Tutorato di Automi e Linguaggi Formali

Homework 1: DFA, NFA ed ϵ -NFA, conversioni ed operazioni su linguaggi

Gabriel Rovesti

Corso di Laurea in Informatica - Università degli Studi di Padova

Tutorato 1 - 10-03-2025

1 DFA

Esercizio 1. Progettare un DFA sull'alfabeto $\{0,1\}$ che riconosca il linguaggio

$$L = \{w \in \{0,1\}^* \mid \text{il numero di 0 in } w \text{ è pari}\}.$$

Definire la 5-tupla $(Q, \{0, 1\}, \delta, q_0, F)$, disegnare il diagramma degli stati e fornire la tabella di transizione.

Esercizio 2. Progettare un DFA sull'alfabeto $\{0,1\}$ che riconosca il linguaggio

$$L = \{w \in \{0,1\}^* \mid w \text{ termina con la sottostringa } 01\}.$$

Presentare il diagramma degli stati e la tabella di transizione completa.

2 NFA

Esercizio 3. Progettare un NFA sull'alfabeto $\{a,b\}$ che riconosca il linguaggio

$$L = \{w \in \{a,b\}^* \mid w \text{ inizia con } a \text{ oppure termina con } b\}.$$

Disegnare il diagramma degli stati e riportare la tabella di transizione.

Esercizio 4. Progettare un NFA sull'alfabeto $\{0,1\}$ che riconosca il linguaggio

 $L = \{w \in \{0,1\}^* \mid w \text{ contiene almeno una occorrenza della sottostringa } 10\}.$

Fornire il diagramma degli stati e la tabella di transizione.

3 Conversione da NFA a DFA

Esercizio 5. Si consideri il seguente ϵ -NFA definito dalla tabella:

	0	1	ϵ
$\rightarrow q_0$	$\{q_1\}$	Ø	$\{q_2\}$
q_1	$\{q_1\}$	$\{q_3\}$	Ø
q_2	Ø	$\{q_2,q_3\}$	Ø
$*q_3$	Ø	Ø	Ø

- a) Calcolare l' ϵ -chiusura di ogni stato.
- b) Convertire il suddetto ϵ -NFA in un DFA mediante la costruzione a sottoinsiemi.
- c) Determinare il linguaggio riconosciuto dall'automa risultante.

Esercizio 6. Si consideri il seguente NFA definito dalla tabella:

$$\begin{array}{c|cc} & a & b \\ \hline \rightarrow p_0 & \{p_0, p_1\} & \{p_0\} \\ *p_1 & \varnothing & \{p_2\} \\ p_2 & \{p_1\} & \varnothing \end{array}$$

- a) Applicare la costruzione a sottoinsiemi per ottenere il DFA equivalente.
- b) Descrivere formalmente il linguaggio riconosciuto dall'automa.

4 Operazioni sui Linguaggi

Esercizio 7. Siano L_1 e L_2 due linguaggi regolari riconosciuti rispettivamente da DFA dati.

- a) Disegnare il DFA per l'intersezione $L_1 \cap L_2$.
- b) Disegnare il DFA per l'unione $L_1 \cup L_2$.

Fornire una breve descrizione del procedimento utilizzato (prodotto cartesiano degli stati, etc.).

Esercizio 8. Sia $L = \{w \in \{0,1\}^* \mid w \text{ contiene un numero dispari di } 1\}.$

- a) Progettare un DFA che riconosca il complemento di L.
- b) Spiegare come si può ottenere, a partire dal DFA di L, il DFA per il complemento.