MTH240 Midterm 1

Practice Paper

Ryerson University	Midterm 1 – Winter 2022	MTH 240		
RU EMAIL:	SIGNATURE			
Date and Time: February 11, 2022.	6:00 pm (Time allowed	d: 120 Minutes)		

Section (Circle)							
Instructor 1	1	2	3	4			
Instructor 2	5	6	7	8	9	10	
Instructor 3	11	12	13	14	15	16	
Instructor 4	17	18	19	20	21	22	
Instructor 5	23	24	25	26	27	28	

Instructions

- 1. Calculators, notes, and other aids are not allowed.
- 2. Answer all questions in this booklet. If you need extra room, use 2 pages, clearly indicating where your answer continues. ANYTHING WRITTEN ON THE BACK OF ANY PAGE WILL NOT BE MARKED.
- 3. In every question, show your work, presented clearly and in the correct order. Unjustified answers will be given little or no credit.
- 4. Cross out all irrelevant or incorrect work, as marks may be deducted for work, which is misleading, irrelevant, or incorrect.
- 5. Make sure your test paper is complete; there are 6 questions on 9 pages (including this one). The final 2 pages are given for extra space and do NOT contain questions.

- 1. (a) Why should a future engineer learn about integration techniques and in particular *improper integrals* (word limit 100).
 - (b) Evaluate

$$\int y^2 \cos(5y) \, dy$$

(c) Evaluate

$$I_1 = \int x \, e^{4x} dx$$

(d) Evaluate

$$I_2 = \int x^2 e^{4x} dx$$

(d) Evaluate

$$I_n = \int x^n e^{4x} dx$$

[Please Upload a PDF or an image of your answers to Q1 to Bitbolide]

- 2. (a) State the product to sum trigonometric identity that may be used to integrate the product of sin and cos of different angles.
 - (b) Evaluate

$$\int \cos(3\theta)\cos(7\theta)\,d\theta$$

c) Evaluate.

$$\int \sin^6(\theta) \ d\theta$$

[Please Upload a PDF or an image of your answers to Q2 to Bitbolide]

3. Evaluate

$$\int \frac{1}{\sqrt{9 - 25x^2}} dx$$

[Please Upload a PDF or an image of your answer to Q3 to Bitbolide]

- 4. (a) State the partial fraction decomposition form of $f(x) = \frac{7x^2 + 11x + 13}{(3x + 4)(x^2 + 9)}$.
 - (b) Obtain the constants in the partial fraction decomposition form and hence write f(x) as a sum of partial fractions.
 - (c) Using your answer in (b) show that

$$\int_0^3 f(x)dx = \frac{1}{3}\ln 26 + \frac{\pi}{12}.$$

[Please upload a PDF or an image of your answers to Q4 to Bitbolide]

5. Evaluate the following integral, clearly stating a valid argument in support of your approach to the evaluation.

$$\int_0^\infty x e^{-7x} \, dx$$

[Please Upload a PDF or an image of your answer to Q5 to Bitbolide]