Course 02418 Statistical modelling: Theory and practice

Case: Energy consumption

Lasse Engbo Christiansen

DTU Informatics
Building 305 - room 216
Technical University of Denmark
2800 Lyngby - Denmark
e-mail: lec@imm.dtu.dk

Estimating heat loss from energy consumption

- Today houses get a energy label based on a consultant entering information on insulation, construction type, area and type of windows etc into a model. This is subjective and expensive.
- Logging energy consumption could be an alternative
- when combined with local climate data.
- Modelling can be done on many timescales here daily averages are used.

Parameters of interest

- UA Response from temperature differences [W/degC] This depends on degree of insulation.
- gA Response from sun radiation [W/lux]
 This depends on location, size, and type of windows
- wA Response from wind speed [W/(m/s)]This depends on how airtight the house is.

Physics

• Heat loss, Q, across a wall:

$$Q = U_a(T_a - T_i)$$

where U_a is what we want and T_a and T_i are ambient and indoor temperatures.

- Houses may have windows facing the sun. So there may be a dependence on the (global) radiation, G.
- Wind both reduces the exterior boundary effect and may increase the air change if the house is not sealed properly.

The data

All observations are daily averages.

Variable	Min	Max	Unit	Description
t			[days]	Date
houseld				Integer indicator of house
Q	0.00	7.86	[kW]	Heat consumption
Ta	-8.47	25.12	[degC]	Ambient temperature
Ws	0.02	7.73	[m/s]	Windspeed
G	3.61	382.95	$[W/m^2]$	Radiation from sun on
				horizontal surface
sun Elev	0.13	0.57	[rad]	Angle of sun when above horizon

It should be noted that some observations are missing.

What to do

The main focus is on estimating UA and wA for the houses.

- EDA
- Pick data from one house
 - Fit a good linear model without interactions.
 - Fit a good linear model with interactions.
 - Comment on the results. Does the model make physical sense?
 - Should part of the data be left out?
 - Fit a good linear model that makes physical sense.
- Fit a good model that makes physical sense using all houses
- Should some houses be left out?
- Comment on the results. How does the houses differ?
- Would you obtain (almost) the same results if fitting a model per house?

Heat consumption data [kW] for all 16 houses

