ROBERT Report lipros_data.csv

ROBERT v 1.2.0 2024/10/08 14:30:03

How to cite: Dalmau, D.; Alegre Requena, J. V. ChemRxiv, 2023, DOI: 10.26434/chemrxiv-2023-k994h

Section A. ROBERT Score

This score is designed to evaluate the models using different metrics.

No PFI (standard descriptor filter):

Model = NN · Train:Validation:Test = 81:9:10 Points(train+valid.):descriptors = 268:68

WEAK 20.0 0 -- 15 0 12.5 10.0 7.5 1 - 5.0 2.5 Predicted response

Train: Accuracy = 0.85, F1 score = 0.91, MCC = 0.54Valid. : Accuracy = 0.85, F1 score = 0.92, MCC = 0.25Test : Accuracy = 0.69, F1 score = 0.82, MCC = -0.17

PFI (only most important descriptors):

Model = NN · Train:Validation:Test = 72:18:10 Points(train+valid.):descriptors = 268:23

Train : Accuracy = 0.85, F1 score = 0.91, MCC = 0.52Valid. : Accuracy = 0.83, F1 score = 0.91, MCC = 0.18Test : Accuracy = 0.72, F1 score = 0.84, MCC = -0.14

Severe warnings

Very uneven class distribution (Section C)

Moderate warnings

Moderately correlated features (Section D)

Overall assessment

The model is unreliable

Severe warnings

- Failing required tests (Section B.1)
- Very uneven class distribution (Section C)

Moderate warnings

Moderately correlated features (Section D)

Overall assessment

The model is unreliable

ROBERT v 1.2.0 Page 1 of 8 ROBERT Report lipros data.csv

Section B. Advanced Score Analysis

This section explains each component that comprises the ROBERT score.

1. Model vs "flawed" models (3/3)

The model predicts right for the right reasons. Pass (blue): +1, Fail (red): -1. Details here.

1. Model vs "flawed" models (1 / 3

WARNING! The model might have important flaws.

Pass (blue): +1, Fail (red): -1. Details here.

2. Predictive ability of the model (0 / 2

Low predictive ability with MCC (test) = -0.17. MCC 0.50-0.75: +1, MCC >0.75: +2.

2. Predictive ability of the model (0 / 2

Low predictive ability with MCC (test) = -0.14. MCC 0.50-0.75: +1, MCC >0.75: +2.

3. Cross-validation (5-fold CV) of the model

Overfitting analysis on the model with 3a and 3b:

3a. CV predictions train + valid. $(0/2 \square)$ Low predictive ability with MCC (5-fold CV) = 0.06. MCC 0.50-0.75: +1, MCC >0.75: +2.

3. Cross-validation (5-fold CV) of the model

Overfitting analysis on the model with 3a and 3b:

3a. CV predictions train + valid. (0 / 2

Low predictive ability with MCC (5-fold CV) = -0.0.

MCC 0.50-0.75: +1, MCC >0.75: +2.

ROBERT v 1.2.0 Page 2 of 8

ROBERT Report lipros_data.csv

3b. MCC difference (model vs CV) (1 / 2 \square) Moderate variation (test and CV), Δ MCC = 0.23. Δ MCC 0.15-0.30: +1, Δ MCC < 0.15: +2.

3b. MCC difference (model vs CV) (2 / 2

Low variation (test and CV), Δ MCC = 0.14. Δ MCC 0.15-0.30: +1, Δ MCC < 0.15: +2.

4. Points(train+valid.):descriptors (0 / 1)

Number of descps. could be lower (ratio 268:68). 5 or more points per descriptor: +1.

4. Points(train+valid.):descriptors (1 / 1

Decent number of descps. (ratio 268:23). 5 or more points per descriptor: +1.

Section C. Distribution of y Values

This section shows the distribution of y values within the training and validation sets.

y distribution analysis

x WARNING! Your data is not uniform (class 0 has 57 points while class 1 has 211)

y distribution analysis

x WARNING! Your data is not uniform (class 0 has 57 points while class 1 has 211)

ROBERT v 1.2.0 Page 3 of 8

ROBERT Report lipros_data.csv

Section D. Feature Importances

This section presents feature importances measured using the validation set.

NumHAcceptors
NumSaturatedRings
NumSaturatedHeterocycles
PEOE_V5A4
fr_priamide
fr_piperzine
fr_piperdine
fr_nitrile
fr_lactone

Pearson maps not created if >30 descriptors.

Pearson's r heatmap_PFI

Correlation analysis

x WARNING! Noticeable correlations observed (up to r = 0.94 or $R^2 = 0.89$, for Chi4v and RingCount)

Correlation analysis

x WARNING! Noticeable correlations observed (up to 0.93 or $R^2=0.87$, for TPSA and NumHAcceptors)

ROBERT v 1.2.0 Page 4 of 8

ROBERT Report lipros_data.csv

Section E. Outlier Analysis

This feature is disabled in classification problems.

ROBERT v 1.2.0 Page 5 of 8 **ROBERT Report** lipros data.csv

Section F. Model Screening

This section compares different combinations of hyperoptimized algorithms and partition sizes.

Section G. Reproducibility

This section provides all the instructions to reproduce the results presented.

1. Download these files (the authors should have uploaded the files as supporting information!):

- CSV database (lipros data.csv)

2. Install and adjust the versions of the following Python modules:

- Install ROBERT and its dependencies: conda install -c conda-forge robert
- Adjust ROBERT version: pip install robert==1.2.0
- scikit-learn-intelex: not installed

(if scikit-learn-intelex is installed, slightly different results might be obtained)

- Install AQME and its dependencies: conda install -c conda-forge aqme
- Adjust AQME version: pip install aqme==1.6.1
- Install xTB: conda install -c conda-forge xtb
- Adjust xTB version (if possible): conda install -c conda-forge xtb=6.6.1

3. Run ROBERT using this command line in the folder with the CSV database:

python -m robert --csv name "lipros data.csv" --y "response" --names "code name" --aqme --type "clas"

4. Execution time, Python version and OS:

Originally run in Python 3.12.5 using Linux #3672-Microsoft Fri Jan 01 08:00:00 PST 2016

Total execution time: 1450.72 seconds (the number of processors should be specified by the user)

ROBERT v 1.2.0 Page 6 of 8 **ROBERT Report** lipros data.csv

Section H. Transparency

This section contains important parameters used in scikit-learn models and ROBERT.

1. Parameters of the scikit-learn models (same keywords as used in scikit-learn):

No PFI (standard descriptor filter): PFI (only most important descriptors):

sklearn model: MLPClassifier sklearn model: MLPClassifier

random state: 70 random state: 233 names: code name names: code_name

batch size: 32 batch size: 4

hidden layer sizes: [16, 16] hidden layer sizes: [8, 8, 8] learning_rate_init: 0.01 learning_rate_init: 0.01

max iter: 50 max iter: 200

validation fraction: 0.1 validation fraction: 0.2

alpha: 0.0001 alpha: 0.0001 shuffle: True shuffle: True tol: 0.0001 tol: 0.0001

early_stopping: False early_stopping: False

beta 1: 0.999 beta 1: 0.999 beta 2: 0.999 beta 2: 0.999 epsilon: 1e-08 epsilon: 1e-08

2. ROBERT options for data split (KN or RND), predict type (REG or CLAS) and hyperopt error (RMSE, etc.

No PFI (standard descriptor filter): PFI (only most important descriptors):

split: RND split: RND type: clas type: clas

error type: mcc error type: mcc

Section I. Abbreviations

Reference section for the abbreviations used.

ACC: accuracy **KN:** k-nearest neighbors **REG:** Regression ADAB: AdaBoost RF: random forest **MAE:** root-mean-square error

CSV: comma separated values MCC: Matthew's correl. coefficient RMSE: root mean square error

CLAS: classification ML: machine learning RND: random

CV: cross-validation **MVL:** multivariate lineal models **SHAP:** additive Shapley

explanations F1 score: balanced F-score NN: neural network

feature VR: voting regressor **GB:** gradient boosting PFI: permutation

importance **GP:** gaussian process

R2: coefficient of determination

ROBERT v 1.2.0 Page 7 of 8 ROBERT Report lipros_data.csv

Miscellaneous

General tips to improve the models and instructions to predict new values.

Some general tips to improve the score

1. Adding meaningful datapoints might help to improve the model. Also, using a uniform population of datapoints across the whole range of y values usually helps to obtain reliable predictions across the whole range. More information about the range of y values used is available in Section C.

2. Adding meaningful descriptors or replacing/deleting the least useful descriptors used might help. Feature importances are gathered in Section D.

How to predict new values with these models?

- 1. Create a CSV database with the new points, including the necessary descriptors.
- 2. Place the CSV file in the parent folder (i.e., where the module folders were created)
- 3. Run the PREDICT module as 'python -m robert --predict --csv test FILENAME.csv'.
- 4. The predictions will be shown at the end of the resulting PDF report and will be stored in the last column of two CSV files called MODEL_SIZE_test(_No)_PFI.csv, which are in the PREDICT folder.

ROBERT v 1.2.0 Page 8 of 8