07

Влияние толщины базы на эффективность фотопреобразования текстурированных солнечных элементов на основе кремния

© А.В. Саченко¹, В.П. Костылев¹, А.В. Бобыль², В.Н. Власюк¹, И.О. Соколовский¹, Г.А. Коноплев³, Е.И. Теруков^{2,3}, М.З. Шварц², М.А. Евстигнеев⁴

Санкт-Петербург, Россия

Санкт-Петербург, Россия

⁴ Department of Physics and Physical Oceanography, Memorial University of Newfoundland,

St. John's, Canada

E-mail: sach@isp.kiev.ua

Поступило в Редакцию 3 мая 2018 г.

Развита теория, описывающая экспериментальные зависимости внешнего квантового выхода $EQE(\lambda)$ от длин пробега фотонов для текстурированных солнечных элементов на основе Si. Рассчитаны плотности тока короткого замыкания в зависимости от толщины базы d высокоэффективных солнечных элементов с КПД преобразования $\eta \geq 25\%$. Процедура позволяет провести их полную оптимизацию, в частности найти оптимальные значения толщины базы d_{opt} .

DOI: 10.21883/PJTF.2018.19.46681.17362

Главной задачей фотоэнергетики является повышение эффективности фотопреобразования солнечных элементов (СЭ) η [1]. Ее увеличение достигается уменьшением объемной и поверхностной рекомбинации, а также коэффициента отражения света от фронтальной поверхности r_s . Уменьшение объемной рекомбинации достигается путем использования Si с меньшей концентрацией дефектов, ответственных

 $^{^{1}}$ Институт физики полупроводников им. В.Е. Лашкарева НАН Украины, Киев, Украина

² Физико-технический институт им. А.Ф. Иоффе РАН,

³ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ",

за рекомбинацию Шокли—Рида—Холла, и снижения до оптимальных значений толщины базы d. Уменьшение поверхностной рекомбинации происходит за счет гетероперехода на тыловой поверхности и снижения на ней концентрации рекомбинационных состояний путем ее пассивирования окислом кремния или водородом. Текстурирование фронтальной поверхности снижает r_s и повышает вероятность поглощения фотонов.

Оптимальная величина d_{opt} определяется по максимуму произведения напряжения холостого хода $V_{OC}(d)$ и плотности тока короткого замыкания $J_{SC}(d)$. $V_{OC}(d)$ находится из выражения

$$V_{OC}(d) \propto \ln(J_{SC}(d)/q(d/\tau_b + S)\Delta n_{OC}), \tag{1}$$

где q — элементарный заряд, τ_b — объемное время жизни, S — суммарная скорость поверхностной рекомбинации на освещенной и тыльной поверхностях СЭ и Δn_{OC} — избыточная концентрация электронно-дырочных пар в условиях разомкнутой цепи. Величина $J_{SC}(d)$ с ростом d увеличивается, а зависимость $V_{OC}(d)$ определяется соотношением скоростей объемной и поверхностной рекомбинации, а также скоростью роста $J_{SC}(d)$. Вероятность поглощения фотона может возрастать за счет увеличения его пути от значения 2d в плоскопараллельной кремниевой структуре с зеркальной тыловой поверхностью до значения $4n_r^2d$ в текстурированной, где n_r — показатель преломления [2]. Предельный внутренний квантовый выход фототока IQE в текстурированной структуре будет определяться не выражением вида

$$IQE_{nt}(\lambda) = 1 - \exp(-2\alpha(\lambda)d), \tag{2}$$

а формулой Яблоновича [2]

$$IQE_t(\lambda) = \left(1 + \left(4\alpha(\lambda)dn_r^2\right)^{-1}\right)^{-1},\tag{3}$$

где $\alpha(\lambda)$ — коэффициент поглощения света в зависимости от его длины λ . Выражения (2) и (3) справедливы только для высокоэффективных кремниевих СЭ с $\eta \geq 20\%$ и при условиях $L \gg d$, $Sd/D \ll 1$, где L и D — длина и коэффициент диффузии неосновных носителей заряда.

На рис. 1, a-d представлены экспериментальные зависимости $EQE(\lambda)$ для текстурированных HIT-элементов (HIT — heterojunction

Рис. 1. Экспериментальные зависимости СЭ для внешнего квантового выхода $EQE(\lambda)$, взятые из работы [3] (a), из наших измерений (b), из работ [4] (светлые кружки) и [5] (темные кружки) (c), а также из работы [6] (d). На вставке (часть a) приведены расчетные зависимости $EQE(\lambda)$ для толщин d=30, 100 и $300\,\mu\mathrm{m}$ (слева направо). Остальные параметры взяты из первой строки таблицы. При построении теоретические зависимости внутреннего квантового выхода $IQE(\lambda)$ (кривые I-3) рассчитаны по формулам (2), (3) и (4) и нормированы на максимальное значение EQE. Использованные при расчете параметры: b=1.6 (a), b=5 (b), $b_1=2$, $b_2=2$ (c), b=12 (d).

Рис. 1 (продолжение).

with intrinsic thin-layer), полученные в [3], измеренные в настоящей работе для НІТ-элементов с толщиной $160\,\mu\mathrm{m}$, приведенные для рекордных НІТ-элементов в [4] и для рекордных кремниевых СЭ с p-n-переходом в [5], а также полученные в [6] для кремниевых СЭ с p-n-переходом. $EQE(\lambda)$ из работ [4,5] показаны на одном

Образец	d, μm	$ au_{SRH},$ ms	S ₀ , cm/s	J_{SC} , mA/cm ²	V _{OC} ,	FF, %	$\eta_{ m exp}, \ \%$	n_0, cm^{-3}	b	$l_{ph},$ mm	$d_{opt}, \ \mu \mathrm{m}$
Nº 1 [3]	98	12	1.4					$5\cdot 10^{15}$		2.95	
Nº 2	160	3	1	36	0.721	78.6	20.4	$1 \cdot 10^{15}$	5	1.51	160
No 3 [4]	200	16	0.585	42.65	0.738	84.9	26.7	$6.5 \cdot 10^{14}$	2	4.68	160
Nº 4 [5]	200	9	6	42.5	0.725	83.3	25.7	$5\cdot 10^{15}$	2	4.68	210
Nº 5 [6]	450		5.7		0.696	83.6	24.4	$2 \cdot 10^{15}$	12	1.76	470

Параметры текстурированных СЭ на основе кремния

рисунке (рис. 1, c), так как в длинноволновой области они практически одинаковы. Кривые I и 2 описываются формулами (2) и (3). Величина $\alpha(\lambda)$ взята из работы [7]. Значения толщин, фотоэнергетические параметры, объемные времена жизни и уровень легирования приведены в таблице.

В общем случае экспериментальные результаты для зависимостей EQE, приведенные на рис. 1, a-d, в области края поглощения могут быть согласованы с расчетом путем обобщения формулы (3) и приведения ее к следующему виду:

$$IQE^*(\lambda) = \left(1 + \left(\alpha(\lambda)l_{ph}(d,b)\right)^{-1}\right)^{-1},\tag{4}$$

где $l_{ph}(d,b)=[4n_r^2b^{-1}]d$ — длина пробега фотона, а b — варьируемый параметр. Варьируя b, можно достичь согласия (4) с экспериментом, приведенным на рис. 1,a-c (см. кривые 3). Для описания СЭ с толщиной $450\,\mu\mathrm{m}$ (рис. 1,d) считалось, что величина b является слабо растущей функцией λ . Расчетные значения b приведены в таблице.

Величины l_{ph} в согласии с расчетом для СЭ с толщинами 98, 160, 200 [4], 200 [5] и 450 μ m соответственно равны 2.95, 1.51, 4.68, 4.68 и 1.76 mm. Чем больше величина l_{ph} , тем ближе величина $EQE(\lambda)$ к значению, описываемому формулой (3). Однако, как видно из приведенных значений l_{ph} , в текстурированных СЭ на основе кремния величины l_{ph} не достигают предельного значения, равного $4n_r^2d$. Помимо проанализированных выше имеются и другие работы (см., например, [8–11]), подтверждающие этот вывод.

Величина J_{SC} в условиях AM 1.5 определяется выражением

$$J_{SC} = q \int_{\lambda_0}^{\lambda_m} I_{\text{AM 1.5}}(\lambda) EQE(\lambda) d\lambda, \qquad (5)$$

где λ_0 — коротковолновый край поглощения, $\lambda_m=1200$ nm, $I_{{\rm AM}\,1.5}(\lambda)$ — спектральная плотность потока фотонов при реализации условия AM 1.5.

Отметим, что величины EQE при изменении толщины СЭ меняются лишь в области больших значений λ (см. вставку к рис. 1,a). При $300 < \lambda < 750\,\mathrm{nm}$ значение EQE не зависит от толщины. Это справедливо и для зависимостей EQE, приведенных на рис. 1,b-d. Поэтому при расчете $J_{SC}(d)$ интеграл в (5) можно разбить на две части: от 300 до $750\,\mathrm{nm}$ и от 750 до $1200\,\mathrm{nm}$. В первом интеграле используются экспериментальные значения EQE, а во втором — формула (4). Полученные расчетные зависимости $J_{SC}(d)$ приведены на рис. 2.

Как видно из рис. 2, скорость роста зависимостей $J_{SC}(d)$ для кривых 1,3 и 4 близка к пределу, описываемому формулой (3) (см. кривую 6). Для кривых 2 и 5 она ближе к пределу, описываемому формулой (2) (кривая 7). Скорости роста $J_{SC}(d)$ коррелируют с величинами $l_{ph}(d,b)$. Чем больше значения $l_{ph}(d,b)$, тем ближе наклоны зависимостей $J_{SC}(d)$ к пределу Яблоновича. Чем они меньше, тем ближе наклоны зависимостей $J_{SC}(d)$ к пределу, описываемому формулой (2).

Рассмотрим вопрос о соотношении вкладов в $J_{SC}(d)$, связанных со сдвигом зависимости $EQE(\lambda)$ в длинноволновую сторону (ΔJ_{CS1}) и с уменьшением коэффициента отражения r_s в текстурированных СЭ (ΔJ_{CS2}) . Используя (5) и зависимости $EQE(\lambda)$, $IQE(\lambda)$, приведенные на рис. 1 и 2, можно оценить величину ΔJ_{SC1} . Она составляет 7.5% для $d=98\,\mu\text{m}$, 2.8% для $d=160\,\mu\text{m}$, 5.8% для $d=200\,\mu\text{m}$ [4], 5.78% для $d=200\,\mu\text{m}$ [5] и 0.7% для $d=450\,\mu\text{m}$. Величина ΔJ_{SC2} может быть найдена с учетом формулы Френеля. Для кремния величина r_s близка к 30%, что приводит к росту J_{SC} на 41% для данных [3–6] и на 38% в случае $d=160\,\mu\text{m}$.

Рис. 2. Теоретические зависимости плотности тока короткого замыкания от толщины, построенные с использованием параметров, указанных в таблице. Нумерация кривых 1-5 дана в соответствии с таблицей. Кривая 6 построена с использованием формулы Яблоновича (3), кривая 7 — с использованием формулы (2).

Для расчета $\eta(d)$ воспользуемся результатами, описанными в [12–14]. При моделировании учтем, что выражение для τ_b имеет вид

$$\tau_b = (\tau_{SRH}^{-1} + \tau_r^{-1} + \tau_{nr}^{-1} + \tau_{Auger}^{-1})^{-1},$$

где au_{SRH} , au_r , au_{nr} и au_{Auger} — соответственно времена жизни Шокли—Рида—Холла, для излучательной рекомбинации, для безызлучательной квадратичной рекомбинации и для рекомбинации Оже. В [13,14] выражения для au_r , au_{nr} и au_{Auger} приведены для случая Si. Они зависят от уровня легирования n_0 и от величины избыточной концентрации электронно-дырочных пар au_n . Зависимость $S(\Delta n)$ имеет вид $S=S_0(1+\Delta n/n_0)$ [15]. Используя выражения для η из работы [13], выражение для S и рассчитывая $J_{SC}(d)$ с учетом зависимостей EQE и формул (4) и (5), получаем расчетные кривые $\eta(d)$, показанные на рис. 3. Значения для S_0 и d_{opt} исследуемых СЭ приведены в таблице. На величину d_{opt} влияют скорость роста $J_{SC}(d)$ и значение S_0 . Чем меньше наклон $J_{SC}(d)$, тем меньше величина d_{opt} . Аналогично, чем меньше S_0 ,

Рис. 3. Теоретические зависимости эффективности фотопреобразования от толщины, построенные с использованием параметров, указанных в таблице. Нумерация кривых дана в соответствии с таблицей.

тем меньше d_{opt} . Как видно из таблицы, значения d и d_{opt} для образцов СЭ № 1 и 2 совпали, а разница между толщинами СЭ и величинами d_{opt} для образцов СЭ № 3–5 невелика.

Экспериментальные значения для уровней возбуждения в условиях разомкнутой цепи и максимальной отбираемой мощности, приведенные в [4,5], совпадают с расчетными. Это является дополнительным подтверждением правильности разработанной теории.

Отметим, что в работе [5] помимо экспериментальных кривых представлены результаты численного моделирования с помощью программы [16]. Приведенная в ней на рис. 6 зависимость получена с использованием формулы (3). Как показано выше, выражение (3) в текстурированных СЭ на основе кремния не реализуется. Более точными являются выражения (4), (5).

Суммируя полученные в работе результаты, можно сделать следующие выводы:

1) предложена аппроксимационная формула для расчета внутреннего квантового выхода, учитывающая, что в текстурированных СЭ на основе кремния длины пробега фотонов не достигают предельного значения $4n_r^2d$;

- 2) показано, что эта формула описывает зависимости EQE в длинноволновой области;
- 3) ее использование, а также применение подхода, развитого в работах [12,13], позволяет корректно проводить оптимизацию параметров высокоэффективных текстурированных СЭ на основе кремния, в том числе и с эффективностью $\geq 25\%$, что проиллюстрировано на примере нахождения величины d_{opt} , приведенной в таблице.

Список литературы

- [1] *Green M.A.* // Third generation photovoltaics. Advanced solar energy conversion. Berlin—Heidelberg: Springer-Verlag, 2006. 160 p.
- [2] *Tiedje T., Yablonovitch E., Cody G.D., Brooks B.J.* // IEEE Trans. Electron Dev. 1984. V. 31. N 5. P. 711–716.
- [3] Jano A., Tohoda S., Matsuyama K., Nakamura Y., Nishiwaki T., Fujita K., Taguchi M., Maruyama E. // Proc. of the 28th Eur. Photovoltaic Solar Energy Conf. and Exhibition. Paris, France, 2013. P. 1846.
- [4] Green M.A., Hishikawa Y., Warta W., Dunlop E.D., Levi D.H., Hohl-Ebinger J., Ho-Baillie A.W.Y. // Prog. Photovolt.: Res. Appl. 2017. V. 25. P. 668–676.
- [5] Richter A., Benick J., Feldmann F., Fell A., Hermle M., Glunz S.W. // Solar Energy Mater. Solar Cells. 2017. V. 173. P. 96–105.
- [6] Zhao J., Wang A., Green M.A. // Appl. Phys. Lett. 1998. V. 73, N 14. P. 1991–1993.
- [7] Trupke T., Zhao J., Wang A., Corkish R., Green M.A. // Appl. Phys. Lett. 1991.
 V. 82. N. 18. P. 2996—2998.
- [8] Green M.A. // Prog. Photovolt.: Res. Appl. 2009. V. 17. P. 183-189.
- [9] Masuko K., Shigematsu M., Hashiguchi T., Fujishima D., Kai M., Yoshimura N., Yamaguchi T., Ichihashi Y., Mishima T., Matsubara N., Yamanishi T., Takahama T., Taguchi M., Maruyama E., Okamoto S. // IEEE J. Photovolt 2014. V. 4. N 6. P. 1433–1435.
- [10] Centre of excellence for advanced silicon photovoltaics and photonics. Annual Report. Sidney: The Australian Research Council, 2005.
- [11] Gogolin R., Ferre R., Turcu M., Harder N.-P. // Solar Energy Mater. Solar Cells. 2012. V. 106. P. 47–50.
- [12] Sachenko A.V., Kryuchenko Yu.V., Kostylyov V.P., Bobyl A.V., Terukov E.I., Abolmasov S.N., Abramov A.S., Andronikov D.A., Shvarts M.Z., Sokolovskyi I.O., Evstigneev M. // J. Appl. Phys. 2016. V. 119. N 22. P. 225702.

- [13] Sachenko A.V., Kostylyov V.P., Vlasiuk V.M., Sokolovskyi I.O., Evstigneev M. // Proc. of the 32nd Eur. Photovoltaic Solar Energy Conf. and Exhibition. Munich, Germany, 2016. P. 141.
- [14] Richter A., Glunz S.W., Werner F., Schmidt J., Cuevas A. // Phys. Rev. B. 2012. V. 86. N 16. P. 165202.
- [15] Mäckel H., Varner K. // Prog. Photovolt.: Res. Appl. 2013. V. 21. P. 850–866.
- [16] Fell A. // IEEE Trans. Electron Dev. 2013. V. 60. N 2. P. 733–738.