C5

Repeat Example 5.1 using the ideal op amp model.

Answer: -2, 200 μ A.

Example 5.1

A 741 op amp has an open-loop voltage gain of 2×10^5 , input resistance of $2 \text{ M}\Omega$, and output resistance of 50Ω . The op amp is used in the circuit of Fig. 5.6(a). Find the closed-loop gain v_o/v_s . Determine current i when $v_s = 2 \text{ V}$.

Figure 5.6 For Example 5.1: (a) original circuit, (b) the equivalent circuit.

Example 5.1

Example 5.1

A 741 op amp has an open-loop voltage gain of 2×10^5 , input resistance of $2 \text{ M}\Omega$, and output resistance of 50Ω . The op amp is used in the circuit of Fig. 5.6(a). Find the closed-loop gain v_o/v_s . Determine current i when $v_s = 2 \text{ V}$.

Figure 5.6 For Example 5.1: (a) original circuit, (b) the equivalent circuit.

• 1. The equivalent circuit

• 2. KCL@node 1
$$\frac{v_s - v_1}{10 \times 10^3} = \frac{v_1}{2000 \times 10^3} + \frac{v_1 - v_0}{20 \times 10^3}$$

$$200v_s = 301v_1 - 100v_o$$

$$2v_s \simeq 3v_1 - v_o \implies v_1 = \frac{2v_s + v_o}{3}$$
 (5.1.1)

• 3. KCL@node O $\frac{v_1 - v_o}{20 \times 10^3} = \frac{v_o - Av_d}{50}$

$$\frac{v_1 - v_o}{20 \times 10^3} = \frac{v_o - Av_d}{50}$$

$$v_d = -v_1 \text{ and } A = 200,000$$

$$v_1 - v_0 = 400(v_0 + 200,000v_1)$$
 (5.1.2)

- 4.
 - − 3 unknowns (v_s, v_1, v_o) ; need to get relation between v_s and $v_o \rightarrow$ eliminate v1
 - Substitute Eq. (5.1.2) into Eq. (5.1.1)

$$0 \approx 26,667,067v_o + 53,333,333v_s \Rightarrow \frac{v_o}{v_s} = -1.9999699$$

This is closed-loop gain, because the 20-k feedback resistor closes the loop between the output and input terminals.

- 5.
 - When $v_s = 2V$, $v_o = -3.9999398V$.
 - − From Eq. (5.1.1), we obtain v_1 =20.066667 μ V.
 - Thus, $i = \frac{v_1 v_o}{20 \times 10^3} = 0.19999 \text{ mA}$

Question: What if there is no feedback loop?

Answer:

- $-v_1=v_s \times (2/0.01+2)$
- E.g., for $v_s=2V$, $v_1 \approx 2V$, $|v_o|=|Av_d|>>|Vcc|$, in saturation region

The feedback loop is helpful to operate an op amp in linear region.

Problem 5.2

Repeat Example 5.1 using the ideal op amp model.

Practice Problem 5.2

Answer: -2, 200 μ A.

$$V_1=0V$$

 $(v_s-0)/10k=(0-V_0)/20k$
 $V_0/V_s=-2$

For
$$V_s = 2V$$
, $V_o = -4V$
 $i = (0+4)/20k = 200 \mu A$

Comparisons

	Real op amp	Ideal op amp
Gain v _o /v _s	-1.9999699	-2
v_1	20.066667 μV	0 V
V _o	–3.9999398V μV	-4V
i	199.999 μΑ	200 μΑ
i _{Ro} (i through R _o)	199.999 μΑ	200 μΑ
$v_d = 0 - v_1$	–20.066667 μV	OV
Av _d	-4.0133 V	$v_o - i_{Ro} \times R_o = -4V \neq 0$ *

^{*} cannot be calculated by $A \times v_d$ since $\infty \times 0$ is not defined.

Figure 5.13 For Practice Prob. 5.3.

Find the output of the op amp circuit shown in Fig. 5.13. Calculate the current through the feedback resistor.

Answer: -3.15 V, 26.25 μ A.

Calculate v_o in the circuit of Fig. 5.20.

Answer: 7 V.

Practice Problem 5.5

Figure 5.20 For Practice Prob. 5.5.

Find v_o and i_o in the op amp circuit shown in Fig. 5.23.

Figure 5.23 For Practice Prob. 5.6.

Answer: -3.8 V, -1.425 mA.

Design a difference amplifier with gain 7.5.

Answer: Typical: $R_1 = R_3 = 20 \text{k}\Omega$, $R_2 = R_4 = 150 \text{k}\Omega$.

Obtain i_o in the instrumentation amplifier circuit of Fig. 5.27.

Figure 5.27 Instrumentation amplifier; for Practice Prob. 5.8.

Answer: $-800 \ \mu A$.

 $1.2 \text{ V} \stackrel{+}{=}$ $50 \text{ k}\Omega \stackrel{\downarrow}{\geq} i_o \qquad \stackrel{-}{=}$

Figure 5.30 For Practice Prob. 5.9.

Determine v_o and i_o in the op amp circuit in Fig. 5.30.

Answer: 6 V, 24 μ A.

If $v_1 = 7$ V and $v_2 = 3.1$ V, find v_o in the op amp circuit of Fig. 5.33.

Figure 5.33

For Practice Prob. 5.10.

Answer: 10 V.

A three-bit DAC is shown in Fig. 5.37.

- (a) Determine $|V_o|$ for $[V_1V_2V_3] = [010]$.
- (b) Find $|V_o|$ if $[V_1V_2V_3] = [110]$.
- (c) If $|V_o| = 1.25$ V is desired, what should be $[V_1V_2V_3]$?
- (d) To get $|V_o| = 1.75$ V, what should be $[V_1V_2V_3]$?

Answer: 0.5 V, 1.5 V, [101], [111].

Practice Problem 5.12

Figure 5.37 Three-bit DAC; for Practice Prob. 5.12.

Determine the value of the external gain-setting resistor R_G required for the IA in Fig. 5.38 to produce a gain of 142 when $R=25 \text{ k}\Omega$.

Answer: 354.6Ω .

Figure 5.38 (a) The IA with an external resistance to adjust the gain, (b) schematic symbol.