

CLIPPEDIMAGE=JP401251904A
PAT-NO: JP401251904A
DOCUMENT-IDENTIFIER: JP 01251904 A
TITLE: ADAPTIVE ARRAY ANTENNA SYSTEM

PUBN-DATE: October 6, 1989

INVENTOR-INFORMATION:

NAME
ITO, KIYOHICO
OGAWA, YASUTAKA
OMIYA, MANABU
UENO, MOTOHARU

ASSIGNEE-INFORMATION:

NAME	COUNTRY
ITO KIYOHICO	N/A
TOSHIBA CORP	N/A

APPL-NO: JP63076583

APPL-DATE: March 31, 1988

INT-CL_(IPC): H01Q003/26

ABSTRACT:

PURPOSE: To always obtain a multipath fading reducing effect with the title system by making a reference signal synchronous to the multipath component having the maximum incident power at a high speed.

CONSTITUTION: LMS(Least Mean Square) parallel antenna operations are performed based on the referring signals r_1, r_2, \dots, r_n of plural sequences having time lags and the output of the signal processing section whose error signal power becomes the minimum among the signal processing section 2a, 2b, 2c operating in parallel with each other. Since the referring signal supplied to the selected signal processing section is always synchronous to the multipath component having the maximum power, the referring signal becomes synchronous to the multipath component at a high speed. Therefore, a good multipath fading reducing effect can be obtained even under a multipath fading environment associated with abrupt changes.

COPYRIGHT: (C)1989,JPO&Japio

⑫ 公開特許公報 (A)

平1-251904

⑤Int.Cl.

H 01 Q 3/26

識別記号

厅内整理番号

⑬公開 平成1年(1989)10月6日

C-7402-5J

審査請求 未請求 請求項の数 2 (全7頁)

④発明の名称 アダプティブアレーアンテナ装置

②特願 昭63-76583

②出願 昭63(1988)3月31日

特許法第30条第1項適用 1987年10月15日 社団法人電子情報通信学会主催の「電子情報通信学会アンテナ・伝播研究会」において文書をもつて発表

⑦発明者 伊藤 精彦 北海道札幌市中央区南五条西16丁目1331番地

⑦発明者 小川 孝 北海道札幌市豊平区水車町8丁目4番26号

⑦発明者 大宮 学 北海道札幌市白石区本通り十五南2-19

⑦発明者 上野 元治 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内

⑦出願人 伊藤 精彦 北海道札幌市中央区南五条西16丁目1331番地

⑦出願人 株式会社東芝 神奈川県川崎市幸区堀川町72番地

⑦代理人 弁理士 鈴江 武彦 外2名

明細書

1. 発明の名称

アダプティブアレーアンテナ装置

2. 特許請求の範囲

(1) 複数個のアンテナ素子を配列して構成されたアレーアンテナと、参照信号発生手段と、前記アレーアンテナの各アンテナ素子の出力を荷重係数を乗じた後加算して得られる荷重和信号を出力とし、この荷重和信号の参照信号に対する誤差信号とアンテナ素子の出力との相関値を荷重係数とする信号処理部とを備えたアダプティブアレーアンテナ装置において、前記参照信号発生手段は該アンテナ装置の出力から再生された基準参照信号を遅延させることにより相対的に時間差を持つ複数系列の参照信号を発生し、前記信号処理部は複数系列の参照信号に対応して複数個設けられ、さらに複数個の信号処理部の出力のうち、前記誤差信号の電力が最小となる信号処理部の出力を選択する選択手段を備えたことを特徴とするアダプティブアレーアンテナ装置。

(2) 前記参照信号発生手段は、前記アンテナ装置の出力から復調されたデータにより、該アンテナ装置の出力とは独立して動作するキャリア発生器の出力を変調して前記基準参照信号を生成することを特徴とする請求項1に記載のアダプティブアレーアンテナ装置。

3. 発明の詳細な説明

【発明の目的】

(産業上の利用分野)

この発明は、アダプティブアレーアンテナ装置に関する。

(従来の技術)

複雑化する電波環境において、アンテナ技術に対しては不要信号により生ずる電波干渉の低減、移動無線通信におけるマルチバスフェージングの軽減、所望信号の追尾などが重要な課題となってきている。この様な技術的課題を解決するものとして、アダプティブアレーアンテナが注目されている。

アダプティブアレーアンテナの中で代表的なも

のとして、LMS (Least Mean Square) アダプティブアレー・アンテナが知られている。これはアレー・アンテナ出力と受信側で用意された参照信号との二乗誤差を最小にするという規範の下に動作するものである。このLMSアダプティブアレー・アンテナは、不要信号により生ずる電波干渉やマルチバスフェージングを低減するとともに、所望信号到來方向にアンテナビームを自動的に指向させることができるために、移動無線用のアンテナとして現在多くの研究がなされている。例えばマルチバスフェージングを軽減するLMSアダプティブアレー・アンテナについては、小川、大宮、伊藤、・LMSアダプティブアレーによるマルチバスフェージングの軽減”、電子情報通信学会技術研究報告、A・P 87-81、1987年10月15日、が報告されている。

LMSアダプティブアレー・アンテナの動作のうち、本発明に間違の深いマルチバス成分のアンテナへの到來時刻と参照信号の発生時刻の差 $T_r - \tau$ によるアンテナ出力の所望信号成分対不要信号成分

出力のDU比は、 $T_r = 0$ 、および $T_r = \tau$ において良好な値を得ている。これは $T_r = 0$ では参照信号がマルチバス成分S(i)に、また $T_r = \tau$ では参照信号がマルチバス成分M(i)にそれぞれ同期することによって、マルチバスフェージングが軽減されているためである。

一方、DN比については $T_r = 0$ の時の方が $T_r = \tau$ の時に比較して良好な特性が得られている。これはマルチバス成分S(i)の入射電力がマルチバス成分M(i)のそれより大きいためである。また、参照信号がマルチバス成分S(i)、M(i)のいずれにも同期していないときには、出力のDU比が急速に劣化することがわかる。

以上から、マルチバスフェージングの軽減のために、参照信号が常に入射電力の大きいマルチバス成分に同期していかなければならない事が結論付けられる。実際のLMSアレー・アンテナの構成では、参照信号は何らかの手段によりアンテナ出力から再生される。従って、再生された参照信号がマルチバスフェージング軽減に有効であるため

電力比(DU比)、信号成分対雑音成分電力比(DN比)について考察する。今、第7図に示すように二つのマルチバス成分S(i)、M(i)がアンテナに到來するとする。また、S(i)とM(i)の間にはなる遅延時間差 τ が存在するものとし、遅延時間差 τ は今後重要なと思われる高速デジタル移動通信において問題になる程度に長い、すなわち使用するデジタル変調方式(例えば位相変調方式)におけるタイムスロット時間に比べて無視できない程度に大きいとする。

第8図はアンテナへのマルチバス成分の到來時刻と、参照信号の発生時刻との差 T_r によるDU比、DN比の変化の一例を示したものである。但し、図においてはマルチバス成分S(i)とM(i)の遅延時間差 τ を $0.4(T)$ とし、マルチバス成分S(i)の入射電力はマルチバス成分M(i)のそれより大きいとした。また、マルチバス成分S(i)、M(i)のうちアンテナ出力での電力が大きい方を所望信号成分、他方を不要信号成分と考えることにする。図に示すように、LMSアレー・アンテナ

には、再生された参照信号の時間波形がマルチバス成分のそれと一致していると共に、再生された参照信号がマルチバス成分のうちの最大電力のマルチバス成分に同期していることが必要である。

従来技術においては、再生参照信号の遅延時間を逐次変化させることにより、再生された参照信号を所望のマルチバス成分に同期させる方法がとられていた。しかしながら、この方法では再生された参照信号を所望のマルチバス成分に同期させるためには比較的長い時間が必要であり、急激に変化すると考えられるマルチバス・フェージング環境の下ではLMSアレー・アンテナ本来の動作を維持することが困難であった。

(発明が解決しようとする課題)

このように従来の技術では、再生参照信号の遅延時間を逐次変化させることにより、再生された参照信号を所望のマルチバス成分に同期させるようとしているため、急激なマルチバス・フェージング環境下ではLMSアレー・アンテナ本来の動作を維持すること難しく、マルチバスフェージング

軽減効果が得られないという問題があった。

この発明は、急激な変化を伴なうマルチバスフェージング環境下においても参照信号を所望のマルチバス成分に高速にほぼ同期させることができ、良好な動作特性を実現できるアダプティブアレーランテナ装置を提供することを目的とする。

【発明の構成】

(課題を解決するための手段)

この発明では、アンテナ装置の出力から再生された基準参照信号を遅延して相対的に時間差を持つ複数系列の参照信号を発生する参照信号発生手段を設けるとともに、アレーランテナを構成する複数個のアンテナ素子の出力を荷重係数を乗じた後加算して得られる荷重和信号を出力とし、この荷重和信号の参照信号に対する誤差信号とアンテナ素子の出力との相関値を荷重係数とする信号処理部を複数系列の参照信号に対応して複数個設け、さらに複数個の信号処理部の出力のうち、誤差信号電力が最小となる信号処理部の出力を選択する選択手段を備えたことを特徴とする。

理部の出力が最終的な出力として選択される。これにより選択された信号処理部に供給されている参照信号は、常に最大電力を持つマルチバス成分に同期しているので、結果的にそのマルチバス成分に対して参照信号が高速に同期することになる。

(実施例)

この発明の一実施例に係るLMSアレーランテナを用いたアダプティブアレーランテナ装置を第1図に示す。

第1図において、複数個（この例では3個）のアンテナ素子1a, 1b, 1cは例えば円形に配列されてアレーランテナを形成する。アンテナ素子1a, 1b, 1cによって受信された信号は、複数個（この例では3個）の信号処理部2a, 2b, 2cに分配・入力される。

信号処理部2a, 2b, 2cはそれぞれ第2図に示すように構成される。第2図において、アンテナ素子1a, 1b, 1cの出力は乗算器11a, 11b, 11cにより荷重係数が乗じられた後、加算器13により加算されて荷重和信号となる。

また、参照信号発生手段は、アンテナ装置の出力、つまり選択手段により選択された信号処理部の出力から復調されたデータにより、アンテナ装置の出力とは独立して動作するキャリア発生器の出力を変調して基準参照信号を生成する。

(作用)

マルチバスフェージングを抑圧するためには、受信した多段のマルチバス成分のいずれか一つに参照信号が同期している必要があるが、マルチバス成分到來時間は一般には既知ではない。本発明ではアンテナ装置の出力から再生された基準参照信号を遅延させることにより複数系列の相対的に時間差を持つ参照信号が生成され、その各参照信号に対応させて備えられた信号処理部により通常のLMSアレーランテナ動作が行なわれる。すなわち、時間差を持った複数系列の参照信号に基づくLMSアレーランテナ動作が並行して行なわれる。

そして、これらの並行動作している信号処理部の出力のうち、誤差信号電力が最小となる信号処

理部の出力が最終的な出力として選択される。これにより選択された信号処理部に供給されている参照信号は、常に最大電力を持つマルチバス成分に同期しているので、結果的にそのマルチバス成分に対して参照信号が高速に同期することになる。

この荷重和信号は信号処理部の出力として取出されるとともに、演算器14に入力され、第1図における参照信号発生器3から供給される参照信号に対する荷重和出力の誤差信号が生成される。この誤差信号は相関器12a, 12b, 12cに入力され、アンテナ素子1a, 1b, 1cの出力との相関値が求められる。そして、相関器12a, 12b, 12cの出力が乗算器11a, 11b, 11cに荷重係数として与えられる。

第1図に説明を戻すと、信号処理部2a, 2b, 2cの出力は選択器4に入力され、誤差信号電力が最小となる信号処理部の出力が選択的にアレーランテナの最終出力として取出される。また、選択器4の出力は参照信号発生器3にも入力され、相対的に時間差を持つ複数系列（この例では3系列）の参照信号r₁, r₂, r₃が発生される。

第3図は参照信号発生器3の具体的な構成例であり、本アンテナ装置の出力である第1図の選択器4の出力20は識別器21に入力され、データが復調される。識別器21の出力によって変調器

22でキャリア発生器23からのキャリア信号が変調されることにより、基準参照信号が生成される。そして、この基準参照信号が遅延回路24により所定の時間間隔をもって遅延されることにより、基準参照信号を含めて3系列の参照信号 r_1 , r_2 , r_3 が得られる。これらの参照信号 r_1 , r_2 , r_3 が第1図の信号処理部2a, 2b, 2cにそれぞれ供給される。

今、例えば第7図に示したように、二つのマルチバス成分 $S(t)$, $M(t)$ が遅延時間差 τ をもってアンテナに到来したとする。このとき第3図の参照信号発生器3においてマルチバス成分 $S(t)$ に同期して基準参照信号が再生され、この再生された基準参照信号を同図に示すように遅延回路24で遅延時間 $\Delta 12$, $\Delta 13$ だけ遅延させることによって、基準参照信号自身を含めて3系列の参照信号 r_1 , r_2 , r_3 が発生される。なお、遅延時間 $\Delta 12$ は二つのマルチバス成分 $S(t)$, $M(t)$ の遅延時間差 τ に等しいことが理想であるが、 τ に比較的近ければよい。

「データ通信の原理」ラティス社、昭和48年発行、に詳細に述べられている。この方法では送信信号にバイロット信号等を挿入すること無く、受信信号から送信信号系列を判別することができる。また、符号誤りが多少存在するときでもアダプティブアーランテナの参照信号として十分な特性を持つ参照信号を再生することができる。

ここで、第3図においてキャリア発生器23は本アンテナ装置の出力とは独立して動作する正弦波発生器を用いているため、参照信号を受信信号から抽出する方法に比較して構成が非常に簡単となる。このとき問題となるのは、キャリア発生器23の周波数ずれによるアーランテナ特性の劣化である。

第4図にキャリア発生器23の発生キャリア周波数が Δf ずれたときのアーランテナ出力のDU比の劣化の様子を示した。但し、 τ' は第2図に示した相関器12a, 12b, 12cを構成する積分器の時定数であり、第4図ではこの τ' と Δf との積を横軸にとっている。また、同図のパ

ここで、マルチバスフェージング状態が変化し、マルチバス成分 $M(t)$ の入射電力がマルチバス成分 $S(t)$ のそれに比較して大きくなつたとする。その場合、既に述べたLMSアーランテナの働きにより、マルチバス成分 $M(t)$ と遅延参照信号 r_2 が同期し、かつ入射電力がマルチバス成分 $S(t)$ のそれに比較して大きいため、参照信号 r_2 が供給されている信号処理部2bの出力は、マルチバス成分 $S(t)$ に参照信号 r_1 が同期している信号処理部2aの出力に比べて、良好な出力DU比, DN比を持つ。従つて、このようなときは選択器4により、アーランテナの最終出力を信号処理部2aの出力から信号処理部2bの出力に切り替えることにより、マルチバスフェージング状態の変化に対しても、常に最適なアーランテナ出力が得られることになる。

第3図における識別器21には、例えば判定指向法と呼ばれている方法を用いることができる。この判定指向法については、ラッキー氏らによる文献：アール・ダブル・ラッキー（匣子幸男訳）

ラメータCはマルチバス成分間の相関係数である。この図から明らかなように、周波数のずれと時定数の積 $\Delta f \cdot \tau'$ を適切に定めることにより、アーランテナ出力におけるDU比が大きな劣化を生じないようにすることができる。すなわち、キャリア発生器23としてアンテナ装置の出力とは独立した簡易な正弦波発生器を用いていても、キャリア発生器23の周波数のずれの影響が抑えられ、良好なフェージング軽減効果が得られる。

次に、選択器4の具体的な構成について説明する。上述したように選択器4は信号処理部2a, 2c, 2dの出力のうち最良のDU比, DN比を持つものを選択することになるが、実際に信号処理部2a, 2b, 2cの出力のDU比, DN比を測定することは、装置が複雑になり、実用的ではない。これに対して、本発明では極めて簡単な選択法を採用している。すなわち、本発明では信号処理部2a, 2b, 2cの出力のDU比, DN比を測定するのではなく、第5図に選択器4の構成例を示すように、電力測定部31において信号処

理部 2 a, 2 b, 2 c 内で発生される誤差信号 e_1, e_2, e_3 の電力を測定し、最小の誤差信号電力を持つ信号処理部の出力を切替える器 3 2 により選択する。

第 6 図はこの選択器 4 での選択法の根拠を示したもので、第 8 図と同様にマルチバス成分のアンテナへの到着時刻と参照信号の発生時刻の差 T_r による誤差信号電力の変化を示したものである。第 6 図の条件はマルチバス成分 $M(i)$ の入射電力がマルチバス成分 $S(i)$ のそれに比べ大きいという仮定を除いて、第 8 図と同様である。この図よりわかるように、参照信号がマルチバス成分に同期している状態では、入射電力が大きいマルチバス成分に関する誤差信号電力が小さな値をとっていることがわかる。従って、選択器 4 で最小の誤差信号電力の信号処理部の出力を選択する構成とすることにより、常に最大の入射電力を有するマルチバス成分に同期した信号処理部の出力を選択でき、アーレーアンテナの出力を容易に最良の DU 比、DN 比とすることができます。

を複数系列の参照信号に対応して複数個設け、これら複数個の信号処理部の出力のうち、誤差信号電力が最小となる信号処理部の出力を選択する構成としたことにより、参照信号を最大の入射電力を持つマルチバス成分に高速に同期させることができ、急激なマルチバスフェージング環境の変化が予想される移動無線通信においても、良好なマルチバスフェージング軽減効果が得られる。

また、最大の入射電力を持つマルチバス成分、換算すれば最大の DU 比及び DN 比を与えるマルチバス成分の選択にあたっても、誤差信号の電力測定という簡単な手続きにより実現できる。

さらに、参照信号発生手段についてもアンテナ装置の出力から復調されたデータにより、アンテナ装置の出力とは独立して動作するキャリア発生器の出力を変調して基準参照信号を生成し、それを遅延して各参照信号を発生させるという簡単な構成により実現でき、装置全体を簡単に構成することができる。この効果は、本発明をデジタルビームフォーミング回路等によりデジタル技術

なお、上述した実施例のアダプティティブアーレーアンテナ装置は、デジタル技術を用いることにより、簡易に実現することが可能であり、特に第 1 図における信号処理部については、いわゆるデジタルビームフォーミング回路として実現できる。将来的デジタル回路の高適化を考えれば、現在、停止移動無線で検討されている程度の帯域幅を使用した移動無線方式に対しては、簡易な構成のデジタルビームフォーミング回路により、本発明を容易に実施することができる。

また、複数の信号処理部を例えば一つのデジタル回路を時分割して使用することにより、さらに簡単な構成で本発明を実施することができる。

その他、本発明は要旨を逸脱しない範囲で種々変形して実施することができる。

【発明の効果】

本発明によれば、アンテナ装置の出力から再生された基準参照信号を遅延して相対的に時間差を持つ複数系列の参照信号を発生させるとともに、LMS アダプティブループを構成する信号処理部

を用いて実現したとき、より顕著となる。

4. 図面の簡単な説明

第 1 図は本発明の一実施例に係るアダプティブアーレーアンテナ装置の構成図、第 2 図は第 1 図における信号処理部の詳細な構成を示す図、第 3 図は第 1 図における参照信号発生器の構成例を示す図、第 4 図は第 3 図中のキャリヤ発生器の周波数のずれ Δf と第 2 図中の相関器の時定数 τ' との積とアーレーアンテナ出力の DU 比の関係を示す図、第 5 図は第 1 図における選択器の構成例を示す図、第 6 図はマルチバス成分と参照信号との相対遅延時間に対する誤差信号電力の関係を示す図、第 7 図はマルチバス成分と複数の参照信号の関係を示した図、第 8 図はマルチバス成分と参照信号との相対遅延時間に対するアーレーアンテナ出力の DU 比及び DN 比の関係を示す図である。

1 a ~ 1 c … アンテナ素子、2 a ~ 2 c … 信号処理部、3 … 参照信号発生器、4 … 選択器、 $r_1 \sim r_3$ … 参照信号、 $e_1 \sim e_3$ … 誤差信号、1 1 a ~ 1 1 c … 乗算器、1 2 a ~ 1 2 c …

相関器、13…加算器、14…減算器、21…識別器、22…変調器、23…キャリヤ発生器、24…遅延回路、31…電力測定器、32…切替器。

第3図

出願人代理人 弁理士 鈴江武彦

第4図

第1図

第2図

第5図

第6図

第7図

第8図