11 OPERACIJSKI OJAČEVALNIK

Tranzistorje smo v preteklosti uporabljali kot ojačevalnike ali celo v nekih bolj kompleksnih krmilnih elementih. Te funkcije danes pretežno opravljamo z integriranimi vezji kot so operacijski ojačevalniki, ker so precej bolj enostavni za uporabo. Z uporabo operacijskega ojačevalnika in le nekaj dodatnih elementov lahko z njimi sestavimo vrsto različnih vezij, kot so različni ojačevalniki, pretvorniki, sita, seštevalniki, odštevalniki množilniki itd.

11.1 KOMPARATOR NAPETOSTI

Najbolj preprosta vezava operacijskega ojačevalnika je komparator napetosti. To vezje primerja vhodni napetosti. Torej napetosti, ki sta na invertirajočem (označen z "-") in neinvertirajočem (označen s "+") priključku komparatorja. Če je napetost na neinvertirajočem vhodu večja, bo vezje na izhodnem opiključku imelo najvišji možen napetostni potencial - **zgornje nasičenje**. Če pa je situacija obratna torej, da je na invertirajočem vhodu večja napetost, pa bo vezje imelo na izhodu **spodnje nasičenje**.

NAPAJANJE OPERACIJSKIH OJAČEVALNIKOV

Pri tako enostavnih vezjih navadno lahko uporabljamo kar baterijsko napajanje (9V ali 4.5V), vendar moramo biti pri operacijskih ojačevalnikih bolj pozorni. V taki situaciji (uni- polarno napajanje = le dva potenciala eden za 9v in drugi za 0 V) lahko uporabljamo z o.o. z oznako 358 ali temu podobnimi. Operacijski ojačevalnik z oznako 741 pa lahko delujejo tudi z bipolarnim napajanjem (npr.: +5V, -5V in 0V). Napajalnih napetostnih potencialov pogosto v električne sheme ne rišemo, saj so načeloma določene in bi zmanjševale preglednost shem.

IZHODNA NAPETOST PRI KOMPARATORJU NAPETOSTI

Izhodna napetost komparatoja je vedno v enem nasičenju (v zgornjem ali spodnjem). To pomeni, da je izhodna napetost odvisna od napajalne napetosti. Omeniti pa moramo, da se o.o. razlikujejo tudi v tej lastnosti, saj nekateri od njih lahko izhodno napetost (=nasičenje) čisto približajo napajalni napetosti; medtem, ko je pri drugih le-ta lahko različna tudi do 1.5 V.

11.1.1 NALOGA: VKLOP ŽARNICE

Sestavite elektronsko vezje, ki bo vključilo žarnico, ko bomo na to vezje posvetili z drugim svetlobnim telesom. Tako vezje bo delovalo kot navadna sveča, ki jo moramo prižgati z vžigalico. To vezje lahko razdelimo na štiri osnovne sestavne dele, ki jih najdete v regulacijskih vezjih:

- 1. Senzorski del: v katerem imamo senzor osvetljenosti za detekcijo tujega svetlobnega telesa.
- 2. Nastavitveni člen: s katerim nastavimo referenčno napetost na katero se ozira primerjalna

dr. David Rihtaršič

logična enota.

- 3. Komparator napetosti: ki bo primerjal napetost senzorja z napetostjo nastavitvenega člena.
- 4. Močnostna elektronika: ki bo na podlagi izhodnega napetostnega potenciala komparatorja poskrbela za vklop žarnice.

Vsak sestavni del najprej načrtujte in ga nato realizirajte v fizični obliki. Narišite sheme vsakega sestavnega dela posebej, ga preizkusite in povežite v celoto.

dr. David Rihtaršič