MONOPRIX

DESIGNING AND IMPLEMENTING A SALES FORECASTING SOLUTION

By:

Abid Mohaned Gaidi Lamjed

Framed by:

Ben Nasr Hafedh Ben Letaifa Asma Ben Brahim Ali

TABLE OF CONTENTS

Problem 01 02 Solution

Tools 03 04 Al model

Architecture **05 06** Interface

Demonstration **07 08** conclusion

Problem

Obsolete Stock: One of the biggest drains on your profitability is obsolete or dead stock.

Customer Demand: Customers are looking for more value and convenience from their favorite brands.

Solution

For a **business** to operate efficiently, it needs some idea of what the **future** will look like. A **forecast** provides this look as a foundation upon which to plan.

Our solution leverages a famous ML model "XGBoost" to perform forecasting.

With a simple user interface to interact with the model and observe results.

Tools

Al model

In order to find the right model that fits our data well and has the ability to generalize on new data, we cleaned and analyzed our dataset carefully looking for insights that can help us carry out our experiments with various types of models and data features.

Al model: Exploratory Data Analysis

- This is a sample from our dataset containing dates, shop and item id to identify all
 products as well as item category and id struct to categorize all items. Also we
 have the price of the item and the amount of sold units per day.
- This dataset contains data for 4 years (2014-2018) representing 92 items in 5 different shops.

	А	В	С	D	E	F	G
1	Date	shop id	item id	∙m catego	id struct	Price	item cnt day
2	1/1/2014	2	425300160	1442	1442607080203	3.25	1
3	1/1/2014	2	431000630	1443	1443656130301	1.52	2
4	1/1/2014	2	437000050	1443	1443638020702	0.69	7
5	1/1/2014	2	437000130	1443	1443641010301	1.99	1
6	1/1/2014	2	554280020	1428	1428659090401	1.8	1
7							
0	8	8			[a [a]		

Al model: Exploratory Data Analysis

Al model: Data cleaning & Preprocessing

- include for all shop, item pairs data points statiting 0 as sold units per day to force our model to account for the days that the product didn't sell.
- Aggregate the price on average per month and the sales as the sum of the sold quantities per month.
- Adding "date_block_num" feature to play the role of the date since our models only accept numeric values.

	Α	В	C	D	E	F	G	Н
h	Date	date_block_num	shop_id	item_id	item_category	id_struct	Price_agg	item_cnt_month
2	2014-01-01	0	1	283400170	2507	2507349030701	1.61	0
3	2014-02-01	1	1	283400170	2507	2507349030701	1.61	0
4	2014-03-01	2	1	283400170	2507	2507349030701	1.61	0
5	2014-04-01	3	1	283400170	2507	2507349030701	1.61	0
6	2014-05-01	4	1	283400170	2507	2507349030701	1.61	0
7	2014-06-01	5	1	283400170	2507	2507349030701	1.61	0
8	2014-07-01	6	1	283400170	2507	2507349030701	1.61	0
9	2014-08-01	7	1	283400170	2507	2507349030701	1.61	0
10	2014-09-01	8	1	283400170	2507	2507349030701	1.61	0
11	2014-10-01	9	1	283400170	2507	2507349030701	1.61	0
12	2014-11-01	10	1	283400170	2507	2507349030701	1.61	0
13	2014-12-01	11	1	283400170	2507	2507349030701	1.61	0
14	2015-01-01	12	1	283400170	2507	2507349030701	1.61	0
15	2015-02-01	13	1	283400170	2507	2507349030701	1.61	0
16	2015-03-01	14	1	283400170	2507	2507349030701	1.61	0
47	0015 04 01	45	- 4	000400470	0507	0007040000704	1.01	^

Al model: Benchmarking experiments

As an evaluation metric for our experiments we have used RMSE (Root Mean Squared Error) since our problem can be viewed as a regression supervised learning problem.

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Al model: Modeling & feature engineering

The models that we tried can be categorized into:

- Tree-based models : RandomForest, Adaboost , CatBoost , XGBoost
- Time series models: Prophet , ARIMA
- Deep learning models: RNN, LSTM, FASTAI TabularLearner

Al model: Modeling & feature engineering

After all experiments with models and features, This was our best model:

```
## model
param={'colsample_bytree': 0.8, 'subsample': 0.75, 'eta': 0.02, 'n_estimators': 1100, 'max_
depth': 7, 'min_child_weight': 1}
model = XGBRegressor(**param)
```

Al model: Modeling & feature engineering

- Number of holidays per month
- 7 degrees of lag features for the sales counting
- 2 degrees of lag features for the price

Architecture

Interface

MONOPRIX Reset Choose file Browse add

shop_id
shop_id
item_id
item_jd
item_category
item_category
id_struct
id_struct
Price
price
starting date
YYYY-MM
period
Choose period
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

Download

Submit

Demonstration

Conclusion

Despite the errors and the troubles we have encountered we consider our work to be satisfactory and we are proud of it but not to the point of considering it ideal. If the duration of the project was longer, we could have considered using different approaches like building an ARIMA model for each shop, item pair which can be more accurate but requires manual tuning and has scalability issues.

Conclusion

1000+ Lines of code **50+**Hours of Kaggle GPU resources

30+
Model
Prototyping
experiments

Github link:

https://github.com/mohaned-abid/DEMAND-FORECASTING-for-RETAIL-in-collaboration-with-MONOPRIX-

Thank you!

Any questions?