

A卷

2019-2020 学年第 1 学期

(2019 秋季)

《编译原理与技术》期末考试卷

班级	_学号
姓名	成绩

2020年1月2日

《编译原理与技术》 期末考试卷

注意事项: 1. 所有答案请直接写在题目中, 另附纸无效。

2. 交卷时请以班为单位交卷。

断旦	_		=			四			总分
题号		_	-	1	2	3	4	5	心分
成绩									
阅卷人 签字									
任课教师	币签字								

题目:

一、	填空题	(9	分)
_,	判断题	(10	分)
三、	单选题	(21	分)
四、	综合题		
	1	(10	分)
	2	(6	分)
	3	(14	分)
	4	(16	分)
	5	(14	分)

一、填空题(每空1分,共9分)

在编译过程的五个阶段中,<u>门**法**</u>的输出是 token 序列,<u></u>这次分外</u>的输出是抽象语法树。

- 2. 根据乔姆斯基对文法的分类,正则文法是_**}**型文法,它可以被_**狗的**接受。

- 二、判断题(每题1分,共10分)
- (中的人) **1**. 整个编译过程中只对源代码做一次从头到尾扫描的编译器,就是"一遍扫描的编译器"。
- \nearrow 2. 文法 G 所描述的语言,就是文法 G 的终结符集合 Vt 的闭包 Vt*。
- 》 3. NFA 的接受状态可以多于一个,但 DFA 只能有一个。
- **7** 4. 算符优先分析过程中,栈顶运算符优先级小于栈外输入运算符时,执行入栈操作;栈顶运算符优先级大于栈外输入运算符时,执行出栈规约操作;其他情况说明遇到了错误。
- 5. 属性翻译文法中综合属性的求值是自下向上的;而继承属性的求值是自上向下的。
- 6. First 集合可以包含ε, Follow 集中不可以包含ε。
- 7. 规范句型的活前缀不一定是唯一的。
- ✔ 8. LL(1) 文法和 SLR(1) 文法都一定是无二义性的。
- ✓ 9. 与机器有关的优化一般是在中间代码上进行的。
 - 10. 对于右侧的代码块:语句 return j+1 等价于 return 1,

int fun(int i) {
 int j = i;
 if (j == 0) return j+1;
 else return j-1;
}

语句 return j-1 等价于 return i-1; 因此可以在优化时应用复写传播改为:

if (i == 0) return 1;
 else return i-1;

三、单选题(每题3分,共21分)

- 1. 已知语言 $L = \{ a^n b c^m \mid n \ge 0, m > 0 \}$,下列文法中_
 - A. Z := AbC A := Aa | ϵ C := Cc | c
 - B. Z := AC $A ::= aA \mid b$ $C := Cc \mid c$
 - C. $Z := bC \mid aZ \quad C := cC \mid c$
 - D. $Z := aZc \mid B \quad B := b$ a gu c 未分部D

 $S := icSE \mid a$

 $E := eS \mid \epsilon$

下列符号串中能证明该文法有工义性的是

- A. icicica
- B. icicicaea
- C. icicaeaea
- D. icaeaea

icst

3. 对于算符优先文法G[Z]:

Z := E? E: E

 $E := T \mid E + T$

 $T := F \mid -F$

(< F(2)

 $F ::= i \mid (Z)$

F([] F(])

- D. (4)(5)(6)

4. 对于文法G[I]:

I ::= PBBB | D

P := 0b

B := 0 | 1

D := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

下列说法正确的是

№ 它是一个 LL(1)文法

它的句子集合是无限的

三位进制 / 十世代

- 5. 记正则表达式 r 定义的语言为 L(r) ,下列选项中在确的
 - A. $L(a)L(a^*) = L(a^*)$
 - B. L(a|b) = L(a)L(b)
 - C. $L(b(ab)^*) = L((ba)^*b)$
- D. L(ab|c) = L(a)L(b|c)
- L(ab) / L(c)
- 6. 算术表达式 a + b * (c d)/e 的**者**缀表示为

- B. b c d e/* a +
- C. a b c d e/* +
- D. c d b * e/a +
- 7. 如下是某函数的中间代码表示。

- (2) b = 1
- (3) i = 0
- (4) if i >= 10 goto (10)
- (5) c = a + b
- (6) a = b
- (7) b = c
- (8) i = i + 1
- (9) goto (4)
- (10) v1 = i
- (11) v2 = b

_是一个基本块。 下列中间代码序列中,

- A. (1) (2) (3) (4)
- B. (4) (5) (6) (7) (8) (9) C. (5) (6) (7) (8) D. (10) (11)

四、综合题(共60分)

1. (10 分) 有文法**G**[E]: E ::= TT'

T ::= FF'

 $T' ::= \varepsilon \mid +TT'$

 $F ::= v \mid i$

 $F' ::= \varepsilon \mid * FF'$

对于句型 v + v * i:

- (1) 写出它的最左推导过程。(3分)
- (2) 画出它的语法树。(3分)
- (3) 写出它的所有短语、简单短语和句柄(4分)

ESTIS FFIT'S UF'T' SVT

> V+TT' > V+FF'T' > V+ VFT'

ランHU*FF'で' ヨロVYiF'でついいすらて'

ナノナノナノチーと

知思: V+V*之; V; +V*之; Vi; *i; 局知语: V; 5; i

的粉: 1

2. (6分) n 维数组某元素绝对地址 ADDR 的计算公式为

$$ADDR = LOC + RC + E\sum_{i=1}^{n} V(i)P(i) , \qquad RC = -E\sum_{i=1}^{n} L(i)P(i)$$

其中 LOC 是分配给数组的连续内存空间的开始地址,RC 是相对不变部分,E 是数组中每个元素占用的内存大小。V(i) 是指定元素第 i 维下标的值,P(i) 是

$$P(i) = \begin{cases} 1 & \stackrel{\cong}{=} i = n \\ \prod_{j=i+1}^{n} [U(j) - L(j) + 1] & \stackrel{\cong}{=} 1 \le i < n \end{cases}$$

U(i) 是数组第 i 维下标的最大值; L(i) 是数组第 i 维下标的最小值。

假设 E = 4 且程序中声明了数组 arr(1:5, -1:2, 0:3)。

- (1) 计算数组 arr 的 RC 值。(3分)
- (2) 若对于数组 arr 有 LOC = x, 求数组元素 arr(2,2,2) 的绝对地址。(3分)

(b)
$$Rc = -\frac{\sum_{i=1}^{N} L(i) P(i) E}{1 , i=3}$$

 $P(i) = \begin{cases} 1 , i=3 \\ 4 , i=1 \\ 16 , i=1 \end{cases}$
 $Rc = -\frac{\sum_{i=1}^{N} (16 - 4 + 6) \times 4}{16 - 4 + 6} \times 4$
 $= -\frac{48}{16}$

- 3. (14 分) 记正则表达式 a(a(bc)*|a(b|c)*a)*a 对应的最小化的 DFA 为 M1。
 - (1) 求 M1。(12 分)
- (2) 右图所示的 DFA 已经最小化,记为 M2。判断 M1 和 M2 是否等价,并证明你的结论。(2 %)

(2) a a b c M 可接 MIR 可提 形代

	2- dosure (507) =	5-7
(1)	2- dosure	,

Z	Za	74	z_c
507	SIT	ø	þ
เก	[1,2,4,5]	p	\$

V [1,2,4,5] [1,2,4,5] [3,4] [47

•	1 11-17-19	12/16	, , ,
5 3.47	67	547	11,2,47
547	113	147	147
11,2,47	Th21415	[14,5]	547

的教员

第6页 共10页

4. (16分)给定对于文法G[E]:

 $E \rightarrow TE \mid \epsilon$ $T \rightarrow aFP$ $P \rightarrow bF \mid \epsilon$ $F \rightarrow i; F \mid ;$

用 # 表示输入串的结尾。

(1) 求各候选式的 FIRST 集,以及各非终结符的 FIRST 集和 FOLLOW 集。请直接以集合的形式填写下面的表格,空集合写 Φ 。(6分)

候选式	FIRST	候选式	FIRST
3	527	bF	r67
TE	5 A7	i;F	(17
aFP	[a]	;	7;7

非终结符	FIRST	FOLLOW
E	SE, 07	r#7
Т	5 07	S#.07
P	Cb157	5#,07
F		s#,9,67

(2) 此文法是否适合使用自顶向下的方法分析?说明理由。(2分)

是孩子的人们们

(3)尝试构造该文法的 LL(1)分析表。请直接填写下面的表格,如果有表项被多次填入, 在该处标记×。(8分)

	a	b	i	;	#
E	てっても				E-15
T	T-)97P				
P	7->9	P 2 P 1			P-75
F			Fairf	[);	

- 5. (14分) 文法 G[S] 的拓广文法 G[S'] 如下:
 - $(0) S' \rightarrow S$
 - (1) $S \rightarrow AB$
 - (2) $A \rightarrow aB$
 - (3) $B \rightarrow Ab$
 - (4) $B \rightarrow b$

该文法的 LR(1) 项目集如下图所示。

- (1) 指出对该 LR(1) 项目规范族合并同心集时,哪些项目集会被合并。(3分)
- (2) 构造 LALR(1) 分析表。请直接填写下面的表格。(8分)
- (3)利用 LALR(1)分析表,分析输入串 aabbabb。 请直接填写下面的表格。(3分)注意:合并同心集后的编号取原项目集的最小值,比如将 I₃、I₄与 I₆合并,得到的新项目集为 I₃,因此得到的新项目族的编号可能是不连续的。填写分析表和推导过程时,可能不会用到表格的所有行。

(1) 26 Za Ziq; 2111 Ziz 2116 Z3 Z5; 24245; 2729 Zis

(2) LALR(1) 分析表:

JD	ACTION				GOTO	
状态	a	b	#	S	A	В
0	(3			1	2	
1			GCCOP	ı		
,	53	56	,		フ	8
<u>,</u>	$\mathcal{C}_{\mathbf{L}}$	56			7	4
<i>S</i>	1/2	$\mathcal{V}_{\mathcal{L}}$,
6	14	V4	14			
7	1	Sa				
8			Υı			
/1	V	(1	Vs			
	,	• •	,			

(3) 分析输入串 aabbabb 的 过程:

步骤	状态栈 (栈底在左)	已识别符号	待输入串
0	0	#	aabbabb#
1	0a3	# 9	abbabb#
2	093 93	flac	Lbabht
3	oal a3 b 6	# aab	Labby
4	0030384	flaal	babba
5	0 a 3 A 7	# a A	5a 6 5#
6	093/776(1	#10Ab	a 654
7	Da3B4	#aB	abb#
8	0A2	#A	abb#
9	0A 2a3	# Aa	₩
10	1A20366	# Aab	bŦſ
11	0/20384	# Ag 13	L#
12	6A2A7	4 A/->	<i>b</i> #
13	0/A2A7611	# AAL	#
14	DA 2 B 8	#AB	#
15	051	#s	#
16			
17			
18			
19			
20			
21			