Final Project Submission

Please fill out:

Student name: Group 5 -Student pace: part time

• Scheduled project review date/time: 03/01/2024

Instructor name:Blog post URL:

Business Understanding

To develop a predictive model that accurately estimates the sale price of houses in King County, Washington, based on various features such as the number of bedrooms, bathrooms, square footage, location attributes (like waterfront proximity), house condition, grade, year built and renovated. This model aims to assist potential buyers, sellers, and real estate stakeholders in understanding and predicting house prices within the region.

Importing Dependancies

```
In [1]: import itertools
   import numpy as np
   import pandas as pd
   from numbers import Number
   from scipy import stats
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
   import pickle
   import warnings
   warnings.filterwarnings('ignore')
```

Data Understanding

```
In [2]: # Load the dataset
house_data = pd.read_csv("data/kc_house_data.csv")
In [3]: # structure of dataset
house_data.shape
Out[3]: (21597, 21)
```

In [4]: # Get information about the dataset, including data types and missing values
house_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	object
9	view	21534 non-null	object
10	condition	21597 non-null	object
11	grade	21597 non-null	object
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtyp	es: float64(6),	int64(9), object	t(6)
memo	ry usage: 3.5+1	МВ	

In [5]: # Summary statistics of numerical columns
house_data.describe().transpose()

Out[5]:

	count	mean	std	min	25%	5
id	21597.0	4.580474e+09	2.876736e+09	1.000102e+06	2.123049e+09	3.904930e+
price	21597.0	5.402966e+05	3.673681e+05	7.800000e+04	3.220000e+05	4.500000e+
bedrooms	21597.0	3.373200e+00	9.262989e-01	1.000000e+00	3.000000e+00	3.000000e+
bathrooms	21597.0	2.115826e+00	7.689843e-01	5.000000e-01	1.750000e+00	2.250000e+
sqft_living	21597.0	2.080322e+03	9.181061e+02	3.700000e+02	1.430000e+03	1.910000e+
sqft_lot	21597.0	1.509941e+04	4.141264e+04	5.200000e+02	5.040000e+03	7.618000e+
floors	21597.0	1.494096e+00	5.396828e-01	1.000000e+00	1.000000e+00	1.500000e+
sqft_above	21597.0	1.788597e+03	8.277598e+02	3.700000e+02	1.190000e+03	1.560000e+
yr_built	21597.0	1.971000e+03	2.937523e+01	1.900000e+03	1.951000e+03	1.975000e+
yr_renovated	17755.0	8.363678e+01	3.999464e+02	0.000000e+00	0.000000e+00	0.000000e+
zipcode	21597.0	9.807795e+04	5.351307e+01	9.800100e+04	9.803300e+04	9.806500e+
lat	21597.0	4.756009e+01	1.385518e-01	4.715590e+01	4.747110e+01	4.757180e+
long	21597.0	-1.222140e+02	1.407235e-01	-1.225190e+02	-1.223280e+02	-1.222310e+
sqft_living15	21597.0	1.986620e+03	6.852305e+02	3.990000e+02	1.490000e+03	1.840000e+
sqft_lot15	21597.0	1.275828e+04	2.727444e+04	6.510000e+02	5.100000e+03	7.620000e+
4						•

Data Preparation

```
In [6]: #check for duplicate values
        house_data.duplicated().sum()
Out[6]: 0
In [7]: # Check for missing values in the dataset
        house_data.isnull().sum()
Out[7]: id
        date
                             0
        price
                             0
        bedrooms
                             0
        bathrooms
                             0
        sqft_living
                             0
                             0
        sqft_lot
        floors
                             0
        waterfront
                          2376
        view
                            63
        condition
                             0
        grade
                             0
        sqft_above
                             0
        sqft_basement
                             0
        yr_built
                             0
        yr_renovated
                          3842
        zipcode
        lat
                             0
        long
        sqft_living15
                             0
        sqft_lot15
        dtype: int64
In [8]: | # fill null values in waterfront column with the mode
        house_data['waterfront'].fillna(house_data['waterfront'].mode()[0], inplace=
```

```
In [8]: # fill null values in waterfront column with the mode
house_data['waterfront'].fillna(house_data['waterfront'].mode()[0], inplace=

# Convert 'yr_renovated' column from float to integer, handling NaN values
house_data['yr_renovated'] = house_data['yr_renovated'].fillna(0).astype(int

# Filling missing values for 'yr_renovated' with 0
house_data['yr_renovated'].fillna(house_data['yr_renovated'].median(), inplace=
```

Visualizations

```
In [9]: sqft_living = house_data["sqft_living"]

# Create the histogram
plt.figure(figsize=(10, 6))
plt.hist(sqft_living, bins=20, edgecolor="black", alpha=0.7)
plt.xlabel("Sqft Living")
plt.ylabel("Frequency")
plt.title("Distribution of Sqft Living")

plt.grid(True)
plt.tight_layout()

plt.show()
```


It shows a positive skew, meaning that while most homes fall within a smaller square footage range, there are a few homes with exceptionally large square footage. These larger values, though fewer, extend the tail of the distribution to the right, indicating a positive skew. This suggests that while the majority of homes are smaller, there are a few larger homes that are exceptions.

```
In [10]: bedrooms = house_data['bedrooms']

# Create the histogram
plt.figure(figsize=(10, 6))
plt.hist(bedrooms, bins=20, edgecolor="black", alpha=0.7)
plt.xlabel("Bedrooms")
plt.ylabel("Frequency")
plt.title("Distribution of Bedrooms")

plt.grid(True)
plt.tight_layout()

plt.show()
```


There is a significant peak at 2 to 3 bedrooms, indicating that most homes have this number of bedrooms.

```
In [11]: #checking the distribution of number of bathrooms

bathrooms = house_data['bathrooms']

# Create the histogram
plt.figure(figsize=(10, 6))
plt.hist(bathrooms, bins=20, edgecolor="black", alpha=0.7)
plt.xlabel("Bathrooms")
plt.ylabel("Frequency")
plt.title("Distribution of Bathrooms")

plt.grid(True)
plt.tight_layout()

plt.show()
```


Most Common: Houses with 3 bathrooms have the highest frequency.

Lower Frequencies: Counts beyond 4 bathrooms have much lower frequencies, suggesting they are less common.

```
In [12]: # Pie chart to show number of houses by condition
house_counts = house_data['condition'].value_counts()
plt.figure(figsize=(6, 6))
explode = (0, 0, 0, 0, 0.3)
house_counts.plot(kind='pie', autopct="%1.1f%%", explode=explode, title="Numplt.axis('equal')
plt.show()
```

Number of Houses by Condition

Most of the houses are in average to good condition.

```
In [13]: # Distribution of houses by grade
    ave_prices = house_data[['grade', 'price']].groupby('grade').mean().sort_val
    plt.figure(figsize=(12, 6))
    sns.barplot(x='grade', y='price', data=ave_prices, label='Price')
    plt.xticks(rotation=45, ha='right')
    plt.xlabel("Grade")
    plt.ylabel("Price")
    plt.title('House prices by grade')
    plt.show()
```


Houses under average

Feature Engineering

Out[14]:	date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront c
0	10/13/2014	221900.0	3	1.00	1.0	1180	5650	NO
1	12/9/2014	538000.0	3	2.25	2.0	2570	7242	NO
2	2/25/2015	180000.0	2	1.00	1.0	770	10000	NO
3	12/9/2014	604000.0	4	3.00	1.0	1960	5000	NO
4	2/18/2015	510000.0	3	2.00	1.0	1680	8080	NO
21592	5/21/2014	360000.0	3	2.50	3.0	1530	1131	NO
21593	2/23/2015	400000.0	4	2.50	2.0	2310	5813	NO
21594	6/23/2014	402101.0	2	0.75	2.0	1020	1350	NO
21595	1/16/2015	400000.0	3	2.50	2.0	1600	2388	NO
21596	10/15/2014	325000.0	2	0.75	2.0	1020	1076	NO

21597 rows × 12 columns

```
In [15]: # identify unique values in the columns
    print(house_data["waterfront"].unique())
    print()
    print(house_data["condition"].unique())
    print(house_data["grade"].unique())

['NO' 'YES']

['Average' 'Very Good' 'Good' 'Poor' 'Fair']

['7 Average' '6 Low Average' '8 Good' '11 Excellent' '9 Better' '5 Fair'
    '10 Very Good' '12 Luxury' '4 Low' '3 Poor' '13 Mansion']
```

In [16]: # Create a new column indicating if renovation happened (1) or not (0)
 relevant_data['renovated'] = (relevant_data['yr_renovated'] != 0).astype(int
 relevant_data

	releva	nt_data								╛
Out[16]:		date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	CI
	0	10/13/2014	221900.0	3	1.00	1.0	1180	5650	NO	
	1	12/9/2014	538000.0	3	2.25	2.0	2570	7242	NO	
	2	2/25/2015	180000.0	2	1.00	1.0	770	10000	NO	
	3	12/9/2014	604000.0	4	3.00	1.0	1960	5000	NO	
	4	2/18/2015	510000.0	3	2.00	1.0	1680	8080	NO	
	21592	5/21/2014	360000.0	3	2.50	3.0	1530	1131	NO	
	21593	2/23/2015	400000.0	4	2.50	2.0	2310	5813	NO	
	21594	6/23/2014	402101.0	2	0.75	2.0	1020	1350	NO	
	21595	1/16/2015	400000.0	3	2.50	2.0	1600	2388	NO	
	21596	10/15/2014	325000.0	2	0.75	2.0	1020	1076	NO	
	21597	rows × 13 co	olumns							

```
In [17]: # Convert 'date' column to datetime
    relevant_data['date'] = pd.to_datetime(relevant_data['date'])

# Define a function to get the season based on the month
    def get_season(month):
        if month in [3, 4, 5]: # Spring: March, April, May
            return 'Spring'
        elif month in [6, 7, 8]: # Summer: June, July, August
            return 'Summer'
        elif month in [9, 10, 11]: # Fall: September, October, November
            return 'Fall'
        else: # Winter: December, January, February
            return 'Winter'

# Create 'season' column based on 'date'
    relevant_data['season'] = relevant_data['date'].dt.month.apply(get_season).crelevant_data.head(15)
```

Out[17]:

	date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	condition
0	2014- 10-13	221900.0	3	1.00	1.0	1180	5650	NO	Average
1	2014- 12-09	538000.0	3	2.25	2.0	2570	7242	NO	Average
2	2015- 02-25	180000.0	2	1.00	1.0	770	10000	NO	Average
3	2014- 12-09	604000.0	4	3.00	1.0	1960	5000	NO	Very Good
4	2015- 02-18	510000.0	3	2.00	1.0	1680	8080	NO	Average
5	2014- 05-12	1230000.0	4	4.50	1.0	5420	101930	NO	Average
6	2014- 06-27	257500.0	3	2.25	2.0	1715	6819	NO	Average
7	2015- 01-15	291850.0	3	1.50	1.0	1060	9711	NO	Average
8	2015- 04-15	229500.0	3	1.00	1.0	1780	7470	NO	Average
9	2015- 03-12	323000.0	3	2.50	2.0	1890	6560	NO	Average
10	2015- 04-03	662500.0	3	2.50	1.0	3560	9796	NO	Average
11	2014- 05-27	468000.0	2	1.00	1.0	1160	6000	NO	Gooc
12	2014- 05-28	310000.0	3	1.00	1.5	1430	19901	NO	Gooc
13	2014- 10-07	400000.0	3	1.75	1.0	1370	9680	NO	Gooc
14	2015- 03-12	530000.0	5	2.00	1.5	1810	4850	NO	Average
4									>

In [18]: # Replace 'No' with 0 and 'Yes' with 1 in the 'waterfront' column
 relevant_data['waterfront'] = relevant_data['waterfront'].replace({'NO': 0,
 relevant_data

[18]:		date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	conditi
	0	2014- 10-13	221900.0	3	1.00	1.0	1180	5650	0	Avera
	1	2014- 12-09	538000.0	3	2.25	2.0	2570	7242	0	Avera
	2	2015- 02-25	180000.0	2	1.00	1.0	770	10000	0	Avera
	3	2014- 12-09	604000.0	4	3.00	1.0	1960	5000	0	V Gc
	4	2015- 02-18	510000.0	3	2.00	1.0	1680	8080	0	Avera
	21592	2014- 05-21	360000.0	3	2.50	3.0	1530	1131	0	Avera
	21593	2015- 02-23	400000.0	4	2.50	2.0	2310	5813	0	Avera
	21594	2014- 06-23	402101.0	2	0.75	2.0	1020	1350	0	Avera
	21595	2015- 01-16	400000.0	3	2.50	2.0	1600	2388	0	Avera
	21596	2014- 10-15	325000.0	2	0.75	2.0	1020	1076	0	Avera
	21597	rows ×	14 columr	ıs						

```
In [19]: # Extract grade number and condition using regex
# Add grade number (grade_no) column
import re

relevant_data[['grade_no', 'condition']] = relevant_data['grade'].str.extracelevant_data
```

	releva		ta grad			11 .			J.5c	
Out[19]:		date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	conditi
	0	2014- 10-13	221900.0	3	1.00	1.0	1180	5650	0	Avera
	1	2014- 12-09	538000.0	3	2.25	2.0	2570	7242	0	Avera
	2	2015- 02-25	180000.0	2	1.00	1.0	770	10000	0	L Avera
	3	2014- 12-09	604000.0	4	3.00	1.0	1960	5000	0	Avera
	4	2015- 02-18	510000.0	3	2.00	1.0	1680	8080	0	Gc
	21592	2014- 05-21	360000.0	3	2.50	3.0	1530	1131	0	Gc
	21593	2015- 02-23	400000.0	4	2.50	2.0	2310	5813	0	Gc
	21594	2014- 06-23	402101.0	2	0.75	2.0	1020	1350	0	Avera
	21595	2015- 01-16	400000.0	3	2.50	2.0	1600	2388	0	Gc
	21596	2014- 10-15	325000.0	2	0.75	2.0	1020	1076	0	Avera
	21597	rows ×	15 columr	ıs						
	4									•
In [20]:]: # convert grade_no values to int relevant_data['grade_no'].astype('int64')									
In [21]:	print(releva	ant_data.	columns)						
	<pre>index(['date', 'price', 'bedrooms', 'bathrooms', 'floors', 'sqft_living',</pre>									

dtype='object')

In [22]: # Create a new feature for the age of the house
 current_year = pd.Timestamp.now().year # Get the current year
 relevant_data['house_age'] = current_year - relevant_data['yr_built']
 relevant_data.head(15)

Out[22]:

	date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	condition
0	2014- 10-13	221900.0	3	1.00	1.0	1180	5650	0	Average
1	2014- 12-09	538000.0	3	2.25	2.0	2570	7242	0	Average
2	2015- 02-25	180000.0	2	1.00	1.0	770	10000	0	Low Average
3	2014- 12-09	604000.0	4	3.00	1.0	1960	5000	0	Average
4	2015- 02-18	510000.0	3	2.00	1.0	1680	8080	0	Gooc
5	2014- 05-12	1230000.0	4	4.50	1.0	5420	101930	0	Excellen
6	2014- 06-27	257500.0	3	2.25	2.0	1715	6819	0	Average
7	2015- 01-15	291850.0	3	1.50	1.0	1060	9711	0	Average
8	2015- 04-15	229500.0	3	1.00	1.0	1780	7470	0	Average
9	2015- 03-12	323000.0	3	2.50	2.0	1890	6560	0	Average
10	2015- 04-03	662500.0	3	2.50	1.0	3560	9796	0	Gooc
11	2014- 05-27	468000.0	2	1.00	1.0	1160	6000	0	Average
12	2014- 05-28	310000.0	3	1.00	1.5	1430	19901	0	Average
13	2014- 10-07	400000.0	3	1.75	1.0	1370	9680	0	Average
14	2015- 03-12	530000.0	5	2.00	1.5	1810	4850	0	Average
4									>

In [23]: # Drop irrelevant columns and assign the result back to engineered_data
 relevant_data = relevant_data.drop(['date', 'grade', 'yr_renovated', 'yr_bui
 relevant_data

		_								
t[23]:		price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	renovated	S
	0	221900.0	3	1.00	1.0	1180	5650	0	0	
	1	538000.0	3	2.25	2.0	2570	7242	0	1	1
	2	180000.0	2	1.00	1.0	770	10000	0	0	1
	3	604000.0	4	3.00	1.0	1960	5000	0	0	1
	4	510000.0	3	2.00	1.0	1680	8080	0	0	1
	•••									
	21592	360000.0	3	2.50	3.0	1530	1131	0	0	
	21593	400000.0	4	2.50	2.0	2310	5813	0	0	1
	21594	402101.0	2	0.75	2.0	1020	1350	0	0	Sι
	21595	400000.0	3	2.50	2.0	1600	2388	0	0	1
	21596	325000.0	2	0.75	2.0	1020	1076	0	0	
	21507	rows × 11	columno							
	215971	ows × 11	Columns					_		
	4									•

Data Visualizations

```
In [24]: # # Pairplot
         # sns.pairplot(relevant_data)
         # plt.show()
In [25]: relevant_data.price.describe()
Out[25]: count
                  2.159700e+04
                  5.402966e+05
         mean
         std
                  3.673681e+05
                  7.800000e+04
         min
         25%
                  3.220000e+05
         50%
                  4.500000e+05
         75%
                  6.450000e+05
                  7.700000e+06
         max
         Name: price, dtype: float64
```

```
In [26]: # check the average house prices by season
    average_prices = relevant_data.groupby('season')['price'].mean().reset_index

# Bar plot using Seaborn with average prices
    plt.figure(figsize=(8, 4))
    sns.barplot(x='season', y='price', data=average_prices)
    plt.title('Average House Prices by Seasons')
    plt.xlabel('Seasons')
    plt.ylabel('Average Prices')
    plt.savefig('house_grade.png', transparent=True)
    plt.show()
```


Average house prices are highest during spring and slightly lower during winter.

```
In [27]: # checking the distribution of house prices by renovated houses
Renovated = relevant_data['renovated']
Price = relevant_data['price']
plt.figure(figsize=(10,6))
plt.bar(Renovated, Price)
plt.xlabel('Renovated')
plt.ylabel('House Price')
plt.title('House prices by renovated houses')
plt.xticks(ticks=[0, 1])
plt.show()
```


Renovated houses have a higher average price indicating renaovations had a small impact on the value of the house.

```
In [28]: # Distribution of house price by age
House_age = relevant_data['house_age']
Price = relevant_data['price']
plt.figure(figsize=(12,6))
plt.bar(House_age, Price)
plt.xlabel('House Age in Years')
plt.ylabel('House Price')
plt.title('House prices by house age')
```


The houses are priced at 2 million dollars and above where the age is below 50 years. On the contrary majority of the houses over 50 years are priced below 2 million dollars.

```
In [29]: # Distribution of houses by floors
# Get the number of houses with each number of floors
average_prices = relevant_data.groupby('floors')['price'].mean().reset_index
# Find the index of the maximum value
max_index = average_prices['price'].idxmax()

# Bar plot using Seaborn with average prices
plt.figure(figsize=(8, 6))
sns.barplot(x='floors', y='price', data=average_prices, color='skyblue')

# Highlight the bar with the maximum value
plt.bar(max_index, average_prices.loc[max_index, 'price'], color='orange')

plt.title('Average House Prices by floors')
plt.xlabel('Number of floors')
plt.ylabel('Average Prices')

plt.show()
```


Houses with 2.5 floors are the most priced at slightly above 1 million dollars and the least priced houses have 1 floor.

Checking for outliers

```
In [30]: # seasons and price
    sns.boxplot(x='season', y='price', data=relevant_data)
    plt.show()
```



```
In [31]: # bedrooms and price
     sns.boxplot(x=relevant_data['bedrooms'], y=relevant_data['price'])
     plt.show()
```


Removing outliers using z-score

```
In [32]: plt.figure(figsize=(6, 2))
    sns.boxplot(x='bedrooms', data=relevant_data)
    plt.title('Boxplot of bedrooms')
    plt.show()
```



```
In [33]: #removing outlier with '33' bedrooms
    relevant_data=relevant_data[relevant_data['bedrooms']!=33]
```

```
In [34]: # Calculate Z-score for 'price'
z_scores = stats.zscore(relevant_data['price'])
threshold = 3 # Define a threshold for extreme values (e.g., 3 standard dev
# Detect outliers
outliers = relevant_data['price'][np.abs(z_scores) > threshold]
# Remove outliers
relevant_data1 = relevant_data[np.abs(z_scores) <= threshold]</pre>
```

```
In [35]: # Pairplot
# sns.pairplot(relevant_data)
# plt.show()
```

```
In [36]: # seasons and price
sns.boxplot(x='season', y='price', data=relevant_data)
plt.show()
```


In [37]: sns.boxplot(x='bedrooms', y='price', data=relevant_data)
plt.show()


```
In [38]: #create a scatter plot for the numeric columns to observe their relationship
numeric_columns = relevant_data.select_dtypes(include=['number'])

# Iterate through each numeric column and create scatter plots
for column in numeric_columns.columns:
    plt.scatter(relevant_data[column], relevant_data['price'], alpha=0.5)
    plt.title(f'Scatter Plot of {column} against Price')
    plt.xlabel(column)
    plt.ylabel('Price')
    plt.grid(True)
    plt.show()
```


Correlation

```
In [39]: relevant_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21596 entries, 0 to 21596
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	price	21596 non-null	float64
1	bedrooms	21596 non-null	int64
2	bathrooms	21596 non-null	float64
3	floors	21596 non-null	float64
4	sqft_living	21596 non-null	int64
5	sqft_lot	21596 non-null	int64
6	waterfront	21596 non-null	int64
7	renovated	21596 non-null	int32
8	season	21596 non-null	object
9	grade_no	21596 non-null	int64
10	house_age	21596 non-null	int64
dtype	es: float64(3)), int $32(1)$, int 6	54(6), object(1)
memor	ry usage: 1.9+	- MB	

```
numeric_df = relevant_data.select_dtypes(include=['float64', 'int64'])
In [40]:
          corr_price = numeric_df.corr()['price'].sort_values()
          corr_price
Out[40]: house_age
                          -0.053965
          sqft_lot
                           0.089879
          floors
                           0.256820
          waterfront
                           0.264308
          bedrooms
                           0.315961
          bathrooms
                           0.525915
          grade_no
                           0.667964
          sqft_living
                           0.701929
          price
                           1.000000
          Name: price, dtype: float64
In [41]: relevant_data.columns
Out[41]: Index(['price', 'bedrooms', 'bathrooms', 'floors', 'sqft_living', 'sqft_lo
          t',
                   'waterfront', 'renovated', 'season', 'grade_no', 'house_age'],
                 dtype='object')
In [42]: # Correlation table
          cols = ['price', 'bedrooms', 'bathrooms', 'floors', 'sqft_living', 'sqft_lot
                   'waterfront', 'renovated', 'grade_no', 'house_age']
          corr = relevant_data[cols].corr()
          corr
Out[42]:
                          price bedrooms bathrooms
                                                        floors sqft_living
                                                                           sqft_lot waterfront ren
                       1.000000
                                                     0.256820
                price
                                 0.315961
                                            0.525915
                                                                0.701929
                                                                          0.089879
                                                                                    0.264308
                                                                                              0
                      0.315961
                                 1.000000
                                                     0.183707
                                                                0.593178
                                                                         0.033602
                                                                                    -0.002054
            bedrooms
                                            0.527870
                                                                                              0.
           bathrooms
                      0.525915
                                 0.527870
                                            1.000000
                                                     0.502574
                                                                0.755755
                                                                         0.088368
                                                                                    0.063628
                                                                                              0.
               floors
                       0.256820
                                 0.183707
                                            0.502574
                                                      1.000000
                                                                0.353941
                                                                         -0.004824
                                                                                    0.020794
                                                                                              0.
            sqft_living
                      0.701929
                                 0.593178
                                            0.755755
                                                     0.353941
                                                                1.000000
                                                                          0.173449
                                                                                    0.104635
                                                                                              0.
                      0.089879
                                 0.033602
                                            0.088368
                                                     -0.004824
                                                                          1.000000
              sqft_lot
                                                                0.173449
                                                                                    0.021458
                                                                                              0.
            waterfront
                      0.264308
                                 -0.002054
                                            0.063628
                                                     0.020794
                                                                0.104635
                                                                          0.021458
                                                                                    1.000000
                                                                                              0.
            renovated
                       0.117546
                                 0.018354
                                            0.046738
                                                     0.003705
                                                                0.050825
                                                                          0.005089
                                                                                    0.074267
                                                                                              1.
            grade_no
                       0.667964
                                 0.366174
                                            0.665834
                                                     0.458783
                                                                0.762776
                                                                          0.114726
                                                                                    0.082817
                                                                                              0.
                                                                         -0.052939
           house_age -0.053965
                                 -0.160736
                                           -0.507166 -0.489175
                                                                -0.318140
                                                                                    0.024491
                                                                                              0.
```

```
In [43]: # heatmap with seaborn
    sns.set(font_scale=0.8)
    sns.heatmap(corr, annot=True, cmap='Reds')
    plt.title("Correlation Heatmap")
    plt.show()
```


- The strongest positive correlation (0.7) is between price and square footage of living area, indicating that larger homes tend to have higher prices.
- The second strongest positive correlation (0.67) is between price and the grade_no, suggesting that the higher the grade the higher the price.
- The third strongest positive correlation (0.32) is between price and number of bedrooms, implying that more bedrooms in a home also contribute to its price, but to a lesser extent than bathrooms.
- The weakest positive correlation (0.05) is between price and year built, meaning that newer homes have slightly higher prices than older homes, but the effect is negligible.
- Price and Year Renovated is only (0.12). Reasons could be:
 - Renovations might cater to personal preferences rather than broad market appeal.
 - Recent renovations might indicate potential underlying issues with the property.

Modelling

```
In [44]: import statsmodels.formula.api as sm
```

```
In [45]: # To build a regression model we start with the baseline model.
# This is a simple linear regression
# We start by assigning the dependent variable and the independent variable

y = relevant_data['price']
x_baseline = relevant_data[['sqft_living']]
```

```
In [46]: # Build the simple linear regression model and display the results of the ma
         import statsmodels.api as sm
         baseline_model = sm.OLS(y, sm.add_constant(x_baseline))
         baseline results = baseline model.fit()
         print(baseline_results.summary())
```

OLS Regression Results ______ Dep. Variable: price R-squared: 0.493 OLS Adj. R-squared: Model: 0.493 Method: Least Squares F-statistic: 2.097 e+04 Wed, 03 Jan 2024 Prob (F-statistic): Date: 0.00 Time: 21:44:56 Log-Likelihood: -3.0005 e+05 No. Observations: 21596 AIC: 6.001 e+05 Df Residuals: 21594 BIC: 6.001 e+05 Df Model: Covariance Type: nonrobust ______ ===== coef std err t P>|t| [0.025 0.975] ______

const -4.401e+04 4410.123 -9.980 0.000 -5.27e+04 -3.5 4e+04 sqft_living 280.8688 1.939 144.820 0.000 277.067 28 4.670 ______

====

Omnibus: 14801.492 Durbin-Watson:

1.982

0.000 Jarque-Bera (JB): Prob(Omnibus): 54264

2.481

2.820 Prob(JB): Skew:

0.00

Kurtosis: 26.901 Cond. No. 5.63

e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is cor rectly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that ther

strong multicollinearity or other numerical problems.

```
In [47]: # Plot the scatter diagram and the best_fit regression line.

fig, ax = plt.subplots()
    relevant_data.plot.scatter(x = 'sqft_living', y = 'price', label = 'Data poi
    sm.graphics.abline_plot(model_results = baseline_results, label = 'regression ax.legend();
```


Intepretation of the Baseline model

- The R squared of the model is 0.49 interpreted as the proportional extent to which independent variable, Squarefoot of living area, explains the change in price.
- The probability of the F Statistic is well below the alpha value of 0.05 which shows that model is stastically significant.
- The coefficients of the model (const (which is the y intercept) and the sqft_living) are both statistically significant with a p value well below 0.05.
- For each increase in sqft living we see a corresponding increase of 281 in price.

Building a Multiple regression Model

```
In [49]: y = relevant_data['price']
x_baseline = relevant_data[['grade_no','sqft_living','bathrooms','renovated']
```

```
In [50]: # Build the simple linear regression model and display the results of the mo
import statsmodels.api as sm

baseline_model = sm.OLS(y, sm.add_constant(x_baseline))
baseline_results = baseline_model.fit()
print(baseline_results.summary())
```

OLS Regression Results

	=======	========	======		=======	=====
Dep. Variab	le:	pric	e R-sqı	uared:		
0.607 Model:		OL	S Adj.	R-squared:		
0.607 Method:		Least Square	s F-sta	atistic:		6
672. Date:	We	d, 03 Jan 202	4 Prob	(F-statisti	c):	
0.00 Time:		21:44:5	8 Log-l	ikelihood:	-	2.9729
e+05 No. Observa	tions:	2159	6 AIC:			5.946
e+05 Df Residual	s:	2159	0 BIC:			5.946
e+05 Df Model:	Tura		5			
Covariance		nonrobus =======		-=======	========	=====
=====		-44	_	D. 141	[0.025	
0.975]		std err		P> t	-	
const 4e+06	-1.166e+06	1.55e+04	-75.151	0.000	-1.2e+06	-1.1
	1.417e+05	2200.325	64.409	0.000	1.37e+05	1.4
sqft_living 1.371	155.1451	3.176	48.843	0.000	148.919	16
bathrooms 3e+04	4.247e+04	3484.316	12.188	0.000	3.56e+04	4.9
renovated 6e+04	4.715e+04	8921.922	5.285	0.000	2.97e+04	6.4
house_age 8.816	3907.1281	67.185	58.155	0.000	3775.440	403
	========	========	======	-======	========	=====
==== Omnibus: 1.977		17739.22	1 Durbi	in-Watson:		
Prob(Omnibu	s):	0.00	0 Jarqı	ue-Bera (JB)	: 1	.33922
6.121 Skew:		3.46	6 Prob((JB):		
0.00		40.05	1 Cond	No.		2.28
Kurtosis: e+04		40.95				_,
=====	=======	========	======		========	=====

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- $\[2\]$ The condition number is large, 2.28e+04. This might indicate that ther e are

strong multicollinearity or other numerical problems.

In [52]: # Build the simple linear regression model and display the results of the modelel baseline_model = sm.OLS(y, sm.add_constant(x_baseline))
 baseline_results = baseline_model.fit()
 print(baseline_results.summary())

OLS Regression Results

========	=======	OLS Regre ========			=======	=====
====						
Dep. Variab 0.646	le:	price	R-squ	ared:		
Model: 0.645		OLS	Adj. I	R-squared:		
Method:		Least Squares	F-sta	tistic:		4
368. Date:	We	d, 03 Jan 2024	Prob	(F-statisti	c):	
0.00 Time:		21:44:58	log-l	ikelihood:		-2.9618
e+05				ikciinoou.		
No. Observa e+05	tions:	21596	AIC:			5.924
Df Residual e+05	s:	21586	BIC:			5.925
Df Model:	-	9				
Covariance		nonrobust =======		=======	========	
====	coef	std err	+	P> t	[0.025	
0.975]		stu en		7/01	[0.023	
const 5e+05	-1.017e+06	1.61e+04	-63.270	0.000	-1.05e+06	-9.8
	-4.573e+04	2134.899	-21.418	0.000	-4.99e+04	-4.1
bathrooms	5.282e+04	3477.102	15.192	0.000	4.6e+04	5.9
6e+04 floors	1.692e+04	3436.267	4.923	0.000	1.02e+04	2.3
7e+04 sqft_living 6.344	179.8298	3.324	54.106	0.000	173.315	18
sqft_lot	-0.2495	0.037	-6.781	0.000	-0.322	-
	7.512e+05	1.84e+04	40.838	0.000	7.15e+05	7.8
7e+05 renovated	1.759e+04	8509.590	2.067	0.039	907.193	3.4
3e+04 grade_no	1.291e+05	2159.160	59.791	0.000	1.25e+05	1.3
3e+05 house_age 7.652	3957.4099	66.448	59.557	0.000	3827.168	408
========	=======	========	======	=======	=======	=====
Omnibus:		15650.960	Durbi	n-Watson:		
1.976 Prob(Omnibu	s):	0.000	Jarqu	e-Bera (JB)	:	96655
6.213 Skew:		2.888	Prob(JB):		
0.00 Kurtosis:		35.261	Cond.	No.		5.45
e+05 =======	========	=========	======	========	========	======
====		- -	_	_	_	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 5.45e+05. This might indicate that ther e are

strong multicollinearity or other numerical problems.

Interpretation of results

- R-squared: 0.646 Indicates that the model explains 64.6 % of the variance in the dependent variable (price).
- Adj. R-squared: 0.645 Similar to R-squared but adjusts for the number of predictors in the model.
- Prob (F-statistic): 0.00 The probability associated with the F-statistic, suggesting the overall significance of the model.
- Coefficients: Each predictor variable's coefficient represents the change in the dependent variable (price) per unit change in that predictor, holding other predictors constant.

Intercept (const): -1.017e+06

bedrooms: -4.573e+04bathrooms: 5.282e+04

floors: 1.692e+04sqft_living: 179.8298sqft_lot: -0.2495

waterfront: 7.512e+05
renovated: 1.759e+04
grade_no: 1.291e+05
house age: 3957.4099

- Statistical Significance (P-values): P>|t| values for each coefficient indicate the
 probability of observing the data if the null hypothesis (that the coefficient is zero) is
 true.
- Variables with a P-value less than a significance level (commonly 0.05) are typically
 considered statistically significant. For instance, bathrooms, floors, sqft_living, sqft_lot,
 waterfront, renovated, grade_no, house_age,seem significant since their P-values are
 0.000.

Recomendations

Our potential homeowners are advised to focus on the variables on the final model when looking for competitively priced homes. These are majorly square feet of the living space, bathrooms and bedrooms. Where one is looking to buy a home at favorable prices a potential homeowner will need to compromise on one or two items. e.g. waterfront homes or square feet of living area. Our stakeholders are advised to purchase homes in the spring or summer in order to get a good variety of homes to pick from. Further Data Collection: Explore additional data beyond the current predictors to refine the model. Factors like proximity to amenities, neighborhood trends, or specific architectural styles could further enhance price prediction accuracy.