COURSE PLAN

Department:	Humanities and Management						
Course Name & code :	Operations Research HUM 3252						
Semester & branch :	VI Semester B	Tech	Data Science	Data Science and Engineering			
Name of the faculty:	Prof. Mahesh l	Prabhu and Dr.	Rajesh R Pai				
No of contact hours/week: 03		L	T	P	C		
140 of contact nodes, we can so		3	0	0	3		

COURSE OUTCOMES (COS)

At the	e end of this course, the student should be able to:	No. of Contact Hours	Marks	Program Outcomes (POs)	PSO	BL (Recommended)
CO1	Describe the basic assumptions, terminology, general structure, and applications of LP models, and queuing models and formulate the verbal statement of the decision model into a mathematical model.	6	20	PO1, PO2		BL1/BL2
CO2	Solve the LP problems using graphical/simplex/assignment and transportation algorithms.	20	60	PO2, PO3		BL2/BL3
CO3	Interpret the results obtained and conduct sensitivity analysis.	4	10	PO3, PO4	×	BL4/BL5
CO4	Describe the operating characteristics of queuing models in general and evaluate the system with known and unknown costs in respect of single channel-single phase/multi channel-single phase using either analytical or simulation methods.	6	10	PO1, PO2, PO3, PO4		BL3
	Total	36	100			

COURSE LEARNING OUTCOMES (CLOS)

At the end of this course, the student should be able to:		No. of Contact Hours	Marks	Program Outcomes(POs)	Learning Outcomes (LOs)	BL (Recommended)
a g a a	Describe the basic assumptions, terminology, general structure, and applications of LP models, and queuing models and formulate the verbal statement of the decision	6	15	PO1, PO2	C1, C2	BL1/BL2

	model into a mathematical			N .		
	model.					
CLO2	Solve the LP problems using graphical/simplex/assignment	20	60	PO2, PO3	C3	BL2/BL3
CLO2	and transportation algorithms.					
CLO3	Interpret the results obtained	4	15	PO3, PO4	C3	
	and conduct sensitivity	le j				BL4/BL5
	analysis.					
CLO4	Describe the operating	6	10	PO1, PO2, PO3,	C1, C2, C3	
	characteristics of queuing			PO4		BL3
	models in general and					
	evaluate the system with					
	known and unknown costs in					
	respect of single channel-					
	single phase/multi channel-					
	single phase using either		6			
	analytical or simulation					
	methods.					
	Total	36	100			
						0

LESSON PLAN

L No	TOPICS					
1	Introduction to the Operations Research	CO1				
2	Introduction, Definition, and Phases of OR	CO1				
3	Linear Programming Problems (LPP)- Introduction, Assumptions in LPP	CO1				
4	Formulation of LPP for different applications	CO1				
5	Formulation of LPP for different applications	CO1				
6	Graphical solution to LPP	CO2				
7	Graphical solution to LPP	CO2				
8	Introduction to Simplex Algorithm	CO2				
9	Maximization case	CO2				
10	Minimization case	CO2				
11	Equality constraints	CO2				
12	Special cases of LPP	CO2				
13	Practice sessions on simplex algorithm	CO2				
14	Sensitivity Analysis of LPP	CO3				
15	Sensitivity Analysis of LPP	CO3				
16	Sensitivity Analysis of LPP	CO3				
17	Introduction to Transportation Algorithm	CO2				
18	Formulation of Transportation Algorithm	CO2				
19	Transportation Algorithm-Generating basic feasible solution using North-West Corner Rule	CO2				
	and Least Cost Method	_				
20	Transportation Algorithm-Generating basic feasible solution using North-West Corner Rule	CO ₂				
	and Least Cost Method					
21	Testing for optimality using Stepping Stone Method	CO2				
22	Testing for optimality using Modified Distribution Method (MODI Method)	CO2				
23	Maximization case	CO2				
24	Unbalanced problems and Multiple Optimal Solutions	CO2				
25	Degeneracy	CO2				
26	Post Optimality Analysis using transportation algorithm	CO3				
27	Applications of Transportation Algorithm	CO1				
28	Applications of Transportation Algorithm	CO1				
29	Assignment Algorithm-Introduction	CO1				
30	Solution to balanced and unbalanced assignment problems	CO2				
31	Applications of Assignment Algorithm	CO2				
32	Travelling Salesman Problem	CO2				
33	Queuing Theory-Introduction	CO4				
34	Single Channel Single Phase models	CO4				
35	Infinite and Finite Population Models	CO4				
36	Simulation Models	CO4				

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	X	X													
CO2		X	X												
CO3			X	X											
CO4	X	X	X	X											
Articul ation Level	M	M	M	M											

FACULTY MEMBERS TEACHING THE COURSE (IF MULTIPLE SECTIONS EXIST):

FACULTY	SECTION
Prof. Mahesh Prabhu H	В
Dr. Rajesh R Pai	A

References:

- 1. Taha, H. A. (2014). Operations Research-An Introduction, Ninth Edition. Pearson.
- 2. Sharma S D. (2005). Operations Research, KedarNath RamNath & Co.
- 3. Sharma J K. (2012). Operations Research-Theory and Application, Fifth Edition, Macmillan Publishers.
- 4. Wagner Harvey M (2009). Principles of Operations Research, Second Edition, Prentice Hall of India.

Submitted by: Prof. Mahesh Prabhu H

(Signature of the faculty)

Date: 02.01.2024

Approved by: Dr. Yogesh Pai P

Dr. YOGESH PAI P.

B.E., M.B.A., M.Phil., Ph.D.

HOD, Humanities & Management

MIT, MANIPAL - 576 104, Karnataka, India