

YCLE

MODÉLISATION DES CHAÎNES DE SOLIDE : LOIS ENTRÉES/SORTIES ET CONTRAINTES GÉOMÉTRIQUES

TP 3

Imprimante 3D Delta

1 DECRIRE LA STRUCTURE DU SYSTEME

1.1 Objectif

L'objectif est ici de procéder à la modélisation structurelle du système de l'imprimante 3D micro Delta.

1.2 Modélisation et analyse du mécanisme

Activité 1.

Expérimentation	Modélisation
En observant la maquette réelle et en s'aidant des annexes proposer un une modélisation des liaisons du	 Prendre en main le modèle SolidWorks : fichier imprimante microdelta.SLDASM.
mécanisme en construisant un graphe des liaisons	 Procéder à l'analyse du mécanisme dans meca3D et relever le degré d'hyperstatisme et de mobilité
	cinématique du système.

2 ETUDE CINEMATIQUE DU SYSTEME

2.1 Objectifs

Le but de l'étude cinématique est de caractériser la relation entre la translation des chariots et la position de la buse d'impression, afin de générer les commandes d'axes au sein du logiciel d'impression.

2.2 Mise en œuvre expérimentale et modélisation

Activité 2.

Expérimentation	Modélisation
On désire valider expérimentalement le volume de travail	En s'inspirant du schéma cinématique 3D donné en début
donné dans l'extrait du diagramme des exigences req 3.1	de sujet, réaliser le graphe de liaisons du mécanisme
situé en début de sujet.	d'imprimante Micro Delta.
Donner le protocole expérimental afin de valider le volume utile de travail. Préciser le volume réel obtenu par la mesure (un croquis est apprécié!).	

2.3 Détermination de la loi d'entrée-sortie

Activité 3.

Expérimentation	Modélisation/simulation

Le système fourni dispose d'une feuille de papier millimétré avec l'axe \vec{x} gradué de -70 mm à +70 mm. Cette grandeur sera notée x buse.

• Au moyen d'un réglet gradué, relever les hauteurs z_i des axes supérieurs des trois biellettes i (points L_i ou K_i) et le plan horizontal $(0, \vec{x}, \vec{y})$.

Reporter les mesures obtenues dans le tableau *Excel* fourni (nommé « *Loi_E-S_MicroDelta_eleve* »)

Commenter ces courbes.

•

Afin de retrouver analytiquement z_1 , z_2 et z_3 , nous allons écrire 3 bouclages géométriques dans (O Ot P_i Q_i).

On écrira ainsi:

$$\overrightarrow{OQ_i} = \overrightarrow{OO_t} + \overrightarrow{O_tP_i} + \overrightarrow{P_iQ_i}$$

La tête d'impression se translatant horizontalement suivant l'axe \vec{x} , on peut écrire :

$$\overrightarrow{OO_t} = x \cdot \vec{x} + Z_0 \cdot \vec{z}$$

- Ecrire les trois équations vectorielles correspondant aux trois bouclages. On les exprimera en fonction de I, R, d, Z₀ et z.
- Dans chaque équation, isoler le vecteur correspondant aux biellettes (longueur l). En projetant le reste des vecteurs dans la base $(\vec{x}, \vec{y}, \vec{z})$, calculer la norme de chaque biellette. Isoler alors les zi dans chaque équation. On obtient alors :

$$z_1 = \sqrt{l^2 - \left(x - \frac{\sqrt{3}}{2}(d - R)\right)^2 - \frac{1}{4}(d - R)^2 + Z_0}$$

$$z_2 = \sqrt{l^2 + \left(x - \frac{\sqrt{3}}{2}(d - R)\right)^2 - \frac{1}{4}(d - R)^2} + Z_0$$

$$z_3 = \sqrt{l^2 - x^2 - (d - R)^2} + Z_0$$

Avec: I = 144 mm; R = 98 mm; d = 33 mm; $Z_0 = 12.5 \text{ mm}$

 Reporter ces valeurs analytiques de z₁, z₂ et z₃ dans le tableau de mesure du fichier Excel « Loi_E-S_MicroDelta_eleve ».

2.4 Simulation numérique avec SolidWorks/Meca3D

On dispose d'un modèle SolidWorks / Méca3D fourni. Le modèle cinématique Méca3D est presque complet, il manque juste la liaison permettant de modéliser facilement le mouvement de translation horizontale entre la tête d'impression et le bâti.

- **Activité 4.** Quelle liaison entre la tête d'impression et le bâti doit -on rajouter au modèle Méca3D afin de modéliser cette translation ? Faire cette modification.
- **Activité 5.** Paramétrer le mouvement et faire le calcul en lançant une étude géométrique. Remplir alors le tableau de résultats du fichier *Excel* « *Loi_E-S_MicroDelta_eleve* ».

3 ANALYSE DES ECARTS ENTRE MODELES ANALYTIQUE, NUMERIQUE ET EXPERIMENTAL

Nous allons ici nous intéresser aux **écarts** entre les **modèles d'étude** : Etude expérimentale, étude numérique (*SolidWorks – Meca3D*) et étude analytique.

- Remplir le tableau de résultats du fichier *Excel* « *Loi_E-S_MicroDelta_eleve* » en complétant les colonnes Dz₁, Dz₂ et Dz₃ correspondant aux **écarts** entre modèles expérimental et analytique. Les écarts trouvés Sont-ils significatifs ? Peut-on alors valider les modèles (numérique et analytique) ?
- Au vu de ces écarts, commenter qualitativement l'exigence req 2.2 donnée en début de sujet. A quoi peut-on attribuer ces écarts et donc cette imprécision de positionnement ?