Linear Regression

Recap: Machine learning algorithms

	Supervised Learning	Unsupervised Learning
Discrete	Classification	Clustering
Continuous	Regression	Dimensionality reduction

House pricing prediction

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	-m = 47
852	178	11t - 47
•••		

Notation:

- m = Number of training examples
- x =Input variable / features
- y = Output variable / target variable
- (x, y) = One training example
- $(x^{(i)}, y^{(i)}) = i^{th}$ training example

Examples:

$$x^{(1)} = 2104$$
 $x^{(2)} = 1416$
 $y^{(1)} = 460$

Model representation

Univariate linear regression

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	_
1416	232	
1534	315	m - 17
852	178	-m=47
•••	•••	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_0 , θ_1 : parameters/weights

How to choose θ_i 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost function

• Idea: Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for our training example (x, y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x^{(i)}) = \theta_{0} + \theta_{1} x^{(i)}$$

Price (\$) in 1000's 400 200 2500
$$\chi$$
 500 1000 1500 2000 2500 Size in feet^2

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$J(\theta_0, \theta_1)$$
 Cost function θ_0, θ_1

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis:

$$\rightarrow h_{\theta}(x) = \theta_1 x$$

$$\theta_0 = 0$$

• Parameters:

$$\theta_0$$
, θ_1

Parameters:

$$\theta_1$$

Cost function:

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \longrightarrow J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

• Goal:

minimize
$$J(\theta_0, \theta_1)$$

 θ_0, θ_1

Goal:

minimize
$$J(\theta_1)$$
 θ_0, θ_1

 $h_{\theta}(x)$, function of x

 $h_{\theta}(x)$, function of x

 $h_{\theta}(x)$, function of x

 $h_{\theta}(x)$, function of x

 $J(\theta_1)$, function of θ_1

 $h_{\theta}(x)$, function of x

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

• Parameters: θ_0 , θ_1

• Cost function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

•Goal: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1

Cost function

How do we find good θ_0 , θ_1 that minimize $J(\theta_0, \theta_1)$?

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 200 200 0.2 0.1 0 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 θ_0 1000 0 1500 2000 Size (feet2)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 200 200 500 0.2 0.1 0 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 1000 2000 3000 4000 -500 θ_0 1000 1500 2000 0 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 200 200 200 500 0.2 0.1 0 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000 1500 2000 0 Size (feet2)

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Gradient descent

```
Have some function J(\theta_0, \theta_1)
Want \underset{\theta_0, \theta_1}{\operatorname{argmin}} J(\theta_0, \theta_1)
```

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at minimum

Gradient descent

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

 α : Learning rate (step size)

$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$
: derivative (rate of change)

Gradient descent

Correct: simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$temp1 := \theta_1 - \alpha \frac{\sigma}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \mathsf{temp0}$$

$$\theta_1 \coloneqq \text{temp1}$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \text{temp0}$$

temp1 :=
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 \coloneqq \text{temp1}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Learning rate

Gradient descent for linear regression

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Computing partial derivative

•
$$j = 0$$
: $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$
• $j = 1$: $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$

Gradient descent for linear regression

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Update θ_0 and θ_1 simultaneously

Batch gradient descent

"Batch": Each step of gradient descent uses all the training examples
 Repeat until convergence{

m: Number of training examples

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Training dataset

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	
852	178	
•••	•••	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (input variables)

Size in feet^2 (x_1)	Number of bedrooms (x_2)	Number of floors (x_3)	Age of home (years) (x_4)	Price (\$) in 1000's (y)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				•••

Notation:

n = Number of features $x^{(i)}$ = Input features of i^{th} training example $x_j^{(i)}$ = Value of feature j in i^{th} training example

$$x_3^{(2)} = ?$$
 $x_3^{(4)} = ?$

Hypothesis

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• For convenience of notation, define $x_0 = 1$ $(x_0^{(i)} = 1 \text{ for all examples})$

$$\bullet \ \mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} \qquad \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

$$\bullet h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$= \boldsymbol{\theta}^{\top} \boldsymbol{x}$$

Gradient descent

• Previously (n=1)

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

• New algorithm $(n \ge 1)$

Repeat until convergence{

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \qquad \theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Simultaneously update θ_j , for $j = 0, 1, \dots, n$

Gradient descent in practice: Feature scaling

- Idea: Make sure features are on a similar scale (e.g., $-1 \le x_i \le 1$)
- E.g. $x_1 = \text{size (0-2000 feat^2)}$ $x_2 = \text{number of bedrooms (1-5)}$

Midterm Exam	(midterm exam) ²	Final Exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

What is the normalized feature x2(4)?

Gradient descent in practice: Learning rate

- Automatic convergence test
- α too small: slow convergence
- α too large: may not converge

• To choose α , try

0.001, ... 0.01, ..., 0.1, ..., 1

House prices prediction

• $h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$

• Area

 $x = \text{frontage} \times \text{depth}$

• $h_{\theta}(x) = \theta_0 + \theta_1 x$

Polynomial regression

$$x_1$$
 = (size)
 x_2 = (size)^2
 x_3 = (size)^3

•
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

= $\theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$

Regularization

Overfitting

Cost function

Regularized linear regression

Example: Linear regression

Overfitting

• If we have too many features (i.e. complex model), the learned hypothesis may fit the training set very well

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \approx 0$$

but fail to generalize to new examples (predict prices on new examples).

Example: Linear regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \cdots$$

Underfitting

Just right

Overfitting

High bias

High variance

Addressing overfitting

- x_1 = size of house
- x_2 = no. of bedrooms
- $x_3 = \text{no. of floors}$
- x_4 = age of house
- x_5 = average income in neighborhood
- x_6 = kitchen size
- •
- x_{100}

Addressing overfitting

• 1. Reduce number of features.

- Manually select which features to keep.
- Model selection algorithm.

• 2. Regularization.

- Keep all the features, but reduce magnitude/values of parameters θ_i .
- Works well when we have a lot of features, each of which contributes a bit to predicting y.

Regularization

Overfitting

Cost function

Regularized linear regression

Intuition

Price (\$)

• Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + 1000 \,\theta_{3}^{2} + 1000 \,\theta_{4}^{2}$$

Regularization.

- Small values for parameters θ_1 , θ_2 , \cdots , θ_n
 - "Simpler" hypothesis
 - Less prone to overfitting
- Housing:
 - Features: x_1, x_2, \dots, x_{100}
 - Parameters: θ_0 , θ_1 , θ_2 , \cdots , θ_{100}

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Regularization

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$\min_{\theta} J(\theta)$$

$$\uparrow$$
Size in feet^2

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

What if λ is set to an extremely large value (say $\lambda=10^{10}$)?

- 1. Algorithm works fine; setting to be very large can't hurt it
- 2. Algorithm fails to eliminate overfitting.
- 3. Algorithm results in underfitting. (Fails to fit even training data well).
- 4. Gradient descent will fail to converge.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

What if λ is set to an extremely large value (say $\lambda=10^{10}$)?

$$h_{\theta}(x) = \theta_0 + \frac{\theta_1 x_1}{\theta_1 x_2} + \frac{\theta_2 x_2}{\theta_2 x_2} + \dots + \frac{\theta_n x_n}{\theta_n x_n} = \theta^{\mathsf{T}} x$$

Important points about λ:

- λ is the tuning parameter used in regularization that decides how much we want to penalize the flexibility of our model i.e, controls the impact on bias and variance.
- When λ = 0, the penalty term has no effect, the equation becomes the cost function of the linear regression model. Hence, for the minimum value of λ i.e, λ =0, the model will resemble the linear regression model. So, the estimates produced by ridge regression will be equal to least squares.
- However, as $\lambda \rightarrow \infty$ (tends to infinity), the impact of the shrinkage penalty increases, and the ridge regression coefficient estimates will approach zero.

Regularization

Overfitting

Cost function

Regularized linear regression

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\theta} J(\theta)$$

n: Number of features θ_0 is not panelized

Gradient descent (Previously)

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$
 $(j = 0)$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \right] \quad (j = 1, 2, 3, \dots, n)$$

Gradient descent (Regularized)

Repeat { $\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$ $\theta_j := \theta_j - \alpha \frac{1}{m} \left| \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right|$ $\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \left[\sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \right]$

Comparison

$$1 - \alpha \frac{\lambda}{m} < 1$$
: Weight decay

Regularized linear regression

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \left[\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \right]$$

Un-regularized linear regression

$$\theta_j \coloneqq \theta_j \qquad -\alpha \frac{1}{m} \left[\sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \right]$$

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression

Let f be some function so that $f(\theta 0, \theta 1)$ outputs a number. For this problem, f is some arbitrary/unknown smooth function (not necessarily the cost function of linear regression, so f may have local optima). Suppose we use gradient descent to try to minimize $f(\theta 0, \theta 1)$ as a function of $\theta 0$ and $\theta 1$. Which of the following statements are true? (Check all that apply.)

- Even if the learning rate α is very large, every iteration of gradient descent will decrease the value of f(00,01).
- If the learning rate is too small, then gradient descent may take a very long time to converge.
- If $\theta 0$ and $\theta 1$ are initialized at a local minimum, then one iteration will not change their values.
- If $\theta 0$ and $\theta 1$ are initialized so that $\theta 0=\theta 1$, then by symmetry (because we do simultaneous updates to the two parameters), after one iteration of gradient descent, we will still have $\theta 0=\theta 1$.

You run gradient descent for 15 iterations with α =0.3 and compute J(θ) after each iteration. You find that the value of J(θ) decreases quickly then levels off. Based on this, which of the following conclusions seems most plausible?

- Rather than use the current value of α , it'd be more promising to try a larger value of α (say α =1.0).
- Rather than use the current value of α , it'd be more promising to try a smaller value of α (say α =0.1).
- α =0.3 is an effective choice of learning rate.

 Which of the following is true about below graphs(A,B, C left to right) between the cost function and Number of iterations?

- A) |2 < |1 < |3
- B) |1 > |2 > |3
 - C) 11 = 12 = 13
 - D) None of the above

Reference

- https://www.analyticsvidhya.com/blog/2021/05/complete-guide-toregularization-techniques-in-machine-learning/
- Machine Learning by Andrew Ng
- https://filebox.ece.vt.edu/~jbhuang/teaching/ECE5424-CS5824/sp19
- https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
- https://towardsdatascience.com/feature-selection-in-machine-learning-using-lasso-regression-7809c7c2771a