Apuntes de clase

José Antonio de la Rosa Cubero

Las raíces de la unidad:

$$\mu_n := \{ z \in \mathbb{C}^\times : z^n = 1 \} = \{ \xi_k = \exp\left(\frac{2k\pi i}{n}\right) : 0 \le k \le n - 1 \}$$

cumplen que:

$$\xi_k \xi_t = \xi_{k+t}$$

donde consideramos $k + t \in \mathbb{Z}_n$.

Grupos simétricos

Sea X un conjunto no vacío. Definimos el grupo de permutaciones de X como

$$S(X) := \{\alpha : X \longrightarrow X : \alpha \text{ biyección}\}\$$

con el producto dado por la composición de aplicaciones.

El uno es la identidad en X.

El inverso es el inverso compositivo.

En el caso particular de que $X = [1, n] \cap \mathbb{N}$, denotaremos $S_n := S(X)$ y lo llamaremos el n-ésimo grupo simétrico.

El orden de S_n es:

$$|S_n| = n!$$

La notación matricial de S_n :

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \alpha(1) & \alpha(2) & \cdots & \alpha(n) \end{pmatrix}$$

La forma de multiplicarlas es ver en la matriz izq que elemento te lleva, buscar esa columna en la matriz de y ver qué elemento hay.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Los grupos simétricos no son abelianos (salvo n = 2).

Definición 1. Dos elementos $\alpha, \beta \in S_n$ diremos que son disjuntas si los elementos que mueve una de ellas quedan fijos por la otra. Es decir, si

$$\alpha(x) \neq x \implies \beta(x) = x$$

En consecuencia:

$$\beta(x) \neq x \implies \alpha(x) = x$$

Proposición 1. Si α, β son disjuntos, entonces conmutan:

$$\alpha\beta = \beta\alpha$$

Demostración. Probemos con un x que α no deje fijo. Entonces β sí que lo deja fijo. Aplicamos dos veces α , por inyectividad tenemos que como $\alpha(x) \neq x$:

$$\alpha(\alpha(x)) \neq \alpha(x)$$

Pero por la definición

$$\beta(\alpha(x)) = \alpha(x)$$

Luego $\beta \alpha = \beta = \alpha \beta$.

Intercambiando los papeles tendríamos que $\beta \alpha = \beta = \alpha \beta$.

Tercer caso: $\alpha(x) = x = \beta(x)$, pero entoces es evidente que $\alpha\beta = \beta\alpha$.

Definición 2. Una permutación α diremos que es un ciclo si $\exists x_1, \ldots, x_r$ $(2 \le r \le n)$ tal que

$$\alpha(x_i) = x_{i+1}, i \in \mathbb{Z}_r$$

y el resto de elementos son puntos fijos.

También es posible definir la identidad como un ciclo de longitud 1, pero no lo vamos a hacer.