

QUÍMICA

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

Com massas atômicas referidas ao isótopo 12 do carbono

1																	18
1 H 1,01	2	2										13	14	15	16	17	2 He 4,0
3 Li 6,94	4 Be 9,01											5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45.0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 54,9	26 Fe 55.8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh 102,9	46 Pd 106,4	47 Ag 107,8	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,7	52 Te 127,6	53 126,9	54 Xe 131,3
55 Cs 132,9	56 Ba 137,3	57-71 Série dos Lantanicios	72 Hf 178,5	73 Ta 181	74 W 183,8	75 Re 186,2	76 Os 190,2	77 Ir 192,2	78 Pt 195	79 Au 197	80 Hg 200,5	81 TI 204,3	82 Pb 207,2	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série dos Actinídios	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)			-1	111.00	*****		
			Série	dos Lant	anidios												
120425.7	ero Atón	nico	57 La 139	58 Ce 140	59 Pr 141	60 Nd 144,2	61 Pm (145)	62 Sm 150,3	63 Eu 152	64 Gd 157,2	65 Tb 159	66 Dy 162,5	67 Ho 165	68 Er 167,2	69 Tm 169	70 Yb 173	71 Lu 175
	a Atômic	a	Série	dos Acti	nidios												
() N	o mais e	ssa do	89 Ac (227)	90 Th 232,0	91 Pa 231	92 U 238	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Informações para a resolução de questões

- Algumas cadeias carbônicas nas questões de química orgânica foram desenhadas na sua forma simplificada apenas pelas ligações entre seus carbonos. Alguns átomos ficam, assim, subentendidos.
- As ligações com as representações e liministration indicam, respectivamente, ligações que se aproximam do observador e ligações que se afastam do observador.
- Constantes físicas: 1 bar = 10⁵ N.m⁻²
 1 faraday = 96500 coulombs
 R = 8,314 J.mol⁻¹ K⁻¹

 Uma mistura foi separada em seus componentes puros de acordo com o esquema de separação abaixo.

Os componentes da mistura podem ser

- (A) álcool, água, Fe e Al.
- (B) NaCℓ, água, Fe e Si.
- (C) benzeno, água, Mg e Cu.
- (D) tolueno, SiO2, Mg e Co.
- (E) água, tetracloreto de carbono, Fe e Ni.
- O2. A coluna da esquerda, abaixo, apresenta uma relação de utensílios de laboratório, e a coluna da direita, os nomes de operações realizadas com cinco desses utensílios. Associe adequadamente a coluna da direita à da esquerda.
 - 1 almofariz
- (·) trituração
- 2 balão volumétrico
- () filtração
- 3 bureta
- preparo de soluções
- 4 condensador
- () destilação
- 5 copo
- () titulação
- 6 funil
- 7 proveta

A sequência correta de preenchimento dos parênteses, de cima para baixo, é

- (A) 1-6-2-4-3.
- (B) 6-5-7-2-3.
- (C) 1-2-5-4-6.
- (D) 5 3 7 6 2.
- (E) 4-5-7-2-1.

 Considere o desenho abaixo, referente à tabela periódica dos elementos.

As setas 1 e 2 referem-se, respectivamente, ao aumento de valor das propriedades periódicas

- (A) eletronegatividade e raio atômico.
- (B) raio atômico e eletroafinidade.
- (C) raio atômico e caráter metálico.
- (D) potencial de ionização e eletronegatividade.
- (E) potencial de ionização e potencial de ionização.
- O4. Entre as espécies químicas abaixo, assinale aquela em que o número de elétrons é igual ao número de nêutrons.
 - (A) 2H+
 - (B) 13C
 - (C) 16O-2
 - (D) 21Ne
 - (E) 35Cℓ
- O5. A observação da tabela periódica permite concluir que, dos elementos abaixo, o mais denso é o
 - (A) Fr.
 - (B) Po.
 - (C) Hg.
 - (D) Pb.
 - (E) Os.
- Considere as espécies químicas cujas fórmulas estão arroladas abaixo.
 - 1 HBr
 - 2 BaO
 - 3 CaC(2
 - 4 SiO₂
 - 5 B₂O₃

Quais delas apresentam ligação tipicamente iônica?

- (A) Apenas 1 e 2.
- (B) Apenas 1 e 3.
- (C) Apenas 2 e 3.
- (D) Apenas 2, 4 e 5.
- (E) Apenas 3, 4 e 5.

- O7. Considere as afirmações abaixo, que se referem à molécula da espécie química SF₄, interpretada à luz da Teoria da repulsão dos pares de elétrons da camada de valência.
 - I Ela apresenta estrutura tetraédrica.
 - II Ela apresenta um par eletrônico isolado.
 - III- Suas quatro ligações S F encontram-se no mesmo plano.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) Apenas II e III.
- 08. Num experimento, 1000 kg do minério hematita (Fe₂O₃ + impurezas refratárias) foram reduzidos com coque, em temperatura muito elevada, segundo a reação representada abaixo.

$$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$$

Supondo-se que a reação tenha sido completa, a massa de ferro puro obtida foi de 558 kg. Pode-se concluir que a percentagem de pureza do minério é aproximadamente igual a

- (A) 35,0%.
- (B) 40,0%.
- (C) 55,8%.
- (D) 70,0%.
- (E) 80,0%.
- O número de moléculas de oxigênio necessário para a combustão completa de uma molécula de heptano é igual a
 - (A) 8.
 - (B) 11.
 - (C) 14.
 - (D) 15.
 - (E) 22.

 Três tubos de ensaio contêm soluções aquosas, designadas por A, B e C, cujas características são mostradas no quadro abaixo.

Solução	pН	Propriedade
Α	< 7	forma um precipitado pela adição de AgNO ₃
В	> 7	forma um precipitado pela adição de Na ₂ CO ₃
С	≈ 7	forma um precipitado pela adição de Na ₂ SO ₄

Os solutos das soluções A, B e C podem ser, respectivamente,

- (A) HCℓ, Mg(OH)₂ e BaCℓ₂.
- (B) HI, Aℓ(OH)₃ e KBr.
- (C) H₂SO₄, CaCℓ₂ e AgNO₃.
- (D) NaCℓ, KOH e MgCℓ₂.
- (E) HNO₃, Ca(OH)₂ e CaCℓ₂.
- Assinale a alternativa que apresenta uma reação que pode ser caracterizada como processo de oxidação-redução.
 - (A) Ba²⁺ + SO₄²⁻ → BaSO₄
 - (B) $H^+ + OH^- \rightarrow H_2O$
 - (C) $AgNO_3 + KC\ell \rightarrow AgC\ell + KNO_3$
 - (D) $PC\ell_5 \rightarrow PC\ell_3 + C\ell_2$
 - (E) $2 \text{ NO}_2 \rightarrow \text{N}_2\text{O}_4$
- A fluoxetina é uma droga antidepressiva cuja estrutura molecular está representada abaixo.

Pode-se afirmar corretamente que essa molécula apresenta

- (A) somente quatro carbonos com geometria tetraédrica.
- (B) as funções orgânicas amina primária e éter.
- (C) apenas um carbono quiral.
- (D) fórmula molecular C₁₇H₁₇F₃ON.
- (E) cadeia carbônica alicíclica ramificada.

Considere os seguintes compostos.

Com relação a esses compostos, é correto afirmar que

- (A) 1 e 2 são isômeros de posição.
- (B) 2 e 3 são apolares.
- (C) 2 e 3 são isômeros geométricos.
- (D) 1 é apolar.
- (E) 1 e 2 apresentam o mesmo ponto de ebulição.
- As temperaturas normais de ebulição da propilamina e da trimetilamina são iguais a 47,8 °C e 2,9 °C, respectivamente. A diferença entre os pontos de ebulição deve-se ao fato de que esses compostos apresentam diferentes
 - (A) massas moleculares.
 - (B) geometrias moleculares.
 - (C) forças intermoleculares.
 - (D) basicidades.
 - (E) densidades.
- 15. Considere a tabela abaixo, que apresenta os valores de pKa e da temperatura de ebulição de três compostos.

Composto	pK _a	T. ebulição (°C)
A	4,75	117
В	9,89	182
С	16,00	78

Os compostos A, B e C podem ser, respectivamente,

- (A) fenol ácido acético etanol.
- (B) ácido acético fenol etanol.
- (C) etanol fenol ácido acético.
- (D) fenol etanol ácido acético.
- (E) ácido acético etanol fenol.

Observe a reação abaixo, que representa a transformação do geraniol (composto 1), terpeno natural encontrado em plantas, no composto 2.

$$\downarrow$$

1

2

OH

2

Com relação a essa reação, considere as seguintes afirmações.

- I Trata-se de uma reação de adição, onde são consumidos 2 mols de hidrogênio por mol de geraniol.
- II O nome IUPAC do produto formado (composto 2) é 2,6-dimetil-8-octanol.
- III- O geraniol não apresenta isomeria geométrica.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas I e III.
- (D) Apenas II e III.
- (E) I, II e III.
- 17. O ácido láctico, encontrado no leite azedo, apresenta dois isômeros óticos. Sabendo-se que o ácido d-láctico desvia a luz planopolarizada 3,8º no sentido horário, os desvios angulares provocados pelo ácido ℓ-láctico e pela mistura racêmica são, respectivamente,
 - (A) −3,8° e 0°.
 - (B) -3,8° e +3,8°.
 - (C) 0° e -3,8°.
 - (D) 0° e +3,8°.
 - (E) +3,8° e 0°.
- Assinale a alternativa que apresenta a associação correta entre a fórmula molecular, o nome e uma aplicação do respectivo composto orgânico.
 - acetato de butila (A) CH₃COOCH₂CH₃
- aroma artificial de fruta

- (B) CH₃CH₂OCH₂CH₃
- etoxietano
- anestésico

- (C) CH₃CH₂COCH₃
- propanona
- removedor de esmalte

- (D) CH₃CH₂COOH
- ácido butanóico
- produção de vinagre
- (E) CH₃CH₂CH₂CH₂CH₃ pentano
- preparação de sabão

19. Considere a seguinte rota sintética.

O reagente A e o produto B são, respectivamente,

(A)
$$CH_4/A\ell C\ell_3$$
 e

(B)
$$CH_3C\ell/A\ell C\ell_3$$
 e CH_3

20. Uma solução aquosa diluída de sacarose é posta em contato com igual volume de uma solução aquosa diluída de cloreto de sódio, através de uma membrana semipermeável, resultando no equilíbrio representado abaixo.

A observação da figura permite afirmar que

- (A) a pressão osmótica da solução de sacarose é maior que a da solução de cloreto de sódio.
- (B) a molalidade da solução de cloreto de sódio é maior que a da solução de sacarose.
- (C) a solução de cloreto de sódio possui temperatura de ebulição inferior à da solução de sacarose.
- (D) ambas as soluções, quando se encontrarem na mesma temperatura, apresentarão a mesma pressão de vapor.
- (E) a solução de cloreto de sódio possui temperatura de congelação inferior à da solução de sacarose.
- 21. Misturando-se 250 mL de solução 0,600 mol/L de KC/ com 750 mL de solução 0,200 mol/L de BaC/2, obtém-se uma solução cuja concentração de ion cloreto, em mol/L, é igual a
 - (A) 0,300.
 - (B) 0,400.
 - (C) 0,450.
 - (D) 0,600.
 - (E) 0,800.
- 22. O volume, em mililitros, de uma solução 0,5 mol/L de AgNO₃ necessário para preparar 200 mililitros de uma solução 0,1 mol/L desse sal é igual a
 - (A) 10.
 - (B) 20.
 - (C) 25.
 - (D) 40.
 - (E) 50.

 Considere as seguintes entalpias de formação a 25 °C, expressas em kJ.

Substância	ΔH_f
CH₃OH (ℓ)	-726
CO ₂ (g)	-394
H ₂ O (ℓ)	-286

Esses dados permitem concluir que a entalpia correspondente à combustão completa de um mol de metanol a 25 °C, expressa em kJ, é igual a

- (A) -1406.
- (B) -240.
- (C) 46.
- (D) +46.
- (E) +240.
- Considere o diagrama abaixo, que representa equações termoquímicas genéricas.

Segundo a Lei de Hess, a relação matemática correta entre os ΔH é dada pela expressão

- (A) $\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4$.
- (B) $\Delta H_1 + \Delta H_2 = \Delta H_3 + \Delta H_4$.
- (C) $\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4$.
- (D) $\Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 = 0$.
- (E) $\Delta H_1 + \Delta H_2 + \Delta H_3 = \Delta H_4$.
- 25. Uma reação monomolecular de primeira ordem, em fase gasosa, ocorre com uma velocidade de 5,0 mol.L⁻¹min⁻¹ quando a concentração do reagente é de 2,0 mol.L⁻¹. A constante de velocidade dessa reação, expressa em min⁻¹, é igual a
 - (A) 2,0.
 - (B) 2,5.
 - (C) 5,0.
 - (D) 7,0.
 - (E) 10,0.

- Considere as afirmações abaixo, referentes a uma reação monomolecular de primeira ordem.
 - I A velocidade de reação varia linearmente com a concentração do reagente.
 - II A velocidade instantânea é uma função exponencial do tempo.
 - III- A meia-vida do reagente depende da sua concentração inicial.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) I, II e III.
- Entre as misturas de soluções abaixo, indique aquela cujo resultado é a formação de um par conjugado ácido-base.
 - (A) 100 mL de KOH 1,0 mol/L com 50 mL de H₂SO₄ 1,0 mol/L
 - (B) 50 mL de Ca(OH)₂ 0,0050 mol/L com 50 mL de HNO₃ 0,010 mol/L
 - (C) 10 mL de NaOH 0,50 mol/L com 20 mL de CH₃COOH 0,25 mol/L
 - (D) 25 mL de NH₃ 0,400 mol/L com 25 mL de HCℓ 0,200 mol/L
 - (E) 150 mL de NaOH 1,0 mol/L com 50 mL de H₃PO₄ 1,0 mol/L
- 28. O número de elétrons necessário para eletrodepositar 5,87 mg de níquel a partir de uma solução de NiSO₄ é aproximadamente igual a
 - (A) 6.0×10^{19} .
 - (B) 1.2×10^{20} .
 - (C) 3.0×10^{20} .
 - (D) 6.0×10^{23} .
 - (E) 1.2×10^{24} .

UFRGS - CV/2006 - QUI

 Assinale a alternativa que indica o equilíbrio que pode ser deslocado no sentido dos produtos por aumento de temperatura e de pressão.

(A)
$$H_{2(g)} + C\ell_{2(g)} = 2 HC\ell_{(g)}$$

$$\Delta H < 0$$

(B)
$$SbC\ell_{5(g)} = SbC\ell_{3(g)} + C\ell_{2(g)}$$

$$\Delta H > 0$$

(C)
$$PC\ell_{5(g)} = PC\ell_{3(g)} + C\ell_{2(g)}$$

$$\Delta H > 0$$

(D)
$$2 SO_{2(g)} + O_{2(g)} = 2 SO_{3(g)}$$

$$\Delta H < 0$$

- (E) $4 \text{ NO}_{(g)} + 6 \text{ H}_2\text{O}_{(g)} = 4 \text{ NH}_{3 (g)} + 5 \text{ O}_{2 (g)} \quad \Delta H > 0$
- 30. Considere as seguintes semi-reações, com seus respectivos potenciais de redução.

$$Cd^{2+} + 2e^{-} \rightarrow Cd$$
 $\epsilon^{0} = -0.40 \text{ V}$
 $Ni^{2+} + 2e^{-} \rightarrow Ni$ $\epsilon^{0} = -0.25 \text{ V}$

O desenho abaixo representa um sistema que pode envolver algumas das espécies químicas referidas acima.

Assinale a alternativa que descreve corretamente uma situação que esse sistema pode apresentar.

- (A) A lâmina de cádmio não sofre corrosão.
- (B) Ocorre diminuição da concentração de cátions na solução.
- (C) Ocorre deposição de níquel na superfície do cádmio.
- (D) A reação que ocorre é Ni + Cd²+ → Ni²+ + Cd.
- (E) Não ocorre reação, pois os dois metais apresentam potencial negativo.

