

南开大学

计算机学院和密码与网络空间安全学院

《并行程序设计》实验报告

作业二: CPU 架构相关编程

姓名:梁景铭

学号: 2312632

专业:计算机科学与技术

指导教师:王刚

2025年3月30日

摘要

本实验主要针对矩阵列向量内积与数组求和两类数值计算问题,设计并实现了平凡算法、缓存优化、超标量优化(包括多链累加与递归分治)以及循环展开(unroll)等多种策略。通过在不同硬件平台和操作系统上的高精度性能测试,探讨了缓存利用和指令级并行对程序性能的影响,验证了优化策略在提高计算效率方面的有效性。实验代码及图片已全部上传至:

https://github.com/eprogressing/NKU_COSC0025_Parallel 关键字:平凡算法,缓存优化,超标量优化,循环展开,性能测试

目录

1	基础	要求	1
	1.1	问题重述	1
	1.2	实验环境	1
	1.3	n*n 矩阵与向量内积	1
		1.3.1 优化原理分析	1
		1.3.2 代码对比分析	1
		1.3.3 性能测试对比	2
	1.4	n 个数求和	3
		1.4.1 优化原理分析	3
		1.4.2 代码对比分析	4
		1.4.3 性能测试对比	4
2	进阶	t要求	5
	2.1	不同操作系统对比	5
	2.2	unroll 优化	6
		2.2.1 优化原理分析	6
		2.2.2 unroll 优化的关键代码	6
		2.2.3 unroll 和平凡算法, cache 优化算法对比	7
	2.3	profiling	7
	2.4	更多算法设计思路	8
		2.4.1 多核和 SIMD 优化	8
		2.4.2 缓存无关算法	8

1 基础要求

1.1 问题重述

基础实验的主要任务是对两类常见的数值计算问题进行算法设计、实现与性能优化,并通过高精度计时对比不同算法在实际运行中的效率表现。具体来说,实验内容涵盖如下两方面:

1. 矩阵列向量内积计算问题

在该部分中,给定一个 $n \times n$ 的矩阵和一个向量,要求计算矩阵每一列与该向量的内积。为此,实验将实现并对比如下两种算法:

- ▶ **平凡算法**: 直接逐列访问矩阵中的每个元素,按常规方式计算内积;
- ▶ Cache 优化算法: 通过调整内存访问顺序,优化缓存使用,从而提高运算效率。

2. 数组求和问题

针对一组包含 n 个数的数组,实验要求计算其总和。为此,设计了两种不同的求和策略:

- ▶ **链式累加法**:按顺序逐个累加,得到最终和;
- ▶ 超标量优化方法: 采用指令级并行技术,如两路链式累加,或者利用递归分治策略(即两两相加、逐步合并)实现高效求和。

实验全部代码及图片已上传到 github 上。

1.2 实验环境

参数	ARM 架构	x86 架构
CPU 型号	华为鲲鹏 920	AMD Ryzen 9 7945HX
基础主频	2.6GHz	2.50 GHz
L1 Cache	64KB	1.0MB
L2 Cache	512KB	16.0 MB
L3 Cache	49152KB	64.0MB

1.3 n*n 矩阵与向量内积

1.3.1 优化原理分析

矩阵在内存中按行连续存储,而原始逐列访问算法每次仅利用缓存中的部分数据,频繁的访存操作大大增加了延时。为此,我们首先采用 Cache 优化策略,将加载到缓存的一整行数据用于所有内积计算,从而充分利用缓存,减少访存次数。

1.3.2 代码对比分析

平凡算法直接在内层循环中进行内积累加,每次更新 result[i] 时都需要重新加载矩阵数据。由于矩阵 a 在内存中是按行连续存储的,逐列访问不能充分利用缓存的连续性,从而频繁触发访存操作,增加了延迟。

为充分利用缓存,每次加载一整行数据后,我们调整了循环顺序: 首先初始化所有 result 元素,然后以行为外层循环,内层循环更新所有对应列的结果。这样可以在加载一行数据后,利用缓存中连续的数据同时更新多个 result 元素,减少访存次数,提高性能。下面给出代码及注释说明:

平凡算法

Cache 优化算法

1.3.3 性能测试对比

对两种算法在 ARM 架构上的华为鲲鹏服务器进行测试。由于篇幅原因,如何用 vscode 远程连接服务器,及下文 linux 系统的安装不做详细赘述。

本次性能测试实验将矩阵大小 N 分为三个组:第一组为 N=10 至 90 (步长为 10),代表小规模问题;第二组为 N=100 至 900 (步长为 100),代表中等规模问题;第三组为 N=1000 至 9000 (步长为 1000),代表大规模问题。以下为 N=10,20,30 时的代码运行截图,以作证明:

```
r(int i=0;i<N;i++)
                       result[i]=0;
                     (int i=0;i<N;i++)
                       for(int j=0;j<N;j++)
    result[i]+=a[j]*b[j][i];</pre>
                 timeofday(&end NULL).
                          终端
● [s2312632@master ~]$ g++ -o main main.cpp
■ [s2312632@master ~]$ ./main
 common:0.000497ms
 cache_improve:0.000484ms
▶ [s2312632@master ~]$ g++ -o main main.cpp
[s2312632@master ~]$ ./main
 common:0.001951ms
 cache_improve:0.001923ms
■ [s2312632@master ~]$ g++ -o main main.cpp
● [s2312632@master ~]$ ./main
 common:0.004282ms
 cache_improve:0.004211ms
  [s2312632@master ~]$ g++ -o main main.cpp
[s2312632@master ~]$ ./main
```

图 1.1: 代码运行截图

Group 1			Group 2			Group 3		
N	common	cache_improve	N	common	cache_improve	N	common	cache_improve
10	0.000497	0.000484	100	0.05064	0.048206	1000	5.96454	4.88232
20	0.001951	0.001923	200	0.199102	0.190763	2000	26.7959	19.9792
30	0.004282	0.004211	300	0.457049	0.436359	3000	57.3313	49.9696
40	0.007992	0.007824	400	0.821042	0.764997	4000	225.9123	86.3145
50	0.012765	0.012626	500	1.36919	1.19199	5000	350.2519	148.8251
60	0.17142	0.16661	600	1.91770	1.72783	6000	522.2582	211.1875
70	0.24564	0.23699	700	2.43425	2.21932	7000	855.6485	284.1634
80	0.30169	0.29172	800	3.63680	3.09371	8000	1396.1347	386.5762
90	0.40249	0.38815	900	4.75876	3.92989	9000	1600.1537	470.4953

表中列出了 common 与 cache_improve 两种算法在不同规模 N 下的运行时间。总体而言,随着 N 的增加,两种方法的时间均随运算规模上升,但 cache_improve 表现出更优的性能。对于小规模 (如 $N \leq 100$),两者差异较小,主要因为矩阵较小导致缓存不命中带来的影响有限。随着 N 增大,cache_improve 逐渐展现出更好的缓存局部性,从而比 common 更快,尤其在千级或更大规模时差距 更为明显。在实验过程中,我发现在 N>1000 过后,程序运行的速度显著变慢。总体结论是,随着问题规模增长,优化访存顺序能显著提升矩阵乘法的性能。

将实验数据分为三组 10-90,100-900,1000-9000 分别进行可视化对比,如下图所示:

图 1.2: 平凡算法和 cache 优化时间运行可视化对比

1.4 n 个数求和

1.4.1 优化原理分析

在处理 N 个数求和的问题时,传统的顺序算法往往只使用一个累加器变量,这意味着所有的加法操作都在同一条流水线上进行,从而无法利用 CPU 的超标量执行优势。为了解决这一瓶颈,可以采用一种多链路的方法——在同一次循环中同时使用多个临时累加器,将不同数据段的累加操作并行执行。这样不仅能够使得计算过程并行化,还能通过循环展开减少循环迭代次数,进一步降低循环开销。而

递归分治策略通过分治思想将数组分为两部分逐步合并,同样实现了并行加速的效果。

需要注意的是,为了使实验具有公平性,传统的单链累加方法也应当采用相同程度的循环展开。这样一来,各方法在相似的循环结构下进行比较,能更准确地反映出多链路并行累加在充分利用 CPU 并行计算能力方面的优势。

1.4.2 代码对比分析

平凡算法

```
1 // 平凡算法: 依次遍历每个元素,使用单一累加器进行累加
2 for (int i = 0; i < n; i++)
3 sum += a[i]; // 累加每个元素到sum中
```

链式累加

递归分治策略

```
// 递归分治策略: 通过递归合并数组两端对称的元素

void circle(double *a, long long n) {

    if (n == 1) return; // 基本情况: 当数组中只有一个元素时结束递归
    else {

        // 将数组前半部分与后半部分的对称元素相加
        for (int i = 0; i < n / 2; i++) {

            a[i] += a[n - i - 1]; // 合并对称位置的两个数
        }

        // 递归处理合并后的前半部分数组
        circle(a, n / 2);

}
```

1.4.3 性能测试对比

对四种算法在 ARM 架构上的华为鲲鹏服务器进行测试,测试数据我一开始想从 2 的 0 次方开始,但是发现最开始的数据几乎没有差别,都是约等于 0ms,所以选择了从 2 的 10 次幂一直测试到 2 的

26 次幂,代码运行如下:

```
cache_improve2
n=1024
                        0.0005ms
n=1024
        cache_improve4
                        0.0003ms
                        0.0016ms
        common
                        0.0014ms
        cache improve2
                        0.001ms
        cache improve4
                        0.0006ms
                        0.0032ms
                        0.0028ms
       cache_improve2 0.0019ms
       cache_improve4
                        0.0012ms
        circle
                        0.0063ms
```

图 1.3: 代码运行截图

结果分析如下:

图 1.4: 运行时间对比图

cache_improve4 凭借四路循环展开和缓存优化全程最优,在大规模数据 $\geq 2^{26}$ 时耗时仅为 common 的 60%-80%、circle 的 3%-5%。cache_improve2 次之,耗时比 common 低 20%-30%。circle 因 递归调用和内存访问模式劣势耗时最高,当 $n=2^{26}$ 时达 253.8ms,较 cache_improve4 慢 4.1 倍。

2 进阶要求

2.1 不同操作系统对比

为了进一步对比平台之间运行时间的差距,我在三个平台上测试了程序的运行速度: 分别为 Linux 系统下的 x86 平台、Windows 系统下的 x86 平台以及 Linux 系统下的 ARM 平台(鲲鹏服务器)。每次测试时,问题规模 n 按照倍增方以 2 为底的指数级变化。

另外,我在鲲鹏服务器上采用了 STL 的 vector 来动态分配数组,来和最初只设定单独 N 值的运行代码进行比较,发现动态分配数组之后运行时间会明显增加,因为篇幅原因,具体操作不再说明。

图 2.5: 不同操作系统下系统性能对比分析

结果如下: Linux 在整体性能和扩展性上表现最优,其平凡算法及缓存优化耗时均显著低于其他系统,尤其在缓存优化后执行效率提升最为明显; Windows 系统整体效率偏低,耗时约为 Linux 的 4-5 倍且缓存优化效果微弱。所有系统均呈现请求规模与耗时的正相关性,其中 Linux 增长斜率最平缓。

2.2 unroll 优化

2.2.1 优化原理分析

unroll 算法通过将循环体中需要重复执行的语句"展开"为多份,可以减少循环迭代次数,从而降低这些控制指令所占用的 CPU 资源。循环展开后,每次执行更多计算,减少了条件判断和跳转指令的频率,从而降低了由分支预测失败或跳转延迟带来的性能损耗。

在 unroll 函数中,通过一次循环计算了 10 个不同位置的值,这些累加器彼此独立。这样,编译器和 CPU 都有机会将这些不相关的运算并行调度到多个执行单元上,同时执行多条指令。外层循环控制"逐列"处理,内层循环对每个位置进行累加。由于每次外层循环处理 10 个元素,所以外层循环的迭代次数相较于没有展开时降低了 10 倍,从而减少了循环控制指令的开销。

2.2.2 unroll 优化的关键代码

```
for(int i=0; i<N; i++)
    result[i] = 0;
for(int j=0; j<N; j+=5)

{
    int tmp0=0, tmp1=0, tmp2=0, tmp3=0, tmp4=0;
    for(int i=0; i<N; i++)
    {
        tmp0 += a[j+0] * b[j+0][i];
    }
}</pre>
```

```
tmp1 += a[j+1] * b[j+1][i];
tmp2 += a[j+2] * b[j+2][i];
tmp3 += a[j+3] * b[j+3][i];
tmp4 += a[j+4] * b[j+4][i];

result[j+0] = tmp0;
result[j+1] = tmp1;
result[j+2] = tmp2;
result[j+3] = tmp3;
result[j+4] = tmp4;
}
```

2.2.3 unroll 和平凡算法, cache 优化算法对比

在这里我选择 n*n 矩阵与向量内积的 group2 进行性能对比,用折线图对比如下,可以观察到性能提升了约 17.3%。

Performance Comparison with Loop Unrolling Baseline Cache Optimized Unrolled Loop Unrolled Loop Matrix Size (N)

图 2.6: unroll 和平凡算法, cache 优化算法对比

2.3 profiling

因为电脑是 AMD 的 CPU, 无法利用 vtune 进行 profiling, 我选择在 linux 系统上利用利用 perf 工具测试。准备工作需要将原来测试的代码进行文件分割,即把单独的方法写在一个程序里方便测试。安装 perf 之后, 用 g++ debug 之后,运行如下代码:

```
sudo perf stat -e cycles,instuctions./your profile
```

- sudo perf record ./your profile
- sudo perf report

实在没有办法贴图了,这里我就直接用表格来展示两个程序分别 profiling 之后的结果:

表 1: Problem 1

Category	Missing Percentage (%)	Cycles	Instructions	CPI
common cache_improve unroll	29.56	745,611,075 212,332,964 23,421,203	1,403,352,186 506,565,156 54,021,184	0.419

表 2: Problem 2

Category	Missing Percentage (%)	Cycles	Instructions	CPI
common cache_improve			$\substack{1,010,126,170\\926,086,997}$	

2.4 更多算法设计思路

查阅资料,思考更多算法设计思路来探索计算机体系结构中 cache 和超标量对程序性能的影响。

2.4.1 多核和 SIMD 优化

SIMD[1] 是一种并行计算技术,允许单个指令同时对多个数据元素执行相同的操作。它通过硬件支持的向量寄存器(如 x86 架构的 AVX、ARM 架构的 NEON)实现数据级并行,是现代 CPU 提升计算吞吐量的核心手段。

SIMD 通过扩展寄存器位宽、将多个标量数据打包为向量、单条指令即可完成所有数据批量运算。

2.4.2 缓存无关算法

缓存无关算法 [2] 是一类在设计算法时无需依赖具体缓存大小和层次结构的算法。该类算法通常采用递归分治策略,自然地利用数据局部性,从而在多级缓存系统中实现高效的数据传输和计算。正因为其具有高度自适应性,缓存无关算法能够在不同硬件平台上取得较优的性能,而无需针对特定硬件进行复杂的调优。

参考文献

- [1] R. Sprangler, SIMD Programming Manual for Linux and Windows, Apress, 2012.
- [2] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-Oblivious Algorithms, in Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS), 1999, pp. 285–297.