

Vision Series: Power Management

Optimize Your Power Design With Building Blocks from NXP

Topics to be covered

- Market overview
- AC/DC Design
- DC/DC Design
- Switching Devices
- Summary

Market Overview

AC/DC Conversion

- GreenChip
 - High eff at wide load range
 - Designs up to 500W
- Discretes
 - BISS
 - MEGA Shottky
- Power Diodes
 - NUR460P, BYC30X
 - 600V ultra low leakage
 - Reduces switching losses in MOSFET or IGBT

DC/DC Conversion

- LDO
 - LD68xy
 - Low in rush and soft start
- DC/DC
 - DCMx
 - High eff at wide load range
- GreenChip
- Discretes
 - BISS
 - MEGA Shottky
- Power MOS
 - PSMNx, BUFKx
 - Lowest RDSon / High Switching
 - LFPAK56, LFPAK33
 - Best in class current and avalanche

Switches and External Devices

- PFC
 - BYCx, BYVx, BYRx, BYWx
 - Optimized for PFC
- MOSFETs
- Load switches
- ORing MOSFETs

AC/DC Conversion

- GreenChip
 - High eff at wide load range
 - Designs up to 500W
- Discretes
 - BISS
 - MEGA Shottky
- Power Diodes
 - NUR460P, BYC30X
 - 600V ultra low leakage
 - Reduces switching losses in MOSFET or IGBT

DC/DC Conversion

- LDO
 - LD68xy
 - Low in rush and soft start
- DC/DC
 - DCMx
 - High eff at wide load range
- GreenChip
- Discretes
 - BISS
 - MEGA Shottky
- Power MOS
 - PSMNx, BUFKx
 - Lowest RDSon / High Switching
 - LFPAK56, LFPAK33
 - Best in class current and avalanche

Switches and External Devices

- PFC
 - BYCx, BYVx, BYRx, BYWx
 - Optimized for PFC
- MOSFETs
- Load switches
- ORing MOSFETs

General Survey SMPS ICs

7

GreenCh

				areerieriip	
typ. applications	PFC control	primary control	secondary control	STBY control	
Resonant typ. >90W		A171x (TEA1716) reenchip Resonant)	TEA1791A TEA1795 (Greenchip SR)	Parallel supply TEA173x (GreenChip LowPower)	
Flyback >75W	TEA175x(1	EA1750/51/52 /TEA1753/55) (Greenchip III)	TEA176x (TEA1761/62)	TEA1703	
Flyback <75W	n.a. T	TEA153x (TEA1530/TEA1532/33) TEA155x (TEA1552) (QR FLB diff. f _{osc}) (Greenchip II) EA173x (TEA1731/33/38) (Greenchip III; LP)	TEA179x (TEA1792) (Greenchip SR)	(Greenchip Standby)	
Flyback <15W	n.a.	TEA172x (TEA1721/3) (Greenchip SP)	n.a.	Integrated in Primary IC	
ARTITY Power	Management		M	Five Years Out	

TEA1721/TEA1723 Special Features

8

ii) Achieving low no-load power

Features for low no-load input power

- 1. Integrated start-up current source with disable function in switching operation: no dissipative bleeder current
- Very low IC consumption in no-load: 100uA supply current
- 3. Primary sensing via transformer: no current consuming opto-coupler and secondary shunt regulator
- 4. Low switching frequency in no-load for low switching losses and sufficient load step response

What if...

...you could get simply small devices with full performance

Too big?

 Clip-Bond technology enabling full performance with small form factor

SOD123W

SOD128

MEGA Schottky rectifiers

₁₀ Key features

Significantly increased performance

- Broad portfolio optimised for either
 - Extremely low V_F
 - Very low V_F and low I_R
- Lower power dissipation due to low V_F
- High temperature applications due to low I_R
- Higher efficiency, lower temperature rise, higher ambient temperatures
 Reduced energy consumption, longer battery operating time

$$P_{tot} = V_F \times I_F + V_R \times I_R$$

- → offer maximum performance in small packages up to 5 A
- created a broad portfolio with our new FlatPower packages
- → technology also used in SOT23 package: PMEGxx10ET, 1A-series

MEGA Schottky rectifier

11 portfolio single ultra low V_F PMEG Schottky diodes

		Package	SOD128	SOD123W	SOD123F	DFN2020-3	SOD323	SOD323F	SOT23	SOT666	DFN1608D-2	SOD523	DFN1006-2	DFN1006D-2
						(SOT1061)	(SC-76)	(SC-90)			(SOD1608)	(SC-79)	(SOD882)	(SOD882D)
⊧ max. (А)	(S)		Man September 1	NOCKESHI DESCEN	Names (FEZ/20)	SOLINE .	D Section 1	Parison F		CONTRACT		Patricia 19 September 1		
nax.	max	Size (mm)	3.8 × 2.5 × 1.0	2.6 × 1.7 × 1.0	2.6 × 1.6 × 1.1	2.0 × 2.0 × 0.6	1.7 × 1.25 × 0.95	1.7 × 1.25 × 0.7	2.9 × 1.3 × 1.0	1.6 × 1.2 × 0.55	1.6 × 0.8 × 0.37	1.2 × 0.8 × 0.6	1.0 × 0.6 × 0.5	1.0 × 0.6 × 0.4
<u>-</u>	× ×	P _{tet} (mW)	1050	950	830	960	600	700	420	300	795	500	310	340
	30	ļl.						н				ж	н	×
0.2	40							ж				ж	ж	×
	60							ж				×		
	20	ļ			×		×	н	ж	ж	ж	ж	н	×
0.5	30	ļ			×		*	ж	×	ж		ж	ж	×
	40				×		×	×	×	×	×			
ŀ	20 30			×	×	ж	×	ж	×	ж	ж	×		×
1.0	40		×	x	x		x	ж	ж	x		Ж		
ŀ	60	·	×	×	×		×	×	×	ж	ж			
	20		×	×	×		×	×		×	ж			
1.5	30				»		-	**************************************		*				
	40	·			·····			······			ж			
	10				×		ж	×		×				
Ì	20				ж	ж	ж	н			ж			
2.0	30		ж	ж	×	×		ж						
ľ	40		ж	н		ж					ж			
	60		×	×		×								
	10				×			н						
3,0	30		×											
5,5	40		×	×										
	60		×											
5,0	30		×											
,-	40		×											

FlatPower portfolio

New leadless portfolio

New solderable side pads

New solderable side pads

MEGA Schottky rectifiers

12 Characteristics and Technology

MEGA technology

Chip design: maximisation of Si-content/package and active area/pitch

 Process Technology: 4 different Schottky metallizations available, low ohmic base material

Chip cross section:

metallization layer: Ti, Ti:Si, WTi, NiFe

Si-epitaxial layer

Si-substrate

 Packages: optimized thermal performance design and materials

→ Schottky technology – balancing low VF and low IR requirements

re Years Out

Key advantages

- Up to 8 times better efficiency
- Lower temperature rise
- Higher reliability
- Reduced energy consumption
- Longer battery operating time

$P_{tot} = V_{BEsat} \times I_{B} + V_{CEsat} \times I_{C}$

BISS performance evolution

14 Continuous improvement to reduce V_{CEsat}

15 An example

Stable performance at smaller footprint

 $I_C = 0.5 \text{ A}, V_{CEO} = 40 - 45 \text{ V}$

16 An example

Increased performance on stable footprint

17.87 mm² footprint

Low V_{CEsat} (BISS) transistors

HV + BISS: boost in high-voltage performance miniaturisation of HV functionalities to smaller footprints

NOTE Power Management

V Five Years Out

Power diode: NUR460P (4A, 600V)

Key Applications

Product overview

Voltage: 600V

• Current: 4A

• Technology: Platinum doped ultrafast diodes

Packages: SOD141(DO201-AD) axial leaded plastic

Key features and benefits

- Low V_F and fast switching $(V_F = 0.88V@I_F = 4A,150°C)$
- Soft recovery minimises oscillation
- Ultra low leakage current
- Low thermal resistance
- Comprehensive lead forming offerings
- •Tj = 175°C

Benchmark test (adapter)

Comprehensive lead forming

Product Specification

Product overview

•Voltage: 600V

• Current: 30A

• Package: TO-220FP

• Pb &Halogen free

•BYC hyper fast type for CCM mode PFC

Key features and benefits

- Low V_F and fast switching
- Reduces switching losses in associated MOSFET or IGBT
- Ultra low leakage current by platinum doped technology
- $T_i = 175^{\circ}C$

Key applications

- Inverter based room air conditioners
- S.M.P.S. for server
- Freewheeling diodes for industrial machine

Benchmark (efficiency)

Product Specification

Cross reference

Vishay: ETH3006FP

Efficiency, Efficiency, Efficiency

- One of the key parameters to look at
- Results of poor efficiency
 - Generate more heat
 - Larger switching devices
 - May not meet regulatory conditions
 - Rebates from municipalities on certain designs
- Look at operating conditions
 - Input voltage range is critical
 - Efficiency over load conditions

• Buck mode: Typical Efficiency

- (1) 230VAC
- (2) 115VAC

Why the Power Limitation on GreenChip P

- Has external switch so it is capable of much higher wattages
- Regulatory requirements
- Efficiency, Power Factor, etc

AC/DC Example - Lighting Platform

- Design parameters
 - Use TEA1733
 - Vout = 24V
 - Vin = 90VAC to 264VAC
- Use the on line tools to select the components

From the main NXP menu or direct link

Flyback converter

Flyback SMPS Design Tool

Hello: Guest | Login Language: English

Design Output

- Provides schematic that is very similar to the development board
- Approach #1: Modify dev board with recommended BOM
 - Repiace discrete devices
 - Replace transformer

WDW

- Replace passive components
- Approach #2: Use dev board and just modify output voltage
 - Gives a close approximation

- Approach #2: Use dev board and just modify output voltage
 - Gives a close approximation
 - For the TEA1733
 - User Manual UM10385
 - Section 8.1, changing output voltage
 - Vo = 2.5V + (R23+R24)/R24
 - Keep R24 the same as demo board (5.23 Kohm)
 - Solve for R23
 - R23 = (Vo) (R24) / 2.5V R24
 - R23 = (V0) (5.23Kohm) / 2.5V (5.23Kohm)

Vo=24V output is desired

- R23 = 44.978 Kohm with the equation
- Closest 1 percent resistor is R23 = 45.3Kohm
- Plug the standard resistor value back into voltage equation
 - Vo = 2.5V + (R23+R24)/R24
 - Vo = 24.15V

1% Resistor Values								
100	40	196	27.4	383	536	750		
102	143	200	280	392	549	768		
105	147	205	287	402	562	787		
107	150	210	294	412	576	806		
110	154	215	301	422	590	825		
113	158	221	309	432	604	845		
115	162	228	316	442	619	866		
118	165	232	324	453	634	887		
121	169	237	332	464	649	909		
124	174	243	340	475	665	931		
127	178	249	348	487	681	953		
130	182	255	357	499	698	976		
133	187	261	365	511	715			
137	191	267	374	523	732			

Are we done?

Design Tool Output

Design Tool Output

Transformer			
Core type/size	RM12/I	Output power for CCM (at min.	51 W
Primary inductance	224 µH	Winding ratio (Nprim/Nsec)	2.76
Primary turns	24	NVout	68 V
Secondary turns	9	Total transformer losses	155 mW

Current sense resistor

Selected current sense resistor 140 m Ω Max. peak output power (at min. 74 W Max. output power (at min mains) 64 W

Windings

	Primary	Secondary	Auxiliary
Number of turns	24	9	8
Copper diameter	0.381mm (26.5 AWG)	0.450mm	0.241mm (30.5 AWG)
Overall diameter	0.419mm	0.675mm	0.272mm
Nr of parallel wires	1	2	3
Number of layers	1	1	1
Wire type	Enam.	Triso	Enam.
DC resistance	285mΩ	38mΩ	79mΩ

- Recommended device
 - CAD tool provides specifications
 - These are general recommendations
- Use MOSFET tools to fine tune the device selection

User

inputs

SMPS

- Schematic

-BOM

Tool

₃₂ TEA1716 (75W <x< 500W) - Reference Design

200W LLC adapter 19.5V/10.25A

Typical Applications

- Medical Power Supplies
- Garage Door Openers
- Industrial Ethernet switch PSU, industry PC PSUs, rail power

Strategic Advantages for AC/DC

- Highly efficient over wide load conditions
 - MEGA Shottky have low Vf
 - GreenChip designed for wide load conditions
 - BISS is 8x more efficient with lower VCEsat
 - Power Diodes have low leakage
 - Power Diodes reduce switching losses in MOSFET or IGBT
- Primary sense for low wattage applications
 - No opto couplers required
 - Reduces PCB area and cost

Strategic Advantages for AC/DC (pg 2)

- Better reliability
 - Components run cooler when they are efficient
 - Clip bond technology versus wire bonding
 - BISS has lower VCEsat which runs cooler
 - Power diode reduces switching loss in the MOSFET or IBGT
 - GreenChip have over power timer to protect device
- Higher power density
 - Clip bond package dissipates more heat

How to do a design

- Variety of power tools are available
- Free simulation results
- Demo boards are available
- Enter a design and get started!

AC/DC Conversion

- GreenChip
 - High eff at wide load range
 - Designs up to 500W
- Discretes
 - BISS
 - MEGA Shottky
- Power Diodes
 - NUR460P, BYC30X
 - 600V ultra low leakage
 - Reduces switching losses in MOSFET or IGBT

DC/DC Conversion

- ▶ LDO
 - LD68xy
 - Low in rush and soft start
- DC/DC
 - DCMx
 - High eff at wide load range
- GreenChip
- Discretes
 - BISS
 - MEGA Shottky
- Power MOS
 - PSMNx, BUFKx
 - Lowest RDSon / High Switching
 - LFPAK56, LFPAK33
 - Best in class current and avalanche

Switches and External Devices

- PFC
 - BYCx, BYVx, BYRx, BYWx
 - Optimized for PFC
- MOSFETs
- Load switches
- ORing MOSFETs

PL Standard Linear

37 Product Portfolio Overview

Voltage Regulators

DC/DC

- Buck converter
- Boost converter
- Buck/Boost Converter

Ultra low drop out LDOs (< 6V)

- High PSRR
- Ultra low drop out
 - Low quiesccent
 - Dual LDOs

Shunt regulators

Shunt regulators TL431

Signal Conditioning & ESD protection

• HDMI Transmitter IP4786, IP4788

• SD3.0 IP4855, IP4755

Graphical overview

Low-Voltage LDO Product Portfolio

NXP

New Product Introduction

WDW

39

Power Management

Available Planned

The soft start function limits the inrush current by maintaining a defined start up time of 150 µs.

Special for applications supporting a connector the maximum load at the connection is limited.

The fold back current limiter controls the maximum power at a hard shortage to ground.

For supply lines to a connector e.g. accessories this functions helps to minimize the heat up even at a hard shortage to ground.

The power dissipation is reduced by a factor of 6.

August 19, 2013

August 19, 2013

- High efficiency at 6 MHz operation
- High operating input voltage range 2.3 V 5.5 V (6.0 V peak)
- ▶ 1.2 V to 2.85 V output voltage range
- 425 mA, 500 mA and 650 mA DC output current versions available
- Low quiescent current in shut-down mode 1 μA
- Low output voltage ripple in PWM and PFM mode
- XSHUTDOWN signal output version available (power good indicator for clock enable version)
- Enable via high-active or a clock signal (depends on sub-version)
- Short circuit and over-temperature protection
- Integrated ESD protection according to IEC 61000-4-2, level 4
- Pb-free, RoHS compliant and free of Halogen and Antimony (dark green compliant)
- **WLCSP** with 0.4 mm pitch

NXP New Buck converter (DEV)

NA

44 Efficiency for DC3MA12/18

High efficiency @ light load

- 95% top efficiency
- Constant and more than 90% efficiency over a wide current range from 2 to 700mA
- Very high efficiency down to very low current of 0.1mA
- High maximum current of 1200mA
- low quiescent current of typically 25µA
- DFN2020-6 plastic package

Already covered in AC/DC section

General Survey SMPS ICs

GreenChip

		GreenChip			
typ. applications	PFC control primary control		secondary control	STBY control	
Resonant typ. >90W	TEA171x (TEA1716) (Greenchip Resonant) Probably not suitable due to		TEA1791A TEA1795 PF(Greenchip SR)	Parallel supply TEA173x (GreenChip LowPower)	
Flyback >75W	TEA175x(TEA1750/51/52/TEA1753/55) (Greenchip III)		TEA176x (TEA1761/62)	TEA1703	
Flyback <75W	n.a.	TEA153x (TEA1530/TEA1532/33)	TEA179x (TEA1792) (Greenchip SR)	(Greenchip Standby)	
Flyback <15W	n.a.	TEA172x (TEA1721/3) (Greenchip SP)	n.a.	Integrated in Primary IC	
Power Management		12V to 30V input flyback	controller	Five Years Out	

High Efficiency Power Management

Telecom Industrial Power Supply (48V Bus DC/DC)

NextPower – Superjunction advantage

48

- NXP (Philips Research) was the pioneer of Resurf / Superjunction Technology
- NextPower extends Superjunction capability beyond competitor's TrenchMOS structures

Deeper junctions → <u>lower on resistance per cell</u>

Fewer cells → <u>improved switching efficiency</u>

Lower cell density → best-in-class SOA & ID current rating

Package Overview – StdMOS

Note: The dimensions shown above are approximations. For accurate descriptions of the package outlines including tolerances, please refer to the datasheet

50 The Toughest Power Package

LFPAK56

Power-S08 compatible footprint (5mm x 6mm)

No glue, no wires, no gold,175° C

LFPAK33 QFN/DFN33 compatible footprint (3.3mm x 3.3mm)

LFPAK56D - Now 2x better

Five Years Out

MOSFET Construction

LFPAK – the copper clip advantage

52

Al wire bonding

Cu Clip + wire gate

Cu wire bonding

Cu Clip + wire gate

Cu Clip + Au bump

Ribbon Bond

Integrated Cu clip NXP (LFPAK)

Integrated Cu Clip gives

- Low electrical resistance
- Low thermal resistance
- Low Inductance
- High reliability & 175°C
- 1st power-SO8 to be Auto qualified to AEC-Q101

Source: NXP 2009 analysis

High Efficiency Power Management Product family insights

53 Standard PowerMOS - NextPower Cordless

Professional LFPAK56 (footprint compatible with Power-\$O8)

Professional EPPAK56 (100tprint Compatible with Power-506)					
LFPAK56			R _{DS(ON)} (V _{GS} = 10 V)	I _D [max]	
30 V	LL	PSMN1R3-30YL	1.3 mΩ	100 A	
	LL	PSMN2R0-30YL	2.0 mΩ		
	LL	PSMN2R2- 30YLC	2.15 mΩ		
	LL	PSMN2R5-30YL	2.4 mΩ		
	LL	PSMN2R6- 30YLC	2.8 mΩ		
	LL	PSMN3R7- 30YLC	3.7 mΩ		
40 V	LL	PSMN1R6- 40YLC	1.55 mΩ	100 A	
	LL	PSMN1R8- 40YLC	1.8 mΩ		

Professional TO-220	
---------------------	--

TO-220		R _{DS(on)} (V _{GS} = 10 V)	I _D [max]	
40 V	SL	PSMN1R5-40PS	1.6 mΩ	150 A
	LL	PSMN1R9-40PL	1.6 mΩ	150 A
60 V	SL	PSMN2R6-60PS	2.6 mΩ	150 A
LL	LL	PSMN2R5-60PL	2.6 mΩ	150 A
	LL	PSMN3R3-60PL	3.4 mΩ	150 A

	13.7	_		-	4	Λ
IJ	IY.		u	-/	/	u

TO-220)		R _{DS(on)} (V _{GS} = 10 V)	I _D [max]
40 V	SL			
	LL	PSMN2R1-40PL	2.2 mΩ	150 A
60 V	SL	PSMN3R9-60PS	3.9 mΩ	130 A
	LL	PSMN4R2-60PL	3.9 mΩ	130 A

<u>www.nxp.com/nextpower-cordless</u>

Specifically designed for power tool designs

- **ID(max)** 500 μm diameter internal wires, with multiple bonding, provide up to 150A in TO220
- **Avalanche ruggedness** Switching highly inductive loads such as motor coils requires PowerMOS able to handle repetitive avalanche events.
- On resistance NXP's low RDS(on) deliver higher efficiencies, ensuring longer battery life and easier thermal management

Five Years Out PUBLIC INFORMATION

54

From the main NXP menu or direct link

55

Click on 32bit or 64bit links

- Run the tool
- Follow the menus

57

Lots of devices to select

58

From the main NXP menu or direct link

59

Select the link

60

Select the link

63

Select the link

Battery Charger Application

68

Requirements

- High Efficiency
- AC/DC Input
- DC/DC charging circuit
- Battery charging algorithm

Strategic Advantages for DC/DC

- Highly efficient over wide load conditions
 - LDO have soft start to prevent over sizing components
 - Buck converter >90% efficiency from 2mA to 700mA loads
 - MEGA Shottky have low Vf
 - GreenChip designed for wide load conditions on flyback configurations with input voltages between 12V and 30V
 - BISS is 8x more efficient with lower VCEsat
 - NextPower has lower on resistance, improved switching, and best in class SOA and Id rating

Strategic Advantages for DC/DC (pg 2) NP

- Better reliability
 - Components run cooler when they are efficient
 - LDO limits in rush current
 - LDO has foldback to protect components
 - BISS has lower VCEsat which runs cooler
 - GreenChip have over power timer to protect device
 - NextPower has lower on resistance, improved switching, and best in class SOA and Id rating
 - LFPAK has no glue, no wires, no gold, and rated to 175°C
- Higher power density
 - WLCP package for LDO and DC-DC
 - NextPower has lower on resistance and best in class SOA
 - Clip bond technology provides lower profile

How to move forward with DC/DC designs

- Look at LFPAK MOSFETs to increase reliability and decrease cost
- NXP LDO and regulators when high efficiency is required over wide load conditions
- NextPower MOSFETs when switching highly inductive loads like power tools and motors
- MOSFET cross reference and selection tools will help you convert and start new designs

Application Guide

73

AC/DC Conversion

- GreenChip
 - High eff at wide load range
 - Designs up to 500W
- Discretes
 - BISS
 - MEGA Shottky
- Power Diodes
 - NUR460P, BYC30X
 - 600V ultra low leakage
 - Reduces switching losses in MOSFET or IGBT

DC/DC Conversion

- LDO
 - LD68xy
 - Low in rush and soft start
- DC/DC
 - DCMx
 - High eff at wide load range
- GreenChip
- Discretes
 - BISS
 - MEGA Shottky
- Power MOS
 - PSMNx, BUFKx
 - Lowest RDSon / High Switching
 - LFPAK56, LFPAK33
 - Best in class current and avalanche

Switches and External Devices

- ▶ PFC
 - BYCx, BYVx, BYRx, BYWx
 - Optimized for PFC
- MOSFETs
- Load switches
- ORing MOSFETs

Power Factor Correction

- Not required for low wattage designs
- PFC control is included in many of the GreenChip devices
- Still requires external MOSFET

Product overview

•Voltage: 600V

• Current: 8A

• BYC hyper fast type for CCM mode PFC

• Package: TO-220, TO220FP

• Pb &Halogen free

Key features and benefits

- Low V_F and fast switching
- Soft recovery minimises oscillation
- Ultra low leakage current by platinum doped technology
- $T_i = 175^{\circ}C$

Key applications

- Printer power
- •PDP TV power
- •SMPS for PC and servers
- Switching adaptors
- •LCD TV & Monitor power

Benchmark (efficiency)

Product Specification

Cross reference

ST: STTH8S06D Fairchild: FFPF08S60S

Load Switches

The ultimate power saving device

Select the Active Devices based on specific application running. If the device is not needed, turn off its power!

Low cost, distributed Load Switches allow highly granular control of power to every device in the system

Ex: NX3P190

77

- 1.1-3.6V supply voltage
- 95mohms ON resistance
- Maximum switch current: 500mA
- Low ground current = $2 \mu A$ (Active)
- Power off leakage current = $2 \mu A$ (Standby)
- Note: if a device already has a standby mode LESS than 2 µA consider grouping several together on one load switch

Tradeoff power consumption with cost and component count

Load Switches

Load Switches

79

Feature Examples

Product Overview

Part	Input voltage (V)	Ron @1.8 V (mW)	Feature	Max Current (A)	Enable Pin	Package (mm)	Target Applications
NX3P190UK	1.1 to 3.6	95	Slew rate	0.5	Active high	WSCP4 0.8X0.8,0.4p	Mobile, computing
NX3P191UK	1.1 to 3.6	95	SR, Load discharge	0.5	Active high	WSCP4 0.8X0.8,0.4p	Mobile, computing
NX5P198UK	2.0 to 5.5	28	SR, Reverse polarity	3.0	Active high	WCSP6 1.0X1.5,0.5p	Mobile, computing
NX5P1039	1.8 to 5.5	20	Slew Rate	3.0	Active high	WCSP6 0.8x1.2,0.4p 1.0X1.5, 0.5p	Mobile, computing
NX3P2553	2.5 to 6.5	85	Constant current limit, UVLO, temp SD	3.0	Active high	QFN:6 2.0x2.0 PG: 3.0x3.0	TV / LCD, computing

High Efficiency Power Management Product family insights

80 Standard PowerMOS - NextPower Live

	30 V	100 V
Package	for 12 V supplies used in computing applications	for 48 V supplies used in telecommunications
D2DAY (COT404)	PSMN1R5-30BLE	PSMN4R8-100BSE
D ² PAK (SOT404)	PSMN3R4-30BLE	PSMN7R6-100BSE
LFPAK56 (Power-SO8)	PSMN2R0-30YLE	PSMN013-100YSE

PowerMOS for Linear Mode and low RDS(on)

www.nxp.com/nextpower-live

Only NextPower Live MOSFETs offer reliable linear mode performance AND low R_{DS(on)} efficiency

- Electronic fuse
- Hot swap
- Load switch
- Soft start

81 Linear mode performance and low RDS(on)

Fig. 4. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

 $T_{mb} = 25$ °C; I_{DM} is a single pulse; Capped at 120 A due to package

Design Example for Load Switches

82 Going for ultimate power savings

Example: "rotating globe" (with Load Switch)

83

- Devices needed
- Devices not needed

Device	Power Saved (uA)				
LPC-Link	2				
Accelerometer	0.1				
Temp Sensor	0.2				
RTC	0.15				
FLASH	1.5				
Load Switch	- 2				
Total	1.95				

Extra life expected from Battery \rightarrow x.x hours Little savings due to CPU intensive app

Example: Real Time Clock (with Load Switch)

84

- Devices needed
- Devices not needed

- •Only the RTC has power: all other devices disabled via single load switch
- •RTC interrupt connects to load switch EN
- •At power up, MCU updates display then powers down

Extra life expected from Battery \rightarrow x.x days runtime

Offline Cross Reference Design Tool

- Run the tool
- Follow the menus

Offline Cross Reference Design Tool

File Products	Find Updates Window About Description Configuration Volta				Itage Range (V) Package				On Resist		
NAF F/N	Description	Corniguration	Min.	Max.	Version	Name	Pins	Ron	ESIST		
IX3L2467GU	Dual double-pole, double-throw analog switch with low threshold	DPDT	1.4	4.3	SOT1161-1	XQFN	16	0.75			
NX3L2467HR Dual double-pole, double-throw analog switch with low threshold		DPDT	1.4	4.3	SOT1039-1	HXQFNU	16	0.75			
IX3L2467PW	Dual double-pole, double-throw analog switch with low threshold	DPDT	1.4	4.3	SOT403-1	TSSOP	16	0.75			
NX3L2267GM Dual single-pole double-throw analog switch with low threshold inputs		SPDT	1.4	4.3	SOT1049-2	XQFNU	10	0.75	П		
NX3L2267GU Dual single-pole double-throw analog switch with low threshold inputs		SPDT	1.4	4.3	SOT1160-1	XQFN	10	0.75			
IX3L4684GM	Dual single-pole double-throw analog switch with low threshold inputs	SPDT	1.4	4.3	SOT1049-2	XQFNU	10	0.8	П		
IX3L4684TK	Dual single-pole double-throw analog switch with low threshold inputs	SPDT	1.4	4.3	SOT650-2	HVSON	10	0.8			
74HC4052BQ	Dual single-pole, quad-throw analog switch	SP4T-Z	2	10	SOT763-1	DHVQFN	16	200			
4HC4052D	Dual single-pole, quad-throw analog switch	SP4T-Z	2	10	SOT109-1	SO	16	200			
74HC4052DB	Dual single-pole, quad-throw analog switch	SP4T-Z	2	10	SOT338-1	SSOP	16	200			
74HC4052N	Dual single-pole, quad-throw analog switch	SP4T-Z	2	10	SOT38-4	DIP	16	200			
74HC4052PW	Dual single-pole, quad-throw analog switch	SP4T-Z	2	10	SOT403-1	TSSOP	16	200			
74LV4052D	Dual single-pole, quad-throw analog switch	SP4T-Z	1	6	SOT109-1	SO	16	125			
74LV4052DB	Dual single-pole, quad-throw analog switch	SP4T-Z	1	6	SOT338-1	SSOP	16	125			
74LV4052N	Dual single-pole, quad-throw analog switch	SP4T-Z	1	6	SOT38-4	DIP	16	125			
74LV4052PW	Dual single-pole, quad-throw analog switch	SP4T-Z	1	6	SOT403-1	TSSOP	16	125			
HEF4052BP	Dual single-pole, quad-throw analog switch	SP4T-Z	4.5	15.5	SOT38	DIP	16	175			
IFF4052RTT	Dual single-note guad-throw analog switch	SP4T-7	45	15/5		TSSOP	16	175			
Family / Functions Family ALL Config. ALL	Vcc Min <= ALL ▼ Max>= ALL ▼ Package	e / Temp. Range Type All ange All	· ·	Rese	ters						

Strategic Advantages for External Devices

- Highly efficient
 - Hyper fast recovery diodes are best in class for PFC circuit
 - Extremely low leakage through a load switch
 - NextPower MOSFETs have low RDSon and good linear performance for ORing and Hot Swap applications

Strategic Advantages for Ext Devices (pg 2) NP

- Better reliability
 - Load switches operate up to 125°C
 - Load switches contain safety shutdown circuits and alarms
 - Load switch has bleeder resistor for repeatable connectivity to a microcontroller
 - NextPower MOSFETs designed for linear operation
- Higher power density
 - Load switches combine many functions into a single device
 - NextPower low RDS(on) permits smaller heatsink

How to take advantage of external devices

- Consider load switches for designs which need low power consumption and high efficiency
- Use NextPower MOSFETs for hot swap applications
- Hyper fast recover diodes are best for use in PFC circuits

90

AC/DC Conversion

- GreenChip
 - High eff at wide load range
 - Designs up to 500W
- Discretes
 - BISS
 - MEGA Shottky
- Power Diodes
 - NUR460P, BYC30X
 - 600V ultra low leakage
 - Reduces switching losses in MOSFET or IGBT

DC/DC Conversion

- LDO
 - LD68xy
 - Low in rush and soft start
- DC/DC
 - DCMx
 - High eff at wide load range
- GreenChip
- Discretes
 - BISS
 - MEGA Shottky
- Power MOS
 - PSMNx, BUFKx
 - Lowest RDSon / High Switching
 - LFPAK56, LFPAK33
 - Best in class current and avalanche

Switches and External Devices

- PFC
 - BYCx, BYVx, BYRx, BYWx
 - Optimized for PFC
- MOSFETs
- Load switches
- ORing MOSFETs

Please contact us for any questions

• For More Information:

Existing Arrow Customers: 800 777 2776

New Customers: 800 833 3557

www.arrownac.com/powermanagement

