

(11) EP 0 413 544 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:02.01.1997 Bulletin 1997/01

(51) Int Cl.⁶: **C07D 473/32**, C07D 473/18, A61K 31/52 // C07D239/50, C07D239/20

(21) Application number: 90308898.7

(22) Date of filing: 13.08.1990

(54) Purine derivatives, process for their preparation, pharmaceutical compositions and intermediates

Purinverbindungen, Verfahren zu ihrer Herstellung, pharmazeutische Präparate und Zwischenverbindungen

Dérivés de purine, procédé pour leur préparation, compositions pharmaceutiques et intermédiaires

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priority: 17.08.1989 GB 8918827

(43) Date of publication of application: 20.02.1991 Bulletin 1991/08

(73) Proprietor: BEECHAM GROUP PLC
Brentford, Middlesex TW8 9EP (GB)

(72) Inventors:

Harnden, Michael Raymond
 Storrington, West Sussex RH20 3HY (GB)

Wyatt, Paul Graham
 Cheam Village, Surrey (GB)

 Jennings, Leslie John Arthur, SmithKline Beecham Epsom, Surrey KT18 5XQ (GB) (74) Representative: Tocher, Pauline et al SmithKline Beecham plc Corporate Intellectual Property, Two New Horizons Court Brentford, Middlesex TW8 9EP (GB)

(56) References cited:

EP-A- 0 242 482

EP-A- 0 294 069

EP-A- 0 298 601

EP-A- 0 313 289

 CHEMICAL ABSTRACTS, vol. 109, no. 15, 10th October 1988, page 749, abstract no. 129567p, Columbus, Ohio, US; M.R. HARNDEN et al.: "Synthesis of 9-(3-hydroxypropoxy)guanine, a novel antiviral acyclonucleoside" & TETRAHEDRON LETT. 1988, 29(6), 701-4

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Ш

Description

5

10

15

20

The present invention relates to novel compounds which are of potential use as antiviral agents, to a process for their preparation and to their use as pharmaceuticals.

EP-A-242482 (Beecham Group p.l.c.), the subject matter of which is incorporated herein by reference, discloses antiviral compounds of formula (A) and pharmaceutically acceptable salts thereof:

wherein

25 R_a is hydrogen or CH₂OH;

R_b is hydrogen or, (when R₁ is hydrogen), hydroxy or CH₂OH;

R_c is CH₂OH or, (when R₁ and R₂ are both hydrogen), CH(OH)CH₂OH;

R_d is hydrogen, hydroxy, amino or OR_c

30 wherein

35

40

45

50

55

R_e is C₁₋₆ alkyl, phenyl or phenyl C₁₋₂ alkyl either of which phenyl moieties may be substituted by one or two halo, C₁₋₄ alkyl or C₁₋₄ alkoxy groups;

(A)

and in which any OH groups in R_a , R_b and/or R_c may be in the form of O-acyl, phosphate, cyclic acetal or cyclic carbonate derivatives thereof.

Compounds wherein R_d is other than hydroxy are pro-drugs for the compounds of formula (A) wherein R_d is hydroxy. Example 1 describes the compound of formula (I) wherein R_d and R_b are both hydrogen, R_c is CH_2OH and R_d is hydroxy which is 9-(3-hydroxyprop-1-oxy)guanine, hereinafter referred to as E1.

It has now been discovered that certain derivatives of E1 are pro-drugs for E1, having improved gastrointestinal absorption properties.

Accordingly, the present invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof:

wherein

R₁ is hydrogen or hydroxy; and

R₂ is C₁₋₆ alkyl.

5

10

15

20

30

35

40

Suitable values for R₂ alkyl groups include methyl, ethyl, <u>n</u>- and <u>iso-propyl, n-, <u>iso-, sec-</u> and <u>tert-butyl and pentyl</u> (all possible isomers), particularly <u>iso-propyl</u>.</u>

Pharmaceutically acceptable salts are as described in EP-A-242482.

The compounds of formula (I) including their alkali metal salts may form solvates such as hydrates and these are included wherever a compound of formula (I) or a salt thereof is herein referred to.

It will be appreciated that, when R_1 is hydroxy in formula (I) the compound exists in the predominant tautomeric form of structure (IA):

(IA)

25 The invention also provides a process for the preparation of a compound of formula (I), or a pharmaceutically acceptable salt thereof, which process comprises either

I) imidazole ring closure of a compound of formula (II):

(II)

wherein Q is a group capable of cyclising to form an imidazole ring, such as amino or an amino derivative, for example, formylamino; or

ii) pyrimidine ring closure of a compound of formula (III):

55

50

(III)

wherein Y is amino or C_{1-6} alkoxy, with a condensing agent capable of cyclising to form a pyrimidine ring having a 2-NHR_x substituent, resulting in a compound of formula (I) wherein R_1 is hydroxy; or

iii) condensing a compound of formula (IV):

5

10

15

20

25

30

35

40

50

with a side chain intermediate of formula (V):

$$R_sO(CH_2)_sZ$$
 (V)

wherein Z is a leaving group;

and wherein, in formulae (II) to (V), R_5 is CH_2OR_2 or a group or atom convertible thereto, R_1 is R_1 or a group or atom convertible thereto, R_2 is hydrogen or an amino protecting group; and thereafter, when desired or necessary, converting R_5 and/or R_1 , when other than CH_2OR_2 and/or R_1 , to CH_2OR_2 and/or R_1 respectively, and/or converting R_5 and/or R_1 when CH_2OR_2 and/or R_1 to other CH_2OR_2 and/or R_1 and/or converting R_2 when an amino protecting group, to hydrogen.

Process i) may be carried out, preferably when Q is formylamino, using a cyclisation condensing agent, such as diethoxymethyl acetate or triethyl orthoformate, or by fusion.

Process ii) is preferably carried out in accordance with the methods described in EP-A-242482, the subject matter of which is incorporated herein by reference.

Process iii) may be carried out with suitable values for Z including hydroxy and halo, such as chloro, bromo and iodo, preferably iodo; or other groups readily displaceable by nucleophiles, such as mesyloxy or tosyloxy. The reaction preferably takes place in an inert solvent, such as dimethylformamide at 0-50°C, preferably ambient temperature. When Z is hydroxy, the reaction takes place in the presence of a dehydrating agent, such as diethyl azodicarboxylate in the presence of triphenylphosphine. When Z is halo, the reaction preferably takes place in the presence of a base, such as potassium carbonate.

Examples of conversions of variable groups are as follows:

<u>R₁'-R</u>₁

a) An R_1 hydroxy group may be converted to R_1 ' is chloro, by chlorination using a reagent such as phosphorus oxychloride, preferably in the presence of tetraethylammonium chloride and dimethylaniline (as acid acceptor) in

CH₃CN at reflux temperatures, according to the method described by M.J. Robins and B. Ozanski, Can. J. Chem, 59, 2601 (1981).

- b) When R₅ is other than CH₂OR₂, an R₁' chloro group may be converted to R₁ is hydroxy by hydrolysis using aqueous mineral acid, such as hydrochloric acid, or more preferably, using an organic acid, such as formic acid at elevated temperature, suitably 70-150°C, preferably around 100°C.
- c) An R_1 ' chloro group may be converted to R_1 ' is methoxy by reaction with sodium methoxide. The R_1 ' is methoxy group may in turn be converted to R_1 ' is hydroxy by hydrolysis using non-acidic methods, preferably using mercaptoethanol.
- d) An R_1 ' alkoxy group, such as methoxy, may also be converted to R_1 hydroxy by the methods of D.R. Haines, J. Med. Chem. 1987, 30, 943 and K.K. Ogilvie and H.R. Hanna, Can. J. Chem. 1984, <u>62</u>, 2702.

15 R₆-CH₂OR₂

5

10

20

25

30

35

40

45

50

55

- a) R_5 hydrogen may be converted to CH_2OR_2 by conventional procedures for preparing acetals, using LCH_2OR_2 wherein L is a leaving group, such as chloro or acetate.
- b) H₅ hydrogen may be replaced by a protecting group, which may be removed by conventional deprotection methods, and then subsequently converted to CH₂OH₂ as in a) above.

Suitable examples of protecting groups and processes for their removal, are as described in EP-A-242482. Particularly suitable protecting groups include the benzyl group, removed by catalytic hydrogenation; the acetate group removed by acid hydrolysis, 2M HCl in ethanol; or the t-butyldimethylsilyl group removable by 80% acetic acid at elevated temperature, around 90°C.

$R_x'-R_x$

R_x' may be formyl, which may be converted to R_x is hydrogen by hydrolysis, preferably under basic conditions. It will be appreciated that the above conversions may take place in any desired or necessary order, having regard to the tinal desired compound of formula (I), and that interconversions involving acid conditions could affect the OCH₂OR₂ moiety in formula (I).

It is normally preferred that R_5 in the aforedescribed processes is CH_2OR_2 as defined. Intermediates of formula (II) may be prepared from a corresponding compound of formula (VI):

·

and <u>via</u> intermediates of formula (V) wherein Z is OH, as hereinbefore defined, according to the methods described in EP-A-242482 i.e. by converting the compound of formula (V) wherein Z is OH to the phthalimidooxy derivative followed by reaction with methylhydrazine, as described in the Descriptions hereinalter.

(VI)

The compound of formula (VI) wherein R_1 ' is chloro and R_x is hydrogen, is a known compound as described by Temple et. al., J. Org. Chem., 40 (21), 3141, 1975.

Intermediates of formula (III) may be prepared according to the methods described in EP-A-242482.

Compounds of the formula (IV) are prepared as described in EP-A-313289 (Beecham Group p.l.c.) from compounds of formula (VI) wherein the 5-amino group is formylated, by reaction with R₆ONH₂ wherein R₆ is a protecting group, to give a compound of formula (VII):

removable by treatment with 80% acetic acid, at ambient temperature.

(VII)

which may be cyclised with diethoxymethyl acetate, to give a compound of formula (IV) wherein the OH group is protected. Suitable values for R₆ include benzyl, removable by hydrogenation, and the tetrahydropyran-2-yl group

Intermediates of the formula (V) wherein Z is hydroxy are known compounds or are prepared by analogous methods to those used for structurally similar known compounds.

Intermediates of formulae (II), (III) and (V) but wherein Z is replaced by an aminooxy group, and wherein R_{δ} is CH₂OR₂, are believed to be novel and form an aspect of the invention.

Pharmaceutically acceptable salts may be prepared in conventional manner, for example, in the case of acid addition salts, by reaction with the appropriate organic or inorganic acid.

The compounds of the invention are of potential use in the treatment of infections caused by viruses, especially herpesviruses such as herpes simplex type 1, herpes simplex type 2, varicella-zoster and Epstein-Barr virus.

Compounds of the invention may be formulated for use in a pharmaceutical composition. Accordingly, in a further aspect of the invention, there is provided a pharmaceutical composition which comprises a compound of formula (I) or pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier or excipient.

A composition which may be administered by the oral route to humans may be compounded in the form of a syrup, tablet or capsule. When the composition is in the form of a tablet, any pharmaceutical carrier suitable for formulating such solid compositions may be used, for example magnesium stearate, starch, lactose, glucose, rice, flour and chalk. The composition may also be in the form of an ingestible capsule, for example of gelatin, to contain the compound, or in the form of a syrup, a solution or a suspension. Suitable liquid pharmaceutical carriers include ethyl alcohol, glycerine, saline and water to which flavouring or colouring agents may be added to form syrups. The compounds may also be presented with a sterile liquid carrier for injection.

The composition may also be formulated for topical application to the skin or eyes.

For topical application to the skin, the composition may be in the form of a cream, lotion or ointment. These formulations may be conventional formulations well known in the art, for example, as described in standard books of pharmaceutics and cosmetics, such as Harry's Cosmeticology published by Leonard Hill Books and the British Pharmacopaela.

The composition for application to the eyes may be a conventional eye-drop composition well known in the art, or an ointment composition.

Preferably, the composition of this invention is in unit dosage form or in some other form that may be administered in a single dose. A suitable dosage unit might contain from 50 mg to 1 g of active ingredient, for example 100 to 500 mg.

Such doses may be administered 1 to 4 times a day or more usually 2 or 3 times a day. The effective dose of compound will in general be in the range of from 1.0 to 20 mg/kg of body weight per day or more usually 2.0 to 10 mg/kg per day.

No unacceptable toxicological effects are indicated at the above described dosage levels.

The invention also provides a method of treating viral infections in a human or non-human animal, which comprises administering to the animal an effective, non-toxic amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.

The invention also provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use as an active therapeutic substance, in particular for the treatment of viral infections.

The compounds of the invention are also believed to exhibit a synergistic antiviral effect in conjunction with interferons; and combination products comprising these two components for sequential or concomitant administration, by the same or different routes, are therefore within the ambit of the present invention.

The following examples illustrate the invention; the following descriptions illustrate the preparation of intermediates.

55

5

10

15

20

25

30

35

40

45

50

Description 1 (Intermediates for Example 1)

a) 3-(Isopropoxymethoxy)propanol

A solution of 1,3-propanediol (19.4g, 255mmol) in dry tetrahydrofuran (100ml) under nitrogen at 0-5°C was treated with sodium hydride (2.04g, 85mmol) and stirred for 1 hour. Chloromethylisopropyl ether (9g, 83mmol) in dry tetrahydrofuran (15ml) was added over 15 min. Stirring was continued for a further 2 hours. The reaction mixture was filtered and the filtrate was evaporated in vacuo. The residue was purified by column chromatography on silica eluting with dichloromethane: methanol (97:4) to give the title compound as a colourless oil. (5.3g, 44%). v_{max} (Film) 3400, 2910, 2860, 2805, 2760, 1460, 1440, 1425, 1410 and 1380cm⁻¹; δ_H (CDCl₃) 1.17 (3H, s, CH₃), 1.20 (3H, s,CH₃), 1.84 (2H, quintet, J-6Hz CH₂CH₂CH₂), 2.3 (1H, br s, D₂O exchangeable OH), 3.72 (2H, t, J-6Hz, CH₂OCH₂OCH(CH₃)₂) 3.76 (2H, t, J=6Hz,CH₂ON), 3.86 (1H, m, CH(CH₃)₂), 4.70 (2H, s, OCH₂O).

b) N-[3-(Isopropoxymethoxy)propoxy]phthalimide

A mixture of [3-(isopropoxymethoxy)propanol (5.3g, 35.6mmol), N-hydroxyphthalimide (5.83g, 35.6mmol) and triphenylphosphine (10.48g, 40mmol) in dry tetrahydrofuran (75ml) at 0-5°C; was treated with a solution of diethyl azodicarboxylate (6.96g, 40mmol) in dry tetrahydrofuran (15ml) over 15min. The reaction mixture was stirred at ambient temperature for 18hr. The solvent was removed in vacuo and the residue was dissolved in diethyl ether (100ml) and cooled to 5°C for 2hr. The solid was filtered off, the filtrate evaporated in vacuo, and the residue purified by column chromatography on silica eluting with hexane: ethyl acetate (70:30) to give the title compound as an oil (9.3g, 88%). v_{max} (Film) 2980, 2940, 2900, 1740, 1475 and 1380 cm⁻¹; δ_{H} (CDCl₃) 1.17 (3H, s, CH₃), 1.19 (3H, s, CH₃), 2.06 (2H, quintet, J=6.3Hz CH₂CH₂CH₂), 3.77 (2H, t, J=6.3Hz, CH₂OCH₂OCH(CH₃)₂), 3.88 (1H, septet, J=6.3Hz, OCH(CH₃)₂), 4.32 (2H, t, J=6.3Hz CH₂ON), 4.73 (2H, s, OCH₂O), 7.78 (4H, m, ArH). (Found: C, 16.53; H, 6.59; N, 4.71%: C₁₅H₁₉NO₅ requires: C, 16.42; H, 6.52; N, 4.77%).

c) N-[3-(Isopropoxymethoxy)propoxyamine

20

25

50

A solution of N-[3-(isopropoxymethoxy)propoxy]phthalimide (9.3g, 31.7mmol) in dry dichloromethane (70ml) at ambient temperature was treated with N-methylhydrazine (2.2g, 47.8mmol) and stirred for 2 hours. The reaction mixture was filtered, the filtrate evaporated in vacuo and the residue purified by column chromatography on silica eluting with hexanc: othyl acotate (60:40) to give the title compound as a colourless oil (4.2g, 82%). v_{max} (Film) 3310, 3220, 3160, 2960, 2920, 2870, 1580, 1465 and 1380 cm⁻¹; δ_{H} (CDCl₃) 1.10 (3H, s, CH₃), 1.18 (3H, s, CH₃), 1.80 (2H, quintet, J=6.3Hz CH₂CH₂CH₂), 3.52 (2H, t, J=6.3Hz, CH₂OCH₂OCH(CH₃)₂), 3.66 (2H, t, J=6.3Hz, CH₂ON), 3.8 (1H, septet, J=6.3Hz OCH(CH₃)₂), 4.65, (2H, s, OCH₂O), 5.2-55 (2H, br s, D₂O exchangeable NH₂).

d) 4-Chloro-2,5-diformamido-6-[(3-isopropoxymethoxy)propoxy]aminopyrimidine

A mixture of 4.6-dichloro-2,5-diformamidopyrimidine (2.9g, 12.3mmol), 3-(isopropoxymethoxy)propoxyamine (2.0g, 12.2mmol) and N,N-diisopropylethylamine (4.3ml, 3.19g, 24.6mmol) in diglyme (50ml) was heated to 100° for 3hr. The cooled reaction mixture was filtered and the filtrate was evaporated in vacuo. The residue was purified by column chromatography on silica eluting with ethyl acetate:hexane (1:1) then ethyl acetate to give the title compound as a yellow gum, which crystallised from ethyl acetate (3.0g, 75%) mp 132.4°C. v_{max}(KBr) 3250, 2960, 2910, 2870, 1705, 1645, 1590, 1565, 1495, 1460 and 1380cm⁻¹; δ H [(CD₃)₂SO], 1.08 (3H, s, CH₃), 1.10 (3H, s, CH₃), 1.84 (2H, quintet, J=6.3 Hz, CH₂CH₂CH₂), 3.58 (2H, t, J.6.3 Hz, CH₂OCH₂OCH(CH₃)₂), 3.76 (1H, septet, J=6.3 Hz, OCH(CH₃)₂), 3.93 (2H, t, J.6.3 Hz, CH₂ON), 4.61 (2H, s, OCH₂O), 8.14 (1H, s, NHCHO), 9.25 (1H, br.s, NHCHO), 9.39 (1H, br.s, D₂O exchangeable NHOCH₂), 10.6-11.0 (2H, br, D₂O exchangeable, 2 x NHCHO). (Found: C, 43.20; H, 5.55; N, 19.24%. C₁₃H₂₀N₅O₅CI requires: C, 43.15; H, 5.57; N, 19.35%).

Description 2 (Intermediates for Example 2)

a) 3-(Methoxymethoxy)propanol

A solution of 1,3-propanediol (25.1g, 330mmol) in dry tetrahydrofuran (10ml) was treated with sodium hydride (80%, 3.3g, 110mmol) at room temperature under nitrogen. The solution was stirred at ambient temperature for 30min. then chloromethylmethyl ether (8.85g, 110mmol) was added dropwise with stirring in dry tetrahydrofuran (15ml), maintaining the temperature at 10°C (ice bath). The reaction was stirred for 2hr. then filtered and the filtrate was evaporated in vacuo. The residue was purified by column chromatography on silica eluting with dichloromethane: methanol (97:

3) to give the title compound as a colourless oil (7.0g, 53%). v_{max} (Film) 3400, 2920, 2880, 2760, 1460, 1435, and 1380cm⁻¹; δ_{H} (CDCl₃) 1.9 (2H, quintet, J=6Hz, CH₂CH₂CH₂), 3.1 (1H, s, D₂O exchangeable, OH), 3.35 (3H, s, OCH₃), 3.7 (4H, m, CH₂OH, CH₂OCH₂OCH₃), 4.65 (2H, s, OCH₂O).

b) N-[3-(Methoxymethoxy)propoxy]phthalimide

A solution of 3-(methoxymethoxy)propanol (5g, 41.6mmol), triphenylphosphine (13.1g, 50mmol) and N-hydroxyphthalimide (7.25g, 44mmol) in dry tetrahydrofuran (150ml) was cooled to 0-5°C and treated with diethyl azodicarboxylate (8.7g, 50mmol) in dry tetrahydrofuran (10ml) over ½hr. The reaction was then stirred at ambient temperature for 18hr. The solvent was removed in vacuo and the residue was dissolved in diethyl ether (100ml) and the mixture cooled to 0-5°C for 3hr. The solid was removed by filtration and the filtrate was evaporated in vacuo. The residue was purified by column chromatography on silica eluting with hexane: ethyl acetate (70:30) to give the title compound as an oil (4.5g, 41%). v_{max}(Film) 2960, 2900, 1800, 1740, 1620, 1480 and 1380cm⁻¹; 8_H(CDCl₃) 2.07 (2H, quintet, J=6.3 Hz, CH₂CH₂CH₂), 3.38 (3H, s, OCH₃), 3.77 (2H, I, J=6.3 Hz, CH₂OCH₂OCH₃), 4.33 (2H, I, J=6.3 Hz, CH₂ON), 4.66 (2H, s, OCH₂O), 7.83 (4H, m, ArH).

c) 3-Methoxymethoxypropoxyamine

20

25

30

35

40

45

50

55

A solution of N[3-(methoxymethoxy)propoxy]phthalimide (4.5g, 17mmol) in dry dichloromethane (50ml) was cooled to 0-5° and treated with N-methylhydrazine (1.2g, 26mmol). The reaction mixture was stirred for 2hr then tiltered and the filtrate was evaporated in vacuo. The residue was purified by column chromatography on silica eluting with hexane: ethyl acetate (60:40) to give the title compound as a colourless oil (1.1g, 50%). v_{max} (Film) 3310, 3240, 3160, 2960, 2910, 1590, 1465, and 1380cm⁻¹; δ_H(CDCl₃) 2.07 (2H, quintet, J=6.3Hz, CH₂CH₂CH₂), 3.38 (3H, s, CH₃O), 3.50 (2H, t, J=6.3Hz, CH₂OCH₂OCH₂OCH₃), 3.70 (2H, t, J 6.3 Hz, CH₂ONH₂). 4.66 (2H, s, OCH₂O), 5.2-5.5 (2H, br.s, D₂O exchangeable, NH₂).

d) 4-Chloro-6-[3-(methoxymethoxy)propoxy]amino-2,5-diformamidopyrimidine

A mixture of 4,6-dichloro-2,5-diformamidopyrimidine (1.75g, 7.4mmol), 3-(methoxymethoxy)propoxyamine (1.0g, 7.4mmol) and N,N-diisopropylethylamine (2g, 15.5mmol) in dry diglyme was heated to 100°C for 2hr. The cooled reaction mixture was filtered and the filtrate was evaporated in vacuo. The residue was purified by column chromatography on silica cluting with ethyl acetate:hexane (50:50) then ethyl acetate to give the title compound as a yellow oil which was crystallised from ethyl acetate (1.2g, 50%) mp 136-8°C. v_{max}(KBr) 3240, 2920, 2880, 1705, 1640, 1590, 1565, 1495, 14650, 1410, and 1380cm⁻¹; δ_H [(CD₃)₂SO] 1.85 (2H, quintet, J=6.3Hz, CH₂CH₂CH₂), 3.24 (3H, s, OCH₃), 3.58 (2H, t, J=6.3Hz, CH₂OCH₂OCH₃), 3.94 (2H, t, J=6.3Hz, CH₂ONH), 4.5 (2H. s, OCH₂O), 8.15 (1H, s, NHCHO), 9.26 (1H, d, J=9.6Hz, collapses to singlet on D₂O, NHCHO), 9.4 (1H, s, D₂O exchangeable NHCHO). 10.84 (1H, d, J=9.6Hz, D₂O exchangeable, NHCHO).

Description 3 (Intermediate for Examples 4 and 5)

3-(Ethoxymethoxy)propan-1-ol

A solution of chloroethylethyl ether (50mmol) in dry tetrahydrofuran (10ml) was added dropwise at 0-5°C to a stirred solution of 1,3-propanediol (150mmol) in dry tetrahydrofuran (100ml) and N,N-diisopropylethylamine (75mmol). The mixture was stirred for 2 hours at room temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography on silica, eluting with dichloromethane:methanol (98:2) to give the title compound as a colourless oil (5.6g, 83%); v_{max} (Film) 3420, 2980, 2940, 2880, 1490, 1445, 1390 and 1180 cm⁻¹; δ_{H} (CDCl₃) 1.20 (3H, t, J=6.5Hz, CH₃CH₂), 1.8 (2H, m, CH₂CH₂CH₂), 3.2 (1H, s, OH), 3.6 (6H, m, CH₂OH, CH₂O and CH₃CH₂), 4.8 (2H, s, OCH₂O).

Examples

The following compounds of formula (I) were prepared.

Example No	R ₁	R ₂
1	Н	(CH ₃) ₂ CH
2	н	сн₃

(continued)

Example No	R ₁	R ₂
3	ОН	(CH ₃) ₂ CH
4	ОН	C₂H ₅
5	Н	C₂H₅

Example 1

5

10

15

20

25

30

35

40

45

50

55

2-Amino-9-[3-(isopropoxymethoxy)propoxy)purine

a) A mixture of 4-chloro-2.5-diformamido-6-[3-(isopropoxymethoxy)propoxyamino]pyrimidine (3.3g, 9.12mmol) and diethoxymethyl acetate (10ml) was heated at 120°C for 1hr. The solution was then evaporated and the residue taken up into methanol (30ml) and concentrated aqueous ammonia (3ml). After 1hr. at 20°C the solvent was removed and the residue purified by column chromatography on silica gel eluting with hexane:ethyl acetate (1:1) to afford 6-chloro-2-formamido-9-[3-(isopropoxymethoxy)propoxy]purine (1.89g; 60%), v_{max} (KBr) 2970, 1697, 1609, 1591, 1503, 1383cm⁻¹; δ_{H} [(CD₃)₂SO], 1.10 (6H, d, J=6.3Hz, 2 x CH₃), 1.97 (2H, quintet, J=6.3Hz, CH₂CH₂CH₂), 3.67 (2H, t, J=6.3Hz, CH₂OC), 3.77 (1H, septet, J=6.3Hz, CH), 4.49 (2H, t, J=6.3Hz, CH₂ON), 4.65 (2H, s, OCH₂O), 8.81 (1H, s, H-8), 9.37 (1H, d, J=9.1Hz, CHO). 11.30 (1H, br.s, J=9.1Hz, NH).

b) A mixture of 6-chloro-2-formamido-9-[3-(isopropoxymethoxy)propoxy]purine (1.86g, 5.40mmol), 10% palladium on charcoal (190mg), triethylamine (3.8ml, 27mmol) and methanol (30ml) was stirred under an atmosphere of hydrogen at 20°C for 4hr. The suspension was filtered, the catalyst washed with chloroform and the combined filtrates evaporated under reduced pressure. The residue was dissolved in dichloromethane (50ml), washed with saturated brine-water (2:1), dried (magnesium sulphate) and evaporated. The residue was dissolved in 0.5M sodium methoxide in methanol (21.6ml) and heated at reflux for 1hr. The solution was taken to neutrality using AMBERLITE IR 120(H) and evaporated. The residue was purified by column chromatography on silica gel eluting with chloroform-methanol (20:1) affording the title compound (630mg, 41%) after recrystallisation from acetone-hexane; v_{max}(KBr) 3333, 3192, 1661, 1623, 1577, 1516, 1433 cm⁻¹; $\delta_{\rm H}$ [(CD₃)₂SO] 1.09 (6H, d,J 6.05 Hz, 2 x CH₃), 1.95 (2H, quintet, J 6.6 and 6.3 Hz, CH₂CH₂CH₂), 3.63 (2H, t, J=6.3Hz, CH₂OC), 3.77 (1H, septet, J=6.0Hz, CH), 4.39 (2H, J=6.6Hz, CH₂ON), 4.64 (2H, s, OCH₂O), 6.69 (2H, br.s, D₂O exchangeable, NH₂), 8.31 (1H, s, H-8), 8.59 (1H, s, H-6). Found: C, 51.21; H, 6.84; N, 24.82%; C₁₂H₁₉N₅O₃ requires: C, 51.22; H, 6.82; N, 24.89%.

Example 2

2-Amino-9-[3-(methoxymethoxy)propoxyl]purine

a) A mixture of 4-chloro-2,5-diformamido-6-[3-(methoxymethoxy)propoxy]pyrimidine (1.2g, 3.80mmol) and diethoxymethyl acetate (10ml) was heated at 120°C for 1hr. then cooled and evaporated. The residue was taken up into methanol (10ml) and concentrated aqueous ammonia (1ml) and stirred at 20°C for 1hr. The solvent was then removed in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate-hexane (1:1) affording 6-chloro-2-formamido-9-[3-(methoxymethoxy)propoxy]purine (0.45g, 1.42mmol) which was dissolved in methanol (30ml), and treated with excess triethylamine (1ml). The flask was flushed with nitrogen, palladium on carbon (10%, 40mg) was added and the mixture was hydrogenated at S.T.P. until hydrogen uptake ceased. The reaction mixture was filtered, the filtrate evaporated in vacuo and the residue purified by crystallisation from methanol to give 2-formamido-9-[3-(methoxymethoxy)propoxy]purine as colourless crystals (0.4g, 100%) mp. 115-116°C. λ_{max} (MeOH) 231 (ϵ 23,880), 255 (8120) and 290nm (9430); ν_{max} (KBr) 3120, 3070, 2930, 2810, 1690, 1610, 1510, 1445, 1410, and 1375cm⁻¹. δ_{H} [(CD₃)₂SO] 1.98 (2H, quintet, J=6.3Hz, CH₂CH₂CH₂), 3.25 (3H, s, OCH₃), 3.67 (2H, t, J=6.3Hz, CH₂OCH₂OCH₃), 4.5 (2H, t, J 6.3 Hz, CH₂ON), 4.58 (2H, s, OCH₂O), 8.73 (1H, s, 8-H), 8.98 (1H, s, 6-H), 9.42 (1H, d, J=9.6Hz, collapses to singlet on D₂O NHCHO), 11.1 (1H, d, J=9.6Hz, D₂O exchangeable NHCHO). (Found: C, 47.11; H, 5.27; N, 24.18%, C₁₁H₁₆N₅O₄ requires: C, 46.97; H, 5.37; N, 24.90%).

b) A solution of 2-formamido-9-[3-(methoxymethoxy)propoxy]purine (0.4g, 1.42mmol) in methanol (15ml) was treated with sodium methoxide solution (0.5M, 5ml) and heated to reflux for 2hr. The cooled reaction mixture was neutralised with AMBERLITE IR 120H resin, filtered and the solvent was removed in vacuo.

The residue was dissolved in ethyl acetate (50ml), washed with water (2 x 20ml), dried (MgSO₄), filtered and the filtrate evaporated in vacuo. The residue was purified by column chromatography on silica eluting with ethyl acetate, followed by crystallisation from acetone/hexane to give the title compound as colourless crystals (0.2g, 55%) mp 80-1°C. λ_{max} (MeOH) 223 (ϵ 26,375), 245 (5020) and 310 nm (7320); ν_{max} (KBr) 3320, 3180, 3080, 2940. 2880, 1645, 1610, 1580, 1505. 1465, and 1430cm⁻¹; δ_{H} [(CD₃)₂SO] 1.95 (2H, quintet, J=6.3Hz, CH₂CH₂CH₂), 3.25 (3H, s, OCH₃), 3.63 (2H, t, J=6.3Hz, CH₂OCH₂OCH₃), 4.40 (2H, t, J=6.3Hz, CH₂ON), 4.57 (2H, s, OCH₂O), 6.68 (2H, br.s, D₂O exchangeable NH₂), 8.3 (1H, s, 8-H), 8.59 (1H, s, 6-H). (Found: C, 47.34, H 6.08% C₁₀H₁₅N₆O₃ requires: C, 47.42; H, 59.7%).

Example 3

10

15

20

25

30

35

40

9-[3-(Isopropoxymethoxy)propoxy]guanine

- a) Diethyl azodicarboxylate (1.24ml, 7.87mmol) was added to a cooled solution of 2-[(bis-l-butoxycarbonyl)amino]-9-hydroxy-6-methoxypurine (2.0g, 5.23mmol), 3-(isopropoxymethoxy)propanol (0.85g, 5.75mmol), and triphenyl-phosphine (2.06g, 7.87mmol) in THF (50ml). The reaction mixture was stirred for 16 hours, and then evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane-acetone, 3:1) affording 2-[(bis-t-butoxycarbonyl)amino]-9-[3-(isopropoxymethoxy)propoxy]-6-methoxypurine (2.23g, 83%). v_{max} (KBr), 2975, 1786, 1761, 1597 and 1389 cm⁻¹; $\delta_H[(CD_3)_2SO]$ 1.90 (6H, d, J=6.3Hz, 2xCH₃), 1.40 (18H, s, 6xCH₃), 1.96 (2H, quintet, J=6.3Hz, OCH₂CH₂CH₂O), 3.64 (2H, t, J=6.3Hz, CH₂O), 3.78 (1H, quintet, J=6.3Hz, CHO), 4.08 (2H, s, OCH₃), 4.48 (2H, t, J=6.3Hz, CH₂ON), 4.63 (2H, s, OCH₂O), 8.74 (1H, s, H-8). (Found: C, 54.09; H, 7.59; N, 13.65%. C₂₃H₃₇N₅O₈ requires: C, 53.99; H, 7.30; N, 13.69%).
- b) A solution of 2-[(bis-t-butoxycarbonyl)amino]-9-[3-(isopropoxymethoxy)propoxy]-6-methoxypurine in 0.5M sodium methoxide in methanol (33ml) was heated at reflux temperature for 16 hours. 2-Mercaptoethanol (1.3ml) was then added and the reaction mixture heated for a further 48 hours. The suspension was cooled, neutralised and evaporated to dryness. The residue was purified by reverse phase chromatography eluting with water then water-methanol-concentrated aqueous ammonia (10:1:1), to afford the title compound (390mg; 34%) after recrystallisation from water. $v_{max}(KBr)$ 3332, 3131, 3168, 1695, 1599, 1586 and 1384 cm⁻¹; $\delta_H[(CD_3)_2SO]$ 1.09 (6H, d, J=6.1Hz, 2xCH₃), 1.91 (2H, quintet, J=6.6Hz, 6.3Hz, OCH₂CH₂CH₂O), 3.61 (2H, t, J=6.3Hz, CH₂O), 3.77 (1H, septet, J=6.0Hz, CHO), 4.32 (2H, t, J=6.6Hz, CH₂ON), 4.63 (2H, s, OCH₂O), 6.58 (2H, br.s, NH₂), 7.93 (1H, s, H-8), 0.64 (1H, br.s, H-1). (Found: C, 48.58; H, 6.39; N, 23.44%. $C_{12}H_{19}N_5O_4$ requires C: 48.47; H, 6.45; N, 23.56%).

Example 4

9-[3-(Ethoxymethoxy)propoxy]guanine

- a) A mixture of 2-[(bis-t-butoxycarbonyl)arnino]-9-hydroxy-6-methoxypurine (2.85g, 7.48mmol), 3-(ethoxymethoxy)propan-1-ol (1.0g, 7.46mmol) and triphenylphosphine (2.62g, 10mmol) in dry tetrahydrofuran (50ml) was cooled to 0-5°C and treated with a solution of diethyl azodicarboxylate (1.74g, 10mmol) in dry tetrahydrofuran (10ml), the solution was then allowed to stand at room temperature ovemight. The solvent was then removed in vacuo and the residue was purified by column chromatography on silica, eluting with hexane:acetone (95:5) to give 2-[(bis-t-butoxycarbonyl)amino]-9-[3-(ethoxymethoxy)propoxy]-6-methoxypurine as a yellow gum (1.7g, 46%). v_{max} (Film) 3120, 2980, 2940, 2860, 1795, 1760, 1595, 1475, 1410, 1390, 1370, 1280 and 1255 cm⁻¹; δ_{H} [(CD₃)₂SO] 1.10 (3H, t, J=6.8Hz, CH₃CH₂), 1.4 (18H, s, CH₃x6), 1.96 (2H, m, J=6.3Hz, CH₂CH₂CH₂), 3.47 (2H, q, J=6.8Hz, CH₃CH₂), 3.64 (2H, t, J=6.3Hz, CH₂CH₂ON), 4.07 (3H, s, OCH₃), 4.47 (2H, t, J=6.3Hz, OCH₂CH₂), 4.6 (2H, s, OCH₂O), 8.74 (1H, s, 8-H). (Found: C, 52.57; H, 7.18; N, 13.92%; C₂₂H₃₅N₅O₈ requires: C, 53.10; H, 7.09; N, 14.07%) MS (70eV) m/z = 498 (MH+).
- b) A solution of 2-[(bis-1-butoxycarbonyl)amino]-9-[3-(ethoxymethoxy)propoxy]-6-methoxypurine (0.7g, 1.4mmol) in sodium methoxide (0.5M, 25ml) was heated to reflux for 18hr. 2-Mercaptoethanol (1ml) was then added to the solution and heating was continued for a further 18hr. The cooled reaction mixture was neutralised with hydrochloric acid solution (0.5M) and the solvent was removed in vacuo. The residue was purified by column chromatography on silica eluting with chloroform:methanol (90:10) followed by crystallisation from methanol to give the title compound as colourless crystals (0.1g, 25%) mp 242-5°C. λ_{max}(MeOH) 250nm (14080); v_{max}(KBr) 3320, 3160, 2870, 2730, 1690, 1645, 1590, 1535, 1470, 1385 and 1320cm⁻¹; δ_H[(CD₃)₂SO] 1.11 (3H, t, J=7.1Hz, CH₂CH₃), 1.92 (2H, m, J=6.5Hz, CH₂CH₂CH₂), 3.5 (2H, q, J=7.1Hz, CH₂CH₃), 3.61 (2H, t, J=6.3Hz, CH₂CH₂ON), 4.32 (2H, t, J=6.3Hz, OCH₂CH₂), 4.60 (2H, s, OCH₂O), 6.57 (2H, br.s, D₂O exchangeable, NH₂), 7.92 (1H, s, 8-H), 10.63 (1H, br.s, D₂O

exchangeable, NH). (Found: C, 46.64; H, 5.78; N, 24.55%; $C_{11}H_{17}N_5O_4$ requires: C, 46.63; H, 6.05; N, 24.72%) MS (70eV) m/z = 284 (MH+).

Example 5

5

10

15

20

25

30

35

40

45

55

2-Amino-9-[3-(ethoxymethoxy)propoxy]purine

a) A solution of 2-[(bis-t-butoxycarbonyl)amino]-6-chloro-9-hydroxypurine (2.4g, 7.4mmol), 3-(ethoxymethoxy)propan-1-ol (1.0g, 7.4mmol) and triphenylphosphine (2.62g, 10mmol) in dry tetrahydrofuran (35ml) was cooled to 0-5°C and treated with a solution of diethyl azodicarboxylate (1.75g, 10mmol) in dry tetrahydrofuran (10ml). The solution was allowed to stand at room temperature overnight, the solvent was evaporated in vacuo and the residue purified by column chromatography on silica eluting with chloroform:methanol (98:2) followed by a further column eluting with hexane:acetone (90:10) to give 2-[(bis-t-butoxycarbonyl)amino]-6-chloro-9-[3-(ethoxymethoxy)propoxy]purine as a colourless gurn (1.7g, 46%). $v_{max}(Film)$ 3100, 2980, 2930, 2880, 1795, 1760, 1600, 1560, 1425, 1370, 1280 and 1155cm⁻¹: $\delta_{H}[(CD_3)_2SO]$ 1.11 (3H, t, J=7.1Hz, CH₃CH₂), 1.4 (18H, s, CH₃x6), 2.01 (2H, m, J=6.3Hz, CH₂CH₂CH₂), 3.5 (2H, q, J=7.1Hz, CH₃CH₂), 3.64 (2H, t, J=6.3Hz, CH₂CH₂ON), 4.55 (2H, t, J=6.3Hz, OCH₂CH₂), 4.6 (2H, s, OCH₂O), 9.03 (1H, s, 8-H). (Found: C, 50.28; H, 6.55; N, 13.70%; C₂₁H₃₂N₅O₇Cl requires: C, 50.24; H, 6.42; N, 13.95%); MS (70eV) m/z = 502 (MH+).

b) To a solution of 2-[(bis-t-butoxycarbonyl)amino]-6-chloro-9-[3-(ethoxymethoxy)propoxy]purine (1.5g, 2.98mmol) in methanol (25ml) and triethylamine (1ml) under a nitrogen atmosphere was added palladium on carbon (5%, 0.1g) and the mixture was hydrogenated at S.T.P. until hydrogen uptake ceased. The reaction mixture was filtered and evaporated in vacuo and, the residue was purified by column chromatography on silica, eluting with ethyl acetate:hexane (50:50) to give 2-[(bis-t-butoxycarbonyl)amino]-9-[3-(ethoxymethoxy)propoxy]purine as a colourless gum. (1.2g, 86%). v_{max} (Film) 3100, 2980, 2930, 2880, 1790, 1735, 1600, 1575, 1480, 1455, 1390, 1370, 1280 and 1250cm⁻¹; δ_{H} [(CD₃)₂SO] 1.11 (3H, t, J=7.1Hz, CH₂CH₃), 1.38 (18H, s, CH₃x6), 1.98 (2H, m, J=6.3Hz, CH₂CH₂CH₂), 3.5 (2H, q, J=7.1Hz, CH₂CH₃), 3.65 (2H, t, J=6.3Hz, CH₂CH₂ON), 4.52 (2H, t, J=6.3Hz, OCH₂CH₂), 4.60 (2H, s, OCH₂O), 8.98 (1H, s, 8-H), 9.21 (1H, s, 6-H). (Found: C, 53.88: H, 7.26; N, 15.13%; C₂₁H₃₃N₅O₇ requires: C, 53.94, H, 7.11; N, 14.98%) MS (70eV) m/z = 468 (MH+).

c) 2-[(Bis-t-butoxycarbonyl)amino]-9-[3-(ethoxymethoxy)propoxy]purine (0.5g, 1.07mmol) was dissolved in sodium methoxide solution (0.5M, 30ml) and heated to reflux for 18hr. The cooled reaction mixture was evaporated in vacuo and the residue was purified by column chromatography on silica, eluting with ethyl acetate:hexane (60:40) followed by crystallisation from acetone:hexane to give the title compound as colourless crystals (0.25g, 89%) mp 73-4°C. λ_{max} (MeOH) 224, 246 and 310nm. (5610, 3750 and 20,700); v_{max} (KBr) 3370, 3330, 3200, 3080, 2930, 2880, 1645, 1615, 1570, 1505, 1475, 1425, 1320, 1280 and 1220cm⁻¹; δ_{H} [(CD₂)₂SO] 1.11 (3H, t, J=7.1Hz, CH₂CH₃), 1.95 (2H, m, J=6.3Hz, CH₂CH₂OH₂), 3.50 (2H, q, J=7.1Hz, CH₂CH₃), 3.63 (2H, t, J=6.3Hz, CH₂CH₂ON), 4.4 (2H, t, J=6.6Hz, OCH₂CH₂), 4.61 (2H, s, OCH₂O), 6.69 (2H, br.s, D₂O exchangeable, NH₂), 8.31 (1H, s, 8-H), 8.59 (1H, s, 6-H). (Found: C, 49.48; H, 6.50; N, 26.33%; C₁₁H₁₇N₅O₃ requires: C, 49.42; H, 6.41; N, 26.20%); MS (70eV) m/z = 268 (MH+).

Biological Evaluation

Procedure

Compounds were administered as single doses of 0.2mmole/kg in 0.lml of 1% carboxymethyl cellulose by oral gavage to female Balb/c mice weighing 20g. Food was withheld from the mice for 18 hours prior to the start of the experiment. Blood was collected by cardiac puncture using heparinised syringes 15, 60 and 180 mins after dosing. Equal volumes (0.2ml) from 3 mice were pooled at each time point and 0.6ml of ice-cold ethanol was added. Following chilling at -20°C and centrifugation, 0.5ml of supernatant was dried under reduced pressure. The sample was then reconstituted with 0.5ml of 0.4M NH₄OAc (pH 6.0) and analysed by HPLC.

Results

	Compound	9-(3-Hydroxypropoxy)quanine (El				
5	of Example	conc. (µM) in blood at				
	<u>No</u> .	time (mi	n) after	dosing		
10		<u>15</u>	<u>60</u>	_		
	1 2	137 36	54 14	Expt. 1		
15	El	5.2	2.0			
20	1 3 4 5	76 7.5 2.1 7.9	12 4.7 4.6 10	Expt. 2		
	El	11	3.3			

25 Claims

30

45

55

Claims for the following Contracting States: AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE

1. A compound of formula (I) or a pharmaceutically acceptable salt thereof:

wherein

 ${\rm R_1}$ is hydrogen or hydroxy; and ${\rm R_2}$ is ${\rm C_{1-6}}$ alkyl.

- 2. A compound according to claim 1 wherein R₁ is hydrogen.
 - 3. A compound according to claim 1 or 2 wherein R_2 is iso-propyl.
 - 4. A compound selected from the group consisting of:

2-amino-9-[3-(isopropoxymethoxy)propoxy)purine,

2-amino-9-[3-(methoxymethoxy)propoxy]purine,

- 9-[3-(isopropoxymethoxy)propoxy]guanine,
- 9-[3-(ethoxymethoxy)propoxy]guanine and
- 2-amino-9-[3-(ethoxymethoxy)propoxy]purine.

5

10

15

20

25

30

35

40

45

50

55

- 5. A process for the preparation of a compound according to claim 1, which process comprises either
 - i) imidazole ring closure of a compound of formula (II):

(II)

- wherein Q is a group capable of cyclising to form an imidazole ring, such as amino or an amino derivative, for example, formylamino, or
 - ii) pyrimidine ring closure of a compound of formula (III):

(III)

- wherein Y is amino or C_{1-6} alkoxy, with a condensing agent capable of cyclising to form a pyrimidine ring having a 2-NHR_x substituent, resulting in a compound of formula (I) wherein R_1 is hydroxy; or
- iii) condensing a compound of formula (IV):

with a side chain intermediate of formula (V):

 $R_5O(CH_2)_3Z$ (V)

5

10

wherein Z is a leaving group;

and wherein, in formulae (II) to (V), R_5 is CH_2OR_2 or a group or atom convertible thereto, R_1 ' is R_1 or a group or atom convertible thereto, R_x is hydrogen or an amino protecting group; and thereafter, when desired or necessary, converting R_5 and/or R_1 ', when other than CH_2OR_2 and/or R_1 , to CH_2OR_2 and/or R_1 respectively, and/or converting R_5 and/or R_1 ' when CH_2OR_2 and/or R_1 to other CH_2OR_2 and/or R_1 and/or converting R_x when an amino protecting group, to hydrogen.

6. An intermediate of formula (II) as defined in claim 5, wherein R_5 is CH_2OR_2 wherein R_2 is as defined in claim 1.

7. An intermediate compound selected from:

4-[3-(isopropoxymethoxy)propoxyamine and

3-methoxymethoxypropoxyamine.

20

25

- 8. A pharmaceutical composition comprising a compound according to any one of claims 1 to 4, and a pharmaceutically acceptable carrier.
- 9. A compound according to any one of claims 1 to 4 for use as an active therapeutic substance.
- 10. A compound according to any one of claims 1 to 4 for use in treating viral infections.
- 11. Use of a compound according to any one of claims 1 to 4 in the manufacture of a medicament for use in the treatment of viral infections.

30

35

40

45

55

Claims for the following Contracting State: ES

1. A process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof

(I)

wherein

R₁ is hydrogen or hydroxy; and

R₂ is C₁₋₆ alkyl;

which process comprises either

i) imidazole ring closure of a compound of formula (II):

(II)

wherein Q is a group capable of cyclising to form an imidazole ring, such as amino or an amino derivative, for example, formylamino; or

ii) pyrimidine ring closure of a compound of formula (III):

5

10 .

15

20

25

30

35

45

50

55

(III)

wherein Y is amino or C_{1-6} alkoxy, with a condensing agent capable of cyclising to form a pyrimidine ring having a 2-NHR_x substituent, resulting in a compound of formula (I) wherein R₁ is hydroxy; or

iii) condensing a compound of formula (IV):

with a side chain intermediate of formula (V):

$$H_{5}O(CH_{2})_{3}Z$$
 (V)

wherein Z is a leaving group;

and wherein, in formulae (II) to (V). R_5 is CH_2OR_2 or a group or atom convertible thereto, R_1 ' is R_1 or a group or atom convertible thereto, R_2 is hydrogen or an amino protecting group; and thereafter, when desired or necessary,

converting R_5 and/or R_1 ', when other than CH_2OR_2 and/or R_1 , to CH_2OR_2 and/or R_1 respectively, and/or converting R_5 and/or R_1 ' when CH_2OR_2 and/or R_1 lo other CH_2OR_2 and/or R_1 and/or converting R_x when an amino protecting group, to hydrogen.

- A process according to claim 1 wherein R₁ is hydrogen.
 - 3. A process according to claim 1 or 2 wherein R₂ is iso-propyl.
 - 4. A process according to claim 1 for the preparation of a compound selected from the group consisting of:
 - 2-amino-9-[3-(isopropoxymethoxy)propoxy)purine,
 - 2-amino-9-[3-(methoxymethoxy)propoxy]purine,
 - 9-[3-(isopropoxymethoxy)propoxy]guanine,
 - 9-[3-(ethoxymethoxy)propoxy]guanine and
 - 2-amino-9-[3-(ethoxymethoxy)propoxy]purine.
 - 5. An intermediate of formula (II) as defined in claim 1, wherein R₅ is CH₂OR₂ wherein R₂ is as defined in claim 1.
 - 6. An intermediate compound selected from:
 - 4-[3-(isopropoxymethoxy)propoxyamine and
 - 3-methoxymethoxypropoxyamine.
 - 7. Use of a compound of formula (I) as defined in claim 1, in the manufacture of a medicament for use in the treatment of viral infections.

Patentansprüche

10

15

20

25

30

35

40

45

50

55

Patentansprüche für folgende Vertragsstaaten : AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE

1. Verbindung der Formel (I) oder ein pharmazeutisch verträgliches Salz davon:

(I)

in der

- R₁ ein Wasserstoffatorn oder eine Hydroxylgruppe ist; und R₂ ein C₁₋₆-Alkylrest ist.
- Verbindung nach Anspruch 1, in der R₁ ein Wasserstoffatom ist.

- Verbindung nach Anspruch 1 oder 2, in der R₂ eine iso-Propylgruppe ist.
- 4. Verbindung, ausgewählt aus der Gruppe:

5

10

15

20

25

30

35

40

50

55

- 2-Amino-9-[3-(isopropoxymethoxy)propoxy]purin,
- 2-Amino-9-[3-(methoxymethoxy)propoxy]purin,
- 9-[3-(Isopropoxymethoxy)propoxy]guanin,
- 9-[3-(Ethoxymethoxy)propoxy]guanin und
- 2-Amino-9-[3-(ethoxymethoxy)propoxy]purin.
- 5. Verfahren zur Herstellung einer Verbindung nach Anspruch 1. wobei das Verfahren entweder
 - i) einen Imidazolringschluß einer Verbindung der Formel (II):

(II)

- in der Q ein zur Zyklisierung unter Bildung eines Imidazolrings fähiger Rest, wie eine Aminogruppe oder ein Aminoderivat, zum Beispiel eine Formylaminogruppe, ist; oder ii) einen Pyrimidinringschluß einer Verbindung der Formel (III):
 - NH2
 NH2
 (CH2)3OR5

(III)

- in der Y eine Aminogruppe oder ein C₁₋₆-Alkoxyrest ist, mit einem zur Zyklisierung unter Bildung eines Pyrimidinrings fähigen Kondensationsmittel mit einem 2-NHR_x Substituenten, wobei eine Verbindung der Formel (I) erhalten wird, in der R₁ eine Hydroxylgruppe ist; oder
 - iii) Kondensation einer Verbindung der Formel (IV):

mit einem Seitenkettenzwischenprodukt der Formel (V):

$$R_{5}O(CH_{2})_{3}Z$$
 (V)

in der Z eine Abgangsgruppe ist;

5

10

40

50

55

und wobei in den Formeln (II) bis (V) R₅ CH₂OR₂ oder ein dazu umwandelbarer Rest oder Atom ist, R₁' R₁ oder ein dazu umwandelbarer Rest oder Atom ist, R₂ ein Wasserstoffatom oder eine Aminoschutzgruppe ist; und anschließend, falls gewünscht oder erforderlich, Umwandeln von R₅ und/oder R₁', wenn sie andere Reste als CH₂OR₂ und/oder R₁ sind, in jeweils CH₂OR₂ und/oder R₁, und/oder Umwandeln von R₅ und/oder R₁', wenn sie CH₂OR₂ und/oder R₁ sind, in andere Reste CH₂OR₂ und/oder R₁ und/oder Umwandeln von R₂, wenn es eine Aminoschutzgruppe ist, in ein Wasserstoffatom, umfaßt.

- 6. Zwischenprodukt der Formel (II) nach Anspruch 5, in dem R₅ CH₂OR₂ ist, wobei R₂ die in Anspruch 1 angegebene Bedeutung hat.
- 7. Zwischenprodukt, ausgewählt aus 30
 - 4-[3-(Isopropoxymethoxy)propoxy]amin und
 - 3-Methoxymethoxypropoxyamin.
- Arzneimittel, umfassend eine Verbindung nach einem der Ansprüche 1 bis 4 und einen pharmazeutisch verträg lichen Träger.
 - 9. Verbindung nach einem der Ansprüche 1 bis 4 zur Verwendung als therapeutischen Wirkstoff.
 - 10. Verbindung nach einem der Ansprüche 1 bis 4 zur Verwendung bei der Behandlung von Virusinfektionen.
 - 11. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 4 zur Herstellung eines Medikaments zur Verwendung bei der Behandlung von Virusinfektionen.
- ⁴⁵ Patentansprüche für folgenden Vertragsstaat : ES
 - 1. Verfahren zur Herstellung einer Verbindung der Formel (I) oder eines pharmazeutisch verträglichen Salzes davon:

wobei

5

10

15

20

25

30

35

40

45

50

55

 R_1 ein Wasserstoffatom oder eine Hydroxylgruppe ist; und R_2 ein C_{1-6} -Alkylrest ist;

wobei das Verfahren entweder

i) einen Imidazolringschluß einer Verbindung der Formel (II):

(II)

In der Q ein zur Zyklisierung unter Bildung eines Imidazolrings fähiger Rest, wie eine Aminogruppe oder ein Aminoderivat, zum Beispiel eine Formylaminogruppe, ist; oder ii) einen Pyrimidinringschluß einer Verbindung der Formel (III):

(III)

in der Y eine Aminogruppe oder ein C_{1-6} -Alkoxyrest ist, mit einem zur Zyklisierung unter Bildung eines Pyrimidinnings fähigen Kondensationmittel mit einem 2-NHR_x Substituenten, wobei eine Verbindung der Formel (I) erhalten wird, in der R₁ eine Hydroxylgruppe ist; oder

iii) Kondensation einer Verbindung der Formel (IV):

mit einem Seitenkettenzwischenprodukt der Formel (V):

$$H_5O(CH_2)_3Z$$
 (V)

in der Z eine Abgangsgruppe ist;

5

10

35

40

45

und wobei in den Formeln (II) bis (V) R₅ CH₂OR₂ oder ein dazu umwandelbarer Rest oder Atom ist, R₁' R₁ oder ein dazu umwandelbarer Rest oder Atom ist, R₂ ein Wasserstoffatom oder eine Aminoschutzgruppe ist; und anschließend, falls gewünscht oder erforderlich. Umwandeln von R₅ und/oder R₁', wenn sie andere Reste als CH₂OR₂ und/oder R₁ sind, in jeweils CH₂OR₂ und/oder R₁, und/oder Umwandeln von R₅ und/oder R₁, wenn sie CH₂OR₂ und/oder R₁ sind, in andere Reste CH₂OR₂ und/oder R₁ und/oder Umwandeln von R₂, wenn es eine Aminoschutzgruppe ist, in ein Wasserstoffatom, umfaßt.

- 2. Verfahren nach Anspruch 1, wobei R, ein Wasserstoffatom ist.
- 3. Verfahren nach Anspruch 1 oder 2, wobei R2 eine iso-Propylgruppe ist.
- Verfahren nach Anspruch 1 zur Herstellung einer Verbindung, ausgewählt aus der Gruppe:
 - 2-Amino-9-[3-(isopropoxymethoxy)propoxy]purin,
 - 2-Amino-9-[3-(methoxymethoxy)propoxy]purin,
 - 9-[3-(isopropoxymethoxy)propoxy]guanin,
 - 9-[3-(Ethoxymothoxy)propoxy]guanin und
 - 2-Amino-9-[3-(ethoxymethoxy)propoxy]purin.
 - Zwischenprodukt der Formel (II) nach Anspruch 1, in dem R₅ CH₂OR₂ ist, wobei R₂ die in Anspruch 1 angegebene Bedeutung hat.
 - 6. Zwischenprodukt. ausgewählt aus
 - 4-[3-(Isopropoxymethoxy)propoxy]amin und
 - 3-Methoxymethoxypropoxyamin.
 - 7. Verwendung einer Verbindung der Formel (I) nach Anspruch 1 zur Herstellung eines Arzneimittels zur Verwendung bei der Behandlung von Virusinfektionen.
- 50 Revendications

Revendications pour les Etats contractants suivants : AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE

Composé de formule (I) ou un de ses sels pharmaceutiquement acceptables :

formule dans laquelle

5

10

15

20

25

30

35

40

50

55

 R_1 représente l'hydrogène ou un groupe hydroxy ; et R_2 représente un groupe alkyle en C_1 à C_6 .

- 2. Composé suivant la revendication 1, dans lequel R₁ représente l'hydrogène.
- 3. Composé suivant la revendication 1 ou 2, dans lequel R2 représente un groupe isopropyle.
- 4. Composé choisi dans le groupe consistant en :

2-amino-9-[3-(isopropoxyméthoxy)propoxy)purine,

2-amino-9-[3-(méthoxyméthoxy)propoxy)purine,

9-[3-(isopropoxyméthoxy)propoxy)guanine.

9-[3-(éthoxyméthoxy)propoxy)guanine, et

2-amino-9-[3-(éthoxyméthoxy)propoxy)purine.

- 5. Procédé pour la préparation d'un composé suivant la revendication 1, procédé qui comprend
 - i) la cyclisation, formant un noyau imidazole, d'un composé de formule (II) :

45 (II)

dans laquelle Q représente un groupe apte à la cyclisation pour former un noyau imidazole, tel qu'un groupe amino ou un dérivé à lonction amino, par exemple un groupe formylamino ; ou ii) la cyclisation, formant un noyau pyrimidine, d'un composé de formule (III) :

(III)

dans laquelle Y représente un groupe amino ou alkoxy en C_1 à C_6 , avec un agent de condensation aple à la cyclisation pour former un noyau pyrimidine ayant un substituant 2-NHR_x, avec pour résultat un composé de formule (I) dans laquelle R_1 représente un groupe hydroxy :

iii) la condensation d'un composé de formule (IV) :

20

5

10

15

OH N NH

(IV)

30

25

avec un intermédiaire de chaîne latérale de formule (V) :

$$R_5O(CH_2)_3Z (V)$$

35

dans laquelle Z représente un groupe partant ;

procédé dans lequel, dans les formules (II) à (V), R_5 représente un groupe CH_2OR_2 ou un groupe ou atome pouvant être transformé en ce groupe, R_1 ' représente un groupe R_1 ou un groupe ou atome pouvant être transformé en ce groupe, R_{χ} représente l'hydrogène ou un groupe protecteur de la fonction amino ; puis, forsque cela est désiré ou nécessaire, la transformation de R_5 et/ou R_1 ', lorsqu'ils représentent des groupes autres que CH_2OR_2 et/ou R_1 , respectivement en des groupes CH_2OR_2 et/ou R_1 , et/ou la transformation de R_5 et/ou R_1 ', lorsqu'ils représentent des groupes CH_2OR_2 et/ou R_1 , en d'autres groupes CH_2OR_2 et/ou R_1 , et/ou la transformation de R_{χ} . lorsqu'il représente un groupe protecteur de la fonction amino, en l'hydrogène.

45

50

40

- 6. Intermédiaire de formule (II) répondant à la définition suivant la revendication 5, dans lequel R₅ représente un groupe CH₂OR₂ dans lequel R₂ répond à la définition suivant la revendication 1.
- 7. Composé intermédiaire choisi entre :

la 4-[3-(isopropoxyméthoxy)propoxyamine, et la 3-méthoxyméthoxypropoxyamine.

8. 55

- 8. Composition pharmaceutique comprenant un composé suivant l'une quelconque des revendications 1 à 4 et un support pharmaceutiquement acceptable.
- 9. Composé suivant l'une quelconque des revendications 1 à 4, destiné à être utilisé comme substance thérapeutique

active.

- 10. Composé suivant l'une quelconque des revendications 1 à 4, destiné à être utilisé dans le traitement d'infections virales.
- 11. Utilisation d'un composé suivant l'une quelconque des revendications 1 à 4 dans la production d'un médicament destiné à être utilisé dans le traitement d'infections virales.

10 Revendications pour l'Etat contractant suivant : ES

1. Procédé pour la préparation d'un composé de formule (I) ou d'un de ses sels pharmaceutiquement acceptables :

15

5

(ĊH₂)30CH2OR2

(I)

25

30

formule dans laquelle

 R_1 représente l'hydrogène ou un groupe hydroxy; et R_2 représente un groupe alkyle en C_1 à C_6 ;

procédé qui comprend

i) la cyclisation, formant un noyau imidazole, d'un composé de formule (II) :

35

45

40

(II)

50

dans laquelle Q représente un groupe apte à la cyclisation pour former un noyau imidazole, tel qu'un groupe amino ou un dérivé à fonction amino, par exemple un groupe formylamino ; ou ii) la cyclisation, formant un noyau pyrimidine, d'un composé de formule (III) :

55

(III)

dans laquelle Y représente un groupe amino ou alkoxy en C_1 à C_6 , avec un agent de condensation apte à la cyclisation pour former un noyau pyrimidine ayant un substituant 2-NHR $_x$, avec pour résultat un composé de formule (I) dans laquelle R_1 représente un groupe hydroxy : ou

iii) la condensation d'un composé de formule (IV) :

5

10

15

20

25

30

35

40

50

55

avec un intermédiaire de chaîne latérale de formule (V):

$$R_5O(CH_2)_3Z$$
 (V)

dans laquelle Z représente un groupe partant ;

procédé dans lequel, dans les formules (II) à (V), R_5 représente un groupe CH_2OR_2 ou un groupe ou atome pouvant être transformé en ce groupe, R_1 ' représente un groupe R_1 ou un groupe ou atome pouvant être transformé en ce groupe, R_1 représente l'hydrogène ou un groupe protecteur de la fonction amino ; puis, lorsque cela est désiré ou nécessaire, la transformation de R_5 et/ou R_1 ', lorsqu'ils représentent des groupes autres que CH_2OR_2 et/ou R_1 , respectivement en des groupes CH_2OR_2 et/ou R_1 , et/ou la transformation de R_5 et/ou R_1 ', lorsqu'ils représentent des groupes CH_2OR_2 et/ou R_1 , en d'autres groupes CH_2OR_2 et/ou R_1 , et/ou la transformation de R_2 , lorsqu'il représente un groupe protecteur de la fonction amino, en l'hydrogène.

- 2. Procédé suivant la revendication 1, dans lequel R, représente l'hydrogène.
 - 3. Procédé suivant la revendication 1 ou 2, dans lequel R2 représente un groupe isopropyle.
 - 4. Procédé suivant la revendication 1 pour la préparation d'un composé choisi dans le groupe consistant en :
 - 2-amino-9-[3-(isopropoxyméthoxy)propoxy)purine,
 - 2-amino-9-[3-(méthoxyméthoxy)propoxy)purine.
 - 9-[3-(isopropoxyméthoxy)propoxy)guanine.
 - 9-[3-(éthoxyméthoxy)propoxy)guanine, et
 - 2-amino-9-[3-(éthoxyméthoxy)propoxy)purine.
 - 5. Intermédiaire de formule (II) répondant à la définition suivant la revendication 1, dans lequel R5 représente un

groupe CH₂OR₂ dans lequel R₂ répond à la définition suivant la revendication 1.

6. Composé intermédiaire choisi entre :

- la 4-[3-(isopropoxyméthoxy)propoxyamine, et la 3-méthoxyméthoxypropoxyamine.
- 7. Utilisation d'un composé de formule (I) répondant à la définition suivant la revendication 1 dans la production d'un médicament destiné à être utilisé dans le traitement d'infections virales.