Министерство образования Республики Беларусь Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

ОТЧЁТ

по лабораторной работе
по дисциплине «Нейронно-сетевые модели»
на тему
«релаксационные нейронные сети»

Выполнил студенты группы 521703 Сидоров И. С.

Проверил Ивашенко В. П.

> МИНСК 2009

Цель: Ознакомиться, проанализировать и получить навыки реализации модели релаксационной нейронной сети для задачи распознавания образов.

Задание: Реализовать двунаправленную ассоциативную память.

Ход работы:

Определим действия пользователя при работе с разработанной системой.

- 1. Пользователь определяет шаблоны, которые должны будут составлять набор входных данных для создания матрицы весовых коэффициентов.
 - 1. Для этого пользователь может выбирать файлы составленные в соответствии со следующими правилами:
 - 1. файл должен содержать два массива значений состоящих из «0» и «1» массивы не должны быть разделены пробелами. Но могут быть разделены символами окончания строк;
 - 2. массивы содержащие образы должны быть разделены пустыми строками;
 - 3. использование символов «\r» не рекомендуется.
 - 2. Для каждого файла пользователь может выбрать его кратность с помощью дополнительного выбора этого же файла (т.е. выбрать два раза один и тот же файл);
 - 3. названия файлов выбранных шаблонов отображаются в специальном текстовом поле отображающему всю работу сервера;
- 2. Пользователь нажимает кнопку «Go» после чего выбирает файл с образцом который требуется найти в имеющихся шаблонах; приложение само определяет подходят ли загруженные шаблоны друг другу, подходит ли искомый образец к используемым шаблонам. После чего производит поиск соответственно алгоритму работы двунаправленной ассоциативной памяти.
- 3. Результат поиска отображается в текстовом поле.
- 4. Значения функции энергии на последнем шаге и количество шагов можно пронаблюдать в специально предназначенных интерфейсах пользователя.

Опишем проводимые испытания.

1. Тест описываемый в книге Роберта Каллана о взаимосвязи графического

представления изображений 3х5 и их бинарного представления.

Таблица 1. Пример вводимых шаблонов в первом тесте

Ключ поиска	Сопоставляемое значение		
111	«010»		
001			
111			
100			
111			

Данный тест показал, что для значения представляющего цифру «0» при загруженных шаблонах «1», «2», «3». Система считает, что пользователь подаёт изменённый образ «2»-ки.

Что соответствует результату получаемому в книге Каллана.

2. Тест представляет собой связные пары значений цифр и их текстового представления.

Таблица 2. Пример вводимых шаблонов во втором тесте.

Ключ поиска	Сопоставляемое значение
0011111100	0011111111000001111111000000110001100
0111111110	001111111100000110001100000110011100
0000001110	000001100000000110001100000110111100
0001111100	0000011000000001111110000000111101100
0011111000	000001100000000110000000000111001100
0000111100	000001100000000110000000000110001100
0000011111	
111111111	
111111110	

Данная система содержит 90 нейронов в левой части двунаправленной ассоциативной памяти и 210 нейронов в правой части двунаправленной ассоциативной памяти. Поэтому такая сеть способна хранить:

 $90/(2*log(90) \Rightarrow 6-7$ образов.

Для данной сети мы задавали образы соответствующие цифрам «0», «1», «2», «3», «4», «5», «6».

В качестве тестируемых образцов мы использовали следующие изображения:

Таблица 3. Пример образцов подаваемых в систему для второго теста и количество шагов для их решения.

0001010000 00010	10000	1100111110	1100111110
0011111100 10111	11100	1111100111	1011100111
0110001110 01100	01111	0000000111	1100000111
1100000110 11000	11111	0011011110	0011011110
1100100111 11001	00111	0011111100	0011111100
1100000111 11011	11111	0100100100	0100100100
0110000111 01100	00111	1101001000	1101001000
0110001100 11100	01100	1101110111	1101110111
0011111100 00111	11100	111111111	1011011111
count: 2 count	: 2	count: 5	count: 5
0110011100 01100	11000	111111111	
0110011000 01100	01000	1110000011	
0110011000 01111	11000	1100000000	
0110011100 01100	11000	0011000000	
0110011000 01111	11000	0011111110	
0001011011 00000	10100	0011000110	
0001011000 00000	11000	0000110011	
0011011110 01110	11000	0110001110	
0000011000 00110	11000	0011111100	
count: 2 count	: 2	count: 2	

Данные изображения получались в результате искажения задаваемых при тесте пар шаблонов.

Для всех тестов система подобрала правильные результаты. При попытке увеличения количества хранимых пар в сети (была проделана попытка добавить

шаблон цифры «7») сеть нарушала возможности по хранению и переставала выдавать точные результаты. В качестве ответа она предоставляла некую «смесь» двух или более шаблонов к которым был близок подаваемый образец.

А также если подавать на вход шаблоны, изображения которых похожи друг на друга (между векторами характеризующими шаблон малое расстояние). То можно получить ошибки на этапе поиска образца. В виде смешанного ответа. Это можно описать тем, что входные вектора представляющие шаблоны далеки от ортогональных. А для данной системы использование ортогональных пар векторов при обучении является одной из главных особенностей системы.

Вывод:

В результате работы мы получили модель двунаправленной ассоциативной памяти, рассчитали ёмкость системы основываясь на входных данных. А также определили формат подходящих для обучения пар образцов и способы исправления не подходящих пар с помощью дополнительного коэффициента влияния пары при обучении.