ECE537 Random Processes

Programming Assignment 3

Question 1 - A random walk process Z(t) is constructed from

$$Z(n) = \sum_{i=1}^{n} X_i$$

where X_i are independent random variables with the probability mass function $P(X_i = +1) = p$ and $P(X_i = -1) = 1 - p$.

- (a) Assume $n=1,\ldots,500$, and p=0.5. Generate 50 independent traces of the random process Z(n) and plot them all together in the same figure as a function of n.
- (b) Estimate the expected value of Z(n) for all n = 1, ..., 500 and plot as a function of n. Explain your observation.
- (c) Estimate the variance of Z(n) for all $n=1,\ldots,500$ and plot as a function of n. Is Z(n) a stationary process? Explain.
- (d) Repeat part (a) with p = 0.6. Explain what you see in the plot.
- (e) Repeat part (a) with p = 0.4. Explain what you see in the plot.

Question 2 - Let N(t) be defined as

$$N(t) = \sum_{i=1}^{\infty} I(X_1 + \ldots + X_i < t)$$

where X_i 's are independent exponentially distributed random variables with parameter λ , the identifier function $I(\zeta)$ is defined as

$$I(\zeta) = \begin{cases} 1 & \text{if the predicate } \zeta \text{ is true} \\ 0 & \text{if the predicate } \zeta \text{ is false} \end{cases}$$

(a) Let $\lambda = 2$, and t = 5. Generate 5 independent traces of N(t) and plot them all together in the same figure.

1

(b) Generate 1000 independent traces of N(t) for t=5 and $\lambda=2$. Plot the histogram of N(t). In the same plot, draw the PDF of a Poisson distribution with mean λt , as

$$P[\widehat{N}(t) = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \qquad k = 0, 1, \dots$$

Compare the histogram with the Poisson distribution and explain your observations.

- (c) Estimate the expected value of N(t) from the generated data and compare with the theoretical value.
- (d) Estimate the variance of N(t) from the generated data and compare with the theoretical value.