

PHYS 5319-001: Math Methods in Physics III Discrete Fourier Transformation

Instructor: Dr. Qiming Zhang

Office: CPB 336

Phone: 817-272-2020

Email: zhang@uta.edu

Fourier Analysis

• A single-valued period function (w/ period T) y(t + T) = y(t)

can be expanded as

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega t) + b_n \sin(n\omega t) \right)$$

where "true" frequency $\omega = \frac{2\pi}{T}$

-given a
$$y(t)$$
 to find $\{a_n, b_n\}$: $\binom{a_n}{b_n} = \frac{2}{T} \int_0^T dt \binom{\cos(n\omega t)}{\sin(n\omega t)} y(t)$

- $*a_0 = 2\langle y(t) \rangle$
- *for odd , all $\{a_n\}$ =0, $b_n=rac{4}{T}\int_0^{T/2}dty(t)\sin(n\omega t)$
- * for even , all $\{b_n\}$ =0, $a_n=rac{4}{T}\int_0^{T/2}dty(t)\cos(n\omega t)$

Odd function
$$a_0 = \{a_n\} = 0$$

$$b_n = \begin{cases} 0, & n = 2,4,6,8, \dots \\ \frac{4}{n\pi}, & n = 1,3,5,7, \dots \end{cases}$$

Here we truncated at n=7. The converge is slow.

Autocorrelation function

Autocorrelation is the correlation of a signal with a delayed copy
of itself as a function of delay. Informally, it is the similarity
between observations as a function of the time lag between them.
The analysis of autocorrelation is a mathematical tool for finding
repeating patterns, such as the presence of a periodic
signal obscured by noise, or identifying the missing fundamental
frequency in a signal implied by its harmonic frequencies.

e.g. Liquid GaAs, Phys. Rev. B 42, 5071 (1990)

$$Z(s) = \frac{\langle \mathbf{V}(t) \cdot \mathbf{V}(t+s) \rangle}{\langle \mathbf{V}(t) \cdot \mathbf{V}(t) \rangle}.$$

$$D(\nu) \propto \int_0^\infty Z(t) \cos(2\pi\nu t) dt$$

In general, the fundamental freq. $\omega_1 = \frac{2\pi}{T}$

Then we have discrete frequency: ω_1 , $2\omega_1$, $3\omega_1$, ...

with
$$\Delta \omega = \omega_1 = \frac{2\pi}{T}$$

For a nonperiodic function, we can imagine $T \to \infty$ Then $\Delta \omega \to 0$ or ω becomes continuous:

$$y(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \, Y(\omega) e^{i\omega t}$$

For comparison:

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(n\omega t) + b_n sin(n\omega t))$$

$$e^{i\omega t} = \cos\omega t + i\sin\omega t$$

Here $Y(\omega)$ replace $\{a_n, b_n\}$, called Fourier Transform of y(t)

A plot $|Y(\omega)|^2$ of vs. ω is usually called the power spectrum

Inverse F.T.:
$$y(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \, Y(\omega) e^{i\omega t}$$

forward F.T.:
$$Y(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt \ y(t) e^{-i\omega t}$$

Know either of them can get another. Sometimes experiments may well measure $Y(\omega)$ directly.

Also, note
$$\frac{d}{dt}y(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \underline{Y(\omega)(i\omega)} e^{i\omega t}$$
$$\frac{d^2}{dt^2} y(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \underline{Y(\omega)(i\omega)}^2 e^{i\omega t}$$

Discrete Fourier Transform

For a periodic function

finite
$$y_k \equiv y(t_k), k = 0,1,2,...N$$

Since
$$y(t+T)=y(t) \Rightarrow y_0 = y_N$$

fine - Chinys

Prime freq.:
$$\omega_1=\frac{2\pi}{T}$$
 $\omega_n=n\omega_{\parallel}=n\frac{2\pi}{Nh},\,n=0,1,...N$

Higher frequency contribution is missing ⇒ more rapid change

FT
$$Y(\omega_n) = \frac{1}{T} \int_0^T e^{-i\omega_n t} y(t) dt \qquad \approx \frac{1}{T} \sum_{k=1}^N y(t_k) e^{-i\omega_n t_k} h \qquad = \frac{1}{N} \sum_{k=1}^N y_k e^{-i2\pi k n/N}$$
 usually:
$$Y_n \equiv \sum_{k=1}^N y_k e^{-2\pi i k n/N}$$

FT-1
$$y_k \equiv \frac{1}{N} \sum_{n=1}^{N} Y_n e^{2\pi i k n/N}$$

$$Y_n \equiv \sum_{k=1}^N y_k \, e^{-2\pi i k n/N}$$

DFT recap
$$Y_n \equiv \sum_{k=1}^N y_k e^{-2\pi i k n/N}$$
 $y_k \equiv \frac{1}{N} \sum_{n=1}^N Y_n e^{2\pi i k n/N}$

Periodic:

$$Y_{n+N} = Y_n$$

$$y_{k+N} = y_k$$

N independent input $\Rightarrow N$ independent output

Let
$$Z \equiv e^{2\pi i/N}$$

$$e^{2\pi i k n/N} = Z^{kn}$$

Z could be pre-calculated

Cost of DFT: for each $Y_n \equiv \sum_{k=1}^N y_k * Z^{kn}$, about O(N)

But n=1,2,...,N. So we have NY_n 's to calculate, the total operation $\sim O(N^2)$

An algorithm called Fast Fourier Transformation (FFT) will reduce it to $O(N\log_2 N)$

Similarly, in 1-d real space, we have a periodic function f(x + L) = f(x)

Discrete Fourier Transform (DFT)

$$f_i$$
, $i = 1, 2, ... N$

$$g(k) = \frac{1}{L} \int_{0}^{L} f(x)e^{ikx} dx$$
$$= \frac{1}{N} \sum_{i=1}^{N} f_{i}e^{ikx_{i}}$$

$$f(x) = \sum_{l=1}^{N} g_l e^{-ik_l x}$$

N discrete points:

$$x = 0, \frac{L}{N}, \frac{2L}{N}, \dots, \frac{L}{N}(N-1)$$

Since
$$f(x+L)=f(x) \Rightarrow e^{ikL}=1$$
, $kL = 2\pi n$, $n = 0,1,2,...$, $N-1$

We have N discrete k-points:

$$k = \frac{2\pi n}{L}$$
, $n = 0,1,2,...,N-1$

FT

Fast Fourier Transformation

- Idea by Gauss (1886); developed by Cooley & Tukey (1965)
- "the most important numerical algorithm of our lifetime" For $N=2^m$,

$$y_n = \sum_{k=0}^{N-1} Y_k e^{2\pi i k n/N}$$

$$= \sum_{k=0}^{\frac{N}{2}-1} Y_{2k} e^{i2\pi 2k n/N} + \sum_{k=0}^{\frac{N}{2}-1} Y_{2k+1} e^{i2\pi (2k+1)n/N}$$

Split the FT into odd/even terms

$$y_n = \sum_{k=0}^{N-1} Y_k e^{2\pi i k n/N}$$

$$= \sum_{k=0}^{\frac{N}{2}-1} Y_{2k} e^{i2\pi 2k n/N} + \sum_{k=0}^{\frac{N}{2}-1} Y_{2k+1} e^{i2\pi (2k+1)n/N}$$

$$= x + z e^{i2\pi n/N}$$

$$= x_n + z_n e^{i2\pi n/N}$$

where
$$x_n = \sum_{k=0}^{\frac{N}{2}-1} Y_{2k} e^{i2\pi kn/\left(\frac{N}{2}\right)}$$
, $z_n = \sum_{k=0}^{\frac{N}{2}-1} Y_{2k+1} e^{i2\pi kn/\left(\frac{N}{2}\right)}$

Let
$$w = e^{i2\pi/N}$$
, then $y_n = x_n + w^n z_n$

 x_n and z_n has period of N/2

This is very significant!

$$y_n = x_n + w^n z_n$$

 x_n and z_n has period of N/2

i.e.
$$x_0 = x_{N/2}$$
, $z_0 = z_{N/2}$

Can be done recursively:
$$N \to \frac{N}{2} \to \frac{N}{4} \to \cdots \to 2$$

Total cost $O(Nlog_2N)$