MATH 135 Fall 2020: Extra Practice 5

Warm-Up Exercises

WE01. Let $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{2, 4, 6, 9\}$, and $B = \{4, 5, 6, 7\}$.

- (a) Calculate the following:
 - i. $A \cup B = \{2, 4, 5, 6, 7, 9\}$
 - ii. $A \cap B = \{4, 6\}$
 - iii. $\overline{A} = \mathcal{U} A = \{1, 3, 5, 7, 8\}$
 - iv. $\overline{B} = \mathcal{U} B = \{1, 2, 3, 8, 9\}$
 - v. $A B = \{2, 9\}$
 - vi. $B A = \{5, 7\}$
- (b) Are A and B disjoint? No, since 4 is in both sets.
- (c) Give a set C such that $C \subseteq B$. Let C = B.
- (d) Give a set D such that $D \subsetneq A$. Let $D = \{2\}$.

WE02. Suppose S and T are two sets. Prove that if $S \cap T = S$, then $S \subseteq T$. Is the converse true?

Proof. Let S and T be arbitrary sets such that their intersection is S. We must show that any element of S is an element of T.

Consider an element s in S. But S is equal to $S \cap T$. Elements of an intersection are elements of the original sets, so $s \in T$, as desired.

For the converse, consider another two sets, S_1 and T_1 , where $S_1 \subseteq T_1$. This means that all elements of S_1 are elements of T_1 , that is, all elements of T_1 are elements of both T_1 and T_1 . But this is just the definition of the intersection of T_1 and T_2 . Therefore, the converse is also true.

WE03. Give an example of three sets A, B, and C such that $B \neq C$ and B - A = C - A.

Solution. Let $A = \{1\}$, $B = \{2\}$ and $C = \{1, 2\}$. Then, $B - A = \{2\}$ and $C - A = \{2\}$. \square

Recommended Problems

RP01. Let A be a subset of the universe \mathcal{U} . Prove that $A \cup \overline{A} = \mathcal{U}$.

Proof. Recall that the complement of a set \overline{S} with respect to a universe \mathcal{U} is defined as the set $\{x \in \mathcal{U} : \neg (x \in S)\}$. Recall also that the union of two sets X and Y, again with universe \mathcal{U} , is defined as the set $X \cup Y = \{x \in \mathcal{U} : x \in X \lor x \in Y\}$.

Then, $A \cup \overline{A} = \{x \in \mathcal{U} : x \in A \lor \neg (x \in A)\}$. The disjunction of any logical statement with its negation is a tautology, so this property is true for all elements of \mathcal{U} . Therefore, the resulting set is simply \mathcal{U} .

RP02. Let S and T be two sets which are subsets of the universe \mathcal{U} . Prove that

$$(S \cup T) - (S \cap T) = (S - T) \cup (T - S).$$

Proof. Let S and T be arbitrary subsets of \mathcal{U} , and x be an arbitrary element of \mathcal{U} such that it is an element of the left-hand side. We prove by showing that the left and right-hand sides are subsets of another, that is, the following universally quantified biconditional holds:

$$\forall x \in \mathcal{U}, x \in (S \cup T) - (S \cap T) \iff x \in (S - T) \cup (T - S)$$

This can be done by rewriting both sides in set-builder notation and applying logical equivalencies.

$$(S \cup T) - (S \cap T) = \{x \in \mathcal{U} : (x \in S \cup T) \land (x \notin S \cap T)\}$$

$$= \{x \in \mathcal{U} : (x \in S \lor x \in T) \land \neg (x \in S \land x \in T)\}$$

$$= \{x \in \mathcal{U} : (x \in S \lor x \in T) \land (\neg (x \in S) \lor \neg (x \in T))\}$$

Now, distributing, we have the property:

$$(x \in S \land x \notin S) \lor (x \in S \land x \notin T) \lor (x \in T \land x \notin S) \lor (x \in T \land x \notin T)$$

which can be equivalently expressed by removing falsities:

$$(x \in S \land x \notin T) \lor (x \in T \land x \notin S).$$

Now, we can apply the definitions of unions and complements in reverse:

$$(S \cup T) - (S \cap T) = \{x \in \mathcal{U} : (x \in S \land x \notin T) \lor (x \in T \land x \notin S)\}$$
$$= \{x \in \mathcal{U} : (x \in S \land x \notin T)\} \cup \{x \in \mathcal{U} : (x \in T \land x \notin S)\}$$
$$= (S - T) \cup (T - S)$$

RP03. Let $A = \{n \in \mathbb{Z} : 2 \mid n\}$ and $B = \{n \in \mathbb{Z} : 4 \mid n\}$. Let $n \in \mathbb{Z}$. Prove that $n \in (A - B)$ if and only if n = 2k for some odd integer k.

Proof. We prove the biconditional by proving both implications.

(⇒) Let n be an arbitrary integer element of A - B, i.e., $n \in A$ but $n \notin B$. Then, the defining property of A holds but that of B does not. Therefore, $2 \mid n$ but $4 \nmid n$.

Since $2 \mid n$, it may be written as n = 2q for some integer q.

If q is even, then n = 2(2p) for some integer p. That means n = 4p, so $n \mid 4$, which is a contradiction. Therefore, q must be odd, and n may be written as n = 2k for an odd integer k = q.

 (\Leftarrow) Let n be an arbitrary integer such that n=2k for some odd integer k. It immediately follows that $2 \mid n$ and $n \in A$.

Also, since k is odd, $n = 2(2d+1) = 4\left(d+\frac{1}{2}\right)$ for another integer d. $d+\frac{1}{2}$ will never be an integer, so $4 \nmid n$, which means $n \notin B$.

However, $n \in A$ and $n \notin B$ is precisely the definition of $n \in (A - B)$.

Therefore, since both implications hold, the statement is true.

RP04. Prove that there exist sets A, B, and C such that $A \cup B = A \cup C$ and $B \neq C$.

Proof. Let $A = \{1, 2\}, B = \{1\}, \text{ and } C = \{2\}.$ Clearly, $B \neq C$.

We have $A \cup B = \{1, 2\}$ and $A \cup C = \{1, 2\}$, which are equal.

RP05. Prove or disprove. If A, B, and C are sets, then $A \cap (B \cup C) = (A \cap B) \cup C$.

Solution. Let A, B, and C be arbitrary sets. We disprove by showing $(A \cap B) \cup C$ is not a subset of $A \cap (B \cup C)$.

Let x be an element of C that is not an element of A. Then, it is clearly an element of $(A \cap B) \cup C$, since it is an element of C and all elements of either set in a union are elements of the union.

However, it is not an element of $A \cap (B \cup C)$. Since it is an intersection, all such elements are elements of A, which x is not.

Therefore, $(A \cap B) \cup C \not\subseteq A \cap (B \cup C)$. Set equality is defined by bidirectional subsets, so the sets cannot be equal.

RP06. Prove there is a unique set T such that for every set $S, S \cup T = S$.

Proof. We suppose that $T = \emptyset$, that is, T is the set with no elements, and prove it.

(Existence) Since there are no elements in T, it may be written as $T = \{x : P\}$ where P is a false logical statement.

Now, the union $S \cup T$ is $\{x : x \in S \lor P\}$. but a statement disjoined with false gives itself, so we have $\{x : x \in S\}$, which is just S.

(Uniqueness) Let A and B be empty sets.

Then, $\forall x \in \mathcal{U}, x \in A \implies x \in B$ is vacuously true, since the hypothesis is always false by definition. Therefore, $A \subseteq B$.

Likewise, $\forall x \in \mathcal{U}, x \in B \implies x \in A$ is vacuously true. Therefore, $B \subseteq A$.

Since both A and B are mutual subsets, A = B, and the empty set is unique.

Challenges

C01. The *symmetric difference* of two sets A and B, denoted $A \triangle B$, is defined as

$$A \triangle B = (A - B) \cup (B - A).$$

Prove that $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.

Proof. We will prove using logical equivalences.

Consider the left-hand side. By the given definition,

$$(A \triangle B) \triangle C = ((A - B) \cup (B - A)) \triangle C$$

= $(((A - B) \cup (B - A)) - C) \cup (C - ((A - B) \cup (B - A)))$

which is a mess, so we re-express as a logical expression in set-builder notation. That is, $\{x: P(x)\}$ for some open sentence P(x). For convenience, let $a \equiv x \in A$, $b \equiv x \in B$, and $c \equiv x \in C$.

$$P(x) \equiv (((a \land \neg b) \lor (b \land \neg a)) \land \neg c) \lor (c \land \neg ((a \land \neg b) \lor (b \land \neg a)))$$

$$\equiv (a \land \neg b \land \neg c) \lor (b \land \neg a \land \neg c) \lor (c \land \neg (a \land \neg b) \land \neg (b \land \neg a))$$

$$\equiv (a \land \neg b \land \neg c) \lor (b \land \neg a \land \neg c) \lor (c \land (\neg a \lor b) \land (\neg b \lor a))$$

We now digress from this (also enormous) expression to simplify the last term. Recall in Problem RP02, we proved $(X \vee Y) \wedge (\neg X \vee \neg Y) \equiv (X \wedge Y) \vee (\neg X \wedge \neg Y)$. We may now apply this equivalence with $X \equiv \neg a$ and $Y \equiv b$.

$$P(x) \equiv (a \land \neg b \land \neg c) \lor (b \land \neg a \land \neg c) \lor (c \land ((\neg a \land b) \lor (\neg b \land a)))$$

$$\equiv (a \land \neg b \land \neg c) \lor (b \land \neg a \land \neg c) \lor (c \land \neg a \land b) \lor (c \land \neg b \land a)$$

$$\equiv (a \land b \land c) \lor (a \land \neg b \land \neg c) \lor (\neg a \land b \land \neg c) \lor (\neg a \land \neg b \land c)$$

Now, consider the right-hand side. By the given definition,

$$A \triangle (B \triangle C) = A \triangle ((B-C) \cup (C-B))$$
$$= (A - ((B-C) \cup (C-B))) \cup (((B-C) \cup (C-B)) - A)$$

which we may express as $\{x:Q(x)\}$ for some open sentence Q(x).

$$Q(x) \equiv (a \land \neg((b \land \neg c) \lor (c \land \neg b))) \lor (((b \land \neg c) \lor (c \land \neg b)) \land \neg a)$$

$$\equiv (a \land (\neg(b \land \neg c) \land \neg(c \land \neg b))) \lor ((b \land \neg c \land \neg a) \lor (c \land \neg b \land \neg a))$$

$$\equiv (a \land (\neg b \lor c) \land (\neg c \lor b)) \lor (\neg a \land b \land \neg c) \lor (\neg a \land \neg b \land c)$$

Applying the identity we just discovered, namely, $X \wedge (\neg Y \vee Z) \wedge (\neg Z \vee Y) \equiv (X \wedge Y \wedge Z) \vee (X \wedge \neg Y \wedge \neg Z)$, for $X \equiv a, Y \equiv b$, and $Z \equiv c$.

$$Q(x) \equiv (a \land b \land c) \lor (a \land \neg b \land \neg c) \lor (\neg a \land b \land \neg c) \lor (\neg a \land \neg b \land c)$$

but this is exactly P(x). Therefore, the right-hand side may be expressed $\{x: P(x)\}$, which is precisely the left-hand side.