

Logistic Regression

Nguyen Hoang Tran

Announcements

- This lecture is based on:
 - Murphy's book: Chapters 8, 14
 - Ullman's book: Chapter 12

Quick Review

Supervised learning

• Learn a mapping function f from x to y

$$y = f(\mathbf{x})$$

- If $y \in \{1, 2, \dots, C\}$ the problem is called classification
- If $y \in \mathbb{R}$ the problem is called <u>regression</u>

Illustrating Classification Task

Test Set

Nearest Neighbour Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbours to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbours
 - Use class labels of nearest neighbours to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbour

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

K-nearest neighbours of a record x are data points that have the k smallest distance to x

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes' theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximises $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximises $P(A_1, A_2, ..., A_n \mid C) P(C)$
- How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$

• Can estimate $P(A_i | C_j)$ for all A_i and C_j .

• New point is classified to C_j if $P(C_j)$ $\prod P(A_i | C_j)$ is maximal.

How to Estimate Probabilities from Data?

#	Refund	Status	Salary	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Class: $P(C) = N_c/N$
 - e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{c^k}$$

- where $|A_{ik}|$ is number of instances having attribute A_i and belongs to class C_k
- Examples:

$$P(Status=Married|No) = 4/7$$

 $P(Refund=Yes|Yes) = 0$

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

=> Mammals

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS							
		Class=Yes	Class=No					
ACTUAL CLASS	Class=Yes	а	b					
	Class=No	С	d					

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

- Precision is biased towards C(Yes | Yes) & C(Yes | No)
- Recall is biased towards C(Yes | Yes) & C(No | Yes)
- F-measure is biased towards all except C(No | No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

ROC Curve

- I-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(FPR, TPR):

- (0,0): declare everything to be negative class
- (I,I): declare everything
 to be positive class
- (0,1): ideal
- Diagonal line:
- -Random guessing
- –Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
- M_I is better for small FPR
- M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = I
 - Random guess:
 - Area = 0.5

How to construct a ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance $P(+\mid A)$
- Sort the instances according to $P(+ \mid A)$ in decreasing order
- Apply threshold at each unique value of P(+ | A)
- Count the number of TP, FP,
 TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct a ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Classification II

Squared error, 0-1 Loss

$$L(y, \hat{y}) = (y - \hat{y})^2$$
$$L(y, \hat{y}) = I(y \neq \hat{y})$$

Minimise risk, (expected risk, empirical risk)

$$R(\hat{f}) = E_{\mathbf{x},y} L(f(\mathbf{x}), \hat{f}(\mathbf{x}))$$
$$\hat{R}(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(\mathbf{x}_i))$$

Loss for density estimation

- ullet Suppose output is $\hat{p}(y|\mathbf{x})$, truth is $p(y|\mathbf{x})$
- Use KL (Kullback-Leibler) divergence

$$L(p(y|\mathbf{x}), \hat{p}(y|\mathbf{x})) = KL(p(y|\mathbf{x}), \hat{p}(y|\mathbf{x})) = \sum_{y} p(y|\mathbf{x}) \log \frac{p(y|\mathbf{x})}{\hat{p}(y|\mathbf{x})}$$

Risk is expected negative log likelihood

$$R(\hat{p}) = -E_{\mathbf{X}} \sum_{y} p(y|\mathbf{x}) \log \hat{p}(y|\mathbf{x}) = -E_{\mathbf{X},y} \log \hat{p}(y|\mathbf{x})$$

Estimation vs Inference

- Learning as optimisation (frequentist): Given D, choose \hat{f} to approximate f as closely as possible, so as to minimise (future) expected risk
- Usually compute parameter estimate $\hat{\theta}$
- Learning as inference (Bayesian): Given D, compute posterior over functions p(f|D)
- Or posterior over parameters

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

• Decision theory demonstrates that one of the best ways to minimise frequentist risk is to be Bayesian.

Generative vs Discriminative

Generative approach:

$$\bullet \quad \mathsf{Model} \quad p(y, \mathbf{x}) = p(\mathbf{x}|y)p(y)$$

• Model
$$p(y, \mathbf{x}) - p(\mathbf{x}|y)p(y)$$

• Use Bayes' theorem $p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$

- Discriminative approach:
 - Model $p(y|\mathbf{x})$ directly

Naïve Bayes Classifier

Generative model:

$$p(\mathbf{x}, C_k) = p(C_k)p(\mathbf{x}_n|C_k) = \pi \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \Sigma_k)$$

Logistic Regression

Logistic Regression

Discriminative model for binary classification

$$p(y|\mathbf{x}, \mathbf{w}) = \operatorname{Ber}(y|\sigma(\eta)) = \sigma(\eta)^{y} (1 - \sigma(\eta))^{1-y}$$

$$\eta = \mathbf{w}^{T} \mathbf{x}$$

$$\sigma(\eta) \stackrel{\text{def}}{=} \frac{1}{1 + \exp(-\eta)} = \frac{e^{\eta}}{e^{\eta} + 1}$$

Sigmoid or Logistic function

Decision boundary

Logistic Regression in 2D

$$p(y = 1 | \mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

Logistic Regression

• Assumes a parametric form for directly estimating $P(Y \mid X)$. For binary concepts, this is:

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

$$P(Y = 1|X) = 1 - P(Y = 0|X)$$

$$= \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

- Equivalent to a one-layer backpropagation neural net.
- Logistic regression is the source of the sigmoid function used in backpropagation.
- Objective function for training is somewhat different.

Logistic Regression as a Log-Linear Model

 Logistic regression is basically a linear model, which is demonstrated by taking logs.

Assign label
$$Y = 0$$
 iff $1 < \frac{P(Y = 0 \mid X)}{P(Y = 1 \mid X)}$
 $1 > \exp(w_0 + \sum_{i=1}^n w_i X_i)$
 $0 > w_0 + \sum_{i=1}^n w_i X_i$

Also called a maximum entropy model (MaxEnt)
because it can be shown that standard training for logistic
regression gives the distribution with maximum entropy that
is consistent with the training data.

Logistic Regression Training

 Weights are set during training to maximise the conditional data likelihood:

$$W \leftarrow \underset{W}{\longleftarrow} \arg \max \prod_{d \in D} P(Y^d \mid X^d, W)$$

where D is the set of training examples and Y^d and X^d denote, respectively, the values of Y and X for example d.

 Equivalently viewed as maximising the conditional log likelihood (CLL)

$$W \leftarrow \underset{W}{\operatorname{argmax}} \sum_{d \in D} \ln P(Y^d \mid X^d, W)$$

Logistic Regression Training

- Like neural-nets, can use standard gradient descent to find the parameters (weights) that optimise the CLL objective function.
- Many other more advanced training methods are possible to speed up convergence.
 - Conjugate gradient
 - Generalised Iterative Scaling (GIS)
 - Modified Iterative Scaling (MIS)
 - Limited-memory quasi-Newton (L-BFGS)
 - Stochastic gradient descent

Logistic Regression Training

Figure 1: Cost vs. performance of six logistic regression algorithms. The dataset had 300 points in 100 dimensions. "CG" is conjugate gradient (section 4), "Coord" is coordinate-wise Newton, "FixedH" is Fixed-Hessian, and "MIS" is modified iterative scaling. CG also has the lowest actual time in Matlab. See: "A comparison of numerical optimizers for logistic regression" by Thomas Minka, 2003.

Preventing Overfitting in Logistic Regression

 To prevent overfitting, one can use regularisation (a.k.a. smoothing) by penalising large weights by changing the training objective:

$$W \leftarrow \underset{W}{\operatorname{argmax}} \sum_{d \in D} \ln P(Y^d \mid X^d, W) - \frac{\lambda}{2} ||W||^2$$

Where λ is a constant that determines the amount of smoothing

• This can be shown to be equivalent to assuming a Gaussian prior for W with zero mean and a variance related to $1/\lambda$.

Multinomial Logistic Regression

- Logistic regression can be generalised to multi-class problems (where Y has a multinomial distribution).
- Effectively constructs a linear classifier for each category.

Relation Between NB and Logistic Regression

- Naïve Bayes with Gaussian distributions for features (GNB), can be shown to give the same functional form for the conditional distribution P(Y | X).
 - But converse is not true, so Logistic Regression makes a weaker assumption.
- Logistic regression is a **discriminative** rather than generative model, since it models the conditional distribution P(Y | X) and directly attempts to fit the training data for predicting Y from X. Does not specify a full joint distribution.

Relation Between NB and Logistic Regression (continued)

- When conditional independence is violated, logistic regression gives better generalisation if it is given sufficient training data.
- GNB converges to accurate parameter estimates faster $(O(\log n)$ examples for n features) compared to Logistic Regression (O(n) examples).
- Experimentally, GNB is better when training data is scarce, logistic regression is better when it is plentiful.

Summary

- Logistic Regression
- Binary Classification