- 1. Find the value of k for which the roots of the quadratic equation $(k-5)x^2 + 2(k-5)x + 2 = 0$ are equal.
- 2. Find the value of y for which the distance between the points (2, -3) and (10, y) is 10 units.
- 3. Write whether the rational number $\frac{13}{3125}$ has a decimal expansion which is terminating or non-terminating repeating.
- 4. Write the m^{th} term of the A.P. $\frac{1}{k}$, $\frac{1+k}{k}$, $\frac{1+2k}{k}$,......
- 5. if $\sin \theta + \cos \theta = \sqrt{2} \cos(90^{\circ} \theta)$, find the value of $\cot \theta$.
- 6. *DE* is drawn parallel to the base *BC* of a $\triangle ABC$, meeting *AB* at *D* and *AC* at *E*. if $\frac{AB}{BD} = 4$ and CE = 2cm, find AE.
- 7. A bag contains 5 red balls and some blue balls. if the probability of drawing a blue balls if the probability of drawing a blue ball from the bag is three times that of a red ball, find the number of blue balls in the bag.
- 8. The 5th and 15th terms of an A.P. are 13 and -17 respectively. Find the sum of first 21 terms of the A.P.
- 9. Using Euclid's Division Algorithm, find the HCF of 255 and 867.
- 10. if the point (0,2) is equidistant from the points (3,k) and (k,5), find the value of k.
- 11. Find the value of 'a' for which the pair of linear equations 2x + 3y = 7 and 4x + ay = 14 has infinitely many solutions.
- 12. A card is drawn at random from a well shuffled pack of 52 playing cards. Find the probability of getting(i) a red king (ii) a queen or a jack.
- 13. Show that any positive odd integer is of the form 4q+1 or 4q+3 for some integer q
- 14. The ten's digit of a number is twice its unit's digit obtained by interchanging the digit is 36 less than the original number. Find the original number.
- 15. The line segmet joining the points A(2, 1) and B(5, -8) is trisected at the points P and Q, where P lies on the line 2x y + k = 0, find the value of K.
- 16. The x-coordinate of a point P is twice its y-coordinate. if P is equidistant from the points Q(2, -5) and R(-3, 6), find the coordinates of P.
- 17. show that $1, \frac{1}{2}$ and -2 are zeros of the polynomial $2x^3 + x^2 5x + 2$.
- 18. Prove that the angle between the two tangents drawn from an external point to a circle is supplimentary to the angle subtended by the line-segment joining the points of contact at the centre.

- 19. *S* and *T* are points on the siddes *PR* and *QR* of $\triangle PQR$ such that $\angle P = \angle RTS$. Show that $\triangle RPQ \sim \triangle RTS$.
- 20. In an equilateral $\triangle ABC$,D is a point on the side BC such that $BD = \frac{1}{3}BC$. Prove that $9AD^2 = 7AB^2$.
- 21. Prove that : $\frac{1}{\csc\theta + \cot\theta} \frac{1}{\sin\theta} = \frac{1}{\sin\theta} \frac{1}{\csc\theta \cot\theta}$
- 22. If $\tan \theta + \sin \theta = m$, $\tan \theta \sin \theta = n$, show that $m^2 n^2 = 4\sqrt{mn}$
- 23. A chord of a circle, of radius 15cm, subtends an angle of 60° at the centre of the circle. Find the area of major and minor segments (Take π =3.14, $\sqrt{3}$ =1.73)
- 24. A sphere of diameter 12cm is dropped in a right circular cylindrical vessel, partly filled with water. If the sphere is completely submerged in ater, the water level in the vessel rises by $3\frac{3}{9}$ cm. Find the diameter of the cylindrical vessel.
- 25. A cylinder whose height is two-third of its diameter, has the same volme as that of a sphere of radius 4cm. Find the radius of base of the cylinder.
- 26. The following table gives the daily income of 50 labourers:

Daily Income (₹)	100 - 120	120 - 140	140 – 160	160 - 180	180 - 200
Number of Labourers	12	14	8	6	10

Find the mean and mode of the above data.

- 27. Two taps together can fill a tank in 6 hours. The tap of larger diameter takes 9hours less than the smaller one to fill the tank seperately. Find the time in which each tap can fill the tank seperately.
- 28. Solve for x: $\frac{x+1}{x-1} \frac{x-1}{x+1} = \frac{5}{6}, x \neq 1, -1$
- 29. Prove that the ratio of the areas of two similar triangle is equal to the square of the ratio of their corresponding sides.
- 30. Prove that in a triangle, if the square of one side is equal to sum of the squares of the other two sides, the angle opposition the first side is a right angle.
- 31. Write the steps of construction for drawing a $\triangle ABC$ in which $BC = 8\text{cm}, \angle B = 45^\circ$ and $\angle C = 30^\circ$. Now write the steps of connection for drawing a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle ABC$.
- 32. The sum of the first *n* terms of an A.P.is $5n^2 + 3n$.If its m^{th} terms is 168, find the value of *m*. Also find the 20^{th} term of the A.P.
- 33. The 4^{th} and the last terms of an A.P. are 11 and 89 respectively. If there are 30 terms in the A.P., find the A.P and its 23^{rd} term.
- 34. Prove that : $(\frac{\sin A}{1-\cos A} \frac{1-\cos A}{\sin A}) \cdot (\frac{\cos A}{1-\sin A} \frac{1-\sin A}{\cos A}) = 4$.

- 35. A statue, 1.46m tall, stands on a pedestal. From a point on the ground the angle of elevation of the top of the statue is 60° and from the same point angle of elevation of the top of the pedestal is 45° . Find the height of the pedestal. (use $\sqrt{3} = 1.73$)
- 36. Sudhakar donated 3 cylindrical drums to store cereals to an orphanage. If radius of each drum is 0.7m and height 2m, find the volume of each drum. if each drum costs ₹ 350 per m^3 , find the amount spent by sudhakar for orphanage. What value is exhibited in the question. (Use $\pi = \frac{22}{7}$)
- 37. The median of the following data is 52.5.if the total frequency is 100, find the value of x and y.

varue or x and y.				
classes	frequency			
0-10	2			
10-20	5			
20-30	X			
30-40	12			
40-50	17			
50-60	20			
60-70	У			
70-80	9			
80-90	7			
90-100	4			