例题 4.1

例题 4.1 计算行列式

$$\begin{pmatrix} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{3} \end{pmatrix}$$

习题

提示

能否化为三角行列式?

b4 .

 a_1b_1 a_1b_2 a_1b_3 a_1b_4 a_1b_2 a_2b_2 a_2b_3 a_2b_4 a_1b_3 a_2b_3 a_3b_3 a_3b_4 a_1b_4 a_2b_4 a_3b_4 a_3b_4 a_4b_4

013 - b3 × 014 012 - b2 × 014 011 - b1 × 014

爪形行列式的一般解法

习题

- **10 (4)**
- **▶** 11 (6)

例题 4.2

计算下面矩阵的行列式

提示

通过初等变换化为下三角矩阵. (上三角呢?)

例题 4.3

计算下面矩阵的行列式

$$a_{i,j} = \begin{cases} 1 & \text{if } i = j \\ x & \text{otherwise} \end{cases}$$

提示

观察到,除了主对角线,其他元素都相同.所以,每行减去某一含有相同元素的行,将问题化简.至此,只需构造这样含有相同元素的行.

例题 4.3 解

习题

$$\begin{vmatrix} x-a & x & x & \dots & x \\ x & x-a & x & \dots & x \\ x & x & x-a & \dots & x \\ \vdots & & \ddots & \vdots \\ x & x & x & \dots & x-a \end{vmatrix}$$

Outline

Sec 1.0 引言

Sec 1.1 2 阶与 3 阶行列式

Sec 1.2 n 阶排列

Sec 1.3 n 阶行列式的定义

Sec 1.4 n 阶行列式的性质及计算

Sec 1.5 行列式按一行展开及克拉默法则

Q11 · Q22 - Q12 · Q21

3x3

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = a_{1,1} \begin{vmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} + a_{1,2} \begin{vmatrix} a_{2,3} & a_{2,1} \\ a_{3,3} & a_{3,1} \end{vmatrix} + a_{1,3} \begin{vmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{vmatrix}$$

行列式的余子式表示

- ▶ $A = [a_{i,j}]_{i,j}$: $n \times n$ 矩阵
- ► A_{[i,j}]: 通过 A 去掉第 i 行和第 j 列的元素得到 的 $(n-1) \times (n-1)$ 矩阵
- ▶ *M_{i,j}* := |*A_{[i,j}*|: *a_{i,j}* 的余子式
- ▶ $A_{i,j} := (-1)^{i+j} M_{i,j}$: $a_{i,j}$ 的代数余子式 ((i,j)-cofactor)
- ▶ 规定 n = 1 时, 取 $M_{i,j} = A_{i,j} = 1$ Aciji: A\ {ai.a.j} a11 - - - a1j - - . ain

$$\begin{vmatrix} a_{11} & -a_{1j} \\ a_{11} & -a_{1j} \\ a_{n_1} & -a_{n_n} \end{vmatrix} = -a_{n_n}$$

行列式按行列展开

定理 5.1

- ▶ 按第 i 行展开: $|A| = \sum_{j=1}^{n} a_{i,j} A_{i,j}$
- ▶ 按第 i 列展开: $|A| = \sum_{j=1}^{n} a_{j,i} A_{j,i}$

Q_i

Zi

ไทเ

行列式按行列展开的证明 (0)

想法

仅考虑按一行展开 (转置保持行列式不变). 考虑按第一行展开 (否则,通过行交换转化为第一行). 利用行列式的线性性质,转化为"对角"情形.

行列式按行列展开的证明 (1)

计算行列式

$$\begin{vmatrix} a_{1,1} & 0 & \dots & 0 \\ \hline a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{vmatrix} \times X$$

$$= (-1)^{\tau(i_1,\dots,i_n)} a_{1,i_1} \dots a_{n,i_n} \quad (定义)$$

$$= a_{1,1}((-1)^{\tau(1,i_2,\dots,i_n)} a_{1,i_2} \dots a_{n,i_n}) \quad (a_{1,j} = 0 \text{ for } j \neq 1)$$

$$= a_{1,1}((-1)^{\tau(i_2,\dots,i_n)} a_{1,i_2} \dots a_{n,i_n}) \quad (1 \text{ 在首尾不构成逆序})$$

$$= a_{1,1}|A_{[1,1]}| \quad (定义).$$

行列式按行列展开的证明 (2)

$$\begin{vmatrix} 0 & 0 & \dots & a_{1,j} & \dots & 0 \\ a_{2,1} & a_{2,2} & \dots & a_{2,j} & \dots & a_{2,n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,j} & \dots & a_{n,n} \end{vmatrix}$$

$$= (-1)^{j-1} \begin{vmatrix} a_{1,j} & 0 & \dots & 0 & \dots & 0 \\ a_{2,j} & a_{1,2} & \dots & a_{2,j-1} & \dots & a_{2,n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n,j} & a_{1,2} & \dots & a_{n,j-1} & \dots & a_{n,n} \end{vmatrix}$$

$$= (-1)^{j-1} a_{1,j} |A_{[1,j]}| \quad (上述情形).$$

行列式按行列展开的证明,(3)

将 $a_{1,j}$ 看作 $0+\cdots+0+a_{1,j}+0+\cdots+0$. 由行列式的线性性质得 $f(a_1,a_2)=f(a_1+0,0+a_2)=f(a_1,0)+f(0,a_2)$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{1,1} & \dots & a_{1,j} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,j} & \dots & a_{2,n} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,j} & \dots & a_{n,n} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & o \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} o & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$= \sum_{j=1,\dots,n} \begin{vmatrix} 0 & \dots & a_{1,j} & \dots & 0 \\ a_{2,1} & \dots & a_{2,j} & \dots & a_{2,n} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,j} & \dots & a_{n,n} \end{vmatrix}$$

行列式按行列展开的证明 (4)

$$\cdots = \sum_{j=1,...,n} (-1)^{j-1} \begin{vmatrix} a_{1,j} & 0 & \dots & 0 \\ a_{2,j} & a_{2,j} & \dots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,j} & a_{n,j} & \dots & a_{n,n} \end{vmatrix}$$

$$= \sum_{j=1,...,n} (-1)^{j-1} a_{1,j} |A_{[1,j]}|.$$

至此, 我们得到的行列式按第一行展开.

行列式按行列展开的证明 (5)

现考虑按第 i 行进行展开. 类似对第 j 列的处理, 得

$$\begin{vmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{i,1} & \dots & a_{i,n} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{vmatrix} = (-1)^{i-1} \begin{vmatrix} a_{i,1} & \dots & a_{i,n} \\ a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{vmatrix} = \sum_{i=1,\dots,n} (-1)^{i+j} a_{i,j} |A_{[i,j]}|.$$

行列式按行列展开的证明 (6)

最后, 证明按第 i 列展开. 由转置保持行列式可得

$$|A| = |A^T|$$

$$= \sum_{j=1,...,n} (-1)^{i+j} a_{i,j}^T |A_{[i,j]}^T|$$

$$= \sum_{j=1,...,n} (-1)^{i+j} a_{j,i} |A_{[j,j]}|$$

例题 5.1

例题 5.1 计算行列式

$ a_{1,1} 0 \dots 0$	$a_{1,n}$	
$0 0 \dots 0 a_{2,n-1}$	$a_{2,n}$	
$0 0 \dots a_{3,n-2} a_{3,n-1}$	0	
$a_{m,1}$ $a_{m,2}$ 0 0	0	

提示 按第一行进行展开.

例题 5.2

例题 5.2

计算范德蒙德 (Vandermonde) 行列式 $|V_n|$, 其元素 $v_{i,j}=a_i^{i-1}$ 即

ith row
$$\begin{vmatrix} 1 & \vdots & 1 \\ a_1 & \vdots & a_n \\ \vdots & \vdots & \vdots \\ a_1^{n-1} & \vdots & a_n^{n-1} \end{vmatrix}$$

求证

$$|V_n| = \prod_{1 \le i \le n} (a_i - a_j).$$

例题 5.2 解 (1)

尝试"对角化" V_n ,如 r_{i+1} — $a_n r_i$ for $i=1,\ldots,n-1$ 得

按第1行展开,并化简得

$$\underbrace{(-1)^{n-1}}_{i=1} \prod_{i=1}^{n-1} (a_i - a_n) \begin{vmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ a_1^{n-2} & \dots & a_{n-1}^{n-2} \end{vmatrix}$$

例题 5.2 解 (2)

$$|V_n| = (-1)^{n-1} \prod_{i=1}^{n} (a_i - a_n) |V_{n-1}|$$

$$\sum_{i=1}^{n} a_i = a_1 + \dots + a_n$$

$$= \prod_{i=1}^{n-1} (a_n - a_i) |V_{n-1}|$$

$$= \dots$$

$$= \prod_{j=n}^{2} (\prod_{i=1}^{j-1} (a_j - a_i)) |V_1|$$

$$= \prod_{1 \le i \le n} (a_j - a_i).$$

定理 5.2

定理 5.2 如果 $i \neq j$, 那么

$$a_{i,1}A_{j,1}+\cdots+a_{i,n}A_{j,n}=0$$

且

定理 5.2 证明

取 A' 为将 A 第 j 行替换为第 i 行所得的矩阵. 有 $a'_{j,k} = a_{i,k}$ 和 $A'_{j,k} = A_{j,k}$. 通过对第 j 行展开, 有

习题

对

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 3 & 3 & 5 & 5 \\ 2 & 2 & 4 & 4 \end{pmatrix}$$

求 $A_{2,1}+A_{2,2}$

提示

通过替换第 i 行元素, 产生含有 $A_{2,1} + A_{2,2}$ 的方程.

克拉默法则

定理 5.3 克拉默法则 (Cramer's Rule)

若它的系数行列式 $D = |a_{ij}| \neq 0$, 则该方程组有唯一解

$$\forall j = \frac{|A_i|}{|A|}$$

$$x_i = \frac{D_i}{D}, i = 1, \cdots, n$$