Research Training Day Part I

Recap in Extreme Value Theory & Recent Developments on the Block Maxima Approach

Jonas Schröter¹, Felix Fauer², Erik Haufs³ ClimXtreme II Module C Meeting, November 13, 2024

¹Freie Universität Berlin, Institute of Meteorology

²Deutscher Wetterdienst, Regionales Klimabüro Potsdam

³Ruhr University Bochum, Faculty of Mathematics

Motivation: Climate Extremes

- Extreme weather events are central object of study in ClimXtreme I+II
- Goals:
 - How likely was an extreme event to occur?
 - Did occurrence probabilities change with climate?
 -

Motivation: Climate Extremes

- Extreme weather events are central object of study in ClimXtreme I+II
- Goals:
 - How likely was an extreme event to occur?
 - Did occurrence probabilities change with climate?
 - ...
- All questions demand statistical inference for extreme events!
- Extreme Value Theory provides methods for this

Fisher-Tippett-Gnedenko Theorem

Setting:

- $X_1, ..., X_r$ are idependent & identically distributed (iid)
- $M_r := \max\{X_1, ..., X_r\}$

Fisher-Tippett-Gnedenko Theorem

Setting:

- $X_1, ..., X_r$ are idependent & identically distributed (iid)
- $M_r := \max\{X_1, ..., X_r\}$

Theorem (Fisher and Tippett 1928, Gnedenko 1943).

If there exist sequences $(a_r)_{r\in\mathbb{N}}\subset(0,\infty)$ and $(b_r)_{r\in\mathbb{N}}\subset\mathbb{R}$ such that $\mathbb{P}\Big(\frac{M_r-b_r}{a_r}\Big)\stackrel{\mathcal{D}}{\longrightarrow}G(x)$ non-degenerate, then G is one of

Fisher-Tippett-Gnedenko Theorem

Setting:

- $X_1, ..., X_r$ are idependent & identically distributed (iid)
- $M_r := \max\{X_1, ..., X_r\}$

Theorem (Fisher and Tippett 1928, Gnedenko 1943).

If there exist sequences $(a_r)_{r\in\mathbb{N}}\subset(0,\infty)$ and $(b_r)_{r\in\mathbb{N}}\subset\mathbb{R}$ such that $\mathbb{P}\Big(\frac{M_r-b_r}{a_r}\Big)\stackrel{\mathcal{D}}{\longrightarrow}G(x)$ non-degenerate, then G is one of

$$G(x) = \begin{cases} \exp\left(-e^{-x}\right) & x \in \mathbb{R} \quad \text{(Gumbel distribution)}, \\ \exp\left(-x^{-\alpha}\right) & \text{if } x > 0 \quad \text{(Fréchet distribution)}, \\ \exp\left(-(-x)^{\alpha}\right) & \text{if } x \leq 0 \quad \text{(Weibull distribution)}. \end{cases}$$

The **GEV** distribution

 Three cases (Gumbel, Fréchet, Weibull) summarizable by Generalized Extreme Value (GEV) distribution

$$G_{\mathsf{GEV}(\vartheta)}(x) = \exp\left(-\left(1 + \xi \frac{x - \mu}{\sigma}\right)^{-1/\xi}\right)$$

- $\bullet \quad \theta = (\mu, \sigma, \xi)$
 - ullet μ : location parameter
 - ullet σ : scale parameter
 - ξ: shape parameter

Generalized extreme value densities

All with $\mu = 0$, $\sigma = 1$. Asterisks mark support-endpoints

Block Maxima Modeling

• Given a time series $(X_n)_n$, e.g. daily precipitation, we take annual/monthly maxima M and approximate $\mathbb{P}(M \leq x) \approx G_{\text{GEV}(\vartheta)}(x)$

Block Maxima Modeling

 Given a time series (X_n)_n, e.g. daily precipitation, we take annual/monthly maxima M and approximate

$$\mathbb{P}(M \leq x) \approx G_{\mathsf{GEV}(\vartheta)}(x)$$

- Divide times series into blocks (e.g. months, years)
- Take sample of block maxima to estimate the parameters $\theta = (\mu, \sigma, \xi)$
- Use them to compute statistical targets (e.g. return levels/periods)

Block Maxima Modeling

• Given a time series $(X_n)_n$, e.g. daily precipitation, we take annual/monthly maxima M and approximate

$$\mathbb{P}(M \leq x) \approx G_{\mathsf{GEV}(\vartheta)}(x)$$

- Divide times series into blocks (e.g. months, years)
- Take sample of block maxima to estimate the parameters $\theta = (\mu, \sigma, \xi)$
- Use them to compute statistical targets (e.g. return levels/periods)
- This is the Block Maxima Method

Drawbacks of Block Maxima --> POT

Drawbacks:

- Taking Block Maxima vastly reduces sample size
- Seldom more than 50 years of observations available → high uncertainty in estimation
- Block Maxima misses other important extremes in the same block

Drawbacks of Block Maxima --> POT

Drawbacks:

- Taking Block Maxima vastly reduces sample size
- Seldom more than 50 years of observations available → high uncertainty in estimation
- Block Maxima misses other important extremes in the same block

Peak Over Threshold Approach

- Focuses on exceedances over a high threshold u
- The excesses $X u \mid X > u$ follow a Generalized Pareto Distribution (GPD):

$$G_u(y) = 1 - \left(1 + \xi \frac{y}{\sigma}\right)^{-1/\xi}, \quad y > 0$$

- Parameters: σ (scale), ξ (shape)
- Key advantage: More efficient use of data (all exceedances over threshold are included)

Drawbacks of POT → **SBM**

POT has large disadvantage of how to choose the threshold

Drawbacks of POT ~> SBM

- POT has large disadvantage of how to choose the threshold
- Way out: Sliding Block Maxima (SBM)
 - no need of threshold; captures more extremes than just Disjoint BM (DBM)

Drawbacks of POT ~> SBM

- POT has large disadvantage of how to choose the threshold
- Way out: Sliding Block Maxima (SBM)
 - no need of threshold; captures more extremes than just Disjoint BM (DBM)

DBM / SBM Modeling: Parameter estimation

Given: Sample maxima $(M_1,...,M_t)$ of t months [either disjoint or sliding blocks]

Probability Weighted Moments

• $\beta_\ell := \mathbb{E}[MF^\ell(M)]$

$$\hat{\beta}_0 = \frac{1}{n} \sum_{i=1}^n M_{(i)} \qquad \qquad \hat{\beta}_1 = \frac{1}{n} \sum_{i=1}^n \frac{i-1}{n-1} M_{(i)} \qquad \qquad \hat{\beta}_2 = \frac{1}{n} \sum_{i=1}^n \frac{(i-1)(i-2)}{(n-1)(n-2)} M_{(i)}$$

- Possible to translate into GEV parameters (Hosking, Wallis, and Wood 1985)
- Robust alternative to MLE in EVT setting
- For Sliding Blocks: Bücher and Zanger 2023 (ClimXtreme I)
- Takeaway: Sliding improves Disjoint for PWM estimators

DBM / SBM Modeling: Parameter estimation

Maximum Likelihood Estimation

- Theory for ML estimation is difficult due to parameter-dependent support of GEV distribution
- → focusing on two-parametric Frechét special case
- Recall Frechét distribution: $\mathbb{P}(M \le x) = \exp\left(-\left(\frac{x}{\sigma}\right)^{-\alpha}\right)$
 - DBM estimator derived in Bücher and Segers 2018b
 - SBM estimator derived in Bücher and Segers 2018a

DBM / SBM Modeling: Parameter estimation

Maximum Likelihood Estimation

- Theory for ML estimation is difficult due to parameter-dependent support of GEV distribution
- → focusing on two-parametric Frechét special case
- Recall Frechét distribution: $\mathbb{P}(M \le x) = \exp\left(-\left(\frac{x}{\sigma}\right)^{-\alpha}\right)$
 - DBM estimator derived in Bücher and Segers 2018b
 - SBM estimator derived in Bücher and Segers 2018a

Asymptotic normality of MLE

Under some conditions, with number of blocks $k_n \to \infty$ and block size $r_n \to \infty$:

$$\sqrt{k_n} \begin{pmatrix} \hat{\alpha}_n^{\mathrm{dis}} - \alpha_0 \\ \hat{\sigma}_n^{\mathrm{dis}} / \sigma_n - 1 \end{pmatrix} \rightsquigarrow \mathcal{N}_2(B, \Sigma^{\mathrm{disj}}) \qquad \text{ and } \qquad \sqrt{k_n} \begin{pmatrix} \hat{\alpha}_n^{\mathrm{sl}} - \alpha_0 \\ \hat{\sigma}_n^{\mathrm{sl}} / \sigma_n - 1 \end{pmatrix} \rightsquigarrow \mathcal{N}_2(B, \Sigma^{\mathrm{sl}})$$

and $\Sigma^{\rm sl} <_{\mathbb{L}} \Sigma^{{
m dis} j}$ in the Loewner-ordering.

Accessing Parameter Uncertainty: The Bootstrap

- Objective: Estimate variability & confidence intervals of parameters
- Bootstrap Process:
 - 1. Resampling: Randomly resample block maxima (with replacement) from original dataset
 - 2. Parameter Estimation: For each resample, estimate GEV parameters (μ, σ, ξ)
 - Repetition: Repeat process multiple times (e.g., 1000 iterations) to generate distribution of parameter estimates.
 - Uncertainty Quantification: Analyze the distribution of estimates to compute standard errors, confidence intervals, and other measures of uncertainty.

Accessing Parameter Uncertainty: The Bootstrap

Objective: Estimate variability & confidence intervals of parameters

Bootstrap Process:

- 1. Resampling: Randomly resample block maxima (with replacement) from original dataset
- 2. **Parameter Estimation**: For each resample, estimate GEV parameters (μ, σ, ξ)
- Repetition: Repeat process multiple times (e.g., 1000 iterations) to generate distribution of parameter estimates.
- Uncertainty Quantification: Analyze the distribution of estimates to compute standard errors, confidence intervals, and other measures of uncertainty.

Advantages:

- Non-parametric: Does not assume a particular distribution for the data.
- Flexible: Can handle small sample sizes or complex dependence structures.
- Improves the robustness of the parameter estimates in climate extreme value modeling.

Bootstrapping Estimators based on SBM

Objective: Bootstrap Sliding Blocks

Problem: Naive block-bootstrap methods are inconsistent, even for i.i.d. cases.

Bootstrapping Estimators based on SBM

Objective: Bootstrap Sliding Blocks

Problem: Naive block-bootstrap methods are inconsistent, even for i.i.d. cases. Proposed solution

(Bücher and Staud 2024):

Circular Block Maxima: Introduces circular block maxima as a robust alternative, offering the same asymptotic variance as sliding block maxima.

• Consistency: Desired consistency results available there

Ongoing Research

- Question: How about utilizing other high order statistics of a block?
- Currently working on a Top-Two Maximum Likelihood Estimator

Ongoing Research

- Question: How about utilizing other high order statistics of a block?
- Currently working on a Top-Two Maximum Likelihood Estimator
- problem: No joint likelihood for general time series ¬¬ Pseudo-MLE
- Due to pseudo estimation: consistency is lost in general → handle with care!

Ongoing Research

- Question: How about utilizing other high order statistics of a block?
- Currently working on a Top-Two Maximum Likelihood Estimator
- problem: No joint likelihood for general time series ~> Pseudo-MLE
- Due to pseudo estimation: consistency is lost in general → handle with care!
- However: asymptotic variance is reduced significantly

Considerations in Real Data Applications

Keep in mind:

- Real-world data often do not follow the i.i.d. assumption:
 - Weather and climate data are time series
 - Dependence structure, autocorrelation
- Theory is/may be extended to non-stationarity
 - e.g. use GMST as covariate, $\mu = \mu(\mathrm{GMST})$ or $\sigma = \sigma(\mathrm{GMST})$

Considerations in Real Data Applications

Keep in mind:

- Real-world data often do not follow the i.i.d. assumption:
 - Weather and climate data are time series
 - Dependence structure, autocorrelation
- Theory is/may be extended to non-stationarity
 - e.g. use GMST as covariate, $\mu = \mu(\mathrm{GMST})$ or $\sigma = \sigma(\mathrm{GMST})$
- Theory holds just asymptotically!
- Real maxima distributions are just in the domain of attraction (DOA) of a GEV limit
 - \rightsquigarrow don't expect max $\{X_1, X_2, X_3\}$ close to any GEV!

Considerations in Real Data Applications

Keep in mind:

- Real-world data often do not follow the i.i.d. assumption:
 - Weather and climate data are time series
 - Dependence structure, autocorrelation
- Theory is/may be extended to non-stationarity
 - e.g. use GMST as covariate, $\mu = \mu(\mathrm{GMST})$ or $\sigma = \sigma(\mathrm{GMST})$
- Theory holds just asymptotically!
- Real maxima distributions are just in the domain of attraction (DOA) of a GEV limit
 - \rightsquigarrow don't expect max $\{X_1, X_2, X_3\}$ close to any GEV!
- Always validate models and assumptions with diagnostics

Summary

Key Takeaways

- EVT provides a robust framework for modeling extremes, but assumptions must be checked carefully
- Block Maxima and POT are two core approaches, each with advantages and drawbacks
- Sliding Block Maxima often better than Disjoint Block Maxima

References

- Bücher, Axel and Johan Segers (2018a). "Inference for heavy tailed stationary time series based on sliding blocks". In: Electron. J. Stat. 12.1, pp. 1098–1125. ISSN: 1935-7524. DOI: 10.1214/18-EJS1415.
- (2018b). "Maximum likelihood estimation for the Fréchet distribution based on block maxima extracted from a time series". In: *Bernoulli* 24.2, pp. 1427–1462. ISSN: 1350-7265,1573-9759. DOI: 10.3150/16-BEJ903. URL: https://doi.org/10.3150/16-BEJ903.
- Bücher, Axel and Torben Staud (2024). "Bootstrapping Estimators based on the Block Maxima Method". In: arXiv preprint arXiv:2409.05529.
- Bücher, Axel and Leandra Zanger (2023). "On the disjoint and sliding block maxima method for piecewise stationary time series". In: Ann. Statist. 51.2, pp. 573–598. ISSN: 0090-5364,2168-8966. DOI: 10.1214/23-aos2260.
- Fisher, Ronald Aylmer and Leonard Henry Caleb Tippett (1928). "Limiting forms of the frequency distribution of the largest or smallest member of a sample". In: Mathematical proceedings of the Cambridge philosophical society. Vol. 24, 2, Cambridge University Press, pp. 180–190.
- Gnedenko, B. (1943). "Sur la distribution limite du terme maximum d'une série aléatoire". In: Ann. of

 Math. (2) 44, pp. 423–453. ISSN: 0003-486X. DOI: 10.2307/1968974. URL: https://doi.org/10.2307/1968974.
- Hosking, J. R. M., J. R. Wallis, and E. F. Wood (1985). "Estimation of the generalized extreme-value distribution by the method of probability-weighted moments". In: Technometrics 27.3, pp. 251–261. ISSN: 0040-1706,1537-2723. DOI: 10.2307/1269706. URL: https://doi.org/10.2307/1269706.

