Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, Jian Tang

2022/1/4

Link Prediction

• Predict the interactions between nodes

social networks

knowledge graph completion

drug repurposing

Challenges

Inductive setting

Challenges

Interpretability

• Query: Who is Justin Trudeau's mother?

• Answer: Margaret Trudeau

• Why?

Challenges

• Large scale

Wikidata 87M entities 504M triplets

CBKH
2.4M nodes
48M edges

Machine Learning Methods

DeepPath, etc.

ComplEx, etc.

CompGCN, etc.

Machine Learning Methods

Embeddings

Path-based

Node GNN encoders Subgraph GNN encoders

strong performance scalable

interpretability inductive

good performance flexibility scalable (pseudo) inductive strong performance flexibility inductive

no interpretability transductive only

weak performance sometimes not scalable

no interpretability

no interpretability not scalable

Machine Learning Methods

Embeddings

strong performance scalable

Path-based

interpretability inductive

Node GNN encoders Subgraph GNN encoders

good performance flexibility scalable (pseudo) inductive

strong performance flexibility inductive

Can we achieve the best of all worlds?

- Traditional methods
 - Katz index: weighted count of paths between two nodes
 - Personalized PageRank: random walk probability from one to the other
 - Graph distance: the shortest path between two nodes

Lessons

- Interpretability via paths
- Inductive
- Scalability via dynamic programming

- Traditional methods
 - Katz index: weighted count of paths between two nodes
 - Personalized PageRank: random walk probability from one to the other
 - Graph distance: the shortest path between two nodes

Lessons

- Interpretability via paths
- Inductive
- Scalability via dynamic programming

Can we parameterize them with NNs?

Personalized PageRank

product of probabilities

Graph distance

sum of length

Path Formulation

Path Formulation

 \bigoplus

Katz index

Personalized PageRank

Graph distance

Widest path

Most reliable path

Path Formulation

Make It Better

Path formulation

inductive

interpretable

not scalable

handcraft

Make It Better

$$\bullet \ ab + ac = a(b+c)$$

- $\bullet \ ab + ac = a(b+c)$
- $a \otimes b \oplus a \otimes c = a \otimes (b \oplus c)$

Generalized
Bellman-Ford algorithm

power iteration

Bellman-Ford algorithm

Viterbi algorithm

etc.

scalable

Generalized Bellman-Ford Algorithm

Path formulation

$$\boldsymbol{h}_{q}(u,v) = \bigoplus_{P \in \mathcal{P}_{uv}} \bigotimes_{e \in P} \boldsymbol{w}_{q}(e)$$

Generalized Bellman-Ford Algorithm

Path formulation

$$\mathbf{h}_{q}(u,v) = \bigoplus_{P \in \mathcal{P}_{uv}} \bigotimes_{e \in P} \mathbf{w}_{q}(e)$$

Generalized Bellman-Ford algorithm

$$\boldsymbol{h}_{q}^{(0)}(u,v) \leftarrow \begin{cases} \textcircled{1}_{q} & u = v \\ \textcircled{0}_{q} & u \neq v \end{cases}$$

boundary condition

Generalized Bellman-Ford Algorithm

Path formulation

$$\boldsymbol{h}_{q}(u,v) = \bigoplus_{P \in \mathcal{P}_{uv}} \bigotimes_{e \in P} \boldsymbol{w}_{q}(e)$$

Generalized Bellman-Ford algorithm

$$\boldsymbol{h}_{q}^{(0)}(u,v) \leftarrow \begin{cases} \textcircled{1}_{q} & u = v \\ \textcircled{0}_{q} & u \neq v \end{cases}$$

boundary condition

$$\boldsymbol{h}_{q}^{(t)}(u,v) \leftarrow \left(\bigoplus_{(x,v) \in \mathcal{E}(v)} \boldsymbol{h}^{(t-1)}(u,x) \otimes \boldsymbol{w}(x,r,v)\right) \oplus \boldsymbol{h}^{(0)}(u,v)$$
 Bellman-Ford iteration

Make It Better

Generalized Bellman-Ford algorithm

$$\mathbf{h}_{q}^{(0)}(u,v) \leftarrow \mathbf{1}_{q}(u=v)$$

$$\mathbf{h}_{q}^{(t)}(u,v) \leftarrow \left(\bigoplus \mathbf{h}_{q}^{(t-1)}(u,x) \otimes \mathbf{w}_{q}(x,r,v) \right) \oplus \mathbf{h}_{q}^{(0)}(u,v)$$

$$(x,v) \in \mathcal{E}(v)$$

Generalized Bellman-Ford algorithm

$$\mathbf{h}_{q}^{(0)}(u,v) \leftarrow \mathbf{1}_{q}(u=v)$$

$$\mathbf{h}_{q}^{(t)}(u,v) \leftarrow \left(\bigoplus \mathbf{h}_{q}^{(t-1)}(u,x) \otimes \mathbf{w}_{q}(x,r,v) \right) \oplus \mathbf{h}_{q}^{(0)}(u,v)$$

$$(x,v) \in \mathcal{E}(v)$$

- Neural parameterization
 - Single-source case: abbreviate $m{h}_q^{(t)}(u,v)$ as $m{h}_v^{(t)}$

$$\boldsymbol{h}_{v}^{(0)} \leftarrow \operatorname{Indicator}(u, v, q)$$

$$\boldsymbol{h}_{v}^{(t)} \leftarrow \operatorname{Aggregate}\left(\left\{\operatorname{Message}\left(\boldsymbol{h}_{x}^{(t-1)}, \boldsymbol{w}_{q}(x, r, v)\right) \middle| (x, r, v) \in \mathcal{E}(v)\right\} \cup \left\{\boldsymbol{h}_{v}^{(0)}\right\}\right)$$

$$\begin{aligned} & \boldsymbol{h}_{v}^{(0)} \leftarrow \operatorname{Indicator}(u, v, q) \\ & \boldsymbol{h}_{v}^{(t)} \leftarrow \operatorname{Aggregate}\left(\left\{\operatorname{Message}\left(\boldsymbol{h}_{x}^{(t-1)}, \boldsymbol{w}_{q}(x, r, v)\right) \middle| (x, r, v) \in \mathcal{E}(v)\right\} \cup \left\{\boldsymbol{h}_{v}^{(0)}\right\}\right) \end{aligned}$$

$$\begin{aligned} & \boldsymbol{h}_{v}^{(0)} \leftarrow \operatorname{Indicator}(u, v, q) \\ & \boldsymbol{h}_{v}^{(t)} \leftarrow \operatorname{Aggregate}\left(\left\{\operatorname{Message}\left(\boldsymbol{h}_{x}^{(t-1)}, \boldsymbol{w}_{q}(x, r, v)\right) \middle| (x, r, v) \in \mathcal{E}(v)\right\} \cup \left\{\boldsymbol{h}_{v}^{(0)}\right\}\right) \end{aligned}$$

- Indicator: learned embeddings for q
- Message: relational operators of KG embeddings (TransE/DistMult/RotatE etc.)
- Aggregate: permutation invariant function (sum/mean/max/PNA etc.)

Revisit Path Formulation

Generalized Bellman-Ford algorithm

$$\begin{aligned} & \boldsymbol{h}_q^{(0)}(u,v) \leftarrow \left\{ \begin{matrix} \boldsymbol{q} & u = v \\ 0 & u \neq v \end{matrix} \right. \\ & \boldsymbol{h}_q^{(t)}(u,v) \leftarrow \operatorname{Aggregate}\left(\left\{\operatorname{Message}\left(\boldsymbol{h}_q^{(t-1)}(u,x), \boldsymbol{w}_q(x,r,v)\right)\right\} \cup \left\{\boldsymbol{h}_v^{(0)}\right\} \right) \end{aligned}$$

Path formulation

$$\mathbf{h}_{q}(u, v) = \operatorname{Aggregate}(\{\operatorname{Message}(...\operatorname{Message}(\mathbf{q}, r_{1}), ... r_{t})\})$$

$$t = 0$$

$$t \operatorname{Message}$$

Revisit Path Formulation

NBFNet

Chain of relational operators

Interpretation

Link Prediction

- Apply a MLP over $m{h}_q^{(t)}(u,v)$
 - $p(v|u,q) = \sigma(f(\mathbf{h}_q(u,v)))$
- Homogeneous variant
 - Use the same relation for every q and r
- Undirected homogeneous variant

•
$$p(u,v) = \sigma \left(f(\mathbf{h}(u,v) + \mathbf{h}(v,u)) \right)$$

- Train with standard negative sampling
 - Time complexity is independent of #negative
 - Can use arbitrary large #negative or full softmax

Results

Knowledge graph completion

Class	Modleod	FB15k-237				WN18RR					
	Method	MR	MRR	H@1	H@3	H@10	MR	MRR	H@1	H@3	H@10
Path-based	Path Ranking [35]	3521	0.174	0.119	0.186	0.285	22438	0.324	0.276	0.360	0.406
	NeuralLP [69]	-	0.240	-	-	0.362	-	0.435	0.371	0.434	0.566
	DRUM [46]	-	0.343	0.255	0.378	0.516	-	0.486	0.425	0.513	0.586
Embeddings	TransE [6]	357	0.294	-	-	0.465	3384	0.226	-	-	0.501
	DistMult [68]	254	0.241	0.155	0.263	0.419	5110	0.43	0.39	0.44	0.49
	ComplEx [58]	339	0.247	0.158	0.275	0.428	5261	0.44	0.41	0.46	0.51
	RotatE [52]	177	0.338	0.241	0.375	0.553	3340	0.476	0.428	0.492	0.571
	HAKE [76]	-	0.346	0.250	0.381	0.542	-	0.497	0.452	0.516	0.582
	LowFER [1]	-	0.359	0.266	0.396	0.544	-	0.465	0.434	0.479	0.526
GNNs	RGCN [48]	221	0.273	0.182	0.303	0.456	2719	0.402	0.345	0.437	0.494
	GraIL [55]	2053	-	-	-	-	2539	-	-	-	-
	NBFNet	114	0.415	0.321	0.454	0.599	636	0.551	0.497	0.573	0.666

Results

Homogeneous link prediction

Class	Method	Cor	a	Cites	eer	PubMed	
Class	Method	AUROC	AP	AUROC	AP	AUROC	AP
Path-based	Katz Index [30] Personalized PageRank [42] SimRank [28]	0.834 0.845 0.838	0.889 0.899 0.888	0.768 0.762 0.755	0.810 0.814 0.805	0.757 0.763 0.743	0.856 0.860 0.829
Embeddings	DeepWalk [43] LINE [53] node2vec [17]	0.831 0.844 0.872	0.850 0.876 0.879	0.805 0.791 0.838	0.836 0.826 0.868	0.844 0.849 0.891	0.841 0.888 0.914
GNNs	VGAE [32] S-VGAE [12] SEAL [73] TLC-GNN [67] NBFNet	0.914 0.941 0.933 0.934 0.956	0.926 0.941 0.942 0.931 0.962	0.908 0.947 0.905 0.909 0.923	0.920 0.952 0.924 0.916 0.936	0.944 0.960 0.978 0.970 0.983	0.947 0.960 0.979 0.968 0.982

Results

• Inductive relation prediction

Class	Method		FB15	k-237		WN18RR				
		v1	v2	v3	v4	v1	v2	v3	v4	
Path-based	NeuralLP [16]	0.529	0.589	0.529	0.559	0.744	0.689	0.462	0.671	
	DRUM [46]	0.529	0.587	0.529	0.559	0.744	0.689	0.462	0.671	
	RuleN [39]	0.498	0.778	0.877	0.856	0.809	0.782	0.534	0.716	
GNNs	GraIL [55]	0.642	0.818	0.828	0.893	0.825	0.787	0.584	0.734	
	NBFNet	0.834	0.949	0.951	0.960	0.948	0.905	0.893	0.890	

Interpretation

• FB15k-237

Query	$\langle O.~Hardy,~nationality,~U.S. \rangle$
0.243 0.224	$\langle O.\ Hardy,\ impersonate^{-1},\ R.\ Little \rangle \wedge \langle R.\ Little,\ nationality,\ U.S. \rangle$ $\langle O.\ Hardy,\ ethnicity^{-1},\ Scottish\ American \rangle \wedge \langle Scottish\ American,\ distribution,\ U.S. \rangle$
Query	$\langle Florence, vacationer, D.C. Henrie \rangle$
0.251 0.183	$\langle Florence, contain^{-1}, Italy \rangle \wedge \langle Italy, capital, Rome \rangle \wedge \langle Rome, vacationer, D.C. Henrie \rangle$ $\langle Florence, place live^{-1}, G.F. Handel \rangle \wedge \langle G.F. Handel, place live, Rome \rangle \wedge \langle Rome, vacationer, D.C. Henrie \rangle$
Query	⟨Pearl Harbor (film), language, Japanese⟩
0.211	$\langle Pearl\ Harbor\ (film),\ film\ actor,\ CH.\ Tagawa \rangle \wedge \langle CH.\ Tagawa,\ nationality,\ Japan \rangle \wedge \langle Japan,\ country\ of\ origin,\ Yu-Gi-Oh! \rangle \wedge \langle Yu-Gi-Oh!,\ language,\ Japanese \rangle$
0.208	$\langle Pearl \ Harbor \ (film), \ film \ actor, \ CH. \ Tagawa \rangle \wedge \langle CH. \ Tagawa, \ nationality, \ Japan \rangle \wedge \langle Japan, \ official \ language, \ Japanese \rangle$

Interpretation

p(France | Winnie the Pooh, release region)

https://deepgraphlearning.github.io/project/reasoning

- Setting
 - Rank 1 positive tail entity against 1000 negative tail entities

- Dataset: 90M entity, 1.3K relation, 0.5B triplets
 - 0.5B triplets = 12GB memory
 - Impossible to train such a large graph on GPUs
- How to scale up NBFNet?
 - Sample small graphs like other inductive GNNs

Bi-directional BFS sampling

- Intuition: long paths are not important for prediction
 - Sample nodes and edges that can be reached by BFS
 - Randomly down sample nodes with large neighborhoods
 - Bi-directional BFS to further reduce the size

- Results (MRR)
 - Single model: valid: 0.9237
 - Ensemble of 6 models: valid: 0.9304, test: 0.9178

- Rank 12 out of 39 teams, but ...
 - Stronger than all single models reported by the winner
 - Probably the most parameter efficient

Summary

- Generalize/transfer to unseen graphs with the same semantics
- Interpret predictions via top weighted paths
- Scalable compared to path-based methods and GNNs
- Super parameter efficient compared to popular embedding methods
- Verified on several link prediction tasks and datasets
- Verified in OGB large scale competition (rank 12 out of 39 teams)

Code at: https://github.com/DeepGraphLearning/NBFNet

Thanks for your attention!

• Q & A