Scilab Textbook Companion for College Physics(volume 2) by R. A. Serway and J. S. Faughn¹

Created by
Byragoni Spandana
M.Sc
Physics
IIT-B
College Teacher
Na
Cross-Checked by
Lavitha Pereira

May 30, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: College Physics(volume 2)

Author: R. A. Serway and J. S. Faughn

Publisher: Thomson Learning, USA

Edition: 6

Year: 2003

ISBN: 0-03-035129-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes	4
15 Electric Forces and Electric Fields	5
16 Electrical Energy and Capacitance	8
17 Current and Resistance	13
18 Direct Current Circuits	17
19 Magnetism	21
20 Induced Voltages and Inductance	25
21 Alternating current circuits and electromagnetics	29
22 Relection and refraction of light	33
23 Mirrors and Lenses	35
24 Wave Optics	40
25 Optical Instruments	44
26 Relativity	49
27 Quantum Physics	54
28 Atomic Physics	60

29 Nuclear Physics	63	
30 Nuclear Energy and Elementary Particles	67	

List of Scilab Codes

Exa 15.1	Electric Force and Gravitational force	5
Exa 15.2	Superposition Principle	5
Exa 15.4	Electric force	6
Exa 15.5	Fileld	6
Exa 16.1	Field between 2 parallel plates	8
Exa 16.2	Motion of proton	8
Exa 16.3	Electric Potential	9
Exa 16.4	Parallel plate capacitor	9
Exa 16.5	parallel capacitors	10
Exa 16.6	Capacitance	10
Exa 16.7	Equivalent capacitance	11
Exa 16.8	Voltage Energy and time	11
Exa 16.9	Paper filled capacitor	11
Exa 17.1	Current in lightbulb	13
Exa 17.2	Drift speed	13
Exa 17.3	Resistance of steam iron	14
Exa 17.4	resistance	14
Exa 17.5	Platinum resistance	15
Exa 17.6	Power converted	15
Exa 17.7	Light	16
Exa 17.8	Cost of operating bulb	16
Exa 18.1	Four resistors in series	17
Exa 18.2	Parallel resistance	17
Exa 18.3	Equivalent resistance	18
Exa 18.4	Kirchoff law	18
Exa 18.5	Application of kirchoff law	19
Exa 18.6	Charging capacitor	19
Exa 18.7	Discharging of capacitance	20

Exa 19.1	Magnetic fueld	21
Exa 19.2	Magnetic field	21
Exa 19.3	Current in magnetic field	22
Exa 19.4	Torque	22
Exa 19.5	Uniform magnetic field	22
Exa 19.6	Mass spectometer	23
Exa 19.7	Magnetic field of long wire	23
Exa 19.8	Levitating wire	24
Exa 19.9	Magnetic field	24
Exa 20.1	Magnetic flux	25
Exa 20.2	Induced emf	25
Exa 20.3	Energy and force	26
Exa 20.5	Current and emf	26
Exa 20.6	Induced current in a motor	27
Exa 20.8	Inductance and emf	27
Exa 20.9	Time constant and current	28
Exa 21.1	current and voltage	29
Exa 21.2	current	29
Exa 21.3	Resistance and current	30
Exa 21.4	Inductance capacitance and resistance	30
Exa 21.5	Power	31
Exa 21.6	capacitance	31
Exa 21.7	Percentage power loss	31
Exa 21.8	Power	32
Exa 22.2	Angle of refraction	33
Exa 22.3	Wavelength	33
Exa 22.5	Angle	34
Exa 22.6	Angle	34
Exa 23.1	Calculation of height	35
Exa 23.2	calculation of height	35
Exa 23.3	Magnification	36
Exa 23.4	focal length	36
Exa 23.5	Position of image	37
Exa 23.7	converge	37
Exa 23.8	lenses	38
Exa 23.9	lenses in row	39
Exa 24.1	To find wavelength of light and distance between adja-	
	cent bright fringes	40

Exa 24.2	Thickness of soap bubble 4
Exa 24.3	Thickness of film
Exa 24.5	Pit depth in a CD
Exa 24.6	Position of dark fringe and width of central bright fringe 4
Exa 24.7	Angle of monochromatic light 4
Exa 25.1	focal length
Exa 25.3	Angular Magnification of lens 4
Exa 25.4	Magnification
Exa 25.5	Angular Magnification of telescope 4
Exa 25.6	Limiting angle of Resolution 4
Exa 25.8	Resolving Power
Exa 25.9	Resolving Power of grating 4
Exa 26.1	Time period
Exa 26.2	Length of spaceship with respect to observer 4
Exa 26.3	Distance from spaceship to ground 5
Exa 26.4	shape of spaceship
Exa 26.5	Relativistic Momentum
Exa 26.6	speed of light beam
Exa 26.7	Energy released
Exa 26.8	Total energy and kinetic energy of electron 5
Exa 26.9	Conversion of mass to KE 5
Exa 27.1	Wavelength of radiation
Exa 27.2	Calculation of Energy and Quantum number 5
Exa 27.3	Energy of photon
Exa 27.4	Energy and wavelength of photon 5
Exa 27.5	minimum wavelength
Exa 27.6	Grazing angle
Exa 27.7	Compton scattering
Exa 27.8	de Broglie wavelength
Exa 27.9	de broglie wavelength of ball 5
Exa 27.10	uncertainity of the position of electron
Exa 27.11	Uncertainity in energy of excited state 5
Exa 28.1	wavelength and frequency 6
Exa 28.2	wavelength and energy emitted by the photon 6
Exa 28.3	energy and radiation 6
Exa 28.4	energy of the states
Exa 28.6	Energy of the characteristic X ray 6
Exa 29.1	Nuclear Density 6

Exa 29.2	Binding Energy	63
Exa 29.3	Decay rate	64
Exa 29.4	activity of radon	64
Exa 29.5	Energy liberated	65
Exa 29.6	energy released in beta decay	65
Exa 29.7	age of teh skeleton	66
Exa 30.2	total energy released	67
Exa 30.3	deuterium deuterium reaction	67

Electric Forces and Electric Fields

Scilab code Exa 15.1 Electric Force and Gravitational force

```
1 //Example 15.1
2 k_e=8.99*10^9
3 e=1.6*10^-19
4 r=5.3*10^-11
5 F_e= (k_e*e*e)/(r*r)
6 disp(F_e, "The attractive force in N= ")
7 G=6.67*10^-11
8 m_e=9.11*10^-31
9 m_p=1.67*10^-27
10 F_g=(G*m_e*m_p)/(r*r)
11 disp(F_g, "The gravitational force in N= ")
```

Scilab code Exa 15.2 Superposition Principle

```
1 //Example 15.2
2 clc
```

```
3
4 k_e=8.99*10^9 //N.m^2/c^2
5 q2=2*10^-9// in c
6 q3=5*10^-9// in c
7 r1=4//in m
8 F_23=(q2*q3*k_e)/(r1*r1)
9 disp(F_23,"The force in N=")
10 q1=6*10^-9
11 r2=5//in m
12 F_13=(q1*q3*k_e)/(r2*r2)
13 disp(F_13,"The force in N=")
```

Scilab code Exa 15.4 Electric force

```
1 //Example 15.4
2 q=1.6*10^-19//in c
3 E=2*10^4// in N/C
4 F=q*E
5 disp(F,"The magnitude of force in N= ")
```

Scilab code Exa 15.5 Fileld

```
1 //Example 15.5
2 clc
3 k_e=8.99*10^9 //N.m^2/c^2
4 q1=7*10^-6// in C
5 q2=5*10^-6//in C
6 r1=0.4
7 r2=0.5
8 E1=(k_e*q1)/(r1^2)
9 E2=(k_e*q2)/(r2^2)
10 Ex=(k_e*q2)/(r2^2)
11 disp(E1, "Magnitude of E1 in N/C")
```

```
disp(E2, "Magnitude of E2 in N/C")
disp(Ex, "Magnitude in x direction in N/C")
Ey=(3.93*10^5)+(-1.44*10^5)
disp(Ey, "Magnitude in y direction in N/C")
phi=atand(Ey/Ex)
disp(phi, "Angle in degree=")
// Answer given in book is wrong
```

Electrical Energy and Capacitance

Scilab code Exa 16.1 Field between 2 parallel plates

```
1 //Example 16.1
2 //Given
3 clc
4 v_bminusv_a=-12
5 d=0.3*10^-2//in m
6 E=-(v_bminusv_a)/d
7 disp(E,"The value of E in v/m=")
```

Scilab code Exa 16.2 Motion of proton

```
1 //Example 16.2
2 clc
3 disp("solution a")
4 E=8*10^4//in V/m
5 d=0.5//in m
6 delta_V=-E*d
```

```
7 disp(delta_V," Electric potential from A to B in V=")
8 disp("solution b")
9 q=1.6*10^-19//in C
10 delta_PE=q*delta_V
11 disp(delta_PE," Change in electric potential in joules=")
12 m_p=1.67*10^-27//in kg
13 vf=sqrt((2*-delta_PE)/m_p)
14 disp(vf," velocity in m/s=")
```

Scilab code Exa 16.3 Electric Potential

```
1 //Example 16.3
2 clc
3 \text{ k_e=8.99*10^9} / \text{N.m^2/c^2}
4 q1=5*10^-6// in C
5 q2 = -2*10^{-6} / in C
6 \text{ r1} = 0.4
7 r2=0.5
8 V1 = (k_e * q1) / (r1)
9 V2=(k_e*q2)/(r2)
10 disp("Solution a")
11 disp(V1, "Magnitude of V1 in v")
12 disp(V2, "Magnitude of V2 in v")
13 disp("solution b")
14 \text{ vp} = V1 + V2
15 disp(vp, "Magnitude of Vp in v")
16 \quad q3 = 4 * 10^{-6} / in \quad C
17 \text{ w=vp*q3}
18 disp(w,"work done in Joule=")
```

Scilab code Exa 16.4 Parallel plate capacitor

```
1 //Example 16.4
2 clc
3 e0=8.85*10^-12//in c2/N.m2
4 A=2*10^-4//in m2
5 d=1*10^-3//in m
6 c=(e0*A)/d
7 disp(c, "Capacitance in farad=")
```

Scilab code Exa 16.5 parallel capacitors

```
1 //Example 16.5
2 c1=3*10^-6
3 c2=6*10^-6
4 c3=12*10^-6
5 c4=24*10^-6
6 delta_v=18
7 c_eq=c1+c2+c3+c4
8 disp(c_eq,"capacitance in farad=")
9 q=delta_v*c3
10 disp(q,"voltage between battery in c=")
```

Scilab code Exa 16.6 Capacitance

```
1 //Example 16.6
2 clc
3 c1=3*10^-6
4 c2=6*10^-6
5 c3=12*10^-6
6 c4=24*10^-6
7 delta_v=18
8 disp("solution a")
9 c_eq=1/((1/c1)+(1/c2)+(1/c3)+(1/c4))
10 disp(c_eq,"capacitance in farad=")
```

```
11 q=delta_v*c_eq
12 disp("solution b")
13 disp(q,"voltage between battery in c=")
```

Scilab code Exa 16.7 Equivalent capacitance

```
1 //Example 16.7
2 clc
3 c1=4*10^-6
4 c2=4*10^-6
5 disp("solution a")
6 c_eq=1/((1/c1)+(1/c2))
7 disp(c_eq,"capacitance in farad=")
```

Scilab code Exa 16.8 Voltage Energy and time

```
//Example 16.8
clc
Energy=1.2*10^3//in J
c=1.1*10^-4//in f
delta_v=sqrt((2*Energy)/c)
disp("solution a")
disp(delta_v, "Energy stored in volt")
disp("solution b")
Energy_deliverd=600//in j
delta_t=2.5*10^-3//in s
p=(Energy_deliverd)/delta_t
disp(p, "power in watt=")
```

Scilab code Exa 16.9 Paper filled capacitor

```
1 //Example 16.9
2 clc
3 k=3.7
4 e0=8.85*10^-12//in c2/N.m2
5 A=6*10^-4//in m2
6 d=1*10^-3//in m
7 c=(k*e0*A)/d
8 disp("solution a")
9 disp(c,"Capacitance in farad=")
10 disp("solution b")
11 E_max=16*10^6//in v/m
12 delta_v_max=E_max*d
13 disp(delta_v_max,"Voltage in volt")
14 Q_max=delta_v_max*c
15 disp(Q_max,"Maximum charge in columb=")
```

Current and Resistance

Scilab code Exa 17.1 Current in lightbulb

```
1 //Example 17.1
2 clc
3 disp("solution a")
4 delta_q=1.67//in c
5 delta_t=2//in s
6 I=delta_q/delta_t
7 disp(I,"Current in amp=")
8 disp("solution b")
9 N=5.22*10^18
10 N_q=(1.6*10^-19)*N
11
12 disp(N_q,"Number of electrons in C")
```

Scilab code Exa 17.2 Drift speed

```
1 //Example 17.2
2 clc
3 M=63.5//IN G
```

```
4 rho=8.95
5 v=M/rho
6 electrons=6.02*10^23
7 n=(electrons*10^6)/v
8 I=10//in c/s
9 q=1.60*10^-19//in c
10 A=3*10^-6//in m2
11 vd=(I)/(n*q*A)
12 disp("Solution a")
13 disp(vd,"The drift speed in m/s=")
14 k_b=1.38*10^-23
15 T=293
16 m=9.11*10^-31
17 v_rms=sqrt((3*k_b*T)/m)
18 disp(v_rms,"Drift speed of electron in m/s=")
```

Scilab code Exa 17.3 Resistance of steam iron

```
1 //Example 17.3
2 clc
3 delta_v=120
4 I=6.4
5 R=(delta_v)/I
6 disp(R,"The resistance in ohm=")
```

Scilab code Exa 17.4 resistance

```
1 //Example 17.4
2 clc
3 r=0.321*10^-3
4 A=%pi*(r*r)
5 disp("Solution a")
6 disp(A, "Area in m^2=")
```

```
7 rho=1.5*10^-6//in ohm=m
8 l=rho/A
9 disp(1,"Resistance in ohm/m=")
10 disp("solution b")
11 Delta_v=10
12 I=(Delta_v)/1
13 disp(I,"The current in Amps=")
```

Scilab code Exa 17.5 Platinum resistance

```
1 //Example 17.5
2 clc
3 R=76.8
4 Ro=50
5 alpha=3.92*10^-3
6 t=(R-Ro)/(alpha*Ro)
7 T=t+20
8 disp(T,"Temperature in C=")
```

Scilab code Exa 17.6 Power converted

```
1  //Example 17.6
2  clc
3  delta_v=50
4  R=8
5  I=(delta_v)/R
6  disp(I,"The current in A=")
7  P=I*I*R
8  disp(P,"Power in watt=")
```

Scilab code Exa 17.7 Light

```
1 //Example 17.7
2 clc
3 I=20//in A
4 delta_v=120
5 p_bulb=75//inwatt
6 p_total=I*delta_v
7 N=p_total/p_bulb
8 disp(N,"Number of bulbs=")
```

Scilab code Exa 17.8 Cost of operating bulb

```
1 //Example 17.8
2 clc
3 p=0.10//in w
4 t=24//in h
5 Energy=p*t
6 disp(Energy, "Energy in kwh=")
7 cost=Energy*0.12
8 disp(cost, "Cost in dollars=")
```

Direct Current Circuits

Scilab code Exa 18.1 Four resistors in series

```
1 //Example 18.1
2 clc
3 R1=2
4 R2=4
5 R3=5
6 R4=7
7 R_eq=R1+R2+R3+R4
8 v=6//in v
9 disp("Solution a")
10 disp(R_eq, "Equivalent resistance in ohm=")
11 disp("Solution b")
12 I=v/R_eq
13 disp(I, "Current in Amps=")
```

Scilab code Exa 18.2 Parallel resistance

```
\begin{array}{cc} 1 & //\operatorname{Example}18.2 \\ 2 & \operatorname{clc} \end{array}
```

```
3 \text{ delta_V=18//in volt}
4 R1=3//in ohm
5 R2=6//in ohm
6 R3=9//in ohm
7 I1=delta_V/R1
8 I2=delta_V/R2
9 I3=delta_V/R3
10 disp("solution a")
11 disp(I1, "Current in amps=")
12 disp(I2, "Current in amps=")
13 disp(I3, "Current in amps=")
14 P1=(I1<sup>2</sup>)*R1
15 P2=(I2^2)*R2
16 P3 = (I3^2) *R3
17 disp("solution B")
18 disp(P1, "Power in watt=")
19 disp(P2, "Power in watt=")
20 disp(P3, "Power in watt=")
```

Scilab code Exa 18.3 Equivalent resistance

```
//Example18.3
delta_Vac=42//in volt
R_eq=14//in ohm
I=delta_Vac/R_eq
disp("solution b")
disp(I,"Current in amps=")
```

Scilab code Exa 18.4 Kirchoff law

```
1 //example18.4
2 //formula used x=inv(a)*b
3 clc
```

```
4  I=[1 -1 -1; -4 0 -9; 0 -5 9]
5  V=[0; 6; 0]
6  X=inv(I)
7  a=X*V
8
9  disp("Current value I1, I2, I3 in amps=")
10  disp(a)
```

Scilab code Exa 18.5 Application of kirchoff law

```
1 //example18.5
2 //prob
3 //formula used x=inv(a)*b
4 clc
5 I=[8 2 0; -3 2 0; 1 1 -1]
6 V=[10; -12; 0]
7 X=inv(I)
8 disp(X)
9 a=X*V
10
11 disp("Current value I1, I2, I3 in amps=")
12 disp(a)
```

Scilab code Exa 18.6 Charging capacitor

```
1 //Example 18.6
2 clc
3 R=8*10^5//in ohms
4 C=5*10^-6//in Farad
5 t=R*C
6 disp(t, "Constant of the circuit in s=")
7
8 Q=C*12
```

```
9 disp(Q, "Charge in columb=")
10 q=0.632*Q
11 disp(q, "Charge in columb when capacitance 63.2%=")
```

Scilab code Exa 18.7 Discharging of capacitance

```
1 //Example18.7
2 x=log(4)
3 disp(x)
4 disp(x,"time in s is =R*C*")
```

Magnetism

Scilab code Exa 19.1 Magnetic fueld

```
1 //Example 19.1
2 clc
3 q=1.6*10^-19//in columb
4 v=1*10^5//in m/s
5 B=55*10^-6//in T
6 F=q*v*B* 0.8660
7 disp(F,"The force in Newton=")
```

Scilab code Exa 19.2 Magnetic field

```
1 //Example 19.2
2 q=1.6*10^-19//in columb
3 v=8*10^6//in m/s
4 B=2.5//in T
5 F=q*v*B* 0.8660
6 disp(F,"The force in Newton=")
7 m=1.67*10^-27
8 a=F/m
9 disp(a,"Acceleration in m/s^2=")
```

Scilab code Exa 19.3 Current in magnetic field

```
1 //Example 19.3
2 clc
3 l=36//in m
4 I=22//in A
5 B=0.50*10^-4//in T
6 F=B*I*1
7 disp(F,"The maximaum force in Newton=")
```

Scilab code Exa 19.4 Torque

```
1 //Example 19.4
2 clc
3 A=%pi*(0.5)*0.5//in m
4 I=2//in A
5 B=0.50//in T
6 T=B*I*A*0.5
7 disp(T,"The Torque in N-m=")
```

Scilab code Exa 19.5 Uniform magnetic field

```
1 //Example 19.5
2 clc
3 q=1.6*10^-19
4 B=.35
5 r=14*10^-2//in m
6 m=1.67*10^-27//kg
7 v=(q*B*r)/m
```

```
8 disp(v, "Velocity in m/s=")
```

Scilab code Exa 19.6 Mass spectometer

```
1 //Example 19.6
2 clc
3 q=1.6*10^-19
4 B=.10//in T
5 v=1*10^6//in m/s
6 r=14*10^-2//in m
7 m1=1.67*10^-27//in kg
8 m2=3.34*10^-27//in kg
9 r1=(m1*v)/(q*B)
10 r2=(m2*v)/(q*B)
11 x=(2*r2)-(2*r1)
12 disp(r1,"Radius of lighter istope in m=")
13 disp(r2,"Radius of heavier istope in m=")
14 disp(x,"Distance of seperation in m=")
```

Scilab code Exa 19.7 Magnetic field of long wire

```
1 //Example 19.7
2 clc
3 Uo=(4*%pi*10^-7)
4 I=5//in A
5 r=4*10^-3
6 B=(Uo*I)/(2*%pi*r)
7 disp(B, "Magnetic field in T=")
8 q=1.6*10^-19
9 v=1.5*10^3//in m/s
10 F=q*v*B
11 disp(F, "Force in Newton=")
```

Scilab code Exa 19.8 Levitating wire

```
1 //Example 19.8
2 clc
3 mo=4*%pi*10^-7//Tm/A
4 d=0.1//in m
5 x=1*10^-4//F/l
6 I=sqrt((x*2*%pi*d)/mo)
7 disp(I, "Current in A=")
```

Scilab code Exa 19.9 Magnetic field

```
1 //Example 19.9
2 clc
3 N=100//turns
4 l=.1//in m
5 n=N/l//in turns/m
6 mo=4*%pi*10^-7//Tm/A
7 I=.5//in A
8 B=n*I*mo
9 q=1.6*10^-19//in c
10 v=375//in m/s
11 F=q*v*(B/2)
12
13 disp(B, "Magnetic field in T=")
14 disp(F, "Force in N=")
```

Induced Voltages and Inductance

Scilab code Exa 20.1 Magnetic flux

```
1 //Example 20.1
2 clc;
3 B=.5//in T
4 A=3.24*10^-4//in m^2
5 Flux=B*A
6 N=25
7 delta_t=.8
8 disp(Flux, "Magnetic flux in T.m^2=")
9 e=(N*Flux)/(delta_t)
10 disp(e, "Induced emf in volt=")
```

Scilab code Exa 20.2 Induced emf

```
1 //Ex20_2
2 B=.6*10^-4//in T
3 1=30
```

```
4 v=250//in m/s
5 e=B*1*v
6 disp(e,"Induced emf in volt=")
```

Scilab code Exa 20.3 Energy and force

```
1 // example 20.3
2 clc
3 B=.25//in T
4 1=.5
5 v=2//in m/s
6 e = B * 1 * v
7 disp("Solution a")
8 disp(e, "Induced emf in volt=")
9 R = .5 // in ohm
10 I = e/R
11
12 disp("Solution b")
13 disp(I, "Current in A=")
14 \text{ delta_v=.25}
15 P=I*delta_v
16 disp("Solution c")
17 disp(P, "Power in watt=")
18 \ t=1//in \ s
19 w = P * t
20 disp(w, "Energy delivered in J=")
21 // Answer give for J in textbook is wrong
22 d=v*t
23 F=w/d
24 disp("Solution d")
25 disp(F, "Force in N=")
```

Scilab code Exa 20.5 Current and emf

```
1 //Example 20.5
2 clc;
3 f=60//in Hz
4 w = 2 * \%pi * f
5 N=8
6 \text{ A} = .09 // \text{in m}^2
7 B = .5 / / in T
8 emf = N * A * B * w
9 disp("Solution a")
10 disp(emf, "Induced emf in volt=")
11 R=12//in ohm
12 I = emf/R
13 disp("Solution b")
14 disp(I, "Current in A=")
15
16 disp("Solution c")
17 disp("Emf in Volt 136*sinwt=")
```

Scilab code Exa 20.6 Induced current in a motor

```
//Example 20.6
clc
mf=120//in Volt
R=10//in Ohm
c=back=70
I=emf/R
disp("Solution a")
disp(I,"Maximum Current in A=")
disp("Solution b")
I=(emf-e_back)/R;
disp(I,"Current in A=")
```

Scilab code Exa 20.8 Inductance and emf

```
1 / Ex20.8
2 clc;
3 \text{ uo}=4*\%\text{pi}*10^-7//\text{in m/A}
4 N = 300
5 A=4*10^-4/in m^2
6 1 = 25 * 10^{-2}
7 L = (uo * N * N * A) / 1
8 disp("Solution a")
9 disp(L, "Inductance in H=")
10 \text{ delta_I=-5}
11 delta_t=1
12 e=(-L*delta_I)/(delta_t)
13
14
15 disp("Solution b")
16 disp(e, "Emf in Volt=")
```

Scilab code Exa 20.9 Time constant and current

```
1 //Ex20.9
2 clc;
3 L=30*10^-3//in Henry
4 R=6//in Ohm
5 tou=L/R
6 disp("Solution a")
7 disp(tou,"Time constant ij s=")
8
9 e=12
10 I=(0.632*e)/R
11
12
13 disp("Solution b")
14 disp(I,"Current in Amps=")
```

Alternating current circuits and electromagnetics

Scilab code Exa 21.1 current and voltage

```
1 //Example 21.1
2 clc;
3 V_max=200//in V
4 V_rms=(V_max)/sqrt(2)
5 R=100//in ohm
6 I_rms=V_rms/R
7 disp(V_rms,"Voltage in V=")
8 disp(I_rms,"Current in Amps=")
```

Scilab code Exa 21.2 current

```
1 //Example 21.2
2 clc;
3 C=8*10^-6
4 X_c=1/(377*C)
5 disp(X_c, "Resistance in ohm=")
```

```
6 I_rms=150/X_c
7 disp(I_rms, "Current in Amps=")
```

Scilab code Exa 21.3 Resistance and current

```
1 //Example 21.3
2 clc;
3 L=25*10^-3//In H
4 w=377
5 X_L=w*L//In ohm
6 disp(X_L," Resistance in ohm=")
7 I_rms=150/X_L//In A
8 disp(I_rms," Current in Amps=")
```

Scilab code Exa 21.4 Inductance capacitance and resistance

```
1 //Example 21.4
2 clc;
3 R=250//in ohm
4 Xc = 758 / / in ohm
5 \text{ X1} = 226 / / \text{in Ohm}
6 \quad X = X1 - Xc
7 V_{max}=150//in Volt
8 \quad Z = sqrt(R^2+X^2)
9 I = V_{max}/Z
10 q=atand(X/R)
11 disp(Z, "Impedence in ohm")
12 disp(I, "Current in Amps")
13 disp(q, "Angle in degree=")
14 \quad V_R = I * R
15 \ V_C = I * Xc
16 V_L=I*X1
17 disp(V_R, "Voltage at Resistance in Volt")
```

```
18 disp(V_L, "Voltage at Inductance in Volt")
19 disp(V_C, "Voltage at Capacitance in Volt")
```

Scilab code Exa 21.5 Power

```
1 //Example 21.5
2 clc;
3 V_max=150//in V
4 V_rms=(V_max)/sqrt(2)
5 I_max=.255//in ohm
6 I_rms=I_max/sqrt(2)
7 cos=.426
8 P=V_rms*I_rms*cos
9 disp(V_rms," Voltage in V=")
10 disp(I_rms," Current in Amps=")
11 disp(P,"Power in watt=")
```

Scilab code Exa 21.6 capacitance

```
1 //Example21.6
2 L=20*10^-3//in H
3 C=1/(25*10^6*L)
4 disp(C, "Capacitance in Farad=")
```

Scilab code Exa 21.7 Percentage power loss

```
1 //example 21.7
2 clc
3 I1=100
4 v1=4*10^3
```

```
5  v2=2.40*10^5
6  I2=(I1*v1)/v2
7  R=30//in ohm
8  p_lost=I2*I2*R
9  P_output=I1*v1
10  p_per=(p_lost*100/P_output)
11  disp("Solution a")
12  disp(p_per,"Percentage of power lost=")
13  P_lost=I1*I1*R
14  per=(P_lost*100)/(4*10^5)
15  disp("Solution B")
16  disp(per,"Percentage of power lost=")
```

Scilab code Exa 21.8 Power

```
1 //Example 21.8
2 P=1000*8*20
3 disp(P,"Power in watt")
```

Relection and refraction of light

Scilab code Exa 22.2 Angle of refraction

```
1 //Example 22.2
2 clc
3 n1=1
4 n2=1.52
5 x=sind(30)
6 theta_2=asind((n1*x)/n2)
7 disp(theta_2, "Angle in degree=")
```

Scilab code Exa 22.3 Wavelength

```
1 //Example22.3
2 clc
3 disp("Solution a")
4 c=3*10^8// Constant in m/s
5 n=1.458
6 v=c/n
7 disp(v,"Velocity in m/s=")
8 disp("Solution b")
```

```
9 lambda_o=589//in nm
10 lambda_n=lambda_o/n
11 disp(lambda_n,"Wavelength in Fused quartz in nm=")
```

Scilab code Exa 22.5 Angle

```
1 //Example 22.5
2 clc
3 x=699//in micrometer(w-a)
4 t=1200 //in micrometer
5 b=x/2
6 theta_2=atand(b/t)
7 disp(theta_2, "Angle in degree=")
8 y=sind(theta_2)
9 n1=1
10 n2=1.55
11 theta_1=asind((n2*y)/n1)
12 disp(theta_1, "Angle in degree=")
```

Scilab code Exa 22.6 Angle

```
1 //Example 22.6
2 clc
3 n1=1.33
4 n2=1
5 x=asind(n2/n1)
6
7 disp(x,"Angle in degree(theta_c)=")
```

Mirrors and Lenses

Scilab code Exa 23.1 Calculation of height

```
1 //Example 23.1
2 AC= 1.8-.1//in m
3 AD=.5*AC
4 CF=.10///in m
5 X=.5*CF//in m
6 FA=1.8//in m
7 d=FA-AD-X
8 disp(d,"The hight in m=")
```

Scilab code Exa 23.2 calculation of height

```
1 //23.2

2 p=25//in cm

3 f=10//in cm

4 x=(1/f)-(1/p)

5 q=1/x

6 p=25

7 M=-(q/p)
```

```
8 disp("part a")
9 disp(M,"The magnification when object is at 25cm=")
10 p=5//in cm
11 f=10//in cm
12 x=(1/f)-(1/p)
13 q=1/x
14 p=5
15 M=-(q/p)
16 disp("part c")
17 disp(M,"The magnification when object is at 5cm=")
```

Scilab code Exa 23.3 Magnification

```
1 //23.3
2 p=20//in cm
3 f=-8//in cm
4 x=(1/f)-(1/p)
5 q=1/x
6 p=25
7 M=-(q/p)
8 disp("part a")
9 disp(q,"The position of final image in cm=")
10 disp("part b")
11 disp(M,"The magnification=")
```

Scilab code Exa 23.4 focal length

```
1 //23.4

2 clc

3 p=40//in cm

4 q=-(2*p)

5

6 x=(1/p)-(1/q)
```

```
7 f=1/x
8 disp(f,"The focal length in cm=")
9 //Answer given in book is wrong
```

Scilab code Exa 23.5 Position of image

```
1 //23.5
2 p=20//in cm
3 n1=1.5//in cm
4 n2=1//in cm
5 R=-30//in cm
6 x=(n2-n1)/R
7 y=n1/p
8 s=x-y
9 q=1/s
10 disp(q,"The position of final image in cm=")
11 M=(n1*q)/(n2*p)
12 disp(M,"The magnification when object in cm")
13 h=2//in cm
14 h1=-M*h
15 disp(h1,"The Position of image in cm=")
```

Scilab code Exa 23.7 converge

```
1 //23.3
2 p=30//in cm
3 f=10//in cm
4 x=(1/f)-(1/p)
5 q=1/x
6
7 M=-(q/p)
8 disp("part a")
9 disp(q,"The position of final image in cm=")
```

```
disp(M,"The magnification=")
p=5//in cm
f=10//in cm
x=(1/f)-(1/p)
q=1/x
M=-(q/p)
disp("part b")
disp(q,"The position of final image in cm=")
disp(M,"The magnification=")
```

Scilab code Exa 23.8 lenses

```
1 / 23.8
2 p=30//in cm
3 f = -10 / / in cm
4 x = (1/f) - (1/p)
5 q=1/x
6
7 M=-(q/p)
8 disp("part a")
9 disp(q,"The position of final image in cm=")
10 disp(M, "The magnification=")
11 p = 10 // in cm
12 f = -10 / / in cm
13 x=(1/f)-(1/p)
14 q = 1/x
15 \text{ M}=-(q/p)
16 disp("part b")
17 disp(q,"The position of final image in cm=")
18 disp(M, "The magnification=")
19 p=5//in cm
20 f = -10 / / in cm
21 x = (1/f) - (1/p)
22 q = 1/x
23 M=-(q/p)
```

```
24 disp("part c")
25 disp(q,"The position of final image in cm=")
26 disp(M,"The magnification=")
```

Scilab code Exa 23.9 lenses in row

```
1 / 23.9
2 p=30//in cm
3 f = 10 / / in cm
4 x = (1/f) - (1/p)
5 q=1/x
7 M1 = -(q/p)
9 p=5//in cm
10 f = 20 / / in cm
11 x=(1/f)-(1/p)
12 q=1/x
13
14 M2 = -(q/p)
15
16
17 M = M1 * M2
18 disp(M, "The magnification=")
```

Wave Optics

Scilab code Exa 24.1 To find wavelength of light and distance between adjacent bright fringes

```
1 / Chapter 24
2 clc
3 //Example 1
4 //given
5 L=1.2 // Seperation between screen and double-slit
     in meter
6 d=3*10^-5 //distance between the two slits
7 m=2 //second order bright fringe
8 Y=4.5*10^-2 //distance of second order bright fringe
       from centerline
9 //wavelength of light
10 lambda=(Y*d)/(m*L)
11 disp(lambda,"(A) wavelength of light in meters")
12 // distance between adjacent bright fringes
13 / delta_Y=Y(m+1)-Ym
14 \text{ delta_Y=lambda*L/d}
15 disp(delta_Y,"(B) Distance between adjacent fringes
      in meters")
```

Scilab code Exa 24.2 Thickness of soap bubble

```
1 errcatch(-1,"stop");mode(2);//Chapter 24
2 clc
3 //Example 2
4 //given
5 n=1.33 //refractive index of soap bubble
6 lambda=602 //wavelength of light in nm
7 //for constructive interference we have 2nt=lambda/2
8 t=lambda/(4*n)
9 disp(t,"Minimum thickness of soap bubble film in nm
    is")
```

Scilab code Exa 24.3 Thickness of film

```
1 //Chapter 24
2 clc
3 //Example 3
4 //given
5 n=1.45 //refractive index of silicon monoxide
6 lambda=552 //wavelength of light in nm
7 //for destructive interference we have condition for minimn thickness 2t=lambda/2n
8 t=lambda/(4*n)
9 disp(t,"Minimum thickness of film in nm is")
```

Scilab code Exa 24.5 Pit depth in a CD

```
1 //Chapter 24
```

Scilab code Exa 24.6 Position of dark fringe and width of central bright fringe

```
1 // Chapter 24
2 clc
3 //Example 6
4 //given
5 lambda=580*10^-9 //wavelength of incident light in
     meter
6 a=0.30*10^{-3} //slit width in meter
7 L=2 //distance of screen from slit in meters
8 //The first dark fringe corresponds to m=+1 or -1
9 m=1
10 sin_theta=m*lambda/a
11 //From fig 24.16 tan_theta=y/L and since theta is
     very small we have sin_theta=tan_theta hence
      \sin_{-} t h e t a = y/L
12 y=L*sin_theta
13 disp(y," Position of first dark fringe in meters is"
```

Scilab code Exa 24.7 Angle of monochromatic light

```
1 / Chapter 24
2 clc
3 //Example 7
4 //given
5 lambda=632.8 //wavelength of monochromatic light
     from helium-neon laser in meter
6 a=6000 //lines in diffraction grating per cm
7 d=10^7/a//slit separation in nm
8 //for the first order maximum we have m=1
9 sin_theta1=lambda/d
10 theta1=asind(sin_theta1)
11 disp(theta1, "Angle in degrees at which first order
     maxima is observed is ")
12 //for the second order maximum we have m=2
13 sin_theta2=2*lambda/d
14 theta2=asind(sin_theta2)
15 disp(theta2, "Angle in degrees at which second order
     maxima is observed is ")
16 disp("for higher order number of diffraction the the
      solutions are non realistic")
```

Optical Instruments

Scilab code Exa 25.1 focal length

```
1 //Chapter 25
2 clc
3 //Example 1
4 //given
5 q=-50 // Near point of an eye in cm
6 p=25 //object location in cm
7 //a) focal length calculation
8 //Using Thin Lens equation 1/f=((1/p)+(1/q))
9 f=p*q/(p+q)
10 disp(f,"a) focal length f in cm is")
11 //b) power of the lens
12 f1=50*10^-2// focal length in meters
13 P=1/f1
14 disp(P,"Power of the lens in diopters is")
```

Scilab code Exa 25.3 Angular Magnification of lens

```
1 // Chapter 25
```

```
2 clc
3 //Example 3
4 //given
5 f=10 // focal length in cm
6 //a)Maximum angular magnification
7 M_max=1+(25/f)
8 disp(M_max, "a) Maximum angular magnification of the lens is")
9 m=25/f
10 disp(m, "Angular Magnification of lens when eye is relaxed is")
```

Scilab code Exa 25.4 Magnification

```
1 // Chapter 25
2 clc
3 //Example 4
4 //given
5 //interchangeable objectives
6 f1=2 // focal length in cm
7 f2=0.2 //focal length in cm
8 //data of two eye pieces
9 f3=5 //focal length in cm
10 f4=2.5 // focal length in cm
11 L=18 // length of microscope
12 // Calculation of magnification for four combinations
       of lens
13 // magnification of compound microscope m = -(L/fo)
      *(25 \text{cm/fe}) where fo is shortest focal length
     compared to fe
14 //combination of two long focal lengths
15 \text{ m1} = -(L/f1)*(25/f3)
16 disp(m1, "Magnification of microscope with two long
      focal lengths")
17 //combination of 20 mm objective and 2.5 cm
```

Scilab code Exa 25.5 Angular Magnification of telescope

```
1 //Chapter 25
2 clc
3 //Example 5
4 //given
5 d=8 //diameter of objective mirror of reflecting telescope in inches
6 fo=1500 //focal length of objective mirror of reflecting telescope in mm
7 fe=18 //focal length of eyepiece
8 m=fo/fe
9 disp(m,"Angular magnification of the telescope is")
```

Scilab code Exa 25.6 Limiting angle of Resolution

```
1 //Chapter 25
2 clc
```

```
3 //Example 6
4 //given
5 l=589*10^-9 //Wavelength of sodium light m
6 d=90*10^-2 //diameter of the aperture in m
7 L=400*10^-9 //Wavelength of desirable Visble light
8 n=1.33 //refractive index of water
9 //a) Calculation of limiting angle of resolution
10 //Limiting angle of resolution of the circular
     aperture is Theta_min = 1.22*(1/d)
11 Theta_min1=1.22*(1/d)
12 disp(Theta_min1,"a) Limiting angle of resolution in
     radians is")
13 //b) Calculation of maximum limit of resolution for
     the microscope
14 Theta_min2=1.22*(L/d)
15 disp(Theta_min2," b) Maximum limit of resolution for
      the microscope in radians")
  //c) Effect of water b/w the object and objective on
     resolving power of microscope
17 lw=l/n
18 Theta_min3=1.22*(lw/d)
19 disp(Theta_min3,"c) Limiting angle of resolution for
      the microscope when water filled the space b/w
     the object and objective in radians is")
```

Scilab code Exa 25.8 Resolving Power

```
1 //Chapter 25
2 clc
3 //Example 8
4 //given
5 f1=1000// focal length of objective of telescope A in mm
6 f2=1250// focal length of objective of telescope B in mm
```

```
7 f3=6// focal length of eyepiece of telescope A in mm
8 f4=25// focal length of eyepiece of telescope Bin mm
9 //C) Calculation of magnification of the telescope
10 m_A=f1/f3
11 m_B=f2/f4
12 disp(m_A, "Magnification of telescope A is")
13 disp(m_B, "Magnification of telescope B is")
```

Scilab code Exa 25.9 Resolving Power of grating

```
1 // Chapter 25
2 clc
3 //Example 8
4 //given
5 L1=589 // wavelength of first bright line in sodium
     spectrum in nm
6 L2=589.59 // wavelength of second bright line in
     sodium spectrum in nm
7 m=2 // order of the spectrum
8 \text{ delta}_L = L2 - L1
9 R=L1/delta_L
10 disp(R,"a) Resolving poer of grating inorder to
      distinguish the wavelengths is")
11 N=R/m
12 printf("No. of lines of the grating illuminated to
      resolve the lines in the second order spectrum
     are %d",N)
```

Relativity

Scilab code Exa 26.1 Time period

```
1 //Chapter 26
2 clc
3 //Example1
4 //given
5 Tp=3 //proper time in sec
6 c=3*10^8 //velocity of light in m/sec
7 v=0.95*c
8 gamma=1/sqrt(1-(v^2/c^2))
9 T=gamma*Tp
10 disp(T,"Period of the pendulum w.r.t to observer is"
)
```

Scilab code Exa 26.2 Length of spaceship with respect to observer

```
1 //Chapter 26
2 clc
3 //Example2
4 //given
```

```
5 Lp=120 // length of space ship in meters
6 c=3*10^8 //velocity of light in m/sec
7 v=0.99*c
8 gamma=1/sqrt(1-(v^2/c^2))
9 L=Lp/gamma
10 disp(L,"Length of spaceship measured by moving observer in meters is")
```

Scilab code Exa 26.3 Distance from spaceship to ground

```
1 //Chapter 26
2 clc
3 //Example3
4 //given
5 Lp=435 // length of space ship in meters
6 c=3*10^8 //velocity of light in m/sec
7 v=0.970*c
8 gamma=1/sqrt(1-(v^2/c^2))
9 L=Lp/gamma
10 disp(L,"Distance from spaceship to the groung measured by an observer in spaceship in meters is ")
```

Scilab code Exa 26.4 shape of spaceship

```
1 //Chapter 26
2 clc
3 //Example4
4 //given
5 c=3*10^8 //velocity of light in m/sec
6 //when the spaceship is at rest
7 x=52 // diatance in x direction in meters
8 y=25 //measurement in y direction
```

```
9 v=0.95*c
10 //when the spaceship moves to an observer at rest
          only x dimension looks contracted
11 gamma=1/sqrt(1-(v^2/c^2))
12 L=x/gamma
13 disp(L,"The observer sees the horizontal dimension
          of the spaceship gets contracted to a length in
          meters of")
```

Scilab code Exa 26.5 Relativistic Momentum

```
1 // Chapter 26
2 clc
3 //Example5
4 //given
5 c=3*10^8 //velocity of light in m/sec
6 m=9.11*10^-31 //mass of electron in kg
7 v = 0.75 * c
8 gamma = 1/sqrt(1-(v^2/c^2))
9 //relativistic momentum
10 p = m * v * gamma
11 disp(p, "relativistic momentum in kg.m/s is")
12 //classical approach
13 P = m * v
14 disp(P, "classical momentum in kg.m/s is")
15 Z = (p-P) * 100/P
16 printf("the relativistic result is %d percent
      greater than classical result", Z)
```

Scilab code Exa 26.6 speed of light beam

```
1 // clc
2 // Example6
```

```
3 //given
4 c=3*10^8 //velocity of light in m/sec
5 Vmo=0.80*c // velocity of motocycle w.r.t stationary observer
6 Vlm=c // velocity of motocycle w.r.t motorcycle
7 //velocity of light w.r.t stationary observer
8 Vlo=(Vlm+Vmo)/(1+(Vlm*Vmo)/c^2)
9 disp(Vlo,"velocity of light w.r.t stationary observer in m/sec")
```

Scilab code Exa 26.7 Energy released

```
1 //Chapter 26
2 clc
3 //Example7
4 //given
5 c=3*10^8 //velocity of light in m/sec
6 m=0.50 //mass of baseball in kg
7 E=m*c^2
8 disp(E,"The energy equivalent of baseball in joules is")
```

Scilab code Exa 26.8 Total energy and kinetic energy of electron

```
1 //Chapter 26
2 clc
3 //Example 8
4 //given
5 c=3*10^8 //velocity of light in m/sec
6 m=0.511 //rest energy of electron in Mev
7 v=0.85*c
8 gamma=1/sqrt(1-(v^2/c^2))
9 E=(m)*gamma
```

```
10 disp(E,"total energy of an electron in Mev")
11 K=E-m
12 disp(K,"Kinetic energy of electron in Mev is")
```

Scilab code Exa 26.9 Conversion of mass to KE

```
1 //Chapter 26
2 clc
3 //Example 9
4 //given
5 \text{ m_n=1.008665} //\text{mass of neutron in amu}
6 m_U=235.043924 //atomic mass of uranium in amu
7 m_Ba=140.903496 //atomic mass of barium in amu
8 m_Kr=91.907720 //atomic mass of krypton in amu
9 c=3*10^8 // velocity of light in m/s
10 //a) Kinetic energy released in fission of uranium
11 KE_final_=((m_n+m_U)-(m_Ba+m_Kr+(3*m_n)))*c^2
12 //1 \text{ amu} = 931.494 \text{ Mev/c}^2
13 KE_final=KE_final_*931.494/c^2
14 disp(KE_final,"a) Kinetic energy released in fission
       in Mev is")
15 //b) velocities of barium and krypton
16 / E = mc2 / sqrt (1 - v2 / c2)
17 KE_Ba=KE_final
18 m_Ba_=m_Ba*931.494/c^2 // mass of barium in Mev
19 \quad E_Ba=KE_Ba+m_Ba_*c^2
V_Ba = (sqrt(1 - (((m_Ba_*c^2)^2)/E_Ba^2)))*c
21 disp(V_Ba, "Speed of Barium fragment in Mev is")
22 KE_Kr=KE_final
23 m_Kr_=m_Kr*931.494/c^2 // mass of krypton in Mev
24 \quad E_Kr = KE_Kr + m_Kr_*c^2
V_{Kr}=(sqrt(1-((m_{Kr}*c^2)^2)/E_{Kr}^2))*c
26 disp(V_Kr, "Speed of krypton fragment in Mev is")
27 //The difference in answer is because of round off
```

Quantum Physics

Scilab code Exa 27.1 Wavelength of radiation

```
1 //chapter27
2 clc
3 //Example 1
4 //given
5 T=35 //Temperature of the skin in celsius
6 T1=T+273 //Temperature in kelvin
7 //From Wien's displacement law
8 Lambda_max=(0.2898*10^-2)/T1
9 disp(Lambda_max,"Wavelength at which radiation emitted from the skin reaches its peak in meters is")
```

Scilab code Exa 27.2 Calculation of Energy and Quantum number

```
1 //Chapter 27
2 clc
3 //Example 2
4 //given
```

```
5 m=2 // mass of the object in Kg
6 k=25 //force constant of spring in N/m
7 A=0.4 //Amplitude of Simple harmonic oscillation by
      spring in meters
8 h=6.63*10^{-34} // js
9 //a) Total energy and frequency of SHO calculation
10 E=(1/2)*k*A^2
11 f = (1/(2*\%pi))*sqrt(k/m)
12 disp(E,"a) Total energy of Simple harmonic
      oscillator with given amplitude in Joules is")
13 disp(f,"
              Frequency of oscillation in Hertz is")
14 //b) Calculation of quantum number for the system
15 \text{ n=E/(h*f)}
16 disp(n,"b) Quantum number for the given macroscopic
     system is")
17 //c) Calculation of energy carried away in a quantum
       charge
18 \text{ delta_E=h*f}
19 disp(delta_E,"c) Energy carried away by a one-
     quantum charge in joules is")
```

Scilab code Exa 27.3 Energy of photon

```
1 clc
2 //Example 3
3 //given
4 f=6*10^14 //frequency of yellow light in hertz
5 h=6.63*10^-34 //plancks constant J.s
6 E=h*f
7 disp(E,"Energy carried by a photon with the given frequency in Joules is")
```

Scilab code Exa 27.4 Energy and wavelength of photon

```
1 // Chapter 27
2 clc
3 / Example 4
4 //given
5 l=0.3*10^-6 //wavelength of light in meters
6 W=2.46 //work function for sodium in ev
7 c=3*10^8 //velocity of light in m/s
8 h=6.63*10^-34//js
9 //a) Maximum KE of the ejected photoelectrons
10 E=(h*c/1)/(1.6*10^-19) //energy of each photon of th
       eilluminating light beam in ev
11 KE_max = E - W
12 disp(KE_max,"a) Maximum Kinetic energy of th
      eejected photoelectrons in ev is")
13 //b) Cut off wavelength for sodium
14 \quad W1 = W * 1.6 * 10^{-19}
15 lc=h*c/W1
16 disp(lc,"b) Cut off wavelength for sodium in meters
      is")
```

Scilab code Exa 27.5 minimum wavelength

```
1 //Chapter 27
2 clc
3 //Example 5
4 //given
5 V=10^5 //potential difference in Volts
6 h=6.63*10^-34 // plancks constant in J.s
7 c=3*10^8// velocity of light in m/s
8 e=1.6*10^-19// elelctronic charge in coulombs
9 L_min=(h*c)/(e*V)
10 disp(L_min, "Minimum wavelength produced in meters is ")
```

Scilab code Exa 27.6 Grazing angle

```
1 //Chapter 27
2 clc
3 //Example 6
4 //given
5 d=0.314 //spacing between certain planes in a crystal of calcite in nm
6 l=0.070 //wavelength of X-rays in nm
7 m=1// first order of interference
8 theta1=asind((m*1)/(2*d))
9 disp(theta1, "Grazing angle at first order of interference in degree is")
10 m=3 //third order of interference
11 theta2=asind((m*1)/(2*d))
12 disp(theta2, "Grazing angle at third order of interference in degree is")
```

Scilab code Exa 27.7 Compton scattering

```
1 //Chapter 27
2 clc
3 //Example 7
4 //given
5 Lo=0.200000 //wavelength of X-rays in nm
6 h=6.63*10^-34 //in J.s
7 m_e=9.11*10^-31 // in Kg
8 c=3*10^8 //in m/s
9 theta=45 //in degrees
10 //wavelength is represented by d
11 delta_L=(h/(m_e*c))*(1-cosd(theta))
12 L=delta_L+Lo
```

Scilab code Exa 27.8 de Broglie wavelength

```
1 //Chapter 27
2 clc
3 //Example 8
4 //given
5 h=6.63*10^-34 //in J.s
6 m_e=9.11*10^-31 // in Kg
7 v=1*10^7 //in m/s
8 lambda=h/(m_e*v)
9 disp(lambda,"de Broglie wavelength for an electron in meters is")
```

Scilab code Exa 27.9 de broglie wavelength of ball

```
1 //Chapter 27
2 clc
3 //Example 9
4 //given
5 h=6.63*10^-34 //in J.s
6 m=0.145 // in Kg
7 v=40 //in m/s
8 lambda=h/(m*v)
9 disp(lambda,"de Broglie wavelength of the ball in meters is")
```

Scilab code Exa 27.10 uncertainty of the position of electron

Scilab code Exa 27.11 Uncertainty in energy of excited state

```
1 //Chapter 27
2 clc
3 //Example 11
4 //given
5 h=6.63*10^-34 // plancks constant in J.s
6 delta_t=1.00*10^-8 // Average time that an ellectron exists in the excited states in sec
7 delta_E=h/(4*%pi*delta_t)
8 disp(delta_E," Minimum uncertainity in energy of the excited states in Joules is")
```

Atomic Physics

Scilab code Exa 28.1 wavelength and frequency

```
1 //Chapter 28
2 clc
3 //Example 1
4 //given
5 RH=1.097*10^7 //Rydberg constant in per meter
6 lambda=4/(3*RH)
7 c=3*10^8 // m/sec
8 f=c/lambda
9 disp(lambda,"Wavelength of the emitted photon in meters")
10 disp(f,"frequency of the emitted photon in meters")
```

Scilab code Exa 28.2 wavelength and energy emitted by the photon

```
1 //Chapter 28
2 clc
3 //Example 2
4 //given
```

```
5 RH=1.097*10^7 //Rydberg constant in per meter
6 h=6.626*10^-34 //plancks constant in j.s
7 c=3*10^8 // velocity of light in m/s
8 nf=2 //quantum number
9 ni=3// quantum number
10 //assuming k=1/lambda
11 k=RH*((1/nf^2-1/ni^2))
12 lambda=1/k
13 disp(lambda, "longest wavelength that photon emmited in meters is")
14 E_photon=h*c/lambda
15 disp(E_photon, "Energy emmited by the photon in Joules is")
```

Scilab code Exa 28.3 energy and radiation

```
1 //Chapter 28
2 clc
3 //Example 3
4 //given
5 Z=2 //atomic number of helium
6 n=1 //principal quantum number
7 E=-Z^2*13.6/n^2
8 disp(E,"a) Energy of the atom in ground state in eV
    is")
9 r=(n^2/Z)*0.0529//in nm
10 disp(r,"b) Radius of the ground state orbit in nm is
    ")
```

Scilab code Exa 28.4 energy of the states

```
1 //Chapter 28
2 clc
```

```
3 //Example 4
4 //given
5 n=2// principal quantum number
6 E=-13.6/n^2
7 disp(E, "Energy of the states with quantum number 2 in ev is")
```

Scilab code Exa 28.6 Energy of the characteristic X ray

```
1 //Chapter 28
2 clc
3 //Example 6
4 //given
5 Z=74 //atomic number of tungsten
6 Eo=13.6 //ground state energy in ev
7 E_K=-(Z-1)^2*(13.6) //Energy of the electron in K
      shell
8 n=3
9 \quad Z_eff=Z-n^2
10 \quad E3=Eo/n^2
11 \quad E_M = -Z_eff^2 \times E3
12 \quad E = E_M - E_K
13 disp(E, "Energy of the characteristic emitted from
      tungsten target when electron drops from M shell
      to K shell in ev is")
14 // Difference in answer is because of roundoff
```

Nuclear Physics

Scilab code Exa 29.1 Nuclear Density

```
1 mode(2);//Chapter 29
2 clc
3 //Example 1
4 //given
5 m=1.67*10^-27 //mass of nucleus in kg
6 ro=1.2*10^-15 //in meter
7 p=(3*m)/(4*%pi*(ro)^3)
8 disp(p,"Nuclear density in kg/m3 is")
```

Scilab code Exa 29.2 Binding Energy

```
1 // Chapter 29
2 clc
3 // Example 2
4 // given
5 mp=1.007825 // in u
6 mn=1.008665 // in u
7 md=2.014102 // in u
```

```
8 u=931.494 //Mev
9 M=mp+mn
10 delta_m=(M-md) //in u
11 E=delta_m*u
12 disp(E,"Binding energy of Deuteron in Mev is")
```

Scilab code Exa 29.3 Decay rate

```
1 //Chapter 29
2 clc
3 //Example 3
4 //given
5 No=3*10^16 //no.of radioactive nuclei present at t=0
6 t_half=1.6*10^3 //years
7 T_half=t_half*3.16*10^7 //in sec
8 d=0.693/T_half
9 R_o=d*No // decays/s
10 Ci=3.7*10^10
11 Ro=R_o/Ci
12 disp(Ro,"Activity or decay rate at t=0 in Ci is")
```

Scilab code Exa 29.4 activity of radon

```
1 //Chapter 29
2 clc
3 //Example 4
4 //given
5 T_half=3.83 //half life time of Radon in days
6 No=4*10^8 //Initial No .of Radon atoms
7 lambda=0.693/T_half // in days
8 t=12
9 N=No*exp(-(lambda*t))
10 disp(N,"a) No.of atoms remaining after 12 days is")
```

```
11 lambda_=lambda/(8.64*10^4)
12 R=lambda_*No
13 disp(R,"Initial activity of the radon sample in decay/sec is")
```

Scilab code Exa 29.5 Energy liberated

```
1 //Chapter 29
2 clc
3 //Example 5
4 //given
5 m_d=222.017571 //mass of daughter nuclei in atomic units
6 m_alpha=4.002602 //mass of alpha particle in atomic units
7 M_p=226.025402 //mass of parent nuclei in atomic units
8 m=m_d+m_alpha
9 delta_m=(M_p-m)
10 E=delta_m*931.494
11 disp(E,"Energy liberated in Mev is")
```

Scilab code Exa 29.6 energy released in beta decay

```
1 //Chapter 29
2 clc
3 //Example 6
4 //given
5 M_C=14.003242 //mass of carbon in atomic mass units
6 M_N=14.003074 //mass of nitogen in atomic mass units
7 delta_M=M_C-M_N
8 E=delta_M*(931.494)
9 disp(E,"Energy released in beta decay in Mev is")
```

Scilab code Exa 29.7 age of teh skeleton

```
1 //Chapter 29
2 clc
3 //Example 7
4 //given
5 T_half=3.01*10^9 //half life time in min
6 lambda=0.693/T_half
7 R=200 // in decay/min
8 RO_=15 //decay rate in decay/min.g
9 m=50 //weight of carbon
10 RO=RO_*m //in decay/min
11 t1=-(log(R/RO)/lambda) //im min
12 t=t1/525949
13 disp(t,"Age of the skeleton in years is")
```

Nuclear Energy and Elementary Particles

Scilab code Exa 30.2 total energy released

```
//Chapter 30
clc
//Example 2
//given
Q=208 //disintegration energy per event in Mev
m=1*10^3 //mass of uranium
A=235 //mass number or uranium in g/mol
a=6.02*10^23 //avagadro number nuclei/mol
N=(a/A)*m //nuclei
E=N*Q
P=E*4.45*10^-20
disp(E,"Disintegration energy in Mev is")
disp(P,"or in KWh")
```

Scilab code Exa 30.3 deuterium deuterium reaction

```
1 errcatch(-1, "stop"); mode(2); // Chapter 30
2 clc
3 //Example 3
4 //given
5 m1=2.014102 // mass of deuterium in atomic mass unit
6 m2=3.016049 //mass of tritium in atomic mass unit
7 m3=1.007825 // mass of hydrogen in atomic mass unit
8 //referring to the deuterium-deuterium reaction
9 //mass before reaction
10 \quad M1 = 2 * m1
11 //mass after reaction
12 M2 = m2 + m3
13 //excessive mass
14 m = M1 - M2
15 //converting mass into energy
16 //1 u = 931.494 \text{ MeV}
17 E=m*931.494
18 disp(E," Energy release in deuterium-deuterium
      reaction in Mev is")
19
20 exit();
```