Conformal Field Theory and Second Order Phase Transition

Adrien Scalea

University of Mons Physics department

June 2021

Fonction de partition

Fonction de partition canonique :

$$Z = \sum_{i} \exp\left(-\beta \mathcal{H}_{i}\right)$$

-> elle permet de calculer toutes les observables. Énergie libre :

$$F = -kT \ln Z$$

Transition de phase = marquée par la présence d'une discontinuité dans au moins une des dérivées de la fonction thermodynamique (E, G, F, \ldots) qui décrit le système sous un changement des variables extérieures T, P, B, \ldots

Transition de phase = marquée par la présence d'une discontinuité dans au moins une des dérivées de la fonction thermodynamique (E, G, F, \ldots) qui décrit le système sous un changement des variables extérieures T, P, B, \ldots

Fonction de partition = somme de fonctions continues, pourtant on a des discontinuités.

Transitions du 1er ordre

Transitions du 2nd ordre ou continues

- Dérivée 1ère
- Chaleur latente
- Longueur de corrélation finie
- 2 phases ou +

Transitions du 1er ordre

- Dérivée 1ère
- Chaleur latente
- Longueur de corrélation finie
- 2 phases ou +

Transitions du 2nd ordre ou continues

- Dérivée 2nde ou +
- Brisure spontanée de symétrie
- 1 phase

Modèle d'Ising

$$\mathcal{H} = -B\sum_{i} s_{i} - J\sum_{\langle ij \rangle} s_{i}s_{j} - K\sum_{\langle \langle ij \rangle \rangle} s_{i}s_{j}$$

-> symétrie sous $s_i \longrightarrow -s_i$ (\mathbb{Z}_2) quand B=0.

Modèle d'Ising

$$H = -B\sum_{i} s_{i} - J\sum_{\langle ij \rangle} s_{i}s_{j} - K\sum_{\langle \langle ij \rangle \rangle} s_{i}s_{j}$$

-> symétrie sous $s_i \longrightarrow -s_i \ (\mathbb{Z}_2)$ quand B=0.

Block spin transformation

Block spin transformation

= Formalisme permettant de calculer les exposants critiques...

On considère
$$H:=\beta\mathcal{H}=\frac{\mathcal{H}}{kT}$$
 et $\vec{K}=(J,\,K,\dots)$ vecteur des paramètres.

Une transformation du GR:

$$\vec{K}' = \mathcal{R}\vec{K}.$$

Le point fixe est tq

$$\mathcal{R}\vec{K}^* = \vec{K}^*.$$

Une transformation du GR:

$$\vec{K}' = \mathcal{R}\vec{K}.$$

Le point fixe est tq

$$\mathcal{R}\vec{K}^* = \vec{K}^*.$$

On peut linéariser autour de \vec{K}^*

$$K_{a}^{\prime}\approx K_{a}^{*}+\sum_{b}\,T_{ab}\left(K_{b}-K_{b}^{*}\right)\!.$$

T a ici 2 valeurs propres λ et μ que l'on peut écrire

$$\lambda(b) = b^{y}$$
$$\mu(b) = b^{z}$$

 $\operatorname{pcq} \lambda(b_1)\lambda(b_2) = \lambda(b_1 b_2).$

En fait, $\lambda < 1$ et $\mu > 1$, i.e. y < 0 (irrelevant) et z > 0 (relevant). $\lambda \mapsto \hat{\mathbf{s}}$ et $\mu \mapsto \hat{t}$.

On peut utiliser (t, s) plutôt que (J, K) et écrire

$$\vec{K} = t \hat{t} + s \hat{s}.$$

Donc,

$$T \vec{K} = t T \hat{t} + s T \hat{s}$$

= $t b^y \hat{t} + s b^z \hat{s}$

$$\Longrightarrow \begin{cases} s^{(n)} = s b^{y n} \\ t^{(n)} = t b^{z n} \end{cases}$$

La longueur de corrélation va se transformer comme

$$\xi(s\,b^{ny},t\,b^{nz})=\xi(s,t)/b^n.$$

Si on choisit b^{nz} t=1, on trouve

$$\xi(s,t) = \frac{1}{t^{1/z}} \xi(0,1) \propto \frac{1}{t^{1/z}}.$$

Les observables qui divergent \sim loi en puissance avec un certain exposant critique.

11 / 21

La longueur de corrélation va se transformer comme

$$\xi(s\,b^{ny},t\,b^{nz})=\xi(s,t)/b^n.$$

Si on choisit $b^{nz} t = 1$, on trouve

$$\xi(s,t) = \frac{1}{t^{1/z}} \xi(0,1) \propto \frac{1}{t^{1/z}}.$$

Les observables qui divergent \sim loi en puissance avec un certain $\emph{exposant}$ $\emph{critique}.$

$$\xi \propto |t|^{-\nu}$$

La longueur de corrélation va se transformer comme

$$\xi(s\,b^{ny},t\,b^{nz})=\xi(s,t)/b^n.$$

Si on choisit $b^{nz} t = 1$, on trouve

$$\xi(s,t) = \frac{1}{t^{1/z}} \, \xi(0,1) \propto \frac{1}{t^{1/z}}.$$

Les observables qui divergent \sim loi en puissance avec un certain $\emph{exposant}$ $\emph{critique}.$

$$\xi \propto |t|^{-
u} \qquad \longrightarrow \boxed{
u = \frac{1}{z}}$$

On montre que $t \propto |T - T_c|$ et on pose $h = \beta B$.

$$C \propto |t|^{-lpha}$$
 $M \propto (-t)^{eta}$
 $\chi \propto |t|^{-\gamma}$
 $M|_{t=0} = |h|^{1/\delta}$
 $\xi \propto |t|^{-
u}$
 $\langle s(r)s(0) \rangle \propto r^{-(d-2+\eta)}$

chaleur spécifique
magnétisation
susceptibilité
magnétisation au point critique
longueur de corrélation
fonction de corrélation

$$\alpha = 2 - \nu d$$

$$\gamma + 2\beta = \nu d$$

$$\beta(\delta - 1) = \gamma$$

$$\gamma = \nu(2 - \eta)$$

-> 4 équations pour 6 inconnues.

Phénomène d'universalité.

Invariance d'échelle Invariance sous translation Invariance sous rotation Interactions à courte portée

Invariance d'échelle
Invariance sous translation
Invariance sous rotation

Invariance sous rotation

Invariance sous rotation

Invariance conforme. Invariance d'échelle Interactions à courte portée

Groupe conforme = ensemble des transformations qui transforme la métrique comme

$$g'_{\mu\nu}(x') = \Omega^2(x) g_{\mu\nu}(x).$$

En prenant $x^{\mu} \to x'^{\mu} = x^{\mu} + \varepsilon^{\mu}(x)$, on a l'équation de Killing conforme

$$\partial_{\mu} arepsilon_{
u} + \partial_{
u} arepsilon_{\mu} = rac{2}{d} \partial_{lpha} arepsilon^{lpha} \, \mathsf{g}_{\mu
u}.$$

En $d \ge 3$ dimensions, on montre qu'on a

- les transformations de Poincaré $x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu}$,
- les dilatations $x'^{\mu} = \alpha x^{\mu}$,
- les transformations spéciales conformes $x'^{\mu} = \frac{x^{\mu} c^{\mu}x^2}{1 2c \cdot x + c^2x^2}$.

$$\operatorname{Conf}(\mathbb{R}^{p,q}) \simeq SO(p+1,q+1)$$

En $d \ge 3$ dimensions, on montre qu'on a

- les transformations de Poincaré $x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu}$,
- les dilatations $x'^{\mu} = \alpha x^{\mu}$,
- les transformations spéciales conformes $x'^{\mu} = \frac{x^{\mu} c^{\mu}x^2}{1 2c \cdot x + c^2x^2}$.

$$\operatorname{Conf}(\mathbb{R}^{p,q}) \simeq SO(p+1,q+1)$$

$$\frac{x'^{\mu}}{x'^2} = \frac{x^{\mu}}{x^2} + b^{\mu}$$

$TSC = Inversion \circ Translation \circ Inversion$

Figure: From Simmons-Duffin, 2015 [2]

États et opérateurs primaires

En TCC, un état est caractérisé par son spin I et sa $scaling dimension <math>\Delta$ tq

$$D |\Delta, I\rangle = -i\Delta |\Delta, I\rangle$$

$$M_{\mu\nu} |\Delta, I\rangle_{\alpha} = (S_{\mu\nu})_{\alpha}^{\beta} |\Delta, I\rangle_{\beta}.$$

Le vide est tq $D\ket{0}=0=M_{\mu\nu}\ket{0}$.

États et opérateurs primaires

En TCC, un état est caractérisé par son spin I et sa $scaling dimension <math>\Delta$ tq

$$\begin{split} D \left| \Delta, I \right\rangle &= -i \Delta \left| \Delta, I \right\rangle \\ M_{\mu\nu} \left| \Delta, I \right\rangle_{\alpha} &= \left(S_{\mu\nu} \right)_{\alpha}^{\ \beta} \left| \Delta, I \right\rangle_{\beta}. \end{split}$$

Le vide est tq $D|0\rangle = 0 = M_{\mu\nu}|0\rangle$.

Opérateur primaire :

$$\psi_{\Delta}'(\mathbf{x}') = \Omega^{-\Delta}(\mathbf{x}) R [M^{\mu}_{\ \nu}(\mathbf{x})] \psi_{\Delta}(\mathbf{x})$$

où R est une représentation de SO(d).

Un état est construit par $|\Delta, I\rangle = \psi(0) |0\rangle$.

Fonctions de corrélation

En TCC, les fonctions de corrélation à 2 et 3 points sont complètement déterminés par l'invariance conforme :

$$\langle \psi_i(x)\psi_j(y)\rangle = \begin{cases} \dfrac{N_{ij}}{|x-y|^{2\Delta}} & \text{ si } \Delta_i = \Delta_j = \Delta \\ 0 & \text{ sinon.} \end{cases}$$

Fonctions de corrélation

En TCC, les fonctions de corrélation à 2 et 3 points sont complètement déterminés par l'invariance conforme :

$$\langle \psi_i(x)\psi_j(y)\rangle = egin{cases} rac{N_{ij}}{|x-y|^{2\Delta}} & ext{ si } \Delta_i = \Delta_j = \Delta \ 0 & ext{ sinon.} \end{cases}$$

En PS, les champs de spins s(x) sont des opérateurs primaires et donc

$$\langle s(x)s(0)\rangle \propto |x|^{-2\Delta_s}$$

Et,
$$\Delta_i = d - y_i$$

Fonctions de corrélation

En TCC, les fonctions de corrélation à 2 et 3 points sont complètement déterminés par l'invariance conforme :

$$\langle \psi_i(x)\psi_j(y)\rangle = egin{cases} rac{N_{ij}}{|x-y|^{2\Delta}} & ext{ si } \Delta_i = \Delta_j = \Delta \ 0 & ext{ sinon.} \end{cases}$$

En PS, les champs de spins s(x) sont des opérateurs primaires et donc

$$\langle s(x)s(0)\rangle \propto |x|^{-2\Delta_s}$$

Et, $\Delta_i = d - y_i$, donc $\longrightarrow \eta = 2\Delta_s + 2 - d$.

Intégrale de chemin en physique statistique

Dans le modèle d'Ising, on prend un champ de magnétisation $\vec{m}(x)$.

$$Z = \int_{|k| < \Lambda} \mathcal{D}m \exp \left(-\beta F[m(x)]\right)$$

avec $\Lambda \sim 1/a$ et F est l'énergie libre de Landau.

Pour le modèle d'Ising,

$$F = \int d^d x \left[\frac{1}{2} \alpha_2(T) m^2 + \frac{1}{4} \alpha_4(T) m^4 + \frac{1}{2} \gamma(T) (\nabla m)^2 + \cdots - h \cdot m \right].$$

Intégrale de chemin en physique statistique

Dans le modèle d'Ising, on prend un champ de magnétisation $\vec{m}(x)$.

$$Z = \int_{|k| < \Lambda} \mathcal{D}m \, \exp \left(-\beta F[m(x)]\right)$$

avec $\Lambda \sim 1/a$ et F est l'énergie libre de Landau. Pour le modèle d'Ising,

$$F = \int d^d x \left[\frac{1}{2} \alpha_2(T) m^2 + \frac{1}{4} \alpha_4(T) m^4 + \frac{1}{2} \gamma(T) (\nabla m)^2 + \cdots - h \cdot m \right].$$

En TQC,

$$Z = \int \mathcal{D}\psi \; \exp\left(rac{i}{\hbar} \mathcal{S}[\psi]
ight).$$

Bibliographie I

Image Ising : https://www.youtube.com/watch?v=MxRddFrEnPc by
Douglas Ashton

- (1) Rychkov, S., 2017. EPFL Lectures on Conformal Field Theory in D>=3 Dimensions. https://arxiv.org/abs/1601.05000v2
- (2) Simmons-Duffin, D., 2016. TASI Lectures on the Conformal Bootstrap. https://arxiv.org/abs/1602.07982
- (3) Cardy, J., 1996. Scaling and Renormalization in Statistical Physics. Cambridge: Cambridge University Press (Cambridge Lecture Notes in Physics). https://doi.org/10.1017/CB09781316036440
- (4) Di Francesco, P., Mathieu, P., Sénéchal, D., 1997. Conformal Field Theory, Graduate Texts in Contemporary Physics. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4612-2256-9
- (5) Ginsparg, P., 1988. Applied Conformal Field Theory. https://arxiv.org/abs/hep-th/9108028

Bibliographie II

- (6) Henkel, M., 1999. Conformal Invariance and Critical Phenomena. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03937-3
- (7) Kardar, M., 2007. Statistical Physics of Fields. Cambridge University Press, Cambridge. https://doi.org/10.1017/CB09780511815881
- (8) Ngô, C., Ngô, H., 2008. Physique statistique: Introduction: Cours et exercices corrigés. Dunod, Paris.
- (9) Schellekens, A.N., 1996. Introduction to Conformal Field Theory. Fortschr. Phys. 44, 605–705. https://doi.org/10.1002/prop.2190440802
- (10) D. Tong's lectures on Statistical Field Theory available at http://www.damtp.cam.ac.uk/user/tong/sft.html

Backup

Beta function, y, z et Δ

Avec b = 1 + I, on peut définir la fonction beta par

$$\beta_a(K) := -\frac{\partial K_a}{\partial I}.$$

Les valeurs propres y_i de $\frac{-\partial \beta_a}{\partial K_b}\Big|_{K^*}$ sont les y, z,...

Les scaling dimensions Δ_i sont

$$\Delta_i = d - y_i$$
.

$$[K_{\mu}, \psi(0)] = 0$$

 $[D, \psi(0)] = -i\Delta\psi(0)$
 $[M_{\mu\nu}, \psi(0)] = \Sigma_{\mu\nu} \psi(0).$

$$[K_{\mu}, \psi(0)] = 0$$

 $[D, \psi(0)] = -i\Delta\psi(0)$
 $[M_{\mu\nu}, \psi(0)] = \Sigma_{\mu\nu} \psi(0).$

A state is generated by a primary operator inserted at the origin on the vacuum, i.e. $|\Delta\rangle = \psi(0)|0\rangle$.

$$[K_{\mu}, \psi(0)] = 0$$

 $[D, \psi(0)] = -i\Delta\psi(0)$
 $[M_{\mu\nu}, \psi(0)] = \Sigma_{\mu\nu} \psi(0).$

A state is generated by a primary operator inserted at the origin on the vacuum, i.e. $|\Delta\rangle = \psi(0)|0\rangle$.

With $[D,P_{\mu}]=iP_{\mu}$ and $[D,K_{\mu}]=-iK_{\mu}$, one have

$$DP_{\mu}\ket{\Delta}=i(-\Delta+1)P_{\mu}\ket{\Delta} \qquad D\mathcal{K}_{\mu}\ket{\Delta}=i(-\Delta-1)\mathcal{K}_{\mu}\ket{\Delta}.$$

$$[K_{\mu}, \psi(0)] = 0$$

 $[D, \psi(0)] = -i\Delta\psi(0)$
 $[M_{\mu\nu}, \psi(0)] = \Sigma_{\mu\nu} \psi(0).$

A state is generated by a primary operator inserted at the origin on the vacuum, i.e. $|\Delta\rangle = \psi(0)|0\rangle$.

With $[D,P_{\mu}]=iP_{\mu}$ and $[D,K_{\mu}]=-iK_{\mu}$, one have

$$DP_{\mu} |\Delta\rangle = i(-\Delta + 1)P_{\mu} |\Delta\rangle \qquad DK_{\mu} |\Delta\rangle = i(-\Delta - 1)K_{\mu} |\Delta\rangle.$$

One generates a conformal multiplet:

$$|\Delta\rangle$$
, P_{μ} $|\Delta\rangle$, $P_{\mu}P_{\nu}$ $|\Delta\rangle$, ...

Operator Product Expansion (OPE)

$$\psi_i(x)\psi_j(0)|0\rangle=|\Psi\rangle$$

Operator Product Expansion (OPE)

A state can be expanded onto the dilatation eigenvector basis:

$$\psi_i(x)\psi_j(0)|0\rangle = |\Psi\rangle = \sum_n c_n(x)|\Delta_n\rangle.$$

Operator Product Expansion (OPE)

A state can be expanded onto the dilatation eigenvector basis:

$$\psi_i(x)\psi_j(0)|0\rangle = |\Psi\rangle = \sum_n c_n(x)|\Delta_n\rangle.$$

Since $|\Delta_n\rangle$ is either a primary or a descendant state,

$$\psi_i(x)\psi_j(0)\ket{0} = \sum_{\mathcal{O} \; \textit{primaries}} C_{ij\mathcal{O}}(x,\partial_y)\mathcal{O}(y)|_{y=0}\ket{0}.$$

n-pt function \xrightarrow{OPE} (n-1)-pt function