ОТНОШЕНИЯ И СООТВЕТСТВИЯ

Специальные свойства бинарных отношений

 $First \quad lacktriangle \ Prev \quad lacktriangle \$

Next •

• Go Bac

Full Scree

Clos

• Quit

1) **рефлексивным**, если $(\forall x \in A)((x, x) \in \rho)$,

rst • Prev • Next • Last • Go Back • Full Screen • Close •

1) **рефлексивным**, если $(\forall x \in A)((x, x) \in \rho)$, т.е. $id_A \subseteq \rho$.

- 1) **рефлексивным**, если $(\forall x \in A)((x, x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x, x) \notin \rho)$,

rst • Prev • Next • Las

• Go Back

Full Scree

lose 🔍 Q

- 1) **рефлексивным**, если $(\forall x \in A)((x,x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x,x) \notin \rho)$, т.е. $\mathrm{id}_A \cap \rho = \varnothing$.

First • Pre

Next.

ast • Go B

Full Scree

Close

- 1) **рефлексивным**, если $(\forall x \in A)((x,x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x, x) \notin \rho)$, т.е. $\mathrm{id}_A \cap \rho = \emptyset$.
- 3) **симметричным**, если $(\forall x \forall y)((x,y) \in \rho \Rightarrow (y,x) \in \rho)$,

- 1) **рефлексивным**, если $(\forall x \in A)((x, x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x,x) \notin \rho)$, т.е. $\mathrm{id}_A \cap \rho = \varnothing$.
- 3) **симметричным**, если $(\forall x \forall y)((x,y) \in \rho \Rightarrow (y,x) \in \rho)$, т.е. $\rho^{-1} = \rho$.

- 1) **рефлексивным**, если $(\forall x \in A)((x,x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x, x) \notin \rho)$, т.е. $\mathrm{id}_A \cap \rho = \emptyset$.
- 3) **симметричным**, если $(\forall x \forall y)((x,y) \in \rho \Rightarrow (y,x) \in \rho)$, т.е. $\rho^{-1} = \rho$.
- 4) антисимметричным, если

$$(\forall x \forall y)(((x,y) \in \rho \land (y,x) \in \rho) \Rightarrow (x=y))$$

- 1) **рефлексивным**, если $(\forall x \in A)((x,x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x,x) \notin \rho)$, т.е. $\mathrm{id}_A \cap \rho = \varnothing$.
- 3) **симметричным**, если $(\forall x \forall y)((x,y) \in \rho \Rightarrow (y,x) \in \rho)$, т.е. $\rho^{-1} = \rho$.
- 4) антисимметричным, если

$$(\forall x \forall y)(((x,y) \in \rho \land (y,x) \in \rho) \Rightarrow (x=y))$$

T.e. $\rho \cap \rho^{-1} \subseteq id_A$

- 1) **рефлексивным**, если $(\forall x \in A)((x,x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x,x) \notin \rho)$, т.е. $\mathrm{id}_A \cap \rho = \varnothing$.
- 3) **симметричным**, если $(\forall x \forall y)((x,y) \in \rho \Rightarrow (y,x) \in \rho)$, т.е. $\rho^{-1} = \rho$.
- 4) антисимметричным, если

$$(\forall x \forall y)(((x,y) \in \rho \land (y,x) \in \rho) \Rightarrow (x=y))$$

т.е. $\rho \cap \rho^{-1} \subseteq \mathrm{id}_A$ (в частности, м. б., что $\rho \cap \rho^{-1} = \emptyset$!).

- 1) **рефлексивным**, если $(\forall x \in A)((x,x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x,x) \notin \rho)$, т.е. $\mathrm{id}_A \cap \rho = \varnothing$.
- 3) **симметричным**, если $(\forall x \forall y)((x,y) \in \rho \Rightarrow (y,x) \in \rho)$, т.е. $\rho^{-1} = \rho$.
- 4) антисимметричным, если

$$(\forall x \forall y)(((x,y) \in \rho \land (y,x) \in \rho) \Rightarrow (x=y))$$

т.е. $\rho \cap \rho^{-1} \subseteq \mathrm{id}_A$ (в частности, м. б., что $\rho \cap \rho^{-1} = \emptyset$!). Эквивалентное определение:

$$(\forall x \forall y)(((x,y) \in \rho \land x \neq y) \Rightarrow ((y,\,x)) \notin \rho).$$

- 1) **рефлексивным**, если $(\forall x \in A)((x,x) \in \rho)$, т.е. $\mathrm{id}_A \subseteq \rho$.
- 2) **иррефлексивным**, если $(\forall x \in A)((x,x) \notin \rho)$, т.е. $\mathrm{id}_A \cap \rho = \varnothing$.
- 3) **симметричным**, если $(\forall x \forall y)((x,y) \in \rho \Rightarrow (y,x) \in \rho)$, т.е. $\rho^{-1} = \rho$.
- 4) антисимметричным, если

$$(\forall x \forall y)(((x,y) \in \rho \land (y,x) \in \rho) \Rightarrow (x=y))$$

т.е. $\rho \cap \rho^{-1} \subseteq \mathrm{id}_A$ (в частности, м. б., что $\rho \cap \rho^{-1} = \emptyset$!). Эквивалентное определение:

$$(\forall x \forall y)(((x,y) \in \rho \land x \neq y) \Rightarrow ((y,\,x)) \notin \rho).$$

5) транзитивным, если

$$(\forall x \forall y \forall z)(((x,y) \in \rho \land (y,z) \in \rho) \Rightarrow ((x,z) \in \rho)),$$

5) транзитивным, если

$$(\forall x \forall y \forall z)(((x,y) \in \rho \land (y,z) \in \rho) \Rightarrow ((x,z) \in \rho)),$$

T.e. $\rho \circ \rho \subseteq \rho$.

`irst • Prev •

t • La

Go Back

• Full Scree

Close

Quit

5) транзитивным, если

$$(\forall x \forall y \forall z)(((x,y) \in \rho \land (y,z) \in \rho) \Rightarrow ((x,z) \in \rho)),$$

T.e. $\rho \circ \rho \subseteq \rho$.

6) **плотным**, если

$$(\forall x \forall y)(((x,y) \in \rho \Rightarrow (\exists z)((z \neq x) \land (z \neq y) \land ((x,z) \in \rho) \land ((z,y) \in \rho)).$$

1) эквивалентностью, если оно рефлексивно, симметрично и транзитивно;

- 1) **эквивалентностью**, если оно рефлексивно, симметрично и транзитивно;
- 2) толерантностью, если оно рефлексивно и симметрично;

- 1) **эквивалентностью**, если оно рефлексивно, симметрично и транзитивно;
- 2) толерантностью, если оно рефлексивно и симметрично;
- 3) **порядком** (или **частичным порядком**), если оно рефлексивно, антисимметрично и транзитивно;

- 1) **эквивалентностью**, если оно рефлексивно, симметрично и транзитивно;
- 2) толерантностью, если оно рефлексивно и симметрично;
- 3) **порядком** (или **частичным порядком**), если оно рефлексивно, антисимметрично и транзитивно;
- 4) **предпорядком** (или **квазипорядком**), если оно рефлексивно и транзитивно;

- 1) **эквивалентностью**, если оно рефлексивно, симметрично и транзитивно;
- 2) толерантностью, если оно рефлексивно и симметрично;
- 3) **порядком** (или **частичным порядком**), если оно рефлексивно, антисимметрично и транзитивно;
- 4) **предпорядком** (или **квазипорядком**), если оно рефлексивно и транзитивно;
- 5) **строгим порядком**, если оно иррефлексивно, антисимметрично и транзитивно;

- 1) **эквивалентностью**, если оно рефлексивно, симметрично и транзитивно;
- 2) толерантностью, если оно рефлексивно и симметрично;
- 3) **порядком** (или **частичным порядком**), если оно рефлексивно, антисимметрично и транзитивно;
- 4) **предпорядком** (или **квазипорядком**), если оно рефлексивно и транзитивно;
- 5) **строгим порядком**, если оно иррефлексивно, антисимметрично и транзитивно;
- 6) строгим предпорядком, если оно иррефлексивно и транзитивно;

- 1) **эквивалентностью**, если оно рефлексивно, симметрично и транзитивно;
- 2) толерантностью, если оно рефлексивно и симметрично;
- 3) **порядком** (или **частичным порядком**), если оно рефлексивно, антисимметрично и транзитивно;
- 4) **предпорядком** (или **квазипорядком**), если оно рефлексивно и транзитивно;
- 5) **строгим порядком**, если оно иррефлексивно, антисимметрично и транзитивно;
- 6) **строгим предпорядком**, если оно иррефлексивно и транзитивно; Говорят: "отношение эквивалентности, толерантности, порядка, предпорядка . . . " и т.п.

Рассмотрим отношение ρ на множестве всех подмножеств некоторого множества $U: A \rho B \Leftrightarrow A \cap B \neq \emptyset$ и $\emptyset \rho \emptyset$.

Рассмотрим отношение ρ на множестве всех подмножеств некоторого множества $U: A \rho B \Leftrightarrow A \cap B \neq \emptyset$ и $\emptyset \rho \emptyset$.

Покажем, что это отношение толерантности, т.е. рефлексивно и симметрично.

Рассмотрим отношение ρ на множестве всех подмножеств некоторого множества $U: A \rho B \Leftrightarrow A \cap B \neq \emptyset$ и $\emptyset \rho \emptyset$.

Покажем, что это отношение толерантности, т.е. рефлексивно и симметрично.

Поскольку для любого множества $A \in U$, $A \neq \emptyset$, $A \cap A = A \neq \emptyset$ и $\emptyset \rho \emptyset$, отношение ρ является рефлексивным.

Рассмотрим отношение ρ на множестве всех подмножеств некоторого множества $U: A \rho B \Leftrightarrow A \cap B \neq \emptyset$ и $\emptyset \rho \emptyset$.

Покажем, что это отношение толерантности, т.е. рефлексивно и симметрично.

Поскольку для любого множества $A \in U$, $A \neq \emptyset$, $A \cap A = A \neq \emptyset$ и $\emptyset \rho \emptyset$, отношение ρ является рефлексивным.

Поскольку из $A\cap B\neq\varnothing$ следует, что $B\cap A\neq\varnothing$, отношение ρ является симметричным.

Рассмотрим отношение ρ на множестве всех подмножеств некоторого множества $U: A \rho B \Leftrightarrow A \cap B \neq \emptyset$ и $\emptyset \rho \emptyset$.

Покажем, что это отношение толерантности, т.е. рефлексивно и симметрично.

Поскольку для любого множества $A \in U$, $A \neq \emptyset$, $A \cap A = A \neq \emptyset$ и $\emptyset \rho \emptyset$, отношение ρ является рефлексивным.

Поскольку из $A\cap B\neq\varnothing$ следует, что $B\cap A\neq\varnothing$, отношение ρ является симметричным.

Вывод: это отношение толерантности.

Рассмотрим отношение ρ на множестве всех подмножеств некоторого множества $U: A \rho B \Leftrightarrow A \cap B \neq \emptyset$ и $\emptyset \rho \emptyset$.

Покажем, что это отношение толерантности, т.е. рефлексивно и симметрично.

Поскольку для любого множества $A \in U$, $A \neq \emptyset$, $A \cap A = A \neq \emptyset$ и $\emptyset \rho \emptyset$, отношение ρ является рефлексивным.

Поскольку из $A\cap B\neq\varnothing$ следует, что $B\cap A\neq\varnothing$, отношение ρ является симметричным.

Вывод: это отношение толерантности.

Покажем, что ρ — не эквивалентность.

Рассмотрим отношение ρ на множестве всех подмножеств некоторого множества $U: A \rho B \Leftrightarrow A \cap B \neq \emptyset$ и $\emptyset \rho \emptyset$.

Покажем, что это отношение толерантности, т.е. рефлексивно и симметрично.

Поскольку для любого множества $A \in U$, $A \neq \emptyset$, $A \cap A = A \neq \emptyset$ и $\emptyset \rho \emptyset$, отношение ρ является рефлексивным.

Поскольку из $A\cap B\neq\varnothing$ следует, что $B\cap A\neq\varnothing$, отношение ρ является симметричным.

Вывод: это отношение толерантности.

Покажем, что ρ — не эквивалентность.

Поскольку из $A \cap B \neq \emptyset$ и $B \cap C \neq \emptyset$ в общем случае не следует, что $A \cap C \neq \emptyset$, что легко видеть что, отношение ρ не транзитивно.

Зададим на множестве натуральных чисел $\mathbb N$ следующее отношение: $a \mid b$ в том и только том случае, когда , a является делителем b ".

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть.

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a .

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a. Тогда найдется натуральное число t_1 , такое, что $b=at_1$,

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a. Тогда найдется натуральное число t_1 , такое, что $b=at_1$, найдется t_2 , такое, что $a=bt_2$.

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a. Тогда найдется натуральное число t_1 , такое, что $b=at_1$, найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$.

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a . Тогда найдется натуральное число t_1 , такое, что $b=at_1$, и найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$. Следовательно, a=b.

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a. Тогда найдется натуральное число t_1 , такое, что $b=at_1$, и найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$. Следовательно, a=b.

Покажем транзитивность.

Зададим на множестве натуральных чисел $\mathbb N$ следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a . Тогда найдется натуральное число t_1 , такое, что $b=at_1$, и найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$. Следовательно, a=b.

Покажем транзитивность. Если a делит b, а b делит c, то найдутся такие натуральные числа t_1 , t_2 , такие, что $b=at_1$ и $c=bt_2$.

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a . Тогда найдется натуральное число t_1 , такое, что $b=at_1$, и найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$. Следовательно, a=b.

Покажем транзитивность. Если a делит b, а b делит c, то найдутся такие натуральные числа t_1 , t_2 , такие, что $b=at_1$ и $c=bt_2$. Отсюда имеем $c=at_1t_2$, т.е. a — делитель c.

Зададим на множестве натуральных чисел $\mathbb N$ следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a . Тогда найдется натуральное число t_1 , такое, что $b=at_1$, и найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$. Следовательно, a=b.

Покажем транзитивность. Если a делит b, а b делит c, то найдутся такие натуральные числа t_1 , t_2 , такие, что $b=at_1$ и $c=bt_2$. Отсюда имеем $c=at_1t_2$, т.е. a — делитель c.

Таким образом, отношение делимости на множестве № является отношением порядка.

Зададим на множестве натуральных чисел $\mathbb N$ следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a . Тогда найдется натуральное число t_1 , такое, что $b=at_1$, и найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$. Следовательно, a=b.

Покажем транзитивность. Если a делит b, а b делит c, то найдутся такие натуральные числа t_1 , t_2 , такие, что $b=at_1$ и $c=bt_2$. Отсюда имеем $c=at_1t_2$, т.е. a — делитель c.

Таким образом, отношение делимости на множестве № является отношением порядка.

Это отношение на множество целых чисел \mathbb{Z} будет только предпорядком, поскольку не будет антисимметричным.

Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \mid b$ в том и только том случае, когда " a является делителем b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть. Пусть a делит b и, с другой стороны, b делит a . Тогда найдется натуральное число t_1 , такое, что $b=at_1$, и найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$. Следовательно, a=b.

Покажем транзитивность. Если a делит b, а b делит c, то найдутся такие натуральные числа t_1 , t_2 , такие, что $b=at_1$ и $c=bt_2$. Отсюда имеем $c=at_1t_2$, т.е. a — делитель c.

Таким образом, отношение делимости на множестве № является отношением порядка.

Это отношение на множество целых чисел \mathbb{Z} будет только предпорядком, поскольку не будет антисимметричным.

Например, 2 делится на -2, и -2 делится на 2, однако $2 \neq -2$.

Рассмотрим множество всех подмножеств множества $A-2^{(A)}$. Покажем, что отношение включения \subseteq на множестве $2^{(A)}$ есть порядок.

Рассмотрим множество всех подмножеств множества $A-2^{(A)}$. Покажем, что отношение включения \subseteq на множестве $2^{(A)}$ есть порядок.

Это отношение рефлексивно, т.к. для любого множества X справедливо $X\subseteq X$.

Рассмотрим множество всех подмножеств множества $A-2^{(A)}$. Покажем, что отношение включения \subseteq на множестве $2^{(A)}$ есть порядок.

Это отношение рефлексивно, т.к. для любого множества X справедливо $X\subseteq X$.

Поскольку для любых двух множеств X и Y из $(X \subseteq Y)$ и $(Y \subseteq X)$ следует, что X = Y, рассматриваемое отношение антисимметрично.

Рассмотрим множество всех подмножеств множества $A-2^{(A)}$. Покажем, что отношение включения \subseteq на множестве $2^{(A)}$ есть порядок.

Это отношение рефлексивно, т.к. для любого множества X справедливо $X\subseteq X$.

Поскольку для любых двух множеств X и Y из $(X \subseteq Y)$ и $(Y \subseteq X)$ следует, что X = Y , рассматриваемое отношение антисимметрично.

Из определения включения вытекает, что если $(X \subseteq Y)$ и $(Y \subseteq Z)$, то $X \subseteq Z$. Следовательно, отношение транзитивно.

Рассмотрим множество всех подмножеств множества $A-2^{(A)}$. Покажем, что отношение включения \subseteq на множестве $2^{(A)}$ есть порядок.

Это отношение рефлексивно, т.к. для любого множества X справедливо $X\subseteq X$.

Поскольку для любых двух множеств X и Y из $(X \subseteq Y)$ и $(Y \subseteq X)$ следует, что X = Y , рассматриваемое отношение антисимметрично.

Из определения включения вытекает, что если $(X \subseteq Y)$ и $(Y \subseteq Z)$, то $X \subseteq Z$. Следовательно, отношение транзитивно.

Таким образом, отношение рефлексивно, антисимметрично и транзитивно, т. е. это отношение порядка.

(a)
$$M = \{a, b, c, d\}$$
,

$$\Phi = \{(a, a), (a, b), (c, a), (b, d), (a, d), (b, c)\};$$

(a)
$$M = \{a, b, c, d\}$$
,

$$\Phi = \{(a, a), (a, b), (c, a), (b, d), (a, d), (b, c)\};$$

(б)
$$x \varphi y$$
, если $(x - y) \le 2$, $x \in R$, $y \in R$.

(a)
$$M = \{a, b, c, d\}$$
,

$$\Phi = \{(a, a), (a, b), (c, a), (b, d), (a, d), (b, c)\};$$

- (б) $x \varphi y$, если $(x y) \le 2$, $x \in R$, $y \in R$.
- **4.2** Пусть $X = \{x \mid x \in [0,1]\}$, $\rho = \{(x,y) \mid x,y \in X, x < y \text{ и } |x-y| < 0.5\}$. Построить графики отношений ρ и ρ^{-1} . Исследовать свойства отношения ρ . Что можно сказать о свойствах обратного отношения?

(a)
$$M = \{a, b, c, d\}$$
,

$$\Phi = \{(a, a), (a, b), (c, a), (b, d), (a, d), (b, c)\};$$

- (б) $x \varphi y$, если $(x y) \le 2$, $x \in R$, $y \in R$.
- **4.2** Пусть $X = \{x \mid x \in [0,1]\}$, $\rho = \{(x,y) \mid x,y \in X, x < y \text{ и } |x-y| < 0.5\}$. Построить графики отношений ρ и ρ^{-1} . Исследовать свойства отношения ρ . Что можно сказать о свойствах обратного отношения?
- **4.3** Пусть τ отношение на $\mathbb{N} \times \mathbb{N}$: $(a,b) \tau (c,d)$, если $a \leq c$ и $b \leq d$. Является ли τ отношением порядка и почему?

(a)
$$M = \{a, b, c, d\}$$
,

$$\Phi = \{(a, a), (a, b), (c, a), (b, d), (a, d), (b, c)\};$$

- (б) $x \varphi y$, если $(x y) \le 2$, $x \in R$, $y \in R$.
- **4.2** Пусть $X = \{x \mid x \in [0,1]\}$, $\rho = \{(x,y) \mid x,y \in X, x < y \text{ и } |x-y| < 0.5\}$. Построить графики отношений ρ и ρ^{-1} . Исследовать свойства отношения ρ . Что можно сказать о свойствах обратного отношения?
- **4.3** Пусть τ отношение на $\mathbb{N} \times \mathbb{N}$: $(a,b) \tau (c,d)$, если $a \leq c$ и $b \leq d$. Является ли τ отношением порядка и почему?
- **4.4** Пусть v определено на множестве положительных рациональных чисел: (a/b)v(c/d), если $ad \leq bc$. Показать, что v является отношением линейного порядка.

$$(P,Q)\sigma(X,Y)$$
, если $(P\subseteq X)$ и $(Q\subseteq Y)$;

Является ли σ отношением порядка?

$$(P,Q)\sigma(X,Y)$$
, если $(P\subseteq X)$ и $(Q\subseteq Y)$;

Является ли σ отношением порядка?

- **4.6** Рассмотрим множество квадратных матриц размером 2×2 , элементами которых являются целые числа. Является ли заданное ниже отношение τ отношением порядка? Линейного порядка?
- (a) $A\tau B$, если $a_{ij} \leq b_{ij}$, i, j = 1, 2;

$$(P,Q)\sigma(X,Y), \ \mathrm{если}(P\subseteq X)$$
 и $(Q\subseteq Y);$

Является ли σ отношением порядка?

- **4.6** Рассмотрим множество квадратных матриц размером 2×2 , элементами которых являются целые числа. Является ли заданное ниже отношение τ отношением порядка? Линейного порядка?
- (a) $A\tau B$, если $a_{ij} \leq b_{ij}$, i, j = 1, 2;
- (б) $A\tau B$, если $a_{ij} \leq b_{ij}$, i,j=1,2 и хотя бы для одной пары элементов неравенство строгое.

$$(P,Q)\sigma(X,Y)$$
, если $(P\subseteq X)$ и $(Q\subseteq Y)$;

Является ли σ отношением порядка?

- **4.6** Рассмотрим множество квадратных матриц размером 2×2 , элементами которых являются целые числа. Является ли заданное ниже отношение τ отношением порядка? Линейного порядка?
- (a) $A\tau B$, если $a_{ij} \leq b_{ij}$, i, j = 1, 2;
- (б) $A\tau B$, если $a_{ij} \leq b_{ij}$, i,j=1,2 и хотя бы для одной пары элементов неравенство строгое.
- **4.7** Пусть F множество функций, непрерывных на [a,b] . Исследовать свойства отнощения τ :

f(x) au g(x) , если $\int_a^b f(x)\,dx \le \int_a^b g(x)\,dx$. Является ли au отношением предпорядка? порядка?

Отношение эквивалентности.

Определение 4.1. Бинарное отношение называется: **эквивалентностью**, если оно рефлексивно, симметрично и транзитивно.

Определение 4.2. Пусть $\rho \subseteq A^2$ — экивалентность. Множество

$$[x]_{\rho} = \{y \mid y\rho x\}$$

называют классом эквивалентности элемента x по отношению ρ .

Определение 4.3. Множество всех классов эквивалентности по данному отношению эквивалентности ρ на множестве A называется фактор-множеством множества A по отношению ρ и обозначается A/ρ , т.е.

$$A/\rho = \{ [x]_\rho \mid x \in A \}.$$

st • Prev • Next • Last • Go Back • Full Screen • Close • Qui

Это отношение рефлексивно и симметрично, поскольку m-m=0 делится на 2, и из того, что m-n делится на 2, вытекает, что n-m делится на 2.

st ullet Prev ullet Next ullet Last ullet Go Back ullet Full Screen ullet Close

Это отношение рефлексивно и симметрично, поскольку m-m=0 делится на 2, и из того, что m-n делится на 2, вытекает, что n-m делится на 2.

Покажем транзитивность. Пусть $m \equiv_{\pmod{2}} n$ и $n \equiv_{\pmod{2}} p$.

Это отношение рефлексивно и симметрично, поскольку m-m=0 делится на 2, и из того, что m-n делится на 2, вытекает, что n-m делится на 2.

Покажем транзитивность. Пусть $m \equiv_{(\text{mod } 2)} n$ и $n \equiv_{(\text{mod } 2)} p$. Если m-n делится на 2 и n-p делится на 2, то числа m, n и p либо все четные, либо нечетные.

rst • Prev • Next • Last • Go Back • Full Screen • Close •

Это отношение рефлексивно и симметрично, поскольку m-m=0 делится на 2, и из того, что m-n делится на 2, вытекает, что n-m делится на 2.

Покажем транзитивность. Пусть $m \equiv_{(\text{mod } 2)} n$ и $n \equiv_{(\text{mod } 2)} p$. Если m-n делится на 2 и n-p делится на 2, то числа m, n и p либо все четные, либо нечетные. Поэтому m-p делится на 2, что означает $m \equiv_{(\text{mod } 2)} p$.

Это отношение рефлексивно и симметрично, поскольку m-m=0 делится на 2, и из того, что m-n делится на 2, вытекает, что n-m делится на 2.

Покажем транзитивность. Пусть $m \equiv_{(\text{mod }2)} n$ и $n \equiv_{(\text{mod }2)} p$. Если m-n делится на 2 и n-p делится на 2, то числа m, n и p либо все четные, либо нечетные. Поэтому m-p делится на 2, что означает $m \equiv_{(\text{mod }2)} p$.

Таким образом, $\equiv_{\text{(mod 2)}}$ — транзитивность.

Рассмотрим множество чисел, связанных отношением $\equiv_{(\text{mod }2)}$ с числом 0. Разность некоторого числа n и 0 будет нацело делиться на 2 только если число n — четное. Таким образом, $[0]_{\equiv_{(\text{mod }2)}}$ — множество четных чисел.

Рассмотрим множество чисел, связанных отношением $\equiv_{(\text{mod }2)}$ с числом 0. Разность некоторого числа n и 0 будет нацело делиться на 2 только если число n — четное. Таким образом, $[0]_{\equiv_{(\text{mod }2)}}$ — множество четных чисел.

Рассмотрим множество чисел, связанных отношением $\equiv_{(\text{mod }2)}$ с числом 1. Разность некоторого числа m и 1 будет нацело делиться на 2 только если число m — нечетное. Таким образом, $[1]_{\equiv_{(\text{mod }2)}}$ — множество нечетных чисел.

Рассмотрим множество чисел, связанных отношением $\equiv_{(\text{mod }2)}$ с числом 0. Разность некоторого числа n и 0 будет нацело делиться на 2 только если число n — четное. Таким образом, $[0]_{\equiv_{(\text{mod }2)}}$ — множество четных чисел.

Рассмотрим множество чисел, связанных отношением $\equiv_{(\text{mod }2)}$ с числом 1. Разность некоторого числа m и 1 будет нацело делиться на 2 только если число m — нечетное. Таким образом, $[1]_{\equiv_{(\text{mod }2)}}$ — множество нечетных чисел.

В итоге получаем ровно 2 попарно различных классов эквивалентности по данному отношению: $[0]_{\equiv_{(\mathrm{mod}\,2)}}$ и $[1]_{\equiv_{(\mathrm{mod}\,2)}}$.

Рассмотрим множество чисел, связанных отношением $\equiv_{(\text{mod }2)}$ с числом 0. Разность некоторого числа n и 0 будет нацело делиться на 2 только если число n — четное. Таким образом, $[0]_{\equiv_{(\text{mod }2)}}$ — множество четных чисел.

Рассмотрим множество чисел, связанных отношением $\equiv_{(\text{mod }2)}$ с числом 1. Разность некоторого числа m и 1 будет нацело делиться на 2 только если число m — нечетное. Таким образом, $[1]_{\equiv_{(\text{mod }2)}}$ — множество нечетных чисел.

В итоге получаем ровно 2 попарно различных классов эквивалентности по данному отношению: $[0]_{\equiv_{(\text{mod }2)}}$ и $[1]_{\equiv_{(\text{mod }2)}}$.

Можем записать

$$\mathbb{Z}/\equiv_{(\text{mod }2)} \sim \{0,1\}.$$

Задача 4.8 На множестве рациональных дробей вида $a/b\,,\;a\in\mathbb{Z}\,,$ $b\in\mathbb{N}$ задано бинарное отношение

$$\tau = \{(a/b, c/d) \mid ad = cb\}.$$

Показать, что τ является отношением эквивалентности. Что является фактор-множеством множества рациональных дробей по данному отношению?

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Задача 4.8 На множестве рациональных дробей вида a/b , $a\in\mathbb{Z}$, $b\in\mathbb{N}$ задано бинарное отношение

$$\tau = \{ (a/b, \, c/d) \, | \, ad = cb \}.$$

Показать, что τ является отношением эквивалентности. Что является фактор-множеством множества рациональных дробей по данному отношению?

Задача 4.9 Пусть в \mathbb{R}^3 задана плоскость ax + by + cz = 0. Точки с радиус-векторами $\mathbf{r_1}$ и $\mathbf{r_2}$ связаны отношением τ , если $((\mathbf{r_1} - \mathbf{r_2}), \mathbf{n}) = 0$, где \mathbf{n} — нормаль к плоскости, а (\cdot, \cdot) — скалярное произведение. Показать, что τ — отношение эквивалентности. На какие классы эквивалентности разбивается \mathbb{R}^3 . Что будет фактормножеством множества \mathbb{R}^3 по данному отношению эквивалентности.

'irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Задача 4.8 На множестве рациональных дробей вида a/b , $a\in\mathbb{Z}$, $b\in\mathbb{N}$ задано бинарное отношение

$$\tau = \{(a/b, c/d) \mid ad = cb\}.$$

Показать, что τ является отношением эквивалентности. Что является фактор-множеством множества рациональных дробей по данному отношению?

Задача 4.9 Пусть в \mathbb{R}^3 задана плоскость ax+by+cz=0. Точки с радиус-векторами $\mathbf{r_1}$ и $\mathbf{r_2}$ связаны отношением τ , если $((\mathbf{r_1}-\mathbf{r_2}),\mathbf{n})=0$, где \mathbf{n} — нормаль к плоскости, а (\cdot,\cdot) — скалярное произведение. Показать, что τ — отношение эквивалентности. На какие классы эквивалентности разбивается \mathbb{R}^3 . Что будет фактормножеством множества \mathbb{R}^3 по данному отношению эквивалентности.

Задача 4.10 Пусть F — множество функций, непрерывных на [a,b] . Исследовать свойства отношения au :

f(x) au g(x) , если $\int_a^b f(x)\,dx=\int_a^b g(x)\,dx$. Является ли au отношением эквивалентности?

'irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Индексированное семейство множеств $\{B_i\}_{i\in I}$ называется **разбиени- ем** множества A, если:

- 1) $\bigcup_{i \in I} B_i = A$,
- 2) если $i \neq j$, то $B_i \cap B_j = \emptyset$.

Индексированное семейство множеств $\{B_i\}_{i\in I}$ называется **разбиени- ем** множества A, если:

$$1) \bigcup_{i \in I} B_i = A \,,$$

2) если $i \neq j$, то $B_i \cap B_j = \emptyset$.

Таким образом, разбиение множества A — это семейство попарно не пересекающихся подмножеств A, объединение которых равно A.

Индексированное семейство множеств $\{B_i\}_{i\in I}$ называется **разбиени- ем** множества A , если:

$$1) \bigcup_{i \in I} B_i = A \,,$$

2) если $i \neq j$, то $B_i \cap B_j = \emptyset$.

Таким образом, разбиение множества A — это семейство попарно не пересекающихся подмножеств A, объединение которых равно A.

Например, множества [0,1/3), [1/3,2/3) и [2/3,1] образуют разбиение отрезка [0,1].

Индексированное семейство множеств $\{B_i\}_{i\in I}$ называется **разбиени- ем** множества A , если:

$$1) \bigcup_{i \in I} B_i = A ,$$

2) если $i \neq j$, то $B_i \cap B_j = \emptyset$.

Таким образом, разбиение множества A — это семейство попарно не пересекающихся подмножеств A, объединение которых равно A.

Например, множества [0,1/3), [1/3,2/3) и [2/3,1] образуют разбиение отрезка [0,1].

Теорема. Любое отношение эквивалентности определяет однозначно некоторое разбиение данного множества и обратно, любое разбиение множества однозначно определяет некоторое отношение эквивалентности на нем.

Индексированное семейство множеств $\{B_i\}_{i\in I}$ называется **разбиени- ем** множества A , если:

$$1) \bigcup_{i \in I} B_i = A \,,$$

2) если $i \neq j$, то $B_i \cap B_j = \emptyset$.

Таким образом, разбиение множества A — это семейство попарно не пересекающихся подмножеств A, объединение которых равно A.

Например, множества [0,1/3) , [1/3,2/3) и [2/3,1] образуют разбиение отрезка [0,1] .

Теорема. Любое отношение эквивалентности определяет однозначно некоторое разбиение данного множества и обратно, любое разбиение множества однозначно определяет некоторое отношение эквивалентности на нем.

Задача 4.11 Пусть A — конечное множество. Какое отношение эквивалентности на нем дает наибольшее число классов эквивалентности. Сколько? Сколькими способами можно задать отношение эквивалентности, разбивающее A на два класса?

Домашнее задание

- **4.12** Отношение σ связывает клетки шахматной доски: две клетки связаны, если с одной на другую можно перейти ходом коня. Записать отношение с помощью логических высказываний, исследовать его свойства.
- **4.13** Пусть π отношение на $\mathbb{N} \times \mathbb{N}$: $(a,b)\pi(c,d)$, если $a \leq c$ и $b \geq d$. Является ли π отношением порядка и почему?
- **4.14** Пусть A произвольное множество и ρ отношение на множестве $2^A \times 2^A$ (прямом произведении множества всех подмножеств A на себя).
- $(P,Q)\rho(X,Y)$, если $(P\triangle Q)\subseteq (X\triangle Y)$;

Является ли ρ отношением порядка?

4.15 Пусть M —некоторое множество, а $2^M \setminus \{\varnothing\}$ — множество всех его подмножеств без пустого множества. Два множества из 2^M связаны отношением τ , если они имеют хотя бы одно непустое общее подмножество. Является ли в общем случае τ отношением порядка. Какими свойствами будет обладать отношение τ , если $M = \{a, b\}$

4.16 Пусть $f: \mathbb{R} \to \mathbb{R}$ — отображение, и $x_1 \tau x_2$ если и только если $f(x_1) = f(x_2)$. Показать, что τ является отношением эквивалентности. Указать фактор-множество \mathbb{R}/τ .

rst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit