

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA CURSO 2º

Examen Final de Febrero de 2020

NOMBRE					FIRMA			
TITULACIÓ	N: Eléctrico	Electrónico	Mecánico 🗌	Diseño) I.	GRUPO): A B	C D
en luga prohibio Los res	r visible ponga su do el uso de teléfono: ultados de los proble	su nombre y firme est DNI o documento id s móviles y la toma de emas P1 y P2 deberát loque_1 = P1 + P2 + F	lentificativo. Esta e imágenes duran n resumirse sobre	á prohibido el te toda la prueb e esta hoja de e	uso de ca a. Todos lo enunciados	lculadoras os problema . Los prob	programa as puntúa lemas se	ables. Esta n por igua entregarár
a) PlanUse configura.consideb) Supe	tear la ecuación ma omo incógnitas los En el recuadro ar ere necesarias. NO onga que resultase	riente continua de la atricial del circuito p potenciales de los aexo escriba las ecu RESUELVA EL CII n los siguientes pote ste supuesto la energ	para resolverlo pudos A, B y paciones adicion RCUITO. Penciales: $U_A =$	or nudos. C de la nales que -50V y		1H 2 30V +	1H A 487 C \^2\Omega^2	2H < 4Ω I B 1Ω V
			Ec. Adio	cionales:			٧	
		$\begin{bmatrix} U_A \\ U_B \\ U_C \end{bmatrix} = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$						
			W _L =					

P2. Calcule la tensión U y la intensidad I aplicando superposición. Resuelva los diferentes apartados sin usar en ningún caso ni el método de mallas ni el método de nudos y por el contrario aplique al menos una vez divisor de tensión y divisor de intensidad.

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA CURSO 2º

Examen Final de febrero de 2019

P3. En el circuito de la figura los amperímetros marcan $A_T = 12 \text{ A}$, $A_1 = 6 \text{ A}$ y $A_2 = 8 \text{ A}$.

- a) Determinar el ángulo de desfase entre la corriente I_2 y la tensión de la fuente (E)
- **b)** Determinar los valores de R y C.

P5. La figura representa una red trifásica equilibrada (RTE) de 230V de tensión de línea, secuencia inversa y 50Hz. Calcular la medida del vatímetro.

P6. Una red trifásica equilibrada (RTE) de secuencia directa alimenta dos cargas trifásicas equilibradas. La carga C1 consume 15kW con un factor de potencia 0.8 (inductivo). La carga C2 está conectada en triángulo con una impedancia por fase de 4-3j. Sabiendo que el voltímetro de la figura mide 240V determinar las medidas de los vatímetros W1 y W2.

