SP	.268	Lecture 5	Mar. 8, 2011
Playi	ng Games	with Algorithm	5'.
-O-	0		papers/AlgGameTheory GONC3/
_	most gar	res are hard to	plan well:
_	Chocs is	EXP.TIME-CO	na Note:
		board, arbitrary	
	- need	exponential (ch) time to find
	0 (4)	uning move Cit	Haga is one
	- 0050	os bord os al	1 comos (oxplems)
	UX301	Heat wood exact	pames (problems) nential time
		-juliar reesa expo	Merchia (ine
	Charlove	TO EVOTTME -	2 and late
	- Class	is EXPTIME-c & Checkers	amplete "and"
	Compa	totalli solia	a one ships offer
	(PSPACE)	complete if draw	after poly. moves)
	Corner	emprese 11 araw	ariev pozz. vioves)
	Slassi (Tax	and Classic	EXPTIME-complete
	70091 (Jap	Canese Chess) 15	CAPTHVIE-Complete
	Japanese	Go is EXPTIM	It - complete
	W. S.	00 might be	harder - ExpTIME- complete
	011-00-		<u> </u>
	Othello	15 PSMHLL-Compil	lete PSPACE complete
	- conjec	is PSPACE-compliture requires ential time.	NP-compl.
	expon	ential time,	Sp / Sp / Sv / Sv / Sv / Sv / Sv / Sv /
	but w	ied by P + NP)	3p (10)
	Cimpl	ied by Y 7 NY)	


```
Impartial game, so Sprague-Grundy theory says Kayles = Nim somehow none pin
                - followers (K_n) = \{ K_i + K_{n-i-1} | i = 0,1,...,n-1 \}

\cup \{ K_i + K_{n-i-2} | i = 0,1,...,n-2 \}
\Rightarrow g(k_n) = \max \left(g(\text{followers}(k_n))\right)
= \max \xi g(k_i + k_{n-i-1})|_{i=0,1,\dots,n-1}
Grandy value
= 2 (k_i + k_{n-i-2})|_{i=0,1,\dots,n-d}
= 2 (k_i + k_{n-i-2})|_{i=0,1,\dots,n-d}
= 3 (k_i) \oplus g(k_{n-i-2})|_{i=0,1,\dots,n-1}
= 3 (k_i) \oplus g(k_{n-i-2})|_{i=0,1,\dots,n-d}
= 3 (k_i) \oplus g(k_{n-i-2})|_{i=0,1,\dots,n-d}
                         RECURRENCE - write what you want in terms of smaller things
         How do we compute it?

g(K_0) = 0

g(K_1) = \max \{g(K_0) \oplus g(K_0)\}

g(K_1) = \max \{g(K_0) \oplus g(K_0)\}
```

$$g(K_{2}) = \max \{g(K_{0}) \oplus g(K_{1}), 0 \oplus 1 = 1 \\ g(K_{0}) \oplus g(K_{0}) \}$$

$$= 2$$

$$= 2$$

$$= 3$$

$$g(K_{3}) = \max \{g(K_{0}) \oplus g(K_{2}), 0 \oplus 2 = 2 \\ g(K_{0}) \oplus g(K_{1}) \}$$

$$= 3$$

$$g(K_{1}) \oplus g(K_{1}) \}$$

$$= 3$$

$$g(K_{1}) \oplus g(K_{2}), 0 \oplus 3 = 3 \\ g(K_{0}) \oplus g(K_{2}), 0 \oplus 3 = 3 \\ g(K_{0}) \oplus g(K_{2}), 0 \oplus 3 = 3 \\ g(K_{1}) \oplus g(K_{2}), 0 \oplus 3 = 3 \\ g(K_{1}) \oplus g(K_{1}) \}$$

$$= 1$$

In	general	: if	W	je .	Com	put	e				
	g(Ko).	9(K1),	g(k	$(2)_{q}$	1	in	(svde	91,	
	then	we.	alu	Jay	5	use	2 V	alı	ięs	- '\	
	that	welve	a	lre	adj	4	omp	ute	d		
	(becau	se s	mal	ller			1				
					·						
	in Python,	Can	do	thi	3	with	n fo	V	loot):	
										•	
	k = {} for n in range(0, 1	1000):									984 - 4 985 - 1
	[k	[i] ^ k[n-i-2]					962	- 2			986 - 2 987 - 8
							964	- 1	977	7 - 4	988 - 1 989 - 4
									979	9 - 2	990 - 7 991 - 2
	In	k = {} for n in range(0, 'k[n] = mex ([k[i k[n] to n, "-", k[n] to def mex(nimbers)	- in Python, can k = {} for n in range(0, 1000): k[n] = mex ([k[i] ^ k[n-i-1])	- in Python, can do k = {} for n in range(0, 1000): k[n] = mex ([k[i] ^ k[n-i-1] for i in [k[i] ^ k[n-i-2] for i in print n, "-", k[n] def mex(nimbers):	- in Python, can do the k = {} for n in range(0, 1000): k[n] = mex ([k[i] ^ k[n-i-1] for i in range([k[i] ^ k[n-i-2] for i in range print n, "-", k[n] def mex(nimbers):	- in Python, can do this k = {} for n in range(0, 1000): k[n] = mex ([k[i] ^ k[n-i-1] for i in range(n)] +	- in Python, can do this with $k = \{\}$ for n in range(0, 1000): $k[n] = mex ([k[i] \land k[n-i-1] \text{ for i in range}(n)] + [k[i] \land k[n-i-2] \text{ for i in range}(n-1)])$ print n, "-", $k[n]$ def mex(nimbers):	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	for n in range(0, 1000): 961 - 1 973 - 1 $k[n] = mex ([k[i] \land k[n-i-1] \text{ for i in range(n)}] + 962 - 2 974 - 2 [k[i] \land k[n-i-2] \text{ for i in range(n-1)}]) 963 - 8 975 - 8 print n, "-", k[n] 964 - 1 976 - 1 965 - 4 977 - 4 def mex(nimbers): 966 - 7 978 - 7$

971 - 7 983 - 7 995 - 7 periodic mod 12! (starting at 72) (Guy & Smith 1972)

980 - 1

981 - 8

982 - 2

968 - 1

969 - 8

970 - 2

992 - 1

993 - 8

994 - 2

DYNAMIC PROGRAMMING

n = 0

return n

while n in nimbers:

n = n + 1

							Λ	\sim											
	ra	m:		imi	Day	tia	<u>U</u>	D	omi	nee	CIV	19							
		- b	σα	rd	=)	n	× N	\\	œċ	tan	gle	2	•					
						ĺ	705	sib	ly	ل م	ritt		hol	les				hol	
	_	m	OVO	2	フ	ρĺ	lac	e	0	d	mi	iho	(ma	ke	\x	2	hol	e)
						1			_										
	5	ym	me	try	5	tvo	tes	ies	5.				Ga	rdni	er	199	86)	
	<u> </u>	<i>J</i>		-0- ex	sen	X	<u></u>	/er	1	10	fle	ct	iv	~	bst	h	OiX.	es	
				_	∌ ;	DVD	pl	ay	er	W	ĭh	•							
			_	ev	en	×	Or			pla	u (PAN	tor	0)				
				H	en	V	ef	leci	H 11		oth	a	xe	5					
				` =	∋ 1	57	DR	au	er	Wi	h								
			_	sd	~	×	od			()	FI	Π		W	ho	Wil	45		
									L										
	1 51	^6 C	,\ <u>~</u>		xCa	M	=	1	× v	Λ	CI	C V	h						
			- 0	25			ith	_	du	hor	nic	á))(0	910	la la	a. In C	ካ		
		_) D	מיזו כ	مار	<u></u>	0	ſ	Gu	ν Q [†]	Sin	ni H	1 1	956	-7		
					r		المار	O			2	y a	<i>J</i> V.	.,	. J	. 106	۰٦		
			1、	ノス	J	020	Lc		<+7(00 ,	205	()	14.6	- H.	1	Ŋ₽			
		_) []	$\overline{\overline{1}}$		4-2 01()	20:	stil)		7		114	ل	ا ل			
			<u>U</u>		٠,	٢	ev i	OOL	C	•									
	LL.	v: 7	~ -	+~()	C_{∞}	.)		7 ,	0.								
		VIT	ON	100			<u> </u>	, '	II av	7 0		1	<u> </u>						
		رب) >		١ (Tc	X (Nec	λV	CV	an	15 /							
	ን ‹	,	/	<u> </u>		•	۸ ۱ - ۱	1	C. 1	<u> </u>)T- A	Π			\int_{I}	1(,	D _z	
	<u>م</u>	n		Y	aw	\	17 (N	noel	rs [\F\ \F\	Y 1			L	els	F	la	1)
	ح)	-11		Na	M.	. L	NIN	ney		UP	E/		(1	_				
			(du	yno	mi	c	pro	gra	amr	niho	, (XO E	25n	T	WC)V (<)		