Лабораторная работа №7

Цель работы: реализовать алгоритмы обработки графовых структур: поиск различных путей, проверка связности, построение остовых деревьев минимальной стоимости.

Обработать графовую структуру в соответствии с указанным вариантом задания. Обосновать выбор необходимого алгоритма и выбор структуры для представления графов. Ввод данных – на усмотрение программиста. Результат выдать в графической форме.

		№ по списку		
		ИУ-7- 31,36	ИУ-7- 32,35	ИУ-7- 33,34
1	Найти все вершины заданного орграфа, недостижимые из заданной его вершины	1, 16	20, 1	8, 11
2	Определить, является ли связным заданный граф.	2, 17	19, 2	9, 12
3	Найти самый длинный простой путь в графе	3, 18	18, 3	10, 13
4	Найти все вершины графа, к которым от заданной вершины можно добраться по пути не длиннее А.	4, 19	17, 4	14,25
5	Задан граф - не дерево. Проверить, можно ли превратить его в дерево удалением одной вершины вместе с ее ребрами.	5, 20	16, 5	15, 26
6	В графе найти максимальное расстояние между всеми парами его вершин	6, 21	15, 30	16, 27
7	Задана система двусторонних дорог. Для каждой пары городов найти длину кратчайшего пути между ними.	7, 22	14, 29	17, 28
8	Задана система двусторонних дорог. Найти два города и соединяющий их путь, который проходит через каждую из дорог системы только один раз	8, 23	13, 28	18, 29
9	Задана система двусторонних дорог, где для любой пары городов есть соединяющий их путь. Найти город с минимальной суммой расстояний до остальных городов.	9, 24	12, 27	1,19
10	Задана система двусторонних дорог. Определить, можно ли, построив еще три новые дороги, из заданного города добраться до каждого из остальных городов, проезжая расстояние не более Т единиц.		11, 26	2,20
11	Задана система двусторонних дорог. Определить, можно ли, закрыв какие-нибудь три дороги, добиться того, чтобы из города А нельзя было попасть в город В.	11,26	10, 25	3,21
12	Задана система двусторонних дорог. Найти множество городов, расстояние от которых до выделенного города (столицы) больше, чем Т.	12, 27	9, 24	4,22

13	В системе двусторонних дорог за проезд	13, 28	8, 23	5,23
	каждой дороги взимается некоторая пошлина.			
	Найти путь из города А в город В с			
	минимальной величиной S+P, где S - сумма			
	длин дорог пути, а Р - сумма пошлин			
	проезжаемых дорог			
14	Заданы две системы двухсторонних дорог с	14, 29	7, 22	6,24
	одним и тем же множеством городов (железные			
	и шоссейные дороги). Найти минимальный по			
	длине путь из города А в город В, который			
	может проходить как по железной так и по			
	шоссейной дорогам, и места пересадок с			
	одного вида транспорта на другой на этом пути.			
15	Найти минимальное (по количеству ребер)	15, 30	6, 21	7, 24
	подмножество ребер, удаление которых			
	превращает заданный связный граф в			
	несвязный			