METODY NUMERYCZNE - LABORATORIUM

Zadanie 1 - Metody wyznaczania miejsca zerowego.

Opis rozwiązania

Do wykonania zadania wykorzystaliśmy język programowania Python i następujące biblioteki:

- Numpy wykorzystywana do obliczania wartości funkcji trygonometrycznych,
- Matplotlib wykorzystywana do tworzenia wykresów określonych funkcji.

Program został podzielony na pięć plików:

- Algorithms.py definicje funkcji metody bisekcji i metody siecznych z różnymi warunkami zatrzymania algorytmu,
- Choice.py plik zapewniający menu wyboru dla naszego programu,
- Functions.py definicje pięciu przykładowych funkcji przedstawionych nam na zajęciach i wyliczające wartości dla wprowadzonego argumentu,
- Graphs.py tworzenie wykresów funkcji,
- Main.py plik główny main.

Po poprawnym wprowadzaniu danych wejściowych (wyborze algorytmu, funkcji, warunku zatrzymania itp.) użytkownik otrzymuje podsumowanie wyników dla wybranej metody: wartość znalezionego przez metodę miejsca zerowego, wartość funkcji dla tego miejsca, liczbę wykorzystanych iteracji przez algorytm i wykres przedstawiający badaną funkcję na wybranym przedziale z zaznaczeniem znalezionego miejsca zerowego w kolorze czerwonym.

Wyniki

1.
$$F(x) = x^3 - x^2 - 2x + 1$$

	metoda		
	bisekcji	siecznych	
zakres	[-0.9, 1.4]	[-0.9, 1.4]	
wartość eps	0.0001	0.0001	
wykorzystane iteracje	15	4	
х	0.4450592041015625	0.4450480149904018	
f(x)	-0.00001	0.00000428854	
x - rzeczywiste	0.44504; -1.24697; 1.80193		

Tabela 1. Podsumowanie dla pierwszej funkcji.

Wykres 1. Wykres pierwszej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody bisekcji.

Wykres 2. Wykres pierwszej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody siecznych.

2.
$$F(x) = 2^x - 3x$$

	metoda			
	bisekcji	siecznych		
zakres	[-1.8, 1.3] [-1.8, 1.3]			
wartość eps	0.0001	0.0001		
wykorzystane iteracje	14	7		
Х	0.457830810546875	0.4578325330892927		
f(x)	-0.00001	-0.00001		
x - rzeczywiste	0.45782, 3.31317			

Tabela 2. Podsumowanie dla drugiej funkcji.

Wykres 3. Wykres drugiej funkcji dla warunku $|f(x_i)| < \varepsilon$ z wyk. Metody bisekcji.

Wykres 4. Wykres drugiej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody siecznych.

3.
$$F(x) = x^3 - x + 1$$

	Metoda			
	bisekcji	siecznych		
Zakres	[-1.5, 0.5]	[-1.5, 0.5]		
wartość eps	0.00001	0.00001		
wykorzystane iteracje	2	9		
	-	-		
X	1.3247184753417969	1.3247174447081593		
f(x)	0.00003 0.00003			
x - rzeczywiste	-1.32471			

Tabela 3. Podsumowanie dla trzeciej funkcji.

Wykres 5. Wykres trzeciej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody bisekcji.

Wykres 6. Wykres trzeciej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody siecznych.

4.
$$F(x) = tan(x) - 1$$

	Metoda			
	bisekcji	siecznych		
zakres	[-0.60, 1.15]	[-0.6, 1.15]		
wartość eps	0.000001	0.000001		
wykorzystane iteracje	21	17		
х	0.7853980302810668	0.7853979556902124		
f(x)	-0.00001	-0.00001		
x - rzeczywiste	0,785 + πn			

Tabela 4. Podsumowanie dla czwartej funkcji.

Wykres 7. Wykres czwartej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody bisekcji.

Wykres 8. Wykres czwartej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody siecznych.

5.	F(x)	=	sin(x)	_	cos(x)
Ο.	1 (///				

$\mathbf{S} = \mathbf{F}(\mathbf{x}) - \mathbf{S} \mathbf{H}(\mathbf{x}) - \mathbf{G} \mathbf{S}(\mathbf{x})$				
	Metoda			
	bisekcji	siecznych		
zakres	[-0.5, 3.10]	[-0.5, 3.10]		
wartość eps	0,00001	0,00001		
wykorzystane iteracje	13	5		
Х	0.7854003906250002	0.7853981635287397		
f(x)	0.00000259735	-0.00001		
x - rzeczywiste	0,785 + πn			

Tabela 5. Podsumowanie dla piątej funkcji.

Wykres 9. Wykres piątej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody bisekcji.

Wykres 10. Wykres piątej funkcji dla warunku $|f(x_i)| \le \varepsilon$ z wyk. Metody siecznych.

Wnioski

Analizując otrzymane powyżej podsumowania jak i nasze uwagi napotkane podczas korzystania z naszego programu, doszliśmy do następujących wniosków:

- Metoda siecznych w przypadku większości funkcji (wyjątkiem jest funkcja trzecia) była metodą wykorzystującą mniejszą liczbę iteracji, przez co możemy powiedzieć, że metoda siecznych jest szybsza od metody bisekcji,
- Porównując wartości otrzymanych pierwiastków funkcji możemy zauważyć, że pierwiastki obliczone metodą bisekcji są w większości przypadków bardziej zbliżone do jego rzeczywistej wartości niż te obliczone w oparciu o metodę siecznych,
- Obie metody zwracają tylko jedno miejsce zerowe z wskazanego przedziału,
- W przypadku pierwszej funkcji udało nam się zauważyć, że w przypadku podania przedziału z trzema pierwiastkami funkcji, znaleziony pierwiastek będzie inny zależnie od metody. W przypadku metody bisekcji zostanie znalezione miejsce zerowe położone bliżej lewego krańca przedziału, a w przypadku metody siecznych zostanie znalezione miejsce zerowe położone bliżej prawego krańca przedziału.