Estruturas de Dados II (DEIN0083) Curso de Ciência da Computação 1^a avaliação

	Prof. João Dallyson Sousa de Almeida				Data : 22/04/2015					
	Aluno: Matrícula:					I		_		
	Regras durante a prova:									
	• É vetada: a consulta a material de apoio, conversa com colega e a utilização de dispaño observância de algum dos itens acima acarretará a anulação da prova.	osi	itiv	/OS	elet	rôn	icos.	A		
I.	(1.0pt) Marque V para verdadeiro e F para falso nas seguintes afirmativas sobre c ritmos:	om	ple	exic	dad	le d	le alg	О-		
	 () Uma função f(n) domina assintoticamente g(n), se existem duas constantes post para n ≥ m, temos que g(n) ≥ c f(n) . () O limite inferior (Ω) de um algoritmo é utilizado para a análise do pior caso de 						ais qu	e,		
	() O algoritmo de busca binária tem complexidade O(logn) no melhor caso.				_			~		
	() Um algoritmo A que realiza $2+20$ logn operações possui menor complexidade, co O, que um algoritmo B que realiza $6n+254$.	nsı	ae	rar	ıao	a r	ıotaç	30		
	() O método mestre pode ser utilizado para solucionar qualquer recorrência.									
II.	(1.0pt) Marque V para verdadeiro e F para falso nas seguintes afirmativas sobre denação:	os	\mathbf{a}	lgo:	ritn	nos	de c	r-		
	() O tempo de execução do Quick Sort quando todos os elementos a serem ordenade é θn^2	os t	ên	n o	me	esm	o val	or		
	 () Os algoritmos de inserção, mergesort, quicksort e heapsort são algoritmos estáv () O CountSort é um algoritmo de ordenação linear estável que realiza n compara () O RadixSort é um algoritmo que ordena em função dos dígitos no qual a estable um segundo algoritmo. 	çõe	es j	-				de		
	() Quando o vetor apresenta a maioria dos elementos ordenados, o algoritmo ideal	é	o 1	lnse	erti	on	Sort.			
III.	(2.0pt) Indique se as afirmativas a seguir são verdadeiras e justifique sua resposta:									
	(a) $50n = O(n^2)$ (b) $(n+2)^3 = O(n^3)$									

IV. (1.0pt) Dado um problema de dividir um grupo (de número par de pessoas) em dois subgrupos disjuntos de tamanhos iguais, de forma que a diferença entre o total de idades de cada subgrupo seja a maior possível. Um programador chamado Barnabé propõe formar todos os pares de subgrupos, computar diferença entre o total de idade de cada par e selecionar o par com a maior diferença. Já uma programadora chamada Salomé propõe que o grupo original seja ordenado por idade e, então, dividido em dois subgrupos por meio da formação de um subgrupo a partir da metade mais jovem do grupo ordenado a da outra metade mais antiga. Qual é a complexidade de cada uma dessas soluções? O problema por si só é polinomial, NP ou de complexidade não polinomial?

(c) $100n = \Omega(n^2)$ (d) $n^2/3 - 2n = \theta(n^2)$

V. (2.0pt) Ordene as letras da string EDDOIS apresentando o conteúdo do vetor a cada passo intermediário utlizando os seguintes algoritmos de ordenação:

- a) Inseção: liste o vetor para cada elemento incluído na ordenação parcial até o momento.
- b) MergeSort: Liste o vetor para cada partição ordenada.
- c) Shellsort. Use 1,3,5,13 como a sequência de valores para h. Liste o vetor para cada novo valor de h, enquanto h > 1. Quando h=1, liste o vetor para cada elemento inserido na ordem parcial.
- d) QuickSort, usando o elemento da esquerda da partição como pivô. Liste o vetor para cada nova partição completada com dois ou mais elementos.
- VI. (2.0pt) Utilize o algoritmo de ordenação HeapSort para ordenar o vetor [16, 2, 34, 1, 52, 11, 4]. Apresente a solução passo a passo (ilustrando a árvore e o vetor em cada iteração).
- VII. (1.0pt) É possível modificar praticamente qualquer algoritmo de ordenação para tê-lo executando com tempo do melhor caso? Justifique sua resposta.