Universidad de Granada

Algorítmica

MEMORIA DE PRÁCTICAS

Práctica I: Eficiencia

Autora:

Elena Merelo Molina

13 de Marzo

1 Eficiencia empírica

En esta práctica veremos la eficiencia empírica de los algoritmos:

Algoritmo	Orden de Eficiencia
Burbuja	$O(n^2)$
Inserción	$O(n^2)$
Selección	$O(n^2)$
Mergesort	$O(n\log(n))$
Quicksort	$O(n\log(n))$
Heapsort	$O(n\log(n))$
Floyd	$O(n^3)$
Hanoi	$O(2^n)$

Con el objetivo de estudiar la eficiencia empírica de los algoritmos dados, en cada programa hemos medido el tiempo que ha tardado en ejecutarse, incluyendo la biblioteca ctime y usando clock_t, compilando cada programa por separado con g++ nombre_algoritmo.cpp -o nombre_algoritmo, esto mismo con la opción -O1 y -O3 para luego comparar resultados. Cuando ya se generaron los ejecutables, creados para veinticinco valores diferentes de n, programa por programa, de manera que los resultados se guarden en sus correspondientes archivos .csv, lo hemos representado ajustando por el método de los mínimos cuadráticos según el orden de eficiencia de cada uno:

- 1. $O(n^2)$ ajustada a $f(x) = ax^2 + bx + c$
- 2. $O(n \log(n)$ ajustada a $f(x) = a \log(bn) + c$
- 3. $O(n^3)$ ajustada a $f(x) = ax^3 + bx^2 + cx + d$
- 4. $O(2^n)$ ajustada a $f(x) = a2^{bn} + c$

Vemos ahora detalladamente la representación gráfica de los datos obtenidos.

1.1 Algoritmo burbuja

N	O-	O1	O2
500	0.000848284	0.000504565	0.000444922
1000	0.00155837	0.00170106	0.00172926
1500	0.00375233	0.00372675	0.00348126
2000	0.00625636	0.00654731	0.00675332
2500	0.0102962	0.0111093	0.00993443
3000	0.0158037	0.0156202	0.0159983
3500	0.0211397	0.0220235	0.021973
4000	0.0292756	0.0298859	0.0299241
4500	0.0377767	0.0425379	0.0370894
5000	0.0472146	0.0575588	0.0466534
5500	0.0585254	0.0650413	0.0596688
6000	0.0734717	0.0795291	0.0789712
6500	0.0875871	0.0864143	0.0938704
7000	0.101356	0.106416	0.10351
7500	0.119825	0.117833	0.118222
8000	0.13685	0.142887	0.13587
8500	0.158619	0.156353	0.154324
9000	0.177794	0.180205	0.179462
9500	0.199033	0.208484	0.197654
10000	0.225543	0.224484	0.224071
10500	0.249815	0.252788	0.247328
11000	0.279319	0.277287	0.284709
11500	0.30519	0.305155	0.305884
12000	0.335826	0.334685	0.339147
12500	0.368191	0.361129	0.365015

1.2 Algoritmo insercion

N	O-	O1	O2
500	0.000280816	0.000233787	0.000223985
1000	0.000985635	0.000910265	0.00100876
1500	0.00213929	0.00200899	0.00204243
2000	0.00369846	0.00377572	0.00449
2500	0.00592036	0.00560895	0.00585753
3000	0.00822953	0.00840262	0.00825681
3500	0.0120226	0.0115001	0.0129874
4000	0.0148672	0.0151695	0.0168938
4500	0.0193506	0.0185337	0.0193503
5000	0.0227202	0.0235869	0.0230816
5500	0.0272918	0.0275996	0.0280322
6000	0.0333669	0.0314578	0.0388916
6500	0.0395249	0.0369619	0.0393369
7000	0.0438121	0.0443715	0.0442169
7500	0.0510923	0.0534808	0.0519345
8000	0.0577335	0.0668524	0.0582985
8500	0.0664888	0.0740554	0.0659169
9000	0.0721457	0.0740537	0.0733521
9500	0.0804506	0.0808475	0.081258
10000	0.0889614	0.089042	0.0897421
10500	0.098722	0.0999622	0.0988874
11000	0.10898	0.111618	0.108517
11500	0.120852	0.118909	0.125629
12000	0.129697	0.128718	0.137064
12500	0.141071	0.140754	0.141494

1.3 Algoritmo seleccion

N	O-	O1	O2
500	0.0314449	0.0314842	0.0317225
1000	0.119021	0.126228	0.11633
1500	0.260984	0.267642	0.258436
2000	0.457069	0.461125	0.454904
2500	0.00744243	0.00693814	0.0068266
3000	0.00998253	0.0103105	0.0104942
3500	0.0138713	0.0136245	0.0144952
4000	0.0186035	0.0182824	0.0187636
4500	0.0234744	0.0224572	0.0237714
5000	0.0277004	0.0292558	0.0300571
5500	0.0345149	0.0354603	0.035354
6000	0.0478933	0.0406127	0.0407739
6500	0.0520387	0.0483603	0.0474503
7000	0.0560279	0.0554717	0.0550182
7500	0.0618687	0.067223	0.0635355
8000	0.0725331	0.0711132	0.0718062
8500	0.0815797	0.0811896	0.0813514
9000	0.0909342	0.0917913	0.0928178
9500	0.103387	0.100633	0.100902
10000	0.110117	0.11207	0.127083
10500	0.12314	0.124775	0.125395
11000	0.134518	0.135545	0.135101
11500	0.151427	0.146785	0.146842
12000	0.158935	0.163465	0.159707
12500	0.174672	0.174286	0.174868

1.4 Algoritmo mergesort

N	O-	O1	O2
500	4.6913e-05	4.2538e-05	4.3779e-05
1000	0.000104759	0.000101012	0.000102685
1500	0.000197928	0.000202091	0.000197977
2000	0.000230556	0.000230267	0.000229837
2500	0.000320995	0.000321507	0.000324846
3000	0.000441303	0.000454994	0.000459037
3500	0.000411042	0.000422831	0.000415593
4000	0.000511027	0.000494096	0.000499695
4500	0.000612995	0.000592159	0.000609127
5000	0.00069516	0.000701389	0.000693268
5500	0.000804711	0.000800892	0.000801765
6000	0.000939736	0.0009096	0.000922795
6500	0.000810641	0.000809706	0.000812514
7000	0.000890017	0.000891093	0.000896917
7500	0.000985485	0.000987166	0.000983415
8000	0.00110324	0.00107382	0.00107462
8500	0.00116999	0.00116523	0.00117428
9000	0.00127648	0.00127043	0.00127371
9500	0.00138226	0.00137334	0.00139195
10000	0.00150468	0.00148788	0.00148267
10500	0.001526	0.001525	0.001523
11000	0.001634	0.001625	0.002057
11500	0.001889	0.001821	0.00186
12000	0.002311	0.001866	0.002124
12500	0.002148	0.002275	0.002152

1.5 Algoritmo quicksort

N	O-	O1	O2
500	3.2332e-05	3.7642e-05	0.000103603
1000	7.036e-05	8.0497e-05	0.000222952
1500	0.000113397	0.000131637	0.000361161
2000	0.000154328	0.000176116	0.000484841
2500	0.000200578	0.00023071	0.000631374
3000	0.000240971	0.000276572	0.000763986
3500	0.000284638	0.000360803	0.000897255
4000	0.000333301	0.000420274	0.00107918
4500	0.000373817	0.000525212	0.001179
5000	0.000419683	0.000665588	0.00133037
5500	0.000463525	0.000837868	0.00146456
6000	0.000521563	0.000963575	0.00166409
6500	0.000557223	0.00101092	0.0017721
7000	0.000617823	0.00132214	0.00197305
7500	0.000920243	0.00140165	0.00211571
8000	0.000714884	0.00180813	0.00226463
8500	0.000766829	0.00193638	0.00243405
9000	0.000817047	0.00206904	0.00260327
9500	0.000909397	0.00218516	0.00275356
10000	0.000957013	0.00232035	0.00288264
10500	0.00108144	0.00242214	0.00302737
11000	0.00115832	0.00257706	0.00429314
11500	0.00122584	0.00265797	0.00448855
12000	0.00127122	0.00277936	0.0046674
12500	0.00135047	0.00373325	0.00497125

1.6 Algoritmo heapsort

N	O-	O1	O2
500	4.5886e-05	4.7776e-05	5.2733e-05
1000	9.3484e-05	0.000105841	0.000115869
1500	0.000155393	0.000165102	0.000180243
2000	0.0002156	0.000226943	0.000250445
2500	0.00027561	0.000293035	0.000318913
3000	0.000335879	0.000370002	0.00038954
3500	0.000400699	0.000423861	0.000472134
4000	0.000462112	0.000537971	0.00053706
4500	0.000574792	0.000613159	0.000681049
5000	0.00062758	0.000688875	0.000936752
5500	0.000696955	0.000764817	0.00107965
6000	0.000771178	0.000843093	0.00137774
6500	0.0008542	0.000930073	0.00153718
7000	0.000948121	0.00100329	0.0016506
7500	0.000989718	0.00108493	0.00176835
8000	0.00106711	0.00118179	0.00193712
8500	0.00113612	0.00124409	0.00206274
9000	0.00121429	0.00132679	0.00220556
9500	0.00128797	0.00140478	0.00231064
10000	0.00136625	0.00149198	0.00250894
10500	0.00144845	0.00157132	0.00262056
11000	0.00151039	0.00166773	0.00271144
11500	0.00158849	0.00174876	0.00295809
12000	0.00166249	0.00188693	0.00302842
12500	0.00174171	0.00191495	0.00311223

1.7 Algoritmo floyd

N	O-	O1	O2
5	2e-06	1e-06	2e-06
10	7e-06	7e-06	7e-06
15	2.1e-05	2.1e-05	2.1e-05
20	4.6e-05	5e-05	4.9e-05
25	8.3e-05	8.9e-05	8.7e-05
30	0.000145	0.000149	0.000146
35	0.000227	0.000244	0.00023
40	0.000335	0.000377	0.000336
45	0.000455	0.000512	0.000455
50	0.000636	0.000731	0.000642
55	0.000834	0.000952	0.000841
60	0.001134	0.001233	0.001076
65	0.001432	0.001545	0.001376
70	0.001715	0.001924	0.001768
75	0.002059	0.00235	0.002205
80	0.002596	0.002852	0.002645
85	0.003052	0.003377	0.003118
90	0.003596	0.003975	0.004017
95	0.004309	0.00473	0.004775
100	0.004978	0.005552	0.005583
105	0.005801	0.005681	0.006403
110	0.006597	0.007624	0.009087
115	0.007513	0.007536	0.008881
120	0.008491	0.008468	0.009428
125	0.009594	0.009587	0.010736

1.8 Algoritmo hanoi

N	O-	O1	O2
0.5	9.3e-08	1.43e-07	1.28e-07
1.0	1.71e-07	1.6e-07	2.97e-07
1.5	1.66e-07	1.99e-07	1.53e-07
2.0	2.04e-07	2.7e-07	2.29e-07
2.5	1.41e-07	1.45e-07	2.08e-07
3.0	2.51e-07	2.92e-07	3.47e-07
3.5	2.54e-07	2.86e-07	3.04e-07
4.0	3.91e-07	4.69e-07	4.54e-07
4.5	3.62e-07	4.08e-07	4.67e-07
5.0	5.49e-07	6.58e-07	7.21e-07
5.5	5.26e-07	6.2e-07	6.98e-07
6.0	8.55e-07	9.13e-07	1.057e-06
6.5	7.52e-07	8.07e-07	1.037e-06
7.0	1.16e-06	1.374e-06	1.563e-06
7.5	1.199e-06	1.497e-06	1.638e-06
8.0	2.104e-06	2.197e-06	2.487e-06
8.5	2.187e-06	2.384e-06	2.744e-06
9.0	3.666e-06	3.97e-06	4.553e-06
9.5	3.732e-06	3.788e-06	4.352e-06
10.0	6.565e-06	7.148e-06	8.174e-06
10.5	6.523e-06	7.279e-06	8.151e-06
11.0	1.242e-05	1.3911e-05	1.5101e-05
11.5	1.2321e-05	1.365e-05	1.5014e-05
12.0	2.4334e-05	2.6554e-05	2.9694e-05
12.5	2.4104e-05	2.9556e-05	2.9656e-05

2 Algoritmos de búsqueda

En esta gráfica vemos la representación de todos los algoritmos de la práctica, cómo el de burbuja crece mucho más rápidamente que el resto mientras que quicksort, mergesort y heapsort son rectas. Así, concluimos que burbuja ¿ selección ¿ inserción ¿ mergesort, quicksort y heapsort con respecto a eficiencia, algo que veníamos intuyendo al ver que orden tenían al principio del documento.

Para poder diferenciar mejor los algoritmos con $O(n \log(n))$ los vemos en otra gráfica. Apreciamos entonces cómo para tamaños pequeños, hasta 2000 aproximadamente, el algoritmo mergesort es más eficiente que el heapsort, que a su vez es mejor que el quicksort, mas esto cambia y pasa justo lo contrario a partir de 2000.