Transaction Integrity Inspection System

Importing packages

```
import numpy as np
import pandas as pd
```

Loading the dataset

```
from google.colab import drive
drive.mount('/content/drive')
```

→ Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

data=pd.read_csv('/content/drive/MyDrive/Final year project /Transaction_dataset1.csv')

Retrieving the First 5 and last 5 values

data.head()

₹	step		type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud	isFlagg
	0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	0.0	0.0	0	
	1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	0.0	0.0	0	
	2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C553264065	0.0	0.0	1	
	3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C38997010	21182.0	0.0	1	
	4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	0.0	0.0	0	
	4											•

data.tail()

→		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud
	1048570	95	CASH_OUT	132557.35	C1179511630	479803.00	347245.65	C435674507	484329.37	616886.72	0
	1048571	95	PAYMENT	9917.36	C1956161225	90545.00	80627.64	M668364942	0.00	0.00	0
	1048572	95	PAYMENT	14140.05	C2037964975	20545.00	6404.95	M1355182933	0.00	0.00	0
	1048573	95	PAYMENT	10020.05	C1633237354	90605.00	80584.95	M1964992463	0.00	0.00	0
	1048574	95	PAYMENT	11450.03	C1264356443	80584.95	69134.92	M677577406	0.00	0.00	0
	←										>

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1048575 entries, 0 to 1048574 Data columns (total 11 columns): Non-Null Count 0 step 1048575 non-null int64 1 type 1048575 non-null object 1048575 non-null float64 amount 1048575 non-null object 3 nameOrig 4 oldbalanceOrg 1048575 non-null float64 newbalanceOrig 1048575 non-null float64 6 nameDest 1048575 non-null object oldbalanceDest 1048575 non-null float64 newbalanceDest 1048575 non-null float64 1048575 non-null int64 10 isFlaggedFraud 1048575 non-null int64 dtypes: float64(5), int64(3), object(3) memory usage: 88.0+ MB

data.describe()

```
₹
                                                       newbalanceOrig oldbalanceDest newbalanceDest
                    step
                                amount oldbalanceOrg
                                                                                                             isFraud isFlaggedFraud
           1.048575e+06 1.048575e+06
                                          1.048575e+06
                                                          1.048575e+06
                                                                          1.048575e+06
                                                                                          1.048575e+06
                                                                                                       1.048575e+06
                                                                                                                           1048575.0
      count
            2.696617e+01
                          1.586670e+05
                                          8.740095e+05
                                                          8.938089e+05
                                                                          9.781600e+05
                                                                                          1.114198e+06
                                                                                                        1.089097e-03
                                                                                                                                 0.0
      mean
                          2.649409e+05
                                          2.971751e+06
                                                          3.008271e+06
                                                                          2.296780e+06
                                                                                          2.416593e+06
                                                                                                        3.298351e-02
                                                                                                                                 0.0
       std
             1.562325e+01
                                                                                          0.000000e+00 0.000000e+00
      min
             1.000000e+00
                           1.000000e-01
                                          0.000000e+00
                                                          0.000000e+00
                                                                          0.000000e+00
                                                                                                                                 0.0
      25%
             1.500000e+01 1.214907e+04
                                          0.000000e+00
                                                          0.000000e+00
                                                                          0.000000e+00
                                                                                          0.000000e+00
                                                                                                       0.000000e+00
                                                                                                                                 0.0
      50%
            2.000000e+01 7.634333e+04
                                          1.600200e+04
                                                          0.000000e+00
                                                                          1.263772e+05
                                                                                          2.182604e+05
                                                                                                       0.000000e+00
                                                                                                                                 0.0
      75%
             3.900000e+01 2.137619e+05
                                          1.366420e+05
                                                          1.746000e+05
                                                                          9.159235e+05
                                                                                          1.149808e+06
                                                                                                       0.000000e+00
                                                                                                                                 0.0
                                                                                                                                 0.0
      max
            9.500000e+01 1.000000e+07
                                          3.890000e+07
                                                          3.890000e+07
                                                                          4.210000e+07
                                                                                          4.220000e+07 1.000000e+00
print(data.isnull().sum())
₹
    step
                       0
     type
                       0
                       0
     amount
                       0
     nameOrig
     oldbalanceOrg
                       0
     newbalanceOrig
     nameDest
                       0
     oldbalanceDest
                       0
     newbalanceDest
                       0
                       0
     isFlaggedFraud
                       0
     dtype: int64
data.keys()
Index(['step', 'type', 'amount', 'nameOrig', 'oldbalanceOrg', 'newbalanceOrig',
             'nameDest', 'oldbalanceDest', 'newbalanceDest', 'isFraud',
            'isFlaggedFraud'],
           dtype='object')
data.shape
→ (1048575, 11)
print(data.duplicated().sum())
→ 0
data['type'].value_counts()
₹
                   count
            type
      CASH OUT 373641
      PAYMENT
                  353873
       CASH_IN
                  227130
      TRANSFER
                   86753
        DEBIT
                    7178
     dtype: int64
import matplotlib.pyplot as plt
import matplotlib.cm as cm
type = data['type'].value_counts()
# Get the transaction types and their counts
transactions = type.index
quantity = type.values
# Define a list of darker colors
colors = cm.Set2.colors[:len(transactions)]
```

```
# Create the pie chart
fig, ax = plt.subplots()
ax.pie(quantity, labels=transactions, autopct='%1.1f%%', startangle=90, colors=colors)
ax.axis('equal')  # Ensures the pie chart is a perfect circle
ax.set_title('Distribution of Transaction Type')
```

plt.show()

fig = plt.figure(figsize=(10, 7))
data['type'].value_counts(normalize=True).plot(kind='bar')
plt.xlabel("Type")
plt.ylabel("Value Count")
plt.show()

sns.countplot(data=data,x="isFraud")

Removing unwanted columns

Removal of outliers


```
num=[var for var in data.columns if data[var].dtype!='0' and var!='isFraud']
num
['amount',
       'oldbalanceOrg',
      'newbalanceOrig',
      'oldbalanceDest',
      'newbalanceDest']
from scipy import stats
for x in num:
  bmi_z_score=stats.zscore(data[x])
  data=data[np.abs(bmi_z_score)<=3]</pre>
sns.boxplot(data)
→ <Axes: >
         1e6
                                               0
      6
      5
      4
      3
      2
      1
```

 $amount\ oldbalance \textbf{Opera} balance \textbf{$

Data preprocessing

Label Encoding

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
data["type"]=le.fit_transform(data["type"])
data["type"].value_counts()
<del>_</del>
             count
      type
            353786
        3
        1
            344994
        0
            153946
             60201
        2
              6691
     dtype: int64
\# Dividing the dataset into dependent and independent y and x respectively
x=data.drop("isFraud",axis=1)
y=data["isFraud"]
```

x.head()

→ *		type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	\blacksquare
	0	3	9839.64	C1231006815	170136.0	160296.36	M1979787155	0.0	0.0	ıl.
	1	3	1864.28	C1666544295	21249.0	19384.72	M2044282225	0.0	0.0	
	2	4	181.00	C1305486145	181.0	0.00	C553264065	0.0	0.0	
	3	1	181.00	C840083671	181.0	0.00	C38997010	21182.0	0.0	
	4	3	11668.14	C2048537720	41554.0	29885.86	M1230701703	0.0	0.0	

y.head()

→ *		isFraud
	0	0
	1	0
	2	1
	3	1
	4	0

dtype: int64

Splitting the data:

from sklearn.model_selection import train_test_split

 $x_train, x_test, y_train, y_test=train_test_split(x, y, random_state=0, test_size=0.2)$