Nepali Handwritten Text Recognition

Team Members

Jeevan Kaphle

Keshab Saud

Nakul Poudel

Nirajan Gyawali

Content Synopsis

- Introduction
- 2 Problem Statement
- 3 Objective
- 4 Methodology
- 5 Model Overview
- 6 Result and Analysis
- Observations
- Result and Analysis 3

Introduction

Handwriting Recognition is the mechanism for converting the handwritten text into machine-encoded text.

Problem Statement

- Old handwritten documents to be worn and lost in future.
 - Paperwork provides lack of security and is time consuming.

Objective

A system to convert Nepali Handwritten Text into digital form.

Methodology

Figure 1: General Block Diagram of the System

Methodology Contd

Figure 2:Training and Recognition Phase

Data sets

• The 25000 word level devanagari dataset is collected from CVIT.

 Every image is properly labeled giving image path and ground truth text in image.

Word Segmentation

- Read Image
- Resize Image
 - -Canny Edge Detection Process
- Word Detection

Word Segmentation

```
सगरमाथा नेपालको पहिचान हो।
गाई नेपालको गिरिट्य जनावर हो।
ढोका रवील तिमी व्याहर को
आए जस्ती ह हेर्न जाउ त.
प्रमीद रवरेलले गमी गीत गाउँह
तिमी य सँगै मिलेर धरहरा
```


Figure 3: Word Segmentation from Image

Image Preprocessing

Grayscale conversion

Image resize

Transpose

Normalization.

Gray scaled image

Resized image

Feature Extraction

The preprocessed image is passed to CNN to extract the important features.

Figure 4: CNN Layers

Feature Extraction Contd

Relu activation function is used.

The 256 feature maps of size 32x1 are extracted from the CNN layer.

Model Building

Figure 5: Architecture of Model

Configuration Table

SN	Particular	Applied Configuration
1	Image Samples	25,000
2	Validation Samples	2,500
3	Epoch	50
4	Batch Size	25
5	Learning Rate	0.0001
6	Optimizer	RMSProp
7	Loss Function	CTC Loss
8	GPU	Google Colab Tesla K80
9	Training Duration	5 hours

Result and Analysis

Select a file to upload

Select a file to upload

Figure 6: Obtained Outputs

Result and Analysis

Figure 7: Training and Validation Accuracy Graph

Figure 8: Training and Validation Loss Graph

Result and Analysis

Figure 9: Character Error Rate Graph

Challenges Faced

• Difficulty in training the model due to the low specification of the computer.

 Difficulty in finding learning materials related to our project.

 It was really a challenging task working with machine learning project for the first time.

20

Limitations of Project

 May not recognize all the words present in Nepali dictionary.

 Image must be captured with proper lighting and at a particular angle.

 Have to work with limited resources so a great accuracy could not be achieved.

Thank You