EXERCISE 1 (H): TOMASULO

Given the following loop taken from a high level program:

```
do {
          BASEC[i] = BASEA[i] + BASEB[i] + INC1 + INC2;
          i++;
        }
while (i != N)
```

The program has been compiled in MIPS assembly code assuming that registers \$4 and \$7 have been initialized with values 0 and 4N respectively. The symbols BASEA, BASEB and BASEC are 16-bit constant. The processor clock cycle is 0.5 ns.

```
L1: lw $2, BASEA ($4)
addi $2, $2, INC1
lw $3, BASEB ($4)
addi $3, $3, INC2
add $5, $2, $3
sw $5, BASEC ($4)
addi $4, $4, 4
bne $4, $7, L1
```

We assume the program be executed on a pipelined CPU with dynamic scheduling based on TOMASULO algorithm with:

- 2 RESERVATION STATIONS (RS1, RS2) + 1 LOAD/STORE FU (LDU1) with latency 2 cycles
- 2 RESERVATION STATIONS (RS3, RS4) + 1 ALU/BR FU (ALU1) with latency 1 cycle
- Check structural hazards for RS in ISSUE phase
- Check RAW hazards and Check structural hazards for FUs in START EXECUTE phase
- WRITE RESULT in RS and RF
- Static branch prediction for backward branches: branch always taken

Please complete the Tomasulo table by assuming all cache hits:

ISTRUZIONE	ISSUE	START EXEC	WRITE RESULT	Hazards Type	RSi	UNIT	OP1	OP2	STORE BUFFER
L1:lw \$2,BASEA(\$4)	1	2	4		RS1	LDU1	BASEA	\$4	-
addi \$2, \$2, INC1	2	5	6	RAW in \$2	RS3	ALU1	RS1	INC1	-
lw \$3,BASEB(\$4)	3	5	7	STRUCT LDU1	RS2	LDU1	BASEB	\$4	-
addi \$3,\$3,INC2	4	8	9	RAW in \$3	RS4	ALU1	RS2	INC2	-
add \$5,\$2,\$3	7	10	11	Struct RS3+RAW \$3+STRUCT ALU1	RS3	ALU1	\$2	RS4	-
sw \$5,BASEC(\$4)	8	12	14	RAW \$5	RS1	LDU1	BASEC	\$4	RS3
addi \$4,\$4,4	10	12	13	Struct RS4+ STRUCT ALU1	RS4	ALU1	\$4	4	-
bne \$4,\$7, L1	12	14	15	Struct RS3+STRUCT ALU1+ RAW \$4	RS3	ALU1	RS4	\$ 7	-

- Instruction Count per iteration (IC): 8
- CPI = # cycles / IC = 15 / 8 = 1.875
- Calculate the speedup with respect to the first version of Scoreboard (EX 1.F):

Speedup = (Exec. Time Scoreboard 1.F) / (Exec. Time Tomasulo) = 18/15 = 1,2

EXERCISE 1 (I): TOMASULO

We assume the original program be executed on CPU with dynamic scheduling based on TOMASULO algorithm with:

- 2 RESERVATION STATIONS (RS1, RS2) + 2 LOAD/STORE FU (LDU1, LDU2) with latency 2 cycles
- 2 RESERVATION STATIONS (RS3, RS4) + 2 ALU/BR FU (ALU1, ALU2) with latency 1 cycle
- Check structural hazards for RS in ISSUE phase
- Check RAW hazads and Check structural hazards for FUs in START EXECUTE phase
- WRITE RESULT in RS and RF
- Static branch prediction for backward branches: branch always taken

Please complete the Tomasulo table by assuming all cache hits:

ISTRUZIONE	ISSUE	START EXEC	WRITE RESULT	Hazards Type	RSi	UNIT	OP1	OP2	STORE BUFFER
L1:lw \$2,BASEA(\$4)	1	2	4		RS1	LDU1	BASEA	\$4	-
addi \$2, \$2, INC1	2	5	6	RAW in \$2	RS3	ALU1	RS1	INC1	-
lw \$3,BASEB(\$4)	3	4	7	Struct CDB	RS2	LDU2	BASEB	\$4	-
addi \$3,\$3,INC2	4	8	9	RAW in \$3	RS4	ALU2	RS2	INC2	-
add \$5,\$2,\$3	7	10	11	Struct RS3+ RAW \$3	RS3	ALU1	\$2	RS4	-
sw \$5,BASEC(\$4)	8	12	14	RAW \$5	RS1	LDU1	BASEC	\$4	RS3
addi \$4,\$4,4	10	11	12	(WAR \$4 ok)	RS4	ALU2	\$4	4	-
bne \$4,\$7, L1	12	13	14	Struct RS3	RS3	ALU1	RS4	\$7	-

- Instruction Count per iteration (IC): 8
- CPI = # cycles / IC = 14 / 8 = 1.75
- Calculate the speedup with respect to the previous version of Tomasulo (EX 1.H):

Speedup = (Exec. Time Tomasulo 1.H) / (Exec. Time Tomasulo) = 15/14 = 1,07

Given the following loop expressed in a high level language:

EXERCISE 2 (F) - TOMASULO

```
for (i =0; i < N; i ++)
     vectC[i] = vectA[i] + vectB[i];</pre>
```

The program has been compiled in MIPS assembly code assuming that registers \$t6 and \$t7have been initialized with values 0 and N respectively. The symbols VECTA, VECTB and VECTC are 16-bit constant. The processor clock frequency is **2 GHz**.

INSTRUCTION	Comment
FOR1:beq \$t6,\$t7, END	# if (\$t6 == \$t7) goto END
lw \$t2,VECTA(\$t6)	# \$t2 <- VECTA [\$t6];
lw \$t3,VECTB(\$t6)	# \$t3 <- VECTB [\$t6];
add \$t2,\$t2,\$t3	# \$t2 <- \$t2 + \$t3;
sw \$t2,VECTC(\$t6)	# VECTC[\$t6] <- \$t2;
addi \$t6,\$t6,4	# \$t6 <- \$t6 + 4;
j FOR1	# goto FOR1;
END:	

We assume the program be executed on a CPU with dynamic scheduling based on TOMASULO algorithm with:

- 2 RESERVATION STATIONS (RS1, RS2) + 1 LOAD/STORE FU (LDU1) with latency 4 cycles
- 2 RESERVATION STATIONS (RS3, RS4) + 1 ALU/BR FU (ALU1) with latency 2 cycles
- Check structural hazards for RS in ISSUE phase
- Check RAW hazards and Check structural hazards for FUs in START EXECUTE phase
- WRITE RESULT in RESERVATION STATIONS and RF
- Static Branch Prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN) with Branch Target Buffer

Please complete the Tomasulo table by assuming all cache hits:

ISTRUZIONE	PRED. T / NT	ISSUE	START EXEC	WRITE RESULTS	HAZARDS TYPE	RSi	UNIT	OP1	OP2	STORE BUFFER
FOR1:beq \$t6,\$t7, FOR2	NT	1	2	4		RS3	ALU1	\$t6	\$t7	-
lw \$t2,VECTA(\$t6)	-	2	3	7		RS1	LDU1	VECTA	\$t6	-
lw \$t3,VECTB(\$t6)	-	3	8	12	STRUCT LDU1	RS2	LDU1	VECTB	\$t6	-
add \$t2,\$t2,\$t3	-	4	13	15	RAW \$t2 ,RAW \$t3	RS4	ALU1	RS1	RS2	-
sw \$t2,VECTC(\$t6)	-	8	(6)	20	STRUCT RS1 +(STRUCT LDU1)+ RAW \$t2	RS1	LDU1	VECTA	\$t6	RS4
addi \$t6,\$t6,4	-	9	16	18	STRUCT ALU1	RS3	ALU1	\$t6	4	-
j FOR1	T	16	19	21	STRUCT RS4 +STRUCT ALU1	RS4	ALU1	FOR1		-

- Given a clock frequency of 2 GHz, express the FORMULA then calculate the following metrics:
 - CPI = # cycles / IC = 21 / 7 = 3
 - IPC = 1 / CPI = 1 / 3 = 0.33
 - Throughput (expressed in MIPS): MIPS = f_{CLOCK} / (CPI * 10^6) = $(2 * 10^9)$ / $(3 * 10^6)$ = 666.67

EXERCISE 2 (G) - TOMASULO

We assume the original program be executed on CPU with dynamic scheduling based on TOMASULO algorithm with:

- 2 RESERVATION STATIONS (RS1, RS2) + 2 LOAD/STORE FU (LDU1, LDU2) with latency 4 cycles
- 2 RESERVATION STATIONS (RS3, RS4) + 2 ALU/BR FU (ALU1, ALU2) with latency 2 cycles
- Check structural hazards for RS in ISSUE phase
- Check RAW hazards and Check structural hazards for FUs in START EXECUTE phase
- WRITE RESULT in RESERVATION STATIONS and RF
- Static Branch Prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN) with Branch Target Buffer

Please complete the Tomasulo table by assuming all cache hits:

ISTRUZIONE	PRED. T / NT	ISSUE	START EXEC	WRITE RESULTS	HAZARDS TYPE	RSi	UNIT	OP1	OP2	STORE BUFFER
FOR1:beq \$t6,\$t7, FOR2	NT	1	2	4		RS3	ALU1	\$t6	\$t7	-
lw \$t2,VECTA(\$t6)	-	2	3	7		RS1	LDU1	VECTA	\$t6	-
lw \$t3,VECTB(\$t6)	-	3	4	8		RS2	LDU2	VECTB	\$t6	-
add \$t2,\$t2,\$t3	-	4	9	11	RAW \$t2, RAW \$t3	RS4	ALU2	RS1	RS2	-
sw \$t2,VECTC(\$t6)	-	8	12	16	STRUCT RS1 + RAW \$t2	RS1	LDU1	VECTA	\$t6	RS4
addi \$t6,\$t6,4	-	9	10	12		RS3	ALU1	\$t6	4	-
j FOR1	T	12	13	15	STRUCT RS4	RS4	ALU2	FOR1		-

- Given a clock frequency of 2 GHz, express the FORMULA then calculate the following metrics:
 - CPI = # cycles / IC = 16 / 7 = 2.29
 - IPC = 1 / CPI = 0.44
 - Throughput (expressed in MIPS): MIPS = f_{CLOCK} / (CPI * 10⁶) = (2 * 10⁹) / (2.29 * 10⁶) = 873.36
- Calculate the Speedup obtained with respect to the previous case (EX1.A):
 - Speedup = CPI1A / CPI1B = 3/2.29 = 1.31 Tomasulo 1B is better than Tomasulo 1A by 31%

EXERCISE 2 (H) - TOMASULO

We assume the original program be executed on CPU with dynamic scheduling based on TOMASULO algorithm with:

- 2 RESERVATION STATIONS (RS1, RS2) + 2 LOAD/STORE FU (LDU1, LDU2) with latency 4 cycles
- 2 RESERVATION STATIONS (RS3, RS4) + 2 ALU/BR FU (ALU1, ALU2) with latency 2 cycles
- Check structural hazards for RS in ISSUE phase
- Check RAW hazards and Check structural hazards for FUs in START EXECUTE phase
- WRITE RESULT in RESERVATION STATIONS and RF
- Static Branch Prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN) with Branch Target Buffer

Please complete the Tomasulo table by assuming all instruction cache hits and all data cache write hits but all data cache read misses introducing 4 stalls cycles to WRITE RESULTS:

ISTRUZIONE	PRED. T / NT	ISSUE	START EXEC	WRITE RESULTS	HAZARDS TYPE	RSi	UNIT	OP1	OP2	STORE BUFFER
FOR1:beq \$t6,\$t7, FOR2	NT	1	2	4		RS3	ALU1	\$t6	\$t7	-
lw \$t2,VECTA(\$t6)	-	2	3	11	DATA CACHE READ MISS	RS1	LDU1	VECTA	\$t6	-
lw \$t3,VECTB(\$t6)	-	3	4	<mark>12</mark>	DATA CACHE READ MISS	RS2	LDU2	VECTB	\$t6	-
add \$t2,\$t2,\$t3	-	4	13	15	RAW \$t2, RAW \$t3	RS4	ALU2	RS1	RS2	-
sw \$t2,VECTC(\$t6)	-	12	16	20	STRUCT RS1 + RAW \$t2	RS1	LDU1	VECTA	\$t6	RS4
addi \$t6,\$t6,4	-	13	14	16	·	RS3	ALU1	\$t6	4	-
j FOR1	T	16	17	19	STRUCT RS4	RS4	ALU2	FOR1		-

- Given a clock frequency of 2 GHz, express the FORMULA then calculate the following metrics:
 - CPI = # cycles / IC = 20 / 7 = 2.86
 - IPC = 1 / CPI = 0.35
 - Throughput (expressed in MIPS): MIPS = f_{CLOCK} / (CPI * 10^6) = $(2 * 10^9)$ / $(2.86 * 10^6)$ = 699.3
- Calculate the performance lost with respect to the previous case (EX1.B):
 - PL = CPI1C / CPI1B = 2.86/ 2.29 = 1.25 Tomasulo 1C is worst than Tomasulo 1B by 25%