DATA 2019 Paper #21

Distributed and scalable platform for collaborative analysis of massive time series data sets

Ed Duarte, Diogo Gomes, David Campos and Rui L. Aguiar

Introduction

- metrification of devices;
 - e.g. wearable gadgets, real-time IoT sensors, Smart Home devices
- annual data acquisition rate:
 - 2016 1.2 zb/y;
 - 2021 3.3 zb/y;
- requirements for digital data processing and storage are increasing exponentially;
- Volume, Variety and Velocity;
- Value and Veracity.

Introduction Time series analysis

- some metrics only have meaning when observed as a pattern over time;
- time series can be found in almost every aspect of human life;
- most domains produce massive amounts of series data;
- analysis is more agile when within a software solution.

Introduction Time series visualization

- can be a very challenging task:
 - data sets commonly have high cardinality and complexity;
- comparative visualization tasks:
 - dashboard applications like Timelion,
 Grafana and Freeboard
- most analysis applications are built as web applications.

Introduction Annotation

- realistic analysis tasks involve collaboration and knowledge-sharing between human curators;
- annotations facilitate knowledge-building and decision-making in analysis processes.

Proposal

- data-intensive architecture and web application for collaborative time series analysis;
- use most appropriate open-source tools for querying, storing and displaying time series and annotations;
- distributed architecture to handle high quantities of concurrent usage:
 - E+C for annotations, users and the knowledge base;
 - E+L for series.
- prototype tested with HVAC data set from 1000 boilers over 1.3 years.

Proposal Data model

- time series has a measurement and a data source;
- annotations have a parent type,
 a point or ranged segment of
 time, and <u>a set of affected</u>
 series;
- projects restrict a set of collaborators to a segment of time, a set of series, and an annotation scope.

Proposal Data management

- polyglot persistence model:
 - time series are stored in InfluxDB, ontology is stored in PostgreSQL;
 - central backend enforces data access logic and conceals the real location of the data.

Proposal Data management

- overall traffic workload is distributed, but querying simultaneous data types can lead to bottlenecks;
- links are added on each data point and propagated to the TSDBMS on ontology updates.

- the backend opens processing pipelines for each request;
- authentication:
 - auth. session tokens are JWTs with an expiration date.
- validation stage checks for invalid contents or constraint violations

- updates, deletions and rollbacks are made asynchronously:
 - user receives a simulated snapshot with proposed changes;
 - validation stage ensures that the update will likely be committed;
 - caveat: unexpected errors cannot be sent to the user.

- users make changes based on the observed data;
- if two users update the same record at the same time -> race condition!!!;
- optimistic-locking: last-modified dates checksum

Spring JPA provides abstraction layers for PostgreSQL queries (hot-swap)

Proposal Annotations

- snakes: arcs traced over series' curves;
- paint over existing points, interpolate when in-between;
- intersection handling (nesting).

DEMO

Evaluation Time series in PostgreSQL

- as granularity increases, Consistency is harder to attain;
- put all data in a single ACIDcompliant RDBMS:
 - linking logic is built-in through the relational model;
 - better Consistency handling.
- benchmark read-write performance

Evaluation Time series in PostgreSQL

READ PERFORMANCE

Evaluation Time series in PostgreSQL

WRITE PERFORMANCE

Write time (seconds)

Disk usage (MB)

RAM usage (MB)

Conclusion

- improved collaboration workflow:
 - enhanced model for building smaller scopes of analysis;
 - better visualization for comparison of data;
 - stronger annotation readability and flexibility of expression;
 - scalable architecture that adjusts to data set size and traffic amount;
 - linearizability and strongly validated contributions;
- the open REST API enables extensibility: more input and output modules can be added.

END

https://www.edduarte.com/time-series-analysis-platform/