Transformers

Métodos Generativos, curso 2025-2026

Guillermo Iglesias, guillermo.iglesias@upm.es Jorge Dueñas Lerín, jorge.duenas.lerin@upm.es Edgar Talavera Muñoz, e.talavera@upm.es 7 de octubre de 2025

Escuela Técnica Superior de Ingeniería de Sistemas Informáticos | UPM

Contenidos

- 1. Introducción
- 2. Auto-encoders (AEs)
- 3. Auto-encoders Variacionales (VAEs)
- 4. Generative Adversarial Networks (GANs)
- 5. Transformers
- 6. Diffusion Models

Contenidos

- 1. Introducción
- 2. Auto-encoders (AEs)
- 3. Auto-encoders Variacionales (VAEs)
- 4. Generative Adversarial Networks (GANs)
- 5. Transformers
- 6. Diffusion Models

Transformers

Motivación

Hasta la aparición de los transformers, los problemas secuenciales se trataban (casi) siempre con **redes recurrentes**.

Sin embargo, dichas arquitecturas tienen dos problemas bien conocidos:

- Su entrenamiento no se puede paralelizar, ya que un instante depende del anterior, y así sucesivamente, por lo que su entrenamiento es lento.
- Aunque aparecieron para "recordar", su memoria es bastante limitada, empeorando sus resultados cuanto más larga es la secuencia con la que tienen que trabajar.

¿Qué son los Transformers?

- Los transformers son un tipo de arquitectura de redes neuronales revolucionaria en el campo de la inteligencia artificial.
- A mediados de 2017 aparece un artículo científico que demuestra que existe una alternativa a las redes recurrentes para trabajar con problemas secuenciales.
- En concreto, habla del concepto de "atención", que básicamente significa "ponderar" los elementos de las secuencias según afecten más o menos a las predicciones.
- Habla sobre todo de NLP (Natural Language Processing), pero también es aplicable a series temporales (y a imágenes con ligeras modificaciones).
- Elimina el concepto de **recursión**, con lo que el entrenamiento puede ser mucho más **rápido**.
- · Además, es capaz de "memorizar" secuencias más largas.

¿Qué son los Transformers?

Captura de arxiv.org del artículo "Attention is all you need".

¿Qué son los Transformers?

Captura de Google Scholar mostrando el número de citas a fecha Octubre de 2023.

- Una arquitectura encoder-decoder con atención.
- La atención "mira" a la secuencia de entrada y decide para cada instante qué otras partes de la misma son importantes (podéis entenderlo como el "contexto").
- Consiste en bloques encoder y decoder apilables (Nx bloques)
- Capas densas y bloques Multi-Head Attention (MHA).
- Positional embbeding (para introducir la información "temporal" en el caso de las series temporales o "situacional" en el caso de NLP)

- El bloque **Multi-Head Attention** es el que permite al modelo "fijarse" en las cosas más importantes.
- Funciona creando varios **mapas de activación** (Q: query, K: key, V: value) y comprobando sus **relaciones**.

Principales mecanismos de la arquitectura transformer.

- Vamos a ver la arquitectura transformer explicada en el campo del procesamiento del lenguaje natural, ya que es el caso de uso más típico.
- Para el caso de series temporales o imágenes es muy similar, lo único que cambia es la codificación de los datos de entrada.

Ejemplo simplificado de una tarea de traducción con un transformer (fuente).

· Los transformers se componen de un **encoder** y un **decoder**.

Arquitectura encoder-decoder (fuente).

• O para ser más exactos, de *N* bloques de encoders apilados seguidos de *N* bloques de decoders apilados.

Arquitectura general del transformer (fuente).

- Dentro de cada encoder tendremos un bloque de capas feed-forward (densas) y otro bloque de Self-Attention, el cual ayuda al encoder a fijarse no solo en la palabra que está procesando en ese momento, sino también en las demás palabras de la secuencia de entrada.
- En los decoders, tendremos además de eso, un bloque de Encoder-Decoder attention que le permita decirle qué partes de la secuencia de entrada son importantes.

Arquitectura general del encoder y el decoder (fuente).

- Los vectores de entrada *fluyen* a través de los bloques cada uno en una posición fija.
- El encoder crea dependencias entre estos "caminos" en los bloques de **self-attention**.
- ¡Esto se puede **paralelizar**, ya no existen dependencias temporales!

Arquitectura de los bloques de tipo **encoder** en detalle (fuente).

• Este proceso se repite para cada bloque "encoder".

Arquitectura del encoder en detalle (fuente).

¿Cómo funciona la atención?

- En la frase "The animal didn't cross the street because it was too tired", el modelo no sabe a priori que "it" se refiere a "The animal" -> ¡Esto es lo que hace el bloque de self-attention!
- Conforme el modelo procesa cada palabra (o cada posición en la secuencia de entrada), el módulo de self-attention le permite mirar al resto de las posiciones en la secuencia de entrada para pistas que le permitan codificar mejor el elemento actual.

- Creamos 3 matrices entrenables (W^Q, W^K, W^V)
- Multiplicamos cada vector de entrada por cada una de las 3 matrices entrenables (W^Q, W^K, W^V)
- 3. Obtenemos 3 nuevos vectores (*q_n*, *k_n*, *v_n*), que además son de menor dimensionalidad que los de entrada, ya que las matrices se eligen así para reducir el coste computacional

4. Calculamos la self-attention como el producto escalar de $q_n \cdot k_n$.

Ejemplo del producto escalar en el mecanismo de self-attention (fuente).

- 5. Dividimos entre la raiz cuadrada del número de dimensiones escogidas para los vectores **key** (para estabilizar los gradientes durante el entrenamiento)
- Aplicamos la funcion softmax para normalizar los valores y que sumen 1.

¡Ya tenemos el valor de la atención! Pero no hemos acabado...

- 7. Multiplicamos el valor de la atención de cada vector de entrada (a_n) por el vector value v₁ (porque estamos calculando el valor de la atención para el vector de entrada 1)
- 8. Sumamos todos los resultados $a_n \cdot v_n$, obteniendo z_1

Y ahora sí que hemos acabado :-)

- Solamente indicar que esto, en realidad, se hace de forma matricial para ir más rápido.
- Y con más de un conjunto de W^Q , W^K , W^V (multi-head).

Ejemplo del cálculo de la self-attention (fuente).

Resumen

Resumen del mecanismo de self-attention (fuente).

Pero... ¿y la información de la posición?

- Si hemos dicho que se procesan todos los inputs de forma paralela, hemos perdido la información del tiempo.
- La solución es añadir lo que se conoce como positional embedding, que es lo que le indica a la red la posición de cada elemento de entrada en la secuencia completa.

Pero... ¿y la información de la posición?

Ejemplo de positional embedding (fuente).

Más información...

Toda esta explicación está basada en la de "The illustrated Transformer", desarrollada por Jay Alammar.

La tenéis disponible en:

http://jalammar.github.io/illustrated-transformer/.

Si os habéis quedado con dudas, es **muy recomendable** que os leáis el post y os veáis el video, lo más seguro es que os disipe todas las dudas:-)

Recursos

- · Diapositivas de Moodle
- Google Collaboratory
- · Deep Learning Book (https://www.deeplearningbook.org/)
- https://www.pyimagesearch.com/blog
- https://machinelearningmastery.com/blog