Naive Bayes Classifier

- Sentiment Analysis Task
- Experiment on IMDB, movie review dataset

Recap: Naive Bayes Classifier (NBC)

Generative Classifier

$$p(y | \mathbf{x}) = \frac{p(\mathbf{x} | y)p(y)}{p(\mathbf{x})}$$

$$p(y | \mathbf{x}) \propto p(\mathbf{x} | y) \times p(y)$$

$$\uparrow \qquad \qquad \uparrow$$

$$posterior \qquad \qquad \uparrow$$

$$likelihood \qquad prior$$

- Conditional Independence Assumption
 - Suppose we want to predict posterior $p(y | \mathbf{x})$ using three features, $\mathbf{x} = [x_1, x_2, x_3]$, i.e., we will estimate $p(x_1, x_2, x_3 | y) \times p(y)$.
 - Naive bayes classifiers assume conditional independence between features given a class.

$$y \xrightarrow{x_1} p(x_1, x_2, x_3 | y) = p(x_1 | y) \times p(x_2 | y) \times p(x_3 | y)$$

$$x_3$$

Sentiment Analysis using NBC

- Sentiment Analysis (SA)
 - The model predict a rating for the given movie review
- SA using NBC
 - \triangleright y: rating, x: review, a sequence of words, $\{w_i\}_{i=1}^L$, with length L
 - Conditional independence assumption
 - We assume that words are conditionally independent with each other, where the condition is the given rating, such that:

$$p(w_1, ..., w_L | y) = \prod_{i=1}^{L} p(w_i | L)$$

$$p(y | \{w_i\}_{i=1}^{L}) \propto p(y) \times \prod_{i=1}^{L} p(w_i | y)$$

$$\log p(y | \{w_i\}_{i=1}^{L}) \propto \log p(y) + \sum_{i=1}^{L} \log p(w_i | y)$$

Sentiment Analysis using NBC

- \Box For example,
 - Conditional Independence Assumption

$$p(\mathbf{x} = \text{"I love it"} | y = +) = p(\text{"I"} | y = +)$$
 $\times p(\text{"love"} | y = +)$
 $\times p(\text{"it"} | y = +)$

Posterior Estimation

$$\log p(y = + \mid \mathbf{x} = \text{"I love it"}) \propto \log p(y = +) \longrightarrow \text{prior}$$

$$+\log p(\text{"I"}\mid y = +)$$

$$+\log p(\text{"love"}\mid y = +)$$

$$+\log p(\text{"it"}\mid y = +)$$

$$\log p(\text{"it"}\mid y = +)$$

Procedure: 1. preprocessing

- Converting ratings into binary classes
 - **O** (negative) for $y = \{1,2,3,4,5\}$
 - ▶ 1 (positive) for $y = \{6,7,8,9,10\}$
- Constructing vocabulary
 - Converting words into lowercase
- Converting words into word index

Words	good	interesting	movie	story
Index	0	1	2	3

▶ ,e.g., review=["interesting", "movie"] \rightarrow [1, 2]

Procedure: 2. estimating prior

- Notation
 - $y \in \{\text{positive}, \text{negative}\}, \text{ or equivalently } y \in \{1,0\}$
- \square Procedure of estimating prior, p(y), as follows:
 - 1. Count the number of documents for each class
 - 2. Normalize counts

Sentiment	negative (0)	positive (1)	
Count	N= 14938	P= 52488	
р(у)	N/(P+N)=0.22	P/(P+N)=0.78	

P+N=67426

Procedure: 3. estimating likelihood

- Recall: conditional independence assumption
 - We want to estimate likelihood, $p(\mathbf{x} | y) = p((w_1, ..., w_L) | y)$.
 - \mathbf{x} stands for sequence of words (w_i) with length L
 - *y* stands for a sentiment label
 - Naive bayes classifiers assume w_i is conditionally independent with $w_i, j \neq i$ given y, i.e.,

$$p(\mathbf{x} | y) = p((w_1, ..., w_L) | y) = \prod_{i=1}^{L} p(w_i | y)$$

Therefore, we only need to estimate likelihood for each word, $p(w_i | y)$.

Procedure: 3. estimating likelihood

Count words and normalize the counts

$$p(w | y) = \frac{count(w, y)}{\sum_{w' \in V} count(w', y)}$$

ex) Suppose we have training data,

$$y_1 = 1$$
 (positive), \mathbf{x}_1 ="wonderful story"
 $y_2 = 1$ (positive), \mathbf{x}_2 ="wonderful movie"
 $y_3 = 0$ (negative), \mathbf{x}_3 ="unfunny movie"

The number of occurrence (counts) of each word

	wonderful	unfunny	movie	story	Total
negative (0)	0	1	1	1	3
positive (1)	2	0	1	0	3

Likelihood for each word

	wonderful	unfunny	movie	story
negative (0)	0	1/3	1/3	1/3
positive (1)	2/3	0	1/3	0

Procedure: 3. estimating likelihood

Challenge: unknown words

```
p("I recommended you this wonderful movie" | y = +)
= \cdots \times p("recommended" | y = +) \cdots \times p("wonderful" | y = +) \cdots
```

- The likelihood is expected to be high because of the word, "wonderful".
- However, since "recommended" (typo) is never observed in train dataset, we have "0" likelihood, and thus "0" posterior probability.

Solution: Laplace smoothing

 \triangleright We add smoothing constant k for counts of all words

$$\hat{p}(w_i|y) = \frac{count(w_i, y) + k}{\sum_{w \in V} [count(w, y) + k]}$$
$$= \frac{count(w_i, y) + k}{k \times |V| + \sum_{w \in V} count(w, y)}$$

, where V is vocabulary

Procedure: 4. evaluation

- Estimating posterior using conditional independence assumption
- Estimating posterior
 - Using training dataset, we estimated
 - prior distribution, p(y),
 - and likelihood of each word, p(w|y).
 - Given any reviews, we can estimate posterior distribution as follows:

$$\begin{split} p(y | \{w_i\}_{i=1}^L) &= \frac{p(y) \times p(\{w_i\}_{i=1}^L | y)}{p(\{w_i\}_{i=1}^L)} & \text{(\because bayes rule)} \\ &\propto p(y) \times p(\{w_i\}_{i=1}^L | y) \\ &= p(y) \times \prod_{i=1}^L p(w_i | y) & \text{(\because assumption)} \\ &\log p(y | \{w_i\}_{i=1}^L) \propto \log p(y) + \sum_{i=1}^L \log p(w_i | y) \\ &y^* &= \arg \max_{y} \log p(y | \{w_i\}_{i=1}^L) \end{split}$$

Hands-on practice

□ Github code

https://github.com/zizi1532/NaiveBayesClassifier/blob/master/ imdb_jupyter.ipynb

Discussion

Advantages of NBC

- It is easy to implement
- It is fast to train and evaluate the model
- It can be used as a simple baseline

Disadvantage of NBC

- Conditional independence assumption is too strong to correctly estimate complex distribution
 - ex) p("not good" | y = -) $= p("not" | y = -) \times p("good" | "not", y = -)$ $\neq p("not" | y = -) \times p("good" | y = -)$
- Limitation of lexical representation
 - We cannot consider semantic similarity between words.
 - We have long-tail distributions over words, i.e., Zipfs' law.

Thanks