1 Popište možné tvary dynamických systémů pro modely: spojité-diskrétní, lineární-nelineární.

Lineární spojitý systém v časové oblasti

$$\dot{m{x}} = m{A}m{x} + m{B}m{u}$$
 $m{y} = m{C}m{x} + m{D}m{u}$

Lineární spojitý systém ve frekvenční oblasti

$$sx = Ax + Bu$$
$$y = Cx + Du$$

Po úpravě $\boldsymbol{x}(s\boldsymbol{I}-\boldsymbol{A})=\boldsymbol{B}\boldsymbol{u}$ můžeme dosadit

$$y = C(sI - A)^{-1}Bu + Du$$
 (1)

Dynamická poddajnost

$$G(x) = \frac{y}{u} = C(sI - A)^{-1}B + D$$
(2)

Lineární diskrétní systém

$$egin{aligned} oldsymbol{x}_{t+\Delta t} &= oldsymbol{M} oldsymbol{x}_t + oldsymbol{N} oldsymbol{u}_t \ oldsymbol{y}_t &= oldsymbol{O} oldsymbol{x}_t + oldsymbol{P} oldsymbol{u}_t \end{aligned}$$

diskrétní tvar lze získat z tvaru spojitého modelu v časové oblasti

$$M = e^{\mathbf{A}\Delta t} \doteq \mathbf{I} + \mathbf{A}\Delta t$$
 $N = \mathbf{A}^{-1} (e^{\mathbf{A}\Delta t} - \mathbf{I}) \mathbf{B} \doteq \mathbf{B}\Delta t$
 $O = C$
 $P = D$

Nelineární systém

$$\dot{x} = f(x) + g(x)u \tag{3}$$

$$y = c(x) + d(x)u \tag{4}$$

2 Popište postup identifikace lineárního modelu SISO systému ve tvaru ARX a OE.

2.1 Auto Regresive model with eXogenous inputs

Lineární filtr používajíci minulé vstupy a výstupy systému

$$\hat{y}(t) + a_1 y(t - \Delta t) + \dots + a_n y(t - n\Delta t) = b_0 u(t) + \dots + b_n u(t - n\Delta t)$$

$$\tag{5}$$

Pro N kroků měření lze vypsat N-n rovnic

$$\hat{y}_n = -a_1 y_{n-1} - \dots - a_n y_0 + b_0 u_n + \dots + b_n u_0$$

$$\vdots$$

$$\hat{y}_N = -a_1 y_{N-1} - \dots - a_n y_{N-n} + b_0 u_N + \dots + b_n u_{N-n}$$

Ty lze zapsat ve tvaru

$$\hat{\boldsymbol{y}} = \boldsymbol{\Phi} \boldsymbol{p} \,, \tag{6}$$

kde

$$\hat{\boldsymbol{y}} = \begin{bmatrix} \hat{y}_n & \dots & \hat{y}_N \end{bmatrix}^T$$

$$\boldsymbol{\Phi} = \begin{bmatrix} y_{n-1} & \dots & y_0 & u_n & \dots & u_0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ y_{N-1} & \dots & y_{N-n} & u_N & \dots & u_{N-n} \end{bmatrix}$$

$$\boldsymbol{p} = \begin{bmatrix} -a_1 & \dots & -a_n & b_0 & \dots & b_n \end{bmatrix}^T$$

2.2 Output Error model

Lineární filtr používajíci minulé vstupy a výstupy modelu

$$\hat{y}(t) + a_1 \hat{y}(t - \Delta t) + \dots + a_n \hat{y}(t - n\Delta t) = b_0 u(t) + \dots + b_n u(t - n\Delta t)$$

$$\tag{7}$$

zbytek obdobně jako pro ARX jen se změnou y na \hat{y} .

3 Popište postup identifikace lineárního modelu SISO systému ve tvaru FIR.

$$\hat{y}(t) = g_0 u(t) + g_1 u(t - \Delta t) + \dots + g_n u(t - n\Delta t)$$
(8)

$$\hat{y}_n = g_0 u_n + g_1 u_{n-1} + \dots + g_n u_0 \tag{9}$$

$$\vdots (10)$$

$$\hat{y}_N = g_0 u_N + g_1 u_{N-1} + \dots + g_n u_{N-n} \tag{11}$$

$$\hat{\boldsymbol{y}} = \boldsymbol{\Phi} \boldsymbol{p} \,, \tag{12}$$

kde

$$\hat{m{y}} = \begin{bmatrix} \hat{y}_n & \dots & \hat{y}_N \end{bmatrix}^T$$
 $m{\Phi} = \begin{bmatrix} u_n & \dots & u_0 \\ \vdots & \ddots & \vdots \\ u_N & \dots & u_{N-n} \end{bmatrix}$
 $m{p} = \begin{bmatrix} g_0 & \dots & g_n \end{bmatrix}^T$

4 Vysvětlete jak se sestavují Markovovy parametry a Hankelovy matice pro diskrétní stavový model.

$$x_1 = Bu_0 y_0 = Du_0 (13)$$

$$x_2 = ABu_0 + Bu_1$$
 $y_1 = Cx_1 + Du_1 = CBu_0 + Du_1$ (14)

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$x_{k+1} = \sum_{i=0}^{k} \mathbf{A}^{k-i} \mathbf{B} \mathbf{u}_{i}$$

$$y_{k} = \sum_{i=1}^{k} \underbrace{\mathbf{C} \mathbf{A}^{k-i} \mathbf{B}}_{h_{i}} \mathbf{u}_{i} + \underbrace{\mathbf{D}}_{h_{0}} \mathbf{u}_{k}$$

$$(16)$$

$$Y = HU \tag{17}$$

kde Y je matice tvořena výstupy, U matice vstupů a matice H je Hankelova matice či matice M arkovových parametrů. q je voleno dle času ustálení impulzové odezvy tak, aby $y_q \approx 0$.

$$Y = \begin{bmatrix} y_0 & y_0 & \dots & y_q \end{bmatrix} \tag{18}$$

$$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{h}_0 & \boldsymbol{h}_1 & \dots & \boldsymbol{h}_p \end{bmatrix} \tag{19}$$

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_0 & \boldsymbol{u}_1 & \dots & \boldsymbol{u}_q \\ \boldsymbol{0} & \boldsymbol{u}_0 & \dots & \boldsymbol{u}_{q-1} \\ \vdots & & & \vdots \\ \boldsymbol{0} & \dots & & \boldsymbol{u}_{q-p} \end{bmatrix}$$
(20)

4.1 Hankelovy matice

$$\boldsymbol{H}_{1} = \begin{bmatrix} h_{1} & h_{2} & \dots & h_{p} \\ h_{2} & h_{3} & \dots & h_{p+1} \\ \vdots & \vdots & & \vdots \\ h_{p} & h_{p+1} & \dots & h_{2p-1} \end{bmatrix}, \quad \boldsymbol{H}_{2} = \begin{bmatrix} h_{2} & h_{3} & \dots & h_{p+1} \\ h_{3} & h_{4} & \dots & h_{p+2} \\ \vdots & \vdots & & \vdots \\ h_{p+1} & h_{p+2} & \dots & h_{2p} \end{bmatrix}$$
(21)

5 Popište identifikaci diskrétního stavového modelu pomocí metody ERA při znalosti Hankelových matic a Markovových parametrů. Co je to balancovaný tvar modelu ?

Hanklovy matice H_1 a H_2 lze zapsat jako

$$H_1 = PQ , \quad H_2 = PAQ \tag{22}$$

kde \boldsymbol{P} je matice pozorovatelnosti a \boldsymbol{Q} matice říditelnosti.

Balancovaný tvar zajistíme SVD rozkladem H_1 na

$$H_1 = V\Gamma^2 U^T \Rightarrow P = V\Gamma, \ Q = \Gamma U^T$$
 (23)

Matice identifikovaného systému pak jsou

$$\boldsymbol{A} = \boldsymbol{P}^{+} \boldsymbol{H}_{2} \boldsymbol{Q}^{+} \tag{24}$$

$$\boldsymbol{B} = \boldsymbol{Q}[:, 1:s] \tag{25}$$

$$C = P[1:r,:] \tag{26}$$

kde s je počet vstupů, r počet výstupů a \mathbf{P}^+ , \mathbf{Q}^+ pseudo-inverze, které lze získat přímo z SVD rozkladu

$$P^{+} = \Gamma^{-1}V^{T}, \ Q^{+} = U\Gamma^{-1}$$
 (27)

6 Vysvětlete rozdíl mezi modelem MDOF tlumeného mechanického systému s viskózním a strukturním tlumením. V čem je model se strukturním tlumením problematický pro časovou simulaci?

Pohybové rovnice systému buzeného harmonickou funkcí

• s viskózním tlumením

$$M\ddot{x} + B\dot{x} + Kx = F \tag{28}$$

• se strukturním tlumením

$$M\ddot{x} + (jH + K)x = F \tag{29}$$

Strukturní model tlumení se speciálně orientovaný na analýzu ve frekvenčí oblasti, jelikož v časové oblasti zanáší do simulace komplexní čísla.

Ve frekvenční oblasti ${m B}\omega = {m H}$

7 Popište modální transformaci mechanického systému, vysvětlete pojem proporcionálního tlumení.

Pro systém ve tvaru

$$M\ddot{x} + C\dot{x} + Kx = F$$

je základem modální trasformace nalezení řešení zobecněného problému vlastních čísel

$$KV = \Omega^2 MV$$

kde ϕ_i jsou vlastní vektory a Ω_i vlastní frekvence tvořící matice \boldsymbol{V} a $\boldsymbol{\Omega}$

$$V = \begin{bmatrix} \phi_i & \dots & \phi_N \end{bmatrix}, \ \mathbf{\Omega}^2 = \operatorname{diag}(\Omega_i^2), \quad i \in \langle 1, N \rangle$$

Pro navzájem ortogonální vlastní vektory s vahou matice hmotnosti (získané příslušnou normalizací) platí

$$V^T M V = 1$$
. $V^T K V = \Omega^2$

lze zavedením modální souřadnic q, x = Vq a vynásobením transponovanou maticí modální transformace V^T zleva, převést do tvaru

$$I\ddot{q} + \Gamma \dot{q} + \Omega^2 q = V^T F$$
, $\Omega = V^T K V$, $\Gamma = V^T B V$

O systému můžeme říct, že má proporční tlumení, je-li matice C lineární kombinací matic M a K. Pak je tato matice diagonalizovatelná modální transformací V a matice Γ je diagonální s prvky $(\Gamma)_{ii} = 2\zeta_i\Omega_i$, kde ζ_i jsou poměrné útlumy. Soustava se pak rozpadá na samostatně řešitelné rovnice ve tvaru

$$\ddot{q}_i + 2\Omega_i \xi_i \dot{q} + \Omega_i^2 q = f_i$$
, $f_i = \boldsymbol{\phi}_i \cdot \boldsymbol{F}$, $i \in \langle 1, N \rangle$

8 Napište a vysvětlete MAC kritérium pro porovnání vlastních tvarů modelu a vlastních tvarů naměřených.

Modal Assurance Criterion

$$M_{rq} = \frac{(\phi_{A_r}^T \phi_{X_r})^2}{(\phi_{A_r}^T \phi_{A_r})(\phi_{X_r}^T \phi_{X_r})} , \quad r = 1, \dots, n, \ q = 1, \dots, m$$
(30)

kde na mje počet módů, ϕ_{A_q} měřené vlastní vekotry a ϕ_{X_r} vlastní vektory modelu.

MAC kritérium se užívá pro zhodnocení shody vlastních vektorů modelu a měřeného systému. Při dokonalé shodě M = I.

9 Popište metodu SDOF identifikace mechanického systému z naměřených přenosových funkcí.

Tato metoda je použitelná pouze pro lineární identifikaci. Často v kombinaci s *chirp* buzením. Výhoda reprezentace dat ve frekvenční oblasti je hustota informace a relativně nízká míra její ztráty oproti časové oblasti, kde mohou být data uložena pouze jako série diskrétních datových bodů [Matlab].

$$g = \frac{a_0 + a_1 s + a_2 s^2 + \dots + a_m s^m}{b_0 + b_1 s + b_2 s^2 + \dots + b_n s^n}$$
(31)

- provedeme měření pro $\omega_1, \ldots, \omega_p$ s odezvou $g(j\omega_1), \ldots, g(j\omega_p)$
- rozšíříme pro $-\omega_1, \ldots, -\omega_p$ s odezvou $g(-j\omega_k) = g(j\omega_k)^*$

$$e = g - \hat{g} \tag{32}$$

$$\hat{e} = \sum_{k=1}^{m} a_k p_k - \hat{g} \sum_{k=1}^{n} b_k p_k , \quad p_k = j\omega^k , \ \hat{e} = \sum_{k=1}^{n} b_k p_k$$
 (33)

minimalizujeme

$$J = \hat{\boldsymbol{E}}^T \hat{\boldsymbol{E}} , \quad \hat{\boldsymbol{E}} = \begin{bmatrix} \hat{e}(\omega_1) \\ \vdots \\ \hat{e}(\omega_N) \end{bmatrix}$$
(34)

10 Popište princip LSCF metody MDOF identifikace mechanického systému z naměřených přenosových funkcí. K čemu slouží stabilizační diagram?

Least Squares Complex Frequency domain estimator

$$G(s) = \frac{B(s)}{A(s)} \tag{35}$$

kde

$$\boldsymbol{B} = \begin{bmatrix} B_{11}(s) & B_{12}(s) & \dots & B_{1N_i}(s) \\ B_{21}(s) & B_{22}(s) & \dots & B_{2N_i}(s) \\ \vdots & \vdots & \ddots & \vdots \\ B_{N_o1}(s) & B_{N_o2}(s) & \dots & B_{N_oN_i}(s) \end{bmatrix}, \quad \boldsymbol{A} = \begin{bmatrix} A_{11}(s) & A_{12}(s) & \dots & A_{1N_i}(s) \\ A_{21}(s) & A_{22}(s) & \dots & A_{2N_i}(s) \\ \vdots & \vdots & \ddots & \vdots \\ A_{N_o1}(s) & A_{N_o2}(s) & \dots & A_{N_oN_i}(s) \end{bmatrix}$$
(36)

a

$$B_{kl} = \sum_{j=0}^{m} b_{kl_j} s^j , \quad A_{kl} = \sum_{j=0}^{n} a_{kl_j} s^j$$
 (37)

Stabilizační diagram slouží k identifikaci fyzikálních pólů, které se nemění při postupném zvyšování řádu modelu.

Obrázek 1: Stabilizační diagram

11 Co je nelineární model Hammersteinova typu a nelineární model Wienerova typu.

Modely skládající se z dynamického lineárního přenosu G(q) a statické nelineární funkce f

Model Hammersteinova typu

Model Weinerova typu

12 Uveďte strukturu nelineární identifikace používající koncept LOLI-MOT.

LOcal LInear MOdels Tree

The main idea is to approximate a generally nonlinear multivariable function describing a dynamic system output with the scalar product of the vector of linear functions of the system inputs and the vector of so-called validity functions.

$$\hat{y} = \sum_{i=1}^{M} \hat{y}_i(\boldsymbol{x}) \phi_i(\boldsymbol{z})$$
(38)

kde \hat{y}_i jsou lokální lineární modely

$$\hat{y}_i = w_{i0} + w_{i1}x_1 + w_{i2}x_2 + \dots + w_{in}x_n \tag{39}$$

a $\phi_i(u)$ jejich platnostní funkce, formulovány jako normalizované ortogonální Gaussovské rozdělení, které splňují

$$\sum_{i=1}^{n} \phi_i(u) = 1 , \quad \phi_i(u) = \frac{\mu_i(u)}{\sum_{i=1}^{n} \mu_i(u)} , \quad \mu_i = \exp\left(-\frac{1}{2} \sum_{j=1}^{M} \frac{(u_j - c_{ij})^2}{\sigma_{ij}^2}\right)$$
 (40)

kde M je počet LLM a c_{ij} a σ_{ij}^2 , která jsou volitelná, jsou popořadě střední hodnota a rozptyl i-tého rozdělení pro j-tý LLM. Vektory zobecněných vstupů, neboli regresorů, \boldsymbol{x} a \boldsymbol{z} obecně obsahují okamžité vstupy systému $u_j(k)$, minulé vstupy systému $u_j(k-r)$ a minulé výstupy systému y(k-s), kde r a s jsou horizonty závislosti na vstupech a výstupech, popořadě. \boldsymbol{z} je nazýván vektor premis (premises) a \boldsymbol{x} vektor konsekventů (consequents).

- \bullet Vnitřní cyklus: výpočet koeficientů w_i LLM při daném rozložení platnostních funkcí (exaktní LSQ)
- Vnější cyklus: hledání vhodného "rozdělení" oblasti (heuristika)

13 Uveďte postup identifikace nelineárního diskrétního dynamického modelu LOLIMOT typu NARX.

LOLIMOT typu NARX (Nonlinear Auto Regressive with Exogenous inputs) se liší od modelu v otázce 12 pouze ve tvaru lokálních modelů, který lze obecně zapsat jako

$$\hat{y}_k = f(u_k, u_{k-1}, \dots, y_{k-1}, y_{k-2}, \dots) \tag{41}$$

a způsobu jejich identifikace.

14 Vysvětlete pojmy testování a trénování identifikovaného modelu.

Trénování

Při trénování jsou parametry identifikovaného modelu upravovány tak, aby chování systému co nejvíce odpovídalo $trénovacím\ datům$.

Testování

Při testování porovnáváme chování identifikovaného modelu k nové sadě testovacích dat, abychom ověřili, že nedošlo k přetrénovaní modelu, tzn. přizpůsobení ke konkrétním trénovacím datům, nikoliv obecnému chování.

15 Vysvětlete rozdíl mezi simulačním a predikčním trénováním a použitím LOLIMOT modelu a souvislost těchto pojmů s NARX a NOE modely.

Simulační trénování

Identifikovaný model je odpojený od reálného systému a pracuje pouze s jeho vstupy, kde chyba výstupu se kumuluje.

Odpovídá schématu NOE (Nonlinear Output Error)

$$\hat{y}_k = f(u_k, u_{k-1}, \dots, \hat{y}_{k-1}, \hat{y}_{k-2}, \dots)$$
(42)

Predikční trénování

Model je připojen k výstupům modelu realného systému

Odpovídá schématu NARX

$$\hat{y}_k = f(u_k, u_{k-1}, \dots, y_{k-1}, y_{k-2}, \dots) \tag{43}$$

- 16 Uveď te příklad identifikace ad-hoc sestaveného dynamického modelu soustavy s pomocí obecných optimalizačních metod.
- 17 Uveďte základní postup identifikace fyzikálního modelu získaného např. z MKP po transformaci do redukovaného modálního tvaru. V čem tato redukce usnadní postup identifikace ?

Na základě naměřených/navržených vlastností materiálu vytvořím mkp model ve tvaru

$$M\ddot{x} + C\dot{x} + Kx = F$$

Ten následně transformuju do modálních souřadnic

$$I\ddot{q} + \Gamma\dot{q} + \Omega^2 q = V^T F$$
, $\Omega = V^T K V$, $\Gamma = V^T B V$

a oříznu mimodiagonální prvky transformované matice tlumení Γ , přičemž prvky na diagonále lze vyjádřit jako $\beta_{ii} = 2b_{r_i}\Omega_i$. Dále můžu provést redukci, ostraněním tvarů odpovídajících vyšším frekvencím systému.

Vyslédkem je model závislý pouze na parametrech ω_i , b_{r_i} pro každý zanechaný tvar, které můžu dále optimalizovat. Oproti black-box identifikaci nehrozí vznik umělých artefaktů.

18 Uveď te příklad využití fenomenologického identifikovaného modelu pro simulaci.

Fenomenologicky například inentifikujeme tření nebo nelineární chování tlumiče.

19 Popište použití identifikovaného modelu soustavy v regulátoru s prediktivním řízením. Jak souvisí s pojmy NARX a NOE modelů?

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{u}_k \tag{44}$$

$$y_k = Cx_k \tag{45}$$

$$\hat{\boldsymbol{x}}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{u}_k \tag{46}$$

$$\hat{\boldsymbol{x}}_{k+2} = \boldsymbol{A}^2 \boldsymbol{x}_k + \boldsymbol{A} \boldsymbol{B} \boldsymbol{u}_k + \boldsymbol{B} \boldsymbol{u}_{k+1} \tag{47}$$

$$\hat{x}_{k+n} = A^n x_k + \sum_{i=1}^n A^{n-i} B u_{k+i-1}$$
(48)

$$\hat{y}_{k+n} = CA^n x_k + \sum_{i=1}^n CA^{n-i} B u_{k+i}$$
(49)

$$\hat{Y} = f + GU \tag{50}$$

$$\hat{\mathbf{Y}} = \begin{bmatrix} \hat{\mathbf{y}}_{k+1} \\ \vdots \\ \hat{\mathbf{y}}_{k+N} \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^N \end{bmatrix} \mathbf{x}_k, \quad \mathbf{G} = \begin{bmatrix} \mathbf{C}\mathbf{B} & \mathbf{0} \\ \vdots & \ddots & \\ \mathbf{C}\mathbf{A}^{N-1}\mathbf{B} & \dots & \mathbf{C}\mathbf{B} \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} \mathbf{u}_k \\ \vdots \\ \mathbf{u}_{k+N-1} \end{bmatrix}$$
(51)

$$J_k = (\hat{Y} - W)^T Q (\hat{Y} - W) + U^T P U$$
(52)