SEGMENTATION D'IMAGES

Systèmes embarqués de vision par ordinateur pour les véhicules autonomes

Contexte

- 1. Acquisition des images en temps réel
- 2. Traitement des images
- 3. Segmentation des images
- 4. Système de décision

Objectifs

- 1. Concevoir un premier modèle de segmentation d'images qui devra s'intégrer facilement dans la chaîne complète du système embarqué.
- 2. API Flask déployée grâce au service Azure qui recevra en entrée l'identifiant d'une image et retournera l'image avec les segments identifiés par votre modèle et l'image avec les segments identifiés annotés dans le jeu de données

Jeux de données

- 2750 images issues du jeux de données CityScape pour l'entrainement et 500 images pour les tests
- Utilisation de 8 catégories

Group	Classes
flat	road, sidewalk, parking, rail track
human	person, rider
vehicle	car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer
construction	building, wall, fence, guard rail, bridge, tunnel
object	pole, pole group, traffic sign, traffic light
nature	vegetation, terrain
sky	sky
void	ground, dynamic, static

Palette de couleurs

Calcul de la perte

Entropie croisée catégorielle (Categorical Cross Entropy)

Mesure la similarité entre les données prédites et les données vraies.

Métriques

Précision

Proportion des prédictions pertinentes parmi l'ensemble des données proposées

Coefficient IoU ou de indice de Jaquard Zone de chevauchement entre la segmentation prédite et la vérité terrain divisée par la zone d'union entre la segmentation prédite et la vérité terrain

Coefficient de Dice ou coefficient de Sørensen-Dice

Double de la surface de l'intersection de la segmentation prédite et la vérité de terrain, divisé par la somme des surfaces des deux surfaces

Modèle pré-entrainé avec VGG16.

Temps				
d'entrainement	Perte	Précision	IoU	Dice
00:31:04	0.584	0.849	0.680	0.805

- Temps d'entrainement court
- Bonnes performances avec la catégorie « Flat »
- Mauvaises performances avec la catégorie « Human »

FCN-8

Référence : P8_01_Model_VGG16FCN8.ipynb

U-Net

Temps d'entrainement	Perte	Précision	IoU	Dice
00:11:27	0.452	0.885	0.297	0.457

- Temps d'entrainement très court
- Bonnes performances en général

Référence : P8_02_Model_UNet.ipynb

PSPNet

Temps				
d'entrainement	Perte	Précision	IoU	Dice
01:09:07	0.610	0.904	0.817	0.896

- Temps d'entrainement très long
- Bonnes performances sur l'ensemble des catégories

Référence : P8_03_Model_PSPNet.ipynb

Temps Modèle Précision IoU Dice d'entrainement | Perte 0.584 FCN-8 00:31:04 0.849 0.680 0.805 U-Net 00:11:27 0.452 0.885 0.297 0.457 **PSP-Net** 01:09:07 0.610 0.904 0.817 0.896

Synthèse

Sélection du modèle U-Net pour sa rapidité d'exécution et sa relative performance

Optimisations

Dice Loss

Meilleure prise en compte des catégories qui sont par définition non uniformes au sein d'une même image.

Ajout de données

- Retournement horizontal
- Luminosité et contraste
- Flou
- Rotation (max 45°)

Optimisation
Dice Loss

	Temps d'entrainement	Perte	Précision	IoU	Dice
Avant	00:11:27	0.452	0.885	0.297	0.457
Après	00:11:44	0.067	0.887	0.770	0.876

• Meilleurs scores IoU et Dice

Référence : P8_04_Model_UNet-dice-loss.ipynb

Optimisation Data Augmentation

	Temps d'entrainem ent	Perte	Précision	IoU	Dice
Avant	00:11:27	0.452	0.885	0.297	0.457
Après	00:10:06	0.063	0.889	0.735	0.844

- Meilleurs scores IoU et Dice
- Meilleure précision

Référence : P8_05_Model_UNet-dice-loss-Augm.ipynb

Conclusion

- Modèle U-Net
- Bonnes performances
- Utilisation de Dice Loss pour la calcul de la perte
- Utilisation de l'augmentation de données

Déploiement Azure

- Déploiement du modèle choisi
- Création du jeu de données
- Création de l'API
- Développement de l'API
- Présentation de l'API

Déploiement du modèle choisi

Déploiement Azure

```
model = Model.register(workspace = ws,
model_path= os.path.join(app_folder,'save_model'),
model_name = 'future-vision-transport',
description = 'Semantic segmentation')
```


Référence : P8_06_Register_model.ipynb

Création du jeu de données

Déploiement Azure

Espace de stockage

Création de l'API

Intégration du modèle

Mappage des chemins d'accès

Nom	Chemin de montage	Туре	Nom du compte	Nom du partage
dataset	/dataset	AzureFiles	ocwrk7336028223	azureml-filestore-81a6eb

Déploiement Azure

- Utilisation des extensions Azure pour VS Code
- Code sous GitHub
- Utilisation de ServicePrincipalAuthentication pour l'accès au modèle
- Copie du modèle depuis l'espace Azure
- Accès aux images et aux masques par le point de montage
- Prédictions faites dans l'API

Présentation de l'API

Questions Segmentation images 21