

Why pandas?

- 標準表格文件容易載入及保存
 - CSV (Comma-separated Values)
 - TSV (Tab-separated Values)
 - Excel files
 - Database formats
- 序列及表格的索引彈性且方便聚合
- 數值和統計運算快速
- 漂亮且直觀的視覺化

Some Links

- Official Pandas website
 - https://pandas.pydata.org/
- Official documentation
 - https://pandas.pydata.org/docs/
- 10 minutes to Pandas
 - https://pandas.pydata.org/docs/user_guide/10min.html
- Pandas cookbook
 - https://github.com/jvns/pandas-cookbook

Today

- Install and import pandas
- Read data and some basic
- Create Series and DataFrame
- Missing values
- Extract rows, columns, and elements
- Mask and filter
- Operator broadcast and compute statistics
- Group
- Plot

Dataset - Iris.csv

- 三種鳶尾花 (Species: 150筆資料)
 - > Iris-setosa (50筆)
 - > Iris-versicolor (50筆)
 - Iris-virginica (50筆)
- 四個數值特徵值
 - > SepalLengthCm (萼片長)
 - ➤ SepalWidthCm (萼片寬)
 - > PetalLengthCm (花瓣長)
 - > PetalWidthCm (花瓣寬)

了解資料很重要! 很重要!很重要!

Iris Versicolor

Iris Setosa

Iris Virginica

Image Source: https://www.datacamp.com/community/tutorials/machine-learning-in-r

Install and import pandas

pip install <package> 下載package到環境 pip list 列出環境內所有package

```
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

import <package> 載入package到程式內 %matplotlib inline 圖表內嵌到jupyter

Read data and some basic

```
df = pd.read_csv('Iris.csv')
df.head()
```

read_csv() 讀csv檔 read_excel() 讀excel檔 head() 列出前 5 筆資料 tail() 列出後 5 筆資料

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
0	1	5.1	3.5	1.4	0.2	Iris-setosa	
1	2	4.9	3.0	1.4	0.2	Iris-setosa	• DeteFrem
2	3	4.7	3.2	1.3	0.2	Iris-setosa	DataFram
3	4	4.6	3.1	1.5	0.2	Iris-setosa	
4	5	5.0	3.6	1.4	0.2	Iris-setosa	
	무						

Read data and some basic

df.describe()

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
df.shape
(150, 6)
```

```
df.dtypes
```

Id	int64
SepalLengthCm	float64
SepalWidthCm	float64
PetalLengthCm	float64
PetalWidthCm	float64
Species	object
dtype: object	

```
shape() DataFrame的大小 (#row, #column) dtypes() Series元素的資料類型 describe() 連續型變數的基本統計量 columns() 所有的變數名稱 (column name)
```

Create Series and DataFrame

```
# Like a List
pd.Series([20, 50])
     20
     50
dtype: int64
# Like a List
pd.Series([20, 50], index=['a', 'b'])
     20
     50
dtype: int64
# Like a dict
pd.Series({'a': 20, 'b': 50})
     20
     50
dtype: int64
```

```
0 0.0 NaN 4
1 1.0 2.0 5
2 NaN 3.0 6
```

Not-a-Number (NaN) 表示未定義或不可表示的值

```
x y z
0 0 2 4
1 1 3 5
```

Missing values

df.isnull()

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False
145	False	False	False	False	False	False
146	False	False	False	False	False	False
147	False	False	False	False	False	False
148	False	False	False	False	False	False
149	False	False	False	False	False	False

150 rows × 6 columns

```
df.isnull().sum()

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64
```

isnull() 是否存在遺失值 isnull().sum() 各行遺失值總數

Missing values

```
x y z
0 0.0 NaN 4
1 1.0 2.0 5
2 NaN 3.0 6
```

```
df_0.isnull()
```

```
x y z

0 False True False

1 False False False

2 True False False
```

```
df_0.isnull().sum()
x 1
```

```
x 1
y 1
z 0
dtype: int64
```

```
    x
    y
    z

    x
    y
    z

    x
    y
    z

    1
    1.0
    2.0
    5

    2
    -1.0
    3.0
    6

    df_0.dropna(axis=1)

    x
    y
    z

    1
    1.0
    2.0
    5

    2
    -1.0
    3.0
    6
```

```
isnull() 是否存在遺失值 snull().sum() 各行遺失值總數 fillna(value) 為遺失值補上某個 value 將存在遺失值的列刪除,axis若未設定 則為0代表row,設定為1代表column
```

Extract row, column, and element

```
df.loc[0]
Ιd
                           1
SepalLengthCm
                         5.1
SepalWidthCm
                         3.5
PetalLengthCm
                         1.4
PetalWidthCm
                         0.2
Species
                 Iris-setosa
Name: 0, dtype: object
df.iloc[0]
Ιd
                           1
SepalLengthCm
                         5.1
SepalWidthCm
                         3.5
PetalLengthCm
                         1.4
PetalWidthCm
                         0.2
Species
                 Iris-setosa
Name: 0, dtype: object
df[4:8]
```

	ld	SepalLengthCm	${\bf SepalWidthCm}$	PetalLengthCm	PetalWidthCm	Species
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa

```
bool vec = [] # get rows 4~8
for i in range(len(df)):
   if i >= 4 and i <= 8:
       bool vec.append(True)
    else:
       bool vec.append(False)
df[bool vec]
```

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa

df.iloc[loc]

df.loc[label] 藉由label提取row的資訊 藉由integer location提取row的資訊 df[start:end] 取出從start到end的資訊 df[bool_vec] 取出boolean vector中,True的資訊

Extract row, column, and element

```
df['Species']
          Iris-setosa
          Tris-setosa
          Iris-setosa
          Iris-setosa
          Iris-setosa
       Iris-virginica
145
       Iris-virginica
146
       Iris-virginica
147
       Iris-virginica
148
       Iris-virginica
149
Name: Species, Length: 150, dtype: object
df.Species
          Iris-setosa
          Iris-setosa
          Iris-setosa
          Iris-setosa
          Iris-setosa
       Iris-virginica
145
       Iris-virginica
146
       Iris-virginica
147
       Iris-virginica
148
       Iris-virginica
149
Name: Species, Length: 150, dtype: object
```

df[['SepalLengthCm', 'SepalWidthCm']]

	SepalLengthCm	SepalWidthCm
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6
145	6.7	3.0
146	6.3	2.5
147	6.5	3.0
148	6.2	3.4
149	5.9	3.0

150 rows × 2 columns

df[col] df.col df[[col1, col2]]

提取一個column的資訊 提取一個column的資訊 提取多個column的資訊

Extract row, column, and element

```
df.loc[0]['Species']
'Iris-setosa'
df.iloc[0]['Id']
df['PetalLengthCm'][0]
1.4
df['PetalWidthCm'][0]
0.2
df.SepalLengthCm[0]
5.1
df.SepalWidthCm[0]
3.5
```

```
Select element(s)以下方法皆可
(可先選列再選行,也可先選行再選列)
df.loc[label][col],
df.iloc[loc][col],
df[col][label],
df[col][loc],
df.col[label],
df.col[loc]
```

Mask and filter

```
df['PetalLengthCm']
       1.4
       1.4
       1.3
       1.5
       1.4
      . . .
145
       5.2
146
       5.0
       5.2
147
148
       5.4
       5.1
149
Name: PetalLengthCm, Length: 150, dtype: float64
```

```
# mask
df['PetalLengthCm'] <= 1.3</pre>
       False
       False
        True
       False
       False
       False
145
       False
146
       False
147
       False
148
       False
149
Name: PetalLengthCm, Length: 150, dtype: bool
```

```
# filter
df['PetalLengthCm'][df['PetalLengthCm'] <= 1.3]</pre>
      1.3
     1.1
13
     1.2
14
16
     1.3
     1.0
22
     1.2
     1.3
      1.3
     1.3
     1.3
     1.3
Name: PetalLengthCm, dtype: float64
```

```
# filter
df[df['PetalLengthCm'] <= 1.3]</pre>
```

	Id	SepaiLengthCm	SepaiwidthCm	PetaiLengthCm	PetalWidthCm	Species
2	3	4.7	3.2	1.3	0.2	Iris-setosa
13	14	4.3	3.0	1.1	0.1	Iris-setosa
14	15	5.8	4.0	1.2	0.2	Iris-setosa
16	17	5.4	3.9	1.3	0.4	Iris-setosa
22	23	4.6	3.6	1.0	0.2	Iris-setosa
35	36	5.0	3.2	1.2	0.2	Iris-setosa
36	37	5.5	3.5	1.3	0.2	Iris-setosa
38	39	4.4	3.0	1.3	0.2	Iris-setosa
40	41	5.0	3.5	1.3	0.3	Iris-setosa
41	42	4.5	2.3	1.3	0.3	Iris-setosa
42	43	4.4	3.2	1.3	0.2	Iris-setosa

除了常見的>、<、==、!=, 也可以搭配 and、or、 not

Operator broadcast and compute statistics

```
df['PetalWidthCm']
       0.2
       0.2
       0.2
       0.2
       0.2
      . . .
145
       2.3
      1.9
146
147
       2.0
148
       2.3
      1.8
149
Name: PetalWidthCm, Length: 150, dtype: float64
# operator broadcast
df['PetalWidthCm']*10 # cm -> mm
        2.0
        2.0
        2.0
        2.0
        2.0
       . . .
145
       23.0
146
       19.0
147
       20.0
148
       23.0
149
       18.0
Name: PetalWidthCm, Length: 150, dtype: float64
```

```
# compute statistics
print('sum:', df['PetalWidthCm'].sum())
print('max:', df['PetalWidthCm'].max())
print('min:', df['PetalWidthCm'].min())
print('mean:', df['PetalWidthCm'].war())
print('var:', df['PetalWidthCm'].var())
print('std:', df['PetalWidthCm'].std())
print('median:', df['PetalWidthCm'].median())

sum: 179.8
max: 2.5
min: 0.1
mean: 1.198666666666668
var: 0.582414317673378
std: 0.7631607417008411
median: 1.3
```

```
argmax() 最大值的位置
argmin() 最小值的位置
count() 計算各元素的個數
prod() 連乘 (product)
cumsum() 累加(cumulative sum)
```

Group

df.groupby('Species')

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001F40EB38400>

df.groupby('Species').mean()

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
Species					
Iris-setosa	25.5	5.006	3.418	1.464	0.244
Iris-versicolor	75.5	5.936	2.770	4.260	1.326
Iris-virginica	125.5	6.588	2.974	5.552	2.026

df.groupby('Species').aggregate([pd.DataFrame.mean, pd.DataFrame.std])

	ld		Sepall	engthCm	SepalV	VidthCm	PetalL	engthCm	PetalW	/idthCm
	mean	std	mean	std	mean	std	mean	std	mean	std
Species										
lris-setosa	25.5	14.57738	5.006	0.352490	3.418	0.381024	1.464	0.173511	0.244	0.107210
Iris-versicolor	75.5	14.57738	5.936	0.516171	2.770	0.313798	4.260	0.469911	1.326	0.197753
Iris-virginica	125.5	14.57738	6.588	0.635880	2.974	0.322497	5.552	0.551895	2.026	0.274650

df.groupby('Species').get_group('Iris-virginica').head()

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
100	101	6.3	3.3	6.0	2.5	Iris-virginica
101	102	5.8	2.7	5.1	1.9	Iris-virginica
102	103	7.1	3.0	5.9	2.1	Iris-virginica
103	104	6.3	2.9	5.6	1.8	Iris-virginica
104	105	6.5	3.0	5.8	2.2	Iris-virginica

groupby() aggregate() 聚合

分群 get_group() 獲得某群資料

Group

	Gender	Degree	Pet	Team
0	М	BS	Cat	Α
1	F	BS	Cat	Α
2	М	BS	Dog	Α
3	F	MS	Dog	В
4	M	MS	Dog	В
5	F	PhD	Cat	В
6	M	phD	Cat	В

groupby() 是個很好用的指令,除了使用已知的column names來分群外,也可以搭配第12頁ppt的boolean vector或者第15頁ppt提到的mask自己定義想要的分群方式

```
df_2.groupby(['Team', 'Gender']).count()
```

Degree Pet

Team	Gender		
Α	F	1	1
	М	2	2
В	F	2	2
	М	2	2

提醒!get_group時, 只能使用tuple的方式!

	Gender	Degree	Pet	Team
0	М	BS	Cat	Α
2	М	BS	Dog	Α

Plot

記得搭配matplotlib.pyplot

```
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

```
days = ['Mon', 'Tue', 'Wed', 'Thr', 'Fri', 'Sat', 'Sun']
studyHours = [4, 3, 6, 2, 5, 0, 8]
s = pd.Series(studyHours, index=days)
s

Mon    4
Tue    3
```

```
Mon 4
Tue 3
Wed 6
Thr 2
Fri 5
Sat 0
Sun 8
dtype: int64
```



```
s.plot(kind='bar')
plt.show()
```


謝謝聽到這裡還醒著的你們(>///<)

希望大家都能順利完成HW1的前兩題,加油!