Movie Recommendation System

Group 16 111550075 顏名柔 111550108 吳佳諭 111550119 蔡承倢

Contents

- Introduction
- Baseline
- Main Approach
- Evaluation Metric
- Result & Analysis
- Practical Use
- Github link & Reference
- Contribution

Introduction

- To provide movies based on user preferences.
- Why this is important?
 - For users, they can find the movies they may enjoy, leading to a better watching experience. Also, this can save the users' time in searching moveis they like.
 - **For platform**, if they can provide the movies that match the user's preerence, users are more likely to stay in this platform, bringing the platform a higher revenue.

Related work

- Open Source:
 - 1. Paper: <u>Deep Reinforcement Learning based Recommend System using stratified sampling</u>
 - 2. Work: Netflix
 - -> Try to use RL (i.e. DQN) to build our own recommendation system
- Difference: Beside DQN, we also use two traditional method, such as
 - 1. Collaborative Filtering
 - 2. Content-Based Filtering

Dataset – MovieLens 100K movie ratings (ml-100k)

- 100,000 ratings (1-5) from 943 users on 1682 movies
- https://grouplens.org/datasets/movielens/100k/
- ml-100k (only list the files we used)
 - |- u.data
 - |- u.item
 - |- u.user

Dataset – MovieLens 100K movie ratings (ml-100k)

Data	Description	Columns
u.data	The full u data set.	user id item id rating timestamp
u.item	Information about the items (movies).	movie id movie title release date video release date IMDb URL unknown Action Adventure Animation Children's Comedy Crime Documentary Drama Fantasy Film-Noir Horror Musical Mystery Romance Sci-Fi Thriller War Western
u.user	Information about the users.	user id age gender occupation zip code

Baseline – Why to choose them

- Use three algorithms and compare their results
 - Content based, Collaborative filtering, DQN
- Where does these baselines come from & why to choose them
 - Content based and collaborative filtering are traditional ways.
 - DQN use Neural Network to give better performance.

Recommendation System

Content based

Collaborative Filtering

RL(DQN

Baseline - Implementation: content based

• Content-based: Calculate the similarity between movies and recommend the

movies that is similar to the user's movie.

```
similarity matrix = []
for i in range(1683):
    similarity matrix.append([])
    for j in range(1683):
        if(i==1682 \text{ or } j==1682):
            similarity matrix[i].append(0)
            continue
        a, b, c = 0, 0, 0
        for k in range(5, 24):
            a += int(movies[i][k]) * int(movies[j][k])
            b += int(movies[i][k]) * int(movies[i][k])
            c += int(movies[j][k]) * int(movies[j][k])
        if(b*c==0): similarity = a  # avoid devide by zero
        else: similarity = a / (math.sqrt(b) * math.sqrt(c))
        similarity matrix[i].append(similarity)
```


ref: Introduction to recommender systems

Baseline - Implementation: collaborative filtering

• Collaborative filtering: Relies on user-item interactions. It predict rating of items based on the user with similar preferences and recommends items that those like-minded users have enjoyed.

```
# trains the SVD model with the best parameters
best_epochs = gs.best_params["rmse"]["n_epochs"]
best_factors = gs.best_params["rmse"]["n_factors"]
svd_sol_best = SVD(verbose=True, n_epochs=best_epochs, n_factors = best_factors)
cross_validate(svd_sol_best, data, measures=['RMSE', 'MAE'], cv=3, verbose=True)

# makes predictions based on the given movie for the given user
score = []
for iid in range(1682):
    pred_best = svd_sol_best.predict(uid, iid, r_ui=9, verbose=True)
    score.append(pred_best.est)
```


ref: <u>Introduction to recommender systems</u>

Baseline – Implementation: DQN

- DQN: neural network
 - o 3 layers
 - \circ batch size = 32

```
class Net(nn.Module):
   The Neural Network, calculate Q value for each state
   def init (self, num action, hidden layer size = 50):
       super(Net, self). init ()
       self.input state = 25
       self.num action = num action
       self.fc1 = nn.Linear(self.input state, 32)
       self.fc2 = nn.Linear(32, hidden layer size)
       self.fc3 = nn.Linear(hidden_layer_size, num_action) # output layer
   def forward(self, state):
       x = F.relu(self.fc1(state))
       x = F.relu(self.fc2(x))
       q value = self.fc3(x)
       return q value
```

Baseline - Limitation

- What are the possible limitation it will encounter on your tasks
 - Content based: filter bubble, large memory requirement
 - o Collaborative filtering: cold start, need enough data, popular bias
 - DQN: design an appropriate reward function, over fitting

Main Approach 1: Content based – Introduction

- Using the genre of each movie, recommend five movies that are the most simimlar to the movies that the user watched.
- We use Cosine Similarity.

That is, similarity between A and B is $\frac{\sum_{i=1}^{n} \sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}$

where Ai and Bi are the genre of the movie.

Main Approach 1: Content based – Introduction

Movie/ Genre	Action	Comedy	Drama	Movie/ Movie	А	В	С
А	1	0	1	Α	-	0.5	0
В	0	1	1	В	0.5	-	0.707
С	0	1	0	С	0	0.707	-

Movie-Genre matrix.

Similarity matrix.

With the similarity matrix, we can know "how" similar is the movie i to movie j. If the user watched movie B, we can guess that the user may also like movie C because it is the most similar to movie B.

Main Approach 1: Content based - Implementation

- Input: movie name. Output: five recommand movies.
- 1. Load data and construct the similarity matrix (similarity_matrix).

```
similarity matrix = []
for i in range(1683):
    similarity matrix.append([])
    for j in range(1683):
        if(i=1682 \text{ or } j=1682):
            similarity matrix[i].append(0)
            continue
        a, b, c = 0, 0, 0
        for k in range(5, 24):
            a += int(movies[i][k]) * int(movies[j][k])
            b += int(movies[i][k]) * int(movies[i][k])
            c += int(movies[j][k]) * int(movies[j][k])
        if(b*c==0): similarity = a  # avoid devide by zero
        else: similarity = a / (math.sqrt(b) * math.sqrt(c))
        similarity matrix[i].append(similarity)
```

Main Approach 1: Content based - Implementation

2. User enter a movie. Use a list (user_movie) to record the movie genre that the user like.

```
for i in range(19):
    user_movie[i] = (user_movie[i] * (n_movie-1) + int(movies[watched_movie_id][i+5])) / n_movie
```

- 3. Calculate the similarity between the user's prefer movie and other movies.
- 4. Output five movies that has the largest similarity value. (random)

```
Please enter a movie name (enter 0 to exit): Toy Story
You may like the following 5 movies:

Aladdin and the King of Thieves || similarity = 1.0000

Aladdin || similarity = 0.8660

Goofy Movie, A || similarity = 0.8165

Balto || similarity = 0.8165

Grand Day Out, A || similarity = 0.8165
```

Main Approach 2: SVD – Introduction

- Based on the input movie, estimate scores of other movies, and then recommend five that get the highest scores.
- We use singular value decomposition(SVD) to predict ratings.

That is,
$$V = UM^T$$

- V: Original rating matrix $V \in \mathbb{R}^{n \times m}$ (Vij: user i's rating of movie J)
 - \bullet U: User feature matrix $U \in \mathbb{R}^{f \times n}$
 - M: Movie feature matrix $M \in \mathbb{R}^{f \times m}$
- And then we define "Cost Function": p(Ui, Mj) is the prediction of rating.

$$E = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} I_{ij} (V_{ij} - p(U_i, M_j))^2 + \frac{k_u}{2} \sum_{i=1}^{n} ||U_i||^2 + \frac{k_m}{2} \sum_{j=1}^{m} ||M_j||^2$$

Main Approach 2: SVD – Introduction

Movie/ User	Avengers 3	Transformer 3
John	5	4
Amy	4	1
Jack	0	2

Movie feature Matrix (n * f)

Movie/ Genre	Avengers 3	Transformer 3
Drama	3	-2
Animation	3	5

User/ Genre	John	Amy	Jack
Drama	3	5	3
Animation	4	0	3

User feature Matrix (f * m)

- Input: user ID and movie name. Output: five recommend movie.
- 1. Load data and users enter their id and movies.
- 2. Choose movies that belongs to the same genres as given movie to be training data .(train_movie)
- 3. Create a dataset that can be use in syd function.

Main Approach 2: SVD – Implementation

- Input: user ID and movie name. Output: five recommend movie.
- 4. Use GridSearchCV to choose the best parameter for SVD.

```
param_grid = {"n_epochs": [5, 10], "lr_all": [0.002, 0.005], "n_factors": [50, 100,150]}
gs = GridSearchCV(SVD, param_grid, measures=["rmse", "mae"], cv=3, joblib_verbose=1, n_jobs=2)
gs.fit(data)
algo = gs.best_estimator["rmse"]
trainset = data.build_full_trainset()
algo.fit(trainset)
predictions = algo.test(trainset.build_testset())
accuracy.rmse(predictions)
```

5. Use surprise to train SVD.

```
# trains the SVD model with the best parameters
best_epochs = gs.best_params["rmse"]["n_epochs"]
best_factors = gs.best_params["rmse"]["n_factors"]
svd_sol_best = SVD(verbose=True, n_epochs=best_epochs, n_factors = best_factors)
cross_validate(svd_sol_best, data, measures=['RMSE', 'MAE'], cv=3, verbose=True)
```

6. Calculate predicted ratings of each movie based on user id.

```
# makes predictions based on the given movie for the given user
score = []
for iid in range(1682):
    pred_best = svd_sol_best.predict(uid, iid, r_ui=9, verbose=True)
    score.append(pred_best.est)
```

7. Output five movies with the highest predicted ratings.

```
# choose the top 5 similar movie
top_5_indices = sorted(range(len(score)), key=lambda i: (-score[i], i), reverse=True)[:5]
#Output
for i in top_5_indices:
    name = dataset.find_movie_name(i)
    est_score = score[i]
    print("%60s || Score = %.4f" %(name, est_score))
```

Main Approach 3: DQN

Use the neural network to calculate Q value for each state. The agent will learn in the environment by doing some actions and receive the rewards.

 $\frac{\text{https://iopscience.iop.org/article/}10.1088/1757-899X/466/1/012110/pdf}$

Main Approach 3: DQN – Introduction

DQN:

Combines the Q-Learning algorithm with deep neural networks.

- Input: user ID and movie name.
- Output: one recommend movie name.
- State = (User ID, Movie ID, Gender, Age, Occupation, Zip code)
- Action: The rating of the movie. [1,2,3,4,5] \rightarrow We will recommend the movie with the highest action(score).
- Reward: the difference value between real score and predicted score by the DQN agent.

Main Approach 3: DQN – Introduction

• Detail of the Q learning algorithm.

(1)Q value estimation function

(3)Loss function

$$L(\theta) = \mathbb{E}[(r + \gamma \max_{a'} Q(s', a'; \theta') - Q(s, a; \theta))^2]$$
 Equation 2: Loss function for the DQN algorithm.

(2) The Bellman's equation

$$Q(s, a; \theta) = r + \gamma \max_{a'} Q(s', a'; \theta')$$

Equation 1: Bellman's Equation for the DQN algorithm.

ref: Introduction to Reinforcement Learning. Part 3: Q-Learning with Neural Networks, Algorithm DQN

• The flow chart of DQN.python:

1. Load data and buile up the environment.

```
databaserating = dataset.load_data()
databaseuser = dataset.load_user()
databasemovie = dataset.load_movie()

def __init__(self):
    self.action_space = spaces.Discrete(5,start=1)
    self.observation_space = spaces.Box(low=np.array([1,1,0,10,1,999]), high=np.array([943,1682,1,60,21,99999]), dtype=np.int64)
    num_states = self.observation_space.shape[0]
    num_actions = self.action_space.n
    self.agent = Agent(num_states, num_actions)
```

- 2. execute the "run" function inside the environment.
 - 2-1 take the action from the agent

```
action = self.agent.get_action(state, episode)
```

2-2 We define the next state as the next movie the user would watch according to the database.

```
next movie = dataset.find next movie(current userid, current movieid)
if (next movie == 1700):
    state = torch.from numpy(observation).type(torch.FloatTensor) # NumPy變數轉換成Pytorch的張量
    state = torch.unsqueeze(state, 0)
   observation[0] = observation[0]+1
    user info = dataset.find userinfo(observation[0])
   observation[2] = user info[2]
   observation[3] = user info[1]
   observation[4] = user info[3]
   observation[5] = user info[4]
else:
   observation[1] = next movie
observation next = observation
```

- 2-3 calculate the reward using the reward function
- 2-4 send (state, action, state_next, reward) to the agent

```
if done:
    torch.save(self.agent.brain.model.state_dict(), "cj_DQN.pt")
    ret.append(r)
    break
else:
    state_next = observation_next
    state_next = torch.from_numpy(state_next).type(torch.FloatTensor)
    state_next = torch.unsqueeze(state_next, 0)
    r += reward

self.agent.memorize(state, action, state_next, reward)

self.agent.update_q_function()

state = state_next
```

```
real rating = dataset.find rating(current userid, current mo
if(real rating == "none"):
    k = dataset.find average rating(int(current userid))
    d = abs(k - int(action))
    complete episodes = 0
    d = abs(int(real rating) - int(action))
reward = torch.FloatTensor([0.0])
if d == 0:
    reward = torch.FloatTensor([3.0])
    complete episodes = complete episodes + 3
elif d == 1:
    reward = torch.FloatTensor([1.0])
    complete_episodes = complete episodes + 1
elif d == 2:
    reward = torch.FloatTensor([0.0])
    complete episodes = complete episodes
elif d == 3:
    reward = torch.FloatTensor([-1.0])
    complete episodes = 0
elif d == 4:
    reward = torch.FloatTensor([-3.0])
    complete episodes = 0
```

3. Agent: build brain, update Q function, and decide the action.

```
class Agent:
   def init (self, num states, num actions):
       self.brain = Brain(num states, num actions) #agent的腦袋
   def update q function(self): #更新Q函數
       self.brain.replay()
   def get action(self, state, episode): #決定動作
       action = self.brain.decide action(state, episode)
       return action
   def memorize(self, state, action, state next, reward): #將state, action, state next, reward存入memory
       self.brain.memory.push(state, action, state next, reward)
```

- 4. Brain: The neural network itself, where the Q learning algorithm takes place.
 - Input: states, the information with both the movie and the user.
 - Output: the Q_value for each action. (Action: the rating of the movie.)

```
init (self, num states, num actions):
self.num_actions = num_actions
self.memory = ReplayMemory(CAPACITY) #make a replay buffer.
#Build the neural network.
self.model = nn.Sequential()
self.model.add_module('fc1', nn.Linear(num_states, 32)) #input layer
self.model.add module('relu1', nn.ReLU())
self.model.add_module('fc2', nn.Linear(32, 32)) #hidden layer
self.model.add module('relu2', nn.ReLU())
self.model.add_module('fc3', nn.Linear(32, num_actions)) #output layer
```


layer contains information about the state, and the outputs are Q-values for every action. Image by author.

ref: <u>Techniques to Improve the Performance of a DQN Agent</u>

Main Approach 3: DQN - Result

- x_axis:episode
- y_axis: the sum of the rewards.

Possible reason:

- (1) Overfitting \rightarrow DDQN
- (2) Wrong definition of state, next_state, action or even their relation.
- (3)Lack of movie related elements in the state.

Evaluation Metric

- RMSE: We use RMSE to measure the difference between predicted ratings and actual ratings.
- For SVD, it already computes the predicted rating. For content-based, we define predicted rating = similarity * 5. With these predicted ratings, we can calculate the RMSE to evaluate the algorithm's performance.
 - ** Multiple by 5 because the rating is between 1-5

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (r_{ui} - \hat{r}_{ui})^2}$$

Where r_{ui} is the actual rating of user u for item i, and \hat{r}_{ui} is the predicted rating.

- In SVD, there are 2 type can be changed: learning rate and factors.
- 1. Learning Rate(lr all):

We test for three different learning rate:

```
param_grid = {"n_epochs": [5, 10], "lr_all": [0.2, 0.5], "n_factors": [50, 100,150]}

param_grid = {"n_epochs": [5, 10], "lr_all": [0.02, 0.05], "n_factors": [50, 100,150]}

param_grid = {"n_epochs": [5, 10], "lr_all": [0.002, 0.005], "n_factors": [50, 100,150]}
```

- 1. Learning Rate(lr_all):
- \triangleright Learning Rate = [0.2, 0.5]

 \triangleright Learning Rate = [0.02, 0.05]

ightharpoonup Learning Rate = [0.002, 0.005]

```
True Romance || Score = 3.8155
Striptease || Score = 3.8183
Somewhere in Time || Score = 3.8450
Johnny Mnemonic || Score = 3.8451
Marked for Death || Score = 3.8610
```

```
Striptease || Score = 3.8527

Johnny Mnemonic || Score = 3.9027

Glimmer Man, The || Score = 3.9046

Sliver || Score = 3.9076

Preacher's Wife, The || Score = 3.9464
```

```
Striptease || Score = 3.9989
Johnny Mnemonic || Score = 4.0201
Cliffhanger || Score = 4.0404
Time to Kill, A || Score = 4.0422
Cape Fear || Score = 4.0430
```

Analysis: When the range of learning rate become more precise, the rating would be higher.

- In SVD, there are 2 type can be changed: learning rate and factors.
- 2. Number of factors:

We test for three different factors:

```
svd_sol_best = SVD(verbose=True, n_epochs=best_epochs, n_factors = 50)
```

```
svd_sol_best = SVD(verbose=True, n_epochs=best_epochs, n_factors = 100)
```

```
svd_sol_best = SVD(verbose=True, n_epochs=best_epochs, n_factors = 150)
```

- 2. Number of factors:
- \triangleright Number of factors = 50

 \triangleright Number of factors = 100

 \triangleright Number of factors = 150

```
True Romance || Score = 4.0347
Glimmer Man, The || Score = 4.0572
Somewhere in Time || Score = 4.0576
Sliver || Score = 4.0588
Shadow Conspiracy || Score = 4.0792
```

```
True Romance || Score = 3.8330
Striptease || Score = 3.8413
Sliver || Score = 3.8759
Somewhere in Time || Score = 3.8783
Chain Reaction || Score = 3.9157
```

```
True Romance || Score = 3.7949
Sliver || Score = 3.8450
Johnny Mnemonic || Score = 3.8478
Somewhere in Time || Score = 3.8483
Marked for Death || Score = 3.8867
```

Analysis: When number of factors is increasing, the ratings are decreasing. ->It may be due to the model becoming too complex, resulting in overfitting.

• We use the same input, test for 1, 5, 10 times separately, and then compare RMSE.

> Content-Based

Filtering/ times	Content-Based
1	8.261599924202647
5	9.487659487650069
10	11.08391490881054

Analysis: When number of testcase is increasing, RMSE are also increasing. -> Less Accuracy

• We use the same input, test for 1, 5, 10 times separately, and then compare RMSE.

SV	\bigcap
\sim $^{\prime}$	$\boldsymbol{\mathcal{L}}$

Filtering/ times	SVD
1	3.9288043553128413
5	3.858081586068965
10	3.913781415118725

Analysis: When number of testcase is increasing, shows some fluctuation, but the difference is not significant.

• Compare Content-based filtering with Collaborative filtering:

Filtering/ times	Content-Based	Collaborative
1	8.261599924202647	3.9288043553128413
5	9.487659487650069	3.858081586068965
10	11.08391490881054	3.913781415118725

Analysis: The RMSE for content-based filtering ranges from 8 to 11, while for collaborative filtering, it is concentrated between 3.8 and 3.9.

-> Collaborative filtering seems more stable?

• Possible Reason:

Content-Based calculate similarity according to movie genre.

- -> Users might type in different kind of movie everytime.
- -> RMSE is sensitive to genre of input movie

Our guess: If we input movies with the same genre everytime, RMSE for content-based might lower.

• To prove our guess: We used the top recommendation result as the input for the next iteration, conducting repeated tests.

Filtering/ times	Content-Based	Collaborative
1	2.013194072167833	3.857669464038458
5	1.4141995167287948	3.7697541396635095
10	3.217187094744785	3.791153271628686

- 1. RMSE for content-based become smaller!->Content-Based is sensitive to input data.
- 2. It didn't have much impact on collaborative filtering.->Reflect user-item interaction.

Limitation

- What are the possible limitation it will encounter on your tasks
 - Content based: filter bubble, large memory requirement
 - Collaborative filtering: cold start, need enough data, popular bias
 - DQN: design an appropriate reward function, over fitting

Practical use

- Users can get recommendations on the terminal.
- Applied to website, app, or LLM in the future.
 - streaming service, such as Netflix, friDay.
 - o build an app or recommendation system.
 - Use it as a dataset to train a ChatBot.

Thank You

Github link & Reference

Github: https://github.com/chia-yuu/AI-final-project

Reference:

Collaborative Filtering

Recommendation system

RL based recommend system

<u>Introduction to recommender systems</u>

SVD

小川雄太郎 (2019)。《實戰人工智慧之深度強化學習|使用PyTorch x Python》。許郁文譯。臺北: 基峰資訊。

DQN

Contribution

Member	Contribution	Proportion
111550075 顏名柔	SVD, Evaluation, PPT, recording	30%
111550108 吳佳諭	Prepare the dataset, Content based, DQN, PPT, recoreding	40%
111550119 蔡承倢	Prepare the dataset, DQN, PPT, recording	30%