





### Summary



- · Methods for 3D data acquisition
  - Passive
    - shape from X (stereo, motion, shading, focus)
  - Active range sensing
    - Structured Light Systems
    - Laser Range Finder
    - Depth Camera
- Manipulation of range/depth images
  - Edges
  - Triangulation
  - Registration
  - Texture

2



# **Passive**

### Passive - Shape from stereo



· See last lecture

### Passive - Shape from motion



- Shape from motion
  - Similar to stereovision in many ways
  - Successive images might be considered as stereo pairs
  - With texture, possible to find correspondences (matching techniques, optical flow...) and find fundamental and essential matrix.



### Passive - Shape from shading

į.

- · Shape from Shading
  - Given a continuous surface, and known illumination, intensity variation in the surfaces depends of its orientation.
  - Most surfaces are not uniform and lighting difficult to control - normally combined with other methods.

















Depth Map and 3D Imaging Applications: Algorithms and Technologies IGI Global Editors: Aamir Saeed Malik, Tae-Sun Choi, Humaira Nisar Three-Dimensional Scene Reconstruction: A Review of Approaches

### Passive - Shape from focus



- Shape from focus
  - Objects away from focal plan are out of focus.
  - With several images with different focus, possible to extract depth information.







Favari and Soatto: A Geometric Approach to Shape from Defoc

10

# **Active**

# **Active – Structured Light Techniques**



- · Projection of a known pattern
- Acquisition with camera, 3D from pattern deformation in scene.



### **Active - Structured Light Techniques**

nia.

• Several commercial for small distances







13

# **Active – Structured Light Techniques**

14

Commercial solutions



Skull with 1.5 Million points – Error below 30 μm

### Active - Laser Range Scanner - Long Range

• For larger areas (buildings, rooms) use of Laser Range scanners.









**Active - Laser Range Scanner - Long Range** 



- · Working principle:
  - Light Pulse Time of Flight.



 Phase Shift: Amplitue of frequency modulation – Comparison of phases.



16

### Range Image example







### Active - 3D ToF Cameras

• Phase shift principle of emitted and received infrared light to measure depth





Swiss Ranger SR4000 3D ToF Camera Resolution: 176x144 Range: 5–8m 54 fps

# **Active vs Passive**

|                   | Range                               | Intensity                                 |
|-------------------|-------------------------------------|-------------------------------------------|
| Cost              | Laser Range Finders are expensive   | Low cost since any digital camera can     |
|                   | sensors                             | be used                                   |
| Acquisition       | Often difficult with large sensors  | Easy, with a digital camera               |
| Resolution        | Limited spatial resolution          | High-resolution digital photographs       |
| Texture map       | No colour texture map, or black and | Possibility to provide a realistic colour |
|                   | white reflectance                   | texture map                               |
| Lighting          | Independent from external lighting  | Highly dependent on lighting              |
|                   |                                     | conditions                                |
| Texture relevance | No need of texture in scene         | Texture is crucial for good results       |
| 3D processing     | Provide directly 3D measurements    | Difficult to extract 3D depth from        |
|                   |                                     | images                                    |



### E o Kinect?

• Active - Infrared pattern





# **Darpa Grand Challenge: Stanford**

Atlas Car: Universidade de Aveiro





### Visão / Condução Autónoma - AtlasCar v2



### Range Image

- Range image is a rectangular array of numbers that quantifies the distance from the sensor to the surfaces within the field
- of view.Also referred as depth image and easily transform to cloud of points.



### Range image characteristics

Edges in intensity images
 edges related to intensity changes (due to
 geometry or aspect - for example colour or
 shadow)

### Range image characteristics

μv

• Edges in range images, 3 different type of edges:







# Finding the Rigid Body Transform that minimize the distance between 2 scans T(R,T) T(R,T)

Registration



Registration





# Registration - ICP problems

مد

- Surfaces are matching only in small area may result in many outliers
- · Algorithm might fall in local minima.
- Typically an initial guess is used (3 corresponding points, additional information such as GPS,...)

### From points to surfaces

14

- · From cloud points to surfaces:
  - Non parametric curves (triangles,...)
  - Parametric curves (cylinders, quadrics, ...)

7

38

# Triangulated model - IEETA

### Triangulação Delaunay 2D



 Delaunay triangulation: for a set of 2D points P ensure that none points of the set is inside the circumcircle of any triangle.



40

### Other triangulation algorithms

- Marching cubes
- · Marching triangles
- Ball-pivoting
- · Poisson Surface Reconstruction
- Moving least-squares (MLS)
  - Possible to test some with open source Meshlab from Visual Computing Lab (http://meshlab.sourceforge.net/)

### **Zippering**



- Remove overlapping portion of meshes
- · Clip mesh together
- Remove triangles introduced in clipping



Figure 5: Mesh A is clipped against the boundary of mesh B. Citcles (left) show intersection between edges of A and B's boundary. Portions of triangles from A are discarded (middle) and then both meshes incorporate the points of intersection (right).

### **Texture Mapping**

**Textura** 

- Some 3D reconstruction techniques provide automatically texture:
  - Shape from X.
  - Structured Light Techniques
- Other do not (Laser Range Finder)

### **Texture mapping**

· Additional acquisition of images

· Camera calibration (might be fixed to the

3D sensor)



Cloud of points

Range image

3072 x 2048 (Canon EOS 300D)

Digital

photographs

**Texture Mapping – Camera calibration** 

Tsai camera model

 f – focal length,
k – radial distortion, - Cx, Cy - image centre, » Sx – scale facto,

11 parameters:

5 internals

> Rx, Ry, Rz – rotation, > Tx, Ty, Tz – translation.

 $\mathsf{P}_{\mathsf{i}}(\mathsf{X}_{\mathsf{i}},\mathsf{Y}_{\mathsf{i}},\!Z_{\mathsf{i}})\!\!=\!\!\mathsf{P}(\mathsf{X}_{\mathsf{w}},\!\mathsf{Y}_{\mathsf{w}},\!Z_{\mathsf{w}})$ 

**Camera Calibration** Re-projection:

**Texture** 









### **Google Tango**



· Model "Gabinete 005"

### **Chisel algorithm**



Fig. 2: CHISEL system diagram

Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device

# Chisel algorithm



(a) CHISEL creating a map of an entire office building floor on a mobile device in real-time.



(b) Reconstructed apartment scene at a voxel resolution of 2cm.

Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device

### Some references



- Mada, S. K., Smith, M. L., Smith, L. N., and Midha, P. S. (2003). Overview of passive and active vision techniques for hand-held 3D data acquisition. In Shearer, A., Murtagh, F. D., Mahon, J., and Whelan, P. F., editors, *Proceedings* of the SPIE: Optical Metrology, Imaging, and Machine Vision, volume 4877, pages 16–27.
- Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly, Cambridge, MA, 2008.
- Szeliski, R. (2010).. Computer Vision: Algorithms and Applications, Springer
- P. Besl and N. McKay. A method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239 - 256, February 1992.
- Reg G. Willson, Modeling and Calibration of Automated Zoom Lenses.Ph.D. thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University, January 1994
- Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330-1334, 2000
   Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in
- Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in Computer Vision. Cambridge University Press. pp. 155–157. ISBN 0-521-54051-8.
- Turk, Greg and Mark Levoy "Zippered Polygon Meshes from Range Images" SIGGRAPH 1994