NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lin Mingyan Simon

MA2101 Linear Algebra II AY 2009/2010 Sem 2

Question 1

(a) It is easy to see that $\mathbf{v}_1 + \mathbf{v}_4 = (\mathbf{v}_1 + \mathbf{v}_2) + (\mathbf{v}_3 + \mathbf{v}_4) - (\mathbf{v}_2 + \mathbf{v}_3)$ so this implies that $W_1 = \operatorname{span}\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_3 + \mathbf{v}_4, \mathbf{v}_1 + \mathbf{v}_4\} = \operatorname{span}\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_3 + \mathbf{v}_4\}$. It remains to check that $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_3 + \mathbf{v}_4\}$ is linearly independent (and hence is a basis for W_1).

Suppose that this is not the case. Then there exist $a, b, c \in \mathbb{R}$, not all zero, such that $a(\mathbf{v}_1 + \mathbf{v}_2) + b(\mathbf{v}_2 + \mathbf{v}_3) + c(\mathbf{v}_3 + \mathbf{v}_4) = \mathbf{0}_V$. Since a, b and c are not all zero, at least one of a, a + b, b + c and c is non-zero, say a. Then it follows that at least one of a + b, b + c and c must be non-zero as well. Then one has $\mathbf{v}_1 = -\frac{1}{a}((a+b)\mathbf{v}_2 + (b+c)\mathbf{v}_3 + c\mathbf{v}_4)$, thereby contradicting the fact that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent.

Likewise, we would arrive at the same contradiction if any of a + b, b + c and c is non-zero as well. So the desired holds, and hence $\dim(W_1) = 3$.

Clearly, $\{\mathbf{v}_4\}$ is a basis for W_2 . So $\dim(W_2) = 1$.

Next, let $\mathbf{u} \in W_1 \cap W_2$. Then one has $\mathbf{u} = p\mathbf{v}_4 = q(\mathbf{v}_1 + \mathbf{v}_2) + r(\mathbf{v}_2 + \mathbf{v}_3) + s(\mathbf{v}_3 + \mathbf{v}_4)$ for some $p, q, r, s \in \mathbb{R}$. This implies that $q\mathbf{v}_1 + (q+r)\mathbf{v}_2 + (r+s)\mathbf{v}_3 + (s-p)\mathbf{v}_4 = \mathbf{0}_V$. Since $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent, we must have q = q + r = r + s = s - p = 0, so this implies that p = q = r = s = 0. Hence, one has $\mathbf{u} = \mathbf{0}_V$, so $W_1 \cap W_2 = \{\mathbf{0}_V\}$. Therefore, $\dim(W_1 \cap W_2) = 0$.

Finally, $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) = 3 + 1 - 0 = 4$.

- (b) Since $W_1, W_2 \subseteq V$, $W_1 + W_2 \subseteq V$ and $\dim(W_1 + W_2) = \dim(V) = 4$, we must have $V = W_1 + W_2$. Also, by an earlier argument in part (a), we have $W_1 \cap W_2 = \{\mathbf{0}_V\}$. So $V = W_1 \oplus W_2$ as desired.
- (c) Consider $U = \text{span}\{\mathbf{v}_1\}$. Clearly, $\dim(U) = 1$. By a similar argument in part (a), one can show that $W_1 \cap U = \{\mathbf{0}_V\}$ so one has $\dim(W_1 + U) = 4$. By a similar argument in part (b), we see that $V = W_1 \oplus U$, but $U \neq W_2$, so we are done.

Question 2

- (a) Since X is a subspace of V, we must have $\mathbf{0}_V \in X$, so one has $\mathbf{0}_W = T(\mathbf{0}_V) \in T(X)$. Hence $T(X) \neq \phi$. Let $\mathbf{w}_1, \mathbf{w}_2 \in T(X)$. Then one has $\mathbf{w}_1 = T(\mathbf{v}_1)$ and $\mathbf{w}_2 = T(\mathbf{v}_2)$ for some $\mathbf{v}_1, \mathbf{v}_2 \in X$. As X is a subspace of V, it follows that $\mathbf{v}_1 + k\mathbf{v}_2 \in X$ for all $k \in \mathbb{R}$. Therefore, we have $\mathbf{w}_1 + k\mathbf{w}_2 = T(\mathbf{v}_1) + kT(\mathbf{v}_2) = T(\mathbf{v}_1 + k\mathbf{v}_2) \in T(X)$, and hence T(X) is a subspace of W.
- (b) (i) We shall show that $\operatorname{Ker}(T)=\{(k,k,k)|k\in\mathbb{R}\}$. Let $(x,y,z)\in\mathbb{R}^3$. Then we have $(x,y,z)\in\operatorname{Ker}(T)\\\Leftrightarrow T(x,y,z)=(0,0,0)\\\Leftrightarrow (x-y,y-z,z-x)=(0,0,0)\\\Leftrightarrow x=y=z\\\Leftrightarrow (x,y,z)\in\{(k,k,k)|k\in\mathbb{R}\}.$

So the desired holds. Now, we see that $\{(1,1,1)\}$ is a basis for Ker(T), so one has nullity(T) = 1. Then by the Rank-Nullity Theorem, one has $rank(T) = \dim(V) - nullity(T) = 3 - 1 = 2$.

(ii) Clearly, X is a subspace of \mathbb{R}^3 . So T(X) is a subspace of \mathbb{R}^3 as well, and hence $\dim(T(X))$ is well-defined. Now, we claim that $T(X) = \{(0, k, -k) | k \in \mathbb{R}\}$. Let $(x, y, z) \in \mathbb{R}^3$. We have

$$(x,y,z) \in T(X)$$

$$\Leftrightarrow (x,y,z) = T(a,a,b) \quad \text{for some } a,b \in \mathbb{R}$$

$$\Leftrightarrow (x,y,z) = (a-a,a-b,b-a) \quad \text{for some } a,b \in \mathbb{R}$$

$$\Leftrightarrow x=0,y=a-b,z=-(a-b) \quad \text{for some } a,b \in \mathbb{R}$$

$$\Leftrightarrow x=0,y=c,z=-c \quad \text{for some } c \in \mathbb{R}$$

$$\Leftrightarrow (x,y,z) \in \{(0,k,-k)|k \in \mathbb{R}\}.$$

So we have $T(X) = \{(0, k, -k) | k \in \mathbb{R}\}$ as desired. Now, we see that $\{(0, 1, -1)\}$ is a basis for T(X), so one has $\dim(T(X)) = 1$.

Question 3

(a) The characteristic polynomial of \mathbf{A} , $\chi_{\mathbf{A}}(x)$, is

$$\chi_{\mathbf{A}}(x) = \det(x\mathbf{I}_4 - \mathbf{A})$$

$$= \det\begin{pmatrix} x - 3 & -1 & 2 & -1 \\ 1 & x - 1 & -2 & -1 \\ 0 & 0 & x - 2 & -1 \\ 0 & 0 & 0 & x - 2 \end{pmatrix}$$

$$= (x - 2) \det\begin{pmatrix} x - 3 & -1 & 2 \\ 1 & x - 1 & -2 \\ 0 & 0 & x - 2 \end{pmatrix}$$

$$= (x - 2)^2 \det\begin{pmatrix} x - 3 & -1 \\ 1 & x - 1 \end{pmatrix}$$

$$= (x - 2)^2 [(x - 3)(x - 1) - (-1)(1)] = (x - 2)^4.$$

(b) We have

$$2\mathbf{I}_4 - \mathbf{A} = \begin{pmatrix} 2 - 3 & -1 & 2 & -1 \\ 1 & 2 - 1 & -2 & -1 \\ 0 & 0 & 2 - 2 & -1 \\ 0 & 0 & 0 & 2 - 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 2 & -1 \\ 1 & 1 & -2 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Now, it is easy to see that $\{(-1 \ -1 \ 2 \ -1), (1 \ 1 \ -2 \ -1)\}$ is a linearly independent set, since $(-1 \ -1 \ 2 \ -1)$ is not a multiple of $(1 \ 1 \ -2 \ -1)$. Also, we see that $(0 \ 0 \ 0 \ -1) = \frac{1}{2}[(-1 \ -1 \ 2 \ -1) + (1 \ 1 \ -2 \ -1)]$, so it follows that the maximal number of linearly independent row vectors of $2\mathbf{I}_4 - \mathbf{A}$ is equal to 2.

Hence, one has $\operatorname{rank}(2\mathbf{I}_4 - \mathbf{A}) = 2$, so it follows from the Rank-Nullity Theorem that $\dim(E_2) = \dim(\operatorname{Ker}(2\mathbf{I}_4 - \mathbf{A})) = \operatorname{nullity}(2\mathbf{I}_4 - \mathbf{A}) = 4 - \operatorname{rank}(2\mathbf{I}_4 - \mathbf{A}) = 2$, where E_2 denotes the eigenspace of \mathbf{A} that is associated with the eigenvalue 2.

(c) Firstly, we shall compute the minimal polynomial of \mathbf{A} , $m_{\mathbf{A}}(x)$. Note that $m_{\mathbf{A}}(x)|\chi_{\mathbf{A}}(x)$, so we must have $m_{\mathbf{A}}(x) = (x-2)^k$, where $1 \le k \le 4$.

Clearly, $k \neq 1$ since $\mathbf{A} - 2\mathbf{I}_4 \neq \mathbf{0}_4$. Now consider $(\mathbf{A} - 2\mathbf{I}_4)^2$. We have

This implies that **A** satisfies the polynomial $(x-2)^2$. So the minimal polynomial of **A**, $m_{\mathbf{A}}(x)$, is $m_{\mathbf{A}}(x) = (x-2)^2$.

Now, we note that the sum of the total sizes of the Jordan blocks must be equal to 4, since the degree of the characteristic polynomial of \mathbf{A} is equal to 4.

Moreover, since the eigenspace of $\bf A$ that is associated with the eigenvalue 2 has dimension 2, it follows that the Jordan Canonical Form of $\bf A$ will have 2 Jordan blocks corresponding to the eigenvalue 2.

Finally, since $m_{\mathbf{A}}(x) = (x-2)^2$, it follows that the maximal size of each of the Jordan blocks with eigenvalue 2 must be 2, and there must be at least one Jordan block with eigenvalue 2, of size 2.

Based on the facts above, we conclude that there must be 2 Jordan blocks of size 2 with eigenvalue 2, and hence the Jordan Canonical Form of A is

$$\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Question 4

(a) Let the adjoint of T be T^* , and let $\mathbf{X}, \mathbf{Y} \in \mathcal{M}_{n \times n}(\mathbb{C})$. Then we have

$$\langle T(\mathbf{X}), \mathbf{Y} \rangle = \langle \mathbf{B}\mathbf{X}, \mathbf{Y} \rangle = \mathbf{Tr}(\mathbf{B}\mathbf{X}\mathbf{Y}^*) = \mathbf{Tr}(\mathbf{X}\mathbf{Y}^*\mathbf{B}) = \mathbf{Tr}(\mathbf{X}(\mathbf{B}^*\mathbf{Y})^*) = \langle \mathbf{X}, \mathbf{B}^*\mathbf{Y} \rangle = \langle \mathbf{X}, T^*(\mathbf{Y}) \rangle.$$

So the adjoint of T, T^* , is the linear operator defined by $T^*(\mathbf{X}) = \mathbf{B}^*\mathbf{X}$ for all $\mathbf{X} \in \mathcal{M}_{n \times n}(\mathbb{C})$. Note that an ordered basis for $\mathcal{M}_{n \times n}(\mathbb{C})$ is $\mathcal{B} = \{E_{11}, E_{21}, E_{31}, \dots, E_{n1}, E_{12}, E_{22}, \dots, E_{n2}, \dots, E_{nn}\}$, where E_{ij} denote the $n \times n$ matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$ whose (i, j)-th entry is equal to 1, and whose other entries are equal to 0.

Next, for typographical convenience, we shall define the matrix diag(**A**) to the following $n^2 \times n^2$ matrix in $\mathcal{M}_{n^2 \times n^2}(\mathbb{C})$

$$\operatorname{diag}(\mathbf{A}) = \underbrace{\begin{pmatrix} \mathbf{A} & \mathbf{0}_{n \times n} & \cdots & \mathbf{0}_{n \times n} \\ \mathbf{0}_{n \times n} & \mathbf{A} & & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n \times n} & \mathbf{0}_{n \times n} & \cdots & \mathbf{A} \end{pmatrix}}_{n \text{ times}}$$

for all $A \in \mathcal{M}_{n^2 \times n^2}(\mathbb{C})$.

Now, let the (i, j)-th entry of **B** be b_{ij} . For any $\mathbf{X} = (x_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{C})$, we see that $[\mathbf{X}]_{\mathcal{B}} = (x_{11} \ x_{21} \ \cdots x_{nn})^T$, and the (i, j)-th entry of $T(\mathbf{X}) = \mathbf{B}\mathbf{X}$ is equal to $\sum_{k=1}^n b_{ik} x_{kj}$.

Page: 3 of 6

Thus, by noting that $[T(\mathbf{X})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{X}]_{\mathcal{B}}$, and by observing that

$$[T(\mathbf{X})]_{\mathcal{B}} = \begin{pmatrix} \sum_{k=1}^{n} b_{1k} x_{k1} & \sum_{k=1}^{n} b_{2k} x_{k1} & \cdots & \sum_{k=1}^{n} b_{nk} x_{kn} \end{pmatrix}^{T}$$

$$= \begin{pmatrix} \mathbf{B} & \mathbf{0}_{n \times n} & \cdots & \mathbf{0}_{n \times n} \\ \mathbf{0}_{n \times n} & \mathbf{B} & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n \times n} & \mathbf{0}_{n \times n} & \cdots & \mathbf{B} \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{nn} \end{pmatrix} = \operatorname{diag}(\mathbf{B})[\mathbf{X}]_{\mathcal{B}},$$

$$\xrightarrow{n \text{ times}}$$

we deduce that $[T]_{\mathcal{B}} = \operatorname{diag}(\mathbf{B})$. Similarly, we have $[T^*]_{\mathcal{B}} = \operatorname{diag}(\mathbf{B}^*)$. With the setup above, we shall proceed to prove the assertion given in the question.

T is unitarily diagonalizable, $\Leftrightarrow [T]_{\mathcal{B}}$ is normal.

$$\Leftrightarrow [T]_{\mathcal{B}}[T]_{\mathcal{B}}^* = [T]_{\mathcal{B}}^*[T]_{\mathcal{B}}$$

$$\Leftrightarrow \operatorname{diag}(\mathbf{B})\operatorname{diag}(\mathbf{B})^* = \operatorname{diag}(\mathbf{B})^*\operatorname{diag}(\mathbf{B})$$

$$\Leftrightarrow \operatorname{diag}(\mathbf{B}\mathbf{B}^*) = \operatorname{diag}(\mathbf{B}^*\mathbf{B})$$

$$\Leftrightarrow \mathbf{B}\mathbf{B}^* = \mathbf{B}^*\mathbf{B}$$

$$\Leftrightarrow \mathbf{B} \text{ is normal}$$

(b) We note that $\mathbf{B}_1^* = \mathbf{B}_1$, so \mathbf{B}_1 is Hermitian (and hence normal). By part (aii), T_1 is unitarily diagonalizable. Similarly, $\mathbf{B}_3^* = \mathbf{B}_3$, so T_3 is unitarily diagonalizable as well. Finally, since

$$\mathbf{B}_2\mathbf{B}_2^* = \begin{pmatrix} 1 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -i & 0 \end{pmatrix} = \begin{pmatrix} 2 & -i \\ i & 1 \end{pmatrix} \neq \begin{pmatrix} 2 & i \\ -i & 1 \end{pmatrix} = \begin{pmatrix} 1 & -i \\ -i & 0 \end{pmatrix} \begin{pmatrix} 1 & i \\ i & 0 \end{pmatrix} = \mathbf{B}_2^*\mathbf{B}_2,$$

we see that T_2 is not unitarily diagonalizable.

Question 5

- (a) We shall prove the contrapositive of the statement. If $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly dependent vectors in \mathbb{R}^n , then there exist $a_1, \dots, a_k \in \mathbb{R}$ such that $a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k = \mathbf{0}_n$. This implies that $a_1(\mathbf{A}\mathbf{v}_1) + \dots + a_k(\mathbf{A}\mathbf{v}_k) = \mathbf{A}(a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k) = \mathbf{A}\mathbf{0}_n = \mathbf{0}_m$, so $\mathbf{A}\mathbf{v}_1, \dots, \mathbf{A}\mathbf{v}_k$ are linearly dependent vectors in \mathbb{R}^m .
- (b) Suppose $\mathbf{A}\mathbf{v}_1, \dots, \mathbf{A}\mathbf{v}_k$ are linearly independent vectors in \mathbb{R}^m , and suppose there exist $a_1, \dots, a_k \in \mathbb{R}$ such that $a_1(N+\mathbf{v}_1)+\dots+a_k(N+\mathbf{v}_k)=N+(a_1\mathbf{v}_1+\dots+a_k\mathbf{v}_k)=\mathbf{0}_{\mathbb{R}/N}=N$. Then one has $a_1\mathbf{v}_1+\dots+a_k\mathbf{v}_k\in N$, and hence $\mathbf{A}(a_1\mathbf{v}_1+\dots+a_k\mathbf{v}_k)=a_1(\mathbf{A}\mathbf{v}_1)+\dots+a_k(\mathbf{A}\mathbf{v}_k)=\mathbf{0}_m$, so we must have $a_i=0$ for all $i=1,\dots k$. So $N+\mathbf{v}_1,\dots,N+\mathbf{v}_k$ are linearly independent vectors in \mathbb{R}/N .

Conversely, suppose $N + \mathbf{v}_1, \dots, N + \mathbf{v}_k$ are linearly independent vectors in \mathbb{R}/N , and there exist $b_1, \dots, b_k \in \mathbb{R}$ such that $b_1(\mathbf{A}\mathbf{v}_1) + \dots + b_k(\mathbf{A}\mathbf{v}_k) = \mathbf{A}(b_1\mathbf{v}_1 + \dots + b_k\mathbf{v}_k) = \mathbf{0}_m$. This implies that $b_1\mathbf{v}_1 + \dots + b_k\mathbf{v}_k \in N$, and thus $b_1(N + \mathbf{v}_1) + \dots + b_k(N + \mathbf{v}_k) = N + (b_1\mathbf{v}_1 + \dots + b_k\mathbf{v}_k) = N = \mathbf{0}_{\mathbb{R}/N}$. This implies that $b_i = 0$ for all $i = 1, \dots k$, so $\mathbf{A}\mathbf{v}_1, \dots, \mathbf{A}\mathbf{v}_k$ are linearly independent vectors in \mathbb{R}^m . We are done.

Page: 4 of 6

(c) Take $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{v}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Clearly, \mathbf{v}_1 and \mathbf{v}_2 are linearly independent vectors in \mathbb{R}^2 , but $\mathbf{A}\mathbf{v}_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \mathbf{A}\mathbf{v}_2$, so $\mathbf{A}\mathbf{v}_1$ and $\mathbf{A}\mathbf{v}_2$ are not linearly independent vectors in \mathbb{R}^2 .

Since
$$\mathbf{A} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+b \\ a+b \end{pmatrix}$$
 for all $a,b \in \mathbb{R}$, we see that a basis for $\{\mathbf{A}\mathbf{u}|\mathbf{u} \in \mathbb{R}^2\}$ is $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \mathbf{A} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$. Next, by part (b), we deduce that if $\left\{ \mathbf{A} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ is a basis for $\{\mathbf{A}\mathbf{u}|\mathbf{u} \in \mathbb{R}^2\}$ then the basis for \mathbb{R}^2/N is $\left\{ N + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.

Question 6

- (a) Since W is both S-invariant and T-invariant, it follows that $S(\mathbf{w}) \in W$ and $T(\mathbf{w}) \in W$ for all $\mathbf{w} \in W$. So one has $(S \circ T)(\mathbf{w}) = S(T(\mathbf{w})) \in W$, and thus W is $(S \circ T)$ -invariant. It follows that $(S \circ T)|_W(\mathbf{w}) = (S \circ T)(\mathbf{w}) = S(T(\mathbf{w})) = S(T|_W(\mathbf{w})) = S|_W(T|_W(\mathbf{w})) = ((S|_W) \circ (T|_W))(\mathbf{w})$ for all $\mathbf{w} \in W$, so one has $(S \circ T)|_W = (S|_W) \circ (T|_W)$ as desired.
- (b) For any $\mathbf{v} \in E_{\lambda}$, we have $T(\mathbf{v}) = \lambda \mathbf{v}$, so one has $T(S(\mathbf{v})) = (T \circ S)(\mathbf{v}) = (S \circ T)(\mathbf{v}) = S(T(\mathbf{v})) = S(\lambda \mathbf{v}) = \lambda S(\mathbf{v})$. This shows that $S(\mathbf{v}) \in E_{\lambda}$ so E_{λ} is S-invariant as desired.
- (c) We shall prove by strong induction on the dimension $m = \dim(V)$ of the vector space V, with the case m = 1 being trivial. Assume that the assertion holds for $m = 1, \dots, k-1$, where k > 1. By induction hypothesis, there exists some ordered basis B for V such that $[T_1]_B, \dots, [T_n]_B$ are diagonal.

Consider the case m = k. If we have $T_i(\mathbf{v}) = a_i \mathbf{v}$ for all $\mathbf{v} \in V$ for some a_1, \dots, a_n , then clearly, any ordered basis would do since $[T_i]_B$ is a scalar (and hence diagonal) matrix for all $i = 1, \dots, n$ and for any ordered basis B.

Else, let us assume WLOG that T_1 is not a scalar transformation. Then we see that T_1 must have at least two distinct eigenvalues (for otherwise if it has only one eigenvalue and it is diagonalizable, then there must exist some ordered basis B such that $[T_1]_B$ is a scalar matrix, a contradiction). Let the eigenvalues of T_1 be $\lambda_1, \dots, \lambda_r$, with $\lambda_i \neq \lambda_j$ for all $i \neq j$ and r > 1. As T_1 is diagonalizable, we must have $V = \bigoplus_{i=1}^r E_{\lambda_i}$.

Note that by part (b), E_{λ_i} is a T_j -invariant subspace of V for all $i=1,\cdots,r$ and $j=1,\cdots,n$, so $T_j|_{E_{\lambda_i}}$ is a diagonalizable operator on E_{λ_i} . Moreover, by parts (a) and (b), we deduce that $(T_i|_{E_{\lambda_t}}) \circ (T_j|_{E_{\lambda_t}}) = (T_j|_{E_{\lambda_t}}) \circ (T_i|_{E_{\lambda_t}})$ for all $i, j \in \{1, \cdots n\}$ and $t=1, \cdots, r$.

As $\dim(E_{\lambda_t}) < \dim(V)$ by assumption, it follows from the induction hypothesis that there exists an ordered basis B_t of E_{λ_t} for each t, such that $\left[T_i|_{E_{\lambda_t}}\right]_{B_t}$ is a diagonal matrix for all $i=1,\cdots,n$ and $t=1,\cdots,r$. Finally, by concatenating these ordered bases B_t to form an ordered basis $B=B_1\cup\cdots\cup B_r$ for V, we see that $[T_1]_B,\cdots,[T_n]_B$ are diagonal matrices. So this completes the induction step and we are done.

Question 7

(a) Take any $\mathbf{v} \in V$. Then one has $P^2(\mathbf{v}) = P(\mathbf{v})$, so $P(\mathbf{v} - P(\mathbf{v})) = 0_V$. Hence $\mathbf{v} - P(\mathbf{v}) \in \text{Ker}(R)$, so we have $\mathbf{v} = P(\mathbf{v}) + (\mathbf{v} - P(\mathbf{v})) \in R(P) + \text{Ker}(P)$ and hence V = R(P) + Ker(P). Next, if $\mathbf{u} \in R(P) + R(P) = R(P) + R(P)$

 $R(P) \cap Ker(P)$, then one has $\mathbf{u} = P(\mathbf{w})$ for some $w \in V$. Hence $\mathbf{u} = P(\mathbf{w}) = P^2(\mathbf{w}) = P(\mathbf{u}) = \mathbf{0}_V$, so this implies that $R(P) \cap Ker(P) = {\mathbf{0}_V}$. Therefore we have $V = R(P) \oplus Ker(P)$ as desired.

- (b) Define the map $P: \mathbb{R}^2 \to \mathbb{R}^2$ to be $P\left(\binom{a}{b}\right) = \binom{a}{0}$. Then it is clear that P is a linear operator on \mathbb{R}^2 and $P^2\left(\binom{a}{b}\right) = P\left(\binom{a}{0}\right) = \binom{a}{0} = P\left(\binom{a}{b}\right)$. However, it is clear that $P \neq O_V$ and $P \neq I_V$. By observation, we see that $R(P) = \left\{\binom{a}{0}: a \in \mathbb{R}\right\}$ and $Ker(P) = \left\{\binom{0}{a}: a \in \mathbb{R}\right\}$.
- (c) Take any $\mathbf{u} \in \text{Ker}(P)$ and $\mathbf{v} \in V$. Then we see that $P(\mathbf{v}) \in \mathbf{R}(P)$. By assumption, we have $\langle P(\mathbf{u} + \mathbf{v}), (\mathbf{u} + \mathbf{v}) P(\mathbf{u} + \mathbf{v}) \rangle = 0$. This implies that

$$\langle P(\mathbf{u} + \mathbf{v}), (\mathbf{u} + \mathbf{v}) - P(\mathbf{u} + \mathbf{v}) \rangle = \langle P(\mathbf{u}) + P(\mathbf{v}), \mathbf{u} + \mathbf{v} - P(\mathbf{u}) - P(\mathbf{v}) \rangle$$

$$= \langle P(\mathbf{v}), \mathbf{u} + \mathbf{v} - P(\mathbf{v}) \rangle$$

$$= \langle P(\mathbf{v}), \mathbf{u} \rangle + \langle P(\mathbf{v}), \mathbf{v} - P(\mathbf{v}) \rangle$$

$$= \langle P(\mathbf{v}), \mathbf{u} \rangle = 0.$$

Since this holds for all $\mathbf{v} \in V$, this would imply that $\mathbf{u} \in \mathbf{R}(P)^{\perp}$ so one has $\mathrm{Ker}(P) \subseteq \mathbf{R}(P)^{\perp}$.

Conversely, suppose $\mathbf{u} \in \mathrm{R}(P)^{\perp}$. Then one has $\langle P(\mathbf{v}), \mathbf{u} \rangle = 0$ for all $\mathbf{v} \in V$, and in particular, we have $\langle P(\mathbf{u}), \mathbf{u} \rangle = 0$.

This implies that $\langle P(\mathbf{u}), P(\mathbf{u}) \rangle = 0 + \langle P(\mathbf{u}), P(\mathbf{u}) \rangle = \langle P(\mathbf{u}), \mathbf{u} - P(\mathbf{u}) \rangle + \langle P(\mathbf{u}), P(\mathbf{u}) \rangle = \langle P(\mathbf{u}), \mathbf{u} \rangle = 0$, so we necessarily have $P(\mathbf{u}) = 0$. Hence $\mathbf{u} \in \text{Ker}(P)$ so this implies that $R(P)^{\perp} \subseteq \text{Ker}(P)$.

Page: 6 of 6

Therefore, we have $Ker(P) = R(P)^{\perp}$ as desired.