MODELOS DE N-GRAMAS

Marcos Lopes Departamento de Linguística Modelos de n-gramas

Implementação

· Modelos BoW têm limites práticos

- · Modelos BoW têm limites práticos
- Existem problemas nas expressões linguísticas que só aparecem nos encadeamentos

- · Modelos BoW têm limites práticos
- Existem problemas nas expressões linguísticas que só aparecem nos encadeamentos
- Os exemplos a seguir não apresentam erros em palavras, mas encadeamentos inesperados:

0000000

- · Modelos BoW têm limites práticos
- Existem problemas nas expressões linguísticas que só aparecem nos encadeamentos
- · Os exemplos a seguir não apresentam erros em palavras, mas encadeamentos inesperados:
 - · Praia Clube é treta campeão mineiro de vôlei.

- Modelos BoW têm limites práticos
- Existem problemas nas expressões linguísticas que só aparecem nos encadeamentos
- Os exemplos a seguir não apresentam erros em palavras, mas encadeamentos inesperados:
 - · Praia Clube é treta campeão mineiro de vôlei.
 - · O tráfego de drogas faz muitas vítimas entre os jovens.

- · Modelos BoW têm limites práticos
- Existem problemas nas expressões linguísticas que só aparecem nos encadeamentos
- Os exemplos a seguir não apresentam erros em palavras, mas encadeamentos inesperados:
 - · Praia Clube é treta campeão mineiro de vôlei.
 - · O tráfego de drogas faz muitas vítimas entre os jovens.
 - · Esta mesa tem dois metros de cumprimento.

· Corretores ortográticos e sintáticos

- · Corretores ortográticos e sintáticos
- · Tradutores automáticos

- · Corretores ortográticos e sintáticos
- · Tradutores automáticos
- · Reconhecimento de voz

- · Corretores ortográticos e sintáticos
- · Tradutores automáticos
- · Reconhecimento de voz
- POS-tagging

 Modelos de n-gramas
 Implementação

 000●0000
 000

ENCADEAMENTOS DE UNIDADES INDEPENDENTES

 O modelo mais simples possível é aquele que associa uma frequência relativa à unidade (à palavra, por ex.) e faz equivaler a chance de ocorrência a essa frequência.

ENCADEAMENTOS DE UNIDADES INDEPENDENTES

- O modelo mais simples possível é aquele que associa uma frequência relativa à unidade (à palavra, por ex.) e faz equivaler a chance de ocorrência a essa frequência.
- Por ex., se a língua conta com 500.000 palavras-tipo, a probabilidade de ocorrência de uma palavra qualquer em uma sequência qualquer seria de ¹/_{500.000} (0,000002 ou 0,0002%).

ENCADEAMENTOS DE UNIDADES INDEPENDENTES

- O modelo mais simples possível é aquele que associa uma frequência relativa à unidade (à palavra, por ex.) e faz equivaler a chance de ocorrência a essa frequência.
- Por ex., se a língua conta com 500.000 palavras-tipo, a probabilidade de ocorrência de uma palavra qualquer em uma sequência qualquer seria de ¹/_{500.000} (0,000002 ou 0,0002%).
- Essa solução pode ser adequada para eventos completamente independentes entre si (por ex., dois lançamentos de dados), mas esse não é o caso de *nenhuma* unidade linguística, sejam sílabas, palavras ou até respostas a perguntas (frases inteiras).

TENDÊNCIAS

Numa oração como:

O árbitro favoreceu o x

x sofre coerções lexicais, gramaticais e até discursivas. Algumas expressões são tendencialmente muito mais prováveis que outras.

Assim, a probabilidade de se ter uma palavra x como:

• algumas: menor que $\frac{1}{500,000}$

TENDÊNCIAS

Numa oração como:

O árbitro favoreceu o x

x sofre coerções lexicais, gramaticais e até discursivas. Algumas expressões são tendencialmente muito mais prováveis que outras.

Assim, a probabilidade de se ter uma palavra x como:

- algumas: menor que $\frac{1}{500.000}$
- · Flamengo: praticamente 100%

PROBABILIDADE CONDICIONAL

Seria possível calcular num corpus a probabilidade de *Flamengo* dado que *O árbitro favoreceu o*.

Pode ser difícil ou impossível (isto é, sem exemplos no corpus) calcular a probabilidade de ocorrência de um elemento em função de toda uma longa cadeia pregressa. É mais prático, por ora, pensar na probabilidade do encadeamento de só duas palavras: o e Flamengo. Vamos representá-la assim:

Ou, generalizando:

$$P(w_n \mid w_{n-1})$$

 Modelos de n-gramas
 Implementação

 000000€0
 000

N-GRAMAS OU CADEIAS DE MARKOV

• São modelos em que a probabilidade de ocorrência do elemento w_n é dada em função dos elementos imediatamente precedentes w_{n-1} .

N-GRAMAS OU CADEIAS DE MARKOV

- São modelos em que a probabilidade de ocorrência do elemento w_n é dada em função dos elementos imediatamente precedentes w_{n-1} .
- · São modelos de memória limitada.

Modelo	n	Probabilidades
Quadrigramas	4	P(vento caminhando contra o)
Trigramas	3	P(vento contra o)
Bigramas	2	P(vento o)
Unigramas	1	P(vento)

N-GRAMAS OU CADEIAS DE MARKOV

- São modelos em que a probabilidade de ocorrência do elemento w_n é dada em função dos elementos imediatamente precedentes w_{n-1} .
- · São modelos de memória limitada.

Modelo	n	Probabilidades
Quadrigramas	4	P(vento caminhando contra o)
Trigramas	3	P(vento contra o)
Bigramas	2	P(vento o)
Unigramas	1	P(vento)

 A ideia é que é possível aproximar a probabilidade de toda a história pregressa da palavra (memória) usando somente as n palavras anteriores.

N-GRAMAS OU CADEIAS DE MARKOV

- São modelos em que a probabilidade de ocorrência do elemento w_n é dada em função dos elementos imediatamente precedentes w_{n-1} .
- · São modelos de memória limitada.

Modelo	n	Probabilidades
Quadrigramas	4	P(vento caminhando contra o)
Trigramas	3	P(vento contra o)
Bigramas	2	P(vento o)
Unigramas	1	P(vento)

- A ideia é que é possível aproximar a probabilidade de toda a história pregressa da palavra (memória) usando somente as n palavras anteriores.
- A hipótese segundo a qual a probabilidade de uma palavra só depende da(s) anterior(es) é chamada Hipótese de Markov.

ALGUNS RECURSOS PARA VISUALIZAÇÃO DE N-GRAMAS

Google N-gram Viewer https://books.google.com/ngrams

ALGUNS RECURSOS PARA VISUALIZAÇÃO DE N-GRAMAS

- Google N-gram Viewer https://books.google.com/ngrams
- Concordanciadores
 Como exemplo: AntConc

Modelos de n-gramas 0000000

Modelos de n-grama:

Implementação

1. Segmentação do corpus.

- 1. Segmentação do corpus.
 - Se os n-gramas forem palavras (e não caracteres ou frases), o texto deve ser dividido primeiro em sentenças, depois em palavras.

- 1. Segmentação do corpus.
 - Se os n-gramas forem palavras (e não caracteres ou frases), o texto deve ser dividido primeiro em sentenças, depois em palavras.
 - No pré-processamento, você deve decidir se a pontuação deve ou não ser mantida.

- 1. Segmentação do corpus.
 - Se os n-gramas forem palavras (e não caracteres ou frases), o texto deve ser dividido primeiro em sentenças, depois em palavras.
 - No pré-processamento, você deve decidir se a pontuação deve ou não ser mantida.
 - É útil acrescentar marcadores de fronteira de sentença (início e fim de sentença). Os símbolos usuais são <s> e </s>.

- 1. Segmentação do corpus.
 - Se os n-gramas forem palavras (e não caracteres ou frases), o texto deve ser dividido primeiro em sentenças, depois em palavras.
 - No pré-processamento, você deve decidir se a pontuação deve ou não ser mantida.
 - É útil acrescentar marcadores de fronteira de sentença (início e fim de sentença). Os símbolos usuais são <s> e </s>.
- 2. Escolha do modelo (uni-, bi-, trigramas...)

Passos para a criação de modelos de n-gramas

- 1. Segmentação do corpus.
 - Se os n-gramas forem palavras (e não caracteres ou frases), o texto deve ser dividido primeiro em sentenças, depois em palavras.
 - No pré-processamento, você deve decidir se a pontuação deve ou não ser mantida.
 - É útil acrescentar marcadores de fronteira de sentença (início e fim de sentença). Os símbolos usuais são <s> e </s>.
- 2. Escolha do modelo (uni-, bi-, trigramas...)
- 3. Geração das cadeias de n-gramas.

- 1. Segmentação do corpus.
 - Se os n-gramas forem palavras (e não caracteres ou frases), o texto deve ser dividido primeiro em sentenças, depois em palavras.
 - No pré-processamento, você deve decidir se a pontuação deve ou não ser mantida.
 - É útil acrescentar marcadores de fronteira de sentença (início e fim de sentença). Os símbolos usuais são <s> e </s>.
- 2. Escolha do modelo (uni-, bi-, trigramas...)
- 3. Geração das cadeias de n-gramas.
 - Será preciso gerar cadeias para todos os modelos de cadeia (superiores ao unigrama).

Passos para a criação de modelos de n-gramas

- 1. Segmentação do corpus.
 - Se os n-gramas forem palavras (e não caracteres ou frases), o texto deve ser dividido primeiro em sentenças, depois em palavras.
 - No pré-processamento, você deve decidir se a pontuação deve ou não ser mantida.
 - É útil acrescentar marcadores de fronteira de sentença (início e fim de sentença). Os símbolos usuais são <s> e </s>.
- 2. Escolha do modelo (uni-, bi-, trigramas...)
- 3. Geração das cadeias de n-gramas.
 - Será preciso gerar cadeias para todos os modelos de cadeia (superiores ao unigrama).
 - Por ex., se você quer trabalhar com trigramas, deve gerar trigramas e bigramas.

 Modelos de n-gramas
 Implementação

 00000000
 0 ● 0

- 1. Segmentação do corpus.
 - Se os n-gramas forem palavras (e não caracteres ou frases), o texto deve ser dividido primeiro em sentenças, depois em palavras.
 - No pré-processamento, você deve decidir se a pontuação deve ou não ser mantida.
 - É útil acrescentar marcadores de fronteira de sentença (início e fim de sentença). Os símbolos usuais são <s> e </s>.
- 2. Escolha do modelo (uni-, bi-, trigramas...)
- 3. Geração das cadeias de n-gramas.
 - Será preciso gerar cadeias para todos os modelos de cadeia (superiores ao unigrama).
 - Por ex., se você quer trabalhar com trigramas, deve gerar trigramas e bigramas.
- 4. Cálculo das probabilidades dos modelos.

Unigramas

 \cdot Contagem dos tokens: C(w)

Unigramas

- Contagem dos tokens: C(w)
- Estimativa da probabilidade por MLE: normalização dos valores entre 0
 e 1, dividindo-se a contagem de cada palavra pelo vocabulário V, isto é, dividindo-se o número de types pelo número de tokens.

Unigramas

- Contagem dos tokens: C(w)
- Estimativa da probabilidade por MLE: normalização dos valores entre 0
 e 1, dividindo-se a contagem de cada palavra pelo vocabulário V, isto é, dividindo-se o número de types pelo número de tokens.

Unigramas

- · Contagem dos tokens: C(w)
- Estimativa da probabilidade por MLE: normalização dos valores entre 0
 e 1, dividindo-se a contagem de cada palavra pelo vocabulário V, isto é, dividindo-se o número de types pelo número de tokens.

Bigramas

 Marcação de início e fim de sentença antes da tokenização em palavras.

Unigramas

- Contagem dos tokens: C(w)
- Estimativa da probabilidade por MLE: normalização dos valores entre 0
 e 1, dividindo-se a contagem de cada palavra pelo vocabulário V, isto é,
 dividindo-se o número de types pelo número de tokens.

Bigramas

- Marcação de início e fim de sentença antes da tokenização em palavras.
- A probabilidade é dada pela divisão do número de ocorrências dos bigramas pelo número de unigramas da primeira palavra da cadeia:

Unigramas

- Contagem dos tokens: C(w)
- Estimativa da probabilidade por MLE: normalização dos valores entre 0
 e 1, dividindo-se a contagem de cada palavra pelo vocabulário V, isto é,
 dividindo-se o número de types pelo número de tokens.

Bigramas

- Marcação de início e fim de sentença antes da tokenização em palavras.
- A probabilidade é dada pela divisão do número de ocorrências dos bigramas pelo número de unigramas da primeira palavra da cadeia:

Unigramas

- Contagem dos tokens: C(w)
- Estimativa da probabilidade por MLE: normalização dos valores entre 0
 e 1, dividindo-se a contagem de cada palavra pelo vocabulário V, isto é, dividindo-se o número de types pelo número de tokens.

Bigramas

- Marcação de início e fim de sentença antes da tokenização em palavras.
- A probabilidade é dada pela divisão do número de ocorrências dos bigramas pelo número de unigramas da primeira palavra da cadeia:

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$