Dfs Order 0.5

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

Shuishui has a rooted tree of n vertices numbered from 1 to n, where vertex 1 is the root. The value of the i-th vertex is a_i .

Now we start the depth-first search at the root. Because sons of a node can be iterated in arbitrary order, multiple possible depth-first orders exist. We define the value of a depth-first order to be adding up the value of vertices which appear in the depth-first order at an even index. Shuishui wonders among all possible depth-first orders of the given tree, what the maximum value is.

Following is a pseudo-code for the depth-first search on a rooted tree. After calling MAIN(), dfs_order will be the depth-first search order.

Algorithm 1 An implementation of depth-first search

Following is a pseudo-code for calculating the value of a depth-first order. Calling CALC(dfs_order) will return the value of it.

Algorithm 2 An implementation of calculating the value of a depth-first order

```
\triangleright dfs_order is a 1-based array of length n
1: procedure CALC(dfs_order)
        s \leftarrow 0
2:
        p \leftarrow 2
3:
        while p \leq n do
4:
             u \leftarrow \mathtt{dfs\_order}_p
5:
6:
             s \leftarrow s + a_u
             p \leftarrow p + 2
7:
        return s
8:
```

Input

The input contains multiple testcases.

The first line contains a single integer t ($1 \le t \le 2 \times 10^5$), denoting the number of testcases.

For each testcase:

The first line contains a single integer n ($1 \le n \le 2 \times 10^5$), denoting the number of vertices in the tree.

The second line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$, denoting the values of these vertices.

Each of the next n-1 lines contains two integers u_i, v_i $(1 \le u_i, v_i \le n, u_i \ne v_i)$, denoting an edge of the tree

It is guaranteed that the given edges form a tree.

It is guaranteed that the sum of n over all test cases does not exceed 2×10^5 .

Output

For each testcase, output a single integer in one line, denoting the answer.

Example

standard input	standard output
3	2
2	444
1 2	15
1 2	
4	
1 1 222 222	
1 2	
1 3	
2 4	
6	
1 5 4 6 1 1	
6 1	
4 5	
4 2	
1 4	
1 3	

Note

In the first testcase of the example, the dfs_order is unique, which is [1, 2], and its value is $a_2 = 2$. Note that the dfs_order is 1-based.

In the second testcase of the example, the dfs_order with the maximum value is [1, 3, 2, 4], and its value is $a_3 + a_4 = 444$.