

细菌的形态和大小

刘唤明

细菌(Bacteria)是一类细胞细短、结构简单、胞壁坚韧、多以二分分裂方式繁殖和水生性较强的原核生物。

一、细菌的形态

基本形态 螺旋状

(一) 球菌

单个菌体呈球状或近似球状。根据其繁殖时分裂面和分裂后的空间排列方式的不同,可分为六种。

单球菌

四联球菌

双球菌

八叠球菌

链球菌

葡萄球菌

(1) 单球菌

细胞按一个平面进行分裂,分裂后呈单个分散状态,例如脲微球菌。

(2) 双球菌

细胞按一个平面进行分裂,分裂后细胞成对排列,例如脑膜炎奈瑟氏球菌。

(3) 链球菌

细胞按一个平面进行分裂,分裂后细胞相互连接 呈链状排列,例如嗜热链球菌。

(4) 四联球菌

细胞按两个互相垂直平面分裂,分裂后每四个细胞联合呈田字形,例如嗜盐四联球菌。

(5) 八叠球菌

细胞按三个互相垂直的平面分裂,分裂后每八个细胞叠在一起呈立方体,例如藤黄八叠球菌。

(6) 葡萄球菌

细胞分裂面不规则,分裂后多个细胞聚集在一起呈葡萄状堆积,例如金黄色葡萄球菌。

(二)杆菌

细胞呈杆状或圆柱形的细菌。杆菌的直径一般比较稳定,而长度常因培养时间和培养条件的不同变化比较大。

杆菌的排列方式常因生长阶段和培养条件而发生变化,一般不作为分类依据。

食品中常见的杆菌

醋酸杆菌

保加利亚乳杆菌

植物乳杆菌

双歧杆菌

(三) 螺旋菌(Spirilla)

细胞呈螺旋状,但不同的菌体,在长度、弯曲度、螺旋度、螺旋形式和螺距等方面有显著差别,可细分为3

种形态。 弧菌

螺旋菌

螺旋体

(1) 弧菌:菌体只有一个弯曲,螺旋不满一圈,呈C字形或逗号形。例:副溶血弧菌。

(2) 螺旋菌:菌体螺旋数在一圈至几圈的小型螺旋状菌体。例:干酪螺菌。

(3) 螺旋体:菌体呈现较多弯曲,螺旋数多达六圈以上的较大型螺旋状细菌。例:梅毒密螺旋体。

细菌的其它形态

通常各种细菌一般幼龄和适宜环境条件下表现出正常形态;在不正常条件下,细胞常出现不正常形态,如梨形、分枝、丝状等异常形态。

结核杆菌的正常形态

结核杆菌的异常形态

畸形: 由物化因素引起,如温度等。

异常形态

衰颓形:由衰老、营养缺乏等引起。

二、细菌的个体大小

细菌大小的测量:显微测微尺

单位: μm

球菌大小表示: 直径

杆菌和螺旋菌大小表示: 宽×长

一般细菌的大小范围

球菌: 0.20μm∼1.25μm

螺旋菌: (0.3~1.0) μm×(1~50) μm

一些细菌的大小

形状	菌种名称	直径(μm)或宽×长(μm×μm)
球菌	亮白微球菌 乳链球菌 金黄色葡萄球菌	$0.5 \sim 0.7$ $0.5 \sim 1.0$ $0.8 \sim 1.0$
杆菌	大肠杆菌 嗜酸乳杆菌 枯草杆菌 巨大芽孢杆菌	$(0.4 \sim 0.7) \times (1.0 \sim 3.0)$ $(0.6 \sim 0.9) \times (1.5 \sim 6.0)$ $(0.8 \sim 1.2) \times (1.5 \sim 4.0)$ $(0.9 \sim 1.7) \times (2.4 \sim 5.0)$
螺旋菌	霍乱弧菌	$(0.3\sim0.6)\times(1.0\sim3.0)$

费氏刺骨鱼菌 (0.08 mm x 0.6 mm) (Epulopiscium fishelsoni)

比大肠杆菌大 100万倍(1985 年发现)

Figure 3.12 Photomicrograph of a giant prokaryote, the surgeonfish symbiont *Epulopiscium fishelsoni*. The rod-shaped *E. fishelsoni* cell in this field is about 600 μm (0.6 mm) long and is shown with four cells of the protozoan (eukaryote) *Paramecium*, each of which measures about 150 μm in length. *E. fishelsoni* is phylogenetically related to *Clostridium* species.

大型细菌

纳米比亚嗜硫珠菌

Thiomargarita namibiensis

直径: 0.32 ~ 1mm

迄今发现最大的细菌

最大和最小细菌大小悬殊

(Thiomargarita namibiensis)

 $(0.32 \sim 1 \mathrm{mm})$

10亿~100亿倍

(nanobacteria) (50 nm)

最小细菌: 纳米细菌

细菌大小测量结果的影响因素

- 干燥、固定后的菌体一般会由于脱水而比活菌体缩短 1/3-1/4;
- 染色方法的影响,一般用负染色法观察的菌体较大;
- 影响细菌形态变化的因素同样会影响细菌个体的大小。

思考题?

1、细菌有哪些基本形态?

2、细菌的个体形态受哪些因素的影响?

3、细菌大小的测量结果受哪些因素的影响?