Introdução

Linguagens Formais e Autômatos

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

Introdução

Introdução

Por que estudar linguagens formais e autômatos?

Autômatos finitos

Autômatos finitos são úteis para uma série de aplicações importantes.

- Softwares de projeto e verificação de circuitos digitais.
- Análise léxica de compiladores: quebra a entrada em unidades lógicas, como identificadores, palavras chaves e pontuação.
- Softwares para inspecionar textos e encontrar ocorrência de palavras, frases ou outros tipos de padrões.
- Softwares para verificação de sistemas que possuem um número finito e distinto de estados, como aqueles que utilizam protocolos de comunicação ou de troca segura de informação.

Autômatos finitos

Exemplo: interruptor

Modelaremos o comportamento de um interruptor de liga/desliga através de um autômato finito.

- O dispositivo possui dois estados, **ligado** e **desligado**.
- Quando o dispositivo está ligado e o usuário pressiona o interruptor, ele passa ao estado desligado.
- Quando o dispositivo está desligado e o usuário pressiona o interruptor, ele passa ao estado ligado.

Exemplo

Autômatos finitos: exemplo

- No exemplo anterior, um dos estados foi designado como estado inicial, i.e., o estado em que o sistema se encontra inicialmente.
- Muitas vezes, é necessário indicar um estado como final ou de aceitação.
- Ao entrar em um estado de aceitação, indica-se que a entrada, de alguma forma, atende alguma especificação

Autômatos finitos: exemplo

Exemplo: analisador léxico

Um analisador léxico é um componente de um compilador responsável por reconhecer padrões, como, por exemplo, palavras-chave.

O próximo autômato reconhecerá a palavra-chave then.

Autômatos finitos: analisador léxico

Exemplo: analisador léxico

- No exemplo anterior, temos 5 estados, cada um, representado um prefixo diferente da palavra then.
- O estado inicial representa a palavra vazia e cada estado possui uma transição com a próxima letra da palavra-chave para o próximo.
- Para uma entrada qualquer, chega-se no estado final somente quando essa palavra corresponde à palavra-chave.
- A tarefa desse autômato foi **reconhecer** a palavra-chave *then*.

Representações estruturais

 Outras notações, que não consistem de máquinas de estado, são muito importantes no estudo dos autômatos e suas aplicações, como por exemplo as gramáticas e as expressões regulares.

Gramáticas

- Gramáticas são extremamente úteis para processar dados que possuem estruturas recursivas.
- Um exemplo prático da aplicação de gramáticas é um parser, componente de um compilador que lida com a estrutura sintática de um programa.
- Um programa pode ter várias estruturas aninhadas, como laços de repetição, expressões aritméticas e condicionais.
- Gramáticas são extremamente úteis para capturar esse tipo de aninhamento.

Gramáticas: exemplo

Exemplo

Exemplo de gramática que descreve expressões aritméticas.

$$E \rightarrow E + E$$

$$\mathrm{E} \to \mathrm{E} - \mathrm{E}$$

$$E \to E \cdot E$$

$$E \to E/E$$

$$E \to (E)$$

$$E \rightarrow \langle num \rangle$$

Expressões regulares

- Expressões regulares, são extremamente úteis para descrever padrões de palavras.
- A expressão regular [A-Z] [a-z]*[] [A-Z] [A-Z] (padrão UNIX), descreve o padrão do nome de uma cidade, seguida de espaço e duas letras, que podem representar o estado.
- Exemplo: Brasilia DF

Autômatos e complexidade

- Além de todas essas aplicações, autômatos são essenciais para o estudo dos limites da computação.
- Quais problemas são possíveis de resolver utilizando determinado modelo? E quais não são possíveis?

Sumário

Conceitos preliminares

Conceitos preliminares

 Estudaremos conceitos fundamentais para compreender a teoria dos autômatos.

Alfabeto

Definição (Alfabeto)

Um **alfabeto** é um conjunto finito e não vazio de símbolos.

 \bullet Normalmente usamos o símbolo Σ para denotar um alfabeto.

Alfabeto

Exemplos de alfabetos

- $\Sigma = \{0, 1\}$, o alfabeto binário.
- $\Sigma = \{a, b, \dots, z\}$, o alfabeto das letras minúsculas.
- O conjunto de todos os caracteres ASCII também é um alfabeto.

Strings

Definição (String)

Uma string é uma **sequência finita** de símbolos escolhidas de algum alfabeto.

• Por exemplo, a string 01101 é formada por símbolos do alfabeto $\Sigma = \{0,1\}.$

Strings

Definição (String vazia)

A string vazia, denotada por ϵ , é uma string que possui 0 símbolos.

Strings

Definição (Tamanho de uma string)

O tamanho de uma string w, denotado por |w|, representa a quantidade de símbolos presentes em w.

- w = 01010, |w| = 5
- $\bullet |\epsilon| = 0$

Potências de um alfabeto

Definição (Σ^k)

Se Σ é um alfabeto, definimos Σ^k como o conjunto de strings de tamanho k que podem ser formadas usando os símbolos de Σ . Em especial, $\Sigma^0=\{\epsilon\}$.

- Se $\Sigma=\{0,1\}$, então $\Sigma^0=\{\epsilon\}$, $\Sigma^1=\{0,1\}$, $\Sigma^2=\{00,01,10,11\}$, $\Sigma^3=\{000,001,010,011,100,101,110,111\}$. . .
- Não confundir Σ com Σ^1 . Enquanto um é um conjunto de símbolos, o outro é um conjunto de palavras.

Potências de um alfabeto

Definição (Σ^*)

Para um alfabeto Σ , Σ^* é definido como o conjunto de todas as palavras que podem ser formadas com símbolos desse alfabeto. Formalmente:

$$\Sigma^* = \bigcup_{k \ge 0} \Sigma^k$$

• Para $\Sigma = \{0,1\}$, $\Sigma^* = \{\epsilon,0,1,00,01,10,11,000,\ldots\}$

Potências de um alfabeto

Definição (Σ^+)

Denotamos por Σ^+ o conjunto de todas as palavras sobre o alfabeto Σ , com exceção da palavra vazia. Formalmente temos:

$$\Sigma^+ = \bigcup_{k>0} \Sigma^k$$

• Para $\Sigma = \{0,1\}, \ \Sigma^+ = \Sigma^* \setminus \{\epsilon\}, \ \text{portanto}, \ \Sigma^+ = \{0,1,00,01,10,11,000,\ldots\}.$

Concatenação de palavras

Definição (Concatenação de palavras)

Sejam $x=x_1x_2\dots x_n$ e $y=y_1y_2\dots y_m$ palavras. $xy=x_0x_1\dots x_ny_1y_2\dots y_m$ denota a concatenação de x com y.

ullet Em especial $\epsilon x = x \epsilon = x$, para qualquer palavra x.

Linguagens

Definição (Linguagem)

Uma linguagem é um conjunto de palavras escolhida a partir de Σ^* . Se Σ é um alfabeto, e $L\subseteq \Sigma^*$, então L é uma linguagem sobre o alfabeto Σ .

Linguagens

Exemplos

- $L = \{0^n 1^n | n \ge 0\}$: linguagem que contém todas as palavras que começam com n 0s e seguidos por n 1s.
- $\bullet \ L = \{w | w \in \Sigma^* \ {\rm e} \ w \ {\rm possui} \ {\rm o} \ {\rm mesmo} \ {\rm n\'umero} \ {\rm de} \ {\rm zeros} \ {\rm e} \ {\rm uns}\}$
- $\bullet \ L = \{w | w \ \text{\'e} \ \text{um programa sintaticamente correto na linguagem C}\}$
- ullet $L=\emptyset$ é a linguagem vazia.

problemas

Definição (Problema)

Problemas no contexto de teoria de autômatos é a questão de responder se uma palavra pertence ou não à uma linguagem. Mais precisamente, se Σ é um alfabeto e L uma linguagem sobre Σ , então o problema L é:

Dada uma palavra w, determinar se ela está ou não em L.