Matrices

Stephen Boyd

EE103 Stanford University

October 9, 2017

Outline

Matrices

Matrix-vector multiplication

Examples

Matrices

▶ a matrix is a reactangular array of numbers, e.g.,

$$\begin{bmatrix}
0 & 1 & -2.3 & 0.1 \\
1.3 & 4 & -0.1 & 0 \\
4.1 & -1 & 0 & 1.7
\end{bmatrix}$$

- its size is given by (row dimension) \times (column dimension) e.g., matrix above is 3×4
- entries also called coefficients or elements
- ▶ B_{ij} is i, j entry of matrix B
- ▶ *i* is the *row index*, *j* is the *column index*; indexes start at 1
- two matrices are equal (denoted with =) if they are the same size and corresponding entries are equal

Matrix shapes

an $m \times n$ matrix A is

- ightharpoonup tall if m > n
- wide if m < n
- ightharpoonup square if m=n

Column and row vectors

- \blacktriangleright we consider an $n \times 1$ matrix to be an n-vector
- we consider a 1×1 matrix to be a number
- ightharpoonup a $1 \times n$ matrix is called a row vector, e.g.,

$$\left[\begin{array}{cccc} 1.2 & -0.3 & 1.4 & 2.6 \end{array}\right]$$

which is *not* the same as the (column) vector

$$\begin{bmatrix}
 1.2 \\
 -0.3 \\
 1.4 \\
 2.6
 \end{bmatrix}$$

Columns and rows of a matrix

• suppose A is an $m \times n$ matrix with entries

$$A_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

▶ its *j*th *column* is (the *m*-vector)

$$\left[\begin{array}{c}A_{1j}\\ \vdots\\ A_{mj}\end{array}\right]$$

▶ its *i*th *row* is (the *n*-row-vector)

$$\begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$

 \blacktriangleright slice of matrix: $A_{p:q,r:s}\colon (q-p+1)\times (s-r+1)$ matrix with entries A_{ij} with $p\leq i\leq q,\,r\leq j\leq s$

Block matrices

we can form block matrices, whose entries are matrices, such as

$$A = \left[\begin{array}{cc} B & C \\ D & E \end{array} \right]$$

where B, C, D, and E are matrices

- ▶ B, C, D, and E are submatrices or blocks of A
- matrices in each block row must have same height (row dimension)
- matrices in each block column must have same width (column dimension)

Column and row representation of matrix

- ightharpoonup A is an $m \times n$ matrix
- \triangleright can express as block matrix with its (m-vector) columns a_1, \ldots, a_n

$$A = \left[\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array} \right]$$

ightharpoonup or as block matrix with its (n-row-vector) rows b_1, \ldots, b_m

$$A = \left[\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_m \end{array} \right]$$

Examples

- ▶ image. X_{ij} is i, j pixel value in a monochrome image
- ightharpoonup rainfall data. A_{ij} is rainfall at location i on day j
- ightharpoonup multiple asset returns. R_{ij} is return of asset j in period i
- ightharpoonup contingency table. A_{ij} is number of objects with first attribute i and second attribute j
- feature matrix. X_{ij} is value of feature i for entity j

▶ in each of these, what do the rows and columns mean?

Graph or relation

 \triangleright a relation is a set of pairs of objects, labeled $1, \ldots, n$, such as

$$\mathcal{R} = \{(1,2), (1,3), (2,1), (2,4), (3,4), (4,1)\}$$

► same as directed graph

▶ can represent as $n \times n$ matrix with $A_{ij} = 1$ if $(i, j) \in \mathcal{R}$

$$A = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

Special matrices

- ightharpoonup m imes n zero matrix has all entries zero, written as $0_{m imes n}$ or just 0
- identity matrix is square matrix with $I_{ii}=1$ and $I_{ij}=0$ for $i\neq j$, e.g.,

$$\left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}\right], \qquad \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

- sparse matrix: many entries are zero
 - examples: 0 and I
 - can be stored and manipulated efficiently
 - $\mathbf{nnz}(A)$ is number of nonzero entries

Diagonal and triangular matrices

- ▶ diagonal matrix: square matrix with $A_{ij} = 0$ when $i \neq j$
- ▶ $\mathbf{diag}(a_1, \dots, a_n)$ is diagonal matrix with $A_{ii} = a_i, i = 1, \dots, n$
- lower triangular matrix: $A_{ij} = 0$ for i < j
- upper triangular matrix: $A_{ij} = 0$ for i > j
- examples:

$$\mathbf{diag}(0.2, -3, 1.2) = \begin{bmatrix} 0.2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1.2 \end{bmatrix}, \quad \begin{bmatrix} -0.6 & 0 \\ -0.3 & 3.5 \end{bmatrix}$$

Transpose

lacktriangle the *transpose* of an $m \times n$ matrix A is denoted A^T , and defined by

$$(A^T)_{ij} = A_{ji}, \quad i = 1, \dots, n, \quad j = 1, \dots, m$$

for example,

$$\begin{bmatrix} 0 & 4 \\ 7 & 0 \\ 3 & 1 \end{bmatrix}^T = \begin{bmatrix} 0 & 7 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$

- transpose converts column to row vectors (and vice versa)
- $(A^T)^T = A$

Addition, subtraction, and scalar multiplication

• (just like vectors) we can add or subtract matrices of the same size:

$$(A+B)_{ij} = A_{ij} + B_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

(subtraction is similar)

scalar multiplication:

$$(\alpha A)_{ij} = \alpha A_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

many obvious properties, e.g.,

- -A+B=B+A
- $-\alpha(A+B) = \alpha A + \alpha B$
- $-(A+B)^T = A^T + B^T$

Matrix norm

• for $m \times n$ matrix A, we define

$$||A|| = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}\right)^{1/2}$$

- ▶ agrees with vector norm when n = 1
- satisfies norm properties:

$$\begin{split} \|\alpha A\| &= |\alpha| \|A\|, & \|A + B\| \leq \|A\| + \|B\|, \\ \|A\| &\geq 0, & \|A\| = 0 \text{ only if } A = 0 \end{split}$$

- ▶ distance between two matrices: ||A B||
- ▶ (there are other matrix norms, which we won't use)

Outline

Matrices

Matrix-vector multiplication

Matrix-vector product

▶ matrix-vector product of $m \times n$ matrix A, n-vector x, denoted y = Ax, with

$$y_i = A_{i1}x_1 + \dots + A_{in}x_n, \quad i = 1, \dots, m$$

▶ for example,

$$\left[\begin{array}{ccc} 0 & 2 & -1 \\ -2 & 1 & 1 \end{array}\right] \left|\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right| = \left[\begin{array}{c} 3 \\ -4 \end{array}\right]$$

Row interpretation

ightharpoonup y = Ax can be expressed as

$$y_i = b_i^T x, \quad i = 1, \dots, m$$

where b_1^T, \dots, b_m^T are rows of A

- lacktriangleright so y=Ax is a 'batch' inner product of all rows of A with x
- lacktriangle example: $A\mathbf{1}$ is vector of row sums of matrix A

Column interpretation

ightharpoonup y = Ax can be expressed as

$$y = x_1 a_1 + x_2 a_2 + \dots + x_n a_n$$

where a_1, \ldots, a_n are columns of A

- ▶ so y = Ax forms linear combination of columns of A, with coefficients x_1, \ldots, x_n
- important example: $Ae_j = a_j$
- lacktriangle columns of A are linearly independent if Ax=0 implies x=0

Outline

Matrices

Matrix-vector multiplication

Examples

General examples

- ightharpoonup 0x = 0, *i.e.*, multiplying by zero matrix gives zero
- ightharpoonup Ix = x, i.e., multiplying by identity matrix does nothing
- inner product a^Tb is matrix-vector multiplication with $1\times n$ matrix a^T , n-vector b
- $ightharpoonup ilde{x} = Ax$ is de-meaned version of x, with

$$A = \begin{bmatrix} 1 - 1/n & -1/n & \cdots & -1/n \\ -1/n & 1 - 1/n & \cdots & -1/n \\ \vdots & & \ddots & \vdots \\ -1/n & -1/n & \cdots & 1 - 1/n \end{bmatrix}$$

Difference matrix

 \blacktriangleright $(n-1) \times n$ difference matrix is

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 & 0 \\ & & \ddots & \ddots & & & & \\ & & & \ddots & \ddots & & & \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

y = Dx is (n-1)-vector of differences of consecutive entries of x:

$$Dx = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

▶ $||Dx||^2$ (Laplacian) is measure of wiggliness for x a time series

Return matrix - portfolio vector

- ightharpoonup R is $T \times n$ matrix of asset returns
- $ightharpoonup R_{ij}$ is return of asset j in period i (say, in percentage)
- ▶ *n*-vector *h* gives portfolio (investments in the assets)
- ightharpoonup T-vector Rh is time series of the portfolio return
- ightharpoonup avg(Rh) is the portfolio (mean) return, $\mathbf{std}(Rh)$ is its risk

Feature matrix - weight vector

- $ightharpoonup X = [x_1 \cdots x_N]$ is $n \times N$ feature matrix
- ightharpoonup column x_i is feature *n*-vector for object or example j
- $ightharpoonup X_{ij}$ is value of feature i for example j
- ightharpoonup n-vector w is weight vector
- $s = X^T w$ is vector of scores for each example; $s_j = x_j^T w$

Input - output matrix

- ightharpoonup A is $m \times n$ matrix
- y = Ax
- ightharpoonup n-vector x is input or action
- m-vector y is output or result
- ▶ A_{ij} is the factor by which y_i depends on x_j
- $ightharpoonup A_{ij}$ is the gain from input j to output i
- ightharpoonup e.g., if A is lower triangular, then y_i only depends on x_1,\ldots,x_i

Complexity

- ▶ $m \times n$ matrix stored A as $m \times n$ array of numbers (for sparse A, store only $\mathbf{nnz}(A)$ nonzero values)
- ightharpoonup matrix addition, scalar-matrix multiplication cost mn flops
- ▶ matrix-vector multiplication costs $m(2n-1)\approx 2mn$ flops (for sparse A, around $2\mathbf{nnz}(A)$ flops)