Last class

- Renewal process
- Elementary renewal theorem
- Key renewal theorem
- Alternating renewal process
- Delayed renewal process
- Renewal reward process
- Symmetric random walk

References: Chapter 3, Stochastic Processes, 2nd edition, 1995, by Sheldon M. Ross

Stochastic ProcessesLecture 4: Markov Chains

Chao Qian (钱超)

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn

Homepage: http://www.lamda.nju.edu.cn/qianc/

A stochastic process $\{X(t), t \in T\}$ with state space S is said to be a **Markov chain** if $\forall t_1 < t_2 < \dots < t_n < t, x, x_i \in S$

$$P(X(t) = x \mid X(t_1) = x_1, ..., X(t_n) = x_n)$$

$$= P(X(t) = x \mid X(t_n) = x_n)$$
Markovian property

Here, we consider discrete-time discrete-state homogeneous Markov chains

$$\{X_n, n = 0,1,2,...\}$$
 $S = \{0,1,2,...\}$, unless otherwise mentioned

$$\forall t_0 < t, x_0, x \in S: P(X(t) = x \mid X(t_0) = x_0)$$

is independent of t_0 , but depends only on $t-t_0$

Example [General Random Walk]: Let X_i , $i \ge 1$ be iid with

$$P(X_i = j) = a_j, \quad j \in \{0, \pm 1, \pm 2, ...\}$$

If we let

$$S_0 = 0 \qquad S_n = \sum_{i=1}^n X_i$$

then $\{S_n, n \ge 0\}$ is a *Markov chain* for which

$$P_{ij} = a_{j-i}$$

One-step transition probability: $P_{ij} = P(S_{n+1} = j \mid S_n = i)$

Example [Simple Random Walk]: The random walk $\{S_n, n \ge 0\}$, where $S_n = \sum_{i=1}^n X_i$, is said to be a *simple random walk* if for some p, 0 ,

$$P(X_i = 1) = p$$
 $P(X_i = -1) = q = 1 - p$

The absolute value $\{|S_n|, n \ge 0\}$ of the simple random walk is a *Markov chain*.

$$P(|S_{n+1}| = i + 1 \mid |S_n| = i, |S_{n-1}| = i_{n-1}, ..., |S_1| = i_1)$$
?

Lemma: If $\{S_n, n \ge 0\}$ is a simple random walk, then $\forall i > 0$

$$P(S_n = i \mid |S_n| = i, |S_{n-1}| = i_{n-1}, \dots, |S_1| = i_1) = \frac{p^i}{p^i + q^i}$$

Proof: Let $i_0 = 0$, and define $j = \max\{k: i_k = 0, 0 \le k \le n\}$

$$\Rightarrow P(S_n = i \mid |S_n| = i, |S_{n-1}| = i_{n-1}, ..., |S_1| = i_1)$$

$$= P(S_n = i \mid |S_n| = i, |S_{n-1}| = i_{n-1}, ..., |S_j| = 0)$$

Now there are two possible cases for $\left|S_{j+1}\right|=i_{j+1},...,\left|S_{n-1}\right|=i_{n-1},\left|S_{n}\right|=i$

Case 1: $S_n = i$, then $S_{n-1} = i_{n-1}, \dots, S_{j+1} = i_{j+1}$ and has probability

$$p^{\frac{n-j}{2} + \frac{i}{2}} \cdot q^{\frac{n-j}{2} - \frac{i}{2}}$$
 $(\frac{n-j}{2} + \frac{i}{2} \text{ take the value of } 1, \frac{n-j}{2} - \frac{i}{2} \text{ take the value of } -1)$

Case 2: $S_n = -i$, then $S_{n-1} = -i_{n-1}, ..., S_{j+1} = -i_{j+1}$ and has probability $p^{\frac{n-j}{2} - \frac{i}{2}} \cdot q^{\frac{n-j}{2} + \frac{i}{2}} \cdot (\frac{n-j}{2} - \frac{i}{2} \text{ take the value of 1, } \frac{n-j}{2} + \frac{i}{2} \text{ take the value of -1})$

$$\Rightarrow \star = \frac{p^{\frac{n-j}{2} + \frac{i}{2}} \cdot q^{\frac{n-j}{2} - \frac{i}{2}}}{p^{\frac{n-j}{2} + \frac{i}{2}} \cdot q^{\frac{n-j}{2} - \frac{i}{2}} + p^{\frac{n-j}{2} - \frac{i}{2}} \cdot q^{\frac{n-j}{2} + \frac{i}{2}}} = \frac{p^i}{p^i + q^i}$$

$$P(|S_{n+1}| = i + 1 \mid |S_n| = i, |S_{n-1}| = i_{n-1}, ..., |S_1| = i_1)$$

$$= P(|S_{n+1}| = i + 1 \mid S_n = i) \cdot \frac{p^i}{p^i + q^i}$$
Law of total $+P(|S_{n+1}| = i + 1 \mid S_n = -i) \cdot \frac{q^i}{p^i + q^i}$
probability $= \frac{p^{i+1} + q^{i+1}}{p^i + q^i}$

Hence, $\{|S_n|, n \ge 0\}$ is a Markov chain with transition probabilities

$$P_{i,i+1} = \frac{p^{i+1} + q^{i+1}}{p^i + q^i} = 1 - P_{i,i-1}, \quad i > 0$$

$$P_{0,1} = 1$$

Chapman-Kolmogorov equations

For a Markov chain $\{X_n, n = 0,1,2,...\}$,

- one-step transition probability: $P_{ij} = P(X_{m+1} = j \mid X_m = i)$
- *n*-step transition probabilities:

$$P_{ij}^n = P(X_{m+n} = j \mid X_m = i)$$
 How to compute it?

Chapman-Kolmogorov equations:

$$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m \quad \text{for all } n, m \ge 0, i, j$$

Chapman-Kolmogorov equations

Chapman-Kolmogorov equations:

$$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^{n} P_{kj}^{m} \quad \text{for all } n, m \ge 0, i, j$$

$$\mathbf{Proof:} \quad P_{ij}^{n+m} = P(X_{n+m} = j \mid X_0 = i) \quad \text{(Homogeneous by default)}$$

Law of total probability
$$= \sum_{k=0}^{\infty} P(X_{n+m} = j, X_n = k \mid X_0 = i)$$

$$= \sum_{k=0}^{\infty} P(X_{n+m} = j \mid X_n = k, X_0 = i) P(X_n = k \mid X_0 = i)$$

$$= \sum_{k=0}^{\infty} P_{kj}^m P_{ik}^n$$

Chapman-Kolmogorov equations

• *n*-step transition probabilities:

$$P_{ij}^n = P(X_{m+n} = j \mid X_m = i)$$
 How to compute it?

Chapman-Kolmogorov equations:

$$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m \quad \text{for all } n, m \ge 0, i, j$$

Solution: Let $P^{(n)}$ denote the matrix of n-step transition probability P_{ij}^n , then by Chapman-Kolmogorov equations:

$$P^{(m+n)} = P^{(n)} \cdot P^{(m)}$$

Hence,

$$P^{(n)} = P \cdot P^{(n-1)} = P \cdot P \cdot P^{(n-2)} = \dots = P^n$$

Communication

- State *j* is said to be **accessible** from state *i* if for some $n \ge 0, P_{i,i}^n > 0$
- Two states i and j accessible to each other are said to **communicate**, denoted as $i \leftrightarrow j$

Proposition: Communication is an equivalence relation, i.e.,

- $\checkmark i \leftrightarrow i$ (Follows trivially from definition)
- ✓ If $i \leftrightarrow j$, then $j \leftrightarrow i$ (Follows trivially from definition)
- ✓ If $i \leftrightarrow j$ and $j \leftrightarrow k$, then $i \leftrightarrow k$ Similarly, we can show $k \to i$ $\exists m$, s.t. $P_{ij}^m > 0$, $\exists n$, s.t. $P_{jk}^n > 0$, $P_{ik}^{m+n} = \sum_{r=0}^{\infty} P_{ir}^m P_{rk}^n \ge P_{ij}^m P_{jk}^n > 0 \implies i \to k$

$$\exists m, \text{ s.t. } P_{ij}^m > 0, \exists n, \text{ s.t. } P_{jk}^n > 0, P_{ik}^{m+n} = \sum_{r=0}^{\infty} P_{ir}^m P_{rk}^n \ge P_{ij}^m P_{jk}^n > 0 \implies i \to k$$

Irreducible

Two states that communicate are said to be in the same class

the equivalence relation of communication

any two classes are either disjoint or identical

A Markov chain is irreducible if there is only one class

All states communicate with each other

Period

 A state j has period d if d is the greatest common divisor of the number of transitions by which j can be reached, starting from j

$$d(j) = \gcd\{n > 0: P_{jj}^n > 0\}$$
period of *j*

- If $P_{ij}^n = 0$ for all n > 0, then $d(j) = \infty$
- A state with period 1 is said to be aperiodic

Period

Proposition: If $i \leftrightarrow j$, then d(i) = d(j)

Proof: $i \leftrightarrow j \Rightarrow P_{ij}^m P_{ji}^n > 0$ for some m and nSuppose $P_{ii}^s > 0$, then $P_{jj}^{n+m} \geq P_{ji}^n P_{ij}^m > 0$ $P_{jj}^{n+s+m} \geq P_{ji}^n P_{ii}^s P_{ij}^m > 0$ A(j) divides s d(j) divides s

> So, if $P_{ii}^s > 0$, then d(j) divides s. $P_{ii}^{d(i)} > 0$ is obvious, so d(j) divides d(i). A similar argument yields that d(i) divides d(j). $\Rightarrow d(i) = d(j)$

For any states i and j, define f_{ij}^n to be the probability that, starting in i, the first transition into j occurs at time n

$$f_{ij}^{0} = 0$$

 $f_{ij}^{n} = P(X_n = j, X_k \neq j, k = 1, 2, ..., n - 1 \mid X_0 = i)$

Let f_{ij} denote the probability of ever making a transition into state j, given that the process starts in i

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$$

State j is said to be **recurrent** if $f_{jj} = 1$, and **transient** otherwise

Proposition: State *j* is recurrent if and only if $\sum P_{jj}^n = \infty$ **Proof:** *j* is recurrent \Rightarrow with probability 1, return to *j* Markov property \Rightarrow once returning to j, the process restarts So, with probability 1, the number of visits to j is ∞ \Rightarrow *E*[number of visits to $j \mid X_0 = j$] = ∞ *j* is transient \Rightarrow the number of visits to *j* is geometric with mean $\frac{1}{1-f_{ij}}$ Thus, *j* is recurrent if and only if $E[number\ of\ visits\ to\ j\ |\ X_0=j]=\infty$ Let $I_n = \begin{cases} 1 & \text{if } X_n = j \\ 0 & \text{otherwise} \end{cases}$ $\Longrightarrow E[number\ of\ visits\ to\ j\ |\ X_0=j]=E[\sum_{n=0}^{\infty}I_n|X_0=j]$

 $=\sum_{n=0}^{\infty} E[I_n|X_0=j] = \sum_{n=0}^{\infty} P_{ij}^n$

Corollary: If *i* is recurrent and $i \leftrightarrow j$, then *j* is recurrent

Proof:
$$i \leftrightarrow j \Rightarrow \exists m, n \text{ such that } P_{ij}^n > 0, P_{ji}^m > 0$$

$$\forall s > 0, P_{jj}^{m+n+s} \geq P_{ji}^m P_{ii}^s P_{ij}^n$$

$$\Rightarrow \sum_{s=1}^{\infty} P_{jj}^{m+n+s} \geq P_{ji}^m P_{ij}^n \sum_{s=1}^{\infty} P_{ii}^s = \infty$$

$$\Rightarrow \sum_{s=1}^{\infty} P_{jj}^s = \infty \Rightarrow j \text{ is recurrent}$$
By Proposition on the previous page

Example [Simple Random Walk]: The random walk $\{S_n, n \geq 1\}$ 0}, where $S_n = \sum_{i=1}^n X_i$, is said to be a *simple random walk* if for some p, 0 ,

$$P(X_i = 1) = p$$
 $P(X_i = -1) = q = 1 - p$

Which states are transient? Which are recurrent?

Solution:

All states communicates ⇒ they are either all transient or all recurrent

Only need to consider state 0 i.e., if $\sum_{n=1}^{\infty} P_{00}^n$ is finite or not

$$P_{00}^{2n+1} = 0, n = 0,1,2,...$$

$$P_{00}^{2n} = C_{2n}^{n} p^{n} (1-p)^{n} = \frac{(2n)!}{(n!)^{2}} p^{n} (1-p)^{n}, n = 1,2,...$$
Stirling's approximation: $n! \sim n^{n+1/2} e^{-n} \sqrt{2\pi} \Rightarrow P_{00}^{2n} \sim \frac{(4p(1-p))^{n}}{\sqrt{\pi n}}$ $\lim_{n \to \infty} \frac{a_{n}}{b_{n}} = 1$

$$\sum_{n=1}^{\infty} \frac{(4p(1-p))^{n}}{\sqrt{\pi n}} \left\{ p = \frac{1}{2}, 4p(1-p) = 1 \Rightarrow \sum_{n=1}^{\infty} P_{00}^{n} = \infty \Rightarrow \text{ recurrent} \right.$$

$$p \in \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right), 4p(1-p) < 1 \Rightarrow \sum_{n=1}^{\infty} P_{00}^{n} < \infty \Rightarrow \text{ transient}$$

$$\sum_{n=1}^{\infty} \frac{(4p(1-p))}{\sqrt{\pi n}} \begin{cases} p = \frac{1}{2}, 4p(1-p) = 1 \Rightarrow \sum_{n=1}^{\infty} P_{00}^{n} = \infty \Rightarrow \text{ recurrent} \\ p \in \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right), 4p(1-p) < 1 \Rightarrow \sum_{n=1}^{\infty} P_{00}^{n} < \infty \Rightarrow \text{ transien} \end{cases}$$

Corollary: If *j* is recurrent and $i \leftrightarrow j$, then $f_{ij} = 1$

Proof:
$$i \leftrightarrow j \Rightarrow \exists n, P_{ij}^n > 0$$

 $i \leftrightarrow j, j$ is recurrent $\Rightarrow i$ is recurrent

Suppose $X_0 = i$, let T_1 denote the next time we enter i (T_1 is finite by Corollary)

$$X_0$$
 X_n X_{T_1} $X_n = j$ with probability P_{ij}^n

The number of above process needed to access state j is a geometric random variable with mean $1/P_{ij}^n$, and is thus finite with probability 1

i is recurrent \Rightarrow the number of above process is infinite $\implies f_{ij} = 1$

Positive and Null Recurrent

Let μ_{jj} denote the expected number of transitions needed to return to state j

$$\mu_{jj} = \begin{cases} \infty & \text{if } j \text{ is transient} \\ \sum_{n=1}^{\infty} n f_{jj}^{n} & \text{if } j \text{ is recurrent} \end{cases}$$

If state *j* is recurrent, then we say that it is **positive recurrent** if $\mu_{jj} < \infty$ and **null recurrent** if $\mu_{jj} = \infty$

Limit theorems

Let $N_j(t)$ denote the number of transitions into j by time t

By interpreting transitions into state *j* as being renewals,

Theorem: If $i \leftrightarrow j$, then

$$\checkmark P\left(\lim_{t\to\infty} \frac{N_j(t)}{t} = \frac{1}{\mu_{jj}} \mid X_0 = i\right) = 1 \text{ (With probability 1, } \frac{N_D(t)}{t} \to \frac{1}{\mu} \text{ as } t \to \infty)$$

$$\checkmark \lim_{n\to\infty} \frac{\sum_{k=1}^n P_{ij}^k}{n} = \frac{1}{\mu_{jj}}$$

$$(\frac{m_D(t)}{t} \to \frac{1}{\mu} \text{ as } t \to \infty, m_D(t) = E\left[\sum_{k=1}^t I_k\right] = \sum_{k=1}^t P_{ij}^k)$$

✓ If *j* is aperiodic, then
$$\lim_{n\to\infty} P_{ij}^n = \frac{1}{\mu_{ij}}$$
 (Blackwell's Theorem)

✓ If *j* has period *d*, then
$$\lim_{n\to\infty} P_{jj}^{nd} = \frac{d}{\mu_{jj}}$$
 (Blackwell's Theorem)

Delayed renewal process

Properties of delayed renewal process:

$$\mu = \int_0^\infty x dF(x)$$

- With probability 1, $\frac{N_D(t)}{t} \to \frac{1}{u}$ as $t \to \infty$
- $\frac{m_D(t)}{t} \to \frac{1}{u}$ as $t \to \infty$ Elementary Renewal Theorem
- If F is not lattice, then $m_D(t+a) m_D(t) \to a/\mu$ as $t \to \infty$
- If *F* and *G* are lattice with period *d*, then Blackwell's Theorem $E[\text{\#renewals at } nd] \to d/\mu \quad \text{as } n \to \infty$
- If F is not lattice, $\mu < \infty$ and h(t) is directly Riemann integrable,

$$\int_0^\infty h(t-x)dm_D(x) = \frac{1}{\mu} \int_0^\infty h(t)dt$$
 Key Renewal Theorem

Positive and Null Recurrent

If state j is recurrent, then we say that it is **positive recurrent** if $\mu_{jj} < \infty$ and **null recurrent** if $\mu_{jj} = \infty$

$$\int \pi_j = \lim_{n \to \infty} P_{jj}^{nd(j)} = \frac{d(j)}{\mu_{jj}}$$

If state j is recurrent, then we say that it is **positive recurrent** if $\pi_j > 0$ and **null recurrent** if $\pi_j = 0$

Positive and Null Recurrent

Proposition: If *i* is positive (null) recurrent and $i \leftrightarrow j$, then *j* is positive (null) recurrent

Proof: Case 1: positive recurrent
$$i \leftrightarrow j \Rightarrow d(i) = d(j) = d \ge 1$$

$$\pi_{i} = \lim_{n \to \infty} P_{ii}^{nd} = \frac{d}{\mu_{ii}} > 0$$

$$i \leftrightarrow j \Rightarrow \exists s, t \ge 0, P_{ij}^{s} > 0, P_{ji}^{t} > 0$$

$$P_{jj}^{t+s+md} \ge P_{ji}^{t} P_{ii}^{md} P_{ij}^{s}$$

$$\lim_{m \to \infty} P_{jj}^{t+s+md} \ge P_{ji}^{t} P_{ij}^{s} \cdot \lim_{m \to \infty} P_{ii}^{md} = \frac{d}{\mu_{ii}} \cdot P_{ji}^{t} P_{ij}^{s} > 0$$

$$P_{jj}^{t+s} \ge P_{ji}^{t} P_{ij}^{s} > 0 \Rightarrow d \text{ divides } t + s$$

$$\pi_{j} = \lim_{m \to \infty} P_{jj}^{t+s+md} > 0 \Rightarrow j \text{ is positive recurrent}$$

For the null recurrent case, leave as the exercise

Definition: A probability distribution $\{\pi_j, j \geq 0\}$ is said to be stationary for the Markov chain if

$$\forall j \colon \pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}$$

If the initial distribution, i.e., the distribution of X_0 , is a stationary distribution, X_n will have the same distribution for all n.

Proof:

$$P(X_{1} = j) = \sum_{i=0}^{\infty} P(X_{1} = j \mid X_{0} = i) P(X_{0} = i) = \sum_{i=0}^{\infty} P_{ij} \pi_{i} = \pi_{j}$$

$$P(X_{n} = j) = \sum_{i=0}^{\infty} P(X_{n} = j \mid X_{n-1} = i) P(X_{n-1} = i) = \sum_{i=0}^{\infty} P_{ij} \pi_{i} = \pi_{j}$$
Definition of stationary

Theorem: An irreducible aperiodic Markov chain belongs to one of the following two classes

- Either the states are all transient or all null recurrent. In this case, $P_{ij}^n \to 0$ as $n \to \infty$ for all i, j and there exists no stationary distribution
- Or else, all states are positive recurrent, that is,

$$\pi_j = \lim_{n \to \infty} P_{ij}^n > 0$$

In this case, $\{\pi_j, j = 0,1,2,...,\}$ is a stationary distribution and there exists no other stationary distribution

Proof:

Proof for the first class:

transient or null recurrent $\Rightarrow \mu_{jj} = \infty$. By Limit Theorem, $\lim_{n \to \infty} P_{ij}^n = \frac{1}{\mu_{ij}} = 0$

Suppose there exists a stationary distribution P_i , then

$$P_{j} = P(X_{n} = j) = \sum_{i=0}^{\infty} P(X_{n} = j | X_{0} = i) P(X_{0} = i) = \sum_{i=0}^{\infty} P_{ij}^{n} P_{i}$$

= $\sum_{i=0}^{M} P_{ij}^{n} P_{i} + \sum_{i=M+1}^{\infty} P_{ij}^{n} P_{i} \le \sum_{i=0}^{M} P_{ij}^{n} P_{i} + \sum_{i=M+1}^{\infty} P_{i}$

Let $n \to \infty$, we have $P_j \le \sum_{i=M+1}^{\infty} P_i$. Then, let $M \to \infty$, we have $P_j \le 0$, which leads to a contradiction

Proof for the second class:

Note that
$$P_{ij}^{n+1} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj} \ge \sum_{k=0}^{M} P_{ik}^n P_{kj}$$
 for all M

Let
$$n \to \infty$$
, we have $\pi_j \ge \sum_{k=0}^M \pi_k P_{kj}$,

then let
$$M \to \infty$$
, we have $\pi_j \ge \sum_{k=0}^{\infty} \pi_k P_{kj}$

Suppose $\exists j$, such that $\pi_j > \sum_{k=0}^{\infty} \pi_k P_{kj}$, then

$$\sum_{j=0}^{\infty} \pi_j > \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \pi_k P_{kj} = \sum_{k=0}^{\infty} \pi_k \sum_{j=0}^{\infty} P_{kj} = \sum_{k=0}^{\infty} \pi_k,$$

which leads to a contradiction. Thus, $\forall j : \pi_j = \sum_{k=0}^{\infty} \pi_k P_{kj}$

Suppose P_i is a stationary distribution, then

$$P_j = P(X_n = j) = \sum_{i=0}^{\infty} P(X_n = j \mid X_0 = i) P(X_0 = i) = \sum_{i=0}^{\infty} P_{ij}^n P_i$$

- $P_j \ge \sum_{i=0}^M P_{ij}^n P_i$ for all MLet $n \to \infty$, we have $P_j \ge \sum_{i=0}^M \pi_j P_i$, then let $M \to \infty$, we have $P_j \ge \sum_{i=0}^\infty \pi_i P_i = \pi_i$
- $P_j \leq \sum_{i=0}^{M} P_{ij}^n P_i + \sum_{i=M+1}^{\infty} P_i$ for all MLet $n \to \infty$, we have $P_j \leq \sum_{i=0}^{M} \pi_j P_i + \sum_{i=M+1}^{\infty} P_i$, then let $M \to \infty$, we have $P_i \leq \sum_{i=0}^{\infty} \pi_i P_i = \pi_i$

Thus,
$$\forall j: P_i = \pi_i$$

• For an irreducible, positive recurrent and aperiodic Markov chain, $\{\pi_j, j = 0,1,2,...,\}$ is the unique stationary distribution, where

$$\pi_j = \lim_{n \to \infty} P_{ij}^n = \frac{1}{\mu_{jj}}$$

• For an irreducible, positive recurrent and periodic Markov chain (where the period is d), $\{\pi_j = \frac{1}{\mu_{jj}}, j = 0,1,2,...,\}$ is still the unique stationary distribution

$$\lim_{n \to \infty} P_{jj}^{nd} = \frac{d}{\mu_{jj}} = d\pi_j$$

Transitions among classes

Proposition: Let R be a recurrent class of states. If $i \in R$, $j \notin R$, then $P_{ij} = 0$.

Proof: Suppose $P_{ij} > 0$

Then, as i and j do not communicate (since $j \notin R$)

$$\Rightarrow P_{ji}^n = 0, \forall n$$

Hence, if the process starts in state *i*, there is a positive

probability of at least P_{ij} that the process will never return to i

 \Rightarrow contradicts the fact that *i* is recurrent

So
$$P_{ij} = 0$$

Transitions among classes

Proposition: If *j* is recurrent, then the set of probabilities $\{f_{ij}, i \in T\}$ satisfies

$$\forall i \in T: f_{ij} = \sum_{k \in T} P_{ik} f_{kj} + \sum_{k \in R} P_{ik}$$

where *T* denotes the set of all transient states, and *R* denotes the set of states communicating with *j*

Proof:

$$\begin{split} f_{ij} &= P\big(N_j(\infty) > 0 \mid X_0 = i\big) \\ &= \sum_k P\big(N_j(\infty) > 0 \mid X_0 = i, X_1 = k\big) P\big(X_1 = k \mid X_0 = i\big) \\ &= \sum_{k \in T} f_{kj} P_{ik} + \sum_{k \in R} f_{kj} P_{ik} + \sum_{k \notin R, k \notin T} f_{kj} P_{ik} \\ &= \sum_{k \in T} f_{kj} P_{ik} + \sum_{k \in R} P_{ik} \end{split}$$
 & belongs to a recurrent class that is different from R , thus $f_{kj} = 0$

Gambler's ruin problem

Gambler's ruin problem: Consider a gambler who at each play of the game has probability p of winning 1 unit and probability q = 1 - p of losing 1 unit. Assuming successive plays of the game are independent.

What is the probability that, starting with *i* units, the gambler's fortune will reach *N* before reaching 0?

Solution: X_n : the player's fortune at time n $\{X_n, n = 0,1,2,...\}$: a Markov chain with transition probabilities

$$P_{00} = P_{NN} = 1$$
 $P_{i,i+1} = p = 1 - P_{i,i-1}$ $i = 1,2,...,N-1$ {0} $\{1,2,...,N-1\}$ $\{N\}$ recurrent class transient class recurrent class

Gambler's ruin problem

Let $f_i = f_{i,N}$ denote the probability that, starting with $i, 1 \le i \le N$, the fortune will eventually reach N just the desired probability

$$f_{i} = pf_{i+1} + qf_{i-1} \qquad i = 1, 2, ..., N - 1 \Longrightarrow f_{i+1} - f_{i} = \frac{q}{p}(f_{i} - f_{i-1})$$
Then, $f_{2} - f_{1} = \frac{q}{p}(f_{1} - f_{0}) = \frac{q}{p}f_{1}, f_{3} - f_{2} = \frac{q}{p}(f_{2} - f_{1}) = \left(\frac{q}{p}\right)^{2}f_{1}, ...,$

$$f_{i} - f_{i-1} = \frac{q}{p}(f_{i-1} - f_{i-2}) = \left(\frac{q}{p}\right)^{i-1}f_{1}$$
Thus, $f_{i} = f_{1} + f_{1}\left[\left(\frac{q}{p}\right) + \left(\frac{q}{p}\right)^{2} + ... + \left(\frac{q}{p}\right)^{i-1}\right] = \begin{cases} \frac{1 - (q/p)^{i}}{1 - (q/p)}f_{1} & \text{if } \frac{q}{p} \neq 1 \\ if_{1} & \text{if } \frac{q}{p} = 1 \end{cases}$
By $f_{N} = 1$, $f_{i} = \begin{cases} \frac{1 - (q/p)^{i}}{1 - (q/p)^{N}} & \text{if } p \neq \frac{1}{2} \\ \frac{i}{N} & \text{if } p = \frac{1}{2} \end{cases}$

$$f_{i} \to \begin{cases} 1 - (q/p)^{i} & \text{if } p > \frac{1}{2} \\ 0 & \text{if } p \leqslant \frac{1}{2} \end{cases}$$

Gambler's ruin problem

What is the expected number of bets that the gambler, starting at *i*, makes before reaching either 0 or *n*?

Solution: X_i : the winnings on the *j*th bet

B: the number of bets until the fortune reaches either 0 or n

$$B = \min \left\{ m: \sum_{j=1}^{m} X_j = -i \text{ or } \sum_{j=1}^{m} X_j = n - i \right\}$$

B is a stopping time for X_i , then by Wald's equation,

$$E\left[\sum_{j=1}^{B} X_{j}\right] = E\left[X_{j}\right]E\left[B\right] = (2p-1)E\left[B\right]$$

By
$$\sum_{j=1}^{B} X_j = \begin{cases} n-i & \text{with prob.} \frac{1-(q/p)^i}{1-(q/p)^N} & \Longrightarrow & E[B] = \frac{1}{2p-1} \left\{ \frac{n\left[1-(q/p)^i\right]}{1-(q/p)^n} - i \right\} \\ -i & \text{otherwise} & \text{(here we consider } p \neq 1/2) \end{cases}$$

Transitions among transient states

 $T = \{1, 2, ..., t\}$: the set of transient states

How about the probability $(f_{i,j})$ where both i and j are transient? i.e., $i, j \in T$

the probability of ever making a transition into state j given that the chain starts in state i

For $i, j \in T$, $m_{i,j}$: the expected total number of time periods spent in state j given that the chain starts in state i

How to compute $m_{i,j}$?

Transitions among transient states

$$m_{i,j} = \delta(i,j) + \sum_{k} P_{i,k} m_{k,j} = \delta(i,j) + \sum_{k=1}^{t} P_{i,k} m_{k,j}$$

$$\begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$m_{k,j} = 0 \text{ for } k \notin T$$

transition probabilities
$$Q = \begin{bmatrix} P_{11} & \cdots & P_{1t} \\ \vdots & \ddots & \vdots \\ P_{t1} & \cdots & P_{tt} \end{bmatrix}$$
 $M = \begin{bmatrix} m_{11} & \cdots & m_{1t} \\ \vdots & \ddots & \vdots \\ m_{t1} & \cdots & m_{tt} \end{bmatrix}$ transient states

$$M = I + QM \qquad \qquad \square \searrow \qquad M = (I - Q)^{-1}$$

Transitions among transient states

Example: Consider the gambler's ruin problem with p = 0.4 and N = 6. Starting in state 3, determine

- the expected amount of time spent in state 3 $m_{3,3}$
- the expected number of visits to state 2 $m_{3,2}$
- the probability of ever visiting state 4

Leave as the exercise

Branching processes

Branching processes: Consider a population consisting of individuals able to produce offspring of the same kind. Suppose that each individual will, by the end of its lifetime, have produced j new offspring with probability P_j , $j \ge 0$, independently of the number produced by any other individual. Let X_n denote the size of the nth generation. The Markov chain $\{X_n, n \ge 0\}$ is called a branching process

Suppose that
$$X_0 = 1$$

$$\pi_0 = \lim_{n \to \infty} P(X_n = 0)$$

Let π_0 denote the probability that the population ever dies out

$$\pi_0 = P(\text{population dies out})$$

$$= \sum_{j=0}^{\infty} P(\text{population dies out} \mid X_1 = j) P_j = \sum_{j=0}^{\infty} \pi_0^j P_j$$

Branching processes

Theorem: Suppose that $P_0 > 0$ and $P_0 + P_1 < 1$. Then,

- π_0 is the smallest positive number satisfying $\pi_0 = \sum_{j=0}^{\infty} \pi_0^j P_j$
- $\pi_0 = 1$ if and only if $\mu \le 1$, where $\mu = \sum_{j=0}^{\infty} j P_j$ is the mean number of offspring produced by each individual

Proof: Let
$$\pi \geq 0$$
 satisfy $\pi = \sum_{j=0}^{\infty} \pi^{j} P_{j}$, prove $\pi \geq P(X_{n} = 0)$ for all n $\pi = \sum_{j=0}^{\infty} \pi^{j} P_{j} \geq \pi^{0} P_{0} = P_{0} = P(X_{1} = 0)$ Assume that $\pi \geq P(X_{n} = 0)$, then $P(X_{n+1} = 0) = \sum_{j=0}^{\infty} P(X_{n+1} = 0 \mid X_{1} = j) P_{j}$ $= \sum_{j=0}^{\infty} \left(P(X_{n} = 0)\right)^{j} P_{j} \leq \sum_{j=0}^{\infty} \pi^{j} P_{j} = \pi$ Hence, $\pi \geq P(X_{n} = 0)$ for all n Let $n \to \infty \Rightarrow \pi \geq \lim_{n \to \infty} P(X_{n} = 0) = \pi_{0}$

The proof of the second point is left as the exercise

http://www.lamda.nju.edu.cn/qianc/

Stationary Markov chain: An irreducible positive recurrent Markov chain is **stationary** if the initial state is chosen according to the stationary probabilities

The **reversed process** of a stationary Markov chain is also a Markov chain with transition probabilities given by

$$P_{ij}^{*} = \frac{\pi_{j} P_{ji}}{\pi_{i}}$$

$$Proof: P(X_{m} = j \mid X_{m+1} = i, X_{m+2} = i_{2}, ..., X_{m+k} = i_{k})$$

$$= \frac{P(X_{m} = j, X_{m+1} = i, X_{m+2} = i_{2}, ..., X_{m+k} = i_{k})}{P(X_{m+1} = i, X_{m+2} = i_{2}, ..., X_{m+k} = i_{k})}$$

$$= \frac{P(X_{m+2} = i_{2}, ..., X_{m+k} = i_{k} \mid X_{m} = j, X_{m+1} = i) P(X_{m} = j, X_{m+1} = i)}{P(X_{m+2} = i_{2}, ..., X_{m+k} = i_{k} \mid X_{m+1} = i) P(X_{m+1} = i)}$$

$$= \frac{P(X_{m} = j, X_{m+1} = i)}{P(X_{m+1} = i)} = \frac{P(X_{m+1} = i \mid X_{m} = j) P(X_{m} = j)}{P(X_{m+1} = i)} = \frac{\pi_{j} P_{ji}}{\pi_{i}}$$
 Stationary

[Definition] Time-reversible Markov chain: A stationary Markov chain is time-reversible if $\forall i, j$

[Necessary and Sufficient Condition]: A stationary Markov chain is *time-reversible* if and only if, starting in state i, any path back to i has the same probability as the reversed path for all i. That is, $\forall i, i_1, ..., i_k$:

$$P_{ii_1}P_{i_1i_2}\cdots P_{i_{k-1}i_k}P_{i_ki} = P_{ii_k}P_{i_ki_{k-1}}\cdots P_{i_2i_1}P_{i_1i}$$

Proof: [Necessary Condition]

Time-reversible:
$$\pi_i P_{ij} = \pi_j P_{ji}$$

$$P_{ii_{1}}P_{i_{1}i_{2}}\cdots P_{i_{k-1}i_{k}}P_{i_{k}i} = P_{ii_{k}}P_{i_{k}i_{k-1}}\cdots P_{i_{2}i_{1}}P_{i_{1}i}$$

$$\boxed{\pi_{i}}P_{ii_{1}}P_{i_{1}i_{2}}\cdots P_{i_{k-1}i_{k}}P_{i_{k}i}$$

$$= P_{i_{1}i}\pi_{i_{1}}P_{i_{1}i_{2}}\cdots P_{i_{k-1}i_{k}}P_{i_{k}i}$$

$$= P_{i_{1}i}P_{i_{2}i_{1}}\pi_{i_{2}}\cdots P_{i_{k-1}i_{k}}P_{i_{k}i}$$

$$= P_{i_{1}i}P_{i_{2}i_{1}}\cdots P_{i_{k-1}i_{k}}\pi_{i_{k}}P_{i_{k}i}$$

$$= P_{i_{1}i}P_{i_{2}i_{1}}\cdots P_{i_{k-1}i_{k}}P_{i_{i}i_{k}}$$

$$= P_{i_{1}i}P_{i_{2}i_{1}}\cdots P_{i_{k-1}i_{k}}P_{ii_{k}}$$

Eliminate π_i on both sides, finish the proof

[Sufficient Condition] **Proof:**

$$P_{ii_1}P_{i_1i_2}\cdots P_{i_{k-1}i_k}P_{i_ki} = P_{ii_k}P_{i_ki_{k-1}}\cdots P_{i_2i_1}P_{i_1i}$$

Time-reversible: $\pi_i P_{ij} = \pi_i P_{ji}$

$$P_{ii_1}P_{i_1i_2}\cdots P_{i_{k-1}i_k}P_{i_kj}P_{ji} = P_{ij}P_{ji_k}P_{i_ki_{k-1}}\cdots P_{i_2i_1}P_{i_1i}$$

$$\downarrow \quad \text{Summing over all states } i_1, i_2, \dots, i_k$$

$$P_{ij}^{k+1} P_{ji} = P_{ij} P_{ji}^{k+1}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\frac{1}{n} \left(\sum_{k=1}^{n} P_{ij}^{k+1} \right) P_{ji} = \frac{1}{n} \left(\sum_{k=1}^{n} P_{ji}^{k+1} \right) P_{ij}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\lim_{n \to \infty} a_n = a \Rightarrow$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = a$$

Let
$$n \to \infty$$
 $\pi_j P_{ji} = \pi_i P_{ij}$

Note that
$$\lim_{n\to\infty} a_n = a \Rightarrow$$

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n a_k = a$$

Theorem: Consider an irreducible Markov chain with transition probabilities P_{ij} . If one can find nonnegative numbers π_i , $i \ge 0$, summing to unity, and a transition probability matrix $\mathbf{P}^* = [P_{ij}^*]$ such that

$$\pi_i P_{ij} = \pi_j P_{ji}^*$$

then π_i , $i \ge 0$ are the stationary probabilities of the original chain, and P_{ij}^* are the transition probabilities of the reverse chain

Proof: $\sum_{i} \pi_{i} P_{ij} = \sum_{i} \pi_{j} P_{ji}^{*} = \pi_{j} \sum_{i} P_{ji}^{*} = \pi_{j}$ $\Rightarrow \pi_{i}, i \geq 0$ are the stationary probabilities of the original chain $P_{ji}^{*} = \frac{\pi_{i} P_{ij}}{\pi_{j}}$ are the transition probabilities of the reverse chain Leave as the exercise

 π_i , $i \ge 0$ are also the stationary probabilities of the reverse chain

Suppose $X \in \{x_i, i \ge 1\}$ is a discrete random variable with probability distribution $\pi_i = P(X = x_i)$, and h is a function

Problem: How to calculate $E[h(X)] = \sum_i h(x_i)\pi_i$?

Monte Carlo Method: draw samples $X_1, X_2, ..., X_n$ from the probability distribution of X, use $\frac{1}{n} \sum_{i=1}^{n} h(X_i)$ to estimate E[h(X)]

Practical situations: π_i can be calculated, but hard to be sampled

Problem: How to generate a set of independent samples of *X*?

Theorem: If $\{X_n, n \geq 0\}$ is an irreducible Markov chain with stationary distribution π_i , and h is a bounded function over the state space $\{x_i, i \geq 1\}$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} h(X_i) = E[h(X)] = \sum_{i} h(x_i) \pi_i$$

Now we only need to construct an irreducible Markov chain with stationary distribution being the desired probability distribution

Proof: Let $a_{i(n)}$ denote the number of transitions into x_i by time n

$$\frac{1}{n}\sum_{i=1}^{n}h(X_{i}) = \sum_{i}\frac{a_{i(n)}}{n}h(x_{i})$$
With probability 1, $\frac{a_{i(n)}}{n} \to \frac{1}{\mu_{ii}} = \pi_{i}$ as $n \to \infty$

$$\implies \lim_{n \to \infty} \frac{1}{n}\sum_{i=1}^{n}h(X_{i}) = \sum_{i}h(x_{i})\pi_{i}$$
Since there is already a stationary distribution, the MC must be positive recurrent

Theorem: Suppose $\{\pi_i, i \in S\}$ is a probability distribution, there exists a time-reversible Markov chain $\{X_n, n \geq 0\}$ with state space S and stationary distribution π_i

Proof:

Target: construct P such that $\pi_i P_{ij} = \pi_j P_{ji}$

W.l.o.g., we assume $S = \{0,1,...\}$, let Q be the transition probability matrix of an irreducible Markov chain such that

$$\forall i \neq j, Q_{ij} = 0 \Leftrightarrow Q_{ji} = 0$$

Now we construct *P* as follows:

$$Q_{ij} = 0 \quad \Longrightarrow \quad \alpha_{ij} = 1$$

$$Q_{ij} > 0 \quad \Longrightarrow \quad \alpha_{ij} = \min \left\{ \frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1 \right\}$$

$$P_{ii} = Q_{ii} + \sum_{j \neq i} Q_{ij} (1 - \alpha_{ij})$$

$$P_{ij} = Q_{ij}\alpha_{ij}$$

$$P_{ii} = Q_{ii} + \sum_{j \neq i} Q_{ij}(1 - \alpha_{ij})$$

P is a transition probability matrix such that $\forall i \neq j, P_{ij} = 0 \Leftrightarrow P_{ji} = 0$, and the MC w.r.t. *P* is irreducible

Now we examine \Leftrightarrow for $j \neq i$ (the case j = i is trivial) case 1: α_{ij} < 1, then α_{ii} = 1 by the definition of α_{ij} , thus $\pi_i P_{ii} = \pi_i Q_{ii} \alpha_{ii} = \pi_i Q_{ii} = \pi_i Q_{ii} \alpha_{ii} = \pi_i P_{ii}$ case 2: $\alpha_{ij} = 1$, then $\pi_i Q_{ii} \ge \pi_i Q_{ij}$ and $\alpha_{ii} \le 1$, thus

$$\pi_i P_{ij} = \pi_i Q_{ij} = \pi_j Q_{ji} \alpha_{ji} = \pi_j P_{ji}$$

Thus, $\uparrow \uparrow$ holds, which implies

- π_i is the stationary distribution of the MC w.r.t. to P (sum over i)
- the MC w.r.t. to *P* is time-reverse

Metropolis sampling

$$\begin{aligned} Q_{ij} &= 0 & \Longrightarrow & \alpha_{ij} &= 1 \\ Q_{ij} &> 0 & \Longrightarrow & \alpha_{ij} &= \min \left\{ \frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1 \right\} \end{aligned}$$

$$P_{ij} = Q_{ij}\alpha_{ij}$$

$$P_{ii} = Q_{ii} + \sum_{j \neq i} Q_{ij}(1 - \alpha_{ij})$$

Metropolis Sampling:

- 1. X_0 is initialized with any value
- 2. Suppose the current state $X_k = i$

- We need to set a transition probability matrix **Q**
- 3. Sample a random number j from the probability distribution $\{Q_{ij}, j \geq 0\}$
- 4. If $\frac{\pi_j Q_{ji}}{\pi_i Q_{ij}} \ge 1$, then $X_{k+1} = j$ and go to step 2
- 5. Otherwise, sample a random number r from the uniform distribution U(0,1). If $r \leq \frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}$, then $X_{k+1} = j$, otherwise $X_{k+1} = i$. Go to step 2

Suppose $\mathbf{Z} = (Z_1, ..., Z_n)$ is a discrete random variable, and S is the set of all possible values of \mathbf{Z}

Assumption 1: for all $z \in S$,

$$\pi_{\mathbf{z}} = P(\mathbf{Z} = \mathbf{z}) = c \cdot g(\mathbf{z})$$

where c > 0

Assumption 2: for all $1 \le i \le n$, and z_j , $1 \le j \le n$, $j \ne i$, the conditional probability distribution

$$P(Z_i = \cdot | Z_j = z_j \ \forall j \neq i)$$

exists and is known

Set a specific transition probability matrix **Q**

- If x and y are different on at least two dimensions, $Q_{xy} = 0$
- If **x** and **y** are different on only one dimension, denoted as *i*,

$$Q_{xy} = \frac{1}{n} P(Z_i = y_i \mid Z_j = x_j \,\forall j \neq i) = \frac{cg(y)}{nP(Z_j = x_j \,\forall j \neq i)}$$

• If x = y, then

$$Q_{xx} = 1 - \sum_{y \neq x} Q_{xy} = 1 - \frac{1}{n} \sum_{i=1}^{n} \left(1 - P(Z_i = x_i \mid Z_j = x_j \forall j \neq i) \right)$$

$$= \frac{cg(x)}{n} \sum_{i=1}^{n} \frac{1}{P(Z_j = x_j \forall j \neq i)}$$

$$\neq x \neq y: Q_{xy} = 0 \text{ iff } Q_{yx} = 0$$

$$\checkmark \text{ The Markov chain w.r.t.}$$

$$Q \text{ is irreducible}$$

$$=\frac{cg(\mathbf{x})}{n}\sum_{i=1}^{n}\frac{1}{P(Z_{j}=x_{j}\ \forall j\neq i)}$$

$$\checkmark \forall x \neq y : Q_{xy} = 0 \text{ iff } Q_{yx} = 0$$

$$\begin{aligned} Q_{ij} &= 0 & \Longrightarrow & \alpha_{ij} &= 1 \\ Q_{ij} &> 0 & \Longrightarrow & \alpha_{ij} &= \min \left\{ \frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1 \right\} \end{aligned} \qquad P_{ij} &= Q_{ij} \alpha_{ij} \\ P_{ii} &= Q_{ii} + \sum_{j \neq i} Q_{ij} (1 - \alpha_{ij}) \end{aligned}$$

$$P_{ij} = Q_{ij}\alpha_{ij}$$

$$P_{ii} = Q_{ii} + \sum_{j \neq i} Q_{ij}(1 - \alpha_{ij})$$

$$Q_{xy} > 0 \implies \alpha_{xy} = \min\left\{\frac{\pi_y Q_{yx}}{\pi_x Q_{xy}}, 1\right\} = \min\left\{\frac{cg(y) \cdot cg(x)}{cg(x) \cdot cg(y)}, 1\right\} = 1$$

$$\forall x \neq y: P_{xy} = Q_{xy}\alpha_{xy} = Q_{xy}$$

$$P_{xx} = Q_{xx} + \sum_{y \neq x} Q_{xy}(1 - \alpha_{xy}) = Q_{xx}$$

$$P = Q$$

Gibbs Sampling:

- 1. X_0 is initialized with any $x_0 \in S$
- 2. Suppose the current state $X_k = \mathbf{x} = (x_1, ..., x_n) \in S$
- 3. Sample a random number i uniformly from $\{1,2,...,n\}$
- 4. Sample a random value x from the conditional probability distribution

$$P(Z_i = \cdot | Z_j = x_j \ \forall j \neq i)$$

5.
$$X_{k+1} = (x_1, ..., x_{i-1}, x, x_{i+1}, ..., x_n)$$
. Go to step 2

Thus, Gibbs sampling is actually Metropolis sampling with a specific matrix Q, under some assumptions about the desired probability distribution

Consider a stochastic process with states 0,1, ..., which is such that, whenever it enters state $i, i \ge 0$:

- The next state it will enter is state j with probability P_{ij} , $i, j \ge 0$
- Given that the next state to be entered is state j, the time until the transition from i to j occurs has distribution F_{ij}

If we let Z(t) denote the state at time t, then $\{Z(t), t \ge 0\}$ is called a **semi-Markov process**

- ✓ A semi-Markov process does not possess the Markovian property
- ✓ A Markov chain is a semi-Markov process in which

$$F_{ij}(t) = \begin{cases} 0 & t < 1 \\ 1 & t \ge 1 \end{cases}$$

Let X_n denote the nth state visited, then $\{X_n, n \ge 0\}$ with transition probabilities P_{ij} is called the embedded Markov chain of the semi-Markov process

Proposition: If the semi-Markov process is trreducible and if T_{ii} has a nonlattice distribution with finite mean, then

$$P_i = \lim_{t \to \infty} P(Z(t) = i \mid Z(0) = j) = \underbrace{\mu_i}_{\mu_{ij}}, \quad \forall i, j$$

• τ_i : time that the process spends in state i before making a transition

$$\mu_i = E[\tau_i] \qquad P(\tau_i \le t) = \sum_i P_{ij} F_{ij}(t)$$

• T_{ii} : time between successive transitions into state $i \quad \mu_{ii} = E[T_{ii}]$

Proposition: If the semi-Markov process is irreducible and if T_{ii} has a nonlattice distribution with finite mean, then

$$P_i = \lim_{t \to \infty} P(Z(t) = i \mid Z(0) = j) = \frac{\mu_i}{\mu_{ii}}, \quad \forall i, j$$

Proof: A delayed alternating renewal process

Proposition: If the semi-Markov process is irreducible and if T_{ii} has a nonlattice distribution with finite mean, then

$$P_{i} = \lim_{t \to \infty} P(Z(t) = i \mid Z(0) = j) = \frac{\mu_{i}}{\mu_{ii}}, \quad \forall i, j$$

$$\lim_{t \to \infty} P(t) = P_{i} \qquad E[Z_{n}] = E[\tau_{i}] = \mu_{i}$$

$$E[Z_{n}] + E[Y_{n}] = E[T_{ii}] = \mu_{ii}$$

Theorem: If
$$E[Z_n + Y_n] < \infty$$
 and F is nonlattice, then

$$\lim_{t \to \infty} P(t) = P(\text{system is on at time } t) = \frac{E[Z_n]}{E[Z_n] + E[Y_n]}$$

from the part of alternating renewal process in lecture 3

Theorem: If the semi-Markov process is irreducible and not lattice, then

$$\lim_{t \to \infty} P(Z(t) = i, Y(t) > x, S(t) = j \mid Z(0) = k) = \frac{P_{ij} \int_{x}^{\infty} \overline{F}_{ij}(y) dy}{\mu_{ii}}$$

time from *t* until the next transition

state entered at the first transition after *t*

Proof: A delayed alternating renewal process

on: the state is *i*, and will remain *i* for at least the next *x* time units; the next state is *j*

off: otherwise

Proof:

$$\lim_{t \to \infty} P(t) = P(\text{system is on at time } t) = \frac{E[Z_n]}{E[Z_n] + E[Y_n]}$$
?

$$\lim_{t \to \infty} P(Z(t) = i, Y(t) > x, S(t) = j \mid Z(0) = k)$$

$$E[Z_n] + E[Y_n] = E[time\ of\ a\ cycle] = E[T_{ii}] = \mu_{ii}$$

$$E[Z_n] = E[\text{"on" time in a cycle}] = P_{ij}E[\max\{\tau_{ij} - x, 0\}]$$

time to make a transition from i to j, i.e., a random variable having distribution F_{ij}

Proof:

$$\lim_{t \to \infty} P(t) = P(\text{system is on at time } t) = \underbrace{\frac{E[Z_n]}{E[Z_n] + E[Y_n]}}_{Z_n}$$

$$\lim_{t \to \infty} P(Z(t) = i, Y(t) > x, S(t) = j \mid Z(0) = k)$$

$$E[Z_n] + E[Y_n] = E[time\ of\ a\ cycle] = E[T_{ii}] = \mu_{ii}$$

$$E[Z_n] = E["on" time in a cycle] = P_{ij} E[\max \{\tau_{ij} - x, 0\}]$$

Theorem: If the semi-Markov process is irreducible and not lattice, then

$$\lim_{t\to\infty} P(Z(t)=i,Y(t)>x\mid Z(0)=k) = \frac{\int_{x}^{\infty} P(\tau_{i}>y)dy}{\mu_{ii}}$$

 τ_i : time that the process spends in state i before making a transition

$$\sum_{i} \frac{P_{ij} \int_{x}^{\infty} \overline{F}_{ij}(y) dy}{\mu_{ii}} = \frac{\int_{x}^{\infty} \sum_{j} P_{ij} \overline{F}_{ij}(y) dy}{\mu_{ii}}$$

Summary

- Markov chain
- Chapman-Kolmogorov equations and classification of states
- Stationary distribution
- Transitions and gambler's ruin problem
- Branching processes
- Time-reversible Markov chains and MCMC
- Semi-Markov processes

References: Chapter 4, Markov Chains, 2nd edition, 1995, by Sheldon M. Ross