Семестриално контролно по Дискретни структури, 01.12.2024г.

Примерни Решения

Задача 1. Редицата на Фибоначи f_i е определена със следните условия:

- (1) $f_0 = 0$, $f_1 = 1$
- $(2) \ f_n = f_{n-1} + f_{n-2}$ за всяко n > 1

Докажете, че за всяко n > 0 е вярна следната формула:

$$f_{n-1}f_{n+1} = f_n^2 + (-1)^n$$

Решение: Доказваме истинността на формулата с индукция по n. Ще демонстрираме възможен подход към индукционната стъпка.

$$f_n f_{n+2} = (f_{n+1} - f_{n-1})(f_n + f_{n+1}) =$$

$$= \underline{f_{n+1}} f_n + f_{n+1}^2 - \underline{f_{n-1}} f_n - f_{n-1} f_{n+1} =$$

$$= f_n^2 + f_{n+1}^2 - f_n^2 - (-1)^n =$$

$$= f_{n+1}^2 + (-1)^{n+1}$$

Задача 2. Разглеждаме релацията $\bot \subseteq \mathbb{N}^+ \times \mathbb{N}^+$, дефинирана като

$$x\perp y \stackrel{def}{\longleftrightarrow} rac{x}{y}$$
 е нечетно цяло число

- а) Да се докаже, че 🗆 е частична наредба
- б) Предложете релация на еквивалентност над \mathbb{N}^+ , която има безброй много безкрайни класове на еквивалентност.

Решение:

- а) \bot е рефлексивна, защото $\frac{x}{x}=1$ за всяко $x\in\mathbb{N}^+$ \bot е антисиметрична, защото ако $x\perp y$ и $y\perp x$ и $\frac{x}{y}=2k+1$, то $\frac{y}{x}=\frac{1}{2k+1}$ е нечетно цяло число, откъдето k=0, т.е. x=y \bot е транзитивна, защото ако $x\perp y$ и $y\perp z$, то $\frac{x}{z}=\frac{x}{y}\frac{y}{z}$ е произведение на нечетни цели, т.е. е нечетно цяло, т.е. $x\perp z$.
- б) Примерна релация е релацията $\sim: \mathbb{N}^+ \times \mathbb{N}^+$, дефинирана с

$$x \sim y \stackrel{def}{\longleftrightarrow}$$
 степените на 2 в представянето на x и y са равни

Това е релация на еквивалентност с класове

$$\mathbb{N}^+/\sim = \left\{ \left[2^i \right]_{\sim} \mid i \in \mathbb{N} \right\}$$

Класовете имат вида

$$\left[2^{i}\right]_{\sim} = \left\{2^{i}(2k+1) \mid k \in \mathbb{N}\right\}$$

Мотивацията за тази релация се базира на това, че ако $x \perp y$, то степените на 2 в представянето на x и y съвпадат, т.е. $x \sim y$.

Задача 3. За произволно множество X и функция $f: X \to X$ дефинираме

$$f^0 = id_X$$

$$f^{k+1} = f \circ f^k \quad \text{ sa } k \in \mathbb{N}$$

- а) Да се докаже, че ако има $n \geq 1$, за което f^n е биекция, то f е биекция
- б) Конструирайте биекция $f: \mathbb{N} \to \mathbb{N}$, такава, че за всяко $n \geq 1, f^n \neq id_{\mathbb{N}}$

Решение:

а) Показваме, че f е инекция и сюрекция:

Нека
$$f(x_1) = f(x_2)$$
. Тогава $f(f(x_1)) = f(f(x_2))$ и $f^3(x_1) = f^3(x_2)$ и ... $f^n(x_1) = f^n(x_2)$, откъдето $x_1 = x_2$, т.е. f е инекция.

Нека $y \in X$. Тогава има $x \in X$, за което $f^n(x) = y$, но тогава $f(f^{n-1}(x)) = y$, т.е. първообраз на y има и той е $f^{n-1}(x)$.

б) Въпросът е как да разбъркаме естествените числа, така че да не се подредят отново след краен брой разбърквания.

Разумна е идеята да местим някои числа само напред, а други само назад в някакъв "безкраен" цикъл. Това би могло да се направи например така:

$$f_{move}: \mathbb{N} \to \mathbb{N}$$

$$f_{move}(n) = egin{cases} 0 & \text{ако } n=1 \\ n+2 & \text{ако n е четно} \\ n-2 & \text{ако n е нечетно и } n>1 \end{cases}$$

Друг възможен подход е да разбием естествените числа на крайни цикли, така, че да има цикъл с произволно голям брой числа. Това може да стане например така:

$$f_{cucle}: \mathbb{N} \to \mathbb{N}$$

$$f_{cycle}(n)=egin{cases} n+1 & ext{ ако } n ext{ не е точна степен на 2} \ rac{n}{2}-1 & ext{ ако } n ext{ е точна степен на 2} \end{cases}$$

Разпишете първите 20 члена, за да придобиете интуиция как действа f_{cycle}

Задача 4. Нека |X| = n.

- а) Колко са двойките (A, B), такива, че $A, B \subseteq X$?
- б) Колко са двойките (A, B), такива, че $A, B \subseteq X$ и $A \cap B = \emptyset$?
- в) Колко са двойките (A, B), такива, че $A, B \subseteq X$ и $|A \cap B| = k$?

Решение:

- 1. Първото подм
ножество избираме по 2^n начина, след това по 2^n избираме и второто, т.е.
 двойките са 2^{2n}
- 2. Идеята тук e, че за всеки елемент $x \in X$ e в сила точно едно от трите:
 - $x \in A$
 - $x \in B$
 - $x \in X \setminus (A \cup B)$

Определянето на един от трите варианта за всеки елемент определя еднозначно множествата A и B.

Може да си мислим за редица от 0, 1 и 2, където 0 означава, че елементът е в A, 1 означава, че е в B, 2 означава, че не е в нито едно от двете.

Отговорът е 3^n .

3. Идеята е близка до тази от б), но първо избираме кои да са общите елементи, т.е.

$$\binom{n}{k} 3^{n-k}$$

Задача 5. Всяко квадратче на квадратна мрежа 5×5 се оцветява в един от 4 цвята. Да се намери броят на оцветяванията на мрежата, такива, че контурът ѝ е двуцветен, а във вътрешността всеки цвят се среща поне веднъж.

Решение: Начините за оцветяване на контура са $\binom{4}{2}(2^{16}-2)$. (Избираме 2 цвята от 4, след това за всяка клетка от контура има 2 начина за оцветяване; накрая премахваме едноцветните контури, които са преброени).

Относно вътрешността, задачата би трябвало да Ви е позната, като броят на сюрекциите от 9 елемента към 4 елемента. (Строим функция, която на клетка от вътрешността съпоставя цвят). Стандартният подход е принципът за включване и изключване.

Умножаваме получените резултати.