Probabilistic and Bayesian Analytics

Chenghua Lin Chenghua.Lin@abdn.ac.uk

Road Map

- Probabilistic and Bayesian Analytics
- Classification
 - Naïve Bayes Classifier
 - Support vector machines (SVM)
 - Decision Trees
- Association Rule Mining
- Feature Engineering
- Data visualization
- Case study
- Data Mining Issues

Today's Lecture

- Probabilistic and Bayesian Analytics
- Classification
 - Naïve Bayes Classifier
 - Support vector machines (SVM)
 - Decision Trees
- Association Rule Mining
- Feature Selection
- Visualization I and II
- Case study
- Data Mining Issues

Probability

- The world is a very uncertain place
- Probability: a mathematical framework for reasoning about uncertainty
 - How likely next Monday is going to rain?
 - You have a headache. What's the chance you have got flu?
 - Many other similar examples ...

What we're going to do

- We will review the fundamentals of probability.
- It's really going to be worth it
- We will keep mathematics to the minimum

Discrete Random Variables

- A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.
- Examples
 - A = The UK PM in 2023 will be female
 - A = You wake up tomorrow with a headache
 - A = You have Ebola…

The Axioms of Probability

• $P(\Omega) = 1$

Probabilities

 We write P(A) as "the fraction of possible worlds in which A is true"

Sample space of all possible worlds (Ω)

Its area is 1

P(A) = Area of reddish oval

Interpreting the axioms

- 0<=P(A)<=1
- $P(\Omega) = 1$

0

The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true

Interpreting the axioms

- 0<=P(A)<=1
- $P(\Omega) = 1$

The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true

The Axioms of Probability

• $P(\Omega) = 1$

P(A or B)=P(A)+P(B)-P(A and B)

Interpreting the axioms

- 0<=P(A)<=1
- $P(\Omega) = 1$
- P(A or B)=P(A)+P(B)-P(A and B)

Multivalued Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of {v1,v2, .. vk}
 - i.e., the elements of the value space has to be mutually exclusive
- Thus... $P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$ $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

An easy fact about Multivalued Random Variables

- Using the axioms of probability
 - $0 \le P(A) \le 1$
 - $P(\Omega) = 1$
 - P(A or B)=P(A)+P(B)-P(A and B)
- And assuming that A obeys

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

 $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

• It is easy to prove that $P(A=v_1\vee A=v_2\vee A=v_i)=\sum_{i=1}^i P(A=v_j)$

• And thus we can prove $\sum_{i=1}^{k} P(A = v_j) = 1$

Conditional Probability

 P(A|B) = The probability of an event (A), given that another (B) has already occurred.

H = "Have a headache" F = "Coming down with Flu"

P(H) = 1/10 P(F) = 1/40P(H|F) = 1/2

"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 50-50 chance you'll have a headache."

Conditional Probability

H = "Have a headache" F = "Coming down with Flu" P(H) = 1/10 P(F) = 1/40 P(H|F) = 1/2

```
P(H|F) = Fraction of flu-inflicted
worlds in which you have a
headache
= #worlds with flu and headache
          #worlds with flu
= Area of "H and F" region
      Area of "F" region
= P(H \wedge F)
    P(F)
```

Definition of Conditional Probability

Corollary: The Chain Rule

$$P(A \land B) = P(A|B) P(B)$$

Probabilistic Inference

H = "Have a headache" F = "Coming down with Flu"

P(H) = 1/10 P(F) = 1/40P(H|F) = 1/2

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

Probabilistic Inference

H = "Have a headache"
F = "Coming down with Flu"

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

$$P(F ^ H) = ...$$

$$P(F|H) = ...$$

Another way to understand the intuition

Let's say we have P(F), P(H), and P(H|F), like in the example in class.

Areawise, P(F) = A + B, P(H) = B + C,

Also,
$$P(H|F) = B$$

A + B

Since we know B / (A+B), we can get B / (B+C) by multiplying by (A+B) and dividing by (B+C). But since we already calculated, A+B = P(F), and B+C = P(H), so we are actually multiplying by P(F) and dividing by P(H). Which is Bayes Rule:

$$P(F|H) = P(H|F) * P(F)$$

 $P(H)$

What we just did...

This is the FAMOUS Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

The Joint Distribution

Joint distribution: the probability of two or more events occurring together.

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2M rows).
- For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

Example: Boolean variables A. B. C

A	В	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint

 Once you have the joint distribution you can ask for the probability of any logical expression involving your attribute

Using the Joint

P(Poor Male) = 0.4654

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

P(Poor) = 0.7604

Inference with the Joint

P(Poor Male) = 0.4654

P(Poor) = 0.7604

P(Male | Poor) = 0.4654 / 0.7604 = 0.612

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

What you should know

- The Axioms of Probability
- Conditional probability
- Joint probability
- Bayes rule

Acknowledgement

 Some part of the lecture notes are from Andrew W. Moore's tutorial.