- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

 Un graphe implémentant Graph sera formé de sommets auxquels seront associés à des entiers allant de 0 à |V|-1

```
import java.util.HashSet;

public interface Graph {
    void initialize(int V);
    int V(); // cardinal de l'ensemble des sommets
    int E(); // cardinal de l'ensemble des arcs
    void connect(int v1, int v2);
    HashSet<Integer> adj(int v); // liste d'adjacence
    String toString();
}
```

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

 UndirectedGraph est un graphe non orienté sans poids sur les arcs implémentant Graph

```
import java.security.InvalidParameterException;
import java.util.HashSet;

public class UndirectedGraph implements Graph{
    private HashSet<Integer>[] neighbors; // listes d'adjacences
    private int V, E; // cardinal de V et cardinal de E

    public UndirectedGraph(int V){
        initialize(V);
    }
```

```
public void initialize(int V){
   // check parameters
   if(V < 0) throw new InvalidParameterException();</pre>
   // initialize members
   E = 0:
   this.V = V;
   neighbors = new HashSet[V];
   for(int v=0; v<V; v++)</pre>
      neighbors[v] = new HashSet<Integer>();
}
public int V(){return V;}
public int E(){return E;}
```

Un graphe non orienté créera deux arcs pour relier deux sommets

```
public void connect(int v1, int v2){
    // check parameters
    if(v1<0 || v1>=V) return;
    if(v2<0 || v2>=V) return;
    if( neighbors[v1].contains(v2) ) return;

    // connect in both directions
    neighbors[v1].add(v2);
    neighbors[v2].add(v1);
    E++;
}
```

```
toString() nous servira à définir un graphe non orienté
                                                                        9
                                                                        0-1
     public HashSet<Integer> adj(int v){
                                                                        0-2
         // check parameters
                                                                        1-0
         if(v<0 || v>=V) return null;
                                                                        1-3
         return neighbors[v];
                                                                        1-4
      }
                                                                        1-5
                                                                        2-0
                                                                        2-4
     public String toString(){
                                                                        2-6
         StringBuilder o = new StringBuilder();
                                                                        3-1
         String In = System.getProperty("line.separator");
                                                                        3-4
         o.append(V + ln + E + ln);
                                                                        4-1
         for(int v=0; v<V; v++)</pre>
                                                                        4-2
            for(int w : neighbors[v])
               o.append(v + "-" + w + ln);
         return o.toString();
                                                                        6-2
                                                                        6-5
```

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

 DirectedGraph est un graphe orienté sans poids sur les arcs implémentant Graph

```
import java.security.InvalidParameterException;
import java.util.HashSet;

public class DirectedGraph implements Graph{
    private HashSet<Integer>[] neighbors; // listes d'adjacences
    private int V, E; // cardinal de V et cardinal de E

    public DirectedGraph(int V){
        initialize(V);
    }
}
```

 Les méthodes initialiaze(...), V() et E() sont identiques à celles de UnirectedGraph. connect() est également similaire, excepté qu' un seul arc est ajouté, il va de v1 à v2

```
public void initialize(int V){...}
public int V(){return V;}
public int E(){return E;}

public void connect(int v1, int v2){
    // check parameters
    if(v1<0 || v1>=V) return;
    if(v2<0 || v2>=V) return;
    if( neighbors[v1].contains(v2) ) return;

    // connect edge from v1 to v2
    neighbors[v1].add(v2); E++;
}
```

 On ajoutera la méthode transposed() qui retourne un graphe orienté dont les arcs sont été inversés:

```
public DirectedGraph transposed(){
    DirectedGraph T = new DirectedGraph(V);
    for(int v=0; v<V; v++)
        for(int w : neighbors[v])
        T.connect(w, v);
    return T;
}</pre>
```

```
toString() nous servira à définir un graphe orienté (notez -> )
                                                                        0 - > 1
     public HashSet<Integer> adj(int v){
                                                                        1->3
         // check parameters
                                                                        1 - > 4
         if(v<0 || v>=V) return null;
                                                                        1->5
         return neighbors[v];
                                                                        2->0
      }
                                                                        2->4
                                                                        2->6
                                                                        3 - >4
     public String toString(){
                                                                        5->6
         StringBuilder o = new StringBuilder();
         String In = System.getProperty("line.separator");
         o.append(V + ln + E + ln);
         for(int v=0; v<V; v++)</pre>
            for(int w : neighbors[v])
               o.append(v + "->" + w + ln); ←
         return o.toString();
```

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

Paths implémente les parcours de graphe

```
import java.security.InvalidParameterException;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;

public class Paths {

   boolean[] dfsMarked, bfsMarked;
   int[] dfsParent, bfsParent;
   int s;
```

Le constructeur de Paths appelle les deux parcours

```
public Paths(Graph G, int s){
   if(G == null || s < 0 || s>= G.V())
      throw new InvalidParameterException();
   this.s = s;
   // process dfs
   dfsMarked = new boolean[G.V()];
   dfsParent = new int[G.V()];
   dfs(G, s);
   // process bfs
   bfsMarked = new boolean[G.V()];
   bfsParent = new int[G.V()];
   bfs(G, s);
```

DFS se fait de manière récursive:

```
private void dfs(Graph G, int v){
   dfsMarked[v] = true;

for(int w : G.adj(v))
   if( !dfsMarked[w] ){
      dfs(G, w);
      dfsParent[w] = v;
   }
}
```

BFS se fait au moyen d'une file:

```
private void bfs(Graph G, int s){
   Queue<Integer> q = new LinkedList<Integer>();
   // add source
   q.add(s); bfsMarked[s] = true;
   while( !q.isEmpty() ){
      // poll vertex and treat neighbors
      int v = q.poll();
      for(int w : G.adj(v))
      if( !bfsMarked[w] ){
         q.add(w);
         bfsMarked[w] = true;
         bfsParent[w] = v;
}
```

 On récupère le chemin DFS en empilant les parents depuis la destination jusqu'à la source:

```
public Stack<Integer> dfsPathTo(int v){
   if( !dfsMarked[v] ) return null;
   Stack<Integer> path = new Stack<Integer>();
   for(int x = v; x != s; x = dfsParent[x])
      path.push(x);
   path.push(s);
   return path;
}
```

• Résultat sur le UndirectedGraph précédent (s == 2):

2 - 0 - 1 - 3

9 0-1 0-2 1-0 1-3 1-4 1-5 2-4 2-6 3-1 3-4 4-1 4-2 4-3 5-1 5-6 6-2 6-5

 On récupère le chemin BFS en empilant les parents depuis la destination jusqu'à la source:

```
public Stack<Integer> bfsPathTo(int v){
    if( !bfsMarked[v] ) return null;

    Stack<Integer> path = new Stack<Integer>();

    for(int x = v; x != s; x = bfsParent[x])
        path.push(x);
    path.push(s);

    return path;
}
```

• Résultat sur le UndirectedGraph précédent (s == 2):

2 - 4 - 3

/		
9		
0	-	1
0	-	2
1	-	0
1	-	3
1	-	4
1	-	5
2	-	0
2	-	4
2	-	6
3	_	1
3	_	4
4	_	1
4	_	2
4	_	3
5	_	1
5	_	6
6		
6		

7

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

Rappel:

- Nous avons vu au cours précédent un algorithme permettant de déterminer l'ordre topologique d'un graphe dirigé acyclique
- L'algorithme du cours précédent se basait sur une file
- Nous allons voir un nouvel algorithme pour déterminer l'ordre ←
 topologique qui se base sur le parcours DFS
- Pour ce faire, nous allons définir le parcours DFS post-ordre

 Un parcours DFS post-ordre est le résultat d'un parcours en profondeur du graphe où un sommet est énuméré dès qu'il n'a plus de voisins non visités:

7 9 0->1 1->3 1->4 1->5 2->0 2->4 2->6 3->4 5->6

Résultat:

4, 3, 6, 5, 1, 0, 2

 Le parcours DFS post-ordre inverse est le résultat inverse du parcours DFS post-ordre:

9 0->1 1->3 1->4 1->5

2->0 2->4

2->6 3->4

5->6

Résultat:

2, 0, 1, 5, 6, 3, 4

On modifie DFS comme suit:

```
// new Paths member, must be initialized in constructor
private Stack<Integer> reversePostOrderDfs;
private void dfs(Graph G, int v){
   dfsMarked[v] = true;
   for(int w : G.adj(v))
      if( !dfsMarked[w] ){
         dfs(G, w);
         dfsParent[w] = v;
   // Stack vertex
   reversePostOrderDfs.push(v);
}
```

 L'ordre des nœuds du graphe obtenu d'un DFS post-ordre inverse est un ordre topologique:

	Indegree							
0	1	0	-	-	-	-	-	
1	1	1	0	-	ı	-	-	
2	0	-	-	-	ı	-	-	
3	1	1	1	0	ı	-	-	
4	3	2	2	1	0	-	-	
5	1	1	1	0	ı	-	-	
6	2	1	1	1	1	0	-	
Entre en file	2	0	1	3, 5	4	6	-	
Sort de file	2	0	1	3	5	4	6	

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

Rappel:

Graphe connexe → un chemin pour chaque paire de nœuds

Rappel:

Si un graphe orienté est connexe → on dit qu'il a une connexité forte

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

Objectif:

Dans un graphe non orienté, identifier les composantes connexes.
 Par définition, un graphe connexe ne possèdera qu'une seule composante connexe.

Exemples:

Ce graphe non orienté possède 6 composantes connexes

Solution:

• Il suffit d'exécuter un parcours DFS. À chaque interruption, on début une nouvelle composante connexe.

```
public class ConnectedComponents {
   private boolean[] marked;
   private int[] id;
   private int count;

public ConnectedComponents(UndirectedGraph G){
    if(G == null) throw new InvalidParameterException();
    marked = new boolean[G.V()];
    for(int v=0; v<G.V(); v++)
        if( !marked[v] ){
        dfs(v, G);
        count++; // new component
    }
}</pre>
```

Composantes connexes

```
private void dfs(int v, Graph G){
   marked[v] = true;

// identify component
   id[v] = count;

for(int w : G.adj(v))
       if(!marked[w])
            dfs(w, G);
}
```

Graphes II

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

Objectif:

 Dans un graphe orienté, identifier les composantes fortement connexes. Par définition, un graphe orienté fortement connexe ne possèdera qu'une seule composante connexe.

Exemples:

Ce graphe orienté possède également 6 composantes fortement

connexes

Solution:

- Évidemment, un parcours DFS ne suffit pas.
- On remarquera cependant que les composantes fortement connexes de G le sont également de G^T.
- Un algorithme se basant sur cette observation et dû à S. Rao Kosaraju permet de résoudre le problème

- 1. Ordonner les nœuds du graphe obtenus d'un DFS post-ordre inverse de G^T
- 2. Parcourir G en DFS suivant l'ordre obtenu en (1.)

- 1. Ordonner les nœuds du graphe obtenus d'un DFS post-ordre inverse de G^T
- 2. Parcourir G en DFS suivant l'ordre obtenu en (1.)

- 1. Ordonner les nœuds du graphe obtenus d'un DFS post-ordre inverse de G^T
- 2. Parcourir G en DFS suivant l'ordre obtenu en (1.)

1, 5, 2, 6, 9, 12, 8, 0, 3, 4, 7, 11, 10

- 1. Ordonner les nœuds du graphe obtenus d'un DFS post-ordre inverse de G^T
- 2. Parcourir G en DFS suivant l'ordre obtenu en (1.)

1, 5, 2, 6, 9, 12, 8, 0, 3, 4, 7, 11, 10

Solution:

• Il suffit d'exécuter un parcours DFS. À chaque interruption, on début une nouvelle composante connexe.

```
public class ConnectedComponents {
   private boolean[] marked;
   private int[] id;
   private int count;

public ConnectedComponents(UndirectedGraph G){
    if(G == null) throw new InvalidParameterException();
    marked = new boolean[G.V()];
   for(int v=0; v<G.V(); v++)
        if( !marked[v] ){
        dfs(v, G);
        count++; // new component
    }
}</pre>
```

Graphes II

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

Problématique:

On cherche à relier toutes les sommets d'un graphe valué non orienté en ne retenant que certaines de ses arêtes, de sorte à réduire le coût total associé aux arêtes choisies.

Ce faisant, on définit un arbre sous-tendant le graphe. Cet <u>arbre sous-tendant</u> est dit <u>minimum</u> car le coût qui lui est associé est le plus bas sur l'ensemble des arbres sous-tendant ledit graphe.

Rappel: Nous avions vu le rapprochement entre l'algorithme de chemin le plus court exécuté sur un graphe non valué:

File: vide

Rappel: et le parcours par niveau de son arbre équivalent

Le concept d'arbre sous-tendant d'un graphe n'est pas différent: il consiste à créer un arbre depuis un graphe en soustrayant certaines arêtes.

Le concept d'arbre sous-tendant **minimum** s'applique à un arbre valué non orienté:

dont on veut minimiser le coût:

Cas type d'application – réseau de communication:

Graphes II

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

L'algorithme que nous allons utiliser pour cela est dû à Otakar Boruvka qui l'avait proposé en 1926 (Rép. Tchèque) pour aider à régler le problème du système de Distribution électrique en Moravie.

Il s'agit d'un algorithme **glouton**: un choix optimal est réalisé étape par étape, jusqu'à obtenir la solution.

ALGORITHM DE BORUVKA:

- 1.On part du graphe G dont on aura retiré toutes les arêtes pour former un ensemble de composantes de G, noté **C**
- 2. Définir un ensemble **A** d'arêtes. $\mathbf{A} \leftarrow \emptyset$
- 3. Tant que **C** n'a pas un seul élément
 - 1. Définir un ensemble **S** d'arêtes. $S \leftarrow \emptyset$
 - 2. Pour chaque composante V de C
 - 1. Définir un ensemble **T** d'arêtes. $\mathbf{T} \leftarrow \emptyset$
 - 2. Pour chaque sommet v dans V
 - Parmi les arêtes reliant V à une autre composante de C, prendre la moins chère et l'ajouter à T
 - 3. Ajouter la moins chère des arêtes de **T** à **S**
 - 3. Ajouter la moins chère des arêtes de S à A
 - 4. Actualiser les composantes de C avec les arêtes de A
- 4. C est l'arbre sous-tendant minimum

ALGORITHM DE BORUVKA:

- 1.On part du graphe G dont on aura retiré toutes les arêtes pour former un ensemble de composantes de G, noté C
- 2. Définir un ensemble A d'arêtes. A ← Ø
- 3. Tant que **C** n'a pas un seul élément

Boucle

1. Définir un ensemble **S** d'arêtes. $S \leftarrow \emptyset$

externe

- 2. Pour chaque composante V de C
 - 1. Définir un ensemble **T** d'arêtes. $\mathbf{T} \leftarrow \emptyset$
 - 2. Pour chaque sommet v dans V
 - Parmi les arêtes reliant V à une autre composante de C, prendre la moins chère et l'ajouter à T
 - 3. Ajouter la moins chère des arêtes de T à S
- 3. Ajouter la moins chère des arêtes de S à A
- 4. Actualiser les composantes de C avec les arêtes dans A
- 4. C est l'arbre sous-tendant minimum

ALGORITHM DE BORUVKA:

- 1.On part du graphe G dont on aura retiré toutes les arêtes pour former un ensemble de composantes de G, noté **C**
- 2. Définir un ensemble A d'arêtes. A ← Ø
- 3. Tant que **C** n'a pas un seul élément
 - 1. Définir un ensemble **S** d'arêtes. $S \leftarrow \emptyset$
 - 2. Pour chaque composante V de C
 - 1. On définit un ensemble **T** d'arêtes. $\mathbf{T} \leftarrow \emptyset$
 - 2. Pour chaque sommet v dans V
 - Parmi les arêtes reliant V à une autre composante de C, prendre la moins chère et l'ajouter à T
 - 3. Ajouter la moins chère des arêtes de T à S
 - 3. Ajouter la moins chère des arêtes de S à A
 - 4. Actualiser les composante de C avec les arêtes de A
- 4. C est l'arbre sous-tendant minimum

Considérons le graphe valué et non dirigé suivant, pour lequel on cherche l'arbre sous-tendant minimum:

C au début est constitué de l'ensemble des sommets.

C A Au départ

V₁ V₂

 V_3 V_4

 V_5

 V_6

 V_7

C

A

 $V_1 - V_4$

Après la première itération

 $V_1 V_4$

 V_2

 V_3

 V_5

 V_6

 V_7

C

Α

Après la seconde itération

 $V_6 V_7$

$$V_1 - V_4$$
 $V_6 - V_7$
 V_3
 V_4
 V_5
 V_6

Α

Après la 3e itération

$$V_1 V_2 V_4 V_3$$

$$V_5$$

$$V_6 V_7$$

$$V_1 - V_4$$

$$v_6 - v_7$$

$$V_1 - V_2$$

C

Α

Après la 4e itération

$$V_1 V_2 V_3 V_4 V_5 V_6 V_7$$

$$V_1 - V_4$$

$$v_6 - v_7$$

$$V_1 - V_2$$

$$V_3 - V_4$$

C A

Après la 5e itération

C A

Après la 6e itération

L'algorithme aboutit à cette solution...

Graphes II

- 1. Implementation
 - 1. Interface Graph
 - 2. Class UndirectedGraph (UG)
 - 3. Class DirectedGraph (DG)
 - 4. Class Paths (BFS + DFS)
- 2. Ordre topologique (version DFS)
 - 1. Parcours DFS post-ordre et post-ordre inverse
 - 2. Algorithme d'ordre topologique
- 3. Composantes connexes
 - 1. Notion de connexité
 - 2. Composantes connexes (UG)
 - 3. Composantes fortement connexes (DG)
- 4. Arbre sous-tendant minimum
 - 1. Problématique
 - 2. Algorithme de Boruvka
 - 3. Algorithme de Prim

L'algorithme que nous allons voir est dû à Robert Prim. Ce dernier l'a publié en 1957. Il s'agit d'un algorithme **glouton**: un choix optimal est réalisé étape par étape, jusqu'à obtenir la solution:

L'algorithme de Prim a le même comportement que Dijkstra, à quelques différences près.

On maintient les informations suivantes pour chaque nœud:

- 1.La distance de l'arête arrivant sur v depuis le sommet parent (d_v) ;
- 2.Un booléen informant si le sommet est connu
- 3.Le parent à date du sommet $v(p_v)$

Une file de priorité est également utilisée

Reprenons notre exemple:

Nœuds	Distance	Connu?	Parent	_	
V_1	∞	Faux	-		
V_2	∞	Faux	-		
V_3	∞	Faux	-		
V_4	∞	Faux	-		>
V_5	∞	Faux	-		
V_6	∞	Faux	-		
V_7	∞	Faux	-		

Nœuds	Distance	Connu?	Parent
$\overline{\mathrm{V}_{\mathrm{1}}}$	0	Vrai	-
V_2	2	Faux	V_1
V_3	4	Faux	V_1
V_4	1	Faux	V_1
V_5	∞	Faux	-
V_6	∞	Faux	-
V_7	∞	Faux	-

File de priorité Entre (V₁, 0)

File de priorité

	(V ₂ , 2) (V ₃ , 4) (V ₄ , 1)
Entrent	(V ₁ , 0)
Sort	

Nœuds	Distance	Connu?	Parent	
$\overline{\mathrm{V}_{\mathrm{1}}}$	0	Vrai	-	
V_2	2	Faux	V_1	
$\mathbf{V_3}$	2	Faux	V_4	
V_4	1	Vrai	V_1	──
\mathbf{V}_{5}	7	Faux	V_4	
\mathbf{V}_{6}	8	Faux	V_4	
\mathbf{V}_7	4	Faux	V_4	

Nœuds	Distance	Connu?	Parent
V_1	0	Vrai	-
V_2	2	Vrai	V_1
V_3	2	Faux	V_4
V_4	1	Vrai	V_1
V_5	7	Faux	V_4
V_6	8	Faux	V_4
V_7	4	Faux	V_4

Nœuds	Distance	Connu?	Parent	
$\overline{V_1}$	0	Vrai	_	
V_2	2	Vrai	V_1	
V_3	2	Vrai	V_4	
V_4	1	Vrai	V_1	\longrightarrow
V_5	7	Faux	V_4	
V_6	5	Faux	V_3	
V_7	4	Faux	V_4	

_	Nœuds	Distance	Connu?	Parent
	V_1	0	Vrai	-
	V_2	2	Vrai	V_1
	V_3	2	Vrai	V_4
	V_4	1	Vrai	V_1
	\mathbf{V}_{5}	6	Faux	\mathbf{V}_7
	V_6	1	Faux	\mathbf{V}_7
	V_7	4	Vrai	V_4

File de priorité

Sort

$$(V_3, 3)$$

Change $(V_6, 5)$

File de priorité

Sort

Change
$$(V_7, 4)$$

 $(V_6, 1)$
 $(V_5, 6)$

Nœuds	Distance	Connu?	Parent	_
V_1	0	Vrai	-	
V_2	2	Vrai	V_1	
V_3	2	Vrai	V_4	
V_4	1	Vrai	V_1	\longrightarrow
V_5	6	Faux	V_7	
V_6	1	Vrai	V_7	
V_7	4	Vrai	V_4	

Nœuds	Distance	Connu?	Parent
V_1	0	Vrai	-
V_2	2	Vrai	V_1
V_3	2	Vrai	V_4
V_4	1	Vrai	V_1
V_5	6	Vrai	V_7
V_6	1	Vrai	V_7
V_7	4	Vrai	V_4

File de priorité

Sort

 $(V_6, 1)$

File de priorité Sort (V₅, 6)

Et on parvient à la solution:

Quel résultat aurions-nous si on partait de v₅ ?

