編譯器設計

Languages and Their Representations

Alphabets and Languages

- Webster defines a language as
 - "the body of words and methods of combining words used and understood by a considerable community" → 對 compiler 東 統 本 夠 凝聚
- The definition is not precise
 - A formal language will be defined
- An alphabet:
 - any finite set of symbols, e.g.
 - Latin alphabet {A, B, C, ..., Z}
 - Greek alphabet $\{\alpha, \beta, \gamma, ..., \omega\}$
 - binary alphabet {0, 1}

Grammars

編譯器設計

Alphabets and Languages

Alphabet

A sentence over an alphabet

language.

- any string of finite length composed of symbols from the alphabet
- Synonyms for sentence are string and word
- ◆ The empty sentence € \$7 + epsilon
 - the sentence consisting of no symbols
- If V is an alphabet, then
 - V* denotes the set of all sentences composed of symbols of V, including the empty sentence

•
$$V^+ = V^* - \{ \in \}$$
 * closure $\frac{V^*}{4} = \frac{V^*}{4} = \frac{V^*}{4$

■ If *V* = {0,1}, then

Grammars

3

Alphabets and Languages

◆ A language ⇒ 句子的集合

文字 \$ > language?

- any set of sentences over an alphabet
- e.g. {0, 1} is a language

acquiescence Ex 34

- Three questions are raised
 - How do we represent a language?
 - It's simple if the language is finite
 - How to represent an infinite language with a finite representation
 - Does there exist a finite representation for every language? It's unproved. But the closest answer is "NO".
 - What can be said about the structures of those languages for which there exist finite representation? finite representation

intivite language.

Grammars

編譯器設計

Representations of Languages

- Two ways to represent a language
 - To give an algorithm which determines if a sentence is in the language or not
 - To give a procedure which halts with the answer "yes" for sentences in the language and either does not terminate or else halts with the answer "no" for sentences not in the language
 - To give a grammar that generates sentences in the language

Grammars

Produced with grammar.

Example: "The little boy ran quickly"

<sentence> → <noun phrase> < verb phrase>

<noun phrase> → <adjective> < noun phrase>

<noun phrase> → <adjective> < noun>

<verb phrase> → <verb> <adverb>

<adjective> → The

<adjective> → little

<noun> → boy

<verb> → ran

<adverb> → quickly

Grammars

編譯器設計

Formal Notation of a Grammar

- Four concepts
 - Nonterminals (or Variables)
 - e.g. <sentence>, <adjective>, <verb phrase>, etc.
 - Terminals
 - e.g. words such as The, little, boy, etc.
 - Productions (set of grammar) relationships between strings of variables and terminals
 - e.g. <sentence>→<noun phrase><verb phrase>
 - Start Symbol distinguished symbol that generates exactly those strings of terminals that are deemed in the language
 - e.g. <sentence>

編譯器設計 7 Grammars

Formal Notation of a Grammar

- \clubsuit A grammar G can be denoted by (V_N, V_T, P, S)
 - V_N: nonterminals e.g. <sentence>, <adjective>,...
 - V_T : terminals $(V_N \cap V_T = \phi, V_N \cup V_T = V)$ e.g. the, little, boy...

 P: productions nonterminal

 $ullet \, lpha
ightarrow eta \in P$ e.g. sentence> \Rightarrow < hown phrase> < verb phrase>

■ S: start symbol (sentence)

Grammars

編譯器設計

Derivation

- Derivation by a production
- If $\alpha \to \beta \in P$ and $\gamma, \delta \in V$, then γ $\alpha \to \gamma \in P$ $\gamma = \gamma \in P$ $\gamma = \gamma \in P$ $\gamma \in P$
- - If α_1 , α_2 ,..., α_m are strings in V^* , and

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_m$$
 then we say $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_m$

Sentential form > partly VT, partly VN

Grammars

編譯器設計

9

Derivation

The language generated by G is defined

 $L(G) = \{ \overset{\circ}{\underline{w}} \mid w \in V_T^* \land \overset{\circ}{\underline{S}} \overset{\circ}{\Rightarrow} w \} \quad \forall \& \forall \mathsf{w}$

- That is, a string is in *L(G)* if
 - The string consists solely of terminals
 - The string can be derived from S
- Grammars G_1 and G_2 are equivalent if
 - $L(G_1) = L(G_2)$
- Example $G = (V_N, V_T, P, S)$ $V_N = \{S\}, V_T = \{0, 1\}, P = \{S \rightarrow 0S1, S \rightarrow 01\}$

 $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 0^3S1^3 \Rightarrow ... \Rightarrow 0^{n-1}S1^{n-1} \Rightarrow 0^n1^n$:. L(G) = $\{0^{n}1^{n}\}$ $n \ge N^{\dagger}$

lacktriangle A string of terminals and nonterminals lpha is called a sentential form if $S \stackrel{*}{\Rightarrow} \alpha$

Grammars

編譯器設計

Type3 跨蒙的处t 不一定量比Type2的小