

CPSC 544 FUNDAMENTALS IN DESIGNING INTERACTIVE COMPUTATION TECHNOLOGY FOR PEOPLE

© 2023 Karon MacLean — University of British Columbia
Material created by Joanna McGrenere, Karon MacLean, Leila Aflatoony, Jessica Dawson & Heather O'Brien

COMING UP

OThis week (Oct 23)

- Sun 10/22:
 - Researcher Journal #9
- Tues 10/25
 - Researcher Journal #10
 - Team deliverable: Finalized Conceptual Model & Storyboard (Report)

Coming Up

- Sun 10/29 Tues 10/31:
 - Researcher Journals #11, 12; mid-course survey
- Mon 11/06: Low-Fi Prototype Presentations
- Wed 11/08: In-class: cog walkthrough of lo-fi prototypes
- Midterm break no class or deliverables all week

LEARNING GOALS

- Understand different types of prototyping, purpose and characteristics of each
- List dimensions of prototyping fidelity and explain how these dimensions may vary
- Explain how these dimensions might differ in low to med to high fidelity prototypes, and give examples of when/why you may use each type
- Make strategic choices about prototyping tools given your goals and constraints;
 be able to justify your choice

User Interface Design Process: Evolving Iterations

FROM CONCEPTUAL TO CONCRETE

- ullet Interface design goal o communicate conceptual model
 - Challenge:
 - Designer's conceptual model is communicated via system image:
 - Interface, appearance, instructions, system behavior through interaction
 - If system image does not make model clear and consistent:
 - → user's mental model will be inconsistent with conceptual model

How do we start designing the interface? Prototyping!

WHAT IS A PROTOTYPE?

- Representation of conceptual design for users to interact with
 - and designers & other stakeholders
- Prototypes take many forms:
 - Cardboard, foam, software, video, clay, paper, hidden people, website, sketches, scripts, index cards, etc.
- To begin to build ... Need:
 - Users and tasks to build your prototype around
 - Requirements
 - Goals: questions your prototype(s) need to answer

4 designs: image-enhanced planner

WHY PROTOTYPE?

Many different kinds of goals and questions possible

- Communication: discuss ideas with stakeholders
 - "Where's the ON button?"
- Develop requirements and/or specifications
 - "Uh-oh, here's something we forgot."
- Learning and problem solving
 - "Hey, that will work!"

- Evaluate interface effectiveness for communicating conceptual model
 - "Whoops, users didn't understand that."
- Further develop conceptual and physical design
 - "That's way too heavy"
- Save time and money
 - Don't waste time coding/building the wrong thing

NOT JUST FOR SOFTWARE: HANDHELD "UNIVERSAL REMOTE CONTROL"

Conceptual Prototypes

TYPES OF PROTOTYPES?

early design

Choose a representation; Rough out interface style; Task walkthrough & redesign

Fine tune interface, screen design Heuristic evaluation and redesign

> Usability testing and redesign Limited field testing

> > Alpha/Beta tests

Low fidelity prototypes

Medium fidelity prototypes

High fidelity prototypes

Working systems

late design

APPROACHES TO PROTOTYPE/ PRODUCT INTEGRATION

- Throw-away
 - prototype only serves to elicit user reaction
 - creating prototype must be rapid, otherwise too expensive
- Incremental
 - product built as separate components (modules)
 - each component prototyped and tested, then added to the final system
- Evolutionary
 - prototype altered to incorporate design changes
 - eventually becomes the final product

APPROACHES TO 'SCOPING' PROTOTYPE FUNCTIONALITY

Vertical prototype

- includes in-depth functionality for only a few selected features
- key design ideas can be tested in depth

Horizontal prototype

- surface layers only: includes the entire user interface with no underlying functionality
- a simulation; no real work can be performed

Common strategy at low, med fi stage:

do both -- horizontal plus a slice of vertical with limited focus.

LOW FIDELITY PROTOTYPES

• Meant to be rough, quick to build, easy to throw away

- Purposes
 - proof of concept(s)
 - rough (but flexible) interface design
 - facilitate communication with users early on
 - useful for generating and narrowing requirements

BENEFITS OF LOW FIDELITY PROTOTYPES

- Cheap/easy to make
 - Try out and explore multiple conceptual models
 - Lack of polish less intimidating to users (this is surprisingly important)
 - More willingness to criticize
 - Inspires more creative feedback
 - Avoids nitpicky feedback
 - Reduces effort invested by design team
 - So easier to make changes, start over

IDEO SURGICAL TOOL PROTOTYPE

LO-FI PROTOTYPING METHODS

PAPER | SKETCHING | STORY BOARDING | SCRIPTED SIMULATIONS | WIZARD OF OZ

"PAPER" PROTOTYPING

- Common low fidelity technique
- Popular in industry . . .
- Despite prevalence of 'mockup' software tools because easy to:
 - build
 - alter on the fly
 - show
 - stick on wall & compare
 - discuss

Low-fi prototyping does not need to be paper

Haptok prototype (Tam & MacLean): the power of magnetic tape!

PAPER PROTOTYPING VS. SKETCHING

For different intentions, use different sketching approaches

Buxton, B. (2007). Sketching user experiences: Getting the design right and the right design. **Chapter 13-17**. Sketching interaction (pp.135-155), Morgan Kaufmann Publishers Inc.

DIGITAL STORYBOARDS

- Draw each storyboard scene on computer
 - use wire framing/mockup software (e.g., balsamiq)
 - or painting/drawing packages (e.g., photoshop)
- A very thin horizontal prototype
- Does not capture the interaction "feel"

Elements aren't active: They are like a paper prototype, but on-screen

TECHNIQUE: **SCRIPTED**SIMULATIONS & SLIDE SHOWS

moving towards med-fi elements can be active – but still only narrow functionality

- Encode the storyboard on the computer
 - scene transition activated by simple user inputs (i.e. clickable regions)
 - a simple horizontal and/or vertical prototype
 - supports 'limited' branching
- User given a very tight script/task to follow
 - appears to behave as a real system, but script deviations blow the simulation

Next drawing →

On mouse, press over button (appears to be active)

WIZARD OF OZ

- A totally different method of testing a system that does not exist
 - The voice editor, by IBM (1984)

WIZARD OF OZ ("WOZ")

- Human simulates system's intelligence & interacts with user
 - "Pay no attention to the man behind the curtain!"
- User uses computer as expected
- "Wizard" (sometimes hidden):
 - interprets subject's input according to a preset algorithm
 - makes computer/screen behave in appropriate manner
- Good for:
 - adding simulated and complex vertical functionality
 - testing futuristic ideas
- Cons?

MEDIUM-FIDELITY PROTOTYPES

- Requires prototyping with a computer
- Engaging for end users
- Simulate some but not all features of the interface (interactive)
- Can test more subtle design issues
- Pitfalls
 - User's reactions often "in the small"
 - Blinds people to major representational flaws because of a tendency to focus on more minor details
 - Users reluctant to change/challenge designer

DIFFERENCE BETWEEN "LOW" AND "MEDIUM" ?

- Less clear than it used to be...
 - Many powerful tools that...
 - make it very easy (a low-fi trait) to generate mockups
 - look real and are at least somewhat interactive (usually a "medium fidelity" trait)
 - e.g.: balsamiq, axure low or medium; usually not high

MANY DIMENSIONS OF "FIDELITY"

- What are ways a prototype can be 'true to life"?
 - Visual realism: how real it looks. polish, graphic imagery
 - Physical realism: shape and form for 3D objects; feel
 - Scope: how many functions included; horizontal vs. vertical
 - Functionality: what actually works? e.g. web app: links live?
 - Data: operates on real vs faked data
 - Autonomy: operates alone vs requires "supervision"
 - Platform: interim vs final implementation

IMPORTANT LESSONS:

- It is COMPLICATED (slow, expensive) to prototype multiple dimensions at once.
 - \rightarrow so don't. Instead: modularity of prototyping.
- Each prototyping tool has strengths and weaknesses
 - May be better (more efficient and capable) for some of these prototyping dimensions than others.
 - > you may need multiple tools throughout your design's life cycle.

BALSAMIQ: LOW TO MEDIUM

- Quickly mock up images and hyperlinked interactivity.
 - But real functionality difficult.
 - https://balsamiq.com/ (good ~ 1 min intro video)

MAKE MEDIUM-FIDELITY MOCKUPS LOOK LOW-FI

this graphic is generated from code (processing).
 http://www.gicentre.org/handy/

DIFFERENCE BETWEEN MED & HIGH-FIDELITY PROTOTYPES

- Increasing in completeness and detail:
 - More aspects being prototyped at same time
 - Higher degree of functionality
 - Higher degree of polish...
 - Fidelity is a spectrum
 - Not always a firm line between low/med or med/hi

THE SITUATION TODAY FOR PROTOTYPING TOOLS (VS. DEVELOPING ON FINAL PLATFORM)

- For simple prototyping.
 - Figma, Balsamiq, Axure, HTML, Powerpoint
- Advanced Uls still require (scripting) language + libraries
 - HTML + javascript
 - Tool Command Language/Tool Kit (TCL/TK)
 - Python
 - Processing (Java based, but way more accessible; good for sketching, no good for larger code projects)
 - still a need for more powerful programming languages
 - Available tools change every year

FUNCTIONALITY CHECKLIST

- How realistic does the prototype need to be? How important is appearance?
 - Is the scope horizontal or vertical?
 - How functional is it? what has to work vs. what can be faked?
 - Is the data **real** or **faked?**
 - Can it be used alone? or is use supervised?
 - Is the platform final or interim?

UBC STUDENT AID — HTML PAST CPSC344 PROJECT

HTML:

- final platform didn't need to be glitzy
- easy to copy existing text, look and feel
- then alter everything

HOME ALARM SYSTEM

flash:

- product for the home
- needed to gauge reactions to having it in one's house
- imagery + graphic resolution critical

E-READER & ON NOTE-TAKING TOOL

Flex:

- needed to test how well the concept worked for actually taking notes in lecture
- highly functional
- detailed vertical

SONIC STAGE MUSIC SYNCHRONIZATION TOOL

flash with imported photoshop images

Features scanned, hand-drawn sketches

Aesthetics were important

HOW DO YOU KNOW WHEN YOU HAVE — OR NEED — A HIGH-FI PROTOTYPE?

- Scope is complete (horizontal and vertical)
- Prototype can be tested in just about every way:
 - performance
 - subjective and cognitive analysis
 - more realistic scenarios
 - in field
- Feels like time to switch to final development platform
- Design is becoming rigid and finalized

SUMMARY

Low Fidelity

• cheap

- proof-of-concept
- easy to build lotslimited error
 - checking
- facilitatecommunication
- hard to get to code
- gross design (layout)
- facilitator driven
- market requirements
- limitedfunctionality

High Fidelity

- full functionality
- expensive
- interactive
- time consuming

- user-driven
- exploration and testing
- final look & feel
- provides specs
- marketing tool

- inefficient proofof-concept
- poor for req'mts gathering
- hard to discard