Metodi Numerici per il Calcolo

Esercitazione 7: Equazioni non lineari e Applicazioni alle curve

A.A.2024/25

Scaricare dalla pagina web del corso l'archivio matlab_mnc2425_7.zip e scompattarlo nella propria home directory. Verrà creata una cartella con lo stesso nome contenente alcuni semplici script e function Matlab/Octave. Si svolga la seguente esercitazione che ha come obiettivo quella di sperimentare metodi per determinare le radici di equazioni non lineari.

A. Radici di Equazioni

Si considerino le seguenti funzioni test di cui si vogliono determinare gli zeri o radici dell'equazione associata (nella cartella sono presenti le function che le implementano insieme alle function delle derivate prime):

1. Metodo di bisezione

La function main_bisez.m fa uso della function bisez.m che implementa il metodo di bisezione. Viene effettuato il grafico della funzione f(x) così da poter localizzare visivamente gli zeri della funzione nell'intervallo e poter definire l'intervallo di innesco del metodo.

- Analizzare i codici e sperimentare con alcune funzioni test la ricerca degli zeri modificando la tolleranza di arresto e l'intervallo di innesco.
- Modificare le function main_bisez.m e bisez.m affinché producano in stampa il numero di iterazioni effettuate. Mediamente quante iterazioni vengono compiute per la tolleranza 10⁻¹⁵?

2. Metodi di Newton e delle secanti

Le function main_tangmet.m e main_secmet.m utilizzano le function tangmet.m e secmet.m che implementano rispettivamente i metodi di Newton e delle secanti. Viene effettuato il grafico della funzione f(x) così da poter localizzare visivamente gli zeri della funzione nell'intervallo.

• Analizzare i codici, e sperimentare con alcune funzioni test la ricerca degli zeri modificando la tolleranza di arresto.

 Dopo aver analizzato il grafico di una funzione test stimare possibili iterati iniziali.

3. Metodo di Newton e ordine di convergenza

Chiamando la funzione tangmet.m con ftrace ad 1 si hanno tutti gli iterati calcolati dal metodo di Newton; si modifichi lo script main_tangmet.m (lo si chiami main_tangmet_ordconv.m) affinché produca una tabella con le seguenti informazioni:

|--|

Si analizzino i risultati delle ultime due colonne nel caso di zeri semplici o multipli della funzione test.

4. Le function bezier_clipping.me lane_riesenfeld.m della libreria anmglib_4.1 implementano due differenti algoritmi per determinare tutti gli zeri di una funzione polinomiale nella base di Bernstein nell'intervallo di definizione. Si completi lo script main_zeri_bern.m per determinare gli zeri del polinomio zfun05 rappresentato nella base di Bernstein. (Come si può ottenere la funzione zfun5 nella base di Bernstein?) Si disegnino anche i punti di controllo della funzione.

B. Interrogazione di curve 2D di Bézier

- 1. Data una curva 2D di Bézier si determinino i suoi **punti estremi**, cioè i punti della curva a tangente verticale e orizzontale e si disegnino insieme al primo ed ultimo punto della curva. Lo script si chiami main_bezier_estremi.m. (Sugg. si determinino gli zeri delle derivate prime delle componenti la curva). Dopo aver realizzato quanto richiesto si modifichi lo script affinché determini il bounding-box della curva. Lo script si chiami main_bezier_bbox.m. (Sugg. sarà il più piccolo rettangolo che contiene i punti estremi e il primo ed ultimo punto della curva).
- 2. Data una curva 2D di Bézier si determini il suo tight bounding-box (vedi corso on-line su curve di Bézier). Lo script si chiami main_bezier_tight_bbox.m. (Sugg. si realizzi una function secondaria (curv2_align.m) che determini la trasformazione geometrica che porta il primo punto della curva nell'origine degli assi e l'ultimo punto di controllo sull'asse x; si determini il bounding-box di questa curva aligned come fatto nell'esercizio precedente, quindi si applichi la trasformazione inversa al bounding-box trovato).
- 3. Date due curve 2D di Bézier che si intersecano in due punti, si determini la curva di Bézier a tratti che definisce la regione chiusa fra le due. Lo script si chiami main_bezier_intersect.m. (Sugg. si utilizzino le function

Figura 1: Bounding box (a sinistra) e tight-boundinbox a destra

decast_subdiv e curv2_ppbezier_join).

Figura 2: Curve da intersecare (a sinistra); regione chiusa (a destra)

Si osservi che le function della libreria anmglib_4.1 che gestiscono curve di Bézier a tratti (suffisso ppbezier) possono essere utilizzate anche per curve di Bézier, a meno della function curv2_ppbezier_load.

4. Fare uno script per riprodurre il disegno a destra di Figura 3. Si intepolino le due seguenti funzioni con due curve di Bézier di grado 4:

$$y = (2 - 2x^2 - \sqrt{1 - 3x^2 + 3x^4 - x^6})/(3 + x^2), \quad x \in [-1, 1]$$
$$y = (1.8 - 2x^2 + \sqrt{1 - 3x^2 + 3x^4 - x^6})/(3 + x^2), \quad x \in [-1, 1]$$

Calcolare e stampare il MaxErr di interpolazione per entrambe le funzioni. quindi si intersechino e si determini la curva di Bézier a tratti, base del disegno. La piccola circonferenza al centro sia ottenuta per interpolazione di Hermite con una curva di Bézier cubica a tratti; abbia centro l'origine e

raggio 1/4. Lo script si chiami sppbezinterp_curv2d_bicorn.m. (Sugg. si segua quanto fatto nell'esercizio precedene e si utilizzino le function curv2_intersect, decast_subdiv e curv2_ppbezier_join).

Figura 3: Funzioni da interpolare (a sinistra); disegno da riprodurre (a destra)