Esercizio 1

Dimostrare, mediante passaggi algebrici, che:

$$(A+B)(A+\overline{C})(\overline{A}+C) = AC + \overline{A}B\overline{C}$$

Implementare inoltre la tabella di verità della funzione booleana tramite un multiplexer.

Svolgimento

Dimostrazione algebrica

Passaggio 1 - T8 Distributiva: $(A+B)(A+\overline{C})$

$$(A+B)(A+\overline{C}) = A \cdot A + A \cdot \overline{C} + B \cdot A + B \cdot \overline{C}$$
$$= A + A\overline{C} + AB + B\overline{C}$$

Passaggio 2 - T6 Assorbimento: $A + A\overline{C} = A$

$$=A+AB+B\overline{C}$$

Passaggio 3 - T6 Assorbimento: A + AB = A

$$=A+B\overline{C}$$

Passaggio 4 - Moltiplico per il terzo fattore: $(\overline{A}+C)$

$$(A+B\overline{C})(\overline{A}+C)$$

Passaggio 5 - T8 Distributiva

$$= A(\overline{A} + C) + B\overline{C}(\overline{A} + C)$$
$$= A\overline{A} + AC + B\overline{C}\overline{A} + B\overline{C}C$$

Passaggio 6 - T5 Complementi: $A\overline{A}=0$ e $\overline{C}C=0$, T2 Identità: X+0=X

$$= 0 + AC + \overline{A}B\overline{C} + 0$$
$$= AC + \overline{A}B\overline{C}$$

QED (dimostrato)

Tabella di verità e implementazione MUX

Ā	В	С	$(A+B)(A+\overline{C})(\overline{A}+C)$	$AC + \overline{A}B\overline{C}$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Implementazione con MUX 8:1 - Selezioni: $S_2=A,\ S_1=B,\ S_0=C$ - Ingressi: $I_0=0,\ I_1=0,\ I_2=1,\ I_3=0,\ I_4=0,\ I_5=1,\ I_6=0,\ I_7=1$

La funzione vale 1 solo per le combinazioni: 010, 101, 111 (righe 2, 5, 7 della tabella).

Schema circuitale MUX 8:1

Configurazione per la funzione $AC+\overline{A}B\overline{C}$: - Selezioni: $S_2=A,\,S_1=B,\,S_0=C$

- İngressi:
$$I_0=0,\ I_1=0,\ I_2=1,\ I_3=0,\ I_4=0,\ I_5=1,\ I_6=0,\ I_7=1$$

Funzionamento: - ABC = 010 \rightarrow seleziona $I_2 = 1 \rightarrow$ Y = 1 (corretto) - ABC = 101 \rightarrow seleziona $I_5 = 1 \rightarrow$ Y = 1 (corretto) - ABC = 111 \rightarrow seleziona $I_7 = 1 \rightarrow$ Y = 1 (corretto) - Tutte le altre combinazioni \rightarrow Y = 0

Figure 1: Schema MUX 8:1