CSE301 – Computer Organization

Lecture 4 – Single-Cycle Processor

Instruction Stages

Each instruction passes through the following stages:

ALU	Instruction Fetch	Decode Reg Read	ALU	Reg Write	
← longest delay →					
Load	Instruction Fetch	Decode Reg Read	Compute Address	Memory Re	ead Reg Write
	Instruction	Decode	Compute		
Store	Fetch	Reg Read	Address	Memory W	rite
				•	
Branch	Instruction Fetch	Reg Read Br Target	Compare & Update PC		
				•	
Jump	Instruction	Decode &			
oump	Fetch	Update PC			

Single-Cycle Processor

- Executes each instruction in one clock cycle.
- The clock period must be long enough to accommodate the slowest instruction.
- **Drawback:** Overall performance is limited by the slowest instruction.

Building the Datapath

1. Instruction Fetch

2. Adding R-Type Instructions

3. Adding I-Type Instructions (ALU Operations)

4. Adding I-Type Instructions (Load & Store)

5. Adding I-Type Instructions (Branch)

6. Adding J-Type Instructions

Control Unit

Performance Considerations

- The clock period is determined by the longest instruction delay.
- The **critical path** typically occurs in **load instructions**:

- It's **impractical** to change the clock period per instruction.
- Violates the design principle:

"Make the common case fast."