Gruppe C14 Julián Häck, Martin Koytek, Lars Wenning, Erik Zimmermann

24. März 2016

Schallgeschwindigkeit in Festkörpern

$$v = \sqrt{\frac{E}{\rho}},$$
 $E = \rho \cdot f^2 \cdot 4L^2,$ $\rho = \frac{M}{V} = \frac{4 \cdot M}{L \cdot \pi D^2}$

Abbildung: Frequenz aus FFT (Stange 1)

	Stange 1	Stange 2	Stange 3	Stange 4
$\overline{f_1}$	1511.52	1728.17	1884.03	1348.48
f_2	1511.54	1728.18	1884.04	1348.50
f_3	1511.52	1728.18	1884.07	1348.49
f_4	1511.53	1728.19	1884.06	1348.50
f_5	1511.51	1728.18	1884.09	1348.50
f_6	1511.53	1728.17	1884.11	1348.54
f_7	1511.54	1728.18	1884.13	1348.55
f_8	1511.51	1728.20	1884.14	1348.55
f_9	1511.51	1728.19	1884.13	1348.52
f_{10}	1511.48	1728.20	1884.14	1348.52
f _{mean}	1511.52	1728.18	1884.09	1348.52
$\sigma_{f_{mean}}$	0.006	0.003	0.013	0.008

	Stange 1	Stange 2	Stange 3	Stange 4
m in kg	1.3019	1.3249	1.1570	1.2364
L in m	1.299	1.50	1.301	1.299

$$\sigma_m = 0.0001 \, kg$$
$$\sigma_I = 0.5 \cdot 10^{-2} \, m$$

	Stange 1	Stange 2	Stange 3	Stange 4
d _{mean}	12.47	12.00	11.96	1198
$\sigma_{d_{mean}}$	0.00	$4.47 \cdot 10^{-3}$	$4.00 \cdot 10^{-3}$	$5.83 \cdot 10^{-3}$

$$\rho = \frac{M}{V} = \frac{4 \cdot M}{L \cdot \pi D^2}$$

$$\sigma_{\rho} = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2 + \left(2 \cdot \frac{\sigma_d}{d}\right)^2} \cdot \rho$$

		Stange 2	Stange 3	Stange 4
$ ho$ in $rac{kg}{m^3}$ $\sigma_{ ho}$ in $rac{kg}{m^3}$	8206.3	7809.3	7910.7	8446.8
$\sigma_{ ho}$ in $\frac{kg}{m^3}$	31.6	26.7	30.9	33.9

$$E = 4\rho \cdot f^2 \cdot L^2$$

$$\sigma_E = \sqrt{(\frac{\sigma_\rho}{\rho})^2 + (2 \cdot \frac{\sigma_L}{L})^2 + (2 \cdot \frac{\sigma_f}{f})^2} \cdot E$$

	Stange 1	Stange 2	Stange 3	Stange 4
E in GPa	126.5	209.9	190.1	103.7
$\sigma_{\it E}$ in GPa	1.1	1.6	1.6	0.8

$$v = \sqrt{\frac{E}{
ho}}, \qquad \sigma_v = \sqrt{(\frac{\sigma_f}{f})^2 + (\frac{\sigma_L}{L})^2} \cdot v$$

	Stange 1	Stange 2	Stange 3	Stange 4
$v \text{ in } \frac{m}{s}$	3926.9	5184.6	4902.4	3503.4
$\sigma_{\rm v}$ in $\frac{m}{s}$	15.1	17.3	18.8	13.5
Material	Kupfer	Eisen	Eisen	Messing
$V_{Literatur}$ in $\frac{m}{s}$	≈ 4660	≈ 5170	≈ 5170	≈ 3500

Versuchsaufbau für alle Experimente mit der Gitarre

Stimmen der Gitarre über Schwebung

Erstes Stimmen mit Stimmgerät und Verstimmen

Stimmversuch 1 und 2

Bestimmung der Materialeigenschaften der A-Saite

$$f = \frac{1}{2}\sqrt{\frac{T}{\mu}} \cdot \frac{1}{I}$$

$$\mu_{lit} = 3.4095 \cdot 10^{-3} \frac{kg}{m}, \qquad T_{lit} = 68.04\text{N}.$$

$$m_{lit} = \frac{1}{2}\sqrt{\frac{T_{lit}}{\mu_{lit}}} = 70.633 \frac{m}{s}$$

64.9 cm	Leere Saite
54.6 cm	2. Bund
51.5 cm	4. Bund
45.9 cm	6. Bund
40.9 cm	8. Bund
36.4 cm	10. Bund
	54.6 cm 51.5 cm 45.9 cm 40.9 cm

$$\sigma_L = 1$$
mm

	L_0	L_1	L_2	L_3	L_4	L_5
f_1	110.16	123.80	138.98	156.03	174.60	194.42
f_2	110.20	123.79	139.04	155.69	174.31	196.00
f_3	110.24	123.79	138.83	155.96	174.46	195.97
Ī	110.20	123.79	138.95	155.89	174.46	195.46
$\sigma_{ar{f}}$	0.02	0.00	0.06	0.10	0.08	0.52
Angaben in Hz						

Lineare Regression

$$A = m = 71.162 \pm 0.282 \frac{m}{s}$$

$$B = 0.612 \pm 0.523 Hz$$

$$\frac{\chi^2}{f} = 0.601$$

$$m_{lit} = 70.633 \frac{m}{s}$$

Aufnahme des Frequenzspektrums der D-Saite

$$\lambda_n = \frac{2L}{n}$$

-Aufnahme eines Frequenzspektrums

- Schallgeschwindigkeiten in 1. und 3. Stange passten nicht gut.
- Schallgeschwindigkeiten in 2. und 4. Stange passten gut.
- Die D-Saite konnte durch Schwebung erfolgreich gestimmt werden.
- Die Materialkonstante der A-Saite stimmt mit etwas mehr als 1σ mit dem Literaturwert überein.
- n-te Harmonische fehlt, wenn die Saite bei $d = \frac{L}{n}$ angeschlagen wird.