1. First let n denote the dimension of M, and let $(U_{\alpha}, x_{\alpha}^{i})_{\alpha}$ be a smooth atlas for M, I will denote the coordinate maps as ϕ_{α} respectively. This induces a smooth atlas $(\pi^{-1}(U_{\alpha}), (x_{\alpha}^{i}, v_{\alpha}^{i}))$ for TM, I will denote the coordinate maps as φ_{α} respectively. Now take charts $(\pi^{-1}(U_{\alpha}), (x_{\alpha}^{i}, v_{\alpha}^{i})), (\pi^{-1}(U_{\beta}), (x_{\beta}^{i}, v_{\beta}^{i}))$, (assume that they have non-empty intersection else there is nothing to check) the change of coordinates is given by

$$(x_{\beta}^{i}, v_{\beta}^{i}) = \varphi_{\beta}\varphi_{\alpha}^{-1}(x_{\alpha}^{i}, v_{\alpha}^{i}) = (\phi_{\alpha}\phi_{\beta}(x_{\alpha}^{i}), \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{j}}v_{\alpha}^{j})$$

We want to show that the determinant of the following block diagonal matrix (A) is positive:

$$A := \begin{bmatrix} \left(\frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{j}}\right)_{1 \leq i, j \leq n} & \left(\frac{\partial x_{\beta}^{i}}{\partial v_{\alpha}^{j}}\right)_{1 \leq i, j \leq n} \\ \left(\frac{\partial v_{\beta}^{i}}{\partial x_{\alpha}^{j}}\right)_{1 < i, j < n} & \left(\frac{\partial v_{\beta}^{i}}{\partial v_{\alpha}^{j}}\right)_{1 < i, j < n} \end{bmatrix}$$

By definition of the coordinate change on TM, it is apparent that

$$\det\left(\frac{\partial x_{\beta}^{i}}{\partial v_{\alpha}^{j}}\right)_{1 \le i, j \le n} = 0$$

since $\phi_{\alpha}\phi_{\beta}(x_{\alpha}^{i})$ is independent of each v_{α}^{i} . It follows that

$$\det A = \det \left(\frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{j}} \right)_{1 \leq i, j \leq n} \det \left(\frac{\partial v_{\beta}^{i}}{\partial v_{\alpha}^{j}} \right)_{1 \leq i, j \leq n}$$

But then we can read off of the change of coordinates formula for TM that $\frac{\partial v_{\beta}^{i}}{\partial v_{\alpha}^{j}} = \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{j}}$, so that

$$\det A = \left(\det\left(\frac{\partial x^i_\beta}{\partial x^j_\alpha}\right)_{1 < i, j < n}\right)^2 > 0$$

We can say > 0 here, since the change of coordinates is smooth and invertible with smooth inverse the inverse function theorem tells us its Jacobian is invertible.

2. First we give an orientation on M, consider the coordinate charts

$$U_1 \times U_2$$
, $\tilde{U_1} \times U_2$, $U_1 \times \tilde{U_2}$, $\tilde{U_1} \times \tilde{U_2}$

Given by the standard θ , $\tilde{\theta}$

We equip each copy of S^1 with the standard charts, then let U denote that chart $(0, 2\pi) \times (0, 2\pi)$, with coordinates (θ_1, θ_2) . This is an It follows that in U, we have

$$dw = \frac{\partial w}{\partial \theta_1} d\theta_1 + \frac{\partial w}{\partial \theta_2} d\theta_2 = -\sin \theta_1 d\theta_1$$
$$dy = \frac{\partial y}{\partial \theta_1} d\theta_1 + \frac{\partial y}{\partial \theta_2} d\theta_2 = -\sin \theta_2 d\theta_2$$

Using this, we compute $\omega = \sin^2 \theta_1 \sin^2 \theta_2 d\theta_1 \wedge \theta_2$, so that

$$\int_{T^2} \omega = \int_{T^2 \setminus S^1 \cup S^1} \omega = \int_U \omega = \int_0^{2\pi} \int_0^{2\pi} \sin^2 \theta_1 \sin^2 \theta_2 d\theta_1 d\theta_2$$
$$= \int_0^{2\pi} \pi \sin^2 \theta_2 d\theta_2 = \pi^2$$