1. 等价, 理由如下:

- 首先往证, F⁺ ⊆ G⁺.
 - 由于 $A \to CD \in G$, 所以有 $A \to C$, $A \to D$, 进而有 $AC \to D$, 从而 G 蕴含 $A \to C$, $AC \to D$;
 - 又由于 $E \to AH$, 有 $E \to A$, $E \to H$, 又 $A \to D \in G^+$, 从而有 $E \to D$, 故 G 蕴含 $E \to AD$, $E \to H$.

综上两点, 有 F^+ ⊆ G^+ .

- 再证, G⁺ ⊆ F⁺.
 - 由于 $A \to C$, $A \to A$ 且有 $AC \to D$, 从而有 $AC \to D$, 进而有 $A \to CD$, 即 F 蕴含 $A \to CD$.
 - 又由于 E → AD, 易有 E → A, 又 E → H, 从而有 E → AH, 即 F 蕴含 E → AH

综上两点, 有 G⁺ ⊆ F⁺.

综上所述, 可以有 $F^+ = G^+$, 从而 F 和 G 等价.

- 2. (1) **3NF**. 由于候选键是 XY 和 XZ, 从而对于 X,Y 和 Z 而言均为键属性, 不存在非键属性对候选键的传递依赖和部分函数依赖, 所以至少为 3NF; 又由于键属性 Z 对候选键 XZ 存在部分函数依赖, 故其不是 BCNF. 所以其为 3NF.
 - (2) **BCNF**. R 的候选键为 X 和 Y, 根据定义在函数依赖的左部均为候选键, 故其为 BCNF.
 - (3) **1NF**. R 的候选键为 WX, 又由于 $X \to Z$, $WX \to X$, 所以存在 $WX \to Z$ 这个部分 函数依赖, 所以其为 1NF.
- 3. (1) 首先将函数依赖集 F 转化为对应的函数右部仅有 1 个属性的形式. 即 $F = \{E \rightarrow G, G \rightarrow E, F \rightarrow E, F \rightarrow G, H \rightarrow E, H \rightarrow G, FH \rightarrow E\}$.
 - (2) 去掉左部冗余的属性, 由于 $FH \to E, F \to E$, 从而 $FH \to E$ 冗余 化简后为 $F = \{E \to G, G \to E, F \to E, F \to G, H \to E, H \to G\}$.
 - (3) 去掉冗余的函数依赖, 由于 $F \to E, E \to G$ 可以得到 $F \to G$, 从而后者冗余; 同理可以有 $H \to G$ 冗余,

化简后的结果 $F = \{E \rightarrow G, G \rightarrow E, F \rightarrow E, H \rightarrow E\}.$

故最终的结果为 $F = \{E \rightarrow G, G \rightarrow E, F \rightarrow E, H \rightarrow E\}.$

- 4. 首先求得 $F_m = \{E \to D, BC \to D, CD \to A\}$, 进而求得保持函数依赖的关系模式分解为 $\rho = \{ED, BCD, ACD\}$
- 5. (1) 根据 L 类的定义, B, E 是 L 类属性, 且此处不存在 N 类属性. 又 $X_{BE}^+ = \{ABCDE\}$, 从而 $\{BE\}$ 是唯一候选键.
 - (2) 初始化后的结果如表 1所示,最终结果如表 6所示,可以看到没有任意一行中包含 a_1, a_2, a_3, a_4, a_5 ,故**此处不是无损连接分解**.

	A	В	С	D	Е
AD	a_1	b_{12}	b_{13}	a_4	a_5
AB	a_1	a_2	b_{23}	b_{24}	b_{25}
BC	b_{31}	a_2	a_3	b_{34}	b_{35}
CDE	b_{41}	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	b_{53}	b_{54}	a_5

图 1: 初始化

	A	В	С	D	E
AD	a_1	b_{12}	b_{13}	a_4	a_5
AB	a_1	a_2	b_{13}	b_{24}	b_{25}
BC	b_{31}	a_2	a_3	b_{34}	b_{35}
CDE	b_{41}	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	b_{13}	b_{54}	a_5

图 2: $A \to C$

	A	В	С	D	Ε
AD	a_1	b_{12}	b_{13}	a_4	a_5
AB	a_1	a_2	b_{13}	b_{24}	b_{25}
ВС	b_{31}	a_2	a_3	a_4	b_{35}
CDE	b_{41}	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	b_{13}	b_{54}	a_5

图 3: $C \to D$

	A	В	С	D	Е
AD	a_1	b_{12}	b_{13}	a_4	a_5
AB	a_1	a_2	a_3	b_{24}	b_{25}
BC	b_{31}	a_2	a_3	a_4	b_{35}
CDE	b_{41}	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	b_{13}	b_{54}	a_5

图 4: $B \to C$

	A	В	С	D	Е
AD	a_1	b_{12}	b_{13}	a_4	a_5
AB	a_1	a_2	a_3	b_{24}	b_{25}
BC	b_{31}	a_2	a_3	a_4	b_{35}
CDE	b_{41}	b_{12}	a_3	a_4	a_5
AE	a_1	b_{52}	b_{13}	b_{54}	a_5

图 5: $DE \rightarrow C$

	A	В	С	D	Ε
AD	a_1	b_{12}	b_{13}	a_4	a_5
AB	a_1	a_2	a_3	b_{24}	b_{25}
BC	b_{31}	a_2	a_3	a_4	b_{35}
CDE	b_{41}	b_{12}	a_3	a_4	a_5
AE	a_1	b_{52}	b_{13}	b_{54}	a_5

图 6: $CE \rightarrow A$

- (3) 由于 BE 是键, 且不存在任意一个依赖的左部是 BE, 随机选择一个函数依赖即可开始算法.
 - i. 对于 $A \to C$, A 不是候选键, 所以我们可以拆分成两个关系 (AC), (ABDE). 则对于 $< AC, A \to C >$, A 是主键, 从而 (AC) 是 BCNF; 又 < ABDE, $\emptyset >$ 所有属性均为键属性, 从而其同样为 BCNF. 算法结束.

最终拆分的结果为 (AC), (ABDE).

- 6. (1) 因为 {课程编号,章节编号,学期,年} $^+$ = U 且 {上课时间,教室,课程编号,章节编号} $^+$ = U, 故候选键为 {课程编号,章节编号,学期,年} 和 {上课时间,教室,课程编号,章节编号},并选择 **{上课时间,教室,课程编号,章节编号}** 为主键.
 - (2) 由于 {课程编号} \to {学院, 课时, 等级} 的左部不为候选键, 所以 R 不是 BCNF. 因此使用算法将其分解为 BCNF.
 - i. 对于 {课程编号} → {学院,课时,等级},其左部不为候选键,故将 R 拆分为 2 个关系 {课程编号,章节编号,教师编号,学期,年,上课时间,教室,学生数量} 和 {学院,课时,等级}. 并且对于两个关系,其函数依赖的左部均为候选码(第 2 个关系的函数依赖集为空集),算法结束.

规范化后的结果为 {课程编号, 章节编号, 教师编号, 学期, 年, 上课时间, 教室, 学生数量} 和 {学院, 课时, 等级}