

Chapter 8 Redox Reactions

- Topics Oxidation and Reduction: Classical & Modern Concept
 - · Oxidation Number on Oxidation State
 - · Bakineng of Redex scortions in acidic as well as basic medium
 - · Types of Redox scactions

(A) OXIDATION AND REDUCTION: CLASSICAL CONCEPT

· Oxidation > It is the addition of oxygen

Example . C+ O2 - CO2 . S+ O2 -> SO2

- > It is the oremoval of hydrogen Example . H2S + Cl2 -> 2HCl + S
- This the addition of an electronegative element Electronegative Element elements which gain electron I Fxample . H2 + Cl2 -> 2 HCl
 - > It is the aromaval of an electaropositive element Example · 2KI + H2O2 -> I2 + 2KOH
- Reduction → It is the removal of oxygen Example · CuO+C → Cu+ CO
 - -> It is the addition of hydrogen Example : H2 + S -> H2S
 - -> It is the ocemoval of an electronogative element Example. 2 Fell + H2 -> 2 HCl + 2 Fell
 - -> It is the addition of an electropositive element

	Ell.			
3		PAGE NO.: OUT DATE: DATE:		
		Example. Cull, + Cu -> Cu, Cl,		-
		· OXIDISTNER AGENT - A substance which is a supplier of oxygen and undergoes reduction is		
	lians ar	Called an Oxidising Agent. Example · KMnO4 , · HNO3		E
		· REDUCING AGENT - A substance which is a supplier of hydrogeness oxidation is called a Reducing		
4		Example · LiAl Hy , · Na BHy	46	E
		OXIDATION AND REDUCTION: MODERN CONCEPT • Electronic Concept	541 . 52 . n . l	
	Tamah au	-> Oxidation [loss electron Oxidation (LeO)] (R.A.) Al -> Al+3 + 3e		
	- Caraci -	$Na \rightarrow Na^{+1} + 1e^{-}$ $Mg \rightarrow Mg^{+2} + 2e^{-}$ $Ca \rightarrow Ca^{+2} + 2e^{-}$	27/6/19	
	Terrent -	$K \rightarrow K^{+} + 1e^{-}$ $MhO_{y} \rightarrow MhO_{y} + 1e^{-}$		
		-> Reduction [Grain electoron Reduction (G. ap)] (a)	101	
		$ \begin{array}{c} Cl_{2} + 2e^{-} \rightarrow 2Cl^{-} \\ Fe^{3+} + 1e^{-} \rightarrow Fe^{2+} \\ Cu^{2+} + 1e^{-} \rightarrow Cu^{1+} \end{array} $	40	
	26/6/19	REDOX REACTION EXAMPLES · Redox Reaction involves two half reactions - one my wine the loss of all releasing	1/7/19	<
		Redox Reaction involves two half reactions - one involving the loss of electron, and other involving the gain of electron. Example 1 Hg + Sn+2 - > Hg + Sn+4		
		OZ OR		1

10	MOSE	NO.	from	-	-11
1	PHOPE.	NACK!!		25_	
- 27	ATE	-			-11

The equation can be splitted into two holves - meduction part and oxidation part.

2Hg+2+2e- -> Hg2 (Reduction) Sn+2-> Sn+4+2e- (Oxidation)

Example 2 $SnCl_2 + FeCl_3 \longrightarrow FeCl_2 + SnCl_4$ $Sn^{+2} \longrightarrow Sn^{+4} + 2e^- (Oxidation)$ $Fe^{+3} + Je^- \longrightarrow Fe^{+2} (Reduction)$

Example 3 $K + Cl_2 \longrightarrow KCl$ $K \longrightarrow K^+ + 1e^-$ (Oxidation) $Cl_2 + 2e^- \longrightarrow 2Cl^-$ (Reduction)

Example 4 Fe Cl₃ + KI \longrightarrow Fe Cl₂ + I₂ Fe⁺³ + 1e⁻ \longrightarrow Fe⁺² (Reduction) 2I \longrightarrow I₂ + 2e⁻ (Oxidation)

27/6/19 Example 5 Na, S, O3 + $I_2 \rightarrow Na$, S, O6 + No I

(Sodium Thiosulphate) $I_2 + 2e^- \rightarrow 2I^-$ (Reduction) $2S_2O_3 \longrightarrow S_4O_6 + 2e^-$ (Oxidation)

Example 6 Al + $Cu(SO_4) \longrightarrow Al_2(SO_4)_3 + Cu$ $2Al \longrightarrow Al_2^{+3} + 3e^-$ (Oxidation) $3SO_4 + 3e^- \longrightarrow (SO_4)_3^-$ (Reduction)

1/7/19 (B) OXIDATION STATE/OXIDATION NUMBER
Oxidation number is defined as "the charge (real as imaginary which an otom appears to have when it is in a combination."

Rules To DETERMINE THE OXIDATION NUMBER:

1. The O.N. of an atom in force elements is zero and also

when it is in its molecular state.

Example - K, Na, H, N, O2, Py, S8, O3, etc.

Covalently Bonded

- 2. The alkali metals in periodic table (group 1) always have +1 extendion no. and also alkaline earth metals (group 2) will have +2 O.N.
- 3. The Floorine being the most electronegative element in the periodic table has always -1 O.N.
 - 4. O.N. of oxygen is always -2 except in peroxides its
 O.N. is -1, in superoxide it is -1 and in OF2(+2), O.F.

Example KO2, CaO2

- 5. The O.N. of hydrogen is +1 in all its compounds exept metallic hydrides, like NaH, BaHe etc, where it has -1 oxidation state.
- example HO, HNO3, then the sum of all individual O.N. is equal to O.
 - B When O.N. for an ion is calculated, the sum of an of each atom of an element, will always be equal to the charge present on molecule.

Example * KMnOy O.N. for Mn=1 1+ x+ (-2)4 = 0 x-7=0 > x=+7

PAGE NO.: 10
2H++H2O2+2Fe2+->2H2O+2Fe+3
Ques. $MnO_4 + H_2O_2 \rightarrow Mn^{+2} + O_2$
(8H++ MMQ, +5e> Mn+2+4H, 0)2 (Reduction)
$(H_2O_2 \longrightarrow O_2 + 2H^{\dagger} + 2e^{-})5$ (Oxidation) $2MnO_4 + 16H^{\dagger} + 5H_2O_2 \longrightarrow 2Mn^{\dagger 2} + 8H_2O_1 + 5O_2 + 10H^{\dagger}$ $= 2MnO_4 + 6H^{\dagger} + 5H_2O_2 \longrightarrow 2Mn^{\dagger 2} + 8H_2O_1 + 5O_2$
(b) In Basic Medium 1-> Divide/split the equation into 2 halves. 2-> Assign the Oxidation Number
3 → Balance the elements 4 → Balance the loss and gain of electrons 5 → Write the added equation
6→ Observe both the sides of the equation. Wherever you have mose H+ ions, add same no. of OHT ions on both the sides of equation.
Ques. MnQy + Bar -> MnO, + BarOz
$(3e^{-}+MnO_{4}+4H^{\dagger} \longrightarrow MnO_{2}+2H_{2}O)2 (Reduction)$ $B_{2}+3H_{2}O \longrightarrow B_{2}O_{3}+6H^{\dagger}+6e^{-}(Oxidation)$
6e+2MnOy+8H+->2MnO2+4H2O
Bar + 3 H2 O> Bar O3 + 6 H+ 60
= 2MnOy + BH+ Bet + 3H20 2MnO2+4H20+B203+6H+

2Mn Oy + 2H+ + Box + 3-> 2MnO, + H, O + Box Og

17/7/19 (b) In Basic Medium

PAG	ENO.:	(41	
10000	77-11	124	-

- 3	DATE:
	2MnOy+ H2O+ Box - 20H - 2MnO, + H2O+ BoxO3+ 20H 2MnOy+ H2O+ Box - > 2MnO2 + BoxO3 + 20H
-10	Ques. MnOy + I MnO2 + I2
	(MnOy+3e+4H+ > MnO2 +2H2O)2 (Reduction)
	(2I - > I2 + 2e-) 3 (Vaidation)
	= 2Mn0+60+8H+-> 2Mn0,+4H20
tsky (6T> 3T ₂ +6e
	2MnOy + BH++6I> 2MnOz+4H20+5Iz
	= 2Mn Oy + BH+ + BOH + 6I -> 2Mn O2 + 4H2 O+3I2 + BOH = 2Mn Oy + BH2O + 6I -> 2MnO2 + 4H2 O+3I2 + BOH
	= 2Mn Q + 4H2O+6I -> 2MnO2 +3T2 +80H
	& (D) Types Of Redox Reactions
l→l 19	· Combination Reactions Reductions
	· Combination Reactions Reductions C+ 02 -> CO2 Oxidation
	All combination succetions are redex seactions.
	· Decomposition Reactions
	All de composition reactions are reactions.
	2H20 EC > H2 + O2
	· Displacement Reactions
	All displacement reactions are redox reactions

	PAGE NO.: 15 DATE:	
	Fe + Cyso, -> Feso, -+ Cu	
	· Double Displacement Reactions	
	All double displacement suactions are not sudex such	oction
Lak	BaCl, + Na, Soy → 2NaCl + BaSoy	
*	· Disperopositionation Reaction	
	In this seaction, some element undergoes both a and oxidation simultaneously.	aducti
-	Mn is unstable and it stabalizes itsel	fwhe
	added to water and forms Mn+2 and MnO2.	
4.5	$\cdot Mn^{+3} \longrightarrow Mn^{+2} + MnO_{2}$	
115-31	$Mn^{+3}+e^{+} \rightarrow Mn^{+2}$	
	$Mn^{+3} + 2H_2O \rightarrow MnO_2 + 4H^+ + e^+$	
	2Mn+3 + 2H20 -> Mn+2 + MnO2 + 4H+ -> aci	dic
	· P,> PH3 + H2PO2	
	12H++Py ->4PH3+12E-	
	(8H, 0 € 8 H++ P,> 4H, PO, + 4e-) 3 24H, 0 € 24H+3P, -> 12H, PO, + 12e-	
	24H2O#-12H++4P4-> 4PH3 + 12H2PO2 -12H2O+*P4	
	6H20+Py->PH3+3H2PO2+3H+	

PAGE NO: 13
DAYE: 94 7 19

N2H4 + ClO3> NO + ACC
(2H20+N2H4->2NO+BH++4e-)3
(6H+6e+Clo3 -> #Cl +6e+3H20)2
64,0+3N2H4->6NO+24H+12e-
12+1++20+2(10= -> 2(1-+6H20
3N2H4+2ClO3->6N0+2Cl-+12H+

Marian D. Linian

to the age and it will not person!

Considerate middle but both

- italyah di

COLE A LO COOR + CE

0+000 - vd

1+ - - 2 (1) 5+ -2 (1)