from google.colab import drive
drive.mount('/content/drive')

Ery Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Import Dependencies -To see the graphs in the notebook.
%matplotlib inline

Python Imports

import math,time,random,datetime

Data Manipulation import numpy as np import pandas as pd

Visualization -This is where the graphs come in.

import matplotlib.pyplot as plt

import seaborn as sns

import missingno

plt.style.use('ggplot')

Statistical Analysis

from scipy import stats

from scipy.stats import norm, skew

Display all Columns

pd.set_option('display.max_columns', None)

Ignore Warnings

import warnings

warnings.filterwarnings('ignore')

Import the train and test data.

train = pd.read_csv('/content/drive/MyDrive/genesight data/Genetic-Disorder-Prediction-main/Genetic-Disorder-Prediction-main/dataset/train.csv
test = pd.read_csv('/content/drive/MyDrive/genesight data/Genetic-Disorder-Prediction-main/Genetic-Disorder-Prediction-main/dataset/test.csv'

Viewing the train dataset
train.head(3)

_		Patient Id	Patient Age	Genes in mother's side	Inherited from father	Maternal gene	Paternal gene	Blood cell count (mcL)	Patient First Name	Family Name	Father's name	Mother's age	Father's age	Institute Name	Lo
	0	PID0x6418	2.0	Yes	No	Yes	No	4.760603	Richard	NaN	Larre	NaN	NaN	Boston Specialty & Rehabilitation Hospital	55 02
	1	PID0x25d5	4.0	Yes	Yes	No	No	4.910669	Mike	NaN	Brycen	NaN	23.0	St. Margaret's Hospital For Women	1! AV\r
	2	PID0x4a82	6.0	Yes	No	No	No	4.893297	Kimberly	NaN	Nashon	41.0	22.0	NaN	
	4														•

print("Dimensionality of the train dataset: ", train.shape)

→ Dimensionality of the train dataset: (22083, 45)

train.describe()

	Patient Age	Blood cell count (mcL)	Mother's age	Father's age	Test 1	Test 2	Test 3	Test 4	Test 5	No. of previous abortion	White Blood cell count (thousand per microliter)	Syn
count	20656.000000	22083.000000	16047.000000	16097.000000	19956.0	19931.0	19936.0	19943.0	19913.0	19921.000000	19935.000000	19928
mean	6.974148	4.898871	34.526454	41.972852	0.0	0.0	0.0	1.0	0.0	2.003062	7.486224	0
std	4.319475	0.199663	9.852598	13.035501	0.0	0.0	0.0	0.0	0.0	1.411919	2.653393	0
min	0.000000	4.092727	18.000000	20.000000	0.0	0.0	0.0	1.0	0.0	0.000000	3.000000	0
25%	3.000000	4.763109	26.000000	31.000000	0.0	0.0	0.0	1.0	0.0	1.000000	5.424703	0
4												•

Information of the train Dataset.
train.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 22083 entries, 0 to 22082
 Data columns (total 45 columns):
 # Column

Data	columns (total 45 columns):		
#	Column	Non-Null Count	Dtype
0	Patient Id	22083 non-null	object
1	Patient Age	20656 non-null	float64
2	Genes in mother's side	22083 non-null	object
3	Inherited from father	21777 non-null	object
4	Maternal gene	19273 non-null	object
5	-		object
	Paternal gene	22083 non-null	
6	Blood cell count (mcL)	22083 non-null	float64
7	Patient First Name	22083 non-null	object
8	Family Name	12392 non-null	,
9	Father's name	22083 non-null	object
10	Mother's age	16047 non-null	float64
11	Father's age	16097 non-null	float64
12	Institute Name	16977 non-null	object
13	Location of Institute	22083 non-null	object
14	Status	22083 non-null	object
15	Respiratory Rate (breaths/min)	19934 non-null	object
16	Heart Rate (rates/min	19970 non-null	-
17	Test 1	19956 non-null	float64
18	Test 2	19931 non-null	float64
19	Test 3	19936 non-null	float64
20	Test 4	19943 non-null	float64
21	Test 5	19943 non-null	float64
22	Parental consent	19958 non-null	5
23	Follow-up	19917 non-null	object
24	Gender	19910 non-null	object
25	Birth asphyxia	19944 non-null	object
26	Autopsy shows birth defect (if applicable)	17691 non-null	object
27	Place of birth	19959 non-null	object
28	Folic acid details (peri-conceptional)	19966 non-null	object
29	H/O serious maternal illness	19931 non-null	object
30	H/O radiation exposure (x-ray)	19930 non-null	object
31	H/O substance abuse	19888 non-null	object
32	Assisted conception IVF/ART	19961 non-null	object
33	History of anomalies in previous pregnancies	19911 non-null	object
34	No. of previous abortion	19921 non-null	float64
35	Birth defects	19929 non-null	object
36	White Blood cell count (thousand per microliter)	19935 non-null	float64
37	Blood test result	19938 non-null	object
38	Symptom 1	19928 non-null	float64
39	Symptom 2	19861 non-null	float64
40	Symptom 3	19982 non-null	float64
41	Symptom 4	19970 non-null	float64
42	Symptom 5	19930 non-null	float64
43	Genetic Disorder	19930 non-null	object
43			-
	Disorder Subclass	19915 non-null	object
	es: float64(16), object(29)		
memoi	ry usage: 7.6+ MB		

To plot a graphic of missing values
missingno.matrix(train,figsize=(30,9))

→ <Axes: >


```
# Understanding more about the missing value columns
 def missing_values_table(df):
            # number of missing values
            mis_val = df.isnull().sum()
            # % of missing values
            mis_val_percent = 100 * mis_val / len(df)
            # make table # axis '0' concat along index, '1' column
            mis_val_table = pd.concat([mis_val,mis_val_percent], axis= 1)
            # rename columns
            \verb|mis_val_table_ren_columns = \verb|mis_val_table.rename(columns = \{0: \ 'Missing \ Values', 1: \ '\% \ of \ Total \ Values'\}|
            # sort by column
            \verb|mis_val_table_ren_columns = \verb|mis_val_table_ren_columns[mis_val_table_ren_columns.iloc[:,1]!= 0]. \\ sort_values(ins_val_table_ren_columns.iloc[:,1]!= 0]. \\ sort_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_values(ins_v
                          '% of Total Values', ascending= False).round(1) \#Review
            print("Your selected dataset has " + str(df.shape[1]) + " columns and " + str(len(df)) + " observations.\n"
                             "\n There are " + str(mis_val_table_ren_columns.shape[0]) + " columns that have missing values.")
            # return the dataframe with missing info
            return mis_val_table_ren_columns
missing_values_table(train)
```

Your selected dataset has 45 columns and 22083 observations.

There are 37 columns that have missing values.

There are 37 columns that have missing val		% of Total Values
Family Name	9691	43.9
Mother's age	6036	27.3
Father's age	5986	27.1
Institute Name	5106	23.1
Autopsy shows birth defect (if applicable)	4392	19.9
Maternal gene	2810	12.7
Symptom 2	2222	10.1
H/O substance abuse	2195	9.9
Gender	2173	9.8
History of anomalies in previous pregnancies	2172	9.8
Test 5	2170	9.8
Disorder Subclass	2168	9.8
Follow-up	2166	9.8
No. of previous abortion	2162	9.8
Symptom 1	2155	9.8
Birth defects	2154	9.8
Symptom 5	2153	9.7
H/O radiation exposure (x-ray)	2153	9.7
H/O serious maternal illness	2152	9.7
Test 2	2152	9.7
Respiratory Rate (breaths/min)	2149	9.7
White Blood cell count (thousand per microliter)	2148	9.7
Test 3	2147	9.7
Genetic Disorder	2146	9.7
Blood test result	2145	9.7
Test 4	2140	9.7
Birth asphyxia	2139	9.7
Test 1	2127	9.6
Parental consent	2125	9.6

[#] Datatypes in the dataset
train.dtypes

	0
Patient Id	object
Patient Age	float64
Genes in mother's side	object
Inherited from father	object
Maternal gene	object
Paternal gene	object
Blood cell count (mcL)	float64
Patient First Name	object
Family Name	object
Father's name	object
Mother's age	f l oat64
Father's age	float64
Institute Name	object
Location of Institute	object
Status	object
Respiratory Rate (breaths/min)	object
Heart Rate (rates/min	object
Test 1	float64
Test 2	f l oat64
Test 3	float64
Test 4	float64
Test 5	float64
Parental consent	object
Follow-up	object
Gender	object
Birth asphyxia	object
Autopsy shows birth defect (if applicable)	object
Place of birth	object
Folic acid details (peri-conceptional)	object
H/O serious maternal illness	object
H/O radiation exposure (x-rav)	obiect
.head(3)	

train.head(3)

₹

,		Patient Id	Patient Age	Genes in mother's side	Inherited from father	Maternal gene	Paternal gene	Blood cell count (mcL)	Patient First Name	Family Name	Father's name	Mother's age	Father's age	Institute Name	Lo
	0 F	PID0x6418	2.0	Yes	No	Yes	No	4.760603	Richard	NaN	Larre	NaN	NaN	Boston Specialty & Rehabilitation Hospital	55 02
	1 F	PID0x25d5	4.0	Yes	Yes	No	No	4.910669	Mike	NaN	Brycen	NaN	23.0	St. Margaret's Hospital For Women	1! AV\r
	2 F	PID0x4a82	6.0	Yes	No	No	No	4.893297	Kimberly	NaN	Nashon	41.0	22.0	NaN	
	4		Disorder S	Subclass		object									•

```
## Checking For Duplicates
train['Patient Id'].duplicated().any()
→ False
## Basic Statistics
train['Patient Age'].describe()
\overline{2}
              Patient Age
      count 20656.000000
                 6.974148
      mean
                 4.319475
       std
       min
                 0.000000
      25%
                 3.000000
       50%
                 7.000000
      75%
                11.000000
       max
                14.000000
## Missing Values
train['Patient Age'].isnull().any()
→ True
## Unique Categories
train["Genes in mother's side"].unique()
⇒ array(['Yes', 'No'], dtype=object)
# Is there any Gene Defect in the Mother?
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "Genes in mother's side",data= train)
#sns.countplot(x= "Genes in mother's side",data= train)
                                                                      --> You can use this to get a vertical graph.
print(train["Genes in mother's side"].value_counts())
                                                                    ##This will help us see the exact number along with the graph.

→ Genes in mother's side

     Yes
            13143
     No
             8940
     Name: count, dtype: int64
      mother's side
      Genes in
        No
                             2000
                                                4000
                                                                    6000
                                                                                       8000
                                                                                                          10000
                                                                                                                              12000
                                                                            count
## Unique Categories
train["Inherited from father"].unique()
array(['No', 'Yes', nan], dtype=object)
# Is there any Gene Defect in the Father?
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "Inherited from father",data= train)
print(train["Inherited from father"].value_counts())
```

```
→ Inherited from father
     No
             13133
     Yes
              8644
     Name: count, dtype: int64
      Inherited from father
        Yes
                              2000
                                                  4000
                                                                      6000
                                                                                          8000
                                                                                                               10000
                                                                                                                                   12000
                                                                               count
## Unique Categories
train["Maternal gene"].unique()
⇒ array(['Yes', 'No', nan], dtype=object)
# Is there any Gene Defect in the Mothers Side?
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "Maternal gene",data= train)
print(train["Maternal gene"].value_counts())

→ Maternal gene

     Yes
            10647
     No
              8626
     Name: count, dtype: int64
      Maternal
        No
                                  2000
                                                            4000
                                                                                     6000
                                                                                                             8000
                                                                                                                                       10000
                                                                               count
## Unique Categories
train["Paternal gene"].unique()
array(['No', 'Yes'], dtype=object)
# Is there any Gene Defect in the Fathers Side?
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "Paternal gene",data= train)
print(train["Paternal gene"].value_counts())
₹
     Paternal gene
     No
            12508
     Yes
              9575
     Name: count, dtype: int64
      Paternal gene
        No
                               2000
                                                    4000
                                                                                               8000
                                                                                                                    10000
                                                                         6000
                                                                                                                                         12000
                                                                               count
## Basic Statistics
train['Blood cell count (mcL)'].describe()
```

	Blood cell count (mcL)
count	22083.000000
mean	4.898871
std	0.199663
min	4.092727
25%	4.763109
50%	4.899399
75%	5.033830
max	5.609829

Missing Values
train['Blood cell count (mcL)'].isnull().any()

→ False

Distribution of the Feature
sns.distplot(train['Blood cell count (mcL)'], fit= norm, color= 'tab:blue')

Checking For Outliers
sns.boxplot(x= train['Blood cell count (mcL)'])

```
→ <Axes: xlabel='Blood cell count (mcL)'>
```


Missing Values
train["Mother's age"].isnull().any()

→ True

Basic Statistics
train["Mother's age"].describe()

→		Mother's age
	count	16047.000000
	mean	34.526454
	std	9.852598
	min	18.000000
	25%	26.000000
	50%	35.000000
	75%	43.000000
	max	51.000000

Missing Values
train["Father's age"].isnull().any()

→ True

Basic Statistics
train["Father's age"].describe()

```
\overline{\pm}
             Father's age
      count
             16097.000000
                 41.972852
      mean
                 13.035501
       std
       min
                 20.000000
      25%
                 31.000000
      50%
                 42.000000
      75%
                 53.000000
                 64.000000
      max
## Unique Categories
train["Status"].unique()
⇒ array(['Alive', 'Deceased'], dtype=object)
# Understanding the Status of Patients
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "Status",data= train)
print(train["Status"].value_counts())

→ Status

                  11083
     Alive
     Deceased
                  11000
     Name: count, dtype: int64
        Deceased
                                    2000
                                                                                                        8000
                                                                                                                               10000
                                                                               count
## Unique Categories
train["Respiratory Rate (breaths/min)"].unique()
⇒ array(['Normal (30-60)', 'Tachypnea', nan], dtype=object)
# Understanding the Respiratory Rate of Patients
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "Respiratory Rate (breaths/min)",data= train)
print(train["Respiratory Rate (breaths/min)"].value_counts())
     Respiratory Rate (breaths/min)
     Normal (30-60)
     Tachypnea
                         9869
     Name: count, dtype: int64
        Normal (30-60)
      Respiratory Rate
          Tachypnea
                                                                                count
## Unique Categories
train["Heart Rate (rates/min"].unique()
⇒ array(['Normal', 'Tachycardia', nan], dtype=object)
# Understanding the Heart Rate of Patients
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "Heart Rate (rates/min",data= train)
```

print(train["Heart Rate (rates/min"].value counts())

```
print(f"Uniqueness for Test 1 is: {train['Test 1'].unique()}")
print()
print(f"Uniqueness for Test 2 is: {train['Test 2'].unique()}")
print(f"Uniqueness for Test 3 is: {train['Test 3'].unique()}")
print()
print(f"Uniqueness for Test 4 is: {train['Test 4'].unique()}")
print()
print(f"Uniqueness for Test 5 is: {train['Test 5'].unique()}")
→ Uniqueness for Test 1 is: [ 0. nan]
     Uniqueness for Test 2 is: [nan 0.]
     Uniqueness for Test 3 is: [nan 0.]
     Uniqueness for Test 4 is: [ 1. nan]
     Uniqueness for Test 5 is: [ 0. nan]
print(f"Count for Test 1 is: {train['Test 1'].value_counts()}")
print()
print(f"Count for Test 2 is: {train['Test 2'].value_counts()}")
print()
print(f"Count for Test 3 is: {train['Test 3'].value_counts()}")
print()
print(f"Count for Test 4 is: {train['Test 4'].value_counts()}")
print()
print(f"Count for Test 5 is: {train['Test 5'].value_counts()}")
→ Count for Test 1 is: Test 1
     0.0 19956
     Name: count, dtype: int64
     Count for Test 2 is: Test 2
     0.0
           19931
     Name: count, dtype: int64
     Count for Test 3 is: Test 3
     0.0
           19936
     Name: count, dtype: int64
     Count for Test 4 is: Test 4
     1.0 19943
     Name: count, dtype: int64
     Count for Test 5 is: Test 5
     0.0
           19913
     Name: count, dtype: int64
## Unique Categories
train["Parental consent"].unique()
⇒ array(['Yes', nan], dtype=object)
## Count of Categories
train["Parental consent"].value_counts()
```

```
9/18/24, 7:11 PM
                                                                                EDA.ipynb - Colab
     \overline{\pm}
                             count
          Parental consent
                             19958
                 Yes
    ## Unique Categories
    train["Follow-up"].unique()
     array(['High', 'Low', nan], dtype=object)
    # Understanding the Risk Cases
    fig = plt.figure(figsize=(20,2))
    sns.countplot(y= "Follow-up",data= train)
    print(train["Follow-up"].value_counts())
     → Follow-up
          Low
                  10040
          High
                   9877
          Name: count, dtype: int64
          Follow-
                                                                  4000
                                                                                                                     8000
                                                                                                                                              10000
                                                                                  count
    ## Unique Categories
    train["Gender"].unique()
     ⇒ array([nan, 'Male', 'Female', 'Ambiguous'], dtype=object)
    # Understanding the Gender distribution
    fig = plt.figure(figsize=(20,3))
    sns.countplot(y= "Gender",data= train)
    print(train["Gender"].value_counts())
     → Gender
          Ambiguous
                       6695
          Male
                       6666
          Female
                       6549
          Name: count, dtype: int64
                Male
            Ambiguous
                                     1000
                                                        2000
                                                                          3000
                                                                                             4000
                                                                                                               5000
                                                                                                                                  6000
                                                                                   count
    ## Unique Categories
    train["Birth asphyxia"].unique()
     ⇒ array([nan, 'No', 'No record', 'Not available', 'Yes'], dtype=object)
```

```
https://colab.research.google.com/drive/1PoeWzYbw3ESJoXUoTM_3Anoky7frrezu#printMode=true
```

Understanding Birth asphyxia distribution

sns.countplot(y= "Birth asphyxia",data= train) print(train["Birth asphyxia"].value_counts())

fig = plt.figure(figsize=(20,4))

→ Birth asphyxia

```
Yes
                       5106
     No record
                       5008
     Not available
                       4986
                       4844
     Name: count, dtype: int64
     Birth asphyxia
No record
                                                                                                                                           5000
                                                                                 count
## Unique Categories
train["Autopsy shows birth defect (if applicable)"].unique()
array(['Not applicable', nan, 'No', 'Yes'], dtype=object)
# Understanding Birth defect distribution
fig = plt.figure(figsize=(20,4))
sns.countplot(y= "Autopsy shows birth defect (if applicable)",data= train)
print(train["Autopsy shows birth defect (if applicable)"].value_counts())
→ Autopsy shows birth defect (if applicable)
                        11083
     Not applicable
     Yes
                         3383
     No
                         3225
     Name: count, dtype: int64
        Not applicable
      Autopsy shows birth defect (if
                                                              4000
                                                                                                           8000
                                                                                                                                 10000
## Checking the Status of Patients with Missing Autopsy Reports
X = train[train["Autopsy shows birth defect (if applicable)"].isnull() == True]
X['Status'].value_counts()
<del>_</del>
                 count
         Status
                  4392
      Deceased
## Unique Categories
train["Folic acid details (peri-conceptional)"].unique()
⇒ array(['No', 'Yes', nan], dtype=object)
# Understanding Folic acid details
fig = plt.figure(figsize=(20,4))
sns.countplot(y= "Folic acid details (peri-conceptional)",data= train)
```

print(train["Folic acid details (peri-conceptional)"].value_counts())

Yes

10087

→ Folic acid details (peri-conceptional)

```
No 9879
Name: count, dtype: int64

(read of the count) sign of the count of the cou
```

```
## Unique Categories
train["H/O radiation exposure (x-ray)"].unique()
array(['No', 'Not applicable', 'Yes', '-', nan], dtype=object)
# Understanding Radiation Exposure details
fig = plt.figure(figsize=(20,4))
sns.countplot(y= "H/O radiation exposure (x-ray)",data= train)
print(train["H/O radiation exposure (x-ray)"].value_counts())
    H/O radiation exposure (x-ray)
     Not applicable
                         5029
                         5005
     No
     Yes
                         4980
                         4916
     Name: count, dtype: int64
      H/O radiation exposure (x-ray)
        Not applicable
                                                                                  count
```

```
## Unique Categories
train["H/O substance abuse"].unique()

array(['No', 'Not applicable', nan, '-', 'Yes'], dtype=object)

# Understanding Substance Abuse details
fig = plt.figure(figsize=(20,4))
sns.countplot(y= "H/O substance abuse",data= train)
print(train["H/O substance abuse"].value_counts())
```

```
→ H/O substance abuse
     No
                         5033
     Yes
                         4975
     Not applicable
                         4838
     Name: count, dtype: int64
                No
      H/O substance abuse
         Not applicable
                                                                                                                        4000
                                                                                     count
## Unique Categories
train["Assisted conception IVF/ART"].unique()
⇒ array(['No', 'Yes', nan], dtype=object)
# Understanding Assisted Conception details
fig = plt.figure(figsize=(20,3))
\verb|sns.countplot(y= "Assisted conception IVF/ART", data= train)|\\
print(train["Assisted conception IVF/ART"].value_counts())

→ Assisted conception IVF/ART

     Yes
             10012
     No
              9949
     Name: count, dtype: int64
      Assisted conception IVF/ART
                                     2000
                                                                 4000
                                                                                            6000
                                                                                                                       8000
                                                                                                                                                  10000
                                                                                 count
## Unique Categories
train["History of anomalies in previous pregnancies"].unique()
⇒ array(['Yes', 'No', nan], dtype=object)
# Understanding Anomalies in Previous Pregnancies details
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "History of anomalies in previous pregnancies",data= train)
print(train["History of anomalies in previous pregnancies"].value_counts())
→ History of anomalies in previous pregnancies
             10082
     Yes
     No
              9829
     Name: count, dtype: int64
      / of anomalies in previous
         Yes
         No
                                     2000
                                                                4000
                                                                                           6000
                                                                                                                       8000
                                                                                                                                                 10000
                                                                                 count
## Unique Categories
```

train["No. of previous abortion"].unique()

```
→ array([nan, 4., 1., 0., 3., 2.])
# Understanding Abortion details
fig = plt.figure(figsize=(20,5))
sns.countplot(y= "No. of previous abortion",data= train)
print(train["No. of previous abortion"].value_counts())
No. of previous abortion
     2.0
            4117
     4.0
            4005
     0.0
            3964
     1.0
            3928
     3.0
            3907
     Name: count, dtype: int64
        0.0
      of previous abortion
     9.3.0
        4.0
                         500
                                        1000
                                                        1500
                                                                                       2500
                                                                                                       3000
                                                                                                                       3500
                                                                            count
## Unique Categories
train["Birth defects"].unique()
⇒ array([nan, 'Multiple', 'Singular'], dtype=object)
# Understanding Birth Defects details
fig = plt.figure(figsize=(20,2))
sns.countplot(y= "Birth defects",data= train)
print(train["Birth defects"].value_counts())

→ Birth defects

     Singular
                  9977
     Multiple
                 9952
     Name: count, dtype: int64
     defects
        Singular
                                     2000
                                                               4000
                                                                                        6000
                                                                                                                 8000
                                                                                                                                          10000
## Missing Values
train["White Blood cell count (thousand per microliter)"].isnull().any()
→ True
## Basic Statistics
train['White Blood cell count (thousand per microliter)'].describe()
```

```
\overline{\pm}
              White Blood cell count (thousand per microliter)
      count
                                                      19935.000000
                                                           7.486224
      mean
        std
                                                           2.653393
## Unique Categories
train["Blood test result"].unique()
array([nan, 'normal', 'inconclusive', 'slightly abnormal', 'abnormal'],
            dtype=object)
# Understanding Blood Test Result details
fig = plt.figure(figsize=(20,4))
sns.countplot(y= "Blood test result",data= train)
print(train["Blood test result"].value_counts())

→ Blood test result

     slightly abnormal
                            5128
     normal
                            4954
     inconclusive
                            4952
     abnormal
                            4904
     Name: count, dtype: int64
      Blood test result
           inconclusive
        slightly abnormal
             abnormal
                                           1000
                                                                    2000
                                                                                             3000
                                                                                                                       4000
                                                                                     count
```

```
print(f"Uniqueness for Symptom 1 is: {train['Symptom 1'].unique()}")
print()
print(f"Uniqueness for Symptom 2 is: {train['Symptom 2'].unique()}")
print()
print(f"Uniqueness for Symptom 3 is: {train['Symptom 3'].unique()}")
print()
print(f"Uniqueness for Symptom 4 is: {train['Symptom 4'].unique()}")
print()
print(f"Uniqueness for Symptom 5 is: {train['Symptom 5'].unique()}")
→ Uniqueness for Symptom 1 is: [ 1. 0. nan]
     Uniqueness for Symptom 2 is: [ 1. nan 0.]
     Uniqueness for Symptom 3 is: [ 1. 0. nan]
     Uniqueness for Symptom 4 is: [ 1. 0. nan]
     Uniqueness for Symptom 5 is: [ 1. 0. nan]
print(f"Count for Symptom 1 is: {train['Symptom 1'].value_counts()}")
print()
print(f"Count for Symptom 2 is: {train['Symptom 2'].value_counts()}")
```