PRÁCTICO 2 LENGUAJES FORMALES: Automatas finitos no-deterministas (AFNDs) y expresiones regulares.

Mauricio Velasco

- 1. Sea N un AFND y sea $w = y_1 y_2 \dots y_m$ una palabra. Complete de manera precisa la siguiente definición: N acepta a w si...
- 2. Construya AFNDs con el número especificado de estados que reconozcan los siguientes lenguajes (usando el alfabeto $\{0,1\}$):
 - a) El lenguaje constituido por las palabras que terminan en 00 usando TRES estados.
 - b) El lenguaje 0*1*0* usando TRES estados.
 - c) El lenguaje constituido por las palabras que contienen al substring 0101 usando CINCO estados.
 - d) El lenguaje 0^* con UN estado.
- 3. Defina expresiones regulares que generen los siguientes lenguajes en el alfabeto $\{0,1\}$:
 - a) Las palabras que empiezan con 1 y terminan con 0.
 - b) Las palabras que contienen al menos tres unos.
 - c) Las palabras de longitud a lo más cinco.
 - d) Las palabras en las que toda posición impar es un uno.
 - e) Las palabras que ó contienen un número par de ceros ó exáctamente dos unos.
- 4. Realice las siguientes tareas:
 - a) Construya un AFND que reconozca el lenguaje $(01 \cup 001 \cup 010)^*$.
 - b) Convierta esta AFND en un AFD equivalente siguiendo la prueba de la equivalencia vista en clase.

- 5. Convierta las siguientes expresiones regulares en AFND:
 - a) $(0 \cup 1)^*000(0 \cup 1)^*$
 - *b*) ∅*
- 6. Se
aB un lenguaje cualquiera sobre el alfabeto
 $\Sigma.$ Demuestre que $B=B^*$ si y sólo s
iBB=B.