PMT Additional Exercises (Week 4)

Nicholas Sim

October 26th, 2017

1 Discrete Structures: Equivalence Classes

In the lectures you have constructed the rational numbers \mathbb{Q} from the sets \mathbb{Z}, \mathbb{N} . Here we construct \mathbb{Z} , since we only understand \mathbb{N} . (This is glossed over in def. 3.4.)

Let $S = \mathbb{N} \times \mathbb{N}$. Define a relation \sim on S by $(m_1, n_1) \sim (m_2, n_2)$ (or $((m_1, n_1), (m_2, n_2)) \in \sim$) iff $m_1 + n_2 = m_2 + n_1$. Informally, we can think of (m, n) as m - n. [construction thanks to A. Corti]

- 1. Show that \sim is an equivalence relation.
- 2. Show that $(m_1, n_1) \sim (m_2, n_2)$ iff $(m_1 + k, n_1 + k) \sim (m_2 + k, n_2 + k)$ for any $k \in \mathbb{N}$.
- 3. Show that if $(m_1, k) \sim (m_2, k)$ then $m_1 = m_2$ for any $k \in \mathbb{N}$.
- 4. Similarly, show that if $(k, n_1) \sim (k, n_2)$ then $n_1 = n_2$ for any $k \in \mathbb{N}$. Now let $Z = S/\sim$, and define + on Z by $[(m_1, n_1)] + [(m_2, n_2)] = [(m_1 + m_2, n_1 + n_2)]$. For convenience, represent members of Z by $\bar{z} = [(z, 0)]$ and $-\bar{z} = [(0, z)]$ for any $z \in \mathbb{N}$.
- 5. Show that $\bar{z} + (-\bar{z}) = [(0,0)].$
- 6. Fix any $\bar{z} \in Z$. Show that either $z \in \mathbb{N}$ or (abusing notation) $-z \in \mathbb{N}$.
- 7. (*) Write down an invertible function $f: \mathbb{Z} \to Z$. Show that $\forall a, b \in \mathbb{Z}, f(a+b) = f(a) + f(b)$.

2 Logic: Adequacy

[Informal definition] Say a set of connectives is *adequate* if any propositional formula of n variables can be written as some other formula only using variables $p_1, ..., p_n$ and the connectives.

For instance, $\{\neg, \lor\}, \{\neg, \to\}$ are both adequate. We've also seen that $\{\uparrow\}$ (NAND) is adequate.

- 1. We introduce a new connective, NOR (\downarrow) . Show that this connective is adequate.
- 2. (*) Show that apart from NOR and NAND, there are no other single adequate (binary) connectives. [thanks to D. Evans]

3 Solutions to Equivalence Classes

- 1. Reflexivity. Clearly $m_1 + n_1 = m_1 + n_1$. Symmetry. Suppose $m_1 + n_2 = m_2 + n_1$. Then clearly $m_2 + n_1 = m_1 + n_2$. Transitivity. Suppose $m_1 + n_2 = m_2 + n_1$ and $m_2 + n_3 = m_3 + n_2$. Then $m_1 + n_3 = (m_2 + n_1 - n_2) + (m_3 + n_2 - m_2) = n_1 + m_3$.
- 2. We have $m_1 + n_2 = m_2 + n_1$. For \Rightarrow , verify by adding k to all four terms. For \Leftarrow , fix k = 0.
- 3. Suppose $m_1 + k = m_2 + k$. Subtract k from both sides (valid as each side $\geq k$).
- 4. Similar to previous part.
- 5. This is just [(z,0)] + [(0,z)] = [(z+0,0+z)] = [(z,z)] as defined by + on Z. Trivially we have $(k,k) \sim (0,0) \forall k \in \mathbb{N}$ since k+0=0+k. So clearly [(z,z)] = [(0,0)]) since they belong to the same equivalence class.
- 6. Write $\bar{z} = [(m, n)]$. Either $m \ge n$, then $\bar{z} = [(m, n)] = [(m n, 0)]$, or $m \le n$, where $\bar{z} = [(m, n)] = [(0, n m)]$. Note that in the case m = n, both are valid and of course $\bar{z} \sim (0, 0)$.
- 7. Define f(x) = [(x,0)] when $x \ge 0$ and f(x) = [(0,-x)] otherwise. Simply enumerate 4 possibilities:
 - (a) $a, b \ge 0$. f(a+b) = [(a+b,0)] = [(a,0)] + [(b,0)] = f(a) + f(b).
 - (b) $a < 0 \le b$. f(a+b) = f(b-(-a)) = [(b,-a)] = [(b,0)] + [(0,-a)] = f(a) + f(b).
 - (c) $b < 0 \le a$. Reverse a, b above.
 - (d) a, b < 0. f(a + b) = f(0 (-(a + b))) = [(0, -(a + b))] = [(0, -a)] + [(0, -b)] = f(a) = f(b).

Slightly tedious.

4 Solutions to Adequacy

- 1. We need only use NOR to replicate a set of adequate connectives. Write down: $\neg p \equiv p \downarrow p$ and $p \land q \equiv (p \downarrow p) \downarrow (q \downarrow q)$.
- 2. Note: there are 2^4 possible binary connectives. Suppose that a binary connective \cdot is adequate. We know that $\top \cdot \top \equiv \bot$ and $\bot \cdot \bot \equiv \top$, otherwise we would be unable to express negation. Only 4 possibilities remain, of which two are NOR and NAND. In the remaining two cases, $p \cdot q$ would be logically equivalent to either $\neg p$ or $\neg q$ (draw out the truth table!), which isn't adequate by itself.