Chapter 2

Conventional Encryption Message Confidentiality

Henric Johnson

Blekinge Institute of Technology, Sweden

http://www.its.bth.se/staff/hjo/
henric.johnson@bth.se

Outline

- Conventional Encryption Principles
- · Conventional Encryption Algorithms
- · Cipher Block Modes of Operation
- Location of Encryption Devices
- Key Distribution

Conventional Encryption Principles

- An encryption scheme has five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret Key
 - Ciphertext
 - Decryption algorithm
- Security depends on the secrecy of the key, not the secrecy of the algorithm

Conventional Encryption Principles

Cryptography

- Classified along three independent dimensions:
 - The type of operations used for transforming plaintext to ciphertext
 - The number of keys used
 - symmetric (single key)
 - asymmetric (two-keys, or public-key encryption)
 - The way in which the plaintext is processed

Average time required for exhaustive key search

Key Size (bits)	Number of Alternative Keys	Time required at 10 ⁶ Decryption/µs
32	$2^{32} = 4.3 \times 10^9$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	10 hours
128	$2^{128} = 3.4 \times 10^{38}$	5.4 x 10 ¹⁸ years
168	$2^{168} = 3.7 \times 10^{50}$	5.9 x 10 ³⁰ years

Feistel Cipher Structure

- Virtually all conventional block encryption algorithms, including DES have a structure first described by Horst Feistel of IBM in 1973
- The realization of a Fesitel Network depends on the choice of the following parameters and design features (see next slide):

Feistel Cipher Structure

- Block size: larger block sizes mean greater security
- Key Size: larger key size means greater security
- Number of rounds: multiple rounds offer increasing security
- Subkey generation algorithm: greater complexity will lead to greater difficulty of cryptanalysis.
- Fast software encryption/decryption: the speed of execution of the algorithm becomes a concern

Conventional Encryption Algorithms

- Data Encryption Standard (DES)
 - The most widely used encryption scheme
 - The algorithm is reffered to the Data Encryption Algorithm (DEA)
 - DES is a block cipher
 - The plaintext is processed in 64-bit blocks
 - The key is 56-bits in length

Figure 2.3 General Depiction of DES Encryption Algorithm

Figure 2.4 Single Round of DES Algorithm

DES

- The overall processing at each iteration:
 - Li = Ri-1
 - Ri = Li-1 \otimes F(Ri-1, Ki)
- · Concerns about:
 - The algorithm and the key length (56-bits)

Time to break a code (10^6 decryptions/ μ s)

Triple DEA

 Use three keys and three executions of the DES algorithm (encryptdecrypt-encrypt)

$$C = E_{K3}[D_{K2}[E_{K1}[P]]]$$

- C = ciphertext
- P = Plaintext
- EK[X] = encryption of X using key K
- DK[Y] = decryption of Y using key K
- Effective key length of 168 bits

Triple DEA

Figure 2.6 Triple DEA

Other Symmetric Block Ciphers

- · International Data Encryption Algorithm (IDEA)
 - 128-bit key
 - Used in PGP
- Blowfish
 - Easy to implement
 - High execution speed
 - Run in less than 5K of memory

Other Symmetric Block Ciphers

· RC5

- Suitable for hardware and software
- Fast, simple
- Adaptable to processors of different word lengths
- Variable number of rounds
- Variable-length key
- Low memory requirement
- High security
- Data-dependent rotations

· Cast-128

- Key size from 40 to 128 bits
- The round function differs from round to round

Cipher Block Modes of Operation

- Cipher Block Chaining Mode (CBC)
 - The input to the encryption algorithm is the XOR of the current plaintext block and the preceding ciphertext block.
 - Repeating pattern of 64-bits are not exposed

$$\begin{split} &C_{i} = E_{k}[C_{i-1} \oplus P_{i}] \\ &D_{K}[C_{i}] = D_{K}[E_{K}(C_{i-1} \oplus P_{i})] \\ &D_{K}[C_{i}] = (C_{i-1} \oplus P_{i}) \\ &C_{i-1} \oplus D_{K}[C_{i}] = C_{\text{Hendric Johnson 1}} \oplus P_{i} = P_{i} \end{split}$$

Figure 2.7 Cipher Block Chaining (CBC) Mode

Location of Encryption Device

· Link encryption:

- A lot of encryption devices
- High level of security
- Decrypt each packet at every switch
- · End-to-end encryption
 - The source encrypt and the receiver decrypts
 - Payload encrypted
 - Header in the clear
- High Security: Both link and end-to-end encryption are needed (see Figure 2.9)

Figure 2.9 Encryption Across a Packet-Switching Network

Key Distribution

- 1. A key could be selected by A and physically delivered to B.
- 2. A third party could select the key and physically deliver it to A and B.
- 3. If A and B have previously used a key, one party could transmit the new key to the other, encrypted using the old key.
- 4. If A and B each have an encrypted connection to a third party C, C could deliver a key on the encrypted links to A and B.

 Henric Johnson

23

Key Distribution (See Figure 2.10)

· Session key:

 Data encrypted with a one-time session key. At the conclusion of the session the key is destroyed

· Permanent key:

- Used between entities for the purpose of distributing session keys

Figure 2.10 Automatic Key Distribution for Connection-Oriented Protocol

Recommended Reading

- Stallings, W. Cryptography and Network Security: Principles and Practice, 2nd edition. Prentice Hall, 1999
- Scneier, B. Applied Cryptography,
 New York: Wiley, 1996
- Mel, H.X. Baker, D. Cryptography Decrypted. Addison Wesley, 2001