Lecture 10

Chapter 20: Entropy and the second law of thermodynamics

20-1 Second Law of Thermodynamics in terms of Entropy: $\Delta S \geq 0$

Reversible process: Let's check the change in entropy of the enlarged system consisting of gas and reservoir. We can then calculate separately the entropy changes from the following equations.

$$\Delta S = S_f - S_i = \int_i^f \frac{dQ}{T} = \frac{1}{T} \int_i^f dQ = \frac{Q}{T}$$

$$T = constant$$

$$\Delta S_{gas} = -\frac{Q}{T}$$
$$\Delta S_{res} = +\frac{Q}{T}$$

$$\Delta S = -\frac{Q}{T} + \frac{Q}{T} = 0$$

(a) Initial state i

(b) Final state j

"If a process occurs in a closed system, the entropy of the system increases for irreversible processes ($\Delta S > 0$) and remains constant for reversible processes($\Delta S = 0$). It never decreases."

That is,
$$\Delta S \geq 0$$

In the real world almost all processes are irreversible to some extent because of friction, turbulence, and other factors, so the entropy of real closed systems undergoing real processes always increases. Processes in which the system's entropy remains constant are always idealizations.

20-2 Entropy in the Real World: Engines

Heat Engine: A heat engine, or more simply, an engine, is a device that extracts energy from its environment in the form of heat and does useful work. At the heart of every engine is a working substance.

Carnot Engine: Although an ideal gas does not exist, any real gas approaches ideal behavior if its density is low enough. Similarly, we can study real engines by analyzing the behavior of an ideal engine.

"An ideal engine where all processes are reversible and no wasteful energy transfers occur due to, say, friction and turbulence".

Schematic diagram of a Carnot Engine:

We shall focus on a particular ideal engine called a Carnot engine after the French scientist and engineer N. L. Sadi Carnot (pronounced "cah-no"), who first proposed the engine's concept in 1824. This ideal engine turns out to be the best (in principle) at using energy as heat to do useful work. Surprisingly, Carnot was able to analyze the performance of this engine before the first law of thermodynamics and the concept of entropy had been discovered.

Schematic of a Carnot engine Heat is absorbed. $Q_{\rm H}$ W Work is done by the engine. $T_{\rm L}$

pV plot of the Carnot cycle:

If we place the cylinder in contact with the high temperature reservoir at temperature T_H , heat Q_H is transferred to the working substance from this reservoir as the gas undergoes an isothermal expansion from volume V_a to volume V_b .

Similarly, with the working substance in contact with the low-temperature reservoir at temperature T_L , heat Q_L is transferred from the working substance to the low-temperature reservoir as the gas undergoes an isothermal compression from volume V_c to volume V_d .

Thus the heat transfers to or from the working substance only during the isothermal processes ab and cd.

Isothermal expansion at constant T_H from a to b states:

Heat Q_H is absorbed by the working substance.

Pressure decreases from P_a to P_b

Volume increases from V_a to V_b

$$W = nRT_H \ln \frac{v_b}{v_a}$$
 [positive]

During the processes ab and bc, the working substance is expanding and thus doing positive work as it raises the weighted piston. This work is represented by the area under curve abc.

Adiabatic expansion from b to c states:

Heat Q is zero.

Pressure decreases from P_b to P_c

Volume increases from V_b to V_c

$$W = \frac{P_b V_b - P_c V_c}{v - 1}$$
 [positive]

Isothermal compression at constant T₁ from c to d states:

Heat Q_L is released.

Pressure increases from P_c to P_d

Volume decreases from V_c to V_d

$$W = nRT_L \ln \frac{V_d}{V_c}$$
 [negative]

During the processes cd and da, the working substance is being compressed, which means that it is doing negative work on its environment. This work is represented by the area under curve cda.

Adiabatic compression from d to a states:

Heat Q is zero.

Pressure increases from P_d to P_a

Volume decreases from V_d to V_a

$$W = \frac{P_d V_d - P_a V_a}{v - 1}$$
 [negative]

Carnot cycle:

W = abcda area inside the curve [positive]

The net work per cycle is the difference between these two areas and is a positive quantity equal to the area enclosed by cycle abcda (yellow area).

Carnot cycle on a temperature-entropy diagram

In the temperature–entropy (T-S) diagram the lettered points a, b, c, and d there correspond to the lettered points in the p-V diagram for the Carnot cycle.

The two horizontal lines in Fig. correspond to the two isothermal processes of the cycle. Process ab is the isothermal expansion and process cd is the isothermal compression of the cycle.

As the working substance (reversibly) absorbs energy Q_H as heat at constant temperature T_H during the expansion, its entropy increases. $\Delta S = \frac{+Q}{T}$

Similarly, during the isothermal compression cd, the working substance (reversibly) loses energy Q_L as heat at constant temperature T_L , and its entropy decreases. $\Delta S = \frac{-Q}{T}$

The two vertical lines correspond to the two adiabatic processes of the Carnot cycle. Because no energy is transferred as heat during the two processes (Q = 0), the entropy of the working substance is constant during them. $\Delta S = 0$

3. A 2.50 mol sample of an ideal gas expands reversibly and isothermally at 360 K until its volume is doubled. What is the increase in entropy of the gas?

Solution:

$$\Delta S = nRln \frac{V_f}{V_i} + nC_v ln \frac{T_f}{T_i}$$

$$\Delta S = nRln \frac{V_f}{V_i} + nC_v ln \frac{360}{360}$$

$$\Delta S = nRln \frac{V_f}{V_i} + nC_v ln 1$$

$$\Delta S = nRIn \frac{V_f}{V_i}$$

$$\Delta S = 2.5 \times 8.31 \times In \frac{2V}{V} = 2.5 \times 8.31 \times In 2$$

$$\Delta S = 14.4 \text{ J/K}$$
 (Answer)

4. How much energy must be transferred as heat for a reversible isothermal expansion of an ideal gas at 132 °C if the entropy of the gas increases by 46.0 J/K?

Solution:

$$\Delta S = \int_{i}^{f} \frac{dQ}{T} = \frac{1}{T} \int_{i}^{f} dQ$$
$$\Delta S = \frac{Q}{T}$$

$$\mathbf{Q} = \Delta \mathbf{S} \times \mathbf{T} \qquad [\Delta \mathbf{S} = \mathbf{46} \ \mathbf{J/K}]$$

$$Q = 46x408$$
 [T = (132 +273) K= 408 K]

$$Q = 1.88 \times 10^6 J$$
 (Answer)