1 Limiti per funzioni

1.1 Definizioni

Definizione 1 (Intorno di $\pm \infty$):

L'intorno $di + \infty$ è l'insieme:

$$[k, +\infty[, k \in \mathbb{R}]$$
 (1)

L'intorno $di - \infty$ è l'insieme:

$$]-\infty, k[, \ k \in \mathbb{R}$$
 (2)

Intendiamo che se $A \subseteq \mathbb{R}$ come i seguenti

$$sup A = +\infty \iff +\infty \in D(A)$$

$$in f A = -\infty \iff -\infty \in D(A)$$
(3)

Un limite λ può essere:

$$\lambda \in \overline{R} \iff \begin{cases} \lambda \in R \\ \lambda = +\infty \\ \lambda = -\infty \end{cases} \tag{4}$$

Definizione 2:

Siano $A \subseteq \mathbb{R}, x_0 \in D(A), \lambda \in \overline{R}. f : A \to \mathbb{R}.$

A un insieme contenuto fra i numeri reali, x_0 si trovi in un punto di accumulazione di A, λ contenuto nella retta reale estesa e f una funzione che ad ogni elemento di A corrisponde un elemento di R.

Diremo che f(x) tende a λ per x che tende a x_0 .

$$\forall V \in \mathcal{U}_{\lambda} \ \exists W \in \mathcal{U}_{x_0} : \ f(x) \in V \ \forall x \in A \setminus \{x_0\} \cap W \tag{5}$$

Qualunque intorno V all'interno della famiglia degli intorni \mathcal{U}_{λ} di λ (ricordando che $\lambda \in \overline{R}$ quindi può assumere o un valore reale o è uguale $a \pm \infty$), esiste un intorno W all'interno della famiglia degli insiemi di \mathcal{U}_{x_0} di x_0 (un punto di accumulazione)

$$x_0 \in \mathbb{R} \qquad]x_0 - \delta, x_0 + \delta[\tag{6}$$

tale che l'immagine x sia in V tutte le volte che x in $A \setminus x_0$ intersecato con l'intorno W, W_{x_0} è per definzione un punto di accumulazione quindi l'interesezione è non vuota

La scrittura semplificata:

$$\lim_{x \to x_0} f(x) = \lambda \tag{7}$$

se **per ogni** $\epsilon > 0$ esiste un numero $\delta > 0$ tale che per ogni $x \in A, 0 < |x - x_0| < \delta$.

$$|f(x) - \lambda| < \epsilon \tag{8}$$

Esempio 1.

Abbiamo $x_0 \in \mathbb{R}$ e $\lambda = -\infty$ avremo che:

$$\mathcal{U}_{x_0} = \{]x_0 - \delta, x_0 + \delta[: \delta > 0 \}$$

$$\mathcal{U}_{\lambda} = \mathcal{U}_{-\infty} = \{] - \infty, k[: k \in \mathbb{R} \}$$
(9)

Quindi avremo che:

$$\lim_{x \to x_0} f(x) = -\infty \tag{10}$$

se e solo se:

$$\forall k \in \mathbb{R} \ \exists \delta > 0: \ \forall x \in A \setminus \{x_0\} \ \{|x - x_0| < \delta \implies f(x) < k\} \tag{11}$$

Vale a dire che: qualunque valore noi diamo a k che è un numero appartenente ai numeri reali (quindi ha un valore finito), esiste un numero δ maggiore di 0 tale che, quale che sia x contenuta in A meno x_0 , il **modulo** della differenza di x e x_0 ($|x-x_0|$) è **minore** di δ , questo vuol dire che l'immagine di f(x) è sempre **strettamente minore** di k.

Ovvero f(x) avrà sempre un valore piccolissimo inferiore a qualsiasi numero reale

Anche se f(x) è definita nel punto x_0 non è necessario che soddisfare $\lim_{x\to x_0} f(x) = \lambda$, quindi nel punto in cui $x=x_0$. Affermiamo che il valore del limite λ è indipendente dal valore della funzione nel punto x_0 .

Definizione 3 (Unicità del limite):

Sia $A \subseteq \mathbb{R}$ e siano $x_0 \in D(A), x_0 \in \overline{R}, f : A \to \mathbb{R}$. Se esistono $\lambda, \mu \in \overline{\mathbb{R}}$ t.c.:

$$\lim_{x \to x_0} f(x) = \lambda \quad \wedge \quad \lim_{x \to x_0} f(x) = \mu \quad \iff \quad \lambda = \mu$$
 (12)

DIMOSTRAZIONE 1.