Fundamentele limbajelor de programare Programare Logica. Rezolutie. Completitudine.

Traian Florin Şerbănuță și Andrei Sipos

Facultatea de Matematică și Informatică, DL Info

Anul II, Semestrul II, 2024/2025

Secțiunea 1

Semantică

Structuri de ordinul I

Dacă $\sigma = (F, R, r)$ este o signatură de ordinul I, atunci o σ -structură este o pereche $(A, \{A_s\}_{s \in F \cup R})$, unde:

- $A \neq \emptyset$ (și se va numi **universul**, **mulțimea suport** sau **mulțimea subiacentă** a structurii),
- pentru orice $s \in F$, $A_s : A^{r(s)} \to A$ și
- pentru orice $s \in R$, $A_s \subseteq A^{r(s)}$.

Structurile vor reprezenta domeniile despre care vor vorbi formulele corespunzătoare signaturilor.

Evaluarea termenilor

Fie $\mathcal{A}=(A,(A_s)_{s\in F\cup R})$ o σ -structură. Atunci pentru orice **valuație** $v:V\to A$ există și este unică o funcție $(\cdot)_v^{\mathcal{A}}:T_\sigma\to A$ astfel încât

- pentru orice $x \in V$, $x_v^A = v(x)$;
- pentru orice $s \in F$ și orice $t_1, \ldots, t_{r(s)} \in T_{\sigma}$, $(st_1 \ldots t_{r(s)})_{\nu}^{\mathcal{A}} = A_s((t_1)_{\nu}^{\mathcal{A}}, \ldots, (t_{r(s)})_{\nu}^{\mathcal{A}})$ (în particular, dacă r(s) = 0, $s_{\nu}^{\mathcal{A}} = A_s$).

Actualizarea valuațiilor

Fie $\mathcal{A}=(A,(A_s)_{s\in F\cup R})$ o σ -structură. Pentru orice $v:V\to A$, $x\in V$, $a\in A$, definim $v_{x\leftarrow a}:V\to A$, pentru orice $y\in V$, prin

$$v_{x \leftarrow a}(y) := egin{cases} v(y), & \mathsf{dac} \check{a} \ y
eq x, \ a, & \mathsf{dac} \check{a} \ y = x. \end{cases}$$

Observăm că pentru orice variabile x, y cu $x \neq y$, orice $v: V \to A$ și orice $a, b \in A$, avem că

$$(v_{y\leftarrow b})_{x\leftarrow a}=(v_{x\leftarrow a})_{y\leftarrow b}.$$

În acest caz, notăm valoarea lor comună cu $v_{x \leftarrow a, y \leftarrow b}$. Așadar, pentru orice $z \in V$,

$$v_{x \leftarrow a, y \leftarrow b}(z) = egin{cases} v(z) & ext{dacă } z
eq x & ext{si } z
eq y, \ a & ext{dacă } z = x, \ b & ext{dacă } z = y. \end{cases}$$

Satisfacerea formulelor

Definim o relație \models între structuri, valuații și formule folosind următoarele (scheme de) reguli:

- $\mathcal{A} \models^{\mathsf{v}} t = u$, dacă $t_{\mathsf{v}}^{\mathcal{A}} = u_{\mathsf{v}}^{\mathcal{A}}$;
- $\mathcal{A} \models^{\mathsf{v}} \mathsf{s} t_1 \dots t_{r(s)}$ (unde $s \in R$), dacă $((t_1)_{\mathsf{v}}^{\mathcal{A}}, \dots, (t_{r(s)})_{\mathsf{v}}^{\mathcal{A}}) \in \mathcal{A}_s$;
- $\mathcal{A} \not\models^{v} \bot$;
- $\mathcal{A}\models^{\mathbf{v}}\varphi\to\psi$ dacă $\mathcal{A}\models^{\mathbf{v}}\varphi$ implică că $\mathcal{A}\models^{\mathbf{v}}\psi$
- $\mathcal{A} \models^{\mathbf{v}} \forall x \varphi$, dacă pentru orice $a \in \mathcal{A}$, $\mathcal{A} \models^{\mathbf{v}_{\mathbf{x} \leftarrow a}} \varphi$.

Dacă $\mathcal{A} \models^{\mathbf{v}} \varphi$ pentru orice \mathbf{v} , scriem $\mathcal{A} \models \varphi$ și spunem că \mathcal{A} satisface φ , sau este **model** pentru φ .

Dacă $\mathcal{A} \models \varphi$ pentru orice \mathcal{A} , scriem $\models \varphi$ și spunem că φ este **validă**.

Satisfacerea conectorilor derivați

Fie $\mathcal{A}=(A,(A_s)_{s\in F\cup R})$ o σ -structură. Este acum imediat că pentru orice $v:V\to A$, avem:

- $\mathcal{A} \models^{\mathsf{v}} \top$;
- $\mathcal{A} \models^{\mathbf{v}} \varphi \wedge \psi$ ddacă $\mathcal{A} \models^{\mathbf{v}} \varphi$ și $\mathcal{A} \models^{\mathbf{v}} \psi$;
- $\mathcal{A} \models^{\mathsf{v}} \varphi \lor \psi$ ddacă $\mathcal{A} \models^{\mathsf{v}} \varphi$ sau $\mathcal{A} \models^{\mathsf{v}} \psi$;
- $\mathcal{A} \models^{\mathbf{v}} \varphi \leftrightarrow \psi$ ddacă $(\mathcal{A} \models^{\mathbf{v}} \varphi \text{ ddacă } \mathcal{A} \models^{\mathbf{v}} \psi)$;
- $\mathcal{A} \models^{\mathbf{v}} \exists x \varphi$ ddacă există $a \in A$ cu $\mathcal{A} \models^{\mathbf{v}_{x \leftarrow a}} \varphi$.

Satifacerea enunțurilor

Fie
$$\mathcal{A} = (A, (A_s)_{s \in F \cup R})$$
 o σ -structură și φ un enunț.

Atunci, pentru orice v_1 , $v_2:V\to A$, avem

$$\mathcal{A}\models^{\mathsf{v}_1}\varphi$$
 ddacă $\mathcal{A}\models^{\mathsf{v}_2}\varphi,$

deci sunt echivalente următoarele două afirmații:

- $\mathcal{A}\models \varphi$, adică pentru orice $\mathit{v}:\mathit{V}\rightarrow \mathit{A}$, $\mathcal{A}\models^{\mathit{v}} \varphi$
- există $v:V\to A$ cu $\mathcal{A}\models^v \varphi$.

Concepte înrudite

Vom defini următoarele concepte, precum și noi semnificații ale semnului |=, prin analogie cu logica propozițională:

- Spunem că $\varphi \in E_{\sigma}$ este **satisfiabil** dacă există \mathcal{A} cu $\mathcal{A} \models \varphi$.
- \bullet Spunem că un enunț φ este **nesatisfiabil** dacă φ nu este satisfiabil.
- Fie φ , $\psi \in E_{\sigma}$. Spunem că din φ se deduce semantic ψ și scriem $\varphi \models \psi$ dacă pentru orice \mathcal{A} cu $\mathcal{A} \models \varphi$ avem $\mathcal{A} \models \psi$.

Clar, \bot este enunț, iar pentru orice σ -structură \mathcal{A} , avem $\mathcal{A} \not\models \bot$, i.e. \bot este nesatisfiabil.

Mulțimi de enunțuri

Complet analog celor din logica propozițională, vom introduce noțiuni de satisfiabilitate pentru mulțimi de formule, precum și semnificații corespunzătoare ale semnului \models .

Fie $\Gamma \subseteq E_{\sigma}$. Pentru orice σ -structură \mathcal{A} , spunem că \mathcal{A} satisface Γ sau că \mathcal{A} este **model** pentru Γ , și scriem $\mathcal{A} \models \Gamma$, dacă pentru orice $\varphi \in \Gamma$, $\mathcal{A} \models \varphi$.

Spunem că Γ este **satisfiabilă** dacă există o σ -structură \mathcal{A} cu $\mathcal{A} \models \Gamma$; că este **nesatisfiabilă** dacă nu este satisfiabilă.

Următoarele proprietăți se demonstrează perfect analog celor din logica propozițională.

Fie $\Gamma \subseteq E_{\sigma}$, $\Delta \subseteq \Gamma$ și \mathcal{A} o σ -structură. Avem următoarele:

- Dacă $\mathcal{A} \models \Gamma$, atunci $\mathcal{A} \models \Delta$.
- Dacă Δ este nesatisfiabilă, atunci Γ este nesatisfiabilă.
- Avem că $\mathcal{A} \models \Gamma$ dacă și numai dacă pentru orice $\Sigma \subseteq \Gamma$ finită, $\mathcal{A} \models \Sigma$.

Deducție semantică din mulțimi

Fie $\Gamma \subseteq E_{\sigma}$ și $\varphi \in E_{\sigma}$. Spunem că din Γ **se deduce semantic** φ , și scriem $\Gamma \models \varphi$, dacă pentru orice σ -structură \mathcal{A} cu $\mathcal{A} \models \Gamma$ avem $\mathcal{A} \models \varphi$. Această noțiune are următoarele proprietăți analoage celor din logica propozițională și demonstrabile similar.

Proprietăți

Fie $\Gamma \subseteq E_{\sigma}$, $\Delta \subseteq \Gamma$ și φ , $\psi \in E_{\sigma}$. Avem următoarele:

- Dacă $\Delta \models \varphi$, atunci $\Gamma \models \varphi$.
- Mulţimea Γ este nesatisfiabilă dacă și numai dacă $\Gamma \models \bot$.
- Avem $\Gamma \models \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ este nesatisfiabilă.

Secțiunea 2

Corectitudinea rezoluției

Regula rezoluției

Fie G, G' scopuri și C clauză cu $Var(G) \cap Var(C) = \emptyset$. Fie m, $k \in \mathbb{N}$ astfel încât $G = \forall (\neg A_1 \lor \ldots \lor \neg A_m)$ și $C = \forall (B_0 \lor \neg B_1 \lor \ldots \lor \neg B_k)$. Considerăm B_0 ca fiind de forma $p(t_1,\ldots,t_n)$. Fie $i \leq m$ astfel încât A_i este de forma $p(s_1,\ldots,s_n)$. Fie θ un cgu al lui A_i și B_0 , adică al mulțimii $\{s_1=t_1,\ldots,s_n=t_n\}$. Spunem că G' este **derivat prin rezoluție** din G, C și G, și notăm G, G, G, dacă

$$G' = \forall (\neg A_1 \lor \ldots \lor \neg A_{i-1} \lor \neg B_1 \lor \ldots \lor \neg B_k \lor \neg A_{i+1} \lor \ldots \lor \neg A_m)\theta.$$

Notație: Pentru orice formulă fără cuantificatori φ și orice substituție θ , notăm cu $\varphi\theta$ formula care se obține din φ aplicând pe θ pe toate variabilele sale libere.)

Derivări

Fie $a \in \mathbb{N}^* \cup \{\mathbb{N}\}$. Numim o P-derivare (prin rezoluție) un triplet $((G_i)_{i < a}, (C_i)_{i+1 < a}, (\theta_i)_{i+1 < a})$, astfel încât, pentru orice i cu i+1 < a, C_i este o clauză obținută dintr-o clauză din P prin redenumirea variabilelor sale și $(G_i, C_i, \theta_i) \triangleright G_{i+1}$.

Fie $n \in \mathbb{N}^*$ și $((G_i)_{i < n}, (C_i)_{i+1 < n}, (\theta_i)_{i+1 < n})$ o P-derivare. Spunem că substituția calculată a sa este $\widetilde{\theta}_{n-2} \circ \ldots \circ \widetilde{\theta}_1 \circ \theta_0$.

Fie G un scop, $n \in \mathbb{N}^*$ și $((G_i)_{i < n}, (C_i)_{i+1 < n}, (\theta_i)_{i+1 < n})$ o P-derivare cu $G_0 = G$ și $G_{n-1} = \bot$. Atunci spunem că derivarea este o P-respingere a lui G, iar substituția sa calculată spunem că este o P-soluție a lui G.

Fie G un scop, $n \in \mathbb{N}^*$ și $((G_i)_{i < n}, (C_i)_{i+1 < n}, (\theta_i)_{i+1 < n})$ o P-derivare cu $G_0 = G$ și $G_{n-1} \neq \bot$ care nu admite o prelungire la una de lungime n+1. Atunci spunem că derivarea este o P-derivare eșuată a lui G.

Teorema de corectitudine

Teorema de corectitudine

Fie $m \in \mathbb{N}^*$, A_1, \ldots, A_m formule atomice relaționale și θ o P-soluție a lui $\forall (\neg A_1 \lor \ldots \lor \neg A_m)$. Atunci $P \models \forall (A_1 \land \ldots \land A_m)\theta$.

Demonstrație

Demonstrăm după lungimea P-respingerii. Pasul de bază are loc atunci când avem o singură aplicare a rezoluției, așadar trebuie să avem m=1, iar clauza folosită are tot lungime 1, fie ea $\forall B_0$. Atunci θ este cgu pentru A_1 și B_0 , deci $A_1\theta=B_0\theta$. Cum $\forall B_0$ este o redenumire a unei clauze din P, avem $P\models \forall B_0$, deci $P\models \forall B_0\theta$, așadar $P\models \forall A_1\theta$, ceea ce trebuia demonstrat.

Teorema de corectitudine

Demonstrație (cont.)

Pentru pasul de inducție, notăm cu $((G_i)_{i < n}, (C_i)_{i+1 < n}, (\theta_i)_{i+1 < n})$ P-respingerea. Luăm C_0 de forma $\forall (B_0 \lor \neg B_1 \lor \ldots \lor \neg B_k)$ și fie i astfel încât θ_0 este cgu al lui A_i și B_0 . Așadar, G_1 este

$$\forall (\neg A_1 \lor \ldots \lor \neg A_{i-1} \lor \neg B_1 \lor \ldots \lor \neg B_k \lor \neg A_{i+1} \lor \ldots \lor \neg A_m)\theta_0.$$

Din ipoteza de inducție, avem

$$P \models \forall (A_1 \wedge \ldots \wedge A_{i-1} \wedge B_1 \wedge \ldots \wedge B_k \wedge A_{i+1} \wedge \ldots \wedge A_m)\theta.$$

Cum C_0 este o redenumire a unei clauze din P, avem

$$P \models \forall (B_0 \vee \neg B_1 \vee \ldots \vee \neg B_k)\theta,$$

deci $P \models \forall (A_1 \land \ldots \land A_{i-1} \land B_0 \land A_{i+1} \land \ldots \land A_m)\theta$. Cum $B_0\theta_0 = A_i\theta_0$, $B_0\theta = A_i\theta$, deci $P \models \forall (A_1 \land \ldots \land A_m)\theta$.

O propoziție

Propoziție

Fie G un scop astfel încât există o P-respingere a lui G. Atunci $P \cup \{G\}$ este nesatisfiabilă.

Demonstrație

Scriem $G = \forall (\neg A_1 \lor ... \lor \neg A_m)$. Din teorema de corectitudine, rezultă $P \models \exists (A_1 \land ... \land A_m)$, deci

$$P \models \neg \forall (\neg A_1 \lor \ldots \lor \neg A_m) = \neg G,$$

de unde obținem concluzia.

Secțiunea 3

Universul Herbrand

Structuri Herbrand

De acum încolo, vom face presupunerea că există măcar o constantă în signatură, așadar $\widetilde{T}_{\sigma} \neq \emptyset$. Notăm cu B_{σ} (numită **baza Herbrand**) mulțimea tuturor σ -formulelor atomice relaționale fără variabile.

Spunem că o σ -structură este **Herbrand** atunci când universul ei este \widetilde{T}_{σ} , iar simbolurile de funcție sunt interpretate "de ele însele". Observăm că o σ -structură Herbrand este complet determinată de mulțimea J a acelor formule din B_{σ} adevărate în ea. Pentru orice submulțime J a lui B_{σ} și orice enunț φ , spunem că $J\models_{H}\varphi$ atunci când structura Herbrand asociată lui J satisface φ .

Dacă \mathcal{A} este o σ -structură, vom nota $J_{\mathcal{A}} := \{ \varphi \in \mathcal{B}_{\sigma} \mid \mathcal{A} \models \varphi \}.$

Teoremă

Fie $\mathcal A$ o σ -structură și φ o clauză definită (sau un scop definit) cu $\mathcal A \models \varphi$. Atunci $J_{\mathcal A} \models_{\mathcal H} \varphi$.

Demonstrație

Presupunem φ clauză definită. Avem că există $m, n \in \mathbb{N}$, formule atomice relaționale A_0, A_1, \ldots, A_m și variabile x_1, \ldots, x_n cu

$$\varphi = \forall x_1 \ldots \forall x_n (A_0 \vee \neg A_1 \vee \ldots \vee \neg A_m).$$

Fie $t_1,\ldots,t_n\in\widetilde{T}_\sigma$. Notăm, pentru orice i, $A_i':=A_i[x_1:=t_1]\ldots[x_n:=t_n]$ și $\varphi':=A_0'\vee\neg A_1'\vee\ldots\vee\neg A_m'$. Vrem $J_\mathcal{A}\models_H\varphi'$. Presupunem că, pentru orice $i\geq 1$, $J_\mathcal{A}\models_HA_i'$. Arătăm că $J_\mathcal{A}\models_HA_0'$. Deci, pentru orice $i\geq 1$, cum $A_i'\in B_\sigma$, $A_i'\in J_\mathcal{A}$, deci $\mathcal{A}\models A_i'$. Cum $\mathcal{A}\models\varphi$, avem $\mathcal{A}\models\varphi'$, iar, cum, pentru orice $i\geq 1$, $\mathcal{A}\models_HA_0'$. Cum $\mathcal{A}\models_GA_0'$. Cum $\mathcal{A}_0'\in B_\sigma$, $\mathcal{A}_0'\in J_\mathcal{A}$, deci $J_\mathcal{A}\models_HA_0'$.

Teoremă

Fie P un program. Atunci $K_P := \{J \subseteq B_\sigma \mid J \models_H P\}$ este o mulțime Moore pe B_σ .

Demonstrație

Faptul că $B_{\sigma} \models_{H} P$ rămâne ca exercițiu. Fie acum $K \subseteq K_{P}$ cu $K \neq \emptyset$. Vrem $\bigcap K \models_{H} P$. Fie $\varphi \in P$. Fie $t_{1}, \ldots, t_{n} \in \widetilde{T}_{\sigma}$. Folosim aceleași notații ca în demonstrația precedentă. Presupunem că, pentru orice $i \geq 1$, $\bigcap K \models_{H} A'_{i}$. Arătăm că $\bigcap K \models_{H} A'_{0}$. Deci, pentru orice $i \geq 1$, cum $A'_{i} \in B_{\sigma}$, $A'_{i} \in \bigcap K$, deci, pentru orice $J \in K$, $A'_{i} \in J$, adică $J \models_{H} A'_{i}$. Fie $J \in K$. Avem $J \models_{H} \varphi$, deci $J \models_{H} \varphi'$, iar, cum, pentru orice $i \geq 1$, $J \models_{H} A'_{i}$, avem $J \models_{H} A'_{0}$, deci, cum $A'_{0} \in B_{\sigma}$, $A'_{0} \in J$. Așadar, $A'_{0} \in \bigcap K$, deci $\bigcap K \models_{H} A'_{0}$.

Pentru orice program P, notăm $M_P := \bigcap K_P \in K_P$.

Teoremă

Pentru orice program P, $M_P = \{ \varphi \in B_\sigma \mid P \models \varphi \}$.

Demonstrație

Pentru \supseteq ", fie $\varphi \in B_{\sigma}$ cu $P \models \varphi$. Fie $J \in K_{P}$. Vrem $\varphi \in J$. Cum $J \models_{H} P$, avem $J \models_{H} \varphi$, iar, cum $\varphi \in B_{\sigma}$, $\varphi \in J$. Pentru \subseteq ", fie $\varphi \in M_{P}$. Fie A cu $A \models P$. Vrem $A \models \varphi$. Cum P este o mulțime de clauze definite, dintr-o teoremă anterioară avem $J_{A} \models_{H} P$, deci $J_{A} \in K_{P}$. Rezultă $M_{P} \subseteq J_{A}$, deci $\varphi \in J_{A}$, adică $J_{A} \models_{H} \varphi$. Rezultă $A \models \varphi$.

Numim M_P modelul Herbrand asociat programului P

Sectiunea 4

Completitudinea rezoluției

Operatorul T_P

Definim operatorul $T_P: \mathcal{P}(B_\sigma) \to \mathcal{P}(B_\sigma)$ în felul următor: pentru orice J, $T_P(J)$ este mulțimea acelor $\varphi \in B_\sigma$ cu proprietatea că există $A_1, \ldots, A_m \in J$ astfel încât $\varphi \vee \neg A_1 \vee \ldots \vee \neg A_m$ este instanță a unei clauze din P.

Propoziție

Pentru orice J, $J \models_H P$ dacă și numai dacă $T_P(J) \subseteq J$.

Corolar

Pentru orice φ , $\varphi \in M_P$ dacă și numai dacă, pentru orice J cu $T_P(J) \subseteq J$, $\varphi \in J$.

Se observă și că T_P este monoton și, deci, din cele de mai sus,

$$M_P = \mu T_P = \bigcap \{J \mid T_P(J) \subseteq J\}.$$

Mulţimea S_P

Definim mulțimea S_P ca fiind submulțimea lui B_σ a acelor φ cu proprietatea că există o P-respingere a lui $\neg \varphi$.

Propoziție

 $S_P \subseteq M_P$.

Demonstrație

Fie $\varphi \in S_P$, adică există o P-respingere a lui $\neg \varphi$. Din Teorema de corectitudine, rezultă $P \models \varphi$, adică $\varphi \in M_P$.

Spre completitudine

Propoziție

 $M_P \subseteq S_P$.

Demonstrație

Din cele spuse mai devreme, este suficient să arătăm că $T_P(S_P) \subseteq S_P$. Fie $\varphi \in T_P(S_P)$. Atunci $\varphi \in B_\sigma$ și există $A_1, \ldots, A_m \in S_P$ astfel încât $\varphi \vee \neg A_1 \vee \ldots \vee \neg A_m$ este instanță a unei clauze din P. Avem că există P-respingeri pentru $\neg A_1, \ldots, \neg A_m$, iar, punându-le cap la cap (nu detaliem cum, dar este important că sunt toate din B_σ), obținem o P-respingere pentru $\neg \varphi$, deci $\varphi \in S_P$.

Corolar

Pentru orice $\varphi \in B_P$ cu $P \models \varphi$, $\varphi \in S_P$.

Spre completitudine

Lemă

Fie φ o formulă atomică relațională cu $P \models \forall \varphi$. Atunci există o P-respingere a lui $\neg \varphi$ cu substituția calculată fiind identitatea.

Demonstrație

Scriem $Var(\varphi)=\{z_1,\ldots,z_n\}$. Introducem constante noi a_1,\ldots,a_n și considerăm substituția θ care duce, pentru orice i,z_i în a_i . Atunci $\varphi\theta\in B_\sigma$, deci, din corolarul anterior, există o P-respingere a lui $\neg\varphi\theta$. Clar, dat fiind că nu apar variabile, substituția calculată trebuie să fie identitatea. Schimbăm în substituție din nou a_i -urile cu x_i -uri (de ce putem face asta?) și obținem P-respingerea cerută.

Teorema de completitudine

Teorema de completitudine

Fie $m \in \mathbb{N}^*$, A_1, \ldots, A_m formule atomice relaționale și σ o substituție astfel încât $P \models \forall (A_1 \wedge \ldots \wedge A_m)\sigma$. Atunci există o P-soluție θ pentru $\forall (\neg A_1 \vee \ldots \vee \neg A_m)$ astfel încât $\forall (A_1 \wedge \ldots \wedge A_m)\sigma$ este o instanță a lui $\forall (A_1 \wedge \ldots \wedge A_m)\theta$.

Demonstrație (schiță)

Pentru orice i, avem $P \models \forall A_i \sigma$, deci, din lemă, există o P-respingere a lui $\neg A_i \sigma$ cu substituția calculată fiind identitatea. Din nou, putem pune cap la cap și obțin o P-respingere a lui $\forall (\neg A_1 \lor \ldots \lor \neg A_m) \sigma$ cu substituția calculată fiind identitatea. Aplicând un rezultat tehnic (Lema de ridicare), putem obține o P-respingere a lui $\forall (\neg A_1 \lor \ldots \lor \neg A_m)$, din ale cărei informații obținem substituția cerută.