NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECH LIBRARY KAFB, NM

REPORT 1251

STRESS ANALYSIS OF CIRCULAR SEMIMONOCOQUE CYLINDERS WITH CUTOUTS

By HARVEY G. McCOMB, Jr.

1955

REPORT 1251

STRESS ANALYSIS OF CIRCULAR SEMIMONOCOQUE CYLINDERS WITH CUTOUTS

By HARVEY G. McCOMB, Jr.

Langley Aeronautical Laboratory Langley Field, Va.

I

National Advisory Committee for Aeronautics

Headquarters, 1512 H Street NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act approved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President, and serve as such without compensation.

JEROME C. HUNSAKER, Sc. D., Massachusetts Institute of Technology, Chairman

LEONARD CARMICHAEL, Ph. D., Secretary, Smithsonian Institution, Vice Chairman

Joseph P. Adams, LL. B., Vice Chairman, Civil Aeronautics Board.
Allen V. Astin, Ph. D., Director, National Bureau of Standards.
Preston R. Bassett, M. A., Vice President, Sperry Rand Corp.
Detlev W. Bronk, Ph. D., President, Rockefeller Institute for Medical Research.

THOMAS S. COMBS, Vice Admiral, United States Navy, Deputy Chief of Naval Operations (Air).

FREDERICK C. CRAWFORD, Sc. D., Chairman of the Board, Thompson Products, Inc.

Ralph \bar{S} . Damon, D. Eng., President, Trans World Airlines, Inc. James H. Doolittle, Sc. D., Vice President, Shell Oil Co.

Carl J. Pfingstag, Rear Admiral, United States Navy, Assistant Chief for Field Activities, Bureau of Aeronautics. DONALD L. PUTT, Lieutenant General, United States Air Force, Deputy Chief of Staff (Development).

DONALD A. QUARLES, D. Eng., Secretary of the Air Force.

ARTHUR E. RAYMOND, Sc. D., Vice President—Engineering, Douglas Aircraft Co., Inc.

Francis W. Reichelderfer, Sc. D., Chief, United States Weather Bureau.

LOUIS S. ROTHSCHILD, PH. B., Under Secretary of Commerce for Transportation.

NATHAN F. TWINING, General, United States Air Force, Chief of Staff.

HUGH L. DRYDEN, PH. D., Director

JOHN W. CROWLEY, JR., B. S., Associate Director for Research

JOHN F. VICTORY, LL. D., Executive Secretary

EDWARD H. CHAMBERLIN, Executive Officer

HENRY J. E. REID, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.

SMITH J. DEFRANCE, D. Eng., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.

EDWARD R. SHARP, Sc. D., Director, Lewis Flight Propulsion Laboratory, Cleveland, Ohio

WALTER C. WILLIAMS, B. S., Chief, High-Speed Flight Station, Edwards, Calif.

ERRATA

NACA REPORT 1251

STRESS ANALYSIS OF CIRCULAR SEMIMONOCOQUE CYLINDERS WITH CUTOUTS By Harvey G. McComb, Jr.

1955

Page 6, column 1, line 2: The beginning of the sentence starting on line 2 should be reworded to avoid the misinterpretation introduced by the word "same." The revised sentence should read as follows:

Because of symmetry, similar equations result when equation (1) is written for stringer j = 1 at ring i = 0 or for stringer j = 0 at rings i = 0 or i = 1.

Page 23, column 1, line 3: Add the symbol j before the equal sign in the lower limit of the summation appearing in this equation.

REPORT 1251

STRESS ANALYSIS OF CIRCULAR SEMIMONOCOQUE CYLINDERS WITH CUTOUTS 1

By HARVEY G. McCOMB, Jr.

SUMMARY

A method is presented for analyzing the stresses about cutouts in circular semimonocoque cylinders with flexible rings. The method involves the use of so-called perturbation stress distributions which are superposed on the stress distribution that would exist in the structure with no cutout in such a way as to give the effects of a cutout. The method can be used for any loading case for which the structure without the cutout can be analyzed and is sufficiently versatile to account for stringer and shear reinforcement about the cutout.

INTRODUCTION

An airplane fusclage usually has openings or cutouts for entrance doors, cargo doors, windows, and many other purposes. The presence of such openings may result in a considerable redistribution of stress in the structure. Some knowledge of this stress redistribution is desirable in the structural design of fuselages near cutouts.

A large portion of the structure of many fuselages can be represented, approximately, by a circular semimonocoque cylinder, that is, a thin-walled circular cylinder stiffened by stringers (axial stiffening members) and rings (circumferential stiffening members). Some previous investigations relating to the problem of stress analysis of cylindrical semimonocoque shells with cutouts were reported in references 1 to 4. One limitation common to all of these analyses is that the flexibility of the rings or circumferential-stiffening members is neglected. In reference 5, Cicala discussed this limitation as well as certain other limitations in some of the previous investigations and introduced the idea that the effect of a cutout can be reproduced by superposing certain perturbation stress states on the stresses which would occur in the shell without a cutout.

The problem discussed by Cicala in reference 5 is that of a cutout in a circular semimonocoque cylinder which is long in comparison to the length of the cutout. The analysis of reference 5 is somewhat limited because it can be used only for loading conditions which produce stringer stresses longitudinally antisymmetric about the center line of the cutout (for example, torsion), and it cannot take into consideration the effects of coaming stringer reinforcement. The present report is an extension of the approach of Cicala and presents

a method of analysis which can be used with more general loading conditions and with either shear or stringer reinforcement about the cutout.

In reference 6 the stress perturbation technique is applied to the analysis of stresses about cutouts in flat sheet-stringer panels under axial load. Three basic unit perturbation solutions were used as tools in this method of analysis. In part I of this report the analogous perturbation approach is described for the stress analysis of circular semimonocoque cylinders with cutouts. The three perturbation-solution tools for circular semimonocoque cylinders analogous to those for the flat sheet-stringer panels of reference 6 are developed in part II of this report.

SYMBOLS

A effective cross-sectional area of a stringer

A* cross-sectional area of additional portion of a
reinforced stringer

$$a_{ni} = \frac{\Delta_{ii} f_n(i)}{2L \sin \frac{n\delta}{2}} \qquad (n \ge 2)$$

$$B = \frac{E}{G} \frac{t'}{t} \frac{R^2}{L^2}$$

$$B_n = 3B\delta^2 + 2(1 - \cos n\delta)$$

$$b \qquad \text{arc distance between stringers, } R\delta$$

$$b_{ni} = -\frac{\Delta_{ti} f_n(i)}{2L \sin \frac{n\delta}{2}} \qquad (n \ge 2)$$

 $A_n = 3B\delta^2 - 1 + \cos n\delta$

$$C = \frac{t'R^6}{IL^3}$$

$$D_n = \frac{2(\beta_n - 1)}{\gamma_n^2}$$

$$D_{rn} = \frac{1}{(rm+n)^2[(rm+n)^2-1]}$$

 d_n coefficient in trigonometric series for δ_{0j}

E Young's modulus of elasticity

 F_{ij} tangential force on ring *i* uniformly distributed between stringer *j* and stringer i+1

 $f_n(i)$ coefficient in trigonometric series for stringer

G loads shear modulus of elasticity

¹ Supersedes NACA TN 3199, 1954 and NACA TN 3200, 1954 by Harvey G. McComb, Jr., and NACA TN 3460, 1955 by Harvey G. McComb, Jr. and Emmet F. Low, Jr.

$$\begin{array}{ll} H_1(n,\phi) = \sum\limits_{r=-\infty}^{\infty} D_{rn} \cos{(rm+n)\phi} \\ H_2(n,\phi) = \sum\limits_{r=-\infty}^{\infty} (-1)^r D_{rn} \sin{(rm+n)\phi} \\ if effective moment of inertia of a ring cross section longitudinal indices, indicating rings and bays has the value 1 when h is an integer and has the value 0 when h is not an integer circumferential indices, indicating stringers and panel rows integers distance between rings
$$\begin{array}{ll} K_i J_r s_i \\ M_i J_r s_i \\ M_i$$$$

BASIC ASSUMPTIONS

A structure of the type considered in this report is shown in figure 1. It consists of a thin-walled circular cylinder stiffened by stringers in the longitudinal direction and by rings in the circumferential direction. The rings and stringers divide the thin-walled shell into rectangular panels which are called shear panels. The cutout is assumed to be rectangular—it removes an arbitrary number of shear panels and interrupts the corresponding stringers.

Some loading conditions which can be handled with this method of analysis are illustrated in figure 1. Other loading conditions are permissible if the stress distribution in the cylinder without the cutout is known.

A typical portion of the structure is shown in figure 2 with the index system used in this report to designate stringers, rings, bays, and panel rows. Note that the intersection of

FIGURE 1.—Circular semimonocoque cylinder with cutout.

FIGURE 2.—Portion of typical cylinder.

ring i and stringer j occurs at the lower left-hand corner of shear panel (i,j).

The analysis is based on the following assumptions regarding the properties of the structure:

- (a) The cylinder is long relative to the length of the cutout.
- (b) The stringers are uniform and equally spaced around the shell, and the sheet is of constant thickness.
- (c) The stringers carry only direct stress, and the sheet takes only shear stress which is constant within each shear panel; thus stringer stresses vary linearly between adjacent rings.
- (d) The rings are uniform and have a finite bending stiffness in their own planes, but they do not restrain longitudinal displacements of the stringers. The bending of the rings is inextensional.
- (e) The difference between the radius to the middle surface of the sheet and the radius to the neutral axis of a ring is negligible.
 - (f) The structure is elastic and no buckling occurs.

I—ANALYSIS OF STRESSES ABOUT CUTOUTS BY A PERTURBATION LOAD TECHNIQUE PERTURBATION STRESS DISTRIBUTIONS

The tools for the method of analysis to be described are the stress distributions due to three types of loads, called perturbation loads, applied to an infinitely long circular cylinder with no cutout. One perturbation load consists of a concentrated force P imposed on one stringer of the shell at its intersection with a ring, the force acting in the direction of the stringer. This load is illustrated in figure 3 (a) and is called the concentrated perturbation load. A second type, illustrated in figure 3 (b), is called the distributed perturbation load and consists of a force S uniformly distributed along the portion of one stringer which extends between two adjacent rings, the force acting in the direction of the stringer. The third type, shown in figure 3 (c), is called the shear

perturbation load and consists of uniformly distributed forces per unit length Q applied along the stringers and rings that border one shear panel of the shell, the forces acting in such a way as to cause pure shear in that panel.

For each of the three perturbation loads, formulas are developed in part II of this report which give stringer loads in every stringer at each ring and shear flows in each shear panel of the shell. By use of these formulas, tables of coefficients can be computed which give stringer loads and shear flows in the neighborhood of each perturbation load due to a unit magnitude of that load. Such tables for a cylinder having 36 stringers and various values of the structural parameters B and C are presented as tables 1 to 30. These tables were calculated on an IBM Card-Programmed Electronic Calculator. The application of these tables is not limited to cylinders with 36 stringers. In general, the total stringer area can simply be redistributed into 36 fictitious stringers. The values of the parameters B and C are not changed by such a redistribution of stringer area. Then the tables can be thought of as presenting (a) the load which is taken by all of the normal-stress-carrying material up to 5° on either side of the location of a fictitious stringer and (b) the shear flows at points in the sheet halfway between fictitious stringers.

Part (a) of each table contains the values of p_{ij} and $q_{ij}L$ due to a concentrated perturbation load P=1 on stringer j=0 at ring station i=0. Part (b) contains the values of p_{ij} and $q_{ij}L$ due to a distributed perturbation load of total magnitude S=1 on stringer j=0 between rings i=0 and i=1. Part (c) contains the values of p_{ij}/L and q_{ij} due to a shear perturbation load per unit length of magnitude Q=1 about shear panel (0,0). The positive senses of the perturbation loads are the senses shown in figure 3; stringer loads are assumed positive in tension, and shear flow is positive when an element of the sheet is loaded by shears which act

FIGURE 3.—Perturbation loads.

in the positive sense of the shear perturbation load. The solutions for arbitrary locations of the perturbation loads are readily obtained from the tables by means of changes of indices.

The application of these perturbation loads and the stress distributions caused by them in the stress analysis of circular semimonocoque cylinders with cutouts is discussed in the following section. The perturbation solutions are exact only for infinitely long cylinders. However, in the solution of a cutout problem, the perturbation loads are applied in self-equilibrating groups in order not to disturb the overall equilibrium of the structure; therefore, the stresses due to

the perturbation loads decay rapidly in the longitudinal direction. Consequently, the application of perturbation stress distributions for an infinitely long cylinder to a cylinder of finite length is justified if the vicinity of application of the perturbation loads is far from the ends of the cylinder.

METHOD OF ANALYSIS

STRUCTURE WITH NO REINFORCEMENT ABOUT CUTOUT

Application of perturbation loads.—Consider, first, a structure like that shown in figure 1 which has no reinforcement about the cutout. The stress distribution in such a shell can be thought of as a superposition of the stresses which would exist in the structure without a cutout and perturbation stress distributions which arise because of the cutout. The structure without a cutout is called herein the basic structure. The stress distribution which would exist in this structure is called herein the basic stress distribution. In the present report the basic stress distribution is assumed to be known. Then the problem of analyzing a structure with a cutout consists of the determination of the perturbation stress distributions to be superposed on the basic stresses in such a manner as to annihilate the effects of that portion of the basic structure which lies within the boundaries of the cutout. Finding the proper magnitudes of these perturbation stresses involves the solution of a system of simultaneous algebraic equations.

At the cutout boundary in the structure with the cutout, two conditions must be satisfied: (a) the stringer load must be zero at points where a stringer is interrupted by the cutout and (b) no external shear forces may act on portions of stringers and rings which border the cutout. By superposing concentrated and shear perturbation loads on the basic structure, the resultant stresses can be made to satisfy these conditions.

The method of analysis is as follows:

- (1) Find the stress distribution for the basic structure, that is, the cylinder without a cutout.
- (2) Place perturbation loads on the basic structure in the following manner: At each point where a stringer would be interrupted by the cutout, place a concentrated perturbation load; and, about each shear panel which would be removed by the cutout, place a shear perturbation load. For the case of a cutout removing three shear panels and interrupting two stringers, these perturbation loads are shown in figure 4.

FIGURE 4.—Application of perturbation loads.

- (3) With the use of the tables of coefficients, write a set of simultaneous algebraic equations which state the following conditions:
- (a) At the points where a stringer is to be interrupted by the cutout boundary, the resultant stringer load must vanish when the boundary is approached from the structure outside of the cutout. This resultant stringer load is composed of the basic stringer load plus the stringer load due to all the perturbation loads.
- (b) In each shear panel which is to be removed by the cutout, the basic shear flow plus the shear flow due to all the perturbation loads must be equal to the shear perturbation load applied to the portions of stringers and rings which border that given panel. Thus, the shear flow exerted by the shear panel on the portions of stringers and rings bordering it will exactly cancel the shear perturbation load applied to those same portions of stringers and rings.
- (4) Solve the system of equations from step (3) for the magnitudes of the perturbation loads, and superpose the stress distributions due to these loads on the basic distribution. This procedure yields the stress distribution in the structure with cutout.

Upon completion of these four steps, the magnitudes of the perturbation loads on the basic structure have been adjusted so that simultaneous removal of that portion of the basic structure which lies within the cutout boundary and the perturbation loads themselves would not disturb the remainder of the structure. The perturbation loads are in equilibrium with the portion of the basic structure lying within the cutout boundary. The stresses outside the cutout boundary in the basic structure subjected to the actual external loading together with the perturbation loads are precisely the same as the stresses in the structure with the cutout subjected to the external loading alone.

Conditions 3 (a) and 3 (b) can be expressed mathematically by the following equations, respectively:

$$\sum_{\underline{k}} \sum_{\underline{n}} P_{\xi \eta} p_{ij}(\xi, \eta) + \sum_{\underline{k}} \sum_{\underline{n}} Q_{\xi \eta} p_{ij}[\xi, \eta] + \overline{p}_{ij} = 0 \tag{1}$$

$$\sum_{\xi} \sum_{\eta} P_{\xi\eta} q_{ij}(\xi, \eta) + \sum_{\xi} \sum_{\eta} Q_{\xi\eta} q_{ij}[\xi, \eta] + \overline{q}_{ij} = Q_{ij}$$
 (2)

The unknowns are $P_{\xi\eta}$, the magnitude of the concentrated perturbation load on stringer η at ring ξ , and $Q_{\xi\eta}$, the magnitude of the shear perturbation load about shear panel (ξ,η) . The coefficients $p_{ij}(\xi,\eta)$ and $q_{ij}(\xi,\eta)$ are found in part (a) of the tables and the coefficients $p_{ij}[\xi,\eta]$ and $q_{ij}[\xi,\eta]$ are found in part (c). The summations in each case are extended over the appropriate perturbation loads. Equation (1) is written for each i,j where a stringer is to be interrupted by the cutout and refers in each case to the stringer load as the point i,j is approached from within that portion of the structure lying outside the cutout boundary. Equation (2) is written for each i,j where a shear panel is to be removed by the cutout. The form of equations (1) and (2) is the same regardless of whether the rings in the cylinder are considered rigid or flexible.

This method of analysis may be applied to a cylinder having a cutout more than 1 bay long, but, in such a situation, the effects of removing ring segments from the region within

the cutout boundary are neglected. In the rigid-ring case, such effects do not exist if the cut rings remain effectively rigid; in the flexible-ring case, the effects of cutting a ring could, in principle, be taken into account through the introduction of additional types of perturbation loads. It is possible that even with flexible rings the effects of cutting a ring are negligible in certain cases, but this would have to be verified by further investigation.

Sample calculation.—In order to illustrate the method of calculation, the cylinder shown in figure 5 is analyzed. A cutout which removes three shear panels and interrupts two stringers is located in the central bay. The properties of the cylinder are taken as follows:

$$m=36$$
 $A=0.260 \text{ sq in.}$
 $R=15 \text{ in.}$
 $L=12 \text{ in.}$
 $t=0.051 \text{ in.}$
 $b=R\frac{2\pi}{36}=2.62 \text{ in.}$
 $t'=\frac{0.260}{2.62}=0.0992$

For the purposes of this example suppose the rings are very heavy and can be considered rigid in bending in their own planes. From these properties the structural parameters B and C are calculated. The table corresponding to the values of B and C closest to the computed values will be used. If E is taken as 10.6×10^6 psi and G is taken as 4×10^6 psi, the parameters B and C are

$$B = \left(\frac{10.6}{4}\right) \left(\frac{0.0992}{0.051}\right) \left(\frac{15}{12}\right)^2 = 8.05$$

$$C = 0$$

Suppose that the cylinder is loaded with the bending moment M_1 and torque M_2 shown in figure 5. The perturbation load system for this problem is shown in figure 4. The concentrated perturbation loads are doubly symmetric about the cutout. The shear perturbation loads are symmetric about panel row j=0. Let P represent the magnitude of each of the concentrated perturbation loads. Let Q_0 represent the magnitude of the shear perturbation load about shear panel (0,0); and let Q_1 represent the magnitude of the shear perturbation loads about shear panels (0,1) and (0,-1).

Equations (1) and (2) are now written for this example by use of the tables of coefficients for B=8 and C=0. Equation (1) for the stringer load condition in stringer j=1 at ring i=1 is written with the aid of tables 1 (a) and 1 (c) as follows:

$$-0.5000P + 0.0476P + 0.0895P + 0.1192Q_1L - 0.1192Q_0L - 0.0374Q_1L + \overline{p}_{11} = 0$$

FIGURE 5.—Circular cylinder with cutout used in sample calculation.

where \overline{p}_{11} is the basic stringer load in stringer j=1 at station i=1. Because of symmetry the same equation results when equation (1) is written for stringer j=1 at ring i=0 or for stringer j=0 at rings i=0 or i=1. Equation (2) for shear panel (0,0) is

$$-0.2262rac{P}{L}+0.2262rac{P}{L}-0.2262rac{P}{L}+0.2262rac{P}{L}+0.6986Q_0- \ 2(0.0629)Q_1+ar{q}_{00}=Q_0$$

where \bar{q}_{00} is the basic shear flow in shear panel (0,0). For shear panels (0,1) and (0,-1), equation (2) gives

$$-0.2262 \frac{P}{L} + 0.2262 \frac{P}{L} - 0.1368 \frac{P}{L} + 0.1368 \frac{P}{L} + 0.6986 Q_1 -$$

$$0.0629Q_0 + 0.0119Q_1 + \overline{q}_{01} = Q_1$$

where \overline{q}_{01} is the basic shear flow in shear panel (0,1). These three equations in the three unknowns P, Q_0 , and Q_1 become

$$0.3629P + 0.1192Q_0L - 0.0818Q_1L = \overline{p}_{11}
0.3014Q_0L + 0.1258Q_1L = \overline{q}_{00}L
0.0629Q_0L + 0.2895Q_1L = \overline{q}_{01}L$$
(3)

For simplicity, let $M_1=M_2=100,000$ lb-in. In the present example, the basic stress distribution can be found from elementary beam and torsion theories which give $\bar{p}_{11}=370$ pounds and $\bar{q}_{00}=\bar{q}_{01}=70.8$ lb/in. When these constants are introduced into the system of equations (3), the solution is

$$P=1,020 \text{ lb}$$

 $Q_0L=1,750 \text{ lb}$
 $Q_1L=2,560 \text{ lb}$

Stringer loads and shear flows in the neighborhood of the cutout are obtained by superposing the effects of these perturbation loads on the basic stress distribution. For example, with the use of tables 1 (a) and 1 (c) the stringer load at the intersection of ring i=0 and stringer j=2 is

given by

$$P(0.0895+0.0511) + Q_1L(0.1192+0.0125) + Q_0L(0.0374) + \overline{p}_{02}$$

$$= 545 + \overline{p}_{02}$$

The basic stringer load \overline{p}_{02} equals 358 pounds. Therefore, the load in stringer j=2 at ring i=0 is 903 pounds. Other stringer loads at ring i=0 are shown in figure 6(a). The shear flow in shear panel (-1,1) is given by

$$\frac{1}{L} \left[P(0.2262 + 0.1368 + 0.0044 - 0.0360) + Q_1 L(0.1357 - 0.0159) + Q_0 L(0.0097) \right] + \overline{q}_{-1,1} = 55.1 + \overline{q}_{-1,1}$$

The basic shear flow $\bar{q}_{-1,1}$ equals 70.8 lb/in. Thus, the shear flow in panel (-1,1) is 125.9 lb/in. Other shear flows in bay i=-1 are shown in figure 6 (b), and in figure 6 (c) are presented shear flows in the net section (bay i=0).

STRUCTURE WITH REINFORCEMENT ABOUT CUTOUT

Shear reinforcement.—The method of analysis is easily extended to problems where shear panels are reinforced in the neighborhood of the cutout. Suppose that some of the shear panels around the cutout are reinforced by the addition of a certain thickness of sheet (i. e., a doubler plate). Then, the procedure consists of adding shear perturbation loads to each of these shear panels in the basic structure. On the doubler plates is placed the same shear perturbation load except with opposite sign. Then, for each reinforced shear panel, an equation is written which states the requirement that the shear stress in the shear panel of the basic structure shall equal the shear stress in the doubler plate used to reinforce that panel. When this condition is satisfied, the loaded doubler plates can conceptually be inserted into the basic structure without disturbing continuity. The shear perturbation loads on the doubler plates cancel the shear perturbation loads on the basic structure.

As an example, consider for simplicity the cylinder shown in figure 5 loaded only with bending moment M_1 . The most highly loaded shear panels are those indicated by the vertical

- (a) Stringer loads at ring bordering cutout (ring i=0).
- (b) Shear flow in bay adjacent to cutout (bay i=-1). (c) Shear flow in net section (bay i=0).

FIGURE 6.—Results of sample calculation.

hatching in figure 7. Suppose, now, that these shear panels are reinforced by the addition of plates of thickness t^* to the skin of thickness t so that the total thickness in these shear panels is $t+t^*$. The perturbation load system to be placed on the basic structure is shown in figure 8. The four

doubler plates of thickness t^* are shown as free bodies in figure 8. The shear perturbation loads applied to them are of the same magnitude as those applied to the basic portions of the reinforced shear panels, but are opposite in sign. The conditions that must be satisfied are:

- (a) The stringer load is zero in stringers j=0 and j=1 at rings i=0 and i=1 as each of these points is approached from the structure outside of the cutout.
- (b) The shear flow in shear panels (0,-1), (0,0), and (0,1) cancels any shear perturbation load applied about these panels. (In this example, no shear is developed in the shear panels of bay i=0 and this condition is automatically satisfied.)
- (c) The shear stress in each of the shear panels (1,1), (1,-1), (-1,1), and (-1,-1) in the basic structure must equal the shear stress in the corresponding doubler plate.

Condition (a), which must hold where stringers j=0 and j=1 are interrupted by the cutout, is expressed by a single equation because of symmetry:

$$(-0.5000+0.0476+0.0895)P+(-0.1192-0.0374+0.0067-0.0118)QL+\overline{p}_{11}=0$$

where P and Q are the magnitudes of the concentrated and shear perturbation loads, respectively, and \overline{p}_{11} is the basic stringer load. The condition in shear panel (1,1) that the shear stress in the basic portion of the sheet equals the shear stress in the doubler plate (condition (c)) is expressed as

$$\left[(-0.2262 - 0.1368 - 0.0044 + 0.0360) \frac{P}{L} + (0.6986 - 0.0119 - 0.0068 + 0.0052) Q \right] \frac{1}{t} = -Q \frac{1}{t^*}$$

where t is the thickness of the basic portion of the shear panel and t^* is the thickness of the doubler plate. Because of symmetry, the same equation expresses condition (c) for the other three reinforced shear panels. These equations become

$$0.3629P + 0.1617QL = \overline{p}_{11}$$
$$-0.3314P + \left(\frac{t}{t^*} + 0.6851\right)QL = 0$$

For a given value of t/t^* and for a given magnitude of M_1 (so that \overline{p}_{11} can be computed), this system of equations can be solved for P and Q, and the stress distributions due to these perturbation loads can then be superposed on the basic stress distribution to give the stresses about the cutout.

Stringer reinforcement.—The method of analysis is also easily extended to problems where stringers are reinforced in the neighborhood of the cutout. For example, suppose the coaming stringers in the structure shown in figure 5 have reinforcement of constant cross-sectional area extending 1 bay on either side of the cutout. This coaming-stringer reinforcement is illustrated in figure 9. Let the area of the added reinforcing portion of a coaming stringer be A^* so that the total area of the reinforced portion of the stringer is $A+A^*$. It is assumed that the stringer load is abruptly transmitted into the added portion of the reinforced coaming stringer so that the stress is always given by the force divided by the cross-sectional area.

FIGURE 7.—Cutout with shear reinforcement.

FIGURE 8.—Perturbation load system for a problem of shear reinforcement.

FIGURE 9.—Cutout with reinforced coaming stringers.

Again for simplicity suppose that the cylinder is loaded only by the bending moment M_1 shown in figure 5. The perturbation load system to be placed on the basic structure is shown in figure 10. The added reinforcing portions of the coaming stringers are shown as free bodies in figure 10 with the proper perturbation loads applied to them. The conditions that must be satisfied are:

- (a) The stringer load is zero in stringers j=0 and j=1 at rings i=0 and i=1 as each of these points is approached from the structure outside of the cutout.
- (b) The shear flow in shear panels (0,-1), (0,0), and (0,1) cancels any shear perturbation load applied about these shear panels. (This condition is automatically satisfied in this example.)
- (c) The stress in the basic portions of the coaming stringers j=-1 and j=2 equals the stress in the added reinforcing portions at rings i=0 and i=1.
- (d) In the basic portions of the coaming stringers j=-1 and j=2 at rings i=-1 and i=2, when these points are approached from the side which is reinforced, the stress equals the stress at the ends of the added reinforcing portions of the coaming stringers.

Because of the symmetry in this structure, only three equations are required. The unknowns are P_1 and P_2 , the magnitudes of the concentrated perturbation loads, and S, the magnitude of the distributed perturbation loads. Condition (a), which must hold where stringer j=1 is interrupted by the cutout, is expressed with the use of tables 1(a) and 1(b) as follows:

$$(-0.5000 + 0.0476 + 0.0895)P_1 + (-0.0895 - 0.0511 - 0.0490 - 0.0475)P_2 + (-0.0727 - 0.0340 - 0.0629 - 0.0499)S + \overline{p}_{11} = 0$$

The condition that the stringer stress in the basic portion of stringer j=2 equals the stress in the added reinforcing portion at ring i=1 (condition (c)) is expressed as

$$[(0.0895 + 0.0511)P_1 + (-0.0476 - 0.0330 - 0.0565 - 0.0402)P_2$$

$$+ (-0.1924 - 0.0195 - 0.0567 - 0.0379)S + \overline{p}_{12}] \frac{1}{A} = (P_2 + S) \frac{1}{A^*}$$

Finally, the condition that the stress in the basic portion of stringer j=2, as the ring i=2 is approached from the reinforced side, equals the stress at the ends of the added reinforcing member (condition (d)) is expressed as follows:

$$\begin{split} & [(-0.5000 - 0.0459 - 0.0394) \, P_2 + (0.1924 + 0.0195 - 0.0499 \\ & -0.0398) S + (-0.0895 - 0.0511 + 0.0490 + 0.0475) P_1 + \overline{p}_{22}] \, \frac{1}{A} = \frac{P_2}{A^*} \end{split}$$

These three equations become

$$0.3629P_{1} + 0.2371P_{2} + 0.2195S = \overline{p}_{11}$$

$$-0.1406P_{1} + \left(\frac{A}{A^{*}} + 0.1773\right)P_{2} + \left(\frac{A}{A^{*}} + 0.3065\right)S = \overline{p}_{12}$$

$$0.0441P_{1} + \left(\frac{A}{A^{*}} + 0.5853\right)P_{2} - 0.1222S = \overline{p}_{22}$$

When A/A^* is known and the magnitude of the external moment M_1 is known so that the basic stringer loads \bar{p}_{11} , \bar{p}_{12} , and \bar{p}_{22} can be computed, this system of equations can be solved for the unknowns P_1 , P_2 , and S. Superposition of the stresses due to these perturbation loads on the basic stress distribution yields the stresses about the cutout.

In this example the basic stringer loads do not vary in the longitudinal direction, and the concentrated and distributed perturbation loads can be applied in pairs, equal in magnitude and opposite in sign, as shown in figure 10. However, in cases where the basic stringer loads do vary longitudinally, for example, when the shell is loaded in shear and bending, the concentrated and distributed perturbation loads may not occur in equal and opposite pairs. Furthermore, additional distributed perturbation loads may be necessary on the coaming stringers in bay i=0. If such is the case, the stress conditions which were used in the example no longer provide a sufficient number of equations to determine the magnitudes of the perturbation loads. The required

FIGURE 10.—Perturbation load system for a problem of coaming-stringer reinforcement.

supplementary equations are found from the conditions of equilibrium obtained when the added reinforcing portions of the coaming stringers are considered as free bodies.

Comparison of results for reinforced and unreinforced structures.—Some calculated results for the problems of cutouts with reinforcement just discussed are compared with the results for the structure without reinforcement in the following tables:

i	Stringer load, lb, for—							
Intersection of ring and stringer	Structure without rein- forcement	Structure with reinforced coaming stringers, $A^* = A$	Structure with shear reinforcement, $t^* = t$					
(1, 2) (1, 3) (1, 4) (1, 5) (1, 6)	501 422 359 303 244	758 331 296 258 209	507 422 359 302 242					

	She	ear flow, lb/in., fo	or—
Shear panel	Structure without rein- forcement	Structure with reinforced coaming stringers, A*=A	Structure with shear reinforcement, t*=t
(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)	$\begin{array}{c} 0 \\ -28.1 \\ -12.3 \\ -5.6 \\ -2.5 \end{array}$	0 -27.3 3 .4 .5	$\begin{array}{c} 0 \\ -30.6 \\ -13.3 \\ -5.8 \\ -2.3 \end{array}$

The reinforced shear panels were assumed to have sheet twice as thick as the uniform sheet; the reinforced portions of the coaming stringers were taken to have twice the area of the uniform stringers. The applied bending moment M_1 was taken as 100,000 lb-in.

The following comparison is noted for these illustrative examples: In the case of coaming-stringer reinforcement, the maximum stringer load is increased, but the maximum stringer stress is decreased (because stringer area is doubled), and the maximum shear flow is not appreciably changed. In the case of shear reinforcement, the maximum shear flow is increased only slightly so that maximum shear stress is considerably reduced, and stringer loads are not appreciably affected.

II—DERIVATION OF PERTURBATION SOLUTIONS ANALYTICAL APPROACH

Equations for the stress distributions arising from the three perturbation loads illustrated in figure 3 are derived in this part of the report. The perturbation solutions are obtained by use of the principle of minimum complementary energy. This principle states that, among all possible stress distributions in the structure which satisfy equilibrium and the boundary conditions on stress, the distribution that most nearly satisfies compatibility is the one which minimizes the complementary energy π^* where

$$\pi^*$$
=Internal energy- $\begin{pmatrix} \text{Work done by surface stresses} \\ \text{acting through the prescribed} \\ \text{surface displacements} \end{pmatrix}$

(4)

Since displacements are not prescribed anywhere on the structure, the second term on the right-hand side of equation (4) is omitted. The complementary energy becomes the internal energy or stress energy of the structure.

In writing the equation for the stress energy, the following factors are considered: the energy of axial distortion of the stringers, the shear energy in the sheet, and the bending energy of the rings in their own planes. Each of the perturbation loads is shown in its positive sense in figure 3. Stringer loads are taken as positive in tension. Shear flows are positive as shown in figure 11. Ring bending moments, shear, and thrusts are placed on the ring element in figure 11 in the positive sense. The stress energy in the structure can be expressed as

$$U = \sum_{i=-\infty}^{\infty} \sum_{j=0}^{m-1} \left[\frac{L}{6AE} \left(p_{ij}^2 + p_{ij} p_{i+1,j} + p_{i+1,j}^2 \right) + \frac{R\delta L}{2Gt} q_{ij}^2 \right] + \sum_{i=-\infty}^{\infty} \int_0^{2\pi} \frac{R}{2EI} M^2(i,\phi) d\phi$$
 (5)

where the integration over the length of a stringer between adjacent rings has been carried out.

In the analysis to follow, stringer loads are expressed in the form of a finite trigonometric series. Then, by using the equations of statics, the shear flows and ring bending moments are written in terms of the coefficients of this trigonometric series. The expression for stress energy, equation (5), is minimized with respect to the coefficients of the trigonometric series for stringer loads; then, the expressions for the stringer loads, shear flows, and ring bending moments are substituted into the resulting equation. This process yields a fourth-order finite-difference equation which can be solved for these trigonometric coefficients. The solution is then substituted back into the original expressions for stringer loads, shear flows, and ring moments to yield the desired distributions.

For convenience in application, the significant equations are collected in appendix A.

PERTURBATION LOAD SOLUTIONS CONCENTRATED PERTURBATION LOAD

Expression for stringer loads.—The concentrated perturbation load is shown in figure 3 (a); let P represent the magnitude of this load. Since the structure is uniform and infinitely long, half of the load goes into the portion of the structure to the right of the ring where the load is applied (ring i=0), and half goes to the left of this ring. Therefore, it can be seen from figure 3 (a) that, because of symmetry,

$$p_{ij} = -p_{-i,j} (i \ge 1)
 q_{ij} = q_{-i-1,j} (i \ge 0)
 M(i,\phi) = -M(-i,\phi) (i \ge 0)$$
(6)

Consider the right half of the structure, including the ring at i=0. The concentrated perturbation load gives rise to stringer loads which are circumferentially symmetric about stringer j=0 (see fig. 3 (a)). Thus the stringer load distribution can be represented by a series of the form

$$p_{ij} = \sum_{n=0}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \cos nj\delta$$
 (7)

where the notation $\sum_{n=0}^{\frac{m}{2} \text{ or } \frac{m-1}{2}}$ means that the summation is

FIGURE 11.—Positive sense of quantities used in analysis.

carried over n from n=0 to $n=\frac{m}{2}$ if m is even and to $n=\frac{m-1}{2}$ if m is odd.

Evaluation of $f_0(i)$, $f_1(i)$, and $f_n(0)$.—Suppose that equation (7) is multiplied by $\cos lj\delta$ and summed over j from 0 to m-1. This procedure yields

$$\sum_{j=0}^{m-1} p_{ij} \cos lj \delta = \sum_{n=0}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \sum_{j=0}^{m-1} \cos nj \delta \cos lj \delta$$

The sum over j on the right-hand side is, for $0 \le n \le \frac{m}{2}$ and $0 \le l \le \frac{m}{2}$,

$$\begin{split} \sum_{j=0}^{m-1} \cos nj\delta \cos lj\delta &= 0 & (l \neq n) \\ &= \frac{m}{2} \left(1 + \delta_{n0} + \delta_{n, \frac{m}{2}} \right) & (l = n) \end{split}$$

Thus the coefficients of the trigonometric series in equation (7) are

$$f_n(i) = \frac{2}{m(1 + \delta_{n0} + \delta_{n, \frac{m}{2}})} \sum_{j=0}^{m-1} p_{ij} \cos nj\delta$$
 (8)

It is desirable first of all to determine those values of $f_n(i)$ which can be found from consideration of the boundary conditions and of the overall equilibrium of the cylinder. Consider the equations of statics for the cylinder as a whole. Satisfaction of equilibrium in the longitudinal direction requires that the sum of the stringer loads at any ring station i must equal one-half of the applied load P. This condition is expressed as

$$\sum_{j=0}^{m-1} p_{ij} = \frac{P}{2}$$

For n=0, equation (8) gives

$$f_0(i) = \frac{1}{m} \sum_{i=0}^{m-1} p_{ij} = \frac{P}{2m}$$
 (9)

Moment equilibrium gives two equations, one of which is automatically satisfied because of the symmetry of the stringer load distribution around the cylinder. The other moment equation is

$$\sum_{j=0}^{m-1} p_{ij} R \cos j\delta = \frac{PR}{2}$$

For n=1, equation (8) is

$$f_1(i) = \frac{2}{m} \sum_{i=0}^{m-1} p_{ij} \cos j\delta = \frac{P}{m}$$
 (10)

On substituting the values of $f_0(i)$ and $f_1(i)$ given in equations (9) and (10), respectively, into equation (7), there results

$$p_{ij} = \frac{P}{2m} + \frac{P}{m} \cos j\delta + \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \cos nj\delta$$
 (11)

Consider now the boundary condition at ring i=0. The stringer loads here are

$$p_{0j} = \frac{P}{2} \, \delta_{0j}$$

and substitution of this expression into equation (8) yields

$$f_n(0) = \frac{P}{m\left(1 + \delta_{n0} + \delta_{n,\frac{m}{2}}\right)} \qquad \left(0 \le n \le \frac{m}{2}\right) \tag{12}$$

The equations of equilibrium and the boundary condition at i=0 have been used to obtain certain of the coefficients of the trigonometric series for stringer loads. The remainder of the coefficients are found by use of the principle of minimum complementary energy, and this is the next step in the solution.

Expressions for shear flows and ring bending moments.— In order to use the principle of minimum complementary energy, the shear flows and ring bending moments must be found in terms of the trigonometric coefficients $f_n(i)$. Shear flows are determined by the consideration of the equations of statics of a portion of any stringer j between two adjacent rings i and i+1. The forces on this free body are shown in sketch (a):

Equilibrium of these forces requires that

$$p_{i+1,j} - p_{ij} + (q_{ij} - q_{i,j-1})L = 0 (13)$$

Substitution of equation (11) into equation (13) yields

$$q_{ij} - q_{i,i-1} = -\frac{1}{L} \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} [f_n(i+1) - f_n(i)] \cos nj\delta \qquad (14)$$

In order to find q_{ij} , replace j with a dummy index k and sum both sides of this equation over k from k=1 to k=j; that is, write

$$\sum_{k=1}^{j} (q_{ik} - q_{i,k-1}) = -\frac{1}{L} \sum_{n=2}^{\frac{m}{2}} [f_n(i+1) - f_n(i)] \sum_{k=1}^{j} \cos nk\delta$$

When the indicated summations over k have been carried out, the following equation is obtained:

(11)
$$q_{ij} - q_{i0} = -\frac{1}{L} \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} [f_n(i+1) - f_n(i)] \left[\frac{\sin n \left(j + \frac{1}{2}\right) \delta}{2 \sin \frac{n\delta}{2}} - \frac{1}{2} \right]$$

The term q_{i0} can be found from the condition that the total torque on the section is zero. The resulting expression for shear flows is

$$q_{ij} = -\sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{f_n(i+1) - f_n(i)}{2L \sin \frac{n\delta}{2}} \sin n \left(j + \frac{1}{2}\right) \delta$$
 (15)

Bending moments are caused in each ring by a tangential loading which develops because of the difference in shear flow in the sheet on either side of the ring. The tangential load on ring i has the value

$$q_{ij} - q_{i-1,j} = -\sum_{n=2}^{\frac{m}{2}} \sum_{n=2}^{\text{or } \frac{m-1}{2}} \frac{\Delta_{ii} f_n(i)}{2L \sin \frac{n\delta}{2}} \sin n \left(j + \frac{1}{2}\right) \delta \qquad (16)$$

In appendix B, this load is applied to a circular ring and the bending moment in the ring is derived. This procedure results in the following moment in ring i (see eq. (B9)):

$$M(i,\phi) = -\frac{\sum_{n=2}^{m} \operatorname{or} \frac{m-1}{2}}{\sum_{n=2}^{m-1} \frac{R^2 m}{2\pi L} \Delta_{ii} f_n(i) H_1(n,\phi)}$$
(17)

where

$$H_1(n,\phi) = \sum_{r=-\infty}^{\infty} \frac{\cos{(rm+n)\phi}}{(rm+n)^2[(rm+n)^2-1]}$$

The sign convention for the moment is illustrated in figure 11; the convention for measuring the angle ϕ is shown in figure 12 (a).

Energy analysis.—The stringer loads, shear flows, and ring bending moments have now been expressed in terms of the coefficients $f_n(i)$. The stringer loads are given in equation (11), the shear flows in equation (15), and the bending moments in equation (17). These equations are used in the minimization of the stress energy of the cylinder with respect to $f_n(i)$.

By virtue of the symmetry properties of this problem expressed in equations (6), the energy in the structure to the left of ring i=0 is the same as the energy to the right of ring i=0. Thus, equation (5) becomes

$$U = 2 \sum_{i=0}^{\infty} \sum_{j=0}^{m-1} \left[\frac{L}{6AE} (p_{ij}^2 + p_{ij}p_{i+1,j} + p_{i+1,j}^2) + \frac{R\delta L}{2Gt} q_{ij}^2 \right] + 2 \sum_{i=1}^{\infty} \int_{0}^{2\pi} \frac{R}{2EI} M^2(i,\phi) d\phi$$

(a) For concentrated and distributed perturbation loads.

(b) For shear perturbation load.

Figure 12.—Conventions for angular coordinate ϕ .

Note that $M(0,\phi)$ is identically zero because there is no difference in shear flow across ring i=0 and, therefore, no tangential load acts on this ring.

Minimization of the stress energy with respect to $f_n(i)$ re-

sults in the following equation:

$$\begin{split} \frac{\partial U}{\partial f_{n}(i)} = & 0 \\ = & \sum_{j=0}^{m-1} \left[\frac{L}{6AE} \left(p_{i+1, j} + 4p_{ij} + p_{i-1, j} \right) \frac{\partial p_{ij}}{\partial f_{n}(i)} + \right. \\ & \left. \frac{R\delta L}{Gt} \left(q_{ij} \frac{\partial q_{ij}}{\partial f_{n}(i)} + q_{i-1, j} \frac{\partial q_{i-1, j}}{\partial f_{n}(i)} \right) \right] + \\ & \left. \int_{0}^{2\pi} \frac{R}{EI} \left[M\left(i+1, \phi\right) \frac{\partial M\left(i+1, \phi\right)}{\partial f_{n}(i)} + M\left(i, \phi\right) \frac{\partial M\left(i, \phi\right)}{\partial f_{n}(i)} + \right. \\ \left. M\left(i-1, \phi\right) \frac{\partial M\left(i-1, \phi\right)}{\partial f_{n}(i)} \right] d\phi \end{split}$$
(18)

The coefficients $f_0(i)$ and $f_1(i)$ are known already for all values of i, and $f_n(0)$ is known for $0 \le n \le \frac{m}{2}$. Equation (18)

therefore needs only to be considered for $i \ge 1$ and $n \ge 2$. The expressions for the stringer loads, shear flows, and ring bending moments are substituted into equation (18). Then the following definite sums are needed (these can be obtained by the procedure outlined in ref. 7):

$$\sum_{j=0}^{m-1} \cos nj \delta = 0 \qquad (0 < n < m) \tag{19}$$

and for the integers n and l restricted to the range $1 \le n \le \frac{m}{2}$ and $1 \le l \le \frac{m}{2}$.

$$\sum_{j=0}^{m-1} \cos lj\delta \cos nj\delta = 0 \qquad (l \neq n)$$

$$= \frac{m}{2} \left(1 + \delta_{n, \frac{m}{2}} \right) \qquad (l=n)$$
(20)

and

$$\sum_{j=0}^{m-1} \sin l \left(j + \frac{1}{2} \right) \delta \sin n \left(j + \frac{1}{2} \right) \delta = 0 \qquad (l \neq n)$$

$$= \frac{m}{2} \left(1 + \delta_{n, \frac{m}{2}} \right) \quad (l = n)$$
(21)

The following definite integral, which is derived in appendix C, is also needed:

$$\int_{0}^{2\pi} H_{1}(n,\phi) H_{1}(l,\phi) d\phi = 0 \qquad (l \neq n)$$

$$= S_{n}\pi \left(1 + \delta_{n,\frac{m}{2}} \right) \qquad (l=n)$$
(22)

where

$$S_n = \sum_{r=-\infty}^{\infty} D_{rn}^2 = \sum_{r=-\infty}^{\infty} \frac{1}{(rm+n)^4 [(rm+n)^2 - 1]^2}$$

and where n and l are restricted to $2 \le n \le \frac{m}{2}$ and $2 \le l \le \frac{m}{2}$.

A closed form of S_n is presented in appendix C but the series form converges so rapidly that it is usually more convenient than the closed form for use in calculations.

After substitution of the expressions for stringer loads, shear flows, and ring moments into equation (18), the use of these definite sums (19), (20), and (21), and definite integral (22) results in the following equations which express the condition of minimum stress energy:

For i=1,

$$f_n(3) + 2\gamma_n f_n(2) + (2\beta_n - 1)f_n(1) + 2(\gamma_n + 1)f_n(0) = 0$$
 (23a)

and, for $i \ge 2$,

$$f_n(i+2) + 2\gamma_n f_n(i+1) + 2\beta_n f_n(i) + 2\gamma_n f_n(i-1) + f_n(i-2) = 0$$
(23b)

where

$$1 - \frac{3}{2} \frac{B\delta^2}{\sin^2 \frac{n\delta}{2}}$$

$$\gamma_n = -2 + \frac{12CS_n}{12CS_n}$$

$$4 + 3 \frac{B\delta^2}{\sin^2 \frac{n\delta}{2}}$$

$$\beta_n = 3 + \frac{12CS_n}{12CS_n}$$

$$B = \frac{E t'}{G} \frac{R^2}{t} \frac{R^2}{L^2}$$

$$C = \frac{t'R^6}{L^3}$$

Solution of finite-difference equation.—Equation (23b) is a fourth-order finite-difference equation with constant coefficients. (Note that the symbol i represents the index of the rings and bays and should not be confused with the usual notation for $\sqrt{-1}$ which never appears in this report.) Equation (23b) corresponds exactly with equation (24) of reference 8. The general solution is presented on pages 23 to 26 of reference 8 and on pages 28 and 29 of reference 9. It may be written as

$$f_{n}(i) = (\pm e^{-\psi_{n}})^{i} [\alpha_{1n} \Lambda_{1n}(i) + \alpha_{2n} \Lambda_{2n}(i)] + (\pm e^{\psi_{n}})^{i} [\alpha_{3n} \Lambda_{1n}(i) + \alpha_{4n} \Lambda_{2n}(i)] \qquad (n \ge 2)$$
 (24)

where the upper sign is used when $\gamma_n < 0$ and the lower sign when $\gamma_n > 0$. The values of Λ are as follows:

For
$$D_n = \frac{2(\beta_n - 1)}{\gamma_n^2} > 1$$
,

$$\Lambda_{1n}(i) = \cos i \chi_n$$

$$\Lambda_{2n}(i) = \sin i \chi_n$$

where

$$\chi_n = \frac{1}{2} \cos^{-1} \left[\frac{\beta_n - 1}{2} - \sqrt{\left(\frac{\beta_n + 1}{2}\right)^2 - \gamma_n^2} \right]$$

For $D_n < 1$,

$$\Lambda_{1n}(i) = \cosh i \chi_n$$

$$\Lambda_{2n}(i) = \sinh i \chi_n$$

where

$$\chi_n = \frac{1}{2} \cosh^{-1} \left[\frac{\beta_n - 1}{2} - \sqrt{\left(\frac{\beta_n + 1}{2}\right)^2 - \gamma_n^2} \right]$$

For $D_n=1$,

$$\Lambda_{1n} =$$

$$\Lambda_{2n} = i$$

In the inverse trigonometric and hyperbolic functions, the principal values are used. The argument ψ_n of the exponential function is given by the positive branch of

$$\psi_{n} = \frac{1}{2} \cosh^{-1} \left[\frac{\beta_{n} - 1}{2} + \sqrt{\left(\frac{\beta_{n} + 1}{2}\right)^{2} - \gamma_{n}^{2}} \right]$$

At a large longitudinal distance from the applied load, the stringer loads should approach the elementary distribution given by the first two terms of equation (11); consequently, for $n \ge 2$, $f_n(i)$ approaches zero as i approaches infinity. The first term on the right-hand side of equation (24) satisfies this condition; however, the second term does not and, hence, must be omitted. The solutions, then, that are compatible with the boundary conditions at infinity are:

$$f_n(i) = \zeta_n^i \left[\alpha_{1n} \Lambda_{1n}(i) + \alpha_{2n} \Lambda_{2n}(i) \right] \qquad (n \ge 2) \tag{25}$$

where

$$\zeta_n = \pm e^{-\psi_n}$$

Now the arbitrary constants α_{1n} and α_{2n} are determined. The first, α_{1n} , is obtained immediately. Substitution of i=0 into equation (25) and use of equation (12) to evaluate $f_n(0)$ yields

$$f_n(0) = \alpha_{1n} = \frac{P}{m\left(1 + \delta_{n,\frac{m}{2}}\right)} \qquad (n \ge 2)$$
 (26)

Substitution of equations (26) and (25) into the boundary equation (23a) yields

$$\alpha_{2n} = -\frac{\Theta_{1n} + 2(\gamma_n + 1)}{\Theta_{2n}} \frac{P}{m\left(1 + \delta_{n, \frac{m}{2}}\right)}$$

where

$$\Theta_{sn} = \zeta_n^3 \Lambda_{sn}(3) + 2\gamma_n \zeta_n^2 \Lambda_{sn}(2) + (2\beta_n - 1)\zeta_n \Lambda_{sn}(1) \qquad (s = 1, 2)$$

The solution for the concentrated perturbation load is now complete since the coefficients $f_n(i)$ are completely defined and may be substituted into equation (11) to give the stringer loads. The shear flows can be found from equation (15); however, once the stringer loads are known, it is simpler to calculate the shear flows by the use of the equations of statics. Because of symmetry, the shear flows in shear

panels adjacent to stringer j=0 are given by

$$q_{i0} = -q_{i,-1} = \frac{p_{i0} - p_{i+1,0}}{2L}$$

All the other shear flows can be found by the use of equation (13). If desired, the moment distribution in the rings can be computed from equation (17) and the thrust and transverse shear in the rings can be found from the formulas given in appendix B.

DISTRIBUTED PERTURBATION LOAD

Expression for stringer loads.—The distributed perturbation load is shown in figure 3 (b); let S represent the magnitude of the total force distributed along stringer j=0 between rings i=0 and i=1. From figure 3 (b) it is seen that

$$p_{ij} = -p_{-i+1,j}$$
 $(i \ge 1)$ (27a)

$$q_{ij} = q_{-i,j} \qquad (i \ge 1) \quad (27b)$$

$$M(i, \phi) = -M(-i+1, \phi)$$
 $(i \ge 1)$ (27c)

At ring i=1 and to the right of this ring, the stringer loads can be represented by a trigonometric series of exactly the same form as equation (7)

$$p_{ij} = \sum_{n=0}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \cos nj\delta$$
 (28)

except now $i \ge 1$, and the coefficients $f_n(i)$ are different from those obtained for the preceding case of the concentrated load.

Evaluation of $f_0(i)$ **and** $f_1(i)$.—As in the preceding case, the first two coefficients $f_0(i)$ and $f_1(i)$ can be obtained from the equations of statics, and the results are the same as before. Equation (28) becomes

$$p_{ij} = \frac{S}{2m} + \frac{S}{m} \cos j\delta + \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \cos nj\delta \quad (i \ge 1) \quad (29)$$

With the concentrated perturbation load, all the coefficients $f_n(0)$ were easily found because the stringer load distribution at ring station i=0 was known. Here no such distribution is known. In order to determine the boundary condition at bay i=0, the effect of the distributed perturbation load on the equilibrium of portions of stringers in this bay must be investigated.

Expressions for shear flows and ring bending moments.—Away from bay i=0 the shear flows and ring bending moments are of the same form as for the concentrated load. The following expression for the shear flows is obtained by use of equation (13):

$$q_{ij} = -\sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{f_n(i+1) - f_n(i)}{2L \sin \frac{n\delta}{2}} \sin n \left(j + \frac{1}{2}\right) \delta \qquad (i \ge 1) \quad (30)$$

The ring bending moments are obtained in appendix B as

$$M(i,\phi) = -\sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{R^2 m}{2\pi L} \Delta_{ii} f_n(i) H_1(n,\phi) \qquad (i \ge 2) \quad (31)$$

where

$$H_1(n,\phi) = \sum_{r=-\infty}^{\infty} \frac{\cos{(rm+n)\phi}}{(rm+n)^2[(rm+n)^2-1]}$$

The applied force in bay i=0 may be written as $S\delta_{0j}$. Consider, now, the equilibrium of a portion of any stringer jbetween ring i=0 and ring i=1. The forces on this free body are shown in sketch (b):

Sketch (b).

Equilibrium of these forces requires that

$$p_{1j} - p_{0j} + (q_{0j} - q_{0,j-1})L - S\delta_{0j} = 0$$

Because of the antisymmetry property expressed in equation (27a), the equilibrium equation becomes

$$2p_{1j} + (q_{0j} - q_{0,j-1})L - S\delta_{0j} = 0 (32)$$

It is convenient, now, to expand the Kronecker delta δ_{0j} in a finite trigonometric series

$$\delta_{0i} = \sum_{n=0}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} d_n \cos nj\delta \tag{33}$$

Multiplying through by $\cos lj\delta$ and summing over j from 0 to m-1 yields the trigonometric coefficients d_n . The result is

$$d_n = \frac{2}{m\left(1 + \delta_{n0} + \delta_{n,\frac{m}{n}}\right)} \tag{34}$$

Substitution of the expression for stringer loads (equation (29)) and the trigonometric expansion for δ_{0t} (equation (33)) into the equilibrium equation (32) yields

$$q_{0j} - q_{0,j-1} = \frac{1}{L} \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} [Sd_n - 2f_n(1)] \cos nj\delta$$

In order to find q_{0j} , this equation can be treated in the same manner as equation (14); that is, replace j by a dummy index k, sum from k=1 to k=j, and then use the condition that the total torque on a cross section in bay i=0 must be zero. This procedure results in the following expression for the shear flows in bay i=0:

$$q_{0j} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{1}{2} \frac{1}{2} Sd_n - f_n(1) \\ L \sin \frac{n\delta}{2} \sin n \left(j + \frac{1}{2} \right) \delta$$
 (35)

The expression for the bending moment in rings i=1 and i=0 is yet to be found, as this expression differs from that for the moment in the rest of the rings given in equation (31). The moment in ring i=0 is the same in magnitude as that in ring i=1 but opposite in sign. The tangential loading on ring i=1 is given by

$$q_{1j} - q_{0j} = -\frac{\frac{m}{2} \operatorname{or} \frac{m-1}{2}}{\sum_{n=2}^{\infty} \frac{f_n(2) - 3f_n(1) + Sd_n}{2L \sin \frac{n\delta}{2}} \sin n \left(j + \frac{1}{2}\right) \delta$$

By analogy with equations (16) and (17), then, the bending moment in ring i=1 can be written as

$$M(1,\phi) = -\sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{R^2 m}{2\pi L} [f_n(2) - 3f_n(1) + Sd_n] H_1(n,\phi)$$
 (36)

All the stringer loads, shear flows, and ring bending moments have now been expressed in terms of the coefficients $f_n(i)$. The stringer loads are given in equation (29), the shear flows in equations (30) and (35), and the ring moments in equations (31) and (36). The next step in the analysis is the substitution of these expressions into the equation obtained from minimization of the stress energy of the cylinder with respect to $f_n(i)$.

Energy analysis.—By virtue of the symmetry properties in this problem given in equations (27), the energy in the structure to the right of bay i=0 equals the energy to the left of this bay. Equation (5) for the stress energy can be written

$$U = \sum_{i=0}^{m-1} \left(\frac{L}{6AE} p_{1j}^2 + \frac{R\delta L}{2Gt} q_{0j}^2 \right) + 2 \sum_{i=1}^{\infty} \sum_{j=0}^{m-1} \left[\frac{L}{6AE} (p_{ij}^2 + p_{ij}p_{i+1,j} + p_{i+1,j}^2) + \frac{R\delta L}{2Gt} q_{ij}^2 \right] + 2 \sum_{i=1}^{\infty} \int_{0}^{2\pi} \frac{R}{2EI} M^2(i,\phi) d\phi$$
(37)

Minimization of the stress energy with respect to $f_n(i)$ results in the following equations:

$$\frac{\partial U}{\partial f_n(1)} = 0 = \sum_{j=0}^{m-1} \left[\frac{L}{6AE} (3p_{1j} + p_{2j}) \frac{\partial p_{1j}}{\partial f_n(1)} + \frac{R\delta L}{2Gt} \left(2q_{1j} \frac{\partial q_{1j}}{\partial f_n(1)} + q_{0j} \frac{\partial q_{0j}}{\partial f_n(1)} \right) \right] + \int_0^{2\pi} \frac{R}{EI} \left[M(2, \phi) \frac{\partial M(2, \phi)}{\partial f_n(1)} + M(1, \phi) \frac{\partial M(1, \phi)}{\partial f_n(1)} \right] d\phi$$
(38)

and

$$\frac{\partial U}{\partial f_{n}(i)} = 0 = \sum_{j=0}^{m-1} \left[\frac{L}{6AE} \left(p_{i+1,j} + 4p_{i,j} + p_{i-1,j} \right) \frac{\partial p_{i,j}}{\partial f_{n}(i)} + \frac{R\delta L}{Gt} \left(q_{i,j} \frac{\partial q_{i,j}}{\partial f_{n}(i)} + q_{i-1,j} \frac{\partial q_{i-1,j}}{\partial f_{n}(i)} \right) \right] + \int_{0}^{2\pi} \frac{R}{EI} \left[M(i+1,\phi) \frac{\partial M(i+1,\phi)}{\partial f_{n}(i)} + M(i+1,\phi) \frac{\partial M(i+1,\phi)}{\partial f_{n}(i)} \right] d\phi \qquad (i \ge 2)$$
(39)

Note that equation (39) is the same as equation (18), except that equation (39) is valid only for $i \ge 2$.

The stringer loads, shear flows, and ring moments are substituted into equations (38) and (39), and then the definite sums and definite integral derived in the preceding section are used to simplify these equations. After simplification, the following equations result: For i=1,

$$f_n(3) + (2\gamma_n - 1) f_n(2) + 2 (\beta_n - \gamma_n) f_n(1) = Sd_n\left(\frac{\beta_n - 4\gamma_n - 2}{3}\right)$$
(40a)

For i=2

$$f_n(4) + 2\gamma_n f_n(3) + 2\beta_n f_n(2) + (2\gamma_n - 1)f_n(1) = -Sd_n$$
 (40b)

For $i \geq 3$,

$$f_n(i+2) + 2\gamma_n f_n(i+1) + 2\beta_n f_n(i) + 2\gamma_n f_n(i-1) + f_n(i-2) = 0$$
(40c)

Solution of finite-difference equation.—Equation (40c) is the same as equation (23b); therefore, the solution to equation (40c) is

$$f_n(i) = \zeta_n^i [\alpha_{1n} \Lambda_{1n}(i) + \alpha_{2n} \Lambda_{2n}(i)] \quad (n \ge 2)$$

$$\tag{41}$$

which is the same as equation (25) except for the values of the arbitrary constants α_{1n} and α_{2n} . These constants are found by the substitution of the solution (41) into equations (40a) and (40b). This procedure yields two simultaneous algebraic equations in α_{1n} and α_{2n} , and their solution gives

$$\alpha_{1n} = \frac{\Gamma_{2n} \frac{\beta_{n} - 4\gamma_{n} - 2}{3} + \Omega_{2n}}{\Omega_{1n} \Gamma_{2n} - \Gamma_{1n} \Omega_{2n}} \frac{2S}{m \left(1 + \delta_{n, \frac{m}{2}}\right)}$$

$$\alpha_{2n} = -\frac{\Omega_{1n} + \Gamma_{1n} \frac{\beta_n - 4\gamma_n - 2}{3}}{\Omega_{1n} \Gamma_{2n} - \Gamma_{1n} \Omega_{2n}} \frac{2S}{m \left(1 + \delta_{n, \frac{m}{2}}\right)}$$

where d_n , the coefficient in the trigonometric series for the Kronecker delta δ_{0j} , has been replaced by its value as given in equation (34), and where the Ω 's and Γ 's are given by

$$\Omega_{sn} = \zeta_n^3 \Lambda_{sn}(3) + (2\gamma_n - 1) \zeta_n^2 \Lambda_{sn}(2) + 2(\beta_n - \gamma_n) \zeta_n \Lambda_{sn}(1)$$
(s=1,2) (42a)

$$\overline{\Gamma_{sn} = \zeta_n^4 \Lambda_{sn}(4) + 2\gamma_n \zeta_n^3 \Lambda_{sn}(3) + 2\beta_n \zeta_n^2 \Lambda_{sn}(2) + (2\gamma_n - 1)\zeta_n \Lambda_{sn}(1)}$$
(42b)

The coefficients $f_n(i)$ are now defined for the distributed perturbation load and may be substituted into equation (29) to give the stringer loads. The shear flows can be found from equations (30) and (35), but, again, once the stringer loads are known, shear flows can easily be found by use of the equations of statics. The shear flow in the panels adjacent to stringer j=0 can be found by considering symmetry: In bay i=0

$$q_{00} = -q_{0,-1} = \frac{S - 2p_{10}}{2L}$$

and, outside of bay i=0,

$$q_{i0} = -q_{i,-1} = \frac{p_{i0} - p_{i+1,0}}{2L} \qquad (i \ge 1)$$

The other shear flows are found from equation (13), as before. If desired, the ring moments can be obtained from equations (31) and (36) and the ring thrust and transverse shear can be found from the equations given in appendix B.

SHEAR PERTURBATION LOAD

Expression for stringer loads.—The shear perturbation load is shown in figure 3 (c). The magnitude of the load per unit length applied along the stringers and rings bordering shear panel (0,0) will be represented by Q. From figure 3(c) it is seen that the longitudinal symmetry properties in this case are the same as those for the case of the distributed perturbation load given by equation (27).

The shear perturbation load is self-equilibrating and gives rise to stringer loads which are antisymmetric about panel row j=0. For $i\geq 1$, the stringer loads may be represented by

$$p_{ij} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \sin n \left(j - \frac{1}{2} \right) \delta$$
 (43)

where the coefficients $f_n(i)$ are different from those in the two preceding cases. The term corresponding to n=1 vanishes because it represents an elementary bending stringer-load distribution, and the shear perturbation load does not require this distribution for overall equilibrium.

Expressions for shear flows and ring bending moments.— None of the coefficients $f_n(i)$ in the trigonometric series (43) can be found from the equations of statics. Furthermore, the boundary condition at bay i=0 must be determined from a consideration of the effect that the shear perturbation load has on the equilibrium of the portions of stringers in bay i=0 and on the bending moment in the rings bounding this bay. Thus the energy approach must be used immediately and the first step in this approach is to write the shear flows and ring moments in terms of $f_n(i)$, the coefficients of the trigonometric series for the stringer loads, equation (43).

Outside of bay i=0, the satisfaction of the equations of statics for the portions of stringers between adjacent rings yields equation (13), the same as in the two preceding cases. Substituting equation (43) for the stringer loads into the equilibrium equation (13) and following the same procedure used to obtain equation (15) yields the expression for the shear flows due to the shear perturbation load:

$$q_{ij} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{f_n(i+1) - f_n(i)}{2L \sin \frac{n\delta}{2}} \cos nj\delta \qquad (i \ge 1)$$
 (44)

The tangential loadings on the rings to the right of ring i=1 are

$$q_{ij} - q_{i-1,j} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{\Delta_{ii} f_n(i)}{2L \sin \frac{n\delta}{2}} \cos nj\delta$$

In appendix B this load is applied to a circular ring and the following expression for the moment in the ring is obtained (see eq. (B13)):

$$M(i,\phi) = -\sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{R^2 m}{2\pi L} \, \Delta_{ii} f_n(i) H_2(n,\phi) \qquad (i \ge 2) \quad (45)$$

where

$$H_2(n,\phi) = \sum_{r=-\infty}^{\infty} (-1)^r \frac{\sin(rm+n)\phi}{(rm+n)^2[(rm+n)^2-1]}$$

The convention for measuring the angle ϕ here is a little different than before and is illustrated in figure 12 (b).

Now, the shear flows in bay i=0 and the bending moments in the rings bordering bay i=0 must be found. Consider the shear flows in this central bay. The shear perturbation loading applied at bay i=0 may be written $Q\delta_{0j}$. Then the forces on the portion of any stringer j between ring i=0 and ring i=1 are as shown in sketch (c):

Equilibrium of these forces requires that

$$p_{1,i}-p_{0,i}+(q_{0,i}-q_{0,i-1})L+Q(\delta_{0,i-1}-\delta_{0,i})L=0$$

Because of the antisymmetry property, equation (27a), the equation of equilibrium becomes

$$2p_{1j} + (q_{0j} - q_{0,j-1})L + Q(\delta_{0,j-1} - \delta_{0j})L = 0$$
(46)

The substitution of the stringer loads (equation (43)) into the equilibrium equation (46), and the introduction of the trigonometric expansion for the Kronecker delta δ_{0j} (equation (33)) yields the following equation:

$$\begin{split} & \underline{q}_{0j} - q_{0, j-1} \! = \! -\frac{1}{L} \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \! 2f_n\!(1) \sin n \left(j \! - \! \frac{1}{2}\right) \delta - \\ & Qd_1 \left[\cos \left(j \! - \! 1\right) \! \delta \! - \! \cos j \delta\right] \! - \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \! Qd_n \left[\cos n \left(j \! - \! 1\right) \delta \! - \! \cos n j \delta\right] \end{split}$$

Now q_{0j} can be found by replacing j with a dummy index k, summing over k from k=1 to k=j, and using the condition that the torque on a cross section within bay i=0 balances the applied torque. This procedure results in the following equation for the shear flow in the central bay:

$$q_{0j} = Qd_0 + Qd_1 \cos j\delta + \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \begin{pmatrix} -\frac{f_n(1)}{n\delta} + Qd_n \\ L \sin \frac{n\delta}{2} \end{pmatrix} \cos nj\delta \quad (47)$$

Consider the bending moment in rings i=1 and i=0. The moment in ring i=0 is identical in magnitude to the moment in ring i=1 but of opposite sign. The tangential loading per unit are length on the portion of ring i=1 between stringer j and stringer j+1 is illustrated in sketch (d):

Sketch (d).

When these tangential loads are added and the series expansions for q_{0j} , q_{1j} , and δ_{0j} are introduced, the total load per unit are length on ring i=1 is given by

$$q_{1j} - q_{0j} + Q\delta_{0j} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2} f_n(2) - 3f_n(1)}{2L \sin \frac{n\delta}{2}} \cos nj\delta$$

By analogy with equations (16) and (17) the bending moment in ring i=1 is

$$M(1,\phi) = -\sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{R^2 m}{2\pi L} \left[f_n(2) - 3f_n(1) \right] H_2(n,\phi) \tag{48}$$

Expressions for stringer loads, shear flows, and ring moments have been written in terms of the coefficients $f_n(i)$. The stringer loads are given in equation (43), the shear flows in equations (44) and (47), and ring moments

in equations (45) and (48). These expressions are ready to be substituted into the equation which results from minimizing the stress energy with respect to $f_n(i)$.

Energy analysis.—Because the longitudinal symmetry relations which exist for the distributed perturbation load, equations (27), also exist in the case of the shear perturbation load, the stress-energy expression used in the distributed-load problem can be used here. The expressions obtained on minimizing this stress energy, equations (38) and (39), are also applicable here. Consequently, the stringer loads, shear flows, and ring moments just derived are substituted into equations (38) and (39). At this stage in the two preceding cases, certain definite sums and a definite integral were introduced to simplify the equations. A similar procedure is followed here.

The definite sums which are of interest are

$$\sum_{j=0}^{m-1} \sin n \left(j - \frac{1}{2} \right) \delta = 0$$

and for the integers n and l restricted to the range $1 \le n \le \frac{m}{2}$

and $1 \le l \le \frac{m}{2}$

$$\sum_{l=0}^{m-1} \cos lj\delta \cos nj\delta = 0 \qquad (l \neq n)$$

$$= \frac{m}{2} \left(1 + \delta_{n, \frac{m}{2}} \right) \qquad (l = n)$$

and

$$\sum_{i=0}^{m-1} \sin l\left(j - \frac{1}{2}\right) \delta \sin n\left(j - \frac{1}{2}\right) \delta = 0 \qquad (l \neq n)$$

$$= \frac{m}{2} \left(1 + \delta_{n, \frac{m}{2}} \right) \qquad (l = n)$$

The required definite integral, which is derived in appendix C, is

$$\int_{0}^{2\pi} H_{2}(n,\phi) H_{2}(l,\phi) d\phi = 0 \qquad (l \neq n)$$

$$= S_n \pi \left(1 + \delta_{n, \frac{m}{2}} \right) \qquad (l = n)$$

where n and l are restricted to $2 \le n \le \frac{m}{2}$ and $2 \le l \le \frac{m}{2}$. After simplification the following equations result:

For i=1.

$$f_n(3) + (2\gamma_n - 1)f_n(2) + 2(\beta_n - \gamma_n)f_n(1)$$

$$= -2LQd_n\left(\frac{\beta_n - 4\gamma_n - 11}{3}\right)\sin\frac{n\delta}{2}$$
(49a)

For i=2,

$$f_n(4) + 2\gamma_n f_n(3) + 2\beta_n f_n(2) + (2\gamma_n - 1)f_n(1) = 0$$
 (49b)

For $i \ge 3$.

$$f_n(i+2) + 2\gamma_n f_n(i+1) + 2\beta_n f_n(i) + 2\gamma_n f_n(i-1) + f_n(i-2) = 0$$
(49c)

Solution of finite-difference equation.—Equation (49c) is the same finite-difference equation for which the solution is written in the two preceding sections. Substitution of this solution, equation (41), into equation (49a) and (49b)

gives two simultaneous algebraic equations for α_{1n} and α_{2n} , the arbitrary constants. Solution of this system yields

$$\alpha_{1n} = -\frac{\Gamma_{2n} \frac{\beta_n - 4\gamma_n - 11}{3} \sin \frac{n\delta}{2}}{\Omega_{1n} \Gamma_{2n} - \Gamma_{1n} \Omega_{2n}} \frac{4QL}{m \left(1 + \delta_{n, \frac{m}{2}}\right)}$$

$$\alpha_{2n} = \frac{\Gamma_{1n} \frac{\beta_{n} - 4\gamma_{n} - 11}{3} \sin \frac{n\delta}{2}}{\Omega_{1n} \Gamma_{2n} - \Gamma_{1n} \Omega_{2n}} \frac{4QL}{m \left(1 + \delta_{n, \frac{m}{2}}\right)}$$

The Ω 's and Γ 's in this case are precisely the same as in the preceding case of the distributed perturbation load; Ω_{sn} is given by equation (42a) and Γ_{sn} by equation (42b).

With the coefficients $f_n(i)$ known for the shear perturbation load, the stringer loads are obtained from equation (43) and the shear flows can be found from equations (44) and (47). For panel row j=0, the shear flow equations become

$$q_{i0} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i+1) - f_n(i)$$

$$2L \sin \frac{n\delta}{2}$$
 $(i \ge 1)$

and

$$q_{00} = \frac{3Q}{m} + \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \left[\frac{f_n(1)}{L \sin \frac{n\delta}{2}} + m \frac{2Q}{1 + \delta_{n, \frac{m}{2}}} \right]$$

When the shear flows in panel row j=0 are known, it is simpler to compute the remainder of the shear flows by use of the equations of statics rather than equations (44) and (47). In shear panels (0,1) and (0,-1) adjacent to the loaded panel, the shear flow is given by

$$q_{01} = q_{0,-1} = q_{00} - \frac{2p_{11} + QL}{L}$$

All the other shear flows are found by use of equation (13). If desired, the ring bending moments can be found from equations (45) and (48) and the ring thrust and transverse shear can be calculated from the formulas given in appendix B.

LIMITING CASE OF RIGID RINGS

If the ring bending stiffness is allowed to increase indefinitely, the rings approach complete rigidity in bending, the parameter C approaches zero, and a considerable simplification results. For this limiting case, equations (23) for the concentrated perturbation load reduce to

$$f_n(i+1) - 2\frac{B_n}{A_n} f_n(i) + f_n(i-1) = 0$$
 $(i \ge 1)$ (50)

where

$$A_n = 3B\delta^2 - 1 + \cos n\delta$$

$$B_n = 3B\delta^2 + 2(1-\cos n\delta)$$

This can be shown easily by multiplying equations (23) through by C and allowing C to approach 0. Equation (50) is a second-order finite-difference equation with constant coefficients. The same equation, together with its general

solution, is given in reference 9, page 31. The solution compatible with the boundary conditions at infinity can be written as

 $f_n(i) = \alpha_n (\pm e^{-\lambda_n})^i \tag{51}$

where

$$\cosh \lambda_n = \left| \frac{B_n}{A_n} \right|$$

and where the upper sign is taken when $A_n > 0$ and the lower sign when $A_n < 0$.

The arbitrary constant α_n is determined by evaluating the solutions, equation (51), for i=0 and introducing the value of $f_n(0)$ given in equation (12). The result is identical to α_{1n} given in equation (26)

$$\alpha_n = \frac{P}{m\left(1 + \delta_{n, \frac{m}{\alpha}}\right)} \qquad (n \ge 2)$$

Equations (11) and (15), the expressions for stringer loads and shear flows, respectively, used before in the case of the concentrated perturbation load are still valid. The substitution into these expressions of the solution (51) with the constant α_n as found above yields the stringer loads and shear flows due to a concentrated perturbation load when the rings can be considered rigid.

For the case of the distributed perturbation load, equations (40) reduce in the limit to

$$(-A_n)f_n(2) + (2B_n + A_n)f_n(1) = 3B\delta^2 Sd_n$$

$$f_n(i+1) - 2\frac{B_n}{A_n}f_n(i) + f_n(i-1) = 0 \qquad (i \ge 2)$$

The arbitrary constant α_n in the solution (51) is

$$\alpha_n = \frac{6B\delta^2}{A_n(\pm e^{-\lambda_n} + 1)} \frac{S}{m(1 + \delta_{n, \frac{m}{2}})}$$

For the shear perturbation load, equations (49) reduce to

$$(-A_n)f_n(2) + (2B_n + A_n)f_n(1) = -6LQd_nB\delta^2 \sin\frac{n\delta}{2}$$
$$f_n(i+1) - 2\frac{B_n}{A_n}f_n(i) + f_n(i-1) = 0 \qquad (i \ge 2)$$

The solution is again equation (51) and α_n becomes

$$\alpha_{n} = -\frac{12B\delta^{2}\sin\frac{n\delta}{2}}{A_{n}(\pm e^{-\lambda_{n}} + 1)}\frac{QL}{m\left(1 + \delta_{n,\frac{m}{2}}\right)}$$

CONCLUDING REMARKS

A method is presented for the stress analysis of circular semimonocoque cylinders with cutouts. It is most accurate in problems where the cutout is located far from external restraints. The loading may be any combination of torsion, bending, shear, or axial load. Other loadings are permissible if the stress distribution in the cylinder without a cutout is known.

The method of analysis is based on the superposition of certain perturbation stress distributions to give the effects of the cutout on the stress distribution which would exist in the cylinder without a cutout. The equations for the three necessary perturbation stress distributions are derived in this report, and tables of coefficients calculated from these equations are presented for a wide range of structural properties. Ring bending flexibility is taken into account in the tables. The tables refer to a structure having 36 stringers, but they can be used for cylinders having any number of stringers by redistribution of the actual stringer area into 36 fictitious stringers. Sample calculations utilizing the tables of coefficients are presented to illustrate the analytical procedure.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

LANGLEY FIELD, VA., March 2, 1955.

APPENDIX A

SUMMARY OF SIGNIFICANT EQUATIONS

The formulas and parameters required for computing the stress distribution due to concentrated, distributed, and shear perturbation loads are collected in this appendix for reference.

STRINGER LOADS

Concentrated perturbation load (see fig. 3 (a)):

$$p_{ij} = \frac{P}{2m} + \frac{P}{m} \cos j\delta + \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \cos nj\delta \qquad (i \ge 0)$$

where P is the applied load.

Distributed perturbation load (see fig. 3 (b)):

$$p_{ij} = \frac{S}{2m} + \frac{S}{m} \cos j\delta + \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \cos nj\delta \qquad (i \ge 1)$$

where S is the total applied load.

Shear perturbation load (see fig. 3 (c)):

$$p_{ij} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} f_n(i) \sin n \left(j - \frac{1}{2}\right) \delta \qquad (i \ge 1)$$

SHEAR FLOWS

Concentrated perturbation load (see fig. 3 (a)): For the shear panels in panel row j=0,

$$q_{i0} = \frac{p_{i0} - p_{i+1,0}}{2L}$$

and, for the remainder of the shear panels,

$$q_{ij} = \frac{p_{ij} - p_{i+1,j}}{I} + q_{i,j-1} \qquad (j \ge 1)$$

Distributed perturbation load (see fig. 3 (b)): For the shear panel (0,0),

$$q_{00} = \frac{S - 2p_{10}}{2L}$$

for the remainder of the shear panels in panel row j=0,

$$q_{i0}\!\!=\!\!\frac{p_{i0}\!\!-\!p_{i+1,\,0}}{2L}\qquad (i\!\ge\!1)$$

and, for all other shear panels,

$$q_{ij} = \frac{p_{ij} - p_{i+1,j}}{L} + q_{i,j-1} \qquad (j \ge 1)$$

Shear perturbation load (see fig. 3 (c)): For the panel about which the load is applied,

$$q_{00} = \frac{3Q}{m} + \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \left[\frac{f_n(1)}{L \sin \frac{n\delta}{2}} + \frac{2Q}{m(1+\delta_{n,\frac{m}{2}})} \right]$$

for the remainder of the shear panels in row j=0,

$$q_{i0} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} \frac{f_n(i+1) - f_n(i)}{2L \sin \frac{n\delta}{2}} \qquad (i \ge 1)$$

for the shear panel (0,1),

$$q_{01} = q_{00} - \frac{2p_{11} + QL}{L}$$

for the remainder of the shear panels in panel row j=1,

$$q_{i1} = \frac{p_{i1} - p_{i+1,1}}{L} + q_{i0} \qquad (i \ge 1)$$

and, for all other shear panels.

$$q_{ij} = \frac{p_{ij} - p_{i+1,j}}{L} + q_{i,j-1} \qquad (j \ge 2)$$

EVALUATION OF THE TRIGONOMETRIC COEFFICIENTS $f_n(i)$ FOR FLEXIBLE RINGS

Basic parameters:

$$B = \frac{E}{G} \frac{t'}{t} \frac{R^2}{L^2}$$

$$C = \frac{t'R^6}{IL^3}$$

Auxiliary parameters:

$$\beta_n = 3 + \frac{3 \frac{B \delta^2}{\sin^2 \frac{n \delta}{2}}}{12CS_n}$$

$$1 - \frac{3}{2} \frac{B\delta^2}{\sin^2 \frac{n\delta}{2}}$$

$$\gamma_n = -2 + \frac{12CS_n}{12CS_n}$$

Discriminating parameter:

$$D_n = \frac{2(\beta_n - 1)}{\gamma_n^2}$$

Trigonometric coefficients:

$$f_n(i) = \zeta_n^i [\alpha_{1n} \Lambda_{1n}(i) + \alpha_{2n} \Lambda_{2n}(i)] \qquad (n \ge 2)$$

where

$$\zeta_n = -\frac{\gamma_n}{|\gamma_n|} e^{-\psi_n}$$

$$\Lambda_{1n}(i) = \cos i\chi_n \qquad (D_n > 1)$$

$$=1$$
 $(D_n=1)$

$$=\cosh i\chi_n \qquad (D_n < 1)$$

$$\Lambda_{2n}(i) = \sin i\chi_n \qquad (D_n > 1)$$

$$=i$$
 $(D_n=1)$

$$=\sinh i\chi_n$$
 $(D_n<1)$

$$\chi_{n} = \frac{1}{2} \cos^{-1} \left[\frac{\beta_{n} - 1}{2} - \sqrt{\left(\frac{\beta_{n} + 1}{2} \right)^{2} - \gamma_{n}^{2}} \right] \quad (D_{n} > 1)$$

$$=\frac{1}{2}\cosh^{-1}\left[\frac{\beta_n-1}{2}-\sqrt{\left(\frac{\beta_n+1}{2}\right)^2-\gamma_n^2}\right] \quad (D_n<1)$$

$$\psi_n = \frac{1}{2} \cosh^{-1} \left[\frac{\beta_n - 1}{2} + \sqrt{\left(\frac{\beta_n + 1}{2}\right)^2 - \gamma_n^2} \right]$$

Arbitrary constants for concentrated perturbation load:

$$lpha_{1n} = rac{P}{m\left(1 + \delta_{n, rac{m}{2}}
ight)}$$
 $lpha_{2n} = -rac{\Theta_{1n} + 2(\gamma_n + 1)}{\Theta_{2n}} rac{P}{m\left(1 + \delta_{n, rac{m}{2}}
ight)}$

where P is the applied load and

$$\Theta_{sn} = \zeta_n^3 \Lambda_{sn}(3) + 2\gamma_n \zeta_n^2 \Lambda_{sn}(2) + (2\beta_n - 1)\zeta_n \Lambda_{sn}(1) \qquad (s = 1, 2)$$

Arbitrary constants for distributed perturbation load:

$$lpha_{1n} = rac{\Gamma_{2n} rac{eta_{n} - 4 \gamma_{n} - 2}{3} + \Omega_{2n}}{\Omega_{1n} \Gamma_{2n} - \Gamma_{1n} \Omega_{2n}} rac{2S}{m \left(1 + \delta_{n, rac{m}{2}}
ight)} } \ lpha_{2n} = -rac{\Omega_{1n} + \Gamma_{1n} rac{eta_{n} - 4 \gamma_{n} - 2}{3}}{\Omega_{1n} \Gamma_{2n} - \Gamma_{1n} \Omega_{2n}} rac{2S}{m \left(1 + \delta_{n, rac{m}{2}}
ight)}$$

where S is the total applied load and

$$\Omega_{sn} = \zeta_n^3 \Lambda_{sn}(3) + (2\gamma_n - 1) \zeta_n^2 \Lambda_{sn}(2) + 2(\beta_n - \gamma_n) \zeta_n \Lambda_{sn}(1) \quad (s = 1, 2)$$

$$\Gamma_{sn} = \zeta_n^4 \Lambda_{sn}(4) + 2\gamma_n \zeta_n^3 \Lambda_{sn}(3) + 2\beta_n \zeta_n^2 \Lambda_{sn}(2) + (2\gamma_n - 1)\zeta_n \Lambda_{sn}(1)$$

$$(s = 1, 2)$$

Arbitrary constants for shear perturbation load:

$$\alpha_{1n} = -\frac{\Gamma_{2n} \frac{\beta_n - 4\gamma_n - 11}{3} \sin \frac{n\delta}{2}}{\Omega_{1n} \Gamma_{2n} - \Gamma_{1n} \Omega_{2n}} \frac{4QL}{m \left(1 + \delta_{n, \frac{m}{2}}\right)}$$

$$\alpha_{2n} = \frac{\Gamma_{1n} \frac{\beta_n - 4\gamma_n - 11}{3} \sin \frac{n\delta}{2}}{\Omega_{1n} \Gamma_{2n} - \Gamma_{1n} \Omega_{2n}} \frac{4QL}{m(1 + \delta_{n, \frac{m}{2}})}$$

where Q is the applied load per unit length.

EVALUATION OF THE TRIGONOMETRIC COEFFICIENTS $I_n(i)$ FOR RIGID RINGS

Basic parameter:

$$B = \frac{E}{G} \frac{t'}{t} \frac{R^2}{L^2}$$

Auxiliary parameters:

$$A_n = 3B\delta^2 - 1 + \cos n\delta$$

$$B_n = 3B\delta^2 + 2(1 - \cos n\delta)$$

$$\lambda_n = \cosh^{-1} \left| \frac{B_n}{A_n} \right|$$

Trigonometric coefficients:

$$f_n(i) = \alpha_n \left(\frac{A_n}{|A_n|} e^{-\lambda_n} \right)^i$$

Arbitrary constant for concentrated perturbation load:

$$\alpha_n = \frac{P}{m\left(1 + \delta_{n,\frac{m}{2}}\right)}$$

Arbitrary constant for distributed perturbation load:

$$\alpha_n = \frac{6B\delta^2}{A_n \left(\frac{A_n}{|A_n|} e^{-\lambda_n} + 1\right)} \frac{S}{m \left(1 + \delta_{n, \frac{m}{2}}\right)}$$

Arbitrary constant for shear perturbation load:

$$\alpha_{n} = -\frac{12B\delta^{2}\sin\frac{n\delta}{2}}{A_{n}\left(\frac{A_{n}}{|A_{n}|}e^{-\lambda_{n}} + 1\right)} \frac{QL}{m\left(1 + \delta_{n,\frac{m}{2}}\right)}$$

APPENDIX B

BENDING MOMENT, AXIAL THRUST, AND TRANSVERSE SHEAR IN RINGS

Expressions will be developed for the bending moment, axial thrust, and transverse shear in a circular ring under tangential loads such as those which arise from the differences in shear flow across a ring in a circular semimonocoque cylinder.

Two cases must be considered: One case occurs with the concentrated and distributed perturbation loads, where the ring loading is antisymmetric about stringer j=0. The other case occurs with the shear perturbation load, where the ring loading is symmetric about panel row j=0.

CONCENTRATED AND DISTRIBUTED PERTURBATION LOADS

For the concentrated and distributed perturbation loads, the tangential loading on ring i has been written in the form of a finite trigonometric series (see eq. (16))

$$F_{ij} = q_{ij} - q_{i-1,j} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} b_{ni} \sin n \left(j + \frac{1}{2} \right) \delta$$
 (B1)

where

$$b_{ni} = -\frac{\Delta_{ii} f_n(i)}{2L \sin \frac{n\delta}{2}} \qquad (n \ge 2)$$

This ring load has a stepwise variation around the ring, being constant between stringers and having jump discontinuities at the stringers. The limitation that $n \ge 2$ ensures that the ring is in equilibrium.

The procedure will be to expand each term of the series (B1) in an infinite Fourier series in the variable ϕ . For each harmonic of the Fourier series, that is, for a continuous sinusoidal tangential force distribution on the ring, the moment, thrust, and shear in the ring are easily found. (See ref. 8, p. 33, for example.) On the basis of inextensional deformation and the neglect of transverse shear distortions, the results are as follows: If the tangential load on ring i is given by

$$\bar{a}_{ni}\cos n\phi + \bar{b}_{ni}\sin n\phi \qquad (n \ge 2)$$

then the moment, thrust, and shear in this ring are, respectively,

$$M_{n}(i, \phi) = -\bar{a}_{ni} \frac{R^{2}}{n(n^{2}-1)} \sin n\phi + \bar{b}_{ni} \frac{R^{2}}{n(n^{2}-1)} \cos n\phi$$

$$T_{n}(i, \phi) = -\bar{a}_{ni} \frac{R}{n^{2}-1} n \sin n\phi + \bar{b}_{ni} \frac{R}{n^{2}-1} n \cos n\phi$$

$$V_{n}(i, \phi) = \bar{a}_{ni} \frac{R}{n^{2}-1} \cos n\phi + \bar{b}_{ni} \frac{R}{n^{2}-1} \sin n\phi$$
(B2)

Figure 11 shows the sign convention used in writing equations (B2).

Consider, now, one term of the series (B1). To expand this term in a Fourier series, write

$$b_{ni}\sin n\left(j+\frac{1}{2}\right)\delta = \sum_{r=n}^{\infty} (c_r)_{ni}\sin r\phi$$
 (B3)

where the $(c_r)_{ni}$'s are the Fourier coefficients. It is obvious that the first harmonic which will occur in the Fourier series in equation (B3) must be that for which r=n. The other harmonics, then, will be added to this to build up the step shape of the loading function. The convention for measuring angle ϕ in this case is illustrated in figure 12 (a). The index j can be thought of as a function of ϕ , that is: when $0 < \phi < \delta$, j=0; when $\delta < \phi < 2\delta$, j=1; and so forth.

In order to carry out the expansion, equation (B3) is multiplied through by $\sin l\phi$ and integrated from 0 to 2π

$$\sum_{j=0}^{m-1} \int_{j\delta}^{(j+1)\delta} b_{ni} \sin n \left(j + \frac{1}{2}\right) \delta \sin l\phi \, d\phi$$

$$= \int_{0}^{2\pi} \sum_{r=n}^{\infty} (c_r)_{ni} \sin r\phi \sin l\phi \, d\phi$$

After integration, the right-hand side of this equation becomes

$$(c_l)_{ni}\pi$$

by virtue of the orthogonality of the trigonometric functions. The left-hand side becomes

$$\frac{2\sin\frac{l\delta}{2}}{l}b_{ni}\sum_{=0}^{m-1}\sin n\left(j+\frac{1}{2}\right)\delta\sin l\left(j+\frac{1}{2}\right)\delta$$

on carrying out the integration. From reference 7 it can be shown that

$$\sum_{j=0}^{m-1} \sin n \left(j + \frac{1}{2} \right) \delta \sin l \left(j + \frac{1}{2} \right) \delta$$

$$= \frac{m}{2} \left[\left(-1 \right)^{\frac{l-n}{m}} J_{\frac{l-n}{m}} - \left(-1 \right)^{\frac{l+n}{m}} J_{\frac{l+n}{m}} \right]$$

where $J_h=1$ if h is an integer, and $J_h=0$ if h is not an integer. Thus the Fourier coefficients are given by

$$(c_{l})_{ni} = \frac{m}{\pi} b_{ni} \frac{\sin \frac{l\delta}{2}}{l} \left[(-1)^{\frac{l-n}{m}} J_{\frac{l-n}{m}} - (-1)^{\frac{l+n}{m}} J_{\frac{l+n}{m}} \right]$$

The nth term of the tangential loading on the ring is

$$b_{ni} \sin n \left(j + \frac{1}{2} \right) \delta = \frac{m}{\pi} b_{ni} \sum_{l=n}^{\infty} \left[(-1)^{\frac{l-n}{m}} J_{\frac{l-n}{m}} - (-1)^{\frac{l+n}{m}} J_{\frac{l+n}{m}} \right] \frac{\sin \frac{l\delta}{2}}{l} \sin l\phi \quad (B4)$$

By use of the properties of J_h this summation can be rewritten

$$b_{ni} \sin n \left(j + \frac{1}{2} \right) \delta = \frac{m}{\pi} b_{ni} \left[\sum_{r=0}^{\infty} (-1)^r \frac{\sin (rm+n) \frac{\delta}{2}}{rm+n} \sin (rm+n) \phi - \sum_{r=1}^{\infty} (-1)^r \frac{\sin (rm-n) \frac{\delta}{2}}{rm-n} \sin (rm-n) \phi \right]$$
(B5)

On expansion by the sum and difference formulas of trigonometry and with the use of the fact that $m\delta=2\pi$, it is found that

$$\sin (rm+n)\frac{\delta}{2} = (-1)^r \sin \frac{n\delta}{2}$$

$$\sin (rm-n)\frac{\delta}{2} = (-1)^{r+1} \sin \frac{n\delta}{2}$$
(B6)

When equations (B6) are substituted into equation (B5), the following relationship results:

$$b_{ni} \sin n \left(j + \frac{1}{2} \right) \delta = \frac{m}{\pi} b_{ni} \sin \frac{n\delta}{2} \left[\sum_{r=0}^{\infty} \frac{\sin (rm+n)\phi}{rm+n} + \sum_{r=1}^{\infty} \frac{\sin (rm-n)\phi}{rm-n} \right]$$
$$= \frac{m}{\pi} b_{ni} \sin \frac{n\delta}{2} \sum_{r=-\infty}^{\infty} \frac{\sin (rm+n)\phi}{rm+n}$$
(B7)

From the first of equations (B2) it is seen that if the tangential loading on the ring is given by the right-hand side of equation (B7) then the bending moment in that

ring is

$$M_n(i,\phi) = R^2 \frac{m}{\pi} b_{nt} \sin \frac{n\delta}{2} H_1(n,\phi)$$
 (B8)

where

$$H_1(n,\phi) = \sum_{r=-\infty}^{\infty} \frac{\cos{(rm+n)\phi}}{(rm+n)^2 [(rm+n)^2 - 1]}$$

Equation (B8) gives the bending moment in a ring which carries a tangential load distributed according to one term of the series of equation (B1). When the ring is loaded by the sum of such stepwise terms, as in equation (B1), then the moment is given by a sum of terms like (B8). The bending moment in ring i is therefore

$$M(i,\phi) = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} R^2 \frac{m}{\pi} b_{ni} \sin \frac{n\delta}{2} H_1(n,\phi)$$
 (B9)

For completeness, the expressions for axial thrust and transverse shear can be written in a similar manner—

$$T(i,\phi) = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} R \frac{m}{\pi} b_{ni} \sin \frac{n\delta}{2} K_1(n,\phi)$$

$$V(i,\phi) = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} R \frac{m}{\pi} b_{nt} \sin \frac{n\delta}{2} L_1(n,\phi)$$

where

$$K_1(n,\phi) = \sum_{r=-\infty}^{\infty} \frac{\cos{(rm+n)\phi}}{(rm+n)^2-1}$$

$$L_1(n,\phi) = \sum_{r=-\infty}^{\infty} \frac{\sin(rm+n)\phi}{(rm+n)[(rm+n)^2-1]}$$

SHEAR PERTURBATION LOAD

In the case of the shear perturbation load, the tangential loading on ring i is given by the finite trigonometric series

$$F_{ij} = q_{ij} - q_{i-1,j} = \sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} a_{ni} \cos nj\delta$$
 (B10)

where

$$a_{ni} = \frac{\Delta_{ii} f_n(i)}{2L \sin \frac{n\delta}{2}} \qquad (n \ge 2)$$

Equation (B10) can be treated in a manner analogous to the handling of equation (B1). That is, each term of the series in equation (B10) can be expanded in a Fourier series. Then the moment, thrust, and shear in the ring are written immediately.

Analogous to equation (B3), write

$$a_{ni}\cos nj\delta = \sum_{r=n}^{\infty} (c_r)_{ni}\cos r\phi$$
 (B11)

where, now, the angle ϕ is as shown in figure 12 (b). If both sides of equation (B11) are multiplied by $\cos l\phi$ and integrated from 0 to 2π , there results for the Fourier coefficients:

$$(c_{i})_{ni} = \frac{2\sin\frac{l\delta}{2}}{\pi l} a_{ni} \sum_{j=0}^{m-1} \cos nj\delta \cos lj\delta$$

359282-56-4

It can be shown (see ref. 7) that

$$\sum_{j=0}^{m-1} \cos \, nj \delta \, \cos \, lj \delta = \frac{m}{2} \left(J_{\frac{l-n}{m}} + J_{\frac{l+n}{m}} \right)$$

so the nth term of the tangential loading on the ring is

$$a_{ni}\cos nj\delta = \frac{m}{\pi} a_{ni} \sum_{l=n}^{\infty} \left(J_{\frac{l-n}{m}} + J_{\frac{l+n}{m}} \right) \frac{\sin\frac{l\delta}{2}}{l} \cos l\phi \quad (B12)$$

This summation becomes

$$a_{ni}\cos nj\delta = \frac{m}{\pi} a_{ni}\sin\frac{n\delta}{2} \sum_{r=-\infty}^{\infty} (-1)^r \frac{\cos(rm+n)\phi}{rm+n}$$

which corresponds to equation (B7). Then the bending moment is

$$M(i,\phi) = -\sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} R^2 \frac{m}{\pi} a_{ni} \sin \frac{n\delta}{2} H_2(n,\phi)$$
 (B13)

Similarly, thrust and shear are

$$T(i,\phi) = -\sum_{n=2}^{\frac{m}{2} \text{ or } \frac{m-1}{2}} R \frac{m}{\pi} a_{ni} \sin \frac{n\delta}{2} K_2(n,\phi)$$

and

$$V(i,\phi) = \sum_{n=2}^{rac{m}{2} ext{ or } rac{m-1}{2}} R rac{m}{\pi} a_{ni} \sin rac{n\delta}{2} L_2(n,\phi)$$

where

$$H_{2}(n,\phi) = \sum_{r=-\infty}^{\infty} (-1)^{r} \frac{\sin(rm+n)\phi}{(rm+n)^{2}[(rm+n)^{2}-1]}$$

$$K_{2}(n,\phi) = \sum_{r=-\infty}^{\infty} (-1)^{r} \frac{\sin(rm+n)\phi}{(rm+n)^{2}-1}$$

$$L_2(n,\phi) = \sum_{r=-\infty}^{\infty} (-1)^r \frac{\cos(rm+n)\phi}{(rm+n)[(rm+n)^2-1]}$$

APPENDIX C

EVALUATION OF DEFINITE INTEGRALS

In order to minimize the stress energy it is necessary to investigate the following definite integrals:

$$\int_{0}^{2\pi} H_{1}(n,\phi) H_{1}(l,\phi) d\phi$$

$$= \int_{0}^{2\pi} \sum_{r=-\infty}^{\infty} D_{rn} \cos(rm+n) \phi \sum_{s=-\infty}^{\infty} D_{sl} \cos(sm+l) \phi d\phi \quad (C1)$$

and

$$\int_{0}^{2\pi} H_{2}(n,\phi) H_{2}(l,\phi) d\phi$$

$$= \int_{0}^{2\pi} \sum_{r=-\infty}^{\infty} (-1)^{r} D_{rn} \sin(rm+n) \phi \sum_{s=-\infty}^{\infty} (-1)^{s} D_{si} \sin(sm+l) \phi d\phi$$
(C2)

where

$$D_{rn} = \frac{1}{(rm+n)^2 [(rm+n)^2 - 1]}$$

and where integers n and l are limited to the following ranges:

$$2 \le n \le \frac{m}{2}$$

$$2 \leq l \leq \frac{m}{2}$$

Consider the relation (C1). The right-hand side can be written

$$\frac{1}{2} \sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} D_{rn} D_{sl} \left[\int_{0}^{2\pi} \cos(rm + n - sm - l) \phi \, d\phi + \int_{0}^{2\pi} \cos(rm + n + sm + l) \phi \, d\phi \right]
= \frac{1}{2} \sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} D_{rn} D_{sl} \left(\delta_{rm+n, sm+l} + \delta_{rm+n, -sm-l} \right) 2\pi$$

Now, by virtue of the limited range of the integers n and l, the following relations can be written:

$$\delta_{rm+n, sm+l} = \delta_{s, r-\frac{l-n}{m}} = \delta_{sr}\delta_{ln}$$

$$\delta_{rm+n, -sm-l} = \delta_{s, -r-l} + \underbrace{n}_{m} = \delta_{s, -r-1}\delta_{l, \frac{m}{2}}\delta_{n, \frac{m}{2}}$$

Thus, when $2 \le n < \frac{m}{2}$, equation (C1) yields

$$\int_{0}^{2\pi} H_{1}(n,\phi) H_{1}(l,\phi) d\phi = 0 \qquad (l \neq n)$$

$$= \sum_{n=0}^{\infty} D_{n}^{2} \pi = S_{n} \pi \qquad (l = n)$$

If $n=\frac{m}{2}$, the following equation is obtained:

$$\int_{0}^{2\pi} H_{1}\left(\frac{m}{2}, \phi\right) H_{1}\left(\frac{m}{2}, \phi\right) d\phi = \sum_{r=-\infty}^{\infty} \left(D_{r, \frac{m}{2}}^{2} + D_{r, \frac{m}{2}} D_{-r-1, \frac{m}{2}}\right) \pi$$

Since

$$\begin{split} D_{-r-1,\frac{m}{2}} &= \frac{1}{\left(-rm-m+\frac{m}{2}\right)^2 \left[\left(-rm-m+\frac{m}{2}\right)^2-1\right]} \\ &= \frac{1}{\left(-rm-\frac{m}{2}\right)^2 \left[\left(-rm-\frac{m}{2}\right)^2-1\right]} \\ &= D_{r,\frac{m}{2}} \end{split}$$

it is found that when $n = \frac{m}{2}$

$$\int_{0}^{2\pi} H_{1}\left(\frac{m}{2},\phi\right) H_{1}\left(\frac{m}{2},\phi\right) d\phi = 2 \sum_{r=-\infty}^{\infty} D_{r,\frac{m}{2}} \pi = 2 S_{\frac{m}{2}} \pi$$

To summarize, then,

$$\int_0^{2\pi} H_1(n,\phi)H_1(l,\phi)d\phi = 0 \qquad (l \neq n)$$

$$= S_n \pi \left(1 + \delta_{n,\frac{m}{2}}\right) \qquad (l=n)$$

Consider the relation (C2). It is handled in a manner analogous to the treatment of (C1). Equation (C2) can be written

$$\begin{split} & \int_{0}^{2\pi} H_{2}(n,\phi) H_{2}(l,\phi) d\phi \\ & = \sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} (-1)^{r} D_{\tau n}(-1)^{s} D_{s l} \frac{1}{2} (\delta_{rm+n,\,sm+l} - \delta_{rm+n,\,-sm-l}) 2\pi \\ & = \sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} (-1)^{r} (-1)^{s} D_{\tau n} D_{s l} \left(\delta_{s \tau} \delta_{n l} - \delta_{s,\,-r-1} \delta_{n,\,\frac{m}{2}} \delta_{l,\,\frac{m}{2}} \right) \pi \end{split}$$

For $2 \le n < \frac{m}{2}$

$$\int_{0}^{2\pi} H_{2}(n,\phi) H_{2}(l,\phi) d\phi = 0 \qquad (l \neq n)$$

$$=\sum_{r=-\infty}^{\infty}D_{rn}^{2}\pi=S_{n}\pi \qquad (l=n)$$

If
$$n = \frac{m}{\sqrt{2}}$$

$$\begin{split} \int_{0}^{2\pi} H_{2} \Big(\frac{m}{2}, \phi \Big) H_{2} \Big(\frac{m}{2}, \phi \Big) d\phi \\ &= \sum_{r=-\infty}^{\infty} \left[D_{r, \frac{m}{2}}^{2} - (-1)^{r} (-1)^{-r-1} D_{r, \frac{m}{2}} D_{-r-1, \frac{m}{2}} \right] \pi \\ &= \sum_{r=-\infty}^{\infty} \left[D_{r, \frac{m}{2}}^{2} - (-1)^{-1} D_{r, \frac{m}{2}}^{2} \right] \pi \\ &= 2 \sum_{r=-\infty}^{\infty} D_{r, \frac{m}{2}}^{2} \pi \\ &= 2 S_{\underline{m}} \pi \end{split}$$

Thus the definite integral (C2) gives precisely the same result as (C1)

$$\int_{0}^{2\pi} H_{2}(n, \phi) H_{2}(l, \phi) d\phi = 0 \qquad (l \neq n)$$

$$= S_{n} \pi \left(1 + \delta_{n, \frac{m}{2}} \right) \qquad (l = n)$$

The sum

$$S_n = \sum_{r=-\infty}^{\infty} D_{rn}^2 = \sum_{r=-\infty}^{\infty} \frac{1}{(rm+n)^4 [(rm+n)^2 - 1]^2}$$

can be expressed in closed form with the aid of formula 6.495, number 2, reference 10. The result is

$$S_{n} = \frac{\delta^{4}}{12} \frac{2 + \cos n\delta}{(1 - \cos n\delta)^{2}} + \frac{\delta^{2}}{1 - \cos n\delta} - \frac{\delta^{2}}{4} \frac{\cos n\delta \cos \delta - 1}{(\cos n\delta - \cos \delta)^{2}} + \frac{5}{4} \frac{\delta \sin \delta}{\cos n\delta - \cos \delta}$$

However, the series form of S_n , because of its rapid convergence, may be more convenient than the closed form for use in computation.

REFERENCES

- Beskin, Leon: Stress Analysis of Open Cylindrical Membranes, Jour. Aero. Sci., vol. 11, no. 4, Oct. 1944, pp. 343-355.
- Gololobov, M. M.: Shear Distribution Due to Twist in a Cylindrical Fuselage with a Cutout. Jour. Aero. Sci., vol. 14, no. 4, Apr. 1947, pp. 253-256.
- Langhaar, Henry L., and Smith, Clarence R.: Stresses in Cylindrical Semimonocoque Open Beams. Jour. Aero. Sci., vol. 14, no. 4, Apr. 1947, pp. 211-220.
- Vaughan, W. L.: Fusclage Cutout Analysis. Aero Digest, vol. 63, no. 5, Nov. 1951, pp. 42-50.
- Cicala, P.: Effects of Cutouts in Semimonocoque Structures. Jour. Aero. Sci., vol. 15, no. 3, Mar. 1948, pp. 171-179.
- McComb, Harvey G., Jr.: Stress Analysis of Sheet-Stringer Panels With Cutouts. Jour. Aero. Sci., vol. 20, no. 6, June 1953, pp. 387-401.
- Willers, Fr. A.: Practical Analysis. Dover Publications, Inc., c. 1948, pp. 334-336.
- Duberg, John E., and Kempner, Joseph: Stress Analysis by Recurrence Formula of Reinforced Circular Cylinders Under Lateral Loads. NACA TN 1219, 1947.
- Ebner, H., and Köller, H.: Calculation of Load Distribution in Stiffened Cylindrical Shells. NACA TM 866, 1938.
- Adams, Edwin P., and Hippisley, R. L.: Smithsonian Mathematical Formulae and Tables of Elliptic Functions. Second Reprint, Smithsonian Misc. Coll., vol. 74, no. 1, 1947, p. 129.

TABLE 1.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[B=8; C=0; m=36]

(a) Concentrated perturbation load on stringer j=0 at ring (b) Distributed perturbation load on stringer j=0 between i=0 and i=1

			Stringer 1	oad, pii, a	t station—			<u>.</u> .		Str	inger load, 1	o _{ii} , at statio	n—	
<i></i>	i=0	i=1	i=2	i=3	i=4	i=5	i=6	<i>J</i>	i=1	i=2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 0476 0. 0895 0. 0511 0. 0330 0. 0232 0. 0172 0. 0130 0. 0097 0. 0070 0. 0040 0. 0024 0. 0034 0. 0034 0. 0034 0. 0034 0. 0034 0. 0035 0. 0055 0. 0059	0. 0565 0.0490 0.475 0.402 0.329 0.266 0.212 0.165 0.123 0.084 0.050 0.0035 0.0036 0.0072 0.0084 0.0092 0.0094	0. 0459 0457 0429 0394 0300 0220 0154 0110 0067 0008 - 0038 - 0086 - 0102 - 0111 - 0111	0040 0070 0094 0112 0122	0. 0426 . 0421 . 0406 . 0383 . 0352 . 0315 . 0227 . 0180 . 0131 . 0084 . 0039 . 0003 . 0007 . 0009 . 00128 . 01128 . 01132	0. 0421 0. 0416 0. 0403 0. 0381 0. 0352 0. 0276 0. 0276 0. 0276 0. 0276 0. 035 0. 087 0. 040 0. 0002 0. 0400 0. 0100 0. 0136 0. 013	0 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18	0. 1924 .0727 .0340 .0195 .0128 .0092 .0068 .0051 .0036 .0024 .0013 .0003 .0000 .0013 .0025 .0025 .0025 .0029 .0020	0. 0567 . 0629 . 0499 . 0379 . 0291 . 0226 . 0175 . 0134 . 0098 . 0067 . 0010 . 0030 . 0047 . 0060 . 0070 . 0076 . 0078	0. 0499 0475 0447 0398 0341 0286 01234 0185 0140 0098 0059 0023 - 0009 - 0037 - 0090 - 0090 - 0102 - 0105	0. 0447 . 0441 . 0421 . 0390 . 0351 . 0307 . 0260 . 0211 . 0164 . 0117 . 0003 . 0032 . 0040 . 0040 . 0068 . 0068 . 00117 . 0117	0. 0430 0425 0410 0385 0352 0313 0270 0224 0176 0128 0081 0037 - 0004 - 0040 - 0071 - 0096 - 0114 - 0130	0. 0423 0418 0404 0382 0352 0316 0274 0229 0182 0184 0086 0040 0002 0040 0073 0090 0118 01184

,	Stringer load, p_{ij}/L , at station—										
j	i=1	i=2	i=3	i=4	i=5	i=6					
1	-0.1192	0. 0067	-0.0019	-0.0001	-0.0001	0.0000					
2 3 4 5	 0374	—. 0118	0016	0008	0003	0001					
3	0125	0100	0029	0010	0004	0002					
4	0038	0061	0029	0011	0005	0002					
ð	0002	0031	0021	0010	0005	0002					
$\frac{6}{7}$.0016	0011	0012	0007	0004	0002					
8	. 0026	.0003	0005	0004	0002 0001	0001 0001					
9	. 0032	.0017	. 0002	0001 . 0002	.0000	.0000					
10	. 0030	.0017	.0009	.0004	.0002	.0001					
11	. 0037	. 0020	.0011	.0005	.0002	.0001					
12	.0035	.0021	.0012	.0006	.0003	.0002					
13	.0032	.0020	.0011	.0006	.0003	.0002					
14	.0028	.0018	.0010	.0006	. 0003	.0002					
15	. 0023	.0014	. 0009	. 0005	.0003	.0002					
16	.0017	. 0011	.0007	.0004	,0002	.0001					
17	.0010	. 0007	.0004	.0002	.0001	.0001					
18	.0004	.0002	.0001	.0001	.0000	.0000					

		Sh	ear flow, q _{ii}	L, at station	1		-	, ;		Sh	ear flow, q _{ii}	L, at station	n—	
	i=0	i=1	i=2	i=3	i=4	i=5		,	i=0	i=1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 2262 . 1368 . 0856 . 05527 . 0294 . 0105 . 0175 . 0222 . 0246 . 0255 . 0246 . 0222 . 0140 . 087 . 0140 . 0087	-0.0044 .0360 .0396 .0324 .0227 .0113 .0052 0016 0106 0129 0140 0129 0110 0083 0083 0083	0. 0053 .0087 .0133 .0141 .0121 .0086 .0047 .0010 .0021 .0064 .0073 .0076 .0076 .0072 .0062 .0078 .0070 .0070	0. 0011 . 0038 . 0059 . 0059 . 0056 . 0045 . 0029 . 0012 . 0005 . 0019 . 0039 . 0037 . 0040 . 0039 . 0036 . 0026 . 0017 . 0006	0.0006 .0015 .0023 .0026 .0026 .0026 .0036 .0008 .0008 .0000 0008 .0014 0018 .0020 0020 0020 0020 003	0.0002 .0007 .0010 .0012 .0012 .0012 .0011 .0008 .0004 .0000 0003 0006 0009 0010 0010 0001 0009 0005 0005		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 3077 1623 .0942 .0553 .0296 .0112 .0025 .0112 .0025 .0127 .0200 .0248 .0273 .0279 .0268 .0240 .0201 .0151 .0094 .0032	0. 0679 .0776 .0617 .0433 .0271 .0137 .0030 0053 0115 0158 0193 0193 0172 0145 0199 0172 0146 0109 0068 0023	0.0034 .0188 .0240 .0221 .0171 .0110 .0052 .0001 .0041 .0072 .0098 .0104 .0105 .0098 .0098 .0084 .0064 .0064	0.0026 .0060 .0086 .0094 .0085 .0064 .0038 .0012 0012 0053 0056 0054 0054 0054 0054 0054 0054 0054 0056 	0.0008 .0025 .0036 .0041 .0039 .0010 .0010 .0010 .0011 .0021 .0027 .0029 .0025 .0025 .0026 .0026 .0027 .0029 .0026 .0020	0. 0004 0010 0016 0018 0018 0016 0016 0000 - 0005 - 0010 - 0013 - 0015 - 0010 - 0010 - 0007 - 0002

j	Shear flow, q_{ii} , at station—								
	<i>i</i> =0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 6986 0629 .0119 .0870 .0446 .0451 .0419 .0366 .0302 .0230 .0156 .0082 .0012 0052 0108 0153 0157 0207 0214	0. 1357 .0097 0159 0184 0162 0134 0107 0083 0062 0043 0025 0010 .0004 .0017 .0027 .0035 .0045 .0045	0.0068 .0154 .0052 .0019 .0051 .0060 .0058 .0051 .0042 .0031 .0021 .0001 .0007 .0014 .0020 .0024 .0024 .0026 .0026	0.0052 .0034 .0026 .0008 0010 0021 0026 0026 0024 0019 0014 0008 0003 0007 .0007	0.0016 .0016 .0011 .0005 0007 0010 0012 0011 0018 0008 0006 0002 .0003 .0003 .0003 .0007 .0008	0.0008 .0007 .0005 .0003 .0000 0004 0006 0006 0004 0003 0002 .0002 .0003 .0004 .0004			

TABLE 2.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[B=30; C=0; m=36]

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b)	Distributed	perturbation	load	on	stringer	j=0
	betw	veen rings $i=i$	0 and	i =	1	-

j		Stringer load, p _{ij} , at station—								
	i=0	i=1	i=2	<i>i</i> = 3	i=4	i=5	i=6			
0 1 2 3 4 5 6 7 8	0. 5000 0 0 0 0 0	0.1518 .0866 .0374 .0209 .0137 .0098	0. 0852 . 0711 . 0488 . 0331 . 0237 . 0177	0. 0636 . 0588 . 0484 . 0380 . 0296 . 0232	0. 0541 . 0518 . 0462 . 0393 . 0326 . 0267	0. 0491 . 0478 . 0443 . 0394 . 0341 . 0288 . 0236	0. 0463 . 0454 . 0429 . 0392 . 0348 . 0300 . 0251			
7 8 9 10 11 12	0 0 0 0 0	.0054 .0038 .0025 .0013 .0003	. 0100 . 0073 . 0049 . 0027 . 0008 —. 0009	.0138 .0102 .0069 .0040 .0013	.0167 .0125 .0086 .0051 .0019 —.0010	.0188 .0143 .0100 .0061 .0024 0009	. 0203 . 0156 . 0111 . 0068 . 0029 —. 0007			
13 14 15 16 17 18	0 0 0	0014 0021 0027 0030 0033 0034	- 0024 - 0037 - 0047 - 0054 - 0058 - 0060	0031 0048 0062 0072 0078 0080	0035 0056 0073 0085 0093 0095	0037 0062 0081 0095 0104 0107	0039 0066 0087 0103 0112 0116			

j		Stringer load, p_{ij} , at station—						
	i=1	i=2	i=3	i=4	i=5	i=6		
0	0. 2350	0. 1124	0. 0729	0. 0583	0.0514	0.04		
1)	. 0603	. 0789	. 0644	. 0550	. 0496	.04		
2	. 0214	. 0447	. 0489	. 0473	. 0452	. 04		
3	. 0111	. 0278	. 0360	. 0388	. 0394	. 03		
4	. 0071	. 0191	. 0270	. 0313	. 0334	. 034		
5	. 0050	. 0139	. 0206	. 0251	. 0278	. 02		
2 3 4 5 6 7	. 0037	. 0104	. 0159	. 0198	. 0226	.02		
7	.0027	. 0078	.0120	. 0154	.0178	.019		
8	. 0019	. 0056	. 0088	. 0114	. 0134	. 01		
9	. 0013	. 0037	. 0059	. 0078	. 0094	.010		
10	.0007	. 0020	. 0034	.0046	.0056	.00		
11	. 0001	. 0005	.0010	.0016	. 0022	.00:		
12	0004	0008	0010	0010	0009	00		
13	0008	0020	0028	0033	0036	00		
14	0011	0029	0043	0052	0059	00		
15	0014	0037	0055	0068	0077	00		
16	0016	0043	0063	0079	0091	00		
17	0017	0046	0069	0086	0099	01		
18	0018	0047	0070	0088	—. 0101	—. 01		

j		Stri	nger load, p	ij/L, at stat	ion— —————	
	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6
1 2	-0. 2242	-0.0331	-0.0081	-0.0029	-0.0013	-0.000
2	0377	0329	— , 0142	0064	0032	001
3	0082	0148	-, 0109	0064	 0037	002
4 5	0012	0060	0062	0047	0032	002
5	.0013	0017	0029	0028	0022	001
6	. 0026	.0005	0008	0012	0012	001
7	. 0034	. 0017	.0006	0001	0004	000
8	. 0039	.0025	.0014	.0007	.0003	.000
9	.0042	. 0029	.0020	.0012	.0008	.000
10	.0042	. 0031	.0023	. 0016	.0011	.000
11	.0041	.0032	.0024	.0017	.0012	.000
12	. 0039	. 0031	. 0023	.0018	.0013	.000
13	. 0036	. 0028	. 0022	. 0017	. 0013	.000
14 15	.0031	.0024	.0019	. 0015	.0011	.000
16	.0023	.0020	.0010	.0012	.0010	.000
17	.0013	.0009	.0007	.0006	.0004	.000
18	.0004	.0003	.0002	.0002	.0002	.000

j	Shear flow, $q_{it}L$, at station									
<i>J</i>	i=0	i=1	i=2	i=3	i=4	i=5				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 1741 .0875 .0501 .0292 .0155 .0057 0016 0069 0133 0146 0149 0143 0128 0107 0080 0050 0050	0. 0333 .0489 .0375 .0253 .0153 .0074 .0012 .0069 .0092 .0092 .0106 .0111 .0108 .0098 .0098 .0098 .0098 .0098 .0099 .0099 .0099 .0099 .0099 .0099 .0099 .0099 .0099	0.0108 .0231 .0234 .0186 .0127 .0072 .0025 0018 0063 0076 0081 0080 0063 0048 0063 0063 0063 0063 0063	0.0048 .0118 .0140 .0126 .0096 .0061 .0028 0001 0025 0053 0059 0059 0059 0056 0047 0036 0023 0023 0008	0. 0025 .0065 .0084 .0088 .0068 .0047 .0025 .0004 0014 0027 0037 0042 0043 0041 0035 0027 0027	0. 0014 . 0038 . 0052 . 0054 . 0047 . 0035 . 0021 . 0006 — . 0007 — . 0018 — . 0030 — . 0031 — . 0030 — . 0026 — . 0020 — . 0013				

		Shear flow, q _{ii} L, at station—						
j	i=0	i=1	i=2	i=3	i=4	i=5		
0 1 2 3 4 5 6 7 8	0. 2150 . 0944 . 0516 . 0294 . 0152 . 0052 0022 0076 0115	0. 0863 . 0678 . 0444 . 0277 . 0156 . 0067 . 0000 — 0051 — 0087	0. 0198 .0343 .0301 .0220 .0141 .0074 .0020 0023 0055	0.0073 .0167 .0183 .0155 .0111 .0067 .0027 0006	0.0035 .0088 .0109 .0103 .0082 .0054 .0027 .0002	0.0019 .0050 .0066 .0067 .0057 .0041 .0023 .0005		
9 10 11 12 13 14 15 16 17	0140 0154 0156 0149 0134 0112 0084 0052 0018	0112 0125 0129 0124 0112 0094 0071 0044 0015	0077 0090 0095 0094 0072 0054 0034 0012	0052 0064 0070 0070 0064 0055 0042 0026 0009	0034 0045 0050 0051 0048 0041 0031 0020 0007	0022 0031 0036 0037 0035 0030 0023 0015 0005		

,	Shear flow, q_{ii} , at station—								
j	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0. 5133 - 0.382 . 0372 . 0537 . 0562 . 0535 . 0482 . 0413 . 0336 . 0253 . 0168 . 0085 . 0007 - 0064 - 0126 - 0176	0. 1726 - 0.186 - 0.233 - 0.167 - 0.120 - 0.089 - 0.067 - 0.050 - 0.037 - 0.024 - 0.014 - 0.004 0.005 0.012 0.018	0. 0395 0. 0145 0042 0081 0079 0067 0042 0042 0032 0022 0005 0002 0008 0018	0. 0146 .0094 .0016 0028 0043 0044 0033 0026 0019 0012 0006 .0005 .0010	0. 0070 .0054 .0021 0006 0022 0027 0028 0025 0020 0016 0010 0006 0001 .0003 .0007	0.0038 .0031 .0016 .0001 0016 0018 0018 0012 0009 0005 0001			
16 17 18	0212 0235 0243	. 0027 . 0029 . 0030	. 0021 . 0022 . 0023	. 0016 . 0017 . 0018	.0012 .0013 .0013	. 0009 . 0010 . 0010			

TABLE 3.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[B = 100; C = 0; m = 36]

(a) Concentrated pert

i=00.5000

0. 2548 . 0699 . 0241 . 0124 . 0079 . 0055 . 0041 . 0030 . 0021 . 0014 - . 0002 - . 0004 - . 0015 - . 0015 - . 0019 - . 0019 - . 0019

0. 1528 . 0800 . 0391 . 0225 . 0149 . 0106 . 0078 . 0042 . 0018 . 0014 - 0016 - 0015 . 0004 - 0016 - 0015 - 0016 -

Stringer load, pij, at station-

0. 1062 .0750 .0460 .0297 .0206 .0151 .0113 .0084 .0061 .0042 .0006 -.0008 -.0008 -.0032 -.0040 -.0040 -.0050

turbation le	oad on	stringer	j=0	at
ring i=0				

0. 0825 .0678 .0483 .0342 .0250 .0189 .0144 .0108 .0079 .0053 .0030 -.0009 -.0009 -.0039 -.0050 -.0050 -.0050 -.0050

. 0615 . 0484 . 0369 . 0283 . 0219 . 0179 . 0095 . 0064 . 0037 . 0012 - . 0010 - . 0029 - . 0045 - . 0068 - . 0068 - . 0076

0. 0611 . 0566 . 0475 . 0383 . 0306 . 0243 . 0191 . 0147 . 0109 . 0075 . 0044 . 0015 - 0010 - 0030 - 0065 - 0076 . 0085

(b)	Distributed	perturbation	load	on	stringer	j=0
	betv	veen rings i=	0 and	i =	:1	•

,	Stringer load, p_{ij} , at station—								
j	i=1	i=2	i=3	i=4	i=5	i=6			
0	0, 3600	0. 1972	0, 1268	0.0932	0.0753	0, 0648			
1	.0428	. 0770	. 0779	. 0714	. 0645	. 0589			
2	. 0127	. 0324	. 0431	. 0474	. 0485	. 0480			
3	. 0063	. 0177	. 0264	. 0321	. 0357	. 0377			
4	. 0040	. 0115	. 0179	. 0229	. 0267	. 0295			
5	. 0028	. 0081	. 0129	. 0170	. 0204	. 0231			
6	.0020	. 0060	. 0096	.0129	.0157	. 0181			
7	.0015	. 0044	.0072	. 0097	. 0119	. 0138			
8	.0011	. 0032	. 0051	. 0070	. 0087	. 0102			
9	.0007	. 0021	. 0034	. 0047	. 0059	. 0070			
10	. 0004	. 0011	.0019	. 0026	. 0033	. 0040			
11	. 0001	. 0002	. 0005	. 0008	. 0011	. 0014			
12	0002	0005	—. 0007	—. 0009	0010	—. 0010			
13	—. 0004	- 0012	0018	0023	0027	- . 0030			
14	0006	0018	─. 0027	—. 0035	0042	0048			
15	-,0008	0022	0035	0045	0054	0062			
16	0009	0026	0040	0052	0063	0072			
17	0010	0028	0043	0057	0068	0078			
18	0010	0028	0044	0058	0070	0080			

,	CII			• .			(0.0)
(C)	Shear	perturbation	load	about	shear	panel	(0.0)

j	Stringer load, p_{ij}/L , at station—									
	i=1	i=2	i=3	i=4	i=5	i=6				
1	-0. 3168	-0. 1198	-0.0485	-0.0214	-0.0103	-0.00				
2	0288	—. 0433	 0335	0226	0148	00				
3	0043	0127	─. 0147	−. 0132	0107	00				
4	. 0004	0035	—. 0057	0064	0062	00				
5	. 0022	. 0001	0015	0025	-, 0029	00				
6 7	. 0032	. 0018	. 0007	0002	 0008	00				
	.0038	.0028	. 0019	.0012	.0006	.00				
8	.0042	. 0034	. 0027	. 0020	. 0015	.00				
9	. 0045	. 0037	. 0031	. 0025	. 0020	.00				
10	. 0045	. 0039	. 0033	. 0028	. 0023	.00				
11	. 0044	. 0038	. 0033	. 0028	. 0024	. 003				
12	. 0041	. 0036	. 0032	. 0027	. 0024	.00				
13	. 0037	. 0033	. 0029	. 0025	. 0022	.00				
14	. 0032	. 0028	. 0025	. 0022	. 0019	.00				
15	. 0026	. 0023	.0020	. 0018	. 0016	.00				
16	. 0019	. 0017	.0015	.0013	.0012	.00				
17	. 0012	. 0010	. 0009	.0008	. 0007	.00				
18	. 0004	. 0004	. 0003	. 0003	. 0002	.000				

j	Shear flow, $q_{ii}L$, at station—								
	i=0	<i>i</i> =1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.1226 .0527 .0286 .0162 .0083 .0028 .0013 .0043 .0064 .0078 0085 0087 0083 0074 0062 0047 0062	0. 0510 .0409 .0259 .0157 .0087 .0036 0002 0030 0051 0074 0074 0071 0064 0054 0054 0041 0041 0025 0009	0. 0233 .0283 .0214 .0142 .0085 .0040 .0006 0020 0040 0063 0063 0061 0055 0047 0035 0040	0.0119 .0191 .0168 .0123 .0079 .0041 .0011 0013 0043 0053 0053 0052 0048 0040 0040 0040	0.0066 0129 0129 0102 0070 0040 0014 - 0007 - 0023 - 0045 - 0045 - 0044 - 0044 - 0026 - 0026	0.0041 .0089 .0098 .0098 .0083 .0060 .0015 0003 0018 0028 0038 0038 0036 0030 0030 0020			

	Shear flow, $q_{ij}L$, at station—								
j	i=0	i=1	i=2	i=3	i = 4	i=5			
0	0. 1400	0. 0814	0. 0352	0.0168	0. 0090	0.0052			
1	. 0543	. 0472	. 0343	. 0234	. 0158	. 0108			
3	. 0289	. 0275	. 0237	. 0191	.0148	. 0113			
3	.0162	. 0161	. 0151	. 0133	. 0112	. 0092			
4 5	.0026	.0032	.0039	.0041	.0074	. 0038			
6	0015	0007	.0002	.0008	.0012	. 0014			
7	-,0045	0036	0025	0016	0010	0005			
8	-, 0066	0057	0045	0035	0027	0020			
9	0080	0071	0058	0048	0039	0031			
10	0087	0078	—. 0066	0055	0046	0038			
11	0089	0080	0068	0058	0049	0041			
$\frac{12}{13}$	0085 0076	0077	0066	0056	0048	0041			
14	0076 0064	0069 0058	0060 0050	0051 0043	0044 0037	0038 0032			
15	0048	0044	0038	0033	0037 0028	0032 0024			
16	0030	-, 0027	0024	0020	0018	0015			
17	-,0010	0009	0008	0007	0006	0005			

į	Shear flow, q_{ii} , at station—								
<i>,</i>	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12	0.3632 - 0032 .0546 .0632 .0624 .0579 .0515 .0438 .0353 .0264 .0174 .0086	0. 1628 0342 0197 0114 0075 0053 0040 0029 0021 0014 0008 0002	0.0704 0009 0106 0086 0064 0036 0027 0020 0013 0008 0002	0.0337 .0065 0043 0058 0051 0041 0032 0025 0018 0018 0008	0.0179 .0068 0010 0035 0038 0028 0022 0017 0012 0007	0.0104 .0056 .0005 0020 0027 0024 0020 0015 0011 0007			
13 14 15 16 17 18	. 0004 0071 0135 0188 0226 0250 0258	.0003 .0008 .0011 .0014 .0017 .0018	.0002 .0006 .0010 .0012 .0014 .0016	.0001 .0005 .0008 .0011 .0012 .0013	.0001 .0004 .0007 .0009 .0011 .0012 .0012	. 0000 . 0003 . 0006 . 0008 . 0009 . 0010 . 0010			

TABLE 4.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[B = 300; C = 0; m = 36]

(a) Concentrated perturbation load on stringer j=0 at ring i=0

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

	Stringer load, p_{ij} , at station—									
j	i=0	i=1	i=2	i=3	i=4	i=5	<i>i</i> =6			
0	0. 5000	0, 3354	0. 2366	0. 1756	0, 1370	0, 1116	0.0945			
ĭ	0	.0506	. 0716	. 0782	. 0781	. 0752	. 0713			
2	0	. 0149	. 0271	. 0359	. 0417	. 0453	. 0472			
3	0 '	0074	.0142	. 0201	. 0250	. 0290	. 0320			
4	0	.0046	.0091	. 0132	. 0168	. 0201	. 0228			
5	0	. 0032	. 0064	. 0094	. 0121	. 0147	. 0170			
0 1 2 3 4 5 6 7 8	0	. 0024	. 0047	. 0069	. 0090	. 0110	. 0128			
7	0	. 0018	. 0035	. 0051	. 0067	. 0082	. 0096			
8	0	.0012	. 0025	. 0036	. 0048	. 0059	. 0070			
	0	.0008	. 0016	. 0024	. 0032	. 0039	. 0046			
10	0	. 0004	. 0008	. 0013	. 0017	. 0021	. 0026			
11	0	. 0001	.0002	. 0003	. 0004	. 0006	. 0007			
12	0	一. 0002	0004	 000 6	 0007	0008	0003			
13	0	一.0005	0010 ⁻	0014	—. 0017	0021	 0023			
14	0	0007	0014	 0020	 0026	—. 0031	 0035			
15	0	0009	0018	0025	0032	- . 0039	0045			
16	0	0010	0020	0029	0037	0045	0052			
17	0	0011	0022	0031	0040	0048	0056			
18	0	0012	0022	0032	-, 0041	0050	—. 0057			

j	Stringer load, p _{ij} , at station—								
	<i>i</i> =1	i=2	i=3	i=4	<i>i</i> =5	i=6			
0	0. 4108	0. 2820	0. 2038	0.1549	0. 1234	0. 1026			
1	. 0286	. 0628	. 0757	. 0785	. 0768	. 0733			
2 3	.0076	. 0213	. 0318	. 0390	. 0436	. 0464			
3	. 0037	. 0109	. 0172	. 0227	. 0271	. 0305			
4 5	. 0023	. 0069	. 0111	. 0150	. 0185	. 0215			
5	. 0016	. 0048	. 0079	. 0108	. 0134	. 0158			
6	. 0012	. 0036	. 0058	. 0080	. 0100	. 0119			
7	. 0009	. 0026	. 0043	. 0059	. 0074	. 0089			
8	. 0006	. 0018	. 0031	. 0042	. 0054	. 0064			
9	.0004	. 0012	.0020	. 0028	. 0035	. 0043			
10	. 0002	. 0006	. 0010	. 0015	. 0019	. 0024			
11	.0000	. 0001	. 0002	. 0003	.0005	. 0006			
12	0001	0004	0005	0007	0008	0009			
13	—. 0003	—. 0007	0012	0016	0019	0022			
14	0004	0011	0017	0023	0028	0033			
15	0005	0014	0022	0029	0036	0042			
16	- 0005	—. 0015	- . 0025	0033	0041	0048			
17	0006	0017	0027	0036	0044	0052			
18	—. 0006	 0017	─. 0027	—. 0037	− . 0046	-, 0054			

j	Stringer load, p_{ij}/L , at station—								
	i=1	i=2	i=3	i=4	i=5	i=6			
1 2 3 4 5 6 7 8 9 10	-0. 3817 0197 0018 .0014 .0027 .0035 .0041 .0044 .0046 .0046 .0045	-0. 2188 0402 0084 0012 .0014 .0027 .0034 .0039 .0042 .0042	-0. 1276 0427 0125 0033 . 0002 . 0019 . 0029 . 0034 . 0038 . 0039 . 0038	-0.07590383014300490008 .0012 .0023 .0030 .0034 .0035	-0.0462 0319 0145 0058 0016 .0006 .0018 .0026 .0030 .0032	-0. 0288 0256 0138 0063 0022 . 0000 . 0014 . 0022 . 0027 . 0029 . 0030			
12 13 14 15 16 17 18	.0042 .0038 .0033 .0027 .0020 .0012	. 0039 . 0036 . 0031 . 0025 . 0018 . 0011	. 0036 . 0033 . 0029 . 0023 . 0017 . 0011	.0034 .0031 .0027 .0022 .0016 .0010	.0031 .0029 .0025 .0020 .0015 .0009	.0029 .0026 .0023 .0019 .0014 .0009			

		Shear flow, $q_{ii}L$, at station—												
j	i=0	i=1	i=2	i=3	i=4	i=5								
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.0823 .0317 .0168 .0074 .0018 .0015 .0019 .0026 .0039 .0047 .0051 .0052 .0049 .0044 .0052 .0049 .0049 .0049 .0049 .0049 .0049 .0052 .0049 .0049 .0049 .0052 .0049 .0052 .0049 .0052 .0049 .0049 .0052 .0052 .0064 .0074 .0065	0. 0494 0294 0162 0094 0018 0005 - 0022 - 0034 - 0046 - 0047 - 0045 - 0041 - 0046 - 0034 - 0046 - 0034 - 0036 - 0016 - 0016 - 0005	0. 0305 . 0239 . 0151 . 0092 . 0051 . 0021 . 0001 . 0030 . 0038 . 0042 . 0043 . 0041 . 0037 . 0037 . 0031 . 0024 . 0045	0. 0193 . 0194 . 0136 . 0087 . 0050 . 0002 . 0002 . 0014 . 0026 . 0034 . 0038 . 0039 . 0038 . 0039 . 0034 . 0044 . 0029 . 0026	0. 0127 .0156 .0120 .0081 .0049 .0024 .0004 0011 0034 0036 0035 0035 0026 0020 0020	0. 0036 .0125 .0105 .0075 .0047 .0024 .0006 0019 0032 0032 0032 0024 0018 0018 0019								

j						
	i=0	i=1	i=2	i=3	i=4	i=5
0	0.0892	0.0644	0. 0391	0. 0244	0.0157	0.0104
1	. 0320	. 0302	, 0262	. 0216	. 0175	. 0140
2	. 0168	. 0166	. 0157	. 0144	. 0128	. 0113
3	. 0094	. 0094	. 0093	. 0089	. 0084	. 0078
4 5	. 0047	. 0049	. 0050	. 0050	. 0050	. 0048
5	0014	. 0017	. 0020	. 0022	. 0023	. 0024
6	0010	0007	0003	. 0000	.0003	. 000
7	—. 0027	0024	0020	0016	0013	0010
8	0040	0036	0032	0028	0024	002
	0048	0044	0040	0036	0032	002
10	0052	0049	0044	0040	0036 0037	003: 003:
11 12	0052 0050	0049 0047	0045 0043	0041 0040	0037 0035	003
13	0030 0045	0047 0042	0043 0039	0040 0036	0033 0033	003 003
14	0045 0037	0042 0035	0033 0033	0030 0030	0028	002
15	0028	0026	- 0024	- 0023	0021	001
16	0017	0016	0015	0014	0013	001
17	0006	0006	0005	0005	0004	-,000

j		Sł	near flow, q_i	i, at station	_	
	i=0	i=1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0, 2618 . 0253 . 0648 . 0684 . 0657 . 0602 . 0532 . 0450 . 0362 . 0270 . 0177 . 0002 . 0002 . 0074 . 0140 . 0194	0. 1287 0341 0137 0071 0045 0032 0012 0012 0008 0004 0001 0002	0. 0782 0130 0105 0064 0043 0031 0023 0017 0012 0008 0004 0004 0004 0008 0008 0008 0008 0008 0008 0009	0. 0489 0028 0072 0054 0039 0022 0016 0012 0004 0004 0004 0004 0006 0007 0009	0. 0315 .0017 0046 0044 0034 0027 0015 0011 0008 0004 0001 0003 0003 0005 0007 0009	0. 0209 . 0035 . 0037 . 0036 . 0030 . 0024 . 0019 . 0011 . 0001 . 0004 . 0002 . 0001 . 0003 . 0005 . 0006 . 0006
17 18	0258 0266	.0011	. 0010	. 0009 . 0010	. 0008	.0008

TABLE 5.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[B=1,000; C=0; m=36]

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

j			Stringer lo				
	i=0	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6
0	0, 5000	0. 4001	0. 3248	0. 2676	0. 2237	0. 1900	0. 163
1	0	. 0323	. 0530	. 0657	. 0731	. 0769	. 078
2 3	0	. 0084	. 0162	. 0232	. 0290	. 0338	. 037
3	0	. 0041	.0081	. 0119	. 0154	. 0187	. 021
4	lo	,0026	.0051	. 0075	. 0099	. 0121	. 014
5	0	.0018	. 0036	. 0053	. 0070	. 0086	. 010
6	0	.0013	. 0026	. 0039	. 0051	. 0064	, 007
7	0	.0010	. 0019	. 0029	. 0038	. 0047	, 005
4 5 6 7 8	0	. 0007	. 0014	. 0020	. 0027	. 0033	. 004
	0	, 0004	. 0009	. 0013	. 0018	. 0022	. 002
10	0	. 0002	. 0004	. 0007	. 0009	. 0012	. 001
11	0	.0000	. 0001	. 0001	. 0002	, 0002	, 000
12	0	—. 0001	—. 0003	—. 0004	 0005	—. 0006	000
13	0	- 0003	0006	0008	0010	0013	-, 001
14	0	0004	0008	0012	—. 0015	- . 0019	-, 002
15	0	—. 0005	0010	0015	— . 0019	 0023	002
16	0	—. 0006	0011	—. 0017	—. 0022	—. 0027	003
17	0	 0006	0012	0018	0024	0029	003
18	0	0006	—. 0013	0018	 0024	l —. 0030	 003

,		Str	inger load, 7	o _{ii} , at statio	n—	
J	i=1	i=2	i=3	i=4	i=5	<i>i</i> =6
0	0. 4477	0. 3607	0. 2949	0. 2447	0. 2061	0. 1763
1	. 0173	. 0434	. 0599	. 0698	. 0752	. 0777
2	. 0042	. 0124	. 0198	. 0262	. 0315	. 0359
3	. 0021	. 0061	.0100	. 0137	. 0171	. 0202
3 4 5	.0013	. 0038	. 0063	.0087	. 0110	. 0132
5	. 0009	. 0027	. 0044	. 0061	. 0078	. 0094
6 7	. 0007	. 0020	. 0032	. 0045	. 0058	. 0070
7	. 0005	. 0014	. 0024	. 0033	. 0042	. 0051
8	. 0003	. 0010	. 0017	. 0024	. 0030	. 0037
9	. 0002	. 0007	. 0011	. 0015	. 0020	. 0024
10	. 0001	. 0003	. 0006	. 0008	. 0010	. 0013
11	. 0000	. 0000	. 0001	. 0002	. 0002	. 0003
12	—. 0001	0002	0003	 0004	0005	−.000€
13	0001	0004	0007	0009	0012	0014
14	0002	0006	0010	0014	0017	—. 0020
15	0003	0008	0012	0017	—. 0021	 0025
16	0003	0009	0014	0019	0024	0029
17	0003	0009	0015	0021	0026	0032
18	0003	0010	—. 0016	0021	—. 0027	0032

j		Strir	iger load, p	_i /L, at stati	on		
J	i=1	i=2	i=3	i=4	i=5	i=6	
1	-0. 4300	-0. 3169	-0. 2346	-0. 1745	-0. 1305	-0.098	
	0118	-, 0297	0388	0424	0425	-, 040	
2 3 4 5	0002	0043	0077	0104	0124	0136	
4	. 0020	. 0005	0009	0022	0033	004	
	. 0030	. 0023	,0015	.0008	.0002	000	
6	. 0037	. 0032	. 0028	. 0023	. 0019	. 001	
6 7 8 9	. 0042	. 0039	, 0035	. 0032	. 0029	.002	
8	. 0045	. 0042	. 0040	. 0037	. 0035	. 003	
	. 0047	. 0045	. 0042	. 0040	. 0038	. 003	
10	. 0047	. 0045	, 0043	. 0041	. 0039	. 003	
11	. 0046	. 0044	. 0042	. 0040	. 0038	. 003	
12	. 0043	. 0041	. 0040	. 0038	. 0036	. 003	
13	. 0039	. 0038	. 0036	. 0035	. 0033	. 003	
14	. 0034	. 0032	. 0031	. 0030	. 0029	. 002	
15	. 0027	. 0026	. 0025	. 0024	. 0024	. 002	
16	. 0020	. 0019	. 0019	. 0018	. 0017	. 001	
17	. 0012	. 0012	. 0011	. 0011	. 0011	. 001	
18	. 0004	. 0004	. 0004	. 0004	.0004	. 000	

,		Sh	ear flow, q_{ii}	L, at station	1—	
j	i=0	i=1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0. 0499 0177 0092 0051 0026 0008 0015 0015 0022 0026 0029 0029 0028 0025 0020	0. 0377 0170 0092 0052 0027 0009 0004 0014 0020 0025 0027 0028 0026 0026 0020	0. 0286 . 0159 . 0090 . 0052 . 0027 . 0010 — 0003 — 0012 — 0019 — 0023 — 0026 — 0025 — 0025 — 0019	0. 0219 . 0145 . 0087 . 0051 . 0028 . 0011 0001 0018 0022 0024 0025 0024 0022 0018	0. 0169 . 0131 . 0083 . 0050 . 0028 . 0011 0010 0016 0021 0023 0024 0023 0020 0017	0. 0132 . 0118 . 0079 . 0049 . 0028 . 0012 . 0000 0019 0019 0022 0022 0020 0020
15 16 17	0015 0010 0003	0015 0009 0003	0014 0009 0003	0014 0008 0003	0013 0008 0003	0012 0008 0003

	Shear flow, $q_{ii}L$, at station—											
j _	i=0	i=1	i=2	i=3	i=4	i=5						
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 0523 .0177 .0092 .0051 .0026 .0008 0016 0015 0029 0029 0029 0029 0025 0025 0016 0016 0010	0. 0435 . 0174 . 0092 . 0052 . 0026 . 0008 0005 0014 0021 0028 0028 0028 0028 0029 0024 0020 	0. 0329 . 0164 . 0091 . 0052 . 0027 . 0009 0014 0020 0026 0027 0029 0019 0019 0019 0019 0019 0019 0009	0. 0251 . 0152 . 0088 . 0051 . 0027 . 0010 0012 0018 0025 0026 0024 0022 0018 0025 	0. 0193 . 0138 . 0085 . 0051 . 0028 . 0011 0010 0017 0021 0024 0023 0021 0018 0018 0018 0008	0. 0149						

j	Shear flow, qii, at station—												
	i =0	<i>i</i> =1	i=2	i=3	i=4	i=5							
0 1	0. 1879 . 0479 . 0715	0. 0870 0261 0082	0.0658 0165 0074	0. 0502 0099 0064	0. 0386 0055 0054	0. 0299 0025 0044							
2 3 4 5	. 0718 . 0678 . 0617	0040 0025 0018	0039 0025 0018	0004 0037 0024 0017	0034 0034 0023 0017	- 0031 - 0022 - 0016							
6 7 8 9	. 0542 . 0458 . 0367 . 0273	0013 0010 0007 0004	0013 0010 0007 0004	0013 0009 0007 0004	0012 0009 0007 0004	0012 0009 0006 0004							
10 11 12	. 0179 . 0088 . 0001	0002 0000 . 0001	0004 0002 . 0000 . 0001	0004 0002 . 0000 . 0001	0004 0002 0001	0004 0002 0001							
13 14 15 16	0076 0144 0198 0238	. 0003 . 0004 . 0005 . 0006	. 0003 . 0004 . 0005 . 0006	. 0002 . 0004 . 0005 . 0005	. 0002 . 0003 . 0004 . 0005	. 0002 . 0003 . 0004 . 0005							
17 18	0258 0263 0271	. 0006	. 0006	. 0005	.0005	. 0005							

TABLE 6.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

B = 8; $C = 2 \times 10^2$; m = 36]

(a) Concentrated perturbation load on stringer j=0 at ring i=0

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

			Stringer l	oad, p_{ii} , a	t station-	-			1	Str	inger load,	p _{ij} , at static	n—	
j	i=0	i=1	i=2	i=3	i=4	i=5	i=6)	i=1	i=2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 0499 . 0916 . 0528 . 0339 . 0233 . 0165 . 0117 . 0080 . 0051 . 0090 . 0005 . 0017 . 0025 . 0032 . 0039 . 0039 . 0039 . 0041	0.0576 .0500 .0483 .0407 .0331 .0264 .0206 .0113 .0074 .0040 .0010 0015 0037 0054 0067 0069	0.0461 .0459 .0430 .0395 .0350 .0250 .0260 .0152 .0107 .0065 .0026 0026 0040 0085 0085 0109 0109	0.0435 .0429 .0413 .0396 .0352 .0312 .0267 .0220 .0172 .0172 .0175 .0079 .0035 0070 0070 0070 0070 0070 0070 0070	0.0426 .0421 .0406 .0383 .0352 .0315 .0227 .0180 .0131 .0094 .0039 0003 0072 0098 017 017	0. 0421 .0416 .0403 .0381 .0352 .0316 .02276 .0231 .0184 .0135 .0087 .0041 .0002 .0040 .0073 .0100 .0120 .0132	0 1 2 3 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 16 17 18	0. 1941 . 0743 . 0353 . 0221 . 0129 . 0087 . 0058 . 0038 . 0022 . 0010 . 0001 . 0001 . 0014 . 0016 . 0019 . 0019 . 0029 . 0019 . 0019 . 0019 . 0029 . 0019 . 0019	0. 0583 .0645 .0512 .0387 .0228 .0121 .0083 .0052 .0024 .0002 .0002 .0017 .0032 .0044 .0003 .0059 .0059 .0069 .0069 .0069	0.0505 0481 0452 0491 0285 0285 0231 0181 0134 0092 0053 0018 - 0012 - 0018 - 0019 - 0077 - 0089 - 0099	0.0447 .0441 .0421 .0390 .0351 .0307 .0260 .0211 .0164 .0117 .0073 .0031 .00031 .0040 .0068 .0090 .0107 .0090	0. 0430 .0425 .0410 .0385 .0352 .0352 .0270 .0224 .0176 .0128 .0081 .0037 0004 0071 0096 .0114 0126	0. 0422 . 0418 . 0404 . 0383 . 0353 . 0316 . 0274 . 0184 . 0134 . 0364 . 0404 . 0077 . 0099 . 0118 . 0118

 		Stri	nger load, p	;;/L, at stat	ion—	
j	i=1	i=2	i=3	i=4	i=5	i=6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	-0.1182 0348 0088 .0005 .0040 .0052 .0052 .0045 .0035 .0024 .0014 .0005 0001 0005 0007 0005	0.006701180100006000300008 .0014 .0019 .0021 .0011 .0014 .0011 .0014	-0.00200018004200320032002500160006 .0010 .0013 .0015 .0014 .0012	-0.0002 0010 0012 0013 0010 0006 0002 .0001 .0004 .0007 .0008 .0009 .0009 .0008	-0,0001 -,0003 -,0004 -,0005 -,0005 -,0004 -,0003 -,0001 -,0002 -,0002 -,0003 -,0003 -,0003 -,0003 -,0003 -,0003	0,0000 ,0001 ,0002 ,0002 ,0002 ,0001 ,0001 -,0001 -,0001 -,0002 -,0002 -,0002 -,0002 -,0002 -,0002
17 18	0004 0002	. 0004	. 0006	.0004	.0001	. 0001

		Sh	ear flow, q _{ii}	L, at station	n⊶				Sh	ear flow, qii	L, at station	1—	
j	i=0	<i>i</i> =1	i=2	i=3	i=4	i=5		i=0	i = 1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 2250 . 1334 . 0806 . 0467 . 0234 . 0068 0049 0129 0180 0217 0212 0170 0133 0102 0062 0021	-0.0038 .0378 .0423 .0355 .0257 .0159 .00690069011501450161016201510129009800621	0,0058 .0099 .0152 .0164 .0145 .0109 .0066 .0062 .0022 .0018 .0076 .0091 .0098 .0095 .0095 .0041 .0014	0.0013 .0043 .0061 .0069 .0067 .0056 .0038 .0018 	0.0005 .0013 .0023 .0023 .0023 .0020 .0014 .0007 0001 0012 0018 0018 0018 0018 0018 0018	0.0002 .0007 .0010 .0012 .0012 .0011 .0008 .0004 .0000 0003 0006 0010 0010 0010 0007 0007 0006 0009	0 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 14 15 16 17	0.3059 1572 0866 0464 0206 0033 - 0084 - 0159 - 0224 - 0226 - 0215 - 01194 - 0166 - 0133 - 0059 - 0059 - 0020	0.0679 .0778 .0619 .0433 .0270 .0134 .0026 0057 0118 0160 0183 0190 0184 0166 0139 0164 0064 0022	0.0039 .0203 .0263 .0249 .0199 .0135 .0071 .0011 0040 0109 0125 0130 0123 0109 0080 0080 0080 0109 0125 0123 0080 	0. 0029 . 0068 . 0099 . 0110 . 0102 . 0080 . 0051 . 0021 . 0004 . 0054 . 0066 . 0072 . 0070 . 0060 . 0049 . 0049 . 0041	0.0008 .0025 .0036 .0041 .0039 .0033 .0022 .0010 .0002 .0021 .0027 .0030 .0030 .0021 .0030 .0031 .0021 .0030 .0031 .0021 .0030 .0030 .0030 .0030 .0031	0.0004 .0010 .0016 .0018 .0018 .0016 .0016 .0000 0005 0010 0015 0015 0015 0015 0010 0000

j	Shear flow, q_i , at station—														
<i>J</i>	i=0	i=1	i=2	<i>i</i> =3	<i>i</i> =4	i=5									
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 7239 0397 0397 0301 0477 0467 0386 0281 0178 0088 0018 0059 0067 0057 0044 0032 0023 0020	0.1233 0016 0246 0234 0168 0098 0038 .0008 .0039 .0055 .0055 .0059 .0059 .0059 .0059 .0059 .0059 .0002 .0002 .0002 .0002 .0003	0.0054 .0141 .0040 -0028 0056 0060 0053 0040 0027 0014 0005 .0005 .0010 .0012 .0012 .0011 .0019 .0009	0. 0055 .0037 .0029 .0009 0009 0022 0028 0029 0027 0016 0010 0004 .0002 .0007 .0001 .0001 .0005 .0015 .0015	0. 0016 .0015 .0008 .0000 0017 0023 0026 0027 0026 0014 0019 0014 0008 0002 00008 00000000000000000000000000000	0. 0008 .0007 .0005 .0003 .0000 .0000 .0004 .0006 .0003 .0003 .0002 .0003 .0004 .0000 .0002 .0000 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0006									

TABLE 7.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=30; C=2\times10^2; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer $j\!=\!0$ between rings $i\!=\!0$ and $i\!=\!1$

	Stringer load, p_{ij} , at station—								Stri	nger load, p	ii, at station	 ı-→			Stringer load, p_{ij}/L , at station—						
	i=0	i=1	i=2	i=3	i=4	i=5	i=6	j	i=1	i=2	i=3	i=4	i=5	i=6		i=1	i=2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 1521 . 0870 . 0377 . 0211 . 0137 . 0097 . 0075 . 0055 . 0001 . 0011 . 0001 . 0015 0021 0025 0021 0028 0030	0. 0854 . 0713 . 0489 . 0382 . 0237 . 0176 . 0133 . 0099 . 0071 . 0045 . 0006 . 0010 . 0025 . 0036 . 0052 . 0052 . 0052 . 0052 . 0052 . 0052	0. 0637 . 0589 . 0485 . 0380 . 0296 . 0138 . 0100 . 0068 . 0039 . 0011 0031 0048 0071 0077	0. 0541 . 0519 . 0462 . 0393 . 0326 . 0267 . 01167 . 0125 . 0085 . 0051 . 0019 . 0010 . 0056 . 0057 . 0056 . 0073 . 0085 . 0092	0. 0491 .0478 .0443 .0394 .0341 .0288 .0238 .0143 .0108 .0061 .0024 .0009 .0037 .0062 .0095 .0095	0. 0463 . 0454 . 0429 . 0392 . 0394 . 0300 . 0251 . 0203 . 0116 . 0011 . 0007 . 0007 . 0007 . 0008 . 0009 . 0066 . 0099 . 0099	0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18	0. 2853 . 0606 . 0216 . 0112 . 0071 . 0049 . 0035 . 0017 . 0010 . 0005 . 0000 0004 0013 0014 0014 0015	0. 1127 . 0792 . 0449 . 0280 . 0191 . 0139 . 0103 . 0075 . 0053 . 0034 . 0003 . 0009 . 0020 . 0020 . 0041 . 0044 . 0045	0. 0731 .0645 .0490 .0361 .0270 .0206 .0158 .0119 .0086 .0058 .0009 0011 0028 0042 0042 0062 0062 0069	0. 0584 .0551 .0474 .0388 .0313 .0251 .0198 .0153 .0113 .0077 .0045 .0016 .0010 .0033 .0052 .0067 .0078 .0087	0. 0514 .0496 .0452 .0394 .0278 .0226 .0178 .0134 .0094 .0056 .0022 .0009 .0036 .0059 .0077 .0091 .0091	0. 0476 0.465 0.465 0.435 0.393 0.345 0.294 0.196 0.150 0.106 0.005 0.007 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 166 17 18	-0. 2238 0364 0062 .0011 .0037 .0049 .0047 .0043 .0036 .0029 .0016 .0011 .0007 .0004 .0010 .0010 .0010 .0000	-0. 0331 - 0329 - 0148 - 0059 - 0017 - 0006 - 0018 - 0026 - 0030 - 0031 - 0031 - 0030 - 0027 - 0023 - 0019 - 0014 - 0008 - 0008	-0.008101430110096400300009 .0004 .0014 .0020 .0022 .0024 .0024 .0022 .0020 .0016 .0012 .0007	-0.0029006400650048002900130007 .0017 .0015 .0017 .0018 .0017 .0018 .0019 .0006 .0000	-0.0013003200370032002200120004 .0003 .0001 .0012 .0013 .0013 .0011 .0010 .0007 .0004	-0.0007001700210016001600100004 .0004 .0007 .0009 .0009 .0009 .0009 .0009 .0009 .0009 .0009 .0009 .0009 .0009

	Shear flow, q _H L, at station—							Shear flow, $q_{ii}L$, at station—								Shear flow, q _{ii} , at station—						
j	i=0	i=1	i=2	i=3	i=4	i=5	<i>j</i>	i=0	i=1	i=2	i=3	i=4	i=5		i=0	i = 1	i=2	i=3	i=4	i=5		
0 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17	0. 1739 . 0869 . 0493 . 0282 . 0145 . 0048 0023 0074 0109 0131 0141 0142 0134 0129 0099 0074 0046 0016	0. 0334 .0491 .0378 .0256 .0156 .0077 .0015 0033 .0069 0093 0113 0110 0100 0085 0084 0040 0040	0. 0108 .0232 .0236 .0189 .0130 .0075 .0027 0012 0064 0078 0084 0084 0077 0066 0050 0051	0.0048 .0118 .0141 .0128 .0098 .0063 .0029 .0002 0042 0054 0060 0061 0057 0049 0037 0023 0028	0.0025 .0066 .0085 .0084 .0069 .0048 .0026 .0005 0013 0027 0042 0043 0041 0035 0017 0017	0.0014 .0038 .0052 .0054 .0047 .0035 .0021 .0006 .0007 .0018 .0025 .0031 .0031 .0031 .0031 .0030 .0026 .0026 .0020	0 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17	0. 2147 .0935 .0504 .0280 .0138 .0039 .0032 .0116 .0116 .0146 .0146 .0137 .0146 .0102 .00075 .0046 .0016	0.0863 .0677 .0443 .0276 .0155 .0066 .0001 .0051 .0088 .0112 .0128 .0128 .0123 .0111 .0093 .0070 .0043	0.0198 .0344 .0304 .0223 .0144 .0077 .0021 0054 0078 0098 0097 0089 0055 005 0055 	0.0073 .0168 .0185 .0157 .0114 .0069 .0029 0032 0052 0052 0071 0071 0066 0057 0043 0029	0.0035 .0089 .0110 .0104 .0083 .0056 .0028 .0003 .0018 0035 0046 0052 0053 0050 0043 0050 0040	0. 0019 . 0050 . 0066 . 0067 . 0057 . 0057 . 0041 . 0023 . 0005 . 0010 . 0022 . 0031 . 0036 . 0037 . 0036 . 0030 . 0030	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 5271 0254 .0473 .0598 .0576 .0508 .0508 .0309 .0214 .0129 .0057006100460078011401220127	0. 1659 0247 0282 0196 0126 0072 0031 0000 0032 0034 0039 0039 0039 0039 0016 0006 0016 0022 0024	0. 0390 0140 - 0046 - 0084 - 0080 - 0066 - 0051 - 0038 - 0016 - 0007 - 0000 - 0000 - 0016 - 0017 - 0017	0. 0147 .0095 .0017 0028 0045 0040 0027 0027 0020 0013 0020 0013 0006 .0005 .0010 .0018 .0018	0. 0070 .0054 .0021 0006 0022 0028 0029 0027 0013 0013 0003 .0003 .0003 .0014 .0016 .0016	0. 0038 .0031 .0016 .0001 0010 0018 0018 0012 0009 0005 0001 .0002 .0002 .0005 .0007 .0009 .0009		

TABLE 8.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=100; C=2\times10^2; m=36]$

(a) Concentrated perturbation load on stringer j=0 at ring (b) Distributed perturbation load on stringer j=0 between i=0 and i=1

(c)	Shear	perturbation	load	about	shear	panel	(0,0)
(~)	DITCEL	per our bacton	LOCK	about	SHOW	panci	(0,0)

	1	1	1	1	1	}	1
	i=0	i=1	i=2	i=3	i=4	i=5	i=6
0	0, 5000	0, 2548	0. 1528	0. 1062	0. 0825	0,0692	0.0611
1	0	. 0699	. 0800	. 0750	. 0678	. 0615	, 0560
2	0	. 0241	. 0391	. 0460	. 0483	. 0484	. 0475
3	0	. 0124	. 0225	. 0297	. 0342	. 0369	1 .0383
4	0	. 0079	.0149	. 0206	. 0250	. 0283	.0306
5	0	. 0055	. 0106	. 0151	. 0189	. 0219	. 0243
0 1 2 3 4 5 6 7 8 9	0	.0041	.0079	. 0113	. 0144	. 0170	. 0191
7	0	. 0030	.0058	0084	.0108	. 0129	. 0147
8	0	.0021	. 0042	. 0061	.0079	. 0095	. 0109
	0	.0014	. 0028	. 0040	. 0053	. 0064	. 0075
10	0	. 0007	.0015	. 0022	0030	.0037	. 0044
11	0	.0002	.0004	. 0006	. 0009	.0012	.0015
12	0	0004	0006	0008	0009	 0010	0010
13	0	0008	0015	0021	 0025	0029	0032
14	0	0012	0023	0032	0039	0045	0050
15	0	0015	0029	0040	0050	0058	0065
16	0	0018	0033	0046	0058	 0068	0076
17	0	0019	0036	0050	0063	0074	0083
18	0	0020	0037	0052	0064	0076	0088

,	Stringer load, p_{ij} , at station—							
j	i=1	i=2	i=3	i=4	i=5	i=6		
0	0. 3600	0, 1972	0.1268		0.0753	0.0648		
1	. 0428	. 0770	. 0779	. 0714	. 0645	. 0589		
2	. 0127	. 0324	. 0431	. 0474	. 0485	. 0480		
3	. 0063	.0177	. 0264	. 0321	. 0357	. 0377		
4 5	. 0040	. 0115	. 0179	. 0229	. 0267	. 0295		
5	. 0028	.0081	.0129	. 0170	. 0204	. 0231		
6 7	. 0020	.0060	. 0096	. 0129	. 0157	. 0181		
7	. 0015	. 0044	. 0072	. 0097	. 0119	. 0138		
8	.0011	. 0032	. 0051	. 0070	. 0087	. 0102		
9	. 0007	. 0021	.0034	. 0047	. 0059	. 0070		
10	. 0004	.0011	. 0019	. 0026	. 0033	. 0040		
11	. 0001	.0002	. 0005	. 0008	.0011	. 0014		
12	0002	− . 0005	-0007	0009	 0010	0010		
13	—. 0004	0012	一. 0018	0023	—. 0027	0030		
14	0006	0018	0027	0035	0042	0048		
15	- 0008	0022	0035	—. 0045	- . 0054	0062		
16	0009	0026	—. 0040	0052	0063	0072		
17	0010	0028	0043	0057	0068	0078		
18	—. 0010	0028	0044	0058	0070	0080		

j			, 			
,	i=1	i=2	i=3	i=4	i=5	i=6
1	-0. 3166	-0, 1198	-0.0485	-0.0214	-0.0103	-0.0055
3	-, 0283	0433	-, 0335	0227	0148	-, 0097
3	0035	0126	0147	0133	0107	-, 0083
4 5 6	. 0014	0034	—. 0057	0064	0062	0054
5	. 0032	.0001	0015	-, 0025	0029	0029
6	.0041	. 0018	.0006	0002	0008	0011
7	. 0045	. 0028	. 0019	.0011	,0006	, 0002
8	.0046	. 0034	. 0026	. 0020	. 0015	, 0010
	. 0045	. 0037	. 0031	. 0024	. 0020	.0016
10	. 0042	. 0039	. 0033	. 0027	. 0023	. 0019
11	. 0039	. 0038	. 0033	. 0028	. 0024	. 0020
12	. 0034	. 0036	. 0032	. 0028	. 0024	.0020
13	. 0029	. 0032	. 0029	0025	. 0022	. 0019
14	. 0024	. 0028	. 0025	. 0022	.0019	. 0017
15	. 0019	. 0023	.0020	.0018	,0016	.0014
16	. 0013	.0017	. 0015	.0014	.0012	. 0010
17	.0008	.0010	. 0009	.0008	.0007	.0006
18	. 0003	. 0003	. 0003	. 0003	, 0002	, 0002

j		Shear flow, $q_{ij}L$, at station—								
	i=0	<i>i</i> =1	i=2	i=3	i=4	i=5				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.1226 .0527 .0286 .0162 .0083 .0028 .0013 0044 0078 0087 0087 0087 0083 0074 0074 0062 0074 0062 0047 0069	0. 0510 . 0409 . 0259 . 0157 . 0087 . 0036 . 0002 . 0051 . 0064 . 0072 . 0074 . 0074 . 0054 . 0054 . 0054 . 0054 . 0041 . 0041 . 0045	0. 0233 .0283 .0214 .0142 .0085 .0040 .0006 0020 0040 0053 0063 0061 0055 0047 0035 0047 0035	0.0119 .0191 .0168 .0168 .0079 .0041 .0011 .0013 .0031 .0053 .0053 .0052 .0050 .0050 .0050 .0050 .0050 .0050	0.0066 .0129 .0129 .0102 .0070 .0040 .0014 0007 0023 0045 0045 0044 0041 0034 0026 0016	0.0041 .0089 .0098 .0098 .0083 .0060 .0015 0003 0018 0028 0035 0038 0030 0022 0030 0022 0030				

	Shear flow, $q_{ii}L$, at station—								
j	i=0	i=1	i=2	i=3	i=4	i=5			
0	0, 1400	0. 0814	0. 0352	0. 0168	0, 0090	0.0052			
1	. 0543	. 0472	. 0343	. 0234	. 0158	.0108			
2	. 0289	. 0275	. 0237	. 0191	. 0148	.0113			
3	. 0162	. 0161	. 0151	. 0133	. 0112	. 0092			
4	. 0082	. 0086	. 0087	. 0082	. 0074	. 0065			
5	. 0026	. 0032	. 0039	. 0041	. 0040	. 0038			
6	0015	0007	. 0002	. 0008	. 0012	. 0014			
7	0045	0036	0025	0016	0010	0005			
8	0066	0057	0045	0035	0027	0020			
9	0080	0071	0058	0048	0039	0031			
10	0087	0078	0066	0055	0046	0038			
11	0089	0080	0068	0058	0049	0041			
12 13 14	-, 0085 -, 0076 -, 0064	0077 0069 0058 0044	0066 0060 0050 0038	0056 0051 0043 0033	0048 0044 0037 0028	0041 0038 0032 0024			
15	-, 0048	0044	0038	0033	0028	0024			
16	-, 0030	0027	0024	0020	0018	0015			
17	-, 0010	0009	0008	0007	0006	0005			

	Shear flow, q _{ij} , at station—								
	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0. 3688 .0020 .0586 .0657 .0630 .0566 .0485 .0395 .0303 .0213 .0128 .0050 .0019 .0077 .0125	0.1601 0367 0217 0126 0078 0047 0025 0004 .0014 .0016 .0016 .0016 .0016 .0017	0.0703 0010 0107 0087 0064 0036 0027 0019 0012 0006 0001 .0003 .0006 .0009	0.0337 .0065 0043 0058 0051 0041 0033 0025 0019 0013 0003 .0001 .0005	0.0179 .0068 0010 0035 0034 0028 0022 0017 0012 0007 0003 .0001	0. 0104 .0056 .0005 0020 0027 0027 0024 0015 0011 0003 .0000 .0003 .0006			
15 16 17 18	0162 0189 0197 0202	0002 0001 0004 0005	.0012 .0013 .0014 .0015	.0011 .0012 .0013 .0014	.0009 .0011 .0012 .0012	.0008 .0009 .0010 .0010			

TABLE 9.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=300; C=2\times10^2; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

,	Stringer load, p_{ii} , at station—									
,	i=0	i=1	i=2	i=3	i=4	i=5	i=6			
0	0, 5000	0. 3354	0. 2366	0, 1756	0. 1370	0. 1116	0.0945			
	0	. 0506	.0716	. 0782	. 0781	.0752	. 0713			
$\bar{2}$	0	. 0149	.0271	. 0359	. 0417	. 0453	. 0472			
$\frac{1}{2}$	0	.0074	. 0142	. 0201	. 0250	. 0290	. 0320			
	0	.0046	. 0091	. 0132	. 0168	. 0201	. 0228			
4 5 6	0	. 0032	. 0064	. 0094	.0121	. 0147	. 0170			
6	0	. 0024	.0047	. 0069	.0090	. 0110	. 0128			
7 8 9	0	. 0018	. 0035	. 0051	. 0067	. 0082	. 0096			
8	0	. 0012	. 0025	.0036	.0048	. 0059	. 0070			
9	0	.0008	. 0016	. 0024	.0032	. 0039	. 0046			
10	0	. 0004	. 0008	. 0013	. 0017	. 0021	, 002€			
11	0	.0001	.0002	.0003	.0004	.0006	. 0007			
12	0	0002	0004	0006	0007	0008	0000			
13	0	—. 0005	—. 0010	0014	0017	0021	0023			
14	0	0007	0014	0020	0026	0031	0035			
15	, 0	0009	0018	 0025	0032	0039	0048			
16	0	0010	0020	0029	0037	0045	0052			
17	0	0011	0022	0031	0040	0048	 . 005€			
18	0	0012	0022	0032	0041	0050	0057			

 j	Stringer load, p _{ii} , at station—								
	i=1	i=2	i=3	i=4	i=5	<i>i</i> =6			
0 1 2	0. 4108	0. 2820	0. 2038	0. 1549	0. 1234	0. 1026			
	. 0286	. 0628	. 0757	. 0785	. 0768	. 0733			
	. 0076	. 0213	. 0318	. 0390	. 0436	. 0464			
3	. 0037	. 0109	. 0172	. 0227	. 0271	. 0305			
4	. 0023	. 0069	. 0111	. 0150	. 0185	. 0215			
5	. 0016	. 0048	. 0079	. 0108	. 0134	. 0158			
6	. 0012	. 0036	. 0058	. 0080	. 0100	. 0119			
7	. 0009	. 0026	. 0043	. 0059	. 0074	. 0089			
8	. 0006	. 0018	. 0031	. 0042	. 0054	. 0064			
9	. 0004	. 0012	. 0020	. 0028	. 0035	. 0043			
10	.0002	.0006	. 0010	. 0015	.0019	. 0024			
11	.0000	.0001	. 0002	. 0003	.0005	. 0006			
12	0001	0004	0005	—. 0007	—.0008	0009			
13	0003	0007	0012	0016	0019	0022			
14	0004	0011	0017	0023	0028	0033			
15	0005	0014	0022	0029	0036	0042			
16	0005	0015	0025	0033	0041	0048			
17 18	0006 0006	0013 0017 0017	0023 0027 0027	0036 0037	0041 0044 0046	0048 0052 0054			

,	Stringer load, p_{ij}/L , at station—								
j	i=1	i=2	i=3	i=4	i=5	i=6			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	-0. 3817 -0195 -0116 -017 -031 -031 -038 -0043 -0046 -0045 -0045 -0049 -0035 -0029 -0024 -0018 -0011 -0004	-0. 2188 0402 0084 0012 0014 0039 0042 0042 0042 0042 0043 0039 0036 0031 0025 0011 0004	-0. 1276 0427 0427 0125 0033 . 0002 . 0019 . 0034 . 0038 . 0039 . 0038 . 0036 . 0033 . 0029 . 0023 . 0017 . 0011	-0.0759 -0.0383 -0.0149 -0.008 -0.012 -0.003 -0.034 -0.035 -0.035 -0.035 -0.034 -0.027 -0.022 -0.016 -0.010 -0.003	-0. 0462 0319 0145 0058 0016 0008 0018 0030 0032 0032 0031 0025 0020 0015 0009 0003	-0. 0288 - 0256 - 0138 - 0063 - 0002 - 0000 - 0014 - 0022 - 0027 - 0029 - 0030 - 0026 - 0023 - 0019 - 0014 - 0009 - 0003			

j	Shear flow, $q_{ii}L$, at station—								
	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0.0823 .0317 .0168 .0094 .0048 .0015 0026 0039 0047 0051 0052 0049 0044 0037	0.0494 .0284 .0162 .0094 .0050 .0018 0025 0024 0046 0047 0045 0041	0.0305 .0239 .0151 .0092 .0051 .0021 0018 0030 0038 0042 0044 0041 0037	0.0193 .0194 .0136 .0087 .0050 .0022 .0002 0014 0026 0034 0038 0039 0038 0039	0.0127 .0156 .0120 .0081 .0049 .0024 .0004 0011 0022 0030 0034 0035 0035	0.0086 .0125 .0105 .0075 .0047 .0024 .0006 0019 0019 0032 0032 0032 0029			
15 16 17	0028 0017 0006	0034 0026 0016 0005	0031 0024 0015 0005	0025 0022 0014 0005	0020 0012 0004	0014 0018 0011 0004			

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	j	Shear flow, $q_{ii}L$, at station—							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		i=0	i=1	i=2	i=3	i=4	i=5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	. 0320 . 0168 . 0094 . 0047 . 0014 0010 0027 0048 0052 0052 0055 0037 0045 0037 0045	. 0302 . 0166 . 0094 . 0049 . 0017 . 0007 . 0024 . 0036 . 0049 . 0049 . 0049 . 0042 . 0035 . 0026 . 0026	. 0262 . 0157 . 0093 . 0050 . 0020 . 0020 . 0032 0042 0044 0045 0039 0039 0034 0039	. 0216 . 0144 . 0089 . 0050 . 0022 . 0000 0016 0036 0040 0036 0036 0036 0030 0033 0023	. 0175 . 0128 . 0084 . 0050 . 0023 . 0003 0013 0034 0036 0037 0036 0033 0028 0028 0021 0021	. 0140 . 0113 . 0078 . 0048 . 0024 . 0005 0010 0021 0028 0034 0033 0030 0025 0019		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	Shear flow, q_{ii} , at station—								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>I</i>	i=0	i=1	i=2	i=3	i=4	i=5			
180248 .0002 .0010 .0009 .0008 .0008 180248 .0002 .0010 .0010 .0009 .0008	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	. 0272 . 0663 . 0694 . 0659 . 0598 . 0521 . 0434 . 0251 . 0160 . 0073 0006 0077 0185 0220 0241	0351 0144 0076 0047 0030 0018 0009 0003 0002 0004 0006 0006 0006 0006 0003 0003 0003 0004 0004 0004 0004 0004 0004 0004 0004 0004 0004 0004 0004 0006 0006 0006 0004 0004 0006	0130 0105 0064 0043 0031 0012 0012 0008 0004 0004 0004 . 0006 . 0008 . 0009 . 0010	0028 0073 0054 0039 0029 0022 0016 0008 0004 0001 0001 0001 0006 . 0007	. 0017 0046 0044 0034 0027 0020 0011 0008 0004 0001 . 0003 . 0005 . 0007 . 0008	. 0035 0027 0035 0030 0024 0019 0011 0007 0004 0002 . 0001 . 0003 . 0005 . 0006 . 0007 . 0008			

TABLE 10.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=1,000;\ C=2\times 10^2;\ m=36]$

(a) Concentrated perturbation load on stringer j=0 at ring (b) Distributed perturbation load on stringer j=0 between i=0 and i=1

j	Stringer load, p_{ij} , at station—									
,	i=0	i=1	i=2	i=3	i=4	i=5	i=6			
0	0, 5000	0.4001	0. 3248	0. 2676	0. 2237	0. 1900	0, 1637			
i	0	. 0323	. 0530	. 0657	. 0731	. 0769	. 0783			
2	0	. 0084	. 0162	. 0232	. 0290	. 0338	. 0378			
0 1 2 3 4 5 6	Ó	.0041	. 0081	. 0119	0154	. 0187	. 0216			
4	0	.0026	. 0051	. 0075	. 0099	. 0121	. 0143			
5	0	.0018	. 0036	. 0053	. 0070	.0086	.0102			
6	0	. 0013	. 0026	. 0039	. 0051	. 0064	.0075			
7 8 9	Ō	. 0010	. 0019	. 0029	. 0038	. 0047	. 0056			
8	0	. 0007	.0014	.0020	. 0027	.0033	.0040			
	0	.0004	. 0009	. 0013	.0018	. 0022	. 0026			
10	0	.0002	. 0004	. 0007	. 0009	. 0012	.0014			
11	U	. 0000	.0001	. 0001	. 0002	. 0002	.0003			
12	0	0001	—. 0003	0004	- . 0005	0006	—. 0006			
13	0	0003	0006	0008	—. 0010	—. 0013 .	—. 0015			
14	0	一.0004	0008	0012	0015	0019	0022			
15	0	—. 0005	0010	—. 0015	- .0019	0023	0027			
16	0	0006	0011	0017	0022	0027	- . 0032			
17	0	0006	0012	0018	0024	0029	0034			
18	0	0006	0013	0018	0024	0030	0035			

j	Stringer load, p _{ij} , at station—							
	i=1	i=2	i=3	i=4	i=5	i=6		
0	0. 4477	0, 3607	0. 2949	0, 2447	0. 2061	0. 1763		
1	. 0173	. 0434	. 0599	. 0698	. 0752	. 0777		
2	. 0042	.0124	. 0198	. 0262	. 0315	. 0359		
$\frac{2}{3}$. 0021	.0061	. 0100	. 0137	.0171	. 0202		
4	.0013	. 0038	. 0063	. 0087	. 0110	. 0132		
5	. 0009	. 0027	. 0044	. 0061	. 0078	. 0094		
6	. 0007	.0020	. 0032	. 0045	. 0058	. 0070		
7	. 0005	. 0014	. 0024	. 0033	. 0042	. 0051		
8	. 0003	. 0010	. 0017	. 0024	. 0030	. 0037		
9	.0002	.0007	. 0011	. 0015	. 0020	. 0024		
10	.0001	. 0003	. 0006	.0008	.0010	. 0013		
11	. 0000	.0000	. 0001	. 0002	. 0002	. 0003		
12	0001	0002	0003	0004	0005	0006		
13	0001	0004	0007	0009	0012	0014		
14	0002	0006	—. 0010	0014	0017	0020		
15	0003	0008	—. 0012	0017	0021	—. 0025		
16	0003	0009	—. 0014	—. 0019	0024	—. 0029		
17	0003	0009	0015	0021	0026	0032		
18	—. 0003	0010	0016	0021	0027	—. 0032		

j	Stringer load, p_{ij}/L , at station—								
J	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6			
1	-0. 4300	-0.3169	-0. 2346	0. 1745	-0. 1305	-0.0981			
$\frac{2}{3}$	0117	0297	0388	0424	 0425	—. 0406			
3	.0000	0043	−.0077	—. 0104	—. 0124	0136			
4 5	. 0021	. 0005	0009	0022	0033	—. 0042			
5	. 0031	. 0023	. 0015	.0008	.0002	0004			
6	. 0038	. 0033	. 0028	. 0023	. 0019	. 0015			
7	. 0043	. 0039	. 0035	. 0032	. 0029	. 0026			
8	. 0046	. 0043	. 0040	.0037	. 0035	.0032			
9	. 0047	. 0045	. 0042	.0040	. 0038	.0036			
10	. 0047	. 0045	. 0043	.0041	.0039] . 0037			
11	. 0045	. 0044	. 0042	.0040	. 0038	. 0037			
12	. 0042	.0041	. 0040	.0038	. 0036	. 0035			
13	. 0038	. 0037	. 0036	. 0035	. 0033	.0032			
14	. 0033	. 0032	. 0031	.0030	. 0029	. 0028			
15	. 0026	.0026	. 0025	.0024	. 0024	.0023			
16	.0019	. 0019	. 0019	.0018	. 0017	. 0017			
17	.0012	. 0012	.0011	.0011	.0011	. 0010			
18	.0004	.0004	. 0004	.0004	.0004	.0004			

j	Shear flow, $q_{ii}L$, at station—								
,	<i>i</i> =0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 0499 .0177 .0092 .0051 .0026 .0008 .0005 0015 0026 0029 0029 0029 0028 0020 0020 0020 0010 0003	0. 0377 .0170 .0092 .0052 .0027 .0009 0004 0014 0025 0025 0025 0028 0026 0020	0. 0286 .0159 .0090 .0052 .0027 .0010 .0003 .0012 .0019 .0023 .0026 .0025 .0025 .0019 .0019 .0026 .0026 .0025 .0019 .0019	0. 0219 .0145 .0087 .0051 .0028 .0011 0002 0018 0022 0024 0025 0024 0018 0014 0008 0018	0.0169 .0131 .0083 .0050 .0028 .0011 0016 0016 0021 0023 0024 0023 0020 0017 0013 0008 0003	0. 0132 . 0118 . 0079 . 0049 . 0012 . 0000 0009 0015 0019 0022 0022 0020 0016 0012 0012 0012 0012 0012 0012 0012 0012 0012 0008 0003			

Shear flow, $q_{ii}L$, at station—									
, 	i=0	i=1	i=2	i=3	i=4	i = 5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 0523 . 0177 . 0092 . 0051 . 0026 . 0008 0015 0022 0027 0029 0029 0025 0016 0016 0016 0016 0016	0.0435 .0174 .0092 .0052 .0026 .0008 .0008 0014 0021 0028 0028 0028 0027 0024 0029 0015 0009	0.0329 .0164 .0091 .0052 .00027 .0009 0004 0013 0026 0027 0026 0027 0028 0019 0019 0019 0009	0. 0251 .0152 .0088 .0051 .0027 .0010 0002 0012 0018 0025 0026 0024 0028 0018 0018 0018	0.0193 .0138 .0085 .0051 .0028 .0011 0010 0017 0024 0024 0023 0021 0018 0018 0018 0018 0008	0.0149 .0124 .0081 .0050 .0028 .0012 .0000 0009 0016 0022 0022 0022 0020 0017 0013 0008			

j	Shear flow, q_{B} , at station—							
<i>J</i>	i=0	i=1	i=2	i=3	i=4	i=5		
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 1885 .0485 .0720 .0721 .0678 .0615 .0539 .0453 .0362 .0267 .0174 .0083 .0001 .00077 .0143 .0077 .0143 .0093 .0266	0.0867 0264 0084 0026 0017 0017 0007 0001 0001 0001 0001 0002 0003 0003 0004 0004 0004	0.06580165007400390025001800090007000400020000 .0001 .0003 .0004 .0006 .0006	0. 0502 0099 0064 0037 0014 0013 0010 0007 0004 0001 0001 0001 0001 0002 0004 0004 0005 0006 0006 0006 0006	0. 0386 0055 0054 0034 0023 0017 0012 0009 0007 0004 0001 0001 0002 0003 0004 0005 0005	0. 0299 0025 0044 0016 0012 0009 0006 0004 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 00005 0005 0005		

TABLE 11.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=8; C=2\times 10^3; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer $j\!=\!0$ between rings $i\!=\!0$ and $i\!=\!1$

j	Stringer load, p_{ij} , at station—									
)	i=0	i=1	i=2	i=3	i=4	i=5	i=6			
0	0, 5000	0.0558	0, 0620	0. 0488	0. 0448	0.0426	0. 0421			
ï	0	. 0969	. 0542	. 0485	. 0441	. 0421	. 0416			
$\frac{2}{3}$	0	. 0563	. 0517	. 0452	. 0424	. 0407	. 0403			
3	0	. 0352	. 0429	. 0410	. 0394	. 0384	. 0381			
4	0	. 0225	. 0337	. 0357	. 0356	. 0353	. 0352			
4 5	0	. 0140	, 0253	. 0297	. 0311	. 0316	. 0316			
6	0	. 0081	. 0181	. 0237	. 0262	. 0273	. 0276			
7	0	. 0040	. 0121	. 0178	. 0210	. 0227	. 0231			
8	0	. 0014	. 0072	. 0124	. 0159	. 0179	. 0184			
9	0	—. 0002	. 0033	. 0076	. 0109	. 0129	. 0135			
10	0	—. 0012	. 0004	. 0035	. 0063	. 0082	. 0087			
11	0	—. 0017	—. 0017	. 0001	. 0022	. 0036	. 0041			
12	0	0019	 0031	—. 0025	0014	—. 0004	—. 0002			
13	0	0020	—. 0039	—. 0046	—. 0044	—. 0042	—. 0040			
14	0	0020	—. 0044	0060	0068	0072	0073			
15	0	—. 0021	—. 0046	—. 0070	—. 0087	—. 0097	—. 0100			
16	0	0021	—. 0047	—. 0076	—. 0100	—. 0114	—. 0120			
17	0	0021	0048	—. 0080	—. 0107	—. 0126	0132			
18	0	—. 0021	—. 0048	 0081	—. 0110	0128	—. 0136			

i	Stringer load, p_{ii} , at station—							
,	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6		
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.1983 .0780 .0375 .0207 .0119 .0066 .0033 .0012 .0001 0005 0009 0009 0009 0009 0010 0010	0.0635 .0693 .0548 .0406 .0293 .0204 .0135 .0082 .0042 .0013 0007 0019 0027 0031 0033 0033 0033 0033	0. 0540 0514 0480 0420 0350 0279 0212 0152 0099 0055 0019 - 0009 - 0043 - 0053 - 0059 - 0062 - 0064 - 0064	0. 0467 . 0460 . 0437 . 0402 . 0357 . 0305 . 0251 . 0196 . 0143 . 0094 . 0050 . 0012 . 0045 . 0079 . 0045 . 0079 . 0089 . 0094 . 0096	0. 0435 .0431 .0414 .0389 .0355 .0314 .0268 .0220 .0169 .0121 .0072 .0031 0042 0071 0092 0108 0116 0121	0.0423 .0418 .0404 .0382 .0352 .0356 .0274 .0229 .0182 .0134 .0086 .0040 0002 0040 0073 0099 0118 .0130 0130		

j	Stringer load, p_{ij}/L , at station—								
	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	-0. 1165 0301 0026 . 0063 . 0083 . 0072 . 0050 . 0027 . 0008 0005 0011 0012 0010 0007 0004 0009 0001 0000	0.00670116009400130013001300230024001800040006000600060001	-0.0020001800320031002200110006 .0001 .0013 .0012 .0010 .0008 .0005 .0002 .0000 .0000	-0.00020011001400160015001700020003 .0006 .0008 .0009 .0009 .0009 .0008 .0007 .0003 .0006		-0.00010003000400050006000400030001 .0001 .0001 .0005 .0005 .0005 .0004 .0003			

j	Shear flow, $q_{ii}L$, at station—							
<i>J</i>	i=0	i=1	i=2	i=3	i=4	i=5		
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 2221 .1252 .0689 .0337 .0112 0028 0109 0163 0161 0149 0132 0113 0093 0052 0052	-0.0031 .0396 .0443 .0367 .0255 .0141 .0040 0097 0132 0148 0147 0136 017 0093 0067 0093	0.0066 .0122 .0186 .0205 .0184 .0141 .0086 .0029 0024 0068 0100 .0118 .0123 0117 0101 0077 0049 0049	0.0020 .0064 .0093 .0109 .0109 .0095 .0070 .0038 .0004 0029 0057 0088 0089 0081 0064 0041	0. 0011 . 0031 . 0048 . 0058 . 0061 . 0056 . 0044 . 0028 . 0008 . 00012 0031 0045 0055 0057 0053 0043 0028	0. 0003 . 0007 . 0011 . 0014 . 0015 . 0013 . 0009 . 0005 . 0002 . 0007 . 0018 . 0016 . 0018 . 0017 . 0014 . 0019		

j j	Shear flow, $q_{ii}L$, at station—							
)	i=0	i=1	i=2	i=3	i=4	i=5		
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.3017 .1457 .0706 .0293 .0055 0077 0143 0169 0158 0142 0124 0106 0088 0070 0051	0. 0674 0761 0589 0390 0216 0078 0025 00136 01136 0155 0155 0156 0146 0146 01082 0082 0082 0083 00035 0012	0.0047 .0225 .0293 .0279 .0279 .0279 .0148 .0071 .0001 0057 0135 0135 0133 0121 0075 0075 0076	0.0037 .0091 .0134 .0152 .0145 .0118 .0080 .0036 0007 0046 0077 0107 0105 0093 0046 0016	0. 0016 . 0046 . 0068 . 0081 . 0083 . 0075 . 0033 . 0007 . 0020 . 0042 . 0061 . 0074 . 0067 . 0067 . 0067 . 00057	0.0006 .0019 .0028 .0035 .0036 .0030 .0020 .0005 0018 0028 0036 0036 0037 0030 0037 0030 0020 0006		

j	Shear flow, q_{ij} , at station—								
	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.75340137 .0464 .0517 .0390 .0224 .0081001900720087008700330013 .0000 .0008 .0012 .0014	0.112401080298022501130018007000700074003100090007001600180016001200080007	0. 0025 0112 0014 - 0049 - 0067 - 0057 - 0036 - 0012 0022 0027 0026 0020 0011 0001 - 0010 - 001	0. 0041 . 0023 . 0016 . 0001 . 0017 . 0017 . 0024 . 0019 . 0010 . 0005 . 0009 . 0010 . 0005 . 0009 . 0001 . 0005 . 0000 . 00001 . 0000 . 00006 . 00008	0. 0016 . 0016 . 0010 . 0004 0003 0002 0012 0011 0008 0004 0004 . 0004 . 0004 . 0004 . 0004 . 0004	0. 0010 . 0010 . 0007 . 0007 . 0004 . 0000 . 0003 0008 0008 0008 0008 0008 0008 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 			

TABLE 12.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[B=30; $C=2\times10^3$; m=36]

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

,	Stringer load, p_{ii} , at station—										
j	i=0	i=1	i=2	i=3	i=4	i=5	i=6				
0	0. 5000 0	0. 1538 . 0885	0. 0869 . 0727	0.0648 .0599	0. 0547 . 0525	0.0494 .0481	0. 0463 . 0454				
2 3	0	. 0387	. 0501	. 0493	. 0467	. 0445	.0429				
4	ŏ	.0137	. 0229	. 0298	. 0328	.0342	. 0348				
2 3 4 5 6 7 8	0	. 0061	. 0124	. 0175	. 0211	. 0235	. 0251				
8	0	, 0039 0023	.0087	.0129	.0162	.0186	. 0203				
9 10	0	.0011	.0033	.0058	.0080	.0097	.0111				
11 12	0	0006 0011	0003 0016	0005 0016	0014 0013	0022 0010	. 0029 0007				
13 14	0	0015 0017	0026 0033	0032 0046	0036 0055	0038 0061	0039 0066				
15 16	0	0019 0021	0039 0043	0056 0063	0070 0080	0080 0093	0087 0103				
17 18	0 0	0021 0021	0045 0046	0068 0069	0086 0088	0101 0104	0112 0116				
	1	<u> </u>		<u> </u>	l	1	l				

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

j	Stringer load, p_{ii} , at station—								
	i=1	i=2	i=3	i=4	i=5	i=6			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.2863 0.616 0.0222 0.115 0.045 0.0029 0.018 0.000 0.0004 0.0006 0.0006 0.0009	0. 1144 .0807 .0461 .0286 .0192 .0134 .0093 .0063 .0040 .0021 .0007 .0005 .0014 .0021 .0021 .0029 .0032 .0029 .0032 .0033	0. 0744 . 0658 . 0500 . 0367 . 0271 . 0203 . 0151 . 0109 . 0074 . 0046 . 0021 . 0016 . 0029 . 0040 . 0040 . 0048 . 0057	0. 0592 . 0559 . 0480 . 0393 . 0315 . 0249 . 0194 . 0146 . 0105 . 0069 . 0037 . 0015 . 0051 . 0051 . 0072 . 0072	0. 0517 . 0502 . 0456 . 0396 . 0337 . 0275 . 0226 . 0173 . 0130 . 0089 . 0050 . 0018 . 0012 . 0058 . 0075 . 0087 . 0087	0.0476 .0465 .0435 .0393 .0345 .0294 .0150 .0150 .0166 .0065 .0027 .0008 .0084 .0084 .0084 .0089			

(c) Shear perturbation load a	about shear panel	(0,0)
-------------------------------	-------------------	-------

j	Stringer load, p_{ij}/L , at station—								
j	i=1	i=2	i=3	i=4	i=5	i=6			
1	-0. 2224	-0.0328	-0.0081	-0.0030	-0.0013	-0.000			
2	0326	0321	0142	0066	0033	0017			
3	—. 0011	—. 0135	0108	0067	0039	-, 0022			
4 5	. 0066	0042	0060	0050	—. 0033	002			
5	. 0085	. 0002	0026	0030	0023	—. 001			
6	. 0081	. 0024	0004	0014	0013	0010			
7	. 0067	. 0034	.0010	0002	0004	—. 000			
8	. 0049	. 0036	.0018	.0007	. 0003	.000			
9	. 0030	. 0034	. 0022	.0013	.0008	.000			
10	.0014	. 0029	. 0023	.0017	.0012	.000			
$\frac{11}{12}$.0002	. 0022	. 0023	.0019	. 0013	.000			
13	0006 0011	.0015	.0020	.0019	.0013	.000			
14	0011	.0009	.0017	.0018	.0013	.000			
15	0012 0012	.0004	.0014	.0013	. 0011	.000			
16	0012 0009	0001	.0007	.0010	.0008	.000			
17	0006	0001	.0004	.0006	.0004	.000			
18	0002	0001	.0001	.0002	.0002	.000			

j	Shear flow, $q_{ii}L$, at station—							
J	i=0	i=1	i=2	i=3	i=4	i=5		
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0. 1731 .0846 .0459 .0243 .0106 .0015 0046 0085 0119 0120 0120 014 0089	0. 0334 .0493 .0380 .0257 .0155 .0074 .0011 0037 0071 0106 0109 0109 0104 0094	0.0111 .0239 .0247 .0240 .0141 .0084 .0034 0008 0067 0083 0090 0091 0084	0.0050 .0125 .0151 .0139 .0110 .0073 .0037 .0004 0023 0045 0069 0071 0067	0. 0027 . 0070 . 0092 . 0093 . 0079 . 0058 . 0033 . 0009 - 0012 - 0030 - 0042 - 0050 - 0053 - 0051 - 0053	0.0015 .0042 .0059 .0062 .0057 .0044 .0028 .0011 0005 0019 0030 0037 0040 0040		
15 16 17	0072 0053 0032 0011	0078 0058 0036 0012	0071 0054 0034 0011	0035 0045 0028 0009	0035 0022 0008	0028 0017 0006		

j	Shear flow, $q_{ij}L$. at station—								
	i=0	i=1	i=2	1=3	i=4	i=5			
0	0. 2137	0. 0860	0. 0200	0.0076	0.0038	0.002			
1	. 0906	. 0669	. 0349	. 0175	.0094	. 005			
3	. 0461	. 0431	. 0310	. 0195	.0119	. 007			
3	. 0231	. 0260	. 0229	. 0169	. 0116	. 008			
4 5	. 0091	. 0138	. 0150	. 0126	. 0093	. 007			
5	.0000	. 0049	. 0081	.0080	. 0067	. 005			
6	0058	—. 0015	. 0024	. 0037	. 0035	. 003			
7	—. 0094	0060	0022	0001	. 0008	. 001			
8	0113	0090	0057	0031	0017	000			
	0121	0108	0081	0055	0038	002			
10	0120	0115	0095	0071	0051	003			
11 .	0113	0114	0101	0079	0060	004			
$\frac{12}{13}$	0102	0106 0093	0099 0090	0081 0076	0062 0059	0050 0050			
1.4	0087 0070	0093 0076	0090 0076	0076 0065	0059 0052	003 004			
14 15	0070 0051	0076 0056	0070 0057	0065 0050	0032 0040	003			
16	0031 0031	0034	0037	0030 0031	0040 0029	003 002			
17	0031 0010	0034 0011	0012	0010	0029 0009	002. 000°			

	Shear flow, q_{ii} , at station—							
j	i=0	i=1	i=2	i=3	i=4	i=5		
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0. 5569 .0017 .0669 .0691 .0390 .0227 .0093 .0005 .0064 .0094 .0085 .0085 .0085	0. 1562 0333 0338 0214 0106 0023 .0034 .0068 .0080 .0077 .0062 .0043 .0021 .0001	0. 0349 . 0101 . 0078 . 0106 . 0088 . 0059 . 0031 . 0004 . 0030 . 0024 . 0030 . 0029 . 0023 . 0015	0.0131 .0080 .0004 0037 0047 0033 0022 0001 0005 .0009 .0010 .0009 .0009	0.0069 .0052 .0019 0008 0024 0030 0027 0027 0011 0011	0.0038 .0033 .0018 .0002 0009 0017 0019 0020 0017 0012 0007 0004 0001 .0003		
15 16 17 18	0015 . 0004 . 0016 . 0020	0027 0035 0040 0041	0006 0014 0020 0022	.0004	. 0013 . 0014 . 0016 . 0016	. 0007 . 0008 . 0009 . 0010		

TABLE 13.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[R=100; C=2\times10^3; m=36]$

(a) Concentrated perturbation load on stringer j=0 at ring i=0

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

,		Stringer load, p_{ij} , at station—						Stringer load, p_{ii} , at station—			n			
<i>j</i>	i-0	i=1	i=2	i=3	i=4	i=5	i=6		i = 1	i = 2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 2551 .0702 .0243 .0126 .0079 .0054 .0039 .0027 .0018 .0011 .0005 .0005 .0005 .0005 .0009 .0014 .0016 .0017 .0016	0. 1532 .0803 .0394 .0227 .0149 .0106 .0077 .0058 .0039 .0012 .0011 .0008 .0016 .0027 .0033 .0016 .0027 .0033 .0033 .0033	0. 1064 .0752 .0462 .0297 .0151 .0112 .0083 .0059 .0020 .0040 .0041 .0021 .0031 .0039 .0039 .0049	0. 0826 . 0679 . 0484 . 0343 . 0251 . 0189 . 0107 . 0075 . 0028 . 0010 . 0028 . 0010 . 0039 . 0049 . 0056 . 0056 . 0066	0. 0592 .0615 .0484 .0369 .0223 .0219 .0170 .0129 .0085 .0037 .0010 .0029 .0010 .0029 .0055 .0068 .0058 .0068 .0068 .0076	0. 0811 . 0536 . 0475 . 0383 . 0383 . 0396 . 0243 . 0191 . 0149 . 0015 . 0014 . 0010 . 0015 . 0010 . 0005 . 0005 . 0085	0 1 2 3 4 4 5 6 6 7 8 9 10 111 12 13 14 15 16 16 17 18	0. 3603 .0430 .0129 .0064 .0040 .0027 .0019 .0003 .0009 .0005 .0002 .0001 .0003 .0004 .0006 .0008 .0008	0. 1976 .0773 .0327 .0179 .0115 .0081 .0058 .0042 .0029 .0018 .0000 .0000 .00007 .0012 .0021 .0023 .0025 .0025	0. 1271 .0781 .0433 .0265 .0179 .0129 .0095 .0070 .0049 .0031 .0016 .0003 .0009 .0019 .0039 .0031 .0038 .0038 .0049 .0044 .004 .0044	0. 0933 .0715 .0476 .0322 .0230 .0177 .0128 .0095 .0068 .0045 .0024 .0006 .0010 .0024 .0035 .0044 .0051 .0055 .0056	0. 0753 .0645 .0485 .0357 .0267 .0204 .0157 .0119 .0087 .0059 .0033 .0911 .0010 .0027 .0054 .0054 .0068 .0068 .0068	0. 0648 0589 0480 0377 0295 0231 0181 0138 0102 0070 0040 0014 - 0010 - 0030 - 0048 - 0062 - 0078 - 0080

j	Stringer load, p_{ii}/L , at station—								
J	<i>i</i> =1	i=2	i=3	i-4	i-5	i=6			
1 2 3 4 5 6 7 8 9 10 11 12 13	-0.315802590001 .0052 .0069 .0072 .0066 .0056 .0043 .0030 .0019 .0009	-0.1196042801190026 .0011 .0028 .0036 .0039 .0037 .0033 .0029 .0029	-0. 0485 0335 0146 0056 0013 . 0008 . 0020 . 0027 . 0031 . 0032 . 0031 . 0028	-0. 0214 0227 0133 0065 0026 0003 . 0011 . 0020 . 0025 . 0028 . 0029 . 0028	-0.0103 0148 0107 0062 0029 0008 .0015 .0020 .0023 .0024 .0024	-0.005500970083005400290011 .0002 .0010 .0016 .0019 .0020 .0020			
14 15 16 17 18	0003 0006 0006 0004 0002	.0019 .0014 .0009 .0006 .0002	. 0024 . 0019 . 0014 . 0009 . 0003	. 0023 . 0019 . 0014 . 0009 . 0003	.0019 .0016 .0012 .0007 .0002	.0017 .0014 .0010 .0006 .0002			

·	Shear flow, $q_{ij}L$, at station—							
	i=0	i=1	i=2	i=3	i=4	i ≠ 5		
0 1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15	0. 1224 .0522 .0279 .0153 .0074 .0020 .0019 0046 0076 0081 0081 0085 0055 0055 0041 0025 0041 0025	0. 0510 .0410 .0259 .0158 .0088 .0036 .0002 .0051 .0065 .0072 .0074 .0064 .0053 .0040 .0040 .0040 .0040 .0040	0. 0234 0284 0216 0144 0087 0042 0007 - 0040 - 0053 - 0061 - 0064 - 0062 - 0065 - 0064 - 0062 - 0048 - 0036 - 0036 - 0036 - 0036	0. 0119 0192 0170 0124 0080 0043 0012 - 0012 - 0013 - 0044 - 0054 - 0054 - 0049 - 0049 - 0032 - 0032 - 0032 - 0049	0. 0066 0130 0130 0104 0071 0040 0014 - 0007 - 0024 - 0044 - 0047 - 0047 - 0047 - 0048 - 0049 - 0017 - 0028 - 0017	0.0041 .0089 .0098 .0098 .0053 .0060 .0015 .0015 .0018 .0036 .0035 .0038 .0035 .0038 .0030 .0022 .0030		

.	Shear flow, $q_{ij}L$, at station—							
,	i=0	i=1	i=2	i=3	i=4	i=5		
0	0. 1397	0.0813	0, 0352	0. 0169	0.0090	0.0052		
1	. 0536	. 0470	. 0344	. 0235	. 0159	. 0108		
2	. 0279	. 0272	. 0238	. 0192	. 0149	. 0113		
3	. 0150	. 0157	, 0152	. 0135	. 0113	. 0092		
4	. 0070	. 0082	. 0088	. 0084	. 0075	. 0065		
5	. 0016	. 0029	, 0039	. 0043	. 0042	. 0038		
6	—. 0023	→. 0010	. 0002	. 0010	. 0014	. 0014		
7	0050	—. 0039	0025	0016	—. 0009	一. 0005		
8	0068	0058	—. 0046	0035	0027	0020		
9	0078	0071	0059	0048	0040	0031		
10	0082	—. 0077	—. 0067	0056	0048	0038		
11	0081	0078	0070	0059	—. 0052	0041		
12	0076	0074	0067	0058	0051	0041		
13	0066	0066	0061	0053	0047	0038		
14	0055	0055	0051	0045	0039	0032		
15	0041	0041	-, 0039	0034	0029	0024		
16 17	0025 0009	0026 0009	-, 0024	0021 0007	0018	0015 0005		
17	0009	→. 0009	0008	0007	0006	0005		

j	Shear flow, q_{ij} , at station—								
<i>J</i>	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 3911 .0226 .0745 .0747 .0642 .0361 .0229 .0117 .0030 0031 0068 0086 0082 0070 0059 0051 0048	0. 1517 0444 0275 0157 0079 0020 0054 0071 0038 0054 0010 0029 0045 0054 0054 0058	0. 0679 0032 0126 0099 0068 0044 0004 0004 0012 0016 0017 0015 0011 0006 0000 0004 0007 0008	0. 0331 .0060 0048 0061 0052 0040 0030 0021 0013 0007 0002 .0005 .0006 .0007 .0007 .0008	0. 0178 . 0067 0011 0036 0038 0038 0029 0023 0017 0001 0000 00005 . 0000 . 0010 . 0012 . 0013	0. 0104 . 0056 . 0005 . 0005 . 0027 . 0027 . 0024 . 0020 . 0015 . 0011 . 0007 . 0008 . 0008 . 0008 . 0009 . 0010			

TABLE 14.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[R=300; $C=2\times10^3$; m=36]

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

j	Stringer load, p_{ij} , at station—									
,	i=0	i=1	i=2	i=3	i=4	i=5	i=6			
0	0. 5000	0. 3354	0. 2366	0. 1756	0. 1370	0. 1116	0.0945			
1	0	. 0506	. 0716	.0782	.0781	. 0752	. 0713			
2 3 4 5	0	. 0149	. 0271	. 0359	. 0417	. 0453	. 0472			
3	0	.0074	.0142	. 0201	. 0250	. 0290	. 0320			
4	0	. 0046	. 0091	.0132	. 0168	. 0201	. 0228			
5	0	. 0032	.0064	. 0094	. 0121	. 0147	. 0170			
6	0	. 0024	. 0047	. 0069	. 0090	.0110	. 0128			
7 8 9	0	. 0018	. 0035	. 0051	. 0067	. 0032	. 0096			
8	0	.0012	. 0025	. 0036	. 0048	. 0059	. 0070			
	0	. 0008	. 0016	. 0024	. 0032	.0039	. 0046			
10	0	. 0004	.0008	. 0013	. 0017	. 0021	, 0026			
11	0	.0001	. 0002	. 0003	0004	. 0006	.0007			
12	0	0002	[0004]	0006	[0007]	—. 0003	0009			
13	0	0005	0010	0014	0017	0021	0023			
14	0	0007	0014	→. 0020	0026	0031	0035			
15	0	0009	0018	0025	0032	0039	0045			
16	0	0010	—. 0020	0029	0037	0045	0052			
17	0	0011	0022	0031	0040	0048	0056			
18	0	0012	0022	0032	[0041]	0050	0057			

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

j	Stringer load, p_{ij} , at station—									
	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6				
0	0. 4108 . 0286	0, 2820 , 0628	0. 2038 . 0757	0. 1549 . 0785	0, 1234 , 0768	0. 1026 , 0733				
2 3	. 0076	. 0213	. 0318	. 0390	. 0436	. 0464				
3 4	. 0037 . 0023	.0109	.0172	.0227	.0271	.0305				
5	. 0016	. 0048	. 0079	. 0108	. 0134	. 0158				
6 7	. 0012 . 0009	. 0036 . 0026	. 0058	.0080	0100	. 0119				
7 8 9	. 0006	.0018	. 0031	. 0042	. 0054	. 0064				
10	. 0004	.0012	. 0020	. 0028	. 0035	. 0043				
11 12	. 0000 0001	. 0001 0004	. 0002 0005	. 0003 0007	.0005 0008	. 0006 0009				
13	0001	0004	0003 0012	0016	0005 0019	0009				
14 15	0004 0005	0011 0014	0017 0022	0023 0029	0028 0036	0033 0042				
16	0005	0015	0025	0033	0041	0048				
17 18	0006 0006	0017 0017	0027 0027	0036 0037	0044 0046	0052 0054				

,	Stringer load, p_{ij}/L , at station—									
j	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6				
,	-0.3812	-0. 2188	-0.1276	- 0, 0759	-0.0462	-0.0288				
1 2	-, 0183	0401	0427	0333	0319	-, 0256				
3	. 0003	0082	0125	0143	0145	0138				
	. 0039	0009	0033	0049	0058	0063				
4 5	, 0052	.0017	.0002	0009	0016	0022				
6	. 0057	. 0030	.0019	.0012	.0006	.0000				
7	. 0057	, 0037	. 0029	.0023	.0018	.0014				
8	. 0053	. 0041	. 0035	. 0030	. 0026	. 0022				
9	. 0047	.0042	. 0033	. 0034	. 0030	. 0027				
10	. 0040	. 0042	. 0039	. 0035	. 0032	. 0029				
11	. 0032	. 0040	. 0038	.0035	. 0032	. 0030				
12	. 0024	. 0037	. 0036	. 0034	. 0031	. 0029				
13	, 0018	. 0033	. 0033	.0031	. 0029	. 0026				
14	, 0012	. 6028	. 0029	. 0027	. 0025	. 0023				
15	. 0008	. 0022	. 0023	. 0022	. 0020	. 0019				
16	. 0005	. 0016	. 0017	.0016	. 0015	. 0014				
17	. 0002	. 0010	. 0011	. 0010	. 0009	. 0009				
18	. 0001	.0003	.0004	.0003	. 0003	. 0003				

	Shear flow, $q_{ij}L$, at station—								
j	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 0823 .0317 .0168 .0094 .0048 .0015 0009 0026 0039 0047 0051 0044 0044 0037 0049 0049 0049 0049 0028 0039	0. 0494 . 0284 . 0162 . 0094 . 0050 . 0018 0005 0032 0034 0046 0047 0045 0044 0046 0034 0026 0016 0016	0. 0305 . 0239 . 0151 . 0092 . 0051 . 0021 . 0001 . 0018 . 0030 . 0042 . 0042 . 0041 . 0031 . 0031 . 0024 . 0031 . 0024	0. 0193 .0194 .0136 .0087 .0050 .0022 .0002 .0004 .0034 .0039 .0039 .0039 .0039 .0039 .0029 .0022 .0014	0. 0127 . 0156 . 0120 . 0031 . 0049 . 0024 . 0004 . 0011 . 0022 . 0030 . 0036 . 0035 . 0035 . 0026 . 0020 . 0020 . 0012 . 0004	0.0086 0125 0105 0075 0077 0024 0006 - 0009 - 0019 - 0026 - 0031 - 0032 - 0029 - 0024 - 0018 - 0011			

,	Shear flow, $q_{ii}L$, at station—								
j	i=0	i=1	i=2	i=3	i=4	i=5			
0	0. 0892	0, 0644	0. 0391	0. 0244	0.0157	0. 0104			
1	. 0320	. 0302	, 0262	, 0216	. 0175	. 0140			
2	. 0163	. 0166	. 0157	. 0144	. 0128	. 0113			
3	. 0094	. 0094	. 0093	. 0039	. 0034	. 0078			
4	. 0047	. 0049	. 0050	. 0050	. 0050	. 0048			
5	. 0014	. 0017	. 0020	. 0022	. 0023	. 0024			
6	0010	—, 0007	—. 0003	. 0000	. 0003	. 0005			
7	0027	0024	0020	0016	0013	0010			
8	0040	—. 0036	0032	0028	0024	0021			
9	0048	—. 0044	0040	—. 0036	0032	0028			
10	0052	0049	—. 0044	—. 0040	0036	0032			
11	0052	0049	0045	0041	—, 0037	—. 0034			
12	—. 0050	0047	0043	0040	0036	—. 003?			
13	0045	0042	0039	0036	- . 0033	0030			
14	0037	−. 0035	0033	0030	0028	0025			
15	0028	0026	0024	0023	0021	0019			
16 17	0017	0016	0015	0014	0013	0012			

	Shear flow, q_{ij} , at station—								
,	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 2765 .0389 .0755 .0749 .0671 .0453 .0339 .0233 .0139 .0233 .0139 .0060 .0060 .0098 .0098 .0113 .0129 .0129 .0138	0. 1222 0402 0184 0100 0051 0016 0012 0032 0034 0049 0005 00020 0031 0039 0039 0049 0049 0049 0049	0. 0775 0137 0111 0068 0044 0019 0011 0005 0000 0005 0006	0. 0488 0029 0073 0055 0039 0021 0011 0001 0000 0002 0004 0006 0007 0008 0008	0.0315 .0017 0046 0044 0027 0020 0015 0011 0008 0001 .0001 .0001 .0003 .0005 .0008 .0008	0. 0209 . 0035 0027 0035 0030 0044 0019 0011 0001 0004 0002 . 0001 . 0003 . 0005 . 0006 . 0007 . 0008			

TABLE 15.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=1,000; C=2\times10^3; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer $j\!=\!0$ between rings $i\!=\!0$ and $i\!=\!1$

Stringer load, p_{ij} , at station—									
<i>i</i> =0	i=1	i=2	i=3	i=4	i=5	i=6			
0. 5000 0 0 0 0 0 0 0	0. 4001 .0323 .0084 .0041 .0026 .0018 .0013 .0010	0. 3248 . 0530 . 0162 . 0081 . 0051 . 0036 . 0026 . 0019 . 0014	0. 2676 . 0657 . 0232 . 0119 . 0075 . 0053 . 0039 . 0029 . 0020	0. 2237 . 0731 . 0290 . 0154 . 0099 . 0070 . 0051 . 0038 . 0027	0. 1900 . 0769 . 0338 . 0187 . 0121 . 0086 . 0064 . 0047 . 0033	0. 1637 . 0783 . 0378 . 0216 . 0143 . 0102 . 0075 . 0056 . 0040			
0 0 0	. 0002 . 0000 —. 0001	. 0004 . 0001 0003	. 0007 . 0001 —. 0004	. 0009 . 0002 —. 0005	.0012 .0002 0006	. 0014 . 0003 0006 0015			
0 0 0 0	0004 0005 0006 0006	0008 0010 0011 0012	0012 0015 0017 0018	0015 0019 0022 0024	0019 0023 0027 0029	0013 0022 0027 0032 0034 0035			
	0. 5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 5000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

j	Stringer load, p_{ij} , at station—								
	i=1	i = 2	i=3	i=4	i=5	i=6			
0	0. 4477	0.3607	0, 2949	0. 2447	0, 2061	0. 1763			
1	. 0173	. 0434	. 0599	. 0698	. 0752	. 0777			
2 3	. 0042	. 0124	. 0198	.0262	. 0315	. 0359			
3	. 0021	. 0061	. 0100	. 0137	. 0171	. 0202			
4	. 0013	. 0038	. 0063	. 0087	. 0110	. 0132			
5	. 0009	. 0027	.0044	. 0061	. 0078	. 0094			
6 7	. 0007	. 0020	. 0032	. 0045	. 0058	. 0070			
7	. 0005	.0014	. 0024	. 0033	. 0042	. 0051			
8	. 0003	. 0010	.0017	. 0024	. 0030	. 0037			
9	.0002	. 0007	.0011	. 0015	. 0020	. 0024			
10	.0001	.0003	.0006	.0008	. 0010	. 0013			
11	. 0000	. 0000	. 0001	.0002	. 0002	. 0003			
12	0001	0002	 0003	0004	0005	0006			
13	0001	0004	0007	0009	0012	0014			
14	0002	0006	0010	0014	0017	0020			
15 16	0003	0008	0012	0017	0021	0025			
17	0003 0003	0009	0014	0019	0024	0029			
18	0003 0003	0009 0010	0015	0021	0026	0032			
10	0003	0010	0016	0021	0027	0032			

,		Stringer load, p_{ij}/L , at station—								
j	i=1	i=2	i=3	i=4	i=5	i=6				
1	-0. 4298	-0.3169	-0. 2346	-0. 1745	-0. 1305	-0.098				
$\frac{2}{3}$	-, 0112	—. 0297	0388	0424	0425	040				
3	. 0007	0042	—. 0077	0104	0124	013				
4 5	. 0030	. 00.05	—. 0009	- . 0022	—. 0033	004				
5	. 0040	. 0023	. 0015	. 0008	. 0002	000				
6	. 0046	. 0033	. 0028	. 0023	. 0019	.001				
7 8 9	. 0049	. 0039	. 0035	. 0032	. 0029	. 002				
- 8	. 0049	. 0043	. 0040	. 0037	. 0035	.003				
	. 0048	. 0045	. 0042	. 0040	.0038	. 003				
10	. 0045	. 0045	. 0043	.0041	.0039	.003				
11	. 0041	.0044	.0042	.0040	. 0038	. 003				
12	. 0036	. 0041	. 0040	. 0038	. 0036	. 003				
13	. 0031	. 0037	. 0036	. 0035	. 0033	. 003				
14	. 0025	. 0032	.0031	. 0030	. 0029	. 002				
15	. 0020	. 0026	. 0025	.0024	. 0024	.00				
16	.0014	. 0019	.0019	. 0018	. 0017	.00				
17	.0008	.0012	. 0011	.0011	.0011	.001				
18	. 0003	. 0004	. 0003	. 0004	. 0004	.000				

j	Shear flow, $q_{ij}L$, at station—								
	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.0499 .0177 .0092 .0051 .0026 .0008 0015 0015 0026 0029 0029 0029 0029 0029 0029 0020 0025 0020	0. 0377 .0170 .0092 .0052 .0057 .0009 0004 0014 0020 0025 0025 0028 0026 0024 0020 0015	0. 0286 . 0159 . 0090 . 0052 . 0027 . 0010 0012 0023 0026 0025 0026 0021 0019 0021 0019 0024 0025 0019 0019 0021 0019 0019 0020 0020 0019 0019 0019 0020 0020 0019 0019 0020 0020 0019 0019 0020 0020 0019 0019	0. 0219 .0145 .0087 .0051 .0028 .0011 .0002 .0018 .0022 .0024 .0025 .0025 .0026 .0018 .0018 .0020 .0018 .0019 .0021 .0021 .0021 .0018 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021	0. 0169 .0131 .0083 .0050 .0028 .0011 .0010 .0016 .0021 .0023 .0024 .0023 .0020 .0017 .0013	0. 0132 .0118 .0079 .0049 .0028 .0012 0000 0015 0019 0022 0022 0022 0020 0016 0012			

j		Shear flow, $q_{ij}L$, at station—								
	i=0	i=1	i=2	i=3	i=4	i=5				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0. 0523 . 0177 . 0092 . 0051 . 0026 . 0008 0015 0012 0027 0029 0029 0028 0025 0025	0. 0435 .0174 .0092 .0052 .0026 .0008 .0005 .0014 .0021 .0026 .0028 .0028 .0027 .0024	0. 0329 .0164 .0091 .0052 .0027 .0009 0004 0013 0020 0024 0026 0027 0026 0023	0. 0251 .0152 .0088 .0081 .0027 .0010 0012 0018 0023 0025 0026 0024 0024 0024	0. 0193 .0138 .0085 .0085 .0051 .0028 .0011 0010 0017 0021 0024 0023 0023 0018	0. 0149 .0124 .0081 .0050 .0028 .0012 .0000 0009 0016 0020 0022 0023 0022 0020 0020				
15 16 17	0016 0010 0003	0015 0009 0003	0014 0009 0003	0014 0008 0003	0013 0008 0003	0017 0013 0008 0003				

j	Shear flow, q_{ii} , at station—								
	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 1936 . 0532 . 0757 . 0754 . 0684 . 0604 . 0512 . 0415 . 0317 . 0221 . 0132 . 0050 . 0062 . 0083 . 0133 . 0172 . 0200 . 02000 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 02000 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 02000 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 0200 . 020	0. 0842 0287 0102 0053 0028 0012 .0001 .0017 .0020 .0017 .0012 .0006 00007 0012 0001 0001 0012 0006 0001 0001 0012 0006 0001 0012 0006 0017	0. 0657 0166 0075 0040 0025 0017 0012 0008 0008 0001 0000	0. 0502 0099 0064 0037 0024 0017 0013 0009 0007 0004 0000 . 0001 . 0002 . 0004 . 0005 . 0006 . 0006	0. 0386 0055 0054 0034 0023 0017 0012 0007 0004 0001 0001 0002 0003 0004 0005 0006	0. 0299 0025 0044 0031 0016 0012 0016 0012 0000 0004 0002 0001 0. 0001 0. 0001 0. 0001 0. 0001 0. 0001 0. 0005 0. 0005			

TABLE 16.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[B=8; $C=2\times10^4$; m=36]

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer $j\!=\!0$ between rings $i\!=\!0$ and $i\!=\!1$

	Stringer load, p.g, at station—									
j	i=0	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.5000 0 0 0 0 0 0 0 0 0 0 0	0.0682 .1070 .0609 .0340 .0171 .0070 .0016 0007 0012 0010 0008 0009 0010	0. 0710 . 0626 . 0580 . 0458 . 0326 . 0207 . 0113 . 0046 . 0017 - 0025 - 0026 - 0022 - 0022 - 0022	0. 0559 . 0552 . 0508 . 0446 . 0366 . 0278 . 0191 . 0119 . 0054 . 0009 . 0019 . 0040 . 0040	0. 0503 0. 0494 0. 0468 0. 0426 0. 0371 0. 0305 0. 0234 0. 1000 0. 0046 0. 0004 0. 0045 0. 0045 0. 0056 0. 0056 0. 0056	0. 0467 0. 0460 0. 0441 0. 0410 0. 0367 0. 0315 0. 0257 0. 0134 0. 079 0. 0031 0. 0036 0. 0035 0. 0055 0. 0066 0. 0072	0. 0443 0438 0423 0397 0362 0318 0268 0214 0158 0104 0054 00011 - 0025 - 0071 - 0084 - 0092			
17 18	0	0012 0012 0012	0023 0023 0023	0035 0035 0035	0053 0052	0074 0074 0074	0092 0096 0097			

j						
	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6
0	0. 2073	0. 0740	0.0621	0. 0530	0. 0483	0. 0454
1	. 0850	. 0785	. 0590	. 0520	. 0476	. 0448
$\frac{1}{2}$. 0399	. 0606	. 0539	. 0487	. 0454	. 0431
3	. 0187	. 0419	. 0453	. 0436	. 0418	. 0403
4 5	. 0074	. 0263	. 0351	. 0369	. 0369	. 0364
5	. 0018	. 0145	. 0248	. 0294	. 0311	. 0317
6	—. 0005	. 0063	. 0156	. 0215	. 0247	. 0263
7 8 9	0009	. 0015	. 0082	. 0142	. 0181	. 0205
8	—. 0007	—. 0009	. 0028	. 0078	. 0118	. 0147
	—. 0004	—. 0018	—. 0006	. 0028	. 0063	. 0092
10	0002	—. 0019	0024	0008	. 0018	. 0043
11	—. 0002	—. 0017	—. 0031	0030	0017	. 0001
12	—. 0003	—. 0015	0033	0043	0040	0031
13	0004	0014	0032	0047	—. 0054	0054
14	0005	0015	0030	0048	0061	0069
15	0006	0016	0029	0047	0064	0078
16	0006	0017	0029	0045	0064	0083
17	0006	0018	0029	0043	0063	0085
18	0006	0018	—. 0029	—. 0043	—. 0063	· 0086

j	Stringer load, p_{ii}/L , at station—								
	i=1	i=2	i=3	i=4	i=5.	i=6			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	-0. 1123 0203 0203 . 0074 . 0123 . 0088 . 0038 . 0000 0017 0018 0012 0004 . 0001 . 0002 . 0002 . 0001 . 0000	0.00640118008400250017 .0035 .0033 .0021 .00070008000700080002 .0000 .0001	-0.00210019003200280013 .0002 .0013 .00017 .0015 .0010 .000400010004000500040005	-0.00030012001500150006 .0001 .0006 .0009 .0009 .0007 .0004 .0001000200030003	0.0002 0006 0008 0009 0008 0003 .0001 .0004 .0006 .0006 .0005 .0003 .0001 .0000	-0.0001 -0008 -0008 -0006 -0006 -0006 -0003 -0001 0004 0004 0003 0002			
17 18	. 0000	. 0001	0003 0001 . 0000	0003 0002 0001	0001 0000	. 0001			

,		Sh	ear flow, q_i	L, at statio	n—	
j	i=0	i=1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0. 2159 . 1089 . 0480 . 0140 . 0031 . 0101 . 0117 . 0110 . 0096 . 0096 . 0064 . 0059 . 0059 . 0050 . 0041	-0.0014 .0430 .0459 .0341 .0186 .0048 0101 0113 0098 0098 0064 0050	0. 0076	0. 0028 .0087 .0126 .0146 .0141 .0111 .0022 0025 0085 0094 0099 0078 0062	0. 0018 . 0052 . 0079 . 0095 . 0099 . 0089 . 0067 . 0036 . 0002 0031 0057 0074 0082 0079 0069	0. 0012 . 0034 . 0052 . 0065 . 0070 . 0066 . 0055 . 0036 . 0012 . 0013 . 0036 . 0055 . 0066 . 0069 . 0069
15 16 17	0030 0018 0006	0027 0016 0005	0032 0018 0006	0044 0026 0009	0052 0033 0011	0051 0033 0012

i	<u></u>	511	cai now, q	L, at station		
, 	i=0	i=1	i=2	i=3	i=4	i=5
0	0. 2927	0, 0666	0. 0060	0.0046	0.0023	0.0014
1	. 1228	. 0730	. 0256	. 0116	. 0067	. 0042
2 3 4 5	. 0429	. 0523	. 0323	. 0168	. 0100	. 0064
3	. 0056	0290	. 0289	. 0186	. 0118	. 0079
4	0092	. 0101	. 0201	. 0167	. 0119	. 0084
5	—. 0127	—. 0026	. 0097	. 0122	. 0102	. 0077
6 7	0117	—. 0094	, 0005	. 0062	. 0070	. 0061
7	0098	—. 0119	—. 0061	. 0002	. 0031	. 0037
8	0085	0117	0098	0047	0010	. 0008
	- . 0077	0102	0111	—. 0080	—. 0045	0021
10	0072	0086	0106	0096	0070	0046
11	0068	0071	0091	0097	0084	0064
12	0061	0059	0074	0087	0086	0074
13	0052	0049	0056	0072	0079	0074
14	0042	0040	0041	0054	0066	0067
15	0030	0029	0028	0037	0049	0052
16 17	0018 0006	0018 0006	0016 0005	0021 0007	0030 0010	0033 0012

,		Shear flow, q_{ij} , at station—								
j 	i=0	i=1	i=2	i=3	i=4	i=5				
0 1 2 3 4 5 6 7 8 9 10 11	0. 7903 .0150 .0557 .0409 .0164 0013 0088 0089 0056 0020 .0004	0. 0974 0214 0299 0141 0006 0077 0080 0014 0014 0014 0013 0019	0.0006 .0091 0009 0061 0058 0028 .0005 .0026 .0030 .0022 .0009 0002	0.0033 .0015 .0008 0009 0021 0023 0015 0003 .0007 .0013	0. 0012 . 0011 . 0005 0001 0008 0011 0011 0008 0002 . 0003 . 0007	0. 0007 . 0006 . 0004 . 0001 0003 0005 0006 0004 0001 . 0002 . 0004				
$\frac{12}{13}$. 0011	0011 0003	0008 0009	. 0004 0001	.0007	.0005				
14	. 0002	. 0001	—. 0007	0004	.0002	. 0003				
15 16 17 18	0001 0001 0001 0001	. 0003 . 0002 . 0001 . 0001	0004 . 0000 . 0002 . 0003	0004 0004 0003 0003	0001 0004 0005 0005	. 0000 0002 0004 0004				

TABLE 17.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B = 30; C = 2 \times 10^4; m = 36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

j							
	i=0	i=1	i = 2	i=3	i=4	i=5	i=6
0	0. 5000	0. 1585	0. 0918	0.0692	0.0584	0. 0522	0. 048
1	0	. 0925	. 0772	. 0640	. 0559	. 0508	. 047
2 3	0	.0411	. 0533	. 0525	. 0495	. 0467	. 044
	0	. 0219	. 0354	. 0404	. 0415	. 0411	. 040
4	0	. 0124	. 0235	. 0301	. 0333	. 0348	. 035
5	0	.0068	. 0153	. 0217	. 0258	. 0283	. 029
6	0	. 0034	. 0093	. 0149	. 0191	. 0221	. 024
7	0	. 0013	. 0051	. 0095	. 0133	. 0164	. 018
8	0	. 0002	. 0022	. 0053	. 0084	. 0112	. 013
9	0	0004	. 0003	. 0021	. 0044	. 0067	. 008
10	0	—. 0007	—. 0009	0002	.0012	. 0029	. 004
11	0	0008	—. 0016	0017	0011	0002	. 000
12	0	—. 0009	—. 0020	0027	0028	—. 0025	002
13	0	—. 0010	0022	0033	—. 0040	—. 0043	—. 004
14	0	—. 0010	- . 0023	−. 0036	0048	—. 0056	006
15	0	0011	0024	0038	0052	0065	—. 007
16	0	—. 0012	0024	0038	—. 0054	0070	008
17	0	0012	−. 0024	0039	—. 0055	0073	008
18	0	—. 0012	 0024	0039	0056	0074	009

j	Stringer load, pii, at station—								
	i=1	i=2	i=3	i=4	i=5	i=6			
0	0. 2893	0. 1192	0. 0790	0.0632	0. 0550	0, 050			
1	. 0640	. 0850	. 0701	. 0596	. 0531	.049			
2 3	. 0235	. 0490	. 0532	. 0510	. 0481	. 045			
3	. 0115	. 0296	. 0384	. 0411	. 0413	. 040			
4 5	. 0060	. 0184	. 0272	. 0319	. 0342	. 035			
5	. 0030	.0111	. 0187	. 0239	. 0272	. 029			
6 7	. 0013	. 0063	. 0122	. 0171	. 0207	. 023			
7	. 0004	. 0031	. 0073	. 0115	. 0149	. 017			
8	—. 0001	. 0010	. 0037	. 0069	. 0099	. 012			
9	—. 0002	0002	. 0011	. 0032	. 0056	. 007			
10	—. 0003	0009	 0006	. 0005	. 0021	. 003			
11	—. 0003	一. 0013	—. 0017	0015	—. 0007	. 000			
12	—. 0004	—. 0015	0024	—. 0028	−. 0027	002			
13	0004	0016	0028	0037	0042	004			
14	0005	0016	0030	0042	−. 0052	005			
15	0005	0017	0031	0045	—. 0058	一. 007			
16	0006	0018	0031	0046	0062	007			
17 18	0006 0006	0018 0018	0031 0031	0047 0047	0064 0065	008 008			

j	Stringer load, p_{ii}/L , at station—								
	i=1	i=2	i=3	i=4	i=5	i=6			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	-0. 2188 - 0236 - 0093 - 0146 - 0124 - 0078 - 0034 - 0014 - 0018 - 0016 - 0010 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000	-0. 0323 - 0305 - 0106 - 0005 - 0054 - 0051 - 0038 - 0022 - 0008 - 0002 - 0008 - 0009 - 00	-0.0079013700970097009700960017 .0028 .0030 .0027 .0019 .0011 .0003000600060006000600060004	-0.0029006400620043002100210002001000170020001800140009000200020002000200020002	-0.001400340039003300220010 .0008 .0012 .0014 .0013 .0011 .0008 .0006 .0008 .0001 .0006	-0.0007001900240019001900120001 .0006 .0009 .0011 .0011 .0010 .0008 .0008 .0009 .0004 .0002			

j	Shear flow, $q_{ij}L$, at station—								
,	i=0	i=1	i=2	i=3	i=4	i=5			
0	0. 1708	0. 0334	0.0113	0.0054	0,0031	0, 0019			
1	. 0783	. 0487	. 0245	. 0135	.0082	. 0053			
2	. 0372	. 0364	. 0253	. 0165	.0109	. 0074			
3	. 0153	. 0230	. 0202	. 0155	.0113	. 0082			
4	. 0029	. 0118	. 0137	.0122	. 0099	. 0076			
5	0039	. 0034	. 0073	.0081	. 0074	. 0062			
6	—. 0073	0026	. 0017	. 0038	,0044	.0041			
7	—. 0086	—. 0064	0027	. 0000	. 0013	. 0018			
8	0088	0084	—. 0057	0032	0014	0004			
9	—. 0084	0090	 0076	—. 0055	0037	0024			
10	—. 0078	0088	0083	0069	0054	0041			
11	0070	0080	0082	—. 0075	0064	0052			
12	0061	0068	—. 0075	—. 0074	0067	—. 0057			
13	—. 0051	0056	—. 0064	0067	0064	0056			
14	—. 0041	—. 0043	—. 0051	- 0056	—. 0055	—. 0050			
15	0030	0031	—. 0036	—. 0041	—. 0042	—. 0039			
16	0018	0018	0022	- . 0025	—. 0027	—. 0025			
17	0006	0006	—. 0007	—. 0009	—. 0009	0008			

į	Shear flow, $q_{ii}L$, at station—								
	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 2107 . 0826 . 0355 . 0126 . 0007 0078 0086 0081 0074 0067 0059 0051 0051 0018	0.0851 .0641 .0387 .0205 .0082 .0000 0050 0078 0089 0089 0083 0074 0052 0041 0029 0017 0029	0. 0201 .0350 .0308 .0200 .0132 .0057 0002 0045 0071 0084 0087 0082 0072 0060 0047 0033 0020	0.0079 0184 0206 0179 0131 0079 0029 - 0012 - 0044 - 0065 - 0076 - 0079 - 0053 - 0053 - 0024 - 0024	0.0041 .0105 .0135 .0133 .0111 .0078 .0042 .0008 .0022 .0046 .0061 .0070 .0071 .0071 .0066 .0056 .0052	0.0024 .0066 .0090 .0096 .0087 .0068 .0043 .0016 0009 0031 0047 0058 0062 0060 0053 0041 0053			

j	Shear flow, q_{ij} , at station—								
<i>J</i>	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 5997 .0372 .0845 .0660 .0367 .0120 .0037 .0105 .0111 .0084 .0047 .0017 .0012 .0013 .0013 .0009 .0009 .00000 .00000	0. 1438 0426 0358 0159 0007 0075 0098 0082 0047 0012 0014 0027 0029 0024 0016 0006 0006 0006 0006	0.0307 .0063 0105 0114 0075 0039 .0039 .0039 .0039 .0034 .0010 0001 0001 0011 0009 0006	0. 0108 . 0058 0015 0049 0051 0001 0001 . 0014 . 0021 . 0012 . 0018 . 0012 . 0005 0001 0001 0010 0012	0.0051 .0036 .0005 .0005 .0018 0028 0027 0029 .0001 .0008 .0014 .0012 .0008 .0008 .0008 .0008 .0009 .0009 .0009 .0009 .0009 .0009	0.0029 .0023 .0008 .0008 .0014 .0016 .0016 .0001 .0005 .0008 .0008 .0008 .0008 .0000			

TABLE 18.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B = 100; C = 2 \times 10^4; m = 36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

,	Stringer load, p_{ij} , at station—									
j	i=0	i=1	i=2	i=3	i=4	i=5	i=6			
0	0. 5000	0. 2564	0. 1547	0, 1079	0.0840	0.0704 .0626	0.0620 .0575			
2	0	.0714	. 0817	.0766	.0692	. 0493	. 0482			
2 3	0	. 0128	. 0232	. 0304	. 0349	. 0375	. 0388			
4 5 6	0	.0077	.0149	.0208	.0252	.0285	. 0307			
6	0	.0031	0068	.0104	.0136	.0163	.0187			
7	0	.0019	.0045	.0071	. 0097	. 0120	. 0140			
8	0	.0010	. 0027	.0046	. 0065	. 0084	. 0100			
9 10	0	.0004	.0013	.0025	.0039	.0052	.0065			
11	ŏ	0004	- 0005	0004	0001	. 0003	.0008			
12	Ŏ	0006	0011	0014	0016	0015	0015			
13	0	0008	0016	0022	0027	0031	0033			
14	0	0009	0019	0028	0036	0043	0049			
15 16	0	0010 0011	0021 0023	0033 0035	0043 0048	0052 0059	0061 0069			
17	0	0011	0023 0024	- 0037	0050	0063 0063	0074			
18	Ö	0012	0024	- 0037	0051	0064	0076			

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

	Stringer load, p_{ij} , at station—								
j	i = 1	i=2	i=3	i=4	i=5	i=6			
0	0 3611	0. 1991	0. 1287	0.0948	0. 0766	0.065			
1	. 0437	. 0787	. 0796	. 0729	. 0658	. 059			
2	. 0133	. 0336	. 0444	. 0486	. 0658	. 059			
3	. 0066	. 0183	. 0271	. 0329	. 0363	. 038			
5	. 0039	. 0114	. 0180	. 0231	. 0269	. 029			
6	. 0024	. 0075	.0124	. 0167	. 0202	.027			
7	. 0015	. 0050	. 0050	. 0120	. 0150	.018			
8	. 0005	. 0032 . 0018	. 0036	. 0055	. 0074	.008			
9	.0003	. 0008	.0019	.0032	.0046	.008			
10	.0002	. 0001	.0006	. 0013	.0022	. 003			
11	0002	0005	0005	0003	0001	.000			
12	0003	0009	0013	0015	~.0016	001			
13	0004	0012	0019	0025	0029	003			
14	0005	0014	0024	0032	0040	004			
15	0005	0016	0027	0038	0048	008			
16	0006	0017	0029	0042	- . 0053	006			
17	0006	0018	0030	—. 0044	~. 0057	006			
18	0006	0018	0031	—. 0044	~ . 0058	007			

,	Stringer load, p_{ij}/L , at station—								
j	i=1	i=2	i=3	i=4	i=5	i=6			
1	-0.3133	-0, 1190	-0.0482	-0.0213	-0.0103	-0,0055			
$\hat{2}$	0196	0409	0326	0223	-, 0147	0098			
3	.0080	0089	0132	0127	0106	0084			
	.0128	.0011	0037	0056	0059	0055			
4 5	.0123	.0049	.0008	0015	0026	0030			
6	. 0097	.0061	. 0029	.0008	0004	0011			
7	. 0065	. 0059	.0038	. 0021	.0010	. 0002			
8	. 0034	. 0051	. 0039	. 0027	.0018	.0011			
9	. 0011	. 0038	. 0036	. 0029	.0022	. 0017			
10	—. 0005	. 0024	.0029	.0027	. 0023	. 0020			
11	0013	. 0012	. 0021	. 0024	. 0023	. 0021			
12	0015	. 0002	. 0014	. 0019	. 0021	. 0020			
13	0013	0005	. 0007	.0014	.0018	.0019			
14	0009	0009	.0002	.0010	.0014	. 0016			
15	0006	0010	0001	.0006	.0011	. 0013			
16	0003	0009	0003	.0004	.0008	.0010			
17	0001	0006	0002	.0002	.0004	.0006			
18	.0000	0002	0001	.0001	.0001	. 0002			

j	Shear flow, $q_{ij}L$, at station—								
	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 1218 .0504 .0253 .0125 .0048 .0002 .0033 .0052 .0066 .0066 .0066 .0062 .0052 .0066 .0066 .0062 .0059 .0098 .0098 .0098	0.0508 .0405 .0251 .0147 .0075 .0024 0013 0039 0055 0064 0067 0065 0060 0052 0042 0031	0. 0234 .0285 .0216 .0144 .0085 .0039 .0004 0023 0042 0061 0062 0059 0059 0053 0043 0043 0032	0. 0120 . 0194 . 0173 . 0128 . 0084 . 0045 . 0013 . 0012 . 0032 . 0045 . 0057 . 0056 . 0051 . 0043 . 0032 . 0045 . 0059 . 0051 . 0043 . 0032	0.0068 .0134 .0135 .0110 .0077 .0046 .0018 	0.0042 .0094 .0104 .0091 .0068 .0043 .0020 .0000 .0017 .0038 .0043 .0044 .0044 .0042 .0036 .0027			

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Shear flow, $q_{ii}L$, at station—								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		i=0	i=1	i=2	i=3	i=4	i=5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	0. 1389	0. 0810	. 0. 0352	0.0170	0.0091	0.0054		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0515	. 0461	, 0343	. 0237	. 0162	. 0112		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0249	. 0253	. 0235	. 0194	. 0153	. 0119		
6003600220003 .0009 70054004503300017 80063005900480037 90066006000590050 100066006700630057 110062006400630059 120056005800590057 130048005000520052 140039004000420043		.0118	. 0140	.0147	. 0137	. 0119	. 0100		
6003600220003 .0009 70054004503300017 80063005900480037 90066006000590050 100066006700630057 110062006400630059 120056005800590057 130048005000520052 140039004000420043		. 0041	. 0064	.0082	. 0085	. 0081	.0073		
6003600220003 .0009 70054004503300017 80063005900480037 90066006000590050 100066006700630057 110062006400630059 120056005800590057 130048005000520052 140039004000420043	_	0007	. 0012	. 0033	. 0043	. 0046	. ()045		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	0036	0022	-, 0003	.0009	. 0016	. 0019		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	0054	0045	—. 0030	—. 0017	- . 0008	0002		
10 0066 0067 0063 0057 11 0062 0064 0063 0059 12 0056 0058 0059 0059 13 0048 0050 0052 0052 14 0039 0040 0042 0043	-	0063	—. 0059	0048	0037	—. 0027	0020		
11 0062 0064 0063 0059 12 0056 0058 0059 0059 13 0048 0050 0052 0052 14 0039 0040 0042 0043	-	0066	0066	0059	0050	0042	0033		
12	-	0066	0067	0063	—. 0057	0049	0042		
13	-	0062	—. 0064	0063	0059	0055	—. 0047		
14 0039 0040 0042 0043	-	0056	0058	- . 0059	0057	0053	0047		
	-	-, 0048 .	0050	0052	0052	0049	0044		
	-	0039	0040			0041	0038		
150028002900310032	-	0028	0029	0031	0032	0031	0029		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	0017	0018	0019	0020	0020	0018		

,	Shear flow, q_{ii} , at station—								
j	i=0	i=1	i=2	i=3	i=4	i=5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0. 4304 .0570 .0962 .0803 .0547 .0301 .0106 0023 0013 0078 0049 0049 0049 0049	0. 1425 0518 0305 0136 0020 .0054 .0091 .0096 .0080 .0052 0001 0017 0017 0025 0026	0.0633 0074 0157 0114 0066 0025 .0007 .0029 .0040 .0042 0037 .0027 .0016 .0004 0007	0. 0302 . 0032 . 0070 . 0075 . 0056 . 0034 . 0014 . 0003 . 0015 . 0022 . 0024 . 0017 . 0010	0. 0160 . 0050 0055 0045 0042 0031 0019 0002 .0009 .0013 0013 0013 0013 0018	0. 0094 0046 0004 0026 0030 0026 0019 0012 0005 0001 0006 0006 0006 0006			
15 16 17 18	.0008 .0014 .0017 .0018	0022 0016 0012 0010	0015 0021 0025 0026	0006 0011 0015 0018	0001 0003 0006 0006	. 0002 . 0000 0002 0002			

TABLE 19.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAL

 $[B=300; C=2\times10^4; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j = 0 between rings i = 0 and i = 1

j	Stringer load, p_{ii} , at station—									
	<i>i</i> =0	i=1	i=2	i=3	i=4	i=5	i=6			
0	0, 5000	0. 3358	0. 2370	0. 1760	0. 1373	0, 1119	0. 0947			
1	0	. 0509	. 0720	. 0786	. 0785	. 0755	. 0715			
2	0	.0151	. 0274	. 0362	. 0420	. 0455	. 0474			
2 3 4 5 6 7	0	. 0075	. 0144	. 0203	. 0252	. 0291	. 0321			
4	0	. 0046	, 0091	. 0132	. 0169	. 0201	. 0229			
5	0	. 0031	. 0063	. 0093	. 0121	. 0146	. 0169			
6	0	. 0022	, 0045	. 0067	. 0088	.0108	. 0127			
7	0	. 0015	. 0032	. 0048	. 0064	. 0080	. 0094			
8	0	. 0010	. 0021	. 0033	. 0045	. 0056	. 0067			
	\ 0	.0006	. 0013	. 0021	. 0028	. 0036	. 0044			
10	0	. 0002	. 0006	.0010	. 0014	. 0019	. 0024			
11	0	 0001	.0000	. 0000	. 0002	. 0004	. 0006			
12	0	0003	0006	 0007	0009	—. 0010	→. 0010			
13	0	—. 0005	- . 0010	─. 0014	0018	0021	—. 0024			
14	0	- . 0007	0013	0019	0025	—. 0030	· . 0035			
15	0	0008	—. 0016	−. 0024	0031	0038	—. 0044			
16	0	0009	0018	0027	0035	0043	0050			
17	0	0009	0019	—. 0028	0038	0046	—. 0054			
18	0	-, 0010	0019	0029	0038	0047 i	—. 0058			

,	Stringer load, p_{ij} , at station—							
,	i=1	i=2	i=3	i=4	i=5	i=6		
0	0.4110	0. 2824	0. 2042	0.1552	0. 1237	0. 102		
Ţ	. 0288	. 0631	. 0761	. 0789	. 0771	. 073		
2 3	. 0077	. 0216	. 0321	. 0393	. 0439	. 046		
	. 0038	. 0110	. 0174	. 0228	. 0272	. 030		
4	. 0023	. 0069	. 0112	. 0151	. 0185	. 021		
5	. 0016	. 0047	. 0078	. 0107	. 0134	. 015		
6	. 0011	. 0033	. 0056	. 0078	. 0099	. 011		
7	. 0007	. 0023	. 0040	. 0056	. 0072	.008		
8	, 0005	. 0016	. 0027	. 0039	. 0051	. 006		
9	. 0003	. 0009	. 0017	. 0025	. 0032	. 004		
10	. 0001	. 0004	. 0008	. 0012	. 0017	. 002		
11	. 0000	0001	, 0000	. 0001	. 0003	. 000		
12	—. 0002	0005	- . 0007	—. 0008	 . 0009	—. 001		
13	—. 0003	- . 0008	0012	0016	 . 0019	一. 002		
14	0003	0010	0016	0022	0028	003		
15	—. 0004	0012	0020	0027	0034	004		
16	—. 0004	0013	0022	0031	0039	004		
17	0005	0014	0024	—. 0033	0042	—. 005		
18	 0005	0014	-, 0024	—, 0034	-, 0043	L , 005		

j	Stringer load, p_{ii}/L , at station—									
	i=1	i=2	i=3	i=4	i=5	i=6				
1	-0. 3796	-0. 2183	-0. 1274	-0.0759	-0.0462	-0, 0288				
$\frac{2}{3}$	- . 0141	 . 0387	0421	0381	- . 0319	—. 0257				
3	. 0060	0060	0116	0140	0145	0138				
4 5	. 0099	. 0016	0022	0045	 0057	 0063				
5	. 0104	. 0043	. 0014	0004	—. 0015	0023				
6	. 0094	. 0054	. 0031	. 0016	. 0007	. 0000				
7	. 0076	. 0056	. 0038	. 0027	. 0019	. 0014				
8	. 0054	. 0052	. 0041	. 0033	. 0027	. 0022				
	. 0033	. 0045	. 0040	. 0035	. 0031	. 0027				
10	. 0016	. 0036	. 0037	. 0035	. 0032	. 0029				
11	. 0002	. 0026	. 0032	. 0033	. 0032	. 0030				
12	0007	. 0017	. 0027	. 0030	. 0030	. 0029				
13	0011	. 0009	. 0021	. 0026	. 0027	. 0027				
14	0013	. 0003	. 0016	. 0022	. 0023	. 0023				
15	 0012	. 0000	. 0011	. 0017	. 0019	. 0019				
16	0010	0002	. 0008	. 0012	. 0014	. 0014				
17	0006	0002	. 0004	. 0007	. 0008	. 0009				
18	0002	0001	. 0001	. 0002	. 0003	. 0003				

,	Shear flow, q _{ii} L, at station—								
j	i=0	i=1	i=2	i=3	i=4	i=5			
0	0. 0821	0. 0494	0. 0305	0.0194	0.0127	0. 0086			
1	. 0312	. 0283	. 0239	. 0195	.0157	. 0126			
3	. 0161	. 0161	. 0151	. 0137	. 0121	. 0106			
3	. 0086	. 0092	. 0092	. 0088	. 0082	. 0076			
4 5	. 0039	. 0047	. 0051	. 0051	. 0050	. 0048			
5	. 0008	. 0016	. 0021	. 0023	. 0025	. 0025			
6	0014	0007	0002	. 0002	. 0005	.0006			
7	0029	0023	-, 0018	 0014	0011	0008			
8	0039	0035	0030	0026	0022	0019			
.9	0044	0042	0038	0034	0030	0027			
10	0047	0045	0042	0038	0035	0032			
$\frac{11}{12}$	0046 0043	0045 0043	0043 0041	0040 0039	0036	0033			
13	0043 0038	0045 0038	0041 0037	0039 0035	0036 0032	-, 0033			
14	0038 0031	0038 0032	0037 0031	0035 0029	0032 0027	0030 0025			
15	0023	-,0032	0023	0029 0022	0027 0020	0028 0019			
16	0014	0014	0014	0014	0013	0018 0012			
17	-, 0005	0005	-,0005	-,0005	0004	0004			

,	Shear flow, $q_{ij}L$, at station—								
,	i=0	i=1	i=2	i=3	i=4	i=5			
0	0. 0890	0. 0643	0. 0391	0. 0244	0, 0158	0. 010			
1	. 0314	. 0300	. 0261	. 0216	. 0176	. 014			
2	. 0160	. 0162	. 0156	. 0144	. 0130	. 011			
3	. 0084	. 0090	. 0092	.0090	. 0086	. 007			
4	. 0037	. 0044	. 0049	. 0051	. 0051	. 004			
5	. 0006	.0012	.0018	. 0022	. 0024	. 002			
6	—. 0015	 0010	0004	. 0000	. 0003	.000			
7	0030	-, 0026	0021	 0016	0012	001			
8	0040	0037	0032	0028	0024	002			
9	0045	0043	0040	0036	0032	002			
10	0047	0046	0044	0040	0036	003			
11	0046	0046	0044	0042	0038	003			
12	0043	0043	0042	0040	0037	003			
13	0037	0038	0038	0036	0034	003			
14 15	0031 0023	0031 0023	0031 0024	0030	0028	002			
16	0023 0014	0023 0014	0024 0015	0023 0014	0021 0013	002			
17	0005	0014 0005	0005	0014	0013	001 000			

j	Shear flow, q_{ij} , at station—									
	i=0	i=1	i=2	i=3	i=4	i=5				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 3095 . 0688 . 0970 . 0849 . 0851 . 0442 . 01254 . 0103 . 0005 . 0072 . 0107 . 0094 . 0094 . 0021 . 0002 . 0010	0. 1135 0479 0233 0112 0029 0031 0091 0090 0091 0080 0060 0036 0012 0025 0036 0044 0048	0. 0732 0177 0142 0087 0049 0019 .0004 .0022 .0034 .0039 .0038 .0031 .0021 .0009 0004 0015 0024	0. 0466 0049 0090 0095 0043 0025 0010 . 0001 . 0001 . 0017 . 0017 . 0016 . 0012 . 0002 0004 0008 0004 0008	0.0304 .0008 0054 0049 0036 0015 0015 0008 0002 .0006 .0007 .0006 .0005 .0006 .0006 .0006 .0006 .0006	0. 0204 . 0031 0031 0037 0031 0024 0017 0011 0006 0003 . 0000 . 0002 . 0003 . 0004 . 0004				
18	.0014	0050	0033	0011	0001	. 0003				

TABLE 20.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=1,000; C=2\times10^4; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer $j\!=\!0$ between rings $i\!=\!0$ and $i\!=\!1$

j	Stringer load, p_{ij} , at station—									
	i=0	i=1	i=2	i=3	<i>i</i> ≈ 4	i=5	i=6			
0	0, 5000	0, 4001	0, 3248	0. 2676	0. 2237	0. 1900	0, 1637			
1	0	. 0323	, 0530	. 0657	. 0731	. 0769	. 0783			
2	0	. 0084	, 0162	. 0232	. 0290	. 0338	. 0378			
2 3	0	. 0041	.0081	. 0119	. 0154	. 0187	. 0216			
4 5	0	. 0026	. 0051	. 0075	. 0099	. 0121	. 0143			
5	0	. 0018	. 0036	. 0053	. 0070	. 0086	. 0102			
6	0	. 0013	. 0026	. 0039	. 0051	. 0064	. 0075			
7 8	0	. 0010	. 0019	. 0029	. 0038	. 0047	. 0056			
8) 0	. 0007	.0014	. 0020	. 0027	. 0033	. 0040			
9	0	, 0004	. 0009	. 0013	. 0018	. 0022	. 0026			
10	0	. 0002	. 0004	. 0007	. 0009	.0012	. 0014			
11	0	. 0000	. 0001	. 0001	.0002	. 0062	. 0003			
12	0	0001	 0003	 0004	—. 0005	 0006	0006			
13	0	0003	 0006	 0008	—. 0010	—. 0013	—. 0015			
14	0	- . 0004	0008	0012	 0015	0019	0022			
15	0	 0005	 0010	 0015	—. 0019	0023	0027			
16	0	0006	- . 0011	 0017	—. 0022	—. 0027	—. 0032			
17	0	000 6	0012	 0018	—. 0024	—. 0029	- 0034			
18	0	 0006	 0013	 0018	—. 0024	0030	—. 0035			

j	Stringer load, p _{ij} , at station—								
	i=1	i=2	i=3	i=4	i=5	i=6			
0	0. 4477	0. 3607	0. 2949	0. 2447	0. 2061	0. 1763			
1	. 0173 . 0042	. 0434 . 0124	. 0599	. 0698	. 0752 . 0315	. 0777 . 0359			
2 3	. 0042	. 0061	. 0100	. 0202	. 0171	. 0202			
	. 0013	. 0038	. 0063	. 0087	. 0110	. 0132			
4 5	. 0009	. 0027	. 0044	. 0061	. 0078	. 0094			
6 7	. 0007	. 0020	. 0032	. 0045	. 0058	. 0070			
7	. 0005	. 0014	. 0024	. 0033	. 0042	. 0051			
8 9	. 0003	. 0010	.0017	. 0024	. 0030	. 0037			
10	. 0002	. 0007 . 0003	. 0011 . 0006	. 0015	. 0020 . 0010	. 0024			
11	.0000	. 0000	. 0001	.0002	. 0002	. 0003			
12	0001	0002	0003	0004	0005	0006			
13	- 0001	0004	0007	0009	0012	0014			
14	~. 0002	- , 0006	0010	0014	0017	—. 0020			
15	0003	0008	0012	0017	0021	0025			
16	0003	0009	0014	0019	0024	0029			
17 18	0003 0003	0009 0010	0015 0016	0021 0021	0026 0027	0032 0032			
10	5005	0010	5516	. 5021	. 5021	. 0002			

i	Stringer load, p_{ij}/L , at station—									
	i=1	i=2	i=3	i=4	i=5	i=6				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	-0. 4289 - 0088 - 0042 - 0069 - 0078 - 0078 - 0079 - 0046 - 0032 - 0020 - 0003 - 0005 - 0005	-0.316702910033 .0016 .0035 .0044 .0048 .0048 .0046 .0032 .0038 .0032 .0026 .0021 .0015 .0011	-0. 2345 0387 0075 0006 0019 .0031 .0038 .0041 .0043 .0042 .0041 .0037 .0038 .0028 .0028	-0. 1745 0423 0104 0021 .0009 .0024 .0038 .0040 .0041 .0040 .0038 .0038 .0040 .0017	-0. 1305 0425 0124 0033 0002 0019 0035 0038 0038 0038 0038 0038 0039 0029 0029 0024 0017	0. 0981 0406 0136 0042 0004 . 0015 . 0032 . 0036 . 0037 . 0037 . 0035 . 0032 . 0038 . 0038 . 0038 . 0039 . 0039				
17 18	0003 0004 0001	. 0006	. 0010	.0011	.0017	.0017				

j	Shear flow, $q_{ij}L$, at station—								
,	i=0	<i>i</i> =1	i=2	i=3	i=4	i≈5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 0499 .0177 .0092 .0051 .0026 .0008 0015 0029 0029 0029 0028 0020 0015 0020 0020 0020 0015 0020	0. 0377 .0170 .0092 .0052 .0027 .0009 -0004 0014 0020 0025 0027 0028 0026 0026 0020 0015 0009	0. 0286 .0159 .0090 .0052 .0027 .0010 .0010 .0012 .0019 .0023 .0026 .0025 .0025 .0019 .0014 .0001	0. 0219 .0145 .0087 .0051 .0028 .0011 0018 0022 0024 0025 0024 0026 0014 0008 0014 0008	0. 0169 .0131 .0083 .0050 .0028 .0011 0010 0016 0021 0023 0023 0020 0017 0013 0008	0. 0132 0118 0079 .0049 .0028 .0012 .0000 0019 0015 0022 0022 0022 0020 0016 0012 0018 0018			

j	Shear flow, $q_{ij}L$, at station—									
	i=0	i=1	i=2	i=3	i=4	i=5				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 0523 .0177 .0092 .0051 .0026 .0008 .0006 0015 0027 0029 0029 0029 0025 0016 0016 0016	0. 0435 . 0174 . 0092 . 0052 . 0026 . 0008 . 0005 . 0014 . 0021 . 0026 . 0028 0028 0027 0024 0029 0029 	0. 0329 .0164 .0091 .0052 .00027 .0009 0004 0013 0026 0027 0026 0027 0028 0019 0019	0. 0251 .0152 .0088 .0051 .0027 .0010 0012 0018 0025 0026 0024 0022 0018 0014 0008	0. 0193 .0138 .0085 .0051 .0028 .0011 0010 0017 0021 0024 0024 0023 0021 0018 0018 0018 0008	0. 0149 .0124 .0081 .0050 .0028 .0012 .0000 0016 0020 0022 0022 0020 0017 0018 0008				

	Shear flow, q_{ii} , at station—									
j	i=0	i=1	i=2	i=3	i=4	i=5				
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0. 2165 .0744 .0919 .0835 .0696 .0539 .0384 .0244 .0126 .0034 0030 0070 0070	0.0761 0361 0158 0082 0029 .0015 .0049 .0071 .0082 .0081 .0071 .0053 .0053	0. 0633 0189 0093 0051 0029 0013 . 0000 . 0017 . 0021 . 0021 . 0018 . 0018 . 0017	0. 0495 0106 0069 0040 0025 0016 0009 0004 0000 0004 0004 0004 0004 0004 0004 0004	0. 0384 0056 0054 0034 0023 0016 0011 0007 0005 0002 0001 . 0002 . 0003 . 0004	0. 0299 0025 0044 0032 0017 0013 0010 0005 0003 0002 0001 0000				
14 15 16 17 18	0089 0078 0067 0060 0057	-, 0018 -, 0038 -, 0054 -, 0064 -, 0068	0001 0008 0013 0017 0018	.0002 .0001 .0000 0001 0001	. 0004 . 0004 . 0005 . 0004 . 0004	.0001 .0002 .0002 .0003 .0003				

TABLE 21.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $B=8; C=2\times10^5; m-36$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

	1		Stringer le	oad, p_{ii} , a	t station-		
	i=0	i=1	i=2	i=3	i=4	i=5	i=6
0 1 2 3	0. 5000 0 0	0. 0904 . 1221 . 0617 . 0245	0. 0856 . 0759 . 0663 . 0458	0.0680 .0663 .0589 .0480	0.0603 .0587 .0544 .0470	0. 0551 . 0540 . 0508 . 0454	0. 0515 . 0506 . 0481 . 0439
2 3 4 5 6 7	0 0 0 0	. 0054 0012 0019 0009	. 0248 . 0091 . 0006 —. 0023	. 0341 . 0200 . 0085 . 0012	. 0372 . 0261 . 0154 . 0066	. 0380 . 0292 . 0199 . 0113	. 0380 . 0308 . 0228 . 0149
8 9 10 11	0 0 0 0	0002 0001 0002 0004	0023 0014 0008 0007	0022 0030 0025 0019	0006 0025 0035 0034	0043 0005 0032 0042	. 0077 . 0021 0018 0040
12 13 14 15 16	0 0 0 0 0	0005 0005 0006 0006 0006	0008 0010 0012 0013 0013	0015 0015 0016 0018 0019	0029 0025 0023 0024 0025	0042 0038 0034 0032 0032	0049 0050 0047 0043 0041
17 18	0 0	0007 0007	0013 0013	0019 0020 0020	0025 0026 0027	0032 0032 0032	0039 0039

, [Stri	Stringer load, p _{ij} , at station—									
,	i=1	i=2	i=3	i=4	i=5	i=6						
0	0. 2241	0. 0916	0. 0754	0.0639	0. 0575	0. 053						
1	. 0952	. 0928	.0711	. 0622	.0562	. 052						
2	. 0380	. 0663	. 0622	. 0566	. 0525	. 049						
3	. 0101	. 0378	. 0474	. 0476	. 0462	. 044						
4	0005	. 0160	. 0302	. 0359	. 0377	. 038						
5	—. 0020	. 0034	. 0150	. 0234	. 0278	. 030						
6	0008	—. 0015	. 0045	. 0122	. 0178	. 021						
7	. 0001	—. 0021	0009	. 0039	. 0090	. 013						
8	. 0002	—. 0013	0026	0010	. 0025	. 006						
9	. 0000	→. 0006	0023	0029	0016	.000						
10	0002	- 0004	0017	0031	0035	—. 002						
11	0003	- . 0005	0012	0027	0039	004						
12	0003	0007	0011	0022	0036	004						
13	0003	0008	0012	0019	- 0031	004						
14	0003	0009	0014	0020	0029	004						
15	0003	0009	0015	0021	0028	003						
16	0003	0010	0016	0022	0028	003						
17	0003	0010	0017	0023	0029	003						
18	0003	0010	0017	0024	0030	003						

	Stringer load, p_{ij}/L , at station—								
,	i=1	i=2	i=3	i=4	i=5	i=			
1	-0. 1039	0.0052	-0.0021	-0.0003	-0.0002	-0.00			
2	 0040	0127	0021	0013	0007	00			
3	. 0170	0058	0032	0015	0009	00			
4 5	. 0106	. 0021	0018	0013	0009	00			
9	. 0013	- 0047	.0005	0006	0006	00			
6 7	0027 0023	. 0030	. 0019	. 0004	0001	00			
8	0023 0006	. 0005 —. 0009	.0018	.0010	.0004	.00			
9	. 0003	0010	0001	.0006	.0007	.00			
10	. 0004	0010 0005	0001	.0001	.0004	.00			
îĭ	.0002	. 0000	0005	0003	. 0001	. ŏ			
12	.0000	. 0001	0002	0004	0001	.00			
13	0001	. 0001	. 0000	0003	0002	0			
14	. 0000	.0000	. 0001	0001	0002	00			
15	. 0000	. 0000	.0001	. 0000	—. 0001	0			
16	. 0000	. 0000	. 0000	. 0000	. 0000	0			
17	.0000	.0000	.0000	. 0000	. 0000	0			
18	.0000	. 0000	. 0000	.0000	. 0000	, 0			

	Shear flow, $q_{ij}L$, at station—								
j	i=()	i=1	i=2	i=3	i=4	i = 5			
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0. 2048 . 0828 . 0210 0034 0089 0076 0045 0046 0045 0043 0039 0029 0023	0.0024 .0486 .0440 .0228 .0034 0069 0080 0060 0046 0046 0037 0033 0029 0029	0.0088 .0184 .0257 .0234 .0141 .0032 0048 0082 0083 0067 0051 0039 0032 0027	0.0038 .0114 .0160 .0170 .0140 .0079 .0011 0043 0072 0076 0066 0051 0038 0028	0.0026 .0073 .0109 .0125 .0116 .0085 .0039 0008 0045 0060 0060 0060 0048	0. 0018 . 0052 . 0078 . 0093 . 0093 . 0077 . 0048 . 0012 . 0022 . 0047 . 0061 . 0052 . 0044 . 0042 . 0042			
15 16 17	0016 0010 0003	0017 0010 0003	0017 0010 0004	0015 0010 0003	0016 0009 0003	0019 0010 0003			

	Shear flow, $q_{ii}L$, at station—								
j	i=()	i=1	i=2	i=3	i=4	i=5			
0	0. 2759	0.0663	0.0081	0. 0057	0.0032	0.0022			
1	. 0855	. 0686	. 0299	. 0146	. 0092	. 0062			
$\frac{2}{3}$. 0094	. 0403	. 0340	. 0203	. 0132	. 0092			
3	0107 0098	. 0126 0039	. 0244	. 0201	. 0146	. 0108			
4 5	0058	0039 0092	0015	.0061	.0128	. 0104			
6	0042	0085	0075	0016	. 0027	. 0045			
7	0044	-, 0063	0087	0064	0024	. 0003			
8	0048	0048	0074	0080	0059	0034			
9	0048	0043	0056	0074	0072	0056			
10	0044	0041	0044	0059	0069	0066			
11	—. 0039	0038	—. 0037	—. 0045	—. 0057	0062			
12	0034	0034	0032	0034	—. 0043	0052			
13	- 0028	0029	0028	0027	0031	0038			
14	0023	0023	-,0023	0022	0022	0026			
15 16	0017 0010	0016 0010	0017 0010	0016	0015	0017			
17	0010 0004	0003	0010	0010 0003	0009 0003	0009 0003			
1.7	0004	0003	0004	0003	5003	0003			

,	Shear flow, q_{ij} , at station—									
j _	i=0	i=1	i=2	i=3	i=4	i=5				
0 1	0. 8324 . 0402	0. 0787 —. 0304	-0.0003 .0070	0. C026 . 0008	0. 0009 . 0008	0.0005 .0004				
2 3 4	. 0482 . 0142 —. 0071	0218 . 0010 . 0095	0035 0061 0022	. 0001 0015 0020	. 0001 0005 0009	0002 0002 0004				
4 5 6 7	0097 0043 . 0002	. 0062 . 0004 —, 0023	. 0020 . 0031 . 0018	0010 .0006 .0014	0009 0003 . 0003	0005 0004 0001				
8 9 10	. 0015 . 0009 . 0001	0020 0007 . 0002	. 0000 0009	. 0011	. 0007 . 0007	. 0002 . 0004				
11 12	0002 0002	. 0004	0008 0004 . 0000	0003 0005 0004	. 0003 . 0000 —. 0002	. 0004 . 0002 . 0000				
13 14 15	. 0000 . 0000 . 0000	. 0000 . 0000 0001	. 0002 . 0001 . 0000	0002 . 0000 . 0001	0003 0002 . 0000	0001 0002 0001				
16 17 18	. 0000 . 0000 . 0000	. 0000 . 0000 . 0000	.0000	. 0000	.0000	.0000				

TABLE 22.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=30; C=2\times10^5; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

,			Stringer l	oad, p_{ij} , a	t station-	-		,		Str	inger load, j	p _{ii} , at statio	n—	
	i=0	<i>i=</i> 1	i=2	i=3	i=4	i=5	i=6		i=1	i=2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 1689 -1002 -0431 -0173 -0018 0002 0006 0003 0003 0004 0004 0006 0006 0006 0007 0007	0.1020 0.360 0.360 0.583 0.355 0.0195 0.0029 0011 0011 0010 0010 0010 0012 0013 0013	0. 0784 . 0723 . 0553 . 0455 . 0282 . 0166 . 0082 . 0027 . 0003 . 0019 . 0019 . 0019 . 0019 . 0019 . 0019 . 0019 . 0019 . 0019	0.0665 .0634 .0553 .0444 .0330 .0223 .0133 .0064 .0018 .0010 .0023 .0023 .0025 .0027 .0026 .0026 .0026 .0026	0.0600 .0580 .0524 .0443 .0350 .0256 .0170 .0099 .0044 .0007 0016 0028 0035 0035 0035 0035 0035	0. 0557 .0542 .0490 .0493 .0357 .0275 .0197 .0127 .0070 .0027 .0027 .0023 .0023 .0041 .0046 .0046 .0046 .0046	0 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17	0. 2962 .0688 .0242 .0991 .0020 .0002 .0002 .0003 0001 0001 0002 0003 0003 0003 0003 0003	0. 1296 . 0935 . 0528 . 0283 . 0136 . 0052 . 0010 . 0006 . 0009 . 0007 . 0006 . 0007 . 0008 . 0009 . 0009 . 00009 . 00009 . 00009 . 00009 . 00009 . 00009 . 00009 . 000000 . 00009 . 00009 . 00009 . 00009 . 00009 . 00009 . 00000 . 00009 . 00009	0.0887 .0787 .0387 .0386 .0242 .0130 .0055 .0012 .0009 .0016 .0014 .0014 .0014 .0014 .0014 .0015 .0016 .0017	0. 0719 . 0676 . 0568 . 0437 . 0309 . 0197 . 0108 . 0045 . 0006 0014 0022 0023 0022 0023 0023 0023	0. 0627 . 0603 . 0537 . 0445 . 0343 . 0155 . 0083 . 0093 . 00022 . 0030 . 0032 . 0032 . 0032 . 0030 . 0030 . 0030	0. 0569 0.553 0.508 0.0440 0.0359 0.0274 0.0118 0.0058 0.014 0.0031 0.0031 0.0039 0.0039 0.0039 0.0037 0.0037

į	Stringer load, p_{ij}/L , at station—											
J	i = 1	i=2	i=3	i=4	i=5	i=6						
1	-0. 2098	-0.0317	-0.0078	-0,0029	-0.0014	-0,000						
2	0047	0276	0131	0063	0034	002						
3	. 0241	-0.0051	0030	0058	0038	-,002						
4	. 0184	. 0057	0016	-, 0031	 0028	002						
5	. 0070	. 0080	. 0026	0002	0012	001						
6	0006	. 0058	. 0041	. 0018	.0003	000						
7	0032	. 0023	. 0036	.0026	. 0014	, 000						
8	0025	0003	.0020	. 0023	.0018	. 001						
9	0010	0014	. 0005	. 0015	.0016	. 001						
10	.0000	0013	0005	.0005	.0010	.001						
11	. 0004	0008	0009	0002	.0004	.000						
12	. 0003	0003	0008	0006	0001	.000						
13	.0001	. 0001	0005	0006 0005	0004 0005	000 000						
14 15	0000 0001	.0001	0002 .0000	0003	0003 0004	000						
	.0001	.0000	. 0001	0002	0004 000a	000						
16 17	.0000	.0000	.0001	.0000	0003	000						
18-	.0000	. 0000	. 0000	.0000	.0002	000						

,		Shear flow, $q_{ii}L$, at station—						Shear flow, q _{ij} L, at station—						
j	i=0	i=1	i=2	i=3	i=4	i=5		<i>i</i> =0	i=1	i=2	i=3	i=4	i=5	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.1666 .0653 .0222 .0030 0042 0061 0059 0045 0045 0045 0045 0049 0039 0039 0029 0029 0020	0. 0334 .0477 .0326 .0162 .0040 0032 0063 0068 0052 0052 0033 0033 0028 0028 0017 0010	0.0118 .0254 .0254 .0184 .0098 .0022 0059 0067 0063 0054 0044 0035 0028 0022 0016 0010	0.0059 .0148 .0178 .0159 .0111 .0054 .0003 .0035 .0063 .0063 .0063 .0061 .0051 .0041 .0023 .0016 .0009	0.0033 .0087 .0116 .0118 .0099 .0066 .0029 0005 0032 0056 0056 0050 0049 0050 0049 0050 0049	0. 0021 .0059 .0084 .0091 .0094 .0064 .0063 .0009 .0016 .0036 .0048 .0052 .0052 .0052 .0052 .0058 .0064 .0052 .0052 .0052 .0064 .0052 .0052 .0052 .0064 .0052 .0052 .0064 .0052 .0052 .0064 .0052 .0064 .0052 .0052 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0052 .0064 .0065 .0064 .0065 .0064 .0065 .0064 .0065 .006	0 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 16	0. 2038 . 0662 . 0178 . 0003 . 0055 . 0060 . 0053 . 0048 . 0046 . 0045 . 0043 . 0039 . 0039 . 0023 . 0023 . 0017 . 0010	0.0933 .0586 .0300 .0108 .0002 .0052 .0066 .0063 .0065 .0048 .0042 .0038 .0038 .0034 .0023 .0023 .0017 .0010	0. 0204 .0353 .0293 .0180 .0074 0004 0066 0066 0058 0049 0041 0034 0022 0016 0010 0010	0.0084 .0195 .0214 .0173 .0107 .0040 -0013 0064 0057 0068 0038 0038 0039 0016 0010 0010	0.0046 .0119 .0150 .0143 .0108 .0061 .0014 0023 0048 0059 0060 0054 0034 0034 0034 0025 0017 0010	0. 0029 .0079 .0108 .0112 .0096 .0066 .0066 .0030 0031 0049 0055 0048 0039 0029 0029 0020 0011	

j	Shear flow, q_{ij} , at station—										
	i=0	i=1	i=2	i=3	<i>i</i> ≈4	i=5					
0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.6567 .0762 .0856 .0375 .0008 0133 0120 0057 0006 .0014 .0006 0002 0002 0001 0.0000	0.1254 0526 0298 0006 .0110 .0111 0047 0031 0028 0014 0602 .0003 .0004 .0002 .0003 .0004 .0000 .0000	0.0259 .0020 0124 0095 0092 .0032 .0036 .0048 .0036 .0013 0006 0014 0013 0007 0002 .0001 .0002	0.0087 - 0030 - 0053 - 0053 - 0010 - 0014 - 0024 - 0021 - 0006 - 0006 - 0006 - 0004 - 0001 - 0001 - 0001	0.0040 .0025 0004 0024 0027 0017 0003 .0009 .0013 .0008 .0002 0003 0005 0003 0003 0003	0.0022 .0016 .0002 0011 0015 0008 .0000 .0007 .0007 .0009 .0006 .0002 0001 0003 0003 0003					

TABLE 23.-LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

[B=100: $C=2\times10^5$; m=36]

(a) Concentrated perturbation load on stringer j=0 at ring i=0

(b) Distributed perturbation load on stringer $j\!=\!0$ between rings $i\!=\!0$ and $i\!=\!1$

			Stringer le	oad, <i>p_{ij}</i> , a	t station—	_					Stri	inger load, <i>p</i>	o _{ii} , at statio	n—	
j	i=0	i=1	i=2	i=3	i=4	i=5	i=6	/		i=1	i=2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 2600 . 0743 . 0265 . 0126 . 0064 . 0031 . 0014 . 0005 . 0000 . 0004 . 0004 . 0005 . 0006 . 0007 . 0007	0. 1593 . 0856 . 0429 . 0238 . 0138 . 0078 . 0004 . 0004 0007 0007 0010 0010 0012 0013 0013 0014	0. 1127 . 0809 . 0503 . 0316 . 0202 . 0126 . 0074 . 0019 . 0019 . 0019 . 0019 . 0019 . 0020 0020	0. 0886 . 0734 . 0526 . 0365 . 0251 . 0168 . 0107 . 0002 . 0007 . 0008 . 0017 . 0022 . 0025 . 0026 . 0027 . 0026 . 0027 . 0027	0. 0747 . 0666 . 0524 . 0393 . 0287 . 0203 . 0108 . 0047 . 0003 . 0017 . 0016 . 0031 . 0034 . 0035 . 0035 . 0036 . 0036	0. 0659 0612 0512 0406 0312 0221 0109 0064 0004 0015 0043 0043 0044 0044 0044 0044 0044 0044	11 11 11 11 11 11 11 11 11	0 1 1 2 3 3 4 5 6 7 8 9 9 10 11 12 12 13 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0. 3632 .0454 .0140 .0062 .0030 .0013 .0002 .0000 0001 0001 0002 0002 0003 0003 0003 0003 0003 0003 0003	0. 2032 0.822 0.356 0.185 0.101 0.054 0.010 0.002 0003 0005 0006 0007 0008 0009 0009 0010 0010 0010	0. 1334 . 0837 . 0471 . 0280 . 0171 . 0102 . 0057 . 0027 . 0009 0008 0011 0013 0016 0016 0016 0017 0017	0. 0995 . 0771 . 0517 . 0343 . 0228 . 0148 . 0091 . 0050 . 0022 . 0003 . 0015 . 0019 . 0015 . 0019 . 0022 . 0022 . 0024 . 0024 . 0024 . 0024	0. 0811 .0699 .0526 .0380 .0270 .0187 .0123 .0074 .0038 .0012 .0006 .0017 .0024 .0028 .0030 .0031 .0031 .0032 .0032 .0032	0. 0700 . 0638 . 0519 . 0400 . 0300 . 0218 . 0151 . 0098 . 0056 . 0023 . 0000 . 0016 . 0027 . 0037 . 0037 . 0039 . 0040 . 0040

j		Stı	inger load,	p_{ii}/L , at sta	tion—	
<i>J</i>	i=1	i=2	i=3	i=4	i=5	i=6
1	-0.3066	-0.1174	-0.0476	-0.0210	-0.0102	-0.0054
2 3	0042	- 0363	—. 0306	 0213	0142	—. 0094
3	. 0229	0022	0099	0109	0096	0078
4 5	. 0211	. 0080	. 0004	0031	0044	0045
5	. 0127	. 0100	. 0048	. 0014	0006	0017
6	. 0047	. 0083	. 0060	. 0035	. 0017	. 0004
7 8	0004	. 0051	.0053	.0041	.0028	.0017
ĝ	0025 0025	. 0021 0001	. 0038	. 0037	.0031	.0023
10	0025	0001 0012	. 0020	.0027	.0027	.0020
ii	0006	0015	0005	.0005	.0011	.0014
12	. 0000	0012	0010	0003	.0003	.0008
13	. 0003	0007	0010	0007	0002	.0002
14	. 0003	0003	0008	0008	-,0006	- 0002
15	. 0001	. 0000	0005	0008	0007	0004
16	. 0000	. 0001	0003	0006	0006	0005
17	. 0000	. 0001	- . 0001	0004	0004	0003
18	. 0000	.0000	.0000	0001	0002	0001

j -	i=0					
		i=1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0. 1200 . 0457 . 0192 . 0066 . 0003 . 0028 . 0042 . 0046 . 0047 . 0045 . 0042 . 0034 . 0029 . 0023	0. 0504 .0390 .0226 .0114 .0040 .0007 .0034 .0047 .0051 .0049 .0045 .0049 .0045 .0049 .0035 .0029	0. 0233 0281 0206 .0128 .0064 .0016 0017 0037 0048 0051 0049 0049 0038 0031	0. 0120 0195 0172 0124 0074 0032 - 0001 - 0025 - 0040 - 0049 - 0046 - 0040 - 0034 - 0034	0.0069 0137 0139 0111 0076 0041 0010 - 0014 - 0031 - 0046 - 0046 - 0046 - 0046 - 0028	0. 0044 . 0098 . 0110 . 0097 . 0072 . 0044 . 0018 0023 0035 0042 0044 0042 0037

		Shear flow, $q_{ii}L$, at station—										
j	i=0	i=1	i=2	i=3	i=4	i=5						
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0. 1368 . 0459 . 0180 . 0055 - 0004 0042 0045 0045 0044 0044 0044 0042 0029 0023	0. 0800 . 0432 . 0216 . 0094 . 0022 0019 0049 0047 0043 0039 0039 0023	0. 0349 .0334 .0218 .0123 .0054 .0005 0043 0050 0050 0047 0047 0036 0036 0023	0. 0169 . 0235 . 0190 . 0127 . 0070 . 0025 0009 0031 0044 0049 0049 0039 0032	0.0092 .0164 .0155 .0118 .0076 .0037 .0005 0036 0045 0046 0046 0046 0035	0. 0055 . 0116 . 0124 . 0104 . 0074 . 0043 . 0014 - 0009 - 0027 - 0038 - 0045 - 0042 - 0037 - 0037						
15 16 17	0017 0010 0003	0017 0010 0003	0017 0010 0003	0018 0010 0004	0019 0012 0004	0021 0013 0004						

,	Shear flow, q_{ij} , at station—									
	i=0	i=1	i=2	i=3	i=4	i=5				
$egin{array}{c} 0 \ 1 \ 2 \end{array}$	0. 4876	0. 1291	0. 0580	0. 0272	0. 0140	0.0080				
	. 1008	0601	0118	. 0006	. 0032	.0032				
	. 1092	0280	0175	—. 0087	—, 0039	0015				
3	. 0633	0028	0098	0078	0052	0033				
4	. 0212	. 0102	0022	0043	0039	0032				
5	—. 0043	. 0130	. 0029	0008	0020	0021				
6	0137	. 0094	. 0052	. 0016	0001	0008				
7	0128	. 0039	. 0050	. 0023	. 0012	. 0002				
8	0079	—. 0007	. 0033	. 0029	. 0019	. 0010				
9	0030	—. 0031	. 0012	. 0022	. 0019	. 0014				
10	. 0002	0034	0005	. 0011	. 0015	. 0013				
11	. 0013	0025	0014	. 0001	. 0003	. 0010				
12	. 0013	0013	0016	0006	. 0002	. 0006				
13 14 15 16	. 0007 . 0002 —. 0001 —. 0001	0003 . 0002 . 0004 . 0003	0013 0008 0003	0009 0009 0006 0003	0002 0005 0006 0006	. 0002 0002 0004 0006				
17	0001	.0002	. 0003	0001	0005	0007				
18	0001		. 0004	. 0000	0005	0007				

TABLE 24.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=300; C=2 \times 10^5; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j = 0 between rings i = 0 and i = 1

j	Stringer load, p _{ij} , at station—										
j	i=0	i=1	i=2	i=3	i=4	i=5	i=6				
0	0. 5000	0, 3368	0. 2384	0. 1776	0. 1390	0, 1136	0, 0963				
0 1	0.000	. 0518	. 0733	. 0801	. 0800	. 0770	. 0729				
2	ŏ	. 0157	. 0283	. 0372	. 0431	. 0467	. 0486				
2 3	Ö	0076	. 0147	. 0208	. 0258	. 0298	. 0328				
4	Ŏ	.0044	. 0089	. 0131	. 0169	. 0202	. 0230				
5	0	. 0027	. 0057	. 0087	. 0115	. 0141	. 0165				
6	0	. 0016	. 0036	.0058	. 0079	. 0099	. 0118				
4 5 6 7 8 9	0	. 0009	. 0022	. 0037	. 0052	, 0067	. 0082				
8	0	. 0005	. 0012	. 0021	. 0031	. 0042	. 0054				
	0	. 0002	. 0005	. 0010	. 0016	. 0023	. 0030				
10	0	. 0000	. 0000	. 0001	. 0004	.0007	, 0012				
11	0	—. 0002	—. 0004	0006	0006	—. 0005	0004				
12	0	0003	一, 0007	0010	—. 0013	 0015	0016				
13	0	—. 0004	0009	0014	—. 0018	-,0022	0025				
14	0	 0005	—. 0011	—. 0016	0022	—. 0027	0032				
15	0	0006	0012	0018	—. 0024	- . 0031	0037				
16	0	0006	0013	0019	—. 0026	0033	0040				
17	. 0	0007	 0013	0020	—. 0027	—. 0035	0042				
18	0	─. 0007	—. 0013	—. 0020	0028	−. 0035	0043				

j		- S	tringer load	, p _{ij} , at stat	ion— 	
1	i=1	i=2	i = 3	i=4	i=5	i=6
0	0.4116	0. 2837	0, 2057	0. 1569	0. 1254	0. 1044
1	. 0293	. 0642	. 0775	. 0804	. 0786	. 0750
2	.0080	. 0223	. 0330	. 0404	. 0451	. 0477
3	. 0038	. 0112	. 0179	. 0234	. 0279	, 0313
4	, 0021	, 0067	. 0110	. 0150	. 0186	. 0216
5	. 0013	. 0042	. 0072	. 0101	. 0129	. 0154
6	.0008	. 0026	. 0047	. 0068	. 0089	, 0109
7	. 0004	. 0015	. 0029	. 0044	. 0060	. 0075
8	. 0002	. 0008	. 0016	. 0026	. 0037	. 0048
9	. 0001	. 0003	. 0007	. 0013	. 0019	. 0027
10	.0000	0001	. 0000	. 0002	. 0005	. 0009
11	-, 0001	0003	—. 0005	 0006	—. 0005	—. 0004
12	0002	—. 0005	0009	- . 0012	0014	0015
13	0002	0007	0011	0016	0020	0023
14	0003	0008	0013	~. 0019	0024	0029
15	0003	0009	0015	0021	0028	0034
16	0003	0009	0016	0023	0030	0037 0038
17	0003	0010	0016	~. 0024	0031	
18	0003	—. 0010	—. 0017	− . 0024	0031	-, 0039

	Stringer load, p_{ii}/L , at station—										
j	i=1	i = 2	i=3	i=4	i=5	i=6					
1	-0.3752	-0. 2169	-0. 1267	0.0754	-0.0459	-0.0287					
$\frac{2}{3}$	0033	0348	0400	0367	0310	0251					
3	. 0182	0004	0083	0118	0130	0129					
4 5	. 0191	. 0078	. 0018	0017 . 0026	0038 . 0006	0051 0008					
2	. 0147	.0097	. 0055	.0044	.0028	. 0015					
6 7	. 0089	.0090	.0062	.0044	.0028	.0027					
8	.0002	.0070	.0002	.0049	. 0037	.0032					
9	0016	.0023	.0037	.0038	.0035	. 0031					
10	0020	. 0005	. 0022	.0028	.0029	.0028					
11	0017	0007	0009	.0017	. 0021	. 0023					
12	0011	0012	0001	.0007	. 0013	.0017					
13	0005	0013	-, 0007	.0000	. 0006	.0011					
14	.0000	0011	0010	—. 0005	. 0001	.0006					
15	. 0002	0008	0010	0007	0002	. 0003					
16	, 0002	0005	0008	 0007	0003	. 0001					
17	. 0002	0002	—. 0005	 0005	0003	.0000					
18	. 0001	0001	0002	0002	0001	.0000					

j		Shear flow, $q_{ij}L$, at station—										
,	i=0	i=1	i=2	<i>i</i> =3	i=4	i=5						
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 0816 . 0298 . 0141 . 0065 . 0065 . 0022 0001 0031 0037 0037 0037 0037 0037 0037 0022 0016 0016 	0. 0492 . 0277 . 0151 . 0080 . 0035 . 0004 - 0016 0028 0038 0038 0038 0032 0022 0016 0010	0. 0304 . 0236 . 0146 . 0085 . 0043 . 0013 . 0008 . 0023 . 0037 . 0037 . 0034 . 0029 . 0029 . 0023 . 0017 . 0010	0. 0193 . 0194 . 0135 . 0048 . 0048 . 0019 0007 0028 0034 0037 0036 0034 0036 0034 0011 0018 0011	0. 0127 . 0157 . 0122 . 0082 . 0049 . 0023 0013 0013 0035 0034 0030 0035 0034 0030 0025 0011 0011	0.0086 .0126 .0107 .0077 .0049 .0025 .0009 0020 0028 0033 0030 0030 0019 0019						

j	Shear flow, q _{ii} L, at station—										
,	<i>i</i> =0	i=1	i=2	<i>i</i> =3	<i>i</i> =4	i=5					
0	0. 0884	0.0640	0, 0390	0, 0244	0. 0158	0. 0105					
1	, 0298	. 0290	. 0257	. 0215	. 0175	. 0141					
2	. 0138	. 0148	. 0149	. 0141	. 0129	. 0115					
3	. 0062	. 0074	. 0083	. 0086	. 0084	. 0080					
4 5	. 0019	. 0028	. 0039	. 0046	. 0049	. 0049					
5	—. 0007	, 0000	. 0019	. 0016	. 0021	. 0024					
6	0022	-,0019	0012	0005	. 0000	. 0004					
7	0031	-, 0030	-, 0026	—, 0020	—. 0015	0011					
8	0035	0036	0034	0030	0026	0022					
9	—, 0037	—, 0038	0038	—, 0036	0032	0030					
10	0036	-,0038	-,0038	~, 0038	0036	0034					
11	0034	0036	0037	—. 0037	0036	0035					
12	0031	-0.0032	0033	0034	0034	0033					
13	0027	—, 0027	0028	—. 0029	0030	0030					
14	0022	0022	—. 0023	—. 0024	—. 0025	-, 0025					
15	0016	—, 0016	—. 0017	− . 0017	0018	0018					
16 17	0010 0003	0010 0003	0010 0003	0011 0004	0011 0004	0011 0004					

	Shear flow, q_{ij} , at station—										
j	i=0	i=1	i=2	i=3	i=4	i=5					
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 3601 1106 1170 0806 0423 0129 	0. 1036 0547 0231 0045 0069 0119 0117 0084 0040 0024 0033 0025 0014 0005 0005 0006	0.06880214016200840024001900440052004600320016001000150015001500190009	0.0437 0076 0108 0073 0038 0009 .0012 .0025 .0030 .0028 .0022 .0014 0005 0002 0008 0011 0012	0. 0282 0013 0071 0059 0037 0011 0018 0021 0020 0010 0002 0007 0011 0013	0. 0187 . 0014 0044 0034 0020 0007 . 0003 . 0010 . 0014 . 0015 . 0014 . 0015 . 0000 0005 0008 0008					

TABLE 25.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=1,000; C=2\times10^5; m=36]$

(a) Concentrated perturbation load on stringer j=0 at ring i=0

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

			Stringer l	oad, p _{ii} , a	t station-	_				Stri	nger load, p	i, at station	ı—				Stri	nger load, p	ij/L, at stat	ion—	
	i=0	i=1	i=2	i=3	i=4	i=5	i=6	j ,	i=1	i=2	i=3	i = 4	i=5	i=6	, ,	i=1	i=2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 4004 .0325 .0086 .0042 .0025 .0017 .0012 .0008 .0005 .0003 .0001 .0000 0002 0003 .0004 0005 0004	0. 3251 .0533 .0165 .0082 .0051 .0034 .0017 .0011 .0006 .0002 .0000 .0003 .0003 .0007 .0007 .0001 .0010 .0010	0. 2679 .0661 .0234 .0120 .0075 .0052 .0037 .0026 .0017 .0010 .0004 .0004 .0008 .0017 .0013 .0015 .0016	0. 2241 0. 735 0.293 0.156 0.099 0.069 0.049 0.035 0.024 0.014 0.006 0.000 0006 0010 0015 0018 0021 0021	0. 1903 .0772 .0341 .0188 .0122 .0085 .0061 .0044 .0030 .0019 .0009 .0000 .0000 .0001 .0018 .0022 .0025 .0026 .0027	0. 1640 .0786 .0380 .0218 .0143 .0101 .0074 .0053 .0037 .0023 .0011 .0001 .0001 .0021 .0021 .0029 .0031	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0. 4479 0.0174 0.043 0.021 0.013 0.008 0.0006 0.0004 0.0003 0.001 0.0001	0.3610 .0437 .0126 .0062 .0038 .0018 .0012 .0008 .0005 .0002 .0001 0003 .0006 .0006 .0006 .0006 .0006 .0006 .0006 .0006 .0006 .0008	0. 2953 .0602 .0200 .0101 .0063 .0043 .0031 .0014 .0008 .0003 .0001 .0004 .0009 .0009 .0011 .0012 .0013 .0013	0. 2451 .0701 .0264 .0138 .0087 .0060 .0043 .0030 .0021 .0012 .0005 .0000 0005 0015 0013 0015 0017 0018 0019	0. 2065 .0756 .0318 .0172 .0110 .0077 .0055 .0040 .0027 .0017 .0008 .0000 0016 0016 0020 0020 0024	0.1766 .0781 .0361 .0203 .0132 .0093 .0068 .0049 .0034 .0021 .0010 .0001 0007 0014 0020 0024 0029	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	-0. 4263 0020 0127 0149 0135 0104 0069 0037 0012 0004 0013 0015 0010 0006 0003 0000	-0.31580266 .0005 .0061 .0079 .0081 .0073 .0059 .0043 .0027 .0013 .00020005000900100009	-0. 234003720052 .0022 .0048 .0058 .0059 .0054 .0046 .0036 .0025 .0015 .0007 .0001000300030003	-0. 1742 0414 0090 0004 0047 . 0047 . 0043 . 0038 . 0030 . 0016 . 0011 . 0006 . 0003 . 0001 . 0000	-0. 1303 - 0419 - 0116 - 0022 . 0014 . 0030 . 0038 . 0041 . 0040 . 0037 . 0033 . 0027 . 0022 . 0017 . 0012 . 0008 . 0004	-0. 0980 -0. 0403 -0. 0132 -0. 0036 -0. 0031 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0036 -0. 0037 -0. 0002

		Sh	ear flow, q _{ij}	L, at station	1			Shear flow, $q_{ij}L$, at station—					
J	i=0	i=1	i=2	i=3	i=4	i=5		i=0	i=1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 0498 . 0173 . 0089 . 0046 . 0020 . 0003 0008 0016 0022 0025 0025 0023 0020 0017 0012 0008	0. 0376 . 0168 . 0090 . 0049 . 0024 . 0006 0015 0021 0024 0025 0024 0021 0013 0017 0013 0003	0. 0286 . 0158 . 0089 . 0050 . 0026 . 0009 0013 0013 0025 0025 0024 0011 0018 0018 0003	0. 0219 .0145 .0086 .0051 .0027 .0010 0002 0011 0024 0024 0023 0021 0017 0013 0008	0. 0169 0131 0083 0050 0028 0011 - 0001 - 0016 - 0021 - 0023 - 0023 - 0023 - 0020 - 0017 - 0013 - 0008	0. 0132 0.118 0079 .0050 .0028 .0012 .0000 .0009 .0015 .0022 .0022 .0022 .0022 .0020 .0017 .0012 .0008 .0008	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17	0. 0521 . 0173 . 0087 . 0045 . 0020 . 0003 0017 0022 0025 0023 0020 0017 0012 0028 0017 0012	0. 0434 . 0172 . 0089 . 0048 . 0022 . 0005 0001 0021 0026 0025 0024 0021 0013 0013 0008	0. 0329 . 0164 . 0089 . 0050 . 0025 . 0008 0014 0020 0025 0025 0025 0024 0021 0017 0013 0008	0. 0251 .0152 .0088 .0051 .0027 .0010 0003 0022 0024 0024 0024 0021 0017 0013 0008	0. 0198 . 0138 . 0085 . 0085 . 0051 . 0028 . 0011 0011 0017 0024 0024 0023 0017 0012 0012 0008	0. 0149 . 0125 . 0081 . 0050 . 0028 . 0012 . 0010 . 0010 . 0016 . 0023 . 0023 . 0022 . 0020 . 0017 . 0018 . 0008

j	Shear flow, q_{ij} , at station—										
,	i=0	=1	i=2	i=3	i=4	i=5					
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 2580 1107 1148 0893 0596 0326 0118 - 0020 - 0093 - 0117 - 0108 - 0082 - 0053 - 0028 - 0008 0004 0010 0013	0.06800426018001800058 .0030 .0086 .0109 .0105 .0083 .00510020002000300030003000300030002600160016	0. 0590 0228 0121 0064 0024 .0006 .0029 .0044 .0046 .0037 .0025 .0011 0001 0020 0020 0029	0.0465 0133 0091 0054 0028 0008 0007 .0019 .0027 .0022 .0014 0012 0014 0019 0029	0.0363 0075 0070 0045 0012 0001 .0008 .0018 .0018 .0016 .0011 0006 0001 0006 0001 0011 0016	0. 0285 0038 0054 0014 0014 0005 0002 0007 0010 0010 0010 0008 0008 0008 0008 0008 0008 0008					

TABLE 26.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=8: C=2 \times 10^6; m=36]$

(a) Concentrated perturbation load on stringer j=0 at ring i=0

j	Stringer load, p_{ii} , at station—										
,	i=0	<i>i</i> =1	i=2	i=3	i=4	i=5	i=6				
0	0. 5000	0. 1265	0.1066	0. 0859	0. 0755	0.0683	0.0632				
1	0	. 1386	. 0944	. 0820	. 0726	. 0663	. 0617				
2	0	. 0497	. 0723	. 0678	. 0638	. 0600	. 0568				
3 4 5 6 7	0	. 0061	. 0348	. 0461	. 0489	. 0491	. 0484				
4	0	 0035	. 0071	. 0220	. 0304	. 0348	. 0370				
5	0	0016	0030	. 0045	. 0132	. 0197	0240				
6	0	0001	- 0028	- 0028	0017	0071	0120				
7	0	0002	- 0008	0031	0030	0005	. 0029				
8	1 0	0001	. 0000	0014	0031	0034	0021				
	0	0002	0001	—. 0005	0018	一. 0032	—. 0037				
10	0	0002	—. 0004	0004	—. 0009	0021	0032				
11	0	0002	—. 0005	 0006	0008	0014	0024				
12	0	—. 0003	 0005	0008	0010	0012	—. 0018				
13	0	0003	一. 0006	0009	0012	—. 0014	—. 0017				
14	0	0003	0006	0010	0013	0016	—. 0018				
15	0	0003	0007	- 0010	- 0014	- 0018	- 0021				
16	0	- 0004	- 0007	- 0011	- 0015	- 0018	- 0022				
17	0	0004	0007	0011	—. 0015	0019	0023				
18	0	0004	- 0008	- 0011	0015	0019	0023				

(b) Distributed perturbation load on stringer $j\!=\!0$ between rings $i\!=\!0$ and $i\!=\!1$

j	Stringer load, p _{ii} , at station—										
	i=1	i=2	i=3	i=4	i=5	i=6					
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17	0. 2528 . 1049 . 0247 - 0025 - 0028 . 0032 . 0005 . 0000 - 0001 - 0001 - 0001 - 0002 - 0002 - 0002 - 0002 - 0002 - 0002	0. 1180 . 1114 . 0656 . 0222 . 0005 0034 0013 . 0001 . 0001 0002 0003 0003 0004 0004 0005 0005 0005 0005	0.0949 .0880 .0700 .0416 .0152 .0003 .0034 0021 0006 0002 0004 0006 0007 0008 0009 0009	0. 0804 . 0769 . 0658 . 0478 . 0267 . 0090 . 0003 . 0024 . 0011 . 0006 . 0007 . 0011 . 0012 . 0012 . 0013 . 0013	0. 0717 . 0693 . 0618 . 0491 . 0328 . 0166 . 0044 0019 0034 0015 0011 0013 0016 0016 0016	0.0657 .0638 .0584 .0488 .0360 .0220 .0096 .0012 0029 0035 0027 0018 0015 0015 0019 0019 0019					
18	- 0002	0006	0009	0013	0017	0021					

,		Stri	nger load, p	$_{ij}/L$, at stati	ion—	
j	i=1	i=2	i=3	i=4	i=5	i=6
1	-0.0883	0.0022	-0.0020	-0.0005	-0.0003	-0.000
2	. 0158	0129	0025	 0015	→. 0008	0003
3	. 0156	. 0006	0027	0015	0010	0000
4	0008	. 0058	. 0006	0006	0006	000:
5	0038	. 0020	. 0024	. 0007	. 0001	- 0003
6	0007	0012	. 0013	.0012	.0006	. 000
7	. 0007	0011	0003	. 0007	. 0007	.000
8	. 0003	0001	 0007	0001	. 0003	.000
	0001	. 0002	0003	0004·	0001	.000
10	—. 0001	.0001	.0001	0002	0003	000
11	. 0000	. 0000	. 0001	.0000	0002	000
12	. 0000	. 0000	. 0000	. 0001	. 0000	000
13	.0000	. 0000	. 0000	. 0000	0000	000
14	. 0000	.0000	. 0000	. 0000	.0000	.000
15	.0000	. 0000	. 0000	.0000	.0000	.000
16	. 0000	.0000	. 0000	.0000	.0000	.000
17	.0000	.0000	.0000	.0000	.0000	. 000
18	.0000	. 0000	.0000	.0000	.0000	.000

,	Shear flow, $q_{ij}L$, at station—										
j	i=0	i=1	i=2	i=3	i=4	i=5					
0 1 2 3 4 5 6 7 8	0. 1867 . 0481 0016 0076 0041 0025 0026 0029 0028 0028	0. 0100 . 0542 . 0316 . 0028 0079 0065 0025 0026 0026	0. 0103 .0228 .0272 .0160 .0011 0064 0064 0027 0024	0. 0052 . 0146 . 0187 . 0159 . 0075 0012 0057 0058 0041 0027	0. 0036 . 0099 . 0137 . 0134 . 0091 . 0026 —. 0029 —. 0054 —. 0051 —. 0038	0. 0026 . 0072 . 0104 . 0110 . 0088 . 0045 0038 0038 0050 0045					
10 11 12 13 14 15 16 17	0024 0022 0019 0016 0013 0009 0006 0002	0024 0022 0019 0016 0013 0009 0005 0002	0023 0022 0019 0016 0013 0009 0006 0002	0022 0020 0019 0016 0013 0009 0006 0002	0026 0020 0018 0016 0013 0009 0006 0002	0034 0024 0018 0015 0012 0009 0006 0002					

,	Shear flow, $q_{ij}L$, at station—											
j	i=0	i=1	i=2	i=3	i=4	i=5						
0	0. 2472	0. 0674	0.0116	0. 0073	0. 0043	0.0030						
1	. 0373	. 0610	. 0349	. 0184	. 0120	. 0084						
2	0122	. 0201	. 0305	. 0225	. 0160	. 0119						
3	· 0071	— 0047	. 0112	. 0163	. 0147	. 0122						
4	0015	0080	0035	. 0049	. 0085	. 0090						
5	0020	0043	0073	0038	. 0009	. 0037						
6	0031	0024	0052	—. 0064	0043	—. 0015						
7	0031	0025	0031	0051	—. 0057	—. 0046						
8	—. 0027	0028	0025	—. 0034	—. 0047	—. 0052						
9	 0025	—. 0026	0025	—. 0025	—. 0032	0042						
10	—. 0024	0024	—. 0024	0022	 0024	—. 0030						
11	0022	—. 0022	0022	0021	—. 0020	0022						
12	0019	0019	0019	0019	0018	0018						
13	0016	—. 0016	0016	—. 0016	0016	—. 0015						
14	0013	0013	0013	—. 0013	0013	—. 0013						
15	0009	0009	0009	—. 0009	0009	0010						
16	—. 0005	0006	0006	0006	0006	0006						
17	0002	0002	0002	0002	0002	0002						

,	Shear flow, q_{ii} , at station—													
j	i=0	i=1	i=2	i=3	i=4	i=5								
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0. 8771 . 0538 . 0221 0090 0075 . 0001 . 0015 . 0001 0004 0002 . 0000 . 0000	0. 0570 0335 0048 - 0101 . 0035 0023 0018 . 0000 . 0004 . 0001 0001 0000 . 0000	0. 0004 .0046 0058 0025 .0027 0002 0010 0004 .0001 .0001 .0000 .0000	0. 0019 .0004 0006 0018 0006 .0011 .0001 0005 0003 .0000 .0000	0.0007 .0005 0002 0007 0007 .0006 .0006 .0006 .0001 0002 0002 0001 .0000	0.0004 .0003 .0000 0003 0002 .0002 .0003 .0003 .0000 0002 0002 .0000								
14 15 16	. 0000 . 0000 . 0000	. 0000 . 0000 . 0000	. 0000 . 0000 . 0000	. 0000 . 0000 . 0000	. 0000 . 0000 . 0000	.0000 .0000 .0000								
17 18	.0000	.0000	.0000	.0000	.0000	.0000								

TABLE 27.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=30; C=2\times10^6; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

,	İ 		Stringer 1	oad, p _{ii} , a	t station-	_				Str	ringer load,	p _{ii} , at static	n.—		,		Stri	nger load, p	$_{ij}/L$, at stati	on—	
	i=0	i=1	i=2	i=3	i=4	i=5	i=6		i=1	i=2	i=3	i=4	i=5	i=6	,	i=1	i=2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1889 .1113 .0396 .0093 0012 0004 .0000 .0000 0001 0002 0003 0003 0003 0004 0004	0.1197 .0998 .0618 .0288 .0085 0001 0011 0004 0002 0003 0004 0005 0007 0007 0007 0008	0010 0011 0011	0.0802 .0757 .0630 .0455 .0272 .0122 .0028 0016 0024 .0010 0010 0010 0011 0013 0014 0015 0015	0. 0717 . 0687 . 0601 . 0471 . 0321 . 0179 . 0071 . 0002 0022 0022 0021 0014 0014 0016 0017 0018 	0020	0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.3099 .0753 .0202 .0024 0011 .0001 .0001 .0001 0001 0001 0001 0002 0002 0002 0002	0.1485 .1064 .0532 .0197 .0036 0012 0001 0001 0003 0003 0004 0005 0005 0006 0006	0.1053 .0923 .0641 .0354 .0141 .0025 0015 0009 0005 0005 0007 0008 0008 0009 0009 0009 0009	0.0865 .0803 .0642 .0434 .0235 .0089 .0009 .0020 .0013 .0009 .0013 .0009 .0011 .0011 .0011 .0013 .0013 .0013	0.0757 .0720 .0616 .0465 .0299 .0152 .0049 0024 0023 0017 0013 0012 0013 0016 0016 0017 0017	0. 0685 . 0660 . 0586 . 0473 . 0337 . 0202 . 0019 . 0018 0028 0020 0017 0016 0017 0019 	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	-0. 1895 .0258 .0303 .005400530037 .0008 .0008 .0000 .0000 .0000 .0000 .0000 .0000 .0000	-0.03160224 .0047 .0111 .0052000700120011 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000	-0.008001250047 .0033 .0054 .0030001200100010 .0001 .0000 .0000 .0000 .0000 .0000	-0.0031006400470005 .0026 .0031 .0017 .000000080008 .0001 .0001 .0001 .0001 .0000 .0000	-0.00150036003600360016 .0007 .0019 .00090001000600050000 .0000 .0000 .0000 .0000	-0.000800230024001700020010001600120005000200040002000400020001000000000000

		Sh	ear flow, q _{ii}	L, at statio	n -				
j	i=0	i=1	i=2	i=3	i=4	i = 5	,	i=0	i=1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.1556 .0443 .0047 0046 0027 0027 0027 0026 0024 0022 0019 0016 0013	0. 0346 .0461 .0239 .0044 0045 0041 0030 0025 0024 0022 0019 0016 0013	0. 0129 . 0271 . 0239 . 0122 . 0014 0043 0043 0032 0025 0023 0021 0019 0016 0013	0.0068 .0167 .0187 .0137 .0058 0009 0044 0050 0041 0024 0021 0018 0016 0013	0.0043 .0113 .01142 .0126 .0076 .0019 0024 0044 0046 0038 0029 0022 0015 0015	0.0030 .0081 .0110 .0108 .0079 .0036 0005 0042 0044 0026 0020 0015 0015	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0. 1901 . 0395 - 0008 - 0056 - 0034 - 0024 - 0029 - 0028 - 0028 - 0024 - 0010 - 0011 - 0016 - 0018	0. 080 .049 .016 .000
16 17	0009 0006 0002	0009 0006 0002	0009 0006 0002	0009 0006 0002	0009 0006 0002	0009 0006 0002	16 16 17	0009 0005 0002	000 000 000

$_{i}$			ear flow, q _{ii}			
	i=()	i=1	i=2	i=3	i=4	i=5
0	0. 1901	0.0807	0. 0216	0.0094	0.0054	0. 0030
1	. 0395	. 0496	. 0357	. 0214	. 0138	. 0096
2	0008	. 0166	. 0247	. 0213	. 0164	. 012
3	—. 0056	一. 0007	. 0090	. 0133	. 0132	. 0117
4	 . 0034	—. 0053	—. 0015	. 0039	, 0069	. 0079
5	0024	 0046	− . 0052	0026	. 0006	. 0029
6	—. 0027	—. 0032	←. 0049	0050	0034	-, 001 ₄
7	—. 0029	—. 0027	←. 0036	—. 0048	-, 0048	0039
8	0028	0026	0028	—. 0037	0044	004
9	0026	→. 0026	 . 0025	—. 0028	0035	—. 0046
10	0024	—. 0024	0023	- . 0023	0026	—. 003
11	0021	- 0022	0022	0021	0021	002
12	—. 0019	 . 0019	 0019	—. 0019	—. 0018	001 ^s
13	0016	0016	- 0016	0016	—. 0016	—. 001a
14	0013	0013	0013	0013	0013	001
15	0009	0009	0009	0009	0009	000
16	0005	0006	0006	0006	− . 0006	0006
17	0002	0002	0002	0002	0002	000

j	Shear flow, q_{ij} , at station—														
	i=0	i=1	i=2	i=3	i=4	i=5									
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0. 7274 . 1064 . 0548 0058 0166 0060 . 0014 . 0019 . 0003 0003 . 0000 . 0000 . 0000	0.0994 - 0585 - 0103 - 0153 - 0096 - 0009 - 0039 - 0019 - 0001 - 0005 - 0002 - 0001 - 0000 - 0000	0. 0211 0025 0124 0030 .0048 .0046 .0009 0014 0013 0004 .0002 .0001 .0000	0.0068 .0018 0042 0042 0003 .0024 .0023 .0007 0006 0008 0004 .0000 .0002	0.0031 .0015 0013 0025 0015 .0004 .0015 .0013 .0004 0004 0006 0004 0001	0. 0017 . 0010 0003 0014 0013 0004 . 0010 . 0007 . 0001 0002 0004 0002 0001 . 0000									
15 16 17 18	. 0000 . 0000 . 0000 . 0000	. 0000 . 0000 . 0000 . 0000	. 0000 . 0000 . 0000 . 0000	. 0000 . 0000 . 0000	. 0000 . 0000 . 0000 . 0000	0000, 0000, 0000, 0000									

TABLE 28.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B=100;\ C=2\times 10^6;\ m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

,	Stringer load, p_{ij} , at station—													
j	i=0	i=1	i=2	i=3	i=4	i=5	i=6							
0	0. 5000	0. 2683	0. 1691	0, 1226	0.0982	0. 0839	0.0746							
ĭ	0	. 0798	. 0933	. 0893	. 0819	. 0749	. 0690							
2	0	. 0267	. 0456	. 0546	. 0578	. 0580	. 0569							
2 3	Ō	. 0095	. 0216	. 0310	. 0373	, 0410	. 0431							
4	Ö	. 0026	.0089	. 0158	. 0218	. 0265	. 0300							
5	Ō	. 0003	.0026	.0066	. 0110	. 0152	. 0188							
4 5 6 7 8	Ó	0001	. 0001	. 0017	. 0042	. 0072	. 0101							
7	0	0001	 0005	0004	. 0006	. 0022	. 0041							
8	0	0001	0005	0009	0010	—. 0005	. 0004							
	0	0001	0004	0009	0014	0016	—. 0014							
10	0	0002	0003	0008	0013	0018	0021							
11	0	0002	 0004	—. 0007	0012	0017	0022							
12	0	0003	 0005	0008	—. 0011	0016	0022							
13	0	0003	0006	0009	- . 0012	—. 0016	—. 0021							
14	0	0003	0007	0010	0013	0016	→. 0020							
15	0	0004	—. 0007	0011	—. 0014	0017	—. 0021							
16	Û	0004	0007	0011	 . 0015	0018	0022							
17	0	0004	0008	0011	0015	0019	0022							
18	0	0004	0008	0011	0015	—. 0019	0023							

j						
,	i=1	i=2	i=3	i=4	i=5	i=6
0	0. 3683	0, 2125	0. 1433	0. 1093	0.0905	0.078
1	. 0485	. 0889	. 0918	. 0856	. 0783	. 071
2	. 0137	. 0371	. 0507	. 0565	. 0580	. 057
2 3	. 0041	. 0157	. 0266	. 0344	. 0393	. 042
	. 0009	. 0056	. 0124	. 0189	. 0243	. 028
5	. 0000	. 0013	. 0045	. 0088	. 0131	. 017
4 5 6 7	. 0000	—. 0001	.0008	. 0029	. 0057	. 008
7	. 0000	 0003	0005	. 0000	. 0013	. 003
8	. 0000	0003	0007	0010	0008	000
9	. 0000	0002	0006	0012	—. 0015	001
10	. 0000	—. 0003	0005	0010	—. 0016	002
11	0001	0003	0005	0009	—. 0015	002
12	, 0001	—. 0004	 . 0006	0010	0014	001
13	—. 0001	—. 0005	—. 0007	0010	—. 0014	001
14	0002	—. 0005	0008	0011	—. 0015	001
15	0002	0005	- . 0009	0012	—. 0016	001
16	0002	—. 0006	0009	0013	0016	002
17	0002	0006	 . 0010	0013	0017	002
18	0002	0006	 0010	—. 0013	—. 0017	002

	Stringer load, p_{ij}/L , at station—													
j	i=1	i=2	i=3	i=4	i=5	i=6								
1	-0, 2893	-0.1141	-0.0466	-0.0206	-0.0100	-0,0054								
	. 0265	0266	0269	0197	0135	0091								
$\frac{2}{3}$.0381	. 0099	0035	0075	0078	0068								
	. 0161	. 0156	. 0070	.0014	0015	0027								
4 5	0004	. 0099	. 0087	. 0054	. 0026	. 0008								
6	—. 0050	. 0025	. 0057	. 0055	.0041	. 0027								
7	0032	0017	. 0019	. 0034	. 0036	. 0031								
8	—. 0006	0024	0007	.0011	. 0021	. 0024								
9	. 0005	0015	0016	0006	.0005	.0012								
10	. 0005	0004	0013	0011	0005	. 0001								
11	. 0001	.0001	0006	0010	0009	 0005								
12	0001	. 0002	0001	0006	0008	0007								
13	0001	. 0001	.0001	0002	0005	0006								
14	. 0000	. 0000	.0001	.0000	0002	0004								
15	. 0000	. 0000	. 0000	.0001	.0000	0001								
16	. 0000	. 0000	. 0000	.0001	.0001	.0000								
17	.0000	.0000	. 0000	.0000	.0001	.0000								
18	.0000	.0000	. 0000	.0000	.0000	.0000								

j	Shear flow, $q_{ii}L$, at station—													
j	i=0	i=1	i=2	i=3	i=4	i=5								
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 1158 .0361 .0093 0001 0027 0030 0029 0028 0027 0026 0024 0019 0016 0013 0009	0.0496 .0361 .0172 .0051 .0012 .0037 .0037 .0033 .0029 .0026 .0024 .0022 .0019 .0016 .0013 .0009	0. 0232 . 0273 . 0183 . 0088 . 0019 0021 0038 0038 0038 0024 0021 0019 0016 0013 0009 0009	0.0122 .0196 .0164 .0102 .0042 0903 0038 0037 0037 0023 0023 0019 0016 0013 0009	0.0072 .0142 .0139 .0102 .0055 .0013 0016 0032 0037 0035 0025 0020 0016 0013 0019	0.0046 .0105 .0115 .0095 .0061 .0024 .0005 .0025 .0032 .0032 .0032 .0027 .0017 .0013 .0013 .0009								

	Shear flow, $q_{ij}L$, at station—													
,	i = 0	i=1	i=2	i=3	i = 4	i=5								
0	0. 1317	0. 0779	0. 0346	0.0170	0.0094	0. 0058								
1	. 0346	. 0375	. 0317	. 0233	. 0167	. 0122								
$\frac{1}{2}$. 0073	. 0141	. 0181	. 0175	. 0152	. 0127								
3	0010	. 0025	. 0072	. 0096	. 0103	. 0099								
4 5	0027 0028	0022 0035	. 0004 0029	0031 0012	. 0049	. 0058								
8	0028 0027	0033 0033	0029 0038	0012	0022	- 0011								
6	0027 0027	0030 0030	0036 0036	0038	0035	0029								
8	0027	0027	0031	0036	0037	0036								
9	0026	0026	0027	0030	0034	0036								
10	0024	0024	0024	0026	0029	0031								
11	—. 0022	0022	0022	0022	0024	0026								
12	0019	0019	0019	0019	0019	0021								
13	0016	—. 0016	0016	0016	0016	0016								
14	0013	0013	0013	0013	0013	0013								
15	0009	0009	0009	0009 0006	0009 0006	0009 0006								
16 17	0006 0002	0006 0002	0006 0002	0000 0002	0000 0002	0000 0002								

		SI	hear flow, q_i	, at station	_	
j	i=0	i=1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.5660 .1447 .0917 .0155 0166 0158 0007 .0007 .0020 .0010 0003 0002 .0000 .0001 .0001	0. 1086 0666 0136 0147 .0151 .0048 0027 0043 00025 0005 .0004 .0001 .0000 .0000	0.0506016901690166032 .0054 .0066 .00340002001900170009 .0002 .0001 .0000	0. 0235 0025 0097 0056 0000 0033 0035 0020 0001 0009 0010 0006 0002 0001 0002 0001	0.0118 .0012 0050 0048 0019 .0002 .0021 .0010 .0000 0006 0007 0005 0002 .0001	0.0066 .0019 0024 0034 0022 0003 .0011 .0016 .0012 .0006 0001 0005 0004 0002
17 18	. 0000	. 0000	.0000	.0000	.0000	.0001

TABLE 29.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[B = 300; C = 2 \times 10^6; m = 36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer j=0 between rings i=0 and i=1

			Stringer 10	oad, p_{ij} , a	t station-	-			Stringer load, p_{ii} , at station—					,	Stringer load, p_{ii}/L , at station—						
,	i=0	i=1	i = 2	i=3	i=4	i=5	i=6	,	i=1	i=2	i=3	i=4	i=5	i=6		<i>i</i> =1	i=2	i=3	i=4	i=5	i=6
0 1 2 3 4 5 6 7 8 9 10 111 12 13 14 15 16 16 17	0.5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 3397 0. 3397 0.0540 0.163 0.0070 0.0032 0.014 0.0006 0.0002 0.0001 0.0001 0.0001 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004	0. 2424 . 0766 . 0298 . 0145 . 0074 . 0036 . 0016 . 0005 . 0002 . 0002 . 0003 0006 0007 0007 0007 0007 	0. 1822 .0840 .0395 .0211 .0118 .0063 .0031 .0012 .0002 .0003 .0006 .0008 .0008 .0009 .0011 .0011	0.1438 .0842 .0459 .0266 .0158 .0091 .0049 .0022 .0006 0003 0018 0011 0013 0014 0015 0015	0.1184 .0814 .0497 .0309 .0194 .0119 .0068 .0033 .0011 .0002 .0009 .0013 .0015 .0016 .0018 .0019 .0019	0. 1012 .0774 .0517 .0342 .0226 .0145 .0087 .0047 .0019 .0001 .0009 .0015 .0019 .0020 .0021 .0022 .0023 .0023	1 1 2 3 4 4 5 6 7 7 8 9 10 10 11 12 12 13 14 15 15 16 17 18	0. 4132 .0305 .0083 .0034 .0015 .0006 .0003 .0001 .0000 .0000 .0001 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002	0. 2872 . 0670 . 0234 . 0108 . 0053 . 0024 . 0010 . 0003 . 0000 0001 0002 0003 0003 0003 0005 0005 0006 0006	0. 2100 0. 811 0. 350 0.179 0.096 0.0050 0.0023 0.003 0.0001 0.0005 0.0007 0.0006 0.0007 0.0007 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009	0. 1616 .0845 .0429 .0240 .0138 .0077 .0039 .0016 .0003 0003 0007 0019 0011 0012 0012 0013 0013	0. 1303 . 0830 . 0479 . 0228 . 0177 . 0105 . 0058 . 0027 . 0008 0009 0013 0014 0015 0016 0017	0. 1093 .0794 .0508 .0326 .0211 .0132 .0078 .0040 .0015 .0009 .0014 .0017 .0019 .0021 .0021 .0021	1 2 3 4 5 6 6 7 8 9 10 11 12 12 13 14 15 16 17 18	-0.3630 .0214 .0364 .0229 .0076 -00014 -0039 -0001 .0004 .0003 .0001 .0000 .0000 .0000	-0. 2133 0251 .0114 .0170 .0133 .0070 .0016 0014 0022 0017 0009 0002 .0001 .0001 .0001 .0000 .0000	-0. 1250 0349 0010 0091 0106 0083 .0047 0014 0015 0015 0010 0001 .0001 .0001 .0001	-0. 0744 0337 0071 0073 0074 0055 0030 0009 0012 0012 0012 0005 0000 0000 0000	-0. 0453 0291 0098 . 0002 . 0046 . 0059 . 0053 . 0037 . 0019 . 0004 0010 0010 0010 0005 0002 0001 . 0000	-0. 0283 0238 0107 0021 . 0025 . 0044 . 0046 . 0038 . 0025 . 0011 . 0000 0006 0009 0009 0007 0004 0002

						ı
5	. 0076	. 0133	. 0106	. 0074	. 0046	
6	0014	. 0070	. 0083	. 0074	. 0059	1
7	 . 0039	. 0016	. 0047	. 0055	. 0053	1
8	—. 0029	0014	. 0014	. 0030	. 0037	
9 (0011	0022	0007	.0009	. 0019	ļ
10	. 0001	0017	—. 0015	0005	. 0004	1
11	. 0004	-, 0009	0015	0012	0006	
12	. 0003	0002	0010	0012	0010	
13	. 0001	. 0001	0005	0009	- 0010	
14	. 0000	. 0001	0001	0005	0010	
15	0001	. 0001	. 0001	0002	—. 0005	
16	.0000	. 0000	. 0001	. 0000	0002	
17	.0000	. 0000	. 0001	.0000	0001	1
18	. 0000	.0000	.0000	. 0000	. 0000	
		SI	near flow, q	i, at station	_	
j	i=0	i=1	i=2	i=3	i=4	
0	0. 4336	0, 0890	0. 0626	0. 0400	0, 0257	
í	. 1597	0607	0257	0105	-, 0035	1
2	. 1168	0142	0159	0117	0081	

,	Shear flow, $q_{ij}L$, at station —							She	ear flow, q_{ij}	L, at station	1 —		
,	i=0	i=1	i=2	i=3	i=4	i=5		i=0	i=1	i=2	i=3	i=4	i=5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 0802 . 0262 . 0099 . 0028 0004 0018 0023 0025 0025 0025 0025 0019 0019 0010 0010 0010 0010 0010 0010 0010 0000 0000	0. 0486 . 0260 . 0125 . 0050 . 0008 0014 0024 0028 0027 0026 0021 0019 0016 0013 0009 0006 0000	0. 0301 . 0227 . 0131 . 0064 . 0021 0028 0029 0028 0029 0019 0019 0011 0010 0010 0010 0006 0002	0.0192 .0190 .0126 .0071 .0031 .0002 .0015 .0025 .0029 .0029 .0024 .0020 .0016 .0013 .0009 .0006 .0006	0. 0127 . 0155 . 0117 . 0074 . 0037 . 0010 . 0010 . 0021 . 0028 . 0029 . 0028 . 0025 . 0017 . 0010 . 0028	0.0086 .0126 .0106 .0073 .0042 .0016 .0074 .0017 .0025 .0028 .0028 .0026 .0026 .0014 .0010 .0010	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0. 0868 . 0258 . 0092 . 00924 - 0005 - 0017 - 0022 - 0025 - 0025 - 0025 - 0024 - 0022 - 0019 - 0016 - 0013 - 0010 - 0006 - 0002	0.0630 .0265 .0114 .0040 .0002 0017 0026 0026 0025 0022 0019 0016 0013 0009 0006 00006	0. 0386 .0244 .0129 .0058 .0015 0010 0023 0028 0028 0027 0025 0019 0010 0016 0013 0010 0006 0002	0. 0242 . 0208 . 0129 . 0068 . 0026 0002 0018 0027 0029 0028 0023 0020 0016 0013 0009 0006 0006	0. 0157 . 0172 . 0172 . 0122 . 0073 . 0034 . 0006 . 0012 . 0023 . 0028 . 0029 . 0029 . 0024 . 0021 . 0011 . 0011 . 0010 . 0010	0. 0105 .0140 .0111 .0073 .0039 .0013 .0007 .0020 .0026 .0029 .0025 .0025 .0021 .0013 .0009 .0013 .0009

	Shear flow, q_{ij} , at station—							
j	i=0	i = 1	i=2	i=3	i=4	i=5		
0	0, 4336	0. 0890	0, 0626	0. 0400	0, 0257	0, 0168		
1	. 1597	0607	0257	0105	-, 0035	0002		
2	. 1168	0142	0159	0117	0081	0054		
3	. 0440	. 0108	0035	0056	0054	0040		
4	0019	. 0167	. 0044	0002	0019	0024		
5	0171	. 0110	. 0070	. 0031	. 0009	→. 0003		
6	0143	. 0027	. 0057	. 0040	. 0024	. 0012		
7	0065	0028	. 0026	. 0032	. 0026	. 0018		
8	0008	0043	0002	. 0016	.0019	.0018		
9	. 0014	0032	0018	. 0001	. 0009	. 0012		
10	. 0013	 0015	0020	0009	. 0000	. 0005		
11 '	. 0005	0002	0014	0012	0006			
12	0001	. 0004	0006	—. 0010	0008	—. 0005		
13	0003	. 0004	. 0000	000G	0007			
14	0002	. 0002	. 0002	—. 0002	0005	→. 0008		
15	—. 0001	.0000	. 0002	. 0001	0002	0003		
16	. 0000	. 0000	. 0001	. 0002	. 0000	0001		
17	.0000	. 0000	. 0000	. 0002	. 0002	. 0000		
18	.0000	. 0000	.0000	. 0002	. 0002	. 0001		

OVERNMENT PRINTING OFFICE: 1986

TABLE 30.—LOAD DISTRIBUTION DUE TO A UNIT PERTURBATION LOAD

 $[R=1,000; C=2 \times 10^8; m=36]$

(a) Concentrated perturbation load on stringer $j\!=\!0$ at ring $i\!=\!0$

(b) Distributed perturbation load on stringer $j\!=\!0$ between rings $i\!=\!0$ and $i\!=\!1$

	Stringer load, p_{ii} , at station—									
j	i=0	i=1	i=2	i=3	i=4	i=5	i=6			
0	0, 5000	0. 4011	0. 3262	0. 2692	0. 2256	0. 1919	0. 1656			
ï	0	. 0331	. 0542	. 0672	. 0747	. 0786	. 0800			
	Ö	. 0089	. 0170	. 0242	, 0302	. 0351	. 0391			
2 3 4 5 6	0	. 0042	. 0083	. 0123	. 0160	. 0192	. 0223			
4	0	. 0023	.0048	. 0073	. 0098	. 0121	. 0143			
5	0	. 0014	. 0030	. 0046	. 0063	. 0079	. 0096			
	0	.0008	. 0018	. 0029	. 0041	. 0053	. 0064			
7	0	. 0005	. 0011	.0018	. 0025	. 0033	. 0042			
7 8 9	0	. 0003	.0006	. 0010	. 0014	. 0019	. 0025			
	0	. 0001	. 0002	. 0004	. 0006	. 0009	. 0012			
10	0	. 0000	. 0000	. 0000	. 0000	. 0001	. 0002			
11	0	0001	—. 0002	—. 0003	0004	—. 0005	- 0005			
12	0	0002	—. 0004	- . 0006	0008	—. 0010	—. 0011			
13	0	0002	0005	 0007	0010	0012	0015			
14	0	—. 0003	0006	 0009	0012	0015	0018			
15	0	0003	0007	0010	0013	0017	—. 0021			
16	0	0004	- 0007	0011	0014	0018	0022			
17	0	0004	- . 0007	0011	- . 0015	0018	—. 0022			
18	0	- . 0004	—. 0007	—. 0011	—. 0015	—. 0019	0022			

,	Stringer load, p_{ij} , at station—									
j	i=1	i=2	i=3	i=4	i=5	i=6				
0	0, 4482	0. 3619	0. 2964	0, 2464	0. 2080	0. 1782				
1	. 0177	. 0444	. 0612	. 0713	. 0769	. 0798				
$\frac{2}{3}$, 0045	. 0130	. 0207	. 0273	. 0327	. 0372				
	.0021	. 0063	. 0103	. 0141	. 0177	. 0208				
4	. 0011	. 0036	. 0061	. 0086	. 0109	. 0132				
5	. 0007	. 0022	. 0038	. 0055	. 0071	. 0088				
6	. 0004	. 0013	. 0024	. 0035	. 0047	. 0059				
7	. 0002	. 0008	. 0014	. 0021	. 0029	. 0038				
8	. 0001	. 0004	. 0008	. 0012	. 0017	. 0022				
9	. 0001	. 0002	. 0003	. 0005	. 0007	. 0010				
10	. 0000	. 0000	. 0000	. 0000	. 0001	. 0002				
11	. 0000	0002	—. 0003	—. 0004	0005	—. 0005				
12	—. 0001	0003	—. 0005	- . 0007	−. 0008	0010				
13	—. 0001	—. 0004	—. 0006	− . 0009	—. 0012	0014				
14	0001	0004	—. 0007	0010	0013	—. 001€				
15	—. 0002	—. 0005	0008	0012	—. 0015	0018				
16	0002	0005	0009	0012	0016	0020				
17	0002	0006	0009	0013	—. 0016	0021				
18	0002	0006	—.0009	0013	—. 0018	0021				

	Stringer load, p_{ij}/L , at station—									
j	i=1	i=2	i=3	i=4	i=5	i=6				
1	-0.4189	-0. 3132	-0. 2326	-0.1732	-0, 1295	-0.0975				
	. 0149	0196	0331	0386	-, 0400	-, 0387				
$\frac{2}{3}$. 0290	. 0097	. 0007	-, 0047	-, 0082	0106				
	. 0237	. 0147	. 0086	. 0046	.0016	-, 0004				
4 5	. 0139	. 0137	. 0103	. 0075	. 0054	. 0037				
6	. 0051	. 0101	. 0094	. 0079	. 0065	. 0052				
7	0004	. 0058	. 0071	. 0069	. 0062	. 0055				
7 8 9	—. 0026	. 0021	. 0044	. 0051	. 0052	. 0049				
	—. 0026	0003	. 0020	. 0032	. 0037	. 0039				
10	0016	0015	.0002	. 0015	. 0022	. 0027				
11	—. 0006	—. 0017	−.0009	. 0001	.0010	.0015				
12	. 0000	0013	0013	0007	0001	.0005				
13	.0003	0008	 0012	 0011	0007	0003				
14	. 0002	0003	0010	0011	-,0010	0007				
15	. 0001	0000	—. 0006	0010	0010	0009				
16	.0000	. 0001	0003	- 0007	0008	0008				
17	. 0000	.0001	0001	0004	0006	0005				
18	.0000	.0000	0000	0001	0001	0002				
	1	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>				

	Shear flow, $q_{ij}L$, at station—									
j	i=0	<i>i</i> =1	i=2	i=3	i=4	i=5				
0	0. 0495	0. 0374	0. 0285	0. 0218	0. 0168	0.0131				
1	. 0164	. 0163	. 0155	. 0143	. 0130	.0117				
2 3	. 0073	.0040	. 0083	. 0046	. 0060	.0078				
4	. 0010	.0015	.0019	. 0022	. 0024	. 0026				
5	- 0004	0001	. 0002	. 0005	. 0008	.0009				
6 7	0012	0011	0009	0007	0004	0002				
7	0017	- . 0017	0016	0014	0012	0011				
8	0019	0020	0020	0019	0018	0016				
9	0020	0021	0021	—. 0021	0020	0019				
10	0020	~. 0021	0021	0021	0021	0021				
11	0019	0020	0020	0020	0021	0020				
12 13	0018 0015	0018 0015	0018 0015	0018 0016	0019 0016	0019 0017				
14	0013 0012	0013 0012	0013 0012	0018 0013	0010	0014				
15	0009	0012 0009	0012	0009	0010	-,0014				
16	0006	~.0006	- 0006	0006	0006	0006				
17	0002	0002	- 0002	0002	0002	0002				

Shear flow, $q_{ij}L$, at station—								
i=0	i=1	i=2	1=3	i=4	i=5			
0.0518 .0163	0. 0432 . 0165	0. 0327 . 0159	0. 0250 . 0149	0. 0192 . 0136	0. 0149 . 0124			
. 0032 . 0010	. 0037 . 0013	. 0042	. 0045 . 0020	. 0046 . 0023	. 0079 . 0047 . 0025			
0012 0016	0012 0017	0010 0016	~.0008 ~.0015	0006 0013	0008 0003 0012			
0020 0020	0021 0020	0021 0021	0021 0021	0020 0022	0017 0020 0021 0021			
0018 0015	0018 0015	0018 0015	0018 0016	0019 0016	0021 0019 0016 0013			
0009 0005	0009 0006	0009 0006	0009 0006	0010 0005	0013 0010 0006 0002			
	0. 0518 .0163 .0074 .0032 .0010 -0004 0012 0016 0020 0020 0020 0019 0015 0015 0015	i=0 i=1 0.0518 0.0432 .0163 .0165 .0074 .0079 .0032 .0037 .0010 .0013 .0004 .0002 .0012 .0012 .0016 .0017 .0020 .0021 .0020 .0021 .0019 .0020 .0019 .0019 .0019 .0019 .0015 .0015 .0012 .0012 .0013 .0012 .0014 .0012 .0015 .0012 .0009 .0009 .0000 .0009 .0005 .0006	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

,	Shear flow, q_{ii} , at station—									
, 	i=0	i=1	i=2	i=3	i=4	i=5				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0. 3209 1586 1288 0709 0234 0044 0145 0037 0085 0034 0001 0001 00001 0001 0002 0002 0002	0. 0572 0485 0140 .0053 .0144 .0145 .0095 .0032 0015 0038 0028 0015 0004 .0003 .0003	0. 0544 0263 0128 0039 . 0057 . 0064 . 0052 . 0028 . 0005 0019 0019 0019 0009 0004 . 0001	0.04360157010200480008003500370030001800050001001200070003	0. 0342 0094 0081 0046 0017 0018 0024 0024 0019 0013 0003 0002 0006 0006 0006 0006	0. 0267 0053 0066 0042 0021 0009 0016 0019 0013 0008 0002 0002 0006 0006 0006				
18	0001	.0002	. 0003	.0000	0004	0007				