Assessment of economic and public health consequences of adverse weather events in the United States

J. Varberg

2/26/2022

Synopsis

This report uses data from the National Oceanic and Atmospheric Administration (NOAA) Storm Database to examine the economic and public health impacts that different types of weather events have in the United States.

Data Processing

The raw data were obtained here and read into R using the read_csv function from the readr package, which can directly handle reading/import of zipped files.

```
## Rows: 902,297
## Columns: 37
## $ STATE
                                                                                ## $ BGN_DATE
                                                                                <chr> "4/18/1950 0:00:00", "4/18/1950 0:00:00", "2/20/1951 0:00:0~
                                                                                <chr> "0130", "0145", "1600", "0900", "1500", "2000", "0100", "09~
## $ BGN TIME
                                                                               <chr> "CST", "CS
## $ TIME_ZONE
## $ COUNTY
                                                                                <dbl> 97, 3, 57, 89, 43, 77, 9, 123, 125, 57, 43, 9, 73, 49, 107,~
## $ COUNTYNAME <chr> "MOBILE", "BALDWIN", "FAYETTE", "MADISON", "CULLMAN", "LAUD~
                                                                                <chr> "AL", "
## $ STATE
                                                                                <chr> "TORNADO", 
## $ EVTYPE
## $ BGN_RANGE
                                                                               ## $ BGN_AZI
## $ END DATE
                                                                                ## $ END TIME
```

```
## $ END AZI
         ## $ LENGTH
         <dbl> 14.0, 2.0, 0.1, 0.0, 0.0, 1.5, 1.5, 0.0, 3.3, 2.3, 1.3, 4.7~
         <dbl> 100, 150, 123, 100, 150, 177, 33, 33, 100, 100, 400, 400, 2~
## $ WIDTH
         <dbl> 3, 2, 2, 2, 2, 2, 2, 1, 3, 3, 1, 1, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1
## $ F
## $ MAG
         ## $ FATALITIES <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 4, 0, 0, 0, 0, ~
         <dbl> 15, 0, 2, 2, 2, 6, 1, 0, 14, 0, 3, 3, 26, 12, 6, 50, 2, 0, ~
## $ INJURIES
## $ PROPDMG
         <dbl> 25.0, 2.5, 25.0, 2.5, 2.5, 2.5, 2.5, 2.5, 25.0, 25.0, 2.5,
## $ CROPDMG
         ## $ WFO
         ## $ ZONENAMES
## $ LATITUDE
         <dbl> 3040, 3042, 3340, 3458, 3412, 3450, 3405, 3255, 3334, 3336,~
## $ LONGITUDE
         <dbl> 8812, 8755, 8742, 8626, 8642, 8748, 8631, 8558, 8740, 8738,~
## $ LATITUDE E <dbl> 3051, 0, 0, 0, 0, 0, 0, 3336, 3337, 3402, 3404, 0, 3432,~
## $ LONGITUDE_ <dbl> 8806, 0, 0, 0, 0, 0, 0, 0, 8738, 8737, 8644, 8640, 0, 8540,~
## $ REMARKS
         ## $ REFNUM
         <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ~
```

Our task for analysis is to answer the following two questions:

- 1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?
- 2. Across the United States, which types of events have the greatest economic consequences?

To answer these questions, we will be most interested in examining all of the event types for their values in the columns for fatalities, injuries, property damage, and crop damage. For the property and crop damage, we will also need the values stored in PROPDMGEXP and CROPDMGEXP, which encode information about the multiplier for values in the PROPDMG and CROPDMG columns.

First, let's look at the entered values for EVTYPE.

sample(unique(rawData\$EVTYPE), 50)

```
"HEAVY RAIN/SNOW"
                                     "THUNDERSTORM WIND 59 MPH"
##
    [1]
##
        "THUNDERSTORM WINDS G"
                                     "Monthly Rainfall"
##
        "RECORD WARM TEMPS."
                                     "Summary June 6"
    [7]
        "Hot and Dry"
                                     "Summary of May 31 pm"
                                     "SNOW/RAIN"
##
    [9]
        "Summary of June 6"
                                     "SNOW/RAIN/SLEET"
##
   [11]
        "WINTER MIX"
   [13]
       "GUSTY WIND/HAIL"
                                     "Summary September 20"
   [15] "MONTHLY SNOWFALL"
                                     "COLD/WIND CHILL"
   [17]
        "Extreme Cold"
                                     "SNOW FREEZING RAIN"
##
   [19]
                                     "HEAVY SNOW"
        "EARLY FREEZE"
  [21]
        "Snow Squalls"
                                     "LATE SNOW"
        "HIGH WINDS 82"
## [23]
                                     "Light Snow"
   Γ25]
        "RECORD/EXCESSIVE HEAT"
                                     "THUNDERSTORM WINDS."
  [27] "LARGE WALL CLOUD"
                                     "SNOW SQUALL"
## [29] "Ice/Snow"
                                     "LOW TEMPERATURE RECORD"
## [31] "VOLCANIC ASH"
                                     "Light Snow/Flurries"
```

```
## [33] "RAIN"
                                    "PROLONG COLD"
  [35] "THUNERSTORM WINDS"
                                    "FLASH FLOOD/ FLOOD"
                                    "Mudslide"
## [37] "EXCESSIVE HEAT"
## [39] "HIGH SEAS"
                                    "TSTM WIND AND LIGHTNING"
## [41] "ICE STORM AND SNOW"
                                    "Summary of July 22"
## [43] "LANDSLIDE"
                                    "BLIZZARD AND HEAVY SNOW"
## [45] "STREET FLOOD"
                                    "URBAN/STREET FLOODING"
## [47] "HIGH WINDS"
                                    "Summary August 10"
## [49] "Early Frost"
                                    "RIVER FLOOD"
```

The entries for EVTYPE are messy - there is a mix of upper and lower class characters used, typos, event types that are combined, etc. We can do a first pass clean up by converting to all upper case to allow combining of types that are similar but coded in different case.

```
length(unique(rawData$EVTYPE))

## [1] 977

length(unique(toupper(rawData$EVTYPE)))
```

[1] 890

This quick fix resolves 87 coding errors. According to the NOAA documentation, there are only 55 specific event types that should be entered into the database. We will try to match the entered event type with the most relevant allowed event type. First, let's create a vector of the allowed event types, and visually inspect the EVTYPE entries.

```
allowed_events <- toupper(c("Astronomical Low Tide", "Avalanche",
    "Blizzard", "Coastal Flood", "Cold/Wind Chill", "Debris Flow",
    "Dense Fog", "Dense Smoke", "Drought", "Dust Devil",
    "Dust Storm", "Excessive Heat", "Extreme Cold/Wind Chill",
    "Flash Flood", "Flood", "Frost/Freeze", "Funnel Cloud",
    "Freezing Fog", "Hail", "Heat", "Heavy Rain", "Heavy Snow",
    "High Surf", "High Wind", "Hurricane (Typhoon)", "Ice Storm",
    "Lake-Effect Snow", "Lakeshore Flood", "Lightning",
    "Marine Dense Fog", "Marine Hail", "Marine Heavy Freezing Spray",
    "Marine High Wind", "Marine Hurricane/Typhoon", "Marine Lightning",
    "Marine Strong Wind", "Marine Thunderstorm Wind", "Marine Tropical Depression",
    "Marine Tropical Storm", "Rip Current", "Seiche", "Sleet",
    "Sneaker Wave", "Storm Surge/Tide", "Strong Wind", "Thunderstorm Wind",
    "Tornado", "Tropical Depression", "Tropical Storm",
    "Tsunami", "Volcanic Ash", "Waterspout", "Wildfire",
    "Winter Storm", "Winter Weather"))
head(unique(toupper(rawData$EVTYPE)), n = 25)
```

```
## [1] "TORNADO" "TSTM WIND"

## [3] "HAIL" "FREEZING RAIN"

## [5] "SNOW" "ICE STORM/FLASH FLOOD"

## [7] "SNOW/ICE" "WINTER STORM"

## [9] "HURRICANE OPAL/HIGH WINDS" "THUNDERSTORM WINDS"
```

```
## [11] "RECORD COLD" "HURRICANE ERIN"

## [13] "HURRICANE OPAL" "HEAVY RAIN"

## [15] "LIGHTNING" "THUNDERSTORM WIND"

## [17] "DENSE FOG" "RIP CURRENT"

## [19] "THUNDERSTORM WINS" "FLASH FLOOD"

## [21] "FLASH FLOODING" "HIGH WINDS"

## [23] "FUNNEL CLOUD" "TORNADO FO"

## [25] "THUNDERSTORM WINDS LIGHTNING"
```

One of the things we can see is that Thunderstorm is often encoded in shorthand, as TSTM. This can easily be replaced with mutate and the str_replace function. While tidying up the data, let's also select just the columns of interest that have health or economic impact values. Then, we'll convert the EVTYPE column values to upper case and date columns from character to date types. We'll also add a column coding whether or not the value is one of the allowed event types.

During this step, we will also convert the values in the PROPDMG and CROPDMG fields to their full values by multiplying by the values in the corresponding EXP columns (see this for explanation of EXP values):

```
tidyData <- rawData %>%
    select(BGN_DATE, COUNTY, COUNTYNAME, STATE, EVTYPE,
        END_DATE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP,
        CROPDMG, CROPDMGEXP, REMARKS) %>%
   mutate(BGN_DATE = mdy_hms(BGN_DATE), END_DATE = mdy_hms(END_DATE),
        EVTYPE = toupper(EVTYPE), EVTYPE = str replace(EVTYPE,
            "TSTM", "THUNDERSTORM"), ALLOWED = if_else(EVTYPE %in%
            allowed_events, true = "ALLOWED", false = "NOT_ALLOWED"),
        PROPDMG = case when (PROPDMGEXP == "H" | PROPDMGEXP ==
            "h" ~ PROPDMG * 100, PROPDMGEXP == "K" ~ PROPDMG *
            1000, PROPDMGEXP == "M" | PROPDMGEXP == "m" ~
            PROPDMG * 1e+06, PROPDMGEXP == "B" ~ PROPDMG *
            1e+09, is.numeric(PROPDMGEXP) ~ PROPDMG * 10,
            TRUE ~ PROPDMG), CROPDMG = case_when(CROPDMGEXP ==
            "H" | CROPDMGEXP == "h" ~ CROPDMG * 100, CROPDMGEXP ==
            "K" ~ CROPDMG * 1000, CROPDMGEXP == "M" | CROPDMGEXP ==
            "m" ~ CROPDMG * 1e+06, CROPDMGEXP == "B" ~ CROPDMG *
            1e+09, is.numeric(CROPDMGEXP) ~ CROPDMG * 10,
            TRUE ~ CROPDMG))
```

Now, let's see how many events are allowed vs. not allowed event types:

```
with(tidyData, table(ALLOWED))

## ALLOWED

## ALLOWED NOT_ALLOWED

## 861476 40821
```

There are still quite a few entries (\sim 6%) are not properly classified for event type. We only care for ones that have a public health or economic impact, so let's filter for those and then see how many need to be fixed.

```
# add columns coding if there was health or economic
# damages, filter to keep only rows with at least one
# type of damages
```

```
tidyDataDamages <- tidyData %>%
    mutate(HealthImpact = if_else(condition = FATALITIES >
        0 | INJURIES > 0, true = TRUE, false = FALSE), EconImpact = if_else(condition = PROPDMG >
        0 | CROPDMG > 0, true = TRUE, false = FALSE)) %>%
    filter(HealthImpact == TRUE | EconImpact == TRUE)
with(tidyDataDamages, table(ALLOWED))

## ALLOWED
## ALLOWED
## ALLOWED
## 236219 18414
```

Removing to only keep events with health or economic damages did not resolve the problem: still have $\sim 8\%$ of events that are not properly classified. We will first remove all of the correctly classified entries, then focus on the improperly classified entries to try to match them to the appropriate allowed event type.

```
# filter to only keep allowed event types.
tidyDataDamagesAllowed <- tidyDataDamages %>%
    filter(ALLOWED == "ALLOWED")

# get data that we need to fix event type i.e.
# NON-ALLOWED
tidyDataDamagesNonAllowed <- tidyDataDamages %>%
    filter(ALLOWED == "NOT_ALLOWED")

# look at which event types still need to be corrected
head(unique(tidyDataDamagesNonAllowed$EVTYPE), n = 25)
```

```
##
    [1] "ICE STORM/FLASH FLOOD"
                                          "HURRICANE OPAL/HIGH WINDS"
##
   [3] "THUNDERSTORM WINDS"
                                          "HURRICANE ERIN"
##
   [5] "HURRICANE OPAL"
                                          "THUNDERSTORM WINS"
   [7] "FLASH FLOODING"
                                          "TORNADO FO"
   [9] "THUNDERSTORM WINDS LIGHTNING"
                                          "THUNDERSTORM WINDS/HAIL"
##
## [11] "HIGH WINDS"
                                          "WTND"
                                          "LIGHTNING AND HEAVY RAIN"
## [13] "HEAVY RAINS"
## [15] "THUNDERSTORM WINDS HAIL"
                                          "COLD"
## [17] "HEAVY RAIN/LIGHTNING"
                                          "FLASH FLOODING/THUNDERSTORM WI"
## [19] "FLOODING"
                                          "EXTREME COLD"
## [21] "LIGHTNING/HEAVY RAIN"
                                          "BREAKUP FLOODING"
## [23] "FREEZE"
                                          "RIVER FLOOD"
## [25] "HIGH WINDS HEAVY RAINS"
```

We will use a "fuzzy join" approach to try to match the coded event type to the closest allowed event type. This essentially works by calculating a distance matrix between the coded string and each of the strings in the allowed events vector, then returns the value with the shortest distance. It is implemented with the fuzzyjoin package, for which more details can be found here.

```
allowedEvents <- as_tibble(allowed_events)
colnames(allowedEvents) <- c("EVTYPE")

not_allowed <- as_tibble(unique(tidyDataDamagesNonAllowed$EVTYPE))
colnames(not_allowed) <- c("EVTYPE")</pre>
```

There are multiple methods for fuzzy joining, let's see which one works best to accurately find matches for our non-allowed events. We'll create a custom function to loop through all of the available methods, and return a dataframe containing the method name, number of remaining unmatched event types, and then number of event types that a fuzzy join found a corresponding match for.

```
string_match_test <- function(x, y, method = "lv", ...) {</pre>
    match <- stringdist_join(x, y, mode = "left", ignore_case = FALSE,</pre>
        method = method)
    colnames(match)[1] <- c("Test")</pre>
    colnames(match)[2] <- c("Matched")</pre>
    matches <- match %>%
        mutate(Match = case_when(Test == Matched ~ "Exact",
             is.na(Matched) ~ "Unmatched", TRUE ~ "Replaced")) %>%
        count (Match)
    data.frame(matches)
}
match_methods <- c("osa", "lv", "dl", "hamming", "lcs",</pre>
    "qgram", "cosine", "jaccard", "jw", "soundex")
test <- map(match_methods, string_match_test, x = not_allowed,</pre>
    y = allowedEvents)
names(test) <- match_methods</pre>
out <- bind_rows(test, .id = "Method")</pre>
pivot_wider(out, id_cols = Method, names_from = Match, values_from = n)
## # A tibble: 10 x 3
##
      Method Replaced Unmatched
                             <int>
##
      <chr>
                  <int>
##
   1 osa
                     39
                               353
## 2 lv
                     39
                               353
##
    3 dl
                     39
                               353
## 4 hamming
                      7
                               385
## 5 lcs
                     38
                               354
                               352
## 6 qgram
                     40
##
   7 cosine
                  21560
                                NA
## 8 jaccard
                                NA
                  21560
                  21560
## 9 jw
                                NA
## 10 soundex
                    219
                               186
```

From this output, it looks like the **soundex** method found the most matches. You can read more about how this method works here. Let's look at the matches from the soundex method to make sure that it is finding accurate matches.

```
soundex <- stringdist_join(not_allowed, allowedEvents, method = "soundex")
colnames(soundex) <- c("Not_Allowed_EVTYPE", "Matched_Allowed_EVTYPE")
kable(head(soundex, n = 30), booktabs = TRUE) %>%
    kable_styling(latex_options = "striped")
```

Not_Allowed_EVTYPE	Matched_Allowed_EVTYPE
ICE STORM/FLASH FLOOD HURRICANE OPAL/HIGH WINDS	ICE STORM HURRICANE (TYPHOON)
THUNDERSTORM WINDS HURRICANE ERIN HURRICANE OPAL	THUNDERSTORM WIND HURRICANE (TYPHOON) HURRICANE (TYPHOON)
THUNDERSTORM WINS FLASH FLOODING	THUNDERSTORM WIND FLASH FLOOD
TORNADO F0 THUNDERSTORM WINDS LIGHTNING	TORNADO THUNDERSTORM WIND
THUNDERSTORM WINDS/HAIL HIGH WINDS	THUNDERSTORM WIND HIGH WIND
HEAVY RAINS LIGHTNING AND HEAVY RAIN THUNDERSTORM WINDS HAIL	HEAVY RAIN LIGHTNING THUNDERSTORM WIND
HEAVY RAIN/LIGHTNING FLASH FLOODING/THUNDERSTORM WI	HEAVY RAIN FLASH FLOOD
EXTREME COLD LIGHTNING/HEAVY RAIN	EXTREME COLD/WIND CHILL LIGHTNING
HIGH WINDS HEAVY RAINS HIGH WIND/SEAS	HIGH WIND HIGH WIND
HIGH WINDS/HEAVY RAIN HEAVY SNOW/WIND THUNDERSTORM WINDS/FUNNEL CLOU WILD FIRES	HIGH WIND HEAVY SNOW THUNDERSTORM WIND WILDFIRE
WINTER STORM HIGH WINDS	WINTER STORM
WINTER STORM HIGH WINDS WINTER STORMS WINTER STORMS	WINTER WEATHER WINTER STORM WINTER WEATHER
THUNDERSTORMS WINDS THUNDERSTORMS	THUNDERSTORM WIND THUNDERSTORM WIND

	ALLOWED	NONALLOWED	TOTAL	FRAC.MISSING
FATALITIES	14577	638	15215	0.0419323
INJURIES	138640	2241	140881	0.0159070
PROPDMG	462417891325	8304406937	470722298262	0.0176418
CROPDMG	42863410562	6267401055	49130811617	0.1275656

These look like good matches! We will use the matched events from the soundex approach to replace the non-allowed event types in the dataset.

```
tidyDataDamagesNonAllowed <- left join(tidyDataDamagesNonAllowed,
    soundex, by = c(EVTYPE = "Not_Allowed_EVTYPE"))
tidyDataDamagesFixed <- tidyDataDamagesNonAllowed %>%
    mutate(EVTYPE = Matched_Allowed_EVTYPE, ALLOWED = if_else(EVTYPE %in%
        allowed events, true = "ALLOWED", false = "NOT ALLOWED")) %>%
    select(-Matched_Allowed_EVTYPE)
with(tidyDataDamagesFixed, table(ALLOWED))
## ALLOWED
##
```

Now that that we've fixed the event types, there are only 2798 non-allowed event types out of a total of 254,633 total events with damages. That works out to ~1.1% of data that still isn't an allowed type. Let's see how many fatalaties, injuries, and financial damages aren't accounted for in the remaining non-allowed events.

```
# recombine fixed with allowed for full dataframe
final_df <- bind_rows(tidyDataDamagesAllowed, tidyDataDamagesFixed)</pre>
damagesSummary <- final df %>%
    select(ALLOWED, FATALITIES, INJURIES, PROPDMG, CROPDMG) %>%
   group_by(ALLOWED) %>%
   summarise(across(everything(), ~sum(.x))) %>%
   select(-ALLOWED) %>%
   t() %>%
    as.data.frame() %>%
   rename(ALLOWED = V1, NONALLOWED = V2) %>%
    mutate(TOTAL = NONALLOWED + ALLOWED, FRAC.MISSING = NONALLOWED/TOTAL)
kable(damagesSummary, booktabs = TRUE) %>%
    kable_styling(latex_options = "striped")
```

From this, it looks like we've accounted for ~95% of fatalaties, and ~98% of injuries, property damage and crop damage. We will go ahead and move forward with this dataset where the majority of the damages have been properly assigned into an allowed event type.

Revisiting our Objectives

ALLOWED NOT_ALLOWED

2798

15999

##

Our task for analysis is to answer the following two questions:

- 1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?
- 2. Across the United States, which types of events have the greatest economic consequences?

Let's address the first question first with respect to population health.

Event Type	Fatalities	Injuries	Property Damage (dollars in millions)	Crop Damage (dollars in thousands)
ASTRONOMICAL LOW TIDE	0	0	9.74500	0.00
AVALANCHE	225	170	3.72180	0.00
BLIZZARD	101	805	659.71395	112060.00
COASTAL FLOOD	10	9	428.88206	56.00
COLD/WIND CHILL	112	12	1.99000	66600.00
DENSE FOG	18	342	9.67400	0.00
DENSE SMOKE	0	0	0.10000	0.00
DROUGHT	2	4	1046.10600	13972571.78
DUST DEVIL	2	43	0.71913	0.00
DUST STORM	22	440	5.59900	3600.00
EXCESSIVE HEAT	1905	6548	9.68870	634402.00
EXTREME COLD/WIND CHILL	400	415	77.30540	1335023.00
FLASH FLOOD	1018	1785	16732.86918	1437153.16
FLOOD	470	6789	144657.70981	5661968.45
FREEZING FOG	11	38	10.59850	0.00
FROST/FREEZE	1	3	15.99500	1160686.00
FUNNEL CLOUD	0	3	0.19460	0.00
HAIL	15	1361	15732.81954	3025627.89
HEAT	937	2100	1.79700	401461.50
HEAVY RAIN	98	255	3230.99814	795755.80
HEAVY SNOW	129	1034	952.92715	134673.10
HIGH SURF	104	156	90.15500	0.00
HIGH WIND	293	1471	6003.35604	686301.90
HURRICANE (TYPHOON)	135	1328	84756.18001	5515292.80
ICE STORM	89	1977	3948.42786	5022113.50
LAKE-EFFECT SNOW	0	0	40.18200	0.00
LAKESHORE FLOOD	0	0	7.54000	0.00
LIGHTNING	817	5232	933.73745	12092.09
MARINE HAIL	0	0	0.00400	0.00
MARINE HIGH WIND	2	3	1.34701	0.00
MARINE STRONG WIND	15	24	0.46833	0.00
MARINE THUNDERSTORM WIND	19	34	5.85740	50.00
RIP CURRENT	577	529	0.16300	0.00
SEICHE	0	0	0.98000	0.00
SLEET	2	0	0.00000	0.00
STORM SURGE/TIDE	32	64	47967.33879	5855.00
STRONG WIND	124	339	43501.41024	69958.50
THUNDERSTORM WIND	712	9509	9762.92226	1225454.99
TORNADO	5658	91368	58541.93248	417461.47
TROPICAL DEPRESSION	8	43	12.23700	16550.00
TROPICAL STORM	66	383	7714.39055	694896.00
TSUNAMI	33	129	144.06200	20.00
VOLCANIC ASH	0	0	0.50000	0.00
WATERSPOUT	6	72	60.73020	0.00
WILDFIRE	90	1606	8491.56350	402781.63
WINTER STORM	246	1570	6755.44175	32444.00
WINTER STORM WINTER WEATHER	73	647	87.81050	20500.00
WINIER WENTIER	10	041	87.81090	20300.00

