#### CS 4920/5920 Applied Cryptography

Chapter 9 Public Key Cryptography and RSA

#### Secret-Key Cryptography

- traditional symmetric/secret/single key cryptography uses one key
- shared by both sender and receiver
- if this key is disclosed, communications are compromised
- also is symmetric, parties are equal
  - does not protect sender from receiver forging a message & claiming is sent by sender
  - does not protect receiver from sender denying sending a message

#### Public-Key Cryptography

- significant advance in the 3000 year history of cryptography
- uses two keys a public key & a private key
- asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key cryptography

#### Misconceptions about Public-Key Cryptography

- public-key encryption is more secure
  - there is nothing in principle to show one is superior to another from the point of view of resisting cryptanalysis.
- public-key encryption is a general-purpose technique that has made symmetric encryption obsolete.
  - because of the computational overhead of current public-key encryption schemes, symmetric encryption is more popular
- key distribution is trivial in public-key encryption
  - the procedures involved are not simpler nor any more efficient than those required for symmetric encryption

## Why Public-Key Cryptography?

- developed to address two key issues:
  - key distribution how to have secure communications in general without having to trust a third party (e.g., KDC) with your key
  - digital signatures how to protect two parties against each other
- public invention due to Whitfield Diffie & Martin Hellman at Stanford Univ. in 1976
  - known earlier in classified community

## Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
  - a public-key, which may be known by anybody, and can be used to encrypt messages (provide confidentiality), or decrypt messages (verify signatures)
  - a related private-key, known only to one party, used to decrypt messages (get the plaintext), or encrypt messages (create signatures)
- infeasible to determine private key from public key
- is **asymmetric** because
  - different keys are used for encryption and decryption

# Symmetric vs Public-Key

| Conventional Encryption  Needed to Work: |                                                                              | Public-Key Encryption  Needed to Work:                                                                                                                      |  |  |
|------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                          |                                                                              |                                                                                                                                                             |  |  |
| 2.                                       | The sender and receiver must share the                                       |                                                                                                                                                             |  |  |
|                                          | algorithm and the key.                                                       | <ol><li>The sender and receiver must each have<br/>one of the matched pair of keys (not the</li></ol>                                                       |  |  |
| Need                                     | ed for Security:                                                             | same one).                                                                                                                                                  |  |  |
| 1.                                       | The key must be kept secret.                                                 | Needed for Security:                                                                                                                                        |  |  |
| 2.                                       | It must be impossible or at least<br>impractical to decipher a message if no | One of the two keys must be kept secret.                                                                                                                    |  |  |
|                                          | other information is available.                                              | 2. It must be impossible or at least                                                                                                                        |  |  |
|                                          |                                                                              | impractical to decipher a message if no                                                                                                                     |  |  |
| 3.                                       | Knowledge of the algorithm plus<br>samples of ciphertext must be             | other information is available.                                                                                                                             |  |  |
|                                          | insufficient to determine the key.                                           | <ol> <li>Knowledge of the algorithm plus one of<br/>the keys plus samples of ciphertext must<br/>be insufficient to determine the other<br/>key.</li> </ol> |  |  |

## Encryption with Public Key



(provides confidentiality)

# Encryption with Public Key (general form)



(provides confidentiality)

#### **Encryption with Private Key**



(provides authentication: source and the integrity of the message )

# Encryption with Private Key (general form)



(provides authentication: source and the integrity of the message )

#### Double Use of Public-key Scheme



(provides both confidentiality and authentication, not used in practice due to high computational cost)

#### Applications for Public-Key Algorithms

- can classify uses into 3 categories:
  - encryption/decryption (provide confidentiality)
  - digital signatures (provide authentication)
  - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

| Algorithm      | Encryption/Decryption | Digital Signature | Key Exchange |
|----------------|-----------------------|-------------------|--------------|
| RSA            | Yes                   | Yes               | Yes          |
| Elliptic Curve | Yes                   | Yes               | Yes          |
| Diffie-Hellman | No                    | No                | Yes          |
| DSS            | No                    | Yes               | No           |

#### Public-Key Cryptography Requirements [DIFF76b]

- 1. It is computationally easy for a party B to generate a pair (public key  $PU_b$ , private key  $PR_b$ ).
- 2. It is computationally easy for a sender A, knowing the public key and the message to be encrypted, *M*, to generate the corresponding ciphertext: C = E(PU<sub>b</sub>, M)
- 3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original message:  $M = D(PR_b, C) = D[PR_b, E(PU_b, M)]$
- 4. It is computationally infeasible for an adversary, knowing the public key, PU<sub>b</sub>, to determine the private key, PR<sub>b</sub>
- 5. It is computationally infeasible for an adversary, knowing the public key, PU<sub>b</sub>, and a ciphertext, C, to recover the original message, M.

#### Public-Key Cryptography Requirements (cont.)

- 6. The two keys can be applied in either order:
  - $-M = D[PU_b, E(PR_b, M)] = D[PR_b, E(PU_b, M)]$
  - a useful requirement, not necessary for all algorithms
  - RSA meets this requirement

These are formidable requirements which only a few algorithms have satisfied.

#### Public-Key Requirements

- need a trapdoor one-way function
- one-way function has
  - Y = f(X) easy
  - $-X = f^{-1}(Y)$  infeasible
- a trap-door one-way function has
  - $Y = f_k(X)$  easy, if k and X are known
  - $-X = f_k^{-1}(Y)$  easy, if k and Y are known
  - $-X = f_k^{-1}(Y)$  infeasible, if Y known but k not known
- development of a practical public-key scheme depends on discovery of a suitable trap-door one-way function

## Public-key Cryptanalysis

- like secret key schemes brute force exhaustive key search attack is always theoretically possible
  - a tradeoff on key size
- Computing the private key given the public key could be feasible
  - it has not been mathematically proven this type of attack is infeasible for a particular public-key algorithm (computational hardness assumption => computationally secure as long as assumption holds)
  - any given algorithm, including RSA, is suspect

#### **RSA**

- by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- a block cipher, the plaintext and ciphertext are integers between 0 and n-1 for some n
  - a typical size for n is 1024 bits or 2^1024
  - (longer 2048 or 4096 bits can be used for greater security)
- security is based on the difficulty of finding the prime factors of a large composite number
- the inventors:
   https://www.youtube.com/watch?v=bQ8NR1Vx4e8
- the cipher overview: https://www.youtube.com/watch?v=b57zGAkNKIc

## RSA En/decryption

- to encrypt a message M the sender:
  - obtains public key of recipient PU={e,n}
  - computes:  $C = M^e \mod n$ , where  $0 \le M \le n$
- to decrypt the ciphertext C the owner:
  - uses the private key  $PR = \{d, n\}$
  - -computes:  $M = C^d \mod n$   $= (M^e \mod n)^d \mod n$   $= (M^e)^d \mod n$   $= M^{ed} \mod n$

#### RSA Key Setup

- each user generates a public/private key pair by:
   selecting two large primes at random: p, q
- computing n=p.q
  - note  $\emptyset$  (n) = (p-1) (q-1) // Euler Totient Function
- selecting at random the encryption key e
  - where  $1 < e < \emptyset$  (n),  $gcd(e, \emptyset) = 1$
- solve following equation to find decryption key d
  - $-e.d \equiv 1 \mod \emptyset(n)$  and  $0 \leq d \leq n$
- publish the public encryption key: PU={e,n}
- keep secret private decryption key: PR={d,n}

#### Why RSA Works

- because of Euler's Theorem:
  - $-a^{g(n)} \mod n = 1$  where gcd(a, n) = 1
- in RSA have:
  - -n=p.q
  - $\emptyset$  (n) = (p-1) (q-1)
  - carefully chose  $e \& d to be inverses mod \varnothing (n)$
  - hence e.d= $1+k.\varnothing$  (n) for some k
- Proof:
  - $M^{e\cdot d} \mod n = M^{1+k\cdot \varnothing(n)} \mod n = M \mod n = M$ 
    - $-M^{1+k \cdot \emptyset(n)} \mod p = M \mod p \rightarrow p \mid (M^{1+k \cdot \emptyset(n)} M)$
    - $-M^{1+k \cdot \varnothing(n)} \mod q = M \mod q \rightarrow q \mid (M^{1+k \cdot \varnothing(n)} M)$
    - $-n \mid (M^{1+k \cdot \varnothing(n)} M) \rightarrow M^{1+k \cdot \varnothing(n)} \mod n = M \mod n$

## Proof of $M^{1+k \cdot \varnothing(n)} \mod p = M \mod p$

First we show that  $M^{k(p-1)(q-1)+1} \mod p = M \mod p$ . There are two cases to consider.

Case 1: M and p are not relatively prime; that is, p divides M. In this case, M mod p = 0 and therefore  $M^{k(p-1)(q-1)+1} \mod p = 0$ . Thus,  $M^{k(p-1)(q-1)+1} \mod p = M \mod p$ .

Case 2: If M and p are relatively prime, by Euler's theorem,  $M^{\phi(p)}$  mod p=1. We proceed as

```
\begin{split} M^{k(p-1)(q-1)+1} & \mod p = [(M)M^{k(p-1)(q-1)1}] \mod p \\ &= [(M)(M^{(p-1)})^{k(q-1)}] \mod p \\ &= [(M)(M^{\phi(p)})^{k(q-1)}] \mod p \\ &= (M \mod p) \times [(M^{\phi(p)}) \mod p]^{k(q-1)} \\ &= (M \mod p) \times (1)^{k(q-1)} \qquad \text{(by Euler's theorem)} \\ &= M \mod p \end{split}
```

#### RSA Example - Key Setup

- 1. Select primes: p=17 & q=11
- 2. Calculate n = pq
- 3. Calculate  $\emptyset(n)$
- 4. Select e:  $gcd(e, \emptyset(n)) = 1$ ; choose e=7
- 5. Determine d:  $d.e \equiv 1 \mod \emptyset(n)$  and  $d < \emptyset(n)$ And show  $d.e \equiv 1 \mod \emptyset(n)$ (extended Euclid's algorithm ax+by=1)
- 6. Publish public key  $PU = \{e, n\}$
- 7. Keep secret private key  $PR = \{d, n\}$

#### RSA Example - Key Setup

- 1. Select primes: p=17 & q=11
- 2. Calculate  $n = pq = 17 \times 11 = 187$
- 3. Calculate  $\emptyset(n) = (p-1)(q-1) = 16*10=160$
- 4. Select e: gcd(e, 160) = 1; choose e=7
- 5. Determine d:  $d.e \equiv 1 \mod 160$  and d < 160Value is d=23 since 23\*7=161=1\*160+1(extended Euclid's algorithm ax+by=1)
- 6. Publish public key  $PU = \{7, 187\}$
- 7. Keep secret private key  $PR = \{23, 187\}$

#### RSA Example - Key Setup

- 1. Select primes: p=17 & q=11 Keep p, q private
- 2. Calculate  $n = pq = 17 \times 11 = 187$
- 3. Calculate  $\emptyset(n) = (p-1)(q-1) = 16*10=160$
- 4. Select e: gcd(e, 160) = 1; choose e=7
- 5. Determine d:  $d.e \equiv 1 \mod 160$  and d < 160Value is d=23 since 23\*7=161=1\*160+1(extended Euclid's algorithm ax+by=1)
- 6. Publish public key  $PU = \{7, 187\}$
- 7. Keep secret private key  $PR = \{23, 187\}$

## RSA Example - En/Decryption

sample RSA encryption/decryption

```
-PU=\{7,187\}, PR=\{23,187\}
```

- given message M = 88 (note 88 < 187)
- encryption: C ?
- decryption: M ?

## RSA Example - En/Decryption

sample RSA encryption/decryption

$$-PU=\{7,187\}, PR=\{23,187\}$$

- given message M = 88 (note 88 < 187)
- encryption:  $C = 88^7 \mod 187 = 11$
- decryption:  $M = 11^{23} \mod 187 = 88$



#### Exponentiation in Modular Arithmetic

- can use the Square and Multiply Algorithm
  - a fast, efficient algorithm for computing: a<sup>b</sup> mod n
  - [(a mod n) x (b mod n)] mod n = (a x b) mod n
  - look at binary representation of exponent b

#### example:

```
-a^{11} \mod n
= (a^8*a^2*a^1) \mod n
= [(a^8 \mod n)*(a^2 \mod n)*(a^1 \mod n)] \mod n
```

# Square and Multiply Algorithm: $a^b$ mod n (b is in binary format: $b_k b_{k-1} ... b_0$ )

```
c = 0; f = 1
for i = k downto 0
                                Quiz 12c
    do c = 2 x c
                                e.g., a^{11} \mod n
          f = (f x f) mod n b = 1011
                                k = 3
    if b_i == 1 then
                                f ?
          c = c + 1
                                c ?
          f = (f x a) mod n
return f
```

# Square and Multiply Algorithm: $a^b$ mod n (b is in binary format: $b_k b_{k-1} ... b_0$ )

```
c = 0; f = 1
for i = k downto 0
                                 Quiz 12c
     do c = 2 x c
                                  e.g., a^{11} \mod n
          f = (f x f) mod n b = 1011
                                  k = 3
     if b_i == 1 then
                                  f will be a^{11} \mod n
          c = c + 1
                                  c will be 11
          f = (f x a) mod n
return f
```

# Square and Multiply Algorithm: $a^b$ mod n (b is in binary format: $b_k b_{k-1} ... b_0$ )

```
c = 0; f = 1
for i = k downto 0
                                   Quiz 12c
     do c = 2 x c
                                   e.g., a^{11} \mod n
           f = (f x f) mod n b = 1011
                                    k = 3
     if b_i == 1 then
                                    f will be a^{11} \mod n
           c = c + 1
                                    c will be 11
           f = (f \times a) \mod
return f
                                     Additional
                                     computation
                                     if b_i == 1
```

## **Efficient Encryption**

- encryption  $C = M^e \mod n$ , faster for smaller e
  - often choose e=65537 (2<sup>16</sup>+1)
  - also see choices of e=3 or e=17
- but if e too small (e.g., e=3), vulnerable to attack
- if e is selected first, to ensure  $gcd(e, \emptyset(n)) = 1$ 
  - may need to select new p and q

#### **Efficient Decryption**

- decryption  $M = C^d \mod n$ , faster for smaller d
  - small d is vulnerable to brute force and other attacks
- can use large d, but use Chinese Remainder Theorem (CRT) to speed up
  - compute mod p & mod q separately. then combine to get desired answer
  - approximately 4 times faster than doing directly
- only owner of private key who knows values of p
   & q can use this technique

#### RSA Key Generation

- users of RSA must:
  - determine two primes at random p, q
  - select either e or d and compute the other
- p, q must not be easily derived from n=p.q
  - means p, q must be sufficiently large
  - typically guess and use probabilistic test (e.g., Miller Rabin algorithm); about 0.5 ln(N) trials
- $gcd(e, \emptyset(n))=1$ , and  $e.d \equiv 1 \mod \emptyset(n)$ 
  - -extended Euclidean algorithm
  - Prob(two random numbers are relatively prime): 0.6

#### **RSA Security**

- possible approaches to attacking RSA are:
  - brute force key search infeasible given size of numbers
  - mathematical attacks based on difficulty of factoring n to primes p and q
  - timing attacks on running of decryption

#### **Factoring Problem**

- mathematical approach takes 3 forms:
  - factor n=p.q, hence compute  $\emptyset$  (n) and then d
  - determine  $\emptyset$  (n) directly and compute d
  - find d directly
- currently believe all equivalent to factoring n
  - have seen slow improvements over the years
    - as of May-2005, key size (length of n) 663-bit was achieved with LS
  - biggest improvement comes from improved algorithm
    - Quadratic sieve, Generalized number field sieve, lattice sieve (LS)
    - currently assume 1024-2048 bit RSA is secure
    - ensure p, q of similar size and matching other constraints, e.g., both (p-1) and (q-1) should contain a large prime factor., GCD(p-1, q-1) should be small

#### Progress in Factoring

| Number of<br>Decimal Digits | Approximate<br>Number of Bits | Date Achieved | MIPS-years | Algorithm                            |
|-----------------------------|-------------------------------|---------------|------------|--------------------------------------|
| 100                         | 332                           | April 1991    | 7          | quadratic sieve                      |
| 110                         | 365                           | April 1992    | 75         | quadratic sieve                      |
| 120                         | 398                           | June 1993     | 830        | quadratic sieve                      |
| 129                         | 428                           | April 1994    | 5000       | quadratic sieve                      |
| 130                         | 431                           | April 1996    | 1000       | generalized<br>number field<br>sieve |
| 140                         | 465                           | February 1999 | 2000       | generalized<br>number field<br>sieve |
| 155                         | 512                           | August 1999   | 8000       | generalized<br>number field<br>sieve |
| 160                         | 530                           | April 2003    | -          | Lattice sieve                        |
| 174                         | 576                           | December 2003 | -          | Lattice sieve                        |
| 200                         | 663                           | May 2005      | _          | Lattice sieve                        |

It has not been shown mathematically that such factorization into primes is necessarily difficult.

<sup>&</sup>quot;Factoring could turn out to be easy." - Rivest

#### Timing Attacks

- developed by Paul Kocher in mid-1990's
- exploit timing variations in operations
  - e.g., multiplying by small vs large number
- infer operand size based on time taken
- for RSA, exploits time taken in exponentiation
- countermeasures
  - use constant exponentiation time
  - add random delays
  - blind values used in calculations

#### Summary

principles of public-key cryptography

RSA algorithm, implementation, and security