《数字逻辑》习题案例

(计算机科学与技术专业、信息安全专业)

2004年7月

计算机与信息学院、计算机系统结构教研室

一、选择题

A. 00110110 B. 110110 C. 01100110 D. 100100 2. 二进制小数 -0.0110 的补码表示为。 A. 0. 1010 B. 1. 1001 C. 1. 0110 D. 1. 1010 3. 两输入与非门输出为 0 时,输入应满足。 A. 两个同时为 1 B. 两个同时为 0 C. 两个互为相反 D. 两个中至少有一个为 0 4. 某 4 变量卡诺图中有 9 个 "0" 方格 7 个 "1" 方格,则相应的标准与或表达式中共有少个与项? A. 9 B. 7 C. 16 D. 不能确定 5. 下列逻辑函数中,与 $F = A$ 相等的是。 (A) $F_1 = A \oplus 1$ (B) $F_2 = A \odot 1$ (C) $F_3 = \overline{A} \odot 1$ (D) $F_4 = \overline{A} \odot 1$ (C) $F_3 = \overline{A} \odot 1$ (D) $F_4 = \overline{A}$	多
A. 0.1010 B. 1.1001 C. 1.0110 D. 1.1010 3. 两输入与非门输出为 0 时,输入应满足。 A. 两个同时为 1 B. 两个同时为 0 C. 两个互为相反 D. 两个中至少有一个为 0 4. 某 4 变量卡诺图中有 9 个 "0" 方格 7 个 "1" 方格,则相应的标准与或表达式中共有少个与项? A. 9 B. 7 C. 16 D. 不能确定 5. 下列逻辑函数中,与 $F = A$ 相等的是。 (A) $F_1 = A \oplus 1$ (B) $F_2 = A \odot 1$ (C) $F_3 = \overline{A} \cdot 1$ (D) $F_4 = \overline{A} + 0$ 6. 设计一个 6 进制的同步计数器,需要个触发器。 (A) 3 (B) 4 (C) 5 (D) 6 7. 下列电路中,属于时序逻辑电路的是。 (A) 编码器 (B) 半加器 (C) 寄存器 (D) 译码器 8. 列电路中,实现逻辑功能 $Q^{n+1} = \overline{Q^n}$ 的是。	多
3. 两输入与非门输出为 0 时,输入应满足。 A. 两个同时为 1 B. 两个同时为 0 C. 两个互为相反 D. 两个中至少有一个为 0 4. 某 4 变量卡诺图中有 9 个 "0" 方格 7 个 "1" 方格,则相应的标准与或表达式中共有少个与项? A. 9 B. 7 C. 16 D. 不能确定 5. 下列逻辑函数中,与 $F = A$ 相等的是。 (A) $F_1 = A \oplus 1$ (B) $F_2 = A \odot 1$ (C) $F_3 = \overline{A \cdot 1}$ (D) $F_4 = \overline{A + 0}$ 6. 设计一个 6 进制的同步计数器,需要个触发器。 (A) 3 (B) 4 (C) 5 (D) 6 7. 下列电路中,属于时序逻辑电路的是。 (A) 编码器 (B) 半加器 (C) 寄存器 (D) 译码器 8. 列电路中,实现逻辑功能 $Q^{n+1} = \overline{Q^n}$ 的是。	3
A. 两个同时为 1 B. 两个同时为 0 C. 两个互为相反 D. 两个中至少有一个为 0 4. 某 4 变量卡诺图中有 9 个 "0" 方格 7 个 "1" 方格,则相应的标准与或表达式中共有少个与项	多
4. 某 4 变量卡诺图中有 9 个 "0" 方格 7 个 "1" 方格,则相应的标准与或表达式中共有少个与项? A. 9 B. 7 C. 16 D. 不能确定 5. 下列逻辑函数中,与 $F = A$ 相等的是。 (A) $F_1 = A \oplus 1$ (B) $F_2 = A \odot 1$ (C) $F_3 = \overline{A \cdot 1}$ (D) $F_4 = \overline{A + 0}$ 6. 设计一个 6 进制的同步计数器,需要个触发器。 (A) 3 (B) 4 (C) 5 (D) 6 7. 下列电路中,属于时序逻辑电路的是。 (A) 编码器 (B) 半加器 (C) 寄存器 (D) 译码器 8. 列电路中,实现逻辑功能 $Q^{n+1} = \overline{Q^n}$ 的是。	3
少个与项	多
A. 9 B. 7 C. 16 D. 不能确定 5. 下列逻辑函数中,与 $F = A$ 相等的是。 (A) $F_1 = A \oplus 1$ (B) $F_2 = A \odot 1$ (C) $F_3 = \overline{A \cdot 1}$ (D) $F_4 = \overline{A + 0}$ 6. 设计一个 6 进制的同步计数器,需要个触发器。 (A) 3 (B) 4 (C) 5 (D) 6 7. 下列电路中,属于时序逻辑电路的是。 (A) 编码器 (B) 半加器 (C) 寄存器 (D) 译码器 8. 列电路中,实现逻辑功能 $Q^{n+1} = \overline{Q^n}$ 的是。	
5. 下列逻辑函数中,与 $F = A$ 相等的是。 (A) $F_1 = A \oplus 1$ (B) $F_2 = A \odot 1$ (C) $F_3 = \overline{A \cdot 1}$ (D) $F_4 = \overline{A + 0}$ 6. 设计一个 6 进制的同步计数器,需要个触发器。 (A) 3 (B) 4 (C) 5 (D) 6 7. 下列电路中,属于时序逻辑电路的是。 (A) 编码器 (B) 半加器 (C) 寄存器 (D) 译码器 8. 列电路中,实现逻辑功能 $Q^{n+1} = \overline{Q^n}$ 的是。	
$(A) \ F_1 = A \oplus 1$ $(B) \ F_2 = A \odot 1$ $(C) \ F_3 = \overline{A \cdot 1}$ $(D) \ F_4 = \overline{A + 0}$ $(E) \ CP$ $(C) \ F_3 = \overline{A \cdot 1}$ $(D) \ F_4 = \overline{A + 0}$ $(E) \ F_4 = $	
6. 设计一个 6 进制的同步计数器,需要	
(A) 3 (B) 4 (C) 5 (D) 6 7. 下列电路中,属于时序逻辑电路的是。 (A) 编码器 (B) 半加器 (C) 寄存器 (D) 译码器 8. 列电路中,实现逻辑功能 $Q^{n+1} = \overline{Q^n}$ 的是。 $CP \longrightarrow C1 \qquad CP \longrightarrow C1 \qquad Q$	
7. 下列电路中,属于时序逻辑电路的是。 (A) 编码器	
(A) 编码器 (B) 半加器 (C) 寄存器 (D) 译码器 8. 列电路中,实现逻辑功能 $Q^{n+1} = \overline{Q^n}$ 的是。	
8. 列电路中,实现逻辑功能 $Q^{n+1} = \overline{Q^n}$ 的是。 $CP \longrightarrow C1 \qquad \qquad CQ \qquad CP \longrightarrow C1 \qquad \qquad \overline{Q}$	
$CP \xrightarrow{1D} C1$ \overline{Q} $CP \xrightarrow{IJ} Q$ $CP \xrightarrow{IK} \overline{Q}$	
$CP \longrightarrow C1 \qquad CP \longrightarrow C1 \qquad \overline{Q}$	
O O O O O O O O O O	
(A) 与非门 (B) 一般 TTL 门	
(C)集电极开路 OC 门 (D) 一般 CMOS 门	
10. 以下代码中为无权码的为。	
A. 8421BCD 码 B. 5421BCD 码 C. 余三码 D. 格雷码	
11. 以下代码中为恒权码的为。	
A. 8421BCD 码 B. 5421BCD 码 C. 余三码 D. 格雷码	
12. 一位十六进制数可以用位二进制数来表示。	
A. 1 B. 2 C. 4 D. 16	

13. 十进制数 25 用 8421BCD 码表示为	°
A. 10 101 B. 0010 0101	C. 100101 D. 10101
14. 在一个8位的存储单元中,能够存储的	最大无符号整数是。
A. (256) 10 B. (127) 10	C. (FF) ₁₆ D. (255) ₁₀
15. 与十进制数(53.5)10等值的数或代码	为。
A. (0101 0011. 0101) 8421BCD	B. (35. 8) ₁₆
C. (110101. 1) ₂	D. (65. 4) ₈
16. 矩形脉冲信号的参数有。	
A. 周 期 B. 占 空 比	C. 脉 宽 D. 扫 描 期
17. 与八进制数(47.3) 8等值的数之	b:
A. (100111.011) ₂	B. (27.6) ₁₆
C. (27.3) ₁₆	D. (100111.11) ₂
18. 常用的 BCD 码有。	
A. 奇偶校验码 B. 格雷码	C.8421 码 D.余三码
19. 与模拟电路相比,数字电路主	要的优点有。
A. 容易设计 B. 通用性强	C. 保密性好 D. 抗干扰能力强
20. n 个变量的最小项是。	
A. n 个变量的积项,它包含全部 n 个变量	<u>1.</u>
B. n 个变量的和项,它包含全部 n 个变量	
C. 每个变量都以原变量或者反变量的形	式出现,且仅出现一次。
D. n 个变量的和项,它不包含全部变量。	
21. 当描述同步时序电路的最简状态表中含	有()个状态时,需要两个触发器。
A. 3 B. 4	C. 2 D. 5
22. 组合逻辑电路的结构特点,表现为()	0.
A. 有记忆功能 B. 有反馈回路	C. 不含记忆元件 D. 无反馈回路
23. 以下表达式中符合逻辑运算法	三则的是。
A. C • $C = C^2$ B. $1 + 1 = 10$	C. $0 < 1$ D. $A + 1 = 1$
24. 逻辑变量的取值 1 和 0 可以表示:	
A. 开关的闭合、断开 B. 电位的高、(氐 C. 真与假 D. 电流的有、无
25. 当逻辑函数有 n 个变量时,共有	个变量取值组合?
A. n B. 2n C.	n ² D. 2 ⁿ
26. 逻辑函数的表示方法中具有唯一性的是	·•
A. 真值表 B. 表 达 式 C.	逻辑图 D. 卡诺图
27. F=A \overline{B} +BD+CDE+ \overline{A} D=	

	A. $A\overline{B} + D$	B. $(A + \overline{B})D$	C. $(A+D)(\overline{B}+D)$	D. (A	$+D)(B+\overline{D})$
28.	逻辑函数 F=A⊕	$(A \oplus B) = $	<u> </u>		
	A. B	В. А	C. $A \oplus B$	D. $\overline{\overline{A}}$	$\overline{\oplus B}$
29.	求一个逻辑函数	数F的对偶式,可次	将 F 中的	0	
	A. •"换成"+"	", "+"换成" • "			
	B. 原变量换	成反变量,反图	变量换成原变量		
	C. 变量不变				
	D. 常数中"	0"换成"1",	"1"换成"0"		
	E. 常数不变				
30.	A+BC=				
	A . A+B	B. A + C	C. $(A+B)(A+C)$). B+C
31	.在	输入情况	下,"与非"运算自	的结果是	逻辑 0。
	A. 全部输入是	0 B. 任一输入是	₹0 C. 仅一输入是0	Γ	0. 全部输入是 1
32	. 在	种 输 入 情	况下,"或非"运算	算的结果	是逻辑 0。
	A. 全部输入是	0	B. 全部输入是1		
	C. 任一输入为(0, 其他输入为1	D. 任一输入为 1		
33.	三态门输出高阻]状态时,	是正确的说法。	.	
	A. 用电压表测量	指针不动	B. 相当于悬空		
	C. 电压不高不低		D. 测量电阻指针不动	b	
34.	以下电路中可以	人实现"线与"功能	皆的有 。	>	
	A.与非门 B	. 三态输出门	C. 集电极开路门	D.漏	极开路门
35	. 以下电路中常	用于总线应用的有	Ĵo		
	A. TSL 门 B	. OC 门	C. 漏极开路门	D.C	MOS 与非门
36	. 逻辑表达式	Y=AB可以用_	实 现 。		
	A.正或门 B	. 正非门	C. 正与门	D. 1	负或门
37	. TTL 电路在	正逻辑系统中	, 以下各种输入中		相 当 于 输
入	逻辑"1"。				
	A. 悬空	1	B. 通过电阻 2.7kΩ	接电源	
	C. 通过电阻 2	7k Ω 接地 I). 通过电阻 510Ω 持	妾 地	
38	. 对于 TTL 与	5 非门闲置输入	.端的处理,可以_		o
	A.接电源	В	.通过电阻 3kΩ 接	电源	
	C. 接地]	D. 与有用输入端并:	联	
39	. 要使 TTL 与	5 非 门 工 作 在 转	折区, 可使输入端	計对 地 外	接电阻 R _I 。
	$A. > R_{ON}$	$B. < R_{OFF}$ C	. $R_{OFF} < R_I < R_{ON}$	$D. > R_{OF}$	F

40. 三极管作为开关使用时,要提高开关速度,可。
A. 降低饱和深度 B. 增加饱和深度
C. 采用有源泄放回路 D. 采用抗饱和三极管
41. CMOS 数字集成电路与 TTL 数字集成电路相比突出的优点是。
A. 微 功 耗 B. 高 速 度
C. 高 抗 干 扰 能 力 D. 电 源 范 围 宽
42. 与 CT4000 系列相对应的国际通用标准型号为。
A. CT74S 肖特基系列 B. CT74LS 低功耗肖特基系列
C. CT74L 低功耗系列 D. CT74H 高速系列
43. N 个 触 发 器 可 以 构 成 能 寄 存位 二 进 制 数 码 的 寄 存 器。
A. N-1 B. N C. N+1 D. 2 ^N
44. 在下列触发器中,有约束条件的是。
A. 主从 JK F/F B. 主从 D F/F
C. 同步 RS F/F D. 边沿 D F/F
45. 一个触发器可记录一位二进制代码,它有个稳态。
A. 0 B. 1 C. 2 D. 3 E. 4
46. 存储 8 位二进制信息要个触发器。
A. 2 B. 3 C. 4 D. 8
47. 对于 T 触发器, 若原态 Q ⁿ =0, 欲使新态 Q ⁿ⁺¹ =1, 应使输入 T=
A. 0 B. 1 C. Q D. \overline{Q}
48. 对于 T 触发器, 若原态 Q ⁿ =1, 欲使新态 Q ⁿ⁺¹ =1, 应使输入 T=
A. 0 B. 1 C. Q D. \overline{Q}
49. 对于 D 触发器, 欲使 Q ⁿ⁺¹ =Q ⁿ , 应使输入 D=。
A. 0 B. 1 C. Q D. \overline{Q}
50. 对于 JK 触发器, 若 J=K, 则可完成触发器的逻辑功能。
A. RS B. D C. T D. T
51. 欲使 JK 触发器按 Q ⁿ⁺¹ =Q ⁿ 工作,可使 JK 触发器的输入端
A. $J=K=0$ B. $J=Q$, $K=\overline{Q}$ C. $J=\overline{Q}$, $K=Q$ D. $J=Q$, $K=0$ E. $J=0$, $K=\overline{Q}$
52. 欲使 JK 触发器按 Q ⁿ⁺¹ = Q̄ ⁿ 工作, 可使 JK 触发器的输入端。
A. $J=K=1$ B. $J=Q$, $K=\overline{Q}$ C. $J=\overline{Q}$, $K=Q$ D. $J=Q$, $K=1$ E. $J=1$, $K=Q$
53. 欲使 JK 触发器按 Q ⁿ⁺¹ =0 工作,可使 JK 触发器的输入端。
A. $J=K=1$ B. $J=Q$, $K=Q$ C. $J=Q$, $K=1$ D. $J=0$, $K=1$ E. $J=K=1$
54. 欲使 JK 触发器按 Q ⁿ⁺¹ =1 工作,可使 JK 触发器的输入端。
A. $J=K=1$ B. $J=1$, $K=0$ C. $J=K=\overline{Q}$ D. $J=K=0$ E. $J=\overline{Q}$, $K=0$

55.	欲使 D f	触发器接	$\vec{\zeta} Q^{n+1} = \vec{Q}^n$	工作,	应使输)	/ D=	o	
	A. 0	В. 1		C. G	!	D.	$\overline{\overline{Q}}$	
56.	下列触	发器中,	克服了空	三翻 现 象	內有	0		
	A. 边 沿	D触发器	i i	В.	主从 RS	触发器		
	C. 同步	RS 触发	器	D.	主从 JK 1	触发器		
57.	下列触	发器中,	没有约束	京条 件 的	〕是	o		
	A. 基本	RS 触发	器	В.	主从 RS 1	触发器		
	C. 同步	RS 触发	器	D. :	边沿D触	发器		
58.	描述触	发器的逻	置辑 功能的	方法有	í	o		
	A. 状态:	转换真值	表	В. 4	寺性方程			
	C. 状态:	转换图		D. 壮	大态转换	卡诺图		
59.	为实现:	将 JK 触	发器转换	为 D 触	发器,应	互使	o	
	A. $J=D$, I	$X = \underline{D}$	B. K = D,	$J = \overline{D}$	C. J = K	C = D	$D. J = K = \overline{D}$	
60.	边沿式 D	触发器	是一种		_稳态电量	路。		
	A. 无		B. 单		C. 双		D. 多	
61.	下列表	达式中不	存在竞争	冒险的	有	· ·		
	$A. Y = \overline{B} + A$	AB	$B \cdot Y = AB +$	\overline{B} C	$C \cdot Y = X$	$AB\overline{C} + AB$	D. $Y = (A + \overline{B}) A$	\overline{D}
62.	若在编码	器中有	50 个编码	马对象,	则要求	输出二进	制代码位数为	
位。								
	A.5		В. 6		C.10		D.50	
63.	一个 16 5	选一的数	据选择器	异, 其地	1 址输入	(选择控	制输入)端有	
个。								
A	. 1	В. 2		C.4		D.16		
64.	下列各函	数等式	中无冒险	现象的	函数式有	Ī	o	
A	$ F = \overline{BC} +$	$AC + \overline{AB}$	В. А	$\overline{C} = \overline{AC} + B$	$C + A\overline{B}$	C. F =	$\overline{AC} + BC + A\overline{B} + \overline{AB}$	
	$F = \overline{BC} +$	$-AC + \overline{AB} +$	$BC + A\overline{B} + \overline{AC}$	Ī		E. $F =$	$\overline{BC} + AC + \overline{AB} + A\overline{B}$	
65.	函数 F=	$\overline{AC} + AB + \overline{AB}$	 BC, 当变量	量的取值	直为		将出现冒险现	象。
A	B = C = 1	В. В	=C=0	C. A = 1	, $C=0$	D. A = 0	B = 0	
66.	四选一数	放据选择	器的数据	输出Y	与数据轴	俞入 Xi 利	口地址码 Ai 之 l	间的
į	逻辑表达	式为 Y=		_ 0				
Α.	$. \overline{A}_1 \overline{A}_0 X_0 + \overline{A}_0$	$A_1A_0X_1 + A_1\overline{A_0}$	$X_2 + A_1 A_0 X_3$		B. $\bar{A}_1\bar{A}_0X_0$			
С.	$\overline{A}_1 A_0 X_1$				D. $A_1A_0X_3$			
67.	一个8选	一数据	选择器的	数据输	入端有_	个。)	
Α.	. 1		B. 2	С	. 3	D. 4	E.8	

68. 在下列逻辑电路中,不是	组合逻辑电路的有	0
A. 译码器 B. 编码器	C. 全加器	D. 寄存器
69. 八路数据分配器, 其地址	输入端有个	• •
A. 1 B. 2	C. 3 D. 4	E.8
70. 组合逻辑电路消除竞争冒	险的方法有	_°
A. 修改逻辑设计 B	. 在输出端接入滤波电	电 容
C. 后级加缓冲电路 D	. 屏蔽输入信号的尖峰	锋干 扰
71. 101 键盘的编码器输出	位二进制代码。	
A. 2 B. 6	C.7 D.8	
72. 用三线-八线译码器 74LS1	38实现原码输出的8	8路数据分配器,
<u>\widety</u>		
A. $ST_A = 1$, $\overline{ST_B} = D$, $\overline{ST_C} = 0$	B. $ST_A = 1$, $\overline{ST_B} = D$, \overline{S}	$\overline{ST_C} = D$
C. $ST_A = 1$, $\overline{ST_B} = 0$, $\overline{ST_C} = D$	D. $ST_A = D$, $\overline{ST_B} = 0$, \overline{S}	$\overline{ST_C} = 0$
73. 以下电路中,加以适当辅	助门电路,适于	一 实 现 单 输 出 组 合 逻
辑电路。		
A. 二进制译码器 I	3. 数据选择器	
C. 数值比较器	D. 七段显示译码器	
74. 用四选一数据选择器实现	函数 $Y = A_1A_0 + \overline{A_1}A_0$, 应付	使。
A. $D_0 = D_2 = 0$, $D_1 = D_3 = 1$	B. $D_0 = D_2 = 1$, $D_1 = D_3 = 0$	
$C. D_0 = D_1 = 0$, $D_2 = D_3 = 1$	D. $D_0 = D_1 = 1$, $D_2 = D_3 = 0$	
75. 用三线-八线译码器 74LS13	8和辅助门电路实现	逻辑函数 $Y = A_2 + \overline{A_2} \overline{A_1}$,
<u> </u>		
A. 用与非门,Y= $\overline{Y_0}\overline{Y_1}\overline{Y_4}\overline{Y_5}\overline{Y_6}\overline{Y_7}$	B. 用与门, $Y = \overline{Y_2}\overline{Y_3}$	
C. 用或门, $Y = \overline{Y_2} + \overline{Y_3}$	D. 用或门, $Y = \overline{Y_0} +$	$-\overline{Y_1} + \overline{Y_4} + \overline{Y_5} + \overline{Y_6} + \overline{Y_7}$
76. 同步计数器和异步计数器比	较,同步计数器的显	著 优 点 是。
A. 工作速度高	B. 触发器利用率高	<u> </u>
C. 电路简单	D. 不受时钟 CP 控	制。
77. 把一个五进制计数器与一个	內四进制计数器串联下	可得到进制计
数器。		
A. 4 B. 5	C. 9	D.20
78. 下列逻辑电路中为时序逻	辑电路的是	0
A. 变量译码器 B. 加法器	C. 数码寄存器	D. 数据选择器
79. N个触发器可以构成最大计		
A. N B. 2N	C. N ²	D. 2 ^N

80. N 个触发	器可以构成能寄	存	立二进制数码的	寄存器。
A. N-1	B. N	C. N+1	D.2N	
81. 五个 D 触	总 发器构成环形计	数器,其计数	数长度为	o
A.5	B. 10	C.25	D.32	
82. 同步时序	1 电路和异步时序	, 电路比较, 其	其差异在于后者.	o
A. 没有触发	器]	B. 没有统一的	时钟脉冲控制	
C. 没有稳定	Z 状态 D	.输出只与内	部状态有关	
83. 一位 842	1BCD 码计数器至	上少需要	个触发器。	
A. 3	B. 4	C.5	D. 10	
84. 欲设计 0,	1, 2, 3, 4, 5,	6,7这几个	数的计数器,如	果设计合理,
采用同步	二进制计数器,占	最少应使用	级 触 发 器 。	
A. 2	В. 3	C.4	D.8	
85.8位移位	寄存器,串行输	入时经	个脉冲后,	8位数码全部
移入寄存器中	1 。			
A. 1	B. 2	C.4	D. 8	
86. 用二进制	月异步计数器从 0	做加法, 计到	到十进制数 178,	则最少需要
个触发器。				
A. 2	B. 6	C. 7	D.8	E.10
87. 某电视机	L水平-垂直扫描;	发生器需要一	个分频器将 315	500Hz的脉冲
转换为 60	Hz的脉冲, 欲构	成此分频器至	少需要	· 触 发 器 。
A. 10	B.60	C.525	D. 31500	
88. 某移位寄	存器的时钟脉冲	频率为 100KF	Iz, 欲将存放在证	亥 寄 存 器 中 的
数左移 8 位	立, 完 成 该 操 作 制	需要时间		
	B. 80 µ S			
89. 若用 JK 舶	k 发 器 来 实 现 特 性	E方程为 Q ⁿ⁺¹ =	$\overline{AQ}^n + AB$, \overline{Q} JK	端的方程
为。				
	$\overline{\overline{A} + B}$ B. $J = AB$			
90. 要产生 10 个	、顺序脉冲, 若用四位	区双向移位寄存器	CT74LS194 来实现,	需要片。
A. 3	B. 4	C. 5	D. 10	
91. 若要设计	一个脉冲序列为	1101001110	的序列脉冲发生	器,应选用_
个触发器。				
A. 2	В. 3	C. 4	D. 10	
92. PROM 和 PAL	的结构是。			
A.PROM 的上	同阵列固定,不 同	可编 程		

В.	PROM 与阵列、或阵列均不可编程
С.	PAL 与阵列、或阵列均可编程
D.	PAL 的与阵列可编程
93.	当用专用输出结构的 PAL 设计时序逻辑电路时,必须还要具备
有	
Α.	— 触 发 器 B. 晶 体 管 C. MOS 管 D. 电 容
	当用异步 I/O 输出结构的 PAL 设计逻辑电路时,它们相当于。
	组合逻辑电路 B. 时序逻辑电路
	C. 存储器 D. 数模转换器
	PLD 器件的基本结构组成有。
	与阵列 B.或阵列 C.输入缓冲电路 D.输出电路
	PLD 器件的主要优点有。
	便于仿真测试 B.集成密度高 C.可硬件加密 D.可改写
	GAL 的输出电路是。
	OLMC B. 固定的 C. 只可一次编程 D. 可重复编程
	PLD 开发系统需要有。
Α.	计 算 机 B. 编 程 器 C. 开 发 软 件 D. 操 作 系 统
99.	只可进行一次编程的可编程器件有。
Α.	PAL B. GAL C. PROM D. PLD
100.	可重复进行编程的可编程器件有。
Α.	PAL B. GAL C. PROM D. ISP-PLD
_	植交跖
— `	填空跑
1.	十六进制数 3A. B 对应的八进制数是。
2.	十进制数 7.125 对应的二进制数是。
3.	
4.	
5.	逻辑函数 $F=AB+AB$ 的对偶函数 $F'=$ 。
6.	一个门电路的输出端所能连接的下一级门电路输入端的个数称为该门电路的
7.	777 CTT 328 T 7 MA G
8.	关的电路称为 Moore(摩尔)型时序电路。
8. 9.	
	 构造一个同步模 8 计数器需要
1	1. (48) ₁₀ = () ₁₆ = () ₂ 。
12	2. 集成触发器三种结构:、、的

	和。
	$F = \overline{(A \oplus D)\overline{B} + C}$ 的反函数 $\overline{F} = \underline{\qquad}$ 。
13.	
14.	时序逻辑电路的功能表示方法有:、、、、
	和。
15.	N 级环形计数器的计数长度是, N 级扭环计数器的计数长度
	是。
16.	寄存器按照功能不同可分为两类:寄存器和
	存器。
17.	数字电路按照是否有记忆功能通常可分为两
	类:、。
18.	由四位移位寄存器构成的顺序脉冲发生器可产生个顺序脉
	冲
19.	时序逻辑电路按照其触发器是否有统一的时钟控制分为时序
	电路和时序电路。
20.	触发器有个稳态,存储8位二进制信息要个触发器.
21	一个基本 RS 触发器在正常工作时,它的约束条件是 \overline{R} + \overline{S} =1,则
21.	一至中 No 应及福在正市工作时,占时57 水水干足 N 1, 风
	它不允许输入 \overline{S} =且 \overline{R} =的信号。
22.	触发器有两个互补的输出端 Q、 Q、 定义触发器的 1 状态
	为, 0 状态为, 可见触发器的状态
	指 的 是端 的 状 态 .
23.	一个基本 RS 触发器在正常工作时, 不允许输入 R=S=1 的信号,
	因此它的约束条件是。
24.	在一个 CP 脉冲作用下,引起触发器两次或多次翻转的现象称为
	触发器的,触发方式为式或式的触发器不会出
	现 这 种 现 象 .
25.	逻辑代数又称为代数。最基本的逻辑关系有、、
	三种。常用的几种导出的逻辑运算
	为、、、、。
26.	逻辑函数的常用表示方法有、、、。
	逻辑代数中与普通代数相似的定律有、、、。摩根定律又称
	为。
28.	逻辑代数的三个重要规则是、、、、、。
29.	逻辑函数 $F = \overline{A} + B + \overline{C} D$ 的反函数 $\overline{F} = \underline{}$.
31.	添加项公式 $AB+\overline{A}C+BC=AB+\overline{A}C$ 的对偶式为。
	逻辑函数 F= Ā B C D +A+B+C+D=。
	逻辑函数 F= AB + AB + AB =。
34.	已知函数的对偶式为 $AB + CD + BC$,则它的原函数为 。

35.	同一逻辑函数的两种逻辑表达式中的最大项 Mi 与最小项 mi 之间的关系有 Mi=, Mi+mi=。
36.	多变量异或运算时,若 $X1 \oplus X2 \oplus \dots \oplus Xn = 0$,则 $Xi = 1$ 的个数必为数。(奇
	或偶)
37.	七段译码器的输入是 码 。
38.	在多路复用器中, s 个输入用于选择 N 个数据源,则 s=
39.	带使能输入的 可以用做多路分配器。
40.	若 JK 触发器 $Q*=Q'$,则输入(J , K) = 。如果用 D 触发器完成相同功能,则 D= 。
41.	时序电路又被称作有限状态机,并且可以进一步划分为 机和 机。
	方程将触发器的下一状态定义为触发器当前状态和输入的函数。
	一个具有 n 个触发器的机器中,状态的总数为 。
	设计一个模 65 的同步计数器,至少需要 个触发器.
	产生序列 11101000 ,至少需要 个触发器。
	在状态图中,只要包含有 的时序电路都可称为计数器.
	一个 触发器就是一个一位的二进制计数器。
	已知 m 序列信号发生器的反馈函数 $f(Q)=Q_{3\oplus}Q_4$,则其循环长度(序列长度) $S=_$ 。
	F (A, B, C, D) =1, 其最小项表达式 F=Σ m ()。
50.	函数 $F = \overline{A} + \overline{AB} + A(C + D)$,其反函数 $\overline{F} = $;对偶式
	$F^*=$ 。
51.	RAM 与 ROM 的区别是。
	动态存储单元为不丢失信息,必须。
	⊼
53.	将 D 触发器的 D 端连在 \mathbb{Q} 端上,假设 \mathbb{Q} (t) =0,则经过 100 个脉冲作用后,它的
	次态 Q(t+100) 为。
54.	已知一个最长线性序列码发生器的反馈函数是 F(Q)=Q5Q6, 试求: 序列码的长度
	S=。
	RAM 的优点是,
56.	由于 R-S 触发器有
	码。若存储一字节二进制信息,需要个触发器。
57.	组合电路与时序电路的主要区别:。
58.	PAL 的与阵列编程,或阵列编程。
59.	将逻辑函数 $F(A,B)=A\oplus B$ 化成最小项之和的标准形式:
	$F(A,B) = \sum m_i \ (i = \underline{\hspace{1cm}}) \ .$
60.	三态门的输出端有三种可能出现的状态:、、和。
	写出 T 触发器的特征方程:。
	衡量存储器性能的两个重要指标是和。
	与模拟信号相比,数字信号的特点是它的性。一个数字信号只有种
	取值分别表示为 和。
64.	布尔代数中有三种最基本运算:、和,在此基础上又
	派生出四种基本运算。分别为 和

65.	EPROM 是可编程只读存储器	,EEPROM 是	可编程只读	存储器。
66.	FPGA 是指,它是一种	密度的可编	辑程逻辑器件 。	
67.	GAL 是指,ISP 是指	。		
68.	函数式 F=AB+BC+CD 写成最小项之和	的形式结果应	为Σ㎜()	,
	写成最大项之积的形式结果应为∏M()。		
69.	判断下列逻辑运算说法是否正确。			
(1) 若X+Y=X+Z, 则Y=Z; ()			
(2	2) 若XY=XZ,则Y=Z; ()			
(3	B) 若X⊕ Y=X⊕ Z,则Y=Z; ()			
70.	组合逻辑电路的特点是任意时刻的_	状态	仅取决于该时刻的	
	状态,而与信号作用前电路的状态_			
71.	组合逻辑电路在结构上不存在输出至	间输入的	,因此	_ 状态不影
	响 状态。			
72.	数据分配器的结构与 相反	5,它是一种_	输入,	输出
	的逻辑电路。从哪一路输出取决于_	•		
73.	一个十六路数据选择器,其地址输入	、端有	_ 个。	
74.	设A0、A1 为四选一数据选择器的地:	址码, X0∼X3	为数据输入,Y 为	数据输出,
	则输出Y 与数据输入和地址码的关系	《为	0	
75.	描述触发器的逻辑功能的方法有	<u> </u>	; ;	
76.	将基本RS 触发器的S 和Q、R 和Q端村	相连成新的触发	、 器,其特征方程是	o
77.	若D 触发器的D 端连在Q端上,经100	个脉冲作用后	,其次态为0,则现为	为。
78.	SD 和RD 为触发器的异步置1 和置0			,
	RD= ,而与 和 _	无关	. 0	
79.	对于JK 触发器,若J=K,则可完成	触发	器的逻辑功能;若A	= J,
	则可完成 触发器的逻辑功能			
80.	时序逻辑电路一般由 和			
	某一时刻的 状态不仅取决于	F该时刻的	,而且与信号	号作用前电路
	的状态。			
81.	时序逻辑电路在结构上存在输出到输	入的	,因此,	_状态会
	影响 状态。			
82.	时序逻辑电路分为两类:			
	的时钟脉冲源,存储电路里所有			钟脉冲CP
	作用下同时发生;而没有统			
	时序逻辑电路中的存储电路受时钟控			
84.	同步时序逻辑电路中,所有触发器状		· · · · · · · · · · · · · · · · · · ·	
	进行的; 异步时序逻辑电路中, 各触			触发器
	状态的变化并不都是发生的	<u>-</u>		
85.	全面描述一时序逻辑电路的功能, 项		7程式。它们	
	是、、			
86.	为了把时序电路的逻辑功能直观、形			
	方程和控制方程表示的逻辑关系表示	下成、	、、或	的形
0-		 ₹N1>3 ⇒	D. → NU dul ate = =	to Alica Day 137
	触发器有		位二进制码,7	字储8 位二进
	制信息需要 个触发器。			

88.	用来表示时序电路状态转换规律的输入、输出关系的有向图称为, 计数器
	中有效状态的数目称为计数器的。
89.	模为2的正整数次幂的二进制递增计数器,若从其反向输出端 @输出,则得同模
计数	牧器。
90.	计数器的功能是, 它是用电路的 来表示计数值。计数器的模是
	指。
91.	按计数进位制计数器可分为 和 两类。按进位方式计数器可分为
	和 两类。按逻辑功能计数器可分为 、 和等
92.	在各种寄存器中,存放N 位二进制数码需要个触发器。
	用反馈移位寄存器产生11101000 序列,至少需要 个触发器。
94.	n 级反馈移位寄存器的状态数是。
95.	有一个移位寄存器, 高位在左, 低位在右, 欲将存放在该移位寄存器中的二进制数
	乘上十进制数4,则需将该移位寄存器中的数左移
	位脉冲。
96.	逻辑系统包括、和 三部分组成。
	将一个包含有32768 个基本单元的存储电路设计成4096 个字节的RAM,则该RAM 有
	根数据线,根地址线。
98.	有一个容量为256× 4 位的RAM,该RAM 有
	访问个基本存储单元,该RAM 有 根地址线。
99.	将一个包含有16384 个基本单元的存储电路设计设计成8 位为一个字节的
	ROM, 该ROM 有 个地址,个数据读出线。
100	. 半导体存储器从存取功能上可以分为 存储器和 存储器。存储
	器容量的扩展方式有 和 两种。

三、综合题。

- 1、用卡诺图法化简下列各式。
- (1) $F = \overline{AC + \overline{ABC + BC}} + AB\overline{C}$
- (2) $F = A\overline{B}CD + AB\overline{C}\overline{D} + A\overline{B} + A\overline{D} + A\overline{B}C$
- 2、利用与非门实现下列函数,并画出逻辑图。
- (1) $F = AB\overline{C} + A\overline{B} \overline{C} = A\overline{C} = \overline{\overline{A}\overline{C}}$
- (2) $F = \overline{(A+B)(C+D)} = \overline{\overline{A} \ \overline{B}} \ \overline{\overline{C} \ \overline{D}}$
- 3、分析下图所示的逻辑电路,写出表达式并进行简化。

4、分析下图所示的逻辑电路,写出表达式并进行简化。

5、分析下图所示逻辑电路,其中 S3、S2、S1、S0 为控制输入端,列出真值表,说明 F与 A、B 的关系。

6、分析下图所示逻辑电路,列出真值表,说明其逻辑功能。

7、右图所示为数据总线上的一种判零电路,写出 F 的逻辑表达式,说明该电路的逻辑功能。

8、分析下图所示逻辑电路,列出真值表,说明其逻辑关系。

9、下图所示为两种十进制数代码转换器,输入为余三码,问:输出为什么代码?

10、下图是一个受 M 控制的 4 位二进制码和格雷码的相互转换电路。

M=1 时,完成自然二进制码至格雷码转换;

M=0 时,完成相反转换。请说明之。

11、在有原变量又有反变量的输入条件下,用与非门设计实现下列函数的组合电路:

(1)
$$F(A,B,C,D) = \sum (0,2,6,7,10,13,14,15)$$

(2)
$$F(A,B,C,D) = \sum (2,4,5,6,7,10) + \Phi(0,3,8,15)$$

12、设输入既有原变量又有反变量,用与非门设计实现下列函数的多输出电路。

(1)
$$F(A,B,C,D) = \sum (2,4,5,6,7,10,13,14,15)$$

(2)
$$F(A,B,C,D) = \sum (2,5,8,9,10,11,12,13,14,15)$$

13、设输入既有原变量又有反变量,用或非门设计实现下列函数的组合电路:

(1)
$$F(A,B,C,D) = \sum (0,1,2,4,6,10,14,15)$$

(2)
$$\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}) = \overline{\mathbf{A}+\mathbf{B}} + \overline{\mathbf{B}+\mathbf{C}} \overline{\mathbf{A}\mathbf{B}}$$

14、设输入只有原变量而无反变量,试用最少的三级与非门实现下列函数:

(1)
$$\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}) = \overline{\mathbf{A}}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}$$

(2)
$$F(A,B,C,D) = \sum (1,2,5,6,8,9,10)$$

15、设输入只有原变量没有反变量,试用或非门实现下列函数组合电路:

(1)
$$F(A,B,C,D) = (A+B+\overline{C})(A+\overline{B}) (A+B+C)(\overline{B}+\overline{C})$$

(2)
$$F(A,B,C,D) = \sum (0,1,5,7,10,11,12,13,14,15)$$

16、已知输入信号 A, B, C, D 的波形如下图所示,选择适当的集成逻辑门电路,设计产生输出 F 波形的组合电路(输入无反变量)。

17、用红、黄、绿三个指示灯表示三台设备的工作情况:绿灯亮表示全部正常;红灯 亮表示有一台不正常;黄灯亮表示有两台不正常;红、黄灯全亮表示三台都不正常。列出控制电路真值表,并选出合适的集成电路来实现。

18、用八选一数据选择器实现下列函数:

(1) $F(A,B,C,D) = \Sigma (0,4,5,8,12,13,14)$

(2) $F(A,B,C,D) = \Sigma (0,3,5,8,11,14) + \Sigma \Phi (1,6,12,13)$

- 19、用两片双四选一数据选择器和与非门实现循环码至 8421BCD 码转换。
- 20、设计二进制码/格雷码转换器。输入为二进制码 B3B2B1B0,输出为格雷码,EN 为使能端,EN=0 时执行二进制码→格雷码转换; EN=1 时输出为高阻。
- 21、设计一个以 10 为模的补码产生器。N 为 $0^{\sim}9$ 中的一个数符,C 为 N 的补码,N 和 C 均为 8421BCD 码,EN 为使能端。
- 22、设计一个血型配比指示器。输血时供血者和受血者的血型配对情况如图所示。要求供血者血型和受血者血型符合要求时绿灯亮;反之,红灯亮。

- 23、下图是一种两拍工作寄存器的逻辑图,即每次在输入数据之前必须先置"清 0"信号,然后接收控制信号有效,此时将数据存入寄存器。
- (1) 若不按两拍方式工作,即取消"清 0"信号,则当 D2D1D0=100→001→010 时,输出 Q2Q1Q0 将如何变化?
- (2) 为使电路正常工作, "清 **0**"信号与"接收控制"信号应如何配合? 画出这两种信号的正确时间关系。
- (3) 若采用单拍方式工作,提出寄存器的改进方案。

24、分析下图所示同步计数电路,作出状态转移表和状态图,并画出在时钟作用下各触发器输出的波形。

25、用 D 触发器构成按循环码 (000→001→011→111→101→100→000) 规律工作的六进制同步计数器。

26、分析下图所示同步时序逻辑电路,作出状态转移表和状态图,说明它是 Mealy 型电路还是 Moore 型电路以及电路的功能。

27、分析下图所示同步时序逻辑电路,作出状态转移表和状态图,说明这个电路能对何种序列进行检测?

28、作"101"序列信号检测器的状态表,凡收到输入序列 101 时,输出为 1; 并规定检测的 101 序列不重叠。

29、同步时序电路对串行二进制输入进行奇偶校验,每检测 5 位输入,输出一个结果: 当 5 位输入中 1 的数目为奇数时,在最后一位的时刻输出 1 。作出状态图和状态表。

30、某时序机状态图如下所示,用"计数器法"设计该电路。

31、用 EPROM 实现下列多输出函数, 画出阵列图。

F1=
$$\overline{A}BCD+A\overline{C}$$
 $\overline{D}+\overline{B}CD$
F2= $\overline{A}B+A\overline{B}+\overline{C}D+C\overline{D}$
F3= $(A+B+CD)(\overline{A}+B+\overline{C}+D)+\overline{A}$ \overline{B} \overline{C}

- 32、试用 EPROM 实现 8421 BCD 码至余三码的转换。
- 33、用 FPLA 实现下列多输出函数, 画出阵列图。
- 34、用 FPLA 实现下列多输出函数,画出阵列图。
- 35、用时序 FPLA 设计一个循环码十进制计数器。要求设计优化,即 FPLA 的面积尽可能小。
- 13),求出最简"与-或"表达式和最简"或-与"表达式。
- 37、用卡诺图化简逻辑函数: $\mathbf{F} = \mathbf{A} \mathbf{\overline{B}} + \mathbf{B} \mathbf{\overline{C}} + \mathbf{\overline{B}C} + \mathbf{\overline{A}B}$ (用代数法)。
- 38、证明: 如果 $\overline{AB}=0$,且 $A\overline{B}=0$ 则 A = B。
- 39、设计一个"001/010"序列检测器。该电路有一个输入 x 和一个输出 z, 当随机输入信号中出现"001"或者"010"时,输出 z 为 1,平时输出 z 为 0。

典型的输入、输出序列如下:

请给出该 Mealy 电路的原始状态图和原始状态表。

40、设计一个巴克码信号发生器,要求自动产生周期性的 1 1 1 0 0 1 0 的信号序列,要求 用 D 触发器和逻辑门来实现。(15 分)

1 1 1 0 0 1 0, 1 1 1 0 0 1 0, 1 1 1 0 0 1 0, 1 1 1 0 0 1 0

41、设计 1110 序列检测器的状态转换图,并求出最简状态转换表。

习题案例答案

一、选择题

、心汗枢
1. C
2. D
3. A
4. B
5. B
6. <i>A</i>
7. <i>C</i>
8. A
9. <i>C</i>
10. CD
11. AB
12. C
13. B
14. CD
15. ABCD
16. ABC
17. AB
18. CD
19. BCD
20. AC
21. AB
22. CD
23. D
24. ABCD
25. D

27. AC 28. A 29. ACD 30. C 31. D 32. BCD 33. ABD 34. CD 35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C		
28. A 29. ACD 30. C 31. D 32. BCD 33. ABD 34. CD 35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	26. AD	
29. ACD 30. C 31. D 32. BCD 33. ABD 34. CD 35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	27. AC	
30. C 31. D 32. BCD 33. ABD 34. CD 35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	28. A	
31. D 32. BCD 33. ABD 34. CD 35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	29. ACD	
32. BCD 33. ABD 34. CD 35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	30. C	
33. ABD 34. CD 35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	31. D	
34. CD 35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	32. BCD	
35. A 36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	33. ABD	
36. CD 37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	34. CD	
37. ABC 38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	35. A	
38. ABD 39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	36. CD	
39. C 40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD	37. ABC	
40. ACD 41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	38. ABD	
41. ACD 42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	39. C	
42. B 43. B 44. C 45. C 46. D 47.BD 48.AD 49.C	40. ACD	
43. B 44. C 45. C 46. D 47.BD 48.AD	41. ACD	
44. C 45. C 46. D 47.BD 48.AD 49.C	42. B	
45. C 46. D 47.BD 48.AD 49.C	43. B	
46. D 47.BD 48.AD 49.C	44. C	
47.BD 48.AD 49.C	45. C	
48.AD 49.C	46. D	
49.C	47.BD	
	48.AD	
50.C	49.C	
	50.C	

76. A
77. D
78. C
79. D
80. B
81. A
82. B
83. D
86. A
87. B
88. AB
89. A
91. C
92. AD
93. A
94.A
95.ABCD
96.ABCD
97. AD
98.ABCD
99. AC
100.BD

75. AB

二、填空题

- 1. 72.56
- 2. 111.001
- 3. 相同
- 4. 1
- $5. (\mathbf{A} + \mathbf{B}) (\overline{\mathbf{A}} + \overline{\mathbf{B}})$
- 6. 扇出系数
- 7. 输入信号
- 8. n
- 9. 3
- 10. 3
- 11. 30, 110000
- 12. 主从结构,边沿结构,维持一阻塞结构

13.
$$\overline{F} = (\overline{\overline{A} \odot \overline{D}}) + \overline{\overline{B \cdot \overline{C}}}$$

- 14. 状态表、状态图和次态表达式和输出函数。
- 15. N, 2N
- 16. 移位 数码
- 17. 组合逻辑电路 时序逻辑电路
- 18. 4
- 19. 同步 异步
- 20 2 8
- 21. 0 0

22.
$$Q=1$$
, $\overline{Q}=0$ $Q=0$, $\overline{Q}=1$ Q

- 23. RS = 0
- 24. 空翻 主从式 边沿
- 25. 布尔 与或非 与非 或非 与或非 同或 异或
- 26. 逻辑表达式 真值表 逻辑图
- 27. 交换律 分配律 结合律 反演定律
- 28. 代入规则 对偶规则 反演规则
- 29. $A\overline{B}$ (C+ \overline{D})
- 30. A+BC+0
- 31. (A+B) $(\overline{A}+C)$ (B+C) = (A+B) $(\overline{A}+C)$
- 32. 1
- 33. 0

34.
$$\overline{A} + \overline{B} \bullet \overline{(C+D)} \bullet (B+C)$$

- 35 . mi' 、 1
- 36. 偶

- 37. 4 位 BCD
- 38. log 2 N ,
- 39. 二进制译码器
- 40. (1, 1), Q'
- 41. Mealy , Moore,
- 42. 特征
- 43. 2 ⁿ
- 44. 7
- 45. 3
- 46. 一个循环
- 47. T
- 48. 15
- 49. 0, 1,, 2,, 15

50.
$$\overline{F} = A \cdot \overline{\overline{A + B} \cdot (\overline{A} + \overline{CD})}$$
; 对偶式 $F^* = \overline{A \cdot \overline{A + B} \cdot (A + CD)}$

- 51 RAM 中的信息既可读出又可写入,掉电后信息便消失;而 ROM 中的信息只能读出,不能写入,信息可永久保存
 - 52 定期刷新
 - 53. 0
 - 54. 63, 6
 - 55. 读写方便,使用灵活;断电后原存于 RAM 的信息丢失,易失性
 - 56. 2, 1, 8
 - 57. 有无记忆功能
 - 58. 与阵列可编程,或阵列不可编程
 - 59. 1, 2
 - 60. 高电平 低电平 高阻

61.
$$Q^{n+1} = Q \oplus T$$

- 62. 存储量 存取速度
- 63. 离散, 1, 0
- 64. 与,或,非,与非,与或,或非,与或非
- 65. 一次, 多次
- 66. 现场可编程门阵列
- 67 通用逻辑阵列 在系统编程

68.
$$\sum m$$
 (16, 14, 13, 12, 11, 7, 6, 3), $\sum M$ (10, 9, 8,

- 5, 4, 2, 1)
 - 69. \times , \times , \checkmark
 - 70. 输出,输入,无关
 - 71. 反馈回路,输出,输入
 - 72. 数据选择器,一路,多路,地址控制器
 - 73. 四

74
$$\overline{A}_{1}\overline{A}_{0}X_{0} + \overline{A}_{1}A_{0}X_{1} + A_{1}\overline{A}_{0}X_{2} + A_{1}A_{0}X_{3}$$

75. 真值表,特征方程,状态转换图

77. 0
$$Q^{n+1} = \overline{Q^n}$$

78. 1,

- 0,输入信号,时钟脉冲
- 79. T, D
- 80. 组合逻辑,存储电路,输出,输入,有关
- 81. 反馈回路,原来的输出,后来的输出
- 82. 同步时序电路, 异步时序电路, 同步时序电路, 触发器, 异步时序电路
- 83. 触发器
- 84. 同一个时钟信号,同时,不同,同时,有先有后
- 85. 输出方程,状态防城,控制方程
- 86. 状态转换表,状态转换图,控制方程
- 87. 两, 1, 8
- 88. 状态转换图,模
- 89. 二进制递减
- 90. 对输入脉冲进行计数,不同状态,能计算脉冲数目的最大值
- 91. 二进制,非二进制,同步计数器,异步计数器,加法计数器,减法计数器,可逆计数器
- 92. N
- 93. 3
- 94. 2n
- 95. 2, 2
- 96. 存储部件 处理部件 控制部件
- 97. 8, 12
- 98. 1024, 4, 8
- 99. 2048, 8
- 100. ROM, RAM, 字线扩展, 位线扩展

三、综合题。

1、解答:

(1)
$$F = \overline{AC + \overline{ABC} + \overline{BC}} + AB\overline{C} = \overline{C}$$

(2)
$$F=A\overline{B}CD+AB\overline{C}\overline{D}+A\overline{B}+A\overline{D}+A\overline{B}C$$

= $A\overline{B}+A\overline{D}$

2、解答:

(1) $F = A\overline{B} + \overline{A}C$

解: ①
$$F=\overline{\overline{AB}+\overline{AC}}=\overline{\overline{AB}}\ \overline{\overline{AC}}=(\overline{\overline{A}+B})(A+\overline{\overline{C}})=(\overline{\overline{A}+B})+(\overline{A+\overline{C}})$$
 然后,两次求反即可。

②先求对偶式的最简与非表达式:
$$F'=(A+\overline{B})(\overline{A}+C)=\overline{\overline{A}}\ \overline{\overline{B}}\ \overline{AC}$$
 再对 F' 求对偶式: $F=(\overline{\overline{A}+\overline{B}})+(\overline{A+C})$

③先求F的反函数:
$$\overline{F}=AB+\overline{A}\overline{C}$$
 再对 \overline{F} 三次求反得: $F=(\overline{\overline{A}+\overline{B}})+(\overline{A+C})$

(2)
$$F(A,B,C,D) = \sum m(0,1,2,4,6,10,14,15)$$

= $\overline{A+B+C} + \overline{A+B+C} + \overline{A+D} + \overline{C+D}$

3、解答:

$$F = \overline{AB} + \overline{B} = \overline{AB}$$

$$F = \overline{AB} \overline{BABC} \overline{CABC}$$

$$= \overline{AB} + \overline{AC} + \overline{BC} + \overline{BC}$$

$$= \overline{AB} + \overline{BC} + \overline{BC}$$

解答:

$$F = \overline{AD} \overline{AD} \overline{BD} \overline{BD} \overline{BC} \overline{CD} \overline{C}$$

经化简后为:

$$F = A\overline{D} + B\overline{D} + C$$

5、解答:

$$F_{1} = \overline{A + BS_{0} + \overline{B}S_{1}}$$

$$F_{2} = \overline{ABS_{2} + A\overline{B}S_{3}}$$

$$F = F_{1}F_{2} = \overline{A + BS_{0} + \overline{B}S_{1}}$$

6、解答:

$$F_1 = A\overline{B}C + AB\overline{C} + \overline{A}BC + \overline{B}\overline{C}$$

 $= \overline{A}\overline{B}C + \overline{A}B\overline{C} + ABC$
 $= A(B \oplus C) + ABC$
 $\Rightarrow B \neq C$ 时, F1=A;
 $\Rightarrow B = C = 1$ 时, F1=A;
 $\Rightarrow B = C = 0$ 时, F1=0。

$$F_2 = \overline{A} \overline{B} + \overline{B} \overline{C} + \overline{A} \overline{C}$$
$$= AB + BC + AC$$

当A、B、C三个变量中有两个及两个以上同时为"1"时,F2=1。

7、解答:

$$F = \overline{\overline{A_0}\overline{A_1}\overline{A_2}\overline{A_3}} + \overline{\overline{A_4}\overline{A_5}\overline{A_6}\overline{A_7}} + \overline{\overline{A_8}\overline{A_9}\overline{A_{10}}\overline{A_{11}}} + \overline{\overline{A_{12}}\overline{A_{13}}\overline{A_{14}}\overline{A_{15}}}$$
$$= \overline{A_0}\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4}\overline{A_5}\overline{A_6}\overline{A_7}\overline{A_8}\overline{A_9}\overline{A_{10}}\overline{A_{11}}\overline{A_{12}}\overline{A_{13}}\overline{A_{14}}\overline{A_{15}}$$

只有当变量 A0~A15 全为 0 时,F=1; 否则,F=0。因此,电路的功能是判断变量是否全部为逻辑"0"。

8、解答:

这是一个四选一的数据选择器。

$$F = \overline{A}_1 \overline{A}_0 X_0 + \overline{A}_1 A_0 X_1 + A_1 \overline{A}_0 X_2 + A_1 A_0 X_3$$

9、解答:这是一个*余三码* 至 8421BCD 码转换的电路。

ABCD	WXYZ
0 0 1 1	0 0 0 0
0 1 0 0	0001
$0\ 1\ 0\ 1$	0 0 1 0
$0\ 1\ 1\ 0$	0 0 1 1
$0\ 1\ 1\ 1$	0100
1 0 0 0	0 1 0 1
$1 \ 0 \ 0 \ 1$	0 1 1 0
1 0 1 0	0 1 1 1
1 0 1 1	1000
1 1 0 0	1001

10、解答:

$$\begin{split} \mathbf{Y}_3 &= \mathbf{X}_3 \\ \mathbf{Y}_2 &= \mathbf{X}_2 + \mathbf{X}_3 \\ \mathbf{Y}_1 &= \mathbf{X}_1 + (\mathbf{M}\mathbf{X}_2 + \overline{\mathbf{M}}\mathbf{Y}_2) \\ \mathbf{Y}_0 &= \mathbf{X}_0 + (\mathbf{M}\mathbf{X}_1 + \overline{\mathbf{M}}\mathbf{Y}_1) \end{split}$$

当 M= 1 时:

$$Y_3 = X_3$$

 $Y_2 = X_2 + X_3$
 $Y_1 = X_1 + X_2$
 $Y_0 = X_0 + X_1$

当 M= 0 时:

$$Y_3 = X_3$$

 $Y_2 = X_2 + X_3$
 $Y_1 = X_1 + X_2 + X_3$
 $Y_0 = X_0 + X_1 + X_2 + X_3$

列真值表如下:

M=1的真值表

X_3	X_2	X_1	X_0	Y ₃	Y ₂	Y_1	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0 0 0	1	0	0	0	1	1	0
0	1	0	1	0	1	1 0	1
0	1	1	0	0	1		1
0 1	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
ī	0	0	1	1	1	0	1
$\frac{1}{1}$	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
ī	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
_1	1	1	1	1	0	0	0

M=0的真值表

			_		
X ₃ X ₂ X	1 X ₀	Y_3	Y2	Y_1	Y ₀
0 0 0	0	0	0	0	0
0 0 0	1	0	0	0	1
0 0 1	1	0	0	1	0
0 0 1	. 0	0	0	1	1
0 1 1	. 0	0	1	0	0
0 1 1	. 1	0	1	0	1
0 1 0	1	0	1	1	0
$\begin{smallmatrix}0&1&0\\1&1&0\end{smallmatrix}$	0	0	1 0	1	1
		1		0	0
$\begin{array}{ccccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	1	$_{1}^{1}$	0	0	1
1 1 1	1	1	0	1	0
	. 0		0	1	1
1 0 1	. 0	$\frac{1}{1}$	1	0	0
$1 \ 0 \ 1$. 1	1	1	0	1
		1	1	1	0
1 0 0	0	1	1	1	1_

由真值表可知: M=1 时,完成 8421 BCD 码到格雷码的转换; M=0 时,完成格雷码到 8421 BCD 码的转换。

11、解答:

(1)
$$F(A,B,C,D) = \sum (0,2,6,7,10,13,14,15) = ABD ABD BC CD$$

(2)
$$F(A,B,C,D) = \sum (2,4,5,6,7,10) + \Phi(0,3,8,15) = \overline{ABBD}$$

12、解答:

(1)
$$F(A,B,C,D) = \sum (2,4,5,6,7,10,13,14,15) = AB + BC + BCD + BCD$$

(2)
$$F(A,B,C,D) = \sum (2,5,8,9,10,11,12,13,14,15) = A + \overline{BCD} + \overline{BCD}$$

13、解答: (1)

$$\overline{\mathbf{F}} = \mathbf{A}\overline{\mathbf{C}} + \overline{\mathbf{A}}\mathbf{B}\mathbf{D} + \overline{\mathbf{B}}\mathbf{C}\mathbf{D}$$

$$\mathbf{F} = \overline{\mathbf{AC}} \ \overline{\overline{\mathbf{ABD}}} \ \overline{\overline{\mathbf{BCD}}} = (\overline{\mathbf{A}} + \mathbf{C})(\mathbf{A} + \overline{\mathbf{B}} + \overline{\mathbf{C}})(\mathbf{B} + \overline{\mathbf{C}} + \overline{\mathbf{D}})$$

两次求反后得:

$$\mathbf{F} = (\overline{\mathbf{A} + \mathbf{C}}) + (\overline{\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}}) + (\overline{\mathbf{B} + \overline{\mathbf{C}} + \overline{\mathbf{D}}})$$

(2)

两次求反后得:

$$\mathbf{F} = \mathbf{A} + \mathbf{B} + \mathbf{B} + \mathbf{C} + \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

14、解答: (1)

$$\mathbf{F} = \overline{\mathbf{A}} \overline{\mathbf{B}} \ \overline{\mathbf{A}} \overline{\overline{\mathbf{C}}} \ \overline{\mathbf{A}} \overline{\overline{\mathbf{B}}}$$

(2)

$$F = \overline{ABC} \overline{BCD} \overline{ACD} \overline{BCD}$$

或
$$\mathbf{F} = \overline{\mathbf{ABC}} \overline{\mathbf{BCD}} \overline{\mathbf{ACD}} \overline{\mathbf{ABD}}$$

15、解答: (1)

先由 \mathbf{F} → \mathbf{F} ', 在由 \mathbf{F} '→ \mathbf{F} . 得:

$$F = \overline{A + B + C}$$

(2)

16、解答: 真值表:

ABCI) F
0 0 0 0	0
0 0 0 1	l 1
0 0 1 0) 0
0 0 1 1	l 1
0100) 1
0 1 0 1	
0 1 1 0	
0 1 1 1	
1000	
1 0 0 1	
1010	
1011	
1100	
1 1 0 1	
1110	
1111	L 0

卡诺图:

表达式:

$\mathbf{F} = \mathbf{A}\overline{\mathbf{B}} + \overline{\mathbf{B}}\mathbf{D} + \mathbf{B}\overline{\mathbf{C}}\overline{\mathbf{D}} + \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}(\mathbf{B}\overline{\mathbf{A}}\overline{\mathbf{C}}\mathbf{D})$

17、解答:设:三台设备分别为 A、B、C: "1"表示有故障,"0"表示无故障;红、黄、绿灯分别为 Y1、Y2、Y3:"1"表示灯亮;"0"表示灯灭。据题意列出真值表如下:

A	В	С	$Y_1 Y_2 Y_3$
0	0	0	0 0 1
0	0	1	1 0 0
0	1	0	1 0 0
0	1	1	0 1 0
1	0	0	1 0 0
1	0	1	0 1 0
1	1	0	0 1 0
_1	1	1	1 1 0

表达式:

$$Y_1 = A \oplus B \oplus C$$

$$Y_2 = BC + A(B \oplus C)$$

$$Y_3 = \overline{A} \overline{B} \overline{C} = \overline{A+B+C}$$

18、解答: (1) 选 BCD 为地址,则 D0=D4=D5=1,D6=A, D1=D2=D3=D7=0 如图所示。

(2) 选 BCD 为地址,则 D0=D3=D5=D6=1, D1=D2=D4=D7=0 如图所示。

19、解答: 画函数卡诺图;

AI				
CD	00	01	11	10
00	0000	1001	1000	0111
01	0001	Φ	Φ	Φ
11	0010	Φ	Φ	Φ
10	0011	0100	0101	0110

写逻辑函数表达式:

$$W = B\overline{C}\overline{D}$$

$$\mathbf{X} = \mathbf{A}\overline{\mathbf{B}}\ \overline{\mathbf{D}} + \mathbf{B}\mathbf{C}\overline{\mathbf{D}}$$

$$Y = \overline{A} \overline{B}C + A\overline{B} \overline{D}$$

$$\mathbf{Z} = \overline{\mathbf{AB}}(\overline{\mathbf{CD}} + \mathbf{C}\overline{\mathbf{D}}) + \overline{\mathbf{C}} \ \overline{\mathbf{D}}(\overline{\mathbf{AB}} + \mathbf{A}\overline{\mathbf{B}})$$
$$+ \mathbf{ABC}\overline{\mathbf{D}}$$

画逻辑图:

20、解答: 真值表:

$\overline{\mathbf{p}}$	ъ	ъ	D	-	-	~	-
B_3	$\mathbf{B_2}$	$\mathbf{B_1}$	$\mathbf{B_0}$	G_3	G_2	G_1	G_0
0 0 0 0 0 0 0 0 1 1 1	0	0	0	0	0	0	0
0	0	0	1	0		0 1	1
0	0	1	0 1	0	0	1	1
0	0	1	1	0	0 0 0 1	1	0
0	1	0	0 1 0	00000001111	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1 0	0	1	0	0
1	0	0		1	1	0	0
1	0	0	1 0 1	1	1	0 1	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

卡诺图:

$\backslash B_3$	32			
B ₁ B ₀	00	01	11	10
00	0000	0110	1010	1100
01	0001	0111	1011	1101
11	0010	0100	1000	1110
10	0011	0101	1001	1111

表达式:

$$G_3 = B_3$$

$$G_2 = B_2 + B_3$$

$$G_1 = B_1 + B_2$$

$$G_0 = B_0 + B_1$$

电路图:

21、解答: 真值表:

N_3	N ₂	N ₁	N ₀	C_3	C ₂	C_1	C ₀
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	1
0	0	1	0	1	0	0	0
0	0	1	1	0	1	1	1
0	1	0	0	0	1	1	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	0	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	1	0
_1	0	0	1	0	0	0	1

卡诺图:

N_3N_2								
N_1N_0	00	01	11	10				
00	0000	0110	Φ	0010				
01	1001	0101	Φ	0001				
11	0111	0011	Φ	Φ				
10	1000	0100	Φ	Φ				

表达式:

$$\begin{split} \mathbf{C}_3 &= \overline{\mathbf{N}}_3 \overline{\mathbf{N}}_2 \overline{\mathbf{N}}_1 \mathbf{N}_0 + \overline{\mathbf{N}}_2 \mathbf{N}_1 \overline{\mathbf{N}}_0 \\ \mathbf{C}_2 &= \mathbf{N}_3 \overline{\mathbf{N}}_1 + \overline{\mathbf{N}}_2 \mathbf{N}_1 \mathbf{N}_0 + \overline{\mathbf{N}}_3 \mathbf{N}_1 \overline{\mathbf{N}}_0 \\ \mathbf{C}_1 &= \mathbf{N}_1 \mathbf{N}_0 + \mathbf{N}_2 \overline{\mathbf{N}}_1 \overline{\mathbf{N}}_0 + \mathbf{N}_3 \overline{\mathbf{N}}_1 \overline{\mathbf{N}}_0 \\ \mathbf{C}_0 &= \mathbf{N}_1 \end{split}$$

22、解答:

真值表:

X	Y	M N	F ₁ (绿) F ₂ (红)
0	0	0 0	1 0
0	0	0 1	0 1
0	0	10	1 0
0	0	1 1	0 1
0	1	0 0	0 1
0	1	0 1 1 0	1 0
0	1		1 0
0	1	1 1	0 1
1	0	0 0	0 1
1	0	0 1 1 0	0 1
1	0	1 0	1 0
1	0	1 1	0 1
1	1	0 0	1 0
1	1	0 1 1 0	1 0
1	1	1 0	
1	1	1 1	1 0

表达式:

$$\mathbf{F}_1 = \sum (0,2,5,6,10,12,13,14,15)$$

 $\mathbf{F}_2 = \overline{\mathbf{F}}_1$

23、解答: (1) 设触发器初始状态为 0。当 **D2D1D0=100→001→010** 时,输出 **Q2Q1Q0** 将为 **100→101→111**。

(2)

(3) 若采用 RS 触发器。有以下两种方案:

若采用 D 触发器作为寄存器,只要将数据接触发器的 D 输入端,接收控制信号接时钟端,

此时无需事先清 0。

24、解答: 先写出激励方程, 然后求得状态方程:

$$Q_1^{n+1} = \overline{Q_2}^n \overline{Q_1}^n + \overline{Q_3}^n Q_1^n$$

$$Q_2^{n+1} = Q_1^n$$

$$Q_3^{n+1} = Q_2^n$$

Q ₁ ⁿ	Q_2^n	Q_3^n	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}
0	0	0	1	0	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	1

25、解答: 先写出激励方程, 然后求得状态方程:

$$\mathbf{D_1} = \mathbf{Q_1}^{\mathbf{n+1}} = \overline{\mathbf{Q}_2}^{\mathbf{n}} \overline{\mathbf{Q}_3}^{\mathbf{n}}$$

$$D_2 = Q_2^{n+1} = Q_1^{n}$$

$$D_3 = Q_3^{n+1} = Q_2^n$$

			_		
Q_1^n	Q ₂ n	Q_3^n	Q_1^{n+1}	Q_2^{n+1}	Q ₃ n+1
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	1	1
1	1	1	0	1	1

26、解答: 电路的状态方程和输出方程为:

$$Q_1^{n+1} = \overline{Q_1}^n$$

$$Q_2^{n+1} = (X + Q_1^n)\overline{Q_2}^n + \overline{(X + Q_1^n)}Q_2^n$$

$$Z = \overline{Q_1^nQ_2^n}$$

状态表和状态转移图如下所示:

Q ₁ ⁿ Q ₂ ⁿ	$Q_1^{n+1} Q_2^{n+1} / Z$		
V1 V2	X =0	X =1	
0 0	10 / 1	11 / 1	
0 1	11 / 1	10 / 1	
1 0	01 / 1	00 / 1	
1 1	00 / 0	01 / 0	

该电路是 Moore 型电路。当 X=0 时,电路为模 4 加法计数器,当 X=1 时,电路为模 4 减法计数器。

27、解答: 电路的状态方程和输出方程为:

$$Q_1^{n+1} = X \overline{Q_1}^n + X Q_1^n = X$$

$$Q_2^{n+1} = XQ_1^n \overline{Q_2}^n + XQ_2^n$$

$$Z = \overline{X}Q_2^n$$

状态表和状态转移图如下:

0.0.0.0	$Q_1^{n+1} Q_2^{n+1} / Z$		
$Q_1^n Q_2^n$	X =0	X =1	
0 0	00 / 0	01 / 0	
0 1	01/1	10 / 0	
1 0	11 / 0	10 / 0	
1 1	11 / 1	00 / 0	

凡在输入序列中出现两个或两个以上"1"之后再出现一个"0",输出就为"1"; 否则,输出为"0"。

28、解答:根据题意分析,输入为二进制序列 x,输出为 Z;且电路应具有 4 个状态: S0、S1、S2、S3(其中 S0 为初始状态)。列状态表和状态图如下:

原始状态表

PS	NS / Z		
	X =0	X =1	
So	S ₀ / 0	S ₁ / 0	
S_1	$S_2/0$	S ₁ / 0	
S_2	S ₀ / O	$S_3/1$	
S_3	S ₀ / O	S ₁ / 0	

PS	NS / Z		
	X =0	X =1	
So	S ₀ / 0	S ₁ / 0	
S_1	$S_2/0$	$S_{1}/0$	
S ₂	S ₀ / O	$S_0/1$	

29、解答:该题目要求对有限长度 的串行序列进行的奇偶校验。一方面对于每接收到一位码后都要断定一下到目前为止接收的数据中 1 的数目是奇数还是偶数;另一方面还要记忆到目前为止已收到了几位数据。为此,电路的状态表和状态图如下:状态表:

s x	0	1
A	B/0	C/0
В	D/0	E/0
C	E/0	D/0
D	F/0	G/0
E	G/0	F/0
F	H/0	I/0
G	I/0	H/0
Н	A/0	A/1
I	A/1	A/0

状态图:

30、解答: 若编码为: S0=00 S1=01 S2=11 S3=10 则:

0.0.0.0	$Q_1^{n+1} Q_2^{n+1}$		
$Q_1^n Q_2^n$	k =0	k=1	
0 0	00	01	
0 1	01	11	
1 1	10	11	
1 0	10	00	

次态方程为:

 $Q_1^{n+1} = \overline{\mathbf{k}} Q_1^n + \mathbf{k} Q_2^n$ $Q_2^{n+1} = \overline{\mathbf{k}} \overline{Q_1}^n + \overline{\mathbf{k}} Q_2^n + \overline{Q_1}^n Q_2^n$

若编码为: S0=00

S1=01

S2=10

S3=11

则:

0.0.0.0	$Q_1^{n+1} Q_2^{n+1}$		
Q ₁ ⁿ Q ₂ ⁿ	k =0	k=1	
0 0	00	01	
0 1	01	10	
1 0	11	10	
1 1	11	00	

次态方程为:

$$Q_1^{n+1} = \overline{\mathbf{k}} Q_1^n + \mathbf{k} (Q_2^n + Q_1^n)$$

$$Q_2^{n+1} = \overline{\mathbf{k}} (Q_1^n + Q_2^n) + \overline{Q_1^n} \overline{Q_2^n} \mathbf{k}$$

31、解答:

用EPROM实现逻辑函数时,一般的步骤为:

- (1) 确定输入变量和输出端的个数;
- (2) 将函数化为最小项之和的形式;
- (3) 确定**EPROM**的容量;
- (4) 确定各存储单元的内容;
- (5) 画出相应的点阵图。

由给定条件可知,输入变量为A、B、C、D,输出为F1、F2、F3。

利用卡诺图将函数写成最小项之和的形式,为:

$$F1=\Sigma (3,7,8,11,12)$$

 $F2=\Sigma (1,2,4,5,6,7,8,9,10,11,13,14)$

 $F3=\Sigma$ (0,1,3,4,5,6,7,8,9,11,12,13,14,15)

矩阵的容量为: 8×16+3×16=176

EPROM的与矩阵且为全译码阵列,或矩阵可编码。将A、B、C、D作为地址输入,F1、F2、F3作为输出,画出点阵图如下:

逻辑表达式如下:

$$F1 = \Sigma (3,7,8,11,12)$$

$$F2 = \Sigma (1,2,4,5,6,7,8,9,10,11,13,14)$$

$$F3 = \Sigma (0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15)$$

32、解答:

列真值表,求得用最小项表示的逻辑函数表达式如下:

$$X = \Sigma (5,6,7,8,9)$$

$$Y = \Sigma (1,2,3,4,9)$$

$$Z = (0,3,4,7,8)$$

$$W = \Sigma (0,2,4,6,8)$$

真值表如下:

_							
A	В	С	D	X	Y	Z	w
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
_1	0	0	1	1	1	0	0

点阵图如下:

33、解答: 化简以上逻辑函数为:

 $F1=A\overline{C}\overline{D}+\overline{A}CD+\overline{B}CD$

 $F2=\overline{A}B+A\overline{B}+\overline{C}D+C\overline{D}$

 $F3=B+\overline{C}+D$

点阵图如下:

34、解答: 点阵图:

35、解答: 时序 FPLA 采用 D 触发器。状态转换表如下:

	PS			NS			Co	
Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	Co
0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	1	0
0	0	1	1	0	0	1	0	0
0	0	1	0	0	1	1	0	0
0	1	1	0	0	1	1	1	0
0	1	1	1	0	1	0	1	0
0	1	0	1	0	1	0	0	0
0	1	0	0	1	1	0	0	0
1	1	0	0	1	1	0	1	0
1	1	0	1	0	0	0	0	1

逻辑表达式如下:

$$\mathbf{D_3} = \mathbf{Q_2} \overline{\mathbf{Q}_1} \overline{\mathbf{Q}_0}$$

$$\mathbf{D_2} = \overline{\mathbf{Q}}_3 \mathbf{Q}_2 + \mathbf{Q}_2 \overline{\mathbf{Q}}_0 + \mathbf{Q}_1 \overline{\mathbf{Q}}_0$$

$$\mathbf{D_1} = \overline{\mathbf{Q}}_2 \mathbf{Q_0} + \mathbf{Q_1} \overline{\mathbf{Q}}_0$$

$$\mathbf{D_2} = \mathbf{Q_3} \overline{\mathbf{Q}_0} + \overline{\mathbf{Q}_2} \overline{\mathbf{Q}_1} + \mathbf{Q_2} \mathbf{Q_1}$$

$$C_0 = Q_3Q_0$$

点阵图如下:

36、解答:

最简"与-或"表达式为: $F = A\overline{C} + \overline{B}C$

最简"或-与"表达式为: F=(A+C)·(B+C)

37、解答:

$$F = A\overline{B} + B\overline{C} + \overline{BC} + \overline{AB} \pmod{\overline{AC}}$$

$$= A\overline{B} + B\overline{C} + \overline{A}C$$

$=\overline{ABBCAC}$

38、证明:

表 1 真值表					
АВ	ĀB	$A\overline{B}$			
0 0	0	0			
0 1	1	0			
1 0	0	1			
1 1	0	0			

由表可看出,对应使 $\overline{AB}=0$,且 $\overline{AB}=0$ 的 AB 组合只有两种 00 和 11,即 A 和 B 的取值相等。由此可证得:A=B

39、解答:

(1) 原始状态图

(2) 原始状态表

现态	次态/输出 Z		
	X = 0	X=1	
A	B/0	A/0	
В	C/0	D/0	
С	C/0	A/1	
D	A/1	A/0	

40、解答:

(1) 状态转移表

现态				次态			
$Q_4^{\ n}$	Q_3^{n}	$Q_2^{\ n}$	Q_{l}^{n}	Q_4^{n+1}	Q_3^{n+1}	Q_2^{n+1}	$Q_{\rm l}^{n+1}$
1	1	1	0	0	1	0	1
0	1	0	1	1	1	0	0
1	1	0	0	1	0	1	1
1	0	1	1	1	0	0	1
1	0	0	1	0	1	1	1
0	1	1	1	0	0	1	0
0	0	1	0	1	1	1	0

(2) 次态方程:

$$Q_4^{n+1} = \Sigma m (2, 5, 11, 12)$$

$$Q_3^{n+1} = \Sigma m (2, 5, 9, 14)$$

$$Q_2^{n+1} = \Sigma m (2, 7, 9, 12)$$

$$Q_1^{n+1} = \Sigma m (9, 11, 12, 14)$$

41、解答: 1、画出原始状态图。输入端 X: 输入一串行随机信号

输出端 Z: 当 X 出现 1110 序列时, Z=1, 否则, Z=0。

由此可画出原始状态图如图 8 所示:

S _{ta} X	0	Ì		
A	A/0	B/0		
B	A/0	C/0		
c	A/0	D/0		
D	E/1	D/0		
E,	A/0	B/0		
A. H				

S_{x+1}/Z (b) 原始状态表

图8

2、对原始状态图进行简化得最简状态表

由原始状态表可看出状态 A 和 E 在相同的输入下,其输出和次态完全相同,因而状态 A 和状态 E 是等价态,可合并为同一个状态。而其它状态都不是等价态,因而不能合并。由此得到简化后的最简状态图和最简状态表。

Sa	, jo	(4)
Â	A/0	B/0
B	A/0	C/0
Ç	A/0	D/0
Ď	A/1	D/0

S_{n+1}/Z (h) 简化状态事

图9