EXERCICES — CHAPITRE 8

Exercice 1 (**) – Calculer les dérivées des fonctions suivantes (sans donner de justification concernant l'existence de cette dérivée).

1.
$$a(x) = 8x^3 + 4x^2 - 12x + 5$$

2.
$$b(x) = (2x^2 + x - 2)(3x + 2)$$

3.
$$c(x) = \frac{1}{3x-2}$$

4.
$$d(x) = \sqrt{3x^2 - x - 1}$$

5.
$$e(x) = \frac{2x^2 + x - 2}{3x + 2}$$

6.
$$f(x) = (x^2 + 1) \times \frac{1}{x}$$

$$7. \ g(x) = x\sqrt{x} + x$$

8.
$$h(x) = (\sqrt{x} + 1)^2$$

9.
$$i(x) = \left(\frac{x+1}{x-1}\right)^2$$

10.
$$j(x) = (2x^2 - 4x + 3)^7$$

Exercice 2 $(\star\star)$ – Étudier les fonctions suivantes sur leur ensemble de définition puis tracer l'allure de leur courbe représentative.

1.
$$a(x) = x^3 - 6x^2 + 9x + 1$$
 pour $x \in \mathbb{R}$,

2.
$$b(x) = \frac{x}{x^2 + 3x + 2}$$
 pour $x \in \mathbb{R} \setminus \{-2, -1\}$,

<u>Indication numérique</u>: $\sqrt{2} \approx 1.4$, $b(-\sqrt{2}) \approx 5.8$ et $b(\sqrt{2}) \approx 0.2$.

3.
$$c(x) = \frac{x^2 + x + 3}{x^2 + x + 1}$$
 pour $x \in \mathbb{R}$,

4.
$$d(x) = \sqrt{x^2 + 3x - 4}$$
 pour $x \in]-\infty, -4] \cup [1, +\infty[$.

Exercice 3 (*) – Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{15x + 60}{x^2 + 9}$.

- 1. On note f' sa dérivée. Calculer f'(x).
- 2. Étudier le signe de f'(x).
- 3. Donner le tableau de variation de f.
- 4. Déterminer une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse -4.
- 5. Dans un même repère, tracer l'allure de la courbe représentative de la fonction f ainsi que la tangente \mathcal{T} .

Exercice 4 $(\star\star)$ – Soit f la fonction définie sur $\mathbb R$ par $f(x)=\frac{x^2-x+4}{x^2+3}$. On note $\mathcal C_f$ sa courbe représentative dans le plan muni d'un repère.

- 1. Calculer la dérivée de la fonction f.
- 2. Étudier les variations de f.
- 3. Donner une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse 1.

4. Sur un même graphique, tracer l'allure de la courbe représentative de la fonction f ainsi que la tangente \mathcal{T} .

Exercice 5 $(\star\star)$ –

Partie A

Sur le graphique ci-dessous, on a tracé la courbe représentative \mathcal{C}_f d'une fonction f définie et dérivable sur \mathbb{R} . On sait que

- la tangente au point $A\left(-1, \frac{9}{2}\right)$ à la courbe \mathcal{C}_f est parallèle à l'axe des abscisses,
- la tangente au point B(2,0) à la courbe C_f passe par le point de coordonnées (0,2).

On note f' la dérivée de la fonction f. À partir du graphique et des renseignements fournis,

1. Déterminer f'(-1) et f'(2).

La tangente à la courbe C_f au point d'abscisse 1 a pour équation $y = -2x + \frac{7}{2}$.

- 2. Déterminer f(1) et f'(1).
- 3. Les affirmations suivantes sont-elles vraies ou fausses? Justifier.

(a)
$$f'(0) \times f'(3) \leq 0$$

(b)
$$f'(-3) \times f'(1) \leq 0$$

Partie B

La fonction f est définie pour tout réel x par $f(x) = \frac{18-9x}{x^2+5}$.

1. Montrer que pour tout réel x, $f'(x) = \frac{9(x^2 - 4x - 5)}{(x^2 + 5)^2}$.

- 2. (a) Étudier le signe de f'(x).
 - (b) Donner le tableau de variation de la fonction f.
- 3. Déterminer une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse -2.

Exercice 6 $(\star\star)$ – Sur le graphique ci-dessous, on a tracé la courbe représentative \mathcal{C}_f d'une fonction f définie et dérivable sur \mathbb{R} . Certaines tangentes à la courbe ont aussi été représentées.

Partie A

On note f' la dérivée de la fonction f. À partir du graphique,

- 1. Déterminer f'(-2), f'(0) et f'(2).
- 2. Donner une estimation des solutions de l'équation f'(x) = 0.

Partie B

La fonction f est définie pour tout réel x par $f(x) = 3x^3 - 20x + 16$.

- 1. Calculer f'(x).
- 2. Calculer f'(-2), f'(0) et f'(2), puis comparer ces résultats avec les valeurs obtenues dans la Partie A.
- 3. Déterminer les abscisses des points en lesquels la tangente à la courbe C_f est parallèle à l'axe des abscisses.
- 4. Donner le tableau de variation de la fonction f.

Exercice 7 $(\star\star)$ – La courbe \mathcal{C}_f ci-dessous représente une fonction f définie et dérivable sur \mathbb{R} . On note f' la fonction dérivée de la fonction f. On sait que

- la courbe coupe l'axe des abscisses au point *A* d'abscisse −1 et la tangente à la courbe au point *A* passe par le point de coordonnées (0, −2),
- la courbe admet au point *B* d'abscisse 1 une tangente parallèle à l'axe des abscisses.

- 1. À partir du graphique et des renseignements fournis, déterminer f'(-1) et f'(1).
- 2. L'une des trois courbes ci-dessous est la représentation graphique de la fonction f'. Déterminer laquelle.

Exercice 8 (* * *) – Soit f la fonction définie sur l'intervalle $\left] -\frac{3}{2}, +\infty \right[$ par

$$f(x) = 8x^2 - 2x - \frac{9}{2x+3}.$$

- 1. On note f' la dérivée de la fonction f. Montrer que $f'(x) = \frac{8x(8x^2 + 23x + 15)}{(2x+3)^2}$.
- 2. Étudier les variations de la fonction f.
- 3. Tracer l'allure de la courbe représentative de la fonction f.