Name	Hatim Sawai
UID no.	2021300108

Experiment 3		
AIM:	The aim of this experiment is to study magnitude spectrum of the DT signal.	
OBJECTIVE:	 Develop a function to perform DFT of N point signal Calculate DFT of a DT signal and Plot Spectrum of Signal. Calculate the effect of zero padding on magnitude spectrum 	
INPUT SEQUENCE	Length of first Signal N DT Signal values	
PROBLEM DEFINITION:	 (1) Take any four-point sequence x[n]. Find DFT X[k]. Plot Magnitude Spectrum. (2) Append the input signal by four zeros. Find DFT and plot Magnitude Spectrum Give your conclusion. (3) Expand the input signal by inserting alternate zero. Find DFT and plot Magnitude Spectrum 	
RESULT:	Case-1: To find DFT of 4 point sequence Input: $x[n] = \{1,5,7,9\}$ Magnitude $ X[k] = \{22, 7.33, 6.13, 7.44\}$	

Case 2: To find DFT of Zero padded signal

Input: x[k]: {1,5,7,9,0,0,0,0} Magnitude |X[k]|: {22.1, 17.18, 7.33, 5, 6.13, 4.87,7.18, 17.18}

Case 3: To find DFT of expanded signal

Input: x[k]: {1,0,5,0,7,0,9,0}

Magnitude |X[k]|: {22, 7.23, 6, 7.18, 22, 7.18, 6, 7,23}

CONCLUSION:

- 1. DFT converts sequence from Time Domain to Frequency Domain
- 2. DFT Converts N samples from time domain to N coefficients in frequency domain
- 3. Frequency domain coefficients are separated by $w = 2\pi/N$