Bulletin I25193 rev. B 04/00

International Rectifier

ST300C..L SERIES

PHASE CONTROL THYRISTORS

Hockey Puk Version

Features

- Center amplifying gate
- Metal case with ceramic insulator
- International standard case TO-200AC (B-PUK)

Typical Applications

- DC motor controls
- Controlled DC power supplies
- AC controllers

Major Ratings and Characteristics

Parameters		ST300CL	Units	
I _{T(AV)}		560	А	
	@ T _{hs}	55	°C	
I _{T(RMS)}		1115	А	
	@ T _{hs}	25	°C	
I _{TSM}	@ 50Hz	8000	A	
	@ 60Hz	8380	А	
I ² t	@ 50Hz	320	KA ² s	
	@ 60Hz	292	KA ² s	
V _{DRM} /V _{RRM}		400 to 2000	V	
t _q	typical	100	μs	
T _J		- 40 to 125	°C	

560A

ELECTRICAL SPECIFICATIONSVoltage Ratings

Type number Cod		V _{DRM} /V _{RRM} , max. repetitive peak and off-state voltage	V _{RSM} , maximum non- repetitive peak voltage	I_{DRM}/I_{RRM} max. @ $T_J = T_J$ max
		V	V	mA
	04	400	500	
	08	800	900	50
ST300CL	12	1200	1300	
0100002	16 1600 18 1800		1700	30
			1900]
	20	2000	2100	

On-state Conduction

Parameter		ST300CL	Units	Conditions			
I _{T(AV)}	Max. average on-state current	560 (275)	А	180° conduction, half sine wave			
.()	@ Heatsink temperature	55 (75)	°C	double side (single side) cooled			
I _{T(RMS)}	Max. RMS on-state current	1115		DC @ 25°C heatsink temperature double sid		erature double side cooled	
I _{TSM}	Max. peak, one-cycle	8000	1	t = 10ms	No voltage		
	non-repetitive surge current	8380	Α	t = 8.3ms	reapplied		
		6730	1	t = 10ms	100% V _{RRM}		
		7040]	t = 8.3ms	reapplied	Sinusoidal half wave,	
I ² t	Maximum I ² t for fusing	320		t = 10ms	No voltage	Initial $T_J = T_J \text{ max.}$	
		292	KA ² s	t = 8.3ms	reapplied		
		226	100.3	t = 10ms	100% V _{RRM}		
		207	1	t = 8.3ms	reapplied		
$I^2 \!\!\!\! \sqrt{t}$	Maximum I ² √t for fusing	3200	KA ² √s	t = 0.1 to 10ms, no voltage reapplied		e reapplied	
V _{T(TO)}	Low level value of threshold voltage	0.97	,,	(16.7% x π	x I _{T(AV)} < I < π	$x I_{T(AV)}$, $T_J = T_J max$.	
V _{T(TO)2} High level value of threshold voltage		0.98	V	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$			
r _{t1}	Low level value of on-state slope resistance	0.74	mΩ	(16.7% x π	$x I_{T(AV)}$), $T_J = T_J max$.		
r _{t2}	High level value of on-state slope resistance	0.73	11122	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$			
V_{TM}	Max. on-state voltage	2.18	V	I _{pk} = 1635A	$T_J = T_J \max$	t _p = 10ms sine pulse	
I _H	Maximum holding current	600					
IL	Typical latching current	1000	mA	$T_J = 25^{\circ}C$, anode supply 12V resistive load			

Bulletin I25193 rev. B 04/00

Switching

	Parameter	ST300CL	Units	Conditions
di/dt	Max. non-repetitive rate of rise of turned-on current	1000	A/µs	Gate drive 20V, 20Ω , $t_r \le 1\mu s$ $T_J = T_J$ max, anode voltage $\le 80\%$ V_{DRM}
t _d	Typical delay time	1.0		Gate current 1A, $di_g/dt = 1A/\mu s$ $V_d = 0.67\% V_{DRM}, T_J = 25^{\circ}C$
tq	Typical turn-off time 100		μs	$\begin{split} &\textbf{I}_{\text{TM}} = 550\text{A}, \ \textbf{T}_{\text{J}} = \textbf{T}_{\text{J}} \ \text{max}, \ \text{di/dt} = 40\text{A}/\mu\text{s}, \ \textbf{V}_{\text{R}} = 50\text{V} \\ &\text{dv/dt} = 20\text{V}/\mu\text{s}, \ \text{Gate 0V } 100\Omega, \ \textbf{t}_{\text{p}} = 500\mu\text{s} \end{split}$

Blocking

	Parameter ST300CL		Units	Conditions
dv/dt	Maximum critical rate of rise of off-state voltage	500	V/μs	$T_J = T_J \text{ max}$, linear to 80% rated V_{DRM}
I RRM I _{DRM}	Max. peak reverse and off-state leakage current	50	mA	$T_J = T_J \text{ max, rated } V_{DRM} / V_{RRM} \text{ applied}$

Triggering

	Parameter	ST300CL		Units	Conditions					
P _{GM}	Maximum peak gate power	10.0		10.0				w	$T_J = T_J \text{ max}, t_p \le 5 \text{ms}$	
P _{G(AV)}	Maximum average gate power			l vv	$T_J = T_J \text{ max, } f = 50 \text{Hz, } d\% = 50$					
I _{GM}	Max. peak positive gate current	3.0		Α	$T_J = T_J \text{ max}, t_p \le 5 \text{ms}$					
+V _{GM}	Maximum peak positive	20								
	gate voltage		U	V	$T_J = T_J \text{ max, } t_p \le 5 \text{ms}$					
-V _{GM}	Maximum peak negative	_	0	\ \ \						
	gate voltage	5.0								
		TYP.	MAX.							
	DC gate current required	200	-	mA	T _J = - 40°C					
GT	to trigger	100	200		T _J = 25°C	Max. required gate trigger/ cur-				
		50	-		T _J = 125°C	rent/ voltage are the lowest value				
.,	DO	2.5	-		T _J = - 40°C	which will trigger all units 12V anode-to-cathode applied				
V _{GT}	DC gate voltage required to trigger	1.8	3.0	V	T _J = 25°C	ansas to same approu				
	to trigger	1.1	-		T _J = 125°C					
I _{GD}	DC gate current not to trigger	10.0 0.25		mA		Max. gate current/voltage not to				
V _{GD}	DC gate voltage not to trigger			V	$T_J = T_J \text{ max}$	trigger is the max. Value which will not trigger any unit with rated V _{DRM} anode-to-cathode applied				
	DC gate voltage not to trigger	0.25		V	$T_J = T_J \text{ max}$	trigger is the max. value vill not trigger any unit with V _{DRM} anode-to-cathode ap				

International TOR Rectifier

Thermal and Mechanical Specification

Parameter	ST300CL	Units	Conditions
T _J Max. operating temperature range	-40 to 125	°C	
T _{stg} Max. storage temperature range	-40 to 150		
R _{thJ-hs} Max. thermal resistance,	0.11	IZ (VA)	DC operation single side cooled
junction to heatsink	0.05	K/W	DC operation double side cooled
R _{thC-hs} Max. thermal resistance,	0.011	K/W	DC operation single side cooled
case to heatsink	0.006	IN/VV	DC operation double side cooled
F Mounting force, ± 10%	9800	N	
	(1000)	(Kg)	
wt Approximate weight	250	g	
Case style	TO - 200AC (B-PUK)		See Outline Table

$\Delta R_{\text{thJ-hs}}$ Conduction

(The following table shows the increment of thermal resistence $R_{th,l+s}$ when devices operate at different conduction angles than DC)

4010								
Conduction angle	Sinusoidal conduction		Rectangula	r conduction	Units	Conditions		
Conduction angle	Single Side	Double Side	Single Side	Double Side	Ullis	Conditions		
180°	0.012	0.010	0.008	0.008		$T_J = T_J \text{ max.}$		
120°	0.014	0.015	0.014	0.014				
90°	0.018	0.018	0.019	0.019	K/W			
60°	0.026	0.027	0.027	0.028				
30°	0.045	0.046	0.046	0.046				

Ordering Information Table

Device Code

- 1 Thyristor
- 2 Essential part number
- 3 0 = Converter grade
- 4 C = Ceramic Puk
- 5 Voltage code: Code x 100 = V_{RRM} (See Voltage Rating Table)
- 6 L = Puk Case TO-200AC (B-PUK)
- 7 0 = Eyelet terminals (Gate and Auxiliary Cathode Unsoldered Leads)
 - 1 = Fast-on terminals (Gate and Auxiliary Cathode Unsoldered Leads)
 - 2 = Eyelet terminals (Gate and Auxiliary Cathode Soldered Leads)
 - 3 = Fast-on terminals (Gate and Auxiliary Cathode Soldered Leads)
- 8 Critical dv/dt: None = 500V/µsec (Standard value)

L = 1000V/µsec (Special selection)

Outline Table

Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 3 - Current Ratings Characteristics

Fig. 5- On-state Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

Fig. 4 - Current Ratings Characteristics

Fig. 6- On-state Power Loss Characteristics

Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

Bulletin I25193 rev. B 03/00

Fig. 9 - On-state Voltage Drop Characteristics

Fig. 10 - Thermal Impedance Z_{thJ-hs} Characteristics

rig. 11 date characteristics