

HT16D35A/HT16D35B RAM 映射 28×8 恒流 LED 驱动器

特性

- 工作电压: 2.7V~5.5V
- LED 显示: 28 ROW×8 COM
- LED数据RAM1: 28 × 8 × 6位 = 1344位, 适用于灰度模式
- LED数据RAM2: 28 × 8 × 6位 = 1344位, 适用于渐变模式
- LED 数据 RAM3: 28 × 8 位 = 224 位, 适用于二进制模式或矩阵屏蔽功能
- LED 数据 RAM4: 28 × 8 位 = 224 位, 适用于通用 SEG (USEG) 功能
- LED 数据 RAM5: 8 × 8 位 = 64 位, 适用于通用 COM (UCOM) 功能
- 内置 4.92MHz RC 振荡器
- 64 级全局亮度调节
- 二进制模式或灰度模式
- 全局闪烁或渐变功能
- 通用 COM (UCOM) 和通用 SEG (USEG) 功能
- 自动滚动功能: 上/下/左/右
- 连续照明功能: ROW24~ROW27
- 使用外部电阻控制外部参考电流
- ROW 端口最大可支持 45mA 恒定灌电流
- 8 级参考电流调整
- 过温保护电路
- I2C 总线接口或 SPI 3 线接口
- 级联功能可扩展应用范围
- 封装类型: 48-pin LQFP-EP

应用领域

- 工业控制显示器
- 手机。
- 交通标志牌和信息显示器
- 数字时钟、温度计、计数器、电子仪表
- 仪器读数器
- 其它消费类应用
- LED 显示器

概述

HT16D35A/HT16D35B 是一款存储器映射 LED 显示的高精度恒流控制器 / 驱动器。该系列芯片的最大显示容量为 224 点,即 28 ROW×8 COM。通过调节软件控制的 PWM 电路,可以产生 64 级灰度 (PWM 数据)和 64 级 LED 亮度。芯片通过外部电阻为每个 ROW 输出终端提供了恒流输出控制。还提供了一个串行接口来接收命令模式和数据模式的指令。芯片连接到主机控制器只需要 3 条线。通过级联多颗芯片可以很容易地扩大显示容量,从而扩大其应用的可能性。该系列芯片通过 I²C 串行接口或 SPI 3 线串行接口可与大多数微控制器兼容。

选型表

型号	接口			
HT16D35A	3线 SPI			
HT16D35B	I ² C			

Rev. 1.10 1 2017-07-12

方框图

引脚图

Rev. 1.10 2 2017-07-12

引脚描述

引脚名称	类型	功能
VDD	_	逻辑电路正电源
VSS	_	逻辑电路负电源 – 接地
LED_VDD	_	驱动电路正电源
LED_VSS	_	驱动电路负电源 – 接地
A0/CSB	Ι	I ² C 接口的设备地址数据输入引脚。 SPI 3 线接口的片选引脚。
SCL/CLK	Ι	串行时钟输入引脚。 I ² C 接口的串行时钟 (SCL) 输入。 SPI 3 线接口的串行时钟 (CLK) 输入。
SDA/DIO	I/O	串行数据输入/输出引脚。数据将在时钟上升沿被移入到移位寄存器或从移位寄存器移出。 I ² C接口的串行数据(SDA)输入/输出-NMOS漏极开路输出。 SPI3线接口的串行数据输入/输出-CMOS输出。
OSC	I/O	系统振荡器输入 / 输出引脚。 如果使用 IRC 模式命令,系统时钟来自于内部 RC 振荡器并且 可以从 OSC 引脚输出。 如果使用从机模式或 ERC 模式命令,系统时钟来自于 OSC 引 脚上的外部时钟。
SYNC	I/O	如果使用主机模式命令,同步信号将从 SYNC 引脚输出。 如果使用从机模式指令,同步信号将从 SYNC 引脚输入。
R_EXT	Ι	外部电阻连接输入引脚。 连接一个外部电阻以设置输出端口的电流大小。
COM0~COM7	О	LED COM 输出引脚
ROW0~ROW27	O	LED ROW 输出引脚

Rev. 1.10 3 2017-07-12

极限参数

电源供应电压Vss-0.3V~Vss+6.0	_{OV} 功耗 (PD):
端口输入电压Vss-0.3V~V _{DD} +0	() = 0.5% ()
工作温度40°C~85	$(\bigcirc T_2 - 0.5^{\circ}C)$
存储温度50°C~125	$\mathbf{p}_{\mathbf{Q}}$
热阻 (Rth)40°C/	中海华
最大结点温度 (Tj)125	$^{\circ}\mathrm{C}$

注: 这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

直流电气特性

 V_{DD} =5V, LED_ V_{DD} =5V, Ta=25°C

<i>የተ</i> 🗆	\$ *h		测试条件	□ , ,	ж жі	日上	单位
符号	参数	$\mathbf{V}_{ extsf{DD}}$	条件	最小	典型	最大	半江
$V_{ m DD}$	逻辑电源电压	_	_	2.7	_	5.5	V
LED_V _{DD}	LED 电源电压	_	_	4.5	_	5.5	V
I_{STB}	- - 待机电流 	5V	无负载,暂停模式 (系统振荡器关闭, LED 显示关闭)		1	2	μΑ
I_{DD}	工作电流	5V	无负载,LED ON,R_EXT=500Ω 内部 RC 振荡器和 ROW 输出都 开启	_	4.5	7.0	mA
I _{LED_VDD}	工作电流	5V	无负载,LED ON,R_EXT=500Ω 内部 RC 振荡器和 ROW 输出都 开启	_	2.1	3.5	μΑ
V _{IH}	高电平输入电压	5V	DIO, CLK, SDA, SCL, CSB, OSC, SYNC	$0.7V_{DD}$	_	5	V
$V_{\rm IL}$	低电平输入电压	5V	DIO, CLK, SDA, SCL, CSB, OSC, SYNC	0		$0.3V_{\text{DD}}$	V
I_{OH1}	高电平输出电流	5V	V _{OH} =4.5V, OSC, SYNC, DIO	-10	-13		mA
I_{OL1}	低电平输出电流	5V	V _{OL} =0.5V, OSC, SYNC, DIO, SDA	18	25	_	mA
I _{OH2}	COM 源电流	5V	V _{OH} =4.5V	250	400		mA
I _{OL2}	COM 灌电流	5V	$V_{OL}=0.5V$	-45	-60		mA
т	ROW 灌电流	5V	$R_EXT=500\Omega$, $V_{DS}=1V$	_	30	_	mA
I_{ROW}	KOW 催电机	5V	$R_EXT=1500\Omega$, $V_{DS}=1V$	_	10		mA
τL	位电流偏移	5V	$R_EXT=500\Omega$, $V_{DS}=1V^{(1)}$	_	±3.0	_	%
dI_{ROW1}	´型电视/拥修 	5V	$R_EXT=1500\Omega$, $V_{DS}=1V^{(1)}$	_	±3.0	_	%
11	(A) 关中 次 位 较	5V	$R_EXT=500\Omega$, $V_{DS}=1V^{(2)}$	_	±3.0	_	%
dI _{ROW2}	dI_{ROW2} 通道电流偏移 $\frac{1}{5}$		$R_EXT=1500\Omega$, $V_{DS}=1V^{(2)}$	_	±3.0	_	%
%/dV _{DS}	输出电流 vs. 输 出电压调整率	5V	$V_{DS}=0.7V\sim2.0V$, $V_{DD}=5.0V^{(3)}$	_	±0.3	_	%/V
%/dV _{DD}	输出电流 vs. 电源电压调整率		V_{DD} =4.5V~5.5V, V_{DS} =1.0V ⁽⁴⁾		±0.3		%/V

Rev. 1.10 4 2017-07-12

注: 1. 位电流偏移:

$$PIN \; dI_{ROW} \, (\%) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) - I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V))/2} \times 100\% \text{, (n: ROW } \\ \text{$\stackrel{\frown}{\text{H}}$} \; 7) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V))/2} \times 100\% \text{, (n: ROW } \\ \text{$\stackrel{\frown}{\text{H}}$} \; 7) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V))/2} \times 100\% \text{, (n: ROW } \\ \text{$\stackrel{\frown}{\text{H}}$} \; 7) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V))/2} \times 100\% \text{, (n: ROW } \\ \text{$\stackrel{\frown}{\text{H}}$} \; 7) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V))/2} \times 100\% \text{, (n: ROW } \\ \text{$\stackrel{\frown}{\text{H}}$} \; 7) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V))/2} \times 100\% \text{, (n: ROW } \\ \text{$\stackrel{\frown}{\text{H}}$} \; 7) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V))/2} \times 100\% \text{, (n: ROW } \\ \text{$\stackrel{\frown}{\text{H}} \; 7) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V))/2} \times 100\% \text{, (n: ROW } \\ \text{$\stackrel{\frown}{\text{H}} \; 7) = \frac{I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{ROW} (n+1) \, (V_{DS} = 1V) + I_{ROW} n \, (V_{DS} = 1V)}{(I_{$$

2. 通道电流偏移:

+
$$dI_{ROW}$$
 (%) = $\frac{I_{ROW_MAX} - I_{ROW_AVG}}{I_{ROW_AVG}} \times 100\%$, (n: ROW 编号)

-
$$dI_{ROW}$$
 (%) = $\frac{I_{ROW_MIN} - I_{ROW_AVG}}{I_{ROW_AVG}} \times 100\%$, (n: ROW 编号)

I_{ROW AVG}: 在 V_{DS}=1V 时所有测试 ROW 引脚的平均电流,即 (I_{ROW MAX}+I_{ROW MIN})/2

 I_{ROW_MAX} : 在 V_{DS} =1V 时所有测试 ROW 引脚的最大电流 I_{ROW_MIN} : 在 V_{DS} =1V 时所有测试 ROW 引脚的最小电流

$$3. \ \%/dV_{DS} \ (\%/V) = \frac{I_{ROW_MAX} - I_{ROW_MIN}}{(2.0V - 0.7V) \times I_{ROW_AVG}} \times 100\%$$

I_{ROW_AVG}: 在 V_{DS}=0.7V 和 2.0V 之间所有测试 ROW 引脚的平均电流,即 (I_{ROW_MAX}+I_{ROW_MIN})/2

 I_{ROW_MAX} : 在 V_{DS} =0.7V 和 2.0V 之间所有测试 ROW 引脚的最大电流 I_{ROW_MIN} : 在 V_{DS} =0.7V 和 2.0V 之间所有测试 ROW 引脚的最小电流

4. %/dV_{DD} (%/V) =
$$\frac{I_{ROW_MAX} - I_{ROW_MIN}}{(5.5V - 4.5V) \times I_{ROW_AVG}} \times 100\%$$

IROW_AVG: 在 VDD=4.5V 和 5.5V 之间所有测试 ROW 引脚的平均电流,即 (IROW_MAX+IROW_MIN)/2

 I_{ROW_MAX} : 在 V_{DD} =4.5V 和 5.5V 之间所有测试 ROW 引脚的最大电流 I_{ROW_MIN} : 在 V_{DD} =4.5V 和 5.5V 之间所有测试 ROW 引脚的最小电流 V_{DS} =1V

交流电气特性

 V_{DD} =2.7V~5.5V, Ta=25 $^{\circ}C$

符号	参数		测试条件	最小	典型	最大	单位
111 5	多奴	V_{DD}	条件	取小	州王	取八	+ IT
fsys	系统时钟	_	片上 RC 振荡器	4.33	4.92	5.51	MHz
$f_{ m LED}$	LED 帧频率	_	COM 占空比选择, n=1~8	_	f _{SYS} /(4160×n)	_	Hz
V _{POR}	上电复位电压	_	_	_	_	100	mV
RR _{VDD}	上电复位电压速率	_	_	0.05	_	_	V/ms
tpor	V _{DD} 保持为 V _{POR} 的最小时间	_	_	10	_		ms

Rev. 1.10 5 2017-07-12

交流电气特性-SPI3线串行总线

 $V_{DD}=2.7V\sim5.5V$, $Ta=25^{\circ}C$

符号	女 米h		测试条件	最小	典型	旦上	单位
1寸写	参数	V _{DD}	条件	取小	典型	最大	中江
tclk	时钟周期	_	_	250	_	_	ns
t_{CW}	时钟脉冲宽度	_	_	100	_	_	ns
$t_{\rm DS}$	数据建立时间	_	_	50	_	_	ns
t _{DH}	数据保持时间	_	_	50	_	_	ns
tcsw	"H" CSB 脉冲宽度	_	_	100	_	_	ns
tcsl	CSB 建立时间 (CSB↓-CLK↑)	_	_	50	_	_	ns
t _{CSH}	CSB 保持时间 (CLK↑-CSB↑)	_	_	2	_	_	μs
t_{PD}	DATA 输出延迟时间 (CLK – DIO)		Co=15pF tpD=10% 到 90% tpD=10% 到 10%		_	350	ns

交流电气特性 - I2C 串行总线

Ta=25°C

符号	幺 粃	测计 女 从	$V_{DD}=2.4$	V~5.5V	V _{DD} =3.0	V~5.5V	出心
付写	参数	测试条件	最小	最大	最小	最大	单位
f_{SCL}	时钟频率	_		100	_	400	kHz
$t_{ m BUF}$	总线空闲时间	在此时间内总线必须保持 空闲直到新的传输开始	4.7	_	1.3	_	μs
t _{HD:STA}	START 信号保持 时间	在此时间之后将产生第一 个时钟脉冲	4	_	0.6	_	μs
t_{LOW}	SCL 低电平时间	_	4.7	_	1.3	_	μs
t _{HIGH}	SCL 高电平时间	_	4	_	0.6	_	μs
t _{SU:STA}	START 信号建立 时间	仅与重复 START 信号有关	4.7	_	0.6	_	μs
t _{HD:DAT}	数据保持时间	_	0	_	0		ns
$t_{\text{SU:DAT}}$	数据建立时间	_	250	_	100		ns
t_{R}	SDA 和 SCL 上升 时间	注		1		0.3	μs
t_{F}	SDA 和 SCL 下降 时间	注	_	0.3	_	0.3	μs
t _{SU:STO}	STOP 信号建立 时间	_	4	_	0.6	_	μs
t _{AA}	时钟输出有效时间	_	_	3.5	_	0.9	μs
t _{SP}	输入滤波器时间常数 (SDA和 SCL引脚)	噪声抑制时间		20		20	ns

注: 这些参数都是周期性采样测试结果,并非100%测试所得。

Rev. 1.10 6 2017-07-12

时序图

SPI 3 线串行总线时序

I2C 总线时序

上电复位时序

注: 1. 在电源开启/关闭期间,如果上电复位时序条件未满足,则内部上电复位(POR)电路无法正常工作。 2. 如果难以满足上电复位时序条件,则需要在上电后执行软件复位命令。

Rev. 1.10 7 2017-07-12

功能描述

上电复位

上电后,芯片通过内部上电复位电路初始 化。内部电路初始化后的状态如下所示:

- 所有寄存器设置为各自的默认值, DDRAM 的内容不受影响
- 系统振荡器为关闭状态
- 所有 COM 输出为高阻抗
- 所有 ROW 输出为高阻抗
- LED 显示处于关闭状态。

上电复位后的 1ms 内避免进行 I²C 总线或 SPI 3 线串行总线数据传输,以确保复位动 作完成。

LED 驱动器

HT16D35A/HT16D35B 是一款显示模式为224点 (28×8)的 LED 驱动器,可设置 1~8个 COM 口,通过 COM 输出数量命令来配置。此特性使 HT16D35A/HT16D35B 可适用于各种 LED 应用。

系统振荡器

内 部 集 成 的 RC 振 荡 器 为 HT16D35A/HT16D35B 的内部逻辑信号和 LED 驱动信号提供时钟。

系统时钟频率决定了 LED 的帧频率。必须一直为芯片提供时钟信号,如果通过执行 待机模式命令移除了时钟,芯片将停止运 行。在初始系统上电时,系统振荡器处于 停止状态。

ROW 驱动输出

LED 驱动区域包括 28 个 ROW 输出口,即 ROW0~ROW27,需直接连接到 LED 面板。根据多路复用 COM 信号和显示锁存器内的数据来产生 ROW 输出信号。当所需输出小口于 28 个 ROW 时,未使用的 ROW 应保持开路状态。

COM 驱动输出

LED 驱动区域包括 8 个 COM 输出口,即 COM0~COM7,需直接连接到 LED 面板。根据所选的 LED 驱动模式来产生 COM 输出信号。当所需输出口小于 8 个 COM 时,未使用的 COM 应保持开路状态。

地址指针

对显示 RAM 进行寻址是通过地址指针实现的,允许加载单个或多个显示数据字节到显示 RAM 的任何位置。开始寻址前要先通过地址指针命令对地址指针进行初始化。

过温保护

该系列芯片包含一个热保护电路。当结点 温度超过一定温度时,过温保护电路会被 激活,TSD标志位将置高,显示器和直接 引脚也将关闭。

当芯片结点温度超过 150℃时,整个 IC 显示和直接引脚都将关闭且 TSD 标志位置为 1。当芯片结点温度降到 125℃以下时,芯片将恢复操作,并开启直接引脚以及将 TSD 标志位清零。

过温保护功能的检测温度约为 150° C,但由于检测温度功能有一定迟滞,其释放温度约为 125° C。

恒流输出

每个 ROW 输出通道的恒流输出都可通过连接在 R_EXT 引脚和 GND 之间一个外部电阻来设置,可以通过改变电阻阻值来调节电流范围。通道间的最大电流差异小于±3%。输出级饱和区域的特性曲线是平的,用户可参考下图查看具体情况。无论 LED 正向电压 V_F 如何变化,输出电流保持不变。恒流值可通过下列公式计算:

 $V_{R EXT}=1.25V$,

 $I_{ROW}=(V_{R EXT}/R EXT)\times 12=15/R EXT$

Rev. 1.10 8 2017-07-12

以下IV曲线图仅供参考。

设置输出电流

输出电流 I_{ROW} 可通过外部电阻 R_EXT 来设置,LED 最大电流可通过下列公式来计算: $I_{ROW\ MAX}$ [A] = 15 / R EXT (Ω) (典型值)

必须要注意的是 LED 的最大电流值为 45mA。

IROW 和 R_EXT 之间的默认关系如下图所示。

ROW 最大电流及 ROW 电流差值如下表所示。如果改变 R_EXT 的值,可从下表中得到新的 LED 电流值。R_EXT 的推荐值为 500Ω 。

R_EXT (Ω)	5K	3K	2.5K	1.5K	1K	750	600	500	375	300
$I_{ROW_MAX}(mA)$	3	5	6	10	15	20	25	30	40	50

Rev. 1.10 9 2017-07-12

负载电源电压 - LED VDD

当 V_{DS} 介于 0.7V 到 2.0V 之间时,芯片才能良好地运行。建议使用较低电源电压的 LED_ V_{DD} 以减小 V_{DS} 电压,从而降低芯片功耗及芯片温度。

显示数据 RAM - DDRAM

在二进制模式中,显示 RAM 是一个 28×8 位的静态 RAM,用于存储 LED 显示数据。对 RAM 中的某一个位写"1"则相对应的LED ROW 点亮,写"0"则相对应的LED ROW 熄灭。显示存储器地址与 ROW 输出——对应,RAM 一个字中的每个位与 COM 输出——对应。 RAM 与 LED 显示模式的映射关系如下所示。

输出	COM0	COM1	COM2	COM3	COM4	COM5	COM6	COM7	地址 A[7:0]
ROW0	D7	D6	D5	D4	D3	D2	D1	D0	00h
ROW1	D7	D6	D5	D4	D3	D2	D1	D0	01h
ROW2	D7	D6	D5	D4	D3	D2	D1	D0	02h
ROW3	D7	D6	D5	D4	D3	D2	D1	D0	03h
ROW4	D7	D6	D5	D4	D3	D2	D1	D0	04h
ROW5	D7	D6	D5	D4	D3	D2	D1	D0	05h
ROW6	D7	D6	D5	D4	D3	D2	D1	D0	06h
ROW7	D7	D6	D5	D4	D3	D2	D1	D0	07h
ROW8	D7	D6	D5	D4	D3	D2	D1	D0	08h
ROW9	D7	D6	D5	D4	D3	D2	D1	D0	09h
ROW10	D7	D6	D5	D4	D3	D2	D1	D0	0Ah
ROW11	D7	D6	D5	D4	D3	D2	D1	D0	0Bh
ROW12	D7	D6	D5	D4	D3	D2	D1	D0	0Ch
ROW13	D7	D6	D5	D4	D3	D2	D1	D0	0Dh
ROW14	D7	D6	D5	D4	D3	D2	D1	D0	0Eh
ROW15	D7	D6	D5	D4	D3	D2	D1	D0	0Fh
ROW16	D7	D6	D5	D4	D3	D2	D1	D0	10h
ROW17	D7	D6	D5	D4	D3	D2	D1	D0	11h
ROW18	D7	D6	D5	D4	D3	D2	D1	D0	12h
ROW19	D7	D6	D5	D4	D3	D2	D1	D0	13h

Rev. 1.10 10 2017-07-12

输出	COM0	COM1	COM2	COM3	COM4	COM5	COM6	COM7	地址 A[7:0]
ROW20	D7	D6	D5	D4	D3	D2	D1	D0	14h
ROW21	D7	D6	D5	D4	D3	D2	D1	D0	15h
ROW22	D7	D6	D5	D4	D3	D2	D1	D0	16h
ROW23	D7	D6	D5	D4	D3	D2	D1	D0	17h
ROW24	D7	D6	D5	D4	D3	D2	D1	D0	18h
ROW25	D7	D6	D5	D4	D3	D2	D1	D0	19h
ROW26	D7	D6	D5	D4	D3	D2	D1	D0	1Ah
ROW27	D7	D6	D5	D4	D3	D2	D1	D0	1Bh
位	D7	D6	D5	D4	D3	D2	D1	D0	数据

- 注: 1. 建议在激活 LED 显示功能之前先清除所有 RAM 数据来初始化显示 RAM 数据。如果在启用 LED 显示功能之前没有初始化 RAM 数据,那么在执行 LED ON 指令后 LED 将可能导致不正确的显示效果。
 - 2. 上述建议同样适用于渐变数据 RAM、通用 COM 数据 RAM、通用 SEG 数据 RAM、矩阵屏蔽数据 RAM。

在灰度模式中,显示 RAM 是一个 28×8×6 位的静态 RAM,用于存储 LED 显示数据。对 RAM 中的某一个位写"1"则相对应的LED ROW 点亮,写"0"则相对应的LED ROW 熄灭。显示存储器地址与 ROW 输出——对应,RAM 一个字中的每个位与 COM 输出——对应。RAM 与 LED 显示模式的映射关系如下所示。

输出	ROW0	ROW1	ROW2	•••	ROW25	ROW26	ROW27	地址 A[7:0]
COM0	00h	01h	02h	•••	19h	1Ah	1Bh	00h∼1Bh
COM1	20h	21h	22h	•••	39h	3Ah	3Bh	20h~3Bh
COM2	40h	41h	42h	•••	59h	5Ah	5Bh	40h~5Bh
COM3	60h	61h	62h	•••	79h	7Ah	7Bh	60h~7Bh
COM4	80h	81h	82h	•••	99h	9Ah	9Bh	80h~9Bh
COM5	A0h	Alh	A2h	•••	B9h	BAh	BBh	A0h~BBh
COM6	C0h	C1h	C2h	•••	D9h	DAh	DBh	C0h~DBh
COM7	E0h	E1h	E2h	•••	F9h	FAh	FBh	E0h~FBh
字节	D7~D0	D7~D0	D7~D0	•••	D7~D0	D7~D0	D7~D0	数据

Rev. 1.10 11 2017-07-12

LED 驱动器输出波形

该系列芯片具有一个显示模式为 224 点 (28×8) 的 LED 驱动器。其 COM 输出可设置为 224×8 显示模式。此特性使它可以适用于各种 LED 应用。LED 驱动模式波形和扫描模式 如下所示:

1. P-MOS 漏极开路型 28×8 驱动模式且放电功能除能

注: t_{SYS}=1/f_{SYS} (1/4.92MHz)

Rev. 1.10 12 2017-07-12

2. N-MOS 漏极开路型 28×8 驱动模式且放电功能除能

注: t_{SYS}=1/f_{SYS} (1/4.92MHz)

Rev. 1.10 13 2017-07-12

输出信号时序

ROW 和 COM 数字调光占空比之间的关系如下图所示。

- 1. 设置条件如下:
 - 灰度模式
 - COM0~COM7, 扫描高电平类型
 - 亮度 PWM 占空比 =17/64

Rev. 1.10 14 2017-07-12

2. 设置条件如下:

- 二进制模式
- COM0~COM7, 扫描高电平类型
- 亮度 PWM 占空比 =64/64

Rev. 1.10 15 2017-07-12

渐变数据 RAM

渐变 RAM 是一个 28×8×6 位的静态 RAM,用于存储每个显示点的模式功能、延迟时间功能和斜坡周期功能。渐变功能存储器地址与 ROW 输出一一对应,RAM 一个字中的每个位与 COM 输出一一对应。

渐变 RAM 与 LED 显示模式的映射关系如下所示。

输出	ROW0	ROW1	ROW2		ROW25	ROW26	ROW27	地址 A[7:0]
COM0	00h	01h	02h	•••	19h	1Ah	1Bh	00h~1Bh
COM1	20h	21h	22h	•••	39h	3Ah	3Bh	20h~3Bh
COM2	40h	41h	42h	•••	59h	5Ah	5Bh	40h~5Bh
COM3	60h	61h	62h	•••	79h	7Ah	7Bh	60h∼7Bh
COM4	80h	81h	82h	•••	99h	9Ah	9Bh	80h~9Bh
COM5	A0h	Alh	A2h	•••	B9h	BAh	BBh	A0h~BBh
COM6	C0h	C1h	C2h	•••	D9h	DAh	DBh	C0h~DBh
COM7	E0h	E1h	E2h	•••	F9h	FAh	FBh	E0h~FBh
字节	D7~D0	D7~D0	D7~D0	•••	D7~D0	D7~D0	D7~D0	数据

注: 地址会自动连续递增, 当超过最大地址 0xFBH 时将返回到 0x00H。

通用 COM (UCOM) RAM 数据

通用 COM (UCOM) RAM 是一个 8×8 位的静态 RAM,用于存储每个 (T0~T7) 时序的 8 种符号模式。UCOM 指定的符号数据可直接驱动 COM 输出。占空比时序 (T0~T7) 地址与 COM 输出——对应,RAM 一个字中的每个位与每个 (T0~T7) 时序的符号模式——对应。

每个 (T0~T7) 时序的显示模式与 COM 输出的映射关系如下所示。

时序	COM0	COM1	COM2	COM3	COM4	COM5	COM6	COM7	地址
T0	D7	D6	D5	D4	D3	D2	D1	D0	00h
T1	D7	D6	D5	D4	D3	D2	D1	D0	01h
T2	D7	D6	D5	D4	D3	D2	D1	D0	02h
Т3	D7	D6	D5	D4	D3	D2	D1	D0	03h
T4	D7	D6	D5	D4	D3	D2	D1	D0	04h
T5	D7	D6	D5	D4	D3	D2	D1	D0	05h
Т6	D7	D6	D5	D4	D3	D2	D1	D0	06h
T7	D7	D6	D5	D4	D3	D2	D1	D0	07h
位	D7	D6	D5	D4	D3	D2	D1	D0	数据

- 注: 1. 通用 COM RAM 是一个 8×8 位的静态 RAM,用于存储 COM 引脚点亮 / 熄灭 (on/off) 数据。对 RAM 中的某一个位写"1"则相对应的 COM 引脚点亮,写"0"则相对应的 COM 引脚熄灭。
 - 2. 地址会自动连续递增, 当超过最大地址 0x07H 时将返回到 0x00H。

Rev. 1.10 16 2017-07-12

通用 SEG (USEG) RAM 数据

每个 ROW 的显示内容可以根据 USEG 重定向显示 ROW 地址来设置。命令设置后需要在每一帧的时序 1 期间对命令参数进行验证。

通用 SEG (USEG) RAM 是一个 28×8 位的静态 RAM,用于存储 28 个符号模式通用 ROW 地址。USEG 指定的符号数据可直接由 ROW 输出。通用 ROW 地址与 ROW 输出一一对应,RAM 一个字中的每个位与符号模式通用 ROW 地址——对应。

通用 ROW 地址与 ROW 输出的映射关系如下所示。

USEG RAM 地址			通	用 ROV	W 地址数	数据设置			ROW 输出
USEG KAM JUJI	X	X	X	US4	US3	US2	US1	US0	KOW 制山
00h	X	X	X	D4	D3	D2	D1	D0	ROW0
01h	X	X	X	D4	D3	D2	D1	D0	ROW1
02h	X	X	X	D4	D3	D2	D1	D0	ROW2
03h	X	X	X	D4	D3	D2	D1	D0	ROW3
04h	X	X	X	D4	D3	D2	D1	D0	ROW4
05h	X	X	X	D4	D3	D2	D1	D0	ROW5
06h	X	X	X	D4	D3	D2	D1	D0	ROW6
07h	X	X	X	D4	D3	D2	D1	D0	ROW7
08h	X	X	X	D4	D3	D2	D1	D0	ROW8
09h	X	X	X	D4	D3	D2	D1	D0	ROW9
0Ah	X	X	X	D4	D3	D2	D1	D0	ROW10
0Bh	X	X	X	D4	D3	D2	D1	D0	ROW11
0Ch	X	X	X	D4	D3	D2	D1	D0	ROW12
0Dh	X	X	X	D4	D3	D2	D1	D0	ROW13
0Eh	X	X	X	D4	D3	D2	D1	D0	ROW14
0Fh	X	X	X	D4	D3	D2	D1	D0	ROW15
10h	X	X	X	D4	D3	D2	D1	D0	ROW16
11h	X	X	X	D4	D3	D2	D1	D0	ROW17
12h	X	X	X	D4	D3	D2	D1	D0	ROW18
13h	X	X	X	D4	D3	D2	D1	D0	ROW19
14h	X	X	X	D4	D3	D2	D1	D0	ROW20
15h	X	X	X	D4	D3	D2	D1	D0	ROW21
16h	X	X	X	D4	D3	D2	D1	D0	ROW22
17h	X	X	X	D4	D3	D2	D1	D0	ROW23
18h	X	X	X	D4	D3	D2	D1	D0	ROW24
19h	X	X	X	D4	D3	D2	D1	D0	ROW25
1Ah	X	X	X	D4	D3	D2	D1	D0	ROW26
1Bh	X	X	X	D4	D3	D2	D1	D0	ROW27
位	D7	D6	D5	D4	D3	D2	D1	D0	数据

注: 1. 通用 SEG RAM 是一个 28×8 位的静态 RAM,用于存储通用 ROW 地址的映射数据。

Rev. 1.10 17 2017-07-12

^{2.} USEG RAM 地址会自动连续递增, 当超过最大地址 0x1BH 时将返回到 0x00H。

矩阵屏蔽 RAM 数据

矩阵屏蔽 RAM是一个28×8位的静态 RAM,用于存储屏蔽数据。对 RAM中的某一个位写"1"则相对应的 LED ROW 为"mask on"状态,写"0"则相对应的 LED ROW 为"mask off"状态。矩阵显示屏蔽存储器地址与 ROW 输出一一对应,RAM一个字中的每个位与 COM 输出一一对应。

矩阵显示屏蔽 RAM 与 LED 显示模式的映射关系如下所示。

输出	COM0	COM1	COM2	COM3	COM4	COM5	COM6	COM7	地址 A[4:0]
ROW0	D7	D6	D5	D4	D3	D2	D1	D0	00h
	-						D1		
ROW1	D7	D6	D5	D4	D3	D2		D0	01h
ROW2	D7	D6	D5	D4	D3	D2	D1	D0	02h
ROW3	D7	D6	D5	D4	D3	D2	D1	D0	03h
ROW4	D7	D6	D5	D4	D3	D2	D1	D0	04h
ROW5	D7	D6	D5	D4	D3	D2	D1	D0	05h
ROW6	D7	D6	D5	D4	D3	D2	D1	D0	06h
ROW7	D7	D6	D5	D4	D3	D2	D1	D0	07h
ROW8	D7	D6	D5	D4	D3	D2	D1	D0	08h
ROW9	D7	D6	D5	D4	D3	D2	D1	D0	09h
ROW10	D7	D6	D5	D4	D3	D2	D1	D0	0Ah
ROW11	D7	D6	D5	D4	D3	D2	D1	D0	0Bh
ROW12	D7	D6	D5	D4	D3	D2	D1	D0	0Ch
ROW13	D7	D6	D5	D4	D3	D2	D1	D0	0Dh
ROW14	D7	D6	D5	D4	D3	D2	D1	D0	0Eh
ROW15	D7	D6	D5	D4	D3	D2	D1	D0	0Fh
ROW16	D7	D6	D5	D4	D3	D2	D1	D0	10h
ROW17	D7	D6	D5	D4	D3	D2	D1	D0	11h
ROW18	D7	D6	D5	D4	D3	D2	D1	D0	12h
ROW19	D7	D6	D5	D4	D3	D2	D1	D0	13h
ROW20	D7	D6	D5	D4	D3	D2	D1	D0	14h
ROW21	D7	D6	D5	D4	D3	D2	D1	D0	15h
ROW22	D7	D6	D5	D4	D3	D2	D1	D0	16h
ROW23	D7	D6	D5	D4	D3	D2	D1	D0	17h
ROW24	D7	D6	D5	D4	D3	D2	D1	D0	18h
ROW25	D7	D6	D5	D4	D3	D2	D1	D0	19h
ROW26	D7	D6	D5	D4	D3	D2	D1	D0	1Ah
ROW27	D7	D6	D5	D4	D3	D2	D1	D0	1Bh
位	D7	D6	D5	D4	D3	D2	D1	D0	数据

- 注: 1. 矩阵显示屏蔽 RAM 是一个 28×8 位的静态 RAM, 用于存储 ROW 输出屏蔽状态。
 - 2. USEG RAM 地址会自动连续递增, 当超过最大地址 0x1BH 时将返回到 0x00H。
 - 3. 在二进制模式中矩阵显示屏蔽功能无效。

Rev. 1.10 18 2017-07-12

命令描述 - 命令表

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.	描述
RAM 读 / 写	命令		,								
	W	1	0	0	0	0	0	0	0	80h	写入显示 RAM 数据
	W	A7	A6	A5	A4	A3	A2	A1	A0	00h	RAM 地址
写显示数据	W	D7	D6	D5	D4	D3	D2	D1	D0	_	显示数据 范围: 二进制模式为 00h~1bh 范围: 灰度模式为 00h~fbh
	W	1	0	0	0	0	0	0	1	81h	读取显示 RAM
	W	A7	A6	A5	A4	A3	A2	A1	A0	00h	RAM 地址
法日二粉把	R	0	0	0	0	0	0	0	0	_	空字节
读显示数据	R	D7	D6	D5	D4	D3	D2	D1	D0	_	显示数据 范围:二进制模式为 00h~1bh 范围:灰度模式为00h~fbh
	W	1	0	0	0	0	0	1	0	82h	写入渐变 RAM 数据
	W	A7	A6	A5	A4	A3	A2	A1	A0	00h	RAM 地址
写渐变数据	W	X	X	FSS	X	SD1	SD0	SC1	SC0	_	设置渐变模式参数 FSS: 选择闪烁或渐变模式 SD [3:2]: 设置延迟时间 SC [1:0]: 设置闪烁周期或斜 坡周期
	W	1	0	0	0	0	0	1	1	83h	读取渐变 RAM 数据参数
	W	A7	A6	A5	A4	A3	A2	A1	A0	00h	RAM 地址
读渐变数据	R	0	0	0	0	0	0	0	0	_	空字节
	R	0	0	FSS	0	SD1	SD0	SC1	SC0	_	渐变 RAM 参数数据 范围: 00h~fbh
	W	1	0	0	0	0	1	0	0	84h	写入 UCOM RAM 数据
写UCOM	W	X	X	X	X	X	A2	A1	A0	00h	RAM 地址
数据	W	D7	D6	D5	D4	D3	D2	D1	D0	_	UCOM 数据 范围: 00h~07h
	W	1	0	0	0	0	1	0	1	85h	读取 UCOM 数据
读 UCOM	W	X	X	X	X	X	A2	A1	A0	00h	RAM 地址
数据	R	0	0	0	0	0	0	0	0	_	空字节
	R	D7	D6	D5	D4	D3	D2	D1	D0	_	UCOM 数据 范围: 00h~07h
	W	1	0	0	0	0	1	1	0	86h	写入 USEG RAM 数据
写 USEG	W	X	X	X	A4	A3	A2	A1	A0	00h	RAM 地址
数据	W	X	X	X	US4	US3	US2	US1	US1	_	USEG 数据 范围: 00h~1bh
	W	1	0	0	0	0	1	1	1	87h	读取 USEG 控制数据
读 USEG	W	X	X	X	A4	A3	A2	A1	A0	00h	RAM 地址
数据	R	0	0	0	0	0	0	0	0	_	空字节
	R	X	X	X	US4	US3	US2	US1	US1	_	USEG 数据 范围: 00h~1bh
尼 好陈 园 茈	W	1	0	0	0	1	0	0	0	88h	写入矩阵屏蔽数据
写矩阵屏蔽 数据	W	0	0	0	A4	A3	A2	A1	A0	00h	RAM 地址
	W	D7	D6	D5	D4	D3	D2	D1	D0	_	矩阵屏蔽数据

Rev. 1.10 19 2017-07-12

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.	描述	
	W	1	0	0	0	1	0	0	1	89h	读取矩阵屏蔽数据	
法欠休员本	W	0	0	0	A4	A3	A2	A1	A0	00h	RAM 地址	
读矩阵屏蔽 数据	R	0	0	0	0	0	0	0	0	_	空字节	
	R	D7	D6	D5	D4	D3	D2	D1	D0	_	矩阵屏蔽数据 范围: 00h~1bh	
功能命令												
	W	0	1	1	1	0	0	0	0	70h	读取标志位	
读标志	R	0	0	0	0	0	0	0	0	00h	空字节	
	R	X	X	X	X	X	X	COM0 Flag	TSD Flag	00h	标志位数据参数	
	W	0	1	1	1	0	0	0	1	71h	读取内部命令信息	
读状态	R	0	0	0	0	0	0	0	0	00h	空字节	
	R	D7	D6	D5	D4	D3	D2	D1	D0	_	内部命令信息	
	W	0	0	1	0	0	0	0	0	20h	SCEN: 滚动开关 on/off	
滚动控制	W	SCEN	X	VEN	HEN	X	X	UD	RL	00h	RL/UD: 设置滚动方向 HEN: 水平滚动 on/off VEN: 垂直滚动 on/off	
	W	0	0	1	0	0	0	0	1	21h	控制滚动速度	
滚动速度	W	VSP3	VSP2	VSP1	VSP0	HSP3	HSP2	HSP1	HSP0	00h	HSP0~3: 水平速度 VSP0~3: 垂直速度	
二进制 / 灰	W	0	0	1	1	0	0	0	1	31h	 选择二进制模式或灰度模式	
度模式选择	W	X	X	X	X	X	X	X	BGS	00h	起 并一	
COM 输出	W	0	0	1	1	0	0	1	0	32h	设置 COM 扫描输出数量和	
数量	W	CNS	X	X	X	X	CN2	CN1	CN0	07h	COM 输出类型	
全局闪烁	W	0	0	1	1	0	0	1	1	33h	 选择闪烁时间或渐变时间	
T./401/1/20	W	BSS	X	X	X	X	X	BS1	BS0	80h	2017月20日1月20日1月20日1月20日1月20日1月20日1月20日1月20日1	
级联模式	W	0	0	1	1	0	1	0	0	34h	 选择主机模式或从机模式	
32.000	W	X	X	X	X	X	MS2	MS1	MS0	00h	ZII E DEDOCATOR DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DELA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DEL COMPANIA DE LA COMPANIA DE	
设置系统控	W	0	0	1	1	0	1	0	1	35h	控制系统振荡器 on/off 和显	
制	W	X	X	X	X	X	X	FON	DON	00h	示 on/off	
恒流率	W	0	0	1	1	0	1	1	0	36h	选择恒流率 – 8 级	
	W	X	X	X	X	0	CC2	CC1	CC0	00h		
全局亮度	W	0	0	1	1	0	1	1	1	37h	- 亮度控制 PWM 调整 – 64 级	
	W	X	BC6	BC5	BC4	BC3	BC2	BC1	BC0	40h		
	W	0	0	1	1	1	0	0	0	38h	FDEN: 渐变功能 on/off BKEN: 闪烁功能 on/off	
模式控制	W	TSDEN	TSDSL	X	USEN	MKEN	UCEN	BKEN	FDEN	00h	UCEN: UCOM 功能 on/off MKEN: 显示屏蔽 on/off USEN: USEG 功能 on/off TSDSL: 过温保护使能时选 择自动控制或用户控制显示 on/off	
											TSDEN: 过温保护电路 on/off	
COM引脚	W	0	1	0	0	0	0	0	1	41h	COM 引脚开关 on/off	
控制	W	C7	C6	C5	C4	C3	C2	C1	C0	00h	COIVI JI/JUP/I / OII/OII	

Rev. 1.10 20 2017-07-12

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.	描述
	W	0	1	0	0	0	0	1	0	42h	ROW 引脚开关 on/off
	W	R27	R26	R25	R24	R23	R22	R21	R20	00h	ROW27~ROW20 引脚 开关 on/off
ROW 引脚 控制	W	R19	R18	R17	R16	R15	R14	R13	R12	00h	ROW12~ROW19 引脚 开关 on/off
177.163	W	R11	R10	R9	R8	R7	R6	R5	R4	00h	ROW4~ROW11 引脚 开关 on/off
	W	X	X	X	X	R3	R2	R1	R0	00h	ROW3~ROW0 引脚 开关 on/off
	W	0	1	0	0	0	0	1	1	43h	设置直接输出模式
直接引脚控制	W	PW24	PW25	PW26	PW27	DR24	DR25	DR26	DR27	11h	DR [24:27]: ROW24~ROW27 可设为直接引脚或 ROW 引脚 PW [24:27]: 直接引脚的 PWM 数据输出开关 on/off (当 ROW24~ROW27 为直接引脚时)
直接引脚 ROW27 的	W	0	1	0	0	0	1	0	0	44h	直接引脚 ROW27 的 PWM 数据
PWM 数据	W	X	D6	D5	D4	D3	D2	D1	D0	00h	写入 PWM 数据
直接引脚 ROW26 的	W	0	1	0	0	0	1	0	1	45h	直接引脚 ROW26 的 PWM 数据
PWM 数据	W	X	D6	D5	D4	D3	D2	D1	D0	00h	写入 PWM 数据
直接引脚 ROW25 的	W	0	1	0	0	0	1	1	0	46h	直接引脚 ROW25 的 PWM 数据
PWM 数据	W	X	D6	D5	D4	D3	D2	D1	D0	00h	写入 PWM 数据
直接引脚 ROW24 的	W	0	1	0	0	0	1	1	1	47h	直接引脚 ROW24 的 PWM 数据
PWM 数据	W	X	D6	D5	D4	D3	D2	D1	D0	00h	写入 PWM 数据
软件复位	W	1	1	0	0	1	1	0	0	CCh	软件复位功能

注: 1. X: 无关

- 2. Def.: 上电复位默认值
- 3. 建议不要在系统使能后切换主从模式
- 4. 建议不要在系统使能后改变直接输出设置模式
- 5. 如果编写的命令数据没有被定义,则对应功能不起作用

软件复位

该命令用于初始化所有功能。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
软件复位	W	1	1	0	0	1	1	0	0	CCh

内部电路初始化后的状态如下所示:

- 所有寄存器设置为各自的默认值, DDRAM 的内容不受影响
- 系统振荡器为关闭状态
- 所有 COM 输出为高阻抗
- 所有 ROW 输出为高阻抗
- LED 显示处于关闭状态

Rev. 1.10 21 2017-07-12

二进制 / 灰度模式选择

该命令用于选择二进制模式或灰度模式。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
二进制 / 灰度	W	0	0	1	1	0	0	0	1	31h
模式选择	W	X	X	X	X	X	X	X	BGS	00h

注: 1. 二进制模式不支持矩阵显示屏蔽功能

2. 建议在 LED 使能后不要切换二进制模式和灰度模式

BGS	选择	备注
0	灰度模式	默认
1	二进制模式	_

COM 输出数量

该命令用于设置按 COM0 到 COM7 顺序扫描的数量以及 COM 输出电平状态。命令设置后需要在每一帧的时序 1 期间对命令参数进行验证。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
COM 输出数	W	0	0	1	1	0	0	1	0	32h
量	W	CNS	X	X	X	X	CN2	CN1	CN0	07h

注: 1. 建议不要在系统使能后改变扫描数量设置

2. 请参考"LED 驱动器输出波形"章节以获取更多信息

CNS	COM 扫描类型	备注
0	高电平扫描	默认
1	低电平扫描	_

CN2	CN1	CN0	COM 输出数量	备注
0	0	0	COM0	_
0	0	1	COM0~COM1	_
0	1	0	COM0~COM2	_
0	1	1	COM0~COM3	_
1	0	0	COM0~COM4	_
1	0	1	COM0~COM5	
1	1	0	COM0~COM6	_
1	1	1	COM0~COM7	默认

Rev. 1.10 22 2017-07-12

范例 1: 设置条件如下:

命令	设置值	备注			
COM 输出数量 (32h)	07h	COM0~COM7,高电平扫描			

范例 2: 设置条件如下:

命令	设置值	备注			
COM 输出数量 (32h)	87h	COM0~COM7,低电平扫描			

Rev. 1.10 23 2017-07-12

全局闪烁

芯片具有一个通用的闪烁功能。通过设置全局闪烁/渐变时间命令可以使得整个显示器闪烁或渐变数次。命令设置后需要在每一帧的时序1期间对命令参数进行验证。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
人巴门斯马纶	W	0	0	1	1	0	0	1	1	33h
全局闪烁功能	W	BSS	X	X	X	X	X	BS1	BS0	80h

- 注: 1. 基于振荡器频率设置时间 (fsys = 4.92MHz, 1frame = 扫描数量 ×4160×tsys)
 - 2. 闪烁次数为系统频率的整数倍,系统频率与闪烁次数的比值取决于芯片的工作模式。

BSS	选择	备注
0	闪烁模式	
1	渐变模式	默认

DC1	DCA	闪烁时间	设置扫描数量 (占空比) vs. 闪烁时间										
BS1	BS0	内冰水时间	1/1	1/2	1/3	1/4	1/5	1/6	1/7	1/8	备注		
0	0	OFF	_	_	_	_	_	_	_		默认		
0	0 1 ≈ 1s	1	1	~ 10	1024	512	512	256	256	256	128	128	
		Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame				
1	0	~ ? a	2048	1024	1024	512	512	512	256	256			
1	$1 0 \approx 2s$	~ 28	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame			
1	1 0 ≈ 4s	$\approx 4s$	4096	2048	2048	1024	1024	1024	512	512			
1	U	~ 48	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame			

范例:

1. 闪烁输出类型 - 闪烁时间 = 2s

2. 渐变输出类型 - 闪烁时间 = 2s

Rev. 1.10 24 2017-07-12

级联模式

该命令用于选择主机 / 从机模式以及输入时钟源。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
级联模式	W	0	0	1	1	0	1	0	0	34h
纵联铁八	W	X	X	X	X	X	MS2	MS1	MS0	00h

MS2	MS1	MS0	时钟源	OSC 引脚状态	SYNC 引脚状态	备注
0	0	0	IRC	高阻抗输出	高电平输出	1. 默认 2. 仅适用于单芯片应用
0	0	1		有效	有效	_
0	1	0		输入	高电平输出	仅适用于单芯片应用
0	1	1	ERC	输入	有效	_
1	X	X		输入	输入	_

注: 建议不要在系统振荡器使能后切换主从模式。

系统控制

该命令用于控制系统振荡器 on/off 以及显示 on/off。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
系统控制	W	0	0	1	1	0	1	0	1	35h
永知 狂啊	W	X	X	X	X	X	X	FON	DON	00h

FON	DON	系统振荡器	LED 显示	备注
0	X	OFF	OFF	1. 默认 2. 待机模式 3. 过温保护除能
1	0	ON	OFF	1. 当执行显示 off 命令并设置 COM 输出扫描高电平命令时: → 所有 COM 输出都为低电平状态。 2. 当执行显示 off 命令并设置 COM 输出扫描低电平命令时: → 所有 COM 输出都为高电平状态。
1	1	ON	ON	正常显示模式 – COM 扫描有效

Rev. 1.10 25 2017-07-12

恒流率

该命令用于根据 LED 面板特性选择恒流率。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
恒流率	W	0	0	1	1	0	1	1	0	36h
恒机学	W	X	X	X	X	0	CC2	CC1	CC0	00h

CC2	CC1	CC0	恒流率	备注
0	0	0	I_{ROW_MAX}	默认
0	0	1	$15/16 \times I_{ROW_MAX}$	
0	1	0	$14/16 \times I_{ROW_MAX}$	_
0	1	1	$13/16 \times I_{ROW_MAX}$	_
1	0	0	$12/16 \times I_{ROW_MAX}$	_
1	0	1	$11/16 \times I_{ROW_MAX}$	
1	1	0	$10/16 \times I_{ROW_MAX}$	
1	1	1	$9/16 \times I_{ROW_MAX}$	_

范例: 如果 I_{ROW_MAX} =32mA (R_EXT =470 Ω), I_{ROW} 恒流值设置如下所示:

CC2	CC1	CC0	I _{row} 恒流		
0	0	0	32mA		
0	0	1	30mA		
0	1	0	28mA		
0	1	1	26mA		
1	0	0	24mA		
1	0	1	22mA		
1	1	0	20mA		
1	1	1	18mA		

全局亮度

该命令用于控制 64 级 PWM 亮度,且所有点都有一个共同设置。命令设置后需要在每一帧的时序 1 期间对命令参数进行验证。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
全局亮度	W	0	0	1	1	0	1	1	1	37h
王川冗反	W	X	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00h

BC6	BC5	BC4	BC3	BC2	BC1	BC0	PWM 占空比	备注
0	0	0	0	0	0	0	0/64	默认
0	0	0	0	0	0	1	1/64	
0	0	0	0	0	1	0	2/64	_
			:				:	:
0	0	1	0	0	0	0	16/64	
0	0	1	0	0	0	1	17/64	
0	0	1	0	0	1	0	18/64	

Rev. 1.10 26 2017-07-12

BC6	BC5	BC4	BC3	BC2	BC1	BC0	PWM 占空比	备注
			:				:	•
0	1	0	0	0	0	0	32/64	_
0	1	0	0	0	0	1	33/64	_
0	1	0	0	0	1	0	34/64	
			:				:	•
0	1	1	1	1	0	1	6164	_
0	1	1	1	1	1	0	62/64	_
0	1	1	1	1	1	1	63/64	
1	X	X	X	X	X	X	64/64	

PWM 数据宽度和亮度数字调光占空比之间的关系如下图所示。

注: 1. T=64×tsys

 $2.\ t_{SYS} = 1/f_{SYS}$

模式控制

该命令用于控制渐变功能停止 / 开始,组闪烁 / 渐变功能停止 / 开始,UCOM/USEG 功能 on/off和过热保护电路 on/off。命令设置后需要在每一帧的时序 1 期间对命令参数进行验证。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
模式控制	W	0	0	1	1	1	0	0	0	38h
() () () () () () () ()	W	TSDEN	TSDSL	X	USEN	MKEN	UCEN	BKEN	FDEN	00h

- 注: 1. 如果 TSDSL 位为 1, 过温保护功能会迫使芯片进入自动控制模式:
 - 当芯片结点温度超过 150°C,整个 IC 显示都将关闭且所有直接亮度 PWM 开关也将关闭。
 - 当芯片结点温度低于 125°C, 芯片将恢复操作并正常显示。
 - 2. 如果 TSDSL 位为 0, 过温保护功能允许芯片保持用户控制模式:
 - TSD 标志用于确认 IC 显示是否关闭以及直接引脚 PWM 开关 (43h) 是关闭还是正常运行并显示。
 - 当芯片结点温度超过 150°C, TSD 标志位将被置高。
 - 当芯片结点温度低于 125°C, TSD 标志位将被清零。

TSDEN	TSDSL	过温保护开关	控制模式	备注
0	X	OFF	_	默认
1	0	ON	用户模式	读取 TSD 标志位以控制显示 on/off 以及关闭所有直接亮度 PWM 开关
1	1	ON	自动模式	自动控制模式

USEN	USEG 功能开关	备注		
0	OFF	默认		
1	ON	在滚动模式中该功能无效		

MKEN	矩阵显示屏蔽功能开关	备注
0	OFF	默认
1	ON	在二进制模式中该功能无效

UCEN	UCOM 功能开关	备注
0	OFF	默认
1	ON	在滚动模式中该功能无效

BKEN	组闪烁功能开关	备注
0	OFF	默认
1	ON	_

FDEN	1	渐变功能开关	备注
0		OFF	默认
1		ON	在二进制模式中该功能无效

Rev. 1.10 28 2017-07-12

滚动控制

该命令用于控制滚动功能 on/off 以及选择滚动类型。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
滚动控制	W	0	0	1	0	0	0	0	0	20h
依纫控制	W	SCEN	X	VEN	HEN	X	X	UD	RL	00h

注: 1. 单行水平滚动

- 2. 单行垂直滚动
- 3. 当滚动模式使能,即 SCEN=1,UCOM 和 USEG 功能无效
- 4. 建议不要执行渐变命令和级联命令

SCEN	滚动功能开关	备注
0	OFF	默认
1	ON	_

VEN	HEN	垂直滚动开关	水平滚动开关	备注
0	0	OFF	OFF	默认
0	1	OFF	ON	_
1	0	ON	OFF	_
1	1	ON	ON	_

IID	RL		滚动	方向		备注
UD	KL	上	下	右	左	田江
0	0	О		О	_	默认
0	1	О		_	О	_
1	0	_	О	О		_
1	1	_	О		О	_

Rev. 1.10 29 2017-07-12

滚动速度

该命令用于设置滚动的速度。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
添計油度	W	0	0	1	0	0	0	0	1	21h
滚动速度	W	VSP3	VSP2	VSP1	VSP0	HSP3	HSP2	HSP1	HSP0	00h

VSP3	VSP2	VSP1	VSP0	垂直滚动速度	备注
0	0	0	0	16 Frame	默认
0	0	0	1	32 Frame	_
0	0	1	0	48 Frame	_
0	0	1	1	64 Frame	_
0	1	0	0	80 Frame	_
0	1	0	1	96 Frame	_
0	1	1	0	112 Frame	_
0	1	1	1	128 Frame	_
1	0	0	0	144 Frame	_
1	0	0	1	160 Frame	_
1	0	1	0	176 Frame	_
1	0	1	1	192 Frame	_
1	1	0	0	208 Frame	_
1	1	0	1	224 Frame	_
1	1	1	0	240 Frame	_
1	1	1	1	256 Frame	_

注:基于振荡器频率设置时间 (1frame = 扫描数量×4160×t_{sys})。

HSP3	HSP2	HSP1	HSP0	水平滚动速度	备注
0	0	0	0	16 Frame	默认
0	0	0	1	32 Frame	_
0	0	1	0	48 Frame	_
0	0	1	1	64 Frame	_
0	1	0	0	80 Frame	_
0	1	0	1	96 Frame	_
0	1	1	0	112 Frame	_
0	1	1	1	128 Frame	_
1	0	0	0	144 Frame	_
1	0	0	1	160 Frame	_
1	0	1	0	176 Frame	_
1	0	1	1	192 Frame	_
1	1	0	0	208 Frame	_
1	1	0	1	224 Frame	
1	1	1	0	240 Frame	_
1	1	1	1	256 Frame	_

注:基于振荡器频率设置时间 (1frame = 扫描数量 × 4160 × t_{SYS})。

Rev. 1.10 30 2017-07-12

范例 1: 向左滚动和向右滚动

范例 2: 向上滚动和向下滚动

COM 引脚控制

该命令用于设置 COM 引脚输出 on/off 状态。命令设置后需要在每一帧的时序 1 期间对命令参数进行验证。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
COM 引脚控制	W	0	1	0	0	0	0	0	1	41h
	W	C7	C6	C5	C4	C3	C2	C1	C0	00h

注: 1. C0~C7="0": COM 引脚输出关闭

2. C0~C7="1": COM 引脚输出开启

3. COM 扫描功能不受影响

ROW 引脚控制

该命令由四个连续的字节组成,用来设置 ROW 引脚输出 on/off 状态。命令设置后需要在每一帧的时序 1 期间对命令参数进行验证。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
	W	0	1	0	0	0	0	1	0	42h
	W	R27	R26	R25	R24	R23	R22	R21	R20	00h
ROW 引脚控制	W	R19	R18	R17	R16	R15	R14	R13	R12	00h
	W	R11	R10	R9	R8	R7	R6	R5	R4	00h
	W	X	X	X	X	R3	R2	R1	R0	00h

注: 1. R0~R27="0": ROW 引脚输出关闭

2. R0~R27="1": ROW 引脚输出开启

3. 显示 RAM 内容不会改变

范例:设置条件如下:

命令	设置值	备注
COM 引脚控制 (41h)	00111100b	显示窗口范围 (X 轴) 设置: COM2~COM5
	00001111b	
ROW 引脚控制 (42h)	11111111b	显示窗口范围 (Y 轴) 设置: ROW4~ROW23
KOW 分[][421]	11111111b	业小图口记团(I 抽) 以直: ROW4~ROW23
	00000000b	

<i>‡</i> ⇔ ш						ROW															
输出	0	1	2	3	4	5	6	7	8	9	9	10	···→	20	21	22	23	24	25	26	27
COM0																					
COM1																					
COM2																					
COM3											日	示窗	₹ □								
COM4											业区.	小囱	Н								
COM5																					
COM6																					
COM7																					

Rev. 1.10 33 2017-07-12

直接引脚控制

该命令用于设置 ROW24~ROW27 引脚的输出状态,可以是一个直接引脚也可以是一个 ROW 引脚。当这些引脚被设置为直接引脚时,它们具有开关 on/off 功能。

ROW24~ROW27 端口具有 NMOS 输出结构。数据从最高有效位开始写入 ROW 端口且带有直接输出设置命令。在用户应用中,内部 NMOS 设备按如下方式连接到外部 LED。

Rev. 1.10 34 2017-07-12

命令格式如下:

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
直接引脚控制	W	0	1	0	0	0	0	1	1	43h
旦按分 脚红巾 	W	PW24	PW25	PW26	PW27	DR24	DR25	DR26	DR27	11h
直接引脚 ROW27 的	W	0	1	0	0	0	1	0	0	44h
PWM 数据	W	X	D6	D5	D4	D3	D2	D1	D0	00h
直接引脚 ROW26 的	W	0	1	0	0	0	1	0	1	45h
PWM 数据	W	X	D6	D5	D4	D3	D2	D1	D0	00h
直接引脚 ROW25 的	W	0	1	0	0	0	1	1	0	46h
PWM 数据	W	X	D6	D5	D4	D3	D2	D1	D0	00h
直接引脚 ROW24 的	W	0	1	0	0	0	1	1	1	47h
PWM 数据	W	X	D6	D5	D4	D3	D2	D1	D0	00h

DD24	DR25	DD26	DD27		ROW 引脚箱	前出类型选择		备注
DK24	DK25	DK20	DK2/	ROW24 引脚	ROW25 引脚	ROW26 引脚	ROW27 引脚	亩江
0	0	0	0	ROW 引脚	ROW 引脚	ROW 引脚	ROW 引脚	默认
0	0	0	1	ROW 引脚	ROW 引脚	ROW 引脚	直接引脚	
0	0	1	X	ROW 引脚	ROW 引脚	直接引脚	直接引脚	
0	1	X	X	ROW 引脚	直接引脚	直接引脚	直接引脚	
1	X	X	X	直接引脚	直接引脚	直接引脚	直接引脚	_

PW 24	DW 25	DW 16	DW 27		直接引脚功能开关							
P W 24	F W 25	P W 20	P W 27	ROW24 引脚	ROW25 引脚	ROW26 引脚	ROW27 引脚	备注				
0	0	0	0	OFF	OFF	OFF	OFF	默认				
0	0	0	1	OFF	OFF	OFF	ON	_				
0	0	1	X	OFF	OFF	ON	ON	_				
0	1	X	X	OFF	ON	ON	ON	_				
1	X	X	X	ON	ON	ON	ON					

注: 此表的前提条件是 ROW24~ROW27 引脚已被设置为直接引脚。

Rev. 1.10 35 2017-07-12

每个直接引脚 ROW 的 PWM 数据设置

亮度数字调光占空比和直接引脚 PWM 数据的关系如下所示。

D6	D5	D4	D3	D2	D1	D0	亮度 PWM 占空比	备注
0	0	0	0	0	0	0	0/64	默认
0	0	0	0	0	0	1	1/64	_
0	0	0	0	0	1	0	2/64	_]
							•••	•••
0	0	1	0	0	0	0	16/64	_
0	0	1	0	0	0	1	17/64	_
0	0	1	0	0	1	0	18/64	_
			•••				•••	•••
0	1	0	0	0	0	0	32/64	_
0	1	0	0	0	0	1	33/64	_
0	1	0	0	0	1	0	34/64	_
							•••	•••
0	1	1	1	1	0	1	6164	_
0	1	1	1	1	1	0	62/64	_
0	1	1	1	1	1	1	63/64	_
1	X	X	X	X	X	X	64/64	_

Rev. 1.10 36 2017-07-12

PWM 数据宽度和亮度数字调光占空比之间的关系如下图所示。

- 注: 1. T=64×t_{SYS}
 - 2. $t_{SYS}=1/f_{SYS}$
 - 3. 当 LED ON 位为 1 时,在直接输出模式中禁止改变直接输出模式 ROW 编号
 - 4. 6-bit PWM 数据输入用于每个检测 ROW
 - 5. 不受 COM 扫描控制
 - 6. 不受滚动功能控制 水平滚动或垂直滚动
 - 7. 不受矩阵显示屏蔽控制命令控制
 - 8. 不受 COM/ROW 输出引脚控制命令控制
 - 9. 不受 UCOM 控制命令控制
 - 10. 不受渐变功能控制命令控制

范例 1: 仅设置直接输出

设置条件如下:

命令	设置值	备注
直接引脚控制 (43H)	FFH	ROW24~ROW27 被设置为直接输出
直接引脚 ROW27 的 PWM 数据 (44h)	40h	ROW27 PWM DATA=40H
直接引脚 ROW26 的 PWM 数据 (45h)	00h	ROW26 PWM DATA=00H
直接引脚 ROW25 的 PWM 数据 (46h)	40h	ROW25 PWM DATA=40H
直接引脚 ROW24 的 PWM 数据 (47h)	00h	ROW24 PWM DATA=00H

范例 2: 同时设置直接输出和滚动

• 向左滚动和向右滚动

• 向上滚动和向下滚动

读标志

读寄存器状态标志的命令格式如下所示。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
读标志	W	0	1	1	1	0	0	0	1	70h
	R	0	0	0	0	0	0	0	0	00h
	R	X	X	X	X	X	X	COM0 Flag	TSD Flag	00h

COM0 Flag	COM 扫描位置	备注
0	其它 COM	_
1	COM0	_

TSD Flag	芯片结点温度	备注
0	< 125°C	默认 当芯片结点温度低于 125°C, TSD 标志位将被清零
1	> 150°C	当芯片结点温度超过 150℃, TSD 标志位将被置高

COM 扫描位置和 COM0 标志位之间的关系如下图所示。

读状态

该命令用于指示芯片内部的状态。读寄存器状态命令格式如下所示。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
读状态	W	0	1	1	1	0	0	0	1	71h
	R	0	0 0 0 0 0 0 0							
	R				读取	数据				_

字节	D:4.7	D:4.6	D:4.5	D:4.4	D:4 2	D:4.2	D:4 1	D:4 0	4#345	Def.
.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	描述	
1st	0	1	1	1	0	0	0	1	读取状态命令	_
2nd	0	0	0	0	0	0	0	0	读取空数据	00h
3rd	X	X	X	X	X	X	X	BGS	二进制 / 灰度模式	00h
4th	CNS	X	X	X	X	CN2	CN1	CN0	扫描输出类型	07h
5th	BFS	X	X	X	X	X	BF1	BF0	消隐时间	80h
6th	X	X	X	X	X	MS2	MS1	MS0	主机或从机模式	00h
7th	X	X	X	X	X	X	FON	DON	控制系统振荡器和显示 on/off 状态	00h
8th	X	X	X	X	CC3	CC2	CC1	CC0	恒流率	00h
9th	X	BC6	BC5	BC4	BC3	BC2	BC1	BC0	亮度 – 64 级	40h
10th	TSDEN	TSDSL	X	USEN	MKEN	UCEN	BKEN	FDEN	功能模式 on/off 控制	00h
11st	SCEN	X	VCEN	HEN	X	X	UP	RL	读取滚动状态 设置滚动方向 水平滚动 on/off 垂直滚动 on/off	00h
12nd	VSP3	VSP2	VSP1	VSP0	HSP3	HSP2	HSP1	HSP0	设置滚动速度	00h
13rd	C7	C6	C5	C4	C3	C2	C1	C0	COM0~7 输出 on/off 状态	00h
14th	R27	R26	R25	R24	R23	R22	R21	R20	ROW27~20 输出 on/off 状态	00h
15th	R19	R18	R17	R16	R15	R14	R13	R12	ROW19~13 输出 on/off 状态	00h
16th	R11	R10	R9	R8	R7	R6	R5	R4	ROW12~4 输出 on/off 状态	00h
17th	X	X	X	X	R3	R2	R1	R0	ROW3~0 输出 on/off 状态	00h
18th	PW24	PW25	PW26	PW27	DR24	DR25	DR26	DR27	ROW24~ROW27 直接引脚设置和 直接亮度 PWM 开关 on/off 控制	
19th	X	D6	D5	D4	D3	D2	D1	D0	ROW27 的 PWM 数据可直接输出	00h
20th	X	D6	D5	D4	D3	D2	D1	D0	ROW26 的 PWM 数据可直接输出	00h
21st	X	D6	D5	D4	D3	D2	D1	D0	ROW25 的 PWM 数据可直接输出	00h
22nd	X	D6	D5	D4	D3	D2	D1	D0	ROW24 的 PWM 数据可直接输出	00h

Rev. 1.10 41 2017-07-12

写显示数据

该命令用于编程 LED 面板的显示状态。通过命令控制可以选择 64 级二进制或灰度模式。显示存储器地址与 ROW 输出一一对应,RAM 一个字中的每个位与 COM 输出一一对应。RAM 与 LED 显示模式的映射关系如下所示。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
	W	1	0	0	0	0	0	0	0	80h
写显示 RAM	W	A7	A6	A5	A4	A3	A2	A1	A0	00h
	W	D7	D6	D5	D4	D3	D2	D1	D0	_

1. 二进制模式

设置条件如下:写入 RAM 数据为: SNOW

2. 灰度模式

该系列芯片提供了 6-bit PWM 数据来控制区块的长度。因此,6 位二进制 PWM 数据最多可以产生 64 种级别的灰度,并且最多 64 个区块可被编程以适合每一级别的灰度。PWM 数据和灰度之间的关系如下所示。

数值			8-bi	it PWN	Ⅰ数据辑	俞入			PWM 占空比	灰度	PWM 脉宽
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	(宽度上)	火反	I W WI M 见
0	X	X	0	0	0	0	0	0	0/64		$0 \times t_{SYS}$
\downarrow					\downarrow					\downarrow	
10	X	X	0	0	1	0	1	0	10/64		$10 \times t_{SYS}$
\downarrow					\downarrow					\downarrow	
20	X	X	0	1	0	1	0	0	20/64		$20 \times t_{SYS}$
\downarrow					\downarrow					\downarrow	
30	X	X	0	1	1	1	1	0	30/64		$30 \times t_{SYS}$
\downarrow					\downarrow					\downarrow	
40	X	X	1	0	1	0	0	0	40/64		$40 \times t_{SYS}$
\downarrow					\downarrow					\downarrow	
50	X	X	1	1	0	0	1	0	50/64		$50 \times t_{SYS}$
\downarrow					↓					\downarrow	
63	X	X	1	1	1	1	1	1	63/64		$63 \times t_{SYS}$

Rev. 1.10 42 2017-07-12

PWM 数据和数字 PWM 占空比之间的关系如下图所示。

注: 1. T=1×t_{SYS}

2. $t_{SYS}=1/f_{SYS}$

范例:设置条件如下:

写入 RAM 数据为: FFh → 00h → 30h → 00h → FFh → 28h → 30h → 30h → FFh → 00h

写渐变数据

该系列芯片具有一个通用的渐变功能,也称为斜坡功能。通过对每个显示点设置渐变控制命令可以使得整个显示器渐变或闪烁。命令设置后需要在每一帧的时序 1 期间对命令参数进行验证。该命令用于控制渐变或闪烁操作的延迟时间和周期。

	命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
	写渐变数据	W	1	0	0	0	0	0	1	0	82h
		W	A7	A6	A5	A4	A3	A2	A1	A0	00h
		W	X	X	FSS	X	SD1	SD0	SC1	SC0	_

注: 该功能仅适用于灰度模式。

FSS	选择	备注
0	闪烁模式	_
1	渐变模式	_

延迟时间设置如下:

SD1	SD0	延迟时间	备注
0	0	无延迟	默认
0	1	1/4×斜坡周期	_
1	0	2/4×斜坡周期	_
1	1	3/4×斜坡周期	_

Rev. 1.10 44 2017-07-12

渐变周期设置如下:

SC1	SC0	斜坡周期		设置扫描数量(占空比)								
SCI	SCU	科拟问别	1/1	1/2	1/3	1/4	1/5	1/6	1/7	1/8	备注	
0	0	OFF	_			_			_		默认	
	1	~ 1 _a	1024	512	512	256	256	256	128	128		
	$0 \mid 1 \mid \approx 1s$	~ 18	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame		
1	0	≈ 2s	2048	1024	1024	512	512	512	256	256	_	
1	0	~ 28	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame		
1	1	≈ 4s	4096	2048	2048	1024	1024	1024	512	512		
	1	~ 48	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame		

- 注: 1. 基于振荡器频率设置时间 (fsys = 4.92MHz, 1frame = 扫描数量 × 4160 × tsys)
 - 2. 在级联模式中,建议不要改变延迟时间功能和渐变周期设定。

渐变(斜坡)模式功能的波形如下所示。

闪烁模式功能的波形如下所示。

当 SLPEN=1 和 SCLEN=0 时,将开始渐变功能操作。

在一段延迟时间之后将重复 Slope1~4 操作。

时期	模式	描述
Slope1	渐变	每一级增量为 1/64 的全局亮度 PWM 占空比 – 占空比以 1.587% 的速度增长
Stoper	闪烁	最大全局亮度 PWM 占空比设置 – 100%
Clama	渐变	最大全局亮度 PWM 占空比设置 – 100%
Slope2	闪烁	最大全局亮度 PWM 占空比设置 – 100%
Clana?	渐变	每一级增量为 1/64 的全局亮度 PWM 占空比 – 占空比以 1.587% 的速度下降
Slope3	闪烁	占空比固定为 0%
Clanal	渐变	占空比固定为 0%
Slope4	闪烁	占空比固定为 0%

范例: 萤火虫式照明

以下命令设置是 LED 矩阵萤火虫式照明的一个范例。

通过渐变设置寄存器可以详细地控制开启/关断时间。

设置条件如下:

命令	设置值	备注
COM 引脚控制 (41h)	FFh	使能 COM0~COM7 输出
ROW 引脚控制 (42h)	$FFh \rightarrow FFh \rightarrow FFh \rightarrow FFh$	使能 ROW0~ROW27 输出
二进制 / 灰度模式选择 (31h)	00h	灰度模式
COM 输出数量 (32h)	07h	COM0~COM7,扫描高电平类型
全局亮度 (37h)	40h	亮度 PWM 占空比 = 64/64
写显示 RAM(80h)	00h	显示 RAM 起始地址指针 = 00h
写 PWM 数据	每个显示点都设为3Fh(重复224次)	写入相同数据到显示 RAM
系统控制 (34h)	03h	振荡器和显示器都开启
写渐变数据	00h	渐变 RAM 起始地址指针 = 00h
写斜坡数据	每个显示点都设为25h(重复224次)	写入相同数据以设置斜坡时间 延迟时间=0.25s,斜坡周期=1s
模式控制 (38h)	01h	开始渐变功能 – 萤火虫式照明
模式控制 (38h)	00h	停止渐变功能 – 萤火虫式照明
系统控制 (34h)	00h	振荡器和显示器都关闭 – 熄灭

每个 ROW 的输出波形如下所示。

如果设置条件仅改变如下:

命令	设置值	备注
写显示 RAM(80h)	00h	显示 RAM 起始地址指针 = 00h
写显示数据	1Fh (重复 216 次)	写入相同数据到显示 RAM

每个 ROW 的输出波形如下所示。

写 UCOM 数据

该系列芯片具有一个通用的 UCOM 控制功能。该命令用于设置 COM 输出的通用数据,其命令格式如下所示。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
	W	1	0	0	0	0	0	1	0	84h
写 UCOM 数据	W	X	X	X	X	X	A2	A1	A0	00h
	W			写	入通用	COM 数	据			00h

注:建议不要同时执行 UCOM 命令和滚动命令。

A2	A1	A0	占空比时间	备注
0	0	0	T0	_
0	0	1	T1	_
0	1	0	T2	_
0	1	1	Т3	
1	0	0	T4	
1	0	1	T5	_
1	1	0	Т6	_
1	1	1	Т7	

注:在 UCOM 功能使能之前 T0~T7 需要重映射到 COM0~COM7 扫描序列。

Rev. 1.10 47 2017-07-12

在 UCOM 功能使能之后占空比时间 (T0~T7) 和 COM 输出开关 on/off 控制之间的关系如下所示。

名称	COM0	COM1	COM2	COM3	COM4	COM5	COM6	COM7
T0	ON/OFF							
T1	ON/OFF							
T2	ON/OFF							
Т3	ON/OFF							
T4	ON/OFF							
T5	ON/OFF							
Т6	ON/OFF							
T7	ON/OFF							
位	D7	D6	D5	D4	D3	D2	D1	D0

范例:

1. UCOM 功能使能时 – UCOM 显示

UCOM RAM 数据控制和 UCOM 功能使能的设置条件如下:

Rev. 1.10 48 2017-07-12

2. UCOM 功能除能时 – 正常显示

占空比时间 (T0~T7) 和 COM 输出开关 on/off 控制之间的关系如下所示。

占空比时间	COM0	COM1	COM2	COM3	COM4	COM5	COM6	COM7
T0	ON	OFF						
T1	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
T2	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
Т3	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF
T4	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF
T5	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF
T6	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
T7	OFF	ON						
位	D7	D6	D5	D4	D3	D2	D1	D0

写 USEG 数据

该系列芯片具有一个通用的 USEG 控制功能。该命令用于设置 USEG 地址并可直接输出到 ROW,其命令格式如下所示。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
	W	1	0	0	0	0	1	1	0	86h
写 USEG 数据	W	X	X	X	A4	A3	A2	A1	A0	00h
	W	X	X	X	US4	US3	US2	US1	US1	00h

注:建议不要同时执行 USEG 命令和滚动命令。

Rev. 1.10 49 2017-07-12

范例:

1. USEG 功能使能时 – USEG 显示

USEG RAM 数据控制和 USEG 功能使能的设置条件如下:

通过 USEG 控制命令将当前 ROW 显示重映射到新的 ROW 输出。

驱动 ROW 输出和 USEG 之间的关系如下图所示。

Nor	mal display	1		USEG RAM		USEG D	Display
Original display RAM address	ROW output	COM0		Universal address point set	USEN bit = '1'	ROW output	COM0
00h	ROW0		←	09h	├	ROW0	
01h	ROW1		◆	0Ah	├	ROW1	
02h	ROW2		← _\\ // <i>_</i>	0Bh	├	ROW2	
03h	ROW3		← _\\\ ///	0Ch	 	ROW3	
04h	ROW4		← _\\\\ ////	0Dh	 	ROW4	
05h	ROW5		← _\\\\\ //////	0Eh	├	ROW5	
06h	ROW6		← \\\\\\//////	0Fh	<u></u>	ROW6	
07h	ROW7		← \\\\\\\\/////	10h	►	ROW7	
08h	ROW8		← \\\\\\/////	11h	 	ROW8	
09h	ROW9		← ──XXXXXX////	12h	→	ROW9	
0Ah	ROW10		←	13h	 	ROW10	
0Bh	ROW11		← ///////////////////////////////////	14h	├	ROW11	
0Ch	ROW12		← //XXXXXX///	15h	├	ROW12	
0Dh	ROW13		← ─//XXXXXX//,──	16h	 	ROW13	
0Eh	ROW14		← //XXXXXX/,	17h	<u> </u>	ROW14	
0Fh	ROW15		← ─///XXXXXX/,	18h	├	ROW15	
10h	ROW16		← ///XXXXXX/	19h	→	ROW16	
11h	ROW17		← ///XXXXXX	1Ah	├	ROW17	
12h	ROW18		← ////XXXXXV	00h	 •	ROW18	
13h	ROW19		← ////XXX\\\	01h	├	ROW19	
14h	ROW20		← -/////X\\\\	02h	<u></u>	ROW20	
15h	ROW21		← //////\\\\\	03h	<u> </u>	ROW21	
16h	ROW22		←	04h	 	ROW22	
17h	ROW23		←	05h	<u></u>	ROW23	
18h	ROW24		← /// \\\	06h	 	ROW24	
19h	ROW25		← // \\	07h	 	ROW25	
1Ah	ROW26		【	08h	 	ROW26	
1Bh	ROW27		←	1Bh	 	ROW27	

2. USEG 功能除能时 - 正常显示

USEG RAM 数据控制和 USEG 功能除能的设置条件如下。

驱动 ROW 输出和 USEG RAM 之间的关系如下图所示。

写矩阵屏蔽数据

该系列芯片具有一个通用的矩阵显示屏蔽控制功能。通过对每个显示点设置矩阵显示屏蔽命令可以使得整个显示器处于屏蔽范围。命令设置后需要在每一帧的时序 1 期间对命令参数进行验证。

该命令用于设置矩阵显示屏蔽地址以及控制 COM 和 ROW 引脚的 on/off 状态,其命令格式如下所示。

命令	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Def.
	W	1	0	0	0	1	0	0	0	88h
写矩阵屏蔽 数据	W	0	0	0	A4	A3	A2	A1	A0	00h
女人小百	W			<u>'E</u>	5 入矩阵	屏蔽数捷	居			00h

注: 此功能仅适用于灰度模式。

Rev. 1.10 51 2017-07-12

范例 1:

设置条件如下:

命令	设置值	备注
写矩阵屏蔽数据 (88h)	00h	起始地址指针=00h
写入屏蔽数据	_	$AAh \rightarrow 55h \rightarrow AAh $

范例 2:

设置条件如下:

命令	设置值	备注
写矩阵屏蔽数据 (88h)	00h	起始地址指针=00h
写入屏蔽数据		$\begin{array}{c} FFh \rightarrow 00h \rightarrow FFh \rightarrow 00h \rightarrow FFh \rightarrow 00h \rightarrow FFh \rightarrow 00h \rightarrow \\ FFh \rightarrow 00h \rightarrow FFh \rightarrow 00h \rightarrow AAh \rightarrow AAh$

Rev. 1.10 53 2017-07-12

SPI 3 线串行接口

HT16D35A 芯片具有一个 SPI 3 线串行接口。

- CSB 引脚用于识别传输的数据。传输是由有效的低电平信号 CSB 来控制的。当 CSB 下降到低电平以后,数据才可以进行传输。
- 数据是从每个字节的 MSB 开始传输 MSB 优先 数据会在 CLK 的上升沿被移入到寄存 哭
- 从 CSB 信号的下降沿处开始,输入数据的每 8 位依序自动加载到一个寄存器。
- 对于读模式,当 CSB 为低时,在发送完一个读命令代码后 DIO 引脚变为输出模式并开始读取起始地址的设置值。在接收完输出数据后,如果 MCU 将 CSB 信号设为高电平, DIO 引脚将变为输入模式,并终止读模式周期。
- 对于读模式,数据将在 CLK 的下降沿输出到 DIO 引脚。

写操作

- 命令字节传输
- 1. 单个命令字节

2. 复合命令字节

Rev. 1.10 54 2017-07-12

• 数据字节传输

1. 单个 RAM 数据写操作

注: 如果输入的存储器地址大于限值,那么该地址无效。

2. RAM 数据页写操作

注:如果存储器地址超过限值,那么存储器指针将返回到00H。存储器地址限值如下所示。

模式	占空比	存储器地址限值				
		显示数据	渐变数据	UCOM 数据	USEG 数据	矩阵显示屏蔽
二进制	1/1~1/8	1Bh	不支持此功能	07h	1Bh	不支持此功能
	1/1	1Bh	1Bh	07h	1Bh	1Bh
灰度	1/2	3Bh	3Bh	07h	1Bh	1Bh
	1/3	5Bh	5Bh	07h	1Bh	1Bh
	1/4	7Bh	7Bh	07h	1Bh	1Bh
	1/5	9Bh	9Bh	07h	1Bh	1Bh
	1/6	BBh	BBh	07h	1Bh	1Bh
	1/7	DBh	DBh	07h	1Bh	1Bh
	1/8	FBh	FBh	07h	1Bh	1Bh

Rev. 1.10 55 2017-07-12

读操作

- 1. 数据必须按字节读取。
- 2. 建议主机控制器应在 CLK 上升沿和下一个 CLK 下降沿之间从 DIO 引脚读出数据。

• 单个 RAM 数据读操作

注: 如果输入的存储器地址大于限值,那么该地址无效。

• RAM 数据页读操作

注: 如果存储器地址超过限值,那么存储器指针将返回到00H。存储器地址限值如下所示。

模式	占空比	存储器地址限值					
1天八		显示数据	渐变数据	UCOM 数据	USEG 数据	矩阵显示屏蔽	
二进制	1/1~1/8	1Bh	不支持此功能	07h	1Bh	不支持此功能	
灰度	1/1	1Bh	1Bh	07h	1Bh	1Bh	
	1/2	3Bh	3Bh	07h	1Bh	1Bh	
	1/3	5Bh	5Bh	07h	1Bh	1Bh	
	1/4	7Bh	7Bh	07h	1Bh	1Bh	
	1/5	9Bh	9Bh	07h	1Bh	1Bh	
	1/6	BBh	BBh	07h	1Bh	1Bh	
	1/7	DBh	DBh	07h	1Bh	1Bh	
	1/8	FBh	FBh	07h	1Bh	1Bh	

1. 读寄存器状态格式如下:

注: 1. 显示数据必须按字节读取。

2. 如果寄存器地址超过限值,那么寄存器指针将返回到第一个寄存器地址。寄存器地址不能超过20个。

Rev. 1.10 56 2017-07-12

2. 读标志位状态格式如下:

I2C 串行接口

HT16D35B芯片具有一个I2C串行接口。

IPC 总线可在不同的 IC 或模块之间进行双向、两线通信。所谓两线即一条串行数据线 SDA和一条串行时钟线 SCL。这两条线分别通过一个上拉电阻与正电源相连,在 100kHz 频率下该电阻的典型阻值为 $10k\Omega$ 。当 IPC 总线空闲时,这两条线都为高电平。与 IPC 总线相连设备的输出级必须为漏极开路或集电极开路,以实现线或功能。仅当 IPC 总线空闲时,才开始传输数据。

数据有效性

在 SCL=1 期间, SDA 引脚的数据位必须保持稳定。仅当 SCL=0 时, SDA 引脚的电平才允许变化,如下图所示。

START 和 STOP 信号

- 在 SCL=1 期间, 若 SDA 从高变为低,表示为 START 信号。
- 在 SCL=1 期间, 若 SDA 从低变为高,表示为 STOP 信号。
- START 和 STOP 信号总由主机发出。发出 START 信号后,总线被认为处于忙碌状态。 发出 STOP 信号一段时间后,总线又被认为处于空闲状态。
- 如果发送重复 START (Sr) 信号而非 STOP 信号,则总线保持忙碌状态。在某些方面, START 信号和重复 START (Sr) 信号在功能上是相同的。

Rev. 1.10 57 2017-07-12

字节格式

SDA 线上的每个字节必须为 8 位长度。每次可传输的字节数目不受限制。每个字节后必须跟随一个应答位。数据传输从最高位 (MSB) 开始。

应答信号

- 每一个字节 (8 位) 后都跟随一个应答位。该应答位是接收方发送到总线的低电平。主机 产生一个额外的应答时钟脉冲。
- 寻址匹配的从机每接收到一个字节必须产生一个 ACK 应答信号。
- 发送应答信号的设备必须在应答时钟脉冲期间将 SDA 拉低,并使其在应答时钟脉冲高电平的期间保持低电平。
- 主机接收方在从机发出最后一个字节时生成一个无应答信号 (NACK) 以告知从机结束数据传输。在这种情况下,主机接收方必须在第九个时钟脉冲期间使数据线保持高电平用以表示无应答。主机将产生一个 STOP 信号或重复 START 信号。

从机寻址

- 该系列芯片在接收到 START 信号后接收一个 8-bit 从机地址,以使能芯片写操作。从机地址字的高四位是一个固定的"1"和"0"的组合序列,适用于所有的 LED 芯片,详细请参考从机地址示意图。
- 从机在接收到来自主机的 START 信号后,紧接着接收的第一个字节是从机地址字节。第一个字节的前7位是从机地址,第8位是读/写位。当 R/W 位是"1"时,选择读操作;是"0"时,选择写操作。
- 地址位是"1, 1, 0, 1, 0, 0, A0"。主机将地址字节发出后,从机将其与自身地址进行比较。如果地址匹配,则会在 SDA 线上输出一个应答信号。

Rev. 1.10 58 2017-07-12

写操作

• 单个命令字节

单个命令字节写操作需要一个 START 信号、一个带 R/W 位的从机地址、一个命令字节 (1st) 以及一个 STOP 信号。

• 复合命令字节

复合命令字节写操作需要一个 START 信号、一个带 R/W 位的从机地址、一个命令字节 (1st)、一个或多个寄存器字节命令 (2nd~nth) 以及一个 STOP 信号。

• 单个 RAM 数据字节写操作

如果输入的存储器地址大于限值,那么该地址无效。

发送 START 信号后,从机地址及 R/W 位被发送至总线,接着发送显示数据地址设置命令代码 (1st)后,寄存器地址 (An)被写入地址指针 (2nd),接着再发送一个有效数据和一个停止信号以完成单个数据字节写操作。

注: 如果输入的存储器地址大于限值,那么该地址无效。

• RAM 数据页写操作

发送 START 信号后,从机地址及 R/W 位发被送至总线,接着发送显示数据地址设置命令代码 (1st) 和地址指针 An (2nd)。接收到应答信号后,接着发送要写入存储器的数据,内部地址指针会自动递增至下一个地址位置。

Rev. 1.10 59 2017-07-12

如果存储器地址超过限值,那么存储器指针将返回到00H。存储器地址限值如下所示。

模式	占空比	存储器地址限值				
		显示数据	渐变数据	UCOM 数据	USEG 数据	矩阵显示屏蔽
二进制	1/1~1/8	1Bh	不支持此功能	07h	1Bh	不支持此功能
灰度	1/1	1Bh	1Bh	07h	1Bh	1Bh
	1/2	3Bh	3Bh	07h	1Bh	1Bh
	1/3	5Bh	5Bh	07h	1Bh	1Bh
	1/4	7Bh	7Bh	07h	1Bh	1Bh
	1/5	9Bh	9Bh	07h	1Bh	1Bh
	1/6	BBh	BBh	07h	1Bh	1Bh
	1/7	DBh	DBh	07h	1Bh	1Bh
	1/8	FBh	FBh	07h	1Bh	1Bh

读操作

在此模式下,主机设置完从机地址后读取该从机的数据。在发送 R/W 位 (= "0")、应答位和显示数据地址设置命令代码之后,寄存器地址 (An) 被写入地址指针 (2nd)。重新发送 START 信号和从机地址及 R/W 位 (= "1")。然后进行被寻址的数据传输。地址指针只有在接收到应答信号后才会自动递增。从机会把地址 "An+1"中的数据放在总线上。主机读取完数据后发送应答信号,地址指针增加到地址 "An+2"。如果只有一个读命令发送到 I²C 接口,则发出空数据。主机会一直持续对连续地址进行读取,直到它发出 NACK 信号和 STOP 信号。

• 单个 RAM 数据读操作

• RAM 数据页读操作

- 注: 1. 主机会一直持续对连续地址进行读取,直到它发出 NACK 信号和 STOP 信号。
 - 2. 如果存储器地址超过限值,那么存储器指针将返回到00H。存储器地址限值如下所示。

Rev. 1.10 60 2017-07-12

模式	占空比	存储器地址限值				
		显示数据	渐变数据	UCOM 数据	USEG 数据	矩阵显示屏蔽
二进制	1/1~1/8	1Bh	不支持此功能	07h	1Bh	不支持此功能
	1/1	1Bh	1Bh	07h	1Bh	1Bh
	1/2	3Bh	3Bh	07h	1Bh	1Bh
灰度	1/3	5Bh	5Bh	07h	1Bh	1Bh
	1/4	7Bh	7Bh	07h	1Bh	1Bh
	1/5	9Bh	9Bh	07h	1Bh	1Bh
	1/6	BBh	BBh	07h	1Bh	1Bh
	1/7	DBh	DBh	07h	1Bh	1Bh
	1/8	FBh	FBh	07h	1Bh	1Bh

读寄存器状态

在此模式下,主机设置完从机地址后读取该从机的数据。在发送 R/W 位 (= "0")、应答位和读状态设置命令代码之后,接着发送 START 信号和从机地址及 R/W 位 (= "1")。然后进行被寻址的数据传输。

1. 读寄存器状态格式如下:

- 注:如果寄存器地址超过限值,那么寄存器指针将返回到第一个寄存器地址。寄存器地址不能超过 20 个。 主机会一直持续对连续地址进行读取,直到它发出 NACK 信号和 STOP 信号。
- 2. 读标志位状态格式如下:

Rev. 1.10 61 2017-07-12

电源电压供应顺序

- 如果 LED VDD 和 VDD 引脚单独供电,则强烈建议遵循 Holtek 供电顺序要求。
- 如果不遵循电源电压供应顺序的要求,可能会造成故障。

Holtek 电源电压供应顺序要求:

1. 上电顺序:

首先开启逻辑电源电压 VDD, 然后开启 LED 驱动电压 LED VDD。

2. 关电顺序:

首先关闭 LED 驱动电压 LED_VDD, 然后关闭逻辑电源电压 VDD。

- 3. 无论 LED V_{DD} 的电压是否高于 V_{DD} 电压,Holtek 电源电压供应顺序必须遵循。
- 对于 LED_VDD 电压小于或等于 VDD 电压的应用:

• 对于 LED_VDD 电压大于 VDD 电压的应用:

Rev. 1.10 62 2017-07-12

HT16D35A/HT16D35B 工作流程

访问程序如下流程图所示。

• 初始化

Rev. 1.10 63 2017-07-12

• 显示数据读 / 写操作 – 地址设置

Rev. 1.10 64 2017-07-12

应用电路

LED 矩阵电路

单个 LED IC 应用

- 28 ROW × 8 COM 范例: P-MOS 漏极开路输出
 - 1. 直接引脚功能除能

Rev. 1.10 65 2017-07-12

2. 直接引脚功能使能

- 28 ROW × 8 COM 范例: N-MOS 漏极开路输出和带三极管缓冲器的 COM 驱动
 - 1. 直接引脚功能除能

注:R 的阻值由 LED 的功耗决定。

2. 直接引脚功能使能

注:R 的阻值由 LED 的功耗决定。

Rev. 1.10 66 2017-07-12

级联功能

LED 应用 - P-MOS 漏极开路输出

范例 1: SPI 3 线串行总线

注:级联也可通过软件设置来实现。用户必须通过命令将主机设置在主机模式,从机设置在从机模式。 CSB 引脚必须分别连接到 MCU,以用于单独读写。

Rev. 1.10 67 2017-07-12

范例 2: I2C 串行总线

注:级联也可通过软件设置来实现。用户必须通过命令将主机设置在主机模式,从机设置在从机模式。 CSB 引脚必须分别连接到 MCU,以用于单独读写。

Rev. 1.10 68 2017-07-12

LED 应用 - N-MOS 漏极开路输出

范例 1: 带三极管缓冲器的 COM 驱动,适用于 SPI 3 线串行总线

- 注: 1. 级联也可通过软件设置来实现。用户必须通过命令将主机设置在主机模式,从机设置在从机模式。 CSB 引脚必须分别连接到 MCU,以用于单独读写。
 - 2. R 的阻值由 LED 的功耗决定。

Rev. 1.10 69 2017-07-12

范例 2: 带三极管缓冲器的 COM 驱动,适用于 I2C 线串行总线

- 注: 1. 级联也可通过软件设置来实现。用户必须通过命令将主机设置在主机模式,从机设置在从机模式。 CSB 引脚必须分别连接到 MCU,以用于单独读写。
 - 2. R 的阻值由 LED 的功耗决定。

Rev. 1.10 70 2017-07-12

级联控制流程

访问程序如下流程图所示。

封装信息

请注意,这里提供的封装信息仅作为参考。由于这个信息经常更新,提醒用户咨询 <u>Holtek</u> <u>网站</u>以获取最新版本的<u>封装信息</u>。

封裝信息的相关内容如下所示,点击可链接至 Holtek 网站相关信息页面。

- 封装信息(包括外形尺寸、包装带和卷轴规格)
- 封装材料信息
- 纸箱信息

Rev. 1.10 72 2017-07-12

48-pin LQFP (7mm×7mm) 外形尺寸 (Exposed Pad)

符号	尺寸 (单位: inch)				
付写	最小	正常	最大		
A	_	0.354 BSC	_		
В	_	0.276 BSC	_		
С	_	0.354 BSC	_		
D	_	0.276 BSC	_		
D2	0.170	_	0.205		
Е	_	0.020 BSC	_		
E2	0.079	_	_		
F	0.007	0.009	0.011		
G	0.053	0.055	0.057		
Н	_	_	0.063		
I	0.002	_	0.006		
J	0.018	0.024	0.030		
K	0.004	_	0.008		
α	0°	_	7°		

<i>የተ</i> ロ	尺寸 (单位: mm)				
符号	最小	正常	最大		
A	_	9.00 BSC	_		
В	_	7.00 BSC	_		
С	_	9.00 BSC	_		
D	_	7.00 BSC	_		
D2	4.31	_	5.21		
Е	_	0.50 BSC	_		
E2	2.00	_	_		
F	0.17	0.22	0.27		
G	1.35	1.40	1.45		
Н	_	_	1.60		
I	0.05	_	0.15		
J	0.45	0.60	0.75		
K	0.09	_	0.20		
α	0°	_	7°		

Rev. 1.10 73 2017-07-12

Copyright[©] 2017 by HOLTEK SEMICONDUCTOR INC.

使用指南中所出现的信息在出版当时相信是正确的,然而盛群对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,盛群不保证或表示这些没有进一步修改的应用将是适当的,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。盛群产品不授权使用于救生、维生从机或系统中做为关键从机。盛群拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 http://www.holtek.com/zh/.

Rev. 1.10 74 2017-07-12