Project Lexicon **Building a Brain Computer Interface**

Rohak Singhal BEng (CE) Year 4

Outline

- 1. Introduction
- 2. Apparatus
- 3. Methodology
- 4. Architecture
- 5. Results and Performance Measure
- 6. Conclusion

RECAP

Introduction

What is a Brain Computer Interface (BCI)

- Brain produces electrical activity in performing its functions.
- Electrical activity can be recorded using electrodes on the scalp.
- BCI recognises patterns from data extracted from the brain.
- Patterns then associated with commands.

Project Aims and Significance

- 1. Establish a well documented process to develop a BCI system from scratch.
 - To help university students to continue research in this field.
- 2. Build a simple real time BCI application.
 - ▶ To demonstrate the capabilities of the BCI system.
- Analyse if the low resource BCI hardware can be used to extract meaningful mental information.
 - To reduce cost of development.

Revised Objectives

- Focus on building a better model for real-time command classification
 - Application not the focus
 - Machine Learning
- Use thoughts or "motor imagery" instead of physical movement
- Demonstrate the application in real-time

9

Apparatus

Hardware: OpenBCI Cyton and Daisy

- Total of 16 channels from the combined boards
- Greater accuracy and brain coverage
- Compatible with most BCI software libraries

OpenBCI 32-bit Board Kit

OpenBCI 16-channel R&D Kit

Software: OpenVibe Designer

- Modules can be configured, edited, chained and used
- Best for rapid prototyping

Methodology

Mapping Principle: Motor Imagery

- Performing an action and thinking of the same action
 - Activate same areas in the brain
- Thus thinking of left or right hand should give results similar to moving them
- First classify arm movement
 - Attempt motor imagery

Process Flow

Signal Acquisition: Electrode Placement

- Used international 10-20 standard of placement
- Used brain areas known for movement and discrimination between left and right body areas

Data Acquisition: Stimulation

- Stare at blank screen for 30s
 - Allow brainwaves to settle
- Green Cross indicates user to get ready
- Arrow direction indicates
 - Which side to move/think (left vs right)
- 3 Separate Tasks
 - Moving Arms
 - Moving Fingers
 - Motor Imagery
- 20 trials for each side (left and right)

Architecture and Implementation

Data Acquisition: Process

- Stimulation shown to user
- Data recorded to file as user responds

Signal Processing and Feature Engineering

- ► Temporal Filter extracts frequencies in the alpha and beta region (8-30Hz)
- CSP Filter produces features by linear combination of EEG data
 - Maximize class variance for 1st class
 - Minimize for 2nd class

Classification

- Power Spectral Density estimates the total magnitude (power) of the signal
- Calculates the power associated with the signals captured from the different regions of the brain while performing an action

Testing Visualization

- Red Arrow
 - Direction to move/think of moving
- Blue Bar
 - Which side is detected (left/right)
 - Length denotes confidence

Testing Demo

Model Improvements and Variations

Application Development

- 3D Game written in Processing framework
 - Arcade version of pong
- Paddle controlled by command from model
- Goal is to hit the ball back towards the opponent

3d Pong in Processing

Game Control Demo

Results and Analysis

Performance Measure

- Measure classification rate
- Comparing architectures and responses (movements)
- Significant improvement in 6-filter approach
- Arm MI improved significantly from 67% to 89%

Testing Accuracies

- ► Testing Accuracy for Arm Motor Imagery (MI) is 62% with 6 Filters
 - Possible that user cannot generate strong enough motor imagery
 - Fair degree of control observed in gameplay
- Accuracy of Moving Arm > Arm MI > Moving Fingers

Model Comparison

- LDA and SVM give similar performance.
 - Fig shows 2 filters
 - Best with 6 filters
- Perceptron performs very poorly compared to the others

Conclusion and Future Direction

Significance and Contributions

- Built an end-to-end real time BCI system
 - Demonstrated its power using a 3D video game
- System is well documented, easy to modify and can be reproduced from instructions
 - Promote research interest in student and maker community
- Improved classification accuracy of current BCI models
 - Established a baseline for future research

Challenges and Limitations

- Accuracy affected by both model and human error
 - More training fatigues user thus ineffective
- Several unknown variables
 - Noise affected by nearby electromagnetic fields, sweat etc
- Lack of comprehensive information, documentation and support.

Conclusion: Key Points

- LexiCon can recognize user's thoughts and classify them in real time.
- Commands provide enough control to play simple video games.
- Significant accuracy improvements were made
 - Can try to improve further by varying architecture or training the user

Future Applications

- Multiplayer video games
- Rehabilitation therapy
 - People with lost limbs can train their body for prosthetic attachment
 - Controlling wheelchair

THANK YOU!

Any Questions?

References

[1] J. J. Shih, D. J. Krusienski and J. R. Wolpaw, "Brain-Computer Interfaces in Medicine," Mayo Foundation, March 2012.

[2] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain-computer interfaces for communication and control," http://www.cs.cmu.edu/~tanja/BCI/BCIreview.pdf. [Online].

Available: http://www.cs.cmu.edu/~tanja/BCI/BCIreview.pdf

[3] "Ganglion Board (4-channels)," [Online]. Available:

https://shop.openbci.com/products/pre-order-ganglion-board?variant=13461804483. [Accessed 30 October 2018].

[4] OpenBCI, "OpenBCI/OpenBCI_GUI," GitHub, 19-Aug-2018. [Online]. Available:

https://github.com/OpenBCI/OpenBCI_GUI. [Accessed: 30-Oct-2018].

Demo

