ⁱ IMAX2021 Forside vår 2022

Institutt for matematiske fag

Eksamensoppgåve i IMAA2021/IMAG2021/IMAT2021 Matematiske metoder 2

Eksamensdato: 13. mai 2022

Eksamenstid (frå-til): 09:00 – 13:00

Hjelpemiddelkode/Tillatne hjelpemiddel: A

Fagleg kontakt under eksamen:

Andrey Chesnokov Tlf.: 464 20 404 Hans Jakob Rivertz Tlf.: 938 32 172

ANNAN INFORMASJON:

Skaff deg eit overblikk over oppgåvesettet før du byrjar å svare på oppgåvene.

Les oppgåvene nøye, gjer deg opp dine eigne meiningar og presiser i svara dine kva for føresetnadar du har lagt til grunn i tolking/avgrensing av oppgåva. Fagleg kontaktperson skal berre kontaktast dersom du meiner det er direkte feil eller manglar i oppgåvesettet. Vend deg til ei eksamensvakt om du ynskjer å kontakte faglærar. Noter gjerne spørsmålet ditt på førehand.

Varslingar: Dersom det oppstår behov for å gje beskjedar til kandidatane medan eksamen er i gang (f.eks. ved feil i oppgåvesettet), vil dette bli gjort via varslingar i Inspera. Eit varsel vil dukke opp som en dialogboks på skjermen i Inspera. Du kan finne att varselet ved å klikke på bjølla i øvre høgre hjørne på skjermen.

Trekk frå/avbroten eksamen: Blir du sjuk under eksamen, eller av andre grunnar ynskjer å levere blankt/avbryte eksamen, gå til "hamburgermenyen" i øvre høgre hjørne og vel «Lever blankt». Dette kan <u>ikkje</u> angrast sjølv om prøven framleis er open.

Tilgang til svara dine: Etter eksamen finn du svara dine i arkivet i Inspera. Merk at det kan ta ein virkedag før eventuelle handteikningar vert tilgjengelege i arkivet.

Regning med komplekse tall

La u=2+3i og v=1-2i.

Rekn ut u + v, uv og u/v. Skriv svaret på standard (kartesisk) form.

b)
$$uv=$$

c)
$$u/v=$$

Maks poeng: 3

² Komplekse tall algebra

Faktoriser utrykket z^2-4z+5 . Svaret må være på forma $(z-z_1)(z-z_2)$, der z_1 og z_2 er komplekse tal på kartesisk form.

³ Partielle deriverte

Finn alle partielle deriverte av første og andre orden til funksjonen $f(x,y)=x^2y^2-9x^2-y^3/9+27y$.

$$rac{\partial f}{\partial x}(x,y)=$$

$$rac{\partial f}{\partial y}(x,y)=$$

$$rac{\partial^2 f}{\partial x^2}(x,y)=$$

$$rac{\partial^2 f}{\partial x \partial y}(x,y) =$$

$$rac{\partial^2 f}{\partial y \partial x}(x,y) =$$

$$rac{\partial^2 f}{\partial y^2}(x,y)=$$

⁴ Kritiske punkter

Finn og klassifiser alle kritiske punkt til funksjonen $f(x,y)=x^2y^2-9x^2-y^3/9+27y$. (Funksjonen er den same som i førre oppgåve).

I bildet under skal du flytte punkta til riktig gult område. Du må også svare på kva for punkt som ikkje er kritiske punkt. (Det vil seie at alle dei 8 punkta må flyttast til eit av dei fem gule områda). Flytt punkta (tal-para) til riktig gult område. Sadelpunkta flyttast til området merka med **Sadelpunkter**, osv. Du får poeng for kvart riktig svar.

⁵ Egenverdier

Matrisa
$$m{A} = egin{bmatrix} 5 & -7 & 2 \ 2 & -4 & 2 \ 2 & 2 & 5 \end{bmatrix}$$
 har tre forskjellige eigenverdiar.

To av eigenvektorane til A er gitt ved $v_1=egin{bmatrix}2\\2\\-1\end{bmatrix}$ og $v_2=egin{bmatrix}1\\1\\4\end{bmatrix}$.

a)	Finn egenverd	liane λ_1 og λ	2 som høyre	r samen med e	egenvektorane $\pmb{v_1}$	og $oldsymbol{v_2}$

Eigenverdien λ_1 som høyrer til eigenvektoren v_1 er

Eigenverdien λ_2 som høyrer til eigenvektoren v_2 er

b) Finn	den	siste	eigen	verdien	til	\boldsymbol{A}	

Den siste eigenverdien til A er $\lambda_3=$

c) Finn ein eigenvektor v_3 til A som høyrer til eigenverdien λ_3 .

Den siste eigenvektoren til A er $v_3=$

Skriv svaret på forma [x , y , z], der tala x, y og z er heiltal.

⁶ IMAx-2021-V2022 Taylor

a) Finn dei tre første ledda i Taylorrekkja til f(x) om x=2.	
b) Kva er konvergenssenteret til Taylorrekkja i oppgåve a?	
c) Kva er konvergensradiusen til Taylorrekkja i oppgåve a?	
d) Kva er riktig for endepunkta til konvergensintervalet til Taylorrekkja i oppg	åve a?
Vel eitt alternativ	
Taylorrekkja i oppgåve a konvergerer i høgre og venstre endepunkt av konvergensintervallet.	
Taylorrekkja i oppgåve a konvergerer i høgre endepunkt og divergerer i av konvergensintervallet.	venstre endepunkt
Taylorrekkja i oppgåve a divergerer i høgre endepunkt og konvergerer i av konvergensintervallet.	venstre endepunkt
Taylorrekkja i oppgåve a divergerer i høgre og venstre endepunkt av ko	onvergensintervallet.

7 Prims algoritme

Du skal benytte Prims algoritme til å finne det minimale utspennende treet.

Du skal starte i **Den Haag.** Om du har to muligheter for valg av neste kant så kan du velge den du vil.

Plasser tala øvst i bildet nedanfor på kantane i den rekkjefølgja du vel kantane.

Ekstra bilde så du kan se avstandene etter at du har besvart

8 Komplement til tregrafer

Teikn alle ikkje-isomorfe grafar med fem noder som er komplementær til et tre.

- Du kan teikne grafane ved å trykke på blyant-ikonet.
- I tillegg skal du skrive ein forklaring av framgangsmåten der du blant anna forklarer kvifor du meiner at det ikkje finns fleire slike grafar enn dei du har teikna.

Skriv svaret ditt her...

Format	- B	<i>Ι</i> <u>U</u>	Χ ₂	$\mathbf{x}^{z}\mid \underline{\mathbf{I}}_{x}\mid \widehat{\square}$	9 1=	:≣ Ω	ΕΙΣ	
X								
							Words	s: 0

9 Logikk

i.) Gitt følgjande pseudokode:

Kva for logiske utsegn korresponderer til de tilfella kor funksjonen run() vart køyrt? Finn alle riktige svaralternativ.

Vel eitt eller fleire alternativ

```
lacksquare a 	o (b ee \lnot c)
```

$$\ \ \, \square \, \left(a \wedge b\right) \vee \left(a \wedge \neg c\right)$$

$$\ \ \, \square \, \left(a \vee b\right) \wedge \left(a \vee \neg c\right)$$

$$\square a \wedge (b \vee \neg c)$$

ii.) La P, Q og R være mengder med universalmengd U. Gitt følgjande pseudokode der vi bruker mengdeoperasjonar og P, Q, R og U er av datatype set (mengd):

Kva for samansette mengder korresponderer til mengd R etter at denne koden er køyrt? Finn alle riktige svaralternativ.

- $lacksquare \overline{P} \cup Q$
- $\overline{P} \cap \overline{\overline{Q}}$
- $\neg (U-P) \cup Q$
- ${}^{\scriptscriptstyle lack} U (P \cup Q)$
- $\overline{P} \cap Q$
- $\,\,\overline{P \cup \overline{Q}}$

¹⁰ Nagasjoner av Universale utsagn

Kva for utsegn er negasjoner av følgjande utsegn? $\forall n \in \mathbb{Z}, n | 36 \rightarrow (n | 4 \lor n | 9)$ Merk alle riktige alternativ.

Vel eitt eller fleire alternativ

¹¹ Mengdelære

La universalmengda vere S={0,1,2,3,4,5,6,7,8,9,10}

Skriv følgjande på forma $\{a_1,\cdots,a_n\}$ der $a_i,i=1\cdots n$ er elementa i mengda. F. eks.: Mengda som inneheld elementa 2 og 3 kan noterast som $\{2,3\}$

$$\{x\in S|(x-3)^2\in S\}=$$

$$\{x\in S|(x-1)/3\in\mathbb{Z}\}=$$

$$\{x\in S|\exists y\in S\;(x=\sqrt{2y})\}=$$

$$\{x\in S|\exists y\in Sorall z\in S\ (x=yz)\}=$$

 $\{x \in S | \exists y \in S \ (x = yz)\} =$

12 Kombinatorikk

Haakon, Olav og Harald er i ein iskrembar og skal velgje is. På menyen er det 8 smaker kuleis.

a) Haakon vil bestille 3 kuler is med 3 forskjellige smaker stabla i høgda. Plasseringa til kulene har betydning for Haakon da han gjerne vil ete dem i ein gitt rekkjefølgje.

i۱	Kva	for	slags	problem	er	dette?
.,	rva	101	Siaus	DIODIGIII	CI	uelle:

- Med tilbakelegging, uordna utval.
- Utan tilbakelegging, ordna utval.
- Med tilbakelegging, ordna utval.
- Utan tilbakelegging, uordna utval.

ii) Kva for utrekning er riktig?

- $0 8C3 = \binom{8}{3}$
- **8!**
- 8^3
- **3!**
- $\bigcirc 8P3 = \frac{8!}{3!}$

iii) Kor mange valmoglegheiter har Haakon?

b) Olav vil bestille is i beger. Han vil ha 4 kuler is med 4 forskjellege smakar. Han er ikkje opptatt av korleis isen ligg i skålen. Det er tilfeldig i kva for rekkjefølgje han bestiller iskulene.

i) Kva for slags problem er dette?

- Med tilbakelegging, uordna utval.
- Utan tilbakelegging, ordna utval.
- Med tilbakelegging, ordna utval.
- Utan tilbakelegging, uordna utval.

ii۱	Kva	for	utrekning	er	riktia?
Ш,	, rva	101	utiekiiiig	GI.	IINUGE

- $\bigcirc 8C4 = \binom{10}{4}$
- **4!**
- **48**
- $0.8P4 = \frac{8!}{4!}$
- **84**

iii) Kor mange valmoglegheiter har Olav?

c) Harald har oppdaga at han kan velgje same smak fleire gonger. Han vil kjøpe 5 kuler is. Rekkjefølgja har ikkje noko å seie og iskulene kan ha same smak.

i) Kva for slags problem er dette? Vel eitt alternativ

- Uten tilbakelegging, uordnet utvalg.
- Med tilbakelegging, uordnet utvalg.
- Uten tilbakelegging, ordnet utvalg.
- Med tilbakelegging, ordnet utvalg.

ii) Kva for utrekning er riktig?

$$\bigcirc 14P5 = \frac{14!}{5!}$$

- 5¹⁰
- $\frac{10!}{5!}$
- $\bigcirc 14C5 = \binom{14}{5}$
- **10**⁵

iii) Kor mange valmoglegheiter har Harald?

IMAx2021 Vår 2022 Skriftlig eksame

	Maks poeng: 9
3	IMAX2021 Funkjoner Vår 2022
	a) Kor mange forskjellige injektive funksjonar er det frå mengda {A,B,C,D} til mengda {1,2,3,4,5}?
	b) Kor mange forskjellige funksjonar er det frå mengda {A,B,C,D} til mengda {0,1,2}?
	c) Kor mange forskjellige bijektive funksjonar er det frå mengda {A,B,C,D} til mengda {0,1,2,3}?
	d) Kor mange forskjellige surjektive funksjonar er det frå mengda {1,2,3,4,5} til mengda {A,B,C,D}?
	Maks poeng: 4

¹⁴ Tallteori - kryptografi 2022

Gitt primtala $p=29$ og $q=149$, og produktet $\ n=pq=4321$.
a) Finn $\phi(4321)$ (ϕ er Eulers totientfunksjon)
Du vil bruke RSA med offentleg krypteringsnøkkel $(n,e)=(4321,25)$.
b) Du kan bruke dette som offentleg nøkkel fordi:
Vel eitt alternativ
 4321 og 25 er relativt primiske
○ 25 er eit kvadrattall
\bigcirc 25 og $\phi(4321)$ er relativt primiske.
○ 25 er kjent.
○ 25 er hemmeleg
c) Krypter meldinga 42 med nøkkelen ovanfor Svar

d) Finn den private dekrypteringsnøkkelen (n,d) tilhøyrande den offentlege nøkkelen (n,e) ovanfor.

$$d =$$

15 Eventuelle merknader

Eventuelle merknadar

Dette er ikkje ein oppgåve, og du som regel vil ikkje få poeng (eller trekk) for det du skriv her.

Du kan skrive i tekstfeltet nedst dersom du har merknadar. For eksempel, om du har gjort seg ei meining om noko vesentleg for å kunne løyse én av oppgåvane, eller om du opplevde tekniske problemer som ikkje eksamensvaktane kunne hjelpe med.

Om du berre legg ved mellomrekningar for nokre av oppgåver vil du i utgangspunkt ik uttelling for det.				
Skriv svaret ditt her				