Homework 3

EXERCISE 3.1. Give a detailed proof of the equivalence between the three definitions of T_pM given in class. Then, prove that the construction of the derivative $df_p: T_pM \longrightarrow T_{f(p)}N$ is the same for the three definitions, meaning the following: If $T_p^{(i)}M$ denotes the three different constructions of the tangent space, for i=1,2,3,and $\mathrm{d}f_{p}^{(i)}$ the corresponding three different constructions of the derivative, then show that the isomorphisms $g_{(ij)}\colon T_p^{(i)}M \xrightarrow{\sim} T_p^{(j)}M$ intertwine the derivative maps, in the sense that $\mathrm{d}f_p^{(i)} = g_{(ji)}\circ \mathrm{d}f_p^{(j)}\circ g_{(ij)}$ and $g_{(ji)} = g_{(ij)}^{-1}.$

Solution. Fix a coordinate chart $(U, (x^1, \dots, x^n))$ centered at p. We first remark that given any derivation $D \in \text{Der}(C^{\infty}(p), \mathbb{R})$ and a smooth function $f : U \longrightarrow \mathbb{R}$ we can expand f around p using Taylor's theorem:

$$f(q) = f(p) + \sum_{i} a_i x^i(q) + \sum_{ij} a_{ij}(q) x^i(q) x^j(q) \tag{(*)}$$

for $q \in U$ and smooth functions $a_{ij} : U \longrightarrow \mathbb{R}$. Applying D we find

$$D(f) = \sum_{i} a_{i}D(x^{i}) + \sum_{ij} D(a_{ij})x^{i}(p)x^{j}(p) + \sum_{ij} a_{ij}(p)D(x^{i})x^{j}(p) + \sum_{ij} a_{ij}(p)x^{i}(p)D(x^{j}) = \sum_{i} a_{i}D(x^{i}) \quad (\star\star)$$

because $x^i(p) = 0$.

To fix notation let $T_p^{(1)}M=C_p/\sim$, $T_p^{(2)}M=\mathrm{Der}(C^\infty(p),\mathbb{R})$ and $T_p^{(3)}M=(\mathscr{F}_p/\mathscr{F}_p^2)^\vee$. Given a small curve $\alpha\in C_p$ through p define a derivation $D_\alpha\colon C^\infty(p)\longrightarrow \mathbb{R}$ by $D_\alpha([f])=(f\circ\alpha)'(0)$. This is well-defined since the expression $(f \circ \alpha)'(0)$ depends only on the germ of f at $\alpha(0) = p$. Similarly, D_{α} only depends on the equivalence class of α . Also, D_{α} is evidently \mathbb{R} -linear and satisfies the Leibniz rule. So $D_{\alpha} \in \mathrm{Der}(C^{\infty}(p), \mathbb{R})$ and we define $g_{(12)}([\alpha]) = D_{\alpha}$ to obtain a linear map $g_{(12)} \colon T_p^{(1)}M \longrightarrow T_p^{(2)}M$.

To define $g_{(21)}\colon T_p^{(2)}M\longrightarrow T_p^{(1)}M$ let $D\in \operatorname{Der}(C^\infty(p),\mathbb{R})$. Define a curve $\alpha_D\colon I\longrightarrow M$ with coordinates $x^i(\alpha_D(t))=D(x^i)t$. Then $\alpha_D\in C_p$ and its equivalence class $[\alpha_D]$ depends linearly on D. Set $g_{(21)}(D)=[\alpha_D]$. To define $g_{(23)}$, let $D\in \operatorname{Der}(C^\infty(p),\mathbb{R})$ and $[f]\in \mathscr{F}_p/\mathscr{F}_p^2$. Note that D(fg)=f(p)D(g)+D(f)g(p)=0 for $f,g\in \mathscr{F}_p$. Hence, D defines a map $D\colon \mathscr{F}_p/\mathscr{F}_p^2\longrightarrow \mathbb{R}$ which we take as $g_{(23)}(D)$. To define $g_{(32)}$, let $G\colon \mathscr{F}_p/\mathscr{F}_p^2\longrightarrow \mathbb{R}$ be linear and $f\in C^\infty(p)$. Then f-f(p) vanishes at p and so we can consider $[f-f(p)]\in \mathscr{F}_p/\mathscr{F}_p^2$. Set $D_G(f)=G([f-f(p)])$. Then D_G is clearly \mathbb{R} -linear and

$$D_G(fg) = D_G(fg) = G([fg - f(p)g(p)]) = G([fg - (f - f(p))(g - g(p)) - f(p)g(p)]) =$$

$$= G([f(p)g - f(p)g(p) + g(p)f - g(p)f(p)]) = f(p)D_G(g) + g(p)D_G(f).$$

Hence, $D_G \in \text{Der}(C^{\infty}(p), \mathbb{R})$ and D_G depends linearly on G. So we can take $g_{(32)}(G) = D_G$.

Finally, we are forced to define $g_{(13)} = g_{(23)} \circ g_{(12)}$ and $g_{(31)} = g_{(21)} \circ g_{(32)}$. To check that $g_{(21)} \circ g_{(12)} = id$ let $\alpha: I \longrightarrow M$ be some curve with $\alpha(0) = p$ and let $f: M \longrightarrow \mathbb{R}$ be some smooth function. Expand f as in (*). We compute

$$(f\circ \alpha)'(0)=\sum_i a_i(x^i\circ \alpha)'(0)$$

and

$$(f\circ\alpha_{D_\alpha})'(0)=\sum_i a_i(x^i\circ\alpha_{D_\alpha})'(0)=\sum_i a_iD_\alpha(x^i)=\sum_i a_i(x^i\circ\alpha)'(0).$$

Hence $[a] = [\alpha_{D_{\alpha}}] = g_{(21)}(g_{(12)}([\alpha])) \in C_p/\sim$. Conversely, let $D \in \text{Der}(C^{\infty}(p), \mathbb{R})$. Let $f \in C^{\infty}(p)$ and expand f as in (\star). Then

$$D_{\alpha_D}(f) = (f \circ \alpha_D)'(0) = \sum_i a_i (x^i \circ \alpha_D)'(0) = \sum_i a_i D(x^i) \stackrel{(\star\star)}{=} D(f).$$

We conclude that indeed $g_{(12)}^{-1} = g_{(21)}$.

To show that $g_{(23)} \circ g_{(32)} = \operatorname{id} \operatorname{let} D \in \operatorname{Der}(C^{\infty}(p), \mathbb{R})$ and $f \in C^{\infty}(p)$. We compute

$$g_{(23)}(g_{(32)}(D))(f) = D_D(f) = D([f - f(p)]) = D(f - f(p)) = D(f)$$

and conclude $D_D=D$. Conversely, let $G\in (\mathscr{F}_p/\mathscr{F}_p^2)^\vee$ and consider $D_G\colon \mathscr{F}_p/\mathscr{F}_p^2\longrightarrow \mathbb{R}$. Take $[f]\in \mathscr{F}_p/\mathscr{F}_p^2$. Then

$$D_G([f]) = G([f - f(p)]) = G([f])$$

by definiton and we conclude that $g_{(23)}^{-1} = g_{(32)}$.

Lastly, we prove that the $g_{(ij)}$ intertwine the different definitions of the derivative $\mathrm{d} f_p^{(i)}$. Let $f\colon M\longrightarrow N$ be a smooth map. We first show that $\mathrm{d} f_p^{(2)} = g_{(12)} \circ \mathrm{d} f_p^{(1)} \circ g_{(21)}$. For this, let $D \in \mathrm{Der}(C^{\infty}(p),\mathbb{R})$ be a derivation and $g: N \longrightarrow \mathbb{R}$ smooth map. Then we have

$$\mathrm{d}f_p^{(2)}(D)(g) = D(g \circ f)$$

and

$$(g_{(12)}\circ \mathrm{d} f_p^{(1)}\circ g_{(21)})(D)(g)=(g\circ (f\circ \alpha_D))'(0)=((g\circ f)\circ \alpha_D)'(0)=D(g\circ f).$$

To see that $df_p^{(3)} = g_{(23)} \circ df_p^{(2)} \circ g_{(32)}$ let $G \in (\mathscr{F}_p/\mathscr{F}_p^2)^{\vee}$ and $[g] \in \mathscr{F}_{N,f(p)}/\mathscr{F}_{N,f(p)}^2$. Then

$$\mathrm{d}f_p^{(3)}(G)([g]) = G([g \circ f])$$

and

$$(g_{(23)} \circ \mathrm{d} f_p^{(2)} \circ g_{(32)})(G)([g]) = D_G([g \circ f]) = G([g \circ f - g(f(p))]) = G([g \circ f]).$$

The other cases follow immediately from these by pre- and post-composing with $g_{(ij)}$.

EXERCISE 3.2. Let $M=f^{-1}(y)$ for a regular value $y\in\mathbb{R}^{N-m}$ of a smooth function $f\colon\mathbb{R}^N\longrightarrow\mathbb{R}^{N-m}$; for instance, $M=S^2=\{x^2+y^2+z^2=1\}\subset\mathbb{R}^3$ is $f^{-1}(1)$ for $f(x,y,z)=x^2+y^2+z^2$.

(i) Let $\widetilde{TM}=\{(x,v)\in\mathbb{R}^N\times\mathbb{R}^N:x\in M,\ v\in\ker\mathrm{d} f_x\}$. Show that, as defined, \widetilde{TM} is a smooth

- submanifold of $\mathbb{R}^N \times \mathbb{R}^N$ of dimension 2m, where $\dim(M) = m$.
- (ii) Prove that there is a diffeomorphism between \widetilde{TM} and the tangent bundle of M as defined in class: $\widetilde{TM} \cong TM$. It follows that, for instance, $TS^2 \cong \{(x, v) \in \mathbb{R}^3 \times \mathbb{R}^3 : x \in S^2, \langle v, x \rangle = 0\}$. *Solution.* First, consider the map $F: \mathbb{R}^N \times \mathbb{R}^N \longrightarrow \mathbb{R}^{N-m} \times \mathbb{R}^{N-m}$ defined by $F(x, v) = (f(x), \mathrm{d}f_x(v))$. Then the fiber $F^{-1}(y,0)$ is precisely TM and we only need to show that $dF_{(x,y)}$ is surjective for all $(x,y) \in TM$. We have

$$dF_{(x,\nu)}(\xi,\zeta) = (df_x(\xi), d^2f_x(\nu,\xi) + df_x(\zeta))$$

where the notation $d^2f_x(v,\xi)$ means the vector in \mathbb{R}^{N-m} with components

$$\left(d^2 f_x(\nu,\xi)\right)^i = \sum_{j,k} \frac{\partial^2 f^i(x)}{\partial x^j \partial x^k} \nu^k \xi^j.$$

Let $(a, b) \in \mathbb{R}^{N-m} \times \mathbb{R}^{N-m}$. Since $(x, v) \in \widetilde{TM}$ the point $x \in M$ is a regular point for f and there is some $\xi \in \mathbb{R}^N$ with $\mathrm{d}f_x(\xi) = a$. Similarly, there is some $\zeta \in \mathbb{R}^N$, depending on ξ , with $\mathrm{d}f_x(\zeta) = b - \mathrm{d}^2 f_x(v, \xi)$. Then $dF_{(x,v)}(\xi,\zeta) = (a,b)$ and we conclude that (x,v) is a regular point of F. Hence, (y,0) is a regular value of *F* and the fiber $\widetilde{TM} = F^{-1}(y, 0)$ is a submanifold of $\mathbb{R}^N \times \mathbb{R}^N$ of dimension 2N - 2(N - m) = 2m.

Let $\iota: M \longrightarrow \mathbb{R}^N$ denote the inclusion map. Its differential ι is a smooth embedding $TM \hookrightarrow \mathbb{R}^N \times \mathbb{R}^N$. So we only need to show that the image of dt is precisely TM, that is, we need to show that $df_x(v) = 0$

for $x \in M$ and $v \in \mathbb{R}^N$ if and only if $v \in \text{im}(d\iota_x)$. Assume first that $w \in T_xM$ is represented by a smooth curve $\alpha \colon (-\varepsilon, \varepsilon) \longrightarrow M$ with $\alpha(0) = x$. Then $d\iota_x(w) \in T_x \mathbb{R}^N = \mathbb{R}^N$ is represented by α considered as a map $(-\varepsilon, \varepsilon) \longrightarrow \mathbb{R}^N$ and $\mathrm{d}f_x(\mathrm{d}\iota_x(w))$ is represented by the curve $f \circ \alpha \colon (-\varepsilon, \varepsilon) \longrightarrow \mathbb{R}^{N-m}$. But since α lies entirely in M the curve $f \circ \alpha$ is just the constant curve at y. That is, $df_x(d\iota_x(w)) = 0$ and we conclude $\mathrm{d}f_x(\mathrm{im}(\mathrm{d}\iota_x))=0$,i. e. $\mathrm{im}(\mathrm{d}\iota_x)\subset\ker(\mathrm{d}f_x)$. On the other hand, $\mathrm{dim}(\mathrm{im}\,\mathrm{d}\iota_x)=m$ since $\mathrm{d}\iota_x$ is injective. Since $\mathrm{d}f_x$ is surjective we also have $\mathrm{dim}(\ker(\mathrm{d}f_x))=m$, so $\mathrm{im}(\mathrm{d}\iota_x)=\ker(\mathrm{d}f_x)$ and we are done.

EXERCISE 3.3. Let M^m be a manifold of dimension m and $p \in M$ a point. Recall that $\mathscr{F}_p \subset C^\infty(p)$ is the ideal of germs of functions on M which vanish at $p \in M$. Let \mathscr{F}_p^k be the ideal of $C^{\infty}(p)$ generated by products $f_1 \cdots f_k$ for $f_i \in \mathscr{F}_p$. This means that every element of \mathscr{F}_p^k is a sum $\sum_i g_i f_{1i} \cdots f_{ki}$ with $g_i \in C^{\infty}(p)$ and $f_{ij} \in \mathscr{F}_p$.

- (i) Prove that, in every set of local coordinates (x_1, \ldots, x_m) around the point p, an element $f \in \mathscr{F}_p^k$ has a Taylor expansion which vanishes to order k.
- (ii) Compute the dimension of $\mathscr{F}_p^k/\mathscr{F}_p^{k+1}$.
- (iii) Construct a smooth manifold along with a map to M, say $\pi \colon E \longrightarrow M$ whose fiber $E_p \in \pi^{-1}(p)$ at any point $p \in M$ is $\mathscr{F}_p/\mathscr{F}_p^3$.

Solution. Let $f^1, \ldots, f^k \in \mathscr{F}_p$, $g \in C^\infty(p)$ and let $(U, (x^1, \ldots, x^m))$ be a coordinate chart centered at p. We can expand each f^i and g by Taylor's theorem:

$$f^{i}(q) = \sum_{j} a^{i}_{j} x^{j}(q) + \sum_{jk} a^{i}_{jk}(q) x^{j}(q) x^{k}(q)$$

and

$$g(q) = g(p) + \sum_{j} a_{j}^{0} x^{j}(q) + \sum_{jk} a_{jk}^{0} x^{j}(q) x^{k}(q)$$

for $q \in U$ and smooth functions $a^i_{jk} \colon U \longrightarrow \mathbb{R}$. We compute for the product $gf^1 \cdots f^k$ that

$$(gf^1 \cdots f^k)(q) = g(q) \prod_i \left(\sum_j a^i_j x^j(q) + \sum_{jk} a^i_{jk}(q) x^j(q) x^k(q) \right) =$$

$$= \sum_{j_1, \dots, j_k} g(p) a^1_{j_1} \cdots a^k_{j_k} x^{j_1}(q) \cdots x^{j_k}(q) + \sum_{|\mathbf{i}| = k+1} x^{\mathbf{i}}(q) b_{\mathbf{i}}(q)$$

for some smooth functions $b_i: U \longrightarrow \mathbb{R}$.

From this expansion of $gf^1 \cdots f^k$ we can see that

$$gf^1 \cdots f^k \equiv \sum_{j_1, \dots, j_k} g(p) a^1_{j_1} \cdots a^k_{j_k} x^{j_1} \cdots x^{j_k} \pmod{\mathscr{F}_p^{k+1}}$$

We conclude that $\mathscr{F}_p^k/\mathscr{F}_p^{k+1}$ is generated by $\{x^{j_1}\cdots x^{j_k}:j_1\leq j_2\leq\cdots\leq j_k\}$. This set is linearly

independent in $\mathscr{F}_p^k/\mathscr{F}_p^{k+1}$ and therefore the dimension of this space is $\binom{m+k-1}{k}$. Lastly, note that $\mathscr{F}_p/\mathscr{F}_p^3 \cong \mathscr{F}_p/\mathscr{F}_p^2 \oplus \mathscr{F}_p^2/\mathscr{F}_p^3$; we will suppress this isomorphism from the notation. Choose a countable atlas $\{(U_i, \varphi_i = (x_i^1, \dots, x_i^m))\}_{i \in I}$ for M and define

$$E = \bigsqcup_{p \in M} \mathscr{F}_p / \mathscr{F}_p^2 \oplus \mathscr{F}_p^2 / \mathscr{F}_p^3.$$

There is an evident map $\pi: E \longrightarrow M$ and E is covered by $\{\pi^{-1}(U_i)\}_{i \in I}$. Define maps

$$\psi_i \colon \pi^{-1}(U_i) \longrightarrow \phi_i(U_i) \times \mathbb{R}^m \times \mathbb{R}^{\binom{m+1}{2}}$$

as follows. Given $(p, f^1, f^2) \in \pi^{-1}(U_i)$ write f^1 and f^2 in our coordinates from (ii) as

$$f^{1} = \sum_{i} a_{j}(x_{i}^{j} - p_{i}^{j})$$
 and $f^{2} = \sum_{i \leq k} b_{jk}(x_{i}^{j} - p_{i}^{j})(x_{i}^{k} - p_{i}^{k})$

where $p_i^j = x_i^j(p)$ and set $\psi_i(p, f^1, f^2) = (\phi_i(p), (a_j)_j, (b_{jk})_{j \le k})$. There is a unique topology on E making the ψ_i into homeomorphisms, so we obtain an atlas $\{(\pi^{-1}(U_i), \psi_i)\}$ for E. To check that this atlas is smooth we compute the transition maps. Let $p \in U_i \cap U_j$ and $(f^1, f^2) \in \mathscr{F}_p/\mathscr{F}_p^2 \oplus \mathscr{F}_p^2/\mathscr{F}_p^3$. Write

$$f_1 = \sum_k a_k^i (x_i^k - p_i^k)$$
 $f_2 = \sum_{k \le \ell} b_{k\ell}^i (x_i^k - p_i^k) (x_i^\ell - p_i^\ell)$

and

$$f_1 = \sum_k a_k^j (x_j^k - p_j^k) \qquad f_2 = \sum_{k < \ell} b_{k\ell}^j (x_j^k - p_j^k) (x_j^\ell - p_j^\ell).$$

Then the transition map $\psi_i \circ \psi_i^{-1}$ is given by

$$\psi_j(\psi_i^{-1}(\phi_i(p),(a_i^i)_j,(b_{k\ell}^i)_{k\leq\ell})) = (\phi_j(p),(a_k^j)_k,(b_{k\ell}^j)_{k\leq\ell}).$$

But

$$a_k^j = \left. \frac{\partial}{\partial x_j^k} \right|_p f_1 = \sum_{\alpha} a_{\alpha}^i \frac{\partial x_i^{\alpha}}{\partial x_j^k}(p)$$

and

$$\left.b_{k\ell}^{j}=rac{1}{2}\left.rac{\partial^{2}}{\partial x_{j}^{k}\partial x_{j}^{\ell}}
ight|_{p}f_{2}=rac{1}{2}\sum_{lpha$$

both depend smoothly on p. Hence, $\psi_j \circ \psi_i^{-1}$ is smooth on $\psi_i(U_i \cap U_j)$ and we conclude that E admits a smooth atlas. Furthermore, E is countable since it has a countable atlas and to see that E is Hausdorff let (p, f_1, f_2) and (q, g_1, g_2) be distinct points in E. If $p \neq q$ then there are open sets $p \in U$ and $q \in V$ in M which separate p and q and $\pi^{-1}(U)$ and $\pi^{-1}(V)$ will separate (p, f_1, f_2) and (q, g_1, g_2) . If $p = q \in U_i$ for some $i \in I$ then (p, f_1, f_2) and (q, g_1, g_2) can be separated in $\pi^{-1}(U_i)$ since the latter is homeomorphic to an open set in Euclidean space and therefore Hausdorff.

EXERCISE 3.4. Let $f: M \longrightarrow N$ be a smooth map between manifolds. Prove that the diagram

$$\Omega^{0}(N) \xrightarrow{f^{*}} \Omega^{0}(M)
\downarrow^{d}
\Omega^{1}(N) \xrightarrow{f^{*}} \Omega^{1}(M)$$

commutes.

Solution. Let $g \in \Omega^0(N) = C^\infty(N)$. Then $d(f^*(g)) = d(g \circ f)$ and $f^*(d(g)) = f^*(dg)$. To check that these coincide, let $x \in M$. We consider T_x^*M to be $\mathscr{F}_x/\mathscr{F}_x^2$ and compute

$$d(g \circ f)(x) = [g \circ f - g(f(x))]$$

$$f^*(dg)(x) = f^*(dg(f(x))) = f^*([g - g(f(x))]) = [(g - g(f(x))) \circ f].$$

But these are the same since g(f(x)) is just some real number.

EXERCISE 3.5. Give a detailed proof that the cotangent bundle T^*M is a smooth manifold and that the projection map $\pi \colon T^*M \longrightarrow M$ is smooth.

Solution. Recall that

$$T^*M = \bigsqcup_{p \in M} T_p^*M$$

with the evident projection π : $T^*M \longrightarrow M$. Let $\{(U_i, \varphi_i = (x_i^1, \dots, x_i^n))\}_{i \in I}$ be a countable smooth atlas for M. For each $i \in I$ define a map $\psi_i \colon \pi^{-1}(U_i) \longrightarrow \varphi_i(U_i) \times \mathbb{R}^n$ by

$$\psi_i(p,\xi) = \left(\phi_i(p), \left(\xi(\vartheta_{\mu}^i)\right)_{\mu}\right).$$

Here ∂_{μ}^{i} is a convenient shorthand for $\partial/\partial x_{i}^{\mu}$. There is a unique topology on $T^{*}M$ making the ψ_{i} into homeomorphisms. In this way we obtain an atlas for $T^{*}M$. We check that the transition maps are smooth. Assume $x = (\phi_{i}(p), (\xi_{i}^{i})_{\mu}) \in \psi_{i}(U_{i} \cap U_{i})$. Then

$$\psi_j(\psi_i^{-1}(x)) = \psi_j\left(p, \sum_{\mu} \xi_{\mu}^i dx_i^{\mu}\right) = \left(\phi_j(p), \left(\sum_{\mu} \xi_{\mu}^i dx_i^{\mu}(\partial_{\nu}^j)\right)_{\nu}\right) = \left(\phi_j(p), \left(\sum_{\mu} \xi_{\mu}^i \frac{\partial x_i^{\mu}}{\partial x_j^{\nu}}(p)\right)\right)$$

depends smoothly on x.

Since we were able to exhibit a countable atlas for T^*M the cotangent bundle is second countable. To check that it is Hausdorff let (p, ξ) and (q, ζ) be distinct points in T^*M . If $p \neq q$ then there are disjoint open sets U and V in M containing p and q respectively and $\pi^{-1}(U)$ and $\pi^{-1}(V)$ separate (p, ξ) and (q, ζ) . If p = q then there is some U_i containing p and then (p, ξ) and (q, ζ) lie both inside $\pi^{-1}(U_i)$. The latter is Hausdorff, so we can separate (p, ξ) and (q, ζ) .

EXERCISE 3.6. Let f and g be smooth real-valued functions on a manifold M. Prove that d(fg) = f dg + g df. Solution. Recall that $dh(p) = [h - h(p)] \in \mathscr{F}_p/\mathscr{F}_p^2$ for every $p \in M$ and $h \colon M \longrightarrow \mathbb{R}$ a smooth function. We compute

$$d(fg)(p) = [fg - f(p)g(p)] = [fg - (f - f(p))(g - g(p)) - f(p)g(p)] =$$

$$= [f(p)g - f(p)g(p) + g(p)f - g(p)f(p)] = f(p)[g - g(p)] + g(p)[f - f(p)] =$$

$$= f(p) dg(p) + g(p) df(p)$$

for every $p \in M$. We conclude that d(fg) = f dg + g df.

EXERCISE 3.7. Let $i: S^1 = [0, 2\pi]/\{0, 2\pi\} \longrightarrow \mathbb{R}^2$ be the map $\theta \longmapsto (\cos(\theta), \sin(\theta))$. Compute the differential form $i^*((x^2 + y) dx + (3 + xy^2) dy)$.

Solution. We first describe a convenient basis of $T_p^*S^1$ for every $p \in S^1$. Let $\psi \colon (0,2\pi) \longrightarrow (0,2\pi)$ be the identity. For every $p \in (0,2\pi) \subset S^1$ this map gives a nonzero covector $\mathrm{d}\psi(p) = [\psi - p] \in \mathscr{F}_p/\mathscr{F}_p^2$; in fact we get a 1-form $\mathrm{d}\psi$ defined on $(0,2\pi)$ in this way. Let $\phi \colon [0,\pi) \cup (\pi,2\pi] \longrightarrow \mathbb{R}$ be defined by $\phi(p) = p$ for $p \in [0,\pi)$ and $\phi(p) = p - 2\pi$ for $p \in (\pi,2\pi]$. Then ϕ descends to a function on an open subset of S^1 and for $p \in (0,\pi)$ we have $\mathrm{d}\psi(p) = \mathrm{d}\phi(p)$. For $p \in (\pi,2\pi)$ we find $\mathrm{d}\phi(p) = [\phi - p - 2\pi] = [\psi - p] = \mathrm{d}\psi(p)$.

We conclude that we have a globally defined 1-form $d\theta \in \Omega^1(S^1)$ such that $d\theta(p)$ generates $T_p^*S^1$ for every $p \in S^1$ and $d\theta|_{(0,2\pi)} = d\psi$ while $d\theta|_{[0,\pi)\cup(\pi,2\pi]} = d\varphi$.

We prove a version of the chain rule for the exterior derivate d. If $f: M \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ are smooth functions and $p \in M$, then expand g around f(p) as

$$g(x) = g(f(p)) + g'(f(p))(x - f(p)) + h(x)(x - f(p))^{2}$$

for some smooth function $h: \mathbb{R} \longrightarrow \mathbb{R}$. Then

$$d(g \circ f)(p) = [g \circ f - g(f(p))] = [g(f(p)) + g'(f(p))(f - f(p)) + (h \circ f) \cdot (f - f(p))^2 - g(f(p))] =$$

$$= g'(f(p))[f - f(p)] = g'(f(p)) df(p).$$

Therefore we conclude that $d(g \circ f) = g' df$ as expected.

Let $\omega = (x^2 + y) dx + (3 + xy^2) dy$. For $p \in S^1$ we compute

$$i^* \omega(p) = (x(i(p))^2 + y(i(p))) d(x \circ i) + (3 + x(i(p))y(i(p))^2) d(y \circ i) =$$

$$= (\cos^2 \theta(p) + \sin \theta(p)) d(\cos \theta) + (3 + \cos \theta(p) \sin^2 \theta(p)) d(\sin \theta) =$$

$$= (-\cos^2 \theta(p) \sin \theta(p) - \sin^2 \theta(p) + 3\cos \theta(p) + \cos^2 \theta(p) \sin^2 \theta(p)) d\theta$$

and therefore

$$i^*\omega = (\cos^2\theta \sin^2\theta + 3\cos\theta - \sin^2\theta - \cos^2\theta \sin\theta) d\theta.$$

EXERCISE 3.8. Earlier in class we defined the notion of a *category* \mathscr{C} ; examples given include *topological spaces* Top and *vector spaces* Vect.

- (i) Attached to any topological space M, define a category $\operatorname{Open}(M)$ as follows. Objects of $\operatorname{Open}(M)$ are the open subset $U \subset M$. Morphisms from U to V are *inclusions*, meaning that: if U is not contained in V, then $\operatorname{Hom}(U,V)=\emptyset$ and if $U\subset V$, then $\operatorname{Hom}(U,V)=\{\iota_{UV}\}$ where $\iota_{UV}\colon U \hookrightarrow V$ is the inclusion map. Composition of morphisms is the usual composition of inclusions.
 - Verify that Open(M) satisfies the axioms of a category.
- (ii) A *presheaf* on M taking values in a category $\mathscr C$ is a functor $F \colon \mathsf{Open}(M)^\mathsf{op} \longrightarrow \mathscr C$. For instance, if $\mathsf{Alg}_\mathbb R$ denotes the category of $\mathbb R$ -algebras with morphisms the $\mathbb R$ -algebra homomorphisms, then a *presheaf* of $\mathbb R$ -algebras on M is a functor $F \colon \mathsf{Open}(M)^\mathsf{op} \longrightarrow \mathsf{Alg}_\mathbb R$.

Let M be a smooth manifold now, and define $C^{\infty}(\underline{\ })$: Open $(M)^{\operatorname{op}} \longrightarrow \operatorname{Alg}_{\mathbb{R}}$ by, on objects

$$U \longmapsto C^{\infty}(U)$$

and on the inclusions $\iota_{UV} \colon U \longrightarrow V$ the induced map $C^{\infty}(\underline{\ })_{UV}(\iota_{UV}) \in \operatorname{Hom}_{\operatorname{Alg}_{\mathbb{R}}}(C^{\infty}(V), C^{\infty}(U))$ is the restriction map on functions $\iota_{UV}^* \colon C^{\infty}(V) \longrightarrow C^{\infty}(U)$.

Verify that $C^{\infty}(\underline{\ })$ is indeed a presheaf of \mathbb{R} -algebras and in particular a contravariant functor.

- (iii) Verify that the notion of a presheaf of algebras $\mathscr F$ is equivalent to the following data:
 - For every open set $U \in M$ an algebra $\mathscr{F}(U)$.
 - For every inclusion of open sets $U \subset V$ a restriction map $\rho_{U \subset V} \colon \mathscr{F}(U) \longrightarrow \mathscr{F}(V)$ satisfying, for any triple $U \subset V \subset W$, that $\rho_{U \subset V} \circ \rho_{V \subset W} = \rho_{U \subset W}$.
- (iv) A presheaf as defined in the previous section is said to be a *sheaf* if for any pair of open sets U and V, whenever there is an element $f_1 \in \mathscr{F}(U)$ and an element $f_2 \in \mathscr{F}(V)$ with the same restriction on the overlapping region $U \cap V$, then there exists a unique element $g \in \mathscr{F}(U \cup V)$ restricting to f_1 and f_2 on U and V respectively.

Let M be a manifold. Verify that the presheaf $C^{\infty}(\underline{\ })$ on M defined above is in fact a sheaf.

Solution. To check $\mathsf{Open}(M)$ is indeed a category, first note that the composition operation is just composition of functions and therefore is associative. For $U \in \mathsf{Open}(M)$ the identity function is the inclusion $U \hookrightarrow U$ and, again, because composition in $\mathsf{Open}(U)$ is composition of functions, this is an identity morphism.

To verify that $C^{\infty}(\underline{\ })$ is a contravariant functor, let $U \subseteq V \subseteq W$ be open sets in M and let $f \in C^{\infty}(W)$. Then

$$\iota_{UW}^*(f)(x) = f(\iota_{UW}(x)) = f(x) = f(\iota_{VU}(\iota_{WV}(x))) = (\iota_{VU}^*(\iota_{WU}^*f))(x)$$

for all $x \in U$ and therefore $\iota_{UW}^*(f) = \iota_{VU}^*(\iota_{WU}^*(f))$ and $\iota_{UW}^* = \iota_{VU}^* \circ \iota_{WU}^*$ as required.

Since the only morphisms in $\mathsf{Open}(M)$ are the inclusions of open subsets, the only data needed to define a presheaf on morphisms is the image of ι_{UV} for open sets $U \subset V$. The compatibility condition on the presheaf is precisely the given condition on the restriction maps.

Take open sets $U, V \subset M$ and functions $f_1 \in C^{\infty}(U)$ and $f_2 \in C^{\infty}(V)$. Assume $\iota_{U \cap V, U}^*(f_1) = \iota_{U \cap V, V}^*(f_2)$. This just means that $f_1(x) = f_2(x)$ for all $x \in U \cap V$. Define a function $g \colon U \cup V \longrightarrow \mathbb{R}$ by

$$g(x) = egin{cases} f_1(x) & x \in U \\ f_2(x) & x \in V. \end{cases}$$

Since $f_1(x) = f_2(x)$ for $x \in U \cap V$ this definition makes sense. To check that $g \in C^{\infty}(U \cup V)$ note that a function is smooth if and only if it is smooth at every point in its domain. But $g|_U = f_1$ and $g|_V = f_2$ are both smooth, so g is smooth at every point in $U \cup V$.

If h is any other function on $U \cup V$ with $\iota_{U,U \cup V}^*(h) = f_1$ and $\iota_{V,U \cup V}^*(h) = f_2$, then we have $h(x) = f_1(x)$ for $x \in U$ and $h(x) = f_2(x)$ for $x \in V$. That is, h(x) = g(x) for all $x \in U \cup V$, so that h = g.