Agenda do Curso

Aulas	Assuntos
1 ^a Aula	Objetivos da área de finanças / Teoria da agência
2ª Aula	Ciclo de caixa
3ª Aula	Budget (orçamento)
4ª Aula	Fluxo de caixa livre, ROIC e EBITDA
5ª Aula	Risco, retorno e Custo de capital (próprio e terceiros)
6ª Aula	Decisões em estrutura de capital
7ª Aula	Economic Value Added (EVA) e Market Value Added (MVA)
8ª Aula	Valuation: Fluxo de caixa livre descontado (DCF) e Múltiplos
9ª Aula	
3ª Auia	Private Equity e Venture Capital

Risco e retorno - Introdução

Quando pensamos em decisões de investimentos, qual a melhor maneira de avaliar a relação entre risco e retorno?

O que é risco?

Qual sua relação com retorno?

Retorno é apenas uma expectativa que o investidor tem a priori, dado que o retorno efetivo poderá ser maior ou menor que o esperado.

Portanto quanto maior o risco, é esperado que o retorno do investimento seja maior.

Perigo Oportunidade

Um banco avalia o nível de risco de um investimento que poderá realizar em

- a) uma empresa em estágio inicial de vida (internet); e outra em
- b) uma empresa que comercializa commodities minerais já estabelecida no mercado.

O montante de investimento é o mesmo, porém o risco associado a empresas em estágio inicial é maior que empresas estabelecidas.

Portanto, é natural esperar que o retorno esperado do investimento na empresa de internet seja maior que na empresa de *commodities*.

Exemplo

Incerteza e ponderação

Ao analisar a probabilidade de projeções realizadas pela empresa se tornarem realidade, estamos atrelando o risco associado à diversos fatores em relação às projeções.

Calculando fluxo de caixa

Para calcular o fluxo de caixa esperado, basta fazer a ponderação das projeções com a probabilidade de ocorrência.

Retorno de uma carteira de projetos

Da mesma forma que para calcular o fluxo de caixa esperado ponderado a probabilidade de ocorrência, o cálculo de retono esperado de uma carteira de projetos é avaliada da mesma forma, ponderando com o peso no total investido.

Projetos	Peso (%)	R. Esperado (%)	Peso x RE	
Projeto 1	30%	22%	6,6%	
Projeto 2	20%	35%	7,0%	Retorno esperado da empres
Projeto 3	20%	30%	6,0%	33,1%
Projeto 4	15%	40%	6,0%	
Projeto 5	15%	50%	7,5%	

Dimensionando risco e retorno

Exemplo

Uma empresa desenvolveu diversos cenários econômicos para um investimento, atrelando cada cenário ao retorno esperado do projeto. O CFO solicitou que avaliasse agora o risco e retorno esperado.

Cenários	Prob. (%)	R. Esperado (%)	Retorno esperado
Recessão	10%	-22%	n V
Abaixo da média	20%	-2%	$\mathbf{r}_{esp} = \sum_{i=1}^{n} (\mathbf{p}_i \times \mathbf{r}_i) = \mathbf{17,4\%}$
Média	40%	20%	Risco
Acima da média	20%	35%	$\frac{n\left(\wedge \right)^{2}}{}$
Boom	10%	50%	$\sigma = \sqrt{\sum_{i=1}^{n} \left(r_i - r\right)^2} P_i = 20,0\%$

Risco de uma carteira de projetos

Analisando por meio de gráficos, já sabendo que a variância e desvio padrão são medidas de risco, quanto mais suave for a curva, menor o risco. O contrário tem a lógica reversa.

Exemplo de risco de carteira de ações (1/2)

Para avaliar o comportamento de investimentos e ações, avalia-se a covariança entre os elementos. Essa medida mostra tendência dos retornos entre dois investimentos quaisquer moverem-se para baixo ou para cima ao mesmo tempo

Caso 1* - Correlação r=1

Ano	≱ LATAM	GOLL Lintus altreas intelligentes	> LATAM GOL	
N-6	(10,00%)	(10,00%)	(10,00%)	
N-5	40,00%	40,00%	40,00%	
N-4	(5,00%)	(5,00%)	(5,00%)	
N-3	35,00%	35,00%	35,00%	Percebe-se que a combinação das duas ações não alterou o retorno e risco, dado o comportamento
N-2	15,00%	15,00%	15,00%	semelhante.
N-1	18,00%	18,00%	18,00%	
N	12,00%	12,00%	12,00%	
Retorno	15,00%	15,00%	15,00%	
Desv. Padrão	18,57%	18,57%	18,57%	

^{*}Números ilustrativos que não refletem os reais indicadores das empresas citadas

Exemplo de risco de carteira de ações (2/2)

Para avaliar o comportamento de investimentos e ações, avalia-se a covariança entre os elementos. Essa medida mostra tendência dos retornos entre dois investimentos quaisquer moverem-se para baixo ou para cima ao mesmo tempo

Caso 2* - Correlação r=0,67

Ano	LATAM	Pão de Açúcar	Pãode Açúcar	
N-6	(10,00%)	28,00%	9,00%	
N-5	40,00%	20,00%	30,00%	Mesmo tendo retornos e desvios
N-4	(5,00%)	41,00%	18,00%	padrões semelhantes, apenas pelo fato do comportamento dos retornos serem diferentes, a
N-3	35,00%	(17,00%)	9,00%	combinação dos investimento reduz significativamente o risco da carteira
N-2	15,00%	3,00%	9,00%	da cartena
N-1	18,00%	12,00%	15,00%	
N	12,00%	18,00%	15,00%	
Retorno	15,00%	15,00%	15,00%	
Desv. Padrão	18,57%	18,51%	7,55%	

^{*}Números ilustrativos que não refletem os reais indicadores das empresas citadas

Risco x diversificação (risco de portfólio x risco de mercado)

Dado que ao incluirmos mais um projeto com comportamento complementar à carteira de investimento que uma empresa tem, o risco total da carteira diminui, se incluirmos um número infinito de investimento o risco total da carteira tenderia a **zero**?

Medida de risco de uma empresa – Beta (β) (1/3)

Definição

A melhor medida de risco para determinado ativo, que faz parte de uma carteira amplamente diversificada. Mede a volatilidade de um ativo relativamente ao mercado (mede o risco sistemático).

Para duas séries de dados, a COV fornece uma medida de grau pela qual Açãoi e Mercado se movimentam juntos

$$\beta_{i} = \frac{Cov(r_{i,t}, r_{M,t})}{Var(r_{M,t})}$$

Proxies: S&P 500 Ibovespa

Interpretações

- Mede a sensibilidade das taxas de retorno de um portfólio ou de um título individual em relação aos movimentos do mercado;
- Representa a proporção entre a variação do mercado, representada por um índice (variável independente), e a variação da ação (variável dependente);

Medida de risco de uma empresa – Beta (β) (2/3)

Análise matemática – retorno de ações

β é o coeficiente angular da regressão linear da mudança do preço da ação vs. a mudança do valor do índice de mercado

Comportamento prático

$$\beta = 1$$
 1,0% de mudança no mercado \rightarrow 1,0% de mudança na ação

$$\beta = 1,5$$
 1,0% de mudança no mercado \Rightarrow 1,5% de mudança na ação

$$\beta = 0.5$$
 1,0% de mudança no mercado \rightarrow 0,5% de mudança na ação

$$r_a = \alpha_a + \beta_a * (R_m + e_a)$$

Medida de risco de uma empresa – Beta (β) (3/3)

Exemplos de Betas de empresas americanas - Abr/2019

0,71

1,50

1,48

0,90

Riscos e fatores

Exemplos de Betas de empresas brasileiras - Abr/2019

Empresas	Empresas
VALE	1,10
cosan	0,95
© CCR	1,01
USIMINAS 🔰	3,02
PDG Realty	2,66
CYRELA BRAZIL REALTY	1,12

Pontos relevantes

- Considerando mercado, setor e as características de cada empresa, é possível avaliar o β das empresas;
- Importante não deixar de considerar que o β depende também da liquidez do papel, ou seja, empresas com papéis de baixa liquidez tendem a ter βs baixos, o que não significa que seu risco é menor;
- Os βs são medidos por um certo período de tempo e, portanto, podem mudar significativamente devido a diversos fatores;

Onde estamos?

Custo de capital – conceitos iniciais

Definição

Custo de Capital é o custo das fontes de financiamento da empresa (próprio e/ou terceiros). Pode ser considerado como a taxa de retorno esperada para algum investimento alternativo, de **risco equivalente**.

Componentes do custo de capital

Principais fontes

Ativos

Capital próprio

Custo de Capital de Terceiros (Kd)

Custo de Capital Próprio (Ke)

Custo de capital - dimensão

Calculando o custo de capital próprio (Ke) - Modelo CAPM

O modelo CAPM (Capital asset pricing model) foi desenvolvido na década de 60 e vem sendo utilizado para diversos fins.

Definição

O modelo CAPM (capital asset pricing model) é uma especificação da relação risco-retorno, onde a medida de risco é o Beta. Ele diz que o retorno requerido de um ativo deve ser a taxa livre de risco acrescida de um prêmio.

Modelo CAPM – Prêmio de mercado

De modo geral, a taxa de desconto apropriada para refletir o risco de fluxos de caixas futuros tem dois componentes: valor no tempo (risk free) e o prêmio sobre o risco. Quanto mais arriscado um projeto, maior seria prêmio de risco do retorno esperado.

GBP - Finanças Corporativas e Valuation

Modelo CAPM - Exemplo

Para o cálculo do custo de capital próprio, o modelo CAPM é uma ferramenta de fácil utilização, sendo a complexidade do problema na definição dos valores a serem adotados (taxa livre de risco e prêmio de mercado).

Exemplo

Devemos calcular qual o custo do capital próprio da BTC. Para tanto, sabemos que temos como referência uma LTN que rende 10% ao ano, o retorno médio do Ibovespa de 15% ao ano e um beta de 1,23.

Risk free rate pode ser um título com referência apropriada

$$r_i = r_{RF} + (r_M - r_{RF})*\beta_{i,M}$$

$$r_i = 10\% + (15\% - 10\%)*1,23$$

Modelo CAPM e o SML (Security market line)

Ao utilizar o beta como variável, podemos plotar uma reta do retorno esperado em relação a variação do risco.

SML (Security market line) e o equilíbrio

Com o SML podemos entender a tendência de equilíbrio entre retornos esperados e risco dos ativos.

SML (Security market line) e critério de avaliação de projetos

Questão

Uma empresa deve escolher entre dois projetos, A e B. O projeto A tem um retorno esperado de 15% e o projeto B de 25%. Sabendo que os betas dos projetos são, respectivamente, 0,4 e 1,8, qual projeto a empresa deveria escolher? (beta da empresa = 1,2; retorno esperado = 22%).

Custo de capital de terceiros - Custo da dívida (Kd)

O uso de capital de terceiros gera um benefício fiscal, na medida em que os juros são dedutíveis. Esse efeito também é incluido no cálculo do custo de capital de terceiros.

Expressão

Kd (após impostos) = Kd (nominal)*(1-Tax Rate)

Métodos

Determinar o

Média dos custos das dívidas existentes:

Este é o método mais fácil e mais utilizado, porém confunde o custo passado com o custo futuro antecipado de captação de recursos.

· Retorno (YTM) de títulos de empresas com risco similar:

Se uma empresa tem um rating atribuído a sua dívida, por exemplo "A", e sua dívida tem prazo médio de vencimento, podemos usar o retorno esperado para títulos de renda fixa com mesmo prazo e classificação. Este método difere do custo real da dívida da empresa uma vez que o retorno do título é um retorno prometido, mais alto do que o retorno esperado da dívida uma vez que considera os riscos de default.

Exemplo de aplicação

Uma determinada empresa conseguiu um empréstimo de R\$ 10 milhões junto ao Banco JP Morgan, com juros de 10% ao ano.

Calcule o custo da dívida dessa empresa.

<u>Dados:</u>

Kd (nominal) = 10% ao ano Imposto = 34% **Kd (após impostos)** = 10% * (1-34%)

Kd (após impostos) = 6.6%

O custo de dívida efetivo é menor que o nominal, dado o efeito de redução do montante de imposto de renda.

WACC (Weighted Average Cost of Capital)

Definição

O WACC é a taxa de desconto que reflete o custo de oportunidade de todos os provedores de capital ponderados às suas respectivas participações na empresa.

Estrutura de capital (1/3)

Questão fundamental

Qual o quociente ideal entre capital próprio e de terceiros de forma a maximizar o valor para o acionista?

A estrutura de capital influencia no risco da empresa?

Questão

- Vimos anteriormente que o custo de capital próprio é mais alto do que o custo de capital de terceiros.
- Sendo assim, por que, na prática, as empresas não utilizam apenas capital de terceiros?

Estrutura de capital (2/3)

O problema clássico de estrutura de capital ótima tem dois grandes objetivos: maximizar o valor da empresa e minimizar o custo de capital.

Conclusão

A ideia da conservação do risco do negócio parte da premissa que o total de risco por montante de capital próprio muda, porém o risco do negócio não mudará, caso haja mudança na estrutura de capital da empresa.

Portanto, <u>aumentar a quantidade</u> <u>de dívida pode aumentar o risco</u> <u>do capital próprio</u>.

Estrutura de capital (3/3)

Existem vantagens e desvantagens na decisão de utilizar mais ou menos dívida na estrutura de capital da empresa. Serão listados alguns pontos relevantes de influência no valor da empresa.

Vantagens

- Juros são dedutíveis = reduz taxa efetiva do custo do débito;
- Os credores estão limitados a um retorno fixo = acionistas não têm que repartir os lucros de negócios muito rentáveis;
- Credores não têm direito a voto = acionistas controlam a companhia com menos dinheiro;

Desvantagens

- · Acionistas são residual claimers;
- Em situações de dificuldades, acionistas têm que cobrir o custo da dívida;
- · Dívida aumenta custo do capital próprio;
- Endividamento aumenta o custo de captação;
- · Risco de falência reduz o fluxo de caixa;

Influência no valor da empresa

Valor da empresa

Valor presente da dedutibilidade de impostos V(emp) sem dívida

Endividamento

Custo de falência

Endividamento

Entendendo o custo de falência

O custo de falência pode ser entendido quando analisamos os principais *stakeholders* da empresa com nível de alavancagem alto e com resultados líquidos pequenos ou negativos.

Efeitos da alavancagem no Beta (βlevered e βunlevered)

Já que o nível de alavancagem de uma empresa influencia o risco de uma empresa, qual a sua influência na medida de risco Beta?

Equação de reta

$$r_a = \alpha_a + \beta_a * (R_m + e_a)$$

O Beta que calculamos leva em consideração a estrutura de capital da empresa. Chamamos de beta alavancado (caso a empresa tenha dívida)

Relação do βl para o βu

$$\beta u = \frac{\beta I}{1 + D * (1-Tax rate)}$$

$$\beta I = \beta u * \left(1 + \frac{D * (1-Tax rate)}{F}\right)$$

Conclusões

- Quanto maior o nível de endividamento, maior o βI;
- Nível de endividamento entre empresas do mesmo setor também é um fator a ser considerado na comparação dos betas;
- Ao utilizar betas de empresas comparáveis ou do setor, primeiro calcule os βunlevered das empresas e alavanque o resultado com a relação dívida/capital próprio da empresa a ser analisada;

Modelo de trade-off estático

Pelo modelo de trade-off estático (Myers'84), uma estrutura de capital ótima é alcançada quando o benefício fiscal da dívida é balanceado com todas as dificuldades financeiras decorrentes dessa operação de empréstimo.

Return on Equity e Modelo Dupont

O retorno sobre patrimônio líquido (ROE) é o índice que demonstra a rentabilidade de cada montante de dinheiro investido no patrimônio líquido da empresa.

Exemplo - Lucro líquido = R\$10 M e PL = R\$ 100 M

Modelo Dupont - Decomposição do ROE em índices de eficiência, rentabilidade e alavancagem financeira

Exercício

RESTOQUE SA COMÉRCIO E CONFECÇÕES DE ROUPAS

Responder na planilha do TalentSN

- Calcule o ke da Restoque, considerando:
 - Beta: 1,08
 - LTN referência: 14% a.a.
 - · Retorno médio de mercado: 20% a.a.
- Calcule o WACC da Restoque, tomando como base 2018 e custo de captação de nova dívida de 19% a.a.