Solution

프로젝트 수행 결과

▼ Optuna tuning: (1차) 베이스라인

- 빠른 탐색을 위해 10 epoch, 전체 학습 셋의 40%만 사용
- · Search Space
 - hyperparmaeter
 - optimizer = ['Adam', 'SGD']
 - data_config
 - EPOCH = 10
 - SUBSET_SAMPLING_RATIO(train set 사용 비율): 0.4
 - AUG_TRAIN: randaugment_train
 - n_select : [0, 2, 4, 6]
 - BATCH_SIZE = [16, 32]
 - IMG_SIZE = [96, 112, 168, 224]
 - INIT_LR = [1e-1, 1e-4], log uniform dist
 - o model_config
 - depth_multiple = [0.25, 0.5, 0.75, 1.0]
 - width_multiple = [0.25, 0.5, 0.75, 1.0]
- tune.py 로 탐색 종료 후 각 Objecitve Value plot을 살펴보고 적절한 탐색 모델을 선택하여 순차적으로 실험함
 - o study.best_trials 에는 10개의 best trial이 저장되어 있는데, 그 순서대로 하지 않고 직접 값을 확인하여 선택
 - ㅇ 후보 모델
 - trial_id : 72, 60, 4
 - value_# : f1, num_params, inference time

		f1	n_params	inference_time(ms)	params_n_select	params_img_size	params_batch_size	params_depth_multiple	params_img_size
	72	0.436522	389868.0	1.322323	0	168	16	0.25	168
	60	0.417659	347852.0	1.276173	0	168	16	0.25	168
	4	0.373051	326012.0	5.532058	0	168	32	1.00	168

o F1 Score

Optimization History Plot

Number of parameters

Optimization History Plot

Inference time

Optimization History Plot

• trial-id 72을 처음부터 다시 class weight를 적용하여 1000 epoch 동안 학습

• LB 제출 결과

- local에서 측정된 시간이 약 1.4ms 보다 낮아야 제출시 inference time 60s보다 낮아지는 것을 확인
- ∘ f1 score는 validation set과 거의 유사
- n_params = 389,868
- inference_time(ms) = 1.3223

멤버	score (Rank)	f1	time	개요	생성 시간	
허진규_T2242	1.4730	0.6170	54.5650	상세 보기	2021-11-29 23:28	

▼ Optuna tuning: (2차) 탐색 범위 재설정

• inference time에 가장 큰 영향을 주는 요소: depth_multiple, m5 모듈의 종류, img_size

• 성능에 가장 큰 영향을 주는 요소: n_select, m6/stride, last_dim, init_lr

- 위 결과를 기반으로 탐색 범위를 아래와 같이 좁혀 재탐색
- · Search Space
 - hyperparmaeter
 - optimizer = ['Adam']
 - o data_config
 - EPOCH = 10
 - SUBSET_SAMPLING_RATIO(train set 사용 비율): 0.5
 - AUG_TRAIN: randaugment_train
 - n_select : [0]
 - BATCH_SIZE = [16, 32]
 - IMG SIZE = [168, 224]
 - INIT_LR = [1e-4, 2e-3], log uniform dist
 - ∘ model_config : 기본 제공 코드만 사용
 - depth_multiple = [0.1, 0.3, 0.5]
 - width_multiple = [0.6, 0.7, 0.8, 0.9, 1.0]
- 학습 모델 선택

。 후보 모델

- trial_id : 44, 57
- value_# : f1, num_params, inference time
- o study.best_trials 에는 10개의 best trial이 저장되어 있는데, 그 순서대로 하지 않고 직접 값을 확인하여 선택
 - mean_time (위 사진에서 values_2) 이 1.4 이하
 - f1 score (위 사진에서 values_0) 이 0.4 이상
 - depth가 낮고 width가 높을 때 성능도 많이 떨어지지 않고 빠른 속도의 모델이 나오는 경향을 보임
 - inference time 이 비슷하다면, 파라미터 수가 많은 것이 학습을 큰 epoch 으로 돌려도 쉽게 오버피팅 이 발생하지 않을 것 같아서 파라미터 수가 많은 모델을 선택

• 학습 그래프

▼ Knowledge Distillation

- teacher model: timm의 efficientnet_b0모델에 대해 optuna를 활용하여 hyperparameter search하여 모델 tuning
- <u>student model</u>: optuna를 활용하여 **모델 및 hyperparameter search**하여 모델 tuning (4.2에서 tuning한 모델)
- Knowledge Distillation 전체 학습 과정
 - train : teacher model의 결과를 학습하기 위한 Distillation loss와 ground truth를 학습하기 위한
 Weighted Cross Entropy loss 사용
 - o test: Weighted Cross Entropy loss사용하여 결과 도출

- efficientnet-b0 모델 학습
 - 초록색 epoch=14로 설정하였을 때, overfitting 되었으며, 갈색 epoch=8로 설정하였을 때, 최고 성능 도달

• knowledge distillation 학습 결과

- 결과 분석 및 후기
 - 학습 그래프에서 f1 score 0.73 도달
 - wandb f1 score와 리더보드 score가 거의 유사하므로, 본 모델 제출에 성공하였다면 더 높은 score획득 가능했을 것
 - 서버 제출 시, 서버 용량 및 dependency 문제로 failed가 떠서 최종 제출에 실패함. 시간 여유가 더 있거나, 미리 컴퓨터 환경을 체크했으면 좋은 성과로 이어졌을 것

▼ 최종 모델 제출

• 최종 모델 구조