| City | Coll | ege | of | New   | York   |
|------|------|-----|----|-------|--------|
| -10  | 0011 | 252 | 01 | 11011 | 1 0111 |

Laboratory Exercise Report: D – Latch Functionality

Zi Xuan Li
CSC 211 Fall 2022
Professor Izidor Gertner
November 2<sup>nd</sup>, 2022

## Objective:

The goal of this laboratory exercise is to find and use the built-in D-Latch component in Quartus and verify the component's functionality for all inputs of D, PRN, CLRN, ENA, and Q using the verification and debugging tool, "University Program VWF".

## Functionality and Specifications:



Figure 1: The image above is a screenshot of the D-Latch circuit with its inputs and outputs named accordingly.

## Simulation:



Figure 2: The image above is a screenshot of the vector waveform output of the D-Latch.

| Enable (Clock) | D (IN D) | Q (OUT Q) |
|----------------|----------|-----------|
| 0              | 0        | latch     |
| 0              | 1        | latch     |
| 1              | 0        | 0         |
| 1              | 1        | 1         |

Figure 3: This is the truth table of the D-Latch.

Ignoring the OUT\_Q when inputs "PresetNegated" and "ClearNegated" is at 00, 01, and 10 respectively we can map the OUT\_Q to IN\_D and CLK. This is because by ignoring these inputs at 00, 01, and 10 we are only looking at the functionality of the D-Latch when both PRN and CLRN is tied to 1. Looking at the waveform output we can map that when CLK and IN\_D are both high (1) at 750ns to 800ns that OUT\_Q is 1. When CLK is high and IN\_D is low at 850ns to 900ns that OUT\_Q is 0. Otherwise, we can notice by the pattern of the waveform that until CLK is at a rising edge that OUT\_Q outputs the same value from before.



Figure 4: The image above is a close up of the VWF at 750ns to 900ns with input signals being CLK, IN\_D, CLEARNEGATED, PRESETNEGATED, OUT\_Q ordered from top to bottom respectively.

## **Conclusions:**

In this laboratory exercise I learned how the D-Latch component functions which is that, when the enable input is high (1) you can store a bit (1 or 0) in the latch by setting D to whatever stored bit is desired. When the enable input is low (0), the latch ignores the input of D and holds onto the stored bit previously and outputting that stored value at Q.