

Modeling Forest Malaria Using a Time-at-Risk Based Approach

Incorporating Human Movement into the Equation

Alec Georgoff MMC Meeting, Bangkok, Thailand November 29, 2018

Background

- What makes forest malaria different?
 - Risk is spread across different "populations" based on time spent in certain locations
 - Forest-going population has different risk than those who stay in village
 - Transmission is occurring away from home
 - People who travel to the same place form a different population

Contrasting Malaria Models

- Ross-Macdonald Model
 - Entire human population exposed to the same mosquito population
 - One transmission location
- Forest Model
 - Transmission occurs at home <u>and</u> away from home
 - Multiple human populations exposed to multiple mosquito populations

Objectives

- Show how reproductive rates and time-at-risk can be used together to model malaria prevalence in a forest system
- Show why time-at-risk and forest reproductive rates have an impact on elimination in villages

$$R = \frac{Ma^2bce^{-gn}}{Hgr}$$

Mosquitoes Per Human

Higher values increase R

$$R = \frac{Ma^2bce^{-gn}}{Hgr}$$

Mosquito Biting Rate

Higher values increase R

$$R = \frac{Ma^2bce^{-gn}}{Hgr}$$

Proportion of Bites That Cause Infection

Higher values increase R

$$R = \frac{Ma^2bce^{-g\mathbf{n}}}{Hgr}$$

Time for Sporogonic Cycle

Higher values decrease R

$$R = \frac{Ma^2bce^{-gn}}{Hgr}$$

Mosquito Death Rate

Higher values decrease R

$$R = \frac{Ma^2bce^{-gn}}{Hgr}$$

Human Disease Recovery

Higher values decrease R

Time-at-Risk

$$\Psi = \begin{bmatrix}
p_{11} & p_{12} & \dots & p_{1n} \\
p_{21} & p_{22} & \dots & p_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{m1} & p_{m2} & \dots & p_{mn}
\end{bmatrix}$$

Rows Sum to 1

Rows Sum to 1

Rows Sum to 1

		V1	V2	V3	V4	F1	F2
$\Psi =$	$V1 \leftrightarrow F$	$\boxed{0.3}$	0	0	0	0.4	0.3
	V1 only	1	0	0	0	0	0
	$V2 \leftrightarrow F$	0	0.6	0	0	0	0.4
	V2 only	0	1	0	0	0	0
	$V3 \leftrightarrow F$	0	0	0.8	0	0	0.2
	V3 only	0	0	1	0	0	0
	$V4 \leftrightarrow F$	0	0	0	0.2	0.8	0
	V4 only	0	0	0	1	0	0

How Forest R and Timeat-Risk Affect Village Transmission

Traditional Model

Every R value has an associated steady state prevalence (derived from parasite rate)

Forest Model – Effect of Forest R

 $V \leftrightarrow F$ V onlyF

Steady States

Village prevalence at given R value depends on R value in the forest

Forest Model - Effect of Forest R

 $V \leftrightarrow F$ V onlyF

Steady States

Village prevalence at given R value depends on R value in the forest

Forest Model – Effect of Time-at-Risk

Forest Model – Effect of Time-at-Risk

Forest Model – Effect of Time-at-Risk

Next Steps

Data, Data, Data

Connecting villages to closest forest by travel time

Sources:
Satellite landcover data,
OSM village locations,
Friction travel surface

Data, Data, Data

Table 1.4: Details of travellers, risk zones 1-4

	Total		Domain 1		Domain 2		
	N	% [95% CI]	N	% [95% CI]	N	% [95% CI]	
	3,906	100	2,013	100	1,893	100	
Last travelled away from home							
Last night	110	3.1 [2.1, 4.6]	47	2.6 [1.4,4.6]	63	3.8 [2.3, 6.2]	
<1 week	836	20.3 [17.6, 23.4]	400	18.8 [15.2, 23.1]	436	22.0 [18.1, 26.5]	
1-<4 weeks	1,040	25.5 [22.6, 28.6]	582	27.3 [23.4, 31.7]	458	23.4 [19.3, 28.0]	
≥4 weeks	1,831	48.6 [44.5, 52.8]	943	49.3 [43.9, 54.8]	888	47.9 [41.6, 54.2]	
Not specified	89	2.4 [1.6, 3.6]	41	1.9 [1.1, 3.5]	48	3.0 [1.7, 5.0]	
Reasons for travel							
Work in forest	342	8.9 [6.9, 11.4]	130	6.3 [3.8, 10.3]	212	11.7 [8.8, 15.5]	
Work on <i>chamkar</i> /plantation	918	22.8 [17.7, 29.0]	291	14.3 [8.8, 22.4]	627	32.4 [24.5, 41.5]	
Visit relatives	552	13.1 [10.8, 15.8]	325	14.1 [10.7, 18.4]	227	12.0 [9.3, 15.3]	
Other	1,512	40.0 [34.1, 46.2]	805	42.4 [32.8, 52.7]	707	37.3 [31.7, 43.2]	
Trips away from home past 3 months							
1-2	2,689	69.5 [66.1, 72.8]	1,500	74.8 [70.5, 78.6]	1,189	63.7 [58.1, 69.0]	
3-5	669	17.2 [14.6, 20.0]	267	13.8 [10.4, 18.1]	402	20.9 [17.4, 25.0]	
6-10	221	5.2 [4.0, 6.8]	95	4.2 [3.0, 5.9]	126	6.3 [4.3, 9.3]	
>10	95	2.4 [1.9, 3.1]	30	1.4 [0.9, 2.2]	65	3.5 [2.5, 4.8]	
Not specified	232	5.7 [4.5, 7.0]	121	5.8 [4.4, 7.6]	111	5.6 [3.9, 7.8]	
Countries visited in 2013							
Laos, Thailand, Vietnam	811	21.4 [15.7, 28.5]	594	30.2 [19.9, 42.9]	217	11.6 [8.3,15.9]	

Travel surveys

Source: Cambodia Malaria Survey 2013

Data, Data, Data

669 17 2 [14 6 20 0] 267 13 8 [10 4 18 1] 402 20 9 [17 4 25 0]

2.4 [1.9, 3.1] 30

811 21.4 [15.7, 28.5] 594 30.2 [19.9, 42.9]

232 5.7 [4.5, 7.0] 121

4.2 [3.0, 5.9]

1.4 [0.9, 2.2]

5.8 [4.4, 7.6]

Use data to build a realistic TaR matrix

3-5

6-10

>10

Not specified

Countries visited in 2013

Laos, Thailand, Vietnam

3.5 [2.5, 4.8]

5.6 [3.9, 7.8]

217 11.6 [8.3.15.9]

Takeaways

- Standard Ross-Macdonald models are not sufficient for modeling forest malaria
- Time-at-Risk accounts for human travel and its impact on population definitions
- Transmission dynamics in the forest can have a large impact on transmission dynamics in the village
- Data from high and low level sources are needed to accurately represent the TaR matrix

Questions?

