AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently amended) An electrochemical cell comprising an anode, a cathode, and

an electrolyte, said electrolyte comprising at least one pyrazolium cation, an imidazolium

cation, or a combination thereof; and at least one non-Lewis acid derived counter ion, wherein

said electrochemical cell has a consistent charge and discharge cycling in a temperature range

of from about 20°C to about 170°C, wherein said counter ion comprises an imide, BETI,

methide, TF or any combination thereof, and forms a lithium salt selected from Liimide,

LiBETI, Limethide or LiTF or a combination thereof, and wherein said electrochemical cell is

rechargeable, wherein said cathode has a cathode capacity and said anode has an anode

capacity, and

wherein said cathode capacity is greater than said anode capacity.

- 2. (Canceled)
- 3. (Canceled)
- 4. (Canceled)

5. (Original) The electrochemical cell of claim 1, wherein said electrolyte comprises a

binary salt mixture comprising a mixture of single salts, at least one of which contains said

pyrazolium cation or an imidazolium cation.

6. (Original) The electrochemical cell of claim 5, wherein said binary salt mixture

comprises a second cation which differs from said imidazolium cation.

7. (Original) The electrochemical cell of claim 6, wherein said second cation is in the

form of a lithium salt selected from LiBETI, Liimide, Limethide, or LiTF.

- 2 -

- 8. (Original) The electrochemical cell of claim 6, wherein said imidazolium cation and said second cation are each in the form of a salt and the two salts are different,
- 9. (Original) The electrochemical cell of claim 6, wherein said imidazolium cation and said second cation are both in the form of a salt and at least one of the two salts comprises DMIBETI, EMIBETI, DMIimide, EMIimide DMImethide, EMImethide, DMITF, or EMITF.
- 10. (Original) The electrochemical cell of claim 5, wherein said binary salt mixture comprises a second cation which differs from said pyrazolium cation.
- 11. (Original) The electrochemical cell of claim 10, wherein said second cation is in the form of a lithium salt selected from LiBETI, Liimide, Limethide, or LiTF.
- 12. (Original) The electrochemical cell of claim 10, wherein said pyrazolium cation and said second cation are each in the form of a salt and the two salts are different.
- 13. (Original) The electrochemical cell of claim 10, wherein said pyrazolium cation and said second cation are both in the form of a salt and at least one of the two salts comprises DMPBETI, EMPBETI, DMPimide, EMPimide DMPmethide, EMPmethide, DMPTF, or EMPTF.
- 14. (Original) The electrochemical cell of claim 1, wherein said electrolyte comprises a ternary salt mixture comprising a mixture of three single salts, at least one of which contains said pyrazolium cation or said imidazolium cation.
- 15. (Original) The electrochemical cell of claim 14, wherein said ternary salt mixture comprises a second cation which differs from said imidazolium cation, and a third cation which differs from said imidazolium cation and said second cation.
- 16. (Original) The electrochemical cell of claim 15, wherein at least one of said second and third cations is in the form of a lithium salt selected from LiBETI, Liimide, Limethide, LiTF,

U.S. Patent Application No. 10/820,638

Amendment After Final dated May 12, 2009

Reply to Final Office Action of November 13, 2008

or a combination thereof.

are the same.

17. (Original) The electrochemical cell of claim 15, wherein said imidazolium cation, said second cation, and said third cation are in the form of a salt, and one of the anions of the

three salts is different from the other two.

18. (Original) The electrochemical cell of claim 15, wherein said imidazolium cation, said second cation, and said third cation are in the form of a salt, and the anions of the three salts

19. (Original) The electrochemical cell of claim 14, wherein said pyrazolium cation or said imidazolium cation, said second cation, and said third cation are in the form of a salt, and at

least one of the three salts comprises DMPBETI, DMIBETI, EMPBETI, EMIBETI, DMPimide, EMPimide, DMIimide, EMIimide, DMPmethide, DMImethide, EMPmethide, EMImethide,

DMPTF, DMITF, EMPTF, or EMITF.

20. (Original) The electrochemical cell of claim 17, wherein said imidazolium cation, said second cation, and said third cation are in the form of a salt, and at least one of the three salts comprises DMPBETI, DMIBETI, EMPBETI, EMIBETI, DMPimide, DMIimide, EMPimide, EMImethide, DMPTF, DMITF, EMPTF, or EMITF and another one of the three salts comprises LiBETI, Liimide,

Limethide or LiTF.

imidazolium cation, or a combination thereof is present as a pyrazolium salt, an imidazolium salt, or a pyrazolium and imidazolium salts, together with dissolved lithium salts, which are

21. (Original) The electrochemical cell of claim 1, wherein said pyrazolium cation, said

distributed throughout a polymer matrix.

22. (Canceled)

-4-

U.S. Patent Application No. 10/820,638
Amendment After Final dated May 12, 2009
Reply to Final Office Action of November 13, 2008

- 23. (Previously presented) The electrochemical cell of claim 1, wherein said anode comprises a lithium intercalated electrode material.
- (Previously presented) The electrochemical cell of claim 1, wherein said anode comprises Li₄Ti₅O₁₂.
- 25. (Previously presented) The electrochemical cell of claim 1, wherein said cathode comprises Li_xMn₂O₄; Li_xCoO₂, modified Li_xMn₂O₄ electrodes; Li_xMn_{2-x}Cu_xO₄, wherein 0.1<x<0.5; LiM_{0.02}Mn_{1.98}O₄, wherein M is selected from B, Cr, Fe, and Ti: a transition metal oxide; or an electrochemically active conductive polymer.
- (Previously presented) The electrochemical cell of claim 1, wherein said cathode is LiCoO₂, or LiFePO₄.
- 27. (Previously presented) The electrochemical cell of claim 1, wherein said electrochemical cell has a ratio of cathode capacity to anode capacity of 2 or greater.

28-49. (Canceled)

50. (Original) The electrochemical cell of claim 1, wherein said cation has the formula:

wherein R_1 and R_2 represent independently an alkyl group comprising 1-12 carbon atoms, and R_3 , R_4 , and R_5 represent independently, H or an alkyl group comprising from 1 to about 5 carbon atoms.

51. (Previously presented) The electrochemical cell of claim 1, wherein said non-Lewis acid derived counterion is:

where R_6 , R_7 , R_8 and R_{10} are separate halogenated alkyl groups of 1 to 4 carbon atoms, and R_9 is a halogenated alkylene moiety of 2 to 6 carbon atoms.

- (Original) The electrochemical cell of claim 1, wherein said cathode is LiCoO₂ or LiFePO₄ and said anode is Li intercalated electrode material.
- 53. (Previously presented) An electrochemical cell comprising an anode, a cathode, and electrolyte wherein said cell has a ratio of cathode capacity to anode capacity of 2 or greater, wherein the electrolyte comprises an imidazolium or pyrazolium cation and a non-Lewis acid derived anion.
 - 54. (Original) The electrochemical cell of claim 53, wherein said ratio is greater than 2.2.
 - 55. (Original) The electrochemical cell of claim 53, wherein said ratio is greater than 2.5.
 - 56. (Original) The electrochemical cell of claim 53, wherein said ratio is from 2 to 3.
 - 57. (Canceled)
- 58. (Previously presented) The electrochemical cell of claim 1, wherein for said consistent charge and discharge cycling said electrochemical cell has no more than a 2.3% capacity loss after 12 continuous cycles at 133° C.
- 59. (Currently amended) The electrochemical cell of claim 53, wherein said anode and said cathode has have equal electrode area.