Materices

Materices

Materices

Produce =
$$m \times \eta$$

grows columns

A diagonal materix \Rightarrow diag $(d_1, d_2, d_3, \dots, d_n) = A$, $A^n = diag(d_1^n, d_2^n, \dots, d_n^n)$

A identity materix \Rightarrow $a_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

 \rightarrow identity matrix => $a_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq i \end{cases}$ -> Triangular matrix

-> Oxider = mxn

Reoperties i) 入加(A) = to(AA)

ii) tr(AB) = tr(BA) iii) to (A ± B) = to (A) ± to (B) → A & B are 2 square materices of same order

 $i)(A+B)^{2} = A^{2}+B^{2}+AB+BA$ $(A-B)^2 = A^2+B^2-AB-BA$

iii) Aman = Amin > peroporties of teranggose (AT): (i)(A⁷)⁷A

(ii) $(A \pm B)^7 = A^7 \pm B^7$ (iii) $(kA)^T = k A^T$ (vi) A = B then $A^T = B^T$

> symmeteix materix AT= A

Skew- symmetric matrix AT=-A, tr(A)=0

-> Idempotent materix Peropeoities - i) AB=BA=0 then A+B is idempotent ii) AB=A, BA=B , An+Bn =A+B

- Involutary materix - A2=IAIAI -> Wilpolent matrix - AP=0, PEN

Upper D'e matrix = [a b c] lower D'e mateux = [a 0 0] de b

-> Terace = sum of diagonal elements (tr(A)). Associated as spur. iv) $tr(I_n) = n$

v) toc (AB) = tr(A) · tr(B) vi) tr(ABC) = tr (BGA) = tr((AB)

iv) (Am)" = Amn v) In= 1

(iv) $(AB)^T = B^T A^T$ (v) $(A_1 A_2 A_3 - A_{n_1} A_n)^T = A_n^T A_{n_1}^T - A_3^T A_3^$

→ Outhogonal materix — AAT = ATA = I i-e, AT = AT & also works for [A] = ±]

→ Idempotent materix — A = A

2

A = A

TALE / must rend assay experient

Determinants Mind: The mind of an element any in A M det of [A] after deleting the it's → Cofactor: minor multiplied by (-1)+1 Mj Peroporties; -> det changes its sign when any two slows asce interchanged. If any 2 scows were proportional then det =0 -> |A|=|AT|, |AB|=|A||B) * | [KA|=K"|A| n= Bidea of A → det of wfastor is Dn+ $\Delta_1 = \begin{bmatrix} \alpha_1 & b_1 & \alpha_1 \\ a_2 & b_2 & \alpha_2 \\ a_3 & b_3 & \alpha_3 \end{bmatrix} \quad \xi \quad \Delta_2 = \begin{bmatrix} \alpha_1 & \beta_1 & \beta_1 \\ \alpha_2 & \beta_2 & \beta_2 \\ \alpha_3 & \beta_3 & \alpha_3 \end{bmatrix} \quad \text{multiplication} \quad \text{multiplication}$ Peroduct of determinants. $\Delta = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \quad \Delta^7 = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \quad \text{then a cow by column}$ $c_1 = \begin{bmatrix} a_1 & b_1 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \quad \Delta^7 = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \quad \text{then a cow by column}$ $c_1 = \begin{bmatrix} a_1 & b_1 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \quad \Delta^7 = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \quad \text{multiplication}$ Derevative of det $\Delta(x) = \left|\begin{array}{cc} f(x) & g(x) \\ f_2(x) & g_2(x) \end{array}\right| \Rightarrow \Delta'(x) = \left|\begin{array}{cc} f'_1(x) & g'_1(x) \\ & - \end{array}\right| + \left|\begin{array}{cc} - & - \\ f'_2(x) & g'_2(x) \end{array}\right|$ Integration of det $\Delta(x) = \begin{bmatrix} f(x) & g(x) \\ \lambda & \lambda_2 \end{bmatrix} \quad \text{then} \quad \int_{a}^{b} \Delta(x) dx = \begin{bmatrix} \int_{a}^{b} f(x) dx & \int_{a}^{b} g(x) dx \\ \lambda & \lambda_2 \end{bmatrix}$ only applicable for det like this otherwise expand & integral -> Inverse of materices

If IA = 0, it is singular materix otherwise non-singular

- Adjoint matrix: The materix obtained by tecomposing cofactor materix.

Peroperties: i) A (adj'A) = |A| In = (adj A) A

ii) |adjA| = |A|n1 |adi(adi(adiA)) = |A|(m-1)

Conditions for considery	
A +O A A. A. avec non-year	system has a unique som.
II) A=0. Aib. D. it any one of	them is non go / - go
ii) $\Delta = 0$, $\Delta_1 = \Delta_2 = \Delta_3 = 0$ then system	nas riges g
In two raviables	A Prince of the second
Non-homogenous - a, x+b, y=c	$(2) \xrightarrow{\beta} 3 \text{ variables can be}$
i) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \Rightarrow system has 1$	unique tom. Converted into
ii) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \Rightarrow system$	has no som.
$fii) \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy$	A A Main A A
\Rightarrow Homogenous $ a_1x+b_1y=0$, a_2	x+624=0 and harpy 1000
i) at + bi > system has	unique som (2=4=3=0) (teran
in) a light under has	infinitely many some from buival
	10 mm
Standard quently in det $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	abc) => circulant materix

$$0 \quad \begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix} = -(a^3 + b^3 + c^3 - 3abc) \Rightarrow \text{circulant materix}$$

(3)
$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = \begin{vmatrix} 1 & a & bc \\ 1 & b & ac \\ 1 & c & ab \end{vmatrix} = (a-b)(b-c)(c-a)$$
(3)
$$\begin{vmatrix} 1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3} \end{vmatrix} = \begin{vmatrix} 1 & a^{2} & bc \\ 1 & b^{2} & ca \\ 1 & c^{2} & ab \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$