Dual operational amplifier BA4558 / BA4558F / BA4558N

The BA4558, BA4558F, and BA4558N are monolithic ICs with two operational amplifiers featuring low power consumption and internal phase compensation mounted on a single silicon chip. These products offer high speed, a wide band width, and low noise.

Outstanding thermal characteristics and voltage gain band width make these ICs ideal for use in a wide variety of electronic circuits. The BA4558 comes in an 8-pin DIP package and is compatible with the 4558 operational amplifier. The BA4558F comes in an 8-pin SOP package, and the BA4558N in an 8-pin SIP package.

Applications

Active filters

Audio amplifiers

VCOs

Other electronic circuits

Features

- 1) Low power dissipation of approximately 50mW (typ.).
- 2) Built-in output short-circuit protection circuit.
- 3) Internal phase compensation.

- 4) No latch-up.
- Wide range of common mode and differential voltage.
- 6) High gain and low noise.

Block diagram

Internal circuit configuration

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol		Unit		
		BA4558 BA4558F BA4558			
Power supply voltage	Vcc	± 18	± 18	± 18	V
Power dissipation	Pd	800*	550*	900*	mW
Differential input voltage	VID	± 30	± 30	± 30	V
Common-mode input voltage	Vı	± 15	± 15	± 15	V
Operating temperature	Topr	- 40 ~ + 85	- 40 ~ + 85	- 40 ~ + 85	°C
Storage temperature	Tstg	- 55 ~ + 125	- 55 ~ + 125	- 55 ~ + 125	°C

^{*} Refer to Pd characteristics diagram.

The values for the BA4558F are those when it is mounted on a glass epoxy board ($50 \text{mm} \times 50 \text{mm} \times 1.6 \text{mm}$) .

◆Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = + 15V, VEE = - 15V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Input offset voltage	Vıo	_	0.5	6.0	mV	$R_S \le 10k\Omega$
Input offset current	lio	_	5	200	nA	
Input bias current	Ів	_	60	500	nA	
High-amplitude voltage gain	Av	86	100	_	dB	$R_L \ge 2k\Omega$, $Vo = \pm 10V$
Common-mode input voltage	Vісм	± 12	± 14	_	V	
Maximum output voltage	Vон	± 12	± 14	_	V	$R_L \ge 10 k\Omega$
Minimum output voltage	Vol	± 10	± 13	_	V	$R_L \ge 2k\Omega$
Common-mode rejection ratio	CMRR	70	90	_	dB	$R_S \le 10k\Omega$
Power supply voltage rejection ratio	PSRR	_	30	150	μV/V	$Rs \le 10k\Omega$
Slew rate	S.R.	_	1.0	_	V/μs	$A_V = 1, R_L \ge 2k\Omega$
Channel separation	CS	_	105	_	dB	f = 1kHz

Electrical characteristic curves

Fig.1 Power dissipation vs. ambient temperature

Fig.4 Maximum output voltage vs. frequency

Fig.2 Quiescent current vs. power supply voltage

Fig.5 Input bias current vs. ambient temperature

Fig.3 Open loop voltage gain vs. frequency

Fig.6 Input bias current vs. power supply voltage

Fig.7 Output response characteristics

Fig.8 Common mode input voltage vs. power supply voltage

Operation notes

(1) Unused circuit connections

If there are any circuits which are not being used, we recommend making connections as shown in Figure 9, with the non-inverted input pin connected to the potential within the in-phase input voltage range (VICM).

Fig.9 Unused circuit connections

●External dimensions (Units: mm)

