

厦门大学《线性代数》期末试题

考试日期: 2016.1 信息学院自律督导部整理

一、单项选择题(每小题 2 分, 共 20 分)

 n阶方阵 A 适合下列条件() 时 E - A 	1必是可逆阵。
(A) $A^n=0$;	(B) A 是可逆阵;
(C) $ A =0$;	(D) A 的主对角线元素全为0。
2. 设 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 矩阵,且 AB	=E,则()。
(A) $R(A) = R(B) = m$;	(B) $R(A) = m, R(B) = n;$
(C) $R(A) = n, R(B) = m;$	(D) $R(A) = R(B) = n$.
3. 设 2×3 矩阵 A 的秩 $R(A) = 2$,则下列命题铅	错误的是 ()。
(A) 方程组 $A^T x = 0$ 只有零解;	(B) 方程组 $A^TAx = 0$ 必有非零解;
(C) 对任意的 3 维向量 b ,方程组 $A^T x = b$ 必	公有唯一解;
(D) 对任意的 2 维向量 b ,方程组 $Ax = b$ 必	有无穷多解。
4. 设 η^* 是非齐次线性方程组 $Ax = b$ 的一个解,	ട്,…,ട്,,,是对应的齐次线性方程组的一个基础解
系,则下法说法错误的()。	
(A) $Ax = b$ 的解集的秩为 $n-r$;	(B) $\eta^*, \xi_1, \dots, \xi_{n-r}$ 线性无关;
(C) $\eta^*, \eta^* + \xi_1, \dots, \eta^* + \xi_{n-r}$ 线性无关;	(D) $\eta^*, \eta^* - \xi_1, \dots, \eta^* - \xi_{n-r}$ 线性无关。
5. 己知向量组 $A: a_1, a_2, \cdots, a_s$ 可由向量组 $B: b_1, b_2$	$_{2},\cdots$, $_{b_{t}}$ 线性表示,则下列命题正确的是()。
(A) 若向量组 <i>A</i> 无关,则 s ≤ t;	(B) 若向量组 A 相关,则 s > t;
(C) 若向量组 B 无关,则 $s \le t$;	(D) 若向量组 B 相关,则 $s>t$ 。
6. 设 b 为实数, $V = \{(x_1, x_2, x_3)^T x_1 + 2x_2 + 3x_3 \}$, = b} ,则()。
(A) 对任意的 b , V 是向量空间;	(B) 对任意的 b , V 不是向量空间;
(C) 只有当 $b=0$ 时, V 是向量空间;	(D) 只有当 $b≠0$ 时, V 是向量空间。

	(A) 必存在可逆阵 P ,使得 $P^{-1}AP$ =	E; (B)	必存在正交阵 C ,	使得 $C^TAC = E$;	
	(C) 必存在可逆阵 C ,使得 $C^TAC =$	E; (D)	必存在正整数 t ,	使得 A+tE 为正定阵。	>
8.	设 J 为元素全为 1 的 5 阶方阵,则	0 是 <i>J</i> 的()重特征值。		
	(A) 1; (B) 2;	(C)	3;	(D) 4.	
9.	设 A 为 n 阶实方阵,以下命题() 不是 <i>A</i> 豆	了以对角化的充分。	条件。	
	(A) A 对称;	(B)	A可逆;		
	(C) A 有 n 个正交的特征向量;	(D)	A正定。		
10	. 已知实二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2)$	$(x_2^2 + x_3^2) + 4x_1x_2$	+4x ₁ x ₃ +4x ₂ x ₃ 经	正交变换 x = Py 可化原	成已知
	标准型 $f(y) = 6y_1^2$,则 $a = ($).			
	(A) 1; (B) 2;	(C)	6;	(D) 0°	
=	、填空题(每小题 3 分,共 15	5分)			
1.	设 4 为 3 阶方阵, E 为 3 阶单位阵.	若 $A^2-2A-3A$	$E = O$, $\bigcup R(A + E)$)+R(4 -E) =	°
2.	$ \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}^{12} = $	· —			
3.	设 A 为 3 阶方阵, $ A =7$, 1 为 A 1	的 2 重特征值;	P 为一 3 阶可逆	连阵, E为3阶单位阵	. 则
	$B = P^{-1}A^*P + 2E$ 的 3 个特征值			o	
4.	设 2 阶实对称阵 4 的一个特征	E向量为α=($(1,-1)^T$,则 A 与 $lpha$	线性无关的单位特	紅向量
	为。				
5.	若 A 是正定阵,则 A 的伴随矩阵 A	*	是正定阵(填"-	-定"或"不一定")。	

7. 设 *4* 为 *n* 阶实对称可逆阵,则下列说法正确的是().

三、**计算题**(每小题 10 分, 共 50 分)

1. (10分)已知下列非齐次线性方程组

$$\text{(I)} \begin{cases} x_1 + x_2 - 2x_4 = -6 \\ 4x_1 - x_2 - x_3 - x_4 = 1 \\ 3x_1 - x_2 - x_3 = 3 \end{cases} \qquad \text{(II)} \begin{cases} x_1 + mx_2 - x_3 - x_4 = -5 \\ nx_2 - x_3 - 2x_4 = -11 \\ x_3 - 2x_4 = -t + 1 \end{cases}$$

- (1) 求解方程组(I)的通解;
- (2) 当方程组(II)中的参数 m, n, t 为何值时,方程组(I)与(II)同解?

- 2. (10 分)已知一个四维向量组 $\alpha_1=(2,1,3,-1)^T$, $\alpha_2=(3,-1,2,0)^T$, $\alpha_3=(1,3,4,-2)^T$, $\alpha_4=(4,-3,1,1)^T$.
 - (1) 求 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩和一个最大无关组;
 - (2) 把其余向量用这个最大无关组来线性表示.

3. (10 分)请将向量组 $\alpha_1 = (2,0,1)^T$, $\alpha_2 = (2,-1,0)^T$, $\alpha_3 = (0,1,4)^T$ 标准正交化。

4. (10 分)已知二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+3x_3^2+2ax_2x_3$ (a>0),可通过正交变换可 x=Py 将其化 为标准形 $f(x_1,x_2,x_3)=y_1^2+2y_2^2+5y_3^2$,求参数 a 及正交变换矩阵 P.

5. (10 分)已知二次型 $f(x_1,x_2,x_3)=x_1x_2-2x_1x_3+3x_2x_3$,求满秩变换矩阵 P 将其化为规范形,并分别求出该二次型的秩、正惯性指数、负惯性指数.

四、证明题 (每小题 5分, 共 15分)

1. 设有向量组 α_1 、 α_2 、…、 α_s ,其中 $s \geq 2$,试证明:向量组 α_1 、 α_2 、…、 α_s 线性相关的充分 必要条件是向量组 α_1 、 α_2 、…、 α_s 中至少有一个向量可由其它向量线性表出。

2.	设 A 是 n 阶方阵,	ξ_1 、	ξ_2 ,	,	ξ , 是线性方程组 $AX=0$ 的基础解	溪,清	若存在 η_i ,	使 A η _i =	ξ_i ,
	$i=1, 2, \cdots, t \cdot i$	正明:							

向量组 ξ_1 、 ξ_2 、…、 ξ_t 、 η_1 、 η_2 、…、 η_t 线性无关。

3. 设 $A \setminus B$ 均是 n 阶方阵, A 有 n 个不同的特征值,试证明:如果 A 的特征向量都是 B 的特征向量,则 A B = B A 。