ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 6.10.4 Магнитные моменты легких ядер установка №4

> Серебренников Даниил Группа Б02-826м

Цель работы: вычислить магнитные моменты протона, дейтрона и ядра фтора на основе измерения их g-факторов методом ядерного магнитного резонанса (ЯМР).

1 Основные формулы

Фактор Ланде:

$$g_{\mathrm{H}} = \frac{hf_0}{\mu_{\mathrm{H}}B_0}.\tag{*}$$

Магнитный момент ядра:

$$\mu = g_{\scriptscriptstyle R} \mu_{\scriptscriptstyle R} I. \tag{**}$$

Ядерный магнетон:

$$\mu_{\text{\tiny H}} = \frac{e\hbar}{2m_p c} \approx 5,05 \cdot 10^{-27} \text{Дж} \cdot \text{Тл}^{-1}.$$

2 Экспериментальная установка

Рис. 1: Схема экспериментальной установки.

- 1. Генератор
- 2. Исслудуемый образец
- 3. Трансформатор
- 4. Электромагнит
- 5. Катушки, питаемые постоянным током, создающее основное магнитное поле
- 6. Моделирующие катушки, возбуждающие дополнительное поле
- 7. Лимб, меняющий емкость генератора, а следовательно, и частоту генератора
- 8. Потенциометр, регулирующий напряжение на катушках.

3 Экспериментальные данные

- 1. $\sigma_{f_0} = 0,001$ Мгц;
- 2. $\sigma_I = 0.01 \text{ A};$
- 3. $\sigma_{B_1} = 0,01$ мТл;
- 4. $\sigma_{B_2} = 1$ мТл.

Таблица 1: Результаты измерений.

	+				-			
	f_0 , М Γ ц	I, A	B_1 , мТл	B_2 , мТл	f_0 , М Γ ц	I, A	B_1 , мТл	B_2 , мТл
Вода	9,853	0,33	231,43	231	9,867	0,33	231,75	231
Резина	9,160	0,31	215,14	214	9,173	0,31	215,44	215
Тефлон	10,155	0,38	238,53	252	10,162	0,38	238,67	252

4 Обработка результатов

- 1. Вода (ядро водорода):
 - $g_{\text{\tiny S}} = 5,60 \pm 0,02;$
 - $\mu = (2.80 \pm 0, 01)\mu_{\text{g}}$.
- 2. Резина (ядро водорода):
 - $g_{\text{\tiny S}} = 5,62 \pm 0,03;$
 - $\mu = (2, 81 \pm 0, 15)\mu_{\text{\tiny M}}$.
- 3. Тефлон (ядро фтора):
 - $q_{\rm g} = 5,29 \pm 0,02;$
 - $\mu = (2,65 \pm 0,01)\mu_{\text{M}}$.

5 Обсуждение результатов и выводы

Методом ЯМР вычислены значения магнитных моментов ядер воды, резины и тефлона, то есть пртона и ядра фтора. Табличные значения магнитных моментов в пределах ошибки совпадают с экспериментальными результатами.

Отметим, что g-фактор протона я ядра фтора близки, так как спин ядра фтора есть 1/2 (а не 5/2). Это обусловлено тем, что у фтора уровень $2s_{1/2}$ заполняется раньше.