VIP Refresher: Calculus

Afshine Amidi and Shervine Amidi

September 8, 2020

Function f	Primitive F
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos(x)$
$\frac{x}{\sqrt{x^2 - 1}}$	$\sqrt{x^2-1}$

Integral calculus

 \square Primitive function – The primitive function of a function f, noted F and also known as an antiderivative, is a differentiable function such that:

$$F'=f$$

 \Box Integral – Given a function f and an interval [a,b], the integral of f over [a,b], noted $\int_a^b f(x)dx$, is the signed area of the region in the xy-plane that is bounded by the graph of f, the x-axis and the vertical lines x=a and x=b, and can be computed with the primitive of f as follows:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

□ Integration by parts – Given two functions f, g on the interval [a,b], we can integrate by parts the quantity $\int_a^b f(x)g'(x)dx$ as follows:

$$\int_{a}^{b} f(x)g'(x)dx = \left[f(x)g(x)\right]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

 \square Rational primitive functions – The table below sums up the main rational functions associated to their primitives. We will omit the additive constant C associated to all those primitives.

Function f	Primitive F	
a	ax	
x^a	$\frac{x^{a+1}}{a+1}$	
$\frac{1}{x}$	$\ln x $	
$\frac{1}{1+x^2}$	$\arctan(x)$	
$\frac{1}{1-x^2}$	$\frac{1}{2}\ln\left \frac{x+1}{x-1}\right $	

 \square Irrational primitive functions – The table below sums up the main rational functions associated to their primitives. We will omit the additive constant C associated to all those primitives:

 \square Exponential primitive functions – The table below sums up the main exponential functions associated to their primitives. We will omit the additive constant C associated to all those primitives.

Function f	Primitive F	
ln(x)	$x \ln(x) - x$	
$\exp(x)$	$\exp(x)$	

 \square Trigonometric primitive functions – The table below sums up the main trigonometric functions associated to their primitives. We will omit the additive constant C associated to all those primitives.

Function f	Primitive F	
$\cos(x)$	$\sin(x)$	
$\sin(x)$	$-\cos(x)$	
tan(x)	$-\ln \cos(x) $	
$\frac{1}{\cos(x)}$	$\ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right $	
$\frac{1}{\sin(x)}$	$\ln \left \tan \left(\frac{x}{2} \right) \right $	
$\frac{1}{\tan(x)}$	$\ln \sin(x) $	

Laplace transforms

 \square Definition – The Laplace transform of a given function f defined for all $t \ge 0$ is noted $\mathcal{L}(f)$, and is defined as:

$$\mathcal{L}(f) = F(s) = \int_0^{+\infty} e^{-st} f(t) dt$$

Remark: we note that $f(t) = \mathcal{L}^{-1}(F)$ where \mathcal{L}^{-1} is the inverse Laplace transform.

☐ Main properties – The table below sums up the main properties of the Laplace transform:

	Property	$t ext{-domain}$	s-domain	
	Linearity	$\alpha f(t) + \beta g(t)$	$\alpha F(s) + \beta G(s)$	
ain	Integral	$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$	
$t ext{-}\mathrm{domain}$	First derivative	f'(t)	sF(s) - f(0)	
<i>t-</i>	Second derivative	f''(t)	$s^2F(s) - sf(0) - f'(0)$	
	n^{th} derivative	$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$	
s-domain	Integral	$\frac{f(t)}{t}$	$\int_{s}^{+\infty} F(\sigma) d\sigma$	
	First derivative	tf(t)	-F'(s)	
	Second derivative	$t^2 f(t)$	F''(s)	
	n^{th} derivative	$t^n f(t)$	$(-1)^n F^{(n)}(s)$	

 $\hfill\Box$ Common transform pairs – The table below sums up the most common Laplace transform pairs:

t-domain	s-domain	
a	$\frac{a}{s}$	
t	$\frac{1}{s^2}$	
t^n	$\frac{n!}{s^{n+1}}$	
e^{at}	$\frac{1}{s-a}$	
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$ $\frac{\omega}{s^2 + \omega^2}$ $\frac{s}{s^2 - a^2}$ $\frac{a}{s^2 - a^2}$	
$\sin(\omega t)$		
$\cosh(at)$		
$\sinh(at)$		

☐ Main operations – The table below sums up the main operations of the Laplace transform:

Operation	t-domain	s-domain
Unit step function	u(t-a)	$\frac{e^{-as}}{s}$
Dirac delta function	$\delta(t-a)$	e^{-as}
s-shift	$e^{at}f(t)$	F(s-a)
t-shift	u(t-a)f(t-a)	$e^{-as}F(s)$