Autonomous Intelligent Systems Lab 8

 $\begin{array}{c} {\rm Dylan\ Trollope} \\ 100864645 \end{array}$

March 2022

1 Exercise 1

1.1 Question 1

I	$p(L_1)$	$p(L_2)$	$p(L_3)$	MF	
0	0	∞	∞	∞	
1	0	1	∞	∞	$h^1 = 2$
2	0	1	2	2	
3	0	1	2	2	

1.2 Question 2

I	$p(L_1)$	$p(L_2)$	$p(L_3)$	MF	L_1MF	L_2MF	L_3MF	L_1L_2	L_2L_3	L_1L_3
0	0	∞								
1	0	1	∞							
2	0	1	2	2	∞	∞	∞	∞	∞	∞
3	0	1	2	2	3	2	3	∞	∞	∞
4	0	1	2	2	3	2	3	∞	∞	∞

$$h^{2} = 3$$

1.3 Question 3

$$h^1 = at - pigeon(L_1) \xrightarrow{fly(L_1, L_2)} at - pigeon(L_2) \xrightarrow{take-message} mes - found$$

$$h^2 = at - pigeon(L_1) \xrightarrow{fly(L_1, L_2)} at - pigeon(L_2) \xrightarrow{take - mes} mes - found \xrightarrow{fly(L_1, L_2)} at - pigeon(L_1)$$

1.4 Question 4

Yes, the do differ, h^2 2 provides an optimal heuristic: for h^2 , pairs of facts need to be satisfied/true simultaneously, so it will find more expensive paths compared to the singleton variable dependent h^1 .