Sets

• T - time (month)

Data

- S goal
- *n* interest (month)
- I_t income in month t
- E_t essential spending in month t
- m number of month to achieve the goal

Stages

• Months - $0 \le t \le m$

State

- S_t - amount left to save at the start of month t

Action

- $X_t = [0, \min(S_t, I_t - E_t)]$ - amount put into saving month t

Value Function

 $V_t(S_t) = \text{minimum amount need to save in month t to achieve the goal on time}$

Base Case

• No longer possible

$$\forall t, S_t > \sum_{t}^{m} (I_t - E_t) \times \left(1 + n\right)^{m - t} < \operatorname{goal} \rightarrow V_t(S_t) = \infty$$

• Due date of the goal

$$V_m = S_m$$

General Case

- explore the action space \boldsymbol{X}_t to find the optimal saving strategy that minimises the total saving amount

$$V_t(S_t) = \min \left(x + V_{t+1} \left(S_t - x \times \left(1 + n \right)^{m-t} \right), \forall x \in X_t \right)$$