

Факультет ПИиКТ (Кафедра ВТ)

Отчет по лабораторной работе №2 «Исследование работы БЭВМ» по дисциплине Основы профессиональной деятельности

Вариант: 99

Студент: Зельдина София Иосифовна

Группа: Р3111

Преподаватель: Блохина Е.Н.

Санкт-Петербург, 2020 г.

Задание:

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

195: 61A1 196: + A19F 197: 61A1 198: E1A0 199: 0200 19A: 0280 21A2 19B: **19**C: 21A0 19D: E195 19E: 0100 19F: E195 1A0: 0100 1A1: E195 1A2: 61A1

Текст исходной программы:

Адрес	Код команды		Мнемоника	Комментарии
196	+	A19F	LD 19F	Загрузка 19F → AC
197		61A1	SUB 1A1	Вычитание АС - 1А1 → АС
198		E1A0	ST 1A0	Сохранение АС → 1А0
199		0200	CLA	Очистка аккумулятора 0 → АС
19A		0280	NOT	Инверсия аккумулятора ^АС → АС
19B		21A2	AND 1A2	Логическое умножение 1А2 & АС → АС
19C		21A0	AND 1A0	Логическое умножение 1АО & АС → АС
19D		E195	ST 195	Сохранение АС → 195
19E		0100	HLT	Отключение ТГ, переход в пультовый режим

<u>Назначение программы:</u>

Вычисление значения функции $A=E \wedge (B-D)$

Область представления:

D, B - знаковые 16-разрядные числа, (дополнительный код)

Е, А — беззнаковый набор из 16 логических однобитовых значений

C = (B - D) — беззнаковый набор из 16 логических однобитовых значений

Область допустимых значений:

$$A_i, C_i, E_i \in \{0,1\} npu \ 0 \le i \le 15$$

Случай 1:

$$-2^{14} \le B, D \le 2^{14} - 1$$

Случай 2:

$$(2^{14} \le B \le 2^{15} - 1) \land (0 \le D \le 2^{15} - 1)$$

Случай 3:

$$(-2^{15} \le B \le -2^{14} - 1) \land (-2^{15} \le D \le 0)$$

Случай 4(дополнение к случаю 1):

$$B = -2^{14}$$
; $D = 2^{14}$

<u>Расположение в памяти ЭВМ программы, исходных данных и результатов:</u>

195, 19F, 1A0, 1A1, 1A2 - исходные данные

А — переменная с адресом 195

В — переменная с адресом 19F

С — переменная с адресом 1А0

D — переменная с адресом 1A1

Е — переменная с адресом 1А2

Ячейки с 196 по 19Е - команды

195 - окончательный результат (переменная А)

1А0 - промежуточный результат (переменная С)

Адреса первой и последней команды:

196 – первая 19Е – последняя

Трассировка:

1А2 (переменная Е): 0ЕЕЕ

19F (переменная В): А0FA

1A1 (переменная D): 000F

Выполняемая команда		Содержимое регистров процессора после выполнения команды							которой после і	содержимое изменилось выполнения манды	
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
196	A19F	197	A19F	19F	A0FA	000	0196	A0FA	1000		
197	61A1	198	61A1	1A1	000F	000	0197	A0EB	1001		
198	E1A0	199	E1A0	1A0	A0EB	000	0198	A0EB	1001	1A0	A0EB
199	0200	19A	0200	199	0200	000	0199	0000	0100		
19A	0280	19B	0280	19A	0280	000	019A	FFFF	1001		
19B	21A2	19C	21A2	1A2	OEEE	000	019B	0EEE	0001		
19C	21A0	19D	21A0	1A0	A0EB	000	019C	00EA	0001		
19D	E195	19E	E195	195	00EA	000	019D	00EA	0001	195	00EA
19E	0100	19F	0100	19E	0100	000	019E	00EA	0001		

Вариант программы с меньшим числом команд:

Адрес	Код команды	Мнемоника	Комментарии		
196	+ A19B	LD 19B	Загрузка 19В → АС		
197	619C	SUB 19C	Вычитание АС — 19С → АС		
198	219D	AND 19D	Логическое умножение AC & 19D → AC		
199	E195	ST 195	Coxpaнeние AC → 195		
19A	0100	HLT	Отключение ТГ, переход в пультовый режим		

Таблица трассировки:

Выполняемая Содержимое регистров проце нения команд					-	10сле в	ыпол-	Ячейка, содер рой изменило полнения	сь после вы-		
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
196	A19B	197	A19B	19B	A0FA	000	0196	A0FA	1000		
197	619C	198	619C	19C	000F	000	0197	A0EB	1001		
198	219D	199	219D	19D	0EEE	000	0198	00EA	0001		
199	E195	19A	E195	195	00EA	000	0199	00EA	0001	195	00EA
19A	0100	19B	0100	19A	0100	000	019A	00EA	0001		

Программа выполняет ту же функцию, что и исходная, имеет ту же ОДЗ и область представления.

Адреса первой и последней команды:

196 — первая

19А — последняя

Выводы:

В ходе выполнения лабораторной работы я познакомилась с базовой ЭВМ, узнала об основных командах, их назначении и типах адресации. Также узнала назначение регистров в процессоре, попробовала поработать на эмуляторе БЭВМ, написанном на Java, и научилась оптимизировать простые алгоритмы.