UDACITY Deep Learning 1강

"From Machine Learning

To Deep Learning"

1. What is Deep Learning?

2. Superviesed Classification

2. Superviesed Classification

2. Superviesed Classification

x1(hours)	x2(attendance)	y(grade)
10	.5	A
9	5	A
3	2	В
2	4	В
11	1	С

A, B, C 세 개가 있을 때

- · A or B, C
- · Bor A. C
- C or A, C 이렇게 세개의 Classifier가 있으면 가능 하다.

3. Softmax

1.
$$0 \le y_i \le 1 (i = 1, 2, ... n)$$

$$2. \sum S(y_i) = 1$$

4. Cross – Entropy

4. Cross - Entropy

$$-\sum L_i \log S(y_i) = -\sum L_i \log S(y(hat))$$

5. Recapitulation

6. Optimization

$$D(S(wx + b), L)$$
 $D(A, a)$
 $D(A, b)$

$$\mathcal{L} = \frac{1}{N} \sum_{i} D(S(wx_i + b), L_i)$$
 TRAINING SET

LOSS = AVERAGE CROSS-ENTROPY
$$\mathcal{L} = \frac{1}{N} \sum_{i} D(S(\boldsymbol{w}\boldsymbol{x}_i + \boldsymbol{b}), L_i)$$
BIG SUM!!

6. Optimization

원점수(raw score)를 z점수로 변환하기

$$z = \frac{X - \mu}{\sigma}$$
 (전집(population)자료의 경우)
$$z = \frac{X - X}{s}$$
 (표본(sample)자료의 경우)

6. Optimization

22. Measuring Performance

6. Stochastic Gradient Descent

6. Stochastic Gradient Descent

6. Stochastic Gradient Descent

Momentum

Momentum 방식은 말 그대로 Gradient Descent를 통해 이동하는 과정에 일종의 '관성'을 주는 것이다. 현재 Gradient를 통해 이동하는 방향과는 별개로, 과거에 이동했던 방식을 기억하면서 그 방향으로 일정 정도를 추가적으로 이동하는 방식이다. 수식으로 표현하면 다음과 같다. v_t 를 time step t에서의 이동 벡터라고 할 때, 다음과 같은 식으로 이동을 표현할 수 있다.

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$$

 $\theta = \theta - v_t$

이 때, γ 는 얼마나 momentum을 줄 것인지에 대한 momentum term으로서, 보통 0.9 정도의 값을 사용한다. 식을 살펴보면 과거에 얼마나 이동했는지에 대한 이동 항 v를 기억하고, 새로운 이동항을 구할 경우 과거에 이동했던 정도에 관성항만큼 곱해준 후 Gradient을 이용한 이동 step 항을 더해준다. 이렇게 할 경우 이동항 v_t 는 다음과 같은 방식으로 정리할 수 있어, Gradient들의 지수평균을 이용하여 이동한다고도 해석할 수 있다.

$$v_t = \eta \nabla_{\theta} J(\theta)_t + \gamma \eta \nabla_{\theta} J(\theta)_{t-1} + \gamma^2 \eta \nabla_{\theta} J(\theta)_{t-2} + \dots$$