Spis treści

1	Operacje1.1Działanie wewnętrzne i zewnętrzne1.2Własności operacji	1 1 2			
2	Grupa2.1 Grupa \mathbb{Z}_n 2.2 Grupa \mathbb{Z}_n^{\times}	2 2 2			
3	Podgrupa3.1 Generowanie3.2 Przystawanie	2 2 2			
4	Funkcja Eulera	3			
5	Permutacje 5.1 Rozkład na cykle	3			
6	Pierścień 6.1 Pierścień z jedynką	3			
7	Ciało	4			
8	Wielomiany 8.1 Przykład ciała wielomianowego	4			
9	Rozszerzony algorytm Euklidesa	4			
10 Problem logarytmu dyskretnego					
11	Test na pierwszość Fermata	5			
12 Chińskie twierdzenie o resztach					
	Faktoryzacja wielomianu nad ciałem skończonym 13.1 Distinct-degree factorization	6			
14	Wspólne miejsca zerowe wielomianów jednej zmiennej	6			
15	Wielomiany wielu zmiennych	6			
	Bazy Gröbnera azali mi to zdawać, choć algebrę miałem jakbym nie miał ciekawszych rzeczy do roboty i potrzebował tej powtór	e ki			

Fun times.

1 Operacje

Każdą funkcję która ma dwa argumenty i zwraca jeden wynik można nazwać operacją. Teoretycznie zatem można konwencjonalne operatory traktować jako funkcje. +(1,1)=2

Działanie wewnętrzne i zewnętrzne

Działanie wewnętrzne w zbiorze $A\colon *:A\times A\to A.$ Działanie zewnętrzne w zbiorze $A\colon *:F\times A\to A$

1.2 Własności operacji

Rozróżniamy kilka własności, które mogą mieć operacje.

- Łączność A*(B*C) = (A*B)*C
- Przemienność A * B = B * A
- Rozdzielność A*(B+C) = A*B + A*C
- Element neutralny A * E = A
- Element odwrotny $A * A^{-1} = E$

2 Grupa

Grupa to zbiór Gz działaniem wewnętrznym \ast jeśli:

- * jest łączne
- \bullet * posiada element neutralny
- * posiada element odwrotny

Dodatkowo jeśli * jest przemienne to mamy grupę abelową.

2.1 Grupa \mathbb{Z}_n

Specyficzna grupa, która jest zbiorem liczb całkowitych od 0 do n-1 z działaniem + modulo n. Elementem przeciwnym dla a jest n-a.

2.2 Grupa \mathbb{Z}_n^{\times}

$$\mathbb{Z}_n^{\times} = \{ a \in \mathbb{Z}_n : NWD(a, n) = 1 \}$$

A działanie tej grupy to mnożenie modulo n. Element przeciwny oblicza się algorytmem Euklidesa.

3 Podgrupa

Podgrupa to podzbiór grupy z odpowiednio dostosowanym działaniem. Na przykład podgrupą \mathbb{Z}_{12} jest ($\{0,4,8\},+$), ponieważ nie ma pary elementów z podzbioru, które po dodaniu dałyby coś spoza podzbioru.

3.1 Generowanie

Niech (G,*) będzie grupą z elementem neutralnym E. Wtedy:

$$\langle g \rangle = \{ \overbrace{g \ast g \ast \cdots \ast g}^{n} \colon n \in \mathbb{N} \} \cup \{ E \} \cup \{ \overbrace{g^{-1} \ast g^{-1} \ast \cdots \ast g^{-1}}^{m} \colon m \in \mathbb{N} \}$$

Jeśli $G=\langle g \rangle$ dla pewnego g to G jest grupą cykliczną. Rzędem g jest $|\langle g \rangle|$

W \mathbb{Z}_{12} podgrupą generowaną przez 4 jest $\{0,4,8\}$, a $rz(4) = |\langle 4 \rangle|$. Z kolei $\langle 1 \rangle = \mathbb{Z}_{12}$ zatem \mathbb{Z}_{12} zatem $\mathbb{Z}_$

3.2 Przystawanie

Jeśli dwa elementy a, b są przystające w Grupie G to $a \equiv b$. Na przykład $32 \equiv 4$ w \mathbb{Z}_7 , ponieważ 32 mod 7 = 4. Przystawanie (mod n) implikuje:

- \bullet że a i b przy dzieleniu przez n mają tę samą resztę
- n dzieli a b
- a = b + nk dla pewnego $k \in \mathbb{Z}$

4 Funkcja Eulera

$$\varphi(n) = \begin{cases} 1 : n = 1 \\ |\mathbb{Z}_n^{\times}| : n > 1 \end{cases}$$

Jeśli p jest liczbą pierwszą to $\varphi(p^k) = p^k - p^{k-1}$ oraz $\varphi(p) = p-1$. Jeśli NWD(m,n) = 1 to $\varphi(mn) = \varphi(m)\varphi(n)$.

5 Permutacje

$$\pi = \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 \\ a_1 & a_2 & a_3 & \cdots & a_n \end{pmatrix}$$
$$a_n = \pi(n)$$

5.1 Rozkład na cykle

$$\pi = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix} = (a_1, a_2, a_3, \dots, a_n)$$
$$\pi' = \begin{pmatrix} a_1 & a_2 & b_1 & b_2 \\ a_2 & a_1 & b_2 & a_1 \end{pmatrix} = (a_1, a_2) \cdot (b_1, b_2)$$

5.2 Iloczyn transpozycji

$$(a_1, a_2, a_3, \dots, a_k) = (a_1, a_k) \cdot (a_1, a_{k-1}) \cdot \dots \cdot (a_1, a_3) \cdot (a_1, a_2)$$

5.3 Postać macierzowa

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 4 & 3 \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

5.4 Znak permutacji

Ilość czynników w iloczynie transpozycji określa parzystość permutacji.

$$(-1)^n$$

gdzie n to ilość transpozycji

6 Pierścień

Pierścień to uporządkowana trójka $R(A, +, \cdot)$, gdzie A to zbiór, a + i · to działania spełniające następujące warunki:

- (A, +) jest grupą abelową
- $\bullet\,\,+\,\mathrm{i}\,\cdot\,\mathrm{s}$ ą są wewnętrzne dla A
- \bullet Dla każdego $a,b,c\in A$ zachodzi rozdzielność mnożenia względem dodawania: $a\cdot (b+c)=a\cdot b+a\cdot c$ oraz $(a+b)\cdot c=a\cdot c+b\cdot c$
- Istnieje element neutralny mnożenia $1 \in A : \forall a \in A : a \cdot 1 = 1 \cdot a = a$

6.1 Pierścień z jedynką

Pierścień z jedynką to pierścień, w którym istnieje element neutralny mnożenia oraz $A \neq \emptyset$

6.2 Pierścień przemienny

Pierścień przemienny to pierścień, w którym mnożenie jest przemienna

7 Ciało

Ciało $\mathbb{C}(K,+,\cdot)$ to pierścień przemienny z jedynką, oraz $(K\setminus\{0\},\cdot)$ jest grupą. Innymi słowy: jest to niepusty zbiór K z działaniami + i \cdot , które są przemienne, łączne, posiadają elementy neutralne i odwrotne, oraz istnieją takie pary (a,b) dla których:

$$a+b=0$$
 oraz $a \cdot b=1$

Przykładami ciał są: \mathbb{Q} , \mathbb{R} , \mathbb{C} .

8 Wielomiany

Mówimy, że liczba z jest pierwiastkiem n-tego stopnia liczby w jeśli

$$z^n = w$$

Każdy wielomian $f \in \mathbb{C}[x]$ stopnia n ma n pierwiastków. Jeśli $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ to

$$f(x) = a_n(x - z_1)(x - z_2) \dots (x - z_n)$$

8.1 Przykład ciała wielomianowego

Zbiór $\{0,1,x,x+1\}$ z dodawaniem i mnożeniem modulo $f(x)=x^2+x+1\in\mathbb{Z}_2[x]$ jest ciałem.

+	0	1	x	x+1
0	0	1	x	x+1
1	1	0	x+1	x
x	x	x+1	0	1
x+1	x+1	x	1	0

Tabela 1: Dodawanie w wyżej zdefiniowanym ciele

8.2 Rozkładalność a ciała

Dlaczego zbiór $\{0, 1, x, x + 1\}$ z dodawaniem i mnożeniem modulo $f(x) = x^2 + 1 \in \mathbb{Z}_2[x]$ nie jest ciałem? Ponieważ $x^2 + 1$ jest rozkładalny w $\mathbb{Z}_2[x]$.

Mówimy, że wielomian f(x) jest rozkładalny w $\mathbb{Z}_p[x]$ jeśli gdy istnieją wielomiany $g_1, g_2 \in \mathbb{Z}_p[x]$ stopnia co najmniej 1 takie, że $f(x) = g_1(x)g_2(x)$.

Dla każdego $n \in \mathbb{N}$ i każdej liczby pierwszej p istnieje wielomian stopnia $n \le \mathbb{Z}_p[x]$ który jest nierozkładalny.

9 Rozszerzony algorytm Euklidesa

Dla $a,b\in\mathbb{Z}$ wyznacza NWD(a,b) oraz $x,y\in\mathbb{Z}$: ax+by=NWD(a,b). Jest on zdefiniowany w następujący sposób:

$$(r_0, s_0, t_0) = (a, 1, 0), (r_1, s_1, t_1) = (b, 0, 1)$$
$$(r_{i+1}, s_{i+1}, t_{i+1}) = (r_{i-1}, s_{i-1}, t_{i-1}) - \lfloor \frac{r_{i-1}}{r_i} \rfloor (r_i, s_i, t_i)$$

Równanie ax + by = c ma rozwiązanie w \mathbb{Z} tylko jeśli NWD(a,b)|c. Na przykład: dla 30,45 mamy:

- 1. (45, 1, 0), (30, 0, 1)
- 2. (45, 1, 0) 1 * (30, 0, 1) = (15, 1, -1)
- 3. (30, 0, 1) 2 * (15, 1, -1) = (0, -2, 3)

4.
$$NWD(30, 45) = 15$$

5.
$$15 = -1 * 30 + 1 * 45$$

Albo inaczej: $61^{-1} \in \mathbb{Z}_{130} = ?$

$$61^{-1} \in \mathbb{Z}_{130} \to 61x \equiv 1 \mod 130 \to 61x + 130y = 1$$

- 1. (130, 1, 0), (61, 0, 1)
- 2. (130, 1, 0) 2 * (61, 0, 1) = (8, 1, -2)
- 3. (61, 0, 1) 7 * (8, 1, -2) = (5, -7, 15)
- 4. (8, 1, -2) 1 * (5, -7, 15) = (3, 8, -17)
- 5. (5, -7, 15) 1 * (3, 8, -17) = (2, -15, 32)
- 6. (3, 8, -17) 1 * (2, -15, 32) = (1, 23, -49)
- 7. (2, -15, 32) 2 * (1, 23, -49) = (0, -61, 130)
- 8. NWD(61, 130) = 1
- 9. 1 = (-49) * 61 + 23 * 130

10 Problem logarytmu dyskretnego

Dane: $a, c \in \mathbb{Z}, n \in \mathbb{N}$. Cel: znaleźć $x \in \mathbb{Z}_n$ takie, że $a^x = c \in \mathbb{Z}_n$. Alternatywnie można zdefiniować postać ogólną, gdzie mamy grupę G oraz $|G| \in \mathbb{P}$, i chcemy znaleźć $x \in G : g^x = h$.

11 Test na pierwszość Fermata

Jeśli $p \in \mathbb{P}$ to $\forall_{a \in \mathbb{Z}_p \setminus \{0\}} a^{p-1} = 1 \in \mathbb{Z}_p$.

- 1. Losujemy $a \in \mathbb{Z}_p \setminus \{0\}$
- 2. Obliczamy $a^{p-1} \mod p$
- 3. Jeśli $a^{p-1} \neq 1$ to p nie jest liczbą pierwszą

Na przykład: p = 7, a = 2:

$$2^{7-1} = 2^6 = 64 \mod 7 = 1$$

Zatem 7 może być liczbą pierwszą.

Albo p = 4, a = 2:

$$2^{4-1} = 2^3 = 8 \mod 4 = 0$$

Zatem 4 nie jest liczbą pierwszą.

12 Chińskie twierdzenie o resztach

Niech $m_1, \dots m_k \in \mathbb{N}$ będą parami względnie pierwsze (NWD = 1), oraz $M = \prod m$. Wtedy dla dowolnych $a_1, \dots a_k \in \mathbb{Z}$ istnieje x < M takie, że:

$$x \equiv a_i \mod m_i$$

13 Faktoryzacja wielomianu nad ciałem skończonym

13.1 Distinct-degree factorization

Wielomian $f(x) = a_0 + a_1 x^1 \dots$ nazywamy unormowanym jeśli $a_n = 1$. Współczynniki a_n nazywamy wiodącym. Ponieważ dla każdego $a \in \mathbb{F}_q \setminus \{0\}$ mamy a^{q-1} więc:

$$x^q - x = \prod_{a \in \mathbb{F}_q} (x - a)$$

Dla każdego $d \ge 1$, $x^{q^d} - x \in \mathbb{F}_q[x]$ jest iloczynem wszystkich nierozkładalnych unormowanych wielomianów w $\mathbb{F}_q[x]$ stopnia k|d.

14 Wspólne miejsca zerowe wielomianów jednej zmiennej

Mając wielomiany $f_1 \dots f_s \in \mathbb{F}[x]$ o współczynnikach z ciała \mathbb{F} , chcemy znaleźć $V = \{x \in \mathbb{F} : f_{1...s}(x) = 0\}$.

$$f(a) = 0 \leftrightarrow x - a|f(x)$$

Aby znaleźć V musimy obliczyć $NWD(f_1, \ldots, f_s)$.

15 Wielomiany wielu zmiennych

 $\mathbb{F}[x_1,\ldots,x_n]=$ zbiór wielomianów zmiennych x_1,\ldots,x_n

$$f(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n] = \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

Konstrukcje typu $x_1^{i_1} \dots x_n^{i_n}$ można utożsamić z wektorami (i_1, \dots, i_n) , a te z kolei uporządkować. Na przykład można użyć porządku leksykograficznego gdzie $i \prec j \leftrightarrow$ pierwszy niezerowy współczynnik j-a jest dodatni

Mając ustalony porządek, można zdefiniować dzielenie wielomianów wielu zmiennych. Każdy wielomian $f \in \mathbb{F}[x_1, \dots x_n]$ można przedstawić w postaci:

$$f = a_1 f_1 + \dots + a_k f_k + r$$

Na przykład dla $f(x,y) = x^2y + xy^2 + y^2$:

$$f(x,y) = (x+y)(xy) + (y^2 - 1) + x + y + 1$$

16 Bazy Gröbnera

Dla porządku \prec na \mathbb{Z}^{\ltimes} oraz $f_1 \dots f_n \in \mathbb{F}[x_1, \dots x_n]$ to:

$$\langle f_1, \dots, f_n \rangle = \{ a_1 f_1 + \dots + a_n f_n : a_i \in \mathbb{F}[x_1, \dots, x_n] \}$$

nazywamy idealem generowanym przez f_1, \ldots, f_n . Skończony podzbiór ideału, względem porządku \prec nazywamy bazą Gröbnera, jeśli:

$$\langle LT(g) : g \in G \rangle = \langle LT(f) : f \in I \rangle$$