Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

28 de abril de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Expressões Regulares
- 4 Máquina de Turing

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Expressões Regulares
- Máquina de Turing

Pensamento

Pensamento

Frase

O valor do homem é determinado, em primeira instância, pelo grau e pelo sentido em que se libertou do seu ego.

Quem?

Albert Einstein (1879-1955) Físico teórico alemão.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Expressões Regulares
- Máquina de Turing

Avisos

Questão Avaliada 02 no Canvas

Devo disponibilizá-la novamente!!!

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Expressões Regulares
- Máquina de Turing

Expressões Regulares

Digamos que R é uma expressão regular (ER) se R for:

- lacktriangledown a, para algum $a \in \Sigma$,
- $\mathbf{2} \epsilon$,
- **③** ∅,
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares,
- $(R_1 \circ R_2)$, em que R_1 e R_2 são expressões regulares,

Exemplos de ER

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- $1*\emptyset = \emptyset$
- $\bullet \ \emptyset^* = \{\epsilon\}$

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Estratégia

Utilizar para realizar a prova um autômato finito não-determinístico generalizado.

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n > 0\}.$

Lema do Bombeamento

Se A é uma linguagem regular, então existe um número p (o comprimento do bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes, s=xyz, satisfazendo as seguintes condições:

- ② |y| > 0, e
- $|xy| \leq p.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}$;
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Portanto são bem restritos para servir de modelo de computadores de propósito geral.

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;
- Características importantes:
 - faz tudo o que um computador real pode fazer;
 - existem certos problemas que uma MT não pode resolver.

- Salaminh salah-mês... tranforme as figuras em inglês!

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Construindo uma MT

Construir M_1 que reconheça a linguagem

$$B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}.$$

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Expressões Regulares
- Máquina de Turing

Descrição de M₁

 $M_1 =$ "Sobre a cadeia de entrada ω :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.


```
0 1 1 0 0 0 # 0 1 1 0 0 0 ц ...
x 1 1 0 0 0 # x 1 1 0 0 0 \( \dots \)...
х 1 1 0 0 0 # x 1 1 0 0 0 u ...
х × 1 0 0 0 # x 1 1 0 0 0 ц
x x x x x x # x x x x x x i ...
                           accept
```


Uma **máquina de Turing** é uma 7-upla $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, de forma que Q, Σ, Γ são todos conjuntos finitos e

- Q é o conjunto de estados,
- \bigcirc Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- lacktriangle Γ é o alfabeto da fita, em que $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- \bullet $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- $oldsymbol{0} q_0 \in Q$ é o estado inicial,
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação, e
- $m{0}$ $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita}
 eq q_{aceita}$

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma forma especial de representar...

uqv em que

- u e v são cadeias sobre Γ;
- uv é o conteúdo atual da fita;
- q é o estado atual; e
- a posição atual da cabeça está sobre o primeiro símbolo de v.

- Salaminh salah-mês... tranforme as figuras para português!

FIGURA 3.4

Uma máquina de Turing com configuração $1011q_701111$

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- ullet a, b, $c\in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_i ,
- as configurações uaq_i by euq_j acv.

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- \bullet a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_j ,
- as configurações uaqibv e uqiacv.

Digamos que

 uaq_i bv origina uq_j acv

se na função de transição $\delta(q_i,b)=(q_i,c,E)$.

Mais formalmente...

Digamos que

 uaq_i bv origina uq_j acv

se na função de transição $\delta(q_i,b)=(q_j,c,E)$. Ou

 uaq_i bv origina $uacq_i$ v

se na função de transição $\delta(q_i,b)=(q_j,c,D)$.

Termos importantes:

- configuração inicial;
- configuração de aceitação;
- configuração de rejeição;
- configuração de parada.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de M

É a coleção de cadeias que M aceita. Também chamada de linguagem reconhecida por M e denotada por L(M).

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Corolário

Toda linguagem Turing-decidível é Turing-reconhecível.

Uma máquina de Turing M_2 que decide $A = \{0^{2^n} \mid n \ge 0\}$:

Uma máquina de Turing M_2 que decide $A = \{0^{2^n} \mid n \ge 0\}$:

 M_2 = "Sobre a cadeia de entrada w:

- Faça uma varredura da esquerda para a direita na fita, marcando um 0 não e outro sim.
- 2. Se no estágio 1, a fita continha um único 0, aceite.
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, *rejeite*.
- Retorne a cabeça para a extremidade esquerda da fita.
- 5. Vá para o estágio 1."

Descrição Formal de M₂

$$M_2 = (Q, \Sigma, \Gamma, \delta, q_1 q_{aceita}, q_{rejeita})$$
:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{aceita}, q_{rejeita}\};$
- $\Sigma = \{0\},$
- $\Gamma = \{0, x, \bot\},\$
- ullet Descrevemos δ no próximo slide; e
- q₁, q_{aceita} e q_{rejeita} são o estado inicial, de aceitação e de rejeição, respectivamente.

Lista de Exercícios 03

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 3.1;
- 3.2 (a, c, e);
- 3.9;
- 3.15.

Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

28 de abril de 2014

