

IIC2223/IIC2224 - Teoría de Autómatas y Lenguajes Formales - 2' 2024

Tarea 2

Publicación: Viernes 6 de septiembre.

Entrega: Jueves 12 de septiembre hasta las 23:59 horas.

Indicaciones

- Debe entregar una solución para cada pregunta (sin importar si está en blanco).
- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

1. Para el siguiente DFA, realice el método de eliminación de estados y encuentre una expresión regular equivalente. Detalle cada uno de los pasos, como también el autómata finito no determinista generalizado resultante después de cada etapa.

2. Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA. El método de eliminación de estados para construir una expresión regular desde \mathcal{A} depende del orden \leq sobre Q escogido para eliminar estados. O sea, para dos ordenes distintos \leq_1 y \leq_2 , podemos generar distintas expresiones regulares R_1 y R_2 si aplicamos la eliminación de estados siguiendo \leq_1 o \leq_2 , respectivamente. Para un orden \leq de los estados Q, sea $R_{\mathcal{A}}^{\leq}$ la expresión regular resultante de seguir el método de eliminación de estados sobre \mathcal{A} según el orden \leq .

Demuestre una familia de DFAs $\{A_n\}_{n\in\mathbb{N}}$ con $A_n=(Q_n,\Sigma,\delta_n,q_0^n,F_n)$ sobre el mismo alfabeto Σ tal que $|Q_n|\in\Theta(n)$ (esto es, el número de estados crece lineal con respecto a n) y, para cada n, existe un orden \leq_n de Q_n tal que $R_{A_n}^{\leq n}$ tiene tamaño $|R_{A_n}^{\leq n}|\in\Omega(2^n)$ donde |R| corresponde al número de letras y operadores en la expresión regular R.

Pregunta 2

Sean $a, b, c \in \mathbb{N}$ tal que a > 0. Para cada uno de los siguientes lenguajes sobre el alfabeto $\Sigma = \{1\}$, diga si el lenguaje es regular o no. Demuestre su afirmación.

1.
$$L_1 = \{1^{b \cdot n + c} \mid n \ge 0\}$$

2.
$$L_2 = \{1^{a \cdot n^2 + b \cdot n + c} \mid n \ge 0\}$$

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de 0, 1, 2, 3 o 4 puntos. Todas las preguntas tienen la misma ponderación en la nota final y cada item tiene la misma ponderación en cada pregunta.