

AXI-APB-Bridge

2024.08.30

一 修订

版本	日期	编辑人	内容
1.00	2024.08.30	陈家耀	创建了第一个正式版本

二 简介和特性

AXI-APB 桥实现了 AXI-Lite 协议到 APB 协议的转换,带有 AXI 从接口的 AXI-APB 桥提供了多个 APB 主机插槽以连接各种低速外设/设备,AXI-APB 桥是 AXI 总线上的一个从设备和 APB 总线上唯一的主设备,它为 AXI 总线提供了外设集上的二级地址译码。

图 2-1 AXI-APB 桥功能示意图

AXI-APB 桥由 AXI-Lite 到 APB 转换、二级地址译码器和 APB 主机返回 MUX 这 3 部分组成。AXI-Lite 到 APB 转换锁存读写地址通道(AR/AW)上的地址、附加信息和二级地址译码结果,锁存写通道(W)上的写数据和写字节选通。当地址和数据准备好后,以 Round-Robin 方式进行读写仲裁,给出 APB 写数据(pwdata,若为写传输)和写字节使能(pstrb,若为写传输),选择相应的 APB 从机(pselx),拉高 APB 传输使能(penable)以启动 APB 传输,等待 APB 传输完成后向 AXI 从接口传递完成信号并给出读数据(axi_rdata,若为读传输)或写响应(axi_bresp,若为写传输)。二级地址译码器对 AXI-Lite 上的读写地址(axi_araddr、axi_awaddr)进行二级译码,产生二进制码和独热码两种译码结果。APB 主机返回 MUX 根据二级地址译码器的译码结果选择指定编号的 APB 主机返回传递给 AXI 读负载。

图 2-2 AXI-APB 桥组成框图

AXI-APB 桥具有以下特性:

- •可配置的 APB 从机个数,可配置的 APB 从机基地址和区间长度,支持连接多达 16 个 APB 从机
- 轻量级、低延迟总线协议转换桥,资源消耗少,最小传输转换时延为 5clk
- 支持错误处理(地址译码错误、从机错误)

三 IP 功能

AXI-APB 桥是常用的总线结构,可为系统总线提供二级拓展,连接多个低速外设,从而简化系统总线的设计并降低功耗。AXI-APB 桥实现了 AXI-Lite 协议到 APB 协议的转换,可连接多达 16 个 APB 从机,其无等待的读传输协议转换时序图如图 3-1 所示。

图 3-1 AXI-APB 桥时序图 (无等待读传输)

四 IO 描述

表 4-1 AXI-APB 桥 IO 表

表 4-1 AXI-APB 桥 IO 表							
端口名	方向	位宽	含义				
	时钟和复位						
clk	input	1	时钟				
rst_n	input	1	复位,低有效				
AXI-Lite 从接口							
s_axi_araddr	input	32	AXI 读地址				
s_axi_arprot	input	3	AXI 读保护类型				
s_axi_arvalid	input	1	AXI 读地址通道有效				
s_axi_arready	output	1	AXI 读地址通道就绪				
s_axi_awaddr	input	32	AXI 写地址				
s_axi_awprot	input	3	AXI 写保护类型				
s_axi_awvalid	input	1	AXI 写地址通道有效				
s_axi_awready	output	1	AXI 写地址通道就绪				
s_axi_bresp	output	2	AXI 写响应				
s_axi_bvalid	output	1	AXI 写响应通道有效				
s_axi_bready	input	1	AXI 写响应通道就绪				
s_axi_rdata	output	32	AXI 读数据				
s_axi_rresp	output	2	AXI 读响应				
s_axi_rvalid	output	1	AXI 读数据通道有效				
s_axi_rready	input	1	AXI 读数据通道就绪				
s_axi_wdata	input	32	AXI 写数据				
s_axi_wstrb	input	4	AXI 写字节选通				
s_axi_wvalid	input	1	AXI 写数据通道有效				
s_axi_wready	output	1	AXI 写数据通道就绪				
APB 主接口(0 号)							
m0_apb_paddr	output	32	APB 传输地址				
m0_apb_penable	output	1	APB 传输使能				
m0_apb_pwrite	output	1	APB 读写类型				
m0_apb_pprot	output	3	APB 保护类型				
m0_apb_psel	output	1	APB 片选				
m0_apb_pstrb	output	4	APB 写字节选通				
m0_apb_pwdata	output	32	APB 写数据				
m0_apb_pready	input	1	APB 传输完成				
m0_apb_pslverr	input	1	APB 错误返回				
m0_apb_prdata	input	32	APB 读数据				
APB 主接口(1 号~15 号)							

五 可配置参数描述

表 5-1 AXI-APB 桥 可配置参数表

配置参数名	含义	可取值				
apb_slave_n	APB 从机个数	1~16				
apb_s0_baseaddr	0号从机基地址	32 位无符号整型,必须对				
		齐到双字				
apb_s0_range	0号从机地址区间长度	32 位无符号整型,必须对				
		齐到双字				
apb_s15_baseaddr	15 号从机基地址	32 位无符号整型,必须对				
		齐到双字				
apb_s15_range	15 号从机地址区间长度	32 位无符号整型,必须对				
		齐到双字				
simulation_delay	仿真延时,可用于仿真时模	0.1f~100.0f				
	拟D到Q延迟					

注:每个从机的地址区间长度必须≥ 4096(4KB),每个从机的地址范围互不重叠。

六 应用指南

打开 gen_tool 文件夹里的 ahb&axi_apb_bridge.exe, 选择总线类型为 axi-lite, 设置好从机数量和各个从机的基地址和地址区间长度, 点击确定按钮即可生成 IP 核的例化代码。然后,根据需要去修改每个端口所连接的线网名。

图 6-1 AXI-APB 桥配置工具界面