

Elektrische Netzwerke und Mehrtore Übung

Wintersemester 2020

Protokoll Übung 3: Schaltvorgang Kondensator

Gruppe: 04

Gruppenteilnehmer:

- 1. Matthias Fottner
- 2. David Keller
- 3. Moritz Woltron

Vortragende: Helena Grabner

Graz, am 10. November 2020

Inhaltsverzeichnis

1	Bes	timmen des Anfangszustands von u_C	3
	1.1	Schaltplan zur Schalterposition a	3
	1.2	Erstellen der erweiterten KSV-Matrix	4
	1.3	Bestimmen von u_C	4
2	Auf	stellen der Differentialgleichung	5
	2.1	Schaltplan zur Schalterposition b	5
	2.2	Erstellen der KSV-Matrix	5
	2.3	Lösen der Differentialgleichung	5
		2.3.1 (Laplace Lösung)	5
		2.3.2 Homogene Lösung	7
		2.3.3 Partikuläre Lösung	7
		2.3.4 Anfangswertproblem	8
		2.3.5 Gesamtlösung	8
3	Ver	gleich mit allgemeiner Lösungsformel	8
4	Sim	ulation in PSpice	9
	4.1	Schalterposition a	9
	4.2	Schalterposition b	10
5	Mat	tlab-Skript	10

1 Bestimmen des Anfangszustands von u_{C}

1.1 Schaltplan zur Schalterposition a

Abbildung 1: Netzwerk mit allen eingezeichneten Strömen, (Knoten-)spannungen und Knoten

1.2 Erstellen der erweiterten KSV-Matrix

Man erhält mithilfe von Matlab für x:

$$x = \begin{cases} U_{n1} \\ U_{n2} \\ U_{n3} \\ U_{n4} \\ I_{S1}^{?} \end{cases} = \begin{cases} -3,36 \,\mathrm{V} \\ 2,24 \,\mathrm{V} \\ -7,76 \,\mathrm{V} \\ -4,32 \,\mathrm{V} \\ -0,56 \,\mathrm{A} \end{cases}$$

1.3 Bestimmen von u_C

Wie sich im Schaltplan in Abbildung 1 erkennen lässt, entspricht $U_{C,a} = U_{n4}$:

$$U_{C,a} = U_{n4} = -4,32 \,\mathrm{V}$$

2 Aufstellen der Differentialgleichung

2.1 Schaltplan zur Schalterposition b

2.2 Erstellen der KSV-Matrix

$$\begin{bmatrix} G_6 + G_7 & -G_7 \\ -G_7 & G_7 \end{bmatrix} \begin{cases} U_{n1} \\ U_{n2} \end{cases} = \begin{cases} 0 \\ -I_{S3} \end{cases}$$

2.3 Lösen der Differentialgleichung

2.3.1 (Laplace Lösung)

$$u_C + u_{RTh} = U_{Th}$$

$$u_C + R_{Th} \cdot i_C = U_{Th}$$

$$u_C + R_{Th} \cdot C \cdot u_C' = U_{Th}$$

$$u_C' + u_C \left(\frac{1}{R_{Th} \cdot C}\right) = \frac{U_{Th}}{R_{Th} \cdot C}$$

$$s \cdot u_C(s) - u_C(0) + \left(\frac{1}{R_{Th} \cdot C}\right) u_C(s) = \frac{U_{Th}}{R_{Th} \cdot C} \cdot \frac{1}{s}$$

$$u_C(s) \left(s + \frac{1}{R_{Th} \cdot C}\right) = \frac{U_{Th}}{R_{Th} \cdot C} \cdot \frac{1}{s} + u_C(0)$$

$$u_C(s) = \frac{U_{Th}}{R_{Th} \cdot C} \cdot \frac{1}{s \left(s + \frac{1}{R_{Th} \cdot C}\right)} + \frac{u_C(0)}{s + \frac{1}{R_{Th} \cdot C}}$$

$$\frac{1}{s\left(s + \frac{1}{R_{Th} \cdot C}\right)} = \frac{A}{s} + \frac{B}{s + \frac{1}{R_{Th} \cdot C}}$$

$$A = \frac{1}{s + \frac{1}{R_{Th} \cdot C}} \Big|_{s=0} = R_{Th} \cdot C$$

$$B = \frac{1}{s} \Big|_{s=-\frac{1}{R_{Th} \cdot C}} = -R_{Th} \cdot C$$

$$u_C(s) = \frac{U_{Th}}{R_{Th} \cdot C} \left(\frac{R_{Th} \cdot C}{s} - \frac{R_{Th} \cdot C}{s + \frac{1}{R_{Th} \cdot C}} \right) + \frac{u_C(0)}{s + \frac{1}{R_{Th} \cdot C}}$$
$$= U_{Th} \cdot \frac{1}{s} + \left(u_C(0) - U_{Th} \right) \frac{1}{s + \frac{1}{R_{Th} \cdot C}}$$

Die Funktion ist um T_0 nach rechts verschoben. Deswegen gilt:

$$u_C(t) = \sigma(t - T_0) \left[U_{Th} + (u_C(0) - U_{Th}) \cdot e^{-\frac{t - T_0}{R_{Th} \cdot C}} \right]$$

2.3.2 Homogene Lösung

Die inhomogene Differentialgleichung 1. Ordnung lautet:

$$u_C' + u_C \cdot \frac{1}{R_{Th} \cdot C} = \frac{U_{Th}}{R_{Th} \cdot C}$$

Der homogene Anteil lässt sich somit folgendermaßen beschreiben:

$$u'_{C,h} + u_{C,h} \cdot \frac{1}{R_{Th} \cdot C} = 0$$

Aufgrund des Schaltvorgangs zum Zeitpunkt $t=T_0$, wird die Gleichung um T_0 nach rechts verschoben. Man setzt an:

$$u_{C,h} = K \cdot e^{-\lambda \cdot (t - T_0)}$$

$$u'_{C,h} = -\lambda \cdot K \cdot e^{-\lambda \cdot (t - T_0)}$$

$$\longrightarrow -\lambda \cdot K \cdot e^{-\lambda \cdot (t - T_0)} + K \cdot e^{-\lambda \cdot (t - T_0)} \frac{1}{R_{Th} \cdot C} = 0$$

$$\underbrace{K \cdot e^{-\lambda \cdot (t - T_0)}}_{\neq 0} \left(\frac{1}{R_{Th} \cdot C} - \lambda\right) = 0$$

$$\frac{1}{R_{Th} \cdot C} = \lambda$$

$$\Longrightarrow u_{C,h} = K \cdot e^{-\frac{t - T_0}{R_{Th} \cdot C}}$$

2.3.3 Partikuläre Lösung

Für die partikuläre Lösung kann man $u_{C,p} = A$ ansetzen und erhält:

$$u_{C,p} = A$$

$$u'_{C,p} = 0$$

$$\Longrightarrow 0 + A \cdot \frac{1}{R_{Th} \cdot C} = \frac{U_{Th}}{R_{Th} \cdot C}$$

$$A = U_{Th}$$

Die Gesamtlösung der Differentialgleichung setzt sich nun aus der homogenen und der partikulären Lösung zusammen:

$$u_C = u_{C,h} + u_{C,p} = K \cdot e^{-\frac{t - T_0}{R_{Th} \cdot C}} + U_{Th} \tag{1}$$

2.3.4 Anfangswertproblem

In Kapitel 1.3 wurde bereits der Spannungswert des Kondensators $u_{C,a} = u_C(T_0)$ zum Zeitpunkt $t \leq T_0$ ausgerechnet. Diesen Anfangswert der stetigen Kondensatorspannung u_C zum Zeitpunkt T_0 kann man nun dazu verwenden, den Wert von K aus der Formel 1 auszurechnen.

$$u_C(T_0) = K \cdot \underbrace{e^{\frac{T_0 - T_0}{R_{Th} \cdot C}}}_{=1} + U_{Th}$$

$$\Longrightarrow K = u_C(T_0) - U_{Th}$$

2.3.5 Gesamtlösung

Setzt man nun den erhaltenen Wert von K in die Formel 1 ein, so lautet die gelöste Differentialgleichung:

$$u_C = (u_C(T_0) - U_{Th}) \cdot e^{-\frac{t}{R_{Th} \cdot C}} + U_{Th}$$

3 Vergleich mit allgemeiner Lösungsformel

Transiente Vorgänge lassen sich verallgemeinert mit folgender Lösungsformel lösen:

$$x(t) = x_f + \left[x_0 - x_f\right] \cdot e^{-\frac{t - t_0}{\tau}}$$

 x_0 entspricht dem Anfangswert, welcher bei $t = T_0$ den Wert $u_C(T_0) = U_{C,a}$ hat. x_f entsprich dem Endwert, dieser ist in gegebener Schaltung der Wert von U_{Th} , da dieser Spannungswert übrig bleibt, nachdem sich der Kondensator übrig bleibt. Setzt man für x_0 und x_f die entsprechenden Werte in die allgemeine Lösungsformel ein, so ist diese Form identisch mit der Gesamtlösung aus Kapitel 2.3.5.

4 Simulation in PSpice

4.1 Schalterposition a

In der Schalterposition a muss der Kondensator C nicht aufgezeichnet werden, da er nach langer Zeit wie ein Leerlauf fungiert.

Abbildung 2: PSpice-Simulation der Schalterposition a

4.2 Schalterposition b

Abbildung 3: PSpice-Simulation der Schalterposition b

5 Matlab-Skript