$9_{47} (K9n_7)$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b+u,\ a-1,\ u^4+2u^3+3u^2+u+1\rangle \\ I_2^u &= \langle b+u,\ a+1,\ u^3-u^2+1\rangle \\ I_3^u &= \langle b+u,\ -u^3+2u^2+a-2u+1,\ u^4-u^3+u^2+1\rangle \\ I_4^u &= \langle -u^3-3u^2+b-4u-1,\ -u^3-2u^2+2a-u+3,\ u^4+4u^3+7u^2+5u+2\rangle \\ I_5^u &= \langle -u^3+u^2+b-u-1,\ a-1,\ u^4-u^3+u^2+1\rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b+u, \ a-1, \ u^4+2u^3+3u^2+u+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u+1 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - u^{2} + 1 \\ -2u^{2} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} - u^{2} \\ -3u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u^{2} - u \\ u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u^{2} - u \\ u^{3} + u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3u^3 9u^2 9u 9$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_7	$u^4 - 3u^3 + u^2 + 2u + 1$
c_2, c_5, c_8	$u^4 + 2u^3 + 3u^2 + u + 1$
c_3,c_9	$u^4 + 4u^3 + 7u^2 + 5u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_7	$y^4 - 7y^3 + 15y^2 - 2y + 1$
c_2, c_5, c_8	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_3, c_9	$y^4 - 2y^3 + 13y^2 + 3y + 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.043315 + 0.641200I		
a = 1.00000	-0.858683 + 1.068330I	-5.08685 - 4.49083I
b = 0.043315 - 0.641200I		
u = -0.043315 - 0.641200I		
a = 1.00000	-0.858683 - 1.068330I	-5.08685 + 4.49083I
b = 0.043315 + 0.641200I		
u = -0.95668 + 1.22719I		
a = 1.00000	-8.18845 - 10.05000I	-5.41315 + 5.52365I
b = 0.95668 - 1.22719I		
u = -0.95668 - 1.22719I		
a = 1.00000	-8.18845 + 10.05000I	-5.41315 - 5.52365I
b = 0.95668 + 1.22719I		

II.
$$I_2^u = \langle b+u, \ a+1, \ u^3-u^2+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u - 1 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - u + 1 \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - u + 1 \\ u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-6u^2 + 3u$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6	$u^3 + 2u^2 + u + 1$
c_2, c_5, c_8	$u^3 - u^2 + 1$
c_3,c_9	$u^3 - u + 1$
<i>c</i> ₇	$u^3 - 2u^2 + u - 1$

Crossings	Riley Polynomials at each crossing	
c_1, c_4, c_6 c_7	$y^3 - 2y^2 - 3y - 1$	
c_2, c_5, c_8	$y^3 - y^2 + 2y - 1$	
c_3, c_9	$y^3 - 2y^2 + y - 1$	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = -1.00000	1.45094 + 3.77083I	1.34184 - 5.60826I
b = -0.877439 - 0.744862I		
u = 0.877439 - 0.744862I		
a = -1.00000	1.45094 - 3.77083I	1.34184 + 5.60826I
b = -0.877439 + 0.744862I		
u = -0.754878		
a = -1.00000	-6.19175	-5.68370
b = 0.754878		

III.
$$I_3^u = \langle b+u, -u^3+2u^2+a-2u+1, u^4-u^3+u^2+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} - 2u^{2} + 2u - 1 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - 2u^{2} + 3u - 1 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{2} + 3u - 2 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + u^{2} - 3u + 4 \\ -u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{2} + 3u - 3 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u^{2} + 5u - 5 \\ u^{3} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u^{2} + 5u - 5 \\ u^{3} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 + 4u 10$

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	$u^4 + 3u^3 + u^2 - 2u + 1$
c_2, c_5	$u^4 - u^3 + u^2 + 1$
<i>c</i> ₃	$(u-1)^4$
C ₄	$u^4 - 2u^3 + u^2 - 3u + 4$
c ₈	$u^4 + 4u^3 + 7u^2 + 5u + 2$
<i>c</i> 9	$u^4 + 5u^3 + 12u^2 + 12u + 8$

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7	$y^4 - 7y^3 + 15y^2 - 2y + 1$
c_2, c_5	$y^4 + y^3 + 3y^2 + 2y + 1$
<i>c</i> ₃	$(y-1)^4$
C4	$y^4 - 2y^3 - 3y^2 - y + 16$
c ₈	$y^4 - 2y^3 + 13y^2 + 3y + 4$
<i>c</i> 9	$y^4 - y^3 + 40y^2 + 48y + 64$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.351808 + 0.720342I		
a = -0.40926 + 2.34806I	-6.79074 - 1.41510I	-9.82674 + 4.90874I
b = 0.351808 - 0.720342I		
u = -0.351808 - 0.720342I		
a = -0.40926 - 2.34806I	-6.79074 + 1.41510I	-9.82674 - 4.90874I
b = 0.351808 + 0.720342I		
u = 0.851808 + 0.911292I		
a = -0.590739 - 0.055548I	0.21101 + 3.16396I	-6.17326 - 2.56480I
b = -0.851808 - 0.911292I		
u = 0.851808 - 0.911292I		
a = -0.590739 + 0.055548I	0.21101 - 3.16396I	-6.17326 + 2.56480I
b = -0.851808 + 0.911292I		

$$IV. \\ I_4^u = \langle -u^3 - 3u^2 + b - 4u - 1, \ -u^3 - 2u^2 + 2a - u + 3, \ u^4 + 4u^3 + 7u^2 + 5u + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + \frac{1}{2}u - \frac{3}{2} \\ u^{3} + 3u^{2} + 4u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{3} - 2u^{2} - \frac{7}{2}u - \frac{5}{2} \\ u^{3} + 3u^{2} + 4u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} - \frac{1}{2}u - \frac{3}{2} \\ u^{3} + 6u^{2} + 7u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{5}{2}u^{3} + 8u^{2} + \frac{19}{2}u + \frac{5}{2} \\ u^{3} + 7u^{2} + 8u + 5 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{3}{2}u^{3} - 5u^{2} - \frac{13}{2}u - \frac{3}{2} \\ -u^{3} - 4u^{2} - 5u - 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{3} + 2u^{2} + \frac{7}{2}u + \frac{5}{2} \\ -u^{3} - 3u^{2} - 3u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{3} + 2u^{2} + \frac{7}{2}u + \frac{5}{2} \\ -u^{3} - 3u^{2} - 3u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^2 + 8u 2$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7	$u^4 + 3u^3 + u^2 - 2u + 1$
c_2	$u^4 + 4u^3 + 7u^2 + 5u + 2$
c_3	$u^4 + 5u^3 + 12u^2 + 12u + 8$
c_5, c_8	$u^4 - u^3 + u^2 + 1$
c_6	$u^4 - 2u^3 + u^2 - 3u + 4$
<i>c</i> 9	$(u-1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7	$y^4 - 7y^3 + 15y^2 - 2y + 1$
c_2	$y^4 - 2y^3 + 13y^2 + 3y + 4$
c_3	$y^4 - y^3 + 40y^2 + 48y + 64$
c_5,c_8	$y^4 + y^3 + 3y^2 + 2y + 1$
c_6	$y^4 - 2y^3 - 3y^2 - y + 16$
<i>C</i> 9	$(y-1)^4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.452576 + 0.585652I		
a = -1.67796 - 0.15778I	0.21101 - 3.16396I	-6.17326 + 2.56480I
b = -0.851808 + 0.911292I		
u = -0.452576 - 0.585652I		
a = -1.67796 + 0.15778I	0.21101 + 3.16396I	-6.17326 - 2.56480I
b = -0.851808 - 0.911292I		
u = -1.54742 + 1.12087I		
a = -0.072042 + 0.413327I	-6.79074 + 1.41510I	-9.82674 - 4.90874I
b = 0.351808 + 0.720342I		
u = -1.54742 - 1.12087I		
a = -0.072042 - 0.413327I	-6.79074 - 1.41510I	-9.82674 + 4.90874I
b = 0.351808 - 0.720342I		

V.
$$I_5^u = \langle -u^3 + u^2 + b - u - 1, \ a - 1, \ u^4 - u^3 + u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + u^{2} - u \\ u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u + 1 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} + u - 1 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - u^{2} + u \\ -u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - u^{2} + u \\ -u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - u^{2} + u \\ -u^{3} + u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 + 4u 10$

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^4 - 2u^3 + u^2 - 3u + 4$
c_2,c_8	$u^4 - u^3 + u^2 + 1$
c_3, c_9	$(u-1)^4$
c_4, c_6	$u^4 + 3u^3 + u^2 - 2u + 1$
c_5	$u^4 + 4u^3 + 7u^2 + 5u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^4 - 2y^3 - 3y^2 - y + 16$
c_2, c_8	$y^4 + y^3 + 3y^2 + 2y + 1$
c_{3}, c_{9}	$(y-1)^4$
c_4, c_6	$y^4 - 7y^3 + 15y^2 - 2y + 1$
<i>C</i> ₅	$y^4 - 2y^3 + 13y^2 + 3y + 4$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.351808 + 0.720342I		
a = 1.00000	-6.79074 - 1.41510I	-9.82674 + 4.90874I
b = 1.54742 + 1.12087I		
u = -0.351808 - 0.720342I		
a = 1.00000	-6.79074 + 1.41510I	-9.82674 - 4.90874I
b = 1.54742 - 1.12087I		
u = 0.851808 + 0.911292I		
a = 1.00000	0.21101 + 3.16396I	-6.17326 - 2.56480I
b = 0.452576 + 0.585652I		
u = 0.851808 - 0.911292I		
a = 1.00000	0.21101 - 3.16396I	-6.17326 + 2.56480I
b = 0.452576 - 0.585652I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6	$(u^{3} + 2u^{2} + u + 1)(u^{4} - 3u^{3} + u^{2} + 2u + 1)(u^{4} - 2u^{3} + u^{2} - 3u + 4)$ $\cdot (u^{4} + 3u^{3} + u^{2} - 2u + 1)^{2}$
c_2, c_5, c_8	$(u^{3} - u^{2} + 1)(u^{4} - u^{3} + u^{2} + 1)^{2}(u^{4} + 2u^{3} + 3u^{2} + u + 1)$ $\cdot (u^{4} + 4u^{3} + 7u^{2} + 5u + 2)$
c_3,c_9	$((u-1)^8)(u^3-u+1)(u^4+4u^3+\cdots+5u+2)(u^4+5u^3+\cdots+12u+8)$
c_7	$(u^3 - 2u^2 + u - 1)(u^4 - 3u^3 + u^2 + 2u + 1)(u^4 - 2u^3 + u^2 - 3u + 4)$ $\cdot (u^4 + 3u^3 + u^2 - 2u + 1)^2$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_7	$(y^3 - 2y^2 - 3y - 1)(y^4 - 7y^3 + \dots - 2y + 1)^3(y^4 - 2y^3 + \dots - y + 16)$
c_2, c_5, c_8	$(y^3 - y^2 + 2y - 1)(y^4 - 2y^3 + \dots + 3y + 4)(y^4 + y^3 + 3y^2 + 2y + 1)^2$ $\cdot (y^4 + 2y^3 + 7y^2 + 5y + 1)$
c_3, c_9	$(y-1)^8(y^3 - 2y^2 + y - 1)(y^4 - 2y^3 + 13y^2 + 3y + 4)$ $\cdot (y^4 - y^3 + 40y^2 + 48y + 64)$