Chemie k maturitě

Stanislava Pojerová* 2020-2023

Abstrakt

Tato skripta vzinkla jako pouhý přepis zpracovaného materiálu paní učitelky RNDRr. Stanislavy Pojerové. Původní materiál je souborem pro kvintu a sextu víceletého gymnázia a byl zpracován během pandemie Covidu 19 v letech 2020 a 2021.

Skripta v této podobě mají sloužit především studentům plánujícím maturitu z chemie.

^{*}Sazba: Matyáš Levíček

Obsah

1	Úvo	\mathbf{d}		3						
2	Ato: 2.1 2.2	Erwin	Schrödinger ová čísla Slupky, energetické hladiny (dráhy) Podslupky Tvary orbitů	4 4 4 4 4						
3	3 Prvky									
	3.1		vní podskupina - Alkalické kovy (tvoří hydroxidy)	5						
		3.1.1 3.1.2	Vlastnosti	5 5						
		3.1.2 $3.1.3$	Výroba	о 5						
		3.1.4	Reakce	5 5						
		3.1.4	Hydroxidy (Louhy, "žíravé alkálie")	6						
		3.1.6	Význam	6						
		3.1.7	Poznámka	6						
	3.2		vní podskupina - Kovy alkalických zemin	7						
	0.2	3.2.1	Vlastnosti	7						
		3.2.2	Analytické důkazu - zbarvení plamene	7						
		3.2.3	Výroba	7						
		3.2.4	Reakce	7						
		3.2.5	Význam	8						
		3.2.6	Poznámka	8						
4	Pře	hledy		9						
		•	inv	10						

1 Úvod

Skripta pokrývají učivo nutné pro obstání u profilové zkoušky z chemie. Odvíjejí se od otázek k tomuto předmětu z kánonu Gymnázia Joachyma Barranda v Berouně.

Učivo je systematizováno v pořadí, které odpovídá výkladu na semináři Systematizace poznatků z chemie v oktávě na GJB.

Výše je však kromě obsahu také obsah seřazený podle maturitních otázek - doporučuji proto elekronickou podobu, která umožňuje mezi tématy skákat přes hyperlinky a výrazně tak zjednodušuje orientaci v materiálu.

2 Atom

2.1 Erwin Schrödinger

Rakouský fyzik (1889 - 1961)

Definoval <u>ORBIT = ORBITAL</u> jako místo s 96% pravděpodobností výskytu e⁻

Matematicky vyjádřil vlnovou funkci Ψ (psí)

Nositel Nobelovy ceny za fyziku 1933

2.2 Kvantová čísla

hlavní n $1-\infty(\text{zatím }7)$ udává energii orbitu

 $\mathbf{vedlejší}\ \mathbf{l}$ 0-(n-1) udává $\underline{\mathbf{tvar}}$ orbitu

magnetické m -l...0...+l udává počet orbitalů a jejich orientaci

spinové s $-\frac{1}{2} - \frac{1}{2}$ udává spin e⁻

2.2.1 Slupky, energetické hladiny (dráhy)

$$\begin{array}{ll} n=1\rightarrow K & n=3\rightarrow M \\ n=2\rightarrow L & n=4\rightarrow N \\ \vdots & \vdots & \vdots \end{array}$$

2.2.2 Podslupky

$$\begin{array}{l} l=0\rightarrow s\\ l=1\rightarrow p \end{array} \qquad \begin{array}{l} l=2\rightarrow d\\ l=3\rightarrow f \end{array}$$

2.2.3 Tvary orbitů

hlavní kv. #, vedlejší #

 $l=0 \to tvar$ orbitu s: kulově symetrický 1s 2s 3s

 $l=1 \rightarrow tvar orbitu <math display="inline">\mathbf{p}$: "ležatá osmička"

 $1 = 2 \rightarrow \text{tvar orbitu } \mathbf{d} \text{: "čtyřlístek"}$

 $l=3 \rightarrow$ tvar orbitu $\mathbf{f} \colon$ "velmi složitý tvar"

3 Prvky

3.1 1. Hlavní podskupina - Alkalické kovy (tvoří hydroxidy)

H, Li, Na, K, Rb, Cs, Fr (radioaktivní, 1940)

"Helenu Líbal Na Kolena Robot Cecil Franc"

- $s \uparrow Z(protonové \#): \uparrow \underline{m}, \uparrow r, \downarrow elektronegativita, \downarrow t_t, \downarrow t_v$
- $ns^1 \downarrow \rightarrow "s^1 prvky"$
- vystupují jako elektropozitivní malá IE, malá elektronegativita, vlevo v Behetovově řadě.
- ullet ox. č. ve sloučeninách I. o jsou redukčními činidly

3.1.1 Vlastnosti

• stříbrolesklé měkké kovy s malou hustotou (Li, Na, K jsou lehčí než voda)

3.1.2 Výroba

elektrolýza tavenin halogenidů:

• Na $^+$ CL $^ \rightarrow$ na katodě $^-$

3.1.3 Analytické důkazu - zbarvení plamene

Plamenové zkoušky

- Li karmínově
- Na žlutá
- K fialová

Jsou **VELMI reaktivní** \rightarrow výskyt <u>jen ve sloučeninách</u> Musí se uchovávat v inertním prostředí N_2 , petroleji... Sloučeniny:

- NaCl halit sůl kamenná
- KCl sylvín
- Na₂CO₃ soda
- ullet NaHCO $_3$ jedlá soda
- K₂CO₃ potaš
- sloučeniny s NO₃ ledky (výbuch v Bejrůtu 2020)
- $\bullet\,$ Na
NO $_3$ ledek chilský

Výskyt v Zemské kůře Na: 2,4%, K: 2,6%

3.1.4 Reakce

1. s $H_2 \rightarrow HYDRIDY$: $2Na + H_2 \rightarrow 2NaH$

 $\begin{array}{lll} \text{2. s } \mathrm{O_2} \rightarrow \text{OXIDY:} & \text{4Li} + \mathrm{O_2} \rightarrow \text{2Li}_2\mathrm{O} \\ \text{s } \mathrm{O_2} \rightarrow \text{PEROXIDY:} & \text{2Na} + \mathrm{O_2} \rightarrow \text{Na}_2\mathrm{O}_2 \\ \text{s } \mathrm{O_2} \rightarrow \text{HYPEROXIDY:} & \text{K} + \mathrm{O_2} \rightarrow \text{KO}_2 \end{array}$

3. s $N_2 \rightarrow NITRIDY$: $6Li + N_2 \rightarrow 2Li_3N$ (jen Li)

4. s halogeny \rightarrow HALOGENIDY: $2Rb + Cl_2 \rightarrow 2RbCl$

5. s $H_2O \rightarrow HYDROXIDY$ (bouřlivě): $2K + 2H_2O \rightarrow 2KOH + H_2$

Jejich sloučeniny jsou často iontové, bazbarvé, rozpustné v ${\rm H}_2{\rm O}$

3.1.5 Hydroxidy (Louhy, "žíravé alkálie")

Leptají sklo, porcelán Výroba mýdel - zmýdelnění Jsou hydroskopické (přímají vzdušnou vlhkost):

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

Výroba: elektrolýza vodných ⊙ halogenidů: (H⁺ redukce na katodě⁻, Cl⁻ oxidace na anodě⁺)

$$H_2O \rightarrow H^+ + OH^-$$

$$NaCl \rightarrow Na^{+} + Cl^{-}$$

 $v \odot z$ ůstává Na $^+$ OH $^-$ (Na se na katodě neredukuje \Longleftarrow postavení v Beketovově řadě) Síla hydroxidů roste s jejich Z (protonové #)

3.1.6 Význam

Li - výroba baterií (LiPo, LiFePo, LiIon), slouží při výrobě některých slitin

 \mathbf{Na} - redukční činidlo: $\mathrm{AlCl_3} + 3\mathrm{Na} \rightarrow \mathrm{Al} + 3\mathrm{NaCl}$

K, Na - biogenní prvky

- sodíková "pumpa"
- membránové potenciály šíření signálu v nervech

3.1.7 Poznámka

 \odot NaCl = solanka

Další dloučeniny:

- Na₂B₄O₇ · 10H₂O (**Borax**)
- NaCN
- Na₂SiO₃
- $K_2Cr_2O_7$
- KO₂ (hyperoxid draselný)
- K₃PO₄
- $Na_2SO_4 \cdot 10H_2O$ (Glauberova sůl)

3.2 2. Hlavní podskupina - Kovy alkalických zemin

Be, Mg, Ca, Sr, Ba, Ra (radioaktivní 1898 - manželé Marie a Peter Curie, smolinec) "Běžela Magda Canyonem, Srážela Banány Ramenem"

- s \uparrow Z(protonové #): $\uparrow \underline{m}$, \uparrow r, \downarrow elektronegativita
- $ns^2 \uparrow \downarrow \rightarrow "s^2 prvky"$
- elektropozitivní X+ \downarrow IE \rightarrow X^II + 2e^-
- vystupují jako elektropozitivní (+II) malá IE, malá elektronegativita, vlevo v Beketovově řadě

3.2.1 Vlastnosti

- stříbrolesklé měkké kovy, kromě Be
- Be se nejvíce podobá Al, má amfotermní charakter!

3.2.2 Analytické důkazu - zbarvení plamene

Plamenové zkoušky

- Ca cihlová
- Sr karmínová
- Ba žlutozelená
- Mg silná záře (jako při řezání autogenem): $2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO}$

Jsou reaktivní méně než prvky 1.hlps ⇒ výskyt ve sloučeninách:

- CaCO₃ vápenec (aragonit, sintr, mramor, travertin. kalcit...)
- CaF_2 fluorit = kazivec
- $BaSO_4$ barit
- MgCO₃ magnezit
- $CaCO_3 \cdot MgCO_3$ dolomit
- $CaSO_4 \cdot 2H_2O$ sádrovec (sádra: $CaSO_4 \cdot \frac{1}{2}H_2O$)

3.2.3 Výroba

- a) elektrolýza tavenin jejich halogenidů: Ca²⁺Cl₂ (Ca²⁺ redukce na katodě⁻)
- b) aluminotermie (Al je redukční činidlo): $3BeO + Al \rightarrow 3Be + Al_2O_3$

3.2.4 Reakce

1. s
$$H_2 \rightarrow HYDRIDY$$
: $Ca + H_2 \rightarrow CaH_2$
2. s $O_2 \rightarrow OXIDY$: $2Ba + O_2 \rightarrow 2BaO$
s $O_2 \rightarrow PEROXIDY$: $Ba + O_2 \rightarrow BaO_2$ (peroxid barnatý!)
3. s $N_2 \rightarrow NITRIDY$: $3Sr + N_2 \rightarrow Sr_3N_2$
4. s $H_2O \rightarrow HYDROXIDY$: $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$ (exotermická reakce) $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$ (exotermická reakce) $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$

Sloučeniny Ca (stavebnictví)

$$\underbrace{\operatorname{CaCO}_3}_{\text{vápenec}} \ \overline{\text{800°C}} \ \underbrace{\operatorname{CaO}}_{\text{pálené vápno}} + \operatorname{CO}_2$$

$$CaO + 2H_2O \rightarrow \underbrace{Ca (OH)_2}_{ha\S{e}n\acute{e}}$$
 vápno

$$\mathrm{Ca}\left(\mathrm{OH}\right)_{2} + \underbrace{\mathrm{CO}_{2} \downarrow}_{\mathrm{ze}\ \mathrm{vzduchu}} \ \rightarrow \ \mathrm{CaCO}_{3} + \mathrm{H}_{2}\mathrm{O}$$

...princip tvrdnutí malty

Podstata krasových jevů: Uhličitany jsou ve vodě nerozpustné, ale v přítomnosti ${\rm CO}_2$ (vzduch) se rozpouštějí:

$$CaCO_3 + CO_2 + H_2O \rightleftharpoons Ca(HCO_3)_2$$

Zpětná rekristalizace na ${\rm CaCO_3} = {\rm miner\acute{a}l} \; \underline{{\rm sintr}}$ - krápníky

- a) stalagnit ∧
- b) stalagtit V
- c) stalagnát spojený (..nenašel jsem vhodný znak x, btw proč všichni Češi znají krápníky, ale když se jich zeptáš na prvního prezidenta tak budou tupě čumět.)

3.2.5 Význam

Ca, Mg - biogenní prvky

Ca - kosti, zuby

Mg - součást molekuly chlorofilu

 $\bf Be$ - lehký tvrdý kov (o 30% lehční než Al), slitiny se používají pro výrobu nástrojů i raket, sloučeniny jsou toxické

3.2.6 Poznámka

Minerál beryl $[3BeO \cdot Al_2O_3 \cdot 6SiO_2]$

- oxidy smaragd(zelený) a akvamarín(modrý)

4 Přehledy

4.1 Vitaminy

Název	Skupina	Správná denní dávka	Zdroj	Význam	Projevy nedostatku	Poznámka
A (retinol)	tetraterpen	1.8-2mg	mléčný tuk, vaječný žloutek, játra, rybí tuk i maso, barevná ze- lenina	zajišťuje vidění, tvoří oční purpur, podílí se na tvoření bílkovin v kůži a ve sliznicích	šeroslepost, rohovatění kůže a sliznic, ucpávání vývodů žláz, postižení skloviny i zuboviny	nebezpečí hypervita- minózy z předávkování - bolest hlavy, koliky, průjmy
B (thiamin)	heterocykl	1.5mg	obiloviny(zejména klíčky), kvasnice, játra, vepřové maso	zasahuje především do metabolismu cukrů, zejména v centrálním nervstvu a ve svalech; podporuje činnost trávicího ústrojí	zvýšená únavnost, sklony ke křečím svalstva, srdeční poru- chy, trávicí poruchy, dispozice k zánětům nervů až onemocnění beri-beri	
B ₁ (riboflavin)		1.8mg	mléko, maso, kvasnice	jako účinná složka tzv. žlutého dýchacího fermentu je v každé buňce, kde se účastní oxidace živin	zardělost a palčivost jazyka, zduření rtů, bolavé koutky, po- ruchy sliznice hltanu a hrtanu	v 1litry mléka je okolo 1mg
B ₃ (kys. pantotenová)	deriv. kys. máselné	7-10mg	játra, kvasnice, hrách, maso, mléko, vejce	účast v oxidoreduktázách a umožňuje syntézu bílkovin+ jako koenzym A má centrální postavení v metabolizmu	různé degenerace; u člověka pálení chodidel	je ve všech tkáních
B ₆ (pyridoxin)		2mg	kvasnice, obilné klíčky, mléko, luštěniny	podporuje účinek vitaminů B_1 a B_3	pomalé hojení zánětů, zhoršení regenerace sliznic	
B ₁₂ (kobalamin)		0.001mg	játra, maso, činností bakterií vznik ve střevech	nutný pro udržení normální krvetvorby	"zhoubná" chudokrevnost	ke vstřebávání vita- minu B ₁₂ je nutná přítomnost tzv. vnitřního faktoru
Kys. nikotinová	heterocykl	15-20mg	játra, ledviny, maso, kvasnice, houby	klíčová pro syntézu ribonuk- leových kyselin a bílkovin	záněty kůže, celková sešlost, poškození mozku	
Kys. listová	heterocykl	0.5-1mg	listová zelenina	zasahuje do metabolismu ami- nokyselin, je nutná pro tvorbu červených krvinek	chudokrevnost	

C (kys. askorbová)	Sacharid deriv.	50-70mg	syrové ovoce a zelenina	katalyzuje oxidaci živin, udržuje dobrý stav vaziva a chrupavek, podporuje tvorbu protilátek	únava, snížená odolnost proti nakažlivým nemocem, krvácení, vypadávání zubů; při avitaminóze vzniká smrtelné onemocnění kurděje	předávkování C vitaminu může být i zdravý škodlivé
D (vit. antira- chitický)	steroid	400m.j.	rybí tuk, vzinká po ozáření UV v malém množství i v kůži	podílí se na řízení metabolismu Ca a P v těle	ztrácí-li organismus Ca a P, snaží se jej nahradit z kostí, za vývoje vzniká křivice, v dospělosti měknutí kostí, rachitis	hypervitaminóza D vede k ukládání Ca v ledvinách, srdci, stěnách cév a může ohrozit život
E (tokoferol)	deriv. to- kolu	5-20mg	obilné klíčky	podporuje činnost pohlavních žláz a správný průběh těhotenství	některé gestační poruchy	
H (Biotin)	heterocykl	0.15-0.3mg	kvasnice, játra, ledviny, bi- osyntéza ve střevech	je ve všech živočišných buňkách, podporuje jejich růst a dělení	záněty kůže, atrofie papil jazyka, unavenost, deprese, svalové bo- lesti, nechutenství	
K (vit. antihe- moragický)	deriv. naf- tochinonu	1mg	listové zele- niny, kvasnice, v tlustém střevě je tvořen činností mikroorganismů	oxidoreduktáza, tvorba pro- tisrážlivé látky protrombinu	krvácení do tkání a tělesných dutin, krvácení do mozku může zapříčinit smrt	