Homework Assignment 4

CSDS 446: Machine Learning on Graphs (Kevin S. Xu) Case Western Reserve University

Assigned: Friday, February 23, 2024

Due: Wednesday, March 6, 2024, at 11:59pm

You must submit your homework electronically on Canvas, including any code you wrote to solve the problems. The homework assignment will be graded for relevant completion.

Problem 1

(Continuation of Problem 7 from Homework Assignment 2)

Remove the following 8 edges from Zachary's Karate Club network: (1,5), (2,4), (3,29), (6,17), (9,34), (16,33), (24,26), (25,32). Use each of the following methods to perform link prediction over all non-edges:

- a) Degree-corrected stochastic block model with 2 groups.
- b) Latent space model in 2 dimensions.
- c) DeepWalk in 2 dimensions. I suggest you use the implementation of DeepWalk contained in the karateclub Python package¹.

For each method, list the top 10 predictions, sorted in decreasing order of similarity, and evaluate the improvement over random guessing. (Note: in practice, you would repeat this experiment over multiple sets of randomly selected edges to remove and average over the multiple repetitions.) Submit your code in a file named karate_link_prediction_models.py!

Problem 2

Consider the following latent variable generative model for an undirected graph with no self-edges:

- 1. For each node i, sample a latent variable $x_i \sim \mathcal{N}(\mu, 1)$ independent of all other nodes.
- 2. For each pair of nodes (i,j) where both $x_i, x_j > 0$ or both $x_i, x_j \le 0$, form an edge independent of all other pairs of nodes with probability θ .
- 3. For each pair of nodes (i, j) where $x_i > 0, x_j \le 0$ or $x_i \le 0, x_j > 0$, form an edge independent of all other pairs of nodes with probability ϕ .

Compute the probability that there is an edge between an arbitrary pair of nodes (i, j). Write the probability as a function only of μ , θ , ϕ and the cumulative distribution function of the normal distribution Φ , where $\Phi(x) = p(X \le x)$.

_

¹ https://karateclub.readthedocs.io/