Babeş-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2016-2017

Mathematical Analysis Seminar 10

- **1.** Prove that the following properties hold for any $x, y \in \mathbb{R}^n$:
 - a) $||x + y||^2 ||x y||^2 = 4\langle x, y \rangle$.
 - b) $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$ (the generalized parallelogram identity).
- **2.** Let $x, y \in \mathbb{R}^n$. Prove that the following statements are equivalent:
 - 1° $\langle x, y \rangle = 0$ (i.e., x and y are orthogonal).
 - $2^{\circ} \|x + y\| = \|x y\|.$
 - $3^{\circ} \|x+y\|^2 = \|x\|^2 + \|y\|^2.$
- **3.** A set $S \subseteq \mathbb{R}^n$ is said to be convex if for any points $x, y \in S$ and any number $t \in [0, 1]$ we have $(1-t)x+ty \in S$. Prove that, for all $x^0 \in \mathbb{R}^n$ and r > 0, the open ball $B(x^0, r)$ as well as the closed ball $\overline{B}(x^0, r)$ are convex sets.
- **4.** Show that if $x, y \in \mathbb{R}^n$, $x \neq y$, then there exist $U \in \mathcal{V}(x)$ and $V \in \mathcal{V}(y)$ such that $U \cap V = \emptyset$.
- **5.** In each of the following instances, determine if the sequence $(x^k)_{k\in\mathbb{N}}$ of points in \mathbb{R}^n is convergent or not. If the sequence is convergent, find also its limit.

a)
$$n = 2$$
, $x^k = \left(\frac{1}{k}, \frac{k^2 + 4k}{2k^2 + 1}\right)$, b) $n = 2$, $x^k = \left((-1/2)^k, (-1)^k\right)$,
c) $n = 2$, $x^k = \left(\sin k, \frac{1}{k^2}\right)$, d) $n = 2$, $x^k = \left(\left(\frac{\sqrt{k}}{1 + \sqrt{k}}\right)^k, \frac{1^1 + 2^2 + \ldots + k^k}{k^k}\right)$,
e) $n = 3$, $x^k = \left(e^{-k}\cos k, e^{-k}\sin k, k\right)$, f) $n = 3$, $x^k = \left(\frac{2^k}{k!}, \frac{1 - 4k^7}{k^7 + 12k}, \frac{\sqrt{k}}{e^{3k}}\right)$,
g) $n = 4$, $x^k = \left(\frac{2^{2k}}{\left(2 + \frac{1}{k}\right)^{2k}}, \frac{1}{\sqrt[k]{k!}}, (e^k + k)^{\frac{1}{k}}, \frac{\alpha^k}{k}\right)$, where $\alpha \ge 0$ is fixed.

- **6.** Find the interior, the closure and the boundary for each of the following subsets of \mathbb{R}^2 . Specify whether the sets are open and/or closed.
- a) $A = [0,1] \times [1,2]$, b) $A = [0,1) \times (1,2]$, c) $A = \{(x,0) \mid x < 0\} \cup \{(x,y) \mid y < 0\}$,
- d) $A = \mathbb{Q} \times \mathbb{Q}$, e) $A = \{0_2\}$, f) $A = \mathbb{R} \times \{0\}$, g) $A = \mathbb{R}^2$, h) $A = \emptyset$.