Calcul intégral

I. Intégrale d'une fonction continue sur un segment

Activité

Soit f la fonction numérique d'une variable réelle définie par $f(x) = 3x^2 - 1$.

- 1. Déterminer deux primitives F et G de la fonction f sur \mathbb{R} .
- 2. Calculer F(2) F(0), G(2) G(0). Que remarquez-vous?

Le nombre F(b) - F(a) ne dépend pas du choix d'une primitive de la fonction f. Le nombre F(b) - F(a) s'appelle intégrale de la fonction f de a à b elle est notée $\int_a^b f(x)dx$.

Définition

Soit f une fonction continue sur un segment [a,b] et F une primitive de f sur [a,b]. Le nombre F(b) - F(a) est appelé **intégrale** de f de a à b et on écrit : $\int_a^b f(x)dx = [F(x)]_a^b = F(b) - F(a)$.

Exemple

Calculons l'intégrale suivante $\int_0^1 \sqrt{x+1} dx$. La fonction $x \mapsto \sqrt{x+1}$ est continue sur [0;1]. Donc $\int_0^1 \sqrt{x+1} dx = \int_0^1 (x+1)' \sqrt{x+1} dx = \int_0^1 (x+1)' (x+1)^{\frac{1}{2}} dx = [\frac{2}{3}(x+1)^{\frac{3}{2}}]_0^1 = \frac{2}{3}(\sqrt{8}-1)$.

Application

Calculer les intégrales suivantes :

a.
$$\int_0^2 (x+4)dx$$

d.
$$\int_0^1 \frac{e^x}{e^x + 1} dx$$

b.
$$\int_1^e \frac{1}{x} dx$$

e.
$$\int_0^{\frac{\pi}{4}} \cos(2x) dx$$

c.
$$\int_{e^2}^{e^4} \frac{\ln(x)}{x} dx$$

f.
$$\int_{-2}^{-1} x^2 e^{-x^3} dx$$

Remarque

Dans l'écriture $\int_a^b f(x)dx$, on peut remplacer la variable x par n'importe quelle autre lettre. $\int_a^b f(x)dx = \int_a^b f(y)dy = \int_a^b f(t)dt = \dots$

Exercice

Calculer les intégrales suivantes :

•
$$I_1 = \int_{-1}^{1} (2x^3 - 5x^2 + 2) dx$$

•
$$I_6 = \int_0^\pi \cos(x) \sin^5(x) dx$$

•
$$I_2 = \int_1^2 \left(\frac{1}{x^2} - \frac{2}{x^3}\right) dx$$

•
$$I_7 = \int_1^2 \frac{x-1}{x^2 - 2x + 2} dx$$

•
$$I_3 = \int_0^1 (1 - \frac{1}{x+1}) dx$$

•
$$I_8 = \int_0^1 (1-x)e^{x^2-2x+3}dx$$

•
$$I_4 = \int_0^1 x \sqrt{1 + x^2} dx$$

•
$$I_9 = \int_1^{e^2} \frac{1}{x\sqrt{1+\ln x}} dx$$

•
$$I_5 = \int_0^{\ln 3} e^x \sqrt{e^x + 1} dx$$

Conséquences

Soit f une fonction continue sur un intervalle I. Pour tous a,b et c de I on a :

- $\int_a^a f(x)dx = 0.$
- $\int_b^a f(x)dx = -\int_a^b f(x)dx$.
- $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$ (Relation de Chasles).

Exemple

$$\textstyle \int_{-3}^{2} |x| dx = \int_{-3}^{0} |x| dx + \int_{0}^{2} |x| dx = \int_{-3}^{0} -x dx + \int_{0}^{2} x dx = [-\frac{x^{2}}{2}]_{-3}^{0} + [\frac{x^{2}}{2}]_{0}^{2} = \frac{9}{2} + 2 = \frac{13}{2}.$$

Application

Calculer les intégrales suivantes :

- a. $\int_{-1}^{1} \frac{2|x|}{x^2+1} dx$
- b. $\int_{-1}^{5} |x^2 4x| dx$
- c. $\int_0^2 |e^{-x+1} 1| dx$

Propriété

Soient f et g deux fonctions continues sur l'intervalle [a,b] et $k \in \mathbb{R}$.

- $\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx.$
- $\int_a^b kf(x)dx = k \int_a^b f(x)dx.$

Application

On considère les intégrales $I = \int_0^{\frac{\pi}{2}} \cos(3x) \cos(x) dx$ et $J = \int_0^{\frac{\pi}{2}} \sin(3x) \sin(x) dx$.

- 1. Vérifier que $\cos(3x)\cos(x) + \sin(3x)\sin(x) = \cos(2x)$ pour tout $x \in \mathbb{R}$.
- 2. Vérifier que $\cos(3x)\cos(x) \sin(3x)\sin(x) = \cos(4x)$ pour tout $x \in \mathbb{R}$.
- 3. Calculer I+J et I-J puis en déduire I et J.

Exercice

On pose : $K = \int_0^{\ln(2)} \frac{e^t - 1}{e^t + 1} dt$ et $L = \int_0^{\ln(2)} \frac{1}{e^t + 1} dt$. Calculer K + L et K + 2L puis en déduire les valeurs de K et L.

II. Intégrale et ordre - la valeur moyenne

1. Intégrale et ordre

Propriété

Soient f et g deux fonctions continues sur l'intervalle [a,b] $(a \le b)$.

- Si $(\forall x \in [a, b])$; $f(x) \ge 0$, alors $\int_a^b f(x) dx \ge 0$.
- Si $(\forall x \in [a, b])$; $f(x) \le g(x)$, alors $\int_a^b f(x)dx \le \int_a^b g(x)dx$.

Application

- 1. Montrer que : $\int_{1}^{2} \ln(x^2 + 1) dx \ge 0$.
- 2. Montrer que : $-\frac{1}{2} \le \int_1^2 \frac{\sin(x)}{x^2} dx \le \frac{1}{2}$.

2. Valeur moyenne d'une fonction continue sur un segment

Définition

Soit f une fonction continue sur un segment [a,b] (a < b). Il existe au moins un réel $c \in [a,b]$ tel que : $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$. Le nombre $\frac{1}{b-a} \int_a^b f(x) dx$ est appelé **valeur moyenne** de la fonction f sur l'intervalle [a,b].

Exemple

La valeur moyenne de la fonction $x\mapsto \frac{2x}{1+x^2}$ sur l'intervalle [1,3] est $\frac{1}{2}\int_1^3\frac{2x}{1+x^2}dx$. C'est-à-dire : $\frac{1}{2}[\ln(x^2+1)]_1^3=\frac{\ln(5)}{2}$.

Application

Calculer la valeur moyenne de la fonction $x\mapsto \frac{\ln^2(x)+x}{x}$ sur l'intervalle [1,e].

III. Techniques de calcul d'intégrales

1. Utilisation des primitives

Application

1. Calculer les intégrales suivantes : $I=\int_e^{e^2}\frac{1}{x(\ln(x)+1)}dx$; $J=\int_0^1te^{t^2}dt$; $K=\int_0^{\frac{\pi}{4}}\tan(x)dx$ et $L=\int_0^1\frac{2x+2}{(x^2+2x+1)^2}dx$. 2. a- Vérifier que : $(\forall x\in\mathbb{R})\frac{e^{2x}-1}{e^{2x}+1}=\frac{e^x-e^{-x}}{e^x+e^{-x}}$. b- En déduire la valeur de l'intégrale $\int_0^1\frac{e^{2x}-1}{e^{2x}+1}dx$.

Exercice: BAC 2002

1. Calculer l'intégrale $\int_0^{\frac{\pi}{4}} (\frac{1}{\cos^2(x)} - 4\cos(2x)) dx$. 2. Montrer que $(\frac{x}{x^2+1})' = \frac{1-x^2}{(x^2+1)^2}$ pour tout réel x puis calculer $\int_1^{\sqrt{3}} \frac{1-x^2}{(x^2+1)^2} dx$.

2. Décomposition des fractions rationnelles en une somme de fractions rationnelles

Application

Soit f la fonction définie sur $\mathbb{R} \setminus \{1\}$ par : $f(x) = \frac{x^2 - 6x + 4}{x - 1}$.

1. Déterminer les nombres réels a, b, et c pour que l'on ait pour tout x de $\mathbb{R} \setminus \{1\}$:

$$f(x) = ax + b + \frac{c}{x - 1}.$$

2. En déduire la valeur de l'intégrale : $\int_2^3 f(x)dx$.

3. Linéarisation des fonctions trigonométriques

Application

Linéariser le polynôme trigonométrique $\cos^3 x$ puis calculer $\int_0^{\frac{\pi}{4}} \cos^3 x \, dx$.

Exercice: BAC 2003

Vérifier, pour tout réel x, que : $\sin^2 x \cos^3 x = \cos x \sin^2 x - \cos x \sin^4 x$. Calculer l'intégrale $I = \int_0^{\frac{\pi}{2}} \sin^2 x \cos^3 x dx$.

4. Intégration par parties

Soit u et v deux fonctions dérivables sur un intervalle [a,b] telles que u' et v' continues sur [a,b]. On a : $(\forall x \in [a,b]); ((u)(x)v(x))' = u'(x)v(x) + u(x)v'(x)$. Alors : $\int_a^b (u(x)v(x))'dx = \int_a^b u'(x)v(x)dx + \int_a^b u(x)v'(x)dx$. D'où $\int_a^b u'(x)v(x)dx = [u(x)v(x)]_a^b - \int_a^b u(x)v'(x)dx$.

Propriété

Soient u et v deux fonctions dérivables sur un intervalle I telles que ses dérivées u' et v' sont continues sur I. Pour tout $(a,b) \in I^2$ on a : $\int_a^b u'(x)v(x)dx = [u(x)v(x)]_a^b - \int_a^b u(x)v'(x)dx$.

Exemple

Calculons l'intégrale $I=\int_0^1 xe^xdx$. Posons $\begin{cases} u'(x)=e^x\\v(x)=x \end{cases}$, alors $\begin{cases} u(x)=e^x\\v'(x)=1 \end{cases}$. Il s'ensuit $I=[xe^x]_0^1-\int_0^1 e^xdx=[xe^x]_0^1-[e^x]_0^1=e-e+1=1$.

Remarque

Le choix des fonctions u' et v n'est pas arbitraire. Leur bonne sélection joue un rôle clé dans cette technique. Dans l'exemple précédent si notre choix est $\begin{cases} u'(x) = x \\ v(x) = e^x \end{cases}$, alors $\begin{cases} u(x) = \frac{1}{2}x^2 \\ v'(x) = e^x \end{cases}$. On obtient donc $\int_0^1 x e^x dx = [\frac{1}{2}x^2 e^x]_0^1 - \int_0^1 \frac{1}{2}x^2 e^x dx$ ce qui rend le calcul de l'intégrale voulue est très compliqué.

Application

En utilisant la formule d'intégration par parties, Calculer les intégrales suivantes : $I_1 = \int_1^e x^2 \ln x dx$; $I_2 = \int_1^2 (2x-1)e^{-2x} dx$; $I_3 = \int_0^1 \ln(x+2) dx$ et $I_4 = \int_0^\pi x^2 \cos x dx$.

Exercice: BAC 2001

1. Vérifier, pour tout $x \in [0;1]$, que : $\frac{x^3+x}{x+1} = x^2 - x + 2 - \frac{2}{x+1}$. 2. En utilisant la formule d'intégration par parties, Calculer l'intégrale $I = \int_0^1 (3x^2 + 1) \ln(x + 1) dx$.

Exercice

En utilisant la formule d'intégration par parties, Calculer les intégrales suivantes :

$$I_1 = \int_1^e x(\ln x)^2 dx$$

•
$$I_1 = \int_1^e x(\ln x)^2 dx$$

• $I_4 = \int_1^2 \frac{\ln(1+t)}{t^2} dt$
• $I_7 = \int_0^1 \ln(x + \frac{1}{2}) dx$
• $I_8 = \int_0^1 x^2 e^x dx$
• $I_9 = \int_0^\pi \sin x e^x dx$

•
$$I_7 = \int_0^1 \ln(x + \frac{1}{2}) dx$$

•
$$I_2 = \int_1^2 x \sqrt{3 - x} dx$$

$$\bullet \quad I_5 = \int_0^{\frac{\pi}{4}} \frac{x}{\cos^2 x} dx$$

•
$$I_8 = \int_0^1 x^2 e^x dx$$

•
$$I_3 = \int_1^e \frac{x \ln x}{(x^2+1)^2} dx$$

•
$$I_6 = \int_1^2 \frac{\ln x}{x^2} dx$$

•
$$I_9 = \int_0^\pi \sin x e^x dx$$

IV. Calcul d'aires et de volumes

1. Calcul des aires

Activité

On considère la fonction définie par : f(x) = -x + 2 et (C_f) la courbe représentative de f dans le plan rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) unité (1cm).

- 1. Tracer (C_f) et colorier le domaine délimité par l'axe des abscisses, la courbe et les droites d'équations x = -1 et x = 3, puis donner une valeur de son aire en unités d'aires.
- 2. Calculer $\int_{-1}^{3} |f(x)| dx \times ||\vec{i}|| \times ||\vec{j}||$. Qu'est-ce qu'on peut déduire ?

Propriété

Soit f une fonction continue sur un segment [a,b] (a < b), et (C_f) sa courbe représentative dans un repère orthogonal. L'aire du domaine délimité par (C_f) , l'axe des abscisses et les droites d'équations x = a et x = b est égale à $\int_a^b |f(x)| dx$ (en unité d'aire).

Application

Le plan est apporté à un repère orthonormé (O, \vec{i}, \vec{j}) avec $||\vec{i}|| = 1$ cm et $||\vec{j}|| = \sqrt{2}$ cm. Soit f la fonction définie par : $f(x) = \sin(x)$. Calculer l'aire du domaine délimité par la courbe de f et les droites d'équations : $x = \frac{\pi}{2}$ et $x = -\frac{\pi}{2}$.

Exercice: BAC 2015

Soit f la fonction définie sur $]0; e[\cup]e; +\infty[$ par $: f(x) = \frac{1}{x(1-\ln x)}$ et (C_f) la courbe de la fonction f dans un repère orthonormé (O, \vec{i}, \vec{j}) tel que $||\vec{i}|| = ||\vec{j}|| = 2$ cm.

- 1. Montrer que $\int_1^{\sqrt{e}} \frac{1}{x(1-\ln x)} dx = \ln 2$. (Remarquer que $\frac{1}{x(1-\ln x)} = \frac{\frac{1}{x}}{1-\ln x}$)
- 2. Calculer, en cm², l'aire du domaine plan délimité par (C_f) , l'axe des abscisses et les droites d'équations : x=1 et $x=\sqrt{e}$.

Propriété

Soient f et g deux fonctions continues sur un segment [a,b], (C_f) et (C_g) les courbes représentatives de f et g dans un repère orthogonal. Soit (Δ) le domaine délimité par les courbes (C_f) et (C_g) et les droites d'équations x=a et x=b. L'aire du domaine (Δ) en unités d'aire est donnée par : $A(\Delta)=\int_a^b|f(x)-g(x)|dx$.

Application

Le plan est rapporté à un repère orthogonal (O, \vec{i}, \vec{j}) avec $||\vec{i}|| = 2$ cm et $||\vec{j}|| = 2$ cm. On considère les fonctions f et g définie par : $f(x) = 2x^2 + 1$ et $g(x) = x^2 + x + 1$. Calculer l'aire du domaine délimité par les courbes des fonctions f et g et l'axe des abscisses et les droites d'équations x = 0 et x = 2.

Exercice: Session Rattrapage 2017

Soit f la fonction numérique définie sur \mathbb{R} par: $f(x) = x + 1 - (x^2 + 1)e^x$. Et (C_f) la courbe de la fonction f dans un repère orthonormé (O, \vec{i}, \vec{j}) tel que $||\vec{i}|| = ||\vec{j}|| = 2$ cm.

- 1. Montrer que $H: x \mapsto (x-1)e^x$ est une fonction primitive de la fonction $h: x \mapsto xe^x$ sur \mathbb{R} , puis en déduire que: $\int_{-1}^{0} xe^x dx = \frac{2}{e} 1$.
- 2. En utilisant une intégration par parties, Montrer que: $\int_{-1}^{0} (x^2+1)e^x dx = 3(1-\frac{2}{e})$.
- 3. Calculer en cm², l'aire du Domaine plan délimité par (C_f) , la droite (D) d'équation y = x+1 et les droites d'équations : x = -1 et x = 0.

2. Calcul des volumes

Propriété

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soit $(a, b) \in \mathbb{R}^2$ tel que a < b. Soit (Σ) un solide limité par deux plans z = a et z = b et soit S(t) est l'aire de l'intersection du solide S(t) avec le plan z = t ($a \le t \le b$). Le volume de ce solide est (en unités de volume) : $v(s) = \int_a^b S(t) dt$.

Exemple

Volume V d'un cylindre de rayon R et de hauteur h. L'intersection du plan z=t avec le cylindre est un disque d'aire $S(t)=\pi R^2$. Puisque $t\mapsto S(t)$ est continue sur [0,h] alors le volume de cylindre est : $V=\int_0^h S(t)dt=\int_0^h \pi R^2dt=\pi R^2\int_0^h dt=\pi R^2h$ cm³.

Propriété

Soit f une fonction continue sur un segment [a,b] (a < b), et (C_f) sa courbe représentative. Le volume du solide engendré par la rotation de la courbe (C_f) autour de l'axe des abscisses un tour complet est donné par la formule : $V = \pi \int_a^b (f(x))^2 dx$ (en unités de volume).

Exemple

Le volume du solide engendré par la rotation de la courbe de la fonction $x \mapsto e^x$ sur [0,1] autour de l'axe des abscisses un tour complet est donné par :

$$V=\pi\int_0^1 (f(x))^2 dx = \pi\int_0^1 (e^x)^2 dx = \pi\int_0^1 e^{2x} dx = \pi[\frac{e^{2x}}{2}]_0^1 = \frac{\pi(e^2-1)}{2} \text{ u.a}$$

Application

Soit g la fonction numérique définie sur [0,1] par : $f(x)=xe^{\frac{x^2}{2}}$. Calculer le volume du solide engendré par la rotation de la courbe de la fonction g autour de l'axe des abscisses un tour complet. Répondre à la même question pour la fonction $f(x)=\frac{\sqrt{x}}{\cos(x)}$ sur l'intervalle $[0,\frac{\pi}{4}]$.