Chapter #8 Operating System Support

Memory Management

- Single process
 - —Memory split into two sections
 - —Operating System resides in one section
 - —User process resides in other section
- Multiple processes
 - —Memory split into various sections
 - —Operating System resides in one section
 - —User processes share remains sections

Partitioning

- Splitting memory among processes (including OS)
- Fixed-size partitions
 - —Adv:
 - simple (one size fits all)
 - —Disadv:
 - Internal fragmentation (process smaller than fixed size hole)
 - —Solution:
 - smaller partition size (split process over multiple partitions)
- Variable-size partitions
 - —Adv:
 - Partition size matches size of process (initially)
 - —Disadv:
 - External fragmentation (new process smaller than original variablesize hole)
 - —Solution:
 - compaction (defragmentation)

Fixed-Size Partitioning

Operating System 8 M
8 M
8 M
8 M
8 M
8 M
8 M
8 M

Operating System 8 M	
2 M	
4 M	
6 M	
8 M	
8 M	
12 M	
16 M	

Variable-Size Partitioning

Paging

- Page frames:
 - —Equal-sized sections of Real (Main) Memory
- Pages:
 - —Equal-sized sections of a process, each one fits into a page frame
- Page table:
 - —Table maintaining frame location for each page

Virtual Memory

- Demand paging
 - —Pages are brought into main memory as required
 - —Allows handling of process larger than real memory
- Virtual-to-Physical address mapping
 - —Virtual (logical)address is mapped to Real (physical) address

Virtual page = Virtual address DIV Page size Page frame = Mapping(Virtual Page) Offset = Virtual address MOD Page size Real address = Page frame × Page size + Offset

Virtual-to-Physical Address Mapping

Page Fault

Problem:

- —Virtual page does not have a corresponding page frame
- —Same page may be visited again, causing more faults

Solution:

—Replace a current page from physical memory with faulted page

Methods:

- —LRU algorithm: replace least recently used page in memory
- —FIFO algorithm: replace oldest page in memory
- —LFU algorithm: replace least frequently used page in memory
- —Random: replace any page in memory