ISyE6739 – Statistical Methods

Point Estimation – Concepts and Properties (Ch. 7)

Instructor: Kamran Paynabar
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Tech

Kamran.paynabar@isye.gatech.edu
Office: Groseclose 436

ISyE 6739, Point Estimation

1

List of Topics

- · Point Estimation and Estimators
- Point Estimation Properties
 - Unbiased estimators
 - Variance and standard error of estimation
 - Minimum variance unbiased estimator
 - Relative efficiency

2

Summary of Sampling Distributions

		One population	Two populations
Sample Mean	Known Variance	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim NID(0,1)$
	Unknown Variance	$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$
Sample Variance		$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$

ISyE 6739, Point Estimation

3

Estimator

Suppose X is a random variable with $f(x;\theta)$ as the pdf. If $X_1, X_2, ... X_n$ is a random sample of size n from X, the statistic

$$\hat{\Theta} = h(X_1, X_2, ..., X_n)$$

Is called a **point estimator** of θ .

After the sample has been selected, $\hat{\Theta}$ takes on a particular numerical value called the **point estimate** of θ .

Parameter:
$$\mu$$
 Estimator: $\hat{\mu} = \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ **Estimate:** $\overline{x} = \frac{25 + 30 + 29 + 31}{4} = 28.75$

Note that $\hat{\Theta}$ is a random variable because it is a statistic (function of random variables)

ISyE 6739, Point Estimation

4

Examples of Point Estimators

Reasonable point estimates of these parameters are as follows:

- For μ , the estimate is $\hat{\mu} = \overline{x}$, the sample mean.
- For σ^2 , the estimate is $\hat{\sigma}^2 = s^2$, the sample variance.
- For p, the estimate is $\hat{p} = x/n$, the sample proportion, where x is the number of items in a random sample of size n that belong to the class of interest.
- For $\mu_1 \mu_2$, the estimate is $\hat{\mu}_1 \hat{\mu}_2 = \overline{x}_1 \overline{x}_2$, the difference between the sample means of two independent random samples.
- For p₁ − p₂, the estimate is p̂₁ − p̂₂, the difference between two sample proportions computed from two independent random samples.

ISyE 6739, Point Estimation

5

6

General Concepts of Point Estimation: Unbiased Estimator

The point estimator $\hat{\Theta}$ is an unbiased estimator for the parameter θ if

$$E(\hat{\Theta}) = \theta \tag{7-5}$$

If the estimator is not unbiased, then the difference

$$E(\hat{\Theta}) - \theta$$
 (7-6)

is called the bias of the estimator $\hat{\Theta}$.

ISyE 6739, Point Estimation

Example

Suppose that X is a random variable with mean μ and variance σ^2 . Let X_1, X_2, \ldots, X_n be a random sample of size n from the population represented by X. Show that the sample mean \overline{X} and sample variance S^2 are unbiased estimators of μ and σ^2 , respectively.

ISyE 6739, Point Estimation

7

Example

Suppose the mean of a population is known (μ) , show that the following estimator is a biased estimator for the variance

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{n - 1}$$

Modify this estimator such that it becomes an unbiased estimator

General Concepts of Point Estimation: Variance and Standard Error of a Point Estimator

If two estimators are unbiased, the one with smaller variance is preferred.

Figure 7-5 The sampling distributions of two unbiased estimators

The standard error of an estimator $\hat{\Theta}$ is its standard deviation, given by $\sigma_{\hat{\Theta}} = \sqrt{V(\hat{\Theta})}$. If the standard error involves unknown parameters that can be estimated, substitution of those values into $\sigma_{\hat{\Theta}}$ produces an estimated standard error, denoted by $\hat{\sigma}_{\hat{\Theta}}$.

SyE 6739, Point Estimation

Example

Suppose we are sampling from a normal distribution with mean μ and variance σ^2 . Now the distribution of \overline{X} is normal with mean μ and variance σ^2/n , so the standard error of \overline{X} is

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

If we did not know σ but substituted the sample standard deviation S into the above equation, the estimated standard error of \overline{X} would be

$$\hat{\sigma}_{\overline{X}} = \frac{S}{\sqrt{n}}$$

ISVE 6739. Point Estimation 10

Example

An article in the *Journal of Heat Transfer* (Trans. ASME, Sec. C, 96, 1974, p. 59) described a new method of measuring the thermal conductivity of Armco iron. Using a temperature of 100°F and a power input of 550 watts, the following 10 measurements of thermal conductivity (in Btu/hr-ft-°F) were obtained:

A point estimate of the mean thermal conductivity at 100°F and 550 watts is the sample mean or

$$\overline{x} = 41.924 \text{ Btu/hr-ft-}^{\circ}\text{F}$$

The standard error of the sample mean is $\sigma_{\overline{X}} = \sigma/\sqrt{n}$, and since σ is unknown, we may replace it by the sample standard deviation s = 0.284 to obtain the estimated standard error of \overline{X} as

$$\hat{\sigma}_{\overline{X}} = \frac{s}{\sqrt{n}} = \frac{0.284}{\sqrt{10}} = 0.0898$$

ISyE 6739, Point Estimation

11

General Concepts of Point Estimation: Minimum Variance Unbiased Estimator (MVUE)

If we consider all unbiased estimators of θ , the one with the smallest variance is called the minimum variance unbiased estimator (MVUE).

- $\hat{\Theta}$ is an MVUE if:
- a) It is unbiased estimator of θ ,
- b) It satisfies the following equality,

$$\operatorname{var}(\hat{\Theta}) = \frac{1}{nE \left[\left(\frac{\partial \ln f(x)}{\partial \theta} \right)^{2} \right]} \quad \text{Cramér-Rao Bound}$$

ISVE 6739. Point Estimation 12

General Concepts of Point Estimation: Minimum Variance Unbiased Estimator (MVUE)

If X_1, X_2, \dots, X_n is a random sample of size n from a normal distribution with mean μ and variance σ^2 , the sample mean \overline{X} is the MVUE for μ .

ISyE 6739, Point Estimation

13

General Concepts of Point Estimation: Mean Square Error (MSE) and Relative Efficiency

The mean squared error of an estimator $\hat{\Theta}$ of the parameter θ is defined as

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \theta)^2$$
 (7-7)

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \Theta)^{2} = \left[E(\hat{\Theta} - \Theta)\right]^{2} + var(\hat{\Theta} - \Theta)$$
$$MSE(\hat{\Theta}) = \left[Bias(\hat{\Theta})\right]^{2} + var(\hat{\Theta})$$

ISyE 6739, Point Estimation 14

General Concepts of Point Estimation: Mean Square Error (MSE) and Relative Efficiency

The mean squared error is an important criterion for comparing two estimators. Let $\hat{\Theta}_1$ and $\hat{\Theta}_2$ be two estimators of the parameter θ , and let MSE $(\hat{\Theta}_1)$ and MSE $(\hat{\Theta}_2)$ be the mean squared errors of $\hat{\Theta}_1$ and $\hat{\Theta}_2$. Then the relative efficiency of $\hat{\Theta}_2$ to $\hat{\Theta}_1$ is defined as

$$\frac{MSE(\hat{\Theta}_1)}{MSE(\hat{\Theta}_2)}$$
(7-8)

If this relative efficiency is less than 1, we would conclude that $\hat{\Theta}_1$ is a more efficient estimator of θ than $\hat{\Theta}_2$, in the sense that it has a smaller mean square error.

Example

Let $X_1, X_2, \dots X_7$ denote a random sample from a population with mean μ and variance σ^2 . Calculate the relative efficiency of the following estimators of μ .

$$\hat{\Theta}_{1} = \frac{\sum_{i=1}^{7} X_{i}}{7}$$

$$\hat{\Theta}_{2} = \frac{2X_{1} - X_{6} + X_{4}}{2}$$

Example

Suppose $X \sim Uniform(\theta, 3\theta)$

- Show that $\frac{\overline{X}}{2}$ is an unbiased estimator of θ
- Calculate the relative efficiency of $\frac{\overline{X}}{2}$ and \overline{X}

ISyE 6739, Point Estimation

17

Example

If X is normally distributed, which of the following estimators are more efficient estimator for the variance.

$$S_1^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

$$S_1^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$$
$$S_2^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$$

18