We consider a contention-aware counter consisting of K registers $\{a_i\}_{i=1}^{i=K}$. inc operation choses a random register and atomically increments it by 1. get operation summarizes values of the registers in order from a_1 to a_K .

The given counter is linearizable.

```
Proof. Consider a concurrent history H = \{ev_i\}, ev_i = \left\{ egin{align*} start. \ op_i \\ end. \ op_i \end{array} \right., op_i = \left\{ egin{align*} get_i : result \\ inc_i \end{array} \right.
```

Let $<_H$ be a an order induced by the history H on operations:

 $op_1 <_H op_2$ iff $end. op_1$ precedes $start. op_2$ in H.

For sequential histories we will consider notions $\{op_1, op_2, \dots op_n\}$ and $\{start. op_1, end. op_1, start. op_2, end. op_2, \dots start. op_n, end. op_n\}$ to be equivalent.

Let I be a set of all inc operations. For operation $get_i : result$ let $L_i = \{inc_j \in I | inc_j <_H get_i\}$, $J_i = \{inc_j \in I | get_i <_H inc_j\}$, $C_i = \{inc_j \in I | get_i|_H inc_j\} = I \setminus (L_i \cup J_i)$.

Lemma 1.1. For any operation $get_i: result\ result \ge |L_i|$. **Proof.** Fetch-and-adds performed by operations in L_i happens-before reads performed by get_i . As registers are never decremented, the reads return at least those values which are written by the last FAA to the corresponding register performed by an operation from L_i . Sum of these values is equal to the size of L_i .

Lemma 1.2. For any operation $get_i: result\ result\ \leq |I|-|J_i|=|L_i|+|C_i|$, i.e. $result\ does\ not$ exceed the number of incs which completed before get_i or concurrent with it. **Proof.** Reads performed by get_i happens-before fetch-and-adds performed by operations in J_i . As registers are never decremented, the reads return at most those values which are read by the first FAA to the corresponding register performed by an operation from J_i . Sum of these values is equal to the size of $I\setminus J_i$.

Denote the number of inc operations in a set or sequence Q incs(Q).

Next, we provide a procedure linearize(H) to construct a sequential history H', given H.

```
linearize(H):
  input H - sequence of events
  let S = empty set of operations
  let H' = empty sequence of operations
  foreach event e in H:
    if e = start.op_i:
      add op_i to S
    else if e = end.op_i and op_i in S:
      if op_i = inc_i:
        foreach op_j in S: // block 1
        if op_j = get_j : res_j and res_j = incs(H'):
            remove get_j from S
            append get_j to H'
```

```
else if op_i = get_i : res_i:
    while res_i < incs(H'): // block 2
    foreach op_j in S: // block 2.1
    if op_j = get_j : res_j and res_j = incs(H'):
        remove get_j from S
        append get_j to H'
    find inc_j in S // block 2.2
    remove inc_j from S
        append inc_j to H' // point a
    remove op_i from S
    append op_i to H'
return H'</pre>
```

linearize analyzes events from H in order and maintains a set of started but not yet finished operations S. When it encounters end of an operation op in H which is not yet contained in H', it appends some operations from S which must appear before op to H' and then appends op itself. Whenever an operation is appended to H' it is removed from S.

We now consider which operations from S are appended before the operation op.

- (block 1) If op is an inc operation, then all get : result with result = incs(H') must be appended to H' before this inc operation. So we take such gets from S and append them to H'.
- (block 2) If op is a get: result operation, then exactly result inc operations must appear before op in H'. So we take incs from S and append them to H' until incs(H') = result (block 2.2). Also, before that we take etgs with result = incs(H') from S and append them to H' (block 2.1).

Lemma 2. When an operation $get_i : res_i$ is added to $S, res_i \geq incs(H')$.

Proof. The operation is added to S when its start is encountered in H. To this moment all operations from L_i are appended to H' and none of operations from J_i are encountered and none of them are appended to H'.

Imagine that $incs(H') > res_i$. Consider an operation inc_j such that incs(H') was equal to res_i before inc_j was appended to H'. By lemma 1.1 $inc_j \in C_i$, i.e. it is concurrent with get_i . Then $end.\ inc_j$ is not yet encountered in H. Consequently, inc_j could be appended to H' only at $point\ a$. This means that an event $end.\ get_k: res_k$ appeared in H before $start.\ get_i: res_i$ for some operation get_k with $res_k > res_i$.

So there are two get operations $get_i: res_i$ and $get_k: res_k$, such that

- $get_k <_H get_i$,
- $res_k > res_i$.

All reads in get_k happens-before reads in get_i and values of the registers are never decremented. Consequently, all reads performed by get_i yield values greater than or equal to ones returned by reads in get_k , and $res_i \geq res_k$.

We came to a contradiction. Thus, $incs(H') \leq res_i$.

Lemma 3. Before execution of *block 2* $incs(H') \leq res_i$ and $incs(H') + incs(S) \geq res_i$.

Proof. Before execution of $block\ 2\ get_i$ is contained in S. When it was added incs(H') was less than or equal to res_i (lemma 3). Whenever an inc operation is appended to H', all get operations with result equal to incs(H') are removed from S. Consequently, $incs(H') \le res_i$. All operations from L_i are appended to H' before the end of get_i . Consider an operation $inc_j \in C_i$. It is either already appended to H' or contained in S. So $incs(H') + incs(S) = |L_i| + |C_i| \ge res_i$ (lemma. 1.2).

Corollary 1. After execution of *block 2* $incs(H') = res_i$.

Corollary 2. linearize(H) is a legal sequential history. By lemma 2 and corollary 1 all gets are appended to H' when number of inc operations in H' is equal to the result of the get operation.

Lemma 4. linearize(H) is equivalent to H.

Proof. To prove equivalence of H and H' we have to prove, that total order $<_{H'}$ extends $<_{H}$. Consider two operations op_a and op_b , $op_a <_{H} op_b$. This means that linearize encounters end. op_a before start. op_b and appends op_a to H' before it appends op_b to S. Consequently, $op_a <_{H'} op_b$.

Conclusion. By corollary 2 and lemma 4 linearize(H) is a linearization of H.