ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет безопасности информационных технологий

КУРСОВАЯ РАБОТА

По дисциплине:

«Инженерно-технические средства защиты информации»

На тему:

«Проектирование инженерно-технической системы защиты информации на предприятии. Вариант 139»

Выполнила:
Лопатина М. Д., студент группы N34531
all the A
/(подпись)
Проверил:
Попов И. Ю., к.т.н., доцент ФБИТ
(отметка о выполнении)

(подпись)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент	Лопатина Марина Дмитриевна				
	(Фамилия И.О.)				
Факультет	Ракультет Безопасности Информационных Технологий				
Группа	N34531				
Направлени	ие (специальность) 11.03.03 Конструирование и технология электронных средств				
Руководите	ель Попов Илья Юрьевич, к.т.н., доцент ФБИТ Университета ИТМО				
	(Фамилия И.О., должность, ученое звание, степень)				
Дисциплина	а Инженерно-технические средства защиты информации				
Наименова	ние темы Проектирование инженерно-технической системы защиты информации на предприятии. Вариант 139				
Задание	изучить существующие каналы утечки информации, научиться разрабатывать план				
расположені	ия инженерно-технических средств защиты информации				
Краткие методические указания					
Рекомендуемая литература					
Руководител	пь 25.12.2023				
Студент	(Подпись, дата) 25.12.2023				
	(Полимет дата)				

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» ГРАФИК ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ

Студент	гудент Лопатина Марина Дмитриевна			
	(Фамилия И.О.)			
Факультет	Безопасности Информационных Технологий			
Группа N34531				
Направление (специальность) 11.03.03 Конструирование и технология электронных средств				
Руководитель Попов Илья Юрьевич, к.т.н., доцент ФБИТ Университета ИТМО				
	(Фамилия И.О., должность, ученое звание, степень)			
Дисциплина Инженерно-технические средства защиты информации				
Наименование темы Проектирование инженерно-технической системы защиты информации на предприятии. Вариант 139				

№	Наименование этапа	Наименование этапа		Оценка и подпись
п/п	Hannehobanne Hana	Планируемая	Фактическая	руководителя
1	Создание плана КР	27.11.2023	27.11.2023	
2	Анализ литературы	28.11.2023	30.11.2023	
3	Разработка перечня средств защиты	03.12.2023	10.12.2023	
4	Составление основного текста КР	17.12.2023	23.12.2023	
5	Защита курсовой работы	25.12.2023	25.12.2023	

Руководител	25.12.2023		
Студент	Alepart	(Подпись, дата) 25.12.2023	
	/	(Подпись, дата)	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» АННОТАЦИЯ НА КУРСОВУЮ РАБОТУ

Студент	Студент Лопатина Марина Дмитриевна					
(Фамилия И.О.)						
Факультет						
Группа	Группа N34531					
Направлен	ие (специальность) 11.03.03 Конструирование и технология электронных средств					
Руководит	1					
	(Фамилия И.О., должность, ученое звание, степень)					
Дисциплиі						
Наименова	проектирование инженерно-технической системы защиты информации на предприятии. Вариант 139					
1. Цель и за работы	XАРАКТЕРИСТИКА КУРСОВОГО ПРОЕКТА (РАБОТЫ) дачи					
	работы – разработать план размещения комплекса мер инженерно-технической защиты					
информации	для компании ООО «СофтЛайт».					
 Характер работы Содержан В данной куро 	□ Моделирование 🖾 Другое					
исследуемого п	предприятия, разработан перечень необходимых средств защиты информации, создан план					
размещения сре,	дств защиты информации.					
						
2. Выводн	aī					
В результате	проведенной работы были проанализированы актуальные каналы утечки информации для					
организации ОС	ОО «СофтЛайт»					
Руководител	ть 25.12.2023					
	(Подпись, дата)					
Студент	25.12.2023 (Harris 1992)					
	/ (Подпись, дата)					

<u> </u>	» <u> </u>	20	_Γ.

СОДЕРЖАНИЕ

В	ВЕД	ЕНИЕ		6
1		ОРГАН	НИЗАЦИОННАЯ СТРУТУРА ПРЕДПРИЯТИЯ	7
	1.1	Опи	сание предприятия	7
	1.2	Cxe	иа организационных структур	7
	1.3	Cxe	иа информационных потоков	7
2		ОБОСІ	НОВАНИЕ ЗАЩИТЫ ИНФОРМАЦИИ	9
3		PACCI	МОТРЕНИЕ ПЛАНА ПОМЕЩЕНИЯ	13
	3.1	Cxe	ма помещения	13
	3.2	Опи	сание помещения	16
	3.3	Ана	пиз возможных каналов утечки информации	16
		3.3.1	Акустические каналы утечки информации	17
		3.3.2	Электромагнитные каналы утечки информации	17
		3.3.3	Визуально-оптический канал утечки информации	18
		3.3.4	Материально-вещественные каналы утечки информации	18
4		АНАЛ	ИЗ РЫНКА	19
	4.1	Защ	ита от утечки информации по акустическим и виброакустическим ка	налам 19
	4.2	Защ	ита от утечки информации по электрическим и электромагнитным ка	налам20
	4.3	Защ	ита от утечек с использованием побочного электромагнитного изл	учения и
	нав	одок (П	ЭМИН)	22
	4.4	Защ	ита от утечек информации по визуально-оптическим каналам	22
5		ОПИС	АНИЕ РАССТАНОВКИ ТЕХНИЧЕСКИХ СРЕДСТВ	23
3	٩КЛ	ЮЧЕНІ	ME	25
C	ПИС	OK NC	ПОПЬЗУЕМОЙ ПИТЕРАТУРЫ	26

ВВЕДЕНИЕ

Цель работы – разработать план размещения комплекса мер инженерно-технической защиты информации для компании ООО «СофтЛайт».

Для выполнения поставленной цели необходимо выполнить следующие задачи:

- изучить организационную структуру предприятия;
- составить обоснование защиты информации;
- проанализировать план помещения предприятия;
- проанализировать актуальные каналы утечки информации для предприятия;
- составить перечень средств защиты информации для предприятия;
- составить план размещения средств защиты информации.

1 ОРГАНИЗАЦИОННАЯ СТРУТУРА ПРЕДПРИЯТИЯ

1.1 Описание предприятия

В рамках курсовой работы будет проведено исследование предприятия ООО «СофтЛайт» с целью разработки комплекса инженерно-технических средств защиты информации.

ООО «СофтЛайт» – IT компания, специализирующаяся на разработке программного обеспечения на заказ. Деятельность компании нацелена на выполнение В2В-решений, помимо этого компания разрабатывает ПО для государственных органов и работает со сведениями составляющими государственную тайну уровня «секретно».

1.2 Схема организационных структур

На рисунке 1 представлена схема структуры исследуемого предприятия.

Рисунок 1 – Структура предприятия

1.3 Схема информационных потоков

На рисунке 2 представлена схема основных информационных потоков предприятия.

Рисунок 2 – Схема информационных потоков

2 ОБОСНОВАНИЕ ЗАЩИТЫ ИНФОРМАЦИИ

Так как компания работает с государственной тайной, необходимо провести анализ нормативной базы для обоснования защиты информации:

- Закон РФ от 21 июля 1993 г. N 5485-I «О государственной тайне»;
- Постановление Правительства РФ от 22 ноября 2012 г. № 1205 «Об утверждении правил организации и осуществления федерального государственного контроля за обеспечением защиты государственной тайны»;
- Постановление Правительства РФ от 04.09.1995 N 870 «Об утверждении
 Правил отнесения сведений, составляющих государственную тайну, к различным степеням секретности»;
- Руководящий документ Автоматизированные системы. Защита от несанкционированного доступа к информации Классификация автоматизированных систем и требования по защите информации Утверждено решением председателя Государственной технической комиссии при Президенте Российской Федерации от 30 марта 1992 г.;
- «Типовые нормы и правила проектирования помещений для хранения носителей сведений, составляющих государственную тайну, и работы с ними», утвержденных Решением Межведомственной комиссии по защите государственной тайны от 21.01.2011 N 199.

Согласно Закону РФ от 21 июля 1993 г. N 5485-I «О государственной тайне»:

«Допуск предприятий, учреждений и организаций к проведению работ, связанных с использованием сведений, составляющих государственную тайну, созданием средств защиты информации, а также с осуществлением мероприятий и(или) оказанием услуг по защите государственной тайны, осуществляется путем получения ими в порядке, устанавливаемом Правительством Российской Федерации, лицензий на проведение работ со сведениями соответствующей степени секретности.

Лицензия на проведение указанных работ выдается на основании результатов специальной экспертизы предприятия, учреждения и организации и государственной аттестации их руководителей, ответственных за защиту сведений, составляющих государственную тайну, расходы по проведению которых относятся на счет предприятия, учреждения, организации, получающих лицензию».

Согласно Постановлению Правительства РФ от 04.09.1995 N 870 «Об утверждении Правил отнесения сведений, составляющих государственную тайну, к различным степеням секретности»:

«3. Сведения, отнесенные к государственной тайне, по степени секретности подразделяются на сведения особой важности, совершенно секретные и секретные.

К сведениям особой важности следует относить сведения в области военной, внешнеполитической, экономической, научно-технической, разведывательной, контрразведывательной и оперативно-розыскной деятельности, распространение которых может нанести ущерб интересам Российской Федерации в одной или нескольких из перечисленных областей.

К совершенно секретным сведениям следует относить сведения в области военной, внешнеполитической, экономической, научно-технической, разведывательной, контрразведывательной и оперативно-розыскной деятельности, распространение которых может нанести ущерб интересам министерства (ведомства) или отрасли экономики Российской Федерации в одной или нескольких из перечисленных областей.

К секретным сведениям следует относить все иные сведения из числа сведений, составляющих государственную тайну. Ущербом безопасности Российской Федерации в этом случае считается ущерб, нанесенный интересам предприятия, учреждения или организации в военной, внешнеполитической, экономической, научно-технической, разведывательной, контрразведывательной или оперативно-розыскной области деятельности».

Согласно Руководящему документу Автоматизированные системы. Защита от несанкционированного доступа к информации Классификация автоматизированных систем и требования по защите информации Утверждено решением председателя Государственной технической комиссии при Президенте Российской Федерации от 30 марта 1992 г.:

«2.18. При разработке АС, предназначенной для обработки или хранения информации, являющейся собственностью государства и отнесенной к категории секретной, необходимо ориентироваться в соответствии с РД "Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации" на классы защищенности АС не ниже (по группам) 3A, 2A, 1A, 1Б, 1В»

В таблице 1 представлена классификация классов защищенности.

Таблица 1 – Классификация классов защищенности

Первая группа	1A	В случае обработки секретной информации
(многопользовательские АС, в		с грифом «особая важность»
которых одновременно	1Б	В случае обработки секретной информации
обрабатывается и/или хранится		с грифом не выше «совершенно секретно»

	1	T
информация разных уровней	1B	В случае обработки секретной информации
конфиденциальности, и не все		с грифом не выше «секретно»
пользователи имеют право доступа	1Γ	АС, в которых циркулирует служебная
ко всей информации АС)		информация
	1Д	АС, в которых циркулируют персональные
		данные
Вторая группа (АС, в которых	2A	Информация, составляющая гостайну
пользователи имеют одинаковые		
права доступа (полномочия) ко всей		
информации АС, обрабатываемой	2Б	Служебная тайна или персональные данные
и/или хранимой на носителях		
различного уровня		
конфиденциальности)		
Третья группа	3A	Информация, составляющая гостайну
(многопользовательские АС, в		
которых одновременно		
обрабатывается и/или хранится		
информация разных уровней	3Б	Служебная тайна или персональные данные
конфиденциальности, и не все		
пользователи имеют право доступа		
ко всей информации АС)		

В соответствии с этой классификацией можно сказать, что, рассматривая организация имеет класс защищенности 1В.

Согласно «Типовым нормам и правилам проектирования помещений для хранения носителей сведений, составляющих государственную тайну, и работы с ними», утвержденных Решением Межведомственной комиссии по защите государственной тайны от 21.01.2011 N 199:

- стены или перегородки между обычными и защищенными помещениями должны быть бетонными, железобетонными или металлическими с толщиной стен — от 10 см, или кирпичными с толщиной стен от 12 см;
- в помещениях для работы с гостайной и хранилищах секретных документов устанавливаются усиленные двери, обеспечивающие надежное закрытие. Двери с двух сторон обшиваются металлическим листом не менее 2 мм толщиной, внутри —

звукоизоляционный материал, сама дверь должна иметь толщину не менее 4 см. Дверь устанавливается на металлический каркас;

- обязательно устанавливается противопожарное перекрытие между блоком режимных помещений и остальными комнатами в здании;
- вся аппаратура, периферия и ПО должны быть сертифицированы и соответствовать требованиям ФСТЭК, предъявляемым к оснащению защищенных и выделенных помещений;
- перед началом эксплуатации необходимо проверить выделенные и иные режимные помещения проверить на предмет наличия «жучков» и иных средств несанкционированного получения информации.

3 РАССМОТРЕНИЕ ПЛАНА ПОМЕЩЕНИЯ

3.1 Схема помещения

На рисунке 3 представлена схема защищаемого помещения.

Рисунок 3 – План помещения

В таблице 2 представлены условные обозначения плана.

Таблица 2 – Условные обозначения

Стул
Цветы в горшках
Туалетная кабинка
Корзина для мусора
Раковина
Батарея
Розетка
Вентиляция
Настольная лампа
Вешалка
Доска для объявлений
Экран для проектора
Компьютер
МФУ
Тумбочка
Посудомоечная машина
 Микроволновая печь

Ь	Холодильник
	Кофемашина
	Диван
	Шкаф
0,0	
	Подвесная полка
	Стол

3.2 Описание помещения

На предприятии имеются следующие комнаты, подлежащие инженернотехнической защите:

- 1. Кабинет директора 17,8 кв м
- 2. Кухня 26,9 кв м
- 3. Кабинет охраны 6,8 кв м
- 4. Γ лавный холл 78,3 кв м
- 5. Туалетные комнаты -10.8 кв м
- 6. Кабинет бухгалтера 11,1 кв м
- 7. Переговорная комната 17 кв м
- 8. Переговорная комната 17 кв м

В кабинете директора есть рабочее место (рабочий стол, кресло, компьютер), 2 кресла для приёма посетителей, диван и журнальный столик, шкаф, цветок в горшке, батарею, 2 розетки, окно и дверь.

Кухня содержит: 3 обеденных стола, 2 дивана, 12 стульев, кухонную поверхность, кофемашину, микроволновую печь, холодильник, посудомоечную машину, раковину, цветок в горшке, 2 батареи, 4 розетки, окно и дверь.

В кабинете охраны есть рабочее место, батарея, 2 розетки, дверь.

Главный холл является открытым пространством с рабочими местами для большинства сотрудников, то есть 12 рабочих мест, диван и журнальный столик, рабочий стол, 2 принтера, 8 шкафов, 2 вешалки для одежды, доска для объявлений, цветок в горшке, 3 батареи, 12 розеток, 3 окна, 8 дверей.

Туалетная комната состоит из 4 кабинок, 3 раковин, 2 шкафов и двери.

В кабинете бухгалтера есть рабочее место, 2 кресла для посетителей и журнальный столик, шкаф, цветок в горшке, цветок в горшке, батарея, 2 розетки, окно и дверь.

В первой переговорной комнате: большой стол, 8 кресел, компьютер, 4 шкафа, экран для проектора, 2 батареи, 3 розетки, дверь.

Во второй переговорной комнате, по сравнению с первой ещё есть 2 окна.

3.3 Анализ возможных каналов утечки информации

Выделяют следующие виды технических каналов утечки информации:

- акустические каналы утечки информации;
- электромагнитные каналы утечки информации;
- визуально-оптические каналы утечки информации;

- материально-вещественные каналы утечки информации.

Далее будут более подробно рассмотрен каждый канал утечки информации.

3.3.1 Акустические каналы утечки информации

В акустических каналах утечки информации средой распространения речевых сигналов является воздух, и для их перехвата используются высокочувствительные микрофоны и специальные направленные микрофоны. Микрофоны соединяются с портативными звукозаписывающими устройствами или миниатюрными передатчиками.

Автономные устройства, конструктивно объединяющие микрофоны и передатчики, называют закладными устройствами (ЗУ) перехвата речевой информации.

Источниками утечки информации по акустическому каналу на рассматриваемом предприятии могут быть: открытые двери или окна, плохая звукоизоляция, вентиляционные шахты, проводка, ЗУ в цветочных горшках или других местах.

К пассивной защите можно отнести средства звукоизоляции, а к активной устройства акустического зашумления.

В виброакустических каналах утечки информации средой распространения речевых сигналов являются ограждающие строительные конструкции помещений (стены, потолки, полы) и инженерные коммуникации (трубы водоснабжения, отопления, вентиляции и т. п.). Для перехвата речевых сигналов в этом случае используются вибродатчики.

Вибродатчик, соединенный с электронным усилителем называют электронным стетоскопом. Электронный стетоскоп позволяет осуществлять прослушивание речи с помощью головных телефонов и ее запись на диктофон.

Источниками утечки могут быть: твердые поверхности (стены, потолки, полы), батареи, вентиляционные трубы.

Пассивные методы защиты: звукоизоляция с использованием антивибрационных материалов, а активные: устройства вибрационного зашумления.

3.3.2 Электромагнитные каналы утечки информации

Электрический канал перехвата информации, передаваемой по кабельным линиям связи, предполагает контактное подключение аппаратуры перехвата к кабельным линиям связи. Самый простой способ — это непосредственное параллельное подключение к линии связи.

Электромагнитный канал перехвата информации. Электромагнитные излучения передатчиков средств связи, модулированные информационным сигналом, могут перехватываться портативными средствами радиоразведки.

ПЭМИН (Побочные Электромагнитные Излучения и Наводки). Одним из возможных каналов утечки информации является излучение элементов компьютера. Принимая и декодируя эти излучения, можно получить сведения обо всей информации, обрабатываемой в компьютере.

Основными источниками получения информации по этим каналам утечки являются: розетки, бытовая техника, компьютеры, кабели.

Из методов пассивной защиты можно использовать фильтры для сетей электропитания, а из активных устройства электромагнитного зашумления.

3.3.3 Визуально-оптический канал утечки информации

Основные способы утечки информации с помощью визуальных методов, фотографирования, видеосъёмки, наблюдения.

В рассматриваемом предприятии утечка информации возможна через окна или открытые двери.

В качестве пассивной защиты можно использовать жалюзи, шторы, зеркальные пленки для защиты окон и использование доводчиков для дверей.

3.3.4 Материально-вещественные каналы утечки информации

Материально-вещественный канал — позволяют получать информацию путём хищения или нелегального доступа к носителям информации.

Защититься от утечек по материально-физическим каналам помогут организационные и технические меры. Первые предполагают внедрение системы учета физических носителей и документов, а также допусков к ним, принтерам, копировальной и другой технике с обязательным документированием. А вторые подразумевают использование СКУД.

4 АНАЛИЗ РЫНКА

4.1 Защита от утечки информации по акустическим и виброакустическим каналам

Из средств пассивной защиты буду использовать дополнительную отделку кабинета директора и переговорных комнат звукоизолирующими материалами, а также усиленные двери.

Из активных средств защиты будут использоваться систему виброакустического зашумления. В таблице 3 представлены сравнительные характеристики систем.

Таблица 3 – Сравнение систем виброакустической защиты

Модель	Характеристика	Особенности	Стоимость
ЛГШ-404,	Диапазон частот:	соответствует типу «А» - средства	35 100
генератор шума	9011200 Гц	акустической и вибрационной защиты	руб.
	Электропитание:	информации с центральным	
	220 В, 50 Гц	генераторным блоком и	
	Количество	подключаемыми к нему по линиям	
	подключаемых	связи пассивными преобразователями;	
	излучателей: до	соответствует требованиям «Требования	
	64	к средствам активной акустической и	
		вибрационной защиты акустической	
		речевой информации» (ФСТЭК России,	
		2015) – по 1 классу защиты; оснащено	
		визуальной системой индикации	
		нормального режима работы и	
		визуально-звуковой системой	
		индикации аварийного режима.	
Генератор	Диапазон частот:	Принцип действия основан на	29 900
виброакустического	90–11.2 кГц	формировании широкополосных	руб.
шума SEL SP-157G	Электропитание:	акустических и виброакустических	
	220 В, 50 Гц	маскирующих шумовых помех	
	Количество	(аналоговый белый шум или смешанный	
	излучателей на 1	с цифровой речеподобной помехой).	
	канале: до 32	Система состоит из центрального	
		генераторного блока и подключаемых к	
		нему по проводам пассивных	
		электромагнитных (вибрационных) или	

		электродинамических (акустических)	
		преобразователей (излучателей).	
Виброакустическая	Диапазон частот:	производство изделия Соната-АВ"	44 200
защита Соната АВ-	175–11200 Гц	модель 4Б сертифицировано.	руб.
4Б	Электропитание:	Сертификат ФСТЭК;	
	220 В, 50 Гц	построена по принципу "единый	
	Количество	источник электропитания + генераторы-	
	излучателей на 1	электроакустические преобразователи	
	канале: 239 шт	(излучатели)"	

По результатам сравнительного анализа была выбрана «Соната AB-4Б» так как есть возможность подключения к одному питающему шлейфу, система имеет максимальное количество подключаемых устройств. Помимо этого, система считается одной из самых востребованных на рынке.

4.2 Защита от утечки информации по электрическим и электромагнитным каналам

Пассивная защита заключается в установке сетевых фильтров.

А активная защита основывается на создании в сети белого шума, который скрывает колебания, порождаемые воздействием звуковой волны или работающей электрической техникой. В таблице 4 приведен сравнительный анализ средств активной защиты от утечки информации по электрическим и электромагнитным каналам.

Таблица 4 – Сравнение защиты по электрическим и электромагнитным каналам

Модель	Характеристика	Особенности	Стоимость
Генератор шума	широкополосные	предназначен для активной защиты	44 200
ЛГШ-503	шумовые помехи	объектов информатизации от утечки по	руб.
	в диапазоне	сети электропитания ("фаза", "ноль" и	
	частот от 0,01	"защитное заземление"), и для	
	МГц до 2000	противодействия средствам	
	МГц.	несанкционированного съема	
	Электропитание:	информации по каналам ПЭМИ;	
	220 В, 50 Гц.	устройство может эксплуатироваться	
		круглосуточно.	
Генератор шума	Диапазон частот:	Средство активной защиты информации	20 160
Соната-РС3	до 2 ГГц;	от утечки по сети электропитания и	руб.
	Кол-во фаз: 1;	линиям заземления;	

	Электропитание:	Может использоваться в выделенных	
	~220 В, 50 Гц	помещениях до 1 категории	
		включительно.	
Генератор шума	Диапазон частот:	Сертификат ФСТЭК;	24 000
SEL SP-44	0,01–300 МГц	техническое средство защиты	руб.
	Количество	информации, обрабатываемой на	
	независимых	объектах вычислительной техники 1,	
	каналов	2 и 3 категории, от утечки за счёт	
	шумового	наводок по цепям электропитания и	
	сигнала: 2	заземления путём постановки	
		маскирующих помех в цепях	
		электропитания и заземления;	
		может устанавливаться в	
		выделенных помещениях до 1	
		категории включительно;	
		Устройство имеет высший класс	
		устойчивости к импульсным	
		помехам и допускает длительную	
		работу в условиях эквивалентного	
		короткого замыкания. Применение	
		ключевых выходных усилителей	
		существенно повышает	
		экономичность, надежность и	
		стабильность параметров изделия,	
		позволяет эксплуатировать его в	
		более жестких климатических	
		условиях	
		условиях	

По результатам анализа был выбран ЛГШ-503, так как он имеет самый большой диапазон частот и защищает не только от электрического, электромагнитного каналов, но и от ПЭМИН, благодаря этому стоимость устройства также можно считать достаточно выгодной.

4.3 Защита от утечек с использованием побочного электромагнитного излучения и наводок (ПЭМИН)

Так как в пункте 4.2 в качестве средства защиты от утечек по электрическим и электромагнитным каналам был выбран генератор шума ЛГШ-503, который также для противодействия средствам несанкционированного съема информации по каналам ПЭМИН, то отдельное устройство выбирать не требуется.

4.4 Защита от утечек информации по визуально-оптическим каналам

Для защиты от утечек по визуально-оптическим каналам будут использоваться доводчики на двери. Также на все окна будут установлены жалюзи, так как этот вариант намного дешевле и проще в установке по сравнению с защитными пленками.

5 ОПИСАНИЕ РАССТАНОВКИ ТЕХНИЧЕСКИХ СРЕДСТВ

Согласно сравнительному анализу, приведенному в 4 разделе, для защиты помещения были выбраны следующие средства защиты информации:

- виброакустическая система защиты «Соната AB-4Б»;
- усиленные двери в кабинет директора и переговорные комнаты;
- звукоизоляция кабинета директора и переговорных комнат;
- генератор шума ЛГШ-503;
- сетевой фильтр;
- жалюзи на каждое окно;
- доводчики дверные на каждую дверь.

На рисунке 4 представлен план расположения комплекса инженерно-технических средств защиты, а в таблице 5 представлены условные обозначения для этого плана.

Рисунок 4 – План расположения инженерно-технических средств защиты

Таблица 5 – Условные обозначения

Условное обозначение	Средство защиты
ВВ	Генератор-вибровозбудитель «Соната СВ-4Б» (на стены)
ВВ	Генератор-вибровозбудитель «Соната СВ-4Б» (окна, двери, батареи)
ВВ	Генератор-вибровозбудитель «Соната СВ-4Б» (потолок, пол)
АИ	Генератор-акустоизлучатель «Соната СА-4Б1» (вентиляция)
ГШ	Генератор шума «ЛГШ-503»
РЛЕ	Размыкатель линии «Ethernet» «Соната-ВК4.3»
РСЛ	Размыкатель слаботочной линии «Соната-ВК4.2»
ДД	Дверной доводчик
СФ	Сетевой фильтр
ММООО	Усиленная дверь
р- 900мм - 4	Жалюзи

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсовой работы был проведен теоретический анализ существующих каналов утечки информации, анализ потенциальных каналов утечки информации для компании ООО «СофтЛайт». Был проведен анализ рынка современных инженерно-технических средств защиты информации. По результатам анализа был сформирован перечень необходимых мер защиты для противодействия утечки информации. В результате выполнения работы была предложена защита от утечек информации по акустическому, виброакустическому, электромагнитному, визуально-оптическому каналам, а также обеспечена защита от ПЭМИН. И был разработан план размещения инженерно-технических средств защиты.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Кармановский Н.С., Михайличенко О.В., Савков С.В.. Организационноправовое и методическое обеспечение информационной безопасности. Учебное пособие Санкт-Петербург: НИУ ИТМО, 2013. 151 с.
- 2. Требования к режимным помещениям и их оборудованию : сайт. Текст : электронный. 2023. URL : https://licenziya-fsb.com/trebovaniya-k-rezhimnym-pomeshheniyam Загл. с экрана.