Задача І. Одномерная метеорология [2 sec, 256 mb]

Некоторое одномерное царство имеет форму отрезка. Система координат устроена так, что начало царства имеет координату 0, а конец — координату n. Для удобства царство поделено на N провинций, пронумерованных числами $1, 2, \ldots, n$ так, что провинция с номером k начинается в точке с координатой k-1, а заканчивается в точке с координатой k.

Сейчас в этом царстве идёт снег. Однократное выпадение снега происходит так. Прилетает туча, которую можно охарактеризовать параметрами (a,b,c). Такая туча имеет форму отрезка, покрывающего провинции с номерами от a до b, включительно. Снег выпадает, и во всех этих провинциях уровень снега вырастает ровно на c сантиметров, а туча исчезает.

Стихия так разгулялась, что никто не выходит убирать снег. Время от времени царь велит метеорологам посчитать суммарный уровень снега в какой-то части царства. Каждый такой приказ можно охарактеризовать параметрами (d,e). Часть царства, фигурирующая в этом приказе, имеет форму отрезка, покрывающего в точности провинции с номерами от d до e, включительно. Суммарный уровень считается как сумма уровней снега в сантиметрах во всех провинциях этой части царства.

Изначально снега нет ни в одной провинции. Зная последовательность событий, помогите царским метеорологам правильно ответить на все вопросы царя.

Формат входных данных

В первой строке заданы через пробел два целых числа n и m — размер царства и количество событий, соответственно ($1 \le n \le 10^6$, $0 \le m \le 10^5$). В следующих m строках описаны события в порядке их следования. Если событие описывает выпадение снега, оно задано в форме snow a b c ($1 \le a \le b \le n$, $1 \le c \le 10^7$). Если же событие описывает царский приказ, оно задано в форме sum d e ($1 \le d \le e \le n$).

Формат выходных данных

В ответ на каждый приказ царя выведите одно число—суммарный уровень снега в заданной части царства. Ответы выводите в порядке следования приказов.

Примеры

stdin	stdout
5 4	5
snow 1 5 1	6
sum 1 5	
snow 2 5 2	
sum 3 4	
4 7	0
sum 2 4	4
snow 1 2 4	10
sum 2 4	12
snow 2 3 3	
sum 2 4	
snow 3 3 2	
sum 2 4	

Задача J. Одно число на месте [2 sec, 256 mb]

Как известно, последовательность из n целых чисел называется перестановкой, если каждое из чисел $1, 2, \ldots, n$ встречается в ней ровно один раз. Например, последовательности $1 \ 2 \ 3 \ 4 \ 1$ — перестановки, а последовательности $1 \ 1 \ u \ 2 \ 3 \ 4$ — нет.

Число в перестановке считается стоящим на своём месте, если номер этого числа, считая с начала перестановки, совпадает с ним самим. Например, в перестановке $1\ 2\ 3$ каждое число стоит на своём месте, а в перестановке $2\ 3\ 4\ 1$ ни одно число не стоит на своём месте: $1\$ стоит на четвёртом месте, $2\$ — на первом, $3\$ — на втором, а $4\$ — на третьем.

Для заданного натурального числа n выведите любую перестановку длины n, в которой на своём месте стоит ровно одно число, или выясните, что такой перестановки не существует.

Формат входных данных

В первой строке входного файла задано натуральное число $n \ (1 \le n \le 27)$.

Формат выходных данных

Выведите в выходной файл ровно n целых чисел, образующих перестановку. В выведенной перестановке ровно одно число должно стоять на своём месте. При выводе числа следует разделять пробелами.

Если требуемая перестановка не существует, выведите в выходной файл вместо перестановки одно число -1. Если правильных ответов несколько, можно вывести любой из них.

Примеры

stdin	stdout
4	2 3 1 4
3	3 2 1

Пояснения к примерам

В первом примере четвёрка стоит на четвёртом месте, остальные числа— не на своих местах. Это не единственный правильный ответ: например, в перестановке $1\ 3\ 4\ 2$ на своём месте тоже стоит ровно одно число.

Во втором примере двойка стоит на втором месте, остальные числа— не на своих местах. Это снова не единственный правильный ответ: например, в перестановке 2 1 3 на своём месте тоже стоит ровно одно число.