PHP2500 Midterm Formula Sheet

Probability

For any events A and B:

1.
$$P(A^c) = 1 - P(A)$$

2.
$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

3.
$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

4.
$$P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$$

5. For disjoint
$$A_1, A_2, ..., A_n$$
 then $P(B) = \sum_i P(B|A_i)P(A_i)$

6.
$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

7. For disjoint
$$A_1, A_2, ..., A_n$$
 then $P(A_1|B) = P(B|A_1)P(A_1)/\sum_i P(B|A_i)P(A_i)$

8. A and B are independent if
$$P(A|B) = P(A)$$
 or $P(A \text{ and } B) = P(A)P(B)$

9. A and B are mutually exculsive if
$$P(A \text{ and } B) = 0$$

Models

1.
$$X \sim \text{Bin}(n, \theta)$$
 where $P(X = k) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$ $E[X] = n\theta$ and $Var[X] = n\theta(1 - \theta)$

2.
$$X \sim \text{Hyper}(N, n, C)$$
 where $P(X = k) = \binom{C}{k} \binom{N-C}{n-k} / \binom{N}{n}$
 $E[X] = Cn/N$ and $Var[X] = Cn(N-n)(N-c)/(N^2(N-1))$

3. Note:
$$\binom{n}{k} = n!/k!(n-k)!$$

4.
$$X \sim \text{Poiss}(\lambda)$$
 where $P(X = k) = e^{-\lambda} \lambda^k / k!$
 $E[X] = \lambda$ and $Var[X] = \lambda$

5.
$$X \sim \text{Normal}(\mu, \sigma^2)$$
 where $P(Z > k)$ is given by the table $E[X] = \mu$ and $Var[X] = \sigma^2$

Standardize

$$Z = \frac{X - E[X]}{\sqrt{Var[X]}} \text{ or } Z = \frac{\overline{X}_n - E[\overline{X}_n]}{\sqrt{Var[\overline{X}_n]}}$$

Expected Values and Variances

For random variables X, Y and constants a, c:

1.
$$E[aX + c] = aE[X] + c$$

$$2. \ Var[aX + c] = a^2 Var[X]$$

3.
$$Corr[X, Y] = Cov[X, Y] / \sqrt{Var[X]Var[Y]}$$

4.
$$E[X + Y] = E[X] + E[Y]$$

5.
$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$

6.
$$Var[X - Y] = Var[X] + Var[Y] - 2Cov[X, Y]$$

Sample means

For independent random variables X_1, X_2, \ldots, X_n :

1.
$$E[\overline{X}_n] = E[X]$$

2.
$$Var[\overline{X}_n] = Var[X]/n$$

Boxplots

- 1. $median = 50^{th}$ percentile middle observation or average of two middle obsn's
- 2. upper hinge = 75^{th} percentile $(3(n+1)/4)^{th}$ observation (round down)
- 3. lower hinge = 25^{th} percentile $((n+1)/4)^{th}$ observation (round up)
- 4. $IQR = 75^{th}\%$ observation $25^{th}\%$ observation
- 5. upper fence = upper hinge + 1.5*IQR
- 6. lower fence = lower hinge 1.5*IQR

Rates

Crude rate = number of events/total population

If the statum specific rate is r_i and the relative frequency of the population is w_i , then for k strata the Crude rate is a weighted average,

$$cr = \sum_{i=1}^{k} r_i w_i$$

- 1. Direct adjustment uses the standard population relative frequencies (w_i) .
- 2. Indirect adjustment uses the standard population rates (r_i) .