

Michael Smurfit Business School Blackrock, May - July 2021

Random Search & CWS Heuristic VRP

Prof. Dr. Angel A. Juan ajuanp@gmail.com | http://ajuanp.wordpress.com IN3 - Computer Science Dept., UOC, Barcelona, Spain

Overview

- Part I: Random Search Concepts
- Part II: Random Search (BFP) w. Python
- Part III: CW Savings Heuristic (VRP) w. Python
- References

Part I:

Random Search Concepts

Random Search (RS) Basic Concepts

- Random search (RS) is a family of numerical optimization methods that make use of randomness instead of using the gradient of the objective function, i.e., they are derivative-free methods.
- Hence, RS can be used on non-smooth objective functions.
- The strategy is to sample solutions from across the entire search space, typically using a uniform probability distribution.
- Biased-Randomized Algorithms (BRAs) are a particular case of RS, in which the probability distribution is skewed instead of uniform.

Gradient-descent search

Pseudocode of Random Search

```
Simple random search for
PROCEDURE pure random search()
                                                                     a maximization problem
    InputInstance();
    Set y = -\infty;
    DO
        Generate a point x from the uniform dis-
        tribution over S;
        Set y = \max(y, f(x));
    OD;
    RETURN(y);
                                              Grid Search
                                                                            Random Search
END pure random search;
                                                                  Unimportant parameter
                                  Jnimportant paramete
                                            0
                                                    0
                                            0
                                                            0
                                           Important parameter
                                                                           Important parameter
```

Part II:

Random Search (BFP) w. Python

The Basin Function Problem (BFP)

It is an instance of a continuous function optimization that seeks to minimize f(x) where:

$$f(x) = \sum_{i=1}^{n} a(x_i - h)^2 + k$$

$$\forall -5.0 < x_i < 5.0 \ and \ n = 2, a = 0.5, h = 2, k = -5$$

0.5*(x-2)*(x-2)+0.5*(x Range (min, max) y Range (min, max) Calculate

For n = 2, the optimal solution of this function is (2, 2)

Plotting Surfaces Online

3D Surface Plotter

An online tool to create 3D plots of surfaces.

Maths Geometry Graph Plot Surface

f Share

https://academo.org/de mos/3d-surface-plotter/

Shared.py Basin Function

```
6 import math, random
  111
  AUXILIARY CODE FOR BASIN FUNCTION
  # An adapted basin function is used as described in:
       http://www.saipanyam.net/2011/06/stochastic-algorithms-1.html
14 def basinFunction(vector):
      a, h, k = 0.5, 2, -5
16
17
18
19
      sum = 0
      for item in vector:
           sum = sum + a * pow((item - h), 2) + k
      return sum
20
```


RS_BF.py Generation of a Random Solution


```
8 from Shared import basinFunction
9 import random, time
10
11 # Select random values inside search space for solution vector (x1, ..., xn,
  def randomSolution(searchSpace, problemSize):
      min = searchSpace[0] # min value in search space
13
14
      max = searchSpace[1] # max value in search space
15
      inputValues = [] # list to store xi values
16
      for i in range(0, problemSize):
17
          # generate values xi between the min and max values
18
          inputValues.append(min + (max - min) * random.random())
      return inputValues
19
```


RS_BF.py Algorithm Framework

```
21 ''' ALGORITHM FRAMEWORK '''
22 # Random Search algorithm to optimize the adapted basin function
23 algorithmName = "Random Search"
24 searchSpace = [-5, 5] # Interval for input xi
25 maxIterations = 10000
26 problemSize = 2 # dimension n of the sol vector (x1, ..., xn)
27 print("Best Sol by " + algorithmName + "...")
28 start = time.clock()
29 bestCost = float("inf") # infinity
30 while maxIterations > 0:
      maxIterations -= 1
      newSol = randomSolution(searchSpace, problemSize)
      newCost = basinFunction(newSol)
      # if newCost is better than bestCost then update bestSol
     if newCost < bestCost:
          bestSol = newSol
          bestCost = newCost
38 stop = time.clock()
39 print("Cost = ", bestCost)
40 print("Sol = ", bestSol)
41 print("Elapsed = ", stop - start)
```

RS_BF.py Results After 10000 Iterations (1 run)

```
In [1]: runfile('/home/aajp/Documents/Intelligent Algorithms Python/RS_BF.py', wdir='/home/aajp/Documents/Intelligent Algorithms Python')
Best Sol by Random Search...

Cost = -9.998196923023961
Sol = [2.042832823498701, 2.0420892288264483]
Elapsed = 0.0156450000000000002
```


This is a probabilistic algorithm --> using more iterations (or more runs in parallel) will help to get better solutions.

RS BF.py Visualizing the Random Search

-2

-4

significantly computational time and required resources, so it is better to set a low number of iterations.

References

Faulin, J., Gilibert, M., Juan, A. A., Vilajosana, X., & Ruiz, R. (2008). SR-1: A simulation-based algorithm for the capacitated vehicle routing problem. In 2008 Winter Simulation Conference (pp. 2708-2716). IEEE.

https://informs-sim.org/

Winter Simulation Conference Archive

Homework Activities

- 1. Construct your own **Python program** to implement a RS algorithm for solving the BFP.
- 2. Solve the same problem but for the following basin function:

It is an instance of a continuous function optimization that seeks to minimize f(x) where:

$$f(x) = \sum_{i=1}^{n} x_i^2$$

$$\forall -5.0 < x_i < 5.0 \text{ and } n = 2$$

3. Read the SR1 article (https://www.informs-sim.org/wsc08pa pers/341.pdf) from the WSC'08 and write a brief summary on it. Assign a score between 0 and 10.

Part III:

CW Savings Heuristic (VRP) w. Python

The Savings Heuristic for the VRP

Starting with a Dummy (but feasible) Solution

The Next Edge is Selected from the Savings List

Until the Route-Merging Process is Finished

vrp_objects.py Classes Node and Edge

```
vrp objects.py X
                       cws heuristic.py X
        class Node:
  2345678
            def init (self, ID, x, y, demand):
                self.ID = ID # node identifier (depot ID = 0)
                self.x = x # Euclidean x-coordinate
                self.y = y # Euclidean y-coordinate
                self.demand = demand # demand (is 0 for depot and positive for others)
                self.inRoute = None # route to which node belongs
  9
                self.isInterior = False # an interior node is not connected to depot
 10
                self.dnEdge = None # edge (arc) from depot to this node
 11
                self.ndEdge = None # edge (arc) from this node to depot
 12
 13
 14
        class Edge:
 15
 16
            def init (self, origin, end):
 17
                self.origin = origin # origin node of the edge (arc)
 18
                self.end = end # end node of the edge (arc)
 19
                self.cost = 0.0 # edge cost
 20
                self.savings = 0.0 # edge savings (Clarke & Wright)
                self.invEdge = None # inverse edge (arc)
 21
```


vrp_objects.py Classes Route and Solution

```
26
      class Route:
27
28
29
           def init (self):
                self.cost = 0.0 # cost of this route
30
                                                                2
                                                                           0
31
                self.edges = [] # sorted edges in this route
32
                self.demand = 0.0 # total demand covered by this route
33
34
           def reverse(self): # e.g. 0 -> 2 -> 6 -> 0 becomes 0 -> 6 -> 2 -> 0
35
               size = len(self.edges)
36
               for i in range(size):
37
                   edge = self.edges[i]
                   invEdge = edge.invEdge
38
39
                   self.edges.remove(edge)
                   self.edges.insert(0, invEdge)
40
        spyder
41
42
      class Solution:
43
44
45
           last ID = -1 # counts the number of solutions, starts with 0
46
           def init (self):
47
               Solution.last ID += 1
48
49
               self.ID = Solution.last ID
               self.routes = [] # routes in this solution
50
51
               self.cost = 0.0 # cost of this solution
52
               self.demand = 0.0 # total demand covered by this solution
```

cws_heuristic.py Reading an Instance Data

```
vrp objects.py X
                         cws heuristic.py X
          """ Clarke & Wright savings heuristic for the VRP """
          from vrp objects import Node, Edge, Route, Solution
                                                                                      spyder
    4 5 6
          import math
          import operator
                                                                      Make sure you use the
    7 8
                                                                      right vehCap when you
                                                                      test a different instance.
          """ Read instance data from txt file """
   9
   10
          vehCap = 100.0 # update vehicle capacity for each instance
          instanceName = 'A-n80-k10' # name of the instance
   11
   12
          # txt file with the VRP instance data (nodeID, x, y, demand)
   13
          fileName = 'data/' + instanceName + ' input nodes.txt'
   14
   15
   16
          with open(fileName) as instance:
   17
              i = 0
              nodes = []
   18
   19
              for line in instance:
   20
                  # array data with node data: x, y, demand
                                                                   Data on instances is available
   21
                  data = [float(x) for x in line.split()]
                                                                               at:
   22
                  aNode = Node(i, data[0], data[1], data[2])
                                                                    https://www.dropbox.com/sh/
   23
                  nodes.append(aNode)
                                                                   uwbixk6iuvxdozg/AADngjZHq
   24
                  i += 1
                                                                     765Qd0IDi1kRGSaa?dl=0
   25
```

JORS Table with Instances and CWS Solutions

AA Juan et al—Techniques to improve the Clarke and Wright savings heuristics 1093												
Statement control and the cont												
Table 1 Results for 33 standard benchmarks (multi-thread C implementation)												
										251		-
Instance	# nodes	vCap	CWS	Gap	Best-known	BKS	# routes	Source	Gap	Our Best	# routes	Time
			Sol.	BSK-CWS	Sol.	(int)	BKS		BKS-OBS	Sol.	OBS	(s)
				(%)					(%)			
A-n32-k5	32	100	843.69	7.09	707.01	70.4			-0.09	787.08	5	1
A-n38-k5	38	100	768.14	4.63	The	1 n80 k	<10 uses	2 2	-0.03	733.95	5	1
A-n45-k7	45	100	1 199.98	4.59					-0.04	1 146.77	7	1
A-n55-k9	55	100	1 099.84	2.36	vehC	ap = 1	00, and	its	0.00	1 074.46	9	1
A-n60-k9	60	100	1 421.88	4.87	1 CWS	cost is	1860.94		0.00	1 355.80	9	1
A-n61-k9	61	100	1 102.23	6.08	1	003113	1000.04	•	0.00	1 039.08	9	2
A-n65-k9	65		1 239.42	4.89	1 181.69	1 174	9	2	0.00	1 181.69	9	2
A-n80-k10	80	100	1 860.94	5.35	1 766.50	1 763	10	1	0.00	1 766.50	10	178
B-n50-k7	50	100	748.80	0.54	744.78	741	7	1	-0.07	744.23	7	1
B-n52-k7	52	100	764.90	1.98	750.08	747	7	1	-0.02	749.96	7	1
B-n57-k9	57	100	1 653.42	3.10	1 603.63	1 598	9	1	-0.08	1 602.28	9	1
B-n78-k10	78	100	1 264.56	2.87	1 229.27	1 221	10	1	-0.11	1 227.90	10	9
E-n22-k4	22	6 000	388.77	3.59	375.28	375	4	2	0.00	375.28	4	1
E-n30-k3	30	4 500	534.45	-0.25	535.80	534	3	2	-5.75	505.01	4	1
E-n33-k4	33 51	8 000	843.10	0.52	838.72	835	4	2	-0.13	837.67	4	1
E-n51-k5	(B) (F)	160	584.64	11.37	524.94	521	5 7	1	-0.06	524.61	5 7	7
E-n76-k7 E-n76-k10	76 76	220 140	737.74 900.26	7.29 7.51	687.60 837.36	682 830	10	2	-0.00 -0.25	687.60 835.28	10	231
E-n76-k14	76	100	1 073.43	4.55	1 026.71	1 021	14	1	-0.23 -0.22	1 024.40	15	32
F-n45-k4	45	2 010	739.02	1.99	724.57	721	4	3	-0.14	723.54	4	5
F-n72-k4	72	30 000	256.19	2.97	248.81	237	4	3	-2.75	241.97	4	2
F-n135-k7	135	2 210	1 219.32	4.16	1 170.65	1 159	7	1	-0.51	1 164.73	7	131
M-n101-k10	101	200	833.51	1.67	819.81	820	10	3	-0.03	819.56	10	0
M-n121-k7	121	200	1 068.14	2.20	1 045.16	1 034	7	1	-0.12	1 043.88	7	107
P-n22-k8	22	3 000	590.62	-1.80	601.42	603	8	3	-2.10	588.79	9	1
P-n40-k5	40	140	518.37	12.27	461.73	458	5	3	0.00	461.73	5	1
P-n50-k10	50	100	734.32	4.97	699.56	696	10	3	0.00	699.56	10	2
P-n55-k15	55	70	978.07	-1.35	991.48	98	luan A A	Foulís		J., Riera, D	Macin	D 8
P-n65-k10	65	130	851.67	6.90	796.67	79	•	•		•		
P-n70-k10	70	135	896.86	8.05	830.02	02	•	,		of Monte C		
P-n76-k4	76	350	689.13	15.20	598.22	59	cache and	splitting	g techniques	s to improve	the Clarke	e and
P-n76-k5	76	280	698.51	9.99	635.04					ournal of th		
P-n101-k4	101	400	765.38	10.56	692.28	60		_	62(6), 1085		. С Срога	
Averages	63			4.87				ooolety,	02(0), 1000	-1081.		

cws_heuristic.py Creating the Edges and List

```
""" Construct edges with costs and savings list from nodes """
33
34
      depot = nodes[0] # node 0 is the depot
35
36
     for node in nodes[1:]: # excludes the depot
37
38
          dnEdge = Edge(depot, node) # creates the (depot, node) edge (arc)
          ndEdge = Edge(node, depot)
39
          dnEdge.invEdge = ndEdge # sets the inverse edge (arc)
40
           ndEdge.invEdge = dnEdge
41
          # compute the Euclidean distance as cost
42
43
          dnEdge.cost = math.sqrt((node.x - depot.x)**2 + (node.y - depot.y)**2)
          ndEdge.cost = dnEdge.cost # assume symmetric costs
44
45
          # save in node a reference to the (depot, node) edge (arc)
          node.dnEdge = dnEdge
46
47
          node.ndEdge = ndEdge
48
49
      savingsList = []
     for i in range(1, len(nodes) - 1): # excludes the depot
50
51
           iNode = nodes[i]
52
           for j in range(i + 1, len(nodes)):
53
               iNode = nodes[i]
54
               ijEdge = Edge(iNode, jNode) # creates the (i, j) edge
55
               jiEdge = Edge(jNode, iNode)
56
               ijEdge.invEdge = jiEdge # sets the inverse edge (arc)
57
               jiEdge.invEdge = ijEdge
              # compute the Euclidean distance as cost
58
               ijEdge.cost = math.sqrt((jNode.x - iNode.x)**2 + (jNode.y - iNode.y)**2)
59
              jiEdge.cost = ijEdge.cost # assume symmetric costs
60
61
              # compute savings as proposed by Clark % Wright
               ijEdge.savings = iNode.ndEdge.cost + jNode.dnEdge.cost - ijEdge.cost
62
63
               jiEdge.savings = ijEdge.savings
               # save one edge in the savings list
64
65
               savingsList.append(ijEdge)
      # sort the list of edges from higher to lower savings
66
       savingsList.sort(key = operator.attrgetter("savings"), reverse = True)
67
```


cws_heuristic.py Dummy Sol and Aux. Funct.

```
03
       """ Construct the dummy solution """
64
65
66
       sol = Solution()
67
       for node in nodes[1:]: # excludes the depot
           dnEdge = node.dnEdge # get the (depot, node) edge
68
69
           ndEdge = node.ndEdge
           dndRoute = Route() # construct the route (depot, node, depot)
70
71
           dndRoute.edges.append(dnEdge)
72
           dndRoute.demand += node.demand
73
           dndRoute.cost += dnEdge.cost
           dndRoute.edges.append(ndEdge)
74
75
           dndRoute.cost += ndEdge.cost
           node.inRoute = dndRoute # save in node a reference to its current route
76
77
           node.isInterior = False # this node is currently exterior (connected to depot)
78
           sol.routes.append(dndRoute) # add this route to the solution
79
           sol.cost += dndRoute.cost
           sol.demand += dndRoute.demand
80
81
82
       """ Perform the edge-selection & routing-merging iterative process """
83
84
       def checkMergingConditions(iNode, jNode, iRoute, jRoute):
85
           # condition 1: iRoute and |Roure are not the same route object
86
           if iRoute == jRoute: return False
87
           # condition 2: both nodes are exterior nodes in their respective routes
88
           if iNode.isInterior == True or jNode.isInterior == True: return False
89
90
           # condition 3: demand after merging can be covered by a single vehicle
           if vehCap < iRoute.demand + jRoute.demand: return False
91
92
           # else, merging is feasible
           return True
93
94
95
96
       def getDepotEdge(aRoute, aNode):
97
           ''' returns the edge in aRoute that contains aNode and the depot
             (it will be the first or the last one) '''
98
99
           # check if first edge in aRoute contains aNode and depot
100
           origin = aRoute.edges[0].origin
           end = aRoute.edges[0].end
101
102
           if ((origin == aNode and end == depot) or
103
                (origin == depot and end == aNode)):
104
                    return aRoute.edges[0]
           else: # return last edge in aRoute
105
               return aRoute.edges[-1]
106
```

107

cws_heuristic.py Iterative Merging Process

```
109
       while len(savingsList) > 0: # list is not empty
           ijEdge = savingsList.pop(0) # select the next edge from the list
110
111
           # determine the nodes i < j that define the edge
            iNode = ijEdge.origin
112
            jNode = ijEdge.end
113
           # determine the routes associated with each node
114
115
            iRoute = iNode.inRoute
116
           ¡Route = ¡Node.inRoute
117
            # check if merge is possible
            isMergeFeasible = checkMergingConditions(iNode, jNode, iRoute, jRoute)
118
            # if all necessary conditions are satisfied, merge
119
           if isMergeFeasible == True:
120
121
                # iRoute will contain either edge (depot, i) or edge (i, depot)
                iEdge = getDepotEdge(iRoute, iNode) # iEdge is either (0,i) or (i,0)
122
                # remove iEdge from iRoute and update iRoute cost
123
124
                iRoute.edges.remove(iEdge)
                iRoute.cost -= iEdge.cost
125
               # if there are multiple edges in iRoute, then i will be interior
126
                if len(iRoute.edges) > 1: iNode.isInterior = True
127
128
               # if new iRoute does not start at 0 it must be reversed
129
                if iRoute.edges[0].origin != depot: iRoute.reverse()
               # jRoute will contain either edge (depot, j) or edge (j, depot)
130
131
                jEdge = getDepotEdge(jRoute, jNode) # jEdge is either (0,j) or (j,0)
                # remove jEdge from jRoute and update jRoute cost
132
133
                ¡Route.edges.remove(¡Edge)
134
                iRoute.cost -= jEdge.cost
                # if there are multiple edges in ¡Rute, then ¡ will be interior
135
136
                if len(jRoute.edges) > 1: jNode.isInterior = True
               # if new jRoute starts at 0 it must be reversed
137
                if jRoute.edges[0].origin == depot: jRoute.reverse()
138
139
                # add ijEdge to iRoute
                iRoute.edges.append(ijEdge)
140
                iRoute.cost += ijEdge.cost
141
                iRoute.demand += jNode.demand
142
143
                iNode.inRoute = iRoute
144
                # add jRoute to new iRoute
145
                for edge in ¡Route.edges:
                    iRoute.edges.append(edge)
146
                    iRoute.cost += edge.cost
147
148
                    iRoute.demand += edge.end.demand
                    edge.end.inRoute = iRoute
149
150
               # delete jRoute from emerging solution
151
                sol.cost -= ijEdge.savings
                sol.routes.remove(jRoute)
152
```

cws_heuristic.py Printing the CWS Solution

```
print('Cost of C&W savings sol =', "{:.{}f}".format(sol.cost, 2))

for route in sol.routes:
    s = str(0)
    for edge in route.edges:
        s = s + '-' + str(edge.end.ID)
    print('Route: ' + s + ' || cost = ' + "{:.{}f}".format(route.cost, 2))

164
```



```
Console 1/A X
Python 3.7.6 (default, Jan 8 2020, 19:59:22)
Type "copyright", "credits" or "license" for more information.
IPython 7.12.0 -- An enhanced Interactive Python.
In [1]: runfile('/home/aajp/2020 VRP CWS heuristic Python/cws heuristic.py', wdir='/home/aajp/
2020 VRP CWS heuristic Python')
Cost of C&W savings sol = 1860.94
Route: 0-1-63-10-7-21-0 || cost = 130.70
Route: 0-64-17-31-27-59-5-23-62-0 | cost = 188.89
Route: 0-24-6-30-78-8-37-2-34-71-0 || cost = 220.95
Route: 0-11-52-28-79-18-48-14-0 || cost = 193.22
Route: 0-13-74-39-60-29-44-12-0 || cost = 143.38
Route: 0-46-20-75-25-41-15-55-9-54-72-0 || cost = 248.96
Route: 0-33-47-56-69-65-35-26-19-57-61-16-43-68-0 | cost = 307.36
Route: 0-36-38-66-67-53-3-77-51-0 | cost = 145.84
Route: 0-40-42-73-49-0 || cost = 87.05
Route: 0-70-76-50-45-22-4-32-58-0 || cost = 194.59
```

Plotting the CWS Solution with Networkx (1/4)

```
Console 1/A X
In [1]: runfile('/home/aajp/2020 VRP CWS heuristic Python/cws heuristic.py', wdir='/home/aajp/
2020 VRP CWS heuristic Python')
Instance: A-n32-k5
                                                    This is the A-n32-k5 with
Cost of C&W savings sol = 843.69
                                                    just 32 nodes.
Route: 0-12-1-13-7-16-0 || cost = 111.92
Route: 0-23-2-3-17-19-31-21-0 || cost = 213.22
Route: 0-14-22-9-8-11-4-28-18-6-26-0 | cost = 257.90
Route: 0-24-30-0 || cost = 65.60
Route: 0-27-29-15-10-25-5-20-0 || cost = 195.05
                                                                 Import networks at the
                                                                 beginning of your code.
        import networkx as nx
168
        G = nx.Graph()
        for route in sol routes:
169
170
             for edge in route.edges:
171
                 G.add edge(edge.origin.ID, edge.end.ID)
172
                 G.add node(edge.end.ID, coord=(edge.end.x, edge.end.y))
173
174
        coord = nx.get node attributes(G, 'coord')
175
        nx.draw networkx(G, coord)
```

176

Plotting the CWS Solution with Networkx (2/4)

Plotting the CWS Solution with Networkx (3/4)

```
import networkx as nx
                                                                                Optional (if you want a
      import matplotlib.pyplot as plt
                                                                                nicer plot...)
      import random
175
        G = nx.Graph()
        fnode = sol.routes[0].edges[0].origin
176
177
        G.add node(fnode.ID, coord=(fnode.x,fnode.y))
        coord = nx.get node attributes(G,'coord')
178
        fig, ax = plt.subplots() #Add axes
179
        nx.draw networkx nodes(G, coord, node size = 60, node color='white', ax = ax)
180
        nx.draw networkx labels(G, coord)
181
182
183
        j=0
184
        for route in sol.routes:
185
            #Assign random colors in RGB
186
            c1 = int(random.uniform(0, 255)) if (j%3 == 2) else (j%3)*int(random.uniform(0, 255))
187
            c2 = int(random.uniform(0, 255)) if ((j+1)%3 == 2) else ((j+1)%3)*int(random.uniform(0, 255))
            c3 = int(random.uniform(0, 255)) if ((j+2)%3 == 2) else ((j+2)%3)*int(random.uniform(0, 255))
188
            for edge in route.edges:
189
190
                G.add edge(edge.origin.ID, edge.end.ID)
191
                G.add node(edge.end.ID, coord=(edge.end.x, edge.end.y))
                coord = nx.get node attributes(G,'coord')
192
                nx.draw networkx nodes(G, coord, node size = 60, node color='white', ax = ax)
193
194
                nx.draw networkx edges(G, coord, edge color='#%02x%02x%02x' % (c1, c2, c3))
195
                nx.draw networkx labels(G, coord, font size = 9)
196
                G.remove node(edge.origin.ID)
197
            i += 1
198
199
        limits=plt.axis('on') #Turn on axes
200
        ax.tick params(left=True, bottom=True, labelleft=True, labelbottom=True)
```

Plotting the CWS Solution with Networkx (4/4)

Homework Activities

- 1. Construct your own **Python program** to implement the CWS heuristic for solving the VRP and test it in different instances, comparing your results with the ones for the CWS solution provided in the JORS table.
- 2. (Optional) Construct a multi-start biased-randomized version of the CWS heuristic.
- 3. (Optional) Complete a comparative study to illustrate how the biased-randomized algorithm (BRA) outperforms the CWS heuristic.
- 4. (Optional) Add a dictionary (hash map) to remember the best-found way to route a given set of nodes. This might improve the BRA performance.

References

Barry, P. (2016). Head First Python: A Brain-Friendly Guide. O'Reilly Media, Inc.

Brownlee, J. (2011). <u>Clever algorithms:</u> <u>nature-inspired programming recipes</u>. Jason Brownlee.

Downey, A. B. (2015): Think Python: How to Think Like a Computer Scientist. O'Reilly Media

Johnson, M. J. (2018). A concise introduction to programming in Python. CRC Press.

Labadie, N., Prins, C., Prodhon, C., Monmarché, N., & Siarry, P. (2016). Metaheuristics for vehicle routing problems. ISTE Limited.

Panyam, S. (2011). <u>Clever Algorithms in Python</u>.

Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications. Society for Industrial and Applied Mathematics.

