Chapitre 6

Couche Liaison: Protocoles

Plan

- HDLC
- PPP
- MAC ET LLC

Quelques protocoles

- Réseaux publics de télécommunications
 - HDLC
- Liaison point à point (connexion à Internet)
 - -PPP
- Réseaux locaux
 - MAC et LLC

Quelques protocoles de couche 2

HDLC

X25

- X25 est une norme
 - mise au point dans les années 70,
 - utilisée, entre autres, par le réseau public Transpac.
- X25 propose trois couches dont
 - la première X25-1 (ou X21) définit une interface avec un débit synchrone de 64kb/s et correspond à la couche physique du modèle OSI,
 - la seconde X25-2 correspond à la couche liaison du modèle OSI.

X25-2

- Le protocole de base est HDLC (High level Data Link Control).
- Deux modes de liaison sont définis :
 - le mode non équilibré ou mode LAP (Link Access Procedure),
 - le mode équilibré ou mode LAPB (Balanced Link Access Procedure).

Modes de liaison

- Mode non équilibré (LAP)
 - liaison point à point ou multipoint,
 - Une station primaire (maître) envoie des trames de commande et une station secondaire (esclave) envoie des trames de réponse.
- Mode équilibré (LAPB)
 - liaison point à point,
 - chaque station possède une fonction primaire et secondaire.

Format des trames HDLC

Champs de la trame

- Fanions : délimiteurs de trame
- Adresse : champ sous-utilisé dans Transpac (liaison point à point)
- Commande : voir plus loin
- Données : une suite de bits généralement groupée en octets (128 à 512 pour Transpac)
- FCS (Frame Check Sequence) : séquence de détection d'erreurs égale au reste de la division du polynôme associé aux différents champs de la trame par X¹⁶ + x¹² + x⁵ + 1 (dans l'avis V41).

Types de trames

- Trois types de trames sont utilisées :
 - trames I (Information) : données à transmettre,
 - trames S (Supervisory): gestion des erreurs et du flux,
 - trames U (Unnumbered) : établissement et libération de la liaison.

Champ Commande

Trame I

- N(S) correspond au numéro, modulo 8, de la trame émise (Sent Frame).
- N(R) représente un acquittement « collectif » en indiquant le numéro de la prochaine trame attendue (Requested Frame).
- P/F signifie (entre autres):
 - P (Poll) si station primaire. P/F à 1 indique qu'un acquittement immédiat est demandé.
 - F (Final) si station secondaire. P/F à 1 indique une fin de transmission.

Trame S

- Le champ S possède 4 valeurs :
 - 00 signifie RR (Receiver Ready) : prêt à recevoir de nouvelles trames.
 - 01 signifie RNR (Receiver Not Ready) : pas prêt à recevoir de nouvelles trames.
 - 10 signifie REJ (Reject) : demande la retransmission des trames de numéro supérieur à N(R).
 - 11 signifie SREJ (Selctif Reject) : demande la retransmission de la trame de numéro N(R).

Trame U

- Le champ M possède 32 valeurs dont :
 - 00111 signifie SABM (Set Asynchronous Balanced Mode): établit une liaison en mode équilibré LAPB.
 - 01000 signifie DISC (Disconnected) : demande de déconnexion.
 - 01100 signifie UA (Unnumbered Acknowledgement) : acquitte une trame non numérotée.

Exemple d'échange

PPP

SLIP et PPP

- Deux protocoles sont disponibles pour gérer une connexion à Internet :
 - SLIP (Serial Line IP) défini dans le RFC 1055,
 - PPP (Point to Point Protocol) défini dans les RFCs
 1661, 1662 et 1663.
- SLIP est plus ancien que PPP et comporte un certain nombre d'insuffisances.
- Ces protocoles sont définis pour des liaisons point à point.

PPP

- PPP est un protocole défini par trois composants :
 - un format de trame (proche de celui de HDLC),
 - un protocole LCP (Link Control Protocol) pour établir, configurer et tester une connexion,
 - un protocole NCP (Network Control Protocol)
 permettant la négociation de paramètres pour chacun des protocoles réseaux supportés.

Connexion

- Le scénario classique d'une connexion chez un fournisseur d'accès à Internet est le suivant :
 - appel au téléphone via un modem chez le fournisseur,
 - établissement de la liaison physique lorsque le routeur décroche,
 - envoi de paquets LCP encapsulés dans des trames PPP pour fixer les paramètres de la connexion,
 - envoi de paquets NCP encapsulés dans des trames PPP pour obtenir une adresse IP.
- Remarque : encapsulés signifie « placés dans le champ Données ».

Déconnexion

- Le scénario d'une déconnexion à Internet par l'utilisateur est le suivant :
 - envoi de paquets NCP encapsulés dans des trames PPP pour libérer l'adresse IP.
 - envoi de paquets LCP encapsulés dans des trames PPP pour libérer la connexion,
 - libération de la liaison physique lorsque le modem raccroche.

Connexion à Internet

Format des trames PPP

Champs de la trame

- Fanions : délimiteurs de trames
- Adresse et Commande : valeurs fixées (et non utilisées).
- Protocole : indique quel type de paquet est transporté dans les données.
- Données : taille maximale par défaut égale à 1500 octets.
- FCS: champ pour la détection d'erreurs.

Champ Protocole

Code	Protocole
0021	IP
0029	AppleTalk
002B	IPX
8021	NCP (pour IP)
C021	LCP

HDLC et PPP

- PPP utilise un format de trame très proche de celui de HDLC.
- Cependant, HDLC est un protocole orienté bit tandis que PPP est un protocole orienté caractère.
- Par exemple, PPP utilise des caractères de transparence.

MAC et LLC

Couche 2 des réseaux locaux

- Pour les réseaux locaux, la norme IEEE divise la couche liaison en 2 sous-couches :
 - La sous-couche MAC (Medium Access Control) qui définit la méthode d'accès au support de transmission,
 - La sous-couche LLC (Logical Link Control)
 qui rend transparentes à la couche Réseau les différences de la sous-couche MAC.

Sous-couche MAC

- Cette sous-couche a pour rôle de :
 - gérer l'accès au support physique car il s'agit d'une liaison multipoint,
 - structurer les bits d'information en trames (dites MAC),
 - gérer les adresses physiques (dites MAC) des cartes réseaux.
- Elle est indépendante du média : câble cuivre, fibre optique, onde hertzienne ...

Adressage physique

• Dans le cas d'une liaison multipoint, il est nécessaire de disposer d'une adresse physique pour chaque machine.

Adresse MAC

- Les réseaux Ethernet, Token Ring et FDDI utilisent le même type d'adressage : l'adressage MAC.
- Cette adresse (sur 48 bits) permet d'identifier de manière unique un nœud dans le monde.

Format d'une adresse MAC

- I/G (Individual/Group)
 - si le bit est à 0 alors l'adresse spécifie une machine unique (et non un groupe).
- U/L (Universal/Local)
 - si le bit est à 0 alors l'adresse est universelle et respecte le format de l'IEEE.

Adresse Constructeur

• Une adresse universelle est attribuée par l'IEEE à chaque constructeur.

Constructeur	Adresse (3 octets)
Cisco	00000C
3Com	0000D8, 0020AF,
	02608C, 080002
Intel	00AA00
IBM	08005A

Types d'adressage

- Adresse pour la diffusion générale (broadcasting) : tous les bits à 1
- Adresse pour la diffusion restreinte (multicasting): bit I/G à 1
- Adresse correspondant à un unique destinataire (unicasting) : bit I/G à 0

Format des trames Ethernet

Champs de la trame

- Préambule : sert à synchroniser le récepteur.
- SFD (Start Frame delimiter) : délimiteur.
- Longueur : nombre d'octets du champ Données.
- Données : informations provenant de la souscouche LLC. La longueur de ce champ est comprise entre 0 et 1500 octets.
- Bourrage (PAD) : octets de bourrage sans signification, insérés si la longueur du champ Données est insuffisante (inférieure à 46 octets).
- FCS: champ pour la détection d'erreurs.

Deux types de trame Ethernet

- Le format présenté ci-dessus est celui de la norme 802.3. Le champ Données comprend alors une trame LLC.
- Le second format, Ethernet 2.0, utilise un champ Type à la place du champ Longueur. Le champ Données comprend alors un paquet en provenance directe de la couche réseau.

Sous-couche LLC

- Cette sous-couche a pour rôle de :
 - cacher à la couche réseau les différences de topologie physique,
 - assurer le transport de trames entre 2 stations.
- Elle est indépendante de la méthode d'accès (par jeton ou par contention).

Types de service

- La sous-couche LLC offre trois types de service :
 - Le service de type 1 (LLC1) est un service sans connexion (de type datagrammes).
 - Le service de type 2 (LLC2) est un service en mode connecté.
 - Le service de type 3 (LLC3) est un service sans connexion mais avec acquittements.

Format des trames LLC

Champs de la trame

- I/G (Individual/Group)
- C/R (Command/ Réponse)
- SAP (Service Access Point): sert à identifier le protocole de niveau supérieur (06 pour IP et 7E pour X25-3).
- Contrôle : même principe (pour LLC2) que le champ Commande de HDLC.