1 Anatomy of a typical financial model

** This probably needs to go in a second paper but is here as a reminder to talk about things in relation of financial models. **

- 1. Use data analysis & exploration of statistical features to identify candidate models.
- 2. Estimate parameters for the candidate model.
- 3. Check model feasibility through examination of residuals.
- 4. Validate model with out-of-sample data.

A standard practice is to simplify the complex nature of markets into a more palatable form, such as time series of returns. [time series log returns formula]

The next step is to hone in on some features that could be used to explain the behavior of this simplified view.

These features are then applied into a mathematical model that explain or forcast the behavior of the system. [time series forcasting using cointegration for pairs trading]

** Look at the entropy of this process. We should have something that starts at a OB and ends with a vector of AR returns. It is likely that this procedure has a large loss of information. **

2 Trading as a category

In this section we introduce the concept of trading as a categorical concept. ** expand on this when we have more **.

2.1 Trading Positions

We start with a primitive notion of a trading position

$$\psi: [0,\infty] \times [0,\infty] \to \{\top,\bot\}$$

as a willingness to exchange a quantity q_b of asset b for q_a of asset a

$$\psi(q_a, q_b) = \begin{cases} \top & \text{trader } \boldsymbol{agrees} \text{ to swap } q_a \text{ for } q_b \\ \bot & \text{trader is } \boldsymbol{not willing} \text{ to make the swap} \end{cases}$$

. An order book can be thought of as a collection of trading positions so that the ordering

$$\psi_1(q_1, q_2) \ge \psi_2(q_3, q_4) \implies \frac{q_1}{q_2} \ge \frac{q_3}{q_4}$$

for buyers, and

$$\psi_1(q_1, q_2) \le \psi_2(q_3, q_4) \quad \Longrightarrow \frac{q_1}{q_2} \le \frac{q_3}{q_4}$$

Table 1: ψ example

buy amount	sell amount	ψ
2	1	Т
4	2	Т
5	3	Т
5	2	1
6	3	Т
10	5	T

for sellers implies an ordering by price. However our trading position is able to provide more and allows for a comparison of quantities directly

$$\psi_1 \ge \psi_2 \iff \exists q_1, q_2 . \psi_1(q_1, q_2) = \top \quad \text{and} \quad \psi_2(q_1, q_2) = \bot$$
 (1)

. This means that two trading positions may be price equivalent but they can still be compared relative to their exchangeable quantities.

Theorem 1. A trade executes between commutative trading positions ψ_A , ψ_B if there exists a quantity that satisfy both trading positions.

Proof. Let $\psi_1: A \to B$ admit a trading position at $\psi_1(a_1, b_1) = \top$ and $\psi_2: B \to A$ similarly at $\psi_2(b_2, a_2) = \top$, where $a_1, a_2 \in |A|$ and $b_1, b_2 \in |B|$ are the relative quantities of assets A, B.

If we can find $a \in |A|$ and $b \in |B|$ such that

$$a \ge a_1$$
 and $a \le a_2$

$$b \ge b_2$$
 and $b \le b_1$

which results in

$$\psi_1(a,b) \ge \psi_1(a_1,b_1)$$
 $\psi_2(b,a) \le \psi_2(b_2,a_2)$
 $\psi_1(a,b) = \top$ $\psi_2(b,a) = \top$

or in other words a trade being executed.

Table 1 shows an example of a buy trading position, which reinforces the notion that ψ is a both sensitive to price and quantity.

Now lets consider combining trading positions. We'll introduce a shorthand asset quantity parameter $\alpha = (a_1, a_2)$ that describes a pair of quantities, a_1 to buy and a_2 to sell. This is used to describe a trading position

$$\alpha \mapsto \psi_{\alpha} \implies \psi(a_1, a_2) = \top$$

. We can then say if two quantities s_1, s_2 are accepted by the trading position ψ_{α} that implies the price is better or equal to α

$$\psi_{\alpha}(s_1, s_2) = \top \implies \frac{s_1}{s_2} \ge \alpha$$

. Given a second trading position ψ_{β} we can write

$$\psi_{\alpha+\beta} = \psi_{\alpha} + \psi_{\beta}$$

and

$$\psi_{\alpha+\beta}(s_1, s_2) = \top \implies \frac{s_1}{s_2} \ge \alpha + \beta$$

. Suppose we split appart a quantity $s_2 = s_2' + s_2''$ then we can see that

$$\psi_{\alpha}(s_1, s_2') = \top$$
 and $\psi_{\beta}(s_1, s_2'') = \top$

as $s_2' < s_2$ and $s_2'' < s_2$. However the same is not true for $s_1 = s_1' + s_1''$ as

$$\psi_{\alpha}(s_1', s_2) \leq \top$$
 and $\psi_{\beta}(s_1'', s_2) \leq \top$

. ** does this make sense?? **

Definition 2. The combination of two trading positions ψ_{α} and ψ_{β} is given by

$$\psi_{\alpha} + \psi_{\beta} : [0, \infty] \times [0, \infty]^{op} \to \mathscr{B}$$

where

$$\psi_{\alpha} + \psi_{\beta}(s_1, s_2) = \top$$

if there exists component quantities that result in trading positions

$$\exists s_1 = s_1' + s_1'' \cdot \psi_{\alpha}(s_1', s_2') = \top$$
$$\exists s_2 = s_2' + s_2'' \cdot \psi_{\beta}(s_1'', s_2'') = \top$$

.

Using this combination we can validate that trading positions behave as expected.

Example 3. Lets look at a trading position where one quantity is zero, $\psi_0(0, s_2) = \top$. So if we combine this trading position with a second one ψ_1

$$\psi_0(0,s_2) + \psi_1(s_1,s_2) = \top \implies \exists s_1 = s_1' + s_1'' \cdot \psi_1(s_1',s_2') = \top$$

but seeing as $s_1 \in [0, \infty]$, the only possible values for $s_1' = s_1'' = 0$, meaning that $\psi_1(s_1', s_2') = \top$ for any s_2' . In other words, we can always give things away for free.

On the other extreme let's try to get something for free. Lets assume $\psi_0(s_1,0) = \top$. In this case we need to find $\exists s_2 = s_2' + s_2'' = 0$ and again the only option is to have $s_2' = s_2'' = 0$. And so we get $\psi_1(s_1',0) = \bot$ for $s_1' > 0$, meaning we cannot give nothing unless we agree to get nothing in return.

So far we have highlighted trivial algebraic properties of trading positions but now we introduce a categorical view of trading positions. We will use standard categorical notation for composition $\psi_1 \circ \psi_2(a,b) = \top$ to mean the same as $\psi_2(b,\psi_1(a,b))$. The composition of trading positions becomes a meet (or infimum) of quantities that share a common buy and sell amount

$$\psi_1 \circ \psi_2(a,b) = \bigvee_s \psi_1(a,s) \wedge \psi_2(s,b)$$

giving us a categorical version of our trading position comparison equation (1)

$$\psi_1 \circ \psi_2(a,b) = \top \iff \exists s . \psi_1(a,s) = \top \land \psi_2(s,b) = \top$$

. Now lets look closer at our definition of a trading position. We can define a category of positions **Pos** with objects as asset positions **Pos** \in P_A, P_B and arrows as trading positions ψ . Here $P_A = (a,b), P_B = (b,a)$ are the asset positions, with quantities $a \in A, b \in B$, such that $\psi_{P_A} = \top$ and $\psi_{P_B} = \top$.

Seeing as trading positions exhibit a contravariant relation along P_A and P_B , a trading position ψ is a profunctor

$$\psi: P_A \nrightarrow P_B$$

, more precisely this is a Cartesian product of asset positions to a set

$$\psi: P_B^{op} \times P_A \to \mathscr{B} \tag{2}$$

where $\mathscr{B} = \{\bot, \top\}$ with ordering $\bot \le \top$.

2.2 Quantales

Definition 4. A quantale Q is a complete lattice \mathcal{L} , that admit joins \bigvee and meets \bigwedge and has an associative binary operator $\otimes : \mathcal{L} \times \mathcal{L} \to \mathcal{L}$, that commutes with joins: $x \otimes (\bigvee S) = \bigvee (x \otimes S)$ and $(\bigvee S) \otimes x = \bigvee (S \otimes x)$.

In [** ref diagrams of quantales I.Weiss **] the notion of a Lawvere Quantale is further developed as a category Q with objects $\operatorname{ob}(Q) = [0, \infty]$ and arrows $x \to y$ where $x \ge y$. We have developed the category $\operatorname{Prof}(\operatorname{Pos})$ as a candidate for trading positions. It is a good category, but it could be better. We can improve on it by noting that asset positions are equivalent to $[0, \infty]$ in the following way

$$P_A = P_B = Q^{op} = ([0, \infty]^{op})^{op} = [0, \infty]$$

. The Q^{op} comes from the need to describe our arrows in the opposite direction as the $Lawvere\ Quantale.$

This means we can form our trading position (2) using $[0, \infty]$

$$\psi:[0,\infty]^{op}\times[0,\infty]\to\mathscr{B}$$

Definition 5. The quantale $Q = (\mathcal{L}, \otimes, I)$ with joins \bigvee form a category of trading positions $\mathbf{Qnt}(\mathbf{Pos})$ where trading positions ψ_i are the hom-set

$$\psi_i \in \mathbf{Qnt}(Q,Q)$$

and an individual trading position ψ is the arrow between quantales

$$\psi:Q\to Q$$

.

The above definition provides to following behaviors:

- 1. $\psi(I) = I$
- 2. $\psi(a \otimes b) = \psi(a) \otimes \psi(b)$
- 3. $\psi(\bigvee_{s \in S} s) = \bigvee_{s \in S} \psi(s)$

Theorem 6. Tra is a category enriched in Qnt.