Artificial Intelligence CSE 4617

Ahnaf Munir Assistant Professor Islamic University of Technology

Non-Deterministic Search

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- A maze-like problem
 - The agent lives in a grid
 - · Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Big rewards come at the end (good or bad)
 - Small "living" reward each step (can be negative)

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Big rewards come at the end (good or bad)
 - Small "living" reward each step (can be negative)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'|s,a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(S')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

= $P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$

■ This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

For MDPs, we want an optimal **policy** $\pi^*: S \to A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed

Optimal policy when R(s, a, s') = -0.04 for all non-terminal s

R(s) = -0.01

R(s) = -0.01

N(3) = -0.0

R(s) = -0.01

N(S) = -0.0

R(s) = -0.4

R(s) = -0.01

R(s) = -2.0

A robot car wants to travel far, quickly

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated

■ Two actions: Slow, Fast

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

MDP Search Trees

Each MDP state projects an expectimax-like search tree

- What preferences should an agent have over reward sequences?
- More or less?

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]

- What preferences should an agent have over reward sequences?
- \blacksquare More or less? [1, 2, 2] or [2, 3, 4]
- Now or later?

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth Now

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

■ How to discount?

Why discount?

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
- Example: discount of 0.5

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
- Example: discount of 0.5
 - $U([1,2,3]) = 1 \times 1 + 0.5 \times 2 + 0.25 \times 3$

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
- Example: discount of 0.5
 - $U([1,2,3]) = 1 \times 1 + 0.5 \times 2 + 0.25 \times 3$
 - $U([3,2,1]) = 3 \times 1 + 0.5 \times 2 + 0.25 \times 1$

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
- Example: discount of 0.5
 - $U([1,2,3]) = 1 \times 1 + 0.5 \times 2 + 0.25 \times 3$
 - $U([3,2,1]) = 3 \times 1 + 0.5 \times 2 + 0.25 \times 1$
 - U([1,2,3]) < U([3,2,1])

Stationary Preferences

Stationary Preferences

■ Theorem: If we assume stationary preferences:

```
[a_1, a_2, \dots] > [b_1, b_2, \dots]
\updownarrow
[r, a_1, a_2, \dots] > [r, b_1, b_2, \dots]
```


Stationary Preferences

■ Theorem: If we assume stationary preferences:

$$[a_1, a_2, \dots] > [b_1, b_2, \dots]$$

$$\updownarrow$$
 $[r, a_1, a_2, \dots] > [r, b_1, b_2, \dots]$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + ...$
 - Discounted utility: $U([r_0, r_1, r_2, \dots]) = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$

Quiz: Discounting

- Given:
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- Quiz 1: For $\gamma = 1$, what is the optimal policy?
- Quiz 2: For $\gamma = 0.1$, what is the optimal policy?
- **Q**uiz 3: For which γ are West and East equally good when in state d?

■ Problem: What if the game lasts forever? Do we get infinite rewards?

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solution:
 - Finite horizon: (similar to depth-limited search)

• Discounting: $0 < \gamma < 1$

Absorbing state

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solution:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: $0 < \gamma < 1$

Absorbing state

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solution:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: $0 < \gamma < 1$

$$U([r_0,\ldots,r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solution:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: $0 < \gamma < 1$

$$U([r_0,\ldots,r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state
 - Guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov Decision Processes
 - Set of states S
 - Start state *s*₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s, a, s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q state(s, a): $Q^*(s, a) =$ expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s)$ = optimal action from state s

transition

Snapshot of Demo Gridworld Values

Noise: 0.2 Discount: 0.9 Living reward: 0

Snapshot of Demo Gridworld Values

Noise: 0.2 Discount: 0.9 Living reward: 0

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

$$V^*(s) = \max_a Q^*(s, a)$$

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

$$V^{*}(s) = \max_{a \geq 0} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

$$V^{*}(s) = \max_{a \sum} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \int_{s'}^{s'} T(s, a, s')[R(s, a, s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a}^{s'} \sum_{s'}^{s'} T(s, a, s')[R(s, a, s') + \gamma V^{*}(s')]$$

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

Recursive definition of value:

$$\begin{split} V^*(s) &= \max_{a \sum} Q^*(s, a) \\ Q^*(s, a) &= \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \\ V^*(s) &= \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \to \text{Bellman Equation} \end{split}$$

We're doing way too much work with expectimax!

- We're doing way too much work with expectimax!
- Problem: States are repeated

- We're doing way too much work with expectimax!
- Problem: States are repeated

Problem: Tree goes on forever

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if v < 1

Time-Limited Values

Key idea: time-limited values

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - \bullet Equivalently, it's what a depth- $\!k$ expectimax would give from $\!s$

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

Noise = 0.2 Discount = 0.9 Living reward = 0

Noise = 0.2 Discount = 0.9 Living reward = 0

Noise = 0.2 Discount = 0.9 Living reward = 0

k = 3

k = 4

Noise = 0.2 Discount = 0.9 Living reward = 0

Noise = 0.2 Discount = 0.9 Living reward = 0

Noise = 0.2 Discount = 0.9 Living reward = 0

k = 8

k = 9

k = 10

k = 11

k = 12

k = 100

■ Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

Repeat until convergence

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

- Repeat until convergence
- **Complexity of each iteration:** $O(S^2A)$
- Theorem: will converge to unique optimal values

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

0

 $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Suggested Reading

■ Russell & Norvig: Chapter 17.1-17.3