

1

2

1

1

1

2

3

CLAIMS

What is claimed is:

4			
1.	Δ	chindle	comprising
1.	1 X	spinare,	comprising.

- a shaft;
- a sleeve coaxial with the shaft;
- a first gap formed between the sleeve and the shaft for facilitating rotation therebetween;
 - a hub bound to one of the shaft and the sleeve;
- a second gap located between the hub and the sleeve, wherein the second gap is larger than the first gap; and wherein

the hub is adapted to be secured to a rotor magnet which is adjacent to a stator, such that the second gap reduces magnetic flux leakage into the sleeve and a substantially negligible amount of flux crosses the first gap into the shaft.

- 2. The spindle of claim 1 wherein the first gap is on the order of a few microns.
- 3. The spindle of claim 1 wherein the shaft is stationary, the sleeve rotates relative to the shaft, and the hub is bound to the sleeve.
- 4. The spindle of claim 1 wherein the second gap is filled with a substantially non-permeable material.
- 5. The spindle of claim 1 wherein the second gap is filled with epoxy.
- 6. The spindle of claim 1 wherein the second gap is the range of 200 to 300 microns.

1	7.	A precision spindle assembly, comprising in combination:			
2		a stator;			
3		a spindle hub having a rotor magnet mounted thereto that is rotatable relative			
4	to the	stator; wherein the spindle hub comprises:			
5		a ferromagnetic stationary shaft;			
6		a rotatable ferromagnetic sleeve coaxial with the shaft;			
7		a fluid bearing gap formed between the sleeve and the shaft for facilitating			
8	rotation therebetween;				
9 .		a ferromagnetic hub bound to the sleeve;			
10		a large gap located between the hub and the sleeve, wherein the large gap is			
11	larger	than the fluid bearing gap; and wherein			
120		the large gap reduces magnetic flux leakage into the sleeve such that a			
1 1.2 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	substa	antially negligible amount of flux crosses the fluid bearing gap into the shaft.			
	8.	The precision spindle assembly of claim 7 wherein the fluid bearing gap is on			
2	the or	der of a few microns.			
August H					
	9.	The precision spindle assembly of claim 7 wherein the large gap is filled with			
2.31	a subs	stantially non-permeable material.			
1	10.	The precision spindle assembly of claim 7 wherein the large gap is filled with			
2	epoxy				
1	11.	The precision spindle assembly of claim 7 wherein the large gap is the range			
2	of 200	to 300 microns.			

1

2

3

4

5

6

8

- 12. A method of insulating a precision spindle assembly against magnetic flux, comprising the steps of:
- (a) providing a stator, and a spindle assembly with a rotor magnet, a shaft, a sleeve, a fluid bearing gap between the sleeve and the shaft, a hub on one of the shaft and the sleeve, and a gap between the hub and the sleeve;
- (b) rotating the rotor magnet relative to the stator to induce a magnetic field; and
- (c) reducing magnetic flux leakage into the sleeve with the gap such that a substantially negligible amount of flux crosses the fluid bearing gap into the shaft.
- 13. The method of claim 12 wherein step (a) comprises forming the fluid bearing gap in the range of a few microns.
- 14. The method of claim 12 wherein step (a) comprises filling the gap with a substantially non-permeable material.
- 15. The method of claim 12 wherein step (a) comprises filling the gap with an epoxy.
- 16. The method of claim 12 wherein step (a) comprises forming the gap in the range of 200 to 300 microns.