Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

FCC PART 15, SUBPART B and C TEST REPORT

for

SINGLE TOGGLE SWITCH

Model: STLS2-ZWAVE5

Prepared for

ECOLINK INTELLIGENT TECHNOLOGY, INC. 2055 CORTE DEL NOGAL CARLSBAD, CALIFORNIA 92011

Prepared by:	
	KYLE FUJIMOTO
Approved by:	
	JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: NOVEMBER 30, 2017

	REPORT		APPENDICES			TOTAL	
	BODY	\boldsymbol{A}	В	C	D	E	
PAGES	17	2	2	2	11	35	69

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch
Model: STLS2-ZWAVE5

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received	7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration – Emissions	9
4.1.1 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
6.3 Measurement Uncertainty	12
7. TEST PROCEDURES	13
7.1 RF Emissions	13
7.1.1 Conducted Emissions Test	13
7.1.2 Radiated Emissions Test	14
7.1.3 RF Emissions Test Results	15
7.1.4 Duty Cycle Calculation	16
8. CONCLUSIONS	17

Model: STLS2-ZWAVE5

LIST OF APPENDICES

APPENDIX	TITLE			
A	Laboratory Accreditations and Recognitions			
В	Modifications to the EUT			
С	Additional Model Covered Under This Report			
D	Diagrams and Charts			
	Test Setup Diagrams			
	Antenna and Effective Gain Factors			
Е	Data Sheets			

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
1	Conducted Emissions Test Setup
2	Layout of the Semi-Anechoic Test Chamber

LIST OF TABLES

TABLE	TITLE	
1.0	Radiated Emission Results	

FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch
Model: STLS2-ZWAVE5

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government.

Device Tested: Single Toggle Switch

Model: STLS2-ZWAVE5

S/N: N/A

Product Description: The EUT is a battery-powered device for home automation applications.

Modifications: The EUT was not modified in order to meet the specifications.

Customer: Ecolink Intelligent Technology, Inc.

2055 Corte Del Nogal Carlsbad, California 92011

Test Dates: February 3, 5, 6, and 7, 2017

Test Specifications covered by accreditation:

CFR Title 47, Part 15, Subpart B; and Subpart C sections 15.205, 15.209, and 15.249

Test Procedures: ANSI C63.4: 2014 and ANSI C63.10: 2013

Report Number: **B80206D1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch
Model: STLS2-ZWAVE5

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Spurious Radiated RF Emissions, 9 kHz – 9300 MHz (Transmitter and Digital portion)	Complies with the Class B limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15 Subpart C, section 15.205, 15.209 and 15.249 Highest reading in relation to spec limit 93.91 dBuV/m @ 908.42 MHz (*U = 4.54 dB)
2	Conducted RF Emissions, 150 kHz to 30 MHz	This test was not performed because the EUT does not connect to the AC mains

FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch
Model: STLS2-ZWAVE5

1. PURPOSE

This document is a qualification test report based on the emissions tests performed on the Single Toggle Switch, Model: STLS2-ZWAVE5. The emissions measurements were performed according to the measurement procedure described in ANSI C63.4 and ANSI C63.10. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249.

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Ecolink Intelligent Technology, Inc.

Keyoor Gosalia Principal RF Engineer

Compatible Electronics Inc.

Kyle Fujimoto Test Engineer James Ross Test Engineer

2.4 Date Test Sample was Received

The test sample was received on prior to the intial date of testing.

2.5 Disposition of the Test Sample

The test sample has not been returned to Ecolink Intelligent Technology, Inc. as of the date of this test report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number S/N Serial Number ASK Amplitude Shift Key

ITE Information Technology Equipment
LISN Line Impedance Stabilization Network

N/A Not Applicable
Tx Transmit
Rx Receive

PIR Pyroelectric ("Passive") Infrared

Inc. Incorporated

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch

Single Toggle Switch Model: STLS2-ZWAVE5

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this emissions Test Report.

SPEC	TITLE	
FCC Title 47, Part 15 Subpart C	FCC Rules – Radio frequency devices (including digital devices) – Intentional Radiators	
FCC Title 47, Part 15 Subpart B	FCC Rules – Radio frequency devices (including digital devices) – Unintentional Radiators	
ANSI C63.4 2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
ANSI C63.10 2013	American National Standard of procedure for compliance testing of unlicensed wireless devices	

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration – Emissions

The Single Toggle Switch, Model: STLS2-ZWAVE5 (EUT) was setup in a stand-alone configuration. The EUT was investigated in all three orthogonal axis. During the testing, the EUT was continuously transmitting or receiving at the low channel of 908.42 MHz and high channel of 916 MHz.

The X orientation is when the EUT is parallel to the ground. The Y orientation is when the EUT is perpendicular to the ground mounted vertically. The Z orientation is when the EUT is perpendicular to the ground mounted horizontally.

The EUT was programmed to be able to continuously transmit or receive at the low and high channels. Fresh batteries were installed inside the EUT prior to the testing. The EUT was preset via internal firmware to continuously transmit or receive at the low or high, respectively.

The firmware is stored in one of the network drives in the company's server.

The final radiated data for the EUT was taken in the mode described above. Please see Appendix E for the data sheets.

4.1.1 Cable Construction and Termination

The EUT had no external cables.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch

Model: STLS2-ZWAVE5

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
SINGLE TOGGLE SWITCH (EUT)	ECOLINK INTELLIGENT TECHNOLOGY, INC.	STLS2-ZWAVE5	N/A	XQC-SDLS2ZWAVE5
FIRMWARE FOR EUT*	ECOLINK INTELLIGENT TECHNOLOGY, INC.	1.0	N/A	N/A

^{*}Located inside the EUT to allow the EUT to transmit on a continuous basis.

5.2 Emissions Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CAL. CYCLE	
GENERAL TEST EQUIPMENT USED IN LAB D						
TDK TestLab	TDK RF Solutions, Inc.	9.22	700145	N/A	N/A	
Computer	Hewlett Packard	p6716f	MXX1030PX0	N/A	N/A	
LCD Monitor	Hewlett Packard	52031a	3CQ046N3MG	N/A	N/A	
EMI Receiver, 20 Hz – 26.5 GHz	Keysight	N9038A	MY5120150	December 6, 2017	1 Year	
EMI Receiver, 20 Hz – 40 GHz	Rohde & Schwarz	ESIB40	100194	September 26, 2017	1 Year	
	RF RADI	ATED EMISSIO	ONS TEST EQUIP	MENT		
CombiLog Antenna Com-Power AC-220 61060 July 27, 2017 1 Ye			1 Year			
Preamplifier	Com-Power	PAM-118A	551024	May 12, 2016	2 Year	
Loop Antenna	Com-Power	AL-130R	121090	February 9, 2017	2 Year	
Horn Antenna	Com-Power	AH-118	071175	February 26, 2016	2 Year	
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A	
System Controller	n Controller Sunol Sciences Corporation		112213-1	N/A	N/A	
Turntable	Sunol Sciences Corporation	2011VS	N/A	N/A	N/A	
Antenna-Mast	Sunol Sciences Corporation	TWR95-4	112213-3	N/A	N/A	

6.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

Single Toggle Switch

Model: STLS2-ZWAVE5

TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for emissions test location.

6.2 EUT Mounting, Bonding and Grounding

For frequencies 1 GHz and below: The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

For frequencies above 1 GHz: The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 1.5 meters above the ground plane.

The EUT was not grounded.

6.3 Measurement Uncertainty

The uncertainty values are in the table below.

The uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level, using a coverage factor of k=2

MEASUREMENT TYPE	PARTICULAR CONFIGURATION	UNCERTAINTY VALUES
RADIATED EMISSIONS	3-METER CHAMBER, COMBILOG ANTENNA	4.54 dB
RADIATED EMISSIONS	3-METER CHAMBER, HORN ANTENNA	3.70 dB
AC LINE CONDUCTED EMISSIONS	3-METER CHAMBER, COM-POWER LISN	2.88 dB

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

Single Toggle Switch

Model: STLS2-ZWAVE5

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The EMI Receiver was used as a measuring meter. A quasi-peak and/or average reading was taken only where indicated in the data sheets. A transient limiter was used for the protection of the EMI Receiver input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the EMI Receiver. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI 63:4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by computer software. The final qualification data is located in Appendix E.

Test Results:

This device is battery powered and does not connect to the AC public mains, thus this test was not performed.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

Single Toggle Switch

Model: STLS2-ZWAVE5

7.1.2 Radiated Emissions Test

The EMI Receiver was used as the measuring meter. A built-in, internal preamplifier was used to increase the sensitivity of the instrument. The EMI Receiver was initially used with the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (200 Hz for 9 kHz to 150 kHz, 9 kHz for 150 kHz to 30 MHz, 120 kHz for 30 MHz to 1 GHz and 1 MHz for 1 GHz to 9.3 GHz).

The frequencies above 1 GHz were averaged using a duty cycle correction factor as explained in section 7.1.4 of this test report.

The EMI test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is in full compliance with ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

The EUT was tested at a 3-meter test distance. The six highest emissions are listed in Table 1.0.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Loop Antenna
150 kHz to 30 MHz	9 kHz	Loop Antenna
30 MHz to 1 GHz	120 kHz	CombiLog Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

Test Results:

The EUT complies with the **Class B** limits of **CFR** Title 47, Part 15, Subpart B; and Subpart C sections 15.205, 15.209 and 15.249 for radiated emissions.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch

Model: STLS2-ZWAVE5

7.1.3 RF Emissions Test Results

Table 1.0 RADIATED EMISSION RESULTS

Single Toggle Switch Model: STLS2-ZWAVE5

Frequency MHz	Quasi-Peak EMI Reading (dBuV/m)	Quasi-Peak Specification Limit (dBuV/m)	Delta (Cor. Reading – Spec. Limit) dB)
908.42 (H) (X-Axis)	93.91	93.97	-0.06
916.00 (H) (X-Axis)	93.23	93.97	-0.74
916.00 (V) (Y-Axis)	92.69	93.97	-1.28
908.42 (V) (Y-Axis)	92.45	93.97	-1.52
908.42 (H) (Z-Axis)	90.56	93.97	-3.41
916.00 (H) (Z-Axis)	89.09	93.97	-4.88

Notes:

- The complete emissions data is given in Appendix E of this report.
- (V) Vertical
- (H) Horizontal

FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch
Model: STLS2-ZWAVE5

7.1.4 Duty Cycle Calculation

The fundamental and harmonics were measured at a 3-meter test distance. The EMI Receiver was used to obtain the final test data. The final qualification data sheets are located in Appendix E.

Where

$$\delta(dB) = 20 \log \left[\sum (nt_1 + mt_2 + ... + \xi t_x) / T \right]$$

n is the number of pulses of duration t1 m is the number of pulses of duration t2 ξ is the number of pulses of duration txT is the period of the pulse train or 100 ms if the pulse train length is greater than 100 ms

The worst case was when the EUT was attempting to communicate just after inserting the battery:

Duty Cycle Correction Factor = -7.82 dB

Pulse = 40.6 ms

Worst Case Between Pulses = 40.6 ms

40.6 ms / 100.00 ms = 0.4060

 $20 \log (0.4060) = -7.82 \text{ dB correction factor}$

FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch
Model: STLS2-ZWAVE5

8. CONCLUSIONS

The Single Toggle Switch, Model: STLS2-ZWAVE5, as tested, meets all of the **Class B** specification limits defined in FCC Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209 and 15.249.

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch

Single Toggle Switch
Model: STLS2-ZWAVE5

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

Model: STLS2-ZWAVE5

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025.

For the most up-to-date version of our scopes and certificates please visit http://celectronics.com/quality/scope/

Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

Test Site Number for Innovation, Science and Economic Development Canada: 2154A-3

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

APPENDIX B

MODIFICATIONS TO THE EUT

Report Number: **B80206D1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch
Model: STLS2-ZWAVE5

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.249 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

ADDITIONAL MODEL COVERED UNDER THIS REPORT

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch

Model: STLS2-ZWAVE5

ADDITIONAL MODEL COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

Single Toggle Switch Model: STLS2-ZWAVE5

S/N: N/A

There are no additional Models covered under this report.

Report Number: **B80206D1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Single Toggle Switch
Model: STLS2-ZWAVE5

APPENDIX D

DIAGRAMS AND CHARTS

Model: STLS2-ZWAVE5

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: LAYOUT OF THE SEMI -ANECHOIC TEST CHAMBER

COM-POWER AL-130

LOOP ANTENNA

S/N: 121090

CALIBRATION DATE: FEBRUARY 9, 2017

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-36.17	15.33
0.01	-35.86	15.64
0.02	-37.30	14.20
0.03	-36.58	14.92
0.04	-36.99	14.51
0.05	-37.66	13.84
0.06	-37.53	13.97
0.07	-37.64	13.86
0.08	-37.52	13.98
0.09	-37.62	13.88
0.1	-37.59	13.91
0.2	-37.79	13.71
0.3	-37.80	13.70
0.4	-37.70	13.80
0.5	-37.79	13.71
0.6	-37.79	13.71
0.7	-37.69	13.81
0.8	-37.49	14.01
0.9	-37.39	14.11
1	-37.39	14.11
2	-37.09	14.41
3	-37.09	14.41
4	-37.19	14.31
5	-36.98	14.52
6	-37.17	14.33
7	-37.05	14.45
8	-36.85	14.65
9	-36.84	14.66
10	-36.75	14.75
15	-37.16	14.34
20	-36.44	15.06
25	-37.88	13.62
30	-39.14	12.36

COM-POWER AC-220

COMBILOG ANTENNA

S/N: 61060

CALIBRATION DATE: JULY 27, 2017

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	23.80	200	14.10
35	24.00	250	15.30
40	24.70	300	17.70
45	22.90	350	17.70
50	22.10	400	19.00
60	17.60	450	21.30
70	12.70	500	21.00
80	11.20	550	22.30
90	13.10	600	23.40
100	14.40	650	22.90
120	15.30	700	24.60
125	15.00	750	24.50
140	12.80	800	25.40
150	16.50	850	26.40
160	12.90	900	27.20
175	14.30	950	27.80
180	14.50	1000	26.80

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: FEBRUARY 26, 2016

EDECLIENCH	T. C.T.O.D.	EDECLIENCE	TI CEOD
FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	23.93	10.0	39.33
1.5	25.54	10.5	39.64
2.0	28.09	11.0	41.04
2.5	30.21	11.5	44.29
3.0	30.15	12.0	41.22
3.5	30.17	12.5	41.50
4.0	31.90	13.0	41.62
4.5	33.51	13.5	40.63
5.0	33.87	14.0	39.94
5.5	35.08	14.5	41.84
6.0	34.81	15.0	42.69
6.5	34.26	15.5	39.03
7.0	36.33	16.0	39.07
7.5	37.03	16.5	41.40
8.0	37.56	17.0	43.18
8.5	40.07	17.5	47.01
9.0	38.92	18.0	46.48
9.5	38.21		

COM-POWER PAM-118A

PREAMPLIFIER

S/N: 551024

CALIBRATION DATE: MAY 12, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(ĞHz)	(dB)	(GHz)	(dB)
1.0	39.84	6.0	39.05
1.1	39.40	6.5	38.94
1.2	39.58	7.0	39.25
1.3	39.68	7.5	39.09
1.4	39.91	8.0	39.01
1.5	39.78	8.5	38.60
1.6	39.50	9.0	38.64
1.7	39.81	9.5	39.67
1.8	39.89	10.0	39.30
1.9	39.94	11.0	39.15
2.0	39.57	12.0	39.24
2.5	40.39	13.0	39.49
3.0	40.63	14.0	39.44
3.5	40.80	15.0	39.94
4.0	40.86	16.0	40.09
4.5	39.94	17.0	40.06
5.0	34.47	18.0	39.76
5.5	39.32		

FRONT VIEW

ECOLINK INTELLIGENT TECHNOLOGY, INC.
SINGLE TOGGLE SWITCH
MODEL: STLS2-ZWAVE5
FCC SUBPART B AND C – RADIATED EMISSIONS – BELOW 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

ECOLINK INTELLIGENT TECHNOLOGY, INC.
SINGLE TOGGLE SWITCH
MODEL: STLS2-ZWAVE5
FCC SUBPART B AND C – RADIATED EMISSIONS – BELOW 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

ECOLINK INTELLIGENT TECHNOLOGY, INC.
SINGLE TOGGLE SWITCH
MODEL: STLS2-ZWAVE5
FCC SUBPART B AND C – RADIATED EMISSIONS – ABOVE 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

ECOLINK INTELLIGENT TECHNOLOGY, INC.
SINGLE TOGGLE SWITCH
MODEL: STLS2-ZWAVE5
FCC SUBPART B AND C – RADIATED EMISSIONS – ABOVE 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONs

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

APPENDIX E

DATA SHEETS

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

RADIATED EMISSIONS DATA SHEETS

2/6/2018 2:58:54 PM

Sequence: Preliminary Scan

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

Title: Radiated Emissions - FCC Class B

File: Agilent - Pre-Scan - FCC Class B -Tx - 908.42 MHz - 30 MHz to 1000 MHz - 02-06-18.set

Operator: Kyle Fujimoto

EUT Type: Single Toggle Switch

EUT Condition: The EUT is continuosuly transmitting at 908.42 MHz - Y-Axis Worst Case

Comments: Company: Ecolink Intelligent Technology, Inc.

M/N: STLS2-ZWAVE5

Note: The Frequency at 908.42 MHz is from the transmitter and is subject to the limits of FCC 15.249 instead

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

Title: Radiated Emissions - FCC Class B
File: Agilent - Final Scan - FCC Class B - Tx - 908.42 MHz - 30 MHz to 1000 MHz - 02-02-18.set
Operator: Kyle Fujimoto
EUT Type: Single Toggle Switch
EUT Condition: The EUT is continuously transmitting at 908.42 MHz - Y-Axis Worst Case
Comments: Company: Ecolink Intelligent Technology, Inc.
M/N: STLS2-ZWAVE5
S/N: N/A

2/6/2018 3:17:14 PM Sequence: Final Measurements

Freq	Pol	(PEAK) EMI	(QP) EMI	(PEAK) Margin	(QP) Margin	Limit	Transducer	Cable	Ttbl Agl	Twr Ht
(MHz)		(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dBµV/m)	(dB)	(dB)	(dea)	(cm)
37.60	н	32.55	26.86	-7.45	-13.14	40.00	24.37	0.88	321.25	334.77
38.90	н	32.17	27.19	-7.83	-12.81	40.00	24.57	0.89	198.75	366.41
39.30	V	32.35	27.16	-7.65	-12.84	40.00	24.58	0.89	146.00	286.77
40.70	н	32.59	26.88	-7.41	-13.12	40.00	24.35	0.90	98.50	159.07
41.50	н	31.85	27.24	-8.15	-12.76	40.00	24.20	0.90	344.25	238.65

2/6/2018 3:37:25 PM

Sequence: Preliminary Scan

15.249 instead

(PEAK) EMI (H) (PEAK) EMI (V) Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

Title: Radiated Emissions - FCC Class B
File: Agilent - Pre-Scan - FCC Class B -Tx - 916 MHz - 30 MHz to 1000 MHz - 02-06-18.set
Operator: Kyle Fujimoto
EUT Type: Single Toggle Switch
EUT Condition: The EUT is continuosuly transmitting at 916 MHz - Y-Axis Worst Case
Comments: Company: Ecolink Intelligent Technology, Inc.
M/N: STLS2-ZWAVE5
S/N: N/A
Note: The Frequency at 916 MHz is from the transmitter and is subject to the limits of FCC

M/N: STLS2-ZWAVE5 S/N: N/A Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

Title: Radiated Emissions - FCC Class B
File: Agilent - Final Scan - FCC Class B -Tx - 916 MHz - 30 MHz to 1000 MHz - 02-02-18.set
Operator: Kyle Fujimoto
EUT Type: Single Toggle Switch
EUT Condition: The EUT is continuously transmitting at 916 MHz - Y-Axis Worst Case
Comments: Company: Ecolink Intelligent Technology, Inc.

2/6/2018 3:17:14 PM Sequence: Final Measurements

Freq	Pol	(PEAK) EMI	(QP) EMI	(PEAK) Margin	(QP) Margin	Limit	Transducer	Cable	Ttbl Agl	Twr Ht
(MHz)		(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dBµV/m)	(dB)	(dB)	(dea)	(cm)
37.60	Н	32.55	26.86	-7.45	-13.14	40.00	24.37	0.88	321.25	334.77
38.90	H	32.17	27.19	-7.83	-12.81	40.00	24.57	0.89	198.75	366.41
39.30	V	32.35	27.16	-7.65	-12.84	40.00	24.58	0.89	146.00	286.77
40.70	Н	32.59	26.88	-7.41	-13.12	40.00	24.35	0.90	98.50	159.07
41.50	Н	31.85	27.24	-8.15	-12.76	40.00	24.20	0.90	344.25	238.65

2/6/2018 4:46:04 PM

Sequence: Preliminary Scan

Report Number: B80206D1 FCC Part 15 Subpart B and FCC Section 15.249 Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

Title: Radiated Emissions - FCC Class B

File: Agilent - Pre-Scan - FCC Class B -Rx - 908.42 MHz - 30 MHz to 1000 MHz - 02-06-18.set

Operator: Kyle Fujimoto

EUT Type: Single Toggle Switch

EUT Condition: The EUT is continuosuly receiving at 908.42 MHz - Y-Axis Worst Case

(PEAK) EMI (V)

M/N: STLS2-ZWAVE5

Comments: Company: Ecolink Intelligent Technology, Inc.

S/N: N/A

Note: The Frequency at 908.42 MHz is from an accessory unit (and not the EUT) that was transmitting at 908.42 MHz inside the chamber so that the EUT could receiver at 908.42 MHz.

S/N: N/A

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

Title: Radiated Emissions - FCC Class B
File: Agilent - Final Scan - FCC Class B -Rx - 908.42 MHz - 30 MHz to 1000 MHz - 02-06-18.set
Operator: Kyle Fujimoto
EUT Type: Single Toggle Switch
EUT Condition: The EUT is continuously receiving at 908.42 MHz - Y-Axis Worst Case
Comments: Company: Ecolink Intelligent Technology, Inc.
M/N: STLS2-ZWAVES

2/6/2018 4:54:21 PM Sequence: Final Measurements

Freq	Pol	(PEAK) EMI	(QP) EMI	(PEAK) Margin	(QP) Margin	Limit	Transducer	Cable	Ttbl Agl	Twr Ht
(MHz)		(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dBµV/m)	(dB)	(dB)	(dea)	(cm)
32.90	Н	33.22	26.59	-6.78	-13.41	40.00	23.93	0.83	236.00	175.31
34.60	V	31.90	26.66	-8.10	-13.34	40.00	23.99	0.85	284.75	158.95
36.40	V	31.65	26.70	-8.35	-13.30	40.00	24.18	0.87	189.75	127.55
38.50	Н	32.59	27.22	-7.41	-12.78	40.00	24.47	0.88	300.25	175.01
41.10	н	32.21	26.68	-7.79	-13.32	40.00	24.24	0.90	257.00	143.25
42.20	Н	31.66	26.32	-8.34	-13.68	40.00	23.93	0.90	24.75	207.07

2/6/2018 5:15:56 PM

Sequence: Preliminary Scan

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

Title: Radiated Emissions - FCC Class B

File: Agilent - Pre-Scan - FCC Class B -Rx - 916 MHz - 30 MHz to 1000 MHz - 02-06-18.set

Operator: Kyle Fujimoto

EUT Type: Single Toggle Switch

EUT Condition: The EUT is continuosuly receiving at 908.42 MHz - Y-Axis Worst Case

Comments: Company: Ecolink Intelligent Technology, Inc.

M/N: STLS2-ZWAVE5

S/N: N/A

Note: The Frequency at 916 MHz is from an accessory unit (and not the EUT) that was transmitting at 916 MHz inside the chamber so that the EUT could receiver at 908.42 MHz.

Report Number: B80206D1 FCC Part 15 Subpart B and FCC Section 15.249 Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

Title: Radiated Emissions - FCC Class B File: Agilent - Final Scan - FCC Class B -Rx - 916 MHz - 30 MHz to 1000 MHz - 02-06-18.set Operator: Kyle Fujimoto

Operator: Nyle Pullimoto
EUT Type: Single Toggle Switch
EUT Condition: The EUT is continuously receiving at 916 MHz - Y-Axis Worst Case
Comments: Company: Ecolink Intelligent Technology, Inc.
M/N: STLS2-ZWAVES

S/N: N/A

2/6/2018 5:26:12 PM Sequence: Final Measurements

Freq	Pol	(PEAK) EMI	(QP) EMI	(PEAK) Margin	(QP) Margin	Limit	Transducer	Cable	Ttbl Agl	Twr Ht
(MHz)		(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dBµV/m)	(dB)	(dB)	(dea)	(cm)
30.70	Н	32.10	26.55	-7.90	-13.45	40.00	23.83	0.81	110.25	334.29
31.50	Н	31.80	26.61	-8.20	-13.39	40.00	23.87	0.82	360.00	334.41
32.90	Н	31.78	26.60	-8.22	-13.40	40.00	23.92	0.83	70.75	159.07
33.90	H	32.74	26.59	-7.26	-13.41	40.00	23.95	0.84	338.75	350.17
37.60	V	31.80	26.96	-8.20	-13.04	40.00	24.38	0.88	287.75	318.17
43.30	H	31.86	25.75	-8.14	-14.25	40.00	23.46	0.90	279.25	366.11

Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/07/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Fundamental Low Channel

					<u> </u>	Ι		
Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
908.42	84.33	V	113.97	-29.64	Peak	234.00	171.13	X-Axis
908.42	83.97	V	93.97	-10.00	QP	234.00	171.13	Vertical Polarization
908.42	92.63	V	113.97	-21.34	Peak	259.00	115.55	Y-Axis
908.42	92.45	V	93.97	-1.52	QP	259.00	115.55	Vertical Polarization
908.42	86.35	V	113.97	-27.62	Peak	251.75	210.00	Z-Axis
908.42	86.15	V	93.97	-7.82	QP	251.75	210.00	Vertical Polarization
908.42	94.04	Н	113.97	-19.93	Peak	290.50	146.23	X-Axis
908.42	93.91	Н	93.97	-0.06	QP	290.50	146.23	Horizontal Polarization
908.42	80.11	Н	113.97	-33.86	Peak	310.75	113.40	Y-Axis
908.42	79.90	H	93.97	-14.07	QP	310.75	113.40	Horizontal Polarization
908.42	90.61	Н	113.97	-23.36	Peak	169.00	147.37	Z-Axis
908.42	90.56	H	93.97	-3.41	QP	169.00	147.37	Horizontal Polarization

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc.

Single Toggle Switch

Model: STLS2-ZWAVE5

Date: 02/07/2018

Lab: D

Tested By: Kyle Fujimoto

Fundamental High Channel

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
916.00	83.56	V	113.97	-30.41	Peak	235.75	102.58	X-Axis
916.00	81.04	V	93.97	-12.93	QP	235.75	102.58	Vertical Polarization
916.00	92.85	V	113.97	-21.12	Peak	286.75	138.35	Y-Axis
916.00	92.69	V	93.97	-1.28	QP	286.75	138.35	Vertical Polarization
916.00	87.36	V	113.97	-26.61	Peak	66.75	133.88	Z-Axis
916.00	87.17	V	93.97	-6.80	QP	66.75	133.88	Vertical Polarization
916.00	93.58	Н	113.97	-20.39	Peak	285.75	144.62	X-Axis
916.00	93.23	Н	93.97	-0.74	QP	285.75	144.62	Horizontal Polarization
916.00	78.85	Н	113.97	-35.12	Peak	219.25	182.77	Y-Axis
916.00	78.56	Н	93.97	-15.41	QP	219.25	182.77	Horizontal Polarization
916.00	89.47	Н	113.97	-24.50	Peak	200.75	152.98	Z-Axis
916.00	89.09	Н	93.97	-4.88	QP	200.75	152.98	Horizontal Polarization

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - X-Axis

Eroa	Level	Pol			Peak / QP /	Table	Ant.	
Freq. (MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	Angle (deg)	Height (cm)	Comments
1816.84	34.21	V	73.97	-39.76	Peak	214.00	249.99	
1816.84	26.38	V	53.97	-27.59	Avg	214.00	249.99	
2725.26	50.87	V	73.97	-23.10	Peak	233.75	111.13	
2725.26	43.04	V	53.97	-10.93	Avg	233.75	111.13	
3633.68	41.09	V	73.97	-32.88	Peak	76.00	175.01	
3633.68	33.26	V	53.97	-20.71	Avg	76.00	175.01	
4542.10	48.67	V	73.97	-25.30	Peak	240.25	174.77	
4542.10	40.84	V	53.97	-13.13	Avg	240.25	174.77	
5450.52	43.53	V	73.97	-30.44	Peak	168.25	174.77	
5450.52	35.70	V	53.97	-18.27	Avg	168.25	174.77	
6358.94	41.58	V	73.97	-32.39	Peak	208.50	238.47	
6358.94	33.75	V	53.97	-20.22	Avg	208.50	238.47	
7267.36	44.68	V	73.97	-29.29	Peak	276.50	222.53	
7267.36	36.85	V	53.97	-17.12	Avg	276.50	222.53	
0475.75	40.70		70.07	07.11	D :	05.00	200.05	
8175.78	46.56	V	73.97	-27.41	Peak	65.00	222.65	
8175.78	38.73	V	53.97	-15.24	Avg	65.00	222.65	
0004.00	45.00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	70.07	00.47	Deal	000.75	404.04	
9084.20	45.80	V	73.97	-28.17	Peak	223.75	191.01	
9084.20	37.97	V	53.97	-16.00	Avg	223.75	191.01	

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1816.84	34.59	V	73.97	-39.38	Peak	104.00	190.83	
1816.84	26.76	V	53.97	-27.21	Avg	104.00	190.83	
2725.26	49.36	V	73.97	-24.61	Peak	344.00	127.37	
2725.26	41.53	V	53.97	-12.44	Avg	344.00	127.37	
3633.68	38.69	V	73.97	-35.28	Peak	273.75	206.59	
3633.68	30.86	V	53.97	-23.11	Avg	273.75	206.59	
4542.10	44.90	V	73.97	-29.07	Peak	239.50	127.19	
4542.10	37.07	V	53.97	-16.90	Avg	239.50	127.19	
5450.52	42.86	V	73.97	-31.11	Peak	57.00	111.37	
5450.52	35.03	V	53.97	-18.94	Avg	57.00	111.37	
6358.94	42.40	V	73.97	-31.57	Peak	206.25	159.11	
6358.94	34.57	V	53.97	-19.40	Avg	206.25	159.11	
7267.36	45.20	V	73.97	-28.77	Peak	44.50	249.11	
7267.36	37.37	V	53.97	-16.60	Avg	44.50	249.11	
8175.78	46.79	V	73.97	-27.18	Peak	222.00	111.19	
8175.78	38.96	V	53.97	-15.01	Avg	222.00	111.19	
9084.20	45.90	V	73.97	-28.07	Peak	0.25	250.00	
9084.20	38.07	V	53.97	-15.90	Avg	0.25	250.00	

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch

Model: STLS2-ZWAVE5

Lab: D

Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - Z-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1816.84	35.30	V	73.97	-38.67	Peak	276.00	111.31	
1816.84	27.47	V	53.97	-26.50	Avg	276.00	111.31	
2725.26	51.30	V	73.97	-22.67	Peak	2.25	174.83	
2725.26	43.47	V	53.97	-10.50	Avg	2.25	174.83	
2022.00	41.30	V	70.07	22.67	Dools	321.50	127.25	
3633.68 3633.68	33.47	V	73.97 53.97	-32.67 -20.50	Peak Avg	321.50	127.25	
4542.10	47.29	V	73.97	-26.68	Peak	305.00	174.83	
4542.10	39.46	V	53.97	-14.51	Avg	305.00	174.83	
5450.52	43.04	V	73.97	-30.93	Peak	103.00	127.37	
5450.52	35.21	V	53.97	-18.76	Avg	103.00	127.37	
6358.94	42.63	V	73.97	-31.34	Peak	327.25	143.07	
6358.94	34.80	V	53.97	-19.17	Avg	327.25	143.07	
7267.36	45.70	V	73.97	-28.27	Peak	139.75	175.19	
7267.36	37.87	V	53.97	-16.10	Avg	139.75	175.19	
8175.78	46.27	V	73.97	-27.70	Peak	300.00	190.89	
8175.78	38.44	V	53.97	-15.53	Avg	300.00	190.89	
9084.20	46.34	V	73.97	-27.63	Peak	42.25	111.19	
9084.20	38.51	V	53.97	-15.46	Avg	42.25	111.19	

Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - X-Axis

					Peak /	Table	Ant.	
Freq.	Level	Pol	1 * *4	N	QP/	Angle	Height	0
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
1816.84	35.00	Н	73.97	-38.97	Peak	321.75	207.01	
1816.84	27.17	Н	53.97	-26.80	Avg	321.75	207.01	
2725.26	46.74	Н	73.97	-27.23	Peak	26.00	111.37	
2725.26	38.91	Н	53.97	-15.06	Avg	26.00	111.37	
3633.68	38.76	Н	73.97	-35.21	Peak	269.25	159.19	
3633.68	30.93	Н	53.97	-23.04	Avg	269.25	159.19	
4542.10	46.05	Н	73.97	-27.92	Peak	300.00	222.71	
4542.10	38.22	Ι	53.97	-15.75	Avg	300.00	222.71	
5450.52	43.37	Н	73.97	-30.60	Peak	46.25	238.65	
5450.52	35.54	Н	53.97	-18.43	Avg	46.25	238.65	
6358.94	41.65	Н	73.97	-32.32	Peak	261.75	238.71	
6358.94	33.82	Н	53.97	-20.15	Avg	261.75	238.71	
					_			
7267.36	45.37	Н	73.97	-28.60	Peak	250.00	159.19	
7267.36	37.54	Н	53.97	-16.43	Avg	250.00	159.19	
					.			
8175.78	49.44	Н	73.97	-24.53	Peak	107.25	159.19	
8175.78	41.61	Н	53.97	-12.36	Avg	107.25	159.19	
					.			
9084.20	46.53	Н	73.97	-27.44	Peak	357.25	222.83	
9084.20	38.70	Н	53.97	-15.27	Avg	357.25	222.83	
					.			

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - Y-Axis

			1			1	1	
Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1816.84	35.39	H	73.97	-38.58	Peak	87.50	175.13	
1816.84	27.56	Н	53.97	-26.41	Avg	87.50	175.13	
2725.26	51.19	Н	73.97	-22.78	Peak	341.25	143.19	
2725.26	43.36	Н	53.97	-10.61	Avg	341.25	143.19	
3633.68	41.36	Н	73.97	-32.61	Peak	20.00	158.95	
3633.68	33.53	Н	53.97	-20.44	Avg	20.00	158.95	
4542.10	47.43	Н	73.97	-26.54	Peak	0.25	111.25	
4542.10	39.60	Н	53.97	-14.37	Avg	0.25	111.25	
					_			
5450.52	43.98	Н	73.97	-29.99	Peak	189.25	175.01	
5450.52	36.15	Н	53.97	-17.82	Avg	189.25	175.01	
6358.94	41.79	Н	73.97	-32.18	Peak	141.25	175.13	
6358.94	33.96	H	53.97	-20.01	Avg	141.25	175.13	
0000.01	00.00		00.07	20.01	7.149	111.20	170.10	
7267.36	44.42	Н	73.97	-29.55	Peak	302.75	206.71	
7267.36	36.59	Н	53.97	-17.38	Avg	302.75	206.71	
8175.78	50.57	Н	73.97	-23.40	Peak	300.00	127.13	
8175.78	42.74	Н	53.97	-11.23	Avg	300.00	127.13	
9084.20	46.25	Н	73.97	-27.72	Peak	300.00	250.00	
9084.20	38.42	Н	53.97	-15.55	Avg	300.00	250.00	

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - Z-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1816.84	34.87	Н	73.97	-39.10	Peak	255.50	207.07	
1816.84	27.04	Н	53.97	-26.93	Avg	255.50	207.07	
2725.26	49.30	Н	73.97	-24.67	Peak	9.25	174.80	
2725.26	41.47	Н	53.97	-12.50	Avg	9.25	174.80	
3633.68	37.81	Н	73.97	-36.16	Peak	145.50	111.37	
3633.68	29.98	Н	53.97	-23.99	Avg	145.50	111.37	
4542.10	45.62	Н	73.97	-28.35	Peak	319.50	127.25	
4542.10	37.79	Н	53.97	-16.18	Avg	319.50	127.25	
5450.52	43.07	Н	73.97	-30.90	Peak	102.00	250.00	
5450.52	35.24	Н	53.97	-18.73	Avg	102.00	250.00	
6358.94	41.86	Н	73.97	-32.11	Peak	358.25	238.59	
6358.94	34.03	Н	53.97	-19.94	Avg	358.25	238.59	
7267.36	45.10	Н	73.97	-28.87	Peak	20.50	174.71	
7267.36	37.27	Н	53.97	-16.70	Avg	20.50	174.71	
8175.78	48.68	Н	73.97	-25.29	Peak	290.75	127.19	
8175.78	40.85	Н	53.97	-13.12	Avg	290.75	127.19	
9084.20	46.24	Н	73.97	-27.73	Peak	110.25	191.13	
9084.20	38.41	Н	53.97	-15.56	Avg	110.25	191.13	

Single Toggle Switch Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1832.00	33.21	V	73.97	-40.76	Peak	40.75	190.71	
1832.00	25.38	V	53.97	-28.59	Avg	40.75	190.71	
2748.00	45.61	V	73.97	-28.36	Peak	56.00	143.07	
2748.00	37.78	V	53.97	-16.19	Avg	56.00	143.07	
3664.00	37.52	V	73.97	-36.45	Peak	95.50	175.01	
3664.00	29.69	V	53.97	-24.28	Avg	95.50	175.01	
4580.00	40.04	V	73.97	-33.93	Peak	273.75	238.59	
4580.00	32.21	V	53.97	-21.76	Avg	273.75	238.59	
5496.00	42.98	V	73.97	-30.99	Peak	215.25	174.89	7
5496.00	35.15	V	53.97	-18.82	Avg	215.25	174.89	
6412.00	41.02	V	73.97	-32.95	Peak	51.50	238.59	
6412.00	33.19	V	53.97	-32.95	Avg	51.50	238.59	
0412.00	33.19	v	55.91	-20.76	Avg	31.30	230.39	
7328.00	47.67	V	73.97	-26.30	Peak	65.25	127.37	
7328.00	39.84	V	53.97	-14.13	Avg	65.25	127.37	
8244.00	49.06	V	73.97	-24.91	Peak	81.50	249.95	
8244.00	41.23	V	53.97	-12.74	Avg	81.50	249.95	
9160.00	44.97	V	73.97	-29.00	Peak	164.50	159.25	
9160.00	37.14	V	53.97	-16.83	Avg	164.50	159.25	

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1832.00	33.07	\ \ \	73.97	-40.90	Peak	310.50	110.95	
1832.00	25.24	V	53.97	-28.73	Avg	310.50	110.95	
700=100		-				0.70100		
2748.00	48.89	V	73.97	-25.08	Peak	311.75	111.19	
2748.00	41.06	V	53.97	-12.91	Avg	311.75	111.19	
3664.00	37.94	V	73.97	-36.03	Peak	239.50	174.95	
3664.00	30.11	V	53.97	-23.86	Avg	239.50	174.95	
4580.00	41.83	V	73.97	-32.14	Peak	134.50	127.31	
4580.00	34.00	V	53.97	-19.97	Avg	134.50	127.31	
5496.00	42.90	V	73.97	-31.07	Peak	223.50	111.37	
5496.00	35.07	V	53.97	-18.90	Avg	223.50	111.37	
0.440.00	44.40		70.07	00.04		405.05	0.40.00	
6412.00	41.13	V	73.97	-32.84	Peak	165.25	249.99	
6412.00	33.30	V	53.97	-20.67	Avg	165.25	249.99	
7328.00	44.44	V	73.97	-29.53	Peak	359.75	143.13	
7328.00	36.61	V	53.97	-17.36		359.75	143.13	
1320.00	30.01	V	55.81	-17.50	Avg	338.13	140.10	
8244.00	48.55	V	73.97	-25.42	Peak	183.75	158.89	
8244.00	40.72	V	53.97	-13.25	Avg	183.75	158.89	
		•		13.25			123.00	
9160.00	45.62	V	73.97	-28.35	Peak	248.00	159.01	
9160.00	37.79	V	53.97	-16.18	Avg	248.00	159.01	

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch

Model: STLS2-ZWAVE5

Lab: D

Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - Z-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1832.00	34.28	V	73.97	-39.69	Peak	100.25	250.00	
1832.00	26.45	V	53.97	-27.52	Avg	100.25	250.00	
2748.00	47.46	V	73.97	-26.51	Peak	170.50	159.19	
2748.00	39.63	V	53.97	-14.34	Avg	170.50	159.19	
3664.00	45.57	V	73.97	-28.40	Peak	174.25	143.13	
3664.00	37.74	V	53.97	-16.23	Avg	174.25	143.13	
4580.00	43.20	V	73.97	-30.77	Peak	177.06	175.07	
4580.00	35.37	V	53.97	-18.60	Avg	177.06	175.07	
5496.00	43.19	V	73.97	-30.78	Peak	325.00	249.95	
5496.00	35.36	V	53.97	-18.61	Avg	325.00	249.95	
6412.00	41.59	V	73.97	-32.38	Peak	86.25	207.01	
6412.00	33.76	V	53.97	-20.21	Avg	86.25	207.01	
7328.00	47.05	V	73.97	-26.92	Peak	118.50	111.07	
7328.00	39.22	V	53.97	-14.75	Avg	118.50	111.07	
8244.00	45.79	V	73.97	-28.18	Peak	201.50	222.53	
8244.00	37.96	V	53.97	-16.01	Avg	201.50	222.53	
9160.00	45.90	V	73.97	-28.07	Peak	83.25	222.71	
9160.00	38.07	V	53.97	-15.90	Avg	83.25	222.71	

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1832.00	39.63	H	73.97	-34.34	Peak	150.00	238.77	
1832.00	31.80	Н	53.97	-22.17	Avg	150.00	238.77	
2748.00	49.90	Н	73.97	-24.07	Peak	300.00	206.89	
2748.00	42.07	Н	53.97	-11.90	Avg	300.00	206.89	
3664.00	46.79	Н	73.97	-27.18	Peak	305.25	175.07	
3664.00	38.96	Ι	53.97	-15.01	Avg	305.25	175.07	
4580.00	41.16	Ι	73.97	-32.81	Peak	89.75	174.29	
4580.00	33.33	Н	53.97	-20.64	Avg	89.75	174.29	
5496.00	44.22	Н	73.97	-29.75	Peak	124.00	175.07	
5496.00	36.39	Н	53.97	-17.58	Avg	124.00	175.07	
6412.00	42.41	Н	73.97	-31.56	Peak	230.50	175.07	
6412.00	34.58	Н	53.97	-19.39	Avg	230.50	175.07	
7328.00	48.74	Н	73.97	-25.23	Peak	239.25	127.07	
7328.00	40.91	Н	53.97	-13.06	Avg	239.25	127.07	
8244.00	45.77	Н	73.97	-28.20	Peak	33.25	174.77	
8244.00	37.94	Н	53.97	-16.03	Avg	33.25	174.77	
9160.00	45.97	H	73.97	-28.00	Peak	139.50	159.07	
9160.00	38.14	Н	53.97	-15.83	Avg	139.50	159.07	

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc.

Single Toggle Switch

Model: STLS2-ZWAVE5

Date: 02/05/2018

Lab: D

Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1832.00	38.49	Η	73.97	-35.48	Peak	138.25	222.71	
1832.00	30.66	Н	53.97	-23.31	Avg	138.25	222.71	
2748.00	50.79	Н	73.97	-23.18	Peak	156.25	206.59	
2748.00	42.96	Н	53.97	-11.01	Avg	156.25	206.59	
3664.00	50.56	Н	73.97	-23.41	Peak	187.75	158.95	
3664.00	42.73	Н	53.97	-11.24	Avg	187.75	158.95	
4580.00	46.91	Н	73.97	-27.06	Peak	152.00	159.07	
4580.00	39.08	Н	53.97	-14.89	Avg	152.00	159.07	
5496.00	44.21	Н	73.97	-29.76	Peak	129.25	127.37	
5496.00	36.38	Н	53.97	-17.59	Avg	129.25	127.37	
6412.00	43.97	Н	73.97	-30.00	Peak	110.50	159.19	
6412.00	36.14	Н	53.97	-17.83	Avg	110.50	159.19	
7328.00	52.37	Н	73.97	-21.60	Peak	143.00	159.01	
7328.00	44.54	Н	53.97	-9.43	Avg	143.00	159.01	
8244.00	45.98	Н	73.97	-27.99	Peak	256.75	174.95	
8244.00	38.15	Н	53.97	-15.82	Avg	256.75	174.95	
0400.00	40.00		70.07	07.05	<u> </u>	4.47.00	101.01	
9160.00	46.92	H	73.97	-27.05	Peak	147.00	191.01	
9160.00	39.09	Н	53.97	-14.88	Avg	147.00	191.01	

Single Toggle Switch
Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - Z-Axis

					Peak /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
1832.00	36.38	Н	73.97	-37.59	Peak	118.75	111.43	
1832.00	28.55	Н	53.97	-25.42	Avg	118.75	111.43	
2748.00	48.92	Н	73.97	-25.05	Peak	177.50	222.83	
2748.00	41.09	Н	53.97	-12.88	Avg	177.50	222.83	
3664.00	45.59	Н	73.97	-28.38	Peak	116.50	111.43	
3664.00	37.76	Н	53.97	-16.21	Avg	116.50	111.43	
4580.00	40.69	Н	73.97	-33.28	Peak	153.75	111.49	
4580.00	32.86	Н	53.97	-21.11	Avg	153.75	111.49	
5496.00	45.30	Н	73.97	-28.67	Peak	185.00	174.89	
5496.00	37.47	Н	53.97	-16.50	Avg	185.00	174.89	
6412.00	42.47	Н	73.97	-31.50	Peak	209.50	207.61	
6412.00	34.64	Н	53.97	-19.33	Avg	209.50	207.61	
7328.00	48.16	Н	73.97	-25.81	Peak	202.00	174.95	
7328.00	40.33	Н	53.97	-13.64	Avg	202.00	174.95	
8244.00	46.35	Н	73.97	-27.62	Peak	90.75	222.65	
8244.00	38.52	Н	53.97	-15.45	Avg	90.75	222.65	
9160.00	46.26	Н	73.97	-27.71	Peak	337.25	196.77	
9160.00	38.43	Н	53.97	-15.54	Avg	337.25	196.77	

Model: STLS2-ZWAVE5

FCC Class B and FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/05/2018

Single Toggle Switch Lab: D

Model: DTLS2-ZWAVE5 Tested By: Kyle Fujimoto

Non Harmonic Emissions from the Tx and Digital Portion - 9 kHz to 30 MHz Non Harmonic Emissions from the Tx and Digital Portion - 1 GHz to 9.3 GHz

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
								No Emissions Detected
								from 9 kHz to 30 MHz
								for the digital portion
								of the EUT
							2	
								from 9 kHz to 30 MHz
								for the Non-Harmonic Emissions
								of the Transmitter for the EUT
							1011	
								No Emissions Detected
								from 1 GHz to 9.3 GHz
								for the digital portion
					n-8.2 (1)			of the EUT
								No Emissions Detected
								from 1 GHz to 9.3 GHz
								for the Non-Harmonic Emissions
								of the Transmitter for the EUT
								Investigated in the X-Axis,
								Y-Axis, and Z-Axis

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

BAND EDGES DATA SHEETS

Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc. Date: 02/07/2018

Single Toggle Switch Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Band Edges

							_	
Freq.	Level	Pol			Peak / QP /	Table Angle	Ant. Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
908.42	94.04	Н	113.97	-19.93	Peak	290.50	146.23	Fundamental - Low Ch.
908.42	93.91	Н	93.97	-0.06	QP	290.50	146.23	X-Axis - Worst Case
901.22	36.29	Ι	66.00	-29.71	Peak	290.50	146.23	Band Edge
901.22	33.15	Н	46.00	-12.85	QP	290.50	146.23	X-Axis - Worst Case
908.42	92.63	V	113.97	-21.34	Peak	259.00	115.55	Fundamental - Low Ch.
908.42	92.45	V	93.97	-1.52	QP	259.00	115.55	Y-Axis - Worst Case
901.22	32.50	V	66.00	-33.50	Peak	259.00	115.55	Band Edge
901.22	30.80	V	46.00	-15.20	QP	259.00	115.55	Y-Axis - Worst Case
						Total Delivery of the Control of the		

Model: STLS2-ZWAVE5

FCC 15.249

Ecolink Intelligent Technology, Inc.

Single Toggle Switch

Date: 02/07/2018

Lab: D

Model: STLS2-ZWAVE5 Tested By: Kyle Fujimoto

Band Edges

		l			l		l	_
_					Peak /	Table	Ant.	
Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	QP / Avg	Angle (deg)	Height (cm)	Comments
916.00	93.58	H	113.97	-20.39	Peak	285.75	144.62	Fundamental - High Ch.
916.00	93.23	H	93.97	-0.74	QP	285.75	144.62	X-Axis - Worst Case
010.00	00.20	''	00.07	0.7 1	<u> </u>	200.70	111.02	A AXIS WOIST OUSC
928.00	33.58	Н	66.00	-32.42	Peak	285.75	144.62	Band Edge
928.00	31.60	Н	46.00	-14.40	QP	285.75	144.62	X-Axis - Worst Case
916.00	92.85	V	113.97	-21.12	Peak	286.75	138.35	Fundamental - High Ch.
916.00	92.69	V	93.97	-1.28	QP	286.75	138.35	Y-Axis - Worst Case
928.00	30.84	V	66.00	-35.16	Peak	286.75	138.35	Band Edge
928.00	28.70	V	46.00	-17.30	QP	286.75	138.35	Y-Axis - Worst Case

Model: STLS2-ZWAVE5

Band Edge - 908.42 MHz - Vertical - Y-Axis - Worst Case

Band Edge - 908.42 MHz - Horizontal - X-Axis - Worst Case

Band Edge - 916 MHz - Horizontal - X-Axis - Worst Case

Band Edge - 916 MHz - Horizontal - X-Axis - Worst Case

Report Number: **B80206D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

Single Toggle Switch Model: STLS2-ZWAVE5

DUTY CYCLE DATA SHEETS

Pulse = 40.6 ms

Plot Showing that the pulses repeats at a worst case of 40.60 ms

Total Duty Cycle = 40.6 ms / 100.00 ms = 40.60 % Duty Cycle

The Peak to Average Radio is -7.83 dB