Anisotropic Heat Transport

An initial exploration using the Nektar ++ Framework (D2.1 Baseline proxy-app)

Jo Wayne Tan, <u>Dr Chris Cantwell</u>, Prof Spencer Sherwin, Dr David Moxey

Steady State Case

$$0 = \nabla \cdot (\kappa_{\parallel} \, \boldsymbol{b} [\boldsymbol{b} \cdot \nabla \, T])$$

Initial Conditions:

$$T(x,y)=0$$

Thermal Parallel Diffusivity coefficient:

$$\kappa_{\parallel} = 12.8 \sqrt{2\pi^3} \frac{1}{\sqrt{m_e}} \frac{\epsilon_0^2}{e^4} \cdot \frac{(k_B T_e)^{\frac{5}{2}}}{Z^2 N \lambda}$$

$$= 3.1398 \ e \ 6$$

$$\kappa_{\perp} = 0$$

Steady State Case

Unsteady Case

$$\frac{\partial T}{\partial t} = \frac{2}{3N} \nabla \cdot (D \cdot \nabla T)$$

where
$$D = \kappa_{\parallel} B^2 \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$

Initial Conditions:

$$T(x,y;\ t=0)=0$$

- Extremely small diffusion coefficient
- $\frac{2}{3N} \kappa_{\parallel} B^2 = 1.8839 e 11$
- Hence used N = 1 e 12
- $\frac{2}{3N} \kappa_{\parallel} B^2 = 18.839$

Unsteady Case

 Initial objective to explore how well we can capture solution with a tailored mesh

Spatial Discretisation Errors (P=8)

Mesh alignment with B

10.5435

Smoothing of boundary condition

$$T(y)=1+\frac{1}{2}\tanh(a(y-y_1))\tanh(a(y_2-y))$$

Smooth BC with Improved mesh

- Improved mesh element distribution
- Captures smoothed BC

Vectorisation of matrix-free operations (D2.2)

Efficient Matrix-Free High-Order Finite Element Evaluation for Simplicial Elements., D. Moxey, R. Amici & R.M. Kirby

Next steps & Discussion

- Establish best-case result for numerical approximation.
- Is a smoothed boundary condition acceptable?
- What value of 'a' is acceptable?
- If we apply smoothers (e.g. SVV), what level of smoothing is acceptable?
- Investigate ability of unstructured meshes to capture solution.
- Mixed structured mesh (in transition boundary) with unstructured triangles elsewhere.