MATHEMATICS

Sameer kendal

February 16, 2024

1 Matrices

- 1. In the interval $\pi/2 < x < \pi$, find the value of x such that $\begin{pmatrix} 2\sin x & 3 \\ 1 & 2\sin x \end{pmatrix}$ is singular.
- 2. Express matrix $A = \begin{pmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{pmatrix}$ as the sum of a symmetric and skew-symmetric matrix.
- 3. If $A = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.
- 4. Using properties of determinants, solve for x: $\begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix} = 0.$
- 5. A trust fund has ₹35,000 to be invested in two different type of bonds. The first bond pays 8% interest per annum which will be given to orphanage and second bond pays 10% interst per annum which will be given to an N.G.O(Cancer Aid Society). Using matrix multiplication, determine how to divide ₹35,000 among two type of bond if the trust fund obtains a an interest total of ₹3,200. What are the values reflected in question?

2 Probability

- 6. Four cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that
 - (a) all the four cards are spades?
 - (b) only 2 cards are spades?
- 7. A pair of dice is thrown four times. If getting a doublet is considered a success, find the probability distribution of number of successes. Hence find the mean of distribution.
- 8. In answering a question on multiple choice test, a student either knows the answer or guesses. Let $\frac{3}{5}$ be the probability that he knows the answer and $\frac{2}{5}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with the probability of $\frac{1}{3}$. What is the probability that the student knows the answer given that he answered it correctly?

1

3 Algebra

- 9. Prove that $2\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{1}{7}) = \sin^{-1}(\frac{31}{25\sqrt{2}}).$
- 10. Solve for $x : \tan^{-1}(\frac{1-x}{1+x}) = \frac{1}{2}\tan^{-1}x, x > 0$.

4 Vector

- 11. Write the vector equation of the line passing through (1, 2, 3) and perpendicular to plane $\vec{r} \cdot (\hat{i} + 2\hat{j} 5\hat{k}) = 0$.
- 12. Write the direction ratio's of vector $3\vec{a} + 2\vec{b}$ where $\vec{a} = \hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = 2\hat{i} 4\hat{j} + 5\hat{k}$.
- 13. Find the projection of the vector $\overrightarrow{d} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\overrightarrow{b} = 2\hat{i} + 2\hat{j} + \hat{k}$.
- 14. Prove that $[\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{d}] = [\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}] + [\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}]$.
- 15. Find the shortest distance between the following line: $\vec{r} = 2\hat{i} 5\hat{j} + \hat{k} + \lambda (3\hat{i} + 2\hat{j} + 6\hat{k})$ and $\vec{r} = 7\hat{i} 6\hat{k} + \lambda (\hat{i} + 2\hat{j} + 2\hat{k})$.
- 16. Find the vector and cartesian equation of the planes passing through the line of intersection of the planes $\overrightarrow{r} \cdot (2\hat{i} + 2\hat{j} 3\hat{k}) = 7$, $\overrightarrow{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) = 9$. such that the intercepts made by the plane on *x*-axis and *z*-axis are equal.

5 Differentiation

- 17. Find the solution of the differential equation $\frac{dy}{dx} = x^3 e^{-2y}$.
- 18. For what value of λ the function defined by

$$f(x) = \begin{cases} \lambda (x^2 + 2), & if x \le 0\\ 4x + 6, & if x > 0 \end{cases}$$

is continuous at x = 0? Hence check the differentiability of f(x) at x = 0.

- 19. If $x=ae^t(\sin t + \cos t)$ and $y = ae^t(\sin t \cos t)$, prove that $\frac{dy}{dx} = \frac{x+y}{x-y}$.
- 20. If $y = Ae^{mx} + Be^{nx}$, show that $\frac{d^2y}{dx^2} (m+n)\frac{dy}{dx} + mny = 0$.
- 21. Solve the differential equation

$$\left(x\sin^2\frac{y}{x} - y\right)dx + xdy = 0$$

2

given $y = \frac{\pi}{4}$ when x = 1.

- 22. Solve the differential equation $\frac{dy}{dx} 3y \cot x = \sin 2x$ given y = 2 when $x = \frac{\pi}{2}$.
- 23. Write the integrating factor of the differential equation

$$\sqrt{x}\frac{dy}{dx} + y = e^{-2\sqrt{x}} \tag{1}$$

.

6 Integration

- 24. Evaluate $\int_{0}^{\pi/4} \log(1 + \tan x) \, dx$.
- 25. Find $\int \frac{x}{(x^2+1)(x-1)}$
- 26. Find $\int_0^{\frac{1}{\sqrt{2}}} \frac{\sin^{-1} x}{\left(1 x^2\right)^{\frac{3}{2}}}$.
- 27. Find $\int \frac{x+3}{\sqrt{5-4x-2x^2}}$.

7 Linear forms

- 28. Using integration, find the area enclosed by parabola enclosed by $4y = 3x^2$ and the line 2y = 3x + 12.
- 29. Find the area of region $\{(x, y) : y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$, using integration.

8 Functions

30. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a - b| \text{ is divisible by 2}\}$ is an equivalence relation. Write all equivalence classes of R.

9 Optimization

- 31. A manufacturer produces nuts and bolts. It takes 2 hours work on machine *A* and 3 hour work on machine *B* to produce a package of nuts. It take 3hours work on machine *A* and 2 hour work on machine *B* to produce a package of bolts. He earns a profit of ₹24 per package on nuts and ₹18 per package on bolts. How many packages of each should be produced each day so as to maximize his profit, if he opeartes his machine for at most 10 hours a day. Make an L.P.P. from above and solve graphically?.
- 32. The sum of surfaces areas of a sphere and a cuboid with sides $\frac{x}{3}$, x and 2x, is constant. Show that sum of their volumes is minimum if x is equal to three times the radius of sphere.