Document Title

128Kx8 bit Low Power CMOS Static RAM

Revision History

Revision No.	<u>History</u>	Draft Data	<u>Remark</u>
0.0	Initial draft	July 15, 2002	Preliminary
0.1	Revised - Deleted 32-TSOP1-0820R, 32-TSOP1-0813.4F/R Package Type Added Commercial product Added 55ns product(Vcc = 3.0V~3.6V)	December 4, 2002	Preliminary
0.2	Revised - Added Lead Free 32-SOP-525 Product - Added Lead Free 32-TSOP1-0820F Product	June 23, 2003	Preliminary
1.0	Finalized - Changed Icc from 3mA to 2mA - Changed Icc2 from 25mA to 20mA - Changed Isв1 (Commercial) from 10μA to 6μA - Changed Isв1 (Industrial) from 10μA to 6μA - Changed Isв1 (Automotive) from 20μA to 10μA - Changed IbR(Commercial) from 10μA to 6μA - Changed IbR(industrial) from 10μA to 6μA - Changed IbR(Automotive) from 20μA to 10μA	September 16, 2003	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserves the right to change the specifications and products. SAMSUNG Electronics will answer to your questions. If you have any questions, please contact the SAMSUNG branch offices.

128Kx8 bit Super Low Power and Low Voltage full CMOS Static RAM

FEATURES

• Process Technology: Full CMOS

• Organization: 128K x 8

• Power Supply Voltage: 2.7~3.6V

• Low Data Retention Voltage: 1.5V(Min)

• Three state outputs

• Package Type: 32-SOP-525, 32-TSOP1-0820F

32-SOP-525, 32-TSOP1-0820F

GENERAL DESCRIPTION

The K6X1008T2D families are fabricated by SAMSUNG's advanced CMOS process technology. The families support verious operating temperature ranges and have various package types for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Dissipation				
Product Family	Operating Temperature	Vcc Range Speed		Standby (ISB1, Max)	Operating (Icc2, Max)			
K6X1008T2D-B	Commercial(0~70°C)			55 ¹)/70 ²)/95pc	6μΑ		32-SOP-525	
K6X1008T2D-F	Industrial(-40~85°C)	2.7~3.6V		55"//U"//65IIS	55 770 765HS	ΟμΑ	20mA	32-TSOP1-0820F 32-SOP-525
K6X1008T2D-Q	Automotive(-40~125°C)		70 ²⁾ /85ns	10μΑ		32-TSOP1-0820F		

^{1.} This parameter is measured in the voltage range of 3.0V~3.6V with 30pF test load.

PIN DESCRIPTION

NC VCC A16 31 A15 CS2 A14 [30 WE A12 29 OE A10 CS1 I/O8 I/O6 I/O5 I/O5 I/O4 VSS I/O3 I/O1 I/O1 A0 A13 Α7 27 A8 A6 26 A9 A5 WE | CS2 | A15 | VCC | NC | A16 | A14 | A12 | A13 | A14 | A15 | A1 32-SOP 32-TSOP 25 A11 24 OE A3 9 Type1-Forward 23 A10 22 CS1 A2 ___10 A1 A0 _ 12 21 1/08 A1 A2 20 | I/O7 19 | I/O6 I/O1 13 I/O2 14 I/O3 ____15 18 1/05 1/04 VSS 16

Name	Function
A0~A16	Address Inputs
WE	Write Enable Input
CS ₁ ,CS ₂	Chip Select Input
ŌĒ	Output Enable Input
I/O1~I/O8	Data Inputs/Outputs
Vcc	Power
Vss	Ground
NC	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

^{2.} This parameter is measured with 30pF test load.

PRODUCT LIST

Commercial Products(0~70°C)		Industrial Prod	lucts(-40~85°C)	Atomotive Products(-40~125°C)			
Part Name	Function	Part Name	Function	Part Name	Function		
K6X1008T2D-GB55 ¹⁾	32-SOP, 55ns, LL	K6X1008T2D-GF55 ¹⁾	32-SOP, 55ns, LL	K6X1008T2D-GQ70	32-SOP, 70ns, L		
K6X1008T2D-GB70	32-SOP, 70ns, LL	K6X1008T2D-GF70	32-SOP, 70ns, LL	K6X1008T2D-GQ85	32-SOP, 85ns, L		
K6X1008T2D-GB85	32-SOP, 85ns, LL	K6X1008T2D-GF85	32-SOP, 85ns, LL	K6X1008T2D-TQ70	32-TSOP-F, 70ns, L		
K6X1008T2D-TB55 ¹⁾	32-TSOP-F, 55ns, LL	K6X1008T2D-TF55 ¹⁾	32-TSOP-F, 55ns, LL	K6X1008T2D-TQ85	32-TSOP-F, 85ns, L		
K6X1008T2D-TB70	32-TSOP-F, 70ns, LL	K6X1008T2D-TF70	32-TSOP-F, 70ns, LL				
K6X1008T2D-TB85	32-TSOP-F, 85ns, LL	K6X1008T2D-TF85	32-TSOP-F, 85ns, LL				
K6X1008T2D-BB55 ^{1,2)}	32-SOP, 55ns, LL	K6X1008T2D-BF55 ^{1,2)}	32-SOP, 55ns, LL				
K6X1008T2D-BB70 ²⁾	32-SOP, 70ns, LL	K6X1008T2D-BF70 ²⁾	32-SOP, 70ns, LL				
K6X1008T2D-BB85 ²⁾	32-SOP, 85ns, LL	K6X1008T2D-BF85 ²⁾	32-SOP, 85ns, LL				
K6X1008T2D-PB55 ^{1,2)}	32-TSOP-F, 55ns, LL	K6X1008T2D-PF55 ^{1,2)}	32-TSOP-F, 55ns, LL				
K6X1008T2D-PB70 ²⁾	32-TSOP-F, 70ns, LL	K6X1008T2D-PF70 ²⁾	32-TSOP-F, 70ns, LL				
K6X1008T2D-PB85 ²⁾	32-TSOP-F, 85ns, LL	K6X1008T2D-PF85 ²⁾	32-TSOP-F, 85ns, LL				

Operating voltage range is 3.0V~3.6V
 Lead Free Product

FUNCTIONAL DESCRIPTION

CS ₁	CS ₂	ŌĒ	WE	I/O	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
X ¹⁾	L	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	Н	High-Z	Output Disabled	Active
L	Н	L	Н	Dout	Read	Active
L	Н	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care (Must be in high or low states)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN,VOUT	-0.2 to Vcc+0.3V(Max. 3.9V)	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 3.9	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
		0 to 70	°C	K6X1008T2D-B
Operating Temperature	TA	-40 to 85	°C	K6X1008T2D-F
		-40 to 125	°C	K6X1008T2D-Q

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	2.7	3.0/3.3	3.6	V
Ground	Vss	0	0	0	V
Input high voltage	Vih	2.2	-	Vcc+0.2 ²⁾	V
Input low voltage	VIL	-0.2 ³⁾	-	0.6	V

Note:

- 1. Commercial Product: T_A=0 to 70°C, Otherwise specified Industrial Product: T_A=-40 to 85°C, Otherwise specified Automotive Product: T_A=-40 to 125°C, Otherwise specified 2. Overshoot: Vcc+3.0V in case of pulse width≤30ns.
- 3. Undershoot: -3.0V in case of pulse width≤30ns.
- 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	Cin	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions I			Тур	Max	Unit
Input leakage current	ILI	VIN=Vss to Vcc		-1	-	1	μΑ
Output leakage current	ILO	CS1=VIH or CS2=VIL or OE=VIH or WE=VIL, VIO	=Vss to Vcc	-1	1	1	μΑ
Operating power supply current	Icc	lio=0mA, \overline{CS} 1=ViL, CS2=ViH, ViN=ViH or ViL, Rea	ad	-	-	2	mA
lcc1 Cycle time=1μs, 100%duty, lio=0mA, CS1≤0.2V, CVIN≤0.2V or VIN≥Vcc-0.2V			/, CS₂≥Vcc-0.2V,	-	-	3	mA
Average operating current	ICC2	Cycle time=Min, 100% duty, Iio=0mA, \overline{CS} 1=VIL, CS2=VIH, VIN=VIH or VIL			-	20	mA
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	Vон	Iон=-1.0mA		2.4	1	1	V
Standby Current(TTL)	Isb	CS1=VIH, CS2=VIL, Other inputs=VIH or VIL		-	-	0.3	mA
Standby Current(CMOS)		00.57/ 0.07/.0057/ 0.07/ 0.07/	K6X1008T2D-B	-	-	6	μА
	ISB1	CS1≥Vcc-0.2V, CS2≥Vcc-0.2V or CS2≤0.2V, Other inputs=0~Vcc	K6X1008T2D-F	-	-	6	μА
		,	K6X1008T2D-Q	-	-	10	μΑ

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Input/Output Reference)

Input pulse level: 0.4 to 2.2V
Input rising and falling time: 5ns
Input and output reference voltage:1.5V
Output load(see right): CL=100pF+1TTL
CL=30pF+1TTL

1. Including scope and jig capacitance

AC CHARACTERISTICS

(Vcc=2.7~3.6V, Commercial product:Ta=0 to 70°C, Industrial product:Ta=-40 to 85°C, Automotive product:Ta=-40 to 125°C)

			Speed Bins						
	Parameter List		55	ns¹)	70ns		85ns		Units
			Min	Max	Min	Max	Min	Max	
	Read Cycle Time	trc	55	-	70	-	85	-	ns
	Address Access Time	taa	-	55	-	70	-	85	ns
	Chip Select to Output	tco	-	55	-	70	-	85	ns
	Output Enable to Valid Output	toe	-	25	-	35	-	40	ns
Read	Chip Select to Low-Z Output	tLZ	10	-	10	-	10	-	ns
	Output Enable to Low-Z Output	toLZ	5	-	5	-	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	25	0	25	0	25	ns
	Output Disable to High-Z Output	tonz	0	25	0	25	0	25	ns
	Output Hold from Address Change	tон	10	-	10	-	15	-	ns
	Write Cycle Time	twc	55	-	70	-	85	-	ns
	Chip Select to End of Write	tcw	45	-	60	-	70	-	ns
	Address Set-up Time	tas	0	-	0	-	0	-	ns
	Address Valid to End of Write	taw	45	-	60	-	70	-	ns
Write	Write Pulse Width	twp	40	-	50	-	60	-	ns
Wille	Write Recovery Time	twr	0	-	0	-	0	-	ns
	Write to Output High-Z	twnz	0	25	0	25	0	30	ns
	Data to Write Time Overlap	tow	20	-	25	-	35	-	ns
	Data Hold from Write Time	tDH	0	-	0	-	0	-	ns
	End Write to Output Low-Z	tow	5	-	5	-	5	-	ns

^{1.} Voltage range is 3.0V~3.6V for commercial and industrial product.

DATA RETENTION CHARACTERISTICS

Item	Symbol	Test Condition		Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS ₁ ≥Vcc-0.2V ¹⁾		2.0	-	3.6	٧
	IDR	Vcc=3.0V, CS 1≥Vcc-0.2V ¹⁾	K6X1008T2D-B	-	-	6	μΑ
Data retention current			K6X1008T2D-F	-	-	6	μΑ
			K6X1008T2D-Q			10	μΑ
Data retention set-up time	tsdr	See data retention waveform			-	-	ms
Recovery time	trdr	See data retermon wavelonn	5	-	-	1113	

^{1.} CS₁≥Vcc-0.2V, CS₂≥Vcc-0.2V, or CS₂≤0.2V

TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1=OE=VIL, CS2=WE=VIH)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

NOTES (READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap of a low \overline{CS}_1 , a high CS_2 and a low \overline{WE} . A write begins at the latest transition among \overline{CS}_1 goes low, CS_2 going high and \overline{WE} going low: A write end at the earliest transition among \overline{CS}_1 going high, CS_2 going low and \overline{WE} going high, two is measured from the beginning of write to the end of write.

 2. tow is measured from the \overline{CS}_1 going low or CS_2 going high to the end of write.

 3. tas is measured from the address valid to the beginning of write.

 4. two is measured from the end of write to the address change. two applied in case a write ends as \overline{CS}_1 or \overline{WE} going high two applied in case a write ends as \overline{CS}_2 going to low.

DATA RETENTION WAVE FORM

PACKAGE DIMENSIONS

Units: millimeters(inches)

32 PLASTIC SMALL OUTLINE PACKAGE (525mil)

32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0820F)

