# **LIMITES**

## Noção intuitiva de limite

Seja a função f(x)=2x+1. Vamos dar valores a  $\mathbf{x}$  que se aproximem de 1, pela sua direita (valores maiores que 1) e pela esquerda (valores menores que 1) e calcular o valor correspondente de  $\mathbf{y}$ :

| x    | y=2x+1 |  |  |
|------|--------|--|--|
| 1,5  | 4      |  |  |
| 1,3  | 3,6    |  |  |
| 1,1  | 3,2    |  |  |
| 1,05 | 3,1    |  |  |
| 1,02 | 3,04   |  |  |
| 1,01 | 3,02   |  |  |
| x    | y=2x+1 |  |  |
| 0,5  | 2      |  |  |
| 0,7  | 2,4    |  |  |
| 0,9  | 2,8    |  |  |
| 0,95 | 2,9    |  |  |
| 0,98 | 2,96   |  |  |
| 0,99 | 2,98   |  |  |



Notamos que à medida que x se aproxima de 1, y se aproxima de 3, ou seja, quando x tende para 1 ( $x \rightarrow$  1), y tende para 3 ( $y \rightarrow$  3), ou seja:

$$\lim_{x\to 1} (2x+1) = 3$$

Observamos que quando x tende para 1, y tende para 3 e o limite da função é 3.

Esse é o estudo do comportamento de f(x) quando x tende para 1 ( $x \to 1$ ). Nem é preciso que x assuma o valor 1. Se f(x) tende para 3 ( $f(x) \to 3$ ), dizemos que o limite de f(x) quando  $x \to 1$  é 3, embora possam ocorrer casos em que para x = 1 o valor de f(x) não seja 3. De forma geral, escrevemos:

$$\lim_{x\to a} f(x) = b$$

se, quando x se aproxima de a ( $x \to a$ ), f(x) se aproxima de b ( $f(x) \to b$ ).

Seja, agora, a função 
$$f(x) = \begin{cases} \frac{x^2 + x - 2}{x - 1}, & x \neq 1 \\ 2, & \text{se } x = 1 \end{cases}$$

Como  $x^2 + x - 2 = (x - 1)(x + 2)$ , temos:

$$f(x) = \begin{cases} \frac{(x-1)(x+2)}{x-1}, & x \neq 1 \\ 2, & \text{se } x = 1 \end{cases}$$

Podemos notar que quando x se aproxima de 1  $(x \rightarrow 1)$ , f(x) se aproxima de 3, embora para x=1 tenhamos f(x) = 2. o que ocorre é que procuramos o comportamento de y quando  $x \rightarrow 1$ . E, no caso,  $y \rightarrow 3$ . Logo, o limite de f(x) é 3.

**Escrevemos:** 

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-1)(x+2)}{x-1} = \lim_{x \to 1} (x+2) = 1+2 = 3$$

Se g: IR  $\rightarrow$  IR e g(x) = x + 2,  $\lim_{x \to 1}$  g(x) =  $\lim_{x \to 1}$  (x + 2) = 1 + 2 = 3, embora g(x)  $\neq$  f(x) em x = 1. No entanto, ambas têm o mesmo limite.



#### **Propriedades dos limites**

$$\lim_{x \to a} \left[ f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$
1<sup>a</sup>)

O limite da soma é a soma dos limites. O limite da diferença é a diferença dos limites.

#### **Exemplo:**

$$\lim_{x \to 1} \left[ x^2 \pm 3x^3 \right] = \lim_{x \to 1} x^2 + \lim_{x \to 1} 3x^3 = 1 + 3 = 4$$

$$\lim_{x \to a} \left[ f(x) \cdot g(x) \right] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

O limite do produto é o produto dos limites.

### **Exemplo:**

$$\lim_{x \to x} \left[ 3x^3 \cdot \cos x \right] = \lim_{x \to x} 3x^3 \cdot \lim_{x \to x} \cos x = 3\pi^3 \cdot \cos \pi = 3\pi^3 \cdot (-1) = -3\pi^3$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{\substack{x \to a \\ x \to a}} \frac{f(x)}{g(x)}$$

O limite do quociente é o quociente dos limites desde que o denominador não seja zero.

### **Exemplo:**

$$\lim_{x \to 0} \frac{\cos x}{x^2 + 1} = \frac{\lim_{x \to 0} \cos x}{\lim_{x \to 0} x^2 + 1} = \frac{\cos 0}{0^2 + 1} = \frac{1}{1} = 1$$

$$\lim_{A^{\mathbf{a}}} \lim_{x \to a} f(x)^{\mathbf{a}} = \lim_{x \to a} f(x)^{\mathbf{a}}, \mathbf{n} \in \mathbb{N}^*$$

#### **Exemplo:**

$$\lim_{x \to 1} (x^2 + 3)^2 = \left(\lim_{x \to 1} (x^2 + 3)\right)^2 = (1 + 3)^2 = 16$$

$$\lim_{x \to a} \sqrt[n]{f(x)} = \lim_{x \to a} f(x), n \in \mathbb{N} * e f(x) > 0. (Se f(x) \le 0, n \text{ \'e impar.})$$

#### **Exemplo:**

$$\lim_{x \to 2} \sqrt{x^3 + x^2 - 1} = \sqrt{\lim_{x \to 2} x^3 + x^2 - 1} = \sqrt{2^3 + 2^2 - 1} = \sqrt{11}$$

$$\lim_{x \to a} \left( \ln f(x) \right) = \ln \left[ \lim_{x \to a} f(x) \right] \operatorname{se} \lim_{x \to a} f(x) > 0$$

#### **Exemplo:**

$$\lim_{x \to e} (\ln x^2) = \ln [\lim_{x \to e} x^2] = \ln e^2 = 2.\ln e = 2.1 = 2$$

$$\lim_{x \to a} \operatorname{sen}(f(x)) = \operatorname{sen} \lim_{x \to a} f(x)$$

#### **Exemplo:**

$$\lim_{x \to 1} \operatorname{sen}(x^2 + 3x) = \operatorname{sen}\left[\lim_{x \to 1} (x^2 + 3x)\right] = \operatorname{sen} 4$$

$$\lim_{x \to a} \lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)}$$

#### **Exemplo:**

$$\lim_{x \to 1} e^{x^2 + 3x} = e^{\lim_{x \to 1} x^2 + 3x} = e^4$$

#### **Limites Laterais**

Se x se aproxima de a através de valores maiores que a ou pela sua direita, escrevemos:

$$\lim_{x \to a+} f(x) = b$$

Esse limite é chamado de *limite lateral à direita* de *a*.

Se x se aproxima de a através de valores menores que a ou pela sua esquerda, escrevemos:

$$\lim_{x \to a-} f(x) = c$$

Esse limite é chamado de *limite lateral à esquerda* de *a*.

O limite de f(x) para  $x \rightarrow a$  existe se, e somente se, os limites laterais à direita a esquerda são iguais, ou sejas:

- $\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = b, \text{ então } \lim_{x \to a} f(x) = b.$
- $\lim_{x \to a+} f(x) \neq \lim_{x \to a-} f(x) = b$ , então  $2 \lim_{x \to a} f(x)$ .

#### Continuidade

Dizemos que uma função f(x) é contínua num ponto a do seu domínio se as seguintes condições são satisfeitas:

- $\exists f(a).$
- $\exists \lim_{x \to a} f(x);$
- $\lim_{x \to a} f(x) = f(a).$

#### Propriedade das Funções contínuas

Se f(x) e g(x)são contínuas em x = a, então:

- $f(x) \pm g(x)$  é contínua em a;
- f(x) . g(x) é contínua em a;
- g(x) é contínua em  $a^{(g(a) \neq 0)}$ .