FONCTIONS ABSOLUMENT MONOTONES

Définitions et notations :

- Toutes les fonctions étudiées dans ce problème sont indéfiniment dérivables sur leur intervalle de définition. La dérivée k-ième d'une fonction f est notée $f^{(k)}$. On pose $f^{(0)} = f$ et $f^{(1)} = f'$.
- Une fonction f définie sur un intervalle I à valeurs dans \mathbb{R} est dite absolument monotone (en abrégé AM) lorsque f et toutes ses dérivées $f^{(k)}$ sont positives sur l'intervalle I.
- Une fonction f définie sur un intervalle I à valeurs dans \mathbb{R} est dite complètement monotone (en abrégé CM) lorsque, pour tout $k \in \mathbb{N}$, la fonction $(-1)^k f^{(k)}$ est positive sur l'intervalle I.
- On dit que f est AM jusqu'au rang n si les fonctions $f, f', f'', \ldots, f^{(n)}$ sont positives sur I. On dit que f est CM jusqu'au rang n si les fonctions $f, -f, f'', \ldots, (-1)^n f^{(n)}$ sont positives sur I.

1. Quelques exemples

- 1. Vérifier que la fonction $x \mapsto e^x$ est AM sur \mathbb{R} et que la fonction $x \mapsto \frac{1}{x}$ est CM sur $]0, +\infty[$.
- 2. Pour $\alpha \in \mathbb{R}$, on considère la fonction $f_{\alpha} : x \mapsto x^{\alpha}$ définie sur $I =]0, +\infty[$. Déterminer toutes les valeurs de $\alpha \in \mathbb{R}$ pour lesquelles f est AM sur I, puis toutes les valeurs de α pour lesquelles f est CM sur I.
- 3. Déterminer les fonctions paires qui sont AM sur \mathbb{R} . Déterminer aussi celles qui sont CM sur \mathbb{R} .

II. - Propriétés de stabilité

- 1. On considère une fonction f définie sur un intervalle I symétrique par rapport à 0 et la fonction $g: x \mapsto f(-x)$ définie aussi sur I.
 - Montrer que f est AM sur I si et seulement si g est CM sur I.
- 2. Montrer que le produit de deux fonctions AM jusqu'au rang n est lui aussi AM jusqu'au rang n.
 - Que peut-on dire du produit de deux fonctions CM jusqu'au rang n?
 - Que peut-on dire du produit de deux fonctions AM? de deux fonctions CM?
- 3. On considère deux fonctions f et g définies sur \mathbb{R} et la fonction $h: x \mapsto f(g(x))$. On suppose que f et g sont AM sur \mathbb{R} .
 - Prouver que h est AM sur \mathbb{R} .
 - Que peut-on dire de h si f est AM sur \mathbb{R} et g est CM sur \mathbb{R} ?
 - Montrer sur un exemple que si f et g sont CM sur \mathbb{R} , alors la fonction h n'est pas forcément AM sur \mathbb{R}
- 4. On considère la fonction $f: x \mapsto \frac{1}{\sqrt{1-x^2}}$, définie sur I = [0,1[.
 - Trouver deux constantes a et b telles que : $\forall x \in I, \frac{f'(x)}{f(x)} = \frac{a}{1+x} + \frac{b}{1-x}$.
 - En déduire que les fonctions ln(f), puis f sont AM sur I.

III. - Théorème de Bernstein pour les fonctions AM

Dans cette partie, on considère une fonction f AM sur [0,a], où a est un réel strictement positif fixé.

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose $T_{n,f}(x) = \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(0)$. La fonction polynomiale $T_{n,f}$ est appelée le polynôme de Taylor en 0 de f à l'ordre n.

- 1. Exprimer, pour $n \in \mathbb{N}$, la dérivée de $T_{n,f}$ en fonction d'un polynôme de Taylor de f'. En déduire que $f(x) T_{n,f}(x) \ge 0$ pour tous $n \in \mathbb{N}$ et $x \in [0, a]$.
- 2. Montrer la relation : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f(x) T_{n,f}(x) = \frac{x^{n+1}}{n!} \int_0^1 (1-t)^n f^{(n+1)}(tx) dt$. [Indication : on pourra procéder par récurrence à l'aide d'une intégration par parties.] En déduire que, pour tout $n \in \mathbb{N}$, la fonction $x \mapsto \frac{f(x) T_{n,f}(x)}{x^{n+1}}$ est croissante sur]0, a[.
- 3. Démontrer le théorème de Bernstein : pour tout $x \in [0, a[, T_{n,f}(x) \text{ tend vers } f(x) \text{ lorsque } n \text{ tend vers } + \infty.$ Montrer aussi le résultat en a.