지능형 시스템 HW02 Hopfield Network

정보컴퓨터공학과 201824602 최원준

1. 구현목적

기존의 숫자패턴에 첨가된 노이즈로 인하여 알아보기 힘든 숫자 패턴을 Hopfield Network 를 이용하여 비동기적 갱신으로 원본 데이터를 복구하고, 패턴들에 대한 최대잡음 적응성을 실험해 본다.

2. 원본데이터 복구 Hopefield Network

1) 숫자 데이터 디자인

Hopfield Network에 사용될 숫자패턴 0,1,2,3을 최대잡음 적응성이 골고루 좋고 Design 에 한 노드 당 동일한 노드를 사용해서 만든 10x10 크기의 숫자 데이터를 사용하였다.

10x10 Number design

그림-1. Binary Image로 제작한 0,1,2,3 숫자 데이터 각 숫자 패턴은 총 50개의 노드를 사용하여 제작됨

2) Weight & Threshold Matrix 초기화

Test데이터를 입력 받았을 때 원본 데이터로 복구하기 위한 Weight & Threshold Matrix를 1)에서 디자인한 0,1,2,3의 10x10 Binary Data로 계산한다.

$$w_{ij} = \begin{cases} \sum_{m=1}^{M} (2a_i^{(m)} - 1)(2a_j^{(m)} - 1) & i \neq j \\ 0 & i = j \end{cases}$$
[1]

디자인한 Binary Image Data는 2차원 벡터이기 때문에 1차원 벡터로 flat을 해준 뒤 식 [1]을 이용하여 Weight Matrix를 계산 한다. 여기서 M은 Matrix의 전체 크기인 100이다.

$$\theta_i = -\frac{1}{2} \sum_{j=1}^{N} w_{ij}$$
 [2]

앞에서 계산한 Weight Matrix를 이용하여 식 [2]를 사용하여 각 Threshold를 계산한다. 여기서 N은 2차원 Weight Matrix의 행의 크기인 100이다.

3) Noise 첨가

앞서 계산한 Weight와 Thrshold를 이용하여 Hopfield로 노이즈가 첨가된 원본 데이터를 복구하기 위해 Noise가 첨가된 Binary Image를 만든다.

Add Noise Number Set

그림-2. 앞서 제작된 숫자 이미지 데이터에 28개의 noise를 첨가한 데이터 (왼쪽부터 0,1,2,3)

4) 비동기적으로 Net 값 수정

$$u_{i}(k+1) = \sum_{j} w_{ij} a_{j}(k) + \theta_{i}$$
 [3]
$$a_{i}(k+1) = \begin{cases} 1 & u_{i}(k+1) > 0 \\ 0 & u_{i}(k+1) < 0 \\ a_{j}(k) & u_{i}(k+1) = 0 \end{cases}$$
 [4]

식[3]을 이용하여 Noise가 섞인 데이터를 input으로 받아 Weight와 Threshold를 이용해 왼쪽 상단부터 원본데이터로 한 단계씩 복구한다. 복구할 데이터가 없을 때 까지 계속해서 반복해서 실행한다.

그림3,4의 (a),(b)를 보았을 때 모두 23번의 반복을 거치면 원본 데이터로 복구 되는 모습을 확인 할 수 있었다.

(a) Noise가 첨가된 0 데이터 복구 (b) Noise가 첨가된 1 데이터 복구 그림-3. Noise가 첨가된 데이터를 복구하는 과정1

(a) Noise가 첨가된 2 데이터 복구 (b) Noise가 첨가된 3 데이터 복구 그림-4. Noise가 첨가된 데이터를 복구하는 과정2

5) 정확도 측정

Hopfield Network의 경우 데이터의 Noise가 일정수준 이상으로 높아지게 된다면 원본 데이터로 복구하기 낮아진다. 그래서 노이즈 첨가를 데이터마다 $10\sim70\%$ 까지 100개의 데이터로 정확성을 측정해 보았다.

그림-5. Noise 비율에 따른 최대잡음 적응성 정확도

그림-5의 그래프를 보았을 때 전체적으로 Noise가 증가함에 따라 원본데이터로의 정확도가 낮아지는 것을 확인할 수 있었다. 그 중에서 최대잡음 적응성이 가장 높은 1, 3 숫자데이터의 경우 최대잡음 적응성이 3번째인 0 숫자 데이터 보다 낮은 걸로 보아 최대잡음 적응성이 항상 일치하는 것으로 보이지는 않는다.