Signals and Circuits

ENGR 35500

Operational Amplifier

Problems can be solved by Op-amp

- Signals are too small
- Signals are too noisy
- Need to improve the compatibility of system (impedance)
- Need some special operations

Summers

Inverters

Comparator

Differentiators

Integrators

An operational amplifier is a DC-coupled high gain electronic voltage amplifier with a differential input and usually, a single-end output. (Wikipedia)

Fig. 1. Op-amp chip inside schematic representation

An operational amplifier is a DC-coupled high gain electronic voltage amplifier with a differential input and usually, a single-end output. (Wikipedia)

Fig.3. Op-amp schematic representation

An operational amplifier is a DC-coupled high gain electronic voltage amplifier with a differential input and usually, a single-end output. (Wikipedia)

$$V_{out} = (V_{+} - V_{-})A_{v}$$
 $A_{v} \rightarrow infinity (large number)$
 $V_{out} \in (-V_{ss}, +V_{ss})$

$$V_{
m out} = \left\{ egin{array}{ll} + \mbox{Vss} & \mbox{V}_{+} > \mbox{V}_{-} \ \ - \mbox{Vss} & \mbox{V}_{-} > \mbox{V}_{+} \ \end{array}
ight.$$

An operational amplifier is a DC-coupled high gain electronic voltage amplifier with a differential input and usually, a single-end output. (Wikipedia)

Fig.2. Op-amp schematic representation (open-loop)

$$V_{out} = (V_+ - V_-)A_v$$

 $A_v \rightarrow infinity (large number)$

$$V_{\text{out}} = \left\{ egin{array}{ll} + \, \mathsf{Vss} & \mathsf{V}_{+} \! > \! \mathsf{V}_{-} \ & \mathsf{-Vss} & \mathsf{V}_{-} \! > \! \mathsf{V}_{+} \end{array} \right.$$

Fig.3. Op-amp schematic representation (closed-loop)

$$V_{out} = V_{-} = (V_{+} - V_{-})A_{v}$$

 $A_v \rightarrow infinity (large number)$

$$V_{out} \in (-V_{ss}, +V_{ss})$$

 $(V_+-V_-) \rightarrow 0 \ (very \ small \ number)$

Golden Rule 1:

$$V_+ = V_-$$

One more characteristic about Op-amp:

It has infinite impedance/resistance at both inputs

Golden Rule 2:

$$I_+ = I_- = 0$$

What is an Operational Amplifier? (sum up)

An operational amplifier is a DC-coupled high gain electronic voltage amplifier with a differential input and usually, a single-end output. (Wikipedia)

Fig.2. Op-amp schematic representation (open-loop)

$$V_{
m out} = \left\{ egin{array}{ll} + \mbox{Vss} & \mbox{V}_{+} > \mbox{V}_{-} \ & \mbox{-Vss} & \mbox{V}_{-} > \mbox{V}_{+} \ & \mbox{Golden Rule 2:} \ & \mbox{$I_{+} = I_{-} = 0$} \end{array}
ight.$$

Fig.3. Op-amp schematic representation (closed-loop)

Golden Rule 1:

$$V_+ = V_-$$

Golden Rule 2:

$$I_+ = I_- = 0$$

Op-amp application example

E.g.

After connecting, we hope $V_3=0.25V_1$

Really?

Op-amp application example

E.g.

If connected

Solution

Golden rules:

$$V_{+} = V_{-}$$

$$V_{+} = V_{-}$$

$$I_{+} = I_{-} = 0$$

1. Buffer or follower

$$V_{in} = V_{out}$$

2. Non-inverting op-amp

Golden rules:

$$V_{+} = V_{-}$$

 $I_{+} = I_{-} = 0$

Ohm's law Kirchhoof's current law (KCL)

Step 1: Ohm's law to R and Golden Rule 1

$$i_{\rm in} = \frac{-V_{\rm in}}{R} \tag{4.1}$$

Step 2: Ohm's law to RFGolden Rule 1

$$i_{\text{out}} = \frac{V_{\text{out}} - V_{\text{in}}}{R_F} \tag{4.2}$$

Step 3: Rewrite Eq. (4.2)

$$V_{\text{out}} = i_{\text{out}} R_F + V_{\text{in}} \tag{4.3}$$

Step 4: Apply Kirchhoff's current law to node C and Gold Rule 2

$$i_{\rm in} = -i_{\rm out} \tag{4.4}$$

Step 5: Combine Eq. (4.1) with Eq. (4.4)

$$V_{\rm in} = i_{\rm out} R \tag{4.5}$$

Step 6: Use Eq. (4.3) and Eq. (4.5)

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{i_{\text{out}}R_F + V_{\text{in}}}{V_{\text{in}}} = \frac{i_{\text{out}}R_F + i_{\text{out}}R}{i_{\text{out}}R} = 1 + \frac{R_F}{R}$$
(4.6)

2. Non-inverting op-amp

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{i_{\text{out}}R_F + V_{\text{in}}}{V_{\text{in}}} = \frac{i_{\text{out}}R_F + i_{\text{out}}R}{i_{\text{out}}R} = 1 + \frac{R_F}{R}$$

What will happen if R_F=0, and R is very large?

Buffer/follower

Note: *l*out $i_{\rm in}$ R_F V_{out} Step 1: Ohm's law to R and Golden Rule 1

$$i_{\rm in} = \frac{-V_{\rm in}}{R} \tag{4.1}$$

Step 2: Ohm's law to RF Golden Rule 1

$$i_{\text{out}} = \frac{V_{\text{out}} - V_{\text{in}}}{R_F} \tag{4.2}$$

Step 3: Rewrite Eq. (4.2)

$$V_{\text{out}} = i_{\text{out}} R_F + V_{\text{in}} \tag{4.3}$$

Step 4: Apply Kirchhoff's current law to node C and Gold Rule 2

$$i_{\rm in} = -i_{\rm out} \qquad ^{(4.4)}$$

Step 5: Combine Eq. (4.1) with Eq. (4.4)

$$V_{\rm in} = i_{\rm out} R \tag{4.5}$$

Step 6: Use Eq. (4.3) and Eq. (4.5)

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{i_{\text{out}}R_F + V_{\text{in}}}{V_{\text{in}}} = \frac{i_{\text{out}}R_F + i_{\text{out}}R}{i_{\text{out}}R} = 1 + \frac{R_F}{R}$$
 (4.6)

Practice

3. Inverting op-amp

Golden rules:

$$V_{+} = V_{-}$$

$$I_{+} = I_{-} = 0$$

Ohm's law Kirchhoof's current law (KCL) Step 1: Apply Kirchhoff's current law to node C and with Golden Rule 2

$$i_{\rm in} = -i_{\rm out} \tag{4.7}$$

Step 2: Golden Rule 1

$$V_{\rm C} = 0 \tag{4.8}$$

Step 3: Ohm's law to R

$$V_{\rm in} - V_{\rm C} = i_{\rm in} R \tag{4.9}$$

Step 4: Ohm's law to R_F and combine Eq.(4.7)

$$V_{\text{out}} = -i_{\text{in}}R_F \tag{4.10}$$

Step 5: Combine the last two equations

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_F}{R} \tag{4.11}$$

Practice

Given $i_s=1$ mA, $R_1=1$ k Ω , $R_2=2$ k Ω , $R_f=30$ k Ω , $R_L=10$ k Ω , determine V_{out}

Op-Amp Application(open-loop)

4. Comparator

$$V_{
m out} = \left\{ egin{array}{ll} +
m Vss &
m V_2 >
m V_1 \ &
m V_2 >
m V_1 \ &
m V_1 >
m V_2 \end{array}
ight.$$

4. Comparator

E.g. Low Battery indicator

Op-Amp Application (Practice)

The following is the schematic of a difference amplifier circuit. Find the output voltage V_{out} as a function of the input voltages V_1 and V_2 .

5. Summing Op-Amp

$$V_{\text{out}} = -\frac{R_F}{R_1} V_1 - \frac{R_F}{R_2} V_2$$
 (4.11)

Golden rules:

$$I_+ = I_- = 0$$

$$V_{+} = V_{-}$$

6. Integrator

$$\frac{\mathrm{d}V_{\mathrm{out}}}{\mathrm{d}t} = \frac{i_{\mathrm{out}}}{C} \tag{4.12}$$

$$V_{\text{out}}(t) = \frac{1}{C} \int_{0}^{t} i_{\text{out}}(\tau) d\tau$$
 (4.13)

Since
$$i_{out} = -i_{in}$$
 and $i_{in} = V_{in}/R$,

$$V_{\text{out}}(t) = -\frac{1}{RC} \int_{0}^{t} V_{\text{in}}(\tau) d\tau$$
 (4.14)

Golden rules:

$$I_+ = I_- = 0$$

$$V_{\perp} = V_{-}$$

7. Differentiator

$$\frac{\mathrm{d}V_{\mathrm{in}}}{\mathrm{d}t} = \frac{i_{\mathrm{in}}}{C} \tag{4.13}$$

Since $i_{in} = -i_{out}$ and $i_{out} = V_{out}/R$

$$V_{\text{out}} = -RC \frac{\mathrm{d}V_{\text{in}}}{\mathrm{d}t} \tag{4.14}$$

Golden rules:

$$I_+ = I_- = 0$$

$$V_{+} = V_{-}$$

Summary

Golden rules:

$$I_+ = I_- = 0$$

$$V_{+} = V_{-}$$

Kirchhoff's Current Law

Electronic component characteristics

