Introduction
Approach
Experiments
Analysis
Conclusion
Références

SummaReranker: A Multi-Task Mixture-of-Experts Re-ranking Framework for Abstractive Summarization - Mathieu Rayaut, Shafiq Joty, Nancy F. Chen

Presentation Author MATHIEU Ravaut

Nanyang Technological University

Table of content

- Introduction
- 2 Approach
- 3 Experiments
- 4 Analysis
- 6 Conclusion

Typical leading approaches in abstractive summarization (PEGASUS [9], BART [3]) all share the same following ingredients:

- A sequence-to-sequence model architecture.
- Trained with the pre-training then fine-tuning paradigm.
- Summaries are generated with a **decoding method**. **Beam search** is widely used, with 4 to 10 beams.

Decoding methods generate a **diverse set of candidates**: Beam search example on XSum [6]:

- Candidate 1/15: The Turkish authorities have lifted a ban on female police officers wearing headscarves.
 - R-1 : 50.0, R-2 : 27.3, R-L : 41.7 // Mean-R rank : 11/15
- Candidate 2/15: Turkey has lifted a ban on female police officers wearing headscarves, the interior ministry says.
 - $R-1:61.5,\ R-2:41.7,\ R-L:52.1\ //\ Mean-R\ rank:1/15$
- Candidate 3/15: The Turkish authorities have lifted a ban on female police officers wearing headscarves, state media report. R-1:53.9, R-2:25.0, R-L:53.9 // Mean-R rank:8/15
- ...

Only one candidate is kept: the **top beam** in beam search.

Not all candidates are equally good when compared to the target. The candidate maximizing score is called the **oracle**.

The oracle scores are up to 20% higher than the baseline! This is more than the progress in the whole field of neural abstractive summarization since 2016.

Decoding methods	# Summary candidates	R-1	R-2	R-L	BS	BaS
Beam search (top beam)	1	44.23	21.48	41.21	87.39	-2.78
Beam search	15	51.06	27.74	48.05	88.50	-2.48
Diverse beam search	15	54.30	30.02	51.33	88.97	-2.40
Top- k sampling	15	52.31	27.41	49.17	88.64	-2.56
Top- p sampling	15	53.52	28.88	50.46	88.87	-2.46
Adding all four methods above	60	57.70	33.77	54.72	89.58	-2.25

Table - Oracle scores with PEGASUS on CNN/DM.

All oracle scores **keep increasing** when mixing summaries from several decoding methods.

Given the previous observations :

Sequence-to-sequence models in summarization are obviously not used to their full potential.

Can we fix this and train a 2nd-stage model selecting the best (oracle) summary candidate? Or at least a better candidate?

We propose SummaReranker (SR), a model addressing this question.

We treat this problem as a **binary classification**: the candidate maximizing the score becomes the positive one, all the other candidates are negative.

- Candidate 1/15 [label: 0]: The Turkish authorities have lifted a ban on female police officers wearing headscarves.

 R-1: 50.0, R-2: 27.3, R-L: 41.7 // Mean-R rank: 11/15
- Candidate 2/15 [label: 1]: Turkey has lifted a ban on female police officers wearing headscarves, the interior ministry says.

 R-1: 61.5, R-2: 41.7, R-L: 52.1 // Mean-R rank: 1/15
- Candidate 3/15 [label: 0]: The Turkish authorities have lifted a ban on female police officers wearing headscarves, state media report.

 $R-1:53.9,\,R-2:25.0,\,R-L:53.9$ // Mean-R rank: 8/15

What does *maximizing the score* mean in the first place? Which score?

Summarization has always been evaluated with multiple metrics:

- ROUGE [4] and its 3 popular versions :
 - ROUGE-1: word overlap
 - ROUGE-2 : proxy for fluency
 - ROUGE-L : longest common subsequence
- Recently proposed model-based metrics :
 - BERTScore [10]
 - BARTScore [8]
 - MoverScore [11]
 - ... (plenty others)

To optimize for multiple metrics, we transform the problem into a multi-label binary classification :

No.	${f Candidate}$	R-1 Label	R-2 Label	R-L Label
1/15	The Turkish authorities have lifted a ban on female police officers wearing headscarves.	0	0	0
2/15	Turkey has lifted a ban on female police officers wearing headscarves, the interior ministry says.	1	1	0
3/15	The Turkish authorities have lifted a ban on female police officers wearing headscarves, state media report.	0	0	1

Table - XSum summary candidates with multiple binary labels.

How to represent a candidate?

Simply concatenate it after the source : [CLS] Source [SEP] Candidate

Such concatenation enables **cross-attention** between the candidate and relevant parts of the source.

Figure – SummaReranker.

Key architecture elements:

- Encoder : RoBERTa-large [5].
- Multi-gate: one gate + prediction tower for each metric being optimized.
- Sparsely gated mixture-of-experts [7]: twice as many experts as gates and 50% expert dropout.
- Experts and towers : 2-layers MLPs.

How to train the model?

For a metric μ , the re-ranker f_{θ} is trained with a binary cross-entropy loss :

$$\mathcal{L}_{\mu} = -y_i \log p_{\theta}^{\mu}(C_i) - (1 - y_i) \log(1 - p_{\theta}^{\mu}(C_i)) \tag{1}$$

where $y_i = 1$ if candidate C_i is maximizing the metric μ .

The final loss is simply the **average** over metric losses defined as:

$$\mathcal{L} = \frac{1}{N} \sum_{\mu \in \mathbb{M}} \mathcal{L}_{\mu} \tag{2}$$

To help the model, we **subsample candidates** during training:

- Rank candidates by sum of normalized metrics being optimized.
- Take the top m_{top} and bottom m_{bottom} .
- This yields positives in all metrics being optimized for.
- In practice, $m_{top} = 1$ and $m_{bottom} = 1$ work well. This means, only 2 candidates are used during training.
- Also tried an alternative sampling: sample a metric, and sample a positive candidate.

Why binary instead of multi-class classification?

There is not enough separation between candidates.

				Sco	ring me	etric	
Dataset	Model	Generation method	R-1	R-2	R-L	BS	BaS
CNN/DM	PEGASUS	{1} {2}	11.51 14.34	10.87 14.09	11.54 14.34	14.96 14.99	14.96 14.99
XSum	PEGASUS	{1} {2}	8.90 12.05	7.91 10.92	8.56 12.11	14.99 14.97	14.99 14.98
Reddit TIFU	PEGASUS	{1} {2}	9.19 7.84	$6.31 \\ 5.06$	8.85 7.77	14.99 14.89	14.99 14.97

Table - Number of unique scores among pools of 15 candidates.

BERTScore and BARTScore almost always assign different scores to all candidates.

How to tackle the **training/inference discrepancy** inherent to 2nd-stage approaches?

- At training time:
 - Split the training dataset into two equal-size halves.
 - Train a model on one half, infer on the other half.
 - Train SummaReranker on the union of both inferred halves.
- At inference time, two options:
 - Base setup: infer on the validation or test set with one of the two models trained to build the training set.
 - Transfer setup: infer on the validation or test set with a model trained on the whole training set.

Scope

Varying all dimensions of this problem:

- 3 datasets:
 - CNN/DM
 - XSum
 - Reddit-TIFU
- 2 base models:
 - PEGASUS
 - BART
- Generate 15 candidates per model and decoding method.

- 4 decoding methods:
 - Beam search
 - Diverse beam search
 - Top-k sampling [1]
 - Top-p sampling [2]
- 5 evaluation metrics :
 - ROUGE-1
 - ROUGE-2
 - ROUGE-L
 - BERTScore
 - BARTScore

Decoding methods

We dissociate the set of decoding methods used for training $\mathbb{D}_{\text{train}}$, and the one used for testing \mathbb{D}_{test} .

Adding decoding methods to $\mathbb{D}_{\text{train}}$ does not slow down training because of the sampling.

We enforce $\mathbb{D}_{\text{test}} \subset \mathbb{D}_{\text{train}}$.

Metrics correlation

We note that metrics are heavily correlated:

	R-1	R-2	R-L	$_{ m BS}$	BaS
R-1	1.000	0.884	0.977	0.858	0.662
R-2	0.884	1.000	0.910	0.833	0.665
R-L	0.977	0.910	1.000	0.855	0.669
\mathbf{BS}	0.858	0.833	0.855	1.000	0.682
BaS	0.662	0.665	0.669	0.682	1.000

Table - Pearson correlation coefficient for a base PEGASUS with beam search on CNN/DM.

Base setup

Model	Model stage	$\begin{array}{c} \text{Decoding} \\ \text{methods } (\mathbb{D}) \end{array}$	R-1	R-2	R-L	Gain (%)
PEGASUS - 1st half	1	{1}	42.23	19.62	38.90	
PEGASUS - 1st half	1	{2}	42.50	19.75	39.55	
PEGASUS - 2nd half	1	{1}	42.46	19.95	39.19	_
PEGASUS - 2nd half	1	{2}	42.75	19.93	39.86	_
PEGASUS - 1st half $+$ SR	2	{1}	44.02	20.97	40.68	5.23
PEGASUS - 1st half $+$ \mathbf{SR}	2	{2}	45.66	21.31	42.51	7.61
PEGASUS - 2nd half $+$ \mathbf{SR}	2	{1}	44.11	21.08	40.82	4.57
PEGASUS - 2nd half $+$ ${\bf SR}$	2	{2}	45.73	21.31	42.62	6.94
$\overline{ ext{PEGASUS} - 1\text{st half} + \mathbf{SR}}$	2	{1, 2}	46.12	21.97	42.84	9.36
PEGASUS - 2nd half $+$ SR	2	$\{1, 2\}$	46.19	22.02	42.92	8.70

Table - Base setup results for PEGASUS+SummaReranker on CNN/DM.

Base setup

Model	Model stage	$\begin{array}{c} \text{Decoding} \\ \text{methods } (\mathbb{D}) \end{array}$	R-1	R-2	R-L	Gain (%)
BART - 1st half	1	{1}	42.79	20.25	39.66	
BART - 1st half	1	{2}	40.70	18.99	37.88	_
BART - 2nd half	1	{1}	42.93	20.36	39.73	_
BART - 2nd half	1	{2}	41.93	19.79	39.06	_
BART - 1st half $+$ SR	2	{1}	44.23	21.23	41.09	3.94
BART - 1st half $+$ SR	2	{2}	45.05	21.47	42.12	11.65
BART - 2nd half $+$ SR	2	{1}	44.51	21.52	41.29	4.44
BART - 2nd half $+$ ${\bf SR}$	2	{2}	45.61	21.78	42.62	9.32
BART - 1st half $+$ SR	2	{1, 2}	45.76	22.14	42.71	7.99
BART - 2nd half $+$ SR	2	{1, 2}	45.96	22.18	42.88	7.98

Table - Base setup results for BART+SummaReranker on CNN/DM

Transfer setup

		Decoding	g methods				Evalua	ation me	trics		
Model	Model stage	$\mathbb{D}_{\mathrm{train}}$	\mathbb{D}_{test}	m	Optimized Metrics (M)	R-1	R-2	R-L	$_{ m BS}$	BaS	Gain (%)
PEGASUS	1	{1}	{1}	8		44.16	21.56	41.30			
PEGASUS - our setup	1	{1}	{1}	15	_	44.23	21.48	41.21	87.39	-2.78	_
PEGASUS - our setup	1	{2}	{2}	15	Ξ	44.56	20.90	41.58	87.36	-2.81	
BART + R3F	1	{1}	{1}	5		44.38	21.53	41.17			
Sum	1	{1}	{1}	4	_	45.94	22.32	42.48	_	_	_
Sum + RefSum	2	{1}	{1}	4		46.18	22.36	42.91			
BART + SimCLS	2	{2}	{2}	16	_	46.67	22.15	43.54	66.14	_	_
PEGASUS + SR	2	{1}	{1}	15	{R-1, R-2, R-L}	45.56^{\dagger}	22.23	42.46^{\dagger}	87.60^{\dagger}	-2.74^{\dagger}	3.18
PEGASUS + SR	2	{2}	{2}	15	{R-1, R-2, R-L}	46.86^{\dagger}	22.01^{\dagger}	43.59^{\dagger}	87.66^{\dagger}	-2.73^{\dagger}	5.10
EGASUS + SR	2	{1, 2}	{1}	15	{R-1, R-2, R-L}	46.13^{\dagger}	22.61^{\dagger}	42.94^{\dagger}	87.67^{\dagger}	-2.72^{\dagger}	4.59
PEGASUS + SR	2	{1, 2}	{2}	15	{R-1, R-2, R-L}	46.83^{\dagger}	21.88^{\dagger}	43.55^{\dagger}	87.63^{\dagger}	-2.74^{\dagger}	4.84
PEGASUS + SR (new SOTA)	2	{1, 2}	{1, 2}	30	{R-1, R-2, R-L}	47.16^{\dagger}	22.55^{\dagger}	43.87	87.74^{\dagger}	-2.71 [†]	5.44
EGASUS + SR	2	{1, 2}	{1, 2}	30	{BS, BaS}	45.00^{\dagger}	20.90	41.93^{\dagger}	87.56^{\dagger}	-2.55^{\dagger}	4.23
PEGASUS + SR	2	{1, 2}	{1, 2}	30	{R-1, R-2, R-L, BS, BaS}	46.59^{\dagger}	22.41^{\dagger}	43.45^{\dagger}	87.77^{\dagger}	-2.58^{\dagger}	4.39
PĒĢĀSUS + SR	2	{1, 2, 3, 4}	{1, 2, 3, 4}	60	{R-1, R-2, R-L}	47.04^{\dagger}	$-\bar{2}\bar{2}.\bar{3}\bar{2}^{\dagger}$	43.72^{\dagger}	87.69	-2.74^{\dagger}	

Table – Transfer setup results on CNN/DM. † marks are results significantly better than the base model counterpart among metrics that SummaReranker was optimized for.

Transfer setup

		Decodin	ng method	S		XSum						
Model	Model stage	$\mathbb{D}_{\mathbf{train}}$	\mathbb{D}_{test}	m	R-1	R-2	R-L	$_{ m BS}$	BaS	Gain (%)		
PEGASUS	1	{1}	{1}	8	47.21	24.56	39.25					
PEGASUS - our setup	1	{1}	{1}	15	47.33	24.75	39.43	92.01	-1.92			
PEGASUS - our setup	1	{2}	{2}	15	46.78	23.77	38.70	91.94	-2.00			
BART	1	{1}	{1}	5	45.14	22.27	37.25	_	_			
BART - our setup	1	{1}	{1}	15	45.24	22.28	37.21	91.58	-1.97			
BART - our setup	1	{2}	{2}	15	44.15	20.84	35.88	91.51	-2.08			
$\overline{\mathrm{BART}} + \overline{\mathrm{R3F}}$	1	{1}	{1}	5	_		_	_	_	_		
GSum + RefSum	2	{1}	{1}	4	47.45	24.55	39.41			_		
PEGASUS + SimCLS	2	{2}	{2}	16	47.61	24.57	39.44	69.81				
PEGASUS + SR (new SOTA)	2	{1, 2}	{1}	15	48.12^{\dagger}	24.95	40.00^{\dagger}	92.14^{\dagger}	-1.90^{\dagger}	1.31		
PEGASUS + SR	2	{1, 2}	{2}	15	47.04	23.27	38.55	91.98	-2.01	-0.65		
BART + SR	2	{1, 2}	{1}	15	45.79^{\dagger}	22.17	37.31	91.69^{\dagger}	-1.97	0.33		
BART + SR	2	{1, 2}	{2}	15	44.39	20.35	35.66	91.51	-2.16	-0.81		
PEGASUS + SR	2	1, 2	{1, 2}	30	47.72	24.16	39.42	92.10^{\dagger}	-1.94	-0.53		
BART + SR	2	{1, 2}	{1, 2}	30	45.32	21.46	36.64	91.64	-2.04	-1.68		

 ${\bf Table-Transfer\ setup\ results\ on\ XSum}.$

Transfer setup

		Decodin	ng method:	8		Reddit TIFU					
Model	Model stage	$\mathbb{D}_{\text{train}}$	$\mathbb{D}_{ ext{test}}$	m	R-1	R-2	R-L	BS	BaS	Gain (%)	
PEGASUS	1	{1}	{1}	8	26.63	9.01	21.60				
PEGASUS - our setup	1	{1}	{1}	15	26.28	9.01	21.52	87.34	-3.46	_	
PEGASUS - our setup	1	{2}	{2}	15	25.67	8.07	20.97	87.47	-3.48	_	
BART - our setup	1	{1}	{1}	15	27.42	9.53	22.10	87.43	-3.78	_	
BART - our setup	1	{2}	{2}	15	25.43	8.27	20.79	87.48	-4.19	_	
BART + R3F	1	{1}	{1}	5	30.31	10.98	24.74	_			
PEGASUS + SR	2	{1, 2}	{1}	15	29.57^{\dagger}	9.70 [†]	23.29^{\dagger}	87.63 [†]	-3.34^{\dagger}	9.47	
PEGASUS + SR	2	{1, 2}	{2}	15	28.71^{\dagger}	8.73^{\dagger}	22.79^{\dagger}	87.84^{\dagger}	-3.42^{\dagger}	9.57	
BART + SR	2	{1, 2}	{1}	15	28.99^{\dagger}	9.82	22.96^{\dagger}	87.53	-3.78	4.22	
BART + SR	2	$\{1, 2\}$	{2}	15	28.04^{\dagger}	8.66	22.41^{\dagger}	87.73^{\dagger}	-3.91^{\dagger}	7.59	
PEGASUS + SR (best Reddit TIFU score)	2	- {1, 2} -	{1, 2}	30	29.83^{\dagger}	9.50	23.47	87.81	-3.33	9.34	
BART + SR	2	{1, 2}	{1, 2}	30	28.92^{\dagger}	9.16	22.87^{\dagger}	87.70 [†]	-3.83^{\dagger}	1.69	

Table – Transfer setup results on Reddit TIFU. Results in italic are not directly comparable due to a different data split.

Ranking evaluation

SummaReranker improves the **best candidate recall** compared to random ranking and top beam ranking baselines.

Figure – Best summary candidate recall. PEGASUS base model with diverse beam search.

Human evaluation

SummaReranker selected summaries are deemed **more** informative by humans compared to the top beam summaries.

Figure – Human evaluation : 3 humans and 50 samples per dataset. PEGASUS base model with beam search.

Abstractiveness

SummaReranker selected summaries are more abstractive on CNN/DM and Reddit TIFU.

Speed-performance trade-off

The more summaries, the greater the gains, but at a higher computation cost. 6-7 candidates is a sweet spot.

Figure - ROUGE-1 on CNN/DM when ranking an increasing number of sampled summaries.

Multi-tasking

Experts specialize in different tasks (e.g, expert 4 in ROUGE-L).

Figure – Expert utilization (10 experts) when optimizing all 5 metrics for PEGASUS on CNN/DM.

Limitations

SummaReranker presents some important limitations:

- We need to already fine-tuned base models.
- We need to generate candidates from the base models.
- Scoring all candidates takes time.
- Encoding the concatenation of the source with a candidate is limited by RoBERTa's context window of size 512.

Conclusion

We introduced the first multi-task model for 2nd-stage summarization.

It jointly encodes the source with each candidate and predicts whether the candidate maximizes each metric. The multi-tasking makes it flexible and can optimize any set of metrics.

The method works well:

- It reaches ROUGE SOTA when optimizing for ROUGE.
- The reranking is effective and significantly improves the best candidate recall.
- Summaries are more abstractive.
- Summaries are more informative according to humans.

- [1] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint arXiv:1805.04833, 2018.
- [2] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. arXiv preprint arXiv:1904.09751, 2019.
- [3] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.
- [4] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization branches out*, pages 74–81, 2004.

- [5] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
- [6] Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint arXiv:1808.08745, 2018.
- [7] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.
 - 8] Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: 500

- Evaluating generated text as text generation. Advances in Neural Information Processing Systems, 34, 2021.
- [9] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization. In *International Conference on Machine Learning*, pages 11328–11339. PMLR, 2020.
- [10] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.
- [11] Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M Meyer, and Steffen Eger. Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance. arXiv preprint arXiv:1909.02622, 2019.