SERIE DI TRASFORMAZIONI IN SEQUENZA ALLO SCOPO DI:

CILCH MOTORI: GENERARE L DA SORGENTE CALDA CEDENDO A FREDDA

CICH INVERSI: SPOSTARE Q DA CALDA A FREDDA TRAMITE LAVORO

CICH REVERSIGILL

NON PRESENTAND IRREVERSIGILITA' POSSONO ESSERE PERCORSI IN SENSO INVERSO

CICLO DI CARNOT

SCAMBIA Q TRA THAX E THIN SOTTO AT INFINITESIMI

INTERNAMENTE REVERSIBILI

UNICA IRREVERSIBILITA', SCANDIO TERMICO SOTTO AT FINITI

ES: CARNOT T2=T3 + TMAX, T1=T2 + TMIN

INTRODUZIONE DEL CALORE

$$\triangle S$$
 FLUIDO = $\frac{Q_{1N}}{T_2}$ ΔS SORGENTE = $-\frac{Q_{1N}}{T_{MAX}}$ $\sum \Delta S = \Delta S_{UNI} > 0$

CICLI IRREVERSIBILI

PERDITE FLUIDODINAMICHE NELLE MACCHINE 421 PERDITE ATTRITO NEI CORPI DP=PIN-POUT CO

CICLO CHIUSO

IN UN CICLO IL LAVORD NETTO'L COINCIDE CON L'AREA DEL CICLO VERO SOLO PER TRASFORMAZIONI IDEALI

TEOREMI DI CARNOT

MREALE = MCARNOT E [0,1] SEMPRE

M CARNOT = 1- Tmin Tmax

TRA TIE TO MMAX = MCARNOT

INDICI DI RENDIMENTO PER UN CICLO

$$M_{I} = \frac{\text{EFFETTO UTILE}}{\text{RISORSA IMPIEGATA}} = \frac{\text{L NETTO}}{\text{Q IN}}$$

CICLO A VAPORE RANKINET

TECH DI RIFERIMENTO PER ENERGIA DA COMBUSTIBILI DI BASSO RANGO O NUCLEARE

COMBUSTIONE ESTERNA I GAS CONSUSTIONE NON INTERAGISCOND CON IL FLUIDO DI LAVORD

CICLO SATURO VS SURRISCALDATO

SPILLAMENTO RIGENERATIVO

ACQUA DI ALIMENTO SI RISCALDA A SPESE DELLA CONDENSAZIONE DELLO SPINAMENTO

MICENERATORI A SUPERFICE US MISCELAMENTO

CICLO SOULE-BRAYTON

FLUIDO IN CONDIZIONI SUPERIORI A CRITICHE