ICPC TEMPLATE

widsnoy

2023年12月7日

目录

1	图论		2
	1.1	最近公共祖先	2
	1.2	二分图	•
	1.3	有向图最小路径覆盖问题	•
	1.4	网络流	4
		1.4.1 Dinic 最大流	4
		1.4.2 最小费用最大流	٠
		1.4.3 最大闭权子图	6
	1.5	树哈希	6
	1.6	强联通分量	7
	1.7	割点和桥	8
	1.8	点双联通分量	8
	1.9	边双联通分量	Ć
	1.10	2-SAT	1(
2	字符	串 1	11
	2.1	哈希	11
		9.1.1 最长同文子电	11

	2.2	字典树	12
	2.3	维护异或和	12
	2.4	KMP	13
		2.4.1 字符串最小周期	14
		2.4.2 每个前缀的出现次数	14
		2.4.3 一个字符串中本质不同子串的数目	14
	2.5	AC 自动机	15
	2.6	后缀数组	15
		2.6.1 Manacher	16
	2.7	Z 函数	17
3	数学		17
	3.1	线性基	17
	3.2	多项式	18
		3.2.1 FFT	18
	3.3	组合数学	19
		3.3.1 小球放盒	19

目录

1 图论

1.1 最近公共祖先

```
// 倍增
1
   int faz[N][20], dep[N];
2
3
   void dfs(int u, int fa) {
       faz[u][0] = fa;
4
       dep[u] = dep[fa] + 1;
5
       for (int i = 1; i < 20; i++) faz[u][i] = faz[faz[u][i - 1]][i - 1];</pre>
6
       for (int v : G[u]) if (v != fa) {
7
            dfs(v, u);
8
       }
9
   }
10
11
   int LCA(int u, int v) {
       if (dep[u] < dep[v]) swap(u, v);</pre>
12
       int d = dep[u] - dep[v];
13
       for (int i = 0; i < 20; i++) if ((d >> i) & 1) u = faz[u][i];
14
       if (v == u) return u;
15
       for (int i = 19; i >= 0; i--) if (faz[u][i] != faz[v][i])
16
            u = faz[u][i], v = faz[v][i];
17
       return faz[u][0];
18
19
   }
20
21
   //树剖
22
   int dfc, dfn[N], rnk[N], siz[N], top[N], dep[N], son[N], faz[N];
   void dfs1(int u, int fa) {
23
       dep[u] = dep[fa] + 1;
24
       siz[u] = 1;
25
       son[u] = -1;
26
27
       faz[u] = fa;
       for (int v : G[u]) {
28
            if (v == fa) continue;
29
            dfs1(v, u);
30
            siz[u] += siz[v];
31
            if (son[u] == -1 || siz[son[u]] < siz[v]) son[u] = v;</pre>
32
       }
33
34
35
   void dfs2(int u, int fa, int tp) {
       dfn[u] = ++dfc;
36
       rnk[dfc] = u;
37
       top[u] = tp;
38
       if (son[u] != -1) dfs2(son[u], u, tp);
39
       for (int v : G[u]) {
40
            if (v == fa || v == son[u]) continue;
41
```

```
dfs2(v, u, v);
42
       }
43
   }
44
   int LCA(int u, int v) {
45
       while (top[u] != top[v]) {
46
            if (dep[top[u]] > dep[top[v]])
47
                u = faz[top[u]];
48
49
            else
                v = faz[top[v]];
50
       }
51
       return dep[u] > dep[v] ? v : u;
52
   }
53
```

1.2 二分图

最大匹配

```
int mch[maxn], vis[maxn];
   std::vector<int> e[maxn];
   bool dfs(const int u, const int tag) {
3
       for (auto v : e[u]) {
4
            if (vis[v] == tag) continue;
5
6
            vis[v] = tag;
            if (!mch[v] || dfs(mch[v], tag)) return mch[v] = u, 1;
 7
       }
8
9
       return 0;
10
   int main() {
11
       int ans = 0;
12
       for (int i = 1; i <= n; ++i) if (dfs(i, i)) ++ans;</pre>
13
14
   }
```

1.3 有向图最小路径覆盖问题

```
int n, m;
   bitset<N> f[N];
   int vis[N], mch[N];
3
4
   bool dfs(int u, int dfc) {
5
       for (int v = 1; v <= n; v++) if (v != u && vis[v] != dfc && f[u][v]) {</pre>
6
7
            vis[v] = dfc;
            if (!mch[v] || dfs(mch[v], dfc)) return mch[v] = u, 1;
8
       }
9
       return 0;
10
```

```
}
11
12
   void solve() {
13
        memset(vis, 0, sizeof vis);
14
        memset(mch, 0, sizeof mch);
15
16
        for (int i = 1; i <= n; i++) f[i].reset();</pre>
        for (int i = 1; i <= m; i++) {</pre>
17
18
            int u, v;
            scanf("%d %d", &u, &v);
19
            f[u].set(v);
20
        }
21
22
        for (int k = 1; k <= n; k++) {
            for (int i = 1; i <= n; i++) if (f[i][k]) f[i] |= f[k];</pre>
23
24
        }
        int res = n;
25
        for (int i = 1; i <= n; i++) res -= dfs(i, i);</pre>
26
27
        printf("%d\n", res);
28
   }
```

1.4 网络流

1.4.1 Dinic 最大流

注意每次清空数组的范围是 s 到 t.

```
int head[N], cur[N], ecnt, d[N];
1
   struct Edge {
2
       int nxt, v, flow, cap;
3
   }e[];
4
5
   void add_edge(int u, int v, int flow, int cap) {
       e[ecnt] = {head[u], v, flow, cap}; head[u] = ecnt++;
6
       e[ecnt] = {head[v], u, flow, 0}; head[v] = ecnt++;
7
   }
8
   bool bfs() {
9
       memset(vis, 0, sizeof vis);
10
       std::queue<int> q;
11
       q.push(s);
12
       vis[s] = 1;
13
       d[s] = 0;
14
       while (!q.empty()) {
15
           int u = q.front();
16
           q.pop();
17
           for (int i = head[u]; i != -1; i = e[i].nxt) {
18
                int v = e[i].v;
19
                if (vis[v] || e[i].flow >= e[i].cap) continue;
20
```

```
d[v] = d[u] + 1;
21
22
                vis[v] = 1;
                q.push(v);
23
            }
24
        }
25
26
       return vis[t];
27
   int dfs(int u, int a) {
28
       if (u == t || !a) return a;
29
       int flow = 0, f;
30
       for (int& i = cur[u]; i != -1; i = e[i].nxt) {
31
            int v = e[i].v;
32
            if (d[u] + 1 == d[v] && (f = dfs(v, std::min(a, e[i].cap - e[i].flow))
33
               ) > 0) {
                e[i].flow += f;
34
                e[i ^ 1].flow -= f;
35
                flow += f;
36
                a -= f;
37
38
                if (!a) break;
39
            }
       }
40
       return flow;
41
   }
42
```

1.4.2 最小费用最大流

```
const int inf = 1e9;
  int head[N], cur[N], ecnt, dis[N], s, t, n, m, mincost;
   bool vis[N];
3
   struct Edge {
4
       int nxt, v, flow, cap, w;
5
6
   }e[100002];
   void add_edge(int u, int v, int flow, int cap, int w) {
7
       e[ecnt] = {head[u], v, flow, cap, w}; head[u] = ecnt++;
8
       e[ecnt] = \{head[v], u, flow, 0, -w\}; head[v] = ecnt++;
9
10
   bool spfa(int s, int t) {
11
       std::fill(vis + s, vis + t + 1, 0);
12
       std::fill(dis + s, dis + t + 1, inf);
13
       std::queue<int> q;
14
       q.push(s);
15
       dis[s] = 0;
16
17
       vis[s] = 1;
       while (!q.empty()) {
18
```

```
int u = q.front();
19
20
            q.pop();
            vis[u] = 0;
21
            for (int i = head[u]; i != -1; i = e[i].nxt) {
22
                int v = e[i].v;
23
                if (e[i].flow < e[i].cap && dis[u] + e[i].w < dis[v]) {</pre>
24
                     dis[v] = dis[u] + e[i].w;
25
                    if (!vis[v]) vis[v] = 1, q.push(v);
26
                }
27
            }
28
29
        }
       return dis[t] != inf;
30
   }
31
   int dfs(int u, int a) {
32
       if (vis[u]) return 0;
33
       if (u == t || !a) return a;
34
       vis[u] = 1;
35
       int flow = 0, f;
36
       for (int& i = cur[u]; i != -1; i = e[i].nxt) {
37
38
            int v = e[i].v;
            if (dis[u] + e[i].w == dis[v] && (f = dfs(v, std::min(a, e[i].cap - e[
39
               i].flow))) > 0) {
                e[i].flow += f;
40
                e[i ^1].flow -= f;
41
                flow += f;
42
                mincost += e[i].w * f;
43
                a -= f;
44
                if (!a) break;
45
            }
46
47
        }
       vis[u] = 0;
48
       return flow;
49
   }
50
```

1.4.3 最大闭权子图

正权点向 S 连边, 负权点向 T 连边。边权为点权的绝对值。原图的边容量设为 INF 。

则最大收益为 $\sum_{v>0} v - mincost$

在最大闭权子图中的点是残量网络中 S 能到达的点。

1.5 树哈希

```
const ull mask = chrono::steady_clock::now().time_since_epoch().count();
1
2
   ull shift(ull x) {
3
       x ^= mask;
4
       x ^= x << 13;
5
       x ^= x >> 7;
6
       x ^= x << 17;
 7
       x ^= mask;
8
       return x;
9
10
   }
   int n;
11
   ull H[N];
12
   vector<int> G[N];
13
   set<ull> s;
14
15
   void dfs(int u, int fa) {
16
       H[u] = 1;
17
       for (int v : G[u]) {
18
            if (v == fa) continue;
19
            dfs(v, u);
20
            H[u] += shift(H[v]);
21
       }
22
       s.emplace(H[u]);
23
   }
24
```

1.6 强联通分量

```
int n, dfc, dfn[N], low[N], stk[N], top, idx[N], in_stk[N], scc_cnt;
1
   vector<int> G[N];
2
3
   void tarjan(int u) {
4
       low[u] = dfn[u] = ++dfc;
5
       stk[++top] = u;
6
       in_stk[u] = 1;
7
       for (int v : G[u]) {
8
           if (!dfn[v]) {
9
                tarjan(v);
10
                low[u] = min(low[u], low[v]);
11
            } else if (in_stk[v]) low[u] = min(dfn[v], low[u]);
12
13
       if (low[u] == dfn[u]) {
14
            int x;
15
           scc_cnt++;
16
```

```
do {
17
18
                x = stk[top--];
                idx[x] = scc_cnt;
19
                in_stk[x] = 0;
20
            } while (x != u);
21
22
       }
23
   }
24
   // 多测清空
25
   dfc = scc_cnt = top = 0;
26
27
   for (int i = 1; i <= tot; i++) low[i] = dfn[i] = idx[i] = in_stk[i] = 0;</pre>
```

1.7 割点和桥

```
int dfn[N], low[N], dfs_clock;
1
   bool iscut[N], vis[N];
 2
3
   void dfs(int u, int fa) {
       dfn[u] = low[u] = ++dfs_clock;
4
       vis[u] = 1;
5
       int child = 0;
6
       for (int v : e[u]) {
7
           if (v == fa) continue;
8
           if (!dfn[v]) {
9
                dfs(v, u);
10
                low[u] = min(low[u], low[v]);
11
                child++;
12
                if (low[v] >= dfn[u]) iscut[u] = 1;
13
           } else if (dfn[u] > dfn[v] && v != fa) low[u] = min(low[u], dfn[v]);
14
           if (fa == 0 && child == 1) iscut[u] = 0;
15
       }
16
17
   }
```

1.8 点双联通分量

```
int bccno[N], bcc_cnt, siz_e[N], siz_p[N], dfs_clock, low[N], dfn[N], top;
  pair<int, int> stk[N];
  void dfs(int u, int fa) {
3
      low[u] = dfn[u] = ++dfs_clock;
4
      for(int i = head[u]; i; i = e[i].nxt) {
5
           int v = e[i].v;
6
           if(v == fa) continue;
7
           if(!dfn[v]) {
8
               stk[++top] = make_pair(u, v);
9
```

```
dfs(v, u);
10
11
                low[u] = min(low[u], low[v]);
                if(low[v] >= dfn[u]) {
12
                    bcc_cnt++;
13
                    while(true) {
14
15
                         int x = stk[top].first, y = stk[top].second;
                         top--;
16
17
                         siz_e[bcc_cnt]++;
                         if(bccno[x] != bcc_cnt) {bccno[x] = bcc_cnt; siz_p[bcc_cnt
18
                            ]++;}
                         if(bccno[y] != bcc_cnt) {bccno[y] = bcc_cnt; siz_p[bcc_cnt
19
                            ]++;}
                         if(x == u && y == v) break;
20
21
                    }
                }
22
            } else if(dfn[v] < dfn[u]) {stk[++top] = make_pair(u, v); low[u] = min</pre>
23
               (low[u], dfn[v]);}
       }
24
25
   }
```

1.9 边双联通分量

```
const int N = 5000 + 5;
1
int n, m, stk[N], top, ccno, sc[N];
3 int dfn[N], dfc, low[N];
4 int mp[N][N];
5 int in[N];
6 int head[N], ecnt;
   struct Edge {
7
       int nxt, v;
8
   } e[N << 2];
9
   void add_edge(int u, int v) {
10
       e[ecnt] = \{head[u], v\}; head[u] = ecnt++;
11
       e[ecnt] = {head[v], u}; head[v] = ecnt++;
12
13
   }
   void dfs(int u, int from) {
14
       stk[++top] = u;
15
       low[u] = dfn[u] = ++dfc;
16
       for (int i = head[u]; i != -1; i = e[i].nxt) {
17
           int v = e[i].v;
18
           if (!dfn[v]) {
19
               dfs(v, i);
20
               low[u] = min(low[u], low[v]);
21
           } else if ((i ^ 1) != from) low[u] = min(low[u], dfn[v]);
22
```

```
23
24
        if (dfn[u] == low[u]) {
            ccno++;
25
            int x;
26
            while (true) {
27
                x = stk[top--];
28
                 sc[x] = ccno;
29
                if (x == u) break;
30
            }
31
        }
32
33
34
   void solve() {
35
36
        memset(head, -1, sizeof head);
        scanf("%d %d", &n, &m);
37
        for (int i = 1; i <= m; i++) {
38
            int u, v;
39
            scanf("%d %d", &u, &v);
40
41
            add_edge(u, v);
42
        for (int i = 1; i <= n; i++) if (!dfn[i]) dfs(i, i);</pre>
43
        for (int i = 1; i <= n; i++) {</pre>
44
            for (int k = head[i]; k != -1; k = e[k].nxt) {
45
46
                 int j = e[k].v;
                 if (sc[i] != sc[j]) mp[sc[i]][sc[j]] = 1;
47
            }
48
        }
49
50
        for (int i = 1; i <= ccno; i++) {</pre>
51
52
            for (int j = 1; j <= ccno; j++) if (mp[i][j]) in[j]++;</pre>
53
        int cnt = 0;
54
        for (int i = 1; i <= ccno; i++) if (in[i] == 1) cnt++;</pre>
55
        printf("%d\n", (cnt + 1) / 2);
56
57
```

1.10 2-SAT

2*u 代表不选择,2*u+1 代表选择。

也可以求强连通分量。

如果对于一个 *x* 'sccno'比它的反状态 *x*1 的 'sccno' 要小, 那么我们用 *x* 这个状态当做答

案, 否则用它的反状态当做答案。

```
vector<int> G[N * 2];
2 bool mark[N * 2];
   int stk[N], top;
3
   void build_G() {
4
       for (int i = 1; i <= n; i++) {</pre>
5
            int u, v;
6
            G[2 * u + 1].push_back(2 * v);
7
            G[2 * v + 1].push_back(2 * u);
8
       }
9
   }
10
   bool dfs(int u) {
11
       if (mark[u ^ 1]) return false;
12
13
       if (mark[u]) return true;
       mark[u] = 1;
14
       stk[++top] = u;
15
       for (int v : G[u]) {
16
            if (!dfs(v)) return false;
17
        }
18
19
       return true;
   }
20
   bool 2_sat() {
21
       for (int i = 1; i <= n; i++) {
22
            if (!mark[i * 2] && !mark[i * 2 + 1]) {
23
                top = 0;
24
                if (!dfs(2 * i)) {
25
26
                     while (top) mark[stk[top--]] = 0;
                     if (!dfs(2 * i + 1)) return 0;
27
                }
28
            }
29
        }
30
31
       return 1;
32
   }
```

2 字符串

2.1 哈希

2.1.1 最长回文子串

通过哈希同样可以 O(n) 解决这个问题,具体方法就是记 R_i 表示以 i 作为结尾的最长回文的长度,那么答案就是 $\max_{i=1}^n R_i$ 。考虑到 $R_i \leq R_{i-1} + 2$,因此我们只需要暴力从 $R_{i-1} + 2$ 开始递

减,直到找到第一个回文即可。记变量 z 表示当前枚举的 R_i ,初始时为 0,则 z 在每次 i 增大的时候都会增大 2,之后每次暴力循环都会减少 1,故暴力循环最多发生 2n 次,总的时间复杂度为 O(n)。

2.2 字典树

2.3 维护异或和

```
const int N = 526010, MX = 22;
1
   int ch[N * MX][2], tot, rt[N], w[N * MX], xorv[N * MX], val[N];
3
   ll ans;
4
5
   void pushup(int u) {
       w[u] = xorv[u] = 0;
6
       if (ch[u][0]) {
7
            w[u] += w[ch[u][0]];
8
            xorv[u] ^= (xorv[ch[u][0]] << 1);</pre>
9
       }
10
       if (ch[u][1]) {
11
            w[u] += w[ch[u][1]];
12
            xorv[u] ^= (xorv[ch[u][1]] << 1) | (w[ch[u][1]] & 1);</pre>
13
       }
14
       w[u] &= 1;
15
16
   void insert(int &o, ll ux, int dep) {
17
       if (!o) o = ++tot;
18
       if (dep > MX) return (void)(w[o]++);
19
       insert(ch[o][ux \& 1], ux >> 1, dep + 1);
20
       pushup(o);
21
22
   void addall(int o) {
23
       swap(ch[o][0], ch[o][1]);
24
       if (ch[o][0]) addall(ch[o][0]);
25
       pushup(o);
26
27
   }
   int merge(int a, int b) {
28
       if (!b || !a) return a + b;
29
       xorv[a] ^= xorv[b];
30
       w[a] += w[b];
31
       ch[a][0] = merge(ch[a][0], ch[b][0]);
32
       ch[a][1] = merge(ch[a][1], ch[b][1]);
33
       return a;
34
35
```

```
36
37
   vector<int> G[N];
   int read() {
38
        int w = 0, f = 1; char ch = getchar();
39
        while (ch > '9' || ch < '0') {</pre>
40
41
            if (ch == '-') f = -1;
            ch = getchar();
42
        }
43
        while (ch >= '0' && ch <= '9') {</pre>
44
            w = w * 10 + ch - 48;
45
            ch = getchar();
46
        }
47
        return w * f;
48
49
   }
50
   void dfs(int u) {
51
        for (auto v : G[u]) {
52
            dfs(v);
53
            rt[u] = merge(rt[u], rt[v]);
54
55
        addall(rt[u]);
56
        insert(rt[u], val[u], 0);
57
        ans += (ll)xorv[rt[u]];
58
59
   }
60
   int main() {
61
        int n = read();
62
        for (int i = 1; i <= n; i++) val[i] = read();</pre>
63
        for (int i = 2; i <= n; i++) G[read()].push_back(i);</pre>
64
65
        dfs(1);
        printf("%lld\n", ans);
66
        return 0;
67
68
```

2.4 KMP

```
int n = strlen(s + 1);
for (int i = 2; i <= n; i++) {
   int j = k[i - 1];
   while (j != 0 && s[i] != s[j + 1]) j = k[j];
   if (s[i] == s[j + 1]) k[i] = j + 1;
   else k[i] = 0;
}</pre>
```

2.4.1 字符串最小周期

```
设 border 长度为 r
则 s[i] = s[n-r+i]
|T| = n-r
```

2.4.2 每个前缀的出现次数

1. 统计每个前缀在自身的出现次数

```
vector<int> ans(n + 1);
for (int i = 1; i <= n; i++) ans[k[i]]++;
for (int i = n; i >= 1; i--) ans[k[i]] += ans[i];
for (int i = 1; i <= n; i++) ans[i]++;</pre>
```

2. 统计每个前缀在其他串的出现次数

我们应用来自 Knuth-Morris-Pratt 的技巧:构造一个字符串 s+#+t 并计算其前缀函数。与第一个问题唯一的不同之处在于,我们只关心与字符串 t 相关的前缀函数值,即 $i \geq n+1$ 的 $\pi[i]$ 。有了这些值之后,我们可以同样应用在第一个问题中的算法来解决该问题。

2.4.3 一个字符串中本质不同子串的数目

给定一个长度为 n 的字符串 s, 我们希望计算其本质不同子串的数目。

我们将迭代的解决该问题。换句话说,在知道了当前的本质不同子串的数目的情况下,我们要找出一种在 s 末尾添加一个字符后重新计算该数目的方法。

令 k 为当前 s 的本质不同子串数量。我们添加一个新的字符 c 至 s。显然,会有一些新的子串以字符 c 结尾。我们希望对这些以该字符结尾且我们之前未曾遇到的子串计数。

构造字符串 t = s + c 并将其反转得到字符串 t^{\sim} 。现在我们的任务变为计算有多少 t^{\sim} 的前缀未在 t^{\sim} 的其余任何地方出现。如果我们计算了 t^{\sim} 的前缀函数最大值 π_{\max} ,那么最长的出现在 s 中的前缀其长度为 π_{\max} 。自然的,所有更短的前缀也出现了。

因此, 当添加了一个新字符后新出现的子串数目为 $|s|+1-\pi_{\text{max}}$ 。

所以对于每个添加的字符,我们可以在O(n)的时间内计算新子串的数目,故最终复杂度为 $O(n^2)$ 。

值得注意的是,我们也可以重新计算在头部添加一个字符,或者从尾或者头移除一个字符时的本质不同子串数目。

2.5 AC 自动机

```
namespace AC {
 1
 2
       int ch[N][26], tot, fail[N], e[N];
       void insert(const char *s) {
3
            int u = 0, n = strlen(s + 1);
4
            for (int i = 1; i <= n; i++) {</pre>
5
                if (!ch[u][s[i] - 'a']) ch[u][s[i] - 'a'] = ++tot;
6
7
                u = ch[u][s[i] - 'a'];
            }
8
            e[u] += 1;
9
       }
10
       void build() {
11
            queue<int> q;
12
            for (int i = 0; i <= 25; i++) if (ch[0][i]) q.push(ch[0][i]);</pre>
13
            while (!q.empty()) {
14
                int now = q.front(); q.pop();
15
                for (int i = 0; i < 26; i++) {
16
                     if (ch[now][i])    fail[ch[now][i]] = ch[fail[now]][i], q.push(ch
17
                        [now][i]);
                     else ch[now][i] = ch[fail[now]][i];
18
                }
19
            }
20
21
22
        int query(const char *s) {
            int u = 0, n = strlen(s + 1), res = 0;
23
            for (int i = 1; i <= n; i++){</pre>
24
                u = ch[u][s[i] - 'a'];
25
                for (int j = u; j && e[j] != -1; j = fail[j]) {
26
                     res += e[j];
27
                     e[j] = -1;
28
                }
29
            }
30
            return res;
31
       }
32
33
   }
```

2.6 后缀数组

```
1 const int N = 2e5 + 5;
```

```
int sa[N << 1], ork[N << 1], rk[N << 1], cnt[N], id[N << 1], M, n;</pre>
   char s[N];
3
4
   int main() {
5
       scanf("%s", s + 1);
6
7
       n = strlen(s + 1);
       for (int i = n + 1; i \le (n \le 1); i++) s[i] = s[i - n], M = max(M, (int)s)
8
           [i]);
       n <<= 1;
9
       for (int i = 1; i \le n; i++) if ((int)(s[i]) > M) M = (int)(s[i]);
10
       for (int i = 1; i <= n; i++) cnt[rk[i] = s[i]]++;</pre>
11
12
       for (int i = 0; i <= M; i++) cnt[i] += cnt[i - 1];</pre>
       for (int i = n; i; i--) sa[cnt[rk[i]]--] = i;
13
14
       for (int w = 1, p; w < n; w <<= 1, M = p) {
            p = 0;
15
            for (int i = n; i > n - w; i--) id[++p] = i;
16
            for (int i = 1; i \le n; i++) if (sa[i] > w) id[++p] = sa[i] - w;
17
            for (int i = 0; i <= M; i++) cnt[i] = 0;</pre>
18
            for (int i = 1; i <= n; i++) cnt[rk[i]]++;</pre>
19
            for (int i = 1; i <= M; i++) cnt[i] += cnt[i - 1];</pre>
20
            for (int i = n; i; i--) sa[cnt[rk[id[i]]]--] = id[i];
21
22
            p = 0;
            for (int i = 0; i <= n; i++) ork[i] = rk[i];</pre>
23
            for (int i = 1; i <= n; i++) {</pre>
24
                if (ork[sa[i]] == ork[sa[i - 1]] && ork[sa[i] + w] == ork[sa[i -
25
                    1] + w]) rk[sa[i]] = p;
                else rk[sa[i]] = ++p;
26
            }
27
            if (p == n) break;
28
29
       for (int i = 1, k = 0; i <= n; i++) {
30
            if (rk[i] == 1) continue;
31
32
            if (k) k--;
            while (s[i + k] == s[sa[rk[i] - 1] + k]) k++;
33
            h[rk[i]] = k;
34
        }
35
       return 0;
36
37
   }
```

2.6.1 Manacher

对于第 i 个字符为对称轴:

1. 如果回文串长为奇数, d[2*i]/2 是半径加上自己的长度

2. 如果长为偶数, d[2*i-1]/2 是半径的长度, 方向向右.

```
int n, d[N * 2];
1
   char s[N];
^{2}
3
   for (int i = 1; i <= n; i++) t[i * 2] = s[i], t[i * 2 - 1] = '#';
4
   t[n * 2 + 1] = '#';
  m = n * 2 + 1;
6
   for (int i = 1, l = 0, r = 0; i <= m; i++) {
7
        int k = i <= r ? min(d[r - i + l], r - i + 1) : 1;</pre>
8
        while (i + k \le m \delta \delta i - k \ge 1 \delta \delta t[i + k] == t[i - k]) k++;
9
        d[i] = k--;
10
        if (i + k > r) r = i + k, l = i - k;
11
12
  }
```

2.7 Z 函数

```
z[i] = lcp(suf_1, suf_i)
   for (int i = 2, l = 0, r = 0; i <= n; i++) {
1
2
        if (r >= i \& r - i + 1 > z[i - l + 1]) {
3
           z[i] = z[i - l + 1];
        } else {
4
           z[i] = max(0, r - i + 1);
5
           while (z[i] < n - i + 1 \& s[z[i] + 1] == s[i + z[i]]) ++z[i];
6
7
        if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
8
9
   }
```

3 数学

3.1 线性基

```
struct LinerBasis {
1
       int a[20], pos[20];
2
       void add(int v, int p) {
3
            for (int i = 19; i >= 0; i--) if ((v >> i) & 1) {
4
                if (a[i]) {
5
                    if (p > pos[i]) {
6
7
                         swap(p, pos[i]);
8
                         swap(a[i], v);
                    }
9
                    v ^= a[i];
10
                } else {
11
```

```
a[i] = v;
12
                     pos[i] = p;
13
                     return;
14
                }
15
            }
16
17
        }
   } b[N];
18
19
   LinerBasis operator + (LinerBasis a, LinerBasis b) {
20
        for (int i = 19; i >= 0; i--) {
21
            if (b.a[i]) a.add(b.a[i], b.pos[i]);
22
23
        }
24
        return a;
25
   }
```

3.2 多项式

3.2.1 FFT

```
typedef long long ll;
1
2 typedef complex<double> cp;
3 const int N = 6e5 + 5;
4 const double pi = acos(-1.0);
   int n, m, len = 1, l, rev[N], x[N], y[N];
5
   cp \ a[N * 2], \ b[N];
6
7
   void fft(cp *a, int n, int inv) {
8
       for (int i = 0; i < n; i++) if (rev[i] < i) swap(a[i], a[rev[i]]);</pre>
9
       for (int k = 1; k < n; k <<= 1) {</pre>
10
            cp wn(cos(pi / k), inv * sin(pi / k));
11
            for (int i = 0; i < n; i += k * 2) {</pre>
12
                cp w(1, 0);
13
                for (int j = 0; j < k; j++, w *= wn) {</pre>
14
                     cp x = a[i + j], y = a[i + j + k] * w;
15
                     a[i + j] = x + y, a[i + j + k] = x - y;
16
                }
17
            }
18
19
       if (inv < 0) for (int i = 0; i < len; i++) a[i] /= n;</pre>
20
21
```

3.3 组合数学

3.3.1 小球放盒

第二类斯特林数(斯特林子集数) $\binom{n}{k}$,也可记做 S(n,k),表示将 n 个两两不同的元素,划分为 k 个互不区分的非空子集的方案数。

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brace k}$$

边界是
$$\begin{cases} n \\ 0 \end{cases} = [n=0].$$

假设小球个数为 n, 盒子个数为 m

1. 小球无标号, 盒子有标号, 不允许空盒。

即求解方程 $\sum_{i=1}^{m} x_i = n$ 解的个数

$$\mathbb{F}\left(\begin{smallmatrix} n-1 \\ m-1 \end{smallmatrix} \right)$$

2. 小球无标号, 盒子有标号, 允许空盒。

$$\diamondsuit y_i = x_i + 1$$

即求解方程 $\sum_{i=1}^{m} y_i = n$ 解的个数

$$\mathbb{Ell}\ \binom{n+m-1}{m-1}$$

3. 小球有标号, 盒子有标号, 允许空盒。

 \mathbb{H}^n

4. 小球有标号, 盒子有标号, 不允许空盒。

$$m! \times \begin{Bmatrix} n \\ m \end{Bmatrix}$$

5. 小球有标号, 盒子无标号, 不允许空盒。

$$\left\{
 n \\
 m
 \right\}$$

6. 小球有标号, 盒子无标号, 允许空盒。

by widsnoy

$$\sum_{i=1}^{m} \left\{ n \atop i \right\}$$

7. 小球无标号, 盒子无标号, 允许空盒。

设 f[i][j] 表示 i 个球放入 j 个盒子的方案数。

- 1. i=0 或者 j=1, 方案数为 1
- 2. i < j, f[i][j] = f[i][i]
- 3. $i \ge j$, f[i][j] = f[i-j][j] + f[i][j-1]
- 8. 小球无标号, 盒子无标号, 不允许空盒。

用7的结论,提前在每个盒子放1个球。

方案数就是 f[n-m][m]