First Come First Served (FCFS)

Table of Contents

What is FCFS?	
Key Characteristics	1
Example Scenario	1
3.1. Waiting Times example 1:	2
3.2. Waiting Times example 2:	2
Why Long Waiting Times?	2
Non-Preemptive vs Preemptive	
Implementation	3
Live Demo	
Metrics.	3
8.1. Key Scheduling Metrics	3
8.2. Timing Metrics.	
8.3. Timing Metrics.	4
8.4. Summary.	4
Sources	4

1. What is FCFS?

- Definition: Processes are allocated to the CPU in the order they arrive (FIFO).
- Non-preemptive: Once started, a process runs to completion.
- Key Metric: Often results in long average waiting times.

2. Key Characteristics

- Simplicity: Easy to understand and implement.
- Fairness: No prioritization "first arrived, first served".
- Drawback:
 - No consideration for process length.
 - One long process can delay all others (Convoy Effect).

3. Example Scenario

3.1. Waiting Times example 1:

• P1: 0ms

• P2: 24ms

• P3: 27ms

Average: 17ms

3.2. Waiting Times example 2:

• P1: 0ms

• P2: 3ms

• P3: 6ms

Average: 3ms

4. Why Long Waiting Times?

No Sorting: Processes aren't ordered by burst time.

Shortest Job First (SJF) fixes that

5. Non-Preemptive vs Preemptive

Preemption	Non-Preemption
Processes can be interrupted mid-execution	Processes run to completion once started
Better for time-sharing systems	Suitable for batch processing systems
Higher overhead (frequent context switches)	Lower overhead (fewer interruptions)
Provides better responsiveness	May cause convoy effect
Examples: Round Robin, SRTF	Examples: FCFS, Non-preemptive SJF

6. Implementation

Using a FIFO Queue:

```
private final Queue<MyProcess> queue = new ArrayBlockingQueue<>>( 10 );

public void schedule( MyProcess myProcess ) {
    queue.add( myProcess );
}

public void runCpu() {
    while ( !queue.isEmpty() ) {
       var process = queue.poll();
       // non-preemptive
       process.run();
    }
}
```

7. Live Demo

8. Metrics

8.1. Key Scheduling Metrics

Burst Time:

- Total CPU execution time of process
- Formula: End time Start time

Arrival Time:

- When process enters ready queue
- Example: P1=0ms, P2=1ms, P3=2ms

8.2. Timing Metrics

Exit Time:

• When process completes execution

Response Time:

• First CPU allocation - Arrival time

Example (FCFS):

- P2: 8ms 1ms = 7ms
- P3: 15ms 2ms = 13ms

8.3. Timing Metrics

Waiting Time:

• Total ready queue time

Turnaround Time:

• Completion to arrival duration

8.4. Summary

- 1. Burst Time = Actual CPU usage
- 2. Arrival/Exit = Process lifecycle markers
- 3. Response measures initial delay
- 4. Turnaround reflects total processing duration

9. Sources

- https://afteracademy.com/blog/what-is-burst-arrival-exit-response-waiting-turnaround-timeand-throughput/
- https://www.geeksforgeeks.org/difference-between-arrival-time-and-burst-time-in-cpu-scheduling/
- https://www.youtube.com/watch?v=VSMAjMfJ6KQ&t=54s
- Moodle PDF