Deep Generative Models

```
Philip Schulz and Wilker Aziz

https:
//github.com/philschulz/VITutorial
```

Deep Generative Models

Generative Models

Recap: Generative Models

Joint distribution over observed data x and latent variables Z.

$$p(x, z | \alpha) = \overbrace{p(x | z, \alpha)}^{\text{likelihood}} \underbrace{p(z | \alpha)}_{\text{prior}}$$

The likelihood and prior are often standard distributions (Gaussian, Bernoulli) with simple dependence on conditioning information.

Recap: Variational Inference

Objective

$$\max_{q(z)} \mathbb{E}\left[\log p(x,z)\right] + \mathbb{H}\left(q(z)\right)$$

- ▶ The ELBO is a lower bound on log p(x)
- ▶ Mean field assumption: $q(z) = \prod_{i=1}^{N} q(z_i)$

Deep Generative Models

First Attempt: Log-linear Models

Feature-rich Generative Models

Let us assume that z has internal structure (features). How can we exploit that?

First Idea

Make $p(x|z, \alpha)$ a log-linear model.

- Only discrete data
- ► Trainable with EM if we can efficiently enumerate \mathcal{X} and \mathcal{Z} .

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = w) = \frac{\exp\left(w^{\top} f(x, z)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top} f(x, z)\right)}$$

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = w) = \frac{\exp\left(w^{\top}f(x, z)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top}f(x, z)\right)}$$

Weight Gradient

$$\frac{d}{dw}\log p(x|z,w) = f(x,z) - \mathbb{E}\left[f(X,z)|z,w\right]$$

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = w) = \frac{\exp\left(w^{\top}f(x, z)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top}f(x, z)\right)}$$

Weight Gradient

$$\frac{d}{dw}\log p(x|z,w) = f(x,z) - \mathbb{E}\left[f(X,z)|z,w\right]$$

Updates need to be performed iteratively.

Now let us treat z as latent.

Now let us treat z as latent.

Model

$$p(x, z | w) = \underbrace{\frac{\exp\left(w^{\top} f(x, z)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top} f(x, z)\right)}}_{p(x|z, w)} \times \underbrace{p(z)}_{arbitrary}$$

$$p(z|x,w) = \frac{p(x,z|w)}{p(x|w)}$$

$$p(z|x,w) = \frac{p(x,z|w)}{p(x|w)} = \frac{p(x,z|w)}{\sum_{z} p(x,z|w)} =$$

$$p(z|x, w) = \frac{p(x, z|w)}{p(x|w)} = \frac{p(x, z|w)}{\sum_{z} p(x, z|w)} = \frac{\exp(w^{\top} f(x, z))}{\frac{\sum_{x \in \mathcal{X}} \exp(w^{\top} f(x, z))}{\sum_{z} \frac{\exp(w^{\top} f(x, z))}{\sum_{x \in \mathcal{X}} \exp(w^{\top} f(x, z))} \times p(z)}}$$

$$\frac{d}{dw}\mathbb{E}_{p(z|x,w)}\left[\log p(x,z|w)\right] =$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} [\log p(x,z|w)] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} [\log p(x,z|w)] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \frac{d}{dw} \log p(x,z|w) =$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} \left[\log p(x,z|w) \right] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \frac{d}{dw} \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \left(\frac{d}{dw} \log p(x|z,w) + \frac{d}{dw} p(z) \right)$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} [\log p(x,z|w)] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \frac{d}{dw} \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \left(\frac{d}{dw} \log p(x|z,w) + \frac{d}{dw} p(z) \right)$$

$$\frac{d}{dw} \log p(x|z,w) + \frac{d}{dw} p(z)$$

$$\frac{d}{dw} \mathbb{E}_{\rho(z|x,w)} \left[\log \rho(x,z|w) \right] = \\ \mathbb{E}_{\rho(z|x,w)} \left[f(x,Z)|x,w \right] - \mathbb{E}_{\rho(z|x,w)} \left[\mathbb{E} \left[(f(X,Z)|Z,w) \right] \right]$$

Weight Gradient (treat p(z|x, w) as fixed)

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} \left[\log p(x,z|w) \right] = \\ \mathbb{E}_{p(z|x,w)} \left[f(x,Z)|x,w \right] - \mathbb{E}_{p(z|x,w)} \left[\mathbb{E} \left[(f(X,Z)|Z,w) \right] \right]$$

Procedurally

$$\mathsf{E_count}(f(x,z)) - \{ \mathsf{E_count}(f(x,z)) \times \mathbb{E}[f(X,z)|z,w] \}$$

EM

E-step
$$p(z|x, w) = \frac{p(x, z|w)}{\sum_{z} p(x, z|w)}$$
 in $\mathcal{O}(|\mathcal{X}| \times |\mathcal{Z}|)$

M-step Iteratively optimise w to match $E_{count}(x, z)$ with $E_{count}(x, z) \times \mathbb{E}[X|z, w]$

Restrictions

- Only log-linear models
- Scales badly

Deep Generative Models

Second Attempt: Wake-Sleep

Wake-sleep Algorithm

- Generalise latent variables to Neural Networks
- Train generative neural model
- Use variational inference! (kind of)

2 Neural Networks:

A generation network to model the data (the one we want to optimise) – parameters: θ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) – parameters: λ
- Original setting: binary hidden units

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) – parameters: λ
- Original setting: binary hidden units
- ▶ Training is performed in a "hard EM" fashion

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- Update generation parameters θ to maximize liklelihood of data given latent state $p(x|z,\theta)$

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- ▶ Update generation parameters θ to maximize liklelihood of data given latent state $p(x|z, \theta)$

Sleep Phase

- Produce dream sample \tilde{x} from random hidden unit z
- Update inference parameters λ to maximize probability of latent state $q(z|\tilde{x},\lambda)$

Wake Phase Objective

Assumes latent state z to be fixed random draws from $q(z|x,\lambda)$.

$$\max_{\theta} \log p(x|z,\theta)$$

This is simply supervised learning with imputed latent data!

Wake Phase Sampling

Wake Phase Sampling

Wake Phase Update

Sleep Phase Objective

Assumes fake data \tilde{x} and latent variables z to be fixed random draw from $p(x, z|\theta)$.

$$\min_{\lambda} \; \mathbb{E}_{q(z|\tilde{x},\lambda)} \left[\log p(\tilde{x},z|\theta) \right] + \mathbb{H} \left(q(z|\tilde{x},\lambda) \right)$$

Sleep Phase Sampling

Sleep Phase Sampling

Sleep Phase Update

Wake-sleep Algorithm

Advantages

- Simple layer-wise updates
- Amortised inference: all latent variables are inferred from the same weights λ

Wake-sleep Algorithm

Advantages

- Simple layer-wise updates
- Amortised inference: all latent variables are inferred from the same weights λ

Drawbacks

- Inference and generative networks are trained on different objectives
- Inference weights λ are updated on fake data \tilde{x}
- Generative weights are bad initially, giving wrong signal to the updates of λ

Deep Generative Models

☐ This is how we do: Variational Autoencoders

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

 $p(x) = \int p(x|z,\theta)p(z)dz$ is hard to compute.

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

$$p(x) = \int \underbrace{p(x|z,\theta)}_{\substack{\text{highly} \\ \text{non-linear}}} p(z) dz \text{ is hard to compute.}$$

$$\log p(x) \geq \frac{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}$$

$$\begin{split} \log p(x) & \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta) \right] + \mathbb{H} \left(q(z|x,\lambda) \right)}_{\text{ELBO}} \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z) \right] + \mathbb{H} \left(q(z|x,\lambda) \right) \end{split}$$

$$\log p(x) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)}$$

$$\log p(x) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \underbrace{\mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)}_{\text{assume analytical}}_{\text{(true for exponential families)}}$$

$$\log p(x) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{assume analytical (true for exponential families)}}$$

$$\frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant}$$

$$\frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{d}{d\theta} \log p(x|z,\theta) \right]$$

$$\frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{d}{d\theta} \log p(x|z,\theta) \right]$$

$$\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{d}{d\theta} \log p(x|z_i,\theta)$$

$$\frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{d}{d\theta} \log p(x|z,\theta) \right]$$

$$\stackrel{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{d}{d\theta} \log p(x|z_i,\theta)$$

Note: $q(z|x,\lambda)$ does not depend on θ .

$$\frac{d}{d\lambda}\left[\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda)\mid\mid p(z)\right)\right]$$

$$\frac{d}{d\lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right]$$

$$= \frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{d}{d\lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

$$\frac{d}{d\lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right] \\ = \frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{d}{d\lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

The first term again requires approximation by sampling

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

MC estimator non-differentiable

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

MC estimator non-differentiable

• Sampling z neglects $\frac{d}{d\lambda}q(z|x,\lambda)$

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

MC estimator non-differentiable

- ▶ Sampling z neglects $\frac{d}{d\lambda}q(z|x,\lambda)$
- ▶ Differentiating $q(z|x, \lambda)$ breaks the expectation

Reparametrisation trick

Find a transformation $h: z \mapsto \epsilon$ such that ϵ does not depend on λ .

- $h(z, \lambda)$ needs to be invertible
- $h(z, \lambda)$ needs to be differentiable

Reparametrisation trick

Find a transformation $h: z \mapsto \epsilon$ such that ϵ does not depend on λ .

- $h(z, \lambda)$ needs to be invertible
- $h(z, \lambda)$ needs to be differentiable
- $h(z,\lambda) = \epsilon$
- $h^{-1}(\epsilon,\lambda)=z$

Affine property

$$Ax + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } x \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Affine property

$$Ax + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } x \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Special case

$$Ax + b \sim \mathcal{N}(b, AA^T)$$
 for $x \sim \mathcal{N}(0, I)$

Affine property

$$Ax + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } x \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Special case

$$Ax + b \sim \mathcal{N}\left(b, AA^{T}\right) \text{ for } x \sim \mathcal{N}\left(0, \mathsf{I}\right)$$

Gaussian transformation

$$h(z,\lambda) = \frac{z - \mu(x,\lambda)}{\sigma(x,\lambda)} = \epsilon \sim \mathcal{N}(0, 1)$$

 $h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon \quad \epsilon \sim \mathcal{N}(0, 1)$

$$= \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{d}{d\lambda} \int q(\epsilon) \log \left(p(x|h^{-1}(\epsilon,\lambda),\theta) \right) d\epsilon$$

$$= \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{d}{d\lambda} \int q(\epsilon) \log \left(p(x|h^{-1}(\epsilon,\lambda),\theta) \right) d\epsilon$$

$$= \int q(\epsilon) \frac{d}{d\lambda} \left[\log p(x|h^{-1}(\epsilon,\lambda),\theta) \right] d\epsilon$$

Inference Network Gradient

$$= \int q(\epsilon) \frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=2}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda) d\epsilon$$

Inference Network Gradient

$$= \int q(\epsilon) \frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda) d\epsilon$$

$$= \mathbb{E}_{q(\epsilon)} \left[\frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda) \right]$$

Inference Network Gradient

$$= \int q(\epsilon) \frac{d}{dz} \log p(x|\widehat{h^{-1}(\epsilon,\lambda)}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon,\lambda) d\epsilon$$

$$= \mathbb{E}_{q(\epsilon)} \left[\frac{d}{dz} \log p(x|\widehat{h^{-1}(\epsilon,\lambda)}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon,\lambda) \right]$$

$$\stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{d}{dz} \log p(x|\widehat{h^{-1}(\epsilon,\lambda)}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon,\lambda)$$

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

This gives us 2 gradient paths.

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

This gives us 2 gradient paths.

$$\frac{dh^{-1}(\epsilon,\lambda)}{d\mu(x,\lambda)} = \frac{d}{d\mu(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = 1$$
$$\frac{dh^{-1}(\epsilon,\lambda)}{d\sigma(x,\lambda)} = \frac{d}{d\sigma(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = \epsilon$$

Gaussian KL

ELBO

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

Gaussian KL

ELBO

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

Analytical computation of $- KL(q(z|x, \lambda) || p(z))$:

$$\frac{1}{2}\sum_{i=1}^{N}\left(1+\log\left(\sigma_{i}^{2}\right)-\mu_{i}^{2}-\sigma_{i}^{2}\right)$$

generation model

generation model

Example

- Data: binary mnist
- Likelihood: product of Bernoullis
 - Let $\phi = \sigma(NN(z))$
 - $\prod_{i=1}^{N} p(x_i|\phi) = \prod_{i=1}^{N} \phi^{x_i} \times (1-\phi)^{1-x_i}$
- ▶ Prior over z: $\mathcal{N}(0,1)$
- $q(z|x,\lambda) = \mathcal{N}\left(\mu(x,\lambda), \sigma(x,\lambda)^2\right)$
- $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$

Example

- Data: binary mnist
- ▶ Likelihood: product of Bernoullis
 - Let $\phi = \sigma(NN(z))$

$$\prod_{i=1}^{N} p(x_i|\phi) = \prod_{i=1}^{N} \phi^{x_i} \times (1-\phi)^{1-x_i}$$

- ▶ Prior over z: $\mathcal{N}(0,1)$
- $q(z|x,\lambda) = \mathcal{N}\left(\mu(x,\lambda), \sigma(x,\lambda)^2\right)$
- $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$

Mean Field assumption

Variational approximation factorises over latent dimensions.

▶ approximate posterior $q(z|x,\lambda) = \mathcal{N}(\mu(x,\lambda), \sigma(x,\lambda)^2)$

▶ approximate posterior $q(z|x,\lambda) = \mathcal{N}(\mu(x,\lambda), \sigma(x,\lambda)^2)$

- where
 - $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$ e.g. $\mu(x,\lambda) = W^{(u)}x + b^{(u)}$

- ▶ approximate posterior $q(z|x,\lambda) = \mathcal{N}(\mu(x,\lambda), \sigma(x,\lambda)^2)$
- where
 - $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$ e.g. $\mu(x,\lambda) = W^{(u)}x + b^{(u)}$
 - $\begin{aligned} & \sigma(x,\lambda) = \exp(\mathsf{NN}_{\sigma}(x;\lambda)) \\ & \text{e.g. } \sigma(x,\lambda) = \\ & \log\left(1 + \exp\left(W^{(v)}x + b^{(v)}\right)\right) \end{aligned}$

- ▶ approximate posterior $q(z|x, \lambda) = \mathcal{N}(\mu(x, \lambda), \sigma(x, \lambda)^2)$
 - where

$$\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$$
e.g. $\mu(x,\lambda) = W^{(u)}x + b^{(u)}$

- $\begin{aligned} & \sigma(x,\lambda) = \exp(\mathsf{NN}_{\sigma}(x;\lambda)) \\ & \text{e.g. } \sigma(x,\lambda) = \\ & \log\left(1 + \exp\left(W^{(v)}x + b^{(v)}\right)\right) \end{aligned}$
- $\lambda = (W^{(u)}, W^{(v)}, b^{(u)}, b^{(v)})$

Variational Autoencoder

Advantages

- Backprop training
- Easy to implement
- Posterior inference possible
- One objective for both NNs

Variational Autoencoder

Advantages

- Backprop training
- Easy to implement
- Posterior inference possible
- One objective for both NNs

Drawbacks

- Discrete latent variables are difficult
- Optimisation may be difficult with several latent variables

Summary

- ▶ When $|\mathcal{X}|$ and $|\mathcal{Z}|$ are not too large, we can do EM with features
- Otherwise use VI with simple approximation
- Wake-Sleep: train inference and generation networks with separate objectives
- VAE: train both networks with same objective
- Reparametrisation
 - ▶ Transform parameter-free variable ϵ into latent value z
 - Update parameters with stochastic gradient estimates

Literature I