Question Number	Answer	Mark
13(a)(i)	Use of $\rho = m / V$ (and $U = mg$) (1))
	$U = 5.9 \times 10^7 \mathrm{N} \tag{1}$	2
	Example of calculation $U = \rho g V = 1.03 \times 10^3 \text{ kg m}^{-3} \times 9.81 \text{ N kg}^{-1} \times 5.83 \times 10^3 \text{ m}^3 = 5.89 \times 10^7 \text{ N}$	
13(a)(ii)	Weight of submarine is equal to the upthrust. (1)
	Refers to $W = m g$ to justify a mass of 6.00×10^6 kg	
	Refers to mass calculated in (a)(i) to justify a mass of 6.00×10^6 kg (1)	2
	Example of calculation $W = U = 5.89 \times 10^7 \text{ N} = m \times 9.81 \text{ N kg}^{-1}$ $m = 5.89 \times 10^7 \text{ N} / 9.81 \text{ N kg}^{-1} = 6.00 \times 10^6 \text{ kg}$	
13(b)(i)	The upthrust (of the water on the submarine) is less than the weight of the submarine (1)
	A resultant force acts (downwards) on the submarine (1)
	So the submarine will (begin to) sink (dependent on MP1) (1	3
13(b)(ii)	Use of $\rho = m/V$ and $W = mg$ to calculate new upthrust (1))
	Mass of water = 1×10^5 kg (pumped out) (allow ecf from (a)(i)) (1	2
	Example of calculation Upthrust = 1.01×10^3 kg m ⁻³ × 9.81 N kg ⁻¹ × 5.83 × 10^3 m ³ = 5.78×10^7 N Net downward force = 5.89×10^7 N – 5.78×10^7 N = 1.14×10^6 N Mass to be lost = 1.14×10^6 N / 9.81 N kg ⁻¹ = 1.17×10^5 kg	

9

Total for question 13