МАШИННЕ НАВЧАННЯ

РОЗДІЛ III. РОЗПІЗНАВАННЯ ОБРАЗІВ У МН

Тема Зниження розмірності:лінійний дискримінант Фішера

Лекція №4

Лінійний дискримінант Фішера

В методі головних компонент знаходиться таке різноманіття меншої розмірності, який мінімізує середньоквадратичну відстань від усіх точок навчаючої вибірки до цього різноманіття. Однак, якщо є потреба понизити розмірність простору ознак так, щоб вектори двох класів залишались лінійно розділимими, то необхідно враховувати інші важливі характеристики, наприклад, дисперсії проекцій векторів в класах.

Ілюстрація прикладу

• Наприклад, для векторів навчальної вибірки двох класів, які зображені на рис., прямою проеціювання, знайдено методом головних компонент, буде вісь ординат.

Лінійний дискримінант Фішера

Пряма, на яку виконується проеціювання вибіркових векторів, повинна бути такою, щоб відстань між середніми значеннями проекцій класів була мінімальною, а повне розсіювання спроецьованих вибіркових значень було мінімальним. Пряма проеціювання, яка задовольняє цим лінійним називається вимогам, дискримінантом Фішера.

Схема побудови лінійного дискримінанта Фішера

Шаг 1. Визначити середне значення векторів в класах:

$$m_i = \frac{1}{|\omega_i|} \sum_{x \in \omega_i} x, \ i = 1, 2.$$

Шаг 2. Визначити матриці розсіювання векторів в класах:

$$S_i = \sum_{x \in \omega_i} (x - m_i)(x - m_i)^T, i = 1, 2.$$

Шаг 3. Визначити матрицю розсіювання векторів усієї вибірки:

$$S = S_1 + S_2$$

Шаг 4. Визначити лінійний дискримінант w

$$w = S^{-1} \cdot (m_1 - m_2).$$

Шаг 5. Визначити нові координати проекціювання:

$$x' = w^T \cdot x$$
.

Приклад

Умови задачі: задані двомірні образи-вектори:

$$x_1=(0;\ 2)^T;\ x_2=(0;\ 1)^T;\ x_3=(1;\ 0)^T;\ \in\ X_1$$
 та $x_4=(-1;\ 0)^T;\ x_5=(0;\ -3)^T$ $\in\ X_2$, які належать областям переваг X_1 та X_2

1) знайдемо середнє значення векторів в класах:

$$m_i = \frac{1}{|\omega_i|} \sum_{x \in \omega_i} x$$

$$m_1 = \frac{1}{3} \cdot \begin{pmatrix} 0+0+1\\2+1+0 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 1\\3 \end{pmatrix} = \begin{pmatrix} \frac{1}{3}\\1 \end{pmatrix};$$

$$m_2 = \frac{1}{2} \cdot \begin{pmatrix} -1+0\\0-3 \end{pmatrix} = \frac{1}{2} \cdot \begin{pmatrix} -1\\-3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}\\-\frac{3}{2} \end{pmatrix}.$$

2) знайдемо матриці розсіювання векторів в класах:

$$S_i = \sum_{\alpha \in \omega_i} (x - m_i)(x - m_i)^T$$

$$x_1 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \ (x_1 - m_1) = \begin{pmatrix} -\frac{1}{3} \\ 1 \end{pmatrix}, \ (x_1 - m_1) \cdot (x_1 - m_1)^T = \begin{pmatrix} -\frac{1}{3} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{3} & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{9} & -\frac{1}{3} \\ -\frac{1}{3} & 1 \end{pmatrix};$$

$$x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ (x_2 - m_1) = \begin{pmatrix} -\frac{1}{3} \\ 0 \end{pmatrix}, \ (x_2 - m_1) \cdot (x_2 - m_1)^T = \begin{pmatrix} -\frac{1}{3} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{3} & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{9} & 0 \\ 0 & 0 \end{pmatrix};$$

$$x_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ (x_3 - m_1) = \begin{pmatrix} \frac{2}{3} \\ -1 \end{pmatrix}, \ (x_3 - m_1) \cdot (x_3 - m_1)^T = \begin{pmatrix} \frac{2}{3} \\ -1 \end{pmatrix} \cdot \begin{pmatrix} \frac{2}{3} & -1 \end{pmatrix} = \begin{pmatrix} \frac{4}{9} & -\frac{2}{3} \\ -\frac{2}{3} & 1 \end{pmatrix};$$

Розв'язання

$$S_1 = \begin{pmatrix} \frac{1}{9} & -\frac{1}{3} \\ -\frac{1}{3} & 1 \end{pmatrix} + \begin{pmatrix} \frac{1}{9} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \frac{4}{9} & -\frac{2}{3} \\ -\frac{2}{3} & 1 \end{pmatrix} = \begin{pmatrix} \frac{6}{9} & -1 \\ -1 & 2 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 2 & -3 \\ -3 & 6 \end{pmatrix};$$

$$x_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \ (x_4 - m_2) = \begin{pmatrix} -\frac{1}{2} \\ \frac{3}{2} \end{pmatrix}, \ (x_4 - m_2) \cdot (x_4 - m_2)^T = \begin{pmatrix} -\frac{1}{2} \\ \frac{3}{2} \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} \\ -\frac{3}{4} & \frac{9}{4} \end{pmatrix};$$

$$x_5 = \begin{pmatrix} 0 \\ -3 \end{pmatrix}, \ (x_5 - m_2) = \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix};$$

$$S_2 = \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} \\ -\frac{3}{4} & \frac{9}{4} \end{pmatrix} + \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} \\ -\frac{3}{4} & \frac{9}{4} \end{pmatrix} = \begin{pmatrix} \frac{2}{4} & -\frac{6}{4} \\ -\frac{6}{4} & \frac{18}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{3}{2} & \frac{9}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix}.$$
3) знайдемо матрицю розсіювання векторів усієї вибірки:

 $S = S_1 + S_2$

Розв'язання

$$S = \frac{1}{3} \begin{pmatrix} 2 & -3 \\ -3 & 6 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 7 & -15 \\ -15 & 39 \end{pmatrix}.$$

4) знайдемо лінійний дискримінант w

$$w = S^{-1} \cdot (m_1 - m_2)$$

$$\det S = \frac{1}{6} \begin{vmatrix} 7 & -15 \\ -15 & 39 \end{vmatrix} = 8;$$

$$S^{-1} = \frac{1}{8} \begin{pmatrix} 39 & 15 \\ 15 & 7 \end{pmatrix};$$

$$(m_1 - m_2) = \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} = \frac{5}{6} \begin{pmatrix} 1 \\ 3 \end{pmatrix};$$

$$w = S^{-1} \cdot \left(m_1 - m_2 \right) = \frac{1}{8} \begin{pmatrix} 39 & 15 \\ 15 & 7 \end{pmatrix} \cdot \frac{5}{6} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \frac{5}{4} \begin{pmatrix} 7 \\ 3 \end{pmatrix}.$$

5) знайдемо «нові» одновимірні вектори:

$$x' = w^T \cdot x$$

$$x_1' = \frac{5}{4}(7 \quad 3) \cdot {0 \choose 2} = \frac{15}{2};$$

$$x_2' = \frac{5}{4}(7 \quad 3) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{15}{4};$$

$$x_3' = \frac{5}{4}(7 \quad 3) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{35}{4};$$

$$x_4' = \frac{5}{4}(7 \quad 3) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -\frac{35}{4};$$

$$x_5' = \frac{5}{4}(7 \quad 3) \cdot \begin{pmatrix} 0 \\ -3 \end{pmatrix} = -\frac{45}{4}$$
.

$$x_1'' = \frac{\frac{15}{2}}{\sqrt{7^2 + 3^2}} \approx 0.98;$$

$$x_2'' = \frac{\frac{15}{4}}{\sqrt{7^2 + 3^2}} \approx 0.49;$$

$$x_3'' = \frac{\frac{35}{4}}{\sqrt{7^2 + 3^2}} \approx 1.15;$$

$$x_4'' = \frac{-\frac{35}{4}}{\sqrt{7^2 + 3^2}} \approx -1.15;$$

$$x_5'' = \frac{-\frac{45}{4}}{\sqrt{7^2 + 3^2}} \approx -1.48.$$

Проекції образів на одновимірний підпростір

МАШИННЕ НАВЧАННЯ

РОЗДІЛ III. РОЗПІЗНАВАННЯ ОБРАЗІВ У МН

Тема Методи кластеризації: метод найближчого сусіда

Лекція №4

Формальна постановка задачі класифікації

Мають місце K класів, які позначатимемо $S_1, S_2, \dots S_K$. Задано множину прецедентів, тобто об'єктів, для кожного з яких відомо, до якого з цих класів він належить:

$$X = \{X_{i}, y_{i}; i = \overline{1, N}\} = \{(x_{i,1} \quad x_{i,2} \quad \dots \quad x_{i,p}), y_{i}; i = \overline{1, N}\} = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,p} & y_{1} \\ x_{2,1} & x_{2,2} & \dots & x_{2,p} & y_{2} \\ \dots & \dots & \dots & \dots \\ x_{N,1} & x_{N,2} & \dots & x_{N,p} & y_{N} \end{pmatrix},$$

де $X_i = (x_{i,1} \ x_{i,2} \ \dots \ x_{i,p}) - i$ -й об'єкт, описаний p ознаками; $x_{i,j}$ — значення j-ї ознаки для i-го об'єкта; y_i — назва класу, до якого належить i-й об'єкт; N — кількість об'єктів; p — кількість ознак.

Цю множину називають навчальною вибіркою.

На її основі потрібно побудувати правило, яке б дозволяло будь-який новий об'єкт $X_0 = \begin{pmatrix} x_{0,1} & x_{0,2} & \dots & x_{0,p} \end{pmatrix}$ відносити до одного з класів $S_1, S_2, \dots S_K$.