Transfer Learning

Deep Learning Architectures

Learned Features

Low-level generic features (edges, blobs, etc.)

Mid-level features: combinations of edges and other features that are more specific to the training dataset

High-level features that are very specific to the training dataset

Utility of Learned Features for other Applications

How about the Transferability of Features

Extracted at Later Layers?

How to Reuse Features Learned for new Applications

- Use a trained network without any changes (limited to the same or very similar domains)
- Using a pretrained network as a feature extractor and train the classifier
- Fine-tune the feature extractor and the learn the classifier

Which one Should be used?

- The target dataset is small and similar to the source dataset.
- The target dataset is large and similar to the source dataset.
- The target dataset is small and very different from the source dataset.
- The target dataset is large and very different from the source dataset.

taiget uata	and new datasets	
Small	Similar	Pretrained network as a feature extractor
Large	Similar	Fine-tune through the full network
Small	Very different	Fine-tune from activations earlier in the network

Approach

Fine-tune through the entire network

Similarity of the original

and new datasets

Very different

Size of the

target data

Large