

חלוקת סוכריות

n-1 דודה קונג מכינה n קופסאות של סוכריות לתלמידים מבית ספר סמוך. הקופסאות ממוספרות מ0 עד דודה קונג מכינה n קופסאות של c[i] יש קיבולת של c[i] סוכריות.

- אם v[j] , דודה קונג מוסיפה סוכריות לקופסה p , אחת אחת, עד שהיא הוסיפה בדיוק v[j]>0 סוכריות אוחינת אוחינת התמלאה. במילים אחרות, אם בקופסה היו p סוכריות לפני הפעולה, יהיו בה v[j]>0 סוכריות אחרי הפעולה.
- אם v[j], דודה קונג מוציאה סוכריות מהקופסה , אחת אחת, עד שהיא הוציאה בדיוק v[j] < 0 אם $\max(0, p+v[j])$ או שהקופסה התרוקנה. במילים אחרות, אם בקופסה היו p סוכריה לפני הפעולה, יהיו בה סוכריות אחרי הפעולה.

. הימים q הימים בכל קופסה לאחר משימתכם היא לקבוע את מספר הסוכריות בכל

פרטי מימוש

עליכם לממש את הפונקציה הבאה:

```
int[] distribute_candies(int[] c, int[] 1, int[] r, int[] v)
```

- . i מערך באורך n לכל $i \leq i \leq n-1$ היא הקיבולת של קופסה : c
- ידי קונג מבצעת פעולה המיוצגת על ידי , $0 \leq j \leq q-1$ ביום , j ביום . q ביום , v פעולה המיוצגת על ידי . v ו-v , v במתואר לעיל.
 - על פונקציה זו להחזיר מערך באורך n . נסמן מערך זה ב-s . לכל i=1 , $0 \leq i \leq n-1$ צריך להיות מספר . על פונקציה זו להחזיר מערך באורך i=1 הימים.

דוגמאות

דוגמה 1

הביטו בקריאה הבאה:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

משמעותה היא שקופסה 0 היא עם קיבולת של 10 סוכריות, קופסה 1 עם קיבולת של 15 סוכריות, וקופסה 2 עם קיבולת של 15 סוכריות.

בסוף יום $\min(c[0], 0+v[0])=10$ מכילה מכילה סוכריות, קופסה 0 מכילה סוכריות. $\min(c[2], 0+v[0])=13$ סוכריות וקופסה $\min(c[1], 0+v[0])=15$

 $\max(0,15+v[1])=4$ מכילה $\max(0,10+v[1])=0$ מכילה $\max(0,10+v[1])=0$ מכילה מכילה $\max(0,15+v[1])=0$ סוכריות. מכיוון ש-[1] > r , אין שינוי במספר הסוכריות בקופסה 2 . מספר הסוכריות בסוף כל יום מסוכם מטה:

קופסה 2	קופסה 1	קופסה 0	יום
13	15	10	0
13	4	0	1

[0,4,13] לפיכך, על הפונקציה להחזיר

מגבלות

- $1 \le n \le 200\,000$ •
- $1 \le q \le 200\,000$ •
- ($0 \leq i \leq n-1$ לכל) $1 \leq c[i] \leq 10^9$ •
- ($0 \leq j \leq q-1$ לכל) $0 \leq l[j] \leq r[j] \leq n-1$ •
- $0 \leq j \leq q-1$ לכל $0 \leq v[j] \leq 10^9, v[j]
 otag$ ($0 \leq j \leq q-1$) (خ

תת משימות

- $n,q \leq 2000$ (נקודות 3) 1.
- ($0 \leq j \leq q-1$ לכלv[j]>0 (נקודות) 2. (8 נקודות)
- $c[0] = c[1] = \ldots = c[n-1]$ (27) מקודות. 3
- ($0 \leq j \leq q-1$ לכל (לכל r[j]=n-1 ו-1[j]=0 (לכל 29) .4
 - 5. (33 נקודות) ללא מגבלות נוספות.

גריידר לדוגמה

הגריידר לדוגמה קורא את הקלט בפורמט הבא:

- n:1 שורה c[0] c[1] \ldots c[n-1]:2 \cdots q:3 שורה q:3
- $l[j] \; r[j] \; v[j]$:($0 \leq j \leq q-1) \; 4+j$ שורה \bullet

הגריידר לדוגמה מדפיס את התשובה שלכם בפורמט הבא:

 $s[0] \; s[1] \; \ldots \; s[n-1]$: 1 שורה