Zadanie nr 1

Rafał Leja 340879 01.04.2025

 $340879 \mod 4 = 3$

Zadanie 3, rozkład t-studenta

1. Liczenie dystrybuanty

Mamy gestość rozkładu t-studenta, podaną jako

$$t(k): f(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(k/2)} \left(1 + \frac{x^2}{k}\right)^{-(k+1)/2} dx$$

Chcemy obliczyć dystrybuante, czyli

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

co może być zapisane jako

$$F(x) = \int_{-\infty}^{0} f(t)dt + \int_{0}^{x} f(t)dt$$

wiemy że rozkład t(k) jest symetryczny względem zera, więc

$$F(0) = \int_{-\infty}^{0} f(t)dt = 0.5$$

Zatem jeśli x > 0 to

$$F(x) = 0.5 + \int_0^x f(t)dt$$

oraz jeśli x < 0 to

$$F(x) = 0.5 - \int_{T}^{0} f(t)dt$$

2. Numeryczna poprawność funkcji Gammma

Funkcja gamma jest zdefiniowana jako

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$

Co jest równoważne

$$\Gamma(x) = x * \Gamma(x-1)$$
 dla $x \in \mathbb{N}$

Na nasze szczęście w tym zadaniu liczymy funcję gamma dla $\frac{k}{2}$ dla $k \in \mathbb{N}$, więc możemy użyć własności rekurencyjnej funkcji gamma, oraz faktu że funkcja gamma przyjmuje wartości:

$$\Gamma(1/2) = \sqrt{\pi}\Gamma(1) = 1$$

W ten sposób mamy prostą numerycznie poprawną funkcję gamma, która nie wymaga obliczania całek.

3. Metoda trapezów

Metoda trapezów jest jedną z najprostszych metod numerycznych do obliczania całek. Polega na przybliżeniu funkcji linią prostą i obliczeniu pola trapezu. Możemy to zapisać jako

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{2}(f(a) + f(b))$$

dla jednego przedziału, lub

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{2}(f(a)+f(b)) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1})$$

gdzie x_i to punkty podziału przedziału [a, b] na n równych części.

5. Metoda Romberga

Metoda Romberga jest bardziej zaawansowaną metodą numeryczną do obliczania całek. Polega na iteracyjnym poprawianiu wyniku metody trapezów, aż do osiągnięcia zadowalającej dokładności. Możemy to zapisać jako

$$\begin{cases} R_{0,i} = \text{metoda trapez\'ow na } 2^i \text{ przedziałach} \\ R_{k,i} = \frac{4^k R_{k-1,i+1} - R_{k-1,i}}{4^k - 1} \end{cases}$$

gdzie $R_{k,i}$ to wynik metody Romberga dla k-tej iteracji i i-tego podziału. Metoda Romberga jest bardziej skomplikowana, ale daje lepsze wyniki niż metoda trapezów.

Zakończenie

Używając powyższych metod, możemy obliczyć dystrybuantę rozkładu t-studenta dla dowolnej liczby stopni swobody k.