

Electronics Systems (938II)

Lecture 3.4

Semiconductor Memories – Principles of Flash memory

- It is the latest evolution of ROM
 - It is an evolution of EEPROM (by a technological point of view)
 - Same principle
 - MOS with a floating gate
 - Fully electrical: programming and erasing
 - But with some advantages
 - We will see it in detail later

- It is the latest evolution of ROM
 - Main application = non-volatile (massive) storage
 - Like a ROM
 - Yes, it can be "written" and "rewritten" (erasing + programming), also several times
 - But it cannot properly be considered an RWM
 - Because "writing" process is disruptive: it damages the device
 - Ideally, a RWM should be able to be written an infinite number of times, instead ...
 - <u>Limited</u> endurance (although very high)

Cumpt be seen as a
RW memory,

because cycles

depruse oxide

of Ynnssins

It is the latest evolution of ROM

It is the latest evolution of ROM

- Another FGMOS
 - Merging characteristics of FAMOS and FLOTOX
 - 1. Symmetric floating gate

- Another FGMOS
 - Merging characteristics of FAMOS and FLOTOX
 - 1. Symmetric floating gate
 - Separated by a very thin oxide layer (from substrate)

- Another FGMOS
 - Merging characteristics of FAMOS and FLOTOX
 - 1. Symmetric floating gate
 - 2. Separated by a very thin oxide layer (from substrate)

- Another FGMOS
 - Merging characteristics of FAMOS and FLOTOX
 - 1. Symmetric floating gate
 - 2. Separated by a very thin oxide layer (from substrate)

- Another FGMOS
 - Merging characteristics of FAMOS and FLOTOX
 - 1. Symmetric floating gate
 - 2. Separated by a very thin oxide layer (from substrate)

- Another FGMOS
 - Merging characteristics of FAMOS and FLOTOX
 - 1. Symmetric floating gate
 - 2. Separated by a very thin oxide layer (from substrate)

- Another FGMOS
 - Symbol

FAMOS FLOTOX

- Another FGMOS
 - Both programming and erasing depend on the tunnel effect (like FLOTOX), but
 - Using substrate: V_{sub}
 - Programming similar to FAMOS (using also Drain)!

Programming

- $V_G = V_D = V_{PP}$
 - like FAMOS

HIGH VOLTAGE

- $V_{sub} = 0$
- $V_S = Z$

Erasing

- $V_G = 0$
- $V_{sub} = V_{PP}$
- $V_S = V_D = Z$

- Two main categories
 - Changing how (flash) transistors are connected to the Word Lines and Bit Lines

two ways to connect Knusstons to 2

Related to how NAND and NOR gates are newtised

- Two main categories
 - Changing how (flash) transistors are connected to the Word Lines and Bit Lines

Type of Flash Memory	NAND
Cost per bit (density)	Low (High) ()
Erase speed	High
Write speed	High
Supporting random read	No (organized in blocks)
Data retention	Medium (10 years)
Endurance	High
Application	Data storage

- Two main categories
 - Changing how (flash) transistors are connected to the Word Lines and Bit Lines

Type of Flash Memory	NAND	NOR
Cost per bit (density)	Low (High)	High (Low)
Erase speed	High	Low (about 150 times slower)
Write speed	High	Low
Supporting random read	No (organized in blocks)	Yes
Data retention	Medium (10 years)	High (20 years)
Endurance	High	Low
Application	Data storage	Code storage and execution

Two main categories that you can realise on the same prece of subtance
 Changing how (flash) transistors are connected to the Word Lines and Bit Lines

Type of Flash Memory	NAND	NOR	
Cost per bit (density)	Low (High)	High (Low)	
Erase speed	High	Low (about 150 times slower)	
Write speed	High	Low	
Supporting random read	No (organized in blocks)	Yes	4
Data retention	Medium (10 years)	High (20 years)	0
Endurance	High	Low	
Application	Data storage	Code storage and execution	

USB drives and SSDs!!!

- Architecture outline
 - WL_i and BL_j well known

Architecture outline

• *SSL* = String Select Line

Driving pass transistors (n-MOS)

- Architecture outline
 - *GSL* = Ground Select Line
 - Driving pass transistors (n-MOS)

(menony) to grown

- Architecture outline
 - Block
 - All the Flash transistors/memory cells
 - Sharing substrate!!! for programming

- Architecture outline
 - Page

- Architecture outline
 - String
 - $[32 \div 128]$ transistors

- Working principle
 - Read by page
 - Program by page
 - Erase by block

- Working principle
 - Read by page
 - Program by page
 - Erase by block
- But before ...

- Like any other FGMOS
 - $V_T < V_R < V_T'$
 - If flash transistor not programmed (erased)
 - Transistor = ON (short circuit), when applying V_R
 - If flash transistor programmed
 - Transistor = OFF (open circuit), when applying V_R

- Like any other FGMOS
 - $V_T < V_R < V_T'$
 - If flash transistor not programmed (erased)
 - Transistor = ON (short circuit), when applying V_R
 - If flash transistor programmed
 - Transistor = OFF (open circuit), when applying V_R
- In addition
 - V_{BP} = bypass voltage
 - $V_{BP} > V_T' \rightarrow \text{transistor always ON (short circuit)}$

- Working principle
 - Program by page Example

- Working principle
 - Program by page Example

$$\bullet GSL = 0 \qquad (0 V)$$

•
$$SSL = 1$$
 (V_{CC})

- V_{PP} on WL of cells/transistors to be programmed
 - $-V_{BP}$ on all other WLs
- V_{PP} on BL of cells/transistors to be programmed
 - 0 on all other BLs

- Working principle
 - Program by page Example

$$\bullet GSL = 0 \qquad (0 V)$$

•
$$SSL = 1$$
 (V_{CC})

- V_{PP} on WL of cells/transistors to be programmed
 - $-V_{BP}$ on all other WLs
- V_{PP} on BL of cells/transistors to be programmed
 - 0 on all other BLs
- Let's assume to program cell (1,1)

- Working principle
 - Program by page Example

$$\bullet GSL = 0 \qquad (0 V)$$

- V_{PP} on WL of cells/transistors to be programmed
 - $-V_{BP}$ on all other WLs
- V_{PP} on BL of cells/transistors to be programmed
 - 0 on all other BLs
- Let's assume to program cell (0,1)

- Working principle
 - Program by page Example

$$\bullet GSL = 0 \qquad (0 V)$$

•
$$SSL = 1$$
 (V_{CC})

- V_{PP} on WL of cells/transistors to be programmed
 - $-V_{BP}$ on all other WLs
- V_{PP} on BL of cells/transistors to be programmed
 - 0 on all other BLs
- Let's assume to program cell (0,1)

- Working principle
 - Program by page Example

$$\bullet GSL = 0 \qquad (0 V)$$

- V_{PP} on WL of cells/transistors to be programmed
 - $-V_{BP}$ on all other WLs
- V_{PP} on BL of cells/transistors to be programmed
 - 0 on all other BLs
- Let's assume to program cell (0,1)

- Working principle
 - Program by page Example

$$\bullet GSL = 0 \qquad (0 V)$$

•
$$SSL = 1$$
 (V_{CC})

- V_{PP} on WL of cells/transistors to be programmed
 - $-V_{BP}$ on all other WLs
- V_{PP} on BL of cells/transistors to be programmed
 - 0 on all other BLs
- Let's assume to program cell (0,1)

- Working principle
 - Program by page Example wmol

$$\bullet GSL = 0 \qquad (0 V)$$

•
$$SSL = 1$$
 (V_{CC})

- V_{PP} on WL of cells/transistors to be programmed
 - $-V_{BP}$ on all other WLs
- V_{PP} on BL of cells/transistors to be programmed
 - 0 on all other BLs
- Let's assume to program cell (0,1)

- Working principle
 - Erase by block Example

- Working principle
 - Erase by block Example

$$\bullet GSL = 0 \qquad (0 V)$$

$$\bullet SSL = 0 \qquad (0 V)$$

- 0 on all WLs
- V_{PP} on substrate

- Working principle
 - Erase by block Example

$$\bullet GSL = 0 \qquad (0 V)$$

$$SSL = 0 (0 V)$$

- \bullet 0 on all WLs
- V_{PP} on substrate

- Working principle
 - Read by page Example

- Working principle
 - Read by page Example

$$\bullet GSL = 1 \qquad (V_{CC})$$

- V_R on WL of cells/transistors to be read
 - V_{BP} on all other WLs
- V_{CC} on all BLs

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

•
$$SSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

•
$$SSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (0,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

$$SSL = 1 (V_{CC})$$

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (0,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

•
$$SSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - VBP on all other WLs bypus velly
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (0,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (0,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

•
$$SSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (0,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

•
$$SSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (1,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

$$SSL = 1 (V_{CC})$$

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (1,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

•
$$SSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (1,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (1,0)

- Working principle
 - Read by page Example

•
$$GSL = 1$$
 (V_{CC})

•
$$SSL = 1$$
 (V_{CC})

- V_R on WL of cells/transistors to be read
 - $-V_{BP}$ on all other WLs
- V_{CC} on all BLs
- Assume cells (0,0) and (1,1) are programmed
- All other cells are not programmed
- Let's assume to read cell (1,0)

(NAND) Flash memory – Final remarks

- More than one block in a memory
 - Not just one!

- Data overwriting is not possible
- For each data write (in a block)
 - Erasing (the whole block)
 - Programming the block by page (one word line at a time)

Comparing all the ROMs analysed so far

 Comparing all the ROMs analysed so far Transistor not in all cells Cannot be modified after manufacturing Cost (transistor) 2 **EEPROM PROM** Flash **EPROM ROM** Flexibility

 Comparing all the ROMs analysed so far Each cell: 1 transistor + 1 fuse Can be modified just one time after manufacturing Cost (transistor) 2 **EEPROM PROM** Flash **EPROM ROM** Flexibility

 Comparing all the ROMs analysed so far Each cell: 1 transistor Programming by cell Erasing the whole memory Cost (transistor) content 2 **EEPROM PROM** Flash **EPROM** UV-PROM (Famos Vin sisker) **ROM** Flexibility

 Comparing all the ROMs analysed so far Each cell: 1 transistor And pass transistor on strings Programming by cell Cost (transistor) Erasing by block 2 **EEPROM PROM** Flash **EPROM ROM** Flexibility

 Comparing all the ROMs analysed so far Each cell: 2 transistors Programming by cell Erasing by cell Cost (transistor) 2 **EEPROM PROM** Flash **EPROM ROM** Flexibility

Thank you for your attention

Luca Crocetti (luca.crocetti@unipi.it)