Math Logic: Assignment 6

Dec 13, 2022

Attention: To get full credits, you *must provide explanations to your answers*! You will get at most 1/3 of the points if you only present the final results.

1. (6pt) Given a 2-ary predicate symbol Q, show that

$$\models_{\mathfrak{A}} \forall v_2 Q v_1 v_2 \llbracket c^{\mathfrak{A}} \rrbracket \iff \models_{\mathfrak{A}} \forall v_3 Q c v_3.$$

- 2. (18pt) For each of the following relations, give a wff that defines it in the structure $\mathfrak{A} = (\mathbb{N}, +, \times)$ (Assume this language has $\dot{+}$, $\dot{\times}$ and $\dot{=}$ with standard interpretations in \mathfrak{A}).
 - $(6pt) \{0,1\};$
 - $(6pt) \{2\};$
 - (6pt) $\{n \in \mathbb{N} \mid n \text{ is an even number}\}$ (Hint: you may reuse the previous defining formula φ and use $\varphi(x)$ to denote the renaming of free occurrences of v_1 in φ to x.)
- 3. (6pt) Let \mathbb{L} be a first-order language with \doteq , a constant $\dot{0}$, a 2-ary function symbol $\dot{+}$. Given the following two structures for \mathbb{L} :
 - \mathfrak{N}_1 where $|\mathfrak{N}_1| = \mathbb{N}$, $\dot{0}^{\mathfrak{N}_1} = 0$ and $\dot{+}^{\mathfrak{N}_1} = +$;
 - \mathfrak{N}_2 where $|\mathfrak{N}_2|=\mathbb{N},$ $\dot{0}^{\mathfrak{N}_2}=1$ and $\dot{+}^{\mathfrak{N}_2}=\times.$

Show that there is a homomorphism from \mathfrak{N}_1 to \mathfrak{N}_2 . You need to prove that there is a function that satisifes the properties of homomorphisms. (Hint: consider the simplest case where the function is constant.)