- 1. Ch. 5
 - (a) Section 5.2
 - i. Theorem 5.2.4 (p.212)

Let x_1, \ldots, x_n be any numbers and $\bar{x} = \frac{x_1 + \cdots + x_n}{n}$. Then:

•
$$min_a \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n (x_i - \bar{x})^2$$

•
$$(n-1)s^2 = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$$

ii. Lemma 5.2.5 (p.213)

Let X_1, \ldots, X_n be a random sample from a population and let g(x) be a function such that $\mathbb{E}[X_1]$ and $Var(g(X_1))$ exist. Then:

•
$$\mathbb{E}\left[\sum_{i=1}^{n} g(X_i)\right] = n(\mathbb{E}[g(X_1)])$$

•
$$Var(\sum_{i=1}^{n} g(X_i)) = n(Var(g(X_1)))$$

iii. Theorem 5.2.6 (p.213)

Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then:

•
$$\mathbb{E}[\bar{X}] = \mu$$

•
$$Var(\bar{X}) = \frac{\sigma^2}{n}$$

•
$$\mathbb{E}[S^2] = \sigma^2$$

iv. Theorem 5.2.7 (p.215)

Let X_1, \ldots, X_n be a random sample from a population with mgf $M_X(t)$. Then the mgf of the sample mean is:

•
$$M_{\bar{X}}(t) = [M_X(t/n)^n]$$

- v. Theorem 5.2.9 (p.215)
 - If X and Y are independent continuous random variables with pdfs $f_X(x)$ and $f_Y(y)$, then the pdf of Z = X + Y is:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z-w) dw.$$

vi. Theorem 5.2.11(p.217)

Suppose X_1, \ldots, X_n is a random sample from a pdf or pmf $f(x \mid \theta)$, where:

$$f(x \mid \theta) = h(x)c(\theta)exp(\sum_{i=1}^{k} w_i(\theta)t_i(x))$$

is a member of the exponential family. Define statistics T_1, \ldots, T_k by:

$$T_i(X_1, \dots, X_n) = \sum_{j=1}^n t_i(X_j), i = 1, \dots, k.$$

If the set $\{(w_1(\theta), w_2(\theta), \dots, w_k(\theta)), \theta \in \Theta\}$ contains an open subset of \mathbb{R}^k , then the distribution of (T_1, \dots, T_k) is an exponential family of the form:

$$f_T(u_1,\ldots,u_k\mid\theta)=H(u_1,\ldots,u_k)[c(\theta)]^nexp(\sum_{i=1}^k w_i(\theta)u_i).$$