MATH 453 Project The Khalimsky Topology

Mohammed Alghudiyan

 $\begin{array}{c} \textbf{Department of Mathematics} \\ \textbf{KFUPM} \end{array}$

May 7, 2025

- Introduction
- 2 Properties of the Khalimsky Topology
- 3 Connectedness and Compactness of the Khalimsky Topology

- Introduction
- 2 Properties of the Khalimsky Topology
- 3 Connectedness and Compactness of the Khalimsky Topology

Definition

Definition 1.1 (Khalimsky Topology)

The **Khalimsky topology** (\mathbb{Z} , \mathcal{K}) is the topology generated by $\{\{2n-1,2n,2n+1\}: n \in \mathbb{Z}\}.$

Equivalently, $O \in \mathcal{K}$ iff for all even integers $n \in O$, we have that the adjacent integers of n are in O, i.e. n-1, $n+1 \in O$.

◆□▶◆□▶◆臣▶◆臣▶ 臣 りQ♡

Proposition

Proposition 1.2

Let $U \subseteq 2\mathbb{Z} + 1$, then U is open in $(\mathbb{Z}, \mathcal{K})$.

Proof

We have $U \in \mathcal{K}$ iff for all even integers $n \in U$, n-1, $n+1 \in U$. Since U has no even integers, the condition holds vacuously.

Definition

Definition 1.3

A **Khalimsky interval** is an interval $[a, b]_{\mathbb{Z}} = [a, b]_{\mathbb{R}} \cup \mathbb{Z}$ equipped with the topology induced by the Khalimsky topology on \mathbb{Z} .

Definition 1.4

The **Khalimsky Plane** is the Cartesian product of two Khalimsky lines, and, more generally, **Khalimsky space** is the Cartesian product of n copies of \mathbb{Z} .

- Introduction
- 2 Properties of the Khalimsky Topology
- 3 Connectedness and Compactness of the Khalimsky Topology

Proposition

Proposition 1.5

Let $(\mathbb{Z}, \mathcal{K})$ denote the **Khalimsky topology** and let $n \in \mathbb{Z}$. Then the following properties hold:

- (i) $\overline{\{2n\}} = \{2n\}.$
- (ii) $\overline{\{2n+1\}} = \{2n, 2n+1, 2n+2\}.$
- (iii) The smallest open set containing 2n is $\{2n-1, 2n, 2n+1\}$.
- (iv) The smallest open set containing 2n+1 is $\{2n+1\}$.

Definition

Definition 1.6 (Alexandroff Space)

A topological space such that the intersection of any family of open sets is open is called a **Smallest-Neighborhood Space** or an **Alexandroff Space**.

Proposition

Proposition 1.7

The Khalimsky topology $(\mathbb{Z}, \mathcal{K})$ *is an Alexandroff Space.*

Proof

Let $\{O_i, i \in I\}$ be a family of open sets in $(\mathbb{Z}, \mathcal{K})$ and let $O = \bigcap_{i \in I} O_i$ and assume $O \neq \emptyset$. If $O \subseteq 2\mathbb{Z} + 1$, then $O \in \mathcal{K}$. If not, then there exists an even integer $x \in O$. So, $x \in O_i$ for all $i \in I$. Hence, $x - 1, x + 1 \in O_i$ for all $i \in I$. Therefore, $x - 1, x + 1 \in O$. Thus, $O \in \mathcal{K}$.

- Introduction
- 2 Properties of the Khalimsky Topology
- 3 Connectedness and Compactness of the Khalimsky Topology

Locally Connectedness of Alexandroff Spaces

Definition 1.8 (Locally Connectedness)

A topological space (X, τ) is said to be **locally connected** if for every point in X, there exists a fundamental system of neighborhoods (FSN) consisting of connected sets.

Proposition 1.9

Every Alexandroff Space is locally connected.

Proof

Let (X, τ) be an Alexandroff Space. For $x \in X$, let $V_{\tau}(x)$ be the smallest open set containing x. We show that $V_{\tau}(x)$ is connected. If $V_{\tau}(x) \subseteq U \cup V$ where U and V are open disjoint sets, then $x \in U$ or $x \in V$. If $x \in U$, then $V_{\tau}(x) \subseteq U$. If $x \in V$, then $V_{\tau}(x) \subseteq V$. Hence, $V_{\tau}(x)$ is connected. $\mathscr{B} = \{V_{\tau}(x)\}$ is an FSN of connected neighborhoods of x. Thus, (X, τ) is locally connected.

Ordered Set

Ordered Set

The **Khalimsky topology** (\mathbb{Z} , \mathcal{K}) can be represented as an ordered set:

$$x \leq_{\mathcal{K}} y \text{ iff } y \in \overline{\{x\}}^{\mathcal{K}}$$

In the same sense, we can see that $(\mathbb{Z}, \leq_{\mathcal{X}})$ is a poset as if $x, y \in \mathbb{Z}$ such that $x \leq_{\mathcal{X}} y$ and $y \leq_{\mathcal{X}} x$, then $y \in \overline{\{x\}}^{\mathcal{X}}$ and $x \in \overline{\{y\}}^{\mathcal{X}}$. Hence, x = y.

Lemma

Lemma 1.10

For all $x \in \mathbb{Z}$, $\{x, x+1\}$ is a path in $(\mathbb{Z}, \mathcal{K})$.

Proof

Case 1

Case 1: x is odd

Let $\varphi:([0,1],\mathcal{U}) \longrightarrow (\mathbb{Z},\mathcal{K})$ be given by $\varphi(t) = x$ for $t \in [0,1)$ and $\varphi(1) = x+1$, where x is an odd integer. Then $\varphi^{-1}(\{x\}) = [0,1)$ which is open in $([0,1],\mathcal{U})$. Thus, φ is continuous.

Proof

Case 2

Case 2: x is even

Let $\varphi:([0,1],\mathscr{U})\longrightarrow (\mathbb{Z},\mathscr{K})$ be given by $\varphi(t)=x+1$ for $t\in[0,1)$ and $\varphi(1)=x$, where x is an even integer. Then $\varphi^{-1}(\{x+1\})=[0,1)$ which is open in $([0,1],\mathscr{U})$. Thus, φ is continuous.

Theorem

Theorem 1.11

The Khalimsky topology $(\mathbb{Z}, \mathcal{K})$ *is path-connected and, therefore, connected.*

Compactness

Definition 1.12 (Compactness)

A space *X* is said to be **compact** if every open covering \mathscr{A} of *X*, there exists a finite subcovering.

Proposition 1.13

The **Khalimsky topology** $(\mathbb{Z}, \mathcal{K})$ is Lindelöf compact but not compact.

Proof

Let $V(2n) = \{2n-1, 2n, 2n+1\}$, then V(2n) is open for all $n \in \mathbb{Z}$ and $\mathbb{Z} = \bigcup_{n \in \mathbb{Z}} V(2n)$. Thus, $\{V(2n) : n \in \mathbb{Z}\}$ is an open covering which does not have a finite subcover. It is Lindelöf compact as every open cover has a countable subcover.

Pseudocompactness

Definition 1.14 (Pseudocompactness)

A space (X, τ) is said to be **pseudocompact** if every continuous function $f: (X, \tau) \longrightarrow (\mathbb{R}, \mathcal{U})$ is bounded.

Proposition 1.15

The **Khalimsky topology** (\mathbb{Z} , \mathcal{K}) is pseudocompact.

Proof

Let $f: (\mathbb{Z}, \mathcal{K}) \longrightarrow (\mathbb{R}, \mathcal{U})$ be a continuous map. As \mathcal{K} is connected, $f(\mathbb{Z})$ is connected, so $f(\mathbb{Z})$ is an interval. Moreover, $f(\mathbb{Z})$ is countable as \mathbb{Z} is countable. Therefore, $f(\mathbb{Z}) = \{c\}$ where $c \in \mathbb{R}$. Hence, the image of $(\mathbb{Z}, \mathcal{K})$ under any continuous function to $(\mathbb{R}, \mathcal{U})$ is bounded. Thus, $(\mathbb{Z}, \mathcal{K})$ is pseudocompact.

Thank you for listening!

Mohammed Alghudiyan s202266040@kfupm.edu.sa