Name: Umesh Mali Div:- A Roll No: 43

#### **Practical No:- 2**

Q) Create an "Academic performance" dataset of students and perform the following operations using Python. transformation should be one

of the following reasons: to change the scale for better

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this

understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution

into a normal distribution.

#### Import all the required Python Libraries.

```
In [1]: import pandas as pd
In [2]: import numpy as np
```

## Reading the dataset and loading into pandas dataframe.

```
In [3]: df = pd.read_csv("StudentPerformance.csv")
In [4]: df.head()
```

| Out | Γ <i>η</i> 1 |   |
|-----|--------------|---|
| out | լ+յ          | • |

| No | math score | writing score | Ready Score | placement score | club joining | placement offer count |
|----|------------|---------------|-------------|-----------------|--------------|-----------------------|
|----|------------|---------------|-------------|-----------------|--------------|-----------------------|

| 0 | 1 | 67.0 | 76.0 | 70.0 | 86.0  | 2020 | 3.0 |
|---|---|------|------|------|-------|------|-----|
| 1 | 2 | 60.0 | 84.0 | 75.0 | 81.0  | 2018 | 2.0 |
| 2 | 3 | 69.0 | 86.0 | 70.0 | 0.0   | 2021 | 1.0 |
| 3 | 4 | 62.0 | NaN  | 66.0 | 100.0 | 2019 | 3.0 |
| 4 | 5 | 65.0 | 95.0 | 61.0 | 77.0  | 2019 | 2.0 |

In [5]: df.shape
Out[5]: (28, 7)
In [6]: df.dtypes

Out[6]: No int64
math score float64
writing score float64
Ready Score float64
placement score float64
club joining int64
placement offer count float64

dtype: object

1) Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.

#### Handle the Missing value

Make a list of column having missing value

### Fill the missing value using mean for float and int datatypes and for other forward fill.

# Out[9]: No math score writing score Ready Score placement score club joining placement offer count

| 0 | 1 | 67.0 | 76.000000 | 70.0 | 86.0  | 2020 | 3.0 |
|---|---|------|-----------|------|-------|------|-----|
| 1 | 2 | 60.0 | 84.000000 | 75.0 | 81.0  | 2018 | 2.0 |
| 2 | 3 | 69.0 | 86.000000 | 70.0 | 0.0   | 2021 | 1.0 |
| 3 | 4 | 62.0 | 82.692308 | 66.0 | 100.0 | 2019 | 3.0 |
| 4 | 5 | 65.0 | 95.000000 | 61.0 | 77.0  | 2019 | 2.0 |

2) Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.

Import all the required visualization Python Libraries.

```
In [10]: import matplotlib.pyplot as plt
```

```
In [11]: import seaborn as sns
```



```
In [16]:
         Q1 = df['writing score'].quantile(0.25)
         Q3 = df['writing score'].quantile(0.75)
         IQR = Q3 - Q1
         Lower limit = Q1 - 1.5 * IQR Upper limit = Q3 + 1.5 * IQR print(f'Q1 = \{Q1\}, Q3 = \{Q3\},
         IQR = {IQR}, Lower limit = {Lower limit}, Upper limit = {U
         df[(df['writing score'] < Lower limit) | (df['writing score'] > Upper limit)]
         Q1 = 82.0, Q3 = 90.25, IQR = 8.25, Lower limit = 69.625, Upper limit = 102.625
In [17]:
Out[17]:
            No math score writing score Ready Score placement score club joining placement offer count
          5 6
                  60.0
                             0.0
                                         65.0
                                                     100.0
                                                                   2021
                                                                                  3.0
```

3) Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.

```
In [18]:
    df['writing score_log'] = np.log(df['writing score'])
    fig, axes = plt.subplots(1, 2, figsize=(14, 6))
    sns.histplot(data=df, x="writing score", ax=axes[0], kde=True)
    sns.histplot(data=df, x="writing score_log", ax=axes[1], kde=True)
    axes[0].set_title('Before Log Transformation')
    axes[1].set_title('After Log Transformation')
    plt.tight_layout()
    plt.show()
```



```
In [19]:
    df['writing score'].plot.hist(bins=10,
        edgecolor='black') plt.title('Histogram of
        Writing Score') plt.xlabel('Writing Score')
        plt.ylabel('Frequency') plt.grid(True) plt.show()
```

