Part A: Level-Level Model

Tarent. Lever L	CVCITVIOGCI						
Source	SS	df	MS	Numb	er of obs	=	203
				- F(1,	201)	=	16.80
Model	23741.9512	1	23741.951	2 Prob	> F	=	0.0001
Residual	283996.187	201	1412.9163	5 R-sq	uared	=	0.0771
				– Adj	R-squared	=	0.0726
Total	307738.138	202	1523.4561	3 Root	MSE	=	37.589
price	Coefficient	Std. err.	t	P> t	[95% coi	nf.	interval]
distance	-4.534921	1.106292	-4.10	0.000	-6.71634	7	-2.353494
_cons	135.4811	3.65059	37.11	0.000	128.2828	8	142.6795
	1						

For this data exercise I have created a simple linear regression for the city of Madrid. Utilizing the provided data sets, I have selected the number of stars (3 and 4), weekend (0), and month (11) for the city of Madrid. From this table I can see that the intercept is \$135.48 and the slope is -4.5. This signifies that when distance is 0, the average price per night is approximately \$135.48. As we go 1 mile from the center, prices are lower on average by \$4.53 dollars.

In class, our intercept and slope for Vienna was approximately \$132 and -14 respectively. This means that at the city center, on average, hotel prices were \$132 and at each unit (which may have been miles in this example) away from the center, prices are on average \$14 lower.

Part B: Log-Level Model, Natural Log of Y

Source	SS	df	MS	Number of ob	s =	203
				F(1, 201)	=	20.35
Model	1.82343727	1	1.82343727	Prob > F	=	0.0000
Residual	18.0129673	201	.089616753	R-squared	=	0.0919
				Adj R-square	ed =	0.0874
Total	19.8364045	202	.098200022	-	=	.29936
logprice	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
distance	0397427	.0088106	-4.51	0.0000571	.157	0223696
_cons	4.87195	.0290736	167.57	0.000 4.814	1622	4.929279

In this question, I have taken the natural log of price, y. With taking the natural log of price, we can interpret this as, when we go 1 mile away from the center prices are (-.03 * 100) -3.896 percent lower. The average of the logprice of hotels at the city center is \$129.57 (e^4.87195-1).

Part C: Log-Log Model, Natural Log of x,y

Source	SS	df	MS		Number of obs F(1, 201)		203
Model Residual	1.19665011 18.6397544	1 201	1.19665011 .092735097	L Prob 7 R-sq	•	= =	12.90 0.0004 0.0603 0.0557
Total	19.8364045	202	.098200022	_	•	=	.30452
logprice	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]
logdistance _cons	0611711 4.791114	.0170288	-3.59 222.36	0.000 0.000	0947493 4.748623		027593 4.833602

For this question, I have taken the natural log for both variables x,y, or a log-log model. With our new calculation using the log-log model, our alpha is 4.79 and our log distance is -0.6. We interpret this as: as we go one mile away from the center, the price of hotels is approximately 6 percent lower with the logprice on average being \$119.43 (e^4.791114-1) at the city center (when logdistance is 0). Hotels that are one percent away from the center are on average 6% lower.

We can compare the R-squared for the Log-Log and Log-Level models in this scenario and see that the Log-Level model has an R-squared of .09 and the Log-Log model has an R-squared model of .06. R-squared highlights the variance in y. From this we can say that 9% and 6%, respectively, of overall variation in hotel prices is explained by the linear regression with distance to the city center. This leaves 91% and 94% unexplained, respectively. There is greater variance in y in the Log-Level model though both have a relatively low variation.

Do file on Word

```
*Open data set.
Use "$path/hotels-europe_features.dta", clear
*Before merging, sort the hotel_id variable in numerical order.
sort hotel_id
*Merge the price data set with the features data set using the hotel_id variable. merge 1:m hotel_id using "$path/hotels-europe_price.dta"
tab _m
drop _m
*Follow instructions by eliminating unneccessary data for the regression analysis.
drop if stars<4
keep if accommodation_type =="Hotel"
keep if city_actual == "Madrid"
keep if year == 2017
keep if month == 11
keep if weekend == 0
*Descriptive statistics
summarize price, det
summarize distance, det
*Graphs
hist price
hist distance
*Drop outliers
drop if price> 600
drop if price>300
*Label the price and distance variables
label variable price "Hotel price per night in Madrid (US Dollars)"
label variable distance "Distance per mile"
*Linear Regression
regress price distance
```

Source	SS df	MS Number of obs = 203 F(1, 201) = 16.80
Model	23741.9512	1 $23741.9512 \text{ Prob > F} = 0.0001$
Residual	283996.187	201 1412.91635 R-squared = 0.0771
		Adj R-squared = 0.0726
Total	307738.138	202 1523.45613 Root MSE =37.589
price	Coefficient	Std. err. t P>t [95% conf. interval]
distance _cons	-4.534921 135.4811 3.65059	1.106292 -4.10

^{*}distance x, price y

*Log-Level model gen In_price = In(price) reg In_price distance

Source	SS df	MS Number of obs = 203	
		F(1, 201) = 20.35	
Model	1.82343727	1 $1.82343727 \text{ Prob > F} = 0$	0.0000
Residual	18.0129673	201 .089616753 R-squared = 0	0.0919
		Adj R-squared = 0.0874	
Total	19.8364045	202 .098200022 Root MSE =.	29936
In_price	Coefficient	Std. err. t P>t [95% conf. ii	nterval]
distance	0397427	.0088106 -4.51 0.0000571157 -	.0223696
_cons	4.87195 .0290736	6 167.57 0.000 4.814622 4.929279	

^{*}intercept:135 this means that when the distance is 0, the price is \$135 *slope: -4.53, for every mile away from center, prices on average \$4.53 lower

*Log-log model

gen In_distance = In(distance) regress In_price In_distance

Source SS MS Number of obs = 203 F(1, 201) = 12.90

1.19665011 Prob > F .092735097 R-squared Model 1.19665011 = 0.0004 201 Residual 18.6397544 =0.0603Adj R-squared = 0.0557

Total 19.8364045 .098200022 Root MSE =.30452

In_price Coefficient Std. err. t P>t [95% conf. interval]

-.0611711 .0170288 -3.59 0.000 -.0947491 -.027593 In_distance 4.791114 .0215471 222.36 0.000 4.748627 4.833602 _cons

save as "C:\Users\Mosby_Victoria\Desktop\Data 2\Data HW 2 Regression Analysis Madrid.dta"

^{*}distance, Inprice

^{*}as we go one mile away from center, prices are on average 3.97% lower (-.0397*100)

^{*}Inprice shows percentage, better approximation to average slope

^{*}In_distance, In_price
*e^4.791114-1 119\$ average In_price

^{*}as we move one percent away from center, prices on average are 6% lower