Department of Computer Science and Engineering (CSE) BRAC University

Summer 2023

CSE460: VLSI Design

Abdullah Jubair Bin Iqbal Lecturer

R unit resistance $R = R_n$

C unit capacitance $C=C_g=C_d \label{eq:constraint}$

minimum sized nmos

Choose transistor widths to achieve effective rise and fall resistance equal to that of a unit inverter (R). consider, $\mu_n=2\mu_p$

1. Find the fall/rise circuits

Truth Table of NAND Gate

Input			Output
Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Discharges when all three NMOS are ON and PMOS off

$$\frac{3R}{\kappa_n} = R \quad \to \kappa_n = 3$$

Choose transistor widths to achieve effective rise and fall resistance equal to that of a unit inverter (R). consider, $\mu_n=2\mu_p$

1. Find the fall/rise circuits

Truth Table of NAND Gate

	Input		
Α	В	С	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

charges back up when any of the input goes to zero (1 PMOS on – 1 NMOS OFF)

$$\frac{2R}{\kappa_p} = R \quad \to \kappa_p = 2$$

Choose transistor widths to achieve effective rise and fall resistance equal to that of a unit inverter (R). consider, $\mu_n = 2\mu_p$

What is the effective Capacitance at input A,B,C and output Y?

Choose transistor widths to achieve effective rise and fall resistance equal to that of a unit inverter (R). consider, $\mu_n = 2\mu_p$

What is the effective Capacitance at input A,B,C and output Y?

3-NAND with connected to another n 3-NAND

Falling and Rising Equivalent Circuit

	Input		
Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Falling and Rising Equivalent Circuit

	Input			
Α	В	С	Output	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	0	

Calculating τ

$$\tau_{PHL} =$$

$$\tau_{PLH1} = R(9 + 5n)C$$

$$\tau_{PLH2} = R(12 + 5n)C$$

$$\tau_{PLH3} = R(15 + 5n)C$$

Elmore Delay

Elmore Delay

- Any digital circuit can be modeled as an RC circuit or an RC 'tree'
- Elmore Delay can approximated the delay of such trees

$$\tau_p = \sum_i R_{ik} C_i = \sum_{i=1}^n C_i \sum_{j=1}^i R_j \quad \rightarrow \text{ sum of shared resistor to path}$$

$$R_{ik} = \sum_i R_j \rightarrow R \in (paths \ source \rightarrow o/p) \cap (paths \ source \rightarrow k)$$

 $n \rightarrow \text{no of nodes}$

 $C_i \rightarrow \text{capacitor in RC network}$

 $R_{ik} \rightarrow$ shared resistor to o/p on a path to C_i

$$\tau_p = \sum_{i} R_{ik} C_i = \sum_{i=1}^{n} C_i \sum_{j=1}^{i} R_j$$

 $R_{ik} = \sum R_j \to R \in [(path source \to o/p) \cap (paths source \to k)]$

 $(path source \rightarrow o/p)$

 $(path\ source \rightarrow k = 4)$

$$R_{i4} = R_1 + R_3$$

$$\tau_p = \sum_{i} R_{ik} C_i = \sum_{i=1}^{n} C_i \sum_{j=1}^{i} R_j$$

 $R_{ik} = \sum R_j \to R \in [(path \ source \to o/p) \cap (paths \ source \to k)]$

 $(path\ source \rightarrow o/p)$

 $(path\ source \rightarrow k = 4)$

$$R_{i4} = R_1 + R_3$$

Rising

$$\tau_p = \sum_{i} R_{ik} C_i = \sum_{i=1}^{n} C_i \sum_{j=1}^{i} R_j$$

 $R_{ik} = \sum R_j \to R \in [(path \ source \to o/p) \cap (paths \ source \to k)]$

$$\tau_{Di} = (R_1 + R_3 + R_i)C_i$$

$$\tau_{D1} = R_1 C_1$$

$$\tau_{D2} = R_1 C_2$$

$$\tau_{D3} = (R_1 + R_3)C_3$$

$$\tau_{D4} = (R_1 + R_3)C_4$$

$$\tau_p = \sum \tau_{Dk}$$

n Input NOR Gate

