

ISIS-1104 Matemática Estructural y Lógica

Parcial 3

Fecha: 30 de Noviembre de 2015

- Esta prueba es INDIVIDUAL.
- Está permintido el uso de las "cheat sheets" que se encuentran en sicua+.
- Está prohibido el uso de cualquier otro material como cuadernos, libros o fotocopias.
- Está prohibido el uso de cualquier dispositivo electrónico.
- El intercambio de información relevante a esta prueba con otro estudiante está terminantemente prohibido.
- Cualquier irregularidad con respecto a estas reglas podría ser considerada fraude.
- Responda el examen en los espacios proporcionados. No se aceptarán hojas adicionales.
- No olvide marcar el examen antes de entregarlo.

IMPORTANTE: Soy consciente de que cualquier tipo de fraude en los exámenes es considerado como una falta grave en la Universidad. Al firmar y entregar este examen doy expreso testimonio de que este trabajo fue desarrollado de acuerdo con las normas establecidas. Del mismo modo, aseguro que no participé en ningún tipo de fraude.

Nombre	Carné
Firma	Fecha

NO ESCRIBIR NADA BAJO ESTA LÍNEA

1	20%	
2	20%	
3	15 %	
4	15 %	
5	15 %	
6	10 %	
7	5 %	
Total	100 %	

.

Ejercicio 1. Demuestre formalmente el siguiente enunciado: Sea p un número primo. Dados tres enteros $a,\ b\ y\ c$ tales que:

1.
$$1 \le a < p$$

2.
$$1 \le b < p$$

3.
$$a < b$$

4.
$$c > 0$$

Entonces:

$$((a \cdot c) \equiv_p (b \cdot c)) \Rightarrow p \mid c$$

Puede usar este resultado, si lo necesita:

$$prime(p) \ \land \ (p \ \not\mid a) \ \Rightarrow \ mcd(p,a) = 1$$

	Expresión	Justificación
1	prime(p)	Hipótesis
2	$1 \le a < p$	Hipótesis
3	$1 \le b < p$	Hipótesis
4	a < b	Hipótesis
5	c > 0	Hipótesis
6	$(a \cdot c) \equiv_p (b \cdot c)$	Premisa
7	$p \mid b \cdot c - a \cdot c$	$Def \equiv (6)$
8	$p \mid (b-a) \cdot c$	Aritmética (7)
9	$1 \le b - a < p$	Aritmética $(1,2,3)$
10	$p \not\mid (b-a)$	Teo: para $a, b \in int^+ \ a < b \Rightarrow b \not a (9)$
11	mcd(b-a,p) = 1	Ayuda (10,1)
12	$p \mid c$	Teorema: $a \mid b \cdot c \land mcd(a, b) = 1 \Rightarrow a \mid c \ (11,8)$

Ejercicio 2. Definimos la función de Fibonacci así:

- $f_0 = 0$
- $f_1 = 1$
- $f_{n+1} = f_n + f_{n-1}$, para $n \ge 1$

Demuestre por inducción sobre n, para $n \ge 0$:

$$mcd(f_n, f_{n+1}) = 1$$

Caso Base: $n=0 \ mcd(f_0, f_1) = 1$

$$mcd(f_0, f_1)$$

$$= \langle Def. f_0, f_1 \rangle$$

$$mcd(0, 1)$$

$$= \langle Teo : mcs(0, a) = |a| \rangle$$

$$|1|$$

$$= \langle aritmética \rangle$$

$$1$$

Caso Inductivo: H.I.: $mcd(f_k, f_{k+1}) = 1$

Demostrar: $mcd(f_{k+1}, f_{k+2}) = 1$

$$mcd(f_{k+1}, f_{k+2})$$

$$= \langle \operatorname{Def} f_k \rangle$$

$$mcd(f_{k+1}, f_{k+1} + f_k)$$

$$= \langle \operatorname{Teo} mcd(b, c) = mcd(b, b + c) \rangle$$

$$mcd(f_{k+1}, f_k)$$

$$= \langle \operatorname{H.I.} \rangle$$
1

Ejercicio 3. Demuestre por inducción sobre n, para $n \ge 0$:

$$(\Sigma \ i \mid 0 \le i \le n : (f_i)^2) = f_n \cdot f_{n+1}$$

Caso Base: n=0 $(\Sigma \ i \mid 0 \le i \le 0 \ : \ (f_i)^2) = f_0 \cdot f_1$

$$(\Sigma \ i \mid 0 \le i \le 0 \ : \ (f_i)^2 \) = \boxed{f_0 \cdot f_1}$$

$$= \quad \langle \text{ Def. } f_0, f_1 \ \rangle$$

$$(\Sigma \ i \mid 0 \le i \le 0 \ : \ (f_i)^2 \) = 0 \cdot 1$$

$$= \quad \langle \text{ Aritmética } \rangle$$

$$(\Sigma \ i \mid i = 0 \ : \ (f_i)^2 \) = 0 \cdot 1$$

$$= \quad \langle \text{ un Punto } \rangle$$

$$(\boxed{f_0})^2 = 0 \cdot 1$$

$$= \quad \langle \text{ Def. } F_0 \ \rangle$$

$$0^2 = 0 \cdot 1$$

$$= \quad \langle \text{ Aritmética } \rangle$$

$$true$$

Caso Inductivo: H.I.: $(\Sigma \ i \mid 0 \le i \le k : (f_i)^2) = f_k \cdot f_{k+1}$ Demostrar: $(\Sigma \ i \mid 0 \le i \le k+1 : (f_i)^2) = f_{k+1} \cdot f_{k+2}$

 $(\Sigma i \mid 0 \le i \le k+1 : (f_i)^2)$ $= \langle \text{Split off-term} \rangle$ $(\Sigma i \mid 0 \le i \le k : (f_i)^2) + (F_{k+1})^2$ $= \langle \text{H.I.} \rangle$ $f_k \cdot f_{k+1} + (F_{k+1})^2$ $= \langle \text{Aritmética} \rangle$ $f_{k+1} \cdot (f_k + F_{k+1})$ $= \langle \text{Def } f_k \rangle$

 $f_{k+1} \cdot f_{k+2}$

Ejercicio 4. Usando las definiciones de la hoja de secuencias, demuestre por inducción sobre n:

$$pal(S) \Rightarrow pal(S^n)$$

Aplicando la definición de pal, lo qe debemos demostrar es:

$$(S = rev(S)) \Rightarrow (S^n = rev(S^n))$$

Usamos rev(S) = S como hipótesis para demostrar $S^n = rev(S^n)$ por inducción sobre n.

Caso Base: $n = 0 : rev(S^0) = S^0$

$$rev(S^{0}) = S^{0}$$

$$= \langle \text{Def } S^{0}, \text{twice } \rangle$$

$$rev(\epsilon) = \epsilon$$

$$= \langle \text{Def } rev(\epsilon) \rangle$$

$$true$$

Caso Inductivo H.I. $S^k = rev(S^k)$

Demostrar $rev(S^{k+1}) = S^{k+1}$

$$rev(S^{k+1})$$

$$= \langle \text{ Definición } S^{k+1} \rangle$$

$$rev(S@S^k)$$

$$= \langle \text{ Teorema 8 } \rangle$$

$$rev(S^k) @rev(S)$$

$$= \langle \text{ H.I. } \rangle$$

$$S^k@ rev(S)$$

$$= \langle \text{ Hipótesis } \rangle$$

$$S^k@S$$

$$= \langle \text{ Ayuda } \rangle$$

Ejercicio 5. Definimos suma para definir la suma de los elementos de una secuencia S así:

- $suma(\epsilon) = 0$
- $suma(y \triangleleft S) = y + suma(S)$

Por ejemplo:

$$suma((2,7,3,8)) = 20$$

Definimos multP una función que recibe un número y una secuencia de enteros y retorna la secuencia resultante de multiplicar cade elemento de la secuencia por el número

- $multP(X, \epsilon) = \epsilon$

Por ejemplo:

$$multP(5, \langle 2, 7, 3, 0 \rangle) = \langle 10, 35, 15, 0 \rangle$$

Demuestre por inducción sobre S:

$$suma(multP(n, S)) = n \cdot suma(S)$$

Caso Base: $S = \epsilon \ suma(multP(n, \epsilon)) = n \cdot suma(\epsilon)$

```
suma(\underbrace{multP(n,\epsilon)}) = n \cdot suma(\epsilon)
= \langle \text{Def. } multP(n,\epsilon) \rangle
\underbrace{suma(\epsilon)}_{suma(\epsilon)} = n \cdot \underbrace{suma(\epsilon)}_{one}
= \langle \text{Def. } suma(\epsilon) \rangle
0 = n \cdot 0
= \langle \text{Aritmética} \rangle
true
```

Caso Inductivo H.I. $suma(multP(n,S)) = n \cdot suma(S)$

Demostrar $suma(multP(n, x \triangleleft S)) = n \cdot suma(x \triangleleft S)$

```
suma(\underbrace{multP(n,x \triangleleft S)}) = n \cdot suma(x \triangleleft S)
= \langle \text{ Def. multP} \rangle
suma((n \cdot x) \triangleleft multP(n,S)) = n \cdot suma(x \triangleleft S)
= \langle \text{ Def. Suma Twice } \rangle
(n \cdot x) + suma(multP(n,S)) = \underbrace{n \cdot (x + suma(S))}
= \langle \text{ Aritmética } \rangle
(n \cdot x) + suma(multP(n,S)) = \underbrace{n \cdot x} + n \cdot suma(S)
= \langle \text{ Aritmética } \rangle
suma(multP(n,S)) = n \cdot suma(S)
= \langle \text{ H.I. } \rangle
True
```

Ejercicio 6. Sean n_1 , n_2 , n_3 y n_4 números enteros cualquiera muestre que para al menos dos de estos números: n_i y n_j con $1 \le i, j \le 4$, $i \ne j$ se cumple que: $n_i \equiv_3 n_j$.

Sabemos que $n_i \equiv_3 n_j \equiv (n_i \mod 3) = n_j \mod 3$. Por lo tanto lo que debemos demostrar es que entre cuatro núneros hay dos que tiene el mismo residuo al dividir por 3. Como solo hay 3 residuos posibles y tenemos cuator números sabemos que al menos dos de los cuatro tienen el mismo residuo.

PARA TENER ESTE PUNTO BIEN ERA INDISPENSABLE demostrarlo con los 3 posibles residuos.

Ejercicio 7. El banco le dice que debe escoger una clave de cuatro, cinco o seis dígitos y le pone las siguientes restricciones:

- no debe ni comenzar ni terminar en cero
- todos los números deben ser distintos

¿Cuántas claves posibles hay? (Recuerde que en este caso el orden sí importa). Sacamos las de longitud 4, las de longitud 5 y las de longitud 6 y las sumamos.

Longitud 4 Las claves con números todos distintos menos las que comienzan con cero, menos las que terminan con cero. 10*9*8*7-1*9*8*7-9*8*7*1

Longutud 5 Las claves con números todos distintos menos las que comienzan con cero, menos las que terminan con cero. 10*9*8*7*6-1*9*8*7*6-9*8*7*6*1

longitud 6 Las claves con números todos distintos menos las que comienzan con cero, menos las que terminan con cero. 10*9*8*7*6*5-1*9*8*7*6*5-9*8*7*6*5*1

También se habría podido pensar así:primero escogemos el primer número (lo podemos escoger de 9 ,maneras, pues el cero no se incluye), luego el último (lo podemos escoger de 8 formas pues ni puede se cero ni igual al primero), luego los de la mitad que se escogen de los 8 números restantes. Al hacerlo así da lo mismo que arriba.

Longitud 4 : 9 * 8 * 8 * 7

Longutud 5 : 9 * 8 * 8 * 7 * 6

longitud 6: 9 * 8 * 8 * 7 * 6 * 5