Extending SDN to the Data Plane

Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, Hari Balakrishnan

M.I.T.

http://web.mit.edu/anirudh/www/sdn-data-plane.html

November 7, 2013

Switch Data Planes today

Two key decisions on a per-packet basis:

Scheduling: Which packet to transmit next?

• Queue Management: How long can queues grow? Which packet to drop?

The Data Plane is continuously evolving

▶ Each scheme wins in its own evaluation.

► Some believe in a "silver bullet" knobless in-network method.

We disagree: There is no silver bullet!

- Different applications care about different objectives.
- Applications use different transport protocols.

Networks are heterogeneous.

Our work:

Quantify non-universality of in-network methods.

Extend SDN to the Data Plane to handle in-network diversity.

Quantifying "No Silver Bullet": Network Configurations

Configuration	Description			
CoDel+FCFS	One shared FCFS queue with CoDel			
CoDel+FQ	Per-flow fair queueing with CoDel on each queue			
Bufferbloat+FQ	Per-flow fair queueing with deep buffers on each queue			

Quantifying "No Silver Bullet": Workloads and Objectives

Workload	Description	Objective
Bulk	Long-running bulk transfer flow	Max. throughput
Web	Switched flow with ON and OFF periods	Min. 99.9 %ile flow completion time
Interactive	Long-running in- teractive flow	Max. throughput delay (power)

Bufferbloat+FQ

Nwk	con-	Avg.	through	- Pow	er
fig.		put, de	elay		
Buffer	bloat⊣	- 17Q 17	Mbps	, 0.12	
		62165	ms	Mbi	t/s^2
CoDel	+FQ	6.55 Mbps, 76.5		5 85.6	
		ms		Mbi	t/s^2

Nwk config.	Bulk	Web Tail
	Throughput	FCT
Bufferbloat +	11.22 Mbps	20.94
		secs
CoDel+FQ	3.92 Mbps	43.72
		secs

Nwk con-	Avg. throughput
fig.	
CoDel+FC	2.00 Mbps
CoDel+FQ	1.90 Mbps

Nwk con-	Bulk	Web Tail FCT
fig.	Throughput	
CoDel+FC	F§.48 Mbps	22.25 secs
CoDel+FQ	9.48 Mbps	18.71 secs

Nwk config.	Bulk through-
	put
Bufferbloat+FG	11.96 Mbps
CoDel+FCFS	4.35 Mbps

Nwk con-	Interactive	through-	Power
fig.	put, delay		
Bufferbloat-	+ FQ 96	Mbps,	0.26
	46028 ms		$Mbit/s^2$
CoDel+FCF	S4.35 Mbps,	83.2 ms	52.28
			$Mbit/s^2$

Why is no single data plane configuration the best?

- Bufferbloat on variable-rate links helps throughput!
 - ▶ Variable-rate links have an inherent delay-throughput tradeoff
- ► FCFS is preferable to Fair Queuing in some cases
 - When equally aggressive flows compete, they don't need protection from each other
 - ▶ Helps reduce tail packet delay
- Fair Queuing is required in some cases
 - ▶ When competing flows aren't equally aggressive, isolation helps

So what should the network designer do?

Architect a flexible data plane

- Programmable queue management and scheduling
- Not just for selecting among pre-built choices, but to change behavior in the field
- Because there is no silver bullet and innovation will continue!

Controlled flexibility: Want performance, security

- Provide interfaces only to the head and tail of queues
- Operators specify only queue-management/scheduling logic
- No access to packet payloads.

Building such a data plane in four parts

- Hardware gadgets
 - ► Random number generators (RED, BLUE)
 - ▶ Binary tree of comparators (pFabric, SRPT)
- ▶ I/O interfaces
 - Drop/mark head/tail of queue
 - ► Interrupts for enqueue/dequeue
- State maintenance
 - Per-flow (WFQ, DRR)
 - ► Per-dst address (PF)
- A domain-specific instruction set
 - Expresses control flow
 - ▶ Implements new functions unavailable in hardware

Feasibility study: CoDel

Synthesis numbers on Xilinx Kintex-7:

Resource	Usage		Fraction
Slice logic	1,256		1%
Slice logic dist.	1,975		2%
IO/GTX ports	27		2%
DSP slices	0		0%
Maximum speed	12.9	$\times 10^6$	
	pkts/s ~10gbps		

- Small fraction of the FPGA's resources.
- Can be improved by pipelining or parallelizing.

Limitations and Practical Considerations:

- Cannot express several network functions that need payloads.
- How do applications signal objectives to the network?
- ▶ Feasibility at 10G on high port-density switches.
- Energy and Area overheads.

Related Work:

Active Networking, e.g., ANTS

► Software Routers, e.g., Click

Software-Defined Networking, e.g., OpenFlow

Conclusion

 There is no silver bullet to in-network resource control because of application and network diversity

 Algorithms will continue to evolve: the data plane should help

Directions to reproduce results: http://web.mit.edu/anirudh/www/sdn-dataplane.html