

शोधांच्या कथा

अणू

आयझॅक आसिमॉव्ह अनुवादः सुजाता गोडबोले

शोधांच्या कथा अणू Shodhanchya katha Anu

प्रकाशक

अर्रावेंद घनश्याम पाटकर, मनोविकास प्रकाशन, फ्लॅट नं. ३ ए, ३ रा मजला, शक्ती टॉवर, ६७२ नारायण पेठ, पुणे - ४११०३० पुणे फोन: ०२०- ६५२६२९५० मुंबई फोन: ०२२-६४५०३२५३ E-mail-manovikaspublication@gmail.com

© हक सुरक्षित

मुखपृष्ठ गिरीश सहस्रबुद्धे

प्रथम आवृत्ती २८ फेब्रुवारी २००८

अक्षरजुळणी सौ. भाग्यश्री सहस्रबुद्धे, पुणे.

मुद्रक श्री बालाजी एंटरप्राईझेस, पुणे

मूल्य रुपये ३५

अनुक्रमणिका

र्र | अणूची | कल्पना-४

२| अणूंसंबंधी पुरावा-१५

२िअणूंचे वजन-२४

४| अणूंची मांडणी-३३

५ अणूंची सत्यता-४

१ अणूची कल्पना

तुम्ही दूरवरून कधी एखाद्या वाळूच्या किनाऱ्याकडे पाहिले आहे का? तो एखाद्या घनपदार्थासारखाच दिसतो ना?

पण एकदा त्याच्याजवळ आलात, की तो वाळूच्या लहान लहान घन कणांचा बनला आहे असे दिसून येईल. किनाऱ्यावरची ही वाळू तुम्ही हातात उचलून घेतलीत तर त्यातील काही तुमच्या बोटांमधून खाली गळून जाईल. सगळी वाळू खाली सोडून केवळ एकच वाळूचा कण तुम्ही तुमच्या हातात ठेवू शकाल.

हा वाळूचा कण म्हणजे वाळूचा सर्वात लहान कण आहे का? तो कण एखाद्या कठीण खडकावर ठेवून त्यावर हातोड्याने घाव घातले अशी कल्पना करा. त्याचे आणखी लहान तुकडे होणार नाहीत का? त्यातल्या लहान तुकड्याचे आणखी लहान तुकडे होणार नाहीत का? मग त्या लहान तुकड्याचे आणखी लहान तुकडे? असे कायमच करत राहता येईल का?

किंवा समजा एक कागद घेतला आणि त्याचे दोन तुकडे केले. त्यातल्या एकाचे परत दोन तुकडे केले, मग त्या लहान तुकड्याचे आणखी दोन तुकडे... आणि असे करतच राहिलात तर तसे कायमच करत राहता येईल का?

दोन हजार पाचशे वर्षांपूर्वी, म्हणजे इसवी सनापूर्वी सुमारे ४५० सालाच्या सुमारास एका ग्रीक तत्त्ववेत्त्याने किंवा विद्वानाने या प्रश्नाचा विचार केला. ल्युसिपस (Leucippus) असे त्याचे नाव होते. कोणत्याही पदार्थाचे अविरत्यणे, कायमच लहान लहान तुकडे करता येतील हे

त्याला पटत नव्हते. याचा कोठेतरी शेवट असलाच पाहिजे. कोठेतरी तुम्ही अशा एका स्थितीला याल की त्याच्यापेक्षा आणखी लहान तुकडे करताच येणार नाहीत.

ल्युसिपसचा डेमॉक्रिटस (Democritus) नावाचा एक शिष्य होता, त्याचेही असेच मत होते. खिस्तपूर्व ३८० साली डेमॉक्रिटस मरण पावला त्यावेळपर्यंत त्याने विश्वातील तत्त्वांच्या त्याच्या कल्पनांसंबंधी सुमारे ७२ ग्रंथ लिहिले होते. त्याच्या संकल्पनात अशीही एक कल्पना होती की जगातील सर्व काही, अत्यंत छोट्या कणांपासून बनले आहे आणि हे सूक्ष्म कण फोडून त्याहन अधिक लहान करता येत नाहीत.

या अतिसूक्ष्म कणांना डेमॉक्रिटसने नाव दिले 'ॲटोमॉस' (atomos) याचा ग्रीक भाषेतील अर्थ आहे 'न तुटणारे' (अनब्रेकेबल). इंग्रजीत तो शब्द झाला 'ॲटम', मराठीत त्याला आपण 'अणू' असे म्हणतो.

सर्व जग हे वेगवेगळ्या अणूंचे बनले आहे आणि दोन अणूंच्या दरम्यान काहीच नसते असे डेमॉक्रिटसला वाटत होते. अणू अतिशय लहान असल्याने एक अणू दिसणे शक्य नव्हते, पण अनेक अणूंच्या वेगवेगळ्या रचना होतात आणि त्यातूनच आपल्या सभोवतीचे सर्व जग बनले आहे. अणू बनवता येत नाही आणि तो नष्टही होत नाही, मात्र त्यांच्या रचना बदलू शकतात. म्हणजे एका पदार्थाचे दुसऱ्या पदार्थात रूपांतर होऊ शकते असे त्याचे मत होते.

हे असेच असेल असे त्याला का वाटले हे मात्र डेमॉक्रिटस सांगू शकला नाही. त्याच्या मते हे असेच असले पाहिजे असा त्याचा विश्वास होता. पण इतर ग्रीक तत्त्ववेत्त्यांना मात्र यात काही फारसा अर्थ आहे असे वाटले नाही. त्यावेळच्या प्रसिद्ध ग्रीक तत्त्ववेत्त्यांचा अणूंच्या अस्तित्वावर आणि डेमॉक्रिटसच्या मतांवर विश्वासच नव्हता, त्यामुळे हा 'अणूंचा सिद्धांत' (ॲटिमिझम) लोकप्रिय झालाच नाही. प्राचीन काळी सर्व ग्रंथ हाताने लिहिले जात. एखाद्या ग्रंथाची दुसरी प्रत हवी असेल, तर त्यासाठी तो संपूर्ण ग्रंथ हाताने लिह्न काढावा लागे. हे फारच कष्टाचे काम होते आणि खूप लोकप्रिय असणारे काही थोडे ग्रंथच अशा प्रकारे अनेक वेळा हाताने लिह्न काढले जात असत.

डेमॉक्रिटसचे ग्रंथ काही लोकप्रिय नव्हते म्हणून त्याच्या थोड्याच प्रती केल्या गेल्या. कालांतराने एकामागून एक अशा त्या प्रती हरवून गेल्या. आज त्याच्या ग्रंथांपैकी एकाचीही प्रत अस्तित्वात नाहीं. त्या सर्व नाहीशा झाल्या आहेत. आजतागायत टिकून राहिलेल्या काही प्राचीन ग्रंथात डेमॉक्रिटस आणि त्याच्या अणूंच्या सिद्धांताचा उल्लेख आढळतो, त्यावरूनच आपल्याला त्याच्या सिद्धांतांची माहिती मिळते.

डेमॉक्रिटसचे ग्रंथ नाहीसे होण्यापूर्वी एपिक्युरस नावाच्या एका ग्रीक तत्त्ववेत्याने ते वाचले आणि त्याला हा अणूचा सिद्धांत पटला. खिस्तपूर्व ३०६ साली ग्रीसमधल्या अथेन्स या शहरात त्याने एक शाळा काढली होती. त्या काळचे ते एक महत्त्वाचे अध्ययन केंद्र होते. एपिक्युरस हा लोकप्रिय शिक्षक होता. स्त्रियांना त्याने प्रथमच विद्यार्थी म्हणून आपल्या शाळेत प्रवेश दिला होता. सर्व वस्तू अणूंच्या बनलेल्या असतात असे तो शिकवत असे. त्याने निरनिराळ्या विषयांवर ३०० ग्रंथ लिहिले होते असे म्हणतात. (प्राचीन काळातील ग्रंथ तसे लहानच असत.)

कालांतराने एपिक्युरसच्या मतांची लोकप्रियता कमी झाली आणि त्याच्या ग्रंथांच्याही फारशा प्रती केल्या गेल्या नाहीत. अखेर डेमॉक्रिटसच्या ग्रंथांप्रमाणेच त्याही नाहीशा झाल्या.

परंतु अणूंची संकल्पना मात्र नाहीशी झाली नाही. एपिक्युरसच्या नंतर दोन शतकांपर्यंत जेव्हा त्याचे ग्रंथ उपलब्ध होते, तेव्हा ल्युकेशियस

गुटेनबर्गचा छापखाना, १४५४

८ । शोधांच्या कथा। अणू ।

नावाचा रोमन विद्वान अणूच्या सिद्धांताचा पुरस्कर्ता बनला. सर्व जग हे अणूंचे बनले आहे असा त्याचाही विश्वास होता. ख्रिस्तपूर्व ५६ साली त्याने 'वस्तूंचे स्वरूप' (नेचर ऑफ थिंग्ज) या नावाची एक मोठी कविता लॅटिनमध्ये लिहिली. त्यात त्याने डेमॉक्रिटस आणि एपिक्युरस यांची मते बन्याच तपशिलासह आणि प्रभावीपणे स्पष्ट केली.

तरीही अणूंची संकल्पना फारशी लोकप्रिय झाली नाही. ल्युक्रेशियसच्या कवितेच्याही फारशा प्रती झाल्या नाहीत. ग्रीक व रोमन संस्कृतीचा जसजसा न्हास झाला तथा या प्रतीही एकामागून एक नष्ट झाल्या आणि अखेर एकही प्रत शिल्लक राहिली नाही. युरोपमधील मध्ययुगाच्या काळापर्यंत डेमॉक्रिटस, एपिक्युरस व ल्युक्रेशियस यांचे लिखाण नष्ट झाले होते आणि अणूंची कोणाला आठवणदेखील नव्हती.

त्यानंतर इ.स. १४१७ मध्ये एका माळ्यावर कोणाला तरी एक जुने हस्तिलेखित सापडले. ती फाटक्या अवस्थेतील ल्युक्रेशियसची किवता होती. प्राचीन काळातील इतर कोणतीच प्रत मात्र कथीच सापडली नाही. परंतु त्या वेळपर्यंत युरोपमधील लोकांना प्राचीन लिखाणात बरेच स्वारस्य वाटू लागले होते, म्हणून जेव्हा हे हस्तिलिखित सापडले तेव्हा लगेच त्याच्या बन्याच प्रती करण्यात आल्या.

१४५४ साली योहान गुटेनबर्ग या जर्मन गृहस्थाने छपाईच्या यंत्राचा शोध लावला. हाताने लिहिण्याऐवजी आता पुस्तकातील प्रत्येक शब्द खिळ्यांनी जुळवला जाऊ लागला. या साच्यावर शाई लावून, त्यावर कागद पसरण्याने पुस्तकाच्या अनेक प्रती काढणे आता शक्य झाले. अशा तन्हेने प्रत्येक पुस्तकाच्या अनेक प्रती आता सहज काढता येत. त्यानंतर पुस्तके नाहीशी होण्याचा धोका पुष्कळच कमी झाला.

छापील स्वरूपात तयार झालेल्या पहिल्या काही पुस्तकात ल्युक्रेशियसची कविताही होती. युरोपमधील अनेक लोकांनी ही कविता

बॉइलचा प्रयोग, १६६२

१० । शोधांच्या कथा। अण् ।

वाचली आणि त्यातील अणूंच्या संकल्पनेने ते प्रभावित झाले. पियेर गॅसेंडी हा फ्रेंच विद्वानही यातील एक होता. सतराव्या शतकाच्या पूर्वार्धात त्याने अनेक महत्त्वाचे ग्रंथ लिहिले. युरोपमधील इतर अनेक विद्वानांच्या तो संपर्कात असे आणि आपली अणूसंबंधीची मते त्याने त्या सर्वांना कळवली.

अशा तन्हेने ल्युसिपसची मूळ संकल्पना २००० वर्षांपर्यंत टिकून राहिली. केवळ योगायोगाने ल्युक्रेशियसच्या कवितेची एक प्रत मिळाली म्हणून अणूचा सिद्धांत आधुनिक युगापर्यंत येऊन पोचला. अर्थात आधुनिक काळातील शास्त्रज्ञांनी बहुधा अणूंचा विचार स्वतः होऊन स्वतंत्रपणे केलाही असता, पण प्राचीन काळातून ही कल्पना आयतीच मिळाली याचाही उपयोग झालाच.

या संपूर्ण २००० वर्षांच्या काळात बहुतेक शास्त्रज्ञांनी अणूच्या कल्पनेचा फारसा गंभीरपणे विचार न करण्याचे एक महत्त्वाचे कारण होते, ते म्हणजे अणू ही केवळ एक 'संकल्पना' होती. काही लोकांना ती तर्कसिद्ध वाटत होती.

त्याचा काहीच 'पुरावा' नव्हता. 'अमुक अमुक वस्तूचे अमुक अमुक गुणधर्म आहेत' असे अणूंबाबत कोणीच म्हणू शकत नव्हते. अणूंचे अस्तित्व मानणे हा त्यांच्या स्पष्टीकरणाचा एकमेव मार्ग होता.

अशा तन्हेचा पुरावा मिळवण्यासाठी अनेक प्रयोग करणे भाग होते. विशिष्ट पदार्थांचा विशिष्ट परिस्थितीत अभ्यास करून, त्यांचे गुणधर्म स्पष्ट करण्यासाठी अणूच्या सिद्धांताचा उपयोग होतो का हे पाहणे आवश्यक होते.

विश्वासंबंधी खरे ज्ञान होण्यासाठी प्रयोग करणे आवश्यक आहे, हे सर्वप्रथम गॅसेंडीनेच सांगितले. रॉबर्ट बॉइल (Boyle) या इंग्रज रसायनशास्त्रज्ञाला गॅसेंडीचे हे मत माहीत होते. अणू प्रत्यक्षात अस्तित्वात असावेत हे दाखवून देण्यासाठी प्रयोग करणारा तो पहिलाच शास्त्रज्ञ होता.

उदाहरणार्थ, बॉइल्ला हवा व तिचे गुणधर्म यात स्वारस्य होते. हवा हा काही विशिष्ट आकार असणारा घन पदार्थ नव्हता त्यामुळे तिला स्पर्श करणे कठीण होते. हवा काही पाण्यासारखा प्रवाही, दिसू शकणारा द्रवपदार्थही नव्हता. हा पदार्थ विरळ स्वरूपात सर्वत्र पसरला होता. अशा पदार्थाला वायू असे म्हणतात.

१६६२ साली बॉइलने इंग्रजी 'जे' या आकाराच्या ५ मीटर लांबीच्या काचेच्या नळीत थोडा पारा (द्रव धातू) भरला. या नळीच्या वळवलेल्या लहान बाजूचे टोक बंद केले होते व लांब बाजूचे मात्र उघडेच ठेवले होते. नळीच्या खालच्या भागात पारा भरला गेला आणि नळीच्या बंद टोकाच्या लहान भागात असलेली हवा अडकून राहिली. मग बॉइलने त्यात आणखी पारा ओतला. त्या अधिकच्या पान्याच्या वजनामुळे काही पारा नळीच्या लहान भागात ढकलला गेला. पारा जसजसा ढकलला गेला तसतसे त्यात राहिलेल्या हवेला कमी जागेत राहावे लागले. म्हणजेच ती कमी जागेत ठोसली (काँग्रेस) गेली. बॉइलने आणखी पारा ओतल्यावर तिला अजूनच लहान जागा राहिली.

पाऱ्याच्या वाढत्या वजनाबरोबर हवेची जागा कशी कमी कमी होत गेली याचा बॉइलने अभ्यास केला. याला 'बॉइलचा सिद्धांत ' असे म्हणतात.

हवा अशी दबावाखाली ठोसून कशी काय ठेवता येईल? ती लहान जागेत कशी काय कोंबली जाईल?

एखादा स्पंजचा तुकडा लहान जागेत दाबून ठेवता येईल. तसाच एखादा पावाचा तुकडादेखील ठेवता येईल. स्पंज किंवा पावात लहान लहान भोके असतात म्हणूनच हे शक्य होते. जेव्हा एखादा स्पंज किंवा पाव दाबला जातो तेव्हा त्याच्या भोकातली हवा बाहेर पडते आणि त्याचा घन भाग अधिक जवळ आणला जातो. (जर एखादा ओला स्पंज दाबला तर त्यातील पाणी भोकातून बाहेर येते.)

बॉइलने केले त्याप्रमाणे जर हवा एकत्र दाबली गेली तर त्याचा अर्थ, हवेत भोके असली पाहिजेत. दाबण्याने तुम्ही ती भोके बंद करून हवा अधिक जवळ आणता.

हवेचे लहान लहान तुकडे - म्हणजेच अणू - असले पाहिजेत असे बॉइलला वाटले. दोन अणूंच्या दरम्यान काहीच नसलेली मोकळी जागा असली पाहिजे. जेव्हा हवा दाबली गेली तेव्हा हे अणू एकमेकांजवळ ढकलले गेले असणार. हे सर्वच वायूंच्या बाबत खरे असणार असे त्याला वाटले.

वास्तविक पाहता, हे द्रव आणि घनपदार्थांनाही लागू होत असेल. जर पाणी उकळले तर त्याची वाफ होते; वाफ म्हणजे वायूच. हीच वाफ जर थंड केली तर परत पाणी मिळते.

पाण्यापेक्षा वाफ जवळजवळ एक हजार पटीह्न अधिक जागा व्यापते. पाण्यातील सर्व अणू इतके जवळ आहेत की त्यांचा एकमेकांना स्पर्श होतो, तर वाफेत हे अणू एकमेकांपासून बरेच दूर आहेत अशी कल्पना करणे हा याचे स्पष्टीकरण करण्याचा सर्वात सोपा मार्ग आहे.

अशा तन्हेने, १६६२ साली बॉइलमुळे अणू केवळ एका संकल्पनेह्न अधिक काहीतरी असल्याचे दिसून आले.

२ अणूसंबंधी पुरावा

अणु निरनिराळ्या प्रकारचे असतील का?

डेमॉक्रिटसच्या मते अणू वेगवेगळ्या प्रकारचे असावेत. जग हे चार तन्हेच्या मूळ घटकांपासून, किंवा तत्त्वांपासून (एलेमेंटस्) बनले असावे असा प्राचीन ग्रीक लोकांचा विश्वास होता. पृथ्वी, पाणी, हवा आणि अग्नी हे ते चार घटक होत. त्या ग्रत्येकाचे अणू वेगळ्या प्रकारचे असतील असे डेमॉक्रिटसला वाटत होते.

पृथ्वी तत्त्वाचे अणु हे खरबरीत आणि अनियमित असल्याने ते एकमेकांना सहजपणे चिकटून त्यापासून घन पृथ्वी बनते. पाण्याचे अणू गोल आणि गुळगुळीत असावेत म्हणून ते एकमेकांपासून निसटून जाऊ शकतात. हवेचे अणू पिसासारखे हलके असावेत म्हणून ते तरंगतात. अग्नी तत्त्वाचे अणू करवतीसारखे टोकदार असतील, त्यामुळे अग्नीमुळे इजा होत असणार.

या चार तत्त्वांना काहीतरी अर्थ आहे असे वाटल्यामुळेच ग्रीकांनी ही चार तत्त्वे निवडली असावीत. जग या चार तत्त्वातूनच बनले आहे असे दर्शविणारा इतर कोणताच पुरावा त्यांच्याकडे नव्हता.

१६६१ साली लिहिलेल्या ग्रंथात मूळ तत्त्वे प्रयोग करून शोधून काढली पाहिजेत असे बॉइलने प्रतिपादन केले. रसायनशास्त्रज्ञांनी पदार्थाचे सर्वात साध्या घटकापर्यंत पृथक्करण करावे. त्याह्न अधिक पृथक्करण होत नाही अशी स्थिती आली की ते मूळ घटक किंवा मूळ तत्त्वे (एलेमेंटस) आहेत असे मानावे असे त्याचे मत होते.

बॉइलचा ग्रंथ प्रकाशित झाल्यानंतर पदार्थांवर प्रयोग करून त्यातील

मूळ घटक शोधण्यास रसायनशास्त्रज्ञांनी सुरुवात केली. अठराव्या शतकाच्या अखेरीपर्यंत त्यांनी जवळजवळ तीस निरनिराळे मूळ घटक शोधून काढले होते.

तांबे, चांदी, सोने, लोखंड, कथील, जस्त, आणि पारा यासारखे नेहमी आढळणारे धातू ही सर्व मूलद्रव्ये आहेत. प्राचीन ग्रीक लोकांना हे सर्व धातू माहीत होते पण अठराव्या शतकातील रसायनशास्त्रज्ञांनी निकेल, कोबाल्ट आणि युरेनियम यासारखे नवे धातू शोधून काढले.

हवा हे प्राणवायू (ऑक्सिजन) आणि नत्रवायू (नायट्रोजन) या दोन वायूंचे संयुग आहे हेही रसायनशास्त्रज्ञांनी शोधून काढले. हे दोन्ही मूळ घटक आहेत. हायड्रोजन हा वायूही मूलद्रव्य आहे. धातू किंवा वायु नसणारेदेखील काही मूळ घटक आहेत. कार्बन, गंधक आणि फॉस्फरस ही याची काही उदाहरणे आहेत.

या प्रत्येक मूळ घटकाचा अणु वेगळ्या प्रकारचा असेल का? चांदीचे अणू, निकेलचे अणू, आणि प्राणवायूचे आणि गंधकाचे असे निरनिराळे अणु असतील का?

अठराव्या शतकात फारच थोड्या रसायनशास्त्रज्ञांनी याचा विचार केला. जरी बॉइल आणि काही शास्त्रज्ञांचा अणूच्या सिद्धांतावर विश्वास असला तरी सर्वच शास्त्रज्ञांचे तसे मत नव्हते. त्यांनी नवनव्या मूल द्रव्यांचा शोध चालूच ठेवला आणि प्रत्येकाच्या गुणधर्मांचा अभ्यास केला. अणूंसंबंधी त्यांनी विचारच केला नाही, कारण न दिसणाऱ्या सूक्ष्म वस्तुंचा अभ्यास करण्यात त्यांना काहीच तथ्य वाटले नाही.

तरीही अणूंसंबंधीचा पुरावा गोळा होतच होता. आंत्वान लॉरेंट लाव्हॉझिये (Lavoisier) या फ्रेंच रसायनशास्त्रज्ञाला काही पुरावा मिळाला. १७८२ साली त्याने असा शोध लावला की एका पदार्थाचे जेव्हा दुसऱ्यात रूपांतर होते, - उदाहरणार्थ, लाकूड जर हवेत जाळले

मूलतत्त्वांची प्राचीन ग्रीसमधील कल्पना

तर त्यापासून राख आणि धूर निर्माण होतात - तेव्हा त्याच्या एकूण वजनात फरक पडत नाही. राख आणि धूर यांचे वजन सुरुवातीच्या लाकूड आणि हवेइतकेच कायम राहते. यालाच 'पदार्थाच्या अविनाशित्वाचा नियम' (लॉ ऑफ कॉन्झर्वेशन ऑफ मॅटर) असे म्हणतात.

लाव्हॉझिये हा काही अणूं संबंधी फार विचार करणाऱ्या रसायनशास्त्रज्ञांपैकी नव्हता. पण त्याचा शोध या संकल्पनेला दुजोरा देत होता.

डेमॉक्रिटसची कल्पना योग्य होती अशी क्षणभर कल्पना करा. समजा, अणू बनवता येत नाहीत तसेच ते नष्टही करता येत नाहीत; त्यांची केवळ रचना बदलता येते असे मानूया. लाकूड आणि हवा यात अणूंची एका प्रकारची रचना असेल. जेव्हा आपण लाकूड जाळतो, तेव्हा या अणूंची रचना बदलून राख आणि धूर तयार होतो. परंतु त्यातील सर्व अणू त्यात आहेतच, म्हणून त्यांचे एकूण वजन कायमच राहते.

तसे घडत असल्यास आपण याची आणखीही चाचणी करू शकतो. एकूण वजन विचारात घेण्याऐवजी प्रत्येक मूलद्रव्याचे वजन स्वतंत्रपणे घेऊन बदल घडल्यास काय होते हेही आपण पाह शकतो.

जोझेफ लुई प्रूस्ट या फ्रेंच रसायनशास्त्रज्ञाने असे करून पाहिले. १७८९ साली फ्रान्समध्ये भीषण राज्यक्रांती सुरू झाल्यावर सुरक्षिततेच्या कारणासाठी तो स्पेनला गेला आणि तेथे त्याने आपले संशोधन कार्य केले. (बिचारा लाव्हॉझिये काही देश सोडून गेला नाही आणि १७९४ साली त्याचा शिरच्छेद करण्यात आला.)

प्रस्टने असा शोध लावला की तांबे, कार्बन आणि प्राणवायू या तीन मूलद्रव्यांचे 'कॉपर कार्बोनेट' नावाचे एक संयुग (कांपाऊंड) बनवता येते. (निरनिराळ्या मूलद्रव्यांच्या एकत्रीकरणातून तयार होणाऱ्या

कॉपर कार्बोनेटचे घटक कॉपर कार्बोनेट तांबे (कॉपर) प्राणवाय कार्बन ५ भाग ४ भाग = १० भाग

पदार्थाला 'संयुग' असे म्हणतात.)

यासाठी त्याने ५ ग्रॅम तांबे, ४ ग्रॅम प्राणवायू आणि १ ग्रॅम कार्बन घेतला. त्यातून त्याला १० ग्रॅम कॉपर कार्बोनेट मिळाले, कारण एकूण वजन बदलत नाही.

परंतू प्रस्टच्या असेही लक्षात आले की ही मूलद्रव्ये कोणत्याही पद्धतीने एकत्रित केली तरीही त्याला त्यांचे प्रमाण मात्र कायमच ठेवावे लागत होते. दरवेळी तांब्याच्या ५ मात्रा, प्राणवायूच्या ४ मात्रा आणि कार्बनची १ मात्राच असावी लागे. जर त्याने दुसरे कोणते प्रमाण वापरण्याचा प्रयत्न केला, तर प्रत्येक वेळी एक किंवा दोन मूलद्रव्यांचा काही भाग शिक्रक राहत असे.

इतर संयुगांच्या बाबतही अशीच परिस्थिती असते असे प्रूस्टने पुढे दाखवून दिले. मूलद्रव्यांच्या विशिष्ट प्रमाणातूनच त्यांची निर्मिती होते, एरवी नाही. १७९९ सालापर्यंत हे सर्वच संयुगांबाबत खरे असते अशी प्रूस्टची खात्री झाली. त्याच्या शोधाला 'विशिष्ट प्रमाणांचा नियम' (लॉ ऑफ डेफिनेट प्रपोर्शन्स) असे नाव आहे.

प्रूस्टने काही मुद्दाम अणूंचा विचार केला नव्हता, पण अणूंचा सिद्धांत या ठिकाणी कसा योग्य ठरतो हे तुमच्या लक्षात येईल. सर्व मूलद्रव्ये अणूंची बनलेली असतात आणि अणूंचे त्याह्न लहान तुकडे होऊ शकत नाहीत अशी कल्पना करा. जेव्हा मूलद्रव्ये एखादे संयुग बनवण्यासाठी एकत्र येतात, त्यावेळी एका मूलद्रव्यातील अमुक इतक्या अणूंचे दुसऱ्या एखाद्या मूलद्रव्यातील अमुक इतक्या अणूंशीच एकत्रीकरण होते.

अणू आणि 'विशिष्ट प्रमाणांचा नियम' या दोन्हीतील संबंध जॉन डॅल्टन या इंग्रज रसायनशास्त्रज्ञाच्या लक्षात आला. त्याला वायूंच्या अभ्यासात विशेष स्वारस्य होते व बॉइलचे प्रयोगही त्याला चांगले माहीत होते. हवा आणि इतर वायूंची वर्तणुक समजून घेण्यासाठी ते अणूंचे बनले आहेत असे मानणे हाच त्यांच्या स्पष्टीकरणाचा सर्वोत्तम मार्ग आहे असे डॅल्टनला दिसून आले. त्याचबरोबर, मूलद्रव्ये ही अणूंची बनली आहेत असे मानल्यास 'विशिष्ट प्रमाणांचा नियम' ही योग्यच ठरतो.

डॅल्टनने स्वतःही मूलद्रव्यांच्या संयुगांचा अभ्यास केला आणि त्याला एक नवाच शोध लागला. काही वेळा दोन मूलद्रव्ये वेगळ्या प्रमाणातही एकत्र करता येतात.

उदाहरणार्थ, ३ ग्रॅम कार्बन आणि ४ ग्रॅम प्राणवायूच्या मिश्रणातून एक विशिष्ट वायू तयार होतो. परंतु ३ ग्रॅम कार्बन आणि ८ ग्रॅम प्राणवायूच्या मिश्रणातून एक निराळाच वायू तयार होतो.

यातील प्रमाण वेगळे आहे, पण ८ म्हणजे ४ ची दुप्पट आहे हे तुमच्या सहज लक्षात येईल. पहिल्या वेळेस कार्बनच्या एका अणूचा प्राणवायूच्या एका अणूशी संयोग झाला असेल आणि दुसऱ्या प्रकारात कार्बनच्या एका अणूचा प्राणवायूच्या २ अणूशी संयोग झाला असेल का याचा डॅल्टन विचार करू लागला.

आजकाल या दोन वायूंची जी नावे आहेत ती या विचाराला धरूनच आहेत. ३ ग्रॅम कार्बन आणि ४ ग्रॅम प्राणवायूच्या मिश्रणातून 'कार्बन मोनॉक्साइड' तयार होतो, तर ३ ग्रॅम कार्बन आणि ८ ग्रॅम प्राणवायूच्या मिश्रणातून 'कार्बन डायॉक्साइड' बनतो. या शब्दातील 'मोनो' या भागाचा अर्थ आहे 'एक' आणि 'डाय' चा अर्थ आहे 'दोन'.

डॅल्टनला याच प्रकारची इतर उदाहरणेही सापडली. एक ग्रॅम हायड्रोजनचा ३ ग्रॅम कार्बनशी संयोग झाल्यास त्यातून 'मिथेन' नावाचा वायू तयार होतो. पण एक ग्रॅम हायड्रोजनचा ६ ग्रॅम कार्बनशी संयोग झाल्यास त्यातून 'एथिलेन' नावाचा वायू बनतो. इथेही ६ म्हणजे ३ च्या दुप्पटच.

ज्या ज्या वेळी डॅल्टनला अशी वेगवेगळ्या प्रमाणातील संय्गे

सापडली, तेव्हा मोठे प्रमाण म्हणजे लहानाचीच दुप्पट किंवा कधी कधी तिप्पटही होती. डॅल्टनच्या या सिद्धांताला 'गुणाकारात्मक प्रमाणांचा नियम' (लॉ ऑफ मिल्टिपल प्रपोर्शन) असे म्हणतात आणि तो त्याने १८०३ साली प्रसिद्ध केला.

एका मूलद्रव्यातील एका अणूचा दुसऱ्या संयुगातील एक, दोन किंवा तीन अणूंशी संयोग होऊ शकतो, पण कधीही खैंड किंवा अडीच अशा प्रकारच्या अपूर्ण अणूंशी होत नाही हे लक्षात बैतल्यास, 'गुणाकारात्मक प्रमाणांचा नियम' योग्यच आहे हे डॅल्टनला दिसून आले. मूलद्रव्ये अणूंच्या स्वरूपातच संयोग करू शकतात आणि अणूंपेक्षा त्यांचे अधिक लहान तुकडे होऊ शकत नाहीत हे सिद्ध करण्यासाठी आवश्यक असलेला हा अखेरचा पुरावा आहे असे डॅल्टनला वाटत होते.

१८०८ साली प्रसिद्ध केलेल्या पुस्तकात डॅल्टनने आपल्या अणुकल्पनेचे वर्णन केले. या ग्रंथामुळेच डॅल्टनला अणूच्या शोधाचे व अणूच्या सिद्धांताचे श्रेय दिले जाते.

२,००० वर्षांपूर्वी ल्युसिपस आणि डेमॉक्रिटस यांनी हेच विचार मांडले होते म्हणून हे कदाचित तुम्हाला आश्चर्यकारक वाटेल. मग या प्राचीन ग्रीक तत्त्ववेत्त्यांना याचे श्रेय का दिले जात नाही?

या दोन्हीत एक महत्त्वाचा फरक आहे. ल्युसिपस व डेमॉक्रिटस यांनी केवळ त्यांची मते मांडली होती. त्यांच्याकडे काही पुरावा नव्हता, म्हणून त्यांच्या मतावर विश्वास ठेवलाच पाहिजे अशी परिस्थिती नव्हती, आणि फारसा कोणी त्यावर विश्वास ठेवलाही नाही.

परंतु डॅल्टनने अणूंचे अस्तित्व दाखवून देण्यासाठी, सहज स्पष्ट करता येतील असे रासायनिक प्रयोग केले. या प्रयोगातून बॉइलचा 'पदार्थाच्या अविनाशित्वाचा नियम', 'विशिष्ट प्रमाणाचा नियम, आणि 'गुणाकारात्मक प्रमाणांचा नियम' कसा सिद्ध करता येतो हेही त्याने दाखवून दिले.

अणूंच्या संकल्पनेतून इतर अनेक शोधांचे स्पष्टीकरण, जे इतर कोणत्याही मार्गाने देता येत नाही, ते देता येते, म्हणून ही संकल्पना नाकारताही येत नाही. आता अणूंच्या अस्तित्वावर लोकांचा खरोखर विश्वास बसू लागला. डॅल्टनचा ग्रंथ प्रसिद्ध झाल्यावर अधिकाधिक रसायनशास्त्रज्ञ अणूंची संकल्पना मान्य करू लागले आणि लवकरच सर्वच रसायनशास्त्रज्ञांनी तिला मान्यता दिली. म्हणूनच अणूच्या सिद्धांताचे सर्व श्रेय डॅल्टनला दिले जाते.

३|अणूंचे वजन

प्रत्येक मूलद्रव्याचे अणू हे एकमेकांपेक्षा कशा तन्हेने निराळे असतील याचा डॅल्टन विचार करू लागला.

लाव्हॉझिये, प्रूस्ट आणि स्वतः डॅल्टन यासारख्या रसायनशास्त्रज्ञांनी जे प्रयोग केले होते त्यात वेगवेगळ्या पदार्थाच्या वजनाचा संबंध होता. कदाचित प्रत्येक अणूचे वजन स्वतंत्रपणे मोजण्याचा काही मार्ग असू शकेल. एखादे वेळेस त्याच दृष्टीने अणु एकमेकांपासून निराळे असतील.

अर्थात कोणीही केवळ एकाच अणूचे वजन घेऊ शकत नव्हता. तो दिसण्यासाठीही अति सूक्ष्म होता, तसेच प्रयोगांसाठीही फारच सूक्ष्म होता. कदाचित अणूच्या वजनाची इतर अणूंच्या वजनाशी तुलना करता येईल.

उदाहरणार्थ, १ ग्रॅम हायड्रोजन व ८ ग्रॅम प्राणवायूच्या संयोगाने पाणी तयार होते. आपण पाण्यासाठी सर्वात सोपी अश्री अणूंची रचना - हायड्रोजनचा १ अणू आणि प्राणवायूचा १ अणू - आहे अशी कल्पना केली. तसे असल्यास याचा असा अर्थ होतो की प्राणवायूच्या प्रत्येक अणूचे वजन हायड्रोजनच्या एका अणूच्या ८ पट आहे. जर आपण हायड्रोजनच्या एका अणूचे वजन हे १ या आकड्याने दर्शविले, तर प्राणवायुच्या एका अणूचे वजन हे ८ आकड्याने दर्शवावे लगेल.

डॅल्टन ने नंतर इतर अनेक मूलद्रव्यांच्या संयुगांचे वजन करून, हायड्रोजनच्या अणूच्या तुलनेत त्या मूलद्रव्यांचे वजन किती भरते हे ठरविले. (हायड्रोजनचा अणु वजनाने सर्वात हलका असल्याचे नंतर समजून आले.) परंतू डॅल्टन ने एक चूक केली होती. पाणी तयार होण्यासाठी हायड्रोजनच्या एका अणूबरोबर प्राणवायूच्या एका अणूचा संयोग होत नाही असे नंतर आढळून आले.

१८०० साली अलेसांड्रो वोल्टा या इटालियन शास्त्रज्ञाने पहिली विजेची बॅटरी तयार केली होती. त्यातून निर्माण होणारा विजेचा प्रवाह काही पदार्थांतून सोडता येत असे. ते वर्ष संपण्यापूर्वी विल्यम निकोल्सन या इंग्रज रसायनशास्त्रज्ञाला या शोधाची माहिती मिळाली. त्याने स्वत:च एक बॅटरी बनवली आणि विजेचा प्रवाह पाण्यातून सोडला.

पाण्यातून विजेचा प्रवाह सोडल्यावर पाण्याचे हायड्रोजन आणि प्राणवायु या दोन घटकात विभाजन झाले. हे दोन्ही वायू त्याने स्वतंत्रपणे जमवले आणि त्याच्या असे लक्षात आले की हायड्रोजनने व्यापलेली जागा ही प्राणवायूने व्यापलेल्या जागेच्या दुप्पट आहे.

१८०९ साली जोझेफ लुई गे-ल्युसाक या फ्रेंच रसायनशास्त्रज्ञाच्या असे लक्षात आले, की वायूंचा संयोग ज्या परिमाणात होतो ते नेहमी लहान, संपूर्ण आकड्याच्या स्वरूपात लिहिता येते. जेव्हा हायड्रोजन आणि प्राणवायू या दोन घटकांच्या संयुगातून पाणी तयार झाले, त्यावेळी हायड्रोजन हा आकारमानाने प्राणवायूच्या दुप्पट होता. जेव्हा हायड्रोजन आणि क्लोरीन यांच्या एकत्रीकरणातून हायड्रोजन क्लोराइड तयार झाले त्यावेळी हायड्रोजन आणि क्लोरीन यांचे आकारमान सारखेच होते. जेव्हा नायट्रोजन आणि हायड्रोजन यांच्या संयुगातून अमोनिया तयार झाला तेव्हा हायड्रोजन आकारमानाने नायट्रोजनच्या तिप्पट होता. याला 'आकारमानाच्या एकत्रीकरणाचा नियम' (लॉ ऑफ कंबाइनिंग वॉल्युम्स) असे म्हणतात.

१८११ साली ॲमेडिओ ॲव्होगाद्रो या इटालियन पदार्थविज्ञानशास्त्रज्ञाने असा विचार केला, की एका ठरावीक आकारमानाच्या वेगवेगळ्या वायूतील कणांची (पार्टिकल्स) संख्या जर कायम एकच असेल, तर आकारमानाच्या एकत्रीकरणाचा नियम स्पष्ट करता येईल. हे कण म्हणजे अणू (ॲटम) असू शकतील किंवा अणूंच्या सहयोगातून बनलेले 'रेणू' (मॉलिक्युल्स) ही असतील. याला 'ॲव्होगाद्रोचे गृहीतक' (ॲव्होगाद्रोज हायपोथेसिस) असे म्हणतात. (हायपोथेसिस किंवा गृहीतक म्हणजे वास्तविकाची संभाव्य कारणमीमांसा करणारी

२६ । शोधांच्या कथा। अणू ।

मूलतत्त्वे दर्शवणारी डॅल्टनची चिन्हे

कल्पना.)

हे गृहीतक जर बरोबर असेल, तर एका आकारमानाच्या प्राणवायूशी त्याच्या दुप्पट आकारमानाच्या हायड्रोजनचा संयोग होतो, म्हणजे बहुधा हायड्रोजनच्या दोन अणूंचा प्राणवायूच्या एका अणूशी संयोग होत असावा. पाणी या संयुगात हायड्रोजन आणि प्राणवायू यांचे प्रत्येकी एक अणू असावेत, अशी डॅल्टनची मूळ कल्पना होती.

तरीही पाण्यात असणारा प्राणवायू हा त्यातील हायड्रोजनच्या वजनाच्या ८ पट असतो. याचाच अर्थ, पाण्याच्या रेणूतील प्राणवायूच्या अणूचे वजन हे हायड्रोजनच्या २ अणूच्या बेरजेच्या ८ पट असले पाहिजे. म्हणजे प्राणवायूच्या एका अणूचे वजन हे हायड्रोजनच्या एका अणूच्या १६ पट असले पाहिजे. जर आपण हायड्रोजनच्या एका अणूचे वजन १ मानले, तर प्राणवायूच्या एका अणूचे वजन १६ असेल.

पाण्याच्या रेणूत हायड्रोजनचे २ अणू असतात हे रसायनशास्त्रज्ञांनी मानले, पण ॲव्होगाद्रोच्या गृहीतकाकडे जवळपास कोणीच लक्ष दिले नाही. सुमारे ५० वर्षांपर्यंत 'गुणाकारात्मक प्रमाणांच्या नियमाचा' (लॉ ऑफ मिल्टिपल प्रपोर्शन्स) अर्थ रसायनशास्त्रज्ञांच्या नीटपणे लक्षातच आला नाही.

१८१० सालाच्या सुमारास इतके रसायनशास्त्रज्ञ मूलद्रव्ये आणि अणू यासंबंधी बोलत होते की, त्यांच्या वर्णनासाठी काहीतरी लघुलिपीची आवश्यकता भासू लागली. पाण्याच्या रचनेविषयी बोलताना दरवेळी 'हायड्रोजनचे २ अणु आणि प्राणवायूचा १ अणू असलेला पाण्याचा एक रेणू' असे म्हणणे चांगलेच गृंतागृंतीचे होऊ लागले.

डॅल्टनने अणु दर्शवण्यासाठी लहान वर्तुळाचा वापर केला होता. प्रत्येक मूलद्रव्याचा वेगळा अणु दाखवण्यासाठी त्याने वेगळ्या प्रकारच्या वर्तुळाचा वापर केला होता. एका मूलद्रव्यासाठी रिकामे वर्तुळ होते तर दुसऱ्याचे होते काळे वर्तुळ, आणखी एका मूलद्रव्यासाठीच्या वर्तुळात एक ठिपका होता वगैरे वगैरे... वेगवेगळ्या अणूंची बनलेली संयुगे दाखवण्यासाठी त्याने वेगवेगळी वर्तुळे एकत्र काढण्यास सुरुवात केली. ही एक प्रकारची चिन्हांची भाषाच (कोड) तयार झाली. जसजसे नवे अणू आणि नवी संयुगे मिळत गेली, तशी लवकरच ती वापरायला खूप कठीण झाली.

१८१३ साली यॉन्स जेकब बिईिलियस या स्वीडनच्या रसायनशास्त्रज्ञाला याह्न एक चांगली कल्पना सुचली. प्रत्येक मूलद्रव्यासाठी त्याच्या लॅटिन नावाचे पहिले अक्षर वापरावे असे त्याने सुचवले. जर दोन मूलद्रव्यांच्या नावाची सुरुवात एकाच अक्षराने होत असेल तर त्याचे दुसरे अक्षर वापरता येई. हे त्या मूलद्रव्याचे आणि त्याच्या एका अणूचे 'रासायनिक चिन्ह' (केमिकल सिम्बॉल) ठरवण्यात आले.

अशा तन्हेने, प्राणवायू (ऑक्सिजन) म्हणजे O, नायट्रोजन म्हणजे N, कार्बन झाला C, हायड्रोजन H, क्लोरीन म्हणजे CI, गंधक (सल्फर) S, फॉस्फरस म्हणजे P वगैरे, वगैरे....जेव्हा इंग्रजी नावे लॅटिनपेक्षा निराळी होती तेव्हा ही चिन्हे तितकीशी स्पष्ट नव्हती. उदाहरणार्थ, लॅटिनमध्ये सोन्याला 'ऑरम' (Aurum) असे म्हणतात, म्हणून सोन्याचे रासायनिक चिन्ह Au असे आहे.

बर्झिलियसची पद्धत वापरून वेगवेगळ्या पदार्थाचे रेणू दाखवणे सोपे झाले. उदाहरणार्थ, हायड्रोजनचा एक रेणू मया अक्षराने दर्शवला जातो, पण हायड्रोजन हा वायु एकेरी अणूंनी बनत नाही असे लक्षात आले. त्याच्या रेणूत हायड्रोजनचे प्रत्येकी २ अणू असतात. म्हणून हा रेणु नेहमी म₂ असा लिहिला जातो.

वायुरूपात असणारी इतरही काही मूलद्रव्ये ही २ अणूंच्या

स्वरूपातील रेणूंची असतात असे दिसून आले. प्राणवायुचा रेणु O_2 असा, नायट्रोजनचा रेणु म्हणजे N_2 आणि क्लोरीनचा रेणु C_{12} असा लिहिता येतो.

एकाह्न अधिक प्रकारच्या अणूंनी बनलेल्या रेणूचे रासायनिक चिन्ह लिहिणेदेखील असेच सोपे झाले. पाण्याच्या रेणूत हायड्रोजनचे २ अणू आणि प्राणवायूचा १ अणू असतो, म्हणून ते H2O असे लिहिले जाते. कर्बद्विप्राणील वायुच्या (कार्बन डायॉक्साइड) रेणूत कार्बनचा १ अणू आणि प्राणवायूचे २ अणू असतात म्हणून ते CO2; तर कार्बन मोनॉक्साइड म्हणजे CO.

प्रस्ट प्रमाणेच बर्झिलियसने निरिनराळ्या संयुगातील मूलद्रव्यांची अचूक वजने मिळवण्यासाठी अनेक वर्षे खर्ची घातली. पण बर्झिलियसने प्रस्टपेक्षा अधिक संयुगांच्या चाचण्या घेतल्या आणि त्याची मोजमापे अधिक अचूक होती.

बर्झिलियसने घेतलेल्या मोजमापांचा वेगवेगळ्या मूलद्रव्यांच्या अणूंचे अचूक वजन मिळवण्यासाठी उपयोग केला. १८२८ साली त्याने एक तक्ता प्रसिद्ध केला, तो 'अणूंच्या वजनाचा तक्ता' म्हणूनच ओळखला जातो. त्याचा तक्ता बन्याच अंशी अचूक होता, पण दुर्दैवाने, अव्होगाड्रोच्या 'एकाच आकारमानाच्या वायूतील कणांची संख्या एकच असावी' या गृहीतकाकडे त्याने अजिबातच लक्ष दिले नाही. याच कारणाने त्याच्या काही बाबतीत चुका झाल्या आणि २-३ अणूंची त्याने काढलेली वजने पूर्णपणे चुकीची ठरली.

इतरांच्याही अशाच स्वरुपाच्या चुका झाल्या आणि बऱ्याच काळापर्यंत वेगवेगळे रसायनशास्त्रज्ञ वेगवेगळ्या मूलद्रव्यांच्या अणूंची वजने निरनिराळी असल्याचे खात्रीपूर्वक दावे करीत राहिले. काहींचा हायड्रोजनचा अणू (н) आणि हायड्रोजनचा रेणू (н,) यात गोंधळ झाला आणि अशाच त-हेचे इतरही गोंधळ झाले.

१८५० सालच्या सुमारास वेगवेगळ्या रेणूंच्या रचनेसंबंधी आणि ते कसे लिहावेत यासंबंधी इतके वाद निर्माण झाले, की अणूंची एकूण संकल्पनाच निकालात काढावी लागेल की काय अशी परिस्थिती उत्पन्न झाली. यातून इतक्या अडचणी निर्माण होत असतील, तर मग अणूंची संकल्पना चुकीचीच म्हणावी लागेल.

यातून काहीतरी मार्ग काढण्यासाठी, युरोपमधील सर्व रसायनशास्त्रज्ञांना एकत्र बोलावून त्यांच्यात चर्चा घडवून आणावी, असे फ्रेडिरक ऑगस्ट केक्युल या जर्मन रसायनशास्त्रज्ञाला वाटले. म्हणून जर्मनीतील कार्लश्रुह (Karlsruhe) या शहरात १८६० साली पहिली आंतरराष्ट्रीय रसायन परिषद बोलावण्यात आली. शास्त्रज्ञांची अशा तन्हेची ही पहिलीच परिषद होती. जर्मनी, फ्रान्स, इंग्लंड, रशिया, इटली वगैरे देशांतून एकशे चाळीस शास्त्रज्ञ या परिषदेला उपस्थित राहिले.

या उपस्थितात स्टॅनिस्लॉव्ह कॅनिझारो नावाचा एक इटालियन रसायनशास्त्रज्ञही होता. ॲव्होगाड्रोच्या गृहीतकाची त्याला चांगली जाण होती, आणि रसायनशास्त्रज्ञांनी त्या गृहीतकाचा गंभीरपणे विचार केला तर ते हिताचेच ठरेल अशी त्याची खात्री होती.

आपले हे विचार त्याने एका निबंधात स्पष्टपणे मांडले. परिषदेत ॲव्होगाड्रोसंबंधी त्याने एक जोरदार भाषण केले आणि उपस्थित असलेल्या सर्व रसायनशास्त्रज्ञांना त्याने आपल्या निबंधाच्या प्रती वाटल्या. काही महत्त्वाच्या शास्त्रज्ञांशी त्याने खाजगीरीत्या चर्चाही केली आणि आपले विचार स्पष्ट केले.

त्याच्या प्रयत्नांना यश आले. रसायनशास्त्रज्ञांची समजूत पटली आणि इतकी वर्षे प्रचलित असलेला गोंधळ कमी होण्यास सुरवात झाली. त्याच सुमारास, जाँ सेर्व्हें स्टास हा बेल्जियम रसायनशास्त्रज्ञ अणूंच्या वजनाचा तक्ता बनवण्यासाठी बर्झिलियसपेक्षाही अधिक काळजीपूर्वक संशोधन करत होता. त्याने काळजीपूर्वक केलेल्या निरीक्षणाने प्राणवायूच्या अणूचे वजन हे हायड्रोजनच्या अणूच्या वजनापेक्षा नेमके १६ पट नसते असे तो दाखवून देऊ शकला. ते त्याह्न थोडे कमी होते. हायड्रोजनचा अणू जर १ आहे असे मानले तर प्राणवायूचा अणु १५.८८ इतका होता.

अर्थात हायड्रोजनपेक्षा प्राणवायूचे इतर अनेक मूलद्रव्यांसोबत संयुग बनते, त्यामुळे स्टास जवळजवळ सर्व वेळ प्राणवायूसंबंधी संशोधनच करत होता. प्राणवायूच्या अणूचे वजन पूर्णांकात असणे हे त्याच्या दृष्टीने फारच सोईचे होते. त्यामुळे आकडेमोड आणि गणिते करणे सोपे होई. म्हणून त्याने प्राणवायूच्या अणूचे वजन १६ असेच कायम ठेवले म्हणजे त्याचा अर्थ हायड्रोजनच्या अणूचे वजन १ असण्याऐवजी आता १.००८ झाले. ही पद्धत जवळजवळ १०० वर्षे अस्तित्वात होती.

कॅनिझारोने परिषदेत स्पष्टीकरण दिल्यानंतर स्टासने ॲव्होगाड्रोचे गृहीतक मान्य केले. त्याने अणूंची वजने त्यानुसारच तयार केली आणि १८६५ सालापर्यंत त्याचा अशा तन्हेचा अणूंच्या वजनाचा आधुनिक तक्ता तयार झाला. तेव्हापासून आजतागायत त्याच्या तक्त्यात फारच थोड्या, व त्याही लहानसहान, सुधारणा करण्यात आल्या.

४| अणूंची मांडणी

आता अणूंच्या वजनाच्या प्रश्नाचे जरी उत्तर मिळाले असले तरी अणूंच्या बाबतची ही काही एकच अडचण नव्हती.

१९ व्या शतकाच्या सुरुवातीला अभ्यासण्यात आलेली संयुगे ही प्रत्येकात थोडेसेच अणू असलेल्या रेणूंची बनलेली होती. वेगवेगळ्या प्रकारच्या अणूंची यादी करून त्या प्रत्येकातील अणू मोजणे पुरेसे होते. पाण्याचा रेणु होता H_2O (हायड्रोजनचे २ अणू व प्राणवायुचा १ अणु); अमोनियाचा रेणू होता NH_3 (१ अणू नायट्रोजनचा व ३ अणू हायड्रोजनचे); हायड्रोजन क्लोराइडचा रेणू म्हणजे HCI (१ अणू हायड्रोजनचा व १ अणू क्लोरीनचा); सल्फ्युरिक ॲसिडचा रेणू होता H_2 SO_4 (२ अणू हायड्रोजनचे, १ अणू सल्फर म्हणजे गंधकाचा व ४ अणू प्राणवायुचे).

काही ठिकाणी मात्र अणूंची केवळ संख्या लिहिणे पुरेसे नव्हते. १८२४ साली जस्टस फॉन लायबिग आणि फ्रेडरिक वोहलर हे दोन जर्मन रसायनशास्त्रज्ञ दोन निरिनराळ्या संयुगांवर संशोधन करीत होते. प्रत्येकाने आपल्या संयुगाची रचना शोधून काढली आणि त्यातील प्रत्येक मूलद्रव्यांच्या अणूंची संख्याही मोजली.

जेव्हा त्यांनी आपले निकाल जाहीर केले त्यावेळी असे दिसून आले की दोन्ही संयुगांचे रासायनिक सूत्र (फॉर्म्युला) एकच आहे. प्रत्येकाच्या रेणूत तीच मूलद्रव्ये होती व त्यांचे प्रमाणही तेच होते -तरीही ती दोन वेगळी संयुगे होती आणि त्यांचे गुणधर्मही निराळे होते.

बर्झिलियस या त्या वेळच्या आघाडीच्या रसायनशास्त्रज्ञाला याचे

i

फारच आश्चर्य वाटले. त्याने दोघांचेही संशोधन परत एकदा पडताळून पाहिले आणि दोघांचेही निष्कर्ष बरोबरच होते. त्याच मूलद्रव्यांच्या एकाच प्रमाणातून बनलेली ही दोन निराळी संयुगे होती. 'समप्रमाण' या अर्थाच्या ग्रीक शब्दांवरून त्याने यांना 'आयसोमर्स' (isomers) असे नाव दिले.

अशाच तन्हेची आणखीही समप्रमाण असणारी संयुगे (आयसोमर्स) आढळून आली आणि बहुतेक प्रत्येक वेळी त्या रेणूत कार्बनचा अणू असे. हे विशेष महत्वाचे होते कारण सजीवांमधील रेणूंमधे बहुधा कार्बनचा अणु असतो. त्याच कारणासाठी वनस्पती आणि प्राण्यांमधील कार्बन असणाऱ्या रेणूंना बर्झिलियसने 'सेंद्रिय संयुगे' (ऑरगॅनिक कांपाऊंडस) असे नाव दिले.

सेंद्रिय संयुगांची सूत्रे शोधून काढणे अधिकाधिक कठीण होऊ लागले. कार्बन नसलेल्या बहुतेक संयुगांचे रेणू (इनॉरगॅनिक कांपाऊंडस) लहान होते, म्हणून त्यांची रचना सहजपणे समजून घेता येई; तर सेंद्रिय संयुगांचे (ऑरगॅनिक कांपाऊंडस) रेणू बरेच मोठे असत व त्यात अनेक अणू असत. मोठाल्या सेंद्रिय रेणूत कोणत्या प्रकारचे नेमके किती अणू आहेत याबाबत रसायनशास्त्रज्ञ गोंधळात पडू लागले. जरी त्यांना काही विशिष्ट संख्या उपलब्ध झाली तरीही त्याच प्रमाणाची आणखीही संयुगे (आयसोमर्स) आहेत असे त्यांना आढळून येऊ लागले. उदाहरणार्थ, C2H6O.

आता प्रत्येक रेणूतील अणू आणि त्यांच्या संख्येची यादी करणे पुरेसे नव्हते हे उघडच होते. या अणूंची एका विशिष्ट पद्धतीने मांडणी करणे आवश्यक होते. म्हणजे, दोन निरनिराळ्या रेणूत एकाच प्रकारचे अणू त्याच प्रमाणात जरी असले तरी त्यांची मांडणी वेगवेगळी होत असणार. त्यामुळेच हे रेणू भिन्न प्रकारचे बनत असणार.

पण एखाद्या रेणूत अणूंची मांडणी कशी आहे हे रसायनशास्त्रज्ञांना कळणार तरी कसे? कारण अणू व रेणू हे दोन्हीही इतके सूक्ष्म असतात, की ते डोळ्यांना दिसतच नाहीत.

एडवर्ड फ्रॅन्कलॅन्ड या इंग्रज रसायनशास्त्रज्ञाने याबाबतचे पहिले पाऊल उचलले. त्याने सेंद्रिय रेणु व काही विशिष्ट धातूंची संयुगे बनवली. एखाद्या विशिष्ट धातूच्या अणूचा ठरावीक संख्येच्या सेंद्रिय रेणूंशीच संयोग होतो असे त्याला आढळले.

प्रत्येक प्रकारच्या अणूत इतर प्रकारच्या विशिष्ट संख्येच्या अणूंशीच संयोग होण्याची क्षमता असावी असे त्याने १८५२ साली सुचवले. 'शक्ती' या अर्थाच्या लॅटिन शब्दावरून त्याने या क्षमतेला 'वॅलन्स' (valence) असे म्हटले.

उदाहरणार्थ, हायड्रोजनची क्षमता अथवा धारणा (वॅलन्स) ही एक आहे. हायड्रोजनचा अणू दुसऱ्या कोणत्याही एकाच अणूशी संयोग पावू शकतो. प्राणवायूच्या अणूची क्षमता आहे दोन, म्हणजे त्याचा दोन अणूंशी संयोग होऊ शकतो. नायट्रोजनची क्षमता आहे तीन; कार्बनची क्षमता आहे चार: वगैरे वगैरे...

१८५८ साली आर्चिबाल्ड स्कॉट कूपर या स्कॉटिश रसायनशास्त्रज्ञाने असे सुचवले की प्रत्येक अणूला इतर अणूंशी जोडणारे काही विशिष्ट संख्येचे बंध (बॉण्ड) असावेत अशा दृष्टीने त्यांचा अभ्यास करण्यात यावा. हायड्रोजनच्या अणूची क्षमता एक असल्यामुळे त्याला एकच बंध असेल, म्हणून तो H— असा लिहिला जावा. त्याच प्रकारे प्राणवायूची क्षमता दोन, नायट्रोजनची तीन, कार्बनची चार, म्हणून ते खालीलप्रमाणे लिहिता येतील:

त्यानंतर अण्ंमधील बंध एकमेकांना जोडून रेणू बनवता येतील. म्हणजे हायड्रोजनचा रेणु हायड्रोजनच्या दोन अण्ंनी बनतो म्हणून तो H--H असा लिहिल्यास दोन्ही अण्ंनी एकमेकाला आपल्या एकेका बंधाने एकत्र धरून ठेवले आहे हे स्पष्ट होईल. काही वेळा दोन अणु एकत्र धरण्यासाठी एकाह्न अधिक बंधही वापरले जातात. प्राणवायूचा रेणू O=O आणि नायट्रोजनचा रेणु N ≡ N यामधे तीन आडव्या रेघांनी तीन बंध दाखवून लिहिता येईल.

जेव्हा निरनिराळ्या अणूंचा संबंध असतो, तेव्हा पाण्याचा रेणु म्हणजे H_2O , हा H_2O-H असाही ठिहिता येतो. अमोनियाचा रेणु म्हणजे NH_3 हा नायट्रोजनच्या अणूच्या तीन बाजूंना हायड्रोजनचे तीन रेणू बांधले असल्याच्या पद्धतीनेही H-N-H

í H

लिह्न दाखवता येईल, तसेच कर्बद्विप्राणील वायूचा (कार्बन डायॉक्साइड) रेणु CO2 , O=C=O असाही लिहिता येईल वगैरे वगैरे...

काही वेळा काही अणूंचे सर्व बंध वापरले जात नाहीत. कार्बन मोनॉक्साइडचा रेणू CO, C=O याप्रमाणे लिहिला जातो. प्राणवायूच्या अणूंचे दोन बंध आहेत आणि ते दोनही वापरले गेले, पण कार्बनच्या अणूंच्या चार बंधांपैकी फक्त दोनच वापरले गेले. परंतु प्राणवायूशी संयोग होऊन कार्बन मोनॉक्साइड सहजपणे जळतो व जळताना न वापरल्या गेलेल्या बंधांचा अणू वापरला जाऊन त्यातून कार्बन डायॉक्साइड तयार होतो.

अणूतील बंधांचा वापर करून त्यातून रेणू बनण्याची ही पद्धत लहान , कार्बन नसणाऱ्या (इनॉरगॅनिक) संयुगांच्या संदर्भात वापरणे सोपे होते. परंतु, मोठ्या, कार्बन असणाऱ्या, गोंधळात टाकणाऱ्या संयुगांच्या रेणूंचे स्पष्टीकरण करणे आवश्यक होते.

केक्युलने हा क्षमतेचा सिद्धांत (वॅलन्स थियरी) वापरून सेंद्रिय संयुगांचे स्पष्टीकरण देण्यासाठी कसोशीने प्रयत्न केले आणि १८५८ साली आपले निष्कर्ष प्रसिद्ध केले. कार्बनच्या अणूला प्रत्येकी चार बंध आहेत यावर विशेष लक्ष केंद्रित करून, आतापर्यंत कोड्यात टाकणाऱ्या बऱ्याच संयुगांच्या रेणूंचा अर्थ लावणे त्याला शक्य झाले.

त्याचे संशोधन योग्य मार्गाने चालले होते याची शहानिशा करून घेण्यासाठी तो वापरत असलेल्या प्रत्येक मूलद्रव्याच्या अणूच्या वजनाची खात्री करून घेणे आवश्यक होते. पहिली आंतरराष्ट्रीय रसायन परिषद बोलावण्याचे हेही एक कारण होते. कॅनिझारोने एकदा अणूंच्या वजनांची व्यवस्थित मीमांसा केल्यावर, आपण योग्य मार्गाने जात आहोत अशी केक्युलची खात्री पटली.

उदाहरणार्थ, व्हिनेगरला ज्यामुळे आंबट चव येते त्या ॲसेटिक आम्लाचा (ॲसेटिक ॲसिड) रेणु आहे $C_2H_4O_2$. केक्युलच्या पद्धतीने ते सूत्र असे मांडता येतेः

कार्बनच्या प्रत्येक अणूला चार चार बंध आहेत, प्राणवायूच्या अणूला दोन, आणि हायड्रोजनच्या प्रत्येक अणूला एक बंध आहे हे लक्षात घ्या.

पेट्रोलच्या संयुगातील ऑक्टेनचा रेणू म्हणजे $C_{ij}H_{ij}$ आणि आयसोप्रोपाइल अल्कोहोल चा रेणू आहे $C_{ij}H_{ij}O$.

केक्युरुच्या पद्धतीने ही सूत्रे अशी मांडता येतील: ऑक्टेन:

केक्युलची पद्धत वापरून समप्रमाण असणाऱ्या संयुगांचेही (आयसोमर्स) स्पष्टीकरण देण्याची सुरुवात करता येते. उदाहरणार्थ, एका प्रकारच्या दारूत असणाऱ्या एथिल अल्कोहोलच्या रेणूचे सूत्र आहे C_2H_6O . दुसरे एक सेंद्रिय संयुग आहे डायमेथिल इथर, हे एथिल अल्कोहोलपेक्षा संपूर्ण निराळे असले तरी याचेही सूत्र C_2H_6O असेच आहे.

केक्युलच्या पद्धतीप्रमाणे कार्बनचे २ अणू, हायड्रोजनचे ६ अणू आणि प्राणवायूचा १ अणु यांची केवळ खालील दोनच प्रकारांनी मांडणी करता येते:

दोन्ही ठिकाणी प्रत्येकी चार बंध असणारे कार्बनचे २ अणू आहेत; दोन बंध असणारा प्राणवायूचा एक अणू: आणि एकेक बंध असणारे हायड्रोजनचे ६ अणू आहेत. यापैकी एक असणार एथिल अल्कोहोलचा आणि दुसरा डायमेथिल इथरचा, पण कोणते सूत्र कोणाचे हे कळणार कसे?

एका सूत्रात हायड्रोजनचे सर्व अणू कार्बनच्या अणूंना जोडले गेले आहेत, म्हणजे हायड्रोजनच्या सर्व अणूंचे गुणधर्म एकाच प्रकारचे असायला हवेत. दुसन्या सूत्रात मात्र हायड्रोजनचा एक अणु प्राणवायूच्या एका अणूशी जोडला गेलेला आहे म्हणजे हायड्रोजनच्या एका अणूचे गुणधर्म इतर अणूंह्न वेगळे असणार एथिल अल्कोहोलमधील हायड्रोजनच्या एका अणूंची वर्तणूंक इतराह्न वेगळी असते असे आढळूंन आले. म्हणून वरीलपैकी दुसरे सूत्र हे एथिल अल्कोहोलचे सूत्र असणार. आणि पहिले सूत्र अर्थातच डायमेथिल इथरचे.

एकदा के क्युलने आपली पद्धत जाहीर के त्यावर सेंद्रिय संयुगांसंबंधीचे बरेचसे प्रश्न सुटण्यास सुरवात झाली. परंतु एका साध्या संयुगाचे कोडे मात्र सुटत नव्हते. ते म्हणजे बेंझिन. त्याचे सूत्र आहे $C_{\wp}H_{\wp}$. कार्बनचे ६ अणू आणि हायड्रोजनचे ६ अणू यांचे केक्युलच्या

पद्धतीने संयुग बनवल्यास त्या रेणूचे गुणधर्म बेंझिनसारखे असणे शक्यच नव्हते.

केक्युलने या प्रश्नाचा खूप विचार केला पण त्यातून काहीच मार्ग निघाला नाही. मग, १८६५ साली एक दिवस तो घोडे जोडलेल्या बसमधून प्रवास करत असताना त्याचा डोळा लागला. अर्धवट झोपेत असताना, कार्बनच्या अणूंची एक साखळी झरकन त्याच्यासमोरून

बेंझिनच्या अणूची प्रतिकृती

निघून गेल्याचा त्याला भास झाला. अचानक, त्या साखळीचे शेवटचे टोक सुरुवातीच्या टोकाला भिडले आणि अणूंचे एक वर्तुळाकार कडेच तयार झाले. केक्युल दचकून उठला आणि त्याला त्याच्या प्रश्नाचे उत्तर मिळाले!

बेंझिनचे सूत्र खालीलप्रमाणेः H C / \/ H--C C-- H || | H--C C-- H \ // C

१८७४ साली जॅकोबस हेन्रीकस वॉन्ट हॉफ या डच रसायनशास्त्रज्ञाने, केवळ कागदावर चित्र काढण्याऐवजी, प्रत्यक्षात कार्बनचे बंध कसे आणि कुठे असतील हे दाखवून दिले. सर्व अणू योग्य जागी ठेवून त्यांचे बंधही योग्य त्या दिशेने दर्शवून, रेणूची त्रिमिती प्रतिकृती बनवणे यानंतर शक्य झाले.

५ अणूंची सत्यता

एकोणिसाव्या शतकाच्या अखेरीपर्यंत अणूच्या सिद्धांताविषयीचे सर्व वाद संपृष्टात आले होते. अधिकाधिक रेणूंच्या रचनांचे तपशील जाणून घेण्यात यश येत होते आणि यात काही गुंतग्गुंतीच्या सेंद्रिय संयुगांचाही समावेश होता.

के क्युलच्या पद्धतीच्या आधाराने रसायनशास्त्रज्ञ अणूंच्या एकीकरणाने निसर्गात अस्तित्वात नसणारे काही रेणूदेखील बनवू लागले होते. अशा 'कृत्रिम रेणूं'चा काही वेळा रंग, सुगंधी द्रव्ये किंवा औषधे बनवण्यासाठीही उपयोग केला जाऊ लागला.

अर्थात अद्याप अणू किंवा रेणूही प्रत्यक्षात कोणीही पाहिला नव्हता. रसायनशास्त्रज्ञांना लागलेल्या शोधांच्या स्पष्टीकरणाचे ते निरनिराळे मार्ग होते इतकेच. या उपयुक्त संकल्पना होत्या, पण प्रत्यक्षात अणू किंवा रेणू कसे होते, ते केवढे होते, त्यांचे वजन किती होते, त्यांचा आकार कसा होता हे कोणालाच माहीत नव्हते. फ्रेडरिक विल्हेम ओस्टवाल्ड हा रिशयन- जर्मन रसायनशास्त्रज्ञ वॉन्ट हॉफचा मित्र होता. अणूंचा फारसा गांभीयिन विचार करण्यात येऊ नये असे त्याचे मत होते. ही एक उपयुक्त कल्पना आहे इतकेच, त्याह्न अधिक काही नाही. त्याचा मित्र वॉन्ट हॉफने जरी रेणूंच्या त्रिमितीच्या प्रतिकृती बनवण्याचे मार्ग शोधून काढले असले, तरीही अणूंच्या अस्तित्वासंबंधी काहीच पुरावा नाही असेच तो म्हणत राहिला.

अणूंच्या अस्तित्त्वासंबंधी ओस्टवाल्डचे मत बदलण्याचा काही मार्ग होता का? खूप पूर्वी, १८२७ साली, रॉबर्ट ब्राऊन नावाचा स्कॉटिश वनस्पतीशास्त्रज्ञ पाण्यात तरंगणाऱ्या सूक्ष्म परागकणांचे सूक्ष्मदर्शक यंत्राखाली निरीक्षण करत होता. परागांचे हे सूक्ष्म कण पाण्यात सर्व दिशांनी संचार करत असल्याचे त्याच्या लक्षात आले. अर्थात, परागकण हे झाडांचा एक भाग आहेत आणि त्यांच्यात सूक्ष्म स्वरूपात जीवन असते, त्यामुळे ते जिवंत आहेत म्हणूनच संचार करत असावेत असे ब्राऊनला वाटले.

रंगांचे सूक्ष्म कण घेऊन ब्राऊनने तोच प्रयोग परत एकदा केला, रंगांचे कण निश्चितच सजीव नव्हते. त्यांचाही नेमका त्याच प्रकारे संचार होत होता. या प्रकारच्या हालचालीला 'ब्राऊनची हालचाल' (ब्राऊनियन मुव्हमेंट) असे म्हणतात. जवळजवळ ३० वर्षांपर्यंत कोणालाच याचे स्पष्टीकरण देता आले नाही.

१८६० सालाच्या सुमारास जेम्स क्लार्क मॅक्सवेल हा स्कॉटिश गणितज्ज्ञ काही वायूंच्या वर्तणुकीचा अभ्यास करत होता. वायू हे अणू आणि रेणूंचे बनले असणार , इतकेच नव्हे तर हे अणू व रेणू सर्व दिशांना संचार करत असणार आणि त्यांच्या एकमेकांशी कायम टकरा होत असणार असे त्याने दाखवून दिले. तपमान जितके अधिक असेल, तितका अणू-रेणूंच्या हालचालीचा वेग अधिक आणि त्यांच्या टकराही जोराच्या.

पाण्यासारख्या द्रव पदार्थात देखील रेणूंची हालचाल आणि टकरा होतच असतात पण वायूपेक्षा कमी प्रमाणात.

ज्या गोष्टींच्या सर्व बाजूंना पाणी असते त्यातील अणू व रेणूंच्या सर्व दिशांनी टकरा होत असतात. परस्पर विरुद्ध बाजूंनी सारख्याच प्रमाणात टकरा होत असत्याने त्यांचा तोल टिकून राहतो. काही वेळा एकाच दिशेने होणाऱ्या टकरा थोड्या अधिक असू शकतील, पण अणू व रेणू वजनाने इतके हलके असतात की ज्याला टकरा होतात तो पदार्थ मोठा असल्यास त्याच्यावर यामुळे फारसा फरक होत नाही.

पण पाण्याचा एक लहानसा कण घेतला आहे अशी कल्पना करा. त्याच्यात सर्व बाजूंनी टकरा होत असतील आणि एकाच बाजूंने पाण्याच्या रेणूंचे अधिक धक्के बसले तर त्या छोट्याशा कणाच्या दृष्टीने तो मोठाच धक्का होतो. पहिल्यांदा एका बाजूंने अधिक धक्के, मग दुसऱ्या बाजूंने, त्यानंतर आणखी वेगळ्याच बाजूंने असे होतच राहील. मग तो कण प्रथम एका बाजूंला ढकलला जाईल, मग दुसऱ्या बाजूंला, त्यानंतर आणखीच तिसरीकडे वगैरे वगैरे...

ब्राऊनची हालचाल (ब्राऊनियन मुव्हमेंट)

४४ । शोधांच्या कथा। अण्

तो छोटासा कण ज्या बाजूने धक्का बसेल त्याप्रमाणे अव्याहत फिरतच राहील, ब्राऊनच्या हालचालीचे हे स्पष्टीकरण आहे.

१९०५ साली, आल्बर्ट आईनस्टाइन या जर्मनीत जन्मलेल्या गणितज्ज्ञाने ब्राउजनच्या हालचालीनुसार फिरणाऱ्या कणांच्या प्रश्नाचा अभ्यास करायला सुरुवात केली. हालचाल होणारा कण हा जितका अधिक लहान असेल, तितका तो रेणूंकडून मिळणाऱ्या धक्क्याने अधिक ढकल्ला जाईल आणि एका ठरावीक वेळात तो आपल्या मूळ जागेपासून अधिक दूर जाईल. तसेच, धक्के देणारा रेणू जितका मोठा असेल, तितका तो त्या कणाला अधिक ढकलेल आणि तो कण अधिक दूर जाईल.

आइनस्टाइनने त्या कणाचा आकार, पाण्याच्या रेणूचा आकार, ठरावीक वेळात त्या कणाने गाठलेले अंतर या सर्वांचा परामर्श घेणारे एक गुंतागुंतीचे गणिती सूत्र शोधून काढले. या गणिती सूत्रातील, पाण्याच्या रेणूचे वजन सोडून इतर सर्व अवयवांची किंमत जर कोणी घालू शकले, तर पाण्याच्या रेणूचे वजन गणिताच्या सहाय्याने शोधून काढता येईल.

१९०८ साली झाँ बॅप्टिस्ट पेरॅ (Jean Baptiste Perrin) या फ्रेंच शास्त्रज्ञाने या प्रश्नाचा अभ्यास केला. पाणी भरलेल्या एका भांड्यात त्याने रबरासारख्या एका पदार्थाचे (गम रेझिन) सूक्ष्म कण सोडले. गुरुत्वाकर्षणाने ते कण भांड्याच्या तळाकडे गेले, पण ब्राऊनच्या हालचालीच्या तत्त्वाने ते पृष्ठभागाकडे ढकलले जाऊ लागले.

आइनस्टाइनच्या गणिती सूत्राप्रमाणे, एकेक कण पाण्याच्या वर गेला की पाण्यातील कणांची संख्या विशिष्ट प्रमाणात कमी होणे अपेक्षित आहे. पेरॅंने पाण्याच्या वेगवेगळ्या उंचीवर त्यातील कणांची संख्या मोजली आणि पाण्याच्या रेणूच्या वजनाखेरीज आइनस्टाइनच्या सूत्रातील प्रत्येक अवयवासाठी त्याने प्रत्यक्षातील आकडे घातले. त्यावरून त्याला रेणूचा आकार गणिताने काढणे शक्य होते.

पहिल्यांदाच पाण्याच्या रेणूचा आणि त्यातील अणूंचा आकार अशा तन्हेने शोधून काढला गेला. यात असे आढळून आले की एका अणूंची रुंदी १/१००,०००,००० सेंटिमीटर इतकी असते. याचाच अर्थ, जर १० कोटी अणू एकाशेजारी एक असे मांडले तर त्यांची लांबी १ सेंटिमीटर इतकी भरेल.

वेगळ्या पद्धतीने पाहिले असता, असेही म्हणता येईल की १ लिटर पाण्यात पाण्याचे ३०,०००,०००,०००,०००,०००,०००,००० रेणू असतात. पाण्याचा एकच थेंब जर पृथ्वीवरील सर्व ४०० कोटी लोकांत विभागला, तर प्रत्येकाला सुमारे ७,०००,०००,००० रेणू मिळतील.

पेरँच्या प्रयोगाची माहिती मिळाल्यावर मात्र ओस्टवाल्डला आपला आग्रह सोडावा लागला. ब्राउजनच्या पद्धतीच्या हालचालीमुळे एकेका रेणूची हालचाल दिसणे शक्य झाले. प्रत्यक्षात रेणू जरी दिसला नाही, तरी त्यांची थरथर, धक्के देण्याची आणि एकमेकांवर आदळण्याची कृती यांचा परिणाम तर दिसतच होता. अशा तन्हेने पेरँमुळे एकेक अणू किती चिमुकला असतो याचा पुरावाच मिळाला.

त्यानंतर मात्र, अणू ही केवळ एक सोईची कल्पना नसून, अणूच्या अस्तित्वाबद्दल जवळजवळ सर्व शास्त्रज्ञांची खात्री पटली.

१९३६ साली, एर्विन विल्हेम म्युलर नावाच्या जर्मन शास्त्रज्ञाने

'फिल्ड एमिशन मायक्रोस्कोप' या एका सूक्ष्मदर्शक यंत्राचा शोध लावला. यात सर्व हवा काढून घेतलेल्या (निर्वात पोकळी) पोकळीत एका अत्यंत बारीक सुईच्या टोकाचा वापर केला जातो.

गरम केल्यावर, या सुईच्या टोकापासून सूक्ष्म कण सरळ रेषेत बाहेर पडले आणि रसायन लावलेल्या एका पडद्यावर आदळले, त्याबरोबर कण आदळलेला पडद्याचा भाग चमकू लागला. त्या प्रकाशावरून सुईच्या टोकाची रचना कशा प्रकारची आहे हे सांगता येत असे.

म्युलरने या यंत्रात अनेक सुधारणा केल्या आणि १९५० सालापर्यंत तो या चमकणाऱ्या पडद्याचे फोटो घेऊ शकत होता. त्यावरून त्या सुईच्या टोकात असणारे सर्व अणू व्यवस्थितपणे एका ओळीत मांडलेले दिसत असत.

टंगस्टेनच्या स्फटिकातील अणू फिल्ड एमिशन मायक्रोस्कोपच्या पडद्यावर ठिपक्यासारखे दिसतात.

अखेर, अणू प्रत्यक्ष दिसणे शक्य झाले होते. मात्र तोपर्यंत अणूंच्या विषयी पूर्वी जी कल्पना होती त्याप्रमाणे ते नव्हते, हेही माहीत झाले होते. ल्युसिपस आणि डेमॉक्रिटस यांच्या मते अणू हे सर्वात लहान घटक असून त्यांचे विभाजन करणे शक्य नव्हते. (अणू या शब्दाचा अर्थच 'न तुटणारा' असा आहे हे लक्षात आहे ना?)

डॅल्टननेही असाच विचार केला होता आणि एकोणिसाव्या शतकातील सर्वच रसायनशास्त्रज्ञांची खात्रीच होती की 'अणू म्हणजे ज्याचे त्याह्न लहान भाग होऊ शकत नाहीत असा घटक' अणू अगदी सूक्ष्म, चेंडूप्रमाणे घट्ट व गुळगुळीत असावा आणि तो तोडता येत नाही तसेच वेगळा करून दाखवताही येत नाही, अशीच त्यांची कल्पना होती.

परंतु एकोणिसावे शतक संपताना वस्तुस्थिती तशी नसल्याचे लक्षात आले. अणूपेक्षाही लहान असणारे 'सब ॲटॉमिक पार्टिकल्स' म्हणजे 'परमाणू' एकत्र येऊन अणू बनलेला असतो. यापैकी एक महत्त्वाचा घटक म्हणजे 'इलेक्ट्रॉन'. हायड्रोजन या सर्वात लहान असणाऱ्या अणूच्या तुलनेत त्याचे वजन १/१८३७ इतके असते. म्युलरच्या 'फिल्ड एमिशन' पद्धतीच्या सूक्ष्मदर्शक यंत्रातील सुईच्या टोकातून निघालेले पहिले कण हे इलेक्ट्रॉनच होते.

अणूच्या केंद्रस्थानी एक चिमुकला गाभा (न्यूक्लियस) असतो हे आता शास्त्रज्ञांना माहीत झाले आहे. या गाभ्याचे वजन जवळजवळ संपूर्ण अणूइतकेच असते. त्याच्याभोवती वजनाने हलके असे अनेक इलेक्ट्रॉन असतात. अणूचे अंतरंग कसे दिसते हे शास्त्रज्ञांनी कसे शोधून काढले ती एक मोठीच गुतागुतीची कथा आहे. त्यासाठी एक वेगळेच पुस्तक लिहावे लागेल.

The elements, their symbols, atomic numbers, and atomic weights

			· · · · · ·				
Name of	Sym-			Name of	Sym-	Atomic	Atomic
element	bol	number	weight	element	bol	number	weight
Actinium	Ac	89	[227]	Mercury	Hg	80	200.59
Aluminium	Al	13	26.9815	Molybdenum	Mo	42	95.94
Americium	Am	95	[243]	Neodymium	Nd	60	144.24
Antimony	Sb	51	121.75	Neon	Ne	10	20.183
Argon	Ar	18	39.948	Neptunium	Np	93	[237]
Arsenic	As	33	74.9216	Nickel	Ni	28	58.71
Astatine	Αt	85	[210]	Niobium	NЬ	41	92.906
Barium	Ba	56	137.34	Nitrogen	N	7	14.0067
Berkelium	Bk	97	[249*]	(Nobelium)	(No)	102	
Beryllium	Be	4	9.0122	Osmium	Os	76	190.2
Bismuth	Bi	83	208.980	Oxygen	0	8	15.9994
Boron	В	5	10.811	Palladium	Pd	46	106.4
Bromine	Br	35	79.909	Phosphorus	P	15	30.9738
Cadmium	Cd	48	112.40	Platinum	Pt	78	195.09
Calcium	Ca	20	40.08	Plutonium	Pu	94	[242]
Californium	Cf	98	[251]	Polonium	Po	84	[210]
Carbon	C	6	12.01115	Potassium	K	19	39.102
Cerium	Ce	58	140.12	Praseodymium	Pr	59	140.907
Cesium	Cs	55	132.905	Promethium	Pm	61	[147]
Chlorine	CI	17	35.453	Protactinium	Pa .	91	[231]
Chromium	Cr	24	51.996	Radium	Ra	88	[226]
Cobalt	Co	27	58.9332	Radon	Rn	86	[222]
Copper	Cu	29	63.54	Rhenium	Re	75	186.2
Curium	Cm	96	[247]	Rhodium	Rh	45	102.905
Dysprosium	Dy	66	162.50	Rubidium	RЫ	37	85.47
Einsteinium	Es	99	[254]	Ruthenium	Ru	44	101.07
Erbium	Er	68	167.26	Samarium	Sm	62	150.35
Europium	Eu	63	151.96	Scandium	Sc	21	44.956
Fermium	Fm	100	[253]	Selenium	Se	34	78.96
Fluorine	F	9	18.9984	Silicon	Si	14	28.086
Francium	Fr	87	[223]	Silver	Ag	47	107.870
Gadolinium	Gd	64	157.25	Sodium	Na	11	22.9898
Gallium	Ga	31 32	69.72	Strontium	Sr	38	87.62
Germanium Gold	Au	79	72.59	Sulphur	S	16	32.064
	Ht	79 72	196.967	Tantalum	Ta	73	180.948
Hafnium Helium	He	2	178.49 4.0026	Technetium	Tc	43	[99]
	Ho	67	164.930	Tellurium	Te	52	127.60
Holimum	H	l l	1.00797	Terbium	Tb	65	158.924
Hydrogen Indium	in I	49	114.82		TI	81	204.37
Indium Iodine	in	53	125.9044	Thorium	Th	90	232.038
Iridium	l Ir	77	192.2	Thulium Tin	Tm	69	168.934
Iron	Fe	26	55.847	Titanium	Sn Ti	50 22	118.69
Krypton	Kr	36	83.80		W W	72 74	47.90
Lanthanum	La	57	138.91	Tungsten Uranium	Ü		183.85
Lawrencium	Lw	103	[257]	Vanadium Vanadium	v	92 23	238.03
Lead	Pb	82		Xenon	Хe	23 54	50.942 1 131.30
Lithium	Li	3		Ytterbium	Ϋ́Ь	70	173.04
Lutetium	Lu	71		Yttrium	Y	39	88.905
Magnesium	Mg	12		Zinc	Zn	39	65,37
Manganese	Mn	25		Zirconium	Zr	40	91.22
Mendelevium	Md	101	[256]	Onidin		70	31.22
			[]				