Matematika informatikusoknak 2 – Differenciálszámítás

2. gyakorlat

Számsorozatok határértéke

Definíció. Az $(a_n)_{n=1}^{\infty}$ sorozat határértéke a b szám, ha minden ε -hoz létezik olyan $(\varepsilon$ -tól függő) n_0 szám, melyre teljesül, hogy minden $n>n_0$ esetben

$$|a_n-b|<\varepsilon.$$

$$\lim_{n\to\infty}a_n=b$$

Feladatok gyakorlatra:

Határozzuk meg a határértékeket és bizonyítsuk be a definíció alapján.

$$\lim_{n\to\infty}\frac{2n^2+3n}{n^2+1}=$$

Feladatok gyakorlatra:

Határozzuk meg a határértékeket és bizonyítsuk be a definíció alapján.

$$\lim_{n\to\infty}\frac{2n^2+3n}{n^2+1}=$$

$$= \lim_{n \to \infty} \frac{2n^2 + 3n}{n^2 + 1} = 2$$

Legyen $\varepsilon>0$ adott, rögzített. Milyen "nagy" \emph{n} -re fog teljesülni, hogy

$$\left|\frac{2n^2+3n}{n^2+1}-2\right|<\varepsilon?$$

$$\left| \frac{2n^2 + 3n}{n^2 + 1} - 2 \right| = \left| \frac{2n^2 + 3n - 2(n^2 + 1)}{n^2 + 1} \right| = \left| \frac{2n^2 + 3n - 2n^2 - 2}{n^2 + 1} \right| =$$

$$= \frac{3n - 2}{n^2 + 1}.$$

$$\left| \frac{2n^2 + 3n}{n^2 + 1} - 2 \right| = \left| \frac{2n^2 + 3n - 2(n^2 + 1)}{n^2 + 1} \right| = \left| \frac{2n^2 + 3n - 2n^2 - 2}{n^2 + 1} \right| =$$

$$= \frac{3n - 2}{n^2 + 1}.$$

Milyen "nagy" n-re fog teljesülni, hogy

$$\frac{3n-2}{n^2+1}<\varepsilon?$$

$$\left| \frac{2n^2 + 3n}{n^2 + 1} - 2 \right| = \left| \frac{2n^2 + 3n - 2(n^2 + 1)}{n^2 + 1} \right| = \left| \frac{2n^2 + 3n - 2n^2 - 2}{n^2 + 1} \right| =$$

$$= \frac{3n - 2}{n^2 + 1}.$$

Milyen "nagy" n-re fog teljesülni, hogy

$$\frac{3n-2}{n^2+1}<\varepsilon?$$

az egyenlőtlenség megoldható n-re nézve (bonyolult)

$$\left| \frac{2n^2 + 3n}{n^2 + 1} - 2 \right| = \left| \frac{2n^2 + 3n - 2(n^2 + 1)}{n^2 + 1} \right| = \left| \frac{2n^2 + 3n - 2n^2 - 2}{n^2 + 1} \right| =$$

$$= \frac{3n - 2}{n^2 + 1}.$$

Milyen "nagy" n-re fog teljesülni, hogy

$$\frac{3n-2}{n^2+1}<\varepsilon?$$

- az egyenlőtlenség megoldható n-re nézve (bonyolult)
- nincs szükség a pontos megoldásra, elégséges egy küszöbérték megadása, mely után az egyenlőtlenség már érvényes.

A $\frac{3n-2}{n^2+1}$ tört helyett "nagyobbat", de egyszerűbbet vizsgáljunk.

$$\frac{3n-2}{n^2+1} < \frac{3n}{n^2+1} < \frac{3n}{n^2} = \frac{3}{n}$$
.

Elegendő tehát, ha

$$\frac{3}{n} < \varepsilon$$
 azaz $n > \frac{3}{\varepsilon}$

Az ε -hoz tartozó n_0 legyen az a legkisebb természetes szám, mely nagyobb mint $\frac{3}{\varepsilon}$.

					0.0001	
<i>n</i> ₀	31	151	301	1765	30001	

$$\lim_{n\to\infty} 0.99^n = 0$$

Megjegyzések a logaritmusfüggvényről

Az
$$f(x) = \log_{10} x$$
 a $g(x) = 10^x$ inverze.

Megjegyzések a logaritmusfüggvényről

Az $f(x) = \log_{10} x$ a $g(x) = 10^x$ inverze. a logaritmusfüggvény "lehozza" a hatványkitevőt

Megjegyzések a logaritmusfüggvényről

Az
$$f(x) = \log_{10} x$$
 a $g(x) = 10^x$ inverze. a logaritmusfüggvény "lehozza" a hatványkitevőt

$$\log_{10} 100 = \log_{10} 10^2 = 2$$

$$\log_{10} 1000 = \log_{10} 10^3 = 3$$

$$\log_{10} 1 = \log_{10} 10^0 = 0$$

$$\log_{10} 0.1 = \log_{10} 10^{-1} = -1$$

$$\log_{10} 10^x = x$$
 és $10^{\log_{10} x} = x$ $(x > 0)$

$$\log_{10} 10^x = x$$
 és $10^{\log_{10} x} = x$ $(x > 0)$

Tetszőleges a, b pozitív számokra és t valós számra érvényes:

$$\log_{10} a.b = \log_{10} a + \log_{10} b$$

$$\log_{10} \frac{a}{b} = \log_{10} a - \log_{10} b$$

$$\log_{10} a^t = t. \log_{10} a$$

$$\lim_{n\to\infty}0.99^n=0$$

Legyen $\varepsilon>0$ adott, rögzített. Milyen "nagy" $\emph{n}\text{-re}$ fog teljesülni, hogy

$$|0.99^n - 0| < \varepsilon?$$

Az abszolút érték elhagyható

$$0.99^n < \varepsilon$$

Mivel a $\log_{10} x$ szigorúan növekvő, ezért mindkét oldalnak vehetjük a logaritmusát.

$$0.99^n < \varepsilon$$
 / $\log_{10}()$

Akkor

$$\log_{10} 0.99^n < \log_{10} \varepsilon$$

$$n.\log_{10} 0.99 < \log_{10} \varepsilon$$

$$n.\log_{10} 0.99 < \log_{10} \varepsilon$$

Mivel

$$\log_{10} 0.99 < 0$$
 !!!

s ezért a

$$n.\log_{10} 0.99 < \log_{10} \varepsilon$$

következménye, hogy

$$n > \frac{\log_{10} \varepsilon}{\log_{10} 0.99}$$

(a két negatív szám hányadosa pozitív)

Az ε -hoz tartozó n_0 legyen az a legkisebb természetes szám, mely nagyobb mint

$$\frac{\log_{10} \varepsilon}{\log_{10} 0.99}$$

- 1						0.0001	
	n_0	230	390	459	528	917	

$$\lim_{n\to\infty}\log_{10}(\log_{10}(n+1)=+\infty$$

$$\lim_{n\to\infty}\log_{10}(\log_{10}(n+1)=+\infty$$

Definíció. Az (a_n) sorozat határértéke $+\infty$, ha tetszőleges K>0-hoz létezik olyan K-tól függő n_0 szám, melyre igaz, hogy minden $n>n_0$ esetben

$$a_n > K$$
.

$$\lim_{n\to\infty}\log_{10}(\log_{10}(n+1))=+\infty$$

Legyen K>0 adott, rögzített. Milyen "nagy" \emph{n} -re fog teljesülni, hogy

$$\log_{10}(\log_{10}(n+1)) > K?$$

$$\lim_{n\to\infty}\log_{10}(\log_{10}(n+1))=+\infty$$

Legyen K>0 adott, rögzített. Milyen "nagy" \emph{n} -re fog teljesülni, hogy

$$\log_{10}(\log_{10}(n+1)) > K$$
?

$$\log_{10}(\log_{10}(n+1) > K$$

Mivel a 10^x szigorúan növekvő, ezért mindkét oldalra végrehajtjuk ezt a függvényt.

$$\log_{10}(\log_{10}(n+1)) > K$$
 / 10⁽⁾

Akkor

$$10^{\log_{10}(\log_{10}(n+1))} > 10^{K}$$

$$10^{\log_{10}(\log_{10}(n+1))} > 10^K$$

nem más, mint

$$\log_{10}(n+1) > 10^K$$

Még egyszer hatványozzuk a 10-et az egyes "oldalakra", hogy becslést kapjunk az *n*-re.

$$\log_{10}(n+1) > 10^K / 10^{()}$$

ĺgy

$$10^{\log_{10}(n+1)} > 10^{10^K}$$

s ez nem más, mint

$$n+1 > 10^{10^K}$$

$$n+1 > 10^{10^K}$$

Tehát a K-hoz tartozó n_0 küszöbindex legyen a

$$10^{10^{K}}$$

felkerekített értéke a legközelebbi egész számra.

K	1	2	
<i>n</i> ₀	10^{10}	$10^{10^2} = 10^{100}$	