Solution of SDE1 problem 1

(a)
$$P_0 = 100$$
, $P_1 = 300$, $P_2 = 900$, $P_3 = 2700$, $P_4 = 8100$, $P_5 = 24300$

(b) (i)
$$P^+ = 3P$$

(ii)
$$\Delta P = 2P$$

(c) There is not enough information to determine f and d individually, but, since $f - d + 1 = \lambda = 3$, we can say that the difference between f and d is 2: f - d = 2.

Solution of SDE1 problem 2

- (a) $P^+ = 2P$, time unit is 1/2 hour, and $P_0 = 1$.
- (b) We need to compute to t=10 (10 half-hours). Clearly the solution is $P=2^tP_0$, so there are 1024 cells after 5 hours.

Solution of SDE1 problem 5

- (a) k > 1
- (b) r > 0
- (c) $0 \le k < 1$
- (d) $-1 \le r < 0$

See next page for SDE2 problems

Solution of SDE2 problem 2

(a):

(i)
$$\Delta P = 2P(1 - P/10)$$

(ii)
$$\Delta P = 2P - .2P^2$$

(iii)
$$\Delta P = .2P(10 - P)$$

(iv)
$$P^+ = 3P - .2P^2t$$

(b):

(i)
$$\Delta P = 1.5P(1 - P/(7.5))$$

(ii)
$$\Delta P = 1.5P - .2P^2$$

(iii)
$$\Delta P = .2P(7.5 - P)$$

(iv)
$$P^+ = 2.5P - .2P^2$$

Solution of SDE2 problem 5

a.

b.

c.

d.

 P_{t+1}

Solution of SDE3 problem 1

(a)
$$P^* = 0.15$$

(b)
$$P^* = 0.44$$

(c)
$$P^* = 0.20$$

(d)
$$P^* = 0, \alpha/\beta$$

(e)
$$P^* = 0, (\varepsilon - 1)/\delta$$

Solution of SDE3 problem 2

- (a) At $P^* = 0$, the linearization is $F' \approx 1.3$. Since |1.3| > 1, $P^* = 0$ is unstable.
- At $P^* = 15$, the linearization is $F' \approx .7$. Since |.7| < 1, $P^* = 15$ is stable.
- (b) $P^* = 0$ is unstable since |3.2| > 1; $P^* = 44$ is unstable since |-1.2| > 1.
- (c) $P^* = 0$ is unstable since |1.2| > 1; $P^* = 20$ is stable since |.8| < 1.
- (d) $P^*=0$ is stable if $|1+\alpha|<1$ (i.e., $-2<\alpha<0$) and unstable if $|1+\alpha|>1$ (i.e., $\alpha<-2$ or $\alpha>0$);
- $P^* = \alpha/\beta$ is stable if $|1 \alpha| < 1$ (i.e., $0 < \alpha < 2$) and unstable if $|1 \alpha| > 1$ (i.e., $\alpha < 0$ or $\alpha > 2$).
- (e) $P^*=0$ is stable if $|\varepsilon|<1$ and unstable if $|\varepsilon|>1$; $P^*=(\varepsilon-1)/\delta$ is stable if $|2-\varepsilon|<1$ (i.e., $1<\varepsilon<3$) and unstable if $|2-\varepsilon|>1$ (i.e., $\varepsilon<1$ or $\varepsilon>3$).

Solution of SDE4 problem 1

2.45

2.7

2.56

1.1 Q 1 1.1 Q 1 1.1 Q 0.6 0.7 0.6 0.7 Time 2.2

Solution of SDE4 problem 2

