Dominik Wawszczak Student ID Number: 440014

Group Number: 3

Let $X, Y \subseteq \{0,1\}^k$, where |X| = |Y| = n, be an instance of the Orthogonal Vectors Problem. We construct two new sets of binary vectors with dimension d = 3k:

$$A = \{xx0_k : x \in X\}$$
 and $B = \{\overline{y}0_ky : y \in Y\},$

where vu denotes the concatenation of vectors v and u, 0_l is a vector consisting of l zeros, and \overline{v} is the vector v with every coordinate negated. Note that |A| = |B| = n.

We will prove the following equivalence:

$$\exists \underset{x \in X}{\exists} x \perp y \quad \iff \quad \exists \underset{a \in A}{\exists} \operatorname{dist}_{\operatorname{Hamming}}(a, b) \leqslant k.$$
(1)

Assume there exist $x \in X$ and $y \in Y$ such that $x \perp y$. Take $a = xx0_k \in A$ and $b = \overline{y}0_k y \in B$. Define

$$\operatorname{cnt}_{p,q} = |\{i : x[i] = p \land y[i] = q\}|,$$

for any $p, q \in \{0, 1\}$. We have:

$$\begin{aligned} \operatorname{dist}_{\operatorname{Hamming}}(a,b) &= \operatorname{dist}_{\operatorname{Hamming}}(xx0_k, \overline{y}0_k y) = \\ &= \operatorname{dist}_{\operatorname{Hamming}}(x, \overline{y}) + \operatorname{dist}_{\operatorname{Hamming}}(x, 0_k) + \operatorname{dist}_{\operatorname{Hamming}}(0_k, y) = \\ &= (\operatorname{cnt}_{0,0} + \operatorname{cnt}_{1,1}) + (\operatorname{cnt}_{1,0} + \operatorname{cnt}_{1,1}) + (\operatorname{cnt}_{0,1} + \operatorname{cnt}_{1,1}) = \\ &= (k - \operatorname{cnt}_{0,1} - \operatorname{cnt}_{1,0}) + (\operatorname{cnt}_{0,1} + \operatorname{cnt}_{1,0} + 2 \cdot \operatorname{cnt}_{1,1}) = k + 2 \cdot \operatorname{cnt}_{1,1} = k, \end{aligned}$$

because $\operatorname{cnt}_{1,1} = 0$, as $x \perp y$. We also used the fact that $\operatorname{cnt}_{0,0} + \operatorname{cnt}_{0,1} + \operatorname{cnt}_{1,0} + \operatorname{cnt}_{1,1} = k$.

Conversely, assume there exist $a \in A$ and $b \in B$ such that $\operatorname{dist}_{\operatorname{Hamming}}(a, b) \leq k$. Take $x \in X$ and $y \in Y$ where $a = xx0_k$ and $b = \overline{y}0_ky$. As before, we can show that $\operatorname{dist}_{\operatorname{Hamming}}(a, b) = k + 2 \cdot \operatorname{cnt}_{1,1}$ with $\operatorname{cnt}_{p,q}$ defined as earlier. Therefore, it must hold that $\operatorname{cnt}_{1,1} = 0$, which means $x \perp y$, completing the proof of the equivalence (1).

Suppose there exists a constant $\delta > 0$ such that the problem from the statement can be solved in time $\mathcal{O}(d^{100} \cdot n^{2-\delta})$. Then, due to the equivalence (1), the Orthogonal Vectors Problem could be solved in time

$$\mathcal{O}(d^{100} \cdot n^{2-\delta}) = \mathcal{O}((3k)^{100} \cdot n^{2-\delta}) = k^{\mathcal{O}(1)} \cdot n^{2-\delta},$$

which contradicts the Orthogonal Vectors Conjecture, concluding the proof, since

Strong Exponential Time Hypothesis \implies Orthogonal Vectors Conjecture.