CÀLCUL INTEGRAL EN DIVERSES VARIABLES. PRIMAVERA 2013

Llista 1: Funcions mesurables i funcions d'una variable integrables Lebesgue

- 1. Raoneu que són mesurables i calculeu la mesura dels conjunts:
 - a) $\mathbf{Q} \cap [0,1]$ i $(\mathbf{R} \setminus \mathbf{Q}) \cap [0,1]$ en \mathbf{R} .
 - b) Si $a \in \mathbf{R}$, $\mathbf{R} \times \{a\}$ en \mathbf{R}^2 .
 - c) $\bigcup_{k>1} A_k$, essent $A_k = \{(x,y) \in \mathbf{R}^2 \mid \max(|x-k|, |y-k|) \le \frac{1}{2^k}\}$
- **2.** Sigui $f: \mathbf{R}^n \to \mathbf{R}$ una funció mesurable. Proveu:
 - a) $g: \mathbf{R}^n \to \mathbf{R}$, definida per g(x) = f(a+x), $a \in \mathbf{R}^n$, és mesurable.
 - b) $h: \mathbf{R}^n \to \mathbf{R}$, definida per h(x) = f(-x), és mesurable.
 - c) Si n = 1, I f és derivable, $f' : \mathbf{R} \to \mathbf{R}$, és mesurable.
- **3.** Estudieu la integrabilitat Lebesgue, segons valors d' $\alpha \in \mathbf{R}$, de les funcions:

a)
$$(1 - e^{-1/\sqrt{x}})x^{\alpha}$$
 en $(0, +\infty)$

b)
$$\frac{x^{\alpha-1}}{1-x}\log(1/x)$$
 en $(0,1)$

- **4.** Integrabilitat Lebesgue en (0,1) i en $(1,+\infty)$ de la funció $f(x) = \frac{1}{x^{\alpha}(1+x^{2\beta})}$ $\alpha, \beta \in \mathbf{R}$.
- **5.** Integrabilitat Lebesgue en $[1, +\infty)$ de la funció $f(x) = \frac{1}{x^{\alpha} \log^{\beta} x}$ $\alpha, \beta \in \mathbf{R}$.
- **6.** Integrabilitat Lebesgue en $[1, +\infty)$ de la funció $f(x) = \frac{\sqrt{x-1} \sin(1/x)}{|x^2 \alpha|}$ $\alpha \in \mathbf{R}$.
- 7. a) Integreu per parts, per a tot x>1, $\int_1^x \frac{\sin t}{t} dt$ i deduïu que la intgral impròpia $\int_1^\infty \frac{\sin t}{t} dt$ és convergent.
 - b) Proveu que no és absolutament convergent. Serà convergent com a integral de Lebesgue?