Probabilidade Condicional na Genética

Paulo Ricardo Seganfredo Campana 30/11

Primeiro problema

- Suponha que exista uma doença hereditária dominante em que o gene "A" é dominante e o gene "a" é recessivo.
- AA é homozigoto dominante, Aa e aA são heterozigotos e aa é homozigoto recessivo,
- Apenas os indivíduos com genes homozigoto dominante (AA) exibem sintomas da doença,
- Ambas as pessoas de um casal são heterozigotos (Aa).
- Eles tem um filho, sabe-se que pelo menos um dos genes desse filho é dominante (A).
- Qual a chance desse filho exibir sintomas da doença?

Solução?

Minha solução:

Se sabe que um dos genes é dominante (A), basta calcular a chance do outro gene também ser dominante.

Ou seja:

Completar A_ com as possibilidades e calcular suas chances.

Elas são:

$$\begin{array}{c|ccc} X & AA & Aa \\ p(x) & 50\% & 50\% \end{array}$$

Mas este resultado está errado.

Solução Certa

Considere todas as possibilidades:

AA	Aa
аA	aa

Não estamos interessados em aa

AA	Aa
аA	

Apenas uma das três possibilidades é homozigoto dominante (AA), ou seja a chance é $\frac{1}{3}$.

Outro problema similar

Suponha agora que:

- Todas as informações do primeiro problema ainda são validas.
- Porem, agora cada gene possui 4 tipos diferentes (A1, A2, A3, A4, a1, a2, a3, a4).
- O tipo do gene não interfere na dominância
- Então existem 64 possíveis combinações de 2 genes.
- O tipo dos genes dos pais não afetam o tipo dos genes do filho.
- Qual é a chance do filho exibir sintomas da doença (AA), sabendo que esse filho tem um gene dominante do tipo 2? (A2)

Solução?

O problema pode parecer simples, afinal, o tipo do gene não interfere na dominância, então a chance seria $\frac{1}{3}$ ainda?

Não, a chance na verdade é $\frac{7}{15}$, veremos:

Vejamos todas as possíveis combinações:

A1A1	A1A2	A1A3	A1A4	A1a1	A1a2	A1a3	A1a4
A2A1	A2A2	A2A3	A2A4	A2a1	A2a2	A2a3	A2a4
A3A1	A3A2	A3A3	A3A4	A3a1	A3a2	A3a3	A3a4
A4A1	A4A2	A4A3	A4A4	A4a1	A4a2	A4a3	A4a4
a1A1	a1A2	a1A3	a1A4	a1a1	a1a2	a1a3	a1a4
a2A1	a2A2	a2A3	a2A4	a2a1	a2a2	a2a3	a2a4
a3A1	a3A2	a3A3	a3.A4	a3a1	a3a2	a3a3	a3a4
a4A1	a4A2	a4A3	a4A4	a4a1	a4a2	a4a3	a4a4

Sabemos que o filho possui um gene dominante (A), não estamos interessados nas combinações que só aparecem recessivos (aa), então iremos tirá-los.

A1A1	A1A2	A1A3	A1A4	A1a1	A1a2	A1a3	A1a4
A2A1	A2A2	A2A3	A2A4	A2a1	A2a2	A2a3	A2a4
A3A1	A3A2	A3A3	A3A4	A3a1	A3a2	A3a3	A3a4
A4A1	A4A2	A4A3	A4A4	A4a1	A4a2	A4a3	A4a4
a1A1	a1A2	a1A3	a1A4				
a2A1	a2A2	a2A3	a2A4				
a3A1	a3A2	a3A3	a3.A4				
a4A1	a4A2	a4A3	a4A4				

Sabemos que esse gene dominante \acute{e} do tipo 2 (A2), iremos tirar todos os elementos que não possuem A2.

	A1A2						
A2A1	A2A2	A2A3	A2A4	A2a1	A2a2	A2a3	A2a4
	A3A2						
	A4A2						
	a1A2						
	a2A2						
	a3A2						
	a4A2						

São 15 genes possíveis.

Porém só estamos interessados nos casos em que há sintomas da doença, ou seja, quando a doença é homozigoto dominante (AA), e com um gene A2.

	A1A2				
A2A1	A2A2	A2A3	A2A4		
	A3A2				
	A4A2				

São apenas 7 genes de interesse.

Resultado

Então por isso, o resultado da pergunta: "Qual é a chance do filho exibir sintomas da doença, sabendo que esse filho tem um gene dominante do tipo 2?" é:

$$\frac{7}{15}$$

Que chega muito perto do resultado errado do primeiro problema (46.6% vs 50%), mas porque isso?

Primeiro quadrante

Esta observação se da pelo fato de que, no primeiro quadrante da tabela, em que todos os elementos são homozigotos dominante (AA), há quase duas vezes mais chance de ocorrer um gene dominante do tipo 2, pois há dois genes dominantes.

	A1A2		
A2A1	A2A2	A2A3	A2A4
	A3A2		
	A4A2		

Essa chance só não é exatamente dois, pois os genes A2A2 são contados apenas uma vez.

Outros quadrantes

Já nos quadrantes 2 e 3, apenas um dos genes é dominante, e no ultimo quadrante, nenhum é dominante.

42.1	42.2	A2a3	42.4
AZaI	AZaZ	AZas	AZa4

a1A2	
a2A2	
a3A2	
a4A2	

Enfim

É como se na tabela do problema 1, o elemento AA fosse grande o suficiente para quase equivaler aos elementos Aa e aA juntos.

AA	Aa
аA	

Generalizando

Podemos generalizar a chance de um indivíduo ser homozigoto dominante (AA) sabendo que um dos genes é do tipo X para n tipos diferentes através da fórmula:

$$\frac{2n-1}{4n-1}$$

Percebe-se que quanto maior o número de tipos da doença, mais a chance se aproxima a 50%.