

La eficiencia de los algoritmos

- 1. Noción de complejidad
 - Complejidad temporal, tamaño del problema y paso
- 2. Cotas de complejidad
 - Cota superior, inferior y promedio
- 3. Notación asintótica
 - Ω, Ω, Θ
- Obtención de cotas de complejidad

1. Noción de complejidad

DEFINICIÓN

- Cálculo de complejidad: determinación de dos parámetros o funciones de coste:
 - Complejidad espacial : Cantidad de recursos espaciales (de almacén) que un algoritmo consume o necesita para su ejecución
 - Complejidad temporal : Cantidad de tiempo que un algoritmo necesita para su ejecución
- Posibilidad de hacer
 - **Valorationes**
 - algoritmo es: "bueno", "el mejor", "prohibitivo"
 - Comparaciones
 - 🖈 📶 algoritmo A es mejor que el B

3

Tema 2. La eficiencia de los alg

1. Noción de complejidad

COMPLEJIDAD TEMPORAI

- Factores de complejidad temporal:
 - Externos
 - La máquina en la que se va a ejecutar
 - El compilador: variables y modelo de memoria
 - La experiencia del programador
 - Internos
 - El número de instrucciones asociadas al algoritmo
 - Completidad temporal : Tiempo(A) = C + f(T)
 - Ces la contribución de los factores externos (constante)
 - T is una función que depende de T (talla o tamaño del problema)

1. Noción de complejidad

COMPLEJIDAD TEMPORAL

- Talla o tamaño de un problema:
 - Valor o conjunto de valores asociados a la **entrada** del problema que representa una medida de su tamaño respecto de otras entradas posibles
- Paso de programa:
 - Secuencia de operaciones con contenido semántico cuyo coste es independiente de la talla del problema
 - Unidad de medida de la complejidad de un algoritmo
 - Expresión de la complejidad temporal:
 - Fanción que expresa el número de pasos de programa que un algoritmo necesita ejecutar para cualquier entrada posible (para cualquier talla posible)
 - Mose tienen en cuenta los factores externos

5

Int ejemplo1 (int n) { int ejemplo2 (int n) { int i; for (i=0; i ≤ 2000; i++) n+= n; return n; } } int ejemplo2 = 1 pasos f(ejemplo2) = 1 pasos

 $\sum_{i=1}^{n} \int_{\mathbb{R}^{n}} |\mathbf{r} - \mathbf{r}| d\mathbf{r} d\mathbf{r} = \mathbf{r} + \mathbf{r$

```
1. Noción de complejidad comp
```

```
1. Noción de complejidad comp
```

$$\sum_{i=0}^{n} {n \choose i=0} = \sum_{i=0}^{n+1} {n-1 \choose i+1} = (n+1)+n+(n-1) = \dots + 1 = \sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

1. Noción de complejidad

COMPLEJIDAD TEMPORAL. Ejercicios

- $\int \int for(i = sum = 0; i < n; i++) sum += a[i];$
- for(i = 0; i < n; i++) {
 for(j = 1, sum = a[0]; j <= i; j++) sum += a[j];
 cout << "La suma del subarray " << i << " es " << sum << endl; }</pre>
- for(i = 4: i < n; i++) {

 for = a[i-4]; j <= i; j++) sum += a[j];

 ut = suma del subarray " << i-4 << " es " << sum << endl; }

Tema 2. La eficiencia de los algoritmos

1. Noción de complejidad

CONCLUSIONES

- Sólo nos ocuparemos de la complejidad temporal
- Normalmente son objetivos contrapuestos (complejidad temporal <--> complejidad espacial)
- · Cálculo de la complejidad temporal:
 - a priori: contando pasos
 - a posteriori: generando instancias para distintos valores y cronometrando el tiempo
- trata de obtener la función. Las unidades de medida (paso, sg, msg, moson relevantes (todo se traduce a un cambio de escala)
 - Elen de pasos que se ejecutan siempre es función del tamaño (o talla) del arablema

2. Cotas de complejidad

INTRODUCCIÓN

- Dado un vector X de n números naturales y dado un número natural z:
 - encontrar el índice $i: X_i = z$
 - Calcular el número de pasos que realiza

11

he

Tema 2. La eficiencia de los algoritmos

2. Cotas de complejidad

LA SOLUCIÓN: cotas de complejidad

- Cuando aparecen diferentes casos para una misma talla genérica *n*, se introducen las cotas de complejidad:
 - Caso peor: cota superior del algoritmo $\rightarrow C_s(n)$
 - Caso mejor: cota inferior del algoritmo $\rightarrow C_i(n)$
 - Término medio: cota promedio $\rightarrow C_m(n)$
- Todas son funciones del tamaño del problema (n)
- La cota promedio es difícil de evaluar a priori
 - **Some**sario conocer la distribución de la probabilidad de entrada **No é**s la media de la inferior y de la superior (ni están todas ni tienen la **Rus**ina proporción)

```
Tema 2. La eficiencia de los alge-
2. Cotas de complejidad
EJERCICIO: cotas superior e inferior
          funcion BUSCAR (var X:vector[N]; z: N): devuelve N
          var i:natural fvar;
          comienzo
             i:=1;
             mientras (i \leq |X|) \land (X_i \neq Z) hacer
                 i:=i+1;
             fmientras
             si i= |X|+1 entonces devuelve 0
                                                     (*No encontrado*)
                           si_no devuelve i
          fin
       Augus problema: nº de elementos de X: n
       ¿Existe caso mejor y caso peor?
        Case mejor: el elemento está el primero: X_1=z \rightarrow c_i(n)=1
        Solution; el elemento no está: \forall i \ 1 \le i \le |X|, Xi \ne z \rightarrow c_s(n) = n+1
                                                                                13
```


2. Cotas de complejidad

CONCLUSIONES

- La cota promedio no la calcularemos. Sólo se hablará de complejidad por término medio cuando la cota superior y la inferior coinciden
- El estudio de la complejidad se hace para tamaños grandes del problema por varios motivos:
 - Los resultados para tamaños pequeños o no son fiables o proporcionan poca información sobre el algoritmo
 - Es lógico invertir tiempo en el desarrollo de un buen algoritmo sólo si se prevé que éste realizará un gran volumen de operaciones
 - A la continue jidad que resulta de tamaños grandes de problema se le encontra complejidad asintótica y la notación utilizada es la notación asintótica

15

Tema 2. La eficiencia de los alg

3. Notación asintótica

INTRODUCCIÓN

- Notación matemática utilizada para representar la complejidad espacial y temporal cuando $n \to \infty$
- Se definen tres tipos de notación:
 - Notación O (big-omicron) \Rightarrow caso peor
 - Notación Ω (omega) \Rightarrow caso mejor
 - Notación ⊕ (big-theta) ⇒ caso promedio

3. Notación asintótica

Teorema de la escala de complejidad

$$O(1) \subset O(\lg \lg n) \subset O(\lg n) \subset O(\lg^{a>1} n) \subset O(\sqrt{n}) \subset O(n) \subset$$

$$\subset O(n \lg n) \subset O(n^2) \subset \cdots \subset O(n^{a>2}) \subset O(2^n) \subset O(n!) \subset O(n^n)$$

- $\Box f(n) + g(n) + t(n) \in O(Max(f(n), g(n), t(n)))$
- □ Ejemplos:

= n + 1 pertenece a O(n)

 $n^2 + \log n$ pertenece a O(n^2)

 $n^3 + 2^n + n \log n$ pertenece a O(2ⁿ)

Válido para Notación Ω y Notación Θ

17

```
O(N)= CONSTRPTE = XTALLA
O(n)= LipeAL = FOR (i=1;i4n;i++)
O(n^2) = (bADRATICA = FOR
FOR
O(log[n]) = LOCARITAICA = TALLA/2
O(2n) = EXPORERCIAL = TALLA72.
```

Tema 2. La eficiencia de los algoritmos

3. Notación asintótica

NOTACIÓN O: escala de complejidad

opción

Complejidad	n = 32	n = 64
n^3	3 seg.	26 seg.
2 ⁿ	5 días	58·10 ⁶ años

función POT_2 (n: natural): natural

 Tiempos de respuesta para dos valores de la talla y complejidades n³ y 2ⁿ.
 (paso = 0'1 mseg.)

Queda clara la necesidad del cálculo de complejidad

```
n = 1: devuelve 2
n > 1: devuelve 2 * POT_2(n-1)
fopción
ffunción

función

función POT_2 (n: natural): natural
opción
n = 1: devuelve 2
n > 1: devuelve POT_2(n-1) + POT_2(n-1)
fopción
ffunción

Coste exponencial
miles de años
ffunción
```

4. Obtención de cotas de complejidad: 1. Determinación de la talla o tamaño (de la instancia) del problema 2. Determinación del caso mejor y peor: instancias para las que el algoritmo tarda más o menos No siempre existe mejor y peor caso ya que existen algoritmos que se comportan de igual forma para cualquier instancia del mismo tamaño Obtención de las cotas para cada caso. Métodos: Insta de pasos Teraciones de recurrencia (funciones recursivas)


```
4. Obtención de cotas de complejidad
Ejemplos
         Cálculo del máximo de un vector
              funcion MÁXIMO (var v : vector[n]; n:entero) : entero
              var i, max : entero fvar
              comienzo
                  max:=v[1]
                  para i:=2 hasta n hacer
                    si v[i]>max entonces max:=v[i] fsi
                  fpara
                  devuelve max
              fin
             erminar la talla del problema: n=tamaño del vector
                               c_i = 1 + \sum_{i=2}^{n} 1 = 1 + (n-2+1) = n \in \Omega(n)
                                                                            \in \Theta(n)
                               c_s = 1 + \sum_{i=2}^{n} 2 = 1 + (n-2+1)\cdot 2 = 2n-1 \in O(n)
```


