K. J. SOMAIYA COLLEGE OF ENGINEERING (A Constituent college of Somaiya Vidyavihar University)

Expt. No		Gra	ating Constant	Date:	17/05/22
Batch:	A3	Roll No:	16010121051		
				(Marks & S	Signature of Faculty I

Aim:	To determine the number of lines per unit length of the given
	plane transmission diffraction gratings
Apparatus:	Different diffraction gratings, laser source, screen, metre scale

Procedure

1) Switch on the laser source so that a single bright spot (red) appears on the screen. Introduce given diffraction grating between the laser source and screen to obtain a diffraction pattern consisting of different intensity spots corresponding to different diffraction orders. Keep screen at around 50 cm from grating.

K. J. SOMAIYA COLLEGE OF ENGINEERING (A Constituent college of Somaiya Vidyavihar University)

- 2) Measure distance (2x) between two first order spots (n = 1) on either sides of the central maximum. Hence, calculate average distance of the first order from the central maximum i.e. x. Repeat the same for higher orders.
- 3) Measure distance (D) between the grating and the central spot on the screen.
- 4) Calculate angle of diffraction (θ) for each order of grating. Repeat steps 2 and 3 for some other distance D.
- 5) Repeat steps 2 to 4 for other diffraction gratings.

Never point laser source or even its reflection from metal surfaces to anyone's eyes - intentionally or un-intentionally.

Onse	ervations:	• • • •			
Grat	ting 1: Distance	$e D_1 = 20^{\circ} e$	m	(a + b) (cm)	[#] N (cm ⁻¹)
n	2x (cm)	<i>x</i> (cm)	θ		
1	3cm	1.5		8.51×10-4	1176
2	6 cm	3	8.53	8.63×10-4	1162
3	9cm	4.5	12.68	8.74×104	1149
Gra	ting 1: Distan	$ce D_2 = 16c$	n		N 124
1	2.8	1.4	5.00	7.34 × 10-4	1369
2	4.7	2.35		8-82 X10-1	1126
3	7	3.5	12. 33.	€9 × 10-4	1111
-	7	/)			
-	7	, ,			
	,				
Grat	ting 2: Distan	ce D ₁ = 20	m		3225
Grat	,	ce D ₁ = 20	m 11.9.	3.1×10-4	3225
Grat	ting 2: Distan	ce D ₁ = 20	m	3.1×10-4 3×10-4	3333
Grav 1 2 3	8. 5 18. 4	ce D ₁ = 20 4.25 9.2	11.9 24.7 36.8	3.1×10-4	3333
Grav 1 2 3	8. 5 18. 4	ce D ₁ = 20 4.25 9.2	11.9 24.7 36.8	3.1×10-4 3×10-4	3333
Grate 1 2 3 Gra	ting 2: Distan	$ce D_1 = 20$ 4.2Γ 9.2 1Γ $ace D_2 = 16$	11.9 24.7 36.8	3.1 ×10-4 3 ×10-4 3.2 ×10-6	3333
Grav 1 2 3	8. 5 18. 4	ce D ₁ = 20 4.25 9.2	11.9 24.7 36.8 cm	3.1 ×10-4 3 ×10-4 3.2 ×10-4 3×10-4	3333
Grav	8. 5 18. 4	$ce D_1 = 20$ 4.2Γ 9.2 1Γ $ace D_2 = 16$	11.9 24.7 36.8 12.33	3.1 ×10-4 3 ×10-4 3.2 ×10-6	3333 3125 3333 4 2902

#Round-off to nearest integer

K. J. SOMAIYA COLLEGE OF ENGINEERING (A Constituent college of Somaiya Vidyavihar University)

Formulae:

$$Q = tan^{-1} \frac{x}{D}$$

Symbols:

0 = Angle of diffraction

a = Average distance of not order spot from central spot D = distance between screen and grating [atb: Grating element]

n: order of diffraction man

1: Mavelength of incident right

N: Number of lines for of the grating

Data:

Wavelength of light from laser source λ

6400A

Calculations:

Results:

Average N for Grating 1: 1183.5

Average N for Grating 2: 3124'66

Further Work:

Use of lasers in atomic and nuclear physics