Partial Drawings of Complete Graphs

Marko Lalović Mentor: prof. dr. Gašper Fijavž

University of Ljubljana Faculty of Computer and Information Science Faculty of Mathematics and Physics

Nov 2014

Outline

Idea of Partial Drawings

2 Known Work

Our Contribution

Only Two Obstacles to Planarity

Drawing of a graph that contains subgraphs K_5 and $K_{3,3}$.

Kuratowski's theorem.

Idea of Partial Drawings

Partial drawing of a graph that contains subgraphs K_5 and $K_{3,3}$.

User study [M. Burch et. al., 2012].

Idea of Partial Drawings

Calls between locations after the earthquake on 17. October 1989.

[R. A. Becker et. al., 1995].

Idea of Partial Drawings

Calls between locations presented with partial edges.

[R. A. Becker et. al., 1995].

What is a Partial Drawing

Partial edge is a pair of quarter-lines called stubs and we treat them as closed sets.

In addition, we require that the drawing is without crossings of partial edges or stubs.

What is a Partial Drawing

Partial drawing depends only on the relative positions of points.

(a) Complete edges.

(b) Partial edges

(c) Partial drawing.

Various drawings of K_6 .

What is the Problem We Were Trying to Solve

Problem

For how big complete graph the partial drawing exists?

In other words

Let M denote the maximum number of points in a complete graph that we can draw as partial drawing. We want to estimate the upper bound of M:

Known Work

The formalization of the problem and estimate of the "lower bound" $M \ge 16$ [T. Bruckdorfer, M. Kaufmann, 2012].

Partial drawing of K_{16}

Known Work

It is not possible to draw a partial drawing of the complete graph on seventeen points which lie in one-sided convex position [T. Bruckdorfer et. al., 2013]. According to the result of Erdős and Szekeres we obtain $M < \binom{30}{15} = 155$ 117 520.

Known Work

[Bruckdorfer et. al., 2013]: M < 241.

Our Contribution

[Bruckdorfer et. al., 2013]: M < 241.

Our result: M < 102.

First Tool

If the region is small enough, it doesn't contain two points of the partial edge drawing.

Second Tool

If a corner region is small enough, it doesn't contain many points of the partial drawing.

X

•

y •

Frame of the Drawing

Frame F

Tessellation of the Frame

[Bruckdorfer et. al., 2013]:

Tessellation of the Frame

Our tessellation:

The Tessellation Dependents on the Positions of Points

(b) $t = \frac{1}{2}, M < 99$.

(c) $t = \frac{10}{11}, M < 102.$

Transformation of the Drawing

The Tessellation Dependents on the Positions of Points

(b) $t = \frac{1}{2}, M < 99$.

Treatment of Regions

The corner regions.

Treatment of Regions

Maximal cell C in layer L.

First layer for t = 0.24.

Plot of the function $k_{L_2}(t)$ in blue and plot of the function $j_{L_2}(t)$ in red as functions of t.

The estimate for the number of points in the left and right triangle as a function of t.

Illustration for very small values of the parameter t.

Illustration for $t = \frac{3}{8}$.

Calculations

Example

$$\begin{split} \frac{|pc|}{\left| \text{proj}_{s} \left(\overline{p'c} \right) \right|} &\leq \frac{\max \left\{ |ec| \, , |fc| \right\}}{\min \left\{ \left| \text{proj}_{\overline{gc}} \left(\overline{hc} \right) \right| \, , \left| \text{proj}_{\overline{hc}} \left(\overline{gc} \right) \right| \right\}} = q_{c}(t) = \\ &= \begin{cases} \frac{\max \left\{ \sqrt{\frac{25}{9} + \frac{49}{576} (1 - 4t)^{2}}, \sqrt{\frac{25}{9} + t^{2}} \right\}}{\min \left\{ \frac{128 + 15t(4t - 1)}{24\sqrt{16 + 9t^{2}}}, \frac{128 + 15t(4t - 1)}{3\sqrt{1049 + 200t(2t - 1)}} \right\}}, & \text{if } t \leq \frac{1}{4}, \\ \frac{\max \left\{ \frac{5}{3} \sqrt{1 + \left(t - \frac{1}{4}\right)^{2}}, \sqrt{\frac{25}{9} + t^{2}} \right\}}{\min \left\{ \frac{16 + 3t(4t - 1)}{3\sqrt{16 + 9t^{2}}}, \frac{16 + 3t(4t - 1)}{3\sqrt{17 + 8t(2t - 1)}} \right\}}, & \text{if } t \geq \frac{1}{4}. \end{cases} \end{split}$$

The bottom layers for t = 0.4.

Plot of the function $k_{B_3}(t)$ in blue and plot of $j_{B_3}(t)$ in red as functions of t.

How to find critical values of t

$$\beta_{i} = \frac{3\delta}{1+6\delta},$$

$$\left(\frac{1+3\delta}{3\delta}\right)^{i} \beta_{0} = \frac{3\delta}{1+6\delta},$$

$$\alpha(t) = \frac{3\delta}{1+6\delta} \left(\frac{3\delta}{1+3\delta}\right)^{i},$$

$$t = \frac{-1}{\alpha} \left(\frac{(3\delta)^{i+1}}{(1+6\delta)(1+3\delta)^{i}}\right).$$

Evaluation of the Result

Plot of the estimate M.

Evaluation of the Result

Estimate M < 102 at $t = \frac{1}{11}$.

The Result

We improved the upper bound by more than twice. We have shown that it is not possible to draw a partial drawing of the complete graph on 102 or more points:

$$M < 102$$
.

We believe that the right estimate is much closer to 16 than to 102.