Задача 2-1.

Даны две строки — P и T, длины не более $100\,000$. Строка T состоит только из строчных латинских букв. Строка P тоже состоит из строчных латинских букв, но еще может содержать от 0 до 10 символов ?, каждый из которых может заменять собой одну любую букву. Вам нужно найти все позиции i в строке T, начиная с которых возможно вхождение P в T, если каким-то образом заменить символы ? на буквы.

В первой строке входного файла — строка P, во второй — строка T. Длины обеих строк не превосходят $100\,000$, при этом они обе непустые.

В первой строке выходного файла выведите число k — количество таких позиций i, что строка P может входить в строку T, начиная с позции i. Во второй строке перечислите все возможные позиции в возрастающем порядке. Позиции нумеруются с нуля. Разделяйте две последовательные позиции одним пробелом.

Пример входа	Пример выхода
ab?	3
ababcabc	0 2 5
???	6
ababcabc	0 1 2 3 4 5

Задача 2-2.

Дана строка S. Необходимо найти количество ее различных непустых подстрок. Подстроки считаются одинаковыми, если они совпадают, как отдельно взятые строки.

В единственной строке входного файла — строка S длины не более $100\,000$, состоящая из строчных латинских букв.

В единственной строке выходного файла выведите число различных подстрок S.

Пример входа	Пример выхода
abc	6
aba	5
aaa	3

Задача 2-3.

Дан набор строк S_1, S_2, \ldots, S_k и число n. Нужно найти количество различных строк длины n, не содержащих в себе в качестве подстроки ни одной из строк S_1, S_2, \ldots, S_k .

В первой строке входного файла — числа n, k и l, разделенные пробелом. В следующих k строках перечислены S_1, S_2, \ldots, S_k , состоящие из первых l маленьких латинских букв. $1 \le n \le 1\,000$, суммарная длина строк S_i не превышает $1\,000, 1 \le l \le 26$.

В единственную строку выходного файла выведите количество различных строк длины n, состоящих только из первых l маленьких латинских букв, никакая из которых не содержит в себе ни одной из строк S_1, S_2, \ldots, S_k в качестве подстроки. Таких строк может быть очень много, поэтому выведите ответ по модулю $1\,000\,000\,007$.

Указание. Используйте бор.

Указание. Используйте динамическое программирование.

Пример входа	Пример выхода
5 1 2	1
a	
5 2 1	0
a	
aa	
5 1 2	6
ab	
5 0 2	32

Задача 2-4.

Дан ϵ -НКА A и строка T. Необходимо найти самую длинную подстроку T, которую допускает A.

В первой строке входного файла — числа n, m и k — количество состояний, количество переходов и количество терминальных состояний автомата A. Состояния автомата нумеруются от 0 до n-1, начальное состояние имеет номер 0. В следующей строке k различных чисел от 0 до n-1 — номера терминальных состояний A. В следующих m строках заданы переходы автомата. Переход задается тройкой "a b c", означающей, что из состояния номер a по символу b (в качестве которого может выступать либо маленькая латинская буква, либо символ \$, заменяющий собой ϵ) есть переход в состояние номер c. В последней строке входного файла — строка T. Ограничения: $1 \le k \le n \le 1\,000,\ 0 \le m \le 10\,000,\ 1 \le |T| \le 1\,000$.

В единственную строку выходного файла выведите самую длинную непустую подстроку T, которую допускает A. Если такой подстроки не существует, выведите сообщение No solution.

Сложность решения не должна превосходить O((m+n)|T|).

Пример входа	Пример выхода
7 6 2	abc
2 6	
0 a 1	
1 b 2	
0 \$ 3	
3 a 4	
4 b 5	
5 c 6	
xabcd	
2 1 1	No solution
1	
0 x 1	
abc	