Simulatable Auditing

Serena Chen

<u>ID</u>	<u>Name</u>	<u>Salary</u>
0	Bob	60000
1	Erin	80000
2	Marty	70000
3	Abby	70000
4	Denise	75000
5	Randall	90000
6	Austin	65000
7	Alice	85000
8	Dean	70000
9	Lee	80000
10	Michelle	60000
• • •		

Statistical Database!

```
ID
                 Salary
       Name
       Bob
                  60000
       Erin
                 80000
       Marty
                 70000
3
       Abby
                 70000
       Denise
                 75000
5
       Randall 90000
6
       Austin
                 65000
       Alice
                 85000
                 70000
       Dean
9
               80000
       Lee
10
       Michelle 60000
```

```
max(ID={0, 1, 2, 3})

→ 80000

max(ID={0, 2, 3})

→ 70000
```

Statistical Database!

Statistical Database!

Online Auditing

You have a statistical database, and for each query you can choose to **answer truthfully** or **deny**.

For a given set of previous queries and answers, how should you answer a new query?

Early auditing

Derive a giant set of subqueries based on a bunch of rules.

Logically models how an attacker would deduce knowledge from the set of queries.

Deny if you can deduce a $\max(\{x\}) = m$.

<u>ID</u>	<u>Name</u>	<u>Salary</u>
0	Bob	60000
1	Erin	80000
2	Marty	70000
3	Abby	70000
4	Denise	75000
5	Randall	90000
6	Austin	65000
7	Alice	85000
8	Dean	70000
9	Lee	80000
10	Michelle	60000
• • •		

```
sum(ID={0, 1, 2})
    → 210000

max(ID={0, 1, 2})
    → 80000
```

<u>ID</u>	<u>Name</u>	<u>Salary</u>
0	Bob	70000
1	Erin	70000
2	Marty	70000
3	Abby	70000
4	Denise	75000
5	Randall	90000
6	Austin	65000
7	Alice	85000
8	Dean	70000
9	Lee	80000
10	Michelle	60000
• • •		

```
sum(ID=\{0, 1, 2\})

\rightarrow 210000

max(ID=\{0, 1, 2\})
```

<u>ID</u>	<u>Name</u>	<u>Salary</u>
0	Bob	70000
1	Erin	70000
2	Marty	70000
3	Abby	70000
4	Denise	75000
5	Randall	90000
6	Austin	65000
7	Alice	85000
8	Dean	70000
9	Lee	80000
10	Michelle	60000
•••		

```
sum(ID={0, 1, 2})
→ 210000

max(ID={0, 1, 2})
→ DENY
```


The only time this max query denies is when all three elements have the same value.

Simulatable Auditing

How can we design an auditing algorithm that doesn't leak information in denials?

Simulatable Auditing

How can we design an auditing algorithm that doesn't leak information in denials?

Don't deny based on the actual answer. Deny based on whether there exists a possible answer that would compromise an individual.

Simulatable Auditing on Max Queries

User requests max(k).

Simulatable Auditing on Max Queries

User requests max(k).

With \underline{M} : set of all answers to previous overlapping queries, generate the space of **all possible answers** to $\underline{max(k)}$.

- All of M
- The smallest m ∈ M minus one
- The largest m ∈ M plus one
- The midpoint of every two consecutive m₁, m₂ ∈ M

Simulatable Auditing on Max Queries

User requests max(k).

With \underline{M} : set of all answers to previous overlapping queries, generate the space of **all possible answers** to $\underline{max(k)}$.

- All of M
- The smallest m ∈ M minus one
- The largest m ∈ M plus one
- The midpoint of every two consecutive m₁, m₂ ∈ M

If any of those answers compromise the database, deny.

<u>ID</u>	<u>Name</u>	<u>Salary</u>
0	Bob	60000
1	Erin	80000
2	Marty	70000
3	Abby	70000
4	Denise	75000
5	Randall	90000
6	Austin	65000
7	Alice	85000
8	Dean	70000
9	Lee	80000
10	Michelle	60000
• • •		

```
sum(ID={0, 1, 2})
    → 210000

max(ID={0, 1, 2})
    →
```

<u>ID</u>	<u>Name</u>	<u>Salary</u>
0	Bob	60000
1	Erin	80000
2	Marty	70000
3	Abby	70000
4	Denise	75000
5	Randall	90000
6	Austin	65000
7	Alice	85000
8	Dean	70000
9	Lee	80000
10	Michelle	60000
•••		

```
sum(ID=\{0, 1, 2\})

\rightarrow 210000

max(ID=\{0, 1, 2\})
```

→ **DENY**

Compromise using max

<u>ID</u>	<u>Name</u>	<u>Salary</u>
0	Bob	60000
1	Erin	80000
2	Marty	70000
3	Abby	70000
4	Denise	75000
5	Randall	90000
6	Austin	65000
7	Alice	85000
8	Dean	70000
9	Lee	80000
10	Michelle	60000
• • •		

```
Original Auditor:
max(ID=\{0, 1, 2, 3\})
    → 80000
max(ID={0, 2, 3})
    → DENY
max(ID={0, 1, 2})
    → 80000
```

Compromise using max

<u>ID</u>	<u>Name</u>	<u>Salary</u>
0	Bob	60000
1	Erin	80000
2	Marty	70000
3	Abby	70000
4	Denise	75000
5	Randall	90000
6	Austin	65000
7	Alice	85000
8	Dean	70000
9	Lee	80000
10	Michelle	60000
• • •		

Simulatable Auditor:

$$max(ID=\{0, 1, 2, 3\})$$
 $\rightarrow 80000$

$$\max(ID=\{0, 2, 3\})$$

$$\rightarrow DENY$$

$$\max(ID=\{0, 1, 2\})$$

$$\rightarrow DENY$$