## Adapter-directed display systems



Fig. 1

KO7kpn phage Screening by ELISA



## KO7kpn helper phage Vector



Fig. 3A

### Gene III leader sequence in KO7 helper phage

GTG AAA AAA TTA TTC GCA ATT CCT TTA GTT GTT CCT TTC TAT TCT CAC TCC GCT V K K L L F A I P L V V P F Y S H S A

### Gene III leader sequence in KO7kpn helper phage

GTG AAA AAA TTA TTC GCA ATT CCT TTA GTG GTA CCT TTC TAT TCT CAC TCC GCT V K K L L F A I P L V V P F Y S H S A Kpnl

## Map of phagemid vector pABMC6



Fig. 4

Helper phage with engineered gene III fused to adaptor 2



Fig. 5A

# GR2-Myc domain coding sequence in GM-UltraHelper phage genome

---TTAGTGGTACCTTTCTATTCTCACTCCGCT ACATCCCGCCTGGAGGGCCTACAGTCAGAAAACCATCGCCTGCGA Ы 凶 Ø J U 闰 Н ĸ യ H Þ ß Ħ Gene III leader മ ¥ L V V P ATGAAGATCACAGAGCTGGATAAAGACTTGGAAGAGGTCACCATGCAGCTGCAGGACGTCGGAGGTTGC GCGGCCGCA A A A U ט D Q ø н α Σ H > 闰 团 Н Д ¥ L D 凶

NotI

GAACAAAAACTCTCAGAAGAGGATCTG AGATCTGGAGGCGGT ACTGTTGAAAGTTGTTTAGCAAAA---Ц บ മ Gene III T VE ט ט BgIII ъ В Ы Д 闭 Myc-tag മ П α

# Trypsin cleavage sites at GR2-Myc domain on GM-UltraHelper phage

E T S R L E G L Q S E N H R L R M K I T E L D K D L E GR2 domain

TMQLQDVGGCAAAEQKLISEEDLRSGGG Myc-tag

Fig. 5C

GR2-Myc-pIII fusions assembly into GM phage particles



Fig. 6

Detection of GR2-Myc domain on GM-UltraHelper phage



Phage binding to anti-Myc antibody

Fig. 7

Cleavage of GR2-Myc domains on GM phages by trypsin



Phage binding to anti-Myc antibody

Phagemid vector for protein-GR1 expression



Fig. 9A

### Complete vector sequence of pABMX14

GCCTTCCTGTTTTTGCTCACCCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTTCGC atctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttgagatcc ICCTICTAGIGIAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGIGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGG ITGGACTCAAGACGATAGTTACCGGGATAAGGCGCAGCGGTCGGACGGGGTTCGTGCACACACCCAGCTTGGAGCGAACGACCTACACCAGATACTGAGATACCTACAGCGTGAGCTATG GCGCAACGCAATTAATGTGAGTTAGGCTCACTCATTAGGCACCCCAGGCTTTTACACTTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTACCGGTTCTTAAGGAGGA AITAAAAAATGGAAATACCTATGCCTACGGCGGCGGCGGGGTTATTACTCGCGGCCCAGCCGGGCCATGGCGGCCCTGCAGGCCGTCTAGAGCGGCCGCTGGAGGTGAGGAAGTCCCGGCTG ITGGAGAAGGAGAACCGTGAAAAAAAAAATCATTGCTGAGAAAGGAGGGGGGTGTCTCTGAACTGCGCCATCAACTCCAGTCTTAGGAGGTTGTAGATCTTATCCATACGACGTACCAGACTA accaacttaatgecettgcagcactcccctttcgccagctggcgtaatagcgaagggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacg CGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACCACTCAACCTATCTCGGTCTATTCTTTTGAAGGGATTTTGCCGATTTTCGGCCTATTG ACAITICAAATATGTAITCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTTGAAAAGGAAGAGTATGAGTATTCCAACAITTCCGTGTCGCCCTTATTCCCTTTTTGCGGCCAITTT CTGGTTTATTGCTGATAAATCTGGAGCCCGGTGAGCGTGCGCGGTATCATTGCAGCCACACTGGGGCCAGATGGTAAGCCCTCCCGTATGTTATCTACACGACGGGGAGTCAGGCAACTA AGAAAGCGCCACGTTCCCGAAGGGAGAAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGAGCGACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTAATAGTCCTGTCCT CGCAGGAGGTCATCATCATCATCATTAATGAGTCGACCTCGACCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGGAACTGGGAAAACCCTGGCGTT CCCGAAGAACGTTTTCCAATGATGAACCACTTTTAAAGTTCTGCTATGTGGCGCGGGTATTATCCCGTATGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGT GTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTTCGGTTTTAGTGCTTTTACGGCACCTCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTT SCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGA

Fig. 9B

scFv-GR1/GM-UltraHelper phage scFv-GR1/KO7 helper phage Functional display of scFv by GM-UltraHelper phage  $10^{13}$  $10^{12}$ phage (particle/ml)  $10^{11}$  $10^{10}$  $10^{9}$ 2 3 phage binding to antigen (OD405)

Fig. 10

# Mutivalent display of scFv by GM-UltraHelper phage



Fig. 11

Map of phagemid vector pABMC13



Fig. 12

# Helper phage with Cys-Myc-pIII fusion gene



Fig. 13A

### Engineered gene III sequence in CM phage

---TTAGT<u>GGTACC</u>TTTCTATTCTCACTCCGCT <u>TAG</u>GCTTGCGGTGGT<u>GCGGCCGC</u>AGAACAAAAACTCATCTCAGAAGAACTGAGATCT <u>AGAICT</u>GGA Myc-tag α 臼 G A A A NotI ტ KpnI Gene III leader Amber stop S A \* A C гуургун

GGCGGT ACTGTTGAAAGTTGTTTAGCAAAACCTCATACAGAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCT-----Ц ĸ Д Д X × > z H ĮΉ വ z 闰 H Ħ Д × LA ບ Ø 臼 Gene III D T ტ

Fig. 13B

Detection of Myc-tag on CM-UltraHelper phages by ELISA



Fig. 14

Phagemid vector for protein-HA-cys expression



Fig. 15A

### Complete vector sequence of pABMX15

GCACACAGCCCAGCTTGGAGCGAACGTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAA TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAAGTTTACTCATATATACTTTAAATTGATTTAAAACTTCATTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCA CGGIGGITIGICGGGAICAAGAGCIACCAACICITITICCGAAGGIAACIGGCITCAGCAGAGCGCAGAIACCAAAIACIGICCITCTAGIGIAGCGGIAGITAGGCCACCACITCAAGAACICIGIAGCAC altaaaaaatgaaatacctatgcctacggcgctggattgttattactcgcggcccagccggccatgcggccttgcaggcctctaaaggcggccgcttacccgtacgacgttccggactacgcaggtggct GCTGATAAGTCGACCTCGAACTAGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTTC CTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGGCCCTGATAGACGGTTTTTCGCCCTTTGACGTGCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACAACTC aaccctatctcggtctattcttttgaitttagaggaitttggccgatttgggttaaaaaatgagctgaittaacaaaaatttaacgaaatttaacaaatataacgtaggca CITITCGGGGAAATGTGCGCGGAACCCCTAITTGTTTTTTTTTAAATACAITCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAAC ALTICCGTGTCGCCTTATTCCCTTTTTTGCGGCATTTTGCTTTTTTGCTCACCCAGAAACGCTGGTGAAAGGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTTACATCGAACTGGATCTCA acagcggtragatccttgagagttttcgccccgaagaacgttttccaatgatgagcactttttaaagttctgctaigtggcggggatttatcccgtattgacgccgggcaagagcaactcggtcgccgcatacact AGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGGGCCCCAATACGGCAAACCGCCTCCCCCGCGCTTGGCCGATTCATTAATGCAGCTGGGACGACAGGTTTCCCGGAAAGCGGGGAAGTGA

Fig. 15B

Functional display of scFv by CM-UltraHelper phage



Fig. 16

# Detection of scFv displayed by CM-UltraHelper phage



1: KO7 phage; 2: CM phage; 3: pABMx15-AM1/KO7; 4: pABMx15-AM1/CM

Fig. 17

Map of phagemid vector pABMC12



Fig. 18

Helper phage with an additional copy of engineered gene III



Fig. 19A

### Engineered gene III Sequence in GMCT phage genome

--TTAGT<u>GGTACC</u>TTTCTATTCTCACTCCGCT ACATCCCGCCTGGAGGGCCTACAGTCAGAAAACCATCGCCTGCGAATGAAGATCACAGAGCTGGATAAA GGTTCCGGTGATTTTGATTATGAAAAAATGGCAAACGCTAATAAGGGGGGCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAA CCTITITGTCTTTGGCGCTGGTAAACCATATGAATTTTTTTTTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTTTTTATATATGCCACC CTTGATTCTGTCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTTGCTGGC GGCTCTGGTGGTTGTTGGTGGCGGCTCTGAGGGTGGCGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGTGGCGGTGGCGGTTCCGGTGGCGGCTGC GACTIGGAAGAGGICACCAIGCAGCIGCAGGACGICGGAGGIIGC <u>GCGGCCGC</u>AGAACAAAAACIGAICTCAGAAGAGAGAICIGACGCGIGCI GGCGGC > Н ø ტ × Д ט N A L Ħ S E N D 团 Myc-tag Д > ಬ Ü ט N A D E G L A N O Y L ద GR2 domain Н ט N N ט ы ы 田 P L M N N F R CDKINL F D Y E K M A N A N K G A M T E တ ಬ ы ט D V Ø A A A ש ᆟ Noti ט ტ F H G 闰 闰 ບ ß ט ഗ ט U N H æ ט ט Q Z Q D Ø ш ט Λ Q Q Н ď 闰 闰 Gene III Leader A T D Y G A D D × ß ᅜ ტ ц О Ö > CT domain of Gene III ტ ŋ M A Q T T ø r U ש O) D G ა |> ט ŋ

AAGACAGCTATTGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTAGCGCAGGCT <u>AGATCT</u>GGAGGCGGT ACTGTTGAAAGTTGTTTAGCAAAA---บ Gene III > ט Ü Bglii ß ഷ ⋖ ο വ Þ > 闰 × ₽ z ద Н Ö н ď z Ы Ø Ľτ E ď ß ď ш >

ttratgtatgtattttctacgtttgctaacatactgcgtaataaggagtcttaataa <u>ggcgccc</u>acaatttcacag<u>taaggagg</u>tttaataa atgaaa

Fig. 19B

# Functional display of scFv by GMCT-UltraHelper phage



1, pABMx14-AM1/ KO7 MOI = 50

2, pABMx14-AM1/GMCT MOI = 1 3, pABMx14-AM1/GMCT

3, pABMx14-AM1/GMCT MOI = 10 4, pABMx15-AM1/GMCT MOI = 50

5, pABMx14-AM1/GMCT MOI = 100

Fig. 20

# Detection of scFv displayed by GMCT-UltraHelper phage



Fig. 2]



Fig. 22A

### PABMD1 vector: sequence from Agel to Sall

GGAGGCGGT ACTGTTGAAAGTTGTTTAGCAAAA ---- GCTAACATACTGCGTAATAAGGAGTCTTAA GTCGAC AGATCT ATGAAAAAGTCTTTAGTCCTCAAAGCCTCCGTAGCCGTTGCTACCCTCGTTCCGATGCT<u>AAGCTT</u>CGCT <u>ICTAGA</u> Sall Amber stop BgIII HindIII AATTGTGAGCGGATAACAATTT ACCGGT TCTT TTAACTTTAG TAAGGAGG AATTAAAAA GCGGCCGCT TATCCATACGACGTACCAGACTACGCA GGAGGT CATCACCATCATCACCAT SVAVATLVPMLS н н н н н Z His-tag S/D <u>ტ</u> Y Y P Y D V P D Gene 3 SLVLKA HA-tag Ø P8 Leader lac promoter/lac O1

### PABMD2 vector: sequence from Agel to Sall

ATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCGGCCCAGCCGG<u>CCATGG</u>CGGCC<u>CTGCAG</u>GCCT<u>GCAG</u>GCCTTACTAAAA Xbal AGATCT GGAGGCGGT ACTGTTGAAAGTTGTTTAGCAAAA ---- GCTAACATACTGCGTAATAAGGAGTCTTAA <u>GTCGAC</u> Amber stop BgIII LLPTAAGLLLLAAQPAMAAL AATTGTGAGCGGATAACAATTT ACCGGT TCTT TTAACTTTAG TAAGGAGG AATTAAAAA GCGGCCGCT TATCCATACGACGTACCAGACTACGCA GGAGGT CATCACCATCATCACCAT Nco I 闰 ннннн His-tag S/D ტ EP 1 1 Y P Y D V P D Gene 3 HA-tag ט ഗ pelB Leader ſΊ lac promoter/lac O1 Ü NotI Ü

#### Fig. 22B

GR1 Sequence Range: 1 to 146

GR2 Sequence Range: 1 to 140

Fig. 23



Fig. 24

antigen

Ag

Expression vector for Adapter-directed bacterial display



Fig. 25A

### Complete vector sequence of pABMX22

GACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTTTCTCAGAATGACTTGGTTGAGTACTCACCAGTAAAAAGCATCTTACGGATGGCATGACAGTAAGAATTATGCAGTGCTGCCAT tactitagattgaatttaaaacttcattttaatttaaaaggatctaggtgaagatccttttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaa aactggcttcagcagagcgcagataccaaatactgtccttctagtggtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcggtctgatcctgttaccagtggctg gaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggaggcgcacgagggagcttccagggggaaa attgctgagaaagaggagggtgttctgaactgcgactacagtctgtaggcggttgcacgcgttctagagcggccgcttacccgtacgacgtccggactacgcatgataagtcgacctcga ACTIGCCAGCGCCCTAGCGCCCCTTTCCTTTCCTTTCTTCCTTTCTCGCCACGTTTTCCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGC aaggaagatatgagtattcaacatttccgtgtcgcccttattttgcggcattttgcccttcctcttttgcggtaaaagtaaaagtaaaagtaaaagatgaagatcagttg aaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatggggggatcatgtaactcgccttgatcgttgggaaccggagctga CTGCCAGTGGCGATAAGTCGTGTTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGGGTTCGAACGGGGGGGTTCGTGCACACCCAGCTTGGAGCGAACGACCTACACC aaaaaatgaaaaagtctttagtcctcaaagcctccgtagccgtgctaccctcgttccgatgctacgttcgctggtgagaaagtcccgtctgctggagaaagagaaaccgtaaaaaga ccaattcgccctatagtgagtcgtattacaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcactttcgccagctggcgt acaacactcaaccctatctctgtttttttttttaattttgccgattttcgcctattggttaaaaatgagctgatttaacaaaatttaacgaaatttaacaaattttaacg GTGAGCGAGGAAGGGGGAAGAGCCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCCGACTGGAAAGCGGGCAGTGA

Fig. 25B

Helper vector for adapter-directed bacterial display



Fig. 26A

### Complete vector sequence of pABMXbd-1

actetgacttgagegtegatttttgtgatgetegteggeggeggeggeetatggaaaaaegeegeeagegeeetttttaeggetteetggeettttgetegeetttteet IGAGAATATGTTTTCGTCTCAGGCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAG ttctgcgcgtaatctgctgctaarcaaaaaaacaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaata CGTIGATATECCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTTGGTTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCA CAAGITITATCCGGCCITTATTCACAITCTTGCCCGCCTGATGATGCTCATCCGGAAITACGTAIGAAAGACGGTGAGGTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCA tgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtgggggtgttacggtgaaaacctggcctatttccctaaagggtttat tattggtgcccttaaacgcctggttgctacgcctgaataagtgataataagcggatgaatggcagaaattcgaaaattcgacccggtcgttcaggggcagggtcgttaaataggccgcttatg gatcaaaaggaictaggtgaagaicctittigataatctcaigaccaaaaicccttaacgtgagtittcgttccactgagcgtcagaccccgtagaaagatcaaaggatcttcttgagatctttt CTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCAGTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTTTACCGGGT IGGACTCAAGACGATAAGTTAAGGCGCAGCGGGTCGGGCTGAACGGGGGGGTTCGTGCACAGCCCAGCTTGGAGCGAACGACCTACACGGAATGGATACCTACAGCGTGAGCTATGAGAAA GCGCCACGCTTCCCGAAGGGAAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCC tgaitacgccaagcgcgttaactttagtaaggaggaattaaaaaatgaaatgctgctgccgagcggggtttgctgttactggcggcccagccggctatggcgatgaaagctactaaactg gtactgggcaacccgtatgttggctttgaaatgggttacgactggttaggtcgtataaaaggcagcgttgaaaacggtgcatacaaagctcaggggcgttcaactgaccgctaaactgggttac ccaatcactgacctggacatctacactcggctggctaggtatggcgtgccagacactaaatccaacgtttatggtaaaaaccacgacatttctccggtcttcgctggcgctgtgag CATCGCCTGCGAATGAAGATCACAGAGCTGGATAAAGACTTGGAAGATCACCATGCAGCTGCAAGACGTTGGCGGTTGCTAATGAGCGCGCTCACTGGCCGTTTTTACAACGTCGTGACTGGGAA aaccetgegettacecaacttaategecettgeageacateeecetttegeceagetggegtaatagegaagggeegeeecegategecettgeegegegetggegaatggeaatggeaegege CCCCGICAAGCICIAAAICGGGGGCICCCITIAGGGIICCGAITIAGGGCATTIACGGCACCTCGACCCCAAAAAACTIGAIIAGGGTGAIGGIICACGIAGTGGGCCAICGCCCTGAIAGACGGIITIII atatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaagagagtatgagtattcaacatttccgtgtcgcccttattccgtgttttgcggcatttgccttcctgttt ttgctcaccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttc GCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAAATTGTGAGGGATAACAATTTCACACAGGAAACAGCTATGACCA CGCCTCTCCCCGCGCGCTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCCGACTGGAAAGCGGGCCAGTGA

Fig. 26B