팀 구성

팀명	STACK	팀 연번	1조					
팀명 의미	첫 번째로 출근하고,	첫 번째로 출근하고, 마지막에 퇴근해보자!						
팀 구호	First in, Last out	First in, Last out						
팀원명	팀 내 역할	내용						
권오준	모델 담당	모델 학습 및 최적화, 보고서 및 발표 자료 작성						
김정대	하드웨어 담당	하드웨어 구현, 이동 및 탐지 기능 구현, 자료 정리						
장혜원	모델 담당	데이터 수집, 모델 학습 및 최적화, 자료 정리						
차창섭	모델 담당	데이터 수집, 모델 학습 및 최적화, 자료 정리						
최재혁	하드웨어 담당	하드웨어 구현, 이동 및	L 탐지 기능 구현, 발표					

프로젝트 주제 (현업이슈 분석)

선택한 문제

담배 꽁초로 인한 사회와 환경 문제

4W 문제 캔버스를 이용한 문제 정리

4W 문제 캔버스	정리		
WHAT	국내에서 매일 약 1,246 만개의 담배 꽁초가 버려지며, 이로 인해		
(무엇이 발생했나)	환경 오염과 안전 문제가 발생하고 있음.		
WHERE	도로, 공원, 거리 등 공공장소와 일상 생활 공간에서 담배 꽁초가		
(어디서 발생했나)	버려지고 있음.		
WHEN	담배 꽁초 불법 투기는 매일 발생하고 있으며, 약 1,246 만개가		
(언제 발생했나)	버려지는 것으로 추정.		
HOW MUCH (얼마나 영향을 받았나)	 담배 꽁초의 버림으로 인해 화재의 15.7%가 발생하고 있으며, 빗물받이 주변에서의 배수로 막힘과 빗물 역류로 인한 침수 피해도 발생하고 있음. 바다로 유입되는 담배 꽁초로 인한 해양 환경 오염이 발생하고 있음. 각 담배 꽁초 필터에는 1만 2천여개의 미세 플라스틱이 포함되어 있으며, 이는 환경에 해로운 영향을 미침. 		

참고 자료

뉴스펭귄:[꽁초혁명①] 과소평가된 담배꽁초의 유해성

https://www.newspenguin.com/news/articleView.html?idxno=13729

한국일보: 무단투기 담배꽁초 하루 1246만6968개비, 내 몸에 되돌아온다

https://www.hankookilbo.com/News/Read/A2023092411090000857

서울시 - 내 손안에 서울 : 무단투기 담배꽁초 매년 45억개...꼭 쓰레기통에 버려요!

https://mediahub.seoul.go.kr/archives/2009097

눈온다: 당신의 담배꽁초, 플라스틱으로 되어 있다는 사실 알고 계신가요?

https://www.noononda.com/news/451

프로젝트 주제 (핵심 원인 선정)

구분	주요 원인
과정의 결함 (Throughput)	 담배 꽁초 수거 프로세스의 부재로 인한 환경 오염과 안전 문제 지속 발생 수거 시스템의 미흡으로 인한 효율성 및 효과성 저하 환경 보호 및 안전에 대한 인식 부족으로 인한 수거 노력의 부족
인풋의 결함 (Input)	 버려지는 담배꽁초의 통계 및 데이터 부족으로 정확한 문제인식 어려움 기술 및 기기 사용 능력 부족으로 인한 담배 꽁초 수거 시스템의활용도 저하 담배 꽁초 수거 및 처리를 위한 장비 및 용품의 부족 수거 인력 및 자원의 부족으로 인한 효율성 저하
제약조건 (Constraint)	 정부 및 지자체의 담배 꽁초 수거 정책의 미흡 및 관리 부족으로 담배 꽁초 수거율 저조 사생활 보호와 관련된 법적 제약으로 인한 담배 꽁초 수거 및 처리 활동의 제약 자금 및 자원의 한정으로 인한 담배 꽁초 수거 및 처리 활동의 제약

프로젝트 기술서

조 연번	1 조	조원 명단	권오준, 김정대, 장혜원, 차창섭,
			최재혁
프로젝트명	Cig-Bee : 탐지	로봇을 이용한 F	상배 꽁초 탐지

	프로젝트 선정 배경
현업에서 기대하는 것은 무엇인가 ?	 공공장소 및 도로 등에서 담배꽁초가 대량으로 버려지는 상황에서 환경 오염 및 안전 문제가 심각한 수준으로 발생하고 있다. 담배꽁초로 인한 화재 발생 및 침수 피해가 지속적으로 발생하고 있으며, 이는 공공 안전에 대한 위협으로 작용한다. 바다로 유입된 담배꽁초로 인한 해양 환경 오염이 심각한 수준으로 발전하고 있으며, 이는 해양 생태계와 생물 다양성에 부정적 영향을 미친다.
구체적으로 해결하고자 하는 것은 무엇인가 ?	 담배꽁초 수거가 적극적으로 이루어지지 않아 환경 오염 및 안전 문제가 심각한 수준으로 지속되고 있다. 담배꽁초 수거를 위한 효과적인 시스템 및 기술의 부재로 인해 문제가 지속되고 있다.
프로젝트 수행을 위해 더 알아야 하는 것은 무엇인가 ?	 효과적인 담배 꽁초 탐지 구별 방법에 대한 연구 담배 꽁초 수거 로봇의 개발 및 운용 방안에 대한 학습

프로젝트 기획서

조 연번	1조	작성일자	2024.05.14.				
프로젝트명	Cig-Bee : 탐지	Cig-Bee : 탐지 로봇을 이용한 담배 꽁초 탐지					
프로젝트 시행목적	환경 보호 → 도시에서 무단으로 버려지는 담배 꽁초로 인한 환경 오염을 줄이기 위함. 에너지 생산 → 수거된 담배 꽁초를 재활용하여 에너지로 활용하여 친환경적인 에너지 생산을 목표로 함 안전성 강화 → 담배 꽁초 수거 시 불이 붙은 담배 꽁초를 식별하여 안전한 처리를 할 수 있도록 함.						
프로젝트 산출물 형태	→ RC카는 5 수행함. 학습 모델 → RC카가 =						
프로젝트 수행 절차							

	b. 통합 테스트 수정 보완 5. 프로젝트 종료 (21일) a. 결과물 최종 점검 b. 보고서 작성				
프로젝트 기간		2024년 5월 13일 ~ 2024년 5월 22일			
	성명	역 <u>항</u>			
	권오준	모델 학습 및 최적화, 보고서 및 발표 자료 작성			
51010151	김정대 하드웨어 구현, 이동 및 탐지 기능 구현, 자료 정리				
팀원 역할	장혜원 데이터 수집, 모델 학습 및 최적화, 자료 정리				
	차창섭 데이터 수집, 모델 학습 및 최적화, 자료 정리				
	최재혁	하드웨어 구현, 이동 및 탐지 기능 구현, 발표			
프로젝트 기대효과	 자율 주행 RC카를 활용한 담배 꽁초 수거 및 재활용 시스템 구축 완료. 도시 환경의 개선과 함께 담배 꽁초로부터 에너지를 생산하여 지속가능한 에너지 생산에 기여함 안전한 담배 꽁초 수거 및 재활용을 통해 도시 환경의 향상과 안전성 강화를 달성함. 				

프로젝트 설계 보고서

조 연번	1 조	회의 일자	회의 일자 2024.05.16 회의 방법 브레인스					
	성명	역할						
	권오준	모델 학습 및 최적화, 보고서 및 발표 자료 작성						
역할 분담	김정대	하드웨어 구현, 이동 및 탐지 기능 구현, 자료 정리						
7 Z T G	장혜원	데이터 수집, 모델 학습 및 최적화, 자료 정리						
	차창섭	데이터 수집,	모델 학습 및 최	적화, 자료 정리	.			
	최재혁	하드웨어 구현	면, 이동 및 탐지	기능 구현, 발표	Ī			
프로젝트명	Cig-Bee : 탐기	디로봇을 이용한	한 담배 꽁초 탐	XI				
아이디어 도출	사고 등 (원인 • 수거 시스 • 수거 및 7 • 자금 및 7 해결방안 • 담배 꽁초 • 라인 • 탐지 • 불이	 무단으로 버려지는 담배 꽁초로 인해 도시 미관 저해, 환경 오염, 안전 사고 등 여러 문제가 발생하고 있음 원인 수거 시스템 미흡으로 인한 효율성 저하 수거 및 처리를 위한 장비 및 비용 부족 자금 및 자원의 부족으로 인한 담배 꽁초 수거 활동의 제약 해결방안 담배 꽁초를 탐지하고 수거하는 로봇을 만든다. ○ 라인(도로)를 따라 주행하다가 담배 꽁초를 발견하면 수거한다. ○ 탐지 로봇은 RC카 키트를 이용 ○ 불이 붙은 담배 꽁초와 불이 붙지 않은 담배 꽁초 두 가지로 분류한다. 						
산출물 형태	담배 꽁초 학습 모델, 자율 주행 학습 모델 탐지 로봇(하드웨어) 프로젝트 보고서							
수행 절차	 1. 팀 구성 및 프로젝트 기획 2. 학습 데이터 수집 및 모델 학습 3. 탐지 로봇 구현 							

	 라인 트레이싱 구현 라즈베리 파이에서 탐지 기능 구현 테스트 및 수정 보고서 작성 및 발표 										
	NO	ОП									
	NO	업무	14	15	16	17	18	19	20	21	22
	1	프로젝트 구성									
	1.1.	팀 구성 및 프로젝트 기획									
	2	담배 꽁초 탐지 모델									
	2.1	학습 데이터 수집									
	2.2	모델 학습									
	2.3	모델 최적화									
	3	탐지 로봇 제작									
ᆺᇸᇬᄸ	3.1	RC카 키트 조립									
수행 일정	3.2	카트 이동 기능 구현									
	3.3	라인 트레이싱 구현									
	3.4.	라인 트레이싱 학습									
	4	탐지 로봇에 기능 추가									
	4.1.	담배 꽁초 탐지 구현									
	4.2.	이동 및 피드백 구현									
	4.3.	테스트 및 수정									
	5	보고서 작성 및 종료									
	5.1	보고서 작성									
	5.2	발표									
사용환경	협업: Discord, Google Docs 하드웨어: 라즈베리 파이 5, RC카 키트, 웹캠, 배터리 개발: Anaconda3, PyTorch, YOLOv8										

산출물 디자인