Задача с решением по численным методам Тема: решение систем линейных уравнений методом простой итерации

Задание.

1) Решите систему линейных уравнений методом "Простой итерации" с точностью 0,001, предварительно оценив число достаточных для этого итераций:

$$||X - X^k|| \le \frac{||A||^{k+1}}{1 - ||A||} \cdot ||F|| \le \varepsilon,$$

где $\|A\| = max\{\sum_i |a_{1i}|; \sum_i |a_{2i}|; \sum_i |a_{3i}|; \sum_i |a_{4i}|\}, \|F\| = max\{|b_i|\}.$

- 2) Полученное решение используйте для вычисления невязки каждого уравнения.
- 3) Все полученные приближения решения системы привести в итоговом отчете.
- 4) Не забываем начинать отчет с формулировки задания.

$$\begin{cases} 0.32x_1 - 0.18x_2 + 0.02x_3 + 0.21x_4 = 1.83\\ 0.16x_1 + 0.12x_2 - 0.14x_3 + 0.27x_4 = -0.65\\ 0.37x_1 + 0.27x_2 - 0.02x_3 - 0.24x_4 = 2.23\\ 0.12x_1 + 0.21x_2 - 0.18x_3 + 0.25x_4 = -1.13 \end{cases}$$

Решение.

Для обеспечения сходимости необходимо добиться выполнения условия диагонального преобладания элементов матрицы (модули диагональных коэффициентов в каждом уравнении системы больше суммы модулей недиагональных коэффициентов).

Преобразуем исходную матрицу, используя линейные комбинации строк:

0,69	0,09	0	-0,03	4,06
0,17	0,66	-0,22	-0,2	-0,73
0,00012	0,00003	0,00402	0,00011	-0,03751
0,09	-0,06	0,3	-0,76	4,01

Приведем систему к виду $x = A' \cdot x + b$. Получим:

<u></u>								
	0,000000	-0,130435	0,000000	0,043478		5,884058		
A' =	-0,257576	0,000000	0,333333	0,303030	F' =	-1,106061		
A =	-0,029851	-0,007463	0,000000	-0,027363	F =	-9,330846		
	0,118421	-0,078947	0,394737	0,000000		-5,276316		

Найдем норму матрицы A и вектора F:

 $||A'|| = \max\{0.173913; 0.893939; 0.064677; 0.592105\} = 0.893939 < 1$ Сходимость обеспечена.

 $||F'|| = \max\{5.884058; 1.106061; 9.330846; 5.276316\} = 9.330846$

Оценим число итераций, необходимых для получения точности $\varepsilon = 0.001$

$$\frac{0.893939^{k+1}}{1 - 0.893939} \cdot 9.330846 \le 0.001;$$

$$k > 95$$

В качестве начального приближения примем столбец F'. Последующие приближения к решению получаются по реккурентной формуле

$$x^{(k+1)} = A'x^{(k)} + F'$$

В качестве критерия остановки выберем условие $\max\left\{\left|x_i^{(k+1)}-x_i^{(k)}\right|\right\}<0.001.$

	1 1		1 2	(ι)	ι)	
k	0	1	2	3	4	5	6

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

$x_1^{(k)}$	5,884058	5,798922	6,484798	6,618061	6,625559	6,623490	6,623797	
$x_2^{(k)}$	- 1 100001	- 220047	-	-	- 0.460527	- 0 472204	- 0.473304	
$x_{\hat{2}}$	1,106061	7,330817	8,195077	8,185858	8,168527	8,172294	8,173204	
$x_{3}^{(k)}$	9,330846	9,353858	- 9,225535	9,252481	9,262004	- 9,262478	9,262272	
(k)	-	-	-	-	-	-	-	
$x_4^{(k)}$	5,276316	8,175427	7,703165	7,503058	7,498641	7,502881	7,503015	
	I							
$\Delta_1^{(k)}$		0,085136	0,685876	0,133263	0,007498	0,002069	0,000307	
$\Delta_2^{(k)}$		6,224756	0,864261	0,009219	0,017331	0,003767	0,000910	
$\Delta_3^{(k)}$		0,023013	0,128324	0,026947	0,009522	0,000474	0,000206	
$\Delta_4^{(k)}$		2,899112	0,472262	0,200107	0,004416	0,004239	0,000135	
$\max\!\!\left\{\!\Delta_i^{(k)}\!\right\}$		6,224756	0,864261	0,200107	0,017331	0,004239	0,000910	

Итак, требуемая точность достигнута, приближенное решение:

$$x \approx \begin{pmatrix} 6.6238 \\ -8.1732 \\ -9.2623 \\ -7.5030 \end{pmatrix}$$

Вычислим невязки:

$$r = F - Ax = \begin{pmatrix} 1.83 \\ -0.65 \\ 2.23 \\ -1.13 \end{pmatrix} - \begin{pmatrix} 0.32 & -0.18 & 0.02 & 0.21 \\ 0.16 & 0.12 & -0.14 & 0.27 \\ 0.37 & 0.27 & -0.02 & -0.24 \\ 0.12 & 0.21 & -0.18 & 0.25 \end{pmatrix} \cdot \begin{pmatrix} 6.6238 \\ -8.1732 \\ -9.2623 \\ -7.5030 \end{pmatrix} = \begin{pmatrix} 0.000087 \\ 0.000073 \\ -0.000009 \\ 0.000062 \end{pmatrix}$$

$$x \approx \begin{pmatrix} 6.6238 \\ -8.1732 \\ -9.2623 \\ -7.5030 \end{pmatrix}; \quad r = \begin{pmatrix} 0.000087 \\ 0.000073 \\ -0.000009 \\ 0.000062 \end{pmatrix}$$