Aula 11

Continuidade de Funções Complexas

Definição (Cauchy): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$. Diz-se que **f é** contínua no ponto $z_0\in D_f$ se satisfaz a condição

$$\forall_{\delta>0} \exists_{\varepsilon>0} : z \in B_{\varepsilon}(z_0) \cap D_f \Rightarrow f(z) \in B_{\delta}(f(z_0))$$

Definição (Heine): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$. Diz-se que **f é** contínua no ponto $z_0\in D_f$ se satisfaz a condição

$$\forall_{\{z_n\}\subset D_f}: z_n \to z_0 \Rightarrow f(z_n) \to f(z_0)$$

<u>Teorema</u>: As definições de continuidade à Heine e à Cauchy são equivalentes.

Proposição: Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ dada por

$$f(z) = f(x + iy) = u(x, y) + iv(x, y).$$

Então, f é contínua no ponto $z_0 = x_0 + iy_0 \in D_f$ se e só se u(x,y) e v(x,y) são contínuas em (x_0,y_0) (no sentido de \mathbb{R}^2).

Proposição: Sejam $f:D_f\subset\mathbb{C}\to\mathbb{C},\ g:D_g\subset\mathbb{C}\to\mathbb{C}$ funções contínuas no ponto $z_0\in D_f\cap D_g$. Então, são contínuas em z_0 as funções

- $f \pm g$
- \bullet $f \cdot g$
- $\frac{f}{g}$ $(g(z_0) \neq 0)$.

Se $h:D_h\subset\mathbb{C}\to\mathbb{C}$ é contínua em $f(z_0)\in D_h$ então também é contínua em z_0 a composta $h\circ f$.

<u>Teorema</u>: Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$. Então, f é contínua em $z_0\in D_f$ se, qualquer que seja a vizinhança aberta A de $f(z_0)$, existe uma vizinhança aberta V_{z_0} de z_0 tal que

$$f(V_{z_0} \cap D_f) \subset A$$
.

Mais geralmente, f é contínua em todos os pontos do seu domínio D_f se a pré-imagem $f^{-1}(A)$ de qualquer aberto A é a intersecção dum aberto O com o domínio

$$f^{-1}(A) = O \cap D_f.$$

Compacidade

<u>Definição</u>: Diz-se que um conjunto K é **compacto** se, qualquer que seja a cobertura de K por abertos

$$K \subset \cup_{\alpha} A_{\alpha}$$

é possível reter apenas um número finito desses abertos A_1, A_2, \ldots, A_m que ainda cobrem K (diz-se uma subcobertura finita)

$$K \subset \bigcup_{1}^{m} A_{j}$$
.

Teorema (Heine-Borel): Um conjunto $K \subset \mathbb{R}^n$ é compacto se e só se é fechado e limitado. Isso é verdade em particular para subconjuntos compactos de \mathbb{C} , isométrico a \mathbb{R}^2 .

<u>Teorema</u>: Um conjunto complexo $K \subset \mathbb{C}$ é compacto se e só qualquer sucessão $\{z_n\}$ de pontos em K tem uma subsucessão convergente para um ponto de K.

<u>Teorema</u>: Se $K \subset \mathbb{C}$ é compacto e $f: K \subset \mathbb{C} \to \mathbb{C}$ é contínua em todos os pontos de K, então f(K) é compacto.

 $\frac{\text{Corolário (Teorema de Weierstrass)}\colon \text{ Se } K\subset\mathbb{C} \text{ \'e compacto e } f:K\subset\mathbb{C}\to\mathbb{R} \text{ \'e contínua em todos os pontos de } K\text{, então } f \text{ tem máximo e mínimo.}$