Sensor-free Wind Velocity Estimate from Rotocopter Motion

Kevin Silberberg •

ksilberb@ucsc.edu

University of California Santa Cruz

2024-10-23

Introduction

- Accurate wind-velocity measurements are critical for research applications
 - Climate modeling
 - Dispersion modeling
 - Quantifying emission sources
 - Measuring Atmospheric Boundary Layer (very high altitudes)
- Drones can be outfitted with compact sonic anemometers (wind sensors)
 - High financial cost (one sensor per drone)
 - Susceptibility to measurement bias
 - Additional payload reduces flight time and aircraft compactness

Sensor-free methods

- Inertial Measurement Unit (IMU)
 - Provides flight data at high sampling rate (50 Hz)
 - This is in contrast to 1 Hz for sensor aboard drones
- Eliminates the need to purchase additional sensors or additional weight
 - Allows micro drones that otherwise could not carry sensors become sensors themselves
 - Deploy multiple drones at the same time without compounding cost
- Mitigates bias inherent to a mounted sensor

Considerations

- Variations in the mass moment of inertia effects the accuracy of the wind estimate
 - Increased sensitivity to perturbations by the wind

Limitations:

Drones with smaller payload capacity may have reduced quality IMUs

2D drone toy model

Equations of motion:

$$-F(t)\sin\phi(t)=mrac{d^2y}{dt^2} \ F(t)\cos\phi(t)=mg+mrac{d^2z}{dt^2} \ au(t)=I_{xx}rac{d^2\phi}{dt^2}$$

State space model

States:

$$egin{aligned} x_1 &= y(t) \ x_2 &= z(t) \ x_3 &= \phi(t) \ x_4 &= \dot{y}(t) \end{aligned}$$

 $x_5=\dot{z}(t)$

 $x_6=\dot{\phi}(t)$

Inputs:

$$u_1 = F(t) \ u_2 = au(t)$$

Outputs:

$$egin{aligned} y_1 &= y(t) \ y_2 &= z(t) \ y_3 &= \phi(t) \end{aligned}$$

Non-linear model

$$egin{bmatrix} ec{x}_1 \ ec{x}_2 \ ec{x}_3 \ ec{x}_4 \ ec{x}_5 \ ec{x}_6 \ ec{x}_5 \ ec{x}_6 \ ec{x}_5 \ ec{x}_6 \ ec{x}_5 \ ec{x}_6 \ ec{x}_1 \ ec{x}_2 \ ec{x}_5 \ ec{x}_6 \ ec{x}_1 \ ec{x}_2 \ ec{x}_1 \ ec{x}_2 \ ec{x}_2 \ ec{I}_{xx} \ ec{x}_2 \ ec{I}_{xx} \ ec{x}_1 \ ec{x}_2 \ ec{x}_2 \ ec{I}_{xx} \ ec{x}_1 \ ec{x}_2 \ ec{x}_2 \ ec{x}_1 \ ec{x}_2 \ ec{x}_2 \ ec{x}_2 \ ec{x}_1 \ ec{x}_2 \ ec{x}_2 \ ec{x}_2 \ ec{x}_2 \ ec{x}_2 \ ec{x}_1 \ ec{x}_2 \ ec{x}_2 \ ec{x}_2 \ ec{x}_2 \ ec{x}_2 \ ec{x}_2 \ ec{x}_1 \ ec{x}_2 \ ec{x}_3 \ ec{x}_2 \ ec{x}_3 \ ec{x}_2 \ ec{x}_3 \ ec{x}_2 \ ec{x}_3 \ ec{x}_$$

$$egin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}$$

Linearizing

Linearizing about small $\phi(t)$

Steady state dynamics

$$egin{aligned} F_{eq}(t) &= mg \ au_{eq}(t) &= 0 \ \phi_{eq}(t) &= 0 \ y_{eq}(t) &= y_0 \ z_{eq}(t) &= z_0 \end{aligned}$$

First order Taylor expansion of non-linear terms for small angles of ϕ

$$egin{aligned} \sin\left(\phi
ight) &= \sin\left(0
ight) + \cos(0)(\phi-0) \ &= \phi \ \cos(\phi) &= \cos(0) - \sin(0)(\phi-0) \ &= 1 \end{aligned}$$

PD Controller

Three outputs (y, z, ϕ) :

$$egin{aligned} \ddot{z}_{ctrl} &= \ddot{z}_d + K_{pz}(z_d - z) + K_{dz}(\dot{z}_d - \dot{z}) \ \ddot{y}_{ctrl} &= \ddot{y}_d + K_{py}(y_d - y) + K_{dy}(\dot{y}_d - \dot{y}) \ \ddot{\phi}_{ctrl} &= \ddot{\phi}_d + K_{p\phi}(\phi_d - \phi) + K_{d\phi}(\dot{\phi}_d - \dot{\phi}) \end{aligned}$$

Two inputs (F, τ) :

$$egin{aligned} u_1 &= mg + m\ddot{z}_{ctrl} \ u_2 &= I_{xx}\ddot{\phi}_{ctrl} \end{aligned}$$

Simulating wind

We model the wind acting on the drone by propagating the following Stochastic DE in the integral solver:

Ornstein-Uhlenbeck process:

$$dx_t = heta(\mu - x_t)dt + \sigma dW_t$$

Then produce a wind estimate by calculating component force produced in the direction of the wind by only looking at the outputs of the controller.

Project goals

- Benchmark wind estimates produced from Linear Quadratic Regulator vs PID controller
- Use different filtering (Kalman filter, partical filter) to produce a wind estimate
- Explore how changing the mass moment of inertia changes the certainty of the measurement
- Scale up the model to quad-copter and experimentally validate findings