Kalman Filter

Grundlagen

P.Schön, C.Thein

22.05.2024

Inhaltsverzeichnis

Was ist das Kalman Filter?

Das Kalman Filter ist ein mathematisches Verfahren zur iterativen Schätzung von Parametern zur Beschreibung von Systemzuständen.

Dabei wird wiederholt eine Vorhersage über einen Parameterwert abgegeben, mit dem fehleranfälligen Messwert kombiniert, und erneut gnutzt um daraus eine Vorhersage zu treffen.

Ablauf des Kalman Filters

Vorhersage

- 1. Denn nächten Zustand darstellen: $\hat{x}_k = A\hat{x}_{k-1} + Bu_{k-1}$
- 2. Die Fehlerkovarianz vorausberechnen: $P_k = AP_{k-1}A^T + Q$

Korrektur

- 3. Den Kalman Gain berechnen: $K_k = P_k H^T (HP_k H^T + R)^{-1}$
- 4. Die Schätzung mit z_k aktualisieren: $\hat{x}_k = \hat{x}_k + K_k(z_k H\hat{x}_k)$
- 5. Die Fehlerkovarianz aktualisieren: $P_k = (I K_k H)P_k$

Kalman explained images/01_normal_distribution.png

Kalman explained images/02_normal_distribution_after_move.png

Kalman explained

images/03_first_prediction.png

Kalman explained images/04_measurement.png

Kalman explained images/05_correction.png

Ablauf des Kalman Filters

- Fettgedruckt
- Kursiv
- Unterstrichen
- Monospaced

Aufzählungen

- Erster Punkt
- Zweiter Punkt
- Dritter Punkt

Mathematische Ausdrücke

- Inline: $E = mc^2$
- Displayed:

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Bilder einfügen

Fig.: Ein Beispielbild

Zusammenfassung

In dieser Präsentation haben wir die grundlegenden Elemente von LaTeX vorgestellt, darunter:

- Textformatierung
- Aufzählungen und Listen
- Mathematische Ausdrücke
- Bilder einfügen