Bloque III:

Tema 4. Termodinámica: fundamentos

- 4.1. Sistemas termodinámicos. Clasificación
- 4.2. Coordenadas termodinámicas: variables, funciones y ecuaciones de estado
- 4.3. Equilibrio térmico y temperatura. Principio cero
- 4.4. Termometría. Propiedades termométricas. Escalas de temperatura

Tema 5. Termodinámica: primer principio

- 5.1. Concepto de calor. Capacidad calorífica y calor latente
- 5.2. Trabajo termodinámico. Procesos cuasiestáticos
- 5.3. Primer principio de la termodinámica. Energía interna
- 5.4. Gases ideales. Ecuación de estado. Procesos fundamentales con un gas ideal
- 5.5. Entalpía

Tema 6. Termodinámica: segundo principio

- 6.1. Motor térmico. Rendimiento. Enunciado de Kelvin-Planck del segundo principio.
- 6.2. Máquina frigorífica. Eficiencia. Enunciado de Clausius del segundo principio.
- 6.3. Procesos reversibles e irreversibles
- 6.4. Ciclo de Carnot. Teorema de Carnot. Temperatura absoluta. Tercer principio

Tema 7. Entropía

- 7.1. Concepto de entropía. Entropía de un gas ideal
- 7.2. Cambios de entropía en diferentes procesos
- 7.3. Entropía y probabilidad
- Física Universitaria, Vol. 1; SEARS, F. F., ZEMANSKY, M. W., YOUNG, H. D y FREEDMAN, R. A. Capítulo 20.
- Física para Ciencias e Ingeniería, Vol. 1; SERWAY, R. A. y JEWET, J. W. Capítulo 22.
- Física para la Ciencia y la Tecnología, Vol.1; TIPLER, P. A. Y MOSCA, G. Capítulo 19.

TEMA 7. Entropía

Cuando estalla fuegos pirotécnicos ¿el proceso energético es recuperable? ¿el sistema final está más o menos ordenado que el sistema original?

Procesos irreversibles. Aumento del desorden

Segundo principio de la termodinámica

- → enunciados cualitativos
- → planteamiento de una imposibilidad
- → ¿relación cuantitativa?

entropía

Los procesos termodinámicos naturales suceden en la dirección de aumento del desorden

Entropía

La **entropía** es una **función de estado** que mide el desorden de un sistema: mide la probabilidad de encontrar un estado debido a su multiplicidad.

• Como ocurre con la energía interna, lo importante son las variaciones de entropía

Variación de entropía
$$dS = \frac{\delta Q_{rev}}{T}$$

 Q_{rev} calor que debe transferirse al sistema en un proceso reversible para llevarlo del estado inicial al estado final

Si calor se extrae del sistema $\delta Q_{rev} < 0 \rightarrow dS < 0$

Función de estado \rightarrow la variación de entropía depende solo de los estados inicial y final, sin depender del proceso

Entropía

$$dS = \frac{\delta Q_{rev}}{T}$$

Sentido físico:

- la entropía siempre crece en los procesos irreversibles
- la entropía está ligada a la irreversibilidad de los procesos
- los fenómenos naturales siempre tienen tendencia a producirse hacia estados de mayor desorden
- la entropía es una medida del desorden molecular existente en el sistema
- la entropía no se conserva y se relaciona con la cantidad de energía útil disponible

Entropía en un gas ideal

Proceso cuasiestático reversible donde un gas ideal absorbe δQ_{rev}

Por el primer principio: $dU = \delta Q_{rev} - \delta W = \delta Q_{rev} - pdV$

$$C_{v}dT = \delta Q_{rev} - nRT\frac{dV}{V}$$

no se puede integrar sin $conocer\ T = f(V)$

dividir entre T:

$$C_v \frac{dT}{T} = \frac{\delta Q_{rev}}{T} - nR \frac{dV}{V}$$

 $C_v \frac{dT}{T} = \frac{\delta Q_{rev}}{T} - nR \frac{dV}{V}$ $C_v \text{ es constante o sólo } C_V = f(T)$ para un gas ideal

$$\frac{\delta Q_{rev}}{T} = C_v \frac{dT}{T} + nR \frac{dV}{V}$$

 $\frac{\delta Q_{rev}}{T} = C_v \frac{dT}{T} + nR \frac{dV}{T}$ diferencial exacta de una función $\frac{\delta Q_{rev}}{T} = dS$

$$\frac{\delta Q_{rev}}{T} = dS$$

Se puede integrar:

$$TdS = dU + pdV \rightarrow dS = \frac{dU}{T} + \frac{p}{T}dV \rightarrow dS = nc'_V \frac{dT}{T} + nR \frac{dV}{V}$$

Integrando:
$$\Delta S = \int_{1}^{2} \frac{\delta Q_{rev}}{T} = \int_{1}^{2} nc'_{V} \frac{dT}{T} + \int_{1}^{2} nR \frac{dV}{V} = nc'_{V} ln \frac{T_{2}}{T_{1}} + nR ln \frac{V_{2}}{V_{1}}$$

Variación de entropía del gas ideal en expansión o compresión reversible

Entropía

Sistema que va reversiblemente del punto 1 a 2 por el camino A o B y vuelve reversiblemente por C

Cuando un sistema y su entorno interactúan en un proceso irreversible, el aumento en entropía de uno es mayor que la disminución en entropía del otro

Diagrama entrópico

Representa la temperatura en función de la entropía.

El área de un ciclo representa el calor absorbido o cedido en el ciclo.

Variación de entropía en procesos de un gas ideal

Proceso isotérmico
$$T_2 = T_1$$
:

Proceso isotérmico
$$T_2 = T_1$$
:
$$\Delta S = \int_{1}^{2} nR \frac{dV}{V} = nR \ln \frac{V_2}{V_1}$$

$$V_2 > V_1 \rightarrow \Delta S > 0$$

$$Q = W = \int_{V_1}^{V_2} p dV = nRT \ln \frac{V_2}{V_1}$$

$$\Delta S = \frac{Q}{T}$$

$$\Delta S_{foco} = \frac{-Q}{T}$$

$$\Delta S = \frac{Q}{T}$$

$$\Delta S_{foco} = \frac{-Q}{T}$$

$$\Delta S_{universo} = \Delta S_{neto} = \Delta S_{gas} + \Delta S_{foco} = 0$$

universo: sistema más el medio que le rodea

Expansión libre

recinto adiabático

$$U_{inicial} = U_{final} \rightarrow T_{inicial} = T_{final}$$

Proceso irreversible \rightarrow Q=0, W=0 \rightarrow $\Delta S = \int_{1}^{\infty} \frac{\delta Q}{T}$ tados inicial y

Mismos estados inicial y

final que en proc. isotérmico

$$\Delta S_{gas} = \Delta S_{isotermico} = nR \ln \frac{V_2}{V_1} > 0$$

No hay cambio de entropía en el medio

$$\Delta S_{universo} = \Delta S_{gas} = nR \ln \frac{V_2}{V_1} > 0$$

En un proceso irreversible, la entropía del universo aumenta. En cualquier proceso, la entropía del universo nunca disminuye

Variación de entropía en procesos de un gas ideal

Proceso isobárico $\mathbf{p_1} = \mathbf{p_2}$ $\delta Q = C_p dT$ aprox. cuasiestática

$$dS = \frac{\delta Q}{T} = C_p \frac{dT}{T} \Longrightarrow \Delta S = \int_{1}^{2} nc'_p \frac{dT}{T} = nc'_p \ln \frac{T_2}{T_1}$$

Proceso adiabático
$$\Delta S = \int_{1}^{2} \frac{\delta Q}{T} = 0$$

Proceso isocórico $V_1 = V_2$ $\delta Q = C_V dT$

$$\delta Q = C_V dT$$

$$\Delta S = \int_{1}^{2} \frac{\delta Q}{T} = \int_{1}^{2} nc'_{V} \frac{dT}{T} + \int_{1}^{2} nR \frac{dV}{V} = nc'_{V} ln \frac{T_{2}}{T_{1}} + nR ln \frac{V_{2}}{V}$$

$$= nc'_{V} ln \frac{T_{2}}{T_{1}}$$
0

Variación de entropía en la conducción de calor de un foco a otro

$$\Delta S_{FC} = -rac{Q}{T_C}$$
 foco caliente pierde calor $\Delta S_{FF} = rac{Q}{T_F}$ foco frío absorbe calor

$$\Delta S_{universo} = \Delta S_{FC} + \Delta S_{FF} = -\frac{Q}{T_C} + \frac{Q}{T_F} > 0$$

Q siempre fluye de T_c a T_F

Variación de entropía en un ciclo de Carnot

proceso reversible $\Delta S_{universo} = 0$

Ciclo $\Delta S_{focos} = 0$ S es función de estado

$$\Delta S_{universo} = \Delta S_{FC} + \Delta S_{FF} = -\frac{|Q_{ced}|}{T_C} + \frac{Q_{abs}}{T_F}$$

$$\frac{T_F}{T_C} = \frac{Q_{abs}}{|Q_{ced}|}$$

escala Kelvin de temperatura
$$\frac{T_F}{T_C} = \frac{Q_{abs}}{|Q_{ced}|} \implies \Delta S_{universo} = \Delta S_{FC} + \Delta S_{FF} = -\frac{|Q_{ced}|}{T_C} + \frac{Q_{abs}}{T_F} = 0$$

Si hay trabajo realizado por fuerzas no conservativas, habrá un aumento adicional de entropía (sumado al asociado a Q)

Variación de entropía en una colisión inelástica

proceso irreversible energía mecánica se transforma en energía térmica

Ej.: caída libre de una masa m

- no hay intercambio de calor
- $ightharpoonup^* v_{\text{OB}}$ el estado de m cambia porque cambia U o U + mgH
 - mismo cambio de estado que si se añade $Q=m_{\mathcal{G}}H$ al sistema a T constante

considerando un proceso reversible en el que se añada $Q_{rev}=mgH$ a T cte:

$$\Delta S = \frac{Q_{rev}}{T} = \frac{mgH}{T} = \Delta S_{universo} > 0$$

Entropía y probabilidad

Un proceso **probable** es aquel que puede ocurrir en diversas formas, mientras que uno **improbable** es el que solo puede suceder de una o muy pocas formas

estado de orden elevado → probabilidad pequeña estado de orden bajo → probabilidad alta

En un proceso irreversible, el universo se desplaza de un estado de baja probabilidad a otro de probabilidad elevada

Después de una expansión libre, ¿por qué no puede comprimirse el gas por sí mismo volviendo a su estado original?

improbable

- probabilidad de que una molécula esté en la mitad izquierda ½
- probabilidad de que dos moléculas estén en la mitad izquierda (1/2)²=1/4
- probabilidad de que diez moléculas estén en la mitad izquierda $(1/2)^{10}=1/1024$ Se podría esperar observar esta situación una vez cada 1024 s (17 min)

Probabilidad de que un gas se comprima a sí mismo espontáneamente hacia un volumen más pequeño:

$$P = \left(\frac{V_2}{V_1}\right)^N$$

N, nº moléculas

Entropía y probabilidad

Después de una expansión libre, ¿por qué no puede comprimirse el gas por sí mismo volviendo a su estado original? -> improbable (pero no imposible)

Probabilidad de que un gas se comprima a sí mismo espontáneamente hacia un volumen más pequeño:

$$P = \left(\frac{V_2}{V_1}\right)^N$$

$$lnP=Nlnrac{V_2}{V_1}=nN_Alnrac{V_2}{V_1}$$
 n, no moles N_A , no Avogadro

Variación de entropía del gas
$$\Delta S = nRln\frac{V_2}{V_1} = k_BlnP \qquad R = N_Ak_B$$

$$R = 8.314\frac{J}{molK} \quad \text{cte gases ideales}$$

$$N_A = 6.022x10^{23}molec./mol \quad \text{n$^\circ$} \text{ Avogadro}$$

$$k_B = 1.381x10^{-23}\frac{J}{K} \quad \text{cte Boltzmann}$$

Ej: Probabilidad de que en 1 mol todas las moléculas se encuentren a un lado del recipiente

$$P \approx 2^{-N_A} \approx 10^{-10^{22}} \approx 0$$

La probabilidad de que el resultado de un proceso sea la disminución de la entropía del universo es infinitamente pequeña

Entropía y probabilidad

Relación entre probabilidad y desorden

$$P = \frac{\Omega_2}{\Omega_1}$$

Ω, variable relacionada con el nº microestados compatibles con un estado termodinámico

entropía absoluta $S = k_B ln\Omega$

la entropía es una medida del desorden del sistema

- cuando las N moléculas del gas se encuentran a la izquierda, sólo hay una forma de "colocarlas"
- cuando las moléculas pueden estar con la misma probabilidad en cualquiera de las dos partes recipiente, el número de formas de "colocarlas" es 2N

 n^o microestados $\Omega \rightarrow n^o$ formas diferentes de organizar un sistema

La entropía aumenta cuanto mayor sea el nº microestados accesibles al sistema, compatibles con un estado termodinámico

Exergía. Energía utilizable y producción de entropía

Proceso irreversible → la energía se conserva, pero parte de ella se "desperdicia": no es útil para realizar trabajo

$$\Delta S = \frac{mgH}{T} > 0$$

- $\Delta S = \frac{mgH}{T} > 0$ en H, se podría haber usado E_p para realizar W
 después de la colisión inelástica, E_p se ha transformado en U desordenada de m y del medio

 Energía que ha dejado de ser útil $T\Delta S_u = mgH$

En un proceso irreversible, una cantidad de energía igual a $T\Delta S_u$ resulta inútil para la realización de trabajo, en donde T es la temperatura del foco más frío disponible

Trabajo perdido: energía que resulta inútil para producir trabajo

$$W_{perdido} = T\Delta S_u$$

Ej: expansión libre
$$\Delta S_u = nR \ln \frac{V_2}{V_1}$$
 \longrightarrow $W_{perdido} = nRT \ln \frac{V_2}{V_1}$ cantidad de trabajo que se podría haber realizado si la expansión hubiera sido

cuasiestática e isoterma

Exergía. Energía utilizable y producción de entropía

Exergía: porción de energía que puede ser transformada en trabajo mecánico útil (no se emplea contra el entorno) → función de estado que depende de p y T

Máximo aprovechamiento de la energía: procesos cuasiestáticos y reversibles que no produzcan entropía del universo

$$\delta W_p = p dV = (p-p_0) dV + p_0 dV$$

$$\text{\'util} \qquad \text{desplazar el aire exterior} \xrightarrow{\raire} \text{no aprovechable; recuperable en un ciclo}$$

$$\delta W_T = \eta_{rev} \delta Q_{ced} = \left(1 - \frac{T_0}{T}\right) \delta Q_{ced} = -(T - T_0) dS$$
 útil \rightarrow máquina de Carnot

Trabajo total útil:
$$\delta W_{\text{ú}til} = (p - p_0)dV - (T - T_0)dS - (dE_c + dE_p)$$

Energía total:
$$dE = dE_c + dE_p + dU$$

$$dX = \delta W_{\text{\'u}til} = -dE - p_0 dV + T_0 dS$$

$$dU = TdS - pdV$$

Exergía
$$X = U - U_0 + \frac{1}{2}m(v^2 - v_0^2) + mg(z - z_0) + p_0(V - V_0) - T_0(S - S_0)$$

en función de la entalpía
$$H=U+pV$$
 $X=H-H_0+\frac{1}{2}m(v^2-v_0^2)+mg(z-z_0)-V(p-p_0)-T_0(S-S_0)$

Exergía. Energía utilizable y producción de entropía

relación entre el cambio de entropía en un sistema y el calor intercambiado en un proceso irreversible

$$dS_u \ge 0$$
 = reversible > irreversible

$$dU_R = dQ_{rev} - dW_R \qquad dU_I = dQ - dW_I$$

U y S funciones de estado \longrightarrow $dU_R = dU_I$

$$TdS - dQ = dW_R - dW_I = dW_{perdido} = TdS_u$$

El cambio de entropía de un proceso infinitesimal cumple la relación general:

$$dS \ge \frac{dQ}{T}$$

Para un proceso irreversible se puede escribir: $dS = \frac{dQ}{T} + d\sigma$

 $d\sigma$ > 0, producción de entropía

Los procesos termodinámicos irreversibles (rozamiento, expansión libre de un gas) conllevan la producción de entropía en el sistema termodinámico

Ecuación fundamental de la termodinámica. Potenciales termodinámicos

combinación de los dos primeros principios de la termodinámica

$$dQ = dU + pdV$$

$$dS \ge \frac{dU}{T} + \frac{p}{T}dV$$
 representación entrópica del sistema

- relación entre dS y los cambios de las variables extensivas

 desigualdad → de un proceso irreversible entre estados de equilibrio

 Igualdad → proceso reversible

$$dS = \frac{dU}{T} + \frac{p}{T} dV$$
 Ecuación fundamental de la termodinámica

para U y V constantes, la entropía crece hasta el valor máximo compatible con los valores prefijados para las variables termodinámicas porque $dS \geq 0$

como
$$T > 0$$
: $dU \le TdS - pdV \longrightarrow U = f(S, V)$ representación energética del sistema

para S y V constantes, la energía interna disminuye hasta un mínimo compatible con los valores de las variables extensivas termodinámicas ya que $dU \leq 0$

Ecuación fundamental de la termodinámica. Potenciales termodinámicos

Potenciales termodinámicos: se hacen mínimos en el equilibrio

$$H = U + pV$$
 entalpía

$$F = U - TS$$
 energía libre o función de Helmholtz

$$G = H - TS$$
 energía libre o función de Gibbs

Condiciones de evolución del sistema hacia el equilibrio

$$dH = dU + pdV + Vdp \longrightarrow dH \le TdS + Vdp$$

$$dF = dU - TdS - SdT \longrightarrow dF \le -TdS - pdV$$
 $\longrightarrow dU \le TdS - pdV$

$$dG = dH - TdS - SdT \longrightarrow dG \le -SdT + Vdp$$

Ej.: reacciones químicas espontáneas a P y T se corresponden con un mínimo de G

J.W. Gibbs (1839-1903) físico estadounidense, estudió el cálculo vectorial y el diseño de engranajes, definió potencial químico, la entalpía, la mecánica estadística y la regla de las fases

$$dU \leq TdS - pdV$$

Ligaduras externas	Condición de equilibrio
S y V ctes	U mín
S y P ctes	H mín
T y V ctes	F mín
T y P ctes	G mín

