Literary Review

Tarek Ghaddar Dr. Jean Ragusa

Nuclear Engineering Department Texas A&M University College Station, TX, 77843-3133

The Transport Equation

Equation 1 represents the discrete ordinates (S_n) form of the Boltzmann transport equation, where the angular flux is discretized into a set of energy groups g and angular directions m,

$$\vec{\Omega}_{m} \cdot \vec{\nabla} \psi_{m,g}^{(l+1)} + \Sigma_{t,g} \psi_{m,g}^{(l+1)} = S_{m,g}^{(l)} + \sum_{g'} \sum_{m'} \omega_{m} \Sigma_{s,g' \to g,m' \to m} \psi_{m'g'}^{(l)}.$$
(1)

The left hand side of the equation represents loss terms: $\vec{\Omega}_m \cdot \vec{\nabla}$ is the leakage operator, and $\Sigma_{(t,g)}$ is the collision operator (absorption and outscatter). The right hand side represents the total source: $S_{m,g}$ represents the external source, $\Sigma_{s,g'\to g,m'\to m}$ represents the inscatter operator, and ω_m is a weighting factor for angular direction m.

The preferred way to solve the S_n form of the transport equation is source iteration. An initial guess is made, which occupies the right hand side of Eq. 1, and the next iteration of $\psi_{m,g}$ is calculated from this. This process is repeated until $\psi_{m,g}$ converges within a user-specified tolerance. The method of solving the S_n transport equation on a domain discretized in space, energy, and angle is the transport sweep.

The Structured Transport Sweep

A sweep algorithm is defined by three properties:

- partitioning: dividing the domain among available processors
- aggregation: grouping cells, directions, and energy groups into tasks
- scheduling: choosing which task to execute if more than one is available

If M is the total number of angular directions, G is the total number of energy groups, and N is the total number of cells, then the total fine grain work units is 8MGN. The factor of 8 is present as M directions are swept for all 8 octants of the domain. The finest grain work unit is the calculation of a single direction and energy groups unknowns in a single cell, or $\psi_{m,g}$ for a single cell.

In a regular grid, we have the number of cells in each Cartesian direction: N_x, N_y, N_z . These cells are aggregated into "cellsets". However, in an unstructured mesh, the number of cells cannot be described as such. In PDT specifically we initially subdivide the domain into subsets, which are just rectangular subdomains. Within each subset, an unstructured mesh is created. This creates a pseudo-regular grid.

These subsets become the N_x , N_y , N_z equivalent for an unstructured mesh. The spatial aggregation in a PDT unstructured mesh is done by aggregating subsets into cellsets.

If M is the total number of angular directions, G is the total number of energy groups, and N is the total number of cells, then the total fine grain work units is 8MGN. The factor of 8 is present as M directions are swept for all 8 octants of the domain. The finest grain work unit is the calculation of a single direction and energy groups unknowns in a single cell, or $\psi_{m,g}$ for a single cell.

Fine grain work units are aggregated into coarser-grained units called *tasks*. A few terms are defined that describe how each variable is aggregated.

- $A_x = \frac{N_x}{P_x}$, where N_x is the number of subsets in x and P_x is the number of processors in x
- $A_y = \frac{N_y}{P_y}$, where N_y is the number of subsets in y and P_y is the number of processors in y
- $N_g = \frac{G}{A_g}$
- $N_m = \frac{M}{A_m}$
- $N_k = \frac{N_z}{P_z A_z}$

It follows that each process owns N_k cell-sets (each of which is A_z planes of A_xA_y cells), $8N_m$ direction-sets, and N_g group-sets for a total of $8N_mN_gN_k$ tasks.

One task contains $A_x A_y A_z$ cells, A_m directions, and A_g groups. Equivalently, a task is the computation of one cellset, one groupset, and one angleset. One task takes a stage to complete. This is particularly important when comparing sweeps to the performance models.

The minimum possible number of stages for given partitioning parameters P_i and A_j is $2N_{\text{fill}} + N_{\text{tasks}}$. N_{fill} is both the minimum number of stages before a sweepfront can reach the center-most processors and the number needed to finish a direction's sweep after the center-most processors have finished. Equations 2, 3, and 4 define N_{fill} , N_{idle} , and N_{tasks} :

$$N_{\text{fill}} = \frac{P_x + \delta_x}{2} - 1 + \frac{P_y + \delta_y}{2} - 1 + N_k (\frac{P_z + \delta_z}{2} - 1)$$
 (2)

$$N_{\text{idle}} = 2N_{\text{fill}} \tag{3}$$

$$N_{\text{tasks}} = 8N_m N_g N_k \tag{4}$$

where δ_u is 1 for P_u odd, and 0 for P_u even.

Equation 5 approximately defines parallel parallel sweep efficiency. This can be calculated for specific machinery and partitioning parameters by substituting in values calculated using Eqs 2,3, and 4.

$$\varepsilon = \frac{1}{\left[1 + \frac{N_{\text{idle}}}{N_{\text{tasks}}}\right]\left[1 + \frac{T_{\text{comm}}}{T_{\text{task}}}\right]}$$
(5)

Equations 6 and 7 show how T_{comm} and T_{task} are calculated:

$$T_{\text{comm}} = M_L T_{\text{latency}} + T_{\text{byte}} N_{\text{bytes}}$$
 (6)

$$T_{\text{task}} = A_x A_y A_z A_m A_g T_{\text{grind}} \tag{7}$$

where T_{latency} is the message latency time, T_{byte} is the additional time to send one byte of message, N_{bytes} is the total number of bytes of information that a processor must communicate to its downstream neighbors at each stage, and T_{grind} is the time it takes to compute a single cell, direction, and energy group.

Scheduling utilizes an algorithm to assign priority to tasks. An example of this is the "depth-of-graph" algorithm, which gives priority to the task that has the longest chain of dependencies. In general, a quantity *D* is defined, which is simply the number of downstream dependents each task has. Then a simple series of logicals determines which task has priority and should be executed first:

- 1. Tasks with higher D have higher priority,
- 2. If multiple tasks have the same D, then tasks with $\Omega_x > 0$ have priority,
- 3. The next tiebreaker is $\Omega_{y} > 0$,
- 4. The next tiebreaker is $\Omega_z > 0$,

Another optimal scheduling algorithm (not proved) is the "push-to-central" algorithm. This algorithm prioritizes tasks that advance wavefronts to central planes in the processor layout. A few definitions are necessary to understand the push-to-central algorithm:

- $i \varepsilon (1, P_x)$ = the x index into the processor array, with similar definitions for y and z indices, j and k,
- $\bullet \ \ X = \frac{P_x + \delta_x}{2},$
- $\bullet \ \ Y = \frac{P_y + \delta_y}{2},$
- $Z = \frac{P_z + \delta_z}{2}$.

With these definitions, The push-to-central algorithm prioritizes the following tasks accordingly:

- 1. If $i \le X$, then tasks with $\Omega_x > 0$ have priority, while for i > X, tasks with $\Omega_x < 0$ have priority.
- 2. If multiple ready tasks have the same sign on $\Omega_{\rm r}$, apply rule 1 to $j, Y, \Omega_{\rm v}$.
- 3. If multiple ready tasks have the same sign on Ω_x and Ω_y , apply rul 1 to k, Z, Ω_z .

This schedule pushes tasks toward the i = X central processor plane with top priority, followed by pushing toward the j = Y central processor plane, followed by pushing toward the k = Z central processing plane.

The Unstructured Transport Sweep

The development of an algorithm for efficient parallel transport sweeps focuses on obtaining a good sweep ordering. This is called *scheduling*. A new list scheduling algorithm has been constructed for modest levels of parallelism (up to 126 processors).

There are three requirements for a sweep scheduling algorithm to have. First, the algorithm should have low complexity, since millions of individual tasks are swept over in a typical problem. Second, the algorithm should schedule on a set of processors that is small in comparison to the number of tasks in the sweep graph. Last, the algorithm should distribute work in the spatial dimension only, so that there is no need to communicate during the calculation of the scattering source.

Here is the pseudocode for the algorithm:

```
Assign priorities to every cell-angle pair

Place all initially ready tasks in priority queue

While (uncompleted tasks)

For i=1,maxCellsPerStep

Perform task at top of priority queue

Place new on-processor tasks in queue

Send new partition boundary data

Receive new partition boundary data

Place new tasks in queue
```

An important part of the algorithm above is the assigning priorities to tasks. Specialized prioritization heuristics generate partition boundary data as rapidly as possible in order to minimize the processor idle time.

Nearly linear speedups were obtained on up to 126 processors. Further work is being done for scaling to thousands of processors.

Cycle Detection

A cycle is a loop in a directed graph. These occur commonly in unstructred meshes. The problem with cycles is that they can cause hang time in the problem, as a processor will wait for a message that might will never come. This means that the computation for one or more elements will never be completed. The solution to this is to "break" any cycles that exist by removing an edge of the task dependence graph (TDG). Old flux information is used on a particular element face in the domain. Most of the time, the edge removed is oriented obliquely with respect to the radiation direction.

Algorithms for for finding cycles are called *cycle detection* algorithms. This must be done efficiently in parallel, both because the task dependence graph is distributed, and because the finite element grid may be deforming every timestep and changing the associated TDG.

Cycle detection utilizes two operations: trim and mark. Trimming identifies and discards elements which are not in cycles. At the beginning of cycle detection, graphs are trimmied in the downwind direction, then the remaining graphs are trimmed in the upwind direction. A pivot vertex is then selected in each graph. Graph vertices are then marked as upwind, downwind, or unmarked. Then, if any vertices are both upwind and downwind, the cycle is these vertices plus the pivot vertex. An edge is removed between 2 cycle vertices, and 4 new graphs are created: a new cycle, the upwind vertices without the cycle, the downwind vertices without the cycle, and a set of unmarked vertices. This recursively continues until all cycles are eliminated.

Sweep Example

Here I will cover an example of a 2D processor layout with different aggregation factors, graphically and mathematically verifying the performance models for different partitioning parameters. It is important to note that in 2D, with P_z and A_z equal to 1, Eqs. 2, and 4 change slightly due to the lack of z dependence. Equation 10 shows the new expressions for N_{fill} and N_{tasks} :

$$N_{\text{fill}} = \frac{P_x + \delta_x}{2} - 1 + \frac{P_y + \delta_y}{2} - 1 \tag{8}$$

$$N_{\text{tasks}} = 4N_m N_g \tag{9}$$

(10)

where we see that in N_{tasks} we only multiply N_m by 4 instead of 8, because we now deal with quadrants, not with octants.

$$P_x = 4, P_y = 4$$

 $N_g = 3, N_m = 1$

$$N_{fill} = 2$$

A 2D domain decomposed into 4 processors in x and 4 processors in y. The bold lines represent the quadrants we've split this into. We partition the problem into M = 1, G = 3, $A_x = 1$, $A_y = 1$, $A_m = 1$, $A_g = 1$. The number of tasks is $N_{tasks} = 12$.

Stage 2: The corner processors have completed the first task and communicated to downstream dependents. The corner processors now compute the second task, and the dependents compute the first task.

Stage 3: The central processors have begun computation, verifying that the predicted N_{fill} value of 2 was correct. These processors will no longer be idle until they are done computing all tasks, as this is the optimal scheduling algorithm. We can also see that tasks are being queued on processors. For instance in the right half the domain, Task Green 1 has been communicated from processor (4,2) to processor (4,3), and Task Blue 1 has been communicated from processor (4,3) to processor (4,2). However, processor (4,3) will solve tasks originating from quadrant (++) before it solves tasks originating from quadrant (+-) (according to depth of graph algorithm). Therefore in Stage 3 processor (4,3) solves Task Blue 2. Similar behavior occurs across the domain.

Stage 4

Stage 5

Stage 6: Some conflicting tasks have the same D (because they all exist in the same quadrant), so tiebreakers based on $Omega_x$ are used. In the lower quadrant, for example, we can see that after stage five, both the green and red directions were ready to communicate to their neighboring processors. However, since the red direction posses and $Omega_x > 0$, it has priority, so this task is performed first. The same happens in other quadrants experiencing similar conflicts.

2	3	3	2
* 3	2	2	3
3	2	2	3
2	3	3	2

Stage 7

Stage 8

Stage 9: The secondary tasks that were queued on processors now begin executing.

Stage 10: The secondary tasks that were queued on processors now begin executing.

3		2	3
2	3	3	
2	3	3	
3		2	3

Stage 11

		3	
3	1	1	
3	1	1	
		3	

Stage 12

	1	1	
1	2	2	1
1	2	2	1
	1	1	

Stage 13

3

Stage 14

3

Stage 15

Stage 16: Verifies $N_{\text{stages}} = N_{\text{fill}} + N_{\text{tasks}} = 16$