1 by 0.5%
- Reduces intent classifier error by 6.7%
- A better way: memory networks

How to track a form switch

- User: Give me directions from Los Angeles
 - Intent classifier: nav.directions
 - Slot tagger: @FROM{Los Angeles}
 - Dialog manager: required slot is missing, where to?
- Agent (assistant): Where do you want to go?
- User: Forget about it, let's eat some sushi first
 - Intent classifier: nav.find
 - Slot tagger: @CATEGORY{sushi}
 - Dialog manager: okay, let's start a new form and find some sushi
- Agent (assistant): Okay, here are nearby sushi places

Yelp

Task-oriented dialog system overview

Intent classifier

- What you can do:
 - Any model on BOW with n-grams and TF-IDF
 - RNN (LSTM, GRU, ...)
 - CNN (1D convolutions)
- CNNs can perform better on datasets where the task is essentially a key phrase recognition task as in some sentiment detection datasets.

Slot tagger

- What you can do:
 - Handcrafted rules like regular expressions
 - CRF
 - RNN seq2seq
 - CNN seq2seq
 - Any seq2seq with attention

CNN for sequences: Gated Linear Unit

CNN for sequences: results

They can sometimes beat LSTM in language modeling:

Model	Test PPL	Hardware
LSTM-1024 (Grave et al., 2016b)	48.7	1 GPU
GCNN-8	44.9	1 GPU
GCNN-14	37.2	4 GPUs

Table 3. Results for single models on the WikiText-103 dataset.

... and machine translation:

WMT'14 English-French	BLEU
Wu et al. (2016) GNMT (Word 80K)	37.90
Wu et al. (2016) GNMT (Word pieces)	38.95
Wu et al. (2016) GNMT (Word pieces) + RL	39.92
ConvS2S (BPE 40K)	40.51

https://arxiv.org/pdf/1612.08083.pdf https://arxi

https://arxiv.org/pdf/1705.03122.pdf

CNN for sequences: speed benefit

- They work faster than RNN:
 - During training we can process all time steps in parallel
 - During testing encoder can do the same
 - During testing we get higher throughput thanks to convolution optimizations in GPUs

	BLEU	Time (s)
GNMT GPU (K80)	31.20	3,028
GNMT CPU 88 cores	31.20	1,322
GNMT TPU	31.21	384
ConvS2S GPU (K40) $b = 1$	33.45	327
ConvS2S GPU (M40) $b = 1$	33.45	221
ConvS2S GPU (GTX-1080ti) $b = 1$	33.45	142
ConvS2S CPU 48 cores $b = 1$	33.45	142
도등 Marie To Marie Try () - 10 10 10 10 10 10 10 10 10 10 10 10 10		

Translation generation speed during testing

CNN for sequences: how encoder looks like

- Bi-directional encoder is easy
- Works in parallel for all time steps

ATIS dataset

- Airline Travel Information System
- Collected in 90s
- 4978 context independent utterances
- 17 intents, 127 slot labels
- State-of-the-art: 1.79% intent error, 95.9 slots F1

Utterance	show	flights	from	Seattle	to	San	Diego	tomorrow
Slots	0	0	0	B-fromloc	0	B-toloc	I-toloc	B-depart_date
Intent		Flight						

- Joint training of intent classifier and slot tagger
 - They both analyze the same sequence
 - What if we learn representations suitable for both tasks?
 - That results in more supervision and higher quality of both
- Encoder-decoder architecture for joint intent detection and slot filling
- Encoder is a bi-directional LSTM
- With aligned inputs (h_i on the right) and attention (c_i on the right) Flight

Attention in decoder

Attention weights (the darker the higher) when predicting the slot label for the last word "noon":

	0	0	B-fromloc. city_name	0	B-toloc. city_name	0	0	B-depart_time. time_relative	B-depart_time. period_of_day
$\alpha_{T,i}$	flight	from	cleveland	to	dallas	that	leves	before	noon

Joint training loss

Final training loss is a sum of losses for intent and slots

Joint training results

Better performance on ATIS dataset:

Training	Slots F1	Intent % error
Independent training for slot filling	95.78	•
Independent training for intent detection	-	2.02
Joint training for slot filling and intent detection	95.87	1.57

Works faster than two separate models

Summary

- We've overviewed different options for intent classifier and slot tagger training
- People start to use CNN for sequence modeling and sometimes get better results than with RNN
- Joint training can be beneficial in terms of speed and performance
- In the next video we'll take a look at context utilization in our NLU (intent classifier and slot tagger)

Adding context to NLU:

Let's store all previous utterances in "memory"

$$m_i = \text{RNN}_{\text{mem}}(x_i)$$

What knowledge is relevant to new utterance?

Tagging current utterance with knowledge

We add knowledge representation in final RNN tagger:

How to track context (with memory networks)

Chen et al, 2016

- We encode previous utterances to store them in "memory" as dense vectors
- We use attention mechanism to retrieve relevant prior knowledge about the conversation

How to track context (with memory networks)

- Evaluation results for slot tagger:
 - Multi-turn dataset
 - F1-measure

Model	First turn	Other turns	Overall
RNN tagger wo context	55.8	45.7	47.4
Memory Network	73.2	65.7	67.1

Dialog manager

- State tracker (requires hand-crafted states)
 - Queries the external database or knowledge base
 - Tracks the evolving state of the dialog
 - Constructs the state estimation

Policy learner

 Takes the state estimation as input and chooses a dialog action

State tracking and policy learning

DSTC 2 dataset

- Dialog State Tracking Challenge, collected in 2013
- Human-computer dialogs (finding a restaurant in Cambridge)
 - 3324 telephone-based dialogs, people were recruited using Amazon Mechanical Turk
 - Dialog systems used: an MDP / POMDP for tracking the dialog state, and a hand-crafted policy / policy learnt using reinforcement learning
- Labeling procedure:
 - Utterances transcription using Amazon Mechanical Turk
 - Annotation by heuristics
 - Checked & corrected by hand

DSTC 2 dataset

Dialog state:

- Goals: A distribution over the values of each informable slot
- Method: A distribution over methods: by name, by constraints, by alternatives or finished
- Requested slots: A probability for each requestable slot that it has been requested by the user and the system should inform it
- User dialog acts: inform, request, negate, confirm, ...
 - What part of town is it? → request (area)
- Method is inferred from act and goals:
 - inform (food=chinese) → "by constraints"

DSTC 2 dialog excerpt

Utterance	I'm looking for an expensive restaurant with venetian foo				
Goals	food=venetian, pricerange=expensive				
Method	byconstraints				
Requested slots	[]				

Utterance	Is there one with thai food?
Goals	food=thai, pricerange=expensive
Method	byconstraints
Requested slots	[]

Utterance	Can I have the address?	
Goals	food=thai, pricerange=expensive	
Method	byconstraints	
Requested slots	[addr]	

DSTC 2 results

- Best results after competition:
 - Goals: 65% correct combinations
 - Method: 97% correct
 - Requested slots: 95% correct

Utterance representation

Neural Belief Tracker results

DETModel	D	STC2	WOZ 2.0		
DST Model	Goals	Requests	Goals	Requests	
Delexicalisation-based Model	69.1	95.7	70.8	87.1	
Delexicalisation-based Model + Semantic Dictionary	72.9*	95.7	83.7*	87.6	
Neural Belief Tracker: NBT-DNN	72.6*	96.4	84.4*	91.2*	
Neural Belief Tracker: NBT-CNN	73.4*	96.5	84.2*	91.6*	

Rule-based state tracking

- Train a good NLU (intents and slots)
- Make simple hand-crafted rules for dialog state change

Neural Belief Tracker

Joint NLU/DST

Frames dataset

- Collected in 2016
- Human-human goal-oriented dataset
 - 12 participants, 20 days, 1369 dialogues
 - Two humans talked to each other via a Slack chat

Find a vacation between
September 1st and
September 8th to Havana
from Stuttgart for under
\$700. Dates are not flexible.
If not available, then end
the conversation.

You have access to a database of 250+ packages, each composed of a hotel and round-trip flights. Provide help via a chat interface.

User Wizard

Frames dataset

- It introduces a new task called frame tracking, which extends state tracking to a setting where several states are tracked simultaneously
- In this dataset users can compare results corresponding to different constraints and go back-and-forth between results

Author	Utterance	Frame
User	I'd like to book a trip to Atlantis from Caprica on Saturday, August 13, 2016 for 8 adults. I have a tight budget of 1700.	1
Wizard	HiI checked a few options for you, and unfortunately, we do not currently have any trips that meet this criteria. Would you like to book an alternate travel option?	1
User	Yes, how about going to Neverland from Caprica on August 13, 2016 for 5 adults. For this trip, my budget would be 1900.	2
Wizard	I checked the availability for those dates and there were no trips available. Would you like to select some alternate dates?	2

Dialogue excerpt with active frame annotation

- It's annotated with the following:
 - Dialogue acts, slot types, slot values, and references to other frames for each utterance.
 - The ID of the currently active frame.
- Examples:

inform(category=2.5)

2.5 stars will do

offer(ref=[6], seat=business, price=1002.27)

What about a \$1002.27 business class ticket to San Francisco?

Why do we want to utilize lexicon?

- Let's take ATIS dataset
- It has finite set of cities in training
- Will the model work for a new city?
- We have a list of all cities, why not use it?

- Another example
- Imagine you need to fill a slot "music artist"
- We have all music artists in the database like musicbrainz.org
- How can we use it?

Let's add lexicon features to input words

- Let's match every n-gram of input text against entries in our lexicon
 Take me to San Francisco
- A match is successful when the n-gram matches the prefix or postfix of an entry and is at least half the length of the entry

"San" → "San Antonio"

Matches: "San" → "San Francisco"

"San Francisco" → "San Francisco"

- When there are multiple overlapping matches:
 - Prefer exact matches over partial
 - Prefer longer matches over shorter
 - Prefer earlier matches in the sentence over later

Matches encoding

We will use **BIOES** coding (Begin, Inside, Outside, End, Single)

- B if token matches the beginning of some entity
- B, I if two tokens match as prefix
- I, E if two tokens match as postfix
- S if matched single token entity
- ...

Example for 4 lexicon dictionaries:

Text	1	Hayao	Tada	,	commander	of	the	Japanese	North	China	Area	Army
LOC		-	-	-	-	-	В	I	-	S	-	-
MISC		-	-	-	S	В	В	I	S	S	S	S
ORG		_	-	-	-	_	В	I	В	I	I	E
PERS	S	В	E	-	-	-	_	-	-	S	-	-

B, I, O, E, S are later encoded as one-hot vectors

Adding these features to our model

Training details

- You can sample your lexicon dictionaries so that your model learns the context of entities as well as lexicon features
- This procedure helps to detect unknown entities at testing

 You can augment your dataset replacing slot values with values from the same lexicon:

Take me to San Francisco

Take me to Washington

Dialog policy

- Dialog state → Agent act
- Policy execution examples:

```
inform(location="780 Market St")
```

The nearest one is at 780 Market St

```
request (location)
```

What is the delivery address?

Simple approach: hand crafted rules

- You have NLU and state tracker
- You can come up with hand crafted rules for policy

Optimizing dialog policies with ML

Supervised learning:

- You train to imitate the observed actions of an expert
- Often requires a large amount of expert-labeled data
- Even with a large amount of training data, parts of the dialogue state space may not be well-covered in the training data

Reinforcement learning:

- Given only a reward signal, the agent can optimize a dialogue policy through interaction with users.
- RL can require many samples from an environment, making learning from scratch with real users impractical
- That's why we need simulated users for RL

Joint NLU and DM

Joint NLU and DM results

Model	DM	NLU		
Baseline (CRF + SVMs)	7.7	33.1		
Pipeline-BLSTM	12.0	36.4		
Joint Model	22.8	37.4		

Frame level accuracies
(it counts only when the whole frame parse is correct)

Evaluation

NLU:

- Turn-level metrics: intent accuracy, slots F1

DM:

- Turn-level metrics: state tracking accuracy, ...
- Dialog-level metrics: task success rate, reward, ...