# Artificial Intelligence, Blockchain, e Criptovalute nello Sviluppo Software

Lezioni 10, 11 e 12: Fondamenti di Data Science per l'analisi dello sviluppo software

Giancarlo Succi
Dipartimento di Informatica – Scienza e Ingegneria
Università di Bologna
g.succi@unibo.it



#### Content

- Linear Regression
- Correlation and Covariance
- Toward Inference





## Linear Regression



- Suppose that:
  - $\circ$  I want to relate two random scalar phenomena, X and Y, to identify the relationships existing between them,
  - I can measure their values several times i, so I can have a set of pairs  $(x_i, y_i)$  with i spanning the interval of observation, say  $i \in [0 \dots n-1]$

| i | X | Y  |
|---|---|----|
| 0 | 1 | 3  |
| 1 | 2 | 4  |
| 2 | 5 | 4  |
| 3 | 6 | -1 |
| 4 | 7 | 5  |
| 5 | 9 | 8  |



Using a simple and common approach, I may try to build a relationship between the two phenomena. However:

- What kind of relationships I am going to look for?
- How do I build it?



In other words, I have this set of points:





How can I build a line that represent the relationships between these two sets?





#### Linear Regression – Definition

#### We need to define:

- ullet A mean function that represents the relationship that I hypothesize between the phenomena X and Y
- A cost-minimization function to define the parameters of the mean function

#### We will use initially:

- As mean function the simple line
- As cost function the square of the errors between the modeled values and the real values

We define Ordinary Least Squares (OLS) Linear Regression as a simple line that minimizes a square error between modelled values and real values.



#### Linear Regression – Goal

This is what we would like to build:





#### Linear Regression – Alternative Goal 1

But we could have used as a mean function a cubic function:





#### Linear Regression – Alternative Goal 2

But we could have used as a mean function a fifth order function:





#### Linear Regression – All Goals

What are the differences between all these 3?





## Linear Regression – Formula (1/3)

I want to build a model of the kind:

$$Y = \theta_0 + \theta_1 X$$

Where X and Y are the phenomena that we are measuring.

#### Note:

- we know that there is no line passing for n arbitrary points with  $3 \le n$
- we need to introduce an approximation

$$\hat{Y} = \theta_0 + \theta_1 \hat{X} + \epsilon$$

- in our case  $\epsilon$  is the error introduced by the approximation
- as we said, our cost function, our distance from the model, will be the square of the error  $\epsilon^2$
- $\theta_0$  and  $\theta_1$  are called the regression coefficients



## Linear Regression – Formula (2/3)

#### Altogether:

- we have a set of pairs  $(x_i, y_i)$  with  $i \in [0 \dots n-1]$
- we want to build n linear equations of the kind (the mean function):

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i$$

• and we start with an approximation of the kind:

$$\hat{y}_i = \theta_0 + \theta_1 x_i$$



## Linear Regression – Formula (3/3)

#### Altogether:

• our goal is to compute  $\theta_0$  and  $\theta_1$  that minimize the quadratic error (the cost function)

$$\sum_{i=0}^{n-1} \epsilon_i^2$$

- notice that:
  - we will denote as  $(x_i,y_i)$  the original data
  - we will denote as  $(\hat{x}_i, \hat{y}_i)$  the approximation that we obtain in the linear regression
  - $x_i$  and  $\hat{x}_i$  are the same
  - there could be errors in the slides and you get extra credits by finding them



#### Linear Regression – Computation

Since

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i$$

• therefore

$$\epsilon_i = y_i - \theta_0 - \theta_1 x_i$$

• we need to minimize:

$$\sum_{i=0}^{n-1} \epsilon_i^2 = \sum_{i=0}^{n-1} (y_i - \theta_0 - \theta_1 x_i)^2$$

• we need to zero the two partial derivatives:

$$\frac{\partial \sum_{i=0}^{n-1} (y_i - \theta_0 - \theta_1 x_i)^2}{\partial \theta_i}$$

• so we have to solve two simple equations and then to check the Hessian



## Linear Regression – Computation for $\theta_0$

$$\frac{\partial \sum_{i=0}^{n-1} (y_i - \theta_0 - \theta_1 x_i)^2}{\partial \theta_0} = 0 \Rightarrow$$

$$2 \sum_{i=0}^{n-1} (y_i - \theta_0 - \theta_1 x_i) = 0 \Rightarrow$$

$$\sum_{i=0}^{n-1} (y_i - \theta_0 - \theta_1 x_i) = 0$$



## Linear Regression – Computation for $\theta_1$

$$\frac{\partial \sum_{i=0}^{n-1} (y_i - \theta_0 - \theta_1 x_i)^2}{\partial \theta_1} = 0 \Rightarrow$$

$$2 \sum_{i=0}^{n-1} x_i (y_i - \theta_0 - \theta_1 x_i) = 0 \Rightarrow$$

$$\sum_{i=0}^{n-1} x_i (y_i - \theta_0 - \theta_1 x_i) = 0$$



#### Linear Regression – From the first equation

#### From the first equation:

$$\sum_{i=0}^{n-1} (\theta_0) = \sum_{i=0}^{n-1} (y_i - \theta_1 x_i) \Rightarrow$$

$$\sum_{i=0}^{n-1} (\theta_0) = \sum_{i=0}^{n-1} (y_i) - \theta_1 \sum_{i=0}^{n-1} (x_i) \Rightarrow$$

$$n\theta_0 = n\bar{y} - n\theta_1 \bar{x} \Rightarrow$$

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$



#### Linear Regression – In the second equation

$$\sum_{i=0}^{n-1} x_i (y_i - \theta_0 - \theta_1 x_i) = 0 \Rightarrow$$

$$\sum_{i=0}^{n-1} x_i y_i - \theta_0 \sum_{i=0}^{n-1} x_i - \theta_1 \sum_{i=0}^{n-1} x_i^2 = 0 \Rightarrow$$

$$\sum_{i=0}^{n-1} x_i y_i - n\theta_0 \bar{x} - n\theta_1 \bar{x}^2 = 0 \Rightarrow$$



#### Linear Regression – Combining the result

Substituting  $\theta_0 = \bar{y} - \theta_1 \bar{x}$ :

$$\sum_{i=0}^{n-1} x_i y_i - n(\bar{y} - \theta_1 \bar{x}) \bar{x} - n\theta_1 \bar{x}^2 = 0 \Rightarrow$$

$$\sum_{i=0}^{n-1} x_i y_i - n\bar{y}\bar{x} + n\theta_1 \bar{x}^2 - n\theta_1 \bar{x}^2 = 0$$

$$\sum_{i=0}^{n-1} x_i y_i - n\bar{y}\bar{x} + n\theta_1 \bar{x}^2 - n\theta_1 \bar{x}^2 = 0$$

$$n\theta_1(\bar{x}^2 - \bar{x}^2) = \sum_{i=0}^{n-1} x_i y_i - n\bar{y}\bar{x}$$



#### Linear Regression – Final step

$$\theta_1 = \frac{\sum_{i=0}^{n-1} x_i y_i - n \bar{y} \bar{x}}{n(\bar{x}^2 - \bar{x}^2)} = \frac{\frac{\sum_{i=0}^{n-1} x_i y_i}{n} - \varkappa \bar{y} \bar{x}}{\varkappa (\bar{x}^2 - \bar{x}^2)} = \frac{\frac{\sum_{i=0}^{n-1} x_i y_i}{n} - \bar{y} \bar{x}}{(\bar{x}^2 - \bar{x}^2)}$$

$$\theta_1 = \frac{Cov(x, y)}{Var(x)}$$

Which we can also write as:

$$\theta_1 = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=0}^{n-1} (x_i - \bar{x})^2}$$



#### Going back to our exercise...

Using the formula above we obtain that for the following dataset:

| i      | X  | $ \mathbf{Y} $ |
|--------|----|----------------|
| 0      | 1  | 3              |
| 1      | 2  | 4              |
| 2      | 5  | 4              |
| 3      | 6  | -1             |
| 4      | 7  | 5              |
| 4<br>5 | 9  | 8              |
| 6      | 12 | 9              |
| 7      | 13 | 9              |

We have an equation:

$$\hat{Y} = \theta_0 + \theta_1 \hat{X}$$

with:

• 
$$\theta_0 = 1.179$$
 and  $\theta_1 = 0.574$ 



#### Our model

| i | X  | Y  | $\hat{Y}$ | $\epsilon$ |
|---|----|----|-----------|------------|
| 0 | 1  | 3  | 1.753     | 1.247      |
| 1 | 2  | 4  | 2.327     | 1.673      |
| 2 | 5  | 4  | 4.049     | -0.049     |
| 3 | 6  | -1 | 4.623     | -5.623     |
| 4 | 7  | 5  | 5.197     | -0.197     |
| 5 | 9  | 8  | 6.345     | 1.655      |
| 6 | 12 | 9  | 8.067     | 0.933      |
| 7 | 13 | 9  | 8.641     | 0.359      |



Build a linear regression for the following dataset:

| X | Y  |
|---|----|
| 1 | 2  |
| 3 | 9  |
| 5 | 9  |
| 6 | 11 |
| 7 | 14 |
| 9 | 15 |







The regression equation for these numbers is  $\hat{y} = 2.0286 + 1.5429x$ . Now, fill the blanks using such equation and calculate the sum of squared deviations (last column).

| x | у  | Predicted y $(\hat{y})$ | Deviate from predicted (abs.) | Squared deviate |
|---|----|-------------------------|-------------------------------|-----------------|
| 1 | 2  |                         |                               |                 |
| 3 | 9  |                         |                               |                 |
| 5 | 9  |                         |                               |                 |
| 6 | 11 |                         |                               |                 |
| 7 | 14 |                         |                               |                 |
| 9 | 15 |                         |                               |                 |



Results. The sum of squared deviations: 10.8

| x | у  | Predicted y $(\hat{y})$ | Deviate from predicted (abs.) | Squared deviate |
|---|----|-------------------------|-------------------------------|-----------------|
| 1 | 2  | 3.57                    | 1.57                          | 2.46            |
| 3 | 9  | 6.66                    | 2.34                          | 5.48            |
| 5 | 9  | 9.74                    | 0.74                          | 0.55            |
| 6 | 11 | 11.29                   | 0.29                          | 0.08            |
| 7 | 14 | 12.83                   | 1.17                          | 1.37            |
| 9 | 15 | 15.91                   | 0.91                          | 0.83            |



#### Linear Regression – Modeling

In fact, we might think to use linear regression to model phenomena, assuming a linear dependence between input (the collected parameters) and output.

Here are some "real world" examples (w.r.t. certain assumptions):

- Impact of SAT Score (or GPA) on College Admissions;
- Impact of product price on number of sales;
- Impact of rainfall amount on the number of fruits yielded;
- Impact of blood alcohol content on coordination.



#### Linear Regression – Evaluation

We can evaluate the quality of linear regression, i.e. assess how good the model for the data that we have:

- by the sum of squares of residuals;
- by the coefficient of determination.



#### The sum of squared errors

The sum of squares of residuals, also called the residual sum of squares:

$$SS_{res} = \sum_{i} (y_i - \hat{y}_i)^2$$

In the case above  $SS_{res}$  is equal to 39.751672.



## The coefficient of determination $(R^2)$

The coefficient of determination describes the proportion of variance of the dependent variable explained by the regression model. If the regression model is "perfect,"  $SS_{res}$  is zero, and  $R^2$  is 1.

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

The total sum of squares:

$$SS_{tot} = \sum_{i} (y_i - \bar{y})^2$$

where

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$



#### In the example above

$$SS_{tot} = \sum_{i} (y_i - \bar{y})^2 = 82.875$$

Remember that:

$$SS_{res} = \sum_{i} (y_i - \hat{y}_i)^2 = 39.751672$$

Therefore:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{39.751672}{82.875} = 0.5203$$



## Coefficient of determination $(R^2)$





#### Multivariate Linear Regression

- The "X" variable is often called "feature" in machine learning.
- Indeed, we could have multiple features, say, n.
- If we also have m observations, we could build a system of m equations of the kind:

$$y_i = \boldsymbol{\theta}^T \cdot \boldsymbol{x}_i + \epsilon_i, i = 1 \dots m$$

• and then we will build our linear regression (approximation) as:

$$\hat{y}_i = \boldsymbol{\theta}^T \cdot \hat{\boldsymbol{x}}_i, i = 1 \dots m$$

• where  $x_i$  and  $\hat{x}_{i-}$  are vectors of n+1 features for the i-th observation

**Question:** Why here we use n + 1?



#### A closed-form solution of Linear Regression

To find the value of  $\theta$ , there is a closed-form solution, a mathematical equation that gives the result directly.

This is called the **Normal Equation**:

$$\theta = (\boldsymbol{X} \cdot \boldsymbol{X}^T)^{-1} \cdot \boldsymbol{X}^T \cdot \boldsymbol{y}$$



# Derivation of the closed-form solution (1/4)

 $\bullet$  We start considering a set of m equations of the form:

$$\hat{y_i} = \boldsymbol{\theta}^T \boldsymbol{x}_i, i = 1 \dots m$$

where  $x_i$  has dimension n+1

• We move all the model in matrix format:

$$\hat{m{y}} = m{X} \cdot m{ heta}$$

- Notice that  $\hat{\boldsymbol{y}}$  and  $\boldsymbol{y}$  have dimension (m,1),  $\boldsymbol{X}$  (m,n+1), and  $\boldsymbol{\theta}$  (n+1,1).  $\boldsymbol{X} \cdot \boldsymbol{\theta}$  has therefore dimension (m,1) as it should be.
- The error vector  $\epsilon$  is defined for each pair as:

$$\epsilon = \hat{m{y}} - m{y} = m{X} \cdot m{ heta} - m{y}$$

• And the square of the error is:

$$(\boldsymbol{X} \cdot \boldsymbol{\theta} - \boldsymbol{y})^T (\boldsymbol{X} \cdot \boldsymbol{\theta} - \boldsymbol{y})$$



# Derivation of the closed-form solution (2/4)

• To determine the values of the parameters we take the partial derivatives and we null them:

$$\frac{\partial (\boldsymbol{X} \cdot \boldsymbol{\theta} - \boldsymbol{y})^T (\boldsymbol{X} \cdot \boldsymbol{\theta} - \boldsymbol{y})}{\partial \boldsymbol{\theta}} = 0$$

Now we evaluate:

$$\begin{split} \frac{\partial (\boldsymbol{X} \cdot \boldsymbol{\theta} - \boldsymbol{y})^T (\boldsymbol{X} \cdot \boldsymbol{\theta} - \boldsymbol{y})}{\partial \boldsymbol{\theta}} &= \\ &= \frac{\partial ((\boldsymbol{X} \cdot \boldsymbol{\theta})^T (\boldsymbol{X} \cdot \boldsymbol{\theta}) - (\boldsymbol{X} \cdot \boldsymbol{\theta})^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \cdot \boldsymbol{\theta} + \boldsymbol{y}^T \boldsymbol{y})}{\partial \boldsymbol{\theta}} &= \\ &= \frac{\partial ((\boldsymbol{X} \cdot \boldsymbol{\theta})^T (\boldsymbol{X} \cdot \boldsymbol{\theta}) - 2(\boldsymbol{X} \cdot \boldsymbol{\theta})^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y})}{\partial \boldsymbol{\theta}} \end{split}$$

# Derivation of the closed-form solution (3/4)

• Now we can consider that:

$$\frac{\partial (\boldsymbol{y}^T\boldsymbol{y})}{\partial \boldsymbol{\theta}} = 0 \quad \text{ and } \quad \frac{\partial ((\boldsymbol{X} \cdot \boldsymbol{\theta})^T\boldsymbol{y})}{\partial \boldsymbol{\theta}} = \boldsymbol{X}^T\boldsymbol{y}$$

- Notice that  $X^T y$  has dimension  $(n+1,m) \cdot (m,1)$ , that is, (n+1,1).
- We can finally conclude that:

$$\frac{\partial ((\boldsymbol{X} \cdot \boldsymbol{\theta})^T (\boldsymbol{X} \cdot \boldsymbol{\theta}))}{\partial \boldsymbol{\theta}} = 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta}$$

• Notice that  $X^T X \theta$  has dimension  $(n+1,m) \cdot (m,n+1) \cdot (n+1,1)$ , that is, (n+1,1) as it should be.



# Derivation of the closed-form solution (4/4)

• Substituting the results in the original formula:

$$2\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\theta} - 2\boldsymbol{X}^T\boldsymbol{y} = 0 \Rightarrow$$

$$\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} = \boldsymbol{X}^T \boldsymbol{y} \Rightarrow$$

• Notice that  $\boldsymbol{X}^T\boldsymbol{X}$  has dimension  $(n+1,m)\cdot (m,n+1)$ , that is, (n+1,n+1). Notice that  $m\gg n$ , so we hope that  $\boldsymbol{X}^T\boldsymbol{X}$  is invertible.

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

• QED.



# Computational complexity

The Normal Equation computes the inverse of  $X^T \cdot X$ , which is an n x n matrix (where n is the number of features).

The computational complexity of inverting such a matrix is typically about  $O(n^{2.4})$  to  $O(n^3)$  (depending on the implementation).

In other words, if you double the number of features, you multiply the computation time by roughly  $2^{2.4} = 5.3$  to  $2^3 = 8$ .



# Linear Regression – Approximation

**Gradient Descent** is a very generic optimization algorithm capable of finding optimal solutions to a wide range of problems. The general idea of Gradient Descent is to tweak parameters iteratively in order to minimize a cost function.





# Gradient Descent - Computation

To implement Gradient Descent, you need to compute the gradient of the MSE cost function with regards to each model parameter  $\theta_j$ . Mean squared error (MSE) cost function for a Linear Regression model:

$$MSE(\theta) = \frac{1}{m} \sum_{k=1}^{m} (\boldsymbol{\theta}^T \cdot \boldsymbol{x}^{(k)} - \boldsymbol{y}^{(k)})^2$$

 $x^{(k)}$  - k-th observation vector  $(x^{(k)}$  is an n-dimensional vector)



# Gradient Descent - Computation

To implement Gradient Descent, you need to compute the gradient of the MSE cost function with regards to each model parameter  $\theta_i$ .

$$\frac{\partial}{\partial \theta_j} MSE(\theta) = \frac{2}{m} \sum_{i=1}^m (\theta^T \cdot \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)}) x_j^{(i)}$$



# Gradient Descent - Computation

In vector form:

$$\nabla_{\theta} MSE(\theta) = \frac{2}{m} \boldsymbol{X}^{T} (\boldsymbol{X} \cdot \boldsymbol{\theta} - \boldsymbol{y})$$

We update vector  $\boldsymbol{\theta}$  step by step:

$$\boldsymbol{\theta}^{next} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} MSE(\boldsymbol{\theta})$$

 $\eta$  – learning rate



# Learning rate





### Pitfalls of Gradient Descent





# Linear Regression and Machine Learning

Linear Regression is a statistical model developed in the field of Regression Analysis.

Later it was borrowed for the use of Machine Learning field.

### Terminology difference

| Regression analysis | Machine Learning   |
|---------------------|--------------------|
| estimation, fitting | training, learning |
| regressors          | features           |
| response            | target             |



### References

- 1) http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf
- 2) https://www.researchgate.net/post/Difference\_between\_convolution\_and\_correlation
- 3) https://www.tutorialspoint.com/signals\_and\_systems/convolution\_and\_correlation.htm



# Correlation and Covariance



### Content

- Covariance
- Correlation (aka Pearson product-moment correlation coefficient)
- Relationship between Pearson correlation and linear regression



### Covariance

- To proceed further with our analysis we will use the concept of **covariance**, which we have already seen
- It expresses the degree in which the variation of a random variable is connected to the variation of another random variable
- It is defined as follows:
  - $\bullet$  Given two random variables X and Y

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$



## Covariance – graphically

# COVARIANCE

Source: https://www.geeksforgeeks.org/mathematics-covariance-and-correlation

Nearly Zero

Covariance

Large Negative

Covariance

Large Positive Covariance



### About the covariance - 1

- We notice that:
  - The covariance of a random variable with itself is the variance:

$$Cov(X, X) = Var(X)$$

• There is a similar property as for the variance

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

since:

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] =$$

$$= E(XY) - E(XE(Y)) - E(E(X)Y) + E(E(X)E(Y)) =$$

$$= E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y) =$$

$$= E(XY) - E(X)E(Y)$$

QED.



### About the covariance - 2

• The covariance is symmetric:

$$Cov(X, Y) = Cov(Y, X)$$

• The covariance is linear with respect to multiplications by constants:

$$(\forall a, b \in \mathbb{R}) \ Cov(aX, bY) = abCov(X, Y)$$

• If  $e \sim N(0, \sigma)$ , Cov(X, e) = 0

$$Cov(X, e) = E(Xe) - E(X)E(e)$$

Moreover, X and e are independent and E(e) = 0 QED.



### Pearson Correlation Coefficient

- AKA Pearson product-moment correlation coefficient or just correlation coefficient
- It expresses the linear correlation between two random variables
- It is defined as follows:
  - Given two random variables X and Y

$$r_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

• Where:

$$\sigma_Z = \sqrt{Var(Z)}$$

For the time being we intentionally ignore the difference between sample and population.



# Pearson Correlation Coefficient – graphically



Source: https://www.geeksforgeeks.org/mathematics-covariance-and-correlation

# About the Pearson Correlation Coefficient (1/2)

• The Pearson correlation coefficient is also often expressed as:

$$r_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

- It is symmetric:  $r_{X,Y} = r_{Y,X}$
- It is invariant with respect to multiplications by, and additions of constants:

$$(\forall a, b, c, d \in \mathbb{R}, b \neq 0, d \neq 0) \quad r_{X,Y} = r_{(a+bX),(c+dY)}$$



# About the Pearson Correlation Coefficient (2/2)

- The Pearson correlation coefficient is also often expressed as:
- It ranges from -1 to 1:  $-1 \le r_{X,Y} \le 1$ 
  - o  $r_{X,Y} = 1$  means perfect linear relationship
    - all points lie on a monotonically increasing line
  - $r_{X,Y} = -1$  means perfect opposite linear relationship
    - all points lie on a monotonically decreasing line
  - $r_{X,Y} = 0$  means no linear relationship between X and Y



# Back to Linear Regression (1/2)

- We now focus our attention to the case of the case of the linear regression
- ullet Suppose we have two phenomena that we want to measure, X and Y
- Let us assume
  - that there is a linear relationship between them
  - that I can express the data I collect as:

$$\boldsymbol{y} = \boldsymbol{\theta}_0 + X\boldsymbol{\theta}_1 + \boldsymbol{\epsilon}$$

- where  $\epsilon$  is a stationary gaussian process  $N(0, \sigma^2)$
- We know the solution that minimizes the square error



# Back to Linear Regression (2/2)

• From this solution we have extracted the coefficient of determination

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

- Where:
  - $SS_{res} = \sum_{i} (y_i \hat{y}_i)^2$
  - $SS_{res}$  is the distance between the reality and the 1-degree best approximation, that is, the OLS model
- and
  - $SS_{tot} = \sum_{i} (y_i \overline{y})^2$
  - $SS_{tot}$  is the distance between the reality and the 0-degree best approximation, that is, the mean
- I want to know the relationship between  $R^2$  and the correlation coefficient between X and Y,  $r_{X,Y}$



# Our goal – understanding R and r

- We focus on 1D
- We are now going to prove a fundamental point.
- Under the assumption that the noise is gaussian and centered in 0, in a linear regression:

$$R^2 = r_{X,Y}^2$$



$$R^2 = r_{X,Y}^2 \ (1/4)$$

Since

$$\hat{y} = \theta_0 + \theta_1 x$$

• we have from above (see page 56) that:

$$r_{X,Y} = r_{\hat{Y},Y}$$

- We define now the explained sum of squares (ESS)
  - $ESS = \sum_{i} (\hat{y}_i \overline{y})^2$
  - ESS is the additional knowledge we get on the random variable using a polynomial of degree 1 vs. using a polynomial of degree 0
- We will now prove that **under our hypotheses**:

$$ESS + SS_{res} = SS_{tot}$$



$$[R^2 = r_{X,Y}^2] - ESS + SS_{res} = SS_{tot} (1/6)$$

• We start from:

$$(y_i - \overline{y}) = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$$

• which we square:

$$(y_i - \overline{y})^2 = (y_i - \hat{y}_i)^2 + 2(y_i - \hat{y}_i)(\hat{y}_i - \overline{y}) + (\hat{y}_i - \overline{y})^2$$

and then we sum:

$$\sum_{i} (y_i - \overline{y})^2 = \sum_{i} (y_i - \hat{y}_i)^2 + \sum_{i} 2(y_i - \hat{y}_i)(\hat{y}_i - \overline{y}) + \sum_{i} (\hat{y}_i - \overline{y})^2$$



$$[R^2 = r_{X,Y}^2] - ESS + SS_{res} = SS_{tot} (2/6)$$

• Now we focus on:

$$\sum_{i} 2(y_i - \hat{y}_i)(\hat{y}_i - \overline{y}) = 2\sum_{i} (y_i - \hat{y}_i)(\hat{y}_i - \overline{y})$$

• and we want to prove that it is 0, that is  $\sum_{i} (y_i - \hat{y}_i)(\hat{y}_i - \overline{y}) = 0$ ; considering:

$$y_i = \hat{y_i} + \epsilon_i$$

$$E(y_i) = E(\hat{y}_i + \epsilon_i) = E(\hat{y}_i) + E(\epsilon_i) = E(\hat{y}_i)$$

because  $\epsilon$  is a stationary gaussian process  $N(0, \sigma^2)$ 



$$[R^2 = r_{X,Y}^2] - ESS + SS_{res} = SS_{tot} (3/6)$$

• We can build a system:

$$\begin{cases} \hat{y}_i = \theta_0 + \theta_1 x_I \\ \overline{y} = \theta_0 + \theta_1 \overline{x} \end{cases}$$

• from which we deduce by subtraction:

$$\hat{y}_i - \overline{y} = \theta_1(x_i - \overline{x})$$

• remembering that:

$$\theta_1 = \frac{Cov(x,y)}{Var(x)} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$



$$[R^2 = r_{X,Y}^2] - ESS + SS_{res} = SS_{tot} (4/6)$$

So:

$$\sum_{i} (y_i - \hat{y}_i)(\hat{y}_i - \overline{y}) = \sum_{i} (y_i - \hat{y}_i)(\theta_1(x_i - \overline{x})) =$$

$$= \theta_1 \sum_{i} (y_i - \hat{y}_i)(x_i - \overline{x})$$

• Now, let's consider that:

$$(y_i - \hat{y}_i) = y_i - \hat{y}_i + \overline{y} - \overline{y} = (y_i - \overline{y}) - (\hat{y}_i - \overline{y}) =$$
$$= (y_i - \overline{y}) - \theta_1(x_i - \overline{x})$$

• Substituting  $(y_i - \hat{y}_i)$  above we get:

$$\theta_1 \sum_i (y_i - \hat{y}_i)(x_i - \overline{x}) = \theta_1 \sum_i [(y_i - \overline{y}) - \theta_1(x_i - \overline{x})](x_i - \overline{x})$$



$$[R^2 = r_{X,Y}^2] - ESS + SS_{res} = SS_{tot} (5/6)$$

• We can conclude:

$$\theta_1 \sum_{i} [(y_i - \overline{y}) - \theta_1(x_i - \overline{x})](x_i - \overline{x}) =$$

$$= \theta_1 [\sum_{i} (y_i - \overline{y})(x_i - \overline{x}) - \sum_{i} \theta_1(x_i - \overline{x})(x_i - \overline{x})] =$$

$$= \theta_1 [\sum_{i} (y_i - \overline{y})(x_i - \overline{x}) - \sum_{i} \frac{\sum_{j} (x_j - \overline{x})(y_j - \overline{y})}{\sum_{j} (x_j - \overline{x})^2} (x_i - \overline{x})^2] =$$

$$[R^2 = r_{X,Y}^2] - ESS + SS_{res} = SS_{tot} (6/6)$$

• And simplifying what is in [•]:

$$\sum_{i} (y_{i} - \overline{y})(x_{i} - \overline{x}) - \sum_{i} \frac{\sum_{j} (x_{j} - \overline{x})(y_{j} - \overline{y})}{\sum_{j} (x_{j} - \overline{x})^{2}} (x_{i} - \overline{x})^{2} =$$

$$= \sum_{i} (y_{i} - \overline{y})(x_{i} - \overline{x}) - \sum_{j} (x_{j} - \overline{x})(y_{j} - \overline{y}) \sum_{i} \frac{(x_{i} - \overline{x})^{2}}{\sum_{j} (x_{j} - \overline{x})^{2}} =$$

$$= \sum_{i} (x_{i} - \overline{x})(y_{i} - \overline{y}) - \sum_{j} (x_{j} - \overline{x})(y_{j} - \overline{y}) \frac{\sum_{i} (x_{i} - \overline{x})^{2}}{\sum_{j} (x_{j} - \overline{x})^{2}} =$$

$$= \sum_{i} (x_{i} - \overline{x})(y_{i} - \overline{y}) - \sum_{j} (x_{j} - \overline{x})(y_{j} - \overline{y}) = 0$$

QED.



$$R^2 = r_{X,Y}^2 \ (2/4)$$

 Now we know that, under the assumption to deal with a Gaussian noise centered in 0 we have:

$$ESS + SS_{res} = SS_{tot}$$

• Under this hypothesis we have:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = \frac{SS_{tot} - SS_{res}}{SS_{tot}} = \frac{ESS}{SS_{tot}}$$

$$R^2 = r_{X,Y}^2 (3/4)$$

• We now consider the square of  $r_{X,Y} = r_{\hat{Y},Y}$ 

$$\begin{split} r_{\hat{Y},Y}^2 &= \left(\frac{Cov(\hat{Y},Y)}{\sqrt{Var(Y)Var(\hat{Y})}}\right)^2 = \frac{Cov(\hat{Y},Y)Cov(\hat{Y},Y)}{Var(Y)Var(\hat{Y})} = \\ &= \frac{Cov(\hat{Y},\hat{Y}+\epsilon)Cov(\hat{Y},\hat{Y}+\epsilon)}{Var(Y)Var(\hat{Y})} = \\ &= \frac{(Cov(\hat{Y},\hat{Y})+Cov(\hat{Y},\epsilon))(Cov(\hat{Y},\hat{Y})+Cov(\hat{Y},\epsilon))}{Var(Y)Var(\hat{Y})} = \\ &= \frac{Cov(\hat{Y},\hat{Y})+Cov(\hat{Y},\epsilon)(Cov(\hat{Y},\hat{Y})+Cov(\hat{Y},\epsilon))}{Var(Y)Var(\hat{Y})} = \\ &= \frac{Cov(\hat{Y},\hat{Y})Cov(\hat{Y},\hat{Y})}{Var(Y)Var(\hat{Y})} \end{split}$$

Source with modifications: https://economictheoryblog.com/2014/11/05/proof/

$$R^2 = r_{X,Y}^2 \ (4/4)$$

• But we know that  $Cov(\hat{Y}, \hat{Y}) = Var(\hat{Y})$ , therefore we get that

$$\begin{split} r_{X,Y}^2 &= \frac{Var(\hat{Y})Var(\hat{Y})}{Var(Y)Var(\hat{Y})} = \frac{Var(\hat{Y})}{Var(Y)} = \\ &= \frac{\frac{\sum_i (\hat{y_i} - \overline{\hat{y}})^2}{n}}{\sum_i (y_i - \overline{y})^2} = \frac{\sum_i (\hat{y_i} - \overline{\hat{y}})^2}{\sum_i (y_i - \overline{y})^2} = \frac{ESS}{SS_{tot}} \end{split}$$

since we have already proven that  $\overline{y} = \overline{\hat{y}}$ 

QED

Source with modifications: https://economictheoryblog.com/2014/11/05/proof/



## Comment on $R^2 = r_{X,Y}^2$

- This is a major result
- It is the center of our subsequent investigation, in the case of normality of error we can model, interconnect, and understand relationships in an easy way
- The next question is on how the slope of the regression line  $(\theta_1)$  relates to the correlation coefficient  $r_{X,Y}$



#### $r_{X,Y}$ and $\theta_1$

• We know that:

$$\theta_1 = \frac{Cov(X, Y)}{Var(X)}$$

• And that:

$$r_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

• Therefore:

$$\theta_1 Var(X) = r_{X,Y} \sigma_X \sigma_Y$$

• We can then conclude that:

$$\theta_1 = \frac{\sigma_X \sigma_Y}{Var(X)} r_{X,Y}$$

$$r_{X,Y} = \frac{Var(X)}{\sigma_X \sigma_Y} \theta_1$$



#### Comment on $r_{X,Y} \sim \theta_1$

- $r_{X,Y}$  and  $\theta_1$  are therefore directly and monotonically proportional
- It means that a positive relationships implies a positive slope and viceversa



#### General remark

- Right now we work with samples of larger populations of data
- We measure properties of samples, like mean, standard deviation, covariance, correlation coefficient
- All these properties are also random variable and have a distribution
- Our question is therefore, what kind of distribution is the one of the correlation coefficient
- Knowing its distribution allows us to understand the relationships existing between the variables it connect





# Toward Inference



#### Content

- Premises of the Law of Large Numbers
- Markov's inequality
- Chebyshev's inequality
- Proof of the Law of Large Numbers
- Central Limit Theorem in the Linderberg-Lévy formulation
- Moment
- Moment generating function
- Proof of the Central Limit Theorem in the Linderberg-Lévy formulation



#### Last words...

- Right now we work with samples of larger populations of data
- We measure properties of samples, like mean, standard deviation, covariance, correlation coefficient
- All these properties are also random variable and have a distribution
- Our question is therefore, what kind of distribution is the one of the correlation coefficient
- Knowing its distribution allows us to understand the relationships existing between the variables it connect



#### Knowing the sample ...

- What can we infer of populations now that I know the properties of the sample?
- Now we know the mean, the standard deviation, the distribution of the sample, what would be the mean, the standard deviation, and the distribution of the population?
- Moreover, from two samples we can build a regression, what would be the regression of the population?



#### We start from the mean

- We suppose that we have an unknown population  $\mathfrak{P}$  of entities on a ratio scale from which we extract n samples  $\mathfrak{S}_i$  with  $i \in [1 \dots n]$
- Each sample i is composed by  $\mathfrak{n}_i$  elements  $e_{i,j}$  with  $j \in [1 \dots \mathfrak{n}_i]$
- We can compute the set of the means of each sample  $\mathfrak{S}_i$ ,  $\mathfrak{m}_i$  with  $i \in [1 \dots n]$
- $\bullet$   $\mathfrak{m}_i$  is a random variable, so we would like to know what is its structure
- There are two fundamental theorems about the distributions of such  $mathfrakm_i$ , the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT)
- Since we are not making **any** assumption on the population  $\mathfrak{P}$ , we ignore it and consider simply a sequence of random variables  $x_i$ .



#### LLN - Premises

- From now on, we will use the notation "iid" to denote the property of a set of random variables to be independent and identically distributed
- Let  $\{\mathfrak{Xn}_1,\mathfrak{Xn}_2,\ldots,\mathfrak{Xn}_n\}$  a set of n iid random variables drawn from a population with mean  $\mu$
- Each  $\mathfrak{X}\mathfrak{n}_i$  could be considered the average of a sample  $\mathfrak{S}_i$  of size 1, that is  $\mathfrak{S}_i = {\mathfrak{X}\mathfrak{n}_i}$
- Let us consider  $\overline{\mathfrak{Xn}}$ , the average for this sample of size n
- $\overline{\mathfrak{Xn}}$  is like the average of the *n* averages of each sample  $\mathfrak{S}_i$

 $Source\ with\ modifications:\ {\tt https://en.wikipedia.org/wiki/Law\_of\_large\_numbers}$ 



#### LLN – Weak formulation

- Let  $\{\mathfrak{Xn}_1,\mathfrak{Xn}_2,\ldots,\mathfrak{Xn}_n\}$  a set of n iid random variables drawn from a population with mean  $\mu$
- Let us consider  $\mathfrak{X}\overline{\mathfrak{n}}$ , the average for this sample of size n
- the Law of Large Number in its weak formulation states that:

$$(\forall \epsilon \in \mathbb{R}^+)$$
  $\lim_{n \to \infty} \mathbb{P}(|\overline{\mathfrak{X}}\mathfrak{n} - \mu| > \epsilon) = 0$ 

• This means that  $\overline{\mathfrak{X}\mathfrak{n}}$  tends to get the value of  $\mu$  probabilistically

Source with modifications: https://en.wikipedia.org/wiki/Law\_of\_large\_numbers



### LLN - Proof (1/4)

- We are now going to prove LLN
- To do so, we need to prove two other interesting theorems:
  - The Markov's inequality
  - The Chebyshev's inequality

 $Source\ with\ modifications:\ https://en.wikipedia.org/wiki/Law\_of\_large\_numbers$ 



#### [LLN - Proof] Markov's inequality (1/3)

- The Markov's inequality put a first boundary on the distribution of a random variable
- Let X > 0 be a random variable with mean  $\mu \in \mathbb{R}$
- Then:

$$(\forall k \in \mathbb{R}^+) \ \mathbb{P}(X \ge k) \le \frac{\mu}{k}$$

• Proof:

$$\mu = \int_{-\infty}^{+\infty} x f_x(x) dx$$



#### [LLN – Proof] Markov's inequality (2/3)

• Since X > 0

$$\int_{-\infty}^{+\infty} x f_x(x) dx = \int_{0}^{+\infty} x f_x(x) dx =$$

And given  $k \in \mathbb{R}^+$ 

$$= \int_0^k x f_x(x) dx + \int_k^{+\infty} x f_x(x) dx$$

Since  $\int_0^k x f_x(x) dx \ge 0$ 

$$\mu \ge \int_{k}^{+\infty} x f_x(x) dx \ge k \int_{k}^{+\infty} f_x(x) dx = \mathbb{P}(X \ge k)$$



#### [LLN – Proof] Markov's inequality (3/3)

Therefore we have

$$\mu \ge k \mathbb{P}(X \ge k)$$

• And from this we conclude:

$$\mathbb{P}(X \ge k) \le \frac{\mu}{k}$$



### [LLN – Proof] Chebyshev's inequality (1/3)

- The Chebyshev's inequality put a further limit on the distribution of a random variable
- Let X be a random variable with mean  $\mu \in \mathbb{R}$  and variance  $\sigma^2 > 0$
- Then:

$$(\forall k \in \mathbb{R}^+) \ \mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

• Proof:

Let us define a new random variable

$$Y = (X - \mu)^2 \ge 0$$

Let us define

$$h = (k\sigma)^2$$



### [LLN - Proof] Chebyshev's inequality (2/3)

• By the Markov inequality we have for the nonnegative random variable Y and for the positive real h:

$$\mathbb{P}(Y \ge h) \le \frac{\overline{Y}}{h}$$

• And this means:

$$\mathbb{P}((X - \mu)^2 \ge (k\sigma)^2) \le \frac{\overline{(X - \mu)^2}}{(k\sigma)^2} = \frac{\sigma^2}{k^2\sigma^2} = \frac{1}{k^2}$$



### [LLN – Proof] Chebyshev's inequality (3/3)

• This can be rewritten into:

$$\mathbb{P}(|X - \mu| \ge |k\sigma|) \le \frac{1}{k^2}$$

• Since we know that both k and  $\sigma$  are strictly positive:

$$\mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

QED



#### LLN - Proof (2/4)

• We want to prove that:

$$(\forall \epsilon \in \mathbb{R}^+) \quad \lim_{n \to \infty} \mathbb{P}(|\overline{\mathfrak{X}\mathfrak{n}} - \mu| > \epsilon) = 0$$

- we add the additional hypothesis that  $\sigma_i > 0$
- Let us consider  $\sigma_i$ ;
  - since the variables  $\mathfrak{X}\mathfrak{n}_i$  are iid

$$(\forall i, j) \ (\sigma_i = \sigma_j = \sigma)$$

- we also assume that  $\sigma > 0$
- finally, since the variables  $\mathfrak{X}\mathfrak{n}_i$  are independent of one another:

$$Var(\overline{\mathfrak{X}\mathfrak{n}}) = \frac{\sigma^2}{n} = \mathfrak{s}_{\mathfrak{n}}^2$$



#### LLN - Proof (3/4)

• Let us define:

$$k = \frac{\epsilon}{\mathfrak{s}_{\mathfrak{n}}}$$

k exists, since  $\mathfrak{s}_n$  is strictly positive; therefore:

$$\epsilon = k\mathfrak{s}_{\mathfrak{n}}$$

• By Chebyshev's inequality we have:

$$\mathbb{P}(|\overline{\mathfrak{X}\mathfrak{n}} - \mu| \ge k\mathfrak{s}_{\mathfrak{n}}) \le \frac{1}{k^2}$$

• That is:

$$\mathbb{P}(|\overline{\mathfrak{X}\mathfrak{n}} - \mu| \ge \epsilon) \le \frac{\mathfrak{s_n}^2}{\epsilon^2}$$



#### LLN - Proof (4/4)

• Since:

$$\mathfrak{s}_{\mathfrak{n}}^{2} = \frac{\sigma^{2}}{n}$$

We have that

$$\lim_{n \to \infty} \frac{\mathfrak{s}_{\mathfrak{n}}^2}{\epsilon^2} = \lim_{n \to \infty} \frac{\sigma^2}{n\epsilon^2} = \frac{\sigma^2}{\epsilon^2} \lim_{n \to \infty} \frac{1}{n} = 0$$

• Therefore:

$$\lim_{n\to\infty} \left( \mathbb{P}(|\overline{\mathfrak{X}\mathfrak{n}} - \mu| \ge \epsilon) \right) \le \lim_{n\to\infty} \frac{\mathfrak{s}_{\mathfrak{n}}^2}{\epsilon^2} = 0 \Rightarrow \lim_{n\to\infty} \left( \mathbb{P}(|\overline{\mathfrak{X}\mathfrak{n}} - \mu| \ge \epsilon) \right) = 0$$

QED



#### CLT – Lindeberg–Lévy formulation

- Let  $\{\mathfrak{Xn}_1,\mathfrak{Xn}_2,\ldots,\mathfrak{Xn}_n\}$  a set of n iid random variables drawn from a population with mean  $\mu$  and standard deviation  $\sigma$
- Let us consider for this sample of size n:
  - the mean,  $\overline{\mathfrak{X}}\overline{\mathfrak{n}}$
  - the variance,  $\sigma^2$
  - the modulated difference,  $\mathfrak{D}\mathfrak{n}$ , defined as:

$$\mathfrak{Dn} = \sqrt{n}(\overline{\mathfrak{Xn}} - \mu)$$

• Central Limit Theorem (Lindeberg-Lévy formulation):

$$\mathfrak{Dn} \xrightarrow{d} N(0, \sigma^2)$$

• This means that  $\mathfrak{D}\mathfrak{n}$  tends to be normal.

 $Source\ with\ modifications:\ {\tt https://en.wikipedia.org/wiki/Central\_limit\_theorem}$ 



### [CLT - LLf] Moment (1/2)

- To prove the CLT LLf we need to introduce a few additional statistical concepts that could be useful also in the continuation of this course series
- We define the  $r^{th}$  moment of a random variable X as the expected value of the  $r^{th}$  power of X; formally:

$$\mu_X(r) = E(X^r)$$

clearly: 
$$\mu_X(1) = \mu_X = E(X)$$

• Example:

• If 
$$P(X = 0) = 0.25$$
 and  $P(X = 4) = 0.75$ :  
 $\mu_X(1) = 3$ ,  $\mu_X(2) = 12$ ,  $\mu_X(3) = 48$ , and  $\mu_X(4) = 192$ 

Source with modifications: https://www.statlect.com/fundamentals-of-probability/moments



#### [CLT - LLf] Moment (2/2)

• We define the **central**  $r^{th}$  **moment** of a random variable X as the expected value of the  $r^{th}$  deviation of X; formally:

$$\overline{\mu_X(r)} = E((X - \mu_X)^r)$$

clearly: 
$$\overline{\mu_X(2)} = \sigma_X^2 = E((X - \mu_X)^2)$$

• Example:

o If 
$$P(X = 0) = 0.25$$
 and  $P(X = 4) = 0.75$ :
$$\frac{\mu_X(1)}{\mu_X(2)} = 0$$

$$\frac{\mu_X(2)}{\mu_X(3)} = -6$$

$$\frac{\mu_X(4)}{\mu_X(4)} = 21$$

Source with modifications: https://www.statlect.com/fundamentals-of-probability/moments



### [CLT - LLf] Mfg (1/10)

- Let X be a random variable defined over a set S and let  $f_X$  be its probability density function
- We define the **moment generating function (mgf)**  $M_X$  over X as:

$$M_X(t) = E(e^{tX}) = \int_S e^{tx} f_X(x) dx$$

if there exists  $h \in \mathbb{R}^+$  so that  $E(e^{tX})$  is defined in (-h, +h)

- Note that:
  - The mgf may not exist
  - The mgf has interesting properties



#### [CLT - LLf] Mgf (2/10)

• Mgf and first moment:

$$\left[\frac{dM_X(t)}{dt}\right](t=0) = \mu_X(1) = \mu_X = E(X)$$

Since:

$$\left[\frac{dM_X(t)}{dt}\right](t=0) = \left[\frac{d\int_S e^{tx} f_X(x) dx}{dt}\right](t=0) =$$

$$= \left[ \int_S x e^{tx} f_X(x) dx \right] (t=0) = \int_S x e^{0x} f_X(x) dx = \int_S x f_X(x) dx =$$



### [CLT - LLf] Mgf (3/10)

• In general:

$$\left[\frac{d^n M_X(t)}{dt^n}\right](t=0) = \mu_X(n) = E(X^n)$$

• This comes from:

$$\frac{d^n M_X(t)}{dt^n} = \int_S x^n e^{tx} f_X(x) dx$$

- Proof. By induction, n=1, see above
- Let us assume that the proposition holds for n-1:

$$\frac{d^{n-1}M_X(t)}{dt^{n-1}} = \int_S x^{n-1}e^{tx}f_X(x)dx$$



#### [CLT - LLf] Mgf (4/10)

• We check it holds for n:

$$\frac{d^n M_X(t)}{dt^n} = \frac{d \left[ \frac{d^{n-1} M_X(t)}{dt^{n-1}} \right]}{dt} =$$

$$= \frac{d \left[ \int_S x^{n-1} e^{tx} f_X(x) dx \right]}{dt} = \int_S x^n e^{tx} f_X(x) dx$$

QED

• This confirms:

$$\left[\frac{d^n M_X(t)}{dt^n}\right](t=0) = \mu_X(n) = E(X^n)$$



#### [CLT - LLf] Mgf (5/10)

• Mgf and second moment:

$$\sigma_X^2 = E(X^2) - (E(X))^2 = \left[\frac{d^2 M_X(t)}{dt^2}\right](t=0) - \left\{ \left[\frac{dM_X(t)}{dt}\right](t=0) - \left[\frac{dM_X(t)}{dt}\right](t=$$

And if the mean is 0:

$$\sigma_X^2 = \left[\frac{d^2 M_X(t)}{dt^2}\right] (t=0)$$



## [CLT - LLf] Mgf (6/10)

• Fundamental fact:

If the mgf for a random variable exists, it characterizes fully such random variable.

Proof: omitted.

- It means that mgf and pdf are interchangeable
- We need now to determine the mgf for a normally distributed random variable  $N(0, \sigma^2)$
- We will then use this to prove the CLT LLf
- Let Z be a random variable,  $Z \sim N(0,1)$  then, the mgf for Z is:

$$M_Z(t) = e^{\frac{1}{2}t^2}$$



### [CLT - LLf] Mgf (7/10)

#### Proof

$$M_Z(t) = \int_{-\infty}^{+\infty} e^{zt} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{zt - \frac{1}{2}z^2} dz =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}(2zt - z^2)} dz = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^2 - 2zt + t^2 - t^2)} dz =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^2 - 2zt + t^2)} e^{\frac{1}{2}t^2} dz = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z - t)^2} e^{\frac{1}{2}t^2} dz$$

$$= e^{\frac{1}{2}t^2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z - t)^2} dz = e^{\frac{1}{2}t^2}$$

QED

Source with modifications: https://www.le.ac.uk/users/dsgp1/COURSES/MATHSTAT/6normgf.pdf



### [CLT - LLf] Mgf (8/10)

Extending to the case of general Gaussian variables:

• Let X be a random variable,  $X \sim N(\mu, \sigma_X^2)$ , then the mgf for X is:

$$M_X(t) = e^{t\mu + \frac{1}{2}t^2\sigma_X^2}$$

• We can first define  $Z = \frac{X-\mu}{\sigma_X}$  and  $Z \sim N(0,1)$ 

$$M_X(t) = E(e^{tX}) = E(e^{t(\mu + \sigma_X Z)}) = E(e^{t\mu}e^{t\sigma_X Z}) = e^{t\mu}E(e^{t\sigma_X Z}) =$$

$$= e^{t\mu}M_X(t\sigma_X) = e^{t\mu}e^{\frac{1}{2}t^2\sigma_X^2} = e^{t\mu + \frac{1}{2}t^2\sigma_X^2}$$

QED

Source with modifications: https://www.quora.com/What-is-the-MGF-of-normal-distribution



### [CLT - LLf] Mgf (9/10)

The last piece of information that we miss are the following two properties:

• Property 1: Moment of the Sum Let  $Y = \sum_{i=1}^{i=n} X_i$  where  $X_i$  are iid random variables then:

$$M_Y(t) = \prod_{i=1}^{i=n} M_{X_i}(t)$$

Proof:

$$M_Y(t) = E(e^{tY}) = E(e^{t\sum_{i=1}^{i=n} X_i}) = E(\prod_{i=1}^{i=n} e^{tX_i}) = \prod_{i=1}^{i=n} M_{X_i}(t)$$

QED



### [CLT - LLf] Mgf (10/10)

• Property 2: Moment of the LC Let Y = a + bX where X is a random variable and  $a, b \in \mathbb{R}, b \neq 0$  then:

$$M_Y(t) = e^{at} M_X(bt)$$

Proof:

$$M_Y(t) = E(e^{(a+bX)t}) = E(e^{at+bXt}) = E(e^{at}e^{bXt}) = e^{at}E(e^{bXt})$$
  
=  $e^{at}E(e^{btX}) = e^{at}M_X(bt)$ 

QED

• Corollary: the sum of randomly iid Gaussian r.v. is still Gaussian.

Source with modifications: https://onlinecourses.science.psu.edu/stat414/node/170/ and https://www.stat.berkeley.edu/~mlugo/stat134-f11/clt-proof.pdf



#### CLT – LLf – Proof (1/7)

• Remember that we want to prove that:

$$\mathfrak{Dn} \xrightarrow{d} N(0, \sigma^2)$$

• This is like proving that:

$$\frac{\mathfrak{Dn}}{\sigma} \xrightarrow{d} N(0,1)$$

• We can rewrite  $\mathfrak{D}\mathfrak{n}/\sigma$ :

$$\frac{\mathfrak{Dn}}{\sigma} = \frac{\sqrt{n}}{\sigma} (\overline{\mathfrak{Xn}} - \mu) = \frac{\sqrt{n}}{\sigma} \left[ \frac{\sum_{i=1}^{i=n} \mathfrak{Xn}_i}{n} - \mu \right] = \frac{\sqrt{n}}{\sigma} \frac{\sum_{i=1}^{i=n} \mathfrak{Xn}_i - n\mu}{n}$$
$$= \frac{\sum_{i=1}^{i=n} \mathfrak{Xn}_i - n\mu}{\sigma \sqrt{n}}$$



#### CLT - LLf - Proof (2/7)

• Note: We can assume that  $\mu = 0$ . If it is not, we could define a new set of variables  $\mathfrak{Y}_i = \mathfrak{X}_i - \mu$  and we would have that:

$$\sum_{i=1}^{i=n} \mathfrak{X}\mathfrak{n}_i - n\mu = \sum_{i=1}^{i=n} \mathfrak{Y}_{\mathfrak{i}}$$

Preserving the same proof.

• Let now define  $\mathfrak{W}_{\mathfrak{n}} = \mathfrak{D}\mathfrak{n}/\sigma$ 

$$\mathfrak{W}_{\mathfrak{n}} = \frac{\sum_{i=1}^{i=n} \mathfrak{X} \mathfrak{n}_i}{\sigma \sqrt{n}}$$

• We want to prove that  $\mathfrak{W}_{n} \sim N(0,1)$  demonstrating that its moment is the same as the one of N(0,1)



#### CLT - LLf - Proof (3/7)

• Note: We recall Property 1 (Slide 105) and 2 (Slide 106) about the momentum of combining random variables and we have:

$$M_{\mathfrak{Dn}}(t) = \left[M_{\mathfrak{X}_{\mathfrak{i}}}(\frac{t}{\sqrt{n}})\right]^n$$

and likewise:

$$M_{\mathfrak{Wn}}(t) = M_{\mathfrak{Dn}}\left(\frac{t}{\sigma}\right) = \left[M_{\mathfrak{X}_{i}}\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^{n}$$

- In essence we need to evaluate the limit for n going to infinite of  $\left[M_{\mathfrak{X}_i}\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^n$
- We want to prove that such limit is equal to:

$$M_{N(0,1)}(t) = e^{\frac{1}{2}t^2}$$
 (the momentum of  $N(0,1)$ )



#### CLT – LLf – Proof (4/7)

• For simplicity we take the natural logarithm:

$$\ln \left[ M_{\mathfrak{X}_{\mathsf{i}}} \left( \frac{t}{\sigma \sqrt{n}} \right) \right]^n = n \ln \left[ M_{\mathfrak{X}_{\mathsf{i}}} \left( \frac{t}{\sigma \sqrt{n}} \right) \right]$$

Now we define

$$q = \frac{1}{\sqrt{n}}$$

Therefore n is  $1/p^2$  and  $n \to \infty \Rightarrow p \to 0$ . This means that we want to compute:

$$\lim_{p \to 0} \frac{\ln M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{p^2} =$$

• This is an indeterminate form, so we can take the derivative of both side by the theorem of de l'Hôpital



#### CLT – LLf – Proof (5/7)

• This results to:

$$=\lim_{p\to 0}\frac{\frac{1}{M_{\mathfrak{X}_{\mathfrak{i}}}(\frac{tp}{\sigma})}\frac{dM_{\mathfrak{X}_{\mathfrak{i}}}(\frac{tp}{\sigma})}{dp}\frac{t}{\sigma}}{2p}=\frac{t}{2\sigma}\lim_{p\to 0}\frac{\frac{dM_{\mathfrak{X}_{\mathfrak{i}}}(\frac{tp}{\sigma})}{dp}}{pM_{\mathfrak{X}_{\mathfrak{i}}}(\frac{tp}{\sigma})}=$$

• This is again an indeterminate form, so we can take the derivative of both side by the theorem of de l'Hôpital

$$=\frac{t}{2\sigma}\lim_{p\to 0}\frac{\frac{d^2M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{dp^2}\frac{t}{\sigma}}{M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})+p\frac{dM_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{dp}\frac{t}{\sigma}}=\frac{t^2}{2\sigma^2}\lim_{p\to 0}\frac{\frac{d^2M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{dp^2}}{M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})+p\frac{dM_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{dp}\frac{t}{\sigma}}$$

• We now take the limits at numerator and denominator and we are done.



#### CLT – LLf – Proof (6/7)

• Numerator:

$$\lim_{p \to 0} \frac{d^2 M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{dp^2} = \left[ \frac{d^2 M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{dp^2} \right] (0) = E(\mathfrak{X}_{\mathbf{i}}^2) =$$

$$= E(\mathfrak{X}_{\mathbf{i}})^2 + Var(\mathfrak{X}_{\mathbf{i}}) = 0 + \sigma^2 = \sigma^2$$

• Denominator:

$$\lim_{p\to 0}\left[M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})+p\frac{dM_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{dp}\frac{t}{\sigma}\right]=M_{\mathfrak{X}_{\mathbf{i}}}(0)+0\left[\frac{dM_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{dp}\frac{t}{\sigma}\right](0)=$$

$$= M_{\mathfrak{X}_{\mathbf{i}}}(0) = 1$$



### CLT - LLf - Proof (7/7)

• And now we pull everything together and we obtain:

$$\lim_{p\to 0}\frac{\ln M_{\mathfrak{X}_{\mathbf{i}}}(\frac{tp}{\sigma})}{p^2}=\frac{t^2}{2\sigma^2}\frac{\sigma^2}{1}=\frac{t^2}{2}$$

• And, therefore

$$\lim_{n \to +\infty} M_{\mathfrak{W}\mathfrak{n}}(t) = e^{\frac{1}{2}t^2}$$

**QED** 



#### Status

- Now we know that the means of samples of a population tend to be distributed normally.
- This is an essential assumption to perform several numeric operations, like Montecarlo simulations, Bootstrap, etc.
- We can now understand the distribution of the Pearson momentum correlation coefficient of the sample
- Moreover, we have an open infinite issue on what to do if the data is NOT on a ratio scale
- This is an open issue for followup courses