Комплексный анализ Определения к тестированию

Основано на конспектах лекций Аксёновой Е.В. Файл создан Заблоцким Данилом

1 Модуль и аргумент коплексного числа

$$|z| \coloneqq r = \sqrt{x^2 + y^2},$$

$$\arg z \coloneqq \phi, \quad 0 \leqslant \arg z < 2\pi,$$

$$\operatorname{Arg} z \coloneqq \operatorname{arg} z + 2\pi k, \quad k \in \mathbb{Z}.$$

2 Алгербраическая, показательная и тригонометрическая формы записи комплексного числа

Алгебраическая форма записи:

$$z = (x, y) = x + iy, \quad x, y \in \mathbb{R},$$

Показательная форма записи:

$$z = |z| \cdot e^{i \arg z}.$$

Тригонометрическая форма записи:

$$z = |z| \cdot (\cos \arg z + i \sin \arg z),$$

3 Сопряжённое к комплексному числу

$$\overline{z} = x - iy$$
.

4 Сложение, умножение и деление комплексных чисел

$$\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$$
,

$$\begin{array}{rcl} (x_1,y_1) + (x_2,y_2) & \coloneqq & (x_1+x_2,y_1+y_2), \\ (x_1,y_1) \cdot (x_2,y_2) & \coloneqq & (x_1x_2-y_1y_2,x_1y_2+x_2y_1), \\ \frac{(x_1,y_1)}{(x_2,y_2)} & \coloneqq & (\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2},\frac{y_1x_2-x_1y_2}{x_2^2+y_2^2}). \end{array}$$

5 Формула Эйлера

$$e^{i\phi} = \cos\phi + i\sin\phi, \quad \forall \phi \in \mathbb{R}.$$

6 Формула Муавра

$$z^n = r^n(\cos n\phi + i\sin n\phi).$$

7 Расстояние между двумя конечными точками на комплексной плоскости

$$\mathrm{dist}(M_1,M_2)\coloneqq\sqrt{(\xi_1-\xi_2)^2+(\eta_1-\eta_2)^2+(\zeta_1-\zeta_2)^2},$$

$$d(z_1,z_2)\coloneqq|z_1-z_2|\,,\quad z_1,z_2\in\mathbb{C},$$

$$P:\mathbb{C}\xrightarrow{\mathrm{Ha}}S\setminus\{N\},$$

$$\rho(z_1,z_2)\coloneqq\mathrm{dist}\left(P(z_1),P(z_2)\right).$$

8 Окрестность конечной точки на комплексной плоскости

Определение. Множество называется *окрестностью* точки, если оно содержит некоторый шарик с центром в этой точке.

Обозначение.

$$O_z, \quad z \in \overline{\mathbb{C}}.$$

9 Окрестность бесконечно удалённой точки

Определение. Множество $V\subset \overline{\mathbb{C}}$ является окрестностью бесконечно удаленной точки, если $\exists \varepsilon>0$:

$$\left\{z\in\overline{\mathbb{C}}:|z|>\varepsilon\right\}\subset V.$$

10 Предельная точка множества

Определение. Точка называется npedenьной точкой множества, если в любой ее окрестности есть точки множества, отличные от данной.

Замечание. Точка является предельной точкой множества на расширенной комплексной плоскости $(\overline{\mathbb{C}}) \iff \forall$ ее окрестность содержит бесконечное число точек данного множества.

11 Внутренняя точка множества

НАЙТИ

12 Граничная точка множества

Определение. Точка называется *граничной* точкой множества, если в любой ее окрестности есть как точки множества, так и точки его дополнения.

Обозначение.

 $\partial \mathfrak{D}$.

13 Предел последовательности комплексных чисел

НАЙТИ

14 Предел функции

ИТЙАН

15 Непрерывность функции в точке

НАЙТИ

16 Производная функции в точке

НАЙТИ

17 Равномерная сходимость последовательности функций на множестве

НАЙТИ

18 Признак Вейерштрасса равномерной сходимости функционального ряда

НАЙТИ

19 Теорема Вейерштрасса (о равномерно сходящейся последовательности непрерывных функций)

НАЙТИ

20 Путь, эквивалентные пути, жорданов путь, кривая, кривая Жордана, гладкая кривая, кусочногладкая кривая (это разные вопросы)

Определение (Путь). *Путем* $\gamma:[a;b]\to\mathbb{C}$ называется непрерывное отображение [a;b] в $\mathbb{C}.$

Определение (Эквивалентные пути). $\gamma_1:[a_1;b_2]\to\mathbb{C},\ \gamma_2:[a_2;b_2]\to\mathbb{C}.$ $\gamma_1\sim\gamma_2,$ если \exists возрастающая непрерывная функция

$$\phi:[a_1;b_1]\xrightarrow{\text{\tiny HA}}[a_2;b_2]:\ \gamma_1(t)=\gamma_2\big(\phi(t)\big),\quad\forall t\in[a_1;b_1].$$

Определение (Жорданов путь). Путь называется *эсордановым*, если он является взаимно однозначной функцией.

Определение (Гладкая кривая). $HA\dot{H}TM$

Определение (Кусочногладкая кривая). $HA\ddot{H}TM$

21 Множество связное

НАЙТИ

22 Область, односвязная область

ИТЙАН

23 Производная функции в точке

НАЙТИ

24 Моногенная в точке функция

НАЙТИ

25 Голоморфная в точке функция

НАЙТИ

26 Голоморфная в области функция

Определение. Функция называется *голоморфной* в области, если она моногенна в каждой точке этой области.

27 Условия Коши-Римана

НАЙТИ

28 Степенной ряд

$$\sum_{n=0}^{\infty}a_n(z-z_0)^n$$
, где $\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C},\ z,z_0\in\mathbb{C}.$

29 1-я теорема Абеля

Теорема. Если ряд $\sum_{n=0}^{\infty}a_n(z-z_0)^n$ сходится в точке $z_1\in\mathbb{C},$ то он

абсолютно сходится при $|z-z_0|<|z_1-z_0|$. А если ряд $\sum_{n=0}^\infty a_n(z-z_0)^n$ расходится в точке $z_1\in\mathbb{C}$, то он рас-

ходится и при $|z - z_0| > |z_1 - z_0|$.

30 Радиус сходимости степенного ряда

Определение. Элемент $R \in [0; +\infty]$ называется радиусом сходимости ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, если при $|z-z_0| < R$ исходный ряд абсолютно сходится, а при $|z-z_0|>R$ исходный ряд расходится.

31 Формула Коши-Адамара

Теорема. Для степенного ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ положим $l\coloneqq \varlimsup_{n\to\infty} \sqrt[n]{|a_n|}$. Тогда:

- 1. Если l=0, то исходный ряд сходится $\forall z \in \mathbb{C}$.
- 2. Если $l = \infty$, то исходный ряд сходится только в точке z_0 .
- 3. Если $l \in (0; +\infty)$, то при $|z-z_0| < \frac{1}{l}$, а при $|z-z_0| > \frac{1}{l}$ исходный ряд расходится.

32 Формула Даламбера

Замечание. Если $\exists \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$, то этот предел равен R (радиусу сходимости).

33 Конформное в точке отображение

НАЙТИ

34Регулярное в точке отображение

Определение. Функция называется регулярной в точке, если она имеет в этой точке конечную производную от 0.

35 Связь между голоморфностью и конформностью

НАЙТИ

36 Определение функций e^z , $\sin z$, $\cos z$, $\ln z$, $\ln z$, Arg z, Arcsin z, Arccos z, выражение тригонометрических функций через экспоненту

НАЙТИ

37 Дробно-линейная функция

Определение. Дробно-линейным отображением называется функция вида

$$f(z) = \frac{az+b}{cz+d}.$$

38 Общий вид дробно-линейного автоморфизма верхней полуплоскости

НАЙТИ

39 Общий вид дробно-линейного автоморфизма единичного круга

ИТЙАН

40 Общий вид дробно-линейного изоморфизма верхней полуплоскости на единичный круг

НАЙТИ

41 Лемма Гурса (Гауса?)

Лемма. Если функция f непрерывна в области $\mathfrak{D},$ то для любой спрямляемой кривой Жордана $\gamma\subset\mathfrak{D},$ для любого $\varepsilon>0$ \exists вписанная в γ ломанная P такая, что

$$\left| \int_{\gamma} f(z)dz - \int_{P} f(z)dz \right| < \varepsilon.$$

42 Интегральная теорема Коши

Теорема. Пусть $\mathfrak D$ – односвязная область в $\mathbb C$, функция f голоморфна в $\mathfrak D$. Тогда для любой замкнутой спрямляемой кривой Жордана γ

$$\int_{\gamma} f(z)dz = 0.$$

43 Интеграл Коши от степенной функции по замкнутому контуру

НАЙТИ

44 Интегральная формула Коши

Теорема. Если функция f голоморфна в односвязной области D, ограничена замкнутой спрямляемой кривой Жордана γ , непрерывна вплоть до границы, то

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = \left\{ \begin{array}{ll} f(z_0), & \text{если } z_0 \in \mathfrak{D} \\ 0, & \text{если } z_0 \notin \operatorname{cl} \mathfrak{D} \end{array} \right..$$

45 Интеграл типа Коши

Определение. Пусть односвязная область $\mathfrak D$ ограничена замкнутой спрямляемой кривой Жордана γ , а функция f непрерывна на γ . Положим

$$F(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in \mathfrak{D}.$$

Функция F называется uнтегралом muna Kouu.

46 Теорема Лиувилля

Теорема. Если функция f голоморфна в $\mathbb C$ и ограничена, то $f=\mathrm{const.}$

47 Теоремы Мореры и Вейерштрасса

Теорема (Морера). Для того, чтобы непрерывная в односвязной области функция была голоморфна в этой области, необходимо и достаточно, чтобы интеграл от этой функции по \forall замкнутому контуру (то есть по \forall замкнутой спрямляемой кривой Жордана), лежащему в области, был равен 0.

Теорема (Вейерштрасса). Равномерный предел последовательности голоморфных функция является голоморфной функцией, то есть если $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{H}(\mathfrak{D})$ и $f_n\rightrightarrows f$ внутри $\mathfrak{D},$ то $f\in\mathcal{H}(\mathfrak{D}).$

48 Ряд Тейлора голоморфной в круге функции

НАЙТИ

49 Ряд Лорана голоморфной в кольце функции

Теорема. Если функция f голоморфна в кольце $r \subset |z-z_0| \subset R$, то в этом кольце она разлагается в ряд Лорана:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n$$

с коэфициентами c_n , определяемыми формулами:

$$c_n = \frac{1}{2\pi i} \int_{|\xi - z_0 = \rho|} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi, \quad \forall \rho \in (r, R).$$

50 Правильная и главная части ряда Лорана в конечной точке и в бесконечно удалённой точке

НАЙТИ

51 Определение вычета в конечной точке и в бесконечно удалённой

НАЙТИ

52 Вормулы для вычисления вычета в полюсе k-го порядка в конечной точке и в бесконечно удалённой

ИТЙАН

53 Гармоническая функция

Определение. Определенная в односвязной области $\mathfrak{D}\subset\mathbb{R}^2$ функция u(x,y) называется $\mathit{гармонической}$ функцией, если $u\in C^2(\mathfrak{D})$ и

$$\triangle u \coloneqq \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \equiv 0,$$

 \triangle – оператор Лапласа.

54 Определения целой и мероморфной функций

Определение (Целая функция). Голоморфная в $\mathbb C$ функция называется *целой функцией*.

Определение (Мероморфная функция). Функция, голоморфная в области $\mathfrak D$ всюду, за исключением полюсов, называется *мероморфной* в этой области функцией.

55 Теорема Римана

ИТЙАН