See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265295984

Structures, stabilities, electronic and magnetic properties of small RhxMny (x + y = 2-4) clusters

ARTICLE in COMPUTATIONAL AND THEORETICAL CHEMISTRY · NOVEMBER 2014

Impact Factor: 1.55 · DOI: 10.1016/j.comptc.2014.08.008

CITATIONS	READS
8	43

2 AUTHORS, INCLUDING:

72 PUBLICATIONS 168 CITATIONS

SEE PROFILE

ELSEVIER

Contents lists available at ScienceDirect

Computational and Theoretical Chemistry

journal homepage: www.elsevier.com/locate/comptc

Structures, stabilities, electronic and magnetic properties of small Rh_xMn_y (x + y = 2-4) clusters

Ambrish Kumar Srivastava, Neeraj Misra*

Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India

ARTICLE INFO

Article history: Received 26 June 2014 Received in revised form 11 August 2014 Accepted 11 August 2014 Available online 20 August 2014

Keywords: Rhodium/manganese clusters Stability Electronic property Magnetic moment Density functional theory

ABSTRACT

The present study investigates Rh_xMn_y clusters for x+y=2-4; x and y=1-3 invoking generalized gradient approximation in density functional theory. The ground state structures are obtained with preferred spin-multiplicities and their stabilities are analyzed by calculating binding energies as well as dissociation energies for various fragmentation channels. Magnetic properties of these clusters are discussed by calculating magnetic moments and spin-density surfaces. Various parameters such as partial charges, dipole moments, HOMO–LUMO energies etc. and density of states spectra are used to explore their electronic properties. We find that all Rh_xMn_y clusters are thermodynamically stable and rhombus Rh_2Mn_2 cluster possesses higher binding energy as compared to other species. The electronic and magnetic properties of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y and Rh_xMn_y clusters of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y and align opposite to that of Rh_xMn_y clusters of Rh_xMn_y and Rh_xMn_y and Rh_xMn_y and Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y and Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly with the variation in the proportion of Rh_xMn_y clusters vary significantly Rh_xMn_y clusters vary significantly Rh_xMn_y clu

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clusters find important applications in various fields due to their interesting properties which may be quite different than their bulk analog. For instance, bulk rhodium (Rh) is paramagnetic in its fcc phase, whereas, small Rh-clusters possess finite magnetic moments. Rh-clusters have been extensively studied experimentally [1-5] as well as theoretically [6-12]. Many studies have reported the ground-state of Rh2 dimer to be ferromagnetic with a magnetic moment of 2 $\mu_{\rm B}$ per atom [1,6–8]. On the other hand, the ground-state of Rh₃ trimer has not been determined uniquely. The electron-spin resonance spectra [5] revealed that Rh₃ probably had total magnetic moments of 5 and 7 $\mu_{\rm B}$. Preliminary investigations by Das and Balasubramanian [10] have reported eight doublet and quartet states within an energy separation of 0.2 eV. Configuration-interaction calculations [11] identified the mixing of several states with multiplicity 6 and 8 in the ground state. However, local-density approximation based calculations [8] resulted in a quartet as the ground-state of Rh₃.

Similarly, manganese (Mn) shows distinguished property of magnetism due to its half-filled 3d orbital. Small clusters of Mn are ferromagnetic, unlike bulk α -Mn which is antiferromagnetic [13,14]. Bobadova-Parvanova et al. [15] studied small Mn_n

E-mail address: neerajmisra11@gmail.com (N. Misra).

 $(n=2-7,\ 13)$ clusters and noticed a competition between ferromagnetic and antiferromagnetic ordering of atomic magnetic moments. Furthermore, the measured moments of Mn_n (n=5-22) clusters by Knickelbein [16] suggested that Mn_n clusters are molecular ferrimagnetic in the size range n=5-22. It is widely accepted that due to large energy gap $(\sim 8 \text{ eV})$ between the filled 4s and half-filled 3d orbitals, as well as the high promotion energy $(\sim 2.14 \text{ eV})$ from $3d^54s^2$ to $3d^64s^1$ of a single Mn atom, small Mn clusters bind with van der Waals' forces. This weak Mn–Mn interaction allows each Mn atom to retain its independent magnetic moment, so it is easy for small Mn-clusters to keep their magnetic moment as large as approximately 5 μ_B per atom.

The present study is devoted to density functional investigations on small clusters of mixed Rh and Mn atoms. The ground-state structures of Rh_xMn_y (x+y=2-4) clusters are obtained with the proportion of x and y varying from 1 to 3 and their stabilities are analyzed. Electronic and magnetic properties of mixed Rh_xMn_y clusters are also calculated and discussed. This is the first report on Rh_xMn_y clusters to the best of our knowledge.

2. Computational methods

All computations are performed using density functional theory (DFT) as implemented in Gaussian 09 program [17]. The generalized gradient approximated (GGA) exchange-correlation functional as devised by Perdew-Burke-Ernzerhof (PBE) [18] is

^{*} Corresponding author.

employed in conjunction with Stuttgart–Dresden–Dunning (SDD) basis set. Various initial geometries with all possible spin-multiplicities are fully optimized without any symmetry constraint in the potential energy surface (PES) in order to locate the ground-state structures. Vibrational frequency calculations are repeated for all structures to ensure that they belong to minima in the PES.

In order to check the validity of present computational scheme, we have performed some test calculations on Rh_2 and Mn_2 dimers. The ground-states of Rh_2 (quintet) and Mn_2 (11-et) have been calculated to carry the magnetic moments of 2 μ_B and 5 μ_B per atom, respectively. This fact is consistent with previous assignments [15]. Furthermore, the bond-length of Rh_2 and Mn_2 dimers are calculated as 2.25 Å and 2.62 Å, respectively which are in good agreement with corresponding experimental value of 2.28 Å [1] and already reported values, 2.58–2.84 Å [19–21], respectively. However, the dissociation energies of Rh_2 and Mn_2 calculated to be 1.76 eV/atom and 0.32 eV/atom, respectively are smaller than corresponding experimental values of 2.92 eV/atom [1] and 0.44 ± 0.3 eV/atom [22]. In particular, the binding energy of Rh_2 is fairly underestimated (by 1.12 eV), however, still acceptable as compared to previously reported values, 1.4 eV [2] and 0.85 eV [7].

3. Results and discussion

3.1. Structures and stabilities

The ground-state structures of Rh_xMn_y (x + y = 2-4) clusters are displayed in Fig. 1 and respective bond-lengths are also shown. The weak Mn-Mn van der Waals bonds can be easily distinguished as dark black broken lines (in Fig. 1). The ground-state of RhMn is septet with the bond-length (2.27 Å) comparable to that of Rh₂ dimer. RhMn₂ (12-et) assumes isosceles triangular geometry, in which Mn-Mn bond-length is increased to 3.11 Å as compared to 2.62 Å in Mn₂ dimer. Thus, the interaction of Rh to Mn₂ dimer further weakens the Mn-Mn bond. Unlike RhMn₂, the ground-state of Rh₂-Mn corresponds to the lowest spin (doublet) with equilateral triangular geometry. The ground-state of RhMn₃ is triplet in which one of the bond-length is slightly increased as compared to other Rh-Mn and Mn-Mn bond lengths. In fact, RhMn₃ can be considered as Mn interacting with RhMn₂ triangle which results in slight increase in Rh-Mn and marginal decrease in Mn-Mn bond-lengths. Rh₂Mn₂ takes a rhombus structure with nonet spin as its ground-state in which all Rh–Mn bond-lengths are equalized to 2.39 Å and Mn–Mn is reduced to 2.73 Å as compared to those in RhMn $_2$ and RhMn $_3$ clusters. Like RhMn $_3$, the septet state of Rh $_3$ Mn can be realized by interaction of Rh atom with Rh $_2$ Mn clusters. However, this interaction results in the slight increase in both Rh–Mn and Rh–Rh bond-lengths.

We have calculated vibrational frequencies at PBEPBE/SDD level and found all values to be real, indicating the fact that all optimized structures belong to true minima in the PES. In order to analyze the stabilities of these clusters, we have calculated their binding energies per atom (ΔE) and dissociating energies ($D_{\rm e}$) for various fragmentations as below,

$$\Delta E = x \ E[Rh] + y \ E[Mn] - E[Rh_x Mn_y]/(x+y)$$

$$D_{\rm e} = E[A] + E[B] - E[Rh_x Mn_y]$$

where E[..] represents total electronic energy of respective species including zero point energy calculated at PBEPBE/SDD method, and A and B represent dissociation fragments of Rh_xMn_y clusters.

The calculated ΔE and D_e values are listed in Table 1. All Rh_xMn_y clusters are found to be stable due to ΔE and $D_e > 0$. The ΔE values range between 1.38-2.11 eV/atom. The highest ΔE value corresponds to Rh₂Mn₂ cluster, which appears the most stable among all Rh_xMn_y clusters. The ΔE value of $RhMn_2$ suggests that Mn_2 dimer is significantly destabilized by interaction with Rh atom. As mentioned earlier, this interaction weakens Mn-Mn bond which is also reflected in their preferred dissociation to RhMn + Mn fragments than into Rh + Mn₂ by 2.11 eV. This is in contrast to Rh₂-Mn cluster which prefers to dissociate into Rh₂ + Mn by 0.77 eV. The D_e value of RhMn₃ indicates that additional Mn interacts with RhMn₂ by 1.31 eV which results in the decrease in overall binding energy of RhMn₃ as compared to its neighbors. Similar situation exists in the case of Rh₃Mn cluster, however its ΔE and D_e values are larger than those of RhMn₃. Rh₂Mn₂ favors dissociation into two RhMn fragments than into Rh + RhMn2 and Mn + Rh2Mn by 0.48 eV and 0.12 eV, respectively.

3.2. Electronic and magnetic properties

Rh and Mn possess the outer electronic configurations of $4d^85s^1$ and $3d^54s^2$, so their ground-state magnetic moments are 1 μ_B and 5 μ_B , respectively. The interaction of Rh with Mn does not affect the

Fig. 1. Ground-state equilibrium geometries of Rh_xMn_y (x + y = 2-4) clusters. Mn–Mn (van der Waals bonding) are shown by broken black lines and all bond-lengths (in Å) are also given.

Table 1 Binding energy (ΔE) and dissociation energies (D_e) for various fragments for Rh_xMn_y (x + y = 2-4) clusters calculated at PBEPBE/SDD method.

Clusters	ΔΕ (eV/atom)	Dissociation fragments $[D_e \text{ (eV)}]$
RhMn	1.38	Rh + Mn [2.76]
$RhMn_2$	1.67	RhMn + Mn [2.27], Rh + Mn ₂ [4.38]
Rh_2Mn	1.79	RhMn + Rh [2.63], Rh ₂ + Mn [1.86]
RhMn ₃	1.59	RhMn + Mn_2 [2.94], RhMn ₂ + Mn [1.31], Rh + Mn_3 [4.03]
Rh_2Mn_2	2.11	2 RhMn [2.94], RhMn ₂ + Rh [3.42], Rh ₂ Mn + Mn [3.06], Rh ₂₊ Mn ₂ [4.27]
Rh₃Mn	1.83	RhMn + Rh ₂ [3.64], Rh ₂ Mn + Rh [2.54], Rh ₃ + Mn [2.94]

magnetic states and both maintain their individual magnetism which is reflected in their magnetic moments in RhMn. In RhMn₂, there is a ferromagnetic coupling between Mn atoms each with moments of 5.14 $\mu_{\rm B}$ as, whereas Rh possesses the magnetic moment of 0.73 $\mu_{\rm B}$. Likewise in Rh₂Mn cluster, there is ferromagnetic alignment between Rh atoms with 1.87 $\mu_{\rm B}$ and Mn has magnetic moment of 4.74 $\mu_{\rm B}$. Note that both Mn₂ and Rh₂ dimers are ferromagnetic with the magnetic moments of 5 $\mu_{\rm B}$ and 2 $\mu_{\rm B}$ per atom, respectively. However, the interaction of Mn with Rh₂ causes to change the direction of its moments such that the total magnetic moment of Rh₂Mn is reduced to 1 $\mu_{\rm B}$ as compared to 4 $\mu_{\rm B}$ of Rh₂ dimer.

In RhMn₃, there is a ferrimagnetic alignment among Mn atoms resulting in a total magnetic moment of 2 $\mu_{\rm B}$ in which Rh atom contributes by 0.79 $\mu_{\rm B}$. This fact is in contrast to Mn₃ trimer in which all Mn atoms align ferromagnetically with a magnetic moment of 5 $\mu_{\rm B}$ per atom [20]. Just as in RhMn₂, there are also ferromagnetic couplings between Rh as well as Mn atoms in Rh₂Mn₂ cluster. However, these couplings result in a total magnetic moment of 8 $\mu_{\rm B}$ which is smaller than that of RhMn₂ (11 $\mu_{\rm B}$). This is due to reversal of the magnetic moment of Rh, as in the case of Rh₂Mn cluster. The total magnetic moment of Rh₃Mn cluster is 6 $\mu_{\rm B}$, which is mainly contributed by one Rh (1.03 $\mu_{\rm B}$) and Mn (4.86 $\mu_{\rm B}$), same as in RhMn cluster.

The magnetic properties of Rh_xMn_y clusters can further be explained by spin-density surfaces shown in Fig. 2. In color coding scheme, blue and green represent the excess of spin up (\uparrow) and spin down (\downarrow) electrons, respectively. Consequently, these lead to the

Table 2 Magnetic moments (μ) of Rh_xMn_y (x + y = 2 - 4) clusters calculated at PBEPBE/SDD method

Clusters	Magnetic moments ($\mu_{\rm B}$)							
	$\mu(Total)$	$\mu(Rh_1)$	$\mu(Rh_2)$	μ(Rh ₃)	$\mu(Mn_1)$	$\mu(Mn_2)$	μ(Mn ₃)	
RhMn	6	1.22			4.77			
$RhMn_2$	11	0.73			5.14	5.14		
Rh_2Mn	1	-1.87	-1.87		4.74			
$RhMn_3$	2	0.79			-5.73	4.26	4.26	
Rh_2Mn_2	8	-0.67	-0.67		4.67	4.67		
Rh_3Mn	6	1.03	0.07	0.07	4.86			

positive and negative magnetic moments. For instance, in Rh₂Mn cluster, the blue region is localized on Mn atoms and green is delocalized over Rh atoms which results in negative magnetic moments of Rh atoms (see Table 2). Similarly in Rh₂Mn, there is an excess of spin down electrons on Rh sites and spin up electrons on Mn site resulting in negative and positive magnetic moments, respectively.

The partial atomic charges on Rh and Mn atoms in Rh_xMn_y clusters are obtained by various population analyses viz. Mulliken, natural bonding orbital (NBO) and Hirshfeld schemes. Mulliken population analysis (MPA) is the most common procedure which makes use of the density matrix, assigning diagonal terms belonging to the basis set used for a given atom to that atom [23]. It has, therefore, a strong dependence on the basis set used [24] which restricts its usefulness. An improved procedure employing NBO analysis has been very popular due to its less basis dependency and assignment of maximum possible occupancy to each atomic orbital [25]. The Hirshfeld scheme has been known to yield an optimal partitioning of electron density and seem to work efficiently as compared to MPA [26]. The calculated atomic charges are listed in Table 3. One can note that the MPA assigns positive charges to Rh atoms, whereas in NBO and Hirshfeld schemes, almost all Rh charges are negative. Hence, the MPA charges do not seem to be reliable when compared with NBO or Hirshfeld. However, there are significant variations in the magnitudes of Hirshfeld and NBO charges (see Table 3). So, we have calculated atomic polar tensor (APT) derived charges [27] (also listed in Table 3) and compared with Hirshfeld and NBO charges. We find that APT calculated magnitudes of charges are higher than Hirshfeld but smaller than NBO. It can be expected due to the fact that NBO assigns the maximum

Fig. 2. Spin-density surfaces of (a) RhMn, (b) RhMn₂, (c) Rh₂Mn, (d) RhMn₃, (e) Rh₂Mn₂, and (f) Rh₃Mn clusters with an isovalue of 0.0004 a.u.

Table 3
Partial atomic charges (in e) on Rh and Mn in Rh_xMn_y clusters calculated by Mulliken, NBO, Hirshfeld and APT schemes.

Clusters	Mulliken charges		NBO charges	NBO charges		Hirshfeld charges		APT charges	
	q(Rh)	q(Mn)	q(Rh)	q(Mn)	q(Rh)	q(Mn)	q(Rh)	q(Mn)	
RhMn	+0.10	-0.10	-0.24	+0.24	-0.04	+0.04	-0.11	+0.11	
$RhMn_2$	+0.27	-0.13	-0.62	+0.31	-0.06	+0.03	-0.07	+0.03	
Rh_2Mn	+0.10	-0.21	-0.25	+0.50	-0.06	+0.12	-0.13	+0.26	
RhMn ₃	+0.47	-0.20	-0.77	+0.26	+0.01	-0.01	-0.08	+0.03	
Rh_2Mn_2	+0.22	-0.22	-0.45	+0.45	-0.03	+0.03	-0.10	+0.10	
Rh ₃ Mn	+0.06	-0.18	-0.20	+0.55	-0.04	+0.08	-0.12	+0.35	

Table 4Dipole moment, energies of HOMO ($E_{\rm H}$), LUMO ($E_{\rm L}$) and their energy gap ($E_{\rm g}$) in spin up and spin down state of Rh_xMn_y (x + y = 2 - 4) clusters calculated at PBEPBE/SDD method. All energy values are measured in eV.

Clusters	Spin up (↑) state			Spin down (↓	Spin down (↓) state		
	E_{H}	E_{L}	E_{g}	E_{H}	$E_{ m L}$	E_{g}	
RhMn	-4.54	-3.11	1.44	-4.24	-3.85	0.38	1.25
$RhMn_2$	-3.79	-3.02	0.78	-4.06	-2.88	1.18	1.06
Rh_2Mn	-4.39	-4.01	0.38	-3.36	-2.99	0.37	2.10
RhMn₃	-4.73	-3.70	1.04	-3.69	-2.90	0.79	1.43
Rh_2Mn_2	-4.03	-3.93	0.10	-4.23	-2.78	1.46	0.00
Rh₃Mn	-4.55	-2.68	1.87	-4.47	-2.37	2.09	1.93

possible occupancy to each atom, as mentioned earlier. We can refer to NBO charges in order to discuss the electron distribution in Rh_xMn_y clusters, at least qualitatively. As mentioned earlier, the NBO charges on Rh are all negative, whereas those of Mn are positive. Thus, all Rh atoms accept electrons from Mn, which is expected due to half-filled 3d orbitals of Mn. This electron-transfer

increases with the increase either in Mn atoms ($RhMn_2$, $RhMn_3$ etc.) or in Rh atoms (Rh_2Mn , Rh_3Mn etc.). The dipole moment gives a signature of the geometry and charge distribution of clusters. Asymmetry in the charge distribution corresponds to the higher dipole moment, increasing the polarity within the species. From Table 4, it is evident that the higher dipole moment (2.10 D) of

Fig. 3. Density-of-States (DOS) spectra of Rh_xMn_y (x + y = 2-4) clusters calculated by PBEPBE/SDD method. Note that total DOS curves are scaled by 0.5.

 Rh_2Mn makes it more polar, which is also reflected in partial atomic charges of Rh_2Mn . On the other hand, the dipole moment is completely vanished in Rh_2Mn_2 due to symmetric distribution of charges over all atoms. Note that all atoms in Rh_2Mn_2 cluster possess the partial charges of ± 0.45 e.

Table 4 also lists the energies of the highest occupied molecular orbital (HOMO) ($E_{\rm H}$), lowest unoccupied molecular orbital (LUMO) $(E_{\rm L})$ and their energy gap $(E_{\rm g})$ of spins up (\uparrow) and spins down (\downarrow) states. One can notice that all $E_{\rm L}$ values are negative, further implying the stabilities of clusters. Within the framework of Koopmans' theorem, the negative of $E_{\rm H}$ and $E_{\rm L}$ approximate the ionization potential (IP) and electron affinity (EA), respectively. Therefore, higher $E_{\rm H}$ and $E_{\rm L}$ correspond to the lower IP and EA. It is well known that the extraction (addition) of an electron from (to) chemical species is favored by their low IP (high EA). Consequently, the values of E_H and E_I can be useful in deciding whether this electron comes from (goes to) spin up or spin down state. For instance, the E_H and E_L values of Rh₂Mn cluster suggest that an electron can be easily removed from spin down state but can be added with spin up. It may be expected due to the fact that the last electron in the HOMO of Rh₂Mn is unpaired with spin down.

The importance of HOMO and LUMO lies in the fact that these are the orbitals which mainly participate in chemical reactions or interactions with other species. Their energy gap $(E_{\rm g})$ is an important factor deciding the chemical reactivity of molecular species. The species with smaller $E_{\rm g}$ values may interact easily and hence, they become chemically more reactive. For instance, the $E_{\rm g}$ value of RhMn suggests that it is more reactive than RhMn₂, which is also reflected in its lower binding energy as compared to that of RhMn₂ (see Table 1).

In order to further explain the electronic and magnetic properties of Rh_xMn_y clusters, we have plotted their total density-of-states (DOS) spectra in Fig. 3. The DOS curves of spin up (alpha) and spin down (beta) electrons are also included. We consider the case of Rh_2Mn_2 cluster in which Rh and Mn atoms possess the magnetic moments of 0.67 μ_B and 4.67 μ_B per atom, in mutually opposite directions. From spin-density plot in Fig. 2, it is apparent that the electrons of Mn and Rh align with spins up and spins down, respectively. The DOS spectra show that the HOMO of Rh_2Mn_2 cluster corresponds to the alpha- and beta-DOS values of 2.2 and 0.3 per eV, which results in magnetic moments of 9.3 μ_B due to spin up electrons and 1.3 μ_B spin down electrons. These up and down moments are equally shared by Mn and Rh atoms, giving a total magnetic moment of 8 μ_B (see Table 2).

4. Conclusion

Using density functional PBEPBE/SDD method, we have discussed the structures and stabilities of RhxMnv clusters for x + y = 2-4. In general, all Rh_xMn_y species are found to be thermodynamically stable and the rhombus Rh2Mn2 cluster has been found to possess higher binding energy as compared to others. The electronic and magnetic properties of Rh_xMn_y clusters are systematically studied. In all cases, Mn atoms have been found to maintain their atomic moments of 5 $\mu_{\rm B}$, due to their participation in weak bonding. With the increase in the proportion of x and/or y, we have noticed the ferromagnetic and ferrimagnetic alignments of atomic moments of Rh and Mn. A reversal in the direction of magnetic moments of Rh atoms has been found in case of Rh₂Mn and Rh₃Mn. Partial atomic charges, dipole moments, and HOMO-LUMO energies are calculated to discuss the electronic properties. Spin-densities and density-of-states curves are also plotted in order to explain the electronic and magnetic properties of Rh_xMn_v clusters.

Acknowledgement

A.K. Srivastava acknowledges Council of Scientific and Industrial Research (CSIR), India for providing a research fellowship [Grant No. 09/107(0359)/2012-EMR-I].

References

- K.A. Gingerich, D.L. Cocke, Thermodynamic confirmation for the high stability
 of gaseous TiRh as predicted by the Brewer-Engel metallic theory and the
 dissociation energy of diatomic rhodium, J. Chem. Soc., Chem. Commun. 1
 (1972), 536-536.
- [2] H. Wang, H. Haouari, R. Craig, Y. Liu, J.R. Lombardi, D.M. Lindsay, Spectroscopy of mass-selected rhodium dimers in argon matrices, J. Chem. Phys. 106 (1997) 2101–2104.
- [3] A.J. Cox, J.G. Louderback, L.A. Bloomfield, Experimental observation of magnetism in rhodium clusters, Phys. Rev. Lett. 71 (1993) 923–926.
- [4] A.J. Cox, J.G. Louderback, S.E. Apsel, L.A. Bloomfield, Magnetism in 4d-transition metal clusters, Phys. Rev. B 49 (1994) 12295–12298.
- [5] R.J. Van Zee, Y.M. Hamrick, S. Li, W. Weltner Jr., ESR of Co, Rh, Ir trimers and diatomic ions, Chem. Phys. Lett. 195 (1992) 214–220.
- [6] K. Balasubramanian, D.W. Liao, Spectroscopic properties of low-lying electronic states of rhodium dimer, J. Phys. Chem. 93 (1989) 3989–3992.
- [7] F. Illas, J. Rubio, J. Canellas, J.M. Ricart, Electronic structure of Rh, RhH, and Rh₂ as derived from abinitio (configuration interaction) calculations, J. Chem. Phys. 93 (1990) 2603.
- [8] Y. Jinlong, F. Toigo, W. Kelin, Structural, electronic, and magnetic properties of small rhodium clusters, Phys. Rev. B 50 (1994) 7915–7924.
- [9] S.K. Nayak, S.E. Weber, P. Jena, K. Wildberger, R. Zeller, P.H. Dederichs, V.S. Stepanyuk, W. Hergert, Relationship between magnetism, topology, and reactivity of Rh clusters, Phys. Rev. B 56 (1997) 8849–8854.
- [10] K.K. Das, K. Balasubramanian, Potential energy surfaces of eight low-lying electronic states of Rh3, J. Chem. Phys. 93 (1990) 625–632.
- [11] D. Dai, K. Balasubramanian, High-spin electronic states of the rhodium trimer (Rh₃), Chem. Phys. Lett. 195 (1992) 207–213.
- [12] B.V. Reddy, S.N. Khanna, B.I. Dunlap, Giant magnetic moments in 4d clusters, Phys. Rev. Lett. 70 (1993) 3323–3326.
- [13] M.B. Knickelbein, Experimental observation of superparamagnetism in manganese clusters, Phys. Rev. Lett. 86 (2001) 5255–5257.
- [14] R.J. Van Zee, W. Waltner Jr., The ferromagnetic Mn⁴² molecule, J. Chem. Phys. 89 (1988) 4444.
- [15] P. Bobadova-Parvanova, K.A. Jackson, S. Srinivas, M. Horoi, Emergence of antiferromagnetic ordering in Mn clusters, Phys. Rev. A 67 (2003) 061202.
- [16] M.B. Knickelbein, Magnetic ordering in manganese clusters, Phys. Rev. B 70 (2004) 014424–014428.
- [17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT, 2010.
- [18] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
- [19] S.K. Nayak, B.K. Rao, P. Jena, Equilibrium geometries, electronic structure and magnetic properties of small manganese clusters, J. Phys.: Condens. Matter 10 (1998) 10863–10877.
- [20] M. Kabir, A. Mookerjee, D.G. Kanhere, Structure, electronic properties, and magnetic transition in manganese clusters, Phys. Rev. B 73 (2006) 224439.
- [21] G.L. Gutsev, M.D. Mochena, P. Jena, C.W. Bauschlicher Jr., H. Partridge III, Periodic table of 3d-metal dimers and their ions, J. Chem. Phys. 121 (2004) 6785–6797
- [22] M.D. Morse, Clusters of transition-metal atoms, Chem. Rev. 86 (1986) 1049–1109.
- [23] R.S. Mulliken, Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAO–MO population analysis, J. Chem. Phys. 36 (1962) 3428.
- [24] R.S. Mulliken, P. Politzer, Comparison of two definitions of atomic charge, as applied to hydrogen fluoride, J. Chem. Phys. 55 (1971) 5135.
- [25] A.E. Reed, R.B. Weinstock, F. Weinhold, Natural population analysis, J. Chem. Phys. 83 (1985) 735–746.
- [26] F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theoret. Chim. Acta 44 (1977) 129–138.
- [27] J. Cioslowski, A new population analysis based on atomic polar tensors, J. Am. Chem. Soc. 111 (1989) 8333–8336.