1.	Which of the following sentence is a proposition?
	A. What is the height of Himalaya?
	B. Close the door
	C. How beautiful is Rose?
	D. New Delhi is the capital city of India
	ANSWER: D
2.	Propositions which do not certain any of the logical operators or connec-
	tives are called
	A. atomic propositions
	B. compound propositions
	C. conditional propositions
	D. biconditional propositions
	ANSWER: A
3.	A compound proposition $P = P(p_1, p_2, \dots, p_n)$ where p_1, p_2, \dots, p_n are
	variables is called a if it is true for every truth assignment for
	p_1, p_2, \cdots, p_n .
	A. contradiction
	B. tautology
	C. quantifiers
	D. tautological implication
	ANSWER: B

- 4. The statement which contain one or more atomic statements and some connective are called _____
 - A. atomic statement
 - B. conditional statement
 - C. biconditional statement
 - D. molecular statements

ANSWER: D

- 5. A compound proposition $P = P(p_1, p_2, \dots, p_n)$ where p_1, p_2, \dots, p_n are variables is called a ——— if it is false for every truth assignment for p_1, p_2, \dots, p_n .
 - A. tautology
 - B. universal quantifier
 - C. contradiction
 - D. conditional propositions

ANSWER: C

6. The dual of $((P \lor Q) \land R) \lor T$ is

A.
$$((P \lor Q) \lor R) \lor T$$

B.
$$((P \wedge Q) \vee R) \wedge T$$

C.
$$((P \land Q) \lor R) \land F$$

D.
$$((P \lor Q) \land R) \lor F$$

ANSWER: C

- 7. A premise may be introduced at any point in the derivation is called ______
 - A. Rule P
 - B. Rule T
 - C. Rule P and rule T
 - D. Rule C

ANSWER: A

- 8. $p \rightarrow q$ is logically equivalent to
 - A. $\neg p \rightarrow \neg q$
 - $\mathbf{B.} \neg p \rightarrow q$
 - C. $\neg p \land q$
 - D. $\neg p \lor q$

ANSWER: D

- 9. The contrapositive of $q \rightarrow p$ is
 - A. $p \rightarrow q$
 - B. $\neg p \rightarrow \neg q$
 - C. $\neg q \rightarrow \neg p$
 - D. $\neg p \rightarrow q$

ANSWER: B

- 10. The proposition $(p \lor q) \leftrightarrow (q \lor p)$ is a A. universal quantifier
 - B. existential quantifier
 - C. contradiction
 - D. tautology

ANSWER: D

- 11. The symbolic form of the statement "Every book with a blue cover is a mathematics book" is
 - A. $\exists x (B(x) \to M(x))$
 - $\mathbf{B.}\ \forall x(B(x)\to M(x))$
 - C. $\forall x (B(x) \land M(x))$
 - D. $\exists x (B(x) \land M(x))$

ANSWER: B

- 12. The set of premises is said to be ______ if their conjunction implies a contradiction
 - A. tautology
 - B. consistent
 - C. inconsistent
 - D. universe of discourse

ANSWER: C

13. The symbolic form of the following is "If Raja takes calculus or Anand takes analytical geometry then Arun will take English"

A.
$$(p \lor q) \to r$$

B.
$$(p \lor q) \land r$$

C.
$$p \lor (q \rightarrow r)$$

D.
$$p \wedge (q \rightarrow r)$$

ANSWER: A

- 14. When a quantifier is used on a variable x or when we have to assign a value to this variable to get a proposition, the occurrence of the variable is said to be _____
 - A. universal specification
 - B. existential specification
 - C. free variable
 - D. bound variable

ANSWER: D

15. The disjunctive syllogism rule is given by

A.
$$[(p \land q) \land \neg p] \rightarrow q$$

B.
$$[(p \lor q) \land \neg p] \to q$$

C.
$$[p \land (p \rightarrow q)] \rightarrow q$$

D.
$$[\neg q \land (p \rightarrow q)] \rightarrow \neg p$$

ANSWER: B

- 16. $P \vee F$ is equivalent to
 - A. P
 - B. T
 - C. F
 - D. $\forall x P(x)$

ANSWER: A

- 17. $\neg \exists x P(x)$ is equivalent to
 - A. $\exists x P(x)$
 - **B.** $\forall x P(x)$
 - C. $\forall x \neg P(x)$
 - D. $\exists x \neg P(x)$

ANSWER: C

- 18. The modus ponen rule is
 - A. $[\neg p \land (p \rightarrow q)] \rightarrow q$
 - B. $[p \land (p \rightarrow q)] \rightarrow q$
 - C. $[p \land (\neg p \rightarrow q)] \rightarrow q$
 - D. $[p \land (p \rightarrow \neg q)] \rightarrow q$

ANSWER: B