Имитационное моделирование.

Цели:

- 1. Формирование знаний об основных понятиях и определениях имитационного моделирования.
 - 2. Формирование знаний об основных способах решения задач имитационного моделирования Залачи:
- 1. Сформировать теоретические знания необходимые при составлении и решении задач имитационного моделирования.
- 2. Содействовать расширению профессиональной компетенции в области основных понятий и способов решений задач имитационного моделирования.

Статистическое моделирование — метод исследования сложных систем, основанный на описании процессов функционирования отдельных элементов в их взаимосвязи с целью получения множества частных результатов, подлежащих обработке методами математической статистики для получения конечных результатов. В основе статистического моделирования лежит метод статистических испытаний — метод Монте-Карло.

Имитационная модель — универсальное средство исследования сложных систем, представляющее собой логико-алгоритмическое описание поведения отдельных элементов системы и правил их взаимодействия, отображающих последовательность событий, возникающих в моделируемой системе.

Если статистическое моделирование выполняется с использованием имитационной модели, то такое моделирование называется имитационным.

Понятия «статистическое и имитационное моделирование» часто рассматривают как синонимы. Однако следует иметь в виду, что статистическое моделирование не обязательно является имитационным. Например, вычисление определённого интеграла методом Монте-Карло путем определения подынтегральной площади на основе множества статистических испытаний, относится к статистическому моделированию, но не может называться имитационным.

Наиболее широкое применение имитационное моделирование получило при исследовании сложных систем с дискретным характером функционирования, в том числе моделей массового обслуживания. Для описания процессов функционирования таких систем обычно используются временные диаграммы.

Временная диаграмма — графическое представление последовательности событий, происходящих в системе. Для построения временных диаграмм необходимо достаточно четко представлять взаимосвязь событий внутри системы. Степень детализации при составлении диаграмм зависит от свойств моделируемой системы и от целей моделирования. Поскольку функционирование любой системы достаточно полно отображается в виде временной диаграммы, имитационное моделирование можно рассматривать как процесс реализации диаграммы функционирования исследуемой системы на основе сведений о характере функционирования отдельных элементов и их взаимосвязи.

Имитационное моделирование обычно проводится на ЭВМ в соответствии с программой, реализующей заданное конкретное логико алгоритмическое описание. При этом несколько часов, недель или лет работы исследуемой системы могут быть промоделированы на ЭВМ за несколько минут. В большинстве случаев модель является не точным аналогом системы, а скорее её символическим отображением. Однако такая модель позволяет производить измерения, которые невозможно произвести каким-либо другим способом.

Имитационное моделирование обеспечивает возможность испытания, оценки и проведения экспериментов с исследуемой системой без каких-либо непосредственных воздействий на нее.

Первым шагом при анализе любой конкретной системы является выделение элементов, и формулирование логических правил, управляющих взаимодействием этих элементов. Полученное в результате этого описание называется моделью системы. Модель обычно включает в себя те аспекты системы, которые представляют интерес или нуждаются в исследовании. Поскольку целью построения любой модели является исследование характеристик моделируемой системы, в имитационную модель должны быть включены средства сбора и обработки статистической информации по всем интересующим характеристикам, основанные на методах математической статистики.

Рассмотрим принципы имитационного моделирования на примере простейшей базовой модели в виде одноканальной системы массового обслуживания с однородным потоком заявок (рис.6.1), в которую поступает случайный поток заявок с интервалами между соседними заявками, распределёнными по закону $A(\tau)$, а длительность обслуживания заявок в приборе распределена по закону $B(\tau)$.

Процесс функционирования такой системы может быть представлен в виде временных диаграмм, на основе которых могут быть измерены и рассчитаны характеристики обслуживания заявок. Поскольку процессы поступления и обслуживания заявок в системе носят случайный характер, то для построения диаграмм необходимо иметь генераторы случайных чисел. Положим, что в нашем распоряжении имеются генераторы случайных чисел, формирующие значения соответствующих случайных величин с заданными законами распределений $A(\tau)$ и $B(\tau)$. Тогда можно построить временные диаграммы, отображающие процесс функционирования рассматриваемой системы.

- 1) «процесс поступления заявок» в виде моментов ti поступления заявок в систему,
- формируемых по правилу: $t_i = t_{i-1} + \tau_{a_i}$ ($t_0 = 0$) где τ_{a_i} интервалы между поступающими в систему заявками, значения которых вырабатываются с помощью генератора случайных величин $A(\tau)$;
 - 2) «**процесс обслуживания в приборе**», представленный в виде длительностей обслуживания τ_{bi} , которых вырабатываются с помощью генератора случайных величин $B(\tau)$, и моментов завершения обслуживания t_i заявок в приборе, определяемых по следующему правилу:
 - $t_{i}^{'}=t_{i}^{}+ au_{b_{i}}^{},$ если на момент поступления i-й заявки обслуживающий прибор был свободен;

 $t_{i}^{'}=t_{i-1}^{'}+ au_{b_{i}}$, если на момент поступления i-й заявки обслуживающий прибор был занят обслуживанием предыдущей заявки (i=1,2,...; $t_{0}^{'}=0$); ор был занят обслуживанием предыдущей заявки (i=1,2,...; $t_{0}^{'}=0$);

- 3) «модельное или реальное время», показывающее дискретное (скачкообразное) изменение времени в реальной системе, каждый момент которого соответствует одному из следующих событий: поступление заявки в систему или завершение обслуживания заявки в приборе; отметим, что в эти моменты времени происходит изменение состояния системы, описываемое числом заявок, находящихся в системе;
- 4) «число заявок в системе», описывающее состояние дискретной системы и изменяющееся по правилу: увеличение на 1 в момент поступления заявки в систему и уменьшение на 1 в момент завершения обслуживания. При соблюдении выбранного временного масштаба представленные диаграммы позволяют путем измерения определить значения вероятностновременных характеристик функционирования моделируемой системы, в частности, как показано на второй диаграмме, время нахождения (пребывания) каждой заявки в системе: τ_{u_i} (i=1,2,...)

Очевидно, что время пребывания заявок в системе — величина случайная. В простейшем случае, применяя методы математической статистики, можно рассчитать два первых момента распределения времени пребывания:

• математическое ожидание:

$$u = \frac{1}{N} \sum_{i=1}^{N} \tau_{u_i} ;$$

• второй начальный момент:

$$u^{(2)} = \frac{1}{N-1} \sum_{i=1}^{N} \tau_{u_i}^2 ,$$

где N - количество значений времени пребывания заявок, полученных на диаграмме, то есть количество заявок, отображенных на диаграмме как прошедшие через систему и покинувшие её. Отсюда легко могут быть получены значения дисперсии, среднеквадратического отклонения и коэффициента вариации времени пребывания заявок в системе.

Диаграммы функционирования одноканальной СМО «Процесс поступления заявок» τ_{b_6} «Процесс τ_{b_3} τ_{b_2} τ_{b_7} обслуживания t_2 в приборе» «Модельное (реальное) время» «Число заявок в системе»

На основе полученных с помощью временных диаграмм значений времени пребывания заявок в системе можно построить гистограмму функции или плотности распределения времени пребывания. Точность полученных числовых моментов распределения и качество гистограмм существенно зависит от количества значений N времени пребывания заявок, на основе которых они рассчитываются: чем больше N, тем точнее результаты расчета. Значение N может составлять от нескольких тысяч до десятков миллионов. Конкретное значение N зависит от многих факторов, влияющих на скорость сходимости результатов к истинному значению, основными среди которых при моделировании систем и сетей массового обслуживания являются законы распределений интервалов между поступающими заявками и длительностей обслуживания, загрузка системы, сложность модели, количество классов заявок и т.д. Ясно, что построение вручную таких временных диаграмм с тысячами и более проходящими через систему заявками, нереально. В то же время, использование ЭВМ для реализации временных диаграмм позволяет существенно ускорить процессы моделирования и получения конечного результата. Поэтому, как сказано выше, имитационное моделирование можно рассматривать как процесс реализации диаграммы функционирования исследуемой системы.

Таким образом, имитационная модель представляет собой алгоритм реализации временной диаграммы функционирования исследуемой системы. Наличие встроенных в большинство алгоритмических языков генераторов случайных чисел значительно упрощает процесс

реализации имитационной модели на ЭВМ. Однако при этом остаётся ряд проблем, требующих своего решения. Одна из них заключается в принципе реализации временной диаграммы и, связанной с ней, проблемой организации службы времени в имитационной модели.

В простейшем случае временная диаграмма может быть реализована следующим образом: сначала формируются моменты поступления всех заявок в систему, а затем для каждой заявки определяются длительности обслуживания в приборе и формируются моменты завершения обслуживания (выхода заявок из системы).

Очевидно, что такой подход неприемлем, поскольку даже для нашей очень простой системы придётся хранить в памяти ЭВМ одновременно миллионы значений моментов поступления и завершения обслуживания заявок, а также других переменных, причём с увеличением количества классов заявок и количества обслуживающих приборов это число увеличится многократно.

Второй подход, который может быть предложен для реализации временной диаграммы, — пошаговое построение диаграммы. Для этого следует сформировать переменную для модельного времени и выбрать шаг Δt его изменения. В каждый такой момент времени необходимо проверять, какое событие (поступление в систему или завершение обслуживания заявки) произошло в системе за предыдущий интервал Δt .

Этот подход значительно сокращает потребность в памяти, поскольку в этом случае в каждый момент времени необходимо хранить в памяти ЭВМ значения параметров (моментов поступления и завершения обслуживания) только тех заявок, которые находятся в системе на данный момент времени.

Недостатки такого подхода очевидны. Во-первых, проблематичным является выбор длины интервала Δt . С одной стороны, интервал Δt должен быть как можно меньше для уменьшения методической погрешности моделирования, с другой стороны, интервал Δt должен быть как можно больше для уменьшения времени моделирования.

Наиболее эффективным подходом признан подход с переменным шагом продвижения модельного времени, который реализуется в соответствии с принципом «до ближайшего события». Принцип «продвижения модельного времени ДΟ ближайшего события» следующем. По всем процессам, параллельно протекающим в исследуемой системе, в каждый момент времени формируются моменты наступления «ближайшего события в будущем». Затем модельное время продвигается до момента наступления ближайшего из всех возможных событий. В зависимости от того, какое событие оказалось ближайшим, выполняются те или иные действия. Если ближайшим событием является поступление заявки в систему, то выполняются действия, связанные с занятием прибора при условии, что он свободен, и занесение заявки в очередь, если прибор занят. Если же ближайшим событием является завершение обслуживания заявки в приборе, то выполняются действия, связанные с освобождение прибора и выбором на обслуживание новой заявки из очереди, если последняя не пуста. Затем формируется новый момент наступления этого же события. На третьей диаграмме «Модельное (реальное) время» (рис.6.2) продвижение времени в соответствии с этим принципом показано в виде стрелок.

Для того чтобы обеспечить правильную временную последовательность событий в имитационной модели, используются системные часы, хранящие значение текущего модельного времени. Изменение значения модельного времени осуществляется в соответствии с принципом «пересчёта времени до ближайшего события». Например, если текущее значение модельного времени равно 25, а очередные события должны наступить в моменты времени 31, 44 и 56, то значение модельного времени увеличивается сразу на 6 единиц и «продвигается» до значения 31. Отметим, что единицы времени в модели не обязательно должны быть конкретными единицами времени, такими как секунда или час. Основной единицей времени в модели можно выбрать любую единицу, которая позволит получить необходимую точность моделирования. Важно помнить, единицы времени выбираются исходя из требований пользователя к точности моделирования. Какая бы единица ни была выбрана, например миллисекунда или одна десятая часа, она должна неизменно использоваться во всей модели.

Кроме рассмотренной службы времени в имитационной модели необходимо реализовать процедуры, связанные с формированием потоков заявок и имитацией обслуживания, с организацией очередей заявок, с организацией сбора и статистической обработки результатов моделирования.

Таким образом, имитационное моделирование дискретных систем со стохастическим характером функционирования, таких как системы и сети массового обслуживания, предполагает использование ряда типовых процедур, обеспечивающих реализацию соответствующих имитационных моделей. К таким процедурам, в первую очередь, относятся следующие процедуры:

- 1) выработка (генерирование) случайных величин:
 - ✓ равномерно распределенных;
 - ✓ с заданным законом распределения;
- 2) формирование потоков заявок и имитация обслуживания;
- 3) организация очередей заявок;
- 4) организация службы времени;
- 5) сбор и статистическая обработка результатов моделирования.

Выводы:

По результатам лекции у студентов сформированы теоретические знания об основных понятиях имитационного математического моделирования.