R code demo for fast computing algorithm

Shiqiang Jin and Gyuhyeong Goh

2020-06-22

Contents

1	R code demo for fast computing algorithm		5
	1.1	Review of Appendix B.1 Calculation	5
	1.2	Simulation example	6
	1.3	Time cost comparison for proposed method and for loop method	8

4 CONTENTS

Chapter 1

R code demo for fast computing algorithm

This is a supplymentary material about an R domo code for computing marginal likelihood distribution using fasting computing strategy and for-loop method

1.1 Review of Appendix B.1 Calculation

For any $i \notin \hat{\gamma}$, $|\hat{\gamma} \cup \{i\}| = k+1$, hence $s(Y|\hat{\gamma} \cup \{i\})$ in Eq.(3) can be expressed as

$$s(Y|\hat{\gamma} \cup \{i\}) = \zeta^{-\frac{m(k+1)}{2}} |X_{\hat{\gamma} \cup \{i\}}^{\mathrm{\scriptscriptstyle T}} X_{\hat{\gamma} \cup \{i\}} + \zeta^{-1} I_{k+1}|^{-\frac{m}{2}} |Y^{\mathrm{\scriptscriptstyle T}} H_{\hat{\gamma} \cup \{i\}} Y + \Psi|^{-\frac{n+\nu}{2}}. \eqno(1.1)$$

Using technique fast computing algorithm, we have

$$s_{+}(\hat{\gamma}) = c_{\hat{\gamma}}^{+} \times \left(\zeta^{-1} \mathbf{1}_{p} + diag(X^{\mathsf{T}} H_{\hat{\gamma}} X)\right)^{-m/2}. \tag{1.2}$$

$$\left[1_{p}-\frac{diag(X^{\mathrm{\scriptscriptstyle T}}H_{\hat{\gamma}}Y(Y^{\mathrm{\scriptscriptstyle T}}H_{\hat{\gamma}}Y+\Psi)^{-1}Y^{\mathrm{\scriptscriptstyle T}}H_{\hat{\gamma}}X)}{\zeta^{-1}1_{p}+diag(X^{\mathrm{\scriptscriptstyle T}}H_{\hat{\gamma}}X)}\right]^{-\frac{n+\nu}{2}} \tag{1.3}$$

where $a^x=(a_1^x,\dots,a_p^x),\ a\cdot b=(a_1b_1,\dots,a_pb_p),\ a/b=(a_1/b_1,\dots,a_p/b_p)$ for generic vectors a and b, and $c_{\hat{\gamma}}^+=\zeta^{-\frac{m(k+1)}{2}}|X_{\hat{\gamma}}^{\mathrm{T}}X_{\hat{\gamma}}+\zeta^{-1}I_k|^{-\frac{m}{2}}\left|Y^{\mathrm{T}}H_{\hat{\gamma}}Y+\Psi\right|^{-\frac{n+\nu}{2}}$ is a constant with respect to $i\notin\hat{\gamma}$.

Hence,

$$\log(s_{+}(\hat{\gamma})) = \log(c_{\hat{\gamma}}^{+}) 1_{p} - \frac{m}{2} \log(d) - \frac{n+\nu}{2} \log(1 - \frac{u}{d}), \tag{1.4}$$

```
where d=\zeta^{-1}1_p+diag(X^{\mathrm{T}}H_{\hat{\gamma}}X) and u=diag(X^{\mathrm{T}}H_{\hat{\gamma}}Y(Y^{\mathrm{T}}H_{\hat{\gamma}}Y+\Psi)^{-1}Y^{\mathrm{T}}H_{\hat{\gamma}}X).
```

In the following simulation example, I will evaluate $s(Y|\text{nbd}_+(\hat{\gamma}))$ by (1.1) in the "for-loop" method and by (1.4) in a single calculation.

1.2 Simulation example

In this example, we

• specify the model setting as $n=100, p=1000, m=5, \zeta=\log(n), \Psi=0.5I_m, \nu=0.5.$

```
n <- 100
p <- 1000
m <- 5
zeta <- log(n)
Psi <- diag(0.5, m) # Psi
v <- 0.5 # nu</pre>
```

• and generate data Y = XC + E with $E \sim \mathcal{N}(0,\Omega)$; The true model is $\gamma^* = (1,2,3,4,7,8,9,10)$ and the current model $\hat{\gamma} = (1,2,3,4,7,8,9)$ with model size $|\hat{\gamma}| = 7$. $\Omega = 0.2^{|i-j|}$ and X is generated from $\mathcal{N}(0,\Sigma)$ with $\Sigma = 0.2^{|i-j|}$.

```
# Generate data
library(mvtnorm)
set.seed(1314)
true.model <- c(1:4, 7:10) # true model
r <- c(1:4, 7:9) # current model
k <- length(r) # current model size
rho e \leftarrow 0.2
Omega <- rho_e^(abs(matrix(1:m, m, m) - t(matrix(1:m, m, m))))</pre>
rho x \leftarrow 0.2
Sig_x \leftarrow rho_x^(abs(matrix(1:p, p, p) - t(matrix(1:p, p, p))))
seq.p \leftarrow c(1:p)
len.true.model <- length(true.model)</pre>
# generate random coefficient matrix C
c0 <- sample(seq(-1, 1, 0.2), size = len.true.model * m, replace = TRUE)
C <- matrix(0, p, m)</pre>
C[true.model, ] <- matrix(c0, len.true.model, m)</pre>
X <- rmvnorm(n, rep(0, p), Sig_x, method = "chol")</pre>
E \leftarrow rmvnorm(n, mean = rep(0, m), sigma = Omega)
Y \leftarrow as.numeric(X %*% C) + E
```

To better understand R code and corresponding notations, we list a cross-reference table for some of them as follows:

```
I k1
                                                       log.s.plus1
                                                                                         rUi
                                                                                                                  X.rUi
                                                                                                                                              H.rUi
      I n
                                                               or
                                                       log.s.plus2
                                                      \log(s(Y|\mathrm{nbd}_+(\hat{\gamma}))\hat{\gamma} \cup i
                                                                                                                    X_{\hat{\gamma} \cup i}
        I_n
                                  I_{k+1}
                                                                                                                                               H_{\hat{\gamma} \cup i}
                                                                                                                                        colSums(H.r\%*\%X\_r*X r)
log.s.Y.rUi
                                  I k
                                                              X.r
                                                                                        X r
                                                                                                                    H.r
                                                                                                                                        diag(X_{-\hat{\gamma}}^{\mathrm{T}}H_{\hat{\gamma}}X_{-\hat{\gamma}})
\log(s(Y|\hat{\gamma}))
                                   I_k
                                                              X_{\hat{\gamma}}
                                                                                         X_{-\hat{\gamma}}
                                                                                                                     H_{\hat{\gamma}}
        i))
   YHX r
 Y^{\mathrm{T}}H_{\hat{\gamma}}X_{-\hat{\gamma}}
```

```
# For loop method
I_n <- diag(1, n) # n-dimension identity matrix</pre>
I_k1 \leftarrow diag(1, k + 1)
p_r <- setdiff(seq(1, p), r) # p-k vector</pre>
log.s.plus1 <- rep(NA, length(p_r))</pre>
j <- 1
for (i in p_r) {
    rUi <- sort(c(r, i)) # add one index from p_r
    X.rUi <- X[, rUi] # model in addition neighbor</pre>
    XtX <- crossprod(X.rUi) + 1/zeta * I_k1</pre>
    H.rUi <- I_n - X.rUi %*% solve(XtX) %*% t(X.rUi)
    \# logarithm of Eq (1.1)
    \log s. Y. TUi \leftarrow m * (k + 1)/2 * \log(zeta) - m/2 * \log(det(XtX)) - (n + v)/2 * \log(det(t(Y)) %
    log.s.plus1[j] <- log.s.Y.rUi</pre>
    j < -j + 1
}
# Proposed Method
I_k <- diag(1, k) # k-dimension identity matrix</pre>
X.r <- X[, r]</pre>
X_r \leftarrow X[, p_r] + n \ by \ p-k \ m \ sub-matrix \ of \ X
H.r \leftarrow I_n - X.r \% *\% solve(crossprod(X.r) + 1/zeta * I_k) \% *\% t(X.r) # n by n matrix
d <- 1/zeta + colSums(H.r %*% X_r * X_r) # p-k dimension vector
YHX_r \leftarrow t(Y) \%*\% H.r \%*\% X_r # p-k by m matrix
YHY_1 <- solve(t(Y) %*% H.r %*% Y + Psi) # m by m matrix
u <- colSums(YHY_1 %*% YHX_r * YHX_r) # p-k dimension vector
# logarithm of Eq (1.3)
log.s.plus1.approx <- -m/2 * log(d) - (n + v)/2 * log(1 - u/d)
\log c < -0.5 * m * (k + 1) * \log(zeta) - 0.5 * m * \log(det(crossprod(X.r) + 1))
    1/zeta * I k) - (n + v)/2 * log(det(t(Y) %*% H.r %*% Y + Psi))
log.s.plus2 <- log.c + log.s.plus1.approx # logarithm of Eq (1.2)
```

I compute mean absolute percentage error MAPE = $\frac{1}{n}\sum_{t=1}^{n}|\frac{A_{t}-F_{t}}{A_{t}}|$ to measure the accuracy of the fast computing algorithm.

```
# Mean absolute percentage error
MAPE <- mean(abs(log.s.plus1 - log.s.plus2)/abs(log.s.plus1))
print(paste("MAPE =", MAPE))
## [1] "MAPE = 8.12298413315687e-17"
plot(log.s.plus1, log.s.plus2)
abline(a = 0, b = 1)
    -1270
og.s.plus2
    -1290
    -1310
                                -1290
             -1310
                      -1300
                                          -1280
                                                    -1270
                                                              -1260
                                    log.s.plus1
```

From the plot and MAPE, $\log(s(Y|\text{nbd}_+(\hat{\gamma})))$ computed by (1.1) and (1.4) are the same. But the time costs are different.

1.3 Time cost comparison for proposed method and for loop method

Note that when doing the model selection, as $\log(c_{\hat{\gamma}}^+)$ is a constant with respect to $i \notin \hat{\gamma}$, in R code I only compute log.s.plus2.approx. I use R package microbenchmark to do the simulation and the default replication is 100 times.

```
library(microbenchmark)
timecost <- microbenchmark("for_loop" = {
  log.s.plus1 <- rep(NA, length(p_r))
  j <- 1
  for (i in p_r) {
    rUi <- sort(c(r, i)) # add one index from p_r</pre>
```

```
X.rUi <- X[, rUi] # model in addition neighbor</pre>
    XtX <- crossprod(X.rUi) + 1/zeta * I_k1</pre>
    H.rUi <- I_n - X.rUi %*% solve(XtX) %*% t(X.rUi)</pre>
    # logarithm of Eq (1.1)
    log.s.Y.rUi <- -m * (k + 1)/2 * log(zeta) -
      m/2 * log(det(XtX)) - (n + v)/2 * log(det(t(Y)) %*% H.rUi %*% Y + Psi))
    log.s.plus1[j] <- log.s.Y.rUi</pre>
    j <- j + 1
  }
},
"Proposed" = {
 X.r \leftarrow X[, r]
 I_k <- diag(1, k) # k-dimension identity matrix</pre>
 X_r \leftarrow X[, p_r] + n \ by \ p-k \ m \ sub-matrix \ of \ X
 H.r \leftarrow I_n - X.r \%  solve(crossprod(X.r) + 1/zeta * I_k) % *% t(X.r) # n by n matrix
  d <- 1/zeta + colSums(H.r %*% X_r * X_r) # p-k dimension vector
  YHX <- t(Y) %*% H.r %*% X_r # p-k by m matrix
  YHY_1 <- solve(t(Y) %*% H.r %*% Y + Psi) # m by m matrix
  u <- colSums(YHY_1 %*% YHX * YHX) # p-k dimension vector
  # logarithm of Eq (3)
 \log.s.plus2.approx <- -m/2 * log(d) - (n + v)/2 * log(1 - u/d)
)
timecost
## Unit: milliseconds
        expr
                    min
                                 lq
                                          mean
                                                   median
                                                                   uq
## for_loop 131.419268 138.245982 155.65647 144.917884 156.258279 317.48266
                                                                                   100
## Proposed
               1.247057
                           1.320723
                                       1.74544
                                                 1.378074
                                                                                   100
                                                             1.528487 10.30982
```

Looking at the median of time cost, the proposed method is about 100 times faster than the for-loop method.