Gombaosztályozó feladat ResNet50 és EfficientNet alapján

Bologa Eduárd

Kiss Hunor

Kozma Szabolcs

Pünkösti Györk

1. Bevezetés

A projekt célja egy képosztályozó modell fejlesztése, amely képes azonosítani és kategorizálni különböző gombafajokat. A feladat során 100 különböző gombafaj képeit használtuk fel, és két különböző mély tanulási modellt alkalmaztunk: a ResNet50 és az EfficientNet architektúrákat. Az első próbálkozás során a ResNet50-t használtuk, majd a modell finomításával és optimalizálásával áttértünk az EfficientNet-re, hogy jobban alkalmazkodjunk a feladathoz. A fejlesztési folyamat során számos kihívással szembesültünk, amit különböző optimalizációs technikák alkalmazásával igyekeztünk megoldani, hogy javítsuk a modellek teljesítményét.

A dokumentáció célja, hogy részletesen bemutassa az alkalmazott modelleket, a felmerült problémákat és azok megoldásait, valamint a modellek teljesítményét és az elért eredményeket. Az alábbiakban ismertetjük a régi ResNet50 modellt, az új ResNet50 implementációját és az EfficientNet modellt, végül pedig az egyes modellekhez tartozó eredményeket és azok elemzését.

2. Régi ResNet50 Modell

2.1. Problémák és nehézségek

Első lépésként a hagyományos ResNet50 architektúrát alkalmaztuk a gombaosztályozásra. Az adatokat egy zip fájlból, közvetlenül olvastuk be, ami nagyon lassú képbeltöltési időt biztosított a modell számára. Azonban, annak ellenére, hogy a képek gyorsabban betöltődtek, a modell eredményei elmaradtak a várakozásoktól. A validációs pontosság folyamatosan ingadozott 0 és 8 százalék között, ami arra utalt, hogy a modell nem volt képes megfelelően azonosítani a gombafajokat.

A tréning során nem láttunk jelentős fejlődést a modell teljesítményében, ami arra engedett következtetni, hogy a hálózat nem tanulta meg megfelelően a gombák jellemzőit. További problémák is felmerültek: a Google Colab környezetben a tanítás lassú volt, és gyakran megszakadt. Ha a modell nem tudta betölteni az összes képet a memóriába, akkor a RAM-korlátozások miatt a tanulás megszakadt, és az egész tanítási folyamat újraindításra kényszerült.

2.2. Képbetöltési Folyamat

A régi modellnél az **elérési utak** használata mellett a képek betöltése és feldolgozása időigényes volt, mivel minden egyes képet újra megnyitottunk és bezártunk, ami jelentősen lelassította a folyamatot. Mivel a gombafajok közötti különbségek finomak lehetnek, az adatok precíz feldolgozása rendkívül fontos, de a modell nem tudta ezt a lépést megfelelően kezelni.

2.3. Konklúzió

Összességében nézéve ez a megközelítés nem vont maga után nagyobb sikert, hiszen a kód nehézkesen fodult le, és szinte semmit nem tanult a rendszer.

3. Új ResNet50 modell

3.1. Új Implementációs Stratégia

Miután a régi ResNet50 modell nem hozott megfelelő eredményeket, úgy döntöttünk, hogy újraimplementáljuk a modellt TensorFlow alapú megoldásban, és eltávolítjuk a PyTorch-ot. A célunk az volt, hogy a tanítási folyamat gyorsabbá és stabilabbá váljon, miközben a gombaosztályozás specifikus igényeire is jobban reagálunk.

3.2. Képbetöltési Optimalizálás

Az új implementáció során a képek betöltésére az **OpenCV** könyvtárat használtuk. Ez lehetővé tette számunkra, hogy gyorsan és hatékonyan töltsük be a gombafajok képeit. Az adatfeldolgozási lépéseknél az **arány megtartására** helyeztük a hangsúlyt, így a képek nem torzultak el, és a fontos jellemzők nem vesztek el az átméretezéskor. A **padding** használata biztosította, hogy a képek megtartsák a megfelelő arányokat, ami javította a modell tanulási teljesítményét.

3.3. Adatfeldolgozás és Loaddata Függvény

A Loaddata függvény kulcsszerepet játszott az adatok előkészítésében, mivel lehetővé tette a képek és címkék gyors és hatékony kezelését. A címkéket one-hot enkódoltuk, hogy a modell könnyen kezelhesse az osztályokat. Az adatok felosztása érdekében KFold kereszt-validációt alkalmaztunk, amely biztosította, hogy minden egyes adatot különböző mintákra bontottunk, így a tanulás nem a tanítóadatokhoz illeszkedett túlzottan.

3.4. A Modell Architektúrája

A ResNet50 modell fejének helyére AveragePooling réteget alkalmaztunk, amely csökkentette a modell komplexitását, miközben megtartotta a fontos információkat. A képek vektorizálása után két lineáris réteget alkalmaztunk, mindegyikben 256 neuronnal. A túltanulás (overfitting) elkerülése érdekében Dropout rétegeket is hozzáadtunk a modellhez. A tesztelés során azt tapasztaltuk, hogy a két 256-os réteg megfelelő eredményeket hozott, de úgy gondoltuk, hogy több réteg hozzáadásával hosszú távon javulhatnak az eredmények.

3.5. Metrikák és Eredmények

A tanulás során folyamatosan nyomon követtük a **pontosságot** és a **veszteséget**, és az eredmények alapján a validációs pontosság stabilabbá vált. Az új ResNet50 modell képes volt

megfelelően tanulni a gombák jellemzőiből, és a gombaosztályozás pontossága is javult. A modellezési folyamat gyorsabb lett, és jobban alkalmazkodott a Google Colab környezethez.

4. Új EfficientNet Modell

4.1. Különbségek és Fejlesztés

A EfficientNet modell egy továbbfejlesztett változata a hagyományos ResNet architektúráknak. Az EfficientNet automatikusan optimalizálja a hálózati rétegeket, és kevesebb számítási erőforrást igényel, miközben jobb teljesítményt biztosít. A gombaosztályozás során az EfficientNet még hatékonyabban képes volt felismerni a gombafajokat, miközben csökkentette a paraméterek számát.

4.2. Eredmények

Az EfficientNet modell tesztelése során az alábbi eredményeket kaptuk:

- Az EfficientNet magasabb validációs pontosságot ért el, mint a ResNet50.
- Kevesebb memóriahasználatot igényelt, amely különösen hasznos volt a Google Colab környezetben, ahol a memória erőforrások korlátozottak.
- Az EfficientNet gyorsabban konvergált a tanulás során, és jobb eredményeket produkált, mivel hatékonyabban használta fel az erőforrásokat.

A modell teljesítménye az alábbi két szélsőséges esetben mutatta meg a legjobban és legrosszabban a képességeit:

- Legjobb Eredmény: A legjobb teljesítményt az hozta, amikor a modell 96.20%-os pontosságot ért el a tanításhoz használt adatokon, és a validációs pontosság 95.00%-ra emelkedett. Az elvesztett érték (loss) 0.1110 volt, míg a validációs veszteség 0.0888. Ez a csúcsérték azt jelzi, hogy a modell sikeresen alkalmazkodott a gombafajok osztályozásához, és jól generalizált az ismeretlen, validációs adatokra is.
- Legrosszabb Eredmény: A leggyengébb teljesítmény akkor jelentkezett, amikor a modell 92.23%-os pontosságot ért el a tanításhoz használt adatokon, míg a validációs pontosság 95.03% volt. A veszteség értéke 0.3860, a validációs veszteség pedig 0.1870. Bár a kezdeti

eredmények nem voltak kiemelkedően alacsonyak, a modell még nem volt kellően finomhangolva, hogy elérje a legjobb teljesítményt.

Ezek az eredmények azt mutatják, hogy az EfficientNet sikeresen alkalmazható a gombaosztályozásban, és képes nagy pontossággal kezelni a komplex, 100 gombafajból álló adatokat, miközben fenntartja a gyors tanulást és az optimális számítási erőforrás-használatot.

5. Eredmények és Összegzés

5.1 Modellek Eredményei

A tesztelés és az elemzés alapján a három modell alábbi eredményeket hozta:

- Régi ResNet50: Az eredmények ingadoztak, és a tanulás nem volt stabil.
- Új ResNet50: Az új modell stabilabbá vált, és a gombák felismerésében jelentős javulást eredményezett.
- EfficientNet: Az EfficientNet a legjobb eredményeket hozta, mind a pontosság, mind a memóriahasználat szempontjából.

5.2 Colab Hibák

A Google Colab környezetben a memóriahibák és a tanulási folyamat megszakadása továbbra is problémát jelentettek. Azonban a **modell optimalizálása és a memóriahasználat javítása** révén az új modellek már képesek voltak jobban kezelni a rendelkezésre álló erőforrásokat.

5.3. Összegzés

Összességében a feladat nagyon érdekes és hasznos gyakorlást képes nyújtani az adatelemzésbe, amin keresztül rengeteget lehet tanulni a mélytanulás területén.