AMENDMENTS TO THE CLAIMS

The following **Listing of Claims** will replace all prior versions, and listings of claims in the application.

1-78. (Cancelled)

79. (New) A compound having one of the following structures:

or pharmaceutically acceptable salt thereof;

wherein R_1 and R_2 are hydrogen or lower alkyl;

 $\mathbf{R_3}$, $\mathbf{R_5}$ and $\mathbf{R_6}$ are $\mathbf{C_{1-6}}$ alkyl;

the bond is a single bond or a double bond;

 R_4 is halogen, $-OR^{4A}$, $-OC(=O)R^{4A}$ or $-NR^{4A}R^{4B}$; wherein R^{4A} and R^{4B} are independently hydrogen; a nitrogen protecting group selected from a carbamate, an amide, a cyclic imide derivative, an N-alkyl amine, an N-aryl amine, an imine derivative or an enamine derivative or an oxygen protecting group selected from a substituted methyl ether, a substituted ethyl ether, a substituted benzyl ether, a silyl ether, an ester, a carbonate, a cyclic acetal or a ketal; or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a C_{3-20} heterocyclic or C_{3-14} heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached

or R^{4A} and R^{4B} are independently a C_{1-6} alkyl group optionally substituted with one or more of C_{1-20} aliphatic; C_{3-14} aryl; C_{3-14} heteroaryl; C_{1-20} alkyl C_{3-14} arylthio; C_{3-14} aryloxy; C_{1-20} heteroalkoxy, C_{3-14} heteroaryloxy; C_{1-20} alkylthio; C_{3-14} arylthio; hetero C_{1-20} alkylthio; hetero C_{3-14} arylthio; F; Cl; Br; I; -OH; $-NO_2$; -CN; $-CF_3$; $-CH_2CF_3$; $-CHC1_2$; $-CH_2OH$; $-CH_2OH$; $-CH_2NH_2$; $-CH_2SO_2CH_3$; $-C(O)R_x$; $-CO_2(R_x)$; $-CON(R_x)_2$; $-OC(O)R_x$; $-OCO_2R_x$; $-OCON(R_x)_2$; $-N(R_x)_2$; $S(O)_2R_x$; $-NR_x(CO)R_x$ wherein each occurrence of R_x is independently C_{1-20} aliphatic, hetero C_{1-20} aliphatic, C_{3-14} aryl, C_{3-14} heteroaryl, C_{1-20} alkyl C_{3-14} aryl or C_{1-20} alkyl C_{3-14} heteroaryl;

 X_1 is O, S, NR^{X1} or $CR^{X1}R^{X2}$; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, or a substituted or unsubstituted C_{1-20} alkyl, hetero C_{1-20} alkyl, cyclo C_{3-10} alkyl, heterocyclo C_{3-10} alkyl, C_{3-14} aryl or C_{3-14} heteroaryl, or a nitrogen protecting group selected from a carbamate, an amide, a cyclic imide derivative, an N-alkyl amine, an N-aryl amine, an imine derivative or an enamine derivative;

 $\label{eq:Q} \textbf{Q} \text{ is hydrogen, halogen, -CN, -S(O)}_{1\text{-}2}R^{Q1}, \text{-NO}_2, \text{-COR}^{Q1}, \text{-CO}_2R^{Q1}, \text{-NR}^{Q1}C(=O)R^{Q2}, \text{-}\\ NR^{Q1}C(=O)OR^{Q2}, \text{-CONR}^{Q1}R^{Q2}, \text{ or a substituted or unsubstituted } C_{1\text{-}20} \text{ aliphatic, heteroC}_{1\text{-}}\\ \text{20aliphatic, } C_{3\text{-}20} \text{ alicyclic, heteroC}_{3\text{-}20} \text{alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety, or -WR}^{Q1};\\ \text{wherein W is independently O, S or NR}^{Q3} \text{ and each occurrence of } R^{Q1}, R^{Q2} \text{ and } R^{Q3} \text{ is independently hydrogen, or a substituted or unsubstituted } C_{1\text{-}20} \text{ aliphatic, heteroC}_{1\text{-}20} \text{aliphatic, } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{20 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{30 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{31 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{32 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{33 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{33 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{34 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{34 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{35 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{35 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3\text{-}14} \text{ heteroaryl moiety;} \\ \text{36 alicyclic, heteroC}_{3\text{-}20} \text{ alicyclic, } C_{3\text{-}14} \text{ aryl or } C_{3$

 $\mathbf{Y_2}$ is hydrogen, or a substituted or unsubstituted $C_{1\text{-}20}$ alkyl, hetero $C_{1\text{-}20}$ alkyl, cyclo $C_{3\text{-}10}$ alkyl, heterocyclo $C_{3\text{-}10}$ alkyl, $C_{3\text{-}14}$ aryl, or $C_{3\text{-}14}$ heteroaryl moiety; or $-WR^{Y1}$;

W is O or NH; and

 R^{Y1} and R^{Y2} are independently hydrogen, or a substituted or unsubstituted C_{1-20} aliphatic, hetero C_{1-20} aliphatic, C_{3-20} alicyclic, hetero C_{3-20} alicyclic, C_{3-14} aryl or C_{3-14} heteroaryl moiety;

wherein for the compound of formula (a), when X^1 is O and the bond $\overline{}$ is a double bond, Q is hydrogen, halogen, -CN, $-S(O)_{1-2}R^{Q1}$, $-NO_2$, $-COR^{Q1}$, $-CO_2R^{Q1}$, $-NR^{Q1}C(=O)R^{Q2}$, $-NR^{Q1}C(=O)R^{Q2}$, $-CONR^{Q1}R^{Q2}$, or $-WR^{Q1}$; wherein W is independently O, S or NR^{Q3} and each occurrence of R^{Q1} , R^{Q2} and R^{Q3} is independently hydrogen, or a substituted or unsubstituted C_{1-20}

aliphatic, hetero $C_{1\text{--}20}$ aliphatic, $C_{3\text{--}20}$ alicyclic, hetero $C_{3\text{--}20}$ alicyclic, $C_{3\text{--}14}$ aryl or $C_{3\text{--}14}$ heteroaryl moiety.

80. (New) The compound of claim 1 having one of the following structures:

or pharmaceutically acceptable salt thereof.

81. (New) The compound of claim 2, wherein the compound has the structure:

wherein n is 3; Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R^{8B} is hydrogen or C_{1-6} alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C_{0-6} alkylidene or C_{0-6} alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} aryl, C_{3-14} heteroaryl or C_{1-20} acyl; or R^{Z1} and R^{Z2} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety;

or pharmaceutically acceptable salt thereof.

82. (New) The compound of claim 2, wherein the compound has the structure:

wherein n is 3; Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R^{8B} is hydrogen or C_{1-6} alkyl; and Y is $-CHOR^{Y1}$, $-CHNR^{Y1}R^{Y2}$, C=O, C=S, $C=N(R^{Y1})$ or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} aryl, C_{3-14} heteroaryl or C_{1-20} acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or a pharmaceutically acceptable salt thereof.

83. (New) The compound of claim 2, wherein the compound has the structure:

wherein n is 3; Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R^{8B} is hydrogen or C_{1-6} alkyl; and R^Y is hydrogen, halogen, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} aryl, C_{3-14} heteroaryl or C_{1-20} acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety;

or a pharmaceutically acceptable salt thereof.

84. (New) The compound of claim 80, wherein the compound has the structure:

wherein n is 3; Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; and R^{8B} is hydrogen or C_{1-6} alkyl;

or a pharmaceutically acceptable salt thereof.

85. (New) The compound of claim 79, wherein the compound has the structure:

wherein n is 3; and Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl;

or a pharmaceutically acceptable salt thereof.

86. (New) The compound of claim 79, wherein the compound has the structure:

$$\begin{array}{c} R^{Y1} \\ R^{Y2} \\ R^{Y1} \\ R^{Y1$$

wherein n is 3; and $R^{\rm Y1}$ and $R^{\rm Y2}$ are independently hydrogen or $C_{1\text{-}6}$ alkyl; or a pharmaceutically acceptable salt thereof.

87. **(New)** The compound of claim 80, wherein the compound has one of the following structures:

W is O or NH;

 R^{Y1} is hydrogen, or a substituted or unsubstituted $C_{1\text{-}20}$ aliphatic, hetero $C_{1\text{-}20}$ aliphatic, $C_{3\text{-}20}$ alicyclic, hetero $C_{3\text{-}20}$ alicyclic, $C_{3\text{-}14}$ aryl or $C_{3\text{-}14}$ heteroaryl moiety;

 R_7 is a substituted or unsubstituted C_{1-6} alkyl or hetero C_{1-6} alkyl moiety;

 R_8 is a substituted or unsubstituted $C_{1\text{--}20}$ alkyl, hetero $C_{1\text{--}20}$ alkyl, cyclo $C_{3\text{--}20}$ alkyl, heterocyclo $C_{3\text{--}20}$ alkyl, $C_{3\text{--}14}$ aryl or $C_{3\text{--}14}$ heteroaryl moiety; and Alk is a substituted or unsubstituted $C_{0\text{--}6}$ alkylidene or $C_{0\text{--}6}$ alkenylidene chain wherein up to two non-adjacent

methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} aryl, C_{3-14} heteroaryl or C_{1-20} acyl; wherein for compounds of formula (**a**), when **X**¹ is O, the bond $\stackrel{\dots}{}$ is a single bond; or a pharmaceutically acceptable salt thereof.

88. (New) The compound of claim 80, wherein the compound has one of the following structures:

wherein Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; or a pharmaceutically acceptable salt thereof.

89. **(New)** The compound of claim 80, wherein the compound has one of the following structures:

$$R_{7}m_{m_{1}}$$
 R_{6}
 $R_{5}m_{m_{1}}$
 R_{6}
 $R_{7}m_{m_{1}}$
 R_{6}
 $R_{5}m_{m_{1}}$
 R_{6}
 $R_{7}m_{m_{1}}$
 R_{6}
 $R_{7}m_{m_{1}}$
 R_{6}
 $R_{7}m_{m_{1}}$
 $R_{7}m_{m_{1}}$
 R_{8}
 $R_{7}m_{m_{1}}$
 R_{8}
 R_{8}

wherein Y_2 and R^{Y1} are independently hydrogen or $C_{1\text{-}6}$ alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic $C_{1\text{-}6}$ alkyl moiety; R^{8B} is hydrogen or $C_{1\text{-}6}$ alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, $-NR^{Z1}$ -, $-CHOR^{Z1}$, $-CHOR^{Z1}$, $-CHOR^{Z1}$, $-CHOR^{Z1}$, or -CH(Hal); or a substituted or unsubstituted $C_{0\text{-}6}$ alkylidene or $C_{0\text{-}6}$ alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO_2 , COCO, $CONR^{Z1}$, $OCONR^{Z1}$, $NR^{Z1}NR^{Z2}$, $NR^{Z1}NR^{Z2}CO$, $NR^{Z1}CO$, $NR^{Z1}CO$, $NR^{Z1}CO_2$, $NR^{Z1}CONR^{Z2}$, SO, SO_2 , $NR^{Z1}SO_2$, SO_2NR^{Z1} , $NR^{Z1}SO_2NR^{Z2}$, O, S, or NR^{Z1} ; wherein Hal is a halogen selected from F, CI, F and F and F and F is independently hydrogen, F alkyl, heteroF alkyl, F and F are attached, form a F and F and F and F and F are attached, form a F and F and F and F and F are attached, form a F and F and F and F are attached, form a F and F and F are attached, form a F and F and F are attached, form a F and F and F are a pharmaceutically acceptable salt thereof.

90. (New) The compound of claim 80, wherein the compound has one of the following structures:

$$R_{7}m_{1}$$
 R_{8}
 $R_{7}m_{1}$
 R_{6}
 $R_{7}m_{1}$
 R_{6}
 $R_{7}m_{1}$
 R_{8}
 R_{8}

 Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl;

 R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic $C_{1\text{-}6}$ alkyl moiety; R^{8B} is hydrogen or $C_{1\text{-}6}$ alkyl; and Y is $-\text{CHOR}^{Y1}$, $-\text{CHNR}^{Y1}R^{Y2}$, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, $C_{1\text{-}20}$ alkyl, hetero $C_{1\text{-}20}$ alkyl, $C_{3\text{-}14}$ aryl, $C_{3\text{-}14}$ heteroaryl or $C_{1\text{-}20}$ acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a $C_{3\text{-}20}$ heterocyclic or $C_{3\text{-}14}$ heteroaryl moiety;

or a pharmaceutically acceptable salt thereof.

91. (New) The compound of claim 80, wherein the compound has one of the following structures:

wherein Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl;

 R^{8B} is hydrogen or $C_{1\text{-}6}$ alkyl; and R^Y is hydrogen, halogen, -OR Y1 or -NR Y1 NR Y2 ; wherein R^{Y1} and R^{Y2} are independently hydrogen, $C_{1\text{-}20}$ alkyl, hetero $C_{1\text{-}20}$ alkyl, $C_{3\text{-}14}$ aryl, $C_{3\text{-}14}$ heteroaryl or $C_{1\text{-}20}$ acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a $C_{3\text{-}20}$ heterocyclic or $C_{3\text{-}14}$ heteroaryl moiety; or a pharmaceutically acceptable salt thereof.

92. **(New)** The compound of claim 80, wherein the compound has one of the following structures:

$$R_{7}$$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{1}
 R_{2}
 R_{4}
 R_{5}
 R_{5

wherein Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl;

 R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic $C_{1\text{--}6}$ alkyl moiety; and R^{8B} is hydrogen or $C_{1\text{--}6}$ alkyl; or a pharmaceutically acceptable salt thereof.

93. **(New)** The compound of claim 79, wherein the compound has one of the following structures:

wherein Y_2 and R^{Y1} are independently hydrogen or $C_{1\text{-}6}$ alkyl; or a pharmaceutically acceptable salt thereof.

94. **(New)** The compound of claim 79, wherein the compound has one of the following structures:

$$R^{Y1}$$
 R^{Y2}
 R^{Y1}
 R

and R^{Y1} and R^{Y2} are independently hydrogen or C_{1-6} alkyl; or a pharmaceutically acceptable salt thereof.

- 95. (New) The compound of claim 79, wherein R_1 and R_2 are each hydrogen.
- 96. (New) The compound of claim 79, wherein R_3 is C_{1-6} alkyl.
- 97. (New) The compound of claim 96, wherein R_3 is methyl.
- 98. (New) The compound of claim 79, wherein R_5 and R_6 are each methyl; R_4 is OH, OAc, NH₂ or halogen, or R_4 taken together with the carbon atom to which it is attached forms a moiety having the structure:
- 99. (New) The compound according to any one of claims 81 or 89, wherein R_7 is C_{1-6} alkyl.
- 100. (New) The compound according to claim 99, wherein R_7 is methyl.
- 101. (New) The compound according to claim 79 of formula (b) or (c) or the compound of formula (a) wherein when X^1 is O, the bond \cdots is a single bond, wherein Q has the structure:

wherein R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R_8 is a substituted or unsubstituted C_{3-20} carbocyclic, C_{3-20} heterocyclic, C_{3-14} aryl or C_{3-14} heteroaryl moiety; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, $-NR^{Z1}$ -, $-CHOR^{Z1}$, $-CHNR^{Z1}R^{Z2}$, C=S, $C=N(R^{Y1})$ OR -CH(Hal); or a substituted or unsubstituted C_{0-6} alkylidene or C_{0-6} alkenylidene chain where up to two non-adjacent methylene units are independently optionally replaced by CO, CO_2 , COCO, $CONR^{Z1}$, $OCONR^{Z1}$, $NR^{Z1}NR^{Z2}$, $NR^{Z1}NR^{Z2}$, $NR^{Z1}NR^{Z2}$, $NR^{Z1}CO$,

102. (New) The compound according to claim 79 of formula (b) or (c) or the compound of formula (a) wherein when X^1 is O, the bond \cdots is a single bond, wherein Q has the structure:

wherein R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R_8 is a substituted or unsubstituted C_{3-20} carbocyclic, C_{3-20} heterocyclic, C_{3-14} aryl or C_{3-14} heteroaryl moiety; and R^Y is hydrogen, halogen, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} aryl, C_{3-14} heteroaryl or C_{1-20} acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a C_{3-20} heterocyclic or C_{3-14} heteroaryl moiety.

103. (New) The compound of any one of claims 87, 98, or 99, wherein R₈ is one of:

wherein p is an integer from 0 to 5, as valency allows; q is 1 or 2, r is an integer from 1 to 6; each occurrence of R^{8A} is independently hydrogen, $C_{1\text{-}20}$ alkyl, hetero $C_{1\text{-}20}$ alkyl, $C_{3\text{-}14}$ aryl, $C_{3\text{-}14}$ heteroaryl, $-(C_{1\text{-}20}$ alkyl) $C_{3\text{-}14}$ aryl or $-(C_{1\text{-}20}$ alkyl) $C_{3\text{-}14}$ heteroaryl, $-OR^{8C}$, $-SR^{8C}$, $-N(R^{8C})_2$, $-SC_{2}N(R^{8C})_2$, $-(C=O)N(R^{8C})_2$, halogen, -CN, $-NO_2$, $-(C=O)OR^{8C}$, $-N(R^{8C})(C=O)R^{8D}$, wherein each occurrence of R^{8C} and R^{8D} is independently hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ heteroalkyl, $C_{3\text{-}14}$ aryl, $C_{3\text{-}14}$ heteroaryl, $-(C_{1\text{-}20}$ alkyl) $C_{1\text{-}20}$ aryl or $-(C_{1\text{-}20}$ alkyl) $C_{3\text{-}14}$ heteroaryl; and each occurrence of R^{8B} is independently hydrogen or $C_{1\text{-}6}$ alkyl.

104. (New) The compound of claim 103, wherein R_8 has the structure:

wherein R^{8B} is hydrogen or C₁₋₆ alkyl.

105. (New) The compound of claim 80 or 87, wherein Y_2 is C_{1-6} alkyl and R^{Y1} is hydrogen or C_{1-6} alkyl.

106. (New) The compound of claim 80 or 87, wherein R^{Y1} is H and Y_2 is CF_3 .

107. (New) The compound of claim 94, wherein R_4 is hydroxyl, C_{1-6} alkoxy, acyloxy, amino or halogen, or R_4 taken together with the carbon atom to which it is attached forms a moiety

- 108. (New) The compound of claim 94, wherein R_4 is OH, OAc, NH_2 or F, or R_4 taken together with the carbon atom to which it is attached forms a moiety having the structure:
- 109. (New) The compound of claim 94, wherein the stereocenter OR₃ has the following stereochemistry: OR₃.
- 110. (New) The compound of claim 94, wherein the stereocenter OR₃ has the following stereochemistry: OR₃ .
- 111. (New) The compound of claim 94, wherein R_3 , R_5 and R_6 are each methyl and R_4 is OH, OAc, NH₂ or F, or R_4 taken together with the carbon atom to which it is attached forms a moiety

112. (New) The compound according to claim 79, wherein the compound is selected from:

or a pharmaceutically acceptable salt thereof.

113. (New) A compound having the formula

or pharmaceutically acceptable salt thereof.

114. (New) A compound having the structure:

or pharmaceutically acceptable salt thereof;

wherein R_1 and R_2 are each independently hydrogen

 $\mathbf{R_{3}}$, $\mathbf{R_{5}}$ and $\mathbf{R_{6}}$ are \mathbf{C}_{1-6} alkyl;

 R_4 is halogen, $-OR^{4A}$, $-OC(=O)R^{4A}$ or $-NR^{4A}R^{4B}$; wherein R^{4A} and R^{4B} are independently hydrogen, or substituted or unsubstituted C_{1-6} alkyl; a nitrogen protecting group selected from a carbamate, an amide, a cyclic imide derivative, an N-alkyl amine, an N-aryl amine, an imine derivative or an enamine derivative or an oxygen protecting group selected from a methyl ether, a substituted methyl ether, a substituted benzyl ether, a silyl ether, an ester, a carbonate, a cyclic acetal or a ketal; or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a C_{3-20} heterocyclic or C_{3-14} heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached forms a moiety having the structure:

 X_1 is O, S, NR^{X1} or $CR^{X1}R^{X2}$; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, or substituted or unsubstituted C_{1-20} alkyl, hetero C_{1-20} alkyl, cyclo C_{3-10} alkyl, heterocyclo C_{3-10} alkyl, C_{3-14} aryl or C_{3-14} heteroaryl, or a nitrogen protecting group selected from a carbamate, an amide, a cyclic imide derivative, an N-alkyl amine, an N-aryl amine, an imine derivative or an enamine derivative; and

 Y_1 and Y_2 are independently hydrogen, or a substituted or unsubstituted C_{1-20} alkyl, hetero C_{1-20} alkyl, cyclo C_{3-10} alkyl, heterocyclo C_{3-10} alkyl, C_{3-14} aryl, or C_{3-14} heteroaryl moiety; or $-WR^{Y1}$; wherein W is independently -O-, -S- or NR^{Y2} wherein each occurrence of R^{Y1} and R^{Y2}

is independently hydrogen or an C_{1-20} alkyl, hetero C_{1-20} alkyl, cyclo C_{3-10} alkyl, heterocyclo C_{3-10} alkyl, C_{3-14} aryl or C_{3-14} heteroaryl moiety; or $\mathbf{Y_1}$ and $\mathbf{Y_2}$ together with the carbon atom to which

they are attached form a moiety having the structure: R^{Y1} , R^{Y2} , R^{Y1} , or R^{Y1}

115. (New) The compound of claim 114 having the structure:

wherein n is 3; and Y_1 and Y_2 are independently hydrogen, C_{1-6} alkyl, or CF_3 .

116. (New) The compound of claim 114 having the structure:

wherein Y_1 and Y_2 are independently hydrogen, $C_{1\text{-}6}$ alkyl, or CF_3 .

- 117. (New) The compound of claim 115 or 116, wherein R_5 and R_6 are each methyl.
- 118. (New) The compound of claim 115 or 116, wherein R_3 is lower alkyl.
- 119. (New) The compound of claim 118, wherein R_3 is methyl.

- 120. (New) The compound of claim 115 or 116, wherein R₄ is OH, OAc, NH₂ or halogen.
- 121. **(New)** A pharmaceutical composition comprising:

 a pharmaceutically acceptable carrier, adjuvant or vehicle; and
 a compound according to any one of claims 79, 112, 113, or 114, or a
 pharmaceutically acceptable salt thereof.
- 122. **(New)** The pharmaceutical composition of claim 121, further comprising a cytotoxic agent.
- 123. (New) The pharmaceutical composition of claim 122, wherein the cytotoxic agent is an anticancer agent.
- 124. **(New)** The pharmaceutical composition of claim 123, wherein the anticancer agent is 12,13-desoxyepothilone B, (E)-9,10-dehydro-12,13-desoxyEpoB, 26-CF3-(E)-9,10-dehydro-12,13-desoxyEpoB, taxol, radicical orTMC-95A/B.
- 125. (New) The pharmaceutical composition of claim 121, further comprising a palliative agent.