Prime Numbers

Property

for any integer a > 1, it exist a prime p for which p|a

Proof:

lets assume that the negative proposition is true, meaning that it exist a > 1, for any prime p, p can't divid a, so a it self isn't prime, we take the set of dividor of a greater than 1 $D = \{c | a, 1 < c < a\}$, this set isn't empty because if it is there is no divisor for a besid $\pm a$ and ± 1 wich contradict the fact that a cant be divisible by prime so a will be prime number, hence $D \neq \emptyset$, because $D \subset \mathbb{N}$, minimum of D exist, we take $d = \min D$, if we suppose that there is r for which 1 < r < d and r | d it imply that r | a then $r \in D$ and r < d which will contradict the fact d is minimum, meaning d cant have any devidor beside $\pm d$ and ± 1 , so d is prime, hence contradiction

Proprety:

Any integer a > 1, it exist $p_1, p_2, ..., p_t$ with $p_1 \le p_2 \le ... \le p_t$ $a = p_1 \times p_2 \times ... \times p_t$

Proof:

Any integer a > 1, if a is prime then the assemption is rigth, let see the other one, if a is not we take the set of all prime number p > 1 that can divid a, $K_1 = \{p | a, p \text{ is prime with } 1$ $K_1 \neq \emptyset$ because for any integer a > 1, it exist a prime p for which p\a meaning that p < a and p divid a hence $p \in K_1$ implying $K_1 \neq \emptyset$, the set $K \subset \mathbb{N}$ and any $p \in K_1$ p < a, so K_1 has maximum, let $p_1 = \max K_1$ that means it exist $1 < m_1 < a$ for which $a = m_1 p_1$, we do the same for m_1 we have the set $K_2 = \{p | m_1, p \text{ is prime with } 1 the same nonemptiness reason$ as K_1 , let $p_2 = maxK_2$ that means it exist $1 < m_2 < m_1$ for which $m_1 = m_2p_2$ meaning that $p_2 \le p_1$, p_2 cant be greater then p_1 because $m_1 < a$ and p_1 is the greatest prime number that divid a, so if we continue like this we will have after n iteration the following result $m_n = m_{n+1} p_{n+1}$ with $1 < m_n < ... < m_2 < m_1$ and $p_{n+1} \le ... \le p_2 \le p_1$, by the well ordering theorem $1 < m_n < ... < m_2 < m_1$ this sequence is decreasing, and it born in the bottom by 1 hence this sequence has limit number after t iteration because we are in \mathbb{N} , and we know all a > 1 has a prime number that divid them, and the limit of the sequence is no exeption so m_t must equal p_t a prime number, because if not m_t is greater then 1 and not prime we can find K_t , m_{t+1} and p_{t+1} which will contradict the fact that m_t is the limit, hence m_t must be prime finally we can arrenge and replace each m_k with its value we will get $a = p_1 \times p_2 \times ... \times p_t$ with

$$p_1 \leq p_2 \leq \dots \leq p_t$$

Proprety:

for p a prime number if p|bc then p divid b or c

Proof:

if p|b we are done, else it means gcd(p,b) = 1 and by the extended euclidiant algorithm we will have some $x, y \in \mathbb{Z}$, for wich px + by = 1 implying exp + cby = c, p divid it self and bc hence p divid c

Proprety:

Any integer a > 1, it exist $p_1, p_2, ..., p_t$ with $p_1 < p_2 < ... < p_t$ and α_i is a positive integer $a = p_1^{\alpha_1} \times p_2^{\alpha_2} \times ... \times p_t^{\alpha_t}$

Proof:

Any integer a > 1, it exist $q_1, q_2, ..., q_n$ with $q_1 \leq q_2 \leq ... \leq q_n$ $a = q_1 \times q_2 \times ... \times q_n$, we take the set $K_1 = \{p | a, p \text{ is prime with } 1 its obviously nonempty because a is the$ product of prime numbers, the max exist because $K_1 \subset \mathbb{N}$ and for all p in K_1 p < a, let take $p_1 = maxK_1$, we get b_1 after we divid a with p_1 , if p_1 divid b_1 we get b_2 we will repeat this until b_k that cant be divid by p_1 , so we get two resulte α_1 the number of time we divided by p_1 and b_k a number that doest have the p_1 primery number so we are left with $b_k = q_1 \times q_2 \times ... \times q_{n-k}$ know we have another composition and we take $K_2 = K_1 - \{p_1\}$ and K_2 is not empty for the same reason as K_1 , $K_2 \subset K_1$ meaning max exist we take $p_2 = \max K_2$ and because $p_1 \notin K_2$ and $K_2 \subset K_1$ with $p_1 = \max K_1$, $p_2 < p_1$ wich means that $p_1 \neq p_2$, they are distinct, we repeate the same process so after j iteration we will have $K_i \subset ... \subset K_2 \subset K_1$, (p_1, α_1) , (p_2, α_2) ,..., (p_i, α_i) , because every K_{i+1} is strictly includ in K_i , and $K_{i+1} = K_i - \{p_i\}$ with $p_i = \max K_i$, means that $\max K_{i+1} < \max K_i$ wich means $p_{i+1} < p_i$, implying the distinction of each p_i with $p_i \neq p_{i+1}$. the numbers are finit so this sequence can't continue for ever the set K_i alwas get an element out so there is limit t for which $K_t = \emptyset$, in other word $K_t = K_1 - \{q_1, ..., q_n\} = \emptyset$ hence we will have the following $(p_1, \alpha_1), (p_2, \alpha_2), ..., (p_i, \alpha_i), ..., (p_{t-1}, \alpha_{t-1})$ so we can rewrite a as the product of each of p_i that is repeated α_i times, hence $a = p_1^{\alpha_1} \times p_2^{\alpha_2} \times ... \times p_{t-1}^{\alpha_{t-1}}$ with $p_1 < p_2 < ... < p_t$ suppose we can write a two diffrent ways $a = p_1^{\alpha_1} \times p_2^{\alpha_2} \times ... \times p_t^{\alpha_t}$ and $a = q_1^{\beta_1} \times q_2^{\beta_2} \times ... \times q_t^{\beta_t}$ we know that $p_i|a$ which will mean that there is a $q_i^{\beta_j}$ that p_i divid for some j and by the nested property the p_i is distinct in a so $q_i = p_i$ we repeat this until $\alpha_i \leq \beta_i$, in the other way q_i a we already tell that $q_i = p_i$ and it will divided for some i so we reapeted until $\beta_i \leq \alpha_i$, hence $\alpha_i = \beta_i$
