Parameter Estimation Fitting Probability Distributions Maximum Likelihood

MIT 18.443

Dr. Kempthorne

Spring 2015

Outline

- Maximum Likelihood Estimation
 - Framework/Definitions

Likelihood Definition

General Model

• Data Model : $\mathbf{X} = (X_1, X_2, \dots, X_n)$ vector-valued random variable with joint density given by

$$f(x_1,\ldots,x_n\mid\theta)$$

- Data Realization: $\mathbf{X} = \mathbf{x} = (x_1, \dots, x_n)$
- **Likelihood of** θ (given x):

$$lik(\theta) = f(x_1, \ldots, x_n \mid \theta)$$

Note:

- (x_1, \ldots, x_n) treated as constants realization of $\mathbf{X} = \mathbf{x}$
- $lik(\theta) = lik(\theta \mid \mathbf{x})$ a function of θ given \mathbf{x}

Case A: One-Sample Model

• X_1, X_2, \dots, X_n i.i.d. r.v.'s. with density function $f(x \mid \theta)$

$$f(x_1,...,x_n \mid \theta) = f(x_1 \mid \theta) \times \cdots \times f(x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

$$\implies lik(\theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

Likelihood Definition

Case B: Time-Series Model

- $X_1, X_2, ..., X_n$ are observations of a time series $\{X_t, t = 1, 2, ...\}$
- Joint density of $X = (X_1, X_2, \dots, X_n)$ is given by:

$$f(x_1, ..., x_n \mid \theta) = f(x_1 \mid \theta) \times f(x_2 \mid \theta, x_1) \times f(x_3 \mid \theta, x_1, x_2) \times \cdots \times f(x_n \mid \theta, x_1, x_2, ..., x_{n-1})$$

$$= \prod_{\substack{i=1 \\ n}} f(x_i \mid \theta, \{x_j; j < i\})$$

$$\implies lik(\theta) = \prod_{\substack{i=1 \\ n}} f(x_i \mid \theta, \{x_j; j < i\})$$

Maximum Likelihood Estimate (MLE)

- Model/Likelihood Assumptions
 - Data Model : $\mathbf{X} = (X_1, X_2, \dots, X_n)$ vector-valued random variable with joint density given by

$$f(x_1,\ldots,x_n\mid\theta)$$

- Data Realization: $\mathbf{X} = \mathbf{x} = (x_1, \dots, x_n)$
- **Likelihood of** θ (given **x**):

$$lik(\theta) = f(x_1, \ldots, x_n \mid \theta)$$

- The **Maximum Likelihood Estimate** maximizes $lik(\theta)$ $lik(\hat{\theta}_{MLE}) = \max_{\theta} lik(\theta)$.
 - $\hat{\theta}_{MLE} = \hat{\theta}_{MLE}(\mathbf{x})$ (depends on \mathbf{x} !)
 - $\hat{\theta}_{MLE}$ is parameter for which realization ${\bf x}$ is "most likely"
- $oldsymbol{\hat{ heta}}_{MLE}$ maximizes the $oldsymbol{\log}$ likelihood

$$\ell(\theta) = \log lik(\theta) = \sum_{i=1}^{n} \log[f(x_i \mid \theta)], \quad \text{(Case A)}$$

Specifying the MLE

Example 8.5.A: Poisson Distribution

- X_1, \ldots, X_n i.i.d. $Poisson(\lambda)$
- $f(x \mid \lambda) = \frac{\lambda^x}{x!} e^{-\lambda}$
- $\ell(\lambda) = \sum_{i=1}^{n} [x_i \ln(\lambda) \lambda \ln(x!)]$

MLE $\hat{\lambda}_{MLE}$

- $\ell(\hat{\lambda}_{MLE})$ maximizes $\ell(\lambda)$
- $\hat{\lambda}_{MLE}$ solves: $\frac{d\ell(\lambda)}{d\lambda} = 0$
- $\hat{\lambda}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}.$

Properties of $\hat{\lambda}_{MLE}$

- $\hat{\lambda}_{MIF}$ same as $\hat{\lambda}_{MOM}$
- Sampling distribution of $\hat{\lambda}_{MLE}$ known.

Specifying the MLE

Example 8.5.B: Normal Distribution

•
$$X_1, ..., X_n$$
 i.i.d. $N(\mu, \sigma^2)$
• $f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2}}$

•
$$\ell(\mu, \sigma^2) = \sum_{i=1}^n \ln[f(x_i \mid \mu, \sigma^2)]$$

= $\sum_{i=1}^n [-\frac{1}{2}(\ln(2\pi) + \ln(\sigma^2)) - \frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}]$

$$= -\frac{n}{2}\ln(2\pi) - n\ln(\sigma) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2$$

MLE of $\theta = (\mu, \sigma^2)$:

- $\bullet \ \hat{\theta}_{MLE} = (\hat{\mu}_{MLE}, \hat{\sigma}_{MLE}^2)$
- $\ell(\hat{\theta}_{MLE})$ maximizes $\ell(\theta) = \ell(\mu, \sigma)$
- $\hat{\theta}_{MLE}$ solves: $\frac{\partial \ell(\mu, \sigma^2)}{\partial \mu} = 0$ and $\frac{\partial \ell(\mu, \sigma^2)}{\partial \sigma^2} = 0$

MLEs of Normal Distribution Parameters

Normal MLEs

$$\hat{\mu}_{MLE} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

•
$$\hat{\sigma}_{MLE}^2 = \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

Note:

• For any 1-1 function $g(\theta)$, the MLE for $g(\theta)$ is $\widehat{g(\theta)}_{MLE} = g(\widehat{\theta}_{MLE})$

•
$$\hat{\sigma}_{MLE} = \sqrt{\hat{\sigma}^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- $\hat{\theta}_{MLE} = (\hat{\mu}_{MLE}, \hat{\sigma}_{MLE}^2) = \hat{\theta}_{MOM}$
- Sampling distribution of $\hat{\theta}_{MLE}$ known (joint distribution!)

Specifying the MLE

Example 8.5.C: Gamma Distribution

- X_1, \ldots, X_n i.i.d. $Gamma(\alpha, \lambda)$
- $f(x \mid \alpha, \lambda) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha 1} e^{-\lambda x}$
- $\ell(\alpha, \lambda) = \sum_{i=1}^{n} \ln[f(x_i \mid \mu, \sigma^2)]$ $= \sum_{i=1}^{n} [-\ln(\Gamma(\alpha)) + \alpha \ln(\lambda) + (\alpha 1) \ln(x_i) \lambda x_i]$

$$= -n\ln(\Gamma(\alpha)) + n\alpha\ln(\lambda) + (\alpha-1)\sum_{i=1}^{n}\ln(x_i) - \lambda\sum_{i=1}^{n}x_i$$

MLE of $\theta = (\alpha, \lambda)$:

- $\hat{\theta}_{MLE} = (\hat{\alpha}_{MLE}, \hat{\lambda}_{MLE})$
- $\ell(\hat{\theta}_{MLE})$ maximizes $\ell(\theta) = \ell(\alpha, \lambda)$
- $\hat{\theta}_{MLE}$ solves: $\frac{\partial \ell(\alpha,\lambda)}{\partial \alpha}=0$ and $\frac{\partial \ell(\mu,\lambda)}{\partial \lambda}=0$

MLEs of Gamma Distribution Parameters

•
$$\ell(\alpha, \lambda) = -n \ln(\Gamma(\alpha)) + n\alpha \ln(\lambda) + (\alpha - 1) \sum_{i=1}^{n} \ln(x_i) - \lambda \sum_{i=1}^{n} x_i$$

Partial derivative Equations to solve:

$$0 = \frac{\partial \ell(\alpha, \lambda)}{\partial \alpha} = -n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + n \ln(\lambda) + \sum_{i=1}^{n} \ln(x_i)$$
$$0 = \frac{\partial \ell(\alpha, \lambda)}{\partial \lambda} = \frac{n\alpha}{\lambda} - \sum_{i=1}^{n} x_i$$

- Second equation gives $\hat{\lambda} = \hat{\alpha} \times \frac{n}{\sum_{i=1}^{n} x_i} = \hat{\alpha}/\overline{X}$
- Substitution in first equation gives

$$0 = \frac{\partial \ell(\alpha, \hat{\lambda})}{\partial \alpha} = -n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + n \ln(\hat{\lambda}) + \sum_{i=1}^{n} \ln(x_i)$$
$$= -n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + n \ln(\alpha) - n \ln(\overline{X}) + \sum_{i=1}^{n} \ln(x_i)$$

MLEs of Gamma Distribution Parameters

Note:

- The log likelihood $\ell(\alpha, \lambda)$ for a fixed α is maximized by $\hat{\lambda}_{\alpha} = \alpha/\overline{X}$.
- Numerical methods required to solve for $\hat{\alpha}_{MLE}$ maximizing the concentrated likelihood or profile likelihood $\ell(\alpha, \hat{\lambda}_{\alpha})$
- The MLE for α does not equal $\hat{\alpha}_{MOM}$
- The sampling distribution of $\hat{\theta}_{MLE} = (\hat{\alpha}_{MLE}, \hat{\lambda}_{MLE})$ is approximated using the **bootstrap** method

Issue:

- How do the sampling distributions of $\hat{\theta}_{MLE}$ and $\hat{\theta}_{MOM}$ compare?
- Better estimates have lower dispersion about true θ .

MIT OpenCourseWare http://ocw.mit.edu

18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.