

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

> Dates of Tests: February 12 ~ 26, 2016 Test Report S/N: LR500111603A Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

APPLICANT

W6YPT300

PASSTECH CO., LTD

Equipment Class : Digital Transmission System (DTS)

Manufacturing Description : LOCKER LOCK

Manufacturer : PASSTECH CO., LTD

Model name : ZP100WR

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2014

Frequency Range : 2405 ~ 2475 MHz

Max. Output Power : Max 0.99 dBm – Conducted

Data of issue : March 4, 2016

This test report is issued under the authority of:

The test was supervised by:

Yong-Cheol, Wang / Manager

Young-jin Lee, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6 dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	9
3.2.3 POWER SPECTRAL DENSITY	12
3.2.4 BAND EDGE	15
3.2.5 CONDUCTED SPURIOUS EMISSIONS	18
3.2.6 RADIATED SPURIOUS EMISSIONS	21
3.2.7 AC Conducted Emissions	25
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	26

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Accreditation No. Validity Reference		
NVLAP	U.S.A	200723-0	2016-09-30	ECT accredited Lab.	
RRA	KOREA	KR0049	-	EMC accredited Lab.	
FCC	U.S.A	610755	2017-04-21	FCC filing	
FCC	U.S.A	649054	2017-04-13	FCC CAB	
VCCI	JAPAN	R2133(10 m), C2307	2017-06-21	VCCI registration	
VCCI	JAPAN	T-2009	T-2009 2016-12-23		
VCCI	JAPAN	G-563	3-563 2018-12-13 VCCI reg		
IC	CANADA	5799A-1	UPDATING	IC filing	
KOLAS	KOREA	NO.551	2017-01-08	KOLAS accredited Lab.	

2. Information about test item

2-1 Client & Manufacturer

Company name : PASSTECH CO., LTD

Address : No. B-402, Geumgang Penterium IT Tower, 215, Galmachi-ro, Jungwon-

gu, Seongnam-si, Gyeonggi-do, 13217 Rep. of KOREA

Tel / Fax : TEL No : +82-31-743-7277 / FAX No : +82-31-743-7276

2-2 Equipment Under Test (EUT)

Trade name : LOCKER LOCK

Model name : ZP100WR

Serial number : Identical prototype

Date of receipt : March 4, 2016

EUT condition : Pre-production, not damaged

Antenna type : Chip Antenna (Max Gain : 2.0 dBi)

Frequency Range : $2405 \sim 2475 \text{ MHz}$

RF output power : Max 1.60 dBm – Conducted

Number of channels : 15

Type of Modulation : O-QPSK Power Source : 6.0 Vdc

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2405	2440	2475

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
-			-

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Transmitter Peak Output Power	< 1 Watt	Candonal	С
15.247(d)	Transmitter Power Spectral Density	< 8 dBm @ 3 kHz	m @ 3 kHz	
15.247(d)	Band Edge	> 20 dBc		С
15.209	Field Strength of Harmonics	Emission	Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	N/A
15.203	Antenna requirement	-	-	С
Note 1: C=Complies	NC=Not Complies NT=Not Tested NA	A=Not Applicable		•

Note 2: The data in this test report are traceable to the national or international standards.

The above equipment was tested by LTA Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report.

→ Antenna Requirement

The PASSTECH CO., LTD FCC ID: W6YPT300 unit complies with the requirement of §15.203. The antenna type is Chip Antenna.

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 5 MHz

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data: Complies

Frequency	Test Results				
(MHz)	Measured Bandwidth (MHz)	Result			
2405	1.61	Complies			
2440	1.61	Complies			
2475	1.61	Complies			

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500 kHz

Measurement Setup

Figure 1: Measurement setup for the carrier frequency separation

Low Channel

Middle Channel

High Channel

3.2.2 Peak Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99 % bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1 MHz Span = auto

 $VBW = 1 MHz (VBW \ge RBW)$ Sweep = auto

Detector function = peak

Measurement Data: Complies

Frequency	Test Results				
(MHz)	dBm	mW	Result		
2405	0.99	1.26	Complies		
2440	-0.14	0.97	Complies		
2475	-0.33	0.93	Complies		

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Peak output power	< 1 W

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Low Channel

Middle Channel

High Channel

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

RBW = 3 kHz Span = 300 kHz VBW = 3 kHz Sweep = auto Detector function = peak Trace = max hold

Measurement Data: Complies

Frequency	Test Results				
(MHz)	dBm	Result			
2405		Complies			
2440		Complies			
2475		Complies			

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Power Spectral Density

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Power Density Measurement Low Channel

Middle Channel

High Channel

3.2.4 Band Edge

Procedure:

The bandwidth at 20 dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 40 MHz Detector function = peak

Trace = \max hold Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

The spectrum analyzer is set to:

Center frequency = the highest, the lowest channels

PEAK: RBW = VBW = 1 MHz, Sweep=Auto

Average: RBW = 1 MHz, VBW=10 Hz, Sweep=Auto

Measurement Distance: 3 m

Polarization: Horizontal / Vertical

Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

Band edge Lower edge

Upper edge

Radiated Band-edges in the restricted band 2310-2390 MHz measurement

Frequency	Reading [dBuV/m]			Correction Factor		Limits [dBuV/m]		Res [dBu	sult V/m]	Mar [d	
[MHz]	AV /	' Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV /	Peak	AV /	Peak
2390.0	40.2	59.4	V	27.9	24.4	54.0	74.0	43.7	62.9	10.3	11.1

Radiated Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m]	[dBuV/m]		Correction Factor		Result [dBuV/m]	Margin [dB]	
[MHz]	AV / Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak	AV / Peak	AV / Peak	
2483.5	44.6 63.0	V	27.9	24.4	54.0 74.0	48.1 66.5	5.9 7.5	

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented

3.2.5 Conducted Spurious Emissions

Procedure:

The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels

After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHz Sweep = auto

VBW = 100 kHz Detector function = peak

Trace = max hold

Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

<u>Unwanted Emission – Low Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Unwanted Emission – Middle Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Unwanted Emission – High Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

3.2.6 Radiated Spurious Emissions

Procedure:

Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.10-2013.

The EUT is a placed on as turn table. For emissions testing at or below 1 GHz, the table height shall be 0.8 m above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with

polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = 9 kHz $\sim 10^{th}$ harmonic.

 $RBW = 100 \text{ kHz} (30 \text{ MHz} \sim 1 \text{ GHz}) \qquad VBW \geq RBW$

= 1 MHz (1 GHz $\sim 10^{th}$ harmonic)

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

below 30 MHz

below 1 GHz (30 MHz to 1 GHz)

above 1 GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30MHz.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3 m
0.009 ~ 0.490	2400/F(kHz) (@ 300 m)
0.490 ~ 1.705	24000/F(kHz) (@ 30 m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data: (Above 1 GHz)

Frequency	Reading			·	Correction	Limits		Result		Margin	
Trequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable	AV/Pea		AV/Peak AV/Peak		AV / Peak	
4811.2	42.6	51.8	V	27.5	23.5	54.0	74.0	46.6	55.8	7.4	18.2
4884.4	42.2	53.5	V	27.5	23.5	54.0	74.0	46.2	57.5	7.8	16.5
4892.7	42.9	52.6	V	27.5	23.5	54.0	74.0	46.9	56.6	7.1	17.4

⁻ No other emissions were detected at a level greater than 20 dB below limit.

Measurement Data: (9 kHz - 30 MHz)

Fraguanay	Reading			Correction		Limits		Result		Margin		
Frequency	[dBuV/m]		Pol.		Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna Amp.Gain+Cable		AV / Peak		AV / Peak		AV / Peak		
-	-	-	-	-	-	-	-	-	-	-	,	
	No emissions were detected at a level greater than 20 dB below limit.											
-	-	_	_	-	-	-	-	-	_	-	-	
-	-	-	_	-	-	-	-	-	-	-	-	

^{*}No emissions were detected at a level greater than 20 dB below limit.

Radiated Emissions – 2.4GHz Zigbee mode

4, Songjuro236Beon-gil, Yangji-myeon, Cheoin-gu, Youngin-si, Gyeonggi-do, 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: ZP100WR TEST MODE: 2.4GHz Zigbee mode
Temp Humi : 1 / 34 Tested by: BANG Y H

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.7 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Minimum Standard: FCC Part 15.207(a) / EN 55022

Class B

Frequency Range	quasi-peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5~30	60	50		

^{*} Decreases with the logarithm of the frequency

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Signal Analyzer (9 kHz ~ 30 GHz)	FSV-30	100757	R&S	1 year	2015-03-24
2	Signal Generator (~3.2 GHz)	8648C	3623A02597	НР	1 year	2015-03-23
3	SYNTHESIZED CW GENERATOR	83711B	US34490456	НР	1 year	2015-03-23
4	Attenuator (3 dB)	8491A	37822	НР	1 year	2015-09-14
5	Attenuator (10 dB)	8491A	63196	НР	1 year	2015-09-14
6	Test Receiver (~30 MHz)	ESHS10	828404/009	R&S	1 year	2015-03-23
7	EMI Test Receiver (~7 GHz)	ESCI7	100722	R&S	1 year	2015-09-15
8	RF Amplifier (~1.3 GHz)	8447D OPT 010	2944A07684	НР	1 year	2015-09-14
9	RF Amplifier (1~26.5 GHz)	8449B	3008A02126	НР	1 year	2015-03-23
10	Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2015-04-21
11	DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2014-02-26
12	DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2014-02-26
13	TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2015-04-21
14	Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2015-04-03
15	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
16	Power Divider	11636A	06243	НР	1 year	2015-09-14
17	DC Power Supply	6674A	3637A01657	Agilent	-	-
18	Frequency Counter	5342A	2826A12411	НР	1 year	2015-03-23
19	Power Meter	EPM-441A	GB32481702	НР	1 year	2015-03-23
20	Power Sensor	8481A	3318A94972	НР	1 year	2016-01-05
21	Audio Analyzer	8903B	3729A18901	НР	1 year	2015-09-14
22	Modulation Analyzer	8901B	3749A05878	НР	1 year	2015-09-15
23	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2015-09-14
24	Stop Watch	HS-3	812Q08R	CASIO	2 year	2014-04-03
25	LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2015-09-14
26	Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2015-03-23
27	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2015-03-23
28	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2015-03-30
29	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2015-03-30
30	Active Loop Antenna	FMZB1519	1519-031	SCHWARZBECK	2 year	2016-01-12
31	OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2015-03-23
32	Signal Generator(100 kHz ~ 40 GHz)	SMB100A03	177621	R&S	1 year	2015-03-24
33	Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2015-03-24