Plan du cours

I. Rappels

1. Rappels sur la proportionnalité

Définition

On dit que deux grandeurs sont **proportionnelles** lorsque l'on peut passer des valeurs de l'une aux valeurs de l'autre en multipliant par une même constante.

Cette constante est alors appelée coefficient de proportionnalité.

Exemple:

Nombre de chocolats	_	6	8	10	0 13
Prix (en €)	0,24	0,72	0,96	1,20	0, 12

Le tableau ci-dessus est un tableau de proportionnalité, le coefficient de proportionnalité est 0,12.

Remarque:

- (1). On passe de la première la deuxième colonne en multipliant les valeurs par 3.
- (2). La troisième colonne est la somme des deux précédentes.

1. Calculer l'image de -1 et l'image de 4 par la fonction g.

2. Rappels sur les fonctions

Définition

Une fonction est une application qui, à un nombre, fait correspondre un unique autre nombre. On note $f: x \mapsto f(x)$ et on lit: "f la fonction qui au nombre x associe le nombre f(x)".

Méthode:

- Pour calculer l'image d'un nombre par une fonction, il suffit de remplacer x par ce nombre.
- Pour calculer le ou les antécédents d'un nombre par une fonction, il faut résoudre une équation.

Exemple: On considère la fonction g suivante : $g: x \mapsto 5x - 12$ ou $g(x) = \dots$

2. Calculer le ou les antécédents de 3 par la fonction g.

3.

II. Introduction
Un club multi-sports propose à sa clientèle de choisir entre les trois formules suivantes : Formule A : 10 euros par séance. Formule B : Un forfait annuel de 150 €auquel s'ajoute une participation de 5 €par séance. Formule C : Un forfait annuel de 500 €permettant l'accès illimité aux séances.
1. Calculer pour chaque formule la dépense annuelle pour : 15 séances; 25 séances; 40 séances; 50 séances; 75 séances 90 séances. Dans chaque cas, quelle est la formule la plus intéressante?
2. Soit x le nombre de séances pendant une année. Exprimer en fonction de x la dépense annuelle pour chaque formule.
3. (a) Avec la formule B, calculer la dépense annuelle pour 60 entrées. (b) Calculer de même : g (30); f (30); h (30); g (60); f (80). (c) Trouver x tel que : f (x) = 390. Interpréter le résultat.
4. (a) Pour chaque formule, représenter sur un même graphique la dépense annuelle en fonction du nombre d'entrées. (b) Déterminer graphiquement la formule la plus avantageuse en fonction du nombre de séances.
2. Les différentes formules :
Formule A: Pour x séances dans l'année, la dépense est : A chaque nombre x , on associe le nombre On a alors défini une FONCTION LINÉAIRE qu'on appelle g et on note : g : x ou g (x) = Une fonction linéaire traduit
Formule B: Pour x séances dans l'année, la dépense est:A chaque nombre x , on associe le nombre On a alors défini une FONCTION AFFINE qu'on appelle f et on note: f:xou f (x) =
Formule C : Pour x séances dans l'année, la dépense est : A chaque nombre x , on associe le nombre On a alors défini une FONCTION CONSTANTE qu'on appelle h et on note : h : x ou h (x) =

4. (a) Les représentations graphiques :

(b)

III. Fonctions linéaires

1. Définition

_	7 CT		
	O TII	nitio	n n
	UIII	111191	9111

On dit qu'une fonction f est **linéaire** s'il existe un nombre a tel que $f: x \longmapsto ax$.

Le nombre a est appelé coefficient directeur ou coefficient de linéarité de la fonction f.

Exemple:

Fonction	Linéaire ?	Coefficient?
$f: x \longmapsto 2x$		
$g: x \longmapsto x/2$		
$h: x \longmapsto 3x + 2$		
$i: x \longmapsto x$		
$j: x \longmapsto x^2$		

_					_
Exe	rcice	d'a	nnlic	ation	-1

Calculer des images connaissant les antécédents.	
On donne $f: x \longmapsto -2x$; $g: x \longmapsto \frac{x}{7}$; $h: x \longmapsto x$. Calculer $f(0)$	0), $g(21)$ et $h(5)$.

Exercice	d'a	pplication	ı 2 ·
	-	ppca c. c .	

Déterminer des antécédents connaissant les images.
On donne la fonction $f: x \longmapsto 8x$. Déterminer les antécédents de 24 et de 4.

ercice d	application 3
	rminer une fonction linéaire l'aide d'un nombre et de son image.
(1).	Déterminer la fonction linéaire f telle que $f(2) = 7$.
(2).	Déterminer la fonction linéaire g telle que $g(-3) = 6$.
Prop	Soient f une fonction linéaire telle que $f(x)=ax$ et k un nombre. Pour tous nombres x_1 et x_2 on a: $f(x_1+x_2)=f(x_1)+f(x_2)$ $f(k\times x_1)=k\times f(x_1)$
Exemple	$f(k \times k_1) = k \times f(k_1)$ e: Soit h une fonction linéaire telle que $h(0,5) = 6$ et $h(2,5) = 30$. Calculer $h(3)$ et $h(5)$.
ercice d	application 4
La fo de g.	inction linéaire g est telle que $g(4) = 9$ et $g(6) = 13, 5$. Calculer $g(10)$, $g(12)$ et $g(18)$ sans calculer le coefficient

3. Représentation graphique

Soient f, g, h et i les fonctions linéaires dont les représentations graphiques sont données ci-dessous :

Compléter :

- L'image de 4 par la fonction linéaire h est . . .
- L'image de 2 par la fonction g est . . .
- L'antécédent de -6 par la fonction g est . . .

$$-i(...) = -2; i(0) = ...; f(-2) = ...; h(16) = ...; h(...) = 4$$

Х	-8	0	4	12
h(x)				

Propriété

La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère.

Méthode:

Pour représenter graphiquement une fonction linéaire dans un repère, il suffit donc de connaître l'image d'un nombre $x_0 \neq 0$. On place ensuite sur le repère le point de coordonnées $(x_0; f(x_0))$ et on trace la droite passant par l'origine et par ce point.

Exemple:

Fonctions linéaires

IV. Fonctions affines

1. Définition

Propriété

On dit qu'une fonction f est affine s'il existe deux nombres a et b tel que $f: f: x \mapsto ax + b$. Le nombre **a** est appelé **coefficient directeur** de la fonction f et le nombre **b** est appelé **ordonnée à l'origine**.

Remarque:

- Une fonction linéaire est une fonction affine où b = 0.
- Une fonction constante est une fonction affine où a = 0.

Exemple:

Fonction	Linéaire? Constante? Affine	Coefficients?
$f: x \longmapsto 5x$		
$g: x \longmapsto 5x + 2$		
$h: x \longmapsto 8$		
$i: x \longmapsto \frac{x-8}{3}$		
$j: x \longmapsto x^2$		

Exercice d'application 6					
	Eva	rcica	d'ann	dication	6

Calculer des images connaissant les antécédents.

On donne $f: x \longmapsto -4x + 2$ et $g: x \longmapsto \frac{x-1}{2}$. Calculer f(3), f(0), g(-1) et g(1).

Exercice		

Déterminer des antécédents connaissant les images.	
On donne la fonction $f: x \mapsto -2x + 3$. Déterminer les antécédents de -5 et de 3.	

2. Propriétés

Propriété

Soient f une fonction affine, x_1 et x_2 deux nombres.

Si
$$x1 \neq x2$$
 alors $a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Exercice d'application 8 -

Déterminer une fonction affine à l'aide de deux nombres et de leur image.				
Déterminer la fonction affine f telle que f $(1) = 3$ et f $(-2) = 0$.				

3. Représentation graphique

Propriété

La représentation graphique d'une fonction affine est une droite.

<u>Méthode :</u>

On remplit le tableau suivant où l'on choisit librement (mais intelligemment!) les deux nombres de la première ligne et on calcule leur image.

X	
f(x)	

On place ensuite les deux points dont les coordonnées sont en colonnes et on trace la droite.

Exemple : Tracer la représentation graphique de la fonction f telle que $f(x) = \frac{x}{2} - 4$

