Jack Spalding-Jamieson (Jack S-J) jacksj@uwaterloo.ca

Graph Drawing 2024

Morphing Planar Graph Drawings via Orthogonal Box Drawings

Joint work with Therese Biedl and Anna Lubiw

Graph Morphing

 $\underline{\mathsf{Morph}}$: Continuously transform between drawings (with time $t \in [0,1]$)

Graph Morphing

 $\underline{\mathsf{Morph}} \text{: } \mathsf{Continuously transform between drawings (with time } t \in [0,1])$

Graph Morphing

 $\underline{\mathsf{Morph}}$: Continuously transform between drawings (with time $t \in [0,1]$)

Linear morph: Linearly interpolate vertex (and other) locations

Goals of morphing

Goal I: Make "nice" morphs.

- **▶** Simple paths of movement.
- **E**lementary steps.
- Few steps.

Goals of morphing

Goal I: Make "nice" morphs.

- Simple paths of movement.
- Elementary steps.
- Few steps.

Goal II: Preserve drawing properties!

Planarity, few bend/straight line edges, orthogonality, drawing on a small grid, etc. Two types:

- Between elementary steps.
- During elementary steps/at all times.

Goals of morphing

Goal I: Make "nice" morphs.

- Simple paths of movement.
- Elementary steps.
- Few steps.

Goal II: Preserve drawing properties!

Planarity, few bend/straight line edges, orthogonality, drawing on a small grid, etc. Two types:

- Between elementary steps.
- During elementary steps/at all times.

Goal III: Algorithmic properties

- Time complexity
- Computational Model

Planarity-Preserving Morphs (preserved at all times)

Planarity-Preserving Morph: At all times t, the "interpolated" drawing is also planar.

Planarity-Preserving Morphs (preserved at all times)

Planarity-Preserving Morph: At all times t, the "interpolated" drawing is also planar.

Non-planarity-preserving morph:

Linear Morphs Sequences

These are explicit intermediate drawings.

Entire morph represented by a finite sequence D_1, D_2, D_3, D_4 .

Can preserve extra properties on these drawings ("between steps").

The Linear Morph Problem

'Compatible' pair of drawings (labelled)

Output:

Planarity-preserving linear morph sequence (list of drawings)

Objectives: Numerous!

Linear Morph Sequences on a Grid

Explicit drawings are on a grid.
Implicit (interpolated) drawings are not.

Open Problem in Morphing

Open:

Input: Straight-line drawings each on an $O(n) \times O(n)$ grid (same embedding of same graph). Output: Linear morph sequence with properties:

- Explicit drawings: Polynomial-sized grid.
- ▶ Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: Polynomial.

Open Problem in Morphing

Open:

Input: Straight-line drawings each on an $O(n) \times O(n)$ grid (same embedding of same graph). Output: Linear morph sequence with properties:

- Explicit drawings: Polynomial-sized grid.
- → Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: Polynomial.

Conjecture: Even stronger properties can be obtained.

Input: Straight-line drawings each on an $O(n) \times O(n)$ grid (same embedding of same graph).

Output: Linear morph sequence with properties:

- **Explicit drawings:** $O(n) \times O(n)$ grid.
- ▶ Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: O(n)

Open Problem in Morphing

Open:

Input: Straight-line drawings each on an $O(n) \times O(n)$ grid (same embedding of same graph). Output: Linear morph sequence with properties:

- Explicit drawings: Polynomial-sized grid.
- ▶ Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: Polynomial.

Conjecture: Even stronger properties can be obtained.

Input: Straight-line drawings each on an $O(n) \times O(n)$ grid (same embedding of same graph).

Output: Linear morph sequence with properties:

- **Explicit drawings:** $O(n) \times O(n)$ grid.
- ▶ Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: O(n)

Various weakenings are known. We present a new one.

Linear Morphs Sequences that Add/Remove Bends

Degenerate bend: Bend that "isn't used" (coincident or 180° angle). Equivalent drawings: Drawings that differ only by degenerate bends.

Previous Results (Abridged)

Input: ('Compatible') pair of drawings

	Graph/Drawing Class	Num linear morphs	Grid- size side- length	Bends per edge	Comput. Model	Time Complexity
Alamdari et al. (2017)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^3)$
Klemz (2021)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^2 \log n)$

Previous Results (Abridged)

Input: ('Compatible') pair of drawings

	Graph/Drawing Class	Num linear morphs	Grid- size side- length	Bends per edge	Comput. Model	Time Complexity
Alamdari et al. (2017)	Straight-line	O(n)	Expo.	0	Powerful	$O(n^3)$
Klemz (2021)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^2 \log n)$
Klemz (2021)	2-connected	O(n)	Expo.	0	Powerful	$O(n^2)$

Previous Results (Abridged)

Input: ('Compatible') pair of drawings

	Graph/Drawing Class	Num linear morphs	Grid- size side- length	Bends per edge	Comput. Model	Time Complexity
Alamdari et al. (2017)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^3)$
Klemz (2021)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^2 \log n)$
Klemz (2021)	2-connected	O(n)	Ехро.	0	Powerful	$O(n^2)$
Lubiw & Petrick (2011)	Straight-line	$O(n^6)$	$O(n^3)$	$O(n^5)$	Word RAM	Polynomial

Previous Results (Abridged)

Input: ('Compatible') pair of drawings

	Graph/Drawing Class	Num linear morphs	Grid- size side- length	Bends per edge	Comput. Model	Time Complexity
Alamdari et al. (2017)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^3)$
Klemz (2021)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^2 \log n)$
Klemz (2021)	2-connected	O(n)	Ехро.	0	Powerful	$O(n^2)$
Lubiw & Petrick (2011)	Straight-line	$O(n^6)$	$O(n^3)$	$O(n^5)$	Word RAM	Polynomial
This work (main result)	Connected	O(n)	O(n)	O(1)	Word RAM	$O(n^2)$
Time work (main result)	Connected	0 (10)	0 (10)	0(1)	77010 10 1171	0 (10)

Previous Results (Abridged)

Input: ('Compatible') pair of drawings

Output: Planarity-preserving linear morph sequence

		Num	Grid-	Bends		
	Graph/Drawing	linear	size	per	Comput.	Time
	Class	morphs	side-	edge	Model	Complexity
			length			
Alamdari et al. (2017)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^3)$
Klemz (2021)	Straight-line	O(n)	Ехро.	0	Powerful	$O(n^2 \log n)$
Klemz (2021)	2-connected	O(n)	Ехро.	0	Powerful	$O(n^2)$
Lubiw & Petrick (2011)	Straight-line	$O(n^6)$	$O(n^3)$	$O(n^5)$	Word RAM	Polynomial
This work (main result)	Connected	O(n)	O(n)	O(1)	Word RAM	$O(n^2)$
Biedl et al. (2013)	Connected Orthogonal	$O(n^2)$	O(n)	O(n)	Word RAM	Polynomial
Van Goethem et al. (2022)	Orthogonal	O(n)	Polynomial	O(1)	Word RAM	Polynomial
This work (main method)	Connected Ortho-Box	O(n)	O(n)	O(1)	Word RAM	$O(n^2)$
O	Ν Δ	D. L.	D. L.	0	Λ	Δ

Open	Many	Poly	Poly	0	Any	Any
Lower Bounds	Planar	O(n)	O(n)	0	Word RAM	$O(n^2)$

Grid size assumes input fits on the same grid.

Above table is not comprehensive.

High-Level Overview

First: Reduce problem to morphing orthogonal box drawings.

High-Level Overview

First: Reduce problem to morphing "orthogonal box drawings".

High-Level Overview

Second: Morph orthogonal box drawings.

Reduction: Admitted Drawings (1)

Orthogonal box drawing

Both

Admitted poly-line drawing

Reduction: Admitted Drawings (2)

Morph of orthogonal box drawings \implies morph of admitted drawings

Computing Box Drawings: Visibility Representations as an Intermediary

A planar straight-line drawing P.

A visibility representation that can be computed from P.

An orthogonal box drawing, and corresponding admitted drawing P', which can both be computed from P.

Computing Box Drawings: Visibility Representations as an Intermediary

A planar straight-line drawing P.

A visibility representation that can be computed from P.

An orthogonal box drawing, and corresponding admitted drawing P', which can both be computed from P.

How do we actually perform a morph?

Morphing from a straight-line to an admitted drawing: Method

Recall: High-Level Overview

Now have orthogonal box drawings, want to morph them.

Phase I

Goal: Reduce to parallel box drawings.

Phase I

Goal: Reduce to parallel box drawings.

Phase I Overview

- ▶ Input: Orthogonal box drawing pair
- Output: Parallel orthogonal box drawing pair (for each edge: same port locations, same sequence of turns)
- Substeps:
 - Phase Ia: Adjust port locations
 - Phase Ib: Initial zig-zag elimination
 - Phase Ic: Twists (plus more interspersed compaction/zig-zag elim)

Phase I

Goal: Reduce to parallel box drawings.

Phase I Overview

- Input: Orthogonal box drawing pair
- Output: Parallel orthogonal box drawing pair (for each edge: same port locations, same sequence of turns)
- Substeps:
 - Phase Ia: Adjust port locations
 - Phase Ib: Initial zig-zag elimination
 - Phase Ic: Twists (plus more interspersed compaction/zig-zag elim)

Phase la

High-level: Move ports. Add bends to do so.

Phase la

High-level: Move ports. Add bends to do so.

Phase la Overview

- Input: Orthogonal box drawing pair
- Output: <u>Port-aligned</u> orthogonal box drawing pair (same relative port locations)

Phase Ib & 1c

Get rid of all (extra) bends.

Phase II

High-level: Use black-box result to morph parallel orthogonal box drawings (i.e., adjust lengths).

Moving Ports around Corners

Phase Ib & 1c

Get rid of all (extra) bends.

Phase Ib Overview

- ▶ Input: Port-aligned orthogonal box drawing pair
- Output: Parallel orthogonal box drawing pair

Spirality

Spirality of the edge uv (oriented u to v): -1.

Difference in Spirality (1)

Difference in spirality of the edge uv (oriented u to v): -2.

Difference in Spirality (1)

Difference in spirality of the edge uv (oriented u to v): -2.

Goal: Reduce this to zero.

Difference in Spirality (2)

Difference in spirality of the edge uv (oriented u to v): 0.

Goal: Reduce this to zero.

Twists (High-Level)

Spirality changes! Net turns are added.

Similar to a result by Biedl et al.: Exists some number/direction of twists for each vertex so that difference in spirality becomes zero everywhere. This number is O(n) for each vertex.

Twists (High-Level)

Spirality changes! Net turns are added.

Similar to a result by Biedl et al.: Exists some number/direction of twists for each vertex so that difference in spirality becomes zero everywhere. This number is O(n) for each vertex.

Key difference/contribution: We use simultaneous twists, so only O(n) operations needed.

Twists (Implementation)

Two steps:

- * "Prepare" drawing (make boxes square, well-spaced out)
- **▶** Twist everything simultaneously

Twists (Implementation)

Two steps:

- * "Prepare" drawing (make boxes square, well-spaced out)
- Twist everything simultaneously

Simplification/Canonical form: Zig-Zags

Simplification/Canonical form: Removing a Single Zig-Zag (1)

Method by Biedl et al.:

This is a unidirectional morph.

Simplification/Canonical form: Removing a Single Zig-Zag (2)

Push each thing over if it lies to the right of the divider.

Simplification/Canonical form: Removing a Single Zig-Zag (2)

Push each thing over if it lies to the right of the divider.

Problem: Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).

Simplification/Canonical form: Removing a Single Zig-Zag (2)

Push each thing over if it lies to the right of the divider.

Problem: Requires a morph for each zig-zag (want O(1) morphs for all zig-zags). Solution/new contribution: O(1) morphs suffice, even on a grid (skipping details).

Phase II

High-level: Use black-box result to morph parallel orthogonal box drawings (i.e., adjust lengths).

Phase II Overview

- ▶ Input: Parallel orthogonal box drawing pair.
- Output: Linear morph sequence.
- Methodology: Appeal to black-box result by Biedl et al.. It requires connectivity.
 - Essentially, add edges to both drawings (and simplify again) until every face is a rectangle.

	Graph/Drawing Class	Num linear morphs	Grid- size side- length	Bends per edge	Comput. Model	Time Complexity
Main result	Connected	O(n)	O(n)	O(1)	Word RAM	$O(n^2)$
This work (main method)	Connected Ortho-Box	O(n)	O(n)	O(1)	Word RAM	$O(n^2)$

Morphing from a straight-line to an admitted drawing: Brainstorming (1)

Have: a planar straight-line drawing P, an orthogonal box drawing D with an admitted drawing P'. Want: Morph from P to P'. Bends need to be added.

P

P'

- Idea 1: Use same y-coordinate
- Problem: Not integer coordinates

Morphing from a straight-line to an admitted drawing: Brainstorming (2)

Have: a planar straight-line drawing P, an orthogonal box drawing D with an admitted drawing P'. Want: Morph from P to P'. Bends need to be added.

- ▶ Idea 1: Use same *u*-coordinate
- Idea 2: Make them coincident with the vertex
- Possible problem: Not a unidirectional morph (complicated movement).
- ♣ Alleviation: Perform the morph on one vertex/edge at a time.

Compressions

Want to be able to bring a drawing to an $O(n) \times O(n)$ grid from an arbitrarily sized grid (where the constant is independent of the initial grid size).

Idea: Sort *x*-coordinates.

This is a unidirectional morph.

Simplification—Removing all Horizontal Zig-Zags (High-level)

Each problem has a different solution:

- Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
 - > Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags.

Simplification—Removing all Horizontal Zig-Zags (High-level)

Each problem has a different solution:

- Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
 - Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags. Two issues with their solution:
 - Uses a large grid.
 - Slow time complexity.

Simplification—Removing all Horizontal Zig-Zags (High-level)

Each problem has a different solution:

- Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
 - Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags. Two issues with their solution:
 - Uses a large grid.
 - Slow time complexity.
- Requires O(n) time for each zig-zag (want O(n) time for all zig-zags).
 - Use circuit layout compaction!

Simplification—Circuit Compaction

Goal: Compress vertical line segments.

Solution by Doenhardt and Lengauer:

Important note:

Last step of Doenhardt and Lengauer's algorithm only needs y-coordinates and trapezoidal graph.

Simplification—Circuit Compaction for Box Drawings

Goal: Compress a box drawing (again).

Side note: Doing this in O(n) time requires connectivity (via an algorithm by Chazelle for trapezoidal maps of simple polygons).

Simplification—Zig-Zag Elimination and Circuit Compaction

Takeaway: The changes to the trapezoidal graph are local to the zig-zag being eliminated.

Simplification—Zig-Zag Elimination and Circuit Compaction

Takeaway: The changes to the trapezoidal graph are local to the zig-zag being eliminated.

Recall: Last step of Doenhardt and Lengauer's algorithm only needs *y*-coordinates and trapezoidal graph.

Simplification—Zig-Zag Elimination and Circuit Compaction

Takeaway: The changes to the trapezoidal graph are local to the zig-zag being eliminated.

Recall: Last step of Doenhardt and Lengauer's algorithm only needs *y*-coordinates and trapezoidal graph.

Idea: Compute only the trapezoidal graph after a sequence of zig-zag eliminations.

Simplification—Zig-Zag Elimination and Circuit Compaction

Takeaway: The changes to the trapezoidal graph are local to the zig-zag being eliminated

Recall: Last step of Doenhardt and Lengauer's algorithm only needs *y*-coordinates and trapezoidal graph.

Idea: Compute only the trapezoidal graph after a sequence of zig-zag eliminations.

Final result: Can remove all horizontal zig-zags in one linear morph, in O(n) time.

Simplification—Eliminating All Zig-Zags

Eliminating all horizontal zig-zags \neq eliminating all zig-zags:

Simplification—Eliminating All Zig-Zags

Eliminating all horizontal zig-zags \neq eliminating all zig-zags:

Eliminating all horizontal (and then vertical) zig-zags <u>does</u> reduce the number of bends per edge (unless there are no zig-zags).

Simplification—Eliminating All Zig-Zags

Eliminating all horizontal zig-zags \neq eliminating all zig-zags:

Eliminating all horizontal (and then vertical) zig-zags <u>does</u> reduce the number of bends per edge (unless there are no zig-zags).

Idea: Since O(1) bends per edge is maintained, only need to do O(1) simultaneous eliminations to eliminate all zig-zags.

Phase I High-Level

