Нейронные сети в машинном обучении

Майер Алексей

Содержание

Лекция 1. Бэкроп, оптимизаторы, РуТогсh [ТРЕБУЕТ ДОРАБОТКИ]	2
Лектор(-ы)	
План курса	
Лекции и семинары	
Домашки и система оценивания	
Причём тут нейроны?	
История	2
Чуть-чуть матеши	
Какая аналогия с Нейронами?	3
Как это можно представить?	3
Виды функций активаций	3
Почему сети?	3
Теория. Теорема Цыбенко	3
Как оценить качество имеющегося решения?	3
Лекция 2. [ТРЕБУЕТ ДОРАБОТКИ]	3
Задача	4
Что такое робастность?	4
Переобучение	4
Взрыв и затухание градиента	4
Инициализация весов	4
Регулярцизация нейросетей	5
Меняем функцию потерь	5
Меняем архитектуру	5
нормализации	5

Лекция 1. Бэкроп, оптимизаторы, PyTorch [ТРЕБУЕТ ДО-_ РАБОТКИ]

———— Лектор(-ы) ————
Батраков Юрий @BatrakovYuri
Евдокимов Erop @ea_evdokimov
——— План курса ———
Задумывался чисто про глубокое обучение. Но пришлось добавить ещё и нейронные сети.
—— Лекции и семинары ——
1. Бэкроп, оптимизаторы, PyTorch 2.
—— Домашки и система оценивания ——
 Базовые функции руtorch, классификация/регрессия, методы регуляризации (15) Сегментация. Ускорение модели. (10) NLP. Классификация текстов. Переводчик. NER. (15) GAN + VAE. (15) Representation learning. (10) RecSys. ALS. (10)
+ Экзамен (40)
Итог: Сумма баллов (максимум 115) делённая на 10. Округление математическое.
Сумма баллов за домашки
———— Причём тут нейроны? ———
—— История ——
Нейроны – штука, которая накапливает сигнал, при активации передаёт дальше. Нейроногочень много, (>80 млрд.)
Как это смоделировать?
Изначально хотели для использования машинного обучения, кодировать слова числами (просто прогнать словарь), но это оказалось неэффективно.
Давайте моделировать нейрон! Используем для этого:
—— Чуть-чуть матеши ——
$(x_1, x_2,, x_n)$ – векторное представление объекта, n – количество признаков.
$(w_1,w_2,,w_n)$ – коэффициенты
b – смещение (bias) («байас» по русски)
Легче представлять, что векторы $(1,x_1,,x_n)$ – для удобства умножения f – какая-то функция (функция активации).

Какая функция? Например больше – меньше. Если больше какай-то константы, то активируется (пороговая функция активации).

Какая f функция? Нелинейная, кусочно дифференцируемая.

$$a = f\left(\sum_{j=1}^n w_{i,j}x_j + b\right)$$
 —— Какая аналогия с Нейронами? —— Как это можно представить? ——

Теперь у нас m выходов. Тогда выходы можно представить как матричное произведение матрицы весов на вектор.

$$W = \begin{pmatrix} W_{0,1} & \dots & W_{0,m} \\ \dots & \dots & \dots \\ W_{d,1} & \dots & W_{d,m} \end{pmatrix} \in \mathbb{R}^{d+1}$$

 \boldsymbol{x}

——— Виды функций активаций ———

ACTIVATION FUNCTION	PLOT	EQUATION	DERIATIVE	RANGE	ЗАЧЕМ
Линейная		f(x) = x	f(x) = 1	$(-\infty,\infty)$	
Бинарный шаг					Для классификации и удобства
Гиперболический тангенс					Для

Почему сети:	
В сетях не один, а гораздо больше слоёв.	
——— Теория. Теорема Цыбенко. ———	
Формальное изложение с википедии.	
——— Как оценить качество имеющегося решения? —	

——— Лекция 2. [ТРЕБУЕТ ДОРАБОТКИ] **-**

Вводится несколько функций. Считаем ошибку. Вставить слайды из лекции.

Два линейных слоя подряд это плохо, так как их можно объединить в один слой (умножения на 2 матрицы последовательно можно переписать в одну матрицу). Но иногда это может быть полезно, чтобы сузить размер промежуточный матрицы, чтобы она быстрее передавалась по информационному каналу. Бред, но не всегда автор – дурак.

——— Задача ———	
----------------	--

Пришла Картинка, мы хотим понять. Кошечка это, или собачка?

Как мы это будем делать?

После прохождение через нейронную сеть, мы получаем некоторый вектор, и засовываем его в SoftMax функцию активации. Она

$$\frac{e^{z_i}}{\sum_{j=1}^k z_j}$$

———— Что такое робастность? ————

Робастность модели – устойчивость метода или модели к шуму, ошибкам и неожиданным ситуациям.

После переобучения метрики могут улучшаться, но на практике такое не встречается.

——— Взрыв и затухание градиента ———

Когда мы пропускаем градиенты через обратное распространение ошибки происходит перемножение большого количества чисел. Если эти числа будут большие, то градиент будет увеличиваться и когда back propagation дойдёт до последних слоёв, то мы собьём веса какие у нас были.

Когда градиенты на каждом слое маленькие, то после перемножения кучи маленьких чиссел совсем маленькие и последующие слои меняться совсем не будет

——— Инициализация весов ———

- 1. Инициализация константой (но веса будут меняться одинаково внутри слоёв = плохо)
- 2. Инициализация случайной величиной (плохо)
- 3. Xavier Рассмотрим активацию: $y=w\cdot x+b=\sum_i w_i x_i+b$ Обозначим $w_i x_i=y_i$ Тогда дисперсия этой величины $D(y_i)=...=E[x_i]^2D(w_i)+E[w_i]^2+D(x_i)+D(w_i)D(x_i)$

Получили, что $D(y_i) = D(w_i)D(x_i)$

(Data science \neq science)

Сделаем предположение, что x и w сэмплируются независимо из одного распределение, (условно правда), тогда:

$$D(y) = D\left(\sum_{i=1}^{*} n\right)$$

Ранее веса инициализировали из распределения:

 w_i

Xavier (backward Pass...)

——— Регулярцизация нейросетей ———
Тезники для борьбы с переобучением, повышением робастности и для получения более подходящего решения с точки зрения эксперта.
Изменяем:
1. Функции потери
2. Структуру сети
3. Процесс оптимизации
4. Данные
—— Меняем функцию потерь ——
Меняем функцию потерь, по которой считаем градиент:
$\operatorname{Loss}_{\operatorname{result}} = \operatorname{L}_{\operatorname{original}} + L_{\operatorname{regularization}}$
Добавка может быть любой, подходящей под задачу, но обычно используют
L_1, L_2 — регуляризацию (weight decay)
Регуляризатор может быть применен как и к весам модели, так и к активациям / выходам, в зависимости от желаемых целей.
На практике ещё это требуется для добавления свойств, например, чтобы сделать вырожденным распределение (не по одной величине, а по нескольким) для целей компании.
L_2 — регуляризация
L_1 прореживает веса
L_2 также сжимает, но сильнее
—— Меняем архитектуру ——
Меняем:
1. Специальные слои (добавляем!) (нормализации и DropOut)
2. Дистилляция
3. Квантизация
4. Пруннинг
——— нормализации ———