Лекция 5

5. Случайные векторы

5.1. Законы распределения случайных векторов

Пусть на вероятностном пространстве $(\Omega, \mathcal{F}, \mathsf{P})$ заданы n случайных величин ξ_1, \ldots, ξ_n . Данные случайные величины можно рассматривать как n-мерный вектор:

$$\xi: \Omega \to \mathbb{R}^n, \quad \xi(\omega) = (\xi_1(\omega), \dots, \xi_n(\omega)).$$
 (1.1)

Величина § называется случайным вектором.

Функцией распределения случайного вектора (1.1) или совместной функцией распределения случайных величин ξ_1, \ldots, ξ_n называется функция n переменных

$$F(x_1, \dots, x_n) = P\{\xi_1 < x_1, \dots, \xi_n < x_n\}.$$
(1.2)

Величину (1.2) ещё называют многомерной функцией распределения.

Случайные величины ξ_1, \ldots, ξ_n называются *независимыми* (в совокупности), если

$$F_{\xi_1...\xi_n}(x_1,\ldots,x_n) = F_1(x_1)\ldots F_n(x_n),$$
 (1.3)

где $F_i(x_i) = P(\xi_i < x_i)$ — одномерная функция распределения ξ_i .

Далее мы будем рассматривать только двумерный случай. Для двумерного вектора $\zeta = (\xi, \eta)$, имеем

$$F_{\xi}(x,y) = F(x,y) = P(\xi < x, \eta < y).$$
 (1.4)

Пусть $Q = [a,b) \times [c,d)$ — полуоткрытый прямоугольник. Очевидно, что |Q| > 0 тогда и только тогда, когда a < b и c < d.

Предполагая, что |Q| > 0, легко найти вероятность

$$P\{\zeta \in Q\} = P\{a \le \xi < b, \ c \le \eta < d\}.$$

Обозначим

$$Q = [a, b) \times [c, d), \qquad Q_1 = [a, b) \times (-\infty, c),$$

$$Q_2 = (-\infty, a) \times [c, d), \qquad Q_3 = (-\infty, a) \times (-\infty, c).$$

Очевидно, что $(-\infty, b) \times (-\infty, d) = Q \sqcup Q_1 \sqcup Q_2 \sqcup Q_3$. Следовательно,

$$P\{\zeta \in Q\} + P\{\zeta \in Q_1\} + P\{\zeta \in Q_2\} + P\{\zeta \in Q_3\} = F_{\zeta}(b, d).$$

Далее, так как

$$Q_1 \sqcup Q_3 = (-\infty, b) \times (-\infty, c), \quad Q_2 \sqcup Q_3 = (-\infty, a) \times (-\infty, d),$$

ТО

$$P\{\zeta \in Q_1\} + P\{\zeta \in Q_3\} = F_{\zeta}(b, c), \quad P\{\zeta \in Q_2\} + P\{\zeta \in Q_3\} = F_{\zeta}(a, d).$$

В результате получаем

$$P\{a \le \xi < b, \ c \le \eta < d\} = F_{\xi}(b, d) - F_{\xi}(b, c) - F_{\xi}(a, d) + F_{\xi}(a, c). \tag{1.5}$$

Функция распределения $F_{\xi\eta}(x,y)$ обладает следующими свойствами:

R1. $F_{\xi_0}(x,y)$ есть неубывающая функция по каждому аргументу x и y.

R2. $F_{\xi\eta}(x,y)$ непрерывна слева по каждому аргументу x и y.

R3. $F_{\xi\eta}(x,y)$ удовлетворяет соотношениям

$$F(+\infty, +\infty) = 1$$
, $F(-\infty, y) = 0$, $F(x, -\infty) = 0$,

при произвольных значениях x и y.

В одномерном случае перечисленные свойства необходимы и достаточны, чтобы функция F(x) была функцией распределения некоторой случайной величины. В многомерном случае этих свойств уже недостаточно. Для того, чтобы функция F(x,y) была функцией распределения, к перечисленным свойствам R1-R3, нужно добавить следующее:

R4. Для любых чисел a < b, c < d справедливо неравенство:

$$F_{\xi}(b,d) - F_{\xi}(b,c) - F_{\xi}(a,d) + F_{\xi}(a,c) \ge 0.$$

Пример. Пусть

$$F(x,y) = \begin{cases} 0, & \text{при } x \le 0, \text{или } y \le 0, \text{или } x + y \le 1, \\ 1, & \text{в остальных точках плоскости.} \end{cases}$$

Функция F(x,y) удовлетворяет свойствам R1 - R3. При этом

$$F(1,1) - F\left(1,\frac{1}{2}\right) - F\left(\frac{1}{2},1\right) + F\left(\frac{1}{2},\frac{1}{2}\right) = -1.$$

Следовательно, R4 не выполнено.

Рассмотрим случайные величины ξ , η с функциями распределения $F_{\xi}(x)$, $F_{\eta}(y)$. Пусть $F_{\xi\eta}(x,y)$ совместная функция распределения ξ , η . Тогда справедливы равенства:

$$F_{\xi\eta}(x, +\infty) = F_{\xi}(x), \quad F_{\xi\eta}(+\infty, y) = F_{\eta}(y). \tag{1.6}$$

Равенства (1.6) обычно называют условиями согласованности.

5.2. Случайные векторы дискретного типа

Двумерный случайный вектор (ξ, η) называется случайным вектором дискретного типа (сокращённо С.В.Д.Т.), если множество его значений не более, чем счётно. Законом распределения дискретной двумерной случайной величины (ξ, η) называется перечень возможных значений этой величины, т. е. пар (x_i, y_i) и их вероятностей

$$p_{ij} = p(x_i, y_j) = P\{\xi = x_i, \eta = y_j\}.$$
 (2.1)

Очевидно, что величины $p_{i,j}$ удовлетворяют условию

$$\sum_{i,j} p_{ij} = 1. (2.2)$$

Пусть $\varphi(x,y)$ некоторая функция двух переменных. Тогда $\varphi(\xi,\eta)$ является случайной величиной и справедлива формула

$$\mathsf{M}\varphi(\xi, \eta) = \sum_{i,j} \varphi(x_i, y_j) \, p(x_i, y_j). \tag{2.3}$$

Если множество значений С.В.Д.Т. конечно, то закон распределения этой величины удобно представлять в виде следующей таблицы.

ξ \ η	y_1	 y_m
x_1	p_{11}	 p_{1m}
x_n	p_{n1}	 p_{nm}

Одномерные законы распределения отдельных компонент С.В.Д.Т. выражаются через вероятности совместных значений $p_{i,j}$ по формулам

$$p_{i.} = P\{\xi = x_i\} = \sum_{j} p_{ij}, \quad p_{\cdot j} = P\{\eta = y_j\} = \sum_{i} p_{ij}.$$
 (2.4)

Дискретные случайные величины $\xi,\,\eta$ независимы тогда и только тогда, когда

$$p_{ij} = P\{\xi = x_i, \eta = y_i\} = P\{\xi = x_i\} P\{\eta = y_i\} = p_i p_{\cdot j}.$$
(2.5)

 Π р и м е р. Π усть дан случайный вектор (ξ,η) дискретного типа с законом распределения

ξ \ η	0	1	2
0	1/4	1/3	1/9
1	0	1/6	1/9
2	0	0	1/36

Найдём одномерные законы распределения по формулам (2.4).

$$\begin{split} \mathsf{P}\{\,\xi = 0\,\} &= 1/4 + 1/3 + 1/9 = 25/36, \\ \mathsf{P}\{\,\xi = 1\,\} &= 0 + 1/6 + 1/9 = 10/36, \\ \mathsf{P}\{\,\xi = 2\,\} &= 0 + 0 + 1/36 = 1/36. \end{split}$$

Далее

$$\begin{split} \mathsf{P}\{\, \eta = 0\,\} &= 1/4 + 0 + 0 = 1/4, \\ \mathsf{P}\{\, \eta = 1\,\} &= 1/3 + 1/6 + 0 = 1/2, \\ \mathsf{P}\{\, \eta = 2\,\} &= 1/9 + 1/9 + 1/36 = 1/4. \end{split}$$

Так как

$$P\{\xi = 1, \eta = 1\} = 1/6 \neq 5/36 = P\{\xi = 1\} \cdot P\{\eta = 1\},$$

то случайные величины не независимы. Найдём математические ожидания и дисперсии.

$$\begin{split} \text{M}\xi &= 0 \cdot 25/36 + 1 \cdot 10/36 + 2 \cdot 1/36 = 1/3, \\ \text{M}\eta &= 0 \cdot 1/4 + 1 \cdot 1/2 + 2 \cdot 1/4 = 1, \\ \text{M}\xi^2 &= 0 \cdot 25/36 + 1 \cdot 10/36 + 4 \cdot 1/36 = 7/18, \\ \text{M}\eta^2 &= 0 \cdot 1/4 + 1 \cdot 1/2 + 4 \cdot 1/4 = 3/2. \end{split}$$

Таким образом,

$$\begin{split} \mathsf{D}\xi &= \mathsf{M}\xi^2 - (\mathsf{M}\xi)^2 = 7/18 - 1/9 = 5/18, \\ \mathsf{D}\eta &= \mathsf{M}\eta^2 - (\mathsf{M}\eta)^2 = 3/2 - 1 = 1/2. \end{split}$$

5.3. Случайные векторы непрерывного типа

Двумерный случайный вектор (ξ, η) называется случайным вектором непрерывного типа (сокращённо С.В.Н.Т.), если функция распределения $F_{\xi,\eta}(x,y)$ непрерывна на всей плоскости и существует такая неотрицательная интегрируемая функция $p_{\xi,\eta}(x,y)$, называемая плотностью распределения вероятностей случайного вектора (ξ,η) , что

$$F_{\xi,\eta}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} p_{\xi,\eta}(s,t) \, ds \, dt.$$
 (3.1)

Очевидно, что плотность распределения вероятностей удовлетворяет равенству:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p_{\xi,\eta}(x,y) \, dx \, dy = 1. \tag{3.2}$$

Равенство (3.2) называется *условием нормировки*. Плотность распределения вероятностей отдельных компонент С.В.Н.Т. выражаются в виде интегралов от совместной плотности:

$$p_{\xi}(x) = \int_{-\infty}^{+\infty} p_{\xi,\eta}(x,y) \, dy, \quad p_{\eta}(y) = \int_{-\infty}^{+\infty} p_{\xi,\eta}(x,y) \, dx. \tag{3.3}$$

Если (ξ, η) — С.В.Н.Т., то вероятность попадания случайной точки в произвольную квадрируемую область $G \subset \mathbb{R}^2$ определяется по формуле

$$\mathsf{P}\{\,(\xi,\eta)\in G\,\} = \iint\limits_{C} p_{\xi,\eta}(x,y)\,dx\,dy. \tag{3.4}$$

Пусть $\varphi(x,y)$ непрерывная функция двух переменных. Тогда $\varphi(\xi,\eta)$ является случайной величиной и справедлива формула

$$\mathsf{M}\varphi(\xi,\eta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varphi(x,y) \, p_{\xi,\eta}(x,y) \, dx \, dy, \tag{3.5}$$

если интеграл в правой части (3.5) существует.

Непрерывные случайные величины ξ, η независимы тогда и только тогда, когда

$$p_{\xi,\eta}(x,y) = p_{\xi}(x) \cdot p_{\eta}(y). \tag{3.6}$$

 Π р и м е р. Пусть дан случайный вектор (ξ,η) непрерывного типа с законом распределения

$$p_{\xi,\eta}(x,y) = egin{cases} rac{1}{6\pi}, & ext{если } x^2/9 + y^2/4 \leq 1, \\ 0, & ext{если иначе.} \end{cases}$$

Найдём одномерные законы распределения по формулам (3.3).

$$p_{\xi}(x) = \frac{1}{6\pi} \int_{-2\sqrt{1-x^2/9}}^{2\sqrt{1-x^2/9}} dy = \frac{4}{6\pi} \sqrt{1-x^2/9} = \frac{2}{9\pi} \sqrt{9-x^2}.$$

Следовательно,

$$p_{\xi}(x) = \begin{cases} \frac{2}{9\pi} \sqrt{9 - x^2}, & \text{если } |x| \le 3, \\ \\ 0, & \text{если } |x| > 3. \end{cases}$$

Далее

$$p_{\eta}(y) = \frac{1}{6\pi} \int_{-3\sqrt{1-y^2/4}}^{3\sqrt{1-y^2/4}} dx = \frac{6}{6\pi} \sqrt{1-y^2/4} = \frac{1}{2\pi} \sqrt{4-y^2}.$$

Поэтому

$$p_{\eta}(y) = \begin{cases} \frac{1}{2\pi} \sqrt{4 - y^2}, & \text{если } |y| \le 2, \\ \\ 0, & \text{если } |y| > 2. \end{cases}$$

Так как равенство (3.6), очевидно, не выполнено, то случайные величины не независимы.

Найдём математические ожидания и дисперсии. Так как $p_{\xi}(x)$, $p_{\eta}(y)$ чётные функции своих аргументов, то

$$\mathsf{M}\xi = \int_{-\infty}^{+\infty} x p_{\xi}(x) \, dx = 0, \quad \mathsf{M}\eta = \int_{-\infty}^{+\infty} y p_{\eta}(y) \, dy = 0.$$

Следовательно,

$$\begin{split} \mathsf{D} \xi &= \mathsf{M} \xi^2 = \int\limits_{-\infty}^{+\infty} x^2 p_{\xi}(x) \, dx = \frac{2}{9\pi} \int\limits_{-3}^{3} x^2 \, \sqrt{9 - x^2} \, dx = \frac{18}{\pi} \int\limits_{-\pi/2}^{\pi/2} \sin^2 t \cos^2 t \, dt = \\ &= \frac{9}{2\pi} \int\limits_{-\pi/2}^{\pi/2} \sin^2 2t \, dt = \frac{9}{4\pi} \int\limits_{-\pi/2}^{\pi/2} (1 - \cos 4t) \, dt = \frac{9}{4}. \end{split}$$

Здесь мы сделали замену $x = 3 \sin t$. Аналогично для $D\eta$.

$$\mathsf{D}\eta = \mathsf{M}\eta^2 = \int\limits_{-\infty}^{+\infty} y^2 p_{\eta}(y) \, dy = \frac{1}{2\pi} \int\limits_{-2}^2 y^2 \, \sqrt{4 - y^2} \, dy = \frac{8}{\pi} \int\limits_{-\pi/2}^{\pi/2} \sin^2 t \cos^2 t \, dt = 1.$$

5.4. Ковариация. Коэффициент корреляции

Kosapuaųueй случайных величин $\xi_1, \, \xi_2$ называется величина

$$\mathsf{cov}(\xi_1, \xi_2) = \mathsf{M} \left[(\xi_1 - \mathsf{M} \xi_1) (\xi_2 - \mathsf{M} \xi_2) \right]. \tag{4.1}$$

Так как

$$(\xi_1 - M\xi_1)(\xi_2 - M\xi_2) = \xi_1\xi_2 - \xi_1 M\xi_2 - \xi_2 M\xi_1 + M\xi_1 M\xi_1,$$

то ковариацию можно записать в виде

$$cov(\xi_1, \xi_2) = M\xi_1\xi_2 - M\xi_1M\xi_2. \tag{4.2}$$

Теорема 4.1. Если для случайных величин ξ_1, \ldots, ξ_n существуют $\text{cov}(\xi_i, \xi_j) = \sigma_{ij}, i, j = 1, \ldots, n$, то при любых постоянных c_1, \ldots, c_n справедливо равенство

$$D\left(\sum_{i=1}^{n} c_i \xi_i\right) = \sum_{i,j=1}^{n} \sigma_{ij} c_i c_j \tag{4.3}$$

Доказательство. Положим

$$\eta_n = \sum_{i=1}^n c_i \xi_i.$$

Нетрудно проверить, что

$$\eta_n - \mathsf{M}\eta_n = \sum_{i=1}^n c_i(\xi_i - \mathsf{M}\xi_i)$$

И

$$(\eta_n - M\eta_n)^2 = \sum_{i,j=1}^n c_i c_j (\xi_i - M\xi_i) (\xi_j - M\xi_j).$$

Вычисляя математическое ожидание от обеих частей последнего равенства, получим утверждение теоремы.

Полагая в (4.3) $c_i = 1, i = 1, \ldots, n$, получим

$$D\left(\sum_{i=1}^{n} \xi_{i}\right) = \sum_{i=1}^{n} D\xi_{i} + 2 \sum_{1 \le i < j \le n} \text{cov}(\xi_{i}, \xi_{j}).$$
(4.4)

Из неравенства Коши-Буняковского (4.4.2) вытекает, что

$$\mid M(\xi-M\xi)(\eta-M\eta)\mid \ \, \le \, \sqrt{M(\xi-M\xi)^2\cdot M(\eta-M\eta)^2}.$$

Следовательно,

$$|\cos(\xi \eta)| \le \sqrt{D\xi D\eta}$$
 (4.5)

Из (4.2) и свойства математического ожидания М5 следует, что если случайные величины ξ_1 , ξ_2 независимы, то $\text{cov}(\xi_1, \xi_2) = 0$. Таким образом, если $\text{cov}(\xi_1, \xi_2) \neq 0$, то случайные величины ξ_1 , ξ_2 зависимы.

В качестве количественной характеристики степени зависимости случайных величин ξ_1 и ξ_2 используется коэффициент корреляции $\rho(\xi_1, \xi_2)$, определяемый равенством:

$$\rho(\xi_1, \xi_2) = \frac{\cos(\xi_1, \xi_2)}{\sqrt{D\xi_1 D\xi_2}}.$$
(4.6)

Теорема 4.2. Если для случайных величин ξ_1 , ξ_2 существуют конечные дисперсии, отличные о нуля, то

COR1. $|\rho(\xi_1, \xi_2)| \le 1$;

COR2. *ecлu* ξ_1 , ξ_2 *независимы*, *то* $\rho(\xi_1, \xi_2) = 0$;

COR3. равенство $|\rho(\xi_1, \xi_2)| = 1$ справедливо тогда и только тогда, когда ξ_1 и ξ_2 зависят друг от друга линейно.

Случайные величины ξ_1 и ξ_2 называются некоррелироваными, если $\rho(\xi_1, \xi_2) = 0$. Если $\rho(\xi_1, \xi_2) \neq 0$, то ξ_1 и ξ_2 называются коррелироваными. Π р и м е р 1. Рассмотрим пример из п.2. Вычислим ковариацию случайных величин ξ и η , используя формулу (2.3). Имеем

$$\mathsf{M} \xi \eta = 1 \cdot 1 \cdot 1/6 + 1 \cdot 2 \cdot 1/9 + 2 \cdot 1 \cdot 0 + 2 \cdot 2 \cdot 1/36 = 1/2.$$

Следовательно,

$$cov(\xi, \eta) = M\xi\eta - M\xi M\eta = 1/2 - 1/3 = 1/6.$$

Коэффициент корреляции равен

$$\rho(\xi,\eta) = \frac{\text{cov}(\xi,\eta)}{\sqrt{D\xi}\sqrt{D\eta}} = \frac{1}{\sqrt{5}}.$$

Таким образом, случайные величины ξ и η коррелированы.

 Π р и м е р 2. Рассмотрим пример из п.3. Вычислим ковариацию случайных величин ξ и η , используя формулу (3.5). Имеем

$$\mathsf{M}\xi \eta = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} xy \, p_{\xi,\eta}(x,y) \, dx \, dy = \int\limits_{-2}^{2} y \, dy \int\limits_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} x \, dx = 0.$$

Следовательно,

$$\mathsf{cov}(\xi,\eta) = \mathsf{M}\xi\eta - \mathsf{M}\xi\,\mathsf{M}\eta = 0.$$

Коэффициент корреляции, очевидно, тоже равен нулю: $\rho(\xi,\eta)=0$. Таким образом, случайные величины ξ и η некоррелированы.

Из примера 2 вытекает, что из некоррелированности случайных величин ξ и η не следует их независимость.