MIT 18.06 Exam 1, Fall 2018 Johnson

Your name:			
Recitation:			

problem	score
1	/30
2	/30
3	/10
4	/30
total	/100

Problem 1 (30 points):

You have the matrix

$$A = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 1 & 2 & -1 & 0 & 1 \\ 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \end{array}\right)$$

- (a) Find matrices P, U, L for a PA = LU factorization of A. Hint: look at A carefully first: if you find the right permutation P (a matrix to re-order the rows) it will be simple.
- (b) Compute $x = A^{-1}b$ where $b = \begin{pmatrix} -2\\2\\2\\1\\-4 \end{pmatrix}$.

(blank page for your work if you need it)

Problem 2 (30 points):

A is a 3×5 matrix. One of your Harvard friends performed row operations on A to convert it to rref form, but did something weird—instead of getting the usual $R=\left(\begin{array}{cc}I&F\end{array}\right)$, they reduced it to a matrix in the form $\left(\begin{array}{cc}F&I\end{array}\right)$ instead. In particular, their row operations gave:

$$A \leadsto \left(\begin{array}{ccccc} 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 0 & 1 & 0 \\ 6 & 7 & 0 & 0 & 1 \end{array} \right).$$

- (a) Find a basis for N(A).
- (b) Give a matrix M so that if you multiply A by M (on the **left or right?**) then the **same** row operations as the ones used by your Harvard friend will give a matrix in the usual rref form:

either
$$MA$$
 or $AM \leadsto \left(\begin{array}{ccccc} 1 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & 4 & 5 \\ 0 & 0 & 1 & 6 & 7 \end{array} \right).$

(blank page for your work if you need it)

Problem 3 (10 points):

In class, when we derived the LU factorization, we initially found L by multiplying a sequence of elementary elimination matrices, one to eliminate below each pivot. (We later found a more clever way to get L just by writing down the multipliers from the elimination steps, no arithmetic required.)

If A is a non-singular $m \times m$ matrix and we compute L in the "naive" way, by directly multiplying the elementary elimination matrices (by the usual rows × columns method, no tricks), how would the cost to compute L (the number of scalar-arithmetic operations) scale with m? (That is, roughly proportional to m, m^2 , m^3 , m^4 , m^5 , 2^m , or...?)

Problem 4 (30 points):

Here are some miscellaneous questions that require little calculation:

- (a) Is V a vector space or not? (For multiplication by real scalars and the usual \pm operations.) If **false**, give a rule of vector spaces that is violated:
 - (i) A is a 3×6 matrix. V = all solutions x to $Ax = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
 - (ii) A is a 3×6 matrix. $V = all \ 6 \times 2$ matrices X where AX = 0 (the 3×2 zero matrix).
 - (iii) $V = all \ 3 \times 3$ singular matrices A.
 - (iv) $V = all \ 3 \times 3$ matries whose diagonal entries average to zero.
 - (v) V = all differentiable functions f(x) with f'(0) = 2f(0). (f' is the derivative.)
 - (vi) V = all functions f(x) with f(x+y) = f(x)f(y).
- (b) Give a matrix A whose null space is spanned by $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.
- (c) Give a nonzero matrix A whose column space is in \mathbb{R}^3 but does not include $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

(blank page for your work if you need it)