

Oligonucleotide Properties Calculator

Enter Oligonucleotide Sequence Below OD and Molecular Weight calculations are for single-stranded DNA or RNA								
Nucleotide base codes								
GAG TTC CTC GGC TC								
Reverse Complement Strand(5' to 3') is:								
GAG CCG AGG AAC TC								
Number of Fluorescent tags per strand:								
0	6-FAM	0	TET	0	HEX	0	TAMRA	<input checked="" type="checkbox"/> DNA
Minimum base pairs required for single primer self-dimerization: <input type="text" value="5"/> <input checked="" type="checkbox"/>								
Minimum base pairs required for a hairpin : <input type="text" value="4"/> <input checked="" type="checkbox"/>								
<input type="button" value="Calculate"/> <input type="button" value="SWAP STRANDS"/> <input type="button" value="BLAST2"/> <input type="button" value="Check Self-Complementarity"/>								
Physical Constants		Melting Temperature (T_M) Calculations						
Length: <input type="text" value="14"/> bases		<input type="text" value="1"/> <input type="text" value="43"/> °C (Basic)						
GC content: <input type="text" value="64"/> %		<input type="text" value="2"/> <input type="text" value="50"/> °C (Salt Adjusted)						
Molecular Weight: <input type="text" value="4371.8"/> <input type="text" value="4"/>		<input type="text" value="3"/> <input type="text" value="42"/> °C (Nearest Neighbor)						
1 ml of a sol'n with an Absorbance of <input type="text" value="1"/> at 260 nm		<input type="text" value="50"/> nM Primer						
is <input type="text" value="7.571"/> microMolar <input type="text" value="5"/> and contains <input type="text" value="33.1"/> micrograms.		<input type="text" value="50"/> mM Salt (Na ⁺)						
Thermodynamic Constants Conditions: 1 M NaCl at 25°C at pH 7.								
RlogK <input type="text" value="33.404"/> cal/(°K*mol)		deltaH <input type="text" value="116.5"/> Kcal/mol						
deltaG <input type="text" value="17.5"/> Kcal/mol		deltaS <input type="text" value="302.8"/> cal/(°K*mol)						

To use this calculator, you must be using Netscape 3.0 or later
or Internet Explorer version 3.0 or later, or another Javascript-capable browser.
Self-Complementarity requires a 4.x browser. IE 5.0, Safari, and Mozilla supported.

This page was written in Javascript.

Extensively rewritten from 12/15/2000-12/19/2000 to isolate javascript Oligo object behaviors for teaching purposes.

This page may be freely distributed for any educational or non-commercial use.

Copyright Northwestern University, 1997-2004.

About the Calculations

Thermodynamic Calculations

The nearest neighbor and thermodynamic calculations are done essentially as described by Breslauer *et al.*, *Proc. Nat. Acad. Sci.* 83, 3746-50, 1986 (Abstract) but using the values published by Sugimoto *et al.*, *Nucl. Acids Res.* 24, 4501-4505, 1996 (Abstract). This program assumes that the sequences are not symmetric and contain at least one G or C. The minimum length for the query sequence is 8.

The melting temperature calculations are based on the simple thermodynamic relationship between entropy, enthalpy, free energy and temperature, where

h b c e b g c c h

Oligonucleotide Properties Calculator

Enter Oligonucleotide Sequence Below <i>OD and Molecular Weight calculations are for single-stranded DNA or RNA</i>																																												
Nucleotide base codes CCG GAG GCG TAA GAG TTC CTC GGC TCG GTC GGG CTT GCC CCT																																												
Reverse Complement Strand(5' to 3') is: AGG GGC AAG CCC GAC CGA GCC GAG GAA CTC TTA CGC CTC CGG																																												
Number of Fluorescent tags per strand: 0 6-FAM 0 TET 0 HEX 0 TAMRA <input checked="" type="checkbox"/> DNA																																												
Minimum base pairs required for single primer self-dimerization: <input type="text" value="5"/>																																												
Minimum base pairs required for a hairpin : <input type="text" value="4"/>																																												
<input type="button" value="Calculate"/> <input type="button" value="SWAP STRANDS"/> <input type="button" value="BLAST2"/> <input type="button" value="Check Self-Complementarity"/>																																												
<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <th colspan="2" style="text-align: left; padding: 2px;">Physical Constants</th> <th colspan="2" style="text-align: left; padding: 2px;">Melting Temperature (T_M) Calculations</th> </tr> <tr> <td style="width: 50px; padding: 2px;">Length:</td> <td style="width: 50px; padding: 2px;"><input type="text" value="42"/></td> <td style="width: 50px; padding: 2px;">bases</td> <td style="width: 50px; padding: 2px;"><input type="text" value="77"/></td> <td style="width: 50px; padding: 2px;">°C (Basic)</td> </tr> <tr> <td style="width: 50px; padding: 2px;">GC content:</td> <td style="width: 50px; padding: 2px;"><input type="text" value="69"/></td> <td style="width: 50px; padding: 2px;">%</td> <td style="width: 50px; padding: 2px;"><input type="text" value="76"/></td> <td style="width: 50px; padding: 2px;">°C (Salt Adjusted)</td> </tr> <tr> <td style="width: 50px; padding: 2px;">Molecular Weight:</td> <td style="width: 50px; padding: 2px;"><input type="text" value="13056.3"/></td> <td style="width: 50px; padding: 2px;"><input type="text" value="4"/></td> <td style="width: 50px; padding: 2px;"><input type="text" value="76"/></td> <td style="width: 50px; padding: 2px;">°C (Nearest Neighbor)</td> </tr> <tr> <td colspan="2" style="width: 100px; padding: 2px;">1 ml of a sol'n with an Absorbance of <input type="text" value="1"/></td> <td colspan="2" style="width: 100px; padding: 2px;">at 260 nm</td> <td style="width: 50px; padding: 2px;"><input type="text" value="50"/></td> <td style="width: 50px; padding: 2px;">nM Primer</td> </tr> <tr> <td colspan="2" style="width: 100px; padding: 2px;">is <input type="text" value="2.408"/></td> <td colspan="2" style="width: 100px; padding: 2px;">microMolar <input type="text" value="5"/></td> <td colspan="2" style="width: 100px; padding: 2px;">and contains <input type="text" value="31.4"/></td> </tr> <tr> <td colspan="2" style="width: 100px; padding: 2px;">micrograms.</td> <td colspan="2" style="width: 100px; padding: 2px;"></td> <td colspan="2" style="width: 100px; padding: 2px;"><input type="text" value="50"/></td> </tr> <tr> <td colspan="2" style="width: 100px; padding: 2px;"></td> <td colspan="2" style="width: 100px; padding: 2px;"></td> <td colspan="2" style="width: 100px; padding: 2px;">mM Salt (Na⁺)</td> </tr> </table>		Physical Constants		Melting Temperature (T_M) Calculations		Length:	<input type="text" value="42"/>	bases	<input type="text" value="77"/>	°C (Basic)	GC content:	<input type="text" value="69"/>	%	<input type="text" value="76"/>	°C (Salt Adjusted)	Molecular Weight:	<input type="text" value="13056.3"/>	<input type="text" value="4"/>	<input type="text" value="76"/>	°C (Nearest Neighbor)	1 ml of a sol'n with an Absorbance of <input type="text" value="1"/>		at 260 nm		<input type="text" value="50"/>	nM Primer	is <input type="text" value="2.408"/>		microMolar <input type="text" value="5"/>		and contains <input type="text" value="31.4"/>		micrograms.				<input type="text" value="50"/>						mM Salt (Na ⁺)	
Physical Constants		Melting Temperature (T_M) Calculations																																										
Length:	<input type="text" value="42"/>	bases	<input type="text" value="77"/>	°C (Basic)																																								
GC content:	<input type="text" value="69"/>	%	<input type="text" value="76"/>	°C (Salt Adjusted)																																								
Molecular Weight:	<input type="text" value="13056.3"/>	<input type="text" value="4"/>	<input type="text" value="76"/>	°C (Nearest Neighbor)																																								
1 ml of a sol'n with an Absorbance of <input type="text" value="1"/>		at 260 nm		<input type="text" value="50"/>	nM Primer																																							
is <input type="text" value="2.408"/>		microMolar <input type="text" value="5"/>		and contains <input type="text" value="31.4"/>																																								
micrograms.				<input type="text" value="50"/>																																								
				mM Salt (Na ⁺)																																								
Thermodynamic Constants Conditions: 1 M NaCl at 25°C at pH 7.																																												
RlogK <input type="text" value="33.404"/> cal/(°K*mol)		deltaH <input type="text" value="386.9"/> Kcal/mol																																										
deltaG <input type="text" value="71.5"/> Kcal/mol		deltaS <input type="text" value="1000.4"/> cal/(°K*mol)																																										

To use this calculator, you must be using Netscape 3.0 or later
 or Internet Explorer version 3.0 or later, or another Javascript-capable browser
 Self-Complementarity requires a 4.x browser. IE 5.0, Safari, and Mozilla supported.

This page was written in Javascript.

Extensively rewritten from 12/15/2000-12/19/2000 to isolate javascript Oligo object behaviors for teaching purposes.

This page may be freely distributed for any educational or non-commercial use.

Copyright Northwestern University, 1997-2004.

About the Calculations

Thermodynamic Calculations

The nearest neighbor and thermodynamic calculations are done essentially as described by Breslauer *et al.*, *Proc. Nat. Acad. Sci.* **83**, 3746-50, 1986 (Abstract) but using the values published by Sugimoto *et al.*, *Nucl. Acids Res.* **24**, 4501-4505, 1996 (Abstract). This program assumes that the sequences are not symmetric and contain at least one G or C. The minimum length for the query sequence is 8.

The melting temperature calculations are based on the simple thermodynamic relationship between entropy, enthalpy, free energy and temperature, where

$$\Delta H = \Delta G + T\Delta S$$

The change in entropy (order or a measure of the randomness of the oligonucleotide) and enthalpy (heat released or absorbed by the oligonucleotide) are directly calculated by summing the values for nucleotide pairs obtained by Breslauer *et al.*, *Proc. Nat. Acad. Sci.* **83**, 3746-50, 1986. The relationship between the free energy and the concentration of reactants and products at equilibrium is given by

$$\Delta G = RT \ln \left(\frac{[DNA \cdot primer]}{[DNA][primer]} \right)$$

Substituting the two equations gives us

$$\Delta H = T\Delta S + RT \ln \left(\frac{[DNA \cdot primer]}{[DNA][primer]} \right)$$

and solving for temperature T gives

$$T = \frac{\Delta H}{\Delta S + R \ln \left(\frac{[DNA \cdot primer]}{[DNA][primer]} \right)}$$

We can assume that the concentration of DNA and the concentration of the DNA-primer complex are equal, so this simplifies the equation considerably. It has been determined empirically that there is a 5 (3.4 by Sugimoto *et al.*) kcal free energy change during the transition from single stranded to B-form DNA. This is presumably a helix initiation energy. Finally, adding an adjustment for salt gives the equation that the Oligo Calculator uses:

$$T = \frac{\Delta H - 5 \frac{kcal}{^{\circ}K mole}}{\Delta S + R \ln \left(\frac{1}{[primer]} \right)} + 16.6 \log_{10} ([Na^+])$$

No adjustment constant for salt concentration is needed, since the various parameters were determined at 1 Molar NaCl, and the log of 1 is zero.

ASSUMPTIONS:

The thermodynamic calculations assume that the annealing occurs at pH 7.0. The melting temperature (Tm) calculations assume the sequences are not symmetric and contain at least one G or C. The oligonucleotide sequence should be at least 8 bases long to give reasonable Tms.

Basic Melting Temperature (Tm) Calculations

h b c e b g c c h

The two standard approximation calculations are used. For sequences less than 14 nucleotides the formula is

$$Tm = (wA + xT) * 2 + (yG + zC) * 4$$

where w,x,y,z are the number of the bases A,T,G,C in the sequence, respectively.

For sequences longer than 13 nucleotides, the equation used is

$$Tm = 64.9 + 41 * (yG + zC - 16.4) / (wA + xT + yG + zC)$$

ASSUMPTIONS:

Both equations assume that the annealing occurs under the standard conditions of 50 nM primer, 50 mM Na⁺, and pH 7.0.

Salt Adjusted Melting Temperature (Tm) Calculations

A variation on two standard approximation calculations are used. For sequences less than 14 nucleotides the same formula as the basic calculation is used, with a salt concentration adjustment

$$Tm = (wA + xT) * 2 + (yG + zC) * 4 - 16.6 * \log_{10}(0.050) + 16.6 * \log_{10}([Na^+])$$

where w,x,y,z are the number of the bases A,T,G,C in the sequence, respectively.

The term $16.6 * \log_{10}([Na^+])$ adjusts the Tm for changes in the salt concentration, and the term $\log_{10}(0.050)$ adjusts for the salt adjustment at 50 mM Na⁺. Other monovalent and divalent salts will have an effect on the Tm of the oligonucleotide, but sodium ions are much more effective at forming salt bridges between DNA strands and therefore have the greatest effect in stabilizing double-stranded DNA.

For sequences longer than 13 nucleotides, the equation used is

$$Tm = 81.5 + (41 * (yG + zC) / (wA + xT + yG + zC)) * (500 / (wA + xT + yG + zC)) + 16.6 * \log_{10}([Na^+]) - 0.62F$$

This equation is most accurate for sequences longer than 50 nucleotides. It is valid for oligos longer than 50 nucleotides from pH 5 to 9. Symbols and salt adjustment term as above, with the term $(41 * (yG + zC - 16.4) / (wA + xT + yG + zC))$ adjusting for G/C content and the term $(500 / (wA + xT + yG + zC))$ adjusting for the length of the sequence, and F is the percent concentration of formamide.

For more information please see the reference:

Howley, P.M; Israel, M.F.; Law, M.F.; and M.A. Martin "A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes." *J. Biol. Chem.* **254**, 4876-4883, 1979.

RNA melting temperatures

$$Tm = 79.8 + 18.5 * \log_{10}([Na^+]) + (58.4 * (yG + zC) / (wA + xT + yG + zC)) + (11.8 * ((yG + zC) / (wA + xT + yG + zC))^2) - (820 / (wA + xT + yG + zC))$$

Where yG+zC are the mole fractions of G and C in the oligo, L is the length of the shortest strand in the duplex.

ASSUMPTIONS:

These equations assume that the annealing occurs under the standard conditions of 50 nM primer and pH 7.0.

Molecular Weight Calculations

DNA Molecular Weight (for instance Oligonucleotides)

$$\text{Molecular Weight} = (A_n \times 313.21) + (T_n \times 304.2) + (C_n \times 289.18) + (G_n \times 329.21) + 79.0$$

A_n , T_n , C_n , and G_n are the number of each respective nucleotide within the polynucleotide. The addition of 79.0 gm/mole to the molecular weight takes into account the 5' monophosphate left by most restriction enzymes. No phosphate is present at the 5' end of strands made by primer extension.

RNA Molecular Weight (for instance from an RNA transcript)

$$\text{Molecular Weight} = (A_n \times 329.21) + (U_n \times 306.17) + (C_n \times 305.18) + (G_n \times 345.21) + 159.0$$

A_n , U_n , C_n , and G_n are the number of each respective nucleotide within the polynucleotide. Addition of 159.0 gm/mole to the molecular weight takes into account the 5' triphosphate.

OD Calculations

Molar Absorptivity values in 1/(Moles cm)

Residue	Moles ⁻¹ cm ⁻¹	$A_{\max}(\text{nm})$	Molecular Weight (after protecting groups are removed)
<u>Adenine</u> (dAMP, Na salt)	15200	259	313.21
<u>Guanine</u> (dGMP, Na salt)	12010	253	329.21
<u>Cytosine</u> (dCMP, Na salt)	7050	271	289.18
<u>Thymidine</u> (dTMP, Na salt)	8400	267	304.2
RNA nucleotides			
Adenine (AMP, Na salt)	15400	259	329.21
Guanine (GMP, Na salt)	13700	253	345.21
Cytosine (CMP, Na salt)	9000	271	305.18
Uradine (UMP, Na salt)	10000	262	306.2
Other nucleotides			
<u>6' FAM</u>	20960		537.46
<u>TET</u>	16255		675.24
<u>HEX</u>	31580		744.13
TAMRA	31980		

Assume 1 OD of a standard 1ml solution, measured in a cuvette with a 1 cm pathlength.

6-FAM:

Chemical name: **6-carboxyfluorescein**
 Absorption wavelength maximum: **495 nm**
 Emission wavelength maximum: **521 nm**
 Molar Absorptivity at 260nm: **20960 Moles⁻¹ cm⁻¹**

TET:

Chemical name: **4, 7, 2', 7'-Tetrachloro-6-carboxyfluorescein**
 Absorption wavelength maximum: **519 nm**
 Emission wavelength maximum: **539 nm**
 Molar Absorptivity at 260nm: **16255 Moles⁻¹ cm⁻¹**

HEX:

Chemical name: 4, 7, 2', 4', 5', 7'-Hexachloro-6-carboxyfluorescein
Absorption wavelength maximum: 537 nm
Emission wavelength maximum: 556 nm
Molar Absorptivity at 260nm: 31580 Moles⁻¹ cm⁻¹

TAMRA:

Chemical name: N, N, N', N'-tetramethyl-6-carboxyrhodamine
Absorption wavelength maximum: 555 nm
Emission wavelength maximum: 580 nm
Molar Absorptivity at 260nm: 31980 Moles⁻¹ cm⁻¹

Nucleotide base codes (IUPAC)**Symbol: nucleotide(s)**

A adenine	M A or C	K G or T
C cytosine	R A or G	V A or C or G; not T
G guanine	W A or T	H A or C or T; not G
T thymine in DNA; uracil in RNA	S C or G	D A or G or T; not C
N A or C or G or T	Y C or T	B C or G or T; not A

Most recent version is available at URL: <http://www.basic.northwestern.edu/biotools/oligocalc.html>

The current version is the result of efforts by the following people:

Qing Cao, M.S. [e-mail](#)
Research Computing
Northwestern University Medical School
Chicago, IL 60611

Warren A. Klibbe, Ph.D. [e-mail](#) and [PH entry](#).
Research Computing
Northwestern University Medical School
Chicago, IL 60611

Original code by Eugen Buehler
Research Support Facilities
Department of Molecular Genetics and Biochemistry
University of Pittsburgh School of Medicine

Monomer structures and molecular weights provided by Bob Somers, Ph.D.
[e-mail](#)
Sr. Applications Chemist
Glen Research Corporation
22825 Davis Drive

h b c e b g c c h

Sterling, VA 20164
<http://www.glenres.com/>

Uppercase/lowercase strand complementation problem described by Alexey Merz alexey@dartmouth.edu

Oligo Calculator version 3.03 (last modified by WAKibbe 02/12/2004)

Alignment of SEQ ID NO: 1

AF123535
LOCUS AF123535 160480 bp DNA linear PLN 19-MAR-2000
DEFINITION Zea mays alcohol dehydrogenase 1 (adh1) gene, adh1-F allele, complete cds.
ACCESSION AF123535
VERSION AF123535.1 GI:7262818
KEYWORDS
SOURCE Zea mays.
ORGANISM Zea mays
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; PACC
clade; Panicoideae; Andropogoneae; Zea.
REFERENCE 1 (bases 1 to 160480)
AUTHORS Tikhonov,A.P., SanMiguel,P.J., Nakajima,Y., Gorenstein,N.M.,
Bennetzen,J.L. and Avramova,Z.
TITLE Colinearity and its exceptions in orthologous adh regions of maize
and sorghum
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 96 (13), 7409-7414 (1999) June 2d,
1999
PUBMED 10377428
REFERENCE 2 (bases 1 to 160480)
AUTHORS SanMiguel,P.J., Tikhonov,A. and Bennetzen,J.L.
TITLE Direct Submission
JOURNAL Submitted (25-JAN-1999) Biological Sciences, Purdue University,
Hansen LSRB, Rm. 339, West Lafayette, IN 47907, USA
FEATURES
source Location/Qualifiers
1. .160480
/organism="Zea mays"
/db_xref="taxon:4577"
/clone="YAC 334B7"
mRNA join(<17943. .17976,18512. .18648,18746. .18792,19208. .19533,
19620. .19702,19795. .19870,20216. .20277,20365. .20460,
20552. .20713,20814. .>20930)
/gene="adh1"
/product="alcohol dehydrogenase 1"
gene <17943. .>20930
/gene="adh1"
/allele="adh1-F"
CDS join(17943. .17976,18512. .18648,18746. .18792,19208. .19533,
19620. .19702,19795. .19870,20216. .20277,20365. .20460,
20552. .20713,20814. .20930)
/gene="adh1"
/note="ADH1-F"
/codon_start=1
/product="alcohol dehydrogenase 1"
/protein_id="AAFA43977.1"
/db_xref="GI:7262819"
/translation="MATAGKVIKCKAAVAWEAGKPLSIEEVVEVAPPQAMEVRVKILFT
SLCHTDVYFWEAKGQTVPFPRIGFHEAGGIIIESVGEVGTVAPGDHVLPVFTGECKEC
AHCCKSAESNMCDLLRINTDRGVMIADGKRSFINGKPIYHFVGTSTFSEYTVMHGCC
AKINPQAPLDKVCVLSCGISTGLGASINVAKPKGSIVAVFGLGAVGLAAAEGARIAG
ASRIIIGVDFLNPNSRFEEARKFGCTEFVNPKDHNKPVQELAEMTNGGVDRSVECTGNIN
AMIQAFECVHDGWGVAVLVGVPHDKDAEFPKTHPMNFLNERTLKGTFFGNYKPRTDLPNV
VELYMKKELEVEKFITHSVPFAEINKAFDLMAKGEGIRCIIRMEN"
BASE COUNT 42638 **a** 37287 **c** 36880 **g** 43550 **t** 125 **others**
ORIGIN