

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170511801

FCC/IC REPORT

(Base Station)

Applicant: Baicells Technologies Co., Ltd.

Address of Applicant: 3F, Hui Yuan Development Building, No.1 Shangdi Information

Industry Base, Haidian Dist., Beijing, China

Equipment Under Test (EUT)

Product Name: LTE-TDD Base Station

Model No.: mBS1105

Trade mark: BaiCells

FCC ID: 2AG32MBS1105

IC ID: 20982-MBS1105

FCC CFR Title 47 Part 2

Applicable standards: FCC CFR Title 47 Part 90 Subpart Z

RSS-Gen Issue 4, November 2014 RSS-197 Issue 1, February 2010

Date of sample receipt: 26 May, 2017

Date of Test: 26 May, 2017 to 27 May, 2017

Date of report issued: 29 May, 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2. Version

Version No.	Date	Description
00	29 May, 2017	Original

Tested by: Date: 29 May, 2017

Test Engineer

Reviewed by: 29 May, 2017

Project Engineer

3. Contents

		Page
1. C	OVER PAGE	1
2. VE	ERSION	2
3. C	ONTENTS	3
4. TE	EST SUMMARY	4
	ENERAL INFORMATION	
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T	5
5.3	TEST MODES	
5.4	DESCRIPTION OF SUPPORT UNITS	
5.5	RELATED SUBMITTAL(S) / GRANT (S)	6
5.6	TEST METHODOLOGY	6
5.7	LABORATORY FACILITY	
5.8	LABORATORY LOCATION	
5.9	TEST INSTRUMENTS LIST	7
6. S	YSTEM TEST CONFIGURATION	8
6.1	EUT CONFIGURATION	8
6.2	EUT EXERCISE	8
6.3	CONFIGURATION OF TESTED SYSTEM	8
6.4	DESCRIPTION OF TEST MODES	
6.5	TRANSMIT OUTPUT POWER AND PSD	9
6.6	OCCUPY BANDWIDTH	19
6.7	EMISSION MASK	
6.8	OUT OF BAND EMISSION AT ANTENNA TERMINALS	
6.9	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
6.10	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	
6.11	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	
7 TE	EST SETUP PHOTO	47
8 El	UT CONSTRUCTIONAL DETAILS	48

4. Test Summary

Tool Hom	Section	Result		
Test Item	FCC	IC	resuit	
PE Output Power	Part 2.1046	RSS Gen Section 6.12	Pass	
RF Output Power	Part 90.1321	RSS 197 section 5.6	F d 5 5	
Modulation Characteristics	Part 2.1047	RSS 197 section 5.1	Pass	
99% & -26 dB Occupied Bandwidth	Part 2.1049	RSS Gen section 6.6	Pass	
99 % & -20 dB Occupied Baridwidth	Part 90.209	NSS Gen section 6.6	rass	
Emission Mask	Part 90.210(b)	Not applicable	Pass	
Spurious Emissions at Antenna Terminal	Part 2.1051	RSS Gen Section 6.13	Pass	
Spurious Emissions at Antenna Terminal	Part 90.1323	RSS 197 section 5.7	r ass	
Field Strength of Spurious Radiation	Part 2.1053	RSS Gen Section 6.13	Pass	
Tield Strength of Spurious Nadiation	Part 90.1323	RSS 197 section 5.7	rass	
Frequency stability vs. temperature	Part 2.1055(a)(1)(b)	RSS Gen section 6.11	Pass	
r requerity stability vs. temperature	Part 90.213(a)	RSS 197 section 5.3	1 035	
Frequency stability vs. voltage	Part 2.1055(d)(1)(2)	RSS Gen section 6.11	Pass	
Trequency stability vs. voltage	Part 90.213(a)	RSS 197 section 5.3	1 033	

Pass: The EUT complies with the essential requirements in the standard.

5. General Information

5.1 Client Information

Applicant:	Baicells Technologies Co., Ltd.
Address of Applicant:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China
Manufacturer	Baicells Technologies Co., Ltd.
Address of Manufacturer:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China

5.2 General Description of E.U.T.

Product Name:	LTE-TDD Base Station
Model No.:	mBS1105
Operation Frequency range:	3655MHz~3695MHz
Modulation type:	QPSK,16QAM,64QAM
Antenna type:	External antenna ("N" type)
Antenna gain:	3 dBi
Power supply:	DC 48V

Test Channle:

101	ЛНz	20MHz					
Channel: Frequency (MHz)		Channel:	Frequency (MHz)				
Lowest	3655	Lowest	3660				
Middle	3675	Middle	3675				
Highest	3695	Highest	3690				

5.3 Test modes

Data mode (QPSK)	Keep the EUT in data communicating mode (QPSK). (10MHz, 20MHz)
Data mode (64QAM)	Keep the EUT in data communicating mode (64QAM). (10MHz, 20MHz)

5.4 Description of Support Units

Manufacturer Description		Model	Serial Number	FCC ID/DoC	
INVENTR@NICS°	LED DRIVER	EUV-200S048SV	N/A	N/A	

5.5 Related Submittal(s) / Grant (s)

FCC: This submittal(s) (test report) is filing to comply with Section Part 90 subpart Z of the FCC CFR 47 Rules.

IC: This submittal(s) (test report) is filing to comply with RSS 197

5.6 Test Methodology

FCC: Both conducted and radiated testing were performed according to the procedures document on TIA/EIA 603 and FCC CFR 47.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057 IC: Both conducted and radiated testing were performed according to RSS Gen, RSS 197, ANSI

IC: Both conducted and radiated testing were performed according to RSS Gen, RSS 197, ANS C63.10:2009.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366 Email: info@ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1705118

Report No: CCISE170511801

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018
Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018
Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018
Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018
Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
Spectrum Analyzer 20Hz-26.5GHz	Agilent	N9020A	MY50510123	02-25-2017	02-24-2018
EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018
Coaxial Cable	CCIS	N/A	CCIS0016	02-25-2017	02-24-2018
Coaxial Cable	CCIS	N/A	CCIS0017	02-25-2017	02-24-2018
Coaxial cable	CCIS	N/A	CCIS0018	02-25-2017	02-24-2018
Coaxial Cable	CCIS	N/A	CCIS0019	02-25-2017	02-24-2018
Coaxial Cable	CCIS	N/A	CCIS0087	02-25-2017	02-24-2018
Signal Generator	Rohde & Schwarz	SMR 20	CCIS0024	02-25-2017	02-24-2018
Signal Generator	Rohde & Schwarz	SMX	CCIS0064	02-25-2017	02-24-2018
Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	02-25-2017	02-24-2018

Report No: CCISE170511801

6. System test configuration

6.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

6.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency which was for the purpose of the measurements.

6.3 Configuration of Tested System

6.4 Description of Test Modes

The EUT has been tested under operating condition.

EUT staying in continuous transmitting mode. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing.

The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for three modes with power adaptor, earphone and Data cable. The worst-case H mode.

6.5 Transmit Output Power and PSD

Test Requirement:	FCC part90.1321(a) and RSS-197 Clause 5.6.2
Test Method:	FCC part2.1046 and RSS Gen section 6.12
Limit:	FCC: (a) Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP powerdensity shall not exceed 1 Watt in any one-megahertz slice of spectrum. (b) In addition to the provisions in paragraph (a) of this section, transmitters operating in the 3650-3700 MHz band that emit multipledirectional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided theemissions comply with the following: (1) Different information must be transmitted to each receiver. (2) If the transmitter employs an antenna system that emits multiple directional beams but does not emit multiple directional beamssimultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to allantennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph(a) of this section, as applicable. The directional antenna gain shall be computed as follows: (i) The directional gain, in dBi, shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain, in dBi,of the individual element or stave having the highest gain. (ii) A lower value for the directional gain than that calculated in paragraph (b)(2)(i) of this section will be accepted if sufficient evidence ispresented, e.g., due to shading of the array or coherence loss in the beam-forming. (3) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequencychannels and if transmitted beams overlap, the power shall be reduced to ensure that the aggregate power from the overlapping beams does notexceed the limit specified in paragraph (b)(2) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall notexceed the limit specified in paragraph (b)(2) of this section by mo
Test Procedure:	RBW=1MHz, VBW=3MHz, Detector mode= RMS, Trace mode: Power averaging over 100 sweeps
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

	Transmit Output Power							
Bandwidth (MHz)	Modulation	Test Channel	Chain 0 Output Power (dBm/10MHz)	Chain 1 Output Power (dBm/10MHz)	Total Power (dBm/10MHz)	Antenna Gain (dBi)	EIRP (dBm/10MHz)	EIRP Limit (dBm/10MHz)
		Lowest	29.56	29.30	32.44	6	38.44	
	QPSK	Middle	29.63	29.44	32.55	6	38.55	
10		Highest	29.03	29.82	32.45	6	38.45	40
10	64QAM	Lowest	29.48	28.80	32.16	6	38.16	40
		Middle	29.51	29.01	32.28	6	38.28	
		Highest	29.01	29.35	32.19	6	38.19	
Bandwidth (MHz)	Modulation	Test Channel	Chain 0 Output Power (dBm/20MHz)	Chain 1 Output Power (dBm/20MHz)	Total Power (dBm/20MHz)	Antenna Gain (dBi)	EIRP (dBm/20MHz)	EIRP Limit (dBm/20MHz)
		Lowest	29.81	29.16	32.51	6	38.51	
	QPSK	Middle	29.62	29.42	32.53	6	38.53	
20		Highest	29.63	29.67	32.66	6	38.66	44
20		Lowest	29.83	29.51	32.67	6	38.67	44
	64QAM	Middle	29.65	29.65	32.66	6	38.66	
		Highest	29.50	29.95	32.74	6	38.74	

	PSD							
Bandwidth (MHz)	Modulation	Test Channel	Chain 0 PSD (dBm/MHz)	Chain 1 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Antenna Gain (dBi)	EIRP density (dBm/MHz)	EIRP density Limit (dBm/MHz)
		Lowest	20.22	20.34	23.29	6	29.29	
	QPSK	Middle	20.47	20.33	23.41	6	29.41	
10		Highest	20.41	20.71	23.57	6	29.57	30.00
10		Lowest	20.81	20.10	23.48	6	29.48	30.00
	64QAM	Middle	20.80	20.79	23.81	6	29.81	
		Highest	20.10	20.54	23.34	6	29.34	
Bandwidth (MHz)	Modulation	Test Channel	Chain 0 PSD (dBm/MHz)	Chain 1 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Antenna Gain (dBi)	EIRP density (dBm/MHz)	EIRP density Limit (dBm/MHz)
		Lowest	18.23	17.84	21.05	6	27.05	
	QPSK	Middle	18.41	18.02	21.23	6	27.23	
20		Highest	18.30	18.46	21.39	6	27.39	30.00
		Lowest	17.98	18.42	21.22	6	27.22	30.00
	64QAM	Middle	18.57	17.85	21.24	6	27.24	
		Highest	17.89	18.21	21.06	6	27.06	

Remark: Directional antenna Gain = Antenna Gain + 10 \lg (ANT_N) = 6 dBi

Test plot as follows:

Output Power at antenna terminal

Chain 0:

10MHz

QPSK

64QAM

Lowest channel

Middle channel

Highest channel

Channel Power

29.81 dBm / 20 MHz

20MHz

QPSK

| Span 30 MHz |

-43.20 dBm /Hz

64QAM

Lowest channel

Middle channel

Highest channel

PSD

Chain 0:

10MHz

| Action | Section | Analyzer | Section | Sect

Lowest channel

Middle channel

Highest channel

20MHz

QPSK

64QAM

Lowest channel

Middle channel

Highest channel

Output Power at antenna terminal

Chain 1:

10MHz

QPSK

| Ref | 100 | Cheese | Press | Center Freq 3.655000000 GHz | Center Freq 3.65500000 GHz | Center Freq 3.655000000 GHz | Center Freq 3.65500000 GHz | Center Freq 3.655000000 GHz | Center Freq 3.65500000 GHz | Center Freq 3.655000000 GHz | Center Freq 3.65500000 GHz | Center Freq 3.655000000 GHz | Center Freq 3.65500000 GHz | Center Freq 3.65500000 GHz | Center Freq 3.65500000 GHz | Center Freq 3.655000000 GHz | Ce

64QAM

Lowest channel

Middle channel

Highest channel

20MHz

QPSK

64QAM

Lowest channel

Middle channel

Highest channel

PSD

Chain 1:

10MHz

Lowest channel

Middle channel

Highest channel

20MHz

QPSK

64QAM

Lowest channel

Middle channel

Highest channel

6.6 Occupy Bandwidth

Test Requirement:	FCC part 90.209 and RSS-Gen 6.6		
Test Method:	FCC part 2.1049 and RSS-Gen 6.6		
Test Procedure:	The EUT's output RF connector was connected with a short cable to the spectrum analyzer		
	The transmitter shall be operated at its maximum carrier powermeasured under normal test conditions.		
	 The span of the analyzer shall be set to capture all products of themodulation process, including the emission skirts. 		
	 The resolution bandwidth (RBW) shall be in the range of 1% to 5% ofthe occupied bandwidth (OBW) and video bandwidth (VBW) shall beapproximately 3x RBW. 		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Chain 0:

Bandwidth(MHz)	Modulation	Test Channel	99% Occupy bandwidth (MHz)
10	QPSK	Lowest	8.914
		Middle	8.911
		Highest	8.912
	64QAM	Lowest	8.942
		Middle	8.941
		Highest	8.937
20	QPSK	Lowest	17.852
		Middle	17.862
		Highest	17.848
	64QAM	Lowest	17.860
		Middle	17.852
		Highest	17.870

Chain 1:

Bandwidth(MHz)	Modulation	Test Channel	99% Occupy bandwidth (MHz)
10	QPSK	Lowest	8.916
		Middle	8.914
		Highest	8.912
	64QAM	Lowest	8.917
		Middle	8.918
		Highest	8.914
20	QPSK	Lowest	17.850
		Middle	17.856
		Highest	17.866
	64QAM	Lowest	17.852
		Middle	17.851
		Highest	17.857

Test plot as follows: