Лабораторная работа №8

Математическое моделирование

Ильинский Арсений Александрович

Содержание

Цель работы	5
Задание	6
Теоретическое введение	9
Модель одной фирмы	9
Конкуренция двух фирм	12
Случай 1	12
Нахождение стационарного состояние для случая 1	15
Случай 2	15
Выполнение лабораторной работы	18
1. Моделирование и построение графиков	18
1.1. Случай: товары одинакового качества и находящиеся в одной	
рыночной нише	18
1.2. Случай: использование социально-психологических факторов	
– формирование общественного предпочтения одного то-	
вара другому, не зависимо от их качества и цены	22
Выводы	26
Список литературы	27

Список иллюстраций

1 2	Рис. 1: График изменения оборотных средств фирмы 1 и фирмы 2 Рис. 2: График изменения оборотных средств фирмы 1 и фирмы 2	14 16
1	Рис. 3: График изменения оборотных средств фирмы 1 и фирмы 2	21
2	Рис. 4: Стационарное состояние системы	21
3	Рис. 4: График изменения оборотных средств фирмы 1 и фирмы 2	24

Список таблиц

Цель работы

Рассмотреть простейшую **модель конкуренции двух фирм**. Построить модель и визуализировать и анализировать графики изменения оборотных средств фирмы 1 и фирмы 2 для двух случаев.

Задание

Вариант 46

Случай 1:

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом). Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2Nq}$$
, $a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2Nq}$, $b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2Nq}$, $c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}$, $c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}$. Также введена нормировка $t=c_1\theta$.

Случай 2:

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование креди-

та и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00026) M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1 = 3, M_0^2 = 4,$$

$$p_{cr} = 45, N = 30, q = 1,$$

$$\tau_1 = 21, \tau_2 = 18,$$

$$\tilde{p}_1 = 8, \tilde{p}_2 = 13$$

Замечание: значения p_{cr} , $\tilde{p}_{1,2}$, N указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

- ullet N- число потребителей производимого продукта.
- au длительность производственного цикла.
- p рыночная цена товара.
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- q максимальная потребность одного человека в продукте в единицу вре-

мени.

• θ — безразмерное время.

Задание:

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для *случая* 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для *случая* 2.

Теоретическое введение

Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
- M оборотные средства предприятия.
- au длительность производственного цикла.
- p рыночная цена товара.
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.

Q(S/p) — функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q=q-k\frac{P}{S}=q(1-\frac{p}{p_{cr}}) \tag{1}$$

где:

• q — максимальная потребность одного человека в продукте в единицу времени.

Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{\partial M}{\partial t} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + NQ(1 - \frac{p}{p_{cr}})p - \kappa \tag{2}$$

Уравнение для рыночной цены р представим в виде

$$\frac{\partial p}{\partial t} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + NQ(1 - \frac{p}{p_{ar}}) \right) \tag{3}$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением:

$$-\frac{M\delta}{\tau\tilde{p}} + NQ(1 - \frac{p}{p_{cr}}) = 0 \tag{4} \label{eq:delta_de$$

Из (4) следует, что равновесное значение цены р равно:

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq}) \tag{5}$$

Уравнение (2) с учетом (5) приобретает вид:

$$\frac{\partial M}{\partial t} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \delta p})^2 \frac{p_{cr}}{Nq} - \kappa \tag{6}$$

Уравнение (6) имеет два стационарных решения, соответствующих условию $\partial M/\partial t=0$:

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b} \tag{7}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta}, b = \kappa Nq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2} \tag{8}$$

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменнымии (то есть, $b \ll a^2$) играют роль, только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения M равны:

$$\tilde{M}_{+}=Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p*cr})\tilde{p}, \\ \tilde{M}_{-}=\kappa\tilde{p}\frac{\tau}{\delta(p*cr-\tilde{p})} \tag{9}$$

Первое состояние \tilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \tilde{M}_- неустойчиво, так что при $M<\tilde{M}_-$

оборотные средства падают ($\partial M/\partial t<0$), то есть, фирма идет к банкротству. По смыслу \tilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Конкуренция двух фирм

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом).

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} + N_1 q (1 - \frac{p}{p_{cr}}) p - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} + N_2 q (1 - \frac{p}{p_{cr}}) p - \kappa_2 \end{cases}$$
(10)

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и

второй фирме, соответственно. Величины N_1 и N_2 — числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p.

Тогда:

$$\begin{cases} \frac{M_1}{\tau_1 \tilde{p}*1} = -N_1 q (1 - \frac{p}{p*cr}) \\ \frac{M_2}{\tau_2 \tilde{p}*2} = -N_2 q (1 - \frac{p}{p*cr}) \end{cases} \tag{11}$$

где \tilde{p}_1 и \tilde{p}_2 — себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде:

$$\begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} (1 - \frac{p}{\tilde{p}_1}) - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} (1 - \frac{p}{\tilde{p}_2}) - \kappa_2 \end{cases}$$
 (12)

Уравнение для цены, по аналогии c(3),

$$\frac{\partial p}{\partial t} = -\gamma (\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p} * 2} - Nq(1 - \frac{p}{p*cr}) \tag{13}$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p = p_{cr}(1 - \frac{1}{Nq}(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2})) \tag{14}$$

Подставив (14) в (12) имеем:

$$\begin{cases} \frac{\partial M_1}{\partial t} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1 \\ \frac{\partial M_2}{\partial t} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2 \end{cases}$$
 (15)

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p} * 1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1^2 \tilde{p}_1^2}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2^2 \tilde{p}_2^2}$$

$$(16)$$

Исследуем систему (15) в случае, когда постоянные издержки (κ_1,κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$.Получим следующую систему:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$
(17)

Замечание: необходимо учесть, что значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц (например N=10 — означает 10000 потенциальных потребителей), а значения $M_{1,2}$ указаны в млн. единиц.

При таких условиях получаем следующие динамики изменения объемов продаж (рис. [-@fig:001]):

Рис. 1: Рис. 1: График изменения оборотных средств фирмы 1 и фирмы 2

Пояснение: график изменения оборотных средств фирмы 1 (синий) и фирмы

2 (зеленый). По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время).

По графику видно, что рост оборотных средств предприятий идет независимо друг от друга. В математической модели (17) этот факт отражается в коэффициенте, стоящим перед членом M_1M_2 : в рассматриваемой задаче он одинаковый в обоих уравнениях $(\frac{b}{c_1})$. Это было обозначено в условиях задачи. Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

Нахождение стационарного состояние для случая 1

Приравниваем первое уравнение из системы (17) к нулю и находим корни:

$$\begin{cases} x_1 = 0 \\ x_2 = \frac{c_1 - by}{a_1} \end{cases}$$

Отбрасываем 0, потому что он не может быть стационарным состоянием, и находим вторую точку:

$$\begin{cases} x = \frac{c_1 - by}{a_1} \\ y = \frac{a_1 c_2 - bc_1}{a_1 a_2 - b^2} \end{cases}$$

Подставляем значение y и получаем:

$$\begin{cases} x = \frac{c_1 a_2 - bc_2}{a_1 a_2 - b^2} \\ y = \frac{a_1 c_2 - bc_1}{a_1 a_2 - b^2} \end{cases}$$
 (18)

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.),

используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M1M2 будет отличаться.

Рассмотрим следующую модель:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - (\frac{b}{c_1} + 0.002) M_1 M_2 - \frac{a_1}{c_1} M_2^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$
(19)

Начальные условия и известные параметры остаются прежними. В этом случаем получим следующее решение (рис. [-@fig:002]):

Рис. 2: Рис. 2: График изменения оборотных средств фирмы 1 и фирмы 2

Пояснение: график изменения оборотных средств фирмы 1 (синий) и фирмы 2 (зеленый). По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время).

По графику видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, тер-

пит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

Замечание: стоит отметить, что рассматривается упрощенная модель, которая дает модельное решение. В реальности факторов, влияющих на динамику изменения оборотных средств предприятий, больше.

Выполнение лабораторной работы

1. Моделирование и построение графиков

1.1. Случай: товары одинакового качества и находящиеся в одной рыночной нише

1. Модель:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

где:

$$M_0^1=3, M_0^2=4,$$

$$p_{cr}=45, N=30, q=1,$$

$$\tau_1=21, \tau_2=18,$$

$$\tilde{p}_1=8, \tilde{p}_2=13$$

2. Код программы с комментариями:

```
// Модель конкуренции двух фирм
// случай: две фирмы, производящие взаимозаменяемые товары
// одинакового качества и находящиеся в одной рыночной нише
```

```
model lab8_1
  constant Real p_cr = 45; // критическая стоимость продукта
  constant Real N = 30; // число потребителей производимого
                        // продукта
  constant Real q = 1; // максимальная потребность одного
                       // человека в продукте в единицу
                       // времени
  constant Real tau 1 = 21; // длительность производственного
                            // цикла фирмы 1
  constant Real tau_2 = 18; // длительность производственного
                           // цикла фирмы 2
  constant Real p_tilda_1 = 8; // себестоимость продукта,
                                 // то есть переменные
                                 // издержки на производство
                                 // единицы продукции фирмы 1
  constant Real p tilda 2 = 13; // себестоимость продукта, то
                                // есть переменные издержки
                                // на производство единицы
                                // продукции фирмы 2
  constant Real a1 = p_cr/((tau_1^2)*(p_tilda_1^2)*N*q);
  constant Real a2 = p_cr/((tau_2^2)*(p_tilda_2^2)*N*q);
  constant Real b = p cr/((tau 1^2)*(p tilda 1^2)*(tau 2^2)*(p tilda
  constant Real c1 = (p cr-p tilda 1)/(tau 1*p tilda 1);
  constant Real c2 = (p cr-p tilda 2)/(tau 2*p tilda 2);
  Real M1; // оборотные средства предприятия 1
```

```
Real M2; // оборотные средства предприятия 2
  Real stationary_M1; // стационарное состояние фирмы 1
  Real stationary M2; // стационарное состояние фирмы 2
  Real teta; // безразмерное время
initial equation
  M1 = 3; // начальное значение M1(0)
  M2 = 4; // начальное значение M2(0)
  teta = \emptyset; // начальное значение teta(\emptyset)
equation
  teta = time/c1; // безразмерное время - нормировка
  stationary M1 = (c1*a2-b*c2)/(a1*a2-b^2); // стационарное состояние
  stationary M2 = (a1*c2-b*c1)/(a1*a2-b^2); // стационарное состояние
  der(M1)/der(teta)=M1-(b/c1)*M1*M2-(a1/c1)*M1^2; // динамика изменен
                                                    // объемов продаж (
  der(M2)/der(teta)=(c2/c1)*M2-(b/c1)*M1*M2-(a2/c1)*M2^2; // динамика
                                                                     //
end lab8_1;
```

3. График распространения рекламы (рис. [-@fig:003]):

Рис. 1: Рис. 3: График изменения оборотных средств фирмы 1 и фирмы 2

Пояснение: график изменения оборотных средств фирмы 1 (M_1 — красный) и фирмы 2 (M_2 — синий), где по вертикальной оси значения $M_{1,2}$ (оборотные средства предприятия 1 и 2) с нормировкой ($\theta=\frac{t}{c_1}$ (безразмерное время)), по горизонтальной оси значения t (времени).

Замечание: таким образом, по графику видно, что каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

4. Стационарное состояние системы для первого случая (рис. [-@fig:004]):

Рис. 2: Рис. 4: Стационарное состояние системы

Пояснение: стационарное состояние системы (т.е. состояние, когда предприятия выйдут на максимум своей мощности), где:

• зеленый — стационарное состояние фирмы $1\,(M_1$ — красный).

• фиолетовый — стационарное состояние фирмы 2 (M_2 — синий).

Замечание: данные состояния я нашел, решив систему уравнений (18).

1.2. Случай: использование социально-психологических факторов – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены

1. Модель:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00026) M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

где:

$$M_0^1 = 3, M_0^2 = 4,$$

$$p_{cr} = 45, N = 30, q = 1,$$

$$\tau_1 = 21, \tau_2 = 18,$$

$$\tilde{p}_1 = 8, \tilde{p}_2 = 13$$

2. Код программы с комментариями:

```
// Модель конкуренции двух фирм
// случай: помимо экономического фактора
// влияния (изменение себестоимости, производственного цикла,
// использование кредита и т.п.), используются еще и
// социально-психологические факторы — формирование общественного
// предпочтения одного товара другому, не зависимо от их качества и и
```

model lab8 2

```
constant Real p_cr = 45; // критическая стоимость продукта
constant Real N = 30; // число потребителей производимого
                                                                 // продукта
constant Real q = 1; // максимальная потребность одного
                                                              // человека в продукте в единицу
                                                              // времени
constant Real tau 1 = 21; // длительность производственного
                                                                            // цикла фирмы 1
constant Real tau 2 = 18; // длительность производственного
                                                                          // цикла фирмы 2
constant Real p_tilda_1 = 8; // себестоимость продукта,
                                                                                           // то есть переменные
                                                                                           // издержки на производство
                                                                                           // единицы продукции фирмы 1
constant Real p tilda 2 = 13; // себестоимость продукта, то
                                                                                        // есть переменные издержки
                                                                                        // на производство единицы
                                                                                        // продукции фирмы 2
constant Real a1 = p_cr/((tau_1^2)*(p_tilda_1^2)*N*q);
constant Real a2 = p_cr/((tau_2^2)*(p_tilda_2^2)*N*q);
constant Real b = p_cr/((tau_1^2)*(p_tilda_1^2)*(tau_2^2)*(p_tilda_1^2)*(tau_2^2)*(p_tilda_1^2)*(tau_2^2)*(p_tilda_1^2)*(tau_2^2)*(p_tilda_1^2)*(tau_2^2)*(p_tilda_1^2)*(tau_2^2)*(p_tilda_1^2)*(tau_2^2)*(p_tilda_1^2)*(tau_2^2)*(p_tilda_1^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau_2^2)*(tau
constant Real c1 = (p_cr-p_tilda_1)/(tau_1*p_tilda_1);
constant Real c2 = (p cr-p tilda 2)/(tau 2*p tilda 2);
Real M1; // оборотные средства предприятия 1
Real M2; // оборотные средства предприятия 2
```

```
Real teta; // безразмерное время

initial equation

M1 = 3; // начальное значение M1(0)

M2 = 4; // начальное значение M2(0)

teta = 0; // начальное значение teta(0)

equation

teta = time/c1; // безразмерное время - нормировка

der(M1)/der(teta)=M1-(b/c1)*M1*M2-(a1/c1)*M1^2; // динамика изменения // объемов продаж без der(M2)/der(teta)=(c2/c1)*M2-(b/c1+0.00026)*M1*M2-(a2/c1)*M2^2; //
```

end lab8 2;

3. График распространения рекламы (рис. [-@fig:005]):

Рис. 3: Рис. 4: График изменения оборотных средств фирмы 1 и фирмы 2

Пояснение: график изменения оборотных средств фирмы 1 (M_1 — красный) и фирмы 2 (M_2 — синий), где по вертикальной оси значения $M_{1,2}$ (оборотные средства предприятия 1 и 2) с нормировкой ($\theta=\frac{t}{c_1}$ (безразмерное время)), по горизонтальной оси значения t (времени).

Замечание: таким образом, по графику видно, что вторая фирма (M_2) , несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и в итоге стабилизирует ситуацию. Динамика роста объемов оборотных средств первой фирмы (M_1) остается без изменения: достигнув максимального значения, остается на этом уровне.

Выводы

Благодаря данной лабораторной работе познакомился с простейшей **моделью конкуренции двух фирм**, а именно научился:

- строить модель.
- строить график изменения оборотных средств фирмы 1 и фирмы 2.

Список литературы

- Кулябов Д.С. Лабораторная работа N^28
- Кулябов Д.С. Задания к лабораторной работе $N^{o}8$ (по вариантам)