Stat 571B Experimental Design

Topic 5: Model adequacy checking Montgomery: chapter 3

Prof. Lingling An University of Arizona

Example: Tensile Strength

 Investigate the tensile strength of a new synthetic fiber. The factor is the weight percent of cotton used in the blend of the materials for the fiber and it has five levels.

percent		tensile strength					
of cotton	1	2	3	4	5	total	average
15	7	7	11	15	9	49	9.8
20	12	17	12	18	18	77	15.4
25	14	18	18	19	19	88	17.6
30	19	25	22	19	23	108	21.6
35	7	10	11	15	11	54	10.8

SAS code

```
options ls=75 ps=60 nocenter;

data one;
  infile 'D:\TEACHING\T_stat571B\lab\sas_data
\tensile.dat';
  input percent strength time;
  run;

title1 'Tensile Strength example';
proc print data=one;
run;
```

```
title1 'Plot of Strength vs Percent Blend';
proc sgplot data=one;
scatter x=percent y=strength;
run;
proc boxplot;
 plot strength*percent/boxstyle=skeletal
pctldef=4;
 run;
title1 'ANOVA analysis';
proc glm data=one;
 class percent;
 model strength=percent;
 output out=diag p=pred r=res;
run;
```

Scatter plot

The GLM Procedure Dependent Variable: strength

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	475.760000	118.9400000	14.76	<.0001
Error	20	161.200000	8.0600000		
Corrected Total	24	636.960000			

R-Square	Coeff Var	Root MSE	strength Mean
0.746923	18.87642	2.839014	15.04000

Source	DF	Type I SS	Mean Square	F Value	Pr > F
percent	4	475.7600000	118.9400000	14.76	<.0001

Source	DF	Type III SS	Mean Square	F Value	Pr > F
percent	4	475.7600000	118.9400000	14.76	<.0001

Model checking and diagnoistic

- Checking assumptions is important
 - Have we fit the right model?
 - Normality
 - Independence
 - Constant variance

$$\begin{array}{rclcrcl} y_{ij} & = & \left(\overline{y}_{..} + (\overline{y}_{i.} - \overline{y}_{..})\right) & + & \left(y_{ij} - \overline{y}_{i.}\right) \\ y_{ij} & = & \hat{y}_{ij} & + & \hat{\epsilon}_{ij} \\ \\ \text{observed} & = & \text{predicted} & + & \text{residual} \end{array}$$

- Note that the predicted response at treatment i is $\hat{y}_{ij} = \bar{y}_{i}$.
- Diagnostics use predicted responses and residuals.

Normality

- Histogram of residuals
- Normal probability plot / QQ plot
- Shapiro-Wilk Test
- Constant Variance
 - Plot $\hat{\epsilon}_{ij}$ vs \hat{y}_{ij} (residual plot)
 - Bartlett's or Levene's Test
- Independence
 - Plot $\hat{\epsilon}_{ij}$ vs time/space
 - Plot $\hat{\epsilon}_{ij}$ vs variable of interest
- Outliers

Normality Checking in the ANOVA

Examination of residuals (see text, Sec. 3.4, p80)

$$e_{ij} = y_{ij} - \hat{y}_{ij}$$
$$= y_{ij} - \overline{y}_{i.}$$

Residual plots are very useful – e.g., Q-Q plot

```
title "normality checking";
proc univariate data=diag normal;
var res;
qqplot res/normal(mu=est sigma=est
color=red L=1);
run;
```


Tests for Normality						
Test	Statistic		p Value			
Shapiro-Wilk	W	0.943868	Pr < W	0.1818		
Kolmogorov- Smirnov	D	0.162123	Pr > D	0.0885		
Cramer-von Mises	W-Sq	0.080455	Pr > W-Sq	0.2026		
Anderson- Darling	A-Sq	0.518572	Pr > A-Sq	0.1775		

Outliers checking

Use standardized residuals to check if there is outliers

$$d_{ij} = \frac{e_{ij}}{\sqrt{MSE}}$$

- > 3 or <(-3) is a potential outlier
- Be careful for removing outliers
- Read text on p82

SAS code: checking outlier

```
data outlier;
set diag;
stdres=res/sqrt(8.06);
run;

proc print data=outlier;
run;
```

Obs	percent	strength	time	pred	res	stdres
1	15	7	15	9.8	-2.8	-0.98626
2	15	7	19	9.8	-2.8	-0.98626
3	15	15	25	9.8	5.2	1.83162
4	15	11	12	9.8	1.2	0.42268
5	15	9	6	9.8	-0.8	-0.28179
6	20	12	8	15.4	-3.4	-1.19760
7	20	17	14	15.4	1.6	0.56358
8	20	12	1	15.4	-3.4	-1.19760
9	20	18	11	15.4	2.6	0.91581
10	20	18	3	15.4	2.6	0.91581
11	25	14	18	17.6	-3.6	-1.26805
12	25	18	13	17.6	0.4	0.14089
13	25	18	20	17.6	0.4	0.14089
14	25	19	7	17.6	1.4	0.49313
15	25	19	9	17.6	1.4	0.49313
16	30	19	22	21.6	-2.6	-0.91581
17	30	25	5	21.6	3.4	1.19760
18	30	22	2	21.6	0.4	0.14089
19	30	19	24	21.6	-2.6	-0.91581
20	30	23	10	21.6	1.4	0.49313
21	35	7	17	10.8	-3.8	-1.33849
22	35	10	21	10.8	-0.8	-0.28179
23	35	11	4	10.8	0.2	0.07045
24	35	15	16	10.8	4.2	1.47939
25	35	11	23	10.8	0.2	0.07045

SAS code: independence checking

```
title1 'Plot of residuals vs time';
proc sgplot data=diag;
scatter y=res x=time;
refline 0;
run;
```


Constant variance checking

ullet In some experiments, error variance (σ_i^2) depends on the mean response

$$E(y_{ij}) = \mu_i = \mu + \tau_i.$$

So the constant variance assumption is violated.

- Size of error (residual) depends on mean response (predicted value)
- Residual plot
 - Plot $\hat{\epsilon}_{ij}$ vs \hat{y}_{ij}
 - Is the range constant for different levels of \hat{y}_{ij}
- More formal tests:
 - Bartlett's Test
 - Modified Levene's Test.

Constant variance - 2

Bartlett's Test

- $H_0: \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_a^2$
- Test statistic: $\chi_0^2=2.3026\frac{q}{c}$

where

$$q = (N - a)\log_{10} S_p^2 - \sum_{i=1}^a (n_i - 1)\log_{10} S_i^2$$
$$c = 1 + \frac{1}{3(a-1)} \left(\sum_{i=1}^a (n_i - 1)^{-1} - (N - a)^{-1}\right)$$

and S_i^2 is the sample variance of the ith population and S_p^2 is the pooled sample variance.

• Decision Rule: reject H_0 when $\chi_0^2 > \chi_{\alpha,a-1}^2$.

Remark: sensitive to normality assumption.

Constant variance - 3

Modified Levene's Test

- For each fixed i, calculate the median m_i of $y_{i1}, y_{i2}, \ldots, y_{in_i}$.
- Compute the absolute deviation of observation from sample median:

$$d_{ij} = |y_{ij} - m_i|$$

for
$$i = 1, 2, ..., a$$
 and $j = 1, 2, ..., n_i$,

- Apply ANOVA to the deviations: d_{ij}
- Use the usual ANOVA F-statistic for testing $H_0: \sigma_1^2 = \ldots = \sigma_a^2$.

SAS code

```
title 'variance checking';
proc glm data=one;
class percent;
model strength=percent;
means percent / hovtest=bartlett
hovtest=levene;
output out=diag2 p=pred r=res;
run;
proc sgplot data=diag2;
scatter x=pred y=res;
refline 0;
run;
```


Levene's Test for Homogeneity of strength Variance ANOVA of Squared Deviations from Group Means						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
percent	4	91.6224	22.9056	0.45	0.7704	
Error	20	1015.4	50.7720			

Bartlett's Test for Homogeneity of strength Variance						
Source	DF	Chi-Square	Pr > ChiSq			
percent	4	0.9331	0.9198			

Non-constant Variance: Impact and Remedy

- Why concern?
 - Comparison of treatments depends on MSE
 - Incorrect intervals and comparison results
- Variance-Stabilizing Transformations
 - Common transformations

$$\sqrt{x}$$
, $\log(x)$, $1/x$, $\arcsin(\sqrt{x})$, and $1/\sqrt{x}$

- Box-Cox transformations
 - 1. approximate the relationship $\sigma_i = \theta \mu_i^{eta}$, then the transformation is X^{1-eta}
 - 2. use maximum likelihood principle
 - Distribution often more "normal" after transformation

Ideas for Finding Proper Transformations

- Consider response Y with mean $E(Y)=\mu$ and variance $Var(Y)=\sigma^2$.
- That σ^2 depends on μ leads to nonconstant variances for different μ .
- \bullet Let f be a transformation and $\tilde{Y}=f(Y);$ What is the mean and variance of \tilde{Y} ?
- Approximate f(Y) by a linear function (Delta Method):

$$f(Y) \approx f(\mu) + (Y - \mu)f'(\mu)$$

$$\begin{array}{l} \text{Mean } \tilde{\mu} = \mathsf{E}(\tilde{Y}) = \mathsf{E}(f(Y)) \approx \mathsf{E}(f(\mu)) + \mathsf{E}((Y-\mu)f'(\mu)) = f(\mu) \\ \\ \text{Variance } \tilde{\sigma}^2 = \mathsf{Var}(\tilde{Y}) \approx [f'(\mu)]^2 \mathrm{Var}(Y) = [f'(\mu)]^2 \sigma^2 \end{array}$$

• f is a good transformation if $\tilde{\sigma}^2$ does not depend on $\tilde{\mu}$ anymore. So, \tilde{Y} has constant variance for different $f(\mu)$.

Transformations

- Suppose σ^2 is a function of μ , that is $\sigma^2 = g(\mu)$
- Want to find transformation f such that $\tilde{Y}=f(Y)$ has constant variance: ${\rm Var}(\tilde{Y})$ does not depend on μ .
- Have shown $\text{Var}(\tilde{Y}) \approx [f'(\mu)]^2 \sigma^2 \approx [f'(\mu)]^2 g(\mu)$
- ullet Want to choose f such that $[f'(\mu)]^2g(\mu)pprox c$

Examples

$$\begin{array}{ll} g(\mu)=\mu & \text{(Poisson)} & f(X)=\int \frac{1}{\sqrt{\mu}}d\mu \to f(X)=\sqrt{X} \\ g(\mu)=\mu(1-\mu) & \text{(Binomial)} & f(X)=\int \frac{1}{\sqrt{\mu(1-\mu)}}d\mu \to f(X)=\arcsin(\sqrt{X}) \\ g(\mu)=\mu^{2\beta} & \text{(Box-Cox)} & f(X)=\int \mu^{-\beta}d\mu \to f(X)=X^{1-\beta} \\ g(\mu)=\mu^2 & \text{(Box-Cox)} & f(X)=\int \frac{1}{\mu}d\mu \to f(X)=\log X \end{array}$$

Identify Box-Cox Transformation Using Data: Approximate Method

• From the previous slide, if $\sigma = \theta \mu^{\beta}$, the transformation is

$$f(Y) = \begin{cases} Y^{1-\beta} & \beta \neq 1; \\ \log Y & \beta = 1 \end{cases}$$

So it is crucial to estimate β based on data y_{ij} , $i=1,\ldots,a$.

- We have $\log \sigma_i = \log \theta + \beta \log \mu_i$
- Let s_i and \bar{y}_i be the sample standard deviations and means. Because $\hat{\sigma}_i = s_i$ and $\hat{\mu}_i = \bar{y}_i$, approximately,

$${\sf log} s_i = {\sf constant} \, + eta {\sf log} ar{y}_i,$$
 where $i=1,\ldots,a.$

• We can plot $\log s_i$ against $\log \bar{y}_i$, fit a straight line and use the slope to estimate β .

Identify Box-Cox Transformation: Formal Method

1 . For a fixed λ , perform analysis of variance on

$$y_{ij}(\lambda) = \begin{cases} \frac{y_{ij}^{\lambda} - 1}{\lambda \dot{y}^{\lambda - 1}} & \lambda \neq 0 \\ & \qquad \text{where} \dot{y} = \left(\prod_{i=1}^{a} \prod_{j=1}^{n_i} y_{ij}\right)^{1/N} \\ \dot{y} \log y_{ij} & \lambda = 0 \end{cases}$$

- 2 . Step 1 generates a transformed data $y_{ij}(\lambda)$. Apply ANOVA to the new data and obtain SS_E . Because SS_E depends on λ , it is denoted by $SS_E(\lambda)$.
- ullet Repeat 1 and 2 for various λ in an interval, e.g., [-2,2], and record ${\sf SS}_E(\lambda)$
- 3 Find λ_0 which minimizes $SS_E(\lambda)$ and pick up a meaningful λ in the neighborhood of λ_0 . Denote it again by λ .
- 4 The transformation is:

$$\tilde{y}_{ij} = y_{ij}^{\lambda_0} \text{ if } \lambda_0 \neq 0;$$

 $\tilde{y}_{ij} = \log y_{ij} \text{ if } \lambda_0 = 0.$

An Example: boxcox.dat

```
trt response
1 0.948916
1 0.431494
1 3.486359
2 3.469623
2 0.840701
2 3.816014
2 1.234756
3 10.680733
3 19.453816
3 3.810572
3 10.832754
3 3.814586
```

SAS code

```
data two;
 infile 'D:\TEACHING\T stat571B\lab
\sas data\boxcox.dat';
 input trt resp;
 run;
proc glm data=two;
class trt;
model resp=trt;
output out=three p=pred r=res;
run;
title1 'Residual Plot';
proc sgplot data=three;
scatter y=res x=pred;
run;
```


Use boxcox transformation on the response variable

```
proc transreg data=three;
model boxcox(resp/convenient lambda=-2.0
to 2.0 by 0.1)=class(trt);
run;
```


Nonparametric methods for ANOVA

H₀: a treatments are equal. H_a: at least one not equal. (But normality assumption is unsatisfied)

- Kruskal-Wallis Test
 - ullet Rank the observations y_{ij} in ascending order
 - Replace each observation by its rank R_{ij} (assign average for tied observations)
 - Test statistic

$$-H = \frac{1}{S^2} \left[\sum_{i=1}^a \frac{R_i^2}{n_i} - \frac{N(N+1)^2}{4} \right] \approx \chi_{a-1}^2$$

- where
$$S^2 = \frac{1}{N-1} \left[\sum_{i=1}^a \sum_{j=1}^{n_i} R_{ij}^2 - \frac{N(N+1)^2}{4} \right]$$

• Decision Rule: reject H_0 if $H > \chi^2_{\alpha,a-1}$.

SAS code

```
data new;
input strain nitrogen @@;
cards;
1 2.80 1 7.04 1 0.41 1 1.73 1 0.18
2 0.60 2 1.14 2 0.14 2 0.16 2 1.40
3 0.05 3 1.07 3 1.68 3 0.46 3 4.87
4 1.20 4 0.89 4 3.22 4 0.77 4 1.24
5 0.74 5 0.20 5 1.62 5 0.09 5 2.27
6 1.26 6 0.26 6 0.47 6 0.46 6 3.26
proc npar1way;
class strain;
var nitrogen;
run;
```

Analysis of Variance for Variable nitrogen Classified by Variable strain						
strain	N	Mean				
1	5	2.4320				
2	5	0.6880				
3	5	1.6260				
4	5	1.4640				
5	5	0.9840				
6	5	1.1420				

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Among	5	9.330387	1.866077	0.7373	0.6028	
Within	24	60.739600	2.530817			
Average scores were used for ties.						

Wilcoxon Scores (Rank Sums) for Variable nitrogen Classified by Variable strain

strain	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
1	5	93.00	77.50	17.967883	18.60
2	5	57.00	77.50	17.967883	11.40
3	5	78.50	77.50	17.967883	15.70
4	5	93.00	77.50	17.967883	18.60
5	5	68.00	77.50	17.967883	13.60
6	5	75.50	77.50	17.967883	15.10

Average scores were used for ties.

Kruskal-Wallis Test		
Chi-Square	2.5709	
DF	5	
Pr > Chi-Square	0.7658	,

37

Last slide

Read Sections: sections 3.4 and 3.11

