Introduction to Simulink

Mughees Asif

3rd Year Aerospace Engineering

QMUL MathWorks Student Ambassador

Outline

What is Simulink?

Working with Simulink

How Simulink works

Componentizing models

Continuous and discrete models

Simulink

Simulink is a software package for modeling, simulating, and analyzing dynamic systems

- Block diagram editing
- Non-linear simulation
- Hybrid (continuous and discrete) models
- Asynchronous (non-uniform sampling) simulation
- Fully integrated with MATLAB, MATLAB toolboxes and blocksets.

Simulink

- Accurately design, implement, and test:
 - Control systems
 - Signal Processing systems
 - Communications systems
 - Embedded systems
 - Physical systems
 - other Dynamical systems

Model Based Design with Simulink

Definition

 A model is defined as a representation of a system for the purpose of studying the system.

Types

- Static vs. dynamic.
- Deterministic vs. stochastic
- Discrete vs. continuous

Implementation

- Automatic code generation
- Rapid prototyping for HIL, SIL
- Verification and validation

Simulink Applications

Bell Helicopter Develops the First Civilian Tiltrotor, Using Model-Based Design

Challenge

To design and build the BA609, the first and fastest commercially available tiltrotor aircraft in the world

Solution

Use Model-Based Design with MATLAB, Simulink, and Real-Time Workshop software to model, simulate, test, and verify designs

Results

- Full collaboration with suppliers via Simulink models
- Flight control system code generated automatically from models
- 40% improvement in design and development time
- Flawless first flight, which went exactly like the simulation

The BA609, flying in airplane mode.

"Simulations and a rapid, iterative approach enabled us to minimize the unknowns and ensure that we had established enough margin that when weran into a surprise we could continue to have a safe flight test program—and run it with unprecedented efficiency."

David King Bell Helicopter

Outline

Why Simulink?

Working with Simulink

How Simulink works

Componentizing models

Continuous and discrete models

Simulink Toolbar

Overview of the library

Library Name	Examples
Sources	Constant, Sine Wave, Steps
Sinks	Scope, XY Graphs
Math operations	Add, divide, absolute
Ports & subsystems	Subsystem, Enable port, Inputs and Outputs: In1 and Out1
User defined functions	Fcn, MATLAB Fcn
Lookup tables	1D Lookup table
Signal Routing	Mux, BusCreator, Goto, Switch
Continouse	Integrator, Derivative
Discrete	Unit delay, Discrete Derivative
Logical and Bit operations	Compare to Zero, Logical operators

Finding Blocks

Getting Help

- Context sensitive help
- Simulink documentation

Type

Settings

Variable-step

Default: Variable-step

Select the type of solver you want to use to simulate your

Step size varies from step to step, depending on

Outline

Why Simulink?

Working with Simulink

How Simulink works

Componentizing models

Continuous and discrete models

How Simulink Works

- Engine provides variable-step and fixed- step ODE solvers
- Block Diagram representation of dynamic systems
- Blocks define governing equations
- Signals are propagated between blocks over time

Simulink Solvers

- Solver?
 - Determines solution at current time step
 - Determines the next simulation time step

Solver options: Fixed-Step Vari

✓Ode1

✓Ode2

✓ Ode3

✓ Ode4

✓ Ode5

✓ Ode8

Variable-Step

✓Ode45

√Ode23

✓ Ode113

✓ Ode15s

✓ Ode23s

✓Ode23t

✓ Ode23tb

Outline

Why Simulink?

Working with Simulink

How Simulink works

Componentizing models

Continuous and discrete models

Creating Subsystems

- Context menu → Create Subsystem
- Subsystem ports
- Inside a subsystem

Subsystems

- Why?
 - Reduce blocks displayed in a model window
 - Keep functionally related block together
 - Establish hierarchical block diagram

Model Referencing

- One model in another- parent and referenced model
- Advantages:
 - Componentization/Modularization
 - IP protection
 - Multiple referencing
 - Acceleration

Block Library

- Collection of blocks
- Prototype block vs Reference block
- Library Links
 - Disable link
 - Restore link
 - Break link

- Other features
 - Display in Simulink Library Browser
 - Add documentation

Outline

Why Simulink?

Working with Simulink

How Simulink works

Componentizing models

Continuous and discrete models

'Continuous' Library

Continuous systems: Time-Domain Representation using Integrator Block

$$x'(t) = 3x(t) + u(t)$$

Continuous systems: Frequency-Domain Representation using Transfer Function Block

$$x'(t) = 3x(t) + u(t) \Leftrightarrow X(s) = \frac{1}{s-3}$$

$$U(s) = \frac{1}{s-3}$$

Simulink Demo: Foucault Pendulum Model with VRML Visualization

Foucault Pendulum Scene

sldemo_foucault_vr.mdl

This model solves the differential equations for the Foucault Pendulum problem and displays the pendulum bob movement in the VRML scene. You can modify the Pendulum location by changing the Latitude / Longitude constant values in the model and other parameters (g, Q, L and initial conditions) in MATLAB(R) workspace.

Foucault Pendulum Model with VRML Visualization

Copyright 1998-2009 The MathWork, Inc.

2

View Viewpoints Navigation Rendering Simulation Recording Help

_ | X

Other Demos for Continuous Systems

Discrete Systems

- System that takes an input sequence of samples and outputs a sequence of samples
- Sampling

$$y[k] = 0.1x[k] + x[k-1]$$
$$x[k+1] = -0.5x[k] + u[k]$$

'Discrete' Library

Discrete system example

Second order FIR filter

$$y[k] = \frac{x[k] + ax[k-2]}{2}$$

Summary

Why Simulink?

Working with Simulink

How Simulink works

Componentizing models

Continuous and discrete models

Cisco

- Campus Ambassador
- Do join the **LinkedIn page** for graduate/internship opportunities: https://www.linkedin.com/groups/12470630/
- Join the **email newsletter** to stay up-to-date: https://forms.gle/QZamk91qoJm3pt4s6
- To **access** the job opportunities, use the link: https://rb.gy/y8u16a

Developer Student Clubs

Queen Mary, University of London

- Work in a team of 17 students, in collaboration with Google
- Leveraging Google products to solve local community challenges
- Do join the **LinkedIn page** to get involved: https://www.linkedin.com/groups/12467711/
- Check out the team and for future updates, do **join the chapter**: https://dsc.community.dev/queen-mary-university-of-london/

KAHOOT! Challenge

Will post all prizes by next day

All sizes available

First	1 x t-shirt
11150	1 A C SILLI C
	1 x baseball cap
	1 x sunglasses
	10 x pens
Second	$1 ext{ x }$ drawstring bag
	$1 ext{ x baseball cap}$
	10 x pens
	20 x stickers
Third	10 x pens
	10 x stickers

Thank you!

MATLAB® SIMULINK®

Join the FB group to stay up to date with future events:

https://www.facebook.com/groups/196042678284982

The code and presentation can be downloaded from:

https://github.com/mughees-asif/matlab-qmul#queenmary-matlab-tutorials

