

DRUJOHN MANIOTES
COMPUTER TECHNOLOGY DEPC
PURDUE DINVERSITY
CALLMET CAMPUS
HAMISCHO, IN 46323

DISCLAIMER

Although each program has been tested by its contributor, no warranty, express or implied, is made by the contributor or 1620 USERS Group, as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the contributor or 1620 USERS Group, in connection therewith.

1620 USERS GROUP PROGRAM REVIEW AND EVALUATION

Pro	ogram No.	Date		
Pro	ogram Name:			
1.	Does the abstract adequately descriwhat it does? Comment		Yes_	_No_
2.	Does the program do what the abstr		Yes_	_No_
3.	Is the Description clear, understand	Yes_	_No_	
4.	Are the Operating Instructions under detail? Comment Are the Sense Switch options adequate	Yes_ Yes_	_No_ _No_	
	Are the mnemonic labels identified understandable? Comment	Yes_	_No_	
5.	Does the source program compile s	Yes_	_No_	
6.	Does the object program run satisfa Comment	Yes_	_No_	
7.	Number of test cases run Are any restrictions as to data, siz adequately in description? Comment	Yes_	_No_	
8.	Does the Program meet the minima Group? Comment	Yes_	_No_	
9.	Please list any suggestions to impr program. These will be passed on t Comment_			
Ple	ease return to:	Your Name		
	Mr. Robert J. Robinson (PREP) Marquette University Computing Center 1515 W. Wisconsin Avenue Milwaukee 3, Wisconsin	Company Address User Group		
		Code		

THIS REVIEW FORM IS PART OF THE 1620 USER GROUP ORGANIZATION'S PROGRAM REVIEW AND EVALUATION PROCEDURE. NONMEMBERS ARE CORDIALLY INVITED TO PARTICIPATE IN THIS EVALUATION.

responsible to the first of the

DEPAUW MACHINE LANGUAGE INTERPRETER

Roger B. Nelsen Computer Center DePauw University Greencastle, Indiana 46135

Users Group Code 3225

April 23, 1964

ABSTRACT

TITLE

DePauw Machine Language Interpreter

SUBJECT

CLASSIFICATION

Utility - Miscellaneous General Purpose

CODE

1.6

AUTHOR

Roger B. Nelsen

Computer Center (Users Group Code 3225)

DePauw University

Greencastle, Indiana 46135

DIRECT

INQUIRIES TO:

the Author

DESCRIPTION

The program is designed to interpret a deck of machine language cards, each card containing six machine language orders in card columns 1-72. The program separates the numeric operation code and the P and Q addresses, and also supplies the mnemonic operation code and the address of each order. The output is designed to resemble the coding sheet form X26-5591-0. The purpose of this program is to aid the programmer in debugging machine language routines and also provides a convenient method for listing student machine language programs.

METHOD

N/A

RESTRICTIONS

N/A

SPECIFICATIONS

IBM 1620 Card System, 20K Memory, Indirect Addressing

LANGUAGE

Basic Machine Language

DECK KEY

l. Object Deck

PROGRAM WRITEUP

- 1. DePauw Machine Language Interpreter
- 2. April 23, 1964
- 3. Roger B. Nelsen Computer Center (Users Group Code 3225) DePauw University Greencastle, Indiana 46135
- 4. The purpose of this program is to provide a routine to facilitate the debugging and subsequent correcting of a machine language program. The author has found it quite inconvenient to try to debug such a program from either the cards or a numeric dump output this program is designed to type out a program in a form similar to a coding sheet. Cards are read into the computer numerically (see I/O Formats and Restrictions) and then each 12 digit order is separated into its numeric operation code and P and Q addresses. Each numeric operation code is then interpreted into a mnemonic code by use of indirect addressing.

Alphameric data representing the mnemonic symbol for operations 00-99 is stored in locations 11001 through 11991. Each is stored as 1-4 letters and a record mark, or 5 alphameric characters (10 numeric). Then each numeric operation code that is found on a card is preceded by 11 and followed by a 1, so that a numeric code of xx will appear as 11xx1. The address of the 11xx1 is 14102. To type out the alphameric operation code, the program types out from the indirect address 14102, which then uses 11xx1 as an address, which is the desired alphameric operation code symbol.

Occasionally, an instruction will contain a record mark in either the P or Q address. Since a record mark terminates transmission of data on a Write Numeric order, this record mark must be change d to some symbol which will be typed out. The program scans each P and Q address, and changes record marks to @, which does not terminate transmission.

Since this program uses the cards of the program to be interpreted as data, the interpreted program is not stored in the computer. To actually execute the program, this interpreter must be cleared and the program run in the usual manner.

5. I/O Formats. The input for this program is a deck of machine language cards. Each card may contain up to six (6) machine language instructions, in card columns 1-72. The last eight columns (73-80) are not read and will not be interpreted. It might be added here that the author has found it expedient to write machine language programs in this manner; orders do not begin on one card and end the next, and these last eight columns can be used for numbering the cards sequentially. The output is via typewriter (see Sample Output).

- 6. Restrictions. Since the program determines the operation code and the P and Q addresses according to location on the input data card and subsequent location in memory, the program to be interpreted must be in the form given under I/O format, and six orders is the maximum per card. Also, since record marks are changed to Q, both record marks and Q will be typed out as Q.
- 7. Stops. No stops have been observed by the author after many runs of this program. However, the operator is cautioned to use only order cards; other types of numeric and alphameric data input will yeild unusable output, and could quite conceivably cause stops.
- 8. Detailed Operating Instructions.
 - 1. Clear Core Storage (enter 260000800009RS, Instant Stop, Reset)
 - 2. Load Object Deck. After loading, the computer will type cut three lines of information, and halt for the entry of the first desired storage location.
 - 3. Enter this location, for example, 00402RS
 - 4. The computer will type out column headings and halt.
 - 5. Load deck to be interpreted and push Start.
 - 6. Machine will interpret instructions as long as there are cards in the read hopper.
 - 7. To enter a new deck to be interpreted:
 - a. Push Reset and Insert.
 - b. Type in 4900606RS
 - c. Type in new initial storage location and proceed as in 3. above.
- 9. Equipment Required. IBM 1620 Card System, 20K Memory, Indirect Addressing.
- 10. Written in Basic Machine Language.
- 11. Additional Remarks.
 - 1. The Load Routine. The load routine for this program (6 cards, including add and multiply tables) can be easily modified for use for any machine language program in the 6 orders per card format. The last five columns (76-80) of the first card contain the address of the first instruction in the program; here it is 00402. Card columns 44-48 on the sixth card contain the address of the first order on the last program card plus 72. Here it is 01410. The operator need only change these addresses to suit his own use. Both must contain flags on the high-order digit. By use of a compare statement, loading is automatically terminated and the program is executed.
 - 2. Sample Output. The sample output included in this documentation is derived from the instruction portion of this program deck. The program has in effect them, interpreted itself.

i counts 6 instructions per card j counts 10 digits per P and Q addresses

SAMPLE OUTPUT: Interpretation of Instruction cerus of this Program.

DEPAUW MACHINE LANGUAGE INTERPRETER FOR 6-ORDER CARDS.
© INDICATES RECORD MARK.
ENTER FIRST DESIRED STORAGE LOCATION, E.G. 00402 RELEASE-START.

00402RS

LOC. 00402 00414 00426 00438 00450 00462	OPERA RA RA RA RA RA RA	710N 37 37 37 37 37 37	P 10001 10161 10321 11001 11161 11321	Q 00500 00500 00500 00500 00500	COMMENTS.	
00474 00486 00498 00510 00522 00534	RA RA TFM TDM SF B	37 37 16 15 32 49	11481 11641 14099 14102 12999 01338	00500 00500 00011 00001 00000 00000		
00546 00558 00570 00582 00594 00606	WA K WA K K RN	39 34 39 34 36	10161 00000 10321 00000 00000 13000	00100 00102 00100 00102 00102 00100		
00618 00630 00642 00654 00666 00678	K K WA K TD RN	34 39 34 25 36	00000 00000 10221 00000 13005 14000	00102 00102 00100 00102 00400 00500		
00690 00702 00714 00726 00738 00750	TD TD TDM SF TF CF	25 25 15 32 26 33	14207 14312 14102 14000 14101 14100	00400 00400 00001 00000 14001 00000		
00762 00774 00786 00798 00810 00822	BNR TDM TD AM AM AM	45 15 25 11 11	00786 14002 14202 00773 00780 00792	14002 0000@ 14002 00001 00001		
00834 00846 00858 00870 00882 00894	AM CM BNI CM BI AM	11 14 47 14 46	00797 00773 00762 00773 00930 00792	00001 14006 01100 14011 01100 00100		

00906 00918 00930 00942 00954 00966	AM B WN K AM AM	11 49 38 34 11	00857 00762 13000 00000 00857 00881	00005 00000 00100 00101 00007 00012
00978	K	34	0000 <u>0</u>	00101
00990	WA	39	1410 <u>2</u>	00101
01002	K	34	00000	00101
01014	TD	25	14102	00400
01026	WN	38	14100	00100
01038	NOP	41	00000	00000
01050	K	34	00000	00101
01062	K	38	00000	00101
01074	WN	34	14202	00100
01086	K	38	00000	00101
01098	WN	34	14307	00100
01110	K	34	00000	00102
01122 01134 01146 01158 01170 01182	AM AM AM AM SM AM	11 11 11 11 12	00749 00773 00780 00797 00792 00732	00012 00002 00002 00002 00110 00012
01194 01206 01218 01230 01242 01254	AM CM BNI K TFM TFM	11 147 47 34 16	13004 00749 00714 00000 00732 00749	00012 14061 01100 00102 14000 14001
01266	TFM	16	00773	14002
01278	TFM	16	00780	14002
01290	TFM	16	00797	14002
01302	TFM	16	00857	14006
01314	TFM	16	00881	14011
01326	B	49	00678	00000
01338	RA	37	11801	00500
01350	RA	37	11961	00500
01362	K	34	00000	00102
01374	WA	39	10001	00100
01386	K	34	00000	00102
01398	B	49	00546	00000

L

PROGRAM DECK LISTING

1. Load Routine (includes Add and Multiply Tables

2. Instructions

3. Alphameric Data Cards

DEPAUW MACHINE LANGUAGE INTERPRETER FOR 6-ORDER CARDS. \$ @ INDICATES RECORD MARK. # LOC. OPERATION P Q COMM ENTER FIRST DESIRED STORAGE LOCATION, E.G. 00402 RELEASE-START. # COMMENTS. # #FADD#FSUB#FMUL# #FSL #TFL #BTFL#FSR #FDIV# ‡AM ‡SM ‡TDM ‡ #BTM #LDM #DM ‡A ‡S ‡M ‡C **‡TD ‡TF** ‡BT ‡LD ‡D ‡ DN ‡RN ‡RA ‡WN ‡WA ‡NOP ‡BB #CF ‡K #BD **‡BNF ‡BNR ‡BI** #BN1 ‡BNG ‡ ‡B ‡MF **‡TNS ‡TNF**

COMPUTER TECHNOLOGY

THE COMPUTER MUSEUM HISTORY CENTER