Teoría de Lenguajes

Gianfranco Zambonni

27 de diciembre de 2022

Índice

1.	\mathbf{Intr}	roducción	2
	1.1.	Relaciones	2
		1.1.1. Operaciones	2
	1.2.	Alfabetos	3
		1.2.1. Operaciones	4
	1.3.	Lenguajes	4
		1.3.1. Operaciones	4
	1.4.	Gramáticas	5
		1.4.1. Clasificación de grámaticas (Chomsky)	Ę
2.	Aut	tómatas finitos	7
	2.1.	Autómatas finitos deterministicos (AFD)	7
		Autómatas finitos no deterministas (AFND)	
		2.2.1. Equivalencia entre AFD y AFND	8
	2.3.	Autómatas finitos no deterministico con transiciones λ	Ĉ
		2.3.1. Equivalencia entre AFND y AFND- λ	11

1. Introducción

1.1. Relaciones

Dados dos conjuntos A y B, se llama **relación** R de A en B a todo subconjutno de $A \times B$. Notamos $R: A \to B$.

- aRb denota el hecho $(a,b) \in R$.
- Si A = B se dice que R es una relación sobre A.

Una relación $R:A\to A$ es

- reflexiva cuando $\forall a \in A, aRa$.
- simétrica cuando $\forall a, b \in A, aRb \implies bRa$.
- transitiva cuando $a, b, c \in A$, $aRb \land bRc \implies aRc$.
- es de **equivalencia** cuando es reflexiva, simétrica y transitiva. Este tipo de relaciones particiona a A en clases de equivalencia.

1.1.1. Operaciones

Composición de relaciones: Si $R:A\to B$ y $S:B\to C$ son relaciones, entonces la composición de R y S es la relación $S\circ R:A\to C$ definida por:

$$S \circ R = \{(a,c) \mid a \in A, c \in C : \exists b \in B, aRb \land bSc\}$$

.

Relación de identidad: La relación de identidad sobre A es la relación $id_A : A \to A$ definida por:

$$I = \{(a, a) \mid a \in A\}$$

.

■ Es el elemento neutro de la composición de relaciones.

Relación de potencia: Dado $R: A \to A$ se define la relación de potencia $R^k: A \to A$ como la composición de k copias de R:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

Clausura transitiva/positiva: Dada una relación $R: A \to A$ se define la clausura transitiva de R como la relación R^+ definida por:

$$R^+ = \bigcup_{n=1}^{\infty} R^n$$

- 1. $R \subseteq R^+$.
- 2. R^+ es transitiva
- 3. Para toda relación $G: A \to A$ tal que $R \subseteq G \land G$ es transitiva, entonces $R^+ \subseteq G$, es decir R^+ es la relación transitiva más pequeña que contiene a R.

DEMOSTRACIÓN

- 2) Si aR^+b entonces existe una secuencia de elementos $a=a_0,a_1,\ldots,a_n=b$ tales que a_iRa_{i+1} para todo $i \in [0,n-1]$.
 - Análogamente, como bR^+c existe una secuencia de elementos $b=b_0,b_1,\ldots,b_m=c$ tales que b_iRb_{i+1} para todo $i \in [0,m-1]$.
 - Por lo tanto, $aR^{n+m}c$, por lo que aR^+c .
- 3) Si aR^+b entonces existe una secuencia de elementos $a=a_0,a_1,\ldots,a_n=b$ tales que a_iRa_{i+1} para todo $i\in[0,n-1]$.

Como $R \subseteq G$ entonces a_iGa_{i+1} para todo $i \in [0, n-1]$. Como G es transitiva entonces la aplicación repetida de la transitividad nos lleva a que a_1Ga_n , por lo que aGb.

Clausura transitiva reflexiva:

$$R^* = R^+ \cup id_A = \bigcup_{n=0}^{\infty} R^n$$

- Si A es un conjunto finito, entonces todas las relaciones $R:A\to A$ son finitas.
- Si R es reflexiva, entonces $R^* = R^+$.

1.2. Alfabetos

Un alfabeto es un conjunto finito de símbolos.

Cadena: Una cadena sobre un alfabeto Σ es una secuencia finita de símbolos de Σ . Los símbolos son notados respetando el orden de la secuencia.

1.2.1. Operaciones

Concatenación: Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto:

$$\circ: \Sigma \times \{\text{cadenas sobre }\Sigma\} \to \{\text{cadenas de }\Sigma\}$$

 \blacksquare La cadena nula λ es el elemento neutro de la concatenación.

Clausura de Kleene de Σ : Σ^*

- $\quad \blacksquare \ \lambda \in \Sigma^*$
- $\quad \blacksquare \ a \in \Sigma \wedge^* \implies \forall \ \alpha \in \Sigma, \ a \circ \alpha \in \Sigma^*$

Clausura positiva de Σ : $\Sigma^+ = \Sigma^* \setminus \{\lambda\}$

1.3. Lenguajes

Un lenguaje es un conjunto de cadenas sobre un alfabeto Σ .

1.3.1. Operaciones

Concatenación de lenguajes: Si L_1 y L_2 son lenguajes definidos sobre los alfabetos Σ_1 y Σ_2 respectivamente, entonces la concatenación de L_1 y L_2 es el lenguaje L_1L_2 definido por:

$$L_1L_2 = \{\alpha\beta \mid \alpha \in L_1, \ \beta \in L_2\}$$

definido sobre el alfabeto $\Sigma_1 \cup \Sigma_2$.

Clausura de Kleene L^* : Se define por:

$$L^{0} = \{\lambda\}$$

$$L^{n} = LL^{n-1} \text{ para } n >= 1$$

$$L^{*} = \bigcup_{n=0}^{\infty} L^{n}$$

Clausura positiva L^+ : $L^+ = \bigcup_{n=1}^{\infty} L^n$

- $\quad \blacksquare \ L^+ = LL^*$
- $L^* = L^+ \cup \{\lambda\}$
- \blacksquare Si L es un lenguaje definido sobre Σ entonces $L\subseteq \Sigma^*$

1.4 Gramáticas

1.4. Gramáticas

Una gramática es una 4-tupla (V_N, V_T, P, S) donde:

- V_N es un conjunto finito de símbolos no terminales.
- V_T es un conjunto finito de símbolos terminales.
- P es un conjunto finito de reglas de producción: Son pares ordenados α, β donde $\alpha \in (V_N \cup V_T)^* V_N (V_N \cup V_T)^*$ y $\beta \in (V_N \cup V_T)^*$.

Las notamos como $\alpha \to \beta$.

• $S \in V_N$ es el símbolo inicial.

Forma setencial de una grámatica: Se llama forma sentencial a una derivación de la misma (es decir, una cadena formada por símbolos de $V_N \cup V_T$ que sea el resultado de una derivación a partir de símbolos iniciales):

- lacksquare S es una forma setencial de G
- Si $\alpha\beta\gamma$ es una forma setencial de G y $\beta\to\delta\in P$ entonces $\alpha\delta\gamma$ es una forma setencial de G

Derivación directa en G: Si $\alpha\beta\lambda \in (V_N \cup V_T)^*$ y $\beta \to \delta \in P$ entonces $\alpha\delta\lambda$ es una derivación directa de G de $\alpha\beta\lambda$ y se denota como $\alpha\beta\lambda \Longrightarrow_G \alpha\delta\lambda$.

Denotaremos con $\stackrel{+}{\Longrightarrow}$ y $\stackrel{*}{\Longrightarrow}$ a la clausura positiva y la clausura transitiva y reflexiva de $\stackrel{\longrightarrow}{\Longrightarrow}$, respectivamente.

Además, \Longrightarrow_G será la potencia k-ésima de \Longrightarrow_G .

Lenguaje de una grámatica $\mathcal{L}(G)$: Es el conjunto de todas las cadenas de símbolos terminales que son formas setenciales de G.

$$\mathcal{L}(G) = \{ \alpha \in V_T^* : S \stackrel{+}{\Longrightarrow} \alpha \}$$

1.4.1. Clasificación de grámaticas (Chomsky)

Gramáticas regulares (tipo 3): Son aquellas gramáticas que cumplen alguna de las siguientes condiciones:

- Todas sus producciones son de la forma $A \to xB$ o $A \to x$ donde $A, B \in V_N$ y $x \in V_T^*$. En este caso se dice que es una gramática lineal a derecha.
- Todas sus producciones son de la forma $A \to Bx$ o $A \to x$ donde $A, B \in V_N$ y $x \in V_T^*$. En este caso se dice que es una gramática lineal a izquierda.

Una forma alternativa de escribir una gramática regular es la siguiente:

■ Todas las producciones son de la forma $A \to aB$ o $A \to a$ o $A \to \lambda$ donde $A, B \in V_N$ y $a \in V_T$, para el caso de la gramática lineal a derecha.

■ Todas las producciones son de la forma $A \to Ba$ o $A \to a$ o $A \to \lambda$ donde $A, B \in V_N$ y $a \in V_T$, para el caso de la gramática lineal a izquierda.

Gramáticas libres de contexto (tipo 2): Son aquellas gramáticas en las que cada producción es de la forma $A \to \alpha$ donde $A \in V_N$ y $\alpha \in (V_N \cup V_T)^*$.

De la definición anterior puede inferirse que toda grámatica regular es libre de contexto.

Gramáticas sensibles al contexto (tipo 1): Son aquellas gramáticas en las que cada producción es de la forma $\alpha \to \beta$ donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$.

Se puede inferir que toda gramática independiente del contexto que no posea regla borradoraas (es decir, que no posea producciones de la forma $A \to \lambda$) es sensible al contexto.

Gramáticas sin restricciones (tipo 0): Son aquellas gramáticas que no poseen ninguna restricción como las anteriores.

El conjunto de las grámaticas tipo 0 es el conjunto de todas las grámaticas.

Definición: Un lenguaje generado por una grámatica tipo t es llamado lenguaje tipo t.

2. Autómatas finitos

2.1. Autómatas finitos deterministicos (AFD)

Un autómata finito determinista es una 5-tupla $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ donde:

- \blacksquare Q es un conjunto finito de estados.
- \blacksquare Σ es un conjunto finito de símbolos de entrada.
- \bullet $\delta:Q\times\Sigma\to Q$ es una función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

Función de transición generalizada $\hat{\delta}$: La función de transición δ está definida para que tome como parámetro un único símbolo de Sigma. Se puede extender para que tomé como parámetro una cadena de símbolos de Sigma:

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

se define de manera recursica como:

- $\hat{\delta}(q,\lambda) = q$
- $\hat{\delta}(q, \beta a) = \delta(\hat{\delta}(q, \beta), a) \text{ con } \beta \in \Sigma^* \text{ y } a \in \Sigma$

Cadena aceptada por un AFD: Una cadena $\beta \in \Sigma^*$ es aceptada por un AFD $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \in F$.

Lenguaje aceptado por un AFD: El lenguaje aceptado por un AFD $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas $\beta \in \Sigma^*$ que son aceptadas por \mathcal{M} :

$$L(\mathcal{M}) = \{ \beta \in \Sigma^* : \ \hat{\delta}(q_0, \beta) \in F \}$$

2.2. Autómatas finitos no deterministas (AFND)

Un autómata finito no determinista es una 5-tupla $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ donde:

- \blacksquare Q es un conjunto finito de estados.
- ullet Σ es un conjunto finito de símbolos de entrada.
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ es una función de transición.

A diferencia de los AFD, la función δ devuelve un conjunto de estados en lugar de un solo estado.

- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

Función de transición generalizada $\hat{\delta}$: Primero vamos a definir $\delta_P : \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$ de la siguiente manera:

$$\delta_P(P, a) = \bigcup_{p \in P} \delta(p, a)$$

La función $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ se define de manera recursiva como:

- $\hat{\delta}(q,\lambda) = \{q\}$
- $\hat{\delta}(q, \beta a) = \{p : \exists r \in \hat{\delta}(q, \beta) \text{ tal que } p \in \delta(r, a)\} = \delta_P(\hat{\delta}(q, \beta), a) \text{ con } \beta \in \Sigma^* \text{ y } a \in \Sigma^* \}$

Para generalizar a un más podemos definir $\hat{\delta}_P : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ de la siguiente manera:

$$\hat{\delta}_P(P,\beta) = \bigcup_{q \in P} \hat{\delta}(q,\beta)$$

Cadena aceptada por un AFND: Una cadena $\beta \in \Sigma^*$ es aceptada por un AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \cap F \neq \emptyset$. Es decir, si alguno de los estados alcanzados por $\hat{\delta}(q_0, \beta)$ es un estado final.

Lenguaje aceptado por un AFND: El lenguaje aceptado por un AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas $\beta \in \Sigma^*$ que son aceptadas por \mathcal{M} :

$$L(\mathcal{M}) = \{ \beta \in \Sigma^* : \ \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \}$$

2.2.1. Equivalencia entre AFD y AFND

Es trivial ver que para todo AFD existe un AFND que acepte el mismo lenguaje.

Teorema 2.1. Dado una AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $\mathcal{M}' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $L(\mathcal{M}) = L(\mathcal{M}')$.

Vamos a demostrar este teorema construyendo una AFD \mathcal{M}' a partir de \mathcal{M} . Una vez constuido deberemos demostrar que \mathcal{M}' acepta el mismo lenguaje que \mathcal{M} .

Construcción de \mathcal{M}' :

• Q' será el conjunto de partes $\mathcal{P}(Q)$ que contenga a todos los posibles conjuntos de estados de \mathcal{M} . Vamos a denotar cada estado $s \in Q'$ con etiquetas del estilo $[q_1, \ldots, q_k]$ donde $q_1, \ldots, q_k \in Q$. Entonces:

$$Q' = \mathcal{P}(Q)$$

- $\delta'([q_1, \dots, q_k], a) = [p_1, \dots, p_m] \iff \delta_P(\{q_1, \dots, q_k\}, a) = \{p_1, \dots, p_m\}$
- $q_0' = [q_0]$
- $F' = \{ [q_1, \dots, q_n] \in Q' : \{q_1, \dots, q_n\} \cap F \neq \emptyset \}$

Equivalencia de funciónes de transición generalizadas: Antes de demostrar que ambos automátas aceptan el mismo lenguaje, vamos a demostrar que las funciones de transición generalizadas de ambos automátas son equivalentes cuando las llamamos con el estado inicial como primer parámetro. Es decir, queremos ver que $\hat{\delta}'(q'_0, \beta) = [p_1, \dots, p_k] \iff \hat{\delta}(q_0, \beta) = \{p_1, \dots, p_k\}.$

Lo vamos a hacer por inducción. Recordemos que $q'_0 = [q_0]$:

- Caso base: $\beta = \lambda$:
 - $\hat{\delta}'([q_0], \lambda) = [q_0]$ por definición de $\hat{\delta}'$.
 - $\hat{\delta}(q_0, \lambda) = \{q_0\}$ por definición de $\hat{\delta}$.

Luego
$$\hat{\delta}'([q_0], \lambda) = [q_0] \iff \hat{\delta}(q_0, \lambda) = \{q_0\}.$$

• Caso inductivo: $\beta \implies \beta a$: Por hipotesis inductiva tenemos que

 $\underset{\text{def}}{\Longleftrightarrow} \delta_P(\hat{\delta}(q_0,\beta),a) = \{p_1,\ldots,p_k\} \underset{\text{def}}{\Longleftrightarrow} \hat{\delta}(q_0,\beta a) = \{p_1,\ldots,p_k\}$

$$\hat{\delta}'(q'_0,\beta) = [r_1,\ldots,r_m] \iff \hat{\delta}(q_0,\beta) = \{r_1,\ldots,r_m\}$$
Queremos ver que $\hat{\delta}'(q'_0,\beta a) = [p_1,\ldots,p_m] \iff \hat{\delta}(q_0,\beta a) = \{p_1,\ldots,p_m\}$

$$\hat{\delta}'(q'_0,\beta a) = [p_1,\ldots,p_k] \iff \hat{\delta}'(\hat{\delta}'(q'_0,\beta),a) = [p_1,\ldots,p_k]$$

$$\iff \exists [r_1,\ldots,r_m] \in Q' \text{ tal que } \delta'(q'_0,\beta) = [r_1,\ldots,r_m] \land \delta'([r_1,\ldots,r_m],a) = [p_1,\ldots,p_k]$$

$$\iff \exists \{r_1,\ldots,r_m\} \in Q \text{ tal que } \hat{\delta}(q_0,\beta) = \{r_1,\ldots,r_m\} \land \delta_P(\{r_1,\ldots,r_m\},a) = \{p_1,\ldots,p_k\}$$

Demostración de la equivalencia: Ahora que hemos demostrado que las funciones de transición generalizadas de ambos automátas son equivalentes, vamos a demostrar que ambos automátas aceptan el mismo lenguaje:

$$\beta \in \mathcal{L}(\mathcal{M}) \iff \hat{\delta}(q_0, \beta) = \{q_1, \dots, q_n\} \land \{q_1, \dots, q_n\} \cap F \neq \emptyset$$

$$\iff \underbrace{\hat{\delta}(q'_0, \beta) = [q_1, \dots, q_n]}_{\text{por equivalencia de generalizaciones}} \land \underbrace{[q_1, \dots, q_n] \in F'}_{\text{def.}F'}$$

$$\iff x \in \mathcal{L}(M')$$

2.3. Autómatas finitos no deterministico con transiciones λ

Un autómata finito no determinista con transiciones λ es un autómata finito no determinista que tiene transiciones λ . Estas transacciones nos permiten ir de un estado a otro sin consumir ningún símbolo de entrada.

Los definimos con una 5-upla $(Q, \Sigma, \delta, q_0, F)$ donde:

 \blacksquare Q es un conjunto finito de estados.

- ullet Σ es un conjunto finito de símbolos de entrada.
- $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q)$ es una función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

Clausura λ de un estado q: Se denota $Cl_{\lambda}(q)$ es el conjunto de estados que se pueden alcanzar desde q siguiendo solo transiciones λ . Es decir,

$$Cl_{\lambda}(q) = \delta(q, \lambda)$$

Además $q \in Cl_{\lambda}(q)$.

Clausura λ de un conjunto de estados P:

$$Cl_{P\lambda}(P) = \bigcup_{p \in P} Cl_{\lambda}(p)$$

Generalización de la función de transición: Podemos extender δ a conjunto de estados:

$$\delta_P : \mathcal{P}(Q) \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q)$$

 $\delta_P(P, a) = \bigcup_{p \in P} \delta(p, a)$

Entonces podemos definir:

$$\begin{split} \hat{\delta}: Q \times \Sigma^* &\to \mathcal{P}(Q) \\ \hat{\delta}(q_0, \lambda) &= Cl_{\lambda}(q_0) \\ \hat{\delta}(q_0, \beta a) &= Cl_{P\lambda} \left(\delta_P(\hat{\delta}(q_0, \beta), a) \right) = Cl_{P\lambda} \left(\left\{ p : \exists q \in \hat{\delta}(q_0, \beta) \text{ tal que } p \in \delta(q, a) \right\} \right) \end{split}$$

Tambien extendemos $\hat{\delta}$ a conjuntos de estados:

$$\hat{\delta}_P : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
$$\hat{\delta}_P(P, \beta a) = \bigcup_{p \in P} \hat{\delta}(p, \beta a)$$

Cadena aceptada por un AFND- λ : Una cadena β es aceptada por un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \cap F \neq \emptyset$.

Lenguaje aceptado por un AFND- λ : El lenguaje aceptado por un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas aceptadas por M:

$$\mathcal{L}(M) = \{ \beta \in \Sigma^* : \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \}$$

2.3.1. Equivalencia entre AFND y AFND- λ

Dado un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ podemos construir un AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$ tal que M acepte el mismo lenguaje que M'.

Construcción de M': Notemos que ambos autómatas tiene el mismo conjunto de estados Q, el mismo conjunto de símbolos de entrada Σ y el mismo estado inicial q_0 . Por lo que solo debemos definir δ' y F'.

$$\bullet \delta'(q, a) = \hat{\delta}(q, a) = Cl_{P\lambda} \left(\delta_P(\hat{\delta}(q, \lambda), a) \right)$$

•
$$F' = \begin{cases} F \cup \{q_0\} & \text{si } Cl_{P\lambda}(q_0) \cap F \neq \emptyset \\ F & \text{si no} \end{cases}$$

Equivalencia de funciones de transición generalizada: Vamos a demostrar por inducción que $\hat{\delta}'(q_0, \beta) = \hat{\delta}(q_0, \beta)$ para todo $|\beta| \ge 1$:

- Caso base: $|\beta| = 1$. Sea $\beta = a$, entonces $\hat{\delta}'(q_0, \beta) = \hat{\delta}'(q_0, a) = \hat{\delta}(q_0, a)$ por como definimos δ' .
- Caso inductivo: Supongamos que $\hat{\delta}'(q_0, \beta) = \hat{\delta}(q_0, \beta)$ para todo $|\beta| \leq n$. Sea $\omega = \beta a$. Entonces:

$$\hat{\delta}'(q_0, \omega) = \hat{\delta}'(q_0, \beta a) \underset{\text{def.}}{=} \delta_P'(\hat{\delta}'(q_0, \beta), a) \underset{\text{H.I}}{=} \delta_P'(\hat{\delta}(q_0, \beta), a) \tag{1}$$

Por otro lado, dado $P \subseteq Q$ tenemos que:

$$\delta_P'(P,a) \underset{\text{def.}}{=} \bigcup_{p \in P} \delta'(p,a) \underset{\text{construcción de }M'}{=} \bigcup_{p \in P} \hat{\delta}(p,a) \underset{\text{def}}{=} \hat{\delta}_P(P,a)$$

Entonces, remplazando en (1) el último término con este resultado, nos queda:

$$\delta'_P(\hat{\delta}(q_0,\beta),a) = \hat{\delta}_P(\hat{\delta}(q_0,\beta),a) = \hat{\delta}(q_0,\beta) = \hat{\delta}(q_0,\beta) = \hat{\delta}(q_0,\omega)$$

Demostración de equivalencia: Veamos ahora que M acepta el mismo lenguaje que M', vamos a separar la demostración en dos casos: $\beta = \lambda$ y $\beta \neq \lambda$.

$$= \beta = \lambda$$

•
$$\lambda \in \mathcal{L}(M) \implies \lambda \in \mathcal{L}(M')$$

$$\lambda \in \mathcal{L}(M) \underset{def}{\Longrightarrow} \hat{\delta}(q_0, \lambda) \cap F \neq \emptyset \underset{def}{\Longrightarrow} Cl_{\lambda}(q_0) \cap F \neq \emptyset$$

$$\underset{\text{por construcción } M'}{\Longrightarrow} q_0 \in F' \underset{def}{\Longrightarrow} \lambda \in \mathcal{L}(M')$$

•
$$\lambda \in \mathcal{L}(M') \implies \lambda \in \mathcal{L}(M)$$
.

$$\lambda \in \mathcal{L}(M') \implies_{\text{def.}} q_0 \in F' \implies_{\text{construcción } M'} q_0 \in F \vee Cl_{\lambda}(q_0) \cap F \neq \emptyset$$

Como
$$q_0 \in F \implies Cl_{\lambda}(q_0) \cap F \neq \emptyset$$
, entonces:

$$q_0 \in F \vee Cl_{\lambda}(q_0) \cap F \neq \emptyset \implies Cl_{\lambda}(q_0) \cap F \neq \emptyset \underset{\text{def.}}{\Longrightarrow} \lambda \in \mathcal{L}(M)$$

 $\beta \neq \lambda$

•
$$\beta \in \mathcal{L}(M) \implies \beta \in \mathcal{L}(M')$$

$$\beta \in \mathcal{L}(M) \implies \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \implies_{\text{por equivalencia transiciones}} \delta'(q_0, \beta) \cap F$$

$$\implies_{\text{construcción } M'} \delta'(q_0, \beta) \cap F' \neq \emptyset \implies_{\text{def.}} \beta \in \mathcal{L}(M')$$

•
$$\beta \in \mathcal{L}(M') \implies \beta \in \mathcal{L}(M)$$

$$\beta \in \mathcal{L}(M') \implies_{\text{def.}} \delta'(q_0, \beta) \cap F' \neq \emptyset \underset{\text{equiv. transiciones}}{\Longrightarrow} \hat{\delta}(q_0, \beta) \cap F' \neq \emptyset$$

$$\implies_{\text{constr.}M'} \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \lor \hat{\delta}(q_0, \beta) \cap (F \cup \{q_0\}) \neq \emptyset$$

Si vale la primera parte de la última expresión $\delta(q_0, \beta) \cap F \neq \emptyset$ entonces $\beta \in \mathcal{L}(M)$ por definición.

Veamos que pasa si vale $\hat{\delta}(q_0, \beta) \cap (F \cup \{q_0\}) \neq \emptyset$:

$$\hat{\delta}(q_0,\beta)\cap (F\cup\{q_0\})\neq\emptyset\implies \hat{\delta}(q_0,\beta)\cap F\neq\emptyset\vee \hat{\delta}(q_0,\beta)\cap \{q_0\}\neq\emptyset$$

La primer parte es lo mismo que arriba, analizemos la segunda:

$$\hat{\delta}(q_0, \beta) \cap \{q_0\} \neq \emptyset \implies Cl_{\lambda}(q_0) \cap F \neq \emptyset \implies \lambda \in \mathcal{L}(M)$$

Queda demostrada la equivalencia de lenguajes.