		1°6 : Fiche de tes, calculatrices e	e calculs t documents interd	its	
Nom et prénom :				Note:	
	Porter directement les	réponses sur la	a feuille, sans j	ustification	
Polynômes.					
Le reste de la divisi	on euclidienne de $X^{4040} + Z^{4040}$	$X^{2020} - 3 \text{ par } (X^{2020} - 3)^{-1}$	$(-1)^2$ est:		
					(1)
Soient $A = X^4 + X$	$B^3 - 3X^2 - 4X - 1$ et B	$= X^3 + X^2 - X$	- 1.		
	$A \wedge B =$				(2)
Un couple de Bézor	at de A et B est :				
					(3)
Soit $Q = X^6 - 2X^5$	$-14X^4 + 59X^3 - 98X^2 +$	100X - 56, alors	, avec m la multij	plicité de 2 co	omme racine de Q :
m =		(4)	Q(-2) =		(5)
Dérivation.) ()	
Soit $f: \mathbb{R} \to \mathbb{R}, x \mapsto$	$x(x+1)\cos(x)$, soit $x \in \mathbb{R}$	et $n \in \mathbb{N}$. Donne	er la valeur de $f^{(r)}$	$\frac{\partial f}{\partial x}(x)$.	
					(6)
Soit $f: x \mapsto \operatorname{Arccos}$	$\left(\frac{1-x^2}{1+x^2}\right).$				
	Son ensemble de d	léfinition est :			(7)
	Son ensemble de dérivabilit	$ \acute{e} D \operatorname{est} D = $			(8)

Calculer les dérivées suivantes :

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{4x^3 - 3x^2}{4x^5 - 4} \right) = \tag{10}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\Big(\sqrt{x^2 - 2x + 3}\Big) = \tag{11}$$

Fraction rationnelles.

Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$ tel que $x^2 \neq 1$. La dérivée n-ième de $f: x \mapsto \frac{1}{1-x^2}$ est

$$f^{(n)}(x) = \tag{12}$$

Décomposer la fraction rationnelle suivante dans $\mathbb{R}(X)$:

$$\frac{5X}{(X^2 - 4)(X^2 + 1)} = \tag{13}$$

Calculer une primitive pour chacune des fonctions suivantes (on ne précisera pas l'ensemble de définition) :

$$\int \frac{\mathrm{d}x}{(x-1)^2(x-2)} = \tag{14}$$

$$\int \frac{2x^3 + 1}{x^3 + 3x} dx = \tag{15}$$

— FIN —