ace. no. 275-96

P

MANUAL

SHEWING THE

SYSTEM OF SURVEY

OF THE

DOMINION LANDS,

WITE

INSTRUCTIONS TO SURVEYORS.

Published by authority of the Honourable the Minister of the Interior for Canada.

OTTAWA:
PRINTED BY MACLEAN, ROGER & Co., WELLINGTON STREET.
1883.

DCAH TA 551 C2 1883

27596

NOTICE TO DOMINION LAND SURVEYORS IN THE EMPLOYMENT OF THE DEPARTMENT OF THE INTERIOR.

This Manual and the instructions embodied in it are, by order of the Minister of the Interior, prescribed for the official guidance of Surveyors of the Dominion Lands of Canada, and they are required in making any survey of these Lands to govern themselves by it in every particular.

Its present edition is divided into two parts. The first treats of the system in which the Dominion Lands are laid out into Townships, gives instructions for the sub-divisional survey of these into the sections, quarter-sections and road allowances of which they are composed, and contains extracts from the Dominion Lands Act of clauses relative to Surveys and Surveyors.

The second part gives instructions directed specially to surveyors of Standard Meridians and Parallels, and to those engaged in the survey of Township outlines.

The appendices consist of various forms to be used by the surveyors and of tables to facilitate their necessary calculations.

LINDSAY RUSSELL,

Surveyor-General.

Department of the Interior, Ottawa, 1st June, 1883.

Note.—By desire of the Board of Examiners for Dominion Land Surveyors, candidates for admission to the practice of the profession, are informed that only the first part of the Manual will be required at the examination.

TABLE OF CONTENTS.

FIRST PART.

SYSTEM OF SURVEY AND INSTRUCTIONS TO SURVEYORS.

· · · · · · · · · · · · · · · · · · ·			
System of Survey	PAGE		
Instructions to Survey	3:		
Instructions to Surveyors.—Field work	9.		
Boundary corners	11		
Marks on posts	14		
The Rield Book	18		
Sub-division of Townships.—Instrument and method of Survey	21		
Progress reports	04		
Returns of Survey			
Returns of Survey Extracts from the Dominion Lands Act	25		
Tom the Dominion Lands Act	29		
SECOND PART.			
Survey of the Standard Meridians and Parallels			
Instrument	35		
Instruments	41		
Directions	42		
Production of line	50-		
Reports and returns	53		
Survey of the Township outlines.—Instruments Method of sub-dividing	54-		
blocks	54		
Reports and returns	58		
•			
APPENDICES.			
Appendix A.—Accounts of Surveyors under daily pay.	61		
-Allowances to Surveyors	62		
D.—Contract surveys	63		
Form of contract and hond	65		
C.—Specimen timber report			
D.—Form of engagement	71		
E.—Ordinance respecting masters and ser-	72		
vants	73		
F.—Prices and weight of provisions	75		

TABLES.

Explanation of the Tables	
Table I.—Logarithms of the lengths in Gunter's	
puted from Clark's elements of the figure of the earth	
Table II.—Latitudes, &c., of bases and correction lines	,
Table III.—Chord azimuths, deflections, deflection offsets, &c., for base lines	87
Table IV.—Chord azimuths, deflections, deflection offsets, jogs, &c., for correction lines.	90
Table V.—Latitude, with logarithms of secant and tangent for each section and width of quarter sections	91
Table VI.—For finding the Pole Star	93
Table VII.—For finding the time by transits across the vertical of Polaris.	107
Table VIII.—For converting chains into decimals of a township side	108
Table IX.—Correction to width of road allowance on correction lines.	112
Table X.—For converting the logarithm tangent of small arcs into logarithm of seconds of arc.	112
Table XI.—Showing the deflection of a trial line for deviations from 1 to 149 links at the end of eighty-one chains	113
Table XII.—Addition and subtraction logarithms	114
Table XIII.—Correction for	115
Table XIII.—Correction for refraction, to be applied to the sun's Polar distance when using solar instruments	117

vii

DIAGRAMS.

Diagram No. 1H	Plan of Township	
" 2.—I	llustrating the sub-division of the	.4
	COUNTRY INTO DIODES and townships	6
U,—U	orner boundaries	12
4 5	***************************************	12 12
Specimen field notes		20
		20
Timber bran		71

.

FIRST PART.

TOWNSHIP PLAN.

Scrub or Brush Brule. Collinated I Swamp. 158.63 158.65 158.67 25 56 138.61 - EXPLANATION OF COLORS. 833 15835 15838 15842 13848 15886C Line 27 Correction John Smith 28 152 ac. 152 56 32 158.23 Bush

T m cl ai si or so

SYSTEM OF SURVEY

ANT

INSTRUCTIONS

TO

SURVEYORS

ACTUAL SYSTEM OF SURVEY.

Township contains thirty-six square miles, more or less, exclusive of road allowance. 1. The Dominion lands are laid off in quadrilateral townships containing thirty-six sections of six hundred and forty acres or one square mile in each, subject to the deficiency or surplus from the convergence or divergence of meridians, as hereinafter mentioned, together with road allowances of one chain on every section line running

north and south and on every alternate section line running east and west.

Sections. 2. The sections are bounded and numbered as shown by the following Diagram.

N							
w	31	32	33	34	35	26	
	20	29	28	27	26	25	
	19	20	21	22	23	24	
	18	17	16	15	14	13	E
	7	8	9	10	11	12	
	6	5	4	3	2	1	
S							

Fig. 1.

Townships measure 483 chains on east and west sides, and 486 on north and south sides.

3. The township, therefore, measures on the east and west sides, from centre to centre of the road allowances bounding the same, four hundred and eighty-three chains, and on the north and south sides four hundred and eighty-six chains, subject to the deficiency or surplus from conversions.

ging or diverging meridians, as the case may be.

Lines bound-4. The lines bounding townships on the east ing townships and west sides are true meridians, and those on the north and south sides are chords of the parallels of latitude passing through the corners of the township.

Lines bound-5. The lines bounding sections on the east and ing setions west sides are true meridians, and those on the north and south sides are lines parallel to the north and south boundaries of the township.

How town-6. The townships number in regular order, ships are northerly from the International Boundary or numbered. fifty-ninth parallel of latitude, and lie in ranges and are numbered east and west from a meridian line styled the Principal Meridian; ranges lie also and are numbered west from other meridians styled the Second, Third Initial Meridians, according to their order westward from the Princi-

A few townships east of the Principal Meridian, lie south of the brty-ninth parallel and are numbered accordingly.

How to designate a "gore" 7. Whenever a "gore" occurs between two adjoining townships or ranges surveyed according near the line to different systems, and when the number of the between two different sysfractional township or range is the same as the tems of surnumber of the adjoining one surveyed under the former system, such township or range is designated by its number, followed by the letter A, as for instance:

Tp. 19, A,

For the gore between townships 18 and 19 west of the Second Principal Meridian, and

Range 21, A,

For the gore between ranges 20 and 21 west of the Second Principal Meridian.

The line between two parts of the country surveyed according to different systems is established as a correction line, that is to say, posts are planted on both sides of the road allowance on such line each row governing the position of the boundary lines on a own side. Such road allowance is in all cases, one chain and My links wide.

Sections are 8. The sections are laid out of the precise width 80 chains on eighty chains, as aforesaid, or eighty-one chains base lines. with the road allowance, on certain lines called "base lines," and the meridians between the sections are drawn from such bases, north or south, to the depth of two townships, that

on the cast nd those on s of latitude

the east and hose on the and south

ular order, oundary or in ranges line styled numberedInitial the Princi-

, lie south lingly.

en two adaccording aber of the ame as the under the ge is desiginstance:

the Second

he Second

ed secordtion line, the road osition of owance is

cise width ne chains lled "base awn from hips, that is to say, to the correction lines hereinafter mentioned. The sections south of the base measure therefore more than eighty chains, while they measure less north of the same line. The interval between a base line and the next one is equal to the depth of four townships.

of meridians, is allowed, or, in other words, they are those township lines running east and west which are equi-distant from the bases at the depth of two townships.

The interval between the correction lines is equal to the depth of four townships.

Base lines in the system.

10. The first base line is the forty-ninth parallel of latitude or International Boundary; the second base is between townships four and five; the third between townships eight and nine; the fourth between townships twelve and thirteen; the fifth between townships sixteen and seventeen, and so on northerly, in regular succession.

Correction lines in the system.

11. The first correction line is between townships two and three; the second between townships ten and eleven, and so on, northerly, in regular succession.

12. Each section is divided into quarter sections of one hundred and sixty acres, or one-half mile square, more or less.

Lands on the Saskatche-wan Battle, Bow, Red Deer and Belly Rivers are laid out in lots twenty chains wide, fronting on the river, and about one mile deep. The side lines are parallel to the section lines.

The lots are numbered down stream, from one upwards, separately in each township, commencing on the left bank first, then on the right bank.

Country laid out into blocks of sixteen townships each, in the first instance and how.

14. Preliminary to the sub-division into townships and sections of any given portion of country proposed to be laid out for settlement, the same is laid out into blocks of sixteen townships each, by projecting the base lines and the east and west meridian boundaries of each block.

Blocks subdivided into townships and how.

15. Such blocks are sub-divided into townships by projecting the meridians from the base lines to the correction line, and connecting by straight lines the township corners on the meridians.

Allowance for the discrepancies of the survey.

16. In the survey of any block or its subdivision, the closing errors on the correction lineare allowed for in the quarter-sections north and south of and adjoining the correction line.

Corners. 17. On the block and township outlines, at the time of the survey, all townships, section and quartively in the subsequent sub-division of the block or township.

rule (with the exception above referred to the corners of the township or sections and monuments, as an invariable rule (with the exception above referred to).

rule (with the exception above referred to) are placed in the west limit of the road allowances on north and south lines, and in the south limit of road allowances or on the line between the sections, on east and west lines; and in all cases fix and govern the positions of the boundary corners of the adjoining townships, sections or quarter-sections on the opposite side of the road allowance.

Posts and monuments on correction lines.

19. The township, section or quarter-section corners on correction lines or on lines between differen systems of surveys are in all cases indicated by posts or monuments planted and

marked independently for the townships on either side; those for the townships north or east of the line, in the north or east limit of theroad allowance, and those for the townships south or west, in the south or west limit. Indian reserve boundaries are also posted on both sides of the road allowance; on one side for the reserve and on the other side for the township.

Quarter-quarter sections.

20. To facilitate the descriptions for letters patent of less than a quarter-section, the quarter-sections composing every section in accordance with the boundaries of the same as planted or placed in the original survey, are supposed to be divided into quarter quarter-sections, or forty acres, and such quarter quarter-sections are numbered as shown in the following diagram.

		N	Γ.		
w.	13	14	15	16	
	12	11	10	9	
	5	6	7	8	E.
	4	3	2	1	
8.					

Fig. 2.

DIAGRAM

Illustrating the subdivision of the country into blocks and townships.

XXIII RXXXXXXIV Ranges West X XXVIII XXVII TWININI A BOUNDARY NEGIDIEN THIRD Pirst Base Line = 2 Habe 4 200 10 N 9 2 4 N 3 月 of the Third Fourth INTERNATIONAL A RV Meridian M M DOMINION LANDS LITHOGRAPHIC OFFICE. AIII Ranges Wes H RX H Ħ

or its subrection line as north and line.

clines, at the on and quarvern respector township.

monuments or sections

iced on any invariable are placed and south on the line and in all ry corners ons on the

eter-section es between l cases inanted and ide; those rth or east hips south coundaries e; on one waship.

or letters quarterecordance ced in the quarter arter-secm.

Leg div

for con tra

Ros

Tov mes cha eac mon

Clo erro the ran qua tion

bou exa sec tion

Oth the in a syst surv

Are veye

Legal subdivisions of townships. 21. Legal sub-divisions as applicable to the survey, sale and granting of the Dominion lands, are as follows:—

A section or 640 acres;

A half-section or 320 acres:

A quarter-section or 160 acres;

A half quarter-section or 80 acres;

A quarter quarter-section or 40 acres.

Surveys performed by contract.

22. The township sub-division surveys of the Dominion lands, according to the system above described, are carried out and performed by contract at a certain rate per mile or per acre, fixed from time to time by the Governor in Council.

FIRST SYSTEM OF SURVEY.

Road allowances. 23. In the first system of survey, there is a road allowance of one chain and fifty links on every section line.

Townships measure 489 chains on each side, more or less. 24. The township, therefore, measures on each side from centre to centre of the road allowance, bounding the same, four hundred and eightynine chains, subject to the deficiency or surplus resulting from converging or diverging meridians,

Closing errors left in the western range of quarter sec. tions. 25. In the survey of a township the deficiency or surplus resulting from converging or diverging meridians is set out and allowed in the range of quarter-sections adjoining the western boundary of the township. It follows that generally the lines bounding sections on the east or west

sides are not meridians, but lines parallel to the eastern boundary of the township. All quarter-section sides are exactly forty chains, except in the western range of quartersections of a township and in the sections adjoining a correction line and subject to the discrepancies of the survey.

Other rules the same as in actual system of survey. 26. Where not provided otherwise above, the rules laid down for the actual system of survey govern for the firstsystem.

Area surveyed under the first system. 27. The operation of the first system of survey is restricted to the area bounded as follows, viz:

To the south, by the International Boundary line, to the west by the Second Initial Meridian, as far as the eighth correction line; by said correction line as far as the meridian between ranges twenty-eight and twenty-nine west of the Principal Meridian; by said meridian between ranges twentyeight and twenty-nine, as far as the seventh correction line; by said correction line as far as the meridian between ranges four and five, west of the Principal Meridian; by said meridian, between ranges four and five, as far as the sixth correction line; by said correction line, as far as the meridian between ranges ten and eleven east of the Principal Meridian; by said meridian, between ranges ten and eleven, as far as the third correction line; by said correction line, as far as the meridian between ranges thirty and thirty-one, east of the Principal Meridian; by said meridian, between ranges thirty and thirtyone, as far as the International Boundary line.

Also Township 44, R. 21; Tp. 45, R. 21, 22, 27, 28; Tps. 46 and 47, R. 25, 26, 27, and 28; Tp. 48, R. 24 and 25, west of the

Second Initial Meridian.

Townships 42 to 47 inclusive, R. 1; and Tps. 43 and 44, R. 2 and 3, west of the Third Initial Meridian.

SECOND SYSTEM OF SURVEY.

Deficiency or surplus from converging or diverging meridians divided equally between all quarter sections.

28. The second system of survey is similar in all respects to the first system, except in regard to the deficiency or surplus from converging or diverging meridians which is distributed equally between all quarter sections as in the actual system.

Area surveyed under the second system of survey.

29. The operation of the second system of survey is restricted to Tps. 1 and 2, R. 1 to 8 inclusive; Tps. 19 to 30, R. 1 to 12 inclusive; and Tps. 27 to 30, R. 13 to 16 inclusive; the above ranges being all west of the Second Principal

Meridian.

ine, to the eighth core ighth core meridian est of the ges twenty-ction line; sen ranges I meridian, correction in between in; by said the third meridian Principal

est of the

and 44, R.

nd thirty-

s similar
pt in reconvergstributed
in the

ystem of to 8 inve; and e above rincipal

INSTRUCTIONS TO SURVEYORS.

FIELD WORK.

Surveys to be astronomical be astronomical; that is to say, the directions of their lines must be referred to the astronomical meridian. The use of the magnetic needle on Dominion Land surveys is forbidden.

Chain to be 31. All measurements shall be made with the ordinary four pole, or Gunter's chain. It is to be tested and corrected, during use, by a standard measure which shall have been previously compared with the standard at the Dominion Lands Office. If going through Winnipeg, or any other point where a standard section may have been established, the surveyor will train his chainmen there until they can chain correctly. Eleven pins should be used, so as to leave one in the ground when exchanging tallies. The number of chains at any point is then equal to the number of pins, minus one.

Chainmen to be sworn.

32. Previous to entering on their duties the chainmen shall be sworn according to the form below and such oath shall be filed with the returns of the survey.

(Form of Oath.)

I, A. B., do solemnly swear that I will faithfully discharge the duties of a chainman to the best of my ability and knowledge. So help me God.

(Signed) A. B.

this Eworn before me at day of 188 }C.D.D.L.S.

Precautions in chaining over the same be so broken as not to permit of the same be made with such portion thereof as may be easily levelled, and particular care should be taken at such

times, in plumbing and dropping the pins, in order to obtain the accurate horizontal measurement.

Obtacles on the line.

34. In case the survey line be obstructed by a lake, pond, deep marsh or other obstacle, the surveyor will pass it by right-angled offsets, or, if more convenient, by a trigonometrical operation. The angle opposite to the base should be, whenever practicable, at least thirty degrees. It shall never be less than fifteen degrees.

Blazing 35. Surveyors will understand that all lines through woodland are to be well opened out, those connecting the posts are to be marked by blazing the adjacent trees on each of the sides in the direction which the line is being run as well as the side on which the line passes.

No blaze on traverse lines.

36. No blazes or marks of any description are to be made on traverse lines between the points on township or section lines which intersect the same.

Blazed lines not required to be perfect. It is not necessary that any such line be a perfectly straight one, but it should never differ very much from it. When running a trial line in the woods, the surveyor, instead of opening the true line, may connect the trial line with the posts by short lines. The angles formed by the latter and the trial line should, however, not be too large, say not over 5°. The blazed line must pass through all the posts.

Instructions to be strictly followed.

38. The instructions contained in the manual are to be strictly followed even when there appears to be evident advantage to depart therefrom. Errors in the lines previously surveyed, or any other reason, would not justify a departure therefrom.

Snrveys
nnder different systems adjoins townships of the old system, the lines of to be distinct. the new system are to be run as if the lines enclosing the area surveyed under the old system were the shores of a lake, and no line of the old system is to be produced into the new one.

Road allowance to be left between the tracts covered by different systems of survey.

to ob-

ed by a cle, the re conopposite t thirty

ll lines ed out. ing the which ie line

on are points

ot rethereie be a r differ woods, onnect angles not be pass

anual re apthereany

rstem es of enstem is to

t-half l by

Road allow-41. A road allowance is to be left on the ance to be boundaries of all Indian reserves. When a releft on Indian serve not yet surveyed, is to be formed of a certain number of full sections, the surveyor, in establishing the same shall plant the posts as usual on the west and south boundaries; but on the north and east side they are to be planted in the north or east limit of the road allowance. The side of the road allowance adjoining the townships is the only one to be posted by the surveyors employed by the Department of the Interior.

BOUNDARY CORNERS.

42. Having ascertained by exact running and measurement the proper point for establishing the township, section or quarter-section corner, as the case may be, the surveyor, in marking the same, is to be governed by the following directions:-

Township 43. On a prairie spot, a township corner is corner on a marked by a pointed iron tube five feet long and prairie spot. 13 inches in diameter. It is driven perpendicularly with a sledge to within ten inches from the top; and the appropriate marks and numbers, as hereinafter directed, are cut thereon with a cold chisel. A mound of earth is erected as hereinafter described.

Township 44. In a timbered country the corner of a corner on a township is also marked by an iron tube as above, timbered but no mound is built.

Bearing trees 45. The position of the post is defined by ascertaining the astronomical bearing and distance therefrom of one or more adjacent trees, which tree or trees are to be marked B.T. with a knife or scribing iron on the side next the post, the distance and bearing being marked with redchalk or paint. The size and description of the tree as well as the bearing and distance are to be duly entered in the field notes.

Section cor-46. A section corner in prairie is to be markner on a ed by an iron tube 3 feet 8 inches in length, prairie spot. planted in the centre of a mound as hereinafter described. The post is driven one foot into the ground and shows two inches above the mound.

The numbers of sections, township and range are stamped on a square plate of tin held on top of the post by a nail passing through a hole in the post or by some other means. The letters N.S.E. and W. are marked at the four corners of the plate to show its proper position.

Section cor 47. On a timbered spot, a section corner is per on a tim marked by a wooden post, the position of which bered spot is defined by reference to bearing trees.

Such posts should be at least three inches square, two fcet above and twelve inches below the surface of the ground.

Quarter sec-49. A quarter-section corner is marked, in tion corner prairie, by a wooden post planted in the centre on a prairie of a mound as hereinarter described, such post to spot. be four feet four inches long, so as to be twelve

inches in the ground, two feet six inches in the mound, and It is flattened on two sides and marked with the fraction 4 (fraction wise) to identify it as a quarter-section post. The flattened sides should be at least three inches wide and placed at right angles to the direction

When wood for posts is not to be found within three miles from the site of a quarter-section corner, such corner may be indicated simply by a mound.

Quarter sec-49. In the woods, a quarter section corner is tion corner marked by a wooden post, flattened and marked on a timbered on two sides as above, and at least eighteen spot. inches above and twelve inches below the ground.

Boundaries of 50. A boundary between river lots is to be line between marked as a section corner, but the sides of the river lots. post or mound are to be parallel to the side lines of the lots. Whenever a section or quarter-section corner post is so situated that it defines at the same time the boundaries of river lots and those of sections not laid out into river lots, such section or quarter-section corner is to be marked without taking any notice of the river lots, as if the township had been subdivided entirely into sections and

Form, size 51. The mounds erected at the corners of townand height of ships, sections or quarter-sections, are to be in the mounds. the form of rectangular pyramids. The mound thrown up at the corner of a township will be three feet high with sides of base six feet; at sections and quarter-section corners, the sides of the base will be five feet, and the height

Earth to be 52. In the formation of mounds, the earth taken from will be taken from four several "pits" three feet square and eighteen inches deep, the

rs of the

orner is of which

re, two ground. ked, in e centre h post to twelve and, and es and

it as a at least irection e miles

may be

rner is marked ighteen w the

to be of the e side section me the id out to be if the

townbe in
cound
high
ction
height

and

earth three the

Quarter Section

STONE MOUND.

Perspective.

ORDINARY MOUND. Gloci square for township corners. Gloct square for all other corners.

Pie.
South limit of road allowance at The corners.

MOUND.

South limit of road allowance de Sec. corners.

Pie.

Pie.

Pie.

EARTH MOUND AND POST.

Perspective.

MOUND ON CORRECTION LINE. Glost square for township corners. 5 feet square for all other corners.

Pit

South limit of road allowance for corners of townships I of road

Pit Seet Pit Sheet Pit Limit of road allowance for section corners

North limit of road allomance for corners of townships North of road

Pie

EARTH MOUND AND POST.

Section

2½ feet high for Section and quarter section corners.

3 feet high for township corners.

WITNESS MOUND.

Plan.

WITNESS MOUND. Section.

WITNESS MOUND.

Perspective.

centres of which pits should be, whenever practicable, four feet six inches outside and opposite the centres of the re-

To be formed 53. Mounds are to be formed of solid earth, of solid earth. sod and all foreign substances being excluded, and the earth well pressed down with the spade during the process. The post is to be firmly planted in the solid ground before beginning to build the mound. In order to facilitate the speedy erection of the mound, a rope skelcton may be used. By taking hold of each corner and making a knot of the three lines running to it, the line is carried without becoming tangled; or the spade used may have marked on it the distance from the post to the corners of the mound and to the sides of the pits, and small pickets be planted at those distances and in the proper directions.

Stone mounds 54. In a stony region, the mounds may be built of stone properly piled around the post, so as to conform as nearly as possible in size and shape to

Angles of mounds to be towards the Cardinal

55. On all north and south, and on all east and west survey lines, excepting the correction lines and those across river lots, tin squares, corner posts and mounds shall be so placed that lines connecting the cardinal points will pass through the angles.

Except on correction lines, in which case they will stand square with the line.

56. The tin squares, posts and mounds erected to mark the corners in either limit of the road allowance on the correction or river lots lines will be so placed that lines connecting the cardinal points shall pass through the centres of the bases of the mounds or of the faces of the posts

or squares.

Witness 57. If a township or section corner, in a situation where a bearing tree is not to be found within a reasonable distance, shall fall in a ravine, bed of a stream, or in any other situation where the character of the locality may be untavorable to the planting of a post or the erection of a mound, the surveyor will perpetuate such corner by erecting a witness mound with iron post at the nearest suitable point. The letters W. M., together with the bearing and distance of the site of the true corner from such mound are to be stamped on the tin square and entered in the Field Book, together with all other particulars con nected therewith. Attention is to be paid to the fact that the bearing is to be taken from the mound to the

corner in the case of witness mound, whilst it is to be taken from the corner to the tree in the case of a bearing tree. A witness mound is in form a cone, six feet in diameter and two and a-half feet feet high; the earth is taken from a circular trench fifteen inches wide.

Mounds at township corners, instead of being thrown up around the corners, will be so placed that the posts will stand precisely at the northerly angle thereof.

Mounds at township corners on correction lines where the mound will be so placed that the post will stand rection lines, precisely in the centre of the north or south base, south or north of the road allowance.

Wooden posts 60. Should the site of a township corner fall to be planted in a place where no mound can be erected, as in the twelve inches woods or in a marsh, a wooden post of the ordinfrom iron posts at townary dimensions for section corners, shall be ship corners when there is planted twelve inches from the iron post on the side where the mound should stand; such post no mound. to be marked I.P. The position of the iron post is besides perpetuated by bearing trees or witness mounds, as directed above.

Wooden posts to be bevelled on top to turn rain.

MARKS ON POSTS.

Township 62. On township corners, the upper figure on a given side will indicate the township, and the next one the range, as for instance:

Iron post.

Fig. 3.

For the corner between Townships 5 and 6, and the 3rd and 4th Ranges.

taken 90. A d two rcular

stead ill be ly at

the tand base, ship

fall the dinbe the post ost

top

, as

on hе

d

Section cor-63. On all other section corners, either on town lines or in the interior of a township, the simple number of the sections will be placed upon the corresponding faces of the post or tin square, as the case may be, and in addition, on the south-west side thereof will be marked the number of township and range, as for instance.

Wooden post.

between sections 34 and 35, Township 5, Range 4.

Tin square. Wooden post.

Tin square.

For the easterly corner between sections 24 and 25, Township 6, Range 4.

For the northerly corner

Fig. 5.

For the corner between sections 15, 16, 21, 22, township 6, range 4.

Fig. 6.

Township corners on correction

64. The corners on correction lines are to be marked exclusively for the townships and sections on the respective sides of the road allowance. Township corners will have the number of section on the west side, the number of township and range on the north side, for posts north of the road allowance and on the

south side for posts south of the road. The letter R for road will be marked on the two other sides, thus:

For the south-east corner of Township 3, Range 10.

Iron post.

Fig. 7.

For the north-east corner of Township 6, Range 5.

Iron post.

Fig. 8.

Section corners of 55. Section corners will have the numbers of sections on the east and west sides, the letter R towards the road and the number of township and range on the other side, thus;—

VI NA III

For the southerly corner between sections 3 and 4, Township 7, Range 7.

Let

ma for Me

Iro

sec ner

wit

chie the

Pos nes

squ

Tin square.

Wooden post.

Fig. 9.

IIXXX E XXXIII

For the northerly corner between sections 32 and 33, Township 2, Range 6.

Tin square.

Wooden post.

Fig. 10.

Marks of boundaries in ranges numbered from the principal meridian

66. In ranges numbered from the principal meridian, the letter W or E will be marked on the post after the number of the range, to denote that it is west or east of the meridian, as for instance:—

for road

ship 3.

ship 6.

pers of tter R vnship

tween ip 7,

orner d 33,

sipal on note for

For the township corner between Townships 5 and 6, and the 3rd and 4th Ranges east of the Principal Meridian.

For the corner between sections 10, 11, 14, 15, Township 7, range 4, west of the Principal Meridian.

Fig. 11.

Letters W and E to be marked only for Principal Meridian.

67. The letters W and E are not to be marked for any meridian other than the Principal Meridian. The number of meridian is never to be marked.

Iron posts for section corners to be marked also with a cold chisel.

68. In addition to the marks explained above, the number of the section on the south-west side of a section corner, or the letter R if on the north side of a correction line, shall be marked on top of the post with a cold chisel, in order to serve for the identification of the post, should the tin square disappear.

Post in Wit-69. The bearing in degrees and minutes and ness mound. the distance in links are stamped on the tin square thus:-

For witness mound, one chain and 34 links to the N. 35° 15' W from the section corner.

Tin square.

Fig. 12.

Post between river lots has, on two sides, the numbers of the lots adjoining and on one of the other sides the number of township and range, thus:—

How marks are to be made with a hammer and cold chisel; on a tin square, with steel letters. On the trees and posts they are to be cut neatly and distinctly with a knife or scribing iron, which is to be kept in good order by a whetstone and small file carried for the purpose.

The Surveyor will be careful to provide himself with these very indispensable implements before leaving for his survey.

THE FIELD BOOK.

record in the Dominion Lands Office are to be a fair and exact copy of the original notes taken in the field, and are to be written in the books furnished for that purpose (bound at the side); the books supplied for field use are not accepted as office copies.

fo

"1

M

Inf

to

set

of the field book.

The first page will give its title, shewing the nature of the survey, by whom surveyed, and the dates of the commencement and the completion of the work. The second page will contain the names and duties of all assistants, and whenever a new assistant is employed or any one changed, an appropriate entry thereof with the reasons therefor will be made in the field book previous to entering any totes under the changed arrangements. The third page will contain a skeleton diagram, with each section line numbered to correspond with the page of the notes.

74. The field notes must be a faithful, distinct and minute record of everything officially done and observed by the

as, on two sides, and on one of nge, thus:-

e to be made a tin square, and posts they e or scribing vhetstone and

elf with these his survey.

pe placed on ice are to be in the field. that purpose ld use are not

itle, shewing urveyed, and letion of the and duties of employed or vith the reas to entering e third page n line num-

and minute red by the

surveyor and his assistants pursuant to instructions in relation to running, measuring and marking lines, establishing boundary corners, laying off road allowances, &c., and present, as far as possible, a full and complete topographical description of the country surveyed.

Each page to 75. The field-notes of every section line surbe complete. veyed must be complete in themselves, and be laid down on a separate page. Section lines are to be entered in the Field Book in the order in which they are run. The chaining must in all cases commence on the juside of the road allowance so as to show for the quarter section and section corners the distances from the corner of the section.

Description 76. Section lines are to be described as north of section and east boundaries of sections, not as south or west boundaries, except on the north side of a correction line where they are properly described as south boundaries of sections 1, 2, 3&c. On Indian Reserve boundaries and on lines between different systems of survey, cases may also occur in which the lines surveyed are the south or west boundaries of sections.

77. The measurements on a section line are to be given in all cases exclusive of road allowances.

Abbrevia-78. The following abbreviations of words, but tions allowed. no others, will be allowed in the notes, that is to

"Sec." for "Section," "Tp." for "Township," "R." for "Range," "N." for "North," "S." for "South," "E." for "East," "W." for "West," "diam." for "diameter," "chs." for "chains," "lks." for "links," "dist." for "distance" or "distant," "W. P. in M." for "Wooden Post in Mound," "P. T." for "Posting Tree," "W. M." for "Winges Mound," "B. T." for "Bearing Tree," "W. M." for "Witness Mound," "I. P." for "Iron Post," and "I. P. in M." for "Iron Post in

Information 79. The field-notes must be always written to be given in down on the spot, leaving nothing to be supplied from memory, and are to give the following information in relation to the survey :-

- (a) The length of every line run, noting all necessary offsets therefrom, with the reasons for the same.
- (b) The course and distance for all witness mounds and bearing trees, with the kind and diameter of the latter.

- (c) The character of corner boundaries, if wooden post, mark "W. P.;" wooden post in mound "W. P. in M.;" if iron post in mound, "I. P. in M.;" stone mound, "Stone M." The above information is to be given on each page for every corner shewn thereon.
- (d) The distances at which the line first intersects, and, also, where it leaves settler's claims or improvements, lakes, ponds, rivers, bottom lands, swamps, marshes; also, the beginning of ascent, the top and the foot of descent, of all remarkable hills or ridges, with their estimated height in feet above the bottom lands near which they may be situated; also where a stream, lake or pond is crossed, the data used for ascertaining the distance across it.
- (e) The course, average width and depth, and rate of current of all streams, and whether the water is fresh or salt in the lakes which may fall within the survey.
- (f) Whether the surface of the country is level, rolling, broken or hilly.
- (g) The nature of the soil, classifying it, according to its fitness for agriculture, as first, second, third, or fourth rate,—entering the class, at the time of survey, on each quarter-section where indicated in the notes.
- (h) Depth of loam and kind of sub-soil, where pits are dug.
- (i) If in timber, the kinds, quality and average dimension thereof.
- (j) Rapids or falls of water affording mill sites, with estimated fall and supply of water in general terms.
- (k) Coal deposits, minerals (transmitting specimens of the same), and salt springs, &c., &c.

Field-notes to be distinct and neatly figures, letters, words and meaning, are always to be unmistakable.

Road allowances to be ruled in.

81. The road allowances in the Field Book are to be ruled in the proper position, and the position of corner boundaries indicated.

Affidavit to be made. 82. Following the field-notes the surveyor will make affidavit as to the accuracy thereof, according to the form printed in the Field Book, and swear that he has performed the survey himself.

wooden post, in M.;" if iron one M." The r every corner

ects, and, also, , lakes, ponds, beginning of narkable hills we the bottom here a stream, hining the dis-

d rate of curesh or salt in

evel, rolling,

ing to its fitourth rate, ach quarter-

pits are dug. e dimension

es, with esti-

imens of the

y and neatly r, and their e always to

d Book are the position

rveyor will sof, accordar that he Township 48, Range 10 West of Lixth Meridian. Cast Boundary of Section 11 Course: Level

Jenny Depth,	Subsoil:	any man and a series	Alluvial soil: Sheecheleam
W.P. 80.00 .	68.00	53.50	37.15
B. T. S.	John Smith	5 1300 State House	S. Caver Themes will some 3 of duty. Current 198

The above line was run on the treeth day of Accepted 1883

in of in tin
Ho
shi
be
XI
and
on
seco

s f s

Si es no so arr to for me su

SUBDIVISION OF TOWNSHIPS INTO SECTIONS.

INSTRUMENT AND METHOD OF SURVEY.

Instrument. 83. The instrument used in subdivision surveys is to be a transit, transit theodolite or solar compass, reading at least to minutes; it shall be inspected and approved by the head office.

As explained in the exposition of the system of survey, all surveys are to be astronomical; they shall therefore be per-

formed independently of the magnetic needle.

The subdivider will receive from the head office, or from the surveyor of outlines, diagrams shewing the outlines surveyed

Chaining to 84. Before the subdivider enters on his survey be compared he will measure carefully one or two miles of the with previous township outline; this will enable him to compare his chaining with that of the lines previously run, and to modify it so as to obtain the best agreement with the township outlines.

Subdivider to establish the north and south boundaries of the township before commencing the subdivision.

85. The meridian exteriors of a township are established by the surveyor of township outlines. The subdivider will therefore commence his operations by running the north and south boundaries of the township, if not previously surveyed.

In order to do so, he will join, by a trial line, the opposite township corners on the meridians, and, returning, plant the posts permanently, mak-

ing all quarter-sections equal. Table XI will give the number of minutes by which the course of the trial line is to be altered in order to strike the post.

Only one side of a correction line is to be surveyed at one The proceedings will be the same as described above.

How town-86. A township is to be subdivided by first proships are to be subdivided jecting meridians, and then joining the opposite corners on such meridians by trial llines.

XI may also be used in this case for correcting the trial lines. In sub-dividing a township, the quarter-section posts on east and west lines are placed midway between the section corners on the respective meridians, that is to say, both quartersection sides are made equal.

In closing with a meridian on the north or south boundary of a township, the last quarter section post on such meridian is at once planted permanently and connected by a straight

line with the section corner on the outline of the township. The directions given above (§ 37) in regard to blazed lines would apply in this case. Should the meridian strike more than 50 links from the post on the outline of the township, such meridian should be entirely resurveyed.

Lines to be 87. The only section lines to be surveyed' Burveyed. established and permanently marked as boun daries are those along which the road allowances Their total length for every township is forty-two miles and twenty-seven chains, more or less, exclusive of township outlines. The rear line of river lots is also to be surveyed and posted, but posts are not required to be planted on the

Quarter-sec 88. In starting from a correction line, the tions adjoinsurveyor will give to the adjoining quarter-section, a depth proportional to those of the ing correction quarter-sections at each end of the tier, as shewn

80

8

Ce

SU

OI Ri

ar wi

ha th **ex** " r lef sho

me

the

sur

Tra poin

esta

sam

of :

will \mathbf{The} ther

on the diagram of the township outlines.

He will be careful to connect with the posts in the inner limit of the road allowance on correction lines, not in the

Fig. 14.

It has been explained, in the exposition of the system of survey, that sections are of unequal width, on account of the convergence or divergence of meridians. To better illustrate this fact the convergence has been exaggerated in Fig. 14.

Angles of 89. The angle formed by the meridians with meridians the east and west lines is different for each with east and meridian and varies uniformly from one corner of the township to the other. The surveyor shall not, therefore, start his meridians at right angles to the township outlines, but he will, in each case, calculate the

he township. blazed lines strike more ne township,

e surveyed' ed as boun i allowances ty-two miles of township e surveyed ated on the

n line, the quarter-secse of the r, as shewn

the inner not in the

ystem of nt of the illustrate . 14.

ans with for each e corner surveyor s to the late the

angle formed by these two lines, from the data supplied to him with the diagram of township outlines.

Supposing, for instance, the angle d a f to be 90°03′, and g e f 90°09′, he will use as angles at b, c, S, 90°04′, 90°05′ 90°06', 90°07', 90°08'.

The angles between the meridians a d or e g, and the east and west lines, would be deduced in a similar manner.

Limits of 90. It follows, from the foregoing, that all error allowed quarter sections on meridians are to be forty chains except in the tiers of quarter-sections adjoining the correction lines, where they should be proportional to the quarter sections at each end of the tier. Should all the survey lines be perfectly correct, all other sections should have the theoretic width. The maximum error in distance that will be allowed in the closing of any section corner will be fifty links. When the closing error exceeds this quantity, the limin involving the error must be re-The opposite to andaries of sections are to be within fifty links of equal length.

All distances to be entered in the Field Book such as measured

on the ground.

Rivers, lakes 91. In subdividing townships, all navigable and islands to rivers and lakes of twenty acres and upwards, together with any islands that may be in them, are to be accurately surveyed. Lakes occurring entirely within a section, and islands in lakes and rivers, must have their traverse properly connected with the rest of the survey. When the average width of a navigable stream exceeds three chains, the surveyor will traverse both banks of the same, referring to such traverse in his field-notes as on the "right" or "left" bank, as the same would be on his right or left respectively looking down the stream. The outline of the shore shall be determined by a sufficient number of offsets.

Whenever a marsh is so deep that it cannot be torded by men or horses, it is to be surveyed and the area deducted from the sections; but when it is possible to ford it and carry the survey line across, no traverse or deduction should be made.

Traverse 92. At those points where township or section points. lines intersect the banks of a navigable stream or lake, temporary posts or marks are to be established, and the distance across the river between the same ascertained trignometrically or otherwise, at the time of running such lines. Such temporary marks or posts will be called traverse points, and are to be marked T. P. The survey of a stream or lake will be effected by connecting

them with traverse lines and offsets, on the respective sides

of the river or lake, the bearing of such lines being checked at the intersection thereof by each township or section line.

Settlera claims or improvements.

93 Traverse lines shall be run to settlers claims or improvements, and the extent and position thereof shown on the plans of the survey.

Statutory declarations to be obtained from sett-

94. The surveyor will also obtain from every settler a statutory declaration, on the form supplied, setting forth the date at which he first began continuous occupation of the land; whether he is aware of any conflicting claim thereto; if

R

ti

to

D

be be

To

so, its nature and the name of the claimant.

The settler is also therein to declare whether or not he has previously had a homestead entry, if so, the number of quartersection and township.

In signing the declaration, the settler is to write clearly all his names in full, and see that there is no accidental error in

If some of the words in the printed form did not agree with the declaration of the settler, they should be crossed over and new sentences added where necessary.

All declarations from squatters are to be accepted, no matter how many there may be on a quarter section. The only case in which a declaration should be refused is when it is clearly untrue, or in opposition to the facts.

A statutory declaration does not give any right or legal status to the declarant; it is simply for the information of the

No charge to 95. Surveyors are strictly forbidden to make be made for any charge to the squatters for receiving their statutory declarations, and to say that, by doing so, declarations.

claims will be secured. Such a practice would expose a surveyor to prosecution for obtaining money under false pretences, and to dismissal from the practice of the profession under clause 102 of the Dominion Lands Act.

It is no part of the duties of a Surveyor to explain the law or give directions to intending or actual settlers for securing land, and it is recommended that parties in the employment of the Department should abstain from giving such advice.

PROGRESS REPORTS.

Sketches of survey to accompany the progress reports.

96. Each progress report shall be accompanied by sketches showing work done up to date. Such sketches shall shew in red the lines surveyed, together with the main topographical features of the country, that is to say, the rivers, lakes, trails, hills, &c.

being checked ection line.

to settlers extent and of the survey.

n from every the form suphich he first and; whether a thereto; if

not he has er of quarter-

e clearly all

ntal error in t agree with sed over and

d, no matter e only case is clearly

t or legal ation of the

n to make iving their doing so, stice would oney under tice of the Act.

the law securing aployment advice.

companied late. Such surveyed, eatures of rs, lakes, It is not necessary to use a scale for plotting, a rough estimate of distances is all that is required.

The sketches may be drawn with pencils of different colors. It should be understood that only the main topographical features are to be shown, and that it is useless to indicate every little swamp, pond or rise that may be found.

RETURNS OF SURVEY.

Account to be placed at the end of the field-book.

97. In addition to what is prescribed for field-notes in general, there will be an account, signed by the surveyor, shewing in miles and decimals of a mile, the distances run on section and traverse lines in the township, with the rates in each case, according to contract, and the total amount for the township,

Final returns of survey will consist of:—

(a.) Field-notes.

(b.) A plan of each township.

(c.) A timber plan for each township.

(d.) A timber report "

(e.) Formulas of oath of chainmen.

(f.) Statutory declarations of settlers.

(g.) Accounts in duplicate on the forms supplied.

Report. 99. The surveyor will also subjoin in a concise report such further description or other information connected with the township surveyed as he may be able to afford, which may be useful or necessary to be known, giving a general description of the character of the country, its soil and geological features, timber, minerals, waters, &c.

Plans.

100. The plans shall be on a scale of forty chains to the inch, on the forms supplied by the Department. Every fractional township, however small, is to be shewn on a separate plan.

Township outlines, when surveyed by the subdivider, are to be shown on the same plan as the sub-division.

Length of quarter-section lines as measured on the ground when not exactly forty chains, and the length of every broken part of a section line.

Topography. 102. The plans will show all the topographical features of the country as referred to in the field

The topography is to be represented in manner following, that is to say :-

Bush,-a wash of light green without any imitation of

in 86

in

Se

th

to

TI

to

Tir

isl

col

Tia rel led the be lati

ext

ber

he tak

by

the A

Sho

One

Plan

field.

turn

veyo

tain.

ditio

or d char

A

Brulé,—a wash of light brown without any imitation of

Swamps,-a wash of light yellow, with small strokes of green representing reeds, &c. Areas.

103. The plans will also show the areas in acres and hundredths of all irregular quarter-sections, i.e., quarter-sections adjoining correction lines, initial meridians, boundaries of reserves, or lines separating different systems of survey, and quarter-sections broken by lakes or streams that have been traversed. All other quarter-sections will be considered as regular, and reckone i as 160 acres in

In cases where a quarter-section is divided into two or more parts by a stream or lake large enough to require traversing, each of the parts is to have its separate area shewn thereon.

Contents of 104. The area of every river lot is to be marked township. on the plan and a table shall exhibit the contents of the township, thus:-

Land in sections										
Roads -		7	_	•		•		-		acres.
Water			•		-		-		-	64
Total area				-		•		•		66
	•		-		-				-	66 -

The "Land in Sections" is the sum of the net area of all the quarter-sections in the township, and in a township in which there are no irregular quarter-sections will amount to 23,049

In the area of "Roads" are included all the road allowances within the township, together with those on the west and south outlines; in a regular township this area will be

The area of "Water" is the area of all water that has been traversed within the sections, and should not include any of

Traverse 105. Traverse lines are not to be shown on the plan, but to be plotted on one of the blank pages at the end of the field book, on which are also shown the shore lines of the lake or stream. In case the lake, pond, &c., is of too great an area to admit of it being plotted on a page, then the plot should be made on tracing linen and pasted in the end of the Field-Book.

in manner imitation of imitation of

eas in acres ter-sections, nitial merig different y lakes or tersections

ll strokes of

vo or more raversing, thereon.

60 acres in

be marked e contents

3 6 of all the in which to 23,040

res.

G

d allowthe west will be

as been any of

n on the k pages he shore , &c., is a page, isted in

Traverse lines are to be plotted on a scale of 20 chains to an inch. Astronomical bearings (not angles), distances and offsets must be given; none of these need be marked on the plot; it is preferable to give them separately in table form, numbering the stations to correspond with numbers on the plot.

Settlers im-106. The extent and position of settlers' improvements. provements are to be shewn in the notes and on the plan; also the names of the settlers who have made statutory declarations, on the quarter-sections which they claim. The names of cattlers who have made no declaration are not to be shewn on the plan or in the field-notes.

Timber plan. 107. The timber plan shall be colored so as to shew the predominant timber in the belts or islands met with in the different townships surveyed. The colors to be used to represent timber are as follows: -

Poplar,-light green. Spruce,—carmine. Brulé,—brown.

Timber 108. In the timber report the surveyor will report. state whether, in his judgment, from the knowledge gained on the ground, it would be desirable to reserve the timber for the needs of the settlers, or whether it would be advisable to set apart the same as a timber berth; if the latter, he will give a general statement of the quality and extent of timber over 10 inches in diameter suitable for lumbering purposes. If reporting on several timbered townships, he shall make a statement as to their relative value, taking into account the extent, quality and facilities afforded by streams, &c., for getting out the timber.

A timber plan is to be given for every township in which

there is wood of any kind whatever.

A timber report shall be furnished for every township. Should there be no wood in the township, the fact is stated. One page of the report is given for each township.

Plans and 109. The field notes shall be neatly written, in field-notes rea clear manner and fair hand. The plans shall turned to surbe drawn with care and should be fair specimens veyor in certain cases. of draughtsmanship.

Any plans or field notes not complying with the above conditions will either be returned to the surveyor, to be written or drawn again, or prepared by the Department, and the cost charged to the surveyor.

Charges for returns of survey are prepared by the Department at the following rates:—

Township plan (old system) do (new system) Copying a Field Book (old township	system)	\$8.00 - 6.00 per
Copying a Field Book (new township	system)	13.00 per - 10.00

These prices include only a small amount of traverse lines. Extra work on that account will be charged for. Plots of traverses are to be furnished in all cases, as the Department will not undertake to plot a traverse for a surveyor.

D re Sc be

or ta

be in ju

si

be ing Ca im an pe tir

or ner sur

ev mi

Sta Engure len

D. Yey

rod by the

8.00 6.00

3.00

0.00

Plots of epartment

EXTRACTS FROM THE DOMINION LANDS ACT.

46 VICTORIA, CHAP. 17.

Surveyors to 107. The Surveyor-General shall require every be prosecuted Dominion Land or Topographical Surveyor, in in case of peraddition to the oath by this Act required to be jury. administered to him on receiving his commission as such, to take and subscribe an oath, or make and subscribe an affirmation, on the return of his surveys of Dominion lands, that the same have been faithfully and correctly executed according to law and the instructions of the Surveyor-General; and if it is proved on satisfactory evidence before any court of competent jurisdiction that such surveys or any part thereof have not been so executed, the surveyor taking such false oath or making such false affirmation shall be deemed guilty of perjury, and shall be punishable accordingly; and thereupon Her Majesty's Attorney-General for Canada shall, upon the application of the Surveyor-General, immediately institute a suit upon the bond of such surveyor, and the institution of such suit shall act as a lien on any property owned or held by such surveyor, or his sureties, at the

Chain Bearers.

Chain bearers to be sworn.

108. Every chain bearer employed in the survey of the Dominion Lands shall, before he commences his chaining or measuring, take an oath or affirmation that he will discharge such duty with exactness according to the best of his judgment and abilities, and render a true account of his chaining or measuring to the surveyor by whom he has been appointed to such duty; and every Dominion Land Surveyor is hereby authorized to administer such oath or affirmation.

Standard of Measure.

Standard of English measurement of length.

time the suit is instituted.

Copies to be procured by D. L. Surveyors,

of Dominion Lands, shall be the English measure of length, and every Dominion Land Surveyor shall be in possession of a subsidiary standard thereof,—which subsidiary standard, tested and stamped as correct by the Department of Inland Revenue, shall be furnished him by the said Department, on payment of a

fee of three dollars therefor; and all Dominion Land Surveyors shall, from time to time, regulate and verify by such standard the length of their chains and other instruments for measuring.

u

di

V

Co

lin

eh

in

Co diff tov

tor

the

Qui

wes

eide

Tow

der

syst

Burv

sur

sect

Corr

the 1

to be

viou

estal

Corn

the t

for 1

lishe

secti

How to renew lost corners and obliterated lines.

Provision in 110. In all cases where a Dominion Land case where Surveyor is employed to run any dividing line the original mound, post or limit between sections or other legal subdivisor monument ions, and the mound, post or monument erected, cannot be marked or planted in the original survey to define the corner of such section or other legal subdivision, cannot be found, he shall obtain the best evidence that the nature of the case may admit of, respecting corner mound, post or monument; but if the position of the same cannot be satisfactorily so ascertained, then he shall

Township corner. (1.) If the lost corner mound, post or monutes that of a township corner, he shall report the circumstances of the case to the Surveyor-General, who will instruct him how to proceed;

Corner on the outline of is on one of the outlines of a township, is on one of the outlines of a township, he shall join, by a straight line, the nearest undisputed such straight line into such number of sections or quarter-sections or other legal subdivisions as the same contained in the original survey, giving to each an equal breadth;

Corner rear a correction line.

(3.) Except where in re-establishing the east or west boundary of a township, one of the nearest undisputed corners is on a correction line, in which case all quarter-sections are to be made exactly forty chains, and the deficiency or surplus, as the case may be, left in the quarter-section adjoining the correction line;

Corner near the western corner of a township.

(4.) Except also where in establishing the north or south boundary of a township surveyed under the first system of survey, one of the nearest undisputed corners is the western corner of the township, in which case all quarter-sections are to be made exactly forty chains, and the deficiency or surplus, as the case may be, left in the western quarter-section;

Township corner to be re-established is also lost, it shall be re-established as aforesaid, previously.

(5.) When the position of the township corner is also lost, it shall be re-established as aforesaid, previous to re-establishing the outline of the

inion Land Surl verify by such r instruments for

ed lines.

Dominion Land ny dividing line r legal subdivisnument erected, al survey to deor other legal e best evidence specting such position of the then he shall

post or monuhe shall report General, who

t or monument aship, he shall est undisputed ine, and divide e or quarterme contained readth;

ing the east or f the nearest tion line, in exactly forty case may be, n line;

blishing the nip surveyed he western -sections are or surplus, tion;

ship corner s aforesaid, tline of the

Corner on a (6.) When the lost corner is in the interior of meridian road a township on the limit of a meridian road allowallowance. ance, the surveyor shall connect the two nearest undisputed corners on such limit by a straight line, and divide the distance into such number of sections or other legal subdivisions as the same contained in the original survey, giving to each an equal breadth;

Corner near a (7.) Except when one of the nearest undisputed correction corners is on a correction line, in which case he line. shall make each quarter-section exactly forty chains and leave the deficiency or surplus, as the case may be, in the quarter-section adjoining the correction line;

Corners in (8.) When the nearest undisputed corners on different the said limit of a meridian road allowance are townships. in different townships, the outline between such townships shall be re-ostablished previous to re-establishing

Quarter sec-(9.) When the lost corner is that of a quarter tion corners section on a line running east and west, the on east and surveyor shall join by a straight line the opwest line. posite section corners on the meridians on each side, and give to each quarter-section an equal breadth;

Townships surveyed under the first system of survey.

(10.) Except where in townships surveyed under the firstsystem of survey, the lost corner is in the western row of sections of a township, in which case the first quarter-section is to be made exactly forty chains, and the deficiency or surplus, as the case may be, left in the western quarter-

Corners on the meridians to be pre-viously re-established.

section;

(11.) When the position of one of the corners on the meridians is also lost, such meridian shall be re-established previous to re-establishing east and west line;

Corner renewed to be the true corner.

(12.) In all cases where a surveyor erects, plants or places a mound, post or monument as aforesaid, to renew a lost or obliterated corner, he shall duly take into account any allowance

for road or roads, and the corner, or division or limit so established shall be the true corner, or division or limit of such section or other legal sub-division.

How Legal Subdivisions are to be surveyed.

Method of proceeding by Dominion Land Surveyor in laying out a section, half-section, or quartersection. 111. When in the survey of legal subdivisions a Dominion Land Surveyor has to establish the division line between two sections, he shall effect this by connecting by a straight line the opposite original sectional corners, should these exist, and should they not, by similarly connecting the points established in renewal thereof, in accordance with the preceding clause.

giving in either case, the quarter-sections involved an equal breadth. In laying out a half or quarter-section he shall connect the opposite quarter-section posts by straight lines. In laying out other and minor legal subdivisions he shall give to any such subdivision its proportionate share of frontage and interior breadth, and connect the resulting terminal points by a straight line. The lines or limits so drawn on the ground in the manner above prescribed, shall, in the respective cases, be the true lines or limits of such section, half section or other legal subdivision, whether the same shall or shall not correspond with the area expressed in the respective patents for such lands.

To draw Division lines in fractional Sections.

Dividing lines to be drawn from the original corner.

112. The dividing lines or limits between legal subdivisions, in fractional sections, shall be drawn from the original corners (or the points representing such corners, as defined on the ground, in accordance with the provisions of this Act) in the

section line intended as the front of the lot;

- (2.) Northerly or southerly lines shall be drawn due north or due south;
- (3.) Easterly or westerly lines shall be drawn at an angle with the meridian equal to the mean of the angles formed with the same meridian by the lines which are the northern and the southern boundaries respectively of the section.

eyed.

al subdivisions establish the he shall effect t line the ophould these exlarly connectnewal thereof, eding clause, ved an equal he shall conght lines. ln shall give to frontage and inal points by on the ground pective cases, ection or other shall not corre patents for

tions.

between legal shall be drawn ints representground, in acs Act) in the

wn due north

at an angle angles formed the northern section.

SECOND PART.

Dir blo

for are by sour on suc nor of distinct the less ind

Clos on of blood equation of the quarting links

SURVEY

OF THE

STANDARD MERIDIANS

AND

PARALLELS.

GENERAL INSTRUCTIONS.

Dimensions of A block is to be of the dimensions embracing blocks. four townships in longitude and the same in

latitude, or sixteen townships in all.

In accordance with the system of division prescribed by law for Dominion lands, its eastern and western exterior boundaries are broken lines, each consisting of two meridians separated by the "jog" on the correction line. The northern and southern limits (base lines) are parts of a polygon described on a parallel of latitude, by laying off, as chords thereto, the successive township sides, forming, as the case may be, the northern or southern outline of the block.

The road allowances along meridians are in all cases to be of the prescribed theoretic width, one chain. That the distribution of excess or defect is among the sections, and is not applied to the roads, will not materially affect the azimuth of those north and south lines involved; the displacement at the extremes-but two-thirds of a link on each mile-being less than ordinary chaining is at all accurate enough to

indicate.

Closing of The surveyor will invariably close his block on the correction line, projecting first the part on one side of the correction line and then the other half of the block. The north and south error in closing is to be divided equally between the two quarter-sections north and south of and adjoining the correction line. In order to correct for it, and to prevent the accumulation of errors, the surveyor may deviate the two base lines of the next block equally and in opposite directions, so as to effect the required correction at the end of the four ranges. Supposing, for instance, the two quarter-sections adjoining the correction line to be each 20 links short, the closing error might be corrected in the next

block by deviating each base 21 seconds, the north base to the north and the south one to the south. It does not necessarily follow that the whole amount of the closing error is to be corrected for; the Surveyor should take into account the probable cause of the discrepancy and correct only for such part of it as he believes will best ensure the closing of the next block. The jog on the correction line is to be left such as found, unless it should show an error of more than one chain and fifty links in the lines of the last block, in which case they would have to be re-surveyed. The limit allowed for the north and south closing error on the correction line is also one chain and fifty links.

The block surveyor will mark, on the correction lines, only the township corners; all other posts are to be planted by the

Deflection of When it becomes necessary to deflect the base base lines. lines for placing them in their proper latitudes, such deflection, unless instructions to the contrary be received from the head office, shall not exceed two minutes, and shall be carried to such a distance as to effect the required correction, except in closing on a Principal Meridian, where the last township corner is to be connected with the post on the meridian by a trial line, the deviation never extending beyond the range or fraction of a range adjoining the meridian.

Measure-The method of establishing the lengths and di ments. rections of the lines of the survey is to be the following:-

tŀ

eı

m

fo

T

m

 \mathbf{m}

m

fai

to

de

th

ter

an

po the

All lines are to be twice measured. This shall be effected by having two sets of chainmen, using Chesterman's continuous steel band chain. The leading one is to be of the length of a standard Gunter's chain; by it are to be kept all topographical and other notes, and posts planted. The following chain, to be used solely as a control, is to be a 100 feet chain.

When, at a section or quarter-section corner, the distances registered by the respective chainings for the length of the quarter section side, differ, in prairie country, more than two links, or, in woods and brush, more than three links, the two sets of chainmen shall return to the last post and measure over again, repeating their measurements until accordance within

the limit here prescribed is attained.

Where the surface is so broken or uneven that it would be unreasonable to expect such accordance, and therefore, in a still greater measure, to look for any proper approximation to the absolute length of the interval chained, the surveyor, while continuing to establish the direction and carry on the production of his line in the usual manner, shall have recourse to

the base to the teneror is to be account the account the account the account of the next of the such as a constant which case wed for the line is also

lines, only

et the base or latitudes, be received and shall be correction, e last towne meridian d the range

ths and di to be the

oe effected continuous ength of a ographical hain, to be

distances
th of the
than two
than two
the two
asure over
within

would be fore, in a mation to yor, while e produccourse to such application of trigonometric methods, for obtaining the distances along it, as his judgment and the necessities of the case may lead him to employ. If using triangles, it is to be remembered that the result obtained is more accurate when angles are measured than when they are laid out.

Standard chains. The surveyor shall have a standard chain with which the field chains are to be frequently compared. It will be tested at the Dominion Lands Office, and the temperature of comparison noted. As every ten degrees Fahr. more or less heat would give to measurements a corresponding increment or decrement of somewhat more than half a link to the mile, and that in the North-West Territory a season of field work, extending from early spring to beginning of winter, will include variations of temperature covering a range of at least 80 degrees, and sometimes 100 degrees, the side of a block chained in July or August might, from this cause alone, differ from that of an adjacent one measured in November, fully a chain.

Correction for temperature.

In ordinary summer weather, however, the corrections for temperature would, compared with the order of precision of the work generally, be inappreciable, yet they must not be entirely neglected. The temperature error*might, in any given case, happen to have the same sign as other uncorrected constants, or accidental errors, whose effect it would then go to aggravate. That in another case, further on, it might tend to counteract these, would not lessen the inaccuracy of position of the boundary monument planted under the first condition.

The surveyor will, therefore apply this correction for all variations of 10° and over, from the normal temperature of 60° for which the chains are compared or adjusted to standard. This he can conveniently do, by allowing half a link to the mile for each ten degrees Fahr., not attempting to note or estimate the temperature of his chain to less than ten degrees. This will keep his corrections in the convenient form of multiples of half links, and render tables unnecessary.

A thermometer attached to the end of a chain near the hand, fails to give the temperature of the rest of the chain; fastened to the middle and allowed to drag on the ground, it is liable to derangement and injury, it is therefore extremely difficult for the surveyor to obtain even a rough approximation of the temperature of his chain. By repeating at convenient times, and under varied conditions, the experiment of placing a pocket thermometer on, or in, the grass or brushwood, as nearly as possible, similarly to the average position of the chain during the trial, and comparing the temperature attained by the

thermometer so placed with that of the air, or indicated by a thermometer attached to the leading end of the chain, a rough idea may be got of the allowances that should, in practice, be made in taking the indications of the latter, or in rudely estimating the temperature of the chain from that of the air at the time.

li

n

 \mathbf{f}

b li

01

b

88

tl

en

of

in

w

fee

or

be

All

che

me

der

ate

up

ลุกยู

the

The

p. 4 20.

ent

to h

frac

]

Attention should be paid to the condition of the chain during measurement, whether wet or dry; a wet chain will have its temperature lowered to a great extent, principally in dry weather. The colour of the chain also has some influence; a black or dark blue chain will absorb more heat than a bright one.

Steel band chains are very liable to break; this fact cannot be impressed too strongly upon the chainmen. In case such an accident should happen, the surveyor ought to be provided with a small steel punch with sharp edges, a few copper rivets and some brass plates cut to the width of the chain. Holes can be punched through the steel band and the repair effected with two fish plates riveted together with the chain.

Correction for inclination.

Besides the small plummet line that should be carried by the chainmen to enable them to get correctly past minor irregularities of surface, the assistant should carry an Abney or Locke pocket level clisometer, by which he can obtain the inclination, and thus permit the chainmen to use the more accurate method of chaining on the inclined surface, instead of the one requiring them to hold their chain level and entailing a continuous repetition of plumbing down from the high end to the pin in the ground.

Use of clinometer.

In using his clinometer, the assistant will stand at one end of the slope, one of the chainmen standing at the other end, and he will sight through the instrument to some part of the chainman's body, the height of which shall have been previously ascertained to be the same as the height of his own eye. Such point will easily be found by using the clinometer at zero, the assistant and chainman standing close together and on the same level.

Chainage—
how entered in the Field
Book.

The field-books supplied to surveyors contain a table of the correction per chain for given angles of slope, and also a form for applying the corrections to the chainage. The first number to be entered in this form is the length, in links of the chain used, of the quarter section to be laid out. When the chain can be adjusted for length it is adjusted so as to be standard at 60° Fahr.; the number to be entered is then the theoretic length of the quarter-section, forty chains or forty-one chains as the case may be. When it cannot be adjusted

ndicated by a nain, a rough practice, be rudely estiof the air at

e chain durin will have pally in dry influence; a han a bright

fact cannot In case such be provided opper rivets ain. Holes air effected n.

t should be them to get surface, the vel clinomhus permit chaining on em to hold petition of ground.

will stand chainmen hrough the e height of the same y be tound chainman

contain a ven angles he correcnber to be the chain When the as to be then the or fortyaljusted

the surveyor ascertains its length at 60° Fahr. by comparison with a standard, and computes the number of links of his chain required to give, at the above temperature, the proper length to the quarter-section. With a chain too long, the number of links will be less than the true length and vice versa. This number being entered in the Field Book form, the corrections for slope will be written underneath; they are in all cases to be added. The correction for temperature, one-quarter of a link to the quarter-section for every ten degrees Fahr., is to be entered next; it is added when the thermometer is below 60° and subtracted when above the same.

At the end of the quarter section, the algebraic sum of the quantities entered will show the number of chains and links to be actually measured on the ground in order to give to the said line its exact length, forty or forty-one chains. The sama process will be followed to find the distance to be measured for

the section corner.

It will be seen that the distance for the topography, being entered as found in the field, will be in error by the amount of the correction to the chainage. This quantity being generally small, may be neglected for the topography but the posts should be entered at their true distances.

The method of chaining along the slopes and correcting for inclination, will be applied only with the Gunter's chain, by which posts are planted and boundaries ascertained; the 100 feet chain, being solely as a control, will be used in the ordinary manner, breaking chain when its full length cannot be levelled.

All calculated distances to be

When the distance across an obstacle is determined by a triangle, the surveyor must be careful to check it by another independent operation, either another triangle or a micrometer measurement, so as to conform to the principle of double indepen-

dent chainage.

If a second triangle be adopted, having the side to be calculated common with the first triangle, it will be sufficient to set up the instrument at both ends of this side; any error in the angles would be shown by the calculation. In all triangles, the angle opposite to the base shall be called B, the angle opposite to the side to be calculated C and the third one A. The calculation is to be made according to the form given on p. 40 which refers to the specimen of field notes (opposite p. 20.) The distance to the near side of the obstruction being entered at the proper place, it is only necessary to fill the form to have the distance to the far side. From this last point the chainmen start with the number of tallies and pins and the fraction of chain found by the calculation.

STANDARD MERIDIANS AND PARALLELS.

Rect. Slope.	40.140	TRIANGLE No.	43 Corrected An	b=	9.442
ee.	13	A= 61° 43'	640 44'	log. b=	0.97506
**	7	B= 55 56	55 57	cosec. B=	0.08168
4.6	24	59 18	59 19	sin. C=	9.93450
44	- 1	179 57	180 00	log. c=	0.99124
"	1			Carris	9.800
68	i	Distance to	near side of o	obstruction=	[0.050
66	- 1	Distance to	far side	" =	9.850
44	j.	The state of the s	The Man and the second		
68		TRIANGLE No.	44	5 =	5.287
. "	i'	A= 58° 03'	286 431	log. b=	0.72321
68		B= 52 51	5 2 59	cosec. B=	0.09861
44	C	69 09	69 08	sin. C=	9.97054
Th. cor.	- 5	180 03	180 00	log. c=	0.79263
∄ Sect. 4	0.182	•		c=	6.200
	1.140	Distance to r	ear side of ol	struction=	37.000
Slope.	11	Distance to	ar side	" =	43.200
"	6	and professional			
"	18	TRIANGLE No	*****	b≕	
4.4	23 A			log. b=	
"	2 B=			cosec. B=	
66	1 C=			sin. C=	
66	1	1		log o	
**	- 11			log. c=	
				c==	
**		Distance to ne		truction=	
"		Distance to far	side	" =	
"					
u	1				
Th.cor. —	7				
Sect. 81.3	377				

Si la de

b v se ir

De of the

th fin

dia of dia usi hig ing wi of gra ver

Dec gra

rea blu pro less ful to l

Assi inst

for offs

9.442 0.97506 0.08168 9.93450 0.90124 9.800 [0.050

5.287 0.72321 0.09861 9.97054 0.79263

37.000 43.200

6.200

Should the extension of a block line be hindered by a very large lake or marsh, the surveyor may large lakes or marshes.

Hass round the same projecting for the purpose the adjacent township lines. In working round in this way to arrive at and take up the continuation of the block line on the opposite side of the obstruction, the surveyor will regularly post off and mark out all township, section and quarter-section corners on the several lines, reporting the circumstance fully and sending all the field notes of such additional work forward with the returns of survey.

Instruments.

Description of transit theodolite.

The surveyor in charge shall have a reiteration transit theodolite, with a six-inch horizontal circle reading by three verniers to 0°004, and a finder for stars in day time.

The telescope has an objective of one and a half-inch diameter, and nine inch focus, supplied with direct eye pieces of power equal to 12, 18 and 32 for terrestrial work, and a diagonal eye piece with powers of 30 and 60 for star work. In using his instrument, the surveyor should always employ the highest power compatible with satisfactory definition. The instrument is provided with three verniers, because, by reversing the telescope and turning the azimuth plate 180°, readings will be obtained on the same object, at six equidistant points of the circle, thus tending to eliminate periodical errors of graduation to the same extent as an instrument having six verniers.

Decimal graduation.

The degree is subdivided decimally, instead of, as usual, into minutes and seconds, in order to facilitate the taking of a mean of a number of readings of the three verniers, and to lessen the chances of blunder, in so doing, by substituting the more familiar process of division of quantities counted by tens to the less familiar one of dividing quantities counted by sixties.

A small magnetic needle, attached to the instrument, is useful in finding stars in day time, when the surveyor may happen to be elsewhere than on a line of known azimuth.

Assistant's instrument. The assistant will be provided with a reiteration transit having a four-inch horizontal circle reading to minutes or to 0°.01; it will be used for measuring the angles of small triangles, laying out offsets for passing obstacles on the line, measuring the bear-

ings of witness mounds or bearing trees, giving to the axemen the direction of the line to be opened out in the bush, and generally to do whatever will be done with sufficient accuracy and more conveniently than with the larger instrument used in the production of the line.

az

CO

lin me

an

thi

1'08

eas

che

ne

we 27(

the

 N_0

equ

que

ing

Azi

serv

Pola

the

 \mathbf{of} eno in d

7

B

atio

wor

lam

ligh

nior ordi

out tion thei wor

Prog for ot

tical

the

the v poin

TI

For his astronomical work the surveyor must be provided with a sidereal pocket chronometer or watch conforming in quality and performance to what is here set forth as desirable for the purpose.

Pocket chro-For use in this service a watch with good lever nometer or escapement is to be preferred to one with watch for chronometer escapement; the latter is not so astronomical well fitted to withstand the unavoidable vicissitudes of rough carriage while the wearer is

jolting over lumpy prairie in a waggon, riding on horseback, or climbing over the trunks of prostrate trees in a windfall. In jumping down from one of these, or from his saddle, the escapement is very liable to catch, and in doing so injure the point of one of the fine scape wheel teeth, rendering the watch

useless till repaired by skilful hands.

The best suited to the purpose is a well-made lever watch, having a compensation balance that has been subjected to trial in temperatures of opposite extremes, say freezing and 80 Fah., and carefully adjusted to good performance in both, and with good hard Breguet hair spring, well coiled and properly pinned, that is to say, being, by trial, in conjunction with its balance, fastened at such points in its length, and given such initial and terminal curves, as to secure isochronal vibrations of the

This may be tested by varying the conditions of resistance to the driving power, which may be conveniently done by varying the position of the watch so as to produce change in

the length of arcs of vibration.

A good watch should include in a range of 5 seconds all the differences of daily rate that would occur in running it for twenty-four hours in each of the six positions-flat on back, on face, on edge XII up, VI up, III up, IX up.

Directions.

Azimuth of The directions of the east and west exteriors of a block being throughout coincident with those of meridians, their azimuth is constant; but, on its northern and southern outlines, consisting of the four successive chords to a parallel of latitude that are formed by the bases of the townships standing on that parallel, the

ing to the in the bush, h sufficient larger in-

e provided forming in s desirable

good lever one with is not so ole vicissiwearer is horseback. windfall. addle, the injure the the watch

er watch, d to trial 180 Fah., and with y pinned, balance, h initial ons of the

ssistance done by hange in

s all the ng it for on back.

xteriors it with it; but, he four med by el, the

azimuth varies with the progression along a chord from one corner of a township to the other, because the direction of the line is the same throughout, whilst that of each successive meridian to which it is referred, differs from the direction of any preceeding one by the amount of their convergence.

Reckoning azimuth from zero at the north point round through east, south and west, -90°, 180° and 270°, -and representing the convergence of the two meridians forming the east and west outlines of a township by C, the azimuths of the chord forming its base would, at each successive section corner, beginning at the eastern corner of the township, and going westward, be $270 + \frac{c}{2}$, $270 + \frac{c}{3}$, $270 + \frac{c}{6}$, 270, $270 - \frac{c}{6}$, $270 - \frac{c}{3}$, $270 - \frac{c}{2}$, the deflection angle between a chord produced and the next one equalling C.

The quantity given in the accompanying geodetic tables Nos. III and IV, under the heading of "chord azimuth," is equal to $90^{\circ} - \frac{c}{2}$, which substracted from 360° gives the above quantity $270^{\circ} + \frac{c}{2}$. C is given in those tables under the heading "Deflection."

Azimuth ob-The reference of lines to an astronomic meriservations to dian, in order to obtain their direction, or to be made on check the accuracy of their production, shall, Polaris. as a rule, be made by observations on Polaris.

The telescopes used being amply powerful to show stars of the second magnitude within a few hours from noon, and stars of the third magnitude in twilight when it is still clear enough to read the graduation, the observations shall be taken

in day time, whenever practicable.

Besides avoiding the errors peculiar to all artificial infumination, and likely to be specially developed in the case of field work in unsheltered positions, and with light from reading lamps held by hand, inconstant in direction ar 'nsteady, daylight observations have the advantage that they are conveniently made with the instrument at one of the stations for the ordinary production of the line, and during its progress, without materially, if at all, interfering therewith. Day observations also give the surveyor more time in evening in camp for their reduction, and for checking his own and his assistants' work generally.

Programme In observing for azimuth, the surveyor will for observing.

adopt the following programme:

The instrument being in the position which places the vertical circle to the observer's right hand when looking through the telescope, it will be directed to the reference object and the verniers read, then to the Pole Star, noting the time of pointing and the reading of the verniers. The level of the

azimuth plate is read or the inclination of the horizontal axis measured with the striding level.

Reversing the instrument by received the telescope and turning the upper plate 180° in azimuta, so that the vertical circle is now to the left of the observer, the telescope is directed to the Pole star, the level recorded and readings taken on the reference object, as before reversal.

In strong daylight, the surveyor will experience and difficulty in finding Polaris, unless his telescope be in the precise direction of the star. He will readily place it so by help of the quantities given in Table VI. Its use does not

Causes of In making these observations, as in angular error-yieldmeasurements generally, care should be taken ing of stand. when turning the instrument in azimuth by hand, to use the same forward or backward motion throughout for every pair of pointings in same position, the angle between which is intended to be read on the horizontal circle. tends to obviate the effect of any yielding in the instrument stand to that part of the impulse of revolution that passes down through the foot screws to the stand head. much-used forms of stand this occurs to a notable extent, and as there is no certainty that in springing back, or "untwisting," the stand resumes exactly its original position, serious errors are to be apprehended in their use, unless the utmost care is taken. A source of similar error is looseness of foot screws in their nuts. 'The pinch screws closing these last should always be screwed up so tightly as to have the levelling screw turning stiffly in the nut. Even though this may entail more rapid wear of the screw, and be less convenient to the observer in bringing quickly, and with nicety, his level bubbles to their desired position, the certainty that it ensures

Direction of The tangent screw should always be turned so motion of tanas to push against its counterpoise spring; begent screw. cause in turning in the opposite direction the spring might fail to bring back the azimuth post once and do so only during the interval between to our orvation and the reading of the verniers. Should there be any drag of the verniers, this will also prevent it affecting the measure, as the motion will always be in the same direction.

Observations If any accident has occurred to a three-vernier with a two instrument, and a two-vernier instrument has to vernier inbe used, then, after the two observations as above, strument. a third should be made, shifting for the purpose the lower limb 90° in azimuth, if the instrument be a repetition one whi

Refe ject. at froi

S

aero of a obje refe

to b

the

Surv obser ezim every day

mor inter take and shor shou

whei and o is su

Watc

W verti fo!lov The o of the

Value divisio the la

plate a rod tain in th broug tube, rizontal axis

clescope and the vertical to is directed aken on the

ience so ne be in the se it so by e does not

in angular
l be taken
h by hand,
ughout for
le between
cle. This
natrument

hat passes
In some
le extent,
back, or
l position,
unless the
looseness
ing these
have the
righ this
privenient

turned so ring; betion, the 3 s once of ervabe any the mean.

his level

t ensures

vernier at has to s above, purpose repetition one; 120° by lifting it off stand, and changing foot-screws one interval round, if it be a reiteration instrument, i. e., one which has no motion of lower limb.

Reference object.

The reference object for azimuth work, whether in the day time a picket on the line, or at night a bulls-eye lantern, should be, if possible, at least half a mile from the observer.

Such a lantern having to slide on over the lens a tin cap, across which there is a vertical slit having an opening in width of about quarter of an inch, makes an excellent reference object.

In the case of night observations, the angle between line and reference object is to be determined before observing, and not to be left till morning, thus subjecting the reference object to the risk of accident or removal.

Surveyors to observe for szimuth every clear

Surveyors are expected to observe for azimuth every clear day. With proper care in transporting the instrument, the levels will seldom get much out of adjustment, and then the complete observation for azimuth as above does not require

more than ten minutes; generally it can be done without interfering with the work on the line. The reduction will take about difteen minutes. It is hoped that with the forms and tables supplied to surveyors, the work has been made so short and easy that no objectito the frequency of observation should fairly exist.

Watch error. The watch error is required for the reduction of the observations; it may be found very simply, when on the line, by placing the telescope in the meridian and observing the transit of a star. The time thus deduced is sufficiently accurate for the purpose.

When not on the line, the transit of a star through the vertical of Polaris may be observed, and the time found by following the directions given in the explanation of Table VII. The observations for time are entered in the form at the end of the book of record of astronomical observations.

Value of one division of the level is redivision of the level.

To obtain this, the level is placed on the azimuth plate parallel to the plane of revolution of the telescope, and a rod, with two marks upon it, is placed vertically at a certain carefully measured distance from the instrument and in the direction of one of the foot screws. The bubble is brought, by turning the foot screws, close to one end of the tube, and the telescope directed to one of the marks on

the rod and firmly clamped. The front foot screw is then moved until the telescope be directed to the other mark and the displacement of the bubble noted. The difference between the inclinations of the level in the two positions will be deduced from the distance of the rod and the interval between its marks; dividing it by the number of divisions of displacement will give the value of one division.

of

19

Ta

Sul

Tat

Sec

Sin

Sub

add

pro

on

obs

me

rig

the

J

Formula for Surveyors are at liberty to use any formula or azimuth. process for reducing their observations, but, as forms and tables could not be prepared for every method, the following formula has been adopted; for convenience, with regard to future reference, it is desirable that all surveyors

Tan
$$Az = \frac{\text{Tan } P \sec \phi \sin t}{1 - \tan P \tan \phi \cos t}$$
.

where P. of t. are polar distance, latitude and hour angle re-

Reduction of In the form of record of astronomical observaazimuth obtions (see page 48), the letters R and L represent servations. the positions of the instrument, circle right and circle left, H. C. R. is for horizontal circle reading; R. O. reference object; R. A. right ascension, and Az. azimuth.

Representing by W. and E. the readings of the west and east end of the level, the level correction will be equal to the

$[\frac{1}{4} (W-E) \times value of one division]$

multiplied by the inclination factor.

It is to be added to or subtracted from the mean H. C. R. according to signs, that is to say, added when the west side is high or when W. is greater than E., and subtracted when

The logarithm of tan P is given for every tenth day in the annual tables supplied to surveyors; an interpolation at sight will give it for any intermediate day.

The logarithms of secant and tangent ϕ are given in Table

V for the north side of every section.

The subtraction logarithm is found in Table XII, using as argument A the logarithm of "tan P tan ϕ cost." The corresponding logarithm, B, is to be added to the logarithm of tat. $P \sec \phi \sin t$ " when t is comprised between 0^h and 6^h , or 18^{h} and 24^{h} ; it is to be subtracted when t is comprised berew is then other mark difference sitions will he interval divisions of

formula or ns, but, as nethod, the e, with resurveyors

angle re-

observarepresent right and ; R. O. auth. west and al to the

H. C. R. st side is d when

y in the at sight

n Table

sing as he corithm of and 6h. ed be-

The following examples, one in each quadrant of a revolution of the Pole star, will show how the calculation is to be made:

Ex. Required for the 6th July, 1880, at a point on the 6th base line, or 20 townships north of the 49th parallel, the azimuth of Polaris for hour angles of 2^h 10 ^m, 9^h 32^m, 16^h 44^m, and 19 52m.

	For	s = 2h. 10	m.	For $t = 9h. 32m$.		
Tan P (annual table)		1	8.36640	8.36640	8. 36640	
Sec ϕ (Table V)	0.19877	Tan φ,	0.08772	0.19877	0.0877	
Sin #	9 73022	Cos t,	9.92603	9.77946	9 90235	
	8.29539		8.38015	8.34463	8.35657	
Subt. log (Table XII)	+0.01030			-0.00976		
Tan Az	8.30569	Az = -	- 1.1581	8.33487	Az=-1.2386	
				1		
	For t	= 16b. 4	im.	For t =		
Tan P (annual table)			im. 8.36640	For t = 8.36640	= 19h. 52m.	
Tan P (annual table) Sec φ(Table V)			8.36640		= 19h. 52m. 8 36640	
	8.36640	Tan φ,	8.36640	8.36640	= 19h. 52m.	
Sec ϕ (Table V)	8.36640 0.19877	Tan φ, Cos t,	8.36640 0.08772	8,36640 0.19877	8 36640 0 08772 9.67161	
Sec ϕ (Table V)	8.36640 0.19877 9.97567 8.54084	Tan φ, Cos t,	8.36640 0.08772 9.51264	8,36640 0.19877 9.94593	8 36640 0 0 08772	

The log. tan. Az. is transformed into logarithm of the are by adding log. T (see page 49), thus avoiding the calculation of proportional parts.

The azimuth by account, when the R. O. is one of pickets on the line, is the theoretic azimuth of the line at the place of

observation.

The direction of the line is corrected by placing the instrument a certain number of inches from its former position at right angles to the line. This offset is found by multiplying the distance of the back picket by the tangent of the correction.

SPECIMEN OF RECORD OF

Place, 45 chs. E. of N.E. corner Sec. 31, Tp. 28, R. 17, W. of 2nd M.

Face.	Ob	inct .	~					
F		rved.	" Chrono Tim	meter e.	Horizon	tal circle reading.		
R.	R. (0.		-		B.	C.	
	Pola	1	h. m.		173.082	080	084	
L.	Pola	- 1	13 53	25	83.445	443	447	
	R. (13 56	33	•473	475	477	
	20. (173.079	082	084	
Chr. Tim	ıe.	. 13	53 25	13	3 56 33	Tan. P.		
Chr. Erro	r.		2 13	_	- 2 13	Sec. and t	an. o	
Sid. Time		13	51 12	13	54 20	Sin. and cos. t		
Polaris R	. A.	1	15 43	1	15 43	Sum.		
	t	12	35 29	12	38 37	Subt. log.		
Log. 793.		0 00	2 2 2			Tan. Az.		
Log. tan.	0000	2.898	bac	Dist k picke:	ance of =53.65chs	Log. T.		
Log. dista		5.688	904		Log. Az.			
Log. offset	1.	1.803		Az.				
Offset in i		0.391	. 5 7		H. C. R. on star.			
Onset III I		2 . 4 6				True North	l.	
	TABLE	OF INCLIN	ATION FA	CTORS.		H. C. R. o	n R. O.	
No. of Township.	0h or 24	Hour	angle of 1	Polaris.	5h! 12h	Azimuth R.	0.	
				01 10	12"	Az. by acc	0mn#	
0	1.20	1.18	1.15	1.12	1.10	Correction.		
20	1.28	1.25	1.23	1.20	1.17	41.000.04.		
40	1.37	1.34	1.30	1.28	1.25			
60	1.46	1.42	1.39	1.36	1.33			
80	1.56	1.52	1.49	1.45	1.42			

CORD OF

V. of 2nd M.

e reading.

C.

0 084

3 447 5 477

2 084

ıd tan. φ

.

d cos. t

og. z.

z.

on star.

2. on R. O.

h R. O.

account.

on.

AZIMUTH OBSERVATIONS.

Date, 21st July, 1881.

One division of level = 0.0011

Date, 21st Ju	11y, 1881		One division of level = 0.0011					
Level	E —	Level Correct.	Mean H. C. R.	Corrected mean H.C.R.				
10.2	8.5 7.4	+ 0.0019	83.4450 .4750	. 8	3.0820 3 4469 .4769 3.0817			
8.36465 0.20533 9.18811 7.75809 — 1229 7.74580 1.75812 9.50392 0.3191 83.4469 83.1278 173.0820 89.9542		8.36465 0.09855 9.99477 8.45797	8.36465 0.20533 9.22454 7.79452 — 1226 7.78226 1.75812 9.54038 0.3470 83.4769 83.1299 173.0817 89.9530 89.9530 89.9530 89.9502 .0028	9.	36465 09855 99381 45701 1.75812 11 10 09 08 07 06 05 04 03 02 01 00 .75799 98 97 96 95 94 93 92 91 90 89 88			

Record of azimuth observations to be part of the returns.

The observations will be entered in the note book of astronomical observations at the time they are made, the calculations made either in pencil or in ink, and the book will be sent in as part of the returns of survey. No copy will be accepted.

(See specimen page 48.)

Production of Line.

Only one flagman to be comployed.

In producing the line the surveyor will employ but one flagman, a forward picketman; a back flagman is not necessary, as the surveyor can have which he can set himself before leaving it.

Pickets. Perfectly straight pickets are not indispensable; a part of the picket, exactly in the line, may be indicated by some visible mark and only this part used in the production of the line.

The flagman carries an ordinary surveying picket, about nine feet long, and terminated at the lower end by an iron point exactly in the axis of the picket. A small bubble, placed at right angles to the axis would be a valuable adjunct to ensure verticality.

Production of the line.

When the flagman comes to the place where a new station is to be established, the surveyor will give him roughly the direction of the line. A wooden slab, held to the ground by two small wooden pins or by stones on the ends, will then be placed at right angles to the line at the point determined as above and in all subsequent operations, the picket will be held on the slab, and its position

marked with a pencil.

In setting a point forward on his line, the surveyor will be careful never to do it in one position only of his instrument; in all cases, first making his back and forward sights circle right, then reversing his instrument, repeating them circle left, and having his flagman so instructed that the latter shall consider he has to make in each a separate and independent setting of his picket between which, if there be any difference, the surveyor is carefully to mark the middle-point. Then the process is to be once repeated, so that there shall be two pointings in each position of the instrument on the back and forward pickets respectively, or eight pointings in all.

The same rule as to the reversion and number of pointings is to be observed in offsetting the line to get past long reaches unfavorable to chaining or triangulation.

De an off tio

off tan for very condent the

the

nui line ma the pic. cha at I

How at th of a min thus

me

the be, the

not of th have in the note at the time de cither in ent in as part be accepted.

will employ an; a back or can have ns a picket

t indispensn the line, is part used

cket, about by an iron ble, placed inct to en-

ce where a rveyor will ne line. A len pins or ngles to the subsequent its position

ror will be rument; in role right, e left, and ll consider setting of e, the surhe process intings in l forward

pointings g reaches It will be seen that the slab ought to be of such a length as to allow play for collimation.

Deflection The deflection angles at township corners on angles turned the base lines can be turned off without any reading of the graduation, by using the "deflection tion offsets. offset" given in Table III. This deflection offset is the length, at the distance of one chain, of the tangent of the deflection angle, or the angle between the chord forming a township side and the next chord. When the surveyor comes to a township corner, the last picket before the corner is placed south of the line, at a distance equal to the deflection offset of Table III, multiplied by the distance from the corner, and the instrument, instead of being set up over the forward point previously ascertained, is placed north of the line, at a distance equal to the deflection offset multiplied by the number of chains between the instrument and the corner. The line is then produced from the back picket in the ordinary manner.

Supposing, for instance, that it should be required to turn off the angles at a township corner on the seventh base line, the back picket being 12 chains behind the corner and the instrument 15 chains beyond the same corner, the back picket will be planted at 12×1.501 or 18.01 inches south of the line, and the instrument set up at 15×1.501 , or 22.51 inches to the north.

At the corners of the block, the surveyor will turn the required angle approximately, and the flagman will hold his picket at the point so determined, while the surveyor measures accurately the angle thus turned off, in the manner explained below for measuring the angles of triangles. If the angle is not what it should be, the direction of the line will be corrected by offsetting the instrument at the next station.

Should the corner fall in such a place that the angle could not be measured correctly, as for instance at B (Fig. 15), one of the stations, C, being too near the corner, the surveyor will have the angle at B approximately turned off by his assistant

with the small transit, and measure the angle EAC. He will then set up his instrument at C, determine approximately the next station D, and measure ACD. The sum of the two angles EAC, and ACD, should be equal to 180° plus the angle to be turned off at B. The error, if any, is corrected by offsetting the instrument at D.

Scheme for triangulation.

In cases where a triangulation would be necessary, the following would be the scheme of direction readings at a station in a chain of triangles. Taking the stations as bearing on one side of the chain the odd numbers 1, 3, 5, 7, &c., and on the other the even ones 2, 4, 6, 8, &c., and assuming for instance the observer to be at Station 6, and representing by the letter r the respective azimuthal circle readings, corresponding to the successive pointings on the station under whose number the letter is placed, the series of readings would be:—

 \mathbf{f}

C

C

Fi

in

Circle R	St. 4. r r r r	St. 3. r o o	St. 5. r r r	St. 7.	St. 9. r r o	St. 8, r r r	St. 4.
	$\mathbf{r_4}$	$\mathbf{r_3}$	\mathbf{r}_{5}	\mathbf{r}_7	ro	re	,

Representing the sum of the readings on such station by the letter r, with the subscript number of that station. The mean direction reading for each, would, representing it by letter d with similar subscript number, be—

$$di = \frac{r_4 + r'_4}{8}$$
, $d_3 = \frac{r_3}{2}$, $d_5 = \frac{r_5}{4}$, &c., &c.

And for one of the triangles 3...4...6 the angle at station 6, between the directions 6 to 3, and 6 to 4, is:

$$3 \cdot 6 \cdot 4 = d_4 - d_3$$

The direction of the diagonals 6.3 and 6.9 are taken out but once in each position, because they are not intended for calculation of sides, but only to serve where a gross error may have occurred, such as sighting on an object not a station, in detecting by combining therewith the various directions involved, at what station the error has been committed.

Great care should be exercised in setting station poles, to place them truly over their central marks, and in making them securely and exactly vertical; also, in centring instru-

approximately sum of the two 180° plus the is corrected by

rould be necestheme of direcn of triangles. The chain the the even ones observer to be the respective he successive the letter is

ch station by station. The esenting it by

o., &c.

at station 6,

re taken out nded for calis error may a station, in directions itted.

on pcles, to in making tring instrument over these station marks when observing. Any neglect in this respect completely neutralizes the approximation to accuracy that is aimed at by the reiteration of the angles laid down in the programme.

Reports and Returns.

Monthly Returns.

Block surveyors shall send reports of progress at intervals as nearly monthly as circumstances will allow; such reports to be accompanied by sketches, on the scale of six miles to the inch, on the printed forms supplied, shewing in red the lines run up to date, the deviations of the base lines, the depth of quarter-sections adjoining the correction lines and the length of the jogs on correction lines. The general character of the surrounding country shall be indicated by the following tints:—

Bush,—green.

Prairie and bluffs,-small patches of green.

Prairie,—blank.

They will also inform the township outlines surveyors, working within their blocks, of the depth of quarter-sections adjoining the correction lines, the length of the jogs ca the correction lines and the deviations of the block lines.

Final Returns. The final returns of the survey will consist

1. A diary for the time the surveyor has been employed.

- 2. Plans of the survey, on the scale of forty chains to the inch on the forms supplied. They will show all the topographical features of the country crossed by the block lines, in the manner prescribed for subdivision surveys. (See § 102.
 - 3. A copy of the field notes.
 - 4. The record of astronomical observations.
 - 5. The formulas of oath for chainmen, duly sworn to.
 - 6. A general report of the survey.

SURVEY OF THE TOWNSHIP OUTLINES.

te

in qu ob

en

the tu

on

ces

orc

tin

wa

wii

slo

tim

illu

wit

mo

wir

moi pos

mot

Instruments.

The instrument to be used for the survey of the township outlines shall be a transit theodolite with a vertical circle, both circles reading at least to minutes. It shall be inspected and approved by the head office.

Method of subdividing Blocks.

In surveying the meridian exteriors, the surveyor will commence at one of the township corners of the base line.

He will carefully measure one or two miles of the base before beginning the subdivision of the block; this will enable him to compare his chaining with that of the lines previously run.

The meridian is to be carried only as far as the correction line, where a temporary post is left. The corresponding meridian is then surveyed from the township corner on the next base to the same correction line, and the jog run between the ends of the two meridians, on the proper azimuth. The north and south closing error is distributed equally between the two quarter sections, adjoining and on each side of the correction line, so as to make both quarter-sections of the same depth. The marks for township corners are now permanently established.

No posts are to be planted by the surveyor of township outlines, between the township corners on the correction line.

Measurements.

Any difference in the chainage of two meridians will cause corresponding deviations in the east and west lines joining the same; great care should therefore be bestowed on the measurements. Chesterman's steel band chain shall be used and every precaution taken to ensure accuracy.

Limit of error. The mean average deviation of any twelve miles meridian should not exceed one minute and thirty seconds, but single errors may be larger, if frequent observations are taken. Being distributed according to the law of accidental errors, they will, in a certain measure, compensate each other.

Observations for azimuth. The direction of the line with reference to the astronomical meridian will be readily obtained by observing the sun's altitude before or after noon. If the

IES.

e township circle, both pected and

will come.

enable him ously run. correction esponding her on the n between with. The between side of the

now peraship outn line.

ns of the

meridians the east re should sterman's taken to

elve miles nd thirty observae law of mpensate

ce to the sained by

telescope is reversed during the observations, so as to eliminate instrumental errors, this method will give all the accuracy required, and will exempt the surveyor from having to take observations at night.

The instrument should be provided with a coloured glass to enable the surveyor to look at the sun through his telescope.

Azimuth by the sun. The observations will be made first with the vertical circle to the right of the observer and then with the circle to the left, reversing the telescope and turning the azimuth plate 180° in azimuth.

In the first instance the image of the sun is to be brought in one of the angles formed by the wires in the telescope so as to be tangent to both wires at the same time, and the same process is to be repeated with the instrument in the second position, but with the sun's image in the opposite angle. In order to bring both wires tangent to the sun's limb at the same time, the sun's image should be placed so as to move towards one wire while going off the other; the former wire is kept tangent to the sun's limb by the proper slow motion screw until both wires are tangent at the same time. In the opposite angle of the wires, the same process

Fig. 16.

is repeated with the other slow motion screw. Fig. 16 illustrates how the sun's image should appear in the afternoon with an inverting telescope, the apparent direction of the sun's motion being shown by the arrows. In the first position the wire A C should be kept tangent to the limb with the slow motion in azimuth, until D B is also tangent. In the second position D B would be kept tangent to the limb with the slow motion in altitude until A C is also tangent.

DATE-21st November, 1881-3 18 P.M. PLACE-2nd base line-50 chs. W. of N.E. corner section 31, B. 14 W. of 3rd meridian.

	H. C. R. ON LINE	184° 35' 30''	184 36 00	Rec. $h = 0.0034$ Rec. $h = 0.0034$ Rec. $h = 0.18612$ Cos. $S = 9.96168$ Cos. $S = 9.96168$ Cos. $S = 19.2260$ Cos. $S = 131.53$ Cos. $S = 131.5$	
erician section 31, fb. 14 W. of 3rd meridian.	H. C. R. ON SUM.	323 07' 00" 322 12 00	322 39 30	$\begin{array}{c} h = 6^{\circ} & 39^{\circ} & 31^{\circ} \\ \phi = 49 & 0.5 \\ 0.28 = 10 & 0.7 & 17 \\ 0.28 = 166 & 0.7 & 46 \\ 0.7 = 28 = 168 & 0.3 & 53 \\ 0.7 = 27 & 0.3 & 24 \\ 0.7 =$	
O HOMOS TOTAL	SUN'S ALTITUDE.	6° 44' 00'' 6 50 00	6 47 00	Greenwich Time. ovember 21 34, 18m. c=November 21 7, 08. Sun's Polar Dislance. Decl. at 0h = 20° 01' 35'' Var. for 10h. 26m. = + 5 · 42 22'' Decl. at 10h. 26m. = 20° 07' 17'' 9 \text{A = 110° 07' 17''} \text{31''}	
	CIRCLE.	LB	Mean.	Correction of altitude. Sun Obs. altitude =6° 47° 00° Difference =6° 38° 22° Difference =6° 38° 22° Parallax = 9 Parallax = 9	

DATE-June 15th, 1881-7.20 A.M. PLACE-8th base line, 25, ch. 19.

Datz-June 15th, 1881-7.20 A.M. PLACE-8th base line-25 chs. W. of N.E. corner section 36, R. 17, W. of 2nd meridian.

Az. by account= 90 03 30

Error= 39"

k ==6° 39' 31''

H. C. R. ON SUN, H. C. R. ON LINE	i	176 17 176 39 30		26 45 Sec. 4= 86c. 4= 89 30	= 148 16 43 cos.	80	$8-\triangle = 7$ 28 51 $\cos \frac{\pi}{2} = 9.8^{\circ}0.75$	$\frac{z}{2} = 44^{\circ} 50^{\circ} 00^{\circ}$	H. C. R. on sun =176 17 $^{\circ}$	North point = 86 37 00 H. C. R. on line = 176 39 30	Az. of line = 90 02 30 Az . by account = 90 03 08	Error= 38"	
Sun's Altitude. H.	29° 50° 3£	30 12	GRERNWICH TIME.	19h. 20m.	9	2 17	Sun's Polar Distance.	Decl. at 04 = 23° 20' 16" N.	Var. for 28 17"= + 14	Decl. at 2^h $17^m = 23$ 20 30 $\triangle = 66$ 39 30			
CIRCLE.	RI	Mean.	GREE	Local time=June 14	Longitude	Greenwich time=June 15	Correction of altitude.	Obs. altitude=30°12' 00" D	fraction = 1 .40	$\begin{array}{cccc} D.ff. & 30 10.20 & & D.\\ + Parallax & = & 8 & & & & & & & & & & & & & & & & $	h =30. 10.28		

The reading of the horizontal circle on the reference object, generally one of the line pickets, should be taken in both positions of the instrument, and the approximate time of observation noted.

The best time for observation is when the sun is near the prime vertical, that is to say nearly due east or west.

Reduction of The following formula is the simplest that may observations. be used for the calculation:

$$\cos \frac{1}{2}z = \sqrt{\cos S \cos (S - \triangle) \sec \phi \sec h}$$

where
$$S = \frac{h + \phi + \triangle}{2}$$

h being the true altitude of the sun, ϕ the latitude, \triangle the sun's polar distance, and z the angular distance between the sun and the north point. Reckoning the azimuth from 0° to 360° from the north point through east, south and west, z is the azimuth in the forenoon and 360° minus the azimuth in the afternoon.

The latitude and its secant are given in Table V, for the north side of every section.

On pages 56 and 57, two examples are given, one in the afternoon and the other in the forencen.

Reports and Returns.

The surveyors of township outlines shall send in reports of progress at intervals as nearly monthly as possible, such reports being accompanied by sketches on the scale of one-half mile to the inch, showing the work done and the character of the country, in the manner directed for block surveyors.

These sketches shall exhibit the length of every quartersection line when different from 40 chains. Such information is also to be sent directly by the township outline surveyor

to the subdivider, when requested by the latter.

The final returns of the survey are the same as for block surveys, with the exception of the record of the astronomical observations, which is not required.

ce object, in both ne of ob-

near the

that may

e, \triangle the ween the om 0° to vest, z is imuth in

, for the

in the

ports of such reone-half racter of rs. quarter-

rmation urveyor or block nomical APPENDICES.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

SIL SELLE ON

APPENDIX A.

ACCOUNTS OF SURVEYORS UNDER DAILY PAY.

Surveyors who are employed by the day, will receive, before leaving for their surveys, advances sufficient to procure their

outfit and supplies.

When a payment on account is applied for, a statement must accompany the requisition, showing, in detail, how the moneys received were employed and what expenses the money applied for is to meet.

No draft on the Department, or order, or power of attorney for moneys on account of the survey will be accepted until the returns of the survey have been examined and approved.

At the end of the survey, the horses and outfit will be left in charge of the Government contractor or disposed of accord-

ing to instructions.

Surveyors are particularly requested not to store or leave any part of their outfit at other places than the survey depot, as, in most cases, it has been found that articles stored in that manner had to be abandoned. Should it be impossible to bring the whole outfit to the depot, it is better to sell for whatever price may be obtained.

The accounts are to be in duplicate, and the original and duplicate must be exactly alike in all respects and made up in

separate bundles.

Each is to consist of:—

1st An account of personal services and allowances.

2nd A pay list of party, showing the date of engagement and discharge of every man, his occupation and rate of pay, and the number of rations for the party. It must be signed by

3rd A transport account, with vouchers duly numbered, accompanied by a separate and detailed statement of travelling

4. A camp equipage account. 5. A stationery account.

6. A balance sheet showing on the credit side the gross amounts of personal services, pay list, transport, camp equipage and stationery accounts and on the debit side the payments received on account of the survey.

Each of the accounts is to have its vouchers attached and

statements of sales, if any, attested by the purchasers.

The vouchers must give the detail of articles purchased, with the price of each.

The items of travelling expenses, camp equipage and stationery, for which specific amounts are allowed, are to be charged each in one lump sum, without giving details or vouchers, except, however, for travelling expenses of assistant for which a receipt from the assistant is required.

ALLOWANCES TO SURVEYORS.

Service.	Number or Quantity.	\$ ets.
Personal Services and Allowances. Salary of Surveyor in charge, per diem	. 1 2 1	1 00 1 20 1 25 1 00
Horses	••••••	160 00 75 00
All articles		15 00

page and , are to be details or f assistant

S ets.

1 00

15 00

APPENDIX B.

CONTRACT SURVEYS.

The subdivision of townships is to be made, according to law, at certain rates per mile. These rates are generally determined in advance for each township.

Where not so fixed, the mileage will be classified as follows:--

1st Class-Any land not classified as second or third class.

2nd Class-Poplar, and other soft woods, where occurring in alternation with prairie.

3rd Class—Contracts composed of townships all woods, and wherever they occur, heavy underbrush, hard woods, windfalls, thick willows.

Traverse lines will be classed for pay similarly to the principal lines of the survey, except in prairie or on ice, where they will be paid for at second class rate.

Nothing will be paid for trial lines, for offsets or for tri-

angles.

In addition to the above rates, the surveyor will receive:— Fifty cents for each description of settler's improvements. Fifty cents for taking the affidavit of occupation of each

Two dollars per mile above regular rates for lines posted

across river lots.

The description of settler's improvements referred to here,

is that contained in the statutory declaration.

It is to be clearly understood that the above prices are to include the making of plans, field-notes, reports, &c. as well as the cost of survey. Nothing will be paid for lines the mounding of which is not completed.

Should the number of offsets, in a traverse, be insufficient to determine properly the line surveyed or, more generally, should any part of the work not be performed in accordance with the instructions, a deduction representing the value of the work omitted will be made from the contract rates.

A surveyor, upon obtaining a contract, will be required to enter into a bond, jointly with two securities, in a sum equal to the estimated amount of his contract, for the due and faithful fulfilment thereof.

Surveyors will receive, with their contract, blank books for field use, blanks of progress accounts, statutory declarations, oath of chainmen and township sketches.

Blank books for office copies of field-notes, skeleton township plans, timber plans and reports and forms of general account will be supplied on the application of the surveyor,—stating the number of each required. It is recommended that such blanks should only be applied for at the time they are required for use, as, when carried in the field, they are liable to be spoiled.

Iron posts will be supplied free of cost, provided they are all used on the survey. Those not so used will have to be returned to the survey depot, otherwise they will be charged for at the rate of 25 cm.

for at the rate of 25c. each.

Steel dies to mark the tin squares on the posts will be supplied on application at the head office at the rate of \$5.00 per set.

The lines embraced in any survey under contract must be run by the surveyor in person, and no payment will be made H

b

n

86

8

th

10

ds

du

th

su:

tio

tra

an

up

the

Ma

no

on such contract work if otherwise performed.

A rigid inspection of the work will be made. On satisfactory evidence of any impropriety or unfaithfulness in the execution of a contract being reported to the Department, the survey will be cancelled and steps taken at once to recover from the surveyor or his sureties.

On receipt of the bond, properly executed, from a surveyor to whom a contract has been given, an advance of \$200 will be sent to his address, and a further advance of \$1,300 on account of contract, will be placed in the Bank of Montreal at Winnipeg.

payable there to himself in person.

Eighty-five per cent on account of the work performed will from time to time, be paid to the contractor or be placed to his credit, as he may direct. Such payments will be made on receipt of the progress accounts accompanied by sketches of the work. Credits may be telegraphed to the Bank of Montreal, if urgently required, but only after receipt of the sketches.—No sketches, no money.

All payments are made by cheques, issued either in favor of the payee, or in favor of the Bank of Montreal to be placed to the payee's credit. It is therefore useless to ask that bank bills be sent instead of cheques or that the money be placed to the surveyor's credit with another firm than the Bank of Montreal, unless the surveyor has previously ascertained that the

firm will accept Departmental cheques.

When a payment on account is applied for, the letter should state whether a cheque is wanted or a credit, and where,

It is of the utmost importance that the Department should be kept well informed of the surveyors' post office addresses. Every letter sent should state where the answer is to be forwarded to. Particular attention is called to this matter, as on township the most vexatious delays, due to this cause, are continually ral account occurring, and surveyors are the first to suffer therefrom. or, - stating l that such re required

FORM OF SURVEY CONTRACT.

THIS AGREEMENT, made the second day of April, 1883, between John Frederick Smith, of the city of York in the County of Armagh, in the Province of Ontario, in the Dominion of Canada, Dominion Land Surveyor, hereinafter called the contractor, of the first part, and Her Majesty the Queen, represented herein by the Minister of the Interior of Canada, of

the second part;

Witnesseth, that the contractor covenants with Her Majesty, Her Successors and Assigns, that in his own proper person, but with the aid of such chainman and assistants as may be necessary, he will, in strict conformity with such instructions as he may receive from the Minister of the Interior, the Surveyor General, or other proper officer in that behalf, well, truly and faithfully and to the satisfaction of the Minister of the Interior, perform the following surveys, viz:-

1. Subdivision of townships twenty-five and twenty-six in ranges six, seven and eight, west of the fourth Initial Meridian, and any additional survey which may, with his consent, be added to the above surveys.

2. That he will commence the survey on or before the first day of July, A.D. 1883, and will complete the surveys in manner aforesaid and return the plans and the true field notes, duly sworn to, and other returns of the surveys required, to the Department of the Interior in Ottawa, on or before the first day of April, A.D. 1884.

3. That all chainmen and other assistants required for the survey and other expenses connected therewith, are to be provided and paid for by the contractor.

4. That the contractor will report progress of the surveys to the Inspector of Surveys, in accordance with such instructions as may be given in that behalf.

6. That upon completion of the said surveys by the contractor in strict accordance with the terms of this agreement and to the satisfaction of the Minister of the Interior, and upon receipt by the Department of the Interior at Ottawa of the said plans, field-notes and other returns of surveys, Her Majesty will cause the contractor to be paid at the rates fixed by the Order in Council, dated the 23rd of March, 1883.

The number of miles actually run and marked in the field only to be paid for, random lines, bases of triangles and offsets not to be included. Main traverse lines of lakes, navigable

ct must be ill be made On satis-

ness in the

liable to be

ed they are

have to be

be charged

osts will be

te of \$5.00

tment, the to recover surveyor 200 will be

on account

Winnipeg, ormed will aced to his made on ketches of

Bank of sipt of the

in favor of placed to hat bank placed to k of Montd that the

ter should here. ent should

addresses. to be formatter, as rivers, or settler's improvements, as shown in the field-notes, to be paid at traverse lines rates.

- 7. That the contractor shall not assign this contract or any interest therein, and no payment shall be made for any surveys not executed by the contractor personally, assisted as aforesaid.
- 8. That should the contractor make default in commencing the survey on or before the date above fixed in that behalf, or should he fail to report progress of the surveys as above provided for, or should he fail to complete the surveys in manner above provided for or to return the said plans, field-notes and other returns within the time above limited in that behalf, the Minister of the Interior, Surveyor-General, Inspector of Surveys or other proper officer in that behalf, may procure the work hereby contracted for or any part thereof to be performed by the contractor, or any part thereof to be performed by others, in which case the contractor shall pay and make good to Her Majesty, Her Successors or Assigns, all damages, losses, costs, charges and expenses to which She may be put by reason of the contractor's default and by reason of having to procure the work to be performed by others, including any advances on account made to the contractor and any excess in the cost of such work over the contract price herein specified
- 9. That Her Majesty may cause advances to be made to the contractor from time to time during the progress of the works on account of the price thereof; but until the completion of the survey and receipt of the plans, field-notes and other returns as provided for, the contractor shall not become entitled to any payment, and if any such advances be made, they shall be considered as a loan to the contractor to be returned to Her Majesty, in case the contractor make default in carrying out any of the terms of this contract.
- 10. That should the surveys above mentioned and other surveys added as aforesaid, be completed in accordance with the terms of this contract, and the plans, field-notes and other returns be returned to the Department on or before the first day of January, A.D. 1884, Her Majesty will cause to be paid to the contractor as a bonus over and above the contract price, a sum of money equal to fitteen per cent. of the total contract price for the work hereby contracted for.

In witness whereof, the contractor has hereto set his hand and seal, and the Minister of the Interior has signed and sealed these presents on behalf of Her Majesty.

Signed, sealed and delivered in presence of J. A. McLeod.

John F. Smith,
Dominion Lands Surveyor.
A. R. Stewart,
Deputy of the Minister of the Interior.

e field-notes.

tract or any any surveys ed as afore-

commencing at behalf, or s above pros in manner d-notes and t behalf, the ector of Surprocure the f to be pere performed y and make all damages, may be put n of having cluding any y excess in in specified made to the f the works mpletion of and other

and other rdance with s and other ore the first e to be paid itract price, tal contract

me entitled , they shall

rned to Her

arrying out

et his hand i and sealed

Surveyor.

he Interior.

FORM OF BOND.

THIS INDENTURE made the second day of April, A. D. 1883, between James William Brown, of the Town of Essex, in the County of Westmoreland, in the Province of Ontario, in the Dominion of Canada, Merchant, and Richard Alexander Green, of the City of Victoria, in the County of Wolfe, in the Province of Ontario, in the Dominion of Canada, Farmer, of the first part, and Her Majesty the Queen, represented herein by the Minister

of the Interior of Canada of the second part;

Witnesseth, that as sureties for the faithful performance by the contractor of the foregoing contract, the parties of the first part covenant with Her Majesty, Her Successors and Assigns that the said contractor will, at or within the time or times and in the manner limited and provided by the said contract, well, truly and faithfully commence, carry on and complete the surveys contracted for in said contract, and report progress thereof and return the plans, field notes and other returns mentioned in the said contract; and further, that should the said contractor fail or make default in any of these respects and should the work or any part thereof be performed by others under the provisions of the said contract, then the said contractor shall pay and make good to Her Majesty, Her Successors or Assigns, all damages, losses, costs, charges and expenses to which she may be put by reason of the contractor's default and by reason of having to procure the work to be performed by others, including any advances on account made to the contractor and any excess in the cost of such work over the contract price herein specified; and further generally, that the said contractor shall and will from time to time and at all times well, truly and faithfully perform, keep and abide by all and singular the covenants, agreements and conditions in the said contract contained and on his part to be performed, kept and abided by.

In witness whereof, the parties hereto have hereunto set

their hands and seals.

Signed, sealed and delivered in J. W. × Brown, presence of G. A. Jones. Mark. as to the signatures of Surety. J. W. Brown, and R. A. Green, R. A. Green, Rob. Mac Farlane. as to the signature of R. A. Green,

AFFIDAVITS.

PROVINCE OF Ontario, County of Armagh, To Wir:

| To Wir: | To Wir

- 1. I am seized and possessed to my own use of real and personal estate in the Province of *Ontario*, in Canada, of the actual value of *Two thousand* dollars over and above all charges upon, or encumbrances affecting the same.
 - 2. My Post Office address is as follows:

Essex, County of Westmoreland, Ont.

Sworn before me, at the City of York, in the County of Armagh, in the Province of Ontario, this second day of April, A. D. one thousand eight hundred and eighty three.

J. W. × Brown,
Mark.

W. F. Wilson, a J. P. for the said County.

Province of Ontario, County of Armagh, To Wit:

| Richard Alexander Green, one of the sureties, in the foregoing Bond named, make oath and say as follows:

1. I am seized and possessed to my own use of real and personal estate in the Province of Quebec, in Canada, of the actual value of Two thousand dollars over and above all charges upon, or encumbrances affecting the same.

My post office address is as follows:

303 Main Street, Victoria, County of Wolfe, Ont.

Sworn before me, at the City of York, in the County of Armagh, in the Province of Ontario, this second day of April, A. D. one thousand eight hundred and eighty-three.

W. F. Wilson, a J. P. for the said County.

Province of Ontario, County of Armagh, To Wit:

Scotia, Merchant, make oath and say, that I was personally present and did see John Frederick Smith, the contractor in

one of the bing Bond d say as

real and da, of the above all

Brown,

reen, one foregoing and say as

real and la, of the ll charges

reen,

d, of the ne County of Nova personally tractor in

the foregoing contract named, duly execute the said instrument by signing, sealing, and, as his act and deed, delivering the same; and that I am a subscribing witness to such execution.

sworn before me at the City of York, in the said County of Armagh, this second day of April, one thousand eight hundred and eighty-three.

W. F. Wilson, a J. P. for the said County.

Province of Ontario, County of Armagh, To Wit:

toba, Clerk, make oath and say, that I was personally present and did see James William Brown, the obligor in the foregoing contract or writing obligatory named, duly execute the said instrument by signing, sealing, and, as his act and deed, delivering the same; and that I am a subscribing witness to such execution.

sworn before me at the City of York, in the said County of Armagh, this second day of April, one thousand eight hundred and eighty-three.

W. F. Wilson, a J. P. for the said County.

Province of Ontario, County of Armagh, To Wit:

Clerk, make oath and say, that I was personally present and did see Richard Alexander Green, the obligor in the foregoing contract or writing obligatory named, duly execute the said instrument by signing, sealing, and, as his act and deed, delivering the same; and that I am a subscribing witness to such execution.

Sworn before me at the City of York, in the said County of Armagh, this second day of April, one thousand eight hundred and eighty-three.

W. F. Wilson, a J. P. for the said County.

PROVINGE OF Ontario, County of Armagh, To Wir:

instrument by signing, sealing, and, as his act and deed, delivering the same; and that I am a subscribing witness to such execution.

Sworn before me at the City of York, in the said County of Armagh, this second day of April, one thousand eight hundred and eighty three.

W. F. Wilson, a J. P. for the said County.

i deed, deess to such

TOWNSHIP Nº 19. RANGE 19 WEST OF MERIDIAN

REFERENCES.

Spruce. Poplar. Oak.

Twhithre

Lak chie to a are a man

hear nort 17, 1 supe Th down sprin the

the lake would reser as times

fact the the section into

settle 3rd entire

The being prevered be given be

APPENDIX C.

SPECIMEN TIMBER REPORT.

Township 19, Range 19, West of

Meridian.

This township is covered entirely with a growth of timber, which, for the purposes of description, may be divided into three divisions, viz:—

1st, Timber suitable for the manufacture of marketable

lumber.

2nd. Building and fence rail timber.

3rd. Timber for fuel only.

The 1st division comprises the lands bordering on Long Lake, Clear Lake and Clear Water Creek; these are covered chiefly with heavy spruce and to a reac averaging in size from 10 to 30 inches in diameter, generally sound, and running up to a height of 50 to 60 feet. Clumps and ridges of poplar are also found; these trees are, however, generally unfit for manufacturing into lumber, owing to their being rotten at the heart. The timber adjoining the Clear Water Creek and the north end of Long Lake, viz:—on parts of sections 31, 32, 33, 17, 18, 19, 20, I consider the most valuable on account of its superior quality and size.

The timber in the northerly sections can be readily driven down the Clear Water Creek to the Little Saskatchewan in the spring, and that bordering on Long Lake could be run down the Rolling River, which flows out of the the south end of this lake and joins the Little Saskatchewan, near the 5th base. I would recommend that the land in the 1st division should be reserved from sale and settlement and set apart to be licensed

as timber limits.

2nd Division.—As the lands to the south of this township are well adapted for settlement, this being evidenced by the fact that a number of settlers have taken up homesteads in the townships adjoining, the lands in this division, especially sections 1, 2, 3, 4, 10, 11, 12, should be set apart to be divided into wood lots of not more than 20 acres each, and sold to the settlers as they are required.

3rd Division.—The central portion of the township is almost

entirely covered with windfall.

The timber, as it lies at present, is well suited for fuel, being quite dry and sufficiently elevated above the ground to prevent immediate decay. I would recommend that permits be given to settlers who may apply for them, to cut fuel to supply their needs on the sections shown, as covered with windfall, on the accompanying plan.

APPENDIX D.

FORM OF ENGAGEMENT.

ARTICLES OF AGREEMENT, made and entered into at Winnippeg, this fifth day of June, A. D. 1883, between John Frederick Smith, of the City of York, in the Province of Ontario, Dominion Land Surveyor, and Andrew Gordon, of the

City of Winnipeg, in the Province of Manitoba.

Witness that the said Andrew Gordon agrees with the said John Frederick Smith, to faithfully and diligently serve him, and his assistant or assistants, or any person under whose charge the said Andrew Gordon may for the time being, be placed by order and direction of the said John Frederick Smith, as laborer, from the date of this agreement, until the said John Frederick Smith shall have completed his survey.

In Consideration Whereof, the said John Frederick Smith, agrees to pay the said Andrew Gordon at the rate of one dollar per diem, and to board him so long as the said Andrew Gordon.

continues to serve under this agreement.

And it is agreed between the parties hereto that the provisions of Ordinance number Five of 1879, of the Lieutenant Governor in Council of the North-West Territories, shall apply to the same under this agreement, payment in full to be made only after fulfilment of the engagement by the said Andrew Gordon, and the performance by him of his part of this agreement.

In Witness Whereof the parties hereto have hereunto set

their hands the day and year first above written.

Signed in presence of) Andrew Gordon,

Andrew Gordon, John F. Smith,

E. D. Johnson.

Dominion Land Surveyor.

APPENDIX E.

ORDINANCES OF THE NORTH-WEST TERRITORIES.

No. 5 or 1879.

An Ordinance respecting Masters and Servants.

(Passed 26th September, 1879.)

Be it enacted by the Lieutenant-Governor of the North-West Territories, in Council, as follows:—

I. Every contract of hire for personal service for any period more than a year shall be in writing, signed by the contracting parties.

II. Any person engaged, bound or hired, whether as a clerk, journeyman, apprentice, servant, laborer, or otherwise howsoever, guilty of ill behavior, drunkenness, refractory conduct or idleness, -of absenting himself by day or night without leave, from his proper service or employment, or from the house or residence of his employer, of refusing or neglecting to perform his just duties, or to obey the lawful commands of his master,of dissipating his employer's property or effects, or of any unlawful act that may affect his employer's interests, -shall, upon being convicted of any or either of the said offences, before any justice of the peace, for every such offence forfeit and pay such sum of money not exceeding thirty dollars as to the said justice seems meet, together with costs of prosecution; and in default of payment thereof, forthwith be imprisoned for any period not exceeding one month, unless the fine imposed and costs, together with the costs of commitment and conveying such person convicted to the place of imprisonment, be sooner paid.

III. Any person convicted before any justice of the peace of harboring or concealing any apprentice or servant who has deserted his master's service, or instigating any such apprentice or servant to desert such service, or of keeping such apprentice or servant in his service after being notified or informed of the fact, shall be liable to the same penalties as are enacted in the next preceding section of this Ordinance.

IV. It shall be lawful for any justice of the peace, on complaint on oath by any employee or other servant, of ill usage,

at Winntreen John ovince of don, of the

h the said serve him, ler whose being, be ick Smith, said John

ck Smith, one dollar ew Gordon

that the ieutenant all apply be made id Andrew t of this

eunto set

yor.

non-payment of wages (not exceeding two month's wages, the same having been first demanded), or improper dismissal by his master or employer, to cause such master or employer to be brought before him, and upon proof to his satisfaction of the complaint being well founded, to order such complainant to be discharged from his engagement, and to order such master or employer to pay such complainant one month's wages in addition to the amount of wages then actually due him, not exceeding two month's wages as aforesaid, together with the costs of prosecution, the same to be levied by distress and sale of the offender's goods and chattels; and in default of sufficient distress, imprisoned for any term not exceeding one month, unless the said moneys and costs be sooner paid.

V. The provisions of this Ordinance shall be held to apply in the North-West Territories to contracts and agreements made at any place outside the same.

VI. On the trial of any complaint made under this Ordinance, the complainant and accused shall be admitted to give evidence.

VII. Nothing in this Ordinance shall in any wise curtail, abridge or defeat any civil or other remedy for the recovery of wages or damages, which employers or masters may have against servants or employees, or which servants or employees may have against their masters or employers.

VIII. Prosecution for offences under this Ordinance shall be commenced within three months after the offence has been committed, and not after.

IX. Any Ordinance heretofore in force in the North-West Territories respecting masters and servants is hereby repealed

PRICES AND WEIGHTS OF PROVISIONS.

Articles.	Quantity required by one	Winnipeg quotations, 20th June, 1883.	How packed.	Weight of package.
Flour	40 lbs	. XXXX or Strong Bakers,		
_		352.50: XXX, \$1.90	latron o s'ki	98 lbs. net flour.
Oatmeal Cornmeal	3 "	Standard, \$7.00 per brl Kiln dried, \$2.75 per sack.	In barrels	196 "
Bacon	20 "	Smoked, clear sides, 15c	In sacks	90
		omonou, cross sides, 100	sacks	
Ham	8} "	Canvassed, 15 c	In crates or sacks	Crates " 400
Butter	61 "	Choice Dairy, 22c	Tubs	
Cheese	24 "	Choice Dairy, 22c	Boxed	" 88 "
Beans	5 "	Med. hand picked, \$2.75 per bush., or 5c. per lb	brls.or s'ks	Brls. about 250
Vegetables	11 "	Compressed Chollets, 55c.;		
Apples, dried	5 11	American, 45c	In tins	4 lbs.
Sugar, lump	9] "	Choicest N.Y. sliced, 12c Paris Lump, 11½c	In boxes	About 220 lbs.
Coffee	11 "	fine ground Rio, 22c }		
001140	+3	[] " Java. 30c [***	20 and 25 lbs.
Tea	1 "	Black, 22½c. to 40c., ac- cord to quality Japan, "" "	H'f-chests	50 and 60 lbs.
Syrup	3 pints	(vupau)	In kegs	52 lbs.
Vinegar	f pint	Rannala non mall 40a		
Baking		gall; 5 demijohn, \$3.00.	Bris.or de-	Brls., 500 lbs. D'johns, 55 lbs
Powder	1 lb	Dr. Price's, 45c.; Snow-		D'johns, 55 lbs
Vesst Game		drift, 25c per lb Price's Lupulin, 7c. per	In tins	1, 4 or 5 lbs.
Tomes, Clouds	Cake	pkge. of 10 cakes	3doz.inbox	About 20 lbs.
Pepper, Gr'd	14 OE.	Ground Black, 16c. per lb.	In boxes	10 and 20 lbs.
Mustard	1 "	Common, 17c.; Keen's,		
		25c. per lb	In boxes	Box 10 lbs., tin 10
				Iba.
Salt Ess. Lemon.	22 lbs	Dairy, in bags, 9c. per bag Extra quality, 2 oz. bot-		5 lbs.
		tles, \$2.00 per gall	g. boxes	
Pickles	14 pts	\$2.50 to \$2.75 per doz. bot-	Cases& b'a	Cases, 75 & 100
		tles.		Brls., 170 lbs.
Candles	1 lb	Star, full wgt. 16ozs., 20c.	n harre	•
Matches	\$ box		n boxes logr.cases	40 lbs. 80 44
~	å lba	Savan sunastin 82 KO non	- Sr. comes	
Soap	TOR-16	Jean of sefer introduce and heli		

^{*}Taken from the instructions to Land Examiners issued by the Canadian Pacific Railway—some of the articles, such as butter, etc., are not adapted to the requirements of a party organized for the survey of Dominion Lands.

ployer to on of the ant to be naster or in addiceeding s of proof the distress, dess the

ages, the

nissal by

s Ordito give

o apply sements

curtail, very of have ployees

hall be s been

a-West pealed

TABLES.

EXPLANATION

OF THE TABLES.

The elements of the figure of the earth on which the geodetic tables are based are those given by Capt. A. R. Clarke in his "Comparisons of Standards of Length, &c.,

These elements are :-

Equatorial semi-axis = a = 6379206.4 metres.

Polar semi-axis = b - 6356583.8 metres.

His value of the metre (which has also been used) is 39-370432 inches.

TABLE I.

The first column of this table gives the argument-the

latitude of the place.

With this argument the second column gives the logarithm of the lengt. of, N sin 1", in Gunter's chains, i.e., of one second (1") of the great circle of the earth perpendicular to the meridian of the place.

The third column gives the logarithm of the length in

chains of R sin 1", i.e., of one second (1) of longitude.

The fourth column gives the logarithum of P sin 1", i.e., of one second (1") of latitude.

These values have been used in computing the following tables.

TABLE II.

The argument in this table is the number of the base or correction line. or (in the first column) the number of townships intervening between the 49th parallel of latitude and the line.

The next column contains the latitude of the line, and the next three columns give log N sin 1", log P sin 1", and log R sin 1" as before.

The last column of the table gives the difference of longitude between two points on the line 486 chains apart.

For interpolating, in this table and in Table 1, the logarithm of N sin 1", P sin 1" and R sin 1", for any latitude intermediate between the lat les of the table, N sin 1", and R sin 1" may be interpolated directly, in the usual way, by first differences, but to obtain P sin 1" for an intermediate latitude, it is necessary, if accuracy be required, to first interpolate N sin 1" for the latitude, and then to multiply the result by the cosine of that latitude.

For

 $P \sin 1" = N \sin 1" \times \cos \Phi$.

TABLE III.

This table gives for the argument—number of the base line: first, the chord azimuth, i. e., the angle, in degrees, minutes and seconds, measured from the north towards the west, which a township chord makes with the meridian. In the next column is given the same angle, in degrees and decimals of a degree.

The two columns headed "Deflection" give the angle between one chord produced and the next one; or 180° less twice the chord angle. One column gives it in minutes and seconds, and the other in decimals of a degree. The "Deflection Offset" is the tangent subtended by this deflection

angle at a distance of one chain.

In the column headed "Longitude for one range" is given the number of seconds to be added to or subtracted from the time shown by a chronometer to correct it for the difference of longitude between one corner of a township and the other. In other words, if a watch or chronometer be carried across a township it will be that number of seconds slower or faster, if it has no gaining or losing rate of its own.

TABLE IV.

This table gives for correction lines the chord azimuths, deflections and deflection offsets for running the chord along the south side of the road allowance.

The table also gives the length of one range on the north and south sides of the road allowance. The length on the north side is the distance included on the correction line, between two meridians from the base next north of the correction line. The longitude covered by this length is of course the same as that covered by one range on the next base north, and is given in the last column of Table III. Similarly for the south side.

The difference between the lengths of one range on the north

and south sides of the road allowance is the "jog."

Half the jog is very nearly the narrowing or extension of one range in going north or south from a base to a correction line.

One twenty fourth of the jog is the "convergence or divergence" of the meridians for one quarter-section on the correction line; this should be the difference from forty chains of every quarter-section: For the township line mid-way between

the result

base line:
s, minutes
vest, which
the next
cimals of a

angle be-180° less in minutes gree. The deflection

" is given from the ifference of the other. d across a r faster, if

azimuths, hord along

the north
the north
e, between
betion line.
he same as
he is given
bouth side.
he horth

tension of correction

or diverhe correcchains of between

or

the base and correction line, half of this quantity is to be taken.

TABLE V

Gives the latitude, the logarithms of its secant and tangent and the width of quarter-sections for the north side of every section. The logarithms of secant and tangent ϕ are given to simplify the calculation of the azimuth formula (page 46.) The width of quarter-sections is what it would be, were the survey perfectly correct.

TABLE VI

Is intended to facilitate the observation of the pole star in strong daylight, by placing the telescope precisely in the direction of the star. The second column gives the approximate azimuth at different times and for townships 0 to 80. The last column contains the distance of Polaris above or below the pole, which added to or subtracted from the latitude, gives the approximate altitude.

TABLE VII

is for determining the watch error by the observation, at any time, of the transits of Polaris and another star across the same vertical plane.

Let ϕ be the latitude of the place, α' and δ' the right ascension and declination of Polaris, α and δ the same quantities for the other star, and T' and T the chronometer times at which each of the stars was respectively observed to cross the same vertical. Let p be the arc of the great circle perpendicular to the meridian and comprised between the pole star and the meridian.

The hour angle of the time star, at the instant it was observed, was equal to

$$t = p (\tan \phi - \tan \delta)$$

which, when p is known is easily calculated by taking (tan. ϕ —tan. δ) from a table of natural tangents to three places of decimals. Were no such table at hand the following logarithmic form of the same formula could be employed:

$$t = p \frac{\sin (\phi - \delta)}{\cos \phi \cos \delta}$$

For stars below the pole the formula would be:

$$t=p (\tan \Phi + \tan \delta)$$

$$t = p \frac{\sin (\phi + \delta)}{\cos \phi \cos \delta}$$

Table VII. gives the values of p computed for the mean declination.

For any other value of δ' , p must be multiplied by

The logarithm of the above factor is very simply found by adding

1.63857

to log. tan P given in the annual ephemeris of Polaris.

The arguments of the table are the declination of the time star, S, and

$$t-t' = (\alpha - \alpha') - (T - T')$$

With carefully adjusted collimation and axis well levelled, the surveyor needs to observe but one star to obtain a chronometer correction sufficiently approximate for azimuth work.

It may be remarked that p, multiplied by the secant of the pole star's altitude gives at once the azimuth at the time of observation:

$$Az = p$$
 sec. b

The table has been computed by the following formula:

$$p=P\sin(t-t')+\frac{P^2}{2}\sin 2(t-t')\tan \delta$$

Conly in exceptional cases will the neglected terms of the development cause an error of one quarter of a second in the time deduced.

The example given will show the calculation by both formulas.

To deduce the chronometer error from the following chronn. for times of transit across the same vertical plane.

ro

re

Chronometer supposed to keep sidereal time without daily rate. Place, 6th base line.

he mean

found by

s. the time

levelled, chronowork,

t of the time of

ıla:

of the

y both

g chron-

1881.

t daily

MAPLAN	ATION OF TABLES,
(Table V)=508.17 an. Eph.)=-16.56 $\phi-\delta=67.33$	Ev Logarithus. Const. log. = 16 857 Const. log. = 16 857 log. p (Table VII) = 2.49293 log. sec ♦ (Table V) = 0.19697 log. sec ♦ (Table V) = 0.19697 log. sec. 6 = 0.01840 log. t = 2.07758
a(Ann. Ephemeris)= $6h$. $39n$. $55s$. 4 T= $6h$. $36m$. $42s$. ϕ (Table V)= 506.17 at do =1 14 29 8 T'= 6 33 27 s (an. Eph.)= -16.56 T-T'= 3 15 r (an. Eph.)= -16.56 T-T'= 3 15 r (an. Eph.)= -16.56	Br Natural Tangenter Const. log. = 1.63857

TABLE VIII

Gives chains in decimals of a township side; the average length of north or south sides, viz.: 486 chs. has been used in the computation of the second column of this table.

TABLE IX

Contains the correction to be applied to the normal width of road allowance, to obtain its value at township correction lines. It is to be added to one chain for township corners south of the road, and subtracted for corners north of it.

TABLE X

Gives the logarithm of the ratio of a small arc expressed in seconds of arc, to its tangent; by adding it to the log. tangent, the logarithm of the arc is obtained, and the arc itself is found with a table of logarithms of numbers, without having to compute proportional parts. This table is intended to replace the table printed on the record of astronomical observations, when the instrument employed is divided sexagesimally.

TABLE XI

Is useful in running trial lines. It gives the angular deflection of a line for deviations of one to 149 links at the end of eighty-one chains.

TABLE XII

Is the part of the table of addition and subtraction logarithms, useful in reducing time azimuth observations with Polaris. Suppose two numbers a and b, and a > b; then we have, as long as A is less then 10.

FOR SUMS.

FOR DIFFERENCES.

Take $10 + \log b - \log a = A$ and then.	Take	log.	$a - \log$.	b = B
Log. (a+b) = log. a+B	Log. (a	—b):	$= \log b +$	A-10.

TABLE XIII

Gives the correction for refraction to be applied to the sun's polar distance when using solar instruments. It is always to be subtracted from the tabular distance.

This table was computed from the following formulas:

$$r = 57$$
" cotg. $(\delta + N)$
Tan. $N = \cot g$. $\phi \cos t$.

Where δ is the declination ϕ the latitutude and r the refraction.

spressed in g. tangent, elf is found ing to comreplace the tions, when

ular deflecthe end of

ogarithms, th Polaris. ve, as long

CES.

og. b = B

b+*A*-10.

the sun's always to

formulas_:

he refrac-

TABLE 1.

LOGARITHMS of the Lengths in Gunter's Chains of certain Geodetic Lines, computed from Clarke's elements of the Figure of the Earth.

B. Log	Log. P. sin 1".				
0.186		Latitude.	· Log. N. sin 1''.	Log. R. sin 1".	Log. P. sin 1".
0.186		0			
			00100000		
			7020	0.1867100	9 9498763
			2002	7310	9.9480928
	_		2110	7466	9.9444976
	8 9-9971470	55 30 55 30	7150	7586	9-9426754
	9-9956501		4.000		0140040
			7270	7826	9-9390072
			7309	8063	9.9371557
	_		7349	888	9 93302826
	9-9880309	26 20	7390	83(6	9-9315311
_	_		4760		\$700076 A
6163 4499		26 50	7507	8657	9-9277216
			7546	8774	9-9238634
	9-9801813		7625	1688	9-9219158
-	_		1665	9131	9 9,79830

TABLE I.—Concluded.

LOGARITHMS of the Lengths in Gunter's Chains of certain Geodetic Lines, computed from Clarke's elements of the Figure of the Earth.

Latitude.							
·	Log. N. sin 1",	Log. R. sin 1".	Log. P. sin 1''.	Latitude.	Log. N. sin 1".	Log. R. sin 1".	Log. P. sin 1".
•							
	0.1876330	0.1865126	9-9769750		0.1877703	2100001	, 6
	6372	5252	9 9753574		7742	001 0	4.8169974 0 0120601
	6455	5575	9-9737299		1877	9179	9.9119478
52 40	6497	5627	9.9704465	58 10	7819	9593	9 9099633
	6538	6750	9 9687582		7896	9824	9-9079:56
63 00	6578	5870	9-9671908				1110000
53 10	6620	2669	9-9654435	50 40	7934	0.1869938	9-9038102
	6662	6122	9 9637559		80108	0.1870052	9-9017321
	6702	6242	9 9620578		8048	9010	9-8996403
	6744	6368	9.9603495		8086	0000	9 8975347
	02/0	6491	9-9586307		8123	0505	9.8854150
24 00	6825	6611	9-9569019				9107Ceo 6
04 10	6866	6734	9 9551612	50 50	8161	6190	9-8911331
	2069	6857	9 9534164		8618	0230	9.8889706
	6948	0869	9-9516488		9239	0.1870841	9.8867935

9.8889706	
0730	
8235	
00 09	
9 9534104 9 9534104 9 9516488	
6980	
6948	
54 20 54 30	

TABLE II.
LATITUDES, &c., of Base and Correction Lines.

£i .	1			
-nwoT to ov .qida	0440	8 10 12 14 16 16 16 16 16 16 16 16 16 16 16 16 16	25 23 26 26 26 26 26 26 26 26 26 26 26 26 26	88
Longitude covered by 486 Chains.	8 00-990 02-681 04-388 06-112	07-852 09-610 11-385 13-178 14-988	18-662 20-527 22-4-1 24-313	28 176 30 136
Log. R. sin 1".	0.1862852 2987 3119	3518 3518 3650 3786 3918 4050	4182 4314 4446 4578	4842 4974
Log. P. sin 1".	0.0045001 0.0029764 0.0014431 9.9599003	9.9967861 9.9952143 9.9952243 9.9920418 9.9904407	9 988297 5 9872086 9 9855774 9 9839368	9.9789500 9.97789500
Log. N. sin l''.	0.1875572 5617 5661 5705 5749	5794 5838 5883 5927 5971	6015 6059 6103 6147 6191	6235 6279 0-1876322
Latitude.	49 00 00 00 10 29 05 20 58 07 31 27 08 41 56 08	52 25 05 50 02 54 01 13 22 96 23 51 88 34 20 77	44 49.65 55 18.51 61 05 47.35 16 16.17 26 44.98	37 13·76 47 42·53 58 11·26
Name of Line.	Correction 2nd Base Correction 3rd Base	3rd Correction	ofn Base Correction Correction	oth Correction

TABLE II.- Latitudes, &c., of Base and Correction Lines.-Continued.

200	8 8 8 8 8	8 8228	100	1110	120 124 124
9 18-847	23.871 26.424 29.006 31.618	36 929 39 630 42 362 45 125 47 919	50.747 53.607 56.500 9 59.427		20.917 24.136 27.396 10 30.695
0.1867805	8051 8177 8306 8429 8452	8676 8738 8921 9047 9170	9290 9413 9533 9653 9773	0·1869893 0·1870013 0133 0253 0370	0487 (607 0724 0 1870840
9-9393437	9-9354569 9-9334945 9-9315192 9-9295307 9-9275290	9.9255140 9.9234856 9.9214436 9.9193880 9.9173186	9-9152351 9-9131376 9-9110259 9-9088998 9-9067591	9-9046039 9-9024339 9-9002490 9-8980490	9-8936029 9-8913568 9-8890948 9-8868170
0.1877223	730 5 7347 7390 7431	7613 7554 7695 7637 7678	7718 7759 7799 7839 7879	7919 7959 7999 8039 8078	8117 8157 8196 0 1878235
38 10 55 48 38 89	56 09 35 49 20 03 77 30 32 03 41 00 28	57 01 56·70 12 24·89 22 53·07 33 21·22	57 43 49·36 54 17·48 58 04 45·57 15 13·66 25 41·73	36 09.78 46 37.81 57 05.83 59 07 33 83 18 01.81	28 29·77 38 57·71 49 25·64 59 53·55
20th Base	21st Base Correction 22nd Base Correction 23rd Base	23rd Correction. 24th Base Correction. 25th Base	26th Base Correction 27th Base. 28th Base	28th Correction. 29th Base Correction. 30th Base	31st Base

89 89

04.417 06.758 09.123

7173

9.9488416 9.9469665

7012

45 48·59 56 17·01

Correction18th Base.....

222

11.515 13.932 9 16.376

7424 7553 0·1867679

9.9450792 9.9431798 9.9412680

7096 7139 0·1877181

TABLE III.

CHORD Azimuths, Deflections, Deflection Offsets, &c., for Base Lines.

9	-	1 .		1	1 -1 -		_
Number of Base Line.	Chord Azimuth Sexagesimal.	Chord Azimuth Decimal.	Deflection Sexa- gesimal.	Deflection Decimal.	Deflection Offset for 1 chain distance.	Longitude covered by 1	1
Jo	12.13	L Ei	202	A	153,	Pa Pa	ا م
in a	4 80	hord Azi Decimal.	effection	8	effection (for 1 distance.	- g	P.G
umber Line.	2 2		i.ct	L'Ei	E Cti	ge tu	9 2
1	28	20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	effec	is is	ongitu ered range.	100
Z	0	5	Ď.	å ,	De	Log	Number of Township.
	9 1 11	0	, ,,	•	inches.	8	
1	89 56 58-5	89 9496	6 03 · 0	0.1000			
1 2 3 4	56.3	9490	07.5	0.1008	1.394	32.1	1 0
3	54.0	.9483	12.0	1033	1.429	32·3	1 4
- 1	51.7	.9477	16.6	1046	1.447	32.8	0 4 8 12
5 6 7 8 9	49.4	9471	21.3	1059	1.465	33.0	16
7	47.0	9464	26.1	1072	1.483	33.2	20
8	42.1	·9457 ·9450	30.9	1086	1.201	33.2	24
9	39.6	9443	35·8 40·8	1099	1.520	33.7	28
		[40.8	*1113	1.539	34.0	32
10 11 12	37.1	•9436	45.9	1127	1.558	34.3	36
12	34·5 31·9	9429	21.0	.1142	1.578	34.5	40
13	29.3	*9422 *9415	56.2	1156	1.598	34.8	44
14	26.6	9407	7 01·5 06·9	1171	1.619	35.1	48
				.1186	1.639	35.4	52
15 16 17 18 19	23.8	•9399	12.4	•1201	1.660	35.7	56
17	21·0 18·2	•9392	18.0	1217	1 · 682	36.0	60
18	15.3	*9384 *9376	23.7	1232	1.704	36.3	64
19	12.4	9368	29·4 35·3	1248	1 . 726	36.6	68
20			30.3	1265	1.749	36.8	72
21	09:4	•9359	41.3	1281	1.772	37.3	76
22	06.3	•9351	47.4	•1298	1.795	37.6	80
23	00.1	*9342 *9334	53.6	1316	1.819	37.9	84
24	89 55 56 9	9325	8 06·3	*1333	1.843	8.3	88
		0020	0 00.3	1351	1 867	38.6	92
25	53.6	.9316	12.8	1369	1.892	39.0	96
26 27	50.3	.9306	19.5	1387	1.918	39.4	100
28	46·8 43·4	9297	26.3	1406	1.944	39.8	104
29	39.9	9287	33.3	1426	1.971	40.2	108
		9277	40.3	1445	1.998	40.6	112
0	36.2	9267	47.6	1465	2.026	41.0	116
32	32·6 28·8	9257	54.9	1486	2.054	41.4	120
	40.0	9247	9 02-4	1507	2.083	41.8	124

Longitude covered by 1	Number of Township.
8	
32·1	0
32·3	4
32·5	8
32·8	12
33·0	16-
33·2	20-
33·5	24-
33·7	28-
34·0	32
34·3	36
34·5	40
34·8	44
35·1	48
35·4	52
35·7	56
36·0	60
36·3	64
36·6	68
36·9	72
37·3	76-
37·6	80
37·9	84-
:8·3	88-
38·6	92
39·8 40·2 40·6	96 100- 104 108- 112
41.4	116 120 124

s, &c., for

8, &c., for Correction Lines.	-0-1
ne, Deflection Offsets, Jogs, &c., for C	for solutions.
effection	•
HORD Azimuths, D.	ų
Спов	ų

	-qidanwoT	Number of		64 0	°27	18	22	. 8	*	88 9	46	200	58 54 58 54
.89	ce or Di- for one-	Convergence sonsgence that	Chains	0.143	146	150	152	155) CT.	159	164	.166	168
ection Lin		Jog.	Chains	3-421	551	769.	·641 ·685	.731	611	929	-926	3-973	077
", lor Corre	ne Range on on Line.	S. side of Road	Chains.	484 297	255	2.5	188	144	400.	.072	.047	484-024	972
ace, lor correction lines,	Length of one Range Correction Line.	N. side of Road.,	Chains.	487.719	.762 .784	908-	.852	.875 .899	-923	.947	972	488-023	.049 .075
	n Offset for a sea fact.	oeffection itadO I	Inches.	1.403	1.438	1.474	1.510	1.548	1.568	1.588	1.630	1.650	1.671
	.laminəd n	Deflection	0	0.1014	1053	1066	.1093	1120	-1134	1149	1178	.1193	1209
	n Sexa-	Deflection grants		6.00 6.00 6.00 6.00 6.00 6.00	19.0	23.7	33.4	43.4	48.4	58.6	7 04.2	9.60	16 2 20.8
	Azimuth .ls.	Chord	00.0400	. 9486 . 9480	.9474	.9461	.9454	.9440	.9433	9418	.9411	-9403	.9386
	dtumis A , famiee;	Chord	89 56 57.4	3	20.2	45.8	40.9	88.3	80 6.6	9.08	27.9	7.07	19.6
	r of Correctine.	Numbe tion	H	e4 w	4 ,	100	- 00 0	»	21	12	13	*	22

TABLE IV.—Concluded.
CHORD Azimuths, Deflections, Deflection Offsets, Jogs, &c., for Correction Lines.

-qidanwoT	Jo zod an V	252	8888	98 102 110 111	128
Jonvergence or Di- vergence for one- helf section.		Chains. 0 174 -177 -179	181. 184. 186. 189.	196	207
	90	Chains. 4-183 238	350 4-06 6-406 525 525 586	-711 -715 -908	4.975 5.045 6-116
n Line. S. side of Road.		Chaing. 483-919 -892 -865	.809 .779 .750	690 658 627 594	.528 .493 483 .458
Length of one Range Correction Line.	N. side of Road.	Chaing. 488·102 ·130	2187 2215 2245 306	.338 .403 .453 .469	·503 ·538 488·574
1 Offset for distance.	Deflection Landor	Inches. 1.716 1.737 1.760	1.783 1.807 1.831 1.855 1.879	1.905 1.931 1.967 1.984 2.012	2.040 2.068 2.097
.lamiced n	Deflection	0·1241 1267 1273	.1390 .1307 .1342 .1342	.1378 .1397 .1416 .1436	.1476 .1496 .1517
	Deflectio gesima	7 26.6 32.4 38.3	8 03 0 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16.2 22.9 29.8 36.8 44.0	51.2 58.6 9 06.2
Asimuth .ls	Drord Grisse T	\$9:9380 \$372 \$9:9380	. 9356 . 9347 . 9338 . 9329	.9311 .9302 .9292 .9282 .9282	-9262 -9252 89-9241
dtumizA .lamise	Diord Sexeg	89 56 16.7 13.8 10.9	89 56 01.7 89 55 58.5 55.2	48.6 45.1 41.6 38.0	34.4 30.7 89 55 26.9
of Correc	Number f noit	113	2 2 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28824	33 30

TABLE V.

111

207

594

434

36.8 44.0

29

201

4.975 5.045 5.116

.528 .493 483.458

2.040 2.068 2.097

51.2 58.6 06.2

-9262 -9252 89-9241

34.4 30.7 26.9

888

8

LATITUDE, with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

=	-				O. 46	uar ver-	36611	опв.	
Townshin	Section.	Latitude.	Sec	, φ	Difference for 10 chains.	Tan	ф	Difference for 10 chains.	Quarter- Section.
	36	49.0000	0.183	06		0.080	84		40.000
1	1	0147		19		0.061	06		
	12 13	0291 0438		31 44		"	28		39·988 976
	24	0582		57			51 73		964
	25 36	0729 0874		69			95		953 941
				82		0.062	17		929
2	1 12	1020 1165		95			40		917
	13	1311	0.184	08 20			62 i		905
	24	1456		33		0.063	85		893
	25	1603	1	46		0.003	07 29		882
	36	1747		59			51		870 § 39.858
							91		40 143
3	1 12	1894		71 84	60		74		101
	13	2039 2185		84	03		96	88	131 119
	24	2330	0.185	97	8	0 .064	18	0	107
	25	2476	0 100	23	0.000		63	0.000	095
	36	2621		35	۰		85	ò	084 072
4	1 12	2768		48		0.00			
	12	2912		61		0.062	08		060
	13 24	3059 3203		61 74			52	- 1	048 036
	25	3350	0.186	87	1		74		024
- 1	36	3495	0 100	00		0.086	97	- 1	012
5	1	2047			i	0.000	18		000
_	12	. 3641 3785		25 38	1		42	1	39.988
- 1	13	39 12		51	- 1		64 86		976
	24 25	4077		64	- 1	0.067	08		964 952
	36	4224 4363		77			31	- 1	940
	.						53		928
	1 12	4515 4659	0.187	03			76		916-
	13	4806		15 28		0.000	98		904
	24	4951		41		0.068	20		892
1	25	5097		54			43 65		880- 868:

TABLE V .- Continued.

LATITUDE, with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

	1	1		_	10	7		I o	
Township.	Section.	Latitude.	Sec	. ø	Difference for 10 chains.	Tan	. φ	Difference for 10 chains.	Quarter- Section.
	36	49°.5242	0.187	67		0.068	87		{ 39·858 40·145
7	1 12 13 24 25 36	5388 5533 5680 5824 5971 6115	0.188	80 93 06 19 32 45		0.069	10 32 54 77 99 21		133 121 109 097 085 073
8	1 12 13 24 25 36	6262 6407 6553 6698 6844 6989	0.189	58 71 84 97 10 23		0.071	44 66 89 11 33 56		060 048 056 024 012 000
9	1 12 13 24 25 36	7136 7280 7427 7571 7718 7863	0.190	36 49 62 75 88 01	0.000 03	0.072	78 00 23 45 68 90	0.000 03	39·988 976 964 951 939 927
10	1 12 13 24 25 36	8009 8154 8300 8445 8592 8736		14 27 40 53 66 79		0·073	12 35 57 79 02 24		915 903 891 879 867 {39.855 40.147
11	1 12 13 24 25 36	8883 9027 9174 9319 9465 9610	0 ·191	93 06 19 32 45 58		0.075	47 69 92 14 36 59		135 122 110 098 086 073
12	$\begin{bmatrix} 1 \\ 12 \\ 13 \\ 24 \end{bmatrix}$	9756 9901 50°.0047 0192	0.193	71 84 98 11		0.078	81 03 26 48		061 050 037 024

TABLE V.—Continued.

LATITUDE, with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

Quarter- Section.	Township.	Section.	Latitude.	Sec	φ.	Difference for 10 chains.	Tan	. φ	Difference for 10 chains.	Quarter- Section.
39°858 40°145		25 36	50°·0339 0483	0.192	2 24 37		0 076	71 93		40.012
133 121 109 097 085 073	13	1 12 13 24 25 86	0630 0775 0921 1066 1212 1357	0.193	50 63 77 90 8 03 16		0.077	16 38 6) 83 05 28		39 988 975 963 951 939 926
060 048 056 024 012 000	14	12 13 24 25 36	1503 1648 1795 1939 2086 2230		29 43 56 69 82 96	c 03	0 079	50 72 95 17 40 62	03	914 902 890 877 865 § 39.853
39·988 976 964 951 939 927	15	1 12 13 24 25 36	2377 2522 2668 2813 2959 3104	0.194	09 22 35 49 63 75	300.0	0.080	85 07 30 52 75 97	000.0	137 124 112 099 087 074
903 891 879 867 39·855 40·147	16	1 12 13 24 25 36	3250 3395 3542 3686 3833 3977	0.192	89 02 15 28 42 55		0.081	20 42 64 87 09 32		062 050 037 025 012
135 122 110 098 086 073	17	1 12 13 24 25 36	4124 4269 4415 4560 4706 4851	0.196	69 82 95 09 22 35		0.083	54 77 99 22 44 67		39 · 988 975 963 950 940 925
061 050 037 024	18	1 12 13 24	4997 5142 5289 5433		49 62 76 89		0.084	89 12 34 56		913 901 888 876

t for each

TABLE V-Continued.

LATITUDE, with Logarithms of Secant and Tangent for each Section and with Quarter-Sections.

I Township.	Section.	Latitude.	Sec	. ф	Difference for 10 chains.	Tan	φ	Difference for 10 chains.	Quarter- Section.
	25 36	50° · 5580 5724	0.19	7 02 16		0.084	79 01		863 § 39·851
19	1 12 13 24 25 86	5871 6016 6162 6397 6453 6598		29 43 56 69 83 96		0. 086	24 46 69 91 14 36		138 125 113 100 088 075
20	1 12 13 24 25 36	6744 6889 7035 7180 7327 7471	0.198	10 23 37 50 64 77		0.087	59 81 04 27 49 72		063 050 038 025 013
21	1 12 13 24 25 36	7618 7762 7909 8054 8200 8345	0.199	91 04 18 31 45 58	0.000 03	0.088	94 17 39 62 84 07	0.000 03	39 987 975 962 950 937 925
22	1 12 13 24 25 36	8491 8636 8782 8927 9073	0.200	72 85 99 13 26 40		0.090	29 52 74 97 20 42		912 899 887 874 862 { 39.849 40.152.
23	1 12 13 24 25 36	9365 9509 9656 9800 9947 51° 0091	0.201	53 67 81 94 08 21			65 87 10 32 55 77		140 127 114 102 089 076
24	1 12 13	0238 0383 0529		35 49 62		0.093	00 22 45		064 051 038

LAT

TABLE V-Continued.

LATITUDE, with Logarithms of Secant and Tangent for each Section and with Quarter-Sections.

Township.	Section.	Latitude.	Sec. ¢	Difference for 10 chains.	Tan.	φ	Difference for 10 chains.	Quarter- Section.
	24 25 36	51° · 0674 0820 0965	0·201 76 90 202 03		0.092	68 90 13		40·025 013 000
25	1 12 13 24 25 36	1111 1256 1402 1547 1694 1838	17 31 44 58 72 85		094	35 58 81 03 26 48		39 987 975 962 949 936 924
26	1 12 13 24 25 36	1985 2129 2276 2420 2567 2712	203 13 27 40 54		095	71 93 16. 39 61		911 898 885 873 869 { 39 847
27	1 12 13 24 25 36	2858 3003 3149 3294 3440 3585	82 95 204 09 23 37 51	0.000 03	096	07 29 52 74 97	0.000 03	141 129 116 193 090 077
28	1 12 13 24 25 36	3731 3876 4023 4167 4314 4458	205 66 20 33		098	42 65 87 10 33 55		064 051 039 026 013 000
29	1 12 13 24 25 36	4605 4749 4896 5040 5187 5332	47 61 75 89 206 03 17		099	78 00 23 46 69 91		39·987 974 962 949 936 923
30	1 12 13	5478 5623 5769	31 44 58			14 36 59		910 897 884

r each

arterction.

·849 ·152

TABLE V .- Continued.

LATITUDE with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections.

=			tend width	ા હા	arter-Section	ons.	
Township.	Section.	Latitude.	Sec. ø	Difference for 10 chains.	Tan. ø	Difference for 10 chains.	Quarter- Section.
	24 25 36	51°·5914 6060 6205	0·206 72 86 207 00		0·100 82 101 05 27		39·871 858 § 39·846
31	1 12 13 24 25 36	6351 6496 6642 6787 6934 7078	14 28 42 56 70 84		50 72 95 102 18 41 63		143- 130- 117- 104- 091- 078-
32	1 12 13 24 25 36	7225 7369 7516 7660 7807 7951	208 12 26 40 54 68		103 08 31 54 77		065 052 039 026 013
33	1 12 13 24 25 36	51°.8098 8243 8389 8534 8680 8825	0·208 82 96 209 10 24 38 52	0.000 03	104 22 45 68 90 105 13 35	0.000 03	39 987 974 961 948 935 922
34	1 12 13 24 25 36	8971 9116 9262 9407 9553 9698	66 80 94 210 08 22 36		58 81 106 04 26 49		909 896 883 869 856
35	1 12 13 24 25 36	9844 9989 52°.0135 0280 0427 0571	51 65 79 93 211 07		95 167 17 40 63 86 108 08		145 132 119 106 092 079
36	12	0718 0862	36		31 54		066- 053-

TABLE V .- Continued.

LATITUDE, with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

	Section, and width of Quarter-Sections.											
I Township.	Section.	tude.	Sec. ø	Difference for 10 chains.	Tan. ∳	Difference for 10 chains.	Quarter- Section.					
	13 24 25 36	10 0 9 1153 1300 1444	64 78 92 212 06		77 99 109 22 45		040 026 013 000					
37	1 12 13 24 25 36	1591 1735 1882 2027 2173 2318	21 35 49 63 77 92		68 90 110 13 36 59		39 ·987 974 960 947 934 921					
38	1 12 13 24 25	2464 2609 2755 2900 3046	213 06 20 34 49 63		111 04 27 50 73 96		907 894 881 864 855					
	36	8191	77		112 18		39.841 40.160					
39	1 12 13 24 25 36	3337 3482 3628 3773 3919 4064	214 06 20 34 49 63	0-000 03	41 64 87 113 09 32 55	0.000 03	147 134 120 107 093 080					
40	1 12 13 24 25 36	4210 4355 4501 4646 4794 4937	215 06 20 35 49		78 114 01 24 46 69 92		067 053 040 027 013					
41	1 12 13 24 25 36	52° 5084 5228 5375 5519 5666 5810	0·215 64 78 92 216 07 21 35		0·115 15 38 61 83 116 06 29		39·987 • 973 960 946 933 920					
42	1 12	5957 6101	80 64	1	52 75		906 898					

066-053-

for each

Quarter-Section.

39·871 858 { 39·846 40·156

> 143-130-117-104-091-078-

TABLE V .- Continued.

LATITUDE with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

_	_						
Township.	Section.	Latitude.	Sec. ϕ	Difference for 10 chains.	Tan. ∳	Difference for 10 chains.	Quarter- Section.
	13 24 25 36	529 · 6248 6392 6539 6683	6·216 79 93 217 08 22		0·116 98 117 21 44 66		39·879 866 853 39·839 40·162
43	1 12 13 24 25 36	6830 6974 7121 7266 7412 7557	37 51 66 80 95 218 09		118 12 35 58 81 119 04		149 135 122 108 095 081
44	1 12 13 24 25 36	7703 7848 7994 8139 8285 8430	24 38 53 67 82 96		27 49 73 95 120 18 41		068 954 041 027 014
45	1 12 13 24 25 36	8576 8721 8867 9012 9158 9303	219 11 25 40 55 69 84	0.000 03	64 87 121 10 83 56 79	0-000 03	39 986 973 950 946 932 919
46	1 12 13 24 25 36	9449 9594 9740 9885 53° 0031 0176	98 220 13 28 42 57		122 02 25 48 70 93 123 16		905 891 878 864 851
47	1 12 13 24 25 36	0321 0467 0612 0758 0903 1049	86 221 01 15 30 45 59		39 62 85 124 08 31 54		151 137 123 110 096 082
48	1	1195	74		77		068

TABLE V .- Continued.

LATITUDE with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

_		Section,	aud width	of Qu	arter-Secti	ons.	
Township.	Section.	Latitude.	Sec. ø	Difference for 10 chains.	Tan. ♦	Difference for 10 chains.	Quarter- Section.
	12 13 24 25 36	53° · 1340 1486 1631 1777 1922	0·221 89 222 04 18 33 48		0·125 00 23 46 69 92		40.055 041 027 014 000
49	1 12 13 24 25 36	2068 2213 2359 2504 2650 2795	63 77 92 223 07 22 36		126 15 38 61 84 127 07 30		39·986 972 958 945 931 917
50	1 12 13 24 25 36	2941 3086 3233 3377 3524 3668	51 66 81 96 224 10 25	03	53 76 99 128 22 45 68		903 889 875 861 848 \$ 89.834 40.166
51	1 12 13 24 25 36	3815 3959 4106 4250 4397 4541	40 55 70 85 225 00 14	0 000.0	91 129 14 37 60 83 130 06	0.000 03	153 139 125 111 097 083
52	1 12 13 24 25 36	4688 4832 4979 5123 5270 5414	29 44 59 74 89 226 04		30 53 76 99 131 23 45		069. 055 042 028 014 000
53	1 12 13 24 25 36	5561 5705 5852 5996 6143 6287	19 34 49 63 79 93		68 91 132 14 37 60 88		39 986 972, 958 944 930 917
84	1	6434	227 08		133 07		963

for each

Quarter-Section.

39.879
866
853
39.839
40.162

TABLE V .- Continued.

LATITUDE with Logarithms of Secant and Tangeant for each Section, and width of Quarter-Sections.

		, Soution,	and width		arter-Secti	ons.	
Township.	Section.	Latitude.	Sec. •	Difference for 10 chains.	Tan. ∳	Difference for 1C chains.	Quarter- Section.
	12 13 24 25	53° · 6578 6725 6869 7016	0·227 23 38 53 68		0·133 30 53 76 99	,	39·890 875 861 847
	36	7160	83		134 22		{ 39·833 40·169
55	1 12 13 24 25 36	7307 7451 7598 7742 7889 8033	228 13 29 44 59 74		45 68 91 135 14 38 61		155 140 126 112 098 084
66	1 12 13 24 25 36	8180 8324 8471 8615 8762 8906	229 04 19 34 49 64	02	136 07 30 53 77 137 00	03	070 056 042 028 014
57	1 12 13 24 25 36	9052 9197 9343 9488 9634 9779	79 95 230 10 25 40 55	0.00	23 46 69 92 138 16 89	000.●	39·986 972 958 944 930 915
58	1 12 13 24 25 36	9925 54°. 0070 0216 0361 0507	70 85 231 01 16 31		62 85 139 08 31 55		901 887 873 859 845
69	1 12 13 24 25 36	0798 0943 1089 1234 1380 1525	62 77 92 232 07 23 38		78 140 01 24 48 71 94 141 17		167 142 128 114 100 085

TABLE V.—Continued.

LATITUDE with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

Township.	Section.	Latitude.	Sec. ø	Difference for 10 chains.	Tan. ø	Difference for 10 chains.	Quarter Section.
-60	1 12 13 24 25 36	54° · 1671 1816 1962 2107 2253 2398	0·232 53 68 84 99 233 14 29		0°141 41 64 87 142 10 34 57		40·071 057 043 028 014
·6 1	1 12 13 24 25 36	2544 2689 2835 2980 3126 3271	45 60 76 91 234 06 21		143 03 27 50 73 96		39·986 971 957 943 929
62	1 12 13 24 25 36	3417 3562 3708 3853 3999 4144	37 52 68 83 98 235 14		144 20 43 66 89 145 13		900 886 872 857 843 ¶ 39 829
63	1 12 13 24 25 36	4290 4435 4581 4725 4872 5016	29 45 60 75 91 236 06	0.000 03	59 83 146 06 29 53 76	€0 000.	\$39.825 40.173 159 144 130 115 101 086
64	1 12 13 24 25 36	5163 5307 5454 5598 5745 5889	22 27 53 68 84 99		147 22 46 69 93 148 16		072 058 043 029 014
65	1 12 13 24 25 36	6036 6180 6327 6471 6618 6762	0·237 15 30 46 61 77		0°148 39 63 86 149 C9 83 56		39 · 986 971 957 942 928 913

Quarter-Section.

for each

TABLE V .- Continued.

LATITUDE, with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

•				01 QU	101-001-00001	OHD	- 1 110 manage manage
Township.	Section.	Latitude.	Sec. ø	Difference for 10 chains,	Tau. ø	Difference for 10 chains.	Quarter Section.
66	1 12 13 24 25 36	54° 6909 7053 7199 7344 7490 7635	0·238 08 24 39 55 79 86		0·149 80 150 03 26 50 73 96		39·899 884 870 855 841 {39·827 40·175
67	1 12 13 24 25 36	7781 7926 8072 8217 8363 8608	239 02 17 33 49 64 80	·	151 20 43 67 90 152 13 37		161 146 131 117 102 088
68	1 12 13 24 25 36	8654 8799 8945 9090 9236 9381	96 240 11 27 43 58 74	70	60 84 153 07 31 54 77	03	073- 058- 044- 029- 015- 000
69	1 12 13 24 25 36	9527 9672 9818 9962 55° 0109 0253	90 241 05 21 37 53 68	000.0	154 01 24 48 71 95 155 18	000-0	39 985 971 956 941 927 912
70	1 12 13 24 25 36	0400 9544 0691 9835 0982 1126	242 00 16 31 47		42 65 89 156 12 36 59		898 883 868 854 839 { 39 · 824 40 · 177
71	1 12 13 24 25 36	1274 1417, 1563 1708 1854 1999	79 95 11 26 42 58		157 06 30 53 77 158 00		163 148 133 118 104 089

TABLE V.—Continued.

LATITUDE, with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

Township.	Section.	Latitude.	Sec. ø	Difference for 10 chains.	Tan. φ	Difference for 10 chains.	Quarter-Section.
72	1 12 13 24 25 36	55° · 2145 2290 2436 · 2581 2727 2872	0·243 74 90 244 06 22 38 53		0·158 24 47 71 94 159 18 41		40 · 074 059 044 030 015
73	1, 12 13 24 25 36	3018 3163 3309 3454 3600 8744	69 85 245 01 17 33 49		65 89 160 12 36 59 83	1	39 985 970 95 6 941 926 911
74	1 12 13 24 25 36	3891 4035 4182 4326 4473 4617	65 81 97 246 13 29	0.000 03	161 07 30 54 77 162 01 24	0.000 03	896 881 867 852 837 {39.822 40.180
75	1 12 13 24 25 36	4764 4908 5054 5199 5345, 5490	61 77 93 247 09 25 41		48 72 95 163 19 43 66		165 150 135 120 105 090
76	1 12 13 24 25 86	5636 5781 5927 6672 6218 6363	57 73 90 248 06 22 38		164 13 37 61 85 165 08		075- 060- 045- 030- 015- 000-
17	1 12 13 24 25 36	6509 6654 6800 6944 7091 7235	54 70 86 249 02 19 35		32 55 79 166 03 27 56		39 · 985- 970 955 940- 925- 910

t for each

Quarter-Section.

39.899

TABLE V .- Continued.

LATITIDE, with Logarithms of Secant and Tangent for each Section, and width of Quarter-Sections.

Township.	Section.	Latitude.	Sec. ø	Difference for 10 chains.	Tan. ø	Difference for 10 chains.	Quarter-Section.
78	1 12 13 24 25 36	55° · 7382 7526 7672 7817 7963 8108	0·249 51 67 83 250 00 16 32		0·166 74 98 167 21 45 69		39·895 880 865 850 835 { 39·820
79	1 12 13 24 25 36	8254 8399 8545 8690 8836 8981	48 64 81 97 251 13 30		168 16 40 64 87 169 11 35		167 152 137 122 106 091
:9 0	1 12 13 24 25 36	9127 9272 9418 9562 9709 9853	46 62 79 95 252 11 27	0.000 03	59 82 170 06 30 54 77	0.000 63	076 061 046 030 015
-81	1 12 13 24 25 36	56° · 0000 0144 0291 0435 0581 0726	44 60 77 93 253 09 26		171 01 25 49 72 96 172 20		39·985 970 954 939 924 909
82	1 12 13 24 25 36	0872 1017 1163 1308 1454 1599	42 58 75 91 254 08		44 68 92 173 15 39 63		893 878 863 848 833 (39.817 (40.185

TABLE VI -For finding the Pole Star.

	į					ZIMUT	H.				sbove or	le.
Quarter- Section.	Hour Angle.	Tp. 0.	Tp. 10.	Tp. 20.	Tp. 30.	Tp. 40.	Tp. 50.	Tp. 60.	Tp. 70.	Tp. 80.	Distance above below Pole.	Hour Angle.
	н.м.	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.10	1.32	н.м.
39·895 880	0.20 0.30 0.40	·26	27	27	·19 ·28 ·37	·19 ·28 ·38	·19 ·29 ·38	·20 ·30 ·39	·20 ·30 ·40	31	·32 ·31 ·30	11.5 ₀ 11.3 ₄ 11.2 ₆ 11.0 ₀ 11.1 ⁰
865 850	0.50	.44	.45	.46	.47	.47	•48	.49	.50	·41 ·51	•29	11.10
835	1.00	.53	-53	.54	-55	-56	-57	-59	.60	-61	-28	11.00
·820 ·182	1.00 1.10 1.20	.61	.63	.63	.64	-65	67	-68	.70	.71	.26	10.50
04	1.20	·69	.70	·71	·73	·74 ·83	·75	·77	1 '79	.81	.24	10.40
7	1.40	-85	-87	-88	90	92	94	96	-98	1.00	·22 ·20	10.30
7	1.50	93	.95	.96	.98	1.00	1.02	1.05	1.07	.09	17	10.10
	Y .0.00	1.01	1.00									
12)6	2.00	1.01	1.02	1.04	1.06	.08	111	13	.16	.18	14	10.00
	2.10 2.20	15	18	20	22	17	·19	·22	·24 ·33	·27 ·36	·11	9.50
	2.30	.22	25	.27	.30	.32	.35	-38	41	•44	-05	9.40
	2.40	.29	.32	•34	37	.39	.42	.45	.49	-52	.01	9.20
	2.50	•36	.38	'41	.44	.47	•50	.53	.56	.60	0.97	9.10
	3.00	-42	.45	-40								
0 5	3.10	48	-51	·48	·50	·53	·57	·60 ·67	·64 ·70	·67	.93	9.60
Õ	3.20	.54	.57	.60	.63	.66	•70	.73	.77	81	·89 ·85	8.50 8.40
35	-3.30	.60	.63	.66	.69	.72	.76	-80	-84	-88	.80	8.30
	.3.40	'65	.68	.71	.74	.78	-81	.85	.89	.94	.76	8.20
	3.50	.70	.73	.76	.79	.83	-87	.91	.82	-99	.71	8.10
	-4.00	.74	.77	-81	•84	-88	.92	-96	2.00	2.05	-66	8.00
9	-4.10 i	.78	.82	-85	.89	.92	.96	2.01	-05	-10	.61	7.50
09	4.20 4.30	.83	.86	.89	.93	.97	2.01	.05	.10	·14	-56	7.40
	4.30	-86	.89	.83	.97	2.01	05	.09	·14	·19	.21	7.30
93 78	4.40	·89	·92	·96	2.09	.04	.08	13	17	.22	.45	7.20
63	.4.00	93	-95	.99	.03	.07	.11	.16	.21	.26	·40	7.10
848	.5.00	•94	-98	2.02	-06	·10	-14	·19	23	-28	-34	7.00
833	.6.10	.96	2.00	.04	.08	.12	.16	-21	26	-31	29	6,50
317	5.20	.98	.02	.06	·10	.14	·18	.23	.28	-33	.23	6.40
85	.6.30	2.00	.03	.07	11	.15	.20	.24	.29	•35	.17	6.30
_	5.40 5.50	.01	.04	.08	12	·16	21	25	.30	.36	·12	6.20
	6.00	·01	05	.09	13	·17	·21	·26	·31	·36	.00	6.10

TABLE VII.—For finding the Timé

t-t'					•			clinatio
		00	50	100	150	200	250	30
н. н,	M.							
0 or 12	10	1.139	25 1.140	19 1 - 141	14 1 - 1 41	20 2.2.2		
	20	439						
	30	16154	12 .616					
	40	7393						
	50	8350	835	88 .8367	8376	838		
1 or 13	00	1.9127	0 1 -913	55 1 - 2144	0 1 . 9152	1.010		
	10	9778	2 .978	34 19795	9804	9 1 · 9161 6 · 9812		
	20	2.0337			9 2.0362	7 2 0371		
	30 40	1256			5 .0850	0 .0858		
	50	1641						130
			1030	1000	6 160	9 .1673	2 1682	3 .1693
2 or 14	00	2.1986		3 2 2001	6 2 - 2009	6 2 - 2018	1 2 -2026	9 9 9 9 9
	10 20	2299		5 2313	9 .2321			
	30	2582				5 .2612		
	40	8077					2 .2878	2 2886
	50	3293				0.00		
			1		3313	3320	.3328	.3336
3 or 15	00 10	2.34918				3 2 35174	2.3524	7 2 . 3532
	20	38394			3691	3697		
	30	39918						3876
	40	41306						1
	50	42572	42618					
4 or 16	00	2.43722	0		1	1	74021	14288
4 01 10	10	44762	2 43767					2.4401
	20	45697	45734					45028
	30	*46529	46562		*45818 *46634			20022
	40	47263	47297		47360		46708 47428	
	80	47911	47937	47965	47995	48021	48051	
5 or 17	00	2.48462	9 - 40 - 50	0.40500				
	10	48927	48946		2.48533	2.48557	2.48583	2 '48612
	20	49304	49319	49335	*48985 *49350	149006	*49028	49052
	30	*49596	49607	*49620	49631	49367 49643	*49385 *49657	49405
	40	49803	49811	'49818	49827	49835	*49844	·49671 ·49853
· ·	50	149927	· 499 31	*49935	49938	49944	49948	49952
6 or 18	00	2 49969	2 · 49969	2.49969	2.40000			
1	10	49927	49923	49919	2·49969 49917	2.49969	2.49969	2.49969
	0	49803	49795	49789	49780	·49911 ·49772	·49907	49903
	10	49596	49585	49572	49561	49549	·49763 ·49535	·49754 ·49521
	0	49304	49289	49273	49258	49241	49223	49203
-	_	4004	.48908	48889	48869	48848	48826	48802
		0°	50	10°	150	200	250	300

g the Time

g un	e rime
De	clination
250	300
1439 4445 6200 7439 8395	1 44560
9171: 9822: 0381: 0868: 1298: 1682:	98327 2 03914 08782 13085
20268 23381 26207 28782 31131 33280	·23475 ·26298 ·28868 ·31214 ·33361
5247 7046 8693 0199 1572 2820	*38762
3955 4977 5894 6708 7428 9051	2 44010 45028 45941 46749 47465 48084
3583 9028 9385 9657 944 948	2 ·48612:
763 535 223 826	49969 49903 49754 49521 49203 48862:
9	300

eclination

by Transits across the vertical of Polaris.

350	400	450	50°	55°	600		
						н. н.	M.
1.14613		1.14922	1.15106	1.15320	1.15625	11 or 23	50
*44685		*44979	45163	*45393	4568211	11 01 40	40
62232		62521	62706	62931	63225		30
.74617	•74749	*74904	75089	.75312	•75603		20
*84180	*84317	*84466	*84652	*84874	.85163		10
1.91939		1.92226		1.92624	1.92906	11 or 23	00
98444	98574	98722	.88900	.99118	99401	10 or 22	
2.04025	2.04155	2.04301	2.04477	2.04693	2 .04969		40
*08895 *13!94	109019	.09167	.09339	09552	.09823		30
17020		13459	13628	13836	14101		20
11025	17149	17286	17452	17658	17918		10
2 · 20466	2 .20586	2 · 20721	2.20884	2 .21082	2.21338	10 or 22	00
23575	*23697	23825	.23982	.24178	.24425	9 or 21	56
·26397	26507	26637	·26793	·26980	27221	0 01 41	40
28966	29072	29199	29347	*29531	29763		30
31306	*31412	*31534	*31677	*31854	*32079		20
*33449	*33552	*33668	.33806	"33977	•34193		10
2 35409		2 35618	2.35751	2.35916	2 ·36124	9 or 21	06
37201		'37401	*37528	*37685	• 37883	8 or 20	50
*38841	*38929	*39032	*39151	*39301	·39491		40
*40339 *41706	·40422 ·41783	*40520	*40634	40775	40955		30
42945	•43022	*41875 *43104	*41984	*42116	42287		20
		30103	*43206	*43331	43491		10
2.44070	2.44140	2.44218	2 .44314	2.44430	2 44579	8 or 20	00
45083	45148	45220	45307	*45415	45553	7 or 19	50
·45992 ·46796	*46050	46117	46197	46295	•46421		40
47506	*46849 *47554	46911	*46982	47071	47186		30
48122	48163	*47608 *48210	*47673 *48267	·47753	·47856		20
				40551	40420		10
49077	2 48678	2.48721	2.48769	2.48830	2 48907	7 or 19	00
49425	49108	49142	49184	*49234	49300	6 or 18	50
49687	·49449 ·49706	*49477	49510	49550	49603		40
*49864	49876	*49726 *49890	*49751 *49907	49782	49821		30
49958	49965	49972	49979	·49927 ·49989	·49954 ·50003		20 10
49969	2 ·49969	2.49969	2 · 49969				
49897	49890	49883	49875	2·49969 49865	2.49969	6 or 18	00
•49742	•49730	•49717	49700	49679	49852	5 or 17	50
•49505	*49486	49465	49440	49410	49370		40 30
49182	49158	49130	49097	•49056	49003		20
48776	*48745	•48711	48668	*48618	48551		10
359	40°	450	500	550	600		

TABLE VII.—For finding the Time by Transits

00 2.4846	50	100	150	200	250	300
						300
2.4846	1				-	-
	32 2.4844	0 2-4841	7 2:4020	20. 4000		
0 4791	4788			3 2 48369	12.4834	
1726				4.002		
4652						
4569		1 4562				
4476	2 .4472					
		1400.	44036	44595	44546	44498
	2 2 43678	3 2 4363!	2 - 43580	2.49840	0.40400	
	6 .41256	41207	41184			
	39861	39808				
3673:	36672					*38023
11	1		00001	00400	20410	*86340
			2.34729	2 - 34881	2 - 24807	2.94800
		32807				2.34508
		30641				·32510 ·30333
		28274				
		25684				27955
22991	22917	22843				·25353 ·22502
11-					2000	44004
		2 .19714	2.19634	2 19549	2-19450	2 - 10200
	16334	16256	16173	16089	15000	15897
		12405	12320		12139	12037
		.08093	*08005		07820	07718
						2.02829
11.97782	1.97699	1.97612	1 97516			-07220
1.01000						01200
			1.91009 1	90918 1	90816	90709
			83245	83149	83046	82937
			73672	73576		73360
			61278	61183		60970
			43727	43632		43425
13920	13830	13735	13672		13450	13354
00	50	100	150	200	250	30°
0000	2·34916 32931 32931 32931 32931 32931 32931 32931 32931 2·19866 16412 12564 408254 2·33375 1·97782 1·91270 83506 73933 61542 43996 13925	1	1	142572 42524 42477 42428 14366 41256 41297 41154 139915 39861 39808 39752 138934 38839 38281 38222 136732 36672 36613 36551 1234918 2 34856 2 34794 2 34729 130775 30709 30641 30570 128414 28344 28274 28201 125628 25756 25684 25610 12299 22917 22843 22766 12564 12466 12405 12320 16412 16334 16256 16173 12564 12466 12405 12320 12564 12466 12405 12320 125776 125789 197612 197616 1 91270 1 91185 1 91100 1 91270 1 91185 1 91100 1 83506 83423 83345 73672 1 3935 73846 73759 73672 1 3925 13830 13735 13672 1 3925 13830 13735 13672 1 3925 13830 13735 13672 1 3925 13830 13735 13672 1 3925 13830 13735 13672 1 3925 13830 13735 13672	1	1.2564 1.2486 1

by Transits

eclination

309

across the vertical of Polaris-Concluded.

350	400	450	80°	550	800		
2 · 48281	0. 400 44					' н. н.	M.
47701	2.48245	2.48203	2.48154	2.48093	2.48014	5 or 17	-00
47029	'47659 '46981	47611	47553	47481	47388	4 or 16	50
46261	46209	46926	46860	46779	46673		40
45400	45342	10110	46072	*45980	'45862		30
*44439		45274	45192	45091	*44961		20
44400	•44373	44300	*44211	*44099	43957		10
2.43372	2.43302	2.432.2	2.43123	0.4000#	2.10010		
42195	42116	42032	41927	2.43005	2.42849	4 or 16	00
40904	40824	40730		41799	41633	3 or 15	50
*39487	39403	*39303	*40618 *39185	*40481	*40303		40
*37944	37853	37747	37623	39039	*38851		30
*36257	36162	36051	35921	37468	*37269		20
0000.	00102	90001	30921	*35757	*35549		10
2.34422	2.34321	2 .34207	2.34068	2:33897	2 · 33678		
*32420	.32315	32195	32052	31873		3 or 15	00
*30237	*30129	30003	29855	29669	*31645	2 or 14	50
27854	27745	27614	27460	27268	29432		40
25251	25137	25003	24841	24645	·27021		30
·22398	22275	. 22141	21977	21772	21508		20
			22011	22112	21006		10
2 • 19257	2.19134	2.18994	2.18822	2.18614	2 · 18341	2 or 14	00
15788	15661	15518	15345	15128	14851	1 or 13	
11926	11860	11651	11474	11254	10972	1 OF 13	50
07602	.07475	.07220	.07140	06915	06625		40
2.02715	2.02580	2.02428	2.02243	2.02015	2.01720		30
1.97109	1 96974	1.96820	1.96633	1 96402	1.96099		20
1.90590	1.004						10
82821	1.90455	1.90293	1.30108	1.89873	1 89570	1 or 13	00
•73239	82679	82523	82393	82092	81783	0 or 12	50
· 608 421	73102	72941	72746	.72509	•72198		40
43297	60703	60541	60347	60108	•59791		30
13226	43152	42991	42797	42553	*42243		20
LOAGE	13066	12905	12710	12483	12156		10
35°	400	450	500	850	60°		

TABLE VIII.

For Converting Chains into Decimals of a Township side.

zi.	Equivalent decimal of a Township side.		. 100	of of	nt decimal a nip side.		0	nt decimal f a nip side.
Chains.	N. or S. side.	E. or W. side.	Chains.	N. or S. side.	E. or W. side.	Chains.	N. or S. side.	E. or W.
1 2 3	·00206 ·00412 ·00617	**************************************	9	·01852 ·02058	·01863	70 80 90	·14403 ·16461 ·18518	·14493 ·16563 ·18634
-5	·00823 ·01029	·00828 ·01035	20 30 40	·04115 ·06173 ·08230	·04141 ·06211 ·08282	100 200 300	·20576 ·41152 ·61728	·20704 ·41408 ·62112
6 7 8	·01235 ·01440 ·01646	01242 01449 01656	50 60	·10288 ·12346	·10352 ·12422	400	82304	82816

TABLE IX.

CORRECTION to width of Road Allowance on Correction Lines.

n Chains.	Numk	per of Co	rrection	Line.	in Chaing.	Numl	per of Co	orrection	n Line.					
Jog in	1	11	21	31	Jog i	1	11	21	31					
10 20 30 40 50 60	0.9 1.7 2.5 3.3 4.0 4.7	1.0 1.9 2.8 3.7 4.5 5.3	1·1 2·2 3·2 4·2 5·1 6·0	1 ·3 2 · 5 3 · 7 4 · 8 5 · 8 6 · 8	70 80 90 100 110 120	5·3 5·9 6·5 7·0 7·5 8·0	6.0 6.7 7.3 8.0 8.5 9.1	6·8 7·6 8·4 9·0 9·7 10·3	7.8 8.7 9.5 10.3 11.1 11.8					

ip side.

lent decimal of a aship side.

	14493 -16563 -18634 -20704 -41408 -62112 -82816
1	·82816

on Lines.

tion Line.

For Converting the Logarithm Tangent of Small Arcs into Logarithm of Seconds of Arc.

Log. tan.	Log. T.	Log. tan.	Log. T.	Log. tan.	Log. T.
7.920 8.071 1157 221 269 309 312 371	5.314 42 41 40 39 38 37 36 35 34	8·419 ·440 ·459 ·477 ·493 ·508 ·521 ·535	5·314 33 32 31 30 29 28 27 26	8·5+7 ·558 ·570 ·581 ·591 ·601 ·610 ·619	5·314 25 24 23 22 21 20 19 18

Showing the Deflection of a Trial Line for Deviations from 1 to 149 links at the end of eighty-one chains.

Links.	Decimal Division.	Sexagesimal	Division.	Links.	Decimal Division.		Decimal Division. Seragesimal Division. Links. Decimal Division.		Decimal Division.	Sexagesimal Division.		Links.	Decimal Divi- sion.	Sexagesimal	Division.
	0	,	"		•	,	"		0	,	"		0		,,
0 1 2 3 4	0.000 .007 .014 .021 .028	1	00 25 51 16 42	40 41 42 43 44	·283 ·290 ·297 ·304 ·311	17 18	59 24 50 15 41	80 81 82 83 84	566 573 580 587 594	34 35	57 23 48 13 39	120 121 122 123 124	0·849 ·856 ·863 ·870 ·877		55 21 46 12 37
5 6 7 8 9	·035 ·042 ·050 ·057 ·064	3	07 33 58 24 49	45 46 47 48 49	·318 ·325 ·332 ·340 ·347	19 20	06 31 57 22 48	85 86 87 88 89	·601 ·608 ·615 ·622 ·630	36 37	04 30 55 21 46	125 126 127 128 129	·884 ·891 ·898 ·905 ·912		03 28 54 19 45
10 11 12 13 14	·071 ·078 ·085 ·092 ·099	5	15 40 66 31 57	50 51 52 53 54	·354 ·361 ·368 ·375 ·382	21 22	13 39 04 30 55	90 91 92 93 94	0.637 .644 .651 .658 .665	38 39	12 37 03 28 54	130 131 132 133 134	·919 ·927 ·934 ·941 ·948	55 56	10 35 01 26 52
15 16 17 18 19	·106 ·113 ·120 ·127 ·134	6 7 8	22 47 13 38 03	55 56 57 58 59	·389 ·396 ·403 ·410 ·417	23 24 25	21 46 12 37 02	95 96 97 98 99	·672 ·679 ·686 ·693 ·700	40 41 42	19 44 10 35 01	135 136 137 138 139	955 962 969 976 983	57 58	17 43 08 34 59
20 21 22 23 24	·141 ·149 ·156 ·163 ·170	9 10	29 55 20 46 11	60 61 62 63 64	0·424 ·432 ·439 ·446 ·453	25 26 27	28 53 19 44 10	100 101 102 103 104	·707 ·714 ·721 ·729 ·736	43	26 52 17 43 08	140 141 142 143 144	·990 ·997 1·004 ·011 ·018	60	25 50 16 41 06
25 26 27 28 29	·177 ·184 ·191 •198 ·205	11 12	37 02 28 53 19	65 66 67 68 69	·460 ·467 ·474 ·481 ·488	28 29	35 01 26 52 17	105 106 107 108 109	•743 •750 •757 •761 •771	45 46	34 59 24 50 15	145 146 147 148 149	026 933 940 947 954	62 63	32 57 23 48 39
30 31 32 33 34	0·212 ·219 ·226 ·233 ·241	12 13 14	44 09 35 00 26	70 71 72 73 74	*495 *502 *509 *516 *523	30 31	43 08 33 59 24	110 111 112 113 114	·778 ·785 ·792 ·799 ·806	47 ⁻	41 06 32 57 23				
35 36 37 38 39	·248 ·255 ·262 ·269 ·276	15 16	51 17 42 08 33	75 76 77 78 79	*531 *538 *545 *552 *559	32 33	50 15 41 06 32	115 116 117 118 119	·813 ·820 ·828 ·835 ·842	49 50	48 14 39 05 30				

Addition and Subtraction Logarithms

	1	Addition and Subtraction Logarithms.										
▲.	0	1	2	3	4	5	6	7	8	9	· A .	
5.0	Bo·o 0000	0001	0001	0001	0001	0001	0002	0002	6003	0003	5.0	
6.0	0.0 0004	0004	0005	0005	0005	0005	0005	0005	0005	0005	6.0	
1	0005	0006	0006	0006	0006	0006		0006	0007	0007	1	
3	0007	0007	0007	0007	0008	0008	0008	0008	0008	0008		
3	0009	0009	0009	0009	0010	0010	0010	0010	0010	0011	3	
4	0011	0011	0011	0012	0012	0012	0013	0013	0013	0013	4	
5	0014 0017	0014	0014	0015	0015	0015	0016	0016	0017	0017		
5	0017	0018	0018	0019	0019	0019	0020	0020	0021	6021	è	
T	0022	0022	0023	0023	0024	0024	0025	0026	0026	0027	6	
8	0027	0028	0029	0029	0030	0031	0031	0032	0033	0034	8	
	0034	0035	0036	0037	0038	0039	0040	0041	0041	0042	8	
7.0	0.0 0043	0044	0045	0047	0048	0049	0050	0051	0052	0053	7.0	
1	0055	0056	0057	0059	0060	0061	0063	0064	0066	0067	1	
2	0069	0070	0072	0074	0075	0077	0079	0081	0083	0085	2	
3 4	0087 0109	0089	0091 0114	0093 0117	0095 0119	0097 0122	0099	0102	0104	0106	3	
	0103	0111	0114	0111	0115	0122	0125	0128	0131	0134	4	
5	0137	0140	0144	0147	0150	0154	0157	0161	0165	0169	. 5	
6	0173	0177	0181	0185	0189	0194	0193	0203	0207	0212	6	
7	0217 0273	0222	0227	0233	0238	0244	0249	0255	0261	0267	7	
5 6 7 8 9	0344	0280 0352	0286 0360	0293 0368	0299	0306 0385	0313 0394	0321 0403	0328 0413	0336 0422	8	
8.00	0.0 0432	0433	0434	0435	0436	0437	0438	0439	0440	0441	0.00	
01	0442	0443	0444	0445	0446	0447	0448	0449	0440	0441 0451	8·00	
8·00 01 02	0452	0453	0454	0456	0457	0458	0459	0460	0461	0462	02	
03	0463	0464	0465	0466	0467	0468	0469	0470	0471	0473	03	
04	0474	0475	0476	0477	0478	0479	0480	0481	0482	0483	04	
05	0485	0486	0487	0488	0489	0490	0491	0492	0494	0495	05	
06	0496	0497	0498	0499	0500	0502	0503	0504	05051	0506	06	
07	0507	0508	0510	0511	0512	0513	0514	0515	0517	0518	06	
08	0519 0531	0520	0521	0523	0524	0525	0526	0527	0529	0530	08	
00		0532	0533	0535	0536	0537	0538	0540	0541	0542	09	
8.10	0.0 0543	0545	0546	0547	0548	0550	0551	0552	0553	0555	8.10	
11	0556	0557	(558)	0560 0573	0561	0562 0575	0564	0565	0566	0567	11	
12	0569	0570	0571		0574	0575	0577	0578	0579	0581	12	
13 14	0582 0595	0583 0597	0585 0598	0586 0599	0587	0589	0590	0591 0605	0593	0594 0608	13 14	
						1		1				
15 16 27	0609 0623	0611	0612	0613	0615	0616	0618	0619	0620	0622	15	
27	0638	0625 0639	0626 0641	0628	0629	9630	0632	0633	0635	0636	16	
	0652	0654	0655	0642	0644	0645 0660	0646 0661	0648 0663	0649 0664	0651 0666	17	
39	0667	0669	0671	0672	0674	0675	0677	0678		0681	19	

ns from 1

·884 53 03 ·891 28 ·898 54 ·905 54 19 ·912 45

·919 55 10 ·927 35 ·934 56 01 ·941 26 ·948 52

.955 57 17 .962 43 .969 58 08 .976 34 .983 59

Decimal Division.

TABLE XII-Continued.

Addition and Subtraction Logarithms.

A.	0	1	2	3	4	5	6	7	8	9	A.
8.20	0.0 0683	0634	0686	0688	0689	0691	0692	0694	0696	COOK	0.00
21	0699	0700	0702	0703	0705	0707	0708			0097 0713	
22 23	0715 0731	0716	0718 0735	0720	0721	0723	0725			0730	22
24	0748	0750	0752	0736 0753	0738 0755	0740 0757	0741 0759	0743 0760		0747 0764	
25	0766	0767	0769	0771	0773	0774	0776	0778	0780	20781	25
26	0783	0785	0787	0789	0790	0792	0794			0799	
27 28	0801	0803	0805	0807	0809	0810	0812			0818	
29	0820 0839	0822 0841	0823 0842	0825	0827	0829	0831	0833		0837	28
				0844	0846	0848	0850	0852	0854	0856	29
8:30	B0·0 0858 0878	0860 0880	0862	0864	0866	0868	0870		0874	0876	8.30
32	0898	0900	0882 0902	0884	0886	0888	0890		0894	0896	31
33	0919	0921	0923	0925	0906 0927	0908 0929	0910 0931	0912 0933	0915	0917	32
34	0940	0942	0944	0946	0948	0951	0953	0955	0936 0957	0938 0959	
35	0962	0964	0966	0968	0970	0973	0975	0977	0979	0981	35
36 37	0984	0986	0988	0990	0993	0995	0997	0999	1002	1004	36
38	1006 1030	1009	1011	1013	1016	1018	1020		1025	1027	37
39	1053	1056	1058	1037 1060	1039 1063	1041 1065	1044	1046 1070	1048 1073	1051 1075	38
8.40	0.0 1077	1080	1082	1085	1087	1090	1092	1095	1097		8.40
41	1102	1105	1107	1110	1112	1115	1117	1120	1122	1125	41
42	1128 1153	1130	1133	1135	1138	1140	1143	1146	1148	1151	42
44	1180	1156 1183	1159 1185	1161	1164 1191	1167 1193	1169 1196	1172 1199	1175 1202	1177 1204	43
45	1207	1210	1213	1215	1218	1221	1224	1226	2. 9		0.
46	1235	1238	1240	1243	1246	1249	1252	1255	1229	1232 1260	45
47	1263	1266	1269	1272	1275	1278	1280	1283	1286	1289	47
48	1292 1322	1295 1325	1298 1328	1301 1331	1304 1334	1307	1310	1313	1316	1319	48
8.50	1000	12/11	1080	10.		1337	1340	1343	1346	1349	49
151	0 0 1352	1355 1386	1358 1389	1361	1364	1368	1371	1374	1377	1380	
52	1415	1418	1421	1393	1396	1399	1402	1405	1408	1412	51
53	1447	1450	1454	1457	1460	1464	1434	1437 1470	1441	1444 1477	52 53
54	1480	1484	1487	1490	1494	1497	1501	1504	1507	1511	54
88	1514	1518	1521	1525	1528	1531	1535	1538	1542	1545)	55
56 57	1549	1552	1556	1559	1563	1566	1570	1574	1577	1581	16
58	1584 1621	1588 1624	1628	1595	1599	1602	1606	1610	1613	1617	57
59	1658	1661	1665	1632	1635	1639	1643	1646	1650	1654	58
8.60		30	17.5	3880	(42.5)	1676	1680	1684	1688	1692	59
900	0.0 1695	1699	1703	1707	1711	1715	1719	1722	1726	1730	8.60

LATITUDE 50°.

Apparent Time, P.M.	D	ECLIN	ATION		Di	t Time,						
Appar P.M.	250	200	150	109	50	00	50	100	150	200	250	Apparent Time,
H. M. 0.00 1.00 2.00 2.30 3.00 3.30	0·4 0·5 0·5 0·6 0·6	0.5 0.6 0.7 0.7 0.8 0.9	0·7 0·7 0·8 0·8 0·9 1·1	0.8 0.8 0.9 1.0 1.1 1.3	1.0 1.0 1.1 1.2 1.3 1.5	1·1 1·2 1·3 1·4 1·6 1·9	1·4 1·4 1·6 1 7 2·0 2·3	1.6 1.7 1.9 2.2 2.5 3.1	2·0 2·1 2·5 2·8 3·3 4·5	2·6 2·8 3·3 3·9 5·0 7·7	3·5 3·8 4·9 6·2	H. M. 12.00 11.00 10.00 9.30 9.00 8.30
4.00 4.30 .00 5.30 6.00 6.30	1.0 1.2 1.6 2.0 2.8	1.0 1.2 1.5 1.9 2.6 3.9	1·2 1·5 1 8 2·4 3·5 6·2	1.5 1.8 2.3 3.3 5.4	1 8 2·3 3·1 4·8	2·3 3·0 4·4 8 7	3·0 4·2 7·5	4·2 6·9	7.0			8.00 7.30 7.00 6.30 6.00 5.30

1730 8 60

LATITUDE 53°.

0.00 1.00 2.00 2.30 3.00 3.30	0·5 0·5 0·6 0·6 0·7 0·8	0.6 0.6 0.7 0.8 0.9 1.0	0.7 0.8 0.9 0.9 1.0 1.1	0 9 0·9 1·0 1·1 1·2 1·4	1·1 1·1 1·2 1·3 1·5 1·7	1:3 1:5 1:6 1:8 2:1	1 5 1 6 1 8 2 0 2 2 2 7	1.9 2.0 2.2 2.5 2.9 3.6	2·4 2·5 2·9 3·3 4·1 5·6	3·1 3·3 4·1 5·0 6·7	4 5 4 9 6 7 9 3	12.00 11.00 10.00 9.30 9.00 8.30
4.00 4.30 5.00 5.30 6.00	1.0 1.1 1.3 1.6 2.0	1·1 1·3 1·6 1·9	1·3 1·6 1·9 2·5	1.6 1.9 2.5 3.4	2·5 3·3 5·1	2·5 3·3 4·9 9·7	3·4 4·9 9 0	5 1 9 0	96			8.00 7.30 7.00 6.30
6.30	2.7	2·6 3·5	3·6 5·2	5.4			•••••					6.00 5.30