Phase 1: Foundations

	1.	Pro	orar	nmina	Skills
--	----	-----	------	-------	--------

- Languages: Learn Python (preferred) and optionally Java or C++.
- Focus on libraries like NumPy, Pandas, and Matplotlib.
- Practice writing clean, modular, and efficient code.

2. Mathematics

- Linear Algebra: Matrices, vectors, eigenvalues, and transformations.
- Calculus: Differentiation and gradients for optimization in ML models.
- Probability & Statistics: Basic probability, distributions, and statistical testing.

3. Data Structures & Algorithms

- Learn essential algorithms (search, sort, etc.) and data structures (arrays, trees, graphs).
- Understand time complexity and Big-O notation.

4. Version Control

- Learn Git and GitHub for collaboration and version control.

Phase 2: Core Al Concepts

1. Machine Learning (ML)

- Understand supervised, unsupervised, and reinforcement learning.

- Learn algorithms like linear regression, decision trees, k-means, and SVM.
- Use ML frameworks like scikit-learn.

2. Deep Learning (DL)

- Study neural networks, activation functions, and backpropagation.
- Learn convolutional neural networks (CNNs) for image tasks.
- Explore recurrent neural networks (RNNs) and transformers for text processing.

3. Al Frameworks

- Learn frameworks like TensorFlow and PyTorch for building AI models.
- Experiment with pre-trained models from TensorFlow Hub or Hugging Face.

Phase 3: Data Handling

- 1. Data Preprocessing
 - Handle missing values, outliers, and normalize/standardize data.
 - Feature engineering and selection.
- 2. Big Data Tools (Optional)
 - Learn tools like Apache Spark or Hadoop for large datasets.

3. Databases

- Learn SQL for structured data.
- Explore NoSQL databases like MongoDB for unstructured data.

Phase 4: Specializations

Change	one or	mara	orooo	+0	specialize in	
Choose c	me or	more	areas	Ю	specialize in	1:

- 1. Computer Vision
 - Learn OpenCV and frameworks for image and video analysis.
 - Master techniques like object detection (YOLO, Faster R-CNN).
- 2. Natural Language Processing (NLP)
 - Work with text data and libraries like NLTK, SpaCy, or Hugging Face Transformers.
 - Understand language models (GPT, BERT).
- 3. Reinforcement Learning
 - Learn algorithms like Q-learning and Deep Q Networks (DQN).
 - Use OpenAI Gym for simulations.
- 4. Generative Al
 - Study GANs (Generative Adversarial Networks).
 - Explore text-to-image models like DALL-E or Stable Diffusion.

Phase 5: Deployment

1.	Model	Dep	loyment

- Learn to deploy models using Flask, FastAPI, or Django for web applications.
- Use tools like Docker and Kubernetes for scalability.

2. Cloud Platforms

- Learn cloud services like AWS, Google Cloud, or Azure.
- Use managed AI services like Amazon Sagemaker or Google AI Platform.

Phase 6: Advanced Tools

- 1. DevOps for AI (MLOps)
 - Implement CI/CD pipelines for AI projects.
 - Use tools like MLflow or TensorBoard for monitoring models.

2. Optimization Techniques

- Learn hyperparameter tuning using libraries like Optuna or GridSearchCV.

Phase 7: Practice and Projects

- 1. Build small projects to apply your skills:
 - Image classification (MNIST, CIFAR-10).
 - Sentiment analysis on text.

- Recommendation systems.	
- Chatbots or virtual assistants.	

- 2. Collaborate on open-source AI projects on GitHub.
- 3. Participate in AI competitions on platforms like Kaggle.

Phase 8: Networking and Career Growth

- 1. Build a portfolio showcasing your projects and skills.
- 2. Attend AI conferences, workshops, and hackathons.
- 3. Apply for internships or entry-level AI developer roles.