

Redes de Computadores

(Camadas de protocolos e seus Modelos de serviço)

Prof. Everthon Valadão

Material baseado nos slides de:

Dorgival Guedes (UFMG) e Fábio Costa (UFG)

(última modificação: 31/07/2020)

Parte III: Modelos e Protocolos

Nosso objetivo:

- Definir "protocolo de rede"
- Conhecer as vantagens em dividir os protocolos em camadas
- Conhecer os principais modelos de referência para redes
- Conhecer a função de cada camada do modelo TCP/IP

Tópicos abordados:

- o que é um protocolo?
- modelos em camadas
- modelos de referência OSI e TCP/IP
- camadas do modelo TCP/IP

Parte III: Modelos e Protocolos

Nosso objetivo:

- Definir "protocolo de rede"
- Conhecer as vantagens em dividir os protocolos em camadas
- Conhecer os principais modelos de referência para redes
- Conhecer a função de cada camada do modelo TCP/IP

Tópicos abordados:

- o que é um protocolo?
- modelos em camadas
- modelos de referência OSI e TCP/IP
- camadas do modelo TCP/IP

Afinal, o que é um protocolo?

Protocolos humanos:

Apresentações

- "Olá, meu nome é..."
- "Oi, como você está?"

Solicitações

- "Que horas são?"
- "Tenho uma pergunta: "

Protocolos de redes:

- Máquinas ao invés de humanos
- Um protocolo especifica
 - formato das mensagens enviadas
 - ° ordem de troca das mensagens
 - ações necessárias ao receber uma determinada mensagem

Afinal, o que é um protocolo?

um protocolo humano VS um protocolo de rede

Q: Apresente outros exemplos de protocolo "humano"

Protocolos de rede

 Protocolos são conjuntos de regras que permitem que os dados trafeguem na rede de forma eficaz e eficiente

> protocolos definem os **formatos**, a **ordem** das mensagens e as **ações** a serem tomadas na sua recepção

Existem centenas de protocolos de rede!

Parte III: Modelos e Protocolos

Nosso objetivo:

- Definir "protocolo de rede"
- Conhecer as vantagens em dividir os protocolos em camadas
- Conhecer os principais modelos de referência para redes
- Conhecer a função de cada camada do modelo TCP/IP

Tópicos abordados:

- o que é um protocolo?
- modelos em camadas
- modelos de referência OSI e TCP/IP
- camadas do modelo TCP/IP

serviço organizado em etapas

bilhete (compra)

bilhete (reclamação)

bagagem (check in)

bagagem (recuperação)

portão (embarque)

portão (desembarque)

decolagem

aterrissagem

roteamento do avião

roteamento do avião

roteamento do avião

divisão em camadas

Camadas: cada uma implementa um serviço

• através de ações internas à camada

bilhete (compra)	bilhete (reclamação)		
bagagem (<i>check in</i>)	bagagem (recuperação)		
portão (embarque)	portão (desembarque)		
pista (decolagem)	pista (aterrissagem)		
roteamento do avião	roteamento do avião		
roteamento do avião			

Ex.: viagem aérea

serviços prestados por cada camada

Camadas: utiliza outro(s) serviço(s)

• pois depende dos serviços providos pela camada inferior

atendimento de pessoas c/ bagagens (balcão a balcão)

transporte das bagagens (do balcão ao avião)

transferência de pessoas (entre portões embarque/desembarque)

transporte do avião (de pista a pista)

roteamento do avião (aeroporto origem ao destino)

Ex.: viagem aérea

funcionalidades de cada camada

Camadas: implementação distribuída das funcionalidades

Por que dividir em camadas?

- A estrutura explícita permite a identificação e relacionamento entre as partes do sistema complexo
 - ° modelos de referência em camadas facilitam a discussão!
 - ° ex.: se você estivesse insatisfeito com algum aspecto de uma viagem aérea, deveria reclamar de qual setor (camada)?
 - Balconista, Comissário(a) de bordo, Piloto(a), Controlador(a) de voo, "São Pedro"...
 cada um tem sua responsabilidade bem definida!

Por que dividir em camadas?

- A "modularização" facilita manutenção e atualização
 - ° as mudanças na implementação de uma camada são transparentes para o resto do sistema
 - ex.: novas regras para embarque de passageiros não afetam os procedimentos de decolagem

Modelo de Referência

- Modelo conceitual, definindo as funções que determinado componente deve realizar
- Conjunto de protocolos usados em redes de computadores que permite a conexão de computadores
- Para cada camada há padrões a serem seguidos pelos fabricantes
 - ° garante a **interoperabilidade** entre equipamentos (compatibilidade)

Parte III: Modelos e Protocolos

Nosso objetivo:

- Definir "protocolo de rede"
- Conhecer as vantagens em dividir os protocolos em camadas
- Conhecer os principais modelos de referência para redes
- Conhecer a função de cada camada do modelo TCP/IP

Tópicos abordados:

- o que é um protocolo?
- modelos em camadas
- modelos de referência OSI e TCP/IP
- camadas do modelo TCP/IP

Modelos de Referência para Redes

- Basicamente, existem dois modelos de referência:
 - Modelo OSI, de 7 camadas
 - Modelo TCP/IP, de 4 camadas

Modelo OSI

- Usa o conceito de arquitetura em camadas:
 - cada camada utiliza os serviços prestados pela camada inferior (imediatamente abaixo dela)

° ex.: quando o usuário usa uma videoconferência (aplicação), ela seria passada à camada abaixo para criptografia (apresentação), adiante p/ estabelecer a chamada (sessão), passada p/ um transporte confiável*, que entrega para a rede localizar o destinatário, o enlace enviaria para a máquina vizinha (ex.: switch ou roteador) e por fim haveria a transmissão física dos bits

Ordena ou

mensagem

manuscrita a

Lêa

da companhia

Serviços postais

OSI e o paralelo com a comunicação por carta

O que é TCP/IP

- Conjunto de protocolos que permitem a conexão de computadores
 - ° pequenas redes locais (LAN)
 - ° grandes redes globais (WAN)

 O modelo TCP/IP estabelece um padrão para que computadores de fabricantes distintos comuniquem-se

Como surgiu o TCP/IP

- Desenvolvimento começou em 1969 com o Projeto ARPANET, com objetivo de desenvolver uma rede militar
 - interligar os computadores do governo (hardware heterogêneo)
 - ° rede descentralizada e com rotas alternativas (resistente a falhas)
- Após, foi criada pela NSF uma rede semelhante para ligar instituições de pesquisa e universidades americanas
- Destes projetos surgiu o modelo TCP/IP, alicerce para a construção da rede mundial conhecida como Internet
 - ° o modelo TCP/IP define camadas e suas funções

Pilha de protocolos da Internet

Serviços prestados por cada camada:

- aplicação: tipo de comunicação, criptografia
- transporte: transferência fim-a-fim, na entrega (opcional)
- rede: endereçamento dos nós, roteamento de datagramas
- enlace: transmite quadros entre nós vizinhos, de colisões e erros de transmissão
- física: sinalização e cabeamento

Divisão em camadas

Cada camada é distribuída (está presente em vários nós)

- "entidades" implementam as funções da camada em cada nó
- entidades realizam ações, trocam mensagens entre pares

Divisão em camadas: comunicação lógica

Ex.: transporte

- apanha dados da aplicação
- monta datagrama
 - adiciona ender., verificação de erros, etc.
- envia datagrama ao parceiro
- espera pela confirmação de recebimento

Divisão em camadas: comunicação física

- fisicamente os dados passam de camada a camada
- cada camada provê serviços para a superior, (através de uma interface bem definida)
- a informação é efetivamente transmitida pela última camada (física)

Camadas de protocolos e os dados

Encapsulamento:

- cada camada recebe dados de cima,
- acrescenta um cabeçalho para criar uma nova unidade de dados,
- passa a nova unidade de dados para a camada abaixo (applet)

Protocolos e tecnologias

Parte III: Modelos e Protocolos

Nosso objetivo:

- Definir "protocolo de rede"
- Conhecer as vantagens em dividir os protocolos em camadas
- Conhecer os principais modelos de referência para redes
- Conhecer a função de cada camada do modelo TCP/IP

Tópicos abordados:

- o que é um protocolo?
- modelos em camadas
- modelos de referência OSI e TCP/IP
- camadas do modelo TCP/IP

Camada de Aplicação

- Contém os protocolos de alto nível, utilizados pelas aplicações para envio e recepção de mensagens
- Abstrai a existência de comunicação em rede entre processos de diferentes computadores
 - ° provê serviços de comunicação ao sistema ou ao usuário
 - identifica e estabelece a disponibilidade da aplicação na máquina destinatária
 - ° disponibiliza os recursos para a comunicação aconteça
- A seguir serão listados alguns exemplos de protocolos desta camada

HTTP: carregar páginas Web na WWW (world wide web)

SMTP: envio de correio eletrônico (e-mail)

FTP: move dados eficientemente entre duas máquinas

Outros Protocolos de Aplicação

33

Requisitos de Transporte de Aplicações Comuns

Aplicação	Perdas	Banda	Sensível ao Atraso
transf. de arquivos	sem perdas	elástica	não
•	sem perdas	elástica	não
documentos Web	tolerante	elástica	não
áudio/vídeo tempo real	tolerante	aúdio: 5Kbps-1Mbps	sim, 100's msec
		vídeo: 10Kbps-5Mbps	
áudio/v ídeo armazenado	tolerante	igual à anterior	sim, alguns seg.
jogos interativos	tolerante	alguns Kbps	sim, 100's msec
c omércio eletrônico	sem perda	elástica	sim

Camada de Transporte

 Coordena o envio de mensagens de um computador para outro

OBS.: o transporte é fim-a-fim, não se preocupa com intermediários!

- Recebe mensagens da Camada de Aplicação e divide-as em segmentos, que são passados à Camada de Rede
- Seus serviços são providos pelo protocolo TCP ou UDP
 - ° pode ou não implementar algum mecanismo de controle para garantir a entrega de mensagens

Camada de Transporte

- O protocolo TCP é orientado a conexão e confiável
 - ° permite um fluxo de bytes ser entregue sem erros ao destinatário (applet)
 - o receptor remonta a mensagem, ordenando os fragmentos (applet)
 - ° o TCP também cuida do controle de fluxo e congestionamento (applet)
- O protocolo UDP é sem conexão e não confiável
 - utilizado em mensagens do tipo requisição-resposta (ex.: cliente-servidor)
 - preferido onde uma entrega rápida é mais importante que uma precisa (ex.: voz, vídeo)

Aplicações e Protocolos de Transporte da Internet

Aplicação	Protocolo de Aplicação	Protocolo de Transporte
e-mail acesso de terminais remotos Web	Telnet, SSH	TCP TCP
transferência de arquivos streaming multimedia	FTP, Rsync, Bittorrent	TCP ou UDP
servidor d e arquivos remoto telefonia Internet	NFS, SMB RTP, SIP, H.323	TCP ou UDP tipicamente UDP

Camada de Rede

- Define o mecanismo utilizado para que o computador de origem enderece e localize o computador de destino
 - recebe segmentos da Camada de Transporte
 - encapsula os segmentos em datagramas IP (applet)
 - escolhe a rota pela qual devem passar, menor, mais barata, etc (applet)
- Analogia com os Correios
 - ° uma carta tentará ser entregue ao destino
 - OBS.: cartas podem passar por caminhos diferentes! (applet, applet2)
- Exemplos de protocolos:
 - ° IP, ARP: protocolos de endereçamento lógico e físico
 - ° ICMP: protocolo de mensagens de controle
 - ° IGMP: protocolo de grupo mullticast

Camada de Interface de Rede

- Enlace: Define os padrões de transmissão da informação e correção de erros, através do meio físico
 - ° ex.: Ethernet, FDDI, WiFi, Token Ring, ATM, etc
- Datagramas recebidos pela Camada de Rede são subdivididos em quadros
- Os quadros são transmitidos*, ponto-a-ponto (entre vizinhos)
 - * os quadros devem ser convertidos em sinal (elétrico, óptico)

Camada de Interface de Rede

- Física: define as características técnicas* dos dispositivos elétricos e ópticos (físicos) do sistema
 - ° * taxa de transferência, tensões, frequências, etc.
 - ° ex. de protocolos: PPP, DSL, GSM, camada física de Ethernet, WiFi, IRDA, etc.
- A camada física move bits através de um meio de transmissão
 - ° OBS.: erros de transmissão podem ocorrer (interferências, colisões), mas quem lida com eles é a camada de enlace

