8.0 1) Considere um jogo de tabuleiro para crianças muito simples e que envolve 2 jogadores de cada vez. Neste jogo, cada jogador parte da casa 1 e ganha o que chegar mais depressa à casa Meta.

O percurso de cada jogador desde a casa 1 até à casa Meta segue o diagrama a seguir, que indica as casas para onde o jogador se pode mover durante o jogo. A escolha do percurso depende do resultado do lançamento de uma moeda ao ar que não é equilibrada (moeda diferente em cada casa). O resultado do lançamento em cada casa depende de um parâmetro α_i , sendo i o número da casa. Nas alíneas seguintes assuma $\alpha = [0.2, 0.3, 0.1, 0.45]$.

2.5 [1.a) Represente em Matlab a matriz de transição T, em que T_{ji} representa a probabilidade de o estado j se seguir ao estado i.

Código Matlab:

tjeto que passa pelo menor número de casas
chegar à Meta. menor número de casas

3.0 [1.c) Determine	as percorridas desde o início até ao fim do jogo (incluindo a cas:
Research a casa final).	ns na
CAU:	percorridas desde o início est
Codigo Matlab:	ate ao fim do jogo (incluindo a co-
	"CdS

2.0	2.a) Assuma que vai adicionar 300 palavras ao filtro de Bloom. Assuma também que o filtro de Bloom usa uma única função de dispersão e que deserá ter productivo de Bloom.
	and the state of the development of the state of the stat
	Determine o tamanho adequado do filtro de Bloom e apresente o código que usou.

Resultado:	
Código Matlab:	

4.0 [2.b] Inicialize o filtro de Bloom usando o tamanho calculado anteriormente (se não o conseguiu calcular utilize o valor de 10000). De seguida inclua no filtro 300 palavras diferentes geradas aleatoriamente com as carateristicas definidas acima. Use a função de dispersão default providenciada pela função string2hash (usada nas aulas práticas) na implementação das funções do filtro de Bloom.

Finalmente, determine por simulação a probabilidade de falsos positivos do filtro implementado, usando um conjunto de adequado de palavras. Apresente o resultado obtido e o código Matlab que usou (não apresente o código das funções do filtro de Bloom).

Resultado: _____

Código Matlab:

- Lisbou e Porto são duas cidades importantes de Portugal.
- 2. Lisbon é a capital de Portugal.
- 3. Porto é a capital do Norte de Portugal.
- 4. Portugal não é só Lisboa e Porto.

Implementando MinHash, determine as assinaturas de cada frase considerando todos os seus caracte res (inclaindo ponto final e espaços), estime a distância de Jaccard entre todas as frases e apresente o par mas similar entre todas. Na implementação tem de usar a função de dispersão h£1 () disposível em https://bit.ly/3LaAynd.aplicar 4 funções de dispersão; usar shingles de compresento k=3

				- Consideration	
	Frase 1 = Frase 2 =				
	Frase 3 = Frase 4 =				
Distincia	1112=				
Man con	2v13=		83=		
Cobigo Mar		2 v	84=	1 vs.4 =	
	(umplementaçã	o de Minha		3184= _	

(implementação de MinhHash e cale, distância):