Time to Collision

COURSE 4, MODULE 4, LESSON 3

Definition of Time to Collision

- Assuming all dynamic object continue along their predicted path:
 - O Will then be a collision between any of the objects?
 - o If so how far into the future?
- Time to Collision is comprised of:
 - Collision point between the two dynamic objects
 - Prediction of the time to arrive to the collision point
- Requirements for Accuracy:
 - Accurate predicted trajectories for all dynamic objects (position, heading and velocity)
 - Accurate dynamic objects geometries

Approaches to calculate time to collision

- Two basic approaches to calculating time to collision:
 - Simulation approach
 - Estimation approach

Simulation approach

• Simulate the movement of each vehicle as time passes

Simulation approach

- Simulate the movement of each vehicle as time passes
- Taking account of the vehicle model over time

Simulation approach

- Simulate the movement of each vehicle as time passes
- Taking account of the vehicle model over time
- Checking if any part of the two dynamic object has collided

Estimation approach

- Geometries of the vehicles are approximated over duration of the predicted path
- Collision point is estimated based the cars predictions
- Many assumptions are usually made by this method usually to estimate time to collision

Relative Strengths and Weaknesses

Simulation Approach

Computationally expensive

Higher accuracy if simulated with high fidelity

Estimation Approach

- Computationally inexpensive
 - Memory footprint
 - Computational time
- Less accurate due to approximations and estimations

- Offline Applications (Dataset evaluation or Simulations)
- Real Time Applications (In Car Prediction)

Orline

Simulation approach Pseudocode

Inputs:

- D list of all dynamic objects + planned path of ego wehicle

 o Predicted paths
- dt time between simulation steps \Rightarrow can be different from the predicted
- N_c number of circles for collision approximation path time steps.

Outputs:

- P_{coll} list of all collision points
- TTC list of all times to collision points

Time to collision

Simulation approach Pseudocode

Algorithm Constant Velocity TTC(D, T, dt, N_c)

```
t \leftarrow 0
        x_0 = x_{obi}
        while t < T do
             t = t + dt
             for i \in \{1, ... |D|\} do
6.
                    d_i.x_t \leftarrow \text{PositionEstimation}(d_i, t)
                    for ∈ \{i, ... |D|\} do
                         d_i.x_t \leftarrow \text{PositionEstimation}(d_i, t)
                         P_{coll,ij} \leftarrow \text{CollisionEstimation}(d_i.x_t, d_i.x_t, N_c)
10.
                          if P_{coll,ij} then
11.
                                TTC_{ij} \leftarrow t
12.
                          end
13.
                    end
14.
             end
15.
        end while
16.
        return P<sub>c</sub>, TTC
```

Estimation of Dynamic Object State

- Each predicted vehicle state has a predicted time at each location
- Find the closest vehicle state along the predicted path to the current simulation time

Efficient Collision Detection Method

1. Represent each car as a set of circles

Efficient Collision Detection Method

- 1. Represent each car as a set of circles
- 2. Check if a collision will occur between two circles

$$d_{i,j} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}, \quad r_i + r_j \ge d_{i,j}$$

3. Calculate collision point

$$C_X = \frac{(x_i * r_j) + (x_j * r_i)}{(r_i + r_j)}, \qquad C_Y = \frac{(y_i * r_j) + (y_j * r_i)}{(r_i + r_j)}$$

Efficient Collision Detection Method

- 1. Represent each car as a set of circles
- 2. Check if a collision will occur between two circles

$$d_{i,j} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}, \quad r_i + r_j \ge d_{i,j}$$

3. Calculate collision point

$$C_X = \frac{(x_i * r_j) + (x_j * r_i)}{(r_i + r_j)}, \qquad C_Y = \frac{(y_i * r_j) + (y_j * r_i)}{(r_i + r_j)}$$

- Tradeoff between:
 - Accuracy
 - Number of computations

Summary

- Define time to collision and all its components
- Identify two approaches to calculate time to collisions and discuss their strengths and weaknesses
 - Simulation approach
 - Estimation approach
- Outline a simulation based algorithm to calculate time to collision
- Next: Behavior Planning and its Principles