概率论与数理统计

[1]随机事件及其概率

随机试验 (E):

1. **重复性**:在<u>相同条件</u>下,实验可重复进行 2. **明确性**:实验所有可能的结果先均已知

3. 随机性: 每次实验的具体结果在实验前无法预知

样本点 (ω) : 随机试验每一个可能出现的结果

样本空间 (Ω) :随机试验所有样本点的全体

随机事件:具有某种特征的**样本点的集合**

基本事件:由一个样本点构成的**单点** 必然事件(Ω):必然发生的事件
 不可能事件(∅):不可能发生的事件

概率的性质:

• 非负性: $0 \le P(A) \le 1$

• 规范性: $P(\Omega) = 1, P(\emptyset) = 0$

• 可加性: 如果事件 A_1, A_2, \cdots, A_n 两两互不相容,则 $P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$

• 差事件概率计算公式: P(A-B) = P(A) - P(AB)

• 并事件概率计算公式:

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{1 \le i < j < k \le n} P(A_i A_j A_k) + \cdots + (-1)^{n-1} P(A_1 A_2 \cdots A_n)$$

条件概率:已知事件 A 发生的条件下,事件 B 发生的概率 $P(B|A) = \frac{P(AB)}{P(B)}$

乘法公式: $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$

完备事件组 (完备组) : 事件组 $A_1,\,A_2,\,\cdots,\,A_i,\,\cdots$ 两两互不相容,且 $A_1\cup A_2\cup\cdots\cup A_i\cup\cdots=\Omega$

全概率公式:

$$P(B) = \sum P(A_i) P(B|A_i)$$

$$P(C|B) = \sum P(A_i|B) P(C|A_iB)$$

贝叶斯公式 $: 完备事件组 <math>A_i$

$$P(A_i \mid B) = rac{P(A_i B)}{P(B)} = rac{P(B \mid A_i) P(A_i)}{\sum P(A_i) P(B \mid A_i)}$$

先验概率: P(A_i)
后验概率: P(A_i|B)

相互独立:

- P(AB) = P(A) P(B)
- $P(B) = P(B|A) = P(B|\bar{A})$

两两独立: $n\ (n\geq 2)$ 个随机事件 $A_1,\,A_2,\,\cdots,\,A_n$,对其中任意 $k\ (k=2,\,3,\,\cdots,\,n)$ 个随机事件,均 有

$$P(A_{i_1}A_{i_2}\cdots A_{i_n}) = P(A_{i_1}) P(A_{i_2})\cdots P(A_{i_k})$$

古典概型: 随机试验只有有限个样本点且各基本事件出现的概率相等

几何概型: 随机试验的样本空间为一几何区域且各基本事件出现的机会均等

伯努利概型: 随机试验 E 重复进行 n 次, 若每次实验

- 样本空间相同
- 结果相互独立
- 仅考虑两种结果 A 或 \bar{A}

[2]一维随机变量及其分布

随机变量:与没一个样本点 ω 唯一确定对应的**实数** X

分布函数: 设 X 为一随机变量,对于任意实数 x ,称函数 $P(X \le x)$ 为 X 的分布函数,记为 F(X). 即 $F(x) = P(X \le x \mid -\infty < x < +\infty)$

- $P\{\langle X \leq b\} = F(b) F(a)$
- $P{X = x_0} = F(x_0) F(x_0 0)$
- $0 \le F(x) \le 1$
- $F(-\infty) = 0, F(+\infty) = 1$
- *F(x)* 单调不减,且处处**右连续**,图像**左闭右开**

分布律:

• 离散型随机变量: X 的取值**有限个**或无穷多个,记为

- 连续型随机变量: 对**任意** x 有 $F(x) = \int_{\infty}^{x} f(x) dx$
 - \circ F(x) 连续,最多有有限的可导点
 - \circ 在 F(x) 的可导处, f(x) = F'(x)
 - \circ 在 F(x) 的不可导处,f(x)为**任意**非负实数
 - $P\{X = x_0\} = 0$
 - 。 不可能事件未必是空集, 全概率事件未必是全集
 - 。 连续型变量所在某区间的概率与区间端点是否取到无关
 - \circ 在有限点改变 f(x) 的取值,不影响 X 的整体分布,即 f(x) 的表达式不唯一
- 性质: $\sum p_i = \int_{-\infty}^{-\infty} f(x) dx = 1$

离散型随机变量分布:

• 两点分布: $X \sim B(1, p)$

$$P\{X = k\} = p^k (1 - p)^{1 - k}$$

• 二项分布: $X \sim B(n, p)$

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}$$

•

• \mathbf{i} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k}

$$P\{X=k\} = rac{\lambda^k}{k!}e^{-\lambda}$$

- $\circ \;\; \lambda = \lim_{n o \infty} np$
- \circ n 充分大, p 充分小, λ 较适中

$$\mathrm{C}_n^k p^k (1-p)^{n-k} pprox rac{\lambda^k}{k!} e^{-\lambda}$$

• 几何分布: $X \sim G(p)$

$$P\{X = k\} = (1 - p)^{k - 1}p$$

事件首次发生时的概率

• 超几何分布:

$$P\{X=k\} = \frac{\mathbf{C}_{N-M}^{n-k} \mathbf{C}_{M}^{k}}{\mathbf{C}_{N}^{n}}$$

从 N 个球里取 n 个,其中有 k 个球的颜色是 M 的概率

连续型随机变量分布:

• 均匀分布: $X \sim U[a, b]$

$$f(x) = egin{cases} rac{1}{b-a} & a \leq x \leq b \ 0 & ext{it} \ F(x) = egin{cases} 0 & x < a \ rac{x-a}{b-a} & a \leq a \leq b \ 1 & b < x \end{cases}$$

• 指数分布: $X \sim E(\lambda)$

$$f(x) = egin{cases} 0 & x \leq 0 \ \lambda e^{-\lambda x} & x > 0 \end{cases}$$
 $F(x) = egin{cases} 0 & x < 0 \ 1 - e^{-\lambda x} & x \geq 0 \end{cases}$

 \circ 当 s > 0, t > 0 时

$$P\{ | X > s + t | X > s \} = P\{ | X > t \}$$

- 。 指数分布与泊松分布的联系:
 - 泊松分布指事件 t 内事件发生次数 N(t) 的概率
 - 指数分布指随机事件发生的时间间隔 T(x) 的概率
- 正态分布: $X \sim N(\mu, \sigma^2)$

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- o 对称轴位置: $x = \mu$
- \circ 离散程度: σ 大图形矮胖, σ 小图形高瘦
- 。 最大值 $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$
- \circ $(-\infty, \mu)$ 内单调递增, $(\mu, +\infty)$ 内单调递减
- \circ 密度函数的**水平渐近线**: x 轴
- 密度函数的**拐点** (凹凸性改变) : $x = \mu \pm \sigma$
- \circ 标准正态分布: $X \sim N(0, 1)$

$$egin{aligned} arphi(x) &= rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}} \ \Phi(x) &= rac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-rac{t^2}{2}}\,\mathrm{d}x \ F(x) &= \Phi(rac{x-\mu}{\sigma}) \end{aligned}$$

 \circ 3σ 原则: X 的取值基本上都落在区间 $(\mu - 3\sigma, u + 3\sigma)$ 内

$$P\{|x - \mu| < \sigma\} = 0.6826$$

 $P\{|x - \mu| < 2\sigma\} = 0.9544$
 $P\{|x - \mu| < 3\sigma\} = 0.9974$

$$\circ$$
 令 $Y=rac{X-\mu}{\sigma}$,则 $Y\sim N(0,\,1)$

Y = g(X)的分布:

若

- 连续型随机变量 X 的密度函数为 $f_Y(x)$
- y = g(x) 是单调函数
- 其反函数 x = h(y) 具有**连续一阶导数**

则

- Y 是连续型变量随机变量
- $f_Y(y) = \left\{egin{array}{ll} f_X\left(h(y)
 ight) \; |h'(y)|, & lpha < y < eta \ 0, & ext{ # de} \end{array}
 ight.$
- $\alpha = \min\{g(-\infty), g(+\infty)\}, \beta = \max\{g(-\infty), g(+\infty)\}$

推论

- $Y = aX + b \sim N(a\mu + b, a^2\sigma^2), a \neq 0$
- $Y = \frac{X-\mu}{\sigma} \sim N(0, 1)$

重要公式:

$$\int_0^{+\infty} e^{-x^2} = \frac{\sqrt{\pi}}{2}$$
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$

[3]多维随机变量及其分布

$$F(x, y) = P\{X \le x, Y \le y\}, \quad -\infty < x < +\infty, \quad -\infty < y < +\infty$$

为 (X,Y) 的分布函数

- F(x, y) 分别关于变量 x 和 y 处处右连续
- $P\{ x_1 \le X \le x_2, y_1 \le Y \le y_2 \} = F(x_2, y_2) F(x_1, y_2) F(x_2, y_1) + F(x_1, y_1)$

二维随机变量: 设二维随机变量 (X,Y) 的分布函数为 F(x,y),密度函数为 f(x,y),在 f(x,y) 的连续点处有 $\frac{\partial^2 F(x,y)}{\partial x \partial y}=f(x,y)$

常见二维随机变量分布:

• 均匀分布: $(X, Y) \sim U(D)$

$$f(x,\,y) = egin{cases} rac{1}{S_D} & (x,\,y) \in D \ 0 & (x,\,y)
otin D \end{cases}$$

• 正态分布: $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

$$f(x,\,y) = rac{1}{2\pi\sigma_1\sigma_2\sqrt{1-
ho^2}}e^{-rac{1}{2(1-
ho^2)}\left[\,rac{(x-\mu_1)^2}{\sigma_1^2} - 2
horac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + rac{(y-\mu_2)^2}{\sigma_2^2}\,
ight]}$$

$$\circ \mu_1, \mu_2 \in (-\infty, +\infty)$$

$$\circ$$
 $\sigma_1, \sigma_2 > 0$

$$\circ$$
 $\rho \in (-1, 1)$

$$\circ \ \ (X,\,Y) \sim N(\mu_1,\,\mu_2,\,\sigma_1^2,\,\sigma_2^2,\,\rho) \implies X \sim N(\mu_1,\,\sigma_1^2), \ Y \sim N(\mu_2,\,\sigma_2^2)$$

边缘分布函数:

$$F_X(x) = F(x, +\infty)$$

 $F_Y(y) = F(+\infty, y)$

• 边缘分布律不能唯一确定联合分布律

Y	X					
	$\overline{x_1}$	x_2	• • •	x_i	• • •	$p_{\cdot j}$
y_1	p_{11}	p_{21}		p_{i1}		$p_{\cdot 1}$
y_2	p_{12}	p_{22}	• • •	p_{i2}	• • •	$p_{\cdot 2}$
:			٠.			:
y_i	p_{1i}	p_{2i}		p_{ii}	• • •	$p_{\cdot i}$
:			٠			:
$p_{i\cdot}$	p_{1} .	p_2 .		p_{i} .		1

边缘密度函数:

$$f_X(x) = \int_{\infty}^{+\infty} f(x, y) \, \mathrm{d}x$$
 $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y$

条件分布函数:

$$F_{X \mid Y}(x \mid y) = P\{ X \le x \mid Y = y \}$$

 $F_{Y \mid X}(y \mid x) = P\{ Y \le y \mid X = x \}$

条件密度函数:

$$f_{X \mid Y}(x \mid y) = \frac{f(x, y)}{f_Y(y)}$$
 $f_{Y \mid X}(y \mid x) = \frac{f(x, y)}{f_X(x)}$

相互独立: (X, Y) 相互独立的充要条件为

• 离散型: $P_{ij} = p_i \cdot p_{\cdot j}$, $i = 1, 2, \dots$, $j = 1, 2, \dots$

• 连续型: 对平面上几乎所有点有 $f(x, y) = f_X(x)f_Y(y)$

正态分布: ρ = 0

• 推论: X 和 Y 相互独立

$$\circ \ X \sim P(\lambda_1), \ Y \sim P(\lambda_2) \implies X + Y \sim P(\lambda_1 + \lambda_2)$$

$$\circ X \sim B(n, p), Y \sim B(m, p) \implies X + Y \sim (n + m, p)$$

Z=g(X, Y) 的分布:

ullet $F_Z(z)=P\{\;Z\leq z\;\}=\iint_{g(x,\,y)\leq z}f(x,\,y)\;\mathrm{d}x\mathrm{d}y$

$$\bullet \quad f_Z(z) = \begin{cases} \int_{-\infty}^{+\infty} f(x, z - x) \, \mathrm{d}x = \int_{-\infty}^{+\infty} f(z - y, y) \, \mathrm{d}y & Z = X + Y \\ \int_{-\infty}^{\infty} f(yz, y) |y| \, \mathrm{d}y & Z = \frac{X}{Y} \end{cases}$$

 $\bullet \quad M = \max\{X, Y\}, \ N = \min\{X, Y\}$ $F_M = F_X(x)F_Y(y), \ F_N(x) = 1 - [1 - F_X(x)][1 - F_Y(x)]$

[4] 随机变量的数字特征

随机变量的数学期望:

• 设随机变量 X 的分布律为

$$P\{\; X=x_i\;\}=p_i,\;\; i=1,\,2,\cdots,\;\;
otin X \sim egin{pmatrix} x_1 & x_2 & \cdots & x_i & \cdots \ p_1 & p_2 & \cdots & p_i & \cdots \end{pmatrix}$$

如果无穷级数 $\sum_{i=1}^{\infty}x_ip_i$ <u>绝对收敛</u>,就称之为 X 的<u>数学期望值</u>或者<u>均值</u>,记为 EX 或 E(X),即

$$EX = \sum_{i=1}^{\infty} x_i p_i$$

• 设随机变量 X 的密度函数为 f(x),如果反常积分 $\int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$ <u>绝对收敛</u>,则

$$EX = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$$

随机变量函数的数学期望:

• 设离散型随机变量 $X\sim \begin{pmatrix} x_1&x_2&\cdots&x_i&\cdots\\p_1&p_2&\cdots&p_i&\cdots\end{pmatrix}$, Y=g(x), 且无穷级数 $\sum_{i=1}^\infty g(x_i)p_i$ <u>绝对</u>收敛,则

$$EY = E\left[\,g(X)\,
ight] = \sum_{i=1}^\infty g(x_i) p_i$$

• 设连续型随机变量 X 的密度函数为 f(x) , Y=g(x) , 且广义积分 $\int_{-\infty}^{+\infty}g(x)f(x)\,\mathrm{d}x$ 绝对收敛 , 则

$$EY = E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x) \,\mathrm{d}x$$

• 设二维离散型随机变量 (X,Y) 的分布律为 $P=\{X=x_i,\,Y=y_i\}=p_{ij},\,\,i=1,\,2,\,\cdots,\,\,j=1,\,2,\,\cdots,\,\,Z=g(X,Y)$,且 $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}g(x_i,\,y_i)p_{ij}$ 绝对收敛,则

$$EZ = E\left[\,g(X,\,Y)\,
ight] = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} g(x_i,\,y_i) p_{ij}$$

• 设二维随机变量 (X,Y) 的密度函数为 f(x,y), Z=g(X,Y), 且 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) \, \mathrm{d}x \mathrm{d}y$ 绝对收敛,则

$$EZ = E\left[\,g(X,\,Y)\,
ight] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,\,y) f(x,\,y) \,\mathrm{d}x\mathrm{d}y$$

• $E[g(X)] = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} g(x_i) p_{ij} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x) f(x, y) dx dy$

数学期望的性质:

- Ec = c
- E(kX) = kE(X)
- $E(X \pm Y) = EX \pm EY$

- 若随机变量 X 和 Y 相互独立,则 EXY = EXEY, **反之不成立**
- 若随机变量 $X \geq a$ (或 $X \leq a$) ,则 $EX \geq a$ (或 $X \leq a$)
- $[E(XY)]^2 \le E(X^2)E(Y^2)$

方差:设X为随机变量,如果 $E\left[(X-EX)^2\right]$ 存在,就称之为X的方差,记为DX或D(X),即

$$DX = E[(X - EX)^2] = E(X^2) - (EX)^2$$

并称 \sqrt{DX} 为 X 的标准差

- $DX = \sum_{i=1}^{\infty} (x_i EX)^2 p_i = \sum_{i=1}^{\infty} X_i^2 p_i (\sum_{i=1}^{\infty} x_i p_i)^2$
- $DX = \int_{-\infty}^{+\infty} (x EX)^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx \left(\int_{-\infty}^{+\infty} x f(x) dx \right)^2$

方差的性质:

- Dc = 0
- $DX \ge 0$
- $DX = 0 \iff P\{X = EX = 1\}$
- $D(kX+c) = K^2 DX$
- 若随机变量 X 和 Y 相互独立,则 $D(X \pm Y) = DX + DY$
- 标准化随机变量:

$$\circ X^* = \frac{X - EX}{\sqrt{DX}}$$

$$\circ EX^* = 0$$

$$OY = 0$$

• 若随机变量 $X_1,\,X_2,\,\cdots,\,X_n$ 相互独立,且 $EX_i=\mu$, $DX_i=\sigma^2$, $i=1,\,2,\,\cdots,\,n$,记 $\overline{X}=\frac{1}{n}\sum_{i=1}^nX_i$

$$\circ \ E\overline{X}=\mu$$

$$\circ \ D\overline{X} = \frac{\sigma^2}{n}$$

常见分布的数学期望和方差:

序号	分布	分布律或密度函数	EX	DX
1	$0-1$ 两 点 分 布 $X\sim B(1,p)$	$P\set{X=k} = p^k (1-p)^{1-k} \ k=0, 1$	p	1-p
2	二项分布 $X\sim B(n,p)$	$P\set{X=k} = C_n^k p^k (1-p)^{n-k} \ k = 0, 1, \cdots, n$	np	np(1-p)
3	泊松分布 $x \sim P(\lambda)$	$egin{aligned} P\set{X=k} &= rac{\lambda^k}{k!} e^{-\lambda} \ k=0,1,2,\cdots \end{aligned}$	λ	λ
4	几何分布 $X\sim G(p)$	$P\set{X=k} = (1-p)^{k-1} p \ k = 1, 2, \cdots$	$\frac{1}{p}$	$\frac{1}{p}$
5	超几何分布 $X \sim H(M,N,n)$	$P\set{X=k} = rac{C_{N-M}^{n-k}C_M^k}{C_N^n}$	$\frac{nM}{N}$	$\frac{nM(N-n)(N-M)}{N^2(N-1)}$
6	均匀分布 $X \sim U[a,b]$	$f(x) = egin{cases} rac{1}{b-a} & a \leq x \leq b \ 0 &$ 其他	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
7	指数分布 $X \sim E(\lambda)$	$f(x) = \left\{egin{array}{ll} \lambda e^{-\lambda x} & x \geq 0 \ 0 & ext{ iny μ} \end{array} ight.$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
8	正态分布 $X \sim N(\mu,\sigma^2)$	$f(x) = rac{1}{\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}} \ -\infty < x < +\infty$	μ	σ^2

协方差:设(X,Y)为二维随机变量,如果有E[(X-EX)(Y-EY)]存在,就称之为X和Y的协方差,记为Cov(X,Y),即

$$Cov(X, Y) = E[(X - EX)(Y - EY)] = E(XY) - EXEY$$

协方差的性质:

- Cov(X, X) = DX
- Cov(X, Y) = Cov(Y, X)
- Cov(X, c) = 0
- Cov(aX, bY) = abCov(X, Y)
- $Cov(X_1 \pm X_2, Y) = Cov(X_1, Y) \pm Cov(X_2, Y)$
- $D(X \pm Y) = DX + DY \pm 2 \operatorname{Cov}(X, Y)$
- $[Cov(X, Y)] \leq DXDY$

相关系数: 设 (X, Y) 为二维随机变量,如果 DX > 0,DY > 0,记随机变量 X 与 Y 的相关系数为 ρ_{XY} ,且

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{DXDY}}$$

- 设 $X^*=rac{X-EX}{\sqrt{DX}}$, $Y^*=rac{Y-DY}{\sqrt{DY}}$, 有 $E(X^*Y^*)=
 ho_{XY}$
- $|\rho_{XY}| \leq 1$
- $|\rho_{XY}| = 1 \Leftrightarrow Y = aX + b$
- X igcup Y 不相关 $\Leftrightarrow cov(X, Y) = 0$
- $X \ni Y$ 相互独立 $\Longrightarrow \rho_{XY} = 0$

矩:对于正整数 k

- $\exists E(X^k)$ 存在,则称为 X 的 k 阶原点矩
- $\exists E[(X-EX)^k]$ 存在,则称为X 的 k 阶中心矩
- $\exists E[X^kY^l]$ 存在,则称为 X 和 Y 的 k+l 阶混合原点矩
- 若 $E[(X-EX)^k(T-EY)^l]$,则称为 X 和 Y 的 k+l 阶混合中心距

[5]大数定律和中心极限定理

切比雪夫不等式: 设随机变量的数学期望 $EX = \mu$, 方差 $DX = \sigma^2$, 则对任意的 $\epsilon > 0$, 有

$$P\{\;|X-\mu|\geq arepsilon\;\}\leq rac{\sigma^2}{arepsilon^2}\quad \ \ \, \ \ \, P\{\;|X-\mu|$$

依概率收敛: 设有随机变量序列 $X_1, X_2, \dots, X_n, \dots$, 如果存在常数 a, 使得对任意的 $\varepsilon > 0$, 有

$$\lim_{n\to\infty} P\{ |X_n - a| < \varepsilon \} = 1$$

就称序列 X_n 依概率收敛于 a , 记为

$$\lim_{n o\infty}X_n\stackrel{P}{=}a$$

切比雪夫大数定律: >设 $X_1, X_2, \dots, X_n, \dots$ 是**相互独立**的随机变量序列,如果数学期望 EX_i 和方差 DX_i 均存在,且存在常数 c,使得 $DX_i < c$,则对任意的 $\varepsilon > 0$,有

$$\lim_{n o\infty} P\{\left.\left|rac{1}{n}\sum_{i=1}^n X_i - rac{1}{n}\sum_{i=1}^n EX_i
ight| < arepsilon
ight.\} = 1$$

伯努利大数定律:设 n_A 是 n 重独立重复试验中事件 A 发生的次数, p 是事件 A 在每次实验中发生的概率,则对任意的 $\varepsilon>0$,有

$$\lim_{n o\infty}P\{\;|rac{n_A}{n}-p|$$

辛钦大数定律: >设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立**同分布**,若果 $EX_i = \mu$,则对任意的 $\varepsilon > 0$,有

$$\lim_{n \to \infty} P\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| < \varepsilon \} = 1$$

列维-林德伯格中心极限定理: 设随机变量序列 $X_1,\,X_2,\,\cdots,\,X_n,\,\cdots$ 独立**同分布**,且 $EX_i=\mu$, $DX_i=\sigma^2$,令 Y_n 为 $\sum_{i=1}^n X_i$ 的标准化随机变量,即 $Y_n=\frac{\sum_{i=1}^n X_i-n\mu}{\sqrt{n}\sigma}$,记 Y_n 的分布函数为 $F_{Y_n}(x)$,有

$$\lim_{n o\infty}F_{Y_n}(x)=\Phi(x)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^xe^{-rac{t^2}{2}}\,\mathrm{d}t$$

理解为, 当n充分大时,

$$\sum_{i=1}^n X_i \overset{ ilde{\mathbb{M}}^{\mp}}{\sim} N(n\mu, n\sigma^2)$$

棣莫弗-拉普拉斯中心极限定理: 设随机变量 $X_n \sim B(n,p)$, 则

$$\lim_{n o \infty} P\{ \left| rac{X_n - np}{\sqrt{np(1-p)}}
ight| < x \} = \Phi(x)$$

理解为, 当n充分大时,

$$X_n \overset{ ilde{\mathbb{E}}(\mathbb{Q}^+)}{\sim} N(\, np, \, np(1-p) \,)$$

重要推论:

- $\overline{X} = \frac{1}{n} \sum X_i$
- $\sum (X_i \overline{X})^2 = \sum X_i^2 n\overline{X}^2$ $P\{ a < \sum_{i=1}^n X_i \le b \} = \Phi(\frac{b n\mu}{\sqrt{n}\sigma}) \Phi(\frac{a n\mu}{\sqrt{n}\sigma})$

[6]数理统计基础

基本概念:

- 总体: 研究问题中所有被考察对象的全体. 分为有限总体和无限总体
- 个体: 总体中的每一个成员
- 样本 (简单随机样本) : 总体 X 中,按一定的规则任意抽取的部分个体 X_1, x_2, \cdots, X_n . n 称 为样本容量

 \circ 代表性:每个 X_i 与总体X同分布

- \circ 独立性: X_1, X_2, \dots, X_n 相互独立
- 离散型样本的分布律

$$P\{\ X_1=x_1,\, X_2=x_2,\, \cdots,\, X_n=x_n\ \}=\prod_{i=1}^n p(x_i)$$

• 连续型样本的密度函数

$$f(x_1,\,x_2,\,\cdots,\,x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

- 统计量: $g(x_1, x_2, \dots, x_n)$ 不依赖于总体 X 中的任何 $\underline{*}$ 知参数,称随机变量 $g(X_1, X_2, \dots, X_n)$ 为一个统计量
- 观察值: (x_1, x_2, \dots, x_n)
- 抽样分布: 统计量的分布

常见统计量:

- 均值: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i^2 n \overline{X}^2)$
- 标准差: S = √S²
- k 阶原点矩: $A_k = rac{1}{n} \sum_{i=1}^n X_i^k$
- k 阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^k$
- 2 阶中心矩: S_n² = B₂
- 设总体 X 数学期望 $EX = \mu$, 方差 $DX = \sigma^2$, 有
 - $\circ \ E(\overline{X}) = \mu$
 - $\circ \ D(\overline{X}) = \frac{\sigma^2}{\mu}$
 - \circ $E(S^2) = \sigma^2$

 χ^2 **分布**: 设 $(X_1,\,X_2,\,\cdots,\,X_n)$ 为来自总体 $X\sim N(0,\,1)$ 的一个样本,称统计量

$$\chi^2 = \sum_{i=1}^n X_i^2$$

服从**自由度为** n **的** χ^2 分布,记作 $\chi^2 \sim \chi^2(n)$

- $E(\chi^2) = n$
- $D(\chi^2) = 2n$
- $X \sim N(0, 1) \implies \chi^2 \sim \chi^2(1)$
- $\chi_1^2\sim\chi_1^2(n_1)$ 与 $\chi_2^2\sim\chi_2^2(n_2)$ 相互独立 \Longrightarrow $\chi_1^2+\chi_2^2\sim\chi^2(n_1+n_2)$
- $ullet \chi^2 = rac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$
- $ullet n o\infty$, $\chi^2\stackrel{ ilde{ ilde{L}}}{\sim}N(n,\,2n)$

t 分布: 设随机变量 $X\sim N(0,\,1)$, $Y\sim \chi^2(n)$,且 X 和 Y 相互独立,称随机变量

$$T = \frac{X}{\sqrt{Y/n}}$$

服从自由度为 n 的 t 分布,记作 $T \sim t(n)$

- ET = 0
- $DT = \frac{n}{n-2}$
- $n o \infty$, $T \overset{\text{if } \mathbb{Q} o }{\sim} N(0,1)$
- $T \sim t(n) \implies T^2 \sim F(1, n)$
- $T = \frac{\overline{X} \mu}{S/\sqrt{n}} \sim (n-1)$

F 分布: 设随机变量 $X\sim\chi^2(n_1)$, $Y\sim\chi^2(n_2)$, 且 X 和 Y 相互独立,则称随机变量

$$F = \frac{X/n_1}{Y/n_2}$$

服从第一自由度为 n_1 ,第二自由度为 n-2 的 F 分布,记作 $F\sim F(n_1,\,n_2)$

$$ullet \ F = rac{S_X^2/\sigma_1^2}{S_V^2/\sigma_2^2} \sim F(n_1-1,\,n_2-1)$$

ullet $F \sim F(n_1, n_2) \implies rac{1}{F} \sim F(n_2, x_1)$

上侧 (右侧) 分位点: x_p

- 0
- $P\{X \geq x_p \} \geq p$
- $P\{ X \le x_p \} \ge 1 p$
- $t_{1-\alpha}(n) = -t_{\alpha}(n)$
- $F_{1-lpha}(n_1, n_2) = \frac{1}{F_{lpha}(n_2, n_1)}$

[7]参数估计

点估计: 使用样本 (X_1,X_2,\cdots,X_n) ,构造一个合适的统计量 $\hat{\theta}=\hat{\theta}(X_1,X_2,\cdots,X_n)$ 作为未知参数 θ 的估计.

- 估计量: θ̂
- 估计值: $\hat{\theta}(x_1, x_2, \dots, x_n)$

矩估计法:

$$rac{1}{n}\sum_{i=1}^n X_i^rpprox E(X^r)$$

最大似然估计法:

- 似然函数: $L(\theta) = L(X_1, X_2, \dots, X_n; \theta)$
- 最大似然估计量: $L(X_1, X_2, \dots, X_n; \hat{\theta}) = \max L(X_1, X_2, \dots, X_n; \theta)$

步骤

1. 写出似然函数

$$L(heta_1,\, heta_2,\,\cdots,\, heta_m) = egin{cases} \prod_{i=1}^n p(x_i;\, heta_1,\,\cdots,\, heta_m) & X$$
为离散型 $\prod_{i=1}^n f(x_i;\, heta_1,\,\cdots,\, heta_m) & X$ 为连续型

- 2. 两边取对数
- 3. 求导数

$$rac{\partial \ln L}{\partial heta_i} = 0, \quad i = 1, \, 2, \, \cdots, \, m$$

估计量的评价标准: 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 为 θ 的估计量

• 均方误差:

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = D \hat{\theta} + (\theta - E \hat{\theta})^2$$

- 无偏性:
 - \circ 无偏估计: $E\hat{\theta} = \theta$
 - 。 渐进无偏估计: $\lim_{n o \infty} E \, \hat{ heta} = heta$
 - 。 若估计量 θ_1 , θ_2 , \cdots , θ_m 均为 θ 的无偏估计,且 $\sum_{i=1}^m c_i = 1$,则 $\sum_{i=1}^m c_i \theta_i$ 也为 θ 的无偏估计
- **有效性**: 若 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 均为 θ 的无偏估计,且 $D\hat{\theta}_1 < D\hat{\theta}_2$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效
- 相合性 (一致性) : 若对任意的 $\varepsilon>0$, 有 $\lim_{n\to\infty}P\{\mid \hat{\theta}-\theta\mid <\varepsilon\}=1$, 则称 $\hat{\theta}$ 为 θ 的相合估计

置信度: $P\{\theta \in (\theta_1, \theta_2)\} = P\{\theta_1 < \theta < \theta_2\} = 1 - \alpha$

• 置信系数 (置信水平) : $1 - \alpha$

• **置信区间:** (θ_1, θ_2) 为 θ 的置信度为 $1-\alpha$ 的置信区间

置信上下限: θ₁, θ₂

区间估计:

• 概率 $P\{ \theta \in (\theta_1, \theta_2) \}$ 反映置信度

• 区间长度 $\theta_2 - \theta_1$ 反映精度

• 在确保置信度为 $1-\alpha$ 的前提下,构造统计量 θ_1 和 θ_2 ,使得 $\theta_2-\theta_1$ 尽可能小

置信区间估计表:

待估参数	其他条件	中间统计量及其分布	置信区间
μ	σ^2 已知 σ^2 未知	$U=rac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$	$(\ \overline{X}-u_{rac{lpha}{2}}rac{\sigma}{\sqrt{n}},\ \overline{X}+u_{rac{lpha}{2}}rac{\sigma}{\sqrt{n}}\)$
		$T=rac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$	$\left(\ \overline{X} - t_{rac{lpha}{2}}(n-1)rac{S}{\sqrt{n}}, \ \overline{X} + t_{rac{lpha}{2}}(n-1)rac{S}{\sqrt{n}} \ ight)$
σ^2		$\chi^2=rac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2\sim \chi^2(n)$	$\left(\; rac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi^2_{rac{lpha}{2}(n)}}, \; \; rac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi^2_{1-rac{lpha}{2}}(n)} \; ight)$
		$\chi^2=rac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)$	$\left(\ \frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2}}(n-1)}, \ \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)} \ \right)$

[8]假设检验

原假设 H_0	备择假设 H_1	均为正态总体	检验统计量及在 H_0 成立时的分布	拒绝域
$\mu=\mu_0$	$\mu eq \mu_0$			$ z \geq z_{rac{lpha}{2}}$
$\mu \leq \mu_0$	$\mu > \mu_0$	σ^2 己知	$Z=rac{X-\mu}{rac{\sigma}{\sqrt{n}}}\sim N(0,1)$	$z \geq z_{lpha}$
$\mu \geq \mu_0$	$\mu < \mu_0$		\sqrt{n}	$z \leq -z_{lpha}$
$\mu=\mu_0$	$\mu eq \mu_0$		_	$ t \geq t_{rac{lpha}{2}}(n-1)$
$\mu \leq \mu_0$	$\mu > \mu_0$	σ^2 未知	$T=rac{X-\mu}{rac{s}{\sqrt{n}}}\sim t(n-1)$	$t \geq t_{\alpha}(n-1)$
$\mu \geq \mu_0$	$\mu < \mu_0$		\sqrt{n}	$t \leq -t_{\alpha}(n-1)$
$\sigma^2=\sigma_0^2$	$\sigma^2 eq \sigma_0^2$			$\chi^2 \leq \chi^2_{1-rac{lpha}{2}}(n-1)$ 或 $\chi^2 \geq \chi^2_{rac{lpha}{2}}(n-1)$
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	μ 未 知	$\chi^2=rac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)$	$\chi^2 \geq \chi^2_lpha(n-1)$
$\sigma^2 \geq \sigma_0^2$	$\sigma^2 < \sigma_0^2$			$\chi^2 \leq \chi^2_{1-\alpha}(n-1)$