Formula for Milling

1. Cutting Time T_C [sec]

$$T_c = \frac{60 \times L \times \pi \times DC}{fz \times z \times vc \times 1.000} = \frac{60 \times L}{vf}$$

2. Power Requirements P_{C [kW]}

$$P_{c} = \frac{Q \times K_{C}}{60 \times 1,000 \times (\eta \div 100)}$$
$$= \frac{ap \times ae \times vf \times k_{C}}{60 \times 10^{6} \times (\eta \div 100)}$$

3. Cutting Speed vc [m/min]

$$VC = \frac{\pi \times DC \times n}{1,000}$$

4. Spindle Speed n [min-1]

$$n = \frac{vc \times 1,000}{\pi \times DC}$$

5. Feed Rate per Tooth fz [mm/t]

$$fz = \frac{vf \times \pi \times DC}{z \times vc \times 1,000}$$
$$= \frac{vf}{z \times n}$$

6. Table Feed vf [mm/min]

$$vf = \frac{fz \times z \times vc \times 1,000}{\pi \times DC}$$
$$= fz \times z \times n$$

Specific Cutting Force kc

P	Un alloyed Low alloyed High alloyed	1,500 MPa 2,000 MPa 3,000 MPa
M	Austenitic Ferritic	2,000 MPa 2,500 MPa
K	Malleable Grey Ductile	900 MPa 1,200 MPa 1,500 MPa
N	Al based alloys Cu based alloys	500 MPa 900 MPa
S	T i based alloys Fe based alloys N i based alloys Co based alloys	1,400 MPa 2,500 MPa 2,800 MPa 3,000 MPa
	Hardened steel 50-55 Hardened steel 60-63 Hardened cast iron	3,300 MPa 4,500 MPa 3,500 MPa

Formula for Milling

7. Horsepower H [HP]

$$H = \frac{P_c}{0.75}$$

8. Max. Chip thickness h_{ex1} [mm]

 $ae \leq DCx0.5$

$$h_{ex1} = \sqrt{\frac{ae}{DC} - \left(\frac{ae}{DC}\right)^2} \times fz \times 2 \times sin(KAPR)$$

[$DCx0.5 < ae \le DC$]

$$h_{ex1} = fz \times sin(KAPR)$$

$$h_{ex1} = \sqrt{\frac{ap}{IC} - \left(\frac{ap}{IC}\right)^2} \times fz \times 2$$

10. Material Removal Rate Q [cm³/min]

$$Q = \frac{ap \times ae \times fz \times z \times vc}{\pi \times DC}$$

$$=\frac{ap \times ae \times vf}{1.000}$$

: Cutting Time [sec] Power Requirements [kW] **Cutting Speed** [m/min] Spindle Speed [min⁻¹] Feed Rate per Tooth [mm/rev] Table Feed [mm/min] Horsepower [HP] Max. Chip thickness [mm] Max. Chip thickness(R-insert) [mm/min] Material Removal Rate [cm³/min] L Length of Cut [mm] DC : Diameter [mm] IC : Insert Diameter [mm] KAPR: Cutting Edge Angle [°]

ap : Depth of Cut [mm]
ae : Width of Cut [mm]
z : No. of Flutes [pcs]
kc : Specific Cutting Force [MPa]

 η : Machine Efficiency [%] (70 ~ 85)

% π ≒ 3.14