E-Jurnal Ekonomi dan Bisnis Universitas Udayana 5.9 (2016): 2951-2976

ANALISIS PERBEDAAN RETURN PORTOFOLIO BERDASARKAN MODEL INDEKS TUNGGAL DAN PORTOFOLIO RANDOM

Ni Putu Nonik Hariasih¹ Dewa Gede Wirama²

^{1,2} Fakultas Ekonomi dan Bisnis Universitas Udayana (Unud), Bali, Indonesia e-mail: ari.nonik@yahoo.co.id

ABSTRAK

Analisis portofolio sangat penting bagi para investor untuk digunakan sebagai dasar dalam melakukan diversifikasi saham agar dapat membentuk portofolio yang optimal. Portofolio yang optimal dapat ditentukan salah satunya dengan menggunakan Model Indeks Tunggal yang merupakan model yang sederhana dan mudah dioperasikan. Tujuan penelitian ini adalah untuk mendapatkan bukti empiris perbedaan return penentuan portofolio menggunakan Model Indeks Tunggal dan portofolio random. Populasi dalam penelitian ini adalah saham-saham perusahaan yang tercatat pada Indeks Kompas 100 periode Agustus 2013 - Januari 2014. Sampel dipilih dengan metode purposive sampling sehingga diperoleh 93 saham perusahaan yang dijadikan sampel. Saham-saham yang membentuk portofolio optimal dengan Model Indeks Tunggal yaitu saham yang mempunyai nilai ERB_i lebih besar dari nilai ERB; pada titik cut off point vaitu sebanyak 68 saham. Saham-saham yang membentuk portofolio Random juga dipilih sebanyak 68 saham. Teknik analisis data menggunakan uji beda Paired Samples T-Test. Hasil penelitian menunjukkan bahwa terdapat perbedaan return portofolio menggunakan Model Indeks Tunggal dan portofolio random. Penentuan portofolio optimal dengan menggunakan Model Indeks Tunggal dapat memberikan return yang lebih tinggi dibandingkan dengan portofolio Random

Kata kunci: expected return, risk, return portofolio, model indeks tunggal, portofolio random

ABSTRACT

Portfolio analysis is important for investors as a basis to diversify stock to form the optimal portfolio. The optimal portfolio can be determined by the Single Index Model which is simple and easy to operate. The purpose of this study was to obtain empirical evidence determining the difference of return portfolios using Portfolio Single Index Model and random. This study uses the company shares Kompas 100 Index on the period of January 2014 as the population. The research sample are 93 stocks which are selected by purposive sampling. Then the 68 selected candidates stock of portfolio which have specific criteria for Single Index Model have ERBi value greater than ERBi value on the cut off point. The data were analyzed by using different test Paired Samples T-Test. The results shows that there are differences in the determination of portfolio return using the Single Index Model and random portfolio, in which the use of Single Index Model may provide a higher return than the Random portfolios.

Keywords: expected return, risk, return portfolio, single index model, random portfolio

PENDAHULUAN

Pasar modal berperan besar di dalam perekonomian suatu negara dimana mempertemukan pihak yang memiliki surplus dana dana dan pihak yang kekurangan dana. Peluang investasi dipasar modal ini terdiri dari berbagai macam bentuk, seperti reksadana, obligasi, saham, dan sebagainya. Sebelum memulai investasi ini, sebaiknya investor memperhatikan *expected return* (*return* ekspektasian) atau tingkat imbal hasil yang diinginkan dan risiko (*risk*) dari setiap pilihan investasi yang diambil. *Return* ekspektasian dan *risk* atau risiko mempunyai berhubungan yang searah. Semakin tinggi *return* ekspektasian, resiko sekutitas juga semakin tinggi. Sebaliknya, semakin rendah *return* yang diinginkan, semakin rendah risiko yang harus diterima. Besar kecilnya *return* tergantung pada kesediaan investor untuk menanggung risiko. Risiko dan *return* memainkan peran penting dalam membuat keputusan investasi (Mary dan Rathika, 2015). Jadi dengan melakukan analisis portofolio investor dapat menentukan strategi untuk meminimalkan risiko dan memaksimalkan *return*.

Menyusun komposisi dari portofolio akan menimbulkan permasalahan. Permasalahannya adalah akan bervariasi komposisi portofolio yang bisa dibuat dari kombinasi aktiva berisiko yang terdapat dipasar. Kombinasi bisa terdiri dari jumlah yang tidak tehitung. Mengalokasikan sejumlah dana tertentu pada berbgai jenis investasi yang dapat memperoleh keuntungan yang optimal merupakan konsep dasar yang dinyatakan dalam portofolio (Harold, 1998). Melaksanakan diversifikasi saham agar dapat menyusun portofolio yang optimal, sangat penting untuk dilakukan

terlebih dahulu menganalisis portofolio. Portofolio yang optimal terdiri atas portofolio dari perpaduan return ekspektasi dan tingkat risiko terbaik (Hartono, 2013). Model Indeks Tunggal yang merupakan salah satu model yang sederhana dan mudah dioperasikan untuk dapat menentukan portofolio yang optimal. Menentukan portofolio efisien terlebih dahulu, barulah kemudian dapat menyusun portofolio optimal. Portofolio yang efisien sudah pasti adalah portofolio optimal. Portofolio yang optimal akan berbeda untuk masing-masing investor karena tiap-tiap investor mempunyai kurva berbeda yang tidak sama.

Menentukan saham mana saja yang dapat menghasilkan return optimal dengan risiko yang minimum, serta mampu menentukan seberapa besar proporsi dana yang dibutuhkan merupakan pengaplikasian yang lebih mudah dan sederhana dari Model Indeks Tunggal untuk menganalisis portofolio (Eko, 2008). Sedangkan Pujiani (2007) menyatakan analisis portofolio dapat digunakan untuk menentukan return optimal pada risiko yang minimal. Rasio ERB (Excess Return to Beta) digunakan untuk menentukan saham-saham yang dimasukkan ke dalam rangkaian portofolio yang merupakan saham-saham yang memiliki kinerja baik. Hasil penelitian ini memberi kesimpulan bahwa investor yang rasional akan berinvestasi atas dananya dalam bentuk portofolio optimal, sehingga saham yang memiliki nilai ERB terbesar pada tingkat risiko yang relatif sama yang akan membentuk portofolio optimal dalam penelitian ini.

Penelitian Wahyudi (2002) dengan topik analisis investasi dan penentuan portofolio di Bursa Efek Jakarta mendapat kesimpulan bahwa penentuan portofolio dengan menggunakan Model Indeks Tunggal dapat memberikan *return* yang optimal dibandingkan dengan penentuan portofolio secara *random* atau acak. Hal tersebut juga didukung oleh Susanti (2012) dan Nursetiaji (2013) yang menyimpulkan bahwa penentuan portofolio dengan menggunakan Model Indeks Tunggal dapat memberikan *return* yang optimal dan risiko yang dihasilkan lebih kecil dibandingkan dengan Model *Random*. Hasil serupa juga diperoleh oleh Nofri (2012) dengan menggunakan sampel penelitian yaitu saham indeks LQ-45 periode Februari 2009–Juli 2011, dimana hasil penelitian menunjukkan bahwa saham yang membentuk portofolio optimal sebanyak 14 saham dengan nilai ukuran kinerja dengan metode Sharpe pada Single Indeks Model sebesar 73,386 dan pada Model *Random* sebesar 33,303, sedangkan dengan menggunakan indeks kinerja Treynor pada Single Indeks Model sebesar 3,185 dan pada Model *Random* sebesar 2,45.

Dalam hal persentase alokasi dana terhadap saham, *single index* memang sudah optimal dalam memilih saham yang akan digunakan untuk membentuk portofolio, namun belum maksimal dalam memberikan *return* yang diharapkan bila dibandingkan dengan alokasi *random* model (Pasaribu, 2013). Dalam penelitiannya yang menggunakan *forming* bulanan periode 2007 pada saham LQ 45, berdasarkan uji indeks treynor model indeks tunggal sebaiknya digunakan pada portofolio Juli 02 dan Oktober 02, dan selebihnya menggunakan model *random*. Adapun tingkat keuntungan yang diharapkan dari portofolio dengan *random model*, secara rata-rata (1,35% perbulan) lebih tinggi dibandingkan dengan rata-rata keuntungan yang diharapkan portofolio *single index model* (1,03% perbulan). Namun penelitian yang

dilakukan oleh Prastiwi (2006) membahas mengenai return yang dihasilkan oleh penentuan portofolio dengan menggunakan Model Indeks Tunggal dengan penentuan portofolio dengan menggunakan Model Random mendapat hasil bahwa tidak ada perbedaan expected return portofolio dengan menggunakan Model Indeks Tunggal dan Model Random.

Witiastuti (2012) membagi beberapa strategi untuk menganalisis kinerja portofolio dengan pengujian Single Index Model dan Naive Diversification. Hasil penelitian menyimpulkan bahwa model indeks tunggal dengan strategi I, II, III, V, dan VI, menunjukkan tidak ada perbedaan signifikan antara return portofolio model indeks tunggal dengan return portofolio metode naive diversification. Tetapi untuk model indeks tunggal menggunakan strategi IV, return portofolio model indeks tunggal berbeda secara signifikan dengan return portofolio metode naive diversification. Risiko portofolio model indeks tunggal berbeda secara signifikan dengan risiko portofolio metode naive diversification dalam sampel kecil, kinerja portofolio model indeks tunggal maupun metode naive diversification sama-sama inferior.

Wibowo et al., (2014) melakukan penelitian pada salam-saham LQ 45 yang listing di Bursa Efek Indonesia (BEI) tahun 2010-2012. Hasil penelitian menunjukkan bahwa dari 22 sampel perusahaan yang terpilih, terdapat 14 perusahaan yang membentuk komposisi portofolio optimal. Sutisman (2013) meneliti analisis portofolio saham dengan Model Indeks Tunggal pada saham LQ 45 tahun 2008–2011 mendapatkan hasil sebanyak 18 saham perusahaan yang terpilih masuk ke dalam kandidat portofolio optimal. Dahlan *et al.*,(2013) melakukan penelitian pada saham perusahaan yang tercatat dalam indeks LQ 45 di BEI tahun 2010-2012 dengan 24 sampel perusahaan mendapat hasil bahwa terpilih 5 saham dari LQ 45 yang menjadi pembentuk portofolio optimal. Mirah dan Wijaya (2013) melakukan penelitian di BEI tahun 2009-2011, menunjukkan bahwa terdapat 5 saham yang menjadi kandidat portofolio dari 17 saham yang diteliti.

H₁: Terdapat perbedaan yang signifikan antara *return* portofolio berdasarkan Model Indeks Tunggal dengan Portofolio *Random*.

Penelitian ini dilakukan untuk mendapatkan bukti empiris perbedaan yang signifikan *return* penentuan portofolio optimal menggunakan Model Indeks Tunggal dan Portofolio *Random*. Perbedaan hasil penelitian dan fluktuasi *return* saham yang cukup tinggi di dalam menghadapi perubahan kondisi pasar membuat penulis tertarik membahas lebih lanjut tentang risiko dan *return* dalam portofolio saham. Indeks yang digunakan sebagai dasar pembentukan portofolio optimal dalam penelitian ini adalah Indeks Kompas 100.

METODE PENELITIAN

Teori yang mendukung penelitian ini adalah teori investasi. Teori investasi menjelaskan bahwa keputusan investasi selalu menyangkut dua hal, yaitu risiko dan *return*. Teori investasi menganjurkan untuk membentuk portofolio dalam berinvestasi saham. Dalam memperoleh portofolio yang diinginkan, investor harus menganalisis agar mendapat *return* yang maksimal. Salah satu strategi untuk meminimalkan risiko investasi pada saham adalah dengan melakukan diversifikasi saham dalam suatu portofolio. Dengan melakukan diversifikasi, yaitu menginvestasikan dana dalam beberapa saham, diharapkan dapat meminimalkan risiko yang akan dihadapi investor.

Manfaat diversifikasi sekuritas secara signifikan meningkatkan *trade-off* risiko dan *return* portofolio investasi (Hallinan, 2011). *Return-return* saham yang didiversifikasi akan lebih tinggi dibanding dengan *return* saham yang tidak didiversifikasi (Pandya dan Rao, 1998). Teori Portofolio Markowitz juga memformulasikan keberadaan unsur *return* dan risiko dalam suatu investasi, dimana unsur risiko dapat diminimalisasi dengan diversifikasi dan menggabungkan berbagai instrumen kedalam portofolio.

Validitas, objektifitas, efektifitas dan efisiennya suatu riset merupakan hasil arahan dari suatu rancangan penelitian yang terencana (Jogiyanto, 2007). Latar belakang masalah akan mengarahkan pada sebuah rumusan masalah lalu berdasarkan penelitian sebelumnya dan kajian empiris dapat dibuat sebuah hipotesis penelitian, kemudian dilanjutkan dengan menentukan variabel penelitian, yaitu *return* portofolio berdasarkan Model Indeks Tunggal dan Portofolio *Random*.

Penelitian ini merupakan penelitian empiris untuk mendapatkan perbedaan yang signifikan *return* penentuan portofolio berdasarkan Model Indeks Tunggal dan Portofolio Random. Variabel-variabel dalam penelitian sebelumnya dikombinasikan dalam penelitian ini guna memperoleh hasil penelitian dengan dimensi obyek, waktu dan tempat yang berbeda (*confirmatory research*).

Populasi dalam penelitian ini berupa saham-saham yang tercatat pada Indeks Kompas 100 pada saat pembentukan portofolio yaitu Januari 2014. Dari populasi ini kemudian dipilih sampel penelitian dengan menggunakan metode *purposive sampling*. Kriteria dasar pemilihan anggota sampel pada penelitian ini adalah sebagai berikut: (1) tercatat pada Indeks Kompas 100 pada saat pembentukan portofolio yaitu Januari 2014; (2) saham-saham perusahaan tersebut masuk ke dalam perhitungan Beta *Stock* Pefindo Periode Januari 2014. Sejumlah prosedur dilakukan untuk membentuk portofolio optimal dengan menggunakan Model Indeks Tunggal sebagai berikut:

a. Menghitung return saham individual (R_i)
$$R_i = \frac{Pt - Pt - 1}{Pt - 1}.$$
 (1)

ISSN: 2337-3067

E-Jurnal Ekonomi dan Bisnis Universitas Udayana 5.9 (2016): 2951-2976

Untuk memudahkan perhitungan nilai C_i dari rumus diatas, maka rumus tersebut dapat dijabarkan sebagai berikut:

$$A_W = \frac{[E(R_i) - R_{BR}]\hat{a}_i}{\delta_{\rho i}^2}$$
 (12)

$$B_{i} = \frac{\hat{a}_{i}^{2}}{\hat{\sigma}_{ei}^{2}}$$

$$A_{j} = \sum_{i=0}^{[E(R_{i}) - R_{BR}]\hat{a}_{i}}$$

$$(13)$$

$$A_j = \sum \frac{[E(R_i) - R_{BR}]\hat{a}_i}{\delta_{c,2}} \tag{14}$$

$$B_j = \sum_{\hat{o}_{oj}^2} \frac{\hat{a}_{i^2}^2}{\hat{o}_{oj}^2} \tag{15}$$

Sumber: Sukarno (2007).

k. Menghitung Alpha Portofolio (α_p) dan Beta Portofolio (β_p)

$$\alpha_{\mathcal{A}} = \sum_{i=0}^{n} X_i.\alpha_i \tag{16}$$

$$\beta_P = \sum_{i=0}^n X_i \cdot \beta_i \tag{17}$$

Dengan ketentuan:

$$X_i = \frac{\hat{a}_i}{\hat{o}_{ei}^2} (ERBi - C^*)$$
 (18)

Sumber: Hartono (2013).

- Menghitung Return Ekspektasi Portofolio (Expected Return Portofolio). $E(R_p) = \alpha_p + \beta_p \cdot E(R_m)$ (19)Sumber: Hartono (2013).
- m. Menhitung Risiko Portofolio

$$\dot{\phi}_p^2 = \hat{a}_p^2 \cdot \dot{\phi}_m^2 + \left[\sum_{i=0}^n W_i \cdot \dot{\phi}_{ei}\right]^2 \dots \tag{20}$$

Dengan ketentuan:

$$W_i = \frac{X_i}{\sum X_i} \tag{21}$$

Sumber: Hartono (2013).

Sedangkan untuk memilih kandidat saham portofolio random dilakukan dengan bantuan komputer yaitu menggunakan program Excel. Fungsi Excel untuk membuat angka acak adalah Rand. Format penulisan fungsi Rand adalah "=RAND()".Setelah terpilih n sampel, langkah selanjutnya adalah menghitung return ekspektasi portofolio dan risiko portofolio. Perhitungan return ekspektasi portofolio dan risiko portofolio dapat menggunakan rumus seperti pada perhitungan dengan Model Indeks Tunggal

Setelah memperoleh masing-masing kandidat saham pembentuk portofolio langkah selanjutnya adalah menghitung return realisasian masing-masing kandidat saham portofolio selama 1 tahun menggunakan data tahun 2014. Return realisasian tersebut dibandingkan sehingga dapat mengetahui apakah terdapat perbedaan yang signifikan dari kedua return portofolio tersebut. Untuk mengetahui apakah terdapat perbedaan yang signifikan diperlukan pengujian hipotesis untuk membandingkan return portofolio yang dibentuk dengan menggunakan Model Indeks Tunggal dan return portofolio yang dibentuk secara random. Pengujian hipotesis dilakukan dengan Uji Beda Dua Rata-rata untuk Related Samples/ sample berhubungan (Uji Beda Paired Samples t-test). Sebelum dilakukan uji beda terlebih dahulu dilakukan Uji Normalitas data. Model regresi yang baik adalah yang memiliki distribusi normal atau mendekati normal.

HASIL DAN PEMBAHASAN

Populasi yang digunakan dalam penelitian ini adalah saham-saham yang tercatat pada Indeks Kompas 100 periode Agustus 2013–Januari 2014 (pada saat pembentukan portofolio yaitu Januari 2014). Jumlah populasi yang digunakan berjumlah sebanyak 100 saham perusahaan yang tercatat pada Indeks Kompas 100 periode Agustus 2013–Januari 2014. Pengambilan sampel menggunakan metode *purposive sampling* dengan kriteria yaitu tercatat pada Indeks Kompas 100 dan termasuk dalam perhitungan Beta *Stock* Pefindo periode Januari 2014, serta data yang tersedia lengkap periode Januari 2010–Desember 2014. Sebanyak 7 saham

perusahaan yang tercatat pada Indeks Kompas 100 periode Januari 2014 dan tidak termasuk dalam perhitungan Beta *Stock* Pefindo periode Januari 2014, sehingga data tidak dimasukkan menjadi sampel karena data yang diperlukan tidak lengkap yaitu saham BEST, BJTM, CMNP, ERAA, GIAA, INVS, dan SIMP. Akhirnya diperoleh sebanyak 93 saham perusahaan yang dijadikan sampel dalam penelitian ini.

Penggunaan Model Indeks Tunggal memerlukan penaksiran Beta (β) dari saham yang akan membentuk suatu portofolio. Beta merupakan konsep statistik yang digunakan untuk mengukur sensitivitas perolehan suatu sekuritas terhadap perubahan perolehan pasar. Beta menunjukkan kepekaan *return* ekspektasi dari suatu saham terhadap *return* pasar. Beta yang dipergunakan dalam penelitian ini adalah data Beta *Stock* Pefindo. Saham perusahaan yang tidak memenuhi kriteria perhitungan beta *stock* Pefindo tidak diikutsertakan dalam perhitungan portofolio optimal. Nilai Alpha dan Beta saham disajikan pada Tabel 1.

Return Ekspektasi saham merupakan return yang diharapkan diperoleh di masa mendatang. Berikut ini disajikan daftar perusahaan yang mempunyai nilai return ekspektasi saham dari yang terbesar hingga yang terkecil. Berdasarkan Tabel 2 dapat diketahui bahwa return masing- masing saham relatif berbeda dimana terdapat 75 saham yang mempunyai return ekspektasi atau E(Ri) bernilai positif. Sahamsaham yang bernilai negatif maka dalam perhitungan selanjutnya tidak diikutsertakan.

Standar Deviasi (SD) digunakan untuk mengukur risiko dari *realized return*. *Variance* (σ_i^2) digunakan mengukur risiko *expected return* saham i. Berikut disajikan hasil perhitungan Standar Deviasi (SD) dan *Variance* (σ_i^2) dengan cara mengkuadratkan standar deviasi dapat dilihat pada Tabel 3 dan Tabel 4. Risiko pasar diukur berdasarkan varian dari *return* pasar. Risiko pasar dapat dihitung menggunakan rumus berikut.

$$\sigma_{\rm m}^2 = \sum_{j=1}^{N} \frac{\left[(R_{mj} - E(R_m)) \right]^2}{N}$$
$$\sigma_{\rm m}^2 = 0,000162$$

Tabel 1. Nilai Alpha (α) Dan Beta (β) Dari Masing-Masing Saham

	That hipha (a) but beta (b) but history history buttan								
No	Kode Saham	Alpha	Beta	No	Kode Saham	Alpha	Beta		
1	AALI	0,000221	0,513	47	INDY	-0,001630	1,188		
2	ACES	0,001629	0,715	48	INTP	0,000221	1,058		
3	ADHI	0,000713	1,465	49	ISAT	-0,000537	0,980		
4	ADMG	0,000307	1,601	50	ITMG	-0,000113	0,791		
5	ADRO	-0,000742	0,790	51	JPFA	0,001861	1,340		
6	AISA	0,001144	0,976	52	JSMR	0,000810	0,776		
7	AKRA	0,001439	1,379	53	KIJA	0,000127	1,553		
8	ANTM	-0,001127	1,407	54	KLBF	0,001844	0,929		
9	APLN	-0,001216	1,166	55	KRAS	-0,001534	1,068		
10	ASII	0,000752	1,041	56	LCGP	0,001877	0,641		
11	ASRI	0,000330	1,675	57	LPCK	0,002972	1,601		
12	BBCA	0,000125	1,058	58	LPKR	0,000171	1,345		
13	BBKP	-0,000625	1,604	59	LPLI	0,001144	1,394		
14	BBNI	-0,000294	1,328	60	LSIP	0,000229	0,549		
15	BBRI	-0,000038	1,355	61	MAIN	0,003355	1,103		
16	BBTN	-0,001264	1,263	62	MAPI	0,001893	1,266		
17	BDMN	-0,000665	0,932	63	MDLN	0,001578	1,264		
18	BHIT	0,005903	1,306	64	MEDC	-0,000386	0,655		
19	BIPI	-0,000079	0,732	65	MNCN	0,002031	0,967		
20	BJBR	-0,001017	1,333	66	MPPA	0,001237	0,743		
21	BKSL	-0,000039	1,362	67	MYOR	0,001494	1,113		
22	BMRI	-0,000150	1,347	68	MYRX	0,002782	0,631		
23	BMTR	0,001654	1,142	69	PGAS	-0,000096	0,981		
24	BORN	-0,002819	1,224	70	PNBN	-0,000931	1,037		
25	BRAU	-0,001203	1,158	71	PNLF	-0,000781	1,670		
26	BRMS	-0,001535	1,692	72	PTBA	-0,000738	0,947		
27	BSDE	-0,000158	1,460	73	PTPP	0,000094	1,701		
28	BTPN	0,000457	0,970	74	PTRO	0,000625	0,709		
29	BUMI	-0,002867	1,649	75	PWON	0,000082	1,299		
30	BWPT	0,000503	0,725	76	RALS	-0,000075	1,143		
31	CPIN	0,000510	1,457	77	SCMA	0,003502	0,808		
32	CTRA	0,000498	1,454	78	SGRO	-0,000412	0,849		
33	CTRS	0,000565	1,110	79	SMCB	-0,000370	1,148		
34	DILD	-0,000369	1,756	80	SMGR	0,000133	1,179		
35	ELSA	-0,000207	0,727	81	SMMA	0,000923	0,491		
36	ELTY	-0,001690	0,939	82	SMRA	0,000126	1,563		
37	ENRG	-0,001356	1,848	83	SPMA	-0,000300	1,118		

ISSN: 2337-3067

E-Jurnal Ekonomi dan Bisnis Universitas Udayana 5.9 (2016): 2951-2976

38	EXCL	0,000997	0,771	84	SSIA	0,001643	1,548
39	GGRM	0,000409	0,719	85	TBIG	0,000826	0,779
40	GJTL	0,001013	1,265	86	TINS	-0,000577	0,980
41	HRUM	-0,000716	0,701	87	TLKM	0,000749	0,783
42	IATA	0,000124	1,546	88	TMPI	0,001826	0,675
43	ICBP	0,000705	1,011	89	TRAM	0,001245	0,385
44	IMAS	0,002547	1,008	90	UNSP	-0,002392	1,256
45	INCO	-0,000406	0,956	91	UNTR	-0,000227	0,918
46	INDF	0,000214	1,033	92	UNVR	0,000423	0,701
				93	WIKA	0,000518	1,356

 $Tabel~2. \\ Daftar Peringkat Saham Berdasarkan \textit{Return}~Ekspektasi~[E(R_i)]~Dari \\ Yang Terbesar Hingga Yang Terkecil$

No	Kode	$[E(R_i)]$	No	Kode	$[E(R_i)]$	No	Kode	$E(R_i)$
	Saham			Saham			Saham	
1	BHIT	0,006737	32	ADMG	0,001330	63	SPMA	0,000413
2	MAIN	0,004059	33	TBIG	0,001323	64	BBKP	0,000399
3	SCMA	0,004018	34	JSMR	0,001306	65	ITMG	0,000392
4	LPCK	0,003994	35	CTRS	0,001274	66	BIPI	0,000388
5	IMAS	0,003190	36	TLKM	0,001249	67	SMCB	0,000363
6	MYRX	0,003185	37	SMMA	0,001237	68	UNTR	0,000359
7	JPFA	0,002717	38	PTPP	0,001180	69	PNLF	0,000285
8	MAPI	0,002702	39	SMRA	0,001124	70	ELSA	0,000258
9	MNCN	0,002649	40	KIJA	0,001118	71	INCO	0,000205
10	SSIA	0,002631	41	IATA	0,001111	72	SGRO	0,000130
11	KLBF	0,002437	42	PTRO	0,001077	73	ISAT	0,000088
12	MDLN	0,002385	43	BTPN	0,001077	74	TINS	0,000049
13	BMTR	0,002384	44	LPKR	0,001030	75	MEDC	0,000032
14	AKRA	0,002320	45	BWPT	0,000966	76	BDMN	-0,000069
15	LCGP	0,002286	46	PWON	0,000911	77	PTBA	-0,000133
16	TMPI	0,002257	47	INTP	0,000897	78	BJBR	-0,000165
17	MYOR	0,002204	48	SMGR	0,000886	79	ENRG	-0,000176
18	ACES	0,002086	49	INDF	0,000874	80	ANTM	-0,000229
19	LPLI	0,002034	50	UNVR	0,000870	81	ADRO	-0,000237
20	GJTL	0,001820	51	GGRM	0,000868	82	HRUM	-0,000268
21	AISA	0,001767	52	BKSL	0,000831	83	PNBN	-0,000269
22	MPPA	0,001711	53	BBRI	0,000827	84	BRMS	-0,000455
23	ADHI	0,001648	54	BBCA	0,000800	85	BBTN	-0,000458
24	TRAM	0,001491	55	BSDE	0,000774	86	BRAU	-0,000463
25	EXCL	0,001489	56	DILD	0,000753	87	APLN	-0,000472
26	CPIN	0,001440	57	BMRI	0,000710	88	KRAS	-0,000852
27	CTRA	0,001427	58	RALS	0,000655	89	INDY	-0,000871
28	ASII	0,001417	59	LSIP	0,000579	90	ELTY	-0,001090
29	ASRI	0,001399	60	BBNI	0,000553	91	UNSP	-0,001590
30	WIKA	0,001384	61	AALI	0,000548	92	BUMI	-0,001814
31	ICBP	0,001350	62	PGAS	0,000530	93	BORN	-0,002038

Sumber: Data sekunder diolah, 2016.

Tabel 3. Hasil Dari Perhitungan Standar Deviasi

No	Kode	STDEV	No	Kode	STDEV	No	Kode	STDEV
	Saham			Saham			Saham	
1	AALI	0.022307	26	EXCL	0.029192	51	MPPA	0.030814
2	ACES	0.029391	27	GGRM	0.022169	52	MYOR	0.024361
3	ADHI	0.031209	28	GJTL	0.031085	53	MYRX	0.032634
4	ADMG	0.042113	29	IATA	0.037051	54	PGAS	0.021716
5	AISA	0.029194	30	ICBP	0.021899	55	PNLF	0.026399
6	AKRA	0.025559	31	IMAS	0.038941	56	PTPP	0.031422
7	ASII	0.024106	32	INCO	0.027233	57	PTRO	0.037995
8	ASRI	0.031553	33	INDF	0.020671	58	PWON	0.029490
9	BBCA	0.018767	34	INTP	0.031357	59	RALS	0.028437
10	BBKP	0.023269	35	ISAT	0.023113	60	SCMA	0.032028
11	BBNI	0.022750	36	ITMG	0.023680	61	SGRO	0.019544
12	BBRI	0.022692	37	JPFA	0.033110	62	SMCB	0.023368
13	BHIT	0.142675	38	JSMR	0.018885	63	SMGR	0.021788
14	BIPI	0.027577	39	KIJA	0.032670	64	SMMA	0.024816
15	BKSL	0.032013	40	KLBF	0.025424	65	SMRA	0.028604
16	BMRI	0.023278	41	LCGP	0.030515	66	SPMA	0.032144
17	BMTR	0.028593	42	LPCK	0.042638	67	SSIA	0.037665
18	BSDE	0.028902	43	LPKR	0.025227	68	TBIG	0.020582
19	BTPN	0.021682	44	LPLI	0.045629	69	TINS	0.025669
20	BWPT	0.028343	45	LSIP	0.025827	70	TLKM	0.022815
21	CPIN	0.028902	46	MAIN	0.038678	71	TMPI	0.039517
22	CTRA	0.031428	47	MAPI	0.030144	72	TRAM	0.020383
23	CTRS	0.027884	48	MDLN	0.035203	73	UNTR	0.024391
24	DILD	0.034437	49	MEDC	0.023134	74	UNVR	0.022672
25	ELSA	0.025506	50	MNCN	0.031758	75	WIKA	0.028669

Sumber: Data sekunder diolah, 2016

Berdasarkan Tabel 5 data IHSG yang digunakan untuk mewakili data pasar mempunyai *expected return market* sebesar 0,000638 atau 0,0638% perhari dan standar deviasi 0,012712 atau 1,2712%. Sedangkan risiko pasar yang ditanggung sebesar 0,000162 atau 0,0162%. *Expected return market* yang positif ini membuktikan bahwa investasi di pasar modal memberikan *return* bagi investor.

ISSN: 2337-3067

E-Jurnal Ekonomi dan Bisnis Universitas Udayana 5.9 (2016): 2951-2976

 $\label{eq:table_equation} Tabel~4.$ Hasil Dari Perhitungan $\textit{Variance}~(\sigma_i{}^2)$

No	Kode	Variance	No	Kode	Variance	No	Kode	Variance
	Saham			Saham			Saham	
1	AALI	0.000498	26	EXCL	0.000852	51	MPPA	0.001009
2	ACES	0.000864	27	GGRM	0.000491	52	MYOR	0.000593
3	ADHI	0.000974	28	GJTL	0.000966	53	MYRX	0.001065
4	ADMG	0.001774	29	IATA	0.001373	54	PGAS	0.000472
5	AISA	0.000852	30	ICBP	0.000480	55	PNLF	0.000697
6	AKRA	0.000653	31	IMAS	0.001516	56	PTPP	0.000987
7	ASII	0.000581	32	INCO	0.000742	57	PTRO	0.001444
8	ASRI	0.000996	33	INDF	0.000427	58	PWON	0.000870
9	BBCA	0.000352	34	INTP	0.000983	59	RALS	0.000809
10	BBKP	0.000541	35	ISAT	0.000534	60	SCMA	0.001026
11	BBNI	0.000518	36	ITMG	0.000561	61	SGRO	0.000382
12	BBRI	0.000515	37	JPFA	0.001096	62	SMCB	0.000546
13	BHIT	0.020356	38	JSMR	0.000357	63	SMGR	0.000475
14	BIPI	0.000761	39	KIJA	0.001067	64	SMMA	0.000616
15	BKSL	0.001025	40	KLBF	0.000646	65	SMRA	0.000818
16	BMRI	0.000542	41	LCGP	0.000931	66	SPMA	0.001033
17	BMTR	0.000818	42	LPCK	0.001818	67	SSIA	0.001419
18	BSDE	0.000835	43	LPKR	0.000636	68	TBIG	0.000424
19	BTPN	0.000470	44	LPLI	0.002082	69	TINS	0.000659
20	BWPT	0.000803	45	LSIP	0.000534	70	TLKM	0.000521
21	CPIN	0.000970	46	MAIN	0.001496	71	TMPI	0.001562
22	CTRA	0.000988	47	MAPI	0.000909	72	TRAM	0.000415
23	CTRS	0.000778	48	MDLN	0.001239	73	UNTR	0.000595
24	DILD	0.001186	49	MEDC	0.000535	74	UNVR	0.000514
25	ELSA	0.000651	50	MNCN	0.001009	75	WIKA	0.000822

Sumber: Data sekunder diolah, 2016.

Tabel 5.

Return Ekspektasi Pasar, Standar Deviasi Dan Variance Pasar

E(Rm)	0,000638
Standar Deviasi	0,012712
Variance pasar	0,000162

Sumber: Data sekunder diolah, 2016

Pada penelitian ini, *return* aktiva bebas risiko yang digunakan adalah tingkat suku bunga Sertifikat Bank Indonesia (SBI) yang diambil secara bulanan selama tahun 2010 - 2013. Perkembangan tingkat suku bunga Sertifikat Bank Indonesia (SBI) selama tahun 2010 - 2013 diperoleh rata-rata sebesar 0,064688 atau 6,4688% dengan rata-rata bulanan sebesar 0,001348 atau 0,1348%. Oleh karena data harga

saham penutupan (*adjusted close price*) yang digunakan adalah data harian maka digunakan nilai rata-rata tingkat suku bunga Sertifikat Bank Indonesia (SBI) harian sebesar 0,000045 untuk menyeleksi saham-saham yang akan membentuk portofolio optimal. Kriteria ini adalah E(Ri) > RBR, saham yang mempunyai *return* ekspektasi lebih besar dari *return* aktiva bebas risiko sebesar 0,000045 atau 0,0045% merupakan saham yang terpilih dalam proses pembentukan portofolio optimal.

Excess Return to Beta (ERB_i) digunakan untuk mengukur kelebihan return relatif terhadap satu unit risiko yang tidak dapat didiversifikasikan yang diukur dengan Beta. Rasio ERB_i ini juga dapat menunjukkan hubungan antara dua faktor penentu investasi, yaitu return dan risiko. Pada portofolio optimal akan berisi sahamsaham yang mempunyai nilai rasio ERB_i yang lebih tinggi, sedangkan nilai rasio ERB_i yang lebih rendah tidak dimasukkan dalam pembentukan portofolio optimal. Dengan demikian diperlukan sebuah titik pembatas (*cut-off point*) yang menentukan batas nilai ERB_i yang dapat dikatakan tinggi. Saham- saham yang akan membentuk portofolio dipilih dengan membandingkan antara nilai ERB_i dengan nilai cut-off point. Sahamsaham yang membentuk portofolio optimal adalah saham-saham yang mempunyai nilai ERB_i lebih besar atau sama dengan nilai ERB_i di titik C*. Sedangkan sahamsaham yang mempunyai nilai ERBi lebih kecil dengan nilai ERBi di titik C* tidak diikut sertakan dalam pembentukan portofolio optimal. Saham-Saham Yang Membentuk Portofolio Optimal Diurutkan Berdasarkan Nilai ERBi Tertinggi Sampai Yang Terendah dapat dilihat pada Lampiran 1.

Alpha portofolio (α_D) merupakan rata-rata tertimbang dari Alpha masingmasing saham (α_i) yang membentuk portofolio. Beta portofolio (β_p) merupakan rata-rata tertimbang dari Beta masing-masing saham (β_i) yang membentuk portofolio. Return ekspektasi portofolio merupakan tertimbang dari return ekspektasi individual saham. Perhitungan return ekspektasi portofolio adalah sebagai berikut, diketahui nilai α_p sebesar 0,113664, β_p sebesar 4,242139, dan $E(R_m)$ sebesar 0,000638. Maka nilai E(Rp) adalah:

$$E(R_p) = \alpha_p + \beta_p \cdot E(R_m)$$

$$E(R_p) = 0.121110 + (98.150336 \cdot 0.000638)$$

$$E(R_p) = 0.183778$$

Jadi, *return* ekspektasi portofolio [E(Rp)] dengan Model Indeks Tunggal sebesar 0,183778. Perhitungan risiko dari portofolio optimal adalah sebagai berikut, diketahui β_p sebesar 98,150336, δ_m^2 sebesar 0,000162, dan jumlah dari (w i . σ_{ei}) sebesar 0,000908. Maka nilai dari risiko portofolio adalah:

$$\begin{aligned}
\delta_p^2 &= \hat{a}_p^2 \cdot \delta_m^2 + \left[\sum_{i=0}^n W_i \cdot \delta_{ei} \right] \\
\delta_F^2 &= (98,150336 \cdot 0,000162) + 0,000908 \\
\delta_p^2 &= 0,016768
\end{aligned}$$

Jadi risiko portofolio (δ_p^2) dengan menggunakan Model Indeks Tunggal sebesar 0,016768. Pembentukan portofolio optimal menggunakan model random dilakukan dengan cara memilih saham-saham secara random sebanyak 68 saham

dengan menggunakan proses *random* dengan bantuan komputer yaitu menggunakan program Excel.

Tabel 6.

Daftar Saham Perusahaan Yang Termasuk Dalam Pembentukan Portofolio
Secara Random

	Secara Random							
No	Nama Perusahaan	No	Nama Perusahaan					
1	Astra Agro Lestari Tbk	35	Indofood Sukses Internasional Tbk					
2	Polychem Indonesia Tbk	36	Indika Energy Tbk					
3	Adaro Energy Tbk	37	Indocement Tunggal Perkasa Tbk					
4	Tiga Pilar Sejahtera Food Tbk	38	Inovisi Infracom Tbk					
5	AKR Corporindo Tbk	39	Indosat Tbk					
6	Aneka Tambang (Persero) Tbk	40	Indo Tambangraya Megah Tbk					
7	Agung Podomoro Land Tbk	41	Japfa Comfeed Indonesia Tbk					
8	Astra Internasional Tbk	42	Kalbe Farma Tbk					
9	Alam Sutera Realty Tbk	43	Krakatau Steel (Persero)					
10	Bank Central Asia Tbk	44	Lippo Karawaci Tbk					
11	Bank Bukopin Tbk	45	Malindo Feedmill Tbk					
12	Bank Rakyat Indonesia (Persero) Tbk	46	Mitra Adiperkasa Tbk					
13	Bank Danamon Tbk	47	Modernland Realty Ltd Tbk					
14	Bhakti Investama Tbk	48	Media Nusantara Citra Tbk					
15	Bipi Petroleum Energy Tbk	49	Mayora Indah Tbk					
16	Bank Pembangunan Jawa Barat & Banten Tbk	50	Hanson Internasional tbk					
17	Bumi Resources Minerals Tbk	51	Tambang Batubara Bukit Asam (Persero) Tbk					
18	Sentul City Tbk	52	Perusahaan Gas Negara (Persero) Tbk					
19	Bank Mandiri (Persero) Tbk	53	Petrosea Tbk					
20	Global Mediacom Tbk	54	Ramayana Lestari Sentosa Tbk					
21	Borneo Lumbung Energy & Metal Tbk	55	Surya Citra Media Tbk					
22	Berau Coal Energy Tbk	56	Sampoerna Agro Tbk					
23	Bumi Serpong Damai Tbk	57	Bakrie Sumatera Plantations Tbk					
24	Bumi Resources Tbk	58	Holcim Indonesia Tbk					
25	BW Plantation Tbk	59	Semen Indonesia (Persero) Tbk					
26	Ciputra Surya Tbk	60	Sinarmas Multiartha Tbk					
27	Charoen Pokhpand Tbk	61	Suparma Tbk					
28	Energi Mega Persada Tbk	62	Surya Semesta Internusa Tbk					
29	XL Axiata Tbk	63	Timah (Persero) Tbk					
30	PP London Sumatera Plantation Tbk	64	AGIS TBk					
31	Gajah Tunggal Tbk	65	Trada Maritim Tbk					
32	Harum Energy Tbk	66	United Tractors Tbk					
33	Indofood CBP Sukses Makmur Tbk	67	Unilever Indonesia Tbk					
34	Indomobil Sukses Internasional Tbk	68	Wijaya Karya (Persero) Tbk					
	Cumber Dengumuman REI saham yang masu	11.1.	1.1 V					

Sumber: Pengumuman BEI, saham yang masuk dalam perhitungan Indeks Kompas 100 periode Januari 2014.

E-Jurnal Ekonomi dan Bisnis Universitas Udayana 5.9 (2016): 2951-2976

Perhitungan *return* ekspektasi portofolio yang dibentuk dengan model *random* adalah:

$$E(R_{p}) = \sum_{i=0}^{n} W_{i}.E(R_{i})$$

$$E(R_{p}) = 0.002819$$

Jadi, *return* ekspektasi portofolio [E(Rp)] dengan model *random* sebesar 0,002819. Perhitungan *return* ekspektasi portofolio yang dibentuk dengan model *random* adalah:

$$E(R_p) = \sum_{i=0}^{n} W_i \cdot E(R_i)$$
$$E(R_p) = 0.002819$$

Jadi, *return* ekspektasi portofolio [E(Rp)] dengan model *random* sebesar 0,002819.

Return ekspektasi portofolio pada pembentukan portofolio dengan Model Indeks Tunggal diperoleh E(R_p) sebesar 0,183778 sedangkan return ekspektasi portofolio Random diperoleh E(R_p) sebesar 0,002819. Dengan demikian, return portofolio yang dibentuk menggunakan dengan Model Indeks Tunggal dapat memberikan return ekspektasi portofolio yang berbeda dengan portofolio Random. Untuk mengetahui apakah perbedaan tersebut signifikan atau tidak, maka diperlukan pengujian hipotesis dengan membandingkan return realisasian portofolio yang diperoleh dari perhitungan menggunakan Model Indeks Tunggal dan Portofolio Random selama 1 tahun sehingga dapat mengetahui apakah terdapat perbedaan yang signifikan dari kedua return portofolio tersebut.

Tabel 7.

Statistik Deskriptif

No	Variabel	N	Minim	ım Maksimum	Rata-rata	Std. Deviasi		
1	Return Portofolio M	Iodel 68	-0,0089	26 0,003841	0,0004426	0,0018909		
	Indeks Tunggal							
2	Return Portofolio Rando	om 68	-0,0089	26 0,002926	-0,0002243	0,0018421		

Sumber: Data sekunder diolah, 2016

Berdasarkan Tabel 7 rata-rata variabel *return* portofolio model indeks tunggal adalah 0,0004426 yang memiliki kecendrungan mendekati nilai Maksimum dengan standar deviasi 0,0018909. Hal ini berarti bahwa penggunaan metode indeks tunggal dalam penentuan *return* portofolio dapat memberikan rata-rata *return* yang lebih tinggi dan optimal. Rata-rata variabel *return* portofolio *random* adalah -0,0002243 yang memiliki kecendrungan mendekati nilai Minimum dengan standar deviasi 0,0018421. Hal ini berarti bahwa penentuan *return* portofolio secara *random* kurang optimal dan cenderung memberikan rata-rata *return* yang lebih rendah.

Berdasarkan hasil uji normalitas dapat diketahui bahwa koefisien *Asymp. Sig* (2-tailed) untuk data return portofolio Model Indeks Tunggal adalah 0,254 yang lebih besar dari 0,05 dan koefisien *Asymp. Sig* (2-tailed) untuk data return portofolio *Random* adalah 0,064 yang lebih besar dari 0,05. Hal ini berarti data berdistribusi berdistribusi normal sehingga dapat dilakukan pengujian selanjutnya yaitu Uji Beda *Paired Sample T- Test*.

Berdasarkan hasil Uji Beda *Paired Samples T-Test* dapat dilihat bahwa ratarata *return* portofolio dengan menggunakan Model Indeks Tunggal sebesar 0,000442603 dan rata-rata *return* portofolio *Random* sebesar -0,000224338. Perbedaan *return* portofolio ini signifikan secara statistik dilihat dari nilai Sig (2-

tailed) sebesar 0,014 lebih kecil daripada sig α sebesar 0,05, sehingga hipotesis H_1 diterima. Hasil ini menunjukkan bahwa terdapat perbedaan yang signifikan *return* portofolio dengan menggunakan Model Indeks Tunggal dan Portofolio *Random*.

Dari hasil analisis, return ekspektasi (expected return) portofolio dari 68 perusahaan yang masuk ke dalam portofolio Model Indeks Tunggal adalah sebesar 0,183778 (18,3778%). Return tersebut lebih tinggi jika dibandingkan dengan expected return pasar yaitu sebesar 0,000638 (0,0638%) dan jauh lebih tinggi jika dibandingkan dengan return aktiva bebas risiko (R_{BR}) yaitu sebesar 0,000045 (0,0045%). Return ekspektasi portofolio Model Indeks Tunggal juga lebih tinggi dibandingkan dengan return ekspektasi portofolio Random sebesar 0,002819 (0,2819%). Jika dilihat dari risiko portofolio Model Indeks Tunggal memiliki risiko sebesar 0,018544 (1,8544%) yang lebih kecil dibandingkan dengan risiko portofolio Random sebesar 0,018644 (1,8644). Hasil ini sejalah dengan penelitian yang dilakukan oleh Pandya dan Rao (1998) yang menyimpulkan bahwa return sahamsaham yang didiversifikasi akan lebih tinggi dibanding dengan return saham yang tidak didiversifikasi. Dalam teori investasi dijelaskan bahwa salah satu strategi untuk meminimalkan risiko investasi adalah dengan melakukan diversifikasi saham dalam suatu portofolio. Manfaat diversifikasi sekuritas secara signifikan dapat meningkatkan trade-off risiko dan return portofolio investasi (Hallinan, 2011), serta Pujiani (2007) menyatakan analisis portofolio dapat digunakan untuk menentukan return optimal pada risiko yang minimal. Hal tersebut didukung oleh Teori Portofolio Markowitz tahun 1952 yang juga memformulasikan keberadaan unsur *return* dan risiko dalam suatu investasi.

Hasil penelitian ini juga sejalan dengan penelitian yang dilakukan olrh Wahyudi (2002), Susanti (2012) dan Nursetiaji (2013) yang menyimpulkan bahwa penentuan portofolio optimal dengan menggunakan Model Indeks Tunggal dapat memberikan *return* yang lebih optimal dibandingkan dengan portofolio *Random*. Walaupun jika dibandingkan dengan *return* ekspektasinya terdapat selisih yang cukup besar, *return* realisasian portofolio dengan menggunakan Model Indeks Tunggal lebih besar jika dibandingkan dengan *return* aktiva bebas risiko yaitu 0,000442603 (0,0442603%) lebih besar dari 0,000045 (0,0045%).

Investasi tidak lepas dari adanya fluktuasi harga saham yang dapat mempengaruhi besarnya *return* (imbal hasil) dan risiko. Dimana terjadi fluktuasi pada rata-rata harga saham perusahaan indeks kompas 100 yaitu terjadi peningkatan pada 2010 sebesar 8775,95 hingga 2012 menjadi 9285,30 kemudian terjadi penurunan mulai tahun 2013 (www.idx.co.id). Fluktuasi harga tersebut berpengaruh signifikan terhadap *return* realisasian portofolio yaitu terdapat selisih yang cukup besar antara *return* ekspektasian dengan *return* realisasian portofolio.

Kewal (2013) menyebutkan bahwa periode tahun 2009 sampai dengan 2011 merupakan periode *bullish* pasar modal. Dalam hal ini Indeks Harga Saham Gabungan (IHSG) mengalami kenaikan yang signifikan. Hasil penelitian Wardjianto (2005) menunjukkan bahwa portofolio optimal yang disusun berdasarkan konsep model indeks tunggal hanya cocok diterapkan untuk penyusunan portofolio saham

ketika pasar dalam kondisi *bullish*. Kegagalan model portofolio optimal berbasiskan model indeks tunggal terjadi ketika pasar dalam kondisi *bearish*. Turunnya kondisi pasar di Bursa Efek Indonesia ternyata berpengaruh terhadap seluruh kinerja

portofolio yang disusun. Hasil ini berbeda dengan hasil penelitian yang dilakukan

oleh Prastiwi (2006) yang menyimpulkan bahwa tidak ada perbedaan return

portofolio antara penentuan portofolio dengan menggunakan model indeks tunggal

dengan penentuan portofolio dengan mengunakan model random.

SIMPULAN DAN SARAN

Berdasarkan hasil pengujian hipotesis terhadap *return* realisasian masing-masing kandidat saham portofolio model indeks tunggal dan kandidat saham portofolio *random* periode penelitian 2014 diperoleh hasil yaitu terdapat perbedaan yang signifikan *return* penentuan portofolio optimal dengan menggunakan Model Indeks Tunggal dan Portofolio *Random*. Penentuan portofolio optimal dengan menggunakan Model Indeks Tunggal dapat memberikan *return* yang lebih besar dan optimal dibandingkan dengan Portofolio *Random*. Meskipun terdapat selisih antara *return* ekspektasi portofolio dengan *return* realisasiannya, Model Indeks Tunggal dapat menjadi salah satu alternatif metode untuk penentuan portofolio optimal.

Saran yang dapat diberikan bagi investor untuk menanamkan modalnya berdasarkan model indeks tunggal dimana telah terpilih 68 saham pembentuk portofolio optimal. Model indeks tunggal dapat menjadi salah satu metode yang digunakan dalam pembentukan portofolio karena dapat memperoleh *return* ekspektasi tertentu dengan risiko yang paling rendah. Seiring dengan perubahan harga

saham, portofolio yang telah terbentuk hendaknya selalu diperbaiki, dan investor harus tetap melakukan penilaian terhadap kinerja portofolio secara terus menerus baik dalam aspek tingkat keuntungan yang diperoleh maupun risiko yang ditanggung.

Sampel yang digunakan dalam penenlitian ini adalah saham-saham yang terdaftar dan aktif serta membagi dividen selama periode pengamatan tanpa memperhatikan sector industrinya sehingga kemungkinan mempengaruhi hasil penelitian. Perluasan penggunaan sampel dengan memperhatikan sektor industrinya dapat dilakukan agar diketahui pengaruh sektor industri terhadap hasil penelitian.

REFERENSI

- Dahlan, Sayudi., Topowijono dan Zahroh Z.A. 2013. Penggunaan Single Index Model Dalam Analisis Portofolio untuk Meminimumkan Risiko bagi Investor di Pasar Modal, *Jurnal Administrasi Bisnis (JAB)*. Vol.6 No.2 p:1-10.
- Eko, Umanto. 2008. Analisis dan Penilaian Kinerja Portofolio Optimal Saham-saham LQ-45, *Bisnis & Birokrasi, Jurnal Ilmu Administrasi dan Organisasi*. Vol.15 No.3 p:178-187.
- Hallinan, Kelly. 2011. The Role of Emerging Market in Investment Portofolios, *Thesis*. University of Connecticut, Digital Commons@Uconn. http://digitalcommons.uconn.edu/cgi/viewcontent.cgi?article=1182&context= srhonors theses
- Harold, Bierman Jr. 1998. A Utility Approach to The Portfolio Allocation Decision and The Investment Horizon, *Journal of Portfolio Management*. Vol.25 No.1 p:81-87.
- Hartono, Jogiyanto. 2007. *Metode Penelitian Bisnis: Salah Kaprah dan Pengalaman-Pengalaman*. Yogyakarta: BPFE.
- Hartono, Jogiyanto. 2013. *Teori Portofolio dan Analisis Investasi*: Edisi Kedelapan. Yogyakarta: BPFE-Yogyakarta.

- Kewal, Suramaya Suci. 2013. Pembentukan Portofolio Optimal Saham-saham Pada Periode *Bullish* di Bursa Efek Indonesia. *Jurnal Economia*. Vol.9 No.1 p:81-91.
- Mary, J. Francis dan G. Rathika. 2015. The Single Index Model and The Construction of Optimal Portfolio with CNXPHARMA Scrip, *International Journal of Management*. Vol. 6 No.1 p:87-96.
- Mirah dan Trisnadi wijaya. 2013. Analisis Model Indeks Tunggal Portofolio Saham di Bursa Efek Indonesia (BEI) Periode 2009-2011, *eprints.mdp.ac.id.* p:1-10.
- Nofri, Yossi Zul. 2012. Analisis Pembentukan Portoflio Optimal Saham dengan Menggunakan Single Indeks Model dan Random Model di BEI. www.academia.edu.
- Nursetiaji, Muhammad Arief. 2013. Penentuan Portofolio Saham Optimal Dengan Menggunakan Model Indeks Tunggal Dan Model Indeks Random Pada Perusahan Manufaktur Di BEI Periode 2008-2010. *Thesis*, Upn Veteran Yogyakarta. http://Repository.Upnyk.Ac.Id/7099/1.
- Pandya, Anil M *and* Narendar V. Rao, 1998. Diversification and Firm Performance: An Empirical Evaluation, *Journal of Financial and Strategic Decisions*. Vol.11 No.2 p:67-81.
- Pasaribu, Rowland Bismark Fernando. 2013. Pembentukan Portofolio Saham Optimal dengan Model Indeks Tunggal: Forming Bulanan Periode 2007 pada Saham LQ 45. *Corporate Finance Working Paper Universitas Gundarma No. 003*, p:1-15 http://:www.academia.edu.
- Prastiwi, Nungki Yussi. 2006. Analisis Investasi dan Penentuan Portofolio Saham Optimal di Bursa Efek Jakarta (Studi Komparatif Penggunaan Model Indeks Tunggal dan Model Random pada Saham-saham Perusahaan Manufaktur Tahun 2003-2004). *ejournal Universitas Islam Indonesia Yogyakarta*.
- Pujiani, Dewi. 2007. Analisa Portofolio Optimal dengan Model Indeks Tunggal Atas Saham Industri LQ-45 di Bursa Efek Jakarta. *Tesis*. UNS.
- Sukarno, M. 2007. Analisis Pembentukan Portofolio Optimal Saham Menggunakan Single Indeks di Bursa Efek Jakarta. *Tesis*. Universitas Diponegoro Semarang.
- Susanti. 2012. Analisis Pembentukan Portofolio Optimal Saham dengan Menggunakan Model Indeks Tunggal (Studi pada Saham LQ-45 di Bursa

- Efek Indonesia Periode Agustus 2009 Juli 2012), Artikel Ilmiah di Publishing oleh Universitas Sumatera Utara. p:1-13.
- Sutisman, Entar. 2013. Analisis Portofolio Saham Sebagai Dasar Pertimbangan Investasi pada Perusahaan yang terdaftar di Bursa Efek Indonesia, *Jurnal Future*. Vol.1 No.1 p:1-13.
- Wahyudi, Henry Dwi. 2002. Analisis Investasi dan Penentuan Portofolio Saham Optimal di Bursa Efek Jakarta (Studi Komparatif Penggunaan Model Indeks Tunggal dan Model Random pada Saham-saham Indeks LQ-45 periode 1997-2000). *Tesis*, Program Magister Manajemen Universitas Diponegoro.
- Wardjianto. 2005. Perbandingan Kinerja Portofolio Saham Pada Pasar *Bullish* dan *Bearish:* Studi Empiris pada Saham –saham Jakarta Islamic Index (JII) BEJ. *Tesis*. Program Studi Magister Manajemen Program Pascasarjana Universitas Diponegoro Semarang.
- Witiastuti, Rini Setyo. 2012. Analisis Kinerja Portofolio: Menggunakan Pengujian Single Indeks Model dan Naive Diversification, *Jurnal Dinamika Manajemen*. Vol. 3 No.2 p:122-132.
- Wibowo, Windi Martya., Sri Mangesti Rahayu, dan Maria Goretti Wi Endang N.P. 2014. Penerapan Model Indeks Tunggal untuk Menetapkan Komposisi Portofolio Optimal (Studi pada Saham-saham LQ-45 yang Listing di Bursa Efek Indonesia (BEI) Tahun 2010-2012), *Jurnal Administrasi Bisnis*. Vol.9 No.1 p:1-9.