8

Examen d'ANA3.

Durée. 2H.

DOCUMENTS ET CALCULATRICE INTERDITS.

Exercice1: (7,5 points)

On pose:
$$F(x) = \int_0^{+\infty} f(t,x)dt$$
, où $f(t,x) = \frac{t\sin(xt)}{(1+t^2)^2}$, $x \in \mathbb{R}$.

- \checkmark 1) Montrer que le domaine de définition de F est égal à \mathbb{R} .
- \checkmark 2) Montrer que F est dérivable sur \mathbb{R} .

On pose :
$$g(t) = e^{-|t|}$$
. et on rappelle que $(\mathcal{F}g)(x) = \frac{2}{1+x^2}$.

√3) En utilisant la formule d'inversion de Fourier, déterminer la valeur

$$de A(x) = \int_{0}^{+\infty} \frac{\cos(xt)}{1+t^2} dt.$$

- \checkmark 4) Déduire de 3) la valeur de $F(x) = \int_{0}^{+\infty} \frac{t \sin(xt)}{(1+t^2)^2} dt$.
- 5) Déduire de 2), 3) et 4) la valeur de $C(x) = \int_{0}^{+\infty} \frac{\cos(xt)}{(1+t^2)^2} dt$.

Exercice2: (6 points)

Soit l'application numérique réelle définie sur \mathbb{R}^2 par:

$$f_a(x,y) = \begin{cases} \frac{x - x \cos y + ay^2 \sin x}{x^2 + y^2} & \text{si } (x,y) \neq (0,0). \\ 0 & \text{sinon.} \end{cases}$$
; où $a \in \mathbb{R}$.

- 1) Montrer que pour tout $a \in \mathbb{R}$, f_a est continue sur \mathbb{R}^2 . 2) Calculer $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$.

 - 3) Pour quelles valeurs de a, f_a est elle différentiable sur \mathbb{R}^2 .

Exercice3: (2 points)

En utilisant le changement de variable suivant: $u = x^2 - y^2$ (x > 0) et v = y; résoudre dans $C^1(\mathbb{R}_+^* \times \mathbb{R})$ l'équation différentielle partielle: $y \frac{\partial f}{\partial x} + x \frac{\partial f}{\partial y} = 0$.

Exercice4: (4,5 points)

Di

Déterminer les extréma libres de la fonction: $f(x,y) = x^4 + y^4 - \frac{1}{4}(x-y)^2$.

On rappelle que:
$$\sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots + \frac{(-1)^n}{(2n+1)!}x^{2n+1} + o(x^{2n+1}).$$

$$\cos(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots + \frac{(-1)^n}{(2n)!}x^{2n} + o(x^{2n}).$$