SSD1325

Advance Information

128 x 80, 16 Gray Scale Dot Matrix **OLED/PLED Segment/Common Driver with Controller**

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TABLE OF CONTENTS

1	GENER	AL DESCRIPTION	6
2	FEATI	RES	6
_		PEATURES ORDERING INFORMATION	
3	ORDEF	RING INFORMATION	6
4	RLOCK	CDIAGRAM	7
•			
5	DIE PA	D FLOOR PLAN	8
6	DIN A D	RANGEMENT	11
U	IIIIAN	RANGENIE II	11
7	PIN DE	SCRIPTION	13
8	FUNCT	IONAL BLOCK DESCRIPTIONS	16
U			
	8.1 MF 8.1.1	U Interface selection	
	8.1.2	MPU Parallel 8080-series Interface	
	8.1.3	MPU Serial Interface	
		GMENT DRIVERS/COMMON DRIVERS	20
		CILLATOR CIRCUIT AND DISPLAY TIME GENERATOR	
		MMAND DECODER AND COMMAND INTERFACE	
		SET CIRCUIT	
		RRENT CONTROL AND VOLTAGE CONTROL	
		APHIC DISPLAY DATA RAM (GDDRAM)	
		AY SCALE DECODER	
		WER ON AND OFF SEQUENCE	
9		AND TABLE	
		Data Read / Write	
10		MAND DESCRIPTIONS	
		NDAMENTAL COMMAND DESCRIPTION	
	10.1.1	Set Column Address (15h)	
	10.1.2	Set Row Address (75h)	
	10.1.3	Set Contrast Current (81h)	
	10.1.4	Set Current Range (84h, 85h, 87h)	
	10.1.5	Set Re-map (A0h)	37
	10.1.6	Set Display Start Line (A1h)	
	10.1.7	G DI I 0.00 (101)	
		Set Display Offset (A2h)	41
	10.1.8	Set Display Mode (A4h ~ A7h)	
	10.1.9	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h)	
	10.1.9 10.1.10	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh)	
	10.1.9 10.1.10 10.1.11	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh)	
	10.1.9 10.1.10 10.1.11 10.1.12	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh)	
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh)	
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h)	
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h)	
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h) Set Display Clock Divide Ratio (B3h)	
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h) Set Display Clock Divide Ratio (B3h) Set Gray Scale Table	41 42 43 43 43 44 44 44 44 44
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h) Set Display Clock Divide Ratio (B3h) Set Gray Scale Table NOP (E3h)	41 42 43 43 43 44 44 44 44 44 44
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.19	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h) Set Display Clock Divide Ratio (B3h) Set Gray Scale Table NOP (E3h) Status register Read	
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.19	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h) Set Display Clock Divide Ratio (B3h) Set Gray Scale Table NOP (E3h) Status register Read APHIC ACCELERATION COMMAND SET DESCRIPTION	
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.19 10.2 GR 10.2.1	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h) Set Display Clock Divide Ratio (B3h) Set Gray Scale Table NOP (E3h) Status register Read APHIC ACCELERATION COMMAND SET DESCRIPTION Graphic Acceleration Command Options (23h)	
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.19 10.2 GR 10.2.1 10.2.2	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h) Set Display Clock Divide Ratio (B3h) Set Gray Scale Table NOP (E3h) Status register Read APHIC ACCELERATION COMMAND SET DESCRIPTION Graphic Acceleration Command Options (23h) Draw Rectangle (24h)	41 42 43 43 43 43 44 44 44 44 45 45 46 46
	10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.19 10.2 GR 10.2.1	Set Display Mode (A4h ~ A7h) Set Multiplex Ratio (A8h) Set Master Configuration (ADh) Set Display ON/OFF (AEh / AFh) Set V _{COMH} Voltage (BEh) Set Precharge Voltage (BCh) Set Phase Length (B1h) Set Row Period (B2h) Set Display Clock Divide Ratio (B3h) Set Gray Scale Table NOP (E3h) Status register Read APHIC ACCELERATION COMMAND SET DESCRIPTION Graphic Acceleration Command Options (23h)	41 42 43 43 43 43 44 44 44 44 45 45 46 46

	10.2.5	5 Stop Moving (2Eh)	48
	10.2.6	5 Stop Moving (2Eh) 6 Start Moving (2Fh)	48
11	MA	AXIMUM RATINGS	49
12	DC	C CHARACTERISTICS	50
13	AC	C CHARACTERISTICS	51
14	AP	PPLICATION EXAMPLES	55
15	PA	ACKAGE INFORMATION	57
	15.1 S	SSD1325Z DIE TRAY INFORMATION	57
	15.2	SSD1325T6R1 Detail Dimension	58

LIST OF FIGURES

Figure 1 : SSD1325 Block Diagram	7
Figure 2 : SSD1325Z Die Drawing	
FIGURE 3 : SSD1325Z ALIGNMENT MARK DIMENSIONS	9
FIGURE 4: SSD1325T6R1 PIN ASSIGNMENT	11
FIGURE 5: DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	17
FIGURE 6: EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE	17
FIGURE 7: EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE	17
FIGURE 8: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	18
FIGURE 9: DISPLAY DATA WRITE PROCEDURE IN SPI MODE	19
FIGURE 10 : SEGMENT AND COMMON DRIVER BLOCK DIAGRAM	20
FIGURE 11: SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM	21
FIGURE 12 : GRAY SCALE CONTROL BY PWM IN SEGMENT	22
FIGURE 13 : OSCILLATOR CIRCUIT	
FIGURE 14: I _{ref} Current Setting by Resistor Value	
FIGURE 15 : GRAY SCALE PULSE WIDTH SET DIAGRAM	
FIGURE 16: THE POWER ON SEQUENCE	
FIGURE 17 : THE POWER OFF SEQUENCE	
FIGURE 18: EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT	
FIGURE 19 : SEGMENT CURRENT VS CONTRAST SETTING	37
FIGURE 20 : ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE	
FIGURE 21: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE	
FIGURE 22: OUTPUT PIN ASSIGNMENT WHEN COMMAND A0H BIT A[6]=0	
FIGURE 23 : OUTPUT PIN ASSIGNMENT WHEN COMMAND A0H BIT A[6]=1.	
FIGURE 24: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING	
FIGURE 25: EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAPPING	
FIGURE 26: EXAMPLE OF NORMAL DISPLAY	
FIGURE 27: EXAMPLE OF ENTIRE DISPLAY ON	
FIGURE 28 : EXAMPLE OF ENTIRE DISPLAY OFF	
FIGURE 29: EXAMPLE OF INVERSE DISPLAY	
FIGURE 30 : V _{COMH} VS BIT VALUE	
Figure 31 : V _P vs Bit value	
FIGURE 32: EXAMPLE OF GAMMA CORRECTION BY GRAY SCALE TABLE SETTING	
FIGURE 33: EXAMPLE OF DRAW RECTANGLE COMMAND	
FIGURE 34: EXAMPLE OF COPY COMMAND	
FIGURE 35: SCROLLING EXAMPLES	
FIGURE 36: 6800-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS	
FIGURE 37: 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 1)	
FIGURE 38: 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 2)	
FIGURE 39 : SERIAL INTERFACE CHARACTERISTICS	
FIGURE 40: APPLICATION EXAMPLE FOR SSD1325Z SPI SERIAL INTERFACE MODE	
FIGURE 41: APPLICATION EXAMPLE FOR SSD1325T6R1	
FIGURE 42: SSD1325Z DIE TRAY DRAWING	
FIGURE 43 : SSD1325T6R1 DETAIL DIMENSION	58

LIST OF TABLES

Table 1 : Ordering Information	6
TABLE 2: SSD1325Z BUMP DIE PAD COORDINATES	10
TABLE 3: SSD1325T6R1 TAB PIN ASSIGNMENT TABLE	12
Table 4: Pin Descriptions	13
Table 5: Bus Interface selection	
Table 6: MCU interface assignment under different bus interface mode	
Table 7: Control pins of 6800 interface	16
TABLE 8: CONTROL PINS OF 8080 INTERFACE (FORM 1)	18
Table 9: Control pins of 8080 interface (Form 2)	18
TABLE 10: CONTROL PINS OF SERIAL INTERFACE	19
TABLE 11: GDDRAM ADDRESS MAP 1	25
TABLE 12 : GDDRAM ADDRESS MAP 2	25
TABLE 13: GDDRAM ADDRESS MAP 3	26
TABLE 14: GDDRAM ADDRESS MAP 4	26
TABLE 15: GDDRAM ADDRESS MAP 5	
TABLE16: GRAY SCALE PULSE WIDTH SET TABLE	
TABLE 17 : GRAY SCALE PULSE WIDTH DEFAULT VALUES	
Table 18: Command Table	30
Table 19: Graphic acceleration command	33
Table 20: Read Command Table	
Table 21: Address Increment Table (Automatic)	35
TABLE 22 : MAXIMUM RATINGS (VOLTAGE REFERENCE TO V _{SS})	
Table 23 : DC Characteristics	50
Table 24: AC Characteristics	
Table 25: 6800-Series MPU Parallel Interface Timing Characteristics	
Table 26: 8080-Series MPU Parallel Interface Timing Characteristics	
TABLE 27 : SERIAL INTERFACE TIMING CHARACTERISTICS	
TABLE 28: SSD1325Z DIE TRAY DIMENSIONS	57

1 GENERAL DESCRIPTION

SSD1325 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. It consists of 208 high voltage/current driving output pins for driving 128 segments and 80 commons. This IC is designed for Common Cathode type OLED/PLED panel.

SSD1325 displays data directly from its internal 128x80x4 bits Graphic Display Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable 6800-/8080-series compatible Parallel Interface or Serial Peripheral Interface.

It has a 128-step contrast control and a 16 gray level control. The embedded on-chip oscillator and DC-DC voltage converter reduce the number of external components.

2 FEATURES

- Support max. 128 x 80 matrix panel
- Power supply: $V_{DD} = 2.4V 3.5V$

 $V_{CC} = 8.0V - 16.0V$

- For matrix display:
 - o OLED driving output voltage, 14V maximum
 - o Can output maximum segment source current: 300uA
 - o Common maximum sink current: 40mA
- Embedded 128 x 80 x 4 bit SRAM display memory
- 128 step contrast current control on monochrome passive OLED panel
- 16 gray scale
- Internal Oscillator
- Programmable Frame Rate
- 8-bit 6800-series Parallel Interface, 8080-series Parallel Interface, Serial Peripheral Interface.
- Row re-mapping and Column re-mapping
- Low power consumption (<5.0uA @sleep mode)
- Wide range of operating temperature: -40 to 85 °C

3 ORDERING INFORMATION

Table 1 : Ordering Information

Ordering Part Number	SEG	СОМ	Package Form	Reference	Remarks	
SSD1325Z	128	80	COG	Page 8, 57	Min SEG pad pitch: 52.2umMin COM pad pitch: 51.8um	
SSD1325T6R1	128	80	TAB	Page 58	 8-bit 80 / 68 / SPI interface Output lead pitch: 0.12mm x 0.998 = 0.11976mm 4 SPH, 35m film Full resolution 128 x 80 	

Solomon Systech Oct 2007 P 6/60 Rev 1.9 SSD1325

4 BLOCK DIAGRAM

Figure 1: SSD1325 Block Diagram

 Solomon Systech
 Oct 2007
 P 7/60
 Rev 1.9
 SSD1325

5 DIE PAD FLOOR PLAN

Figure 2: SSD1325Z Die Drawing

Note

1+ represents the centre of the alignment mark

Alignment Mark	X-pos (μm)	Y-pos (µm)	
G1	4934.100	-557.675	
o Shape	-4934.100	-557.675	
+ shape	5014.100	-52.200	
T shape	-5014.100	-52.200	

Die Size	10924um x 1508um
Die Thickness	457 +/- 25um
I/O pad pitch	76.2um
SEG pad pitch	52.2um
COM pad pitch	51.8um
Bump Height	Nominal 18um

Bump size	X (um)	Y (um)
Pad 1-7,123-331	34	84
Pad 8-122	54	84

 Solomon Systech
 Oct 2007
 P 8/60
 Rev 1.9
 SSD1325

Figure 3: SSD1325Z Alignment Mark Dimensions

 Solomon Systech
 Oct 2007
 P 9/60
 Rev 1.9
 SSD1325

Table 2 : SSD1325Z Bump Die Pad Coordinates

Pad#	Signal	X-pos	Y-pos -672.075
1	DUMMY	-5414.000 -5361.800	-672.075 -672.075
3	COM75	-5309.600	-672.075
4	COM76	-5257.800	-672.075
5	COM77	-5206.000	-672.075
6 7	COM78 COM79	-5154.200 -5102.400	-672.075 -672.075
8	DUMMY	-4767.075	-672.075
9	DUMMY	-4690.875	-672.075
10	DUMMY	-4614.675	-672.075
11	DUMMY	-4538.475	-672.075 -672.075
12 13	DUMMY	-4462.275 -4386.075	-672.075
14	DUMMY	-4309.875	-672.075
15	DUMMY	-4233.675	-672.075
16	DUMMY	-4157.475	-672.075
17 18	DUMMY	-4081.275 -4005.075	-672.075 -672.075
19	DUMMY	-3928.875	-672.075
20	DUMMY	-3852.675	-672.075
21	VCL	-3471.675	-672.075
22 23	VCL VCL	-3395.475	-672.075
23	VSS	-3319.275 -3243.075	-672.075 -672.075
25	VSSB	-3166.875	-672.075
26	VSSB	-3090.675	-672.075
27	VSL	-3014.475	-672.075
28 29	VSLCAP	-2938.275 -2862.075	-672.075
30	VSLCAP	-2862.075	-672.075 -672.075
31	VCC	-2709.675	-672.075
32	VCC	-2633.475	-672.075
33	VCOMH	-2557.275	-672.075
34 35	VCOMH TR8	-2481.075 -2404.875	-672.075 -672.075
36	TR7	-2328.675	-672.075
37	TR6	-2252.475	-672.075
38	TR5	-2176.275	-672.075
39 40	TR4 TR3	-2100.075 -2023.875	-672.075
40	TR2	-1947.675	-672.075 -672.075
42	TR1	-1871.475	-672.075
43	TR0	-1795.275	-672.075
44	VSS	-1719.075	-672.075
45 46	VSSB GDR	-1642.875 -1338.075	-672.075
46	GDR	-1261.875	-672.075 -672.075
48	GDR	-1185.675	-672.075
49	GDR	-1109.475	-672.075
50 51	V DDB	-728.475 -652.275	-672.075 -672.075
52	VDD	-576.075	-672.075
53	VDD	-499.875	-672.075
54	FB	-423.675	-672.075
55 56	RESE VBREF	-347.475 -271.275	-672.075 -672.075
57	BGGND	-195.075	-672.075
58	VSS	-118.875	-672.075
59	VCC	-42.675	-672.075
60 61	GPIO0 GPIO1	33.525	-672.075
62	VDD VDD	109.725 185.925	-672.075 -672.075
63	BS0	262.125 338.325	-672.075
64	VSS	338.325	-672.075
65 66	BS1	414.525	-672.075
66 67	VDD BS2	490.725 566.925	-672.075 -672.075
68	VSS	643.125	-672.075
69	FR	719.325	-672.075
70	CL DOE#	795.525	-672.075
71 72	DOF# VSS	871.725 947.925	-672.075 -672.075
73	CS#	1024.125	-672.075
74	RES#	1100.325	-672.075
75	D/C#	1176.525	-672.075
76 77	VSS R/W#(WR#)	1252.725 1328.925	-672.075
78	E(RD#)	1405.125	-672.075 -672.075
79	VDD	1481.325	-672.075
80	D0	1557.525	-672.075
81	D1	1633.725	-672.075
82 83	D2 D3	1709.925 1786.125	-672.075 -672.075
84	D4	1862.325	-672.075
85	D5	1938.525	-672.075
86	D6	2014.725	-672.075
87 88	D7 VSS	2090.925	-672.075 -672.075
89	MS#	2167.125 2243.325	-672.075
90	CLS	2319.525	-672.075
50			

Pad#	Signal	X-pos	Y-pos	1	Pad#	Signal	X-pos	Y-pos
91	VDD	2395.725	-672.075	1	181	SEG14	2610.000	672.075
92	ICAS	2471.925	-672.075		182	SEG15	2557.800	672.075
93	IREF	2548.125	-672.075		183	SEG16	2505.600	672.075
94	VCOMH	2624.325	-672.075		184	SEG17	2453.400	672.075
95	VCOMH	2700.525	-672.075		185	SEG18	2401.200	672.075
96	VREF	2776.725	-672.075		186	SEG19	2349.000	672.075
97 98	VCC	2852.925 2929.125	-672.075 -672.075		187 188	SEG20 SEG21	2296.800 2244.600	672.075 672.075
99	VDD	3005.325	-672.075		189	SEG22	2192.400	672.075
100	VSL	3081.525	-672.075	ł	190	SEG23	2140.200	672.075
101	VSS	3157.725	-672.075	1	191	SEG24	2088.000	672.075
102	VCL	3233.925	-672.075	ł	192	SEG25	2035.800	672.075
103	VCL	3310.125	-672.075		193	SEG26	1983.600	672.075
104	VCL	3386.325	-672.075	i	194	SEG27	1931.400	672.075
105	DUMMY	3462.525	-672.075		195	SEG28	1879.200	672.075
106	DUMMY	3538.725	-672.075		196	SEG29	1827.000	672.075
107	DUMMY	3614.925	-672.075		197	SEG30	1774.800	672.075
108	DUMMY	3691.125	-672.075		198	SEG31	1722.600	672.075
109	DUMMY	3767.325	-672.075		199	SEG32	1670.400	672.075
110	DUMMY	3843.525	-672.075		200	SEG33	1618.200	672.075
111 112	DUMMY	3919.725 3995.925	-672.075 -672.075	ļ	201 202	SEG34 SEG35	1566.000 1513.800	672.075 672.075
113	DUMMY	4072.125	-672.075		202	SEG36	1461.600	672.075
114	DUMMY	4148.325	-672.075	ł	204	SEG37	1409.400	672.075
115	DUMMY	4224.525	-672.075	ł	205	SEG38	1357.200	672.075
116	DUMMY	4300.725	-672.075	ł	206	SEG39	1305.000	672.075
117	DUMMY	4376.925	-672.075	l	207	SEG40	1252.800	672.075
118	DUMMY	4453.125	-672.075	i	208	SEG41	1200.600	672.075
119	DUMMY	4529.325	-672.075	1	209	SEG42	1148.400	672.075
120	DUMMY	4605.525	-672.075]	210	SEG43	1096.200	672.075
121	DUMMY	4681.725	-672.075]	211	SEG44	1044.000	672.075
122	DUMMY	4757.925	-672.075		212	SEG45	991.800	672.075
123	COM39	5102.400	-672.075	1	213	SEG46	939.600	672.075
124	COM38	5154.200	-672.075		214	SEG47	887.400	672.075
125 126	COM37 COM36	5206.000 5257.800	-672.075 -672.075		215 216	SEG48 SEG49	835.200 783.000	672.075 672.075
127	COM35	5309.600	-672.075		217	SEG50	730.800	672.075
128	DUMMY	5361.800	-672.075		218	SEG51	678.600	672.075
129	DUMMY	5414.000	-672.075	ł	219	SEG52	626.400	672.075
130	DUMMY	5414.000	672.075	ł	220	SEG53	574.200	672.075
131	DUMMY	5361.800	672.075	l	221	SEG54	522.000	672.075
132	COM34	5309.600	672.075	1	222	SEG55	469.800	672.075
133	COM33	5257.800	672.075	1	223	SEG56	417.600	672.075
134	COM32	5206.000	672.075		224	SEG57	365.400	672.075
135	COM31	5154.200	672.075		225	SEG58	313.200	672.075
136	COM30	5102.400	672.075		226	SEG59	261.000	672.075
137	COM29	5050.600	672.075		227	SEG60	208.800	672.075
138 139	COM28 COM27	4998.800 4947.000	672.075 672.075	ļ	228 229	SEG61 SEG62	156.600 104.400	672.075 672.075
140	COM26	4895.200	672.075	ł	230	SEG63	52.200	672.075
141	COM25	4843.400	672.075		231	SEG64	0.000	672.075
142	COM24	4791.600	672.075		232	SEG65	-52.200	672.075
143	COM23	4739.800	672.075	1	233	SEG66	-104.400	672.075
144	COM22	4688.000	672.075	1	234	SEG67	-156.600	672.075
145	COM21	4636.200	672.075	1	235	SEG68	-208.800	672.075
146	COM20	4584.400	672.075	1	236	SEG69	-261.000	672.075
147	COM19	4532.600	672.075		237	SEG70	-313.200	672.075
148	COM18	4480.800	672.075		238	SEG71	-365.400	672.075
149	COM17	4429.000	672.075		239	SEG72	-469.800	672.075 672.075
150 151	COM16 COM15	4377.200 4325.400	672.075		240 241	SEG73 SEG74	-522.000 -574.200	672.075
152	COM14	4323.400	672.075 672.075	ł	241	SEG74	-626.400	672.075
153	COM13	4221.800	672.075	ł	243	SEG76	-678.600	672.075
154	COM12	4170.000	672.075	1	244	SEG77	-730.800	672.075
155	COM11	4118.200	672.075	1	245	SEG78	-783.000	672.075
156	COM10	4066.400	672.075]	246	SEG79	-835.200	672.075
157	COM9	4014.600	672.075]	247	SEG80	-887.400	672.075
158	COM8	3962.800	672.075		248	SEG81	-939.600	672.075
159	COM7	3911.000	672.075		249	SEG82	-991.800	672.075
160	COM6	3859.200	672.075	l	250	SEG83	-1044.000	672.075
161 162	COM5 COM4	3807.400 3755.600	672.075 672.075	l	251 252	SEG84 SEG85	-1096.200 -1148.400	672.075 672.075
163	COM3	3703.800	672.075	l	253	SEG86	-1200.600	672.075
164	COM2	3652.000	672.075	ł	254	SEG87	-1252.800	672.075
165	COM1	3600.200	672.075	ł	255	SEG88	-1305.000	672.075
166	COMO	3548.400	672.075		256	SEG89	-1357.200	672.075
167	SEG0	3340.800	672.075	1	257	SEG90	-1409.400	672.075
168	SEG1	3288.600	672.075	1	258	SEG91	-1461.600	672.075
169	SEG2	3236.400	672.075]	259	SEG92	-1513.800	672.075
170	SEG3	3184.200	672.075	1	260	SEG93	-1566.000	672.075
171	SEG4	3132.000	672.075	l	261	SEG94	-1618.200	672.075
172	SEG5	3079.800	672.075	l	262	SEG95	-1670.400	672.075
173 174	SEG6	3027.600	672.075	l	263	SEG96	-1722.600 -1774.800	672.075
174	SEG7 SEG8	2975.400 2923.200	672.075 672.075	ł	264 265	SEG97 SEG98	-1774.800	672.075 672.075
176	SEG9	2871.000	672.075	ł	266	SEG99	-1879.200	672.075
177	SEG10	2818.800	672.075	ł	267	SEG100		672.075
178	SEG11	2766.600	672.075	1	268	SEG101		672.075
179	SEG12	2714.400	672.075	1	269	SEG102		672.075
180	SEG13	2662.200	672.075	1	270	SEG103		672.075

Pad#	Signal	X-pos	Y-pos 672,075
271	SEG104	-2140.200	
272	SEG105	-2192.400 -2244.600	672.075 672.075
273 274	SEG106 SEG107	-2244.600	672.075
275	SEG107 SEG108	-2349.000	672.075
276	SEG108	-2401.200	672.075
277	SEG1109	-2453.400	672.075
278	SEG110	-2505.600	672.075
279	SEG112	-2557.800	672.075
280	SEG113	-2610.000	672.075
281	SEG114	-2662.200	672.075
282	SEG115	-2714.400	672.075
283	SEG116	-2766.600	672.075
284	SEG117	-2818.800	672.075
285	SEG118	-2871.000	672.075
286	SEG119	-2923.200	672.075
287	SEG120	-2975.400	672.075
288	SEG121	-3027.600	672.075
289	SEG122	-3079.800	672.075
290	SEG123	-3132.000	672.075
291	SEG124	-3184.200	672.075
292	SEG125	-3236.400	672.075
293	SEG126	-3288.600	672.075
294	SEG127	-3340.800	672.075
295	COM40	-3548.400	672.075
296	COM41	-3600.200	672.075
297	COM42	-3652.000	672.075
298	COM43	-3703.800	672.075
299	COM44	-3755.600	672.075
300	COM45	-3807.400	672.075
301	COM46	-3859.200	672.075
302 303	COM47 COM48	-3911.000 -3962.800	672.075
303	COM49	000000	672.075 672.075
305	COM50	-4014.600 -4066.400	672.075
306	COM51	-4118.200	672.075
307	COM52	-4170.000	672.075
308	COM53	-4221.800	672.075
309	COM54	-4273.600	672.075
310	COM55	-4325.400	672.075
311	COM56	-4377.200	672.075
312	COM57	-4429.000	672.075
313	COM58	-4480.800	672.075
314	COM59	-4532.600	672.075
315	COM60	-4584.400	672.075
316	COM61	-4636.200	672.075
317	COM62	-4688.000	672.075
318	COM63	-4739.800	672.075
319	COM64	-4791.600	672.075
320	COM65	-4843.400	672.075
321	COM66	-4895.200	672.075
322	COM67	-4947.000	672.075
323	COM68	-4998.800	672.075
324	COM69	-5050.600	672.075
325	COM70	-5102.400	672.075
326	COM71	-5154.200	672.075
327	COM72	-5206.000	672.075
328	COM73	-5257.800	672.075
329	COM74	-5309.600	672.075
330 331	DUMMY	-5361.800	672.075
		-5414.000	672.075

 Solomon Systech
 Oct 2007
 P 10/60
 Rev 1.9
 SSD1325

6 PIN ARRANGEMENT

6.1 SSD1325T6R1 pin assignment

Figure 4: SSD1325T6R1 Pin Assignment

 Solomon Systech
 Oct 2007
 P 11/60
 Rev 1.9
 SSD1325

Table 3: SSD1325T6R1 TAB Pin assignment Table

			32310K1 1				
PIN NO.	PIN NAME	PIN NO.	PIN NAME	PIN NO.	PIN NAME	PIN NO.	PIN NAME
1	NC	81	SEG123	161	SEG43	241	COM62
2	VCC	82	SEG122	162	SEG42	242	COM64
3	VCOMH IREF	83 84	SEG121 SEG120	163 164	SEG41 SEG40	243 244	COM66 COM68
5	D7	85	SEG120 SEG119	165	SEG39	244	COM/0
6	D6	86	SEG118	166	SEG38	246	COM/2
7	D5	87	SEG117	167	SEG37	247	COM74
8	D4	88	SEG116	168	SEG36	248	COM76
9	D3	89	SEG115	169	SEG35	249	COM/8
10 11	D2 D1	90 91	SEG114 SEG113	170 171	SEG34 SEG33		
12	D0	91	SEG113	171	SEG33		
13	E/RD#	93	SEG111	173	SEG31		
14	R/W#	94	SEG110	174	SEG30		
15	D/C#	95	SEG109	175	SEG29		
16	RES# CS#	96	SEG108	176	SEG28		
17 18	NC	97 98	SEG107 SEG106	177 178	SEG27 SEG26		
19	BS2	99	SEG105	179	SEG25		
20	BS1	100	SEG104	180	SEG24		
21	VDD	101	SEG103	181	SEG23		
22	NC	102	SEG102	182	SEG22		
23	NC NC	103	SEG101	183	SEG21		
24 25	VBREF	104 105	SEG100 SEG99	184 185	SEG20 SEG19		
26	RESE	105	SEG99	186	SEG19	ĺ	
27	FR	107	SEG97	187	SEG17		
28	VDDB	108	SEG96	188	SEG16	ĺ	
29	GDR	109	SEG95	189	SEG15		
30	VSS VSL	110	SEG94 SEG93	190	SEG14 SEG13		
31 32	COM79	111 112	SEG93	191 192	SEG13		
33	COM77	113	SEG91	193	SEG11		
34	COM/5	114	SEG90	194	SEG10		
35	COM73	115	SEG89	195	SEG9		
36	COM71	116	SEG88	196	SEG8		
37	COV69	117	SEG87 SEG86	197	SEG7 SEG6		
38 39	COV67 COV65	118 119	SEG85	198 199	SEG5		
40	COV63	120	SEG84	200	SEG4		
41	COV61	121	SEG83	201	SEG3		
42	COM59	122	SEG82	202	SEG2		
43	COM57	123	SEG81	203	SEG1 SEG0		
44 45	COV55 COV53	124 125	SEG80 SEG79	204 205	NC NC		
46	COM51	126	SEG78	206	NC		
47	COM9	127	SEG77	207	NC		
48	COM47	128	SEG76	208	NC		
49	COM45	129	SEG75	209	NC		
50 E1	COM3	130	SEG74 SEG73	210	COM0 COM2		
51 52	COM1 COM89	131 132	SEG73	211 212	COM4		
53	COMB7	133	SEG71	213	COM6		
54	COVB5	134	SEG70	214	COM8	ĺ	
55	COMB3	135	SEG69	215	COM10		
56	COMB1	136	SEG68 SEG67	216	COM12 COM14	ĺ	
57 58	COV29 COV27	137 138	SEG67 SEG66	217 218	COM14 COM16	ĺ	
59	COM25	139	SEG65	219	COM18	ĺ	
60	COM23	140	SEG64	220	COM20		
61	COM21	141	SEG63	221	COM22	ĺ	
62	COM19	142	SEG62	222	COM24		
63	COM17	143 144	SEG61 SEG60	223 224	COM26 COM28	ĺ	
64 65	COM15 COM13	144	SEG59	225	COM30	ĺ	
66	COM11	146	SEG58	226	COM32		
67	COMP	147	SEG57	227	COM34	ĺ	
68	COM	148	SEG56	228	COM36		
69	COM5	149	SEG55	229	COM38	ĺ	
70 71	COMB COMI	150 151	SEG54 SEG53	230 231	COM40 COM42		
71	NC NC	151	SEG53	231	COM42 COM44	ĺ	
73	NC NC	153	SEG51	233	COM46	ĺ	
74	NC	154	SEG50	234	COM48		
75	NC	155	SEG49	235	COM50	ĺ	
76	NC CEC127	156	SEG48	236	COM52		
77 78	SEG127 SEG126	157 158	SEG47 SEG46	237 238	COM54 COM56	ĺ	
79	SEG125	159	SEG45	239	COM58		
80	SEG124	160	SEG44	240	COM60		

 Solomon Systech
 Oct 2007
 P 12/60
 Rev 1.9
 SSD1325

7 PIN DESCRIPTION

Key:

I = Input	NC = Not Connected
O = Output	Pull LOW = Connect to Ground
IO = Bi-directional (input/output)	Pull HIGH = Connect to V_{DD}
P = Power pin	

Table 4: Pin Descriptions

Pin Name	Pin Type	Description								
RES#	Ι	This pin is reset signal input. When the pin is LOW, initialization of the chip is executed. Keep this pin HIGH during normal operation.								
CS#	Ι		This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled LOW.							
D/C#	Ι	treated as da command re	This pin is Data/Command control pin. When the pin is pulled HIGH, the data at D[7:0] is treated as data. When the pin is pulled LOW, the data at D[7:0] will be transferred to the command register. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams in Figure 36 to Figure 39.							
E (RD#)	I	pin will be u pulled HIGH When conne	This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled LOW and the chip is selected.							
R/W# (WR#)	I	This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode will be carried out when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected.								
D[7:0]	IO	These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK.								
BS[2:0]	I	These pins a	re MCU	bus interface select	ion.					
		Table 5 : Bu	ıs Interf	ace selection						
				6800-parallel interface (8 bit)	8080-parallel interface (8 bit)	Serial interface				
			BS0	0	0	0				
			BS1	0	1	0				
			BS2	1	1	0				
		Note $^{(1)}$ 0 is connected to V_{SS} $^{(2)}$ 1 is connected to V_{DD}								
V_{DD}	P	This is a power supply pin. It must be connected to external source.								
V _{SS}	P	This is a ground pin. It also acts as ground reference for the logic pins. It must be connected to external ground.								
CL	IO			n clock input. Wher						

 Solomon Systech
 Oct 2007
 P 13/60
 Rev 1.9
 SSD1325

Pin Name	Pin Type	Description
		clock is enabled (i.e. CLS is pulled HIGH), this pin should be kept NC and left open.
CLS	I	This is the internal clock enable pin. When this pin is pulled HIGH, internal oscillator is selected. The internal clock will be disabled when it is pulled LOW, an external clock source must be connected to CL pin for normal operation.
V _{CC}	P	This pin is the most positive voltage supply of the chip. It is supplied by external high voltage source.
V _{COMH}	P	A capacitor should be connected between this pin and $V_{\rm SS}$. No external power supply is allowed to connect to this pin.
I_{REF}	Ι	This pin is the segment output current reference pin. I_{SEG} is derived from I_{REF} . A resistor should be connected between this pin and V_{SS} to maintain the current around 10uA.
COM0 ~ COM79	О	These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF.
SEG0 ~ SEG127	О	These pins provide the OLED segment driving signals. These pins are in high impedance state when display is OFF.
V_{REF}	P	This pin is the voltage reference for the pre-charge voltage in driving OLED device. Voltage should be set matching with the OLED driving voltage in the current drive phase. It can be either supplied externally or connected to V_{CC} .
VCL	0	This is the output pin for the voltage output low level for COM signals. This pin should be connected to $V_{\text{SS.}}$
VSL	О	This is the output pin for the voltage output low level for SEG signals. This pin can be kept NC or connected with a capacitor to V_{SS} for stability. Refer to command BFh for VSL pin connection details.
VSLCAP	0	This is a reserved pin. It has to be kept NC and left open.
M/S#	I	This pin is an input pin and must be pulled HIGH to enable the chip function.
VDDB	P	This is a reserved pin. It should be connected to V_{DD} .
VSSB	P	This is a reserved pin. It should be connected to V_{SS} .
GDR	0	This is a reserved pin. It should be kept NC.
RESE	Ι	This is a reserved pin. It should be kept NC.
FB	I	This is a reserved pin. It should be kept NC.
VBREF	I	This is an internal voltage reference pin. It should be kept NC and left open.
FR	-	It is No Connection pin. It should be kept NC and left open.
DOF#	-	It is No Connection pin. It should be kept NC and left open.
GPIO0	IO	This is a reserved pin. It should be kept NC and left open.
GPIO1	IO	This is a reserved pin. It should be kept NC and left open.
L	l .	1

 Solomon Systech
 Oct 2007
 P 14/60
 Rev 1.9
 SSD1325

Pin Name	Pin Type	Description
TR[8:0]	-	This is a reserved pin. It should be kept NC and left open.
ICAS	-	This is a reserved pin. It should be kept NC and left open.

 Solomon Systech
 Oct 2007
 P 15/60
 Rev 1.9
 SSD1325

8 FUNCTIONAL BLOCK DESCRIPTIONS

8.1 MPU Interface selection

SSD1325 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 6. Different MCU mode can be set by hardware selection on BS[2:0] pins (please refer to Table 5 for BS[2:0] setting).

Table 6: MCU interface assignment under different bus interface mode

Pin Name Bus	Data/	ata/Command Interface							Control Signal				
Interface	D7	7 D6 D5 D4 D3 D2 D1 D0 E							E	R/W#	CS#	D/C#	RES#
8-bit 8080		D[7:0]							RD#	WR#	CS#	D/C#	RES#
8-bit 6800		D[7:0]							Е	R/W#	CS#	D/C#	RES#
SPI	Tie LO	OW				NC	SDIN	SCLK	Tie LC	W	CS#	D/C#	RES#

8.1.1 MPU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 7: Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	↓	L	L	L
Read status	↓	Н	L	L
Write data	↓	L	L	Н
Read data	Ţ	Н	L	Н

Note

L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 5.

Solomon Systech Oct 2007 P 16/60 Rev 1.9 SSD1325

^{(1)↓} stands for falling edge of signal H stands for HIGH in signal

Figure 5: Data read back procedure - insertion of dummy read

8.1.2 MPU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 6: Example of Write procedure in 8080 parallel interface mode

Figure 7: Example of Read procedure in 8080 parallel interface mode

Solomon Systech Oct 2007 P 17/60 Rev 1.9 SSD1325

Table 8: Control pins of 8080 interface (Form 1)

Function	RD#	WR#	CS#	D/C#
Write command	Н	1	L	L
Read status	↑	Н	L	L
Write data	Н	1	L	Н
Read data	↑	Н	L	Н

Note

Alternatively, RD# and WR# can be keep stable while CS# serves as the data/command latch signal.

Table 9: Control pins of 8080 interface (Form 2)

Function	RD#	WR#	CS#	D/C#
Write command	Н	L	↑	L
Read status	L	Н	1	L
Write data	Н	L	1	Н
Read data	L	Н	↑	Н

Note

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8.

Figure 8: Display data read back procedure - insertion of dummy read

 Solomon Systech
 Oct 2007
 P 18/60
 Rev 1.9
 SSD1325

^{(1) ↑} stands for rising edge of signal

⁽²⁾ H stands for HIGH in signal

⁽³⁾ L stands for LOW in signal

⁽⁴⁾ Refer to Figure 37 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics

^{(1) ↑} stands for rising edge of signal

⁽²⁾ H stands for HIGH in signal

⁽³⁾ L stands for LOW in signal

⁽⁴⁾ Refer to Figure 38 for Form 2 8080-Series MPU Parallel Interface Timing Characteristics

8.1.3 MPU Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# can be connected to an external ground.

Table 10: Control pins of Serial interface

Function	E	CS#	D /C#	
Write command	Tie LOW	Tie LOW	L	L
Write data	Tie LOW	Tie LOW	L	Н

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

Figure 9: Display data write procedure in SPI mode

Solomon Systech Oct 2007 P 19/60 Rev 1.9 SSD1325

8.2 Segment Drivers/Common Drivers

Segment drivers have 128 current sources to drive OLED panel. The driving current can be adjusted from 0 to 300uA with 7 bits, 128 steps. Common drivers generate voltage scanning pulses. The block diagrams and waveforms of the segment and common driver are shown as follow.

Figure 10 : Segment and Common Driver Block Diagram

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage V_{COMH} as shown in Figure 11.

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to I_{SEG} when the pixel is turned ON.

Solomon Systech Oct 2007 P 20/60 Rev 1.9 SSD1325

Figure 11: Segment and Common Driver Signal Waveform

 Solomon Systech
 Oct 2007
 P 21/60
 Rev 1.9
 SSD1325

There are three phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to V_{SS} in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0] from 1 to 15 DCLK. An OLED panel with larger capacitance requires a longer period for discharging.

In phase 2, pre-charge is performed. The pixel is driven to attain the corresponding voltage level V_P from V_{SS} . The amplitude of V_P can be programmed by the command BCh. The period of phase 2 can be programmed in length from 1 to 15 DCLK by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

Last phase (phase 3 is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The wider pulse widths in the current drive stage results in brighter pixels and vice versa. This is shown in the following figure.

Figure 12: Gray Scale Control by PWM in Segment

After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This three-step cycle is run continuously to refresh image display on OLED panel.

The pulse width, which is counted from Phase 2 to Phase 3, is defined by command B8h "Set Gray Scale Table". In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.

Solomon Systech Oct 2007 | P 22/60 | Rev 1.9 | SSD1325

8.3 Oscillator Circuit and Display Time Generator

This module is an On-Chip low power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be left open. Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency F_{OSC} can be changed by command B3h, please refer to Table 18.

Internal
Oscillator
Fosc

M
U
X

Divider
Display
Clock

Figure 13: Oscillator Circuit

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command B3h

CLS

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula.

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of } Mux}$$

where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from
- K is row period. It is configured by command B2h. This value should comply with following condition.

$$K \ge Phase 1 + Phase 2 + Phase 3 + GS15$$

- Number of multiplex ratio is set by command A8h. The power ON reset value is 4Fh.
- F_{OSC} is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in faster frequency.

If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system.

8.4 Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is HIGH, the input at D_7 - D_0 is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at D_7 - D_0 is interpreted as a Command which will be decoded and be written to the corresponding command register.

Solomon Systech Oct 2007 | P 23/60 Rev 1.9 SSD1325

8.5 Reset Circuit

When RES# input is LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 x 80 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 40h

8.6 Current Control and Voltage Control

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V_{DD} is an external voltage supply.
- V_{CC} is the most positive external voltage supply.
- V_{COMH} is the Common deselected level. It is internally regulated.
- V_{SS} is the ground path of the analog and panel current.
- I_{REF} is a reference current source for segment current drivers I_{SEG}.

Note that V_{REF} is reference voltage, which is used to derive driving voltage for segments and commons. The magnitude of I_{REF} is controlled by the value of resistor, which is connected between I_{REF} pin and Vss as shown in **Error! Reference source not found.**. It is recommended to set I_{REF} to 10uA+/-2uA so as to achieve $I_{SEG} = 300uA$ at maximum contrast 127.

Figure 14: I_{REF} Current Setting by Resistor Value

Since the voltage at I_{REF} pin is $V_{CC}-3V$, the value of resistor R1 can be found as below. R1 = (Voltage at $I_{REF}-V_{SS}$) / I_{REF} = ($V_{CC}-3$) / $10uA \approx 910k\Omega$ for $V_{CC}=12V$.

8.7 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 128x80x4 bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. The GDDRAM address maps in

Table 11 to Table 15 show some examples on using the command "Set Re-map" A0h to re-map the GDDRAM. In the following tables, the lower nibble and higher nibble of D0, D1, D2 ... D5117, D5118, D5119 represent the 128x80 data bytes in the GDDRAM.

Solomon Systech Oct 2007 | P 24/60 | Rev 1.9 | SSD1325

Table 11 shows the GDDRAM map under the following condition:

- Command "Set Re-map" A0h is set to:
 - Disable Column Address Re-map (A[0]=0)
 Disable Nibble Re-map (A[1]=0)
 Enable Horizontal Address Increment (A[2]=0)
 Disable COM Re-map (A[4]=0)
- Display Start Line=00h
- Data byte sequence: D0, D1, D2 ... D5119

Table 11: GDDRAM address map 1

Table 12 shows the GDDRAM map under the following condition:

• Command "Set Re-map" A0h is set to:

Disable Column Address Re-map (A[0]=0)
Disable Nibble Re-map (A[1]=0)
Enable Vertical Address Increment (A[2]=1)
Disable COM Re-map (A[4]=0)

- Display Start Line=00h
- Data byte sequence: D0, D1, D2 ... D5119

Table 12: GDDRAM address map 2

Table 13 shows the GDDRAM map under the following condition:

Solomon Systech | Oct 2007 | P 25/60 Rev 1.9 SSD1325

• Command "Set Re-map" A0h is set to:

Enable Column Address Re-map (A[0]=1) Enable Nibble Re-map (A[1]=1) Enable Horizontal Address Increment (A[2]=0) Disable COM Re-map (A[4]=0)

- Display Start Line=00h
- Data byte sequence: D0, D1, D2 ... D5119

Table 13 : GDDRAM address map 3

For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display.

Table 14 shows the example in which the display start line register is set to 10h with the following condition:

• Command "Set Re-map" A0h is set to:

Disable Column Address Re-map (A[0]=0)
Disable Nibble Re-map (A[1]=0)
Enable Horizontal Address Increment (A[2]=0)
Enable COM Re-map (A[4]=1)

- Display Start Line=10h (corresponds to COM15)
- Data byte sequence: D0, D1, D2 ... D5119

Table 14: GDDRAM address map 4

Table 15 shows the GDDRAM map under the following condition:

Solomon Systech Oct 2007 | P 26/60 | Rev 1.9 | SSD1325

• Command "Set Re-map" A0h is set to:

Disable Column Address Re-map (A[0]=0)
Disable Nibble Re-map (A[1]=0)
Enable Horizontal Address Increment (A[2]=0)
Disable COM Re-map (A[4]=0)

- Display Start Line=00h
- Column Start Address=01h
- Column End Address=3Eh
- Row Start Address=01h
- Row End Address=4Eh
- Data byte sequence: D0, D1, D2 ... D4835

Table 15: GDDRAM address map 5

Note

8.8 Gray Scale Decoder

There are 16 gray levels from GS0 to GS15. The gray scale of the display is defined by the pulse width (PW) of current drive phase, GS0 has no pre-charge (phase 2) and no current drive (phase 3). Each L value represents an offset to the corresponding gray scale level. See below table and graphical representation:

Table16: Gray scale pulse width set table

Solomon Systech | Oct 2007 | P 27/60 Rev 1.9 SSD1325

⁽¹⁾ Please refer to Table 18 for the details of setting command "Set Re-map" A0h.

⁽²⁾ The "Display Start Line" is set by the command "Set Display Start Line" A1h and please refer to Table 18 for the setting details

⁽³⁾ The "Column Start/End Address" is set by the command "Set Column Address" 15h and please refer to Table 18 for the setting details

⁽⁴⁾ The "Row Start/End Address" is set by the command "Set Row Address" 75h and please refer to Table 18 for the setting detail

	Description	Number of DCLKs
L1	Set GS1 level Pulse Width	0-7
L2	Set GS2 level Pulse Width Offset	1-8
L3	Set GS3 level Pulse Width Offset	1-8
		•
•	•	•
•	•	•
L13	Set GS13 level Pulse Width Offset	1-8
L14	Set GS14 level Pulse Width Offset	1-8
L15	Set GS15 level Pulse Width Offset	1-8

DCLK: Internal Display Clock. It is used for defining phase clock period.

Figure 15: Gray scale pulse width set diagram

Precharge

Current Drive

Table 17: Gray scale pulse width default values

RESET	Result
L1=1	GS1 level Pulse width=1
L2=1	GS2 level Pulse width=3
L3=1	GS3 level Pulse width=5
L4=1	GS4 level Pulse width=7
L5=1	GS5 level Pulse width=9
L6=1	GS6 level Pulse width=11
L7=1	GS7 level Pulse width=13
L8=1	GS8 level Pulse width=15
L9=1	GS9 level Pulse width=17
L10=1	GS10 level Pulse width=19
L11=1	GS11 level Pulse width=21
L12=1	GS12 level Pulse width=23
L13=1	GS13 level Pulse width=25
L14=1	GS14 level Pulse width=27
L15=1	GS15 level Pulse width=29

 Solomon Systech
 Oct 2007
 P 28/60
 Rev 1.9
 SSD1325

8.9 Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1325. *Power ON sequence*:

- 1. Power ON V_{DD}.
- 2. After V_{DD} become stable, set RES# pin LOW (logic LOW) for at least 3us (t_1) and then HIGH (logic HIGH).
- 3. After set RES# pin LOW (logic LOW), wait for at least 3us (t₂). Then Power ON V_{CC.}⁽¹⁾
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (t_{AF}).

Figure 16: The Power ON sequence

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Wait until panel discharges completely.
- 3. Power OFF V_{CC} (1), (2)
- 4. Wait for t_{OFF}. Power OFF V_{DD}. (where Minimum t_{OFF}=0ms, Typical t_{OFF}=100ms)

Figure 17: The Power OFF sequence

Note:

Solomon Systech Oct 2007 P 29/60 Rev 1.9 SSD1325

⁽¹⁾ Since an ESD protection circuit is connected between V_{DD} and V_{CC} , V_{CC} becomes lower than V_{DD} whenever V_{DD} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 16 and Figure 17. ⁽²⁾ V_{CC} should be kept float when it is OFF.

9 COMMAND TABLE

Table 18: Command Table

(D/C# = 0, R/W# (WR#) = 0, E (RD#) = 1) unless specific setting is stated

Fund	Fundamental Command Table										
D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D 0	Command	Description
0	15	0	0	0	1	0	1	0		Set Column Address	Second command A[5:0] sets the column start address
0	A[5:0]	*	*	A_5		A_3	_			Set Column Hadress	from 0-63, POR = 00h
0	B[5:0]	*	*	\mathbf{B}_{5}					\mathbf{B}_0		Third command B[5:0] sets the column end address
	D [3.0]			D	104	D ₃	D 2	\mathbf{D}_1	D ₀		from 0-63, RESET = 3Fh
											11011 0 00,112021 0111
0	75	0	1	1	1	0	1	0	1	Set Row address	Second command A[6:0]sets the row start address from
0	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0		0-79, RESET = 00h
0	B[6:0]	*	B_6	B_5	B_4	\mathbf{B}_3	\mathbf{B}_2	B_1	B_0		Third command B[6:0] sets the row end address from 0-
											79, RESET = 4Fh
0	81	1	0	0	0	0	0	0	1	Set Contrast Current	Double byte command to select 1 out of 128 contrast
0	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0		steps. Contrast increases as level increase
											The level is set to 40h after RESET
	04.05							**	**	g . g . p	out o g
0	84~86	1	0	0	0	0	1	X_1	X_0	Set Current Range	84h = Quarter Current Range (RESET)
											85h = Half Current Range
											86h = Full Current Range
0	A0	1	0	1	0	0	0	0	0	Set Re-map	A[0]=0, Disable Column Address Re-map (RESET)
0	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0		A[0]=1, Enable Column Address Re-map
											A[1]=0, Disable Nibble Re-map (RESET)
											A[1]=1, Enable Nibble Re-map
											-
											A[2]=0, Horizontal Address Increment (RESET)
											A[2]=1, Vertical Address Increment
											A[4]=0, Disable COM Re-map disable (RESET)
											A[4]=1, Enable COM Re-map
											A[5]=0, Reserved (RESET)
											A[5]=1, Reserved
											A[6]=0, Disable COM Split Odd Even (RESET)
											A[6]=1, Enable COM Split Odd Even
											1, Endoic Com Spire Odd Even
0	A1	1	0	1	0	0	0	0	1	Sat Dienlay Start Lina	Set display RAM display start line register from 0-79
		1 *		_			_			oci Dispiay Start Line	Display start line register is reset to 00h after RESET
0	A[6:0]		A_6	A_5	A_4	A_3	A_2	A_1	A_0		Simple, start line register is reset to oon after RESET
0	A 2	1	0	1	0	0	0	1	0	Sat Diaplay Offsat	Set vertical coroll by COM from 0.70
0	A2	1 *	0	1	0	0	0	1		Set Display Offset	Set vertical scroll by COM from 0-79 The value is reset to 00H after RESET
0	A[6:0]		A_6	A_5	A_4	A_3	\mathbf{A}_2	A_1	\mathbf{A}_0		The value is reset to our after RESE1
0	A 1 A 7	1	0	1	0	0	v	v	v	Cot Diomland Mr. 1.	A4b = Normal Dionless (DECET)
0	A4~A7	1	0	1	0	0	X_2	X_1	\mathbf{A}_0	Set Display Mode	A4h = Normal Display (RESET)
											A.5h. Easting Display ON
				l	l						A5h = Entire Display ON,

 Solomon Systech
 Oct 2007
 P 30/60
 Rev 1.9
 SSD1325

Fund	lamenta	l Co	mm	and	Tab	ole					
D/C	Hex	D7	D6	D5	D4	D3	D2	D 1	$\mathbf{D0}$	Command	Description
											all pixels turns ON in GS level 15
											A6h = Entire Display OFF, all pixels turns OFF
											A7h = Inverse Display
0	A8	1	0	1	0	1	0	0	0	Set Multiplex Ratio	The next command determines multiplex ratio N from
0	A[6:0]	*	A_6	A ₅	A_4	A ₃	A_2	A_1		•	16MUX-80MUX, A[6:0] = 15 represents 16MUX A[6:0] = 16 represents 17MUX
											A[6:0] = 78 represents 79MUX A[6:0] = 79 represents 80MUX
0	AD A[1:0]	1 *	0	1 *	0 *	1 *	1 *	0		Set Master Configuration	$A[0] = 0$, Select external V_{CC} supply $A[0] = 1$, Reserved (RESET)
											Note (1) Bit A[0] must be set to 0b after RESET. (2) The setting will be activated after issuing Set Display ON command (AFh)
0	AE	1	0	1	0	1	1	1	0	Set Display ON	AEh = Display OFF (Sleep mode) (RESET)
0	AF	1	0	1	0	1	1	1	1	Set Display OFF	AFh = Display ON
0	В0	1	0	1	1	0	0	0	0	Set Pre-charge Compensation Enable	A[5:0] = 08h (RESET)
0	A[5:0]	*	*	A ₅	A_4	A_3	A_2	A_1	A_0	Compensation Zimore	A[5:0] = 28h, Enable pre-charge compensation
0	B1 A[3:0]	1 *	0 *	1 *	1 *	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Set Phase Length	A[3:0] = P1, phase 1 period of 1-15 DCLKs, RESET = 3DCLKS = 3h
0	A[7:4]	A ₇	A_6	A ₅	A_4	*	*	*	*		A[7:4] = P2, phase 2 period of 1-15 DCLKs, RESET = 5DCLKS = 5h Note
											(1) 0 DCLK is invalid in phase 1 & phase 2
0	B2	1	0	1	1	0	0	1	0	Set Row Period	The next command sets the number of DCLKs, K,
0	A[7:0]	A_7	A_6	A ₅	A_4	A ₃	A_2	A_1	A_0	(set frame frequency)	per row between 2-158 DCLKS RESET = 37DCLKS = 25h The K value should be set as K = P1+P2+GS15 pulse width (RESET: 3+5+29DCLKS)
0	В3	1	0	1	1	0	0	1	1	Set Display Clock	The lower nibble (A[3:0]) of the next command defines
0	A[3:0] A[7:4]	* A ₇	*	*	* A ₄	A ₃	A ₂ *		A_0	Divide Ratio / Oscillator Frequency	the divide ratio (D) of display clock (DCLK) Divide ratio (D)=A[3:0]+1 (A[3:0]RESET is 0001b, i.e. divide ratio (D) = 2)

 Solomon Systech
 Oct 2007
 P 31/60
 Rev 1.9
 SSD1325

The higher nibble (A[7:4]) of the next command sets the Oscillator Frequency (Oscillator Frequency) Oscillator Frequency Oscillator Fr	Fund	lamenta	l Co	mm	and	Tab	ole					
	D/C	Hex	D7	D6	D5	D4	D3	D2	D 1	D 0	Command	Description
O A 2:0 * * * * * * * * A A A Compensation Level A 2:0 = 3h, Recommended level												the Oscillator Frequency Oscillator Frequency increases with the value of A[7:4] and vice versa Range: 0000b~1111b RESET= 0100b represents 655KHz,
O A 2:0 * * * * * * * * A A A Compensation Level A 2:0 = 3h, Recommended level	0	R4	1	0	1	1	0	1	0	0	Set Pre-charge	A[2:0] = 0 (RESET)
O A 2.0 * * * * * * * * * * * * * * * * * *			_		_		_				_	
A[7:0]	0 0 0 0 0 0 0 0 0 0	A[2:0] B[2:0] B[6:4] C[2:0] C[6:4] D[2:0] D[6:4] E[2:0] E[6:4] F[2:0] G[6:4] H[2:0]	* * * * * * * * *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* * B ₅ * C ₅ * D ₅ * F ₅ * G ₅ *	$\begin{array}{c} * \\ * \\ B_4 \\ * \\ C_4 \\ * \\ D_4 \\ * \\ E_4 \\ * \\ G_4 \\ * \end{array}$	* * * * * * * * * * * * *	A ₂ B ₂ * C ₂ * D ₂ * F ₂ * G ₂ * H ₂	$\begin{array}{cccc} A_1 & & & \\ B_1 & * & & \\ C_1 & * & & \\ D_1 & * & & \\ E_1 & * & & \\ F_1 & * & & \\ G_1 & * & & \\ H_1 & & & \end{array}$	$\begin{array}{c} A_0 \\ B_0 \\ * \\ C_0 \\ * \\ B_0 \\ * \\ E_0 \\ * \\ F_0 \\ * \\ G_0 \\ * \\ H_0 \end{array}$	Set Gray Scale Table	A[2:0] = Gray scale level of GS1, RESET=1 B[2:0] = Gray scale level of GS2, RESET=1 B[6:4] = Gray scale level of GS3, RESET=1 C[2:0] = Gray scale level of GS4 RESET=1 C[6:4] = Gray scale level of GS5, RESET=1 D[2:0] = Gray scale level of GS6, RESET=1 D[6:4] = Gray scale level of GS7, RESET=1 E[2:0] = Gray scale level of GS8, RESET=1 E[6:4] = Gray scale level of GS9, RESET=1 F[2:0] = Gray scale level of GS10, RESET=1 F[6:4] = Gray scale level of GS11, RESET=1 G[2:0] = Gray scale level of GS12, RESET=1 G[6:4] = Gray scale level of GS13, RESET=1 H[2:0] = Gray scale level of GS14, RESET=1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 A7	_	_	_	_	-	-		Set Precharge Voltage	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 A[3:0] * * * A_3 A2 A1 A0 Voltage (VSL) follow: A[3:0] = 0010 kept VSL pin NC A[3:0] = 1110 (RESET) connect a capacitor between VSL pin and V_{SS}	-		1 *	_	_						Set V _{COMH} Voltage	00001 0.52* V _{REF} 11101 0.81* V _{REF} (RESET) 11110 0.82* V _{REF}
0 E3 1 1 1 0 0 0 1 1 NOP Command for No Operation			1 *	_	_	1 *	_	_				follow: A[3:0] = 0010 kept VSL pin NC A[3:0] = 1110 (RESET) connect a capacitor between
	0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation

 Solomon Systech
 Oct 2007
 P 32/60
 Rev 1.9
 SSD1325

Table 19: Graphic acceleration command

Set (GAC) (D/C# = 0, R/W#(WR#)= 0, E(RD#) = 1) unless specific setting is stated

Graph	ic accel	erati	on c	omn	nand						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D 0	Command	Description
0 0	23 A[4:0]	0 *	0 *	1 *	0 A ₄	0 *	0 *	1 A ₁	1 A ₀	Graphic Acceleration Command Options	A[0] = 0b: Disable Fill rectangle A[0] = 1b: Enable Fill rectangle (RESET) A[1] = 0b: Disable x-wrap(RESET) A[1] = 1b: Enable wrap around in x-direction during copying and scrolling A[4] = 0b: Disable reverse copy (RESET) A[4] = 1b: Enable reverse during copying.
0 0 0 0 0	24 A[5:0] B[6:0] C[5:0] D[6:0] E[7:0]	0 * * * E ₇	0 * B ₆ * D ₆ E ₆	1 A ₅ B ₅ C ₅ D ₅ E ₅	0 A ₄ B ₄ C ₄ D ₄ E ₄	0 A ₃ B ₃ C ₃ D ₃ E ₃	1 A ₂ B ₂ C ₂ D ₂ E ₂	0 A ₁ B ₁ C ₁ D ₁ E ₁	0 A ₀ B ₀ C ₀ D ₀ E ₀	Draw Rectangle	A[5:0]: Column Address of Start B[6:0]: Row Address of Start C[5:0]: Column Address of End D[6:0]: Row Address of End E[7:0]: Set Gray scale pattern E[7:0] This byte is divided into two nibbles. The most significant 4 bits represent the gray scale level of the left pixel of each group. The least significant 4 bits represent the gray scale level of the right pixel of each group. Please refer to Figure 33 for the gray scale pattern setting examples. Note: (¹¹) 0 ≤ A < C ≤ 63 (²²) 0 ≤ B < D ≤ 79
0 0 0 0 0 0	25 A[5:0] B[6:0] C[5:0] D[6:0] E[5:0] F[6:0]	0 * * * * * * *	0 * B ₆ * D ₆ * F ₆	1 A ₅ B ₅ C ₅ D ₅ E ₅ F ₅	0 A ₄ B ₄ C ₄ D ₄ E ₄ F ₄	0 A ₃ B ₃ C ₃ D ₃ E ₃ F ₃	1 A ₂ B ₂ C ₂ D ₂ E ₂ F ₂	0 A ₁ B ₁ C ₁ D ₁ E ₁ F ₁	$\begin{array}{c} 1 \\ A_0 \\ B_0 \\ C_0 \\ D_0 \\ E_0 \\ F_0 \end{array}$	Сору	A[5:0]: Column Address of Start B[6:0]: Row Address of Start C[5:0]: Column Address of End D[6:0]: Row Address of End E[5:0]: Column Address of New Start F[6:0]: Row Address of New Start Note: (1) $0 \le A < C \le 63$ (2) $0 \le B < D \le 79$ (3) $0 \le E \le 63$ (4) $0 \le F \le 79$

 Solomon Systech
 Oct 2007
 P 33/60
 Rev 1.9
 SSD1325

Graph	Graphic acceleration command											
D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description	
0 0 0 0	26 A[5:0] B[6:0] C[1:0]	0 * * *	0 * B ₆ *	1 A ₅ B ₅ *	0 A ₄	0 A ₃ B ₃ *	1 A ₂ B ₂ *	1 A ₁ B ₁ C ₁	0 A ₀ B ₀ C ₀	Horizontal Scroll	A[5:0]: 1~63 horizontal offset in number of 2~127 column 0 no horizontal scroll B[6:0]: 2~80 number of rows to be H-scrolled C[1:0]: scrolling time interval 00b 12 frames	
0	2E	0	0	1	0	1	1	1	0	Stop Moving	(2) The parameters should not be changed after scrolling is activated This command deactivates the scrolling action. Note (1) After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.	
0	2F	0	0	1	0	1	1	1	1	Start Moving	This command activates the scrolling function according to the setting done by Horizontal Scroll command 26h. Note (1) The "wrap around in x-direction" function must be enabled before scrolling start. i.e. Bit A{1} of command 23h must be set to 1b before issuing 2F command.	

Table 20: Read Command Table

(D/C#=0, R/W# (WR#)=1, E (RD#)=1 for 6800 or E (RD#)=0 for 8080)

	$(D/C\pi = 0, R/W\pi (WR\pi) = 1, L/RL$	$D\pi$)=1 101 0800 01 E (RD π)=0 101 8080)	
		D7 = 0:reserved	
		D7 = 1:reserved	
		D6 = 0:indicates the display is ON	
$D_7D_6D_5D_4D_3D_2D_1 \\ D_0$	Status Danietas Dani	D6 = 1:indicated the display is OFF	
	Status Register Read	D5 = 0:reserved	
		D5 = 1:reserved	
		D4 = 0:reserved	
		D4 = 1:reserved	

Note

(1) Patterns other than that given in Command Table are prohibited to enter to the chip as a command; Otherwise, unexpected result will occur

Solomon Systech Oct 2007 P 34/60 Rev 1.9 SSD1325

9.1 Data Read / Write

To read data from the GDDRAM, input HIGH to R/W# (WR#) pin and D/C# pin for 6800-series parallel mode, LOW to E (RD#) pin and HIGH to D/C# pin for 8080-series parallel mode.

In horizontal address increment mode, GDDRAM column address pointer will be increased by one automatically after each data read. In vertical address increment mode, GDDRAM row address pointer will be increased by one automatically after each data read.

Also, a dummy read is required before the first data read. See Figure 5 and Figure 8 in Functional Description.

To write data to the GDDRAM, input LOW to R/W#(WR#) pin and HIGH to D/C# pin for 6800-series parallel mode and 8080-series parallel mode. For serial interface mode, it is always in write mode. In horizontal address increment mode, GDDRAM column address pointer will be increased by one automatically after each data write. In vertical address increment mode, GDDRAM row address pointer will be increased by one automatically after each data write.

It should be noted that, in horizontal address increment mode, the row address pointer would be increased by one automatically if the column address pointer wraps around. In vertical address increment mode, the column address pointer will be increased by one automatically if the row address pointer wraps around.

D/C# **R/W# (WR#) Address Increment Comment** 0 0 Write Command No 0 Read Status No 1 0 Write Data 1 Yes 1 Read Data Yes 1

Table 21: Address Increment Table (Automatic)

Solomon Systech | Oct 2007 | P 35/60 Rev 1.9 SSD1325

10 COMMAND DESCRIPTIONS

10.1 Fundamental command description

10.1.1 Set Column Address (15h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

10.1.2 Set Row Address (75h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

The diagram below shows the way of column and row address pointer movement through the example: column start address is set to 2 and column end address is set to 61, row start address is set to 1 and row end address is set to 78; horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 61 and from row 1 to row 78 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (*solid line in* Figure 18). Whenever the column address pointer finishes accessing the end column 61, it is reset back to column 2 and row address is automatically increased by 1 (*solid line in* Figure 18). While the end row 78 and end column 61 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2 (*dotted line in* Figure 18).

Figure 18: Example of Column and Row Address Pointer Movement

Solomon Systech Oct 2007 | P 36/60 Rev 1.9 SSD1325

10.1.3 Set Contrast Current (81h)

This command is to set Contrast Setting of the display. The chip has 128 contrast steps from 00H to 7FH. The segment output current increases with the increase of contrast step. See Figure 19 below.

Figure 19: Segment current vs Contrast setting

10.1.4 Set Current Range (84h, 85h, 87h)

This command is used to select quarter range or half range or full range current mode. With the same contrast level, quarter range mode will give a quarter of the current output of the full range mode. Similar to half range current mode, it will give a half of the current output of the full range mode. See Figure 19. In RESET, quarter range current mode is default.

10.1.5 Set Re-map (A0h)

This double command has multiple configurations and each bit setting is described as follows:

- Column Address Remapping (A[0])
 - This bit is made for increase the flexibility layout of segment signals in OLED module with segment arranged from left to right (when A[0] is set to 0) or from right to left (when A[0] is set to 1).
- Nibble Remapping (A[1])
 - When A[1] is set to 1, the two nibbles of the data bus for RAM access are re-mapped, such that (D7, D6, D5, D4, D3, D2, D1, D0) acts like (D3, D2, D1, D0, D7, D6, D5, D4).
 - If this feature works together with Column Address Re-map, it would produce an effect of flipping the outputs from SEG0~127 to SEG127~SEG0 as show in Table 13.
- Address increment mode (A[2])
 - When A[2] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 20

Solomon Systech Oct 2007 P 37/60 Rev 1.9 SSD1325

Figure 20: Address Pointer Movement of Horizontal Address Increment Mode

	0	1		62	63	Column address
Row 0					—	
Row 1						
:	4:	:	:		:	
Row 78						
Row 79	+					

When A[2] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 21.

Figure 21: Address Pointer Movement of Vertical Address Increment Mode

• COM Remapping (A[4])

This bit defines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down (when A[4] is set to 0) or from bottom to up (when A[4] is set to 1). Table 14 shows an example of the using the COM Remapping to perform vertical scrolling.

Solomon Systech Oct 2007 P 38/60 Rev 1.9 SSD1325

Splitting of Odd / Even COM Signals (A[6])
 This bit is made to match the COM layout connection on the panel.

When A[6] is set to 0, no splitting odd / even of the COM signal is performed, output pin assignment sequence is shown as below (for 80MUX ratio):

Figure 22: Output pin assignment when command A0h bit A[6]=0.

Output Pin	Connection
SSD1325Z	Panel
COM0	ROW0
COM1	ROW1
COM2	ROW2
COM3	ROW3
:	•
COM39	ROW39
COM40	ROW40
:	•
COM77	ROW77
COM78	ROW78
COM79	ROW79

When A[6] is set to 1, splitting odd / even of the COM signal is performed, output pin assignment sequence is shown as below (for 128MUX ratio):

Figure 23: Output pin assignment when command A0h bit A[6]=1.

Output Pin	Output Pin Connection				
SSD1325Z	Panel				
COM0	ROW0 (Even)				
COM1	ROW2				
COM2	ROW4				
:	:				
COM37	ROW74				
COM38	ROW76				
COM39	ROW78				
COM40	ROW1 (Odd)				
COM41	ROW3				
COM42	ROW5				
:	:				
COM77	ROW75				
COM78	ROW77				
COM79	ROW79				

Solomon Systech Oct 2007 | P 39/60 Rev 1.9 SSD1325

10.1.6 Set Display Start Line (A1h)

This double byte command is to set Display Start Line register for determining the starting address of display RAM to be displayed by selecting a value from 0 to 79. Figure 24 shows an example using this command of this command when MUX ratio= 80 and MUX ratio= 54 and Display Start Line = 28. In there, "ROW" means the graphic display data RAM row.

Figure 24: Example of Set Display Start Line with no Remapping

	MUX ratio (A8h) = 80			MUX ratio $(A8h) = 54$
COM Pin	Display Start Line (A1h)			
	= 0	= 28	= 0	= 28
COM0	ROW0	ROW28	ROW0	ROW28
COM1	ROW1	ROW29	ROW1	ROW29
COM2	ROW2	ROW30	ROW2	ROW30
COM3	ROW3	ROW31	ROW3	ROW31
•	:	:	:	:
•	:	:	:	:
COM23	ROW23	ROW51	ROW23	ROW51
COM24	ROW24	ROW52	ROW24	ROW52
COM25	ROW25	ROW53	ROW25	ROW53
COM26	ROW26	ROW54	ROW26	ROW54
	•	:	•	:
	•	:	•	:
COM49	ROW50	ROW77	ROW50	ROW77
COM51	ROW51	ROW78	ROW51	ROW78
COM52	ROW52	ROW79	ROW52	ROW79
COM53		ROW0	ROW53	ROW0
COM54	ROW54	ROW1	-	-
COM55	ROW55	ROW2	-	-
:	•		:	•
:	•	:	•	:
COM76	ROW76	ROW24	-	-
COM77	ROW77	ROW25	-	-
	ROW78	ROW26	-	_
COM79	ROW79	ROW27	-	-
Display				
Example		SOLOMON		SOLOMON
		SYSTECH		SYSTECH
	SOLOMON	31012011	COLONION	31012011
	SYSTECH			

Solomon Systech Oct 2007 | P 40/60 | Rev 1.9 | **SSD1325**

10.1.7 Set Display Offset (A2h)

This double byte command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0~COM79. Figure 25 shows an example using this command when MUX ratio= 80 and MUX ratio= 54 and Display Offset = 28. In there, "Row" means the graphic display data RAM row.

Figure 25: Example of Set Display Offset with no Remapping

	MUX ratio (A8h) = 80	MUX ratio (A8h) = 80	MUX ratio (A8h) = 64	MUX ratio (A8h) = 64
COM Pin	Display Offset (A2h)=0	Display Offset (A2h)=18	Display Offset (A2h)=0	Display Offset (A2h)=18
COM0	ROW0	ROW28	ROW0	ROW28
COM1	ROW1	ROW29	ROW1	ROW29
COM2	ROW2	ROW30	ROW2	ROW30
COM3	ROW3	ROW31	ROW3	ROW31
:	:	:	:	:
:	:	:	:	:
COM23	ROW23	ROW51	ROW23	ROW51
COM24	ROW24	ROW52	ROW24	ROW52
COM25	ROW25	ROW53	ROW25	ROW53
COM26	ROW26	ROW54	ROW26	-
:	:	:	:	:
:	:	:	:	:
COM49	ROW50	ROW77	ROW50	-
COM51	ROW51	ROW78	ROW51	-
COM52	ROW52	ROW79	ROW52	-
COM53	ROW53	ROW0	ROW53	ROW0
COM54	ROW54	ROW1	-	ROW1
COM55	ROW55	ROW2	-	ROW2
:		:		:
:		:		:
COM76	ROW76	ROW24	-	ROW24
COM77	ROW77	ROW25	-	ROW25
COM78	ROW78	ROW26	-	ROW26
COM79	ROW79	ROW27	-	ROW27
Display Example	SOLOMON	SOLOMON		

Solomon Systech Oct 2007 | P 41/60 | Rev 1.9 | **SSD1325**

10.1.8 Set Display Mode (A4h ~ A7h)

These are single byte commands (A4h ~ A7h) and are used to set display status to Normal Display, Entire Display ON, Entire Display OFF or Inverse Display, respectively.

Normal Display (A4h)
 Reset the "Entire Display ON, Entire Display OFF or Inverse Display" effects and turn the data to ON at the corresponding gray level. Figure 26 shows an example of Normal Display.

Figure 26: Example of Normal Display

Memory

• Set Entire Display ON (A5h)
Force the entire display to be at gray scale level GS15, regardless of the contents of the display data RAM, as shown on Figure 27.

Figure 27: Example of Entire Display ON

Memory

Display

• Set Entire Display OFF (A6h)
Force the entire display to be at gray scale level GS0, regardless of the contents of the display data RAM, as shown on Figure 28.

Figure 28: Example of Entire Display OFF

ory Display

Inverse Display (A7h)
 The gray scale level of display data are swapped such that "GS0" <-> "GS15", "GS1" <-> "GS14", etc. Figure 29 shows an example of inverse display.

Figure 29: Example of Inverse Display

Memory

Display

 Solomon Systech
 Oct 2007
 P 42/60
 Rev 1.9
 SSD1325

10.1.9 Set Multiplex Ratio (A8h)

This double byte command sets multiplex ratio (MUX ratio) from 16MUX to 80MUX. In RESET, multiplex ratio is 80MUX. Please refer to Figure 24 and Figure 25 for the example of setting different MUX ratio.

10.1.10 Set Master Configuration (ADh)

This command selects the external V_{CC} power supply. External V_{CC} power should be connected to the V_{CC} pin. A[0] bit must be set to 0b after RESET.

This command will be activated after issuing Set Display ON command (AFh)

10.1.11 Set Display ON/OFF (AEh / AFh)

These single byte commands are used to turn the matrix display on the OLED panel display either ON or OFF. For AEh, the display is OFF, the segment and common output are in high impedance state and circuits will be turned OFF. When the sleep mode is set to OFF (AFh), the display is ON.

10.1.12 Set V_{COMH} Voltage (BEh)

This double byte command sets the high voltage level of common pins, VCOMH. The level of VCOMH is programmed with reference to VCC. Please refer to Table 18 and Figure 30for detail information and breakdown levels of each step.

Figure $30:V_{COMH}$ vs Bit value

Solomon Systech Oct 2007 P 43/60 Rev 1.9 SSD1325

10.1.13 Set Precharge Voltage (BCh)

This double byte command is used to set the pre-charge voltage (phase 2) level. Please refer to Table 18 and Figure 31 for detail information and breakdown levels of each step.

Figure 31: V_P vs Bit value

10.1.14 Set Phase Length (B1h)

This is a double byte command. In the second byte of this double command, lower nibble and higher nibble is defined separately. The lower nibble adjusts the phase length of Reset (phase 1). The higher nibble is used to select the phase length of the pre-charge phase (phase 2). The phase length is ranged from 1 to 16 DCLK's. RESET for A[3:0] is set to 3h while reset for A[7:4] is set to 5h. Please refer to Table 18 for detail breakdown levels of each step.

10.1.15 Set Row Period (B2h)

This command is used to set the row period. It is defined by multiplying the internal display clock period by the number of internal display clocks per row (valued from 14h to 7Fh), and RESET is 25h. The larger the value, the more precise of each gray scale level can be tuned. See "Gray Scale Table" command (B8h) for details. Also, it is used to define the frame frequency altogether with the use of "Display Clock Divide Ratio" command (B3h). Row period equals to the sum of phase 1 and phase 2 periods and the pulse width of GS15. See equation in Table 18.

10.1.16 Set Display Clock Divide Ratio (B3h)

This double command is used to set the frequency of the internal display clocks, DCLK's. It is defined by dividing the oscillator frequency by the divide ratio (valued from 1 to 16). Frame frequency is determined by divide ratio, number of display clocks per row, MUX ratio and oscillator frequency. The lower nibble of the second byte is used to select the oscillator frequency. Please refer to Table 18 for detail breakdown levels of each step.

10.1.17 Set Gray Scale Table

This command is used to set each individual gray scale level for the display. Except gray scale level GS0 that has no pre-charge and current drive, the pulse width of each gray scale level is programmed with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it is turned ON.

The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it is desired that the brightness response of the panel is linearly proportional to the image data value in display data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate gray scale table setting like example below can compensate this effect.

Solomon Systech Oct 2007 | P 44/60 | Rev 1.9 | SSD1325

Figure 32: Example of gamma correction by gray scale table setting

As shown in Table16 and

Table 17, GS1 is defined with pulse width equals to the first offset value, L1, select from 0-7 internal display clocks. GS2 is defined with pulse width equals to GS1 plus the next offset value, L2, select from 1-8 internal display clocks. Similarly, the next GS level is defined with pulse width equals to its lower one GS level plus the next offset value, select from 1-8 internal display clocks. In normal operation, GS15 should take the full current drive period as its pulse width. Therefore, the row period should be set as the sum of phase 1 period, phase 2 periods, and the pulse width of GS15 with the use of "Row period" command.

10.1.18 NOP (E3h)

This is a no operation command.

10.1.19 Status register Read

This command is issued by setting D/C# LOW during a data read (refer to Figure 36 to Figure 38 parallel interface waveform). It allows the MCU to monitor the internal status of the chip.

Solomon Systech Oct 2007 | P 45/60 Rev 1.9 SSD1325

10.2 Graphic Acceleration Command Set Description

10.2.1 Graphic Acceleration Command Options (23h)

This command has two functions.

- Enable / Disable fill (A[0])
 - 0 = Disable filling of rectangle in draw rectangle command.
 - 1 = Enable filling of rectangle in draw rectangle command. (RESET)
- Enable / Disable x-warp (A[1])
 - 0 = Disable wrap around in x-direction during copying and scrolling
 - 1 = Enable wrap around in x-direction during copying and scrolling (RESET)
- Enable / Disable reverse copy (A[4])
 - 0 =Disable reverse copy (RESET)
 - 1 = During copy command, the new image colors are swapped such that "GS0" <-> "GS15",
 - "GS1" <-> "GS14",

10.2.2 Draw Rectangle (24h)

Specify a starting point (Row 1, Column 1) and an ending point (Row 2, Column 2) as well as giving the desire gray scale pattern, a rectangle will then be drawn.

Row 1,
Column 1

Gray scale pattern =A0h

Row 2,
Column 2

Row 2,
Column 2

Figure 33: Example of draw rectangle command

The following example illustrates the rectangle drawing command sequence.

- 1. Enter the "draw rectangle mode" by execute the command 24h
- 2. Set the starting column coordinates, Column 1. e.g., 01h.
- 3. Set the starting row coordinates, Row 1. e.g., 01h.
- 4. Set the finishing column coordinates, Column 9. e.g., 09h
- 5. Set the finishing row coordinates, Row 5. e.g., 05h
- 6. Set the gray scale pattern:

This byte is divided into two nibbles. The most significant 4 bits represent the gray scale level of the left pixel of each group. The least significant 4 bits represent the gray scale level of the right pixel of each group. Please refer to Figure 33 for the gray scale pattern setting examples.

Solomon Systech Oct 2007 | P 46/60 | Rev 1.9 | SSD1325

10.2.3 Copy (25h)

Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the new image will overlap the original one.

The following example illustrates the copy procedure.

- 1. Enter the "copy mode" by execute the command 25h
- 2. Set the starting column coordinates, Column 1. E.g., 00h.
- 3. Set the starting row coordinates, Row 1. E.g., 00h.
- 4. Set the finishing column coordinates, Column 2. E.g., 05h
- 5. Set the finishing row coordinates, Row 2. E.g., 05h
- 6. Set the new column coordinates, Column 3. E.g., 03h
- 7. Set the new row coordinates, Row 3. E.g., 03h

Figure 34: Example of copy command

10.2.4 Horizontal Scroll (26h)

This command consists of 3 consecutive bytes to set up the scrolling parameters. It determined the horizontal scrolling offset, no of scrolling row and scrolling speed. Some scrolling examples are shown in Figure 35.

Before issuing this command, the scrolling must be deactivated (2Eh). Otherwise, RAM content may be corrupted.

Figure 35: Scrolling examples

Solomon Systech | Oct 2007 | P 47/60 Rev 1.9 SSD1325

10.2.5 Stop Moving (2Eh)

Stop motion of scrolling. After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.

10.2.6 Start Moving (2Fh)

Start motion of scrolling. This command should only be issued after scrolling setup parameters are defined through command 26h and the function of wrap around in x-direction is enabled through 23h.

The following actions are prohibited after the horizontal scroll is activated

- 1. RAM access (Data write or read)
- 2. Changing scrolling setup parameters

Solomon Systech Oct 2007 | P 48/60 | Rev 1.9 | **SSD1325**

11 MAXIMUM RATINGS

Table 22 : Maximum Ratings (Voltage Reference to V_{SS})

Symbol	Parameter	Value	Unit
$ m V_{DD}$		-0.3 to +4.0	V
V_{CC}	Supply Voltage	0 to +17.0	V
$V_{ m REF}$		0 to +17.0	V
$ m V_{SEG}$	SEG output voltage	$0 \text{ to } + V_{CC}$	V
V_{COM}	COM output voltage	$0 \text{ to } +0.9 \text{xV}_{\text{CC}}$	
$ m V_{in}$	Input voltage	V_{SS} -0.3 to V_{DD} +0.3	V
T_A	Operating Temperature	-40 to +85	°C
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature Range	-65 to +150	°C

Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

Solomon Systech Oct 2007 P 49/60 Rev 1.9 SSD1325

12 DC CHARACTERISTICS

Conditions (unless specified):

Voltage referenced to V_{SS};

 $V_{DD} = 2.7, V_{CC} = 12.0V, I_{REF} = 10 uA, at T_A = 25 ^{\circ}C.$

Table 23: DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{CC}	Operating Voltage	-	8.0	12.0	16.0	V
$V_{ m DD}$	Logic Supply Voltage	-	2.4	2.7	3.5	V
V_{OH}	HIGH Logic Output Level	$I_{OUT} = 100uA, 3.3MHz$	$0.9*V_{DD}$	-	V_{DD}	V
V_{OL}	LOW Logic Output Level	$I_{OUT} = 100uA, 3.3MHz$	0	-	$0.1*V_{DD}$	V
$V_{ m IH}$	HIGH Logic Input Level	-	$0.8*V_{DD}$	1	$V_{ m DD}$	V
$V_{ m IL}$	LOW Logic Input Level	-	0	1	$0.2*V_{DD}$	V
I_{SLEEP}	Sleep mode Current	No loading	ı	0.2	5	uA
I_{CC}	$V_{CC} \ Supply \ Current$ $V_{DD} = 2.7V, \ external \ V_{CC} = 12V, \ I_{REF} = 10uA, \ Frame \\ rate = 110Hz, \ All \ one \ pattern, \ Display \ ON, \ no \ loading$	Contrast = 7F	-	700	-	uA
${ m I_{DD}}$	$V_{DD} \ Supply \ Current$ $V_{DD} = 2.7V, external \ V_{CC} = 12V, I_{REF} = 10uA, Frame \\ rate = 110Hz, All \ one \ pattern, Display \ ON, \ no \ loading$	Contrast = 7F	-	-	650	uA
	Segment Output Current	Contrast = 7F	270	300	370	
T		Contrast = 5F	-	225	-	
I_{SEG}	V_{DD} =2.7V, V_{CC} =12V, I_{REF} =10uA, Frame rate=110Hz, Display ON, Segment pin under test is	Contrast = 3F	-	150	-	uA
	connected with a 20K resistive load to V_{SS}		-	75	-	
Dev	Segment output current uniformity	Adjacent pin	-1.5	-	+1.5	%
20,	V_{DD} =2.7V, V_{CC} =12V, I_{REF} =10uA, Contrast=7F	Overall pin to pin	-3	-	+3	,0

 Solomon Systech
 Oct 2007
 P 50/60
 Rev 1.9
 SSD1325

13 AC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS} $V_{DD} = 2.4 \text{V to } 3.5 \text{V}$ $V_{CC} = 8.0V \text{ to } 16.0V$ $T_A = 25^{\circ}C$

Table 24 : AC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
F _{OSC}	Oscillation Frequency of Display Timing Generator	$V_{DD} = 2.7V$	535	630	725	kHz
$\mathrm{F}_{\mathrm{FRM}}$	Frame Frequency for 128 MUX Mode	128x80 Graphic Display Mode, Display ON, Internal Oscillator Enabled	-	F _{OSC} * 1/(D*K*80)	-	Hz
	Reset LOW pulse width	-	3	-	-	us
RES#	Reset complete time	-	-	-	2	us

Note:

Solomon Systech Oct 2007 P 51/60 SSD1325 Rev 1.9

⁽¹⁾ Fosc stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is in default value.

⁽²⁾ D stands for divide ratio

 $^{^{(3)}}$ K stands for total number of display clocks per row defined by command B2h $^{(4)}$ N stands for number of MUX selected by command A8h

Conditions:

 V_{DD} - V_{SS} = 2.4 to 3.5V T_A = 25°C

Table 25: 6800-Series MPU Parallel Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	0	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read)	120	-	-	ns
	Chip Select Low Pulse Width (write)	60			
PW_{CSH}	Chip Select High Pulse Width (read)	60	-	-	ns
	Chip Select High Pulse Width (write)	60			
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 36: 6800-series MPU Parallel Interface Characteristics

 Solomon Systech
 Oct 2007
 P 52/60
 Rev 1.9
 SSD1325

Conditions:

 V_{DD} - V_{SS} = 2.4 to 3.5V T_A = 25°C

Table 26: 8080-Series MPU Parallel Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	1	ns
t_{AH}	Address Hold Time	0	-	1	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	1	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	1	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
t_{PWLR}	Read Low Time	120	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t_{PWHR}	Read High Time	60	-	-	ns
t_{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns
t _{CS}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	ı	ns
t _{CSF}	Chip select hold time	20	-	-	ns

Figure 37: 8080-series parallel interface characteristics (Form 1)

Figure 38: 8080-series parallel interface characteristics (Form 2)

Solomon Systech Oct 2007 | P 53/60 Rev 1.9 **SSD1325**

Conditions:

 V_{DD} - V_{SS} = 2.4 to 3.5V T_A = 25°C

Table 27: Serial Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	-	-	ns
t_{AS}	Address Setup Time	150	-	-	ns
t_{AH}	Address Hold Time	150	-	-	ns
t_{CSS}	Chip Select Setup Time	120	-	-	ns
t_{CSH}	Chip Select Hold Time	60	-	-	ns
t_{DSW}	Write Data Setup Time	100	-	-	ns
t_{DHW}	Write Data Hold Time	100	-	-	ns
t_{CLKL}	Clock Low Time	100	-	-	ns
t_{CLKH}	Clock High Time	100	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 39 : Serial Interface Characteristics

 Solomon Systech
 Oct 2007
 P 54/60
 Rev 1.9
 SSD1325

14 APPLICATION EXAMPLES

The configuration for SPI serial interface mode, externally V_{CC} is shown in the following diagram: $(V_{DD} = 3V, V_{CC} = V_{REF} = 12V, I_{REF} = 10uA)$ **DISPLAY PANEL SIZE** 128 X 80 SEG127 SSD1325Z E(RD#) R/W#(WR#) D/C# RES# CS# V_{SS} V_{CC} V_{COMH} V_{DD} C1 C2 С3 V_{CC} D/C# RES# CS# D₀ (SCLK) D₁ (SDIN) V_{SS} (GND) Pins connected to MCU interface: D₀, D₁, D/C#, RES#, CS# Pins internally connected to V_{DD}: M/S#, CLS, VDDB Pins internally connected to V_{SS} : BS0, BS1, BS2, E(RD#), R/W#(WR#), VSSB, VCL Pin internally connected to V_{CC}: V_{REF} Pins floated: CL, GDR, RESE, FB, VB_{REF} *VSL pin can be kept NC or connect a capacitor (1~2.2uF⁽¹⁾) between this pin and V_{SS}. Refer to command BFh for VSL pin connection C1: 1uF, C2~ C3: 4.7uF (1) R1: 910k Ω , R1 \approx (Voltage at I_{REF} pin - V_{SS}) / I_{REF} = (12.0-3.0)V/10.0uA NOTE

(1) The capacitor value is recommended value. Select appropriate value against module application.

Figure 40 : Application Example for SSD1325Z SPI serial interface mode

Solomon Systech Oct 2007 | P 55/60 Rev 1.9 SSD1325

Figure 41: Application Example for SSD1325T6R1

 Solomon Systech
 Oct 2007
 P 56/60
 Rev 1.9
 SSD1325

15 PACKAGE INFORMATION

15.1 SSD1325Z Die Tray Information

Figure 42 : SSD1325Z Die Tray Drawing

Table 28: SSD1325Z Die Tray Dimensions

Parameter	Dimensions
W1	50.70±0.2 mm
W2	45.50±0.2 mm
X	11.60±0.1 mm
Y	1.80±0.1 mm
Z	0.71±0.05 mm
N (number of die)	39

Remark

1. Depth of text: Max. 0.1mm

2. Tray material: ABS

3. Tray color code: Black

4. Surface resistance $10^9 \sim 10^{11} \Omega$

5. Tray warpage: Max 0.10mm

6. Unspecifier dim's tolerance: ± 0.15mm

7. Pocket size: 13.56 x 1.65 x 0.61mm

 Solomon Systech
 Oct 2007
 P 57/60
 Rev 1.9
 SSD1325

15.2 SSD1325T6R1 Detail Dimension

Figure 43: SSD1325T6R1 Detail Dimension

 Solomon Systech
 Oct 2007
 P 58/60
 Rev 1.9
 SSD1325

NOTE:

- 1. GENERAL TOLERANCE: ±0.05mm 2. CUTLINE TOLERANCE: ±0.15mm
- 3. MATERIAL PI: 75±6um CU: 18±5um

 - SR: 26±14um
 - ADHESIVE: 12±2um
- 4. FLEX COATING: Min10um
- 5. SN PLATING: 0.20±0.05um
- 6. TAPSITE: 4 SPH, 19.00mm

MIRROR DESIGN

DETAIL B

Solomon Systech Oct 2007 P 59/60 SSD1325 Rev 1.9

Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) "Restriction of Hazardous Substance (RoHS) Directive (2002/95/EC)" and China standard "电子信息产品污染控制标识要求 (SJ/T11364-2006)" with control Marking Symbol ②. Hazardous Substances test report is available upon requested.

http://www.solomon-systech.com

Solomon Systech Oct 2007 P 60/60 Rev 1.9 SSD1325