

Gabriele Lando, Demetrio Milea, Clemente Bretti 22 December 2021

Bismuth(III)

Reaction	Baes and Mesmer, 1976	Lothenbach et al., 1999	NIST46	Kitamura et al., 2010	Brown and Ekberg, 2016
$Bi^{3+} + H_2O = BiOH^{2+} + H^+$	-1.09	-0.92	-1.1	-0.920	-0.92 ± 0.15
$Bi^{3+} + 2 H_2O = Bi(OH)_2^+ + 2 H^+$	(-4)	-2.56	-4.5	-2.560 ± 1.000	-2.59 ± 0.26
$Bi^{3+} + 3 H_2O = Bi(OH)_3 + 3 H^+$	-8.86	-5.31	-9.0	-8.940 ± 0.500	-8.78 ± 0.20
$Bi^{3+} + 4 H_2O = Bi(OH)_4^- + 4 H^+$	-21.8	-18.71	-21.2	-21.660 ± 0.870	-22.06 ± 0.14
$3 \text{ Bi}^{3+} + 4 \text{ H}_2\text{O} = \text{Bi}_3(\text{OH})_4^{5+} + 4 \text{ H}^+$		-0.80		-0.800	
$6 \text{ Bi}^{3+} + 12 \text{ H}_2\text{O} = \text{Bi}_6(\text{OH})_{12}^{6+} + 12 \text{ H}^+$		1.34		1.340	0.98 ± 0.13

$9 \text{ Bi}^{3+} + 20 \text{ H}_2\text{O} = \text{Bi}_9(\text{OH})_{20}^{7+} + 20 \text{ H}^+$		-1.36	-1.360	
9 Bi ³⁺ + 21 H ₂ O = Bi ₉ (OH) ₂₁ ⁶⁺ + 21 H ⁺		-3.25	-3.250	
9 Bi ³⁺ + 22 H ₂ O = Bi ₉ (OH) ₂₂ ⁵⁺ + 22 H ⁺		-4.86	-4.860	
$Bi(OH)_3(am) + 3 H^+ = Bi^{3+} + 3 H_2O$			31.501 ± 0.927	
α -Bi ₂ O ₃ (cr) + 6 H ⁺ = 2 Bi ³⁺ + 3 H ₂ O		0.76		
BiO _{1.5} (s, α) + 3 H ⁺ = Bi ³⁺ + 1.5 H ₂ O	3.46		31.501 ± 0.927	2.88 ± 0.64

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, pp. 375–383.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 874–884.

A. Kitamura, K. Fujiwara, R. Doi, Y. Yoshida, M. Mihara, M. Terashima and M. Yui, JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024, Japan Atomic Energy Agency, 2010, 84 pp.

B. Lothenbach, M. Ochs, H. Wanner and M. Yui, Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. Japan Nuclear Cycle Development Institute, 1999, pp. 12–22.

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46.