

Simple question, but very difficult to answer:

How far away is each galaxy?

Photo credit: NASA, ESA, and A. Shapley (UCLA)

measure the amount of light at various frequencies.

ML features (6)

calculate redshift, 'z'

'photo-z' = ML estimate of z

calculate
distance and age

Photo credit: NASA, ESA, and A. Shapley (UCLA)

2 features with strongest correlations with Redshift

How do the

Errors in photo-z estimates

Scale with N

(training sample size)

for different ML algorithms?

Photo credit: NASA, ESA, and A. Shapley (UCLA)

Error Metric:

$$\Delta z \equiv \frac{photo_z - true_z}{1 + true_z}$$

2 Statistics of the metric:

$$NMAD = 1.48 \times median(|\Delta z|)$$

OUT10 =
$$\frac{1}{N} \sum_{n=1}^{N} [|\Delta z_n| > 0.1]$$

Tested Algorithms

- 2 **Neural Net** architectures:
 - 2 hidden layers, 10 units each
 - 3 hidden layers, 15 units each

Random Forest Regressor

GPz

GPz

Assume:
$$y = f(\mathbf{x}) + \epsilon$$
 (epsilon = Gaussian noise)

Kernel density estimators (radial basis functions) Calculate: $p(y|f)p(f|\mathbf{X})$ $p(f|y, \mathbf{X})$ $p(y|f) \sim N(f,\sigma^2)$ normalization constant

Results

Errors in Photo_z estimates

Results

NN: Errors in Photo_z estimates

Results

GPz: Errors in Photo_z estimates

Future Work

Tune these algorithms (particularly GPz)

Test other algorithms (e.g. ANNz, TPz)

Explore GPz kernel functions and what they can tell us about galaxy types and distributions.