# Logic, Computability and Incompleteness

First-order Logic Revisited

# What is Logic?

A standard characterization:

Logic is the 'science' of valid arguments.

Modern 'symbolic' or formal logic is the *mathematical theory* of valid arguments

What is an argument?

Intuitively, an argument can be thought of as an <u>inference</u>, or piece of <u>reasoning</u>,

where certain statements are meant to support or establish a conclusion.

## What is an Argument?

More precisely,

an argument is a finite set of (declarative) sentences, where one sentence is singled out as the **conclusion** and the other sentences are the *premises*.

#### **Standard Argument Form:**

Premise 1 Premise 2

• • •

Premise n

Therefore,

**Conclusion** 

## What is Validity?

An argument is valid iff it is <u>not possible</u> for *all* the premises to be **true** and the conclusion **false**.

Alternatively, if all the premises were true,

then the conclusion would have to be **true** as well.

Some arguments are valid and some are not:

If it is snowing, then it is cold outside.

It is snowing.

Therefore, it is cold outside.

If the earth is round then the sky is blue.

The sky is blue.

**Therefore** the earth is round.

## Some Examples

All politicians are human.

Some humans are wise.

Therefore, some politicians are wise.

If the sky is blue then the earth is flat.

The earth is not flat.

Therefore, the sky is not blue.

All politicians are corrupt.

Arnold is corrupt.

Therefore, Arnold is a politician.

Either today is Wednesday or pigs can fly.

Pigs can't fly.

Therefore, today is Wednesday.

# Formal Logic

- As rational beings, we have *intuitions* about which arguments are valid and which are not.
- Modern logic provides a **mathematical theory** of validity whereby it is possible to **prove** that an argument is valid.
- Although logic began as a branch of Philosophy and has been studied since ancient times, it underwent dramatic mathematical development in the 19<sup>th</sup> and 20<sup>th</sup> centuries.
- The biggest advance in logic for 2000 years was due to Gottlob Frege, who developed a system of quantifiers and variables to capture the logic of **generality** first explored by Aristotle.
  - Frege's system is now known as First-order Logic.

### Some Famous Logicians



Gottlob Frege



Bertrand Russell



Kurt Gödel



Alfred Tarski

# Natural vs Artificial Languages

The *medium* of logic is language.

When studying the grammar of a natural language such as English, we try to devise rules that accurately characterize a *pre-existing* phenomenon.

In contrast, artificial (or formal) languages, of the kind used in logic (and computer science), are **defined** by the grammatical rules we give.

Logic requires a precisely defined artificial **object language** in which formal arguments can be expressed and analyzed.

This step of 'idealization' is necessary to obtain mathematically rigorous results.

## First-order Language

- Generic First-order Syntax:
- Vocabulary:
- Logical symbols: constants  $\neg \lor \land \rightarrow \leftrightarrow \exists \forall =$  variables x, y, z, ... [and ),( for punctuation]
- Non-logical symbols:

   individual constants, function symbols
   sentence letters, predicate letters
- A language L possesses a denumerable supply of non-logical symbols (and where each of the 4 categories above possess denumerably many elements).
- These combine with the logical symbols, according to the Formation Rules, to yield terms and formulas of the language:

# Generic First-order Syntax

- Formation Rules:
- Definition of Terms and Formulas

```
\underline{\text{Terms}} of L
```

- (1) Atomic terms
  - (i) all individual constants of L are terms of L
  - (ii) all variables of L are terms of L
- (2) Compound terms if  $f^n$  is an n-place function symbol and  $t_1, ..., t_n$  are

terms, then  $f^n(t_1,...,t_n)$  is a <u>term</u> of L

• Nothing else is a term of L!

# Generic First-order Syntax

#### Formulas of *L*

- (1) Atomic formulas:
  - (i) all sentence letters of L are formulas of L
  - (ii) if  $P^n$  is an n-place predicate letter and  $t_1, \ldots, t_n$  are terms, then  $P^n t_1, \ldots, t_n$  is a <u>formula</u> of L.
- (2) Compound formulas
  - (i) if  $\Phi$  is a formula of L, then  $\neg \Phi$  is a formula of L
  - (ii) if  $\Phi$ ,  $\Psi$  are formulas of L, then  $(\Phi \wedge \Psi)$ ,  $(\Phi \vee \Psi)$ ,
  - $(\Phi \to \Psi)$ , and  $(\Phi \leftrightarrow \Psi)$  are <u>formulas</u> of **L**.
  - (iii) if  $\Phi$  is a formula of  $\boldsymbol{L}$  and  $\boldsymbol{v}$  is a variable, then  $\forall \boldsymbol{v}\Phi$  and  $\exists \boldsymbol{v}\Phi$  are formulas of  $\boldsymbol{L}$ .

## Generic First-order Syntax

- Nothing else is a formula of L!
- Note that there are an infinite number of formulas, but no formula is infinitely long.
- Since formulas are finite sequences of symbols from a denumerable set,
  - a language L can have only denumerably many formulas.

- Generic First-order Semantics
- An interpretation  $\mathcal{J}$  (or structure or model) of the language L is a way of "giving meaning" to the symbols of L.
- In particular, an interpretation  $\mathcal{J}$  of L specifies the following:
  - (i) a non-empty set *D* (the domain or universe of discourse).
  - (ii) for each individual constant c,
    - $\mathbf{J}(\mathbf{c})$  is an object  $\mathbf{e} \in D$ .
  - (iii) for each n-ary function symbol  $f^n$ ,
    - $\mathcal{J}(f^n)$  is an *n*-ary function  $F^n: D^n \longrightarrow D$

(where  $D^n$  is the  $n^{th}$  Cartesian product of D)

(iv) for each sentence letter S
J(S) is a truth value, either 0 or 1
(v) we treat '=' as a privileged 2-place predicate symbol, where J(=) is the set of all pairs < e,e > such that e ∈ D.
(vi) for each n-ary predicate letter P<sup>n</sup> [other than '=']
J(P<sup>n</sup>) is a set of ordered n-tuples such that J(P<sup>n</sup>) ⊆ D<sup>n</sup>.

The notation used in clause (iii), where  $\mathcal{J}(f^n)$  is  $F^n: D^n \longrightarrow D$ , connotes the fact that the interpretation of a function symbol  $f^n$  is an n-ary function

mapping *n*-tuples of elements of *D* to elements of *D* while (vi) indicates that  $\mathcal{J}(P^n)$  is an *n*-ary relation.

In general, n-place functions are equivalent to a (proper) subset of the set of (n+1)-place relations:

• So  $\mathcal{J}(f^n) \subset D^{n+1}$ , with the constraint that for every n-tuple  $< d_1, \ldots, d_n > \in D^n$ , there exists exactly one  $d_{n+1} \in D$  such that  $< d_1, \ldots, d_n, d_{n+1} > \in \mathcal{J}(f^n)$ .

- Consider the following very simple (fragment of an) interpretation  $\mathcal{J}$  as an illustration:
- Let the domain D of  $\mathcal{J}$  be the 2-member set {Jack, Jill}. So  $\mathcal{J}$ (=) is the set { <Jack, Jack>, < Jill, Jill> }
- Consider the first two individual constants  $c_1$  and  $c_2$ Let  $\mathcal{J}(c_1) = \text{Jack}$  and  $\mathcal{J}(c_2) = \text{Jill}$
- Consider the 1-place predicate symbol P<sup>1</sup>
   The definition requires that J(P<sup>1</sup>) ⊆ D<sup>1</sup>
   D<sup>1</sup> = {Jack, Jill} (which is equivalent to { <Jack>, < Jill> })
   So let J(P<sup>1</sup>) = {Jack}

- Consider the 2-place predicate symbol  $L^2$ The definition requires that  $\mathcal{J}(L^2) \subseteq D^2$   $D^2 = \{ \langle Jack, Jack \rangle, \langle Jack, Jill \rangle, \langle Jill, Jack \rangle, \langle Jill, Jill \rangle \}$ So let  $\mathcal{J}(L^2) = \{ \langle Jack, Jack \rangle, \langle Jack, Jill \rangle \}$
- Consider the 1-place function symbol f¹
   The definition requires that J(f¹) is a 1-place function
   F¹: D¹ •→ D.
   As before, D¹ = {Jack, Jill}
- So let \$\mathcal{J}(f^1) = {\sqrt{Jack}, Jack>}\$
   Note that the interpreted 2-place predicate \$L^2\$ cannot be used to

define a corresponding 1-place function (why?).

- In accord with clauses (ii)-(vi) above, the non-logical symbols of L (plus '=') are given some fixed interpretation by  $\mathcal{J}$ .
- This then fixes the truth value of every sentence

   (i.e. closed formula contains no free variables)
   Φ of L, relative to the interpretation J.
- The formation rules entail that all sentences of *L* are either atomic or have one of the following 7 forms (as determined by the main 'connective'):
  - $\neg \Phi$ ,  $(\Phi \land \Psi)$ ,  $(\Phi \lor \Psi)$ ,  $(\Phi \to \Psi)$ ,  $(\Phi \leftrightarrow \Psi) \forall v\Phi$ ,  $\exists v\Phi$

So the following Rules of Truth give the <u>exhaustive</u> procedures for computing the truth value (either 1 for True or  $\mathbf{0}$  for False) for <u>every</u> sentence of L relative to a given interpretation J:

## Truth in an Interpretation

- (I) If  $\Phi$  is **atomic**, then it's either a sentence letter S or has the form  $P^n t_1, \ldots, t_n$ 
  - (i) If  $\Phi$  is a sentence letter S, then the truth value of  $\Phi$  relative to  $\mathcal{J}$ , written  $\mathcal{J}(\Phi)$  is simply  $\mathcal{J}(S)$ .
  - (ii) If  $\Phi$  has the form  $P^n t_1, \dots, t_n$ , then, because  $\Phi$  is **closed**, the terms  $t_1, \dots, t_n$  must also be **closed**, and
- $\mathcal{J}(\Phi) = 1$  iff  $\langle \mathcal{J}(t_1), ..., \mathcal{J}(t_n) \rangle \in \mathcal{J}(P^n)$  (and  $\mathbf{0}$  otherwise), where, for each term  $t_i$  in the series  $t_1, ..., t_n$ , if  $t_i$  is a constant  $\mathbf{c}$  then  $\mathcal{J}(t_i) = \mathcal{J}(\mathbf{c})$ ; otherwise  $t_i$  is a k-place function term  $f^k(t_1, ..., t_k)$  applied to closed terms  $t_1, ..., t_k$  and  $\mathcal{J}(t_i) = \mathcal{J}(f^k)(\mathcal{J}(t_1), ..., \mathcal{J}(t_k))$

## Truth in an Interpretation

#### (II) For **compound** formulas:

- (1)  $\mathcal{J}(\neg \Phi) = \mathbf{1}$  iff  $\mathcal{J}(\Phi) = \mathbf{0}$  (and  $\mathbf{0}$  otherwise).
- (2)  $\mathcal{J}(\Phi \wedge \Psi) = 1$  iff  $\mathcal{J}(\Phi) = 1$  and  $\mathcal{J}(\Psi) = 1$  (and 0 otherwise).
- (3)  $\mathcal{J}(\Phi \vee \Psi) = 1$  iff  $\mathcal{J}(\Phi) = 1$  or  $\mathcal{J}(\Psi) = 1$  (and 0 otherwise).
- (4)  $\mathcal{J}(\Phi \to \Psi) = 1$  iff  $\mathcal{J}(\Phi) = 0$  or  $\mathcal{J}(\Psi) = 1$  (and 0 otherwise).
- (5)  $\mathcal{J}(\Phi \leftrightarrow \Psi) = 1$  iff  $\mathcal{J}(\Phi) = \mathcal{J}(\Psi)$  (and 0 otherwise).

# Truth Table Format

| Φ | $\neg \Phi$ | $\Phi$ | Ψ ( | $\Phi \wedge \Psi)$ | $\Phi$ | Ψ | $(\Phi \lor \Psi)$ |
|---|-------------|--------|-----|---------------------|--------|---|--------------------|
| 1 | 0           | 1      | 1   | 1                   | 1      | 1 | 1                  |
| 0 | 1           | 1      | 0   | 0                   | 1      | 0 | 1                  |
|   |             | 0      | 1   | 0                   | 0      | 1 | 1                  |
|   |             | 0      | 0   | 0                   | 0      | 0 | 0                  |

| Φ | Ψ | $(\Phi \rightarrow \Psi)$ | $\Phi$ | Ψ | $(\Phi \leftrightarrow \Psi)$ |
|---|---|---------------------------|--------|---|-------------------------------|
| 1 | 1 | 1                         | 1      | 1 | 1                             |
| 1 | 0 | 0                         | 1      | 0 | 0                             |
| 0 | 1 | 1                         | 0      | 1 | 0                             |
| 0 | 0 | 1                         | 0      | 0 | 1                             |

## Truth in an Interpretation

- (6)  $J(\forall \mathbf{v}\Phi) = \mathbf{1}$  iff  $J_e^a(\Phi \mathbf{v}/a) = 1$  for every  $e \in D$ , where a is a new individual constant,  $J_e^a$  is the interpretation exactly like J except that  $J_e^a(a) = e$ , and  $\Phi \mathbf{v}/a$  is the result of substituting a for every free occurrence of  $\mathbf{v}$  in  $\Phi$  (and  $\mathbf{0}$  otherwise).
- (7)  $J(\exists \mathbf{v}\Phi) = \mathbf{1}$  iff  $J_e^a(\Phi \mathbf{v}/a) = 1$  for some  $e \in D$ , again where a is a new individual constant,  $J_e^a$  is the interpretation exactly like J except that  $J_e^a(a) = e$ , and  $\Phi \mathbf{v}/a$  is the result of substituting a for every free occurrence of  $\mathbf{v}$  in  $\Phi$  (and  $\mathbf{0}$  otherwise).

• Consider the previous interpretation  $\mathcal{J}$ , where the domain D is the 2-member set {Jack, Jill},

$$J(c_1) = \text{Jack and } J(c_2) = \text{Jill}, \qquad J(P^1) = \{\text{Jack}\}$$

$$J(L^2) = \{\text{Jack, Jack}, \text{Jack}, \text{Jill}\}$$

$$J(f^1) = \{\text{Jack, Jack}, \text{Jill, Jack}\}$$

• Now consider the **sentence**  $P^1c_1$ .

$$\mathbf{J}(c_1) = \mathbf{Jack}, \quad \text{and} \quad \mathbf{Jack} \in {\mathbf{Jack}}$$
  
Hence  $\mathbf{J}(c_1) \in \mathbf{J}(P^1), \quad \text{so } \mathbf{J}(P^1c_1) = \mathbf{1}$ 

• Consider the **sentence**  $P^1c_2$ .

$$\mathcal{J}(c_2) = \text{Jill}, \text{ and Jill } \notin \{\text{Jack}\}\$$
  
Hence  $\mathcal{J}(c_2) \notin \mathcal{J}(P^1), \text{ so } \mathcal{J}(P^1c_2) = \mathbf{0}$ 

• Consider the **sentence**  $P^1f^1(c_2)$ 

$$\mathcal{J}(f^1(c_2)) = \mathcal{J}(f^1) \ (\mathcal{J}(c_2)),$$
 where  $(\mathcal{J}(c_2)) = \text{Jill}$  and  $\mathcal{J}(f^1) \ (\text{Jill}) = \text{Jack}$  As before,  $\text{Jack} \in \{\text{Jack}\}$ , hence  $\mathcal{J}(f^1(c_2)) \in \mathcal{J}(P^1)$ , so  $\mathcal{J}(P^1f^1(c_2)) = \mathbf{1}$ 

• Consider the **sentence**  $L^2c_2c_1$ 

$$J(c_2) = Jill, J(c_1) = Jack$$
  
and  $\langle Jill, Jack \rangle \notin \{\langle Jack, Jack \rangle, \langle Jack, Jill \rangle\}$   
Hence  $\langle J(c_2), J(c_1) \rangle \notin J(L^2)$   
so  $J(L^2c_2c_1) = 0$ 

Consider the **sentence**  $\forall x P^1 x$  $\mathbf{\mathcal{J}}(\forall x P^1 x) = ?$ i)  $J_{lack}^{a}(P^{1}a) = ?$  $\mathbf{J}^{a}_{Iack}$  (a) = Jack and Jack  $\in \{Jack\}$ , so  $\mathcal{J}^a_{Jack}$   $(a) \in \mathcal{J}(P^1)$ , so  $\mathbf{J}(P^{1}a) = \mathbf{1}$ ii)  $\mathbf{J}^{a}_{III}(P^{1}a) = ?$  $\mathbf{J}^{a}_{IiII}(a) = \text{Jill}$ and Jill  $\notin \{Jack\}$ , so  $\mathcal{J}^a_{Iill}(a) \notin \mathcal{J}(P^1)$ , so  $\mathbf{J}^{a}_{III}(P^{1}a) = \mathbf{0}$ Hence  $\mathbf{J}(\forall x P^1 x) = \mathbf{0}$ 

• Consider the sentence  $\exists x P^1 x$ 

```
\mathcal{J}(\exists x \ P^1x) = ?

i) 
\mathcal{J}^a_{Jack}(P^1a) = ?

\mathcal{J}^a_{Jack}(a) = Jack

and 
Jack \in \{Jack\}, \text{ so } \mathcal{J}^a_{Jack}(a) \in \mathcal{J}(P^1),

so 
\mathcal{J}(P^1a) = 1

Hence 
\mathcal{J}(\exists x \ P^1x) = 1
```

- Consider the sentence  $\forall x \exists y L^2xy$
- Consider the sentence  $\exists x \ \forall y \ L^2xy$

## Truth in an Interpretation

- The 'Mates Quantification' scheme in clauses (6) and (7) uses substitution to attain the same semantical results as *variable interpretation sequences*.
  - On the Mates approach we don't need to assign values to variables and we only ever need to consider the truth values of **closed formulas**.
- For the interpretation of n-ary predicate letters  $P^n$ , B&J explicitly assign a characteristic function, say  $C^n$ , of n-tuples of elements of the domain.

Thus 
$$\mathcal{J}(P^n) = \mathcal{C}^n$$
 and  $\mathcal{J}(P^n t_1, ..., t_n) = \mathcal{C}^n(\mathcal{J}(t_1), ..., \mathcal{J}(t_n))$ .

This is equivalent to assigning a set of *n*-tuples, as above.

#### Some standard model-theoretic notions:

- (i)  $\mathcal{J}$  satisfies (or is a model of)  $\Phi$  iff  $\mathcal{J}(\Phi) = 1$
- (ii)  $\Phi$  is satisfiable (or consistent) iff  $\mathcal{J}(\Phi) = 1$  for some interpretation  $\mathcal{J}$
- (iii)  $\Phi$  is valid (or a logical truth) iff  $\mathcal{J}(\Phi) = 1$  for every interpretation  $\mathcal{J}$ . In this case we write  $\models \Phi$
- (iv) logical implication:  $\Phi \models \Psi$  iff for every interpretation  $\mathcal{J}$  such that  $\mathcal{J}(\Phi) = 1$ , it's the case that  $\mathcal{J}(\Psi) = 1$
- in other words, for all interpretations  $\mathcal{J}$ ,  $\mathcal{J}(\Phi) \leq \mathcal{J}(\Psi)$
- Clearly  $\Phi \models \Psi$  iff  $\models (\Phi \rightarrow \Psi)$ , so logical implication can be expressed in terms of the validity of the material conditional.

- (v) logical equivalence:  $\Phi \equiv \Psi$  iff for all interpretations  $\mathcal{J}$ ,  $\mathcal{J}(\Phi) = \mathcal{J}(\Psi)$ .
- Clearly  $\Phi \equiv \Psi \text{ iff } \Phi \models \Psi \text{ and } \Psi \models \Phi, \text{ iff } \models (\Phi \leftrightarrow \Psi)$
- Familiar generalization of logical implication to multiple premises:  $\Phi_1, ..., \Phi_n \models \Psi$  iff for all interpretations  $\mathcal{J}$ , if  $\mathcal{J}$  satisfies each of  $\Phi_1, ..., \Phi_n$  then  $\mathcal{J}$  satisfies  $\Psi$ ,

$$\mathbf{iff} \models ((\Phi_1 \land \dots \land \Phi_n) \to \Psi)$$

• For a set of sentences  $\Gamma$ ,  $\mathcal{J}$  satisfies  $\Gamma$  iff  $\mathcal{J}(\Theta) = 1$  for every  $\Theta \in \Gamma$ .  $\mathcal{J}$  is then a model of  $\Gamma$ .

The logical consequence relation extended to sets of sentences:

- $\Gamma \vDash \Psi$  iff for every interpretation  $\mathcal{J}$ , if  $\mathcal{J}$  satisfies  $\Gamma$  then  $\mathcal{J}$  satisfies  $\Psi$
- It is in the above format that we will think of valid arguments, recasting the 'standard argument form'

Premise 1

Premise 2

. . .

Premise n

Therefore,

Conclusion

so that  $\Gamma$  is the set of premises and  $\Psi$  is the conclusion.

A sentence  $\Phi$  is valid iff  $\emptyset \models \Phi$ 

• Essential connection between implication and satisfiability:

 $\Gamma \vDash \Psi$  iff the set  $\Gamma \cup \{\neg \Psi\}$  is **unsatisfiable**.

If the set  $\Gamma \cup \{\neg \Psi\}$  did have a model then it would be a *counterexample* to the claim  $\Gamma \models \Psi$ .

#### • Formal Theories:

A Formal Theory T is a set of sentences (in some formal language L) which is <u>closed</u> under the relation of logical consequence.

So for all sentences  $\Phi$  of L, if  $T \models \Phi$  then  $\Phi \in T$ 

#### Prenex Normal Form

#### • Prenex Form:

 $Q_1$ **v**<sub>1</sub>,...,  $Q_n$ **v**<sub>n</sub>  $\Phi$  where  $Q_i = \forall$  or  $\exists$  and  $\Phi$  is quantifier free

<u>Theorem</u>: for every formula  $\Psi$  there is some formula  $\Theta$  such that  $\Theta$  is in prenex form and  $\Psi \equiv \Theta$ .

<u>Proof</u>: give rules for successively moving quantifiers to the left which preserve logical equivalence:

- (i) quantifier duality:  $\neg Q\mathbf{v} \Phi \equiv Q'\mathbf{v} \neg \Phi$ where  $Q = \forall$  or  $\exists$ , and  $\forall' = \exists$ ,  $\exists' = \forall$
- (ii) can directly pull quantifiers out from conjunctions, disjunctions, and the consequents of conditionals (provided  $\mathbf{v}$  does not occur free in  $\Psi$ ):

#### Prenex Normal Form

- (1)  $(Q\mathbf{v} \Phi \wedge \Psi) \equiv Q\mathbf{v} (\Phi \wedge \Psi)$  $(\Psi \wedge Q\mathbf{v} \Phi) \equiv Q\mathbf{v} (\Psi \wedge \Phi)$
- (2)  $(Q\mathbf{v} \Phi \vee \Psi) \equiv Q\mathbf{v} (\Phi \vee \Psi)$  $(\Psi \vee Q\mathbf{v} \Phi) \equiv Q\mathbf{v} (\Psi \vee \Phi)$
- (3)  $(\Psi \to Q\mathbf{v} \Phi) \equiv Q\mathbf{v} (\Psi \to \Phi)$
- (4) But must reverse quantifier in the antecedent  $(Q\mathbf{v} \Phi \to \Psi) \equiv Q^{\prime}\mathbf{v} (\Phi \to \Psi)$

Because 
$$(Q\mathbf{v} \Phi \to \Psi) \equiv (\neg Q\mathbf{v} \Phi \lor \Psi) \equiv (Q'\mathbf{v} \neg \Phi \lor \Psi) \equiv Q'\mathbf{v} (\neg \Phi \lor \Psi) \equiv Q'\mathbf{v} (\Phi \to \Psi)$$