DEGENERAZIONE MACULARE SENILE

L'USO DI CNN COME STRUMENTO DI DIAGNOSI

COS'È LA DMS

La degenerazione maculare senile è una **malattia oculare** legata all'invecchiamento

È la principale causa di perdita grave della visione centrale dopo i 55 anni

Se in stato avanzato, si manifesta causando **visione offuscata** o assente al centro del campo visivo.

COS'È LA DMS

La malattia colpisce la **macula***, ossia la porzione più centrale della retina.

La perdita della vista avviene perché le cellule visive **degenerano** e muoiono nella regione maculare della retina

^{*}Sensibile agli stimoli luminosi, la macula è responsabile della visione a colori ad alta risoluzione, della visione distinta e della percezione dei dettagli

TIPOLOGIE DI PRESENTAZIONE

Forma atrofica

Forma secca:

Si tratta di accumuli di scorie cellulari che possono riassorbirsi o calcificare.

Forma essudativa

Forma umida:

Oltre alle lesioni, si presenta la formazione anomala di nuovi vasi sotto la retina.

DIAGNOSTICA

La diagnosi di DMS si effettua mediante visita oculistica con esame del fondo oculare tramite **OCT*** (tomografia ottica a luce coerente).

*Tecnica di diagnosi basata sull'interferometria a luce bianca o a bassa coerenza, un fascio laser privo di radiazioni nocive che viene impiegato per analizzare le strutture oculari soprattutto retiniche e corneali mediante sezioni ad alta risoluzione.

IL PROBLEMA

PERSONE IN TUTTO IL MONDO AFFETTE DA DMS*

CASI DI COMPROMISSIONE DELLA VISTA DA MODERATA A GRAVE*

É evidente come sia sempre più necessario un sistema di elaborazione efficiente ed affidabile in grado di elaborare una **grande quantità di immagini** mediche dalle quali estrapolare una diagnosi accurata

RETI NEURALI: UNA PREZIOSA RISORSA

Le **reti neurali di convoluzione (CNN)** mostrano capacità di riconoscimento delle immagini superiori rispetto ad altri tipi di reti neurali.

Esistono infatti algoritmi basati su CNN in grado di individuare la DMS mediante l'analisi delle **fotografie a colori** del fondo oculare

CNN: COSA SONO

Rappresentano un sottoinsieme del **machine learning** e hanno un ruolo fondamentale negli algoritmi di deep learning.

Obiettivo: identificare delle features da un'immagine di input

Sono costituite da **livelli di convoluzione** connessi tra loro che identificano la stessa features in aree diverse dell'immagine

CNN: FUNZIONAMENTO

- 1) Ogni layer **identifica** la propria features tramite un filtro
- 2) L'output di ogni nodo diventa l'input del nodo successivo

L'IDEA

"Sviluppare un algoritmo di riconoscimento tramite CNN per identificare la malattia a partire dalle immagini ottenute da un'esame OCT"

COME?

Addestrando un **modello sequenziale** con un dataset di immagini OCT

L'ARCHITETTURA: KERAS E TENSORFLOW

KERAS

Una libreria di alto livello scritta in Python per l'apprendimento automatico e le reti neurali

TENSORFLOW

API sequenziale di Google basata sulle librerie di Keras

L'ARCHITETTURA: SCHEMA

IL DATASET UTILIZZATO

IEEE*DataPort*[™]

3200 SCAN DEL FUNDUS

46 POSSIBILI PATOLOGIE

BILANCIAMENTO DEI DATI

Per evitare **overfitting** nell'addestramento

Data Augmentation

Class Weights

```
imgfolder0 = Path(f"{train_dir}/ARMD")
imgfolder1 = Path(f"{train_dir}/OTHER")
image_count0 = len(list(imgfolder0.glob('*.png')))
image_count1 = len(list(imgfolder1.glob('*.png')))
weight_for_0 = (image_count0+image_count1)/image_count0
weight_for_1 = (image_count0+image_count1)/image_count1
class_weight = {0: weight_for_0, 1: weight_for_1}
print('Weight for class 0: {:.2f}'.format(weight_for_0))
print('Weight for class 1: {:.2f}'.format(weight_for_1))
```

COMPOSIZIONE

Modello sequenziale

•

MODELLO SEQUENZIALE

```
model = Sequential([
  data_augmentation,
  layers.Rescaling(1./255),
  layers.Conv2D(16, 3, padding='same', activation='relu'),-
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Dropout(0.2),
  layers.Flatten(), -
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes)
```

Input Layer

Convolutional e Pooling layers

Output Layer

RISULTATI

RISULTATI

Primo modello

Secondo modello

CARATTERISTICHE

Punti di forza

- Facile implementazione
- Poca potenza di calcolo

Punti di debolezza

- Dataset ridotto
- Richiede immagini alla stessa **risoluzione**

Di seguito, valutiamo delle possibili modifiche e **miglioramenti** volti ad ovviare a queste limitazioni.

1) VALIDAZIONE

cambiare **strategia di validazione** risolve i problemi dati da un Dataset ridotto

VALIDAZIONE

Risultati da un dataset ridotto (600 campioni ca.)

BLINDFOLD VALIDATION Fase di training

Dai **106s** a **110s**

 \triangle

Efficienza 91.17%

TEN-FOLD CROSS-VALIDATION Fase di training

Dai **176s** a **190s**

Efficienza 95.45%

2) STRUTTURA PIRAMIDALE

Integrare una **struttura piramidale delle caratteristiche** delle immagini risolve i problemi dati da immagini di risoluzioni diverse

Obiettivo: Matenere forti le features nonostante diverse risoluzioni o dimensioni delle immagini

L'integrazione avviene dopo il livello di pooling

STRUTTURA PIRAMIDALE

Risultati da 120.000 campioni ca.

Prima fase di apprendimento

Efficienza

senza piramide **87.2% ± 2.5%**

con piramide **92% ± 1.6%.**

Seconda fase di apprendimento

Efficienza

senza piramide **92.0% ± 1.6%**

con piramide **93.4% ± 1.4%.**

3) BIOMARCATORI

Questo metodo si applica ricercando sulle immagini specifici **biomarcatori** (indicatori di una possibile predisposizione alla malattia)

Su 20.000 campioni ca.

Efficienza 87%

Source: https://pubmed.ncbi.nlm.nih.gov/31358808/

CONCLUSIONI

Un dataset ridotto e un hardware altrettanto limitato non consentono di raggiungere le prestazioni di algoritmi più complessi e forniti.

Tuttavia, è possibile ottenere un'iniziale classificazione e screening velocemente e a bassissimo costo, ottenendo comunque un'efficienza del 65%.

Ciò dimostra come tecnologie anche semplici possano portare a **risultati** molto validi e come, sempre di più, esse siano una preziosa risorsa anche in ambito medico

GRAZIE PER L'ATTENZIONE

