

Группа: Р3208

Цель работы:

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Рабочие формулы используемых методов:

Порядок выполнения работы:

1 часть: Решение нелинейного уравнения

$$12 x^3 - 4,5x^2 - 9,21x - 0,383$$

Корень	Левый х1	Правый х2	Центральный х3
Метод	Метод простой	Метод секущих	Метод
	итерации		половинного
			деления
Интервал	[-2;-1]	[6;7]	[-1;0]
изоляции			

 $\varepsilon = 0.01$

1) Рабочая формула метода секущих: $x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$

	Xk-1	xk	xk+1	f(xk+1)	
1	6	7	6,02771125	-0,391425	0,9722888
2	7	6,027711	6,034268598	-0,092216	0,0065573
3	6,02771125	6,034269	6,03628956	0,000236	0,002021

Правый корень уравнения х2=-6,033

2) Рабочая формула метода половинного деления

$$x_i = \frac{a_i + b_i}{2}$$

No	a	b	X	f(a)	f(b)	f(x)	a-b
шага							
1	-1,0000	0,0000	-0,5000	3,3270	-0,3830	2,9720	1,0000
2	-0,5000	0,0000	-0,2500	2,9720	-0,3830	1,6226	0,5000
3	-0,2500	0,0000	-0,1250	1,6226	-0,3830	0,6960	0,2500
4	-0,1250	0,0000	-0,0625	0,6960	-0,3830	0,1748	0,1250
5	-0,0625	0,0000	-0,0313	0,1748	-0,3830	-0,0996	0,0625
6	-0,0625	-0,0313	-0,0469	0,1748	-0,0996	0,0387	0,0313
7	-0,0469	-0,0313	-0,0391	0,0387	-0,0996	-0,0302	0,0156
8	-0,0469	-0,0391	=-0,042969	0,0387	-0,0302	0,0044	0,0078

Центральный корень уравнения x3=-0,042969

3) Рабочая формула метода простой итерации: $x_{_{i+1}} = \ \phi(x_{_i})$

$$x_{i+1} = \varphi(x_i)$$

№ итерации	x_k	$f(x_{k+1})$	x_{k+1}	(xk+1)	$ x_k-x_{k+1} $
1	-1	-1.65	-1.63	-1.38	0.63
2	-1.63	1.128	-1.38	-1.55	0.25

3	-1.38	-0.642	-1.55	-1.45	0.17
4	-1.55	0.046	-1.45	-1.52	0.10
5	-1.45	-0.29	-1.52	-1.48	0.07
6	-1.52	0.15	-1.48	-1.50	0.04
7	-1.48	-0.068	-1.50	-1.49	0.02
8	-1.50	0.04	-1.49	-1.497	0.01
9	-1.49	-0.03	-1.497	-1.492	0.007

Левый корень уравнения х1=-1.49

2 часть: Решение системы нелинейных уравнений

ı		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	12	$\begin{cases} x + \sin y = -0.4 \\ 2y - \cos(x+1) = 0 \end{cases}$	Метод простой итерации
- 1		$(2y - \cos(x + 1) - 0)$	

	x	у	phi1	phi2	absx	absy
1	1,0000	1,0000	-1,2415	-0,2081	2,2415	1,2081
2	-1,2415	-0,2081	-0,1934	0,4855	1,0480	0,6936
3	-0,1934	0,4855	-0,8666	0,3460	0,6732	0,1395

4	-0,8666	0,3460	-0,7391	0,4956	0,1275	0,1496
5	-0,7391	0,4956	-0,8755	0,4831	0,1364	0,0125
6	-0,8755	0,4831	-0,8645	0,4961	0,0110	0,0130
7	-0,8645	0,4961	-0,8760	0,4954	0,0115	0,0007
8	-0,8760	0,4954	-0,8754	0,4962	0,0006	0,0007

Вывод: В ходе этой лабораторной работы я познакомился с несколькими методами, позволяющими решать нелинейные уравнения и системы нелинейных уравнений. Все методы довольно легко программируются и дают высокую точность и быструю сходимость при удачном выборе начального приближения.