Online Appendix

Lucio Baccaro & Tobias Tober January 11, 2021

This appendix provides supporting information for the paper "*The Role of Wages in the Euro-zone*". Tables A1-A2 and Figures A1-A4 report descriptive statistics and delineate descriptive trends. Tables A3-A14 summarize additional empirical results.

1 Descriptive statistics and trends

Table A1: Descriptive statistics: Determinants of nominal wage growth.

Variable	Obs	Mean	SD	Min	Max
Nominal wages per hour worked	176	127.00	18.31	79.97	172.76
Level of coordination	176	3.49	1.16	1	5
Loans from nonresident banks as % of GDP	176	63.50	38.09	15.83	219.75
Total private credit (domestic) as % of GDP	176	93.82	29.27	36.20	170.28
Gross value added per hour worked at constant prices	176	110.21	7.49	88.13	131.68
Unemployment	176	0.09	0.04	0.03	0.28
Inflation rate	176	4.79	0.10	4.55	4.96
Government partisanship	175	2.59	1.43	1	5
Trade union density	156	0.31	0.18	0.08	0.76

Table A2: Descriptive statistics: Wage sensitivity of exports in Austria, Germany, and the Netherlands.

Variable	Obs	Mean	SD	Min	Max
Austria					
Bilateral exports	160	4.49	8.18	0.16	32.51
Imports	160	2.08e+08	1.83e+08	2.81e+07	7.92e+08
Relative productivity	160	102.44	5.82	85.91	117.82
Relative wages	160	94.63	7.61	72.73	111.26
Germany					
Bilateral exports	160	31.97	25.31	2.80	94.47
Imports	160	1.27e+08	9.64e+07	2.39e+07	3.62e+08
Relative productivity	160	101.35	5.49	84.26	115.10
Relative wages	160	89.03	8.10	65.85	101.90
Netherlands					
Bilateral exports	160	14.87	19.34	1.05	86.78
Imports	160	1.82e+08	1.73e+08	2.69e+07	7.32e+08
Relative productivity	160	99.65	5.40	82.46	112.66
Relative wages	160	101.24	7.89	78.84	119.73

Figure A1: Wage bargaining coordination in 11 euro countries, 1999-2014.

Figure A2: Loans from nonresident banks as percentage of GDP in 11 euro countries, 1999-2014.

Figure A3: Credit to the private non-financial sector from domestic banks as percentage of GDP in 11 euro countries, 1999-2014.

Figure A4: Manufacturing labor productivity in 11 euro countries, 1995-2015.

Figure A5: Nominal manufacturing wages in 11 euro countries, 1995-2015.

2 Additional empirical results

 $\textbf{Table A3:} \ \ \textbf{Determinants of nominal manufacturing wage growth in the Eurozone, 1999-2014.}$

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
$Coordination_t$.005* (.002)	.005* (.002)	.004* (.002)	.001 (.002)	000 (.003)	.000 (.002)
$\Delta \ln(\mathrm{Loans}_{t-1})$.008 (.019)	005 $(.019)$	008 (.019)	008 (.019)	033 (.018)
$\Delta \ln(\operatorname{Credit}_{t-1})$.086 (.053)	.073 (.054)	.043 (.058)	.120* (.031)
$\Delta \ln(\operatorname{Inflation}_{t-1})$				089 (.225)	.075 (.240)	.408* (.180)
$\Delta \ln(\text{Manufacturing Productivity}_{t-1})$.154* (.056)	.170* (.059)	.101 (.083)
Unemployment $_{t-1}$				174^{*} (.075)	175* (.070)	163* (.082)
$Partisanship_t$.001 (.001)	.001 (.001)
Union density $_t$.003 (.012)	.004 (.010)
Constant	.013 (.008)	.012 (.009)	.013 (.008)	.036* (.011)	.035* (.011)	.031* (.012)
Observations	176	176	176	173	152	91
H_0 : no autocorrelation	$.019^{*}$.013*	.105	.240	.710	.621
H_0 : no cointegration R^2	.002* .036	.023* .037	.090 .060	.281 .160	_ .171	_ .250

^{*} p < .05. Westerlund cointegration tests for Models 5 and 6 are missing because Stata does not allow to run these tests with more than seven regressors.

Table A4: The effect of country-specific wage bargaining structures on nominal manufacturing wage growth, 1999–2007 (short) and 1999–2014 (long).

	Au	Austria	Belg	Belgium	Fin	Finland	Fra	France	Ger	Germany	Gre	Greece
	Short	Long	Short	Long	Short	Long	Short	Long	Short	Long	Short	Long
Country-specific coordination	002 (.001)	002 (.001)	.001	.000	.001	002 (.002)	.007*	.002	001 (.002)	002* (.001)	005 (.007)	006
Linear combination	<pre>002 (.003)</pre>	<pre>002 (.003)</pre>	.001	000 (.003)	.002	<pre>002 (.004)</pre>	*600°.	.002	<pre>000 (.002)</pre>	<pre>002 (.003)</pre>	003 (.006)	006
Remaining variables		Yes	Ā	Yes	Y	Yes	Y	Yes		Yes	Y	Yes
Observations	91	152	91	152	91	152	91	152	91	152	91	152
R^2	.262	.178	.252	.171	.232	.172	.276	.173	.253	.178	.277	.197
	Ire	Ireland	It	Italy	Nethe	Netherlands	Portugal	ugal	ds	Spain		
	Short	Long	Short	Long	Short	Long	Short	Long	Short	Long		
Country-specific coordination	.004	.006	.001	.002	—.001 (.001)	002 (.003)	006 (.002)	003 (.003)	.002	.007*		
Linear combination	.003	.004	.001	.002	<pre>000 (.002)</pre>	<pre>002 (.002)</pre>	<pre>008 (.005)</pre>	004 (.006)	.002	.004		
Remaining variables		Yes	Y	Yes	Y	Yes	Y	Yes	•	Yes		
Observations R^2	91.	152 .216	91 .250	152 .173	91 .252	152 .176	91 .262	152 .173	91.	152 .208		
* $p < .05$.												

 Table A5: Empirical estimates of price elasticity of German exports in the extant literature.

Article	Frequency	Time period	Estimator	Estimate	Measure of relative price
Clostermann (1998)	Quarterly	1975q1-1995q4	ECM	-0.74	Px/GDP deflator
Deutsche Bundesbank (1998)	Quarterly	1975q1-1997q2	ECM	-0.70	deflators of total sales
Strauß (2000)	Quarterly	1975q1-1999q4	ECM	-0.58; -0.39	CPI
Meurers (2004)	Quarterly	1975q1-1999q4	VECM	-0.69	Px/CPI
Allard et al. (2005)	Quarterly	1992q3-2004q3	ECM	-0.32; -0.81	mULC/GDP deflators; CPI/GDP deflators
Stephan (2005)	Quarterly	1981q1-2003q2	ECM	-1.05	CPI
	Quarterly	1981q1-2003q2	ECM	-0.37	REEVpifc
	Quarterly	1981q1-2003q2	ECM	69.0-	REEVpimeq
Stahn (2006)	Quarterly	1980q1-2004q3	ECM	-0.92; -0.63	REER/deflators of total sales
	Quarterly	1993q1-2004q3	ECM	Ins.; -0.30	REER/deflators of total sales
Danninger and Joutz (2008)	Quarterly	1993q1-2005q4	VECM	-0.42; -0.14	REER/ULC
Stockhammer, Hein, and Grafl (2011)	Annual	1970-2005	First Differences	-0.78	Px/Pm
	Annual	1970-1987	First Differences	-0.67	Px/Pm
	Annual	1987-2005	First Differences	-1.24	Px/Pm
Onaran and Galanis (2012)	Annual	1971-2007	First Differences	-0.43	Px/Pm
Storm and Naastepad (2012)	Annual	1960-2000	First Differences	-0.12	rULC
Thorbecke and Kato (2012)	Quarterly	1980q2-2011q1	Dynamic OLS	-1	REER/CPI
	Quarterly	1980q2-2009q3	Dynamic OLS	-0.64	REER/CPI
Breuer and Klose (2013)	Quarterly	1995q1-2012q2	SURE ECM	-0.82	REER/ULC
European Commission (2014)	Quarterly	1994q1 - 2014q1	Fractional VECM	-0.81	REER/export prices
Lebrun and Ruiz (2014)	Quarterly	1995q1-2013q3	Fully modified OLS	-0.24	deflators of total sales
Onaran and Galanis (2014)	Annual	1971-2007	ECM	-0.43	Px/Pm
Storm and Naastepad (2015)	Quarterly	1996q2-2008q4	First Differences	Ins.	rULC
Onaran and Obst (2016)	Annual	1960-2013	ECM	-0.38	Px/Pm
Horn and Watt (2017)	Quarterly	1980q1-2016q2	ECM	-0.51	export goods deflators
Neumann (2020)	Quarterly	1995q1-2014q1	ECM	ins.; -0.70	REER/ULC (control: $GFCF_{t-1}$)
	Quarterly	1995q1-2014q1	ECM	0.61; -0.52	REER/ULC (control: GDP_{t-1})
Notes. Bald in director action for Duranan (otherwises, wast of the uranial)	o (othornioo.	"out of the world)	This warnary basely	Tre on Booone	This various houseils december on Beacons and Bonessi (2017) and Table 3 in Manmann

Notes: Bold indicates estimates for Eurozone (otherwise: rest of the world). This review heavily draws on Baccaro and Benassi (2017) and Table 2 in Neumann (2020). CPI=consumer price index; (V)ECM=(vector) error correction model; GDP=gross domestic product; GFCF=gross fixed capital formation; OLS=ordinary least squares; Pm=import prices; Px=export prices; REER=real effective exchange rate; REEVpifc=real effective external value based on prices of investment in fixed capital; REEVpimeq=real effective external value based on prices of investment in machinery and equipment; SURE=seemingly unrelated regression equations; (r/m)ULC=(relative/manufacturing) unit labor costs.

Table A6: Wage sensitivity of exports in remaining countries, 1999–2014.

	Belgium	Finland	Greece	Italy
$\Delta \ln \left(rac{Wages_c}{Wages_p} ight)$.568	866	530	308
	(.520)	(.734)	(.581)	(.325)
$\Delta \ln \left(\frac{Productivity_c}{Productivity_p} \right)$	-1.199	.983	1.296	.266
	(.634)	(.863)	(.922)	(.460)
$\Delta \ln(Imports_{p-c})$.578*	1.130*	.481	1.059*
	(.196)	(.122)	(.330)	(.090)
Constant	.005 (.011)	018 (.016)	004 (.024)	027* (.008)
Observations H_0 : no autocorrelation H_0 : no cointegration R^2	150	150	150	150
	.226	.167	.457	.091
	.169	.073	.096	.097
	.368	.426	.144	.650

^{*} *p* < .05.

Table A7: ULC sensitivity of exports, 1999–2014.

	Austria	France	Ger- many	Ireland	Nether- lands	Portuga	l Spain
$\Delta \ln \left(\frac{ULC_c}{ULC_p} \right)$	708 (.815)	.414 (.251)	853* (.292)	.226 (.331)	176 (.452)	467 (.324)	196 (.247)
$\Delta \ln(Imports_{p-c})$.968* (.143)	.718* (.054)	.632* (.077)	075 (.233)	.745* (.177)	.583* (.090)	.594* (.129)
Constant	003 (.009)	011 (.004)	.003 (.007)	.039* (.010)	.026 (.016)	.012 (.008)	.009 (.010)
Observations	150	150	150	150	150	150	150
H_0 : no autocorrelation	$.000^{*}$.823	.764	.104	.539	.636	.406
H_0 : no cointegration	$.016^{*}$	$.048^{*}$.071	.120	$.025^{*}$	$.045^{*}$	$.036^{*}$
R^2	.401	.590	.596	.002	.303	.223	.290

p < .05.

 $\textbf{Table A8:} \ \textbf{Wage sensitivity of quarterly exports in Austria, Germany, and the Netherlands} \ .$

	Aus	stria	Gerr	nany	Nethe	rlands
	1999-2007	1999-2014	1999-2007	1999-2014	1999-2007	1999-2014
$\Delta \ln \left(\frac{Wages_c}{Wages_p} \right)$						
Δ_t (Wages $_p$)	.043	.192	066	071	032	.049
Δt	(.167)	(.145)	(.053)	(.041)	(.090)	(.080.)
Δ_{t-1}	242	.021	258^*	170^*	201	144
$\Delta l-1$	(.205)	(.164)	(.063)	(.052)	(.121)	(.110)
Δ_{t-2}	.076	004	145^*	078^*	.135	.109
 1-2	(.179)	(.147)	(.053)	(.041)	(.095)	(.084)
Linear combination	123	.208	468^{*}	318*	097	.015
	(.457)	(.371)	(.141)	(.112)	(.249)	(.225)
$\Delta \ln \left(\frac{Productivity_c}{Productivity_p} \right)$						
Δ_t	750^{*}	606*	215	.213	041	.243
•	(.335)	(.282)	(.177)	(.126)	(.172)	(.135)
Δ_{t-1}	.086	086	114	.197	.248	.197
<i>v</i> 1	(.409)	(.355)	(.208)	(.146)	(.222)	(.177)
Δ_{t-2}	.304	.135	.175	.339*	.111	064
	(.301)	(.261)	(.170)	(.125)	(.169)	(.131)
Linear combination	$360^{'}$	557	154	.750 [*]	.317	.377
	(.824)	(.716)	(.434)	(.300)	(.447)	(.354)
$\Delta \ln(Imports_{p-c})$						
Δ_t	$.358^{*}$.662*	$.249^{*}$	$.430^{*}$	$.462^{*}$	$.522^{*}$
	(.127)	(.104)	(.057)	(.043)	(.069)	(.055)
Δ_{t-1}	100	.204	$.135^{*}$.213*	.048	$.224^{*}$
	(.145)	(.111)	(.065)	(.045)	(.074)	(.058)
Δ_{t-2}	128	013	.078	.130*	.044	049
	(.129)	(.101)	(.057)	(.041)	(.070)	(.055)
Linear combination	.131	$.852^{*}$	$.462^{*}$.773*	$.554^*$.697*
	(.312)	(.214)	(.135)	(.090)	(.154)	(.116)
Quarter 2	.071	.044	009	007	099^{*}	031
	(.044)	(.036)	(.023)	(.018)	(.027)	.022
Quarter 3	014	.028	053^{*}	049^{*}	030	.032
	(.037)	(.031)	(.019)	(.013)	(.035)	(.029)
Quarter 4	.095*	.095*	$.058^{*}$	$.048^{*}$	058^{*}	.002
	(.044)	(.036)	(.023)	(.018)	(.027)	(.022)
Constant	023	037	.010	.004	$.056^{*}$.005
	(.026)	(.021)	(.015)	(.011)	(.019)	(.015)
Observations	330	610	330	610	330	610
R^2	.505	.370	.638	.594	.694	.540

^{*} *p* < .05.

Table A9: Manufacturing wage sensitivity of exports, 1999–2014.

	Austria	France	Ger- many	Ireland	Nether- lands	Portuga	l Spain
$\Delta \ln \left(\frac{ManufacturingWages_c}{ManufacturingWages_p} \right)$	296	.620*	453	039	−.777	243	151
	(.730)	(.249)	(.316)	(.424)	(.452)	(.428)	(.285)
$\Delta \ln \left(rac{ManufacturingProductivity_c}{ManufacturingProductivity_p} ight)$.175	343*	.484*	.587*	.387	.204	170
	(.495)	(.126)	(.167)	(.220)	(.274)	(.265)	(.221)
$\Delta \ln(Imports_{p-c})$.961*	.650*	.587*	.089	.660*	.576*	.517*
-	(.167)	(.063)	(.088)	(.250)	(.164)	(.099)	(.150)
Constant	003	007	.010	.019	.031*	.013	.010
	(.011)	(.004)	(.008)	(.016)	(.014)	(.008)	(.010)
Observations	150	150	150	150	150	150	
H_0 : no autocorrelation	.056	.566	.916	.082	.253	.882	.365
H_0 : no cointegration	.292	.223	.467	.267	.170	.211	.499
R^2	.391	.631	.596	.065	.352	.213	.295

^{*} *p* < .05.

Table A10: Wage sensitivity of exports, 1999–2007.

	Austria	France	Ger- many	Ireland	Nether- lands	Portugal	l Spain
$\Delta \ln \left(\frac{Wages_c}{Wages_p} \right)$	718	.138	.134	-1.687	711	330	353
,	(.792)	(.280)	(.448)	(1.588)	(.827)	(.676)	(.376)
$\Delta \ln \left(rac{Productivity_c}{Productivity_p} ight)$.683	.648*	409	1.627	.997	1.671*	.722
	(1.155)	(.317)	(.551)	(1.409)	(1.044)	(.756)	(.575)
$\Delta \ln(Imports_{p-c})$.348	.303*	.332*	.053	.798*	.371	.064
	(.353)	(.122)	(.143)	(.644)	(.332)	(.263)	(.160)
Constant	.034	.010	.053*	.116	.043	.017	.046
	(.021)	(.010)	(.016)	(.074)	(.029)	(.020)	(.013)
Observations	80	80	80	80	80	80	80
H_0 : no autocorrelation	.127	.432	.406	.010	.099	.197	.692
H_0 : no cointegration	.170	.444	.226	.477	.261	.466	.406
R^2	.050	.189	.144	.016	.194	.083	.028

^{*} *p* < .05.

Table A11: Wage sensitivity of exports controlling for domestic credit, 1999–2014.

	Austria	France	Ger- many	Ireland	Nether- lands	Portugal Spai	in
$\Delta \ln \left(\frac{Wages_c}{Wages_p} \right)$	931 (1.018)	.444 (.346)	787* (.303)	.980* (.357)	067 (.553)	$\begin{array}{ccc}242 &543 \\ (.401) & (.292) \end{array}$	
$\Delta \ln \left(\frac{Productivity_c}{Productivity_p} \right)$.373 (1.775)	043 (.369)	.833* (.413)	.938 (.483)	.322 (.838)	.938583 $(.670) (.455)$	
$\Delta \ln(Imports_{p-c})$.955* (.164)	.726* (.058)	.635* (.076)	.073 (.220)	.734* (.175)	.548* .474 (.102) (.123	
$\Delta \ln(\mathit{Credit}_p)$.012 (.512)	080 (.115)	.049 (.147)	622 (.438)	.031 (.281)	.026078 $(.123) (.196)$	
Constant	001 (.012)	011 (.004)	.002 (.007)	.016 (.016)	.026 (.014)	.012 .014 (.008) (.009	
Observations R^2	150 .407	150 .596	150 .595	150 .039	150 .304	150 150 .230 .334	

^{*} *p* < .05.

Table A12: Wage sensitivity of Austrian exports across different levels of R&D intensity, 1999–2014.

	High & medium- high	High	Medium- high	Medium	Medium- low	Medium & medium-low	Low
$\Delta \ln \left(\frac{Wages_c}{Wages_p} \right)$	958 (1.310)	-4.853 (3.577)	248 (.529)	547 (.626)	928* (.417)	849 (.930)	-4.143 (2.127)
$\Delta \ln \left(\frac{Productivity_c}{Productivity_p} \right)$	1.215 (1.976)	5.052 (5.257)	.601 (.765)	-1.785^* (.824)	001 $(.498)$	033 (1.122)	2.489 (3.394)
$\Delta \ln(Imports_{p-c})$.950*	.652	1.040*	1.437*	.593*	.966*	1.083
	(.213)	(.520)	(.111)	(.133)	(.087)	(.277)	(.595)
Constant	.005	.072	006	007	.008	.012	.043
	(.016)	(.039)	(.007)	(.010)	(.007)	(.022)	(.048)
Observations R^2	150	150	150	150	150	150	150
	.216	.053	.474	.684	.529	.301	.052

^{*} *p* < .05.

Table A13: Wage sensitivity of German exports across different levels of R&D intensity, 1999– 2014.

	High & medium- high	High	Medium- high	Medium	Medium- low	Medium & medium-low	Low
$\Delta \ln \left(rac{Wages_c}{Wages_p} ight)$	333	.051	459	-1.329	838	-2.157*	-1.851
	(.409)	(.755)	(.427)	(.765)	(.491)	(.695)	(1.062)
$\Delta \ln \left(\frac{Productivity_c}{Productivity_p} \right)$.367	924	.893*	.774	.494	1.350	.398
	(.459)	(.940)	(.452)	(.855)	(.545)	(.754)	(1.288)
$\Delta \ln(Imports_{p-c})$.663*	.563*	.706*	.725*	.286*	.325*	.716*
	(.094)	(.181)	(.096)	(.143)	(.092)	(.161)	(.184)
Constant	.003	.026	004	.002	.024	.024	.026
	(.008)	(.015)	(.009)	(.013)	(.010)	(.016)	(.019)
Observations R^2	150	150	150	150	150	150	150
	.483	.083	.605	.451	.276	.363	.193

^{*} *p* < .05.

Table A14: Wage sensitivity of Dutch exports across different levels of R&D intensity, 1999– 2014.

	High & medium- high	High	Medium- high	Medium	Medium- low	Medium & medium- low	Low
$\Delta \ln \left(rac{Wages_c}{Wages_p} ight)$	233	.051	457	458	738	-1.145	-1.071
	(.594)	(.995)	(.523)	(1.059)	(.800)	(.871)	(.685)
$\Delta \ln \left(rac{Productivity_c}{Productivity_p} ight)$.914	2.148	189	-1.175	2.634*	1.564	611
	(.869)	(1.474)	(.737)	(1.278)	(.985)	(1.153)	(1.069)
$\Delta \ln(Imports_{p-c})$.603*	.293	.852*	1.495*	.817*	1.010^{*}	.338*
	(.186)	(.328)	(.156)	(.228)	(.210)	(.278)	(.223)
Constant	.026	.024	.027	.005	.036	.044	.050
	(.016)	(.028)	(.013)	(.015)	(.015)	(.022)	(.016)
Observations	150	150	150	150	150	150	150
R^2	.258	.069	.357	.376	.201	.219	.050

References

- Allard, C., M. Catalan, L. Everaert, and S. Sgherri. 2005. "Explaining Differences in External Sector Performance among Large Euro Area Countries." *IMF Country Report* 5/401: International Monetary Fund: Washington D.C.
- Baccaro, L., and C. Benassi. 2017. "Throwing Out the Ballast: Growth Models and the Liberalization of German Industrial Relations." *Socio-Economic Review* 15(1): 85–115.
- Breuer, S., and J. Klose. 2013. "Who Gains from Nominal Devaluation? An Empirical Assessment of Euro-Area Exports and Imports." *Working Paper* 04/2013: German Council of Economic Experts: Wiesbaden.
- Clostermann, J. 1998. "Folgt der deutsche Außenhandel einer J-Kurve?" *Allgemeines Statistisches Archiv, Zeitschrift der Deutschen Statistischen Gesellschaft* 82(2): 198–219.
- Danninger, S., and F. Joutz. 2008. "What Explained Germany's Rebounding Export Market Share?" *CESifo Economic Studies* 54: 681–714.
- Deutsche Bundesbank. 1998. "Wechselkursabhängigkeit des deutschen Außenhandels." *Monatsbericht Januar*, 49–60.
- European Commission. 2014. "Quarterly Report on the Euro Area." *Economic and Financial Affairs* 13: 27–33.
- Horn, G., and A. Watt. 2017. "Wages and Nominal and Real Unit Labour Cost Differentials in EMU." 2017 Fellowship Initiative Papers Discussion Paper 059: European Commission: Brussels.
- Lebrun, I., and E. P. Ruiz. 2014. "Demand Patterns in France, Germany, and Belgium: Can We Explain Differences?" *IMF Working Paper* 14/165: International Monetary Fund (IMF): Washington D.C.
- Meurers, M. 2004. "Estimating Supply and Demand Functions in International Trade: A Multivariate Cointegration Analysis for Germany." *Journal of Economics and Statistics* (*Jahrbücher für Nationalökonomie und Statistik*) 224(5): 530–556.
- Neumann, H. 2020. "The Determinants of German Exports An Analysis of Intra- and Extra-EMU Trade." *International Review of Applied Economics* 34(1): 126–145.
- Onaran, O., and G. Galanis. 2012. "Is Aggregate Demand Wage-led or Profit-led? National and global effects." *ILO Conditions of Work and Employment Series* 40: Geneva, International Labor Office.
- Onaran, O., and G. Galanis. 2014. "Income Distribution and Growth: A Global Model." *Environment and Planning* 46: 2489–2513.
- Onaran, O., and T. Obst. 2016. "Wage-led Growth in the EU15 Member-states: the Effects of Income Distribution on Growth, Investment, Trade Balance and Inflation." *Cambridge Journal of Economics* 40: 1517–1551.

- Stahn, K. 2006. "Has the Impact of Key Determinants of German Exports Changed? Results from Estimations of Germany's Intra Euro-area and Extra Euro-area Exports." *Economic Studies, Discussion Paper* 7/2006: Deutsche Bundesbank: Frankfurt a. Main.
- Stephan, S. 2005. *Modellierung von Mengen und Preisen im deutschen Außenhandel.* Doctoral Dissertation, Freie Universität Berlin.
- Stockhammer, Engelbert, Eckhard Hein, and Lucas Grafl. 2011. "Globalization and the effects of changes in functional income distribution on aggregate demand in Germany." *International Review of Applied Economics* 25(1): 1–23. Publisher: Routledge _eprint: https://doi.org/10.1080/02692170903426096.
- Storm, S., and C. W. M. Naastepad. 2012. *Macroeconomics Beyond the NAIRU*. Cambridge, Massachusetts: Harvard University Press.
- Storm, S., and C. W. M. Naastepad. 2015. "Crisis and Recovery in the German Economy: The Real Lessons." *Structural Change and Economic Dynamics* 32: 11–24.
- Strauß, H. 2000. "Eingleichungsmodelle zur Prognose des deutschen Außenhandels." *Kiel Working Paper* 987: Kiel Institute of World Economics: Kiel.
- Thorbecke, W., and A. Kato. 2012. "The Effect of Exchange Rate Changes on Germany's Exports." *RIETI Discussion Paper Series* 12-E-081: Tokyo, Research Institute of Economy, Trade and Industry.