Decition problem and definitions	General expression for Δ $\langle p \rangle = \frac{1}{N} \sum_{i=0}^{N-1} p_i \qquad \langle p^2 \rangle = \frac{1}{N} \sum_{i=0}^{N-1} p_i^2$	$\begin{vmatrix} p_i = p \text{ (constant)} \\ \implies \langle p \rangle = p \\ \implies \langle p^2 \rangle = p^2 \end{vmatrix}$	$\begin{vmatrix} p_i \in \{0, 1\} \\ \Longrightarrow \langle p^2 \rangle = \langle p \rangle \end{vmatrix}$	$p_i \in \{\epsilon, 1 - \epsilon\}$ $\implies \epsilon \le \langle p \rangle \le 1 - \epsilon$ $\implies \langle p^2 \rangle = \langle p \rangle - \epsilon (1 - \epsilon)$
Prisoners dilemma against copy $\Delta := Q(\text{Cooperate}) - Q(\text{Defect})$	$\langle p^2 \rangle - \langle p \rangle^2$		A 36	$\delta = \delta \left(1 - \epsilon\right)$
$p_i := P(\text{Cooperate} h_{>i})$ M := Gain to self from coppy cooperating m := Gain to self from defecting	$\Delta = M \frac{\langle p^2 \rangle - \langle p \rangle^2}{\langle p \rangle (1 - \langle p \rangle)} - m$	$\Delta = -m$	$\Delta = M - m$	$\Delta = M \left(1 - \frac{\epsilon(1 - \epsilon)}{\langle p \rangle (1 - \langle p \rangle)} \right) - m$
Evidential blackmail				
$\Delta := Q(\text{Pay} \text{Blackmail}) - Q(\text{Dont} \text{Blackmail})$ $p_i := P(\text{Pay} \text{Blackmail}, h_{>i})$	$\Delta = M \frac{q(1-q)(\langle p^2 \rangle - \langle p \rangle^2)}{q^2 \langle p \rangle (1-\langle p \rangle) + \beta}$	$\Delta =$	$\Delta =$	$\Delta =$
M := Curent stock value		Δ –	Δ –	Δ –
m := Blackmail ransom	$\beta = (1 - 2q)[\langle p \rangle^2 + \langle p^2 \rangle - 3q \langle p \rangle \langle p^2 \rangle - (1 - 2q) \langle p^2 \rangle^2]$			
q := P(Market crach)				
Absent minded driver	4/ \ 4/ \2 \ 0/ 2\ \ 4/ \/ 2\ \ 0/ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\	4-6n		
$\Delta := Q(\text{Continue}) - Q(\text{Exit})$	$\Delta = \frac{4\langle p \rangle - 4\langle p \rangle^2 - 2\langle p^2 \rangle - 4\langle p \rangle \langle p^2 \rangle + 6\langle p^2 \rangle^2}{(1 - \langle p^2 \rangle)(\langle p \rangle + \langle p^2 \rangle)}$	$\Delta = \frac{4 - 6p}{1 + p}$	$\Delta = 1$	$\Delta = \frac{2\langle p \rangle (1 - \langle p \rangle) + [2 - 8\langle p \rangle + 6\epsilon(1 - \epsilon)]\epsilon(1 - \epsilon)}{2\langle p \rangle (1 - \langle p \rangle) + [3\langle p \rangle - 1 - \epsilon(1 - \epsilon)]\epsilon(1 - \epsilon)}$
$p_i := P(\text{Continue} h_{>i})$	(= \F /)(\F/ + \F /)	1+p		-(F)(- (F)) [5 (F) - 5(- 5)] = (- 5)
Death in Damaskus				
$\Delta := Q(\text{Damaskus}) - Q(\text{Alleppo})$	$\Delta = M \frac{(\langle p \rangle - \langle p^2 \rangle)(1 - 2\langle p \rangle)}{\langle p \rangle (1 - \langle p \rangle)}$	$\Delta = M(1 - 2p)$	Λ 0	$_{\Lambda}$ $_{M}\epsilon(1-\epsilon)(1-2\langle p\rangle)$
$p_i := P(\mathrm{Damaskus} h_{>i})$	$\Delta = M \frac{1}{\langle p \rangle (1 - \langle p \rangle)}$	$\Delta = M(1-2p)$	$\Delta = 0$	$\Delta = M \frac{\epsilon(1 - \epsilon)(1 - 2\langle p \rangle)}{\langle p \rangle (1 - \langle p \rangle)}$
M := Value of beeing alive	2// 2//			12.7 (12.7)