Classification at the Top

Ing. Václav Mácha

September 20, 2023

Supervisor: doc. Ing. Václav Šmídl, Ph.D.

Supervisor specialist: Mgr. Lukáš Adam, Ph.D.

Motivation

Binary Classification

General form of binary classification

- $x_i \in \mathbb{R}^d$ is a sample and $y_i \in \{0,1\}$ its corresponding label, $C_1, C_2 \in \mathbb{R}$ are constants
- $\mathcal{I} = \mathcal{I}_- \cup \mathcal{I}_+$ is a set of indices of all sample where

$$\mathcal{I}_{-} = \{i \mid i \in \{1, 2, \dots, n\} \land y_i = 0\}$$

$$\mathcal{I}_{+} = \{i \mid i \in \{1, 2, \dots, n\} \land y_i = 1\}$$

1_[·] is Iverson function defined by

$$\mathbb{1}_{[x]} = \begin{cases} 0 & \text{if } x \text{ is false} \\ 1 & \text{if } x \text{ is true} \end{cases}$$

• Classifier consists of two parts: model $f: \mathbb{R}^d \mapsto \mathbb{R}$ with trainable parameters \boldsymbol{w} that maps samples \boldsymbol{x} to scores s and decision threshold $t \in \mathbb{R}$

1/20

False rates

• Inference: Sample \boldsymbol{x} is classified as positive if $s = f(\boldsymbol{x}; \boldsymbol{w}) \geq t$

Classifier 1 is better ... or not?

Sometimes Classifier 2 is the better one...

Classification at the Top

General problem formulation

- Goal: classify correctly only the most relevant samples. The most relevant samples are samples with the highest scores
- General formulation

$$\begin{aligned} & \underset{\boldsymbol{w}}{\text{minimize}} & & C_1 \sum_{i \in \mathcal{I}_-} \mathbb{1}_{[s_i \geq t]} + C_2 \sum_{i \in \mathcal{I}_+} \mathbb{1}_{[s_i < t]} \\ & \text{subject to} & & s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I}, \\ & & & t = G(\boldsymbol{s}, \boldsymbol{y}) \end{aligned}$$

where threshold t is a function of all scores

Difficult problem: constrained, discontinuous, non-convex, and non-decomposable

How to get continuous objective function?

 \bullet By replacing $\mathbb{1}_{[\cdot]}$ Iverson function with its surrogate approximation

General surrogate formulation

Using the surrogate approximation lead to general surrogate formulation

$$\begin{aligned} & \underset{\boldsymbol{w}}{\text{minimize}} & & C_1 \sum_{i \in \mathcal{I}_-} I(s_i - t) + C_2 \sum_{i \in \mathcal{I}_+} I(t - s_i) \\ & \text{subject to} & & s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I}, \\ & & & t = G(\boldsymbol{s}, \boldsymbol{y}) \end{aligned}$$

How to choose the decision threshold?

 For simplicity, we focus only on formulations that minimizes false-negative rate and compute the threshold only from negative samples

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} I(t - s_i)$$
subject to
$$s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I},$$
$$t = G(s, \boldsymbol{y})$$

where we use $C_1=0$ and $C_2=\frac{1}{n_+}$. Normalization is added for numerical stability.

How to choose the decision threshold?

 For simplicity, we focus only on formulations that minimizes false-negative rate and compute the threshold only from negative samples

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} I(t - s_i)$$
subject to $s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), i \in \mathcal{I},$
$$t = G(\boldsymbol{s}, \boldsymbol{y})$$

where we use $C_1 = 0$ and $C_2 = \frac{1}{n_+}$. Normalization is added for numerical stability.

TopPush maximizes the number of positive samples at the top

$$t = G_{TopPush}(\boldsymbol{s}, \boldsymbol{y}) = \max_{j \in \mathcal{I}_{-}} s_{j}$$

How to choose the decision threshold?

 For simplicity, we focus only on formulations that minimizes false-negative rate and compute the threshold only from negative samples

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} l(t - s_i)$$
subject to
$$s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I},$$
$$t = G(\boldsymbol{s}, \boldsymbol{y})$$

where we use $C_1 = 0$ and $C_2 = \frac{1}{n_+}$. Normalization is added for numerical stability.

• TopPush maximizes the number of positive samples at the top

$$t = G_{TopPush}\left(\boldsymbol{s}, \boldsymbol{y}\right) = \max_{j \in \mathcal{I}_{-}} s_{j}$$

Pat&Mat-NP maximizes true-positive rate with fixed false-positive rate

$$t$$
 solves $G_{Pat\&Mat-NP}\left(oldsymbol{s},oldsymbol{y}
ight) = rac{1}{n_{-}}\sum_{i\in\mathcal{I}_{-}}I\left(oldsymbol{s}_{i}-t
ight) = au$

Classification at the Top:

Linear Model

Linear Model

• General surrogate formulation with linear model $f(x; w) = w^{T}x$

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} l(t - s_i)$$
subject to
$$s_i = \mathbf{w}^\top \mathbf{x}_i, \quad i \in \mathcal{I},$$
$$t = G(\mathbf{s}, \mathbf{y})$$

- Properties that we are interested in:
 - Convexity of the objective function
 - Robustness to outliers

Convexity of the objective function

Theorem

If the threshold t is a convex function of the weights \boldsymbol{w} , then function

$$L(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} I(t(\boldsymbol{w}) - \boldsymbol{w}^\top \boldsymbol{x}_i)$$

is convex.

- What does it mean?
 - Both formulations TopPush and Pat&Mat-NP have convex thresholds
 - Both formulations are convex and continuous
 - We can solve both formulations using gradient descent algorithm

How to solve it?

Using gradient descent

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k - \alpha^k \cdot \nabla L(\mathbf{w}^k),$$

where $\alpha^k > 0$ is a learning rate, and $\nabla L(\mathbf{w}^k)$ is a gradient of the objective function

$$\nabla L(\mathbf{w}) = \mathbf{w} + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} l' \left(t(\mathbf{w}) - \mathbf{w}^\top \mathbf{x}_i \right) \left(\nabla t(\mathbf{w}) - \mathbf{x}_i \right)$$

- How to compute gradient of the threshold $\nabla t(\mathbf{w})$?
 - For TopPush it is easy

$$j^\star = rg \max_{j \in \mathcal{I}_-} s_j \quad o \quad t = s_{j^\star} \quad o \quad
abla t(w) =
abla f(\mathbf{x}_{j^\star}; \mathbf{w}) = \mathbf{x}_{j^\star}$$

• For Pat&Mat-NP we have to use implicit function theorem.

When convexity is not enough...

Classification at the Top:

Non-linear Model

Non-linear Model

• General surrogate formulation with non-linear model f(x; w)

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} l(t - s_i)$$
subject to
$$s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I},$$
$$t = G(\boldsymbol{s}, \boldsymbol{y})$$

- Disadvantages:
 - Objective function is not convex
 - Non-linear models are usually large and expensive to train
- What to do if the dataset is too large to fit in memory? Stochastic gradient descent.

Issues with stochastic gradient descent

- ullet The threshold is a function of all scores o the loss function is non-decomposable
- As a result, stochastic gradient descent provides a biased gradient estimate

• How to reduce bias? Increase size of minibatch ...

Is there a better way to reduce bias?

• DeepTopPush: Add threshold from last minibatch

$$j^{\star} = rg \max_{j \in \mathcal{I}_{-}} s_{j} \quad o \quad t = s_{j^{\star}} \quad o \quad
abla t(oldsymbol{w}) =
abla f(oldsymbol{x}_{j^{\star}}; oldsymbol{w})$$

How does it work?

Steganalysis

- Train data: 186 583 samples, 9.1% of samples are positive
- Test data: 248 776 samples, 9.1% of samples are positive
- Each sample consists of 22 510 features
- Only linear model
- Goal:
 - Maximize the true-positive rate at very low levels of the false-positive rate

Steganalysis

AVAST: Malware detection

- Train data: 6 580 166 samples, 87.2% of samples are positive
- Test data: 800 346 samples, 91.8% of samples are positive
- Hierarchical data structure:
 - Each sample is a JSON file, which may consist of other JSON files
 - Each sample is of a different size (from 1 KB to 2.5 MB)
 - DeepTopPush and Pat&Mat-NP used as an extension for hierarchical multi-instance learning (HMIL)

Goal:

 Maximize the true-positive rate at extremely low levels of the false-positive rate to avoid disruptive false alarms for the end-user.

AVAST: Malware detection

Contributions

Contributions

- Introduction of a unified framework for classification at the top
- Introduction of Pat&Mat and Pat&Mat-NP formulations
- Derivation of theoretical properties for a linear classifier
- Derivation of dual forms and use of non-linear kernels
- Derivation of an efficient algorithm for solving dual forms
- Introduction of a modified stochastic gradient descent
- Introduction of DeepTopPush formulation

Thank you for your attention.