

Pipe fitting with bite ring for metal pipes

Publication number: EP0863354

Publication date: 1998-09-09

Inventor: SCHMIDT HARALD DIPLO-ING (DE); HESTER HILMAR (DE); KAMINSKI VOLKER (DE)

Applicant: VOSS ARMATUREN (DE)

Classification:

- international: F16L19/12; F16L19/00; (IPC1-7): F16L19/12

- european: F16L19/12

Application number: EP19980103414 19980227

Priority number(s): DE19971009464 19970307

Also published as:

US6073976 (A1)

DE19709464 (A1)

EP0863354 (B1)

ES2169450T (T3)

Cited documents:

DE4229502

DE29604873U

DE4221175

US2529552

NL7214823

[more >>](#)

[Report a data error here](#)

Abstract of EP0863354

A compression fitting (1) connects metal pipes (10) into the mounting opening (8) of the connecting section (4) of a fitting. This section carries the tubing nut (6). There is a metallic olive (18) between the nut and connection section. This has an external cone (30) mating with the inner cone (28) of the connecting section. As the tubing nut is tightened, the olive is deformed radially. Its cutting edges (32) form grooves, by biting into the metal pipe, forming an interlocking fit. The olive has a shoulder (38) which rests against the limiting shoulder (40) of the connecting section. A circumferential elastomeric seal (44) in the transition between the outer cone (30) and the shoulder (38) of the olive seals between the inner cone of the connecting section and the olive, and is resiliently pretensioned. Preferably, the seal is acrylonitrile butadiene rubber, polytetrafluoroethylene or Viton (RTM).

Data supplied from the esp@cenet database - Worldwide

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
09.09.1998 Patentblatt 1998/37

(51) Int. Cl.⁶: F16L 19/12

(21) Anmeldenummer: 98103414.3

(22) Anmeldetag: 27.02.1998

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 07.03.1997 DE 19709464

(71) Anmelder:

Armaturenfabrik Hermann Voss GmbH + Co.
51688 Wipperfürth (DE)

(72) Erfinder:

- Schmidt, Harald Dipl.-Ing.
51688 Wipperfürth (DE)
- Hester, Hilmar
51688 Wipperfürth (DE)

• Kaminski, Volker
58553 Halver (DE)

(74) Vertreter:
Patentanwälte
Dr. Solf & Zapf
Postfach 13 01 13
42028 Wuppertal (DE)

Bemerkungen:

Ein Antrag gemäß Regel 88 EPÜ auf Berichtigung der Fig. 3a..... liegt vor. Über diesen Antrag wird im Laufe des Verfahrens vor der Prüfungsabteilung eine Entscheidung getroffen werden (Richtlinien für die Prüfung im EPA, A-V, 3.).

(54) Rohrverschraubung mit Schneidring für metallische Rohrleitungen

(57) Die vorliegende Erfindung betrifft eine Rohrverschraubung (1) zum Anschluß einer Rohrleitung (10), mit einem eine Aufnahmeöffnung (8) für die Rohrleitung (10) aufweisenden Anschlußstützen (4), einer mit dem Anschlußstützen (4) verschraubbaren Überwurfmutter (6) sowie einem zwischen dem Anschlußstützen (4) und der Überwurfmutter (6) angeordneten, metallischen Schneidring (18). Der Schneidring (18) wirkt mit einem Außenkonus (30) derart mit einem Innenkonus (28) des Anschlußstützens (4) zusammen, daß er beim Anziehen der Überwurfmutter (6) mit mindestens einer Schneidkante (32) formschlüssig in das Material der Rohrleitung (10) einschneidet. Der Schneidring (18) weist im Anschluß an den Außenkonus (30) eine im wesentlichen radiale Anschlagfläche (38) zur anzugsbegrenzenden Anlage an einer Stirnfläche (40) des Anschlußstützens (4) auf. Der Schneidring (18) weist im Übergangsbereich zwischen dem Außenkonus (30) und der Anschlagfläche (38) eine elastomere Umfangsdichtung (44) derart auf, daß in der Montagestellung die Umfangsdichtung (44) zwischen dem Schneidring (18) einerseits und zumindest einem sich an die Stirnfläche (40) anschließenden Teilbereich des Innenkonus (28) des Anschlußstützens (4) andererseits unter elastischer Vorspannung angeordnet ist.

Beschreibung

Die vorliegende Erfindung betrifft eine Rohrverschraubung zum Anschluß einer insbesondere metallischen Rohrleitung, mit einem eine Aufnahmeöffnung für die Rohrleitung aufweisenden Anschlußstutzen, einer mit dem Anschlußstutzen verschraubbaren Überwurfmutter sowie einem zwischen dem Anschlußstutzen und der Überwurfmutter angeordneten, metallischen Schneidring, wobei der Schneidring mit einem Außenkonus derart mit einem Innenkonus des Anschlußstutzens zusammenwirkt, daß er beim Anziehen der Überwurfmutter bereichsweise radial nach innen verformt wird und mit mindestens einer Schneidkante unter Kerbwirkung formschlüssig in das Material der Rohrleitung einschneidet, und wobei der Schneidring im Anschluß an den Außenkonus eine im wesentlichen radiale Anschlagfläche zur anzugsbegrenzenden Anlage an einer Stirnfläche des Anschlußstutzens aufweist.

Derartige Rohrverschraubungen sind aus mehreren Veröffentlichungen hinlänglich bekannt.

So beschreibt beispielsweise die DE 43 04 534 A1 ein solches "Verbindungssystem", wobei ausschließlich eine metallische Abdichtung über zwei in das Rohr einschneidende Schneidkanten vorgesehen ist. Diese Druckschrift beschäftigt sich in erster Linie mit der Verbesserung der mechanischen Halterung der Rohrleitung, wozu der Schneidring aus einem durchgehärteten bzw. durchgehend verfestigten Material bestehen soll. Fakultativ kann dabei der Schneidring zumindest bereichsweise eine die Reibung vermindrende - und somit die Gleiteigenschaften verbessernde - Beschichtung aufweisen, die insbesondere PTFE enthalten kann.

Eine ähnliche Rohrverschraubung offenbart auch die FR-A-2 568 665. Dabei ist - zusätzlich zu der metallischen Abdichtung - ein Dichtring vorgesehen, der axial vor dem Schneidring im Spalt zwischen der Rohrleitung und dem Stutzen-Innenkonus angeordnet ist. Hierbei kann es unter bestimmten Umständen zu einem "Wegfließen" des Dichtungsmaterials vor allem in den Spalt zwischen Stutzen und Rohr kommen. Dies ist natürlich ungünstig für die Dichtwirkung.

Entsprechendes beschreibt auch die DE 44 26 445 C2. Zudem ist bei dieser bekannten Rohrverschraubung vorgesehen, daß zwischen dem Außenkonus des Schneidrings und dessen Anschlagfläche eine Freifläche derart gebildet ist, daß in der Montagestellung zwischen der Freifläche und dem Stutzen-Innenkonus ein Freiraum gegeben ist. Dadurch sollen radiale Spannungsspitzen am stirnseitigen Ende des Anschlußstutzens vermieden werden.

In der DE 40 41 677 ist eine insofern nicht gattungsgemäße Rohrverschraubung beschrieben, als eine sogenannte Übermontage nicht durch eine Anzugsbegrenzung vermieden werden kann, weil der Schneidring keine radiale Anschlagfläche aufweist. Allerdings sind

bereits verschiedene Ausführungsformen einer zusätzlichen Dichtungsanordnung mit mindestens einer aus einem elastomeren Material bestehenden Umfangsdichtung beschrieben. Dabei wird überwiegend nur der Spalt unmittelbar zwischen der Rohrleitung und der Innenfläche des Anschlußstutzens abgedichtet. In einigen Ausführungen ist die Dichtung praktisch in zwei Dichtelemente aufgeteilt, wobei entweder der Schneidring gegen die Rohrleitung und gegen den Anschlußstutzen abgedichtet ist, oder die Überwurfmutter ist direkt gegen den Anschlußstutzen und gegen die Rohrleitung abgedichtet.

Der vorliegenden Anmeldung liegt nun die Aufgabe zugrunde, eine Rohrverschraubung der gattungsgemäßen Art vor allem bezüglich der Dichtwirkung weiter zu verbessern.

Erfindungsgemäß wird dies dadurch erreicht, daß der Schneidring im Übergangsbereich zwischen dem Außenkonus und der Anschlagfläche eine elastomere Umfangsdichtung derart aufweist, daß in der Montagestellung die Umfangsdichtung zwischen dem Schneidring einerseits und zumindest einem an die Stirnfläche angrenzenden Teilbereich des Innenkonus des Anschlußstutzens andererseits unter elastischer Vorspannung (gekammert) angeordnet ist.

Hierbei ist von besonderem Vorteil, daß in diesem Übergangsbereich eine gute Kammerung der Umfangsdichtung gewährleistet werden kann, so daß ein "Wegfließen" von Dichtungsmaterial weitgehend vermieden wird. Dazu ist es vorteilhaft, wenn die Umfangsdichtung in einer zwischen dem Außenkonus und der Anschlagfläche gebildeten Ringnut des Schneidrings angeordnet ist. Vorzugsweise geht die Ringnut unmittelbar in die Anschlagfläche über. Damit ist gemeint, daß die auf beiden Axialseiten von im wesentlichen radialen Flankenflächen begrenzte Ringnut über die eine Flankenfläche direkt in die Anschlagfläche übergeht, so daß praktisch diese Nutflankenfläche und die Anschlagfläche in einer gemeinsamen Ebene liegen.

Vorzugsweise ist die Umfangsdichtung entweder nur im Konusbereich mit hauptsächlich radialer Dichtwirkung oder aber in Kombination sowohl im Konusbereich als auch zwischen der Anschlagfläche und der Stutzen-Stirnfläche mit radialer sowie axialer Dichtwirkung angeordnet. Im letzten Fall kommt somit die Anschlagfläche des Schneidrings mittelbar über einen Abschnitt der Umfangsdichtung zur Anlage an die Stirnfläche des Anschlußstutzens.

Um eine besonders gute und sichere Abdichtung auch gegen hohe System-Innendrücke zu erreichen, ist es vorteilhaft, wenn die die Umfangsdichtung aufnehmende Ringnut einen Nutgrund aufweist, der bezüglich seines Durchmessers zumindest bereichsweise derart kleiner als der größte Durchmesser am stirnseitigen Ende des Innenkonus des Anschlußstutzens ist, daß in einer dadurch zum Innenkonus hin gebildeten Kammer eine Umfangsdichtung untergebracht werden kann, die ein für eine Dichtungsverpressung hinreichend großes

Volumen aufweist. Dies kann zudem auch durch eine bestimmte Ausgestaltung der Umfangskontur der Ringnut bzw. des Nutgrundes beeinflußt werden, wozu nachfolgend noch einige Ausführungsvarianten genauer beschrieben werden. Mit der Kontur der Ringnut kann im Übrigen auch das Verformungsverhalten des Schneidrings beim Anziehen der Verschraubung günstig beeinflußt werden.

Weitere vorteilhafte Ausgestaltungsmerkmale der Erfindung sind in den Unteransprüchen sowie der folgenden Beschreibung enthalten.

Anhand von mehreren in der Zeichnung dargestellten, bevorzugten Ausführungsbeispielen soll im folgenden die Erfindung näher erläutert werden. Dabei zeigen:

- Fig. 1 einen Längsschnitt durch eine erfindungsgemäße Rohrverschraubung in einer ersten Ausführungsform, wobei in der oberen Figurenhälften ein Zustand vor dem Anziehen der Überwurfmutter dargestellt ist, während die untere Figurenhälften die angezogene Montagestellung zeigt,
- Fig. 2 einen Axialschnitt des Schneidrings der Ausführung nach Fig. 1 in einem Zustand vor der ersten montagebedingten Verformung,
- Fig. 3 eine erfindungsgemäße elastomere Umfangsdichtung im Axialschnitt in einer ersten Ausführungsform,
- Fig. 3a eine zweite Ausführungsform der Umfangsdichtung in einer Darstellung entsprechend Fig. 3,
- Fig. 4 eine stark vergrößerte Darstellung des Teilbereichs IV gemäß Fig. 2 mit der Ausführungsform der Umfangsdichtung nach Fig. 3,
- Fig. 4a eine Darstellung entsprechend Fig. 4, jedoch mit der Alternative der Umfangsdichtung nach Fig. 3a,
- Fig. 5 eine zweite Ausführungsform der erfindungsgemäßen Rohrverschraubung in der Fig. 1 entsprechenden Darstellungen, d.h. obere Figurenhälften vor der ersten Montage und untere Hälfte angezogene Montagestellung,
- Fig. 6 im Axialschnitt einen Schneidring gemäß Fig. 5,
- Fig. 7 eine Umfangsdichtung nach Fig. 5 im Axialschnitt,
- Fig. 8 einen Halb-Axialschnitt einer dritten Ausführungsform der erfindungsgemäßen Rohrverschraubung in einem Zustand nach einer Vormontage des Schneidrings und erstem Handanzug der Überwurfmutter,
- Fig. 9 die Rohrverschraubung nach Fig. 8 nach Endmontage (angezogene Montagestellung),
- Fig. 10 eine vergrößerte Darstellung des Bereichs X des Schneidrings nach Fig. 8,
- Fig. 11 einen Halb-Längsschnitt einer weiteren Ausführungsvariante der erfindungsgemäßen Rohrverschraubung,
- Fig. 12 eine Teilansicht aus Fig. 11 des Bereichs des auf der Rohrleitung montierten Schneidrings und
- Fig. 13 eine Teil-Stirnansicht in Pfeilrichtung XIII gemäß Fig. 12.
- In den verschiedenen Figuren der Zeichnung sind gleiche Teile stets mit den gleichen Bezugszeichen versehen und werden daher in der Regel jeweils nur einmal beschrieben.
 Eine erfindungsgemäße Rohrverschraubung 1 besteht generell, d.h. bei allen dargestellten Ausführungsbeispielen, aus einem jeweils nur angedeuteten Grundkörper 2, der mindestens einen ein Außen Gewinde aufweisenden Anschlußstutzen 4 aufweist, auf den eine Überwurfmutter 6 aufgeschraubt bzw. aufschraubar ist. Der Anschlußstutzen 4 besitzt eine Aufnahmehöfning 8 für ein Ende 10a einer - insbesondere aus Stahl oder einem anderen Metall bestehenden - Rohrleitung 10. Die Aufnahmehöfning 8 ist zweckmäßig durch eine Bohrung gebildet, die über eine radiale Ringstufe 12 in einen im Durchmesser reduzierten, sich weiter in den Grundkörper 2 erstreckenden und mit dem Innendurchmesser der Rohrleitung 10 vorzugsweise etwa fluchtenden Kanal 14 übergeht. Dabei bildet die Ringstufe 12 einen Anschlag für das Ende 10a der Rohrleitung 10.
 Zwischen dem Anschlußstutzen 4 und einem radial nach innen weisenden Ringbund 16 der Überwurfmutter 6 ist ein die Rohrleitung 10 umschließender, metallischer Schneidring 18 angeordnet. Der Ringbund 16 besitzt bzw. umschließt eine Durchführöffnung 20 für die Rohrleitung 10. Der Schneidring 18 besteht aus einem im Zwischenraum zwischen dem Anschlußstutzen 4 und der Überwurfmutter 6 bzw. dem Ringbund 16 angeordneten Basisringteil 24 und einem sich von diesem in Richtung des Anschlußstutzens 4 erstreckenden, in der Ringstärke reduzierten, röhrenstückartigen Schneidringteil 26. Die Aufnahmehöfning 8 des Anschlußstutzens 4 erweitert sich in ihrem der Über-

wurfmutter 6 zugekehrten Endbereich über einen Innenkonus 28. In diesen Innenkonus 28 greift der Schneidring 18 mit dem Schneidringteil 26 ein und wirkt hierbei mit einem sich verjüngenden Außenkonus 30 mit dem Innenkonus 28 derart zusammen, daß durch axiales Verspannen beim Anziehen der Überwurfmutter 6 der Schneidring 18 im Bereich des Schneidringteils 26 radial nach innen verformt (gestaucht) wird und dadurch mit vorzugsweise zwei axial beabstandeten, radial nach innen weisenden, ringförmigen Schneidkanten 32 unter Kerbwirkung insbesondere formschlußig in das Material der Rohrleitung 10 eindringt.

Vorzugsweise besitzt auch der Basisringteil 24 auf seiner dem Schneidringteil 26 axial abgekehrten Seite eine sich endseitig konisch verjüngende Außenkonusfläche 34, die an einer entsprechenden Innenkonusfläche 36 des Ringbundes 16 der Überwurfmutter 6 anliegt. Hierdurch wird auch in diesem Bereich eine Keilwirkung zum radialen Verpressen des Schneidrings 18 sowie auch eine Selbstzentrierung erreicht.

Der Schneidring 18 bzw. der Basisringteil 24 weist auf seiner dem Schneidringteil 26 zugekehrten Seite eine im wesentlichen radiale Anschlagfläche 38 auf, die in einer angezogenen Montagestellung (vgl. jeweils die untere Figurenhälfte in Fig. 1 und 5 sowie die Fig. 9) zur anzugsbegrenzenden Stellung an eine Stirnfläche 40 des Anschlußstutzens 4 gelangt.

Der Schneidring 18 dient einerseits der mechanischen Halterung der Rohrleitung 10 durch eine über die Schneidkanten 32 erreichte Formschlußverbindung. Andererseits hat der Schneidring 18 grundsätzlich auch eine metallische Dichtfunktion über die in die Rohrleitung 10 einschneidenden Schneidkanten 32 und über die Konen 28, 30.

Erfindungsgemäß weist nun der Schneidring 18 im Übergangsbereich zwischen dem Außenkonus 30 und der Anschlagfläche 38 eine elastomere Umgangsdichtung 44 auf, und zwar derart, daß in der Montagestellung die Umgangsdichtung 44 zwischen dem Schneidring 18 einerseits und dem Innenkonus 28 und/oder der Stirnfläche 40 des Anschlußstutzens 4 andererseits unter elastischer Vorspannung gekammert angeordnet ist. In den Ausführungsformen nach Fig. 1 bis 4 bzw. 4a einerseits und nach Fig. 8 bis 10 andererseits wird die Umgangsdichtung 44 im wesentlichen nur im Bereich der aneinanderliegenden Konen, d.h. des Außenkonus 30 und des Innenkonus 28, gekammert, so daß hierbei die Anschlagfläche 38 unmittelbar zur Anlage an die Stirnfläche 40 gelangt. In der Ausführung nach Fig. 5 bis 7 - sowie auch in der Ausgestaltung nach Fig. 11 bis 13 - wird die Umgangsdichtung 44 zusätzlich auch axial zwischen der Anschlagfläche 38 und der Stirnfläche 40 gekammert, so daß hierbei die Anschlagfläche 38 mittelbar über die Umgangsdichtung 44 an der Stirnfläche 40 anliegt.

Die erfindungsgemäße Umgangsdichtung 44 ist zweckmäßigerweise in einer zwischen dem Außenkonus 30 und der Anschlagfläche 38 gebildeten Ringnut

46 des Schneidrings 18 angeordnet. Vorzugsweise geht diese Ringnut 46 unmittelbar in die Anschlagfläche 38 über. Dies bedeutet, daß die Ringnut 46 auf den beiden axialen Seiten von im wesentlichen radialen Flankenflächen 48 begrenzt wird, wobei die dem Außenkonus 30 axial abgekehrte Flankenfläche 48 im wesentlichen in der gleichen Ebene mit der Anschlagfläche 38 liegt.

Bei der Ausführungsform nach den Fig. 1 bis 4a ist nun speziell vorgesehen, daß die Ringnut 46 einen Nutgrund 50 aufweist, der - im Axialschnitt gesehen - mit einem bestimmten Konuswinkel β (s. Fig. 2) konisch ausgebildet ist. In den vergrößerten Darstellungen in Fig. 4 und 4a ist jeweils der halbe Konuswinkel $1/2\beta$ eingezeichnet. Der konische Nutgrund 50 weist insbesondere auf seiner dem Außenkonus 30 axial zugekehrten Seite einen kleinsten Durchmesser D_1 auf (s. Fig. 2), der - schon vor der ersten montagebedingten Verformung des Schneidrings 18 - jedenfalls kleiner als der größte Durchmesser D_2 (s. Fig. 1) am stirnseitigen Ende des Innenkonus 28 des Anschlußstutzens 4 ist. Bei den gängigen Normgrößen der Rohrverschraubung 1 (gemäß DIN 3861) liegt der Durchmesser D_1 des Nutgrundes 50 im Nennmaß etwa 0,4 bis 0,5 mm unter dem Durchmesser D_2 am Ende des Innenkonus 28. Beträgt nach der genannten DIN der größte Durchmesser D_2 des Innenkonus 28 beispielsweise 14,3 mm, so hat der Nutgrund einen Durchmesser D_1 von insbesondere etwa 13,9 mm. Der Konuswinkel β liegt bevorzugt im Bereich von etwa 10° bis 15° und beträgt insbesondere etwa 12° , d.h. $2 \times \text{ca. } 6^\circ (1/2\beta)$ zur Längsachse.

In Verbindung mit dieser beschriebenen Kontur der Ringnut 46 kann für die Umgangsdichtung 44 mit Vorteil ein Profilring 52 nach Fig. 3 und 4 verwendet werden. Dieser Profilring 52 weist einen im wesentlichen rechteckigen Ringquerschnitt auf, wobei er vor der Montage, d.h. vor dem Einsetzen in die Ringnut 46, eine im wesentlichen hohlzyllndrische, schlauchartige Form aufweist. Nach Einsetzen in die Ringnut 46 erfolgt eine Anpassung an die konische Form des Nutgrundes 50; s. Fig. 1 und 2. Alternativ dazu kann gemäß Fig. 3a und 4a auch ein Profilring 54 mit einem im wesentlichen dreieckigen Ringquerschnitt verwendet werden. Wie sich vor allem aus der vergrößerten Darstellung in Fig. 4a ergibt, besitzt dieser Profilring 54 bevorzugt im radial inneren Ringbereich einen etwa im Querschnitt rechteckigen Basisringteil mit einem sich radial außen anschließenden, insbesondere gleichschenkligen Dreieckbereich. Hierdurch ergibt sich eine radial nach außen ragende Dichtkante 56, die durch eine Ecke des Dreieckquerschnitts gebildet wird. Bei der Montage wird der Profilring 54 im Bereich der Dichtkante 56 verpreßt, so daß der Profilring 54 die Ringnut 46 dann im wesentlichen ausfüllt (entsprechend der Darstellung in der unteren Figurenhälfte der Fig. 1). Auch hierbei weist der Profilring 54 vor der Montage gemäß Fig. 3a eine im wesentlichen zylindrische Innenfläche auf, die sich dann im montierten Zustand an den konischen Nut-

grund 50 anpaßt.

Bei der Ausführungsform nach Fig. 5 bis 7 weist die Ringnut 46 demgegenüber einen Nutgrund 58 auf, der im Axialschnitt im wesentlichen zylindrisch ausgebildet ist. Das Verhältnis des Durchmessers D_1 dieses zylindrischen Nutgrundes 58 zu dem größten Durchmesser D_2 des Stutzen-Innenkonus 28 entspricht der Ausführung nach Fig. 1 bis 4a. Bei dieser Ausführung wird aber beispielhaft als Umfangsdichtung 44 ein Profilring 60 verwendet, der gemäß Fig. 5 und 7 einem im wesentlichen L-förmigen Ringquerschnitt mit einem axialen, insbesondere dem Außenkonus 30 zugekehrten Ringabschnitt 62 und einem sich radial nach außen erstreckenden Ringabschnitt 64 aufweist. Diese Abschnitte 62, 64 sind größtmäßig derart ausgelegt, daß nach der Montage - siehe Fig. 5, untere Hälfte - der radiale Ringabschnitt 64 zwischen der Anschlagfläche 38 des Schneidrings 18 und der Stirnfläche 40 des Anschlußstutzens 4 angeordnet ist.

Was nun die Ausführungsform nach Fig. 8 bis 10 betrifft, so weist hierbei die Ringnut 44 einen Nutgrund 66 auf, der - im Axialschnitt gesehen - in einem etwa mittigen Bereich 68 konvex gewölbt sowie vorzugsweise in beiden Flankenbereichen 70 konkav gewölbt ist (s. hierzu insbesondere Fig. 10). Die Wölbungen gehen zweckmäßigerverweise stetig ineinander über. Durch diese Kontur der Ringnut 46 wird eine gute Dichtungsverpressung erreicht. Zudem ist diese Kontur auch verformungsgünstig, was die Verformung des Schneidrings beim Anziehen der Verschraubung betrifft.

Wie sich ferner aus Fig. 10 ergibt, ist bei dem dargestellten Ausführungsbeispiel bevorzugt vorgesehen, daß die beiden konkav gewölbten Flankenbereiche 70 der Ringnut 46 eine fiktive Umfangsebene 72 definieren, die - im wesentlichen analog zur Ausführung nach Fig. 1 bis 4a - im Axialschnitt mit einem bestimmten Konuswinkel β (in Fig. 10 ist der halbe Konuswinkel $1/2\beta$ eingezeichnet) konisch ausgebildet ist. Dabei ist vorzugsweise vorgesehen, daß aufgrund des Konuswinkels β der dem Außenkonus 30 axial nächstliegende Flankenbereich 70 im Durchmesser kleiner als der andere Flankenbereich 70 ist. Dies könnte grundsätzlich aber auch umgekehrt vorgesehen sein. Jedenfalls ist auch hier wiederum der kleinere Durchmesser D_1 , jedenfalls kleiner als der größte Durchmesser D_2 des Stutzen-Innenkonus 28. Die Größe des Konuswinkels β entspricht bevorzugt der Ausführung nach Fig. 1 bis 4a.

Alternativ dazu kann in einer nicht dargestellten Ausführungsform auch vorgesehen sein, daß die beiden Flankenbereiche 70 der Ringnut 46 eine fiktive zylindrische Umfangsebene definieren, die dann wiederum einen Durchmesser - entsprechend (D_1) aufweist, der kleiner als der größte Durchmesser (D_2) des Innenkonus 28 ist.

Bei der Ausführungsform nach Fig. 8 bis 10 kann als Umfangsdichtung 44 ein Profilring 74 verwendet werden, dessen Ringquerschnittskontur derart gewählt wird, daß der Profilring 74 in der Montagestellung (Fig.

9) die sich durch die Ringnut 46 und den Innenkonus 28 ergebende Kammer ausfüllt, dabei aber elastisch komprimiert ist und daher unter Vorspannung steht.

In allen dargestellten Ausführungsformen besteht die Umfangsdichtung 44 bzw. der jeweilige Profilring 52, 54, 60 bzw. 74 aus einem geeigneten elastomerem Material. Besonders geeignet ist ein Material unter Verwendung von NBR (Nitrilkautschuk nach DIN ISO 1629) und/oder PTFE (Polytetrafluorethylen nach DIN 7728 T1). Ein vielfach für Dichtungen verwendetes Material ist zudem auch VITON (Marke der Firma DuPont); dabei handelt es sich um wärme- und chemikalienbeständige, vulkanisierbare Fluorelastomere auf der Basis von Vinylidenfluorid-Hexafluorpropylen-Copolymerisaten.

Es ist weiterhin in allen Ausführungsformen zweckmäßigerweise ein zusätzlicher elastischer Dichtring 76 zur radial inneren Abdichtung zwischen dem Schneidring 18 und der Rohrleitung 10 vorgesehen. Dieser zusätzliche Dichtring 76 ist zweckmäßig in einer inneren Ringnut 78 des Schneidrings 18 angeordnet, und zwar insbesondere etwa im mittigen Bereich des Basisringteils 24 oder aber geringfügig von der Mitte in Richtung des Ringbundes 16 der Überwurfmutter 6 versetzt (vgl. Fig. 8 und 9).

Der zusätzliche Dichtring 76 wird einerseits beim Anziehen durch die Wirkung der Konusflächen 34 und 36 radial nach innen verspannt. Andererseits kann auch - wie beim Ausführungsbeispiel nach Fig. 8 bis 10 veranschaulicht ist - vorgesehen sein, daß die Anschlagfläche 38 des Schneidrings 18 zumindest vor der ersten Montage derart geringfügig radial nach außen sowie axial in Richtung der Stirnfläche 40 des Anschlußstutzens 4 geneigt, also leicht hohl-konisch, verläuft, daß beim Anziehen der Überwurfmutter 6 eine Verformung des Schneidrings 18 zum Zwecke einer bereichsweisen, radial nach innen gerichteten Verpressung gegen die Rohrleitung 10 erfolgt, und zwar insbesondere im Bereich des zusätzlichen Dichtrings 76. Der geneigte, leicht konische Verlauf der Anschlagfläche 38 ist in Fig. 10 etwas übertrieben dargestellt. Bei der Montage gelangt der Schneidring 18 gemäß Fig. 8 zunächst mit einer äußeren Ringkante 80 der Anschlagfläche 38 zur Anlage an die Stirnfläche 40 des Stutzens 4. In Fig. 9 ist veranschaulicht, daß in der angezogenen Montagestellung die Anschlagfläche 38 dann im wesentlichen vollflächig an der Stirnfläche 40 anliegt, nachdem sich der Schneidring entsprechend dem eingezeichneten Pfeil 82 verformt hat. Durch diese Verformung ergibt sich im etwa mittigen Bereich des Schneidrings, d.h. etwa im Übergang zwischen dem Schneidringteil 26 und dem Basisringteil 24, eine geringfügige radiale Aufwölbung 84.

Im Bereich des Dichtrings 76 wird der Schneidring bogenförmig radial auf die Rohrleitung 10 gepreßt. Der Dichtring 76 erhält dadurch eine effektive spielfreie Vorspannung auf dem Umfang der Rohrleitung 10.

Speziell bei der Ausführung nach Fig. 8 bis 10 läuft

der Montagevorgang folgendermaßen ab. Wenn - beispielsweise nach einem Handanzug - die Ringkante 80 zur Anlage gelangt (Fig. 8), befindet sich die Umfangsdichtung 44 zu etwa 2/3 ihrer axialen Länge innerhalb des Innenkonus 28. Axial zwischen der Anschlagfläche 38 und der Stirnfläche 40 ist noch eine geringfügiger, sich radial nach außen verengender Spalt vorhanden. Der zusätzliche Dichtring 76 liegt auf dem Umfang der Rohrleitung 10 an, jedoch noch ohne zusätzliche Verpressung durch die Verformung des Schneidrings 18. Ausgehend von dieser Stellung wird dann die Überwurfmutter mit etwa 1,25 bis 1,5 Umdrehungen angezogen. Dadurch erreicht die Verschraubung die Montagestellung gemäß Fig. 9. Die etwa bogenförmige Verformung der zuvor konischen Anschlagfläche 38 des Schneidrings 18 bewirkt unter zunehmendem Anpreßdruck mittels der Überwurfmutter 6 eine spaltfreie und sichere Anlage an der Stutzen-Stirnfläche 40 und zudem eine einwandfreie Kammerung der Umfangsdichtung 44. Aufgrund der besonderen Ausgestaltung des Bereichs der Ringnut 46 tritt dabei auch eine Veränderung, insbesondere Verringerung des Nutvolumens auf, so daß die Umfangsdichtung 44 fest gegen den Stutzen-Innenkonus 28 verpreßt wird.

Nach einem Lösen der Überwurfmutter 6 entspannt sich der leicht elastisch federnde Schneidring 18, so daß die Umfangsdichtung 44 vorteilhafterweise bei Bedarf austauschbar ist.

Im Falle einer erneuten Montage wird der Anzug der Überwurfmutter 6 vorteilhafterweise durch den auf Block anschlagenden Schneidring 18 spürbar begrenzt.

Was nun schließlich die Ausführung nach Fig. 11 bis 13 betrifft, so handelt es sich dabei insofern speziell um eine Weiterbildung des Ausführungsbeispiels nach Fig. 5 bis 7, als der radiale Ringabschnitt 64 auf seiner axial in Richtung des Anschlußstutzens 4 weisenden Anlageseite mindestens eine, vorzugsweise aber mindestens zwei konzentrisch umlaufende, ringstegartige Anlagerippen 90 aufweist. Diese ergeben sich durch eine radial dazwischenliegende, axiale, nutartige Ringvertiefung 92. Diese Ringvertiefung 92 besitzt eine axiale Tiefe T (Fig. 12). Aufgrund der Elastizität des Materials der Dichtung 44 kann somit ein Anzug der Verschraubung - statt bis zu einer genau definierten Anschlagstellung - über einen etwa der Tiefe T entsprechenden Anzugsbereich hinweg erfolgen; es wird praktisch eine "Anzugsreserve" zum Ausgleich einer eventuellen ungünstigen Toleranzlage der Einzelteile erreicht. Dies bedeutet, daß ausgehend von der in Fig. 11 dargestellten Stellung, in der die Anlagerippen 90 gerade an der Stutzen-Stirnfläche 40 zur Anlage gelangt sind, im Bedarfsfall ein noch weitergehender Anzug etwa über den Bereich der Tiefe T hinweg möglich ist. Durch ihren kreisförmigen Umfangsverlauf tragen die Anlagerippen 90 zu einer noch weiter verbesserten Dichtwirkung bei. Mit anderen Worten wird durch die Elastizität der Anlagerippen 90 auch ein in der korrekt angezogenem Montagestellung eventuell noch vorhandenes, z.B.

toleranzbedingtes Axialspiel zwischen Stutzen 4 und Anschlagfläche 38 ausgeglichen. Der Profilring 60 kann stoffschlüssig mit dem Schneidring 18 verbunden, z.B. an vulkanisiert oder angespritzt sein.

Die Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt, sondern umfaßt auch alle im Sinne der Erfindung gleichwirksamen Ausführungen. Ferner ist die Erfindung bislang auch noch nicht auf die im Anspruch 1 definierte Merkmalskombination beschränkt, sondern kann auch durch jede beliebige andere Kombination von bestimmten Merkmalen aller insgesamt offenbarten Einzelmerkmale definiert sein. Dies bedeutet, daß grundsätzlich praktisch jedes Einzelmerkmal des Anspruchs 1 weggelassen bzw. durch mindestens ein an anderer Stelle der Anmeldung offenbartes Einzelmerkmal ersetzt werden kann. Insofern ist der Anspruch 1 lediglich als ein erster Formulierungsversuch für eine Erfindung zu verstehen.

Patentansprüche

1. Rohrverschraubung (1) zum Anschluß einer insbesondere metallischen Rohrleitung (10), mit einem eine Aufnahmöffnung (8) für die Rohrleitung (10) aufweisenden Anschlußstutzen (4), einer mit dem Anschlußstutzen (4) verschaubaren Überwurfmutter (6) sowie einem zwischen dem Anschlußstutzen (4) und der Überwurfmutter (6) angeordneten, metallischen Schneidring (18), wobei der Schneidring (18) mit einem Außenkonus (30) derart mit einem Innenkonus (28) des Anschlußstutzens (4) zusammenwirkt, daß er beim Anziehen der Überwurfmutter (6) bereichsweise radial nach innen verformt wird und mit mindestens einer Schneidkante (32) unter Kerbwirkung formschlüssig in das Material der Rohrleitung (10) einschneidet, und wobei der Schneidring (18) im Anschluß an den Außenkonus (30) eine im wesentlichen radiale Anschlagfläche (38) zur anzugsbegrenzenden Anlage an einer Stirnfläche (40) des Anschlußstutzens (4) aufweist, dadurch gekennzeichnet, daß der Schneidring (18) im Übergangsbereich zwischen dem Außenkonus (30) und der Anschlagfläche (38) eine elastomere Umfangsdichtung (44) derart aufweist, daß in der Montagestellung die Umfangsdichtung (44) zwischen dem Schneidring (18) einerseits und zumindest einem sich an die Stirnfläche (40) anschließenden Teilbereich des Innenkonus (28) des Anschlußstutzens (4) andererseits unter elastischer Vorspannung angeordnet ist.
2. Rohrverschraubung nach Anspruch 1, dadurch gekennzeichnet, daß die Umfangsdichtung (44) in einer zwischen dem Außenkonus (30) und der Anschlagfläche (38) gebildeten Ringnut (46) des Schneidrings (18) angeordnet ist, wobei

- die Ringnut (46) vorzugsweise unmittelbar in die Anschlagfläche (38) übergeht.
- 3. Rohrverschraubung nach Anspruch 2,
dadurch gekennzeichnet, daß die Ringnut (46)
einen Nutgrund (58) aufweist, der im Axialschnitt im
wesentlichen zylindrisch ausgebildet ist und einen
Durchmesser (D_1) aufweist, der kleiner als der
größte Durchmesser (D_2) am stirnseitigen Ende
des Innenkonus (28) des Anschlußstutzens (4) ist.**
- 4. Rohrverschraubung nach Anspruch 2,
dadurch gekennzeichnet, daß die Ringnut (46)
einen Nutgrund (50) aufweist, der im Axialschnitt
mit einem bestimmten Konuswinkel (β) konisch
ausgebildet ist und - insbesondere auf seiner dem
Außenkonus (30) axial zugekehrten Seite - einen
kleinsten Durchmesser (D_1) aufweist, der kleiner
als der größte Durchmesser (D_2) am stirnseitigen
Ende des Innenkonus (28) des Anschlußstutzens (4) ist.**
- 5. Rohrverschraubung nach Anspruch 2,
dadurch gekennzeichnet, daß die Ringnut (44)
einen Nutgrund (66) aufweist, der - im Axialschnitt
gesehen - in einem etwa mittigen Bereich (68) kon-
vex gewölbt sowie vorzugsweise in beiden Flanken-
bereichen (70) konkav gewölbt ist.**
- 6. Rohrverschraubung nach Anspruch 5,
dadurch gekennzeichnet, daß die beiden konkav
gewölbten Flankenbereiche (70) der Ringnut (46)
eine fiktive, zylindrische Umfangsebene definieren,
die einen Durchmesser (D_1) aufweist, der kleiner
als der größte Durchmesser (D_2) am stirnseitigen
Ende des Innenkonus (28) des Anschlußstutzens (4) ist.**
- 7. Rohrverschraubung nach Anspruch 5,
dadurch gekennzeichnet, daß die beiden konkav
gewölbten Flankenbereiche (70) der Ringnut (46)
eine fiktive Umfangsebene (72) definieren, die im
Axialschnitt mit einem bestimmten Konuswinkel (β)
konisch ausgebildet ist, wobei der kleinere Durch-
messer insbesondere des dem Außenkonus (30)
axial nächstliegenden konkaven Flankenbereichs
(70) kleiner als der größte Durchmesser (D_2) am
stirnseitigen Ende des Innenkonus (28) des
Anschlußstutzens (4) ist.**
- 8. Rohrverschraubung nach Anspruch 4 oder 7,
dadurch gekennzeichnet, daß der Konuswinkel
(β) des Nutgrundes (50; 66) etwa 10° bis 15° , ins-
besondere etwa 12° , beträgt.**
- 9. Rohrverschraubung nach einem oder mehreren der
Ansprüche 1 bis 8,
dadurch gekennzeichnet, daß die Umfangsdich-**
- tung (44) durch einen Profilring (52; 54; 60; 74) aus
einem elastomerem Material, insbesondere aus
NBR und/oder PTFE oder aus Viton, gebildet ist.
- 10. Rohrverschraubung nach Anspruch 9,
dadurch gekennzeichnet, daß der Profilring (52)
einen im wesentlichen rechteckigen Ringquer-
schnitt aufweist.**
- 11. Rohrverschraubung nach Anspruch 9,
dadurch gekennzeichnet, daß der Profilring (54)
einen im wesentlichen dreieckigen Ringquerschnitt
mit einer etwa radial nach außen ragenden Dicht-
kante (56) aufweist.**
- 12. Rohrverschraubung nach Anspruch 9,
dadurch gekennzeichnet, daß der Profilring (60)
einen im wesentlichen L-förmigen Ringquerschnitt
mit einem axialen, insbesondere dem Außenkonus
(30) zugekehrten Ringabschnitt (62) und einem
radialen Ringabschnitt (64) aufweist, wobei nach
der Montage der radiale Ringabschnitt (64) vor-
zugsweise zwischen der Anschlagfläche (38) des
Schneidrings (18) und der Stirnfläche (40) des
Anschlußstutzens (4) angeordnet ist.**
- 13. Rohrverschraubung nach Anspruch 12,
dadurch gekennzeichnet, daß der Profilring (60)
auf der dem Anschlußstutzen (4) zugekehrten Seite
des radialen Ringabschnittes (64) mindestens eine
ringstegartige, konzentrisch umlaufende Anlage-
rippe (90), vorzugsweise mindestens zwei konzen-
trisch umlaufende, über radial dazwischenliegende,
axiale, nutartige Ringvertiefungen (92) beabstan-
dete Anlagerippen (90) aufweist.**
- 14. Rohrverschraubung nach einem oder mehreren der
Ansprüche 1 bis 13,
gekennzeichnet durch einen zusätzlichen elasti-
schen Dichtring (76) zur radial inneren Abdichtung
zwischen dem Schneidring (18) und der Rohrlei-
tung (10).**
- 15. Rohrverschraubung nach Anspruch 14,
dadurch gekennzeichnet, daß der zusätzliche
Dichtring (76) in einer inneren Ringnut (78) des
Schneidrings (18) angeordnet ist.**
- 16. Rohrverschraubung nach einem oder mehreren der
Ansprüche 1 bis 15,
dadurch gekennzeichnet, daß die Anschlagfläche
(38) des Schneidrings (18) derart geringfügig radial
nach außen und axial in Richtung der Stirnfläche
(40) des Anschlußstutzens (4) geneigt verläuft, daß
beim Anziehen der Überwurfmutter (6) eine Verfor-
mung des Schneidrings (18) zwecks radial nach
innen gerichteter Verpressung gegen die Rohrlei-
tung (10) erfolgt, und zwar insbesondere im**

Bereich des zusätzlichen Dichtrings (76)

5

10

15

20

25

30

35

40

45

50

55

8

FIG. 11

FIG. 12

FIG. 13

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betritt Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
A	DE 42 29 502 A (MACH MONTAGETECHNIK FROEHLICH) 5.Mai 1994 * Abbildungen 4-7 *	1-15	F16L19/12
A	DE 296 04 873 U (MINERDO FABRIZIO ;RONCO SERGIO (FR)) 23.Mai 1996 * Abbildungen 1,3,4 *	1-15	
A	DE 42 21 175 A (LEHMANN KLAUS) 10.März 1994 * Abbildungen 1,4-7 *	1-15	
A	US 2 529 552 A (HEROLD) 14.November 1950 * Abbildungen 1,3 *	1-15	
A	NL 7 214 823 A (HERMANN VOSS) 13.Juni 1973 * Abbildung 1 *	1-15	
A	WO 93 25837 A (LEHMANN KLAUS DIETER) 23.Dezember 1993 * Abbildungen 3-6 *	1-15	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
A	US 2 437 632 A (WOLFRAM) 9.März 1948 * Abbildungen 1,2 *	1-15	F16L
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenort DEN HAAG	Abschlußdatum der Recherche 8.Juni 1998	Prüfer Budtz-Olsen, A	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur			