Data Mining & Machine Learning

CS37300 Purdue University

October 6, 2017

Extra Credit Competition Update

Public L	_eaderboai	rd Private Leaderbo	ard				
This leaderboard is calculated with approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different.					♣ Raw Data		
#	∆1w	Team Name	Kernel	Team Members	Score 2	Entries	Last
2	new	Luke Skywalker Bossk	NBO		0.74585	2	2d 21m
3	new	Yoda			0.63820	1	9h
4	new	Revan			0.55281	2	11h
5	new	Boba Fett		*	0.51800	3	11h
9		Bank_Sample_Submis	ssion.csv		0.49008		

How to beat Skywalker...

or

Classifiers beyond NBC and Decision Trees

So far...

A few weeks ago... we reviewed Naive Bayes Classifier and the Decision Tree...

We now embark on a quest to find other classifiers

Classifiers for today

- Nearest neighbors
- Linear Regression
- Support vector machines
- Logistic Regression (1-layer neural network)

Classification Task

- Data representation:
 - Training set: Paired attribute vectors and class labels $\langle y(i), x(i) \rangle$ or $n \times p$ tabular data with class label (y) and p-1 attributes (x)
- Task: estimate a predictive function $f(x;\theta)=y$
 - Assume that there is a function y=f(x) that maps data instances (\mathbf{x}) to class labels (\mathbf{y})
 - Construct a model that approximates the mapping
 - Classification: if y is categorical (e.g., {yes, no}, {dog, cat, elephant})
 - Regression: if y is real-valued (e.g., stock prices)

Binary classification

- In its simplest form, a classification model defines a decision boundary (h) and labels for each side of the boundary
- Input: $\mathbf{x} = \{x_1, x_2, ..., x_n\}$ is a set of attributes, function f assigns a label y to input \mathbf{x} , where y is a discrete variable with a finite number of values

Nearest Neighbors

Nearest neighbor

- Instance-based method
- Learning
 - Stores training data and delays processing until a new instance must be classified
 - Assumes that all points are represented in p-dimensional space
- Prediction
 - Nearest neighbors are calculated using Euclidean distance
 - Classification is made based on class labels of neighbors

1NN

• Training set: (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , ..., (\mathbf{x}_n, y_n) where $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{ip}]$ is a feature vector of p continuous attributes and y_i is a discrete class label

1NN algorithm

To predict a class label for new instance j: Find the training instance point \mathbf{x}_i such that $d(\mathbf{x}_i, \mathbf{x}_j)$ is minimized Let $f(\mathbf{x}_i) = y_i$

- Key idea: Find instances that are "similar" to the new instance and use their class labels to make prediction for the new instance
 - 1NN generalizes to kNN when more neighbors are considered

kNN model: decision boundaries

Source: http://cs231n.github.io/classification/

kNN

kNN algorithm

To predict a class label for new instance j: Find the k nearest neighbors of j, i.e., those that minimize $d(\mathbf{x}_k, \mathbf{x}_j)$ Let $f(\mathbf{x}_j) = g(\mathbf{y}_k)$, e.g., majority label in \mathbf{y}_k

- Algorithm choices
 - How many neighbors to consider (i.e., choice of k)?
 ... Usually a small value is used, e.g. k<10
 - What distance measure d() to use?
 ... Euclidean L2 distance is often used
 - What function g() to combine the neighbors' labels into a prediction?
 ... Majority vote is often used

1NN decision boundary

- For each training example i, we can calculate its **Voronoi cell**, which corresponds to the space of points for which i is their nearest neighbor
- All points in such a Voronoi cell are labeled by the class of the training point, forming a Voronoi tessellation of the feature space

Nearest neighbor

- Strengths:
 - Simple model, easy to implement
 - Very efficient learning: O(1)
- Weaknesses:
 - Inefficient inference: time and space O(n)
 - Curse of dimensionality:
 - As number of features increase, you need an exponential increase in the size of the data to ensure that you have nearby examples for any given data point

k-NN learning

- Parameters of the model:
 - k (number of neighbors)
 - any parameters of distance measure (e.g., weights on features)

Model space

Possible tessellations of the feature space

Search algorithm

Implicit search: choice of k, d, and g uniquely define a tessellation

Score function

Majority vote is minimizing misclassification rate

Least Squares Classifier

Motivation

- Given x features of a car (length, width, mpg, maximum speed,...)
- ightharpoonup Classify cars into categories based on x

small car rentals >

compacts economy car rentals

medium car & SUV rentals >

Coupes Sedans intermediate SUV rentals

large car & SUV rentals >

standard SUVs premiums luxury car rentals

fuel efficient & hybrid >

Green car rentals

high occupancy car rentals >

12-passenger vans mini vans premium SUV rentals

reservable models >

Corvettes Infinitis BMWs & more

Least Squares Classifier

Two classes:

- x is a real-valued vector (features)
- y is the car class

$$y_c = \begin{cases} 1 & \text{, if car } c \text{ is "economy"} \\ -1 & \text{, if car } c \text{ is "luxury"} \end{cases}$$

Find linear discriminant weights w

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Score function least squares error

$$score(Test_Data_Cars) = \sum_{c \in Test_Data_Cars} (y_c - y(x_c))^2$$

▶ Search function: find w, w₀ that minimize score

Car max speed

Issues with Least Squares Classification

cares too much about well classified items

Neural networks

- Analogous to biological systems
- Massive parallelism is computationally efficient
- First learning algorithm in 1959 (Rosenblatt)
 - Perceptron learning rule
 - Provide target outputs with inputs for a single neuron
 - Incrementally update weights to learn to produce outputs

Neuron

Single neuron (Logistic regression)

Model: Single neuron is often used for two classes (y=0, y=1)

$$p(y = 1|x) = \sigma(f(x))$$

where

$$f(x) = \sum_{i=1}^{m} w_i x_i + b$$

$$\sigma(a) = \frac{\exp(a)}{1 + \exp(a)}$$
—Logistic function

Score function:

$$P[\text{Training Data}|\mathbf{w}, b] = \prod_{c \in \text{Training Data}} p(y(x_c) = y_c|x_c)$$

Search: find w, b that minimize score

Support vector machines (SVMs)

Support vector machines

- Discriminative model
- General idea:
 - Find best boundary points (support vectors) and build classifier on top of them
- Linear and non-linear SVMs

Choosing hyperplanes to separate points

Source: Introduction to Data Mining, Tan, Steinbach, and Kumar

Among equivalent hyperplanes, choose one that maximizes "margin"

Source: Introduction to Data Mining, Tan, Steinbach, and Kumar

Linear SVMs

$$y = sign\left[\sum_{i=1}^{m} w_i x_i + b\right]$$

- Same functional form as perceptron
- Different learning procedure:
 Search for hyperplane with largest margin
- Margin=d+ + dwhere d+ is distance to closest
 positive example and d- is distance
 to closest negative example

Constrained optimization for SVMs

$$Eq1: \quad x(j) \cdot w + b \geq +1 \; for \; y(j) = +1$$

$$Eq2: \quad x(j) \cdot w + b \leq -1 \; for \; y(j) = -1$$

$$\downarrow$$
 Prediction constraint
$$Eq3: \quad y(j)(x(j) \cdot w + b) - 1 \geq 0 \; \forall y(j)$$

$$H_1: \quad x(j) \cdot w + b = +1$$

$$H_2: \quad x(j) \cdot w + b = -1$$

$$d_+ = d_- = \frac{1}{||w||} \qquad margin = \frac{2}{||w||}$$

Can maximize margin by minimizing ||w|| as it defines the hyperplanes

SVM optimization

- Search: Maximize margin by minimizing 0.5||w||² subject to constraints on Eq3
 - Note: Maximizing 2/||w|| is equivalent to minimizing 0.5||w||²
- Introduce Lagrange multipliers (α) for constraints into score function to minimize:

$$L_P = \frac{1}{2}||w||^2 - \sum_{i=1}^{I} \alpha_i y(i)[x(i) \cdot w + b] + \sum_{i=1}^{I} \alpha_i$$

- Minimize L_P with respect to w, b, and $\alpha_N \ge 0$
- Convex programming problem
 - Quadratic programming problem with parameters w, b, α

Constrained optimization

 Linear programming (LP) is a technique for the optimization of a linear objective function, subject to linear constraints on the variables

 Quadratic programming (QP) is a technique for the optimization of a quadratic function of several variables, subject to linear constraints on these variables

SVM components

Model space

Set of weights w and b (hyperplane boundary)

Search algorithm

Quadratic programming to minimize L_p with constraints

Score function

• L_p: maximizes margin subject to constraint that all training data is correctly classified

Limitations of linear SVMs

- Linear classifiers cannot deal with:
 - Non-linear concepts
 - Noisy data
- Solutions:
 - Soft margin (e.g., allow mistakes in training data)
 - Network of simple linear classifiers (e.g., neural networks)
 - Map data into richer feature space (e.g., non-linear features) and then use linear classifier