1. Prove that if W_1, W_2 are finite dimensional subspaces of a vector space V, then the subspace $W_1 + W_2$ is finite-dimensional, and $dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$.

- We must show that $W_1 + W_2$ is finite dimensional. Since $W_1 \cap W_2$ is a finite dimensional subspace then let $\vec{u}_1, \ldots, \vec{u}_k$ be a basis of $W_1 \cap W_2$. Since $W_1 \cap W_2$ is a subspace of W_1 , then the basis of $W_1 \cap W_2$ may be extended to a full basis of W_1 given by $\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_m$. A similar process may be performed for W_2 yielding $\vec{u}_1, \ldots, \vec{u}_k, \vec{w}_1, \ldots, \vec{w}_p$ as W_2 's basis. We claim that $W_1 + W_2$ has a basis of $\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_m, \vec{w}_1, \ldots, \vec{w}_p$.
 - (a) We must show that $\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_m, \vec{w}_1, \ldots, \vec{w}_p$ generates $W_1 + W_2$. Suppose $\vec{y} \in W_1 + W_2$. We must show that $\vec{y} \in Span(\{\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_m, \vec{w}_1, \ldots, \vec{w}_p\})$. Since $W_1 + W_2$ is the linear combination of vectors from W_1, W_2 , then there exists vectors $\vec{x}_1 \in W_1, \vec{x}_2 \in W_2$ such that $\vec{y} = \vec{x}_1 + \vec{x}_2$. Therefore there exists $a_1, \ldots, a_k, b_1, \ldots, b_m, c_1, \ldots, c_k, d_1, \ldots, d_p \in F$ such that $x_1 = \sum_{\alpha=1}^k a_\alpha \vec{u}_\alpha + \sum_{\beta=1}^m b_\beta \vec{v}_\beta, x_2 = \sum_{\gamma=1}^k c_\gamma \vec{u}_\gamma + \sum_{\delta=1}^p d_\delta \vec{w}_\delta$. Therefore:

$$\vec{y} = \vec{x}_1 + \vec{x}_2$$

$$= \sum_{\alpha=1}^{k} a_{\alpha} \vec{u}_{\alpha} + \sum_{\beta=1}^{m} b_{\beta} \vec{v}_{\beta} + \sum_{\gamma=1}^{k} c_{\gamma} \vec{u}_{\gamma} + \sum_{\delta=1}^{p} d_{\delta} \vec{w}_{\delta}$$

$$= \sum_{i=1}^{k} (a_i + c_i) \vec{u}_i + \sum_{\beta=1}^{m} b_{\beta} \vec{v}_{\beta} + \sum_{\delta=1}^{p} d_{\delta} \vec{w}_{\delta}$$

due to the closure of F under addition,

let $e_i = a_i + c_i$, for all $i \in [k]$

$$= \sum_{i=1}^{k} e_i \vec{u}_i + \sum_{\beta=1}^{m} b_{\beta} \vec{v}_{\beta} + \sum_{\delta=1}^{p} d_{\delta} \vec{w}_{\delta}.$$

Thus $\vec{y} \in Span(\{\vec{u}_1, \dots, \vec{u}_k, \vec{v}_1, \dots, \vec{v}_m\}).$

(b) We must show that $\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_m, \vec{w}_1, \ldots, \vec{w}_p$ is linearly independent. Suppose for contradiction that they aren't. Since $\{\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_m, \vec{w}_1, \ldots\}$ and $\{\vec{u}_1, \ldots, \vec{u}_k, \vec{w}_1, \ldots, \vec{w}_p\}$ are linearly independent, then $\{\vec{v}_1, \ldots, \vec{v}_m, \vec{w}_1, \ldots, \vec{w}_p\}$ are linearly dependent. Suppose WLOG $w_1 \in Span(\{\vec{v}_1, \ldots, \vec{v}_m\})$. Then $w_1 \in W_1$. Therefore $w_1 \in W_1 \cap W_2$. Therefore $w_1 \in Span(\{\vec{u}_1, \ldots, \vec{u}_k\})$. This is a contradiction as $\{\vec{u}_1, \ldots, \vec{u}_k, \vec{w}_1, \ldots, \vec{w}_p\}$ are linearly independent.

Therefore since $\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_m, \vec{w}_1, \ldots, \vec{w}_p$ is a basis of $W_1 + W_2$, and the basis has a finite number of vectors, then $W_1 + W_2$ is finite dimensional.

• We must show that $dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$. Note that $dim(W_1 \cap W_2) = k$, $dim(W_1) = k + m$, $dim(W_2) = k + p$, and as we showed above $dim(W_1 + W_2) = k + m + p$.

Alex Valentino Homework 3 350H

Therefore:

$$dim(W_1 + W_2) = k + m + p$$

= $k + m + k + p - k$
= $dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$.

Alex Valentino Homework 3 350H

2. Let W_1, W_2 be subspaces of a vector spaces of V, where $dim(W_1) = m, dim(W_2) = n, n \leq m$.

- (a) Prove that $dim(W_1 \cap W_2) \leq n$. Since $W_1 \cap W_2$ is a subspace of W_2 , and a subset of linearly independent vectors of W_2 can have up to $dim(W_2)$ linearly independent vectors, then $dim(W_1 \cap W_2) \leq dim(W_2)$. Therefore $dim(W_1 \cap W_2) \leq n$.
- (b) Prove that $dim(W_1+W_2) \leq n+m$. By the previous problem, we have that $dim(W_1+W_2) = dim(W_1) + dim(W_2) dim(W_1 \cap W_2)$. Note that since $dim(W_1 \cap W_2)$ can be 0, then $dim(W_1) + dim(W_2) dim(W_1 \cap W_2) \leq dim(W_1) + dim(W_2) = m+n$. Therefore $dim(W_1+W_2) \leq m+n$.

Alex Valentino Homework 3 350H

3. Let V be the set of real numbers regarded as a vector space over the field of rational numbers. Prove that V is infinite-dimensional. By theorem 1.19 we must show that V has an infinite linearly independent subset. Note that $\pi \in \mathbb{R}$, and π is transcendental. By definition of transcendental, there does not exist a non-zero polynomial with rational coefficients such that it has a root at π . Therefore for all $f \in P(\mathbb{Q}) \setminus \{0\}$ where $f = \sum_{i=0}^n a_i x^i, a_0, \ldots, a_n \in \mathbb{Q}, f(\pi) = \sum_{i=0}^n a_i \pi^i \neq 0$. Therefore for each n, the only polynomial $f \in P_n(\mathbb{Q})$ such that $f(\pi) = 0$ is the polynomial f = 0. Therefore each $P_n(\mathbb{Q})$ has the set $\{1, \pi, \pi^2, \ldots, \pi^n\}$ satisfying the definition of linear independence. Therefore let $S \subset V$ be the collection of the sets of the powers of π such that $\{\pi^i : \text{ for all } i \in [n] \cup \{0\}\}$ is linearly independent. Therefore by the maximal principle S contains the maximal element $\{1, \pi, \pi^2, \ldots\}$. Therefore \mathbb{R} has an infinite linearly independent subset. Thus V is infinite dimensional.

Alex Valentino Homework 3 350H

4. Let S_1, S_2 be subsets of the vector space V, $S_1 \subseteq S_2$. If S_1 is linearly independent, and $Span(S_2) = V$, then there exists a basis β of V such that $S_1 \subseteq \beta \subseteq S_2$. Let β be the maximal element be the maximal set of all subsets of S_2 containing S_1 and linearly independent. Thus since β is a maximal and linearly independent subset of S_2 , then by theorem 1.12, β is a basis of V.

5. Define $T: P(\mathbb{R}) \to P(\mathbb{R})$ by $T(f(x)) = \int_0^x f(t)dt$. Prove that T is linear, 1-1, and not onto.

(a) We must show that T is linear. Suppose $f, g \in P(\mathbb{R}), c \in \mathbb{R}$. Therefore:

$$T(cf+g) = \int_0^x cf(t) + g(t)dt$$
$$= c \int_0^x f(t)dt + \int_0^x g(t)dt$$
$$= cT(f) + T(g).$$

- (b) We must show that T is 1-1. Suppose $f, f^* \in P(\mathbb{R}), T(f) = T(f^*)$. We must show $f = f^*$. Since T is linear, then $T(f f^*) = 0$ implies $\int_0^x f(t) f^*(t) dt = 0$, however since the only function which integrates to 0 is f = 0, then $f(t) f^*(t) 0$, thus $f(t) = f^*(t)$.
- (c) We must show that T is not onto. We claim that for all $f \in P(\mathbb{R})$ that $T(f) = c, c \in \mathbb{R}$ is impossible. Suppose for contradiction that there exists $f \in P(\mathbb{R})$ such that $\int_0^x f(t)dt = c$. Let $F : \mathbb{R} \to \mathbb{R}$ be given by F' = f. Then evaluating the integral above yields F(x) F(0) = c. Therefore F(x) = F(0) + c. Differentiating both sides yields f(x) = 0. This is a contradiction as $\int_0^x 0 = 0 \neq c$. Therefore T is not onto.