Supervised learning

Data Science, AU, Fall 2023 Ira Assent

Where we are...

- 1. 11/10 Introduction, data preprocessing, PCA, clustering
- 2. 13/10 Unsupervised learning, more clustering, outlier detection
- 3. 23/10 Supervised learning, classical machine learning: DT, SVMs,...
- 4. 26/10 Neural networks, pitfalls, outlook
- We looked at unsupervised learning
 - Density-based clustering:
 - robust to noise, arbitrary cluster shapes,
 - complex, difficult parameter choices,
 - hierarchical approaches: overview, help with parameter settings
 - Outlier detection: find issues or rare events in data
 - Inlier / outlier: e.g. statistics
 - Ranking approaches: e.g. LOF, density-based local

Any comments? Questions?

Today's learning goals

- Classification
 - Supervised learning
 - Training data to learn about pre-defined classes, make predictions
- Classical machine learning models
 - Before current wave of deep neural networks
 - Decision Trees, Naïve Bayes,...
 - Still have their value
 - ▶ In particular, small(er) data sets
 - Interpretable
 - efficient
- Classification evaluation measures
 - How do we know that the model is good?
 - Different types depending on what is important in the performance
- Revisiting outlier detection
 - Using decision trees for the purpose of finding outliers

Classification

- Class labels are known for a small set of "training data":
 Find models/functions/rules (based on attribute values of the training examples) that
 - describe and distinguish classes
 - predict class membership for "new" objects

Applications

- Classify gene expression values for tissue samples to predict disease type and suggest best possible treatment
- Automatic assignment of categories to large sets of newly observed celestial objects
- ▶ Predict unknown or missing values (→ KDD pre-processing step)
- . . .

Classification Problem

Given

- ▶ a d-dimensional data space D with attributes a_i , i = 1, ..., d
- a set $C = \{c_1, ..., c_k\}$ of k distinct class labels c_i , j = 1, ..., k
- ▶ a set $O \subseteq D$ of objects, $o = (o_1, ..., o_d)$, with known class labels from C
- Searched
 - \triangleright class label for objects from D-O, i.e. for objects with unknown class
 - \blacktriangleright a classifier $K: D \rightarrow C$
- Demarcation from clustering
 - Classification: classes are known in advance (a priori)
 - Clustering: classes are determined
- Related problem: prediction
 - Determine the value of a numerical attribute
 - Method: e.g., regression analysis

Classification Example

ID	age	car type	risk
1	23	family	high
2	17	sportive	high
3	43	sportive	high
4	68	family	low
5	32	truck	low

Simple Classifier

```
if age > 50 then risk = low;
if age ≤ 50 and car type = truck then risk = low;
if age ≤ 50 and car type ≠ truck then risk = high.
```

Classification Process: Model Construction (= training phase)

Classification Process: Model Application (= test phase)

 Goal is sometimes not to classify unknown data but to get a better understanding of the data

Evaluation of Classifiers – Accuracy

- Classification Accuracy
 - Predict the class label for each object from a data set o (= test set)
 - Determine the fraction of correctly predicted class labels:

$$classification\ accuracy = \frac{count(\text{correctly predicted class label})}{count(o)}$$

▶ Classification error = 1 – classification accuracy

Evaluation of Classifiers – Notions

- Overfitting
 - Classifier is optimized to training data
 - May yield worse results for entire data set
 - Potential reasons
 - bad quality of training data (noise, missing values, wrong values)
 - different statistical characteristics of training data and test data
- Train-and-Test
 - Decomposition of data set o into two partitions
 - Training data to train the classifier
 - construction of the model by using information about the class labels
 - Test data to evaluate the classifier
 - temporarily hide class labels, predict them anew and compare results with original class labels

Evaluation of Classifiers – Cross Validation

Train-and-Test is not applicable if the set of objects for which the class label is known is very small

- m-fold Cross Validation
 - Decompose data set evenly into m subsets of (nearly) the same size.
 - Iteratively use m-1 partitions as training data and the remaining single partition as test data.
 - Combine the m classification accuracy values to an overall classification accuracy, and combine the m generated models to an overall model for the data.

Evaluation of Classifiers – Leave-One-Out

- If data set is very small
- Leave-one-out is, in some sense, a degenerate variant of cross validation
 - For each of the objects o in the data set D:
 - ▶ Use set D o as training set
 - ▶ Use the singleton set {o} as test set
 - Predict the class label of object o
 - Compute classification accuracy by dividing the number of correct predictions through the database size |D|
- Particularly well applicable to nearest-neighbor classifiers

Quality Measures for Classifiers

- Classification accuracy
- Compactness of the model
 - decision tree size; number of decision rules
- Interpretability of the model
 - Insights and understanding provided by the model
- Efficiency
 - Time to generate the model (training time)
 - Time to apply the model (prediction time)
- Scalability for large databases
 - Efficiency in disk-resident databases
- Robustness
 - Robust against noise or missing values

Evaluation

- ▶ Idea:
 - Train a classification model, then check how many of the training samples it gets correct

- a) Good evaluation: accuracy of classifier
- b) Poor evaluation: we may be too optimistic

Quality Measures for Classifiers

- Let K be a classifier, $TR \subseteq O$ a training set, and $TE \subseteq O$ a test set. Let C(o) denote the correct class label of an object $o \in O$.
- Classification Accuracy of K on TE:

$$G_{TE}(K) = \frac{|\{o \in TE, K(o) = C(o)\}|}{|TE|}$$

True classification error

$$F_{TE}(K) = \frac{|\{o \in TE, K(o) \neq C(o)\}|}{|TE|}$$

Apparent classification error (not to be used in evaluation!)

$$F_{TR}(K) = \frac{|\{o \in TR, K(o) \neq C(o)\}|}{|TR|}$$

Classifier Evaluation: Confusion Matrix

Confusion Matrix = Contingency Matrix:

Actual class\Predicted class	C_1	¬ C ₁	
$C_\mathtt{1}$	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/AII

▶ **Error rate:** 1 − accuracy, or

Error rate = (FP + FN)/AII

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics seen before

- **Precision**: exactness what % of tuples that the classifier labeled as positive $precision = \frac{TP}{TP + FP}$ are actually positive
- **Recall:** completeness what % of positive tuples did the classifier label as positive? $recall = \frac{11}{TP + FN}$
- Perfect score is 1.0
- Inverse relationship between precision & recall
- **F** measure (F_1 or **F**-score): harmonic mean of precision and recall,

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

- $F_{\mathcal{B}}$: weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

$$Recall = 90/300 = 30.00\%$$

Decision Tree Classifiers

- Query: How about playing tennis today?
- Training data set:

day	forecast	temperature	humidity	wind	tennis decision
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rainy	mild	high	weak	yes
5	rainy	cool	normal	weak	yes
6	rainy	cool	normal	strong	no
7					

Decision Tree Classifiers: Basics

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Traverse the tree and test attribute values of the sample against decision tree
 - Assign the class label of the respective leaf to the query object

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - ▶ Tree is created in a top-down recursive divide-and-conquer manner
 - Attributes may be categorical or continuous-valued
 - At start, all the training examples are assigned to the root node
 - Recursively partition the examples at each node and push them down to the new nodes
 - Select test attributes and determine split points or split sets for the respective values on the basis of a heuristic or statistical measure (split strategy, e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Split Strategies: Types of Splits

- Categorical attributes
 - split criteria based on equality "attribute = a" or
 - ▶ based on subset relationships "attribute ∈ set"
 - many possible choices (subsets)

- Numerical attributes
 - split criteria of the form "attribute < a"</p>
 - many possible choices for the split point

Split Strategies: Quality of Splits

Given

- a set T of training objects
- ightharpoonup a (disjoint, complete) partitioning $T_1, T_2, ..., T_m$ of T
- the relative frequencies p_i of class c_i in T

Define

- a measure for the heterogeneity of a set S of training objects with respect to the class membership
- a split of T into partitions T_1 , T_2 , ..., T_m such that the heterogeneity is minimized
- Proposals: Information gain, Gini index (based on entropy)
 - We skip details here, but they assess the goodness of the split in separating classes, i.e., reaching a clear classification

Building Decision Trees

- Tree is created top-down
 - We greedily try to reduce our uncertainty about the class outcome (YES/NO)
 - ▶ Training examples T recursively partitioned into T_1 , T_2 , ..., T_m
 - ▶ Entropy for k classes with frequencies p_i (information theory: measure of uncertainty)

$$entropy(T) = -\sum_{i=1}^{k} p_i \cdot log_2 p_i$$

 Compute the information gain of a split using an attribute, such as humidity, by comparing the entropy before the split with the entropy of the split

information
$$gain(T, A) = entropy(T) - \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot entropy(T_i)$$

Building Decision Trees

$$information\ gain(T,A) = entropy(T) - \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot entropy(T_i) \qquad entropy(T) = -\sum_{i=1}^{k} p_i \cdot log_2 p_i$$

For all training data: 9 ,,YES" 5 ,,NO" Entropy = 0.940

For humidity or wind:

$$IG(T, hum) = 0.94 - \frac{7}{14} * 0.985 - \frac{7}{14} * 0.592 = 0.151$$

$$IG(T, wind) = 0.94 - \frac{8}{14} * 0.811 - \frac{6}{14} * 1.0 = 0.048$$

Result: humidity yields the highest information gain

Avoid Overfitting in Classification

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Overfitting: Notion

- Overfitting occurs at the creation of a decision tree, if there are two trees E and E' for which the following holds:
 - on the training set, E has a smaller error rate than E'
 - on the overall data set, E' has a smaller error rate than E

Overfitting: Avoidance

- Removal of noisy and erroneous training data
 - in particular, remove contradicting training data
- Choice of an appropriate size of the training set
 - not too small, not too large
- Choice of an appropriate value for minimum support
 - minimum support: minimum number of data objects a leaf node contains
 - in general, minimum support >> 1
- Choice of an appropriate value for minimum confidence
 - minimum confidence: minimum fraction of the majority class in a leaf node
 - typically, minimum confidence << 100%</p>
 - leaf nodes can errors or noise in data records absorb
- Post pruning of the decision tree
 - pruning of overspecialized branches

Pruning of Decision Trees: Approach

Error-Reducing Pruning [Mitchell 1997]

- Decompose classified data into training set and test set
- Creation of a decision tree E for the training set
- Pruning of E by using the test set T
 - determine the subtree of E whose pruning reduces the classification error on T the most
 - remove that subtree
 - finished if no such subtree exists
- only applicable if a sufficient number of classified data is available

Pruning of Decision Trees: Approach

Minimal Cost Complexity Pruning

[Breiman, Friedman, Olshen & Stone 1984]

- Does not require a separate test set
 - applicable to small training sets as well
- New quality measure for decision trees: $CC_T(E, \alpha) = F_T(E) + \alpha \cdot |E|$
 - trade-off of classification error and tree size (| E | number of leaf nodes)
 - Smaller decision trees tend to yield better generalization
- complexity parameter $\alpha \ge 0$
 - zero means only error matters, large value: only tree size matters
- Prune always the weakest link (wrt CC), then select best $E(\alpha_i)$ using classification error on the overall data set by an I-fold cross validation on the training set

Breathe deep

Revisiting outlier detection

- Decision trees can help here as well!
- Basic idea: look at how isolated points are in different decision trees
 - Use the number of branches it takes to isolate them as a measure

- It's not really a classification problem no classes or class labels known
 - Train a number of random trees using random data samples

Random Trees

• Build a decision tree from a random data subsample

- Select the split feature A, randomly and uniformly
- Select the split value V_A , uniformly as the min(A)+(max(A)-min(A))*rand(I)
- · Grow random tree until each data point in its own leaf or tree reaches max height

Isolation Forest

- To score a data point, find the height of the leaf node
 - The smaller the height the more anomalous is the data

Isolation forest

- Can we use this score for outlier detection?
 - Score=height

Ensembles

Observation

- Any single tree can be arbitrarily wrong
- Random process of creating trees
- But, if you try often enough, chances are that the outliers will be easier to separate more often

Solution

- Build an emsemble
- Approach used in supervised and also (sometimes) in unsupervised learning
- Idea: combine several models
- Typical approach: average
- Known to generate robust models even if composed of weakly performing models (as long as they are better than random)
- Build an ensemble of decision trees
 - from randomly selected subsamples of size n
 - To score a data point, find the height of the leaf node (higher=anomalous)

Isolation Forest Scores

• Use average height to compute the anomaly score: IForest

- Score
 - Ensemble average path length to a data point
 - · Normalized by the expected path length of balanced binary search tree
 - H(x) path length of sample x $s(x,n) = 2^{-\frac{E(h(x))}{c(n)}}$

Isolation Forest

Repeat

- Randomly sample a subset of the data
- Build a tree from random sample
 - Each tree is generated by randomly choosing a splitting attribute and the split point
 - Tree is grown either until maxdepth is reached, only 1 point remains, or all attributes have the same values

Isolation Forest Scores

(a) Isolating x_i

12 partitions (not an anomaly)

(b) Isolating x_o

4 partitions (anomaly)

https://www.depends-on-the-definition.com/detecting-network-attacks-with-isolation-forests/

iTree Algorithm

Sample S randomly drawn from $X \leq R^d$

```
Algorithm 1: Function iTree(S, l, l_{max})
   Input : S \subset X, l the current depth level, l_{max} the maximal depth limit
   Output: an iTree
1 if l \ge l_{max} or |S| \le 1 then
       return exNode(S)
3 end
4 else
       randomly select a dimension q \in \{1, \dots, n\}
 5
       randomly select a split value p between max and min values along dimension q in S
       S_1 \leftarrow \text{filter}(S, q < p)
       S_r \leftarrow \text{filter}(S, q \ge p)
       return inNode(Left \leftarrow iTree(S_l, l+1, l_{max}),
                 Right \leftarrow iTree(S_r, l+1, l_{max}),
10
                 splitDim \leftarrow q,
11
                 splitVal \leftarrow p
12
13 end
```

iForest: Pros and Cons

Pros

- Very easy to construct (no distance/density function needed) avoiding hard decisions whether a data point is an anomaly or not
 - assigns an anomalous score to each of the testing data point
- Achieve a sublinear time-complexity and a small memory-footprint
 - By exploiting subsampling
 - By eliminating major computational cost of distance calculation in all the distance-based and density-based AD methods
- Can provide anomaly explanations

Cons

- Hyper-parameter tuning (e.g. number/height of trees, sample size)
 - Large datasets will need more isolation trees (how many?)
- Requires a high percentage of relevant features to identify anomalies
 - In presence of features that do not provide information over the anomaly, iForest increases height randomly by ignoring this fact

Bayes Classifier

- Decision rule: $c_{max} = \underset{c_j \in C}{\operatorname{arg max}} \{ P(c_j \mid o) \}$
- Since, typically, the values of $P(c_j \mid o)$ are not known, the rule is transformed by using *Bayes' theorem*:

Bayes' rule:
$$p(c_i | o) \cdot p(o) = p(o | c_i) \cdot p(c_i)$$

Final decision rule for the *optimal Bayes classifier* (called *Maximum Likelihood* classifier)

$$\underset{c_{j} \in C}{\operatorname{arg\,max}} \left\{ p(c_{j} \mid o) \right\} = \underset{c_{j} \in C}{\operatorname{arg\,max}} \left\{ \frac{p(o \mid c_{j}) \cdot p(c_{j})}{p(o)} \right\} = \underset{c_{j} \in C}{\operatorname{arg\,max}} \left\{ p(o \mid c_{j}) \cdot p(c_{j}) \right\}$$

$$c_{max} = \underset{c_{j} \in C}{\operatorname{arg\,max}} \left\{ P(o \mid c_{j}) \cdot P(c_{j}) \right\}$$

Bayesian Classifier (2)

Estimate the values of $p(c_i)$ by using the observed frequency of the individual class labels c_i

If i-th attribute is categorical: p(o_i|C) is estimated as the relative frequency of samples having value x_i as i-th attribute in class C

Gaussian density function (multivariate)

$$\Rightarrow p(o_i \mid C_j) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{o_i - \mu_{i,j}}{\sigma_{i,j}}\right)^2}$$

Nearest Neighbor Classifiers

- Instance-based learning
- Fundamental procedure
 - Use attribute vectors $o = (o_1, ..., o_d)$ as training objects
 - Do nothing for training! (lazy)
 - Variant 1:
 - Assign query object to the class c_i of the closest training object
 - Variant 2:
 - Determine mean vector μ_i for each class c_i (in training phase) (not quite as lazy)
 - Assign query object to the class c_i of the nearest mean vector μ_i
 - **Generalizations:**
 - \triangleright Consider k > 1 neighbors for the class assignment decision (Var. 1)
 - Use weights for the classes of the k nearest neighbors
 - Use more than one representative per class (Var. 2)

Variant 1

Nearest Neighbor Classifiers: Notions

- Distance function
 - Defines the (dis-)similarity for pairs of objects
- Number k of neighbors to be considered
- Decision set
 - Set of k nearest neighboring objects to be used in the decision rule
- Decision rule
 - Given the class labels of the objects from the decision set, how to determine the class label to be assigned to the query object?

Nearest Neighbor Classifiers: Example

Classes + and -

- decision set for k = 1
- decision set for k = 5
- Using unit weights (i.e., no weights) for the decision set
 - Simply called "majority criterion"
 - for k = 5, rule yields class "—"
- Using the reciprocal square of the distances as weights
 - for k = 5, rule yields class "+"
- Using a-priori probability (=frequency) of classes as weights
 - for k = 5, rule yields class "+"

Nearest Neighbor Classifiers: Parameters

- Problem of choosing an appropriate value for parameter k
 - k too small: high sensitivity against outliers
 - ▶ *k* too large: decision set contains many objects from other classes
 - Empirically, 1 << k < 10 yields a high classification accuracy in many cases

NN Classification: Discussion

- + applicability: training data required only
- + high classification accuracy in many applications
- + easy incremental adaptation to new training objects
- + useful also for prediction
- + robust to noisy data by averaging k-nearest neighbors
- naïve implementation is inefficient
 - requires k-nearest neighbor query processing
 - support by database techniques may help to reduce from O(n) to O(log n) for n training objects
- does not produce explicit knowledge about classes
 - But provides some explanation information
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, stretch axes or eliminate least relevant attributes

Remarks on Lazy vs. Eager Learning

- Instance-based learning: lazy evaluation
- Decision-tree and Bayesian classification: eager evaluation
- Key differences
 - Lazy method may consider query instance xq when deciding how to generalize beyond the training data D
 - Eager method cannot since they have already chosen global approximation when seeing the query
- Efficiency
 - Lazy less time training but more time predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

SVM—Support Vector Machines

- A classification method for both linear and nonlinear data
- It uses a nonlinear mapping to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)

SVM—History and Applications

- Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis' statistical learning theory in 1960s
- Features: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Used both for classification and prediction
- Applications:
 - handwritten digit recognition, object recognition, speaker identification, benchmarking time-series prediction tests

SVM—General Philosophy

SVM—Margins and Support Vectors

SVM—When Data Is Linearly Separable

- ▶ Let data D be (X1, y1), ..., (X|D|, y|D|), where Xi is the set of training tuples associated with the class labels yi
- There are infinite lines (hyperplanes) separating the two classes, but we want to find the best one (the one that minimizes classification error on unseen data)
- SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM—Linearly Separable

A separating hyperplane can be written as

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = 0$$

where $\mathbf{W} = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is a weight vector and b a scalar (bias)

For 2-D it can be written as

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

The hyperplane defining the sides of the margin:

H₁:
$$w_0 + w_1 x_1 + w_2 x_2 \ge 1$$
 for $y_i = +1$, and
H₂: $w_0 + w_1 x_1 + w_2 x_2 \le -1$ for $y_i = -1$

- Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints → Quadratic Programming (QP) → Lagrangian multipliers

Why Is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- The support vectors are the essential or critical training examples —they lie closest to the decision boundary (MMH)
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

But for real data...

Any issues with this setup?

SVM—Linearly Inseparable

Transform the original input data into a higher dimensional space A_2

Search for a linear separating hyperplane in the new space

SVM—Kernel functions

- Instead of computing the dot product on the transformed data tuples, it is mathematically equivalent to instead applying a kernel function $K(\mathbf{X}_i, \mathbf{X}_j)$ to the original data, i.e., $K(\mathbf{X}_i, \mathbf{X}_i) = \Phi(\mathbf{X}_i) \Phi(\mathbf{X}_i)$
- Typical Kernel Functions

Polynomial kernel of degree
$$h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$$

Gaussian radial basis function kernel :
$$K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$$

Sigmoid kernel:
$$K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$$

 SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional user parameters)

What Is Prediction?

- Prediction is similar to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for prediction is regression
 - □ Linear regression
 - □ Logistic regression
- Prediction is different from classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions

Regression

- Regression
 - Predicting value instead of class/category
 - Labels Y=R (real values).
- Least Squares Loss Function
 - In regression, often use least squares loss
 - $L(y',y) = (y'-y)^2$
- $L(5.300.000, 5.150.000) = (150.000)^2$
- Predict house prices

Linear regression

- Linear Model:
 - Predict: $w(x) = w_1x_1 + ... + w_dx_d + b = x^Tw+b$
 - Features: $x=(x_1,...,x_d)$
 - Parameters to be learnt (w₁, w₂,..., w_d, b)
 - Minimize: L(w) = $\sum_{i=1}^{n} (x_i^T w y_i)^2$

To minimize, make use of gradient if differentiable

Local Minima

- Functions of multiple variables:
 - If l is a function of variables $x_1,...x_d$, i.e. from R^d to R.
 - Assume l differentiable.
- Gradient (vector):

$$\nabla_{x} (l(x)) = \begin{pmatrix} \frac{\partial}{\partial x_{1}} l(x) \\ \vdots \\ \frac{\partial}{\partial x_{d}} l(x) \end{pmatrix}$$

- Local minima must have:

Linear Models

- Logistic Regression:
 - Some applications not properly captured
 - Probability of heart attack given medical conditions
 - Probability of failing to pay rates on mortgage
 - Probability of committing a crime if not imprisoned while awaiting trial
- Setup:
 - Two clases {-1,1}
 - Noisy target (not deterministic) P(y | x)
 - Goal: Learn Pr[y=1 | x], i.e. learn P(y | x)
 - Y=[0,1]

Logistic regression

How do we make a linear model with outputs in [0,1]?

• Use sigmoid / logistic function $\theta(z) = \frac{1}{1+e^{-z}}$

Shape like an "s"

- Predict(x)= θ (w^Tx)= $\frac{1}{1+e^{-w^Tx}}$
- Y=[0,1]

Learning

- Logistic Regression:
 - Predict(x)= θ (w^Tx)= $\frac{1}{1+e^{-w^Tx}}$
- What loss should we minimize?
 - Classification:
 - 0-1 Loss:

$$\bullet \quad \mathbf{E}_{\mathrm{in}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{sign(x_i^T \mathbf{w}) \neq y_i}$$

- Regression:
 - Least squares:

•
$$E_{in}(w) = \frac{1}{n} \sum_{i=1}^{n} (x_i^T w - y_i)^2$$

- Idea:
 - For any hypothesis w, can estimate "likelihood" of training labels, denoted $Pr[S \mid w,X]$ where $S=(x_1,y_1),...,(x_n,y_n)$.
 - Maximum likelihood approach to obtain best "fit" (details omitted here)

Summary

- Supervised learning
 - Build a model of the data for characterization
 - Or for making classification / prediction on new data
- Learning setup
 - Build model on training data
 - Evaluate on testing / validation data (more next time)
- Decision trees
- Isolation forests for outlier detection
 - Ensemble approach over several learners
- Naïve Bayes (probabilistic)
- Nearest neighbor (lazy)
- Support vector machines
- Regression: prediction

References

- <u>https://jakevdp.github.io/PythonDataScienceHandbook/</u> Data Science in Python
- https://wesmckinney.com/book/ Python for Data Science
- https://scikit-learn.org Scikit-learn
- https://pandas.pydata.org/ Pandas
- https://dataminingbook.info/book_html/ Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2nd Edition, Cambridge University Press, March 2020. ISBN: 978-1108473989.
- J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
- M. H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2003
- Kasper Green Larsen, Machine Learning course slides, Aarhus University