The Roux Spreading PyRoll Plugin

Christoph Renzing

March 25, 2022

This plugin provides a spreading modelling approach with Roux's formula for flat rolling, adapted on groove rolling by an equivalent rectangle approach.

1 Model approach

1.1 Roux's spread equation

proposed Equation 3 for estimation of spreading in flat rolling. Where h and b are height and width of the workpiece with the indices 0 and 1 denoting the incoming respectively the outgoing profile. C_1 and C_2 are parameters introduced by Roux. R is the roll radius.

$$C_1 = \left(1 + 5\left(0.35 - \frac{\Delta h}{h_0}\right)^2\right)\sqrt{\frac{h_0}{\Delta h}} - 1\tag{1}$$

$$C_2 = \left(\frac{b_0}{h_0} - 1\right) \left(\frac{b_0}{h_0}\right)^{\frac{2}{3}} \tag{2}$$

$$b_1 = b_0 + (h_0 - h_1) \frac{1}{\left(1 - \frac{\Delta h}{h_0}\right) + \frac{3C_1}{\left(2\frac{R}{h_0}\right)^{\frac{3}{4}}}} \frac{\frac{b_0}{h_0}}{1 + 0.57C_2}$$
(3)

1.2 Equivalent rectangle approach

Roux's spreading model [1] was originally built for flat rolling. A common approach for groove rolling is to calculate some equivalent rectangular profile to be able to use flat rolling models [2, 3]. Figure 1 shows 3 variants of calculating an equivalent rectangle of a profile.

The first variant is to keep the width constant and calculate the height h' so that the cross section A is equal:

$$h' = \frac{A}{b}$$

Figure 1: Three methods of defining an equivalent rectangle of an oval groove

The second variant is to keep the height constant and calculate the width b' so that the cross section A is equal:

$$b' = \frac{A}{h}$$

Both represent the geometry of the profile poorly. A better way is to keep the aspect ratio equal as propose by Spittel, Eberlein, and Spittel [3]:

$$h'' = \sqrt{\frac{Ah}{b}}$$

$$b'' = \sqrt{\frac{Ab}{h}}$$

This variant is used in the current implementation. So h and b in Roux's model are replaced with h'' and b''. In the end, b_1 can be obtained from b_1'' by:

$$b_1 = \frac{b_1'' h_1}{h_1''}$$

2 Usage instructions

The plugin can be loaded under the name pyroll_roux_spreading.

Table 1: Hooks specified by this plugin. Symbols as in Equation 3.

Hook name	Meaning
•	Parameter C_1 of Roux's spreading equation Parameter C_2 of Roux's spreading equation

An implementation of the width_change hook on RollPass is provided, calculating the spread using the equivalent rectangle approach and Roux's model.

Several additional hooks on RollPass are defined, which are used in spread calculation, as listed in Table 1. Base implementations of them are provided, so it should work out of the box. For roux_parameter_c1 and roux_parameter_c2 the equations 1 and 2 are implemented. Friction coefficient can be adjusted individually. Provide your own hook implementations or set attributes on the RollPass instances to alter the spreading behavior.

References

- [1] M. J. Roux. "Étude sur le phénomène de l'élargissement dans les laminoirs". In: *Rev. Metall* 36.6 (1939), pp. 257–270.
- [2] A. Hensel and Th. Spittel. Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. Deutscher Verlag für Grundstoffindustrie, 1978.
- [3] M. Spittel, L. Eberlein, and K. Spittel. "Berechnung des Umformgrads bei irregulären Kalibrierungen". In: *Neue Hütte* 29.7 (1984), pp. 259–262.