Report for Solving Nonlinear Equations

Pingchuan Li 3210104672

October 9, 2023

Abstract

Use Bisection Method, Newton's Method and Secant Method to solve nonlinear equations.

1 Assignment A

According to requirements (a) and (b), EquationSolver{} is set as the abstract base class within pure virtual function f() and solve(). Then Bisection_Method{}, Newton_Method{} and Secant_Method{} are set as derived class within realizations of f() by each algorithm copied from Handbook. Note that Newton_Method{} needs the derivative of f(), so we create a pure virtual function f_diff() exclusively.

2 Assignment B/C/D/E/F

These assignments are all based on the header file "A.h". To solve each assignment and sub question, we create a class, entering the particular function by realizing pure virtual function f() (plus f_diff()) and particular parameters by constructors.

3 Subjective answers to some assignments

F(c): We find that the result will be quite different when initial values x_0 and x_1 are far beyond approximately 75°. The reason is that Secant Method only works when the initial values are sufficiently close to the actual root. Otherwise, mostly because the initial values and the actual root are not all in a interval [a, b] where f(x) remains convex (f''(x) > 0) or f''(x) < 0, the iterator may not converge.