Computer Vision Models Life-Cycle Management

Yi Li, Dec 2021

Pain Points for Current Projects

Data Quality Issues:

- Current Approach: manually check datasets through image by image.
- Difficulty to find annotation mistakes or weaknesses.
- Difficulty to identify failure modes (edge cases).

Model Evaluation Issues:

- Current Approach: compare different models based on aggregated performance measurements like mAP, rather than individual samples.
- Difficulty to identify the strengths/weaknesses of different models.
- Dis-bridge between dataset review and model evaluation

FIFTYONE

- FiftyOne is an open-source dataset curation and model analysis tool for visualizing, exploring, and improving computer vision datasets and models.
- Core capabilities other than curating datasets:
 - Finding annotation mistakes (features from Fiftyone.Brain: mistakenness, possible_missing, possible_spurious)
 - Removing redundant images (features from Fiftyone.Brain: uniqueness)
 - Evaluating models (features: eval_tp, eval_fp, eval_fn), as easy-to-use as sklearn and pandas
 - Visualizing embeddings (methods from Fiftyone.Brain: UMAP, t-SNE, PCA)
 - Working with geolocation (only supports simple [longitude, latitude] coordinate points)

https://voxel51.com/docs/fiftyone/ (open-source)

https://pypi.org/project/fiftyone-brain (closed-source)

CVAT (Computer Vision Annotation Tool)

- CVAT is free, online, interactive video and image annotation tool for computer vision.
- Tight integration between FiftyOne and CVAT
 - curate and explore datasets in FiftyOne and then send off samples or existing labels for annotation in CVAT with just one line of code.
 - annotate unlabeled datasets.
 - correct existing label deficiencies which have been identified.

https://github.com/openvinotoolkit/cvat

OpenMMLab

OpenMMLab covers a wide range of research topics of computer vision:

- classification,
- detection,
- segmentation,
- super-resolution,
- tracking,
- OCR,
- etc.

https://openmmlab.com/

Lifecycle Workflow (First Time)

Get Ground Truth Annotations

Annotation

Other tools: LabelBox, Scale AI, LabelStudio

Data Collection

OpenMMLab (Pytorch)

Model Training

Other tools: Detectron2

3et Prediction Annotations

Lifecycle Workflow (Re-Apply)

Data drift may happen when applying current models to new datasets.

Data Collection

Annotation

Other tools: LabelBox, Scale AI, LabelStudio

Visualize Annotations Find Annotation Mistakes

Future Steps for Argo-CD / Workbench Integration

- Deploy CVAT to our k8s cluster with Helm
 - Tutorial: https://github.com/openvinotoolkit/cvat/tree/develop/helm-chart
- Enable Fiftyone Connection for Related Projects
 - Enable port: 5151
- Integrate CVAT into Fiftyone:
 - 'export FIFTYONE_CVAT_URL=<Deployed_CVAT_URL>'

Takeaways

- It's critical to study the failure modes of a model so one can take the right actions to improve them.
- Finding potential annotation mistakes and exporting the problem samples for review/reannotation.
- Identifying scenarios that require additional training samples.
- Inspecting the hardest samples in datasets to diagnose the underlying issue, whether it be the models or the ground truth annotations.
- We can borrow ideas from closed-source <u>Fiftyone-Brain</u> and create our own assets which can be applied to other AI projects.

A&Q