KDD Cup 2019 Humanity RL the 5th place solution

Etsuro Minami *1*2, Akira Okada*3, Michihiro Nakamura*2, Masayuki Ishikawa*2

NS Solutions Corporation *1

Financial Engineering Group, Inc *2

NS Solutions USA Corporation *3

About US

NSSOL: NS Solutions Corporation (a Nippon Steel Group company)

- · Consultation on business and information system
- · Planning, design, development, implementation, operation and maintenance of information system
- · Development, manufacturing and sales of software and hardware
- · Provision of outsourcing services using information technology
- Providing data analysis and machine learning services as well as modelling and solving combinatorial optimization problems

FEG: Financial Engineering Group (a NS Solutions Group company)

- · A consulting firm in Tokyo, Japan, specialized for data mining and modelling in financial industries.
- Providing data analysis services in various industries

Award history

- FEG won the 2nd place in KDD CUP 2009
- FEG & NSSOL team won the 2nd place in KDD CUP 2015

Problem Description

Action(ITN) -> a0

Action(IRS) -> a1

 $a0, a1 \in [0.0, 1.0]$

Policy: $p = \{a_0, a_1\} * 5 \text{ years} = \{\{a_{00}, a_{01}\}, \{a_{10}, a_{11}\}, \{a_{20}, a_{21}\}, \{a_{30}, a_{31}\}, \{a_{40}, a_{41}\}\}$

A total of ten variables should be given respective coverage values corresponding the actions for each episode

Reward: r(p) for each episode

Objective: maximize r(p) in 20 episodes

Our Method

• Prepare a set of feature functions, $F = \{f_0, f_1, f_2, f_3 ..., f_n\}$, to reduce dimension, where the input of f_x , $x \in \{0..n\}$, is a set of policies, p, and the output of f_x is the value of the specified *feature* defined as a function, which is expected to reduce dimensionality.

For example, a set of f_x consists of simple statistical functions, such as:

the sum of $|a_0 - a_1|$ for the entire episode,

the average of a₀ + a₁

the variance of $a_0 - a_1$,

the sum of $|a_{x0} - a_{y0}| + |a_{x1} - a_{y1}|$ where y = x - 1

··· (10 functions are defined in the submitted source code)

- Introduce a value function, g(p), which stands for 'goodness' of the given policy based on the feature functions above
 - g(p) is calculated from the weighted linear combination of the respective correlations between the rewards and the values of the feature functions
 - it is Higher reward could be expected for higher g(p)

$$g(p) = \sum_{x=0}^{n} \frac{f_x(p) - f_{min}(p)}{f_x(p)} \times sgn(corr) \times (e^{abs(corr)} - 1)$$

where

- r(p): the reward for a given policy, p.
- g(p): 'goodness' of the policy, p, which is calculated from the correlation between the values of the feature functions and the actual rewards for the policies that have been already applied
- $f_{min}(p)$: the minimum value of $f_x(p)$ for $x = \{0, 1, ...n\}$
- Generate random actions for a specific year and evaluate them with g(p), pick up the best actions among them,
 and add the actions to the policy being generated
 - actions are evaluated incrementally, say, year by year
 - the number of trials to generate random actions increases as the number of episodes grows in order to get better g(p)
 - the entire process works like simulated annealing method (SA); explore first, exploit later
 - differentials of the feature functions are not used to optimize g(p)
 - sophisticated optimization technique to get better g(p) is not used in this solution because the available information is very limited