Hot Topics Of Generative Al: LLMs and Diffusion Models

TU Dortmund – Department of Computer Science Chair 9 – Prof. Dr. Müller

presented by Marlon Kapala supervised by Tim Katzke

Agenda

- 1 What is Graph Representation Learning?
- 2 The Emergence of Diffusion Models
- 3 Graphs vs. Images
- 4 The Architecture of Directed Diffusion Models
- 5 Benchmarks
- 6 Conclusion

1 What is Graph Representation Learning?

What is a graph?

- ightharpoonup G = (V, E), vertices V and edges E
- Graphs can represent anything from molecules to road networks or social networks
- Nodes can also have node features X

Zhu et al., 2020

IMDB-Binary – A Graph Dataset

- Graph Learning works with Graph Datasets
- ► IMDB-B contains ego-networks of actors from Action or Romance movies (Yanardag et al., 2015)
- ► From only the knowledge how actors have co-starred, models can determine the genre with an accuracy of up to 95% (Nguyen et al., 2019)

Representation Learning

▶ RL is an important part of Machine Learning that converts data to a form

that can be worked with more easily

► Here, there is also a difference between unsupervised (without labels) and supervised learning (with labels)

Dimensionality Reduction is a prominent subfield

Graph Representation Learning - GNNs

- For RL on Graphs, Graph Neural Networks are often used
- ► They work similar to Convolutional Neural Networks (CNNs)

Instead of using neighboring pixels, the adjacency matrix, which encodes

the edges, is used

2 The Successful Diffusion Model

Denoising Probabilistic Diffusion Models

► Introduced to Machine Learning only recently (Ho et al., 2020), but has become the standard for image generation beating former SOTA technologies (Dhariwal et al., 2021)

The DM's Algorithm

► To add noise to the images, Diffusion Models add Gaussian noise in each training step

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

- 5: end for
- 6: return \mathbf{x}_0

Ho et al., 2020

3 Graphs vs. Images

The Anisotropy of Graphs

► While images are naturally isotropic and euclidean, Graphs are anisotropic (i. e., properties vary with direction)

► Hence, Yang et al. introduce "Directional Noise":

$$x_{t,i} = \sqrt{\bar{\alpha}_t} x_{0,i} + \sqrt{1 - \bar{\alpha}_t} \epsilon',$$

$$\epsilon' = \operatorname{sgn}(x_{0,i}) \odot |\bar{\epsilon}|,$$

$$\bar{\epsilon} = \mu + \sigma \odot \epsilon \quad \text{where } \epsilon \sim \mathcal{N}(0, \mathbf{I})$$

 \triangleright α and β are the noise schedule analogous to Ho's paper

$$\bar{\alpha}_t := \prod_{i=0}^t (1 - \beta_i) \in (0, 1)$$

- ► The Signal-To-Noise-Ratio is fundamental for the learning process of Diffusion Models
- ► The application of directional noise has a vital effect on the SNR

4 Directional Diffusion Models - Architecture

Components of the Model

Training step

---→ Embedding step

Skip connection Representation vector

Yang et al., 2023

The Training Algorithm

Similar to the DPDM algorithm

```
Algorithm 1 The training algorithm.
```

```
Input: A batch of graphs \mathcal{G} = \{G_1, \dots G_B\}
Output: The denoising network f_{\theta}
```

```
1: Initialize: the denoising network f_{\theta}
2: Compute \mu, the mean of node features across batch \mathcal{G}
3: Compute \sigma, the standard deviation of node features across batch \mathcal{G}
4: while not convergence do
5: for G_i in \mathcal{G} do
6: for t = 1, \dots, T do
7: Sample directional noise \epsilon' using equation (2)
8: Take gradient descent step on \nabla_{\theta} \| \mathbf{X}_0 - f_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{X_i} + \sqrt{1 - \bar{\alpha}_t}\epsilon', \mathbf{A}, t) \|
9: end for
10: end for
11: end while
```

Yang et al., 2023

The Extraction Algorithm

Instead of generating an image, a representation is generated

Algorithm 2 Extracting representations.

Input: $G = (\mathbf{A}, \mathbf{X})$, forward step set $\{T_0, T_1, \dots, T_K\}$, pre-trained denoising network f_{θ} Output: \mathbf{H} , the representation of G

- 1: Compute μ the mean of node features
- 2: Compute σ the standard deviation of node features
- 3: **for** k in $\{T_0, T_1, \ldots, T_K\}$ **do**
- 4: **Sample** directional noise ϵ' using equation (2)
- 5: $\mathbf{X_k} \leftarrow \sqrt{\bar{\alpha}_k} \mathbf{X_0} + \sqrt{1 \bar{\alpha}_k} \epsilon'$
- 6: $\mathbf{H}_k \leftarrow f_{\theta}(\mathbf{X}_k, \mathbf{A}, k)$
- 7: end for
- 8: Concatenate $\mathbf{H} = [\mathbf{H}_{T_0}, \mathbf{H}_{T_1}, \dots, \mathbf{H}_{T_K}]$
- 9: return H

5 Resulting Benchmarks

Graph Classification

- ► The paper compares multiple State-Of-The-Art models with DDMs
- Support Vector Machines are used on the learned representations
- ► While here only graph classification results are presented, the results from node classification are similarly promising

Results

Dataset	IMDB-B	IMDB-M	COLLAB	REDDIT-B	PROTEINS	MUTAG
GIN	75.1±5.1	52.3±2.8	80.2±1.9	92.4±2.5	76.2±2.8	89.4±5.6
DiffPool	72.6±3.9	-	78.9 ± 2.3	92.1±2.6	75.1 ± 2.3	85.0 ± 10.3
Infograph	73.03±0.87	49.69±0.53	70.65±1.13	82.50±1.42	74.44±0.31	89.01±1.13
GraphCL	71.14±0.44	48.58±0.67	71.36±1.15	89.53±0.84	74.39±0.45	86.80 ± 1.34
JOAO	70.21±3.08	49.20±0.77	69.50±0.36	85.29±1.35	74.55±0.41	87.35 ± 1.02
GCC	72	49.4	78.9	89.8	-	-
MVGRL	74.20±0.70	51.20±0.50	-	84.50±0.60	-	89.70 ± 1.10
GraphMAE	75.52±0.66	51.63±0.52	80.32±0.46	88.01±0.19	75.30±0.39	88.19±1.26
DDM	76.40±0.22	52.53±0.31	81.72±0.31	89.15 ±1.3	75.47 ± 0.50	91.51 ±1.45

supervised

unsupervised

Yang et al., 2023

6 Conclusion

Research Outlook

- ► Yang et al. only introduce the idea, they admit that their hyperparameters are not optimal yet
- One open question is how the optimal set of diffusion steps can be determined
- Variants of DDMs could bring value to areas such as computer vision and natural language processing
- ► To the best of my knowledge, nobody has yet continued their work

What makes this paper special?

- ► As mentioned, the technology introduced holds great potential for future research
- ► The benchmarks are remarkable, particularly compared to the supervised models
- ► The researchers consider themselves "among the pioneers in the literature" regarding the "exploration of anisotropic structure in graph data"

References & Weblinks

- ► Yang et al. (2023). Directional diffusion models for graph representation learning
- ► Zhu et al. (2020). GSSNN: Graph Smoothing Splines Neural Networks
- ► Yanardag et al. (2015). Deep Graph Kernels
- ▶ Nguyen et al. (2019). Universal Graph Transformer Self-Attention Networks
- ▶ Ho et al. (2020). Denoising Diffusion Probabilistic Model
- ▶ Dhariwal et al. (2021). Diffusion Models Beat GANs on Image Synthesis
- Presentation Code: https://github.com/JavaLangMarlon/ddm-proseminar-tu-dortmund
- CC BY-SA 3.0: https://creativecommons.org/licenses/by-sa/3.0
- CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0