

#### UNIVERSIDADE ESTADUAL PAULISTA "Júlio de Mesquita Filho"

Faculdade de Engenharia - Campus de Ilha Solteira Profa Lilian Yuli Isoda - Depto. de Matemática

# Geometria Analítica e Álgebra Linear

# Lista de Exercícios 3 de Álgebra Linear

#### **Transformações Lineares**

**1.** Quais das seguintes aplicações do  $\mathbb{R}^3$  no  $\mathbb{R}^3$  são operadores lineares?

(a)  $F_1(x,y,z)=(x-y,x+y,0);$ 

(b)  $F_2(x,y,z)=(2x-y-z,0,0);$ 

(c)  $F_3(x,y,z)=(x+y+z,x+y-z,3);$  (d)  $F_3(x,y,z)=(2x^2+3z,-2y,x+z).$ 

- **2.** Seja  $F: \mathbb{R}^3 \to \mathbb{R}^3$  o operador linear tal que F(1,0,0)=(2,3,1); F(0,1,0)=(5,2,7) e F(0,0,1)=(-2,0,7). Determinar F(x,y,z), sendo (x,y,z) um vetor genérico do  $\mathbb{R}^3$ .
- 3. Verifique se são operadores lineares no espaço  $P_n(\mathbb{R})$ :

(a)  $F:P_n(\mathbb{R}) \to P_n(\mathbb{R})$  tal que  $F(f(t))=t f'(t), \forall f(t) \in P_n(\mathbb{R});$ 

(b)  $F: P_n(\mathbb{R}) \to P_n(\mathbb{R})$  tal que F(f(t)) = f'(t) + t 2 f''(t),  $\forall f(t) \in P_n(\mathbb{R})$ .

Obs.: f' e f'' denotam as derivadas primeira e segunda de f, respectivamente.

**4.** Seja u=(x,y,z,t) um vetor genérico do  $\mathbb{R}^4$ . Quais das aplicações definidas abaixo são operadores lineares do  $\mathbb{R}^4$ ?

(a) F(u)=u+(1,0,1,0)

(b) F(u)=(1,0,1,1)

(c) F(u)=(x,y-z,y+z,x+t)

- (d)  $F(u) = (\cos x, y, z, t)$
- **5.** Seja F o operador linear do  $\mathbb{R}^2$  tal que F(1,0)=(2,1) e F(0,1)=(1,4).

(a) Determinar F(2,4);

- (b) Determinar  $(x,y) \in \mathbb{R}^2$  tal que F(x,y)=(2,3);
- (c) Provar que F é injetor e bijetor.
- Dados  $u_1 = (2,-1), u_2 = (1,1), u_3 = (-1,-4), v_1 = (1,3), v_2 = (2,3) e v_3 = (-5,-6)$ vetores do  $\mathbb{R}^2$ , decida se existe ou não um operador linear  $T:\mathbb{R}^2 \to \mathbb{R}^2$  tal que  $T(u_1)=v_1$ ,  $T(u_2)=v_2$  e  $T(u_3)=v_3$ .

## Núcleo e Imagem da Transformação. Isomorfismo e Automorfismo.

7. Para cada uma das transformações lineares abaixo determinar uma base e a dimensão do núcleo e da imagem:

- (a)  $F: \mathbb{R}^3 \to \mathbb{R}$  dada por F(x, y, z) = x + y z;
- (b)  $F: \mathbb{R}^2 \to \mathbb{R}^2$  dada por F(x,y)=(2x, x+y);
- (c)  $F: \mathbb{R}^3 \to \mathbb{R}^4$  dada por F(x, y, z) = (x y z, x + y + z, 2x y + z, -y);
- (d)  $F: P_2(\mathbb{R}) \rightarrow P_2(\mathbb{R})$  dada por  $F(f(t)) = t^2 f''(t)$ ;
- (e)  $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$  dada por F(X) = MX + X, sendo  $M = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ ;
- (f)  $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$  dada por F(X) = MX XM, sendo  $M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ .
- **8.** Determinar um operador linear  $F: \mathbb{R}^3 \to \mathbb{R}^3$  tal que  $\operatorname{Im} F = [(2,1,1),(1,1,-2)]$ .
- **9.** Determinar um operador linear F do  $\mathbb{R}^4$  tal que Ker F = [(1,1,0,0),(0,0,1,0)].
- **10.** Determinar uma aplicação linear F de  $M_2(\mathbb{R})$  em  $\mathbb{R}^3$  tal que  $\operatorname{Im} F = [(1,1,0),(0,2,3)]$ .
- 11. Determinar uma aplicação linear F de  $P_3(\mathbb{R})$  em  $P_4(\mathbb{R})$  tal que  $\operatorname{Im} F = [t t^3, t + t^4]$ .
- 12. Determinar uma aplicação linear F de  $P_4(\mathbb{R})$  em  $P_3(\mathbb{R})$  tal que  $\operatorname{Ker} F = [t t^3, t + t^4]$ .
- 13. Seja  $F: \mathbb{R}^3 \to \mathbb{R}^3$  definida por F(1,0,0) = (1,1,0), F(0,1,0) = (1,1,2) e F(0,0,1) = (0,0,2). Determinar uma base para cada um dos seguintes subespaços vetoriais: Ker F, Im F, Ker F  $\cap$  Im F e Ker F + Im F.
- **14.** Mostrar que cada um dos operadores lineares do  $\mathbb{R}^3$  é invertível e determinar o isomorfismo inverso nos casos:
  - (a) F(x,y,z)=(x-3y-2z,y-4z,z); (b) F(x,y,z)=(x,x-y,2x+y-z).
- **15.** Considere o operador linear F do  $\mathbb{R}^3$  definido por F(1,0,0)=(1,1,1), F(0,1,0)=(1,0,1) e F(0,1,2)=(0,0,4). F é invertível? Se for, determine o isomorfismo inverso.

### Operações com Transformações.

- **16.** Sejam  $F,G \in L(\mathbb{R}^3)$  definidas respectivamente por F(x,y,z)=(x+y,y+z,z) e  $G(x,y,z)=(x+2\,y,\,y-z,\,x+2\,z)$ . Determine:  $F \circ G$ ;  $Ker(F \circ G)$  e  $Im(F \circ G)$ ; uma base e a dimensão de  $Ker(F^2 \circ G)$ .
- 17. Sejam  $F \in L(\mathbb{R}^2, \mathbb{R}^3)$  e  $G \in L(\mathbb{R}^3, \mathbb{R}^2)$  dadas por F(x,y)=(0, x, x-y) e G(x,y,z)=(x-y, x+2y+3z). Determine  $F \circ G \circ F$ .

### Matriz da Transformação Linear

- **19.** Determine a matriz do operador linear  $F \in L(\mathbb{R}^2)$ , relativamente à base canônica, sabendo que F(1,2)=(2,3) e F(-1,1)=(4,5).
- **20.** Seja  $F \in L(\mathbb{R}^3, \mathbb{R}^2)$  definida por F(x,y,z) = (x+z, y-2z). Determinar  $(F)_{B,C}$ , sendo  $B = \{(1,2,1), (0,1,1), (0,3,-1)\}$  e  $C = \{(1,5), (2,-1)\}$ .
- **21.** Determinar as matrizes das seguintes aplicações lineares em relação às bases canônicas dos respectivos espaços:
  - (a)  $F \in L(\mathbb{R}^3, \mathbb{R}^2)$  definida por F(x,y,z)=(x+y,z);
  - (b)  $F \in L(\mathbb{R}^2, \mathbb{R}^3)$  definida por F(x,y)=(x+y,x,x-y);
  - (c)  $F \in L(\mathbb{R}^4, \mathbb{R})$  definida por F(x,y,z,t)=2x+y-z+3t;
  - (d)  $F \in L(\mathbb{R}, \mathbb{R}^3)$  definida por F(x) = (x, 2x, 3x).
- **22.** Sabendo que a matriz do operador  $T: \mathbb{R}^3 \to \mathbb{R}^3$  relativamente à base  $B = \{u, v, w\}$ , sendo u = (1,1,1), v = (1,2,1), w = (1,1,3), é  $\frac{1}{2} \begin{pmatrix} 3 & 1 & 3 \\ 0 & 2 & 0 \\ -1 & -1 & -1 \end{pmatrix}$ ,  $\square$  determine a matriz de T em relação à base canônica do  $\mathbb{R}^3$ .
- 23. Seja  $F \in L(\mathbb{R}^2)$  cuja matriz em relação à base  $B = \{(1,0), (1,4)\}$  é  $(F)_B = \begin{pmatrix} 1 & 1 \\ 5 & 1 \end{pmatrix}$ . Determinar a matriz de F em relação à base canônica, usando a fórmula de mudança de base para

operador.

**24.** Determine  $F \in L(\mathbb{R}^2)$  cuja matriz em relação à base  $B = \{(1,2),(0,5)\}$  é  $\begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix}$ .

Junho/2016