CS M151B HW4

Terry Ye

1 4.7

1.1 4.7.1

Sign extended: 0000 0000 0000 0000 0000 0000 0001 0100 Left shift 2; 0001 1000 1000 0000 0000 0101 0000

1.2 4.7.2

ALU
op is 00 because sw instruction has to perform ADD. The last
 6 bits of instruction is $010100\,$

1.3 4.7.3

The new PC address is PC+4.

1

1.4 4.7.4

MUX for register write: don't care

The RegDst control value does not matter as there is no write to the register.

MUX for ALU input: 20

In sw instruction, immediate value is used to compute the memory address to write. So the last 16 digits is outputted and the value is 20.

MUX for register write data: don't care X

In sw instruction, there is no data to write in register.

MUX for PC: PC + 4

For sw instruction, there is no jump and branch so pc will just move to next instruction.

MUX for PC MUX: PC + 4

$1.5 \quad 4.7.5$

ALU: -3 and 20.

The first input comes from register rs. Rs is 3 and the value is r3 is -3. The second input comes from sign extended 16-bit immediate value which is 20.

First adder on the left: PC and 4.

Second adder on the right: PC + 4 and 80.

The first input is PC+4, the second is the immediate value left shifted by 2 which is 20*4 = 80

$1.6 \quad 4.7.6$

Read register 1: rs = 3Read register 2: rt = 1

Write register: X Write data: X RegWrite: 0

2 blt

3 jal

jr

