Theory and Practice of Humanoid Walking Control

Jaeheung Park, SNU

Inverse Kinematics for Leg

 Use the material in Homework assignment for Leg IK – HW#1

Walking, Balancing, and Falling

- Walking is bipedal locomotion that moves COM from one position to the other. In general, it involves foot steps.
- Balancing usually means that it can maintain or recover its certain (balanced?) states from disturbed state without falling.
- Falling is a state that the robot cannot recover to a balanced state.
- Maintaining a certain contact state is related to ZMP being within a supporting polygon.
- Determining that a robot will fall or not is not simple especially for a high DOF system.

Main Assumption in This Class

- Robot is walking on a flat ground.
- Foot hold is plane. That is, there are plane-contacts between the foot hold and the flat ground.

The material in today's lecture is mainly from the following reference book.

- Introduction to Humanoid Robotics
 - Shuuji Kajita, Hirohisa Hirukawa, Kensuke Harada, Kazuhito Yokoi

Sagittal, Frontal, Transverse Planes

Zero Moment Point (Sagittal Plane)

- The reaction forces on the foot can be represented by one resultant force while resultant moment is zero. This point is defined to be zero moment point or ZMP.
- Only vertical forces are considered. The tangential force (friction forces) does not contribute to the resultant moment.

ZMP in supporting polygon

- In a static case, CoM
 = ZMP which is in the supporting polygon if the system is stable.
- In a dynamic case, they are not the same. However, ZMP is still within the supporting polygon.

Supporting Polygon on flat surface

 The support polygon is defined as a convex hull, which is the smallest convex set including all contact points.

Convexity

 A shape or set is convex if for any two points that are part of the shape, the whole connecting line segment is also part of the shape.

Convex hull

 For any subset of the plane, its convex hull is the smallest convex set that contains that subset.

ZMP in supporting polygon

- The condition that ZMP is in supporting polygon is a necessary condition.
- The ZMP of each foot also has to be within each foothold not to lose the plane contact.

2D analysis of ZMP

$$f_x = \int_{x_1}^{x_2} \sigma(\xi) d\xi$$
$$f_z = \int_{x_1}^{x_2} \rho(\xi) d\xi$$
$$\tau(p_x) = -\int_{x_1}^{x_2} (\xi - p_x) \rho(\xi) d\xi$$

$$p_x = \frac{\int_{x_1}^{x_2} \xi \rho(\xi) d\xi}{\int_{x_1}^{x_2} \rho(\xi) d\xi}$$

Px is the center of pressure where the moment is zero.
 This is the definition of ZMP.

Location of ZMP

• If $\rho(\xi) \geq 0$, then $x_1 \leq p_x \leq x_2$

3D analysis of ZMP

Effect of vertical reaction forces

$$f_z = \int_S \rho(\xi, \eta) dS$$

• The moment $\tau_n(p)$ is the moment due to the normal force f z.

3D analysis of ZMP due to vertical forces

$$\tau_n(p) \equiv \left[\tau_{nx} \, \tau_{ny} \, \tau_{nz}\right]^T$$

$$\tau_{nx} = \int_S (\eta - p_y) \rho(\xi, \eta) dS$$

$$\tau_{ny} = -\int_S (\xi - p_x) \rho(\xi, \eta) dS$$

$$\tau_{nz} = 0.$$

• To make $\tau_{nx}, \ \tau_{ny}$ be zero,

$$p_x = \frac{\int_S \xi \rho(\xi, \eta) dS}{\int_S \rho(\xi, \eta) dS}$$
$$p_y = \frac{\int_S \eta \rho(\xi, \eta) dS}{\int_S \rho(\xi, \eta) dS}$$

Because rho is the pressure, p is the center of pressure.

Effect of the horizontal component

$$f_x = \int_S \sigma_x(\xi, \eta) dS$$
$$f_y = \int_S \sigma_y(\xi, \eta) dS$$

$$\tau_t(p) \equiv \left[\tau_{tx} \, \tau_{ty} \, \tau_{tz}\right]^T$$

$$\tau_{tx} = 0, \, \tau_{ty} = 0,$$

$$\tau_{tz} = \int_{S} \{(\xi - p_x)\sigma_y(\xi, \eta) - (\eta - p_y)\sigma_x(\xi, \eta)\} dS$$

 The moment tau_t is the moment due to the horizontal forces.

3D analysis

 As a summary, the ground reaction forces and moments over the surface of the sole are

$$f = [f_x f_y f_z]^T,$$

$$\tau_p = \tau_n(p) + \tau_t(p)$$

$$= [0 \ 0 \ \tau_{tz}]^T$$

• In general cases, the moment about z direction is not zero. Therefore, the ZMP (p) is the point where the horizontal components of the ground reaction moments are zero.

This can be a problem...

Region of ZMP in 3D

 $f = \sum_{i=1}^{N} f_i$ $\tau(p) = \sum_{i=1}^{N} (p_i - p) \times f_i$

• The x and y components of tau(p) is zero at ZMP. So,

$$p = \frac{\sum_{i=1}^{N} p_i f_{iz}}{\sum_{i=1}^{N} f_{iz}}$$

Region of ZMP in 3D

$$p = \frac{\sum_{i=1}^{N} p_i f_{iz}}{\sum_{i=1}^{N} f_{iz}}$$

Normally f_{iz} >= 0, then

$$p = \sum_{i=1}^{N} \alpha_i p_i \qquad \qquad \alpha_i \ge 0 \text{ and } \sum_{i=1}^{N} \alpha_i = 1$$

• Therefore, ZMP is within the convex hull of supporting polygon.

Measurement of ZMP?

 Measuring f_z at multiple points could be enough.

$$p = \frac{\sum_{i=1}^{N} p_i f_{iz}}{\sum_{i=1}^{N} f_{iz}}$$

where

$$p = [p_x, p_y, 0]^T$$

ZMP for double support

- The forces on both feet should be accounted for.
- Global stability(?) is assessed by looking at the ZMP and supporting polygon.
- Individual contact states of each foot needs to be handled by ZMP and supporting polygon of each foot.

Calculation of ZMP from Robot's motion

 The ground reaction force tau can be expressed by using ZMP (p), the force, and the moment tau_p at the point.

$$oldsymbol{ au} = oldsymbol{p} imes oldsymbol{f} + oldsymbol{ au}_p$$

• The linear and angular momentums are expressed as the following force and moment equilibrium. $\dot{\mathcal{P}} = M {m g} + {m f}$

$$\dot{\mathcal{L}} = oldsymbol{c} imes Moldsymbol{g} + oldsymbol{ au}$$

• Moment equilibrium equation becomes as the following by substituting tau and f with the first two equations.

$$\boldsymbol{\tau}_p = \dot{\mathcal{L}} - \boldsymbol{c} \times M\boldsymbol{g} + (\dot{\mathcal{P}} - M\boldsymbol{g}) \times \boldsymbol{p}$$

The first two rows of this equation can be used to compute ZMP.

$$\tau_{px} = \dot{\mathcal{L}}_x + Mgy + \dot{\mathcal{P}}_y p_z - (\dot{\mathcal{P}}_z + Mg) p_y = 0$$

$$\tau_{py} = \dot{\mathcal{L}}_y - Mgx - \dot{\mathcal{P}}_x p_z + (\dot{\mathcal{P}}_z + Mg) p_x = 0$$

$$\mathcal{P} = [\mathcal{P}_x \ \mathcal{P}_y \ \mathcal{P}_z]^T$$
 $\mathcal{L} = [\mathcal{L}_x \ \mathcal{L}_y \ \mathcal{L}_z]^T$
 $\boldsymbol{c} = [x \ y \ z]^T$
 $\boldsymbol{g} = [0 \ 0 \ -g]^T$.

Calculation of ZMP from Robot's motion

$$p_x = \frac{Mgx + p_z\dot{\mathcal{P}}_x - \dot{\mathcal{L}}_y}{Mg + \dot{\mathcal{P}}_z}$$
$$p_y = \frac{Mgy + p_z\dot{\mathcal{P}}_y + \dot{\mathcal{L}}_x}{Mg + \dot{\mathcal{P}}_z}$$

Simplified model by assuming all the links have no rotational inertias.

$$p_x = \frac{\sum_{i=1}^{N} m_i \{ (\ddot{z}_i + g) x_i - (z_i - p_z) \ddot{x}_i \}}{\sum_{i=1}^{N} m_i (\ddot{z}_i + g)}$$
$$p_y = \frac{\sum_{i=1}^{N} m_i \{ (\ddot{z}_i + g) y_i - (z_i - p_z) \ddot{y}_i \}}{\sum_{i=1}^{N} m_i (\ddot{z}_i + g)}$$

Calculation of ZMP from Robot's motion

$$p_x = \frac{Mgx + p_z \dot{\mathcal{P}}_x - \dot{\mathcal{L}}_y}{Mg + \dot{\mathcal{P}}_z}$$
$$p_y = \frac{Mgy + p_z \dot{\mathcal{P}}_y + \dot{\mathcal{L}}_x}{Mg + \dot{\mathcal{P}}_z}$$

Simplified model by assuming the whole robot is a point mass.

$$\mathcal{P} = M\dot{\boldsymbol{c}}$$
$$\mathcal{L} = \boldsymbol{c} \times M\dot{\boldsymbol{c}}$$

$$egin{bmatrix} \mathcal{P}_x \ \dot{\mathcal{P}}_y \ \dot{\mathcal{P}}_z \end{bmatrix} = egin{bmatrix} M\ddot{x} \ M\ddot{y} \ M\ddot{z} \end{bmatrix} \ egin{bmatrix} \dot{\mathcal{L}}_x \ \dot{\mathcal{L}}_y \ \dot{\mathcal{L}}_z \end{bmatrix} = egin{bmatrix} M(y\ddot{z} - z\ddot{y}) \ M(z\ddot{x} - x\ddot{z}) \ M(x\ddot{y} - y\ddot{x}) \end{bmatrix}$$

$$p_x = x - \frac{(z - p_z)\ddot{x}}{\ddot{z} + g}$$
$$p_y = y - \frac{(z - p_z)\ddot{y}}{\ddot{z} + g}$$

Limitation of ZMP?

- We need to think about what the ZMP is.
- Friction constraints are not considered.

ZMP paper:

<u>Vukobratović, Miomir</u> and Borovac, Branislav. <u>Zero-moment point—Thirty five years of its life</u>. <u>International Journal of Humanoid Robotics</u>, Vol. 1, No. 1, pp. 157—173, 2004.