Aussagenlogik

Eine **Aussage** ist ein Satz oder eine Formel, der man genau einen Wahrheitswert zuordnen kann (w: wahr, f: falsch). Befehle oder Fragen sind keine Aussagen.

Statt w und f nutzen wir auch 1 und 0.

Mit Junktoren können wir zusammengesetzte Aussagen bilden.

- Negation \neg nicht
- Konjunktion \wedge und
- Disjunktion \vee oder (nicht ausschließend)
- Kontravalenz \oplus xor entweder...oder ausschließendes oder $\dot{\vee}$, \veebar
- Implikation \Rightarrow wenn...dann
- Äquivalenz ⇔ genau dann, wenn

Wahrheitstafeln

p	q	$p \wedge q$	$p \lor q$	$p \oplus q$	$p \Rightarrow q$	$p \Leftrightarrow q$	$\neg p$
0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	1
1	0	0	1	1	0	0	0
1	1	1	1	0	1	1	0

Gesetze der Aussagenlogik

$p\Leftrightarrow \lnot(\lnot p)$	doppelte Negation
$\begin{array}{l} p \wedge q \Leftrightarrow p \wedge q \\ p \vee q \Leftrightarrow p \vee q \end{array}$	Kommutativgesetze
$ \begin{array}{l} (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r) \\ (p \vee q) \vee r \Leftrightarrow p \vee (q \vee r) \end{array} $	Assoziativgesetze
$ \begin{array}{l} (p \wedge q) \vee r \Leftrightarrow (p \vee r) \wedge (q \vee r) \\ (p \vee q) \wedge r \Leftrightarrow (p \wedge r) \vee (q \wedge r) \end{array} $	Distributivgesetze
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$ $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	DeMorgansche Regeln
$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$	Kontrapositionsregel
$\begin{array}{l} p \wedge p \Leftrightarrow p \\ p \vee p \Leftrightarrow p \\ p \wedge \neg p \Leftrightarrow 0 \\ p \vee \neg p \Leftrightarrow 1 \end{array}$	Sonstige

 $[\]neg$ bindet stärker als \vee und \wedge und diese binden stärker als \Rightarrow , \Leftrightarrow .

Prädikatenlogik

 $\forall x \in X : p(x)$ Für alle x aus X ist die Aussage p(x) wahr. $\exists x \in X : p(x)$ Es gibt mindestens ein x aus X für das die Aussage p(x) wahr ist.

Prädikatenlogische Verneinungsregeln

$$\neg(\forall x \in X : p(x)) \Leftrightarrow \exists x \in X : \neg p(x)$$
$$\neg(\exists x \in X : p(x)) \Leftrightarrow \forall x \in X : \neg p(x)$$

Quantoren können auch hintereinander stehen:

```
\neg(\forall x \in X \,\exists y \in Y : p(x,y)) \Leftrightarrow \exists x \in X \,\forall y \in Y : \neg p(x,y)
```