

Generated by elijahsheridan on 17 July 2020, 11:41:11

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

\mathbf{C}	onte	ents	
1	Set	auup	2
	1.1	Command history	2
	1.2	Configuration	2
2	Da	atasets	3
	2.1	signal	3
3	His	stos and cuts	4
	3.1	Cut 1	4
	3.2	Histogram 1	5
	3.3	Histogram 2	6
4	Su	mmary	7
	4.1	Cut-flow charts	7

1 Setup

1.1 Command history

```
ma5># set directory where running "./bin/ma5"; set lumi; define the signal significance
ma5>set main.currentdir = /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data
# need to change this directory path -> exit and type "pwd" to get the path
ma5>set main.lumi = 40
ma5>set main.fom.formula = 5
ma5>set main.fom.x = 0.0
ma5># import samples -> change the path to the LHE file
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_to_photon_signal/Events/run_01/-
unweighted_events.lhe.gz as signal
ma5># define bg and signal samples
ma5>set signal.type = signal
ma5># a jet can be from a light quark or b quark
ma5>define jets = j
ma5>define e = e+ e-
ma5>define mu = mu+ mu-
ma5>define ta = ta+ ta-
ma5>define lept = e mu ta
ma5>define ax = 9000005
ma5>select (PT(a[1]) > 300 and M(a[1] a[2]) > 500)
ma5># define which plots to make
ma5>plot E(a[1] a[2])
ma5>plot P(a[1] a[2])
ma5>#set the plot/graph parameters
ma5>set selection[1].xmin = 0
ma5>set selection[1].xmax = 3000
ma5>set selection[1].nbins = 200
ma5>set selection[1].titleX = "E[ax] (GeV)"
ma5>set selection[2].xmin = 0
ma5>set selection[2].xmax = 3000
ma5>set selection[2].nbins = 200
ma5>set selection[2].titleX = "P[ax] (GeV)"
ma5>submit axion_energy_momentum_theory_test
```

1.2 Configuration

- MadAnalysis version 1.6.33 (2017/11/20).
- Histograms given for an integrated luminosity of 40.0fb⁻¹.

2 Datasets

2.1 signal

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: signal events.

• Generated events: 1000 events.

• Normalization to the luminosity: 3837+/- 25 events.

• Ratio (event weight): 3.8 - warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-	1000	0.0959 @ 0.64%	0.0
axion_to_photon_signal/Events/-	1000	0.0959 @ 0.0476	0.0
$run_01/unweighted_events.lhe.gz$			

3 Histos and cuts

3.1 Cut 1

* Cut: select PT (a[1]) > 300.0 and M (a[1] a[2]) > 500.0

Dataset	Events kept: K	Rejected events:	Efficiency: K / (K + R)	Cumul. efficiency: K / Initial
signal	2292.2 + / - 33.7	1544.9 + / - 31.9	0.59737 + / - 0.00792	0.59737 + / - 0.00792

3.2 Histogram 1

* Plot: E (a[1] a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	2313	1.0	1676.19	722.6	0.0	5.97

Figure 1.

3.3 Histogram 2

* Plot: P (a[1] a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	2313	1.0	983.497	587.1	0.0	39.97

Figure 2.

4 Summary

4.1 Cut-flow charts

- \bullet How to compare signal (S) and background (B): S/sqrt(S+B+(xB)**2) .
- \bullet Object definition selections are indicated in cyan.
- $\bullet\,$ Reject and select are indicated by 'REJ' and 'SEL' respectively

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	3837.1 +/- 24.4		
SEL: PT (a[1]) >			
300.0 and M (a[1] a[2]	2292.2 + / - 33.7		
) > 500			