Red Blood Cell Morphology

Pinal Patel Laboratory Education Specialist

Introduction

- In contrast to WBC, circulating RBCs are anucleate and homogenous in appearance.
- Derived from bone marrow orthochromic erythroblast following extrusion of nucleus.
- While developing in marrow, erythroid cells increase in RNA content for Hgb production
- 1% of circulating RBCs get replaced every day
- Essential Nutrients for RBCs synthesis are iron, folic acid, and vit.B12.

Introduction

- The blood film should be examined in the area where the red cells are touching but not often overlapping
- Red cell morphology is assessed according to grading system
- Scan red blood cells on a slide using 100x oil immersion, observe 10 fields, red cells are observed for size, Shape, hemoglobin content and the presence or absence of inclusions.

Normal RBC

- 7 days in marrow and ~120 days in circulation
- Hemoglobin gives bright red color to RBC
- Size ~ 7 μm
- Central pallor ~1/3 of total size
- Slight variation in size and shape

Normal RBC

- Approximate size is same as nucleus of mature lymphocyte
- Circulate in blood as biconcave disk
- Biconcave disk shape allow them to stacks and flex to smooth the flow through the narrow blood vessels and entering small capillaries

Stages of RBC Maturation

- As the RBC go through the six maturation stages, overall size of the cell decreases, and hemoglobin content increases.
- The nucleus become smaller in size and more condensed until it is pushed out of the cell.
- The first three stages normally take place in bone marrow.
- The orthrochromic normoblast can be seen in peripheral but not in high numbers.
- The last two cells can be seen in circulation.

RBC Physiology

Deformability

- Surface area 140 μm²
 - An excess surface to volume ratio allows cells to stretch undamaged
 - Deformability also depends on cytoplasmic viscosity
 - Increased Hb concentrations compromise deformability and shorten the RBC life span
 - As MCHC increased, variation in deformability

RBC Physiology

- Membrane Composition
 - 52% proteins
 - 40% lipids(equal ratio of cholesterol and phospholipids)
 - 8% carbohydrates
- Transmembranous proteins
 - Assemble in one of two complexes, ankyrin or protein 4.1
 - Provides vertical membrane structural

RBC Physiology

- Skeletal Proteins
 - The spectrins provide lateral membrane stability
- Mutation in ankyrin, protein 4.1, or spectrin is seen in hereditary spherocytosis
- Mutation in spectrin dimer to dimer or spectrin-ankyrin-protein 4.1 junction are seen in hereditary elliptocytosis

RBC abnormality

- Size (anisocytosis)
- Hemoglobin content -color variation
- Shape(poikilocytosis)
- Erythrocyte inclusion
- Red cell distribution

Size

On this basis anemia may be classified as normocytic /normochromic (MCV 80-100 fl)
Macrocytic (MCV >100 fl), or microcytic/hypochromic (MCV <80 fl)

Microcytic

- Expanded central zone of pallor
- Decreased or defective globin synthesis also presents as microcytic hypochromic anemia
- Found in

Iron deficiency anemia
Thalassemia, Sideroblastic
anemia, Lead poisoning and
Anemia of chronic disease.

Macrocytic

- The common cause of macrocytes is due to impaired DNA synthesis, RNA synthesis is unaffected resulting in the asynchrony between the cytoplasmic and nuclear maturation.
- Neutrophilic hyper segmentation is typically seen.
- RBC May be round or oval in shape, the diagnostics significance being different.
 - oval shape in B 12 and folate deficiency
 - round shape in liver disease and reticulocytosis
- Found in folate or B 12 deficiency, liver disease, reticulocytosis

Hemoglobin content

- Normochromic
- Hypochromic
- Polychromic / Polychromasia

Normochromic

- The term normochromic indicates the red cells is essentially normal in color
- RBC has a Well hemoglobinized cytoplasm with a small distinct Zone of central pallor.
- Normochromic term is used to describe an anemia with a normal MCHC and MCH. when used in conjunction with normal MCV, the anemia is described as a normochromic normocytic anemia.

Hypochromic

- Increased central pallor and decreased hemoglobin concentration.
- Direct relationship between the amount of hemoglobin deposited in the RBC and the appearance of red cells when stained.
- Found in
 - iron deficiency, thalassemia, any of the conditions leading to microcytosis

Polychromasia

- Red cells stain shades of bluegray as a consequence of uptake of both eosin and basic dyes by residual ribosomal RNA.
- Any clinical condition in which marrow is stimulated particularly RBC regeneration will produce a polychromatic blood picture.
- Found in
 - Erythropoiesis
 - Bleeding, hemolysis etc.

Shape abnormalities of RBCs

- Poikilocytosis is the general term for mature RBCs that have a shape other than the round biconcave disk
- Poikilocytes can be seen in many shapes (for example acanthocyte, spherocytes, teardrops...)

Acanthocyte

- RBCs with irregularly spaced projections or spikes
- Deficiency of LCAT
 - Important for membrane
 - Results in acanthocyte or target cells and splenic sequestration
- Found in
 - Liver disease
 - Post splenectomy
 - Abetalipoproteinemia

Bite cells

- An abnormally shaped red blood cell with one or more semi circular portions removed from the cell margin
- These bite cells results from the removal of denatured hemoglobin by macrophages in the spleen.
- Found in
 - G6PD deficiency, in which uncontrolled oxidative stress causes hemoglobin to denature and form Heinz bodies, is a common disorder that leads to the formation of bites cells.

Blister cells

- Have a centric hello area resemble a purse or handbag
- Found in
 - Micro angiopathic hemolytic anemia

Schistocytes

- Read cell fragments that are irregular in shape and size.
- Mechanical damage of formerly normal RBCs
- Found in
 - DIC, TTP
 - micro angiopathic hemolytic anemia
 - Burns

Echinocyte (Burr cells)

- Red cell with many short blunt projections which are regularly distributed on their surface
- Found in
 - Usually artifactual- the result of slow drying smear under humid condition
 - Sometimes are non-artifactual indicating uremia and chronic renal disease, pyruvate kinase deficiency, liver disease, megaloblastic anemia

Target cells (Codocyte)

- Cellular membrane is thinner than normal
 - May be due to an excessive ratio of membrane lipid to cell volume.
 - Certain enzyme defects cholesterol is increased and becomes incorporated in the membrane.

Target cells

- maldistribution of an abnormal hemoglobin
- Found in
 - obstructive liver disease,
 - severe Iron deficiency,
 - thalassemia,
 - post splenectomy,
 - lipid disorders,
 - hemoglobinopathies

Spherocytes

- Red cells are more spherical with absence of central pallor
- This abnormality is due to the abnormality of red cell membrane.
- The detailed mechanism for sphering is the congenital condition known as hereditary spherocytosis.
 - deficiency of the membrane proteins, spectrin and ankyrin.
- Acquired causes are
 - ABO incompatibility
 - immune hemolytic anemia
 - Microangiopathic hemolytic

Stomatocytes

- Red cells with the central area of pallor, which is slit-like instead of round
- Caused by several different membrane defects, deficiency of membrane protein leads to increased permeability of Na and K+ cations
- Found in
 - Alcoholic liver disease, hereditary, stomatocytosis

Ovalocytes

- An elongated cells
- Represent a membrane defect where RBCs suffers a loss of integrity
- Found in
 - thalassemia major
 - hereditary ovalocytosis
 - megaloblastic anemia
 - iron deficiency

Elliptocytes

- Elliptocytes and ovalocytes often used interchangeably
- Elliptocytes are longer and narrower
- Found in
 - Hereditary elliptocytosis

Sickle cells(Drepanocyte)

- Sickle shaped RBCs
- Single base pair mutation results in a single amino acid change
- Under low oxygen hemoglobin becomes insoluble forming long polymers this lead to membrane changes (sickling) and vasoocclusion
- Found in
 - hemoglobin S disease and trait

HGB C crystals

- The classic 'Washington monument" appearance of a crystal distorts the cell shape and leave most of the rest of the cell clear or colorless.
- Rhomboid, hexagon or rod
- Found in
 - Hemoglobin C disease

Teardrop cells(Dacryocytes)

- As the term applies, these resemble tears
- Found in
 - bone marrow fibrosis
 - megaloblastic anemia
 - iron deficiency
 - thalassemia

Red Cell Inclusions

- RBC normally free from inclusions
- Result of distinctive conditions
- Presence of inclusion bodies in red blood cells is indicative of some sort of pathology

Howell-Jolly Bodies

- Round, dark blue to purple inclusion, usually single and in the periphery of a red cell
- The spleen is responsible for the removal of nuclear material in the red cells, so in absence of a functional spleen, nuclear material is removed ineffectively.
- Predominantly composed of DNA
- Found in
 - Post splenectomy, megaloblastic anemia and hemolytic anemia

Pappenheimer Bodies

- Siderotic granules
- Small irregular, dark staining particles of iron visible with iron stain(Prussian blue)
- Aggregates of mitochondria, ribosomes, and iron particles
- Associated with iron loading anemias and hemolytic anemias.

Basophilic Stippling

- Tiny, round, solid-staining dark blue granules
- Composed of ribosomes and RNA
- Usually evenly distributed
- Course basophilic stippling (Punctate stippling) are larger and considered more serious
- Associated with lead poisoning, disturbed erythropoiesis

Heinz Bodies

- Seen with stain such as crystal violet
- Represent precipitates of denatured hemoglobin and are clinically associated with the hemolytic anemia, G6PD deficiency, oxident drugs etc.

Cabot rings

- These are ring shaped figure of eight or loop shaped Red or reddish purple with right stain and have no internal structure
- Observed rarely in
 - pernicious anemia
 - lead poisoning

Abnormal Distribution of RBCs

Rouleaux formation

Agglutination

Rouleaux formation

- Staking of RBCs due to increased plasma proteins coating RBCs(resembling a stack of coins)
- Found in Hyperfibrinogenaemia Multiple myeloma
 - Waldenstrom's macroglobulinemia

Agglutination

- Red cells cluster and clumps together in irregular mass in the thin area of smear
- Cold agglutinin- IgM antibody
- Factitiously lowered RBC in automated analyzer

Protozoan Inclusions

- All four species of malaria parasite will invade RBCs. (plasmodium vivax, plasmodium malaria, plasmodium falciparum, and Plasmodium ovale)
- They are transmitted by mosquito.
- It is important to recognize this abnormality as a parasite and not confused with normal morphology such as platelet laying over red cells.

Protozoan Inclusions

- Babesia microti is also an organism that Invade red cells
- it is transmitted by tick bites and may appear as a ring forms resembling some forms of malaria
- They may appear in groups outside the erythrocyte on the blood smears

Artifacts

Grading of RBC Morphology

High Frequency RBC's	1+ (Few)	2+ (Moderate)	3+ and 4+ (Many)
	# of Cells/Field	# of Cells/Field	# of Cells/Field
Tear Drops	1 - 6	7 - 12	> 12
RBC Fragments	1-6	7 - 12	> 12
Spherocytes	1-6	7 - 12	> 12
Targets	1 - 20	21 - 60	> 60
Sickle Cells	1 - 20	21 - 60	> 60
Acanthocytes	1 - 20	21 - 60	> 60
Stomatocytes	1 - 20	21 - 60	> 60
Ovalocytes	1 - 20	21 - 60	> 60

	Slight	Moderate	Marked
	# of Cells/Field	# of Cells/Field	# of Cells/Field
Polychromasia	1 - 10	11 - 20	> 20
Low Frequency RBC's	Occasional	Present	
	# of Cells/Field	# of Cells/Field	
Baso Stippling	< 2	≥ 2	
Pappenheimer	< 2	≥ 2	
Howell Jolly Bodies	< 2	≥ 2	
Bite Cells	< 2	≥ 2	

Anisocytosis, RBC cold agglutinin, dimorphic population or rouleaux are documented as present if noted in blood smear.

Thank you!

