

FACULTAD DE CIENCIAS INTELIGENCIA ARTIFICIAL

Algoritmos Genéticos

Equipo: Skynet Scribes

Número de practica: 05

Sarah Sophía Olivares García

318360638

Carlos Daniel Cortés Jiménez

420004846

Luis Enrique García Gómez

315063880

Marco Silva Huerta

316205326

Laura Itzel Tinoco Miguel

316020189

Fernando Mendoza Eslava

319097690

Profesora: Cecilia Reyes Peña

Ayudante teoría: Karem Ramos Calpulalpan

Ayudante laboratorio: Tania Michelle Rubí Rojas

Fecha de entrega: 03 de Abril del 2024

Semestre 2024-2

1. Instrucciones

- 1. Implementación básica del Juego de la Vida
- 2. Introducción a los Algoritmos Genéticos
- 3. Implementación de Algoritmos Genéticos en el Juego de la Vida

2. Investigación

¿Qué es el algoritmo Genético?

Un algoritmo genético (AG) entonces es: una técnica de resolución de problemas que utiliza principios inspirados en la selección natural para solucionar problemas de optimización. La selección natural (evolución) como estrategia implica la creación, reproducción y adaptación de una población de posibles soluciones en un rango de generaciones.

Este enfoque de población se basa en que cada individuo representa una posible solución al problema, y la evolución de estos comienza por, la **creación** de los individuos, la **reproducción** para después hacer la óptima **selección** de los padres en una nueva reproducción y **mutación**, finalmente comprobar o evaluar su **aptitud**

Pasos que sigue

3. Desarrollo

3.1. Implementación básica del Juego de la Vida

3.2. Introducción a los Algoritmos Genéticos

3.3. Implementación de Algoritmos Genéticos en el Juego de la Vida

Recordemos las reglas iniciales del juego:

- 1. Si una célula está viva y tiene dos o tres vecinas vivas, sobrevive.
- 2. Si una célula está muerta y tiene tres vecinas vivas, nace.
- 3. Si una célula está viva y tiene más de tres vecinas vivas, muere.

La disposición o patrón inicial de células se llama *semilla*. La siguiente generación nace de aplicar las reglas del juego a todas las células de manera simultánea. Este proceso se puede ejecutar de manera indefinida.

Modificación de las Reglas

Para modificar la simulación del Juego por los cromosomas de una población podemos crear una **representación cromosómica:** donde cada cromosoma será una cadena binaria donde cada bit representa el estado de una célula en el tablero (vivo o muerto).

Así las nuevas reglas para el *Juego de la Vida* que estamos proponiendo es para buscar crear más vida con menos generaciones, las células podrán vivir con más vecinos si se alcanza un cierto número de cromosomas en la población:

- Nacimientos: Una célula muerta con exactamente tres vecinos vivos se convierte en una célula viva.
- Muerte uno: Una célula viva con uno o menos vecinos vivos muere.
- Muerte dos: Una célula viva con más de tres vecinos vivos muere, a menos que se cumpla la condición especial.
- Condición Especial de Supervivencia: Si la población de cromosomas alcanza o supera un n especifica (80), las células vivas pueden soportar hasta cuatro vecinos vivos sin morir.
- Supervivencia Normal: Si no se cumple la condición especial, una célula viva con dos o tres vecinos vivos sobrevive.
- Muerte tres: Si en n generaciones no se alcanza el objetivo el juego termina. (80)

Este cambio significa querer a los mejores individuos que logren alcanzar el objetivo creando nuestra función **fitness** con mucho cuidado ya que por medio de esta haremos que nuestra población no muera.

Pasos del algoritmo

- Inicialización de la Población: Generamos una población inicial de cromosomas de manera aleatoria
- Evaluación de la Aptitud: astronaves
- Selección: Utilizamos un método de selección por torneo
- Reproducción: Cruzamiento en dos puntos, en el que se intercambian los genes que aparecen en el intervalo de genes delimitados por dos puntos.
- Mutación: Cambiar aleatoriamente el estado de algunas células
- Remplazo: Una vez realizada la mutación y aplicar una evaluación fitness (más tranquila que la evaluación de la aptitud) se hace el remplazo

Inicialización de la Población

Cada célula en el tablero de $n \times n$ tiene ocho vecinos, que incluyen las celdas adyacentes horizontal, vertical y diagonalmente. Al comienzo del juego, la población inicial se genera aleatoriamente, cada cromosoma es una secuencia binaria que representa un estado completo del tablero, con 1s para las células vivas y 0s para las muertas.

Función fitness

Para definir la función fitness necesitamos saber que existen patrones básicos dentro del juego y estos son configuraciones de los vecinos para las células que determinan un comportamiento concreto como patrones estáticos que no hay nacimientos ni fallecimientos, y nunca cambian, patrones recurrentes o *osciladores* que evolucionan a través de diversos estados pero vuelven a su forma inicial y patrones que se trasladan por el tablero llamados *spaceships*.

Las astronaves [Dop] son patrones que se caracterizan por desplazarse a través del tablero a lo largo del tiempo, bien sea de forma diagonal o de forma horizontal o vertical. La velocidad de desplazamiento es variable, dependiendo del patrón que se trate. y esta capacidad para moverse eficientemente es un indicador de su robustez y estabilidad dentro del juego

La fórmula de velocidad para las spaceships:

$$v = \frac{max(|x|, |y|)}{n} \times c$$

- (v) es la velocidad de la astronave.
- (x) y (y) son los desplazamientos en dos dimensiones (horizontal y vertical).
- (n) es el número de generaciones que tarda la astronave en desplazarse.
- (c) es una constante análoga a la velocidad de la luz, que en este contexto se puede considerar como 1 celda por generación.

Esta fórmula es útil para medir la eficiencia con la que un patrón se desplaza a través del tablero. Los patrones que se mueven más rápido (mayor valor de (v)) serían considerados más *aptos* mientras que con velocidades más bajas nos dice que esos patrones son menos eficientes (lentos) o que mueren rápidamente, de manera que calificaran con aptitud menor.

Considerando la distancia máxima recorrida en cualquier dirección y el número de generaciones necesarias para dicho desplazamiento, la ventaja de usar la velocidad como medida de aptitud es que favorece patrones que pueden sobrevivir y moverse a lo largo de las generaciones, como si fuera una evolución natural.

4. Resultados obtenidos

- 4.1. Implementación básica del Juego de la Vida
- 4.2. Implementación de Algoritmos Genéticos en el Juego de la Vida
- 5. Reflexión final

Referencias

- [RN16] Stuart Russell y Peter Norvig. *Inteligencia Artificial Un Enfoque moderno*. 2nd. Pearson Prentice Hall, 2016.
- [Mat18] MatematIA. Algoritmos Genéticos. 2018. URL: https://www.cs.us.es/~fsancho/Blog/posts/Algoritmos_Geneticos.md.html (visitado 16-03-2024).
- [Peñ19] Eric Peña. *Cellular Automata Optimization Using Genetic Algorithms*. Inf. téc. Consulta para función fitness. Binghamton: State University of New York, dic. de 2019.
- [Gee24] GeeksforGeeks. *Genetic Algorithms*. 2024. URL: https://www.geeksforgeeks.org/genetic-algorithms/(visitado 16-03-2024).
- [Dop] Manuel Romero Dopico. *EL JUEGO DE LA VIDA*. URL: https://eodelgadorcursos.files.wordpress.com/2018/11/juego-de-la-vida-conway.pdf (visitado 24-03-2024).