Dimension reduction

Jeff Leek

@jtleek

www.jtleek.com

PCA and SVD

PCA & SVD have different math goals SVD can be used to estimate PCs First proposed in genomics by Alter et al. 2000 PNAS

Related Problems

You have multivariate matrix of data X

- Find a new set of multivariate variables that are uncorrelated and explain as much variance across rows as possible.
- Find the best matrix created with fewer variables (lower rank) that explains the original data.

The first goal is statistical and the second goal is data compression.

Columns of V^T/rows of U are orthogonal and calculated one at a time Columns of V^T describe patterns across genes Columns of U describe patterns across arrays

 $d_i^2/\sum_i d_i^2$ is the percent of variation explained by the ith column of V

Singular vectors/principal components

Method to identify patterns in the data

Singular values

D is a diagonal matrix $d_{ii} = \text{ith singular value}$ $d_{ii}^{2} / \sum d_{jj}^{2} = \text{percent variance}$ explained by ith singular vectors

More than one pattern

One PC/SV may not equal one "variable"

Patterns are orthogonal

https://github.com/jtleek/dataanalysis/tree/master/week3/006dimensionReduction

https://github.com/jtleek/dataanalysis/tree/master/week3/006dimensionReduction

How this is used Identify meaningful patterns

Find batch effects

http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html

a

b

http://genomicsclass.github.io/book/pages/svacombat.html

http://genomicsclass.github.io/book/pages/svacombat.html

