CMA111: Cálculo 1A (Prova 3)

Prof. Alberto Ramos Maio de 2018

Nome:	Run IATEX again to produce the table
	Orientações gerais 1) As soluções devem conter o desenvolvimento e ou justificativa. 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados. 3) Não é permitido a consulta nem a comunicação entre alunos.
	as seguintes integrais definidas e indefinidas.
	$\int \arctan(x)dx.$
(b) 10	$\int_0^{\pi/2} \cos^3(x) dx.$
(d) 10	$\int \frac{4x^2 + 2}{(x-3)(x+1)^2}.$
Calcule	o volume do sólido de revolução obtido por a rotação em torno ao eixo y da região do primeiro ate delimitada por as curvas $yx=4$ e $x+y=5$.
Determ	ine se as seguintes integrais convergem. Caso afirmativo calcule o valor da integral. $\neg f^{\infty} = dx$
	$\int_0^\infty \frac{dx}{x(x+1)}.$
	$\int_0^1 \frac{dx}{x\sqrt{4-x^2}}.$
(c) 10	$\int_{1}^{\infty} \frac{x^5 + \ln x}{x^6 + \cos x} dx.$
Questão 4	x^2
Seja f :	$\mathbb{R}_+ \to \mathbb{R}$ contínua tal que $\int_0^{x^2} f(s)ds = x^2(x+1)$ para todo $x \in \mathbb{R}$. Calcule $f(2)$.
	e o Teorema Fundamental do Cálculo (versão 1 e versão 2).
Consider $em (-1)$	ere uma parábola da forma $y=ax^2+bx+c$. Suponha que a parábola corta a curva $y=x^3+2$, 1) e (1,3). Se a area da região limitada por essas curvas é 2 unidades ao quadrado. Encontre ão da parábola.