Erasmus School of Economics

MOOC Econometrics

Lecture 1.5 on Simple Regression:
Application

Philip Hans Franses

Erasmus University Rotterdam

Estimation results

• Regression equation: Sales = a + bPrice + e

Variable	Coefficient	Standard error	t-Statistic	p-value
Intercept	a = 186.507	5.767	32.339	0.000
Price	b = -1.750	0.107	-16.380	0.000

- $R^2 = 0.725$, s = 1.189
- 95% confidence interval β :

$$-1.750 - 2 \times 0.107 \le \beta \le -1.750 + 2 \times 0.107$$

 $-1.964 \le \beta \le -1.536$

- ullet On average: price 1 unit \downarrow \rightarrow sales 1.5 2.0 units \uparrow
- Price effect on sales is highly significant.

Ezafus

Effect of price on sales

• 104 weekly data

• Model: Sales = $\alpha + \beta \text{Price} + \varepsilon$

Ezafus

Lecture 1.5, Slide 2 of 11, Erasmus School of Economics

Histogram of residuals

• e = Sales - a - bPrice

Mean = 0.000 (normal: 0, see Building Blocks)

Standard dev. = 1.183

Skewness = 0.029 (normal: 0, see Building Blocks)

Kurtosis = 3.225 (normal: 3, see Building Blocks)

Reasonably normal

Optimal price for maximal turnover

- Store manager can use regression outcomes to set price.
- Objective: maximize Turnover = Price \times Sales.
- Optimal price $P_0 = \frac{-a}{2b}$ (see Lecture 1.1).
- a = 186.5 and b = -1.75, so $P_0 = \frac{186.5}{3.5} = 53.3$.
- Associated predicted sales S_0 :

$$S_0 = a + bP_0 = 186.5 - 1.75 \times 53.3 \approx 93.$$

(Zafuz

Lecture 1.5, Slide 5 of 11, Erasmus School of Economics

Olympic winning times 100 meter (athletics)

Ezafus

Lecture 1.5, Slide 7 of 11, Erasmus School of Economics

Confidence interval for optimal sales level

Test

Let S= Sales and P= Price, with model $S=\alpha+\beta P+\varepsilon.$ Optimal price is $P_0=-\frac{\alpha}{2\beta}$, with associated sales S_0 . Regression gives a=186.5 (SE $_a=5.767$), b=-1.750 (SE $_b=0.107$), s=1.189.

Find the (approximate) 95% confidence interval for sales if the store manager sets the price at the optimal level P_0 .

Hint: First show that $S_0 = \frac{\alpha}{2} + \varepsilon_0$.

- Answer: $S_0 = \alpha + \beta P_0 + \varepsilon_0 = \alpha + \beta \times (-\frac{\alpha}{2\beta}) + \varepsilon_0 = \frac{\alpha}{2} + \varepsilon_0$ 95% interval for α : $a \pm 2 \times SE_a = 186.5 \pm 2 \times 5.767 = (175, 198)$ 95% interval for ε_0 : $\pm 2 \times 1.189 = (-2.4, 2.4)$
- ullet Optimal sales: lower bound: (175/2)-2.4 pprox 85 upper bound: (198/2)+2.4 pprox 101

Lecture 1.5, Slide 6 of 11, Erasmus School of Economics

Olympic winning times 100 meter (athletics)

- W = winning time (seconds), G = game (from 1=1948 to 15=2004)
- Simple regression: $W_i = \alpha + \beta G_i + \varepsilon_i$ (with $G_i = i$ for i = 1, ..., 15)
- Estimation results:

	а	SE_a	b	SE_b	R^2
Men	10.386	0.067	-0.038	0.007	0.673
Women	11.606	0.111	-0.063	0.012	0.672

- 95% confidence intervals for *b*: men: -0.038 ± 0.014 women: -0.063 ± 0.024
- Women seem to have made most progress. Model assumes fixed gain β (in seconds per game).

Model with fixed relative gains

• Maybe nonlinear trend is better?

• If
$$W_i=\gamma e^{\beta G_i}$$
, then $\frac{W_{i+1}}{W_i}=e^{\beta (G_{i+1}-G_i)}=e^{\beta}$ is fixed.

- Then $\log(W_i) = \alpha + \beta G_i + \varepsilon_i$ (with $G_i = i$ and $\alpha = \log(\gamma)$)
- Outcomes:

	а	SE_a	b	SE_b	R^2
Men	2.341	0.0065	-0.0038	0.0007	0.677
Women	2.452	0.0099	-0.0056	0.0011	0.673

• Again, women made most progress.

L'afus

Lecture 1.5, Slide 9 of 11, Erasmus School of Economics

TRAINING EXERCISE 1.5

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

(Eafing

Lecture 1.5, Slide 11 of 11, Erasmus School of Economics

Forecast of winning times for 2008 and 2012

Test

Use the four models shown below to forecast winning times (in seconds) of men and women in the Olympic games of 2008 (with $G_i = i = 16$) and 2012 (with $G_i = i = 17$).

Men: $W_i = 10.386 - 0.038G_i + e_i$ $\log(W_i) = 2.341 - 0.0038G_i + e_i$ Women: $W_i = 11.606 - 0.063G_i + e_i$ $\log(W_i) = 2.452 - 0.0056G_i + e_i$

Note: 'log' denotes the natural logarithm.

Answer:

	Men		Wo	Women	
	2008	2012	2008	2012	
Actual time	9.69	9.63	10.78	10.75	
Linear trend	9.78	9.74	10.60	10.54	
Nonlinear trend	9.78	9.74	10.62	10.56	

Lecture 1.5, Slide 10 of 11, Erasmus School of Economics