点集拓扑作业 (14)

Problem 1 $[0,1]^{\omega}$ 在箱拓扑和积拓扑下是否紧致?

先给出结论, $[0,1]^{\omega}$ 在箱拓扑下不紧致, 在积拓扑下紧致.

对于箱拓扑而言, 注意到 $\{0,1\}^\omega=[0,1]^\omega-(0,1)^\omega$ 是 $[0,1]^\omega$ 上的闭子集, 子空间拓扑为离散拓扑. 因此所有 $\{0,1\}^\omega$ 的单点集构成其开覆盖, 它显然没有有限子覆盖, 进而不紧. 但紧致空间的闭子集 也紧致, 由此可知 $[0,1]^\omega$ 在箱拓扑下不紧. 对于积拓扑而言, 由于 [0,1] 紧致, 进而其可数积 $[0,1]^\omega$ 紧致.

Problem 2 有序矩形的拓扑是否可度量化?

有序矩形 I_0^2 紧进而可分,只需证明它并非第二可数即可 (因为可度量化空间可分与第二可数等价). 注意到 $\{\{x\} \times I_0 | \forall x \in I_0\}$ 是 I_0 的不可数开集族且两两交集为空. 对 I_0^2 的任意基 $\mathcal{B} = \{B_n | \forall n \in \mathbb{N}_+\}$, 由于 $\exists B_x \in \mathcal{B}, B_x \subseteq \{x\} \times I_0$, 因此 \mathcal{B} 不可数, 进而不第二可数.

Problem 3 设 $\{X,d\}$ 是度量空间, $\forall A\subseteq X, \varepsilon>0$, 令 $U(A,\varepsilon)=\{x\in X|d(x,A)<\varepsilon\}$, \mathcal{H} 是 X 所有有界闭子集的族. $\forall A,B\in\mathcal{H},D(A,B)=\inf\{\varepsilon|A\subseteq U(B,\varepsilon),B\subseteq U(A,\varepsilon)\}$. 证明 D 是 \mathcal{H} 的度量.

正定性,对称性是显然的,只需要验证三角不等式.

 $orall A, B, C \in \mathcal{H}$,设 $D(A,B) = \alpha$, $D(B,C) = \beta$,需要证明 $D(A,C) \leq \alpha + \beta$. $orall \delta_1 > 0$,使得 $\alpha \leq \varepsilon_1 < \alpha + \delta_1, A \subseteq U(B,\varepsilon_1)$, $B \subseteq U(A,\varepsilon_1)$. 同样的, $orall \delta_2 > 0$,使得 $\beta \leq \varepsilon_2 < \beta + \delta_2$ 且 $\beta \subseteq U(C,\varepsilon_2)$, $\beta \subseteq U(B,\varepsilon_2)$ 。因此, $\beta \subseteq A$, $\beta \subseteq B$ 。 $\beta \subseteq B$ 。 $\beta \subseteq C$ 。 $\beta \subseteq B$ 。 $\beta \subseteq C$ 。