GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- II• EXAMINATION - WINTER 2016

Subject Code: 2620001 Date:31/			2/ 2016	
Ti	•	t Name: Data Structure 2.30 PM TO 05.00 PM Total Marks:	70	
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Define following terms: 1. Multiplicity 2. Cutvertex 3. Spanning tree 4. Ancestor 5. Sling 6. Stack 7. Full binary tree	07	
	(b)	Do as directed: 1. What is variable – length record? 2. Which algorithms are used to find minimal cost spanning tree? 3. Define: best case and worst case. 4. Give difference between stack and queue. 5. What is simulation? 6. What is the advantage of B – tree? 7. List out applications of stack.	07	
Q.2	(a)	Convert following infix expression into postfix by using stack table. A * B + C – D / E * F $^{\land}$ G	07	
	(b)	What is asymptotic notation? List and explain asymptotic notations with proper e.g. OR	07	
	(b)	 Write a short note on KWIC indexing. Explain primitive and non – primitive data structures. 	04 03	
Q.3	(a) (b)	 Write an algorithm to insert an element in circular queue. Write an algorithm to delete specific element from circular singly linked list. Draw binary search tree from the given elements and traverse the tree in 	03 04 07	
		preorder, postorder and inorder. 20, 10, 5, 7, 50,45,75, 65, 80, 3, 1		
Q.3	(a) (b)	Write an algorithm to add two 3 – variable polynomials using singly linked list. 1. Draw expression tree of given expression: A * B + C – D / E * F ^ G 2. Give difference between linear search and binary search.	07 03 04	
Q.4	(a) (b)	 What is the advantage of AVL tree over BST. Explain 2 – 3 tree in detail. Write an algorithm of quick sort and also arrange following element in sorted order using quick sort. 20, 40, 10, 80, 70, 30, 50 	03 04 07	

www.onlinegtu.com

OR

Q.4	(a)	Explain threaded binary tree in detail with e.g.	07
	(b)	1. Write a short note on garbage collection.	04
		2. Explain trie structure with e.g.	03
Q.5	(a)	1. Give difference between BFS and DFS.	04
		2. Explain topological sorting in detail with e.g.	03
	(b)	Arrange following elements in sorted order using heap sort.	07
		60, 20, 40, 10, 80, 70, 30, 50	
		OR	
Q.5	(a)	1. Explain sparse matrix with multi – linked structure in detail with e.g.	04
		2. Explain Dijkstra's algorithm in detail.	03
	(b)	What is collision? List and explain collision – resolution techniques with proper	07
		e.g.	
