This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1 Claim 1 (currently amended): An apparatus for performing <u>low</u>
- 2 density parity check encoding operations, the apparatus
- 3 comprising:
- 4 memory including a set of memory locations for storing
- 5 L sets of Z-bit vectors, where Z is a positive integer greater
- 6 than one and L is a positive integer;
- 7 a vector unit operation processor including a circuit
- 8 for performing Z parity calculations in parallel to compute a Z-
- 9 bit vector, each bit of the computed Z-bit vector being
- 10 generated by one of the Z parity calculations, an accumulator
- 11 for storing the computed Z-bit vector, and an output device for
- 12 passing the computed Z-bit vector to the said memory in response
- 13 to-operation-instructions; and
- 14 a switching reordering device coupled to the memory
- 15 and to the vector unit operation processor, the switching
- 16 <u>reordering</u> device for passing a Z-bit <u>vectors</u> vector between
- 17 said memory and said vector unit operation processor and for
- 18 performing a bit level reordering operation on elements of at
- 19 <u>least one Z-bit vector</u>, in response to switch reordering control
- 20 information, as the at least one Z-bit vector is passed between
- 21 said memory and said vector unit operation processor by said
- 22 <u>reordering device</u>.
- 1 Claim 2 (original): The apparatus of claim 1, further
- 2 comprising:
- an ordering control module coupled to said memory for
- 4 generating read and write indices; and
- 5 an operation control module coupled to said vector
- 6 unit operation processor for generating unit operation
- 7 instructions.
- 1 Claim 3 (currently amended): The apparatus of claim 2, wherein
- 2 the ordering control module is further coupled to said
- 3 reordering switch device for generating said reordering switch

- 4 control information used to control the switching of reordering
- 5 for said at least one Z-bit vector.
- 1 Claim 4 (currently amended): The apparatus of claim 1, wherein
- 2 the switching reordering device includes circuitry for
- 3 performing a vector rotation element reordering operation that
- 4 includes a bitwise rotation operation to generate a reordered
- 5 rotated Z-bit vector.
- 1 Claim 5 (currently amended): The apparatus of claim 2, wherein
- 2 the ordering control module stores information on the order of
- 3 the Z-bit_vectors are to be read out of the memory and
- 4 information on the order of the Z-bit vectors are to be written
- 5 into the memory.
- 1 Claim 6 (currently amended): The apparatus of claim $\frac{5}{2}$,
- 2 wherein the ordering control module further stores bitwise
- 3 rotation operation information on the rotation to be used in
- 4 generating said re-ordering control information performed on the
- 5 read out vectors from said memory by said switch.
- 1 Claim 7 (original): The apparatus of claim 2, wherein the
- 2 ordering control module sequentially generates index
- 3 identifiers, each identifier controlling the memory to access
- 4 memory locations corresponding to a vector as part of a single
- 5 SIMD instruction.
- 1 Claim 8 (original): The apparatus of claim 7, wherein each
- 2 identifier is a single memory address.
- 1 Claim 9 (original): The apparatus of claim 2, wherein said
- 2 operation control module stores operation instructions, each
- 3 instruction controlling the operation at said vector unit
- 4 operation processor.
- 1 Claim 10 (original): The apparatus of claim 9, wherein the
- 2 operation control module sequentially generates operation

- 3 instructions, each instruction controlling said vector unit
- 4 operation processor to perform instructed operations.
- 1 Claim 11 (currently amended): The apparatus of claim 4.2
- 2 further comprising an encoder control module coupled to said
- 3 ordering control module, the encoder control module including
- 4 means for supplying information to said ordering control module
- 5 used to control the order in which each of the L Z-bit vectors
- 6 is to be read out of said memory, their associated reorderings
- 7 rotations, and the order to be written into said memory.
- 1 Claim 12 (currently amended): The apparatus of claim 11,
- 2 wherein the encoder control module device is further coupled to
- 3 said operation control module, the encoder control device
- 4 including means for supplying information to said operation
- 5 control module used to generate operation instructions.
- 1 Claim 13 (currently amended): A method of performing <u>low</u>
- 2 density parity check encoding operations, the method comprising:
- 3 storing L sets-of Z-bit vectors in a memory device,
- 4 where Z is a positive integer greater than one and L is a
- 5 positive integer;
- 6 reading one of said sets of 2 bit L stored Z-bit
- 7 vectors from said memory device stored L sets of Z bit vectors;
- 8 rotating performing a bit level reordering of the bits
- 9 in said read one of said Z bit Z-bit vectors; and
- 10 operating a vector unit processor to perform a
- 11 plurality of parity check combining operations in parallel to
- 12 combine the bits of the rotated reordered 7 bit 7-bit vector
- 13 with a Z-bit vector stored in said vector unit processor to
- 14 generate a new Z-bit vector.
- 1 Claim 14 (currently amended): The method of claim 13, further
- 2 comprising:

comprising:

2

storing said new 2-bit Z-bit vector in said memory device 3 in the place of one of the \underline{L} stored \underline{L} -sets of \underline{Z} bit \underline{Z} -bit vectors. Claim 15 (currently amended): The method of claim 14, wherein 1 said parity check combining operations performed by said vector unit processor are exclusive OR operations. Claim 16 (currently amended): The method of claim 15 A method of performing encoding operations, the method comprising: 2 storing L Z-bit vectors in a memory device, where Z is a positive integer greater than one and L is a positive integer; reading one of said L stored Z-bit vectors from said 5 memory device; 6 reordering the bits in said read one of said Z-bit 7 8 vectors; and operating a vector unit processor to perform a 9 plurality of combining operations to combine the bits of the reordered Z-bit vector with a Z-bit vector stored in said vector 11 unit processor to generate a new Z-bit vector 12 storing said new Z-bit vector in said memory device in the 13 place of one of the L stored Z-bit vectors 14 wherein said combining operations performed by said vector 15 unit processor are exclusive OR operations; and 16 wherein said encoding method is a low density parity check 17 18 encoding method. Claim 17 (currently amended): The method of claim 14, further 1 2 comprising: executing a set of stored machine executable 3 instructions to control the rotation reordering of the read Z 4 bit vector, said reordering including a rotation operation. 5 Claim 18 (currently amended): The method of claim 14, further

- 3 using the executed set of stored machine executable
- 4 instructions to determine which one of said \underline{L} sets of stored Ξ
- 5 bit <u>Z-bit</u> vectors is to be read from memory:
- 1 Claim 19 (currently amended): The method of claim 14, further
- 2 comprising:
- 3 using the executed set of stored machine executable
- 4 instructions to determine when one of said $\frac{\text{sets of }}{\text{L}}$ stored $\frac{2}{3}$
- 5 bit Z-bit vectors is to be read from memory.
- 1 Claim 20 (currently amended): The method of claim 19, further
- 2 comprising:
- 3 using the executed set of stored machine executable
- 4 instructions to determine which one of the L stored L sets of Z
- 5 bit Z-bit vectors is to be replaced by storing the new $\frac{Z-bit}{Z-bit}$
- 6 <u>bit</u> vector in said memory device.
- 1 Claim 21 (currently amended): The method of claim 19, further
- 2 comprising:
- 3 resetting the Z bit Z-bit vector stored in said vector unit
- 4 processor at the same time said new Z bit Z-bit vector is
- 5 stored.
- 1 Claim 22 (currently amended): The method of claim 14, further
- 2 comprising:
- 3 resetting the $\frac{Z-bit}{Z-bit}$ vector stored in said vector unit
- 4 processor at the same time said new 2 bit Z-bit vector is
- 5 stored.
- 1 Claim 23 (currently amended): The method of claim 14, further
- 2 comprising:
- 3 using the executed set of stored machine executable
- 4 instructions to determine which one of the \underline{L} stored \underline{L} sets-of \underline{Z}
- 5 bit Z-bit vectors is to be replaced by storing the new Z bit Z-
- 6 bit vector in said memory device.

Claim 24 (currently amended): A method of performing low 1 density parity check encoding operations, the method comprising: 2 storing L sets-of Z-bit vectors in a memory device, 3 where Z is a positive integer greater than one and L is a 4 positive integer; 5 reading one of said sets of Z bit vectors from said б stored L sets of Z bit Z-bit vectors; 7 operating a vector unit processor to perform a 8 plurality of parity check combining operations in parallel to 9 combine the bits of the rotated Z-bit read Z-bit vector with a 10 Z-bit vector stored in said vector unit processor to generate a 11 new Z-bit vector; 12 rotating reordering the bits in said new Z bit Z-bit 13 vector by performing a bit level reordering of bits in the new 14 Z-bit vector to produce a reordered Z-bit vector; and 15 storing said reordered rotated new Z bit Z-bit vector 16 in said memory device in the place of one of the \underline{L} stored \underline{L} -sets 17 of-Z bit Z-bit vectors. 18 Claim 25 (currently amended): The method of claim 24, A method of performing encoding operations, the method comprising: 2 storing L Z-bit vectors in a memory device, where Z is 3 a positive integer greater than one and L is a positive integer; 4 reading one of said Z-bit vectors from said L stored 5 Z-bit vectors; 6 operating a vector unit processor to perform a 7 plurality of combining operations to combine the bits of the 8 read Z-bit vector with a Z-bit vector stored in said vector unit 9 processor to generate a new Z-bit vector; 10 reordering the bits in said new Z-bit vector by cyclicly 11 shifting the position of bits in the new Z-bit vector to 12 implement a cyclic shift operation that produces a reordered Z-13 bit vector; and 14 storing said reordered Z-bit vector in said memory 15 device in the place of one of the L stored Z-bit vectors; 16

the property of the second section of

wherein said combining operations performed by said vector
unit processor are exclusive OR operations; and
wherein said encoding method is a low density parity check
encoding method.

Claim 26 (currently amended): The method of claim 25, further
comprising:

executing a set of stored machine executable
instructions to control the reordering rotation of the read Z
bit Z-bit vector and to determine which one of the L stored b
sets of Z bit Z-bit vectors is to be replaced by storing said
rotated new Z bit reordered Z-bit vector in said memory device.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.