

1.

FUNDAMENTOS DE REDES

- 3er. curso del Grado de Ingeniería Informática -Examen de teoría - Febrero 2013

pellidos y nombre:Gru						
(1 ptc	o.: 10×0,1) Marque como verdaderas (V) o falsas (F) las siguientes afirmaciones: (Nota: una respuesta errónea anula una correcta)					
a)	El control de congestión pertenece a la capa de transporte en el modelo OSI.	V				
b)	La tecnología xDSL se utiliza en redes de acceso.	[8]	-			
c)	El protocolo SNMP pertenece a la capa de aplicación en TCP/IP.	120				
d)	SMTP en el puerto 25 lleva la información en texto plano.	Ø				
e)	Tras el cierre de una conexión TCP, hay un tiempo de espera igual a 2 MSL (Maximum Segment Lifetime)	8J	-			
f)	El algoritmo de Karn se propone para el cálculo del timeout en TCP.	[2]				
g)	El protocolo ICMP se encarga de la fragmentación en una red TCP/IP.					
h)	El programa ping se basa en mensajes ICMP de tiempo de vida excedido.		ļ .			
i)	El protocolo FTP se encapsula en TCP.					
j)	Uno de los protocolos de comunicación entre servidores de correo es HTTP.					

- 2. (1 pto.) En una conexión TCP, el control de congestión del nodo emisor A se encuentra en modo "inicio lento", con una ventana de congestión de 4KB y un umbral de 8KB. En el último ACK, se envió un acuse de recibo igual a 100 y una ventana de 1024B. No hay datos en tránsito. Dibuje la ventana de emisión tras la recepción de dicho ACK y tras el envío de 2 segmentos de MSS = 256B de datos. ¿Crecerá la ventana de emisión tras recibir la confirmación de dichos segmentos?
- 3. (1.5 ptos) Se desea transmitir un mensaje de M bits entre dos estaciones origen y destino separadas entre sí S enlaces, sobre una red de conmutación de paquetes mediante datagramas. Di es el retardo de propagación en cada línea i (en m/s.); el tiempo de procesamiento en cada nodo es nulo y P es la longitud total de cada paquete (en bits), con H bits de cabecera y L de datos. Calcule el tiempo total involucrado en la transmisión del mensaje M si se supone que la velocidad de cada enlace i (expresada en bps) es V1>V2>...>VS-1>VS.

1ch = 100

VF=1KB

Asomienda que les peremetres WINDOW de les Acks se mentienen e 4 KB, no creceré y e q le ventine le emisión esté controle de por el ctrl de gloja, aunque sí se dejarán des Hueces de M55.

3 -

$$T_{ip} = \sum_{i=1}^{s} \frac{P}{V_i} + \sum_{i=1}^{s} D_i$$

4. (1.5 ptos) Se dispone de la topología de red adjunta, donde se implementa un algoritmo distribuido de actualización de tablas de *routing* basado en el número de saltos (número de enlaces intermedios entre origen y destino). Supuesto que la actualización comienza para todos los nodos en t = 15 s. con una periodicidad de 30 s. y que las tablas de cada nodo están inicialmente vacías. Indique cuáles serán las tablas de *routing* estables finales para cada uno de los nodos. ¿En qué instante de tiempo se alcanza esta situación?

(se he asomide que ne se he mendede info heste el t=18, si bien es posible que est- fuera (- situación en t=8 y en t=18 ocurriera la de t=16, reducienda tadas las cálculas en 1 actualización)

												200	
t=45	5 6	t=13	5)	2		3		, 4			S	1	6
	D	\$ 10	C	SN	C	SU	C	5	NC	5	NC	51	UC
	4	Δ	1	1	2							1	2
	12	2	2	ß	1	2	2			2	2		
•	C			3	2	C	1	3	2				
	D					4	2	D	1	4	2		
	€			5	2			5	2	E	1	5	2
	F	6	2							6	2	F	1
												-	4

t= 250 (0 t= 450)

	1		1 2	7	1 3		1	4	1	S	1	6
D	SN	C	50	C	SN	و	SA) с		SU C		suc
1	Δ	1	l	2	2	3			6/2	3	1	2
ß	2	Z	ß	1	2	2	3/5	3	2	2	5	43
C	2	3	3	7	C	1	3	2	4/2	3		
0			5/3	3	4	7		_,				
E	2/5	3	5	Z	2/4		D	1	4	2	5	3
F	6	2	1/5	3	2/4	3	S	2	E	1	S	2
			2,0				5	3	6	2	F	1

t = 1050 (or t=755)

D A B C D E	3 U 2 2 2/6 2/6	1 2 3 4 3	5N C 1 7 B 1 3 7 S/3 3 S 2	2 3 2 2 C 1 4 2	3/S 3/S D	4 61 3 2 2 4/2 1 4	Z	50 c 1 z 5/1 3 5/1 4	
F	6		1/g 3	1 3	S	2 E 3 6	7 7	5 3 5 2 F 1	