

- As in foroject I I used Jm/Id Methodology to Size of transistor and Currents:

 Same Methodology I used here and I used Same transitur size for Differential State and for CMFB1
- ⇒ for transistor characterisation
 - I calculate Jm Vs Jm, Jm Vs Ip for different Jds Id II Id W Jos different different length (Imin, 2x Imin. 31 min. ...) at different brasing for both PMOS and NMOS and then Curve fit and interpolation.
 - ⇒ for NO peaking I assume PM > 60°
 - → for Steady State error less < 1% take gain >40 dB Las Shoron en next page)

Steady State error < 1%

Dc loop gain < 1

DC loop gain > 100 => loop gain > 40 dB

Block Diagram

Block Diagram for De loop gain

Ao =
$$g_{\underline{m_1}} g_{\underline{m_2}} = DC$$
 loop gain

Loop gain = $g_{\underline{m_1}} g_{\underline{m_2}} \times g_{\underline{m_2}} \times g_{\underline{m_2}} \times g_{\underline{m_2}} + g_{\underline{ds_5}} + g_{\underline{ds_6}} + G_L$

Assume Phase Margin 760° So that there is no peaking

Take $PM = 76^{\circ}$ (with Margin) and taking War \Rightarrow $PM = 90^{\circ} - \tan'(\frac{10}{P_2})$ = 50MHz $76^{\circ} = 90^{\circ} - \tan'(\frac{10}{P_2})$ $\frac{100}{P_2} = \tan(14^{\circ}) = 0.2493$

> P2 = 1260.165 × 106 rad/sec

 $P_2 = g_{CL} \Rightarrow g_{m_2} = 1260.165 \times 10^6 \times 5 \times 10^{12}$ = 6.3 m/s

```
=> assume Cc some % of CL = 3PF
        gm, = W4 XCc = 100 TX 3 X 10-12 = 0.942 m/s
    From gm/gds Vs \frac{gm}{Id} /for L=480m assume gds_1=gds_2
                                                       = 12.41/s
        Cornesponding gm/Id = 11.7 => Id= 80.55 MA
     and from gm vs Id
               \underline{Id} = 15 \Rightarrow W = 5.37 \mu n
> for Second Stage al L = 240nm
     from \frac{g_{m_2}}{g_{ds_2}} = 36.9 \Rightarrow g_{ds_2} = 1.7 \times 10^{-4} / s
        Corresponding gm2 = 18.1
         ⇒ Id = 348UA
     Corresponding To ( gmz Vs To)
        \frac{I_0}{N} = 1 \Rightarrow N = 348 \mu m
   Ao = \underbrace{\frac{gm_1}{gm_2}}_{2gols_1} \underbrace{\frac{gm_2}{gols_5 + G_L}}
                                              ) gds + G2 = 1.7 × 10-7
+ 10 × 10-3
        = 0.946 × 10-3 × 6.9 × 10-3
            2×12·4×10-6×2·7×10-4
```

$$\Rightarrow \left(\frac{Td}{W}\right)_{5} = \left(\frac{Td}{W}\right)_{3,4}$$
 So that NO DC offset
$$1 = \left(\frac{804A}{W}\right)$$

$$\Rightarrow W = 804M$$

Now biasing and Sizing of Tail Transistors

Choose the W.L So that it mirror in proper way

⇒ assume PM=70°

$$70 = 90^{\circ} - \tan^{\circ}(\frac{100}{P_{2}})$$
 $\frac{Wu}{P_{2}} = 0.8689 \Rightarrow P_{2} = \frac{Wu}{0.3639}$
 $P_{2} = \frac{9m_{2}}{C_{2}} = \frac{Wu}{0.3639}$
 $g_{2} = 4.57 \text{ mS}$
 $Wu = \frac{g_{2}}{G_{2}} \left(C_{c} = 3PP - \frac{g_{2}}{G_{2}} \right) \left(C_{c} = 3PP$

$$\exists d = 472.104A \quad \text{Corresponding } \underline{Id} = 20.188$$

$$\underline{Id} = 20.188 \Rightarrow W = 23.394M$$

$$(\underline{Id})_{\text{first Stage}} = (\underline{Id})_{\text{w}}_{\text{second Stage}}$$

$$20.188 = \underline{Id} \Rightarrow W = \underline{109.544A}$$

$$\underline{20.188}$$

$$\underline{W} = 5.424M$$

But the gain for 1st Stage was not as required value so I tweek the Size of transistor and Cc Capacitor for PM and Wu.

(d) Block livel design

	Gm	Rd(N)	c_c	GI	
First Stage	0.942 m/s	158.7		24.8us	
Second Stage	6.3 m/s	1 2 0.1	2.5PF	·274S	
CMFB 1	0.942mb	1	0.1PF	_	
CMFB 2	0-999 m/s	18MR	200PC	_	

É Transistor level design

Transistor	width(um)	length (um)
M ₁	19.5	0.480
M ₂	19.5	0-480
M ₃	80	0.240
My	80	0.240
M _S	348	0.240
MG	3 48	0.240
M ₄	4.5	0.240
Mg	348	0.240
Mg	4.5	.240
M ₁₀	2.63	0.480
M	2.63	0-480
M ₁₂	5.37	0-480
M ₁₃	15.20	0.240
MIH	80	0.240
M 15	80	0.240
M 16	15.20	0.240
M 17	19	4.415
Mig	14.44	4.415
M 19	5.42	0.480
M 20	5.42	0.480
MZI	0.120	480
M22	438	4.415

Name:	m1	m2	m3	m4	m5	m6	m7	m9
Model:	cmosn	cmosn	cmosp	cmosp	cmosp	cmosp	cmosn	cmosn
ld:	8.05E-05	8.05E-05	-8.05E-05	-8.05E-05	-3.63E-04	-3.63E-04	3.63E-04	3.63E-04
Vgs:	3.93E-01	3.93E-01	-3.73E-01	-3.73E-01	-3.69E-01	-3.69E-01	6.38E-01	6.38E-01
Vds:	6.22E-01	6.22E-01	-3.69E-01	-3.69E-01	-5.93E-01	-5.93E-01	6.07E-01	6.07E-01
Vbs:	-2.10E-01	-2.10E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Vth:	2.61E-01	2.61E-01	-3.30E-01	-3.30E-01	-3.25E-01	-3.25E-01	2.88E-01	2.88E-01
Vdsat:	9.47E-02	9.47E-02	-8.80E-02	-8.80E-02	-8.89E-02	-8.89E-02	2.04E-01	2.04E-01
Gm:	1.60E-03	1.60E-03	1.55E-03	1.55E-03	6.96E-03	6.96E-03	1.81E-03	1.81E-03
Gds:	1.08E-05	1.08E-05	4.01E-05	4.01E-05	1.75E-04	1.75E-04	5.32E-05	5.32E-05
Gmb	1.92E-04	1.92E-04	2.15E-04	2.15E-04	9.54E-04	9.54E-04	2.12E-03	2.12E-03
Cbd:	0.00E+00							
Cbs:	0.00E+00							
Cgsov:	7.86E-15	7.86E-15	3.10E-14	3.10E-14	1.35E-13	1.35E-13	1.80E-15	1.80E-15
Cgdov:	7.86E-15	7.86E-15	3.10E-14	3.10E-14	1.35E-13	1.35E-13	1.80E-15	1.80E-15
Cgbov:	4.59E-17	4.59E-17	2.25E-17	2.25E-17	2.25E-17	2.25E-17	2.19E-17	2.19E-17
dQgdVgb:	9.30E-14	9.30E-14	1.95E-13	1.95E-13	8.47E-13	8.47E-13	1.26E-14	1.26E-14
dQgdVdb:	-7.87E-15	-7.87E-15	-2.88E-14	-2.88E-14	-1.25E-13	-1.25E-13	-1.79E-15	-1.79E-15
dQgdVsb:	-8.12E-14	-8.12E-14	-1.56E-13	-1.56E-13	-6.80E-13	-6.80E-13	-1.73E-14	-1.73E-14
dQddVgb:	-3.94E-14	-3.94E-14	-8.20E-14	-8.20E-14	-3.57E-13	-3.57E-13	-5.34E-15	-5.34E-15
dQddVdb:	7.88E-15	7.88E-15	3.00E-14	3.00E-14	1.30E-13	1.30E-13	1.80E-15	1.80E-15
dQddVsb:	3.59E-14	3.59E-14	5.92E-14	5.92E-14	2.58E-13	2.58E-13	7.36E-15	7.36E-15
dQbdVgb:	-1.41E-14	-1.41E-14	-3.06E-14	-3.06E-14	-1.33E-13	-1.33E-13	-1.90E-15	-1.90E-15
dQbdVdb:	-1.50E-17	-1.50E-17	-1.71E-16	-1.71E-16	-5.79E-16	-5.79E-16	-1.05E-17	-1.05E-17
dQbdVsb:	1.55E-15	1.55E-15	6.90E-15	6.90E-15	2.93E-14	2.93E-14	7.79E-16	7.79E-16

Differential Mode loop gain

closed loop frequency response

CMFB1 Loop gain

CMFB2 book gain

Differential Step

Common mode step

