光片荧光显微镜

Light-sheet Fluorescence Microscopy

畅星兆

日期: 2018.11.28

目录

►LSFM的变种 (Varients)

光片荧光显微镜

光片荧光显微镜 (又称 light sheet fluorescence microscopy, LSFM; 或者 selective plane illumination microscopy, SPIM)

LSFM共包含两束光路,分别是照明光路 (illumination)和探测光路(detection)。 照明光路用来产生光片状结构光,探测光路 用来收集荧光分子释放出的荧光信号,再通 过扫描,便可以实现对样品的三维扫描成像。 之后,根据观测样品尺寸、时间空间分辨率等要求的不同以及某些特殊需要,产生了不同的显微镜变种。以下是几个光片荧光显微镜的变种。

- RLSM (Reflected light sheet microscope)
- soSPIM (Single-objective selective plane illumination microscopy)
- APOM (axial plane optical microscopy)
- /IML-SPIM (individual molecule localization-selective plane illumination microscopy)
- $\pi SPIM$
- FCS (Fluorescence correlation spectroscopy)
- DSLM (digital scanned laser light sheet fluorescence microscopy)
- Bessle beam plane illumination microscope
- iSPIM (Inverted selective plane illumination)

1.Reflected Light Sheet Microscope (RLSM)

在普通的LSFM结构中,照明物镜与探测物镜相对于待测样品正交放置,这限制了高数值孔径物镜的使用。

RLSM通过用反射镜将从顶部入射的的光片 反射 , 使得两个物镜可以相向放置 , 从而 解决了上述问题。

样品处光束图

AFM Cantilever

1.Reflected Light Sheet Microscope (RLSM)

在普通的LSFM结构中,照明物镜与探测物镜相对于待测样品正交放置,这限制了高数值孔径物镜的使用。

RLSM通过用反射镜将从顶部入射的的光片 反射 , 使得两个物镜可以相向放置 , 从而 解决了上述问题。

样品处光束图

AFM Cantilever

1装置

- 模板: IX71, Olympus
- 光源: 405 nm, 50 mW, Electra-40, Laserglow; 488/514nm, 1000 mW, Innova300,
 Coherent; 560 nm, 1000 mW, VFL-P-1000-560, MPB communications
- ▶ 扩東: f = 40 mm, LJ1402L1-A and f = 400 mm, LJ1363L1-A, both Thorlabs
- ► 照明物镜: LUMPLFLN 40x Water, NA 0.8, Olympus
- ► 探测物镜: UPlanApo 100x 1.35 Oil or UPlanSApo 100x 1.4 Oil, both Olympus
- EMCCD: iXon+, DU-897E-CSO-BV, Andor
- ► 扫描: Nano-Bio3200, Mad City Labs

1软件控制

- ► LabView: 样品扫描
- MetaMorph Software: 控制显微镜,快门, EMCCD相机

光片特性

方法: 荧光珠 (fluorescent bead) 扫描

光片特性

结果图

采用RLSM HILO两种方法 对同一样本成像

RLSM的背景光大大减小

RLSM可以清晰地分辨出三 个荧光蛋白的存在

特点

- →以倒置型显微镜为模板
- ■可以使用标准的生物样本
- →扫描通过样本的移动完成 (压电陶瓷平台)

优势

■ 照明物镜与探测物镜均可以使用高数值孔径物镜

2. Single-objective selective-plane illumination microscopy (soSPIM)

装置图

装置图

装置

- 模板: Nikon Ti-E
- 光源: 405 nm(200 mW; Errol), 488 nm (200 mW; Coherent), 561 nm (200 mW; Coherent) and 635 nm (150 mW; Errol))
- 扩東: AC254-050-A, Thorlabs (focal length of 50 mm), and AC254-75-A, Thorlabs (focal length of 75 mm)
- ► 光片形成: a cylindrical lens (ACY254-150-A, Thorlabs; focal length of 150 mm)
- 照明物镜(探测物镜): CFI Plan Apochromat VC 60×/1.2- NA water-immersion objective or a CFI Plan Apochromat VC 100×/1.4-NA oil-immersion objective, Nikon. CFI Plan Fluor 10×/0.3-NA, CFI Plan Fluor 20×/0.5-NA or CFI Plan Fluor 40×/0.75-NA objective, Nikon
- EMCCD/cMOS: Evolve 512, Photometrics/ Neo 5.5, Andor (单细胞、高分辨率建议使用EMCCD)

软件控制

- ► LasershowDesigner (Pangolin Laser Systems): 控制扫描
- MetaMorph Software: 图像重建、实现3D扫描

光片特性

方法:

荧光溶液 (fluorescent solution) 扫描

光片特性

方法:

荧光溶液 (fluorescent solution) 扫描

切片能力

结合超分辨显微成像

从左侧起,第一幅第三幅图像为soSPIM采集所得图像,第二幅第四幅图像为soSPIM结合PALM超分辨显微技术所得图像

理论分辨率: 40nm

其他信息

下表给出了6种显微镜形成光片的厚度以及瑞利长度(保持一定厚度的光片长度),其中第一行e为光片束腰处的光片厚度

Method		IML-SPIM	Bessel-	iSPIM	RSLM	LSBM	Lattice
			Beam				light-sheet
Light-	e (µm)	1.8 to 4	0.5 to 1	1.2	1	1.8	1
sheet	ω (μm)	41.7 to	40	18.5	11	14	50
		206					

特点

- →以倒置型显微镜为模板
- ■可以使用标准的生物样本
- ► (optional)结合了超分辨显微技术(PALM, STORM, etc.)

优势

■ 照明物镜与探测物镜均可以使用高数值孔径物镜

不足

- →成像质量受反射镜表面粗糙度影响
- ▶反射镜制造过程复杂(如图)

3. Axial Plane Optical Microscopy (APOM)

装置图

装置图 仿真图

装置

- ► 光源: 532 nm laser
- ▶ 扩東: f=15 mm and f=200 mm
- 照明物镜 (探测物镜): Zeiss PlanApochromat 1003/NA 1.4 oil immersion objective lenses
- ► EMCCD: Luca R EMCCD, Andor

性能参数

APOM与普通的宽场显微镜的光片在束腰处的半高全宽 (FWHM) 与物镜的数值孔径的函数关系。

性能参数

a,b: lateral; c: axial

性能参数

b: lateral image by wide-field microscopy, c, d, e: axial plane image in b

其他信息

下表给出了6种显微镜形成光片的厚度以及瑞利长度(保持一定厚度的光片长度),其中第一行e为光片束腰处的光片厚度

Method		IML-SPIM	Bessel-	iSPIM	RSLM	LSBM	Lattice
			Beam				light-sheet
Light-	e (µm)	1.8 to 4	0.5 to 1	1.2	1	1.8	1
sheet	ω (μm)	41.7 to	40	18.5	11	14	50
		206					

特点

■可以直接得到轴向图像

优势

■ 照明物镜与探测物镜均可以使用高数值孔径物镜

不足

- →成像质量受反射镜表面粗糙度影响
- ▶反射镜制造过程复杂(如图)

4. Individual Molecule Localization-Selective Plane Illmination Microscope (IML-SPIM)

装置图

装置图

样品处光束图

AFM Cantilever

装置

- ► 模板: 普通SPIM
- ▶ 光源: Coherent Cube 405 nm−100 mW, Coherent Sapphire OPSL 488 nm, 200 mW, Coherent Sapphire OPSL 561 nm, 200 mW
- 扩東: Thorlabs AC254–030–A–ML, focal length f1 = 30 mm and Thorlabs AC254–060ML, f2 = 60 mm
- 光片形成: Thorlabs LJ1653L1−Af = 200 mm
- 照明物镜: Nikon Plan, 10×, NA 0.3
- ► 探测物镜: HCX APO L U-V-I 40×, NA 0.8 or CFI Plan 100× W, NA 1.1
- ► 探测光路: Thorlabs AC254200-A-ML
- **EMCCD:** Andor Ixon DU–897E–CS0BV
- 扫描: (移动样品) Physik Instrumente PI M-105.10 (x, y), Physik Instrumente PI M-110.1DG (z)

光片特性

因为结合了超分辨显微技术, 顾对于光片厚度没有很高的要求, 这里仅对光强度进行了分析。

证明了光片在整个视场中没有明显的衰减

信噪比提高

b: SPIM c: wide-field 488 nm (0.9 kW/cm2) and same exposure time (100ms)

结果图

a, c: 普通的SPIM显微镜,

b, d: 结合单分子定位技术之后,IML-SPIM是通过

分析10000帧图像后得出的 (33帧/秒)

比例尺: 1微米

实现了横向分辨率小于35nm, 轴向分辨率65nm-

结果图

IML-SPIM得到的3D重建图像,其中颜色代表深度, 比例尺: 1微米

特点

▶将SPIM技术与远场单分子定位技术相结合

5. πSPIM

装置图

Figure 1. π SPIM set-up. Schematic dual-color π SPIM set-up with an oblique light-sheet produced by off-center passage of the beam through the illumination lens (1.49 ApoTIRF 60×), and the detection lens (1.1 W, 25×) arranged orthogonally to the oblique light-sheet. (i) Close-up of the focal region showing the angular range of the complementing illumination and emission cones. (ii) Mid-plane cross-section of the glass-bottom dish used for sample mounting.

装置

- ► 光源: Mambo 594 nm 25 mW and MLD 488 nm 60 mW, both Cobolt
- ► combiner dichroic (LM01-503-25, Semrock),用来耦合激光
- → 扩東: AC254-075-A-ML f = 75 mm, Torlabs and MXA20696 f = 200 mm, Nikon)
- ► 光片形成: ACY254-150-A, f= 150 mm, Torlabs
- ➤ 照明物镜: ApoTIRF 60×1.49 NA, Nikon or PlanApo 100×1.27 NA
- ► 探测物镜: (water dipping) HCX APO L U-V-I 40 ×, NA 0.8 or CFI Plan 100 × W, NA 1.1, with correction ring for spherical aberration
- ► 探测光路: MXA20696, f= 200 mm, Nikon
- ► CMOS: GS3-U3-23S6M-C, Point Grey Research Inc
- ► 扫描: 样品架由沿x-y方向的两个微米平移台驱动 (Physik Instrumente PI M-105.10) (Physik Instrumente PI M-110.1DG) (Physik Instrumente PI M-116.DG)

性能参数

结果图

特点

→以倒置型显微镜为模板

其他信息

Mode	Objective(s)	NA	Resolution (FMWH)/nm		Anisotropy	Focal volume/fl
type			x,y (theory)	z (theory)	(theory)	(theory)
widefield	PlanApoW25×	1.1	274 (240)	785 (801)	0.35 (0.30)	0.072 (0.057)
πSPIΜ	PlanApoW25× & ApoTIRF60×	1.1/1.49*	284 (212)	339 (285)	0.84 (0.74)	0.057 (0.023)
widefield	PlanApoW60×	1.27	250 (203)	648 (510)	0.39 (0.40)	0.052 (0.027)

其他信息

	Resolution	Reference		
Technique	x, y	z		
4π microscopy	280	190	Bahlman et al. ²³	
LSM	435 ¹	482 ¹	Capoulade et al.11	
LSM (Bessel 2PE)	8 -3 .	490	Planchon et al.24	
Bessel plane SR-SIM	185/238	348	Gao et al.12	
Lattice light-sheet	230 ²	370 ²	Chen et al.13	
πSPIM	284	339	this work	
widefield 1.27 NA	250	648	this work	
widefield 1.49 NA (TIRF)	222	504	Theer et al. 14	

Table 2. Overview of previously published resolution performances. Abbreviations: LSM, light-sheet microscopy; 2PE, two-photon excitation; SIM, structured illumination microscopy; ¹calculated from given 1/e² radii; ²theoretical value.

6. SPIM combined with fluorescence correlation spectroscopy (FCS)

简单介绍

- FCS技术介绍: Fluorescence correlation spectroscopy (FCS) is an experimental technique using statistical analysis of the fluctuations of fluorescence in a system in order to decipher dynamic molecular events, such as diffusion or conformational fluctuations of biomolecules.
- ► FCS技术仅仅是出于特定目的的数字信号处理技术,在硬件光路部分和普通的SPIM基本一致。

装置图

光片位置图

装置

- ► 光源: 488 nm line of an argon laser (Innova Sabre, Coherent), power: 2w
- 扩東: ?
- ► 光片形成: a cylindrical lens (f = 75.6 mm, Thorlabs)
- ▶ 照明物镜 (探测物镜) : (water-dipped)Plan-Apochromat 40 × /0.8 NA, Leica
- **EMCCD/cMOS**: QuantEM:512SC, Photometrics
- 扫描: three-axis motorized stage (stepper motors: LN-Mini23 manipulator block XY and LN-Mini Z vario, Cell Biology Trading/Luigs & Neumann), 位移精度 50nm

软件控制

- ► LabView: 控制扫描
- Self-written C++: 存储图像

光片特性

测得的光片厚度: 700nm(误差10nm)

成像特性

方法:

通过对一个直径20nm的荧光珠进行成像

点扩散函数性质:

Lateral: 370nm(误差20nm)

Axial: 410nm(误差40nm)

7. Digital scanned laser light sheet fluorescence microscopy(DSLM)

扫描原理

DSLM的原理是使用一束快速摆动的激发光形成一个虚拟的"光片",通过恒定扫描速度的控制来实现均匀光片的产生。

f-theta透镜的作用是讲光束的倾斜摆动转化为 光束在垂直方向的位移,从而实现扫描。

示意图

- 1. 光源 laser light source
- 2. 声光可调谐滤波器 acousto-optical tunable filter
- 3. 扫描装置 (f-theta 透镜) the laser scanner
- 4. 照明光路 beam illumination arm
- 5. 样品温控装置 the temperaturecontrolled specimen chamber
- 6. 探测光路
- 7. 两个独立的相机

示意图

装置

- ▶ 光源: 多线氩氪激光器 Melles Griot, 35 LTL 835-230
- ATOF: AA Opto-Electronic, AA.AOTF.nC-400-650nm-PV-TN
- 扫描: 一个双轴高速扫描头 GSI Lumonics, VM500+, f-theta透镜: Sill Optics, S4LFT0061/065*
- 照明物镜: Carl Zeiss, Plan-Apochromat 5x/0.16
- ► 探测物镜: (多种选择) Carl Zeiss: Plan-Neofluar 2.5x/0.075, Fluar 5x/0.25, C-Apochromat 10x/0.45 W, PlanApochromat 20x/1.0 W or Plan-Apochromat 63x/1.0 W
- 镜头对焦: a piezo nanofocus (Physik Instrumente, P-725.CLQ)
- CCD: the pco.2000 CCD camera from PCO AG
- a specimen positioningsystem: three linear translation stages (Physik Instrumente, M-111K028) and one micro-rotation stage (Physik Instrumente, M-116.DG)

软件控制

- ►系统环境: .NET framework 3.0
- ► C#: 用户界面, 高级控制层
- ►C++: 低层硬件通信
- ► Matlab: 图像处理(分为图像分割、数据分析)

图像处理过程

结果图

DSLM优势

- 一光路得到简化
- ■照明效率高:由于无需光圈来对光束进行整形,照明效率可达95%,传统的SPIM平均只有3%
- 一成像速度比普通SPIM提高了至少了两倍
- ●装置紧凑:除去光源外,占地0.3平方米
- ▶对于扫描的控制更加灵活
- ●费用相对较低:除去电子系统(电脑)以及软件,共 耗费8万欧

9. Inverted selective plane illumination microscopy(iSPIM)

装置图

装置图

装置

- ► 模板: 普通SPIM
- ▶ 光源: Coherent Cube 405 nm−100 mW, Coherent Sapphire OPSL 488 nm, 200 mW, Coherent Sapphire OPSL 561 nm, 200 mW
- 扩東: Thorlabs AC254–030–A–ML, focal length f1 = 30 mm and Thorlabs AC254–060ML, f2 = 60 mm
- 光片形成: Thorlabs LJ1653L1−Af = 200 mm
- 照明物镜: Nikon Plan, 10×, NA 0.3
- ► 探测物镜: HCX APO L U-V-I 40×, NA 0.8 or CFI Plan 100× W, NA 1.1
- ► 探测光路: Thorlabs AC254200-A-ML
- **EMCCD:** Andor Ixon DU–897E–CS0BV
- 扫描: (移动样品) Physik Instrumente PI M-105.10 (x, y), Physik Instrumente PI M-110.1DG (z)

特点

▶将SPIM技术与远场单分子定位技术相结合

LSFM (SPIM) 的优势

- High sectioning capability
- High contrast
- Reduced photo bleaching and toxicity
- Imaging speed
- Prolonged duration

挑选LSFM时的关注点

- ➡示意图 (setup)
- →分辨率 (横向、纵向,极限200nm)
- ▶兼容性 (工作距等)
- ▶数据采集、图像处理方法(图像重建)

谢谢!