# **Historic, Archive Document**

Do not assume content reflects current scientific knowledge, policies, or practices.



#### REPORT OF COOPERATIVE RESEARCH ON INSECT CONTROL IN FARM STORED GRAIN

Period--July 1 to September 30, 1944 No. 13

Compiled by R. T. Cotton, Entomologist Cereal and Forage Insect Investigations Bureau of Entomology and Plant Quarantine U. S. Department of Agriculture Manhattan, Kansas

The material in this report consists largely of unpublished data and should be kept confidential. It is made available in its present form for the convenience of the various State and Federal Agencies concerned with the preservation of stored grain from insect damage.

Declassified memo 6/9/54 6/10/54

#### WHEAT STORAGE

Effect on Different Management Practices on Insect Populations in Wheat Stored in Ever-Normal Granary Type Bins\*

: :

The state of the s

。 (1975年) · 李台《表示》。

One of the primary objectives of the wheat storage work has been the determination of the effect of the different management practices on the insect populations in stored grain. When the project was started in the summer of 1941, a group of bins was designated as the management series. The grain in this series of bins received different treatments with the object of determining the best and cheapest method of handling grain stored in Commodity Credit Corporation type bins. This work has now been in progress for a period of three years, and as a result, differences between management practices have become apparent. The status of the management series as of September 30, 1944, is given in the following tabulation:

all all and the second second

<sup>\* --</sup> Reported by H. H. Walkden and R. B. Schwitzgebel, U. S. Dept. of Agriculture, Bureau of Entomology and Plant Quarantine in cooperation with the Bureau of Plant Industry, Soils, and Engineering.

|     | Origins Number of Bing Grain Storage Practice                   | Remaining<br>September |
|-----|-----------------------------------------------------------------|------------------------|
|     |                                                                 | ,                      |
| 1.  | Fumigation in August and October                                | 10*                    |
|     | Turning, cleaning and fumigating in September 3.                | 3                      |
|     | Walls and roofs painted white                                   | 5                      |
| 4.  | White walls and roofs, grouped for shading 4                    | 4                      |
| 5.  | Fumigation in September 8                                       | 8                      |
| 6.  | No treatment, 9-10% moisture grain 2                            | 2                      |
| 7.  | 10-11% 11 18                                                    | 2                      |
| 8.  | 11-12%                                                          | 0                      |
|     | $12-12\frac{1}{2}\%$                                            | 0                      |
|     | 14 12 12 14% 20 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 | . 0                    |
| 11. | Turning in January 11. 10.                                      | 0                      |
| 12. | Turning and cleaning when necessary 7                           | <b>0</b>               |
| 13. | Oil spray on surface, June and August 9                         | 0                      |
|     | Tétals 97                                                       | 34                     |
|     | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                        |                        |

The basis for elimination was the development of dangerous insect populations in the grain.

\* - Note: One bin in this series was eliminated because of roof-leaks, and not because of the failure of the treatment.

247 . 77

From the above tabulation it may be noted that treatments 1 to 5 gave equally good protection from insect damage. The grain in these groups was of about 11.5 percent moisture content. Grain of 9-10 percent moisture content (treatment 6) has not as yet developed serious insect infestation. Of the 8 bins in the 10-11 percent moisture groups, 6 became dangerously infested with insects and had to be fumigated. The bins in groups 8, 9, and 10 became infested, the rate of development of the population being proportional to the moisture content. The practices of turning in cold weather, turning and cleaning when necessary, and oil spray on the surface, all failed to give protection from insect attack.

Study of the Fluctuation of Insect Populations in Wheat Stored in Ever-Normal Granary Type Bins

4

A Property of the State of the

The study of insect population fluctuations in wheat stored in ever-normal granary type bins was continued during the past three months. Five-probe samples were taken semi-monthly from the upper southwest quadrant of 49 bins in the management series and a record made of the number of each species of stored grain insects. A summary of the data obtained during the past nine months is presented in table 1 and arranged to show the effect of different grain storage practices on insect populations.

For the purpose of this table the lesser grain borers and the rice weevils were considered as "weevils" and all other species were combined as "hran bugs". The rice weevil was rarely taken in the samples while the principal bran bug species were the flat grain beetle and the sawtooth grain beetle.

It may be noted in table 1 that all grain of 10.5 percent in moisture or greater required treatment during August and September because of sevene insect infestation unless it was stored in bins which were painted white. Grain of 9 percent moisture as well as that stored in white steel bins has failed to develop serious insect populations so far this season. The lesser grain borer has been conspicuously absent in white 2740-bushel steel bins.

The data indicate that fumigation in August and October tends to keep the insect population at a lower level than one fumigation in September. The greatest insect populations were recorded in wheat in 2740-bushel-steel bins which are turned, cleaned, and fumigated annually in September.

The development of insect infestations in wheat stored in wood bins has been much slower as compared with that in steel bins.

Grain in wood bins painted red has had higher populations than wheat in wood bins with white walls. Painting the roof of a wood bin white in addition to the walls tends to keep the lesser grain borer populations at a very low level.

Several 2740-bushel steel bins were filled with wheat from Haven, Kansas, Coop Elevator when the Hutchinson site was established in June, 1941. This wheat was drier than that used to fill the remaining bins, testing about 10.9 percent moisture. Two lots of this grain (bin 5-1 and 6-2) were set aside as untreated checks. Several other bins were given an initial fumigation with no further treatment planned. Although most of the other 2740-bushel lots of grain on the site developed heavy insect infestations and required treatment by the fall of 1942, the insect populations in these bins of dry grain remained at a very low level.

To demonstrate the effect of temperature on insect development one 2740-bushel lot of this Haven wheat (5-2) was divided among three 1000-bushel steel bins, (1-5, 4-10, 4-11) in May, 1944. Observations on the insect populations in these bins were continued until September 1, 1944, at which time all of the bins required fumigation because of insect infestation.

The results of these observations are presented in table 2. It may be noted that about five times as many lesser grain borers and more than three times as many bran bugs were found in the 1000-bushel lots of grain than were taken in the 2740-bushel bins by September 1. With no change having occurred in the moisture content of the wheat the change in temperature conditions must have been responsible for the differential rate of insect development which was effected by reducing the size of the storage units. On September 1 the grain in the upper southwest quadrant of the three 1000-bushel lots of grain averaged 83° F.; while in the same region of the 2740-bushel bins the average temperature was 76° F.

In order to study the effect of moisture on insect development six 1000-bushel steel bins were filled with wheat from the 1943 crop shortly after harvest of that year. Two lots of grain were secured for each of three moisture contents -- 9.3 percent, 11.3 percent, and 12.0 percent. Observations were made to determine insect populations in these bins and these data are presented in table 3.

It may be noted from table 3 that the development of insects was most rapid in the grain of the highest moisture content and slowest in the driest grain. The effect of higher moisture content on the rate of increase of the bran bug population is more pronounced than for the lesser grain borer.

Table 1:--Summary of the insect populations in the upper southwest quadrant of steel and wood bins, Hutchinson, Kansas, 1944.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      | Aver | age nu | mber o | finse       | cts per  | 1000-               | grams.                           |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|------|--------|--------|-------------|----------|---------------------|----------------------------------|-------------------|
| Grain storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jan.        | Feb. | Vbr. | June   |        |             | Aug.     | Company of the last | The second results of the second | Sept.             |
| practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11          | 10   | 1    | -3     | 1      | 15          | 1        | 15                  | 1                                | 15                |
| 1000-bushel steel bins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |      |      |        | ; ·    |             |          | · Markey Open       |                                  |                   |
| No treatment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |      |      |        |        |             |          | 100                 | T.                               |                   |
| 9.3% moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 011         | 0    | 0    | 0      | 0.2    | 0.2         | 0.4      | 0.8                 |                                  | 214               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      | U    | U      | 0.6    | 0.6         | 1.8      | 1.0                 | 1.8                              | 0.4               |
| 10.8% moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |      |      | Q      | 0      |             | 5.6      |                     | 14.8                             | (Termi.           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • • • • • | •    |      | 0      | 3.2    | 5.2         | 12.8     | 9.2                 | 9.2                              | nated)            |
| 11-11.5% moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.2         | .0.6 | 0.1  | 0.2    | 0.3    | 1.5         | 6.0      | 6.0                 | 43.5                             | 10.3              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8         |      | 1.6  | 5.8    | 11.4   |             | 40.8     | 20.6                | 43.5<br>57.2*                    | 29.3**            |
| 12% moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6         | 0    | 0    | 0      | 0      | 1.4         | 4.8      | 4.2                 | 11.8                             | (Termi            |
| 15/6 MO13 041 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 10.7 | 0.4  | 0      | 2.0    | 8.6         | 18.0     | 33.0                |                                  | nated)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10          |      |      |        |        | . *         |          |                     |                                  | Í                 |
| White walls and roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 2.0       | 0.5  | 0    | 0      | 0      | 0.2         | 0<br>3.6 | 0                   | 3.6<br>17.4                      | 1.0               |
| the state of the s | 2.0         | ,U.5 | U    | 1.0    | 10     | 1.4         | . O. O   | 5.6                 | 17.4                             | 10.4              |
| Fumigation in September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0           | 0    | 0    | 0      | 0      | 0.4         | 2.8      | 8.2                 |                                  | 0.4               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2         | 0.4  | ,0   | 0      | 0.2    | 3.6         | 12.6     | 22.4                | 82.8                             | 0.8               |
| Fumigation in August                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           | 0    | 0    | Ö      | 0      | 1.5         | 2.0      | 3.3                 | 0.2                              | 0.3               |
| and October                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0           | 0.1  | 0    | 0      | 2.2    | 6.5         | 8.7      | 11.6                | 0.3                              | 0.8               |
| mum alana and ford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0         | Line | •    | • 1    |        | 14-         | 12/52/0  |                     |                                  | 0.0               |
| Turn, clean, and fumi-<br>gate in September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2         | 0.4  | 0    | 0.4    |        | 0.4.<br>3.6 | 6.8      | 11.2                | 8.8 T                            | 2.0 <sub>F</sub>  |
| Base In Debasmesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •••         |      | ,    |        |        | . ; . ;     |          |                     | 10.5                             | 1.0               |
| 2740-bushel steel bins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |      |      | l-L-   |        |             |          |                     |                                  |                   |
| No treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |      |      |        |        |             |          |                     |                                  |                   |
| 10.5-11% moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7         | 0.2  | 0.0  | 0.0    | 0.2    | 0.3         | 2.2-     | 3.8                 | 10.5 m                           | (Termi-<br>nated) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6         | 0.5  | 0.1  | 0.6    | 1.5    | 10.7        | 11.1     | 20.2                | 21.2 *                           | nated)            |
| 11-11.5% moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      | 0.0  | 0.0    | 0.2    | 1 2         | 3 7      | 2.6                 | 9.8                              | Termi -           |
| 11 11 0/8 MO18 041 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |      | 0.2  | 0.9    | 2.3    | 2.7         | 5.4      | 7.5                 | 19.8 F                           | Termi - nated)    |
| 17h i h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |      |      |        |        |             |          |                     |                                  |                   |
| White walls and roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           | 0.3  | 0    | 0.5    | 0.1    | 0.6         | 0<br>3.3 | 8.8                 | 0<br>7.2                         | 0<br>5.9          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0         | 0.0  | 0,0  | 0,0    | 0.1    | 0.0         | 0.0      | 0.0                 | 1                                | 0.5               |
| Painted white and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1         | 0.0  | 0.0  | 0.0    | 0.0    | 0.0         | 0.0      | 0.0                 | 0.0                              | 0.3               |
| grouped for shading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0         | 1.8  | 0.5  | 0.6    | 0.6    | 1.1         | 2.2      | 1.4                 | 4.0                              | 2.3               |

Table 1 (concluded)

|                                              | :          |      | Ave      | rage n | umber       | of ins      | ects pe     | r 1000       | -grams.        |               |
|----------------------------------------------|------------|------|----------|--------|-------------|-------------|-------------|--------------|----------------|---------------|
| Grain storage practice                       | Jan.       | Feb. | Apr.     |        | July        |             | Aug.        | Aug.<br>15   | Sept.          | sept.         |
| Fumigation in September                      |            | -    | 0        | 0      | 0.1         |             | 5.8         | 3.2<br>9.3   | 7.5<br>11.8 F  | 1.2           |
| Fumigation in August and October             | 0          | 0    | 0        | 0      | 0 -         | 0.6         | 2.2         | 5.5<br>31.0  | 0              | 0.2           |
| Turn, clean, and fumi-<br>gate in September. | 0 2 7      | 0    | 0<br>3.6 | 0.2    | 0.5<br>13.5 | 0.7<br>32.6 | 6.3<br>87.9 | 11.7<br>33.2 | 61.4 T<br>80.9 | 3.5 F<br>14.9 |
| 1500-bushel wood bins                        |            | •    |          |        |             |             |             |              |                |               |
| White walls and roof.                        |            | 0    | 0        | 0 0    | 0           |             | 0           | 0 21.6       | 0 21.2         | 0.6<br>31.0   |
| White walls .                                | 2.0        | 0.4  | 0 0      | 0 4 1  | 0 1.2       |             | 0.2<br>7.3  | 2.8          |                | 4.0           |
|                                              | 3.0<br>4.0 | 0    | 0        | 0.2    | 0.2<br>6.8  |             | 1.2 55.0    | 4.6<br>62.0  | 2.8            | 6.6<br>58.8   |

<sup>•</sup> Weevils: includes lesser grain borer and rice weevil

17.00

<sup>&</sup>quot; = Bran bugs: all species except the weevils

<sup>·</sup> Fumigated two of six bins

<sup>\*\* =</sup> Fumigated two of four remaining bins

F = Grain fumigated

T = Grain turned and cleaned

Table 2: -- Effect on insect populations resulting from the transfer of grain from 2740 to 1000-bushel bins, Hutchinson, Kans. 1944

|                  |      | Average                                | number of  | insects | per 100 | 00 grams                              |
|------------------|------|----------------------------------------|------------|---------|---------|---------------------------------------|
| -                | June | July                                   | July       | Aug.    | Aug,    | Sept.                                 |
| Bin number       | 3    | 1 ,                                    | 15         | 1       | · 15.   | 1                                     |
|                  |      |                                        | 1943       | 25.7.   |         | 4                                     |
| Average of 5-1   | Q+   | 0                                      | 0.2        | 0.1     | 3.0     | 6.2                                   |
| and 6-2          | 44   | 3.0                                    | 0.2<br>8.4 | 16.0    | 12.1    | 15.0                                  |
| 5-2              | 0    | . 0                                    | 0          | 0.8     | 3.0     | 2.0                                   |
| Trings (Table)   | 2,0  | 4.0                                    | 7.0        | 11.4    | 10.0    | 7.0                                   |
|                  |      | ************************************** | 1944       |         |         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Average of 5-1   | 0    | o ·                                    | 0.4        | 1.1°    | 3.0     | 11.7                                  |
| and 6-23-3       | 1.2  | 2.0                                    | 16.5       | 13.0    | 19.0    | 15.0                                  |
| Average of 4-10. | 0    | 0.3                                    | 0.9        | 5.3     | 9.7     | 55.0                                  |
| 4-11 and 1-5 *   | 0.6  | 7.7                                    | 10.3       | 5.3     | 21.0    | 50.0                                  |

t = Lesser grain borer

Table 3: -- Comparison of insect populations in wheat of three different. moisture contents stored in 1000-bushel steel bins, Hutchinson, Kans. 1944.

|                                                | :                | -,         | Ave       | rage ni | ımber | of insec | ts per      | 1000 g        | rams       |
|------------------------------------------------|------------------|------------|-----------|---------|-------|----------|-------------|---------------|------------|
| Bin number                                     | :Moist.: : (%) : | Apr.       | June<br>3 | July    |       | Aug.     | Aug         | sept.         | Sept.      |
| Ave. of $\frac{1}{2}$ -3 and $\frac{1}{2}$ -6  | 9.3              | 0-1-<br>04 | 0 -       | 0.6     | 0.2   | 0.4      | 0.8         | 1.8           | 2.4        |
| Ave. of 2-14<br>and 11-12                      | 11.3             | 0          | 0.2       | 0.4     | 0.2   | 3.0      | 2.0         | 17.0°<br>14.2 | 8.0<br>7.4 |
| Ave. of $\frac{1}{2}$ -9 and $\frac{1}{2}$ -10 | 12.0             | 0          | 0         | 0 2.0   | 1.4   | 4.8      | 4.2<br>33.0 | 11.8          | Fumigat    |

<sup>&#</sup>x27; = Lesser grain berer

<sup>\* =</sup> Grain from 5-2

w = Bran bugs

#### Control of Insects in Farm-stored Grain

As indicated in Report No. 12, work was started on the control of insects in farm-stored grain. During the past three months, frequent observations have been made to determine the effectiveness of the various interior wall treatments, which were applied before the bins were filled with wheat of the 1944 crop. Samples were taken at the surface of the grain next to the wall and from the grain mass.

The infestation was determined from the examination of these samples. The results are given in table 4. From the table it may be noted that the greatest number of dead insects were found near the walls which had been treated with DDT, and also that the intensity of infestation varied greatly in the different bins. Large numbers of dead cadelles were observed on the surface of the grain adjacent to the walls treated with DDT, and extended out about 18 inches from the wall. Very few dead insects were noted on the surface near walls receiving other treatments. It was also noted that cadelle larvae were scaling off the whitewash near old burrows, and in some instances were entering them. The insect infestation in the grain mass was negligible in all of the granaries.

The comparative abundance of the species of stored grain insects found in the farm bins is given below:

| Species                                                                                                                                          | Percent             |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Cadelle (Tenebroides mauritanicus L.) larvae                                                                                                     | 66.6                |
| Flat grain beetle (Laemophloeus minutus Oliv.) Lesser grain borer (Rhyzopertha dominica Fab.) Sawtooth grain beetle (Oryzaephilus surinamensis L | 19.2                |
| Rice weevil (Sitophilus oryza L.) Red flour beetle (Tribolium castaneum Hbst.) Small-eyed flour beetle (Palorus ratzeburgi Wissm.                | 2.2<br>1.3<br>) 0.9 |
| Dermestid larvae (Trogoderma sp.) Foreign grain beetle (Ahasverus advena Waltl.) Yellow meal worm larvae (Tenebrio molitor L.)                   | 0.6<br>0.3<br>0.3   |

far the most abundant insect in farm-stored grain. In addition to the work with wall treatments, a number of farm granaries were fumigated experimentally. The results are presented later in this report.

Table 4:--Effect of various wall treatments on insect infestation in farm-stored grain, Reno County, Kans. September 1944.

|               |                         | Number of insects | ber 1000 grams |
|---------------|-------------------------|-------------------|----------------|
|               |                         | Surface sample    | next to wall   |
| Location      | Wall treatment          | Living            | Dead           |
|               |                         |                   |                |
| Oldenettel    | Whitewash               | 96                | 4              |
| West bin      | Red barn paint          | 48                | 0              |
|               | White lead paint        | 42                | . 4            |
|               | Dendrol-lye             | 42                | 58             |
|               | DDT                     | 10                | 70             |
|               |                         |                   |                |
| Oldenettel    | K-655                   | 12                | 0              |
| East bin      | Untreated check         | 10                | ~ 0            |
|               | Dendrol-lye             | 8                 | . 4            |
|               | K-1127                  | 6                 | 0              |
| •             | K-208                   | 6                 | : o · · · ·    |
|               | Deobase oil             |                   | 2              |
| •             | DDT                     | : · · · · 4       | 32             |
|               |                         |                   |                |
| Swanson       | Untreated check         | 12                | 0              |
| granary       | Deobase oil             | 6                 | 0              |
|               | DDT                     | 4                 | 0              |
|               |                         | ·                 |                |
| Swanson, west | Dendrol-lye, south wall | 42                | 4.             |
| box car       | Dendrol-lye, west wall  | 16                | 0              |
|               | Dendrol-lye, east wall  | 14                | 0              |
|               |                         |                   |                |
| Swanson, east | DDT, west wall          | 6                 | . 0            |
| box car       | DDT, south wall         | 4                 | 0              |
|               | DDT, east wall          |                   | 1 11 0         |
|               | DDT, north wall         |                   | 10             |
|               |                         | and the second    | •              |
| Bacon .       | K-655                   | 16                |                |
| SE bin        | Deobase oil             | 12                | 0              |
|               | K-208                   | 6.                | 0              |
|               | K-1127                  |                   | 0              |
|               | Untreated               | 2 2               | 0              |
|               |                         |                   |                |
| Gump          | DDT                     | 6                 | . 0            |
|               | Red barn paint          | 4                 | 0              |
|               | White lead paint        | 2                 | 0              |
|               | Whitewash               | 0 :               | 0              |
|               |                         |                   |                |

The composition of the various materials is given in Report No. 12.

### Experimental Fumigation of Wheat

During the past three months some 90 bins, aggregating nearly 140,000 bushels of grain, have been fumigated experimentally. With the discovery that fumigants are retained in killing concentrations for long periods in grain stored in tight steel bins, it was thought advisable to evaluate the efficiency of certain compounds formerly considered to be of too low toxicity for use in grain fumigation. The compounds which were included in the tests are listed below:

| Compound                                  | Density | Boiling point deg. C. | cost per lb. |
|-------------------------------------------|---------|-----------------------|--------------|
| Trichlorethane                            | 1.44    | 113                   | 18.75        |
| Tetrachlorethane                          | 1.588   | . 131                 | 8.           |
| Trichlorethylene                          | 1.46    | 87                    | 8.4          |
| Tetrachlorethylene                        | 1.623   | 121                   | 9.           |
| Dichloromethane (methylene chloride)      | 1.336   | 40                    | 16.7         |
| Tetrachloromethane (carbon tetrachloride) | 1.595   | 76                    | 8.           |
| Dichloroethylether :                      | 1.17    | 178                   | -            |

In addition to the above materials, ethylene dibromide was tested as a surface toxicant and several commonly used mixtures were tried in farm granaries. The results of the experimental fumigation work is given in table 5. The average kills for the various fumigants is given at the end of the table.

1. Experimental fumigation of grain stored in steel bins (Table 5, Part 1)

Trichlorethane and tetrachlorethane failed to give good kills at dosages of 3 gallons per 1000 bushels. Further, these materials imparted an odor to the grain which persisted for more than two months. This quality precludes their use as grain fumigants.

Trichlorethylene gave good kills at dosages of 3 gallons per 1000 bushels in both the test probes and in the natural populations. As a result of these trials, it is felt that this material can be used satisfactorily as a grain fumigant and the cost is about the same as for the commonly used fumigants.

Methylene chloride (dichloromethane) gave insufficient kills at a dosage of 2 gallons per 1000 bushels. At 3 gallons per 1000 bushels the kills in test probes were good, but at its present cost it cannot compete with other materials.

Carbon tetrachloride continues to give excellent results both in test probes and in natural populations even at dosages of 2 gallons per 1000 bushels. From the standpoint of cost, safety and efficiency it approaches the ideal grain fumigant.

Dichloroethylether was tried in one bin. While the kill was satisfactory, this material imparted a very strong odor to the grain which has persisted for nearly 3 months, a quality which rules it out as a grain fumigant.

The 3:1 mixture of ethylene dichloride-carbon tetrachloride, used as checks in two bins, gave good results at 2 gallons per 1000 bushels. However, past experience indicates that 4 gallons per 1000 bushels is required for consistently good kills.

In cooperation with the Dow Chemical Company, ethylene dibromide was tested as a surface toxicant, using carbon tetrachloride as a carrier. A mixture consisting of 10% ethylene dibromide, carbon tetrachloride 90% gave better kills in the surface grain than did the mixture containing 5% ethylene dibromide at a dosage of 2 gallons per 1000 bushels. The ethylene dibromide appears to be thrown out in the top foot of grain and remains effective for at least a week. This mixture shows great promise, inasmuch as the weakness with carbon tetrachloride alone has been its failure to kill in the surface grain.

Ethylene dibromide was also tested in combination with the 3:1 mixture of ethylene dichloride-carbon tetrachloride. The results were no better than when it was used with carbon tetrachloride.

A mixture consisting of carbon tetrachloride, 90%; methyl bromide, 5%; and ethylene dibromide, 5% gave excellent results at a dosage of only 1 gallon per 1000 bushels.

2. Experimental fumigation of grain stored in wood Ever-Normal Granary bins and wood farm granaries.

Through the cooperation of farmers in Reno County, many farm granaries were made available for experimental fumigation. When it is considered that the amount of grain stored on the farm averages about three hundred million bushels, the importance of an efficient stored grain insect control program for farm-stored grain can hardly be over-emphasized.

In an attempt to determine minimum dosages of fumigants for farm bins, a series of farm granaries was fumigated during the quarter. The bins chosen for fumigation varied from very loose, poorly built structures to those which were well built and as tight as a wooden bin can be made. The results with the various fumigants in the different farm bins are given in table 5, part 2.

Altogether, the results were surprisingly good. However, in some bins which appeared to be fairly tight, poorer results were obtained than in others which seemed to be loose. From these results it is quite probable that somewhat higher dosages will be required for wood farm bins than for steel bins. Further fumigation of farm-stored grain is planned to establish definitely the dosages required for the many different types of granaries in use.

Table 5: -- Experimental fumigation of grain, Hutchinson, Kans. 1944

PART I. STEEL BINS

| :   :   Cape   :   Dosage   :   Percent mortality   Edin   : oity   : Date   :   per   : Test   : Natural   : No. : (bu.)   : treated   : 1000 bu.   : probes: population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |         |       |          |    |          |   |         |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-------|----------|----|----------|---|---------|------------|
| Trichlorethane  10-7 2000 7/19 3 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |         | _     |          | :  | Dosage   |   |         |            |
| Trichlorethane    10-7   2000   7/19   3   78       8-10   2740   7/19   3   73       9-5   2740   7/19   3   81       Tetrachlorethane   10-8   2000   7/19   3   66       10-4   2740   7/19   3   79       12-7   2740   7/19   3   79       12-7   2740   7/19   3   79       12-7   2740   7/19   3   79       12-7   2740   7/19   3   79       12-7   2740   7/19   3   85       Trichlorethylene   2-14   1000   9/19   2   99   65     4-11   1000   9/19   2   99   74     1/2-1000   9/5   3   1000   9/6     1-5   1000   9/5   3   87   97     8-12   1000   7/19   3   100       5-4   2740   7/19   3   100       6-4   2740   7/19   3   100       Tetrachlorethylene   4-13   1000   7/19   3   91       7-11   2740   7/19   3   80       8-6   2740   9/5   3   45   86     7-7   2740   9/5   3   45   86     7-7   2740   9/5   2   53   14     (dichloromethane)   4-11   1000   9/5   2   53   14     (dichloromethane)   4-11   1000   9/5   2   67   92     1-1   1000   7/19   3   100       6-3   2740   9/5   2   85   67   92     1-1   1000   7/19   3   100       Carbon tetrachloride   Walsten   500   8/11   2   99       Judy   1000   8/18   2   95       3-13   1000   9/12   2     97     4-12   1000   9/12   2     98     11-2   2740   9/12   2     98 |                      | : Bin : | •     |          | :  | -        |   |         |            |
| R=10 2740 7/19 3 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fumigant             | : No. : | (bu.) | :treated | :  | 1000 bu. | : | probes: | population |
| R=10 2740 7/19 3 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trichlorethane       | 10-7    | 2000  | 7/10     |    | 7        |   | 78      | 4040       |
| Tetrachlorethane   10-8   2000   7/19   3   66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1220mior obligatio   |         |       | 7/10     |    | 3        |   |         |            |
| Tetrachlorethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |         |       |          |    | 3        |   |         |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | . 5-0   | 2140  | 1/15     |    |          |   | 02      |            |
| Trichlorethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tetrachlorethane     | 10-8    | 2000  | 7/19     |    |          |   | 66      |            |
| Trichlorethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |         |       | 7/19     |    |          |   | 79      | -          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 12-7    | 2740  | 7/19     |    | 3 .      |   | 83      | and our    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trichlorethylene     | 2-14    | 1000  | 9./19    |    | 2        |   | 99      | 65         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 Zonioi oony tono  |         |       |          |    | . 2      |   |         |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |         |       |          |    |          |   |         |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |         |       | . , ,    | 1  | 3        |   |         |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |         |       |          |    | 3        |   |         |            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |         |       | 7/19     |    |          |   |         |            |
| Tetrachlorethylene 4-13 1000 7/19 3 99 9-4 2740 7/19 3 91 7-11 2740 7/19 3 80 8-6 2740 9/5 3 45 88 7-7 2740 9/5 3 56 91  Methylenechloride 2-16 1000 9/5 2 53 14 (dichloromethane) 4-11 1000 9/5 2 72 37 6-2 2740 9/5 2 85 67 8-3 2740 9/5 2 85 67 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 (tetrachloromethane) Walsten 800 8/11 2 99 Judy 1000 8/18 2 95 3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 98 11-2 2740 9/12 2 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                    |         |       | 7/19     |    |          |   |         | See and    |
| Tetrachlorethylene 4-13 1000 7/19 3 99 9-4 2740 7/19 3 91 7-11 2740 7/19 3 80 8-6 2740 9/5 3 45 88 7-7 2740 9/5 3 56 91  Methylenechloride 2-16 1000 9/5 2 53 14 (dichloromethane) 4-11 1000 9/5 2 72 37 6-2 2740 9/5 2 85 67 8-3 2740 9/5 2 85 67 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95 3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 98 11-2 2740 9/12 2 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |         |       |          |    |          |   |         | our test   |
| 9-4 2740 7/19 3 91 7-11 2740 7/19 3 80 8-6 2740 9/5 3 45 88 7-7 2740 9/5 3 56 91  Methylenechloride 2-16 1000 9/5 2 53 14 (dichloromethane) 4-11 1000 9/5 2 72 37 6-2 2740 9/5 2 85 67 8-3 2740 9/5 2 85 67 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 6-3 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 Judy 1000 8/18 2 95 Judy 1000 8/18 2 95 3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 98 11-2 2740 9/12 2 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |         | ,     | 3/7      |    |          |   |         |            |
| 9-4 2740 7/19 3 91 7-11 2740 7/19 3 80 8-6 2740 9/5 3 45 88 7-7 2740 9/5 3 56 91  Methylenechloride 2-16 1000 9/5 2 53 14 (dichloromethane) 4-11 1000 9/5 2 72 37 6-2 2740 9/5 2 85 67 8-3 2740 9/5 2 85 67 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 6-3 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 Judy 1000 8/18 2 95 Judy 1000 8/18 2 95 3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 98 11-2 2740 9/12 2 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tetrachlorethylene   | 4-13    | 1000  | 7/19     |    | 3        |   | 99      | dan ben    |
| 7-11.2740 7/19 3 80 8-6 2740 9/5 3 45 88 7-7 2740 9/5 3 56 91  Methylenechloride 2-16 1000 9/5 2 53 14 (dichloromethane) 4-11 1000 9/5 2 72 37 6-2 2740 9/5 2 85 67 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 Judy 1000 8/18 2 95 3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 98 11-2 2740 9/12 2 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                    | 9-4     | 2740  | 7/19     |    |          |   | 91      | ess de     |
| 7-7 2740 9/5 3 56 91  Methylenechloride 2-16 1000 9/5 2 53 14 (dichlcromethane) 4-11 1000 9/5 2 72 37 6-2 2740 9/5 2 85 67 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95  3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 7-11.   | 2740  | 7/19     |    | 3        |   | 80      | ,          |
| 7-7 2740 9/5 3 56 91  Methylenechloride 2-16 1000 9/5 2 53 14 (dichloromethane) 4-11 1000 9/5 2 72 37 6-2 2740 9/5 2 85 67 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95  3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 8-6     | 2740  | 9/5      |    | 3        |   | 45      | 88         |
| (dichlcromethane)       4-11 1000       9/5       2       72       37         6-2 2740       9/5       2       85       67         8-3 2740       9/5       2       67       92         1-1 1000       7/19       3       100          6-3 2740       7/19       3       100          5-5 2740       7/19       3       91          Carbon tetrachloride Walsten 500       8/11       2       91          (tetrachloromethane) Walsten 800       8/11       2       99          Judy 1000       8/18       2       95          3-13 1000       9/12       2        97         4-12 1000       9/12       2        98         11-2 2740       9/12       2        93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 7-7     | 2740  |          |    | 3.       |   | 56      | 91         |
| (dichlcromethane)       4-11 1000       9/5       2       72       37         6-2 2740       9/5       2       85       67         8-3 2740       9/5       2       67       92         1-1 1000       7/19       3       100          6-3 2740       7/19       3       100          5-5 2740       7/19       3       91          Carbon tetrachloride Walsten 500       8/11       2       91          (tetrachloromethane) Walsten 800       8/11       2       99          Judy 1000       8/18       2       95          3-13 1000       9/12       2        97         4-12 1000       9/12       2        98         11-2 2740       9/12       2        93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |         |       |          |    | VIII     |   |         |            |
| 6-2 2740 9/5 2 85 67 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95 3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         |       | 9/5      | ٠. |          |   |         |            |
| 8-3 2740 9/5 2 67 92 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95 3-13 1000 9/12 2 97 4-12 1000 9/12 2 98 11-2 2740 9/12 2 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (dichlcromethane)    |         |       | 9./5     |    | -2       |   |         |            |
| 1-1 1000 7/19 3 100 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91 (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95 3-13 1000 9/12 2 4-12 1000 9/12 2 98 11-2 2740 9/12 2 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |         |       | 9/5      |    | . 2      |   |         |            |
| 6-3 2740 7/19 3 100 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91  (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95  3-13 1000 9/12 2  4-12 1000 9/12 2  98  11-2 2740 9/12 2  93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |       | 9/5      |    |          |   |         | 92         |
| 5-5 2740 7/19 3 91  Carbon tetrachloride Walsten 500 8/11 2 91  (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95  3-13 1000 9/12 2 97  4-12 1000 9/12 2 98  11-2 2740 9/12 2 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |         |       |          |    |          |   |         |            |
| Carbon tetrachloride Walsten 500 8/11 2 91 (tetrachloromethane) Walsten 800 8/11 2 99  Judy 1000 8/18 2 95 3-13 1000 9/12 2 97  4-12 1000 9/12 2 98 11-2 2740 9/12 2 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •.                   |         |       | 7/19     |    |          |   |         |            |
| (tetrachloromethane)     Walsten     800     8/11     2     99        Judy     1000     8/18     2     95        3-13     1000     9/12     2      97       4-12     1000     9/12     2      98       11-2     2740     9/12     2      93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 5-5     | 2740  | . 7/19   |    | 3        |   | 91      | um on      |
| (tetrachloromethane)     Walsten     800     8/11     2     99        Judy     1000     8/18     2     95        3-13     1000     9/12     2      97       4-12     1000     9/12     2      98       11-2     2740     9/12     2      93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carbon tetrachloride | Walsten | 500   | 8/11     |    | 2        |   | 91      | 640 Gan    |
| Judy     1000     8/18     2     95        3-13     1000     9/12     2      97       4-12     1000     9/12     2      98       11-2     2740     9/12     2      93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |       | 8/11     |    | 2        |   |         | que tem    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                    |         |       | 8/18     |    |          |   |         | non-time   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |         |       |          |    | 2        |   | en ch   | 97         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |         |       |          |    | 2 .      |   | Aug 440 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 11-2    |       |          |    | . 2      |   | -       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 12-2    | 2740  |          |    |          |   | ***     | 91         |

Table 5, continued

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                     |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Capa-               |                               | Dosage                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mortality            |
| A STATE OF THE STA | : Bin :       | city                | : Date :                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Fumigant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : No. :       | (bu.)               | : treated:                    | 1000 bu.                     | : probes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | population           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to the second | tere y e e          | A SE THE PROPERTY NO. 1 COMME | and the property of the same | 14 ° 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-10         | 2740                | 9/12                          | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97                   |
| (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11-11         | 2740                | 9/12                          | 2                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 7-3         | 2740                |                               | 2                            | and the same of th | <u>.</u> 30          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-4           | 2740                | 9/12                          | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94                   |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-16          | 1000                | 7/19                          | 3.11                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-3           | 2740                | 7/19                          | 3                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-8           | 2740                | 7/19                          | 3 - 300                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                     | ,                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Dichloroethylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-15          | 1000                | 7/19                          | 3 3 S                        | ÷90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                     | . 6 . 2                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Ethylene dichloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-12          | 1000                | 8/11                          | 2                            | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                  |
| 75%-carbon tetra-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-12          | 1000                | 8/11                          | 2                            | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97                   |
| chloride 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-14          | 1000                | 9/20                          | 4                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-7           | 2740                | 9/20                          | 4                            | also dipli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-11          | 2740                | 9/20                          | 4                            | que dim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.5           |                     | - /-                          | _                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-10          | 1000                | 9/5                           | 2                            | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99                   |
| 90%-ethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ₹-9           | 1000                | 9/5                           | 2                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - ,99                |
| dibromide 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8-2           | 2740                | 9/5                           | . 2                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-1           | 2740                | 9/5                           | 2                            | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                     | 4 - 4 -                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-16          | 1000                | 8/11                          | 2                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ <del>* * * *</del> |
| 95% - ethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-1           | 1000                | 8/11                          | 2                            | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | à:                   |
| dibromide 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | \$ <sup>*</sup> * * |                               |                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                     | 0 10.0                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 3:1 mixture of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-2           | 1000                | 8/11                          | 2                            | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>₩</b>             |
| ethylene dichloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-16          | 1000                | 8/11                          | 2                            | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 變                    |
| and carbon tetra-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Fig.        | . 7                 | . 5                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| chloride 95%-ethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                     |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| dibromide 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ٤.            |                     |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -7                  | - /                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-16          | 1000                | 8/11                          | 1                            | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Ф</b> Ф           |
| 90% - ethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Swanson       | 900                 | 8/11                          | 1                            | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                   |
| dibromide 5%methyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷.            | -                   | (1 <sub>3</sub> = 2           | 3                            | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| or outrage 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 19.1.0              |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| they had to be a little of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                     |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                     |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |

Table 5 (continued)

PART II. WOOD BINS

Ever-Normal Granary and Farm Granaries. (Ever-Normal Granary bins are indicated by an asterisk.)

| ~                |              | • • •             |          |             | _                        |            |
|------------------|--------------|-------------------|----------|-------------|--------------------------|------------|
|                  | : :          | Capa-:            | 112.11   | Dosage '    | : Percent                | mortality  |
| N                | : Bin :      | city :            | Date :   | per         | : Test :                 | Natural    |
| Fumigant         | : No. :      | (bu.):            | treated: | 1000 bu.    | : probes:                | population |
|                  |              | ·                 | 1, 7.    | , ·         |                          | :          |
| Trichlorethylene |              | 700               | 8/30     | 3<br>3<br>3 | 94                       |            |
|                  | O'Neal       | 1200              | 8/30     | 3           | 54                       |            |
|                  | Swanson      | 1300              | 8/30     | 3           | 67                       | 30         |
|                  |              |                   | - 1      |             |                          |            |
| Methylene chlori | ide gwanson  | 1300              | 8/30     | 3           | 56                       | 40         |
|                  |              |                   | . / .    |             |                          |            |
| Carbon tetrachlo |              |                   | 9/19     | 2           | 99.                      | 1 77       |
|                  | 13-4 *       |                   | 8/11     | 2           | 89                       |            |
| P4 .             | 13-4 *       |                   | 9/19     | 2           | 97                       | -          |
| • .              | <b>387</b> * | 1500              | 8/11     | . 2         | 94                       | en en      |
| No. pro          | Goodenough   |                   | 9/6      | 3           | 44                       | ′ 38       |
|                  | Walsten      | 500               | 8/23     | 3           | 87                       |            |
|                  | Walsten      | 500               | 8/23     | 3           | 88                       | die de     |
|                  | Albright     | 700               | 8/23     | 3           | 83                       | ***        |
|                  | Walsten      | 1000              | 8/23     | 3           | 97                       |            |
|                  | Burling      | 1000              | 8/19     | <b> 3</b>   | 100                      | ,          |
|                  | Burling      | 1400              | 8/19     | 3           | 100                      |            |
|                  | Burling      | 1400              | 8/19     | 3           | 100                      |            |
| * *              | Burling      | 1400**            |          | 3<br>3      | 100                      |            |
|                  | Hayworth     | 1500              | 9/6      |             | 93                       |            |
|                  | Burling      | 1700              | 8/22     | 3           | 100                      |            |
|                  | Burling      | 1700              | 8/22     | 3           | 77                       | -          |
|                  | Burling      | 1800              | 8/22     | 3           | 56                       |            |
|                  | Burling      | 3000              | 8/22     | 3           | 95                       | -          |
|                  | Henderson    | 1000              | 9/6      | 3           | 88                       |            |
|                  | Henderson    | 1000              | 9/6      | 3           | 48                       | 7.         |
|                  |              | 500               | 0/0-     | _           | :                        |            |
| Carbon tetrachlo |              | 500               | 8/23     | 3           | 67.                      | 100        |
| 80% - carbon     | Walsten      | 700               | 8/23     | 3           | 88<br>15 15 <b>85</b> 15 |            |
| disulphide 20%   | Swanson      | <sub>0</sub> 1000 | 8/23     | 3           | ** · ** 86 · **          | . • 95     |
| contan Astro     |              | 500               | 0/0      |             | - 300                    | 200        |
| Carbon tetra-    | Goodenough   | <b>50</b> 0       | 9/6      | 0           | 100                      | 1,00       |
| chloride 25% -   | Judy         | 500               | 8/15     | 8           | 100                      |            |
| ethylene         | Judy         | 500               | 8/15     | 8           | 99                       |            |
| dichloride 75%   | Judy         | 750               | 8/15     | 6           | 100                      | -          |
|                  | Judy         | 750               | 8/15     | 6           | 100                      |            |
|                  | Judy         | 1000              | 8/15     | 6           | 97                       | -          |
|                  | Henderson    | 1000              | 8/19     | 6           | 81                       |            |
|                  | Henderson    | 1000              | 8/19     | 6           | 64                       |            |
|                  | Hayworth     | 2000              | 9/6      | 6           | 100                      |            |

Table 5, concluded

| Bin : city : Date : per : Test : Natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       | : Capa-    | :                 | Dosage :          | Percent | mortality      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|-------------------|-------------------|---------|----------------|
| Fumigant   No. : (bu.) : treated: 1000 bu. : probes: populations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : Bi                                    |            |                   |                   |         |                |
| 95% - ethylene   13-3*   1500   8/11   2   96     dibromide 5%   No. of bins   Average Mortality   Trichlorethane   3   3   77     Tetrachlorethane   3   3   76     Trichlorethylene   3   2   99   73   do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 4          |                   |                   |         |                |
| 95% - ethylene   13-3*   1500   8/11   2   96     dibromide 5%   No. of bins   Average Mortality   Trichlorethane   3   3   77     Tetrachlorethane   3   3   76     Trichlorethylene   3   2   99   73   do   5   3   74   90   Methylene chloride   4   2   69   53   do   3   3   77     Tetrachlorethylene   5   3   74   90   Methylene chloride   4   2   69   53   do   3   3   97     Carbon tetrachloride   11   2   95   92   do   5   3   100     Carbon tetrachloride   1   3   90     Carbon tetrachloride   90%   4   2   99   99   ethylene dibromide 10%   Carbon tetrachloride   95%   2   2   93   99   carbon tetrachloride   25%   3   4     Sthylene dichloride   95%   2   2   93   99   carbon tetrachloride   95%   3   4     dichloride and carbon   1   96   89   ethylene dibromide   5%   2   1   96   89   ethylene dibromide   5%   2   1   96   89   ethylene chloride   1   3   56   40   Carbon tetrachloride   4   2   95     do   16   3   55     carbon tetrachloride   4   2   95     do   16   3   55     carbon tetrachloride   20%   50   Ethylene dichloride   20%   50   Ethylene | carbon tetrachloride 33                 | 6* 1500    | 8/11              | . 2               | 98      | with one       |
| ### STEEL BINS No. of bins Average Mortality    Trichlorethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                       |            |                   | * . <b>2</b>      |         | ,              |
| ### STEEL BINS No. of bins Average Mortality    Trichlorethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 1-7-7      | man or the law to |                   |         |                |
| Trichlorethane 3 3 77 — Tetrachlorethane 3 76 — Trichlorethylene 3 76 — Trichlorethylene 3 2 99 73 do 6 6 3 97 97  Tetrachlorethylene 5 3 74 90 Methylene chloride 4 2 69 53 do 3 97 — Carbon tetrachloride 11 2 95 92 do 3 3 100 — Dichloroethylether 1 3 90 — Carbon tetrachlorice 90% 4 2 99 99 ethylene dibromide 10%) Carbon tetrachloride 95% 2 2 99 — ethylene dibromide 55% 5 Ethylene dichloride 75% 2 2 93 99 carbon tetrachloride 25% 3 4 — 99 3:1 mixture of ethylene dichloride 25% 2 96 — ethylene dibromide 5% 2 2 96 — ethylene dibromide 5% 2 2 96 — ethylene dibromide 5% 3 1 96 89 ethylene dibromide 5% 2 2 96 — ethylene dibromide 5% 3 3 72 30 Methylene dibromide 5% 3 5 6 40 Carbon tetrachloride 4* 2 95 — do 6 6 3 85 — Carbon tetrachloride 80% 3 3 80 98 carbon disulphide 20% ) Ethylene dichloride 75% ) 7 6 92 ——                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • • • • • • • • • • • • • • • • • • • |            |                   | ( . f )           |         |                |
| Tetrachlorethylene 3 2 99 73  do 5 3 97 97  Tetrachlorethylene 5 3 2 99 73  do 5 3 97 97  Tetrachlorethylene 5 3 74 90  Methylene chloride 4 2 69 53  do 3 3 97  Carbon tetrachloride 11 2 95 92  do 5 3 100  Dichloroethylether 1 3 90  Carbon tetrachlorice 90% 4 2 99 99  ethylene dibromide 10%)  Carbon tetrachloride 5% 2 2 99  ethylene dibromide 5% 2 2 99  ethylene dichloride 75% 2 2 93 99  3:1 mixture of ethylene 9  dichloride and carbon betrachloride 95% 2 2 96  ethylene dibromide 5% 2 2 96  ethylene dibromide 5% 3 4 99  3:1 mixture of ethylene 9  dichloride and carbon betrachloride 95% 2 2 96  ethylene dibromide 5% 3 4 99  Trichlorethylene 3 3 5 72 30  Methylene dibromide 5% 3 56 40  Carbon tetrachloride 4* 2 95  do 16 3 85  Carbon tetrachloride 80% 3 3 80 98  carbon disulphide 20% 5  Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STEEL BINS                              | No.        | of bins           |                   | Averag  | ge Mortality   |
| Trichlorethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trichlorethane                          |            | 3                 | **· <b>3</b>      | .77     | -              |
| do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tetrachlorethane                        |            | 3                 | - 3               | 76      |                |
| Tetrachlorethylene 5 3 74 90  Methylene chloride 4 2 69 53 do 3 97 Carbon tetrachloride 11 2 95 92 do 3 3 100 Dichloroethylether 1 3 90 Carbon tetrachloride 90%) 4 2 99 99 ethylene dibromide 10%) Carbon tetrachloride 95%) 2 2 99 ethylene dibromide 5% Ethylene dibromide 5%  Ethylene dichloride 25%) 3 4 99 3:l mixture of ethylene dichloride 35% Carbon tetrachloride 95% 2 96 ethylene dibromide 5% Carbon tetrachloride 90%) methyl bromide 5%  Carbon tetrachloride 90%) methyl bromide 5%  WOOD BINS  Trichlorethylene 3 3 72 30 Methylene chloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80%) carbon tetrachloride 4 2 95 do 16 3 85 Carbon tetrachloride 80% 3 carbon disulphide 20% 98 carbon disulphide 20% 98 carbon disulphide 20% 98 Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trichlorethylene                        |            | 3                 | 2                 | - 99    | 73             |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | do                                      |            | 5'                | · 3               | 97      | .97            |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrachlorethylene                      |            | 5                 | • 3               | 74 "    | 90             |
| Carbon tetrachloride 11 2 95 92  do 3 3 100 Dichloroethylether 1 3 90 Carbon tetrachlorice 90% 4 2 99 99 ethylene dibromide 10%) Carbon tetrachloride 95% 2 2 99 ethylene dibromide 5% 5  Ethylene dichloride 75% 2 2 93 99 carbon tetrachloride 25% 3 4 99 3:1 mixture of ethylene 4 99 3:1 mixture of ethylene 5% 5 2 96 ethylene dibromide 5% 6 2 96 ethylene dibromide 5% 6 89 ethylene chloride 1 3 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80% 6 3 80 98 carbon disulphide 20% 6 Ethylene dichloride 75% 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methylene chloride                      |            | 4                 | 2                 | 69      | 53             |
| do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | do                                      | 1.4        | 3                 | 3 3               | 97      | //             |
| Dichloroethylether 1 3 90 Carbon tetrachlorice 90% 4 2 99 99 ethylene dibromide 10%) Carbon tetrachloride 95% 2 2 99 ethylene dibromide 5% 5  Ethylene dichloride 75% 2 2 93 99 carbon tetrachloride 25% 3 4 99 3:1 mixture of ethylene 6 dichloride and carbon 7 tetrachloride 95% 2 2 96 ethylene dibromide 5% 2 2 96 ethylene dibromide 5% 2 1 96 89 ethylene dibromide 5% 3 3 72 30 Methylene dibromide 5% 3 56 40 Carbon tetrachloride 4* 2 95 do Carbon tetrachloride 80% 3 3 80 98 carbon disulphide 20% 5 Ethylene dichloride 75% 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbon tetrachloride                    |            | 11                | <b>~ 2</b>        | 95      | 92             |
| Carbon tetrachlorice 90% ) 4 2 99 99 ethylene dibromide 10%) Carbon tetrachloride 95% ) 2 2 99 ethylene dibromide 5% ) Ethylene dichloride 75% ) 2 2 93 99 carbon tetrachloride 25%) 3 4 99 3:l mixture of ethylene ) dichloride and carbon ) tetrachloride 95% ) 2 2 96 ethylene dibromide 5% ) Carbon tetrachloride 90% ) methyl bromide 5% ) 2 1 96 89 ethylene dibromide 5% )  WOOD BINS  Trichlorethylene 3 3 72 30 Methylene chloride 1 3 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80% ) 3 80 98 carbon disulphide 20% ) Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | do · · ·                                |            | 3                 | 3                 | 100     |                |
| ethylene dibromide 10%) Carbon tetrachloride 95%) 2 2 99 ethylene dibromide 5%) Ethylene dichloride 75%) 2 2 93 99 carbon tetrachloride 25%) 3 4 99 3:l mixture of ethylene dichloride and carbon tetrachloride 95% 2 96 ethylene dibromide 5%) Carbon tetrachloride 90%) methyl bromide 5% 2 1 96 89 ethylene dibromide 5%)  WOOD BINS  Trichlorethylene 3 3 72 30 Methylene chloride 1 3 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80% 3 80 98 carbon disulphide 20% Ethylene dichloride 75%) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dichloroethylether                      |            | 1 .               | 3                 | 90      |                |
| ethylene dibromide 10%) Carbon tetrachloride 95%) 2 2 99 ethylene dibromide 5%) Ethylene dichloride 75%) 2 2 93 99 carbon tetrachloride 25%) 3 4 99 3:l mixture of ethylene dichloride and carbon tetrachloride 95% 2 96 ethylene dibromide 5%) Carbon tetrachloride 90%) methyl bromide 5% 2 1 96 89 ethylene dibromide 5%)  WOOD BINS  Trichlorethylene 3 3 72 30 Methylene chloride 1 3 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80% 3 85 98 carbon disulphide 20% Ethylene dichloride 75%) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | )          | 4                 | 2                 | 99      | 99             |
| Carbon tetrachloride 95%) 2 2 99 ethylene dibromide 5%)  Ethylene dichloride 75%) 2 2 93 99 carbon tetrachloride 25%) 3 4 99  3:l mixture of ethylene ) dichloride and carbon ) tetrachloride 95% ) 2 2 96 ethylene dibromide 5% )  Carbon tetrachloride 90%) methyl bromide 5% )  WOOD BINS  Trichlorethylene 3 3 72 30 Methylene dibromide 5% )  WOOD bins  Trichlorethylene 3 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80% ) 3 80 98 carbon disulphide 20% ) Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |            |                   |                   |         |                |
| ethylene dibromide 5% ) Ethylene dichloride 75% ) 2 2 93 99 carbon tetrachloride 25%) 3 4 99 3:l mixture of ethylene ) dichloride and carbon tetrachloride 95% 2 2 96 ethylene dibromide 5% ) Carbon tetrachloride 90%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                       | Ś          | 2                 | 2                 | 99      |                |
| Ethylene dichloride 75% ) 2 2 93 99 carbon tetrachloride 25%) 3 4 99  3:l mixture of ethylene ) dichloride and carbon tetrachloride 95% 2 2 96 ethylene dibromide 5% ) 2 1 96 89 ethylene dibromide 5% )  WOOD BINS  Trichlorethylene 3 3 72 30 Methylene chloride 1 3 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80% ) 3 80 98 carbon disulphide 20% )  Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                       | Ś          |                   |                   |         |                |
| carbon tetrachloride 25%)       3       4        99         3:1 mixture of ethylene   dichloride and carbon   tetrachloride 95%   2       2       96          ethylene dibromide 5%   carbon tetrachloride 90%)       2       1       96       89         ethylene dibromide 5%   methylene dibromide 5%         2       1       96       89         wood BINS       3       72       30         Methylene chloride   1       3       56       40         Carbon tetrachloride   4*       2       95          do   16       3       85          Carbon tetrachloride 80%   3       3       80       98         carbon disulphide 20%   Ethylene dichloride 75%   7       6       92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • 7                                     | ĺ          | 2                 | · <b>2</b>        | 93      | . 99           |
| 3:1 mixture of ethylene   dichloride and carbon   tetrachloride 95%   2 2 96 ethylene dibromide 5%   Carbon tetrachloride 90%   2 1 96 89 ethylene dibromide 5%   2 1 96 89 ethylene dibromide 5%   2 1 96 89 ethylene dibromide 5%   3 3 72 30 Methylene chloride   1 3 56 40 Carbon tetrachloride   4* 2 95 do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | si .       |                   | 4                 |         |                |
| dichloride and carbon tetrachloride 95% 2 2 96 ethylene dibromide 5% 2 1 96 ethylene dibromide 5% 2 1 96 89 methyl bromide 5% 2 1 96 89 ethylene dibromide 5% 3 3 72 30  WOOD BINS  Trichlorethylene 3 5 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80% 3 3 80 98 carbon disulphide 20% 5 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1          | *                 |                   |         |                |
| tetrachloride 95% ) 2 2 96 ethylene dibromide 5% )  Carbon tetrachloride 90% ) methyl bromide 5% ) 2 1 96 89 ethylene dibromide 5% )  WOOD BINS  Trichlorethylene 3 3 72 30 Methylene chloride 1 3 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon tetrachloride 80% ) 3 80 98 carbon disulphide 20% ) Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                       |            |                   |                   |         |                |
| ethylene dibromide 5%) Carbon tetrachloride 90%) methyl bromide 5%)  WOOD BINS  Trichlorethylene 3 3 72 30 Methylene chloride 1 3 56 40 Carbon tetrachloride 4* 2 95 do 16 3 85 Carbon disulphide 20%) Ethylene dichloride 75%)  Total ordinate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * /-                                    |            | 2                 | <b>2</b> "• . • . | 96      | ·              |
| Carbon tetrachloride 90%)       2       1       96       89         ethylene dibromide 5%)       2       1       96       89         WOOD BINS       3       72       30         Methylene chloride       1       3       56       40         Carbon tetrachloride       4*       2       95          do       16       3       85          Carbon tetrachloride 80%)       3       3       80       98         carbon disulphide 20%       )       5       92          Ethylene dichloride 75%)       7       6       92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |            |                   |                   | 40000   |                |
| methyl bromide 5%       2       1       96       89         ethylene dibromide 5%       3       72       30         WOOD BINS       3       72       30         Methylene chloride       1       3       56       40         Carbon tetrachloride       4*       2       95          do       16       3       85          Carbon tetrachloride 80%       3       3       80       98         carbon disulphide 20%       )       5       92          Ethylene dichloride 75%       7       6       92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |            |                   |                   | 100     |                |
| ## Carbon tetrachloride 80% )  ## Carbon tetrachloride 80% )  ## Carbon tetrachloride 80% )  ## Carbon disulphide 20% )  ## Ethylene dichloride 75% )  ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 2 95   ## 3 85   ## 3 85   ## 4 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,                                     | <u>.</u> . | 2                 | 1                 | 96      | 89             |
| WOOD BINS  Trichlorethylene 3 72 30 Methylene chloride 1 3 56 40 Carbon tetrachloride 4* 2 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |            | 1 .               |                   |         |                |
| Trichlorethylene 3 3 72 30  Methylene chloride 1 3 56 40  Carbon tetrachloride 4* 2 95  do 16 3 85  Carbon tetrachloride 80% ) 3 3 80 98  carbon disulphide 20% )  Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | **         |                   |                   |         |                |
| Trichlorethylene 3 3 72 30  Methylene chloride 1 3 56 40  Carbon tetrachloride 4* 2 95  do 16 3 85  Carbon tetrachloride 80% ) 3 3 80 98  carbon disulphide 20% )  Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WOOD BINS                               | •          |                   |                   |         |                |
| Methylene chloride       1       3       56       40         Carbon tetrachloride       4*       2       95          do       16       3       85          Carbon tetrachloride 80% )       3       80       98         carbon disulphide 20% )       5       92          Ethylene dichloride 75% )       7       6       92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                       |            |                   |                   |         |                |
| Methylene chloride       1       3       56       40         Carbon tetrachloride       4*       2       95          do       16       3       85          Carbon tetrachloride 80% )       3       80       98         carbon disulphide 20% )       5       92          Ethylene dichloride 75% )       7       6       92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trichlorethylene                        |            | 3                 | 3                 | 72      | 30             |
| Carbon tetrachloride       4*       2       95          do       16       3       85          Carbon tetrachloride 80% )       3       80       98         carbon disulphide 20% )       5       92          Ethylene dichloride 75% )       7       6       92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |            | 1                 |                   |         |                |
| carbon tetrachloride 80% ) 3 3 80 98 carbon disulphide 20% ) Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                       | 795.       | 4*                |                   |         |                |
| carbon tetrachloride 80% ) 3 3 80 98 carbon disulphide 20% ) Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |            |                   | $\tilde{3}$       |         |                |
| carbon disulphide 20% ) Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | )          |                   |                   |         | 98             |
| Ethylene dichloride 75% ) 7 6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                       | 1          |                   |                   |         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | <b>'</b> ) | 7                 | 6                 | 92      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | carbon tetrachloride 25                 | %)         | ż                 | 8                 | 99      | **             |
| Carbon tetrachloride 95%) 2* 2 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | )          |                   |                   |         | 411 <b>4</b> 9 |
| ethylene dibromide 5% )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 1          |                   |                   |         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | •          |                   |                   |         |                |

<sup>\* =</sup> Ever-Normal Granary bins.
\*\* = Bin filled with oats.

and the second

In order to obtain information on the rapidity with which carbon tetrachloride penetrates the grain mass in lethal concentrations in wood granaries, a series of check boxes containing living insects were placed in the center of a 1500 bushel wood bin. This bin had been lined with a waterproof paper before filling. The grain in the bin was 10 feet deep and the check boxes were located at the six-foot, three-foot, and floor levels. Three gallons of carbon tetrachloride per 1000 bushels were sprayed on the surface; one check box from each level was removed at hourly intervals for the first seven hours after fumigation and counts made of living and dead insects.

The results of this experiment are presented in table 6.

It may be seen that a complete kill was effected at the six-foot level (4 feet below the surface of the grain) within one hour after treatment. After two hours had elapsed nearly all the insects were dead at the three-foot level (7 feet below the surface). About four hours were required to give an adequate kill of the insects located at the floor level.

Table 6: -- Rate of penetration of carbon tetrachloride in grain stored in a wood Ever-Normal Granary bin.

Hutchinson, Kans. September, 1944.

| Number hours after |              |          |           | neck boxes |
|--------------------|--------------|----------|-----------|------------|
| fumigation         | : 6' level : | 3' level | : Floor : | Average    |
| 1                  | 100          | 69.2     | 27.4      | 70.0       |
| 2                  | 100          | 97.2     | 76.7      | 93.3       |
| 3                  | 100          | 98       | 94        | 97.6       |
| 4                  | 100          | 100      | 99        | 99,5       |
| 5                  | 100          | 98       | 92        | 96.4       |
| 6                  | 100          | 100      | 97        | 99:4       |
| 7                  | 100          | 99       | 100       | 99.7       |

A survey of the grain storage facilities on the farms in Reno County, Kansas, disclosed that many of the granaries are quite loosely constructed. Some are only single-walled structures, which not only allow water to enter, thus causing spoilage, but also make it difficult to create and hold a lethal concentration of fumigant for even a short period of time. Under such conditions greatly increased dosages of fumigant would be required or steps can be taken before filling the bin to improve its tightness.

In order to test the value of lining bins with reinforced paper, the walls of one bin in a two-bin farm granary were lined with Sisalkraft paper, the material being furnished through the cooperation of the Sisalkraft Company. The other bin was left unlined as a check. After filling with 1944 wheat, these bins were then given two fumigations as indicated in table 7.

The second of the second secon

្រុមប្រទេស មានប្រធាន ស្រាស់ ស្រាស ស្រាស់ ស្រាស ស្រាស់ ស្រាស

Table 7: -- Effect of paper lining on the efficiency of fumigants in a farm granary. Reno County, Kansas. 1944.

| -ALL MITTHE MAIN DO | . De          | 1 - 2 - 2 - 2 - 2 - 2 | : Percent mo        | rtality in | 1 |
|---------------------|---------------|-----------------------|---------------------|------------|---|
| Fumigant            |               |                       |                     |            |   |
| Ethylene dichloride | .75d          |                       | and the same of the | 3          |   |
| carbon tetrachlo    | ride 25%      | 6 7                   | 84                  | (          |   |
| carbon tetrachlo    | 3157.         | a wilderstand         | 100                 |            |   |
| carbon tetrachlorie | de la distant | 3 to 1 1 1            | 87.5                | 47.5       | _ |
| e. and a            |               | 101                   | Total party and     | 114 _      |   |

It may be seen from the above table that lining a granary with a fiber-reinforced Kraft paper increases the effectiveness of fumi-gation from 23 to 40 percent on the basis of these two tests.

CONTRACTOR OF PRESENTATION OF THE TRACTOR OF THE PERSON OF A

the state of the s

The

Litt.

afterno again el talega

The to the latest the table or ship

Insect Repellent Properties of Chemical Dusts when Mixed with Wheat

In experimental work with dusts used to protect seed from insect attack it was noticed that seed treated with some of these appeared to repel insects. In order to further investigate this property, the following experiment was conducted.

small, wooden, open top boxes, 6" x 6" x 6", of approximately 2000 gram capacity, were filled with wheat treated with magnesium oxide. Almicide, and DDT and placed in a bin of heavily infested grain. After being thus exposed to infestation for one month, the grain from each box was sifted and the number of living and dead insects counted. A record of the results of this test is given in table 8.

Whereas the infested grain in the bin contained an abundance of the rice weevil, the cadelle, the confused flour beetle, red flour beetle, lesser grain borer, small-eyed flour beetle, and flat grain beetle, practically the only beetles that invaded the boxes of treated wheat were the small-eyed flour beetle and the flat grain beetle.

Two of the dusts, magnesium oxide and almicide, showed excellent repellent and killing properties. DDT, however, while demonstrating excellent killing properties, did not repel the insects; as the total number of live and dead insects in the boxes of wheat treated with it exceeded even those in the check boxes of untreated wheat.

In one test lot the grain was left untreated but the inside walls of the box were sprayed with a 5% solution of DDT in deobase oil. Enough of the spray was used to insure a complete coverage of the walls. Insects entering the wheat were forced to crawl over a portion of the treated walls of the box. This treatment gave a fairly good protection.

one significant feature not shown in the tabular results is the fact that only an occasional rice weevil was found in any of the treated boxes, whereas a considerable number were found in the check boxes. At various times it was noted that the rice weevil appeared to avoid all of the treated boxes. The same is true of the cadelle. Eight larvae were found in the check box while the treated boxes were entirely free of cadelle.

Table 8:--Repellent effect of various dusts on wheat to stored grain insects

|                                        | :N | umber liv | 0:N | umber de |
|----------------------------------------|----|-----------|-----|----------|
| Treatment and dosage                   | :  | insects   | :   | insects  |
| MgO <sub>2</sub> 0.2% mixed with wheat | :  | 17        | :   | 217      |
| DDT (conc.) 0.01% mixed with wheat     | 2  | 215       | :   | 10822    |
| DDT (conc.) 0.02% mixed with wheat     | :  | 171       | :   | 12467    |
| DDT - 5% in dechase inside of bex only | :  | 887       | :   | 2092     |
| Almicide 0.2% mixed with wheat         | :  | 17        | :   | 2156     |
| Check                                  | :  | 3461      | :   | 291      |
|                                        | :  |           | t   |          |

<sup>\* -</sup> Contributed by R. T. Cotton and J. C. Frankenfeld, U. S. Department of Agriculture, Bureau of Entomology and Plant Quarantine.

#### Effect of DDT upon Stored Grain Insects

In view of the excellent results obtained in preliminary tests with DDT concentrate as a seed protectant, further tests were conducted with both the concentrated DDT pewder and a 3% mixture of DDT and pyrophyllite.

In the first of these tests, dosages of 0.005%, 0.025%, and 0.05%. DDT condentrate by weight were mixed with wheat. Five hundred gram lots of wheat with a 12.5% moisture content were weighed out into quart mason jars. The DDT powder was added and thoroughly mixed with the grain, after which the grain was exposed to insect attack. Eight species of stored grain insects as listed in table 9 were included in these tests. One hundred adults of each species were used per test except the cadelle and Indian meal moth of which only 25 larvae were used.

After one week the insects were removed from the wheat, and the percentage mortality determined. It will be noted that except for the cadelle larvae and the granary weevil adults, 100% kill was obtained with all three dosages. In the case of the granary weevil, 90 and 93% kills were obtained with dosages of 0.005% and 0.025% DDT after the first week, but after two weeks the mortality was complete. The cadelle is one species which seems to be resistant to this chemical. After five weeks, the percentage of kill for this species was 24, 52, and 80%, for dosages of 0.005, 0.025, and 0.05% respectively. No reproduction of any species in any of the tests took place.

In the second series of tests, a mixture of 3% DDT and pyrophyllite was used. In this series six species of insects were used. Data indicating the effect of this mixture on these insects over a period of 3 weeks are given in table 10. Dosages of 0.1%, 0.05%, and 0.01% by weight of the mixture were used together with a 0.1% dosage of pyrophyllite alone. Again, as in the first test, 100 adult insects of each species were used, with the exception of the cadelle.

Table 9: -- Insecticidal action of DDT concentrate mixed with wheat.

After one week.

|                                 | : Percentag | ge kill with | dosage of   | :       |
|---------------------------------|-------------|--------------|-------------|---------|
|                                 | : 0.005%    | 0.025%       | 0.05%       | :       |
| Insect used                     | : by weight | by weight    | : by weight | : Check |
| Cadelle larvae*                 | : 8         | . 8          | 28          | : 0     |
| Rust red flour beetle           | : 100       | : 100        | 100         | : 1     |
| Confused flour beetle           | : 100       | : 100        | : 100       | : 0     |
| Lesser grain borer              | : 100       | : 100        | : 100       | : 4     |
| Sawtoothed grain beetle         | : 100       | 100          | : 100       | : 1     |
| Granary weevil**                | : 90        | 93           | : 100       | : 0     |
| Indian meal moth larvae         | : 100       | 100          | 100         | : 0     |
| Rice weevil                     | : 100       | 100          | : 100       | : 0     |
| After five weekscadelle         | : 24        | 52           | 80          | . 0     |
| **After two weeksgranary weevil | : 100       | 100 .        |             | : 0     |
|                                 | :           |              | •           | :       |

Table 10: -- Insecticidal action of a mixture of 3% DDT in pyrophyllite when mixed with wheat.

|                         | : Percentage of kill o                                                 | ge of kill o | :111  | obtai  | btained w | with | a 3% | obtained with a 3% mixture of    | ure  | Jo      |      | -           |      |                          |      |           |       |      | 1 |
|-------------------------|------------------------------------------------------------------------|--------------|-------|--------|-----------|------|------|----------------------------------|------|---------|------|-------------|------|--------------------------|------|-----------|-------|------|---|
|                         | : 0.1% by weight :0.05% by weight :0.01% by weight : 0.1% pyrophyllite | Weight       | 0.0   | 5% by  | Wei       | ght  | 0.01 | % py                             | Weig | 12      | 0.1% | pyr         | phy] | 1116                     |      |           |       |      |   |
|                         | : after                                                                | S.           | ••    | after  | er        |      |      | after                            | i.i  |         |      | alone after | aft  | er                       | ••   | ਹ         | Check |      |   |
| Insect used             | 1 : 2 : 3 : 1                                                          |              |       | ••.    | 2 . 3     |      | -    | 1. 2 3                           |      | 3       | -1   |             | 2    | 2:1:2:2                  |      |           | 2     | 3    | 1 |
|                         | :Week:Weeks:Weeks:Week                                                 | s:Week       | : Wee | •••    | ks :W     | eeks | Week | Weeks: Weeks: Weeks: Weeks: Week | s:We | зка з   | Week | . ••        | 9eks | Weeks: Week: Week: Weeks | s:We | ek:We     | eks:  | Week | W |
|                         | ••                                                                     | ••           | ••    | ••     | ••        | 1    | ٠.   |                                  |      | ••<br>5 |      |             |      |                          |      |           | •     |      |   |
| Rice weevil             | : 100:                                                                 | ••           | 1000  |        | ••        |      | 52.  | . 91                             | *    | 86      | N    | ••          |      | :                        |      |           | ••    |      |   |
| Confused flour beetle   | : 89: 100.                                                             | ;            | : 54  | 7.00   | 100       |      | 6    | <br>رئ                           |      | 92      | Ä    | ••          | 4    | 6                        | ••   | ••<br>••• | <br>  | ~    |   |
| Granary weevil          | : 71: 98: 99                                                           | 66 . :       | : 32  | **     | : 66      | 100  | 147  | 8€                               |      | 89      | 2    | ••          |      | 21                       | •••  |           | 6     | 19   |   |
| Cadelle                 | : 60: 70                                                               | . 80         | : 40  | ••     | : 09      | 80   | 0    | 50 C                             | ζ.   | 10.     | 10.  | ••          | 20   | 10                       | ••   |           |       | 0    |   |
| Sawtoothed grain beetle | : 100:                                                                 | ••           | ••    | 97: 10 | 1.00      |      | 36   | ÷<br>2€                          |      | 55.     | 10   | ••          | 31   | . 44                     |      | 0         |       | 15   |   |
| Lesser grain borer      | : 100:                                                                 | ••           | : 100 |        | ••        |      | 35   | 84                               | •••  | 32      | 13   |             |      | 28                       |      |           | 20 :  | 30   |   |
|                         | ••                                                                     | ••           | ••    | ••     | ••        |      |      |                                  | ••   | ,       |      | ••          |      |                          | ••   | ••        | ••    |      |   |
|                         |                                                                        |              |       |        |           |      |      |                                  |      |         |      |             |      |                          |      |           |       |      | 1 |

Effect of Magnesium Oxide, Almicide, and DDT on the Germination of Wheat

Magnesium oxide, Almicide, and DDT, when mixed with seed wheat in certain proportions have recently been shown to be highly effective in protecting it from the attack of many of the common grain infesting insects. In order to determine whether or not these dusts would have any effect on the germination of seed, the following series of tests were conducted.

samples of wheat of 12, 14, and 16% moisture content were treated with dosages of the three dusts sufficiently high to insure a good kill of insects. The various lots of wheat, stored in tightly sealed quart glass jars were sampled each month for 4 months and tested for germination. Table 11 contains data indicating the changes in viability of all samples over a 4-month period.

Twelve and 14% moisture wheat showed no appreciable loss in germination over the 4-month period regardless of the treatment. In fact, in some cases a slight increase in percent germination was observed.

Wheat with a moisture content of 14% or more will show a fairly rapid loss in viability when stored at room temperature. This is indicated by the data of table 11 which show that the germination of untreated 14% wheat was reduced in 4 months from 88% to 75%.

In the 16% moisture series, a considerable reduction in viability occurred after 2 months in the wheat treated with Almicide and DDT, whereas the wheat treated with magnesium oxide showed but a slight reduction in viability after 2 month's storage.

It is possible that these dusts possess some value as germicides. The tests are being continued to determine this point.

Table 11: -- Effect of various dusts on the germination of wheat.

|                        | : Percenta       | ge of g | ermination | after       |          |
|------------------------|------------------|---------|------------|-------------|----------|
|                        | : Percent :      | One     | : Two      | Three       | Four     |
| Treatment              | :moisture wheat: | Month   | : Months : | Months      | : Months |
| MgO <sub>2</sub> 0.05% | 12               | 92      | 92         | 90          | 88       |
| do 0.1%                | : 12             | 90      | : 92       | 90          | 93       |
| •                      |                  |         | -          |             |          |
| do 0.2%                | : 12 :           | 89      | : 93       | 90          | 94       |
| do 0.05%               | : 14 :           | 88      | : 91 :     | <b>: 85</b> | : 86     |
| do 0.1%                | : 14 :           | 90      | : 90 :     | 87          | 84       |
| do 0.2%                | : 14 :           | 93      | : 87 :     | 92          | 83       |
| do 0.2%                | : 16 :           | 92      | : 84 :     |             | :        |
| DT (conc.) 0.05%       | : 12 :           | 91      | : 95       | 93          | 86       |
| do 0.1%                | : 12 :           | 91      | : 88 :     | 90          | 90       |
| do 0.2%                | : 12 :           | 90      | : 90 :     | 90          | 95       |
| do 0.2%                | : 14 :           | 93      | : 84       |             |          |
| do 0.2%                | : 16 :           | 89      | : 74       |             | •        |
| Almicide 0.2%          | : 14             | 95      | 85         |             | •        |
| do 0.2%                | : 16             | 94      | : 69       |             |          |
| Check                  | : 12             | 87      | : 86       | 95          | 87       |
| do                     | 14               | 88      | : 82       | 87          | 75       |
|                        | 17               | 90      |            | 01          | , 0      |

Effect of Common Grain Fumigants on Baking Qualities of Wheat\*

In order to determine whether or not some of the common grain funigants would effect the baking qualities of wheat, samples were funigated for I week in tightly closed jars with dosages of 50 pounds of carbon disulfide, carbon tetrachloride, carbon disulfide-carbon tetrachloride 1-4 mixture, and trichloroethylene per 1,000 bushels.

After 2 weeks aeration, the various wheat samples were milled and baked with the results indicated in table 19 of Report No. 12. A reduction in loaf volume was noted as a result of fumigation with carbon tetrachloride, probably due to retention of the chemical.

After 10 weeks aeration, the various samples were again milled and baked with the results-indicated in table 11. It is evident that all samples were normal and no bad effects resulted from the various treatments.

<sup>\* -</sup> R. T. Cotton and J. C. Frankenfeld in cooperation with the Milling Department, Kansas State College.

Table 11: -- Milling and baking values of wheat fumigated with various chemicals for one week and aerated for 10 weeks before milling.

| 1                     |          |         |           | 1                   |          |       | *      |                                            |            |         |
|-----------------------|----------|---------|-----------|---------------------|----------|-------|--------|--------------------------------------------|------------|---------|
| : Dosage ber : Flour  | ••<br>•• | F.Lour, | Flour :   | Flour               | :Mixing  | time: | Logi.  | ••                                         | Crumb      | ••      |
| :1,000 bushels: yield | ls:      | yield   | :protein: | protein: absorption | . Min.   | Sec:  | volume | : Min. Sec.: volume : Grain : color : Odor | color:     | s Odor  |
|                       | ••       | ·       | ••        |                     | •        |       |        | ••                                         | <b>.</b> . | ••      |
|                       | •••      | 72.5    | : 12,60:  | 65                  | <br>63   | 0     | 795    | 80-0                                       | 85cy       | :Normal |
| 50 1bs.               | ••       | 72.5    | : 11.4 :  | 63                  | **<br>** | •     | 808    | . 80-0                                     | . 85cy.    | do :    |
| 50 lbs.               | ••       | 74.5    | : 11.55 : | 63                  | ~        | ~ ~   | 808    | 82-0                                       | 85°y       | . do :  |
| 50 lbs.               | ••       | 74.5    | : 12.00 : | 64                  | 2 :      | 7 :   | 823    | 82-0                                       | . 85cv     | op :    |
| 50 lbs.               | ••       | 72.5    | : 12.10:  | 64                  | 8        | 2     | 818    | 80-0                                       | : 85cy     | op :    |
| •                     | .00      |         | :         |                     | ••       | ••    | -      |                                            |            | ••      |

Effect of Fumigants on Germination and Baking and Milling Qualities of Wheat

One year ago experimental work was started to determine the effect of fumigation and subsequent storage with and without aeration on the germination and milling and baking qualities of wheat of 10.5, 12.5 and 14% moisture content. Wheat samples at each moisture level were fumigated with normal dosages of all the commonly used grain fumigants. One portion of each fumigated lot was then aerated while another portion was held without aeration. In addition two lots of each moisture variant wheat were fumigated with excessive dosages of methyl bromide and chloropicrin in order to kill the germination immediately. Germination tests were run on all samples at monthly intervals and baking tests were made a regular intervals or when significant changes in viability of the grain occurred.

Germination data given in tables 12, 13, and 14 indicate changes in viability of 10.5, 12.5, and 14.0% moisture wheat as affected by fumigation with common grain fumigants and subsequent storage of aerated and non-aerated samples for 12 months.

In the 10.5% moisture wheat no significant loss in viability occurred during the 12-month period of storage where the grain was aerated after fumigation, with the exception of the samples fumigated with excess dosages of methyl bromide and chloropicrin. In the case of the samples of wheat that were not aerated, normal dosages of fumigants containing chloropicrin and methyl bromide caused a significant drop in germination.

With the 12.5% moisture wheat all samples showed a loss in viability after 12 months. In the aerated samples loss in viability was more pronounced in the samples fumigeted with cyanogas and with mixtures containing methyl bromide, chloropicrin, and carbon disulfide. In the non-aerated samples loss of viability was prenounced in all cases, but most severe in the case of the samples fumigated with mixtures containing methyl bromide or chloropicrin. In most cases significant changes in viability did not occur until the 11th month. It seems likely that the particular wheat used in this series did not possess very good keeping qualities since the tendency to deteriorate after 10 months in storage showed up in all samples at the same time.

With the 14% moisture wheat little loss in viability occurred in the acrated samples with the exception of those fumigated with mixtures containing chloropicrin or methyl bromide, or with excessive dosages of methyl bromide or chloropicrin. In the non-acrated samples germination damage occurred in samples fumigated with carbon disulfide and with mixtures containing carbon disulfide, Ethide, and chloropicrin.

rable 12: -- Changes in viability of 10.5% moisture wheat over 12 month period as affected by fumigation with common grain fumigants and subsequent storage of aerated and non-aerated samples.

| Check  Check  do  Cyanogas  do  Carbon disulfide  CS2 - CCl4 mix  CS2 - CCl4 mix  Cabon do  CS2 - CCl4 mix  CS2 - CCl4 mix  CACON do  CS2 - CCl4 mix  CS3 Eals. | hiichale.        |                |      |           | 21700 10 7 | e             | בטיווידוות טבטנו | 777  | - William |          |         | ASLOAA OLA | -           | :            |              |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|------|-----------|------------|---------------|------------------|------|-----------|----------|---------|------------|-------------|--------------|--------------|-----------|
| e e                                                                                                                                                             | Capitota.        | Treatment:     |      | : 2       | 3 :        | · 4           | 2                | 9 :  | :         | -        | 8       | 6          | 07.         | Ξ:           | ••           | 77        |
| .,                                                                                                                                                              | ••<br>•          | ••             | ••   | ••        | ••         | ••            |                  |      |           | ••       | ••      |            |             | ••           | .••          |           |
| • • • • • • • • • • • • • • • • • • •                                                                                                                           | ••               |                | ••   | ••        | . 16       | . 86          | 94               | : 95 | : 97      | 6        | 8       | . 76       | 66 :        | : 86         | .••          | 89        |
| e e e e e e e e e e e e e e e e e e e                                                                                                                           | **               | Aerated :      | 95 : | ••        | : 26       | . 55          | 95               | 96:  | : 98      | .*.      | : 90    | 95         | 96:         | : 87         | ••           | 90        |
| e                                                                                                                                                               | ••               | Non-aerated:   | : 96 | 95 :      | 94:        | 92 :          | 95               | 96:  | \$ .95    | Ø        | . 4     | 93         | : 95        | : 89         |              | 88        |
| • • • • • • • • • • • • • • • • • • •                                                                                                                           | ••               | Aerated:       | ••   | ••        | . 86       | : 96          | 96               | 95   | : 95      | 6        | . 70    | 98         | : 92        | <del>.</del> | ••           | 98        |
| • · · · · · · ·                                                                                                                                                 | ••<br>·          | Non-aerated:   | : 16 | ••        | : 66       | : 26          | 95               | : 97 | : 94      | 6 . 9    | : 90    | 97         | 96:         | 6            | •••          | 92        |
| •• •• •• •                                                                                                                                                      | 5 gals.          | . Aerated :    | ••   | ••<br>••  | : 16       | . 46          | 95               | : 95 | : 94      | 6        | . 4     | 95         | • 94        | 6 .          | ، ۵۰ ،<br>طب | 68        |
| •• •• •                                                                                                                                                         | ••<br>•          | Non-aerated: : | 14.  | ••        | . 96       | : 96          | 68               | 96   | 36 :      | 6        | 55      | 95         | 6 :         | 6            | • • • •      | 88        |
| •• •                                                                                                                                                            | , ,              | . Aerated :    | 1 26 | ••<br>•   | ••         | : 26          | 34               | 96 ; | \$ 94     | ,-0:E    | 55      | 92         | 95          | æ ::         |              | Q6        |
| •                                                                                                                                                               | **               | Non-aerated:   | ••   | ٠.<br>ي   | 94 :       | : 16          | 95               | 98 : | 197       | •••      | ₹       | 93         | . 93        | . 92         |              | 87        |
| •                                                                                                                                                               | 6 gals. : 1      | Aerated :      | ••   |           | : 06       | 95 :          | 95               | 94   | . 98      | €<br>••• | : 9     | 95         | 36 :        |              |              | 88        |
| क् ः                                                                                                                                                            | ••               | Non-aerated :: | ••   | 9         | 86 :       | : 96          | 93               | 96 : | : 92      | P00      | 5 :     | 94         | 9.6         | 6 .          |              | 89        |
| Ethide - CCl mix : 1 ga                                                                                                                                         | gal,             | . Aerated . :  | ••   | 95 :      | * 96       | 93 :          | 86               | . 94 | : 94      | ••       | 3 :     | 26         | : 97        | 6:           | ••••         | 81        |
| ٩                                                                                                                                                               | · ••<br>:<br>· • | Non-aerated :: | ••   | ••<br>Fri | ••         | 92 :          | 94               | 96:  | 6:        | **•      | 3 :     | 95         | <b>56</b> : | 87           |              | 86        |
| Chloropicrin-CCl mix : 2 gals.                                                                                                                                  | . 84.            | Aerated:       | : 96 | 170       | 94:        | 92:           | 91               | : 92 | : 91      | ו•       | 93 ;    | 93         | 36 :        | : 90         |              | 85        |
| op: : op                                                                                                                                                        |                  | Non-aerated:   | . 91 | 82 :      | \$ 28      | 84:           | 84               | 89   | : 82      | ••       | . 4     | 80         | : 83        | : 74         | ••<br>-4     | 57        |
| Dowfume Br 10 : 2 ga                                                                                                                                            | gals             | Aerated :      | 94 : | : 96      | : 16       | . 96          | 96               | . 98 | : 96      | * 60     | . 8     |            | 96:         | . 89         | *            | 94        |
| ुष् : ०                                                                                                                                                         |                  | Non-aerated :  | 4 [6 | 87 : 9    | 3 16       | 84 :          | 90               | : 91 | 36:       | ***      | . 4     | 91         | : 93        | <b>8</b> 4   | '••'<br>س    | 7.7       |
| Methyl bromide : 40 lb                                                                                                                                          | lbs. : 1         | Aerated:       | •••  | 2.4:      | ري<br>د.   | <del>د.</del> | 4                | •    | 41.       | ***      | رب<br>س | ro<br>O    | ٠.<br>ئم    | · •          | ••           | ĸÒ.       |
| Chloropicrin : 40 lb                                                                                                                                            | lbs              | Aerated        | ••   | 3.2:      | <b></b>    | ~             | 80               | 4.   | 4         | ••       | ·       | H          | 4:          | ••           | ••           | <b>10</b> |
| ••                                                                                                                                                              | <b>40</b>        | ••             | ••   | •••       | ••         | ••            |                  | 1    | ***       | ••       | ••      |            | •           | :<br>••      | ••           | :         |

Table 13: -- Changes in viability of 12.5% moisture wheat over 12 month period as affected by fumigation with common grain fumigants and subsequent storage of aerated and non-aerated samples.

| J                     |      | 200   | . Dosage her .  |             |      |        | 7           | LOT COM |     | :germinanton: | TOTAL |        |      |      |      | ********** | -  |      |           |    |
|-----------------------|------|-------|-----------------|-------------|------|--------|-------------|---------|-----|---------------|-------|--------|------|------|------|------------|----|------|-----------|----|
| Fumi gant             | ••   | 1,000 | :1,000 bushels: | Treatment   | 1    |        | ••          | · ·     | 4   | 1 5           | ••    | . 9    | 1    |      |      | 6          | 2  |      | Ľ.        | 12 |
|                       | ••   |       |                 |             | .00  |        | ••          | ••      | ^*  | 1             | ••    | ••     |      | 74   | •    | **         |    | ••   | ••        |    |
| Check                 | . •  |       | ••              |             | 86   | : 95   | ••          | 4.      | 94  | . 96          | 6     | *<br>Ω | .76  | : 94 | ••   | 92 :       | 95 | 80   | ••        | 74 |
| Dowfume 75            | **   | 9     | 6 gals. :       | Aerated ?   | . 84 | : 95   | ***         | . 98    | .94 | 3.95          | ••    | 94.    | 93   | : 94 | ••   | 88 :       | 98 | 3 85 | ••        | 83 |
| . ор .                | **   |       | do .:           | Non-aerated | . 93 | . 9]   | ***         | . 90    | 91. | : 89          | **    | 92: :  | 96   | : 89 | ••   | 89         | 89 | : 7  | ••        | 58 |
| Cyanogas              | ••   | 15    | 15 lbs. :       | Aerated     | 94   | . 96   | ••          | 77. : . | 94. | : 91          |       | 92:    | 92   | 1 93 | ••   | 93 3       | 97 | : 82 | ••        | 72 |
| do.                   | ••   |       | do . s          | Non-aerated | 8 92 | 36     | ••.         | : '90   | 92. | . 93          | 5     | : :06  | . 63 | : 9] | ••   | 92 8       | 90 | : 82 | ••        | 63 |
| Carbon disulfide      | ••', | 3     | 3 gals. :       | Aerated     | 94   | \$6 .: | . ••        | 35 :    | 95  | \$ · . 94     | •     | : 96   | 92   | : 96 | ••   | 93 :       | 94 | : 88 | **<br>Ø   | 81 |
| . , op.               | ••   |       | do              | Non-aerated | : 87 | : 85   | ••.         | 38      | 84  | . 78          | ••    | 83 :   | 83   |      | ••   | 84 :       | 92 | 4 .  | ••        | 46 |
| CS2 - CC14 mix        | 98   | 8     | 3 gals. :       | Aerated     | 36   | : 92   | ••.         | .: 40   | •   | : 91          | ••    | 92 :   | 96   | 6:   | ••   | 94         | 93 | : 87 | 2 2       | 85 |
| 000                   | ••   |       | op:             | Non-aerated | 36   | . 95   | . ••.       | 35      | -   | . 95          | •••   | 93 :   | 98   | . 94 |      | 92         | 16 | 00   | ••        | 71 |
| do                    | ***  | 9     | 6 gals. :       | Aerated     | 36   | : 95   | ••,         | 3. 4    | -   | 16. 1         | **    | 92 :   | 94   | . 9  | . •• | 96         | 93 |      | **<br>ED  | 73 |
| . Op                  | **   |       | e op            | Non-aerated | . 87 | 36     | .·••.       | 32 :    |     | * 83          | q.    | 86:    | 93   | . 8  |      | 85         | 93 |      |           | 53 |
| Ethide - CCl mix      | **   | ~     | gal. :          | . Aerated   | . 95 | : 92   | . ••.       | 92 :    | 95  | \$ 92         | ••    | * 06   | 92   | : 94 | ••   | 95 :       | 93 |      | <b>20</b> | 76 |
| op op                 | **   |       | do s            | Non-aerated | : 87 | : 87   | . •••       | : 00    | 82  | . 83          | ••    | 85 #   | 89   | 8    | **   | 81 :       | 87 | : 53 | **        | 47 |
| Chloropicrin-CC14 mix | itx: | ~     | gals. :         | Aerated     | 89   | 8      |             | . 46    | 36  | 1 90          | ••    | . 6    | 89.  | . 8  | • •• | 91 :       | 96 | * 84 | ••        | 20 |
| do                    | ••   |       | e op            | Non-aerated | . 78 | . 86   | - <b>60</b> | : 9,    | 74  | : 77          | ••    | . 4    | 8    | : 7  | ••   | : 08       | 78 | : 55 | **        | 39 |
| Dowfume Br 10         | ••   | N     | 2 gals. :       | Aerated     | . 93 | : 88   | **          | . 7(    | 16  | . 93          | . 44  | : 06   | 92   | : 85 | ••   | 91:        | 95 | : 82 | ••        | 68 |
| do                    | 50   |       | qo :            | Non-aerated | : 75 | . 84   | ••          | 82 :    | 83  | : 70          | ••    |        | 76   | : 64 | ••   | 84 :       | 81 | : 43 |           | 36 |
| Methyl bromide        | ••   | 40    | lbs. :          | Aerated.    | 0    | •      |             | 0.      | 0   | 0             | ••    |        | 0    |      |      | 0          | 0  | **   |           | 0  |
| Chloropiorin          |      | 40    | lbs. :          | Aerated.    | 10   | *      | **          | ••      | 6   | 6 .           | ••    | 6      | 6    | ••   | ••   | φ          | 0  | . 10 |           | 9  |
| , T                   |      |       | ••              |             |      | ••     | ••          | ••      |     | **            | ••    | **     |      | **   | 40   | ••         |    | ••   | **        |    |

Table 14: -- Changes in viability of 14.0% moisture wheat over 12 month period as affected by fumigation with common grain fumigants and subsequent storage of aerated and non-aerated samples.

|                                        | : Dosage per :      |             | ••   |      | Percent     | ent | ger | germination | ati | uo | at         | end   | of | month      | th      | nnu | number |    |    |     |   |
|----------------------------------------|---------------------|-------------|------|------|-------------|-----|-----|-------------|-----|----|------------|-------|----|------------|---------|-----|--------|----|----|-----|---|
| Fumigant                               | :1,000 bushels: Tre | Treatment   | l.   | 2 :  | : 3         | ••  | 4   | 5           | ••  | છ  |            |       | 80 |            | 02      | F   | -      | F  | •• | 21  |   |
|                                        | ••                  |             | ••   | •*   | ••          | ••  |     |             | ••  |    | ••         | ••    |    |            | ••      |     | ••     |    |    |     |   |
| Check                                  | ••                  |             | : 89 | : 89 | : 95        | ••  | 35  | 88          | ••  | 90 | æ          | 82:   | 44 | ···        | ••      |     | **     |    | •• |     | * |
| Dowfume 75                             | s 6 gals. ;         | Aerated     | : 93 | : 97 | 1 95        | **  | 93  | 98          | ••  | 94 | ••<br>••   | 94 :  | 95 | . oo<br>•• | 96      | 9   | **     | 89 | •• | 87  | F |
| фo                                     | do :                | Non-aerated | : 90 | . 94 | : 92        | ••  | 89  | 84          | ••  | 16 | ••<br>••   | 93 :  | 91 |            | 86      | 85  | ••     | 81 | •• | 80  |   |
| Cyanogas                               | : 15 lbs. ;         | Aerated     | : 95 | . 95 | : 95        | ••  | 93  | 16          | ••  | 92 | ٠ <b>.</b> | 94 :  | 95 | a.         | 94 :    | 91  | ••     | 90 | •• | 89  |   |
| do                                     | : op :              | Non-aerated | : 92 | : 95 | : 95        | ••  | 93  | 96          | ••  | 94 | <u>တ</u>   | 97 :  | 94 | ••         | 89      | 85  | ••     | 92 | ** | 83  |   |
| Carbon disulfide                       | : 3 gals. :         | Aerated     | : 93 | : 94 | : 94        | ••  | 93  | 88          | ••  | 94 | о<br>••    | 94 :  | 94 | ••         | 93      | 93  | ••     | 16 | •• | 94  |   |
| Op                                     | : op :              | Non-aerated | : 77 | : 81 | : 87        | ••  | 99  | 64          | ••  | 09 | 8          | 82 :  | 77 | •          | 68 :    | 49  | ••     | 33 |    | 41  |   |
| CS <sub>2</sub> - CCl <sub>4</sub> mix | : 3 gals. :         | Aerated     | : 92 | : 95 | 96:         |     | 92  | 92          | **  | 94 | ٠٠<br>•    | 94 :  | 93 | 15         | 96      | 93  | ••     | 94 | •• | 95  |   |
| ± op                                   | op:                 | Non-aerated | : 86 | 90   | : 86        | ••  | 84  | 82          | **  | 16 | <u>අ</u>   | 95    | 90 | ••         | 84 :    | 74  | ••     | 68 | •• | 65  |   |
| qo                                     | : 6 gals. :         | Aerated     | : 93 | 96:  | : 98        | ••  | 68  | 89          | ••  | 93 | o.         | 94:   | 93 | <br>       | 95 :    | 92  | ••     | 87 | •• | 89  |   |
| op                                     | : op :              | Non-aerated | : 79 | : 94 | <b>.</b> 84 | ••  | 99  | 1 76        | **  | 86 | ••         |       | 89 | :          | ٠٠<br>ي | 58  | ••     | 59 | •• | 54  |   |
| Ethide - CCl4 mix                      | : 1 gal. :          | Aerated     | : 93 | : 95 | \$6 :       |     | 89  | 89          | ••  | 35 | 6.         | 96    | 94 | ••         | <br>ص   | 91  | ••     | 16 | •• | 94  |   |
| qo                                     | : do :              | Non-aerated | : 82 | : 91 | : 82        | ••  | 64  | 67          | ••  | 73 | : 7        | : 94  | 79 |            | . 62    | 50  | ••     | 42 | •• | 44  |   |
| Chloropicrin-CC14 mix                  | : 2 gals. :         | Aerated     | : 64 | 99:  | : 77        | ••  | 65  | 19 :        | 40  | 42 | 9          | 68:   | 68 | ••         | . 03    | 65  | ••     | 68 | ** | 77  |   |
| do                                     | : op :              | Non-aerated | : 39 | . 38 | : 38        | ••  | 33  | 37          | **  | 39 | **<br>63   | 36 :  | 35 | ••         | 41 :    | 32  | 40     | 31 | •• | 37  |   |
| Dowfume Br 10                          | : 2 gals. :         | Aerated     | : 92 | : 92 | ÷ 93        | **  | 06  | 91          | ••  | 93 | <b></b>    | 94 :  | 93 | ••         | 95 :    | 76  | **     | 82 | •• | 85  |   |
| фo                                     | : op :              | Non-aerated | : 61 | : 82 | 1 77        | ••  | 64  | 50          | ••  | 39 | : 5        | 56, 1 | 09 | **         | 2       | 29  | ••     | 35 | •• | 30  |   |
| Methyl bromide                         | : 40 lbs. :         | Aerated     | 0 :: | 0    | •           | ••  | 0   | 0           | ••  | 0  | ••         | <br>O | 0  | ••         | 0       | 0   | ••     | 0  | ** | 0   |   |
| Chloropicrin                           | : 40 lbs. ;         | Aerated     | : 10 | :11. | .: 20       | 44  | 13  | 20          | **  | 2  | -          | 4     | 21 |            | 23      | (C) | ••     | 11 | •• | . 9 |   |
|                                        | ••                  |             | ••   | ••   | ••          | ••  | •   |             | ••  |    | ••         | **    |    | ••         | ••      |     | ••     |    | •• |     |   |
|                                        |                     |             |      |      |             |     |     |             |     |    |            | 1     |    |            |         | l   |        | l  | l  |     |   |

\* - Reduction in germination due to insect damage.

## Effect on Baking

The effect of fumigation and subsequent storage for 12 months on baking quality is indicated by the data of table 15. Complete baking tests were made only on the 14% moisture series since this type of wheat is most difficult to store successfully and damage to germination from fumigation likely to be more pronounced.

The data of table 15 indicate that no significant differences in baking values resulted from the various treatments after 12 months storage regardless of whether or not the germination of the wheat was affected by fumigation. Flour made from wheat with zero germination for one year, showed no loss in baking value as compared with flour made from untreated wheat stored for the same period.

This data refutes the old theory that viability of the seed is a criterion of baking quality.

Table 15:--Effect of fumigation and subsequent storage on baking quality of wheat. Baking tests after 12 months storage.

| 1           | - 1                 |         |                    |                |    |        |                   |                 |    |        |             |               |             |               |                      |               |                   |               |             |               |                      |               |                         |               |                |               |                 |                 | - 1 |  |
|-------------|---------------------|---------|--------------------|----------------|----|--------|-------------------|-----------------|----|--------|-------------|---------------|-------------|---------------|----------------------|---------------|-------------------|---------------|-------------|---------------|----------------------|---------------|-------------------------|---------------|----------------|---------------|-----------------|-----------------|-----|--|
|             | : Odor              | 1       | **                 | +              | ,  |        | ++ :              | ++              | •• |        | . ++ .      | 1             | +++ :       | +             | +                    | 1             | 1                 | 1             |             | 1             | 1                    | 1             | 1                       | 1             | i<br>••        | 1             | *** :           | ++              |     |  |
| cunz):      | :color              | 85av    | : 85cy             | : 85cy         | •• | : 85cy | : 85cy            | : 850y          | •• | : 88cw | : 88cw      | : 88cw        | : 88cw      | : 88cw        | : 88см               | : 88cw        | : 88cw            | : 88cw        | : 88cw      | : 88cw        | : 88cw               | : 88¢w        | : 88cw                  | : 88cw        | : 88cw         | : 88см        | : 88cw          | : 88cw          |     |  |
|             | :Grain              | 82-0    | . 82               | : 82-0         | •• | : 82-0 | : 85-0            | : 82-0          | •• | . 86-0 | : 86-0      | · 86-0        | . 86-0      | · 86-0        | : 86-0               | : 86-0        | : 86-0            | : 86-0        | : 86-0      | : 86-0        | 3-98 €               | : 86-0        | \$ 86-0                 | : 86-o        | : 86-0         | . 86-0        | : 86-0          | : 86-0          | ••  |  |
| Loaf        | . volume            | 858cc   | 828                | 835            |    | . 710  | 705               | 170             |    | 785    | 178         | 800           | 775         | 805           | 775                  | 795           | 808               | 810           | 783         | . 462         | 785                  | 788           | 807                     | 198           | . 780          | 808           | 778             | 805             |     |  |
| time:       | Sec                 | 0       | 0                  | 0              |    | _      | <u>.</u>          | 0               | •• | 0      | 0           | 0             | 0           | 0             | 0                    | 0             | 0                 | 0             | 0           | 0,            | 0                    | 0             | 0                       | 0             | 0              |               | 0               | 0               |     |  |
| :Mixing     | Min.                | 83      | ₹ ₹                | ત્ય            |    | ~      | 2                 | 8               |    | ~      | 2           | <b>~</b> 2    | ત્ર         | ~             | ∾                    | S.            | ∾.                | N2            | ~           | N             | <b>≈</b>             | N             | · ~                     | 8             | ~              | °N .          | ~               | 2               |     |  |
| Flour:      | ion                 | . 67    | 99                 | : 99           |    | 63     | <b>e</b> 4        | 63              | •• | . 63   | 63          | 63            | 63          | 63            | 63                   | 63            |                   | 63            | . 63        | 63            | 63                   | . 63          | . 63                    | 63            | 63             | 63            | 63              | 63              |     |  |
| Flour :     | protein:ak          | 14.25   | 13,50:             | 13.80:         |    |        | 12.15:            |                 |    | 10.7   | 10.7 :      | 10.6:         | 10.7 :      | 10.7 :        | 10.8 :               | 10.7 :        | 10.75:            | 10.75:        | 10.75 :     | 10.7 :        | 10.75                | 10.75 :       |                         | 10.65:        | 10.7           | 10.60:        | 11.0 %          | 10.8 :          | ••  |  |
| ••          | tment               | ••      | Aerated :          | .Aerated :     | •• | ••     | : Aerated :       | .Aerated        |    | ••     | : Aerated : | :Non-aerated: | : Aerated : | :Non-aerated: | :Aerated :           | :Non-aerated: | : Aerated :       | :Non-aerated: | : Aerated : | :Non-aerated: | : Aerated :          | :Non-aerated: | :Aerated :              | :Non-aerated: | : Aerated :    | :Non-aerated: | : Aerated :     | :Aerated :      | ••  |  |
| Dosage per  | :1000 bushels: Trea | ·       | 40 lbs.            | 40 lbs.        |    | 5      | 40 lbs.           | 40 lbs.         |    |        | 6 gals.     | do .          | 15 lbs.     | do            | 3 gals.              | op            | 3 gals.           | ф             | 6 gals.     | ф             | l gal.               | . op          | 2 gals.                 | do            | 2 gals.        | qo            | 40 lbs.         | 40 lbs.         |     |  |
|             | Fumigant            | : Check | : Methyl bromide : | : Chloropicrin | •• | :Check | :Methyl bromide : | :Chloropicrin : | •• | :Check | :Dowfume 75 | ор :          | :Cyanogas : | · op ·        | : Carbon disulfide : | op :          | :CS2 - CCl4 mix : |               | · op ·      | : op :        | :Ethide - CCl4 mix : | op :          | :Chloropicrin-CCl4 mix: | : op :        | :Dowfume Br 10 | · op ·        | :Methyl bromide | :Chloropicrin : |     |  |
| % Morscure: | of whoat            | 10.5    | 10.5               | 10.5           | 4  | 12.5   | 12.5              | 12.5            |    | 14     | 14          | 14            | 14          | 14            | 14                   | 14            | 14                | 14            | 14          | 14            | 14                   | 14            | 14                      | 14            | 14             | 14            | 14              | 14              |     |  |

Footnote: Number of crosses in last column indicates severity of odor.

Effect of Temperature, Moisture, and Dockage on Tribolium castaneum

Tribolium castaneum, commonly known as the red flour beetle, is one of the so-called "bran bugs". Although it is referred to as a flour beetle it is also frequently found in whole grain, and is one of the most important of the "bran bugs" infesting stored grain. As with its near relative, T. confusum, little is known of the effect of temperature, meisture and dockage in grain upon the survival and reproduction of this insect.

In order to definitely establish the effects of temperature, grain moisture, and dockage on this insect, a series of tests were started in which these three factors were controlled: "Twenty newly transformed adult beetles, 10 females and 10 males, were confined in Erlenmeyer flasks with 300 grams of wheat. The moisture content of the wheat was adjusted to the desired level, and was kept constant by forcing through it compressed air conditioned by passage through a sulfuric acid solution, the density of which conformed to the relative humidity required to hold the wheat at the desired moisture. This method has proved very successful in maintaining a constant humidity and thus a constant moisture condition of the grain. Over periods of 20 weeks the moisture content of the wheat is still within the range of experimental error, of the moisture content at the start of the test. Occasional testing of the specific gravity of the sulfuric acid is necessary so that proper adjustment can be made to the solution if necessary. However, only occasionally, due to extreme variations of the relative humidity of the atmosphere, is it necessary to adjust the specific gravity of the sulfuric acid during the period covered by a it or given test. . . . .

Constant temperatures were maintained by means of thermostatically controlled electric incubators. With our equipment we are able to hold the temperature constant to within 1°F.

Dockage was added in the form of whole ground wheat. The reason for using whole ground wheat is to obtain a dockage that is uniform throughout, thus enabling us to make our records more comparable. The wheet used in these tests was first screened over a 10-mesh wire screen, removing all cracked kernels and dust, normally found in the grain. Dockage was then added to the amount desired. In these tests we are using moisture variants of 9, 12, and 15%, and dockage variants of 0, 0.5, 1.0, 2.0, 4.0, and 8.0%.

The first series of these tests with T. castaneum is still in progress. Data relative to the percentage of survival and the number of progeny recovered as pupae are herewith reported on. It will be noted from table 16 that there is little significant difference in the percentage of survival over a period of 8 weeks at 90° F. at the various moisture levels. What differences exist cannot be attributed to any variation in the factors under control. There is, however, an indication of a higher percentage of survival as the moisture content of the wheat is increased. A fact which will probably become more obvious as the length of time that these tests are in progress is increased.

With regard to the rate of reproduction of this insect there is a decided increase as the amount of dockage is increased for a given moisture level. And, reproduction also increases as the moisture content of the grain is increased.

In the 15% moisture series, the lots containing 2, 4, and 8% dockage, have not been in progress as long as the three lots containing clean wheat, 0.5 and 1% dockage. For some unknown reason, probably mold growth, all adults and immature progeny in these cultures died during the first three weeks in which the tests were in progress. A fresh supply of food with new adults was prepared, and these lots have been in progress for 4 weeks with the results as listed in table 16.

Table 16: - Percentage of survival of the rust red flour beetle in 9, 12, and 15% moisture wheat with varying amounts of dockage and the total number of pupae recovered. Temperature -- 90° F.

|                         |       |       |       |          |                 | val after:                            |         | Number of |
|-------------------------|-------|-------|-------|----------|-----------------|---------------------------------------|---------|-----------|
|                         |       |       |       |          |                 | : 6 : 7.                              |         |           |
| Food media              | Week  | Weeks |       |          |                 |                                       | s:Weeks | recovered |
| Out and                 |       |       |       |          |                 | :                                     | :       |           |
| 9% Wheat                |       |       |       |          |                 |                                       |         |           |
| Clean wheat             |       |       |       |          | :               | : : : : : : : : : : : : : : : : : : : | : 80    |           |
| Same plus 0.5% dockage: |       |       |       |          |                 | : 75 : 70                             |         |           |
| Same plus 1.0% dockage: |       |       |       |          |                 |                                       |         |           |
| Same plus 2.0% dockage: |       |       |       |          |                 |                                       |         |           |
| Same plus 4.0% dockage: |       |       |       |          |                 |                                       |         |           |
| Same plus 8.0% dockage  |       |       |       |          |                 |                                       | : 70    |           |
| 7                       | 30 30 | 1 14  | 4     | • •      | \$ - "S - 1 - 1 | • • • • • • • • • • • • • • • • • • • |         | •         |
| 12% Wheat               | 4.15  |       | 3 2   | \$. U.M. |                 | ** * * * *** . *                      |         |           |
|                         |       |       |       |          |                 | · · · · · · · · · · · · · · · · · · · |         |           |
| Clean wheat             |       |       |       |          |                 |                                       |         |           |
| Same plus 0.5% dockage: |       |       |       |          |                 |                                       |         |           |
| Same plus 1.0% dockage: |       |       |       |          |                 |                                       |         |           |
| Same plus 2.0% dockage: |       |       |       |          |                 |                                       |         |           |
| Same plus 4.0% dockage: |       |       |       |          |                 |                                       |         |           |
| Seme plus 8.0% dockage: | 100   | 100   | : 100 |          |                 |                                       | : 95    | 724       |
| 15d wheat               |       | ٠     | :     | •        | •               | •                                     | •       |           |
| 15% Wheat               |       |       |       |          | •2              | :                                     | •       |           |
| Clean wheat             |       |       | 100   | •        | . 100           | : 100 : 100                           | : 100   | 353       |
| Same plus 0.5% dockage: |       |       |       |          |                 |                                       |         |           |
| Same plus 1.0% dockage: |       |       |       |          |                 |                                       |         |           |
| Same plus 2.0% dockage: |       |       |       |          |                 | : :                                   | :       | 114       |
| Same plus 4.0% dockage  |       |       |       |          |                 | :                                     | :       | 206       |
| Same Flus 8,0% dockage  |       |       |       |          |                 | :                                     | :       | 391       |
| -                       |       |       | :     | :        | :               | :                                     | :       |           |

Effect of Temperature and the Moisture Content of Wheat upon the Survival and Reproduction of the Granary and Rice Weevil

The series of tests herewith reported on were conducted at constant temperatures of 90 and 60° F., with wheat of moisture contents of 9, 10, 11, 12, 13, and 14%. Each moisture variant wheat was run in duplicate, and the results of the percentages of survival at 90° F. over a period of 19 weeks are summarized in table 17. For the lower level moisture wheat (9 to 11%), the percentage of survival increases as the moisture content of the wheat is increased, with practically no significant differences between the granary or rice weevil. Not so great a difference in percentage of survival is noted in the 12, 13, and 14% moisture wheat, although for both species a higher percentage of survival is noted in the 13 and 14% moisture wheat than in the 12% wheat. The percentage of survival of granary weevil is greater than that of the rice weevil in all three moisture variants. Whether this is due entirely to the effect of temperature and moisture is doubtful. In all probability it is due to the fact that the granary weevil adults usually live longer than do the adults of the rice weevil.

At 90° F. the life span of both species is greatly reduced in the 9, 10, and 11% moisture wheat, and no reproduction occurred in the case of the granary weevil. A small amount of reproduction took place in the case of the rice weevil in the 10 and 11% moisture wheat, but no reproduction was obtained in the 9% wheat. This is contrary to results obtained in earlier tests, where we obtained reproduction of both species in 9% wheat at this temperature. In this series of tests, the 9% moisture lots were repeated three times giving 6 replicated tests. The results were essentially the same as the two tests recorded in the accompanying tables. That is, all adults were dead within a period of 3 to 5 weeks, and no reproduction was obtained.

In the 12, 13, and 14% moisture lots at 90° F., the average total reproduction increases as the moisture content of the wheat is increased. This is true for both the granary and rice weevil. Variations as noted between the two lots containing the same moisture content wheat are due to variations in the respective survival of adults.

A. . . .

Table 17:--Percentage of survival of the granary and rice weevil in 9, 10, 11, 12, 13, and 14% moisture wheat at 90° F.

|                 |            |        |        |        |        |        | ,        |        |        |       |                                       | -    |
|-----------------|------------|--------|--------|--------|--------|--------|----------|--------|--------|-------|---------------------------------------|------|
|                 | <u>:</u> — |        |        |        |        | surviv |          |        | . 10   | - 30  | :Tota                                 |      |
|                 | : 1        | : 3    | : 5    |        |        |        |          | : 15   |        |       |                                       |      |
| Insect used     | :Meek      | :Weeks | :Weeks | Meeks  | Meeks  | :Weeks | :Weeks   | :Weeks | Weeks  | Weeks | and the latest and the latest and the | -    |
| ~               | •          | •      | •      |        |        | :      | •        | :      | •      |       | •                                     | Ave. |
| 9% Wheat        | :          | :      | :      |        |        | :      | •        | ř.     | •      | •     | •                                     |      |
|                 | :          | :      | :      |        | •      | :      | :        | :      | •      |       | •                                     |      |
| Granary weevil  |            |        | : 4    | . 0    |        | •      | :        | •      | • • •  |       | : 0                                   |      |
| do              |            | : 20   |        | ; 0 :  | •      | :      | :        | •      | :      | :     | : 0                                   | 0    |
| 1/200 1100122   | : 27       | : 4    | : 0    |        |        | :      | • .      | :      | :      |       | : 0                                   |      |
| do              | : 8        | : 1    | : 0    |        |        | •      | •        | :      |        | • '   | : 0                                   | 0    |
|                 | :          | :      | :      |        | :      | :      | <b>:</b> | :      | :      | :     | :                                     |      |
| 10% Wheat       | :          | :      | :      |        |        | :      | : 4      | :      |        |       | :                                     |      |
|                 | :          | :      | :      | 7-1    | :      | :      | :        | : .    | :      | F:    | :                                     |      |
| Granary weevil  | : 92       | : . 85 | : 38   | 3      | : 0.   | :      | :        | :      |        |       | : 0                                   |      |
| do              | : 90       | : 79   | : 41   | 18     | 6.     | : 0    | :        | :      |        | :     | : 0                                   | 0    |
| Rice weevil     | : 79       |        | : 11   |        |        | :      | :        | :      | :      |       | : 29                                  |      |
| do              | : 52       | : 28   | : 16   | : 11 : | : 3    | : 0    |          | :      | •      |       | : 63                                  | 46   |
|                 | :          | 1      | :      |        |        | •      | :        | :      |        | :     |                                       |      |
| 11% Wheat       | :          | :      |        |        |        | :      | :        | :      |        |       | :                                     |      |
|                 | :          |        | :      |        |        | :      | :        |        |        |       | :                                     |      |
| Granary weevil  | : 95       | : 85   | : 68   | 23     | 12     | : 0    | •        |        |        | 1.01  | •                                     |      |
|                 |            |        |        |        |        | : 0    | •        | •      |        |       | •                                     |      |
|                 |            |        |        | 49     |        | : 23   | . 6      |        | . 0    | •     | : 24                                  |      |
| do              | : 72       | : 57   | : 45   | 39     | : 30   | _      | . 4      | • . St | . 0    |       |                                       | 20   |
| do              | : 12       | : 51   | * 45   | 39     | 30     | : 22   | . 4      | : 2    | : 0    |       | : 16                                  | 20   |
| 12d wheat       | •          |        | •      |        |        | •      | :        | •      |        |       | •                                     |      |
| 12% Wheat       | •          | •      | •      |        |        | •      | •        | •      |        |       | • 1                                   |      |
| Quene           | . 04       | . 00   | 70     |        | ;      | :      | :        | :      |        | •     |                                       |      |
| Granary weevil  |            |        | • • •  | : 66   |        | : 29   |          | : 8 :  | : 0    | •     | :1052                                 |      |
|                 | :100       |        | • •    | 71     |        | : 44   | : 35     |        | : 2    | : 0   | :1250                                 | 1151 |
|                 | :100       |        |        | 74     |        | : 25   | : 16     | : 5    | : 0    |       | :2233                                 |      |
| do              | : 93       | : 84   | : 79   | 64     | : 45   | : 30   | : 15     | : 1    | : 0    | •     | :1860                                 | 2047 |
| 200 -1 1        | •          | :      | •      |        |        | •      | •        | :      |        |       | :                                     |      |
| 13% Wheat       | :          | •      | •      |        |        | •      | :        | :      | •      | 5     | :                                     |      |
|                 | :          | :      | :      |        |        | :      | •        | :      | -      |       | :                                     |      |
| Granary weevil  | •          |        | : 91   |        |        | : 60   |          |        |        |       | :2193                                 |      |
|                 | : 97       |        | : 86   |        |        | : 58   |          |        |        |       | :1061                                 | 1627 |
|                 | : 99       |        | : 63   |        |        | : 15   | : 13     | : 7    | : 2    | : 0.  | :3230                                 |      |
| do              | : 98       | : 88   | : 15   | 15     | : 13   | : 7    | : 6      | : 4    | : 0    |       | :1242                                 | 2236 |
| AND THE RESERVE | :          | :      | :      |        |        | :      | :        |        |        |       | :                                     |      |
| 14% Wheat       | :          | :      | :      |        | TO THE | :      | :        | :      | :      | 1.15  | :                                     |      |
|                 | :          | :      | :      | :      | :      | :      | :        | : -    | :      | :     | :                                     |      |
| Granary weevil  |            |        |        | 72     | : 66   | : 55   | : 43     | : 22 : | : 14   | : 6   | :3194                                 |      |
|                 | :100       | : 91   | : 84   | 72     | 63     | : 54   | : 44     | : 36 : | : 22   | : 15  | :2272                                 | 2733 |
| Rice weevil     | : 99       | : 95   | : 61   | 54     | : 49   | : 42   | : 34     | : 18 : | : 11 : | : 6   | :3934                                 |      |
| do              | :100       | : 78   | : 12   | : 11 : | 9      |        | : 6      |        |        |       | :1831                                 | 2882 |
|                 | :          | :      | :      |        |        | :      | :        |        |        | :     | :                                     |      |
|                 |            |        |        |        |        |        |          |        |        |       |                                       |      |

The data of tables 18 and 19 show the biweekly reproduction of granary and rice weevil for the various moisture wheats at 90° F. At this temperature reproduction in all moisture variant wheats is greatest during the first seven weeks, dropping off substantially after this time and terminating after the 15th week.

In another series of tests, at which the temperature was held constant at 60° F. the percentage of survival again increases as the moisture content of the wheat is increased. This series of tests has been in operation for 13 weeks and the results of biweekly examinations are listed in table 20. At all moisture variant wheats, the percentage of survival of the granary weevil is decidedly greater than that of the rice weevil.

Reproduction records for this series are not complete, but a small amount of reproduction is being obtained in the case of the rice weevil, in the 13 and 14% moisture wheat. No reproduction of the granary weevil at any moisture level has been obtained for this temperature to date.

Table 18:--Summary of reproduction of rice weevil in 9, 10, 11, 12, 13, and 14% moisture wheat at 90° F.

| Moisture | :            |      |    |       |      |       | Number          | of-      | pro | geny   | pı    | roduce         | d            | durin | g  |                 |          |       | : |       |
|----------|--------------|------|----|-------|------|-------|-----------------|----------|-----|--------|-------|----------------|--------------|-------|----|-----------------|----------|-------|---|-------|
| content  | :            |      | :2 | nd &: | 4th  | £:    | 6th &:          | 8th      | &:] | lOth 8 | ç : . | 12th &         | ::1          | 4th & | :1 | 6th &           | :1       | 8th & | : |       |
| of       | :            | lst  | :  | 3rd : | 5th  | :     | 7th:            | 9th      | :   | llth   | :     | 13th           | :            | 15th  | :  | 17th            | :        | 19th  | : |       |
| wheat    | :            | Week | :  | Week: | Wee  | k:    | Week:           | Wee      | k:  | Week   | :     | Week           | : 1          | Week  | :  | Week            | :        | Week  | : | Total |
|          |              |      |    | i     |      |       |                 |          |     |        |       | 2 28/13        |              |       | 3  |                 | •        |       | : |       |
| •        |              |      |    |       |      |       | . 0:            |          |     |        |       |                |              |       |    |                 | -        |       | : | , 0   |
| 9% . :   |              | - 0  | :  | 0 .:  | . 0  | :     | . 0 :           | 0        | :   |        |       |                | <b>\$</b> "- |       | •  | \$0 to          | :        |       | : | 0     |
| 10%      |              | : 0  | :  | .0:   | : 0  | , . : | 0 .:            | . 0      | . : | ٠.     | :     |                | \$ 12°       | ð l   | •  | •               | :        |       | : | 0     |
| 10%      | :            | 0    | :  | 0 . : | 0    |       | O ::            | 0        | :   | •      | :     |                | • · *:       |       | :  | $\sigma(x_0,T)$ | :        |       | : | 0     |
| 11%      | :            | 0    | :  | 0:    | 0    | :     | 23 :            | 0        | :   | - 0.   | :     | 0              | :            | 0     | :  | 0               | :        |       | : | 23    |
| 11%:     | < <b>:</b> : | 0    | :  | 0     | ., 0 | :     | 14: :           | 0        | :   | . 0    | •     | : 0            | : :          | 0     | :  | 0               | :        |       | : | 14    |
|          |              |      |    |       |      |       | 469 :           |          |     |        |       |                |              |       | :  | 0               | :        |       | : | 2233  |
|          |              |      |    |       |      |       | 427 :           |          |     |        |       |                |              |       | :  |                 | :        |       | : | 1860  |
| _ 13%.   |              |      |    | -     |      |       |                 |          |     |        |       |                |              |       | :  |                 | :        |       | : | 3230  |
|          |              |      |    |       |      |       | 329 :           |          |     | . 41   |       |                |              | ī     |    | 0               | :        |       | : | 1242  |
|          |              |      |    |       |      |       | 720 :           |          |     |        |       |                |              | 16    | •  |                 |          | 0     |   | 3934  |
| 14%      |              |      |    |       |      |       |                 |          |     |        |       |                |              | 0     |    |                 | •        |       | • | 1831  |
| /0       |              |      |    |       |      |       | :               |          |     |        |       |                |              |       | :  | •               | :        |       |   | 1001  |
|          |              |      | -  |       |      |       | -1              |          |     |        | ÷     | W 1 15         | ÷            |       | •  |                 | <u>.</u> |       | · |       |
|          |              |      |    |       |      |       |                 |          |     |        |       |                | :            |       |    | e e             |          |       |   |       |
|          |              |      |    |       |      |       |                 |          |     |        |       |                |              |       | ,  |                 |          |       |   |       |
|          |              |      |    |       |      |       | orio<br>Gwilaet |          |     |        |       | ing.<br>Tanàna | , ,          | • .   |    |                 |          |       |   |       |
| :        | -            | -13  | -  |       | ,    | •     | 32000           | 2 V * 4. |     | •      |       |                | ŕ            | ,     |    |                 |          |       |   |       |

Table 19:--Summary of reproduction of granary weevil in 9, 10, 11, 12, 13, and 14% moisture wheat at 90° F.

| Moisture | : |      |    |       |       |       |    | Num | er   | of  | pr | ogeny  | p | roduoe | od  | durin  | ig  |        |            |        | : |       |
|----------|---|------|----|-------|-------|-------|----|-----|------|-----|----|--------|---|--------|-----|--------|-----|--------|------------|--------|---|-------|
| content  | : |      | :7 | 2nd 8 | e : 4 | ith a | x: | 6th | de : | 8th | &: | 10th 8 | : | 12th 8 | c : | 14th 8 | c ÷ | 16th 8 | <b>k</b> : | 18th & | : |       |
| of       | : | lst  | :  | 3rd   | :     | 5th   | :  | 7t1 | 1 :  | 9th | :  | 11th   | : | 13th   | :   | 15th   | :   | 17th   | :          | 19th   | : |       |
| wheat    | : | Week | :: | Week  | : 2   | Weel  | :2 | Wed | k    | Wee | k: | Week   | : | Week   | :   | Week   | :   | Week   | :          | Week   | : | Total |
|          | : |      | :  |       | :     |       | :  |     | :    | -1  | :  |        | : |        | :   |        | :   |        | :          |        | : |       |
| 9%       | : | 0    | :  | 0     | :     | 0     | :  | (   | ) :  | 0   | :  | 0      | : | 0      | :   | 0      | :   | 0      | :          | 0      | : | 0     |
| 9%       | : | 0    | :  | 0     | :     | 0     | :  | (   | ) :  | 0   | :  | 0      | : | 0      | :   | 0      | :   | 0      | :          | 0      | : | 0     |
| 10%      | : | 0    | :  | 0     | :     | 0     | :  | (   | ) :  | : 0 | :  | 0      | : | 0      | :   | 0      | :   | 0      | :          | 0      | : | 0     |
| 10%      | : | 0    | :  | 0     | :     | 0     | :  | - ( | ) :  | 0   | :  | 0      | : | 0      | :   | 0      | :   | 0      | :          | 0      | : | 0     |
| 11%      | : | 0    | :  | 0     | :     | 0     | :  |     | ) :  | 0   | :  | 0      | : | 0      | :   | 0      | :   | 0      | :          | 0      | : | 0     |
| 11%      | : | 0    | :  | 0     | :     | 0     | :  | (   | ) :  | 0   | :  | 0      | : | 0      | :   | 0      | :   | 0      | :          | 0      | : | 0     |
| 12%      | : | 320  | :  | 329   | :     | 230   | :  | 126 | 5 :  | 40  | :  | 7      | : | - 0    | :   | 0      | :   | 0      | :          | 0      | : | 1052  |
| 12%      | : | 373  | :  | 391   | :     | 220   | :  | 186 | 3 :  | 51  | :  | 19     | : | 8      | :   | 0      | :   | 0      | :          | 0      |   | 1250  |
| 13%      | : | 592  | :  | 478   | :     | 618   | :  | 376 | 6 :  | 67  | :  | 21     | : | 29     | :   | 10     | :   | 1      | :          | 0      | : | 2193  |
| 13%      | : | 354  | :  | 269   | :     | 229   | :  | 159 | ) :  | 32  | :  | 9      | : | 7      | :   | 2      | :   | 0      | :          | 0      | : | 1061  |
| 14%      | : | 780  | :  | 752   | :     | 699   | :  | 493 | 3 :  | 294 | :  | 138    | : | 38     | :   | 0      | :   | 0      | :          | 0      | : | 3194  |
| 14%      | : | 612  | :  | 520   | :     | 445   | :  | 35  | 1 :  | 190 | :  | 12     | : | 99     | :   |        | :   | 9      | :          | 0      | : | 2272  |
|          | : |      | :  |       | :     |       | 2  |     | :    |     | :  |        | : |        | :   |        | :   |        | :          |        | : |       |

Table 20: -- Percentage of survival of the granary and rice weevil in 9, 10, 11, 12, 13, and 14% moisture wheat at 60° F.

| Percentage of survival after  1:3:5:7:9:11:13 |      |   |       |   |          |   |                  |            |          |   |                      |   |          |
|-----------------------------------------------|------|---|-------|---|----------|---|------------------|------------|----------|---|----------------------|---|----------|
| •                                             | 1    | : | _     | : | •        |   | 7                | :          | _        | : | 11                   | : | 13       |
| Insect used :                                 | Week | : | Weeks | : | Weeks    | : | Weeks            | :          | Weeks    | : | Weeks                | : | Weeks    |
| 3                                             |      | : |       | : |          | : |                  | :          | ø        | : |                      | : |          |
| 9% Wheat                                      |      | : |       | : |          | : |                  | :          |          | : |                      | : |          |
| Granary weevil:                               |      | : | 84    | : | 74       | : | 68               | :          | 68       | : | 68                   | : | 40       |
| do                                            | 98   | : | 84    | • | 80       | : | 76               | •          | 76       | : | 76                   | : | 30       |
| Rice weevil :                                 |      | • | 14    | 3 | 10       | • | 8                | :          | . 6      | • | 6                    | • | 0        |
| ao :                                          | 96   | • | 12    | * | 6        | • | 2                | •          |          | • |                      | • |          |
| 100/ Telepoort                                |      | • |       | • | ,        | Ī |                  | •          |          | • |                      | • |          |
| 10% Wheat                                     | -0.6 | • | 92    | • | 02       | • | 00               | -          | 20       | • | QA.                  | • | 62       |
| Granary weevil:                               | 98   |   | 90    | • | 92<br>86 | • | 8 <b>₽</b><br>78 | :          | 88<br>78 | • | 8 <del>4</del><br>78 | i | 62<br>62 |
|                                               |      | : | 88    | : | 88       | • | 82               | :          | 80       | : | 72                   | : | 20.      |
| Rice weevil :                                 |      | : | 84    | : | 84       | • | 84               | :          | 78       | i | 78                   | : | 28       |
| 40                                            | 100  | ٠ | 0.7   | • | 0.7      | • | 04               | •          | 10       | • | 10                   | ٠ | 20       |
| 11% Wheat                                     |      | ٠ |       | • |          | • |                  | •          |          | • |                      | • |          |
| Granary weevil:                               | 100  | • | 96    | • | 96       | • | 96               | •          | 96       | • | 92                   | • | 86       |
| do :                                          | 3.00 | • | - 100 | • | 100      | : | 100              | :          | 100      | • | - 94                 | : | 88       |
| Rice weevil :                                 |      | 1 | 90    | • | 88       | • | 82               | :          | 78       | : | 76                   | • | 62       |
| do :                                          | 100  | • | 90    | • | 84       | • | 78               | •          | 76       | 1 | 74                   | : | 54       |
|                                               | 100  | • |       | • | 0.2      | • | . 0              | •          | ,        |   |                      | • |          |
| 12% Wheat                                     |      | • |       | • |          | • |                  | •          |          | • |                      | • |          |
| Granary weevil:                               | 100  | : | 96    | • | - 94     | • | 86               | •          | 84       | • | 82                   | • | 74       |
| do .                                          |      | : | 100   |   | 96       | • | 94               | , <u>.</u> | 94       | : | 94                   | : | 82       |
| Rice weevil                                   | 100  | : | 96    | : | 94       | : | 90               | •          | 90       | : | 78                   | : | 32       |
| do                                            | 100  | : | 98    | • | 94       | : | 90               | :          | 88       | : | 80                   | : | 34       |
|                                               |      | • |       | : |          |   |                  | :          |          | : |                      | : |          |
| 13% Wheat                                     |      | : |       | : |          | : |                  | :          |          | : |                      | : |          |
| Granary weevil:                               | 100  | : | 100   | : | 100      | : | 98               | :          | 98       | : | 96                   | : | 94       |
| do                                            | 3.00 | : | 100   | : | 100      | : | 96               | :          | 96       | : | 96                   | : | 96       |
| Rice weevil                                   | 98   | : | 94    | : | 86       | : | 86               | :          | 84       | : | 74                   | : | 66       |
| do :                                          | 98   | : | 94    | : | 88       | : | 88               | :          | 82       | : | 76                   | : | 70       |
|                                               |      | ; |       | : |          | : |                  | :          |          | : |                      | 7 |          |
| 14% Wheat                                     |      | : |       | 1 |          | : |                  | :          |          | : |                      | : |          |
| Granary weevil:                               | 100  | : | 100   | : | 100      | : | 98               | :          | 96       | : | 96                   | : | 92       |
| do                                            | 98   | : | 98    | : | 94       | • | 94               | :          | 94       | : | 94                   | : | 92       |
| Rice weevil :                                 | 98   | : | 98    | : | 98       | : | 96               |            | 90       | : | 86                   | : | 80       |
| do :                                          | 96   | : | 96    |   | 96       | : | 96               | :          | 90       | : | 84                   | : | 76       |
|                                               | ,    | : |       | : |          | : |                  | :          |          | : |                      | : |          |

