Ejercicio 1 - Convexidad

Recordamos del teórico que f es convexa si

$$f(t \cdot x + (1-t) \cdot y) \le t \cdot f(x) + (1-t) \cdot f(y), \ \forall x, y \in \mathbb{R}^n, t \in [0, 1]$$

a)
$$g(x) = \sum_{i} w_i f_i(x)$$

 $g(x) = w_1 f_1(x) + w_2 f_2(x) + \dots + w_k f_k(x)$

$$g(t \cdot x + (1-t) \cdot y) = w_1 f_1(t \cdot x + (1-t) \cdot y) + w_2 f_2(t \cdot x + (1-t) \cdot y) + \dots + w_k f_k(t \cdot x + (1-t) \cdot y)$$

Por convexidad de las funciones f_i se cumple que

$$g(t \cdot x + (1-t) \cdot y) \le w_1 (tf_1(x) + (1-t)f_1(y)) + \dots + w_k (tf_k(x) + (1-t)f_k(y))$$

Agrupamos los terminos multiplicados por t por un lado y (1-t) por otro

$$g(t \cdot x + (1 - t) \cdot y) \le t \cdot [w_1 f_1(x) + w_2 f_2(x) + \dots + w_k f_k(x)] + (1 - t) \cdot [(w_1 f_1(y) + w_2 f_2(y) + \dots + w_k f_k(y)]$$

$$g(t \cdot x + (1 - t) \cdot y) \le t \sum_i w_i f_i(x) + (1 - t) \sum_i w_i f_i(y) = t g(x) + (1 - t) g(y)$$

 \Rightarrow se cumple que g(x) es convexa.

b)
$$l(x) = f_1(Ax + b)$$

 $l(tx + (1 - t)y) = f_1(A(tx + (1 - t)y) + b)$

Observamos que tb + (1 - t)b = b por lo que lo incluimos en los respectivos terminos

$$f_1(A(tx+(1-t)y)+b) = f_1(t(Ax+b)+(1-t)(Ay+b))$$

Por convexidad de la función f_1 se cumple que

$$l(tx+(1-t)y) = f_1(t(Ax+b)+(1-t)(Ay+b)) \le tf_1(Ax+b)+(1-t)f_1(Ay+b) = tl(x)+(1-t)l(y)$$

 $\Rightarrow l(x) \text{ es convexa.}$

c)
$$Y = \bigcap_{i \in N} X_i$$

Del teórico sabemos que un conjunto $C \subset \mathbb{R}^n$ es convexo si se cumple:

$$\forall x, y \in C, tx + (1-t)y \in C, \forall t \in [0,1]$$

Si tomamos dos puntos cualesquiera (x,y) que pertenezcan a Y sabemos por definición que también pertenecerán a la intersección de todos los X_i . Luego por convexidad de los X_i esos puntos cumplen que $xt + (1-t)y \in X_i$, $\forall i$ y, por ser Y la intersección, $xt + (1-t)y \in Y$. Lo mismo aplica al tomar cualquier otro par $(x,y) \in Y \Rightarrow Y$ es convexa.

d)
$$B(C,r) = \{x \in \mathbb{R}^n : ||x - c|| \le r\}$$

Sean $x, y \in B(C, r)$ entonces debemos verificar si se cumple que $tx + (1 - t)y \in B(C, r)$ o lo que es lo mismo, que ||C - [tx + (1 - t)y]|| < r.

Partiendo de [tx + (1-t)y], sabemos que

$$||C - [tx + (1-t)y]|| = ||tC + (1-t)C - [tx + (1-t)y]|| = ||t(C-x) + (1-t)(C-y)||$$

Utilizando la desigualdad triangular, se tiene que

$$||C - [tx + (1-t)y]|| \le ||t(C-x)|| + ||(1-t)(C-y)|| = t \cdot ||(C-x)|| + (1-t) \cdot ||(C-y)||$$

Ahora, sabemos que tanto x como y pertenecen a B(C,r), con lo cual ||(C-x)|| < r y ||(C-y)|| < r.

Lo anterior se transforma entonces en

$$||C - [tx + (1-t)y]|| \le tr + (1-t)r = r$$

Finalmente, verificamos que $[tx+(1-t)y]\in B(C,r)$ para cualquier par x,y en B(C,r) y $\forall t\in [0,1]$

 $\Rightarrow B(C,r)$ es convexa.

Ejercicio 2 - Interpretación geométrica

a)

Debemos probar que la función de costo $c(x,y) = -log(y^2 - x^2)$ es convexa.

En primer lugar, se puede observar que $y^2 - x^2 = (y - x)^2$