NT Sheet 4

- **6.** Verify that $17|11^{104} + 1$
- **7.** Let $n \ge 0$ show that $13|11^{12n+6} + 1$
- **8.** Let gcd(a, 35) = 1 then establish $a^{12} \equiv 1 \pmod{35}$
- **9.** Prove that $a^{21} \equiv a \; (mod \; 15)$
- **10.** Show that $1^{p-1} + 2^{p-1} + \cdots + (p-1)^{p-1} \equiv -1 \pmod{p}$
- **11.** Let p and q be two primes and $p \neq q$, establish that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$
- **12.** If gcd(m, n) = 1 show that $m^{\varphi(n)} + \frac{n^{\varphi(n)}}{n} \equiv 1 \pmod{mn}$
- **13.** Find the least positive residue of 3^{10^5} modulo 35 (compute 3^{10^5} % 35)
- **14.** Solve $5x \equiv 3 \pmod{14}$ and $4x \equiv 7 \pmod{15}$ using Euler's theorem.
- **15.** Show that $\sigma(n) = \sigma(n+1)$ for n = 14, 206

- **16.** Prove that if $\tau(n)$ is odd then n must be a perfect square
- **17.** Prove that $\frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$
- **18.** Find all integers satisfying $\tau(n) = 10$, what's the smallest of such integers?
- **19.** If $k \ge 2$, establish that

a. If
$$n = 2^{k-1}$$
 then $\sigma(n) = 2n - 1$

b. If
$$2^k - 1$$
 is a prime, then if $n = 2^{k-1} (2^k - 1)$ then $\sigma(n) = 2n$

- **20.** Compute $\varphi(1001)$ and $\varphi(5040)$
- **21.** Show that $\varphi(2n) = \varphi(n)$ if n is odd and $\varphi(2n) = 2\varphi(n)$ if n is even