Ω

Section 1.2 Experiment, Sample Space and Random Event

$$\phi \subseteq A \subseteq \Omega$$

W: out come.

A random phenomenon is a situation in which we know what outcomes could happen, but we do not know which particular outcome did or will happen. 'Random' in statistics is not a synonym for 'haphazard' but a description of a kind of order that emerges only in the long run.

Experiment, Sample Space and Random Event

- 1.2.1 Basic Definitions
- 1.2.2 Events as Sets

$$A \cap B = AB = \emptyset \implies P(AUB) = P(A) + P(B)$$

Independent: P(AB) = P(A)P(B)

Random experiment usually has the following three characteristics.

- (i) Repeatability: it can be repeated under the same conditions.
- (ii) Predictability: it has more than one outcome and we know all possible outcomes before the experiment.
- (iii) Uncertainty: the outcome of the experiment will not be known in advance.

$$\omega \in \Omega$$
 $\xrightarrow{\chi(\omega)}$
 $\chi \in \mathbb{R}$
 $\xrightarrow{L(x)}$
 $L(x)$
 $L(x)$

In this book, we shall abbreviate "random experiment" to experiment and denote it by E.

D(·): Set-function

(Probability) Measure-theory

Some examples of random experiment:

 E_1 : Determination of the sex of a newborn child. $\mathcal{L} = \{ \mathcal{L} \}$

 E_2 : Roll a die and observe which number appears.

 E_3 : Flip two coins and observe the outcomes.

 E_4 : Roll two dice and observe the outcomes.

 E_5 : Observe call times for a call center.

tail P(T>t)

How to record the experiment data?

Each possible outcome: sample point (ω)

The set of all possible outcomes: sample space

Example

 E_1 : Determination of the sex of a newborn child.

For E_1 , $\Omega_1 = \{g, b\}$, where the outcome g means that the child is a girl and b that it is a boy.

Example

 E_2 : Roll a die and observe which number appears.

For E_2 , $\Omega_2 = \{1, 2, 3, 4, 5, 6\}$, where the outcome *i* means that *i* appeared on the die, i = 1, 2, 3, 4, 5, 6.

Example

 E_3 : Flip two coins and observe the outcomes.

For E_3 , $\Omega_3 = \{(H, H), (H, T), (T, H), (T, T)\}$, where H means head and T means tail.

Example

 E_4 : Roll two dice and observe the outcomes.

For E_4 ,

$$\Omega_4 = \begin{pmatrix}
(1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\
(2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\
(3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\
(4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\
(5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\
(6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6)
\end{pmatrix}$$

where the outcome (i, j) is said to occur if i appears on the first die and j appears on the second die, $i, j = 1, 2, \dots, 6$.

Example

 E_6 : Measure the lifetime of cars.

For E_6 , $\Omega_6 = [0, \infty)$, where the outcome t is the lifetime of a car, $0 \le t < \infty$.

- Any subset of the sample space Ω is known as an random event or event. Events are usually denoted by capital letters A, B, C, \cdots .
- Those events must occur in the experiment are called the inevitable events.

Sample space Ω is an inevitable event. $\left\{ \left\{ \mathcal{A} = \frac{1}{2} \right\} \right\} = 0$

• Those could not happen anytime are said to be impossible events. We usually denote impossible events by \emptyset .

Figure: The relationships between events A and B

Table: The jargons in set theory and probability theory

notation	Set jargon	Probability jargon
Ω	Collection of objects	Sample space
ω	Member of Ω	Elementary event, outcome /
\overline{A}	Subset of Ω	Events that some outcome in A oc
\overline{A} or \overline{A}	Complement of A	Event that no outcome in A occurs
$A \cap B$	Intersection	Both A and B
$A \cup B$	Union	Either A or B or both
A-B	Difference	A, but no B
$A \subseteq B$	Inclusion	If A , then B
Ø	Empty set	Impossible event
Ω	Whole space	Certain set

Let A, B and C be the random events of experiment E. The operations of the events will satisfy the following rules:

- (i) Commutatively $A \cup B = B \cup A, AB = BA$.
- (ii) Associatively $A \cup (B \cup C) = (A \cup B) \cup C = A \cup B \cup C$. A(BC) = (AB)C = ABC.
- (iii) Distributively $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$,

$$A(B \cup C) = (AB) \cup (AC).$$

(iv) De Morgan's law $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

More generally,
$$\overline{\left(\bigcup_{i} A_{i}\right)} = \bigcap \overline{A_{i}}, \overline{\left(\bigcap_{i} A_{i}\right)} = \bigcup \overline{A_{i}}.$$

In addition, there are some common properties, such as

- $\overline{A} = A.$
- (2) $A \cup B \supset A$ and $A \cup B \supset B$. In particular, if $A \subset B$, then $A \cup B = B$.
- (3) $A \cap B \subset A$ and $A \cap B \subset B$. In particular, if $A \subset B$, then $A \cap B = A$.
 - $(4) A B = A AB = A\overline{B}.$
 - $(5)(A \cup B = A \cup \overline{A}B)$

Example

Suppose that A, B and C are three events and $D = \{$ at least one of the three events will occur $\}$. Try to describe the event D by events A, B and C.

Solution. We describe the event D by three different ways:

- (i) directed method: $D = A \cup B \cup C$,
- (ii) decomposition method:

$$D = A\overline{B} \ \overline{C} \cup \overline{A}B\overline{C} \cup \overline{A} \ \overline{B}C \cup \overline{A}BC \cup A\overline{B}C \cup AB\overline{C} \cup ABC,$$

(iii) inverse method:

$$D = \overline{\overline{D}} = \overline{\{A, B \text{ and } C \text{ will not occur}\}} = \overline{\overline{A} \ \overline{B} \ \overline{C}}.$$

Example |

Select an integer from 1 to 1000 at random. How to describe the event that the integer is not divisible by 6 and 8.

$$A = \int x: 6|x| \qquad P(\overline{A} \cap \overline{B})$$

$$B = \int x: 8|x| \qquad = |-P|AUB|$$

$$\overline{A} \cap \overline{B} = \overline{AUB} \qquad = |-(P|A) + P|B|$$

$$-P|AB|$$

Thank you for your patience!