近世代数 (抽象代数) 笔记

管清文

2020年3月13日

目录

1	基本概念		
	1.1	代数运算	2
	1.2	运算律	2
	1.3	同态	3
	1.4	等价关系与集合分类	3
2	群论		4
	2.1	群的定义和性质	4
	2.2	群的同态	5
	2.3	变换群	5
	2.4	置换群	5
	2.5	循环群	6
	2.6	子群	6
	2.7	子群的陪集	7
	2.8	不变子群、商群	7
	2.9	同态与不变子群	8
3	环与域 8		
	3.1	加群、环的定义	8
	3.2	交换律、单位元、零因子、整环	9
	3.3	除环、域	10
	3.4	无零因子环的特征	11
	3.5	子环、环的同态	12
	3.6	多项式环	13
	3.7	理想	14
	3.8	剩余类环、同态与理想	
	3.9	最大理想	
	2.0		

1 基本概念 2

性质 (Property) 结果值得一记, 但是没有定理深刻.

注意 (Remark) 涉及到一些结论, 更像是非正式的定理.

说明 (Note) 就是注解.

1 基本概念

1.1 代数运算

说明 1 近世代数 (或抽象代数) 的主要内容就是研究所谓代数系统,即带有运算的集合。

定义 2 (映射)

$$A_1 \times A_2 \times \dots \times A_n \to D$$

 $(a_1, a_2, \dots, a_n) \mapsto d = \phi(a_1, a_2, \dots, a_n) = \overline{(a_1, a_2, \dots, a_n)}$

定义 3 (代数运算)

$$A \times B \to D$$

$$(a,b) \mapsto d = \phi(a,b) = \circ(a,b) = a \circ b$$

定义 4 (A 的代数运算, 二元运算) 假如 \circ 是一个 $A \times A \rightarrow A$ 的代数运算 (即 A = B = D), 我们说集合 A 对于代数运算 \circ 来说是闭的, 也说, \circ 是 A **的代数运算**或二元运算.

说明 5 (A 的代数运算判别)

1.2 运算律

定义 6 (结合率) 我们说,一个集合 A 的代数运算。满足结合律,假如对于 A 的任何三个元素 a,b,c 来说都有 $(a\circ b)\circ c=a\circ (b\circ c)$

定理 7 若 A 的代数运算。满足结合律,则对于 A 的任意 $n(n \ge 2)$ 个元素 a_1, a_2, \dots, a_n 来说,对于任意的加括号的方法 π , $\pi(a_1 \circ a_2 \circ \dots \circ a_n)$ 都相等,我们用 $a_1 \circ a_2 \circ \dots \circ a_n$ 来表示.

定义 8 (交換律) 如果 A 上的代数运算 \circ 满足 $\forall a,b \in A : a \circ b = b \circ a$,则称 \circ 满足**交换律**. 对于 $a,b \in A$,如果 $a \circ b = b \circ a$,则称 a,b 可交换.

定理 9 若 A 上的代数运算。满足结合律与交换律,则 $a_1 \circ a_2 \circ \cdots \circ a_n$ 可以任意交换顺序.

定义 10 (分配率) \odot 和 \oplus 都是 A 上的代数运算,

- (1) 若 $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c), \forall a, b, c, 则称 \odot 和 \oplus 满足第一分配率.$
- (2) 若 $(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c), \forall a, b, c, 则称 \odot 和 \oplus 满足第二分配率.$

定理 11 若 A 上的二元运算 \oplus 满足结合律, \odot 和 \oplus 满足第一分配率, 则

$$a \odot (b_1 \oplus b_2 \oplus \cdots \oplus b_n) = (a \odot b_1) \oplus (a \odot b_2) \oplus \cdots \oplus (a \odot b_n)$$

定理 12 若 A 上的二元运算 ⊕ 满足结合律, \odot 和 \oplus 满足第二分配率, 则

$$(a_1 \oplus a_2 \oplus \cdots \oplus a_n) \odot b = (a_1 \odot b) \oplus (a_2 \odot b) \oplus \cdots \oplus (a_n \odot b)$$

1 基本概念 3

1.3 同态

说明 13 (映射判别)

定义 14 (变换) 从 A 到 A 的映射 $\tau: A \to A, a \mapsto \tau(a)$ 叫 A **变换**, 我们也用 a^{τ} 表示 $\tau(a)$. 如果 τ 是满 (单、一一) 的, 则称为**满变换** (单变换、一一变换).

定义 15 (同态映射) 对于 $\phi: A \to \bar{A}, A$ 上有二元运算 \circ , \bar{A} 上有二元运算 $\bar{\circ}$. 如果 $\overline{a \circ b} = \bar{a} \circ \bar{b}$, 则称 ϕ 是 A 到 \bar{A} 的同态映射.

定义 16 (同态满射、同态) 如果 A 到 \bar{A} 存在 一个同态映射 ϕ , 且它是满的, 则称 A 与 \bar{A} (关于 \circ 与 $\bar{\circ}$ 来说) **同态**. 称这个映射是一个**同态满射**.

定义 17 (同构映射、同构) 如果 A 到 \bar{A} 存在 一个同态映射 ϕ , 且它是既是满的又是单的 (一一的), 则称 A 与 \bar{A} (关于。与 $\bar{\circ}$) **同构**, 记为 $A \cong \bar{A}$. 称这个映射是一个 (关于。与 $\bar{\circ}$ 的) **同构映射** (简称同构).

命题 18 同构关系是一个等价关系.

定理 19 假定对于代数运算 \circ 和 $\bar{\circ}$ 来说, A 与 \bar{A} 同态, 那么

- i) 若。满足结合律, ō 也满足结合律;
- ii) 若。满足交换律, ō 也满足交换律.

定理 20 \odot 和 \oplus 是 A 的两个代数运算, $\bar{\odot}$ 和 $\bar{\oplus}$ 是 \bar{A} 的两个代数运算, 有 ϕ 既是 A 与 \bar{A} 的 关于 $\bar{\odot}$ 和 $\bar{\odot}$ 的同态满射, ϕ 也是 A 与 \bar{A} 的关于 \oplus 和 $\bar{\oplus}$ 的同态满射, 则

- i) 若 ⊙ 和 ⊕ 满足第一分配率, 则 ⊙ 和 ⊕ 也满足第一分配率.
- ii) 若 ⊙ 和 ⊕ 满足第二分配率, 则 ⊙ 和 ⊕ 也满足第二分配率.

定义 21 (自同构) 对于 \circ 和 \circ 来说的一个 A 与 A 之间的 同构映射 叫做一个对于 \circ 来说的 A 的**自同构**.

1.4 等价关系与集合分类

定义 22 (关系[Relation]) $R: A \times A \rightarrow D = \{ \forall j, \exists j \}, \exists j \in \mathbb{R}, \exists$

定义 23 (等价关系) 如果 \sim 是 A 的元素间的关系,满足

- (1) 自反性, $\forall a \in A, a \sim a$.
- (2) 对称性, $\forall a, b \in A$, 若 $a \sim b$, 则 $b \sim a$.
- (3) 传递性, $\forall a, b, c \in A$, 若 $a \sim b$, $b \sim c$, 则 $a \sim c$.

则称 ~ 为等价关系.

定义 24 (集合分类、划分) 集合 A 分成若干子集,满足 (1) 每个元素属于都某子集 (2) 每个元素只属于某子集. 这些类的全体叫做**集合** A **的一个分类**.

$$A = A_1 \cup A_2 \cup \cdots \cup A_n, A_i \cap A_i = \emptyset, i \neq j$$

定理 25 集合上的一个分类,确定一个集合的元素之间的等价关系.

定理 26 集合上的一个等价关系,确定一个集合的分类.

定义 27 (\mathbb{Z}_p [模 n 的剩余类]) $\{[0], [1], \cdots, [n-1]\}, [i] = \{kn+i \mid k \in \mathbb{Z}\}$

2 群论

2.1 群的定义和性质

注意 28 群是一个代数系统 (定义代数运算的集合), 它只有一个代数运算, 被称为乘法. 便利起见 $\phi(a,b)$ 写成 ab

之前写成 $a \circ b$

定义 29 (群[Group]的第一定义) 在集合 $G \neq \emptyset$ 上规定一个叫做乘法的 代数运算 . 这个代数系统被称为群, 如果

以后简称乘法

I 乘法封闭, $\forall a, b \in G, ab \in G$

代数运算要求封闭性

- II 乘法结合, $\forall a, b, c \in G$, (ab)c = a(bc)
- III $\forall a, b \in G$, ax = b, ya = b 在 G 中都有解.

定理 30 (左单位元) 对于群 G 中至少有一个元 e, 叫做 G 的一个**左单位元**,使得 $\forall a \in G$ 都 有 ea = a.

定理 31 (左逆元) 对于群 G 中的任何一个元素 a, 在 G 中存在一个元 a^{-1} , 叫做 a 的**左逆元**, 能让 $a^{-1}a=e$.

定义 32 (群[Group]的第二定义) 在集合 $G \neq \emptyset$ 上规定乘法. 这个代数系统被称为群, 如果

- I 乘法封闭
- II 乘法结合
- IV 左单位元: $\exists e \in G$ 使 ea = a 对 $\forall a \in G$ 都成立.
- V 左逆元: $\forall a \in G, \exists a^{-1}$ 使 $a^{-1}a = e$.

定义 33 (群的阶) 如果 |G| 有限, 称其为有限群, 称他的阶是 G 的元素个数.

如果 G 中有无穷多个元素, 称其为**无限群**, 称他的**阶**无限.

定义 34 (交換群、Abel 群) 群中交换律不一定成立,如果乘法满足交换律 ($\forall a,b \in G,ab = ba$),则称之为**交换群 (Abel 群)**.

定理 35 (单位元) 在一个群 G 里存在且只存在一个元 e, 使得 ea = ae = a 对于 $\forall a \in G$ 成立. 这个元素被称为群 G 的**单位元**.

定理 36 (逆元) 对于群 G 的任意一个元素 a 来说,有且只有一个元素 a^{-1} ,使 $a^{-1}a = aa^{-1} = e$. 这个元素被称为 a 的**逆元**,或者简称**逆**.

说明 37 证明 a^{-1} 是 a 的逆的方法: $a^{-1}a = e$ 或者 $aa^{-1} = e$ (不用都说明).

性质 38 (乘积的逆等于逆的乘积) $\forall a,b \in G, (ab^{-1})^{-1} = ba^{-1}$

定义 39 规定 $\forall n \in \mathbb{Z}^+ : a^n = \underbrace{aa \cdots a}_{n}, a^0 = e, a^{-n} = (a^{-1})^n$

命题 40 $\forall n, m \in \mathbb{Z} : a^n a^m = a^{n+m}, (a^n)^m = a^{mn} \quad (\Rightarrow (a^{-1})^{-1} = a)$

定义 41 (元素的阶) 在一个群 G 中,使得 $a^n = e$ 的最小正整数, 叫做 a 的**阶**. 若这样的 n 不存在, 称 a 是无穷阶的,或者叫 a 的阶是无穷.

定理 42 假定群的元 a 的阶是 n, 则 a^r 的阶是 $\frac{n}{\gcd(r,n)}$

定理 43 (III'[消去律]) 群的乘法满足: $ax = ax' \Rightarrow x = x', ya = y'a \Rightarrow y = y'$

推论 44 在群里, ax = b 和 ya = b 都有唯一解.

定理 45 (有限群的另一定义) 一个带有乘法的 有限集合 $G \neq \emptyset$, 若满足 I、II、III', 则 G 是一个群.

2.2 群的同态

定理 46 G 与 \bar{G} 关于他们的乘法同态,则 G 是群 $\Rightarrow \bar{G}$ 也是群.

定理 47 假定 G 和 \bar{G} 是两个群, 在 G 到 \bar{G} 的一个同态满射之下, G 的单位元 e 的象是 \bar{G} 的单位元, G 的元 a 的逆元 a^{-1} 的象是 a 的象的逆元 $(\overline{a^{-1}} = \bar{a}^{-1})$.

定理 48 G 与 \bar{G} 关于他们的乘法同构, 则 G 是群 $\Leftrightarrow \bar{G}$ 是群.

2.3 变换群

定义 49 (变换的乘法) $\tau_1\tau_2: a \mapsto (a^{\tau_1})^{\tau_2}$

定理 50 (变换乘法结合) $(\tau_1\tau_2)\tau_3 = \tau_1(\tau_2\tau_3)$

定理 51 G 是集合 A 的若干变换构成的集合, 如果 G 基于变换的乘法做成一个群, 则 G 中的变换一定是一一变换.

定义 52 (**变换群**) 如果一个集合 A 的若干 $\boxed{ ——变换 }$ 对于变换的乘法能够做成一个群,则称这个群为 A 的一个**变换群**.

定理 53 一个集合 A 上的所有一一变换做成一个变换群 G.

定理 54 任何一个群都与一个变换群同构.

定理 55 一个变换群的单位元一定是恒等变换.

2.4 置换群

定义 57 (置换群) 有限集合上的若干置换做成的群叫置换群.

定义 58 (对称群) 一个 n 元集合 $A = \{a_1, a_2, \dots, a_n\}$ 上的所有置换 (有 n! 个) 做成的群叫做 n 次**对称群**, 用 S_n 来表示.

定理 59

$$\pi_{1} = \begin{pmatrix} j_{1} & \cdots & j_{k} & j_{k+1} & \cdots & j_{n} \\ j_{1}^{(1)} & \cdots & j_{k}^{(1)} & j_{k+1} & \cdots & j_{n} \end{pmatrix} \\
\pi_{2} = \begin{pmatrix} j_{1} & \cdots & j_{k} & j_{k+1} & \cdots & j_{n} \\ j_{1} & \cdots & j_{k} & j_{k+1}^{(2)} & \cdots & j_{n}^{(2)} \\ j_{1} & \cdots & j_{k} & j_{k+1}^{(2)} & \cdots & j_{n}^{(2)} \end{pmatrix} \right\}$$

$$\Rightarrow \pi_{1}\pi_{2} = \begin{pmatrix} j_{1} & \cdots & j_{k} & j_{k+1} & \cdots & j_{n} \\ j_{1}^{(1)} & \cdots & j_{k}^{(1)} & j_{k+1}^{(2)} & \cdots & j_{n}^{(2)} \end{pmatrix}$$

定义 60 (*k*-循环置换) 如果 S_n 中的置换满足 a_{i_1} 的象是 a_{i_2} , a_{i_2} 的象是 a_{i_3} , ..., $a_{i_{k-1}}$ 的象是 a_{i_k} , a_{i_k} 的象是 a_{i_1} , 其他元素,如果还有的话,象是不变的,则称之为 *k*-循环置换. 用 $(i_1 i_2 i_3 \cdots i_{k-1} i_k)$ 或 $(i_2 i_3 \cdots i_{k-1} i_k i_1)$ 或 ... 或 $(i_k i_1 i_2 i_3 \cdots i_{k-1})$ 来表示.

命题 61 $(i_1 i_2 \cdots i_k)^{-1} = (i_k \cdots i_2 i_1)$.

命题 62 k-循环置换的阶是 k.

命题 63 任何一个置换都可以写成若干没有共同数字的循环置换的乘积.

命题 64 两个没有共同数字的循环置换可以交换.

命题 65 任何一个有限群都与一个置换群同构.

2.5 循环群

定义 66 (循环群) 若一个群 G 的每一个元都是 G 的某一固定元 a 的乘方, 我们就称 G 是一个循环群, a 是 G 的一个生成元, 并记 G = (a), 且说 G 是由元 a 生成的。

定义 67 (\mathbb{Z}_n [模 n 的剩余类加群]) G 包含所有模 n 的剩余类, $G = \{[0], [1], \cdots, [n-1]\}$,定义乘法 (叫做加法) [a] + [b] = [a+b],可以证明 (G, +) 做成一个群,叫做模 n 的剩余类加群.

定理 68 假定 G 是由 a 生成的循环群, 则 G 的构造可以完全由 a 的阶来决定:

- 如果 a 的阶无限, 则 $G \cong \mathbb{Z}$.
- 如果 a 的阶为 n, 则 $G \cong \mathbb{Z}_n$.

自然 |G| = n, 或者说 |(a)| = n

命题 69 一个循环群一定是交换群.

命题 70 a 生成一个阶是 n 的循环群 G, 则 a^r 也生成 G, 如果 $\gcd(r,d)=1$.

命题 71 G 是循环群, 且 G 与 \bar{G} 同态,则 \bar{G} 也是循环群.

命题 72 G 是无限阶循环群, \bar{G} 是任何循环群, 则 G 与 \bar{G} 同态.

2.6 子群

定义 73 (子群) 如果一个群 G 的一个子集 H 关于群 G 的乘法也能做成一个群,则称 H 为 G 的一个子群.

定理 74 一个群 G 的一个非空子集 H 做成 G 的子群, 当且仅当

- (i) $a, b \in H \Rightarrow ab \in H$
- (ii) $a \in H \Rightarrow a^{-1} \in H$

推论 75 若 H 是 G 的子群, 则, H 的单位元就是 G 的单位元, a 在 H 中的逆就是 a 的 G 中的逆.

定理 76 一个群 G 的一个非空子集 H 做成 G 的子群, 当且仅当 (iii) $a,b \in H \Rightarrow ab^{-1} \in H$

定理 77 一个群 G 的一个非空 有限 子集 H 做成 G 的子群, 当且仅当 (i) $a,b \in H \Rightarrow ab \in H$

说明 78 (验证非空集合是群的方法) (1) I, II, III (2) I、II、IV, V (3) 有限集: I, II, III' (4) 子群: (i), (ii) (5) 子群: (iii) (6) 有限子群: (i)

定义 79 (生成子群) 对于群 G 的非空子集 S, 包含 S 的最小子群, 被称为由 S 生成的子群, 记为 (S).

定理 80 $S = \{a\}$ 时, (S) = (a).

命题 81 群 G 的两个子群的交集也是 G 的子群.

命题 82 循环群的子群也是循环群.

命题 83 H 是群 G 的一个非空子集, 且 H 的每个元素的阶都有限, 则 H 做成子群的充要条件是 (i) $a,b \in H \Rightarrow ab \in H$.

2.7 子群的陪集

定义 84 群 G, 子群 H, 规定 G 上的关系 \sim : $a \sim b \Leftrightarrow ab^{-1} \in H$

定理 85 上面规定的关系 ~ 是等价关系.

定义 86 (右陪集) 由上述等价关系确定集合的分类叫做 H 的右陪集.

定理 87 包含元 a 的右陪集 = $Ha = \{ha \mid h \in H\}$

定义 88 群 G, 子群 H, 规定 G 上的关系 \sim' : $a \sim' b \Leftrightarrow b^{-1}a \in H$. 可以证明 '是等价关系.

定义 89 (**左陪集**) 由上述等价关系 \sim' : $a \sim' b \Leftrightarrow b^{-1}a \in H$, 确定集合的分类叫做 H 的**左陪集**, 包含元 a 的左陪集可以用 $aH = \{ah \mid h \in H\}$ 表示.

定理 90 一个子群的右陪集与左陪集个数相等: 个数或者都是无穷大, 或者都有限且相等.

定义 91 (指数) 一个群 G 的一个子群 H 的右陪集 (或左陪集) 的个数叫做 H 在 G 里的指数.

定理 92 右陪集所含元素的个数等于子群 H 所含元素的个数.

定理 93 H 是一个有限群 G 的子群, 那么 H 的阶 n 和他在 G 中的指数 j 都能整除 G 的阶 N, 并且 N=nj

定理 94 (元素的阶整除群的阶) 一个有限群 G 的任何一个元 a 的阶能够整除 G 的阶 |G|.

命题 95 阶是素数的群一定是循环群.

命题 96 阶是 p^m 的群 (p) 是素数) 一定包含一个阶是 p 的子群.

命题 97 若我们把同构的群看做一样的,一共只存在两个阶是 4 的群,它们都是交换群.

命题 98 有限非交换群至少有 6 个元素.

2.8 不变子群、商群

定义 99 (不变子群) 群 G 的子群 N 叫做 G 的**不变子群**, 如果 $\forall a \in G$, 有 Na = aN. 一个不变子群 N 的一个左 (或右) 陪集叫做 N 的一个**陪集**.

定义 100 $S_1, S_2, \dots, S_m \subseteq$ 群 G, 规定子集的乘法 $S_1 S_2 \dots S_m = \{s_1 s_2 \dots s_m \mid s_i \in S_i\}$. 可以证明这个乘法满足结合律.

定理 101 已知一个群 G 有一个子群 N, N 是不变子群的充要条件是 $aNa^{-1} = N$, $\forall a \in G$.

定理 102 已知一个群 G 有一个子群 N, N 是不变子群的充要条件是 $a \in G, n \in N \Rightarrow ana^{-1} \in N$.

定理 103 如果 N 刚好包含 G 的所有具有以下性质的元 n,

 $na = an, \forall a \in G$

则 $N \in G$ 的不变子群. 我们称这个不变子群是 G 的中心.

定理 104 N 是群 G 的不变子群,在其陪集 $\{aN,bN,cN,\cdots\}$ 上定义的乘法 $(xN,yN) \mapsto (xy)N$,则这个乘法是此陪集的二元运算,且此陪集对于上面规定的乘法来说构成一个群.

定义 105 (商群) 一个群 G 的一个不变子群 N 的所有陪集关于陪集的乘法做成的群叫做 G 的**商群**,用 G/N 表示.

定理 106 对于有限群, $|G/N| = \frac{|G|}{|N|}$.

命题 107 两个不变子群的交集还是不变子群.

命题 108 $H \in G$ 的子群, $N \in G$ 的不变子群, 则 $HN \in G$ 的子群.

2.9 同态与不变子群

定理 109 一个群 G 与它的商群 G/N 同态.

定义 110 (核) ϕ 是群 G 到群 \bar{G} 的一个同态满射, \bar{G} 的单位元 \bar{e} 在 ϕ 之下的所有原象做成的 G 的子集叫做 ϕ 的**核**.

定理 111 G 和 \bar{G} 是两个群,且 G 与 \bar{G} 同态,则这个同态满射的核 N 是 G 的一个不变子 群,且 $G/N \cong \bar{G}$.

注意 112 一个群只和"相当于"它的商群同态

定义 113 ϕ 是 $A \to \bar{A}$ 的满射, 取 $S \subseteq A$, 定义 S 的象是 S 中所有元素的象做成的集合. 取 $\bar{S} \subseteq \bar{A}$, 定义 \bar{S} 的原象是 \bar{S} 中所有元素的原象做成的集合.

定理 114 G 和 \bar{G} 是两个群, 且 G 与 \bar{G} 同态,则在这个同态满射之下:

- (1) G 的一个子群 H 的象 \overline{H} 也是 \overline{G} 的一个子群.
- (2) G 的一个不变子群 N 的象 \bar{N} 也是 \bar{G} 的一个不变子群.
- (1') \bar{G} 的一个子群 \bar{H} 的原象 H 也是 G 的一个子群.
- (2') \bar{G} 的一个不变子群 \bar{N} 的原象 N 也是 G 的一个不变子群.

注意 115 这也体现了同态的性质,前面有的后面也有!

命题 116 假定群 G 与群 \bar{G} 同态, \bar{N} 是 \bar{G} 的不变子群, N 是 \bar{N} 的逆象, 则 $G/N \sim \bar{G}/\bar{N}$.

命题 117 假定群 $G = \bar{G}$ 是两个有限循环群, 他们的阶各是 m 和 n, 则 $G = \bar{G}$ 同态 $\Leftrightarrow n \mid m$

命题 118 假定群 G 是一个循环群, N 是 G 的一个子群, 则 G/N 也是循环群.

3 环与域

3.1 加群、环的定义

定义 119 (加群) 一个交换群叫做一个的**加群**, 如果我们把这个群的代数运算称为加法, 并且用符号 + 表示.

定义 120 (Σ) n 个元的和 $a_1 + a_2 + \cdots + a_n$ 用符号 $\sum_{i=1}^n a_i$ 来表示.

定义 121 $n \uparrow a$ 的和 $\sum_{i=1}^{n} a$ 我们用 na 表示.

定义 122 (零元) 加群唯一的单位元用 o 来表示, 并且把它叫做零元.

定义 123 (负元) 元 a 的唯一的逆元我们用 -a 来表示, 并且把它叫做 a 的**负元**. a+(-b) 我们简写成 a-b.

定理 124 加群满足以下运算规则

- (1) o + a = a + o = a
- (2) -a + a = a a = 0
- (3) (-a) = a

(4: 移项) $a+c=b \Leftrightarrow c=b-a$

- (4) -(a+b) = -a-b, -(a-b) = -a+b
- (5) $ma + na = (m+n)a, m(na) = (mn)a, n(a+b) = na + nb, \forall m, n \in \mathbb{Z}^+$

说明 125 非空子集 S 做成子群的充要条件变成了

- (i) $a, b \in S \Rightarrow a + b \in S$ (ii) $a \in S \Rightarrow -a \in S$
- 或者 (iii) $a, b \in S \Rightarrow a b \in S$.

定义 126 (环) 一个集合 R 叫做一个环, 如果

- 1. R 是一个加群: R 关于一个叫做加法的代数运算做成一个交换群.
- 2. R 对于另一个叫做乘法的代数运算是封闭的.
- 3. R 关于乘法结合
- 4. 分配率: a(b+c) = bc + ac, (a+b)c = ac + bc

定理 127 环还满足以下运算规则

(7)
$$(a-b)c = ac - bc, c(a-b) = ca - cb$$

- (8) oa = ao = o
- (9) (-a)b = a(-b) = -(ab)
- (10) (-a)(-b) = ab
- (11) $a(b_1 + b_2 + \dots + b_n) = ab_1 + ab_2 + \dots + ab_n, (b_1 + b_2 + \dots + b_n)a = b_1a + b_2a + \dots + b_na$

(12)
$$\left(\sum_{i=1}^{m} a_i\right) \left(\sum_{j=1}^{n} b_j\right) = \sum_{a=1}^{m} \sum_{b=1}^{n} a_i b_j$$

$$(a_1 + a_2 + \dots + a_m)(b_1 + b_2 + \dots + b_n) = a_1b_1 + a_1b_2 + \dots + a_1b_n$$
$$+a_2b_1 + a_2b_2 + \dots + a_2b_n$$
$$+ \dots$$
$$+a_mb_1 + a_mb_2 + \dots + a_mb_n$$

(13)
$$(na)b = a(nb) = n(ab), n \in \mathbb{Z}^+$$

(14) 规定
$$a^n = \underbrace{aa\cdots a}_{n\uparrow}, n \in \mathbb{Z}^+, \ \text{则}\ a^m a^n = a^{m+n}, (a^m)^n = a^{mn}$$

3.2 交换律、单位元、零因子、整环

定义 128 (交换环) 一个环 R 叫做交换环, 如果 $ab = ba, \forall a, b \in R$.

命题 129 在一个交换环中 $(ab)^n = a^n b^n$.

定义 130 (单位元) 对于环 R, 如果 $ea = ae = a, \forall a \in R$, 则称 e 是环 R 的单位元. 一般,一个环未必有单位元.

命题 131 一个环如果有单位元,则唯一. 用1来表示.

定义 132 (整数环) 整数关于普通加法和乘法构成的环.

定义 133 (逆元) 若 ba = 1, 则称 b 为 a 的左逆元. 若 ba = ab = 1, 则称 b 为 a 的逆元.

命题 134 如果 a 有逆元,则唯一.

命题 135 如果 a 有逆元,则规定 $a^{-m}=\left(a^{-1}\right)^{m}, a^{0}=\mathbf{1}$. 则 $a^{m}a^{n}=a^{m+n}, \left(a^{m}\right)^{n}=a^{mn}, \forall m,n\in\mathbb{Z}$.

命题 136 (模 n 的剩余类环) $R = \{[0], [1], \cdots, [n-1]\}$, 加法: [a] + [b] = [a+b], 乘法: [a][b] = [ab] 做成一个交换环, 被称为模 n 的剩余类环, 零元 o = [0], 单位元 $\mathbf{1} = [1]$.

命题 137 $ab = o \Rightarrow a = o$ 或者 b = o 在环里不一定对.

定义 138 (零因子) 在一个环 R 中, 若 $a \neq o, b \neq o$ 但 ab = o, 则称 $a \in R$ 的**左零因子**, $b \in R$ 的**右零因子**.

注意 139 左零因子不一定是右零因子. 但是如果有左零因子, 就一定有右零因子. 如果 R 是交换环,则左零因子一定是右零因子.

定理 140 在一个没有零因子的环里, 两个消去律都成立.

- 1. $a \neq 0, ab = ac \Rightarrow b = c$
- 2. $a \neq 0, ba = ca \Rightarrow b = c$

反过来,在一个环里如果 有一个 消去律成立,那么这个环没有零因子.

推论 141 在一个环 R 中如果有一个消去律成立,那么另一个消去律也成立.

定义 142 (整环) 一个环 R 叫做一个整环, 如果

- 1. 乘法适合交换律: ab = ba.
- 2. R 有单位元 1: 1a = a1 = a.
- 3. R 没有零因子: $ab = o \Rightarrow a = o$ 或 b = o

命题 143 整数环是一个整环.

命题 144 对于有单位元的环来说,加法适合交换律是环定义里其他条件的结果.

命题 145 二项式定理 $(a+b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n} b^n$ 在交换环中成立.

3.3 除环、域

命题 146 对于元素个数 \geq 2 的环, 1 ≠ 0, 且 0 没有逆元.

定义 147 (除环) 一个环 R 叫做一个除环, 如果

- 1. R 至少含有一个不等于零的元.
- 2. R 有单位元.
- 3. R 的任何一个非零元都有逆.

定义 148 (域) 一个交换除环叫做一个域。

性质 149 除环没有零因子.

性质 150 除环 R 的所有非零元对于乘法来说做成一个群 R^* , 我们把 R^* 叫做**除环** R **的乘群**.

说明 151 对于一个环 R 来说, 从 R^* 是对于乘法做成一个群, 也能推出 R 是除环.

说明 152 在除环 R 中, 方程 $ax = b, ya = b(a \neq o)$ 都有唯一解, 分别是 $a^{-1}b$ 和 ba^{-1} , 他们未必相等. 在一个域里 $a^{-1}b = ba^{-1}$, 用符号 $\frac{b}{a}$ 表示.

性质 153 域满足以下计算法则

- 1. $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$.
- 2. $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$
- 3. $\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$

命题 154 $R = \{(\alpha, \beta) \mid \alpha, \beta \in \mathbb{C}\}, (\alpha_1, \beta_1) + (\alpha_2, \beta_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2), (\alpha_1, \beta_1)(\alpha_2, \beta_2) = (\alpha_1\alpha_2 - \beta_1\overline{\beta_2})(\alpha_1\beta_2 + \beta_1\overline{\alpha_2})$ 做成一个除环,叫做**四元数除环**,它不是交换环(所以不是域).

说明 155 环、整环、域之间的关系:

命题 156 一个至少有两个元且没有零因子的有限环,是一个除环.

3.4 无零因子环的特征

命题 157 对于模 p 的剩余类环 \mathbb{Z}_p , p 是素数 $\Leftrightarrow \mathbb{Z}_p$ 做成一个域.

命题 158 在一个环 R 里, 对于加法的阶, 可能有的元素是无限的, 有的元素是有限的.

定理 159 在一个无零因子环中,所有非零元素 R 对于加法的阶都相同:要么都无限大,要么都有限且相等.

定义 160 (无零因子环的特征) 在一个无零因子环 R 中, 所有非零元关于加法的阶, 叫做 R 的**特征**.

定理 161 如果无零因子环 R 的特征是一个有限整数 n,则 n 一定是素数.

推论 162 整环、除环以及域的特征或者是无限大,或者是一个素数.

3.5 子环、环的同态

定义 163 (子环) 一个环 R 的非空子集 S 如果对于 R 的代数运算来说也是环 (整环、除环、域), 则称 $S \in R$ 的一个子环 (子整环、子除环、子域).

定理 164 若 S 是环 R 的一个非空子集, 则 S 是 R 的子环的充要条件是 $a,b \in S \Rightarrow a-b \in S, ab \in S$.

定理 165 若 S 是整环 R 的一个非空子集,则 S 是 R 的子整环的充要条件是 $(1)a,b \in S \Rightarrow a-b \in S, ab \in S; (2)1 \in S.$

定理 166 若 S 是除环 R 的一个非空子集, 则 S 是 R 的子除环的充要条件是 (1) S 有非零元; (2) $a,b \in S \Rightarrow a-b \in S$; (3) $\forall a,b \in S, b \neq 0 \Rightarrow ab^{-1} \in S$.

定理 167 若 S 是域 R 的一个非空子集, 则 S 是 R 的子域的充要条件是 (1) S 有非零元; (2) $a,b \in S \Rightarrow a-b \in S$; (3) $\forall a,b \in S, b \neq 0 \Rightarrow ab^{-1} \in S$.

命题 168 环 R 的可以同每个元交换的元做成一个 j 交换子环 $N = \{n \mid an = na, \forall a \in R\}$, 这个子环称为 R 的中心.

定理 169 若 R 是环, R 到 \bar{R} 有一个满射使得对于两个运算都同态, 则 \bar{R} 也是一个环.

注意 170 总结下来, 如果 A 与 \bar{A} 同态, 那么前面有什么后面就也有什么:

- 前面有结合,后面就也有结合
- 前面有交换,后面就也有交换
- 前面有分配,后面就也有分配
- 前面是群,后面就也是群
- 前面是环,后面就也是环

定理 171 若 R 和 \bar{R} 都是环, 且 R 与 \bar{R} 同态, 则

- R 的零元的象是 R 的零元.
- R 的元 a 的负元的象是 a 的象的负元 $(\overline{-a} = -\overline{a})$
- R 是交换环 $\Rightarrow \bar{R}$ 也是交换环
- R 有单位元 1 ⇒ R 也有单位元 ī, 且 ī 是 1 的象.
- R 无零因子 $\neq \bar{R}$ 无零因子
- R 有零因子 ≠ R 有零因子
- *R* 是整环 (除环、域) *⇒ R* 是整环 (除环、域)

命题 172 若 R 和 R 都是环, 且 R 与 R 同态, 则

- R 无零因子 $\Rightarrow \bar{R}$ 无零因子
- R 有零因子 $\neq \bar{R}$ 有零因子
- *R* 是整环 (除环、域) *⇒ R* 是整环 (除环、域)

命题 173 R 与 \bar{R} 都是环, 且 $R \cong \bar{R}$, 则

- R 无零因子 $\Leftrightarrow \bar{R}$ 无零因子.
- R 有非零元 $\Leftrightarrow \bar{R}$ 有非零元.
- R 非零元有逆 $\Leftrightarrow \bar{R}$ 非零元有逆

定理 174 R 与 \bar{R} 都是环, 且 $R \cong \bar{R}$, 则

- R 是整环 ⇔ R 是整环.
- $R \neq R \neq \bar{R} \neq \bar{R}$
- R 是域 ⇔ R 是域.

引理 175 集合 A 和 \bar{A} 之间有一个一一映射 ϕ , 并且 A 有加法和乘法, 于是我们可以在 \bar{A} 中规定加法和乘法, 使得 A 与 \bar{A} 关于一对加法和一对乘法来说都同构.

定理 176 假定 S 是环 R 的一个子环, S 在 R 中的补集 (R - S) 与另一个环 \bar{S} 没有公共元, 并且 $S \cong \bar{S}$, 那么存在一个与 R 同构的环 \bar{R} , 且 \bar{S} 是 \bar{R} 的子环.

说明 177

$$\Re \mathbf{R} \xrightarrow{\overline{f} \Re} \Re S$$

$$\uparrow \cong_{\phi}$$

$$? \xrightarrow{\overline{f} \Re} \Re \overline{S}$$

$$\Rightarrow \exists \Re ? = \overline{R} : \begin{cases}
\overline{R} = (R - S) \cup \overline{S} \\
\forall \overline{x}, \overline{y} \in \overline{R} : \overline{x} + \overline{y} = \psi(x + y), \overline{x}\overline{y} = \psi(xy), \\
x = \psi^{-1}(\overline{x}), y = \psi^{-1}(\overline{y})
\end{cases}$$

$$R \cong \overline{R}, \psi : x \mapsto \begin{cases}
x & x \in R - S \\
\phi(x) & x \in S
\end{cases}$$

命题 178 一个除环的中心是一个域.

3.6 多项式环

说明 179 假定 R_0 是一个有单位元的交换环, R 是 R_0 的子环, 并且包含 R_0 的单位元. 取 $x \in R_0$, 则 $\sum_{i=0}^n a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, a_i \in R$ 有意义, 且 $\in R_0$.

定义 180 (多项式) 一个可以写成 $a_0 + a_1 x + a_2 x^2 \cdots + a_n x^n, a_i \in R, n \in \mathbb{Z}^+$ 形式的 R_0 的元 叫做 R 上的关于 x 的一个**多项式**, a_i 叫做多项式的**系数**. 我们把所有 R 上的 x 的多项式放在一起, 做成一个集合,用 R[x] 来表示.

说明 181 (环上的多项式构成一个环) 在 R[x] 上定义加法 $\sum a_i x^i + \sum b_i x^i = (a_i + b_i) x^i$,乘 法 $\left(\sum_{i=0}^m a_i x^i\right) \left(\sum_{i=0}^n b_i x^i\right) = \sum_{i=0}^{mn} \left(\sum_{j=0}^i a_j b_{i-j}\right) x^i$,都为初等代数里的计算法,则 R[x] 构成一个交换环.

定义 182 (未定元) R_0 里得一个元 x 叫做 R 上的一个未定元, 如果在 R 里找不到不都等于 零的元 $a_0, a_1, a_2, \cdots, a_n$, 使得 $a_0 + a_1x + a_2x^2 \cdots + a_nx^n = 0$

命题 183 R 上的一个未定元 x 的多项式 (简称一元多项式),如果不计入系数是零的项,只能用一种方式写成 $a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ $(a_i \in R)$

定义 184 (多项式的次数) 令 $a_0 + a_1 x + a_2 x^2 \cdots + a_n x^n = 0, a_n \neq 0$ 是环 R 上的一个一元多项式, 那么非负整数 n 叫做这个多项式的**次数**, 多项式 o 没有次数.

命题 185 对于给定的 R_0 来说, R_0 未必含有 R 上的未定元.

定理 186 给了一个有单位元的交换环 R, 一定有一个环 R_0 , R 上的未定元 $x \in R_0$ 存在,因此也就有 R 上的多项式环 R[x] 存在.

说明 187 对于一个有单位元的交换环 R_0 ,和它的一个子环 R,其中 R 包含 R_0 的单位元. 我们从 R_0 里任意取出 n 个元 x_1, x_2, \cdots, x_n 来,那么我们可以做 R 上的 x_1 的多项式环 $R[x_1]$,然后做 $R[x_1]$ 上的 x_2 的多项式环 $R[x_1][x_2]$. 这样下去,可以得到 $R[x_1][x_2]\cdots[x_n]$. 这个环包括所有可以写成 $\sum_{i_1i_2\cdots i_n}a_{i_1i_2\cdots i_n}x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}$ $(a_{i_1i_2\cdots i_n}\in R$,但只有有限个 $a_{i_1i_2\cdots i_n}\neq 0$)形式的元.

定义 188 一个有上述形式的元叫做 R 上的 x_1, x_2, \dots, x_n 的一个多项式, $a_{i_1 i_2 \dots i_n}$ 叫做多项式的系数. 环 $R[x_1][x_2] \dots [x_n]$ 叫做 R 上的 x_1, x_2, \dots, x_n 的多项式环. 这个环我们也用符号 $R[x_1, x_2, \dots, x_n]$ 来表示.

3.7 理想

定义 189 (理想) 环 的一个非空子集 叫做一个理想子环 (简称理想), 如果

- 1. $a, b \in I \Rightarrow a b \in I$
- 2. $a \in I, r \in R \Rightarrow ra, ar \in I$.

命题 190 一个环至少有两个理想 (1) $I = \{o\}$, 叫做 R 的**零理想**. (2) I = R, 叫做 R 的**单位** 理想.

定理 191 一个除环 R 只有两个理想,就是零理想和单位理想.

说明 192 因此, 理想这个概念对于除环或者域来说没有多大用处.

说明 193 一个环除了以上两个理想之外,可能有其他理想.

命题 194 给定一个环 R, a 是 R 中的任意一个元素,考虑最小的理想 I 使得 $a \in I$. 作集合 $I = \{(x_1ay_1 + x_2ay_2 + \cdots) + sa + at + na \mid x_i, y_i, s, t \in R, n \in \mathbb{Z}\}$, 则 I 是包含 a 的最小理想.

定义 195 (主理想) 上面的这样的 I 叫做元 a 生成的主理想, 用符号 (a) 来表示.

说明 196 一个主理想 (a) 的元的形式并不是永远像上面那样复杂.

- 1. 当 R 满足交换律时, 可以写成 $ra + na, r \in R, n \in \mathbb{Z}$.
- 2. 当 R 有单位元时,可以写成 $\sum x_i a y_i, x_i, y_i \in R$.
- 3. 当 R 既满足交换律又有单位元时, 可以写成 $ra, r \in R$.

命题 197 给定一个环 R, $a_1, a_2, \dots, a_m \in R$, 考虑最小的理想 I 使得 $a_1, a_2, \dots, a_m \in I$. 做集合 $I = \{s_1 + s_2 + \dots + s_m \mid s_i \in (a_i)\}$, 则 I 是包含 a_1, a_2, \dots, a_m 的最小理想.

定义 198 上面的这样的 I 叫做 a_1, a_2, \dots, a_m 生成的理想, 用符号 (a_1, a_2, \dots, a_m) 来表示.

说明 199 两个元素生成的理想,可能是主理想,也可能不是.

3.8 剩余类环、同态与理想

说明 200 给定一个环 R 和 R 的一个理想 I, 则我们就加法来说, R 做成一个群, I 做成 R 的一个不变子群, 从而 I 的陪集 $[a],[b],[c],\cdots$ 做成 R 的一个分类, 叫做**模** I **的剩余类**. 同时这个分类描述 R 的元素之间的等价关系, 用符号 $a \equiv b \bmod I$ 表示 (读作 a 同余 b 模 I), 即 $a \equiv b \bmod I \Leftrightarrow a \sim b \Leftrightarrow a - b \in I$. 且类 [a] 所包含的元素可以写成 $\{a + u \mid u \in I\}$

定理 201 假定 R 是一个环, I 是它的一个理想, R 是所有模 I 的剩余类做成的集合, 如果在 I 上规定加法和乘法 [a] + [b] = [a+b], [a][b] = [ab]. 那么 \bar{I} 本身也是一个环, 并且 R 与 \bar{R} 同态.

定义 202 (模 I 的剩余类环) 上面的 \bar{R} 叫做环 R 的模 I 的剩余类环, 用符号 R/I 来表示.

定理 203 假定 R 与 \bar{R} 是两个环, 并且 R 与 \bar{R} 同态, 那么这个同态满射的核 I 是 R 的一个理想, 并且 $R/I \cong \bar{R}$

定理 204 在环 R 到环 \bar{R} 的同态满射下:

- (1) R 的一个子环的象 \bar{S} 是 \bar{R} 的一个子环.
- (2) R 的一个理想 I 的象 \bar{I} 是 \bar{R} 的一个理想.
- (3) \bar{R} 的一个子环 \bar{S} 的原象 $S \in \mathbb{R}$ 的一个子环.
- (4) \bar{R} 的一个理想 \bar{I} 的原象 I 是 R 的一个理想.

说明 205 环-群, 子环-子群, 理想-不变子群

3.9 最大理想

定义 206 (最大理想) 如果一个环 R 的理想 $I(\neq R)$, 除了 R 和 I 以外, 无其他包含 I 的理想, 称 I 为 R 的最大理想.

引理 207 假定 $I(\neq R)$ 是环 R 的一个理想: 剩余类环 R/I 除了零理想和单位理想外不再有其他理想 $\Leftrightarrow I$ 是最大理想.

引理 208 若有单位元 (\neq o) 的交换环 R 除了零理想和单位理想以外没有其他理想, 那么 R 一定是一个域.

定理 209 R 是有单位元的交换环, $I(\neq R)$ 是 R 的理想: R/I 是域 $\Leftrightarrow I$ 是 R 的最大理想.

命题 210 \mathbb{Z}_n 是域 $\Leftrightarrow n$ 是素数.

3.10 商域

定理 211 若 R 是无零因子的交换环, 则存在一个包含 R 的域 Q, 使得 Q 刚好是由所有元 $\frac{a}{b}$ $(a,b\in R,b\neq {\tt o})$ 所做成的,这里 $\frac{a}{b}=ab^{-1}=b^{-1}a$.

定义 212 (商域) 一个域 Q 叫做环 R 的一个**商域**, 如果 $Q \supseteq R$, 并且 Q 刚好是由所有元 $\frac{a}{b}$ $(a,b \in R,b \neq 0)$ 所做成的.

定理 213 假定 R 是一个有两个以上的元的环, F 是一个包含 R 的域, 则 F 包含 R 的一个商域.

说明 214 一般来讲,一个环很可能有两个以上的商域.不过,同构的环的商域也同构,所以抽象的来讲,一个环最多只有一个商域.