



She knew there were opportunities

...if she could just **see** them.

## **OUR STORY**



How can a manager have a differentiated view of markets that is accurate?

## **Overall Architecture**



Model Output → Postgres DB → Website

Django + React

### **Key Features**

to address the user's problem



Current Clusters



Shared Characteristics



Historical Comparisons



Future Performance

http://tiffapedia-pyxis.herokuapp.com/analytics/

## Feature Engineering

| 1 | Universe                 | <ul> <li>Compustat Unrestated Quarterly Financial Statements</li> <li>CRSP Monthly Pricing Data</li> <li>1990 - 2018</li> </ul>                                |
|---|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Tradability Filters      | <ul> <li>\$100M Market Cap (Inflation Adjusted)</li> <li>\$1M Dollar Volume (Inflation Adjusted)</li> <li>No Financial Firms</li> </ul>                        |
| 3 | Data Cleaning            | <ul> <li>NAs to Zeros</li> <li>Gap Filling</li> <li>Delisting and Relisting</li> </ul>                                                                         |
| 4 | Quarterly to TTM         | TTM Numbers for Income Statement and Cash Flow Items                                                                                                           |
| 5 | Feature Creation         | <ul> <li>9 Feature Categories: Profitability, Asset Structure, Solvency,<br/>Utilization, Liquidity, Deployment, Sourcing, Growth,<br/>Acceleration</li> </ul> |
| 6 | Feature<br>Normalization | Quantile Transformation                                                                                                                                        |

## **Unsupervised Learning**







# Choosing the Clustering Algorithm: Visual Inspection



### **Clustering Algorithms**



# **Choosing the Clustering Algorithm: Silhouette Score & Optimal K**







Affinity Propagation: optimal k = 11

### **Evaluation: Silhouette Score**

Silhouette analysis for KMeans clustering on sample data with  $n_c$  clusters = 4



#### Silhouette analysis for KMeans clustering on sample data with n\_clusters = 10

0.0

1st Principal Component

0.5

1.0

1.5

2.0



# Feature Importance in each Cluster Factor Maps





(Explained Variance PC1)\*(Contribution to PC1)



(Explained Variance PC2)\*(Contribution to PC2)



Score for Feature 1



Top Features in Cluster 1:

Source Debt
Return on Assets (ROA)
Liquidity Ratio
Debt Paydown
EBIT



### **Demo Time!**

### What can we learn from these labels?



## **Supervised Learning**

#### **Cluster Labels**



**Stock Return Predictions** 

# Supervised Learning: Y labels and train-test scheme

#### Labels - Relative Performance vs S&P 500

| Relative Performance (%) | [-100,-33) | [-33,-10) | [-10,10] | (10,33] | (33,inf] |
|--------------------------|------------|-----------|----------|---------|----------|
| Y Label                  | -2         | -1        | 0        | 1       | 2        |

#### Train-Test Scheme

| Q1 20X4 | Q2 20X4 | Q3 20X4 | Q4 20X4 | Q1 20X5 | Q2 20X5 | Q3 20X5 | Q4 20X5 | Q1 20X6 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Train   |         |         |         | Test    |         |         |         |         |
|         | Train   |         |         |         | Test    |         |         |         |
|         |         | Train   |         |         |         | Test    |         |         |
|         |         |         | Train   |         |         |         | Test    |         |
|         |         |         |         | Train   |         |         |         | Test    |

# The Use of Cluster Labels in Supervised Learning



### **Preliminary (Untuned) Results**

### **Using RandomForestClassifier**

|                           | Base          | Reduce-Cluster-Predict |
|---------------------------|---------------|------------------------|
| Weighted Average Accuracy | 0.269         | 0.293                  |
|                           | depl_capex    | cluster_10             |
|                           | grw_earnings  | cluster_1              |
|                           | grw_sales     | cluster_7              |
| Top Features              | source_equity | cluster_9              |
|                           | solv_int_cov  | depl_capex             |
|                           | prf_roe       | cluster_8              |
|                           | grw_asset     | utl_nwc                |



### **The Road Ahead**

### Steps remaining

- Tune models
- Get data into format for website
- Create the d3 visualization
- Adjust the frontend to make sure all the components are working properly

### **Help Needed**

 Clustering in prediction frameworks

