Introduction to Computer Networks

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

August 4, 2020

Course Text Books for Theory and Practice

Computer Networks History

George Stibitz use a teletype machine Dartmouth college-New York SemiĀutomatic Ground Environment (SAGE) for military radar 1950

Commercial airline reservation system SemiAutomated Business Research Environment went online with two mainframe computer 1960

Researcher at dartmouth develop a dartmouth time sharing system for distributed users of large computer networks

Thomas marill and Lawerence G robert created the first WAN 1965

Liniking output system like teletypewrite with computer was an intersect of advance research project agency(ARPA) project code name was "Intergalactic computer network

A research group at MIT supported by Bell labs & General electric used to route and manage telephone connections

Computer Networks History (Cont...)

Computer Networks

- A computer network is a collection of computers and other hardware components interconnected by communication channels that allows the sharing of resources and information.
- Internet being the most well-known example of a network of networks
- Networks come in many sizes, shapes and forms
 - LAN: Network in small geographical Area (Room, Building or a Campus) is called LAN (Local Area Network)
 - MAN: Network in a City is call MAN (Metropolitan Area Network)
 - WAN: Network spread geographically (Country or across Globe) is called WAN (Wide Area Network)

Applications of Networks

Resource Sharing:

- Hardware (computing resources, disks, printers)
- Software (application software)

Information Sharing

- Easy accessibility from anywhere (files, databases)
- Search Capability (WWW).

Communication

- Fmail
- Message broadcast
- Remote computing
- Distributed processing (GRID Computing)

Computer Networks

- A computer network is a collection of computers and other hardware components interconnected by communication channels that allows the sharing of resources and information
- Internet being the most well-known example of a network of networks
- Networks come in many sizes, shapes and forms
 - LAN: Network in small geographical Area (Room, Building or a Campus) is called LAN (Local Area Network)
 - MAN: Network in a City is call MAN (Metropolitan Area Network)
 - WAN: Network spread geographically (Country or across Globe) is called WAN (Wide Area Network)

Applications of Networks

Resource Sharing:

- Hardware (computing resources, disks, printers)
- Software (application software)

Information Sharing

- Easy accessibility from anywhere (files, databases)
- Search Capability (WWW).

Communication

- Fmail
- Message broadcast
- Remote computing
- Distributed processing (GRID Computing)

Network Design

- Two dimensions stand out as important:
 - Transmission technology
 - Multi-point links: (Shared links)
 - Point-to-Point links: (Unicast link)
 - Scale
 - Distance
 - Network Performance
 - Performance (Transmit & Response Time)
 - Reliability (Throughput)
 - Security

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room]]
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area networ
100 km	Country	11
1000 km	Continent	> Wide area network
10,000 km	Planet	The Internet

Scale (distance)

Network Topology

- The network topology defines the way in which computers, printers, and other devices are connected.
- A network topology describes the layout of the wire and devices as well as the paths used by data transmissions

Bus Topology

- Commonly referred to as a linear bus, all the devices on a bus topology are connected by one single cable.
- Bus Topology (MultiPoint)
 - Easy to install
 - Use for small Network
 - Easy to Expand
 - Slow speed as only one system can transmit at a time
 - Faulty cable bring down whole N/W
 - If the main cable fails or gets damaged the whole network will fail.
 - As more workstations are connected the performance of the network will become slower because of data collisions.
 - Every workstation on the network "sees" all of the data on the network this is a security risk

Ring Topology

 In a ring network each devices connected to two other devices - this forms a ring for the signals to travel around.

Ring Topology (MultiPoint)

- Token Passing mechanism
- Faulty cable bring down whole N/W
- Reduced chances of data collision as each node release a data packet after receiving the token
- Token passing makes ring topology perform better than bus topology under heavy traffic
- No need of server to control connectivity among the nodes
- In Unidirectional Ring, a data packet must pass through all the nodes.

Star Topology

 In a star network each device on the network has its own cable that connects to a switch or hub.

Star Topology (Point-to-Point)

- it is very reliable if one cable or device fails then all the others will continue to work
- it is high-performing as no data collisions can occur
- it is expensive to install as this type of network uses the most cable (network cable is expensive)
- extra hardware is required (hubs or switches) which adds to cost
- if a hub or switch fails, all the devices connected to it will have no network connection

Tree Topology

 A tree topology is a combination of a star network topology and a bus topology.

Tree Topology (Point-to-Point) or (MultiPoint)

- Scalable as leaf nodes can accommodate more nodes in the hierarchical chain
- A point to point wiring to the central hub at each intermediate node of a tree topology represents a node in the bus topology
- Other hierarchical networks are not affected if one of them gets damaged
- Easier maintenance and fault finding
- Huge cabling is needed
- A lot of maintenance is needed

Mesh Topology

 A network setup where each computer and network device is interconnected with one another,.

Mesh Topology (Point-to-Point)

- Manages high amounts of traffic, because multiple devices can transmit data simultaneously.
- A failure of one device does not cause a break in the network or transmission of data.
- Adding additional devices does not disrupt data transmission between other devices.
- The cost to implement is higher than other network topologies, making it a less desirable option
- Building and maintaining the topology is difficult and time consuming.
- The chance of redundant connections is high, which adds to the high costs and potential for reduced efficiency.

Network Topologies Configurational Requirements

Mesh Topology

• Number of cables: $\frac{n*(n-1)}{2}$

• Number of ports: n * (n-1)

Performance: ↑

Reliability: ↑

Cost: High

Security: ↑

Star Topology

• Number of cables: n

• Number of ports: 1 * n

Performance: ↓(hub), ↑(switch)

Reliability: ↓(hub), ↑(switch)

Cost: High

Security: ↑(switch),↓(hub)

Network Topologies Configurational Requirements

- Bus Topology
- Number of cables: n+1
- Number of ports: n
- Performance: ↑
- Reliability: ↓
- Cost: ↓
- Security: ↓

- Ring Topology
- Number of cables: n+1
- Number of ports: n
- Performance: ↓
- Reliability: ↑
- Cost: High
- Security: ↓

Thank You