Introdução ao Machine Learning

Tlpos de dados, Contexto das aplicações, Aplicações em casos de Regressão e Classificação

João Pedro Andrade Gomes da Silva IEEE Computational Intelligence Society Student Chapter Universidade de Brasília

May 2, 2025

Sumário

- 1. Tipos de dados
- 2. Análise exploratória de dados
- 3. Aprendizado Supervisionado x Aprendizado Não Supervisionado
- 4. Estado da arte ML e Engenharia
- 5. Algoritmos de Regressão
- 6. Algoritmos de Classificação

Tipos de dados

- Quando enfrentamos um problema de Machine Learning, a primeira coisa que devemos nos atentar são aos tipos de dados que estamos tratando.
- Existem, em linhas gerais, 2 tipos de dados: Dados Numéricos e Dados Categóricos

Exemplos

A seguir, iremos citar alguns exemplos de cada tipo de dado

- Dados Númericos: Preço de um imóvel, Salário médio de uma população, Peso, Altura...
- Dados Categóricos: Estado de vida (morto/vivo), Tipo de contrato, Departamento de Trabalho, Gênero

Dados Númericos

Os Dados Númericos se dividem em dois tipos distintos

- Dados Discretos: São dados numéricos, representados por números inteiros não negativos. Sua principal característica é a finitude. (Ex: Número de bolas de futebol utilizadas ao longo de uma partida)
- Dados Contínuos: São dados numéricos que podem assumir qualquer valor dentro de um intervalo, e podem ser divididos em partes, infinitamente. (Ex: Velocidade, Pressão, Distância)

Dados Categóricos

Por sua vez, os Dados Categóricos possuem 3 sub-categorias:

- Dados Ordinais: Varíaveis categorizáveis cuja a ordem é de suma relevância (Ex: Nível Educacional)
- Dados Binários: Varíaveis categorizáveis que tendem a seguir a lógica booleana, ou seja, assumem apenas um valor (Ex: Falso/Verdadeiro, Estado de vida)
- Dados Nominais: Váriaveis Categorizáveis que não obedecem a determinada ordenação (Ex: Gênero, Tipo Sanguíneo)

Lidando com dados faltantes

Grande parte das vezes em que estamos trabalhando com Bases de Dados complexas, nem sempre as receberemos de maneira completa. Sendo necessária a realização de uma geração sintética de dados Para isso, é necessário entendermos os diferentes tipos de "dados perdidos".

- Missing Completly at Random (MCAR) Todas as variáveis tem a mesma probabilidade de serem "perdidas"
- Missing at Random (MAR) Varíaveis com probabilidades distintas de serem perdidas
- Missing not at Random (MNAR) São aqueles cuja ausência está diretamente relacionada ao próprio valor ausente. Ou seja, a falta do dado ocorre porque há algo inerente à variável que influencia sua não resposta.

Técnicas para verificar dados faltantes

Função	Descrição	
.isnull()	Retorna um DataFrame pandas, onde cada valor é um	
	booleano: True se o valor estiver ausente, False caso	
	contrário.	
.notnull()	Similar à função anterior, mas retorna False se o valor for NaN	
	ou None, e True caso contrário.	
.info()	Gera três colunas principais, incluindo "Non-Null Count", que	
	exibe a quantidade de valores não ausentes para cada coluna.	
.isna()	Semelhante a .isnull(), mas retorna True apenas quando o	
	valor ausente é do tipo NaN.	

Table: Principais funções para identificar valores ausentes no pandas.

Técnicas para substituir dados faltantes

Existem várias estratégias de imputação, e elas não devem ser utilizadas de forma indiscriminada. A adoção da abordagem correta pode evitar a introdução de vieses nos dados e a tomada de decisões equivocadas.

A tabela a seguir ilustra qual método de imputação utilizar com base no tipo de dado ausente. A lista de métodos não é exaustiva, mas estes são os mais comumente usados.

Tabela - Técnicas para substituir dados faltantes

Tipo de Dado Ausente	Método de Imputação	
Missing Completly at Random (MCAR)	Média, Mediana, Moda ou	
	qualquer outro método de im-	
	putação.	
Missing at Random (MAR)	Imputação Múltipla, Imputação	
	por Regressão.	
Missing not at Random (MNAR)	Substituição por Padrão, Esti-	
	mativa de Máxima Verossimil-	
	hança.	

Table: Métodos de imputação com base no tipo de dado ausente.

Definição e tipos de EDA

Figure: Fluxo lógico em análise exploratória de dados

Aprendizado Supervisionado

Figure: Aprendizado Supervisionado

Aprendizado Não Supervisionado

Figure: Aprendizado Não Supervisionado

Principais algoritmos

Traditional Machine Learning Methods and Algorithms Used in Engineering			
Supervised	Regression (Prediction)	Linear Regression Polynomial Regression Ridge & Lasso Regression Polynomial Regression Regression Regression Particle Filters Beyesian Regression Support Vector Regression	
Learning	Classification	K-Nearest Neighbors Support Vector Machine Logistic Regression Random Forest Native Bayes Hidden Markov Models Gaussian Discriminant Analysis Decision Trees Self-Organizing Map	
	Clustering	K-Means Clustering Hierarchical Clustering DBSCAN Latent Dirichlet Allocation Gaussian Mixture Models	
Unsupervised Learning	Dimensionality Reduction	Principle Component Singular Value Linear Discriminant Factor Analysis t-SNE Independent Component Analysis	
	Prediction	Kalman Filters Particle Filters Similarity-Based Markov Chains Hidden Markov Models	
	Anomaly Detection	One-Class Support Vector Machine Statistical Process Control SOM-MQE Isolation Forest Thresholding Models	
Others	Reinforcement Learning	Value-Based Value-Based (BARSA) (State- (Q-Learning) Action-Reward-State-Action) (REINFORCE) Policy-Based (Proximal Policy Optimization) Actor-Critic Model-Based RL	
	Optimization	Gradient Descent Genetic Algorithms Particle Swarm Optimization Grid Search Bayesian Optimization Convex Optimization	
above and d		ed models such as CNNs, RNNs, transformers, and their variants can be applied in most of situations listed reater performance when dealing with large amounts of data. As a result, we categorized them as advanced	

Figure: Estado da arte - Algoritmos e Métodos de ML usados na engenharia

Estado da arte - linhas de pesquisa

Research Direction	Feasibility	Impact	Leading Sector
Transfer learning & domain adaptation	High	Moderate	Academia + Industry
Similarity-based machine learning	High	Moderate	Academia + Industry
Synthetic data generation	Moderate	Moderate	Academia
Digital twin-based machine learning	Moderate	High	Academia + Industry
Stream-of-X	Moderate	High	Academia + Industry
Hybrid physics-based and	Low	High	Academia
data-driven models	Low	Tilgii	Academia
Multi-modal machine learning	Low	High	Academia
LLM and ILKM	Low	High	Academia + Industry
Foundation models for engineering AI	Very Low	Transformative	Academia + Government

Figure: Roteiro qualitativo para futuras direções de pesquisa em engenharia de IA

Definição

Para um problema de regressão, os dados de treinamento \mathcal{D}_n estão na forma de um conjunto de n pares:

$$\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\},\$$

onde $x^{(i)}$ representa uma entrada, geralmente um vetor d-dimensional de valores reais e/ou discretos, e $y^{(i)}$ é a saída a ser prevista, neste caso, um número real. Os valores de y são às vezes chamados de valores-alvo.

O objetivo em um problema de regressão é, dado um novo valor de entrada $x^{(n+1)}$, prever o valor de $y^{(n+1)}$. Problemas de regressão são um tipo de aprendizado supervisionado, pois a saída desejada $y^{(i)}$ é especificada para cada um dos exemplos de treinamento $x^{(i)}$.

Qual Método de Regressão usar?

Figure: Métodos de Regressão

Regressão Linear

Figure: Overview - Regressão Linear

Métricas de Avaliação em Regressão Linear - Coeficiente de Determinação

$$1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \overline{y}_i)^2} \underbrace{\begin{array}{c} \text{Residual Sum of Squared Errors, the difference} \\ \text{between actual_y and predicted_y, squared.} \end{array}}_{\text{Total Sum of Squared Errors, the difference between actual_y and the mean of y, squared.}}$$

Figure: Fórmula - Coeficiente de Determinação

Métricas de Avaliação em Regressão Linear - Mean Squared Error (MSE)

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Figure: Mean Squared Error

Mean Absolute Error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Figure: Mean Absolute Error

Questionamentos...

- Qual das 3 métricas é menos sensível a Outliers? E qual é a mais sensível?
- Qual a principal diferença entre as 3 métricas? (No sentido de "o que cada uma diz a respeito da performance do seu modelo)
- Cite contextos em que você acredita que uma das métricas diz mais que as outras quanto a analíse da performance

Overview - Modelos de Regressão

Figure: Diferentes tipos de modelos de Regressão

O que é um algoritmo de classificação?

Classificação é um método de aprendizado de máquina supervisionado em que o modelo tenta prever o rótulo correto de um determinado dado de entrada. Na classificação, o modelo é totalmente treinado usando os dados de treino e, em seguida, é avaliado com os dados de teste antes de ser utilizado para realizar previsões em novos dados ainda não vistos.

O clássico caso do classificador de e-mails

Figure: Classificador de e-mails

Lazy Learners Vs. Eager Learners

- Eager Learner: São algoritmos de aprendizado de máquina que primeiro constroem um modelo a partir do conjunto de dados de treinamento antes de fazer qualquer previsão em dados futuros. Eles gastam mais tempo durante o processo de treinamento devido à sua "ansiedade" em obter uma melhor generalização ao aprender os pesos, mas exigem menos tempo para fazer previsões.
- Lazy Learner: Não criam nenhum modelo imediatamente a partir dos dados de treinamento — e é daí que vem o aspecto "preguiçoso". Eles apenas memorizam os dados de treinamento, e, toda vez que há a necessidade de fazer uma previsão, procuram o vizinho mais próximo em todo o conjunto de treinamento, o que os torna muito lentos durante a fase de previsão.

Lazy Learners Vs. Eager Learners

Característica	Lazy Learners	Eager Learners
Abordagem de Treinamento	Memoriza todos os dados de treinamento du-	Cria uma representação generalizada durante
	rante o treinamento.	o treinamento.
Processo de Predição	Procura por instâncias semelhantes durante	Aplica diretamente a representação apren-
	a predição e aplica seus rótulos.	dida para realizar a predição.
Adaptabilidade a Novos Dados	Adapta-se rapidamente a novos dados sem	Menos adaptável a novos dados; pode ser
	necessidade de reentreinamento.	necessário reentreinamento.
Velocidade de Predição	Pode ser mais lenta, especialmente com	Predições mais rápidas devido ao modelo
	grandes conjuntos de dados.	pré-treinado.
Predições Offline	Requer acesso aos dados de treinamento du-	Pode fazer predições offline ou sem os dados
	rante a predição.	de treinamento.
Tratamento de Relações Complexas	Eficaz no tratamento de relações complexas	Mais adequado para padrões e relações bem
	e não lineares.	definidos.
Representação do Modelo	Sem representação de modelo fixa; depende	Requer uma representação de modelo fixa
	dos dados memorizados.	aprendida durante o treinamento.

Table: Comparação entre Lazy Learners e Eager Learners

Métricas de avaliação em algoritmos de classificação

- Acurácia: Útil em casos que sua varíavel alvo está balanceada; expressa, em linhas gerais, o quanto o seu modelo acertou em comparação com todas as previsões feitas.
- Precisão: De todos os dados classificados como positivos, quantos são realmente positivos.
- Recall: Qual a porcentagem de dados classificados como positivos comparado com a quantidade real de positivos que existem em nossa amostra.
- F1-score: essa métrica une precisão e recall afim de trazer um número único que determine a qualidade geral do nosso modelo.

Métricas de avaliação em algoritmos de classificação

Métrica	Descrição	Fórmula
Acurácia	Indica uma performance geral do modelo. Dentre todas as classificações, quantas o modelo classificou corretamente.	$\frac{VP + VN}{VP + FV + FP + FN}$
Precisão	Dentre todas as classificações da classe positiva que o modelo fez, quantas estão corretas.	$\frac{VP}{VP + FP}$
Recall Revocação Sensibilidade:	Dentre todas as classificações da classe positiva como valor esperado, quantas estão corretas.	$\frac{VP}{VP+FN}$
F1-Score	Média harmônica entre precisão e Recall.	2 * Precisão * Recall Precisão + Recall

Figure: Métricas de avaliação em algoritmos de classificação