Cross-validation and Splines

Vahid Partovi Nia

Advanced Machine Learning: Lecture 04

March 3, 2018

Outline

Information Criterion

Cross-validation

- 1 Information Criterion
- 2 Cross-validation
- Splines

Cross-validation

Splines

- Why do we need parametric models?
- Why do we use likelihood?
- Why maximum likelihood is good?
- What information means?
- How information is related to data?

Cross-validation

Splines

 \mathbb{KL} divergence between the assumed class $f(x \mid \theta)$ from true data distribution $f(x \mid \theta_0)$ is

$$\mathbb{KL}(\theta_0, \theta) = \int \log \left\{ \frac{f(x \mid \theta_0)}{f(x \mid \theta)} \right\} f(x \mid \theta_0)$$
$$= \mathbb{E}_{\theta_0} \left\{ \frac{f(x \mid \theta_0)}{f(x \mid \theta)} \right\}$$

Cross-validation

Splines

 \mathbb{KL} divergence between the assumed class $f(x \mid \theta)$ from true data distribution $f(x \mid \theta_0)$ is

$$\mathbb{KL}(\theta_0, \theta) = \int \log \left\{ \frac{f(x \mid \theta_0)}{f(x \mid \theta)} \right\} f(x \mid \theta_0)$$
$$= \mathbb{E}_{\theta_0} \left\{ \frac{f(x \mid \theta_0)}{f(x \mid \theta)} \right\}$$

$$\mathbb{KL}(\theta_0, \theta) \neq \mathbb{KL}(\theta, \theta_0)$$

Cross entropy of the assumed class $f(x \mid \theta)$ from true data distribution $f(x \mid \theta_0)$ is

$$\mathbb{H}(\theta, \theta_0) = \int \log f(x \mid \theta) f(x \mid \theta_0) dx$$

Cross-validation

Splines

 $\mathbb{KL}(\theta_0, \theta) = \mathbb{H}(\theta_0, \theta_0) - \mathbb{H}(\theta, \theta_0)$

Properties

Information Criterion

Cross-validation

Splines

- $\mathbb{KL}(\theta_0, \theta) > 0$ iff $f(x \mid \theta_0) \neq f(x \mid \theta)$ on a set of x with positive measure.
- $\mathbb{KL}(\theta_0, \theta) = 0$ iff $f(x \mid \theta_0) = f(x \mid \theta)$ almost everywhere.
- $\mathbb{KL}_n(\theta_0, \theta) = n\mathbb{KL}(\theta_0, \theta)$ for a set of i.i.d observations (x_1, \dots, x_n) .
- $\frac{\partial \mathbb{H}(\theta, \theta_0)}{\partial \theta}|_{\theta=\theta_0} = 0$
- $\frac{\partial^2 \mathbb{H}(\theta, \theta_0)}{\partial \theta \partial \theta^{\top}}|_{\theta=\theta_0} = -J(\theta_0)$ where J(.) is the observed information.

More about entropy

Information Criterion

Cross-validation

Splines

Suppose $A = \{A_1, \dots, A_k\}$ with probabilities p_1, \dots, p_k . Define A' to be an A-similar event as $A' = \{A_1, \dots, A_k, A_{k+1}\}$ with probabilities $p_1, \dots, p_k, p_{k+1} = 0$.

- If two sets A and B are independent $\mathbb{H}(A \times B) = \mathbb{H}(A) + \mathbb{H}(B)$.
- $\mathbb{H}(A) = \mathbb{H}(A')$.

The only function that satisfies the above two properties is $\mathbb{H}(A) = \lambda \sum_i p_i \log p_i$. Why this result is important?

More about entropy

Information Criterion

Cross-validation

A_1	A_2
0.1	0.9
0.49	0.51
0.69 0.325	

Dimension estimation

Information Criterion

Cross-validation

Splines

- Suppose the true model $f(x \mid \boldsymbol{\theta}_K)$ is in a large space with parameters $\boldsymbol{\theta}_K = (\theta_1, \dots, \theta_k, \dots, \theta_K)^{\top}$,
- We are fitting a more parsimonious model $f(x \mid \boldsymbol{\theta}_k)$ with parameters $\boldsymbol{\theta}_k = (\theta_1, \dots, \theta_k)^{\top}$. The true parameter is $\boldsymbol{\theta}_0$ of dimension $K \times 1$.

$$\mathbb{KL}(\boldsymbol{\theta}_0, \boldsymbol{\theta}_k) = \mathbb{KL}(\boldsymbol{\theta}_0, \boldsymbol{\theta}_0 + \Delta \boldsymbol{\theta}) = \frac{1}{2} \Delta \boldsymbol{\theta}^{\top} \mathbf{I} \Delta \boldsymbol{\theta}$$

Where I is the Fisher information.

Cross-validation

Splines

Suppose the projection of θ_0 is θ^* . While we approximate \mathbb{KL} at θ_0 we want to remain close to θ_0 in the projection, so let's use the closest projection of θ_0 , i.e. the MLE in the lower dimension $\hat{\theta}_k$.

$$\mathbb{KL}(\boldsymbol{\theta}_0, \hat{\boldsymbol{\theta}}_k) \approx (\boldsymbol{\theta}_0 - \hat{\boldsymbol{\theta}}_k)^{\top} \mathbf{I}(\boldsymbol{\theta}_0 - \hat{\boldsymbol{\theta}}_k)$$
$$\approx (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^{\top} \mathbf{I}(\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)$$
$$+ (\boldsymbol{\theta}^* - \hat{\boldsymbol{\theta}}_k)^{\top} \mathbf{I}(\boldsymbol{\theta}^* - \hat{\boldsymbol{\theta}}_k)$$

Cross-validation

$$2n\mathbb{E}\{\mathbb{KL}(\boldsymbol{\theta}_0, \hat{\boldsymbol{\theta}}_k)\} = n(\theta_0 - \boldsymbol{\theta}^*)^{\top} \mathbf{I}(\theta_0 - \boldsymbol{\theta}^*) + \mathbb{E}\{n(\boldsymbol{\theta}^* - \hat{\boldsymbol{\theta}}_k)^{\top} \mathbf{I}(\boldsymbol{\theta}^* - \hat{\boldsymbol{\theta}}_k)\}$$
$$= \{-2\log L(\hat{\boldsymbol{\theta}}_k) + 2k\} + \{2\log L(\hat{\boldsymbol{\theta}}_K) - K\}.$$

Considerations

Information Criterion

Cross-validation

Splines

- Data are iid
- $\boldsymbol{\theta} \in \mathbb{R}^{K}$
- $\hat{\boldsymbol{\theta}}_k$ converges with standard rate $o_n(n^{-\frac{1}{2}})$ to $\boldsymbol{\theta}^*$
- Estimation is maximum likelihood
- k is close to K
- Local alternative asymptotic conditions hold
- $f(\mathbf{x} \mid \boldsymbol{\theta})$ is smooth with respect to $\boldsymbol{\theta}$
- Comparing models must be nested with respect to a big model of dimension K.
- Is inconsistent and tends to overfits asymptotically.

Information Criterion

Cross-validation

$${\rm AIC} \ = \ -2\log{\rm likelihood} + 2k$$

$$TIC = ?$$

$$BIC = -2 \log likelihood + \log nk$$

$$DIC = ?$$

- Takeuchi Information Criterion (TIC): think about wrong parametric models
- Deviance Information Criterion (DIC): think about Bayesian hierarchical models

Cross-validation

Splines

For model M with parameter vector $\boldsymbol{\theta}$ of dimension $k \times 1$, the *evidence* principle says that the data supports the model that brings more predictive power

$$f(x \mid M) = \int f(x \mid M, \boldsymbol{\theta}) f(\boldsymbol{\theta} \mid M) d\boldsymbol{\theta}$$

If θ converges with $o_p(n^{-\frac{1}{2}})$, if one supposes $f(\theta \mid M) = \text{cst}$, the Laplace approximation gives

$$-2\log f(\mathbf{x}\mid M) \approx -2\log f(x\mid \hat{\boldsymbol{\theta}}, M) + k\log n$$

Cross-validation

- BIC is a consistent model selection: $\mathbf{P}(\hat{M}_n = M) = 1$ as long as $M \in \{\mathcal{M}_n\}$ asymptotically
- Use BIC for model selection and this is equivalent to penalization with $||m{\beta}||_0$
- AIC tends to overfit

Leave-one-out = Jackknife

Information Criterion

Cross-validation

Splines

$$E = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}^{(-i)})^2$$

if $\mathbf{y} = \mathbf{H}y$

$$E = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_{ii}} \right)^2$$

Where h_{ii} is the diagonal element of H

Connections

Information Criterion

Cross-validation

- Put each data point into n bins.
- k-fold cross-validation: Put data into k bins
- Generalized cross validation $h_{ii} = \frac{1}{n} \sum_{i=1}^{n} h_{ii} = \frac{1}{n} tr(H)$

Splines

Cross-validation

1	2	3	4	5
Train	Train	Validation	Train	Train ₽

$$CV(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{-\kappa(i)}(\mathbf{x}_i))$$

- In regression $L(y,\hat{y})$ is the euclidean norm $(y-\hat{\ }y)^2$
- In classification $L(y,\hat{y}) = y \log \hat{y}$ is the cross entropy.
- Cross entropy is the multinomial negative log likelihood.

In practice

Information Criterion

Cross-validation

Splines

• Implement cross-validation B times:

$$\hat{E}_b = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}^{(b)})^2$$

• $\bar{E} \pm 1.96\sqrt{\hat{\mathbb{V}}(\bar{E})} = \bar{E} \pm 1.96\frac{\hat{\sigma}_E}{\sqrt{B}}$

Cross-validation and AIC

Cross-validation

Information

Criterion

Take
$$\frac{1}{(1-x)^2} \approx 1 + 2x$$
 and use $x = \operatorname{tr}\left(\frac{\mathbf{H}}{n}\right) = \frac{p}{n}$

Splines

$$E = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - \operatorname{tr}\left(\frac{\mathbf{H}}{n}\right)} \right)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \frac{1}{\left\{1 - \operatorname{tr}\left(\frac{\mathbf{H}}{n}\right)\right\}^2}$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \left\{ 1 + 2\operatorname{tr}\left(\frac{\mathbf{H}}{n}\right) \right\}$$

$$n = \frac{1}{i=1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \frac{2p}{n} \hat{\sigma}^2$$

 $= \frac{\hat{\sigma}^2}{n} \left\{ \sum_{i=1}^n (y_i - \hat{y}_i)^2 + 2p \right\} = \frac{\hat{\sigma}^2}{n} AIC$ 20/22

Degrees of freedom

Information Criterion

Cross-validation

Splines

$$\sum_{i=1}^{n} \operatorname{cov}(y_i, \hat{y}_i) = \operatorname{tr}\{\operatorname{cov}(\mathbf{y}, \hat{\mathbf{y}})\}$$

$$= \operatorname{tr}(\mathbf{H}) \mathbb{V}(\mathbf{y})$$

$$= \operatorname{tr}(\mathbf{H}) \sigma^2$$

$$= p\sigma^2$$

Regression degrees of freedom

$$\frac{1}{\sigma^2} \sum_{i=1}^n \text{cov}(y_i, \hat{y}_i)$$

Ridge regression

Information Criterion

Cross-validation

$$\mathbf{H}_{\lambda} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top}$$

- $\operatorname{tr}(\mathbf{H}_{\lambda})$ reflects regression degrees of freedom, depending on λ ranges from p to 0
- if β_0 is not penalized ranges from p to 1

univariate function approximation

Information Criterion Cross-validation

Splines

Suppose approximation of a good univariate function over a set of observed $(x_i, y_i), i = 1, ..., n$.

$$y_i = f(x_i) + \varepsilon_i \approx \sum_j \beta_j b_j(x_i)$$

- polynomial base $x \in [-1, 1]$, $b_i(x_i) = x_i^j$
- Fourier base $x \in [-\pi, \pi]$,

$$y_i \approx \sum_{j=1}^k \beta^{(1)} \sin\left(\frac{2\pi j}{k}\right) + \beta^{(2)} \cos\left(\frac{2\pi j}{k}\right)$$

• Wavelet base of resolution $k, x \in [0, 2\pi]$

$$y_i \approx \sum_{i=1}^{2^k-1} \beta_j^{(k)} b_j^{(k)}(x_i)$$

