Paraconsistent and Paracomplete Systems

Paraconsista

April 13 2022

Abstract

Every paraconsistent or paracomplete system invalidates one of the laws of indiscernibility or one of the laws of logical explosion.

Contents

[General Paraqualifications	-
L	Paracomplete Systems 1.1 Indiscernibility of Identicals	
	1.2 Identity of Indiscernibles	4
2	Paraconsistent Systems	•
	2.1 Logical Explosion	-
	2.2 Logical Trivialization	;

Part I

General Paraqualifications

1 Paracomplete Systems

A system is generally paracomplete if it invalidates one or both of the laws of indiscernibility.

1.1 Indiscernibility of Identicals

$$\frac{\exists x \exists y \left[x = y \land \exists F \left(Fx \oplus Fy \right) \right] \vdash \bot}{\exists x \exists y \left[x = y \not\rightarrow \forall F \left(Fx \leftrightarrow Fy \right) \right] \vdash \bot} \\ \vdash \forall x \forall y \left[x = y \rightarrow \forall F \left(Fx \leftrightarrow Fy \right) \right]}$$

1.2 Identity of Indiscernibles

$$\frac{\exists x \exists y \left[\exists F \left(Fx \leftrightarrow Fy \right) \land x \neq y \right] \vdash \bot}{\exists x \exists y \left[\exists F \left(Fx \leftrightarrow Fy \right) \not\rightarrow x = y \right] \vdash \bot} \\ \vdash \forall x \forall y \left[\forall F \left(Fx \leftrightarrow Fy \right) \rightarrow x = y \right]$$

2 Paraconsistent Systems

A system is generally paraconsistent if it invalidates some number of the laws of inconsistency.

2.1 Logical Explosion

$$\frac{\exists x \exists y \left[(x \land \neg x) \land \neg y \right] \vdash \bot}{\vdash \forall x \forall y \left[(x \land \neg x) \rightarrow y \right]}$$

2.2 Logical Trivialization

$$\frac{\exists x \exists y \left[y \wedge (\neg x \vee x) \right] \vdash \bot}{\vdash \forall x \forall y \left[y \rightarrow (x \wedge \neg x) \right]}$$
$$\frac{\exists x \exists y \left[y \wedge (\neg x \vee x) \right] \vdash \bot}{\vdash \forall x \forall y \left[(\neg x \vee x) \rightarrow \neg y \right]}$$
$$\vdash \forall x \forall y \left[\neg (x \wedge \neg x) \rightarrow \neg y \right]$$