TD 14. Espaces vectoriels et applications linéaires.

Exercice 1. Les ensembles F suivants sont-ils des sous-espaces vectoriels de E?

Quand c'est possible, donner une famille génératrice de F.

a)
$$F = \{(x, y) \in \mathbb{R}^2 / xy = 1\}$$
 pour $E = \mathbb{R}^2$

b)
$$F = \{(a+b, -a, 2a-b) / (a, b) \in \mathbb{C}^2\}$$
 pour $E = \mathbb{C}^3$

c)
$$F = \{(a, -a, 1 - a) / a \in \mathbb{R}\} \text{ pour } E = \mathbb{R}^3$$

d)
$$F = \{(x, y, z) \in \mathbb{C}^3 / x - y + 2z = 0\}$$
 pour $E = \mathbb{C}^3$

e)
$$F = \{(x, y, z, t) \in \mathbb{R}^4 / x + y + z + t = 0 \text{ et } x - y + 2z + t = 0\}$$
 pour $E = \mathbb{R}^4$

f)
$$F = \{(x, y) \in \mathbb{C}^2 \mid x \neq y\}$$
 pour $E = \mathbb{C}^2$

g)
$$F = \left\{ \begin{pmatrix} x + 3y & x - y \\ 2y & -x + y \end{pmatrix} / (x, y) \in \mathbb{R}^2 \right\}$$
 pour $E = \mathcal{M}_2(\mathbb{R})$.

f)
$$F = \{(x, y) \in \mathbb{C}^2 \mid x \neq y\}$$
 pour $E = \mathbb{C}^2$
g) $F = \left\{ \begin{pmatrix} x + 3y & x - y \\ 2y & -x + y \end{pmatrix} \mid (x, y) \in \mathbb{R}^2 \right\}$ pour $E = \mathcal{M}_2(\mathbb{R})$.
h) $F = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \mid x + y + z - 2t = 0 \right\}$ pour $E = \mathcal{M}_2(\mathbb{C})$

i)
$$F = \left\{ u \in \mathbb{R}^{\mathbb{N}} / \lim_{n \to +\infty} u_n = 0 \right\} \text{ pour } E = \mathbb{R}^{\mathbb{N}}$$

j)
$$F = \{ u \in \mathbb{R}^{\mathbb{N}} / (u_n) \text{ diverge } \} \text{ pour } E = \mathbb{R}^{\mathbb{N}}$$

k)
$$F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) / f(0) = 0 \}$$
 pour $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$

1)
$$F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) / f(0) = 1 \}$$
 pour $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$

m)
$$F = \{ f \in \mathcal{F}(\mathbb{R}_+, \mathbb{R}) / f \text{ croissante} \} \text{ pour } E = \mathcal{F}(\mathbb{R}_+, \mathbb{R})$$

Exercice 2. 1) Dans l'ev E considéré, déterminer si C est combinaison linéaire de A et B:

a) Dans
$$E = \mathbb{R}^3$$
, $A = (1, 1, 2)$, $B = (3, 0, 1)$ et $C = (5, 2, 5)$.

b) Dans
$$E = \mathcal{F}(\mathbb{R}, \mathbb{R}), A: x \mapsto \cos x, B: x \mapsto \sin x \text{ et } C: x \mapsto \cos(2x).$$

c) Dans
$$E = \mathcal{F}(\mathbb{R}, \mathbb{R}), A: x \mapsto x + 1, B: x \mapsto x - 1 \text{ et } C: x \mapsto |x|.$$

2) On reprend l'exemple a). Montrer l'égalité de Vect(A, B), de Vect(A, B, C) et de Vect(B, C).

Exercice 3. Soit $E = \mathbb{R}^{\mathbb{N}}$. On note F l'ensemble des suites constantes et G l'ensemble des suites convergentes de limite nulle.

- a) Montrer que F et G sont des sous-espaces vectoriels de E.
- b) Montrer que F et G sont en somme directe. Déterminer $F \oplus G$.

Exercice 4. Soit, dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, F (resp. G) l'ensemble des fonctions paires (resp. impaires).

- a) Montrer que F et G sont des sous-espaces vectoriels de E.
- b) Montrer que F et G sont supplémentaires dans E.

Exercice 5. Soient, dans $E = \mathcal{D}(\mathbb{R}, \mathbb{R})$ (ensemble des fonctions dérivables de \mathbb{R} dans \mathbb{R}):

$$F = \{ f \in E \ / \ f(0) = f'(0) = 0 \} \text{ et } G = \left\{ \begin{array}{ccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & ax + b \end{array} \right. / (a, b) \in \mathbb{R}^2 \right\}.$$

- a) Montrer que F et G sont des sous-espaces vectoriels de E.
- b) Montrer que F et G sont supplémentaires dans E.

Exercice 6. Les applications suivantes sont-elles linéaires?

a)
$$\varphi: \mathbb{C}^2 \to \mathbb{C}$$

 $(x,y) \mapsto 2x + y$
b) $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$
 $(x,y,z) \mapsto (x-y,x+y-z)$
c) $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$
 $(x,y) \mapsto (x-y-1,2x-y)$
d) $\varphi: \mathbb{R}^2 \to \mathbb{R}$
 $(x,y) \mapsto x^2 + 2y^2$
e) $\varphi: \mathbb{R} \to \mathbb{R}^2$
 $x \mapsto (x,x^2)$
f) $\varphi: \mathcal{F}(]0,+\infty[,\mathbb{R}) \to \mathbb{R}$
 $g) \varphi: \mathcal{D}(\mathbb{R},\mathbb{R}) \to \mathcal{F}(\mathbb{R},\mathbb{R})$
 $f \mapsto f+f'$
h) $\varphi: \mathcal{F}(\mathbb{R},\mathbb{R}) \to \mathcal{F}(\mathbb{R},\mathbb{R})$
 $f \mapsto |f|$
i) $\varphi: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$
 $\mathcal{M} \mapsto \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$

Exercice 7. a) Soit f l'endomorphisme de \mathbb{R}^2 défini par $f:(x,y)\mapsto (x-y,2x-2y)$. Déterminer Ker f et Im f.

b) Même question avec l'endomorphisme f de \mathbb{R}^3 suivant : $f:(x,y,z)\mapsto (2y+z,x+z,-x+y+z)$.

Exercice 8. On considère $\mathbb C$ vu comme un $\mathbb R$ -espace vectoriel. Soit $f: \mathbb C \to \mathbb C$

Montrer que f est un endomorphisme de \mathbb{C} , puis déterminer $\operatorname{Ker} f$ et $\operatorname{Im} f$.

Exercice 9. Soit $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$ (ensemble des fonctions continues de \mathbb{R} dans \mathbb{R}).

On définit $u: E \to E$ $f \mapsto [x \mapsto xf(x)].$

- a) Laquelle de ces deux notations a un sens : u(f)(x) ou u(f(x))? Montrer que $u \in \mathcal{L}(E)$.
- b) Montrer que u est injective.

Exercice 10. Soient E et F des \mathbb{K} -ev, $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,E)$.

- a) Montrer que Ker $f \subset \text{Ker}(g \circ f)$ et que $\text{Im}(g \circ f) \subset \text{Im}g$
- b) Montrer: Ker $f = \text{Ker}(g \circ f) \iff \text{Ker } g \cap \text{Im } f = \{0_F\}$, et $\text{Im}(g \circ f) = \text{Im } g \iff \text{Ker } g + \text{Im } f = F$. En déduire une CNS pour que Im f et Ker g soient supplémentaires dans F.

Exercice 11. Soit E un espace vectoriel et f, g deux endomorphismes de E.

- a) Montrer que si f et g commutent alors $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont stables par g.
- b) Montrer que dans le cas où f est un projecteur, la réciproque est vraie.

Exercice 12. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ $(x,y,z) \mapsto (x,y,x).$

Montrer que f est une projection; déterminer les sous-espaces vectoriels associés à cette projection, et le projecteur associé à f.

Exercice 13. Soit $n \in \mathbb{N}^*$, montrer que les ensembles $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ des matrices carrées de taille n respectivement symétriques et antisymétriques sont des sev de $\mathcal{M}_n(\mathbb{R})$, et qu'ils sont supplémentaires. Déterminer la projection sur $\mathcal{S}_n(\mathbb{R})$ parallèlement à $\mathcal{A}_n(\mathbb{R})$.

Exercice 14. On définit $F = \{(x, y, z) \in \mathbb{R}^3 \ / \ x + y + z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 \ / \ x = y = z\}$.

- a) Montrer que F et G sont des sous-espaces vectoriels supplémentaires de \mathbb{R}^3 .
- b) Soit p la projection sur F parallèlement à G, et s la symétrie par rapport à F parallèlement à G. Déterminer p(x, y, z) et s(x, y, z) en fonction de x, y, z.

Exercice 15. Soient p et q des projecteurs d'un espace vectoriel E.

- a) Montrer que p+q projecteur $\iff p\circ q+q\circ p=0 \iff p\circ q=q\circ p=0.$
- b) On suppose que p+q est un projecteur. Montrer que $\mathrm{Im}(p+q)=\mathrm{Im}(p)\oplus\mathrm{Im}(q)$ et $\mathrm{Ker}(p+q)=\mathrm{Ker}(p)\cap\mathrm{Ker}(q)$.

Exercice 16. Soit E un espace vectoriel et f, g des endomorphismes de E. Montrer :

 $f\circ g=f\;$ et $\;g\circ f=g\Longleftrightarrow f$ et g sont des projecteurs de même noyau.