Tecnologia em Análise e Desenvolvimento de Sistemas - TADS

Redes de Computadores

Prof. Luciano Vargas Gonçalves

E-mail: luciano.goncalves@riogrande.ifrs.edu.br

Aula 8 – Camada de Transporte

Nos modelos RM-OSI e TCP/IP as camadas de Transporte são equivalentes;

Objetivo da camada

 O Principal objetivo da camada de transporte é fornecer um serviço, confiável, econômico a seus usuários que, em geral, são processos presentes na camada de Aplicação;

Canal lógico

• Provê um canal lógico de comunicação entre processos em diferentes sistemas finais. Para a camada de aplicação, os sistemas finais estão diretamente conectados (FIM-a-FIM)

Provê um canal lógico (Direto)

- Não existe fisicamente
 - Apenas via software

- Camada transporte
 - Usa os recursos da camada de rede, para:
 - Promover um canal lógico seguro,
 - Com controle de fluxo;
 - Com controle de erros;
 - Unidade: Segmento
 - •Camada de Transporte é implementada apenas nos host
 - Emissor e Receptor

• Funções da camada transporte:

- Controle de Perdas pacotes;
- Controle de Repetições (pacotes descartados)
- Ordenamento dos Dados (chegada pacotes)
- Integridade dos Dados (testa o conjunto pacotes)
- Segurança nas Comunicações
- Qualidade de Serviço (QoS)
- Controle de Fluxo (Receptor lento)
- Segmentação
- Trata problemas ocorridos no envio das informações pela rede física (camadas 1,2,3);

- Camada de transporte trabalha com 2 tipos serviços:
 - Orientado a Conexão;
 - Serviço completo
 - Não Orientado a Conexão;
 - Serviço Básico

Orientado a Conexão:

- Processos são <u>obrigados a estabelecerem uma conexão</u> antes da troca de informação e também a encerrarem uma conexão ao finalizar a troca informação.
 - "Semelhante ao cumprimento (Bom dia, Até mais ver)"

Conexão é a troca de pacotes de sincronização, antes da troca de informações.

Processo Three-Way HandShack

Conexões:

- Baseadas no envio de segmentos de controle:
 - SYN (Synchronous) ->Inicia uma conexão;
 - ACK (Acknowledgement) Confirmação dos dados enviados;

Transmissão dos Dados......

FIN (Finnal) -> Finaliza uma conexão;

Prontos para transmissão

– Transmissão de Dados

Orientado a Conexão:

- Processos são <u>obrigados a estabelecerem uma conexão</u> antes da troca de informação e também a encerrarem uma conexão ao finalizar a troca informação.
 - Todos os pacotes devem ser confirmados pelo destinatário (Pacote -ACK)

Analogia

• Carta Registrada, confirmação do recebimento, rastreamento dos pacotes

- Não Orientado a Conexão
 - Não existe a necessidade de conexão para inicio de transmissão.
 - Dados são enviados diretamente
 - Pacotes não são confirmados pelo destinatário;
 - Analogia:
 - Carta Comum

- Protocolos de Comunicação (TCP):
 - TCP Transmission Control Protocol
 - Orientado a conexão
 - É necessário estabelecer a **conexão** para posterior transmissão;
 - Entrega confiável e ordenada
 - Pacotes enviados pelo Emissor, disparam confirmações no Receptor!!!
 - O Emissor aguarda confirmações para envio de novos pacotes.

Protocolo TCP - Características

- É ponto-a-ponto (UM para UM)
 - Um transmissor e um receptor
- Transmissão full duplex
- Fluxo de dados bidirecional na mesma conexão
- Controle de fluxo
 - Receptor não será afogado pelo transmissor
- Controle de congestionamento
 - Evitar a saturação dos enlaces da rede

- Protocolo de Comunicação (TCP):
 - Envio de informações;
 - Confirmações dos pacotes (ACK)

- Protocolos de Comunicação (TCP):
 - Confirmações dos pacotes (ACK), com janela deslisante igual a 3 (3 envios 1 confirmação)

Protocolo TCP - Características

- É ponto-a-ponto
 - Um transmissor e Um receptor
- Transmissão full duplex
 - Fluxo de dados bidirecional na mesma conexão
- Controle de fluxo
 - Receptor n\u00e3o ser\u00e1 afogado pelo transmissor
- Controle de congestionamento
 - Evitar a saturação dos enlaces da rede

- Protocolo TCP Características
 - Provê um serviço confiável (TCP) sobre o serviço não confiável (IP)
 - Serviços implementados sobre TCP:
 - Transmissão de Páginas Http
 - Transmissão de EMAIL (POP3, IMAP, SMTP)
 - Download de Arquivos;
 - Etc.....

Cabeçalho Datagrama TCP

Endereçamento do transporte;

contagem por bytes de dados (não segmentos!)

número de bytes receptor está pronto para aceitar

- Protocolo de Transporte (UDP):
 - UDP User DataGram Protocol
 - Não Orientado a Conexão;
 - Não necessita criar a conexão;
 - Entrega não-confiável e não-ordenada
 - Não gera confirmações pelo receptor!!!
 - Rápido e Barato.

- UDP User DataGram Protocol (RFC 768)
 - Protocolo de transporte mínimo
 - Serviço de melhor esforço.
 - Segmentos UDP podem ser perdidos
 - Entregues à aplicação fora de ordem
 - Sem conexão
 - Não há "confirmação" entre remetente e o receptor
 - Tratamento independente de cada segmento UDP

Por quê é necessário?

- Elimina o estabelecimento de conexão
 - Menor latência (tempo entrega)
- É simples
- Não mantém "estado" da conexão no Emissor e no Receptor
- Cabeçalho de segmento reduzido
- Não há controle de congestionamento
- UDP pode transmitir tão rápido quanto desejado (e possível)

- Utilizado para aplicações multimídias
 - Tolerantes a perdas
 - Sensíveis à taxa de transmissão (tempo)
 - Transferência confiável com UDP?
 - É necessário acrescentar confiabilidade na camada de aplicação caso necessário.

Cabeçalho do DATAGRAMA UDP é composto de:

- Conceito de Porta de Comunicação
 - Um Prédio tem um endereço físico(rua, bairro, cep);
 - Todo apartamento tem o mesmo endereço físico;
 - O que diferencia um apartamento de outro?

- Conceito de Porta de Comunicação
 - Prédio tem um endereço físico (rua, bairro, cep);
 - Todo apartamento tem o mesmo endereço físico;
 - O que diferencia um apartamento de outro?

Número do Apartamento

- Conceito de Porta de Comunicação
 - Um computador tem endereço físico (IP);

 O que diferencia uma aplicação (programa) de outro?

Aplicativos Rede

- Conceito de Porta de Comunicação
 - Endereçamento da camada de transporte (16bits))

Endereço de Porta 16bits 65536 endereços para aplicações

Porta 80, 23, 21, 110

Aplicativos Rede

Conceito de Porta de Comunicação

- Atrás de cada porta existe um serviço de rede (Camada de aplicação) responsável por receber ou enviar os pacotes:
 - Servidor: Http(80), Email(25), Telnet(23), SSH(21)
 - Portas até 1024 são privadas, uso de sistemas padronizados
 - Clientes: Http(??), Email(??), Telnet(??), SSH(??), etc.
 - Usam portas acima de 1024 Portas públicas

Endereço de Porta 16bits 65536 endereços para aplicações

 A entidade de transporte tem fluxo único com a camada de Rede;

Fluxo é compartilhado pelas várias aplicações;

Figura 1. Entidade de transporte

Portas Comunicações, Várias aplicações

Atrás das Portas UDP e TCP têm os serviços de aplicação

- Existem 65536 portas de comunicação(16bits):
 - 1 a 1024 são portas privadas de uso restrito; Outras são liberadas para uso qualquer; Definidas por Padrão pela IANA.

Porta	Tipo Serviço	Serviço	descrição
21	TCP/UDP	FTP	Transferência de arquivos
22	TCP/UDP	SSH	Terminal Remoto Seguro
23	TCP/UDP	Telnet	Terminal Remoto
25	TCP/UDP	SMTP	Envio de Email
80	TCP/UDP	HTTP	Páginas WEB
110	TCP/UDP	POP	Recebimento de email
443	TCP/UDP	Https	Páginas Web criptografadas

- Como examinar as portas da máquina?
 - O comando "netstat" retorna todas as portas em uso em uma máquina;

```
- - X
C:\Windows\system32\cmd.exe
Copyright (c) 2009 Microsoft Corporation. Todos os direitos reservados.
C:\Users\Luciano>netstat
Conexões ativas
                                     Endereco externo
          Endereco local
                                                                 Estado
                                      proxy:3128
                                     r-087-042-234-077:https
r-067-042-234-077:http
                                     r-065-042-234-077:http
r-066-042-234-077:http
                                      LUG-Note: 49342
                                     LUG-Note: 49342
                                     LUG-Note:12080
          127.0.0.1:51225
 ::\Users\Luciano>
```

- 1)Abra um terminal e digite: netstat | grep tcp
- 2)Após abra um Browser e abra várias conexões com sites
- 3)Após repita o comando do item 1
- 4) Várias novas conexões aparecerão

```
luciano@luciano-pc:~$ netstat | grep tcp
                 77 luciano-pc.local:59937
                                            ce-in-f95.1e100.n:https ÚLTIMO_ACK
                                                                                    conexões
                  0 luciano-pc.local:35130
                                            gru06s25-in-f3.1e:https ESTABELECIDA
                  0 luciano-pc.local:47960
                                            gru06s26-in-f14.1:https ESTABELECIDA
                  0 luciano-pc.local:33710
                                            gru06s25-in-f5.1e:https ESTABELECIDA
                  0 luciano-pc.local:47270
                                            74.121.140.94:http
                                                                    ESTABELECIDA
                  0 luciano-pc.local:40988
                                            64.233.190.189:https
                                                                    ESTABELECIDA
                  0 luciano-pc.local:47985
                                            gru06s26-in-f14.1:https ESTABELECIDA
                  0 luciano-pc.local:479
                                            gru06s26-in-f14.1:https ESTABELECIDA
                  0 ip6-localhost:41109 ort
                                            ip6-localhost:ipp
                                                                    ESPERANDO FECHAR
```

- Informações do NETSTATUS
 - Proto Protocolo que pode ser TCP, UDP, TCPv6, ou UDPv6
 - Local Address Endereço local (seu PC)
 - Foreign Address Endereço remoto
 - State Exibe o estado da conexão de rede que podem ser
 - CLOSE WAIT, CLOSED, ESTABLISHED,
 - FIN_WAIT_1, FIN_WAIT_2, LAST_ACK, LISTEN, SYN_RECEIVED, SYN_SEND, e TIME_WAIT

Camada de Transporte

- Alguns Parâmetros do NETSTATUS
 - -a : exibe todas as conexões e as portas TCP e UDP.
 - -e : exibe estatísticas básicas de conexões
 - -n : exibe os números das portas ao invés do nome.
 - -o : exibe o PID (Process ID) que
 - -p protocolo: Mostra as conexões por protocolo.
 - -s : exibe estatísticas por protocolo.
 - -r : exibe a tabela de roteamento interna.

Características do TCP e UDP

UDP	ТСР	
erviço sem conexão; nenhuma sessão é estabeleci- Serviço orientado por conexão; uma sessão é est		
da entre os hosts.	lecida entre os hosts.	
UDP não garante ou confirma a entrega ou sequência	TCP garante a entrega através do uso de confirma-	
os dados.	ções e entrega sequenciada dos dados.	
Os programas que usam UDP são responsáveis por Os programas que usam TCP têm garantia de tra		
oferecer a confiabilidade necessária ao transporte de	porte confiável de dados.	
dados.		
UDP é rápido, necessita de baixa sobrecarga e pode	TCP é mais lento, necessita de maior sobrecarga e	
oferecer suporte à comunicação ponto a ponto e pon-	pode oferecer suporte apenas à comunicação ponto	
to a vários pontos.	a ponto.	

Características do TCP e UDP

- Interface padrão para comunicação entre processos em redes TCP/IP
- Nasceu com o Unix de Berkeley
- Implementada hoje em vários S.O
- Programar com sockets pode ser visto como desenvolver um protocolo de aplicação.

- Interliga Software da Camada de Aplicação com os protocolos da camada de Transporte.
- Faz uso das portas de comunicação da camada de Transporte.
- Conecta cada aplicação a um porta de comunicação.

API Socket – Comandos básicos

socket	Cria um novo descritor para comunicação
connect	Iniciar conexão com servidor
write	Escreve dados em uma conexão
read	Lê dados de uma conexão
close	Fecha a conexão
bind	Atribui um endereço IP e uma porta a um socket
listen	Coloca o socket em modo passivo, para "escutar" portas
accept	Bloqueia o servidor até chegada de requisição de conexão
recvfrom	Recebe um datagrama e guarda o endereço do emissor
sendto	Envia um datagrama especificando o endereço

Socket TCP

Servidor TCP, um Socket para tratar abertura de conexão Outro Socket para troca de dados

Socket TCP – Fluxograma

Socket UDP

Servidor UDP – um Socket para troca de dados

Socket UDP

JAVA - SOCKET

- Em Java a interligação possui suporte no pacote java.net.
 - HTTP
 - FTP
 - Soquetes básicos,
 - Orientados à conexão usando o protocolo TCP
 - Orientados à datagramas, usando o protocolo UDP

```
import java.io.*;
                                   Servidor TCP
import java.net.*;
public class SimpleJavaServer {
  public static void main(String[] args)
       try {
             ServerSocket s = new ServerSocket(9999);
             String str;
             while (true) {
                    Socket c = s.accept();
                    InputStream i = c.getInputStream();
                    OutputStream o = c.getOutputStream();
                    do {
                           byte[] line = new byte[100];
                           i.read(line);
                           o.write(line);
                           str = new String(line);
                     } while ( !str.trim().equals("bye") );
                    c.close();
       catch (Exception err) {
          System.err.println(err);
```

C

```
import java.net.*;
import java.io.*;
                                      Cliente TCP
public class SimpleJavaClient {
  public static void main(String[] args)
      try {
             Socket s = new Socket("127.0.0.1", 9999);
             InputStream i = s.getInputStream();
             OutputStream o = s.getOutputStream();
             String str;
             do {
                   byte[] line = new byte[100];
                    System.in.read(line);
                    o.write(line);
                    i.read(line);
                    str = new String(line);
                    System.out.println(str.trim());
             } while ( !str.trim().equals("bye") );
             s.close();
      catch (Exception err) {
             System.err.println(err);
```

Camada de Transporte

Interação Cliente / Servidor Várias conexões

Socket – Leitura próxima Aula

- Exemplo de Socket C
 - http://equipe.nce.ufrj.br/thome/grad/so/Trabs/Olds/Tutorial%20de %20Sockets.pdf
 - http://www-usr.inf.ufsm.br/~giovani/sockets/sockets.txt
 - http://www-usr.inf.ufsm.br/~giovani/sockets/sockets1.pdf

_

Dúvidas??

