MICHIGAN STATE UNIVERSITY

MATH 234 - SPRING 2024

LECTURE NOTES

1 Cylindrical coordinates

- Cylindrical coordinates represent a point P(x, y, z) in space by ordered triples (r, θ, z) in which (r, θ) is the polar coordinate of (x, y).
- z remains unchanged.

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases} \quad \text{and} \quad \begin{cases} r^2 = x^2 + y^2 \\ \frac{y}{x} = \tan \theta. \end{cases}$$

• **Example.** Change (x, y, z) = (-1, 1, 1) into cylindrical coordinates.

Proof. $r^2=x^2+y^2=2$, thus $r=\sqrt{2}$. Then $\tan\theta=\frac{y}{x}=\frac{1}{-1}=-1$, thus $\theta=\frac{3\pi}{4}$. Hence

$$(-1,1,1)\mapsto \left(\sqrt{2},\frac{3\pi}{4},1\right).$$

• **Example.** Change $(\sqrt{2}, 3\pi/4, 2)$ to Cartesian coordinates.

Proof. We have $x = r\cos\theta = \sqrt{2} \times \left(-\frac{1}{\sqrt{2}}\right) = -1$ and $y = r\sin\theta = \sqrt{2} \times \left(\frac{1}{\sqrt{2}}\right) = 1$. Thus $(\sqrt{2}, 3\pi/4, 2) \mapsto (1, -1, 2)$.

2 Spherical coordinates

- $(x,y,z) \mapsto (\rho,\theta,\phi)$, where basically we repeat the polar coordinate first, and the *height* z is tracked via the variable ϕ , the angle with Oz. Note that the order is sometime written as (r,ϕ,θ) . **Pay attention to the order!**
- The relations, still introducing an extra variable r as in polar coordinates (it will be very useful)

$$\begin{cases} x = (\rho \cos \phi) \cos \theta \\ y = (\rho \cos \phi) \sin \theta \\ z = \rho \cos \phi \end{cases} \quad \text{and} \quad \begin{cases} \rho^2 = x^2 + y^2 + z^2 \\ r = \rho \sin \phi \end{cases} , \quad \theta \in [0, 2\pi], \phi \in [0, \pi]$$

- If $\phi > \frac{\pi}{2}$ then z < 0, the angle make *P* lies below the *Oxy*-plane.
- **Example.** Convert (1, 1, 0) into spherical coordinate.

Proof. $\rho^2=x^2+y^2+z^2=2$, thus $\rho=\sqrt{2}$. Now $z=\rho\cos\phi$ implies $0=\sqrt{2}\cos\phi$, thus $\phi=\frac{\pi}{2}$. Finally $\tan\theta=\frac{y}{x}=1$, thus $\theta=\frac{\pi}{4}$ (since x>0,y>0). We conclude

$$(1,1,0)\mapsto \left(\sqrt{2},\frac{\pi}{4},\frac{\pi}{2}\right)=(r,\theta,\phi).$$

• Example. True/False: Consider the point with spherical coordinates $(\rho, \theta, \phi) = (4, \frac{3\pi}{4}, \frac{5\pi}{7})$. The product of the Cartesian coordinates, xyz, is positive.

Proof. **True**. We see that $\phi = \frac{5\pi}{7} > \frac{\pi}{2}$, thus z < 0. Now $\theta = \frac{3\pi}{4}$, thus x > 0, y < 0 (draw a picture). Therefore xyz > 0.

3 Practice

• **Example.** Convert the equation $z = \sqrt{x^2 + y^2}$ into cylindrical coordinates and spherical coordinates.

Proof.

- Cylindrical: z = r.
- Spherical: $\rho\cos\phi=r=\rho\sin\phi$, thus $\tan\phi=1$, thus $\phi=\frac{\pi}{4}$ is the equation of the cone!
- Example. Identify the surface whose equation is $z = 4 r^2$ in cylindrical coordinate.

Proof. We have $z = 4 - x^2 - y^2$, thus this is a elliptical paraboloid (one term of 1st order, two terms of second order having the same sign).

• **Example.** Convert to x, y, z the surface: $\rho = \sin \phi \cos \phi$.

Proof. We can do

$$(x^2 + y^2 + z^2)^{\frac{3}{2}} = \rho^3 = (\rho \sin \phi)(\rho \cos \phi) = rz = z\sqrt{x^2 + y^2}.$$

The answer is $(x^2 + y^2 + z^2)^{\frac{3}{2}} = z\sqrt{x^2 + y^2}$.

• **Example.** Identify the surface whose equation is: $\rho = \sin \phi \cos \theta$.

Proof. We can do

$$x^2 + y^2 + z^2 = \rho^2 = (\rho \sin \phi) \cos \theta = r \cos \theta = x$$

Therefore

$$\left(x - \frac{1}{2}\right)^2 + y^2 + z^2 = \frac{1}{4}$$

This is a sphere centered at $(\frac{1}{2}, 0, 0)$ with radius $\frac{1}{2}$, this is a *ellipsoid*.