Homework 2

Ryan Coyne

February 7, 2024

Theorem 1: Let (G, \circ) be a group, and let $g, h \in G$. Then

$$(g \circ h)^{-1} = h^{-1} \circ g^{-1}.$$

PROOF: First, we compose $(g \circ h)^{-1}$ with $(g \circ h)$. This gives us,

$$(g \circ h)^{-1} \circ (g \circ h) = e.$$

Next compose $g^{-1} \circ h^{-1}$ with $(g \circ h)$. This gives us

$$(h^{-1} \circ g^{-1}) \circ (g \circ h) = h^{-1} \circ (g^{-1} \circ g) \circ h$$

= $h^{-1} \circ h$
= e .

Now, since $(g \circ h)^{-1} \circ (g \circ h) = (h^{-1} \circ g^{-1}) \circ (g \circ h)$, it follows that $(g \circ h)^{-1} = h^{-1} \circ g^{-1}$.