NOTES FOR ALGEBRAIC GEOMETRY 1

LIN CHEN

Contents

0. Introduction: why schemes?	2
Part I. (Pre)sheaves	6
1. Definition of (pre)sheaves	6

Date: Sep. 11, 2025.

0. Introduction: why schemes?

0.1. Algebraic sets. Before scheme theory, algebraic geometry focused on *algebraic sets*.

Definition 0.1.1. Let k be an algebraically closed field.

- The **Zariski topology** on the affine space \mathbb{A}^n_k is the topology with a base consisting of all the subsets that are equal to the non-vanishing locus U(f) of some polynomial $f \in k[x_1, \dots, x_n]$.
- An embedded affine algebraic set 1 in \mathbb{A}^n_k is a closed subspace for the Zariski topology.
- An embedded quasi-affine algebraic set is a Zariski open subset of an embedded affine algebraic set.

Example 0.1.2. Any finite subset of \mathbb{A}^n_k is an embedded affine algebraic set.

Example 0.1.3. \mathbb{Z} is not an embedded affine algebraic set in $\mathbb{A}^1_{\mathbb{C}}$.

Similarly one can define *embedded (quasi)-projective algebraic set* using *homogeneous* polynomials and the projective space \mathbb{P}_k^n .

There are tons of shortcomings in the above definition. An obvious one is that the notions of *embedded* algebraic sets are not *intrinsic*.

Example 0.1.4. The embedded affine algebraic sets $\mathbb{A}^1_k \subseteq \mathbb{A}^1_k$ and $\mathbb{A}^1_k \subseteq \mathbb{A}^2_k$ should be viewed as the same algebraic sets.

Notation 0.1.5. To remedy this, we need some notations.

- For an ideal $I \subseteq k[x_1, \dots, x_n]$, let $Z(I) \subseteq \mathbb{A}^n_k$ be the locus of common zeros of polynomials in I.
- For a Zariski closed subset $X \subseteq \mathbb{A}_k^n$, let $I(X) \subseteq k[x_1, \dots, x_n]$ be the ideal of all polynomials vanishing on X.

Recall an ideal I is called radical if $I = \sqrt{I}$.

Theorem 0.1.6 (Hilbert Nullstellensatz). We have a bijection:

$$\left\{ \begin{array}{rcl} \{ \textit{radical ideals of } k[x_1, \cdots, x_n] \} & \longleftrightarrow & \left\{ \textit{Zariski closed subsets of } \mathbb{A}^n_k \right\} \\ & I & \longrightarrow & Z(I) \\ & I(X) & \longleftarrow & X. \end{array} \right.$$

Part of the theorem says the set of points of \mathbb{A}^n_k is in bijection with the set of maximal ideals of $k[x_1, \dots, x_n]$. As a corollary, Z(I) is in bijection with the set of maximal ideals containing I. The latter can be further identified with maximal ideals of $R := k[x_1, \dots, x_n]/I$.

Note that I is radical iff R is reduced, i.e., contains no nilpotent elements. This justifies the following definition.

Definition 0.1.7. An **affine algebraic** k-**set** is a maximal spectrum $\operatorname{Spm} R$ (= sets of maximal ideals) of a finitely generated (commutative unital) reduced k-algebra R. We equip it with the **Zariski topology** with a base of open subsets given by

$$U(f)\coloneqq \big\{\mathfrak{m}\in\operatorname{Spm} R\,|\, f\notin\mathfrak{m}\big\},\; f\in R.$$

¹Some people use the word *variety*, while some people reserve it for *irreducible* algebraic sets.

Example 0.1.8. Spm $k[x] \simeq \mathbb{A}^1_k$.

We have the following *duality* between algebra and geometry.

Here an element $f \in R$ corresponds to the function

$$\phi:\operatorname{Spm} R\to k,\ \mathfrak{m}\mapsto f$$

sending a maximal ideal \mathfrak{m} to the image \underline{f} of f in the residue field of \mathfrak{m} , which is canonically identified with the underlying set of \mathbb{A}^1_k via the composition $k \to R \to R/\mathfrak{m}$.

The word duality means the correspondence $R \leftrightarrow X$ is contravariant. Indeed, given a homomorphism $f: R' \to R$, we obtain a continuous map

$$\operatorname{Spm} R \to \operatorname{Spm} R', \ \mathfrak{m} \mapsto f^{-1}(\mathfrak{m}).$$

Note however that not all continuous maps $\operatorname{\mathsf{Spm}} R \to \operatorname{\mathsf{Spm}} R'$ are obtained in this way, nor is R determined by the topological space $\operatorname{\mathsf{Spm}} R$.

Exercise 0.1.9. Show that any bijection $\mathbb{A}^1_k \to \mathbb{A}^1_k$ is continuous for the Zariski topology. Find those bijections coming from a homomorphism $k[x] \to k[x]$.

This motivates the following definition.

Definition 0.1.10. A morphism from $\operatorname{Spm} R$ to $\operatorname{Spm} R'$ is a continuous map coming from a homomorphism $R' \to R$.

Then one can define general algebraic k-sets by gluing affine algebraic k-sets using morphisms, just like how people define structured manifolds as glued from structured Euclidean spaces using maps preserving the addiontal structures.

0.2. **Shortcomings.** The theory of algebraic k-sets provides a bridge between algebra and geometry. In particular, one can use topological/geometric methods, including various cohomology theories, to study *finitely generated reduced k-algebras*. However, these adjectives are non-necessary restrictions to this bridge.

First, number theory studies number fields and their rings of integers, such as \mathbb{Q} and \mathbb{Z} . It is desirable to have geometric objects corresponding to them. Hence we would like to consider general commutative rings rather than k-algebras. Then one immediately realizes the maximal spectra Spm are not enough.

Example 0.2.1. The map $\mathbb{Z} \to \mathbb{Q}$ does not induce a map from $\mathsf{Spm}\,\mathbb{Q}$ to $\mathsf{Spm}\,\mathbb{Z}$. Namely, the inverse image of $(0) \subseteq \mathbb{Q}$ in \mathbb{Z} is a non-maximal prime ideal.

This suggests for general algebra R, we should consider its *prime spectrum*, denoted by $\operatorname{Spec} R$, rather than just its maximal spectrum.

Second, even in the study of finitely generated algebras, one naturally encounters non-finitely generated ones.

Example 0.2.2. Let $\mathfrak{p} \subseteq R$ be a prime ideal of a finitely generated algebra. The localization $R_{\mathfrak{p}}$ and its completion $\widehat{R}_{\mathfrak{p}}$ are in general not finitely generated.

Of course, one can restrict their attentions to *Noetherian* rings (and live a happy life). But let me object the false feeling that all natural rings one care are Noetherian

Example 0.2.3. Noetherian rings are not stable under tensor products: $\overline{\mathbb{Q}} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$ is not Noetherian.

Example 0.2.4. The ring of adeles of \mathbb{Q} is not Noetherian.

Example 0.2.5. Natural moduli problems about Noetherian objects can fail to be Noetherian. My favorite ones includes: the space of formal connections, the space (stack) of formal group laws...

In short, there are important applications of non-Noetherian rings, and this course will deal with the latter.

Finally, we want to remove the restriction about reducedness.

Example 0.2.6. Reduced rings are not stable under tensor products: $k[x] \otimes_{k[x,y]} k[x,y]/(y-x^2)$ is not reduced. Geometrically, this means Z(y) and $Z(y-x^2)$ do not intersect transversally inside \mathbb{A}^2_k .

One may notice that without reducedness, we should accordingly consider all ideals rather than just radical ideals, but then the construction $I \mapsto Z(I)$ would not be bijective. Indeed, ideals with the same nilpotent radical would give the same $topological \ subspace$ of Spec R.

But this is a feature rather than a bug. In Example 0.2.6, the ideal $(y, y - x^2) = (x^2, y)$ is not radical, and it carries geometric meanings that cannot be seen from its nilpotent radical (x, y). Namely, $f \in (x, y)$ iff f(0, 0) = 0, while $f \in (x^2, y)$ iff $f(0, 0) = \partial_x f(0, 0) = 0$. Roughly speaking, this suggests that $(y, y - x^2)$ remembers that the curves Z(y) and $Z(y-x^2)$ are tangent to each other at the point $(0, 0) \in \mathbb{A}^2_k$, and the tangent vector is $\partial_x|_{(0,0)}$. Also note that the length of $k[x,y]/(y,y-x^2)$ is equal to 2, which is the number of intersection points predicted by the Bézout's theorem.

In summary, on the algebra side, we should consider *all* commutative rings. On the geometric side, the corresponding notion is called *affine schemes*. Our first task in this course is to develop the following duality:

Algbera	$\operatorname{Geometry}$
commutative rings R	affine schemes X
prime ideals $\mathfrak{p} \subseteq R$	points $x \in X$
elements $f \in R$	functions $X \to \mathbb{A}^1_{\mathbb{Z}}$
ideals $I \subseteq R$	closed subschemes $Z \subseteq X$.

0.3. Schemes as structured spaces. In theory, one can define a morphism between affine schemes to be a continuous map coming from a ring homomorphism. Then one can define general schemes by gluing affine schemes using such morphisms. This mimics the definition of differentiable manifold in the sense that a scheme would be a topological space equipped with a maximal affine atlas.

In practice, the above approach is awkward to work with. We prefer a more efficient way to encode the additional structure on the topological space underlying a scheme. One extremely simple but powerful way to achieve this, maybe discovered

by Serre and popularized by Grothendieck, is the notion of *sheaves* on topological spaces. Roughtly speaking, a sheaf \mathcal{F} on X is an *contravariant* assignment

$$U \mapsto \mathcal{F}(U)$$

sending open subsets $U \subseteq X$ to certain structures (e.g. sets, groups, rings) $\mathcal{F}(U)$, such that a certain gluing condition is satisfied. Here contravariancy means that for $U \subseteq V$, we should provide a map $\mathcal{F}(V) \to \mathcal{F}(U)$ preserving the prescribed structures

Example 0.3.1. Let X be any topological space. The assignment

$$U \mapsto C(U, \mathbb{R})$$

sending $U \subseteq X$ to the ring of continuous functions on U would be a sheaf of commutative rings on X.

Similarly, for a smooth manifold $X, U \mapsto C^{\infty}(U, \mathbb{R})$ would be a sheaf of commutative rings on X. This motivates us to define:

Pre-Definition 0.3.2. A scheme is a topological space X equipped with a sheaf of commutative rings \mathcal{O}_X such that locally it is isomorphic to an affine scheme.

Here for an open subset $U \subseteq X$, $\mathcal{O}_X(U)$ should be the ring of *algebraic* functions on U, but we have not defined the latter notion yet. Nevertheless, for an *affine* scheme $X \cong \operatorname{Spec} R$, the previous discussion suggests we should have $\mathcal{O}_X(X) \cong R$. As we shall see in future lectures, we can bootstrap from this to get the definition of the entire sheaf \mathcal{O}_X .

The goal of this course is to define schemes and study their basic properties.

Part I. (Pre)sheaves

1. Definition of (PRE) SHEAVES

1.1. Presheaves.

Definition 1.1.1. Let X be a topological space and $(U(X), \subseteq)$ be the partially ordered set of open subsets of X. We define the **category** $\mathfrak{U}(X)$ **of open subsets** in X to be the category associated to the partially ordered set $(U(X), \subseteq)$.

The category $\mathfrak{U}(X)$ can be explicitly described as follows:

- An object in $\mathfrak{U}(X)$ is an open subset $U \subseteq X$.
- If $U \subseteq V$, then $\mathsf{Hom}_{\mathfrak{U}(X)}(U,V)$ is a singleton; otherwise $\mathsf{Hom}_{\mathfrak{U}(X)}(U,V)$ is empty.
- The identify morphisms and composition laws are defined in the unique way.

Definition 1.1.2. Let X be a topological space and \mathcal{C} be a category.

- A C-valued presheaf on X is a functor $\mathcal{F}: \mathfrak{U}(X)^{\mathsf{op}} \to \mathcal{C}$.
- A morphism $\mathcal{F} \to \mathcal{F}'$ between \mathcal{C} -valued presheaves is a natural transformation between these functors.

Let Set be the category of sets. By definition, a **presheaf** \mathcal{F} of sets, i.e., a Set-valued presheaf, on X consists of the following data:

- For any open subset $U \subseteq X$, we have a set $\mathcal{F}(U)$, which is called the **set of sections** of \mathcal{F} on U.
- For $U \subseteq V$, we have a map

$$\mathcal{F}(V) \to \mathcal{F}(U), \ s \mapsto s|_{U}$$

which is called the $\bf restriction\ map.$

These data should satisfy the following condition:

- For any open subset $U \subseteq X$, the restriction map $\mathcal{F}(U) \to \mathcal{F}(U)$ is the identity map.
- For $U \subseteq V \subseteq W$, the restriction maps make the following diagram commute

Let \mathcal{F} adn \mathcal{F}' be presheaves of sets on X. By definition, a morphism $\phi: \mathcal{F} \to \mathcal{F}'$ consists of the following data:

• For any open subset $U \subseteq X$, we have a map $\phi_U : \mathcal{F}(U) \to \mathcal{F}(U)'$.

These data should satisfy the following condition:

• For $U \subseteq V$, the following diagram commute

$$\mathcal{F}(V) \xrightarrow{\phi_{V}} \mathcal{F}'(V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}(U) \xrightarrow{\phi_{U}} \mathcal{F}'(U),$$

where the vertical maps are restriction maps.

Similarly one can explicitly describe the notion of presheaves of abelian groups (k-vector spaces, commutative algebras) and morphisms between them.

Example 1.1.3. Let X be a topological space and \mathcal{C} be a category. For any object $A \in \mathcal{C}$, the constant functor

$$\mathfrak{U}(X)^{\mathsf{op}} \to \mathcal{C}, \ U \mapsto A, \ f \mapsto \mathsf{id}_A$$

defines a C-valued presheaf on X, which is called the **constant presheaf associated to** A. It is often denoted by \underline{A} .

Example 1.1.4. Let X be a topological space and $x \in X$ be a point. For any set A, we can define a presheaf $\delta_{x,A}$ of sets as follows.

- For an open subset $U \subseteq X$,
 - if $x \in U$, define $\delta_{x,A}(U) := A$;
 - if $x \notin U$, define $\delta_{x,A}(U) := \{*\}.$
- For open subsets $U \subseteq V$,
 - if $x \in U$ (and therefore $x \in V$), define the restriction map $\delta_{x,A}(U)$ to be id_A ;
 - if $x \notin U$, define the restriction map to be the unique map $\delta_{x,A}(V) \to \delta_{x,A}(U) = \{*\}.$

One can check this indeed defines a presheaf $\delta_{x,A}$. We call the the skyscrapter presheaf at x with value A.

Remark 1.1.5. A similar construction works for any category C admitting a final object².

Example 1.1.6. Let X be a topological space and $E \to X$ be a topological space over it. We define a presheaf Sect_E of sets as follows.

- For any $U \subseteq X$, $\mathsf{Sect}_E(U)$ is the set of countinuous maps $U \to E$ defined over X, a.k.a. sections of E over U.
- For $U \subseteq V$, the restriction map $\mathsf{Sect}_E(V) \to \mathsf{Sect}_E(U)$ sends a section $s \colon V \to E$ to its restriction $s \mid_U \colon U \to E$.

We call it the **presheaf of sections for** $E \rightarrow X$.

Example 1.1.7. If $E \to X$ is a real vector bundle, we can naturally upgrade Sect_E to be a presheaf of real vector spaces on X.

Example 1.1.8. Consider the constant real line bundle $\mathbb{R} \times X$ on X. Note that $\mathsf{Sect}_{\mathbb{R} \times X}(U)$ can be identified with the set of continuous functions on U. It follows that we can upgrade $\mathsf{Sect}_{\mathbb{R} \times X}$ to be a presheaf of \mathbb{R} -algebra on X.

1.2. **Sheaves of sets.** Roughly speaking, a sheaf is a presheaf whose sections on small open subsets can be uniquely glued to sections on larger ones.

Definition 1.2.1. Let \mathcal{F} be a presheaf of sets on a topological space X. We say \mathcal{F} is a **sheaf** if it satisfies the following condition:

(*) For any open covering $U = \bigcup_{i \in I} U_i$ and any collection of sections $s_i \in \mathcal{F}(U_i)$, $i \in I$ such that

$$s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}$$
 for any $i,j\in I$,

there is a *unique* section $s \in \mathcal{F}(U)$ such that

$$s_i = s|_U$$
 for any $i \in I$.

²An object $* \in \mathcal{C}$ is a final object iff for any $c \in \mathcal{C}$, there is a unique morphism $c \to *$.

Remark 1.2.2. Using the language of category theory, the sheaf condition is equivalent to the following condition:

• For any open covering $U = \bigcup_{i \in I} U_i$, the diagram

$$\mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i) \Rightarrow \prod_{(i,j) \in I^2} \mathcal{F}(U_i \cap U_j)$$

is an equalizer diagram. Here the first map is

$$s \mapsto (s|_{U_i})_{i \in I}$$

the other two maps are

$$(s_i)_{i \in I} \mapsto (s_i|_{U_i \cap U_j})_{(i,j) \in I^2}$$

and

$$(s_i)_{i\in I}\mapsto (s_j|_{U_i\cap U_j})_{(i,j)\in I^2}.$$

In particular, the map $\mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i)$ is an injection.

Remark 1.2.3. For $U = \emptyset$ and $I = \emptyset$, the sheaf condition says there is a unique section $s \in \mathcal{F}(\emptyset)$ subject to no property. In other words, the above definition forces $\mathcal{F}(\emptyset)$ to be a singleton.

Example 1.2.4. Let X be a topological space. The constant presheaf \underline{A} associated to a set A is in general not a sheaf. Indeed, $A(\emptyset)$ is A rather than a singleton.

We provide another reason for readers uncomfortable with the above. For a sheaf \mathcal{F} and disjoint open subsets U_1 and U_2 , the sheaf condition implies

$$\mathcal{F}(U_1 \sqcup U_2) \simeq \mathcal{F}(U_1) \times \mathcal{F}(U_2).$$

But in general A and $A \times A$ are not isomorphic.

Example 1.2.5. Let X be a topological space and $x \in X$ be a point. For any set A, one can check the presheaf $\delta_{x,A}$ is a sheaf of sets. Hence we also call it the **skyscrapter sheaf** at x with value X.

Example 1.2.6. Let $E \to X$ be a continuous map between topological spaces. The presheaf Sect_E of sections on X is a sheaf. Indeed, this follows from the fact that continuous maps can be glued.

Exercise 1.2.7. Let X be a topological space and \mathfrak{B} be a base of open subsets of X.

- (1) Let \mathcal{F} and \mathcal{F}' be sheaves on X and $\alpha: \mathcal{F}|_{\mathfrak{B}} \to \mathcal{F}'|_{\mathfrak{B}}$ be a natural transformation between their restrictions on the full subcategory $\mathfrak{B}^{\mathsf{op}} \subseteq \mathfrak{U}(X)^{\mathsf{op}}$. Show that α can be uniquely extended to a morphism $\phi: \mathcal{F} \to \mathcal{F}'$.
- (2) Show that for presheaves, similar claims about existence and uniqueness are both false in general.

The above exercise says sheaves are determined by their restrictions on a topological base. A natural question is, given a functor $\mathfrak{B}^{\mathsf{op}} \to \mathsf{Set}$, under what conditions can we extend it to a sheaf $\mathfrak{U}(X) \to \mathsf{Set}$? This question is relevant to us because the Zariski topology of $\mathsf{Spec}\,R$ is defined using a base consisting of open subsets that can be easily described:

$$U(f) \coloneqq \{ \mathfrak{p} \in \operatorname{Spec} R \, | \, f \notin \mathfrak{p} \} \simeq \operatorname{Spec} R_f.$$

It would be convenient if we can recover a sheaf \mathcal{F} on $\mathsf{Spec}\,R$ from its values on these open subsets. For instance, we wonder whether the contravariant functor

$$U(f) \mapsto R_f$$

can be extended to a sheaf of commutative rings. If yes, we would obtain the sheaf \mathcal{O}_X of algebraic functions desired in the introduction. The following construction gives a positive answer to this question.

Construction 1.2.8. Let X be a topological space and \mathfrak{B} be a base of open subsets of X. For a functor $\mathcal{F}:\mathfrak{B}^{\mathsf{op}}\to\mathsf{Set}$ and $U\in\mathfrak{U}(X)$, define

$$\mathcal{F}'(U) \coloneqq \lim_{V \in \mathfrak{B}^{\mathsf{op}}, V \subseteq U} \mathcal{F}(V).$$

In other words, an element in $s' \in \mathcal{F}'(U)$ is a collection of elements $s_V \in \mathcal{F}(V)$ for all open subsets $V \subseteq U$ contained in \mathfrak{B} such that for $V_1 \subseteq V_2 \subseteq U$ with $V_1, V_2 \in \mathfrak{B}$, the map $\mathcal{F}(V_2) \to \mathcal{F}(V_1)$ sends s_{V_2} to s_{V_1} . This construction is clearly functorial in U, i.e., for $U_1 \subseteq U_2$, we have a natural map $\mathcal{F}'(U_2) \to \mathcal{F}'(U_1)$. One can check this defines a functor

$$\mathcal{F}':\mathfrak{U}(X)^{\mathsf{op}}\to\mathsf{Set}$$

equipped with a canonical isomorphism $\mathcal{F}'|_{\mathfrak{B}^{op}} \simeq \mathcal{F}$. In other words, we have extended \mathcal{F} to a *presheaf* \mathcal{F}' of sets on X.

Remark 1.2.9. Using the language in category theory, the functor \mathcal{F}' is the *right Kan extension* of \mathcal{F} along the embedding $\mathfrak{B}^{\mathsf{op}} \to \mathfrak{U}(X)^{\mathsf{op}}$.

Proposition 1.2.10. In above, \mathcal{F}' is a sheaf iff \mathcal{F} satisfies the following condition:

(**) For any open covering $U = \bigcup_{i \in I} U_i$ in \mathfrak{B} , and any collection of elements $s_i \in \mathcal{F}(U_i)$, $i \in I$ such that

$$s_i|_V = s_i|_V$$
 for any $i, j \in I$ and $V \subseteq U_i \cap U_j, V \in \mathfrak{B}$,

there is a unique section $s \in \mathcal{F}(U)$ such that

$$s_i = s|_{U_i}$$
 for any $i \in I$.

Proof. The "only if" statement follows from the sheaf condition on \mathcal{F}' and the isomorphism $\mathcal{F}'|_{\mathfrak{B}^{op}} \simeq \mathcal{F}$.

For the "if" statement, we verify the sheaf condition on \mathcal{F}' directly. Let $U = \bigcup_{i \in I} U_i$ be an open covering, and $s'_i \in \mathcal{F}'(U_i)$ be a collection of sections such that

$$s_i'|_{U_i\cap U_j}=s_j'|_{U_i\cap U_j} \text{ for any } i,j\in I.$$

By Construction 1.2.8, each s'_i corresponds to a collection $s_{i,V} \in \mathcal{F}(V)$ for $V \subseteq U_i$, $V \in \mathfrak{B}$ that is compatible with restrictions.

We need to show there is a unique section $s' \in \mathcal{F}'(U)$ such that $s'|_{U_i} = s'_i$.

We first deal with the existence. For any $V \subseteq U$ with $V \in \mathfrak{B}$, since \mathfrak{B} is a base, we can choose an open covering $V = \bigcup_{j \in J} V_j$ in \mathfrak{B} such that each V_j is contained in some U_i . In other words, we can choose a map $f: J \to I$ such that $V_j \subseteq U_i$.

Consider the collection of sections

$$(1.1) t_{j,V} := s_{f(j),V_j} \in \mathcal{F}(V_j), \ j \in J.$$

One can check it does not depend on the choice of f and they satisfy the assumption in (**). Hence there is a unique section $s'_V \in \mathcal{F}(V)$ such that $s'_V|_{V_j} = s_{f(j),V_j}$.

One can check the obtained section s'_V does not depend on the open covering $V = \bigcup_{j \in J} V_j$ and the collections (s'_V) , $V \subseteq U$, $V \in \mathfrak{B}$ is compatible with restrictions. Hence by Construction 1.2.8, it corresponds to an element $s' \in \mathcal{F}'(U)$. One can check that $s'|_{U_i} = s'_i$. This proves the claim about uniqueness.

It remains to prove the statement about uniqueness. Suppose there are two such sections s', s'' such that

$$(1.2) s'|_{U_i} = s''|_{U_i} = s'_i$$

By Construction 1.2.8, they correspond to two collections $s'_V, s''_V \in \mathcal{F}(V)$ for $V \subseteq U$, $V \in \mathfrak{B}$. We only need to show $s'_V = s''_V$.

Note that if V is contained in some U_i , then (1.2) implies

$$(1.3) s_V' = s_V'' = s_{i,V}.$$

Now for general open subset $V \subseteq U$, $V \in \mathfrak{B}$, as before, we can choose an open covering $V = \bigcup_{j \in J} V_j$ in \mathfrak{B} such that each V_j is contained in some U_i . Consider the collection of sections (1.1). By (1.3) (applied to each V_j), we have

$$s'_{V}|_{V_{i}} = s''_{V}|_{V_{i}} = t_{j,V}.$$

Hence by (**), we must have $s'_V = s''_V$ as desired.

1.3. C-valued sheaves.

Definition 1.3.1. Let \mathcal{C} be a category and \mathcal{F} be a \mathcal{C} -valued presheaf on a topological space X. We say \mathcal{F} is a \mathcal{C} -valued sheaf if for any testing object $c \in \mathcal{C}$, the functor

$$\mathfrak{U}(X)^{\mathrm{op}} \xrightarrow{\mathcal{F}} \mathcal{C} \xrightarrow{\mathsf{Hom}_{\mathcal{C}}(c,-)} \mathsf{Set}$$

is a sheaf of sets.

Remark 1.3.2. By Yoneda's lemma and Remark 1.2.2, \mathcal{F} is a \mathcal{C} -valued sheaf iff for any open covering $U = \bigcup_{i \in I} U_i$, the canonical diagram

$$\mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i) \Rightarrow \prod_{(i,j) \in I^2} \mathcal{F}(U_i \cap U_j)$$

is an equalizer diagram in C. Here the first morphism is given by restrictions along $U_i \subseteq U$, while the other two morphisms are given respectively by restrictions along $U_i \cap U_j \subseteq U_i$ and $U_i \cap U_j \subseteq U_j$. In particular, the morphism

$$\mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i)$$

is a $monomorphism^3$.

As a corollary of the remark, we obtain:

Corollary 1.3.3. Let $\mathcal F$ be a presheaf of abelian groups. Then $\mathcal F$ is a sheaf of abelian groups iff its underlying presheaf of sets $\mathfrak U(X)^{\mathsf{op}} \overset{\mathcal F}{\longrightarrow} \mathsf{Ab} \to \mathsf{Set}$ is a sheaf of sets. Here the functor $\mathsf{Ab} \to \mathsf{Set}$ sends an abelian group to its underlying set.

³This means for any testing object $c \in \mathcal{C}$, the functor $\mathsf{Hom}_{\mathcal{C}}(c, -)$ sends this morphism to an injection between sets.

Exercise 1.3.4. Let \mathcal{F} be a presheaf of abelian groups. Show that \mathcal{F} is a sheaf of abelian groups iff for any open covering $U = \bigcup_{i \in I} U_i$, the sequence

$$0 \to \mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i) \to \prod_{(i,j) \in I^2} \mathcal{F}(U_i \cap U_j)$$

is exact. Here the second map is

$$s \mapsto (s|_{U_i})_{i \in I},$$

and the third map is

$$(s_i)_{i\in I}\mapsto (s_j|_{U_i\cap U_j}-s_i|_{U_i\cap U_j})_{(i,j)\in I^2}.$$

Now suppose \mathcal{F} is a sheaf, can you further extend this exact sequence to the right?

Remark 1.3.5. Let C be a category that admits small limits. Then Construction 1.2.8 and Proposition 1.2.10 can be generalized to C-valued (pre)sheaves with condition (**) replaced by

• For any open covering $U = \bigcup_{i \in I} U_i$ in \mathfrak{B} , any object $c \in \mathcal{C}$, and any collection of elements $s_i \in \mathsf{Hom}_{\mathcal{C}}(c, \mathcal{F}(U_i))$, $i \in I$ such that

$$s_i|_V = s_j|_V$$
 for any $i, j \in I$ and $V \subseteq U_i \cap U_j, V \in \mathfrak{B}$,

there is a unique element $s \in \text{Hom}_{\mathcal{C}}(c, \mathcal{F}(U))$ such that

$$s_i = s|_{U_i}$$
 for any $i \in I$.

In above $s|_V$ means the post-composition of $s \in \mathsf{Hom}_{\mathcal{C}}(c, \mathcal{F}(U))$ with the restriction morphism $\mathcal{F}(U) \to \mathcal{F}(V)$.

Note however for C = Ab, we can keep condition (**) as it is, because the forgetful functor $Ab \rightarrow Set$ detects limits.