Control Systems

G V V Sharma*

Contents				8	Compensators 4		
						Lead	4
1	Signal Flow Graph		1			Circuit	4
	1.1	Mason's Gain Formula	1			ead	4
	1.2	Matrix Formula	1		8.4 Examp	ole	4
	1.3	Example	1	9	Gain Margin		4
2	Coin of	E Eardhadt Cinquita	1		9.1 Introdu	action	4
2		Feedback Circuits	1		9.2 Examp	ole	4
	2.1	Current Amplifiers	1	10	DI M :		4
3	Bode Plot		4	10	Phase Margin 10.1 Intoduc	ation	4 4
3	3.1	Introduction	4			ction	4
	3.1		4		10.2 Examp	<i>n</i> c	7
	3.3	Example	4	11	11 Oscillator		4
	3.4		4		11.1 Introdu	action	4
	3.4	Example	4		11.2 Examp	ole	4
4	Second	Second order System		12	Root Locus 4		
	4.1	Damping	4			action	4
	4.2	Peak Overshoot	4		12.2 Examp	ole	4
	4.3	Settling Time	4				
	4.4	Example	4	13	Polar Plot		4
		_			13.1 Introdu	action	4
5	Routh Hurwitz Criterion		4	14	14 PID Controller 4		
	5.1	Routh Array	4	17		action	4
	5.2	Marginal Stability	4				•
	5.3	Stability	4		Abstract—This manual is an introduction to contro systems based on GATE problems.Links to sample Python codes are available in the text.		
	5.4	Example	4				OH
6	State-Si	pace Model	4	Download python codes using			
Ü	6.1	Controllability and Observ-	•	svn c	om/gadepall/school/trunk/		
	0.1	ability	4	control/codes			
	6.2	Second Order System	4		·		
	6.3	Example	4		1 Signal Flow Graph		
_				1.1 Mason's Gain Formula			
7		quist Plot		1.2 I	1.2 Matrix Formula		
	7.1	Introduction	4	1.3 Example			
	7.2	Example	4	2 Gain of Feedback Circuits			
*Th/	author ic	with the Department of Electrical Engineer	ina	210	urrent Amplifiers		
		with the Department of Electrical Engineering Technology, Hyderabad 502285 India e-m	•1		1 0		:
		All content in this manual is released under G				current amplifier shown	ın

GPL. Free and open source.

2.1.1, Draw the Small-Signal Model

Fig. 2.1.1

Solution: While drawing a Small-Signal Model, we ground all constant voltage sources and open all constant current sources. All Small-Signal paramters are obtained from DC-Analysis of the circuit.

Fig. 2.1.1

2.1.2. Describe how the given circuit is a Negetive Feedback Current Amplifier.

> **Solution:** For the feedback to be negative, I_f must have the same polarity as I_s . To ascertain that this is the case, we assume an increase 2.1.5. Find the Expression for the Closed-Loop Gain in I_s and follow the change around the loop: An increase in I_s causes I_i to increase and the drain voltage of Q_1 will increase. Since this voltage is applied to the gate of the p-channel device Q_2 , its increase will cause I_o , the drain current of Q_2 , to decrease. Thus, the voltage across R_M will decrease, which will cause I_f to increase. This is the same polarity assumed for the initial change in I_s , verifying that the

feedback is indeed negative.

2.1.3. Find the Expression for the Open-Loop Gain $G = \frac{I_0}{I}$, from the Small-Signal Model. For simplicity, neglect the Early effect in Q_1 and

Solution: In Small-Signal Model,

$$v_B = I_i R_D (2.1.3.1)$$

$$v_{gs_2} = v_B = I_i R_D (2.1.3.2)$$

In Small-Signal Analysis, P-MOSFET is modelled as a current source where current flows from Source to Drain. So, the value of current flowing from Source to Drain in P-MOSFET is,

$$I_o = -g_{m_2} v_{g_{S_2}} = -g_{m_2} I_i R_D$$
 (2.1.3.3)

So, the Open-Circuit Gain is

$$G = \frac{I_o}{I_i} = -g_{m_2} R_D \tag{2.1.3.4}$$

2.1.4. Find the Expression of the Feedback Factor $H = \frac{I_f}{I_o}$, from Small-Signal Model. For simplicity, neglect the Early effect in Q_1 and Q_2 . **Solution:**

> I_o is fed to a current divider formed by R_M and R_F . R_F is a Large Resistance compared to Input resistance of Amplifier and so most of the current flows through it leaving a small current as input to Amplifier. Hence the voltage at point 'A' is very small and is considered, $v_A \simeq 0$. So R_F and R_M are parallel and Voltage Drop across them is same.

$$(I_o + I_f)R_M \simeq -I_f R_F$$
 (2.1.4.1)

$$\frac{I_f}{I_o} \simeq -\frac{R_M}{R_F + R_M} \tag{2.1.4.2}$$

So, the Feedback Factor,

$$H \equiv \frac{I_f}{I_o} \simeq -\frac{R_M}{R_F + R_M} \tag{2.1.4.3}$$

 $T = \frac{I_o}{I_s}$. For simplicity, neglect the Early effect in Q_1 and Q_2 .

Solution:

From Open-Loop Gain and Feedback Factor,

$$I_s = I_i + I_f$$
 (2.1.5.1)

$$I_s = \frac{I_o}{G} + HI_o$$
 (2.1.5.2)

$$GI_s = I_o(1 + GH)$$
 (2.1.5.3)

$$\frac{I_o}{I_s} = \frac{G}{1 + GH}$$
 (2.1.5.4)

$$I_{s} = I_{i} + I_{f}$$
 (2.1.5.1)

$$I_{s} = \frac{I_{o}}{G} + HI_{o}$$
 (2.1.5.2)

$$GI_{s} = I_{o}(1 + GH)$$
 (2.1.5.3)

$$\frac{I_{o}}{I_{s}} = \frac{G}{1 + GH}$$
 (2.1.5.4)

$$\frac{I_{o}}{I_{s}} = -\frac{g_{m_{2}}R_{D}}{1 + g_{m_{2}}R_{D}/\left(1 + \frac{R_{F}}{R_{M}}\right)}$$
 (2.1.5.5)

So the Block Diagram of Feedback Current Amplifier is

where $G = -g_{m_2}R_D$ and $H = -\frac{R_M}{R_F + R_M}$

So, the value of Closed-Loop Gain is

$$T = \frac{I_o}{I_s} = -\frac{g_{m_2}R_D}{1 + g_{m_2}R_D/\left(1 + \frac{R_F}{R_M}\right)}$$
 (2.1.5.6)

3 Bode Plot

- 3.1 Introduction
- 3.2 Example
- 3.3 Phase
- 3.4 Example
- 4 SECOND ORDER SYSTEM
- 4.1 Damping
- 4.2 Peak Overshoot
- 4.3 Settling Time
- 4.4 Example
 - 5 Routh Hurwitz Criterion
- 5.1 Routh Array
- 5.2 Marginal Stability
- 5.3 Stability
- 5.4 Example
- 6 STATE-SPACE MODEL
- 6.1 Controllability and Observability
- 6.2 Second Order System
- 6.3 Example
- 7 NYQUIST PLOT
- 7.1 Introduction
- 7.2 Example
- 8 Compensators
- 8.1 Phase Lead
- 8.2 Lead Circuit
- 8.3 Lag Lead
- 8.4 Example
- 9 Gain Margin
- 9.1 Introduction
- 9.2 Example
- 10 Phase Margin
- 10.1 Intoduction
- 10.2 Example
- 11 OSCILLATOR
- 11.1 Introduction
- 11.2 Example
- 12 Root Locus
- 12.1 Introduction
- 12.2 Example
- 13 Polar Plot
- 13.1 Introduction
 - 14 PID Controller
- 14.1 Introduction