$\phi(A,B,C,D,E) = m_0 + m_2 + m_4 + m_6 + m_9 + m_{10} + m_{13} + m_{14} + m_{15} + m_{16} + m_{17} + m_{21} + m_{26} + m_{28} + m_{30} + m_{31}$ Classifying and setting min terms:

min terms	patterns
IIITII CELIII2	
m _∅	00000
m ₂	00010
m 4	00100
m ₆	00110
m 9	01001
m ₁₀	01010
m ₁₃	01101
m ₁₄	01110
m ₁₅	01111
m ₁₆	10000
m ₁₇	10001
m ₂₁	10101
m ₂₆	11010
m ₂₈	11100
m ₃₀	11110
m ₃₁	11111

Now classifying them:

min	nattanna		Min toom	nattann	·	Min tonn	nattar	·
min	patterns	u	Min term	pattern	u	Min term	patter	u
terms		S			S		n	S
		e .			e			e
		d			d			d
m ₀	00000	$ $		000_0	✓			X
m	00010	,	$m_{0,2}$	00_00				
m ₂	00010	\checkmark	$m_{0,4}$	_0000	✓	$m_{0,2,4,6}$	000	
m ₄	00100	√	M _{0,16}		Χ			
		'						
m ₆	00110	✓		00_10	✓			X
	04.004		m 2,6	0_010	<u> </u>			
m 9	01001	✓	M _{2,10}	001_0	✓			
m ₁₀	01010	√	M _{4,6}	1000_	/	m _{2,6,10,14}	0 10	
11170	01010	'	M _{16,17}	_	'	, , , ,		
m ₁₃	01101	√	20,27		Χ			
					<u> </u>			
m ₁₄	01110	✓		0_110	✓			X
	2444	_	M _{6,14}	01_01				
m ₁₅	01111	$ $ \checkmark $ $	M 9,13	01_10	X			
m ₁₆	10000	√	M ₁₀ , ₁₄	1010	/		1 10	
11176	10000	V	M _{10,26}	 10_01	'	m _{10,14,26,30}		
M ₁₇	10001	√	m _{17,21}		√			
		Ů	17,21					
m ₂₁	10101	✓			X			
	44040			011 1				
m ₂₆	11010	✓	M _{13,15}	011_1	X			X
m ₂₈	11100	/	M _{14,15}	0111_	/			
11128	11100	✓	M _{14,30}	_1110	√			
			$m_{28,30}$	111_0	\checkmark	M _{14,15,30,31}	_111_	
m ₃₀	11110	✓	$m_{26,30}$	11_10	X			
					√			
m ₃₁	11111	√	M _{15,31}	1111	√			
11121		'		1111_				
			M _{30,31}		\checkmark			

From the table we can conclude 10 prime implicants

$$M_{0,16} = (\neg B \land \neg C \land \neg D \land \neg E)$$

$$m_{16,17} = (A^{-3}B^{-3}C^{-3}D)$$

$$M_{9,13} = (\neg A \land B \land \neg D \land E)$$

$$M_{17,21} = (A ^ ¬B ^ ¬D ^ E)$$

$$m_{13,15} = (\neg A \land B \land C \land E)$$

$$m_{28,30} = (A^B^C^7E)$$

$$m_{0,2,4,6} = (\neg A \land \neg B \land \neg E)$$

$$m_{2,6,10,14} = (\neg A \land D \land \neg E)$$

$$m_{10,14,26,30} = (B^D^T)$$

$$m_{14,15,30,34} = (B ^ C ^ D)$$

MINTERMS	m ₀	m ₂	m ₄	m ₆	m ₉	m ₁₀	m 13	m ₁₄	m ₁₅	m ₁₆	m ₁₇	m ₂₁	m ₂₆	m ₂₈	m ₃₀	m ₃₁	Е
M0,16	✓									√							
M _{16,17}										√	√						
M9,13					√		√										√
M _{17,21}											√	√					√
M _{13,15}							√		√								
M _{28,30}														√	√		√
M0,2,4,6	√	√	√	√													√
M _{2,6,10,14}		√		√		√		√									
M _{10,14,26,30}						√		√					√		√		✓
M ₁₄ ,15,30,34											√	√					√
	√	√	√	√	√	√	√	√	√	√	√	√	√	√	√	√	

Essential prime implicants are:

 $(m_{9,13}, m_{17,21}, m_{28,30}, m_{0,2,4,6}, m_{10,14,26,30}, m_{14,15,30,34})$ and $(m_{0,16} \text{ or } m_{16,17})$

c) solution:

$$\phi = (\neg B \land \neg C \land \neg D \land \neg E) \land (\neg A \land B \land \neg D \land E) \land (A \land \neg B \land \neg D \land E) \land (A \land B \land C \land \neg E)$$

$$\land (\neg A \land \neg B \land \neg E) \land (B \land D \land \neg E) \land (B \land C \land D)$$

<u>OR</u>

$$\phi = (A \land \neg B \land \neg C \land \neg D) \land (\neg A \land B \land \neg D \land E) \land (A \land \neg B \land \neg D \land E) \land (A \land B \land C \land \neg E)$$

$$\land (\neg A \land \neg B \land \neg E) \land (B \land D \land \neg E) \land (B \land C \land D)$$