

微机原理与系统设计

第2章 Intel单核/多核处理器

2.1 单核处理器 (8086/8088)

2.1 单核处理器8086 2.1.2 8086处理器体系结构

1. 寄存器结构

АН	AL
ВН	BL
СН	CL
DH	DL

AX	
BX	数据寄存
CX	 数据可针
$\mathbf{D}\mathbf{X}$	

通用 寄存器

SP
BP
SI
DI

堆栈指针] 基数指针]	指针寄存器
------------------	-------

代码段 数据段 堆栈段 附加段

2.1 单核处理器8086 2.1.3 寄存器、主存和IO结构 【例】8位二进制加法如下,给出各状态标志位的值。

1011010 被加数8位 + 10001111 加数8位

01000100 和8位

- 最高位D7产生进位: CF=1; D3产生进位: AF=1
- 结果不为0: ZF=0;
- 结果最高位为0: SF=0;
- 两负数相加结果为正,溢出: **OF**=1
- 结果中有2个 "1", 偶数个 "1": PF=1

		1				0	C)	1	1	1
		OF	DF	IF	TF	SF	ZF		AF	PF	CF

2. 主存结构

□ 双体结构: 既可以实现16位存储, 也可以实现8位存储。

- 2.1 单核处理器8086 2.1.3 寄存器、主存和IO结构
- 2. 主存结构
 - □分段结构:
 - 代码、数据量不大 → 使其处于同一段内 (64KB范围内) → 可减少指令长度、提高运行速度。
 - 内存分段为程序浮动分配创造了条件;提高可靠性。
 - 形式地址6832H:1280H → 物理地址?
 - 各个分段之间可以重叠。

- 2. 主存结构
 - □分段结构:
 - 段寄存器的使用

- 特殊的主存区域
 - □ 中断矢量区: 00000H~003FFH (1KB) 每个中断向量占4个字节, 256×4=1K
 - □ 显示缓冲区: 25×80×2=4000字节 B0000H~B0F9FH; B8000H~BBF3FH (约16KB)
 - □ 启动区: FFFF0H~FFFFFH (16个字节) 无条件转移指令

3. I/O地址空间

- > I/O地址空间独立于主存地址空间,两者采用不同的读/写信号进行访问控制。
- ► I/O地址空间包含64K个可单独寻址的8位I/O端口,编号为0到FFFFH,其中 I/O端口地址0F8H~0FFH被保留。
- > 16位系统的I/O地址空间也按地址的奇、偶分为两个体。

2.1 单核处理器8086

2.1.4 处理器芯片引脚

BHE	A 0	操作	所用数据线			
0	0	从偶地址开始读/写一个字	AD15~AD0			
0	1	从奇地址读/写一个字节	AD15~AD8			
1	0	从偶地址读/写一个字节	AD7~AD0			
1	1	无效	无			

2.1 单核处理器8086

2.1.4 8086 vs 8088对比

1. 内部:

指令预取队列6字节→4字节

2. 引脚:

a. 8088: AD7 ~ AD0

8086: AD15~AD0

→速度快

b. 8088: SSO

8086: BHE/S7

c. 8088: IO/\overline{M}

8086: M/IO

