

Instituto Federal de Brasília

Campus Taguatinga

Superior em Computação

Henrique Tavares Aguiar

João Vitor Souza Rezende

Polinômio de Taylor e Raízes por Métodos Iterativos (Método do Ponto Fixo, de Newton e da Bissecção)

Henrique Tavares Aguiar

João Vitor Souza Rezende

Polinômio de Taylor e Raízes por Métodos Iterativos

(Método do Ponto Fixo, de Newton e da Bissecção)

Trabalho apresentado à disciplina de Cálculo Numérico, do curso de Ciência da Computação, referente à parte da nota do primeiro módulo de avaliações.

Professor: Dhiego Loiola de Araújo

Taguatinga

2019

1 POLINÔMIO DE TAYLOR

1.1 Definição

Seja f uma função de classe C^{n+1} em um intervalo contendo a como ponto interior. Então, o polinômio de Taylor gerado por f em x = a é:

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

1.2 Analisando o Polinômio de Taylor com uma função

Considerando a função f abaixo a partir do ponto a = 0.

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

Utilizando o intervalo [0, 4], com 11 divisões igualmente espaçadas obtém-se o vetor x = [0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0], para análise de comportamento do polinômio.

1.2.1 Os Polinômios de Taylor e a f(x):

$$P_0(x) = 1.2$$

$$P_1(x) = -0.25x + 1.2$$

$$P_2(x) = -0.5x^2 - 0.25x + 1.2$$

$$P_3(x) = -0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

$$P_4(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

Figura 1 - Comparação entre o P_i e a f no intervalo $[0,\,4]$

Х	P0(x)	P1(x)	P2(x)	P3(x)	P4(x)	f(x)
0	1.2	1.2	1.2	1.2	1.2	1.2
0.4	1.2	1.1	1.02	1.0104	1.00784	1.00784
0.8	1.2	1	0.68	0.6032	0.56224	0.56224
1.2	1.2	0.9	0.18	-0.0792	-0.28656	-0.28656
1.6	1.2	0.8	-0.48	-1.0944	-1.74976	-1.74976
2	1.2	0.7	-1.3	-2.5	-4.1	-4.1
2.4	1.2	0.6	-2.28	-4.3536	-7.67136	-7.67136
2.8	1.2	0.5	-3.42	-6.7128	-12.85936	-12.85936
3.2	1.2	0.4	-4.72	-9.6352	-20.12096	-20.12096
3.6	1.2	0.3	-6.18	-13.1784	-29.97456	-29.97456
4	1.2	0.2	-7.8	-17.4	-43	-43

Tabela 1 - Comportamento de x em cada polinômio P_i

(Pontos em negrito onde $|P_i(x) - f(x)| < 10^{-3}$)

2 Método da Bissecção

Vamos utilizar esse método para determinar, com maior exatidão, o ponto em que a função f(x) se distancia de seu Polinômio de Taylor $P_n(x)$ de grau n por: 10^{-3} .

Para cada um dos polinômios anteriores, determinaremos esse ponto usando o método da bissecção se existir um intervalo $[x_{i-1}, x_i]$, onde x_i é o ponto onde $|P_n(x) - f(x)| < 10^{-3}$ e x_{i-1} é o ponto anterior, a partir da função:

$$h_i(x) = P_i(x) - f(x) - 10^{-3}$$

Encontrando o ponto x_b com precisão de 10^{-4} , este ponto deve ser mais preciso que o ponto x_i .

	Diferença entre os Polinomios de Taylor e a funcao original									
i	Х	P0(x) - f(x)	P1(x) - f(x)	P2(x) - f(x)	P3(x) - f(x)	P4(x) - f(x)				
0	0	0.0	0.0	0.0	0.0	0.0				
1	0.4	0.19216	0.09216	0.01216	0.00256	0.0				
2	0.8	0.63776	0.43776	0.11776	0.04096	1.11E-16				
3	1.2	1.48656	1.18656	0.46656	0.20736	-1.11E-16				
4	1.6	2.94976	2.54976	1.26976	0.65536	-2.22E-16				
5	2	5.3	4.8	2.8	1.6	0.0				
6	2.4	8.87136	8.27136	5.39136	3.31776	-2.66E-15				
7	2.8	14.05936	13.35936	9.43936	6.14656	1.78E-15				
8	3.2	21.32096	20.52096	15.40096	10.48576	3.55E-15				
9	3.6	31.17456	30.27456	23.79456	16.79616	-3.55E-15				
10	4	44.2	43.2	35.2	25.6	0.0				

Tabela 2 – pontos em destaque onde $|P_i(x) - f(x)| > 10^{-3}$

Obs: Não há ponto algum em $P_4(x)$, tal que $|P_4(x) - f(x)| > 10^{-3}$. Logo não é preciso usar do método da bissecção neste polinômio.

1) $P_0(x) = 1.2$

i	х0	xk	xb	h(xb)	P0(xb)	f(xb)
1	0	0.4	0.2	0.07036	1.2	1.12864
2	0	0.2	0.1	0.02916	1.2	1.16984
3	0	0.1	0.05	0.012769375	1.2	1.186230625
4	0	0.05	0.025	0.005564883	1.2	1.193435117
5	0	0.025	0.0125	0.00220342	1.2	1.19679658
6	0	0.0125	0.00625	0.000582068	1.2	1.198417932
7	0	0.00625	0.003125	-0.000213863	1.2	1.199213863
8	0.003125	0.00625	0.0046875	0.000182877	1.2	1.198817123
9	0.003125	0.0046875	0.00390625	-1.57991E-05	1.2	1.199015799

Tabela 3 – Encontrando o xb tal que $h_0(xb) < 10^{-4}$

Figura 2 – xb = 0.00390625, $P_0(xb) = 1.2$, f(xb) = 1.199015799

i	х0	xk	хb	h(xb)	P1(xb)	f(xb)
1	0	0.4	0.2	0.02036	1.15	1.12864
2	0	0.2	0.1	0.00416	1.175	1.16984
3	0	0.1	0.05	0.000269375	1.1875	1.186230625
4	0	0.05	0.025	-0.000685117	1.19375	1.193435117
5	0.025	0.05	0.0375	-0.000288767	1.190625	1.189913767
6	0.0375	0.05	0.04375	-3.00414E-05	1.1890625	1.188092541

Tabela 4 - Encontrando o xb tal que $h_1(xb) < 10^{-4}$

Figura 3 – xb = 0.04375, $P_1(xb) = 1.1890625$, f(xb) = 1.188092541

3)
$$P_2(x) = -0.5x^2 - 0.25x + 1.2$$

i	х0	xk	xb	h(xb)	P2(xb)	f(xb)
1	0	0.4	0.2	0.00036	1.13	1.12864
2	0	0.2	0.1	-0.00084	1.17	1.16984
3	0.1	0.2	0.15	-0.000443125	1.15125	1.150693125
4	0.15	0.2	0.175	-0.000102305	1.1409375	1.140039805
5	0.175	0.2	0.1875	0.000112366	1.135546875	1.134434509
6	0.175	0.1875	0.18125	1.07437E-06	1.138261719	1.137260644

Tabela 5 - Encontrando o xb tal que $h_2(xb) < 10^{-4}$

Figura 4 - xb = 0.18125, $P_2(xb) = 1.138261719$, f(xb) = 1.13726044

4)
$$P_3(x) = -0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

i	х0	xk	xb	h(xb)	P3(xb)	f(xb)
1	0	0.4	0.2	-0.00084	1.1288	1.12864
2	0.2	0.4	0.3	-0.00019	1.07595	1.07514
3	0.3	0.4	0.35	0.000500625	1.04481875	1.043318125
4	0.3	0.35	0.325	0.000115664	1.060788281	1.059672617
5	0.3	0.325	0.3125	-4.63257E-05	1.068469238	1.067515564

Tabela 6 - Encontrando o xb tal que $h_3(xb) < 10^{-4}$

Figura 5 – xb = 0.3125, $P_3(xb) = 1.068469238$, f(xb) = 1.067515564

3 Comparação entre métodos

Iremos determinar para cada função a seguir uma aproximação da primeira raiz não negativa, com uma precisão de pelo menos 10^{-6} , utilizando os métodos de Newton, do Ponto Fixo e da Bissecção.

1)
$$f_1(x) = \cos(x) + 1$$

Figura 6 - $f_1(x)$

Obs: Como a função não apresenta valores negativos, não é possível usar o método da bissecção.

a) Ponto Fixo:

Figura 7 - $g_1(x_{i+1}) = x_i + 14 * f_1(x_i)$, raiz = 3.14039, ponto inicial = 3 (função e ponto inicial encontrados experimentalmente)

b) Newton:

Figura 8 - $g_1(x_{i+1}) = x_i - \frac{f_1(x_i)}{f_1'(x_i)}$, raiz = 3.140179, ponto inicial = 1

2)
$$f_2(x) = 10 + (x - 2)^2 - 10\cos(2\pi x)$$

Figura 9 - $f_2(x)$

Obs: Como a função não apresenta valores negativos, não é possível usar o método da bissecção.

a) Ponto fixo:

Figura 10 - $g_2(x_{i+1}) = x_i - \frac{f_2(x_i)}{20}$, raiz = 2.000070983, ponto inicial = 2.1

(função e ponto inicial encontrados experimentalmente)

b) Newton:

Figura 11 - $g_2(x_{i+1}) = x_i - \frac{f_2(x_i)}{f_2'(x_i)}$, raiz = 2.0000396, ponto inicial = 1.6

3)
$$f_3(x) = x^3 - 3x^2 * 2^{-x} + 3x * 4^{-x} - 8^{-x}$$

Figura 12 - $f_3(x)$

a) Bissecção:

Figura 13 - Intervalo inicial [0, 3], raiz = 0.6453125

b) Ponto Fixo:

Figura 14 - $g_3(x_{i+1}) = x_i - 5 * f_3(x_i)$, raiz = 0.64811, ponto inicial = 1 (função e ponto inicial encontrados experimentalmente)

c) Newton:

Figura 15 - $g_3(x_{i+1}) = x_i - \frac{f_3(x_i)}{f_3'(x_i)}$, raiz = 0.646946, ponto inicial = 4

4) $f_4(x) = \sin(x) * \sin(x^2/\pi)$

Figura 16 - $f_4(x)$

a) Bissecção:

Figura 17 – Intervalo inicial [-1, 2], raiz = 0.0078125

b) Ponto Fixo:

Figura 18 - $g_4(x_{i+1}) = x_i - \frac{4*f_4(x_i)}{x_i}$, raiz = 0.014525768, ponto inicial = 2

(função e ponto inicial encontrados experimentalmente)

c) Newton:

Figura 19 - $g_4(x_{i+1}) = x_i - \frac{f_4(x_i)}{f_4'(x_i)}$, raiz = 0.0101819, ponto inicial = 1

5) $f_5(x) = (x - 1.44)^5$

Figura 20 - $f_5(x)$

a) Bissecção:

Figura 21 – Intervalo inicial = [0, 10], raiz = 1.40625

b) Ponto Fixo:

Figura 22 - $g_5(x_{i+1}) = x_i - \frac{50*f_5(x_i)}{x_i^2}$, raiz = 1.376911, ponto inicial = 2

(função e ponto inicial encontrados experimentalmente)

c) Newton:

Figura 23 - $g_5(x_{i+1}) = x_i - \frac{f_5(x_i)}{f_5'(x_i)}$, raiz = 1.4924288, ponto inicial = 1.6

Análise dos métodos

Correspondente ao método de bissecção, chegamos à conclusão de que apesar do método ter fácil aplicação, sua função deve possuir valores negativos em sua imagem, e um prévio conhecimento de um intervalo onde possa estar a raiz. Trata-se também de um método cuja convergência é linear, ou seja, pode demorar para encontrar a raiz dependendo da função e do intervalo inicial, de modo que uma de suas vantagens é de não ser afetado por muitas variações na função do gráfico. E caso hajam duas ou mais raízes ele parará na primeira que encontrar.

Em relação ao Ponto Fixo, concluímos que se trata de um método extremamente instável e frágil, no caso deste trabalho, as funções de pontos fixos obtidos foram baseados em tentativa e erro a partir de um ponto próximo da raiz desejada, isso significa que da mesma forma que o método da bissecção, é necessário um conhecimento prévio da função. Além disso, é de longe o método que levou mais interações.

Sobre o método de Newton, a eficácia foi superior aos métodos anteriores, por não ter a limitação da bissecção, possuir uma convergência quadrática, e ser menos instável e frágil do que o ponto fixo original, apesar de ser uma variação de ponto fixo. Ele também possui uma aplicação relativamente fácil, pois necessita apenas saber a derivada da função em questão, e ter atenção quanto ao ponto final, pois caso a derivada da função variar muito é necessário escolher um ponto relativamente próximo da raiz desejada para o funcionamento dentro do programa ou para a equação.