First Intuition of Category Theory

wilberchao 2019/2/26

Agenda

- Definition of Category Theory
- Functor
- Natural Transformation

Definition of Category Theory

- Primitive
 - Object
 - Morphism
- Properties
 - Composition
 - Identity
 - Associativity

Object

- Not Object in Object-Orient programming
- Not Class in Object-Orient programming
- Just a point
- Primitive
- No properties

Morphism

- Primitive
- No properties
- Just an arrow
 - Identifying start and end

Object - Morphism

- The object is used to identify the start and end of the morphism
- The morphism shows the relationship between objects

Object – Morphism

only one morphism

many morphisms

no morphism

infinite morphisms

Composition

Composition

- Objects, morphisms don't have structures
- Composition has structures
 - Encoding everything into compositions

Identity

Every object has one identity morphism at least

Identity

Associativity

Set Category

• Object: Set

• Morphism: functions between sets

Scala Category

Object: Type

Morphism: Function

```
scala> val f:Int => String = a => a.toString
f: Int => String = $$Lambda$1079/671384775@5a6f6cac
scala> val g: String => Long = s => 0L
g: String => Long = $$Lambda$1080/202968316@77ce8bc5
scala> f andThen g
res2: Int => Long = scala.Function1$$Lambda$1078/1861236708@335cdd2
scala> g compose f
res3: Int => Long = scala.Function1$$Lambda$1218/860285190@443ac5b8
```

Why Referential transparency

- Making functions produce a value rather than effects
 - val f: JDBC => IO[Read Mysql]
 - val g: JDBC => Future[Read Mysql]
- We can compose functions which produce value
- We can't compose functions which produce effect
 - Effects disobey the associativity of composition

Functor?

Functor is a type class that abstracts over type constructors that can be map 'ed over. Examples of such type constructors are List, Option, and Future.

```
trait Functor[F[_]] {
  def map[A, B](fa: F[A])(f: A => B): F[B]
}

// Example implementation for Option
implicit val functorForOption: Functor[Option] = new Functor[Option] {
  def map[A, B](fa: Option[A])(f: A => B): Option[B] = fa match {
    case None => None
    case Some(a) => Some(f(a))
  }
}
```

Functor

- Mappings between categories
 - Object
 - Morphism
- Preserving Structure

Functor Mapping

Functor Preserving Structure

Functor Identity

Functors

Functor maps a single object category to another point in another category

Functor maps whole category to an object in another category

Functor maps a category to itself

Functor maps whole category to an subset of another category

Functor in Scala

Functor in Cats

```
trait Functor[F[_]] {
  def map[A, B](fa: F[A])(f: A => B): F[B]
// Example implementation for Option
implicit val functorForOption: Functor[Option] = new Functor[Option] {
  def map[A, B](fa: Option[A])(f: A => B): Option[B] = fa match {
    case None => None
    case Some(a) => Some(f(a))
```

Functor law

A Functor instance must obey two laws:

- Composition: Mapping with f and then again with g is the same as mapping once with the composition of f and g
 - o fa.map(f).map(g) = fa.map(f.andThen(g))
- Identity: Mapping with the identity function is a no-op
 - \circ fa.map(x => x) = fa

Functor Law

- Functor of Option[_]
- Identity
 - map Option(a) Ida = Ida Option(a)
- Composition
 - map(Option(a))(g ∘ f) = (map g ∘ map f)(Option(a))

Functor Container

- Option[A], either None or Some(A)
 - You can just put a function into `map`
- List[A], either 0 or many A in a list
 - You can just put a function into `map`
- Future[A], either happened or pending
 - You can just put a function into `map`

Natural Transformation

I think we now have enough ammunition on our hands to tackle naturality. Let's skip to the middle of the book, section 7.4.

A natural transformation is a morphism of functors. That is right: for fix categories C and D, we can regard the functors $C \Rightarrow D$ as the object of a new category, and the arrows between these objects are what we are going to call natural transformations.

- Mapping between Functors
- Preserving structure

Relationship between Ff and Gf is Naturality Square

$$\alpha_b \circ F_f = G_f \circ \alpha_a$$

Mapping object a to morphism Ca

Mapping morphism f to a commuting diagram

Natural Transformation-Polymorphic function

 α : forall a, Fa => Ga

 $\alpha_b \circ \mathsf{map}_{\mathsf{F}} \, \mathsf{f} = \mathsf{map}_{\mathsf{G}} \, \mathsf{f} \circ \alpha_{\mathsf{a}}$

Natural Transformation-Parametric function

val ListToOption[A]: List[A] => Option[A] = list => list.headOption

Functor vs Natural Transformation

- Functor as a container
 - map modifies the content without reshaping the container
- Natural Transformation
 - To fulfill that mapping all objects from Functor F to Functor F
 - The content object is too polymorphic to modify it
 - Reshaping/transforming one container into another container without modifying content
 - Polymorphic/parametric functions

Reference

- Bartosz Milewski Category theory for programmer
 - Category Theory 1.2: What is a category?
 - Category Theory 6.1: Functors
 - Category Theory 9.1: Natural transformations
- Category Theory for Programmers: The Preface

Thank you for your attention