

Gina vs. Shiro

A image recognition project about cats

Stefano Amalberti, Lorenzo Mantero, Gina, Shiro

Gina Shiro

Motivation

Motivation

- We wanted to verify the effectiveness of transfer learning on a very limited dataset.
- We love cats.

Description of the dataset

Description of the dataset

We put together a dataset of about 300 images.

- about 25 were used for testing (8%)
- about 50 were used for validation (16%)

The dataset is far from IID (since all images were taken by us).

Data Agumentation

To enrich the dataset we applied some data augmentation:

- randomfFlip
- ramdomRotation

We also tried adding

- randomSaturation
- randomContrast
- randomZoom

and the results were about the same

Model architecture

Model architecture

Model architecture

```
pretrained model = keras.applications.Xception(
    weights='imagenet',
                              # pre traines weights
    input shape=image sizes, # shape of input
                              # do not include top fully connected layer
    include_top=False
# use or not fine tuning
pretrained model.trainable = apply fine tuning
# define input
input = keras.Input(shape=image sizes)
# apply data agumentation
x = data_augmentation(input)
# normalize and scale imput (from [0 255] to [-1 1])
x = keras.layers.Rescaling(scale=1./(255/2),offset=-1)(x)
# apply the pretrained model
x = pretrained_model(x)
# apply global average pooling to reduce number of parameters
x = keras.layers.GlobalAveragePooling2D()(x)
# apply dropout
x = keras.layers.Dropout(dropout_rate)(x)
# apply a dense layer
output = keras.layers.Dense(1)(x)
# define the model
model = keras.Model(inputs = input, outputs = output)
```

apply_fine_tuning is a variable that we can set to True or False, to evaluate the effectiveness of fine tuning.

Fine Tuning

Fine Tuning:

```
Epoch 1/4
204/204 — 62s 162ms/step - binary_accuracy: 0.6112 - loss: 0.6846 - val_binary_accuracy: 0.6275 - val_loss: 9.9360
Epoch 2/4
204/204 — 19s 66ms/step - binary_accuracy: 0.6330 - loss: 0.6656 - val_binary_accuracy: 0.3922 - val_loss: 1.2087
Epoch 3/4
204/204 — 13s 65ms/step - binary_accuracy: 0.6334 - loss: 0.6408 - val_binary_accuracy: 0.6863 - val_loss: 22.1347
Epoch 4/4
204/204 — 20s 64ms/step - binary_accuracy: 0.6486 - loss: 0.6532 - val_binary_accuracy: 0.5882 - val_loss: 80.5406
<keras.src.callbacks.history.History at 0x7d5f4cd6b490>
```

No Fine Tuning:

```
Epoch 1/4
204/204 — 57s 241ms/step - binary_accuracy: 0.6848 - loss: 0.5456 - val_binary_accuracy: 0.9216 - val_loss: 0.1935
Epoch 2/4
204/204 — 31s 12ms/step - binary_accuracy: 0.9581 - loss: 0.1362 - val_binary_accuracy: 0.9412 - val_loss: 0.1442
Epoch 3/4
204/204 — 2s 11ms/step - binary_accuracy: 0.9902 - loss: 0.0688 - val_binary_accuracy: 0.9608 - val_loss: 0.1196
Epoch 4/4
204/204 — 3s 13ms/step - binary_accuracy: 0.9640 - loss: 0.0781 - val_binary_accuracy: 0.9608 - val_loss: 0.1120
<keras.src.callbacks.history.History at 0x7d5fcc1a7b90>
```

Nota a piè di pagina

Training parameters

Observations

Based on our testing, it appeared that 4 **epochs** were enough to get good results. We used the **Adam optimizer**, and tested the following values for the learning rate:

- Learning rate = 10⁻⁵ gives a **worse** result.
- Learning rate = 10⁻³ is the **default value** and gives the **best** result.
- Learning rate = 10⁻² causes **overfitting** (more noticeable with increasing epochs).

Nota a piè di pagina

Model test and conclusions

Error on the test

The error on the test ended up being pretty good with only 3 of the 25 samples being misclassified (about 12% error).

To avoid bias, the testing dataset was only used once.

Error on the test

UniGe DIBRIS 15

Conclusions

• We had a feeling that the model would classify the images only by **looking at the surroundings** rather than the cats. As it turns out, this is **not really the case**, as on all misclassified images, the model did not recognise the surroundings.

• The model performs surprisingly well for the limited size of the dataset, inside the misclassified images the cats are small and harder to identify or even see at all.

Thanks for the attention

<u>https://github.com/lollomante/ML Cats</u> - No cats were harmed during the collection of the data.

Uni**Ge**DIBRIS