MATH237 Lecture 01

Peter He

January 6 2020

1 Overview of the Course

We covered functions of 1 variable, in general $f: \mathbb{R} \to \mathbb{R}$. We covered topics such as

- Limits
- Continuity
- Linear approximation
- Differentiation
- Integration

We will now cover functions of > 1 variables, in general $f : \mathbb{R}^n \to \mathbb{R}^m$. Examples of multivariable functions:

- Ocean temp
- Temp of Canada
- wind in Canada
- factory production

Scalar functions $(f: \mathbb{R}^n \to \mathbb{R})$

- Scalar functions are the focus of this course
- most of the discussion is for n=2
- Generalization to n =and arbitrary n

2 Graphs

We will discuss terminology and visualization

Review:

A function $f: A \to B$ is a rule that associates each $a \in A$ to a unique element of B, f(a). The domain of f is A, D(f). The range of f is $R(f) = \{b \in B | b = f(a), a \in A\}$. f(x, y) can mean the value of f at the point (x, y) or more usually that f is a function of 2 variables.

Example: $f(x,y)=x^2+y^2$. We can see that $f:\mathbb{R}^2\to\mathbb{R}, D(f)=\mathbb{R}^2$, and $R(f)=\{z\in\mathbb{R}|z\geq 0\}\subset\mathbb{R}$

2.1 Visualization of $f: \mathbb{R} \to \mathbb{R}$

Methods:

- Level curves
- Cross-sections
- Symmetry
- Analysis
- Computer plots

Example: f(x, y) = z.

- Level curves: z = c: $x^2 + y^2 = c$ for some constant c (we would get some sort of circle, analogous to looking "down" on the shape)
- Cross-sections: y = c or x = c: $x^2 + c^2 = z$ (we would get some sort of parabola)

We might guess that the shape is a parabolic cone thing.

Let's look at $f(x,y) = \sin(x^2 + y^2)$. Level curves are of the form $c = \sin(x^2 + y^2)$ or $\arcsin c = x^2 + y^2$. We expect to see a bunch of circles when graphed.

Cross sections: $z = \sin(x^2 + c^2)$. We expect to see a distorted sine curve shifted left. Symmetry: