The UNIX File System

Introduction

- What is File System?
 - The abstraction used by kernel to represent and organize the storage resources.
- UNIX File System in general
 - File system is organized in tree structure.
 - File tree can be arbitrarily deep.
 - File name must NOT LONGER than 256 chars.
 - Single path name must NOT LONGER than
 1023 chars.

Creating File System

- Mounting File System
 - File tree is composed of File System
 - Use *mount* command to map a directory within the existing file tree (mount point) to the root of the new file system.
 - mount /dev/hda2 /usr
 - Use *umount* command to detach the file system.
 - Detaching will fail if the file system is busy.

Organizing of The File System

- "The UNIX file system has never been very well organized." -- Page 58
 - incompatible naming convention
 - e.g. ATT & BSD startup script naming
 - e.g. log file naming

Organizing of The File System

(cont.)

/bin or /sbin Commands for basic system operation /dev Device entries Critical startup and /etc configuration files. /lib Library for the C compiler /tmp Temporary files /var/adm or /var/log Accounting file, log files

- Regular Files
 - binary
 - GIF, JPEG, Executable etc.
 - text
 - scripts, program source code, documentation
 - Supports sequential and random access

- Directory
 - Can contain ANY kind of files
 - what is "." and ".."??
- Device File
 - Allows programs to communicate with hardware.
 - Kernel modules handles device management.

- Device Files (cont.)
 - Character Device
 - Accepts a stream of characters, without regard to any block structure.
 - It is not addressable, therefore no seek operation
 - Block Device
 - Information stored in fixed-sized block
 - It is addressable, therefore seek operation is possible.

- UNIX Domain Sockets (BSD)
 - sockets that are local to a particular host and are referenced through a file system object rather than a network port.
 - X windows
- Named Pipe
 - Allow processes to communicate with each other.

Hard links

- Linking files by reference
- System maintains a count of the number of links
- Does not work across file systems.

Soft links

- Linking files by name
- No counter is maintained
- Work across file system

File Permissions

- The Setuid and Setgid bits
 - Setuid with octal value 4000
 - Setgid with octal value 2000
 - These bits allow programs to access files that processes that would otherwise off limits to the user that runs them.

Sticky Bit

- Not very popular in today's system
- If a directory has sticky bit set, then only the owner can remove file from the directory.
- -/tmp is a good example.

- The Permission Bit
 - 9 permission bits used to determine 3 types of accesses, READ, WRITE, EXECUTE.
 - Permission can be set based on GROUP, OWNER, ANYONE ELSE.
 - Use *chmod* command to change permission
 - Binary 001 for EXECUTE
 - Binary 010 for WRITE
 - Binary 100 for READ

INODES

- Kernel maintains file information in a structure called *inode*.
 - Creation, modification time stamps
 - Ownership, file size etc.
- Commonly used INODE information can be found by using *ls* command
- Group information and be modified by using chgrp command.

Summary

- All UNIX file system are very similar.
- All file system have this concept of file tree.
 - Transparent to user even mount point is mapped to a remote file system.
- To communicate with devices, special device files are used.
- More information check out the man pages.

Thank You