Triposes and toposes via arrow algebras

Umberto Tarantino

IRIF, Université Paris Cité

Categorical Logic and Higher Categories 18th December 2024

Higgs, A category approach to boolean-valued set theory, 1973

Fourman, Scott, Sheaves and logic, 1979

Hyland, Johnstone, Pitts, Tripos theory, 1980

Question

Can we find a common framework to study both localic and realizability toposes from a concrete, "elementary" level?

Arrow algebras are a generalization of Alexandre Miquel's implicative algebras aimed to factor through the two constructions.

Arrow algebras are a generalization of Alexandre Miquel's implicative algebras aimed to factor through the two constructions.

arrow algebra
$$A (\leq \Lambda \rightarrow S)$$

Arrow algebras are a generalization of Alexandre Miquel's implicative algebras aimed to factor through the two constructions.

Arrow algebras are a generalization of Alexandre Miquel's implicative algebras aimed to factor through the two constructions.

Morphisms between arrow algebras can be defined as functions "preserving" the implication \rightarrow and the subset S.

Morphisms between arrow algebras can be defined as functions "preserving" the implication \rightarrow and the subset S.

More precisely, a morphism $f:(A,\leq,\to,S_A)\to(B,\leq,\to,S_B)$ is a function $f:A\to B$ such that:

- 1. $f(S_A) \subseteq S_B$;
- 2.

$$\bigwedge_{a,a'\in A} f(a\to a')\to f(a)\to f(a')\in S_B;$$

3. for every $I \subseteq A \times A$,

$$\text{if } \bigwedge_{(a,a')\in I} a \to a' \in S_{\mathcal{A}} \ \text{ then } \bigwedge_{(a,a')\in I} f(a) \to f(a') \in S_{\mathcal{B}}.$$

These morphisms specialize to:

- finite-meets preserving maps of frames;
- partial applicative morphisms of pcas,

These morphisms specialize to:

- finite-meets preserving maps of frames;
- partial applicative morphisms of pcas,

and correspond exactly to:

cartesian transformations of the induced triposes.

ArrAlg
$$Tripos_{cart}$$
 $A \longrightarrow f \longrightarrow B \simeq A^- \longrightarrow f \circ - \longrightarrow B^-$

In particular, morphisms which are left adjoints in the preorder-enriched category ArrAlg specialize to:

- homomorphisms of frames;
- computationally dense partial applicative morphisms of pcas,

In particular, morphisms which are left adjoints in the preorder-enriched category ArrAlg specialize to:

- homomorphisms of frames;
- computationally dense partial applicative morphisms of pcas, and correspond exactly to:
 - geometric transformations of the induced triposes.

Categorically, we have the following picture:

Subtoposes and nuclei

As an example of an application, we can characterize subtoposes in terms of nuclei on the underlying arrow algebra, generalizing what happens for locales.

Proposition

Let A be an arrow algebra. Then, every subtopos of $Set[A^-]$ is induced by a geometric transformation of triposes

$$A^{-} \xrightarrow{id_{A} \circ -} A_{j}^{-}$$

for some nucleus j on A.

