```
In [2]: import pandas as pd
        # Read the CSV file into a DataFrame
        df = pd.read csv('Apache Spark and MapReduce.csv', header=0)
        # Print the column names
        print(df.columns)
        Index(['Query', 'Apache Spark Time (s)', 'Hadoop MapReduce Time (s)'], dtype='objec
        t')
In [ ]:
In [8]: import matplotlib.pyplot as plt
        import numpy as np
        # Sample data for Apache Spark and Hadoop MapReduce running times for each query
        all_spark_times = [
            [8.291, 7.441, 0.422, 0.35, 0.382], # Carrier Delay query
            [0.452, 0.299, 0.33, 0.325, 0.299], # Weather Delay query
            [0.288, 0.275, 0.276, 0.443, 0.26], # NAS Delay query
            [0.262, 0.341, 0.221, 0.241, 0.232], # Security Delay query
            [0.231, 0.236, 0.23, 0.201, 0.215] # Late Aircraft Delay query
        ]
        all_hadoop_times = [
             [12.398, 7.764, 7.138, 6.864, 7.084], # Carrier Delay query
            [6.635, 7.111, 6.754, 6.792, 6.707], # Weather Delay query
            [6.672, 7.202, 6.345, 6.621, 6.507], # NAS Delay query
            [6.283, 6.201, 6.519, 6.677, 6.345], # Security Delay query
            [7.498, 6.425, 6.982, 6.948, 6.972] # Late Aircraft Delay query
        1
        # Queries
        queries = ['Carrier Delay', 'Weather Delay', 'NAS Delay', 'Security Delay', 'Late Airc
        # Function to plot bar chart for a specific query
        def plot graph(query):
            index = queries.index(query)
            spark_times, hadoop_times = all_spark_times[index], all_hadoop_times[index]
            iterations = np.arange(1, len(spark times) + 1)
            plt.figure(figsize=(8, 6))
            plt.bar(iterations - 0.2, spark_times, width=0.4, label='Apache Spark', color='blu
            plt.bar(iterations + 0.2, hadoop_times, width=0.4, label='Hadoop MapReduce', color
            plt.xlabel('Iteration')
            plt.ylabel('Time (s)')
            plt.title(f'Comparison of Apache Spark and Hadoop MapReduce for {query}')
            plt.legend()
            plt.show()
        # Generate bar charts for all queries
        for query in queries:
            plot graph(query)
```

Comparison of Apache Spark and Hadoop MapReduce for Carrier Delay

Comparison of Apache Spark and Hadoop MapReduce for Weather Delay

Comparison of Apache Spark and Hadoop MapReduce for NAS Delay

Comparison of Apache Spark and Hadoop MapReduce for Late Aircraft Delay


```
In [17]: from tabulate import tabulate
          # Sample data for Apache Spark and Hadoop MapReduce running times for each query
          all_spark_times = [
               [8.291, 7.441, 0.422, 0.35, 0.382], # Carrier Delay query
               [0.452, 0.299, 0.33, 0.325, 0.299], # Weather Delay query
               [0.288, 0.275, 0.276, 0.443, 0.26], # NAS Delay query
               [0.262, 0.341, 0.221, 0.241, 0.232], # Security Delay query
               [0.231, 0.236, 0.23, 0.201, 0.215] # Late Aircraft Delay query
          ]
          all_hadoop_times = [
               [12.398, 7.764, 7.138, 6.864, 7.084], # Carrier Delay query
               [6.635, 7.111, 6.754, 6.792, 6.707], # Weather Delay query
               [6.672, 7.202, 6.345, 6.621, 6.507], # NAS Delay query
[6.283, 6.201, 6.519, 6.677, 6.345], # Security Delay query
[7.498, 6.425, 6.982, 6.948, 6.972] # Late Aircraft Delay query
          ]
          # Queries
          queries = ['Carrier Delay', 'Weather Delay', 'NAS Delay', 'Security Delay', 'Late Airc
          # Calculate the average times for each query
          spark_avg_times = [sum(times) / len(times) for times in all_spark_times]
          hadoop_avg_times = [sum(times) / len(times) for times in all_hadoop_times]
          # Create table data
          table_data = []
```

```
for query, spark time, hadoop time in zip(queries, spark avg times, hadoop avg times):
         table data.append([query, spark time, hadoop time])
      # Display table
      print(tabulate(table_data, headers=['Query', 'Spark Avg Time (s)', 'Hadoop Avg Time (s)')
      +-----
      | Query | Spark Avg Time (s) | Hadoop Avg Time (s) |
      | Carrier Delay | 3.3772 | 8.2496 |
      +----+
      | Weather Delay | 0.341 | 6.7998 |
      +-----+
      | Security Delay | 0.2594 |
      +-----
      | Late Aircraft Delay | 0.2226 | 6.965 |
      +-----
In [18]: # Calculate the average times for each query
      spark avg times = [np.mean(times) for times in all spark times]
      hadoop avg times = [np.mean(times) for times in all hadoop times]
      # Plotting the bar graph
      plt.figure(figsize=(10, 6))
      plt.bar(np.arange(len(queries)) - 0.2, spark_avg_times, width=0.4, label='Spark', alig
      plt.bar(np.arange(len(queries)) + 0.2, hadoop_avg_times, width=0.4, label='MapReduce',
      # Adding labels and title
      plt.xlabel('Query')
      plt.ylabel('Average Time (s)')
      plt.title('Average Time Taken by MapReduce and Spark for Each Query')
      plt.xticks(np.arange(len(queries)), queries, rotation=45, ha='right')
      plt.legend()
      # Show plot
      plt.tight_layout()
      plt.show()
```


In []: