Sprawozdanie z ćwiczenia z Algorytmów Geometrycznych

Mikołaj Gaweł

13 października 2025 Ćwiczenie nr 1

Dane podstawowe

• Imię i nazwisko: Mikołaj Gaweł

• Data: 13 października 2025

• Tytuł ćwiczenia: Algorytmy geometryczne – ćwiczenie 1

• Numer ćwiczenia: 1

1 Dane techniczne

• Język programowania: Python 3.13.5

• Środowisko uruchomieniowe: Jupyter Notebook

- Biblioteki: numpy, pandas oraz autorskie narzędzie wizualizacji opracowane przez Koło Naukowe BIT
- System operacyjny: Ubuntu 24.04 LTS, jądro Linux 6.14.0-33-generic
- Architektura komputera: 64-bitowa
- Procesor: AMD Ryzen 7 7735HS with Radeon Graphics (8 rdzeni / 16 wątków, max 4.83 GHz)
- Tryby pracy CPU: 32-bit i 64-bit
- Precyzja obliczeń: obliczenia wykonywano dla typów float
32 i float64 (wybrane testy porównawcze dla różnych tolerancji
 ε)

2 Generowanie zbiorów i wizualizacja

W ćwiczeniu przygotowano cztery zbiory punktów w przestrzeni 2D (typ danych: double). Do generowania danych wykorzystano bibliotekę NumPy, a dla zachowania powtarzalności wyników ustawiono stałe ziarno generatora (np.random.seed). Wszystkie punkty rozmieszczono równomiernie w zadanych przedziałach lub na zadanych krzywych.

- 1. **Zbiór a:** 10^5 losowych punktów o współrzędnych (x, y) z przedziału [-1000, 1000], wygenerowanych funkcją np.random.uniform.
- 2. **Zbiór b:** 10^5 losowych punktów o współrzędnych (x,y) z przedziału $[-10^{14}, 10^{14}]$, służący do analizy wpływu dużych wartości współrzędnych na precyzję obliczeń.
- 3. **Zbiór c:** 1000 punktów leżących na okręgu o środku (0,0) i promieniu R=100, rozmieszczonych równomiernie według parametrycznego równania:

$$x = R\cos(\theta), \quad y = R\sin(\theta), \quad \theta \in [0, 2\pi)$$

4. **Zbiór d:** 1000 punktów leżących na prostej wyznaczonej przez odcinek a = [-1.0, 0.0], b = [1.0, 0.1], generowanych na podstawie równania parametrycznego:

$$x = a_x + t(b_x - a_x), \quad y = a_y + t(b_y - a_y), \quad t \in [0, 1]$$

Rysunek 1: Wizualizacja czterech zbiorów punktów wygenerowanych w przestrzeni 2D.

3 Klasyfikacja punktów względem prostej z użyciem wyznaczników i tolerancji

3.1 Wyznaczniki do klasyfikacji punktów

Do określenia, po której stronie prostej ab znajduje się punkt c, wykorzystano wartość wyznacznika macierzy w dwóch postaciach:

$$\det(a, b, c) = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix} \qquad \det(a, b, c) = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix}$$

gdzie:

$$a = (a_x, a_y), \quad b = (b_x, b_y), \quad c = (c_x, c_y)$$

Interpretacja znaku wyznacznika:

$$\begin{cases} \det(a,b,c) < 0 & \Rightarrow c \text{ po prawej stronie prostej } ab, \\ \det(a,b,c) = 0 & \Rightarrow c \text{ leży na prostej } ab, \\ \det(a,b,c) > 0 & \Rightarrow c \text{ po lewej stronie prostej } ab. \end{cases}$$

Wyznaczniki obliczano dwiema metodami:

- implementacją własną opartą na definicji macierzy,
- funkcją biblioteczną numpy.linalg.det.

3.2 Tolerancja i współliniowość

Dla bardzo małych wartości wyznacznika przyjęto próg tolerancji ε , aby uniknąć problemów z precyzją obliczeń zmiennoprzecinkowych. Poniższa tabela przedstawia wartości ε , które będą analizowane:

Wartość ε	
0	
10^{-14}	
10^{-12}	
10^{-9}	
10^{-6}	

Tabela 1: Przyjęte wartości progu tolerancji ε dla analizy współliniowości punktów.

Interpretacja:

$$|\det(a,b,c)| < \varepsilon \Rightarrow c$$
 traktowany jako współliniowy z a i b .

Porównano wpływ precyzji (float
32 i float64) oraz wartości tolerancji ε na poprawność klasyfikacji punktów.

4 Analiza klasyfikacji punktów

Na rysunkach punkty znajdujące się po lewej stronie prostej ab są zielone, punkty na prostej są fioletowe, a punkty po prawej stronie są pomarańczowe.

4.1 Analiza zbioru A

Dla zbioru A (10^5 losowych punktów w przedziale [-1000,1000]) przeprowadzono analizę klasyfikacji punktów względem prostej ab przy różnych wartościach tolerancji ε i precyzji zmiennoprzecinkowej. Okazało się że niezależnie od sposobu liczenia wyznacznika, tolerancji ε i precyzji zmiennoprzecinkowej wynik rozłożenia punktów był ten sam.

Zbiór	po lewej od prostej	na prostej	po prawej od prostej
A	50207	0	49793

Tabela 2: Klasyfikacja punktów zbioru A względem prostej ab. Wyniki są identyczne dla wszystkich badanych wartości ε , precyzji zmiennoprzecinkowej oraz metod wyznacznika (2x2, 3x3, własna i biblioteczna).

Rysunek 2: Punkty zbioru A względem prostej ab, metoda mat_det_3x3, $\varepsilon = 10^{-12}$.

4.2 Analiza zbioru B

Dla zbioru B (10^5 losowych punktów w przedziale [$-10^{14}, 10^{14}$]) przeprowadzono analizę klasyfikacji punktów względem prostej ab przy różnych wartościach tolerancji ε i precyzji zmiennoprzecinkowej.

Analiza klasyfikacji punktów zbioru B pokazuje, że wyniki zależą od typu precyzji zmiennoprzecinkowej oraz metody obliczania wyznacznika. Dla float64 wszystkie metody (2x2, 2x2_lib, 3x3, 3x3_lib) dają spójne wyniki dla wszystkich wartości ε .

Dla float32 metoda 2x2 wykazuje silną wrażliwość na precyzję i epsilon – przy najmniejszych epsilonach wiele punktów klasyfikowanych jest niepoprawnie jako współliniowe. Metoda 2x2_lib poprawia dokładność, ale nadal występują pewne przesunięcia. Z kolei metoda 3x3 jest stabilna zarówno dla float64, jak i float32, zapewniając spójne wyniki niezależnie od epsilonu.

Wybór odpowiedniej metody wyznacznika i precyzji jest zatem kluczowy, aby poprawnie identyfikować punkty współliniowe i minimalizować błędną klasyfikację.

Metoda	Float	Epsilon	po lewej	na prostej	po prawej
mat_det_2x2	float64	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}, 0$	50026	8	49966
$mat_det_2x2_lib$	float64	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}, 0$	50026	7	49967
mat_det_3x3	float64	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}, 0$	50028	0	49972
$mat_det_3x3_lib$	float64	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}, 0$	50028	0	49972
mat_det_2x2	float32	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}, 0$	0	100000	0
$mat_det_2x2_lib$	float32	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}, 0$	6707	86608	6685
mat_det_3x3	float32	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}, 0$	50028	0	49972
mat_det_3x3_lib	float32	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}, 0$	50028	0	49972

Tabela 3. Klasyfikacja punktów zbioru B względem prostej ab dla różnych metod wyznacznika i typów precyzji zmiennoprzecinkowej.

X	Y
-92808447832351.56	-4638961148760.672
-98864619056286.16	-4909449065178.672
58906427054712.25	2943935264015.4688
-86286438458100.44	-4296925450899.4062
-80149683760744.58	-4032111314248.6562
-75061230702931.42	-3763403346938.2812
-47018957292283.914	-2360617191785.9688
-50977113945005.305	-2551653380912.3906

Tabela 4. Punkty klasyfikowane jako "na linii" przez metodę ${\tt mat_det_2x2}$ (float
64) dla wszystkich wartości $\varepsilon.$

X	Y
-92808447832351.56	-4638961148760.672
-98864619056286.16	-4909449065178.672
-43980941182258.52	-2206180678847.0312
58906427054712.25	2943935264015.4688
-59717800164392.54	-2988219060924.4375
-75061230702931.42	-3763403346938.2812
-50977113945005.305	-2551653380912.3906

Tabela 5. Punkty klasyfikowane jako "na linii" przez metodę ${\tt mat_det_2x2_lib}$ (float64) dla wszystkich wartości $\varepsilon.$

Analiza poprawności współliniowości

Niech prosta przechodzi przez punkty $A(x_a,y_a)$ i $B(x_b,y_b)$. Punkt P(x,y) leży dokładnie na prostej, jeśli:

$$\frac{y - y_a}{y_b - y_a} = \frac{x - x_a}{x_b - x_a}.$$

Dla podanych punktów widać, że stosunek $(y-y_a)/(y_b-y_a)$ różni się od $(x-x_a)/(x_b-x_a)$ nawet w najmniejszym odróżnialnym miejscu w float64. Oznacza to, że żaden z punktów nie leży dokładnie na prostej AB — metoda 2x2 oraz 2x2_lib klasyfikuje je jako współliniowe tylko w przybliżeniu, w granicy tolerancji ε .

Wnioski: metoda klasyfikuje punkty jako "na linii", ale ze względu na ograniczoną precyzję zmiennoprzecinkową i ogromne wartości współrzędnych, w rzeczywistości żaden z punktów nie spełnia dokładnie równania prostej.

Rysunek 3: Graficzna reprezentacja punktów zbioru B wzgledem prostej ab dla obliczeń w precyzji float64

Rysunek 4: Graficzna reprezentacja punktów zbioru B względem prostej ab dla metod mat_det_2x2 (po lewej) i mat_det_2x2_lib (po prawej) w precyzji float32, $\varepsilon = 10^{-14}$.

Rysunek 5: Graficzna reprezentacja punktów zbioru B względem prostej ab dla metod mat_det_3x3 (po lewej) i mat_det_3x3_lib (po prawej) w precyzji float32, $\varepsilon = 10^{-14}$.

4.3 Analiza zbioru C

Dla zbioru C (1000 punktów rozmieszczonych równomiernie na okręgu o promieniu R=100) przeprowadzono analizę klasyfikacji punktów względem prostej ab przy różnych wartościach tolerancji ε oraz typach precyzji zmiennoprzecinkowej (float32 i float64).

Wyniki pokazały pełną spójność wszystkich metod i precyzji: wszystkie punkty zostały zaklasyfikowane w identyczny sposób niezależnie od wartości ε oraz użytej metody wyznacznika.

Kategoria	Liczba punktów
Po lewej stronie prostej	499
Na linii	0
Po prawej stronie prostej	501

Tabela 6: Podsumowanie klasyfikacji punktów zbioru C względem prostej ab. Wyniki są identyczne dla wszystkich metod wyznacznika, typów precyzji oraz wartości ε .

Rysunek 6: Graficzna reprezentacja punktów zbioru C względem prostej ab.

Wnioski:

- Wszystkie metody wyznacznika (2x2, 2x2_lib, 3x3, 3x3_lib) oraz typy precyzji (float32 i float64) dają identyczną klasyfikację punktów.
- Żaden punkt nie został sklasyfikowany jako współliniowy (na linii), co wynika z faktu, że zbiór C leży na okręgu, a prosta *ab* nie pokrywa żadnego punktu dokładnie.
- Analiza pokazuje, że przy uporządkowanych i "małych" współ
rzędnych (tu $x,y\in[-100,100]$) wszystkie metody są stabilne i spójne niezależnie od wybranej tolerancji
 ε .

4.4 Analiza zbioru D

Zbiór D został skonstruowany w taki sposób, że wszystkie punkty powinny znajdować się dokładnie na prostej *ab*. Oznacza to, że idealny wynik klasyfikacji to:

po lewej =
$$0$$
, na prostej = 1000 , po prawej = 0 .

W praktyce jednak uzyskane rezultaty różnią się w zależności od zastosowanej metody obliczania wyznacznika, precyzji typu zmiennoprzecinkowego oraz wartości progu ε . W tabelach 7 i 8 przedstawiono wyniki klasyfikacji punktów dla każdej z metod.

Metoda	Float	Epsilon	po lewej	na prostej	po prawej
mat_det_2x2	float64	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}$	0	1000	0
		0	340	303	357
$mat_det_2x2_lib$	float64	10^{-14} , 10^{-12} , 10^{-9} , 10^{-6}	0	1000	0
		0	345	305	350
mat_det_3x3	float64	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}$	0	1000	0
		0	289	431	280
mat_det_3x3_lib	float64	$10^{-14}, 10^{-12}, 10^{-9}, 10^{-6}$	0	1000	0
		0	172	828	0

Tabela 7. Klasyfikacja punktów zbioru D względem prostej ab dla metod wyznacznika przy precyzji float64.

Metoda	Float	Epsilon	po lewej	na prostej	po prawej
mat_det_2x2	float32	10^{-14} , 10^{-12} , 10^{-9} , 0	241	281	478
		10^{-6}	0	1000	0
$mat_det_2x2_lib$	float32	$10^{-14}, 10^{-12}, 10^{-9}, 0$	372	2	626
		10^{-6}	0	1000	0
mat_det_3x3	float32	$10^{-14}, 10^{-12}, 10^{-9}, 0$	186	395	419
		10^{-6}	0	1000	0
$mat_det_3x3_lib$	float32	$10^{-14}, 10^{-12}, 10^{-9}, 0$	424	156	420
		10^{-6}	0	1000	0

Tabela 8. Klasyfikacja punktów zbioru D względem prostej ab dla metod wyznacznika przy precyzji float32.

Wnioski:

- Dla typu float64 klasyfikacja jest bardzo stabilna już dla niewielkich wartości ε (np. 10^{-12}) wszystkie punkty są poprawnie klasyfikowane jako leżące na prostej.
- Przy $\varepsilon=0$ pojawiają się błędy klasyfikacji spowodowane ograniczoną precyzją reprezentacji zmiennoprzecinkowej część punktów błędnie przypisywana jest "na lewo" lub "na prawo".
- W przypadku typu float32 stabilność obliczeń znacząco spada. Dla małych wartości ε uzyskano duże odchylenia od wyniku idealnego, a dopiero przy $\varepsilon=10^{-6}$ klasyfikacja jest w pełni poprawna.
- Różnice między metodami mat_det_2x2, mat_det_3x3 oraz ich wersjami _lib są niewielkie dla float64, lecz przy float32 biblioteczne implementacje wykazują większą niestabilność, co sugeruje większą wrażliwość na błędy zaokrągleń.

Wizualizacja wyników klasyfikacji:

Precyzja float64

- (a) Metoda mat det 3x3, $\varepsilon = 10^{-12}$, float64.
- (b) Metoda mat_det_3x3, $\varepsilon = 0$, float64.

Precyzja float32

- (c) Metoda mat_det_3x3_lib, $\varepsilon=10^{-6},$ float32.
- (d) Metoda mat_det_2x2_lib, $\varepsilon=10^{-14},$ float32.

Rysunek 7: Graficzne przedstawienie klasyfikacji punktów zbioru D względem prostej ab dla wybranych metod, wartości ε oraz precyzji numerycznej.

5 Wnioski

- 1. Tolerancja ε wpływa na klasyfikację współliniowości. Optymalne wartości: 10^{-6} (float32), 10^{-12} (float64).
- 2. Precyzja float
64 zapewnia stabilne wyniki nawet dla małych ε , float
32 wymaga większej tolerancji.
- 3. Metoda 3x3 (własna i biblioteczna) jest najbardziej odporna na błędy numeryczne, zwłaszcza przy dużych współrzędnych.
- 4. Zbiory o małych, uporządkowanych współrzędnych klasyfikowane są poprawnie przez wszystkie metody, natomiast duże wartości współrzędnych wymagają starannego doboru ε i precyzji.

Podsumowując, stabilna klasyfikacja punktów w 2D wymaga stosowania float64 oraz odpowiednio dobranej metody wyznacznika i progu tolerancji.