Begin a new page

(a) Find the value of $\sum_{k=1}^{4} (-1)^k k!$

2

(b) A(-2,-5) and B(1,4) are two points. Find the acute angle θ between the line AB and the line x+2y+1=0, giving the answer correct to the nearest minute.

3

- (c) The polynomial $P(x) = x^5 + ax^3 + bx$ leaves a remainder of 5 when it is divided by (x-2), where a and b are numerical constants.
 - (i) Show that P(x) is odd.

1

(ii) Hence find the remainder when P(x) is divided by (x+2).

2

(d)

ABCD is a cyclic quadrilateral. The tangent at A to the circle through A, B, C and D is parallel to BD.

- (i) Copy the diagram.
- (ii) Give a reason why $\angle ACB = \angle MAB$.

1

(iii) Give a reason why $\angle ACD = \angle ABD$.

1

(iv) Hence show that AC bisects $\angle BCD$.

Z

Begin a new page

(a) Find $\frac{d^2}{dx^2} e^{x^2}$.

- 2
- (b) A(-1,4) and B(x,y) are two points. The point P(14,-6) divides the interval AB externally in the ratio 5:3. Find the coordinates of B.
- 3

3

- (c) Find the number of ways in which the letters of the word EXTENSION can be arranged in a straight line so that no two vowels are next to each other.
- (d)

- $P(2t, t^2)$ is a variable point which moves on the parabola $x^2 = 4y$. The tangent to the parabola at P cuts the x axis at T. M is the midpoint of PT.
- (i) Show that the tangent PT has equation $tx y t^2 = 0$.

1

(ii) Show that M has coordinates $\left(\frac{3t}{2}, \frac{t^2}{2}\right)$.

- 2
- (iii) Hence find the Cartesian equation of the locus of M as P moves on the parabola.
- 1

Begin a new page

- (a) (i) By expanding $\cos (2A + A)$, show that $\cos 3A = 4\cos^3 A 3\cos A$.
 - (ii) Hence show that if $2\cos A = x + \frac{1}{x}$ then $2\cos 3A = x^3 + \frac{1}{x^3}$.
- (b) The function f(x) is given by $f(x) = \sqrt{x+6}$ for $x \ge -6$.
 - (i) Find the inverse function $f^{-1}(x)$ and find its domain.

- 2
- (ii) On the same diagram, sketch the graphs of y = f(x) and $y = f^{-1}(x)$, showing clearly the intercepts on the coordinate axes. Draw in the line y = x.
- 2

3

(iii) Show that the x coordinates of any points of intersection of the graphs y = f(x) and $y = f^{-1}(x)$ satisfy the equation $x^2 - x - 6 = 0$. Hence find any points of intersection of the two graphs.

Question 4

Begin a new page

(a) Use Mathematical Induction to show that $5^n + 2(11^n)$ is a multiple of 3 for all positive integers n.

5

(b)

Two concentric circles with centre O have radii 2 cm and 4 cm. The points P and Q lie on the larger circle and $\angle POQ = x$, where $0 < x < \frac{\pi}{2}$.

- (i) If the area $A \text{ cm}^2$ of the shaded region is $\frac{1}{16}$ the area of the larger circle, show that x satisfies the equation $8\sin x 2x \pi = 0$.
- (ii) Show that this equation has a solution $x = \alpha$, where $0.5 < \alpha < 0.6$.

- 2
- (iii) Taking 0.6 as a first approximation for α , use one application of Newton's Method to find a second approximation, giving the answer correct to two decimal places.

2

3

1

Question 5

Begin a new page

- (a) Evaluate $\int_{1}^{49} \frac{1}{4(x+\sqrt{x})} dx$ using the substitution $u^{2} = x$, u > 0. Give the answer in simplest exact form.
- (b) At any point on the curve y = f(x), the gradient function is given by $\frac{dy}{dx} = \sin^2 x$.

 4 Find the value of $f(\frac{3\pi}{4}) f(\frac{\pi}{4})$.
- (c) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has velocity v metres per second, and displacement x metres from a fixed point O on the line, where $x = 5 \cos \frac{\pi t}{2}$.
 - (i) Find the period of the motion.
 - (ii) Find an expression for v in terms of t, and hence show that $v^2 = \frac{\pi^2}{4} (25 x^2)$.

 Find the speed of the particle when it is 4 metres to the right of O.

1

Question 6

Begin a new page

(a)

A person on horizontal ground is looking at an aeroplane A through a telescope T. The aeroplane is approaching at a speed of 80 ms⁻¹ at a constant altitude of 200 metres above the telescope. When the horizontal distance of the aeroplane from the telescope is x metres, the angle of elevation of the aeroplane is θ radians.

(i) Show that
$$\theta = \tan^{-1} \frac{200}{x}$$
.

(ii) Show that
$$\frac{d\theta}{dt} = \frac{16000}{x^2 + 40000}$$
.

- (iii) Find the rate at which θ is changing when $\theta = \frac{\pi}{4}$, giving the answer in degrees per second correct to the nearest degree.
- (b) A particle moves in a straight line. At time t seconds its displacement is x metres from a fixed point O on the line, its acceleration is $a \text{ ms}^{-2}$, and its velocity is $v \text{ ms}^{-1}$ where v is given by $v = \frac{32}{x} \frac{x}{2}$.

(i) Find an expression for
$$a$$
 in terms of x .

(ii) Show that
$$t = \int \frac{2x}{64 - x^2} dx$$
, and hence show that $x^2 = 64 - 60 e^{-t}$.

(iii) Sketch the graph of
$$x^2$$
 against t and describe the limiting behaviour of the particle.

Question 7 Begin a new page

- (a) Four fair dice are rolled. Any die showing 6 is left alone, while the remaining dice are rolled again.
 - (i) Find the probability (correct to 2 decimal places) that after the first roll of the dice,
 - exactly one of the four dice is showing 6.

 (ii) Find the probability (correct to 2 decimal places) that after the second roll of the dice exactly two of the four dice are showing 6.
- (b) A particle is projected from a point O with speed 50 ms^{-1} at an angle of elevation θ , and moves freely under gravity, where $g = 10 \text{ ms}^{-2}$.
 - (i) Write down expressions for the horizontal and vertical displacements of the particle at time t seconds referred to axes Ox and Oy.
 - (ii) Hence show that the equation of the path of the projectile, given as a quadratic equation in $\tan \theta$, is $x^2 \tan^2 \theta 500x \tan \theta + (x^2 + 500y) = 0$.
 - (iii) Hence show that there are two values of θ , $0 < \theta < \frac{\pi}{2}$, for which the projectile passes through a given point (X, Y) provided that $500 Y < 62500 X^2$.
 - (iv) If the projectile passes through the point (X, X) whose coordinates satisfy this inequality, and the two values of θ are α and β , find expressions in terms of X for $\tan \alpha + \tan \beta$ and $\tan \alpha \tan \beta$, and hence show that $\alpha + \beta = \frac{3\pi}{4}$.

MATHEMATICS EXTENSION 1 TRIAL EXAMINATION 2001

AMENDMENTS:

Page 4 QUESTION 2(c)

Find the number of ways in which the letters of the word EXTENSION can be arranged in a straight line so that no two vowels and no two consonants are next to each other.

Page 7 QUESTION 6(b)

A particle moves in a straight line. At time t seconds its displacement is x metres from a fixed point O on the line, its acceleration is a ms⁻², and its velocity is v ms⁻¹

where v is given by $v = \frac{32}{x} - \frac{x}{2}$. The particle

starts 2 metres to the right of O

Mathematics Extension I CSSA HSC Trial Examination 2001 Marking Guidelines

Question 1

(a) Outcomes Assessed: H5, H9

Marking Guidelines

	Marking Guidennes	Marks
Г	Criteria	Marks
L		121
ſ	• one mark for simplification of sum	1
١	• one mark for value of sum	
1	• One mark for variet or same	

Answer:

$$\sum_{k=1}^{4} (-1)^{k} k! = -1! + 2! - 3! + 4! = 19$$

(b) Outcomes Assessed: P4

Marking Guidelines

	Wat king Guidennes	Marks
;	Criteria	Maiks
	• one mark for values of gradients	3
	\bullet one mark for value of $\tan \theta$	
	• one mark for size of angle	<u>. </u>

Answer:

AB has gradient
$$m_1 = 3$$

 $x + 2y + 1 = 0$ has gradient $m_2 = -\frac{1}{2}$ $\Rightarrow \tan \theta = \left| \frac{3 - \left(-\frac{1}{2}\right)}{1 + 3\left(-\frac{1}{2}\right)} \right| = 7$ $\therefore \theta = 81^{\circ} 52'$

(c) Outcomes Assessed: (i) P5 (ii) PE3

Marking Guidelines	
Criteria	Marks
(i) • one mark for showing $P(x)$ is odd	3
(ii) • one mark for showing remainder is $-P(2)$	
a one mark for value of remainder	

Answer:

(i)

$$P(-x) = (-x)^5 + a (-x)^3 + b (-x)$$

$$= -x^5 - a x^3 - b x$$

$$= -(x^5 + a x^3 + b x)$$

$$= -P(x) \quad \text{for all } x$$

$$\therefore P(x) \text{ is odd.}$$

(ii) When
$$P(x)$$
 is divided by $(x+2)$,
remainder is $P(-2) = -P(2)$ since $P(x)$ is odd
= -5 since $P(2) = 5$

Marking Guidelines

William Guidennes	
Criteria	Marks
(i) • no marks for copying diagram	
(ii) • one mark for reason	
(iii) • one mark for reason	4
(iv) • one mark for showing $\angle MAB = \angle ABD$	
• one mark for showing $\angle ACB = \angle ACD$	

Answer:

(i)

(ii) $\angle ACB = \angle MAB$ because the angle between the tangent MA and the chord AB through the point of contact A is equal to the angle ACB in the alternate segment.

(iii) $\angle ACD = \angle ABD$ because the angles subtended in the same segment at B and C by the arc AD are equal.

(iv)

$$\angle MAB = \angle ABD$$
 (equal alternate angles, $MN \parallel BD$)
 $\angle ACB = \angle ACD$ ($\angle MAB = \angle ACB$, $\angle ABD = \angle ACD$)
 $\therefore AC$ bisects $\angle BCD$

Ouestion 2

(a) Outcomes Assessed: P7, PE5

Marking Guidelines

William & Cottoning	
Criteria	Marks
	2
• one mark for first derivative	1 - 1
one mark for second derivative using product rule.	

Answer:

$$\frac{d}{dx} e^{x^2} = 2x e^{x^2} \qquad \frac{d^2}{dx^2} e^{x^2} = \frac{d}{dx} 2x e^{x^2} = 2(e^{x^2}) + (2x)(2x e^{x^2}) = 2(1 + 2x^2) e^{x^2}$$

(b) Outcomes Assessed: P4

Warking Guidelines		
	riteria	Marks
• one mark for equation in x		2
• one mark for equation in y		3
• one mark for coordinates of B		

Answer:

$$\frac{5x-3\times(-1)}{5-3} = 14 \implies 5x+3=28 \qquad \therefore x=5$$

$$\frac{5y-3\times(4)}{5-3} = -6 \implies 5y-12=-12 \qquad \therefore y=0$$

.comes Assessed: PE3

Marking Guidelines

Viai king Guidennes	Marks
Criteria	Marks
• one mark for number of arrangements of vowels	3
• one mark for number of arrangements of consonants	
one mark for total number of arrangements	

Answer:

The vowels (E, E, I, O) can be arranged in positions 2, 4, 6, 8 in $\frac{4!}{2!} = 12$ ways.

The consonants (N,N, S, T, X) can be arranged in positions 1, 3, 5, 7, 9 in $\frac{5!}{2!}$ = 60 ways.

Hence the total number of arrangements is $12 \times 60 = 720$.

(d) Outcomes Assessed: (i) PE3, PE4 (ii) PE3 (iii) PE3

Marking Guidelines

Marking Galeon	Marks	
Criteria	Maiks	
(i) • one mark for equation of tangent	4	
(ii) • one mark for coordinates of T		
• one mark for coordinates of M	i i	1
(iii) • one mark for equation of locus	L	

Answer:

- (i) $y = \frac{1}{4}x^2 \implies \frac{dy}{dx} = \frac{1}{2}x$ \therefore tangent at $P(2t, t^2)$ has gradient $\frac{1}{2}(2t) = t$ and equation $y - t^2 = t(x - 2t)$ $tx - y - t^2 = 0$
- (ii) At T, $y = 0 \Rightarrow tx 0 t^2 = 0 \Rightarrow x = t$ Hence T has coordinates (t, 0), and M is the midpoint of $P(2t, t^2)$ and T(t, 0), with coordinates $\left(\frac{2t+t}{2}, \frac{t^2+0}{2}\right) \equiv \left(\frac{3t}{2}, \frac{t^2}{2}\right)$.

(iii) At
$$M$$
, $x = \frac{3t}{2} \implies t = \frac{2x}{3}$

$$\therefore y = \frac{1}{2}t^2 = \frac{1}{2}\left(\frac{2x}{3}\right)^2 = \frac{2x^2}{9}$$

Hence the locus has equation $2x^2 = 9y$.

(a) Outcomes Assessed: (i) P4 (ii) PE3

With King Outdefines		
<u>Criteria</u>	Marks	
 (i) • one mark for expansion and expressions for cos 2 A, sin 2 A • one mark for simplification to obtain final expression for cos 3 A in terms of cos A (ii) • one mark for expressing 2 cos 3 A in terms of (x + 1/2) 		
• one mark for binomial expansion of $\left(x + \frac{1}{x}\right)^3$ • one mark for simplification to obtain final expression for $\cos 3A$ in terms of x	5	

Answer:

(b) Outcomes Assessed: (i) P5, HE4 (ii) P5, HE4 (iii) P4

Marking Guidelines

The line of the li	
Criteria	Marks
(i) • one mark for finding the inverse function	
• one mark for the domain of the inverse function	
(ii) • one mark for the graph of $y = f(x)$ and intercepts	7
• one mark for the graph of $y = f^{-1}(x)$ and intercepts	'
• one mark for the line $y = x$ passing through the point of intersection	
(iii) • one mark for the equation	
• one mark for the coordinates of the point of intersection	

(ii)

Answer:

(i)
$$y = \sqrt{x+6}$$
 Interchanging x and y $y^2 = x+6$ gives $y = x^2 - 6$ $\therefore f^{-1}(x) = x^2 - 6$

Range of $f(x)$ is $\{y: y \ge 0\}$ \Rightarrow Domain of $f^{-1}(x)$ is $\{x: x \ge 0\}$

But $x \neq -2$ (outside domain). $\therefore x = 3$

Hence intersection point of the curves is (3,3).

(a) Outcomes Assessed: HE2

Marking	Guidelines
---------	------------

Muthing Outdefines	
Criteria	Marks
• one mark for establishing the truth of $S(1)$	
• one mark for $S(k)$ true $\Rightarrow 5^k + 2(11^k) = 3M$ for some integer M.	
• one mark for $5^{k+1} + 2(11^{k+1}) = 5(5^k) + 22(11^k)$	5
• one mark for deducing $S(k)$ true $\Rightarrow S(k+1)$ true	
• one mark for deducing $S(n)$ true for all integers $n \ge 1$	

Answer:

Define the sequence of statements S(n): $5^n + 2(11^n)$ is a multiple of 3, n = 1, 2, 3, ...

Consider
$$S(1)$$
: $5^1 + 2(11^1) = 27 = 3 \times 9$: $S(1)$ is true.

If
$$S(k)$$
 is true, then $5^k + 2(11^k) = 3M$ for some integer M. **

Consider
$$S(k+1)$$
: $5^{k+1} + 2(11^{k+1}) = 5(5^k) + 22(11^k) = 5\{(5^k) + 2(11^k)\} + 12(11^k)$
 $\therefore 5^{k+1} + 2(11^{k+1}) = 5(3M) + 12(11^k) = 3\{5M + 4(11^k)\} \text{ if } S(k) \text{ is true, using **}$
But M and k integral $\Rightarrow \{5M + 4(11^k)\} \text{ is an integer.}$
 $\therefore S(k) \text{ true } \Rightarrow S(k+1) \text{ true }, k=1,2,3,...$

Hence S(1) is true, and if S(k) is true, then S(k+1) is true. S(2) is true, and then S(3) is true, and so on. Hence by Mathematical Induction, S(n) is true for all positive integers n.

(b) Outcomes Assessed: (i) H5 (ii) P5, H2 (iii) PE3

Marking Guidelines

Warking Guidennes	
Criteria	Marks
(i) • one mark for areas of small circle sector and triangle OPQ	
 one mark for equating expression for shaded area to 1/16 of large circle area one mark for simplification to find equation in required form (ii) one mark for showing f(0.5), f(0.6) have opposite signs 	7
• one mark for using continuity of $f(x)$ to deduce $0.5 < \alpha < 0.6$ (iii) • one mark for expression for second approximation • one mark for calculation of second approximation	

Answer:

Area of $\triangle POQ = \frac{1}{2} (4^2) \sin x$ Area small circle sector = $\frac{1}{2} (2^2) x$

$$\therefore$$
 shaded area = $8\sin x - 2x$

$$8 \sin x - 2x = \frac{1}{16} \pi \left(4^2 \right) = \pi$$
$$8 \sin x - 2x - \pi = 0$$

(ii) Let
$$f(x) = 8\sin x - 2x - \pi$$
. Then $f(0.5) \approx -0.31 < 0$ and $f(0.6) \approx 0.18 > 0$. Hence, since $f(x)$ is continuous, $f(\alpha) = 0$ for some $0.5 < \alpha < 0.6$.

(iii) Taking a first approximation $\alpha \approx 0.6$, Newton's method gives a second approximation $\alpha \approx 0.6 - \frac{f(0.6)}{f'(0.6)}$ $= 0.6 - \frac{8\sin(0.6) - 2(0.6) - \pi}{8\cos(0.6) - 2}$

 ≈ 0.56 to 2 decimal places.

Outcomes Assessed: HE6

Marking Guidelines

Criteria	Marks
• one mark for change of limits	
• one mark for change of variable	4
• one mark for integration	
• one mark for evaluation	

Answer:

Let
$$I = \int_{1}^{49} \frac{1}{4(x+\sqrt{x})} dx$$
 Then $I = \int_{1}^{7} \frac{1}{4(u^{2}+u)} 2u du$
 $u^{2} = x$, $u > 0$
$$= \int_{1}^{7} \frac{1}{2(u+1)} du$$
 $2u = \frac{dx}{du} \implies dx = 2u du$
 $x = 1 \implies u = 1$, $x = 49 \implies u = 7$ $\therefore I = \frac{1}{2} (\ln 8 - \ln 2) = \frac{1}{2} \ln 4 = \ln 2$

(b) Outcomes Assessed: H5

Marking Guidelines

man wing Outdettities	
Criteria	Marks
 one mark for expressing sin²x in terms of cos 2x one mark for integration, including constant of integration 	4
• one mark for evaluation of $f\left(\frac{\pi}{4}\right)$, $f\left(\frac{3\pi}{4}\right)$	4
• one mark for value of difference	

Answer:

$$\frac{dy}{dx} = \sin^2 x \qquad \qquad f(x) = \frac{1}{2}x - \frac{1}{4}\sin 2x + c$$

$$\therefore f\left(\frac{3\pi}{4}\right) - f\left(\frac{\pi}{4}\right)$$

$$= \frac{1}{2}(1 - \cos 2x) \qquad \qquad = \left(\frac{3\pi}{8} - \frac{1}{4}\sin \frac{3\pi}{2} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4}\sin \frac{\pi}{2} + c\right)$$

$$= \left(\frac{3\pi}{8} + \frac{1}{4} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4} + c\right)$$

$$= \left(\frac{3\pi}{8} + \frac{1}{4} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4} + c\right)$$

$$= \frac{\pi}{4} + \frac{1}{2}$$

(c) Outcomes Assessed: (i) HE3 (ii) H5, HE3

Marking Guidelines

Marking Guidennes	
Criteria	Marks
(i) • one mark for finding the period of the motion	
(ii) • one mark for expressing v^2 in terms of t	
• one mark for expressing v^2 in terms of x	1 4
• one mark for the value of the speed.	

Answer:

(i) Period is
$$2\pi \div \frac{\pi}{2} = 4$$
 seconds

$$v^{2} = \left(\frac{\pi^{2}}{4}\right) \cdot 25 \left(1 - \cos^{2}\frac{\pi}{2}t\right)$$

$$= \frac{\pi^{2}}{4} \left(25 - 25\cos^{2}\frac{\pi}{2}t\right)$$

$$v = \frac{dx}{dt} = 5\left(-\frac{\pi}{2}\sin\frac{\pi}{2}t\right)$$

$$v^{2} = \left(\frac{\pi^{2}}{4}\right) \cdot 25\sin^{2}\frac{\pi}{2}t$$

$$v^{2} = \left(\frac{\pi^{2}}{4}\right) \cdot 25\sin^{2}\frac{\pi}{2}t$$
Speed is $\frac{3\pi}{2}$ ms⁻¹

(a) Outcomes Assessed: (i) P4, HE4 (ii) HE4, HE5 (iii) H5

Marking Guidelines	
Criteria	Marks
(i) • one mark for expression for θ	
(ii) • one mark for expression for $\frac{d\theta}{dx}$ • one mark for expression for $\frac{d\theta}{dt}$	5
(iii) • one mark for value of $\frac{d\theta}{dt}$	
$ullet$ one mark for value of $oldsymbol{ heta}$	

(ii)

Answer:

 $P \xrightarrow{x} \theta$ $200 \qquad \theta$

$$\angle TAP = \theta$$
(alt. $\angle s$, parallel lines)
$$\tan \theta = \frac{200}{x}$$

$$\theta = \tan^{-1} \frac{200}{x}$$

$$\frac{d\theta}{dx} = \frac{1}{1 + \left(\frac{200}{x}\right)^2} \left(-\frac{200}{x^2}\right) = \frac{-200}{x^2 + 40000}$$

$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt} = \frac{-200}{x^2 + 40000} (-80)$$

$$\therefore \frac{d\theta}{dt} = \frac{16000}{x^2 + 40000}$$

(iii) When
$$\theta = \frac{\pi}{4}$$
, $TP = AP \implies x = 200$, and $\frac{d\theta}{dt} = \frac{16000}{(200)^2 + 40000} = 0.2$ radians per second.
Hence θ is increasing at 11° s^{-1} (correct to the nearest degree)

(b) Outcomes Assessed: (i) HE5 (ii) H3, H5, HE4 (iii) HE3, HE7

Marking Guidelines	
Criteria	Marks
(i) • one mark for expression for a in terms of x	
(ii) • one mark for expressing t as an integral with respect to x	}
• one mark for integration to find t in terms of x	
• one mark for expression for x^2 in terms of t	7
(iii) • one mark for graph of x^2 as a function of t	
• one mark for limiting values of x, v, a	
one mark for description of limiting behaviour in words	

Answer:

Answer: $v^{2} = \left(\frac{32}{x} - \frac{x}{2}\right)^{2} = \frac{1024}{x^{2}} - 32 + \frac{x^{2}}{4}$ $a = \frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{1}{2}\frac{d}{dx}\left(\frac{1024}{x^{2}} - 32 + \frac{x^{2}}{4}\right)$ $\therefore a = \frac{-1024}{r^{3}} + \frac{x}{4}$

(ii)
$$\frac{dx}{dt} = v = \frac{32}{x} - \frac{x}{2} = \frac{64 - x^2}{2x}$$
$$\therefore \frac{dt}{dx} = \frac{2x}{64 - x^2}$$
$$t = \int \frac{2x}{64 - x^2} dx$$

(ii) Cont.

$$t = -\ln(64 - x^{2}) + c , \qquad t = 0 x = 2$$
 $\Rightarrow c = \ln 60$
$$-t = \ln\left(\frac{64 - x^{2}}{60}\right) , \qquad e^{-t} = \frac{64 - x^{2}}{60}$$

$$\therefore x^{2} = 64 - 60 e^{-t}$$

As
$$t \to \infty$$
, $x \to 8^-$, $v \to \frac{32}{8} - \frac{8}{2} = 0^+$, $a \to \frac{-1024}{512} + \frac{8}{4} = 0^-$

Hence the particle is moving right and slowing down as it approaches its limiting position 8 metres to the right of O.

Question 7

(a) Outcomes Assessed: (i) HE3 (ii) HE3

Marking Guidelines

Criteria	Marks
 (i) • one mark for value of probability (ii) • one mark for expression for probability of two 6's on first roll and no 6's on second • one mark for expression for probability of one 6 on first roll and one 6 on second • one mark for expression for probability of no 6's on first roll and two 6's on second • one mark for value of probability 	5

Answer:

- (i) $P(one \ 6 \ on \ first \ roll) = {}^4C_1 \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^3 \approx 0.39$ (to 2 decimal places)
- (ii) $P(two\ 6\ s\ on\ first\ roll\ and\ no\ 6\ s\ on\ second\ roll) = {}^4C_2(\frac{1}{6})^2(\frac{5}{6})^2\times {}^2C_0(\frac{1}{6})^0(\frac{5}{6})^2\approx 0.0804$ $P(one\ 6\ on\ first\ roll\ and\ one\ 6\ on\ second\ roll) = {}^4C_1(\frac{1}{6})^1(\frac{5}{6})^3\times {}^3C_1(\frac{1}{6})^1(\frac{5}{6})^2\approx 0.1340$ $P(no\ 6\ s\ on\ first\ roll\ and\ two\ 6\ s\ on\ second\ roll) = {}^4C_0(\frac{1}{6})^0(\frac{5}{6})^4\times {}^4C_2(\frac{1}{6})^2(\frac{5}{6})^2\approx 0.0558$ $\therefore P(two\ 6\ s\ overall)\approx 0.0804+0.1340+0.0558\approx 0.27$ (to 2 decimal places)
- (b) Outcomes Assessed: (i) HE3 (ii) HE3 (iii) P4, H2 (iv) P4, H2

Marking Guidelines

Criteria	Marks
(i) • one mark for expressions for x and y in terms of θ and t	
(ii) • one mark for expression for y in terms of x	
\bullet one mark for rearrangement as quadratic in tan θ	
(iii) • one mark for discriminant in terms of X and Y	7
 one mark for using discriminant > 0 to give required inequality 	
(iv) • one mark for the values of the sum and product of $\tan \alpha$, $\tan \beta$ in terms of X	
• one mark for the value of $\alpha + \beta$	

Answer:

(i)
$$x = 50 t \cos \theta$$
 and $y = 50 t \sin \theta - 5t^2$
(ii) $t = \frac{x}{50 \cos \theta} \implies y = x \frac{\sin \theta}{\cos \theta} - \frac{5x^2}{2500 \cos^2 \theta}$
 $500 y = 500 x \tan \theta - x^2 \sec^2 \theta$
 $= 500 x \tan \theta - x^2 (1 + \tan^2 \theta)$
 $= 500 x \tan \theta - x^2 - x^2 \tan^2 \theta$
 $\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$

(iii) Projectile passes through the point (X, Y) if $\tan \theta$ satisfies the quadratic equation $X^2 \tan^2 \theta - 500 X \tan \theta + (X^2 + 500 Y) = 0$ This equation has two distinct solutions for $\tan \theta$,

and hence for
$$\theta$$
, provided its discriminant $\Delta > 0$.

$$\Delta = (-500 \text{ X})^2 - 4 X^2 (X^2 + 500 \text{ Y})$$

$$= 4X^2 (62500 - X^2 - 500 \text{ Y})$$

 $\therefore \Delta > 0$ provided $500 Y < 62500 - X^2$

(iv) If the projectile passes through the point
$$(X, X)$$
 where $500 X < 62500 - X^2$, then the equation $X^2 \tan^2 \theta - 500 X \tan \theta + (X^2 + 500 X) = 0$ has two distinct real roots $\tan \alpha$, $\tan \beta$ where $\tan \alpha + \tan \beta = \frac{500 X}{X^2} = \frac{500}{X}$ and $\tan \alpha \tan \beta = \frac{X^2 + 500 X}{X^2} = 1 + \frac{500}{X}$

$$\therefore \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{500}{X} \div \left(-\frac{500}{X}\right) = -1$$
Since $0 < \alpha + \beta < \pi$, $\alpha + \beta = \frac{3\pi}{4}$.