

Session 1.1

Module 1a: Basic Electric Circuits

Session 1.1: Focus

- Current, Voltage, Power: Definitions
 - System of Units (SI)
 - What is an Electrical Circuit?
 - Current flow and Electric Charge
 - Electric Potential
 - Energy and Power
- Resistivity and Resistance
 - Resistors and Ohm's Law
 - Resistor Colour Codes
 - Power Ratings of Resistors

Electric and Electronic Circuits

Electric and Electronics Circuits

- This module will introduce you to both Electrical and Electronic Circuits.
 - The interconnection between various electrical components to form a closed path is called an electrical circuit.
 - Electronic circuits are made of electronic components which are constructed using semiconductor materials.
- Electrical and Electronic circuits are used to solve important problems to the society.
- They are widely used in Information Technology (IT) for
 - Storing, retrieving and sending information.
- Engineers of all disciplines need to be thorough with the concepts of electrical and electronic circuits.

System of Units (SI)

System of Units

- The system of units we use is the International System of Units.
 - Normally referred to as SI standard system.
- The SI system is also called the metric system.
- SI include the basic units for:
 - **Length**: meter (m)
 - Mass: kilogram (kg)
 - Time: second (s)
 - **Current**: ampere (A)
 - **Temperature**: kelvin (K)

Standard SI Prefixes & Engineering Units

- These are the standard prefixes employed in the study of engineering.
- O Commonly numbers are expressed in "engineering units."
- In engineering notation, any quantity is represented by a number between 1 and 999 and an appropriate metric unit using a power divisible by 3.

Current Flow and Electric Charges

What is an Electrical Circuit?

- An electrical circuit is an interconnection of electrical components.
- Electric charge is the most elementary quantity in electric circuits.
- We are interested in the effect of charge in motion (current) within a circuit.
- An electrical circuit facilitates transfer of charge from one point to another within a closed path.

Current Flow and Electric Charge

- Motion of electrons results in current flow in metallic conductors.
- The conventional current flow is the reverse of the direction of flow of electrons, which is universally adopted.
- A single electron has a charge (Q) of -1.602×10^{-19} Coulomb.

Definition of Electric Current

• An electric current is the rate of flow of electric charge through a point or a region.

$$i(t) = \frac{dq(t)}{dt}$$

- i(t) and q(t) represent instantaneous current and instantaneous charge respectively.
- Lowercase letters represent time dependent quantities.
- Capital letters are reserved for constant quantities.
- The basic unit of current is the ampere (A).
- A current of 1 A refers to the flow of 1 coulomb of charges per second.
- Note: One electron has a negative charge of 1.602×10^{-19} Coulomb.

Current Flow: Electric Charge

- A single electron has a negative charge of 1.602×10^{-19} Coulomb.
- Thus, 6.24 x 10¹⁸ electrons would constitute 1 C of –ve charge.
- i.e., $1/1.602 \times 10^{-19} \rightarrow 6.24 \times 10^{18}$
- Assume, Ia = 3 A of current is flowing through the conductor.

- Then, how many electrons are flowing in one second from right to left?
- $3 * 6.24 \times 10^{18}$ electrons are flowing in one second.

Negative Current Flow

Notice that the value of I_b is given as a negative because I_b is shown to be flowing from left to right, in the same direction of electron flow.

- The direction of movement of electrons in the above figure is left to right.
- How many electrons are flowing in a second?
- 5 * 6.24 x 10¹⁸ electrons flow in a second.

Electric Potential

Voltage or Potential Difference

- Voltage across a terminal pair is a measure of the work required to move an unit of charge through the element.
- The unit of voltage is the volt.
- 1 volt is defined as 1 joule per coulomb.
- Voltage is represented by V or v.

Note: Work or energy, is measured in joules (J);

Voltage or Potential Difference

- Assume, a Direct Current (DC) is sent into the terminal A, through a circuit element, and it comes out through terminal B.
- Direct current (DC) is the one directional or unidirectional flow of electric charge.
- Pushing of charges through the element requires an expenditure of energy.
- The energy spent is defined as an electrical voltage (or a potential difference) that exists between the two terminals.
- There is a voltage "across" the element.

Example: Voltage or Potential Difference

- The variable (V_1) represents the voltage between points A and B and that point A is assumed to be at a higher potential than point B.
- If $V_1 = 4$ V then the difference in potential of points A and B is 4 V and point A is at a higher potential compared to point B.

Example: Voltage or Potential Difference

- If a unit positive charge is moved from point A through the circuit to point B.
- It will give up energy to the circuit and have 5 Joules less energy when it reaches point B.
- It means that the voltage source is delivering energy to the circuit element connected to the points A and B.
- Or the circuit elements are said to absorb energy from the voltage source.

Example: Voltage or Potential Difference

Terminal A is 2 V with respect to terminal B

- $V_1 = 2$ V means that the potential between points A and B is 2 V and point A is at the higher potential.
- The same can also be represented as $V_1 = -2 V$, with point A at a higher potential with respect to B.
- Notice the changes to the signs on the terminals A and B.
- Hence, whenever either **current** or **voltage** is defined, it is mandatory that both the magnitude and **direction** or **polarities** are specified.

Power and Energy

Power and Energy

Power absorbed by the element
= Voltage * Current
= 5 * 3
= 15 watts

- Electric power is the rate, per unit time, at which electrical energy is transferred by an electric circuit.
- Energy is the capacity of doing work. SI unit of Energy is joule.
- The SI unit of **power** is **watt**, which is one joule per second.
- Power absorbed by an element = Voltage across it * Current passing through it.
- Power = P = Work done per unit of time = V * I
- Electric power is usually produced by electric generators, but can also be supplied by sources such as electric batteries.

Source: Definition: Electric power | Open Energy Information. https://openei.org/wiki/Definition:Electric power

Resistors

Resistivity and Resistance

- Resistivity and Resistance
- Resistors
- Ohm's Law
- O Resistor Colour Codes
- O Power Rating of Resistors

Resistivity and Resistance

O Resistivity (ρ) is an inherent property of materials, which is a measure of the ease with which electrons can travel through them.

- Materials that are good conductors of electric current have low values of resistivity.
 - Copper, aluminum, gold and silver are good examples of conductors.

Materials that are good electrical insulators have a high value of resistivity.

- Air, plastic, glass, rubber and wood are good examples of insulators.
- O Resistance (R) is determined by
 - Inherent resistivity of the material and
 - The geometry of the resistor.
- Thus, resistance of resistors depends on the material used to construct them and the dimensions (length and area) of the resistor.

2

Relationship between Resistivity and Resistance

- Assume a resistor having a physical dimensions of:
 - Cross-sectional area: A m²
 - Length: L meters
- O Then Resistance is defined by:
 - $\bullet R = \rho^* (L/A)$

- Resistance is indirectly proportional to the Area and it is directly proportional to the Length, of the resistor.
- \circ SI unit of Resistance is Ohms (\circ).
- \circ SI unit of Resistivity is Ohms-meter (Ω m).

Resistors

- O Symbol for Resistor is: o—√k—o
- O Resistance is normally considered to be a positive quantity.
- Resistors can be easily manufactured and they are relatively cheaper too.
- Relationship between the voltage across a resistor and the current passing through it is normally linear.
- O Though ideal resistors are considered to be linear, it becomes non-linear with changes in temperature.

Ohm's Law

- Ohm's law states that the voltage across a material is directly proportional to the current flowing through the it.
 - V ∝ I
 - The constant of proportionality R is called the Resistance.
 - V = R * I where R is >= 0
 - R = V / I
 - Unit of R is Volt/Ampere which is Ohms (Ω)
- \circ Find the value of Resistor if the voltage across R₁ is 10 V and the current passing through it is 2 A.
 - $R_1 = V/I = 10/2 = 5$ Ohms.

Resistor Colour Codes

- Keep the lead to your left where the colour band is closer to the lead, while reading the colour codes.
- The tolerance band which is larger than the rest will be to your right.

Mnemonic: B.B. ROY of Great Britain Had a Very Good Wine.

Power Ratings of Resistors

Power Absorbed by Resistor

- O The current (i) passing through **R** and voltage (v) across it are given in passive sign convention.
- O Current entering through the positive terminal indicates that the element is absorbing the power.
- O The product of v and i gives power absorbed by the Resistor.
 - \bullet P_R = V * I in watts.
- O The absorbed power is always positive and it appears physically as heat or light.
- O A resistor is a passive element that cannot deliver power or store energy.

3

Power Ratings of Resistor

- O Alternative expressions for the absorbed power by a resistor are:
 - $P = vi = i^2 R = v^2 / R$
- Every resistor along with its Resistance value (Ohm) also has the maximum power that it can withstand.
- Which is called the power rating of the resistor.
- O For example: Let us assume a Resistor of 100 Ω with power rating of 2 W, is connected across 200 V of DC source by mistake.
 - Compute the current (i) flowing through R.
 - i = v / R = 200/100 = 2 A ; Using Ohm's law
 - Power dissipated by $R = i^2 R = (2)^2 * 100 = 400 W$.
 - This value is much above the rated power, resulting in fire and smoke!!!

3

 100Ω

Session 1.1: Summary

- Current, Voltage, Power: Definitions
 - System of Units (SI)
 - What is an Electrical Circuit?
 - Current flow and Electric Charge
 - Electric Potential
 - Energy and Power
- Resistivity and Resistance
 - Resistors and Ohm's Law
 - Resistor Colour Codes
 - Power Ratings of Resistors

References

Reference 1: DS & CA

Ref 1

ROBERT L. BOYLESTAD | LOUIS NASHELSKY

For the Module 1

References 2 & 3: DS & CA

Ref 2 Ref 3

References 4 & 5: DS and CA

Ref 4 Ref 5

Digital Design and Computer Architecture

SECOND EDITION

David Money Harris & Sarah L. Harris

For the Modules 2 to 5

