(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 2. Mai 2002 (02.05.2002)

(10) Internationale Veröffentlichungsnummer WO 02/34854 A1

(51)	Internationale Patentklassifikation7: 133/08, 133/02	C09J 7/02,	22527 Hamburg (DB). HUSEMANN, Marc [DE/DE]; Strehlowweg 48, 22605 Hamburg (DE).
(21)	Internationales Aktenzeichen:	PCT/EP01/12168	(74) Gemeinsamer Vertreter: TESA AG; Quickbornstrasse 24, 20253 Hamburg (DE).
(22)	Internationales Anmeldedatum:		
	22. Oktober	2001 (22.10.2001)	(81) Bestimmungsstaaten (national): AU, BR, CA, CN, HU, JP, KR, MX, PL, SG, US.
(25)	Einreichungssprache:	Deutsch	
(26)	Veröffentlichungssprache:	Deutsch	(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).
(30)	Angaben zur Priorität:		
	100 52 955.0 25. Oktober 2000 ((25.10.2000) DE	Veröffentlicht:

eintreffen

(72) Erfinder: und (75) Erfinder/Anmelder (nur für US): STORBECK, Reinhard [DE/DE]; Süntelstrasse 89L, 22457 Hamburg (DE).

Hamburg (DE).

(71) Aumelder (für alle Bestimmungsstaaten mit Ausnahme

von US): TESA AG [DE/DE]; Quickbornstrasse 24, 20253

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe BARGMANN, Renke [DE/DE]: Hagenbeckstrasse 35. der PCT-Gazette verwiesen.

vor Ablauf der für Änderungen der Ansprüche geltenden

Frist; Veröffentlichung wird wiederholt, falls Änderungen

(54) Title: USE OF SELF-ADHESIVE MATERIALS HAVING ANISOTROPIC PROPERTIES FOR PRODUCING STAMPING PRODUCTS

(54) Bezeichnung: VERWENDUNG VON HAFTKLEBEMASSEN MIT ANISOTROPEN EIGENSCHAFTEN FÜR STÁNZPRODUKTE

(57) Abstract: The invention relates to the use of a self-adhesive material having anisotropic properties for producing stamping products.

(57) Zusammenfassung: Verwendung einer Haftklebemasse, welche anisotrope Eigenschaften besitzt, für die Herstellung von Stanzprodukten.

5 Beschreibung

<u>Verwendung von Haftklebemassen mit anisotropen Eigenschaften für</u> Stanzprodukte

10

20

25

30

35

Die Erfindung betrifft die Verwendung von mit anisotropen Haftklebemassen bestrichenen Trägermaterialien zur Herstellung von Stanzprodukten sowie derart erhältliche Stanzprodukte.

- 15 Bei der Herstellung von Haftklebemassen wird aus Kosten- und Umweltgründen vermehrt von der Heißschmelz-Technologie (Hotmelt-Technologie) Gebrauch gemacht. Diese Technologie bietet zudem weitere verfahrenstechnische Vorteile.
 - Heißschmelz-Haftklebemassen (Hotmelts) zeichnen sich durch gute Eigenschaften bezüglich Transparenz und Witterungsbeständigkeit aus. Zudem sind sie in der Lage, hohen Anforderungen im Bereich der Scherfestigkeit gerecht zu werden. Diese Eigenschaften können in günstiger Weise für Polyacrylate mit hohem Molekulargewicht, hoher Polarität und anschließender effektiver Vernetzung erzielt werden.

Alle heute bekannten Haftklebemassen zelchnen sich aber durch ein mehr oder weniger ausgeprägtes Fließverhalten aus. Dieses Fließverhalten ist bei starker Ausprägung auch als kalter Fluß oder als Ausbluten eines Haftklebstoffes bekannt. Das inhärente Verhalten einer Haftklebemasse führt zu Problemen für die Verwendung für gestanzte Materialien; so sind die Lagerzeiten für die gestanzten Materialien begrenzt beziehungsweise werden besondere, in der Regel aufwendige Lagerbedingungen benötigt (beispielsweise eine Klimatisierung der Lagerräume).

Materialien können bei der Stanzung angestanzt oder durchgestanzt werden. Herkömmliche Haftklebemasse weisen für die Verwendung für Stanzmaterialien, insbesondere als Schicht aufgetragen auf ein Trägermaterial, in Hinblick auf beide Vorgehensweisen erheibliche Nachteile auf

BESTÄTIGUNGSKOPIE

Die durchgestanzten Materialien lassen sich nur kurze Zeit nach dem Stanzvorgang voneinander trennen. Die Haftklebemassen fließen nach dem Stanzvorgang wieder zusammen. Das Zusammenfließen der Haftklebemasse tritt in vielertei Produktformen auf: Sowohl Transferklebebänder (Haftklebemasse aufgetragen auf einem Trennmaterial), doppelseitig beschichtete Materialien (beidseitige Haftklebemasse auf einem Träger, z.B. auf Folie, Papier, Vlies, Gelege oder Schaum) alls auch einseitig beschichtete Materialien (einseitig Haftklebemasse auf einem Träger wie z.B. Folie, Papier, Vlies, Gelege oder Schaum) zeigen den Effekt des Zusammenfließens der Haftklebemasse nach dem Stanzvorgang. Die Stanzlinge können nicht mehr zerstörungsfrei voneinander getrennt werden.

5

10

15

20

25

30

Insbesondere beim Anstanzen tritt, neben dem Zusammenfließen der Haftklebemasse, zusätzlich das nachfolgend beschriebene Problem auf. Beim Anstanzen von
selbstklebenden Materialien wird das Trennmaterial mitangestanzt, d.h. die Stanzmesser dringen bis zu einer mehr oder weniger definierten Tiefe in das Substratmaterial (= Trennmaterial) ein. Dadurch wird immer die antiadhäsiv ausgerüstete Oberfläche des Trennmaterials (in den meisten Fällen sind die Trennmaterialien silkonlsiert, gilt für alle beschriebenen Trennsysteme, Satas, 3.Auflage, Kapitel 26 und 27)
zerstört. Der Kleber kann in das Substratmaterial des Trennmaterials (Papier, PET,
PP, PE) hineinfließen und haften. Der Stanzling läßt sich nicht mehr problemlos vom
silikonisierten Trennmaterial abziehen, da die Kanten des Stanzlings mit dem Substrat verklebt sind. In einem nachfolgenden Verarbeitungsschritt kann der Stanzling,
oder das zu entfermende Matrixgitter um die Stanzlinge herum, beim Abziehen reißen.
Diese Abrisse führen zu massiven Produktionsstörungen, da Anstanzprozesse hauptsächlich im kontinuierlichen notativen Stanzverfahren durchoeführt werden.

Die beschriebenen Effekte gelten für alle Produktaufbauten wie Transferklebebänder sowie für einseitig und beidseitig beschichtete Substrate wie z.B. Folien, Vliese, Papiere, Gelege oder Schäume.

Aufgabe der Erfindung ist es daher, die Herstellung von Stanzprodukten zu verbessem, indem die geschilderten Nachteile des Standes der Technik vermieden oder aber zumindest erheblich vermindert werden.

Gelöst wird die Aufgabe überraschend und für den Fachmann in nicht vorhersehbarer Weise durch die Verwendung anisotroper Haftklebemassen, wie es im Hauptanspruch

WO 02/34854 PCT/EP01/12168 3

dargestellt wird. Die Unteransprüche betreffen bevorzugte Weiterentwicklungen dieser Verwendung, Weiterhin betreffen die Ansprüche die derart erhältlichen Stanzlinge.

Demgemäß betrifft der Hauptanspruch die Verwendung einer Haftklebemasse, welche 5 anisotrope Eigenschaften besitzt, zur Herstellung von Stanzprodukten.

Die Haftklebemasse ist dabei bevorzugt ein- oder beidseitig auf ein Trägermaterial aufgetragen. Als Trägermaterial sind prinzipiell Folien wie z.B. BOPP oder MOPP. PET. PVC oder Papiere oder Vliese (Basis: Cellulose oder Polymere) geeignet. Weiterhin kommen auch Schäume (z.B. PUR, PE, PE/EVA, EPDM, PP, PE, Silikon, usw.) oder Trennpapiere (Glassine Papiere, Kraft Papiere, polyolefinisch beschichtete Papiere) oder Trennfolien (PET, PP oder PE oder Kombinationen aus diesen Materialien) als Beschichtungssubstrate in Frage.

- 15 Während der Herstellung, der Weiterverarbeitung oder der späteren Beanspruchung von Polymeren beziehungsweise von Polymermassen kann es zur Ausbildung hoher Orientierungsgrade der Makromoleküle in bevorzugte Richtungen im gesamten Polymerverband kommen; durch diese Orientierung, die auch gezielt herbeigeführt werden kann, lassen sich die Eigenschaften der entsprechenden Polymere steuern und in Hinblick auf 20 gewünschte Verwendungen verbessern. Anisotrop grientierte Haftklebemassen besitzen die Tendenz, sich nach einer Streckung in eine vorgegebene Richtung durch das entropieelastische Verhalten' in den Ausgangszustand zurückzubewegen.
- Für die erfinderische Verwendung sind prinzipiell alle Haftklebemassen geeignet, die eine Orientierung aufweisen, beispielsweise solche auf Basis von Natur- und Synthesekau-25 tschuken wie Butylkautschuk, Neopren, Butadien-Acrylnitril, Styrol-Butadien-Styrol- und Styrol-Isopren-Styrol-Copolymerisaten, ferner auf Basis von linearen Polyestern und Copolyestren, Polyurethanen, Polysiloxanelastomeren, auf Basis von Reiacrylaten, ganz besonders aber anisotrope Haftklebemassen auf Polyacrylatbasis.
- Solche anisotrop orientierten Acrylathaftklebemasssen zeigen als Schicht nach Stanzund/oder Schneidvorgängen eine Rückstellung der Haftklebeschicht an der Schneid- und 30 Stanzkante, welche erfinderisch für das Ausstanzen nicht wieder zusammenfließender Stanzformen genutzt wird. Diese Eigenschaft ist für keine der bisher zum Stand der Technik gehörigen Haftklebemassen bekannt.

25

Eine vorteilhafte Weiterentwickung verwendet in erfinderischem Sinne eine Haftklebemasse.

- welche durch eine radikalische Polymerisation erhältlich ist.
- welche zu mindestens Gew.-65 % auf zumindest einem acrylischen Monomer aus der
 Gruppe der Verbindungen der folgenden allgemeinen Formel basiert:

$$Q \sim R_2$$

wobei R₁ = H oder CH₃ ist und der Rest R₂ = H oder CH₃ ist oder gewählt wird aus der 10 Gruppe der verzweigten oder unverzweigten, gesättigten Alkylgruppen mit 2 bis 20, bevorzuat mit 4 bis 9 Kohlenstoffatomen,

- bei welcher das mittlere Molekulargewicht der Haftklebemasse mindestens 650.000 beträgt.
- und welche, sofern sie auf einen Träger aufgetragen ist, eine Vorzugsrichtung besitzt, wobei der in Vorzugsrichtung gemessene Brechungsindex n_{MD} größer ist als der in einer Richtung senkrecht zur Vorzugsrichtung gemessene Brechungsindex n_{CD}, und wobei die Differenz Δn = n_{MD} - n_{CD} mindestens 1•10⁻⁶ beträgt.

Die vorstehend geschilderte Haftklebemasse hat sich in besonders günstiger Weise als 20 vorteilhaft für die erfinderische Verwendung erwiesen, so daß in Hinblick auf die gestellte Aufgabe hervorragende Ergebnisse erzielt werden konnten.

Als nicht ausschließliche Beispiele für Alkylgruppe, welche für den Rest R₂ in bevorzugter Weise Anwendung finden können, seien im folgenden genannt Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Isooctyl-, 2-Methylheptyl-, 2-Ethylhexyl-, Nonyl-, Decyl-, Dodecyl-, Lauryl-, oder Stearvi(meth)acrylat oder (Meth)acrylsäure.

Weiterhin verläuft das Stanzverfahren ausgezeichnet bei erfinderischer Verwendung einer Haftklebemasse, welche zu bis zu 35 Gew.-% auf Comonomere in Form von Vinyl30 verbindungen basiert, insbesondere auf eine oder mehrere Vinylverbindungen gewählt aus der folgenden Gruppe:

Vinylester, Vinylhalogenide, Vinylidenhalogenide, Nitrile ethylenisch ungesättigter Kohlenwasserstoffe.

Im Sinne der erfinderischen Verwendung fallen auch Acrylverbindungen mit funktionellen Gruppen unter die Bezeichnung "Vinylverbindung". Solche funktionelle Gruppen enthaltenden Vinylverbindungen sind Maleinsäureanhydrid, Styrol, Styrol-Verbindungen, Vinylacetat, (Meth)acrylamide, N-substituierte (Meth)acrylamide, β-Acryloyloxypropionsäure, Vinylessigsäure, Fumarsäure, Crotonsäure, Aconitsäure, Dimethylacrylstäure, Trichloracrylsäure, Itaconsäure, Vinylacetat, Hydroxyalkyl(meth)acrylat, aminogruppenhaltige (Meth)acrylate, hydroxygruppenhaltige (Meth)acrylate, besonders bevorzugt 2-Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl-(meth)acrylat, und/oder 4-Hydroxybutyl(meth)acrylat und mit Doppelbindung funktionalisierte Photoinitiatoren; die vorstehende Aufzählung ist nur beispielhaft und nicht abschließend.

Für die Haftklebemassen ist es besonders vorteilhaft, wenn die Zusammensetzung der entsprechenden Monomere derart gewählt wird, daß die resultierenden Klebemassen entsprechend D. Satas [Handbook of Pressure Sensitive Adhesive Technology, 1989, Verlag VAN NOSTRAND REINHOLD, New York] haftklebende Eigenschaften besitzen. Hierfür sollte die Glasübergangstemperatur der Acrylathaftklebemasse zum Beispiel unterhalb 25 °C liegen.

20

30

35

10

15

Die für die erfinderische Verwendung herangezogenen Haftklebemassen, insbesondere die vorstehend als vorteilhaft ausgelobten Polyacrylathaftklebemassen, werden bevorzugt durch eine radikalisch initiierte Polymerisation hergestellt. Ein hierfür sehr geeignetes Verfahren zeichnet sich durch die folgenden Schritte aus:

- Polymerisation eines Gemisches enthaltend zumindest ein Monomer auf Vinyl-, Acryloder Methacrylbasis oder eine Kombination dieser Monomere, wobei das mittlere
 Molekulargewicht der entstehenden Polymere oberhalb von 650.000 liegt.
 - · anschließender Extrusionsbeschichtung der Polymermasse,
 - anschließender Vernetzung der Polymermasse auf dem Träger durch Bestrahlung mit Elektronenstrahlen.

Die Extrusionsbeschichtung erfolgt dabei bevorzugt durch eine Extrusionsdüse. Die verwendeten Extrusionsdüsen können aus einer der drei folgenden Kategorien stammen: T-Düse, Fischschwanz-Düse und Bügel-Düse. Die einzelnen Typen unterscheiden sich durch die Gestalt ihres Fließkanals. Zur Herstellung von orientierten Acrylatahfiklebe-

6

massen wird besonders bevorzugt mit einer Bügeldüse auf einen Träger beschichtet, und zwar derart, daß durch eine Relativbewegung von Düse zu Träger eine Polymerschicht auf dem Träger entsteht.

Die Zeitdauer zwischen der Beschichtung und der Vernetzung ist in günstiger Weise sehr gering, bevorzugt nicht größer als 10 s.

Durch die Ausformung des Acrylathotmelts in der Bügel-Düse sowie den Austritt aus der Düse mit einer bestimmten Filmdicke, durch die Reckung des Haftklebemassenfilms beim Übertrag auf das Trägermaterial auf eine dünnere Filmdicke und durch die anschließende Inline-Vernetzung wird die Orientierung erhalten.

10

15

20

25

Die freie radikalische Polymerisation kann in Gegenwart eines organischen Lösungsmittels oder in Gegenwart von Wasser oder in Gemischen aus organischen Lösungsmitteln und Wasser oder in Substanz durchgeführt werden. Bevorzugt wird so wenig Lösungsmittel wie möglich eingesetzt. Die Polymerisationszeit beträgt – je nach Umsatz und Temperatur – zwischen 6 und 48 h.

Bei der Lösungsmittelpolymerisation werden als Lösemittel vorzugsweise Ester gesättigter Carbonsäuren (wie Ethylacetat), aliphatische Kohlenwasserstoffe (wie n-Hexan oder n-Heptan), Ketone (wie Aceton oder Methylethylketon), Siedegrenzbenzin oder Gemische dieser Lösungsmittel verwendet. Für die Polymerisation in wäßrigen Medien bzw. Gemischen aus organischen und wäßrigen Lösungsmitteln werden zur Polymerisation bevorzugt die dem Fachmann zu diesem Zwecke bekannten Emulgatoren und Stabilisatoren zugesetzt. Als Polymerisationsinitiatoren werden übliche radikalbildende Verbindungen wie beispielsweise Peroxide, Azoverbindungen und Peroxosulfate eingesetzt. Auch Initiatorgemische können verwendet werden. Bei der Polymerisation können weitere Regler zur Molekulargewichtssenkung und Verringerung der Polydispersität eingesetzt werden. Als sogenannte Polymerisationsregler können beispielsweise Alkohole und Ether verwendet werden. Das Molekulargewicht der Acrylathaftklebemassen liegt vorteilhaft zwischen 650.000 und 2.000.000 g/mol, mehr bevorzugt zwischen 700.000 und

30

1,000,000 a/mol.

In einer bevorzugten Vorgehensweise wird die Polymerisation in Polymerisationsreaktoren durchgeführt, die im allgemeinen mit einem Rührer, mehreren Zulaufgefäßen, Rückflußkühler, Heizung und Kühlung versehen sind und für das Arbeiten unter N_z-Atmosphäre und Überdruck ausgerüstet sind.

35

Nach der Polymerisation in Lösemittel kann das Polymerisationsmedium unter vermindertem Druck entfernt werden, wobei dieser Vorgang bei erhöhten Temperaturen, beispielsweise im Bereich von 80 bis 150 °C durchgeführt wird. Die Polymere können dann in lösemittelfreiem Zustand, insbesondere als Schmelzhaftideber, eingesetzt werden. In manchen Fällen ist es auch von Vorteil, die erfindungsgemäßen Polymere in Substanz herzustellen.

Zur Herstellung der Acrylathaftklebemassen können die Polymere in üblicher Weise modifiziert werden. Beispielsweise können klebrigmachende Harze, wie Terpen-, Terpenphenol-, C5-, C9-, C5/C9- Kohlenwasserstoff-, Pinen-, Inden- oder Kolophoniumharze auch in Kombination miteinander zugesetzt werden. Weiterhin können auch Weichmacher, verschiedene Füllstoffe (z.B. Fasem, Ruß, Zinkoxid, Titandioxid, Mikrovollkugein, Voll- oder Hohlglaskugein, Kieselsäure, Silikaten, Kreide, blockierungsfreie Isocyanate etc.), Alterungsschutzmittel, Lichtschutzmittel, Ozonschutzmittel, Fettsäuren, Weichmacher, Keimbildner, Blähmittel und/oder Beschleuniger als Zusätze verwendet werden. Zusätzlich können Vermetzer und Promotoren zur Vermetzung beigemischt werden. Geeignete Vermetzer für die Elektronenstrahlvernetzung sind beispielsweise bi- oder multifunktionelle Acrylate, bi- oder multifunktionelle Isocyanate oder bi- oder multifunktionelle Epoxide.

20

Die reinen oder abgemischten Acrylathotmelts werden durch eine Düse mit variabler Schlitzbreite auf das Trägermaterial beschichtet und anschließend auf dem Träger mit Elektronenstrahlen gehärtet. Die Vernetzung erfolgt im Inline-Betrieb unmittelbar nach dem Auftragen der Haftklebemasse auf den Träger.

25

30

35

Weiterhin ist Inhalt der Erfindung ein Stanzprodukt aus einem ein- oder beidseitig mit einer anisotropen Haftklebemasse beschichteten Trägermaterial.

Derartige Stanzlinge können als ein- oder doppelseitig klebende Etiketten, zum Verkleben im Haushalt und in der Industrie, besonders im Automobilbau, für alle Montagezwecke, im medizinischen Bereich (Pflaster, Wundabdeckungen) und dergleichen verwendet werden, um nur einige Anwendungsbeispiele zu nennen. Die Stanzlinge sind generell überall dort einsetzbar, wo Klebeetiketten und Klebefolien zur Verwendung kommen. Besonders geeignet sind die Stanzprodukte dort, wo auf einen sauberen, unbeschädigten Rand des Stanzlings Wert gelegt wird.

8

Experimente

Die Erfindung wird im folgenden durch Experimente beschrieben, ohne sich durch die Wahl der untersuchten Proben unnötig beschränken zu wollen..

Folgende Testmethoden wurden angewendet, um die anisotropen Eigenschaften der hergestellten Haftklebemassen zu evaluieren.

10 Testmethoden

15

20

180° Klebkrafttest (Test A)

Ein 20 mm breiter Streifen einer auf einer Polyester oder silikonisiertem Trennpapier gecoateten Acrylathaftklebemasse wurde auf Stahlplatten aufgebracht. Es wurde – je nach Richtung und Reckung – Längs oder Quermuster auf der Stahlplatte verklebt. Der Haftklebestreifen wurde zweimal mit einem 2 kg Gewicht auf das Substrat aufgedrückt. Das klebeband wurde anschließend sofort mit 30 mm/min und im 180° Winkel vom Substrat abgezogen. Die Stahlplatten wurden zweimal mit Aceton und einmal mit Isopropanol gewaschen. Die Messergebnisse sind in N/cm angegeben und sind gemittelt aus drei Messungen. Alle Messungen wurden bei Raumtemperatur unter klimatisierten Bedingungen durcherdführt.

Messung der Doppelbrechung (Test B) Version 1

25 Ein Spektralphotometer Modell Uvikon 910 wurde im Probenstrahl mit zwei gekreuzten Polaroidfiltern versehen. Orientierte Acrylate wurden zwischen zwei Objekträgem fixiert. Die Schichtdicke der orientierten Probe wurde aus Vorversuchen mittels Dickentaster ermittelt. Die derart vorbereitete Probe wurde im Meßstrahl des Spektralphotometers derart plaziert, daß ihre Orientierungsrichtung um jeweils 45° von den optischen Achsen der beiden Polaroidfilter abwich. Mittels einer zeitaugefösten Messung wurde dann die Transmission T über die Zeit verfolgt. Aus den Transmissionsdaten wurde dann die Dopelbrechung gemäß folgender Beziehung ermittelt:

 $T = sin^2(\pi x R)$, wobei R = Retardation.

35

Die Retardation R setzt sich wie folgt zusammen:

$$R = \frac{d}{\lambda} \Delta n$$
 , wobei d = Probendicke

Die Transmission setzt sich weiterhin aus $T=rac{I_i}{I_o}$ zusammen. Somit ergibt sich letztendlich für die Doppelbrechung

$$\Delta n = \frac{\lambda}{\pi d} \arcsin \sqrt{T}$$
.

10 Version 2

Die Messung der Doppelbrechung erfolgte mit einem Versuchsaufbau, wie er analog in der Encyclopedia of Polymer Science, John Wiley & Sons, Vol. 10, S. 505, 1987 als Circular-Polariskop beschrieben ist. Das ausgesendete Licht eines diodengepumpten Festkörperlasers mit der Wellenlänge λ = 532 nm wird zunächst durch ein Polaroidfilter linear 15 polarisiert und dann unter Verwendung einer $\lambda/4$ -Platte mit $\lambda = 532$ nm zirkular polarisiert. Dieser derart polarisierte Laserstrahl wird sodann durch die orientierte Acrylatmasse geführt. Da Acrylatmassen hochtransparent sind, kann der Laserstrahl die Masse praktisch ungehindert passieren. Sind die Polymermoleküle der Acrylatmasse orientiert, so hat dies eine Änderung der Polarisierbarkeit der Acrylatmasse je nach Beobachtungswin-20 kel zur Folge (Doppelbrechung). Der E-Vektor des zirkular polarisierten Laserstrahles erfährt durch diesen Effekt eine Drehung um die Fortschreitungsachse des Laserstrahles. Nach Verlassen der Probe wird der derart manipulierte Laserstrahl durch eine zweite λ/4-Platte mit λ = 532 nm geführt, deren optische Achse um 90° von der optischen Achse der ersten ¼4-Platte abweicht. Nach diesem Filter schließt sich ein zweiter Polaroidfilter an der ebenfalls um 90° vom ersten Polaroidfilter abweicht. Schließlich wird die Intensität des Laserstrahles mit einem Photosensor vermessen und Δn wie unter Version 1 beschrieben bestimmt.

Bestimmung des Gelanteils (Test C)

30 Die sorgfältig getrockneten lösungsmittelfreien Klebstoffproben werden in ein Vliestütchen aus Polyethylen (Tyyek-Vlies) eingeschweißt. Aus der Differenz der Proben-

gewichte vor der Extraktion und nach der Extraktion durch Toluol wird der Gelwert hestimmt

Messung des Zug-/Dehnungsverhalten (Test D)

5 Streifen der Muster mit einer Breite von mindestens 30 mm und einer Länge von 50 mm wurden zu einem Probenkörper laminiert, um mindestens eine Dicke von 0,5 mm zu erreichen. Eventuelle Lufteinschlüsse sind dabei weitestgehend vermieden worden. Das erhaltene Laminat wurde auf eine Breite von exakt 20 mm geschnitten und die Streifenenden mit Papier verklebt. Die Länge des Probenstücks zwischen den Papierstreifennten betrug dabei genau 25 cm. Die Dicke des Streifens wurde anschließend mittels eines Dickentasters auf 10 um genau ermittelt.

Der so erhaltene Probenkörper wurde dann unter Zuhilfenahme einer Universalprüfmaschine (Fa. Frank) einer Zug-/Dehnungsmessung unterworfen. Die ermittelten Kräfte wurden jeweils auf den Ausgangsquerschnitt als Spannung angegeben. Die relativen 15 Dehnungen beziehen sich auf die Ausgangslänge von 25 mm. Als Prüfgeschwindigkeiten wurden 100, 300 und 600 mm/min eingestellt.

Messung des Rückschrumpfes (Test E)

20

Parallel zur Beschichtungsrichtung des Hotmelts wurden Streifen von min. 20 mm Breite und 20 cm Länge geschnitten. Bei Masseaufträgen von 130 g/m² wurden je 3 Streifen, bei 100 g/m² wurden je 4 Streifen übereinander laminiert, bei 50 g/m² 8 Streifen übereinander laminiert, um vergleichbare Schichtdicken zu erhalten. Der derart erhaltene Körper wurde dann auf exakt 20 mm Breite geschnitten und an den jeweiligen Enden in einem Abstand von 15 cm mit Papierstreifen überklebt. Der auf diese Weise präparierte Prüfkörper wurde dann bei RT vertikal aufgehängt und die Änderung der Länge über die Zeit verfolgt, bis keine weitere Schrumpfung der Probe mehr festgestellt werden konnte. Die um den Endwert reduzierte Ausgangslänge wurde dann bezogen auf die Ausganglänge als Rückschrumof in Prozent angegeben.

Für die Messung der Orientierung nach längerer Zeit wurden die beschichteten und orientierten Haftklebemassen über einen längeren Zeitraum als Lappenmuster gelagert und anschließend analysiert.

Herstellung und Untersuchung der Stanzlinge (Test F)

Es wurden Stanzlinge auf handelsüblichen Flach- oder Rotationsstanzen hergestellt. Für die rotativen Stanzversuche wurden Rotationsstanzzylinder von der Firma Rotometrics -Rotationsstanzwerkzeuge GmbH, Mainz-Kastel, eingesetzt.

5 Für intermetierendes Stanzen (Flach- oder Hubstanze) wurden Stanzwerkzeuge von der Firma Winck-Stanzwerkzeuge, Neuenhaus eingesetzt,

Der Rückschrumpf der Haftklebemasse wurde mikroskopisch beurteilt und quantitativ vermessen. Als Rückschrumpfstrecke L wurde der Abstand von der Folien- und Trennmaterialstanzkante bis zur rückgestellten Haftklebemassenschicht definiert.

10

Herstellung der Proben

Beispiel 1

- 15 Ein für radikalische Polymerisationen konventioneller 200 L-Reaktor wurde mit 2500 g Acrylsäure, 47,5 kg 2-Ethylhexylacrylat, und 30 kg Aceton/Isopropanol (97:3) befüllt. Nach 45 Minuten Durchleiten mit Stickstoffgas unter Rühren wurde der Reaktor auf 58 °C hochgeheizt und 20 g 2,2'-Azoisobuttersäurenitril (AIBN) hinzugegeben. Anschließend wurde das äußere Heizbad auf 75 °C erwärmt und die Reaktion konstant bei dieser 20 Außentemperatur durchgeführt. Nach 1 h. Reaktionszeit wurde wiederum 20 g AIBN hinzugegeben. Nach 5 h und 10 h wurde mit jeweils 15 kg Aceton/Isopropanol (97;3) verdünnt. Die Reaktion wurde nach 48 h Reaktionszeit abgebrochen und auf Raumtemperatur abgekühlt. Zur Beschichtung aus Lösung auf einen mit Vorstrich versehenen Polyesterträger wurde mit einem Laborstreichbalken auf 130 g/m² ausgestrichen, für 10 25 Minuten bei 120 °C im Trockenschrank getrocknet, mit silikonisiertem Trennpapier abgedeckt und letztendlich mit Elektronenstrahlen einer Dosis von 40 kGy und einer
- Für die Hotmeltbeschichtungen wurde das Lösungsmittel in einem Aufkonzentrations-30 extruder entfernt.

Beschleunigungsspannung von 230 kV bestrahlt. Zur Analyse wurden die Testmethoden

Beispiel 2

35

A, B und C durchgeführt.

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 5000 g Acrylsäure. 45 kg 2-Ethylhexylacrylat und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Im weiteren Verlauf wurden die identischen Lösungsmittel- und Initiatormengen verwendet. Die WO 02/34854

12

Muster wurden mit Elektronenstrahlen einer Dosis von 30 kGy bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

Beispiel 3

5 Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 3500 g Acrylsäure, 36,5 kg 2-Ethythexylacrylat, 10 kg Methylacrylat und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Im weiteren Verlauf wurden die identischen Lösungsmittel- und Initiatormengen verwendet. Die Muster wurden mit Elektronenstrahlen einer Dosis von 30 kGy bestrahlt. Zur Analyse wurden die Testmethoden A. B und C durchgeführt.

10

15

Beispiel 4

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 3000 g Acrylsäure, 35,5 kg 2-Ethrylhexylacrylat, 7,5 kg Methylacrylat, 4 kg N-tert-Butylacrylamid und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Im weiteren Verlauf wurden die identischen Lösungsmittel- und Initiatormengen verwendet. Die Muster wurden mit Elektronenstrahlen einer Dosis von 30 kGy bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

Beispiel 5a

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 3500 g Acrylsäure, 20,75 kg 2-Ethylhexylacrylat, 20,75 kg Butylacrylat, 5 kg Methylacrylat, und 30 kg Aceton/sopropanol (97:3) eingesetzt. Im weiteren Verlauf wurden die identischen Lösungsmittel- und Initiatormengen verwendet. Die Muster wurden mit Elektronenstrahlen einer Dosis von 50 kGy bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

Beispiel 5b

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 3500 g Acrylsäure, 20,75 kg 2-Ethylhexylacrylat, 20,75 kg Butylacrylat, 5 kg Methylacrylat, und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Zusätzlich wurden 21,5 kg Foral 85 (Fa. Hercules, hydrierter Kolophoniumester) hinzugemischt. Um eine optimale Vernetzung zu erzielen wurden 2 Gewichts% SR 610 (Fa.Sartomer) hinzugemischt. Die Muster wurden mit Elektronenstrahlen einer Dosis von 75 kGy bestrahlt. Zur Analyse wurden die Testmethoden A. B und C durchgeführt.

35

Beispiel 6 (Reckung der Acrylathotmelts, Muster A - L)

Zur Erzeugung der Muster A - L wurde Beispiel 4 im Trocknungsextruder aufkonzentriert und durch eine Düse mit 300 µm (Muster A - F) und 780 µm Spaltbreite (G - L) auf einen silikonisierten Trennpapierträger mit 130 q/m² beschichtet

Die Bahngeschwindigkeit des Trägers betrug 80 m/min. Für die Muster A - C sowie G - I wurde der Trennpapierträger mit dem Haftklebefilm über eine Kühlwalze mit 25 °C geführt. Bei den Mustern D - F sowie J - L wurde diese Walze auf 90 °C hochgeheizt. Zur Untersuchung des Relaxationsverhaltens wurden die Muster A, D, G und J sofort nach der Beschichtung im Inline-Prozess mit Elektronenstrahlen einer Dosis von 30 kGy und einer Beschleunigungsspannung von 230 kV ESH vermetzt. Die Muster B, E, H, und K wurden nach der Beschichtung für eine Stunde bei Raumtemperatur gelagert und anschließend mit identischen Verfahrensparametern elektronenstrahlvermetzt. Die Muster C, F, I, und L wurden nach der Beschichtung für 48 Stunden bei Raumtemperatur gelagert und anschließend mit identischen Verfahrensparametern elektronenstrahlvernetzt.

15 Zur Analyse wurden von allen Mustern die Testmethoden A, B und C durchgeführt.

Beispiel 7 (Muster 1#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 1 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit 130 g/m² Masseauftrag, einer Chillrolltemperatur von 25 °C (Außentemperatur der Stahlwatze, auf der das Trägermaterial beschichtet wird) der und einer Bahngeschwindigkeit von 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 40 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

25 Beispiel 8 (Muster 2#)

20

30

35

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 2 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit 130 g/m² Masseauftrag, einer Chillrolltemperatur von 25 °C und einer Bahngeschwindigkeit von 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 30 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

Beispiel 9 (Muster 3#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 3 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit 130 g/m² Masseauftrag, einer Chillrolltemperatur von 25 °C und einer Bahngeschwindigkeit von 80 m/min.

Es wurde mit Elektronenstrahlen einer Dosis von 30 kGy vernetzt und zur Analyse die Testmethoden A. B. C. D und E durchgeführt.

Beispiel 10 (Muster 5#)

5 Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 5 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit 130 g/m² Masseauftrag, einer Chillicilltemperatur von 25 °C und einer Bahngeschwindigkeit von 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 50 kGy vernetzt und zur Analyse die Testmethoden A. B. C. D und E durchgeführt.

10

15

Beispiel 11 (Muster 6#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 4 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit jeweils 100 g/m² Masseauftrag beidseitig auf eine 12 µm dicke PET-Folie. Die Beschichtung erfolgte in 2 Arbeitsgängen. Die Chillrolltemperatur betrug 25 °C, die Bahngeschwindigkeit betrug 80 m/min. Es wurde mit Elektronenstrahlen einer Dosls von 50 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

Beispiel 12 (Muster 7#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 5b eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit Jeweils 100 g/m² Masseauftrag beidseitig auf eine 12 µm dicke PET-Folie. Die Beschichtung erfolgte in 2 Arbeitsgängen. Die Chillrolltemperatur betrug 25 °C, die Bahngeschwindigkeit betrug 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 75 kGy vernetzt und zur Analyse die Testmethoden A. B. C. D und E durchgeführt.

Beispiel 13 (Muster 8#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 5b eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit jeweils 100 g/m² Mas-30 seauftrag beidseitig auf eine 50 µm dicke BOPP-Folie. Die Beschichtung erfolgte in 2 Arbeitsgängen. Die Chillrolltemperatur betrug 25 °C, die Bahngeschwindigkeit betrug 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 75 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchaeführt.

Beispiel 14 (Muster 9#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 5b eingesetzt. Die Beschichtung erfolgt durch eine 300 μm breite Düse mit jeweils 100 g/m² Masseauftrag beidseitig auf eine 50 μm dicke BOPP-Folie. Die BOPP Folie wurde direkt vor der Beschichtung beidseitig inline Corona vorbehandeit. Die Oberflächenspannung betrug danach < 45 mN/m. Die Beschichtung erfolgte in 2 Arbeitsgängen. Die Chilirolitemperatur betrug 25 °C, die Bahngeschwindigkeit betrug 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 75 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

10

15

20

Resultate

Zur Untersuchung der Orientierung von Acrylathaftklebemassen und deren Vernetzbarkeit wurden zunächst verschiedene Acrylathaftklebemassen über freie radikalische Polymerisation hergestellt. Alle Klebemassen sind bezüglich Temperaturstabilität und Filesviskosität im Hotmelt-Prozess verarbeitbar. Die dargestellten Acrylathaftklebemassen wurden in Lösung polymerisiert und anschließend im Trocknungsextruder aufkonzentriert. Die Comonomerzusammensetzung der einzelnen Klebemassen ist in Tabelle 1 aufgelistet.

Tabelle 1: Comonomerzusammensetzung der einzelnen Acrylathaftklebemassen

Tabelle 1					
Beispiel	2-EHA	BA	MA	NTBAM	AS
1	95	0	0	0	5
2	90	0	0	0	10
3	73	0	20	0	7
4	71	0	15	8	6
5 a/ b	41,5	41,5	10	0	7

BA: 25 MA:

2-EHA: 2-Ethylhexylacrylat BA: Butylacrylat MA: Methylacrylat NTBAM: N-tert.-Butylacrylamid

AS:

Acrylsäure

Das mittlere Molekulargewicht der Beispiele 1 – 5a/5b betrug etwa 800.000 g/mol. Als Referenzmuster wurden die Beispiele 1 – 5a/5b aus Lösung auf eine mit einem Vorstrich (Primer) versehende Polyesterfolie mit 130 g/m² aufgetragen, bei 120 °C getrocknet, mit Elektronenstrahlung gehärtet und anschließend klebtechnisch ausgeprüft. Zur Beurteilung der Effizienz der Vernetzung wurde der Gelwert der Klebemassen gemessen. Der Gelwert gibt den unlöslichen Anteil der Haftklebemasse in Toluol wider. Ferner wurden die Sofortklebkräfte auf Stahl gemessen. Die Ergebnisse der Ausprüfungen sind in Tabelle 2 daroestellt.

10 Tabelle 2: Klebtechnische Ausprüfung der Referenzmuster

Beispiel	Elektronenstrahl	Gelwert	KK-Stahl
	-Dosis [kGy]	[%]	[N/cm]
1	40	65	6,5
2	30	55	6,0
3	30	56	5,9
4	30	59	6,1
5 a	50	72	6,5
5 b	75	67	9,5

KK: Klebkraft auf Stahl

20

25

Die Gelwerte variieren – je nach Comonomerzusammensetzung und Dosis zwischen 55
15 und 72 %

Durch den relativ hohen Anteil polarer Monomere sind die harzfreien Klebemassen kohâsiv und besitzen daher relativ geringe Sofortklebkräfte auf Stahl von etwa 6 - 6,5 N/cm. Messungen in Quer-sowie Längsrichtung ergaben im Rahmen der Meßfehler nahezu die identischen Klebkräfte. Die Messung der Doppelbrechung zeigte keine Orientierung innerhalb der Klebemassen. Es wurden keine unterschiedlichen Polarisierbarkeiten in Längs- und Querrichtung festgestellt.

Zur Untersuchung des Orientierungseffektes wurden die Beispiele 1 – 5a/b im Trocknungsextruder zu 100%-Systemen aufkonzentriert und durch eine Düse mit unterschiedlicher Schlitzbreite beschichtet.

Zur Herstellung orientierter Acrylathotmelts wurde die Haftklebemasse durch den Fließvorgang innerhalb der Düse vororientiert. Anschließend wird der Klebefilm auf das Trä-

germaterial mit einer bestimmten Schichtdicke übertragen. Zur Einstellung der Schichtdicke ist ein bestimmtes Reckverhältnis zwischen Düsenbreite und Schichtdicke erforderlich. Dieser Effekt kann durch Erhöhung der Beschichtungsgeschwindigkeit (Bahngeschwindigkeit des aufnehmenden Trägermaterials) verstärkt werden. Durch das Verhältnis von Düsenspaltbreite und Schichtdicke der Klebemasse auf dem Trägermaterial kann
das Maß der Orientierung der Polymerketten frei variiert werden.

Zur experimentellen Bestätigung wurden die Klebemassen mit unterschiedlichen Reckverhältnissen und weiteren Versuchsparametem beschichtet. Zur Minimierung der Relaxationszeit wurden die Haftklebemasse nach der Beschichtung im Inline-Prozess mit Elektronenstrahlen vernetzt. Die Relaxationszeiten lagen somit deutlich unterhalb 10 s. Ergänzende Versuche haben gezeigt, daß nach 48 h noch Orientierungen nachweisber sind. Diese Experimente wurden mit Beispiel 4 durchgeführt und das optimale Reckverhältnis, die optimale Temperatur der Beschichtungswalze und der Zeitpunkt der Inline-Vernetzung ermittelt. Die Experimente sind in Tabelle 3 zusammengefaßt.

15

Tabelle 3: Versuchsparameter zur Orientierung der Klebemasse 4

Muster	Reckverhältnis	Temperatur der	Zeitpunkt der	∆n-Werte
		Walze [°C]	Vernetzung	
Α	1:2,3	25	2 s	9,3 • 10 ⁻⁵
В			1 h	4,2 • 10 ⁻⁵
С	1		48 h	6,6 • 10 ⁻⁶
D		90	2 s	3,4 • 10 ⁻⁵
E	1		1 h	7,8 • 10 ⁻⁶
F	1		48 h	-
G	1:6	25	2 s	1,0 • 10⁴
Н	1		1 h	5,6 • 10 ⁻⁵
1	1		48 h	8,3 • 10 ⁻⁶
J		90	2 s	7,4 • 10 ⁻⁵
К	1		1 h	9,7 • 10 ⁻⁶
L			48 h	-

Δn-Werte: Differenz der Brechungsindizes n_{MD} in Richtung der Verstreckung und n_{CD} senkrecht hierzu.

Das Reckverhältnis wurde durch Variation der Düsenbreite eingestellt. Der Masseauftrag blieb konstant bei 130 g/m². Die Muster wurden jeweils mit einer Elektronenstrahl-Dosis von 30 kGy bestrahlt. Alle gereckten Muster sind alphabetisch aufgelistet.

Die Orientierung innerhalb der Acrylathaftklebemassen wurde durch Quantifizierung der Doppelbrechung bestimmt. Der Brechungsindex n eines Mediums ist gegeben über den Quotienten aus der Lichtgeschwindigkeit c_0 im Vakuum und der Lichtgeschwindigkeit in dem betrachteten Medium (n = c_0 c), n ist eine Funktion der Wellenlänge des jeweiligen Lichts. Als Maß für die Orienteirung der Haftklebemasse dient die Differenz Δn des in eine Vorzugsrichtung (Verstreckungsrichtung, machine direction MD) gemessenen Brechungsindex n_{MD} und des in einer Richtung senkrecht zur Vorzugsrichtung (cross direction CD) gemessenen Brechungsindex n_{CD} , also $\Delta n = n_{MD} - n_{CD}$, dieser Wert ist durch die in Test B beschriebenen Messungen zugänglich.

Alle Muster zeigten eine Orientierung der Polymerketten. Die ermittelten Δn-Werte sind in Tabelle 3 aufgelistet, wobei die größte Orientierung für das Muster G gemessen wurde (Δn = 1,0 • 10⁻⁴). Für das weniger stark gereckte Muster A wurde ein Δn-Wert von 9,3 • 10⁻⁵ bestimmt.

Der entsprechende Δn-Wert ist abhängig von der Comonomerzusammensetzung und dem Verzweigungsgrad des Polymers. Für die hier dargestellten Polymere ist die Haff-klebemasse erfindungsgemäß orientiert, wenn der Δn-Wert > 1*10° beträgt.

20 Die Orientierung innerhalb der Acrylathaftklebemassen in dem oben angegebenen Grad konnte somit durch die Doppelbrechungsmessung für die vermessenen Proben nachgewiesen werden.

Die Auswirkungen auf die klebtechnischen Eigenschaften sind in Tabelle 4 dargestellt:

Tabelle 4						
Muster	Gelwert	KK-Stahl	KK-Stahl			
	[%]	MD	CD [N/cm]			
		[N/cm]				
Α	61	5,2	6,7			
В	59	5,8	6,4			
С	59	6,1	6,2			
D	59	6,3	6,6			
E	60	6,0	6,4			

10

F	56	6,1	6,0
G	63	4,9	6,9
Н	62	5,9	6,5
I	60	6,0	6,1
J	62	5,8	6,7
K	59	5,9	6,4
L	58	6,0	6,0

Masseauftrag 130 g/m²

KK: Klebkraft auf Stahl:

5

15

MD (maschine direction; Verstreckungsrichtung); CD (cross direction, Querichtung)

Für die Muster A und G wurden bezugnehmend auf die Klebkräfte für MD (maschine direction; Verstreckungsrichtung (Längsrichtung, in der die Haftklebemasse gereckt wurde)) und für CD (cross direction, Querrichtung, senkrecht auf MD) nur relativ geringe Unterschiede in der Klebkraft gemessen, wobei für MD jeweils die niedrigen Werte 10 gemessen wurden. Auch die Gelwerte nach der Elektronenstrahl-Vemetzung schwanken relativ wenig mit dem Grad der Orientierung. Die stärksten Orientierungen wurden mit kurzer Relaxationszeit und kalter Beschichtungsrolle erzielt.

Um die universelle Übertragbarkeit zu gewährleisten und zur Untersuchung des Rückstelleffektes bei selbstklebenden Stanzlingen, wurden weitere Acrylathotmelts mit unterschiedlichen Comonomerzusammensetzungen aus der Schmelze beschichtet.

Die Ergebnisse der klebtechnischen Ausprüfung sind in Tabelle 5 dargestellt.

Tabelle 5						
Muster	Elektronenstrahl-	Gelwert	KK-Stahl	KK-Stahl	∆n-Werte	
	Dosis [kGy]	[%]	MD [N/cm]	CD [N/cm]		
1#	40	72	5,8	6,8	1,5 • 10-4	
2#	30	62	5,7	6,4	0,8 • 10-4	
3#	30	61	5,5	6,2	1,2 • 10-4	
5#	50	75	5,9	6,7	0,6 • 10-4	
6#	50	73	9,6	9,8	0,5 • 10-4	
7#	75	65	11,4	11,6	0,5 • 10-4	
8#	75	64	13,5	14,1	0,6 • 10-4	
9#	75	64	13,2	13,8	0,6 • 10-4	

Masseauftrag 130 g/m2 (Muster 1#, 2#, 3#,5#)

Masseauftrag 2 x 100g/m² auf PET, Dicke 12 µm (Muster 6#, 7#) Masseauftrag 2 x 100g/m² auf BOPP, Dicke 50 µm (Muster 8#, 9#)

Gelwerte sind immer auf die vemetzte Reinacrylatmenge bezogen

KK: Klebkraft auf Stahl;

5

10

1.5

20

MD (maschine direction; Verstreckungsrichtung); CD (cross direction, Querrichtung)

Δn-Werte: Differenz der Brechungsindizes n_{MD} in Verstreckungsrichtung und n_{CD} senkrecht hierzu.

Die Ausprüfungen der gereckten Muster zeigen, daß generell Acrylathaftklebemassen mit anisotropen Klebeeigenschaften erzeugt werden können, indem die Haftklebemasse in einer Extrusionsdüse ausgeformt wird, bei der Beschichtung stark gereckt wird und dieser Zustand anschließend mit Elektronenbestrahlung "eingefroren" wird. Die für Muster 1# bis 9# ermittelten An-Werte liegen in etwa auf dem Niveau desjenigen von Muster G. Für die Muster 1#, 2#, 3# und 5# bis 9# wurden nur relativ geringe Unterschiede in den Klebkräften für Längs- und Querrichtung gemessen. Wiederum werden in Verstreckungsrichtung (MD) niedrigere Klebkräfte gemessen.

Dagegen zeigen Zug/Dehnmessungen einen deutlichen Einfluß der Orientierung auf die physikalischen Eigenschaften der Haftklebemassen. In Abbildung 1 und 2 sind die Zug/Dehn-Diagramme der Muster 1#, 2#, 3# und 5# dargestellt.

Die Muster 1#, 2#, 3# und 5# zeigen nach der Orientierung in Verstreckungsrichtung 25 (MD) eine bedeutend geringere Dehnung. Die Spannung steigt bereits auf einer sehr kurzen Strecke schnell an und die Muster reißen. In der Querrichtung (CD) lassen sich

Beispiele mit weit über 1000 % Dehnung weiter strecken und sind in dieser Richtung bedeutend weniger reißfest.

Für die vorteilhafte Anwendung der orientierten Haftklebemassen im Stanzbereich ist der Rückschrumpf ein entscheidender Faktor. Orientierte Klebemassen besitzen die Tendenz, sich nach der Streckung in eine vongegebene Richtung durch das "entropieelastische Verhalten" in den Ausgangszustand zurückzubewegen. Zur analytischen Fassung dieser Problematik wurde der Rückschrumpf der orientierten Muster im freien Film bestimmt.

10 Die bei Raumtemperatur ermittelten Werte sind in Tabelle 6 aufgelistet;

	Tabelle 6				
Muster	Rückschrumpf [%]				
1#	91				
2#	95				
3#	93				
5#	90				
6#	85				
7#	65				
8#	64				
9#	63				

Muster 1#, 2#,3#,5#: Masseauftrag 130 g/m²

15

20

Die Werte wurden jeweils nach 1 Woche Lagerung ermittelt. Weiterhin verdeutlicht der starke Rückschrumpf aller orientierten Muster das Bestreben der Haftklebemasse, wieder in den ursprünglichen Zustand zurückzukehren. Durch die Elektronenstrahl-Vermetzung kann die Orientierung eingefroren werden. Alle Muster aus Tabelle 6 wurden in Tabelle 7 mit den dargestellten Elektronenstrahl-Dosen vermetzt, um dann nach 2-monatiger Lagerung wiederum den Rückschrumpf dieser Haftklebemassen zu ermitteln.

⁻ Muster 6# bis 9# Masseauftrag 100 g/m²

	Tabelle	7
Muster	Elektronenstrahl-	Rückschrumpf [%]
	Dosis [kGy]	
1#	40	89
1#	0	-25
2#	30	94
2#	0	-5
3#	30	92
3#	0	0
5#	50	90
5#	0	-8
6#	50	83
6#	0	- 8
7#	75	59
7#	0	- 35
8#	75	57
8#	0	- 45
9#	75	61
9#	0	-48

Muster 1#, 2#,3#,5#: Masseauftrag 130 g/m²
 Muster 6# bis 9# Masseauftrag 100 g/m²

10

Tabelle 7 belegt, daß durch die Elektronenstrahl-Vernetzung die Orientierung eingefroren werden und auch nach 2-monatiger Lagerung durch den Rückschrumpf für Produktamwendungen genutzt werden kann. Der Vergleich mit den jeweils unvernetzten Mustern verdeutlicht, daß die Haftklebemassen ohne Vernetzung relaxieren und somit der Rückschrumpf nicht mehr existent ist. Hier ist im Gegenteil bei einigen Proben sogar eine Ausdehnung der Proben während der Messung zu beobachten, welche auf die auf die aufgehängten Proben einwirkende Schwerkraft zurückzuführen ist. Die harzabgemischten Haftklebemassen zeigen ein ausgeprägtes Filießverhalten.

5 Zur Beurteilung des Rückstellverhaltens der Haftklebemasse im Stanzling wurde aus den Mustern 5# bis 9# durch rotatives Stanzen ein Stanzling hergestellt. Abbildung 3a zeigt die Stanzlingform, wobei der Pfeil die Verstreckungsrichtung angibt. Das Rückstellverhalten wurde an der Oberkante (Stanzkante verläuft parallel zur Verstreckungsrichtung) sowie an den Stegen (Stanzkante verläuft quer zur Verstreckungsrichtung) mikroskopisch untersucht. In Abbildung 3b sind die Rückschrumpfmeßstellen dargestellt, in Abbildung 3c in Vergrößerung die mikroskopille Aufnahme zur Beurteilung der Oberkante der Probe (quer zur Verstreckungsrichtung) und in Abbildung 3d diejenige zur Beurteilung des Steges (längs zur Verstreckungsrichtung).

In Tabelle 8 wird der beobachtete Rückschrumpf der Haftklebemasse in Abhängigkeit von der Zeit nach der Stanzung protokolliert.

Tabelle 8					
		Rückschrumpf	fstrecke L (µm)		
	Distanz	der rückgestel	lte Haftklebem	asse zur	
	F	olien/Trennma	terialstanzkan	te	
Muster	Oberkante	Oberkante	Steg	Steg	
	Rückstelllänge L	Rückstelllänge L	Rückstellänge L	Rückstelllänge L	
	nach 24 h, RT	nach 1	nach 24 h, RT	nach 1 Woche,	
		Woche,RT		RT	
5#	5	4	350	290	
6#	3	3	180	171	
7#	4	4	105	102	
8#	3	4	95	92	
9#	2	3	30	28	

Bevorzugt besitzen die Haftklebemasssen für die erfinderische Verwendung ein Rückstellverhalten von 20 bis 800 μ m, insbesondere von 30 bis 100 μ m, gemessen in Verstreckungsrichtung.

15

10

Durch Temperaturanwendung läßt sich die Rückstellung deutlich beschleunigen. Man erreicht schon nach kurzer Zeit einen nahezu konstanten Endwert.

In Tabelle 9 wurde der Rückschrumpf einiger Muster in Abhängigkeit von der Temperatur und der Zeit gemessen.

	Tabelle 9	
Muster	Zeit [h]/Temperatur [°C]	Rückschrumpf [%]
1#	2/40	72
1#	2/60	78
2#	3/40	76
2#	3/60	81
3#	2/40	70
3#	3/60	82
5#	2/40	73
5#	2/60	80

5

Durch die Temperaturbehandlung wird der Rückschrumpf wesentlich beschleunigt. Die Muster erreichen bei einer Temperierung von 60 °C schon nach relativ kurzer Zeit (3 h) einen Rückschrumpf von über 80 % und damit nahezu einen Wert, der sonst erst bei Lagerung von mehreren Tagen erzielt wird.

10

Die Proben der in Form von Schichten vorliegenden anisotrop orientierten Acrylathaftklebemassen zeigen nach Stanz- und Schneidvorgängen eine Rückstellung der Haftklebeschicht, die ein Zusammenfließen der Haftklebemassen verhindert.

In Abbildung 4 a ist der Schneidevorgang mit einem Stanzmesser 1 durch ein Transfer-15 klebeband mit einer einseitig aufgetragenen nicht anisotropen Haftkleberschicht 21 dargestellt, Abbildung 4b zeigt die erfinderische Verwendung einer anjsotropen Haftklebemasse 22 für den Stanzvorgang, nämlich für die Stanzung eines Transferklebebandes mit einer anisotropen Haftklebemasse 22. Die Ziffer 3 bezeichnet ein antiadhäsives Trennmaterial, z.B. silikonisiertes Trennpapier. Im ersten Fall (Abbildung 4a. nicht aniso-20 trope Haftklebemasse) fließt nach dem Schneidevorgang und dem Entfernen des Messers 1 der Haftkleber des Stanzling mit der Haftklebeschicht der umgebenden Schicht zusammen, die zusammengeflossenen Haftklebemasse wird durch 4 bezeichnet. Eine

Entfernung des Stanzlings ist nicht, oder nicht zerstörungsfrei, möglich. So ist der Stanzling in diesen Fällen am Rande ausgefranst, und die Haftklebemasse zieht Fäden.

Bei einem Stanzverfahren mit erfinderischer Verwendung der anisotropen Haftklebemasse 22 (Abbildung 4b) zieht sich die Haftklebeschicht nach dem Schnitt zurück (Rückschrumpf, Ziffer 7). Der Stanzling kann unbeschädigt vom Trennmaterial 3 abgezogen und mit sauberer Schnittkante auf einen Untergrund aufgeklebt werden.

5 Die Abbildungen 5a und 5b zeigt das Verhalten nach dem Schneidevorgang für doppelseitige Klebebänder (Aufgebaut aus Haftkleberschicht 21 bzw. 22, Träger 5 (Folie, Vlies oder dergleichen), Haftkleberschicht 21 bzw. 22, antiadhäsivem Trennmaterial 3). Abbildung 5a zeigt den Fall <u>nicht</u> anisotroper Haftklebemasse 21 auf einer Trennschicht 3: Nach dem Schneidevorgang (Position 4) fließt die Klebemasse 21 zusammen (Ziffer 4).
10 Bei dem Abziehen des Stanzlings vom Trennmaterial 3 wird der Stanzling beschädigt. Abbildung 5b zeigt denselben Schneidevorgang bei Verwendung anisotroper Haftklebemassen 22: Nach dem Schnitt mit dem Messser 1 zieht sich die Haftklebemasse 22 entsprechend des Rückschrumpfes 7 zurück, ein Zusammenfließen der Haftklebemasse des

Stanzlings und des umgebenden Materials wird verhindert.

15 Entsprechend zeigen die Abbildungen 6a und 6b den herkömmlichen (6a, nicht anisotrope Klebemasse 21, Zusammenfließen 4 nach dem Schneidevorgang) und den erfinderischen (6b, anisotrope Klebemasse 22, kein Zusammenfließen 7) Stanzvorgang für die Anstanzung von Transferklebebändern mit einseitiger Haftklebeschicht 21 bzw. 22. Befindet sich zwischen zwei Schichten Trennmaterial 6 eine Trennschicht 3, so kann der 20 Stanzling nun abgehoben werden und besitzt unversehrte Ränder. Die Abbildungen 7a und 7b zeigen demgemäß die Anstanzung von doppelseitigen Klebebändern auf Trennmaterial 3. (Abbildung 7a: nicht anisotrope Haftklebemasse 21, fließt nach dem Anstanzen wieder zusammen 4; Abbildung 7b, anisotrope Haftklebmasse 22, kein Zusammenfließen nach der Stanzung (Rückschrumpf 7), Schnitt bleibt erhalten).

Die Rückstellung ist besonders ausgeprägt in Verstreckungsrichtung (MD). Vorteilhafterweise werden Schnitte daher derart angebracht, daß der Winkel zwischen der Verstreckungsrichtung und dem Schnitt in einem Winkelbereich zwischen 0° (paralleler Verlauf) und 90° möglichst groß gewählt wird, wobei der Winkel bevorzugt 90° beträgt, der 30 Schnitt also senkrecht zur Verstreckungsrichtung (somit in Querrichtung, CD) verläuft.

Auch bei Schnitten in Verstreckungsrichtung kann aber ein deutlich reduziertes Fließverhalten, verdichen mit nicht anisotropen Haftklebemassen, festgestellt werden.

Das Rückstellverhalten der Haftklebeschicht bei Ein- oder Durchschnitten kann bei ein-35 seitig oder doppelseitig beschichteten Trägermaterialien auch über die Verankerung der

Haftklebeschicht auf dem Trägermaterial gezielt beeinflußt werden. Mit einer Coronaoder Flammvorbehandlung konnte auf BOPP- und PET-Trägerfolien eine deutliche Reduktion des Rückschrumpfes erreicht werden.

Entscheidende Parameter bei der Einstellung des Rückschrumpfverhaltens sind die Pro-5 zeßbedingungen der Extrusion. Hierzu z\u00e4hlen besonders die Temperatur der Beschichtungswalze, die Temperatur der Haftklebmassse während der Verarbeitung, die Zeit bis zur Vernetzung, das Verstreckungsverhältnis bei der Beschichtung und die Beschichtunasaeschwindiakeit.

Das Rückstellverhalten der Haftklebeschicht konnte sowohl bei harzfreien Acrylathot-10 melts wie auch bei harzabgemischten Acrylathotmelts beobachtet werden. Die Erfindung ist insbesondere für harzabgemischte Acrylathotmelts bedeutend, da diese Systeme aufgrund ihrer inhärenten geringeren Viskosität, im Vergleich zu Reinacrylaten, ein deutlich ausgeprägteres Fließverhalten aufweisen als Reinacrylate.

Auf diese Art lassen sich die positiven Eigenschaften von Hotmelthaftklebmassen für die 15 Verwendung in Stanzprodukten nutzen, ohne daß sich das stärkere Fließverhalten. nachteilig auf den Stanzvorgang oder die hergestellten Stanzprodukte auswirkt.

Patentansprüche

- Verwendung einer Haftklebemasse, welche anisotrope Eigenschaften besitzt, für die Herstellung von Stanzprodukten.
- Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß die Haftklebemasse ein- oder beidseitig auf ein Trägermaterial aufgetragen ist.
- Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß die Haftklebemasse
 - durch eine radikalische Polymerisation erhältlich ist.
 - zu mindestens 65 Gew.-% auf zumindest einem acrylischen Monomer aus der Gruppe der Verbindungen der folgenden allgemeinen Formel basiert:

15

5

10

wobei R_1 = H oder CH_3 ist und der Rest R_2 = H oder CH_3 ist oder gewählt wird aus der Gruppe der verzweigten oder unverzweigten, gesättigten Alkylgruppen mit 2 bis 20. bevorzugt mit 4 bis 9 Kohlenstoffatomen.

- das mittlere Molekulargewicht der Haftklebemasse mindestens 650.000 beträgt.
 - die auf einen Träger aufgetragene Haftklebemasse eine Vorzugsrichtung besitzt, wobei der in Vorzugsrichtung gemessene Brechungsindex n_{VD} größer ist als der in einer Richtung senkrecht zur Vorzugsrichtung gemessene Brechungsindex n_{CD}, und wobei die Differenz Δn = n_{VD} - n_{CD} mindestens 1•10⁻⁵ beträgt.

25

30

- Verwendung nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
 - die Haftklebemasse zu bis zu 35 Gew.-% auf Comonomere in Form von Vinylverbindungen basiert, insbesondere auf eine oder mehrere Vinylverbindungen gewählt aus der folgenden Gruppe:

WO 02/34854

PCT/EP01/12168

28

Vinylester, Vinylhalogenide, Vinylidenhalogenide, Nitrile ethylenisch ungesättigter Kohlenwasserstoffe.

Stanzprodukt aus einem ein- oder beidseitig mit einer anisotropen Haftklebemasse
 beschichteten Trägermaterial.

Abbildung 1

Zug/Dehn-Diagramme

Detaildarstellungen aus Figur 1

Abbildung 2

3/11

WO 02/34854

Abbildung 4a

Abbildung 4b

WO 02/34854

PCT/EP01/12168 6/11

Abbildung 5a

Abbildung 5b

8 / 11

Abbildung 6a

9 / 11

Abbildung 6b

Abbildung 7a

Abbildung 7b

INTERNATIONAL SEARCH REPORT

in onal Application No PCT/EP 01/12168

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C09J7/02 C09J133/08 C09J133/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC\ 7\ C09J$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

Y Further documents are listed in the continuation of box C.

C. DOCUM	C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
E	WO 02 02709 A (HUSEMANN MARC ;TESA AG (DE); BARGMANN RENKE (DE); ZOELLNER STEPHAN) 10 January 2002 (2002-01-10) claims 1,2,7	1-5				
X	WO 97 23577 A (MINNESOTA MINING & MFG;HYDE PATRICK D (US); WONG ROY (US); KRUEGE) 3 July 1997 (1997-07-03) claims 1,18 examples 1,2	1,2,4,5				
Х	US 5 866 249 A (HYDE PATRICK D ET AL) 2 February 1999 (1999-02-02) claims 1-3	1,2,4,5				

120	
 Special deligorise of citied documents: "A document defining the general state of the art which is not considered to be of particular enlowance eacher document but published on or after the informational string date. document but may know cross on pricinty, classificial or of contract to the may know cross on pricinty, classificial or of other special reason (as specificial). document referring to an oral disclosure, use, exhabition or other means. document published pricint bit is international string date but last than the protrity case classifier. 	"It steer document published after the International filing date or proving date and of in conflict with the application to the or proving date and of in conflict with the application to the invention of the proving the proving the proving the proving date of the proving date of the proving date of the proving date of the considered notes of cannot be considered and to a livroving date of the proving da
Date of the actual completion of the international search 21 March 2002	Date of mailing of the international search report 04/04/2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Bijlavijk Tol. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 404-0016	Authorized officer Schlicke, B

Form PCT/ISA/210 (second sheet) (July 1992)

Y Palent family members are listed in annex.

INTERNATIONAL SEARCH REPORT

In onal Application No PCT/EP 01/12168

X DATABASE WPI Section Ch, Week 198935 Derwent Publications Ltd., London, 6B; Class A14, AN 1989-253446 XP002193748 A JP 01 185383 A (NITTO DENKO CORP), 24 July 1989 (1989-07-24) abstract	.2,5
Section Ch, Week 198935 Derwent Publications Ltd., London, GB; Class A14, AN 1989-253446 XP002193748 8 JP 01 185383 A (NITTO DENKO CORP), 24 July 1989 (1989-07-24) abstract DE 33 18 600 A (BEIERSDORF AG) 22 December 1983 (1983-12-22)	
22 December 1983 (1983-12-22)	-5

INTERNATIONAL SEARCH REPORT

h onal Application No PCT/EP 01/12168

				[[]	EF	01/12100	
Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
WO 0202709	A	10-01-2002	DE WO	10034069 A1 0202709 A1		07-02-2002 10-01-2002	
WO 9723577	A	03-07-1997	AU BR CA EP JP NZ WO US AU BR CA CN EP JP NO WO	705376 B2 6898596 A 9612254 A 2241032 A11 0868498 A1 200502385 T 316688 A 9723577 A1 606838 A 4655896 A 9607254 A 1174564 A1 11501956 T 973688 A 9625469 A1		20-05-1999 17-07-1999 13-07-1999 03-07-1999 03-07-1998 29-02-2000 03-07-1997 16-05-2000 04-09-1996 30-12-1997 22-08-1996 25-02-1998 03-12-1997 16-02-1999 14-10-1997 22-08-1996	
US 5866249	A	02-02-1999	AU BR CA EP JP WO US	709567 B2 7611896 A 9612027 A 2238617 A1 0868494 A1 2000502379 T 9722675 A1 5858150 A		02-09-1999 14-07-1997 29-06-1999 26-06-1997 07-10-1998 29-02-2000 26-06-1997 12-01-1999	
JP 1185383	Α	24-07-1989	JP	2663129 B2		15-10-1997	
DE 3318600	Α	22-12-1983	DE	3318600 A1		22-12-1983	

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT ionales Aktenzeichen PCT/EP 01/12168 KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 C09J7/02 C09J133/08 C09J133/02 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C09J Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiele fallien Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evit, verwendete Suchbedriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Ε WO 02 02709 A (HUSEMANN MARC : TESA AG 1-5 (DE); BARGMANN RENKE (DE); ZOELLNER STEPHAN) 10. Januar 2002 (2002-01-10) Ansprüche 1.2.7 χ WO 97 23577 A (MINNESOTA MINING & MFG 1.2.4.5 :HYDE PATRICK D (US); WONG ROY (US): KRUEGE) 3. Juli 1997 (1997-07-03) Ansprüche 1,18 Beispiele 1.2 US 5 866 249 A (HYDE PATRICK D ET AL) 1,2,4,5 2. Februar 1999 (1999-02-02) Ansprüche 1-3 -/--

Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu
 antenbrene.

X Siehe Anhang Palentfamille

- Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- 1. Veröffentlichung, die geeignet ist, einen Prioritätssinspruch zweitelhalt erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine m\u00e4ndliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht *P* Ver\u00f6fentlichung, die vor dem internationalen Aumeldeatum, aber nach dem beanspruchten Priorit\u00e4sdatum ver\u00f6fentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmoldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung: die beanspruchte Erfindung kann allein aufgrund deser Veröfentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtel werden Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigseit berüherd betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategovie in Verbindung gebracht wird und dieser Kategovie in Verbindung gebracht wird und dieser Veröffentlichung für einen Fachmann naheitigepend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Berherche Absendedatum des internationalen Recherchenberichts

21. März 2002

04/04/2002 Bevollmächtigter Bediensteter

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Palentami, P.B. 5818 Palentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni. Fax: (+31-70) 340-3016

Schlicke, B

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

Seite 1 von 2

INTERNATIONALER RECHERCHENBERICHT

ir onales Aktenzeichen
PCT/EP 01/12168

		101/11 01/12108	
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenc	len Teile Betr. Anspruch Nr.	
Tunogen o	The second secon	Doi: Michigan III.	
Х	DATABASE WPI Section Ch, Meek 198935 Derwent Publications Ltd., London, GB; Class Al4, AN 1989-253446 KPO02193748 & JP 01 18583 A (NITTO DENKO CORP), 24. Juli 1989 (1989-07-24) Zusammenfassung	1,2,5	
A	Zusammentassung — DE 33 18 600 A (BEIERSDORF AG) 22. Dezember 1983 (1983-12-22) Beispiel 1 ———	1-5	

Formblett PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

In onales Aldenzeichen
PCT/EP 01/12168

		_			1 '	CITLI	01/12100
	echerchenbericht rtes Patentdokum		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO	0202709	A	10-01-2002	DE	10034069	A1	07-02-2002
	4444			WO	0202709		10-01-2002
WO	9723577	A	03-07-1997	AU	705376	B2	20-05-1999
				ΑU	6898596	Α	17-07-1997
				BR	9612254	A	13-07-1999
				CA	2241032	A1	03-07-1997
				EP	0868498	A1	07-10-1998
				JP	2000502385	T	29-02-2000
				NZ	316689	Α	29-04-1999
				WO	9723577	A1	03-07-1997
				US	6063838	Α	16-05-2000
				ΑU	4655896	Α	04~09-1996
				BR	9607254	Α	30-12-1997
				CA	2213243	A1	22-08-1996
				CN	1174564	Α	25-02-1998
				EP	0809681	A1	03~12-1997
				JP	11501956	T	16-02-1999
				NO	973688	Α	14-10-1997
				WO	9625469	A1	22-08-1996
US	5866249	Α	02-02-1999	AU	709567	B2	02-09-1999
				ΑU	7611896	Α	14-07-1997
				BR	9612027	Α	29-06-1999
				CA	2238617	A1	26-06-1997
				EP	0868494	A1	07-10-1998
				JP	2000502379	T	29-02-2000
				WO	9722675	A1	26-06-1997
				US	5858150	Α	12-01-1999
JP	1185383	A	24-07-1989	JP	2663129	B2	15-10-1997
DE	3318600	Α	22-12-1983	DE	3318600	A1	22-12-1983

Formblatt PCT/ISA/210 (Anhang Patentiamille)(Juli 1992)