Project Weak-Schur: Ising Model Proposal

Prasanna M.S.S

May 20, 2022

Contents

1	Hamiltonian Function 1		1
	1.1	Remarks on Definitions	1
	1.2	Problem Visualisation	1
	1.3	Computational Aspects	2
	1.4	Optimisation Formulation	2
	1.5	Decoding	2
2	Hamiltonian Function 2		
	2.1	Decoding	3

1 Hamiltonian Function 1

We are searching for a colouring of the first N natural numbers into n colours, such that whenever $\exists (a,b,c) \in [N]$ and a+b=c, then a,b and c do not share the same colour. The following have been modelled after the decision variables and functions presented in [1], Section 6.

Definition 1. The decision variable $x_{m,c}$ is defined as

$$x_{m,c} := \begin{cases} 1 & Col(m) = c \\ 0 & else \end{cases} \tag{1}$$

This defines the matrix of decision variables $\mathbf{x} \in M_{N \times n}(\{0,1\})$.

Definition 2. The Hamiltonian function for a Schur partition of the first N natural numbers into n colors is the following.

$$\mathcal{H}_{S}(\boldsymbol{x}) := A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + B \sum_{i,j=1}^{N} \sum_{c=1}^{n} x_{i,c} x_{j,c} x_{i+j,c}$$
(2)

where $A, B \in \mathbb{R}_{>0}$ are arbitrary weights.

We now add a constraint to define the Hamiltonian for the Weak Schur case.

Definition 3. The Hamiltonian function for a Weak Schur partition of the first N natural numbers is the following.

$$\mathcal{H}_{WS}(\boldsymbol{x}) = A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$= A \sum_{i=1}^{N} \left(1 - \sum_{c=1}^{n} x_{i,c} \right)^{2} + A$$

$$\underbrace{B\sum_{i,j=1}^{N}\sum_{c=1}^{n}x_{i,c}x_{j,c}x_{i+j,c}\cdot(2N-|i-j|)}_{\mathcal{B}}$$
 (4)

where $A, B \in \mathbb{R}_{\geq 0}$ are arbitrary weights.

1.1 Remarks on Definitions

We make some remarks on the first sum A first.

1. \mathcal{A} penalises the assignment of multiple colors to a single number.

Now, we study \mathcal{B} .

- 1. Notice that for any good triplet, (i, j, k), $l_{i,j} = x_{i,c}x_{j,c}x_{i+j,c} = 0$, we have $x_{i,c} = 0$, or $x_{i+j,c} = 0$, without loss of generality, which immediately implies that they do not share the colour c.
- 2. Suppose that they all share the same colour, then, $l_{i,j} = 1$, and the energy penalty becomes positive in \mathcal{B} .
- 3. In the degenerate case when i = j, |i j| = 0, and \mathcal{B} is effectively maximised by a multiplication with 2N, even if it satisfies the sum-free constraints. This implies only weakly sum-free triplets can attain a minimal \mathcal{B} . Intuitively, \mathcal{B} is minimised whenever i and j are "far apart".

1.2 Problem Visualisation

The problem is essentially an n-dimensional Ising problem with N charges.

Figure 1: Ising Model Representation of the partition $\{\{1,2,5\},\{3,4,6\}\}$ into n=2 colours. Here, Red = +1, White = -1.

1.3 Computational Aspects

To simplify the computation of the Hamiltonian, we can use the following looping order:

$$\mathcal{B}_{WS}(\boldsymbol{x}) = B \sum_{c=1}^{n} \sum_{i=1}^{N} x_{i,c} \sum_{j=1}^{N} x_{j,c} x_{i+j,c} (2N - |i-j|)$$

A simple Simulated Annealing algorithm can be proposed to find minimal configurations¹ for a given N, n, similarly to a simulated annealing approach, as follows in Alg. 1. Other approaches can be implemented from [2], [3], [4] and [5].

Algorithm 1: Simulated Annealing solution

$$\begin{array}{l} \mathbf{Data:} \ T_{max}, T_{min} \geq 0, \ N, n \in \mathbb{N} \\ \mathbf{Result:} \ x \in M_{N \times n}(\{-1,1\}) \\ x \overset{\$}{\leftarrow} \ M_{N \times n}(\{-1,1\}); \\ T \leftarrow T_{max}; \\ \mathbf{while} \ T > T_{min} \ \mathbf{do} \\ & \left| \begin{array}{c} r, c \overset{\$}{\leftarrow} [1:N] \times [1:n]; \\ x_{r,c}^{\mathrm{new}} \leftarrow -x_{r,c}; \\ \mathbf{if} \ \mathcal{H}_{WS}(x^{new}) \leq \mathcal{H}_{WS}(x) \ \mathbf{then} \\ & | \ x \leftarrow x^{\mathrm{new}}; \\ \mathbf{else} \\ & \left| \begin{array}{c} \mathbf{if} \ e^{-\frac{\mathcal{H}_{WS}(x^{new}) - \mathcal{H}_{WS}(x)}{T}} < \alpha \ \mathbf{then} \\ & | \ x \leftarrow x^{\mathrm{new}}; \\ & | \ \mathbf{end} \\ & | \ \mathbf{end} \end{array} \right. \end{array}$$

1.4 Optimisation Formulation

Alternatively, we can formulate the problem as a constrained, non-linear, integer optimisation problem in the following way.

$$\min_{\boldsymbol{x} \in \{1, -1\}^N} H_{WS}(\boldsymbol{x}) \tag{5}$$

Using the constraints, we get that

$$\min_{\boldsymbol{x} \in \{1,-1\}^N} \mathcal{B}(\boldsymbol{x})$$
 subject to: $\forall c, \ \langle \mathbb{1}, x_{\cdot,c} \rangle = 1$

or, considering $\boldsymbol{x} \in M_{N \times n}(\{1, -1\}),$

$$\min_{\boldsymbol{x} \in \{1,-1\}^N} \mathcal{B}(\boldsymbol{x}) \tag{6}$$

subject to:
$$\langle \mathbb{1}, \boldsymbol{x} \rangle = \mathbb{1}$$
 (7)

1.5 Decoding

Here, the decoding is straightforward: A valid decoding can only be performed when the partition satisfies all the constraints i.e. if $\mathcal{H}=0$, then reading each row of the matrix $[x_{i,c}]_{N\times n}$ gives us the right colour for each number. Else, $[x_{i,c}]_{N\times n}$ will give potential partitions, for each resolution, each with some energy, and we can take the minimal configuration.

2 Hamiltonian Function 2

Alternatively, we can choose a different decision variable, where each variable can be thought of as a certificate.

Definition 4. The decision variable $x_{m,k}$ is defined as

$$x_{m,n} := \begin{cases} 1 & Col(m) = Col(n) \\ 0 & else \end{cases}$$
 (8)

So, $x_{i,j} = x_{j,i} = 1 \implies i$ and j have the same colour. Note that this does not impose any constraint on the number of colours necessary; only that in the most general sense, for a desired partition of N numbers, $x_{i,j}$ have the same colour, or not.

Therefore, we can simplify the corresponding Hamiltonians as follows.

Definition 5. The Hamiltonian function for a Schur partition of the first N natural numbers is the following.

$$\mathcal{H}^C := A \sum_{i,j=1}^N x_{i,j} x_{i,i+j} x_{j,i+j}$$

Definition 6. The Hamiltonian function for a Weak Schur partition of the first N natural numbers is the following.

$$\mathcal{H}_{WS}^C := A \sum_{i,j=1}^N x_{i,j} x_{i,i+j} x_{j,i+j} \cdot |i-j|$$

 $^{^1}$ Usually local minima

In a similar manner to Eqn. 3, the |i-j| multiplier penalises the degenerate case of 2i = k, where the only possible way to decrease \mathcal{H}_{WS}^{C} is to maintain distinct colors for $x_{i,j}$, $x_{i,i+j}$ and $x_{j,i+j}$.

2.1 Decoding

Since the Hamiltonian does not impose the colour-constraint, the Decoding algorithm must. The proposal is a type of Branching algorithm, that has the signature: **Decode**: $([x_{i,j}]_{N\times N}, n) \to C \in [N] \times [n]$, where $[N] = \{1, 2, \ldots, N\}$ and n is the number of colours.

Informally, the steps are as follows:

- 1. **Initialisation** Assign a random colour to the first number k = 1.
- 2. For each number k > 1, for each certificate $x_{k,m} = 1$ where $m \neq k$,
 - (a) if m has a colour, assign k the same colour and terminate.
- 3. If not terminated yet, for all certificates $x_{k,m} = 0$ $(m \neq k)$, create a list L = [1:n]
 - (a) for each $x_{k,m} = 0$, remove m from L.
 - (b) Branch on the size of L:
 - i. if |L| = 0, terminate with error.
 - ii. If |L| = 1 i.e. $L = \{m\}$, assign k the colour m and terminate.
 - iii. Else, branch on all possible values that remain in L.

References

- [1] A. Lucas, "Ising formulations of many NP problems," *Frontiers in Physics*, vol. 2, 2014.
- [2] K. P. Kalinin and N. G. Berloff, "Computational complexity continuum within ising formulation of np problems," *Communications Physics*, vol. 5, no. 1, pp. 1–10, 2022.
- [3] M. Jerrum and A. Sinclair, "Polynomial-time approximation algorithms for the ising model," *SIAM Journal on computing*, vol. 22, no. 5, pp. 1087–1116, 1993.
- [4] S. Morita and H. Nishimori, "Mathematical foundation of quantum annealing," *Journal of Mathematical Physics*, vol. 49, no. 12, p. 125210, 2008.
- [5] A. Yavorsky, L. A. Markovich, E. A. Polyakov, and A. N. Rubtsov, "Highly parallel algorithm for the ising ground state searching problem," 2019.