RV College of Engineering, Bengaluru-560059

(Autonomous Institution affiliated to VTU, Belgaum)

Department of Electronics and Communication Engineering

Analysis and Design of Digital Circuits with HDL EC234AI

Laboratory Manual and Observation Book

Academic Year 2025-2026

(Autonomous Scheme 2022)

RV College of Engineering, Bengaluru-560059

(Autonomous Institution affiliated to VTU, Belgaum)

Department of Electronics and Communication Engineering

Laboratory Certificate

Name of the Candidate:

This is to certify that the following student has satisfactorily completed the course of Experiments in Practical Analysis and Design of Digital Circuits with HDL (EC234AI) prescribed by the Department during the year 2025-26

USN No.:			
Semester: III			
	rks	Marks i	n words
Maximum	Obtained		
50			
Signatures:			
Staff in-charge:		Head o	of the Department
Date:			

RV College of Engineering, Bengaluru-560059 (Autonomous Institution affiliated to VTU, Belgaum)

Department of Electronics and Communication Engineering

Analysis and Design of Digital Circuits with HDL (EC234AI)

SCHEME OF CONDUCTION AND EVALUATION

CLASS: III SEMESTER		CIE MARKS: (Max.): 50				
		_	-	7.5		

Expt	TITLE	Page	Duration	Max.
		No.	in Hrs	Marks
No.				
	Truth Table verification of all Gates and Half adder/subtractor, Full adder/subtractor with NAND gates using IC trainer kit.	7-13	2.00	10
2	Realization of Binary adder/ subtractor using IC-7483.	14-16	2.00	10
	Realization of the given Boolean expressions using MUX/DEMUX using IC-74153,IC- 74139.	17-20	2.00	10
4	Realization of Binary Adder and Subtractor using Verilog HDL and verification by simulation	21-24	2.00	10
5	Realization of Multiplexer/Decoders/Encoder using Verilog HDL and verification by simulation.	25-20	2.00	10
6	Realization of D, T, JK flip flop in Verilog HDL and verification by simulation and Implementation on FPGA	31-32	2.00	10
	Design of synchronous 3-bit up/down counter using IC-7476/IC-74112 on IC trainer kit. Verification of function table of presettable counter using IC 74192	33-39	2.00	10
	Design of synchronous up/down/BCD counter using Verilog HDL and verification by simulation. Implementation on FPGA	40-42	2.00	10
	Design of Shift register, ring counter, Johnson counter using Verilog HDL and verification by simulation. Implementation on FPGA	43-45	2.00	10
	Design of Sequence generator and detector using Verilog HDL and verification by simulation.	46-47	2.00	10
11	Innovative Experiments (Multiplier and Processor Design)	48	2.00	10
Experi	ment Conduction 30 Marks			
Condu	ction of Innovative experiments 10 Marks			
Lab Te	st Evaluation 10 Marks			
Final L	ab CIE 50 Marks			

Particulars of the Experiments Performed CONTENTS

Sl No	Date	Name of the Experiments	Page	Marks	Signature of
			No:	Obtained	Faculty
				(Max 10)	
1		Truth Table verification of all Gates and Half	7-13		
		adder/subtractor, Full adder/subtractor with NAND			
		gates using IC trainer kit.			
2		Realization of Binary adder/ subtractor using IC-7483.	14-16		
3		Realization of the given Boolean expressions using	17-20		
		MUX/DEMUX using IC-74153,IC-74139.			
4		Realization of Binary Adder and Subtractor using	21-24		
		Verilog HDL and verification by simulation	21-24		
5		Realization of Multiplexer/Decoders/Encoder using	25-20		
		Verilog HDL and verification by simulation.	23-20		
6		Realization of D, T, JK flip flop in Verilog HDL and	31-32		
		verification by simulation and Implementation on	31-32		
		FPGA			
7		Design of synchronous 3-bit up/down counter using	33-39		
		IC-7476/IC-74112 on IC trainer kit. Verifcation of	33-37		
		function table of presettable counter using IC 74192			
8		Design of synchronous up/down/BCD counter in	40-42		
		Verilog HDL and verification by simulation.	40-42		
		Implementation on FPGA			
9		Design of Shift register, ring counter, Johnson counter	43-45		
		using Verilog HDL and verification by simulation.			
		Implementation on FPGA			
10		Design of Sequence generator and detector using	46-47		
		Verilog HDL and verification by simulation.			
11		Innovative Experiments 48 and	48		
		Processor Design)			
		Experiment Marks: Record (30	Marks)		
		Innovative Experiments: EL (10	Marks)		
		Lab Test: CIE (10	Marks)		
		Total (50	Marks)		

Evaluation Rubrics:

Sl.No	Criteria	Excellent	Good	Average	Max Score	
		Data sheet				
A	Problem statement	9-10	6-8	1-5	10	
В	Design & specifications	9-10	6-8	1-5	10	
С	Expected output	9-10	6-8	1-5	10	
		Record				
D	Simulation/ Conduction of the experiment	14-15	11-13	1-10	15	
Е	Analysis of the result.	14-15	11-13	1-10	15	
Viva						
Total						
	Scale	down to 10 ma	ırks			

VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering.

MISSION

M1: To impart quality technical education to produce industry-ready engineers with a research outlook.

M2: To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.

M3: To create centers of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.

M4: To develop entrepreneurial skills among the graduates to create new employment opportunities.

Truth Table verification of all Gates and Half adder/subtractor, Full adder/subtractor with NAND gates using IC trainer kit.

Experiment 01

Aim: To verify the truthtable of all basic gates and To design and implement half/full adder and half/full subtractor using NAND gates.

Components Required: ICs -74LS00,74LS86, 74LS83 ,Digital trainer kit, patch chords. Note: Data Sheet should be referred for pin details.

PART-1

1) Truth Table verification of basic, universal and XOR gate.

Gate	Symbol	Input A	Input B	Output Y				
	BASIC GATES							
NOT Gate (IC-7404)	A	0	NA	1				
Y=A'		1	NA	0				
		0	0	0				
AND Gate	А	0	1	0				
(IC-7408)	В —	1	0	0				
Y=A.B		1	1	1				
		0	0	0				
OR Gate	A T	0	1	1				
(IC-7432)	В	1	0	1				
Y=A+B		1	1	1				

Gate	Symbol	Input A	Input B	Output Y
	UNIVERSAL	GATES		
		0	0	1
NAND Gate	A — Y	0	1	1
(IC-7400)	В	1	0	1
Y=(A.B)'		1	1	0
		0	0	1
NOR Gate	A T	0	1	0
(IC-7402)	В УО- У	1	0	0
Y=(A+B)'		1	1	0
	DERIVED G	ATES		
XOR Gate		0	0	0
(IC-7486)	A	0	1	1
Y=A⊕B		1	0	1
	,	1	1	0
XOR Gate (IC-74266)		0	0	1
Y=(A⊕B)'	A-1	0	1	0
Note: Use XOR gate	В	1	0	0
followed by NOT gate		1	1	1

(a) Half adder (HA):

(i) Design:

				Inpu	its	Out	puts	l
				A	В	So	Co	
B1	B0	S	C	0	0	0	0	
0 +	0 =	0	0	0	1	1	0	
0 .	0	Ü	Ü	1	0	1	0	
0 +	1 =	1	0	1	1	0	1	
1+	0 =	1	0					
1+	1 =	0	1					

(a) 1-bit addition (b) HA Function Table (TT) Fig. 1.1: Design of Half Adder

Simplified (K-map) design equations for the outputs Sum(S_O) and Carry(C_O) are in Eq. 1.1

$$S_0 = \Sigma_m(1, 2) = \overline{A}B + A\overline{B} = A \oplus B \text{ and } C_0 = \Sigma_m(3) = AB$$
 Eq. 1.1

(ii) Implementation using NAND gates:

Fig. 1.2: Logic diagram of Half Adder using NAND gates

(iii) Observations:

Inp	outs	Outputs		
A	В	So	Co	
0	0			
1	0			
0	1			
1	1			

(b) Full Adder (FA):

(i) Design:

6:	D.4	Б.О	_	•		nputs		Out	puts
Ci	B1	ВО	S	Со	A	В	Cin	So	Co
0 +	0 +	0 =	0	0	0	0	0	0	0
0 +	0 +	1 =	1	0	0	0	1	1	0
0 +	υŦ	1 -	1	U	0	1	0	1	0
0 +	1 +	0 =	1	0	0	1	1	0	1
٥.	4.	4			1	0	0	1	0
0 +	1+	1 =	0	1	1	0	1	0	1
1+	0 +	0 =	1	0	1	1	0	0	1
1+	0 +	1 =	0	1	11	1	1	1	1
1+	1+	0 =	0	1					
1+	1+	1 =	1	1					

1-bit addition with carry input

(b) FA Function Table (TT)

Fig. 1.3: Design of Full Adder

Simplified (K-map) design equations for the outputs Sum(S₀) and Carry(C₀) are in Eq. 1.2

$$S_0 = \Sigma_m(1,2,4,7) = A \oplus B \oplus C_{in}$$

$$C_0 = \Sigma_m(3,5,6,7) = A B + BC_{in} + AC_{in}$$
 Eq. 1.2

(ii) Implementation using NAND gates:

Fig. 1.4: Design of Full Adder using NAND gates

(iii) Observations:

Inputs			Out	puts
A	В	C_{in}	S_0	C_0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(c) Half Subtractor (HS):

(i) Design:

Inp	uts	Outputs		
A	A B		Co	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

(a) 1-bit subtraction

(b) HS Function Table (TT)

Fig. 1.5: Design of Half Subtractor

Simplified (K-map) design equations for the outputs Difference (D_0) and Borrow(B_0) are given in Eq. 1.3

$$D_0 = \Sigma_m(1, 2) = \overline{A}B + A\overline{B} = A \oplus B \text{ and } B_0 = \Sigma_m(3) = \overline{A}B$$
 Eq. 1.3

(ii) Implementation using NAND gates:

Fig. 1.6: Logic diagram of Half Subtractor using NAND gates

(iii) Observations:

Inputs		Outputs	
A	В	Do	Bo
0	0		
1	0		
0	1		
1	1		

(d) Full Subtractor:

Design:

		\
0 - 0 - 0	= 0	
0 - 0 - 1	= 1	1
0 - 1 - 0	= 1	1
0 - 1 - 1	= 0	1
1 - 0 - 0	= 1	
1 - 0 - 1	= 0	
1 - 1 - 0	= 0	
1 - 1 - 1	= 1	1

	Inputs			puts
A	В	Bin	Do	Bo
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

(a) 1-bit subtraction with borrow input

(b) FS Function Table (TT)

Fig. 1.7: Design of Full Subtractor

Simplified (K-map) design equations for the outputs Difference (D_O) and Borrow(B_O) are given in Eq. 1.4

$$D_0 = \Sigma_m(1, 2, 4, 7) = A \oplus B \oplus B_{in}$$
 and $B_0 = \Sigma_m(1, 2, 3, 7) = A B_{in} + A B_{in} + A B_{in} + A B_{in}$ Eq. 1.4

(iv)Implementation using NAND gates:

Fig. 1.8: Design of Full Subtractor using NAND gates

(v) Observations:

Inputs			Out	puts
A	В	B_{in}	D_0	B_0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Procedure:

- 1. The circuit connections are made as shown in the diagrams (as per the designs).
- 2. V_{dd} and Gnd are connected to all the ICs used in the design.
- 3. The inputs are connected to logic switches and the corresponding outputs are connected to LEDs
- 4. Input values are varied as per the Truth table (TT) and verified output as per the TTs.
- 5. The above procedure is repeated for all the four circuits and the TTs are verified.
- 6. Conclusions/Inferences are derived from the conducted experiments.

Inferences/Conclusions:

Sl.No	Criteria	Max	Marks		
		Marks	obtained		
	Data sheet				
A	Problem statement	10			
В	Design & specifications	10			
C	Expected output	10			
	Record				
D	Simulation/ Conduction of the experiment	15			
Е	Analysis of the result.	15			
F	Viva	40			
	Total	100			
Scale do	cale down to 10 marks				

Staff Signature:

Realization of Binary Adder and Subtractor using IC 74LS83

Experiment 02

Aim: To design and implement Binary adder and substractor using IC-7483.

Components Required: ICs -74LS00,74LS86, 74LS83, Digital trainer kit, patch chords.

Note: Data Sheet should be referred for pin details.

Parallel Adder/Subtractor:

Logic diagram of IC-74LS83:

Fig. 2.1: Logic diagram of Parallel Adder

(i) Design:

Fig. 2.2: Algorithm for Adder/Subtractor design

Simplification using K-map results in the expressions of Eq. 1.5;

$$X_i = A_i, Y_i = B_i \text{ xor } S, \text{ and } C_{in} = S.$$
 Eq. 1.5

The resulting combinational circuit is called the 'Controlled Inverter' as it produces 1s complement to realize 2s complement addition. Implementing the expressions in Eq. 1.5 along with a parallel adder results in a parallel adder/subtractor circuit shown in Fig. 1.11.

(ii) Implementation:

Fig. 2.3: Logic diagram of Parallel Adder

(iii) Observations and sample calculations:

Procedure:

Four bit Parallel Adder:

- 1. Connections are made as shown in the circuit diagram of Fig. 2.1.
- 2. The control input Add/Sub = 0, the inputs are applied through logic switches and the adder outputs are noted (LEDs) for different values of inputs.
- 3. The procedure is repeated for different set of inputs and verified the respective outputs

Four bit Parallel Subtractor:

- 1. Connections are made as shown in the circuit diagram of Fig. 2.1
- 2. The control input Add/Sub = 1,the inputs are applied through logic switches and the adder outputs are noted (LEDS) for different values of inputs.
- 3. The procedure is repeated for different set of inputs and verified the respective outputs. **Note**:

The adder IC-74LS83 performs addition of the minuend and 2's complement of subtrahend which is subtraction of the 2-binary numbers ($C_{in} = '1'$)

Practice Questions:

a) Design a parallel binary subtractor to get actual difference based on the value of C_{out} using IC 7483.

Conclusion /Inference:

Evaluation:

Sl.No	Criteria	Max	Marks
		Mark	obtained
		S	
	Data sheet		
A	Problem statement	10	
В	Design & specifications	10	
С	Expected output	10	
	Record		
D	Simulation/ Conduction of the experiment	15	
Е	Analysis of the result.	15	
F	Viva	40	
	Total	100	
Scale d	own to 10 marks	•	

Staff Signature:

Arithmetic circuits- Realize the given Boolean expressions using MUX/DEMUX using IC-74153,IC-74139.

Experiment 03

Aim: To realize the given Boolean expressions using multiplexer and de-multiplexer. **Components Required:** ICs - 7404, 74153, 74139, 7420, Digital trainer kit, patch cords.

(a) Implementation of Boolean expression using MUX- IC 74153

(i) Design

The given Boolean expression for the implementation are,

 $F1(A,B,C)=\sum m(1,2,4,7)$ and $F2(A,B,C)=\sum m(0,4,5,6)$

Pin diagram of 74153

Implementation Table

	Io	I ₁	I ₂	I ₃
F1 (MUXA)	A	A'	A'	A
F2(MUX B)	1	Α	Α	0

(ii) Implementation

Fig.3.1 Implementation using IC-74153

(iii) Procedure:

- 1) Rig up the circuit using IC-74153 and NAND gates as shown in the design(Refer Fig. 3.1)
- 2) Verify the output with the truth table Values.

(iv)Observations:

Inputs			Out	puts
A	В	С	F1	F2
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(b) Implementation of Boolean expression using DEMUX- IC 74139 Pin Diagram of 74139

Function Table of IC-74139:

Decoder A

Ea	A1a	A0a	0a	Tā	2ā	3a
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Decoder B

Eb	A1b	A0b	0b	16	2Б	3b
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Note: Where E, A1 and A0 are Enable and Input lines respectively.

(i) Design:

The given Boolean expressions for the implementation are,

$$F1(A,B,C)=\sum m(1,2,4,7)$$
 and $F2(A,B,C)=\sum m(0,4,5,6)$

(ii) Implementation:

Fig.3.2 Implementation using IC-74139

(iii)Procedure:

- 1) Rig up the circuit using IC-74139 and NAND gates as shown in the design (Refer Fig. 3.2)
- 2) Verify the output with the truth table Values.

(iv)Observation:

	Inputs			puts
A	В	С	F1	F2
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Practice Questions:

a) Realize FA/FS using MUX/DEMUX using IC 74153 and IC 74139

Inferences/Conclusions:

Evaluation:

Sl.No	Criteria	Max	Marks
		Mark	obtained
		S	
	Data sheet	1	
A	Problem statement	10	
В	Design & specifications	10	
С	Expected output	10	
	Record		
D	Simulation/ Conduction of the experiment	15	
Е	Analysis of the result.	15	
F	Viva	40	
	Total	100	
Scale d	own to 10 marks	1	

Staff Signature: