

Резаиан Наим

E-mail: rezaian-n@rudn.ru

Telegram: @NaeimRezaeian

- 1. Заведующий лабораторией искусственного интеллекта
- 2. Руководитель направления разработок Центра развития цифровых технологий в образовательных процессах
- 3. Старший преподаватель факультета искусственного интеллекта

Стохастический градиентный спуск (Stochastic gradient descent)

$$\theta^t = \theta^{t-1} - \alpha \nabla_{\theta} L(\theta)$$

Борис Теодорович Поляк, 1964 год

$$h_{t+1} = \gamma h_t + \alpha \nabla_{\theta} J(\theta)$$

$$\boldsymbol{\theta_{t+1}} = \boldsymbol{\theta_t} - h_{t+1}$$

 h_t — инерция, усреднённое направление движения

у – Коэффицент момента

 α — скорость обучения

 $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ — градиент функции потерь

Борис Теодорович Поляк, 1964 год

$$h_{t+1} = \gamma h_t + \alpha \nabla_{\theta} J(\theta)$$

$$\boldsymbol{\theta_{t+1}} = \boldsymbol{\theta_t} - h_{t+1}$$

$$h_{t+1} = \gamma h_t + \alpha \nabla_{\theta} J(\theta)$$

$$\boldsymbol{\theta_{t+1}} = \boldsymbol{\theta_t} - h_{t+1}$$

1. Благодаря "инерции", алгоритм может эффективнее выходить из мелких локальных минимумов, увеличивая шансы найти более оптимальное решение.

2. Момент сглаживает колебания в обновлениях параметров, делая процесс обучения более стабильным и предсказуемым.

Параметр γ определяет, какая доля предыдущего обновления будет добавлена к текущему градиенту. Обычно находится в диапазоне от 0 (без Momentum) до 1. Большие значения помогают ускорить SGD и сделать его более устойчивым к осцилляциям.

Стохастический градиент с импульсом Нестерова – NAG Nesterov Accelerated Gradient

Нестеров, 1983 год

$$h_{t+1} = \gamma h_t + \alpha \nabla_{\theta} J(\theta - \gamma h_t)$$

$$\boldsymbol{\theta_{t+1}} = \boldsymbol{\theta_t} - h_{t+1}$$

у – Коэффицент момента

 α — скорость обучения

 $abla_{ heta} J(heta - \gamma h_t)$ — градиент, вычисленный в предсказанном положении

Стохастический градиент с импульсом Нестерова – NAG

Стохастический градиент с импульсом Hecrepoвa – NAG Nesterov Accelerated Gradient

$$h_{t+1} = \gamma h_t + \alpha \nabla_{\theta} J(\theta - \gamma h_t)$$

$$\boldsymbol{\theta_{t+1}} = \boldsymbol{\theta_t} - h_{t+1}$$

За счёт предвидения, NAG часто сходится быстрее, чем традиционный метод с моментом

NAG эффективнее справляется с локальными минимумами

Адаптивный подбор размера шага

$$\theta^t = \theta^{t-1} - \alpha \nabla J(\theta^{t-1})$$

$$\alpha_t = \frac{1}{t}$$
 , $\alpha_t = \frac{0.1}{t^{\beta}}$, ...

AdaGrad (Adaptive Gradient Algorithm)

Dense feature

x_1	x_2
245	0
184	0
300	0
229	0
276	0
302	0
198	0
263	1
317	0
172	0

Sparse feature

AdaGrad (Adaptive Gradient Algorithm)

$$\nabla J = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} \\ \vdots \\ \frac{\partial J}{\partial \theta_d} \end{bmatrix}$$

$$G_{t+1} = G_{t-1} + (\nabla_{\theta} J(\theta_t))^2$$

$$\theta_{t+1} = \theta_{t-1} - \frac{\alpha}{\sqrt{G_t} + \epsilon} \nabla_{\theta} J(\theta_t)$$

€ — Констант для численной стабильности 1e-8

RMSProb (Root Mean Square Propagation)

$$\nabla Q = \begin{bmatrix} \frac{\partial Q}{\partial \theta_0} \\ \vdots \\ \frac{\partial Q}{\partial \theta_d} \end{bmatrix}$$

$$G_{t+1} = \beta G_{t-1} + (1 - \beta)(\nabla_{\theta} J(\theta_t))^2$$

$$\theta_{t+1} = \theta_{t-1} - \frac{\alpha}{\sqrt{G_t} + \epsilon} \nabla_{\theta} J(\theta_t)$$

вместо суммы использует экспоненциальное скользящее среднее (Moving average)

Adam (Adaptive Momentum)

$$h_{t+1} = \gamma h_t + (1 - \gamma) \nabla_{\theta} J(\theta)$$

$$G_{t+1} = \beta G_{t-1} + (1 - \beta)(\nabla_{\theta} J(\theta_t))^2$$

$$\theta_{t+1} = \theta_{t-1} - \frac{\alpha}{\sqrt{G_{t+1}} + \epsilon} h_{t+1}$$

Рекомендации: $\gamma=0.9$, $\beta=0.999$, $\epsilon=10^{-8}$

Популярные оптимизаторы

Популярные оптимизаторы

Gradient Descent based Optimization Algorithms for Deep Learning Models Training

PyTorch optimizer

Tensorflow optimizer