Course: CSC707, Automata, Computability and Computational Theory

Bonus Homework: Bonus points assignment

Author: Padmashree Ravindra, Ye Jin, DaYoung Lee

Submission: Use Wolfware

File Format: Both LaTeX and PDF

Grading: 9.5 out of 10. Besides few glitches (Highlighted), all steps are

correct.

Grading team: Depadeep Sen, Depei Bao, Kiran Shakya

Due Date: 2:00 AM, Tuesday, Feb 9, 2010

1. Dominating Set is *NP*-complete Decision Problem:

 $DS = \{ \langle G, k \rangle | G \text{ contains a dominating set with } k \text{ nodes} \}$ A subset of nodes of a graph G is a **dominating set** if every other node of G is adjacent to some node in the subset.

(a) Step 1 (Verification):

Claim: $DS \in NP$ i.e. can be verified in polynomial time Given a graph G(V, E) has vertexes $v \in V$ with size of n, edge $e = \{u, v\} \in E$ and Dominating Set DS with size k.

Algorithm:

```
for all v \in V \dots O(|V|)
2
        if v is an isolate vertex
             if v \in DS then continue ..... O(|DS|)
3
4
             else return false
5
        else
             if v \in DS
6
7
                 then continue
             else for all e \in E \land v \in e \dots O(|E|)
8
                 if u \in DS and u \in e - \{v\} \dots O(|DS|)
9
10
                      then v is covered and break
11
                 else continue
12
                 if all edges are checked and v is not covered
13
                      then return false
14
    return true
```

Algorithm's time complexity: $O(|V| \cdot |E| \cdot |DS|) = O(n^2k)$ So the Verification Algorithm will finished in Polynomial time, and hence the Dominating Set is a NP problem.

(b) Step 2 (Reduction): DS can be derived with Reduction from the NP-complete problem "Vertex Cover"

 P_{known} = Vertex Cover, $VC = \{ \langle G, k \rangle | G \text{ has a vertex cover of size } k \}$

Claim: $VC \rightarrow DS$ reduction in polynomial time

- 1. G' construction : Given graph G(V, E), construct G' such that: for each $e = \{u, v\} \in E$
- a. Add vertex w
- b. Add edges $\{u, w\}$ and $\{v, w\}$

Complexity is O(|V|) = O(n)

2. Verify that G' has a dominating set of size k using Step 1 Complexity is $O(n^2k)$

Hence, T(n,k) = O(n), reduction is possible in polynomial time

(c) Step 3 (Correctness):

Claim: Graph G has a vertex cover of size k if and only if graph G' has a dominating set of size k.

 \Rightarrow Suppose that G has a vertex cover S of size k, we need to prove that either $v \in S$ or v has an adjacent node in S

 $\forall v \in G'$, we have the following two options:

a. Original vertex : $v \in G$

Since $\{u,v\} \in G$ and S is the vertex cover, if $v \notin S$, then by definition of a vertex cover $u \in S$. Thus, an adjecent node of v is in S b. Additional vertex w has two adjacent vertices $u,v \in G$; $(u,v) \in E$ and by definition of a vertex cover, either $u \in S$ or $v \in S$. Hence, if G has a vertex cover of size k, then G' has a dominating set of at most size k

 \Leftarrow Suppose that G' has a dominating set D of size k. Consider the additional vertices $w \in D$. We note that w is connected to exactly 2 vertices $u, v \in G$. Since $u, v, w \in G'$ form a triangle, choosing any vertex in the triangle would dominate the other two. Hence we can construct D_{new} by replacing every $w \in D$ by u or v and still cover all the vertices in G'. Also every $w \in G'$ corresponds to an edge $\{u, v\} \in G$ and hence all edges in G are covered by D_{new} .

Thus, if G' has a dominating set of size k, then G has a vertex cover of at most size k