Brückenkurs – Tag 7 - 2016-10-12

Fortsetzung Fibonacci-Folge

Die Folge $(x^k)_{k \in \mathbb{N}_0}$ konvergiert für |x| < 1 gegen 0.

Beweis Zu betrachten: Abstand x^k zu 0 für große $k \to |x^k|$ Wir müssen $|x^k - 0| = |x|^k$ abschätzen. Ohne

Beschränkung der Allgemeinheit sei $0 \le x < 1$.

Da x < 1, ist $\frac{1}{x} = 1 + y$ für y > 0. Damit ist $\frac{1}{x^n} = (1 + y)^n = 1 + 1 + \binom{n}{2}y^2 + \ldots + \binom{n}{n}y^n \ge 1 + n \cdot y$ Also $x^n \le \frac{1}{1 + n \cdot y} < \frac{1}{n \cdot y}$ Ist also $\varepsilon > 0$ vorgegeben, so wähle $n_0 \ge \frac{1}{\varepsilon y}$.

Für alle $n \ge n_0$ ist dann $|x^n| < \varepsilon_0$

Fibonacci-Satz $\varphi := \frac{1}{2}(1+\sqrt{5}), \overline{\varphi} := \frac{1}{2}(1-\sqrt{5}).$ Dann gilt: $F_n = \frac{1}{\sqrt{5}}(\varphi^n - \overline{\varphi}^n)$

Beweis Es gilt: $\varphi^2 = \varphi + 1$ und $\overline{\varphi}^2 = \overline{\varphi} + 1$, also $X^2 - X - 1 = (X - \varphi)(X - \overline{\varphi})$

Dann Induktion über
$$n$$
:
 $\mathbf{n} = \mathbf{0}$: $F_0 = 0 \stackrel{\checkmark}{=} \frac{1}{\sqrt{5}} (\varphi^0 - \overline{\varphi}^0)$

$$\mathbf{n=1}: F_1 = 1 \stackrel{\checkmark}{=} \frac{1}{\sqrt{5}} (\varphi^1 - \overline{\varphi}^1)$$

$$\mathbf{n, n+1} \rightarrow \mathbf{n+2}:$$

$$n, n+1 \rightarrow n + 2$$

$$F_n + F_{n+1} \stackrel{IV}{=} \frac{1}{\sqrt{5}} (\varphi^n - \overline{\varphi}^n) + (\varphi^{n+1} - \overline{\varphi}^{n+1}) = \frac{1}{\sqrt{5}} (\varphi^n (1 + \varphi) - \overline{\varphi}^n (1 + \overline{\varphi})) = \frac{1}{\sqrt{5}} (\varphi^n \varphi^2 - \overline{\varphi}^n \overline{\varphi}^2) = \frac{1}{\sqrt{5}} (\varphi^{n+2} - \overline{\varphi}^{n+2}) \quad \Box$$

9.4 Heron-Verfahren

Sei
$$a_0 = 1, a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})$$

 $a_0 = 1; a_1 = \frac{3}{2}; a_2 = \frac{17}{12} = 1, 41\overline{6}; a_3 = \frac{577}{408} = 1, 414215...$

Vermutung Die Folge $(a_n)_{n\geq 0}$ konvergiert gegen $\sqrt{2}=1,414213562...$

Beweisskizze Wir zeigen unter der Annahme, dass die Folge konvergiert, dass $a := \lim_{n \to \infty} a_n = \sqrt{2} : a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) = \frac{1}{2} \left((\lim_{n \to \infty} a_n) + \frac{2}{\lim_{n \to \infty} a_n} \right) = \frac{1}{2} \left(a + \frac{2}{a} \right)$ $\implies 2a^2 = a^+2 \implies a^2 = 2 \stackrel{a>0}{\implies} a = \sqrt{2}$

Aufgabe Finde ein Verfahren zur Berechnung von $\sqrt{13}$.

Unendliche Reihen und Dezimalbrüche 9.5

Sei (a_k) eine Folge. Dann heißt $s_n := \sum_{k=0}^n a_k = a_0 + a_1 + \ldots + a_n$ die n-te Partielsumme zur Folge (a_k) . Der Grenzwert $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{k=0}^n a_k = \sum_{k=0}^\infty a_k = a_0 + a_1 + a_2 + a_3 + \ldots$ heißt die **Reihe** zur

Im Falle, dass der Grenzwert gar nicht existiert, sagen wir, die Reihe divergiere.

Satz Für |x| < 1 gilt: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ ("Geometrische Reihe")

Beispiel
$$x = \frac{1}{2}$$

 $\sum_{n=0}^{\infty} (\frac{1}{2})^n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \stackrel{\text{Satz}}{=} \frac{1}{1-\frac{1}{2}} = 2$

Beweis Schon bekannt:
$$\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$$
.
Damit ist $\sum_{k=0}^{\infty} x^k = \lim_{n \to \infty} \frac{1-x^{n+1}}{1-x} = \frac{1-\lim_{n \to \infty} x^{n+1}}{1-x} = \frac{1-0}{1-x} = \frac{1}{1-x}$

Beispiel $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ ("harmonische Reihe") konvergiert nicht (in \mathbb{R}):

$$\frac{1}{3} + \frac{1}{4} \ge \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
$$\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \ge \frac{4}{8} = \frac{1}{2}$$
$$\frac{1}{9} + \dots + \frac{1}{16} \ge \frac{8}{16} = \frac{1}{2}$$

Wir sehen: Die Folge der Partialsummen ist unbeschränkt.

Warnung $\lim_{k\to\infty} a_k = 0 \stackrel{\text{i. allg.}}{\Rightarrow} \sum_{k=0}^{\infty} a_k$ konvergiert.

Satz $\sum_{k=0}^{\infty} a_k$ konvergiert in $\mathbb{R} \implies \lim_{k \to \infty} a_k = 0$

Beweis Sei $a := \sum_{k=0}^{\infty} a_k$. Sei $\varepsilon > 0$ vorgegeben. Dann existiert ein n_0 , so dass $|\sum_{k=0}^{n-1} a_k - a| < \frac{\varepsilon}{2}$ für alle $n \ge n_0$.

Damit gilt:

$$|a_n| = |\sum_{k=0}^n a_k - \sum_{k=0}^{n-1} a_k| = |(\sum_{k=0}^n a_k - a) - (\sum_{k=0}^{n-1} a_k - a)| \le |\sum_{k=0}^n a_k - a| + |\sum_{k=0}^{n-1} a_k - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 für $n > n_0$.

10 Zahlen als konvergente Reihen

Jede reelle Zahl α ist konvergente Reihe: $\alpha = \sum_{k=0}^{\infty} a_k \cdot 10^{-k}$, wobei $a_0 \in \mathbb{Z}$; $a_k = \{0, \dots, 9\}$ für k > 0.

Beispiel
$$\pi = 3 + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 1 \cdot 10^{-3} + \ldots = 3,141\ldots$$

Warnung 1,00000...=0,99999... Die Dezimaldarstellung ist im Zweifelsfall nicht eindeutig.

Satz Die Reihe α beschreibt genau dann eine rationale Zahl, wenn die Folge der a_k (also die Dezimalbruch-darstellung) periodisch ist.

Beispiel
$$0,142857142857... = 0, \overline{142857}$$
 ist rational $(=\frac{1}{7})$ $0,5=0,5\overline{0}$ ist rational $(=\frac{1}{2})$ $0,123456789101112131415...$ ist irrational (da nicht periodisch)

Beweis \Longrightarrow : Sei $\alpha = \frac{u}{v}$ eine rationale Zahl: $u \in \mathbb{Z}; v \in \mathbb{N}_{>0}$

Bsp: $\frac{3}{7} = 0,\overline{428571}$ (Beispiel mit schriftlicher Division an der Tafel)

Bei der schriftlichen Division tauchen höchstens v viele Reste auf, das heißt die Dezimalbruchdarstellung von α hat ist periodisch mit der Periodelänge höchstens v.

$$\Leftarrow$$
: Sei α periodisch, etwa α = a_0 , $a_1 a_2 \overline{a_3 a_4 a_5}$
Dann ist α = $a + a_1 10^{-1} + a_2 10^{-2} + (100 a_3 + 10 a_4 + a_5) \cdot (10^{-5} + 10^{-8} + 10^{-11} + \dots)^{-1}$

Beispiel
$$0, 121212... = \frac{12}{100} \cdot \frac{100}{99} = \frac{12}{99} = \frac{4}{33}$$

10.0.1 Die Eulersche Zahl

Sei
$$x \in \mathbb{R}$$
. Dann sei $exp(x) := \sum_{n=0}^{\infty} = \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$

Bemerkungen

- In der Analysis wird die Konvergenz für alle x gezeigt.
- Ebenfalls wird dort $exp(x) = e^x$)

Die Zahl $e:=exp(1)=\sum_{n=0}^{\infty}\frac{1}{n!}=1+1+\frac{1}{2}+\frac{1}{6}+\ldots=2,7182818284\ldots$ heißt **eulersche Zahl**.

 \mathbf{Satz} e ist irrational.

$$1 (10^{-5} + 10^{-8} + 10^{-11} + ...) = 10^{-5} (1 + 10^{-3} + 10^{-6} + ...)$$

Beweis Annahme: $e = \frac{a}{b}$; $a, b \in \mathbb{Z}$; b > 0. Sei $m \ge b$ eine ganze Zahl. Dann b|m!.

Also $\alpha := m! (e - \sum_{n=0}^{m} \frac{1}{n!}) = a \frac{m!}{b} - \sum_{n=0}^{m} \frac{m!}{n!} \in \mathbb{Z}.$

Aber:

$$\alpha = \sum_{n=m+1}^{\infty} \frac{m!}{n!} \leq \sum_{n=m+1}^{\infty} \frac{m!}{m! \cdot (m+1)^{n-m}} = \frac{1}{m+1} \cdot \sum_{k=0}^{\infty} \frac{1}{(m+1)^k} = \frac{1}{m+1} \cdot \frac{1}{1-\frac{1}{m+1}} = \frac{1}{m}$$

Widerspruch! $\stackrel{0<\alpha<1}{\Longrightarrow} \alpha$ kann nicht als ganze Zahl geschrieben werden.

11 Abzählbarkeit und Überabzählbarkeit

Sei $f: M \to N$ eine Abbildung².

Definition f heißt

- 1. **injektiv**, falls $\forall x, y \in M : (f(x) = f(y) \Rightarrow x = y)$
- 2. **surjektiv**, falls $\forall z \in N \exists x \in M : f(x) = z$
- 3. **bijektiv**, falls f *injektiv* und *surjektiv* ist.

Definition Zwei Mengen M und N heißen gleichmächtig, falls eine Bijektion $f: M \Rightarrow N$ existiert.

Eine Menge M heißt **abzählbar**, wenn sie gleichmächtig zu \mathbb{N}_0 ist.

Eine unendliche, nicht abzählbare Menge heißt überabzählbar.

Beispiel \mathbb{N}_0 ist abzählbar. $(0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 3, \ldots)$

Beispiel \mathbb{Z} ist abzählbar. $(0 \mapsto 0, 1 \mapsto 1, -1 \mapsto 2, 2 \mapsto 3, -2 \mapsto 4, \ldots)$

Exkurs: Gedankenexperiment – Hilberts Hotel Hotel mit unendlich vielen Zimmern, alle Zimmer sind belegt. Ein Gast kommt hinzu. Kann dieser ein Zimmer bekommen? Ja: Der Portier fordert alle Gäste auf, in das nächste Zimmer zu ziehen.

Beispiel \mathbb{Q} ist abzählbar: $0, \frac{1}{1}, -\frac{1}{1}, \frac{2}{1}, -\frac{2}{1}, \frac{1}{2}, -\frac{1}{2}, \dots$

Satz (Cantor) \mathbb{R} ist überabzählbar.

Beweis Annahme: \mathbb{R} ist abzählbar. Dann gibt es eine Liste aller reeller Zahlen.

$$\alpha^{(0)} = a_0^{(0)}, a_1^{(0)} a_2^{(0)} a_3^{(0)} a_4^{(0)} \dots$$

$$\alpha^{(1)} = a_0^{(1)}, \, a_1^{(1)} \, a_2^{(1)} \, a_3^{(1)} \, a_4^{(1)} \dots$$

$$\alpha^{(2)} = a_0^{(2)}, a_1^{(2)} a_2^{(2)} a_3^{(2)} a_4^{(2)} \dots$$

:

In Dezimaldarstellung ohne Neunerperiode.

Dann betrachte die reelle Zahl $\beta = b_0$, $b_1 b_2 b_3 \dots$, wobei wir die b_i s so wählen, dass $b_i \neq a_i^{(i)}$

Dann taucht β in der Liste gar nicht auf.

Somit Widerspruch!: \mathbb{R} ist überabzählbar.

Dieses Vorgehen heißt Cantorsches Diagonalargument.

 $^{^2}$ Widerspricht nicht, dass ein Element aus N nicht oder mehrfach zugeordnet wird