Ripser

or: the unexpected efficiency of persistent cohomology

Ulrich Bauer

TUM

July 25, 2016

ATMCS7, Torino

Design goals

Goals for previous projects:

- PHAT: fast persistence computation (boundary matrix reduction only)
- DIPHA: distributed persistence computation

Design goals

Goals for previous projects:

- PHAT: fast persistence computation (boundary matrix reduction only)
- DIPHA: distributed persistence computation

Goals for Ripser:

- Use as little memory as possible
- Be reasonable about computation time

Design goals

Goals for previous projects:

- PHAT: fast persistence computation (boundary matrix reduction only)
- DIPHA: distributed persistence computation

Goals for Ripser:

- Use as little memory as possible
- Be reasonable about computation time

Features:

- time- and memory-efficient
- less than 1000 lines of code in a single C++ file
- support for coefficients in prime finite fields
- no external dependencies

The past

Matrix reduction

Setting:

- finite metric space, n points
- persistent homology for k-skeleta of Vietoris–Rips filtration
- homology H_d in dimensions $0 \le d < k$

Notation:

- D: boundary matrix of filtration
- R_i : *i*th column of R

Matrix reduction

Setting:

- finite metric space, n points
- persistent homology for k-skeleta of Vietoris–Rips filtration
- homology H_d in dimensions $0 \le d < k$

Notation:

- D: boundary matrix of filtration
- R_i : *i*th column of R

Algorithm:

- R = D, V = I
- while $\exists i < j$ with pivot $R_i = \text{pivot } R_j$
 - add R_i to R_j , add V_i to V_j

Matrix reduction

Setting:

- finite metric space, n points
- persistent homology for k-skeleta of Vietoris–Rips filtration
- homology H_d in dimensions $0 \le d < k$

Notation:

- D: boundary matrix of filtration
- R_i : *i*th column of R

Algorithm:

- R = D, V = I
- while $\exists i < j$ with pivot $R_i = \text{pivot } R_j$
 - add R_i to R_j , add V_i to V_j

Result:

- $R = D \cdot V$ is reduced (unique pivots)
- V is full rank upper triangular

Lessons from PHAT

Two optimizations speed up computation considerably:

- Clearing positive columns [Chen, Kerber 2011]
- Persistent cohomology
 [de Silva, Morozov, Vejdemo-Johannson 2011]

But only when both are used in conjuction!

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$
 positive indices,
 $N = \{j : R_j \neq 0\}$ negative indices,
 $E = P \setminus \text{pivots } R$ essential indices.

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$
 positive indices,
 $N = \{j : R_j \neq 0\}$ negative indices,
 $E = P \setminus \text{pivots } R$ essential indices.

$$\widetilde{\Sigma}_Z = \{V_i \mid i \in P\}$$
 is a basis of Z_* ,

For a reduced boundary matrix $R = D \cdot V$, call

$P = \{i : R_i = 0\}$	positive indices,
$N=\left\{ j:R_{j}\neq0\right\}$	negative indices,
$E = P \setminus \text{pivots } R$	essential indices.

$$\begin{split} \widetilde{\Sigma}_Z &= \big\{ V_i \ | \ i \in P \big\} \\ \Sigma_B &= \big\{ R_j \ | \ j \in N \big\} \end{split} \qquad \text{is a basis of } Z_\star, \end{split}$$

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$
 positive indices,
 $N = \{j : R_j \neq 0\}$ negative indices,
 $E = P \setminus \text{pivots } R$ essential indices.

$$\begin{split} \widetilde{\Sigma}_Z &= \big\{ V_i \ | \ i \in P \big\} & \text{is a basis of } Z_*, \\ \Sigma_B &= \big\{ R_j \ | \ j \in N \big\} & \text{is a basis of } B_*, \\ \Sigma_Z &= \Sigma_B \cup \big\{ V_i \ | \ i \in E \big\} & \text{is another basis of } Z_*. \end{split}$$

For a reduced boundary matrix $R = D \cdot V$, call

$P = \{i : R_i = 0\}$	positive indices,
$N=\left\{ j:R_{j}\neq0\right\}$	negative indices,
$E = P \setminus \text{pivots } R$	essential indices.

Then

$$\widetilde{\Sigma}_Z = \{V_i \mid i \in P\}$$
 is a basis of Z_* ,
 $\Sigma_B = \{R_j \mid j \in N\}$ is a basis of B_* ,
 $\Sigma_Z = \Sigma_B \cup \{V_i \mid i \in E\}$ is another basis of Z_* .

Persistent homology is generated by the basis cycles Σ_Z .

For a reduced boundary matrix $R = D \cdot V$, call

$P = \{i : R_i = 0\}$	positive indices,
$N=\left\{ j:R_{j}\neq0\right\}$	negative indices,
$E = P \setminus \text{pivots } R$	essential indices.

Then

$$\widetilde{\Sigma}_Z = \{V_i \mid i \in P\}$$
 is a basis of Z_* , $\Sigma_B = \{R_j \mid j \in N\}$ is a basis of B_* , $\Sigma_Z = \Sigma_B \cup \{V_i \mid i \in E\}$ is another basis of Z_* .

Persistent homology is generated by the basis cycles Σ_Z .

Columns with non-essential positive indices never used!

Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_d : C_d \to C_{d-1}$ in decreasing dimension $d = k \dots 1$
- Whenever $i = pivot R_j$
 - Set *R_i* to 0

Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_d : C_d \to C_{d-1}$ in decreasing dimension $d = k \dots 1$
- Whenever $i = pivot R_j$
 - Set *R*_{*i*} to 0
 - Set V_i to R_j

Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_d : C_d \to C_{d-1}$ in decreasing dimension $d = k \dots 1$
- Whenever $i = pivot R_j$
 - Set *R*_{*i*} to 0
 - Set V_i to R_j

Note:

- reducing positive columns typically harder than negative
- with clearing: need only reduce essential positive columns

standard matrix reduction:

$$\sum_{d=1}^{k} \binom{n}{d+1} = \sum_{d=1}^{k} \underbrace{\binom{n-1}{d}}_{\text{negative}} + \sum_{d=1}^{k} \underbrace{\binom{n-1}{d+1}}_{\text{positive}}$$

standard matrix reduction:

$$\sum_{d=1}^{k} \binom{n}{d+1} = \sum_{d=1}^{k} \underbrace{\binom{n-1}{d}}_{\text{negative}} + \sum_{d=1}^{k} \underbrace{\binom{n-1}{d+1}}_{\text{positive}}$$

$$k = 3, n = 192$$
: $56\,050\,096 = 1\,161\,471 + 54\,888\,625$

standard matrix reduction:

$$\sum_{d=1}^{k} \binom{n}{d+1} = \sum_{d=1}^{k} \underbrace{\binom{n-1}{d}}_{\text{negative}} + \sum_{d=1}^{k} \underbrace{\binom{n-1}{d+1}}_{\text{positive}}$$

$$k = 3, n = 192$$
: $56\,050\,096 = 1\,161\,471 + 54\,888\,625$

using clearing:

$$\sum_{d=1}^{k} \underbrace{\binom{n-1}{d}}_{\text{negative}} + \underbrace{\binom{n-1}{k+1}}_{\text{essential}} = \sum_{d=1}^{k} \binom{n-1}{d+1}$$

standard matrix reduction:

$$\sum_{d=1}^{k} \binom{n}{d+1} = \sum_{d=1}^{k} \underbrace{\binom{n-1}{d}}_{\text{negative}} + \sum_{d=1}^{k} \underbrace{\binom{n-1}{d+1}}_{\text{positive}}$$

$$k = 3, n = 192$$
: $56\,050\,096 = 1\,161\,471 + 54\,888\,625$

using clearing:

$$\sum_{d=1}^{k} \underbrace{\binom{n-1}{d}}_{\text{negative}} + \underbrace{\binom{n-1}{k+1}}_{\text{essential}} = \sum_{d=1}^{k} \binom{n-1}{d+1}$$

$$k = 3, n = 192$$
: $54\,888\,816 = 1\,161\,471 + 53\,727\,345$

Persistent cohomology

Idea [de Silva, Morozov, Vejdemo-Johannson 2011]:

- same barcodes
- reduce coboundary matrix in reversed filtration order
- observation: computation often much faster (why?)

Persistent cohomology

Idea [de Silva, Morozov, Vejdemo-Johannson 2011]:

- same barcodes
- reduce coboundary matrix in reversed filtration order
- observation: computation often much faster (why?)

Clearing for persistent cohomology:

- reduce in increasing dimension d = 0, ..., k-1
- negative becomes (dual) positive
- positive non-essential becomes (dual) negative
- essential stays (dual) essential

standard matrix reduction:

$$\sum_{d=0}^{k-1} \binom{n}{d+1} = \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d}}_{\text{(dual) positive}} + \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d+1}}_{\text{(dual) negative}}$$

standard matrix reduction:

$$\sum_{d=0}^{k-1} \binom{n}{d+1} = \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d}}_{\text{(dual) positive}} + \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d+1}}_{\text{(dual) negative}}$$

$$k = 3, n = 192$$
: $1179808 = 18337 + 1161471$

standard matrix reduction:

$$\sum_{d=0}^{k-1} \binom{n}{d+1} = \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d}}_{\text{(dual) positive}} + \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d+1}}_{\text{(dual) negative}}$$

$$k = 3, n = 192$$
: $1179808 = 18337 + 1161471$

using clearing:

$$\underbrace{\binom{n-1}{0}}_{\text{essential}} + \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d+1}}_{\text{descential}} = \sum_{d=0}^{k-1} \binom{n-1}{d}$$

standard matrix reduction:

$$\sum_{d=0}^{k-1} \binom{n}{d+1} = \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d}}_{\text{(dual) positive}} + \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d+1}}_{\text{(dual) negative}}$$

$$k = 3, n = 192$$
: $1179808 = 18337 + 1161471$

using clearing:

$$\underbrace{\binom{n-1}{0}}_{\text{essential}} + \sum_{d=0}^{k-1} \underbrace{\binom{n-1}{d+1}}_{\text{descential}} = \sum_{d=0}^{k-1} \binom{n-1}{d}$$

$$k = 3, n = 192$$
: 1161 472 = 1 + 1161 471

The present

Ripser design principles

Don't store what you can compute:

- filtration (from distance matrix)
- boundary matrix D (from n, d)
- reduced matrix R (from matrices D, V)
- reduction matrix V (from persistence pairs)

Ripser design principles

Don't store what you can compute:

- filtration (from distance matrix)
- boundary matrix D (from n, d)
- reduced matrix R (from matrices D, V)
- reduction matrix V (from persistence pairs)

Store only:

- persistence pairs
- negative column indices (sorted by filtration order)
- current column of R (in heap, comparison based)

Observations

For a typical input:

- V has very few off-diagonal entries
- most negative columns of D are already reduced from the beginning (apparent persistence pairs) and correspond to pairs of persistence 0

Observations

For a typical input:

- V has very few off-diagonal entries
- most negative columns of D are already reduced from the beginning (apparent persistence pairs) and correspond to pairs of persistence 0

Example: k = 3, n = 192:

 Only 191 + 53 + 601 = 845 out of 1161471 pairs are not apparent 0-persistence pairs

Conclusion

Can compute much larger instances than previous software

- H² persistence for data with 1681 points, in about 30 minutes using 20GB RAM
- Available at http://git.io/ripser
- Bring your own data set to the hands-on demonstration!