E-mail Threats

RFC 4686 (Analysis of Threats Motivating DomainKeys Identified Mail) describes the threats being addressed by DKIM in terms of the characteristics, capabilities, and location of potential attackers.

CHARACTERISTICS RFC 4686 characterizes the range of attackers on a spectrum of three levels of threat.

- 1. At the low end are attackers who simply want to send e-mail that a recipient does not want to receive. The attacker can use one of a number of commercially available tools that allow the sender to falsify the origin address of messages. This makes it difficult for the receiver to filter spam on the basis of originating address or domain.
- 2. At the next level are professional senders of bulk spam mail. These attackers often operate as commercial enterprises and send messages on behalf of third parties. They employ more comprehensive tools for attack, including Mail Transfer Agents (MTAs) and registered domains and networks of compromised computers (zombies), to send messages and (in some cases) to harvest addresses to which to send.
- 3. The most sophisticated and financially motivated senders of messages are those who stand to receive substantial financial benefit, such as from an e-mail-based fraud scheme. These attackers can be expected to employ all of the above mechanisms and additionally may attack the Internet infrastructure itself, including DNS cache-poisoning attacks and IP routing attacks.

CAPABILITIES RFC 4686 lists the following as capabilities that an attacker might have.

- 1. Submit messages to MTAs and Message Submission Agents (MSAs) at multiple locations in the Internet.
- 2. Construct arbitrary Message Header fields, including those claiming to be mailing lists, resenders, and other mail agents.
- 3. Sign messages on behalf of domains under their control.
- 4. Generate substantial numbers of either unsigned or apparently signed messages that might be used to attempt a denial-of-service attack.
- 5. Resend messages that may have been previously signed by the domain.
- 6. Transmit messages using any envelope information desired.
- 7. Act as an authorized submitter for messages from a compromised computer.
- 8. Manipulation of IP routing. This could be used to submit messages from specific IP addresses or difficult-to-trace addresses, or to cause diversion of messages to a specific domain.
- 9. Limited influence over portions of DNS using mechanisms such as cache poisoning. This might be used to influence message routing or to falsify advertisements of DNS-based keys or signing practices.

- 10. Access to significant computing resources, for example, through the conscription of worm-infected "zombie" computers. This could allow the "bad actor" to perform various types of brute-force attacks.
- 11. Ability to eavesdrop on existing traffic, perhaps from a wireless network.

Location DKIM focuses primarily on attackers located outside of the administrative units of the claimed originator and the recipient. These administrative units frequently correspond to the protected portions of the network adjacent to the originator and recipient. It is in this area that the trust relationships required for authenticated message submission do not exist and do not scale adequately to be practical. Conversely, within these administrative units, there are other mechanisms (such as authenticated message submission) that are easier to deploy and more likely to be used than DKIM. External bad actors are usually attempting to exploit the "any-toany" nature of e-mail that motivates most recipient MTAs to accept messages from anywhere for delivery to their local domain. They may generate messages without signatures, with incorrect signatures, or with correct signatures from domains with little traceability. They may also pose as mailing lists, greeting cards, or other agents that legitimately send or resend messages on behalf of others.

DKIM Strategy

DKIM is designed to provide an e-mail authentication technique that is transparent to the end user. In essence, a user's e-mail message is signed by a private key of the administrative domain from which the e-mail originates. The signature covers all of the content of the message and some of the RFC 5322 message headers. At the receiving end, the MDA can access the corresponding public key via a DNS and verify the signature, thus authenticating that the message comes from the claimed administrative domain. Thus, mail that originates from somewhere else but claims to come from a given domain will not pass the authentication test and can be rejected. This approach differs from that of S/MIME and PGP, which use the originator's private key to sign the content of the message. The motivation for DKIM is based on the following reasoning:²

- 1. S/MIME depends on both the sending and receiving users employing S/MIME. For almost all users, the bulk of incoming mail does not use S/MIME, and the bulk of the mail the user wants to send is to recipients not using S/MIME.
- 2. S/MIME signs only the message content. Thus, RFC 5322 header information concerning origin can be compromised.
- 3. DKIM is not implemented in client programs (MUAs) and is therefore transparent to the user; the user need not take any action.
- 4. DKIM applies to all mail from cooperating domains.
- 5. DKIM allows good senders to prove that they did send a particular message and to prevent forgers from masquerading as good senders.

² The reasoning is expressed in terms of the use of S/MIME. The same argument applies to PGP.

DNS = Domain Name System

MDA = Mail Delivery Agent

MSA = Mail Submission Agent

MTA = Message Transfer Agent

MUA = Message User Agent

Figure 8.10 Simple Example of DKIM Deployment

Figure 8.10 is a simple example of the operation of DKIM. We begin with a message generated by a user and transmitted into the MHS to an MSA that is within the user's administrative domain. An e-mail message is generated by an e-mail client program. The content of the message, plus selected RFC 5322 headers, is signed by the e-mail provider using the provider's private key. The signer is associated with a domain, which could be a corporate local network, an ISP, or a public e-mail facility such as gmail. The signed message then passes through the Internet via a sequence of MTAs. At the destination, the MDA retrieves the public key for the incoming signature and verifies the signature before passing the message on to the destination e-mail client. The default signing algorithm is RSA with SHA-256. RSA with SHA-1 also may be used.

DKIM Functional Flow

Figure 8.11 provides a more detailed look at the elements of DKIM operation. Basic message processing is divided between a signing Administrative Management Domain (ADMD) and a verifying ADMD. At its simplest, this is between the originating ADMD and the delivering ADMD, but it can involve other ADMDs in the handling path.

Signing is performed by an authorized module within the signing ADMD and uses private information from a Key Store. Within the originating ADMD,

Figure 8.11 DKIM Functional Flow

this might be performed by the MUA, MSA, or an MTA. Verifying is performed by an authorized module within the verifying ADMD. Within a delivering ADMD, verifying might be performed by an MTA, MDA or MUA. The module verifies the signature or determines whether a particular signature was required. Verifying the signature uses public information from the Key Store. If the signature passes, reputation information is used to assess the signer and that information is passed to the message filtering system. If the signature fails or there is no signature using the author's domain, information about signing practices related to the author can be retrieved remotely and/or locally, and that information is passed to the message filtering system. For example, if the sender (e.g., gmail) uses DKIM but no DKIM signature is present, then the message may be considered fraudulent.

The signature is inserted into the RFC 5322 message as an additional header entry, starting with the keyword Dkim-Signature. You can view examples from your own incoming mail by using the View Long Headers (or similar wording) option for an incoming message. Here is an example:

Dkim-Signature:

v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkeysignature:mime-version:received:date: message-id:subject :from:to:content-type: content-transfer-encoding; bh=5mZvQDyCRuyLb1Y28K4zqS2MPOemFToDBqvbJ 7G090s=; b=PcUvPSDygb4ya5Dyj1rbZGp/VyRiScuaz7TTG J5qW5slM+klzv6kcfYdGDHzEVJW+Z FetuPfF1ETOVhELtwH0zjSccOyPkEiblOf6gILO bm3DDRm3Ys1/FVrbhVOlA+/jH9Aei uIIw/5iFnRbSH6qPDVv/beDQqAWQfA/wF705k=

Before a message is signed, a process known as canonicalization is performed on both the header and body of the RFC 5322 message. Canonicalization is necessary to deal with the possibility of minor changes in the message made en route, including character encoding, treatment of trailing white space in message lines, and the "folding" and "unfolding" of header lines. The intent of canonicalization is to make a minimal transformation of the message (for the purpose of signing; the message itself is not changed, so the canonicalization must be performed again by the verifier) that will give it its best chance of producing the same canonical value at the receiving end. DKIM defines two header canonicalization algorithms ("simple" and "relaxed") and two for the body (with the same names). The simple algorithm tolerates almost no modification, while the relaxed algorithm tolerates common modifications.

The signature includes a number of fields. Each field begins with a tag consisting of a tag code followed by an equals sign and ends with a semicolon. The fields include the following:

- v= DKIM version/
- a= Algorithm used to generate the signature; must be either rsa-shal or rsa-sha256
- **c=** Canonicalization method used on the header and the body.
- **d=** A domain name used as an identifier to refer to the identity of a responsible person or organization. In DKIM, this identifier is called the Signing Domain IDentifier (SDID). In our example, this field indicates that the sender is using a gmail address.
- s= In order that different keys may be used in different circumstances for the same signing domain (allowing expiration of old keys, separate departmental signing, or the like), DKIM defines a selector (a name associated with a key) that is used by the verifier to retrieve the proper key during signature verification.

- h= Signed Header fields. A colon-separated list of header field names that identify the header fields presented to the signing algorithm. Note that in our example above, the signature covers the domainkey-signature field. This refers to an older algorithm (since replaced by DKIM) that is still in use.
- bh= The hash of the canonicalized body part of the message. This provides additional information for diagnosing signature verification failures.
- **b**= The signature data in base64 format; this is the encrypted hash code.

8.10 DOMAIN-BASED MESSAGE AUTHENTICATION, REPORTING, AND CONFORMANCE

Domain-Based Message Authentication, Reporting, and Conformance (DMARC) allows e-mail senders to specify policy on how their mail should be handled, the types of reports that receivers can send back, and the frequency those reports should be sent. It is defined in RFC 7489 (Domain-based Message Authentication, Reporting, and Conformance, March 2015).

DMARC works with SPF and DKIM. SPF and DKM enable senders to advise receivers, via DNS, whether mail purporting to come from the sender is valid, and whether it should be delivered, flagged, or discarded. However, neither SPF nor DKIM include a mechanism to tell receivers if SPF or DKIM are in use, nor do they have feedback mechanism to inform senders of the effectiveness of the anti-spam techniques. For example, if a message arrives at a receiver without a DKIM signature, DKIM provides no mechanism to allow the receiver to learn if the message is authentic but was sent from a sender that did not implement DKIM, or if the message is a spoof. DMARC addresses these issues essentially by standardizing how e-mail receivers perform e-mail authentication using SPF and DKIM mechanisms.

Identifier Alignment

DKIM, SPF, and DMARC authenticate various aspects of an individual message. DKIM authenticates the domain that affixed a signature to the message. SPF focuses on the SMTP envelope, defined in RFC 5321. It can authenticate either the domain that appears in the MAIL FROM portion of the SMTP envelope or the HELO domain, or both. These may be different domains, and they are typically not visible to the end user.

DMARC authentication deals with the From domain in the message header, as defined in RFC 5322. This field is used as the central identity of the DMARC mechanism because it is a required message header field and therefore guaranteed to be present in compliant messages, and most MUAs represent the RFC 5322 From field as the originator of the message and render some or all of this header field's content to end users. The e-mail address in this field is the one used by end users to identify the source of the message and therefore is a prime target for abuse.

DMARC requires that From address match (be aligned with) an Authenticated Identifier from DKIM or SPF. In the case of DKIM, the match is made between the DKIM signing domain and the From domain. In the case of SPF, the match is between the SPF-authenticated domain and the From domain.

DMARC on the Sender Side

A mail sender that uses DMARC must also use SPF or DKIM, or both. The sender posts a DMARC policy in the DNS that advises receivers on how to treat messages that purport to originate from the sender's domain. The policy is in the form of a DNS TXT resource record. The sender also needs to establish e-mail addresses to receive aggregate and forensic reports. As these e-mail addresses are published unencrypted in the DNS TXT RR, they are easily discovered, leaving the poster subject to unsolicited bulk e-mail. Thus, the poster of the DNS TXT RR needs to employ some kind of abuse countermeasures.

Similar to SPF and DKIM, the DMARC policy in the TXT RR is encoded in a series of tag=value pairs separated by semicolons. Table 8.8 describes the common tags.

Once the DMARC RR is posted, messages from the sender are typically processed as follows:

- 1. The domain owner constructs an SPF policy and publishes it in its DNS database. The domain owner also configures its system for DKIM signing. Finally, the domain owner publishes via the DNS a DMARC message-handling policy.
- 2. The author generates a message and hands the message to the domain owner's designated mail submission service.
- 3. The submission service passes relevant details to the DKIM signing module in order to generate a DKIM signature to be applied to the message.
- 4. The submission service relays the now-signed message to its designated transport service for routing to its intended recipient(s).

DMARC on the Receiver Side

A message generated on the sender side may pass through other relays but eventually arrives at a receiver's transport service. The typical processing order for DMARC on the receiving side is the following:

- 1. The receiver performs standard validation tests, such as checking against IP blocklists and domain reputation lists, as well as enforcing rate limits from a particular source.
- 2. The receiver extracts the RFC 5322 From address from the message. This must contain a single, valid address or else the mail is refused as an error.
- 3. The receiver queries for the DMARC DNS record based on the sending domain. If none exists, terminate DMARC processing.
- 4. The receiver performs DKIM signature checks. If more than one DKIM signature exists in the message, one must verify.
- 5. The receiver queries for the sending domain's SPF record and performs SPF validation checks.
- 6. The receiver conducts Identifier Alignment checks between the RFC 5321 From and the results of the SPF and DKIM records (if present).

Table 8.8 DMARC Tag and Value Descriptions

Tag (Name)	Description
v= (Version)	Version field that must be present as the first element. By default the value is always DMARC1 .
p= (Policy)	Mandatory policy field. May take values none or quarantine or reject . This allows for a gradually tightening policy where the sender domain recommends no specific action on mail that fails DMARC checks (p= none), through treating failed mail as suspicious (p= quarantine), to rejecting all failed mail (p= reject), preferably at the SMTP transaction stage.
aspf= (SPF Policy)	Values are r (default) for relaxed and s for strict SPF domain enforcement. Strict alignment requires an exact match between the From address domain and the (passing) SPF check must exactly match the MailFrom address (HELO address). Relaxed requires that only the From and MailFrom address domains be in alignment. For example, the MailFrom address domain smtp.example.org and the From address announce@example.org are in alignment, but not a strict match.
adkim= (DKIM Policy)	Optional. Values are r (default) for relaxed and s for strict DKIM domain enforcement. Strict alignment requires an exact match between the From domain in the message header and the DKIM domain presented in the (d= DKIM), tag. Relaxed requires only that the domain part is in alignment (as in aspf).
fo= (Failure reporting options)	Optional. Ignore if a ruf argument is not also present. Value 0 indicates the receiver should generate a DMARC failure report if all underlying mechanisms fail to produce an aligned pass result. Value 1 means generate a DMARC failure report if any underlying mechanism produces something other than an aligned pass result. Other possible values are d (generate a DKIM failure report if a signature failed evaluation), and s (generate an SPF failure report if the message failed SPF evaluation). These values are not exclusive and may be combined.
ruf=	Optional, but requires the fo argument to be present. Lists a series of URIs (currently just mailto: <emailaddress>) that list where to send forensic feedback reports. This is for reports on message-specific failures.</emailaddress>
rua=	Optional list of URIs (like in ruf=, using the mailto: URI) listing where to send aggregate feedback back to the sender. These reports are sent based on the interval requested using the ri= option with a default of 86400 seconds if not listed.
ri= (Reporting interval)	Optional with the default value of 86400 seconds. The value listed is the reporting interval desired by the sender.
pct= (Percent)	Optional with the default value of 100 . Expresses the percentage of a sender's mail that should be subject to the given DMARC policy. This allows senders to ramp up their policy enforcement gradually and prevent having to commit to a rigorous policy before getting feedback on their existing policy.
sp= (Receiver Policy)	Optional with a default value of none . Other values include the same range of values as the p= argument. This is the policy to be applied to mail from all identified subdomains of the given DMARC RR.

- 7. The results of these steps are passed to the DMARC module along with the Author's domain. The DMARC module attempts to retrieve a policy from the DNS for that domain. If none is found, the DMARC module determines the organizational domain and repeats the attempt to retrieve a policy from the DNS.
- 8. If a policy is found, it is combined with the Author's domain and the SPF and DKIM results to produce a DMARC policy result (a "pass" or "fail") and can optionally cause one of two kinds of reports to be generated.

- 9. Recipient transport service either delivers the message to the recipient inbox or takes other local policy action based on the DMARC result.
- 10. When requested, Recipient transport service collects data from the message delivery session to be used in providing feedback.

Figure 8.12, based on one at DMARC.org, summarizes the sending and receiving functional flow.

Figure 8.12 DMARC Functional Flow

DMARC Reports

DMARC reporting provides the sender's feedback on their SPF, DKIM, Identifier Alignment, and message disposition policies, which enable the sender to make these policies more effective. Two types of reports are sent: aggregate reports and forensic reports.

Aggregate reports are sent by receivers periodically and include aggregate figures for successful and unsuccessful message authentications, including:

- The sender's DMARC policy for that interval.
- The message disposition by the receiver (i.e., delivered, quarantined, rejected).
- SPF result for a given SPF identifier.
- DKIM result for a given DKIM identifier.
- Whether identifiers are in alignment or not.
- Results classified by sender subdomain.
- The sending and receiving domain pair.
- The policy applied, and whether this is different from the policy requested.
- The number of successful authentications.
- Totals for all messages received.

This information enables the sender to identify gaps in e-mail infrastructure and policy. SP 800-177 recommends that a sending domain begin by setting a DMARC policy of **p= none**, so that the ultimate disposition of a message that fails some check is determined by the receiver's local policy. As DMARC aggregate reports are collected, the sender will have a quantitatively better assessment of the extent to which the sender's e-mail is authenticated by outside receivers, and will be able to set a policy of p = reject, indicating that any message that fails the SPF, DKIM, and alignment checks really should be rejected. From their own traffic analysis, receivers can develop a determination of whether a sender's p=reject policy is sufficiently trustworthy to act on.

A forensic report helps the sender refine the component SPF and DKIM mechanisms as well as alerting the sender that their domain is being used as part of a phishing/spam campaign. Forensic reports are similar in format to aggregation reports, with these changes:

- Receivers include as much of the message and message header as is reasonable to allow the domain to investigate the failure. Add an Identity-Alignment field, with DKIM and SPF DMARC-method fields as appropriate.
- Optionally add a Delivery-Result field.
- Add DKIM Domain, DKIM Identity, and DKIM selector fields, if the message was DKIM signed. Optionally also add DKIM Canonical header and body fields.
- Add an additional DMARC authentication failure type, for use when some authentication mechanisms fail to produce aligned identifiers.