Exercise v6.0

RULES

- 1. The answers of the exercises will be posted on our website at 17:00 PM on 03.01.2013: www2.ce.metu.edu.tr/~ce305.
- 2. This is the **version 6.0**. In case there are any corrections for this exercise, we will post an updated version on our website. You can follow the changes in the exercises by the **Version History** section below.

Version History

V6.0 Exercise is released.

- 1. Compute $\int_{0.5}^{1.5} e^x \cos x \, dx$ using Gaussian quadrature with:
 - a) 2 points by hand computation.
 - b) 2 points by MATLAB.
 - c) 3 points by MATLAB.
 - d) The exact value of the integration is 1.27508. Find the true error for both 2 points and 3 points cases.

Use 5 decimal places in your calculations,

2. Find the first derivative of f(x) at x=0.2, 0.4, 0.5 where f(x) is given by:

X	0.1 0.2	0.3	0.4	0.5	0.6
f(x)	0.425 0.475	0.400	0.450	0.525	0.675

Use Central Difference Formula.

Exercise v6.0

3. A body with a concentrated mass subjected to vibration can be modeled as a dynamic single degree of freedom (SDOF) oscillator system as shown in the figure below. In this setting, k represents the stiffness of the system. The spring force is proportional to the deflection as k*u(t). P(t) represents any dynamic force acting on the system. (Physical examples for this setting can be a structure with concentrated mass at the top or a seismometer device which is used to measure the ground motion.)

Figure 1

From Newton's second law, the equation of motion for the mass is: mu+ku=P(t) with boundary conditions u(0)=0 and u'(0)=0.

Now assume a water tank is modeled as a SDOF oscillator. An explosive force P(t) is given below and we would like to test the structure under this possible explosion.

- a) Express the second-order differential equation of motion as a system of first-order differential equations
- b) Use $h=\Delta t=0.125$ sec with Euler's method to find the spring force at 0.5 sec (Manual calculations)
- c) Now repeat part (b) using MatLAB with h=0.05 sec,
- i. with Euler's method
- ii. with Heun's method (non-iterative version)
- d) Compare your results and comment briefly.