Ejercicio 10.- Si \mathbb{S}^2 es la esfera de centro (0,0,0) y radio 1, comprueba que la aplicación $F: \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ dada por F(x,y,z) = (x,y,-z) es un difeomorfismo de \mathbb{S}^2 . Interprétalo geométricamente. Calcula $(dF)_{(0,0,1)}$ y $(dF)_{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0\right)}$.

Para ver que F es un difeomorfismo primero tenemos que ver si es diferenciable. Lo es por ser una restricción (a una superficie regular) de la aplicación diferenciable $\widetilde{F}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por $\widetilde{F}(x,y,z) = (x,y,-z)$.

Sea $(x, y, z) \in \mathbb{S}^2$, se tiene $x^2 + y^2 + z^2 = 1$. Si aplicamos F a ese punto, se sigue cumpliendo la condición ya que F(x, y, z) = (x, y, -z), luego $x^2 + y^2 + (-z)^2 = 1$. Por lo tanto, $F(\mathbb{S}^2) = \mathbb{S}^2$.

Además podemos ver fácilmente que se da $F \circ F = Id_{\mathbb{S}^2}$, luego F coincide con su inversa, es decir, $F = F^{-1}$. Como F es diferenciable, F^{-1} también lo es y F es biyectiva. Tenemos así que F es un difeomorfismo.

Geométricamente, esta aplicación se puede ver como la simetría respecto al plano z=0 o como el giro de π radianes respecto del eje Y.

Calculamos ahora $T_p\mathbb{S}^2$ para los puntos que nos piden, ayudándonos de un ejercicio de clase, que nos dice lo siguiente:

$$T_p \mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : \langle (x, y, z), p \rangle = 0\}$$

Ahora solo tenemos que sustituir el valor de p por (0,0,1) y $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0\right)$:

$$T_{(0,0,1)}\mathbb{S}^2 = \left\{ (x,y,z) \in \mathbb{R}^3 : z = 0 \right\}$$
$$T_{\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)} \mathbb{S}^2 = \left\{ (x,y,z) \in \mathbb{R}^3 : x - y = 0 \right\}$$

Como \widetilde{F} es lineal y $F = \widetilde{F}_{|\mathbb{S}^2} \longrightarrow \mathbb{S}^2$, se cumple que $dF_p(w) = \widetilde{F}(w) \ \forall p \in \mathbb{S}^2 \ \forall w \in T_p\mathbb{S}^2$. Por lo tanto, se puede definir:

$$\begin{array}{ccc} dF_{(0,0,1)}: & T_{(0,0,1)}\mathbb{S}^2 \longrightarrow T_{(0,0,-1)}\mathbb{S}^2 \\ & (x,y,0) \longrightarrow (x,y,0) \end{array}$$

$$dF_{\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)} : T_{\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)} \mathbb{S}^2 \longrightarrow T_{\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)} \mathbb{S}^2$$

$$(x, x, 0) \longrightarrow (x, x, -z)$$