Vzorec podmienky platnosti	Vzorec podmienky platnosti
$[c]' = 0, x \in R, c \in R$	$[x]' = 1, x \in R$
$[x^n]' = nx^{n-1}, x \in \mathbb{R}, n \in \mathbb{N}$	$[x^a]' = ax^{a-1}, x > 0, a \in \mathbb{R}$
$[\mathbf{e}^x]' = \mathbf{e}^x, x \in R$	$[a^x]' = a^x \ln a, x \in R, a > 0$
$[\ln x]' = \frac{1}{x}, x > 0$	$[\log_a x]' = \frac{1}{x \ln a}, x > 0, a > 0, a \neq 1$
$[\ln x]' = \frac{1}{x}, x \neq 0$	$[\log_a x]' = \frac{1}{x \ln a}, x \neq 0, \ a > 0, \ a \neq 1$
$[\sin x]' = \cos x, x \in R$	$[\cos x]' = -\sin x, x \in \mathbb{R}$
$[\operatorname{tg} x]' = \frac{1}{\cos^2 x}, x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$	$[\cot x]' = -\frac{1}{\sin^2 x}, x \neq k\pi, \ k \in \mathbb{Z}$
$[\arcsin x]' = \frac{1}{\sqrt{1-x^2}}, x \in (-1; 1)$	$\left[\arccos x\right]' = -\frac{1}{\sqrt{1-x^2}}, x \in (-1; 1)$
$[\operatorname{arctg} x]' = \frac{1}{1+x^2}, x \in \mathbb{R}$	$\left[\operatorname{arccotg} x\right]' = -\frac{1}{1+x^2}, x \in \mathbb{R}$
$[\sinh x]' = \cosh x, x \in \mathbb{R}$	$[\cosh x]' = \sinh x, x \in R$
$[\operatorname{tgh} x]' = \frac{1}{\cosh^2 x}, x \in R$	$\left[\left[\operatorname{cotgh} x \right]' = -\frac{1}{\sinh^2 x}, x \neq 0 \right]$
$[\operatorname{argsinh} x]' = \frac{1}{\sqrt{x^2+1}}, x \in \mathbb{R}$	$[\operatorname{argcosh} x]' = \frac{1}{\sqrt{x^2 - 1}}, x > 1$
$[\operatorname{argtgh} x]' = \frac{1}{1-x^2}, x \in (-1; 1)$	$ \left[\operatorname{argcotgh} x \right]' = \frac{1}{1 - x^2}, x \in R - \langle -1; 1 \rangle $

Derivácie základných elementárnych funkcií.