Exercícios pratica 1

Exercício 1 Seja $(u_n)_n$ uma sucessão tal como a sucessão $(|u_n|)_n$ admite um limite ℓ ou seja

$$\lim_{n \to \infty} |u_n| = \ell.$$

- 1. Supomos que $\ell=0$. A sucessão u_n é convergente? Se acha que sim, provar. Se acha que não, dar um exemplo.
- 2. Mesma pergunta quando $\ell \neq 0$.

Exercício 2 Seja a sucessão dada pelo termo geral $u_n = \left(\frac{1}{2}\right)^n$ quando n par e $u_n = \left(\frac{1}{6}\right)^n$ quando n ímpar. Provar que a sucessão é convergente e determinar o limite.

Exercício 3 Determinar o limite, se existe, das sucessões seguintes.

1.
$$u_n = \frac{2n-3}{n^2+7n+1}$$
.

2.
$$u_n = \frac{e^n}{2^n + n^2}$$
.

3. $u_n = \sin(\pi/n)$. Usar que $|\sin(x)| \le |x|$ se $x \in [-\pi/2, \pi/2]$.

4.
$$u_n = \frac{\sqrt{n^2 + 2n}}{n+1}$$
.

Exercício 4 Consideramos a sucessão dada por ocorrência $(n+1)u_{n+1} = nu_n$ com $u_0 \in \mathbb{R}$. Determinar a expressão de u_n por termo geral. Determinar o limite.

Exercício 5 Seja $u_n = \frac{e^n}{n!}$. Mostrar que a sucessão é decrescente se n > 2. Determinar o limite.

Exercício 6 Seja a sucessão $u_n = \sqrt[n]{n}$. Usando a sucessão $v_n = \ln(u_n)$, determinar o limite de u_n .

Exercício 7 Seja a sucessão definida por ocorrência $u_{n+1} = \frac{n^2 + 1}{(n+1)^2} u_n$, $u_0 \in \mathbb{R}$. Deduzir que u_n admite um limite ℓ

Exercício 8 Seja a sucessão definida por ocorrência $u_{n+1} = (u_n)^{\alpha}$, $u_0 > 0$ e $\alpha \ge 0$.

- Mostrar que se $\alpha \in [0,1]$, a sucessão converge para um limite a deteminar.
- Supomos que $\alpha > 1$, estudar a convergência/divergência em função do valor inicial u_0 .

Exercício 9 Seja a sucessão definida por ocorrência $u_{n+1} = \frac{u_n}{1 + 2u_n}$, $u_0 > 0$. Mostrar que a sucessão converge e determinar o seu limite.

Exercício 10 (***) Seja a sucessão definida por ocorrência $u_{n+1} = \frac{2u_n}{1+\sqrt{u_n}}, u_0 > 0.$

- 1. Mostrar por indução que para qualquer $n, u_n > 0$.
- 2. Mostrar que [se $u_n \ge 1$ então $\sqrt{u_n} \le u_{n+1} \le u_n$] e que [se $u_n \le 1$ então $\sqrt{u_n} \ge u_{n+1} \ge u_n$].
- 3. Deduzir que se $u_0 \le 1$ a sucessão é crescente, limitada superiormente por 1. Deduzir que se $u_0 \ge 1$ a sucessão é decrescente, limitada inferiormente por 1.
- 4. Deduzir que a sucessão converge e determinar o seu limite.