Exam 1 Practice Problems

Part 1 - Classification Algorithms

After the first exam in a data mining course, the results of the exam were recorded along with some information about each student. The data is below:

	ID	Passed All Assignments	GPA	Language	Passed Exam
	1	No /	3.1 (),()	Python 2	Yes
	2	No (2.0	Python 2	No
)	3	Yes O	3.5 0,25	C++ ©	Yes
	4	Yes 🔘	2.5 0,25	Java 2	Yes
	5	Yes 🛮	3.9 0,8	Python 2	No
)	6	No	2.9 0,01	C++ Ø	No
_	7	Yes 🖰	3.2 0.04	Java 2	Yes

1. Using a KNN classifier with K=3, predict whether the following student will pass the exam. (Do not worry about normalizing the data.)

8	Yes	3.0	C++	?

2. Using a Naive Bayes classifier, predict whether the student will pass the exam. Bin the

3. Given the following dataset:

Different tissue papers & whether or not they are good for your science experiment. (Yes, the color matters in this problem.)

ID#	Color	Acid Durability	Strength	Class
1	Yellow	7	7	bad
2	White	7	4	good
3	Yellow	3	4	good
4	Green	1	4	good
5	White	5	5	bad
6	White	6	3	bad

If you want to create a decision tree to classify the data, what is the best attribute to split on first?

- Use Gini index as the measure of impurity
- Also know how to use entropy as the measure of impurity, either one is fair game for the exam!

Note: This problem is too long for an exam, so I won't ask you to do something this long on the exam. But you do need to know how to do this - it'll just be something shorter on the exam.

Part 2 - Linear Regression

A scientist is researching whether or not birds exposed to pollutants lay eggs with thinner shells. She collects a sample of egg shells from 5 different nests and measures the pollution level and thinness of the shell. Her results are below:

Pollution	3	8	30	25	15
Thinness	1	3	9	10	5

1. Find the equation of the regression line for this data.

$$\beta = 0.330 \beta_0 = 0.259$$

2. Calculate the R2 of the line.

3. Calculate the RMSE of the line.

Part 3 - Evaluating Classifiers

Given the following confusion matrices for two different classifiers:

Classifier 1		Predicted		
		+	-	
Actual	+	50	20	
	-	130	300	

Classifi	er 2	Predicted		
		+	-	
Actual	+	60	10	
	-	30	400	

1. Which classifier is better on the basis of error rate?

error rate?
$$\frac{150}{500} = \frac{500}{500} = \frac{870}{500}$$

2. Which classifier is better on the basis of F-measure (for the positive class only)?

$$9 - \frac{50}{180}$$
, $\frac{60}{40}$

$$\rho = \frac{50}{180}$$
 $\frac{60}{70}$ $r = \frac{50}{70}$ $\frac{60}{70}$

$$F = \frac{2 \cdot \frac{50}{180} \cdot \frac{50}{70}}{\frac{30}{180} + \frac{50}{70}}$$

$$F = \frac{2 \cdot \frac{60}{180} \cdot \frac{60}{70}}{\frac{50}{180} + \frac{50}{70}}$$

$$F = \frac{2 \cdot \frac{60}{40} \cdot \frac{60}{70}}{\frac{60}{40} + \frac{60}{70}}$$

$$\frac{21}{180} \cdot \frac{50}{70}$$

$$\frac{21}{180} \cdot \frac{50}{70}$$

$$\frac{31}{4}$$

Part 4 - Short Answers

1. What is the difference between noise and outliers?

Constant data constant and was of dealing with missing values in a dataset.

Imputation, Deletion

3. What is the curse of dimensionality?

more of more spore

4. What is overfitting and why is it a problem?

Low tohing error but high test error

5. What is the naive assumption in Naive Bayes?

independence

Describe and/or draw a situation in which using unweighted voting for KNN gives you a different classification than weighted voting

2.0 x k=5 > X envighted

7. Explain "slack" in an SVM - what is it and why do we need slack variables?

To allow misclassi Rulins, Reduce out Fitting