Lista 6

Essa lista não vale nota, mas ainda recomenda-se fazer antes da prova.

- 1. Casella e Berger, 8.16.
- 2. Casella e Berger, 8.33.
- 3. Seja T uma estatística de teste com a MLRP, isto é, para $\theta_0 < \theta_1$, $f_T(t|\theta_1)/f_T(t|\theta_0)$ é crescente em t.
 - (a) Prove que, para $\theta_0 < \theta_1$, $F_T(t|\theta_1) \leq F_T(t|\theta_0)$.
 - (b) Use essa desigualdade para provar que a função potência de um teste com $R = \{T > t_0\}$ é crescente.
 - (c) Para um teste de hipótese unilateral $H_0: \theta \leq \theta_0, H_1: \theta > \theta_1$, prove que o teste acima tem tamanho $\alpha = \beta(\theta_0)$ e é não viesado.
- 4. Seja $\theta \in [-1,1]$ um parâmetro. Considere uma amostra aleatória X_1,\ldots,X_n com a densidade de cada observação sendo dada por

$$f_{X_i}(x_i;\theta) = \frac{1}{2}(1+\theta x_i),$$

para $x_1 \in [-1, 1]$ e 0 caso contrário.

- (a) Proponha um estimador consistente para θ . Mostre que ele de fato é consistente.
- (b) Suponha que uma única observação X_1 esteja disponível (n = 1). Desejamos testar a hipótese nula de que $\theta = 0$ versus a hipótese alternativa de que $\theta = 1$.
 - Apresente a região crítica de um teste com as seguintes propriedades: 1) tem tamanho $\alpha=0.05$; e 2) é o teste mais potente entre todos os testes de nível α .
- (c) Suponha que agora desejamos testar a hipótese nula $\theta \leq 0$ contra hipótese alternativa $\theta > 0$. Como precisamos adaptar a região crítica para obter um teste de tamanho $\alpha = 0.05$ uniformemente mais potente entre testes de nível α para essas novas hipóteses?

5. Um parâmetro θ pode assumir três valores, 1, 2 ou 3. Uma v.a. discreta X é observada, cuja distribuição depende de θ da seguinte forma:

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$P_{\theta}(X=4)$	1/2	0	1/2
$P_{\theta}(X=5)$	1/2	1/2	0
$P_{\theta}(X=6)$	0	1/2	1/2

Desejamos executar um teste da hipótese $H_0: \theta = 1$, contra a alternativa $H_1: \theta > 1$.

- (a) Considere o teste A, com região de rejeição $R_A = \{X \geq 5\}$. Qual é o valor de α_A , o tamanho desse teste?
- (b) Calcule β_A , a função potência desse teste.
- (c) Prove que esse teste $n\tilde{a}o$ é uniformemente mais potente de nível α_A .
- (d) Explique porque, apesar de ser um teste da forma sugerida por Karlin e Rubin, para um teste de hipóteses unidirecional, o teorema de Karlin-Rubin não se aplica aqui.
- (e) Apresente um outro teste (de tamanho menor que 1) que é UMP contra testes de mesmo nível.
- 6. Considere uma amostra $Z = Z_1, \ldots, Z_n$ i.i.d. exponencial com parâmetro λ , ou seja, onde Z_i tem densidade $f_{Z_i}(z_i, \lambda) = \lambda e^{-\lambda z_i} \mathbf{1}[z_i > 0]$. O valor de $\lambda > 0$ é desconhecido.
 - (a) Considere a hipótese nula $H_0: \lambda = \lambda_0$ versus $H_1: \lambda = \lambda_1$. Apresente uma estatística T(Z) (que não depende de λ_0 ou λ_1) tal que o teste com região crítica $R = \{T(Z) \in I\}$, onde I é um intervalo, é o UMP entre testes de tamanho igual ou menor.
 - (b) É possível realizar esse teste se não observarmos Z, mas apenas \bar{Z} ? E se observarmos apenas $Z_{(1)} = \min_i Z_i$?
 - (c) Mostre que para calcular a região crítica do teste apresentado no item anterior, não precisamos conhecer o valor de λ_1 , mas apenas saber o tamanho α do teste, o valor de λ_0 , e se $\lambda_1 > \lambda_0$ ou não.
 - (d) É possivel encontrar um teste UMP para $H_0: \lambda = 2$ versus $H_1: \lambda \in \{1,3\}$? Justifique.