

Features

- I2C-bus to 16-bit GPIO expander
- Operating power supply voltage from 1.65 V to 5.5 V
- · Low standby current consumption:
 - 3.0 μA (typical at 5 V V_{CC})
 - 1.5 μA (typical at 3.3 V V_{CC})
- 400 kHz Fast-mode I2C-bus
- 5 V tolerant I/Os
- Open-drain active LOW interrupt output (INT)
- · Configurable Slave Address with 3 Address Pins
- · Internal power-on reset
- Power-up with all channels configured as inputs with weak pull-up resistors
- Latch-Up performance exceeds 200 mA per JESD 78
- ESD Protection Exceeds JESD 22
 - 4000-V Human Body Model
 - 1500-V Charged Device Model

Applications

- Servers/Storages
- · Routers (Telecom Switching Equipment)
- Personal Computers

Description

The <u>TPT29555</u> is a 16-bit GPIO expander with interrupt and weak pull-up resistors for I2C-bus applications. The power supplier voltage range is from 1.65 V to 5.5 V that allows the <u>TPT29555</u> to interconnect with 1.8-V microcontrollers.

The TPT29555 contains the register set of two pairs of 8-bit Configuration, Input, Output, and Polarity Inversion registers. The open-drain interrupt (INT) output is changeable when any input state changes from its related register state and is used to indicate the system master that an input state has changed. INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I2C-bus. Thus, the TPT29555 can remain a simple slave device. The power-on reset sets the registers to their default values and initializes the device state machine.

All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I2C-bus address and allow up to eight devices to share the same I2C-bus.

<u>TPT29555</u> is available in TSSOP24 and QFN24 package, and is characterized from -40°C to +85°C.

Function Block Diagram

Table of Contents

Features	1
Applications	1
Description	1
Function Block Diagram	1
Revision History	3
Pin Configuration and Functions	4
Pin Functions	4
Specifications	б
Absolute Maximum Ratings	6
ESD, Electrostatic Discharge Protection	6
Recommended Operating Conditions	6
Thermal Information	7
Electrical Characteristics	8
I2C Interface Timing Requirements	10
Switching Characteristics	11
Typical Performance Characteristics	12
Detailed Description	13
Overview	13
Function Block Diagram	
Feature Description	13
Tape and Reel Information	16
Package Outline Dimensions	17
TS5R (TSSOP24)	17
QF8R (QFN4X4-24L)	18
Order Information	10

Revision History

Date	Revision	Notes
2020-06-12	Rev.Pre.0	Initial Version
2020-11-20	Rev.Pre.1	Added electrical data
2021-01-18	Rev.Pre.2	Updated TSSOP24 package information
2021-03-12	Rev.Pre.3	Added register description
2021-06-15	Rev.A.0	First release version
2021-12-14	Rev.A.1	Added Standard mode timing requirements
2022-1-20	Rev.A.1.1	Fix the typo of ICC unit in page1
2022-1-29	Rev.A.1.2	Fix the typo of pin function and outline of QFN package

Pin Configuration and Functions

Pin Functions

	Pin			
Name	TSSOP24	QFN4X4-24	I/O	Description
A0	21	18	Input	Address input 0. Connect directly to VCC or ground
A1	2	23	Input	Address input 1. Connect directly to VCC or ground
A2	3	24	Input	Address input 2. Connect directly to VCC or ground
GND	12	9	GND	Ground
ĪNT	1	22	Output	Interrupt output. Connect to VCC through a pull-up resistor
P00	4	1	I/O	P-port I/O. Push-pull design structure. At power on, P00 is configured as an input
P01	5	2	I/O	P-port I/O. Push-pull design structure. At power on, P01 is configured as an input
P02	6	3	I/O	P-port I/O. Push-pull design structure. At power on, P02 is configured as an input
P03	7	4	I/O	P-port I/O. Push-pull design structure. At power on, P03 is configured as an input
P04	8	5	I/O	P-port I/O. Push-pull design structure. At power on, P04 is configured as an input
P05	9	6	I/O	P-port I/O. Push-pull design structure. At power on, P05 is configured as an input
P06	10	7	I/O	P-port I/O. Push-pull design structure. At power on, P06 is configured as an input
P07	11	8	I/O	P-port I/O. Push-pull design structure. At power on, P07 is configured as an input
P10	13	10	I/O	P-port I/O. Push-pull design structure. At power on, P10 is configured as an input

Pin Functions (Continued)

	Pin		1/0	December 1
Name	TSSOP24	QFN4X4-24	I/O	Description
P11	14	11	I/O	P-port I/O. Push-pull design structure. At power on, P11 is configured as an input
P12	15	12	I/O	P-port I/O. Push-pull design structure. At power on, P12 is configured as an input
P13	16	13	I/O	P-port I/O. Push-pull design structure. At power on, P13 is configured as an input
P14	17	14	I/O	P-port I/O. Push-pull design structure. At power on, P14 is configured as an input
P15	18	15	I/O	P-port I/O. Push-pull design structure. At power on, P15 is configured as an input
P16	19	16	I/O	P-port I/O. Push-pull design structure. At power on, P16 is configured as an input
P17	20	17	I/O	P-port I/O. Push-pull design structure. At power on, P17 is configured as an input
SCL	22	19	Input	Serial clock bus. Connect to VCC through a pull-up resistor
SDA	23	20	Input	Serial data bus. Connect to VCC through a pull-up resistor
VCC	24	21	Supply	Supply voltage

Specifications

Absolute Maximum Ratings

	Parameter	Min	Max	Unit
Vcc	Supply voltage	-0.5	6	V
Vı	Input voltage	-0.5	6	V
Vo	Output voltage	-0.5	6	V
I _{IK}	Input clamp current, V _I < 0		-20	mA
Іок	Output clamp current, Vo < 0		-20	mA
liok	Input-output clamp current, Vo < 0 or Vo > Vcc		±20	mA
loL	Continuous output low current, $V_0 = 0$ to V_{CC}		50	mA
Іон	Continuous output high current, Vo = 0 to Vcc		-50	mA
	Continuous current through GND		-250	mA
Icc	Continuous current through Vcc		160	mA
T_J	Maximum Junction Temperature		125	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	±1.5	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Para	ameter	Min	Max	Unit
Vcc	Supply voltage		1.65	5.5	V
M	Llink level innet veltere	SCL, SDA	0.7 × V _{CC}	V _{CC}	V
VIH	High-level input voltage	A2 ~ A0, P0_7 ~ P0_0, P1_7 ~ P1_0	0.7 × V _{CC}	5.5	V
.,		SCL, SDA	-0.5	0.3 × V _{CC}	mV
VIL	Low-level input voltage	A2 ~ A0, P0_7 ~ P0_0, P1_7 ~ P1_0	-0.5	0.3 × V _{CC}	mV
Іон	High-level output current	P0_7 ~ P0_0, P1_7 ~ P1_0		-10	mA
	Lauria rata di autorita arimant	Low-level output current P0_7 ~ P0_0, P1_7 ~ P1_0 INT, SDA		25	mA
I _{OL}	Low-level output current			6	mA
TA	Operating Temperature Range		-40	85	°C

⁽²⁾ This data was taken with the JEDEC low effective thermal conductivity test board.

⁽³⁾ This data was taken with the JEDEC standard multilayer test boards.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	θ _{JA}	θυς	Unit
TSSOP24	68	21	°C/W
QFN24	60	25	°C/W

Electrical Characteristics

All test conditions: V_{CC} = 1.65 V ~ 5.5 V, T_A = -40°C ~ +85°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
nput Elec	trical Specifications					
.,	Power-on reset voltage, Vcc rising	V _I = V _{CC} or GND; I _O = 0 mA		1.25	1.45	V
VPOR	Power-on reset voltage, Vcc falling	V _I = V _{CC} or GND; I _O = 0 mA	0.8	1.2		V
	LOW-level output current, SDA	V _{OL} = 0.4 V; V _{CC} = 1.65 V to 5.5 V	3			mA
	LOW-level output current, INT	V _{OL} = 0.4 V; V _{CC} = 1.65 V to 5.5 V	3			mA
		V _{OL} = 0.5 V; V _{CC} = 1.65 V	8			mA
	LOW-level output current,	V _{OL} = 0.5 V; V _{CC} = 2.3 V	8			mA
I_{OL}	P port	V _{OL} = 0.5 V; V _{CC} = 3.0 V	8			mA
		V _{OL} = 0.5 V; V _{CC} = 4.5 V	8			mA
	$V_{OL} = 0.5 \text{ V; } V_{OL}$ $V_{OL} = 0.7 \text{ V; } V_{OL}$	V _{OL} = 0.7 V; V _{CC} = 1.65 V	10			mA
		V _{OL} = 0.7 V; V _{CC} = 2.3 V	10			mA
		V _{OL} = 0.7 V; V _{CC} = 3.0 V	10			mA
		V _{OL} = 0.7 V; V _{CC} = 4.5 V	10	*		mA
		I _{OH} = -8 mA; V _{CC} = 1.65 V	1.2			V
	HIGH-level output voltage,	I _{OH} = -8 mA; V _{CC} = 2.3 V	1.8			V
NPUR Elect	P port	I _{OH} = -8 mA; V _{CC} = 3.0 V	2.6			V
		I _{OH} = -8 mA; V _{CC} = 4.75 V	4.1			V
		I _{OH} = -10 mA; V _{CC} = 1.65 V	1.0			V
	HIGH-level output voltage,	I _{OH} = -10 mA; V _{CC} = 2.3 V	1.7			V
	P port	I _{OH} = -10 mA; V _{CC} = 3.0 V	2.5			V
		I _{OH} = -10 mA; V _{CC} = 4.75 V	4.0			V
	Input current: A0, A1, A2;	V _{CC} = 1.65 V to 5.5 V, V _I = V _{CC} or GND	-1		1	μA
"	Input current: SCL, SDA	V _{CC} = 1.65 V to 5.5 V, V _I = V _{CC} or GND	-1		1	μA
Іін	HIGH-level input current: P port	V _I = VCC; V _{CC} = 1.65 V to 5.5 V			1	μA
lıL	LOW-level input current: P port	V _I = GND; V _{CC} = 1.65 V to 5.5 V			-100	μА

^{(1) 100%} tested at $T_A = 25$ °C.

⁽²⁾ Parameters are provided by lab bench test and design simulation.

Electrical Characteristics (Continued)

All test conditions: V_{CC} = 1.65 V ~ 5.5 V, T_A = -40°C ~ +85°C, unless otherwise noted.

Symbol	Parameter	Condition	ons	Min	Тур	Max	Unit
			V _{CC} = 5.5 V		16	30	μΑ
		Active mode, Io = 0 mA;	V _{CC} = 3.6 V		9	20	μA
		I/O = inputs; fscL = 400 kHz	V _{CC} = 2.7 V		6.2	15	μA
			V _{CC} = 1.95 V		4.2	10	μA
			V _{CC} = 5.5 V		0.90	1.5	mA
	Supply current	Standby Mode, input low, lo = 0 mA; I/O = inputs; fscl = 0 kHz	V _{CC} = 3.6 V		0.48	1.3	mA
Icc			V _{CC} = 2.7 V		0.43	1.0	mA
			V _{CC} = 1.95 V		0.31	0.9	mA
			V _{CC} = 5.5 V		2.64	3.5	μA
		Standby Mode, input	V _{CC} = 3.6 V		1.55	2.3	μA
		high, Io = 0 mA; I/O = inputs; fscl = 0 kHz	V _{CC} = 2.7 V		1.07	1.6	μA
		inputo, 1662 o Ki iz	V _{CC} = 1.95 V		0.68	1.2	μA
Ci	Input capacitance	V _I = V _{CC} or GND; V _{CC} = 1.65 V to 5.5 V ⁽²⁾			3		pF
	Input/output	$V_{I/O}$ = V_{CC} or GND; V_D = 1.65 V to 5.5 V $^{(2)}$			3		pF
Cio	capacitance	V _{I/O} = V _{CC} or GND; V _{CC} =	1.65 V to 5.5 V ⁽²⁾		5		pF

^{(1) 100%} tested at $T_A = 25$ °C.

⁽²⁾ Parameters are provided by lab bench test and design simulation.

I2C Interface Timing Requirements

Over recommended operating free-air temperature range, unless otherwise noted.

Okl	Donovintion.	0	Standa	rd Mod	lod Fast Mode		11!4
Symbol	Description	Conditions	Min	Max	Min	Max	Unit
fscl	I2C clock frequency		0	100	0	400	kHz
tsch	I2C clock high time		4		0.6		μs
tscl	I2C clock low time		4.7		1.3		μs
tsp	I2C spike time			50		50	ns
tsds	I2C serial-data setup time		250		100		ns
tsdh	I2C serial-data hold time		10		10		ns
ticr	I2C input rise time			1000	20	300	ns
ticf	I2C input fall time			300	20 × (Vcc / 5.5 V)	300	ns
tocf	I2C output fall time	10-pF to 400-pF bus		300	20 × (V _{CC} / 5.5 V)	300	ns
tbuf	I2C bus free time between stop and start		4.7		1.3	9	μs
tsts	I2C start or repeated start condition setup		4.7		0.6		μs
tsth	I2C start or repeated start condition hold		4		0.6		μs
tsps	I2C stop condition setup		4		0.6		μs
tvd(data)	Valid data time	SCL low to SDA output valid		3.5		0.9	μs
tvd(ack)	Valid data time of ACK condition	ACK signal from SCL low to SDA (out) low		3.5		0.9	μs
Cb	I2C bus capacitive load			400		400	pF

Parameter measurement waveforms

Figure 1 Load Circuit for Outputs

Switching Characteristics

Over recommended operating free-air temperature range, $C_L \le 100$ pF, unless otherwise noted.

Cumbal	December 4 laur	From	То	Standard Mod		Fast Mode		Unit	
Symbol	Description	(Input)	(Output)	Min	Max	Min	Max	Unit	
tiv	Interrupt valid time	P port	INT		4		4	μs	
tir	Interrupt reset delay time	SCL	INT		4		4	μs	
tpv	Output data valid; For V _{CC} = 2.3 V–5.5 V	SCL	0.01			400		400	ns
	Output data valid; For Vcc = 1.65 V–2.3 V		P port		400		400	ns	
tps	Input data setup time	P port	SCL	15		15	4	ns	
tph	Input data hold time	P port	SCL	1		1		μs	

Typical Performance Characteristics

Figure 3 Voh minimum measurement

Figure 4 Icc versus number of IOS measurement

Detailed Description

Overview

The <u>TPT29555</u> is a 16-bit GPIO expander with interrupt and weak pull-up resistors for I2C-bus applications. The power supplier voltage range is 1.65 V to 5.5 V and allows the <u>TPT29555</u> to interconnect with 1.8 V microcontrollers.

Function Block Diagram

Figure 5 Function Block Diagram

Feature Description

Figure 6 I2C BUS (1.65 V ~ 5.5 V) waveform

www.3peakic.com.cn 13 / 19 Rev.A.1.2

Device Address

Following a START condition, the bus master must output the address of the slave it is accessing. All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I2C-bus address and allow up to eight devices to share the same I2C-bus. To conserve power, address pins (A0, A1, A2) must be pulled HIGH or LOW. The address of the TPT29555 is shown as below.

Figure 7 Slave Device Address

Control Register

Command byte

The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers will be written or read.

Command	Register
0	Input port 0
1	Input port 1
2	Output port 0
3	Output port 1
4	Polarity Inversion port 0
5	Polarity Inversion port 1
6	Configuration port 0
7	Configuration port 1

Table 1 Command Byte Description

Register 0 and 1: Input port registers

This register is an input-only port, which means the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by Register 3 (output port 1), and writes to this register have no effect. The default value 'X' is determined by the externally logic level.

Table 2 Input Port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	10.7	10.6	10.5	10.4	10.3	10.2	10.1	10.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

Table 3 Input Port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	11.7	I1.6	I1.5	l1.4	I1.3	l1.2	I1.1	I1.0
Default	X	X	X	X	X	Х	X	X

www.3peakic.com.cn 14 / 19 Rev.A.1.2

Register 2 and 3: Output port registers

This register is an output-only port, which means the outcoming logic levels of the pins defined as outputs by Register 6 (Configuration port 0) and 7 (Configuration port 1). Bit values in this register have no effect on pins defined as inputs. In fact, the value reading from this register is in the flip-flop controlling the output selection, not the actual pin value.

Table 4 Output Port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	O0.7	O0.6	O0.5	O0.4	O0.3	O0.2	O0.1	00.0
Default	1	1	1	1	1	1	1	1

Table 5 Output Port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	O1.7	O1.6	O1.5	01.4	01.3	01.2	01.1	01.0
Default	1	1	1	1	1	1	1	1

Register 4 and 5: Polarity Inversion registers

This register allows the user to invert the polarity of the input port register data. If a bit in this register is set (written with '1'), the input port data polarity is inverted. If a bit in this register is cleared (written with '0'), the input port data polarity is retained.

Table 6 Polarity Inversion port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	N0.7	N0.6	N0.5	N0.4	N0.3	N0.2	N0.1	N0.0
Default	0	0	0	0	0	0	0	0

Table 7 Polarity Inversion port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	N1.7	N1.6	N1.5	N1.4	N1.3	N1.2	N1.1	N1.0
Default	0	0	0	0	0	0	0	0

Register 6 and 7: Configuration registers

This register configures the directions of the I/O pins. If a bit in this register is set (written with '1'), the corresponding port pin is enabled as an input with high-impedance output driver. If a bit in this register is cleared (written with '0'), the corresponding port pin is enabled as an output. Note that there is a high value resistor tied to V_{DD} at each pin. At reset, the device's ports are inputs with a pull-up to V_{DD} .

Table 8 Configuration port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	C0.7	C0.6	C0.5	C0.4	C0.3	C0.2	C0.1	C0.0
Default	1	1	1	1	1	1	1	1

Table 9 Configuration port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	C1.7	C1.6	C1.5	C1.4	C1.3	C1.2	C1.1	C1.0
Default	1	1	1	1	1	1	1	1

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPT29555-TS5R	24-Pin TSSOP	330	22.4	6.8	8.3	1.6	8	16	Q1
TPT29555-QF8R	24-Pin QFN	330	17.6	4.3	4.3	1.1	8	12	Q1

Package Outline Dimensions TS5R (TSSOP24)

SYMBOL.	MI	LLIMET	ER			
3 I MIDOL	MIN	NOM	MAX			
A	_	_	1.20			
A1	0.05	_	0.15			
A2	0.80	1.00	1.05			
A3	0.39	0. 44	0.49			
b	0.20	_	0.29			
b1	0.19	0.22	0.25			
с	0.13	_	0.18			
c1	0.12	0.13	0.14			
D	7.70	7.80	7.90			
Е	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
e	0.65BSC					
L	0.45	0.60	0.75			
L1	1.00BSC					
θ	0	_	8°			

SIDE VIEW

I2C to 16-bit GPIO Expander with Interrupt

Package Outline Dimensions QF8R (QFN4X4-24L)

SYMBOL	M	ILLIMETH	ER			
SIMBOL	MIN	NOM	MAX			
A	0.80	0.85	0. 90			
A1	0	0.02	0. 05			
b	0.20	0.25	0. 30			
b1	1/	0.23REF				
С		0.203REI	F			
D	3. 90	4. 00	4. 10			
D2	2. 65	2. 70	2. 75			
e	0	. 50BSC				
Nd	2	. 50BSC				
Ne	2	. 50BSC				
E	3. 90	4.00	4. 10			
E2	2. 65	2. 70	2. 75			
L	0. 35	0. 40	0. 45			
h	0. 25	0. 30	0. 35			
K	0. 25REF					
R		0. 075REF	3			

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT29555-TS5R	−40 to 85°C	24-Pin TSSOP	29555	MSL3	4,000	Green
TPT29555-QF8R	−40 to 85°C	24-Pin QFN	29555	MSL3	3,000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

[♣] 3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.