Physics - 8.01

Exam #3

Fall 1999

SOLUTIONS

Problem 1 35 points

8 pts a) The diagrams:

The contact force N on the pulley must have components $N_x = T_2$ and $N_y = \frac{m_2}{2}g + T_1$ for the pulley to stay in place.

9 pts b)
$$T_2 = m_2 a = m_2 \left(\frac{g}{2} \right)$$

9 pts c)
$$R(T_1 - T_2) = I\alpha$$
 $I = \frac{1}{2} \frac{m_2}{2} R^2 = \frac{m_2 R^2}{4}$ $\alpha = \frac{a}{R}$ $R(T_1 - m_2 \frac{q}{2}) = I \frac{a}{R} = \frac{Iq}{2R} = \frac{m_2 qR}{8}$ $\Rightarrow T_1 = \frac{m_2 q}{8} + \frac{m_2 q}{2} = \frac{5}{8} m_2 g$

9 pts d)
$$m_1g - T_1 = m_1a = m_1\frac{q}{2}$$

 $m_1\frac{q}{2} = T_1 = \frac{5}{8}m_2g$
 $\Rightarrow m_1 = \frac{5}{4}m_2$

Problem 2 30 points

- 6 pts a) Since $m_2 \gg m_1$, the bullet will leave with the same relative speed with which it came in. $V_1' = V_1$
- 8 pts b) The speed of the bullet after the collision is now $V_1 + V_2$ relative to m_2 . Therefore, the speed of m_1 is $V_1' = V_1 + 2V_2$
- 8 pts c) Momentum conservation gives the speed of both masses after the collision, $V' = \frac{m_1 V_1}{m_1 + m_2}$. This kinetic energy brings the system to a height given by $\frac{1}{2}(m_1 + m_2)V'^2 = (m_1 + m_2)gh$ $\frac{1}{2}\frac{m_1^2 V_1^2}{(m_1 + m_2)^2} = gL(1 \cos\theta_{\text{max}})$ $\Rightarrow V_1 = \frac{m_1 + m_2}{m_1} \sqrt{2gL(1 \cos\theta_{\text{max}})}$ Notice for $\theta_{\text{max}} = 0$, $V_1 = 0$ as it should!
- 8 pts d) If $\theta_{\rm max}=90^{\circ}$, then $\cos\theta_{\rm max}=0$ and $V_1=\frac{m_1+m_2}{m_1}\sqrt{2gL}$, which is possible. For example, if L=1 m and $\frac{m_2}{m_1}\approx 10^2$, then $V_1\approx 450$ m/sec.

Problem 3 35 points

7 pts a)
$$\tau_p = |\vec{r_p} \times F| = -bMg \sin \theta$$

7 pts b)
$$I_p = I_c + Mb^2 = \frac{1}{2}MR^2 + Mb^2$$

7 pts c)
$$\sum \tau_p = I_p \alpha$$

 $-bMg \sin \theta = (\frac{1}{2}MR^2 + Mb^2)\ddot{\theta}$
 $\Rightarrow \ddot{\theta} + \frac{bg}{\frac{1}{2}R^2 + b^2} \sin \theta = 0$

- 7 pts d) Under the small angle approximation, $\sin\theta\approx\theta$, and the equation of motion is given by $\ddot{\theta}+\frac{bg}{\frac{1}{2}R^2+b^2}\theta=0$ which is simple harmonic with an angular frequency given by $\omega=\sqrt{\frac{bg}{\frac{1}{2}R^2+b^2}}$. The period is given by $T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{\frac{1}{2}R^2+b^2}{bg}}$.
- 7 pts e) There must be a force at P or the CM would accelerate straight downwards.