Autonomous Vehicle Navigation System base on GNSS RTK

" ระบบนำทางด้วยสัญญาณดาวเทียมของระบบดาวเทียมนำ ร่องแบบแปรผันตามเวลาจริง สำหรับยานยนต์ไร้คนขับ "

Autonomous Vehicle Navigation System base on GNSS-RTK

ระบบน้ำทางด้วยสัญญาณดาวเทียมของระบบดาวเทียมน้ำร่องแบบแปรผันตามเวลาจริง สำหรับยานยนต์ไร้คนขับ

นางสาวชนกานต์ รสหอม รหัส 62361444

นางสาวศุทธินี จิตตาดู รหัส 62366227

นายศุภกันต์ ถาตา รหัส 62366241

ที่ปรึกษาโครงงาน ผู้ช่วยศาสตราจารย์ชูพงศ์ ช่วยเพ็ญ

วัตถุประสงค์

ขอบเขตของโครงงาน

ศึกษาประยุกต์ใช้ระบบ GNSS-RTK เพื่อ
 ใช้ในการระบุตำแหน่งให้มีความแม่นยำสูง

01 %

พัฒนาโปรแกรมในการเลือกเส้นทางการเดิน รถจากจุดเริ่มต้นไปยังจุดปลายทางที่กำหนด

02 GNSS-RTK มีความแม่นยำในระดับเซนติเมตร

02

พัฒนาโปรแกรมในการเชื่อมต่อ และอ่าน ค่าจาก RTK Receiver

03 พัฒนาโปรแกรมเพื่อนำไปประยุกต์ใช้ใน ระบบนำทางการเดินรถของยานยนค์ไร้คนขับ

03

สร้างแผนที่เส้นทางการเดินรถในพื้นที่ มหาวิทยาลัยนเรศวร

01

RESEARCH METHODS

" ขั้นตอนการดำเนินงาน "

ขั้นตอนการดำเนินงาน

LEARN

Linux OS, ROS1, Python, อื่นๆ (SW Map, U-center)

DEVELOP

พัฒนาโปรแกรมโดยใช้ Python บน Visual Studio Code

RESULT

วิเคราะห์และสรุปผล

TEST

ทดสอบและวิเคราะห์ปัญหาที่เกิดขึ้น

OPERATION DEVELOP

Linux

Python

Visual Studio

Results and Discussion

ผลการดำเนินการ

02

ผลการดำเนินการ

1. เปรียบเทียบค่าความละเอียดของข้อมูล เมื่อเชื่อมต่อ NTRIP caster และไม่เชื่อมต่อ NTRIP caster และสามารถแสดงตัวอย่างข้อมูลค่าตำแหน่งละติจูด และลองจิจูดที่ความเร็ว 10 กม./ชม. ดังนี้

NTRIP connected	NTRIP non connected
16.748918, 100.190290	16.74115670833333, 100.19899742833334
16.748920, 100.190281	16.741157698333332, 100.19899734666666
16.748921, 100.190285	16.741163836666665, 100.19899713666668

2. เปรียบเทียบตำแหน่งละติจูด และลองจิจูด ตามเส้นทางเดินรถภายในมหาวิทยาลัยนเรศวร เมื่อเชื่อมต่อ NTRIP caster และไม่เชื่อมต่อ NTRIP caster โดยใช้ความเร็ว 10, 20, 30, และ 40 กม./ชม

สามารถคำนวณระยะห่างระหว่างจุดสองจุดที่วัดตามพื้นผิวโลก ซึ่งก็คือละติจูดและลองจิจูดได้

จากสมการ

d =
$$\cos^{-1}(\cos a \cos b + \sin a \sin b \cos C) \times \frac{\pi}{180^{\circ}} \times 6378158.36$$

โดยที่ d = ค่าระยะทางระหว่างจุด (เมตร)

a = ละติจูดจุดที่ 1 ถึงขั้วโลกเหนือ โดยที่ซีกโลกเหนือมีค่าเป็นบวกและซีกโลกใต้มีค่าเป็นลบ (องศา)

b = ละติจูดที่ 2 ถึงขั้วโลกเหนือ (องศา)

C = ผลต่างของลองจิจูด โดยที่ซีกตะวันออกมีค่าเป็นบวก และซีกโลกตะวันตกมีค่าเป็นลบ (องศา)

ตารางแสดงค่าระยะห่างระหว่างจุดละติจูด และลองจิจูด ตามเส้นทางเดินรถภายในมหาวิทยาลัยนเรศวร เมื่อเชื่อมต่อ NTRIP caster และไม่เชื่อมต่อ NTRIP caster โดยใช้ความเร็ว 10, 20, 30, และ 40 กม./ชม. ตามลำดับ

	เชื่อมต่อ NTRIP caster	ไม่เชื่อมต่อ NTRIP caster
ความเร็ว	ระยะทางเฉลี่ยระหว่างจุด	ระยะทางเฉลี่ยระหว่างจุด
	(เมตร)	(เมตร)
10 กม./ชม.	3.51	3.83
20 กม./ชม.	5.1	5.84
30 กม./ชม.	6.03	7.82
40 กม./ชม.	6.62	9.63

3. เปรียบเทียบความคลาดเคลื่อนตำแหน่งละติจูด และลองจิจูด บริเวณช่วงโค้ง เมื่อเชื่อมต่อ NTRIP caster และไม่เชื่อมต่อ NTRIP caster ที่ความเร็ว 10, 20, 30 และ 40 กม./ชม.

4. เปรียบเทียบความคลาดเคลื่อนตำแหน่งละติจูด และลองจิจูด บริเวณทางคู่ขนาน เมื่อเชื่อมต่อ NTRIP caster และไม่เชื่อมต่อ NTRIP caster ที่ความเร็ว 10, 20, 30 และ 40 กม./ชม.

5. เปรียบเทียบความคลาดเคลื่อนตำแหน่งละติจูด และลองจิจูด ณ ตำแหน่งเดียวกัน เมื่อเชื่อมต่อ NTRIP caster และไม่เชื่อมต่อ NTRIP caster ขณะหยุดนิ่ง โดยใช้เวลา 5 นาที

ลำดับ	ละติจูด	ลองจิจูด
1	100.200731	16.750834
2	100.200731	16.750834
3	100.20073	16.750834
4	100.20073	16.750834
5	100.20073	16.750834

จากตัวอย่างข้อมูลค่าตำแหน่งละติจูด และลองจิจูด เมื่อเชื่อมต่อ NTRIP caster ขณะหยุดนิ่ง โดยใช้เวลา 5 นาที เมื่อนำข้อมูลมาสร้างกราฟ จะได้ดังนี้

จากตารางจะเห็นว่าค่าละติจูดหรือลองจิจูดบางช่วงมีค่าที่ทับซ้อน ซึ่งทำให้ผลของกราฟออกมามีค่าทับซ้อนกัน

2) ความคลาดเคลื่อนของตำแหน่งละติจูด และลองจิจูด เมื่อไม่เชื่อมต่อ NTRIP caster ขณะหยุดนิ่ง โดย ใช้เวลา 5 นาที สามารถแสดงตัวอย่างข้อมูลค่าตำแหน่งละติจูดและลองจิจูดได้ ดังนี้

ลำดับ	ละติจูด	ลองจิจูด
1	100.2006898	16.75079987
2	100.2006899	16.75079982
3	100.2006901	16.75079977
4	100.2006903	16.75079962
5	100.2006904	16.75079956

จากตัวอย่างข้อมูลค่าตำแหน่งละติจูดและลองจิจูด เมื่อไม่เชื่อมต่อ NTRIP caster ขณะหยุดนิ่ง โดยใช้เวลา 5 นาที เมื่อนำข้อมูลมาสร้างกราฟ จะได้ดังนี้

ไม่เชื่อมต่อ NTRIP caster จะมีการกระจายค่าของตำแหน่งและมีการเปลี่ยนตำแหน่งจุดตลอดเวลา เมื่อหยุดนิ่ง

03

Conclusion

" สรุปผลการดำเนินงาน "

สรุปผลการดำเนินงาน

จากผลการทดลอง พบว่า เมื่อเชื่อมต่อ NTRIP caster ทำให้ค่าละติจูดและลองจิจูดมีความแม่นยำสูง กว่าไม่เชื่อมต่อ NTRIP caster ค่าละติจูดและลองจิจูดของยานยนต์จะมีความแม่นยำสูงขึ้นเมื่อความเร็วของยานยนต์ ลดลง จะเห็นได้จากความเร็วในช่วงโค้งที่ลดลงทำให้จำนวนค่ามีความถื่มากขึ้น และในขณะยานยนต์หยุดนิ่ง มีการ เปลี่ยนแปลงตำแหน่งของค่าละติจูดและลองจิจูดที่น้อยกว่า

ปัญหาที่พบและ<mark>ข้อเสนอแนะ</mark>

ปัญหาที่พบ

- Port RTK และอินเตอร์เน็ตไม่เสถียรหรือ
 ขาดการเชื่อมต่อ
- ตำแหน่งละติจูดลองจิจูดเปลี่ยนไปตาม
 แกนโลก เมื่อเวลาเปลี่ยน
- สิ่งกีดขวางบนถนน เช่น หลุม ลูกระนาด

ข้อเสนอแนะ

- ควรตรวจสอบการเชื่อมต่ออยู่เสมอ
- เลือกช่วงเวลาที่ไม่มีคนพลุกพล่าน เลือกขับบนถนน ที่ระนาบเดียวกัน
- ควรศึกษาและทำความเข้าใจในการเขียน python
 ให้มากขึ้น

THANK YOU

" ขอบคุณครับค่ะ "

Q&A