Cache-optimierte QR-Zerlegung Bachelor Kolloquium

Florian Krötz

Universität Ulm

15. Oktober 2018

Cache-optimierte QR-Zerlegung

ightharpoonup A = QR

$$\left(\begin{array}{c} A \end{array}\right) = \left(\begin{array}{c} Q \end{array}\right) * \left(\begin{array}{c} Q \end{array}\right)$$

- QR-Zerlegung mittels Householder transformation
- Cache-optimierten Algorithmus implementieren
- Anwendungs:
 - ightharpoonup LGS Ax = b lösen mit QR
 - Lineares Ausgleichsproblem mittels kleinstes Fehler Quadrat
 - Kern operation im QR-Verfahren (Berechnung von Eigenwerten)

Householder-Transformation

$$H = I - 2 \frac{vv^T}{v^T v}$$

Householder-Transformation

- Householder Vektor berechnen
 - Ansatz $Hx = \alpha e_1$
 - Normieren $v_1 = 1$

Householder-Transformation anwenden

$$HA = (I - \tau vv^T)A = A - \tau (vv^T)A = A - \tau v(v^TA)$$

Vektor-Rechenoperationen und Vektor-Matrix-Rechenoperationen

$$ightharpoonup A = QR$$

$$H_1A = \left(egin{array}{cccc} * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & * & * & * & * \\ 0 & * & * & * & * \end{array}
ight)$$

$$H_1 = (\hat{H_1})$$
 , $H_2 = \begin{pmatrix} I_1 & 0 \\ \hline 0 & \hat{H_2} \end{pmatrix}$, $H_i = \begin{pmatrix} I_{i-1} & 0 \\ \hline 0 & \hat{H_i} \end{pmatrix}$

$$ightharpoonup A = QR$$

$$H_2H_1A = \left(egin{array}{cccc} * & * & * & * & * \ 0 & * & * & * & * \ 0 & 0 & * & * & * \ 0 & 0 & * & * & * \end{array}
ight)$$

$$H_1 = (\hat{H_1})$$
 , $H_2 = \begin{pmatrix} I_1 & 0 \\ \hline 0 & \hat{H_2} \end{pmatrix}$, $H_i = \begin{pmatrix} I_{i-1} & 0 \\ \hline 0 & \hat{H_i} \end{pmatrix}$

$$ightharpoonup A = QR$$

$$H_3H_2H_1A = \left(egin{array}{ccccc} * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{array}
ight)$$

$$H_1 = (\hat{H_1})$$
 , $H_2 = \begin{pmatrix} I_1 & 0 \\ \hline 0 & \hat{H_2} \end{pmatrix}$, $H_i = \begin{pmatrix} I_{i-1} & 0 \\ \hline 0 & \hat{H_i} \end{pmatrix}$

$$ightharpoonup A = QR$$

$$H_3H_2H_1A = \begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \\ v_2^{(1)} & r_{2,2} & r_{2,3} & r_{2,4} \\ v_3^{(1)} & v_3^{(2)} & r_{3,3} & r_{3,4} \\ v_4^{(1)} & v_4^{(2)} & v_4^{(3)} & r_{4,4} \end{pmatrix}$$

$$H_1 = (\hat{H_1})$$
 , $H_2 = \begin{pmatrix} I_1 & 0 \\ \hline 0 & \hat{H_2} \end{pmatrix}$, $H_i = \begin{pmatrix} I_{i-1} & 0 \\ \hline 0 & \hat{H_i} \end{pmatrix}$

Benchmark

- Peak performance25,6 GFLOPS auf dem Testsystem mit i5-3470-CPU
- ▶ Aufwand QR mittels Householder $A \in \mathbb{R}^{m \times n}$, $m \ge n$

$$\#QR = n \cdot \left(\frac{23}{6} + m + \frac{n}{2} + n \cdot \left(m - \frac{n}{3}\right) + \frac{5}{6} + n \cdot \left(\frac{1}{2} + m - \frac{n}{3}\right)\right) = \mathcal{O}(n^2 m)$$

Flops

$$\mathsf{FLOPS} = \dfrac{\mathsf{Aufwand}}{\Delta t}$$

Ungeblockte QR

Mehrere Householder-Transformationen anwenden

Ansatz

$$\hat{H} = H_1 H_2 ... H_k = I - VTV^T \quad \text{mit} \quad H_i = I - \tau_i v_i v_i^T$$

- ▶ Vektor-Matrix-Rechenoperationen um T zu berrechen
- Householder-Transformationen anwenden

$$C \leftarrow \hat{H}C = C - VTV^TC$$

► Matrix-Produkte um Householder-Transformationen anzuwenden

V_1	C_1
V_2	<i>C</i> ₂

Verschiedene Blockgrößen

Geblockte QR - Blocksizes

Fazit

- Ungeblockter Algorithmus erreicht nicht die peak performance.
- ▶ Eigener ungeblockte Algorithmus ist etwa 5% schneller als MKL.
- Geblockte Algorithmus erreicht fast die peak performance.
- Der geblockte Algorithmus dgeqrf der MKL ist etwas schneller. Der selbst implementierten Algorithmus erreicht bis zu 94% die Performance der MKL.
- Der geblockte Algorithmus ist um den Faktor 3 schneller als der ungeblockte Algorithmus.