Lecture 6

Ciprian Crainiceanu

Table of contents

Outline

Defining likelihood

Interpreting likelihoods

Plotting likelihoods

Maximum likelihood

Interpreting likelihood

Multiple parameters

Lecture 6

Ciprian Crainiceanu

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

September 8, 2020

Table of contents

Table of contents

Outline

likelihood

Interpreting likelihoods

Maximur

Interpreting likelihood ratios

- 1 Table of contents
- 2 Outline
- 3 Defining likelihood
- 4 Interpreting likelihoods
- **6** Plotting likelihoods
- 6 Maximum likelihood
- 7 Interpreting likelihood ratios
- 8 Multiple parameters

Outline

Interpreting

Plotting

likelihood

Interpreting likelihood

- Define likelihood
- 2 Interpretations of likelihoods
- 3 Likelihood plots
- 4 Maximum likelihood
- 5 Likelihood ratio benchmarks

Outline

Defining likelihood

Interpreting likelihoods

likelihood

Interpreting

Multiple

- A common approach to statistics is to assume that data arise from a family of distributions indexed by a parameter that represents a useful summary of the distribution
- The likelihood of the data is the joint density evaluated as a function of the parameters with the data fixed
- Likelihood analysis of data uses the likelihood to perform inference regarding the unknown parameter

Examples: Normal

• $X_1, X_2, X_3 \sim N(\mu, 1)$ are independent identically distributed rvs (conditional on μ)

$$f(x,\mu) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2}\right\}$$

- Suppose that we observe $X_1 = 5$, $X_2 = 2$, $X_3 = 3$
- $\mathcal{L}(\mu|X_1=5,X_2=2,X_3=3)=f(5,\mu)f(2,\mu)f(3,\mu)$

•
$$\mathcal{L}(\mu|\mathbf{x}) = \frac{1}{(2\pi)^{3/2}} \exp\left\{-\frac{(5-\mu)^2 + (2-\mu)^2 + (3-\mu)^2}{2}\right\}$$

Examples: Normal

• In general if $X_1 = x_1, \dots, X_n = x_n$

$$\mathcal{L}(\mu|\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \exp\left\{-\frac{\sum_{i}^{n}(x_i - \mu)^2}{2}\right\}$$

Note that $f(\mu|\mathbf{x})$ is not a normalized pdf, that is,

$$\int \mathcal{L}(\mu|\mathbf{x})d\mu \neq 1$$

Taking logs typically makes log likelihoods better behaved

$$-2\log\{\mathcal{L}(\mu|\mathbf{x})\} = \sum_{i}^{n} (x_i - \mu)^2 + \text{const.}$$

Table of contents

Defining

likelihood Interpreting

Plotting

likelihood

Interpreting likelihood

ratios Multiple

```
m11 = 4
bx=c(5,2,3)
ebx2=-sum((bx-mu)^2)/2
like=exp(ebx2)/((2*pi)^(length(bx)/2))
mu = seq(0,6,length=201)
likep=rep(0,201)
for (i in 1:201)
  \{ebx2 = -sum((bx - mu[i])^2)/2\}
  likep[i]=exp(ebx2)/((2*pi)^(length(bx)/2))
plot(mu,likep,type="1",col="blue",lwd=3)
mle<-mu[which.max(likep)]</pre>
```

Defining likelihood

Interpreting likelihoods

likelihood

Maximun likelihood

Interpreting likelihood ratios

Multiple

Defining

likelihood Interpreting

Plotting likelihoods

Maximum likelihood

Interpreting likelihood

Multiple parameters Given a statistical probability mass function or density, say $f(x,\theta)$, where θ is an unknown parameter, the **likelihood** is f viewed as a function of θ for a fixed, observed value of x

$$\mathcal{L}(\theta|x) = f(x,\theta)$$

Maximur

Interpreting likelihood ratios

Multiple parameter

Interpretations of likelihoods

The law of likelihood requires:

- Ratios of likelihood values measure the relative evidence of one value of the unknown parameter to another
- 2 Likelihood principle: Given a statistical model and observed data, all of the relevant information contained in the data regarding the unknown parameter is contained in the likelihood
- 3 If $\{X_i\}$ are independent random variables, then their likelihoods multiply. That is, the likelihood of the parameters given all of the X_i is simply the product of the individual likelihoods

Defining

Interpreting likelihoods

Plotting

Maximum likelihood

Interpreting likelihood ratios

Multiple parameters • Assume X_1, \ldots, X_n are iid with pdf $f(x, \theta)$

Likelihood

$$\mathcal{L}(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i, \theta)$$

Log likelihood

$$\log\{\mathcal{L}(\theta|\mathbf{x})\} = \sum_{i=1}^{n} \log\{f(x_i, \theta)\}\$$

Defining

Interpreting

Plotting likelihoods

likelihood Interpreting

likelihood ratios

Multiple parameters ullet Suppose that we flip a coin with success probability heta

Recall that the mass function for x

$$f(x,\theta) = \theta^{x}(1-\theta)^{1-x}$$
 for $\theta \in [0,1]$.

where x is either 0 (Tails) or 1 (Heads)

- Suppose that the result is a head
- The likelihood is

$$\mathcal{L}(\theta|1) = \theta^1(1-\theta)^{1-1} = \theta$$
 for $\theta \in [0,1]$.

- Therefore, $\mathcal{L}(.5|1)/\mathcal{L}(.25|1) = 2$,
- There is twice as much evidence supporting the hypothesis that $\theta=.5$ than the hypothesis that $\theta=.25$

likelihoods

Interpreting likelihood

ratios

Multiple parameter

Example continued

- Suppose now that we flip our coin from the previous example 4 times and get the sequence 1, 0, 1, 1
- The likelihood is:

$$\mathcal{L}(\theta|1,0,1,1) = \theta^{1}(1-\theta)^{1-1}\theta^{0}(1-\theta)^{1-0} \times \theta^{1}(1-\theta)^{1-1}\theta^{1}(1-\theta)^{1-1} = \theta^{3}(1-\theta)^{1}$$

- This likelihood only depends on the total number of heads and the total number of tails; we might write $\mathcal{L}(\theta|1,3)$ for shorthand
- Now consider $\mathcal{L}(.5|1,3)/\mathcal{L}(.25|1,3) = 5.33$
- There is over five times as much evidence supporting the hypothesis that $\theta = .5$ over the hypothesis that $\theta = .25$

Plotting likelihoods

Maximum likelihood

likelihood ratios

Multiple parameters

Plotting likelihoods

- Generally, we want to consider all the values of θ between 0 and 1
- A **likelihood plot** displays θ by $\mathcal{L}(\theta|x)$
- Usually, it is divided by its maximum value so that its height is 1
- Because the likelihood measures relative evidence, dividing the curve by its maximum value (or any other value for that matter) does not change its interpretation

Lecture 6

Ciprian

Table of

Outline

Defining likelihood

likelihoods

Plotting likelihoods

Interpretin

likelihood ratios

Multiple

Uniform distribution

- Suppose now that we observe three independent realizations from a uniform distribution $U[0,\theta]$
- $X_1 = 5$, $X_2 = 2$, $X_3 = 3$
- The likelihood of one observation

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 \le x \le \theta \\ 0 & \text{otherwise} \end{cases}$$

• The likelihood of all three observations

$$\mathcal{L}(\theta|\mathbf{x}) = \frac{1}{\theta^3} I[0 \le 5 \le \theta] I[0 \le 2 \le \theta] I[0 \le 3 \le \theta]$$
$$= \frac{1}{\theta^3} I[\theta \ge 5]$$

Plotting

likelihoods

Uniform distribution: R

```
theta=seq(1,10,by=0.1)
like=1/theta^3*(theta>=5)
plot(theta,like,type="l",col="blue",lwd=3)
like[theta==6]/like[theta==5]
like[theta==6]/like[theta==4]
theta[which.max(like)] # maximum likelihood
liken=like/max(like)
plot(theta,liken,type="1",col="blue",lwd=3)
```

Lecture 6

Ciprian Crainiceanu

Table of

Outline

Defining likelihood

likelihoods

Plotting likelihoods

likelihood

likelihood ratios

Lecture 6

Ciprian

Table of

Outline

Defining likelihood

likelihood

Plotting likelihoods

likelihood

Interpreting likelihood

Uniform distribution

- Suppose now we observe n independent realizations from a uniform distribution $U[0,\theta]$
- $X_1 = x_1, \dots, X_n = x_n$
- The likelihood for all n observations

$$\mathcal{L}(\theta|\mathbf{x}) = \frac{1}{\theta^n} \prod_{i=1}^n I[0 \le x_i \le \theta]$$
$$= \frac{1}{\theta^n} I[\theta \ge \max_i x_i]$$

- Note that often the likelihood depends only on a function of the data (e.g. $\max_i x_i$)
- The evidence is often compressed in a much simpler, easier to understand form

likelihoods

Maximum likelihood

Interpreting likelihood ratios

Multiple parameter

Maximum likelihood

- The value of $\boldsymbol{\theta}$ where the curve reaches its maximum has a special meaning
- ullet It is the value of heta that is most well supported by the data
- This point is called the **maximum likelihood estimate** (or MLE) of θ

$$\widehat{\theta}_{\mathsf{ML}} = \mathit{MLE} = \mathrm{argmax}_{\theta} \mathcal{L}(\theta|\mathbf{x})$$

- Another interpretation of the MLE is that it is the value of θ that would make the data that we observed most probable
- Every estimator is a function of the observed data, x

Maximum likelihood

Interpreting likelihood ratios

Multiple parameters

Maximum likelihood, coin example

- \bullet The maximum likelihood estimate for θ is always the proportion of heads
- Proof: Let x be the number of heads and n be the number of trials
- Recall

$$\mathcal{L}(\theta|x) = \theta^{x}(1-\theta)^{n-x}$$

It's easier to maximize the log-likelihood

$$I(\theta, x) = x \log(\theta) + (n - x) \log(1 - \theta)$$

likelihoods Plotting

likelihoods

Interpreting likelihood

Multiple

• Taking the derivative we get

$$\frac{d}{d\theta}I(\theta,x) = \frac{x}{\theta} - \frac{n-x}{1-\theta}$$

Setting equal to zero implies

$$(1-\frac{x}{n})\theta = (1-\theta)\frac{x}{n}$$

- Which is clearly solved at $\theta = \frac{x}{n}$
- Notice that the second derivative

$$\frac{d^2}{d\theta^2}I(\theta,x) = -\frac{x}{\theta^2} - \frac{n-x}{(1-\theta)^2} < 0$$

provided that x is not 0 or n (do these cases on your own)

likelihood

Interpreting

likelihood ratios

Multiple parameters

What constitutes strong evidence?

- Again imagine an experiment where a person repeatedly flips a coin
- Consider the possibility that we are entertaining three hypotheses: $H_1: \theta=0, H_2: \theta=.5$, and $H_3: \theta=1$

Ciprian Crainicean

Table of contents

Outline

Defining likelihood

likelihoods

Maximum

likelihood

Interpreting likelihood ratios

Outcome X	$P(X \mid H_1)$	$P(X \mid H_2)$	$P(X \mid H_3)$	$\mathcal{L}(H_1)/\mathcal{L}(H_2)$	$\mathcal{L}(H_3)/\mathcal{L}(H_2)$
Н	0	.5	1	0	2
Т	1	.5	0	2	0
HH	0	.25	1	0	4
HT	0	.25	0	0	0
TH	0	.25	0	0	0
TT	1	.25	0	4	0
HHH	0	.125	1	8	8
HHT	0	.125	0	0	0
HTH	0	.125	0	0	0
THH	0	.125	0	0	0
HTT	0	.125	0	0	0
THT	0	.125	0	0	0
TTH	0	.125	0	0	0
TTT	1	.125	0	0	8

outilile outilile

Interpreting likelihoods

Plotting likelihoods

Maximum likelihood

Interpreting likelihood ratios

Multiple parameters

- Using this example as a guide, researchers tend to think of a likelihood ratio
 - of 8 as being moderate evidence
 - of 16 as being moderately strong evidence
 - of 32 as being strong evidence

of one hypothesis over another

- Because of this, it is common to draw reference lines at these values on likelihood plots
- Parameter values above the 1/8 reference line, for example, are such that no other point is more than 8 times better supported given the data

Plotting

Maximum

Interpreting likelihood ratios

Multiple parameters

Likelihood for multiple parameters

- So far, we have focused on the case when θ is a scalar
- Many distributions depend on multiple parameters (normal, gamma, beta, t)
- Definitions remain the same
- Likelihood

$$\mathcal{L}(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i, \theta)$$

MLE

$$\widehat{\theta}_{\mathsf{ML}} = \mathsf{MLE} = \mathrm{argmax}_{\theta} \mathcal{L}(\theta|\mathbf{x})$$

• It simply requires working with multivariate parameters

Outline

likelihood

Interpreting likelihoods

likelihood

Interpreting likelihood

ratios Multiplo

- Sometimes one is interested in one of the parameters, whereas the others are not the primary focus of the problem
- Example: Effect of air pollution as measured by PM_{2.5} on cardiovascular outcomes in the presence of potential confounders (temperature, secular trends, etc)
- Evidence is hard to visualize with respect to all parameters at once
- Profile likelihood: a way to visualize the evidence with respect to the parameter of interest

likelihood

Interpreting likelihood

Multiple parameters

Profile likelihood

- X_1, \ldots, X_n iid with pdf $f(x, \theta)$
- The multivariate parameter can be partitioned in $\theta = (\mu, \eta)$
 - ullet μ is a scalar parameter of interest
 - ullet η are the nuisance parameters
- For each value of μ maximize the likelihood with respect to the rest of the parameters η
- Obtain $\widehat{\eta}(\mu, \mathbf{x}) = \max_{\eta} \mathcal{L}(\mu, \eta | \mathbf{x})$
- The profile likelihood is

$$\mathcal{PL}(\mu|\mathbf{x}) = \mathcal{L}\{\mu, \widehat{\eta}(\mu, \mathbf{x})|\mathbf{x}\}$$

Plotting likelihoods

Interpreting likelihood

ratios

Multiple parameters

Profile likelihood: normal

• In general if $X_1 = x_1, \dots, X_n = x_n$ with mean μ and variance σ^2

$$\mathcal{L}(\mu, \sigma^2 | \mathbf{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{\sum_{i}^{n} (x_i - \mu)^2}{2\sigma^2}\right\}$$

- Fix μ and maximize the log likelihood with respect to σ^2
- Log likelihood

$$2\log\{\mathcal{L}(\mu,\sigma^2|\mathbf{x})\} = -\sum_{i=1}^n \frac{(x_i - \mu)^2}{\sigma^2} - n\log(\sigma^2) + \text{const.}$$

Profile estimator of the variance

$$\widehat{\sigma}^2(\mu, \mathbf{x}) = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

likelihoods

Interpreting likelihood

ratios Multiple parameters

Profile likelihood: normal

The profile log likelihood is

$$2\log\mathcal{PL}(\boldsymbol{\mu}|\mathbf{x}) = 2\log\mathcal{L}\{\boldsymbol{\mu}, \widehat{\sigma}^2(\boldsymbol{\mu}, \mathbf{x})|\mathbf{x}\}$$

Plug-in estimator

$$2\log \mathcal{PL}(\mu|\mathbf{x}) = -n\log \left\{\sum_{i=1}^{n}(x_i - \mu)^2\right\} + const$$

 Thus, the profile likelihood is, essentially, the sum of squares for the normal distribution

Multiple parameters

Profile likelihood: R

```
bx=c(5,2,3) # Data
mu=seq(0,6,length=201) # Grid for \mu
likep=rep(0,201)
for (i in 1:201)
  \{likep[i]=-3*log(sum((bx-mu[i])^2))\}
plot(mu,likep,type="1",col="blue",lwd=3)
mlep<-mu[which.max(likep)]</pre>
```

Ciprian

Table of

Outline

Defining likelihood

likelihood

Maximu

likelihood

likelihood ratios

