Notes in ECEN 5448

Zahary Vogel

November 30, 2015

1 Stabilizability

Lyapunov Test:

(A, B) is stabilizable iff \exists p.d. W s.t.:

$$AW + WA^T - BB^T = -Q$$

for some p.d. Q (that equation is *)

 $\dot{x} = Ax + Bu \ u = -Kx$, is stable.

How to get feedback Kx?

Multiply * from left and right by $P = W^{-1}$, we get:

$$PA + A^{T}P - PBB^{T}P = -PQP$$

$$B^{T}P = 2K$$

$$\implies P(A - BK) + (A^{T} - K^{T}B^{T})P = -PQP$$

Therefore, (A - BK) is Hurwitz (stable).

Fact: Suppose:

$$\begin{pmatrix} \dot{z}_1 \\ \dot{z}_2 \end{pmatrix} = \begin{pmatrix} A_c & A_{cu} \\ 0 & A_u \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} \tilde{B}_c \\ 0 \end{pmatrix} u$$

is the controllability transformation of $\dot{x} = Ax + Bu$. Then the system is stabilizable iff A_u is Hurwitz.

PBH Test for Stabilizability:

(A, B) is stabilizable iff rank $(A - \lambda I, B) = n$ for $\forall \lambda$ with $Re(\lambda) > 0$

2 Observability

Dual to Controllability, related to output.

We say that $\dot{x} = Ax + Bu$, y = Cx + Du is observable if $\forall x(0) \in \mathbb{R}^n$, $(\forall u)$, $\exists T$ such that by observing y(t) in [0, T], $x(0) \in \mathbb{R}^n$ ccan be determined uniquely.

Note that for arbitrary u(t), $y(t) = Ce^{At}x(0) + \int_0^T Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$ where the integral term is $\tilde{y}(t)$. Then, $(y - \tilde{y}(t))$ is the output for the unforced system (u = 0).

Therefore, observability is a property of (A, C) pair like controllability was a property of (A, B) pair.

$$\begin{pmatrix} y(0) \\ y(h) \\ \vdots \\ y(Nh) \end{pmatrix} = \begin{pmatrix} Cx(0) \\ Ce^{Ah}x(0) \\ \vdots \\ Ce^{NAh}x(0) \end{pmatrix}$$

So this basically requires that all those Ce^{Anh} are LI. Uniquely $x(0) \implies \notin \tilde{x}(0) = x(0)$:

$$\tilde{y} = \begin{pmatrix} C \\ Ce^{Ah} \\ \vdots \\ Ce^{NAh} \end{pmatrix} \tilde{x}$$

$$\implies 0 = \begin{pmatrix} C \\ Ce^{Ah} \\ \vdots \\ Ce^{Nah} \end{pmatrix} x$$

should have a unique solution x = 0. Which holds iff the columns of that matrix are L.I.

A system is observable iff the columns of Ce^{At} are linearly independent over the interval $t \in [0, T]$. columns of Ce^{At} are L.I. over [0,T] iff:

$$W_0(0,T) = \int_0^T e^{A^T t} C^T C e^{At} dt$$

is a positive definite matrix. Reminder: $x^TW_0(0,T)x=\int_0^T x^Te^{A^Tt}C^TCe^{At}xdt=\int_0^T ||Ce^{At}x||^2dt\geq 0$ iff the columns of Ce^{At} are L.I.

The matrix $W_0(0,T)$ is called the observability Gramian of $\dot{x} = Ax$ and y = Cx. Note that:

$$W_c(0,T) = \int_0^T eAtBB^T e^{A^T t} dt$$

Therefore, a system is observable iff (A^T, C^T) is controllable.

So (A, C) is observable iff (A^T, C^T) is controllable: or if the observability matrix:

$$\begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

is full rank. or if
$$\mathrm{rank}\binom{A-\lambda I}{C}=n\forall \lambda\in\mathbb{C}.$$

or the columns of Ce^{At} are linearly independent for $t \in [0,T]$ or if $W_O(0,T)$ is p.d. for all T>0.

What is x(0)?

$$y(t) = Ce^{At}x(0)$$

$$\implies x(0) = W_O(0, T)^{-1} \int_0^T c^T e^{A^T t} y(t) dt$$

Observability form:

Similar to controllability, $\exists T; z = Tx$ results in:

$$z = \begin{pmatrix} A_O & 0 \\ A_u & A_{uO} \end{pmatrix} z$$

$$y = \begin{pmatrix} c_1 & 0 \end{pmatrix} z$$

where A_O, C_1 is an observable pair.

Note that any initial condition $z_0 = \begin{pmatrix} 0 \\ u \end{pmatrix}$ where $u \in \mathbb{C}$ the output $y(t) = 0 \ \forall t \in \mathbb{R}^+$.

Duality in controls defaults to mean the duality between controllability and observability. The dual to stabalizability is Detectability.

3 Detectability

The pair (A, C) is called detectable if $A \pm HC$ is Hurwitz for some $n \times q$ matrix H. Model-Based Observer aka Luenberger Observer (deterministic version of Kallman filter). Original setting:

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

Observers reconstruct x from whatever you know.

A mapping that maps (u, y) to something is called an observer for linear system if:

$$||x(t) - \hat{x}(t)|| \rightarrow 0$$

as $t \to \infty$.

Model-Based Observer because you know the model:

$$\dot{\hat{x}} = A\hat{x} + Bu + H(y - \hat{y})$$
$$\hat{y} = C\hat{x}$$

for some H.

Suppose that A - HC is Hurwitz.

Let $e = x - \hat{x}$. Then,

$$\dot{e} = Ax + Bu - A\hat{x} - Bu - H(y - \hat{y})$$
$$= Ax - A\hat{x} - HCe$$
$$\dot{e} = (A - Hc)e$$

Therefore, $\hat{x}(t) \to x(t)$ exponentially fast

4 outside of topic

PBH test for controllability: (A, B) controllable, iff $\operatorname{rank}(A - \lambda IB) = n$ for $\forall \lambda$. $\operatorname{Rank}(A - \lambda_1 IB) < n$ iff $\exists c \ c^T (A - \lambda_1 IB) = 0 \implies c^T A = -\lambda c^T, \ c^T B = 0$ $c^T (BAB \dots A^{n-1}B) = 0$