Amortized Analysis

Stack operations

Given an empty stack S and a sequence of Push(S, x), Pop(S), MultiPop(S, k) operations.

What is the worst-case running time for a sequence of n Push, Pop, and MultiPop operations?

Every Push and Pop operation needs O(1) time.

MultiPop

```
\begin{array}{c} \text{MultiPop}(S,k) \{ \\ \text{while}(!S.\text{empty}() \text{ and } k > 0) \{ \\ \text{S.Pop}(); \\ \text{k} \leftarrow \text{k-1}; \\ \} \\ \end{array}
```

MultiPop

```
\begin{array}{c} \text{MultiPop}(S,k) \{\\ \text{while}(!S.empty() \text{ and } k > 0) \{\\ \text{S.Pop}();\\ \text{k} \leftarrow \text{k-1};\\ \}\\ \}\\ \end{array}
```

Eevery MultiPop operation needs O(k) time.

Naive analysis

Note that there are at most n Push(S, x) in a sequence of n operations.

MultiPop(S, k) needs O(k) = O(n) time because there are at most n elements in the stack at any time.

The running time of a sequence of n Pop(), Push(), and MultiPop() operations is O(n²) in the worst case.

Aggregate analysis

Note that there are at most n Push(S, x) in a sequence of n operations.

All MultiPop(S, k) operations need O(n) time because there are at most n elements in the stack at any time.

The running time of a sequence of n Pop(), Push(), and MultiPop() operations is O(n) in the worst case.

The accounting method

i-th operation	actual cost c _i	amortized cost ĉ _i
Push(S, x)	1	2
Pop()	1	0
MultiPop(S, k)	min(S , k)	0

At Push(S, x), it prepays the cost for Pop x. We have $\sum_{1 \le i \le n} c_i \le \sum_{1 \le i \le n} \hat{c}_i = O(n)$.

Huffman Codes

Data compression

Input: a sequence S of n characters, where each character c_i for each $i \in [1, k]$ has f_i occurrences in the sequence.

Output: a binary string B that represents S. In other words, one can recover S by decompressing B.

Example.

Let S be "I can can a can."

The binary representation of S is \rightarrow

 $1001001000000100 \\ 1100011010000110 \\ 0111011000000110 \\ 1100110100000100 \\ 10000110100000110 \\ 0111011011001110100$

Data compression

Input: a sequence S of n characters, where each character c_i for each $i \in [1, k]$ has f_i occurrences in the sequence.

Output: a binary string B that represents S. In other words, one can recover S by decompressing B.

Example.

Let S be "I can can a can."

The binary representation of S is \rightarrow

There are a lot of repeated substrings.

```
1001001000000100 \\ 11000110100000110 \\ 0111011000000100 \\ 11000110100000110 \\ 0111011000000100 \\ 1100011010000110 \\ 0111011011001110100
```

Character code

Let S be "I can can a can."

```
1001001000000100 \\ 11000110100000110 \\ 0111011000000100 \\ 11000110100000110 \\ 0111011000000110 \\ 1100011010000110 \\ 0111011001110100
```

0001010011011010 0110110110010011 0110000

Raw data: 128 bits.

 \Rightarrow

Compressed data: 39 bits. (Rate = 30.5%)

Character code - encoding

Each character is represented by a unique binary string.

character	codeword
'n	11
'a'	10
6 9	01
c'	001
·I'	0001
	0000

I can can a can.


```
0001010011011010 \\ 0110110110010011 \\ 0110000
```

Prefix code

It is a **character code** in which no codeword is a prefix of some other codeword.

character	codeword
'n	11
'a'	10
6 7	01
c'	001
·I'	0001
6 ,	0000

character	codeword	
'n	11	a pre
'a'	10	
6 9	01	
c'	001	
·I'	0001	
6 ,	1	

Not a prefix code.

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
. ,	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

101101001101101100100110110000

I_c

Repeat this procedure until all codewords are decoded.

Huffman code

Input: a sequence S of n characters, where each character c_i for each $i \in [1, k]$ has f_i occurrences in the sequence.

Output: a prefix code mapping each c_i to a codeword e_i so that $\sum_{1 \le i \le k} f_i$ · length(e_i) is minimized. In other words, the desired output is a prefix code that minimizes the length of compressed data.

Huffman code - constructing

Construct_Huffman_Code(input){

Represent each character c_i by a tree composed of a single root node with frequency f_i .

character	frequency
'n	3
'a'	4
6 9	4
c'	3
·I'	1
6 9	1

While (there are multiple connected components) {
(1) Pick two trees T₁, T₂ whose root has lowest frequencies.

(2) Connect T_1 , T_2 by a new node z. Let z.left be the root of T_1 and z.right be the root of T_2 . Let z.freq be the sum of the frequency at the roots of T_1 and T_2 .

Huffman code - constructing

Replacing the lowest frequency and the second lowest frequency by their sum can be done in O(log n) time by a min-heap. The total running time is O(n log n).

Why is Huffman code optimal?

Claim 1. If a prefix code is optimal ($\sum_{1 \le i \le k} f_i$ · length(e_i) is minimized), then in the tree T representing the code every internal node has exactly two child nodes.

We can get a more succint code by removing the internal nodes that have one child node.

Why is Huffman code optimal?

Claim 2. Let x, y be the characters that have the lowest frequencies. There exists an optimal code so that the codewords for x and y have the same length and differ only in the last bit.

Let leaves a, b be siblings of maximum depth. Replacing a, b with x, y cannot increase $\sum_{1 \le i \le k} f_i \cdot length(e_i)$.

Why is Huffman code optimal?

Claim 3. Let C be the character set. Let x, y be the characters that have the lowest frequencies in C.

Let $C' = C - \{x, y\} \cup \{z\}$ and z.freq = x.freq + y.freq. Let T' be any tree representing an optimal code for C'. Then, the tree T obtained from T' by replacing z with an internal node having x and y as children, represents an optimal code for C.

To show:

If T' is optimal for C', then T is optimal for C.

Note that w(T') = w(T) - z.freq.

Proof of Claim 3

Suppose tree T does not represent the optimal code, then there exists a tree P representing the optimal code so that w(P) < w(T) and x, y are siblings in P (due to Claim 1).

Let P' be the tree obtained from P by replacing the subtree rooted at the parent of x and y with a node z and letting z.freq = x.freq + y.freq.

Proof of Claim 3

Suppose tree T does not represent the optimal code, then there exists a tree P representing the optimal code so that w(P) < w(T) and x, y are siblings in P.

Let P' be the tree obtained from P by replacing the subtree rooted at the parent of x and y with a node z and letting z.freq = x.freq + y.freq.

