Assignment 9

PM522b Introduction to the Theory of Statistics Part 2

Due: April 12, 2018

- 1. Let $X_1, ..., X_n$ be a random sample from the Poisson distribution with mean λ . Derive the most powerful test for testing $H_0: \lambda = 2$ versus $H_1: \lambda = 1/2$.
- 2. Explain what is meant by the power of a test and describe how the power may be used to determine the most appropriate size of a sample. Then, given $X_1, ..., X_n$ from the Weibull distribution $f(x|\gamma,\beta) = \frac{\gamma}{\beta^{\gamma}} x^{\gamma-1} e^{-(x/\beta)^{\gamma}}$ for x>0, $\beta>0$ is unknown and $\gamma>0$ is known, find the form of the most powerful test of the null hypothesis that $H_0: \beta=\beta_0$ versus $H_1: \beta=\beta_1$ where $\beta_0>\beta_1$.
- 3. Given two independent random samples $X_1, ..., X_n$ and $Y_1, ..., Y_m$ with normal distributions $N(\mu_x, \sigma_x^2)$ and $N(\mu_y, \sigma_y^2)$, determine a generalized likelihood ratio test for $H_0: \mu_x \mu_y = 0$ versus $H_1: \mu_x \mu_y \neq 0$ at a given significance level α (σ_x, σ_y unknown but equal). This question is a bit lengthy.
- 4. Finish CB 8.37 (we did part c in class, please complete parts a and b)
- 5. CB 8.17