CSI2532 - Labo 9 - Normalisation

Aperçu

L'objectif du tutoriel est de vous donner pratique sur des dépendances fonctionnelles (FD) et normalisation.

Règles de dépendance fonctionnelle

Règle réflexive	Règle d'augmentation	Règle de transitivité
if β⊆α,	if $\alpha \rightarrow \beta$,	if $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$,
then α→β	then $\gamma \alpha \rightarrow \gamma \beta$	then $\alpha \rightarrow \gamma$

Règles dérivées

Règle de l'Union	Règle de décomposition	Règle de pseudo-transitivité
if $\alpha \rightarrow \beta$, $\alpha \rightarrow \gamma$,	if $\alpha \rightarrow \beta \gamma$,	if $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$,
then $\alpha \rightarrow \beta \gamma$	then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$	then $\alpha \gamma \rightarrow \delta$

Utilisez les règles ci-dessus pour prouver une dépendance. Ou trouver un contre-exemple pour prover un ambiguïté de sorte que α ne puisse pas identifier de manière unique β .

Reflexive

rule

if
$$\beta \subseteq \alpha$$
,

then
$$\alpha \rightarrow \beta$$

Augmentation rule

if
$$\alpha \rightarrow \beta$$
,

then
$$\gamma \alpha \rightarrow \gamma \beta$$

Transitivity rule

if
$$\alpha \rightarrow \beta$$
 and $\beta \rightarrow \gamma$
then $\alpha \rightarrow \gamma$

Union rule

if
$$\alpha \rightarrow \beta$$
, $\alpha \rightarrow \gamma$

then
$$\alpha \rightarrow \beta \gamma$$

Decomposition rule

if
$$\alpha \rightarrow \beta \gamma$$

then
$$\alpha \rightarrow \beta$$
 and $\alpha \rightarrow \gamma$

Pseudo-transitivity rule

if
$$\alpha \rightarrow \beta$$
 and $\gamma \beta \rightarrow \delta$

then
$$\alpha \gamma \rightarrow \delta$$

Super clé

Une super clé où $K \to R$. Pour prouver, montrer la fermeture de K (K+) inclut toutes les relations (K+=R).

Test superkey K

Test
$$\alpha = K$$

Check *α*+ → R

Clé candidat

Une clé candidate est une super clé minimisée. Il ne devrait donc pas y avoir $\alpha \in K$ où $\alpha+=R$.

Test α candidate K

Test $\alpha + \rightarrow K$ $\exists \ \beta \subset \alpha \ \text{test} \ ! \ \beta + \rightarrow R$ $\alpha \ \text{size n, and } \beta \ \text{size n-1}$

α + (Fermeture de l'ensemble d'attributs)

Pour calculer α + determiner toutes les dépendances fonctionnelles $\beta \rightarrow \gamma$, si $\alpha \subseteq \beta$ alors ajouter γ à α +

calc... α+

```
\alpha+ := \alpha

do {

foreach (\beta \rightarrow \gamma \text{ in } F) {

if (\beta \subseteq \alpha+) {

\alpha+ \cup \gamma

}

} while (changes to \alpha+);
```

F+ (fermeture des dépendances fonctionnelles)

Voici l'algorithme original pour calculer F+.

calc... F+

```
F+:= F

do {

foreach (f in F+) {

F+ ∪ apply(reflexivity, f);

F+ ∪ apply(augmentation, f);

}

foreach (f1, f2 in F+) {

F+ ∪ apply(transitivity, f1, f2);

}

while (changes to F+);
```

Mais, nous pouvons utiliser α +. Calculez α + pour chaque combinaison, puis créez toutes les combinaisons de X \rightarrow Y.

L'algorithme est

```
\exists \gamma \subseteq \mathbb{R} find \gamma +
\exists S \subseteq \gamma + \text{ output FD } \gamma \subseteq
```

Compute F+

 $\mathbf{R} = (A, B, C)$

 $F = \{A \rightarrow B, B \rightarrow C\}$

$$\emptyset$$
+ = \emptyset so $\emptyset \rightarrow \emptyset$

$$(A)+ = A$$
 $(B)+ = B$ $(C)+= C$
= AB = BC

$$(AB)+=AB$$
 $(AC)+=AC$ $(BC)+=BC$ $(ABC)+=ABC$
= ABC = ABC

Compute F+

 $\mathbf{R} = (A, B, C)$

 $F = \{A \rightarrow B, B \rightarrow C\}$

 $\emptyset \rightarrow \emptyset$

 $A\rightarrow\emptyset$, $A\rightarrow A$, $A\rightarrow B$, $A\rightarrow C$, $A\rightarrow AB$, $A\rightarrow AC$, $A\rightarrow BC$, $A\rightarrow ABC$

 $B\rightarrow\emptyset$, $B\rightarrow B$, $B\rightarrow C$, $B\rightarrow BC$

C→∅, C→C

 $AB\rightarrow\emptyset$, $AB\rightarrow A$, $AB\rightarrow B$, $AB\rightarrow C$, $AB\rightarrow AB$, $AB\rightarrow AC$, $AB\rightarrow BC$, $AB\rightarrow ABC$

 $AC \rightarrow \emptyset$, $AC \rightarrow A$, $AC \rightarrow B$, $AC \rightarrow C$, $AC \rightarrow AB$, $AC \rightarrow AC$, $AC \rightarrow BC$, $AC \rightarrow ABC$

BC→Ø, BC→B, BC→C, BC→BC

 $ABC \rightarrow \emptyset$, $ABC \rightarrow A$, $ABC \rightarrow B$, $ABC \rightarrow C$, $ABC \rightarrow AB$, $ABC \rightarrow AC$, $ABC \rightarrow BC$, $ABC \rightarrow ABC$

Test BCNF

relation $\alpha \rightarrow \beta$ où $\alpha \not\subset R$ alors la relation n'est PAS BCNF.

Test 3NF

Si ce n'est pas BCNF, trouver une relation $\alpha \rightarrow \beta$ où un attribut dans β (mais pas dans α , donc β - α) n'est pas dans K (n'importe quelle clé candidate) et ce n'est pas 3NF.

$$\forall A \in \beta$$
- α : $A \subseteq K$

3NF

Couverture canonique

Continuez jusqu'à ce que Fc ne change pas.

- 1. Appliquer la règle de l'union
- 2. Supprimez tout attribut étranger lorsque vous regardez tous les $\alpha \rightarrow \beta$

Canonical Cover

```
Fc := F

do {

foreach (f1, f2 in Fc) {

    // \alpha1 \rightarrow \beta1 and \alpha1 \rightarrow \beta2

    // into \alpha1 \rightarrow \beta1 \beta2

    reduce(union, f1, f2);
}

foreach (\alpha \rightarrow \beta in Fc) {

    if with Fc find extraneous A in \alpha or \beta {

        delete(A, \alpha \rightarrow \beta)
    }
}

while (changes to Fc);
```

Basé sur des tests externes

Testing for extraneous A in $\alpha \rightarrow \beta$

Remove "left"

Remove "right"

$$\gamma = \alpha - \{A\}$$
Check if $\gamma \rightarrow \beta$
(Check $\beta \subseteq \gamma + \beta$)

$$F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$$
Check $A \in \alpha + \text{ under } F'$

Attribut étranger A dans α

Après avoir supprimé l'attribut, essayez de prouver la dépendance fonctionnelle originalle existe toujours.

Considérer

```
R=(A, B, C, D)
F={
    AB→C,
    A→D,
    D→C
}
```

Pouvons-nous (en toute sécurité) supprimer «B» dans AB → C?

Nous devons prouver que A → C peut être dérivé des autres dépendances fonctionnelles.

OUI nous pouvons (en utilisant les règles). A → D et D → C donc A → C. "B" est donc étranger.

OU OUI (en utilisant α + avec F). (A)+ = ADC donc oui A \rightarrow C.

Attribut étranger A dans β

Après avoir supprimé l'attribut, essayez de montrer que vous pouvez *recréer* la dépendance fonctionnelle la plus forte basée sur la plus faible.

Considérer

```
R=(A, B, C, D)
F={
    AB→CD,
    A→C
}
```

Pouvons-nous (en toute sécurité) supprimer «C» dans AB→CD?

Nous devons prouver qu'avec AB → D (une allégation plus faible) peut nous permettre de revenir à notre affirmation plus forte AB → CD.

OUI nous pouvons (en utilisant des règles). Avec A→C, nous l'augmentons à AB→C, puis en union avec l'AB→D (le plus faible règles), nous revenons à AB → CD.

OU OUI (calcul de β + en utilisant F'). Calculer (AB)+ = ABCD à partir de F' = {AB \rightarrow D, A \rightarrow C} qui contient AB \rightarrow CD donc "C" est étranger.

Décomposition BCNF

```
result := {R};

done := false;

compute F +;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency that

holds on R_i such that \alpha \to R_i is not in F +,

and \alpha \cap \beta = \emptyset;

result := (result -R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Note: each R_i is in BCNF, and decomposition is lossless-join.

Par exemple,

Decompose R on $\alpha \rightarrow \beta$ in_dep(ID, name, salary, $R2 = R - (\beta - \alpha)$ instructors (ID, dept name, building, name, budget dept_name, salary) $R1 = \alpha \cup \beta$ dept (dept_name, building, budget)

Q1a: Test des formes normales

Considérez la relation et les dépendances fonctionnelles suivantes.

```
R=(A,B,C,D)
F=\{
AB \rightarrow C,
C \rightarrow D,
D \rightarrow A
}
```

- a. Liste toutes les clés candidates de R.
- b. Est-ce que R est dans 3NF? BCNF?

Q1b: Test des formes normales

Considérez la relation et les dépendances fonctionnelles suivantes.

```
R=(A,B,C,D)
F=\{
A \rightarrow B,
B \rightarrow C,
C \rightarrow D,
D \rightarrow A
}
```

- a. Liste toutes les clés candidates de R.
- b. Est-ce que R est dans 3NF? BCNF?

Q1c: Test des formes normales

Considérez la relation et les dépendances fonctionnelles suivantes.

```
S=(A,B,C,D)
F=\{
B \rightarrow C,
C \rightarrow A,
C \rightarrow D
}
```

- a. Liste toutes les clés candidates de R.
- b. Est-ce que R est dans 3NF? BCNF?

Q1d: Test des formes normales

Considérez la relation et les dépendances fonctionnelles suivantes.

```
R=(A,B,C,D)
F=\{
ABC \rightarrow D,
D \rightarrow A
\}
```

- a. Liste toutes les clés candidates de R.
- b. Est-ce que R est dans 3NF? BCNF?

Q1e: Test des formes normales

Considérez la relation et les dépendances fonctionnelles suivantes.

```
R=(A,B,C,D)
F=\{
A \rightarrow C,
B \rightarrow D
}
```

- a. Liste toutes les clés candidates de R.
- b. Est-ce que R est dans 3NF? BCNF?

Q2a: Test de la dépendance fonctionnelle

Considérez la relation et les dépendances fonctionnelles suivantes.

```
R=(A,B,C,D,E,F)
F=\{
AB \rightarrow C,
BC \rightarrow AD,
D \rightarrow E,
CF \rightarrow B
}
```

Est AB → D valid? Si oui, montrez une preuve formelle; sinon, donnez un contre-exemple.

Q2b: Test de la dépendance fonctionnelle

Considérez la relation et les dépendances fonctionnelles suivantes.

```
R=(A,B,C)
F=\{
AB \rightarrow C
\}
```

Est A → C valid? Si oui, montrez une preuve formelle; sinon, donnez un contre-exemple.

Q2c: Test de la dépendance fonctionnelle

Considérez la relation et les dépendances fonctionnelles suivantes.

```
R=(A,B,C)
F=\{
AB \rightarrow C
\}
```

Est B → C valid? Si oui, montrez une preuve formelle; sinon, donnez un contre-exemple.

Q2d: Test de la dépendance fonctionnelle

Considérez la relation et les dépendances fonctionnelles suivantes.

```
R=(A,B,C)
F=\{
AB \rightarrow C
\}
```

Est A → C OR B → C valid? Si oui, montrez une preuve formelle; sinon, donnez un contreexemple.

Q3: Couverture canonique

Calculer une couverture canonique pour

```
F=\{ \\ B \rightarrow A, \\ D \rightarrow A, \\ AB \rightarrow D \\ \}
```

Q4: Décomposition BCNF

Produire une décomposition BCNF de R.

```
R = ABCDEFGH
F = \{
ABH \rightarrow C,
A \rightarrow DE,
BGH \rightarrow F,
F \rightarrow ADH,
BH \rightarrow GE
\}
```