Aufgabenblatt 3

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2022

Prof. Dr. Tim Downie

Naiver Algorithmus und LP in Normalform

mit Lösungen

Aufgabe 1 ★ LP Optimierung: Naiver Algorithmus

Gegeben ist die folgende LP.

maximiere	$Z(x_1, x_2) = 2x_1 + 3x_2$	
unter den Nebenbedingungen	$x_1 + 2x_2 \leqslant 6$	R1
	$2x_1 + x_2 \leqslant 8$	R2
	$x_1 \geqslant 0$	R3
	$x_2 \geqslant 0$	R4

Verwenden Sie den naiven Algorithmus durch die folgenden Schritte. Am jeden Schritt ergänzen Sie die Tabelle unten.

- (a) Für jede Kombination zweier Nebenbedingungen R1, ..., R4. Bestimmen Sie den Schnittpunkt der entsprechenden Gleichungen.
- (b) Bestimmen, ob der Eckpunkt zulässig ist.
- (c) Rechnen Sie den Zielfunktionswert für die zulässigen Eckpunkte.
- (d) Bestimmen Sie die optimale Lösung.

Bedingungen	Schnittpunkt (x_1, x_2)	Zulässig?	Z(x,y)
R3, R4			
R2, R4			
R1, R4			
R2, R3			
R1, R3			
R1, R2			

Bedingungen	Eckpunkt (x_1, x_2)	Zulässig?	Z(x,y)
R3, R4	(0, 0)	J a	0
R2, R4	(4,0)	Ja	8
R1, R4	(6,0)	Nein (R2)	_
R2, R3	(0,8)	Nein (R1)	
R1, R3	(0,3)	J a	9
R1, R2	$(3\frac{1}{3}, 1\frac{1}{3})$	J a	$10\frac{2}{3}$

Aufgabe 2 ★ LP in Normalform

- (a) Zur LP in Aufgabe 1 fügen Sie die Schlupfvariablen y_1 und y_2 hinzu um die LP in Normalform zu stellen.
- (b) Für jede Punkt aus der obigen Tabelle (sowohl zulässig als auch unzulässig) bestimmen Sie y_1 und y_2 und ergänzen Sie die folgende Tabelle. Stellen Sie sicher, dass genau zwei Werte von x_1, x_2, y_1 und y_1 gleich Null sind, und die nicht zulässige Punkte haben negativen Schlupf.

Bedingungen	Eckpunkt	Schlupf	Zulässig?
	(x_1, x_2)	y_1 , y_2	
R3, R4			
R2, R4			
R1, R4			
R2, R3			
R1, R3			
R1, R2			

(a)

$$\begin{array}{ll} \textit{maximiere} & Z(x_1,x_2)=2x_1+3x_2\\ \textit{unter den Nebenbedingungen} & x_1+2x_2+y_1=6\\ & 2x_1+x_2+y_2=8\\ & x_1,x_2,y_1,y_2\geqslant 0 \end{array}$$

	Bedingungen	Eckpunkt	Schlupf	Zulässig?
		(x_1,x_2)	y_1 , y_2	
	R3, R4	(0, 0)	6,8	J a
(7.)	R2, R4	(4,0)	2, 0	Ja
<i>(b)</i>	R1, R4	(6,0)	0, -4	Nein (R2)
	R2, R3	(0, 8)	-10, 0	Nein (R1)
	R1, R3	(0, 3)	0, 5	Ja
	R1, R2	$(3\frac{1}{3}, 1\frac{1}{3})$	0, 0	Ja

Aufgabe 3 Anwendungsbeispiel: Damen- und Herrenstiefel

Eine Stiefelfabrik herstellt Damen- und Herrenstiefel. Für die nächste Produktionsperiode sind 10 000 Arbeitsstunden der Mitarbeiter und 2 000 Arbeitsstunden der Maschinen geplant. Dabei braucht ein Damenstiefel 25 Std Verarbeitung und 6 Std Maschinenarbeit, und ein Herrenstiefel 18 Std Verarbeitung und 3 Std Maschinenlaufzeit. Zur Verfügung steht insgesamt 200 000 cm² Leder. Ein

Damenstiefel benötigt 400 cm^2 und ein Herrenstiefel 450 cm^2 Leder. Der Gewinn pro Damenstiefel betragt ≤ 25 und pro Herrenstiefel ≤ 20 .

- (a) Fassen Sie die Produktionsdaten in der Tabelle zusammen.
- (b) Geben Sie das LP in Grundform an.
- (c) Geben Sie das LP in Normalform an.

Es ist nicht nötig die optimale Lösung zu finden. Diese werden Sie später im Kurs lösen.

	Damenstiefel	Herrenstiefel	Verfugbarkeit
Produktionszeit (Std)	25	18	10 000
Maschinenelaufzeit (Std)	6	3	2 000
Lederbedarf (cm ³)	400	450	200 000
Gewinn (€)	25	20	

LP in Grundform

 $x_1 = Anzahl der Damenstiefel, x_2 = Anzahl der Herrenstiefel.$

Maximiere Gewinn
$$\max Z(x_1, x_2) = 25x_1 + 20x_2$$

$$25x_1 + 18x_2 \leqslant 10000$$
$$6x_1 + 3x_2 \leqslant 2000$$
$$400x_1 + 450x_2 \leqslant 200000$$
$$x_1, x_2 \geqslant 0$$

Produktionszeit in Stunden Maschinenelaufzeit in Stunden Lederbedarf in cm²

LP in Normalform

 $x_1 = Anzahl der Damenstiefel, x_2 = Anzahl der Herrenstiefel.$

Maximiere Gewinn
$$\max Z(x_1, x_2) = 25x_1 + 20x_2$$

$$25x_1 + 18x_2 + y_1 = 10000$$
$$6x_1 + 3x_2 + y_2 = 2000$$
$$400x_1 + 450x_2 + y_3 = 200000$$
$$x_1, x_2, y_1, y_2, y_3 \ge 0$$

Produktionszeit in Stunden Maschinenelaufzeit in Stunden Lederbedarf in cm²