Classification Methods

Tozammel Hossain

What are classification methods?

A subclass of supervised learning methods

- (Input, output) pairs are given for learning
- Learn a map from input → output

Prediction Task

- Given a new instance/example, label/tag/annotate the instance/example with a class label
- Easier to evaluate as ground truth is available

Classification setting

Given

- A dataset D
 - D = {d1,d2,..} is a set of rows/instances/examples
 - Each instance in D is described by values for a set of features/attributes X = {x1,x2,...}
 - Each instance in D is labeled with a class, from a mutually exclusive set y = {y1,y2,...}
- Learning
 - class_label = f(input instance)
- Classify
 - New instances (test dataset) into a class

X ₁	X ₂	 Xn	y
			y ₁
			y2
			y2
			Y3
			y1

Schematic

Applications of classification

Classifying

- Emails: spam/not spam
- Reviews: good/bad/nasty
- Commentaries: liberal/conservative
- Galaxies: elliptical/spiral/bentdouble
- Genes: cancer-implicated vs not
- Archeological findings: different eras
- Federalist papers: Madison/Hamilton
- Facebook acquaintances: friends/family/frenemies
- Twitter account: real/fake

Common theme

Inputs

- Can be any mix of continuous and discrete variables
- Can be nominal, ordinal, interval, ratio

Outputs

- Classes are assumed to nominal, discrete
 - Good idea for you to characterize the variables in your dataset before attempting any data mining
 - Most of the hard work goes into properly encoding the features!

Some typical, wrong, assumptions

Assumption 1:

 Data from the training and test sets are drawn from the same distribution

Assumption 2:

Each instance is labeled with only one class

Assumption 3:

Penalty for misclassification the same either way

Classification of classifiers

- Rule-based
 - Decision tree (M1)
- Probabilistic
 - Naïve Bayes classifier (M2)
- Max-margin classifier
 - SVM (M5)
- Neural network (M8)

Baseline or Dummy Classifiers

- Classifiers with simple rules
- May not use any features for prediction
 - Use only the class variable to make prediction
- A proposed model should perform better than baselines

Some classification baselines

Most frequent

Pick the dominant class value

Prior

- Estimate the prior probability distr. of class
- Predict each instance with the class that has max prior

Uniform

- Each class is equally probable: Pr(a_class_val) = 1/num_class

Stratified

- Get prior distribution of class variable
- Sample class value from the distribution

Baselines Example

PlayTennis: training examples

rayrennes training examples								
Day	Outlook	Temperature	Humidity	Wind	PlayTennis			
D1	Sunny	Hot	High	Weak	No			
D2	Sunny	Hot	High	Strong	No			
D3	Overcast	Hot	High	Weak	Yes			
D4	Rain	Mild	High	Weak	Yes			
D5	Rain	Cool	Normal	Weak	Yes			
D6	Rain	Cool	Normal	Strong	No			
D7	Overcast	Cool	Normal	Strong	Yes			
D8	Sunny	Mild	High	Weak	No			
D9	Sunny	Cool	Normal	Weak	Yes			
D10	Rain	Mild	Normal	Weak	Yes			
D11	Sunny	Mild	Normal	Strong	Yes			
D12	Overcast	Mild	High	Strong	Yes			
D13	Overcast	Hot	Normal	Weak	Yes			
D14	Rain	Mild	High	Strong	No			

Most Frequent

- Yes

Prior

$$- P(Yes) > P(No)$$

Stratified

$$- P(Yes) = 9/14;$$

 $P(No) = 5/14$

Uniform

$$- P(Yes) = P(No) = 1/2$$

sklearn.dummy.DummyClassifier(*,
strategy='prior', random_state=None, constant=None)