Structuring the Synthesis of Heap-Manipulating Programs

NADIA POLIKARPOVA, UCSD, USA ILYA SERGEY, University College London, UK

Introduction

$$\{x \mapsto a * y \mapsto b\} \text{ void swap(loc x, loc y) } \{x \mapsto b * y \mapsto a\}$$

Intérêt : Faire avancer l'état de l'art en matière de synthèse de programmes qui manipulent des pointeurs à partir de spécifications fonctionelles formelles.

Idée Clé : Utiliser la logique de séparation.

Contributions : Synthetic Separation Logic un systeme de preuve.

Et SuSLik leur synthétiseur

Spécifications pour la Synthèse

On utilise ici des tas symboliques.

$$\Sigma;\Gamma;\{\mathcal{P}\}\leadsto\{\mathcal{Q}\}|c$$

- Γ : environnement
- \bullet Σ : contexte
- $\mathcal{P}, \phi, \mathsf{P}$: précondition, ses parties pure et spatiale
- Q, ψ, Q : postcondition, ses parties pure et spatiale
- $GV(\Gamma, \mathcal{P}, \mathcal{Q}) = Vars(\mathcal{P}) \backslash \Gamma$
- $EV(\Gamma, \mathcal{P}, \mathcal{Q}) = Vars(\mathcal{Q}) \setminus (\Gamma \cup Vars(\mathcal{P}))$

Règles d'Inférence Basiques

Un exemple

Fig. 1. Simplified basic rules of SSL.

Fig. 2. Derivation of swap(x,y) as c_1 .

Règles d'Inférence Basiques

- EMP terminale, parties spatiales vide, $EV = \emptyset$, $\phi \implies \psi$ skip
- READ assigne la valeur d'une GV a une nouvelle variable de programme et substitue toutes les occurences. let b = *x
- WRITE assigne l'évaluation d'une expression e à une case mémoire. $\label{eq:write} {}^*x = b$
- FRAME Enlève une partie spatiale commune à ϕ et ψ , si cela ne crée pas de variable existentielle. skip

Unification Spatiale et Backtrack

$$\{x \mapsto 239 * y \mapsto 30\}$$
 void pick(loc x, loc y) $\{x \mapsto z * y \mapsto z\}$

Avec la substitution $z \mapsto 239$, on unfie z et 239.

$${x \mapsto 239 * y \mapsto 30} \rightsquigarrow {x \mapsto 239 * y \mapsto 239}.$$

Introduit du déterminisme et peut alors nécessiter du backtracking!

$$\{x \mapsto a * y \mapsto b\}$$
 void notSure(loc x, loc y) $\{x \mapsto c * c \mapsto 0\}$

Si on lit x dans une variable a_2 , on a le but (impossible)

$${x,y,a_2}{y\mapsto b}\rightsquigarrow {a_2\mapsto 0}.$$

Raisonner sur les contraintes pures

Précondition

$$\{a=x \wedge y=a; x \mapsto y*y \mapsto z\} \text{ void } \text{urk(loc x, loc y)} \text{ } \{\text{true}; y \mapsto a*x \mapsto y\}$$

Deux variables universelles égales, x et y, on substitue.

$$\{x,y\}\{y\mapsto x*x\mapsto z\} \rightsquigarrow \{x\mapsto x*x\mapsto x\}.$$

lci, mène à quelque chose d'impossible \implies règle d'inconsistence !

Raisonner sur les contraintes pures

Les règles

$$\begin{split} & \text{SUBSTLEFT} \\ & \phi \Rightarrow x = y \\ & \Gamma; [y/x] \{\phi; P\} \sim \{y/x\} \{Q\} | c \\ \hline & \Gamma; \{\phi; P\} \sim \{\emptyset; Q\} | c \\ \hline & \Gamma; \{\phi; P\} \sim \{\emptyset; P\} \sim \{\emptyset$$

Fig. 4. Selected SSL rules for reasoning with pure constraints in the synthesis goal.

Mémoire dynamique

$$|\operatorname{seg}(x, y, S)| \triangleq x = y \land \{S = \emptyset; \operatorname{emp}\}\$$
$$x \neq y \land \{S = \{v\} \cup S_1; [x, 2] * x \mapsto v * \langle x, 1 \rangle \mapsto nxt * |\operatorname{seg}(nxt, y, S_1)\}$$

Définition d'une liste chaînée dont le premier pointeur est x, le dernier y et les éléments sont ceux de S.

On étend notre langage avec

- Des prédicats inductifs.
- Des blocs de mémoire (et ajout de règles ALLOC et FREE).

Induction

$$\{lseg(x, 0, S)\}\$$
void $listfree(loc\ x)\ \{emp\}$

On veut synthétiser la fonction pour libérer une liste chaînée.

Une règle INDUCTION qui

- ajoute la fonction au contexte (permettre les appels récursifs);
- ajoute une étiquette à la fonction (utile pour la terminaison).

$$\Sigma_1 \triangleq \Sigma, \text{listfree}(x') : \{ \text{lseg}^1(x', 0, S') \} \{ \text{emp} \}$$

Déroulement de prédicat

Après la règle Induction, une règle Open qui *unfold* la définition du prédicat et génrère deux buts à résoudre.

(i)
$$\Sigma_1$$
; $\{x\}$; $\{x = 0 \land S = \emptyset; emp\} \rightarrow \{emp\}$
(ii) Σ_1 ; $\{x\}$; $\{x \neq 0 \land S = \{v\} \cup S_1$; $\{x, 2\} * x \mapsto v * \langle x, 1 \rangle \mapsto nxt * lseg^1(nxt, y, S_1)\} \rightarrow \{emp\}$

 c_1 et c_2 programmes pour (1) et (2), programme final

if
$$(x = 0)\{c_1\}$$
 else $\{c_2\}$.

Retour à l'étiquette de niveau

But : éviter les dérivations infinies (ici donne programmes qui ne terminent pas en s'appellant eux-mêmes).

Idéalement: prédicats bien-fondés et applications récursives sur tas strictement plus petits.

Méthode : avec les tags, on empêche la fonction de s'appeler sur le même tas en post-condition.

Déroulement dans la postcondition

Si un prédicat inductif dans la postcondition.

Une règle CLOSE.

- Choisit non déterministiquement la partie du prédicat à satisfaire.
- Met à jour la postconditions avec la postcondition de la partie choisie.
- Incrémente l'étiquette.

Permettre l'appel de procèdure

Enlévement de l'appel

```
\{r \mapsto x * \operatorname{lseg}(x, 0, S)\} void \operatorname{listcopy}(\operatorname{loc} r) \ \{r \mapsto y * \operatorname{lseg}(x, 0, S) * \operatorname{lseg}(y, 0, S)\}
Induction ajoute cette fonction à l'environnement.
void \operatorname{listcopy}(\operatorname{loc} r') : \{r' \mapsto x' * \operatorname{lseg}^1(x', 0, S')\} \{r' \mapsto y' * \operatorname{lseg}^1(x', 0, S') * \operatorname{lseg}^1(y', 0, S')\}
```

Open (plus d'autres règles) créent ce but.

$$\left\{ x, r, \mathsf{x2}, \mathsf{v2}, \mathsf{nxt2} \right\}; \ \left\{ S = \left\{ \mathsf{v2} \right\} \cup S_1 \land \mathsf{x2} \neq 0; \ r \mapsto \mathsf{x2} * \mathsf{lseg}^1(\mathsf{nxt2}, 0, S_1) \ \right\} \\ \left\{ r \mapsto y * \mathsf{lseg}^1(\mathsf{nxt2}, 0, S_2) * \mathsf{lseg}^0(y, 0, S) \right\}$$

Peut pas utiliser CALL (il faut $r \mapsto nxt2$).

Solution : ajout d'une règle AbduceCall qui « prépare » le tas. Essaie d'unifier les préconditions de notre but et celles de la fonction qu'on veut appeler.

```
Variable x, y
                      Alpha-numeric identifiers
                                                                           Pure assertion \phi, \psi, \xi, \chi := e
Value
                d
                        Theory-specific atoms
                                                                           Symbolc heap P, Q, R ::= emp |\langle e, \iota \rangle \mapsto e|
Offset
                         Non-negative integers
                                                                                                                    [x, n] \mid p(\overline{x_i}) \mid P * O
Expression e := d \mid x \mid e = e \mid e \land e \mid \neg e \mid \dots
                                                                           Assertion
                                                                                                 \mathcal{P}, Q ::= \{\phi, P\}
Command c := \text{let } x = *(x + \iota) \mid *(x + \iota) = e \mid
                                                                           Heap predicate \mathcal{D} ::= p(\overline{x_i}) \langle \xi_i, \{\chi_i, R_i\} \rangle
                         skip | error | magic |
                                                                           Function spec \mathcal{F} ::= f(\overline{x_i}): \{\mathcal{P}\}\{Q\}
                         if (e) \{c\} else \{c\} \mid f(\overline{e_i}) \mid c; c
                                                                           Environment \Gamma := \epsilon \mid \Gamma, x
Type t ::= loc \mid int \mid bool \mid set
                                                                           Context
                                                                                                 \Sigma := \epsilon \mid \Sigma, \mathcal{D} \mid \Sigma, \mathcal{F}
Fun. dict. \Delta := \epsilon \mid \Delta, f(\overline{t_i x_i}) \mid c \mid
     Fig. 10. Programming language grammar.
                                                                                            Fig. 11. SSL assertion syntax.
```

Induction

$$\begin{split} \frac{f \triangleq \text{goal's name}}{\overline{x_i} \triangleq \text{goal's formals}} \\ P_f \triangleq p^1(\overline{y_i}) * \{P\} & Q_f \triangleq [Q] \\ \mathcal{F} \triangleq f(\overline{x_i}) : \{\phi_f; P_f\} \{\psi_f; Q_f\} \\ \mathcal{\Sigma}, \mathcal{F}; \Gamma; \{\phi; p^0(\overline{y_i}) * P\} \leadsto \{Q\} \} c \\ \hline{\mathcal{\Sigma}; \Gamma; \{\phi; p^0(\overline{y_i}) * P\} \leadsto \{Q\} \} c} \end{split}$$

Емр

$$\frac{\mathsf{EV}(\Gamma, \mathcal{P}, Q) = \emptyset \qquad \phi \Rightarrow \psi}{\Gamma; \ \{\phi; \mathsf{emp}\} \rightsquigarrow \{\psi; \mathsf{emp}\} | \ \mathsf{skip}}$$

Inconsistency $\phi \Rightarrow \bot$

$$\overline{\Gamma;\;\{\phi;P\}\!\!\sim\!\{Q\}|\,\mathrm{error}}$$

NULLNOTLVAL

NULLINOTLIVAL
$$x \neq 0 \notin \phi \qquad \phi' \triangleq \phi \land x \neq 0$$

$$\Sigma; \Gamma; \{\phi'; \langle x, \iota \rangle \mapsto e * P\} \rightsquigarrow \{Q\} | c$$

$$\Sigma; \Gamma; \{\phi; \langle x, \iota \rangle \mapsto e * P\} \rightsquigarrow \{Q\} | c$$

SubstLeft

$$\frac{\phi \Rightarrow x = y}{\Gamma; [y/x]\{\phi; P\} \leadsto [y/x]\{Q\} \mid c}$$
$$\Gamma; \{\phi; P\} \leadsto \{Q\} \mid c$$

STARPARTIAL

$$\begin{array}{l} x+\iota\neq y+\iota'\not\in\phi \qquad \phi'\triangleq\phi\wedge(x+\iota\neq y+\iota')\\ \Sigma;\Gamma;\left\{\phi';\langle x,\iota\rangle\mapsto e*\langle y,\iota'\rangle\mapsto e'*P\right\}\!\leadsto\!\{Q\}\big|\,c\\ \Sigma;\Gamma;\left\{\phi;\langle x,\iota\rangle\mapsto e*\langle y,\iota'\rangle\mapsto e'*P\right\}\!\leadsto\!\{Q\}\big|\,c \end{array}$$

Open

$$\begin{split} \mathcal{D} &\triangleq p(\overline{x_I}) \big\langle \xi_J, \big\{ \chi_J, R_J \big\} \big\rangle_{j \in 1, \dots, N} \in \Sigma \\ \ell &< \mathsf{MaxUnfold} \quad \sigma \triangleq \overline{[x_i \mapsto y_i]} \quad \mathsf{Vars}(\overline{y_i}) \subseteq \Gamma \\ \phi_j &\triangleq \phi \land [\sigma] \xi_j \land [\sigma] \chi_j \quad P_j \triangleq [\lceil \sigma] R_j \rceil^{\ell+1} * \lceil P \rceil \\ \forall j \in 1, \dots, N, \quad \Sigma; \Gamma; \big\{ \phi_j; P_j \big\} \leadsto \big\{ Q \big\} \big| c_j \\ c &\triangleq \mathsf{if} \left([\sigma] \xi_1 \right) \big\{ c_1 \big\} \; \mathsf{else} \; \big\{ \mathsf{if} \left([\sigma] \xi_2 \right) \dots \; \mathsf{else} \; \big\{ c_N \big\} \big\} \end{split}$$

$$\Sigma; \Gamma; \left\{ \phi; P * p^{\ell}(\overline{y_i}) \right\} \rightsquigarrow \{Q\} \mid c$$

Read

$$a \in \mathsf{GV}(\Gamma, \mathcal{P}, Q) \qquad y \notin \mathsf{Vars}(\Gamma, \mathcal{P}, Q)$$

$$\Gamma \cup \{y\}; [y/a] \{\phi; \langle x, \iota \rangle \mapsto a * P\} \leadsto [y/a] \{Q\} | c$$

$$\Sigma; \Gamma; \{\phi; \langle x, \iota \rangle \mapsto a * P\} \leadsto \{Q\} | \text{let } y = *(x + \iota); c$$

Close

$$\mathcal{D} \triangleq p(\overline{x_{I}}) \left\langle \xi_{j}, \left\{ \chi_{j}, R_{j} \right\} \right\rangle_{j \in 1...N} \in \Sigma$$

$$\ell < \text{MaxUnfold} \qquad \sigma \triangleq |\overline{x_{I} \mapsto y_{I}}|$$
for some $k, 1 \le k \le N$ $R' \triangleq |\lceil \sigma \rceil R_{k} \rceil^{\ell+1}$

$$\Sigma; \Gamma; \left\{ \mathcal{P} \right\} \rightarrow \left\{ \psi \land \left[\sigma \right] \xi_{k} \land \left[\sigma \right] \chi_{k}; \mathcal{Q} * R' \right\} \middle| c$$

$$\Sigma; \Gamma; \left\{ \mathcal{P} \right\} \rightarrow \left\{ \psi; \mathcal{Q} * p^{\ell}(y_{I}) \right\} \middle| c$$

```
Call
ABDUCECALL
                                                                                                                                                           \mathcal{F} \triangleq f(\overline{x_i}) : \left\{ \phi_f; P_f \right\} \left\{ \psi_f; Q_f \right\} \in \Sigma
                  \mathcal{F} \triangleq f(\overline{x_i}) : \{\phi_f; P_f * F_f\} \{\psi_f; Q_f\} \in \Sigma
              F_f has no predicate instances [\sigma]P_f = P
                                                                                                                                                                  R = {\ell \atop \sigma} P_f \qquad \phi \Rightarrow [\sigma] \phi_f
 F_f \neq \text{emp} F' \triangleq [\sigma]F_f \Sigma; \Gamma; \{\phi; F\} \rightsquigarrow \{\phi; F'\} | c_1
                                                                                                                                               \phi' \triangleq [\sigma] \psi_f \qquad R' \triangleq [[\sigma] Q_f] \qquad \overline{e_i} = [\sigma] \overline{x_i}
                                                                                                                                            Vars(\overline{e_i}) \subseteq \Gamma \qquad \Sigma; \Gamma; \{\phi \land \phi'; P * R'\} \rightsquigarrow \{Q\} | c
                           \Sigma; \Gamma; \{\phi; P * F' * R\} \rightsquigarrow \{Q\} | c_2
                        \Sigma; \Gamma; \{\phi; P * F * R\} \rightarrow \{Q\} \mid c_1; c_2
                                                                                                                                                             \Sigma: \Gamma: \{\phi: P * R\} \sim \{Q\} | f(\overline{e_i}): c
      Alloc
      R = [z, n] * *_{0 \le i \le n} (\langle z, i \rangle \mapsto e_i) \quad z \in EV(\Gamma, \mathcal{P}, Q)
                                                                                                                                      FREE
                           (\{y\} \cup \{\overline{t_i}\}) \cap \text{Vars}(\Gamma, \mathcal{P}, Q) = \emptyset
                                                                                                                                                       R = [x, n] * *_{0 \le i \le n} (\langle x, i \rangle \mapsto e_i)
                         R' \triangleq [u, n] * *_{0 \le i \le n} (\langle u, i \rangle \mapsto t_i)
                                                                                                                                       Vars(\lbrace x \rbrace \cup \lbrace \overline{e_i} \rbrace) \subseteq \Gamma \Sigma; \Gamma; \lbrace \phi; P \rbrace \sim \lbrace Q \rbrace \vert c
                           \Sigma; \Gamma; \{\phi; P * R'\} \sim \{\psi; Q * R\} | c
                                                                                                                                                      \Sigma; \Gamma; \{\phi; P * R\} \sim \{Q\} | \text{free}(n); c
            \Sigma; \Gamma; \{\phi; P\} \sim \{\psi; O * R\} | \text{let } y = \text{malloc}(n); c
                                                    WRITE
                                                     Vars(e) \subseteq \Gamma \qquad \Gamma; \ \{\phi; \langle x, \iota \rangle \mapsto e * P\} \leadsto \{\psi; \langle x, \iota \rangle \mapsto e * Q\} | c
                                                        \Gamma; \{\phi; \langle x, \iota \rangle \mapsto e' * P\} \rightsquigarrow \{\psi; \langle x, \iota \rangle \mapsto e * Q\} \mid *(x + \iota) = e; c
```

$$\begin{array}{lll} \text{UnifyHeaps} & & & & \text{Frame} \\ \text{frameable} & (R') & \emptyset \neq \text{dom}(\sigma) \subseteq \text{EV}(\Gamma, \mathcal{P}, Q) \\ & & \Gamma; \left\{ P * R \right\} \sim \left[\sigma \right] \left\{ \psi; Q * R' \right\} \right| c \\ \hline & \Gamma; \left\{ \phi; P * R \right\} \sim \left\{ \psi; Q * R' \right\} \right| c \\ \hline & & & \text{Frameable} & (R') & \Gamma; \left\{ \phi; P \right\} \sim \left\{ \psi; Q \right\} \right| c \\ \hline & & & \text{Frameable} & (R') & \Gamma; \left\{ \phi; P \right\} \sim \left\{ \psi; Q \right\} \right| c \\ \hline & & \Gamma; \left\{ \phi; P * R \right\} \sim \left\{ \psi; Q * R \right\} \right| c \\ \hline & \text{Pick} & & \text{UnifyPure} \\ & & & \left[\sigma \right] \psi' = \phi' & \text{SubstRight} \\ & & & \text{Vars}(e) \in \Gamma \cup \text{GV}(\Gamma, \mathcal{P}, Q) & \emptyset \neq \text{dom}(\sigma) \subseteq \text{EV}(\Gamma, \mathcal{P}, Q) \\ & & \Gamma; \left\{ \phi; P \right\} \sim \left[e/y \right] \left\{ \psi; Q \right\} \right| c \\ \hline & & \Gamma; \left\{ \phi; P \right\} \sim \left\{ \psi; Q \right\} \right| c \\ \hline & & & \Gamma; \left\{ \phi; P \right\} \sim \left\{ \psi; Q \right\} \right| c \\ \hline & & & \Gamma; \left\{ \phi; P \right\} \sim \left\{ \psi; Q \right\} \right| c \\ \hline & & & \text{EV}(\Gamma, \mathcal{P}, Q) \\ \hline & & \text{SubstRight} \\ & & & \text{SubstRight} \\ &$$

La validité pour la partie SL est assez similaire au cas plus classique.

- $\langle h, s \rangle \models_{\mathcal{I}}^{\Sigma} \{ \phi; \text{emp} \} \text{ iff } [\![\phi]\!]_s = \text{true and dom } (h) = \emptyset.$
- $\langle h, s \rangle \vdash_{I}^{\tilde{\Sigma}} \{\phi; [x, n]\} iff \llbracket \phi \rrbracket_{s} = \text{true and dom } (h) = \emptyset.$ $\langle h, s \rangle \vdash_{I}^{\tilde{\Sigma}} \{\phi; \langle e_{1}, \iota \rangle \mapsto e_{2}\} iff \llbracket \phi \rrbracket_{s} = \text{true and dom } (h) = \llbracket e_{1} \rrbracket_{s} + \iota \text{ and } h(\llbracket e_{1} \rrbracket_{s} + \iota) = \llbracket e_{2} \rrbracket_{s}.$
- $\langle h, s \rangle \models_{\mathcal{T}}^{\mathcal{D}} \{ \phi; P_1 * P_2 \}$ iff $\exists h_1, h_2, h = h_1 \cup h_2$ and $\langle h_1, s \rangle \models_{\mathcal{T}}^{\mathcal{D}} \{ \phi; P_1 \}$ and $\langle h_2, s \rangle \models_{\mathcal{T}}^{\mathcal{D}} \{ \phi; P_2 \}$.
- $\langle h, s \rangle \models_{\mathcal{I}}^{\Sigma} \{ \phi; p(\overline{x_i}) \}$ iff $\llbracket \phi \rrbracket_s = \text{true and } \mathcal{D} \triangleq p(\overline{x_i}) \overline{\langle \xi_j, \{\chi_j, R_j\} \rangle} \in \Sigma \text{ and } \langle h, \overline{\llbracket x_i \rrbracket_s} \rangle \in I(\mathcal{D}).$

Definition 3.1 (Sized validity). We say a specification Σ ; Γ ; $\{\mathcal{P}\}$ c $\{Q\}$ is n-valid wrt. the function dictionary Δ whenever for any h, h', s, s' such that

- $|h| \leq n$,
- Δ ; $\langle h, (c, s) \cdot \epsilon \rangle \rightsquigarrow^* \langle h', (\text{skip}, s') \cdot \epsilon \rangle$, and
- $\bullet \ \operatorname{dom}(s) = \Gamma \text{ and } \exists \sigma_{\operatorname{gv}} = [\overline{x_i \mapsto d_i}]_{x_i \in \operatorname{GV}(\Gamma, \mathcal{P}, \mathcal{Q})} \text{ such that } \langle h, s \rangle \vDash^{\Sigma}_{I} [\sigma_{\operatorname{gv}}] \mathcal{P},$

it is the case that $\exists \sigma_{\mathrm{ev}} = [\overline{y_j \mapsto d_j}]_{y_j \in \mathrm{EV}(\varGamma, \mathcal{P}, \mathcal{Q})}$, such that $\langle h', s' \rangle \vDash^{\Sigma}_I [\sigma_{\mathrm{ev}} \cup \sigma_{\mathrm{gv}}] \mathcal{Q}$

On définit une correction vis à vis de la pré et post condition mais seulement pour des tas de taille n.

Definition 3.2 (Coherence). A dictionary Δ is n-coherent wrt. a context Σ (coh (Δ, Σ, n)) iff

- $\Delta = \epsilon$ and functions(Σ) = ϵ , or
- $\Delta = \Delta', f(\overline{t_i x_i}) \{ c \}$, and $\Sigma = \Sigma', f(\overline{x_i}) : \{ \mathcal{P} \} \{ Q \}$, and $\operatorname{coh}(\Delta', \Sigma', n)$, and $\Sigma'; \{ \overline{x_i} \} ; \{ \mathcal{P} \} c \{ Q \}$ is n-valid wrt. Δ' , or
- $\Delta = \Delta', f(\overline{t_i x_i}) \{c\}$, and $\Sigma = \Sigma', f(\overline{x_i}) : \{\phi; \lceil P \rceil * p^1(\overline{e_i})\} \{\lceil Q \rceil\}$, and $\cosh(\Delta', \Sigma', n)$, and $\Sigma; \{\overline{x_i}\} : \{\lceil P \rceil * p^1(\overline{e_i})\} c \{\lceil Q \rceil\}$ is n'-valid wrt. Δ for all n' < n.

```
Theorem 3.3 (Soundness of SSL). For any n, \Delta', if
```

- (i) Σ' ; Γ ; $\{P\} \rightarrow \{Q\} | c$ for a goal named f with formal parameters $\Gamma \triangleq \overline{x_i}$, and
- (ii) Σ' is such that $coh(\Delta', \Sigma', n)$, and
- (iii) for all $p^0(\overline{e_i})$, ϕ ; P, such that $\{P\} = \{\phi; p^0(\overline{e_i}) * P\}$, taking $\mathcal{F} \triangleq f(\overline{x_i}) : \{\phi; p^1(\overline{e_i}) * [P]\} \{ [Q] \}$, Σ' , \mathcal{F} ; Γ ; $\{P\}$ c $\{Q\}$ is n'-valid for all n' < n wrt. $\Delta \triangleq \Delta'$, f $(\overline{t_i} \ \overline{x_i}) \ \{c\}$, then Σ' ; Γ : $\{P\}$ c $\{Q\}$ is n-valid wrt. Δ .

PROOF. By the top-level induction on n and by inner induction on the structure of derivation $\Sigma';\Gamma;\{\mathcal{P}\}\leadsto\{Q\}|c$. We refer the reader to Appendix A for the details.

Algorithme de synthèse basé sur SSL

- Recherche en profondeur dans l'espace des dérivations SSL valides.
- Recherche récursive avec backtracking.

Pour synthétiser un programme, besoin de

- contexte et environnement;
- préconditions et postconditions;
- liste de règles possibles;

Optimisations:

• Règles inversibles

Optimisations:

- Règles inversibles
- Recherche multi-phase

Optimisations:

- Règles inversibles
- Recherche multi-phase
- Rèduction des symétries

Optimisations:

- Règles inversibles
- Recherche multi-phase
- Rèduction des symétries
- Règles d'échec

Optimisations:

- Règles inversibles
- Recherche multi-phase
- Rèduction des symétries
- Règles d'échec

Extensions:

Fonctions auxilliaire

Optimisations:

- Règles inversibles
- Recherche multi-phase
- Rèduction des symétries
- Règles d'échec

Extensions:

- Fonctions auxilliaire
- Enlèvement de branches

Benchmark

Group	Description	Code	Code/Spec	Time	T-phase	T-inv	T-fail	T-com	T-all	T-IS
Integers	swap two	12	0.9x	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	min of two ²	10	0.7x	0.1	0.1	0.1	< 0.1	0.1	0.2	
Linked List	length ^{1,2}	21	1.2x	0.4	0.9	0.5	0.4	0.6	1.4	29x
	max ¹	27	1.7x	0.6	0.8	0.5	0.4	0.4	0.8	20x
	min ¹	27	1.7x	0.5	0.9	0.5	0.4	0.5	1.2	49x
	singleton ²	11	0.8x	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	dispose	11	2.8x	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	initialize	13	1.4x	< 0.1	0.1	0.1	< 0.1	0.1	< 0.1	
	copy ³	35	2.5x	0.2	0.3	0.3	0.1	0.2	-	
	append ³	19	1.1x	0.2	0.3	0.3	0.2	0.3	0.7	
	delete ³	44	2.6x	0.7	0.5	0.3	0.2	0.3	0.7	
Sorted list	prepend ¹	11	0.3x	0.2	1.4	83.5	0.1	0.1	-	48x
	insert1	58	1.2x	4.8	-	-	-	5.0	-	6x
	insertion sort ¹	28	1.3x	1.1	1.8	1.3	1.2	1.2	74.2	82x
Tree	size	38	2.7x	0.2	0.3	0.2	0.2	0.2	0.3	
	dispose	16	4.0x	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	copy	55	3.9x	0.4	49.8	-	0.8	1.4	-	
	flatten w/append	48	4.0x	0.4	0.6	0.5	0.4	0.4	0.6	
	flatten w/acc	35	1.9x	0.6	1.7	0.7	0.5	0.6	-	
BST	insert1	58	1.2x	31.9	-	-	-	-	-	11x
	rotate left ¹	15	0.1x	37.7	-	-	-	-	-	0.5x
	rotate right ¹	15	0.1x	17.2	-	-	-	-	-	0.8x

L'algorithme

```
Algorithm 4.1: synthesize (G : Goal, rules : Rule*)
    Input: Goal G = \langle f, \Sigma, \Gamma, \{\mathcal{P}\}, \{Q\} \rangle
    Input: List rules of available rules to try
                                                                12 function tryAlts (derivs, R, rs, G) =
                                                                      match derivs
    Result: Program c, such that
                                                                13
              \Sigma; f(\Gamma)\{c\}; \Gamma\{\mathcal{P}\}c\{Q\}
                                                                        case [] \Rightarrow \text{ if } isInvert(\mathcal{R}) \text{ then Fail else } withRules(rs, G)
                                                                14
 1 function synthesize (G, rules) =
                                                                        case (goals, K) :: derivs' ⇒
                                                                15
      withRules(rules, G)
                                                                          match solveSubgoals(goals, K)
                                                                16
   function with Rules (rs, G) =
                                                                            case Fail \Rightarrow tryAlts(derivs', \mathcal{R}, rs, \mathcal{G})
                                                               17
      match rs
                                                                            case c \Rightarrow \text{if } c = \text{magic then tryAlts}(derivs', \mathcal{R}, rs, G) \text{ else } c
                                                                18
        case [] ⇒ Fail
                                                                    function solveSubgoals (goals, K) =
        case \mathcal{R} :: rs' \Rightarrow
                                                                      cs := []
                                                                20
           subderivs = filterComm \mid \mathcal{R}(\mathcal{G})
                                                                      pickRules = \lambda G. phasesEnabled? nextRules(G): AllRules
           if isEmpty(subderivs) then
                                                                      for G \leftarrow goals; c = synthesize(G, pickRules(G)); c \neq Fail do
 8
                                                                22
             withRules(rs')
 9
                                                                        cs := cs ++ [c]
                                                                23
           else
                                                                      if |cs| < |goals| then Fail else \mathcal{K}(cs)
10
                                                                24
             tryAlts(subderivs, R, rs', G)
11
```