Estudo dirigido sobre o capítulo 4 (parte 2) — camada de rede

1. Quais são os três componentes mais importantes da camada de rede da Internet?

- O protocolo IP
- Componente de roteamento, que determina o caminho que um datagrama segue desde a origem até o destino
- Um dispositivo para comunicação de erros em datagramas e para atender requisições de certas informações de camada de rede - ICMP

2. Quais são os principais campos do datagrama IPv4?

- Número da versão
- Comprimento do cabeçalho
- Tipo de serviço
- Comprimento do datagrama
- Identificador, flags, deslocamento de fragmentação
- Tempo de vida
- Protocolo
- Soma de verificação do cabeçalho
- Endereços IP de fonte e de destino
- Opções
- Dados (carga útil)

3. O que faz o campo tempo de vida (time-tolive - TTL) de um datagrama IP?

- É um campo incluído para garantir que datagramas não fiquem circulando para sempre na rede (devido a, por exemplo, um laço de roteamento de longa duração)
- Este campo é decrementado de uma unidade cada vez que o datagrama é processado por um roteador. Se o campo TTL chegar a 0, o datagrama
 deve ser descartado

4. Descreva a soma de verificação do cabeçalho?

- A soma de verificação do cabeçalho auxilia um roteador na detecção de erros de bits em um datagrama IP recebido
- Um roteador calculará o valor da soma de verificação para cada datagrama IP recebido e detectará uma condição de erro se o valor carregado no cabeçalho não foi igual à soma calculada
- Roteadores normalmente descartam datagramas quando um erro é detectado
- A soma deve ser recalculada e armazenada novamente em cada roteador, pois o campo TTL e, possivelmente, os campos de opções podem mudar

5. O que é MTU, maximum transmission unit?

 É a quantidade máxima de dados que um quadro de camada de enlace pode carregar

6. Qual é a causa da fragmentação do datagrama IP?

 A fragmentação ocorre quando o comprimento do datagrama IP supera o tamanho da MTU do enlace de saída em um roteador

7. O que é uma interface?

- É a fronteira entre o hospedeiro e o enlace físico
- A fronteira entre o roteador e qualquer um de seus enlaces também é denominada uma interface
- Um endereço IP está tecnicamente associado com uma interface, e não com um hospedeiro ou um roteador que contém aquela interface

8. Explique a notação decimal separada por pontos do IP.

- Cada endereço IP tem comprimento de 32 bits (ou 4 bytes)
- Cada byte do endereço é escrito em sua forma decimal e separado dos outros bytes do endereço por um ponto

9. O que é uma sub-rede e o que é a máscara de rede?

- Exemplo: o endereçamento IP designa um endereço a essa sub-rede: 223.1.1.0/24, no qual a notação /24, às vezes conhecida como uma máscara de rede, indica que os 24 bits mais à esquerda do conjunto de 32 bits definem o endereço da sub-rede
- A sub-rede é composta pelas máquinas que compartilham o mesmo endereço de sub-rede e cujas interfaces estão interconectadas (via hub ou comutador Ethernet, por exemplo, ou até diretamente)

10. O que é o roteamento interdomínio sem classes (*classless interdomain routing* - CIDR)?

- É a estratégia de atribuição de endereços da Internet
- O endereço IP de 32 bits é dividido em duas partes e, mais uma vez, tem a forma decimal com pontos de separação a.b.c.d/x, em que x indica o número de bits existentes na primeira parte do endereço
- Os x bits mais significativos de um endereço constituem a parcela da rede do endereço IP e normalmente são denominados prefixo (ou prefixo de rede)
- Os restantes (32-x) bits de um endereço podem ser considerados como os bits que distinguem os equipamentos e dispositivos dentro da organização e todos eles têm o mesmo prefixo de rede

11. O que era o esquema de endereçamento conhecido como endereçamento de classes cheias?

 Antes da adoção do CIDR, os tamanhos das parcelas de um endereço IP estavam limitados a 8, 16 ou 24 bits, um esquema de endereçamento conhecido como endereçamento de classes cheias

12. O que é a ICANN e o que ela faz?

- Endereços IP são administrados sob a autoridade da Internet Corporation for Assigned Names and Numbers (ICANN)
- O papel da ICANN, uma organização sem fins lucrativos, não é somente alocar endereços IP, mas também administrar os servidores de nome raiz (DNS)
- Também tem a controvertida tarefa de atribuir nomes de domínio e resolver disputas de nomes de domínio
- A ICANN aloca endereços a serviços regionais de registro da Internet, que, juntas, formam a Address Supporting Organization da ICANN, e é responsável pela alocação/administração de endereços dentro de suas regiões

13. Para que serve o protocolo de configuração dinâmica de hospedeiros (DHCP)?

- O DHCP permite que um hospedeiro obtenha um endereço IP automaticamente
- Além de receber um endereço IP temporário, o DHCP também permite que o hospedeiro descubra informações adicionais, como a máscara de subrede, o endereço do primeiro roteador (default gateway) e o endereço de seu servidor DNS local

14. Quais são as quatro etapas do processo do protocolo DHCP?

- Descoberta do servidor DHCP
- Ofertas dos servidores DHCP
- Solicitação DHCP
- DHCP ACK

14. Quais são as quatro etapas do processo

Professor Sandro Neves Soares

15. O que é um domínio com endereços privados? Como este endereçamento é administrado quando pacotes são recebidos ou enviados para a Internet global?

- Um domínio com endereços privados refere-se a uma rede cujos endereços têm significado apenas para equipamentos pertencentes àquela rede
- São administrados usando tradução de endereços de rede (network address translation - NAT)

16. Explique o funcionamento do NAT?

17. Para que serve o ICMP? Exemplifique.

- O ICMP é usado por hospedeiros e roteadores para comunicar informações de camada de rede entre si. A utilização mais comum é para a comunicação de erros
- Exemplo: mensagem de erro "Rede de destino inalcançável". Essa mensagem teve sua origem no ICMP. Em algum ponto, um roteador não
 consequiu descobrir um caminho para o
- conseguiu descobrir um caminho para o hospedeiro especificado
- Então o roteador criou e enviou uma mensagem
 ICMP do tipo 3 ao hospedeiro indicando o erro

18. Qual é o conteúdo de mensagens ICMP?

 Mensagens ICMP têm um campo de tipo e um campo de código. Além disso, contêm o cabeçalho e os primeiros 8 bytes do datagrama IP que causou a criação da mensagem

19. Como funciona o ping?

O ping envia uma mensagem ICMP do tipo 8
 código 0 para o hospedeiro especificado que, ao
 ver a solicitação de eco, devolve uma resposta de
 eco ICMP do tipo 0 código 0

20. Como funciona o traceroute?

- O traceroute da fonte envia uma série de datagramas comuns ao destino
- O primeiro desses tem um TTL de 1, o segundo tem um TTL de 2, o terceiro tem um TTL de 3 e assim por diante
- A fonte também aciona temporizadores para cada um dos datagramas
- Quando o enésimo datagrama chega ao enésimo roteador, este observa que o TTL acabou de expirar, descarta o datagrama e devolve uma mensagem ICMP de aviso à fonte (tipo 11 código 0)
- Tal mensagem inclui o nome do roteador e seu endereço IP
- Quando chega à fonte, a mensagem obtém, do temporizador, o tempo de viagem de
 ida e volta e, da mensagem, o nome e o endereço do roteador
- Um dos datagramas finalmente chegará ao destino. Como esse contém um segmento UDP com um número de porta improvável, o destino devolve à fonte uma mensagem ICMP indicando que a porta não pôde ser alcançada (tipo 3 código 3)
- Quando recebe esta mensagem, a fonte sabe que não precisa enviar mais pacotes
- Na verdade, o traceroute envia conjuntos de três pacotes com o mesmo TTL

Professor Sandro Neves Soares

21. Qual foi a motivação primária para o desenvolvimento do IPv6?

 O entendimento de que o espaço de endereços IP de 32 bits estava começando a escassear

22. Quais são as mudanças mais importantes introduzidas no IPv6?

- Capacidade de endereçamento expandida 128 bits no lugar de 32
- Cabeçalho aprimorado de 40 bytes o cabeçalho resultante permite processamento mais veloz de datagramas IP
- Rotulação de fluxo e prioridade "rotular pacotes que pertencem a fluxos particulares para os quais o remetente requisita tratamento especial, tal como um serviço de qualidade não padrão ou um serviço de tempo real"

23. Como se dá a fragmentação/remontagem no IPv6?

- Essas operações podem ser realizadas somente pela fonte e pelo destino
- Se um datagrama recebido por um roteador for muito grande, o roteador o descartará e devolverá ao remetente uma mensagem ICMP de erro "Pacote muito grande"
- O remetente pode então reenviar os dados usando um datagrama IP de tamanho menor

24. Como é a soma de verificação do cabeçalho no IPv6?

- Foi retirada
- Como os protocolos de camada de transporte e de enlace de dados (por exemplo, Ethernet) realizam soma de verificação, os projetistas acharam que essa funcionalidade era tão redundante que podia ser retirada

25. Liste as duas formas de implementação de comunicação entre roteadores IPv4 e roteadores IPv6.

- Abordagem de pilha dupla em que nós IPv6 tenham uma implementação IPv4 completa – problema com nós intermediários que entendem apenas IPv4
- Implantação de túnel o datagrama IPv6 inteiro é colocado no campo de dados (carga útil) de um datagrama IPv4

