Designing a Machine Learning Model

EXPLORING APPROACHES TO MACHINE LEARNING

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Data-driven decisions and actions

Rule-based approaches to learning

Learning dynamically from changing data using machine learning

Feature extraction from unstructured data using deep learning

Traditional machine learning vs. deep learning

Prerequisites and Course Outline

Prerequisites

Comfortable programming in Python
Some familiarity with ML models
Understanding of basic math

- Mean, standard deviation

Prerequisite Courses

Understanding Machine Learning with Python

How to Think About Machine Learning Algorithms

Building Your First scikit-learn Solution

Course Outline

Approaches to machine learning

Choosing the right machine learning problem

Choosing the right machine learning solution

Building simple ML solutions

Designing machine learning workflows

Building ensemble learning and neural network solutions

Case Study: Sentiment Analysis

Changing Patterns of Online Behavior

"Surf/Browse"

c. 1990 - c. 2000

"Search-Find-Obtain"

c. 2000 - c. 2008

"Share-Discover"

c. 2008 - Present

Share-Discover

Always online
Share with network
Discover through network
Stream of online opinions

Opinions Contain Information

Reviews

Messages

Tweets and Posts

Swipes

Data Analyst

Collect opinions

Extract information from them

Act on that information

Changing Patterns of Online Behavior

Collect Opinions

Scrape/harvest comments, articles, tweets...

Extract Information

Perform sentiment analysis

Act

Buy/sell stocks, target advertising spend,...

Collect Opinions

Researchers use public datasets
Companies use proprietary data
Scrapers use media signals
"Big Data"
Unstructured data

Extract Information

Tag data item with values for sentiments

One/more categorical data series created

Analyze categorical data

Extract Information

Data item to analyze

Tweet, email, message, review, ...

Sentiment identified

"Positive",
"Negative","Neutral"

Categorical variable

+1, 0, -1

Analyzing Categorical Sentiment Data

Logistic Regression

Relationships between variables

Quadrant Analysis

Clusters of data with similar characteristics

Act

Trade financial markets

Change or reallocate ad budgets

Tailor electoral strategy

Decide product recall strategies

Changing Patterns of Online Behavior

Collect Opinions

Scrape/harvest comments, articles, tweets...

Extract Information

Perform sentiment analysis

Act

Buy/sell stocks, target advertising spend,...

Analyst Sentiment Before Earnings

Company Earnings, versus Forecast

Exceeded **Forecast**

Missed **Forecast**

Negative

Positive

Company Earnings Releases

Better or worse than analyst expectations?

Financial Traders

Buy or sell?

Analyst Sentiment Before Earnings

Analyst Sentiment Before Earnings

Analyst Sentiment Before Earnings

Analyst Sentiment Before Earnings

Insight: "Buy the Rumor, Sell the News"

Buy the rumor

If market sentiment was negative, buy even if earnings are poor

Sell the news

If market sentiment was positive, sell even if earnings are great

Polarity Detection for Sentiment Analysis

Sentiment Analysis Systems

Polarity

Positive or negative?

Subjectivity

Subjective or objective?

Aspects

Part or whole?

Opinions Are Very Complex

But sentiment analysis need not be (if we set up the problem right)

Either-or Decisions Are Simple

Human brains are very efficient at making binary decisions

Binary Decisions

Hot or not?

Buy or sell?

Fight or flight?

For or against?

Opinions Are Very Complex

Model sentiment analysis as a Binary Classification problem

Binary Classification

Positive

Not Positive

Model sentiment analysis as a Binary Classification problem

Binary Classification

Positive

Not Positive

Binary classification is a wellstudied, well-understood problem

Binary Decisions

Comment: Positive or negative?

Email: Spam or ham?

Transactions: Fraud or legit?

Rule-based and ML-based Binary Classifiers

Sentiment Analysis as Binary Classification

The binary classifier is a function that takes in a problem instance, and assigns a label

Binary Classifiers

Rule-based Classifiers

Rules drawn up by experts are used to assign a label to problem instance

ML-based Classifiers

Label is assigned based on patterns displayed in aggregate data

ML-based and Rule-based Classifiers

ML-based

Dynamic - alter output based on patterns in data

Far less need for expert skill

To update classifier, simply update corpus

Rule-based

Static - rules are applied independent of data being analyzed

Experts vital for formulating rules

To update classifier, need to update rules i.e. recode model

ML-based and Rule-based Classifiers

ML-based

Large, high-quality data corpus crucial

Cannot operate in isolation on a single problem instance

Explicit training step

Rule-based

No corpus required

Can operate on isolated problem instances

No training step required

Rule-based Analysis

Problem statement is fairly simple

Rules are straightforward and can be easily codified

Rules change infrequently

Few problem instances to train ML models

ML-based Analysis

Problem statement is reasonably complex

Hard to find patterns using visualizations and other exploratory tools

Decision variables sensitive to data, need to change as new information is received

Large corpus available to train models

Understanding Machine Learning

Machine Learning

Work with a huge maze of data

Find patterns

Make intelligent decisions

A machine learning algorithm is an algorithm that is able to learn from data

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Corpus

Classification Algorithm

ML-based

Rule-based

Dynamic

Static

Experts optional

Experts required

Corpus required

Corpus optional

Training step

No training step

Feature Vectors The attributes that the ML algorithm focuses on are called features

Each data point is a list - or vector - of such features

Thus, the input into an ML algorithm is a feature vector

"Traditional" ML-based systems still rely on experts to decide what features to pay attention to

"Representation" ML-based systems figure out by themselves what features to pay attention to

Understanding Deep Learning

"Representation" ML-based systems figure out by themselves what features to pay attention to

Corpus

Classification Algorithm

Corpus

Feature Selection by Experts

Classification Algorithm

Corpus

Feature Selection by Experts

Classification Algorithm

"Representation" ML-based Binary Classifier

Corpus

Feature Selection Algorithm

Classification Algorithm

"Representation" ML-based Binary Classifier

Corpus

Feature Selection Algorithm

Classification Algorithm

"Traditional" ML-based Binary Classifier

"Representation" ML-based Binary Classifier

"Representation" ML-based Binary Classifier

Corpus

Feature Selection Algorithm

Classification Algorithm

"Deep Learning" systems are one type of representation systems

Deep Learning and Neural Networks

Deep Learning and Neural Networks

Deep Learning

Algorithms that learn what features matter

Neural Networks

The most common class of deep learning algorithms

Neurons

Simple building blocks that actually "learn"

"Deep Learning"-based Binary Classifier

Corpus of Images

Feature Selection & Classification Algorithm

Neural Networks Introduced

Corpus of Images

Layers in a neural network

Neural Networks Introduced

Corpus of Images

Each layer consists of individual interconnected neurons

For an active neuron a change in inputs should trigger a corresponding change in the outputs

The outputs of neurons feed into the neurons from the next layer

Each connection is associated with a weight

If the second neuron is sensitive to the output of the first neuron, the connection between them gets stronger

W increases

Cells that fire together, wire together

Neural networks help find unknown patterns in massive data sets

Traditional ML vs. Deep Learning Algorithms

Traditional ML vs. Deep Learning

Traditional ML

Dynamic

Relatively little need for expert skill to select features

Experts select features

Works well for numeric data

Algorithms not specialized to work with images, text

Deep Learning

Also dynamic

Even less need for expert skill for feature selection

Algorithms extract features

Also works well for numeric data

Neural networks at their best dealing with images, videos, complex text

Traditional ML vs. Deep Learning

Traditional ML

Explicit algorithm

Model a tree structure, find a hyperplane, fit a straight line

Training explicitly fits model parameter values

Deep Learning

No explicit algorithm - black box

Can design highly custom neural networks and interconnections

Training implicitly optimizes neural network weights and biases

Find the best fit line through the data points

Given a new value of x, use the line to predict the corresponding value of y

Linear Regression

Decision Trees

Data in Two Dimensions

Bidimensional data points can be represented using a plane, and classified using a line

Data in N Dimensions

N-dimensional data can be represented in a hypercube, and classified using a hyperplane

Support Vector Machines

SVM classifiers find the hyperplane that best separates points in a hypercube

Linear Regression

Decision Trees

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Fit Knowledge Into Rules

Decision Tree

Fit knowledge into rules

Each rule involves a threshold

Use rules to make predictions

Decision Tree

"CART"

<u>Classification And</u> <u>Regression Tree</u>

Deep Learning Models

Fully-connected, dense neural networks

Convolutional neural networks

Recurrent neural networks

Dense Neural Networks

Work well with numeric features

Traditional classification, regression

Layers of interconnected neurons

All neurons in one layer connected to neurons in the previous and next layers

Convolutional Neural Networks

Specialize in working with image data

Designed to mimic the visual cortex of the brain

Sparse neural networks

Convolutional layers for feature detection

Pooling layers for subsampling of inputs

Recurrent Neural Networks

Specialize in sequential data such as text or time series data

Neurons have "memory" or state

Neural network layers represent instances in time

Summary

Data-driven decisions and actions

Rule-based approaches to learning

Learning dynamically from changing data using machine learning

Feature extraction from unstructured data using deep learning

Traditional machine learning vs. deep learning