Mathematical Explanation of the Trips Crossing Segment Formula

Nathan David Obeng-Amoako

Introduction

This document explains the formula used to determine whether a trip (k, m) crosses a given segment $i \to j$ in a circular loop of N stops. The explanation is presented in the context of public transportation, where trips are paths that traverse a set of stops in either a clockwise or counterclockwise direction.

The Formula

The trips crossing a segment $i \to j$ are given by:

$$\{(k,m) \mid k \neq m, \exists s \in \text{path}(k \to m), s = i \text{ and } (s+1) \equiv j \pmod{N} \}.$$

Explanation of the Formula

The formula can be interpreted as follows:

- 1. (k, m): Represents a trip starting at stop k and ending at stop m, where $k \neq m$.
- 2. $path(k \to m)$: Refers to the sequence of stops traversed during the trip.
- 3. $\exists s \in \text{path}(k \to m)$: There exists a stop s within the path where s = i, indicating the segment start.
- 4. The relationship between i and j:
 - For clockwise direction: $(s+1) \equiv j \pmod{N}$, ensuring that j is the next stop after i.
 - For counterclockwise direction: $(s-1) \equiv j \pmod{N}$, ensuring that j is the stop before i.

Derivation of the Formula

The derivation is based on the following principles:

1. Circular Loop Behavior: In a circular loop, the stops are arranged sequentially such that stop N is followed by stop 1. This cyclic behavior is mathematically modeled using modular arithmetic.

- 2. Segment Crossing: A trip (k, m) crosses the segment $i \to j$ if:
 - Stop i is included in the trip's path.
 - The next stop in the path after i (clockwise) or before i (counterclockwise) is j.
- 3. Path Representation: The path $path(k \to m)$ is constructed by:
 - Starting at k.
 - Moving sequentially in the chosen direction (clockwise or counterclockwise).
 - Terminating at m.
- 4. Conditions for Crossing: The segment $i \to j$ is crossed if i appears in the path, and its subsequent or preceding stop (depending on direction) is j. Modular arithmetic ensures that the sequence wraps around for circular behavior.

Examples

Consider N = 6 stops arranged in a circular loop.

Clockwise Example

Given i = 6, j = 1, and the direction is clockwise:

- 1. j is calculated as $(i \mod N) + 1 = 1$.
- 2. Trip (5,2) with path $\{5,6,1,2\}$ crosses $6 \to 1$.
- 3. Trip (3,5) with path $\{3,4,5\}$ does not cross $6 \to 1$.

Counterclockwise Example

Given i = 6, j = 5, and the direction is counterclockwise:

- 1. j is calculated as $((i-2+N) \mod N) + 1 = 5$.
- 2. Trip (1,5) with path $\{1,6,5\}$ crosses $6 \rightarrow 5$.
- 3. Trip (4,2) with path $\{4,3,2\}$ does not cross $6 \rightarrow 5$.

Conclusion

The formula leverages modular arithmetic to handle the circular nature of the stops and checks whether a segment is crossed by examining the path of trips.