Sign On!

Hailee Schuele, Liliana Deonizio, Quazi Fairooz MIDS DATASCI 207 Summer '23 Section 01

Agenda

Introduction

Getting up to speed...

Logistic Regression Baseline

```
c -21 0 0 2428 0 10648 5 0 33 0 0 0 0 262 0 4
-- 7 0 0 14443 2 0 0 554 0 47 0 0 1 0 116 0 7 0 9 0 0 32 0
                                   0 06 0 1
   ab c d e f g h i k l m n o p q r s t u v w x y
                        Predicted Label
```

Multiclass Logistic Regression Confusion Matrix

			(5)	
	loss	binary_accuracy	val_loss	val_binary_accuracy
0	13621.426758	0.920041	3449.434814	0.956434
1	10365.086914	0.930965	2142.287354	0.967579
2	4153.743652	0.946506	1126.017456	0.950355
3	3059.573730	0.951236	3066.929443	0.960486
4	5803.154297	0.946056	24940.355469	0.956434

Binary Logistic Regression Accuracies

CNN Baseline

	1	2	3	4	5	
	Conv2D + MaxPooling2D+ Flatten + Dense	+Conv2D	+MaxPooling2D	+Dense	+ Conv2D + MaxPooling2D	
Training Accuracy	0.9593	0.9720	0.9585	0.9673	0.9678	
Validation Accuracy	0.7501	0.8947	0.9021	0.9260	0.9458	

CNN Baseline Loss and Accuracy

Add two more layers, Conv2d + MaxPooling2D (Model 5)

Final CNN Model

Parameter Testing Outcomes

Training accuracy	Validation accuracy	kernel size	pool size	strides	learning rate	optimizer
0.9644	0.9252	3,3	2,2	1,1	0.001	Adam
0.9528	0.9454	5,5	2,2	1,1	0.001	Adam
0.9512	0.9439	3,3	3,3	1,1	0.001	Adam
0.8852	0.8800	3,3	2,2	2,2	0.001	Adam
0.0468	0.0452	3,3	2,2	1,1	0.01	Adam
0.9110	0.6461	3,3	2,2	1,1	0.001	SGD
0.9551	0.9246	5,5	3,3	1,1	0.001	Adam
error	error	5,5	3,3	2,2	0.001	Adam
error	error	3,3	3,3	2,2	0.001	Adam
error	error	5,5	2,2	2,2	0.001	Adam

Best Performing Models

12

Test Data Results

```
1 # Evaluate model baseline on test data
 2 test model baseline = model baseline.evaluate(X test, Y test onehot)
 4 # Print accuracy result
 5 print('\nTest Acc. {:.2f}%'.format(test model baseline[1]*100))
Test Acc. 92.18%
 1 # Evaluate model 1 on test data
 2 test_model_1 = model_1.evaluate(X_test, Y_test_onehot)
 4 # Print accuracy result
 5 print('\nTest Acc. {:.2f}%'.format(test model 1[1]*100))
Test Acc. 94.39%
1 # Evaluate model 2 on test data
 2 test model 2 = model 2.evaluate(X test, Y test onehot)
 4 # Print accuracy result
 5 print('\nTest Acc. {:.2f}%'.format(test model 2[1]*100))
Test Acc. 94.34%
```

What if we had more time...

More training

Train model on new signs from more people with various skin tones

Decoding ASL in movement

Translate video

Other Sign Languages

Translate British,
Australian,
Mexican Sign
Language
alphabets

Teach ASL

Create AI that could teach ASL to promote accessibility and education

Real time Translation

Use camera device with app that could translate ASL in real time

Thank you

References:

https://www.shutterstock.com/blog/american-sign-language-clip-art-pack

https://www.mcdaniel.edu/academics/departments/american-sign-language/american-sign-language-asl-studies

https://www.reddit.com/r/coolguides/comments/cnbyxf/poster_with_alphabet_in_mexican_sign_language/?rdt=56144

https://www.cnet.com/tech/mobile/want-to-learn-the-asl-alphabet-this-app-can-teac h-you-in-just-5-minutes-a-day/

https://www.medicalnewstoday.com/articles/sign-language-apps

https://www.redbubble.com/i/baby-onesie/American-Sign-Language-ASL-Alphabet-by-zoomindesign/29574012.P5P5Q

https://www.etsy.com/listing/937857530/american-sign-language-asl-digital

https://www.3playmedia.com/blog/deaf-culture-black-asl/

Questions?
Link to GitHub repo:
https://github.com/UC-Berkeley-I-Sc hool/DataSci207FinProj_Deonizio_S chuele_Fairooz