Série TD3

Exercice 1

L'entraîneur d'une équipe de natation doit affecter les nageurs à une équipe de relais de 200mètres quatre nages à envoyer aux Jeux olympiques juniors.

Comme la plupart de ses meilleurs nageurs sont très rapides dans plusieures nages, on ne sait pas quel nageur doit-être affecté à chacune des quatre nages.

Le tableau ci-dessous présente les cinq nageurs les plus rapides et le meilleur temps (en secondes) qu'ils ont réalisé pour chacune des nages (pour 50 mètres) : (N'oubliez pas que chaque style doit être attribué à un seul nageur).

Nage	Carl	Chris	David	Tony	Ken
Dos	37,7	32,9	33,8	37,0	35,4
${\bf Brasse}$	$43,\!4$	$33,\!1$	$42,\!2$	34,7	$41,\!8$
Papillon	$33,\!3$	$28,\!5$	38,9	30,4	$33,\!6$
Libre	29,2	$26,\!4$	$29,\!6$	$28,\!5$	$31,\!1$

- Modéliser le problème sous forme d'un programme linéaire en définissant précisément les variables de décision, la fonction économique et les contraintes.
- Transformer le modèle ci-dessus en problème d'affectation (Problème) et en représenter le modèle mathématique.
- Trouver une bonne solution du problème.

Exercice 2

Considérons le graphe orienté suivant où les temps d'ouvrier par tache sont sur les arcs :

1. En appliquant la méthode Hongroise, trouver la solution du problème.

Exercice 3

On doit affecter 5 équipes à 5 postes de travail. L'affectation de l'équipe i au poste j a un coût donné dans la matrice ci-dessous par l'élément ligne i, colonne j.

3	4	5	4	6
4	5	2	3	6
5	1	6	5	1
6	7	7	10	8
4	5	3	5	6

- Trouver une affectation de coût minimal en utilisant la méthode Hongroise.
- Quel est son coût?

Exercice 4

Même question avec la matrice suivante :

16	8	13	9	10
12	13	10	11	10
12	7	10	10	10
10	5	12	8	10
12	12	10	9	11

Exercice 5

On considère la matrice de randement suivante :

7	2	1	9	4
9	6	9	5	5
8	8	3	1	8
7	9	4	2	2
4	3	7	4	8

Trouver une affectation de randement maximal en utilisant la méthode Hongroise.

Exercice 6

On veut affecter 5 tâches à 5 machines. Les coûts des affectations sont donnès par le tableau suivant :

	machine 1	$machine \ 2$	machine 3	machine 4	machine 5
tâche 1	15	40	5	20	20
tâche 2	22	33	9	16	20
tâche 3	40	6	28	0	26
tâche 4	8	0	7	25	60
tâche 5	10	10	60	15	5

- Rechercher une affectation conduisant à un coût <u>minimum</u> en utilisant l'algorithme Hongrois.
- Rechercher une affectation conduisant à un coût <u>maximal</u> en utilisant l'algorithme Hongrois.