Linear Algebra Quiz 5 (Oct 12(Mon) / 2020)

1)P.163

- 6. Let $P: V \to V$ be a **projection**, that is a linear map such that $P^2 = P$.
 - (a) Show that V = Ker P + Im P.
 - (b) Show that the intersection of Im P and Ker P is $\{O\}$. In other words, if $v \in \text{Im } P$ and $v \in \text{Ker } P$, then v = O.

2)P.170

13. Let V be a vector space, and let U, W be two subspaces. Assume that V is the direct sum of U and W, that is

$$V = U + W$$
 and $U \cap W = \{O\}$.

Let $L: U \times W \rightarrow V$ be the mapping such that

$$L(u, w) = u + w.$$

Show that L is a bijective linear map. (So prove that L is linear, L is injective, L is surjective.)

3)P.178

2. Let A be a symmetric $n \times n$ matrix. Given two column vectors $X, Y \in \mathbb{R}^n$, define

$$\langle X, Y \rangle = {}^{t}XAY.$$

- (a) Show that this symbol satisfies the first three properties of a scalar product.
- (b) Give an example of a 1×1 matrix and a non-zero 2×2 matrix such that the fourth property is not satisfied. If this fourth property is satisfied, that is ${}^{t}XAX > 0$ for all $X \neq 0$, then the matrix A is called **positive definite**.
- (c) Give an example of a 2 × 2 matrix which is symmetric and positive definite.
- (d) Let a > 0, and let

$$A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}.$$

Prove that A is positive definite if and only if $ad - b^2 > 0$. [Hint: Let $X = {}^{t}(x, y)$ and complete the square in the expression ${}^{t}XAX$.]

(e) If a < 0 show that A is not positive definite.

7. Let V be a finite dimensional vector space with a positive definite scalar product. Let W be a subspace. Show that

$$V = W + W^{\perp}$$
 and $W \cap W^{\perp} = \{0\}.$

In the terminology of the preceding chapter, this means that V is the direct sum of W and its orthogonal complement. [Use Theorem 2.3.]

5)P.190

10. Let A be a symmetric $n \times n$ matrix. Let X, $Y \in \mathbb{R}^n$ be eigenvectors for A, that is suppose that there exist numbers a, b such that AX = aX and AY = bY. Assume that $a \neq b$. Prove that X, Y are perpendicular.