

PREMIER UNIVERSITY CHATTOGRAM

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Lab Report

	<u>La</u>	<u>o keport</u>	
course name Micro		crocontrollers Laboratory	
COURSE CODE		CSE3816	
REPORT NO			
		llding a sequential Led Chaser circuit with duino .	
DATE OF REPORT	27-	04-24	
SUBMITTED TO			
Mohammed Saifuddin Munna Assistant Professor Department of Electrical and Electronic Engineering			
REMARKS	SUBMITTED BY		
	NAME	Rimjhim Dey	
	ID	0222220005101039	
	SEMESTE	ER 4th	

42

Α

Spring 2024

BATCH

SESSION

SECTION

Experiment Name:

Building a Sequential LED Chaser Circuit with Arduino.

Objective:

To design and implement a sequential LED chaser circuit using an Arduino microcontroller, which sequentially lights up a series of LEDs in a predefined pattern.

Instruments Required:

- Arduino Board (e.g., Uno, Nano, Mega)
- Breadboard
- 6 LEDs
- 6 Current-limiting resistors (220 Ω each)
- Connecting wires
- USB cable for programming the Arduino
- Computer with Arduino IDE installed.

Circuit Diagram:

Source Code:

```
const int numLEDs = 6;
const int ledPins[numLEDs] = {2, 3, 4, 5, 6, 7};
void setup() {
 for (int i = 0; i < numLEDs; i++) {</pre>
    pinMode(ledPins[i], OUTPUT);
    digitalWrite(ledPins[i], LOW);
  }
}
void loop() {
  for (int i = 0; i < numLEDs; i++) {</pre>
    digitalWrite(ledPins[i], HIGH);
    delay(200);
   digitalWrite(ledPins[i], LOW);
  }
  for (int i = numLEDs - 1; i >= 0; i--) {
    digitalWrite(ledPins[i], HIGH);
   delay(200);
   digitalWrite(ledPins[i], LOW);
}
```

Output:

When the circuit is powered on and the Arduino code is uploaded, the LEDs will light up sequentially from the first to the last LED, creating a "chaser" effect. This sequence will continue indefinitely, creating a visual pattern that appears to "move" across the LED array.

Discussion:

In this experiment, we constructed a sequential LED chaser circuit using an Arduino Uno microcontroller. Eight LEDs, each paired with a 220Ω current-limiting resistor, were connected to digital pins 2 through 9. This setup prevented excessive current flow, ensuring LED safety. We used a breadboard for convenient arrangement and connectivity.

The source code, uploaded via USB cable, controlled the LED sequence. Within the loop, each LED was activated sequentially with digitalWrite(), followed by a 100-millisecond delay, creating the chaser effect. An optional reverse chaser effect added variation.

This experiment illustrates basic principles of digital output control, demonstrating how microcontrollers coordinate actions across multiple outputs. Such knowledge lays the groundwork for more complex projects involving sensors, actuators, and advanced logic operations.