

Hate Speech Detection

Exploratory Data Analysis and Model Proposal

09/05/23

Agenda

Problem Statement
Assumptions
EDA and Featurization
Proposed Models

Business Understanding

- Hate Speech Detection is a task of sentiment classification.
- Censor hate speech posts.
 - These aren't in line with our policy.
 - Defined as discriminatory messages based on identity.
- Earn user's trust as safe and accessible platform.
- Raise advertiser confidence in brand image and platform.
 - Increase ad revenue.

Dataset and Assumptions

- The data is derived from real tweets.
- The training data is labelled correctly.
- The training and test data are from the same domain.
- The amount of hate speech compared to non-hate speech reflects the proportion on the platform (see below)..
- Tweets are below the limit of 200 characters and are formatted in the same way.

Total number of observations	16130
Total number of files	1
Total number of features	2
Base format of the file	.csv
Size of the data	1.56 MB
Total number of observations	29530
train.tweets.csv	Lagrage
Total number of files	1
Total number of features	3
Base format of the file	.csv

test tweets.csv

Dataset split into training and testing data.

Extra Training Features

What factors are indicators of hate speech?

- Word count and avg. length:
 - some speech patterns are indicative of anger.
- Hashtags:
 - hashtags might be associated with hate speech.
- Exclamation marks:
 - can be an indicator of rage.
- Question marks:
 - people often use rhetorical questions to show anger.
- Uppercase usage:
 - can be an indicator of anger.
- Sentiment:
 - there might be a link between use of negative words and hate speech.

Extra Training Features

Proposed Models

1. K-Nearest Neighbour

2. Naïve Bayes

3. Logistic Regression

Thank You

