Linear Algebra Programming Project

2022-12-17

■ There are two iterative methods to estimate an eigenvalue. One is the power method for estimating a strictly dominant eigenvalue. The other is the inverse power method for estimating an eigenvalue λ with roughly estimated eigenvalues. The iterative process of these two methods are described as below.

THE POWER METHOD FOR ESTIMATING A STRICTLY DOMINANT EIGENVALUE

- 1. Select an initial vector \mathbf{x}_0 whose largest entry is 1.
- **2.** For $k = 0, 1, \ldots,$
 - a. Compute $A\mathbf{x}_k$.
 - b. Let μ_k be an entry in $A\mathbf{x}_k$ whose absolute value is as large as possible.
 - c. Compute $\mathbf{x}_{k+1} = (1/\mu_k)A\mathbf{x}_k$.
- 3. For almost all choices of \mathbf{x}_0 , the sequence $\{\mu_k\}$ approaches the dominant eigenvalue, and the sequence $\{\mathbf{x}_k\}$ approaches a corresponding eigenvector.

THE INVERSE POWER METHOD FOR ESTIMATING AN EIGENVALUE λ OF A

- 1. Select an initial estimate α sufficiently close to λ .
- 2. Select an initial vector \mathbf{x}_0 whose largest entry is 1.
- 3. For $k = 0, 1, \ldots$,
 - a. Solve $(A \alpha I)\mathbf{y}_k = \mathbf{x}_k$ for \mathbf{y}_k .
 - b. Let μ_k be an entry in \mathbf{y}_k whose absolute value is as large as possible.
 - c. Compute $v_k = \alpha + (1/\mu_k)$.
 - d. Compute $\mathbf{x}_{k+1} = (1/\mu_k)\mathbf{y}_k$.
- 4. For almost all choices of \mathbf{x}_0 , the sequence $\{v_k\}$ approaches the eigenvalue λ of A, and the sequence $\{\mathbf{x}_k\}$ approaches a corresponding eigenvector.

1. (15pt) Estimate a strictly dominant eigenvalue of a matrix A with initial vector \mathbf{x}_0 described as following.

$$A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}, \mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Q1.1. What kind of method do you choose? Explain the reason of your selection.

The power method, 이 방식이 a strictly dominant eigenvalue 추정에 더 효율적이기 때문이다.

Q1.2. Write a code to estimate a strictly dominant eigenvalue of A with initial vector \mathbf{x}_0 .

제출 파일 hw1.py 참고

Q1.3. Fill in the blanks in the table below. 소수점 6자리까지 표현(7짜리에서 반올림함)

Iteration	1	2	3	4	5
\mathbf{x}_k	$\begin{bmatrix} 1 \\ 0.4 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0.225 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0.0.203509 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0.2005 \end{bmatrix}$	$\begin{bmatrix} 1\\0.200071\end{bmatrix}$
$A\mathbf{x}_k$	$\begin{bmatrix} 8 \\ 1.8 \end{bmatrix}$	$\begin{bmatrix} 7.125 \\ 1.45 \end{bmatrix}$	$\begin{bmatrix} 7.017544 \\ 1.407018 \end{bmatrix}$	$\begin{bmatrix} 7.0025 \\ 1.401 \end{bmatrix}$	$\begin{bmatrix} 7.000357 \\ 1.400143 \end{bmatrix}$
μ_k	8	7.125	7.017544	7.0025	7.000357

2. (15pt) Estimating an eigenvalue λ , which are the two smallest eigenvalues of A with initial vector \mathbf{x}_0 described as following.

$$A = \begin{bmatrix} 10 & -8 & -4 \\ -8 & 13 & 4 \\ -4 & 5 & 4 \end{bmatrix}, \mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 with roughly estimated eigenvalues 21, 3.3, and 1.9

Q2.1. What kind of method do you choose? Explain the reason of your selection.

The inverse power method, 이 방식이 임의의 eigenvalue 추정에 더 효율적이기 때문이다.

Q2.2. Write a code to estimate the two smallest eigenvalues of A with initial vector \mathbf{x}_0 .

제출 파일 hw2.py참고

Q2.3. Draw two tables to estimate the two smallest eigenvalues of A with initial vector \mathbf{x}_0 .

소수점 6자리까지 표현(7짜리에서 반올림함) α=1.9

Iteration	0	1	2	3	4
\mathbf{x}_k		0.57359 0.064649 1	0.505364 0.004453 1	$\begin{bmatrix} 0.500378 \\ 0.000313 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0.500027 \\ 0.000022 \\ 1 \end{bmatrix}$
\mathbf{y}_k	[4.450374] [0.501601] [7.758805]	[5.013058] [0.044172] [9.9197]	[5.001247] [0.003126] [9.994931]	[5.000089] 0.00022 [9.999646]	[5.000006] [0.000015] [9.999975]
μ_k	7.758805	9.9197	9.994931	9.999646	9.999975
v_k	2.028886	2.00081	2.000051	2.000004	2

소수점 6자리까지 표현(7짜리에서 반올림함) α=3.3

Iteration	0	1	2	3	4
\mathbf{x}_k	[1]				
		0.793369	0.786921	0.787014	0.787012
\mathbf{y}_k	[41.045365]	[47.486662]	[47.119503]	[47.125168]	[47.125075]
	32.564103 3.372781	37.368252 4.553654	37.083691 4.507785	37.088078 4.508501	37.088006 4.508489
μ_k	41.045365	47.486662	47.119503	47.125168	47.125075
v_k	3.324363	3.321059	3.321223	3.32122	3.32122