Survival Analysis

Chao Cheng

November 15, 2022

Contents

1	\mathbf{Bas}	ic knov	wledge																			1
	1.1	.1 Survival and hazard												1								
	1.2		 .																			
		1.2.1	Right censor.																			3
			Left censor																			
		1.2.3	Interval censor																			3
_	ML	_																				3
	2.1	Param	etric MLE																			4
	2.2	Nonpa	rametric MLE														_	_		_		5

1 Basic knowledge

1.1 Survival and hazard

Let T denote the time to an event that we are interested in. Then we know the c.d.f.

$$F_T(t) = P(T \le t),$$

and the corresponding p.d.f.

$$f_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_T(t).$$

Here to simplify the discussion, we assume T is a continuous random variable. In the context of survival analysis, the *event* often refers to death. Then T represents the lifespan of the subject. So $F_T(t)$ represents the probability that the death occurs before t. In another word, we know the probability that the subject survives passes t is

$$S_{T}(t) = 1 - F_{T}(t) = P(T > t).$$

 $S_T(t)$ is often called the survival function? and clearly

$$f_T(t) = -\frac{\mathrm{d}}{\mathrm{d}t} S_T(t).$$

The **hazard function** h(t) is defined as

$$h\left(t\right) = \lim_{\Delta \to 0} \frac{P\left(T \le t + \Delta | T > t\right)}{\Delta} = \lim_{\Delta \to 0} \frac{F_T\left(t + \Delta\right) - F_T\left(t\right)}{\Delta \cdot S_T\left(t\right)} = \frac{f_T\left(t\right)}{S_T\left(t\right)}.$$

h(t) represents the instant hazard? unified probability? that the subject will be dead instantly after t given the fact that it's alive at t. And the **cummulative hazard** function is

$$H(t) = \int_{0}^{t} h(x) dx = \int_{0}^{t} \frac{f_{T}(x)}{S_{T}(x)} dx = \int_{0}^{t} \frac{-dS_{T}(x)}{S_{X}(t)} = -\log(S_{T}(x))|_{0}^{t} = -\log(S_{T}(t)).$$

Proposition 1. The random variable H(T) follows unit exponential distribution EXP(1).

Proof.

$$\begin{split} P\left(H\left(T\right) \leq t\right) = & P\left(-\log S\left(T\right) \leq t\right) \\ = & P\left(1 - F\left(T\right) \geq e^{-t}\right) \\ = & P\left(T \leq F^{-1}\left(1 - e^{-t}\right)\right) \\ = & F\left(F^{-1}\left(1 - e^{-t}\right)\right) \\ = & 1 - e^{-t}. \end{split}$$

which is the c.d.f of EXP(1). Here to simplify the deduction we make some assumptions that

- F(t) is continuous.
- $F^{-1}(t)$ is well defined.

Also to simplify the notation and avoid confusion, we use $S(\cdot)$ and $F(\cdot)$ instead of $S_T(\cdot)$ and $F_T(\cdot)$ like before.

1. Exponential distribution: Denote $T \sim EXP(\lambda)$. Then

$$\begin{split} f\left(t\right) &= \lambda e^{-\lambda t} \\ F\left(t\right) &= 1 - e^{-\lambda t} \qquad S\left(t\right) = e^{-\lambda t} \\ h\left(t\right) &= \lambda \qquad \text{constant hazard} \\ H\left(t\right) &= \lambda t \\ \mathrm{E}\left(T\right) &= 1/\lambda \qquad \mathrm{Var}\left(T\right) = 1/\lambda^2 \end{split}$$

2. Weibull distribution: Denote $T \sim W(p, \lambda)$. Then

$$f(t) = p\lambda^{p}t^{p-1}\exp\left(-\left(\lambda t\right)^{p}\right)$$

$$F(t) = 1 - \exp\left(-\left(\lambda t\right)^{p}\right) \qquad S(t) = \exp\left(-\left(\lambda t\right)^{p}\right)$$

$$h(t) = p\lambda^{p}t^{p-1}$$

$$H(t) = \left(\lambda t\right)^{p}$$

$$E(T) = \frac{1}{\lambda} \cdot \Gamma\left(1 + \frac{1}{p}\right) \qquad \operatorname{Var}(T) = \frac{1}{\lambda^{2}}\left(\Gamma\left(1 + \frac{2}{p}\right) - \Gamma\left(1 + \frac{1}{p}\right)\right)$$

$$E(T^{m}) = \frac{1}{\lambda^{m}}\Gamma\left(1 + \frac{m}{p}\right)$$

1.2 Censor

1.2.1 Right censor

• Type I: an i.i.d sample $T_1, \dots, T_n \sim F$ and a fixed constant c. And the observed data is (U_i, δ_i) for $i = 1, \dots, n$ where

$$U_i = \min(T_i, c)$$
$$\delta_i = 1_{T_i \le c}.$$

So the observed data consists of a random number, r, of uncensored observations, all of which are less than c. And n-r censored observations, all are c.

• Type II: an i.i.d sample $T_1, \dots, T_n \sim F$ and a pre-defined number of failure r. The observation is stopped when r failure occurs and the stopping time is c. The observed data is still the form (U_i, δ_i) for $i = 1, \dots, n$, the same as that in Type I censor. But in actuality, we observe the first r order statistics

$$T_{(1,n)}, \cdots, T_{(r,n)}$$
.

Note that here $(U_1, \delta_1), \dots, (U_n, \delta_n)$ are dependent whereas they are independent for Type I.

• Type III (Random censor): The underlying data is

$$c_1, \dots, c_n$$
 constant $T_1, \dots, T_n \sim F$.

And the observed data is (U_i, δ_i) for $i = 1, \dots, n$, where

$$U_i = \min (T_i, c_i)$$

$$\delta_i = 1_{T_i \le c_i}.$$

Note: for inference, c_i is often treated as constant. For study design or studying the asymptotic property, they are often treated as i.i.d random variables C_1, \dots, C_n .

1.2.2 Left censor

 T_i is censored when $T_i \leq l_i$.

1.2.3 Interval censor

 $l_i \leq T_i \leq u_i$, but only l_i and u_i are observed.

2 MLE

There is an i.i.d survival time sample T_1, \dots, T_n with common and unknown c.d.f. $F(\cdot)$ and the observated data is (U_i, δ_i) for $i = 1, \dots, n$, where

$$U_i = \min (T_i, C_i)$$

$$\delta_i = 1 (T_i \le C_i)$$

and C_i is the (fixed or random) censoring time. Let \bot denote "is independent of". We assume $T_i\bot C_i$ (Non-informative censoring, the key assumption) and (U_i, δ_i) are also i.i.d. The observed data consists of two parts. U_i is continuous while δ_i is binary.

$$(U_i, \delta_i) = (u_i, 1)$$
 T_i is uncensored at u_i
 $(U_i, \delta_i) = (u_i, 0)$ T_i is censored at u_i

When C_i s are known constants, the likelihood for (U_i, δ_i) is

$$L_{i}(F) = \begin{cases} f(u_{i}) & \text{if } \delta_{i} = 1\\ 1 - F(u_{i}) & \text{if } \delta_{i} = 0 \end{cases}$$
$$= f(u_{i})^{\delta_{i}} (1 - F(u_{i}))^{1 - \delta_{i}}$$

Therefore

$$L(F) = \prod_{i=1}^{n} L_i(F) = \prod_{i=1}^{n} \left(f(u_i)^{\delta_i} (1 - F(u_i))^{1 - \delta_i} \right) = \prod_{i=1}^{n} \left(h(u_i)^{\delta_i} S(u_i) \right).$$
(1)

The last equality relies on the fact that f(t) = h(t) S(t).

When C_i s are i.i.d. $\sim G$, where G is continuous with p.d.f g. Then we have

$$P\left(U_{i} \leq u, \delta_{i} = 1\right) = P\left(T_{i} \leq u, T_{i} \leq C_{i}\right) = \int_{0}^{u} \int_{t}^{\infty} f\left(t\right) g\left(c\right) dcdt = \int_{0}^{u} f\left(t\right) \left(1 - G\left(t\right)\right) dt$$

Therefore the likelihood for $\delta_i = 1$ is

$$L_i(F, G) = f(u_i)(1 - G(u_i))$$
 when $\delta_i = 1$.

And similarly, for $\delta_i = 0$, the likelihood is

$$L_i(F, G) = g(u_i)(1 - F(u_i))$$
 when $\delta_i = 0$.

Hence the full likelihood is

$$L(F,G) = \prod_{i=1}^{n} \left\{ (f(u_i) (1 - G(u_i)))^{\delta_i} ((1 - F(u_i)) g(u_i))^{1 - \delta_i} \right\}$$

$$= \prod_{i=1}^{n} \left\{ f(u_i)^{\delta_i} (1 - F(u_i))^{1 - \delta_i} \right\} \cdot \prod_{i=1}^{n} \left\{ g(u_i)^{1 - \delta_i} (1 - G(u_i))^{\delta_i} \right\}$$
(2)

So the core to maximize L(F,G) with respect to F in (2) is the same as that in (1).

2.1 Parametric MLE

Suppose T_1, \dots, T_n are i.i.d. $Exp(\lambda)$, and subject to noninformative right censoring. Then (1) becomes

$$L = L(\lambda) = \prod_{i=1}^{m} \left\{ \left(\lambda e^{-\lambda u_i} \right)^{\delta_i} \left(e^{-\lambda u_i} \right)^{1-\delta_i} \right\} = \lambda^{\sum_{i=1}^{n} \delta_i} e^{-\lambda \sum_{i=1}^{n} u_i} = \lambda^r e^{-\lambda W},$$

where $r = \sum_{i=1}^{n} \delta_i$ is the number of observed events and $W = \sum_{i=1}^{n} u_i$ is the total of observed time. Therefore $\log L = r \log \lambda - \lambda W$ and the MLE for λ is

$$\hat{\lambda} = \frac{r}{W}.$$

Furthermore, we know that

$$\frac{\partial \log L}{\partial \lambda} = \frac{r}{\lambda} - W \\ \frac{\partial^2 \log L}{\partial \lambda^2} = -\frac{r}{\lambda^2}$$
 \Longrightarrow

2.2 Nonparametric MLE

References