Informal description

 $\triangleright$  Process the vertices of the mesh by **increasing** value of f.



- $\triangleright$  Process the vertices of the mesh by **increasing** value of f.
- ▶ Construct the Reeb graph  $\mathcal{R}(f)$  incrementally.



- Process the vertices of the mesh by increasing value of f.
- ▶ Construct the Reeb graph  $\mathcal{R}(f)$  incrementally.
- While sweeping upwards, keep:
  - the partial Reeb graph constructed so far;



- Process the vertices of the mesh by increasing value of f.
- ▶ Construct the Reeb graph  $\mathcal{R}(f)$  incrementally.
- ► While sweeping upwards, keep:
  - the partial Reeb graph constructed so far;
  - ▶ the current **level set**  $f^{-1}(r)$ .



- Process the vertices of the mesh by **increasing** value of *f*.
- ▶ Construct the Reeb graph  $\mathcal{R}(f)$  incrementally.
- ► While sweeping upwards, keep:
  - the partial Reeb graph constructed so far;
  - ▶ the current **level set**  $f^{-1}(r)$ .
- When processing a vertex, update the level set and the Reeb graph accordingly.



The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :



The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;



The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .

 $\rightarrow$  a triangle connects its two sides intersecting  $f^{-1}(r)$ 

The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\leadsto$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .

The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\leadsto$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



### Updating $G_r$

► Trigger: update when processing a vertex v

from 
$$r = f(v) - \epsilon$$
 to  $r = f(v) + \epsilon$ 

### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ▶ **Trigger**: update when processing a vertex *v*
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.

#### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\leadsto$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ▶ **Trigger**: update when processing a vertex *v*
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .

#### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ▶ **Trigger**: update when processing a vertex *v*
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .
  - 2. v is the middle vertex of  $\mathcal{T}$ .

#### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ▶ Trigger: update when processing a vertex v
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .
  - 2. v is the middle vertex of  $\mathcal{T}$ .
  - 3. v is the upper vertex of  $\mathcal{T}$ .

#### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ► **Trigger**: update when processing a vertex v
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .
  - 2. v is the middle vertex of  $\mathcal{T}$ .
  - 3. v is the upper vertex of  $\mathcal{T}$ .
- Data structure: the following operations are required;

#### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ▶ Trigger: update when processing a vertex v
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .
  - 2. v is the middle vertex of  $\mathcal{T}$ .
  - 3. v is the upper vertex of  $\mathcal{T}$ .
- Data structure: the following operations are required;
  - find the connected component of a node e;

#### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ► **Trigger**: update when processing a vertex v
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .
  - 2. v is the middle vertex of  $\mathcal{T}$ .
  - 3. v is the upper vertex of  $\mathcal{T}$ .
- ▶ Data structure: the following operations are required;
  - ▶ find the connected component of a node e;
  - insert a new edge between nodes  $e_1$ ,  $e_2$ ;

#### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ► **Trigger**: update when processing a vertex v
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .
  - 2. v is the middle vertex of  $\mathcal{T}$ .
  - 3. v is the upper vertex of  $\mathcal{T}$ .
- ▶ Data structure: the following operations are required;
  - find the connected component of a node e;
  - insert a new edge between nodes  $e_1$ ,  $e_2$ ;
  - delete the edge between nodes e1, e2;

#### The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



- ► **Trigger**: update when processing a vertex *v*
- **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .
  - 2. v is the middle vertex of  $\mathcal{T}$ .
  - 3. v is the upper vertex of  $\mathcal{T}$ .
- ▶ Data structure: the following operations are required;
  - find the connected component of a node e;
  - insert a new edge between nodes  $e_1$ ,  $e_2$ ;
  - $\triangleright$  delete the edge between nodes  $e_1$ ,  $e_2$ ;
  - → offline dynamic connectivity problem

The preimage graph

The level set  $f^{-1}(r)$  can be represented by an abstract **graph**  $G_r$ :

- ▶ nodes  $\rightsquigarrow$  edges of the mesh  $\mathcal{M}$ ;
- ▶ edges  $\rightsquigarrow$  triangles of  $\mathcal{M}$  intersecting  $f^{-1}(r)$ .



### Updating $G_r$

- ► **Trigger**: update when processing a vertex v
- ▶ **Action**: process each triangle  $\mathcal{T}$  of Star(v) separately.
  - 1. v is the lower vertex of  $\mathcal{T}$ .
  - 2. v is the middle vertex of  $\mathcal{T}$ .
  - 3. v is the upper vertex of  $\mathcal{T}$ .
- Data structure: the following operations are required;
  - find the connected component of a node e;
  - ▶ insert a new edge between nodes e₁, e₂;
  - $\triangleright$  delete the edge between nodes  $e_1$ ,  $e_2$ ;
  - → offline dynamic connectivity problem → ST-trees

support all the operations in  $O(\log m)$