XI Special Theory of Relativity

11.1 Einstein's Two Postulates

We consider two reference frames k and k' with (x, y, z, t) and (x', y', z', t'). By Galilean relativity, we have

$$\vec{x}' = \vec{x} - \vec{v}t$$
$$t' = t$$

For example, we consider a group of particles interacting via two-body central potentials. The equation of motion of the i-th particle in k'

$$m_i \frac{d\vec{v}_i}{dt} = -\nabla_i' \sum_j V_{ij}(|\vec{x}_i' - \vec{x}_j'|) = -\nabla_i \sum_j V_{ij}(|\vec{x}_i - \vec{x}_j|)$$

We assume that a field $\psi(x',t')$ satisfies

$$\left[\sum_{i} \left(\frac{\partial^{2}}{\partial x_{i}^{\prime 2}}\right) - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \psi = 0$$

in the frame k'.

In terms of the coordinates in the frame k, it becomes

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{2}{c^2} \vec{v} \cdot \nabla \frac{\partial}{\partial t} - \frac{1}{c^2} (\vec{v} \cdot \nabla) (\vec{v} \cdot \nabla)\right) \psi = 0$$

 \implies The wave equation is not invariant under Galilean transformations. \implies Another preferred reference frame where the luminiferous either was at rest. \implies Lorentz transformation

$$L = L_0 \sqrt{1 - v^2/c^2}$$

Einstein's special theory of relativity is based on two postulates.

1. Postulate of relativity

There exists a triply infinite set of equivalent Euclidean reference frames moving with constant velocities in rectilinear paths relative to one another in which all physical phenomena occur in an identical manner. \implies inertial reference.

2. Postulate of the constancy of the speed of light

The speed of light is infinite and independent of the motion of its source.

11.2 Some Experiments

A: Ether - Drift based on the Mössbauer effect

For a plane electromagnetic wave in vacuum, its phase as observed in the inertial frames k and k' are connected by Galilean transformation.

$$\phi = \omega \left(t - \frac{\vec{n} \cdot \vec{x}}{c} \right) = \omega' \left(t' - \frac{\vec{n}' \cdot \vec{x}'}{c'} \right)$$
$$= \omega' \left[t' \left(1 - \frac{\vec{n}' \cdot \vec{v}}{c'} \right) - \frac{\vec{n}' \cdot \vec{x}'}{c'} \right] \quad \text{for all } t' \text{ and } \vec{x}'$$

We find

$$\vec{n} = \vec{n}'$$

$$\frac{\omega}{c} = \frac{\omega'}{c'} (1 - \frac{\vec{n}' \cdot \vec{v}}{c'})$$

$$c' = c - \vec{n} \cdot \vec{v}$$

Figure 11.1

Figure 1:

In k', the direction of motion of the wave packet is the direction of energy flow, along a unit vector

$$\vec{m} = \frac{c\vec{n}' - \vec{v}}{|c\vec{n}' - \vec{v}|} \approx (1 - \frac{\vec{n} \cdot \vec{v}}{c})\vec{m} + \frac{\vec{v}}{c}$$

where \vec{v}_0 is the velocity of the laboratory relative to the either rest frame.

We now consider a phase wave whose frequency is ω in the ether rest from, ω_0 in the laboratory and ω_1 in an inertial frame k, moving with $\vec{v} = \vec{v}_1 - \vec{v}_0$ relative to the either rest from. Thus

$$\omega_1 = \omega \left(1 - \frac{\vec{n} \cdot \vec{v}_1}{c} \right)$$

$$\omega_0 = \omega \left(1 - \frac{\vec{n} \cdot \vec{v}_0}{c} \right)$$

If ω_1 is expressed in terms of ω_0 and eliminate \vec{n}

$$\omega_1 \approx \omega_0 \left[1 - \frac{\vec{u}_1 \cdot (\vec{m} + \vec{v}_0')}{c} \right]$$

where \vec{u}_1 is the velocity of k relative to the laboratory, \vec{m} is the direction of energy propagation in the laboratory, ω_0 is the frequency of the wave in the laboratory, \vec{v}_0' is velocity of the laboratory relative to the ether.

Consider two Mössbauer systems, with \vec{u}_1 and \vec{u}_2 . The difference is:

$$\frac{\omega_1-\omega_2}{\omega_0} = \frac{1}{c}(\vec{u}_2-\vec{u}_1)\cdot(\vec{m}+\frac{\vec{v}_0}{c})$$

[If the emitter and absorber are located on the opposite ends of a rod of length 2R that is rotated about its center with angular velocity Ω

Figure 11.2

Figure 2:

Then
$$(\vec{u}_2 - \vec{u}_1) \cdot \vec{m} = 0$$
.

$$\frac{\omega_1-\omega_2}{\omega_0} = \frac{2\Omega R}{c^2} \sin\Omega t |(\vec{v}_0)_\perp|$$

where $|(\vec{v}_0)_{\perp}|$ is the component of \vec{v}_0 perpendicular to the axis of rotation.

B: Speed of Light from a Moving Source

C: Frequency Dependence of the Speed of Light in Vacuum

11.3 Lorentz Transformations and Basic Kinematic Results of Special Relativity

A: Simple Lorentz Transformations of Coordinates

We consider k and k' with a relative \vec{v} and the coordinates (t, x, y, z) and (t', x', y', z'). Let the origins of the coordinates in k and k' be coincident at t = t' = 0.

The wave front reaches a point (x, y, z) in k at t.

$$c^2t^2 - (x^2 + y^2 + z^2) = 0$$

Similarly in k',

$$c^2t'^2 - (x'^2 + y'^2 + z'^2) = 0$$

We assume that the space-time is homogeneous and isotropic, the equations are related by

$$c^{2}t^{2} - (x^{2} + y^{2} + z^{2}) = \lambda^{2}[c^{2}t'^{2} - (x'^{2} + y'^{2} + z'^{2})]$$

where $\lambda = \lambda(|\vec{v}|)$ is a possible change of scale. We can see that $\lambda(v) = 1$ and the lorentz transformation between k' and k.

$$x'_0 = \gamma(x_0 - \beta x_1)$$

$$x'_1 = \gamma(x_1 - \beta x_0)$$

$$x'_2 = x_2$$

$$x'_3 = x_3$$

where we introduce $x_0=ct,\ x_1=x,\ x_2=y,\ x_3=z.$ and $\vec{\beta}=\frac{\vec{v}}{c},\ \beta=|\vec{\beta}|,\ \gamma=(1-\beta^2)^{-1/2}$

$$x_0 = \gamma(x'_0 + \beta x'_1)$$

$$x_1 = \gamma(x'_1 + \beta x'_0)$$

$$x_2 = x'_2$$

$$x_3 = x'_3$$

Lorentz Transformation for an Arbitrary Direction

If \vec{v} is in an arbitrary direction, we generalize that

$$\begin{cases} x'_0 = \gamma(x_0 - \vec{\beta} \cdot \vec{x}) \\ \vec{x}' = \vec{x} + (\frac{\gamma - 1}{\beta^2})(\vec{\beta} \cdot \vec{x})\vec{\beta} - \gamma \vec{\beta} x_0 \end{cases}$$

Since $0 \le \beta \le 1$, $1 \le \gamma \le \infty$, we replace with

$$\begin{cases} \beta = \tanh \zeta \\ \gamma = \cosh \zeta & \text{where } \zeta \text{ is the boost parameter} \\ \gamma \beta = \sinh \zeta \end{cases}$$

$$\implies x'_0 = x_0 \cosh \zeta - x_i \sinh \zeta$$
$$x'_i = -x_0 \sinh \zeta + x_i \cosh \zeta$$

B: 4-vectors

For (A_0, A_1, A_2, A_3) , the Lorentz transformation is

$$\begin{cases} A'_0 = \gamma (A_0 - \vec{\beta} \cdot \vec{A}) \\ A'_{\parallel} = \gamma (A_{\parallel} - \beta A_0) \\ A'_{\perp} = A_{\perp} \end{cases}$$

where the relative velocity $\vec{v} = c\vec{\beta}$.

The invariance is

$$A_0^2 - |\vec{A}|^2 = A_0^2 - |\vec{A}'|^2$$

We can also prove that for $\begin{cases} (A_0,A_1,A_2,A_3) \\ (B_0,B_1,B_2,B_3) \end{cases}$

$$A_0 B_0 - \vec{A} \cdot \vec{B} = A'_0 B'_0 - \vec{A'} \cdot \vec{B'}$$

C: Light Cone, Proper Time and Time Dilation

Figure 11.3 World line of a system and the light cone. The unshaded interior of the cone represents the past and the future, while the shaded region outside the cone is called "elsewhere." A point inside (outside) the light cone is said to have a timelike (spacelike) separation from the origin.

Figure 3:

(only in one dimension) We divide the space-time into three regions by a "cone" (light cone) whose surface is specified by $x^2 + y^2 + z^2 = c^2t^2$. As time goes on, it would trace out a path called world line. When t > 0, the path of the system lies inside the upper half-cone \implies future. Similarly, the lower half-cone \implies past. And the shaded region outside the light cone is the elsewhere.

We consider two events with the interval S_{12}

$$P_1(t_1, \vec{x}_1), P_2(t_2, \vec{x}_2)$$

$$S_{12}^2 = c^2 (t_1 - t_2)^2 - |\vec{x}_1 - \vec{x}_2|^2$$

There are three possibilities:

 $\begin{cases} 1) & S_{12}^2 > 0 & \text{: time like separation} \\ 2) & S_{12}^2 < 0 & \text{: spacelike separation} \\ 3) & S_{12}^2 = 0 & \text{: lightlike separation} \end{cases}$

- 1. We can find a Lorentz transformation such that $\vec{x}_1' = \vec{x}_2'$, then $S_{12}^2 = c^2(t_1' t_2')^2 > 0$.
- 2. We can find an inertial frame k'' where $t_1''=t_2''$, then $S_{12}^2=-|\vec{x}_1''-\vec{x}_2''|^2<0$.
- 3. We can only connect two events by light signals.

We consider a system of a particle moving with an instantaneous velocity $\vec{u}(t)$ relative to k. In a time interval dt, the position change is $d\vec{x} = \vec{u}dt$. Thus,

$$ds^2 = c^2 dt^2 - |d\vec{x}|^2 = c^2 dt^2 (1 - \beta^2)$$
 where $\beta = u/c$

In k', the space-time increments are $dt' = d\tau$, $d\vec{x}' = 0$ since the system is at rest. Thus the invariant interval is $ds = cd\tau$ and $d\tau$ is a Lorentz invariant quantity that takes the form

$$d\tau = dt\sqrt{1 - \beta^2(t)} = \frac{dt}{\gamma(t)}$$

The time τ is the proper time, and $\tau_2 - \tau_1$ is given by

$$\tau_2 - \tau_1 = \int_{t_1}^{t_2} \frac{dt}{\gamma(t)} = \int_{t_1}^{t_2} \sqrt{1 - \beta^2(t)} dt$$

$$\implies \text{Time dilation}$$

D: Relativistic Doppler Shift

We consider a plane wave with frequency ω and wave vector \vec{k} in k and ω' , \vec{k}' in k'. The phase of the wave is an invariant.

$$\phi = \omega t - \vec{k} \cdot \vec{x} = \omega' t' - \vec{k}' \cdot \vec{x}'$$

For light waves $|\vec{k}| = k_0$, $|\vec{k}'| = k'_0$.

$$\begin{cases} k'_0 = \gamma(k_0 - \beta k_x) \\ k'_x = \gamma(k_x - \beta k_0) \\ k'_y = k_y \\ k'_z = k_z \end{cases} \implies \begin{cases} \omega' = \gamma \omega(1 - \beta \cos \theta) \\ \tan \theta' = \frac{\sin \theta}{\gamma(\cos \theta - \beta)} \end{cases}$$

11.4 Addition of Velocities: 4-Vector

We consider a moving point P whose velocity \vec{u}' has coordinates (u'_x, u'_y, u'_z) in k', which is moving with $\vec{v} = c\vec{\beta}$ in the positive x_1 direction with respect to k.

$$dx_0 = \gamma_v (dx'_0 + \beta dx'_1)$$

$$dx_1 = \gamma_v (dx'_1 + \beta dx'_0)$$

$$dx_2 = dx'_2$$

$$dx_3 = dx'_3$$

The velocity components in each frame are $u'_i = c dx'_i/dx'_0$ and $u_i = c dx_i/dx_0$.

$$\implies \begin{cases} u_{\parallel} = \frac{u'_{\parallel} + v}{1 + \frac{u'_{\parallel} v}{c^2}} \\ u_{\perp} = \frac{u'_{\perp}}{\gamma_v (1 + \frac{u'_{\parallel} v}{c^2})} \end{cases}$$

Figure 11.4 Addition of velocities.

Figure 4:

Since $u_2/u_3 = u_2'/u_3'$, the azimuthal angles in the two frames are equal.

$$\tan \theta = \frac{u' \sin \theta'}{\gamma_v (u' \cos \theta' + v)}$$

$$u = \sqrt{u_{\parallel}^2 + u_{\perp}^2} = \frac{\sqrt{(u' \cos \theta' + v)^2 + (u' \sin \theta' / \gamma_v)^2}}{1 + \frac{u'v}{c^2} \cos \theta'}$$

As $u, v \ll c$, we obtain the Galilean transformation.

Addition of Velocities: 4-Vector (Continued)

But if \vec{u}' or \vec{u} is close to c, we have the case of parallel velocities addition law

$$u = \frac{u' + v}{1 + \frac{u'v}{c^2}}$$

And if u' = c, we have u = c which is the one example of Einstein's second postulate.

In terms of 4-vector

The expression $(1 + \vec{u} \cdot \vec{v}/c^2)$ can be expressed through

$$\gamma_u = \gamma_v \gamma_{u'} (1 + \frac{\vec{v} \cdot \vec{u}'}{c^2})$$

And thus we have

$$\begin{cases} \gamma_u u_{\parallel} = \gamma_v (\gamma_{u'} u'_{\parallel} + \gamma_{u'} v) \\ \gamma_u u_{\perp} = \gamma_{u'} u'_{\perp} \end{cases}$$

Hence, the four quantities $(\gamma_u c, \gamma_u \vec{u})$ form a 4-vector. Lorentz transformations \implies time-space components of the 4-velocity (U_0, \vec{U}) where

$$\begin{cases} U_0 = \frac{dx_0}{d\tau} = \frac{dx_0}{dt} \frac{dt}{d\tau} = \gamma_u c \\ \vec{U} = \frac{d\vec{x}}{d\tau} = \frac{d\vec{x}}{dt} \frac{dt}{d\tau} = \gamma_u \vec{u} \end{cases}$$

11.5 Relativistic Momentum and Energy of a Particle

For a particle with speed small compared to c

We have

$$\begin{cases} \vec{p} = m\vec{u} \\ E = E(0) + \frac{1}{2}mu^2 \end{cases}$$

where E(0) is the rest energy. The only possible generalization consistent with the first postulate are

$$\begin{cases} \vec{p} = M(u)\vec{u} \\ E = \mathcal{E}(u) \end{cases} \text{ where } M \text{ and } \mathcal{E} \text{ are functions of } |\vec{u}|.$$

We see that

$$\begin{cases} M(0) = m \\ (-\frac{\partial \mathcal{E}}{\partial u^2}|_{u=0}) = \frac{m}{2} \end{cases}$$

Collision Analysis

We now consider the collision in k and k' connected by Lorentz transformation. The two identical particles have initial velocities $\vec{u}_a = \vec{v}$, $\vec{u}_b = -\vec{v}$ along the z axis. After collision the final velocities are \vec{u}_c , \vec{u}_d . (c.f. Fig 5, page 534)

In k', the conservation are

$$\begin{cases} \vec{p}'_a + \vec{p}'_b = \vec{p}'_c + \vec{p}'_d \\ E'_a + E'_b = E'_c + E'_d \end{cases}$$

or

$$\begin{cases} M(v')\vec{v'} - M(v')\vec{v'} = M(v'')\vec{v''} + M(v'')(-\vec{v''}) \\ \mathcal{E}(v') + \mathcal{E}(v') = \mathcal{E}(v'') + \mathcal{E}(v'') \end{cases}$$

where we require $\mathcal{E}(v') = \mathcal{E}(v'')$. We have, then v' = v'' = v.

Figure 11.5 Initial and final velocity vectors in the frame K' for the collision of two identical particles.

Figure 5:

We now consider the collision in k, moving with $-\vec{v}$ in the z direction with respect to k'. We see that b is at rest in k while a is incident along the z axis with a velocity

$$u_a = \frac{2v}{1 + v^2/c^2} = \frac{2c\beta}{1 + \beta^2}$$

The components in k are

$$(u_c)_x = \frac{c\beta \sin \theta'}{\gamma (1 + \beta^2 \cos \theta')} \qquad (u_c)_z = \frac{c\beta (1 + \cos \theta')}{1 + \beta^2 \cos \theta'}$$
$$(u_d)_x = -\frac{c\beta \sin \theta'}{\gamma (1 - \beta^2 \cos \theta')} \qquad (u_d)_z = \frac{c\beta (1 - \cos \theta')}{1 - \beta^2 \cos \theta'}$$

where $\gamma = \frac{1}{\sqrt{1-\beta^2}}$. The equations of conservation in k are

$$M(u_a)\vec{u}_a + M(u_b)\vec{u}_b = M(u_c)\vec{u}_c + M(u_d)\vec{u}_d$$
$$\mathcal{E}(u_a) + \mathcal{E}(u_b) = \mathcal{E}(u_c) + \mathcal{E}(u_d)$$

The x-component is $((u_b)_x = (u_d)_x = 0)$

$$0 = M(u_c) \frac{c\beta \sin \theta'}{\gamma (1 + \beta^2 \cos \theta')} - M(u_d) \frac{c\beta \sin \theta'}{\gamma (1 - \beta^2 \cos \theta')}$$

$$\implies M(u_c)(1-\beta^2\cos\theta') = M(u_d)(1+\beta^2\cos\theta')$$
 for all θ'

Specifically for $\theta' = 0$ where $u_c = u_a$, $u_d = 0$.

$$M(u_a)\frac{1-\beta^2}{1+\beta^2} = M(0)\frac{1}{\sqrt{1-u_a^2/c^2}} = \gamma_a$$

with M(0) = m, we have $M(u_a) = \gamma_a m$.

$$\implies \vec{p} = \gamma m \vec{u} = \frac{m \vec{u}}{\sqrt{1 - u^2/c^2}}$$

Energy Derivation

For small θ' , we have

$$\mathcal{E}(u_a) + \mathcal{E}(0) = \mathcal{E}(u_c) + \mathcal{E}(u_d)$$

where u_c and u_d are functions of θ' . Correct to order θ'^2 inclusive,

$$u_c^2 = u_a^2 - \frac{\eta}{\gamma_a^2} + O(\theta'^4)$$

 $u_d^2 = \eta + O(\theta'^4)$

where γ_a is given by $\frac{1+\beta^2}{1-\beta^2}$ and $\eta=c^2\beta^2\theta'^2/(1-\beta^2)$ is a convenient expansion parameter. We now expand in Taylor series

$$\mathcal{E}(u_a) + \mathcal{E}(0) = \mathcal{E}(u_c) + \mathcal{E}(u_d) = \mathcal{E}(u_a) + \eta \cdot \left(\frac{d\mathcal{E}(u_c)}{du_c^2}\Big|_{u_c = u_a} \frac{\partial u_c^2}{\partial \eta}\Big|_{\eta = 0} + \frac{d\mathcal{E}(u_d)}{du_d^2}\Big|_{u_d = 0}\right) + \dots$$

The first-order terms yield

$$0 = -\frac{1}{\gamma_a^2} \frac{d\mathcal{E}(u_a)}{du_a^2} + \left[\frac{d\mathcal{E}(u_d)}{du_d^2}\right]_{u_d=0}$$

We thus find:

$$\frac{d\mathcal{E}(u_a)}{du_a^2} = \frac{1}{2}m\gamma_a^3 = \frac{m}{2(1 - u_a^2/c^2)^{3/2}}$$

Integration yields

$$\mathcal{E}(u) = \frac{mc^2}{\sqrt{1 - u^2/c^2}} + [\mathcal{E}(0) - mc^2]$$

And the kinetic energy is given by

$$T(u) = \mathcal{E}(u) - \mathcal{E}(0) = mc^{2} \left[\frac{1}{\sqrt{1 - u^{2}/c^{2}}} - 1 \right]$$

Part 1

We further consider the decay of a neutral K-meson into two photons, $k^0 \to \gamma \gamma$, where $\mathcal{E}_k(0)$ is the rest energy.

For another decay mode of a neutral K-meson into two pions, the kinetic energy of each pion in the K-meson's rest frame must be:

$$T_{\pi} = \frac{1}{2} \mathcal{E}_k(0) - \mathcal{E}_{\pi}(0)$$

where $\mathcal{E}(0) = mc^2$.

The total energy of a particle with mass m and velocity \vec{u} is given by:

$$E = \gamma mc^2 = \frac{mc^2}{\sqrt{1 - u^2/c^2}}$$

The energy and momentum conservation for an arbitrary collision are:

$$\sum_{\text{initial}} (P_0)_a - \sum_{\text{final}} (P_0)_b = \Delta_0$$
$$\sum_{\text{initial}} \vec{P}_a - \sum_{\text{final}} \vec{P}_b = \vec{\Delta}$$

where $(\Delta_0, \vec{\Delta})$ is a 4-vector with $\Delta = 0$. And

$$c\Delta_0 = \sum_{\text{final}} [\mathcal{E}_b(0) - m_b c^2] - \sum_{\text{initial}} [\mathcal{E}_a(0) - m_a c^2]$$

If $\Delta = 0$ in all inertial frames, it's necessary that $\Delta_0 = 0$ for each particle.

Part 2

The velocity in terms of momentum \vec{p} and energy E is:

$$\vec{u} = \frac{c^2 \vec{p}}{E}$$

The invariant length of $(P_0 = E/c, \vec{P})$ is:

$$P_0^2 - \vec{p} \cdot \vec{p} = (mc)^2$$

And the energy in terms of momentum is:

$$E = \sqrt{c^2 p^2 + m^2 c^4}$$

We consider a particle with momentum \vec{p} in frame K with transverse momentum \vec{p}_{\perp} and a z component p_{\parallel} . There is a unique Lorentz transformation in the z direction to a frame K'. In K', the momentum and energy are:

$$p_\perp'=p_\perp,\quad E'=\Omega=\sqrt{p_\perp^2+m^2c^2}$$

Let the rapidity parameter from K to K' be ξ . In the frame K, the momentum components are:

$$p_{\parallel} = \Omega \sinh \xi, \quad \frac{E}{c} = \Omega \cosh \xi$$

with $\Omega=\sqrt{p_{\perp}^2+m^2c^2}$, and Ω is the transverse mass. If the particle is at rest in K', that is $p'_{\parallel}=0$, then:

$$p = mc \sinh \xi$$
, $E = mc^2 \cosh \xi$

Part 3

11.6 Mathematical Properties of the Space-Time of Special Theory

The Lorentz transformation of the four-dimensional coordinates (x_0, \vec{x}) follow from the invariance of

$$s^2 = x_0^2 - x_1^2 - x_2^2 - x_3^2$$

The group of all transformations that leave s^2 invariant is the homogeneous Lorentz group. The group of transformations that leave invariant $s^2(x,y) = (x_0 - y_0)^2 - (x_1 - y_1)^2 - (x_2 - y_2)^2 - (x_3 - y_3)^2$ is the inhomogeneous Lorentz group / Poincaré group.

In a non-Euclidean vector space, the space-time continuum is defined in terms of x^0, x^1, x^2, x^3 and the transformation yields x'^0, x'^1, x'^2, x'^3 .

$$x'^{\alpha} = x'^{\alpha}(x^0, x^1, x^2, x^3) \quad (\alpha = 0, 1, 2, 3)$$

For the contravariant vector A^{α} with A^0, A^1, A^2, A^3 :

$$A'^{\alpha} = \frac{\partial x'^{\alpha}}{\partial x^{\beta}} A^{\beta} \quad (\text{sum on } \beta = 0, 1, 2, 3)$$

$$A'^{0} = \frac{\partial x'^{0}}{\partial x^{0}} A^{0} + \frac{\partial x'^{0}}{\partial x^{1}} A^{1} + \dots$$

For the covariant vector B_{α} :

$$B_{\alpha}' = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} B_{\beta} \quad (\text{sum on } \beta)$$

Part 4

For a tensor of rank two, it consists of 16 quantities.

$$F'^{\alpha\beta} = \frac{\partial x'^{\alpha}}{\partial x^{\gamma}} \frac{\partial x'^{\beta}}{\partial x^{\delta}} F^{\gamma\delta} \quad (\text{sum on } \gamma, \delta)$$

$$G^{\prime\alpha}_{\beta} = \frac{\partial x^{\prime\alpha}}{\partial x^{\gamma}} \frac{\partial x^{\delta}}{\partial x^{\prime\beta}} G^{\gamma}_{\delta} \quad (\text{sum on } \delta, \gamma)$$

$$H'_{\alpha\beta} = \frac{\partial x^{\gamma}}{\partial x'^{\alpha}} \frac{\partial x^{\delta}}{\partial x'^{\beta}} H_{\gamma\delta} \quad (\text{sum on } \gamma, \delta)$$

We have some properties:

$$B \cdot A = B_{\alpha} A^{\alpha}$$

$$B' \cdot A' = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} \frac{\partial x'^{\alpha}}{\partial x^{\gamma}} B_{\beta} A^{\gamma} = \delta^{\beta}_{\gamma} B_{\beta} A^{\gamma} = B_{\beta} A^{\beta} = B \cdot A$$

In differential form, the infinitesimal interval is:

$$(ds)^{2} = (dx^{0})^{2} - (dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2}$$
$$(ds)^{2} = g_{\alpha\beta}dx^{\alpha}dx^{\beta}$$

where $g_{\alpha\beta}$ is the metric tensor, and $g_{00}=1, g_{11}=g_{22}=g_{33}=-1$. By the Kronecker delta in four dimensions, $\delta^{\alpha}_{\beta}=g^{\alpha\gamma}g_{\gamma\beta}$. We can obtain the covariant coordinate 4-vector x_{α} in terms of the contravariant x^{β} and $g_{\alpha\beta}$, that is:

$$x_{\alpha} = g_{\alpha\beta} x^{\beta}$$

and its inverse

$$g^{\alpha\beta}x_{\beta} = x^{\alpha}$$

11.7 Matrix Representation of Lorentz Transformations, Infinitesimal Generators

We define the coordinates x^{α} as a vector

$$x = \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix}$$

and the Matrix A scalar products of 4-vectors as

$$(a,b) = \tilde{a}b$$

with the

$$g = \begin{pmatrix} 1 & & & & \\ & -1 & & & \\ & & -1 & & \\ & & & -1 \end{pmatrix} \quad \text{and} \quad g^2 = I$$

we see that

$$gx = \begin{pmatrix} x^0 \\ -x^1 \\ -x^2 \\ -x^3 \end{pmatrix}$$

we also read that

$$a \cdot b = (a, gb) = (\tilde{a}g)b = \tilde{a}gb$$

We now seek a group of linear transformations on the coordinates

$$x' = Ax$$

where A is a 4x4 matrix such that (x, gx) is invariant

$$\tilde{x}'gx' = \tilde{x}gx$$

By substitution, we have

$$\tilde{x}\tilde{A}gAx = \tilde{x}gx$$
 for all x .
 $\Rightarrow \tilde{A}gA = g$

Taking the determinant:

$$\det(\tilde{A}gA) = \det(g)(\det A)^2 = \det g = -1 \neq 0$$

$$\Rightarrow \det A = \pm 1$$

 $\det A = -1$: improper Lorentz transformations (sufficient but not necessary)

 $\det A = +1$: proper Lorentz transformations

We make the ansatz $A=e^L$ where L is 4x4. The determinant is $\det A=\det \left(e^L\right)=e^{\operatorname{Tr} L}$. If A is traceless, $\det A=+1\Rightarrow$ proper Lorentz transformation. Thus $\tilde{A}gA=g\Rightarrow g\tilde{A}gA=I$ since $\tilde{A}=A^{-1}$ with $A=e^L$ and $g^2=I$. We have: $\tilde{A}=e^{\tilde{L}},g\tilde{A}g=ge^{\tilde{L}}g=e^{g\tilde{L}g},~A^{-1}=e^{-L}$

$$\Rightarrow g\tilde{L}g = -L \quad \text{or} \quad \tilde{gL} = -gL$$

From these properties, we have the general form

$$L = \begin{pmatrix} 0 & L_{01} & L_{02} & L_{03} \\ L_{01} & 0 & L_{12} & L_{13} \\ L_{02} & -L_{12} & 0 & L_{23} \\ L_{03} & -L_{13} & -L_{23} & 0 \end{pmatrix}$$

The set of fundamental matrices defined by

$$S_{1} = \begin{pmatrix} & & & \\ & & & \\ & 1 & \end{pmatrix}, \quad S_{2} = \begin{pmatrix} & & 1 \\ & -1 & \end{pmatrix}, \quad S_{3} = \begin{pmatrix} & & -1 \\ 1 & \end{pmatrix}$$
$$K_{1} = \begin{pmatrix} & & -1 \\ -1 & & \\ & & \end{pmatrix}, \quad K_{2} = \begin{pmatrix} & & -1 \\ -1 & & \\ \end{pmatrix}, \quad K_{3} = \begin{pmatrix} & & -1 \\ & & \\ -1 & & \end{pmatrix}$$

 S_i generate rotations in three dimensions K_i produce boost The square of those are

$$S_{1}^{2} = \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}, \quad K_{1}^{2} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 0 & \\ & & & 0 \end{pmatrix}$$

$$S_{2}^{2} = \begin{pmatrix} 0 & & & \\ & -1 & & \\ & & & -1 \end{pmatrix}, \quad K_{2}^{2} = \begin{pmatrix} 1 & & & \\ & 0 & & \\ & & & 1 \\ & & & 0 \end{pmatrix}$$

$$S_{3}^{2} = \begin{pmatrix} 0 & & & \\ & -1 & & \\ & & & 0 \end{pmatrix}, \quad K_{3}^{2} = \begin{pmatrix} 1 & & & \\ & 0 & & \\ & & 0 & \\ & & & 1 \end{pmatrix}$$

we can also prove that:

$$(\epsilon \cdot S)^2 = -\epsilon^2 \cdot S$$

$$(\epsilon' \cdot K)^2 = \epsilon' \cdot K$$

where ϵ, ϵ' are any real unit 3-vectors.

The general result for L can be shown as

$$L = -w \cdot S - \zeta \cdot K$$

where w and ζ are constant 3-vectors

$$A = e^{-w \cdot S - \zeta \cdot K}$$

We consider a situation in which $w = 0, \zeta = \zeta \hat{k}_1$. The $L = -\zeta K_1$ and $K_1^2 = K_1$ and S_i^2, K_j^2

$$A = \begin{pmatrix} \cosh \zeta & -\sinh \zeta & 0 & 0 \\ -\sinh \zeta & \cosh \zeta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

If $\zeta = 0$ and $w = w\hat{E}_3$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos(w) & \sin(w) & 0\\ 0 & -\sin(w) & \cos(w) & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

For a boost in an arbitrary direction:

$$A = e^{-\vec{\zeta} \cdot \vec{K}}$$

where $\vec{\zeta} = \hat{\beta} \tanh^{-1} \beta$, where $\hat{\beta}$ is a unit vector in the direction of the relative velocity of the two inertial frames.

The pure boost is

$$A_{boost}(\beta) = e^{-\zeta \cdot K} \tanh^{-1} \beta$$

$$= \begin{pmatrix} \gamma & -\gamma \beta_1 & -\gamma \beta_2 & -\gamma \beta_3 \\ -\gamma \beta_1 & 1 + (\gamma - 1) \frac{\beta_1^2}{\beta^2} & (\gamma - 1) \frac{\beta_1 \beta_2}{\beta^2} & (\gamma - 1) \frac{\beta_1 \beta_3}{\beta^2} \\ -\gamma \beta_2 & (\gamma - 1) \frac{\beta_2 \beta_1}{\beta^2} & 1 + (\gamma - 1) \frac{\beta_2^2}{\beta^2} & (\gamma - 1) \frac{\beta_2 \beta_3}{\beta^2} \\ -\gamma \beta_3 & (\gamma - 1) \frac{\beta_3 \beta_1}{\beta^2} & (\gamma - 1) \frac{\beta_3 \beta_2}{\beta^2} & 1 + (\gamma - 1) \frac{\beta_3^2}{\beta^2} \end{pmatrix}$$

The six matrices S_i, K_j are a representation of the infinitesimal generators of the Lorentz group. They satisfy the commutation relations

$$[S_i, S_j] = \epsilon_{ijk} S_k$$

$$[S_i, K_j] = \epsilon_{ijk} K_k \quad \text{where } [A, B] = AB - BA$$

$$[K_i, K_j] = \epsilon_{ijk} S_k$$

$$\begin{split} \Rightarrow F_{\alpha\beta} &= g_{\alpha\delta} F_\beta^\delta \\ G..._{\alpha..} &= g_{\alpha\beta} G...^\beta \\ A^0, A^1, A^2, A^3 \quad \rightarrow \quad A_0 &= A^0, A_1 = -A^1, A_2 = -A^2, A_3 = -A^3 \end{split}$$

We write this concisely:

$$A^{\alpha} = (A^0, \vec{A}), \quad A_{\alpha} = (A^0, -\vec{A})$$

where \vec{A} is a 3-vector with $A^1A^2A^3$ and

$$B \cdot A = B_{\alpha} A^{\alpha} = B^0 A^0 - \vec{B} \cdot \vec{A}$$

We have the operator

$$\frac{\partial}{\partial x'^{\alpha}} = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} \frac{\partial}{\partial x^{\beta}}$$

we employ the notation

$$\begin{split} \partial^{\alpha} &= \frac{\partial}{\partial x_{\alpha}} = (\frac{\partial}{\partial x_{0}}, -\nabla) \\ \partial_{\alpha} &= \frac{\partial}{\partial x^{\alpha}} = (\frac{\partial}{\partial x^{0}}, \nabla) \\ \partial_{\alpha} \partial^{\alpha} &= \frac{\partial}{\partial x^{0}} \frac{\partial}{\partial x_{0}} + \nabla \cdot (-\nabla) \text{ is the invariant} \end{split}$$

The four-dimensional Laplacian operator is defined to be the invariant contraction

$$\Box = \partial_{\alpha} \partial^{\alpha} = \frac{\partial^2}{\partial x_0^2} - \nabla^2$$

which is the operator of the wave equation in vacuum.

11.8 Thomas Precession

By Uhlenbeck-Goudsmit hypothesis

The electron possesses a spin angular momentum \vec{s} and a magnetic moment $\vec{\mu}$ related by

$$\vec{\mu} = \frac{ge}{2mc}\vec{s}$$
 where $g \approx 2$

We suppose the electron moves with \vec{v} in fields \vec{E} and \vec{B} . The equation of motion in its rest frame is:

$$\left(\frac{d\vec{s}}{dt}\right)_{\text{rest frame}} = \vec{\mu} \times \vec{B}'$$

where $\vec{B}' \approx \vec{B} - \frac{\vec{v}}{c} \times \vec{E}$. Then,

$$\left(\frac{d\vec{s}}{dt}\right)_{\rm rest\ frame} = \vec{\mu} \times \left(\vec{B} - \frac{\vec{v}}{c} \times \vec{E}\right)$$

which is equivalent to an energy of interaction of the electron spin

$$U' = -\vec{\mu} \cdot \left(\vec{B} - \frac{\vec{v}}{c} \times \vec{E} \right)$$

We view $e\vec{E} = -\vec{\nabla}V = -\frac{\vec{r}}{r}\frac{dV}{dr}$, then

$$U' = -\frac{ge}{2mc}\vec{s} \cdot \vec{B} + \frac{g}{2m^2c^2}(\vec{s} \cdot \vec{L})\frac{1}{r}\frac{dV}{dr}$$

where $\vec{L} = m(\vec{r} \times \vec{v})$. This gives the anomalous Zeeman effect.

Coordinate System Rotation

If the coordinate system rotates, any vector \vec{G} is given by

$$\left(\frac{d\vec{G}}{dt}\right)_{\text{non-rot}} = \left(\frac{d\vec{G}}{dt}\right)_{\text{rest frame}} + \vec{w}_T \times \vec{G}$$

where \vec{w}_T is the angular velocity of rotation. Thus:

$$\left(\frac{d\vec{G}}{dt}\right)_{\text{non-rot}} = \vec{s} \times \left(\frac{ge\vec{B}}{2mc} - \vec{w}_T\right)$$

The corresponding energy of interaction is

$$U = U' + \vec{s} \cdot \vec{w}_T$$

where U' is the electromagnetic spin interaction.

We consider an electron moving with $\vec{v}(t)$ with respect to a laboratory inertial frame. Let the velocity of the rest frame with respect to the laboratory at laboratory time t be $\vec{v}(t) = c\vec{\beta}$ and at $t + \delta t$ be $\vec{v}(t + \delta t) = c(\vec{\beta} + \delta \vec{\beta})$. The connection is

$$\begin{cases} \vec{x}' = A \text{boost}(\vec{\beta}) \vec{x} \\ \vec{x}'' = A \text{boost}(\vec{\beta} + \delta \vec{\beta}) \vec{x} \end{cases}$$

$$\implies \vec{x}'' = A \text{boost}(\vec{\beta} + \delta \vec{\beta}) A^{-1} \text{boost}(\vec{\beta}) \vec{x}' = A T \vec{x}'$$

where $AT = Aboost(\vec{\beta} + \delta \vec{\beta})A^{-1}boost(\vec{\beta}) = Aboost(\vec{\beta} + \delta \vec{\beta})Aboost(-\vec{\beta})$.

We choose a proper laboratory frame where $\vec{\beta}$ at t is parallel to the 1-axis and the $\delta \vec{\beta}$ lies in the 1-2 plane.

Hence,

$$Aboost(-\vec{\beta}) = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0\\ -\gamma\beta & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

since $-\beta_1 = \beta$, $\beta_2 = \beta_3 = 0$. Similarly,

$$Aboost(\vec{\beta} + \delta \vec{\beta}) = \begin{pmatrix} \gamma^3 \beta \delta \beta_1 & -(\gamma \beta + \gamma^3 \delta \beta_1) & -\gamma \delta \beta_2 & 0\\ -(\gamma \beta + \gamma^3 \delta \beta_1) & \gamma + \gamma^3 \beta \delta \beta_1 & (\frac{\gamma - 1}{\beta^2}) \delta \beta_2 & 0\\ -\gamma \delta \beta_2 & -(\frac{\gamma - 1}{\beta^2}) \delta \beta_2 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Thus:

$$AT = \begin{pmatrix} 1 & -\gamma^2 \delta \beta_1 & -\gamma \delta \beta_2 & 0 \\ -\gamma^2 \delta \beta_1 & 1 & (\frac{\gamma - 1}{\beta^2}) \delta \beta_2 & 0 \\ -\gamma \delta \beta_2 & -(\frac{\gamma - 1}{\beta^2}) \delta \beta_2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$=I-\frac{\gamma^2}{\gamma+1}(\vec{\beta}\times\delta\vec{\beta})\cdot\vec{S}-(\gamma^2\beta_1\delta\beta_1+\gamma\delta\beta_2)\vec{K}$$

where $\delta \vec{\beta}_1$ and $\delta \vec{\beta}_2$ are components of $\delta \vec{\beta}$.

To first order in $\delta \vec{\beta}$,

$$AT = A \operatorname{boost}(\Delta \vec{\beta}) R(\delta \vec{\Omega}) \approx A \operatorname{boost}(\delta \vec{\beta'})$$

where $\{Aboost(\Delta \vec{\beta}') = I - \Delta \vec{\beta}' \cdot \vec{K}\}, \{R(\Delta \vec{\Omega}) = I - \Delta \vec{\Omega} \cdot \vec{S}\}$ with

$$\Delta \vec{\beta'} = \gamma^2 \delta \vec{\beta_1} + \delta \vec{\beta_2}$$

$$\Delta\vec{\Omega} = (\frac{\gamma-1}{\beta^2})\vec{\beta} \times \delta\vec{\beta} = \frac{\gamma^2}{\gamma+1}\vec{\beta} \times \delta\vec{\beta}$$

That is: a pure Lorentz boost to the frame with $c(\vec{\beta} + \delta \vec{\beta})$ is a boost to/from a frame with $c\vec{\beta}$, followed by an infinitesimal transformation consisting of a boost with $c\Delta \vec{\beta}$ and a rotation $\Delta \vec{\Omega}$.

Rest Frame Coordinates

We now consider the rest-frame coordinates at $t + \delta t$ that are given from those at t by the Boost $(\Delta \vec{\beta})$

$$\vec{x}''' = Aboost(\Delta \vec{\beta})\vec{x}' = R(-\Delta \vec{\Omega})Aboost(\vec{\beta} + \delta \vec{\beta})\vec{x}$$

If a vector \vec{G} has a time rate of change $\frac{d\vec{G}}{dt}$ in the rest frame, the precession of the rest-frame axes with respect to the laboratory makes the vector have a total time rate of change with respect to the laboratory axes of:

$$\vec{\omega}_T = \lim_{\delta t \to 0} \frac{\Delta \vec{\Omega}}{\delta t} = \frac{\gamma^2}{\gamma + 1} \frac{\vec{a} \times \vec{v}}{c^2}$$

where \vec{a} is the acceleration in the laboratory frame. To be more precise

$$\left(\frac{d\vec{G}}{dt}\right)_{\text{rest frame}} = +(\gamma - 1)\left(\frac{d\vec{G}}{dt}\right)_{\text{rest frame}}$$

For an electron in the atom

$$\vec{\omega}_T = -\frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \vec{L} = -\frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} (\vec{r} \times \vec{p})$$

The Thomas precession reduces the spin-orbit coupling, yielding

$$U = \frac{ge}{2mc} \vec{s} \cdot \vec{B} + (\frac{g-1}{2m^2c^2}) \vec{s} \cdot \vec{L} \frac{1}{r} \frac{dV}{dr}$$

With g=2, the spin-orbit interaction is reduced by $\frac{1}{2}$.

Continuation of Previous Notes

Rotating Coordinate Systems and Composition of Boosts

If the coordinate system rotates, any vector \vec{G} is given by

$$\left(\frac{d\vec{G}}{dt}\right)_{\text{non-rot}} = \left(\frac{d\vec{G}}{dt}\right)_{\text{rest frame}} + \vec{w}_T \times \vec{G}$$

where \vec{w}_T is the angular velocity of rotation. Thus,

$$\left(\frac{d\vec{G}}{dt}\right)_{\text{non-rot}} = S \times \left(\frac{geB}{2mc} - \vec{w}_T\right)$$

The corresponding energy of interaction

$$U = U' + S \cdot \vec{w}_T$$

where U' is the electromagnetic spin interaction.

We consider an electron moving with $\vec{v}(t)$ with respect to a laboratory inertial frame. Let the velocity of the rest frame with respect to the laboratory at laboratory time $t: \vec{v}(t) = c\vec{\beta}$ and at $t + \delta t: \vec{v}(t + \delta t) = c(\vec{\beta} + \delta \vec{\beta})$. The connection is:

$$x' = A_{\text{boost}}(\vec{\beta})x$$
$$x'' = A_{\text{boost}}(\vec{\beta} + \delta \vec{\beta})x$$
$$\Rightarrow x'' = A'x' = A'A^{-1}x$$

where $AT = A_{\text{boost}}(\vec{\beta} + \delta \vec{\beta}) A_{\text{boost}}^{-1}(\vec{\beta}) = A_{\text{boost}}(\vec{\beta} + \delta \vec{\beta}) A_{\text{boost}}(-\vec{\beta}).$

We choose a proper laboratory frame where $\vec{\beta}$ at t is parallel to the 1-axis and the $\delta \vec{\beta}$ lies in the 1-2 plane. Hence

$$A_{\text{boost}}(-\vec{\beta}) = \begin{pmatrix} \gamma & \gamma\beta & 0 & 0\\ \gamma\beta & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Figure 11.7

Figure 6:

since $-\beta_1 = \beta$, $\beta_2 = \beta_3 = 0$. Similarly,

$$A_{\text{boost}}(\vec{\beta} + \delta \vec{\beta}) = \begin{pmatrix} \gamma + \gamma^3 \beta \delta \beta_1 & -(\gamma \beta + \gamma^3 \delta \beta_1) & -(\gamma + \gamma^3 \beta^2) \delta \beta_2 & 0\\ -(\gamma \beta + \gamma^3 \delta \beta_1) & \gamma + \gamma^3 \beta^2 \delta \beta_1 & (\gamma - 1) \frac{\delta \beta_2}{\beta} & 0\\ -\gamma \delta \beta_2 & -\gamma \beta \delta \beta_2 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Thus,

$$AT = \begin{pmatrix} 1 & -\gamma^2 \delta \beta_1 & -(\gamma \beta) \delta \beta_2 & 0 \\ -\gamma^2 \delta \beta_1 & 1 & (\frac{\gamma - 1}{\beta}) \delta \beta_2 & 0 \\ -\gamma \delta \beta_2 & -\frac{\gamma(\gamma - 1)}{\beta} \delta \beta_2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= I - (\frac{\gamma}{\beta})(\vec{\beta} \times \delta \vec{\beta}) \cdot \vec{S} - (\gamma^2 \beta \delta \beta_1 + \gamma \delta \beta_2) \vec{K}$$

where $\delta \beta_1$ and $\delta \beta_2$ are components of $\delta \vec{\beta}$.

To first order in $\delta \vec{\beta}$

$$AT = A_{\text{boost}}(\Delta \vec{\beta}') R(\delta \vec{\Omega}) \approx A_{\text{boost}}(\Delta \vec{\beta}')$$

where $\{A_{\text{boost}}(\Delta \vec{\beta}') = I - \Delta \vec{\beta}' \cdot \vec{K}\}$. $\{R(\Delta \vec{\Omega}) = I - \Delta \vec{\Omega} \cdot \vec{S}\}$ with $\Delta \vec{\beta}' = \gamma^2 \delta \beta_1 \hat{i} + \gamma \delta \beta_2 \hat{j}$.

$$\Delta\vec{\Omega} = (\frac{\gamma - 1}{\beta^2})\vec{\beta} \times \delta\vec{\beta} = \frac{\gamma^2}{c^2}\vec{v} \times \delta\vec{v}$$

That is: a pure Lorentz boost to the frame with $c(\vec{\beta} + \delta \vec{\beta})$ is a boost to/from with $c\vec{\beta}$, followed by an infinitesimal transformation consisting of a boost with $c\Delta \vec{\beta}$ and a rotation $\Delta \vec{\Omega}$.

11.9 Invariance of Electric Charge; Covariance of Electrodynamics

Lorentz Force

Consider the Lorentz force for a particle

$$\frac{d\vec{p}}{dt} = q(\vec{E} + \frac{\vec{v}}{c} \times \vec{B})$$

We know \vec{p} transforms as the space part of the 4-vector of energy and momentum

$$P^{\alpha} = (P_0, \vec{P}) = m(U_0, \vec{U})$$

where $P_0 = E/c$ and U^{α} is the 4-velocity. We use proper time τ :

$$\frac{d\vec{P}}{d\tau} = \frac{q}{c}(U_0\vec{E} + \vec{U} \times \vec{B})$$

where the left-hand side is the space part. The corresponding time component

$$\frac{dP_0}{d\tau} = \frac{q}{c}\vec{U} \cdot \vec{E}$$

Maxwell Equations

We then consider the Maxwell equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0$$

We postulate that ρ and \vec{J} form a 4-vector \vec{J}

$$J^{\alpha} = (c\rho, \vec{J})$$

The continuity equation becomes

$$\partial_{\alpha}J^{\alpha} = 0$$

The 4-dimensional volume element $d^4x = dx^0 dx^1 dx^2 dx^3$ is a Lorentz invariant

$$d^4x' = \frac{\partial(x^0, x^1, x^2, x^3)}{\partial(x'^0, x'^1, x'^2, x'^3)}d^4x = \det Ad^4x = d^4x$$

In the Lorentz family of gauges the wave equations for \vec{A}' and Φ :

$$\begin{cases} \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \nabla^2 \vec{A} = \frac{4\pi}{c} \vec{J} \\ \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} - \nabla^2 \Phi = 4\pi \rho \end{cases}$$

with Lorentz condition

$$\frac{1}{c}\frac{\partial\Phi}{\partial t} + \nabla \cdot \vec{A} = 0$$

The Lorentz covariance requires that Φ and \vec{A} form a 4-vector potential

$$A^\alpha = (\Phi, \vec{A})$$

$$\Rightarrow \Box A^{\alpha} = \frac{4\pi}{c} J^{\alpha}$$

$$\partial_{\alpha}A^{\alpha}=0$$

We express \vec{E}, \vec{B} in terms of Φ, \vec{A}

$$\vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t} - \nabla \Phi$$

$$\vec{B} = \nabla \times \vec{A}$$

The x-components

$$E_x = -\frac{1}{c} \frac{\partial A_x}{\partial t} - \frac{\partial \Phi}{\partial x} = -(\partial^0 A^1 - \partial^1 A^0)$$
$$B_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = -(\partial^2 A^3 - \partial^3 A^2)$$

These equations indicate that \vec{E} and \vec{B} form a second-rank, antisymmetric field-strength tensor

$$F^{\alpha\beta} = \partial^{\alpha} A^{\beta} - \partial^{\beta} A^{\alpha}$$

In matrix form, the field-strength tensor $F^{\alpha\beta}$ is:

$$F^{\alpha\beta} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$

The covariant tensor $F_{\alpha\beta} = g_{\alpha\gamma}F^{\gamma\delta}g_{\delta\beta}$ is:

$$F_{\alpha\beta} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0 \end{pmatrix}$$

We define the dual field-strength tensor by

$$\mathcal{F}^{\alpha\beta} = \frac{1}{2} \epsilon^{\alpha\beta\gamma\delta} F_{\gamma\delta} = \begin{pmatrix} 0 & -B_x & -B_y & -B_z \\ B_x & 0 & E_z & -E_y \\ B_y & -E_z & 0 & E_x \\ B_z & E_y & -E_x & 0 \end{pmatrix}$$

where $\epsilon^{\alpha\beta\gamma\delta}$ is the Levi-Civita pseudotensor.

Maxwell's Equations in Covariant Form

The two inhomogeneous equations

$$\nabla \cdot \vec{E} = 4\pi \rho$$

$$\nabla \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \vec{J}$$

can be written compactly as

$$\Rightarrow \partial_{\alpha} F^{\alpha\beta} = \frac{4\pi}{c} J^{\beta}$$

Similarly, the two homogeneous equations

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$$

become

$$\Rightarrow \partial_{\alpha} \mathcal{F}^{\alpha\beta} = 0$$

which is equivalent to the cyclic identity

$$\partial_{\gamma} F_{\alpha\beta} + \partial_{\alpha} F_{\beta\gamma} + \partial_{\beta} F_{\gamma\alpha} = 0$$

Lorentz Force in Covariant Form

We can write the Lorentz force equation as

$$\frac{dP^{\alpha}}{d\tau} = m\frac{dU^{\alpha}}{d\tau} = \frac{q}{c}F^{\alpha\beta}U_{\beta}$$

Its components are:

$$\frac{d\vec{P}}{dt} = q(\vec{E} + \frac{\vec{v}}{c} \times \vec{B})$$
$$\frac{dP_0}{d\tau} = \frac{q}{c} \vec{U} \cdot \vec{E}$$

As we denote for $(\vec{E}, \vec{B}) \to (\vec{D}, \vec{H})$, the covariant form is (we denote for (\vec{E}, \vec{B}) as $F^{\alpha\beta}$, and for (\vec{D}, \vec{H}) as $G^{\alpha\beta}$)

$$\begin{cases} \partial_{\alpha} G^{\alpha\beta} = \frac{4\pi}{c} j^{\beta} \\ \partial_{\alpha} \mathcal{F}^{\alpha\beta} = 0 \end{cases}$$

11.10 Transformations of Electromagnetic Fields

We express the second-rank tensor in k' in terms of the values in k.

$$F'^{\alpha\beta} = \frac{\partial x'^{\alpha}}{\partial x^{\gamma}} \frac{\partial x'^{\beta}}{\partial x^{\delta}} F^{\gamma\delta}$$
$$F' = AFA^{T}$$

where A is the Lorentz transformation.

For example: we consider a frame k' changed to another frame k with $\vec{\beta}$ along the x_1 axis.

$$E'_1 = E_1,$$
 $B'_1 = B_1$
 $E'_2 = \gamma(E_2 - \beta B_3),$ $B'_2 = \gamma(B_2 + \beta E_3)$
 $E'_3 = \gamma(E_3 + \beta B_2),$ $B'_3 = \gamma(B_3 - \beta E_2)$

By putting $\vec{E} \to -\vec{B}$, we get the transformation

$$\vec{E}' = \gamma(\vec{E} + \vec{\beta} \times \vec{B}) - \frac{\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{E})$$
$$\vec{B}' = \gamma(\vec{B} - \vec{\beta} \times \vec{E}) - \frac{\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B})$$

 $\Rightarrow \vec{E}', \vec{B}'$ are interrelated.

We consider one example that there exists no magnetic field in k' and one or more point charges at rest in k'. In the k we have

$$\vec{B} = \vec{\beta} \times \vec{E}$$

As an important example: we now consider the fields in k when a point charge q moves by in a straight-line path with \vec{v} . The charge is at rest in k'. We suppose the charge moves in the positive x_1 .

The observer is at P. In the k', P has coordinates $x_1' = -vt'$, $x_2' = b$, $x_3' = 0$, and a distance $r' = \sqrt{(vt')^2 + b^2}$ away from q. With the transformation $t' = \gamma[t - (v/c^2)x_1] = \gamma t$ since $x_1 = 0$ for P in

In the rest frame k' the fields at P are

$$E'_{1} = \frac{-qvt'}{(b^{2} + v^{2}t'^{2})^{3/2}}$$

$$E'_{2} = \frac{qb}{(b^{2} + v^{2}t'^{2})^{3/2}}$$

$$E'_{3} = 0$$

$$B'_{1} = 0, \quad B'_{2} = 0, \quad B'_{3} = 0$$

Figure 11.8 Particle of charge q moving at constant velocity \mathbf{v} passes an observation point P at impact parameter b.

Figure 7:

Substituting $t' = \gamma t$:

$$E'_1 = \frac{-q\gamma vt}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}$$

$$E'_2 = \frac{qb}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}$$

The inverse in the k:

$$E_1 = E_1' = \frac{-q\gamma vt}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}$$

$$E_2 = \gamma E_2' = \frac{\gamma qb}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}$$

$$B_3 = \gamma \beta E_2' = \beta E_2$$

with the other components vanishing.

As $\epsilon \to 0$, we see that the magnetic field becomes almost equal to E_2 . When $\gamma \approx 1$,

$$B' \approx \frac{q}{c} \frac{\vec{v} \times \vec{r}}{r^3}$$

which is the Ampere-Biot-Savart expression.

11.11 Relativistic Equation of Motion for Spin in Uniform or Slowly Varying External Fields

The equation of motion for the spin in the rest frame

$$\frac{d\vec{s}}{dt} = \frac{ge}{2mc}\vec{s} \times \vec{B}$$

A: Covariant Equation of Motion

We define an axial vector S^{α} , then the time-component in the rest frame k' is

$$S'^0 = \gamma (S^0 - \vec{\beta} \cdot \vec{s}) = 0$$

where U^{α} is the 4-velocity. By the covariant constraint,

$$U_{\alpha}S^{\alpha}=0$$

In an inertial frame where the particle has $\vec{\beta}$, the time component of S is

$$S_0 = \vec{\beta} \cdot \vec{s}$$

Figure 11.9 Fields of a uniformly moving charged particle. (a) Fields at the observation point P in Fig. 11.8 as a function of time. (b) Lines of electric force for a particle at rest and in motion ($\gamma = 3$). The field lines emanate from the *present* position of the charge.

sion of the lines of force in the transverse direction can be viewed as a consequence of the FitzGerald-Lorentz contraction.

Figure 8:

$$\vec{s}' = \vec{s} - \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{s}) \vec{\beta}$$
$$\vec{s} = \vec{s}' + \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{s}') \vec{\beta}$$
$$S_0 = \gamma \vec{\beta} \cdot \vec{s}'$$

A. Construction of 4-vectors and Equation of Motion

We construct the 4-vectors

$$F^{\alpha\beta}S_{\beta}, \quad (S_{\lambda}F^{\lambda\mu}U_{\mu})U^{\alpha}, \quad \left(S_{\beta}\frac{dU^{\beta}}{d\tau}\right)U^{\alpha}$$

The equation of motion

$$\frac{dS^{\alpha}}{d\tau} = A_1 F^{\alpha\beta} S_{\beta} + A_2 (S_{\lambda} F^{\lambda\mu} U_{\mu}) U^{\alpha} + A_3 \left(S_{\beta} \frac{dU^{\beta}}{d\tau} \right) U^{\alpha}$$

The constraint equation must hold at all times which requires

$$\frac{d}{d\tau}(U_{\alpha}S^{\alpha}) = S^{\alpha}\frac{dU_{\alpha}}{d\tau} + U_{\alpha}\frac{dS^{\alpha}}{d\tau} = 0$$

Hence,

$$(A_1 - A_2)U_{\alpha}F^{\alpha\beta}S_{\beta} + (A_3 + 1)S_{\beta}\frac{dU^{\beta}}{d\tau} = 0$$

If non-electromagnetic or field gradient forces are allowed, it's necessary $A_1 = A_2$, $A_3 = -1$. Reduction to the rest frame gives $A_1 = \frac{ge}{2mc}$. Thus,

$$\frac{dS^{\alpha}}{d\tau} = \frac{ge}{2mc} \left[F^{\alpha\beta} S_{\beta} + \frac{1}{c^2} U^{\alpha} (S_{\lambda} F^{\lambda\mu} U_{\mu}) \right] - \frac{1}{c^2} U^{\alpha} \left(S_{\beta} \frac{dU^{\beta}}{d\tau} \right)$$

If the electromagnetic fields are uniform, or if gradient force terms like $\nabla(\vec{s} \cdot \vec{B})$ can be neglected, and there are no other appreciable forces on the particle, the translational motion is described by

$$\frac{dU^{\alpha}}{d\tau} = \frac{e}{mc} F^{\alpha\beta} U_{\beta}$$

Then we have the BMT equation

$$\frac{dS^{\alpha}}{d\tau} = \frac{e}{mc} \left[\frac{g}{2} F^{\alpha\beta} S_{\beta} + \frac{1}{c^2} (\frac{g}{2} - 1) U^{\alpha} (S_{\lambda} F^{\lambda\mu} U_{\mu}) \right]$$

B. Connection to the Thomas Precession

We consider the rest-frame spin \vec{s}

$$S_0 = \frac{\gamma}{c} \vec{v} \cdot \vec{s}$$

and $\vec{S} = \vec{s} + \frac{\gamma^2}{\gamma + 1} \frac{(\vec{\beta} \cdot \vec{s})\vec{\beta}}{c^2}$ We find:

$$\begin{cases} \frac{d\vec{S}}{dt} = \vec{F} + \gamma^2 \vec{v} (\vec{S} \cdot \frac{d\vec{\beta}}{dt}) \\ \frac{dS_0}{dt} = \vec{F}_0 + \gamma^2 (\vec{S} \cdot \frac{d\vec{\beta}}{dt}) \end{cases}$$

can be combined to give

$$\frac{d\vec{s}}{dt} = \vec{F} - \frac{\gamma \vec{\beta}}{\gamma + 1} \vec{F}_0 + \frac{\gamma^2}{\gamma + 1} \left[\vec{s} \cdot \vec{\beta} \times \frac{d\vec{\beta}}{dt} \right]$$

By $F_0 = \vec{\beta} \cdot \vec{F}$ and definition of $\vec{\omega}_T$

$$\frac{d\vec{s}}{dt} = \frac{1}{\gamma}\vec{F} + \vec{\omega}_T \times \vec{s}$$

For motion in electromagnetic fields where $\frac{dU^{\alpha}}{d\tau} = \frac{e}{mc}F^{\alpha\beta}U_{\beta}$ holds,

$$\frac{d\vec{p}}{dt} = \frac{e}{mc} \left[\vec{E} + \vec{\beta} \times \vec{B} - \vec{\beta} (\vec{\beta} \cdot \vec{E}) \right]$$

By the transformation properties

$$\begin{split} \vec{F} &= \frac{ge}{2mc^2} \left[\vec{s} \times \left(\vec{B} - \frac{\gamma}{\gamma+1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \vec{\beta} \times \vec{E} \right) \right] \\ \Rightarrow \frac{d\vec{s}}{dt} &= \frac{e}{mc} \vec{s} \times \left[\left(\frac{g}{2} - 1 + \frac{1}{\gamma} \right) \vec{B} - \left(\frac{g}{2} - 1 \right) \frac{\gamma}{\gamma+1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(\frac{g}{2} - \frac{\gamma}{\gamma+1} \right) \vec{\beta} \times \vec{E} \right] \end{split}$$

Thomas's equation

C. Rate of Change of Longitudinal Polarization

We consider the rate of change of the component of \vec{s} parallel to the velocity or net helicity of the particle. The longitudinal polarization is $\hat{\beta} \cdot \vec{S}$. Thus:

$$\frac{d}{dt}(\hat{\beta} \cdot \vec{S}) = \frac{d\hat{\beta}}{dt} \cdot \vec{S} + \hat{\beta} \cdot \frac{d\vec{S}}{dt}$$

By $\frac{d\hat{\beta}}{dt}$ and $\frac{d\vec{S}}{dt}$ we have

$$\frac{d}{dt}(\hat{\beta}\cdot\vec{S}) = -\frac{e}{mc}\vec{s}_{\perp}\cdot\left[-\left(\frac{g}{2}-1\right)\hat{\beta}\times\vec{B} + \left(\frac{g\beta}{2}-\frac{1}{\beta}\right)\vec{E}_{\perp}\right]$$

where \vec{s}_{\perp} is the component of \vec{s} perpendicular to the velocity.

11.12 Note on Notation and Units in Relativistic Kinematics

We replace

$$\begin{pmatrix} S_0 \\ c\vec{p} \\ E \\ mc^2 \\ \frac{\vec{v}}{c} \end{pmatrix} \quad \text{with} \quad \begin{pmatrix} P_0 \\ \vec{P} \\ E \\ m \\ \vec{v} \end{pmatrix}$$

We can also write that

$$a \cdot b = a_{\alpha}b^{\alpha} = a_0b_0 - \vec{a} \cdot \vec{b}$$

Lorentz Transformations

Derivation from Postulates

We consider one-dimensional relative movement for two frames K and K'. So, y' = y, z' = z. Frame K' is moving with velocity V with respect to K. We introduce γ so that

$$x' = \gamma(x - vt) \tag{1}$$

By the principle of relativity, the inverse transformation must have the same form, with $v \to -v$:

$$x = \gamma(x' + vt') \tag{2}$$

At t = t' = 0, the origins of K and K' are coincided.

We imagine a light pulse propagating along the positive x-axis. After some time t, the light pulse reaches at x = ct in frame K. While in K', it reaches at x' = ct'. We consider the postulate that the speed of light is invariant in all inertial frames.

$$x' = ct' = \gamma(x - vt) = \gamma(ct - vt)$$
$$x = ct = \gamma(x' + vt') = \gamma(ct' + vt')$$

Multiply them:

$$c^{2}tt' = \gamma^{2}(ct - vt)(ct' + vt')$$

$$c^{2}tt' = \gamma^{2}(c^{2}tt' + cvtt' - vctt' - v^{2}tt')$$

$$c^{2}tt' = \gamma^{2}tt'(c^{2} - v^{2})$$

$$c^{2} = \gamma^{2}(c^{2} - v^{2})$$

$$\gamma^{2} = \frac{c^{2}}{c^{2} - v^{2}} = \frac{1}{1 - v^{2}/c^{2}}$$

$$\Rightarrow \gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$
(3)

By substituting $x' = \gamma(x - vt)$ into $x = \gamma(x' + vt')$, we can solve for t'.

$$\begin{split} x &= \gamma(\gamma(x-vt)+vt') \\ \frac{x}{\gamma} &= \gamma(x-vt)+vt' \\ vt' &= \frac{x}{\gamma} - \gamma x + \gamma vt \\ t' &= \frac{x}{v\gamma} - \frac{\gamma x}{v} + \gamma t \\ t' &= \gamma t + \frac{x}{v}(\frac{1}{\gamma} - \gamma) = \gamma t + \frac{x}{v}\left(\frac{1-\gamma^2}{\gamma}\right) \\ t' &= \gamma t + \frac{x}{v\gamma}\left(1 - \frac{1}{1-v^2/c^2}\right) = \gamma t + \frac{x}{v\gamma}\left(\frac{-v^2/c^2}{1-v^2/c^2}\right) \\ t' &= \gamma t + \frac{x}{v\gamma}(-\frac{v^2}{c^2}\gamma^2) = \gamma\left(t - \frac{vx}{c^2}\right) \end{split}$$

The complete Lorentz transformations are:

$$\begin{cases} t' = \gamma \left(t - \frac{vx}{c^2} \right) \\ x' = \gamma (x - vt) \\ y' = y \\ z' = z \end{cases}$$
 where $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$ (4)

4-Vectors

A 4-vector is a quantity $(A_0, A_1, A_2, A_3) \to (A_0, \vec{A})$. We may view it as a complex number with one real part and three imaginary parts:

$$q = w + i\pi + jy + zk$$
 where $i^2 = j^2 = k^2 = ijk = -1$

The Lorentz transformation of 4-vectors: For $A = (A_0, \vec{A}) \to (A'_0, \vec{A}')$

$$\begin{cases}
A'_{0} = \gamma(A_{0} - \vec{\beta} \cdot \vec{A}) \\
A'_{\parallel} = \gamma(A_{\parallel} - \beta A_{0}) & \text{where } \vec{\beta} = \frac{\vec{v}}{c}, A_{0} = ct, A'_{0} = ct' \\
A'_{\perp} = A_{\perp}
\end{cases}$$
(5)

The scalar product is invariant:

$$A' \cdot B' = A'_0 B'_0 - \vec{A}' \cdot \vec{B}' = A_0 B_0 - \vec{A} \cdot \vec{B}$$
(6)

and

$$A_0^{\prime 2} - |\vec{A}^{\prime}|^2 = A_0^2 - |\vec{A}|^2 \tag{7}$$

Relativistic Kinematics

4-Velocity and Time Dilation

The 4-velocity is defined as:

$$U = \frac{dx}{d\tau} = \left(\frac{d(ct)}{d\tau}, \frac{d\vec{x}}{d\tau}\right) \tag{8}$$

where τ is the proper time. The 4-velocity is invariant under Lorentz transformation.

We first derive time dilation. From the Lorentz transformation for time:

$$t' = \gamma \left(t - \frac{vx}{c^2} \right)$$

For a clock at rest in the moving frame K', its position is x = vt.

$$\Rightarrow t' = \gamma \left(t - \frac{v(vt)}{c^2} \right) = \gamma t \left(1 - \frac{v^2}{c^2} \right) = \gamma t \frac{1}{\gamma^2} = \frac{t}{\gamma}$$

We see that t' is the proper time and t is the laboratory time. Thus, the proper time interval is $d\tau = \frac{1}{\gamma}dt$. The components of the 4-velocity are:

$$U^0 = \frac{d(ct)}{d\tau} = c\frac{dt}{d\tau} = c\gamma$$

$$\vec{U} = \frac{d\vec{x}}{d\tau} = \frac{d\vec{x}}{dt}\frac{dt}{d\tau} = \vec{u}\gamma$$

So, the 4-velocity is $U = (U^0, \vec{U}) = (\gamma c, \gamma \vec{u}).$

Velocity Addition

With the Lorentz transformation differentials:

$$dt' = \gamma \left(dt - \frac{v}{c^2} dx \right)$$

$$dx = \gamma (dx' + vdt')$$

$$dy = dy'$$

$$dz = dz'$$

$$\Rightarrow u_x = \frac{dx}{dt} = \frac{\gamma (dx' + vdt')}{\gamma (dt' + \frac{v}{c^2} dx')} = \frac{\frac{dx'}{dt'} + v}{1 + \frac{v}{c^2} \frac{dx'}{dt'}} = \frac{u'_x + v}{1 + \frac{vu'_x}{c^2}}$$

$$u_y = \frac{dy}{dt} = \frac{dy'}{\gamma (dt' + \frac{v}{c^2} dx')} = \frac{\frac{dy'}{dt'}}{\gamma (1 + \frac{vu'_x}{c^2} \frac{dx'}{dt'})} = \frac{u'_y}{\gamma (1 + \frac{vu'_x}{c^2})}$$

The velocity addition formulas are:

$$\Rightarrow \begin{cases} u_{\parallel} = \frac{u'_{\parallel} + v}{1 + \frac{vu'_{\parallel}}{c^{2}}} \\ u_{\perp} = \frac{u'_{\perp}}{\gamma \left(1 + \frac{vu'_{\parallel}}{c^{2}}\right)} \end{cases}$$
(9)

Especially, we see that if $u'_x = c$, then $u_x = \frac{c+v}{1+vc/c^2} = \frac{c+v}{(c+v)/c} = c$.

Relativistic Dynamics

Relativistic Doppler Effect

We then consider the Doppler effect. The observer is in frame S and the light source is in frame S', which is moving with \vec{v} with respect to S. We use the 4-wavevector (k_0, \vec{k}) and (k'_0, \vec{k}') . The transformation for the time-like component is:

$$k_0' = \gamma(k_0 - \vec{\beta} \cdot \vec{k})$$

The timelike component is $k_0 = \omega/c$. For a photon, $|\vec{k}| = \omega/c$.

$$\Rightarrow \frac{\omega_s}{c} = \gamma \left(\frac{\omega_o}{c} - \vec{\beta} \cdot \vec{k} \right) = \gamma \frac{\omega_o}{c} (1 - \beta \cos \theta)$$

where $|\vec{k}| = \omega_o/c$. Thus:

$$\omega_o = \frac{\omega_s}{\gamma (1 - \beta \cos \theta)} \tag{10}$$

where ω_o is the observed frequency and ω_s is the fixed (source) frequency. This implies, using $f = \omega/(2\pi)$ and $\gamma = 1/\sqrt{1-\beta^2}$:

$$f_o = f_s \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \theta} \tag{11}$$

4-Momentum and Mass-Energy Equivalence

We further consider the 4-momentum.

$$P = m_0 U = m_0(\gamma c, \gamma \vec{u}) = (\gamma m_0 c, \gamma m_0 \vec{u}) \tag{12}$$

We first prove the mass-energy equation. Let K be the kinetic energy.

$$dK = \frac{d\vec{p}}{dt} \cdot d\vec{x} = \vec{u} \cdot d\vec{p}$$

$$= \vec{u} \cdot d(\gamma m_0 \vec{u})$$

$$= m_0 (\vec{u} \gamma d\vec{u} + \vec{u} \cdot \vec{u} d\gamma)$$

$$= m_0 u \gamma du \left(\frac{\gamma^2 u}{c^2} + 1\right) = m_0 u \gamma^3 du$$

And, since $d\gamma = d(1 - u^2/c^2)^{-1/2} = \frac{\gamma^3 u}{c^2} du$:

$$d(m_0c^2\gamma) = m_0c^2d\gamma = m_0c^2\frac{\gamma^3 u}{c^2}du = m_0u\gamma^3 du = dK$$

Therefore:

$$K = \int_0^K dK' = \int_{u=0}^u d(m_0 c^2 \gamma) = \gamma m_0 c^2 - \gamma (u = 0) m_0 c^2 = \gamma m_0 c^2 - m_0 c^2$$

$$\Rightarrow \gamma m_0 c^2 = K + m_0 c^2$$
(13)

which is the total energy E. And we shall define m_0c^2 as the static energy. Hence, the 4-momentum can be written as:

$$P = \left(\frac{E}{c}, \gamma m_0 \vec{u}\right) = \left(\frac{E}{c}, \vec{p}\right) \tag{14}$$

We have already seen that in all inertial frames, the scalar product $P \cdot P$ is an invariant:

$$P \cdot P = (P^0)^2 - |\vec{p}|^2 = \left(\frac{E}{c}\right)^2 - |\vec{p}|^2$$

We consider the special case in which $\vec{p} = 0$ (the rest frame). In this frame, $E = m_0 c^2$, so that

$$\left(\frac{E}{c}\right)^2 - |\vec{p}|^2 = (m_0 c)^2$$

Since this quantity is an invariant, it holds in all frames.

$$E^{2} = (pc)^{2} + (m_{0}c^{2})^{2}$$
(15)

(5)

We know that, $\vec{P} = m\vec{u}$

$$E = E(0) + \frac{1}{2}mu^2$$

We assume... under $M(\vec{u}) \dots E \to E(u)$ where M(0) = m, $\frac{\partial^2 E(0)}{\partial u_i \partial u_j} = m \delta_{ij}$

(6)

(The tensor part has been discussed in other notes)

For space-time, in all inertial frames the space-time interval is invariant.

$$(ds)^2 = (dx^0)^2 - (dx^1)^2 - (dx^2)^2 - (dx^3)^2$$

since

$$(c\Delta t)^2 - (\Delta \vec{x})^2 = (c\Delta t')^2 - (\Delta \vec{x}')^2$$

$$\Rightarrow (ds)^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta} \quad \text{metric tensor}$$

$$g_{\alpha\beta} = g^{\alpha\beta} = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & -1 \end{pmatrix}$$

$$\begin{cases} \frac{\partial}{\partial x^{\alpha}} = (\frac{\partial}{\partial x^{0}}, \nabla) \\ \\ \frac{\partial}{\partial x_{\alpha}} = (\frac{\partial}{\partial x^{0}}, -\nabla) \\ \\ \Delta^{\beta} = g^{\beta\alpha} \Delta_{\alpha} \end{cases}$$

$$\partial'_{\lambda} = g_{\lambda\alpha}\partial^{\alpha} = \dots = (-)\frac{\partial}{\partial x^1} = \frac{\partial}{\partial x_1}$$

(7) In matrix notation

$$x = \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$
$$(ds)^2 = (ct)^2 - x^2 - y^2 - z^2$$
$$= x^T gx$$
$$(ds')^2 = x'^T gx'$$

We have the transformation x' = Ax and $x'^T = x^T A^T$

$$\Rightarrow x^T g x = x'^T g x' = x^T A^T g A x \quad \text{for all } x$$
$$\Rightarrow A^T g A = g$$

Take the norm: det $A=\pm 1 \Rightarrow A^T=A^{-1}$ We define $A=e^L$ where L, a 4x4 matrix, is the generator of A. We have: $\tilde{A}gA=g$.

$$\tilde{A}gA = g \cdot g = I$$

$$g\tilde{A}gAA^{-1} = A^{-1}$$

$$A = e^{L}$$

$$A^{-1} = e^{-L}$$

For infinitesimal transformation: $e^L \approx I + L$

$$\Rightarrow g\tilde{L}g = -L$$

Decomposition

For the elements of L, $L_{\mu\nu}$, with g = diag(1, -1, -1, -1) we find

$$L = \begin{pmatrix} 0 & L_{01} & L_{02} & L_{03} \\ L_{01} & 0 & L_{12} & L_{13} \\ L_{02} & -L_{12} & 0 & L_{23} \\ L_{03} & -L_{13} & -L_{23} & 0 \end{pmatrix}$$

decomposed

 \Rightarrow

$$S_3^2 = \begin{pmatrix} 0 & & & \\ & -1 & & \\ & & -1 & \\ & & & 0 \end{pmatrix} \quad K_1^2 = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 0 & \\ & & & 0 \end{pmatrix}$$
$$K_2^2 = \begin{pmatrix} 1 & & & \\ & 0 & & \\ & & 1 & \\ & & & 0 \end{pmatrix} \quad K_3^2 = \begin{pmatrix} 1 & & & \\ & 0 & & \\ & & 0 & \\ & & & 1 \end{pmatrix}$$

where S_1, S_2, S_3 represent the rotations along x,y,z axes while K_1, K_2, K_3 represent the boost along x,y,z axes.

Lorentz Transformation Expression

$$\Rightarrow \begin{cases} L = -w \cdot S - \zeta \cdot K \\ A = e^{-w \cdot S - \zeta \cdot K} \end{cases}$$

For example: only boost along x-axis: w = 0,

$$A = e^{-\zeta K_1}$$

$$L = -\zeta K_1$$

By Taylor series

$$A = e^{-\zeta K_1} = I + (-\zeta K_1) + \dots$$

with
$$K_1^2 = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 0 & \\ & & & 0 \end{pmatrix}$$
, $K_1^3 = K_1$, $K_1^4 = K_1^2$, ...

$$A = I + \left\{ S_1^2 \frac{\zeta^2}{2!} + S_1^4 \frac{\zeta^4}{4!} + \dots \right\} - \left(S_1 K_1 + \frac{S_1^3}{3!} K_1^3 + \dots \right)$$

And we note that

$$\begin{cases}
\cosh \zeta = 1 + \frac{\zeta^2}{2!} + \dots \\
\sinh \zeta = \zeta + \frac{\zeta^3}{3!} + \dots \\
\Rightarrow A = I + (\cosh \zeta - 1)K_1^2 - \sinh(\zeta)K_1
\end{cases}$$

Similarly, for only rotation along z-axis: $\zeta = 0$,

$$A = e^{-wS_3}$$

$$L = -wS_3$$

$$A = \begin{pmatrix} 1 & \cos w & -\sin w \\ & \sin w & \cos w \end{pmatrix}$$

Commutation Relations

By definitions of K_i, S_j , we note that

$$[S_i, S_j] = i\epsilon_{ijk}S_k$$

 $[S_i, K_j] = i\epsilon_{ijk}K_k$ where $[A, B] = AB - BA$
 $[K_i, K_j] = -i\epsilon_{ijk}S_k$

Two boosts in two directions produces an additional rotation \Rightarrow Thomas Precession.

1 The interaction energy of the electron spin

The interaction energy is given by

$$U' = -\vec{\mu} \cdot \left(\vec{B} - \frac{\vec{v} \times \vec{E}}{c} \right)$$

where $\vec{\mu} = \frac{ge}{2mc}\vec{S}$, $\vec{L} = \vec{r} \times m\vec{v}$, and $\vec{E} = -\frac{\vec{r}}{er}\frac{dV}{dr}$.

$$=U'=\frac{ge}{2mc}\vec{S}\cdot\vec{B}+\frac{g}{2m^2c^2}(\vec{S}\cdot\vec{L})\frac{1}{r}\frac{dV}{dr}$$

For a spin electron in \vec{B}' , $\vec{\mu}$ will be acted by a torque, leading to Larmor precession.

$$\left(\frac{d\vec{S}}{dt}\right)_{\text{Larmor}} = \vec{\mu} \times \vec{B}' \quad \text{where } \vec{B}' = \vec{B} - \frac{\vec{v} \times \vec{E}}{c}$$

$$U' = -\vec{\mu} \cdot \vec{B}' = \frac{g}{2m^2c^2} \vec{S} \cdot \vec{L} \frac{1}{r} \frac{dV}{dr}$$

where $g=2\Rightarrow U'$ is twice the experiment. The equation $\frac{d\vec{S}}{dt}=\vec{\mu}\times\vec{B}'$ is only valid in an inertial frame, but the spin electron's rest frame is rotating.

$$\Rightarrow \left(\frac{d\vec{G}}{dt}\right)_{\text{nonrot}} = \left(\frac{d\vec{G}}{dt}\right)_{\text{rest frame}} + \vec{\omega}_T \times \vec{G}$$

where $\vec{\omega}_T$ is the Thomas precession frequency. The Larmor precession is given by

$$\begin{split} \left(\frac{d\vec{S}}{dt}\right)_{\text{Larmor}} &= \vec{\omega}_L \times \vec{S} = \vec{\mu} \times \vec{B}' \\ \vec{\omega}_T &= \frac{e}{2mc}(\vec{v} \times \vec{E}) = -\frac{g}{2mc^2} \vec{S} \times (\vec{v} \times \vec{E}) \\ &= \frac{g}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} (\vec{L} \cdot \vec{S}) \end{split}$$

2 Thomas Precession from consecutive boosts

We now consider two boosts: $x' = A_{\text{boost}}(\vec{\beta})x$ and $x'' = A_{\text{boost}}(\vec{\beta} + \delta \vec{\beta})x'$. Then $x'' = A_T x'$, where

$$A_T = A_{\text{boost}}(\vec{\beta} + \delta \vec{\beta}) A_{\text{boost}}^{-1}(\vec{\beta}) = A_{\text{boost}}(\vec{\beta} + \delta \vec{\beta}) A_{\text{boost}}(-\vec{\beta})$$

By the expression of $A_{\text{boost}}(\vec{\beta})$, we have

$$A_{\text{boost}}(-\vec{\beta}) = \begin{pmatrix} \gamma & \gamma\beta & 0 & 0\\ \gamma\beta & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Since we only consider a boost $\vec{\beta}$ in the 1-axis, and we consider $\vec{\beta} + \delta \vec{\beta}$ with $\delta \beta_2, \delta \beta_3 \neq 0$. And we only consider $\vec{B} + \delta \vec{B}$ in the same plane with \vec{B} ($B \perp \delta B$).

$$A_{\text{boost}}(\delta\vec{\beta} + \vec{\beta}) = \begin{pmatrix} \gamma(\gamma + \delta\gamma\beta_1) & -(\gamma\beta_1 + \gamma\delta\beta_1) & -\gamma\delta\beta_2 & 0 \\ -(\gamma\beta_1 + \gamma\delta\beta_1) & \gamma^2\delta\beta_1 & (\frac{\gamma^2}{\gamma+1})\delta\beta_1 & 0 \\ -\gamma\delta\beta_2 & (\frac{\gamma^2}{\gamma+1})\delta\beta_2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \gamma A_T = \begin{pmatrix} 1 & -\gamma^2\delta\beta_1 & -\gamma\delta\beta_2 & 0 \\ \gamma^2\delta\beta_1 & 1 & (\frac{\gamma^2}{\gamma+1})\delta\beta_2 & 0 \\ \gamma\delta\beta_2 & -(\frac{\gamma^2}{\gamma+1})\delta\beta_2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= I - \left(\frac{\gamma^2}{\gamma+1}(\vec{\beta} \times \delta\vec{\beta}) \cdot \vec{S} - (\gamma^2\delta\beta_1 + \gamma\delta\beta_1)\vec{K}\right)$$

$$= A_{\text{boost}}(\delta\vec{\beta})R(\delta\vec{\Omega}) = R(\delta\vec{\Omega})A_{\text{boost}}(\delta\vec{\beta})$$

where $R(\delta\vec{\Omega}) = I - \delta\vec{\Omega} \cdot \vec{S}$ and $A_{\text{boost}}(\delta\vec{\beta}) = I - \delta\vec{\beta} \cdot \vec{K}$. with $\delta\vec{\beta}' = \gamma^2 \delta\beta_{||} + \gamma\delta\beta_{\perp}$ (velocity). and $\delta\vec{\Omega} = (\frac{\gamma^2}{\gamma+1})(\vec{\beta} \times \delta\vec{\beta}) - \frac{\gamma-1}{v^2}\vec{\beta} \times \delta\vec{v}$ (angle). Relativistic addition of velocities:

$$\vec{v}_f = \frac{\vec{u} + \vec{w}_{||} + \sqrt{1 - u^2/c^2} \vec{w}_{\perp}}{1 + \vec{u} \cdot \vec{w}/c^2}$$

Let $\vec{u} = c\vec{\beta}$, $\vec{w} = c\delta\vec{\beta}$. $w_{||} = \delta\beta_{||}$, $w_{\perp} = \delta\beta_{\perp}$. $\Rightarrow v_{f||} \approx \gamma^2 \delta\beta_{||}$, $v_{f\perp} \approx \gamma \delta\beta_{\perp}$.

If the boost is arbitrary with no rotation, $A = e^{-\vec{\zeta} \cdot \vec{K}}$. We define a matrix M by $K_i K_j K_k$

$$M = \begin{pmatrix} 0 & n_3 & n_2 \\ n_3 & 0 & n_1 \\ n_2 & n_1 & 0 \end{pmatrix}, \text{ where } n_1^2 + n_2^2 + n_3^2 = 1$$

$$M^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} n_{1}^{2} & n_{1}n_{2} & n_{1}n_{3} \\ n_{2}n_{1} & n_{2}^{2} & n_{2}n_{3} \\ n_{3}n_{1} & n_{3}n_{2} & n_{3}^{2} \end{pmatrix}$$

$$M^3 = M$$

Let $\vec{\zeta} = \hat{\beta} \tanh^{-1} \beta$.

$$A = e^{-\vec{\zeta} \cdot \vec{M}} = I - \zeta M + \frac{\zeta^2}{2!} M^2 - \frac{\zeta^3}{3!} M^3 + \dots$$

By $\sinh \zeta = \zeta + \frac{\zeta^3}{3!} + \dots$ and $\cosh \zeta = 1 + \frac{\zeta^2}{2!} + \dots$

$$A = I - (\sinh \zeta)M + (\cosh \zeta - 1)M^2$$

and $\sinh \zeta = \sinh(\tanh^{-1}\beta) = \gamma\beta$ and $\cosh \zeta = \gamma$.

$$\Rightarrow A = I - (\gamma \beta)M + (\gamma - 1)M^2$$

where $n_i = \frac{\beta_i}{\beta}$.

3 Derivation of Thomas Precession Frequency

$$\vec{\omega}_T = -\frac{1}{c^2} \frac{\gamma^2}{\gamma + 1} (\vec{v} \times \vec{a}) = -\frac{\gamma - 1}{v^2} \vec{v} \times \vec{a}$$

where \vec{a} is the laboratory acceleration, which is produced by Coulomb force $(e\vec{E})$. Thus,

$$\vec{\omega}_T = \frac{\gamma^2}{(\gamma + 1)c^2} \frac{1}{m\gamma} \frac{1}{r} \frac{dV}{dr} (\vec{v} \times \vec{r}) = -\frac{\gamma^2}{(\gamma + 1)c^2 m\gamma} \frac{1}{r} \frac{dV}{dr} \vec{L}$$

Since $\vec{L} = m(\vec{r} \times \gamma \vec{v}) = \gamma m(\vec{r} \times \vec{v})$. Hence,

$$\vec{\omega}_T = -\frac{\gamma^2}{(\gamma + 1)c^2 m^2 \gamma} \frac{1}{r} \frac{dV}{dr} \vec{L} = -\frac{\gamma}{(\gamma + 1)m^2 c^2} \frac{1}{r} \frac{dV}{dr} \vec{L}$$

The contribution of Thomas precession to the energy is

$$U_T = \vec{s} \cdot \vec{\omega}_T \approx -\frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \vec{s} \cdot \vec{L} = -\frac{1}{2} U_{\text{total}}$$

4 Covariance of Electrodynamics

Lorentz force: $\frac{d\vec{p}}{dt} = q(\vec{E} + \vec{v} \times \vec{B})$. By 4-momentum: $p^{\alpha} = (p_0, \vec{p}) = m(U_0, \vec{U})$. Using proper time τ such that $\gamma d\tau = dt$.

$$\frac{dp^i}{d\tau} = \frac{q}{c}(U_0E^i + (\vec{U} \times \vec{B})^i) \quad \frac{dp_0}{d\tau} = \frac{q}{c}\vec{U} \cdot \vec{E}$$
$$\frac{dp_0}{dt} = \frac{1}{\gamma}\frac{dp_0}{d\tau} = \frac{q}{\gamma c}\vec{U} \cdot \vec{E} = \frac{q}{c}\vec{v} \cdot \vec{E}$$

$$\vec{v} = \frac{\vec{U}}{U_0}. \ \gamma = U_0.$$

$$\frac{dp_0}{dE} = \frac{q}{c}\vec{U} \cdot \vec{E}$$

.

5 Relativistic Electrodynamics Formalism

By continuous equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = 0$$

we construct $j^{\alpha}=(c\rho,\vec{j})$. Then, $\partial_{\alpha}j^{\alpha}=0$ where $\partial_{\alpha}=(\frac{1}{c}\frac{\partial}{\partial t},\nabla)$. The four-dimensional volume element $d^4x=dx^0d^3x$ is a Lorentz invariant.

$$d^4x' = \left| \frac{\partial(x'^0, x'^1, x'^2, x'^3)}{\partial(x^0, x^1, x^2, x^3)} \right| d^4x = d^4x$$

 $\det A = 1.$

By Maxwell equations

$$\Rightarrow \begin{cases} \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \nabla^2 \vec{A} = \frac{4\pi}{c} \vec{j} \\ \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = 4\pi \rho \end{cases}$$

With Lorentz condition, we make the transformation

$$\begin{cases} \vec{A}' = \vec{A} + \nabla \chi \\ \phi' = \phi - \frac{1}{c} \frac{\partial \chi}{\partial t} \end{cases} \text{ to such that } \begin{cases} \vec{E}' = \vec{E} \\ \vec{B}' = \vec{B} \end{cases}$$

where χ is scalar.

The D'Alembert operator

$$\Box = \partial_{\mu}\partial^{\mu} = g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2$$

which is a Lorentz invariant.

The Lorentz condition:

$$\frac{1}{c}\frac{\partial\phi}{\partial t} + \nabla \cdot \vec{A} = 0$$

The Electromagnetic Field Tensor 6

With the condition we thus transform the equation into: $\partial_{\beta}\partial^{\beta}A^{\alpha} = 0$ [where $A^{\alpha} = (\phi, \vec{A})$]

$$\Leftarrow \left(\frac{1}{c^2}\frac{\partial^2 \vec{A}}{\partial t^2} - \nabla^2 \vec{A}\right) + \nabla(\nabla \cdot \vec{A} + \frac{1}{c}\frac{\partial \phi}{\partial t}) = \frac{4\pi}{c}\vec{j} \quad \text{coupled term source}$$

And

$$\begin{cases} \vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t} - \nabla \phi \\ \vec{B} = \nabla \times \vec{A} \end{cases}$$

The components:

$$E_x = -\frac{1}{c} \frac{\partial A_x}{\partial t} - \frac{\partial \phi}{\partial x} = -(\partial^0 A^1 - \partial^1 A^0)$$
$$B_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = -(\partial^2 A^3 - \partial^3 A^2)$$

where

$$\begin{cases} A^1 = A_x \\ A^2 = A_y \\ A^3 = A_z \\ A^0 = \phi \end{cases}$$

We now construct the tensor of field. We find $E_x, E_y, E_z, B_x, B_y, B_z$ can all be written in the form like $-(\partial^0 A^1 - \partial^1 A^0), -(\partial^2 A^3 - \partial^3 A^2).$

$$F^{\alpha\beta} = \partial^{\alpha} A^{\beta} - \partial^{\beta} A^{\alpha} \quad \text{(antisymmetric)}$$

$$\begin{cases} F^{01} = \partial^0 A^1 - \partial^1 A^0 = -E_x \\ F^{02} = -E_y \\ F^{03} = -E_z \end{cases}$$

$$F^{12} = \partial^1 A^2 - \partial^2 A^1 = -\left(\frac{\partial}{\partial x}(A_y) - \left(-\frac{\partial}{\partial y}A_x\right)\right) = -(\nabla \times \vec{A})_z = -B_z$$

$$F^{23} = -B_x$$

$$F^{31} = -B_y$$

By antisymmetry

$$F^{\alpha\beta} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$

$$F_{\alpha\beta} = g_{\alpha\gamma}F^{\gamma\delta}g_{\delta\beta}$$
 where $g_{\alpha\beta} = (1, -1, -1, -1)$

$$(F^{\alpha\beta} = +F_{\alpha\beta}, F^{0i} = -F_{0i})$$

The dual tensor

$$\mathcal{G}^{\alpha\beta} = \frac{1}{2} \epsilon^{\alpha\beta\gamma\delta} F_{\gamma\delta} = \begin{pmatrix} 0 & -B_x & -B_y & -B_z \\ B_x & 0 & E_z & -E_y \\ B_y & -E_z & 0 & E_x \\ B_z & E_y & -E_x & 0 \end{pmatrix}$$

where
$$\epsilon^{\alpha\beta\gamma\delta}= egin{cases} 1 & \text{even} \\ -1 & \text{odd} \\ 0 & \text{any two equal} \end{cases}$$

By Maxwell equations

$$\begin{split} \nabla \cdot \vec{E} &= 4\pi \rho, \quad \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{B} &- \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \vec{j}, \quad \nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \end{split}$$

In terms of $F^{\alpha\beta}$, $\mathcal{G}^{\alpha\beta}$:

$$\partial_{\alpha}F^{\alpha\beta} = \frac{4\pi}{c}j^{\beta}$$
 (summation on α)
 $\partial_{\alpha}\mathcal{G}^{\alpha\beta} = 0$

By Bianchi identity

$$\partial_{\alpha}F_{\beta\gamma} + \partial_{\beta}F_{\gamma\alpha} + \partial_{\gamma}F_{\alpha\beta} = 0$$

7 Fields in Media and Transformations

In fields with medium we transform

$$F^{\alpha\beta} = (\vec{E}, \vec{B}) \Rightarrow G^{\alpha\beta} = (\vec{D}, \vec{H})$$

Thus: $\partial_{\alpha}G^{\alpha\beta} = 0$, $\partial_{\alpha}F^{\alpha\beta} = 0$. In conductors:

How source produces fields $\begin{cases} \nabla \cdot \vec{E} = \rho/\epsilon_0 \\ \nabla \times \vec{B} - \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{j} \end{cases} \rightarrow \partial_\beta F^{\alpha\beta} = \frac{4\pi}{c} j^\beta \quad (\downarrow \text{ with media } E \& B \to G)$ The structure of fields themselves $\begin{cases} \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \end{cases} \rightarrow \partial_\beta \mathcal{G}^{\alpha\beta} = 0$

(10) Transformation of Electromagnetic Fields

We know that

$$F'^{\alpha\beta} = \frac{\partial x'^{\alpha}}{\partial x^{\gamma}} \frac{\partial x'^{\beta}}{\partial x^{\delta}} F^{\gamma\delta}$$

 $\Rightarrow F' = AF\tilde{A}$ A is the Lorentz transformation

Consider one example that K' is moving at v along positive x with respect to K.

$$\begin{aligned} x' &= \gamma(x - vt) & x^{\alpha} &= (ct, x, y, z) \\ y' &= y, z' &= z & x'^{\alpha} &= (ct', x', y', z') \\ t' &= \gamma(t - vx/c^2) & \text{and } x'^{\alpha} &= \Lambda_{\beta}^{\alpha} x^{\beta} \end{aligned} \Rightarrow A = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\Rightarrow \frac{E'_1 &= E_1, \quad E'_2 &= \gamma(E_2 - \beta B_3), \quad B'_2 &= \gamma(B_2 + \beta E_3) \\ B'_1 &= B_1, \quad E'_3 &= \gamma(E_3 + \beta B_2), \quad B'_3 &= \gamma(B_3 - \beta E_2) \end{aligned}$$

Example: Field of a Moving Charge

As an example, consider the fields produced by a moving charge with q, v. In K' where q is at rest

$$\vec{B}' = 0, \quad \vec{E}' = \frac{q\vec{r}'}{r'^3}$$

$$r' = \sqrt{(x_1')^2 + (x_2')^2 + (x_3')^2} = \sqrt{\gamma(1 - v/c^2)t^2 + \dots}$$

since $\vec{r}' = (\gamma vt, b, 0)$. From $K' \to K$

$$\begin{cases} E_1 = E_1' \\ E_2 = \gamma(E_2' + vB_3') = \gamma E_2' \\ E_3 = \gamma(E_3' - vB_2') = 0 \end{cases} \qquad E_2 = \gamma(E_2' + (-B_3')) = \gamma E_2' \\ B_1 = B_1' = 0 \qquad B_2 = \gamma(B_2' - (-E_3')) = 0 \\ B_2 = \gamma(B_2' - \frac{v}{c^2} E_3') = 0 \\ B_3 = \gamma(B_3' + \frac{v}{c^2} E_2') = \gamma \beta E_2' \end{cases}$$

This shows that magnetic fields are actually a relativistic effect. The electric field is amplified by γ times in the direction perpendicular to \vec{v} .