

Detection

Sung Soo Hwang

Introduction

- How can we make computers detect objects?
 - Training stage
 - Collect a large amount of object images and non-object images
 - Find features suitable to represent objects
 - Design a classifier(or threshold) to classify objects
 - Test stage
 - Extract features from the input image
 - Detect objects using the trained classifier

Feature

- Harr-like feature is used in openCV
 - It can be defined as the difference of the sum of pixels of areas inside the rectangle
 - sum of pixels under black rectangle sum of pixels under white rectangle
 - It can be at any position and scale within the original image

Training

- By changing size and location, lots of features can be generated
- Among them, choose features that classify human faces

Training

- In openCV, Adaboost(Adaptive B oosting) is used
- Boosting: A set of weak-learner generates a strong-learner
- Adaptive: Weight of each sample e is adjusted depending on the accuracy of already-trained weak learners

- Training
 - Face representation using Harr-like features

- Cascade classifier
 - Generate a strong learner using multiple weak learners

- Each strong learner is connected in cascade
 - Number of weak learners in each strong learner: 3>2>1
 - Lots of non-face regions are easily eliminated

 Fast computation of Harr-like features(sum of pixels under a rectangle) can be conducted by using integral image

1	2	2	4	1
3	4	1	5	2
2	3	3	2	4
4	1	5	4	6
6	3	2	1	3

0	0	0	0	0	0
0	1	3	5	9	10
0	4	10	13	22	25
0	6	15	21	32	39
0	0	13	21	32	37
0	10	20	31	46	59

input image

integral image

Tracking

Sung Soo Hwang

- Basic concept
 - First, a ROI is selected by user-interaction or detection
 - Represent the ROI with histograms or features
 - Find the best matching patch to the ROI at the next frame

Meanshift

• It is a procedure for locating the maxima of a density function given discrete data sampled from that function

It is an iterative method

Meanshift

Histogram back-projection

Target image

Probability of each pixel being part of model image

Meanshift

Tracking using mean shift

Camshift

- Cam shift
 - Modified version of mean-shift
 - The size of search window can be changed

Mean-shift Cam shift

Optical Flow

• Optical flow is the apparent motion of brightness patterns in the image

Optical Flow

- KLT algorithm
 - Assumption
 - Intensity of objects are not changed over consecutive frames
 - Movement of pixels are similar to that of adjacent pixels

$$\rightarrow I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

By applying Taylor series

•
$$I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t$$

• $\frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t = 0$

Extract features first and track the extracted features

Optical Flow

- KLT algorithm with pyramids
 - Original KLT algorithm cannot handle large movement
 - To overcome this limitation, image pyramid is used

