Gröbner Bases — Homework 1

Philip Warton

January 11, 2022

Problem 1

Let $S = \{x - y, z\} \subseteq \mathbb{R}[x, y, z]$. Describe the variety V(S) both using set notation and geometrically.

Solution

We know that the variety V(S) is the set of points such that every function in S is equal to 0 at said point. That is, in set notation,

$$V(S) = \{(x, y, z) \subset \mathbb{R}^3 \mid x - y = 0 = z\}$$

= \{(x, y, z) \subseteq \mathbb{R}^3 \cong x = y \text{ and } z = 0\}.

We can also just write this as all points in \mathbb{R}^3 of the form $(\alpha, \alpha, 0)$ where $\alpha \in \mathbb{R}$. Geometrically, this consists of a straight line passing through the origin that lies in the x-y plane that is represented by the equation x = y.

Problem 2

Let K be a field. Recall that for a set $S \subseteq K^n$, we define

$$I(S) = \{ f \in K[x_1, \cdots, x_n] \mid f(\vec{a}) = 0 \text{ for all } \vec{a} \in S \}$$

Prove that I(S) is an ideal of the ring $K[x_1, \dots, x_n]$.

Solution

Proof. First, we will show that $I(S) \subset K^n[x]$ is a subring, and then we will show that it is an ideal. To show that I(S) is a subring, first one should notice that the additive identity, 0 is trivially an element of I(S) since clearly the 0 function will map everything to 0, making it a member of I(S). Let $f \in I(S)$ arbitrarily, then the typical additive inverse will still evaluate to 0, so we say that $-f \in I(S)$. Let $f,g \in I(S)$ arbitrarily, then we say that for any $\vec{a} \in S$ $f(\vec{a}) = 0 = g(\vec{a})$. So then $(f+g)(\vec{a}) = f(\vec{a}) + g(\vec{a}) = 0 + 0 = 0$ so we say that I(S) is closed under addition. Recall that a subring I of a ring R is an ideal if for every $x \in R, y \in I$, we can say $xy \in I$. In our case specifically, let $S \subseteq K^n$, let

$$f \in K[x_1, \cdots, x_n],$$

and let

$$g \in I(S)$$
.

Choose any $\vec{a} \in S$ to be arbitrary. Then

$$(fg)(\vec{a}) = f(\vec{a})g(\vec{a})$$
$$= f(\vec{a}) \cdot 0$$
$$= 0$$

 \Box

Since $(fg)(\vec{a}) = 0$ for any $\vec{a} \in S$, it follows that $fg \in I(S)$ and it must be true that I(S) is an ideal.