

Общероссийский математический портал

Г. А. Маргулис, Явные конструкции расширителей, Пробл. nepe dauu uun popm., 1973, том 9, выпуск 4, 71–80

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 89.106.174.124

3 марта 2017 г., 11:02:12

Tom IX

1973

Bun. 4

УДК 621.395.34:513.83

ЯВНЫЕ КОНСТРУКЦИИ РАСШИРИТЕЛЕЙ

Г. А. Маргулис

При решении некоторых задач теории коммутации и теории кодирования возникает необходимость в построении конструкций, аналогичных тем, которые в настоящей работе называются расширителями. Несмотря на то что существование расширителей довольно легко доказывается из вероятностных соображений, их явное построение оказывается затруднительным. В настоящей работе с помощью теории представлений групп решается задача о явном построении расширителей.

§ 1. Формулировка задачи

1.1. Пусть нам нужно создать конструкцию, обладающую некоторым свойством. В теории информации и близких к ней вопросах одним из наиболее распространенных является следующий путь: сначала строится некоторый класс конструкций, а потом доказывается, что в этом классе почти все конструкции (в некотором смысле) являются «хорошими» (т. е. обладающими требуемым свойством). Но при этом зачастую оказывается: песмотря на то что «хороших» конструкций очень много, явно построить хотя бы одну из них очень трудно. Задача, о которой будет идти речь в настоящей работе, как раз связана с такого рода конструктиями.

1.2. В этом пункте будут даны определения, необходимые для постановки задачи. Пусть A и B — некоторые конечные множества. Элементы множества A назовем входами, а элементы множества B — выходами. Пусть каждый вход непосредственно соединен с некоторым числом выходов. Любой полученный таким образом граф будем называть соединителем. Если в соединителе число элементов в множестве A равно числу элементов в множестве B, то такой соединитель назовем равномерным. Пусть H — равномерный соединитель. Емкостью соединителя H назовем число элементов в множестве A (или, что то же, в множестве B), весом — число ребер в H, а плотностью — отношение веса к емкости. В дальнейшем для любого равномерного соединения H через c(H), w(H) и d(H) будем обозначать соответственно емкость, вес и плотность этого соединителя.

Пусть H — равномерный соединитель, а X — подмножество множества A. Тогда через X_H обозначим подмножество множества B, состоящее из тех и только тех выходов, которые соединены хотя бы с одним из входов, принадлежащих подмножеству X.

Для любого подмножества X множества A (или множества B) через r(X) будем обозначать число элементов в X, а отношение c(X)/c(A) будем называть плотностью подмножества X. Пусть теперь c и α — положительные числа, причем c>1, а $\alpha<1$. Тогда равномерный соединитель H назовем (c,α) -расширителем, если выполнено следующее условие: для любого подмножества X множества A, плотность которого меньше α , имеет место неравенство

$$\frac{c(X_H)}{c(X)} > c.$$

1.3 Постановка задачи. Для любых таких положительных c и α , что c>1, $\alpha<1$ и $c\alpha<1$ требуется явно построить такую бесконечную последовательность H_1,\ldots,H_i,\ldots равномерных соединителей, чтобы выполнялись следующие условия:

1) при любом i (1 $\leq i < \infty$) H_i является (c, α) -расширителем;

- 2) если *i* стремится к бесконечности, то емкость соединителя H_i стремится к бесконечности, т. е. $\lim c(H_i) = \infty$;
- 3) плотности всех соединителей H_i ограничены в совокупности некоторой константой D, т. е. для любого $i(1 \le i \le \infty)$ верно неравенство $d(H_i) < D$, где D не зависит от i.

Несмотря на то что *существование* искомой последовательности равномерных соединителей довольно легко доказывается из вероятностных соображений, *явное* построение такой последовательности оказывается затруднительным

1.4. Вопросы, близкие к тому, который был сформулирован в пункте 1.3, возникают в ряде задач теории коммутации и теории кодирования. Например, представляет интерес (см. работу М. С. Пинскера [1]) построение последовательности соединителей $H_1, \ldots, H_i \ldots$, у которых число входов пропорционально с некоторой константой k числу выходов, и являющихся (c, α) -расширителями (для соединителей, не являющихся равномерными, понятие (c, α) -расширителя определяется так же, как и для равномерных соединителей). При этом, естественно, надо потребовать соблюдение неравенства $c\alpha < 1/k$. Покажем, как можно решить эту задачу для целых k и $\alpha < 1/k$, если заранее решить задачу, сформулированную в пункте 1.3. Действительно, так как число входов (т. e. c(A)) пропорционально числу выходов (т. е. c(B)) с целочисленной константой k, то мы можем разбить A на k непересекающихся подмножеств A_1, \ldots, A_k , мощность каждого из которых равна мощности множества B (т. е. $c(A_i) = c(B)$ при любом $1 \le i \le i$ $\leq k$). После этого для любого $i(1 \leq i \leq k)$ построим $(c, \alpha k)$ -расширитель, у которого A_i является множеством входов, а B — множеством выходов (здесь мы используем решение задачи из п. 1.3). Затем объединим все полученные k соединителей в один. Чтобы показать, что полученный таким образом соединитель H является $(c,\, lpha)$ -расширителем, достаточно заметить, что $\frac{c(X \cap A_i)}{c(A_i)} > k \frac{c(X)}{c(A)}$ для любого Х⊂А выполняется неравенство при одном i, и после этого использовать то, что H состоит из $(c, \alpha k)$ -расширителей.

Для практических вопросов, в которых встречается задача из пункта 1.3, важно, чтобы константа D была достаточно мала. По-видимому, приводимые ниже конструкции удовлетворяют этому условию. К сожалению, автор доказывать это не умеет. Будет лишь доказано существование D.

§ 2. Построение конструкции и формулировка утверждений, из которых вытекает, что построенная конструкция является искомой

2.1. Обозначения. Для любого натурального m через Z_m будем обозначать кольцо вычетов по модулю m. Для любых X и Y через $X \times Y$ будем обозначать прямое произведение X и Y.

2.2. Конструкция. Пусть m — произвольное натуральное число. Положим $A_m = Z_m \times Z_m$ и $B_m = Z_m \times Z_m$. Таким образом, элементами как множества A_m , так и множества B_m являются пары (x, y), где $x \in Z_m$ и $y \in Z_m$. Построим теперь соединитель H_m следующим образом: каждый элемент (x, y) множества A_m соединяется со следующими пятью элементами множества B_m : 1) (x, y), 2) (x+1, y), 3) (x, y+1), 4) (x, x+y), 5) (-y, x).

2.3. Теорема. Существует такая положительная константа d, не зависящая от m, что для любого натурального m построения e m. 2.2 соединитель H_m является $(1+d(1-\alpha), \alpha)$ -расширителем при любом α , удовлетворяющем неравенству $0 < \alpha < 1$.

Доказательство теоремы будет приведено в § 3.

2.4. Пусть H_1 и H_2 — два равномерных соединителя с одинаковой емкостью, т. е. у H_1 и H_2 одинаковое число входов (и выходов). Тогда между выходами соединителя H_1 и входами соединителя H_2 можно установить взаимно однозначное соответствие. Иначе говоря мы можем считать, что выходы соединителя H_1 являются входами соединителя H_2 . Определим теперь произведение $H_2 \circ H_1$ соединителей H_2 и H_4 следующим образом:

1) входами соединителя $H_2 \circ H_1$ являются входы соединителя H_4 , а выхо-

дами — выхода соединителя H_2 ;

2) вход x соединителя $H_2 \circ H_1$ тогда и только тогда соединен с выходом соединителя $H_2 \circ H_1$, когда найдется такой выход z соединителя H_1 (он же вход соединителя H_2), который соединен как с x, так и с y.

2.5. Из определения произведения соединителей и определения (c, α) -

расширителя сразу следует

 Π емм а. Eсли H_1 является (c_1, α) -расширителем, а $H_2-(c_2, c_1\alpha)$ -рас-

ширителем, то $H_2 \circ H_1$ является $(c_1 c_2, \alpha)$ -расширителем.

Замечание. Строго говоря, определение произведения соединителей H_2 и H_1 зависит от способа отождествления выходов соединителя H_1 с входами соединителя H_2 . Тем не менее только что сформулированная лемма остается верной независимо от этого способа.

2.6. Для любого соединителя H и любого натурального k через H^k будем

обозначать произведение $H_{\circ}\dots \circ H$. Тогда из определения соединителя H_m и определения произведения соединителей сразу вытекает, что для любых натуральных m и k каждый вход соединителя H_m^k соединен не более чем с 5^k выходами этого соединителя. Поэтому верна

 Π емма. Для любых натуральных m и k плотность соединителя $H_m{}^k$ не

превосходит 5^{k} .

2.7. Из теоремы 2.3 и леммы 2.5 сразу следует

 Π е м м а. \dot{H} усть с и α — такие положительные числа, что α <1, c>1, u с α <1. Tогда найдется такое k, что для любого m соединитель H_m^k является (c,α) -расширителем.

2.8. Замечание. Леммы 2.6 и 2.7 дают ответ на задачу, поставленную

в п. 1.3.

§ 3. Доказательство теоремы 2.3

3.1. Настоящий параграф состоит из двух частей. В первой части (пункты 3.2—3.8) теорема 2.3 будет сведена к лемме 3.7. Во второй части (пункты 3.9—3.23) лемма 3.7 будет доказана с помощью методов теории представлений групп.

3.2. Сохраним обозначения пункта 2.2. Определим теперь преобразования T_4 , T_2 , T_3 и T_4 множества $A_m = Z_m \times Z_m$ по следующим формулам:

$$T_1(x, y) = (x+1, y),$$

 $T_2(x, y) = (x, y+1).$
 $T_3(x, y) = (x+y, y),$
 $T_4(x, y) = (-y, x),$

где $x \in \mathbb{Z}_m$ и $y \in \mathbb{Z}_m$.

3.3. Как и прежде, для любого X через c(X) будем обозначать число элементов в X. Кроме того, для любого подмножества X множества A и любого $i(1 \le i \le 4)$ через $T_i(x)$ будем обозначать образ X под действием преобразования T_i (т. е. $T_i(X) = \bigcup_{x \in X} T_i(x)$).

Лемма. Существует такая положительная константа d, что для любого натурального m и любого α , удовлетворяющего неравенству $0 < \alpha < 1$, верно следующее: если $X \subset A_m = Z_m \times Z_m$ и $c(X) < \alpha c(A_m) = \alpha m^2$, то для некоторого $i(1 \le i \le 4)$ имеет место неравенство $c(T_i(X) \cup X) > (1 + d(1 - \alpha))c(X)$.

Из определения соединителя H_m и преобразований T_4 , T_2 , T_3 и T_4 видно, что из только что сформулированной леммы 3.3 сразу следует теорема 2.3. Поэтому мы в дальнейшем будем доказывать именно эту

лемму.

3.4. Введем в пространстве комплекснозначных функций на A_m скалярное произведение по следующей формуле:

$$(f_1, f_2) = \sum_{a \in A_m} f_1(a) \overline{f_2(a)},$$

где f_1 и f_2 — функции, а черта над $f_2(a)$ означает комплексное сопряжение. Легко видеть, что пространство комплекснозначных функций на A_m с только что введенным скалярным произведением является конечномерным евклидовым пространством, которое мы обозначим через $L^2(A_m)$. Введем в $L^2(A_m)$ норму, а именно для $f^{\mathbb{C}}L^2(A_m)$ положим $||f|| = \sqrt{f_1(f_1,f_2)}$.

3.5. Пусть T — произвольное взаимно однозначное отображение множества A_m на себя. Сопоставим T линейный оператор T в пространстве $L^2(A_m)$

следующим образом: если $f^{\in}L^2(A_m)$, то для любого $a^{\in}A_m$

$$\widetilde{T}f(a) = f(T^{-1}a),$$

где T^{-1} означает отображение, обратное к T. Из взаимной однозначности T и того, как было определено скалярное произведение в $L^2(A_m)$, вытекает, что \widetilde{T} является в $L^2(A_m)$ унитарным оператором (для любых f_1 , $f_2 \in L^2(A_m)$ верно равенство ($\widetilde{T}f_1$, $\widetilde{T}f_2$) = (f_1, f_2)).

3.6. Обозначим через $S(A_m)$ подпространство в $L^2(A_m)$, состоящее из

3.6. Обозначим через $S(A_m)$ подпространство в $L^2(A_m)$, состоящее из всех функций f, для которых $\sum_{a \in A_m} f(a) = 0$. Иначе говоря, $S(A_m)$ являет-

ся ортогональным дополнением к одномерному пространству константы (функций, постоянных на всем A_m). Легко видеть, что $S(A_m)$ является в $L^2(A_m)$ подпространством коразмерности 1, т. е. $\dim L^2(A_m) - \dim S(A_m) = 1$. Заметим еще, что для любого взаимно однозначного отображения T множества A_m в себя пространство $S(A_m)$ инвариантно относительно T.

3.7. Пусть T_4 , T_2 , T_3 и T_4 означают то же, что и в пунктах 3.2 и 3.3. Лемма. Существует такая положительная константа d, не зависящая

от m, что для любого $f^{\complement}S(A_m)$ найдется такое $i(1{\leqslant}i{\leqslant}4)$, что

$$\frac{(\widetilde{T}_{i}f,f)}{(f,f)} < 1 - d.$$

3.8. Доказательство леммы 3.7 будет приведено ниже. А пока покажем, как из нее вытекает лемма 3.3.

Пусть X — произвольное * подмножество множества A_m . Определим на A_m функцию f_X следующим образом:

$$f_X(a) = c(A_m) - c(X)$$
, если $a \in X$, $f_X(a) = -c(X)$, если $a \notin X$,

где c(A) и c(X), как и прежде, означает число элементов в A и X. Из определения функции f_x сразу видно, что $f_x \in S(A_m)$. Поэтому, согласно лемме 3.7, найдется такое i ($1 \le i \le 4$), что выполняется неравенство

$$(1) \qquad \frac{(\widetilde{T}_i f_X, f_X)}{(f_X, f_X)} < 1 - d.$$

Из определения функции f_x и оператора T_i непосредственными вычислениями (которые мы опускаем ввиду их тривиальности) получаем следующие равенства:

(2)
$$(f_x, f_x) = c(X) c(A_m) (c(A_m) - c(X))$$

(3)
$$(\widetilde{T}_i f_X, f_X) = c(A_m) \left[c(X \cap T_i X) c(A_m) - c^2(X) \right].$$

Из (1)-(3) следует, что

$$(4) \qquad \frac{c(X \cap T_iX)c(A_m) - c^2(X)}{c(X)(c(A_m) - c(X))} < 1 - d_{\bullet}$$

Так как c(X)>0 и $c(A_m)-c(X)>0$ (так как $X\neq\varnothing$ и $X\neq A_m$), то, обозначив $\frac{c(X)}{c(A_m)}$ через α_X , из (4) получаем, что

$$c(X \cap T_{i}X) < \frac{(1-d)c(X)(c(A_{m})-c(X))+c^{2}(X)}{c(A_{m})} =$$

$$= \frac{c(X)c(A_{m})-c^{2}(X)-dc(X)c(A_{m})+dc^{2}(X)+c^{2}(X)}{c(A_{m})} =$$

$$= c(X)-dc(X)+c(X)d\alpha_{X} = c(X)(1-d+d\alpha_{X}).$$

Так как T_i — взаимно однозначное отображение, то $c\left(T_iX\right)\!=\!\!c\left(X\right)$. Поэтому

(6)
$$c(X \cup T_i X) = c(X) + c(T_i X) - c(X \cap T_i X) = 2c(X) - c(X \cap T_i X).$$

Из (5) и (6) следует, что

(7)
$$c(X \cup T_i X) > c(X) : [1 + d(1 - \alpha_x)].$$

Из неравенства (7) сразу вытекает лемма 3.3.

3.9. Этот и следующие пункты будут посвящены доказательству леммы 3.7. Это доказательство будет основано на методах теории представлений групп, а более точно, на методах, связанных с свойством T, изучавшимся Д. А. Кажданом (см. $[^{2,3}]$). Мы здесь не будем давать определений из теории представлений групп, так как это заняло бы слишком много места. Отметим только, что эти определения могут быть почерпнуты из $[^{2-4}]$.

3.10 Обозначения. Обозначим через H группу всех унимодулярных **

матриц вида
$$\begin{pmatrix} a & b & u \\ c & d & v \\ 0 & 0 & 1 \end{pmatrix}$$
, а через S — группу матриц вида $\begin{pmatrix} 1 & 0 & u \\ 0 & 1 & v \\ 0 & 0 & 1 \end{pmatrix}$, где

^{*} Мы исключим случаи, когда X — пустое множество и когда $X{=}A_m$. ** Матрица называется унимодулярной, если ее определитель равен 1.

a, b, c, d, u, v пробегают поле вещественных чисел. Через $H_z \subset H(S_z \subset S)$ обозначим подгруппу, состоящую из всех принадлежащих H(S) матриц с целочисленными коэффициентами.

3.11. Для любого целого числа a и любого элемента x кольца Z_m через ax будем обозначать произведение a на x (если a>0, то ax по определению a раз

есть $x + \dots + x$, если a < 0, то ax = -[(-a)x], если a = 0, то ax = 0).

Пусть m — произвольное натуральное число. Сопоставим теперь каж-

дому элементу
$$g=egin{pmatrix} a&b&u\\c&d&v\\0&0&1 \end{pmatrix}$$
 группы H_z преобразование $T_m(g)$ множе-

ства $A_m = Z_m \times Z_m$ следующим образом: если $(x,y) \in Z_m \times Z_m$, то $T_m(g)(x,y) = (ax+by+u, cx+dy+v)$. Непосредственными вычислениями проверяется, что для любых $g_1, g_2 \in H_Z$ верно равенство

(8)
$$T_m(g_1g_2) = T_m(g_1)T_m(g_2)$$
.

3.12. Так как H_z — группа, то из (8) следует, что для любого $g \in H_z$ преобразование $T_m(g)$ взаимно однозначно. Поэтому $T_m(g)$ можно сопоставить (см. пункт 3.5) линейный унитарный оператор в пространстве $L^2(A_m)$. Обозначим этот оператор через $T_m(g)$. Из (8) и определения операторов $T_m(g)$ следует, что для любых g_1 , $g_2 \in H_z$ верно равенство

(9)
$$\widetilde{T}_m(g_1g_2) = \widetilde{T}_m(g_1)\widetilde{T}_m(g_2)$$

(при этом надо использовать тот легко проверяемый факт, что для любых двух взаимно однозначных отображений T_1 и T_2 верно равенство $\widetilde{T}_1 \circ \widetilde{T}_2 = T_1 \circ T_2$.

Из равенства (9) и унитарности операторов $T_m(g)$ следует, что T_m является унитарным представлением группы H_z .

3.13. Выберем в группе H_z следующие четыре элемента:

$$g_{1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad g_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$
$$g_{3} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad g_{4} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Из определения преобразований $T_m(g)$ (пункт 3.11) и преобразований T_1 , T_2 , T_3 и T_4 (пункт 3.2) сразу следуют равенства

$$(10) T_m(g_i) = T_i$$

при любом $i(1 \le i \le 4)$. Из равенства (10), определения операторов $T_i(1 \le i \le 4)$ (см. пункт 3.5) и определения представлений T_m (см. пункт 3.12) следует равенство

(11)
$$\widetilde{T}_m(g_i) = \widetilde{T}_i$$
.

при любом $i(1 \le i \le 4)$.

3.14. Определение. Унитарное представление T группы H_z в пространстве X назовем существенно нетривиальным на S_z , если в X не най-

дется ненулевого вектора, инвариантного относительно $T(S_z)$ (т. е. для любого $x \in X(x \neq 0)$ найдется такой элемент $s \in S_z$, что $T(s) x \neq x$).

Определение. Унитарное представление T группы H в пространстве X назовем существенно нетривиальным на S, если в X не найдется ненулевого вектора, инвариантного относительно T(S).

3.15. Лемма. Существует такая положительная константа d, что если T- произвольное унитарное представление группы H_z в гильбертовом пространстве L, существенно нетривиальное на S_z , а x – любой ненулевой элемент из L, то найдется такое $i(1 \le i \le 4)$, что

$$\frac{(T(g_i)x,x)}{(x,x)} < 1-d,$$

 $e\partial e$ x,y означает скалярное произведение в пространстве L.

3.16. Доказательство леммы 3.15 будет приведено ниже. А пока покажем, как из леммы 3.15 следует лемма 3.7.

Как было отмечено в пункте 3.6, для любого взаимно однозначного отображения множества T в себя пространство $S(A_m)$ инвариантно относительно T. Поэтому $S(A_m)$ является для представления T_m инвариантным подпространством. Обозначим через T_m' ограничение представления T_m на подпространство $S(A_m)$. Так как \widetilde{T}_m — унитарное представление (см. пункт 3.12), то $T_{m'}$ также унитарное представление. Покажем теперь, что $T_{m'}$ существенно нетривиально на S_z . Действительно, если бы $T_{m'}$ не было существенно нетривиально на S_z , то, как легко видеть, в $S(A_m)$ нашлась бы ненулевая функция f инвариантная относительно $T_m'(S_z)$. Но тогда ввиду определения представления T_m' для любых $x, y, u, v^{\epsilon}Z_m$ верно равенство

(12)
$$f(x+u, y+v) = f(x, y)$$
.

Tак как $x, y, v \in Z_m$ произвольны, то из (12) следует, что f постоянна на A_m . Ho $f^{\in}S(A_m)$, т. е. $\sum_{a\in m}f(a)=0$. Следовательно, $f\equiv 0$. Таким образом, мы показали, что T_m' существенно нетривиально на S_z . Из этого утверждения,

унитарности представления T_{m}' и леммы 3.15 вытекает, что для любой ненулевой функции $f^{\epsilon}S(A_m)$ найдется такое $i(1 \leq i \leq 4)$, что

(13)
$$\frac{(T_{x'}(g_i)f,f)}{f,f} < 1 - d.$$

Так как $T_m'(g_i)f=\widetilde{T}_m(g_i)f$ для любых $i(1\leqslant i\leqslant 4)$ и $f^{\in}S(A_m)$ (по определению T_m'), то из (13) и (11) следует лемма 3.7.

3.17. Пусть G — локально-компактная группа. Обозначим через G множество унитарных представлений группы G. Пусть $T^{\in}G$, $\epsilon>0$, K — компактий G. в G, X — вектор из пространства представления T. Обозначим через V(X, K, ε) множество всех таких $T' \in G$, что в пространстве представления T найдется такой вектор Y, что для любого $g^{\in}K$ выполняется неравенство $((T'(g)Y, Y) - (T(g)X, X)) < \varepsilon$. Введем теперь в G топологию, для которой множества $V(X, K, \varepsilon)$ образуют базис окрестностей представления T. 3.18. Лемма. У единичного представления группы H_z найдется такая

окрестность U, что любое унитарное представление группы H_z , существен-

но нетривиальное на S_z , не лежит в U.

3.19. Доказательство леммы 3.18 будет приведено ниже. А пока покажем, как лемма 3.15 сводится к лемме 3.18. Это сведение будет основано на лемме, доказательство которой будет приведено в пункте 3.20.

 Π емм а. Элементы g_1, g_2, g_3 и g_4 из пункта 3.13 являются образующими группы H_Z .

Сведение леммы 3.15 к лемме 3.18. Так как H_z — дискретная группа, то любой компакт $K \subset H_z$ является конечным подмножеством. Поэтому из леммы 3.18 следует существование такого $\varepsilon > 0$ и такого конечного подмножества $K \subset H_z$, что для любого унитарного представления T' группы H_z , существенно нетривиального на S_z , верно следующее: если x элемент пространства представления T', то для некоторого $h \in K$ имеет место неравенство

(14)
$$\frac{(T'(h)x,x)}{(x,x)} < 1 - \varepsilon.$$

Из унитарности оператора T'(h) и теоремы Пифагора вытекает, что неравенство (14) эквивалентно неравенству

(15)
$$\frac{\|x - T'(h)x\|}{\|x\|} > \sqrt{2\varepsilon - \varepsilon^2}.$$

Приведем теперь без доказательства следующее простое

Утверждение. Пусть A_1 и A_2 — два унитарных оператора, действующих в одном и том же гильбертовом пространстве L, а $x^{\epsilon}L$. Тогда $\|x-T_1T_2x\| \le \|x-T_1x\| + \|x-T_2x\|$ (унитарность T_1 и T_2 существенна).

 $-T_1T_2x\| \le \|x-T_1x\| + \|x-T_2x\|$ (унитарность T_1 и T_2 существенна). Так как K — конечное подмножество в H_z , а g_1 , g_2 , g_3 и g_4 являются образующими в H_z , то найдется такое натуральное m, что любой элемент $h^{\epsilon}K$ представляется в виде слова от g_1 , g_2 , g_3 и g_4 , длина которого не превосходит m^* . Отсюда, из неравенства (15) и приведенного только что утверждения вытекает, что для любого x из пространства представления T' найдется такое i, что

$$(16) \qquad \frac{\|T'(g_i)x - x\|}{\|x\|} < \frac{\sqrt{2\varepsilon - \varepsilon^2}}{m}.$$

Из унитарности оператора $T'(g_i)$ и теоремы Пифагора вытекает, что неравенство (16) эквивалентно неравенству

17)
$$\frac{(T'(g_i)x,x)}{(x,x)} < \sqrt{1 - \frac{2\varepsilon - \varepsilon^2}{m^2}}.$$

Теперь остается положить d, равным $1-\sqrt{1-\frac{2\varepsilon-\varepsilon^2}{m^2}}$ и заметить, что из (17) следует лемма 3.15.

3.20. Доказательство леммы 3.19. Обозначим через A_z группу, состоящую из целочисленных унимодулярных матриц вида

$$\left(\begin{array}{ccc}
a & b & 0 \\
c & d & 0 \\
\mathbf{0} & 0 & \mathbf{1}
\end{array}\right).$$

Обозначим через f отображение H_z в A_z , сопоставляющее матрице $\begin{pmatrix} c & d & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Непосредственными вычислениями про-

^{*} Т. е. $h = g_{i_1}^{m_1} g_{i_2}^{m_2} \dots g_{i_l}^{m_l}$, где $1 \le i_j \le 4$ и $\sum_{j=1}^l |m_j| < m$ (m_j могут быть отрицательными).

веряется, что для любого $g \in H_z$ имеет место равенство

 $g=f(g)\cdot s$

где $s \in S_z$. Сделаем теперь следующие два замечания:

Замечание 1. Как легко следует из § 2 в [5] (см. замечание в [5] после теоремы 1 из § 2), группа A_Z порождается элементами g_3 и g_4 (определение g_3 и g_4 см. пункт 3.13).

Замечание 2. Непосредственно проверяется, что для любых целых т

и п верно следующее равенство:

(19)
$$\begin{pmatrix} 1 & 0 & m \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} = g_1^m g_2^n,$$

где g_1 и g_2 — из пункта 3.13. Из (19) вытекает, что g_1 и g_2 являются образующими группы S_z .

Из замечаний 1 и 2 и равенства (18) вытекает утверждение лем-

мы 3.19.

3.21. Пусть μ — правоинвариантная мера Хаара * на группе H. Тогда µ естественным образом индуцирует на фактор-пространстве H / H_z меру, которую мы обозначим через й.

 Π емма. Мера всего фактор-пространства H/H_z относительно меры $\tilde{\mu}$

конечна (т. е. $\tilde{\mu}(H/H_z) < \infty$).

Доказательство. Прежде всего отметим, что относительно определений, которые будут использоваться в этом доказательстве, надо смотреть [6]. После этого сделаем следующие замечания:

Замечание 1. Из определения арифметической подгруппы алгебраической группы сразу следует, что H_z является в H арифметической подгруп-

пой.

Замечание 2. Обозначим через A подгруппу группы H, состоящую из

Вамечание 2. Обозначим через
$$A$$
 подгруппу группы H , состоящую из вещественных унимодулярных матриц вида $\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Легко видеть, что H является полупрямым произведением A и S (определение S см. пункт

H является полупрямым произведением A и S (определение S см. пункт 3.10). С другой стороны, 1) так как A, как легко видеть, изоморфна SL(2,R) (группа вещественных унимодулярных матриц второго порядка), а $SL(2, \mathbf{R})$, как хорошо известно (см., например, $[^8]$) — простая группа, то A — простая группа, 2) S — унипотентная группа. Из последних двух предложений вытекает, что Н не имеет нетривиальных рациональных характеров.

Из замечаний 1 и 2 и теоремы 9.4 в [6] следует утверждение леммы.

 $3.22.\,\,\,\mathrm{J\!I}\,$ емма. У единичного представления группы H найдется такая окрестность V, что любое унитарное представление группы H, нетривиальное на S, не лежит в V.

Доказательство. Из лемм 2 и 3 работы [2] сразу следует, что у единичного представления группы H найдется такая окрестность V, что любое $henpuвo\partial umoe$ унитарное представление группы H, нетривиальное на S, не лежит в V. Отсюда, из теоремы о разложении любого унитарного представления в прямой интеграл неприводимых (см. [9]) и определения существенно нетривиального $\,$ на S представления группы $\,$ $\,$ H (см. пункт 3.14) легко следует утверждение леммы.

3.23. Доказательство леммы 3.18. Как и прежде, для любой локально-компактной группы G через G будем обозначать пространство унитарных представлений с топологией, описанной в пункте 3.17.

^{*} Определение меры Хаара см. в [7].

Рассмотрим отображение φ : $\tilde{H}_z \rightarrow \tilde{H}$ — индуцирование в смысле Фробениуса (или в терминологии [3] — индуцирование в смысле Макки). Лемма 3.18 немедленно следует из двух свойств этого отображения:

а) ф непрерывно,

б) если $p \in \widetilde{H}_z$ существенно нетривиально на S_z , то $\varphi(p)$ существенно нетривиально на S.

Свойство а) легко вытекает из леммы 3.19 и результатов работы [10]

(см. также [2, 3]).

Свойство б) сразу следует из определения ф.

ЛИТЕРАТУРА

1. Pinsker M. S. On the Complexity of a Concentrator. 7th International Teletraffic Congress. Stockholm, 1973.

- 2. Каждан Д. А. О связи дуального пространства группы со строением ее замкнутых подгрупп. Функциональный анализ и его приложения, 1967, 1, 1, 71—74.

 3. Delaroche C. et Kirillov A. Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermes, Sem. Bourbaki, N 343, Juin 1968.

 4. Гельфанд И. М., Граев М. Н., Виленкин Н. Я. Интегральная геометрия
- и связанные с ней вопросы теории представлений. Обобщенные функции, 5, М., Физматгиз, 1962.

5. Ганнинг Р. К. Лекции о модулярных формах. Математика (сб. перев.), 1964, 8, *6*, 3—68.

6. Борель А., Хариш-Чандра. Арифметические подгруппы алгебраических групп. Математика (сб. перев.), 1964, 8, 2, 19—71.

7. Понтрягин Л. С. Непрерывные группы. М., Гостехиздат, 1954.

- 8. Семинар «Софус Ли». Теория групп Ли, топология групп Ли. М., Изд-во иностр. лит., 1962.
- 9. Dixmier J. Les C*-algebras et leurs representations. Gauthier Villars, Paris, 1964.
- 10. Fell M. G. Weak Containment and Induced Representation of Groups. Canadien J. Math., 1962, 14, 2, 237-262.

Поступила в редакцию 2 июня 1972 г.