Lecture 04 Supplemental Copyright by Hongyun Wang, UCSC

Computational demonstration of Ito's lemma

The exact and two approximations of $f(t_f, W(t_f))$

Let f(t, w) be a smooth function of (t, w). Replacing w with W(t) yields f(t, W(t)), a non-smooth random function of t. We select a numerical grid on t.

$$\Delta t = \frac{t_j}{N}$$
, $t_j = j\Delta t$, $W_j = W(t_j)$, $\Delta W_j = W_{j+1} - W_j$

Consider $\Delta f_j \equiv f(t_{j+1}, W(t_{j+1})) - f(t_j, W(t_j))$, the increment of f(t, W(t)). We study two approximations of Δf_j .

• Approximate increment based on Taylor expansion

$$\left(\Delta f_{\text{Taylor}}\right)_{j} = \left(f_{t}\right)_{j} \Delta t + \left(f_{w}\right)_{j} \Delta W_{j} + \frac{1}{2} \left(f_{ww}\right)_{j} \left(\Delta W_{j}\right)^{2}$$

Approximate increment based on Ito's lemma

$$\left(\Delta f_{\text{Ito}}\right)_{j} = \left(f_{t} + \frac{1}{2}f_{ww}\right)_{j} \Delta t + \left(f_{w}\right)_{j} \Delta W_{j}$$

These two approximations of $\Delta f_{\rm j}$ correspond to two stochastic differential equations.

Given the initial value f(0, 0), using the two approximations of Δf_i , we calculate the corresponding two approximations of $f(t_f, W(t_f))$.

• Approximation based on Taylor expansion

$$\left(f_{\text{Taylor}}\right)_{t_f} = f(0,0) + \sum_{j=0}^{N-1} \left(\Delta f_{\text{Taylor}}\right)_j$$

• Approximation based on Ito's lemma

$$(f_{\text{Ito}})\Big|_{t_f} = f(0,0) + \sum_{j=0}^{N-1} (\Delta f_{\text{Ito}})_j$$

Taylor's theorem implies $\lim_{dt \to 0} \left(f_{\text{Taylor}} \right)_{t_f} = \left(f_{\text{exact}} \right)_{t_f}$

Ito's lemma tells us that $\lim_{dt \to 0} (f_{\text{Ito}}) \Big|_{t_f} = (f_{\text{exact}}) \Big|_{t_f}$

Below we use numerical simulations to confirm these two assertions.

Numerical example:

We test Ito's lemma on $f(t,w) = \frac{1}{2}w^2 + \frac{t}{6}w^3$. In simulations, we use $t_f = 1$ and $\Delta t = 0.01$, and we generate 100,000 independent samples of (f_{exact} , f_{Taylor} , f_{Ito}).

Histogram of (f_{lto} – f_{exact}) for Δt = 0.01 (left) and Δt = 0.0001 (right).