Введение в теорию групп

Артём Рашевский

 ΦKH ВГУ

2024

Содержание

1	Бинарные операции. Полугруппы, моноиды и группы	3				
2	Подгруппы. Описание всех подгрупп в группе $\langle \mathbb{Z}, + \rangle$. Циклические подгруппы и группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы	5				
3	Смежные классы. Индекс подгруппы. Теорема Лагранжа	8				
4	Метрические пространства. Изометрии и движения. Группы движений. Диэдральные группы	10				
5	Группа перестановок. Цикловое разложение. Порядок элементов в S_n . Теорема Кэли					
6	Нормальные подгруппы. Факторгруппы	14				
7	Гомоморфизмы групп, их виды. Свойства гомоморфизмов. Четверная группа Клейна. Ядро и образ гомоморфизма	16				
8	Теорема о гомоморфизме. Классификация циклических групп	19				
9	Прямое произведение групп. Разложение конечной циклической группы. Теорема о строении конечных абелевых групп	21				
10	Экспонента конечной абелевой группы и критерий цикличности	23				
11	Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Поля. Критерий того, что кольцо вычетов является полем	24				

12 Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец 27

1 Бинарные операции. Полугруппы, моноиды и группы

Определение 1.1. Пусть M — непустое множество. Eинарной операцией \circ на множестве M называется отображение $\circ: M \times M \to M$, $\forall a,b \in M: (a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

Определение 1.2. Множество с бинарной операцией (M, \circ) называется полугруппой, если данная бинарная операция ассоциативна, т.е.

$$\forall a, b, c \in M \colon a \circ (b \circ c) = (a \circ b) \circ c.$$

Определение 1.3. Полугруппа (M, \circ) называется *моноидом*, если в ней есть *нейтральный элемент*, т.е.

$$\exists e \in M: \neg \forall a \in M: e \circ a = a \circ e = a.$$

Определение 1.4. Моноид (M, \circ) называется *группой*, если для каждого элемента $a \in M$ найдется *обратный элемент*, т.е.

$$\forall a \in M \ \exists a^{-1} \in M : -a \circ a^{-1} = a^{-1} \circ a = e.$$

Группы обычно обозначаются $\langle M, \circ \rangle$.

Определение 1.5. Группа G называется коммутативной или абелевой, если групповая операция коммутативна, т.е.

$$\forall a,b \in G : ab = ba.$$

Определение 1.6. Порядок группы G — это число элементов в G. Группа называется конечной, если её порядок конечен, и бесконечной иначе.

Порядок группы G обозначается |G|.

Примеры.

1. Числовые аддитивные группы:

$$\langle \mathbb{Z}, + \rangle, \langle \mathbb{Q}, + \rangle, \langle \mathbb{R}, + \rangle, \langle \mathbb{C}, + \rangle, \langle \mathbb{Z}_n, + \rangle.$$

2. Числовые мультипликативные группы:

$$\langle \mathbb{Q} \setminus \{0\}, \times \rangle$$
, $\langle \mathbb{R} \setminus \{0\}, \times \rangle$, $\langle \mathbb{C} \setminus \{0\}, \times \rangle$, $\langle \mathbb{Z}_p \setminus \{0\}, \times \rangle$, p — простое.

3. Группы матриц:

$$\mathrm{GL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A \neq 0\}$$
 — полная линейная группа; $\mathrm{SL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A = 1\}$ — специальная линейная группа;

$$O_n(\mathbb{R}) = \{A \in \operatorname{Mat}_{n \times n}(\mathbb{R}) \mid A \cdot A^T = I\}$$
 — ортогональная группа; $SO_n(\mathbb{R}) = O_n(\mathbb{R}) \cap SL_n(\mathbb{R})$ — специальная ортогональная группа.

- 4. Группы перестановок: $cummempuчeckas rpynna S_n$ все перестановки длины n; $shakonepemehhas rpynna A_n$ все чётные перестановки длины n.
- 5. Группы преобразований подобия: гомотетии, движения (осевые и скользящие симметрии, параллельные переносы, повороты).

Определение 1.7. Для описания структур групп часто используются *таблицы Кэли*. Они представляют собой квадратные таблицы, заполненные результатами применения бинарной операции к элементам множества.

Пример. Таблица Кэли для группы $(\{1,3,5,7\}, \times (\text{mod }8))$:

2 Подгруппы. Описание всех подгрупп в группе $\langle \mathbb{Z}, + \rangle$. Циклические подгруппы и группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы

Определение 2.1. Подмножество H группы G называется noderpynnoй и обозначается H < G, если выполнены следующие условия:

- 1. $e \in H$;
- 2. $\forall a, b \in H : ab \in H$;
- 3. $\forall a \in H: a^{-1} \in H$.

В каждой группе G есть H есть H

Примеры.

- 1. $\langle \mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}, (+, \times) \rangle$
- 2. $GL_n(\mathbb{R}) > O_n(\mathbb{R}) > SO_n(\mathbb{R}); GL_n(\mathbb{R}) > SL_n(\mathbb{R}).$
- 3. $S_n > A_n$.

Теорема (Критерий подгруппы). $Пусть G - \mathit{группа}, \ \mathit{morda}$

$$H < G \iff \forall a, b \in H : a \circ b^{-1} \in H.$$

Доказательство. Определим на H вспомогательное отношение $R_H = \{(a,b) \mid a \circ b^{-1} \in H\}$. Покажем, что R_H является отношением эквивалентности. Для этого проверим, что оно рефлексивно (1), симметрично (2) и транзитивно (3):

- 1. $a \circ a^{-1} = e \in H$;
- 2. $ab^{-1} \in H \Longrightarrow ba^{-1} = (ab^{-1})^{-1} \in H$;
- 3. $ab^{-1} \in H$, $bc^{-1} \in H \Longrightarrow ac^{-1} = (ab^{-1})(bc^{-1}) = a(b^{-1}b)c^{-1} \in H$.

Рефлексивность R_H определяет наличие нейтрального элемента, симметричность — наличие обратного элемента, транзитивность — ассоциативность заданной бинарной операции. Каждый класс эквивалентности будет ассоциирован с некоторой подгруппой (как с алгебраически замкнутым множеством).

Утверждение. Всякая подгруппа в $\langle \mathbb{Z}, + \rangle$ имеет вид $k\mathbb{Z}$ для некоторого $k \in \mathbb{N}_0$ ($\mathbb{N}_0 = \mathbb{N} \cup \{0\}$).

Доказательство. Очевидно, что все подмножества вида $k\mathbb{Z}$ являются подгруппами в \mathbb{Z} . Пусть $H < \mathbb{Z}$. Если $H = \{0\}$, то $H = 0\mathbb{Z}$. Иначе положим $k = \min(H \cap N) \neq 0$ (это множество непусто, т.к. $\forall x \in H \cap N \colon -x \in H$), тогда $k\mathbb{Z} \subseteq H$. Покажем, что $k\mathbb{Z} = H$. Пусть $a \in H$ — произвольный элемент. Поделим его на k с остатком:

$$a = qk + r$$
, где $k \in H$, $0 \leqslant r < k \Rightarrow r = a - qk \in H$.

В силу выбора k получаем: $r = 0 \Rightarrow a = qk \in k\mathbb{Z}$.

Определение 2.2. Пусть G — группа, $g \in G$ и $n \in \mathbb{Z}$. Степень элемента g определяется следующим образом:

$$g^{n} = \begin{cases} \underbrace{g \dots g}, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1} \dots g^{-1}}, & n < 0 \end{cases}$$

и обладает свойствами:

 $\forall m, n \in \mathbb{Z}$:

$$1. \ g^m \cdot g^n = g^{m+n};$$

2.
$$(g^m)^{-1} = g^{-m}$$
;

3.
$$(g^m)^n = g^{mn}$$
.

Определение 2.3. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порожденной элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\} \subseteq G$.

Циклическая подгруппа, порождённая элементом g, обозначается $\langle g \rangle$. Элемент g называется nopowcdawuum или ofpasywuum для подгруппы $\langle g \rangle$.

Пример. Подгруппа $2\mathbb{Z} < \langle \mathbb{Z}, + \rangle$ является циклической, и в качестве порождающего элемента в ней можно взять g=2 или g=-2. Другими словами, $2\mathbb{Z} = \langle 2 \rangle = \langle -2 \rangle$.

Определение 2.4. Группа G называется $uu\kappa nuveckou$, если

$$\exists g \in G : -G = \langle g \rangle.$$

Циклическая группа порядка n обозначается C_n .

Примеры. $\langle \mathbb{Z}, + \rangle$; $\langle \mathbb{Z}_n, + \rangle, n \geqslant 1$.

Определение 2.5. Пусть G — группа и $g \in G$. Порядком элемента g называется наименьшее $m \in \mathbb{N}$:— $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности. Порядок элемента обозначается $\operatorname{ord}(g)$.

Замечание.

$$\operatorname{ord}(g) = 1 \iff g = e.$$

Утверждение. Если $G - \varepsilon pynna \ u \ g \in G, \ mo \ {\rm ord}(g) = |\langle g \rangle|.$

Доказательство. Заметим, что если $g^k = g^s$, то $g^{k-s} = e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы $g^n, n \in \mathbb{Z}$, попарно различны, и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же $\operatorname{ord}(g) = m$, то из минимальности числа m следует, что элементы $e = g^0, g^1, g^2, \ldots, g^{m-1}$ попарно различны. Далее, $\forall n \in \mathbb{Z} \colon n = mq + r$, где $0 \leqslant r \leq m-1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно, $\langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\}$ и $|\langle g \rangle| = m$.

Очевидно, что всякая циклическая группа коммутативна и не более чем счётна.

3 Смежные классы. Индекс подгруппы. Теорема Лагранжа

Определение 3.1. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\},\$$

аналогично определяется правый смежный класс:

$$Hg = \{hg \mid h \in H\}.$$

Лемма. Пусть G — конечная подгруппа, тогда $\forall g \in G$: |gH| = |H|.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в gH элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножив слева на g^{-1} , получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Определение 3.2. Пусть G — группа, H < G. Индексом подгруппы H в группе G называется число левых смежных классов G по H.

Индекс группы G по подгруппе H обозначается [G:H].

Теорема (Лагранж). Пусть G- конечная группа, H< G. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своём) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (по следствию из доказательства критерия подгруппы) и каждый из них содержит по |H| элементов (по предыдущей лемме).

Следствие 3.1. |G| : |H|.

Следствие 3.2. |G| : ord(g).

Доказательство. Вытекает из следствия 1 и того, что $\operatorname{ord}(g) = |\langle g \rangle|$.

Следствие 3.3. $g^{|G|} = e$.

Доказательство. Из предыдущего следствия получаем:
$$|G|=\operatorname{ord}(g)\cdot s,\ s\in\mathbb{N}\Longrightarrow g^{|G|}=(g^{\operatorname{ord}(g)})^s=e^s=e.$$

Следствие 3.4 (Малая теорема Ферма). Пусть \overline{a} — ненулевой вычет по простому модулю p, тогда $\overline{a}^{p-1} \equiv 1 \pmod{p}$.

Доказательство. Достаточно применить следствие 3 к группе $\langle \mathbb{Z}_p \setminus \{0\}, \times \rangle$.

Следствие 3.5. Пусть |G| — простое число, тогда G — циклическая группа, порождённая любым своим ненейтральным элементом.

Доказательство. Пусть $g \in G$ — произвольный ненейтральный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$.

4 Метрические пространства. Изометрии и движения. Группы движений. Диэдральные группы

Определение 4.1. Упорядоченная пара (M,d), состоящая из множества M и отображения $d: M \times M \to \mathbb{R}$, называется метрическим пространством, если $\forall x, y \in M$:

- 1. $d(x,y) = 0 \Leftrightarrow x = y$ (аксиома тождества);
- 2. $d(x,y) \geqslant 0$ (аксиома неотрицательности);
- 3. d(x,y) = d(y,x) (аксиома симметричности);
- 4. $d(x,y) + d(y,z) \geqslant d(x,y)$ (аксиома или неравенство треугольника).

Определение 4.2. Пусть X и Y — метрические пространства. Отображение $f: X \to Y$ называется *изометрией*, если оно сохраняет расстояние между точками:

$$\forall x, x' \in X : |f(x) - f(x')|_Y = |x - x'|_X,$$

где $|a-b|_S$ — расстояние между a и b в пространстве S. Если $X=Y,\,f$ называют $\partial вижением$.

Определение 4.3. Движение называют *собственным*, если оно сохраняет *ориентацию* пространства.

Определение 4.4. Пусть E - eвклидово аффинное пространство и $F \subseteq E$ — геометрическая фигура. Группой движений (изометрий) Isom(F) фигуры F называется множество тех движений аффинного пространства E, которые переводят фигуру F в себя:

$$\operatorname{Isom}(F) = \{ \varphi \colon E \to E \mid \varphi - \operatorname{движение}, \ \varphi(F) = F \}.$$

В качестве групповой операции рассматривается операция композиции движений.

Замечание. Группа собственных движений $Isom(F)^+$ является подгруппой группы движений Isom(F) фигуры F.

Определение 4.5. Группа движений правильного n-угольника $\Delta_n \subset \mathbb{R}^2$ называется диэдральной группой D_n :

$$D_n = \text{Isom}(\Delta_n).$$

Есть всего 2 вида таких преобразований:

- 1. n вращений относительно центра на угол, кратный $\frac{2\pi}{n}$ (вращение на угол φ обозначается R_{φ});
- 2. n симметрий относительно осей симметрии (симметрия относительно прямой l обозначается S_l).

В случае нечетного n любая ось симметрии проходит через центр Δ_n и одну из вершин, в случае четного n любая ось симметрии проходит либо через противоположные вершины, либо через середины противоположных сторон.

Утверждение. $|D_n| = 2n$.

Замечание. Группа собственных движений Δ_n содержит только повороты:

$$\operatorname{Isom}(D_n)^+ = \{ R_{\frac{2\pi k}{n}} \}.$$

 $\pmb{\Pi pumep}$. Таблица Кэли группы D_4 квадрата ABCD:

	١.,	۱ ـ	ا ـــ	٦.	l ~	l	۱ ۵	l ~
0	id	$R_{\frac{\pi}{2}}$	R_{π}	$R_{\frac{3\pi}{2}}$	S_h	S_v	S_{AC}	S_{BD}
id	id	$R_{\frac{\pi}{2}}$	R_{π}	$R_{\frac{3\pi}{2}}$		S_v	S_{AC}	S_{BD}
$\mathrm{R}_{rac{\pi}{2}}$	$R_{\frac{\pi}{2}}$	R_{π}	$R_{\frac{3\pi}{2}}$	id	S_{BD}	S_{AC}	S_h	S_v
R_{π}	R_{π}	$R_{\frac{3\pi}{2}}$	id	$R_{\frac{\pi}{2}}$	S_v	S_h	S_{BD}	S_{AC}
$R_{\frac{3\pi}{2}}$	$R_{\frac{3\pi}{2}}$	id	$R_{\frac{\pi}{2}}$	R_{π}	S_{AC}	S_{BD}	S_v	S_h
S_h	S_h	S_{AC}	S_v	S_{BD}	id	R_{π}	$R_{\frac{\pi}{2}}$	$R_{\frac{3\pi}{2}}$
S_v	S_v	S_{BD}	S_h	S_{AC}	R_{π}	id	$R_{\frac{3\pi}{2}}$	$R_{\frac{\pi}{2}}$
S_{AC}	S_{AC}	S_v	S_{BD}	S_h	$R_{\frac{3\pi}{2}}$	$\mathrm{R}_{rac{\pi}{2}}$	id	R_{π}
S_{BD}	S_{BD}	S_h	S_{AC}	S_v	$R_{\frac{\pi}{2}}$	$R_{\frac{3\pi}{2}}$	R_{π}	id

5 Группа перестановок. Цикловое разложение. Порядок элементов в S_n . Теорема Кэли

Определение 5.1. Пусть задано множество $X = \{1, 2, ..., n\}, n \in \mathbb{N}$. Множество всех возможных биекций $\Pi = \{\pi_i : X \leftrightarrow X\}$ с операцией композиции \circ образует группу $S_n = \langle \Pi, \circ \rangle$, называемую симметрической группой или группой перестановок.

Утверждение 5.1.

$$|S_n| = \operatorname{Card} \Pi = n!.$$

Доказательство. Символ 1 можно подходящей перестановкой σ перевести в любой другой символ $\sigma(1)$, для чего существует в точности n различных возможностей. Но зафиксировав $\sigma(1)$, в качестве $\sigma(2)$ можно брать лишь один из оставшихся n-1 символов и т.д. Всего возможностей выбора $\sigma(1), \sigma(2), \ldots, \sigma(n)$, значит и всех перестановок будет $n(n-1)\ldots 2\cdot 1=n!$.

Утверждение 5.2. Любая перестановка может быть представлена в виде композиции непересекающихся циклов.

Определение 5.2. Цикл длины 2 называется транспозицией.

Утверждение 5.3. *Каждая перестановка* $\pi \in S_n$ *является композицией транспозиций.*

Утверждение 5.4. Непересекающиеся циклы коммутируют.

Утверждение 5.5. Порядок цикла равен его длине.

Утверждение 5.6. Порядок перестановки равен НОК длин циклов в его цикловом разложении.

Определение 5.3. Цикловой структурой перестановки $\pi \in S_n$ называется упорядоченный набор чисел $CS(\pi) = (c_1, c_2, \dots, c_n)$, где c_i количество циклов длины i в разложении π .

Пример. Пусть $G = S_3$, $H = \langle (12) \rangle = \{ \mathrm{id}, (12) \}$. Найдём все левые и правые смежные классы G по H (произвольный элемент обозначим a):

a	aH	Ha
id	aH	Ha
(12)	$\{(12), id\}$	$\{(12), id\}$
(13)	{(13), (123)}	{(13), (132)}
(23)	$\{(23), (132)\}$	$\{(23), (123)\}$
(123)	$\{(123),(13)\}$	$\{(123), (23)\}$
(132)	$\{(132),(23)\}$	$\{(132),(13)\}$

Теорема (**Кэли**). Любая конечная группа G порядка n изоморфна некоторой подгруппе симметрической группы S_n :

$$\forall a, g \in G: a \mapsto \pi_a, \quad \pi_a(g) = a \circ g.$$

Доказательство. содержимое...

6 Нормальные подгруппы. Факторгруппы

Определение 6.1. Подгруппа H группы G называется *нормальной*, если

$$\forall g \in G: gH = Hg.$$

Обозначается $H \triangleleft G$.

Утверждение. Пусть H — подгруппа группы G, тогда следующие условия эквивалентны:

- 1. Н нормальна;
- 2. $\forall g \in G: gHg^{-1} = H;$
- 3. $\forall g \in G: gHg^{-1} \subseteq H$.

Доказательство.

- $(1) \implies (2): gH = Hg \mid g^{-1} \implies gHg^{-1} = H.$
- $(2) \Longrightarrow (3)$: очевидно.
- $(3) \implies (2): gHg^{-1} \subseteq H \implies gHg^{-1} \subseteq H \mid \cdot g \implies gH \subseteq Hg.$ Если $g = g^{-1}$, то $g \cdot \mid g^{-1}Hg \subseteq H \implies Hg \subseteq gH \implies gH = Hg.$

Рассмотрим множество смежных классов по нормальной подгруппе, обозначенной G/H. Определим на G/H бинарную операцию, полагая, что $(g_1H)(g_2H) = (g_1g_2)H$.

Пусть $g_1'H=g_1H$ и $g_2'H=g_2H,$ тогда $g_1'=g_1h_1,\ g_2'=g_2h_2,$ где $h_1,h_2\in H.$

$$(g_1'H)(g_2'H) = (g_1g_2')H = (g_1h_1g_2h_2)H = (g_1g_2\underbrace{g_2^{-1}h_1g_2}_{\in H}h_2)H \subseteq (g_1g_2)H \Longrightarrow$$
$$\Longrightarrow (g_1'g_2')H = (g_1g_2)H.$$

Утверждение. G/H является группой.

Доказательство. Проверим аксиомы группы:

- 1. Ассоциативность очевидна.
- 2. Нейтральный элемент eH.
- 3. Обратный к $gH g^{-1}H$.

Определение 6.2. Множество G/H с указанной операцией называется ϕ акторгруппой группы G по нормальной подгруппе H.

Пример. Если $G = \langle \mathbb{Z}, + \rangle$ и $H = n\mathbb{Z}$, то G/H — группа вычетов $\langle \mathbb{Z}_n, + \rangle$.

7 Гомоморфизмы групп, их виды. Свойства гомоморфизмов. Четверная группа Клейна. Ядро и образ гомоморфизма

Определение 7.1. Пусть $\langle G, \circ \rangle$ и $\langle F, * \rangle$ — группы.

Отображение $\varphi \colon G \to F$ называется гомоморфизмом, если

$$\forall g_1, g_2 \in G: \varphi(g_1 \circ g_2) = \varphi(g_1) * \varphi(g_2).$$

Замечание. Пусть $\varphi: G \to F$ — гомоморфизм групп, и пусть e_G, e_F — нейтральные элементы групп G и F соответственно, тогда:

- 1. $\varphi(e_G) = e_F$
- 2. $\forall g \in G: \varphi(g^{-1}) = \varphi(g)^{-1}$

Доказательство.

- 1. $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$. Домножив обе крайние части равенства на $\varphi(e_G)^{-1}$, получим $e_F = \varphi(e_G)$.
- 2. $\varphi(g*g^{-1}) = e_F = \varphi(g)\varphi(g^{-1}).$ Умножив обе части на $\varphi(g)^{-1}$, получаем необходимое.

Определение 7.2. Гомоморфизм групп $\varphi \colon G \to F$ называется

- эндоморфизмом, если F = G;
- *мономорфизмом*, если φ инъективно;
- эnиморфизмом, если φ сюръективно;
- *изоморфизмом*, если φ биективно;
- $aemonop \phi uзмом$, если φ является эндоморфизмом и изоморфизмом.

Группы G и F называются *изоморфными*, если между ними существует изоморфизм. Обозначается: $G \cong F$.

Пример. Четверная группа Клейна— ациклическая коммутативная группа четвёртого порядка, задающаяся следующей таблицей Кэли:

Порядок каждого элемента, отличного от нейтрального, равен 2.

Обозначается V или V_4 (от нем. Vierergruppe — четверная группа).

Любая группа четвёртого порядка изоморфна либо циклической группе, либо четверной группе Клейна, наименьшей по порядку нециклической группе. Симметрическая группа S_4 имеет лишь две нетривиальные нормальные подгруппы — знакопеременную группу A_4 и четверную группу Клейна V_4 , состоящую из перестановок id, (12)(34), (13)(24), (14)(23).

Несколько примеров изоморфных ей групп:

- npямая cyмма $\mathbb{Z}_2 \oplus \mathbb{Z}_2;$
- диэдральная группа D_2 ;
- множество $\{0,1,2,3\}$ с операцией XOR;
- группа симметрий ромба ABCD в трёхмерном пространстве, состоящая из 4 преобразований: $id, R_{\pi}, S_{AC}, S_{BD}$;
- группа поворотов тетраэдра на угол π вокруг всех трёх рёберных медиан (вместе с тождественным поворотом).

Определение 7.3. \mathcal{A} *дром* гомоморфизма $\varphi: G \to F$ называется множество всех элементов G, которые отображаются в нейтральный элемент F, т.е.

$$\ker \varphi = \{ g \in G \mid \varphi(g) = e_F \}.$$

 $Oбраз \varphi$ определяется как

$$\operatorname{Im} \varphi = \varphi(G) = \{ f \in F \mid \exists g \in G : -\varphi(g) = f \}.$$

Очевидно, что $\ker \varphi < G$ и $\operatorname{Im} \varphi < F$.

Лемма. Гомоморфизм групп $\varphi: G \to F$ интективен тогда и только тогда, когда $\ker \varphi = \{e_G\}.$

Доказательство. Ясно, что если φ инъективен, то $\ker \varphi = \{e_G\}$.

Обратно, пусть $g_1, g_2 \in G$ и $\varphi(g_1) = \varphi(g_2)$. Тогда $g_1^{-1}g_2 \in \ker \varphi$, поскольку $\varphi(g_1^{-1}g_2) = \varphi(g_1^{-1})\varphi(g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e_F$. Отсюда $g_1^{-1}g_2 = e_G$ и $g_1 = g_2$.

Следствие. Гомоморфизм групп $\varphi: G \to F$ является изоморфизмом тогда и только тогда, когда $\ker \varphi = \{e_G\}$ и $\operatorname{Im} \varphi = F$.

Утверждение. Пусть $\varphi \colon G \to F$ гомоморфизм групп, тогда $\ker \varphi \lhd G$.

Доказательство. Достаточно проверить, что

$$\forall g \in G \ \forall h \in \ker \varphi \colon g^{-1}hg \in \ker \varphi.$$

Это следует из цепочки равенств:

$$\varphi(g_1^{-1}hg) = \varphi(g^{-1})\varphi(h)\varphi(g) = \varphi(g^{-1})e_F\varphi(g) = \varphi(g^{-1})\varphi(g) = \varphi(g)^{-1}\varphi(g) = e_F.$$

8 Теорема о гомоморфизме. Классификация циклических групп

Теорема (О гомоморфизме). Пусть φ : $G \to F$ — гомоморфизм групп, тогда

$$\operatorname{Im} \varphi \cong G/\ker \varphi.$$

Доказательство. Рассмотрим отображение ψ : $G/\ker\varphi\to\operatorname{Im}\varphi$, заданное формулой $\psi(g\ker\varphi)=\varphi(g)$.

Достаточно проверить определение изоморфизма для ψ . Для этого покажем, что заданное отображение корректно определено, биективно и гомоморфно.

1. Проверим корректность ψ :

$$\exists h_1, h_2 \in \ker \varphi :- g_1 \ker \varphi = g_2 \ker \varphi \Longrightarrow g_1 h_1 = g_2 h_2;$$

$$\psi(g_1 \ker \varphi) = \varphi(g_1) = \varphi(g_1 h_1) = \varphi(g_2 h_2) = \varphi(g_2) = \psi(g_2 \ker \varphi).$$

2. Докажем, что ψ — гомоморфизм:

$$\psi((g_1 \ker \varphi)(g_2 \ker \varphi)) = \psi((g_1 g_2) \ker \varphi) = \varphi(g_1 g_2) = \varphi(g_1)\varphi(g_2) =$$
$$= \psi(g_1 \ker \varphi)\psi(g_2 \ker \varphi).$$

- 3. Сюръективность видна из построения.
- 4. Инъективность:

$$\psi(g_1 \ker \varphi) = \psi(g_2 \ker \varphi) \Longrightarrow \varphi(g_1) = \varphi(g_2) \Longrightarrow \varphi(g_1) \varphi(g_2)^{-1} = e_F \Longrightarrow$$
$$\Longrightarrow \varphi(g_1 g_2^{-1}) = e_F \Longrightarrow g_1 g_2^{-1} \in \ker \varphi \Longrightarrow g_1 \ker \varphi = g_2 \ker \varphi. \quad \blacksquare$$

Пример. Пусть $G=\langle\mathbb{R},+\rangle$ и $H=\langle\mathbb{Z},+\rangle$. Рассмотрим группу $F=\langle\mathbb{C}\setminus\{0\},\times\rangle$ и гомоморфизм

$$\varphi \colon G \to F, \quad g \mapsto e^{2\pi i g} = \cos(2\pi g) + i\sin(2\pi g).$$

Тогда $\ker \varphi = H$ и факторгруппа G/H изоморфна окружности S^1 , рассматриваемой как подгруппа в F, состоящей из комплексных чисел с модулем равным 1.

Теорема (О классификации циклических групп). $\Pi ycmb$ G — uuknuчeckas группа. Тогда

1. Ecau
$$|G| = \infty$$
, mo $G \cong \langle \mathbb{Z}, + \rangle$.

2. Ecau
$$|G| = n < \infty$$
, mo $G \cong \langle \mathbb{Z}_n, + \rangle$.

Доказательство. Пусть $G=\langle g \rangle$. Рассмотрим отображение $\varphi\colon \mathbb{Z} \to G, \quad k\mapsto g^k.$

$$arphi(k+l)=g^{k+l}=g^kg^l=arphi(k)arphi(l),$$
 поэтому $arphi$ — гомоморфизм.

Из определения циклической группы следует, что φ сюръективен, т.е. $\operatorname{Im} \varphi = G$. По теореме о гомоморфизме получаем $G \cong \mathbb{Z}/\ker \varphi$, т.к. $\ker \varphi < \mathbb{Z} \Longrightarrow \exists m \geqslant 0 : - \ker \varphi = m\mathbb{Z}$ (любая подгруппа \mathbb{Z} имеет вид $k\mathbb{Z}$). Если m = 0, то $\ker \varphi = \{0\}$, откуда $G \cong \mathbb{Z}/\{0\} \cong \mathbb{Z}$. Если m > 0, то $G \cong \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m$.

9 Прямое произведение групп. Разложение конечной циклической группы. Теорема о строении конечных абелевых групп

Определение 9.1. *Прямым произведением групп* G_1, \ldots, G_m называется группа

$$G_1 \times \ldots \times G_m = \{(g_1, \ldots, g_m) \mid g_1 \in G_1, \ldots, g_m \in G_m\}$$

с операцией $(g_1,\ldots,g_m)(g_1',\ldots,g_m')=(g_1g_1',\ldots g_mg_m').$

Ясно, что эта операция ассоциативна, обладает нейтральным элементом (e_{G_1},\ldots,e_{G_m}) и для каждого элемента (g_1,\ldots,g_m) есть обратный элемент $(g_1^{-1},\ldots,g_1^{-1})$.

Замечание. Группа $G_1 \times \ldots \times G_m$ коммутативна тогда и только тогда, когда коммутативна каждая из групп G_1, \ldots, G_m .

Замечание. Если все группы G_1, \dots, G_m конечны, то $|G_1 \times \dots \times G_m| = |G_1| \dots |G_m|$.

Определение 9.2. Говорят, что группа G раскладывается в прямое произведение своих подгрупп H_1, \ldots, H_m , если отображение $H_1 \times \ldots \times H_m \to G$, $(h_1, \ldots, h_m) \mapsto h_1 \ldots h_m$ является изоморфизмом.

Теорема. Пусть n = pq — разложение натурального числа n на два взаимно простых сомножителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_p \times \mathbb{Z}_q$$
.

Доказательство. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_p \times \mathbb{Z}_q, \quad \varphi(a \bmod n) = (a \bmod p, a \bmod q).$$

- 1. Корректность следует из того, что n : p, n : q.
- $2. \varphi$ гомоморфизм, т.к.

$$\varphi((a+b) \bmod n) = \varphi(a \bmod n) + \varphi(b \bmod n).$$

 $3. \varphi$ инъективен:

Если $\varphi(a \bmod n) = (0, 0)$, то $a \vdots p, \ a \vdots q$. Но так как $\mathrm{HOK}(p, q) = 1$, получаем, что $a \mid n$. Тогда $a \equiv 0 \pmod n$, т.е. $\ker \varphi = \{0\}$.

4. φ сюръективен, т.к. $|\mathbb{Z}_n| = n = p \cdot q = |\mathbb{Z}_p \times \mathbb{Z}_q|$.

Следствие. Пусть $n \geqslant 2$ — натуральное число и $n = p_1^{k_1} \dots p_s^{k_s}$ — его разложение в произведение простых множителей $(p_i \neq p_j \ npu \ i \neq j)$. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}}.$$

Определение 9.3. Конечная абелева группа A называется nримарной, если $|A|=p^k$, где p — простое и $k\in\mathbb{N}$.

Теорема (О строении конечных абелевых групп). Пусть A — конечная абелева группа. Тогда $A \cong \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_t^{k_t}}$, где p_1, \ldots, p_t — простые числа (не обязательно различные) и $k_1, \ldots, k_t \in \mathbb{N}$. Более того, набор примарных циклических множителей $\mathbb{Z}_{p_1^{k_1}}, \ldots, \mathbb{Z}_{p_t^{k_t}}$ определен однозначно с точностью до перестановки (в частности, число этих множителей определено однозначно).

10 Экспонента конечной абелевой группы и критерий цикличности

Определение. Экспонентой конечной абелевой группы A называется число

$$\exp A = \min\{m \in \mathbb{N} \mid \forall a \in A : ma = 0\}.$$

Замечание.

- 1. Из того, что $\forall a \in A \ \forall m \in \mathbb{Z}$: $ma = 0 \iff m : \operatorname{ord}(a)$, определение экспоненты можно переписать в виде $\exp A = \operatorname{HOK}\{\operatorname{ord}(a) \mid a \in A\}$.
- 2. Из того, что $\forall a \in A$: |A| : $\mathrm{ord}(a)$, следует, что |A| общее кратное множества $\{\mathrm{ord}(a) \mid a \in A\}$, а значит, |A| : $\exp A$. В частности, $\exp A \leqslant |A|$.

Теорема (**Критерий цикличности**). Группа A является циклической тогда и только тогда, когда $\exp A = |A|$.

Доказательство. Пусть $|A|=n=p_1^{k_1}\cdot\ldots\cdot p_s^{k_s}$ — разложение на простые множители, где p_i — простое и $k_s\in\mathbb{N}$ $(p_i\neq p_j$ при $i\neq j).$

Heoбxoдимость. Если $A=\langle a\rangle$, то ord(a)=n, откуда $exp\ A=n$.

Достаточность. Если $\exp A = n$, то для $i = 1, \ldots, s$ $\exists c_i \in A: - \operatorname{ord}(c_i) = p_i^{k_i} m_i, \ m_i \in \mathbb{N}$. Для каждого $i = 1, \ldots, s$ положим $a_i = m_i c_i$, тогда $\operatorname{ord}(a_i) = p_i^{k_i}$. Рассмотрим элемент $a = a_1 + \ldots + a_s$ и покажем, что $\operatorname{ord}(a) = n$. Пусть $\exists m \in \mathbb{N}: - ma = 0$, т.е. $ma_1 + \ldots + ma_s = 0$. При фиксированном $i \in \{1, \ldots, s\}$ умножим обе части последнего равенства на $n_i = n/p_i^{k_i}$. Видно, что $\forall i \neq j: mn_i a_j = 0$, поэтому в левой части останется только слагаемое $mn_i a_i$, откуда $mn_i a_i = 0 \Longrightarrow mn_i : p_i^{k_i}$, а т.к. $n_i/:p_i$, то $m: p_i^{k_i}$. В силу произвольности выбора i отсюда вытекает, что m: n, и т.к. na = 0, то окончательно получаем $\operatorname{ord}(a) = n$. Значит, $A = \langle a \rangle$ — циклическая группа.

11 Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Поля. Критерий того, что кольцо вычетов является полем

Определение 11.1. *Кольцо* — это множество R, на котором заданы две бинарные операции « + » (сложение) и « · » (умножение), удовлетворяющее следующим условиям:

- 1. $\langle R, + \rangle$ абелева группа;
- 2. (R, \cdot) алгебраическая структура;
- 3. $\forall a, b, c \in R: a(b+c) = ab + ac \text{ } (a+b)c = ac + bc.$

Замечание.

- 1. $\forall a \in R: 0 \cdot a = a \cdot 0 = 0;$
- 2. Если |R| > 1, то $1 \neq 0$.

Доказательство.

- 1. $a0 = a(0+0) = a0 + a0 \Longrightarrow 0 = a0$.
- 2. Следует из условий выше.

Π римеры.

- 1. Числовые кольца $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C};$
- 2. Кольцо \mathbb{Z}_n вычетов по модулю n;
- 3. Кольцо матриц $\operatorname{Mat}_{n\times n}(\mathbb{R});$
- 4. Кольцо многочленов $\mathbb{R}[x]$ от переменной x с коэффициентами из \mathbb{R} ;
- 5. Кольцо функций $F(M,\mathbb{R})$ из множества M в \mathbb{R} с поэлементными операциями сложения и умножения:

$$\forall m \in M: (f_1 + f_2)(m) = f_1(m) + f_2(m), \quad (f_1 \cdot f_2)(m) = f_1(m) \cdot f_2(m).$$

Определение 11.2. Кольцо R называется accouuативным коммутативным, если

$$\forall a, b \in R: ab = ba.$$

Определение 11.3. Элемент a кольца R называется обратимым, а кольцо codep жащим edunuy, если

$$\exists b \in R: -ab = ba = 1.$$

Замечание. Все обратимые элементы кольца образуют группу по умножению.

Определение 11.4. Элемент a кольца R называется левым (соответственно npaвым) делителем нуля, если $a \neq 0$ и $\exists b \neq 0 \in R: -ab = 0$ (соответственно ba = 0).

Замечание. Если кольцо коммутативно, то множества левых и правых делителей нуля совпадают. Тогда левые и правые делители нуля называются просто «делителями нуля».

Замечание. Все делители нуля в кольце необратимы.

 $\ \ \, \mathcal{A}$ оказательство. Пусть R — кольцо; $a \neq 0, \ b \neq 0$. Если ab = 0 и $\exists a^{-1},$ то $a^{-1}ab = a^{-1}0 \Longrightarrow b = 0$ — противоречие.

Определение 11.5. Элемент a кольца R называется нильпотентным (нильпотентом), если $a \neq 0$ и $\exists n \in \mathbb{N} : -a^n = 0$.

Замечание. Всякий нильпотент является делителем нуля.

Определение 11.6. Кольцо R называется *полем*, если оно коммутативно, ассоциативно, содержит $1 \neq 0$, и любой ненулевой элемент обратим.

Замечание. В поле не существует делителей нуля.

Примеры. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{A}, \mathbb{Z}_2$.

Теорема. Кольцо вычетов \mathbb{Z}_p является полем тогда и только тогда, когда p- простое число.

Доказательство.

Heoбxoдимость. Если n=1, то $\mathbb{Z}_n=\{0\}$ — не поле.

Если n>1, и $n=m\cdot k$, где 1< m,k< n, то $\overline{m}\cdot \overline{k}=\overline{0}\Longrightarrow$ в \mathbb{Z}_n есть делитель нуля $\Longrightarrow \mathbb{Z}_n$ — не поле.

Тогда $HOД(a,p)=1 \Longrightarrow \exists k,l \in \mathbb{Z}:-ak+pl=1$. Значит, $\overline{a} \cdot \overline{k} + \overline{p} \cdot \overline{l} = \overline{1} \Longrightarrow a \cdot k \equiv 1 \pmod{p} \Longrightarrow a$ обратим.

12 Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец

Определение 12.1. Подмножество I кольца R называется $(\partial в y c m o p o h h u m)$ $u \partial e a n o m$, если

- 1. I подгруппа по сложению;
- 2. $\forall a \in I \ \forall r \in R : ar \in I, ra \in I$.

Hecoбcmвенными или mpивиальными идеалами являются $\{0\}$ и R. Остальные называются coбcmвенными.

Определение 12.2. Множество $(a) = \{ra \mid r \in R\}$ называется *главным* $u \partial e a n o m$, порождаемым элементом a.

 $\mathbf{\Pi}$ ример. $(k) = k\mathbb{Z}$ — главный идеал в \mathbb{Z} .

Замечание.

- $(a) = R \iff a$ обратим;
- $(a) = 0 \iff a = 0.$

Определение 12.3. Если S- подмножество кольца R, то

$$(S) = \{r_1s_1 + \ldots + r_ks_k \mid r_i \in R, s_i \in S\}$$

называется идеалом, порожеденным подмножеством S.

Пусть R — кольцо, I — его идеал.

Рассмотрим факторгруппу (R/I,+) и введём на ней операцию умножения, полагая, что $(a+I)\cdot (b+I)=ab+I.$

Проверим корректность такого определения:

$$a+I=a'+I,\ b+I=b'+I\Longrightarrow a'=a+x,\ b'=b+y,\ \text{где } x,y\in I;$$
 $(a'+I)(b'+I)=a'b'+I=(a+x)(b+y)+I=ab+\underbrace{ay+xb+xy}_{\in I}+I=ab+I.$

 ${\it 3aмечание.}\ R/I-$ кольцо.

Определение 12.4. R/I называется факторкольцом кольца R по идеалу I.

 $\mathbf{\Pi}$ ример. $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

Определение 12.5. Если R,S — два кольца, то отображение $\varphi \colon R \to S$ называется гомоморфизмом колец, если

$$\forall a, b \in R: \varphi(a+b) = \varphi(a) + \varphi(b), \ \varphi(ab) = \varphi(a) \cdot \varphi(b).$$

Биективный гомоморфизм называется изоморфизмом.

$$\ker \varphi = \{ r \in R \mid \varphi(r) = 0 \} \subseteq R;$$

$$\operatorname{Im} \varphi = \varphi(R) \subseteq S.$$

Замечание.

- 1. $\ker \varphi$ является идеалом R;
- 2. $\operatorname{Im} \varphi$ подкольцо в S.

Доказательство.

1. $\ker \varphi$ является подгруппой в R по сложению, т.к. φ — гомоморфизм абелевых групп. Покажем, что

 $\forall a \in \ker \varphi \ \forall r \in R : ra \in \ker \varphi, ar \in \ker \varphi.$

$$\varphi(ra)=\varphi(r)\varphi(a)=\varphi(r)0=0\Longrightarrow ra\in\ker\varphi,$$
 аналогично для $ar\in\ker\varphi.$

Теорема (О гомоморфизме колец). Пусть φ : $R \to S$ — гомоморфизм колец, тогда

$$R/\ker \varphi \cong \operatorname{Im} \varphi.$$

Доказательство. Пусть $I=\ker\varphi$. Тогда из доказательства теоремы о гомоморфизме для групп отображение $\psi\colon R/I\to \operatorname{Im}\varphi,\ \psi(a+I)=\varphi(a)$ является изоморфизмом групп по сложению.

Остаётся проверить, что ψ — гомоморфизм колец:

$$\psi((a+I)(b+I)) = \psi(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \psi(a+I)\psi(b+I). \quad \blacksquare$$

Пример. Пусть K — поле, $a \in K$, $\varphi \colon K[x] \to K$, $f \mapsto f(a)$.

Это гомоморфизм, он сюръективен $(b = \varphi(b))$.

$$\ker \varphi = (x - a) \Longrightarrow K[x]/(x - a) \cong K.$$