WŁASNOŚCI ESTYMATORA MNK.

ZAJĘCIA NR 10.

- 1. (W, 5 s.107) W badaniu, w którym analizowano zależność między średnią ocen ze studiów a czasem spędzonym na różnych aktywnościach, rozdano badanie ankietowe studentom. Pytano ich jak wiele godzin spędzają tygodniowo na czterech aktywnościach: studiowaniu, spaniu, pracy oraz na odpoczynku. Każda aktywność jest uwzględniona w jednej z kategorii, więc suma godzin musi być równa 168.
 - (i) Czy w modelu $GPA = \beta_0 + \beta_1 study + \beta_2 sleep + \beta_3 work + \beta_4 leisure + u$ ma sens analizowanie zmian w study przy niezmienionych sleep, work, oraz leisure.
 - (ii) Wyjaśnij w jaki sposób ten model narusza założenie o braku dokładnej współliniowości?
 - (iii) W jaki sposób sformułować model aby miał przydatną interpretację oraz by spełniał założenie o braku dokładnej współliniowości?
- 2. (W, 7 s.108) Które z poniższych przyczyn mogą spowodować, że estymatory MNK będą obciążone?
 - (i) Heteroskedastyczność?
 - (ii) Pominiecie istotnej zmiennej?
 - (iii) Korelacja z próby wynosząca 0.95 między dwoma zmiennymi objaśniającymi, uwzględnionymi w modelu?
- 3. Dla pewnej gospodarki oszacowano model inwestycji:

$$I_t = \beta_0 + \beta_1 C_t + \beta_2 S_t + \varepsilon_t$$

gdzie C to konsumpcja, S to oszczędności. Uzyskano estymator $\hat{\beta}$, estymator wariancji-kowariancji $\hat{\Sigma}_{\beta}$ oraz R_{β}^{2} .

(i) Na podstawie tych oszacowań, wyznaczyć estymator $\hat{\gamma}$, estymator wariancji-kowariancji $\hat{\Sigma}_{\gamma}$ i R_{γ}^2 w modelu:

$$I_t = \gamma_0 + \gamma_1 C_t + \gamma_2 Y_t + \nu_t$$

(ii) Czy poniższy model można oszacować MNK? Uzasadnij.

$$I_t = \delta_0 + \delta_1 C_t + \delta_2 Y_t + \delta_3 S_t + \zeta_t$$

- 4. Mamy estymator $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}'y$ gdzie λ jest liczbą nielosową.
 - (i) Czy estymator ten jest liniowy?
 - (ii) Udowodnij że dla każdego $\lambda > 0$ estymatotr ten przy spełnieniu założeń KMRL jest obciążony, ale jego wariancja jest mniejsza lub równa od wariancji estymatora MNK.
 - (iii) Czy wynik z (ii) jest sprzeczny z tw. Gaussa-Markowa?
- 5. Dla modelu $y = x\beta + \varepsilon$ utworzono macierz $x^* = xA$, gdzie A jest pewną macierzą nieosobliwą. Udowodnij że jeśli oszacujemy regresję y na x^* to:
 - (i) $b^* = A^{-1}b$, gdzie β^* pochodzi z regresji y na x^* , a β z regresji y na x
 - (ii) Policz $Var(b^*)$
 - (iii) Pokaż, że R^2 w obu regresjach jest identyczne. Skomentuj ten rezultat.
- 6. (Hansen 4.22) Twój przyjaciel twierdzi, że założenie o losowej próbie ($(y_i, x_i) \sim i.i.d.$) implikuje to że regresja $y = x'\beta + e$ jest homoskedastyczna. Czy zgadzasz się z nim? Wyjaśnij swoje stanowisko.