MATH 307

Chapter 2

SECTION 2.3: LINEAR INDEPENDENCE AND BASES

Contents

Linear Independence	
Definition	
Dependence and Linear Combination	
Vhat is a Basis?	
Definition	
Basis for Matrices and Polynomials	
Coordinates relative to a basis	

Created by: Pierre-Olivier Parisé Summer 2022

LINEAR INDEPENDENCE

Definition

Suppose that v_1, v_2, \ldots, v_n are vectors in a vector space V.

• The vectors v_1, v_2, \ldots, v_n are **linearly dependent** if there are scalars c_1, c_2, \ldots, c_n , not all zero, so that

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0.$$

• If $v_1, v_2, ..., v_n$ are not linearly dependent, then the vectors are linearly independent.

EXAMPLE 1. Are the vectors

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$$

linearly dependent or linearly independent?

Example 2.	Are $x^2 + 1$, $x^2 - x + 1$, $x + 2$ linearly dependent or linearly independent?
temark: To sh	ow that the vectors v_1, v_2, \ldots, v_n are linearly independent, we can verify that application is true:

If $c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0$, then $c_1 = c_2 = \cdots = c_n = 0$.

Dependence and Linear Combination

A way to check if a bunch of vectors are linearly dependent is outlined in the following statement.

THEOREM 3. Suppose $v_1, v_2, ..., v_n$ are vectors in a vector space V. Then $v_1, v_2, ..., v_n$ are linearly dependent if and only if one of $v_1, v_2, ..., v_n$ is a linear combination of the others.

EXAMPLE 4. Apply the last Theorem to show that the vectors

$$\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} 3 \\ -6 \\ 9 \end{bmatrix} \text{ and } \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}.$$

are linearly dependent.

WHAT IS A BASIS?

Definition

The vectors $v_1, v_2, ..., v_n$ of a vector space V are a **basis** if the two following conditions are satisfied:

- v_1, v_2, \ldots, v_n are linearly independent. [Indepence Condition or IC]
- $v_1, v_2, ..., v_n$ span V. [Spanning condition, or SC]

EXAMPLE 5. Show that the vectors

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

forms a basis for \mathbb{R}^3 .

<u>Remark</u>: The basis in the last example is called the standard basis for \mathbb{R}^3 . More generally, the vectors

$$e_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \quad e_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \quad e_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \quad \dots, \quad e_{n-1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \quad e_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

forms a basis for the vector space \mathbb{R}^n of column vectors of dimensions $n \times 1$.

Basis for Matrices and Polynomials

EXAMPLE 6. The vectors

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

form a basis for the vector space of 2×2 matrices $M_{2\times 2}(\mathbb{R})$.

<u>Remark</u>: The basis in the last example is called the standard basis for the vector space $M_{2\times 2}(\mathbb{R})$. More generally, the vectors E_{ij} with a 1 in the entry ij and 0 elsewhere forms a basis for the space of matrices $M_{m\times n}(\mathbb{R})$.

EXAMPLE 7. The vectors

$$1, x, x^2$$

form a basis for the set of polynomials P_2 .

Remark: The basis in the last example is also called the standard basis for the vector space P_2 . More generally, for a nonnegative integer n, the vectors

$$x^n, x^{n-1}, \ldots, x, 1$$

form a basis for the vector space P_n of polynomials of degree less than or equal to n.

EXAMPLE 8. Do the vectors

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

form a basis for the vector space of 3×1 column vectors?

Coordinates relative to a basis

In many applications, like robotics, it is really important to be able to represent the position of a moving part of a robot in terms of a new coordinates system.

Basis are an essential tools to do that. Given a basis $v_1, v_2, ..., v_n$ of a vector space V, each vector v in V can be expressed as a linear combination of the vectors in the basis:

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n. \tag{1}$$

Moreover, the scalars c_1, c_2, \ldots, c_n in the Equation (1) are unique. This means that there is only one list of scalars c_1, c_2, \ldots, c_n that satisfies Equation (1).

- The list of scalars c_1, c_2, \ldots, c_n are called the **coordinates of v relative to the basis** $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_n}$.
- If α denotes the basis v_1, v_2, \ldots, v_n , then the column vector

$$[v]_{\alpha} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

is called the coordinate vector of v relative to the basis α .

Remarks:

• Coordinates relative to the standard basis:

• It is important to not confuse the column vectors representing the vector in a certain basis with the column vectors representing the vector in the standard basis.

EXAMPLE 9. Find the coordinate vector of

$$v = \begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix}$$

relative to the basis α for \mathbb{R}^3 presented in Example 8.

EXAMPLE 10. Find the coordinate in the standard basis of the vector v in \mathbb{R}^3 if

$$[v]_{\alpha} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$

where α is the basis for \mathbb{R}^3 in Example 8.