Spotify 데이터를 활용한 장르 예측

BITAmin 6기 복습 프로젝트

데이터 설명 02

EDA 및 전처리

모델적용

01 데이터 설명

Α	В	С	D	E		F	G	Н	- 1	J	K	L		M	N	0	Р	Q	R	S	T	U	V
danceabil	energy	key	loudness	mode	spe	eechine a	acousticne i	nstrumen	liveness	valence	tempo	type	ic	i	uri	track_href	analysis_u	duration_	r time_signa	genre	song_nam	Unnamed	title
0.831	0.814		-7.364		1	0.42	0.0598	0.0134	0.0556	0.389	156.985	audio_	feat 2	Vc6NJ9P	spotify:tra	chttps://ap	https://ap	124539	9 4	Dark Trap	Mercury:	Retrograde	
0.719	0.493		-7.23		1	0.0794	0.401	0	0.118	0.124	115.08	audio_	feat 7	pgJBLVz	spotify:tra	chttps://ap	https://ap	224427	7 4	Dark Trap	Pathology	/	
0.85	0.893		-4.783		1	0.0623	0.0138	4.14E-06	0.372	0.0391	218.05	audio_	feat 0	vSWgAlf	spotify:tra	chttps://ap	https://ap	98821	1 4	Dark Trap	Symbiote		
0.476	0.781		-4.71		1	0.103	0.0237	0	0.114	0.175	186.948	audio_	feat 0	VSXnJqC	spotify:tra	chttps://ap	https://ap	123661	1 3	Dark Trap	ProductO	fDrugs (Pro	d. The V
0.798	0.624		2 -7.668		1	0.293	0.217	0	0.166	0.591	147.988	audio_	feat 4	jCeguq9	r spotify:tra	chttps://ap	https://ap	123298	3 4	Dark Trap	Venom		
0.721	0.568		-11.295		1	0.414	0.0452	0.212	0.128	0.109	144.915	audio_	feat 6	fsypiJHy\	spotify:tra	chttps://ap	https://ap	112511	1 4	Dark Trap	Gatteka		
0.718	0.668		-4.162		1	0.137	0.0254	0.0078	0.124	0.038	130.826	audio_	feat 0	XfQbq7[spotify:tra	chttps://ap	i https://ap	77584	4	Dark Trap	kamikaze	(+ pulse)	
0.694	0.711		-5.525		1	0.221	0.0397	0	0.112	0.283	138.049	audio_	feat 0	LLeuNBV	∧spotify:tra	chttps://ap	i https://ap	127524	3	Dark Trap	T.R.U. (To	tally Rotten	Undergr
0.774	0.751		1 -2.445		1	0.198	0.0614	0	0.0728	0.189	219.96	audio_	feat 3	7gqBnU	A spotify:tra	chttps://ap	i https://ap	140326	5 4	Dark Trap	I Put My	Dick in You	r Mental
0.893	0.907	1	1 -10.406		1	0.367	0.152	0.0311	0.558	0.302	199.942	audio_	feat 2	ggqfj97d	spotify:tra	chttps://ap	i https://ap	121979	9 4	Dark Trap	Androme	da	
0.864	0.365		-10.219		1	0.0655	0.187	0	0.116	0.0478	189.938	audio	feat 7	EL7ifncK	spotify:tra	chttps://ap	https://ap	101172	2 4	Dark Trap	BRAINFO	OD	
0.736	0.932		1 -3.726		1	0.271	0.146	0.0025	0.182	0.18	124.514	audio_	feat 0	QIF3l617	spotify:tra	chttps://ap	https://ap	115775	5 4	Dark Trap	Troll Und	er the Bridg	ge
0.825	0.761		-5.389		1	0.104	0.0111	0.00359	0.334	0.161	149.97	audio_	feat 5	o7ZDvfC	spotify:tra	chttps://ap	https://ap	163371	1 4	Dark Trap	1000 Rou	nds	
0.767	0.576	10	9.683		0	0.256	0.145	2.61E-06	0.0968	0.187	139.99	audio_	feat 1	umsRbN	spotify:tra	chttps://ap	https://ap	96062	2 4	Dark Trap	Sacrifice		
0.765	0.726		5 -5.58		1	0.191	0.0077	0	0.619	0.27	128.014	audio_	feat 4	SKqOHK	spotify:tra	chttps://ap	https://ap	135079	9 4	Dark Trap	Backpack		
0.617	0.541		6 -4.113		1	0.78	0.125	0	0.369	0.43	159.996	audio_	feat 4	Ag89Y70	spotify:tra	chttps://ap	https://ap	107999	9 4	Dark Trap	D(R)Own		
0.755	0.298		1 -15.032		1	0.0915	0.154	0.329	0.101	0.0372	199.958	audio_	feat 2	8xkYPSP	spotify:tra	chttps://ap	https://ap	123054	4	Dark Trap	Okay,But1	ThisIsTheLas	stTime
0.814	0.575	1	1 -9.635		1	0.0635	0.172	0.000291	0.109	0.288	120.004	audio_	feat 3	uE1swbo	spotify:tra	chttps://ap	https://ap	192833	3 4	Dark Trap	TakingOu	tTheTrash	
0.812	0.813	10	-5.583		0	0.0984	0.0987	0.00015	0.0758	0.348	128.066	audio_	feat 3	KIrwOu	spotify:tra	chttps://ap	https://ap	180880	4	Dark Trap	lo sono q	ui	
0.849	0.648		7 -6.188		1	0.0832	0.0725	0.00592	0.0984	0.196	212.15	audio	feat 4	irYeuAi8	spotify:tra	https://ap	https://ap	111020) 4	Dark Trap	Paris		

캐글에서 찾은 Spotify 데이터 노래의 댄스 가능성, 에너지, 높낮이 등을 보여주는 column과 장르가 나타난 csv 데이터

데이터를 살펴본 결과, 21,526행과 21,527행을 경계로 T열(song_name)이 V열(title)로 이동

- → 21,526행 이전 V열은 NaN값
- → 21,526행 이후 T열은 NaN값

```
• • 0
```

```
song_name=df['song_name']
song_name.dropna(inplace=True)
title=df['title']
title.dropna(inplace=True)

idx_df=pd.concat([song_name, title], axis=0)
idx_df=pd.DataFrame(idx_df)
df.drop(['song_name', 'title'], axis=1, inplace=True)
df['title']=idx_df
df=df.set_index(['title'])
```

song_name과 title 열을 합치기

- 1. song_name 열과 title 열을 concat을 통해 병합
- 2. 병합한 피처를 idx_df라는 변수에 담아두고,
- 3. 기존 데이터에서 song_name과 title 열을 제거한 뒤,
- 4. 기존 데이터에 title 열을 생성해 idx_df를 추가

• • 0

피처 중요도 확인

피처 중요도를 확인해 본 결과, key와 mode의 중요도가 매우 낮게 나타남

→ key와 mode 피처 drop

```
fig, ax = plt.subplots(figsize = (10, 12))
plot_importance(xgb_model, ax = ax)
```

```
data.drop(['key', 'mode'], axis = 1, inplace = True)
```

• • 0

범주형이며, 데이터 분석에 영향 미치지 않는 피처 제거

type	id	uri	track_href	analysis_u
audio_feat	2Vc6NJ9P	spotify:tra	https://ap	https://ap
audio_feat	7pgJBLVz5	spotify:tra	https://ap	https://ap
audio_feat	0vSWgAlf	spotify:tra	https://ap	https://ap
audio_feat	0VSXnJqQ	spotify:tra	https://ap	https://ap

Т	U	V
song_name	Unnamed: 0	title
Mercury: Retro		

```
df=pd.read_csv('./genres_v2.csv')
df.drop(['Unnamed: 0', 'type', 'id', 'time_signature', 'track_href', 'analysis_url', 'uri'], axis=1, inplace=True)
nalist=df[(df['song_name'].isnull()==True)&(df['title'].isnull()==True)].index
df.drop(nalist, axis=0, inplace=True)
```

```
C
```

```
encoder=LabelEncoder()
 encoder.fit(df['genre'])
 labels=encoder.transform(df['genre'])
df['genre']=labels
 df['genre'].value_counts()
      5875
      4578
      3022
      2999
14
      2987
      2975
      2966
      2961
      2956
      2936
      2099
      1956
      1848
      1680
       461
Name: genre, dtype: int64
```

인코딩

이후 코딩의 용이함을 위해 LabelEncoder를 통해 genre를 인코딩

```
print('인코딩 클래스 : ',encoder.classes_)
인코딩 클래스 : ['Dark Trap' 'Emo' 'Hiphop' 'Pop' 'Rap' 'RnB' 'Trap Metal'
'Underground Rap' 'dnb' 'hardstyle' 'psytrance' 'techhouse' 'techno'
'trance' 'trap']
```

```
get_clf_eval(y_test, preds, pred_proba)
ValueError
                                            Traceback (most recent call last)
<ipython-input-28-9bb98b630742> in <module>
----> 1 get_clf_eval(y_test, preds, pred_proba)
~#Anaconda3#lib#site-packages#sklearn#metrics#_classification.py in _check_
set_wise_labels(y_true, y_pred, average, labels, pos_label)
                   if y_type == 'multiclass':
   1262
                      average_options.remove('samples')
-> 1263
                      raise ValueError("Target is %s but average='binary'. P
lease "
   1264
                                     "choose another average setting, one of %
                                     % (y_type, average_options))
ValueError: Target is multiclass but average='binary'. Please choose another average e setting, one of [None, 'micro', 'macro', 'weighted'].
```

랜덤 포레스트 정확도: 0.6585

Voting 문류기 정확도: 0.3076

Decision Tree 예즉 정확도: 0.4493

문제점 발생

문제점 1)

y값은 총 14개의 값(multiclass)이 존재

모델은 binary로 target 인식

문제점 2)

레이블 인코딩 후 모델 돌렸을 때 너무 낮은 정확도

Label Encoding 말고 One-hot Encoding으로 인코딩 해야겠다고 판단

 \bullet \bullet \circ

Softmax 형태의 One-hot Encoding 결과를 Y값에 넣는 방식으로는 objective = 'multiclass'로 설정했음에도 계속 오류

y matrix의 각 열 별로 해당 음악이 Dark Trap인지의 여부, Emo인지의 여부, Hiphop인지의 여부, 등등 … 이렇게 순서대로 예측하는 방안을 선택

for문을 통해 반복

다른 방법

Treshold value

\bullet \bullet \circ

공통점 매우 높은 정확도

정확도:0.9100, 정밀도 0.7772, 재현율 :0.3077, F1:0.4409, AUC:0.889506

0번 장르 재현율이 현저히 낮은 장르

정확도:0.9972, 정밀도 0.9828, 재현율 :0.9761, F1:0.9795, AUC:0.999788

8번 장르 예측 성능이 매우 좋은 장르


```
• • C
```

```
df[df['genre']==0]=7
df[df['genre']==1]=7
df[df['genre']==2]=7
df[df['genre']==3]=7
df[df['genre']==4]=7
df[df['genre']==5]=7
df[df['genre']==6]=7
```

예측 성능이 좋지 않은 0~7번 장르를 '기타 장르'로 통일

→ 'Dark Trap', 'Emo', 'Hiphop', 'Pop', 'Rap', 'RnB', 'Trap Metal', 'Underground Rap' 장르가 모두 'Other items'가 된 것

```
df['genre'].value_counts()
```

```
7 21519
13 2999
14 2987
11 2975
8 2966
10 2961
12 2956
9 2936
Name: genre, dtype: int64
```

새롭게 지정한 장르의 IR을 살펴본 결과 기타 장르로 합친 7번 장르로 구분된 음악이 매우 많음

→ 데이터 불균형 처리 필요

SMOTE를 통한 데이터 불균형 처리

```
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=23)
smote=SMOTE(random_state=0)
X_train_over, y_train_over=smote.fit_sample(X_train, y_train)

y_train_over=pd.get_dummies(y_train_over)
y_test=pd.get_dummies(y_test)
```

모델 재실행

하나로 통일한 장르의 예측 성능 매우 우수

정확도:0.9905, 정밀도 0.9956, 재현율 :0.9859, F1:0.9907, AUC:0.999636

전반적으로 성능 향상

지금까지심큼한

발표에 대한 질의응답은 언제나 환영입니다:)

5조 김지윤 김현우 이수진 이현진

2021 / 01 / 30