WHAT IS CLAIMED IS:

1.	An ı	unin	iterrupti	ble power	su	opl	y having	g an	input	connected	to a	n input	power
source	and	an	output	connected	l to	a	critical	load	, the	uninterrup	tible	power	supply
compri	sing:												

- a utility disconnect static switch comprising two silicon controlled rectifiers connected in anti-parallel coupled between the input and an input bus;
- b) a battery bus;
 - c) an inverter coupled between the battery bus and the output; and
 - d) an inverter controller that, upon detection of an input power source fault causing an input voltage magnitude increase, controls the inverter to generate on the input bus a voltage of the same polarity and greater magnitude than the input voltage, thereby commutating the utility disconnect static switch.

2. The uninterruptible power supply of claim 1 further comprising:

- a) a transformer having first and second windings, the first winding series coupled between the utility disconnect static switch and the output, and the second series winding having a first terminal coupled to ground;
- b) a series inverter coupled between a second terminal of the second winding and the battery bus; and
- c) a series inverter controller that, upon detection of an input power source fault causing an input voltage magnitude increase, controls the series inverter to generate on the input bus a voltage of the same polarity and greater magnitude than the input voltage, thereby commutating the utility disconnect static switch.

1	9. An uninterruptible power supply having an input connected to an input power
2	source and an output connected to a critical load, the uninterruptible power supply
3	comprising:
4	a) a utility disconnect static switch coupled between the input and an input
5	bus, the switch two silicon controlled rectifiers connected in anti
6	parallel;
7	b) a series inverter coupled between the input bus and a battery bus;
8	c) a primary inverter coupled between the battery bus and the output; and
9	d) a series inverter controller that, upon detection of an input power source
10	fault causing an input voltage magnitude increase, controls the series
11	inverter to generate on the input bus a voltage of the same polarity and
12	greater magnitude than the input voltage, thereby commutating the
13	utility disconnect static switch.
14	
15	10. A method of preventing fault propagation through a utility interactive UPS having
16	a series inverter and a utility disconnect static switch with an input terminal supplied with
17	an input power signal and an output terminal, the method comprising the steps of:
18	sensing a characteristic of the input power signal;
19	detecting a change in the sensed characteristic indicating a fault that causes an
20	increase in the voltage of the input power signal;
21	controlling the series inverter to generate on the output terminal of the utility
22	disconnect static switch a voltage having a polarity the same as and a
23	magnitude greater than the faulted input voltage, thereby commutating the
24	static switch.
25	
26	11. An uninterruptible power supply having an input connected to an input power
27	source and an output connected to a critical load, the uninterruptible power supply
28	comprising:
29	a) a utility disconnect static switch comprising two gate commutated
30	switching devices connected in anti-parallel coupled between the inpu
31	and an input bus;

ı	b) an utility disconnect static switch controller that, upon detection	of an
2	input power source fault causing an input voltage magnitude inc	rease,
3	opens the gate commutated switching devices.	
4	c) a clamping circuit coupled to the gate commutated switching device	es to
5	minimize the transient voltage caused by opening the fast	ıtility
6	disconnect static switch.	
7		
8	12. The uninterruptible power supply of claim 11 wherein the gate community	ıtated
9	switching devices are power transistors.	
10		
11	13. The uninterruptible power supply of claim 11 wherein the gate community	ıtated
12	switching devices are gate turn off thyristors.	
13		
14	14. The uninterruptible power supply of claim 11 wherein the clamping circuit for	ırther
15	comprises:	
16	a first diode having a cathode coupled to an input side of the fast t	ıtility
17	disconnect static switch and an anode coupled to a negative battery but	15;
18	a second diode having an anode coupled to the input side of the fast u	ıtility
19	disconnect static switch and a cathode coupled to the positive battery	bus;
20	a third diode having an anode coupled to an output side of the fast u	ıtility
21	disconnect static switch and a cathode coupled to the positive battery	/ bus;
22	and	
23	a fourth diode having a cathode coupled to the output side of the fast u	ıtility
24	disconnect switch and an anode coupled to the negative battery bus.	
25		
26	15. The uninterruptible power supply of claim 11 wherein the clamping circuit for	ırther
27	comprises:	
28	a first diode having a cathode coupled to an input side of the fast u	ıtility
29	disconnect static switch and an anode coupled to a negative termina	l of a
30	capacitor;	

ı		a second diode having an anode coupled to the input side of the fast utility
2		disconnect static switch and a positive terminal of the capacitor;
3		a third diode having an anode coupled to an output side of the fast utility
4		disconnect static switch and a cathode coupled to the positive terminal of
5		the capacitor; and
6		a fourth diode having a cathode coupled to the output side of the fast utility
7		disconnect switch and an anode coupled to the negative terminal of the
8		capacitor.
9		
10	16.	The uninterruptible power supply of claim 11 wherein the clamping circuit further
11	comp	rises:
12		a first diode having an anode coupled to an input side of the fast utility disconnect
13		static switch and a cathode coupled to a first terminal of a capacitor;
14		a second diode having a cathode coupled to the input side of the fast utility
15		disconnect static switch and an anode coupled to a second terminal of the
16		capacitor;
17		a third diode having a cathode coupled to the first terminal of the capacitor and an
18		anode coupled to ground; and
19		a fourth diode having an anode coupled to the second terminal of the capaciton
20		and a cathode coupled to ground.
21		
22	17.	The uninterruptible power supply of claim 11, wherein the clamping circuit
23	furthe	er comprises:
24		a first diode having an anode coupled to an input side of the fast utility disconnect
25		static switch and a cathode coupled to a first terminal of a first capacitor;
26		and
27		a second diode having a cathode coupled to the input side of the fast utility
28		disconnect static switch and a cathode coupled to a second terminal of a
29		second capacitor;
30		wherein the second terminal of the first capacitor and the first terminal of the
31		second capacitor are coupled to ground.

2	18.	The uninterruptible power supply of claim 11, wherein the clamping circuit				
3	further comprises:					
4		a first voltage limiting diode having a cathode coupled to an input side of the fast				
5		utility disconnect static switch; and				
6		a second voltage limiting diode having an anode coupled to an anode of the first				
7		voltage limiting diode and a cathode coupled to ground.				
8						
9	19.	A method of preventing fault propagation through a utility interactive UPS having				
10	a utili	ty disconnect static switch comprising two gate commutated switching devices				
11	couple	ed in anti-parallel, the static switch having an input terminal supplied with an input				
12	power	signal, the method comprising the steps of:				
13		sensing a characteristic of the input power signal;				
14		detecting a change in the sensed characteristic indicating a fault that causes an				
15		increase in the voltage of the input power signal;				
16		opening the static switch to disconnect the input power signal from the UPS.				
17						
18	20.	The method of claim 19 wherein the sensed characteristic is a voltage across the				
19	static s	switch.				
20						
21	21.	The method of claim 19 wherein the sensed characteristic is a current through the				
22	static s	switch.				