Customer churn analysis: introduction

(i) Churn analysis is the evaluation of a company's customer loss rate in order to reduce it.

Customer churn analysis: Telco dataset

"Predict behavior to retain customers. You can analyze all relevant customer data and develop focused customer retention programs." [IBM Sample Data Sets] Content. Each row represents a customer, each column contains customer's attributes described on the column Metadata. The data set includes information about:

- (i) Customers who left within the last month the column is called Churn
- (ii) Services that each customer has signed up for phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies
- (iii) Customer account information how long they've been a customer, contract, payment method, paperless billing, monthly charges, and total charges
- (iv) Demographic info about customers gender, age range, and if they have partners and dependents

Visualization: churn rate

Customer churn in percentage - Bar plot

Customer churn count - Bar plots

Visualization: churn rate by type of contract

Visualization: churn rate by type of fidelity and charges

Visualization: predictors correlated to churn

Modeling: Logistic regression (1/5)

Consider n independent observations $y_1,...,y_n$ for which we assume a Bernoulli distribution conditionally on a set of p categorical or numerical covariates x_j , for j=1,...,p. The model is given by

$$g\bigg(E[y_i\mid \mathbf{x}_i]\bigg) = g\bigg(\pi_i\bigg) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} = \mathbf{x}_i^T \boldsymbol{\beta}$$
 with $i=1,\dots,n$, with $\mathbf{x}_i^T = (1,x_{i1},\dots,x_{ip})^T$ and $\boldsymbol{\beta} = (\beta_0,\dots,\beta_p)$.

The canonical link function is the logistic link. The purpose of a link function is to link the linear predictors to the mean of the response. The logistic link ensures that the predicted values lie in the interval [0,1]. We have

$$g\bigg(E\big[y_i\mid\mathbf{x}_i\big]\bigg) = \ln\bigg(\frac{\pi_i}{1-\pi_i}\bigg) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} = \mathbf{x}_i^T\boldsymbol{\beta}$$

Other link functions g(.) exist, such as the probit link or the complementary log-log link. It follows naturally that

$$E[y_i \mid \mathbf{x}_i] = \pi_i = \frac{e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}}{1 + e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}} = \frac{e^{\mathbf{x}_i^T \beta}}{1 + e^{\mathbf{x}_i^T \beta}}$$

$$7 / 1$$

Modeling: Logistic regression (2/5)

```
1 # split dataset into training and testing sets
2 set. seed (2023)
3 ind <- sample(2, nrow(dataset), replace=TRUE, prob=c(0.7,0.3))
4 training <- dataset[ind==1.]
5 testing <- dataset[ind==2.]
6
7 # Binary logistic regression modeling - full model
8 model .1.lr <- glm(formula = ChurnDummy ~ gender + SeniorCitizen + Partner +
                                              Dependents +
10
                                              tenure + PhoneService + MultipleLines
                                              InternetService +OnlineSecurity +
11
12
                                              OnlineBackup +
13
                                              DeviceProtection + TechSupport +
14
                                              StreamingTV +
15
                                              StreamingMovies + Contract +
16
                                              PaperlessBilling +
17
                                              PaymentMethod + MonthlyCharges +
18
                                              TotalCharges,
19
                     data = training, family = "binomial")
20
21 summary (model .1.lr)
22
23 # export the results in LaTex document
24 print(xtable(summary$coefficients, type = "latex"), file = "Customer_churn_
        analysis_tables.tex")
```

Modeling: Logistic regression (3/5)

		6.1.5		D (: 1 1)
	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	1.12	0.99	1.13	0.26
genderMale	-0.09	0.08	-1.22	0.22
SeniorCitizen	0.30	0.10	2.94	0.00
PartnerYes	0.01	0.09	0.14	0.89
DependentsYes	-0.17	0.11	-1.53	0.13
tenure	-0.06	0.01	-8.54	0.00
PhoneServiceYes	0.06	0.78	0.07	0.94
MultipleLinesYes	0.37	0.21	1.75	0.08
InternetServiceFiber optic	1.58	0.96	1.65	0.10
InternetServiceNo	-1.69	0.97	-1.74	0.08
OnlineSecurityYes	-0.29	0.22	-1.33	0.18
OnlineBackupYes	0.02	0.21	0.10	0.92
DeviceProtectionYes	0.20	0.21	0.95	0.34
TechSupportYes	-0.23	0.22	-1.08	0.28
StreamingTVYes	0.51	0.39	1.30	0.19
StreamingMoviesYes	0.51	0.39	1.29	0.20
ContractOne year	-0.77	0.13	-5.89	0.00
Contract Two year	-1.25	0.21	-6.08	0.00
PaperlessBillingYes	0.43	0.09	4.82	0.00
PaymentMethodCredit card (automatic)	-0.14	0.14	-1.04	0.30
PaymentMethodElectronic check	0.20	0.11	1.78	0.08
PaymentMethodMailed check	-0.11	0.14	-0.81	0.42
MonthlyCharges	-0.03	0.04	-0.89	0.37
TotalCharges	0.00	0.00	4.06	0.00
Totalcharges	0.00	0.00	1.00	0.00

Modeling: Logistic regression (4/5)

Odds ratios of churn - Binary Logistic regression

Modeling: Logistic regression (4/5)

Confusion matrix: accuracy = 0.815

	0	1
0	1365	237
1	140	293

Modeling: Random forest (1/3)

Confusion Matrix - Random Forest

Observed

Modeling: Random forest (2/3)

Confusion matrix: accuracy = 0.79

	0	1
0	1373	277
1	132	253

Modeling: Logistic regression (1/4)

Some variables may not be relevant to the model or have low explanatory power. **Stepwise model selection** provides one possible solution to select our covariates based on Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) reduction (not available for Quasipoisson models).

```
1 library (MASS)
2 model.2.lr <- stepAIC(model.1.lr, direction = 'both',
3
                                 k = log(dim(training)[1]))
4
                     Df Deviance
                                    ATC
6 <none>
                          4139.6 4241.8
7 + PaymentMethod
                      3 4114.4 4242.2
8 + SeniorCitizen
                      1 4133.2 4243.9
9 + OnlineBackup
                      1 4133.3 4244.1
10 + Dependents
                      1 4133.4 4244.1
11 + StreamingMovies
                      1 4133 6 4244 3
12 + StreamingTV
                        4134.3 4245.0
13 - TechSupport
                        4153.3 4247.0
14 + MonthlyCharges
                        4136.4 4247.1
15 + Partner
                        4137.7 4248.5
16 + DeviceProtection 1
                        4139.3 4250.1
17 + gender
                         4139.5 4250.2
18 - OnlineSecurity
                        4159 2 4252 9
19 - MultipleLines
                        4171.8 4257.0
20 - PaperlessBilling 1 4170.0 4263.7
21 - TotalCharges
                      1 4178.1 4271.7
22 - InternetService
                      1 4191.5 4285.1
                        4220.4 4305.6
23 - Contract
                          4265.2 4358.9
24 - tenure
```

Modeling: Logistic regression (2/4)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.38	0.12	-3.27	0.00
tenure	-0.08	0.01	-10.06	0.00
MultipleLinesNo phone service	0.76	0.16	4.81	0.00
MultipleLinesYes	0.34	0.09	3.66	0.00
InternetServiceFiber optic	0.81	0.11	7.14	0.00
InternetServiceNo	-0.85	0.16	-5.42	0.00
OnlineSecurityYes	-0.44	0.10	-4.39	0.00
TechSupportYes	-0.37	0.10	-3.68	0.00
ContractOne year	-0.75	0.13	-5.83	0.00
ContractTwo year	-1.66	0.23	-7.34	0.00
PaperlessBillingYes	0.48	0.09	5.48	0.00
TotalCharges	0.00	0.00	5.95	0.00

Modeling: Logistic regression (3/4)

Odds ratios of churn - Binary Logistic regression (second model)

Modeling: Logistic regression (4/4)

Confusion matrix: accuracy = 0.814

	0	1
0	1362	235
1	143	295

Conclusions

- (i) Customers who have a short term subscription appear to churn much more.
- (ii) The best model in terms of accuracy is the first binary logistic regression model, the full model. It can be used for prediction
- (iii) To be continued

References

https://rpubs.com/anitaowens/customerchurn

https://colorado.posit.co/rsc/churn/modeling/tensorflow-w-r.nb.html

The R Project for Statistical Computing:

https://www.r-project.org/