Lecture Notes for **Machine Learning in Python**

Professor Eric Larson An Ongoing History of Convolutional Networks

Class logistics and Agenda

- Wide/Deep Lab due soon!
- Agenda:
 - Finish CNN Discussion
 - CNN Demo
 - History of CNNs
 - with Modern CNN Architectures
- Next Time:
 - More Advanced CNN Demo

Last Time: CNNs, Putting it together

Structure of Each Tensor: Channels x Rows x Columns

Simple Example: From Fully Connected to CNN

If image is 9x9, and each fully connected layer is 20 hidden neurons wide, how many parameters are in this NN (ignore bias)?

$$(K^2 \times 20) + (20 \times 10) = 200 + 20 K^2$$

for
$$9x9 = 200 + 20x9^2 = 1,820$$
 parameters

Simple Example: From Fully Connected to CNN

Simple Example: From Fully Connected to CNN

CNN gradient

Gradient of Convolution

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial X}$$
 for back propagation

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial F}$$
for weight updates

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Finding derivatives with respect to F_{II} , F_{I2} , F_{21} and F_{22}

$$\frac{\partial \mathcal{O}_{11}}{\partial F_{11}} = \ \boldsymbol{X_{11}} \quad \frac{\partial \mathcal{O}_{11}}{\partial F_{12}} = \ \boldsymbol{X_{12}} \quad \frac{\partial \mathcal{O}_{11}}{\partial F_{21}} = \ \boldsymbol{X_{21}} \quad \frac{\partial \mathcal{O}_{11}}{\partial F_{22}} = \ \boldsymbol{X_{22}}$$

$$\frac{\partial L}{\partial \vec{r}_{11}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{12}}{\partial F_{11}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{22}}{\partial F_{11}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{23}}{\partial F_{12}} * \frac{\partial L}{\partial O_{23}} * \frac{\partial O_{23}}{\partial F_{23}} * \frac{\partial L}{\partial O_{23}} * \frac{\partial O_{23}}{\partial F_{23}} * \frac{\partial L}{\partial O_{23}} * \frac{\partial O_{23}}{\partial F_{23}} * \frac{\partial O_{$$

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} * X_{11} + \frac{\partial L}{\partial O_{12}} * X_{12} + \frac{\partial L}{\partial O_{21}} * X_{21} + \frac{\partial L}{\partial O_{22}} * X_{22}$$

$$\frac{\partial L}{\partial F_{12}} = \frac{\partial L}{\partial O_{11}} * X_{12} + \frac{\partial L}{\partial O_{12}} * X_{13} + \frac{\partial L}{\partial O_{22}} * X_{22} + \frac{\partial L}{\partial O_{22}} * X_{23}$$

$$\frac{\partial L}{\partial F_{21}} = \frac{\partial L}{\partial O_{11}} * X_{21} + \frac{\partial L}{\partial O_{12}} * X_{22} + \frac{\partial L}{\partial O_{21}} * X_{31} + \frac{\partial L}{\partial O_{22}} * X_{32}$$

$$\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} * X_{22} + \frac{\partial L}{\partial O_{12}} * X_{23} + \frac{\partial L}{\partial O_{21}} * X_{32} + \frac{\partial L}{\partial O_{22}} * X_{33}$$

Filter updates

X₁₁ X₁₂ X₁₃

X₂₁ X₂₂ X₂₃

X₃₁ X₃₂ X₃₃

Output from convolution

 $\begin{array}{c|c} \frac{\partial L}{\partial O_{11}} & \frac{\partial L}{\partial O_{22}} \\ \\ \frac{\partial L}{\partial O_{21}} & \frac{\partial L}{\partial O_{22}} \end{array}$

Sensitivity from next layer

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Gradient of Convolution

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial X}$$
 for back propagation

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial F}$$

for weight updates

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Differentiating with respect to X_{11} , X_{12} , X_{21} and X_{22}

$$\frac{\partial Q_{11}}{\partial X_{11}} = F_{11} \quad \frac{\partial Q_{11}}{\partial X_{12}} = F_{12} \quad \frac{\partial Q_{11}}{\partial X_{21}} = F_{21} \quad \frac{\partial Q_{11}}{\partial X_{22}} = F_{22} \qquad \qquad \frac{\partial L}{\partial X_{11}} = \frac{\partial L}{\partial X_{11}} \cdot F_{21} = \frac{\partial L}{\partial X_{12}} \cdot F_{21} = \frac{\partial L}{\partial X_{12}} \cdot F_{22} = \frac{\partial L}{\partial X_{12}} \cdot F_{21} = \frac{\partial L}{\partial X_{12}} \cdot F_{21} = \frac{\partial L}{\partial X_{12}} \cdot F_{21} = \frac{\partial L}{\partial X_{12}} \cdot F_{22} = \frac{\partial L}{\partial X_{12}} \cdot F_{21} = \frac{\partial L}{\partial X_{12}} \cdot F_{22} = \frac{\partial L}{\partial X_{12}} \cdot F_{21} = \frac{\partial L}{\partial X_{12}} \cdot F_{22} = \frac{\partial L}{\partial X_{12}$$

Similarly, we can find local gradients for 012, 021 and 022

 $\frac{\partial \mathbf{L}}{\partial \mathbf{X}_n} = \frac{\partial \mathbf{L}}{\partial \mathbf{0}_n} + \mathbf{P}_n$

 $\frac{\partial L}{\partial X_{m}} = \frac{\partial L}{\partial Q_{m}} * F_{m}$

 $\frac{\partial L}{\partial X_{n}} = \frac{\partial L}{\partial Q_{n}} * F_{10} + \frac{\partial L}{\partial Q_{n}} * F_{21}$

 $\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{-}} = \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{+}} \cdot \mathbf{P}_{22} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{-}} \cdot \mathbf{P}_{31} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{-}} \cdot \mathbf{F}_{12} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{-}} \cdot \mathbf{F}_{31}$

CNN Gradient

- Takeaways:
 - Derivative of a convolutional layer is calculated through two additional convolutions
 - One for filter updates
 - One for calculating a new sensitivity
 - We need to run convolution fast in order to speed up both:
 - feedforward operations (inference and training)
 - back propagation (training)
- Another great resource:
 - https://becominghuman.ai/back-propagation-in-convolutionalneural-networks-intuition-and-code-714ef1c38199

CNN adding more convolutional layers

Some Example CNN Architectures

CNN: What does it all mean?

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

Jason Yosinski

Jeff Clune

Anh Nguyen

Thomas Fuchs

Hod Lipson

TensorFlow and Basic CNNs

Convolutional Neural Networks

in TensorFlow with Keras

11. Convolutional Neural Networks.ipynb

Demo

Next Lecture

More CNN architectures and CNN history