

人工智能技术及应用

Artificial Intelligence and Application

Bias v.s. Variance

Bias-Complexity Trade-off

Model becomes complex (e.g. more features, more parameters)

When optimization fails...

Review: Gradient Descent

In step 3, we have to solve the following optimization problem:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 L: loss function θ : parameters

Suppose that θ has two variables $\{\theta_1, \theta_2\}$

Randomly start at
$$\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$$

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^0)}{\partial L(\theta_2^0)} / \frac{\partial \theta_1}{\partial L(\theta_2^0)} \\ \frac{\partial L(\theta_2^0)}{\partial L(\theta_2^0)} / \frac{\partial \theta_2}{\partial L(\theta_2^0)} \end{bmatrix}$$

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^0)}{\partial L(\theta_2^0)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix} \implies \theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\begin{bmatrix} \theta_1^2 \\ \theta_2^2 \end{bmatrix} = \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^1)}{\partial L(\theta_2^1)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix} \implies \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

$$\nabla L(\theta) = \begin{bmatrix} \partial L(\theta_1)/\partial \theta_1 \\ \partial L(\theta_2)/\partial \theta_2 \end{bmatrix}$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

Review: Gradient Descent

Optimization Fails because

Tayler Series Approximation

 $L(\boldsymbol{\theta})$ around $\boldsymbol{\theta} = \boldsymbol{\theta}'$ can be approximated below

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \left[(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{g} \right] + \left[\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta'}) \right]$$

Gradient g is a vector

$$\mathbf{g} = \nabla L(\mathbf{\theta'})$$
 $\mathbf{g}_i = \frac{\partial L(\mathbf{\theta'})}{\partial \mathbf{\theta}_i}$

Hessian H is a matrix

$$\frac{\mathbf{H}_{ij}}{\partial \boldsymbol{\theta}_i \partial \boldsymbol{\theta}_j} L(\boldsymbol{\theta'})$$

Hessian

 $L(\boldsymbol{\theta})$ around $\boldsymbol{\theta} = \boldsymbol{\theta}'$ can be approximated below

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \left(\boldsymbol{\theta - \theta'}\right)^T \boldsymbol{g} + \left(\frac{1}{2} (\boldsymbol{\theta - \theta'})^T \boldsymbol{H} (\boldsymbol{\theta - \theta'})\right)$$

At critical point

telling the properties of critical points

At critical point:

 $\boldsymbol{v}^T \boldsymbol{H} \boldsymbol{v}$

Hessian

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta'})$$

For all $oldsymbol{v}$

$$v^T H v > 0$$
 Around θ' : $L(\theta) > L(\theta')$ Local minima

= H is positive definite = All eigen values are positive.

For all $oldsymbol{v}$

$$v^T H v < 0$$
 Around θ' : $L(\theta) < L(\theta')$ Local maxima

= H is negative definite = All eigen values are negative.

Sometimes
$$v^T H v > 0$$
, sometimes $v^T H v < 0$ \Longrightarrow Saddle point

Some eigen values are positive, and some are negative.

Example

$$y = w_1 w_2 x$$

$$x \xrightarrow{w_1} \qquad \qquad w_2 \qquad \qquad y \iff \hat{y} \\ = 1 \qquad \qquad = 1$$

Error Surface

$$x \xrightarrow{w_1} \cancel{y} \iff \hat{y}$$

$$= 1$$

$$L = (\hat{y} - w_1 w_2 x)^2 = (1 - w_1 w_2)^2$$

$$\frac{\partial L}{\partial w_1} = 2(1 - w_1 w_2)(-w_2) = 0$$

$$\frac{\partial L}{\partial w_2} = 2(1 - w_1 w_2)(-w_1)$$

$$= 0$$

Critical point:
$$w_1 = 0, w_2 = 0$$

$$\frac{H}{H} = \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix} \quad \lambda_1 = 2, \lambda_2 = -2$$

Saddle point

$$\frac{\partial^2 U_1}{\partial w_1^2} = \frac{2(-w_2)(-w_2)}{0} = 0$$

$$\frac{\partial^2 U_1}{\partial w_1^2} = -2 + 4w_1w_2$$

$$\frac{\partial^{2} L}{\partial w_{1}^{2}} = 2(-w_{2})(-w_{2}) \left(\frac{\partial^{2} L}{\partial w_{1} \partial w_{2}} \right) = -2 + 4w_{1}w_{2}$$

$$= 0$$

$$= -2$$

$$\frac{\partial^2 L}{\partial w_2 \partial w_1} = -2 + 4w_1 w_2 = -2$$

$$= -2$$

$$\frac{\partial^2 L}{\partial w_2^2} = 2(-w_1)(-w_1) = 0$$

Don't afraid of saddle point?

 $\boldsymbol{v}^T \boldsymbol{H} \boldsymbol{v}$

At critical point:
$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta}') + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}')^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta}')$$

Sometimes $v^T H v > 0$, sometimes $v^T H v < 0$ \Longrightarrow Saddle point

H may tell us parameter update direction!

 $oldsymbol{u}$ is an eigen vector of $oldsymbol{H}$ λ is the eigen value of $oldsymbol{u}$ $\lambda < 0$

$$u^T H u = u^T (\lambda u) = \lambda ||u||^2$$

$$< 0$$

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta'}) \implies L(\boldsymbol{\theta}) < L(\boldsymbol{\theta'})$$

$$\theta - \theta' = u$$
 $\theta = \theta' + u$ Decrease L

$$x \xrightarrow{w_1} \qquad w_2 \qquad y \iff \hat{y}$$

$$= 1$$

$$L = (\hat{y} - w_1 w_2 x)^2 = (1 - w_1 w_2)^2$$

$$\frac{\partial L}{\partial w_1} = 2(1 - w_1 w_2)(-w_2)$$
Critical

$$\hat{y}_{=1} = 1$$

$$w_{2})^{2}$$

$$\sum_{-0.5}^{-0.5} \frac{1}{-0.5}$$

$$\sum_{-1.0}^{-1.0} \frac{1}{-0.5} = 0$$

$$\text{Critical point:} \quad w_{1} = 0, w_{2} = 0$$

$$H = \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix} \quad \lambda_{1} = 2, \lambda_{2} = -2$$

$$\frac{\partial L}{\partial w_2} = 2(1 - w_1 w_2)(-w_1)$$

$$\lambda_2 = -2$$
 Has eigenvector $\boldsymbol{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Update the parameter along the direction of \boldsymbol{u}

You can escape the saddle point and decrease the loss.

(this method is seldom used in practice)

Saddle Point v.s. Local Minima

When you have lots of parameters, perhaps local minima is rare?

Optimization Fails because

Small Gradient ...

The value of a network parameter w

How to escape from critical points...

Tips for training: Batch and Momentum

Batch

Review: Optimization

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

 $\boldsymbol{\theta} = \begin{vmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{vmatrix}$

(Randomly) Pick initial values $\boldsymbol{\theta}^0$

$$g = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \frac{\partial L}{\partial \theta_2} |_{\theta = \theta^0} \end{bmatrix}$$
gradient $\begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \vdots \end{bmatrix}$

$$\mathbf{g} = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \frac{\partial L}{\partial \theta_2} |_{\theta = \theta^0} \end{bmatrix} \quad \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \\ \vdots \end{bmatrix} \leftarrow \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \\ \vdots \end{bmatrix} - \begin{bmatrix} \mathbf{\eta} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \frac{\partial L}{\partial \theta_2} |_{\theta = \theta^0} \end{bmatrix}$$
 gradient

$$\boldsymbol{g} = \nabla L(\boldsymbol{\theta}^0)$$

$$\boldsymbol{\theta}^1 \leftarrow \boldsymbol{\theta}^0 - \boldsymbol{\eta} \boldsymbol{g}$$

Review: Optimization

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

- \succ (Randomly) Pick initial values $oldsymbol{ heta}^0$
- Compute gradient $\mathbf{g} = \nabla L(\mathbf{\theta}^0)$ $\mathbf{\theta}^1 \leftarrow \mathbf{\theta}^0 \mathbf{\eta} \mathbf{g}$
- ightharpoonup Compute gradient $oldsymbol{g} =
 abla L(oldsymbol{ heta}^1)$

$$\theta^2 \leftarrow \theta^1 - \eta g$$

ightharpoonup Compute gradient $oldsymbol{g}=
abla L(oldsymbol{ heta}^2)$

$$\theta^3 \leftarrow \theta^2 - \eta g$$

Optimization with Batch

1 epoch = see all the batches once - Shuffle after each epoch

Optimization of New Model

Example 1

- \triangleright 10,000 examples (N = 10,000)
- ➤ Batch size is 10 (B = 10)

How many update in 1 epoch?

1,000 updates

Example 2

- \geq 1,000 examples (N = 1,000)
- Batch size is 100 (B = 100)

How many update in 1 epoch?

10 updates

B batch
batch
batch

batch

Consider 20 examples (N=20)

Batch size = N (Full batch)

Update after seeing all the 20 examples

Batch size = 1

Update for each example Update 20 times in an epoch

 Larger batch size does not require longer time to compute gradient (unless batch size is too large)

 Smaller batch requires longer time for one epoch (longer time for seeing all data once)

Consider 20 examples (N=20)

Batch size = N (Full Batch)

Update after seeing all the 20 examples

Batch size = 1

Update for each example Update 20 times in an epoch

- > Smaller batch size has better performance
- > What's wrong with large batch size? Optimization Fails

- Smaller batch size has better performance
- "Noisy" update is better for training

Small batch is better on testing data?

	Name	Network Type	Data set
CD OFC	F_1	Fully Connected	MNIST (LeCun et al., 1998a)
SB = 256	F_2	Fully Connected	TIMIT (Garofolo et al., 1993)
1.0	C_1	(Shallow) Convolutional	CIFAR-10 (Krizhevsky & Hinton, 2009)
LB =	C_2	(Deep) Convolutional	CIFAR-10
0.1 x data set	C_3 C_4	(Shallow) Convolutional	CIFAR-100 (Krizhevsky & Hinton, 2009)
O.1 A data SCt	C_4	(Deep) Convolutional	CIFAR-100

	Training Accuracy		Testing Accuracy	
Name	SB	LB	SB	LB
F_1	$99.66\% \pm 0.05\%$	$99.92\% \pm 0.01\%$	$98.03\% \pm 0.07\%$	$97.81\% \pm 0.07\%$
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$	$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$	$80.04\% \pm 0.12\%$	$77.26\% \pm 0.42\%$
C_2	$99.99\% \pm 0.04\%$	$99.99\% \pm 0.01\%$	$89.24\% \pm 0.12\%$	$87.26\% \pm 0.07\%$
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$	$49.58\% \pm 0.39\%$	$46.45\% \pm 0.43\%$
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$	$63.08\% \pm 0.5\%$	$57.81\% \pm 0.17\%$

	Small	Large
Speed for one update (no parallel)	Faster	Slower
Speed for one update (with parallel)	Same	Same (not too large)
Time for one epoch	Slower	Faster
Gradient	Noisy	Stable
Optimization	Better 💥	Worse
Generalization	Better 💥	Worse

Batch size is a hyperparameter you have to decide.

鱼和熊掌能否兼得?

- Large Batch Optimization for Deep Learning: Training BERT in 76 minutes (https://arxiv.org/abs/1904.00962)
- Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes (https://arxiv.org/abs/1711.04325)
- Stochastic Weight Averaging in Parallel: Large-Batch Training That Generalizes Well (https://arxiv.org/abs/2001.02312)
- Large Batch Training of Convolutional Networks (https://arxiv.org/abs/1708.03888)
- Accurate, large minibatch sgd: Training imagenet in 1 hour (https://arxiv.org/abs/1706.02677)

Momentum

Small Gradient ...

The value of a network parameter w

(Vanilla) Gradient Descent

Gradient Descent + Momentum

Movement: movement of last step minus gradient at present

Starting at $heta^0$

Movement $m^0 = 0$

Compute gradient g^0

Movement $m^1 = \lambda m^0 - \eta g^0$

Move to $\theta^1 = \theta^0 + m^1$

Compute gradient g^1

Movement $m^2 = \lambda m^1 - \eta g^1$

Move to $\theta^2 = \theta^1 + m^2$

Movement not just based on gradient, but previous movement.

Gradient Descent + Momentum

Movement: **movement of last step** minus **gradient** at present

 m^i is the weighted sum of all the previous gradient: g^0 , g^1 , ..., g^{i-1}

$$m^0 = 0$$

$$m^1 = -\eta g^0$$

$$m^2 = -\lambda \eta g^0 - \eta g^1$$

Starting at $heta^0$

Movement $m^0 = 0$

Compute gradient $oldsymbol{g^0}$

Movement $m^1 = \lambda m^0 - \eta g^0$

Move to $\theta^1 = \theta^0 + m^1$

Compute gradient g^1

Movement $m^2 = \lambda m^1 - \eta g^1$

Move to $\theta^2 = \theta^1 + m^2$

Movement not just based on gradient, but previous movement.

Gradient Descent + Momentum

Concluding Remarks

- Critical points have zero gradients.
- Critical points can be either saddle points or local minima.
 - Can be determined by the Hessian matrix.
 - It is possible to escape saddle points along the direction of eigenvectors of the Hessian matrix.
 - Local minima may be rare.
- Smaller batch size and momentum help escape critical points.