3. TEORIJA BROJEVA

3.1 Uvod

Aritmetika (računstvo) je grana matematike koja se bavi brojevima.

Danas je češći naziv za aritmetiku teorija brojeva.

Teorija brojeva (klasična) se bavi ponajprije prirodnim brojevima, te cijelim i racionalnim brojevima.

Algebarska teorija brojeva se bavi algebarskim brojevima, ali i apstraktnim matematičkim strukturama (ispreplitanje s algebrom).

- prvi aritmetički problemi zapisani su u starom Babilonu i Egiptu 2-3 tisuće godina prije Krista;
- važno:
 - ▲ otkriće iracionalnih brojeva, te osnovnih svojstva djeljivosti prirodnih brojeva (starogrčka matematika - prva znanja sadržana u Euklidovim *Elementima*);
 - ▲ otkriće dekadskog zapisa i nule (Indijci);

- ▲ znanja sintetizirana u europskoj srednjovjekovnoj i novovjekovnoj matematici;
- kraljica matematike (gotovo svi veliki matematičari su se bavili aritmetikom).

Neki najpoznatiji riješeni i neriješni problemi teorije brojeva:

■ Goldbachova slutnja: svaki se paran broj 2n, $2n \ge 4$, može izraziti kao suma dva prim broja p i q, tj.

$$p + q = 2n.$$

Tvrdnja je još ne dokazana. (Nagrada 1.000.000 \$)

■ 10. Hilbertov problem (1900): Postoji li algoritam za nalaženje rješenja Diofantske jednadžbe¹?
Negativan odgovor dao je Matijaševič 1970.

Diofantska jednadžba - algebarska jednadžba s dvjema ili više nepoznanica s cjelobrojnim koeficijentima, kojoj se traže cjelobrojna ili racionalna rješenja. Ime je dobila po Diofantu koji je prvi sustavno proučavao takve jednadžbe.

Diofant (grč. $\Delta \iota \acute{o} \varphi α \upsilon \tau o \varsigma$; vjerojatno u 3. stoljeću Aleksandriji) veliki starogrčki matematičar.

▲ Pellova jednadžba²: Najpoznatija Diofantska jednadžba oblika

$$x^2 - dy^2 = 1,$$

gdje je d prirodan broj koji nije kvadrat. Sva pozitivna (cijela) rješenja (x_n,y_n) ove jednadžbe dana su sa

$$x_n + \sqrt{dy_n} = \left(x_0 + \sqrt{dy_0}\right)^n,$$

gdje je (x_0, y_0) prvo ("najmanje") rješenje u prirodnim brojevima³.

▲ Fermatov zadnji (veliki) teorem: Jednadžba

$$x^n + y^n = z^n,$$

gdje su x, y, z, n cijeli brojevi, nema rješenje za n > 2.

Teorem je konačno dokazao Andrew Wiles 1995.

² Ime jednadžbi je pogrešno dao Euler 1730. po engleskom matematičaru Johnu Pellu.

Rješenje je navodno znao i Fermat (1657.), ali pripisuje se Wallisu i Brounckleru, iako je 500 godina prije riješio Bhāskara (12 st.). Postojanje najmanjeg rješenja je strogo dokazao Lagrange 1769.

▲ Catalanova slutnja (1843): Jedina rješenja jednadžbe

$$x^u - y^v = 1,$$

u prirodnim brojevima x, y, u, v su $3^2 - 2^3 = 1$. Slutnju je konačno dokazao Mihăilescu 2003.⁴

■ Teorem (Roth)⁵ Za realan algebarski broj α nejednadžba

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{2+\varepsilon}},$$

gdje je $\varepsilon > 0$, ima konačno mnogo rješenja.

$$x^p - y^q = 1,$$

nema rješenja u ne-nul cijelim brojevima i prim brojevima p i q. Ovo zajedno s rezultatima Lesbegua (1850) i Ko Chaoa (1865) dokazuje slutnju.

Mihăilescu je dokazao da jednadžba

⁵ Njemački matematičar Klaus Roth je za ovaj rezultat 1958. dobio Fieldsovu medalju.

3.2 Cijeli brojevi. Djeljivost.

Skup cijelih brojeva je skup

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$
.

Definicija Neka su a i b cijeli brojevi. Kažemo da a <u>dijeli</u> b ako je $a \neq 0$ i postoji $k \in \mathbb{Z}$ tako da je b = ak. Pišemo $a \mid b$ i čitamo "a dijeli b". Broj a nazivamo djelitelj broja b, a broj b <u>višekratnik</u> broja a.

Propozicija 1 Relacija "biti djelitelj" ima sljedeća svojstva:

- refleksivnost: za svaki cijeli broj $a \neq 0$ vrijedi $a \mid a$;
- <u>antisimetričnost:</u> za svaka dva cijela broja a i b iz a |b i b |a slijedi $a = \pm b$. Ako su $a, b \in \mathbb{N}$, onda slijedi a = b;
- <u>tranzitivnost</u>: ako $a \mid b \mid b \mid c$ onda $a \mid c$.

Primjer Ako su $a,b,c \in \mathbb{Z}$, onda iz $a \mid b$ i $a \mid c$ slijedi $a \mid (nb+mc)$ za bilo koja dva cijela broja m i n.

Definicija Ako su $a,b,d\in\mathbb{Z}$ takvi da je $d\,|a\,$ i $d\,|b\,$, onda d nazivamo zajedničiki djelitelj od a i b.

Ako je barem jedan od brojeva a i b različit od 0, onda postoji i najveći zajednički djelitelj kojeg nazivamo <u>najveća zajednička mjera (Nzm)</u> od a i b i označavamo sa M(a,b) ili Nzm(a,b).

Ako su brojevi a i b različiti od 0, onda najmanji prirodan broj čiji su a i b djelitelji nazivamo najmanji zajednički višekratnik (nzv) od a i b i označavamo sa v(a,b) ili nzv(a,b).

Primjer:

- $\bullet Nzm(a,b) > 0;$
- Nzm(a,0) = a, za sve $a \in \mathbb{N}$;
- Nzm(a, b) = Nzm(b, a) = Nzm(|a|, |b|)nzv(a, b) = nzv(b, a) = nzv(|a|, |b|)
- Ako su $a, b \in \mathbb{N}$ onda je

$$Nzm(a,b) \le \min\{a,b\} \le \max\{a,b\} \le nzv(a,b);$$

ullet Ako je $a\in\mathbb{N}$ i $b\in\mathbb{Z}$ onda

$$a \mid b \Longrightarrow Nzm(a,b) = a.$$

Napomena: Na sličan način možemo definirati, za bilo koji konačan skup cijelih brojeva $a_1, a_2, ..., a_n$, $Nzm(a_1, a_2, ..., a_n)$ i $nzv(a_1, a_2, ..., a_n)$.

Propozicija 2 Neka su $a_1, a_2, ..., a_r$ i $b_1, b_2, ..., b_s$ cijeli brojevi i neka je

$$a_1 + a_2 + \dots + a_r = b_1 + b_2 + \dots + b_s$$
.

Ako su svi gornji brojevi djeljivi s $d \in \mathbb{N}$ osim jednog onda je i taj broj djeljiv s d.

Teorem 1 (o dijeljenju) Neka su dani $a \in \mathbb{Z}$ i $b \in \mathbb{N}$ onda postoje jedinstveni cijeli brojevi q i $r, 0 \le r < b$, takvi da je

$$a = bq + r$$
.

Broj q se naziva $\underline{kvocijent}$ pri dijeljenju a i b, a r ostatak.

Neka je $m \in \mathbb{N}$, Označimo

$$m\mathbb{Z} = \{km \mid k \in \mathbb{Z}\}$$

skup svih višekratnika od m.

Propozicija 3 Neprazan podskup S skupa cijelih brojeva koji je zatvoren s obzirom na operaciju oduzimanja (tj. iz $a,b\in S$ slijedi $a-b\in S$) jednak je ili $\{0\}$ ili $m\mathbb{Z}$ za neki $m\in\mathbb{N}$.

3.3 Euklidov algoritam

Propozicija 4 Neka su $a,b,q,r\in\mathbb{Z}$ i a=bq+r. Onda je svaki zajednički djelitelj od a i b ujedno i zajednički djelitelj od b i r. Posebno vrijedi Nzm(a,b)=Nzm(b,r).

Teorem 2 (Euklidov algoritam za nalaženje Nzm)

Neka su dani $a \in \mathbb{Z}$ i $b \in \mathbb{N}$. Pretpostavimo da je uzastopnom primjenom Teorema1 dobiven niz jednakosti

$$a = bq_1 + r_1, \quad 0 < r_1 < b$$
 $b = r_1q_2 + r_2, \quad 0 < r_2 < r_1$
 $r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2$
 \vdots
 $r_{k-2} = r_{k-1}q_k + r_k, \quad 0 < r_k < r_{k-1}$
 $r_{k-1} = r_kq_{k+1}.$

Tada je $Nzm(a,b)=r_k$, tj. Nzm(a,b) jednako je posljednjem ostatku različitom od 0. Nadalje, postoje brojevi $s,t\in\mathbb{Z}$ takvi da je

$$Nzm(a,b) = r_k = sa + tb, \tag{**}$$

tj. r_k se može izraziti kao linearna kombinacija od a i b.

Primjer Odredite d=Nzm(252,198) i prikažite d kao linearnu kombinaciju brojeva 252 i 198.

Napomena

- U Euklidovom algoritmu smo pretpostavili da je b>0 što nije bitno ograničenje jer je $Nzm(a,b)=Nzm(|a|\,,|b|);$
- ako su $a, b \in \mathbb{N}$ i a < b, onda u prvom koraku imamo $a = b \cdot 0 + a$, pa a i b zamijene mjesta.
- Primijetimo da je

$$\left\lfloor \frac{a}{b} \right\rfloor = q_1, \quad \left\lfloor \frac{b}{r_1} \right\rfloor = q_2, \quad \left\lfloor \frac{r_1}{r_2} \right\rfloor = q_3 \dots,$$

gdje je $\lfloor x \rfloor$ <u>najveći cijeli dio</u> od x, tj. $\lfloor x \rfloor = q$ gdje je q najveći cijeli broj $\leq x$.

• Brojevi $s,t\in\mathbb{Z}$ u (**) nisu jednoznačno određeni, jer je npr.

$$Nzm(a, b) = sa + tb = (s + b) a + (t - a) b,$$

Posljedica 1 Neka su $a,b\in\mathbb{Z}$ i $d\in\mathbb{N}$ takvi da $d\,|a|$ i $d\,|b|$. Onda $d\,|Nzm(a,b)$.

Teorem 3 Ako je barem jedan od brojeva $a, b \in \mathbb{Z}$ različit od 0, onda je

$$Nzm(a,b) = \min \left\{ sa + tb \, | s,t \in \mathbb{Z} \, \mathbf{i} \, sa + tb > 0 \right\}.$$

Definicija Kažemo da su cijeli brojevi a i b <u>relativno prosti</u>, ako je Nzm(a,b)=1.

Propozicija 5 Neka su $a,b,c\in\mathbb{Z}$ takvi da su a i b relativno prosti i $b\,|ac$, onda $b\,|c$.

Propozicija 6 Neka su $a,b\in\mathbb{Z}$ i $c\in\mathbb{N}$. Tada vrijedi:

- i) Nzm(ca, cb) = cNzm(a, b),
- ii) ako $c \mid a$ i $c \mid b$, onda je $Nzm(\frac{a}{c}, \frac{b}{c}) = \frac{1}{c}Nzm(a, b)$. Posebno, ako je d = Nzm(a, b), onda su $\frac{a}{d}$ i $\frac{b}{d}$ relativno prosti.

Primjena gornjih rezultata:

Jednadžbu oblika

$$ax + by = c, (1)$$

gdje su a, b, c zadani cijeli brojevi kojoj tražimo cjelobrojna rješenja x i y nazivamo <u>Diofantska jednadžba</u> prvog stupnja s dvije varijable.

Propozicija 7 Neka su $a,b,c\in\mathbb{Z}$ zadani cijeli brojevi. Diofantska jednadžba (1) ima rješenje onda i samo onda ako $Nzm(a,b)\,|c$.

3.4 Prosti brojevi. Osnovni teorem aritmetike.

Nadalje ćemo promatrati samo skup prirodnih brojeva \mathbb{N} . Djelitelje nekog broja $a \in \mathbb{N}$ gledat ćemo samo u skupu \mathbb{N} .

Definicija

- Svaki prirodan broj a > 1 ima uvijek dva djelitelja 1 i a i njih nazivamo *trivijalni djelitelji*.
- Za prirodan broj p > 1 kažemo da je <u>prost broj</u> (ili *prim broj*) ako ima samo trivijalne djelitelje.
- Prirodan broj a>1 koji nije prost nazivamo složen broj.

Primjer Prvi prosti brojevi su: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...

Ako želimo naći sve proste projeve $\leq a$, koristimo jednostavni postupak kojeg nazivamo **Eratostenovo** sito:

- Ispišemo, po redu, sve prirodne brojeve od 1 do a;
- Križamo 1;
- Zaokružimo 2 (prost) i križamo sve višekratnike od 2;
- Prvi preostali 3 (prost) zaokružimo i križamo sve višekratnike od 3 (koji nisu već prekriženi);
- Prvi preostali 5 (prost) zaokružimo i križamo sve višekratnike od 5 (koji nisu već prekriženi);
-
- Algoritam završava u konačno koraka, a zaokruženi brojevi su prosti.

Primjer Nađimo sve proste brojeve ≤ 60 pomoću Eratostenovog sita.

Djelitelje od $a \in \mathbb{N}$ nazivamo još i <u>faktorima</u>., a prikaz a = bc gdje su $b, c \in \mathbb{N}$ <u>faktorizacija</u> prirodnog broja a. Ako je djelitelj od b prost broj, nazivat ćemo ga prostim djeliteljem (ili prostim faktorom) od a.

Cilj nam je dokazati Osnovni teorem aritmetike.

Nekoliko pomoćnih tvrdnji:

Lema 1 Neka je prirodan broj a > 1 i neka je p najmanji djelitelj od a koji je veći od 1. Tada je p prost.

Lema 2 Neka je $a \in \mathbb{N}$. Za svaki prost broj p je ili Nzm(p,a)=1 ili $p\,|a|$.

Propozicija 8 Ako je p prost broj i $p \mid ab$, onda $p \mid a$ ili $p \mid b$.

Posljedica 2 Ako je p prost broj i $p \mid a_1 a_2 ... a_n$, onda postoji barem jedan a_i takav da $p \mid a_i$.

Teorem 4 (Osnovni teorem aritmetike) Faktorizacija svakog prirodanog broja a>1 na proste faktore je jedinstvena do na poredak prostih faktora. (Ili za svaki prirodan broja a>1 postoji jedinstven rastav

$$a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k},$$

gdje su $p_1 < p_2 < ... < p_k$ svi različiti prosti faktori od a. Broj $\alpha_i \in \mathbb{N}$ nazivamo <u>kratnošću</u> prostog broja p_i .)

Posljedica 3 Ukupan broj različitih djelitelja prirodnog broja $a=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_k^{\alpha_k}$ rastavljenog na proste faktore je

$$\tau(a) = (\alpha_1 + 1) (\alpha_2 + 1) \dots (\alpha_k + 1)$$

Teorem 5 (Euklid) Skup svih prostih brojeva je beskonačan.

Propozicija 9 Neka su $a,b \in \mathbb{N}$ tada vrijedi

$$nzv(a,b) = \frac{ab}{Nzm(a,b)}$$

Napomena:

• Za $a,b \in \mathbb{Z}$ i $a,b \neq 0$ imamo

$$nzv(a,b) = \frac{|ab|}{Nzm(a,b)};$$

- Tvrdnja Propozicije 8 ne vrijedi za više od dva broja;
- ullet Dokaz prethodne propozicije daje nam još jedan način traženja Nzm(a,b). Međutim ovaj način je puno složeniji nego Euklidov algoritam.

Propozicija 10 Neka su $a,b,c\in\mathbb{N}$. Ako $a\,|c$ i $b\,|c$ onda $nzv(a,b)\,|c$. Posebno, ako su a i b relativno prosti onda $ab\,|c$.

Propozicija 11 Neka su $a_1, a_2, ..., a_n \in \mathbb{Z}$ i barem jedan je različit od 0. Definirajmo niz

$$d_2 = Nzm(a_1, a_2), d_3 = Nzm(d_2, a_3), ...$$

 $d_n = Nzm(d_{n-1}, a_n).$

Tada je $Nzm(a_1, a_2, ..., a_n) = d_n$.

Neka su $a_1, a_2, ..., a_n \in \mathbb{Z}$ i svi različiti od 0. Definirajmo niz

$$m_2 = nzv(a_1, a_2), m_3 = nzv(m_2, a_3), ...$$

 $m_n = nzv(m_{n-1}, a_n).$

Tada je $nzv(a_1, a_2, ..., a_n) = m_n$.

3.5 Kongruencije

Definicija Ako prirodan broj n dijeli razliku a-b, onda kažemo da je a kongruentno b modulo n i pišemo $a \equiv b \pmod{n}$. U protivnom, kažemo da a nije kongruentno b modulo n i pišemo $a \neq b \pmod{n}$.

Propozicija 12 Relacija "biti kongruentan modulo n" je relacija ekvivalencije na skupu \mathbb{Z} .

Propozicija 13 Neka su a, b, c, d cijeli brojevi:

- i) Ako je $a \equiv b \pmod{n}$ i $c \equiv d \pmod{n}$, onda je $a \pm c \equiv b \pm d \pmod{n}$ i $ac \equiv bd \pmod{n}$;
- ii) Ako je $a \equiv b \pmod{n}$, $d \in \mathbb{N}$ i $d \mid n$, onda je $a \equiv b \pmod{d}$;
- iii) Ako je $a \equiv b \pmod{n}$, onda je $ac \equiv bc \pmod{nc}$ za svaki $c \in \mathbb{N}$.

Posljedica 4 Neka su a, b, k, l cijeli brojevi i neka je $a \equiv b \pmod{n}$, onda vrijedi:

- i) $a \pm nk \equiv b \pm nl \pmod{n}$;
- **ii)** $ak \equiv bk \pmod{n}$;
- iii) Ako je $a^m \equiv b^m \pmod{n}$ za svaki $m \in \mathbb{N}$.

Propozicija 14 Neka su $a, b, c \in \mathbb{Z}$ tada vrijedi: $ca \equiv cb \pmod{n}$ ako i samo ako $a \equiv b \pmod{\frac{n}{Nzm(c,n)}}$. Specijalno, ako je $ca \equiv cb \pmod{n}$ i Nzm(c,n) = 1, onda je $a \equiv b \pmod{n}$.

Napomena: Propozicije 13 i 14, te Posljedica 4 govore nam koje su operacije s kongruencijama dozvoljene a koje ne:

- Dozvoljeno je: zbrajati, oduzimati, množiti (potencirati);
- Nije dozvoljeno: općenito dijeliti (osim ako je djelitelj c relativno prost s n);
- Primijetimo da za svaki $y \in \mathbb{Z}$ postoji točno jedan $x_i \in \{0, 1, ..., n-1\}$ takav da je $y \equiv x_i \pmod{n}$.

3.6 Möbiusova funkcija i formula inverzije

Definicija <u>Möbiusova funkcija</u> $\mu: \mathbb{N} \to \mathbb{R}$ je funkcija koja prirodnom broju n, s rastavom na proste faktore $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$, pridružuje vrijednost

Još definiramo $\mu(1) = 1$.

Propozicija 15 Za svaki prirodan broj n > 1 vrijedi

$$\sum_{d|n} \mu(d) = 0,$$

(zbraja se po pozitivnim djeliteljima d).

Teorem 6 (teorem inverzije) Ako su zadane dvije funkcije $f, g : \mathbb{N} \to \mathbb{R}$ i ako za svaki $n \in \mathbb{N}$ vrijedi

$$f(n) = \sum_{d|n} g(d)$$

onda je

$$g(n) = \sum_{d|n} \mu(d) f\left(\frac{n}{d}\right)$$

i obratno.

3.7 Eulerova funkcija

Definicija Neka je $\varphi\left(n\right)$ broj svih prirodnih brojeva < n za koje vrijedi da su relativno prosti sa n. Definiramo $\varphi\left(1\right)=1$. Na taj način je definirana funkcija $\varphi:\mathbb{N}\to\mathbb{N}$ koju nazivamo Eulerova funkcija.

Dakle, $\varphi(n)$ je broj brojeva u nizu 1, 2, ..., n koji su relativno prosti sa n.

Za Eulerovu funkciju vrijedi:

- $\sum_{d|n} \varphi(d) = n$ (Gaussova formula).
- Za Nzm(a,n)=1 vrijedi $a^{\varphi(n)}\equiv 1\,(\mathrm{mod}\,n)$ (Eulerova kongruencija).
- Za p prost vrijedi $\varphi(p) = p 1$;
- Ako je p prost i $p \nmid a$ onda je $a^{p-1} \equiv 1 \pmod{p}$ i $a^p \equiv a \pmod{p}$ (Mali Fermatov teorem).

Teorem 7 Za svaki prirodan broj n > 1 vrijedi

$$\varphi\left(n\right) = n \prod_{\substack{p|n\\ p-prost}} \left(1 - \frac{1}{p}\right),\,$$

tj. ako je $n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_k^{\alpha_k}$ (rastav na proste faktore) onda je

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_k}\right).$$

Posljedica 5 Eulerova funkcija ima svojstvo multiplikativnosti, tj.

$$\varphi\left(mn\right) = \varphi\left(m\right) \cdot \varphi\left(n\right)$$

za sve relativno proste m, n.

4. BINARNE RELACIJE

4.1 Relacije. Relacije ekvivalencije.

Definicija Binarna relacija na skupu X je bilo koji neprazan podskup $\rho \subseteq X \times X$. Kažemo da je x $\underline{u} \ relaciji \ \rho$ s y (ili x i y su u relaciji ρ) ako je $(x,y) \in \rho$. Pišemo $x \rho y$.

Napomena:

- <u>binarna</u> relacija odnos između <u>dva</u> elementa (važno koji je prvi a koji drugi);
- x i y su *neusporedivi* (po ρ) ako nije $x\rho y$ ni $y\rho x$.

Definicija Za binarnu relaciju ρ na skupu X kažemo da je:

- i) <u>refleksivna</u> ako vrijedi $(\forall x \in X) \ x \rho x$;
- ii) <u>simetrična</u> ako vrijedi $(\forall x, y \in X) (x \rho y \Longrightarrow y \rho x)$;
- iii) antisimetrična ako vrijedi

$$(\forall x, y \in X) (x \rho y \land y \rho x \Longrightarrow x = y);$$

iv) tranzitivna ako vrijedi

$$(\forall x, y, z \in X) (x\rho y \land y\rho z \Longrightarrow x\rho z).$$

Napomena: Za binarnu relaciju ρ na skupu X kažemo da je $\underline{\mathit{funkcija}}$ ako $\mathit{za}\ \mathit{svaki}\ x \in X$ postoji $\mathit{točno}\ \mathit{jedan}\ y \in X$ tako da je $x\rho y$, tj.

$$(\forall x \in X) (x \rho y_1 \land x \rho y_2 \Longrightarrow y_1 = y_2)$$

Oznaka: $f: X \to X, y = f(x)$.

Obratno, svaka funkcija $f: X \to X$ određuje relaciju ρ . Definiramo

$$x \rho y \iff y = f(x).$$

Definicija Za binarnu relaciju ρ na skupu X kažemo da je <u>relacija ekvivalencije</u> ako je refleksivna, simetrična i tranzitivna.

4.2 Particija skupa. Razredi (klase) ekvivalencije.

Definicija Kažemo da obitelj podskupova $\{A_i\}_{i\in I}$ od X čini *particiju* (rastav) skupa X ako vrijedi:

- i) $X = \bigcup_{i \in I} A_i$, tj. obitelj skupova $\{A_i\}_{i \in I}$ je <u>pokrivač</u> od X;
- ii) $A_i \cap A_j = \emptyset$ za sve $i, j \in I, i \neq j$, tj. skupovi iz $\{A_i\}_{i \in I}$ su međusobno disjunktni.

Često se particijom skupa X smatramo prikaz

$$X = \bigcup_{i \in I} A_i = \bigoplus_{i \in I} A_i$$

kao disjunktne unije podskupova.

Definicija Neka je ρ relacija ekvivalencije na skupu X. Razred (klasa) ekvivalencije [x] elementa $x \in X$ je skup svih elemenata iz X koji su u relaciji ρ s x. Dakle,

$$[x] = \{ y \in X : x \rho y \} \subseteq X.$$

Napomena:

- $x \in [x]$ jer je $x \rho x$;
- Element $y \in [x]$ se naziva <u>reprezentant</u> razreda (klase) [x].

Teorem 1 Neka je ρ relacija ekvivalencije na skupu X. Onda za sve $x,y\in X$ vrijedi ili [x]=[y] ili $[x]\cap[y]=\emptyset$. Pritom je $x\rho y$ ako i samo ako je [x]=[y] .

Uočimo: Ako je ρ relacija ekvivalencije na skupu X, onda je obitelj svih klasa ekvivalencije [x] particija od X, tj.

$$X = \bigcup_{x \in X} [x] = \bigoplus_{x \in X} [x]$$

Teorem 2 Neka je $\{A_i\}_{i\in I}$ particija skupa X. Definirajmo relaciju ρ na skupu X tako da je $x\rho y$ onda i samo onda ako je y element istog skupa iz particije kao i x. Onda je ρ relacija ekvivalencije ρ na skupu X, a klase ekvivalencije se podudaraju sa A_i .

Definicija Neka je ρ relacija ekvivalencije na skupu X, onda skup svih klasa ekvivalencije nazivamo $kvocijentni\ skup\ s\ obzirom\ na\ relaciju\
ho\ i\ označavamo$

$$X/\rho = \{[x]\}_{x \in X}.$$

Dakle, kvocijentni skup je particija od X s obzirom na relaciju ρ .

Propozicija 1 Kvocijentni skup na skupu svih cijelih brojeva po relaciji "biti kongruentan modulo n" ($\equiv \pmod{n}$) jednak je

$$\mathbb{Z}/_{\equiv} = \{[0], [1], ..., [n-1]\}$$

 $(n-\check{\mathsf{c}}\mathsf{lani}\;\mathsf{skup}).$

Taj skup se naziva <u>kvocijentni skup ostataka modulo</u> n, ili skup ostataka pri dijeljenju sn. Razredi ekvivalencije su:

$$[0] = \{qn: q \in \mathbb{Z}\} = n\mathbb{Z}$$

$$[1] = \{qn+1: q \in \mathbb{Z}\} = n\mathbb{Z}+1$$

$$\vdots$$

$$[n-1] = \{qn+(n-1): q \in \mathbb{Z}\} = n\mathbb{Z}+(n-1) \ .$$

Neka je ρ relacija ekvivalencije na skupu X i H bilo koji skup. Ako je $f:X\to H$ neka funkcija, pitanje je je li funkcija

$$\hat{f}: X/\rho \to H, \quad \hat{f}([x]) = f(x)$$

dobro definirana?

Odgovor: Da bi \hat{f} bila dobro definirana mora biti

$$f\left(x\right) =f\left(y\right)$$
 za $x
ho y,$

tj. f mora biti na svakom razredu ekvivalencije konstantna. Tada \hat{f} ne ovisi o izboru reprezentanta iz razreda ekvivalencije [x].

4.3 Relacija poretka

Definicija Za binarnu relaciju ρ na skupu X kažemo da je <u>relacija parcijalnog (djelomičnog) poretka</u> ako je refleksivna, antisimetrična i tranzitivna.

Napomena:

- Jedina binarna relacija ρ na skupu X koja je istodobno i relacija ekvivalencije i relacija parcijalnog poretka (simetrična i antisimetrična) je relacija jednakosti " = ";
- Skup X na kojem je zadana relacija parcijalnog poretka, oznaka \leq , kraće označavamo (X, \leq) i kažemo da je X parcijalno poredan skup;
- Ako je (X, \leq) parcijalno poredan skup, onda definiramo, za $x, y \in X, x < y$ ako je $x \leq y$ i $x \neq y$. Tada (X, <) nije parcijalno poredan skup (relacija < nije ni refleksivna ni antisimetrična).

Definicija Neka je (X, \leq) parcijalno poredan skup i $S \subseteq X$.

ullet Kažemo da je $m \in X \ (M \in X)$ donja (gornja) međa skupa S ako je

$$(\forall s \in S) (m \le s) \qquad ((\forall s \in S) (s \le M))$$

- Za skup S kažemo da je omeđen odozdol (odozgor) ako ima barem jednu donju (gornju) među.
- Kažemo da je $m^* \in X \ (M^* \in X)$, ako postoji, infinum (suprenum) skupa S, i označavamo $\inf S$ (sup S) ako vrijedi:
 - $\circ m^* = \inf S$ ($M^* = \sup S$) je donja (gornja) međa od S;
 - o za svaku donju (gornju) među m (M) vrijedi $m \le \inf S$ ($\sup S \le M$).
- Ako vrijedi da je $\inf S \in S$ ($\sup S \in S$) onda $\inf S$ ($\sup S$) nazivamo minimum ($\max S$).

Definicija Neka je (X, \leq) parcijalno poredan skup. Za (X, \leq) kažemo da je <u>totalno poredan skup</u> ako za sve $x, y \in X$ vrijedi $x \leq y$ ili $y \leq x$, tj. svaka dva elementa su usporediva.

Definicija Neka je (X, \leq) totalno poredan skup. Za (X, \leq) kažemo da je <u>dobro poredan skup ili lanac</u>,ako svaki njegov neprazan podskup ima minimalni element.

Definicija Neka su (X_1, \leq_1) i (X_2, \leq_2) dva parcijalno poredana skupa. *Kartezijev produkt parcijalno* poredanih skupova definiramo kao $(X_1 \times X_2, \leq)$. Pritom za (a_1, a_2) , $(b_1, b_2) \in X_1 \times X_2$, definiramo $(a_1, a_2) \leq (b_1, b_2)$ ako je $a_1 \leq_1 b_1$ i $a_2 \leq_2 b_2$.

Napomena:

- Slično se definira za Kartezijev produkt više parcijalno poredanih skupova;
- Neka su (X_1, \leq_1) i (X_2, \leq_2) dva totalno poredana skupa, $(X_1 \times X_2, \leq)$ ne mora biti totalno poredan.

Definicija Neka su (X_1, \leq_1) i (X_2, \leq_2) dva parcijalno poredana skupa. Na Kartezijevom produktu $X_1 \times X_2$ definiramo tzv. relaciju *leksikografskog poredaka* \leq_L . Pritom za (a_1, a_2) , $\overline{(b_1, b_2)} \in X_1 \times X_2$, definiramo $(a_1, a_2) \leq_L (b_1, b_2)$ ako je ispunjen jedan od dva sljedeća uvjeta:

- $a_1 <_1 b_1$ (a_2, b_2 bilo kakvi);
- $a_1 = b_1 i a_2 \leq_2 b_2$.

 $(X_1 \times X_2, \leq_L)$ je parcijalno poredan skup.

Napomena:

- Slično se definira za Kartezijev produkt više parcijalno poredanih skupova;
- Neka su (X_1, \leq_1) i (X_2, \leq_2) dva totalno poredana skupa, tada je $(X_1 \times X_2, \leq_L)$ totalno poredan.

4.4 Hasseov dijagam relacije poretka

Neka je X konačan skup i ρ relacija na X. Tada relaciju ρ možemo predočiti dijagramom kojeg nazivamo $usmjereni\ graf.$

- Svaki element skupa reprezentira (označena) točka koju nazivamo <u>čvor</u> ili <u>vrh</u>.
- Ako je aρb, tada dva čvora označena s a i b povežemo strelicom od a do b. Tu strelicu nazivamo usmjereni brid. Ako je aρb i bρa onda imamo dva usmjerena brida između a i b, pa, zbog jednostavnosti, a i b povezujemo jednom dvostranom strelicom.
- Ako je $a\rho a$ usmjereni brid između a i a se naziva petlja.

Neka je X konačan skup i ρ (\leq) relacija parcijalnog poretka na X. Tada relaciju \leq možemo predočiti jednostavnijom (zornijom) vrstom dijagrama kojeg nazivamo $Hasseov\ dijagam$.

- Svaki element skupa reprezentira (označena) točka koju nazivamo <u>čvor</u> ili <u>vrh</u>..
- Ispuštamo petlje, jer je relacija refleksivna.
- Ako je a < b i između njih ne postoji niti jedan $c \in X$, tj. iz $a \le c \le b$ slijedi a = c ili b = c, onda čvor koji pripada b satavljamo iznad čvora koji pripada a i spajamo ih crtom (a ne strelicom od a do b).
- Usmjereni brid koji je imliciran tranzitivnošću ne crtamo.

Definicija Kažemo da je parcijalno poredan skup (X, \leq_1) *izomorfan* parcijalno poredanom skupu (Y, \leq_2) ako postoji bijekcija $f: X \to Y$ koja čuva poredak, tj. tako da vrijedi

$$(\forall x, y \in X) \ (x \leq_1 y \Longrightarrow f(x) \leq_2 f(y))$$

4.5 Mreže

Definicija Parcijalno poredan skup (X, \leq) naziva se $\underline{mreža}$ ako za svaki par elemenata $a, b \in X$ postoji $\sup \{a, b\}$ i $\inf \{a, b\}$. Na taj način možemo uvesti dvije binarne operacije u parcijalno poredan skup X:

$$a + b = \sup \{a, b\}, \quad a \cdot b = \inf \{a, b\}$$

Napomena: Ovo znači da u mreži svaki dvočlan podskup ima infinum (suprenum), a to znači i svaki konačan podskup.

Definicija Parcijalno poredan skup (X, \leq) naziva se <u>potpuna mreža</u> ako za svaki njegov podskup (konačan ili beskonačan) ima infinum i suprenum. Svaka potpuna mreža onda ima $\inf X$, koji nazivamo <u>nula</u> i $\sup X$ koji nazivamo *jedinica*.

Teorem 3 Za operacije + i \cdot na mreži (X, \leq) vrijede svojstva:

- **1.** komutativnost: $a+b=b+a, \qquad a\cdot b=b\cdot a;$
- 2. asocijativnost:

$$(a+b) + c = a + (b+c),$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c);$$

3. apsortivnost ili svojstvo upijanja:

$$a \cdot (a+c) = a, a + (a \cdot c) = a$$

4. idempotentnost zbrajanja i množenja:

$$a + a = a,$$
 $a \cdot a = a;$

5.
$$a + 0 = a$$
, $a \cdot 1 = a$;

Napomena: distributivnost općenito ne vrijedi.

Definicija Za mrežu (X, \leq) kažemo da je <u>distributivna</u> <u>mreža</u> ako u njoj vrijedi zakon distribucije, tj. za svaki $a, b \in X$ vrijedi a (b + c) = ab + ac.

Definicija Za element \bar{a} u mreži (X, \leq) kažemo da je $\underline{komplement}$ elementa a ako je $a + \bar{a} = 1, \quad a \cdot \bar{a} = 0.$ Ako svaki element ima komplement kažemo da je (X, \leq) $\underline{komplementarna\ mreža}.$

Napomena: U distributivnoj mreži komplementiranje je jednoznačno (dokaz -sami).

Napomena: Ovo znači da je distributivna i komplementarna potpuna mreža X Booleova algebra $(X,+,\cdot,\bar{},0,1)$. Vrijedi i obrat.

4.5 Skupovni prikaz konačnih Booleovih algebri

Definicija Neka je $(B,+,\cdot,\bar{},0,1)$ Booleova algebra. Za $a,b\in B$ kažemo da je $a\leq b$ ako je ab=a.

Propozicija 2 Neka su a, b, c, d bilo koji elementi Booleove algebre B. Relacija \leq ima sljedeća svojstva:

- i) (B, \leq) je parcijalno poredan skup;
- ii) $a \leq b$ onda i samo onda ako je a + b = b;
- iii) ako je $a \leq b$ i $c \leq d$ onda je $ac \leq bd$;
- **iv)** $ab = \inf \{a, b\}, a + b = \sup \{a, b\};$
- **v)** $a \leq b$ onda i samo onda ako je $\bar{b} \leq \bar{a}$.

Definicija Element $a \neq 0$ u Booleovoj algebri B naziva se <u>atom</u> Booleove algebre ako iz $x \leq a$ slijedi x = 0 ili x = a.

Napomena: Svaka konačna Booleova algebra ima neprazan skup atoma.

Lema 1 Neka je B konačna Booleova algebra. Za svaki $x \neq 0$ u B postoji atom a takav da je $a \leq x$. **Lema 2** Ako je atom a atom takav da je $a \leq x$, onda je $a \nleq \bar{x}$, i obratno.

Teorem 4 Neka je $(B,+,\cdot,\bar{},0,1)$ konačna Booleova algebra i A pripadni skup svih atoma. Onda je Booleova algebra B izomorfna s algebrom skupova 2^A .

Korolar 1 Svaka konačna Booleova algebra ima 2^n elemenata, pri čemu je n broj atoma od B. Svake dvije konačne Booleove algebre s istim brojem elemenata međusobno su izomorfne.

Teorem 5 (Stone) Svaka beskonačna Booleova algebra B je izomorfna nekoj podalgebri algebre skupova 2^X za neki skup X. Preciznije, postoji neki skup X i podskup B' partitivnog skupa 2^X takav da je $(B', \cup, \cap, \overline{\ })$ algebra koja je izomorfna sa B.