Facial Emotion Recognition

Group 9 Members

Huang, Huize - hh2816

Wang, Mengchen - mw33714

Wang, Rui - rw2795

Wu, Jiadong - jw3856

Zhang, Qin - qz2387

Presenter: Zhang, Qin

Date: April 1st, 2020

Model

- Gradient Boosting Baseline
- Neutral Network Advanced
- Linear Discriminant Analysis
- Logistic Regression
- Support Vector Machine
- Random Forest
- Extreme Gradient Boosting
- Ensemble Extreme Gradient Boosting and Support Vector Machine

Baseline model: Gradient Boosting Machine (GBM)

- ➤ Testing Accuracy : 40.4%
- > Time for training model GBM : 1816.61s
- > Pros:
 - accuracy not bad
 - no need for data pre-processing
- > Cons:
 - computational expensive
 - less interpretable

n.trees	shrinkage	interaction.depth	n.minobsinnode	
300	0.15	2	10	

Advanced model: Neutral Network (NN)

- ➤ Testing Accuracy : 56.2%
- ➤ Time for training model NN: 35s
- ➤ The Neural Network gives us a good prediction accuracy within a very short time.

Epoches	Training Accuracy	Testing Accuracy
20	66.5%	56.2%

Linear Discriminant Analysis (LDA) with PCA

Input : Fiducial Points Coordinate With PCA

Testing Accuracy: 44.1%

Time for training model LDA: 88.012s

Logistic Regression Model (LR)

- ➤ Input : Fiducial Points Coordinate With PCA
- Optimal Lambda : 0.0079388
- Testing Accuracy: 39.2%
- Time for training model LR: 421.2s

Find Optimal Lambda

222 218 214 208 200 187 171 135 85 25 7 2 0 (

Support Vector Machine (SVM)

- > The global argument we need to consider is stated below:
 - kernel: the kernel used in training and predicting
 - degree: parameter needed for kernel of type polynomial (default: 3)
 - gamma: parameter needed for all kernels except linear (default: 1/(data dimension))
- > Testing Accuracy: 51.4%
- ➤ Time for training model SVM : 117.39s

Random Forest (RF)

- ➤ The global argument we need to consider is stated below :
 - ntrees: the number of trees in the forest.
 - mtry: the number of features to consider when looking for the best split.
 - max_depth: the maximum depth of each tree. optimal parameter as mtry = 77
- Testing Accuracy: 41.4%
- Time for training model RF: 519.99s

Extreme Gradient Boosting (XGBoost)

- > Testing Accuracy: 53.6%
- ➤ Time for training model XGBoost: 533.71s
- > Pros:
 - Higher accuracy
- Higher efficiency in both training and testing process

booster	objective	eval_metric	lambda	Lambda_bias	alpha
gblinear	multi:softmax	mlogloss	1.46	0.23	0.0198

Ensemble Extreme Gradient Boosting (XGBoost) and Support Vector Machine (SVM)

- > XGBoost and SVM (With some seed, SVM has the accuracy above 50%) have better performance than others.
- ➤ Build a simple ensemble model based on XGBoost result and SVM result, calculating a weighted average of the probability matrix then deciding the final prediction, will increase the accuracy.
- > Testing Accuracy: 56%
- > Time for training model Ensemble model XGBoost and SVM: 701.346s

Summary

	GBM - baseline	NN - advanced	LDA	LR	SVM	RF	XGBoost	Ensemble model XGBoost and SVM
Testing accuracy	40.4%	56.2%	44.1%	39.2%	51.4%	41.4%	53.6%	56%
Time for training model	1816.61s	35s	88.01s	421.23s	117.39s	519.99s	533.71s	701.346s
Time for testing model	13.2s	0.274 s	4.26s	0.35s	8.83s	0.608s	0.54s	9.822s

