Случайнай комбинаторика2 - ответы

Даниил Гафни

2019-07-31

1	(сложность - 70)
	Ответ: nan Решение:
nan	
2	(сложность - 71)
	Ответ: nan Решение:
nan	
3	(сложность - 72)
	Ответ: nan Решение:
nan	
4	(сложность - 72)
	Ответ: nan Решение:
nan	
5	(сложность - 73)
	Ответ: nan Решение:
nan	
6	(сложность - 73)
	Ответ: nan Решение:
nan	
7	(сложность - 73)
	Ответ: nan Решение:
nan	

8 (сложность - 80)

Ответ: nan Решение:

На первое место можно положить одну из 6 карточек. Для этого есть 6 способов. В каждом из этих 6 способов на второе место можно положить одну из оставшихся 5 карточек. Таким образом, существует $5 \cdot 6 = 30$ способов, чтобы положить карточки на первое и второе места. В каждом из этих 30 способов на третье место можно положить одну из оставшихся 4 карточек. Следовательно, существует $4 \cdot 5 \cdot 6 = 120$ способов, чтобы положить карточки на первое, второе и третье места. И так далее, пока не останется одна карточка. Таким образом, при выкладывании карточек можно получить $6!{=}720$ шестизначных чисел. Иногда нас может интересовать количество способов расположить не все п элементов, а только несколько из них. Тогда цепочка из предыдущего рассуждения оборвется на k-том шаге, а не дойдет до единицы. $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)$. Это число размещений k элементов из п можно более коротко записать: $\frac{n!}{(n-k)!}$. (Проверьте, что дробь сокращается до нужного произведения!)

9 (сложность - 81)

Ответ: nan Решение:

nan

10 (сложность - 81)

Ответ: nan Решение:

nan