Using Bayesian Networks to Estimating Rainfall Distribution Given Polarimetric Radar Data

Jose Picado Vahid Ghadakchi Zahra Iman

Probabilistic Graphical Models
Winter 2015

Introduction

- Rainfall amount prediction problem
 - Using gauges
 - Remote sensing
- Using Bayes Nets
 - Designing the structure
 - Learning the structure

Image courtesy of NOAA

Features

TimeToEnd	RR1	RhoHV
DistanceToRadar	RR2	Velocity
Composite	RR3	Zdr
HybridScan	RadarQualityIndex	LogWaterVolume
HydropmeteorType	Reflectivity	MassWeightedMean
Kdp	ReflectivityQC	MassWeightedSD

- Features with composite values aggregated into a single value
- Introduced feature: Measurements
- Label: Expected actual amount of rain reported by rain gauge for that hour

Dependencies

- RR1: Rain rate from the HCI-based algorithm
 - HydrometeorType, Zdr, RhoHV, Kdp
- RR2: Rain rate from the Zdr-based algorithm
 - Zdr
- HydrometeorType: rain, snow, big drops, birds,...
 - Based on HCA algorithm with inputs of Zdr, Kdp, RhoHV, Reflectivity
- RadarQualityIndex: value from 0 to 1 (good data)
 - Based on an algorithm proposed in a paper with inputs of Reflectivity, Zdr, Kdp, RhoHV

Approaches

- Bayes network with manually designed structure
- Bayes network with learned structure

Manually designed structure

Learned structure

- Structure learning algorithms:
 - Structure scoring: Bayesian scoring with Dirichlet priors
 - Greedy: Hill Climbing, K2
 - Non-greedy: Simulated Annealing

Learned structure

Results

- Data and Setting
 - Subset of training set
 - Implementation using Weka
- Results
 - Continuous Ranked Probability

Algorithm	CRP	
Logistic Regression	0.01096134	
Naïve Bayes	0.01452578	
Bayes Net - Manually Designed Structure	0.00965175	
Bayes Net - Simulated Annealing	0.00864957	

Conclusions

- Bayes networks proved to be an appropriate model:
 - Exploit (in)dependencies between features
- Domain knowledge can be used to build the network structure
- Structure learning is better when data is available and time is not an issue
- Future work:
 - Structure provided by domain expert
 - Aggregations functions for composite-valued features
 - Undirected models
 - Build model with full dataset