

Interpretable Machine Learning

A Guide for Making Black Box Models Explainable Christoph Molnar

2022-03-29

https://christophm.github.io/interpretable-ml-book/

What is Explainable Al

- A "black box" model: how to understand its properties by looking at its parameters
 - ☐ As opposed to "white box" models
 - [Recommended] diagnostics of linear models
- Machine learning algorithm is built upon data, features, learning goals, etc.
 - Interpretability, transparency
 - "The running hypothesis is that by building more transparent, interpretable, or explainable systems, users will be better equipped to understand and therefore trust the intelligent agents"

(Miller 2019; <u>I</u>1

What is Explainable Al

- Design interpretable machine learning workflow: how well a human could understand the decisions of the workflow, i.e., interpretability or explainability
 - ☐ Consistently predict the model's result
 - Perfect accuracy is not a requirement for trust
 - Most concerning the entire model
- Create explicitly explanation of derived AI decisions
 - Most concerning individual model outputs

Machine learning workflows require decisions

Estimate how much carbon the ocean absorbs, at each location in space, over time, from sparse data

global ocean biogeochemical modelsç

observational-based data products

Learn a non-linear relationship between model-data mismatch and observed predictors

Interpretable results drive science forward

Interpretation methods

- Feature summaries and visualizations (e.g., partial dependence)
- Model coefficients
- Data prototypes
- Interpretable models
- Model-agnostic tools
- Local vs. global

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, (*)
 $E(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$
and ε_i , ε_j are uncorrelated.

$$\begin{cases} b_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ b_0 = \frac{1}{n} (\sum_{i=1}^{n} Y_i - b_1 \sum_{i=1}^{n} X_i) = \bar{Y} - b_1 \bar{X} \end{cases}$$

$$b_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X}) (Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X}) Y_{i}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = \sum_{i=1}^{n} K_{i} Y_{i}, \text{ where } K_{i} = \frac{(X_{i} - \bar{X})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}.$$

$$\hat{oldsymbol{eta}} = \left(\mathbf{X}^\mathsf{T}\mathbf{X}\right)^{-1}\mathbf{X}^\mathsf{T}\mathbf{y},$$

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}.$$

Influence Plot

Hat-Values
Circle area is proportial to Cook's Distance

https://github.com/empathy87/The-Elements-of-Statistical-Learning-Python-Notebooks/blob/master/examples/Phoneme%20Recognition.ipynb

https://github.com/empathy87/The-Elements-of-Statistical-Learning-Python-Notebooks/blob/master/examples/Phoneme%20Recognition.ipynb

- Model agnostic
- "How much has each feature value contributed to the prediction?"
- ☐ The Shapley value, for assigning payouts to players depending on their contribution to the total payout.
 - Game" the prediction task for one instance
 - "Gain" the actual prediction for this instance minus the average prediction for all instances.
 - "Players" the feature values of the instance

- The Shapley value is the average of all the marginal contributions to all possible "coalitions".
- ☐ The values of features that are not in a coalition are replaced by values randomly drawn from observed data.

$$egin{aligned} \phi_j(val) &= \sum_{S\subseteq \{1,\ldots,p\}\setminus \{j\}} rac{|S|!\,(p-|S|-1)!}{p!}(val\,(S\cup \{j\})-val(S)) \ &val_x(S) = \int \hat{f}\,(x_1,\ldots,x_p)d\mathbb{P}_{x
otin S} - E_X(\hat{f}\,(X)) \end{aligned}$$

Approximate Shapley estimation for single feature value:

- · Output: Shapley value for the value of the j-th feature
- Required: Number of iterations M, instance of interest x, feature index j, data matrix X, and machine learning model f
 - For all m = 1,...,M:
 - Draw random instance z from the data matrix X
 - Choose a random permutation o of the feature values
 - ullet Order instance x: $x_o = (x_{(1)}, \dots, x_{(j)}, \dots, x_{(p)})$
 - ullet Order instance z: $z_o = (z_{(1)}, \ldots, z_{(j)}, \ldots, z_{(p)})$
 - Construct two new instances
 - With j: $x_{+j} = (x_{(1)}, \ldots, x_{(j-1)}, x_{(j)}, z_{(j+1)}, \ldots, z_{(p)})$
 - ullet Without j: $x_{-j}=(x_{(1)},\ldots,x_{(j-1)},z_{(j)},z_{(j+1)},\ldots,z_{(p)})$
 - ullet Compute marginal contribution: $\phi_{j}^{m}=\hat{f}\left(x_{+j}
 ight)-\hat{f}\left(x_{-j}
 ight)$
- ullet Compute Shapley value as the average: $\phi_j(x)=rac{1}{M}\sum_{m=1}^M\phi_j^m$

$$\hat{\phi}_{j}=rac{1}{M}\sum_{m=1}^{M}\left(\hat{f}\left(x_{+j}^{m}
ight)-\hat{f}\left(x_{-j}^{m}
ight)
ight)$$

- Desirable properties and theory
- Computational intensive
- Can still be misinterpreted
- Need access to the data
- Can still ignore innate correlations between features

