ETH Zürich D-ITET Biomedical Engineering

**Master Studies** 

### Biomedical Imaging

# Homework #8 - Nuclear Imaging 2

## Xin Wu Boqi Chen

DATE: 23rd November 2020

DUE: 23th November 2020

## 1 TASK 1



Figure 1.1: Flowchart

As is shown in Figure 1.1, assuming that the input from the blood plasma is a delta function and  $k_4 = 0$ , we can easily derive,

$$\frac{dc_e(t)}{dt} = -k_2c_e - k_3c_e$$

$$\frac{dc_m(t)}{dt} = k_3c_m$$
(1.1)

#### 2 TASK 2

Solving the equation 1.1, we obtain the he impulse response functions of the extracellular compartment  $c_e(t)$  and the metabolized compartment  $c_m(t)$  given by,

$$c_{e}(t) = k_{1}e^{-t(k_{2}+k_{3})}$$

$$c_{m}(t) = \frac{-k_{1}k_{3}e^{-t(k_{2}+k_{3})}}{k_{2}+k_{3}} + \frac{k_{1}k_{3}}{k_{2}+k_{3}}$$
(2.1)

Now implement convolution of the impulse response functions with the blood plasma input  $c_p(t)$  and inspect the tissue concentration-time curves for  $c_e(t)$  and  $c_m(t)$  using the following values:  $k_1 = 0.1 min^{-1}$ ,  $k_2 = 0.3 min^{-1}$ ,  $k_3 = 0.5 min^{-1}$ . The results are shown in Figure 2.1.



Figure 2.1: Results of Task 2

For most tumor cells, they take up all the energy(glucose) they can have. So there is hardly backward reaction. Thus, we can assume  $k_4 = 0$ .

#### 3 TASK 3

Adding Poisson noise to  $c_p(t)$  and  $c_m(t)$  by converting concentrations into photon counts such as to obtain a peak SNR of 100 of the blood plasma signal, the resulting concentration-time curves are shown in Figure 3.1.



Figure 3.1: Concentration-Time Curves

Implementing the fit function to determine the rate constants  $(k_1, k_2, k_3)$  from noisy  $c_p(t)$  and  $c_m(t)$  input, the mean and standard deviation of the fitted rate constants  $(k_1, k_2, k_3)$  for multiple repetitions of adding noise and fitting the noisy data when SNR = 100 and SNR = 10 are shown in Table 3.1 and 3.2 each respectively.

|                    | <i>k</i> <sub>1</sub> | <i>k</i> <sub>2</sub> | <i>k</i> <sub>3</sub> |
|--------------------|-----------------------|-----------------------|-----------------------|
| Mean               | 0.10                  | 0.32                  | 0.52                  |
| Standard Deviation | 0.00                  | 0.06                  | 0.08                  |

**Table 3.1:** Mean and Standard Deviation of  $k_1$ ,  $k_2$ ,  $k_3$ , SNR=100

|                    | <i>k</i> <sub>1</sub> | k <sub>2</sub> | <i>k</i> <sub>3</sub> |
|--------------------|-----------------------|----------------|-----------------------|
|                    |                       | 0.63           |                       |
| Standard Deviation | 0.01                  | 0.67           | 2.21                  |

**Table 3.2:** Mean and Standard Deviation of  $k_1$ ,  $k_2$ ,  $k_3$ , SNR=10

We can easily observe that when SNR is reduced from 100 to 10, both the mean and

standard deviation of  $k_1$ ,  $k_2$ ,  $k_3$  increase. The conclusion is that in order to estimate the true constants we need input PET data with sufficiently large SNR.