PŘEDMĚT B2M31DSP/PŘ.

PS

Přednáška 4 (doplněná verze): Koherenční funkce

OBSAH

- MOHERENČNÍ FUNKCE
- VÝPOČET KOHERENČNÍ FUNKCE
- Použití MSC
- VLASTNOSTI MSC
- 5 Vlastnosti MSC vliv šumu
- 6 Dodatek Koherence v MISO systémech
- PARCIÁLNÍ KOHERENCE
- 8 Doporučená literatura

Koherenční funkce

Definice koherenční funkce - normovaná CPSD

$$\gamma_{yx}(f) = \frac{S_{yx}(f)}{\sqrt{S_{xx}(f)S_{yy}(f)}}$$

Koherence je komplexní funkce kterou lze využít např. pro měření zpoždění mezi signály šířícími se v disperzním prostředí. Jedná se o normovanou vzájemnou spektrální hustotu

Poznámka: koherenční funkce odpovídá korelačnímu koeficientu¹

$$r_{yx} = \frac{\sigma_{yx}}{\sqrt{\sigma_x^2} \sqrt{\sigma_y^2}},$$

kde
$$\sigma_{yx} = E[yx] - E[x]E[y], \, \sigma_x^2 = E[x^2] - E^2[x], \, \sigma_y^2 = E[y^2] - E^2[y]$$

¹S rozdílem, že $\gamma_{yx} \in \mathbb{C}$, $r_{yx} \in \mathbb{R}$ a korelační koeficent není funkcí frekvence

Modul kvadrátu koherenční funkce – MSC

Pro vyjádření míry korelace signálů často používáme modul kvadrátu koherenční funkce označovaný jako MSC (Magnitude squared coherence)

Definice MSC

$$C_{yx}(f) = MSC_{yx}(f) = |\gamma_{yx}(f)|^2 = \frac{|S_{yx}(f)|^2}{S_{xx}(f)S_{yy}(f)} \in <0,1>$$

MSC je normovaný kvadrát modulu vzájemné spektrální hustoty a je funkcí frekvence

Kvadrát korelačního koeficientu²

$$r_{yx}^2 = \frac{\sigma_{yx}^2}{\sigma_x^2 \sigma_y^2} \in <0, 1>$$

není funkce frekvence, nicméně jeho tvar je opět podobný MSC

²Normovaný kvadrát vzájemného rozptylu (energie)

VÝPOČET MSC

Výpočet se provede z **vyhlazených**³ **odhadů** vlastní $S_{xx}(f)$, $S_{yy}(f)$ a vzájemné $S_{xy}(f)$ spektrální hustoty signálů x a y

$$S_{yx}(f) = \frac{1}{L} \sum_{k=1}^{L} Y_k(f) X_k^*(f)$$

$$S_{xx}(f) = \frac{1}{L} \sum_{k=1}^{L} |X_k(f)|^2$$

$$S_{yy}(f) = \frac{1}{L} \sum_{k=1}^{L} |Y_k(f)|^2$$

³Nevyhlazené odhady spekter poskytnou hodnotu MSC=1

VÝPOČET MSC

Blokové schéma výpočtu MSC

Použití MSC

MSC je používána

- pro detekci signálu v šumu (např. řeči v šumu)
- pro kontrolu přesnosti měření $H(f)^4$

Poznámky: MSC lze samozřejmě průměrovat přes vybrané frekvenční pásmo a získat tím jedinou hodnotu. Segmentací signálu lze rovněž získat časový vývoj MSC či jejího průměru⁵. Právě časový vývoj MSC se používá pro detekci signálu v šumu.

⁴Ilustrace MSC na obrázku - tam, kde je hodnota MSC nízká, nelze změřené frekv. charakteristice příliš věřit

⁵ "Kohergram"

VLASTNOSTI MSC

Vlastnosti MSC

- ullet MSC nabývá hodnot z intervalu <0,1>
- MSC vypovídá o podobnosti (korelaci) signálů v jednotlivých frekvenčních pásmech (obdoba koeficientu korelace)
- udává míru přesnosti výpočtu frekvenční charakteristiky H(f): relativní chyba měření $\epsilon(|S_{yx}|) = \frac{1}{\sqrt{L.MSC}}, L$ je počet realizací pro výpočet PSD S_{xx}, S_{yy} a CPSD S_{yx}
- příčiny nízké hodnoty MSC
 - chyba odhadu = nízký počet průměrovaných realizací nebo nízké spektrální rozlišení⁶
 - podobnost signálů v daném frekvenčním pásmu je nízká⁷
 - systém je nelineární (neex. lin. závislost mezi x a y)
 - při měření je přítomen šum na vstupu či výstupu soustavy
 - jedná se o systém s více vstupy/výstupy (MIMO systém)

⁶Způsobené krátkým oknem

⁷Potom je ale též je nízká přesnost měření frekvenční charakteristiky

Šum na výstupu LTI soustavy

$$y(t) = x(t) * h(t) + m(t) = v(t) + m(t),$$

kde m(t) je šum nekorelovaný se signálem x(t): $E[x(t)m(t+\tau)]=0$

Šum na výstupu LTI soustavy

Platí⁸ (viz Př.1)

$$S_v = S_x |H|^2$$
, kde $H = \frac{S_{yx}}{S_x} = \frac{S_{vx}}{S_x}$

Rovnost $S_{yx}=S_{vx}$ plyne z rovnosti 9 $R_{yx}=R_{vx}$, která platí, je-li šum m(t) nekorelovaný se signálem x(t)

Dosazením za $|H|^2$ získáme

$$S_v=|rac{S_{yx}}{S_x}|^2S_x=MSC_{yx}S_y$$
 ... tedy S_v je ta část S_y , která vzniká působením $x(t)$

a podobně¹⁰

$$S_m = S_y - S_v = S_y (1 - MSC_{yx}) \dots S_m$$
 je část S_y vznikající působením šumu $m(t)$

Úpravou předchozí rovnice získáme vztah pro MSC: $MSC_{yx}(f) = 1 - rac{S_m(f)}{S_y(f)}$

 10 Samozřejmě platí $S_{\scriptscriptstyle V} = S_{\scriptscriptstyle V} + S_{\scriptscriptstyle m}$

 $^{^8}$ Vynecháme argument funkcí, tedy místo $S_{
u}(f)$ použijeme $S_{
u}$, apod.

⁹Důkaz: $E[y(t+\tau)x(t)] = E[x(t)(v(t+\tau) + m(t+\tau))] = E[x(t)v(t+\tau)]$

Šum na výstupu LTI soustavy

$$MSC_{yx}(f) = 1 - \frac{S_m(f)}{S_y(f)}$$
 ... šum na výstupu tedy snižuje hodnotu MSC, neboť pro $S_m(f) = 0$ je $v(t) = v(t) = x(t) * h(t)$ a $MSC_{vx}(f) = 1$

Tento výsledek mimo jiné ukazuje, že hodnota MSC signálu mezi vstupem x(t) a výstupem y(t) LTI filtru není filtrací změněna 11

 $^{^{11}}$ Tvrzení platí za předpokladu, že filtr neobsahuje nuly na jednotkové kružnici - pak je v MSC patrná hřebenová struktura

Šum na vstupu LTI soustavy

$$y(t) = s(t) * h(t)$$
, ale $s(t)$ neznáme a měříme pouze $x(t) = s(t) + n(t)$

vede na vztah¹²

$$MSC(f) = 1 - \frac{S_n(f)}{S_x(f)}$$
 ... a tedy též ke snížení hodnoty MSC

¹²Odvození je podobné předchozímu případu

Šum na vstupu i výstupu LTI soustavy

x(t)=s(t)+n(t), kde x(t) je měřitelný signál, vstupem LTI je signál s(t) y(t)=v(t)+m(t), kde y(t) je měřitelný výstup LTI systému buzeného signálem s(t), neměřitelný výstup je v(t)

Teoretická MSC je rovna

$$MSC_{vs}(f) = \frac{|S_{vs}(f)|^2}{S_s(f)S_v(f)}$$

Měřitelná MSC je

$$MSC_{yx}(f) = \frac{MSC_{vs}(f)}{1 + \frac{S_n(f)}{S_s(f)} + \frac{S_m(f)}{S_v(f)} + \frac{S_n(f)S_m(f)}{S_s(f)S_v(f)}} < MSC_{vs}(f)$$

Závěr: snížení hodnoty MSC indikuje přítomnost šumu na vstupu nebo výstupu soustavy

DODATEK - KOHERENCE V MISO SYSTÉMECH

MISO¹³ systém:

- vstupy $x_i(t)$, j = 1, 2, ...M
- impulsové odezvy $h_i(t)$, j = 1, 2, ...M
- výstup $y(t) = \sum_{j=1}^{M} h_j(t) * x_j(t), j = 1, 2, ...M$

$$S_{yx_i}(f) = \sum_{j=1}^M H_j(f) S_{x_i x_j}(f)$$

Pro nekorelované vstupy platí

$$S_{x_ix_j}(f) = 0$$
, pro $i \neq j$ a tedy $S_{yx_i}(f) = H_i(f)S_{x_i}(f)$

¹³Systém s více vstupy a jedním výstupem

KOHERENCE V MISO SYSTÉMECH

Protože platí

$$S_{yx_i}(f) = H_i(f)S_{x_i}(f)$$

lze pro součet dílčích koherenčních funkcí získat

$$\sum_{j=1}^{M} \mathit{MSC}_{\mathsf{yx}_i}(f) = 1$$

 $MSC_{yx_i}(f)$ je koherenční funkce mezi i-tým vstupem a výstupem - při jejím výpočtu se ostatní vstupy x_j , $i \neq j$ jeví jako šumové zdroje

Závěry:

- vstupní signály v MISO systémech snižují hodnotu MSC snížení hodnoty MSC tedy indikuje přítomnost dalších signálů
- v případě, kdy chceme vyloučit vliv dalších vstupních signálů se používá parciální koherence - opět souvisí s parciálním korelačním koeficientem

Parciální korelační koeficient

Statistika zná pojem parciální korelační koeficient - používá se v případech, kdy existuje více náhodných proměnných, které se navzájem ovlivňují a my požadujeme sledovat vliv dvou proměných mezi sebou a vyloučit vliv zbylých proměnných

Parciální korelační koeficient 14 $r_{yx.z}$

$$r_{yx.z} = \frac{r_{yx} - r_{xz}r_{yz}}{\sqrt{1 - r_{xz}^2}\sqrt{1 - r_{yz}^2}}$$

PŘÍKLAD NECHŤ KORELAČNÍ KOEFICIENTY MEZI DVOJICEMI NÁHODNÝCH PROMĚNNÝCH MAJÍ HODNOTY $r_{yx}=0.15,\ r_{xz}=0.75,\ r_{yz}=-0.4.$ POKUD UZAVŘEME ŠETŘENÍ VZTAHU TVRZENÍM, ŽE KORELACE MEZI y a x je nízká (zde 0.15), pak se dopouštíme chyby, neboť výpočet "Očišteného vztahu" mezi y a x poskytne hodnotu $r_{yx,z}=0.74$ Jak je patrné, vliv vyloučené proměnné může mít až devastující vliv na vztah mezi zkoumanými proměnnými (nebo signály).

¹⁴Korelace mezi x-y s vyloučením vlivu z

Parciální koherence

Podobně se v systémech s více vstupy/výstupy pro analýzu vazby mezi dvěma procesy s vyloučením vlivu dalšího procesu na tuto vazbu používá

Parciální koherenční funkce 15 $\gamma_{yx.z}$

$$\gamma_{yx.z} = \frac{\gamma_{yx} - \gamma_{xz}\gamma_{yz}}{\sqrt{1 - \gamma_{xz}^2}\sqrt{1 - \gamma_{yz}^2}}$$

od jejího vlivu podobně jako parciální korelační koeficient umožňuje vyloučit vliv třetí proměnné a "očistit výsledek" od jejího vlivu

 $^{^{15}}$ Tato funkce se využívá např. při určování vazeb mezi mozkovými centry nebo při detekci závad mechanických systémů

LITERATURA

Kniha: Uhlíř, Sovka: Číslicové zpracování signálů, Vyd. ČVUT, Praha 1995

a 2002

Skripta: Sovka, Pollák: Vybrané metody číslicového zpracování signálů,

ČVUT v Praze, 2001 - v elektronické podobě na MOODLE