Assignment

GATE-EC-39

EE23BTECH11034 - Prabhat Kukunuri

I. QUESTION

The voltage at the input of an AC-DC rectifier is given by $v(t) = 230 \sqrt{2} \sin \omega t$, where $\omega = 2\pi \times$ 50rad/s. The input current drawn by the rectifier is given by

$$i(t) = 10\sin\left(\omega t - \frac{\pi}{3}\right) + 4\sin\left(3\omega t - \frac{\pi}{6}\right) + 3\sin\left(5\omega t - \frac{\pi}{3}\right)P_{avg} = \frac{1}{T}\sum_{1}^{n}\int_{0}^{T}V_{pk}\sin\left(\omega t\right)I_{pk(n)}\sin\left(\omega t + \varphi\right)dt$$

The power input, (rounded off to two decimal places), is_ ____lag.

Solution:

Symbol	Value	Description
v(t)	$230\sqrt{2}\sin\omega t$	input voltage
ω	$100\pi rad/s$	Angular velocity
Power Factor	$\frac{P_{avg}}{V_{rms}I_{rms}}$	-
$\cos \varphi$	$\frac{1}{2}$	Fundamental displacement factor
φ	$\frac{\pi}{3}$	angle between $v(t)$ and I_n
I_n	$10\sin\left(\omega t - \frac{\pi}{3}\right)$	fundamental compo- nent of current

TABLE 0 VARIABLE DESCRIPTION

For current of the form sources $I(t)=I_0+I_1(t)+...+I_n(t)$

$$P_{avg} = \frac{1}{T} \sum_{1}^{n} \int_{0}^{T} V(t) I_{n}(t) dt$$
 (2)

$$\frac{\pi}{3} P_{avg} = \frac{1}{T} \sum_{1} \int_{0} V_{pk} \sin(\omega t) I_{pk(n)} \sin(\omega t + \varphi) dt$$
(3)

 $P_{avg} = \sum_{n=1}^{\infty} \frac{v_{pk}I_{(n)pk}}{2}\cos\varphi$ (4)

For a sine wave signal $V_{pk} = V_{rms} \sqrt{2}$

$$P_{avg} = \sum_{0}^{n} (v_{rms}) (I_{(n)rms}) \cos \varphi$$
 (5)

Power Factor =
$$\frac{\sum_{0}^{n} I_{(n)rms} \cos \varphi}{I_{rms}}$$
 (6)

$$I_{rms} = \sqrt{\left(\frac{10}{\sqrt{2}}\right)^2 + \left(\frac{4}{\sqrt{2}}\right)^2 + \left(\frac{3}{\sqrt{2}}\right)^2} = 7.905A$$
 (7)

The rms value of fundamental value of current

$$(I_{(1)rms}) = \sqrt{\left(\frac{10}{\sqrt{2}}\right)^2} \tag{8}$$

$$\varphi = 30^{\circ} \tag{9}$$

Power Factor =
$$\frac{\frac{10}{\sqrt{2}}\cos 30}{7.905}$$
 (10)

$$\implies$$
 0.4473 (11)

$$P_{avg} = \frac{1}{T} \int_0^T V(t) I(t) dt$$
 (1)