

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Were a monument of human erection to be destroyed, it might be replaced; but had these aborigines of American forests been felled, they would have disappeared forever. The Big Trees could no more be restored than could those other survivals of indigenous American life, the red man and the buffalo, should they become extinct.

Members of the National Geographic Society will recall that, in 1916, Congress had appropriated \$50,000 for the purchase of certain private holdings in Sequoia National Park, but the owners declined to sell for less than \$70,000. In that emergency the National Geographic Society took the first step toward saving the Big Trees by subscribing the remaining \$20,000. Thus 667 acres were purchased. The society's equity in them was conveyed to the government, and this tract became the property, for all time, of the American people.

In 1920, inspired by the first benefaction, three members of the society gave the society sums equivalent to the purchase price of \$21,330 necessary to acquire three more tracts, aggregating 600 acres. Thus the original area of Sequoias saved from destruction was almost doubled.

There still remained one other important private holding in Sequoia National Park amounting to 640 acres. Through this tract, which is covered by a splendid stand of giant sugar-pine and fir, runs the road to Giant Forest. To acquire this approach to the unique forest and to eliminate the last of the private holdings in this natural temple, the National Geographic Society and friends of the society, in 1921, contributed \$55,000, with which the tract was purchased. On April 20, 1921, it was formally tendered in the name of the society, through Secretary of the Interior Albert B. Fall, to the American people.

This sum of \$55,000 includes \$10,000 from the tax fund of Tulare

County, California, within which the Sequoia National Park is situated, a practical evidence that the people closest to the park are alive to the importance of our government owning the land.

FIELD WORK OF THE SMITHSONIAN INSTITUTION

The Smithsonian Institution has issued its annual exploration report describing its scientific field work throughout the world in 1920. Twenty-three separate expeditions were in the field carrying on researches in geology, paleontology, zoology, botany, astrophysics, anthropology, archeology, and ethnology, and the regions visited included the Canadian Rockies, fourteen states of the United States, Haiti, Jamaica, four countries of South America, Africa from the Cape to Cairo, China, Japan, Korea, Manchuria, Mongolia, Australia, and the Hawaiian Islands.

Secretary Walcott continued his geological work in the Cambrian rocks of the Canadian Rockies in the region northeast of Banff, Alberta. The particular questions involved in the season's research were settled satisfactorily and some beautiful photographs of this wild and rugged region obtained. Other geological field work was successfully carried on in various states of the United States by members of the staff.

In astrophysical research the institution was unusually active. Through the generosity of Mr. John A. Roebling of New Jersey, the Smithsonian solar observing station located on the plain near Calama, Chile, was moved to a near-by mountain peak, where the observations will be unaffected by the dust and smoke, and a new station was established on the Harqua Hala Mountain, Arizona, probably the most cloudless region in the United States. From daily observations of the radiation of the sun at these two widely separated stations, it is hoped to establish definitely the value of the

"solar constant" observations in forecasting weather. Dr. C. G. Abbott, director of the work, also describes the successful operation on Mt. Wilson, California, of a solar cooker devised by him. With this apparatus it was possible, using only the sun's heat, to cook bread, meat, vegetables, and preserves.

Mr. H. C. Raven represented the Smithsonian on an extensive collecting expedition through Africa from south to north. Although many difficulties were encountered, among others a railway wreck in which two members of the expedition were killed, Mr. Raven shipped to the institution much interesting zoological material, which was greatly needed for purposes of comparison in working up the famous Roosevelt and Rainey collections already in the National Museum. Many interesting photographs of the animals, the natives, and the country itself are shown in this account and in that of Dr. Shantz, who accompanied the expedition as a botanical collector. In Australia, a Smithsonian naturalist collected, through the generosity of Dr. W. L. Abbott, specimens of the fast disappearing remarkable fauna of the continent, while Dr. Abbott himself secured a great number of plants, birds, and other natural history material for the National Museum, in various regions of Haiti. A number of other zoological and botanical expeditions are briefly described and illustrated.

BIRDS BANDED BY THE BIOLOGICAL SURVEY

Persons engaged in outdoor activities, whether or not trained bird observers, are requested to cooperate with the Bureau of Biological Survey, United States Department of Agriculture, by furnishing data to supplement the bird-banding work that is being conducted by the bureau. When any one happens to capture a banded bird or to come upon one that has been hurt or killed, it will be of great

assistance to the investigations of the department to have a report made of the facts by returning the band (if the bird is dead; otherwise the band should not be removed, but its number noted), together with details as to when and where the bird was found.

The aluminum bands issued by the Biological Survey carry the abbreviation "Biol. Surv." and a serial number on one side, and "Wash., D. C." on other. But as other bands have been used on a large number of birds by various individuals and institutions, it would be advisable for anyone finding a bird that carries a band not marked as above indicated, or of which the address is not clearly understood, to forward the information to the Biological Survey, where every effort will be made to locate the person responsible. These bands are placed on the bird's tarsus, the bare portion of the leg immediately above the toes.

Experts in bird work are using the banding method to solve a variety of problems relative to the migrations and life histories of our native birds which are thus approached from the aspects of the individual birds. Some of the more important questions that can be solved by banding operations are: How fast do the individuals of any species travel on their periodic migrations; does any one flock continue in the van or is the advance made by successive flocks passing one over the other in alternate periods of rest and flight? Do individuals of any species always follow the same route, and is it identical for both spring and fall flights? Do migrating birds make the same stop-overs every year to feed? How long do birds remain in one locality during the migration, the breeding, or the winter seasons? Do birds adopt the same nesting area, nest site, and winter quarters during successive seasons? For how many broods will one pair remain mated, and which bird, if not both, is attracted next year to the old nesting site? How