CLUSTERING JERÁRQUICO

EXPERTO UNIVERSITARIO EN CIENCIA DE DATOS Y BIG DATA

MODULO 2 Ciencia Datos Técnicas Inteligentes Extracción de conocimiento

EM y k-means

- □ En EM y k-means necesitamos saber K.
- □ Sólo sirven para clústeres esféricos (k-means) o elipsoides(EM).
- Parten de una inicialización aleatoria que puede acabar en mínimo local.
- Un elemento ruidoso (outlier) puede modificar la solución.
- Necesitamos poder calcular la distancia (euclídea y u otras) entre cada par de elementos.

- □ Algoritmo:
- Cada elemento forma su propio cluster
- 2. Repetir:
 - **□** Juntar los dos clusteres "más cercanos"

Hasta que todos los datos esten agrupados en un único cluster

Primer paso: cada elemento forma su propio cluster

Dendogramas

- □ El clustering jerárquico también se le suele llama aglomerativo.
- La similitud (distancia) entre los clústeres que se juntan es decreciente (creciente) monótono con respecto al nivel (iteración) de unión.
- Provee una visualización interpretable del algoritmo y de los datos.
- Dendograma: dibujar cada union de los clusteres
- Es una herramienta útil para la interpretación, por eso el clustering jerárquico es tan popular.

- Cada nivel del árbol resultante es una segmentación / partición de los datos.
- Queda en la mano del usuario decidir cual es el mejor clustering

- ☐ Es igual que el algoritmo de KRUSKAL!.
- □ Elementos → vértices, distancias → coste del arco, pares de puntos → arcos.

Distancia entre clusteres

- Dadas las distancia entre todos los pares de elementos, existen diferentes opciones para definir la distancia entre los clústeres.
- □ Single-link:

$$d_{SL}(A,B) = \min_{i \in A, j \in B} \{d(i,j)\}$$

Complete-link:

$$d_{CL}(A,B) = \max_{i \in A, j \in B} \{d(i,j)\}$$

Average-link:

$$d_{AL}(A,B) = \frac{1}{m_A m_B} \sum_{i=1}^{m_A} \sum_{j=1}^{m_B} d(i,j)$$

Single Link

Dadas todas las distancias entre los pares de elementos entre dos clústeres la distancia singlelink es la menor.

Distancia cluster 1-2

Distancia cluster 1-3

Distancia cluster 2-3

El paso del algoritmo continua siendo el mismo, uno los dos clústeres que más juntos estén (1-3).

Complete Link

Dadas todas las distancias entre los pares de elementos entre dos clústeres la distancia complete-link es la mayor.

Distancia cluster 1-2

Distancia cluster 1-3

Distancia cluster 2-3

El paso del algoritmo continua siendo el mismo, uno los dos clústeres que más juntos estén (1-3).

Average Link

Dadas todas las distancias entre los pares de elementos entre dos clústeres la distancia average-link es la media de todas las distancias calculadas.

Distancia cluster 1-2

Distancia cluster 1-3

Distancia cluster 2-3

El paso del algoritmo continua siendo el mismo, uno los dos clústeres que más juntos estén (1-3).

Propiedades de los diferentes "linkages"

- □ **Single-link:** produce "encadenamientos", en donde secuencias de puntos encadenados pueden unirse rápidamente.
- Complete-link: tiene justo el problema contrario, puede que clusteres que estén juntos no se unan porque tienen puntos entre sí que están bastante separados.
- Average-link: es un compromiso entre single-link y complete-link.

Clustering en datos no numéricos

- En K-means y EM necesitamos calcular la distancia entre dos pares de elementos del dataset, o poder calcular la media de varios elementos.
- Existen datos en los que tenemos diferentes tipos de variables o incluso datos que no estén representados mediante un vector.
- Opiniones subjetivas o valoraciones de preferencia.
- En estos casos utilizaremos el clustering jerárquico ya que SOLO necesitamos la matriz de disimilaridad (distancias).

Clustering en datos no numéricos

- Vamos a suponer que trabajamos en una agencia de viajes y queremos agrupar la publicidad según grupos de ciudades que consideramos parecidas.
- El criterio para agrupar no tiene que ser territorial, sino de tipo de actividades que ofrece, tipología de turistas que van a ellas, etc.
- Vamos a construir una matriz de SIMILITUD

Clustering en datos no numéricos

	Atenas	Londres	es Paris Nueva York Roma Melbourne Dubai				
Atenas					0,9		
Londres							
Paris							
Nueva York							
Roma							0,2
Melbourne							
Dubai							

Cuanto más parecidas las ciudades damos un valor más alto, y cuando más diferentes un valor más bajo (siempre entre 0 y 1)

Para ejecutar el algoritmo necesitamos la matriz de distancias D = 1- S