Fields of Quotients (Cont'd)

Theorem. Let F be a field of quotients for an integral domain D, and let L be any field that contains D as a subring. Then there is a unique homomorphism $\psi \colon F \to L$ such that $\psi(a) = a$ for all $a \in D$.

Proof. See the book for the existence of ψ , or use:

$$\psi([(a,b)]) = \psi(a/_F b) = \psi(a)/_L \psi(b) = a/_L b$$
.

One also needs to show that it is well defined and is a homomorphism.

Uniqueness: It has to be as given. In detail, let $x \in F$ be given. Then $x = [(a,b)] = a/_F b$ for some $a,b \in D$, $b \neq 0$. Then bx = a in D, hence in F. So $\psi(b)\psi(x) = \psi(a)$, therefore $b\psi(x) = a$, so $\psi(x) = a/_L b$.

Integral Domains as Subrings of Fields

We also proved: Every integral domain is a subring of a field, which contains the unity element of the field.

Conversely, let F be a field let 1_F be its unity element, and let R be a subring of F that contains 1_F . Then R is an integral domain:

- It is commutative because F is
- It has $1 \neq 0$ because F does and $1_F \in R$
- It has no zero divisors because F has none.

So:

A ring R is an integral domain

⇒ it is a subring of a field and contains the field's unity element

 \iff it is a subring of a field and has $1 \neq 0$.

(See Ex. 19.23: If F is a division ring then $\{x \in F : x^2 = x\} = \{0, 1\}$.)

Polynomials

Definition. Let R be an integral domain. We define the set R[x] to be the set of all formal infinite sums $a_0 + a_1x + a_2x^2 + \ldots$ such that all but finitely many of the a_i are zero.

We define a binary operation + on R[x] by termwise addition:

$$(a_0 + a_1x + a_2x^2 + \dots) + (b_0 + b_1x + b_2x^2 + \dots) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots$$

We define a binary operation \cdot on R[x] as you've learned in grade school:

$$(a_0 + a_1x + a_2x^2 + \dots) \cdot (b_0 + b_1x + b_2x^2 + \dots) = c_0 + c_1x + c_2x^2 + \dots,$$

where

$$c_n = \sum_{i=0}^n a_i b_{n-i}$$
 for all $n \in \mathbb{N}$.

Theorem. With the above definitions, R[x] is a ring. It also contains R as a subring. Proof. To show that it is a ring: Associativity of \cdot is proved on page 200, and the distributive law is Ex. 26.

To show that it contains R as a subring: The map $R \to R[x]$ given by $a \mapsto a$ is a ring homomorphism, and is injective.

Proposition. Since R is assumed to be an integral domain, R[x] is also an integral domain.

Proof. The ring R[x] is commutative because R is, and it has $1 \neq 0$ because R does (with the same unity element). To show that it has no zero divisors, let

$$f = a_0 + a_1 x + a_2 x^2 + \dots$$
 and $g = b_0 + b_1 x + b_2 x^2 + \dots$

be nonzero elements of R[x]. Then there are integers n and m such that $a_n \neq 0$ but $a_i = 0$ for all i > n and $b_m \neq 0$ but $b_j = 0$ for all j > m. Then

$$c_{n+m} = \sum_{i=0}^{n-1} a_i b_{n+m-i} + a_n b_m + \sum_{i=n+1}^{n+m} a_i b_{n+m-i} = a_n b_m.$$

Indeed, the first sum vanishes because n+m-i>m, and therefore $b_{n+m-i}=0$ for all i< n; and the second sum vanishes because $a_i=0$ for all i>n. Therefore $fg\neq 0$ because its coefficient of x^{n+m} is $a_nb_m\neq 0$.

Some Notes

- In the definition of R[x] the book allows R to be any ring, but we are requiring R to be an integral domain.
- \mathbb{Q} is a field, but $\mathbb{Q}[x]$ is not (x has no inverse).
- If $a_i = 0$ for all i > n then we may write $a_0 + a_1x + a_2x^2 + \dots$ as the finite sum $a_0 + \dots + a_nx^n$ or $a_nx^n + \dots + a_0$.
- In algebra, we don't have infinite sums, unless:
- (1). all but finitely many of the terms are zero (so it's really a finite sum), or
- (2). there is some notion of convergence in the ring (not in Math 113).

Polynomials in Several Variables, and Rational Functions

- **Definition.** Let R be an integral domain. For all $n \in \mathbb{N}$, the polynomial ring $R[x_1, \ldots, x_n]$ is defined to be R if n = 0, or $(R[x_1, \ldots, x_{n-1}])[x_n]$ if n > 0.
- **Definition.** Let F be a field and let $n \in \mathbb{N}$. Then the **field of rational functions in** n **indeterminates** x_1, \ldots, x_n **over** F is the field of quotients of $F[x_1, \ldots, x_n]$.

Clicker Questions!

Evaluation Homomorphisms

Theorem. Let $F \leq E$ be fields, let $\alpha \in E$, and let x be an indeterminate. Then the map $\phi_{\alpha} \colon F[x] \to E$ defined by

$$\phi_{\alpha}(a_n x^n + \dots + a_1 x + a_0) = a_n \alpha^n + \dots + a_1 \alpha + a_0$$

is a well-defined homomorphism from F[x] to E. This map is called **evaluation at** α . It also satisfies (1) $\phi_{\alpha}(a) = a$ for all $a \in F$ and (2) $\phi_{\alpha}(x) = \alpha$ for all $\alpha \in E$.

Proof. (1) and (2) are clear.

Addition:

$$\phi_{\alpha} \left(\sum a_i x^i + \sum b_i x^i \right) = \phi_{\alpha} \left(\sum (a_i + b_i) x^i \right) = \sum (a_i + b_i) \alpha^i = \sum a_i \alpha^i + \sum b_i \alpha^i$$
$$= \phi_{\alpha} \left(\sum a_i x^i \right) + \phi_{\alpha} \left(\sum b_i x^i \right) .$$

Multiplication: Similar but harder.

Examples (1). $\phi_0 \colon F[x] \to F$ is $\sum a_i x^i \mapsto a_0$

(2) Take $F = \mathbb{Q}$ and $E = \mathbb{R}$. It is a deep theorem in number theory that $\phi_{\pi} : \mathbb{Q}[x] \to \mathbb{R}$ and $\phi_{e} : \mathbb{Q}[x] \to \mathbb{R}$ are injective.

Polynomials vs. Functions

For us, it's OK to write $f(\alpha)$ instead of $\phi_{\alpha}(f)$.

However: Polynomials in R[x] are not the same as functions $R \to R$.

You know from grade school that if $f \in \mathbb{R}[x]$ and $\phi_{\alpha}(f) = 0$ for all $\alpha \in \mathbb{R}$ then f = 0.

But: Let p be a prime number. Then

$$\phi_{\alpha}(x^p - x) = 0$$
 for all $\alpha \in \mathbb{Z}_p$

(by Fermat). So both $x^p - x \in \mathbb{Z}_p[x]$ and $0 \in \mathbb{Z}_p[x]$ give rise to the same function $\mathbb{Z}_p \to \mathbb{Z}_p$.

Our "Basic Goal"

Definition. Let $F \leq E$ be fields, and let $f \in F[x]$ (with x an indeterminate). Then a **zero** of f in E is an element $\alpha \in E$ such that $\phi_{\alpha}(f) = 0$ (i.e., $f(\alpha) = 0$).

The basic goal for much of the remainder of the course is:

Theorem (29.3). Let F be a field. Then for any nonconstant polynomial $f \in F[x]$ there is a field E, containing F as a subfield, such that f has a zero in E.

Note: If $F \leq E$ and $f, g \in F[x]$ are such that their product fg has a zero $\alpha \in E$, then α is a zero of f or of g (or both):

$$(fg)(\alpha) = 0 \iff f(\alpha)g(\alpha) = 0 \iff f(\alpha) = 0 \text{ or } g(\alpha) = 0.$$

The Degree of a Polynomial

Definition. Let R be an integral domain and let $f = \sum a_i x^i \in R[x]$ be a polynomial (in one variable). Then the **degree** of f, denoted deg f, is the largest integer n such that $a_n \neq 0$, or $-\infty$ if f = 0.

Note that $\deg(fg) = \deg f + \deg g$ for all $f, g \in R[x]$.

(The book says that $\deg f$ is undefined when f=0; we are defining it to be $-\infty$.)

The Division Algorithm for F[x]

Theorem (Division Algorithm for F[x]). Let F be a field, and let f and g be elements of F[x] with $g \neq 0$.

Then there are unique polynomials $q, r \in F[x]$ such that

$$f = qg + r$$
 and $\deg r < \deg g$.

Proof. Existence. Write

$$f(x) = a_n x^n + \dots + a_0$$

and
$$g(x) = b_m x^m + \dots + b_0$$

with $b_m \neq 0$ (we don't need to assume $a_n \neq 0$ or m > 0).

Let $S = \{f - sg : s \in F[x]\}$ and let $r \in S$ be an element of smallest degree. Then r = f - qg for some $q \in F[x]$, so f = qg + r, and we'll be done if we can show that $\deg r < m$.

Suppose not. Then $r(x) = c_t x^t + \cdots + c_0$ with $c_t \neq 0$ and $t \geq m$. Also

$$f - qg - (c_t/b_m)x^{t-m}g = r(x) - (c_t/b_m)x^{t-m}g$$

$$= (c_tx^t + \dots + c_0) - \frac{c_t}{b_m}(b_mx^t + b_{m-1}x^{t-1} + \dots + b_0x^{t-m})$$

$$= \left(c_{t-1} - \frac{c_t}{b_m}b_{m-1}\right)x^{t-1} + (\text{lower-order terms}).$$

This is an element of S (with $s(x) = q(x) - (c_t/b_m)x^{t-m}$) of degree < t, contradicting the choice of r(x).

Therefore we have q and r with $\deg r < m$.

Uniqueness. See book.

Example. Long division of $x^2 + x + 1$ by x - 2 (on board).

Definition. Let F be a field and let $f,g\in F[x]$. Then we say that $f\mid g$ (f divides g) if $f\cdot q=g$ for some $q\in F[x]$.

If $f \neq 0$ then $f \mid g$ is equivalent to $g/f \in F[x]$. In the context of the division algorithm, $f \mid g$ if and only if the division algorithm gives g = qf + r with r = 0.

Corollary (of the Division Algorithm). Let $f \in F[x]$ and let $a \in F$. Then a is a zero of f if and only if $(x - a) \mid f$.

Proof. There exist $q, r \in F[x]$ such that f(x) = q(x)(x-a) + r(x) and $\deg r < 1$. Since $\deg r < 1$, r is a constant c. Then

$$c = r(a) = f(a) - q(a)(a - a) = f(a) - q(a) \cdot 0 = f(a).$$

So f(a) = 0 if and only if r = 0, if and only if $(x - a) \mid f$.