TIANEN CHEN, TAYLOR KEMP, AND YOUNGHYUN KIM UNIVERSITY OF WISCONSIN-MADISON

SYNTHNET: A HIGH-THROUGHPUT YET ENERGY-EFFICIENT COMBINATIONAL LOGIC NEURAL NETWORK

ML AT THE EDGE: APPLICATIONS AND MOTIVATIONS

- Less network communication load
- Reduced latency
- Enhanced privacy

ML AT THE EDGE: CHALLENGES

Energy constraints on edge devices

Energy-efficient ML systems

Energy-aware network design

X Heavy memory access overheads

- Major source of energy consumption in conventional load-and-compute neural processing element (NPE) architectures
- Multiply-and-accumulate (MAC) operations dominate memory accesses

TECHNIQUES FOR REDUCING MEMORY ACCESSES

Quantization

Pruning

Processing in memory

Replace floating-points with numbers with simpler representations

Remove connections in order to discriminate against low-magnitude weights

Perform computation in the memory without fetching data to the processor

A New Approach: Logic-Based Neural Networks

Neurons are implemented as a Boolean logic circuit

Pre-evaluated Boolean mappings functions of the neurons

Weights are hardwired into the logic, not stored in the memory

✓ No memory access overheads

LOGIC SIZE REDUCTION WITH INCOMPLETELY SPECIFIED FUNCTIONS

0 ... 0 0 1 0 X
0 ... 0 0 1 1 X
0 ... 0 1 0 0 X
0 ... 0 1 0 1 X
0 ... 0 1 0 1 X
0 ... 0 1 1 1 1 X
0 ... 1 0 0 0 X
0 ... 1 0 0 0 X
0 ... 1 0 1 0 0
0 ... 1 0 1 0 0
0 ... 1 0 1 1 X
0 ... 1 1 0 1 X
0 ... 1 1 0 1 X
0 ... 1 1 1 1 X
0 ... 1 1 1 1 X

X97

X98

X99 X100

Input

X₁

Completely specified function (CSF)

Incompletely specified function (ISF) only for **observed inputs**

Not feasible

Smaller logic

MOTIVATION: UNEXPLOITED ERROR RESILIENCE

Question: How do we identify and remove unimportant outputs?

PROPOSED METHOD: TWO-COORDINATE LOGIC MINIMIZATION

HITCOUNT: AN IMPORTANCE METRIC OF INPUTS

- Hitcount (HC): Number of encounters of input combination
- High HC
 - = High input encounter frequency
 - = Important input combination
- Output is specified only when the input is encountered at least once during training (i.e., HC ≥ 1)

Input	X 1		X 97	X 98	X 99	X 100	У	НС
	0		0	0	0	0	X	0
	0		0	0	0	1	X	0
	0		0	0	1	0	X	0
	0		0	0	1	1	X	0
	0		0	1	0	0	X	0
	0		0	1	0	1	X	0
O 6 1 6	0		0	1	1	0	1	10000
	0		0	1	1	1	X	0
	0		1	0	0	0	X	0
	0		1	0	0	1	X	0
7	0		1	0	1	0	0	1
	0		1	0	1	1	X	0
	0		1	1	0	0	X	0
	0		1	1	0	1	X	0
	0		1	1	1	0	X	0
	•	•	•	•	•	•	•	0
	1		1	1	1	1	X	0

HITCOUNT: UNEQUAL IMPORTANCE OF INPUTS

Dataset: MNIST

Only a very small subset of input combinations are important

HC in the traning set well represents the importance of input combinations in the test set

METHOD 1: SYNTHESIS-AWARE PRUNING

- Magnitude-based pruning Eliminate inputs with low magnitudes
- Update HC: Add HCs of merged rows $HC' = \sum_{i \in I} HC_i$

$$HC' = \sum_{i \in I} HC_i$$

<i>X</i> ₁	X 2	X 3	1/	НС	X 1	X 2	X 3	1.7	НС					
10	1	-5	У	ПС	10	1	-5	y	ПС					
0	0	0	0	2000	0	X	0	0	2000	X 1	X 3	v'	HC'	
0	0	1	X	0	0	X	1	X	0	10	-5	y		
0	1	0	X	0	0	X	0	X	0	0	0	?	2000+0=	2000
0	1	1	X	0	0	X	1	X	0	0	1	?	0+0=	0
1	0	0	1	5	1	X	0	1	5	1	0	?	5+150=	155
1	0	1	0	10	1	X	1	0	10	 1	1	?	10+1000=	1010
1	1	0	1	150	1	X	0	1	150					
1	1	1	1	1000	1	X	1	1	1000	Merge	e row	s and	d update H	C
	†	-												

Remove low-magnitude input x2

METHOD 1: SYNTHESIS-AWARE PRUNING

• Update output: Weighted average of merged rows

$$y' = \text{round} \left(\frac{\sum_{i \in I} y_i \times HC_i}{\sum_{i \in I} HC_i} \right)$$

<i>X</i> 1	X 2	X 3	1/	НС					
10	1	-5	y	ПС					
0	X	0	0	2000	<i>X</i> ₁	X 3	W.		HC'
0	X	1	X	0	10	-5	y		
0	X	0	X	0	0	0	round($(0\times2000+0\times0)/2000$)=	0	2000
0	X	1	X	0	0	1	round($(X\times0+X\times0)/0$)=	X	0
1	X	0	1	5	1	0	round($(1\times5+1\times150)/155$)=	1	155
1	X	1	0	10	 1	1	round($(0\times10+1\times1000)/1010$)=	1	1010
1	X	0	1	150					
1	X	1	1	1000	Jpdate	outp	ut		

METHOD 2: INPUT-DRIVEN LOGIC MINIMIZATION

- Unspecify output (switch to Don't-Care) for unimportant inputs
- Makes the truth table even more sparse, resulting in even smaller logic
- HC remains unchanged

	<i>X</i> ₁	X 2	X 3		HC	<i>X</i> ₁	X 2	X 3	v'	HC
	10	1	-5	y		10	1	-5	y	ПС
	0	0	0	0	2000	0	0	0	0	2000
	0	0	1	X	0	0	0	1	X	0
	0	1	0	X	0	0	1	0	X	0
	0	1	1	X	0	0	1	1	X	0
	1	0	0	1	5	1	0	0	X	5
	1	0	1	0	10	1	0	1	X	10
Low HC	1	1	0	1	150	1	1	0	X	150
	1	1	1	1	1000	1	1	1	X	1000
								·	†	
							Οι	utput	unsp	pecified

Two Methods Applied in Design Flow

- Synthesis-aware pruning and input-driven logic minimization iteratively applied
- Accuracy estimated from reduced truth tables without synthesis
- Repeated until target accuracy is met

EXPERIMENTAL SETUP

- Model: A CNN with binarized activation convolutional layers
- Target layers: 2nd and 3rd conv layers
- Dataset: CIFAR-10
- Validation: Last 5000 samples of training set as validation set after 200 epochs

RESULTS: SYNTHESIS-AWARE PRUNING

80%–90% inputs can be pruned, resulting in increased hit rate and accuracy

RESULTS: INPUT-DRIVEN LOGIC MINIMIZATION

High accuracy maintained even with ~90% HC removed

HARDWARE EVALUATION

_	C	LNN (Proposed	SCALE-Sim	Energy		
Layer	Energy per cycle (pJ)	Cycles per image	Energy per image (nJ)	energy per image (nJ)	reduction per image	
2	541	1,024	553	5,682	90.3%	
3	249	256	64	11,360	99.4%	

- Synthesis: Synopsys Design Compiler using TSMC 45 nm libarary
- Baseline: Systolic array simulated using SCALE-Sim

90+% energy reduction per image

CONCLUSION

- Identified unexploited energy-saving opportunities in combinational logic neural network implementation
 - Introduced hitcount as a unique importance metric of inputs in combinational logic neural network
- Proposed two methods for reducing model size in the context of logic synthesis
 - Synthesis-aware pruning and input-driven logic minimization
 - Exploits **error resilience** of neural networks to further reduce logic size and enhance scalability
- 90+% power reduction while maintaining a competitive accuracy of 82% on the CIFAR-10 dataset