Survival Analysis

Pham Mai Tam 12/7/2022

Outline

- Introduction to survival analysis
- Common terms in survival analysis
- Methods of survival analysis
 - Kaplan-Meier method, Log-rank test, Cox regression (Cox proportional hazards, CPH, model)
- Perform survival analysis in R using TCGA dataset

Introduction to survival analysis

- Survival analysis (time-to-event analysis) is a collection of statistical methods analyzing the duration of time (e.g. survival time) until the occurrence of event of interest (EOI) (e.g. death).
- Survival time is a follow-up time measured between the defined starting point and occurrence of an EOI (e.g. time from disease diagnosis to death)
- Some patients' survival time may not be known → censoring
- Standard statistical methods cannot be applied as data is censored, heavily skewed, and not normally distributed. → require survival analysis
- Main goal: to estimate the survival probability from survival time and assess the effect of the effects of factors on survival time.

Why survival analysis, not logistic regression?

Logistic regression	Survival analysis
Binary event outcome	Time-to-event outcome
If clinical outcome is mortality or not → logistic regression can be used	If time to mortality is an observed outcome, survival analysis is used (the time until death happens)

Common terms in survival analysis

- Survival function (survival probability), S(t), refers to P of surviving of a patient from the starting time (e.g. start of diagnosis) to beyond a specific time t.
- Hazard function (hazard rate), h(t), refers to instantaneous rate of occurrence of EOI given that the patient is survived until that time. → Higher value of hazard function, higher risk of EOI → a crucial part of Cox proportional hazards (CPH) model.
- Difference b/w S(t) and h(t): S(t) probability of not having an EOI, h(t) probability of EOI occurring.
- Hazard ratio (HR) is described as the ratio of hazard rate or failure rate between two groups. → HR=1 indicates that there are no differences b/w two groups, HR>1 indicates that EOI is most likely to occur and vice versa.

Methods of survival analysis

- Kaplan-Meier method is a non-parametric method (It assumes no specific distribution of survival times and does not assume a relationship b/w survival times and independent variables)
- KM method estimates survival probability from the observed survival times (both censored and uncensored) that survival probability is plotted against time *t* in KM survival curve.
- KM method run only in a categorical variable. If you want to include many variables which is quantitative, you should use Cox regression model.

Kaplan-Meier (KM) survival function

$$S(t_i) = S(t_{i-1})(1-rac{d_i}{n_i})$$

- t_i = a time when at least one event happened;
- $S(t_i)$ = probability of survival at time t_i ;
- $S(t_{i-1})$ = probability of survival at time t_{i-1} ;
- n_i = # of patients known to have survived (have not yet had an event or been censored) up to time t_i ;
- $d_i = \#$ of patients having EOI (e.g. death) happened at time t_i

Example data from TCGA package

```
head (BRCA.mg)
    bcr patient barcode
                             GATA3 new tumor days death days followUp days
           TCGA-A1-A0SD
                          2.870500
                                              <NA>
                                                          <NA>
                                                                         437
           TCGA-A1-A0SE
                          2.166250
                                              <NA>
                                                          <NA>
                                                                         1321
                                              <NA>
           TCGA-A1-A0SH
                          1.323500
                                                         <NA>
                                                                        1437
  4
                                              <NA>
           TCGA-A1-A0SJ
                          1.841625
                                                          <NA>
                                                                          416
                                              <NA>
           TCGA-A1-A0SK -6.025250
                                                          967
                                                                        <NA>
  6
           TCGA-A1-A0SM 1.804500
                                              <NA>
                                                          <NA>
                                                                         242
    time new tumor time death death event
               437
                           437
              1321
                          1321
              1437
                          1437
               416
                           416
                NA
                           967
               242
                           242
```

Kaplan-Meier method

```
## Run survival analysis
# First, create a survival object with survival time and outcome. In a survival object, the event parameter must be logical (T/F) where T=death,
or numeric (0/1) where 1=death, 0=alive or censored.
surv <- Surv(time = BRCA.mq$time death, event = BRCA.mq$death event)</pre>
head(surv)
      437+ 1321+ 1437+ 416+ 967
# "+" means censored
fit <- survfit(formula = surv ~ BRCA.mg[, gene]>0, data=BRCA.mg) # gene expression > 0 --> up-regulated, gene expression < 0 --> down-regulated
# Call: survfit(formula = surv ~ BRCA.mg[, gene] > 0, data = BRCA.mg)
                              n events median 0.95LCL 0.95UCL
# BRCA.mg[, gene] > 0=FALSE 125
# BRCA.mg[, gene] > 0=TRUE 465
                                         3941
                                                 3126
summary(fit)
                                                                             At t_1 = 524 days \rightarrow 0.989 = 1 \times (1 - 1/88)
# Call: survfit(formula = surv ~ BRCA.mg[, gene] > 0, data = BRCA.mg)
                                                                             At t_a = 548 days \rightarrow 0.977 = 0.989 \times (1 - 1/86)
                  BRCA.mg[, gene] > 0=FALSE
  time n.risk n.event survival std.err lower 95% CI upper 95% CI
                                                                             At t_a = 571 days \rightarrow 0.965 = 0.977 \times (1 - 1/83)
   524
                          0.989 0.0113
                                               0.967
                                                             1.000
    548
                          0.977 0.0160
                                               0.946
                                                             1.000
                                                                             At t_4=612 days \rightarrow 0.953 = 0.965 x (1 - 1/79)
    571
                          0.965 0.0197
                                               0.928
                                                             1.000
   612
            79
                          0.953 0.0229
                                               0.909
                                                             0.999
            74
                          0.940 0.0260
                                               0.891
                                                             0.993
```

Log-rank test

- Log-rank test is a **non-parametric hypothesis test**, which compares estimates of the hazard functions of the two groups at each observed event time (e.g. compare 2 survival curves)
- H₀: there are no differences in the survival curves b/w G1 and G2
 (h₁(t) = h₂(t)) → 2 groups has identical hazard function
- H₁: there are differences in the survival curves b/w G1 and G2

Log-rank test

$$\chi^2 = \sum_i^n rac{(O_i - E_i)^2}{E_i}$$

- $X^2 = log$ -rank statistic
- O_i = # of observed events in group i;
- $E_i = \#$ of expected events in group i;
- *n* = # of groups
- Log-rank test value is compared against critical value from X² distribution with n-1 degree of freedoms

Log-rank test

Cox proportional hazards (CPH) model (Cox regression)

- Unlike KM curves and log-rank test are useful only when predictor variable is categorical (e.g. treatment A vs B, male vs female), Cox model works with quantitative predictors (e.g. gene expression, weight, age ...)
- CPH model uses hazard function instead of survival probability or survival time → hazard function is a measure of effect in CPH model.

Cox model

$$h(t) = h_0(t) imes exp(\sum\limits_i^n b_i imes X_i)$$

- h(t) = expected hazard at time t
- h₀(t) = baseline hazard → an intercept
- X = independent variables
- When there is no effect of independent variables (X=0) $h(t) = h_0(t)$
- The quantities $exp(b_i)$ are called hazard ratios (HR). A value of b_i greater than zero, or equivalently a hazard ratio greater than one, indicates that as the value of the i^{th} covariate increases, the event hazard increases and thus the length of survival decreases.

Cox regression model

In summary,

- HR = 1: no effect
- HR < 1: reduction in hazard
- HR > 1: Increase in hazard
 Notice in cancer studies,
- A covariate with HR > 1 (b > 0) is called bad prognostic factor
- A covariate with HR < 1 (b < 0) is called good prognostic factor

```
cox reg model <- coxph(formula = surv ~ BRCA.cox[, gene] + patient.age at initial pathologic diagnosis, data = BRCA.cox)
summary(cox reg model)
# Call:
# coxph(formula = surv ~ BRCA.cox[, gene] + as.numeric(patient.age at initial pathologic diagnosis),
      data = BRCA.cox)
    n= 590, number of events= 81
                                                               coef exp(coef)
# BRCA.cox[, gene]
                                                          -0.058018
# as.numeric(patient.age at initial pathologic diagnosis) 0.027640
                                                                    1.028026
                                                           se(coef)
# BRCA.cox[, gene]
                                                           0.063261 -0.917
# as.numeric(patient.age at initial pathologic diagnosis) 0.008829 3.131
                                                          Pr(>|z|)
# BRCA.cox[, gene]
                                                          0.35908
# as.numeric(patient.age at initial pathologic diagnosis) 0.00174 **
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                                                          exp(coef) exp(-coef)
# BRCA.cox[, gene]
                                                             0.9436
                                                                        1.0597
# as.numeric(patient.age at initial pathologic diagnosis)
                                                            1.0280
                                                                        0.9727
                                                          lower .95 upper .95
# BRCA.cox[, gene]
                                                             0.8336
                                                                       1.068
# as.numeric(patient.age at initial pathologic diagnosis)
                                                            1.0104
                                                                       1.046
# Concordance= 0.602 (se = 0.036
# Likelihood ratio test= 9.85 on 2 df,
                                          p=0.007
# Wald test
                       = 9.85 on 2 df.
                                          p=0.007
# Score (logrank) test = 9.93 on 2 df,
                                          p=0.007
```

ggforest(cox reg model, data = BRCA.cox)

