Natural Language Processing

Lecture 09

Dirk Hovy

dirk.hovy@unibocconi.it

Goals for Today

- Understand what information topic models can and can not provide
- Learn about the Latent Dirichlet Allocation (LDA) model
- Understand the parameters influencing the output
- Learn about the Structured Author Topic Model
- Learn about evaluation criteria

What Gets Funded?

What do People Want in Smart Devices?

Latent Dirichlet Allocation

How to Generate Documents

$$P(w_1, w_2, ..., w_n) \approx$$

UNIGRAM LM:
$$\prod_{i=1}^{N} P(w_i)$$
 NO CONTEXT

BIGRAM LM:
$$\prod_{i=1}^{N} P(w_i|w_{i-1}) \text{ I-WORD CONTEXT}$$

TOPIC MODEL:
$$\prod_{i=1}^{N} P(CK \text{ TOPIC CONTEXT} \\ P(w_i|topic=k) \\ P(cK \text{ WORD})$$

How to Generate Documents

• Draw a topic distribution θ 0,14 0,14

0,14 0,14 0,29 0,29 0,14

- For i in N:
 - Draw a topic from θ

Opics per Document $\theta = P(topic | document)$

Document N	0,04	0,11	0,04	0,04	
					0,79
Document 4	0,47	0,20	0,07	0,07	0,20
Document 3	0,17	0,17	0,17	0,33	0,17
Document 2	0,14	0,14	0,29	0,29	0,14
Document 1	0,04	0,13	0,13	0,65	0,04

Plate Notation

Dirichlet Distributions

"DISTRIBUTION GENERATOR"

Parameters: α

MORE UNIFORM: EVERY TOPIC IN EVERY DOCUMENT

0,21 0,19 0,20 0,21 0,19

1.0

Parameters: B

1.0 ALL WORDS FOR ALL TOPICS WORDS ARE HIGHLY TOPIC-SPECIFIC

Bocconi

0.01

Training and Parameters

Preprocessing

- Be aggressive:
 - lemmatization,
 - stopwords,
 - replace numbers/user names,
 - join collocations
 - use TFIDF
- use minimum document frequency 10, 20, 50, or even 100
- use maximum document frequency 50% 10%

EM Training

- Goal: Find distributions θ and z
- In LM: use MLE (count and divide)
- In topic models: ??? (can't count what you don't see)

P(DATA) STOPS CHANGING

Initialize θ and z randomly

Repeat until convergence:

"Hallucinate" topics from current θ and z

Count hallucinated topics

Normalize

Parameters: K

Coherence Scores

Caveats!

Topic models ALWAYS need manual assessment, because:

- Random initialization: no two models are the same!
- More likely models ≠ more interpretable topics
- "Interpretable" is subjective
- Topics are not stable from run to run

Topic or Not?

- "pasta, pizza, wine, sauce, spagthetti"
- "BLEU, Bert, encoder, decoder, transformer"

Evaluating LDA

CONTENT-BASED

[apple, banana, pear, lime, orange]

[apple, banana, foot, lime, orange]

WHICH ONE'S WRONG?

Word and Topic Intrusion

Choose a word that is not related to others								
Oloud	time	O music	o sound	O quality	speaker			
WORD INTRUSION								
TOPIC INTRUSION								
Which group of words does not describe the following sentence:								
I get my morning facts and news all in one easy to use system.								
O	atus aigenta inci	t and I						
easy, use, s	etup, simple, inst	.all						
O control, command, system, integration, smart								
music, weather, news, alarm, timer								
price, buy, sale, deal, item								

Adding Constraints

- Maybe we know which words go with a topic
- Fix some probabilities/add smoothing

Constrained Training

Author Topic Models

Learn separate topic distribution for external factors

Plate Notation

Plate Notation

Wrapping Up

Take-Home Points

- LDA is one architecture for topic models
- Model document generation conditioned on latent topics
- Topic models are stochastic: each run is different
- Preprocessing and parameters influence performance
- Results need to be interpreted!
- We can introduce constraints through priors or labels

