

Objetivos de aprendizaje

- Utilizar conceptos básicos de estadística inferencial.
- Explicar los principios básicos de la prueba de hipótesis.
- Realiza una prueba de hipótesis para probar la validez de una aseveración acerca de un parámetro de la población.

Contenido

- 1. Significancia estadística
- 2. Prueba de hipótesis
- 3. Pasos prueba de hipótesis

Prueba de Hipótesis

¿Qué es una Hipótesis?

Una hipótesis estadística es una asunción relativa a una o varias poblaciones, respecto a una característica, que puede ser cierta o no. Nótese que una hipótesis no siempre es correcta, es una conjetura que debe ser comprobada mediante pruebas.

Tipos de Hipótesis

Bajo el dominio de las ciencias sociales, la Hipótesis se caracteriza en dos formas. Cuando no existe ningún factor que pueda establecer una relación entre dos variables, se dice que es una hipótesis nula. Si un factor predice la relación existente entre las variables, se denominará hipótesis alternativa.

No existe ningún factor que pueda establecer una relación entre dos variables

Existe un factor que predice la relación existente entre las variables

Hipótesis Nula

Una **hipótesis nula** es una declaración general derivada de la evidencia científica cuando un investigador cree que **no existe una relación existente entre dos variables** (Crossman A, 2019). Se denota por H_0 . La hipótesis nula representa el status quo, por lo tanto, si no se puede aceptar lo nulo, se requiere alguna acción.

Hipótesis Nula

Para escribir una hipótesis nula, primero hay que partir haciéndose una pregunta. Redactándolo de forma que se asuma que no hay relación entre las variables.

Pregunta	Hipótesis Nula
¿Son los jóvenes mejores en matemática que los adultos?	La edad no tiene efecto en la habilidad matemática
¿Reduce el consumo diario de aspirina el riesgo de tener un ataque al corazón?	El consumo diario de aspirina no afecta el riesgo de ataque al corazón
¿Usan los adolescentes los teléfonos móviles para acceder a internet más que los adultos?	La edad no tiene efecto en cómo el teléfono móvil es usado para acceder a internet
¿Les importa a los gatos el color de su comida?	Los gatos no expresan preferencia de comida basado en su color
¿Alivia el dolor marcar corteza de sauce?	No hay diferencia en el alivio del dolor después de masticar corteza de sauce versus tomar un placebo

Helmenstine, Anne Marie, Ph.D. "Null Hypothesis Examples." ThoughtCo, Apr. 5, 2023, thoughtco.com/null-hypothesis-examples-609097.

¿Qué es una Hipótesis?

PROBLEMA

¿Cuáles son los beneficios para la salud de comer una manzana al día?

HIPÓTESIS

El aumento del consumo de manzana en los mayores de 60 años dará como resultado una disminución de la frecuencia de las visitas al médico.

HIPÓTESIS NULA

El aumento del consumo de manzana en mayores de 60 años no tendrá ningún efecto en la frecuencia de las visitas al médico.

Ejemplo de Hipótesis Nulas

PROBLEMA

¿Qué aerolíneas tienen más demoras?

HIPÓTESIS

Las aerolíneas de bajo costo tienen más probabilidades de tener retrasos que las aerolíneas premium.

HIPÓTESIS NULA

Las aerolíneas de bajo costo y premium tienen la misma probabilidad de tener retrasos.

Hipótesis Alternativa

Estadísticamente, es fácil mostrar que no hay relación entre dos variables. En contraste, la **hipótesis alternativa** sugiere que un **cambio en la variable independiente tendrá un efecto en la variable dependiente**. Ésta se denota por H_a o por H_0 . La hipótesis alternativa es lo que estamos tratando de demostrar, de una forma indirecta, por cómo formulamos el test.

Pregunta	Hipótesis Alternativa
¿Son los jóvenes mejores en matemática que los adultos?	La edad tiene efecto en la habilidad matemática.
¿Reduce el consumo diario de aspirina el riesgo de tener un ataque al corazón?	El consumo diario de aspirina afecta el riesgo de ataque al corazón.
¿Usan los adolescentes los teléfonos móviles para acceder a internet más que los adultos?	La edad tiene efecto en cómo el teléfono móvil es usado para acceder a internet.
¿Les importa a los gatos el color de su comida?	Los gatos expresan preferencia de comida basado en su color.
¿Alivia el dolor marcar corteza de sauce?	Hay diferencia en el alivio del dolor después de masticar corteza de sauce versus tomar un placebo.

Hipótesis Nula v/s Alternativa

Hipótesis Nula

 $H_{\mathbf{0}}$

Proposición acerca de un parámetro de la población.

Testeamos la probabilidad que esta proposición sea verdadera para así decidir si aceptar o rechazar la hipótesis alternativa.

Puede incluir =, \leq , $\delta \geq$

Hipótesis Alternativa

 H_1

Proposición que contradice directamente la hipótesis nula.

Determinamos no aceptar o rechazar esta proposición en base a la probabilidad de la hipótesis nula (opuesta) de ser verdadera.

Puede incluir ≠, >, ó <

Queremos comprobar si los estudiantes de institutos universitarios tardan menos de cinco años en graduarse, en promedio. Las hipótesis nula y alternativa son:

 H_1 :

Se realiza un ensayo médico para comprobar si un nuevo medicamento reduce el colesterol en un 25 %. Indique las hipótesis nula y alternativa.

 H_1 :

En el examen estatal de conducir, alrededor del 40 % aprueba el examen en el primer intento. Queremos comprobar si más del 40 % aprueba en el primer intento. H_0 :

 H_1 :

Test de Hipótesis

Test de hipótesis es un método que nos ayuda a tomar decisiones y conclusiones acerca de toda la población a partir de una muestra de datos. A menudo nos referimos que el resultado de una prueba de hipótesis debe ser estadísticamente significativa, lo que quiere decir que es poco probable que el resultado lo hayamos obtenido por suerte.

Pasos del Test de Hipótesis

Los pasos para realizar un test de hipótesis son los siguientes:

Un estadístico de prueba es una medida estadística que se utiliza para determinar si se debe rechazar o no una hipótesis nula en un contraste de hipótesis. Es un valor calculado a partir de los datos de la muestra que se compara con un valor crítico o un intervalo de valores para tomar una decisión acerca de la hipótesis nula.

Para medias

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Para proporciones

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

Variable aleatoria normal, con σ conocido, o bien con n > 30

Variable aleatoria normal, con σ desconocido, con n < 30

Variable aleatoria normal o binominal, con n > 30

Población	Tamaño de Muestra	σ conocida	σ desconocida
Con Distribución Normal	Grande (n≥30)	$z = \frac{x - \mu_0}{\sigma / \sqrt{n}}$	$t = \frac{x - \mu_0}{S / \sqrt{n}} \text{o bien} z = \frac{x - \mu_0}{\sigma / \sqrt{n}} *$
	Pequeña (n<30)	$z = \frac{x - \mu_0}{\sigma / \sqrt{n}}$	$t = \frac{x - \mu_0}{S / \sqrt{n}}$
Sin Distribución Normal	Grande (n≥30)	$z = \frac{x - \mu_0}{\sigma / \sqrt{n}} *$	$t = \frac{x - \mu_0}{S / \sqrt{n}} * \text{ o bien } z = \frac{x - \mu_0}{\sigma / \sqrt{n}} *$
	Pequeña (n<30)	Se usaría pruebas no paramétricas	

Fuente: Kazmier (1996)

Supongamos que se quiere determinar si la media de una población de tiempo de respuesta de un sistema informático es igual a 5 segundos. Se toma una muestra aleatoria de 50 tiempos de respuesta, obteniendo una media muestral de 5.12 segundos y una desviación estándar muestral de 0.2 segundos.

Entonces, formulamos las hipótesis:

$$H_0$$
: $\mu = 5$

$$H_1: \mu \neq 5$$

Calculamos el estadístico de prueba Z, con la siguiente fórmula:

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{5.12 - 5}{\frac{0.2}{\sqrt{50}}} = 3.06$$

Veamos dónde se sitúa el valor Z=3.06 en la distribución normal estándar. Entonces, podemos concluir que el valor probabilístico de asumir la hipótesis nula, dada la muestra de datos analizada, es bajísima. Por lo tanto, se puede decir que la probabilidad que la media de los tiempos de respuesta del sistema informático es bajísima, de un 0.11%

Reglas de Decisión

Una de las cosas más importante que debemos definir en nuestro plan de análisis es establecer las reglas de decisión para rechazar la hipótesis nula o no-rechazarla, para ser utilizado en nuestra evaluación de los resultados. En la práctica esto puede ser especificado de dos formas:

Método del valor crítico: es un conjunto de valores para el estadístico de prueba. Si cae dentro de esos valores, no podemos rechazar la hipótesis nula. Y los valores fuera de la región de aceptación caen dentro de la región de rechazo. Si nuestra estadística de prueba termina aquí, rechazamos el valor nulo. Entonces podemos decir que rechazamos la hipótesis nula en el nivel de significancia α.

Valor-P: mide la importancia de la evidencia en apoyo de la hipótesis nula. Es la probabilidad de observar el estadístico de prueba con la suposición de que el valor nulo es verdadero. Si el valor p es menor que el nivel de significación (nuestro umbral), rechazamos la hipótesis nula.

Método del Valor Crítico

El **método del valor crítico** compara el valor del estadístico de prueba Z para los valores críticos que dividen la distribución normal en regiones de rechazo y no rechazo.

Los valores críticos se expresan como valores Z estandarizados que están determinados por el nivel de significancia. Los valores críticos son determinados por el investigador en la planeación del análisis.

Valor-p

El uso del valor p para determinar el rechazo o el no rechazo es otro método de la prueba de hipótesis. El valor p es la **probabilidad de obtener un estadístico de prueba igual o más extremo que el resultado muestral**, dado que la hipótesis nula H_0 es verdadera. Al valor p también se le conoce como el nivel de significancia observado.

Valor-p

Las reglas de decisión para rechazar H_0 con el método del valor p son:

- Si $valor p \ge \alpha$, no se rechaza la hipótesis nula.
- Si $valor p < \alpha$, se rechaza la hipótesis nula.

Si el valor p es bajo (pequeño), entonces H_0 se rechaza, ya que los datos son estadísticamente significativamente diferentes de lo que se observaría bajo la hipótesis nula.

Decisión de Aceptación o No Rechazo

La prueba tiene uno de dos resultados: aceptamos la hipótesis nula o la rechazamos. Sin embargo, la mayoría de los estadísticos prefieren decir que **rechazan el valor nulo**, o **no-lo-rechazan**, en lugar de aceptarlo.

La idea detrás es que decir que aceptamos la hipótesis nula significa que la consideramos verdadera, mientras que decir que no la rechazamos significa que no encontramos que los datos fueran lo suficientemente persuasivos para seleccionar la alternativa sobre la nula. Debido a que estamos realizando una prueba probabilística, siempre hay una pequeña posibilidad de equivocarse, y esta redacción diferente cubre eso.

Errores

Cuando realizamos una prueba de hipótesis, hay un par de cosas que podrían salir mal. Hay dos tipos de errores, que por diseño no se pueden evitar, y debemos ser conscientes de que estos errores existen. Estos son los errores **tipo I** y **tipo II**.

En un mundo ideal, deberíamos siempre rechazar la hipótesis nula cuando es falsa, y no deberíamos rechazarla cuando en verdad es verdadera. Pero hay dos escenarios que pueden ocurrir, cada uno de ellos resultará en un error. Brevemente,

- Error Tipo I ocurre cuando rechazamos una hipótesis nula que era verdadera
- Error Tipo II ocurre cuando fallamos en rechazar una hipótesis nula que era falsa

Errores

- Desde una perspectiva estadística, la **probabilidad de rechazar una hipótesis nula que es verdadera se denota como \alpha**. La probabilidad de cometer un error de Tipo II se denota como β .
- El valor α , también conocido como el **nivel de significancia**, lo establecemos nosotros.
- El complemento de la probabilidad de un error tipo II se conoce como **potencia de una prueba estadística**. Es la probabilidad de rechazar la hipótesis nula cuando es falsa.
- El valor α más común es 0.05, lo que significa que estamos dispuestos a aceptar una probabilidad del 5 % de que podamos rechazar incorrectamente la hipótesis nula. Por supuesto, si estamos lidiando con procesos extremadamente críticos, puede decidir reducir α a algo así como 0.01, lo que significaría que solo está dispuesto a aceptar un 1% de probabilidad de rechazar incorrectamente la hipótesis nula.

Errores

```
\alpha = P(Rechazar H_0 | H_0 cierta)

\beta = P(Aceptar H_0 | H_0 falsa)

Potencia = (1 - \beta) = P(Rechazar H_0 | H_0 falsa)
```

Algunos detalles a tener en cuenta:

- α y β están inversamente relacionadas.
- Sólo pueden disminuirse las dos, aumentando *n*.

Supongamos la siguiente hipótesis nula:

- H_0 : El equipo de escalada de Luis es seguro.
- Error tipo I: Luis piensa que su equipo de escalada puede no ser seguro cuando, en realidad, sí lo es.
- Error tipo II: Luis cree que su equipo de escalada puede ser seguro cuando, en realidad, no lo es.
- α = probabilidad de que Luis piense que su equipo de escalada puede no ser seguro cuando, en realidad, sí lo es.
- β = probabilidad de que Luis piense que su equipo de escalada puede ser seguro cuando, en realidad, no lo es.

Observe que, en este caso, el error con mayores consecuencias es el tipo II (si Frank cree que su equipo de escalada es seguro, lo utilizará).

Supongamos la siguiente hipótesis nula:

- H_0 : La víctima de un accidente de tráfico está viva cuando llega a la sala de urgencias de un hospital.
- Error tipo I: El equipo de emergencia cree que la víctima está muerta cuando, en realidad, está viva.
- Error tipo II: El equipo de emergencia no sabe si la víctima está viva cuando, en realidad, está muerta...
- α = probabilidad de que el equipo de emergencias piense que la víctima está muerta cuando, en realidad, está viva.
- β = probabilidad de que el equipo de emergencias no sepa si la víctima está viva cuando, en realidad, está muerta.

El error con mayores consecuencias es el error tipo I (si el equipo de emergencia cree que la víctima está muerta, no la atenderán).

Un determinado fármaco experimental afirma tener una tasa de curación de, al menos, el 75 % para los hombres con cáncer de próstata. Describa los errores tipo I y tipo II en su contexto. ¿Cuál error es más grave?

- **Error tipo I**: Un paciente con cáncer cree que la tasa de curación del fármaco es inferior al 75 %, cuando en realidad es de, al menos, el 75 %.
- Error tipo II: Un paciente con cáncer cree que el fármaco experimental tiene un índice de curación de, al menos, el 75 % cuando su índice de curación es inferior al 75 %.

En este escenario, el error tipo II contiene la consecuencia más grave. Si un paciente cree que el fármaco funciona, al menos, el 75 % de las veces, lo más probable es que esto influya en la elección del paciente (y del médico) sobre la conveniencia de utilizar el fármaco como opción de tratamiento.

Nunca Aceptar una Hipótesis

Uno de los errores más comunes que cometen las personas cuando trabajan con pruebas de hipótesis ocurre cuando hablan de "aceptar" la hipótesis nula. Y la razón por la que esto es un error es que nunca aceptamos una hipótesis cuando trabajamos con estadísticas de muestra, ya que siempre existe la posibilidad de que se demuestre que estamos equivocados una vez que se recopilan más datos.

Esto es similar al sistema de justicia de los EE. UU. ya que nunca se prueba la inocencia de un acusado. En cambio, se prueba que un acusado es culpable, más allá de una duda razonable. En lugar de aceptar la hipótesis nula, la rechazamos o no-la-rechazamos.

Incrementando Poder Estadístico del Test

- Obviamente, nuestro objetivo cuando trabajamos con pruebas de hipótesis es rechazar correctamente, o no rechazar, la hipótesis nula. La forma en que mejoramos nuestras posibilidades de éxito es aumentando el poder de la prueba. Definido, **el poder es la probabilidad de que identifiquemos un efecto significativo cuando realmente existe**.
- Hay varios factores que influyen en el poder de una prueba. El primer factor, y sobre el que tenemos más control, es el tamaño de la muestra. A medida que aumenta el tamaño de nuestra muestra, también lo hace el poder de la prueba. Esto significa que nuestra probabilidad de rechazar correctamente la hipótesis nula también aumenta.

Incrementando Poder Estadístico del Test

- Con pruebas de hipótesis, a menudo intentamos determinar si existen diferencias entre dos poblaciones. Por ejemplo, podemos querer comparar cómo la velocidad de corte afecta el diámetro de un agujero perforado. Si la diferencia entre los diámetros reales es grande, la potencia de nuestra prueba aumenta. Pero, si las diferencias entre los diámetros reales son pequeñas, nuestra potencia disminuye.
- Finalmente, la variabilidad en la población general también afecta el poder de nuestra prueba de hipótesis. Específicamente, a medida que aumenta la variabilidad en nuestro proceso, la potencia disminuye, pero a medida que disminuye la variabilidad en nuestro proceso, nuestra potencia aumenta.

Usted es el gerente de un restaurante de comida rápida. El problema de negocios consiste en determinar si el tiempo medio poblacional de espera para realizar un pedido ha cambiado en el último mes a partir de su valor medio poblacional anterior de 4.5 minutos. Por experiencia, usted supone que la población se distribuye de manera normal con una desviación estándar poblacional de 1.2 minutos. Usted seleccionó una muestra de 25 pedidos durante un lapso de una hora. La media muestral es de 5.1 minutos. Utilice el método de los seis pasos descrito en la presentación 9.1, de la página 302, para determinar si, con un nivel de significancia de 0.05, existe evidencia de que el tiempo medio poblacional de espera para realizar un pedido ha cambiado en el último mes a partir de su valor medio poblacional anterior de 4.5 minutos.

SOLUCIÓN

Paso 1. La hipótesis nula establece que la media poblacional no ha cambiado de su valor previo de 4.5 minutos:

$$H_0: \mu = 4.5$$

La hipótesis alternativa es lo opuesto a la hipótesis nula. Puesto que la hipótesis nula plantea que la media poblacional es de 4.5 minutos, la hipótesis alternativa plantea que la media poblacional no es de 4.5 minutos:

$$H_1: \mu \neq 4.5$$

Paso 2. Usted seleccionó una muestra de n = 25. El nivel de significancia es de 0.05, es decir, $\alpha = 0.05$.

Paso 3. Como se supone que se conoce σ , usted utiliza la distribución normal y el estadístico de prueba Z_{ESTAD} .

Paso 4. Puesto que $\alpha = 0.05$, los valores críticos del estadístico de prueba Z_{ESTAD} son -1.96 y + 1.96. La región de rechazo es $Z_{ESTAD} < -1.96$ o $Z_{ESTAD} > +1.96$. La región de no rechazo es $-1.96 \le Z_{ESTAD} \le +1.96$.

Paso 5. Usted reûne los datos muestrales y calcula $\overline{X} = 5.1$. Utilice la ecuación (9.1) de la página 300 para calcular el estadístico de prueba:

$$Z_{ESTAD} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{5.1 - 4.5}{\frac{1.2}{\sqrt{25}}} = +2.50$$

Paso 6. Puesto que Z_{ESTAD} = +2.50 > +1.96, rechaza la hipótesis nula y concluye que existe evidencia de que el tiempo medio poblacional de espera para realizar un pedido ha cambiado de su valor previo de 4.5 minutos. El tiempo medio de espera de los clientes ahora es mayor que el mes pasado. Como gerente, le gustaría determinar la manera de reducir el tiempo de espera para mejorar el servicio.

Usted es el gerente de un restaurante de comida rápida. El problema de negocios consiste en determinar si el tiempo medio poblacional de espera para realizar un pedido ha cambiado en el último mes a partir de su valor medio poblacional previo de 4.5 minutos. Por experiencia, usted supone que la población se distribuye de manera normal, con una desviación estándar poblacional de 1.2 minutos. Usted seleccionó una muestra de 25 pedidos durante un lapso de una hora. La media muestral es de 5.1 minutos. Utilice el método del valor p de cinco pasos descrito en la presentación 9.2, para determinar si existe evidencia de que el tiempo medio poblacional de espera para realizar un pedido ha cambiado en el último mes a partir de su valor medio poblacional previo de 4.5 minutos.

SOLUCIÓN

Paso 1. La hipótesis nula plantea que la media poblacional no ha cambiado de su valor previo de 4.5 minutos:

$$H_0: \mu = 4.5$$

La hipótesis alternativa es lo opuesto a la hipótesis nula. Puesto que la hipótesis nula plantea que la media poblacional es de 4.5 minutos, la hipótesis alternativa propone que la media poblacional no es de 4.5 minutos:

$$H_1: \mu \neq 4.5$$

Paso 2. Usted seleccionó una muestra de n = 25 y eligió un nivel de significancia de 0.05, es decir, $\alpha = 0.05$.

Paso 3. Seleccione el estadístico de prueba adecuado. Como se supone que se conoce σ , usted utiliza la distribución normal y el estadístico de prueba Z_{ESTAD} .

Paso 4. Usted reúne los datos muestrales y calcula X = 5.1. Utilice la ecuación (9.1) de la página 300 para calcular el estadístico de prueba como sigue:

$$Z_{ESTAD} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{5.1 - 4.5}{\frac{1.2}{\sqrt{25}}} = +2.50$$

Para calcular la probabilidad de obtener un estadístico de prueba Z_{ESTAD} que sea igual o más extremo que 2.50 unidades de error estándar, a partir del centro de una distribución normal estándar, usted obtiene la probabilidad de un valor de Z_{ESTAD} mayor que + 2.50, junto con la probabilidad de un valor de Z_{ESTAD} menor que -2.50. En la tabla E.2 se observa que la probabilidad de un valor de Z_{ESTAD} por debajo de -2.50 es 0.0062. La probabilidad de un valor por debajo de +2.50 es 0.9938. Por lo tanto, la probabilidad de un valor por arriba de +2.50 es 1-0.9938=0.0062. Así, el valor p para esta prueba de dos colas es 0.0062+0.0062=0.0124.

Paso 5. Dado que el valor $p = 0.0124 < \alpha = 0.05$, usted rechaza la hipótesis nula y concluye que existe evidencia de que el tiempo medio de espera poblacional para hacer un pedido ha cambiado de su valor medio poblacional previo de 4.5 minutos. En la actualidad, el tiempo medio de espera para los clientes es mayor que durante el mes pasado.

Dudas y consultas ¡Gracias!