Package 'scorelingam'

December 5, 2022

Type Package
Title What the package does (short line)
Version 1.0
Date 2022-12-04
Author Gabriel Ruiz
Maintainer Gabriel Ruiz
Description Implements the sorting procedure outlined in Ruiz et. al (2022+).
<pre>URL https://gabriel-ruiz.github.io/scorelingam/, https: //openreview.net/forum?id=4pCjIGIjrt</pre>
<pre>BugReports https://github.com/gabriel-ruiz/scorelingam/issues</pre>
Imports Rcpp (>= 1.0.9)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.0
R topics documented:
scorelingam-package
checkSortingErrors
dlap
generateData
getParents
getWeights
randomWeightedAdjacencyMatrix
rlap
scorelingam
Index

2 checkSortingErrors

scorelingam-package

ScoreLiNGAM

Description

Implements the sorting procedure outlined in Ruiz et. al (2022+).

Details

The main procedure is scorelingam. See its documentation below for more info.

Author(s)

Gabriel Ruiz

References

G Ruiz, OH Madrid-Padilla, Q Zhou. "Sequentially learning the topological ordering of directed acyclic graphs with likelihood ratio scores." Transactions of Machine Learning Research, 2022+. [Link]

See Also

scorelingam

Examples

See the examples at https://github.com/gabriel-ruiz/scorelingam.

checkSortingErrors

Sorting Error.

Description

Sorting Error.

Usage

checkSortingErrors(estOrder, A)

Arguments

estOrder: A length p vector with the estimated topological ordering. Its unique elements

correspond to the indices 1,2,...,p.

The true DAG adjacency matrix. Α:

corrMat 3

Value

Returns proportion of parents sorted after children. See Equation (11) in the paper, which defines the output of this function: $ERR(\hat{\pi})$.

corrMat

Quickly estimate a Pearson correlation matrix using RcppArmadillo.

Description

Quickly estimate a Pearson correlation matrix using RcppArmadillo.

Usage

corrMat(X)

Arguments

Χ

An n by p data matrix which is used to estimate the correlation matrix.

Value

A p by p estimate of the correlation matrix.

dlap

laplace density of x

Description

laplace density of x

```
dlap(x, center = mean(x), shape = mean(abs(x - center)), log = F)
```

4 getParents

generateData	Generate Linear (laplace, logistic, or scaled-t error family) Structural
	Causal Model Data

Description

Generate Linear (laplace, logistic, or scaled-t error family) Structural Causal Model Data

Usage

```
generateData(
   B,
   n = 1000,
   family = "laplace",
   scale = rep(1, ncol(B)),
   perm = topoSort(as.matrix(B)),
   df = 5
)
```

Arguments

В	A p by p weighted adjacency matrix for an acyclic linear SEM.
n	The desired sample size. Default: n=1000.
family	Currently allow 't', 'laplace' (default), or 'logistic'.
scale	Length p vector s.t. $var[\epsilon_j] = scale[j] \times var[\epsilon_0]$ with $\epsilon_0 \sim family(1)$ (the chosen family with scale parameter 1). Default: $scale = rep(1, ncol(B))$.
df	Degrees of freedom for scaled-t-distributed noise. Default: df=5.

Value

An n by p matrix object.

getParents	Get parent sets given Markov blanket and topological ordering

Description

Get parent sets given Markov blanket and topological ordering

```
getParents(mb, ordering)
```

getWeights 5

Arguments

mb A length p list object whose j-th entry gives the Markov blanket of node j. The

j-th entry can also be some other set that defines the possible support for the

parent set.

ordering: A length p vector with the specified topological ordering of the nodes in the

underlying DAG. Its unique elements correspond to the indices 1,2,...,p.

Value

A list object of length p; entry j denotes the parent set of node j in the underlying DAG.

getWeights	Get	weight	ted	adj	iancency	matrix	for	lined	ır	SEM.	As-
	sumes	that	X	is	zero-cer	ıtered,	which	can	be	done	via
	X=sca	ale(Xor	igina	ıl,ce	nter=T,sc	cale=F).	Estim	ation	is	done	via
Ordinary Least Squares (OLS) regression.											

Description

Get weighted adjancency matrix for linear SEM. Assumes that X is zero-centered, which can be done via X=scale(Xoriginal,center=T,scale=F). Estimation is done via Ordinary Least Squares (OLS) regression.

Usage

```
getWeights(X, pa)
```

Arguments

Χ An n by p data matrix which is used to estimate the weighted adjacency matrix.

A length p list object whose j-th entry gives the support for node j's parent set. ра

Value

A p by p weighted adjacency matrix for the linear SEM.

moralize

Moralize a DAG. Obtain Markov Blanket, the union of all children, parents, co-parents.

Description

Moralize a DAG. Obtain Markov Blanket, the union of all children, parents, co-parents.

Usage

```
moralize(B)
```

Arguments

В

The p by p weighted adjacency matrix. Assumes B[j,k]!=0 if $j \in PA_k$.

Value

A list of length p. Each entry j corresponds to the Markov Blanket of node j according to adjacency matrix B.

randomWeightedAdjacencyMatrix

Generate a random weighted adjacency matrix with num.roots number of root nodes. Each non-root node will have between pa.min and pa.max number of parents. The parent weight (in absolute value) is between pa.wt.min and pa.wt.max. The parent weight is positive with probability prob.pos (else, negative).

Description

Generate a random weighted adjacency matrix with num.roots number of root nodes. Each non-root node will have between pa.min and pa.max number of parents. The parent weight (in absolute value) is between pa.wt.min and pa.wt.max. The parent weight is positive with probability prob.pos (else, negative).

```
randomWeightedAdjacencyMatrix(
  p,
  num.roots = p - 1,
  pa.min = 1,
  pa.max = 1,
  pa.wt.min = 1,
  pa.wt.max = 1,
  prob.pos = 0.5,
  perm = sample(x = p, size = p, replace = F)
)
```

rlap 7

Arguments

p	Number of nodes in underlying DAG.
num.roots	Number of root nodes in underlying DAG. Default: num.roots=p-1.
pa.min	Minimum number of parents a node can have. Default: pa.min=1.
pa.max	Maximum number of parents a node can have. Default: pa.max=1.
pa.wt.min	The minimum (in absolute value) coefficient value for the parent to a child in the linear SEM. Default: $pa.wt.min=1$.
pa.wt.max	The maximum (in absolute value) coefficient value for the parent to a child in the linear SEM. Default: pa.wt.max=1.
prob.pos	The probability of a positive coefficient value for the parent to a child in the the linear SEM. Default: prob.pos=0.5.
perm	A topological ordering for underlying DAG. Default is random.

Value

A list with two elements: perm (the topological ordering used) and B (the weighted adjacency matrix).

•	rlap	laplace r.v.	
---	------	--------------	--

Description

laplace r.v.

Usage

```
rlap(n = 1, mu = 0, b = 1)
```

scorelingam	The ScoreLiNGAM sorting procedure.	

Description

The ScoreLiNGAM sorting procedure.

```
scorelingam(X, mb, numUpdates = 5L, family = "laplace", df = 10)
```

8 skeleton

Arguments

X An n by p data matrix which is used to estimate the permutation.

mb A length p list object whose j-th entry gives the Markov blanket of node j (or its

superset).

numUpdates The number of updates to give while sorting. Default: numUpdates=5.

family Currently allows 't', 'laplace' (default), or 'logistic'.

df Degrees of freedom for scaled-t-distributed noise. Default: df=10.

Value

A length p vector with the specified topological ordering of the nodes in the underlying DAG. Its unique elements correspond to the indices 1,2,...,p.

skeleton Skeleton for an undirected graph based on Markov Blanket (or neigh-

borhood estimates) of each node.

Description

Skeleton for an undirected graph based on Markov Blanket (or neighborhood estimates) of each node.

Usage

skeleton(mb)

Arguments

mb The Markov blanket or neighborhood estiamtes. A list of length p.

Value

A p by p adjacency matrix for an undirected graph. 0 indicates no undirected edge in the graph, while 1 indicates an directed edge in the graph.

Index