

Practical

- Divide yourselves into groups of 5.
- ▶ Task:
 - Define precisely and unambiguously the process of making a cup of coffee in the morning.
 - Your specification should consider all possible problems and provide a solution to deal with each.
- We will then compare each group's
- ▶ 8 **solutions.** softwar

Software Engineering is the systematic approach to development, deployment, operation, maintenance, and retirement of Software (SW).
 Basic Question in Software Engineering
 How to develop industrial-strength software?

What this course will give?
Main objective: Give an idea of how industrial-strength software gets developed
At the end: you should have the ability to plan, execute, and manage small software projects.
Lectures: will discuss how to perform different tasks in a project

What is Software?

- Software (IEEE) is a collection of
 - programs,
 - procedures,
 - rules, and
 - > associated documentation and data

▶ 13

SOFTWARE ENGINEERING NOTES

Software

- ▶ Q : Think of a programming language you are good in. If you have to write a 10,000 line program in this language to solve a problem, how long will it take?
- Answers: generally range from 2-4 months
- Let us analyze the productivity
- Productivity = output/input resources
- In SW output is considered as LOC
- Input resources is effort person months; overhead cost modeled in rate for person month
- Though not perfect, some productivity measure is needed, as project has to keep it high

SOFTWARE ENGINEERING NOTES

Software ...

- ▶ The productivity is 2.5-5 KLOC/PM
- Q: What is the productivity in a typical commercial SW organization?
- A: Between 100 to 1000 LOC/PM
- Q: Why is it low, when your productivity is so high? (people like you work in the industry)
- A: What the student is building and what the industry builds are two different things

15

SOFTWARE ENGINEERING NOTES

Software...

- ▶ Students build: student software
- Industry builds: industrial strength systems
- ▶ What is the difference between
- > student software and
- industrial strength software

for the same problem?

▶ 16

Software	
<u>Student</u>	Industrial Strength
Developer is the	Others are the users
user	Works robustly
 Works for the typical case most of the time Bugs are tolerable 	Bugs not toleratedUI very important issue
UI not importantNo documentation	Documents needed for the user as well as for the organization and the project
17	SOFTWARE ENGINEERING NOTES

<u>Student</u>	Industrial Strength
 SW not in critical us Reliability, robustnes not important No investment Don't care about portability 	functions / business Reliability , robustness are very important

Industrial Strength Software

- Student programs != industrial strength software
- Key difference is in quality (including usability, reliability, portability, etc.)
 - High quality requires heavy testing, which consumes 30-50% of total development effort
 - Requires development be broken in stages such that bugs can be detected in each
 - Good UI, backup, fault-tolerance, following of stds etc all increase the size for the same functionality

19 SOFTWARE ENGINEERING NOTES

Industrial strength software

- If 1/5th productivity, and increase in size by a factor of 2, industrial strength software will take 10 times effort
- ▶ **Brooks thumb-rule**: Industrial strength SW costs 10 time more than student SW
- In this course, software == industrial strength software

Software is Expensive

- Rough cost estimate...
 - Productivity = 500 LOC/PM
 - Cost to the company = Ksh1,000,000/PM
 - Cost per LOC = Ksh 2,000
 - So each line of delivered code costs about \$20.
- A simple application for a business may have 20KLOC to 50KLOC
 - Cost = Ksh10M to Ksh 100Million
 - Can easily run on Ksh1M-Ksh2M hardware
 - So HW costs <<< SW costs.

21

SOFTWARE ENGINEERING NOTES

SOFTWARE ENGINEERING NOTES

Software is Expensive...

The HW/SW ratio for a computer system has shown a reversal from the early years.

In 50s , HW:SW :: 80:20In 80s , HW:SW :: 20:80

- ▶ So, SW is very expensive
 - Importance of optimizing HW is not much
 - More important to optimize SW

SOFTWARE ENGINEERING NOTES

Late & Unreliable

- ▶ 20-25% of SW projects never complete
- Because after some time they realize that the final cost will be much higher
- ▶ Many companies report "runaways"
 - ▶ Budget & cost out of control
 - Consulting companies to help control them
- One defense survey found that 70% of the equipment problems are due to SW

> 23

Why is SW Unreliable?

- SW failures are different from failures of mechanical or electrical systems
 - In software, failures are not due to aging related problems
 - Failures occur due to bugs or errors that get introduced during development
- The bug that causes a failure typically exists from start, only manifests later

Maintenance

- Once SW delivered, it enters maintenance phase
- Why is maintenance needed for SW when it does not wear with age?
 - Residual errors requiring corrective maintenance
 - ▶ Upgrades and environment changes adaptive maintenance
- Over SW lifetime, maintenance can cost more than the development cost of SW

▶ 25 SOFTWARE ENGINEERING NOTES

What is Software Engineering?

- ▶ Problem domain discussed before, now we discuss the area of SE
- ▶ SE (IEEE): systematic approach to development,...., (fill the blanks) of software
- Systematic approach: methodologies and practices that can be used to solve a problem from problem domain

26 SOFTWARE ENGINEERING NOTES

SE Challenges

- ▶ The problem of producing software to satisfy user needs drives the approaches used in SE
- Q: What other factors drive the selection of a SE approach?
 - . scale,
 - 2. productivity,
 - 3. quality,
 - 4. consistency,
 - 5. rate of change, ...

1) Scale

- SE must deal with problem of scale
 - methods for solving small problems do not scale up for large problems
 - industrial strength SW problems tend to be large
- SE methods must be scalable
- Two clear dimensions in this
 - . engineering methods
 - 2. project management
- For small, both can be informal or ad-hoc, for large both have to be formalized

29 SOFTWARE ENGINEERING NOTES

1) Scale...

- An illustration of the issue of scale is counting the number of people in a room vs taking a census
 - ▶ Both are counting problems
 - Methods used in first not useful for census
 - For large scale counting problem, must use different techniques and models
 - Management will become critical

31

SOFTWARE ENGINEERING NOTES

2) Productivity

- An engineering project is driven by **cost** and **schedule**
- Cost: In sw, cost is mainly manpower cost; hence, it is measured in personmonths
- ▶ Schedule is in months/weeks very important in business context
- In Biz context
- ▶ Cost and Schedule can not be separated
- ▶ SE must serve the Biz, NOT the other way around
- 2

2) Productivity

- ▶Productivity captures both Cost and Schedule
 - If P is higher, cost is lower
 - If P is higher, time taken can be less
- Approaches used by SE must deliver high Productivity

▶ 33 SOFTWARE ENGINEERING NOTES

3) Quality

- Quality is the other major driving factor
- Developing high Quality SW is a basic goal
- Quality of SW is harder to define
- Approaches used should produce a high Quality software

34 SOFTWARE ENGINEERING NOTES

3) Quality...

- Multiple dimensions mean that it not not easy to reduce Q to a single number
- ▶ Concept of Q is project specific
 - For some reliability is most important
 - For others usability may be more important
- Reliability is generally considered the main Q criterion

- 3) Quality...
- ▶ Reliability = Probability of failure
 - ▶ Hard to measure
 - ▶ Approximated by # of defects in software
- ▶ To normalize Quality = Defect density
 - Quality = # of defects delivered / Size
- Defects delivered are approximated with no. of defects found in operation
- ▶ Current practices: than less defect/KLOC
- ▶ What is a defect? Project specific! SOFTWARE ENGINEERING NOTES

- 4) Consistency and repeatability
- Sometimes a group can deliver one good software system, but not a second
- ▶ **Key SE challenge:** how to ensure that success can be repeated?
- SE wants methods that can consistently produce high Quality SW with high Productivity
- A SW org, wants to deliver high Q&P consistently across projects
- ▶ Frameworks like
 - International Organisation for Standardization (ISO) and
 - Capability Maturity Model (CMM)
- focus on this aspect

SOFTWARE ENGINEERING NOTES

Take Away CAT (15 MARKS)

- Divide yourselves into 6 groups according to your registration numbers.
- Deliver a 15 (fifteen) minute presentation on your understanding of
 - ▶ Configuration Management
 - ▶ The current CMM.
- ▶ 2 weeks from today (i.e. Thursday, 7th June, 2018)
- A copy of the presentations to be sent to wwwacademic@gmail.com 2 (two) days before the date of presentation (Tuesday, 5th June, 2018)
- ... cont on the next slide

▶ 39 SOFTWARE ENGINEERING NOTES

Take Away CAT (15 MARKS)

- Marks will be awarded equally to group members unless there is a valid cause not to do so (e.g. lack of participation in the preparation/presentation)
- ▶ Class rep to remind me that the class sessions will begin with the presentations
- Marks will be deducted for
 - late delivery of the soft copy of the presentation
- non-presentation on the required day

5) Rate of Change

- Only constant in business is change!
- ▶ Software must change to support the changing business needs
- SE practices must accommodate change
 - Methods that disallow change, even if high Q and P, are of little value

▶ 41 SOFTWARE ENGINEERING NOTES

Goals of Industrial Strength SE

- Consistently develop SW with high Q&P for large scale problems, under change
- ▶ Q&P are the basic objectives to be achieved
- Q&P governed by people, processes, and technology

SE Methodology

- SE focuses mostly on processes for achieving the goals
- ▶ Process must be systematic
- SE separates process for developing sw from the developed product (i.e the sw)
- Premise: Process largely determines Q&P, hence suitable processes will lead to high Q&P

SOFTWARE ENGINEERING NOTES

SE Methodology...

- Design of proper processes and their control is a key challenge SE faces
- SW process is the equivalent of manufacturing process
- ▶ This focus on process makes SE different from many CS courses

SOFTWARE ENGINEERING NOTES

SE Methodology...

- The development process used in SE is typically phased
- Phases separate concerns with each phase focusing on some aspect
 - Requirements, architecture, design, coding, testing are key phases
- This phased process has to be properly managed to achieve the objectives
- Metrics and measurement important for this

▶ 51 SOFTWARE ENGINEERING NOTES

Summary

- The problem domain for SE is industrial strength software
- Software comprises programs, documentation, and data
- SE aims to provide methods for systematically developing SW
- Main goal achieve high quality and productivity (Q&P)

Summary...

- ▶ Must have high Q&P with consistency in the context of large scale and frequent changes
- ▶ Basic approach of SE is to separate process from products and focus on process and managing the process

53