Package 'moseg'

March 31, 2023

Type Package

Version 0.1.0

Title Data segmentation for sparse regression models

Imports glmnet, MASS, doParallel, foreach, parallel, Matrix	
Maintainer Dom Owens <dom.owens@bristol.ac.uk></dom.owens@bristol.ac.uk>	
Description Detects and locates change points in the sparse regression model, based on Lasso estimation an using moving sum (MOSUM) statistics.	d
License MIT + file LICENSE	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.1.2	
Depends R (>= 3.5.0)	
R topics documented:	
eqdata	2
moseg.cv	4
	6
moseg.ms	7
moseg.ms.cv	8
moseg.sim	C
plot.moseg	. 1
plot.moseg.cv	. 1
plot.moseg.ms	2
plot.moseg.ms.cv	.2
Index	13

2 eqdata

eqdata

Equity premium and macro/financial variables

Description

A dataset containing time series of the equity premium and other macro/financial variables

Usage

eqdata

Format

A data frame with 1032 rows and 16 variables:

yyyymm Date

b.m Book-to-Market Ratio

tbl Treasury Bills

lty Long Term Yield

ntis Net Equity Expansion

infl Inflation

ltr Long Term Rate of Returns

svar Stock Variance

equity_premium Equity Premium

dp Dividend Price Ratio

dy Dividend Yield

ep Earnings Price Ratio

de Dividend Payout Ratio

tms Term Spread

dfy Default Yield Spread

dfr Default Return Spread

Source

```
https://sites.google.com/view/agoyal145/?redirpath=/
```

References

Welch, Ivo, and Amit Goyal. "A comprehensive look at the empirical performance of equity premium prediction." The Review of Financial Studies 21.4 (2008): 1455-1508.

moseg 3

moseg	Detect and estimate multiple change points in the sparse regression
	model

Description

Detect and estimate multiple change points in the sparse regression model

Usage

```
moseg(
   X,
   y,
   G = NULL,
   lambda = c("min", "1se"),
   family = c("gaussian", "binomial", "poisson"),
   threshold = NULL,
   n.cps = NULL,
   grid.resolution = 1/G,
   nu = 0.5,
   do.refinement = TRUE,
   do.plot = TRUE,
   do.scale = TRUE,
   ncores = NULL,
   ...
)
```

Arguments

Х	design matrix		
У	response vector		
G	integer bandwidth; default is chosen based on dimensions of X		
lambda	regularisation parameter; either a numeric, or one of "min", "1se" (see cv.glmnet)		
family	response type, one of "gaussian", "binomial", "poisson"		
threshold	numeric test rejection threshold; see details for default		
n.cps	chosen number of change points to return; if specified, overrides threshold		
grid.resolution			
	controls number of subsamples to take		
nu	numeric localisation tuning parameter		
do.refinement	Boolean - perform location refinement		
do.plot	Boolean - return plots		
do.scale	Boolean - centre and scale X, y		
ncores	number of parallel cores		
	optional arguments to glmnet		

4 moseg.cv

Details

The default threshold is chosen as a product of exponents of lambda and G. For a more accurate, but slightly slower, procedure, see moseg.cv.

Value

List containing

- mosum numeric vector of mosum detector
- cps integer vector of estimated change points
- refined.cps integer vector of refined change points
- G input
- lambda input
- · threshold input
- grid.resolution input
- family input
- plots list of detector and refinement plots
- model_list list of fitted glmnet models at each grid point

Examples

```
eqX <- eqdata[,-c(1,9)]
eq_mosum <- moseg(as.matrix(eqX), eqdata[,9], 120, grid.resolution = 1/10, ncores = 2)

moseg.cv

Detect and estimate multiple change points in the sparse regression</pre>
```

Detect and estimate multiple change points in the sparse regression model, selecting the number of change points using sample splitting

Description

Detect and estimate multiple change points in the sparse regression model, selecting the number of change points using sample splitting

Usage

```
moseg.cv(
   X,
   y,
   G = NULL,
   lambda = NULL,
   max.cps = NULL,
   family = c("gaussian", "binomial", "poisson"),
   loss = c("1", "2"),
   folds = 2,
   path.length = 5,
```

moseg.cv 5

```
grid.resolution = 1/G,
nu = 0.5,
do.plot = TRUE,
do.scale = TRUE,
do.refinement = TRUE,
ncores = NULL,
...
)
```

Arguments

Χ design matrix response vector У G integer bandwidth; default is chosen based on dimensions of X lambda vector of numeric regularisation parameters maximum number of change points to consider max.cps family response type, one of "gaussian", "binomial", "poisson" loss 1-norm for CV loss function, one of "1", "2" number of folds for CV folds path.length number of lambda values to consider grid.resolution controls number of subsamples to take numeric localisation tuning parameter nu do.plot Boolean - return plots do.scale Boolean - centre and scale X, y do.refinement Boolean - perform location refinement number of parallel cores ncores optional arguments to glmnet

Value

moseg.cv object containing

- mosum numeric vector of mosum detector
- cps integer vector of estimated change points
- refined.cps integer vector of refined change points
- G input
- lambda selected regularisation parameter
- threshold implied threshold
- detectors mosum detector series for each lambda value
- cv matrix of cross-validation errors
- model_list list of fitted piecewise models
- plots list of detector and refinement plots
- family input

6 moseg.fit

Examples

```
eqX <- eqdata[,-c(1,9)]
eq_thr <- moseg.cv(as.matrix(eqX), as.matrix(eqdata[,9]), G=120, max.cps = 3, ncores = 2)</pre>
```

moseg.fit

Fit a piecewise sparse regression model and evaluates a penalty. Fits a model to each stationary segment using glmnet::cv.glmnet.

Description

Fit a piecewise sparse regression model and evaluates a penalty. Fits a model to each stationary segment using glmnet::cv.glmnet.

Usage

```
moseg.fit(
   X,
   y,
   cps,
   lambda = c("min", "1se"),
   family = c("gaussian", "binomial", "poisson"),
   type = c("link", "response", "coefficients", "nonzero", "class"),
   do.plot = TRUE,
   do.scale = TRUE,
   ...
)
```

Arguments

X	design matrix
у	response vector
cps	vector of change point locations
lambda	regularisation parameter; either a numeric, or one of "min", "1se" (see cv.glmnet)
family	response type, one of "gaussian", "binomial", "poisson"
type	type of prediction; see ?glmnet.predict
do.plot	Boolean - return coefficent plot
do.scale	Boolean - scale X, y
	optional arguments to glmnet

moseg.ms 7

Value

list containing

- model list of fitted models
- likelihood likelihood value
- preds vector of fitted values for each time step
- coeffs coefficient matrix
- plot coefficient heatmap

Examples

```
eqX <- eqdata[,-c(1,9)]
eq_mosum <- moseg.fit(as.matrix(eqX), as.matrix(eqdata[,9]), c(500))</pre>
```

moseg.ms

Detect and estimate multiple change points in the sparse regression model using multiple bandwidths

Description

Detect and estimate multiple change points in the sparse regression model using multiple bandwidths

Usage

```
moseg.ms(
   X,
   y,
   Gset,
   lambda = c("min", "1se"),
   family = c("gaussian", "binomial", "poisson"),
   threshold = NULL,
   grid.resolution = NULL,
   nu = 0.5,
   do.plot = TRUE,
   do.scale = TRUE,
   ncores = NULL,
   ...
)
```

Arguments

```
X design matrix
y response vector
Gset integer vector of bandwidths; default is chosen based on dimensions of X
```

8 moseg.ms.cv

lambda regularisation parameter; either a numeric, or one of "min", "1se" (see cv.glmnet)

family response type, one of "gaussian", "binomial", "poisson" threshold numeric test rejection threshold; see moseg for default choice

grid.resolution

controls number of subsamples to take

nu numeric localisation tuning parameter

do.plot
Boolean - return plots
do.scale
Boolean - scale X,y
ncores
number of parallel cores

... optional arguments to glmnet

Value

List containing

- cps integer vector of estimated change points
- plot multiscale plot
- moseg. G list of 'moseg' objects corresponding to 'Gset' in ascending order

See Also

```
moseg.ms.cv
```

Examples

```
eqX <- eqdata[,-c(1,9)] 
eq_mosum <- moseg.ms(as.matrix(eqX), eqdata[,9], c(60,90,120), ncores = 2)
```

moseg.ms.cv Detect and estimate multiple change points in the sparse regression model using multiple bandwidths, selecting the number of change

points using sample splitting

Description

Detect and estimate multiple change points in the sparse regression model using multiple bandwidths, selecting the number of change points using sample splitting

moseg.ms.cv 9

Usage

```
moseg.ms.cv(
   X,
   y,
   Gset = NULL,
   lambda = NULL,
   family = c("gaussian", "binomial", "poisson"),
   loss = c("1", "2"),
   folds = 1,
    threshold = NULL,
   grid.resolution = 1/Gset,
   nu = 0.5,
   do.plot = TRUE,
   do.scale = TRUE,
   ncores = NULL,
   ...
)
```

Arguments

Χ	design matrix		
у	response vector		
Gset	integer vector of bandwidths; default is chosen based on dimensions of X		
lambda	regularisation parameter; either a numeric, or one of "min", "1se" (see cv.glmnet)		
family	response type, one of "gaussian", "binomial", "poisson"		
loss	l-norm for CV loss function, one of "1", "2"		
folds	number of folds for CV		
threshold	numeric test rejection threshold; see reference for default choice		
grid.resolution			
	controls number of subsamples to take		
nu	numeric localisation tuning parameter		
do.plot	Boolean - return plots		
do.scale	Boolean - scale X, y		
ncores	number of parallel cores		
	optional arguments to glmnet		

Value

moseg.ms.cv object containing

- anchors integer vector of estimated change points
- refined.cps integer vector of refined change points
- moseg.G list of 'moseg.cv' objects corresponding to 'Gset' in ascending order

10 moseg.sim

Examples

```
eqX <- eqdata[,-c(1,9)]
eq_mosum <- moseg.ms.cv(as.matrix(eqX), eqdata[,9], c(60,90,120), ncores = 2)
```

moseg.sim

Simulate from a sparse piecewise regression model

Description

Simulate from a sparse piecewise regression model

Usage

```
moseg.sim(
   n,
   p,
   sparsity = floor(sqrt(p)),
   q = 1,
   sigma.noise = 1,
   sigma.x = c("id", "band", "ar"),
   kappa = 1
)
```

Arguments

```
n sample size
p number of parameters
sparsity number of non-zero parameters
q number of change points
sigma.noise error standard deviation
sigma.x covariance structure of X, one of "id", "band", "ar"
kappa change size
```

Value

List containing

- · y response vector
- X matrix of covariates
- cps vector of change points
- beta matrix of parameters corresponding to each regime

and all inputs

Examples

```
moseg.sim(100, 50)
```

plot.moseg 11

plot.moseg

Plot the moseg detector

Description

Plotting method for S3 objects of class moseg.

Usage

```
## S3 method for class 'moseg' plot(x, ...)
```

Arguments

x moseg object unused

Value

A detector plot

plot.moseg.cv

Plot the moseg detector

Description

Plotting method for S3 objects of class moseg.cv.

Usage

```
## S3 method for class 'moseg.cv'
plot(x, type = c("cv", "mosum"), ...)
```

Arguments

```
x moseg.cv object
type plot type, one of "cv", "mosum"
... unused
```

Value

A cv or detector plot

12 plot.moseg.ms.cv

plot.moseg.ms

Plot the multiscale moseg detector

Description

Plotting method for S3 objects of class moseg.ms.

Usage

```
## S3 method for class 'moseg.ms' plot(x, ...)
```

Arguments

x moseg.ms object

... unused

Value

Detector plots

plot.moseg.ms.cv

Plot the multiscale moseg.cv detector

Description

Plotting method for S3 objects of class moseg.ms.cv.

Usage

```
## S3 method for class 'moseg.ms.cv'
plot(x, type = c("cv", "mosum"), ...)
```

Arguments

```
x moseg.ms object
```

type plot type, one of "cv", "mosum"

... unused

Value

cv or detector plots

Index

```
* datasets
eqdata, 2

cv.glmnet, 3, 6, 8, 9

eqdata, 2

moseg, 3, 8
moseg.cv, 4, 4
moseg.fit, 6
moseg.ms, 7
moseg.ms.cv, 8, 8
moseg.sim, 10

plot.moseg, 11
plot.moseg.cv, 11
plot.moseg.ms, 12
plot.moseg.ms.cv, 12
```