Elektrochemie

FS 2025 – Mario Graf

Autoren:

Fabian Suter & Steiner, Vorlage: Yves Looser, Nino Briker, Sandro Heidrich

> Version: 1.0.0

https://github.com/FabianSuter/ElChem.git

Inhaltsverzeichnis

	Aufbau der Stoffe	ii	5	Säure-Base-Reaktionen $pK_s + pK_b = 14$	i
	1.1 Grundlagen	ii		5.1 Säure-Base GGW	
	1.2 Valenzelektronen (Ve)	ii		5.2 pH-Wert	ij
	1.3 Lewis-Formel → gibt nur Valenzelektronen an	ii			
			6	Redox-Reaktionen	ii
,	Stoffklassen	ii		6.1 Grundlagen	ij
	2.1 Metalle und Halbmetalle	ii		6.2 Redoxpotential	ij
	2.2 Dotierung von Halbmetallen	ii			
	2.3 Bindungswinkel	ii	7	Anwendungen der Redox-Reaktionen	ii
	2.4 Zwischenmolekularkräfte ZMK	ii		<u>.</u> .	
	2.5 Löslichkeit	ii	8	Korrosion	ii
				8.1 Korrosionsarten	
,	Flüssigkristalle	ii		8.2 Oxidschichten	
	3.1 TN-Zelle (Twisted Nematic)	ii		8.3 Ablauf der Korrosion in wässrigen Lösungen	
				8.4 Passivatoren und Depassivatoren	ii
ļ	Ablauf chemischer Reaktionen (Freiwilligkeit)	ii		8.5 Flächenkorrision	ii
	4.1 Enthalpie H / Reaktionsenthalpie (Wärme) ΔH_R	ii		8.6 Kontaktkorrosion	ii
	4.2 Entropie S (Unordnung) / Reaktionsentropie ΔS_R	ii		8.7 Lochfrasskorrosion	ii
	4.3 Freie Enthalpie ΔG	ii		8.8 Belüftungselemente	ii
	4.4 Aktivierungsenergie/Reaktionsgeschw RG/Katalysatoren	ii		8.9 Potentialverhältnisse / Aktivierungsenergie	ii

1 Aufbau der Stoffe

1.1 Grundlagen

Atomare Masseeinheit:	Elementarladung:	max. $2 \cdot n^2$ Elektronen
$u = \frac{1}{6.022} 10^{-23} g$	$e = \pm 1.6022 \cdot 10^{-19} C$	pro Energieniveau n

Atommasse X Ladung Ordnungszahl

Ordnungszahl = Protonenzahl

- Atommasse = Summe Protonen & Neutronen
- Ladung = Summe Protonen & Elektronen

Bausteine: Protonen & Neutronen im Kern, Elektronen in der Hülle

1.2 Valenzelektronen (Ve) ...

- -Anzahl anhand der Hauptgruppen im PSE bestimmbar
 - Natrium (Na): 1. Hauptgruppe = 1 Ve
 - Kohlenstoff (C): 4. Hauptgruppe = 4 Ve
- -Bestimmung der Nebengruppen komplizierter/unmöglich
 - ⇒ verschiedene Formen möglich
- haben starken Einfluss auf chemische Eigenschaften
- variieren zw. 1 und 8 → Oktett-Regel
- → Atome wollen äusserste Schale voll haben
- → Elektronen abgeben oder aufnehmen ⇒ chemische Reaktion

1.3 Lewis-Formel → gibt nur Valenzelektronen an

·Li + :
$$\overrightarrow{F}$$
 · \longrightarrow Li⁺ : \overrightarrow{F} : $\overline{}$ · (= LiF)
1s²2s¹ 1s²2s²2p⁵ 1s² 1s²2s²2p⁶

2 Stoffklassen

- molekulare Stoffe & Edelgase:
 - Abgeschlossener Atomverband aus Nichtmetallen (Molekül)
 - Formel: genaue Anzahl Atome pro Molekül, z.B H₂O oder He
 - Nicht elektrisch Leitend, da keine freien Ladungsträger vorhanden

• Metalle und Halbmetalle:

- unendlicher Verband aus metallischen Atomkernen umgeben von delokaliserten (Valenz-) Elektronen (Elektronen-Wolke)
- Formel: Verhältnis der Atome im Gitter. Z.B. Fe

• Salze:

- unendl. Verband aus metallischen Kationen(+) und nichtmetall. Anionen() (können auch molekulare Kationen sein(SO₄ ⁻))
- Formel: Verhältnis der Kationen und Anionen, z.B. $Al_2O_3 = Al^{3+}$ und O^{2-}
- Besitzt in Schmelze und in Lösung freie Ladungsträger (Ionen)
- → leitet in diesen Zuständen dementsprechend gut Strom

2.1 Metalle und Halbmetalle

Metalle besitzen durch delokalisierte Ve (Elektronenwolke) freie Ladungsträger

- → gute Wärme- und el. Leitfähigkeit, Verformbarkeit
- Leitfähigkeit bei Metallen
 - nimmt mit steigender Temperatur ab
 - → Die Bewegung der Atomrümpfe erhöht sich
 - ⇒ weniger Platz für die Elektronenbewegung

Beispiel Lithium:

- Valenzband (spez. Energieniveau) nicht ganz gefüllt
 - → Elektronen können sich im Band bewegen

Beispiel Beryllium:

- Valenzband komplett gefüllt, aber mit leerem Leitungsband überlappend
- → Elektronen können sich im Band bewegen

Halbmetalle haben weder Elektronenwolken noch überlappende Energieniveaus, Nähe vom Valenz- und Leitungsband ermöglichen aber ein Überspringen

- Leitfähigkeit bei Halbmetallen
 - nimmt mit steigender Temperatur stark zu
 - → Die Elektronen springen viel zahlreicher auf das Leitungband über
 - ⇒ Platz für Elektronenbewegung im Leitungsband

2.2 Dotierung von Halbmetallen

Dotierung → Einbringen von Fremdatomen ins Atomgitter eines Halbleiters

• n-Halbleiter

z.B. einzelne As-Atome im Si-Gitter(1:10'000'000)

Ein *überschüssiges* Elektron pro As-Atom ⇒ Leitfähigkeit: Elektron von As-Atom kann ins Leitungsband von Si überspringen und sich frei bewegen

• p-Halbleiter

z.B. einzelne B-Atome im Si-Gitter(1:1'000'000)

Ein *fehlendes* Elektron pro B-Atom ⇒ Leitfähigkeit: Elektronen aus dem vollen Valenzband von Si können in diese "Lücke" springen und sich frei bewegen

2.3 Bindungswinkel

2.4 Zwischenmolekularkräfte ZMK

- ... beinflussen Schmelzp., Siedep., Löslichkeit, Viskosität, Oberflächenspannung, ...
 - Van der Waals (asymm. e^- -Verteilung, abh. Anzahl e^-) sehr schwach
 - Dipol-Dipol (Partialladung, δ^+ , δ^- , Δ EN) schwach
 - Wasserstoffbrücken (H-F-, H-O- oder H-N-Bindungen) stark

2.5 Löslichkeit

Die Löslichkeit von Salzen hängt von ihrer Bildungsstärke ab. Je grösser die Ladung der Ionen und je grösser die Ionen, desto schlechter sind sie in Wasser löslich.

Immer gut löslich sind:

- alle Alkalisalze (NaCl, KOH, ...)
- alle Ammoniumsalze (NH₄Cl, ...)
- alle Nitratsalze (Pb(NO₃)₂, Ca(NO₃)₂)
- alle Hydrogensalze (Ca(HCO₃)₂)

Oft schwer löslich sind:

- viele Sulfidsalze (PbS, ...)
- viele Phosphatsalze (AlPO₄,...)
- viele Carbonatsalze (CaCO₃, ...)
- viele Erdalkalisalze (MgCl₂,...)

3 Flüssigkristalle

Flüssigkristalle haben zwischen den Aggregatzuständen "fest" und "flüssig" einen weiteren Aggregatzustand: Der "flüssigkristalline" Aggregatzustand macht sich erkennbar durch die trübe Farbe. Hauptursache: ZMK

Es werden 3 verschiedene flüssigkristalline Phasen unterschieden:

- smektische Phase (kein Vorbeigleiten, Schichten)
- nematische Phase (Vorbeigleiten möglich, nicht geordnet)
- cholesterische Phase (Schichten mit nem. Phase, jede Schicht vedreht)

Damit Moleküle eine solche Phase zeigen können, müssen folgende Kriterien erfüllt sein:

- lange, stäbchenartige Moleküle (4x 6x Molekülbreite)
- starre Atomgruppen wie z.B. Benzol-Ringe, Doppel-, Dreifachbindungen
- funktionelle Gruppe mit sehr starkem Dipolmoment (-CN-, -COOH)

3.1 TN-Zelle (Twisted Nematic)

ohne angelegte Spannung

mit angelegter Spannung

4 Ablauf chemischer Reaktionen (Freiwilligkeit)

4.1 Enthalpie H / Reaktionsenthalpie (Wärme) ΔH_R

Prinzip Energieminimum: Stoff will energiearmen Zustand erreichen!

 $\Delta H_R = H_{Produkte} - H_{Edukte} \quad [H] = \frac{kJ}{\text{mol} \cdot K}$

 $\Delta H_R > 0 \Rightarrow$ endotherm, Energieaufnahme $\Delta H_R < 0 \Rightarrow$ exotherm, Energieabgabe

4.2 Entropie S (Unordnung) / Reaktionsentropie ΔS_R

Prinzip Energiemax: alle Stoffe und Systeme wollen möglichst grosse Entropie $\Delta S_R = \sum S_{Produkte}^0 - \sum S_{Edukte}^0$ $[\Delta S_R] = \frac{J}{\text{mol} \cdot K}$

S⁰: Molare Standardentropie (1mol des Stoffs bei Std.Bedingungen)

4.3 Freie Enthalpie ΔG

Beschreibt Freiwilligkeit der Reaktion:

 $\Delta G = \Delta H - T \cdot \Delta S$ $\Delta G < 0$: Exergon (freiwillige Reaktion)

 $[\Delta G] = \frac{kJ}{mol}$

 $\Delta G > 0$: Endergon(unfreiwillige Reaktion)

4.4 Aktivierungsenergie/Reaktionsgeschw. RG/Katalysatoren

- RGT-Regel: $\Delta T = +10^{\circ} C \rightarrow RG \cdot 2$
- Katalysator = Stoff nimmt an Reaktion teil, wird nicht verbraucht
- Beschleunigt Reaktion: $E_{AKat} \ll E_{ANorm}$
- Δ G sowie ΔH_R bleiben gleich
- Selektiv (wirkt nicht mit allen Stoffen)

5 Säure-Base-Reaktionen $pK_s + pK_b = 14$

Ein Ampholyt ist ein Teilchen das sowohl als Säure, wie auch als Base Wirken kann. Z.b. H2O, HSO4-, HS

5.1 Säure-Base GGW

Bergab = GGW rechts: $HCl + H_2O \longrightarrow Cl^- + H_3O^+$ Säuren = Protonenspender Bergauf = GGW links: $HS^- + H_2O \rightleftharpoons S^{2-} + H_3O^+$ Basen = Protonen**b**inder

- Aussage über Gehalt von H₃O⁺
 keine Aussage über Säurestärke
- liegt zwischen 0 und 14
- gilt für verdünnte, wässrige Lösungen (≥ 1mol/L)
- $[H_3O^+] = 10^{-pH}$

• $[OH^-] = 10^{-14+pH}$ Neutralisation: $H_3O^+ + Cl^- + Na^+ + OH^ \Rightarrow 2H_2O + Cl^- + Na^+$ Kochsalz-Lsg Natronlauge Wasser Salzsäure

6 Redox-Reaktionen

6.1 Grundlagen

Reduktionsmittel (RM) = e^- -Spender Oxid a tion = e^- -Abg a be

Oxidationsmittel (OM) = e^- -Akzeptor Red \mathbf{u} ktion = e^- -A \mathbf{u} fnahme = Erniedrigung der OZ

Oxidationszahlen Bestimmen mittels Regeln:

- R1 OZ elementarer Stoffe ist Null O_2^0 , Cl_2^0
- OZ einatomiger Ionen = Ionenladung $Na^{+}: +I, Fe^{2+}: +II$
- R3 Bei Molekülen: Bindungselektron beim negativerem Atom F: immer -I, O: meist -II, H: Meist +I
- **R4** Summe aller OZ = Ladung des Teilchens

6.2 Redoxpotential

Redoxpotential → auslesen aus Redoxreihe ganz rechts

Gemessen gegenüber Wasserstoff-Elektrode

Abhängig von: pH, Druck, Ionenkonzentration, Temperatur → Nernst-Gleichung:

$$\frac{\mathsf{E}_{\mathsf{RM}/\mathsf{OM}}^{0} + \frac{0.059}{\mathsf{z}} \cdot \mathsf{lg} \frac{[\mathsf{OM}]}{[\mathsf{RM}]}}{\mathsf{Inkl. pH-Wert:}}$$

- z = Anz. e⁻ die pro Atom übergeben werden
- [OM] = konz. OM in mol/L
- [RM] = konz. RM in mol/L, bei Metallen 1

Redoxpaar: H₂ + 2 H₂O (2)H₃O⁺ + 2 e⁻

$$E_{H_2/H_3O^+} = 0 + \frac{0.059V}{2} \cdot lg \left(\frac{[H_3O^+]^2}{p(H_2) \cdot [H_2O]^2} \right) = -0.059V \cdot pH$$

Redoxpaar: 4 OH⁻ / O₂ + 2 H₂O + 4 e⁻

$$\textbf{E}_{\textbf{O}\textbf{H}^-/\textbf{O}_2} = E_{\textbf{O}\textbf{H}^-/\textbf{O}_2}^0 + \frac{0.059V}{4} \cdot lg \Biggl(\frac{p(\textbf{O}_2) \cdot [\textbf{H}_2\textbf{O}]^2}{[\textbf{O}\textbf{H}^-]^4} \Biggr) = \textbf{1}.\textbf{23} - \textbf{0}.\textbf{059V} \cdot \textbf{pH}$$

Edle Metalle E > 0V

- Gold, Silber
- Platin, Palladium

Unedle Metalle E < 0V

- Natrium, Lithium
- · Eisen, Zink

7 Anwendungen der Redox-Reaktionen

Spannung galvanische Zelle: $U = E^{Kathode} - E^{Anode}V$

Anode = Oxidation Kathode = Reduktion

8 Korrosion

Metall reagiert als RM: Me \rightleftharpoons $Me^{z+} + ze^{-}$

Möglich wenn $\Delta G < 0 \& v.a. O_2, H_2O/H_3O^+$ (OM) vorhanden

Wenn E_a gross \rightarrow Reaktionsgeschwindigkeit klein (siehe auch 4.4)

8.1 Korrosionsarten

8.1.1 Elchem Korrosion

Häufigste Korrosionsart, Ox. und Red. **räumlich getrennt**, wässriger Elektrolyt ⇒ Bildung galvanische Zelle

8.1.2 O2-Typ-Korrosion \rightarrow 8.2

 $O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$

 $2 \text{Fe} + \frac{3}{2} \text{O}_2 + \text{H}_2 \text{O} \longrightarrow 2 \text{FeOOH}$

Voraussetzung ist Vorhandensein von O₂ und H₂O, RG relativ langsam!

8.1.3 Säure/Wasserstoffkorrosion

Ist pH-Abhängig:

- Sauer: $2 \text{ H}_3 \text{O}^+ + 2 \text{ e}^- \iff \text{H}_2 + 2 \text{ H}_{20}$
- Basisch: $2 H_2 O + 2 e^- \longrightarrow H_2 + 2 OH^-$

⇒ es bildet stets Wasserstoff H₂

8.1.4 Beispiele Al H-Typ-Korrosion

H2 Korrosion von Al in basischer Lösung

 $Al_2^{+}OH - ^{+}3H_2O$ $2[AL(OH)_4]^-(aq)$ Depassivierung: $Al_3^+ + 3e^-$ Oxidation: Reduktion: $2 H_2 O + 2 e^{-2}$ $H_2 + 2 OH^ 2 \text{ Al} + 6 \text{ H}_2 \text{O} + 2 \text{ OH}^ 2 [Al(OH)_4]^- + 3 H_2$ Redoxreaktion:

H2 Korrosion von Al in saurer Lösung

Oxidation: $Al_3^+ + 3e^-$ Al $2 H_3 O^+ + 2 e^-$ Reduktion: $H_2 + H_2 + 2\,H_2O$ $2 \text{ Al} + 6 \text{ H}_3 \text{O}^+$ $2 \text{ Al}_3^+ + 6 \text{ H}_2 \text{O} + 3 \text{ H}_2$ Redoxreaktion:

8.2 Oxidschichten

Alle Metalle (ausser Gold/Platinmetalle) bilden bei Raumtemperatur mit Luft eine Oxidschicht, es entsteht ein Metalloxid:

z.B. 2 Fe + $\frac{3}{2}$ O₂ \longrightarrow Fe_2O_3 (1-15nm Schicht) $n \operatorname{Me} + \frac{\mathrm{m}}{2} \operatorname{O}_2 \longrightarrow Me_n O_m$

Der Schutzfaktor kann mittels PBV (Pilling-Bedworth) ermittelt werden:

 $PBV = \frac{V(Metalloxid)}{V(Metall)}$

PBV ≪ 1 Rissige, nicht schützende Schicht

(MG(0.8), Na (0.3))

PBV 1 ~ 2 Kompakte, schützende Oxidschicht

(Al(1.3), Ni(1.5), Ti(1.7), Cu(1.7), Cr(2.1), Fe(2.1))

 $PBV \gg 2$ Abblätternde, nicht schützende Schicht (V(3.2), W(3.4), Rost(3.6))

8.3 Ablauf der Korrosion in wässrigen Lösungen

Alle Korrosionsreaktionen verlaufen in 2 Teilschritten:

- Depassivierung
- Eigentliche Korrosion

Voraussetzungen für Korrosion:

- Metall ist in Elektrolytlösung eingetaucht
- Metall ist von dünnem Flüssigkeitsfilm bedekt. Können durch Regen, Tau, Bodenfeuchtigkeit oder rel. Luftfeuchtigkeit > 70% entstehen. Bei Oberflächen mit hygroskopischen Salzen kann auch früher Korrosion entste-

8.4 Passivatoren und Depassivatoren

8.4.1 Passivatoren

 \Rightarrow bieten **anodischen Schutz**(E_A wird vergrössert)

- Fe: OH-,CrO₄²⁻, NO₃
- Al: NO₃

8.4.2 Depassivatoren

 \Rightarrow **zerstören Passivoxidfilm**, bewirken oft lokale **Depassivierung**(E_A wird verkleinert)

- Fe: Cl⁻, H₃O⁺, Sulfat SO₄²
- Al: Cl⁻, H₃O⁺, Base OH⁻
- Cu: Cl⁻, H₃O⁺, Ammoniak NH₃
- Ni: Cl-, H₃O+

8.5 Flächenkorrision

- Anoden und Kathoden gleichmässig verteilt
- · Korr.geschw. überall gleich gross
- · Art mit grösstem Materialverlust
- · meist relativ ungefährlich

8.6 Kontaktkorrosion

- Reduktion von O2 an gesamter Oberfläche
- Oxidation nur an unedlerem Metall → verstärkte Korrosion
- Edleres Metall → keine Korrosion (kathodisch geschützt)

• Flächenregel: $\frac{v_k(Zn)}{v_k(Zn+Fe)} = \frac{A(Zn)}{A(Zn+Fe)} = \frac{\text{Anodenfläche}}{\text{Kathodenfläche}}$ Je grösser die Fläche des edleren Metalls, umso schneller korrodiert das unedlere

8.7 Lochfrasskorrosion

- · Stark lokalisierte Korrosion
- Bildung enger tiefer Löcher
- · Materialabtrag gering
- schwer erkennbar → gefährlich

8.8 Belüftungselemente

- Kann nur bei passivierbaren Metallen auftreten!
- Für Passivschicht ist O₂ notwendig
- An engen Stellen kann O₂-Zufuhr erschwert werden → Depassivierung ⇒ Lochfrass
- Zusätzlich Flächenregel (Spalt → kleine Anode, Passivoxidschicht → grosse Kathode)

8.9 Potentialverhältnisse / Aktivierungsenergie

Wann korrodieren Metalle nach H₂- bzw. O₂-Typ?

- $\Rightarrow \Delta G < 0$
- Korrosion abhängig von E(M/M^{z+}) und E(OM)
- E(OM) ist pH-abhängig:
 - $E_{H2} = -0.059 \cdot pH$

 $E_{O2} = 1.23 - 0.059 \cdot \text{pH}$