

RAMAIAH INSTITUTE OF TECHNOLOGY, BANGALORE – 560054 (Autonomous Institute, Affiliated to VTU)

Department of Computer Science & Engineering

Internship Report

on

Python Programming

INT411: Intra Institutional Internship

STUDENT NAME: RONIT KUMAR MANJHI

USN: 1MS21EC087

Ramaiah Institute of Technology

(Autonomous Institute, Affiliated to VTU)
MSR Nagar, MSRIT Post, Bangalore-560054

September – October, 2022

RAMAIAH INSTITUTE OF TECHNOLOGY, BANGALORE – 560054 (Autonomous Institute, Affiliated to VTU)

Department of Computer Science & Engineering

CERTIFICATE

This is to certify that Mr./Ms.	, a student of
Bachelor of Engineering, bearing USN:	, has successfully completed, 30 Hours: from
29.09.2022 to 15.10.2022 Intra Institutional Internship in Pyt	hon Programming from the Department of Computer
Science & Engineering, M S Ramaiah Institute of Technolog	y, Bangalore.

SL No.	Component	Component Maximum Marks			
1	Continuous Evaluation	50			
2	Presentation	20			
3	Report	30			
Total Marks		100			

Signature of the Student with Date

Signature of the Faculty Co-Ordinator

OVERVIEW OF INTERNSHIP ACTIVITIES

DATE	DAY	NAME OF THE TOPIC COMPLETED	
29/09/22	Thusrday	Python-Basics	
30/09/22	Friday	Control Statements	
01/10/22	Saturday	Data Structures in python	
06/10/22	Thursday	Functions, Strings	
07/10/22	Friday	Advanced Functions in Python	
08/10/22	Saturday	Exception Handling	
10/10/22	722 Monday Numpy Assessment 1		
11/10/22	1/10/22 Tuesday Pandas		
12/10/22	/22 Wednesday Objects and Classes		
13/10/22	Thursday	ursday Assessment 2	
14/10/22	Friday	Modules and Packages Project	
15/10/22	Saturday	Project Evaluation	

TABLE OF CONTENTS

Contents	Page No.	
Overall view of the project in terms of implementation	5-6	
2. Code of main Modules	7-11	
3. Result Snapshots	12-13	
4. Conclusion	14	

OVERVIEW OF THE PROJECT IN TERMS OF IMPLEMENTATION PANDAS GOBAL COVID-19 IMPACT ANALYSIS

OBJECTIVE

Upon initial inspection of the data, we can start thinking of some questions about it that we would want to answer.

- Which country is being having the most covid -19 cases outbreak?
- Which are the Top 10 countries on basis of population facing covid-19 outbreak?
- Which countries are having most number of demise?

PLAN OF ACTION

IMPORTING REQUIRED LIBRARIES

Import in Python helps you to refer to the code, i.e., . functions/objects that are written in another file. It is also used to import python libraries/packages that are installed using pip(python package manager), and you need then to use in your code.

IMPORTING THE DATASET

When running python programs, we need to use datasets for data analysis. Python has various modules which help us in importing the external data in various file formats to a python program

DATA AUDIT

You can't make your data work for you until you know what data you're talking about.

We will use HEAD, TAIL and SHAPE to know our Data set.

Then we use INFO to get the information if any column has a NULL value or not.

Now we can do further analysis on our data to answer our questions. Before that, we should see if there are any missing values in our data set. To check if there are any missing values in the entire data set we use the isnull function, then see if there are any values.

Next, we can look at some descriptive statistics of the data frame with the describe method.

This shows some descriptive statistics on the data set. Notice, it only shows the statistics on the numerical columns. From here you can see the following statistics:

- Row count, which aligns to what the shape attribute showed us.
- The mean or average.
- The standard deviation, or how spread out the data is.
- The minimum and maximum value of each column
- The number of items that fall within the first, second, and third percentiles.

EXPLORATORY DATA ANALYSIS

Now we have answered our above listed objectives.

• WHAT IS THE OVERALL GLOBAL COVID-19 TREND?

outbreak of covid-19 resulted in the highest number of covid-19 cases and deaths in the united states. It is comparatively low according to the population.

WHICH ARE THE TOP 10 MOST POPULATED COUNTRIES FACING COVID-19 OUTBREAK?

we can observe the you entries having most population are facing more outbreak to covid-19.

WHICH COUNTRIES FACED MOST DEMISE AND WHATS THE TRAND FOR INDIA?

The most number of demise cases are being observed in united states followed by Brazil even when India has more population then these countries and yet has head to head demise count as of united kingdom and Mexico.

CODES OF MAIN MODULES

#IMPORTING REQUIRED LIBRARIES

import pandas as pd import matplotlib.pyplot as plt

#IMPORTING RELATED FILES

```
data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/transformed_data.csv")
data2 = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/raw_data.csv")
print(data.head())
print("-----")
print(data2.head())
```

OUTPUT:

	CODE		COUNTRY		DATE	HD	I TC	TD	STI	POF	P GDPC	AP
0	AFG	Afgh	anistan	2019	9-12-31	0.49	8 0.0	0.0	0.0	17.47723	3 7.4977	54
1	AFG	Afgh	anistan	2020	0-01-01	0.49	8 0.0	0.0	0.0	17.47723	3 7.4977	54
2	AFG	Afgh	anistan	2020	0-01-02	0.49	8 0.0	0.0	0.0	17.47723	3 7.4977	54
3	AFG	Afgh	anistan	2020	0-01-03	0.49	8 0.0	0.0	0.0	17.47723	3 7.4977	54
4	AFG	Afgh	anistan	2020	0-01-04	0.49	8 0.0	0.0	0.0	17.47723	3 7.4977	54
	iso_c	ode	locat	ion	d	ate	total_	cases	tota	l_deaths	\	
0		AFG	Afghanis	tan	2019-12	-31		0.0		0.0		
1		AFG	Afghanis	tan	2020-01	-01		0.0		0.0		
2		AFG	Afghanis	tan	2020-01	-02		0.0		0.0		
3		AFG	Afghanis	tan	2020-01	-03		0.0		0.0		
4		AFG	Afghanis	tan	2020-01	-04		0.0		0.0		
	stri	ngenc	y_index	popi	ulation	gdp_	per_ca	oita	human	_developm	ent_index	\
0			0.0	38	8928341		1803	.987			0.498	
1			0.0	38	8928341		1803	.987			0.498	
2			0.0	38	8928341		1803	.987			0.498	
3			0.0	38	8928341		1803	.987			0.498	
4			0.0	38	8928341		1803	.987			0.498	
	Unnam	ed: 9	Unnamed	: 10	Unnamed	: 11	Unnam	ed: 12	2 Unn	amed: 13		
0		#NUM!	#	NUM!	#	NUM!	17.	177233	3 7.4	97754494		
1		#NUM!	#	NUM!	#	NUM!	17.	477233	7.4	97754494		
2		#NUM!	#	NUM!	#	NUM!	17.	477233	7.4	97754494		
3		#NUM!	#	NUM!	#	NUM!	17.	477233	7.4	97754494		

OBJECTIVE

Upon initial inspection of the data, we can start thinking of some questions about it that we would want to answer.

- Which country is being having the most covid -19 cases outbreak?
- Which are the Top 10 countries on basis of population facing covid-19 outbreak?
- Which countries are having most number of demise?

```
print(data.shape,data2.shape)
```

OUTPUT: (50418, 9) (50418, 14)

```
print(data.isna().sum())
print("-----")
print(data2.isna().sum())
```

OUTPUT:

```
CODE
COUNTRY
             0
DATE
             0
HDI
          6202
TC
             0
TD
STI
             0
POP
GDPCAP
dtype: int64
iso code
                              0
location
                              0
date
                              0
total cases
                           3094
total_deaths
                          11190
stringency index
                           7126
population
                              0
gdp_per_capita
                           5712
human development index
                           6202
Unnamed: 9
                              0
Unnamed: 10
                              0
Unnamed: 11
                              0
Unnamed: 12
                              0
Unnamed: 13
                              0
dtype: int64
```

OUTPUT:

```
index
Country Code
               0
Country
                0
HDI
                0
Total Cases
               0
Total Deaths
Population
               0
dtype: int64
iso_code
                          0
location
                          0
date
                          0
                          0
total_cases
total_deaths
                          0
stringency_index
                          0
                          0
population
gdp_per_capita
                          0
human_development_index
Unnamed: 9
Unnamed: 10
                          0
Unnamed: 11
                          0
Unnamed: 12
                          0
Unnamed: 13
dtype: int64
```

```
print(data.describe())
print("-----")
print(data2.describe())
```

OUTPUT:

inde		Total Cases			
count 10.000					
mean 134.300					
std 62.282	6 0.136178	2.361521e+08	7.682455e+6	06 1.129353	
min 27.000	0.581847	6.094100e+07	1.503642e+6	06 17.311165	
25% 98.750	0.616490	6.757933e+07	2.563691e+6	06 17.783344	
50% 153.500	0.766500	7.565768e+07	6.576697e+6	06 18.354071	
75% 177.250	0 0.869977	3.411203e+08	7.519042e+6	06 19.080716	
max 200.000	0.924000	7.474047e+08	2.665928e+6	21.045353	
total_	cases total	l_deaths stri	ngency_index	population	\
count 5.04180	0e+04 50418	3.000000	50418.000000	5.041800e+04	
mean 6.62192	7e+04 2978	3.767819	56.162022	4.251601e+07	
std 3.91948	1e+05 12204	1.916580	25.512844	1.564607e+08	
min 0.00000	0e+00 (0.000000	0.000000	8.090000e+02	
25% 1.48000	0e+02 18	3.000000	41.670000	1.399491e+06	
50% 2.05750	0e+03 206	0.000000	56.162022	8.278737e+06	
75% 2.87107	5e+04 2978	3.767819	76.390000	2.913681e+07	
max 8.15459	5e+06 219674	1.000000	100.000000	1.439324e+09	
gdp_per	_capita huma	an_development	_index Unna	amed: 12	
count 50418	.000000	50418.	000000 50418	8.000000	
mean 20818	.706240	0.	720139 15	5.442097	
std 19248	.613445	0.	150680	2.495039	
min 661	.240000	0.	000000	5.695799	
25% 6253	.104000	0.	540000 14	4.151619	
50% 16409	.288000	0.	723000 15	5.929201	
75% 27936	.896000	0.	825000 17	7.187513	
max 116935	.600000	0.	953000 21	1.087439	

```
code = list(data["CODE"].unique())
country = list(data["COUNTRY"].unique())
hdi = []
tc = []
td = []
sti = []
population = list(data["POP"].unique())
gdp = []
for i in country:
  hdi.append((data.loc[data["COUNTRY"] == i, "HDI"]).sum()/294)
  tc.append((data2.loc[data2["location"] == i, "total_cases"]).sum())
  td.append((data2.loc[data2["location"] == i, "total_deaths"]).sum())
  sti.append((data.loc[data["COUNTRY"] == i, "STI"]).sum()/294)
  population.append((data2.loc[data2["location"] == i, "population"]).sum()/294)
aggregated_data = pd.DataFrame(list(zip(code, country, hdi, tc, td, population)), columns = ["Country Code", "
Country", "HDI", "Total Cases", "Total Deaths", "Population"])
print(aggregated_data.head())
```

OUPUT:

_						
	Country Code	Country	HDI	Total Cases	Total Deaths	Population
	0 AFG	Afghanistan	0.498000	5.126433e+06	165875.000000	17.477233
	1 ALB	Albania	0.600765	1.071951e+06	39992.303457	14.872537
	2 DZA	Algeria	0.754000	8.999594e+06	423879.050780	17.596309
	3 AND	Andorra	0.659551	6.208916e+05	66446.588559	11.254996
	4 AGO	Angola	0.418952	3.040050e+05	35650.142551	17.307957

data = aggregated_data.sort_values(by=["Total Cases"], ascending=False) data.head(10) OUTPUT:

	Country Code	Country	HDI	Total Cases	Total Deaths	Population
200	USA	United States	0.924000	7.474047e+08	2.665928e+07	19.617637
27	BRA	Brazil	0.759000	4.294790e+08	1.457291e+07	19.174732
90	IND	India	0.640000	4.098244e+08	7.464777e+06	21.045353
157	RUS	Russia	0.816000	1.350080e+08	2.390724e+06	18.798668
178	ESP	Spain	0.887969	7.583669e+07	5.704244e+06	17.660427
150	PER	Peru	0.599490	7.547867e+07	3.082592e+06	17.311165
125	MEX	Mexico	0.774000	7.527462e+07	7.537130e+06	18.674802
175	ZAF	South Africa	0.608653	6.501424e+07	1.503642e+06	17.898266
199	GBR	United Kingdom	0.922000	6.159405e+07	7.449150e+06	18.033340
42	COL	Colombia	0.581847	6.094100e+07	1.986773e+06	17.745037

data=data.reset_index()
data
OUTPUT:

	index	Country Code	Country	HDI	Total Cases	Total Deaths	Population
0	200	USA	United States	0.924000	7.474047e+08	2.665928e+07	19.617637
1	27	BRA	Brazil	0.759000	4.294790e+08	1.457291e+07	19.174732
2	90	IND	India	0.640000	4.098244e+08	7.464777e+06	21.045353
3	157	RUS	Russia	0.816000	1.350080e+08	2.390724e+06	18.798668
4	178	ESP	Spain	0.887969	7.583669e+07	5.704244e+06	17.660427
5	150	PER	Peru	0.599490	7.547867e+07	3.082592e+06	17.311165
6	125	MEX	Mexico	0.774000	7.527462e+07	7.537130e+06	18.674802
7	175	ZAF	South Africa	0.608653	6.501424e+07	1.503642e+06	17.898266
8	199	GBR	United Kingdom	0.922000	6.159405e+07	7.449150e+06	18.033340
9	42	COL	Colombia	0.581847	6.094100e+07	1.986773e+06	17.745037

EXPLORATORY DATA ANALYSIS

1. WHICH ARE THE TOP 10 COUNTRY HAS TOTAL CASES?

import matplotlib.pyplot as plt data.plot(kind="bar",y='Total Cases', x='Country',title="Countries with Highest Covid Cases",color='green') plt.show()

OUTPUT:

2.WHICH ARE THE TOP 10 COUNTRIES BY POPULATION?

data.plot(x='Country', y='Population',title= "Population of of countries")
plt.show()

OUTPUT:

3-WHICH ARE COUNTRIES HAVING MOST NUMBER OF DEMISE ?

data.head(10).plot(kind="barh",x='Country', y='Total Deaths',title= "Stringency Index during Covid-19",color="red")

CONCLUSION

In this task, we studied the spread of covid-19 among the countries and its impact on the global human lifestyle. We saw that the outbreak of covid-19 resulted in the highest number of covid-19 cases and deaths in the united states. It is comparatively low according to the population.

From the first objective we can conclude that majority covid outbreak was in united states followed by Brazil and india respectively.

From the second objective, we can observe the you entries having most population are facing more outbreak to covid-19.

From the third objective, the most number of demise cases are being observed in united states followed by Brazil even when India has more population then these countries and yet has head to head demise count as of united kingdom and Mexico .