AP: Entraînement au calcul de dérivées.

Exercice 1

Consigne pour chacune des fonctions :

- Donner le domaine de définition et le domaine de dérivabilité (pas de justifications demandées)
- Calculer la dérivée

$$\mathbf{1}^{\circ}) \ f: x \mapsto \frac{(\ln x)^4}{x}$$

2°)
$$f: x \mapsto (\cos^2 x + \frac{3}{2})\sin(2x)$$

$$\mathbf{3}^{\circ}$$
) $f: x \mapsto \sin\left(\ln\left(1+\frac{2}{x}\right)\right)$

$$\mathbf{4}^{\circ}$$
) $f: x \mapsto \exp(\sinh(x))$

5°)
$$f: x \mapsto \frac{\cos x}{\sin x - x \cos x}$$
 (sans recherche du domaine de définition)

6°)
$$f: x \mapsto (x^3 + x - 2)^4$$

$$\mathbf{7}^{\circ}) \ f: x \mapsto (1 + \sin x)^{\cos x}$$

8°)
$$f: x \mapsto \frac{x^3 \sin(5x - 1)}{\ln x}$$

$$9^{\circ}$$
) $f: x \mapsto \cos(\sin x) - \sin(\cos x)$

$$\mathbf{10}^{\circ}) \ f: x \mapsto \tan(x^5)$$

11°)
$$f: x \mapsto \operatorname{Arctan}\left(\frac{x}{x+1}\right)$$

12°)
$$f: x \mapsto \left(x + \frac{1}{x^2}\right) \sin \frac{1}{x}$$

13°)
$$f: x \mapsto \frac{e^{x-\frac{1}{x}}}{x^2-1}$$

$$\mathbf{14}^{\circ}) \ f: x \mapsto \ln\left(\cos\frac{1}{x}\right)$$

15°)
$$f: x \mapsto x^{(x^x)}$$

Exercice 2 (Intermède)

Dans un problème d'écrit, on a montré à la question précédente que pour tout $x \in \mathbb{R}_+$, $\frac{2\sqrt{x}}{x+1} \in [0,1]$ (admettez-le, ne pas le démontrer).

Voici la question qui nous intéresse :

Soit f la fonction définie sur \mathbb{R}_+ par $f(x) = Arcsin\left(\frac{2\sqrt{x}}{x+1}\right)$.

Établir que f est dérivable sur $\mathbb{R}_+^* \setminus \{1\}$ (on se servira du résultat précédent).

Un étudiant propose la réponse suivante, qui comporte des erreurs de rédaction et de raisonnement...

Arcsin est dérivable sur] $-\,1,1[\,;$

x + 1 est dérivable sur \mathbb{R} ;

 $2\sqrt{x}$ n'est pas dérivable en 0;

et pour tout $x \in \mathbb{R}_+$:

$$\frac{2\sqrt{x}}{x+1} = 1 \iff 2\sqrt{x} = x+1$$

$$\iff (\sqrt{x})^2 + 1 - 2\sqrt{x} = 0$$

$$\iff (\sqrt{x} - 1)^2 = 0$$

$$\iff x = 1.$$

Donc, par quotient et composition, f n'est pas dérivable en 0 et en 1.

Calculer f'(x) pour $x \in \mathbb{R}_+^* \setminus \{1\}$.

Rectifier ici la réponse :

Exercice 3

Consigne pour chacune des fonctions :

- Justifier soigneusement les dérivabilités en suivant les éventuelles consignes spécifiques
- Calculer la dérivée

Remarque : Si f est définie sur \mathbb{R} et que la question est "montrer que f est dérivable sur \mathbb{R}^* ", on ne vous demande pas de montrer que f est non dérivable en 0.

En effet, la phrase "f est dérivable sur \mathbb{R}^* " ne dit rien sur la dérivabilité en 0.

$$\mathbf{1}^{\circ}$$
) $f: x \mapsto \sqrt{\tan(x)}:$

Justifier que f est définie sur $[0, \frac{\pi}{2}[$, dérivable sur $]0, \frac{\pi}{2}[$ et calculer f'(x) pour $x \in]0, \frac{\pi}{2}[$.

2°)
$$f: x \mapsto \sqrt{x^2 - 3x - 10}$$
:

Justifier que f est définie sur $]-\infty,-2] \cup [5,+\infty[$, dérivable sur $]-\infty,-2[\cup]5,+\infty[$, non dérivable en -2 et en 5, et calculer f'(x) pour x dans $]-\infty,-2[\cup]5,+\infty[$.

3°)
$$f: x \mapsto \frac{x}{\sqrt{2-x}}:$$

Justifier que f est définie et dérivable sur $]-\infty,2[$, calculer sa dérivée.

$$\mathbf{4}^{\circ}$$
) $f: x \mapsto \operatorname{Arcsin}\left(e^{-x^2}\right):$

Justifier que f est définie sur \mathbb{R} , dérivable sur \mathbb{R}^* , et calculer f'(x) pour x dans \mathbb{R}^* .

$$5^{\circ}$$
) $f: x \mapsto \operatorname{Arccos}\left(\frac{1}{\sqrt{1+x^2}}\right):$

Justifier que f est définie sur \mathbb{R} , dérivable sur \mathbb{R}^* , et calculer f'(x) pour x dans \mathbb{R}^* .

6°)
$$f: x \mapsto x\sqrt{\frac{x-1}{x+1}}:$$

Justifier que f est définie sur $]-\infty,-1[\ \cup\ [1,+\infty[,$ dérivable sur $]-\infty,-1[\ \cup\]1,+\infty[,$ non dérivable en 1, et calculer f'(x) pour x dans $]-\infty,-1[\cup]1,+\infty[$.

$$7^{\circ}$$
) $f: x \mapsto x\sqrt{x}:$

Justifier que f est définie et dérivable sur \mathbb{R}_+ , et calculer f'(x) pour x dans \mathbb{R}_+ .

8°)
$$f: x \mapsto 10^{\sqrt{x}}:$$

Justifier que f est définie sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^* , et calculer f'(x) pour x dans \mathbb{R}_+^* .

9°)
$$f: x \mapsto \sqrt[3]{(x-1)^2} + \sqrt{(x-1)^3}$$
:

Justifier que f est définie $[1, +\infty[$, dérivable sur $]1, +\infty[$, et calculer f'(x) pour x dans $]1, +\infty[$.

10°)
$$f: x \mapsto x\sqrt{2-\sqrt{x}}:$$

Justifier que f est définie sur [0,4], dérivable sur [0,4], non dérivable en 4, et calculer f'(x) pour x dans [0, 4[.

3