一、解: 属帕素方差分析问题: r=4, $n_1=n_2=n_3=n_4=5$. n=20 .

$$M_{3}:A_{1} \rightarrow T_{1} = \sum_{j=1}^{5} \chi_{ij} = 5.2+6.3+4.9+6.8+3.2 = 2.6.4$$

$$T_{0}: = \left(\sum_{j=1}^{5} \chi_{ij}\right)^{2} = \left(26.4\right)^{2} = 696.96$$

$$\sum_{j=1}^{5} \chi_{ij} = 52+6.3+4.9+6.8+3.2 = 147.22$$

 $X_{t}^{2} = \frac{5}{5} X_{t}^{2} = 7.4 + 8.3 + 5.9 + 4.9 + 6.5 = 33$ $T_{t}^{2} = \left(\frac{5}{5} X_{t}^{2}\right)^{2} = \left(33\right)^{2} = \left|089\right|$

 $\begin{cases} t_1 = (\frac{1}{2} - M_1^2) = (23) - 1001 \\ = 224.72 \\ = 7.4^2 + 8.3^2 + 5.9^2 + 4.9^2 + 6.5^2 = 224.72 \end{cases}$

 $\begin{array}{ccc}
Xt & = 12.3 + 9.4 + 7.8 + 8.5 + 16.8 = 48.8 \\
T_{t.}^{2} & = (2.3 + 9.4 + 7.8 + 8.5 + 16.8 = 48.8) \\
T_{t.}^{2} & = (2.3 + 9.4 + 7.8 + 8.5 + 16.8 = 489.38) \\
Xt & = 12.3 + 9.4 + 7.8 + 8.5 + 16.8 = 489.38
\end{array}$

Th=
$$\frac{5}{47}$$
 Th $\frac{5}{47}$ T

7 + 3 + 48.8 = 7 + 5 + 48.8 = 7 + 5 + 48.8 = 7 + 5 + 48.8 = 7 + 64+79 + 41+92 = 3.9 + 64+79

 $T_{t_3} = \sum_{t=1}^{4} T_{t.} = 26.4 + 33 + 31.5 + 48.8 = 139.7$

 $T_{t,s} = \frac{4}{51} T_{t,s} = 696.96 + 1089 + 992.25 + 2381.44 = 5159.65$

 $\sum_{i=1}^{4} \chi_{ij}^{2} = |47.22 + 224.72 + 220.03 + 489.38 = |08|.35$

 $\theta_{1}^{2} = \sum_{t=1}^{r} \sum_{j=1}^{n_{t}} (\chi_{tj} - \chi_{j})^{2} = \sum_{t=1}^{r} \sum_{j=1}^{n_{t}} \chi_{tj}^{2} - \frac{1}{n} (\sum_{t=1}^{r} \chi_{tj}^{2})^{2} = lo8l\cdot35 - \frac{1}{20} \times ([31.7])^{2} = lo8l\cdot35 - 975.8045 = lo5.5455$ $\theta_{1}^{2} = \sum_{t=1}^{r} \frac{1}{n_{t}} (\chi_{t}^{2} - \chi_{j}^{2})^{2} = \frac{1}{n_{t}} \sum_{t=1}^{r} (\sum_{j=1}^{n_{t}} \chi_{tj}^{2})^{2} - \frac{1}{n_{t}} (\sum_{t=1}^{r} \chi_{tj}^{2})^{2} = \frac{1}{5} \times 5 |51.65 - \frac{1}{20} \times |31.7|^{2} = |o3|.93 - 975.8045 = 54.25$

Q= QT-QA=105.5455-561-25=49.42

勤以=0.01时方差分析如下

話来源 商差千折

舶度

妨祸吞抗和

Fund

Fo. 1 (3.16) = 5.29

24/4

PA= 56/255

1-1=3

 $S_A^2 = \theta_A^2/3 = 18.7085$

SA/SE = 6.0567

祖内

 $\theta_E^2 = 49.42$

n-r=16

 $S_{E} = \Omega_{E}^{2}/16 = 3.08875$

蜀和

A7=105.5455

n-1=19

由于 F=6.0567 ア Fo-01 (3/6)=5.9 校右多発弁

THE THE						
二、解:本题属于两日素重复试验的后差分析问题,由条件已知 Y=3,5=3,t=2,n=18.					1 -	
AB	В,	В,	β3	$T_{t}=\sum_{j=1}^{3}\sum_{k=1}^{2}X_{ijk}$	Tt=(美艺X的k)*	艺艺版 月 km
A,	43,39	37, 29	58,42	248	61504	10708
	(82) (724)	(66),4356	(100), 10000	7		
^	47,53	41,30	46,60	277	76729	33 5
Aۦٳ	(0000) (001)	(11),5041	(106),1/236			-
	38, 42	48,47	56,41	272	73984	12538
A ₃	(80), 6400	(95),9025	(97),9409			
Tg=25 t=1 k	282 EXTIN 282	232 †	303	2 2 2 Xtyk t=1 t=1 k=1 = 197	· · · · · · · · · · · · · · · · · · ·	= 36561
「j=(対	(\$644 k=1	53824	9/809	- 117 = 15, = 2/4277		
	4	<i>'</i>				
\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \right(\frac{1}{2} \right) \frac{1}{2} \right) \frac{1}{2} \right(\frac{1}{2} \right) \frac{1}{2} \right) \frac{1}{2} \right(\frac{1}{2} \right) 1	[Xtyk)2 23/24	18422	30645	学芸芸は大	nk) ² =(12/1/)	
	3 → V	7 -3-5	- Y.w. T- 5	立立玄Xyk.		

$$\Omega_{T}^{2} = \stackrel{?}{\underset{k=1}{\sum}} \stackrel{?}{\underset{k=1}{\sum}}$$

$$\frac{1}{4} = \frac{1}{4} \frac$$

$$\frac{d_{1}^{2}}{d_{1}^{2}} = \frac{2}{12} \sum_{i=1}^{2} (X_{i}. - X)^{2} = t \sum_{i=1}^{2} (X_{i}. - X)^{2}$$

$$\frac{1}{16} = \frac{1}{16} \frac{1}{16$$

 $\theta_{AVB}^2 = \theta_{-7}^2 - \theta_{A}^2 - \theta_{B}^2 - \theta_{E}^2 = |27|6| - 80.1| - 42344 - 465.5 = 302.56$

CLAXB - UT UA UB WE PIROT SITT					2 \$ 14
	旁差半方和	自由度	始 方裔	f aviá_	建造
· 注条源	QA = 80.11	Y-1=2	$S_A^1 = \partial_{A}^2/2 = 40.055$	SA/SE=0.774	程著
因表 A	WA-2011			C2 h3 11.91	-8±
因素B	9th=423.44	s-l=2	$S_B^2 = \theta_{10}^2 = 211.72$	SBS= +094	不显著
交互作用AXB	OLAXB = 302.56	(1-1)·(s-1)=\	SAXB = (1 AXB) = 75.64	SAXB/SE=1.4625	在著
採盖E	DE=445.544.	rsct-1>=9	$S_{E}^{2} = \Omega_{E}^{2} / 9 = 70.488$		
善善	(t) = 27 .6	vst-1=17			

当以=1.05时,直教得Fa.os(2,9)=426>0.774. Fa.os(2,9)=426>4.094, Fa.os(4,9)=3.63>1.4625

可以看作是一元的性回归模型

	1	2 3 4	5 6			
(2)	Xe	It	/i	Ji	XrIr	
·	1	1.3	1	1.69	1.3	
	2	2.5	4	6.25	5	
	3	3.7	9	13.69	11.	
	14	5.3	16	28.0	2/.2	-
	5	6.4	25	40.96	32	_
	6	7.2	36	51.84	43.2	-
Σ	1121	26.4	91	142.52	113.8	
		. '	,	1		

$$\overline{X} = \overline{h} \stackrel{\xi}{>} Xt = \overline{h} \times 2 | = 3.5$$

$$\overline{y} = \overline{h} \stackrel{\xi}{>} 1t = \overline{h} \times 26.4 = 4.4$$

$$L_{XX} = \stackrel{\xi}{>} (Xh - \overline{X})^2 = \stackrel{\xi}{>} Xh - n\overline{X}^2$$

$$= 9| -\overline{h} \times (3.5)^2 = |7.5|$$

$$L_{XY} = \stackrel{\xi}{>} Xh - (\overline{X})^2 = |13.8 - 6 \times 3.5 \times 4.4 = 21.4$$

$$\hat{h}_{1} = \frac{L_{XY}}{L_{XX}} = \frac{21.4}{17.5} = |.22, \hat{h}_{1} = \overline{y} - \hat{h}_{1}\overline{X}$$

$$= 44 - |.22 \times 3.5 = 0.1$$

$$\hat{y} = \hat{\xi}_0 + \hat{\xi}_1 x = 0.13 + 1.22 x$$

三、解:(1)(

C3) 当x=10时, Y的预测值 . 引=0.13+1.22×10=12.33.

$$L_{yy} = \sum_{t=1}^{6} \int_{t}^{2} -6y^{2} = |42.52 - 6 \times 4.4^{2} = 26.36$$

$$G_{E}^{2} = yy - \hat{\beta}_{1}^{2} |_{xy} = 26.36 - |.22 \times 21.4 = 0.252 , \quad \hat{\sigma}^{2} = \frac{G_{E}}{10^{-2}} = \frac{0.252}{4} = 0.063$$

$$T = \frac{\cancel{J} - \cancel{\hat{y}}}{\sqrt{\frac{\hat{c}_{k}}{n-2}}Cl+\frac{1}{n} + \frac{(c+x)^{2}}{lxx}}$$
 $t_{(n-2)} = t_{(4)}$

给定置信度 |- d=0.95时, 全个{|T| < tex25(4)}= |-d=0.95

$$= t_{\frac{1}{2}} (n-2) \sqrt{6^2 \left[1 + \frac{1}{11} + \frac{(x-8)^2}{1xx}\right]} = t_{0.025} (4) \sqrt{0.063 \times \left[1 + \frac{1}{11} + \frac{(10-35)^2}{11.5}\right]} = t_{0.025} (4) \times 0.47 = 2.7764 \times 0.47 = |.305|$$

:: 当X=10时,置信度为95/的约的预测区间为: [ŷ-tooss(+):
$$\sqrt{\hat{p}}$$
*[]+ $\frac{1}{n}$ + $\frac{(x-x)^2}{L_{XX}}$ *, \hat{y} + $\frac{1}{n}$ + $\frac{(x-x)^2}{L_{XX}}$] = [11025, 13.635]

Xw)的分布律为:

Xw)	1	0	
P	7	늘	

Xw=ws重, Xc至)=stn重, 二维附值机变量[ws重,stn重]的分布律为:

((os重,stn重)	(1,0)	(0,)
P	1/2	1 2

$$\begin{array}{c|c}
 & X_2 & P_{X_1} & P_3 \\
\hline
 & P_1 & P_2 \\
\hline
 & P_2 & P_3 \\
\hline
 & P_3 & P_3 \\
\hline
 & P_1 & P_3 \\
\hline
 & P_3 & P_3 \\
\hline
 & P_1 & P_3 \\
\hline
 & P_3 & P_3 \\
\hline
 & P_1 & P_3 \\
\hline
 & P_1 & P_3 \\
\hline
 & P_1 & P_3 \\
\hline
 & P_2 & P_3 \\
\hline
 & P_3 & P_3 \\
\hline
 & P_1 & P_2 \\
\hline
 & P_1 & P_3 \\
\hline
 & P_1 & P_2 \\
\hline
 & P_1 & P_3 \\
\hline
 & P_1 & P_2 \\
\hline
 & P$$

 $F_{CX_1, X_2}; 0, \stackrel{\sim}{=}) = P \left\{ \cos \Phi \leq X_1, \sin \Phi \leq X_2 \right\} = \left\{ \begin{array}{l} 0, & cX_1, X_2) \in D_1 \\ \frac{1}{2}, & cX_1, X_2 > ED_2 \end{array} \right.$

(2) $M_{x(t)}=E[x_{ct}]=E[\cos(t-\Phi)]=\frac{1}{2}\cos t+\frac{1}{2}\sin t$

J	0	72
Xct)	ust	sent
P	支	于

 $=\frac{1}{2}$ (start + cost)

 $Rxct_1,t_2)=\frac{1}{2}\omega st_1\cdot \omega st_2+\frac{1}{2}sint_1\cdot stnt_2=\frac{1}{2}\omega sct_1-t_2)$

注: $cos(a\pm b) = cosacosb \mp stnastnb$ $stn(a\pm b) = stnacosb \pm cosastnb$ $\frac{1}{2} \cdot \frac{1}{4} : (||) E(u) = \frac{b-a}{2} = \frac{1-o}{2} = \frac{1}{2}, \quad D(u) = \frac{(b-a)^2}{||2} = \frac{1}{12}, \quad E(u^2) = D(u) + E(u) = \frac{1}{12} + \frac{1}{4} = \frac{1}{3}$ $M_{X}(t) = E[X(t)] = E[U + \omega_{X}(2xt + \frac{1}{2})] = E(u) + E(\omega_{X}(2xt + \frac{1}{2})] = \frac{1}{2} + \int_{0}^{2x} \frac{1}{2x} \omega_{X}(2xt + \frac{1}{2}) d\frac{1}{2} = \frac{1}{2}$ $R_{X}(t_{1}, t_{2}) = E[X_{1}(t_{1}) \cdot X_{2}(t_{2})] = E[(u) + (\omega_{X}(2xt + \frac{1}{2})) \cdot (u + (\omega_{X}(2xt + \frac{1}{2}))]$ $= E[U' + u \cdot \omega_{X}(2xt + \frac{1}{2})] + E[u \cdot \omega_{X}(2xt + \frac{1}{2})] + E[\omega_{X}(2xt + \frac{1}{2}) + (\omega_{X}(2xt + \frac{1}{2}))]$ $= E(u') + E[u(\omega_{X}(2xt + \frac{1}{2})] + E[u \cdot \omega_{X}(2xt + \frac{1}{2})] + E[\omega_{X}(2xt + \frac{1}{2}xt + \frac{1}{2}) + (\omega_{X}(2xt + \frac{1}{2}xt + \frac{1}{2})]$ $= \frac{1}{3} + \frac{1}{2} \int_{0}^{3x} \frac{1}{2x} \cdot (\omega_{X}(2xt + \frac{1}{2}) d\frac{1}{2} + \frac{1}{2} \int_{0}^{3x} \frac{1}{2x} \omega_{X}(2xt + \frac{1}{2}) d\frac{1}{2}$ $= \frac{1}{3} + \frac{1}{4} \int_{0}^{3x} \frac{1}{4x} \cdot (\omega_{X}(2xt + \frac{1}{2}xt + \frac{1}{2}) d\frac{1}{2}$ $\cos(xt + \frac{1}{2}xt + \frac{1$

又: 数学的望是常数,相关函数仅与时间对关

·Xt)具有特色

$$-\frac{1}{4}m\sqrt{\frac{1}{1}}\int_{0}^{3\pi}(1-\frac{\tau}{2T})\cdot\left[R_{XCT}-m_{X}^{2}\right]dt = 4m+\int_{0}^{3\pi}(1-\frac{\tau}{2T})\cdot\left[\frac{1}{3}+\frac{1}{2}\omega_{S(2\pi\tau)}-\frac{1}{4}\right]d\tau$$

$$+\frac{1}{1+2\omega}$$

$$=\frac{1}{1+2\omega}+\int_{0}^{2\pi}(1-\frac{\tau}{2T})\cdot\left[\frac{1}{12}+\frac{1}{2}\omega_{S(2\pi\tau)}\right]dt = 4m+\int_{0}^{3\pi}(1-\frac{\tau}{2T})\times\frac{1}{12}d\tau + 4m+\int_{0}^{2\pi}(1-\frac{\tau}{2T})\cdot\frac{1}{2}\omega_{S(2\pi\tau)}d\tau$$

$$=0+0=0$$

?、〈Xct>>= mx→XiUA有数字期望的各层历任性.

 $Y(t) = \int_{0}^{t_{0}} X(t-\lambda) \cdot h(\lambda) d\lambda , \quad \begin{cases} Y(t,t+\tau) = E[Y(t),Y(t+\tau)] = \int_{0}^{t_{0}} \int_{0}^{t_{0}} f(x) dx dx - \lambda (-\tau) h(\lambda) h(\lambda x) dx dx \end{cases}$

· Yeb, 具样稳性.

(2)
$$S_{XW} = \int_{\infty}^{+\infty} e^{-ttw} R_{XCE} dt = \int_{-\infty}^{+\infty} e^{-ttw} \left(\frac{1}{3} + \frac{1}{2} \cos C_{2XE}\right) dt$$

.. Sxw===x2xS(w)+=.x[Sw-2x)+Scw+2x2]

又领部后函数为: $H(w) = \frac{d}{w+\alpha}$, $\alpha = \frac{1}{RC}$.

$$S_{Y}(w) = |H(w)|^{2} \cdot S_{X}(w) = \frac{d}{d^{2} + w^{2}} \left[\frac{2\pi}{3} S(w) + \frac{\pi}{2} S(w - 2\pi) + \frac{\pi}{2} S(w + 2\pi) \right]$$

$$= \frac{2\pi}{3} S(w) + \frac{d}{d^{2} + 4\pi^{2}} \left[\frac{\pi}{2} S(w - 2\pi) + \frac{\pi}{2} S(w + 2\pi) \right]$$

$$f(w) \cdot S(w) = f(w) \cdot S(w - w)$$

$$f(w) \cdot S(w - w) = f(w) \cdot S(w - w)$$

六、解:(1)一岁转移规平矩阵为:

$$P = \begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & 0 \end{bmatrix}$$

二岁转移概率矩阵於

(2)由于二岁转移概率矩阵(2)的意案全大于图,所以此马氏链足遍历的。又因为该马机链是 有限马轮连,所以存在极限新几几,尸3,4.

$$\begin{bmatrix}
\frac{1}{4} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{4}
\end{bmatrix}
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{4}
\end{bmatrix}
= 0$$

$$\begin{bmatrix}
-\frac{5}{4}P_1 + t^2P_2 + \frac{1}{3}P_3 + t^2P_4 = 0}{4P_1 + t^2P_2 + t^2P_3 + t^2P_4 = 0}$$

$$\begin{bmatrix}
-\frac{5}{4}P_1 + t^2P_2 + \frac{1}{4}P_3 + t^2P_4 = 0}{4P_1 + t^2P_2 + t^2P_3 + t^2P_4 = 0}$$

$$\begin{bmatrix}
-\frac{5}{4}P_1 + t^2P_2 + \frac{1}{4}P_3 + t^2P_4 = 0}{4P_1 + t^2P_2 + t^2P_3 + t^2P_4 = 0}$$

$$\begin{bmatrix}
-\frac{5}{4}P_1 + t^2P_2 + \frac{1}{4}P_3 + t^2P_4 = 0}{4P_1 + t^2P_2 + t^2P_3 + t^2P_4 = 0}$$

$$\begin{bmatrix}
-\frac{5}{4}P_1 + t^2P_2 + t^2P_3 + t^2P_4 = 0}{4P_1 + t^2P_2 + t^2P_3 + t^2P_4 = 0}$$

$$\begin{bmatrix}
-\frac{5}{4}P_1 + t^2P_2 + t^2P_3 + t^2P_4 = 0}{4P_1 + t^2P_3 + t^2P_4 = 0}$$

$$\begin{bmatrix}
-\frac{5}{4}P_1 + t^2P_3 + t^2P_4 +$$

多维 根本:
$$P\{X_{=1}, X_{3}=2, X_{5}=3\}$$
 = $\frac{4}{2\pi}$ P_{240} . $P_{21(1)}$. P_{23} P_{23}

P{Xcn=t}=Pt Pt Pycn) > 他对极美

P{X(n1)=t, X(n=t2,..., X (nm)=tm)= == Pt Pt Pt, (M1) Ptiate (N2-N1) Ptm-1 tm (Nm-Nm+)