Resumen Ondas

Ecuacion de Ondas

Toda onda cumple con la ecuacion diferencial

$$rac{d\xi^2}{dt^2} = c^2 \cdot rac{d\xi^2}{dx^2}$$

Siendo

• c la velocidad de propagacion de onda en el medio.

Ondas Mecanicas

Las ondas mecanicas son aquellas que se desplazan a travez de un medio. Se describen senosoidalmente como:

$$Y(x,t) = A\cos(kx - \omega t + \phi_o) \tag{1}$$

$$Y(x,t) = A\cos(k[x - \omega t] + \phi_o) \tag{2}$$

$$Y(x,t) = A\cos(\frac{2\pi}{\lambda}[kx - ct] + \phi_o)$$
 (3)

Donde

k: Numero de onda

 λ : Longitud de onda (Periodo Espacial)

A: Amplitud de onda

 ω : Pulsacion o frecuencia angular

f: Frecuencia

T: Periodo temporal

c: Velocidad de propagacion de onda

 ϕ_o : Fase inicial

Cualquiera de las ecuaciones son equivalentes.

Conceptos

Longitud de onda λ

La longitud de onda λ es la distancia entre dos perturbaciones iguales, es decir cada longitud λ se repite el valor que toma la perturbacion (en un instante dado).

$$egin{aligned} Y(x+rac{2\pi}{k},t) &= Acos(k(x+rac{2\pi}{k})-\omega t+\phi_o) \ &= Acos(kx-\omega t+\phi_o+krac{2\pi}{k})) \ &= Acos(kx-\omega t+\phi_o+2\pi) \ &= Acos(kx-\omega t+\phi_o) \ &= Y(x,t) \end{aligned}$$

Siendo $\lambda=rac{2\pi}{k}$ entonces $Y(x+\lambda,t)=Y(x,t)$.

La longitud de onda representa la distancia que la onda avanza en un periodo ($\lambda=c\cdot T$).

Frecuencia f

La frecuencia solo depende de la fuente emisora de onda.

Velocidad de propagacion de onda c

La velocidad de propagación de onda solo dependen del tipo de onda y del medio en que se propaga.

Fase de Onda

Se define como el conjunto de puntos del espacio que vibran en "fase", es decir con la misma elogacion, velocidad y aceleracion.

La fase es el argumento de la funcion sinusoidal

$$Y(x,t) = Acos(\Phi)$$

$$\Phi(x,t) = kx - \omega t + \phi_o$$

La distancia entre dos frentes de onda consecutivos es igual a la longitud de onda λ .

En efecto, si $\Delta\Phi=2\pi$, entonces

$$\Delta\Phi=\Phi(x_2,t)-\Phi(x_1,t)=(kx_2-\omega t+\phi_o)-(kx_1-\omega t+\phi_o)$$

La frecuencia es la misma durante el tiempo ($\omega=2\pi f$) y ambos tienen la misma fase inicial (por ser la misma onda). Por tanto

$$k(x_2-x_1)=2\pi$$
 $\dfrac{2\pi}{\lambda}(x_2-x_1)=2\pi$ $(x_2-x_1)=\lambda$

Desplazamiento de una particula del medio

Para una onda armonica, la perturbación que estemos considerando para <mark>un punto fijo del espacio varía en la forma de un movimiento armónico simple.</mark>

$$Y(x_o,t) = Acos(kx_o - \omega t + \phi_o) = Acos([kx_o + \phi_o] - \omega t) = Acos(\beta - \omega t)$$

Con $eta = [kx_o + \phi_o]$ constante en el tiempo.

Velocidad de oscilacion de una particula del medio

La misma se puede derivar para obtener la velocidad con que oscila <mark>una particula del medio</mark> en que se desplaza.

$$V(x,t) = rac{\delta\,Y(x,t)}{\delta t} = A\omega\,sen(kx-\omega t + \phi_o)$$

Como $sen(kx-\omega t+\phi_o)$ oscila entre -1 y 1, entonces:

$$|V_{\scriptscriptstyle MAX}(x,t)| = A \omega$$

La diferencia entre velocidad de propagacion c y velocidad de oscilacion de una particula del medio, es que la primera es propia de la onda y la segunda propia de la particula del medio.

Aceleracion de oscilacion de una particula del medio

$$a(x,t) = rac{\delta\,V(x,t)}{\delta t} = -A\omega^2\,cos(kx-\omega t + \phi_o)$$

Relaciones Importantes

$$c = \lambda \cdot f \tag{4}$$

$$\omega = 2\pi f \tag{5}$$

$$T = \frac{1}{f} \tag{6}$$

$$k = \frac{2\pi}{\lambda} \tag{7}$$

Velocidad de onda en distintos medios

Medio	Velocidad	Datos
Cuerda Tensa	$c=\sqrt{rac{T}{\mu}}$	T : Tension μ densiadad lineal $\mu=rac{dm}{dx}$ (masa por unidad de longitud)
Varilla Longitudinal	$c=\sqrt{rac{Y}{ ho}}$	Y: Modulo Young $ ho$ densidad
Varilla Transversal	$c=\sqrt{rac{G}{ ho}}$	G: Modulo Rigidez $ ho$ densidad
Fluidos Longitudinal	$c=\sqrt{rac{B}{ ho}}$	B: Modulo Volumetrico $ ho$ densidad

Energia Media

$$< E> = rac{1}{2} A^2 \omega^2
ho \, dV = rac{1}{2} A^2 \omega^2
ho \left(dx \cdot dS
ight)$$

Potencia Media

$$< P> = rac{< E>}{dt} = rac{1}{2} A^2 \omega^2
ho \left(rac{dx}{dt} \cdot dS
ight) = rac{1}{2} A^2 \omega^2
ho \, c \cdot (dS)$$

Intensidad

$$I=rac{< P>}{dS}=rac{< E>}{dt\,dS}=rac{1}{2}A^2\omega^2
ho\,c$$

- · A: Amplitud
- ω : pulsacion ($\omega=2\pi f$)
- ρ : Densidad
- c: Velocidad de Propagacion
- dV: Unidad de volumen
- dS: Unidad de Area (Superficie)
- dt: Unidad de tiempo

Energia Media sobre Volumen

$$< E > /Vol = \frac{1}{2}A^2\omega^2\rho[J/m^3]$$
 (8)

- · A: Amplitud
- ω : pulsacion ($\omega=2\pi f$)
- ρ : Densidad

Intensidad

$$I = \frac{Potencia\ que\ transporta\ la\ onda}{Superficie\ donde\ se\ distribuye\ la\ energía}$$

$$I = \frac{< P>}{S}$$

Energía media por unidad de área y de tiempo = Potencia media sobre unidad de área = Intensidad

$$I = \frac{1}{2} A^2 \,\omega^2 \,\rho \,c \,[W/m^2] \tag{9}$$

- · A: Amplitud
- ω : pulsacion ($\omega=2\pi f$)
- ρ : Densidad
- c: Velocidad de propagacion

• La intensidad de la onda es inversamente proporcional al cuadrado de la distancia al generador.

$$\frac{I_1}{I_2} = \frac{R_2^2}{R_1^2}$$

 $I\sim A^2$

esféricos

• La amplitud de la perturbación es inversamente proporcional a la distancia al generado

$$\frac{A_1}{A_2} = \frac{R_2}{R_1}$$

Sonido

Las ondas sonoras son ondas de compresión longitudinales en un medio material.

Los puntos muestran la posición de moléculas de aire. Cada punto tiene distinta presion

Velocidad de Propagacion

$$c = \sqrt{\gamma \frac{P_o}{\rho_o}} = V = \sqrt{\frac{B}{\rho_o}} \tag{10}$$

- $B = \gamma P_o$
- γ : coeficiente adiabático
- P_o : presión sin perturbar
- ρ_o : densidad sin perturbar

Onda de desplazamiento (Longitudinal)

$$Y(x,t) = Acos(kx - \omega t + \phi_o)$$

Onda de Presion

$$P(x,t)-P_o=A_p cos(kx-\omega t+\phi_o)$$

Intensidad

$$I=rac{1}{2}A^2\,\omega^2\,
ho_o\,c$$
 $I=rac{1}{2}A^2\,\omega^2\,
ho_o\,\sqrt{\gammarac{P_o}{
ho_o}}$

Intesidad de decibeles

$$\beta = 10 \log \frac{I}{I_o}$$

- ullet I Intensidad relativo
- + $I_o=10^{-12}rac{W}{m^2}$: Intensidad minima audible por el odio humano

Efecto Dopler

Poniendo el sistema de referencia siempre desde la fuente hacia el observador en sentido positivo.

$$f' = rac{ec{v}_s - ec{v}_o}{ec{v}_s - ec{v}_f} f$$

- $oldsymbol{\cdot}$ f es la frecuencia que emite la fuente.
- f^\prime es la frecuencia relativa que escucha el observador
- $ec{v}_s$ siempre es positivo
- $ec{v}_o$: El observador puede estar alejandose o acercandose a la fuente
 - $\circ~$ Acercadose: \vec{v}_o negativo (Va en contra del eje x^+)
 - \circ Alejandose: $ec{v}_o$ positivo
- $ec{v}_f$: La fuente puede estar alejandose o acercandose al observador
 - \circ Acercadose: $ec{v}_f$ positivo
 - $\circ \;$ Negativo: $ec{v}_f$ Negativo (Va en contra del eje x^+)