位相反転

前のページの表 1 より、位相 ϕ がぴったり π [rad] 進んでいる場合と π [rad] 遅れている場合は周期の半分 (つまり $T_d/2$ [点]) だけ等しく平行移動します。この状況、つまり $\phi=\pm\pi$ の時、「時間領域ディジタルサイン波の位相が反転している」と言って、元の (初期位相 0 の) ディジタルサイン波が上下反転したグラフになります。

例えば次の図 1 は a=1、 $T_d=6$ 、 $\phi=0$ 、 $i=0,1,\cdots,12$ の時の時間領域ディジタルサイン波 (sin 関数版) のグラフです。

 $\boxtimes 1$: $f[i] = 1 \cdot \sin(2\pi/6 \cdot i)$

次の図 2 は a=1、 $\mathbf{T}_d=6$ は同じですが $\phi=-\pi$ とした時のアナログサイン波で、確かに上下が反転していることが分かります。

 $\boxtimes 2$: $f[i] = 1 \cdot \sin(2\pi/6 \cdot i - \pi)$

なお、位相反転は振幅 a の符号を反転させることと同じ意味です。例えば次の図 3 は a=-1、 $T_d=6$ 、 $\phi=0$ とした時のアナログサイン波で、図 2 と同じく上下反転しています。

 $\boxtimes 3$: $f[i] = -1 \cdot \sin(2\pi/5 \cdot i)$