Waveforms in LDC and beyond

Stas Babak

Main driver

- Simulations
 - Speed is not essential
 - We need h+, hx in solar system barycenter
 - Numerically produce TDIs using interpolation
 - Restrictions: ability to analyze the data (existence of the fast version). Biases could be studied in simpler (noiseless) way
- Analysis: fast fast fast
 - Easy/fast to apply response
 - We generate (often) TDI directly: use phase and amplitude with response function
 - Availability: code easy to adapt to our need for sampling
 - MBHBs: we define some parameters at merger
 - EMRIs: some parameters defined at plunge

Galactic binaries (GBs)

- The signal is almost monochromatic
 - Taylor expansion of the phase: A Sin($\phi_0 + \omega t + \dot{\omega} t^2/2$)
 - Doppler modulation: harmonics ot 1/year in frequency domain
- Several versions of response
 - The response is generated in the time domain with a large time step (weeks), assuming the GW signal is emitted at the nearest Fourier bin. Then response is transformed in freq. domain and shifted.
- Complications:
 - Hierarchical triplets: accelerated c.o.m.
 - Eccentric binaries
 - Periapsis precession
 - Harmonics of mean anomaly in the freq. Domain
 - o Finite size effects?

MBHBs

- We currently use PhenomHM waveforms
 - o Circular, no orbital precession
 - Easy to apply response: harmonic by harmonic in frequency domain
 - We use stationary phase to associate time and frequency, and assume "frozen" LISA at the merger (few hours)
 - Many degeneracies (especially without higher modes (HM))
 - Quite fast to generate
- We need waveforms for eccentric and precessing binaries + long (between a month* and few hours with cadence 10 sec)
 - Response is the main issue: response is a function of time and instantaneous frequency
 - Multi-voice: many harmonics at the same instance.
 - Apply response in time domain (interpolation), GPU?
- Fast likelihood:
 - "Heterodyning" (s-h_{appr}) if approximation is reasonable, we remove the fast oscillating part of the signal: low frequency -> fewer points.

EMRIs

- FEW package
 - Schwarzschild eccentric based on the interpolated self-force
 - AAK5PN: mapping AK onto proper geodesic. Generic orbit
 - Many harmonics (beatings of three slowly evolved orbital freqs.)
 - Do not cover the whole parameter space (but most of it), ecc<0.7
- Response
 - o GPU in time domain, or harmonic-by-harmonic
- Need fast and realistic waveform (self-force) for generic orbits
- Simulated data to be released
 - AAK and Schwarzschild:
 - Priors: AAK e(t=0) U[0.1, 0.4], e(t=plunge) U[0-0.3], use a reference time/frequency
 - Schwarzschild e(t=0) < 0.7, separatrix + a bit [7*(6+2e(t=0)) 41.9 < p0 < 14*e0 + 0.1] -> p0 < 16+ 2e(t=0)
 - 1e5<M_mbh < 3e6, 5<mu<50, mu/M <1e-4
 - o 15< SNR < 75
 - o AAK: 0.2<\$<0.9, 0.99>|cos(incl)|>0.45
 - Cadence 10 sec
 - o Duration: 2 years, 1 EMRI plunge within 6 months, 2nd in the 1-2 years and 3rd plunges outside 2 years
 - o Orbit truncated Keplerian (fixed armlength)
 - o TDI2.0

StBBH: stellar mass BBHs

- Based on spin-aligned PhenomD
 - Mildly relativistic
 - Assume circular orbit (wrong assumption)
 - o Use SPA
 - o long-lived, could be multiband: leaving LISA band during observation period
 - Response could be applied in freq. domain (doppler modulation, non-trivial response at high freq.)
- Recently released dataset
 - o 8 sources: Do It Yourself
 - 3 multiband
 - 2 years, 5 sec cadence, TDI2.0
- Need eccentric waveforms
 - Long duration
 - The eccentricity could be large

What else...

- Unification of notations and referring to a single preferred frame
- Non-stationary noise
 - Time-frequency formulation of matched filtering
- Burst-like GWs (binaries)
 - Hyperbolic orbits
 - Very high eccentricity
- Fast waveforms (with response)/fast likelihoods
 - Machine learning techniques?