Московский г	ГОСУДАРСТВЕННЫЙ	УНИВЕРСИТЕТ	имени М.В.Ломо	НОСОВА
Факульт	ГЕТ ВЫЧИСЛИТЕЛЫ	НОЙ МАТЕМАТИ	ики и кибернетик	И

Отчет о выполнении практической работы «Ансамбли алгоритмов»

Петрова Александра, 317 группа

Оглавление

Введение
Предобработка данных
Случайный лес
Размерность подвыборки признаков
Максимальная глубина дерева
Количество деревьев
Градиентный бустинг
Скорость обучения
Размерность подвыборки признаков
Максимальная глубина дерева
Количество деревьев
Заключение

Введение

Данное практическое задание посвящено исследованию ансамблей алгоритмов на примере использования случайного леса и градиентного бустинга для определения цены продажи дома.

Цель исследования - выявить зависимость ошибки и времени работы алгоритмов от гиперпараметров, выбрать лучший алгоритм для предсказания цены на жилье.

Предобработка данных

Данные были скачаны по ссылке. Датасет содержит цены продажи домов в округе Кинг, Вашингтон, в период с мая 2014 по май 2015 года, а также информацию о доме и времени покупки. Таблица состоит из 20 столбцов. Столбец price содержит целевую переменную - цену. Он был сохранен в отдельную переменную и удален из таблицы. Столбец date, в котором указана дата покупки дома, был преобразован в 5 столбцов: year, month, dayofyear, dayofmonth и dayofweek. Исходный столбец был удален. Данные были преобразованы в питру.ndarray с вещественным типом данных. В итоге, матрица признаков содержала 21613 строк и 23 столбцов.

Выборка была разделена на обучающую и тестовую в соотношении 8:2. Обучающая выборка делилась на обучающую и валидационную (по ней подбирались лучшие параметры) подвыборки в соотношении 8:2.

Случайный лес

Исследовалась зависимость RMSE и времени работы алгоритма в зависимости от следующих параметров:

- 1. Размерности подвыборки признаков для одного деревьев: feature_subsample_size.
- 2. Максимальной глубины дерева: max_depth. Также разбирался случай, когда глубина дерева не ограничена.
- 3. Количества деревьев в ансамбле: n_estimators.

Результаты эксперимента приведены на Рис.1 - Рис.3.

Размерность подвыборки признаков

Параметр feature_subsample_size определяет максимальное количество признаков, которые могут быть учтены при выборе лучшего разделения в узле каждого дерева.

На Рис.1 показана зависимость RMSE и времени от размерности подвыборки признаков. График ошибки напоминает параболу, минимум достигается при feature_subsample_size = 15. Зависимость времени работы алгоритма от размерности подвыборки признаков линейная, что согласуется с теорией.

Максимальная глубина дерева

Из Puc.2 видно, что RMSE экспоненциально убывает при увеличении max_depth . При $max_depth = 19$ ошибка минимальна. Время возрастает линейно.

Количество деревьев

Рис.3 показывает, что RMSE убывает экспоненциально с ростом числа деревьев, время возрастает линейно, это связано с тем, что каждое дерево обучается независимо от других. Разница между ошибками после 300 дерева мала, поэтому это значение можно считать оптимальным.

Рис. 1: Графики зависимости RMSE и времени от размерности подвыборки признаков для одного дерева для RF

Рис. 2: Графики зависимости RMSE и времени от максимальной глубины дерева для RF

Градиентный бустинг

Исследовалась зависимость RMSE и времени работы алгоритма в зависимости от следующих параметров:

- 1. Скорости обучения: learning_rate.
- 2. Размерности подвыборки признаков для одного деревьев: feature_subsample_size.
- 3. Максимальной глубины дерева: max_depth.
- 4. Количества деревьев в ансамбле: n_estimators.

Результаты эксперимента приведены на Рис.4 - Рис.7.

Скорость обучения

Из графика на Рис.4 видно, что ошибка резко убывает в промежутке (0.001, 0.1). Минимум ошибки достигается при learning_rate = 0.1. Это может быть связано с тем, что при

Рис. 3: Графики зависимости RMSE и времени от количества деревьев для RF

маленьких скоростях алгоритм не успевает сходиться, а при больших начинает переобучаться. Характерной зависимости времени от скорости обучения не наблюдается.

Рис. 4: Графики зависимости RMSE и времени от скорости обучения для GBM

Размерность подвыборки признаков

Из Puc.5 видно, что минимум ошибки достигается при feature_subsample_size = 13, при feature_subsample_size = 7 происходит скачок времени, далее оно растет линейно.

Максимальная глубина дерева

Из Рис.6 видно, что сначала ошибка резко уменьшается с ростом глубины. Минимум достигается при max_depth = 5. Далее ошибка начинает расти. Это связано с тем, что глубокие деревья переобучаются, когда исправляют ошибки друг друга. Поэтому, в градиентном бустинге используют неглубокие деревья. Время возрастает линейно.

Рис. 5: Графики зависимости RMSE и времени от размерности подвыборки признаков для одного дерева для GBM

Рис. 6: Графики зависимости RMSE и времени от максимальной глубины дерева для GBM

Количество деревьев

Как видно по графику с Рис.7. RMSE убывает экспоненциально, а время возрастает по параболе, близкой к прямой. Это можно объяснить тем, что каждое новое дерево обучается на ошибках, оставшихся после предыдущих. После добавления дерева нужно пересчитать градиенты и обновить веса объектов. Этот процесс выполняется для каждого нового дерева, что может привести к кумулятивному увеличению времени обучения.

Оптимальное значение $n_{estimators} = 300$.

Заключение

В ходе работы были исследованы ансамбли алгоритмов на примере прогнозирования цен на жилье. Была выявлена зависимость RMSE и времени работы алгоритмов (случайного леса и градиентного бустинга) от таких гиперпараметров, как размерность пространства подвыборки для каждого дерева, максимальная глубина, количество деревьев, скорость обучения (для градиентного бустинга).

Рис. 7: Графики зависимости RMSE и времени от количества деревьев для GBM

Были выявлены следующие зависимости:

- 1. Для случайного леса время работы алгоритмов растет линейно с ростом размерности подвыборки. Для градиентного бустинга сначала происходит скачок, затем время растет линейно.
- 2. Оптимальная глубина деревьев в случайном лесе может быть не ограничена. В градиентном бустинге оптимальная глубина небольшая, иначе деревья переобучаются.
- 3. Для обоих алгоритмов выполнено: чем больше деревьев, тем меньше ошибка. В случае случайного леса, время обучения растет линейно с ростом числа деревьев в ансамбле. В градиентном бустинге время растет практически линейно.
- 4. Для градиентного бустинга оптимальная скорость обучения около 0.1.

Для задачи прогнозирования цены на дом лучше (с точки зрения RMSE) оказался градиентный бустинг (RMSE: градиентный бустинг - 133070, случайный лес -145244).