1. Jännite hetkellä t on $u = U_0 e^{-t/\tau}$.

Tee laskelma, jolle annetaan ajanhetket t_1 ja t_2 ja vastaavat u:n arvot u_1 ja u_2 , ja joka laskee U_0 :n ja τ :n ja piirtää allaolevan näköisen kuvan (u:n kuvaaja välillä $t=0...5\tau$ ja pisteet $[t_1, u_1]$ ja $[t_2, u_2]$)

ohje:

$$\begin{cases} u_1 = U_0 e^{-t_1/\tau} \\ u_2 = U_0 e^{-t_2/\tau} \end{cases} \xrightarrow{\ln} \begin{cases} \ln(u_1) = \ln(u_0) - t_1/\tau \\ \ln(u_2) = \ln(u_0) - t_2/\tau \end{cases} \to U_0, \tau$$

2. Lämpötila hetkellä t on $T = T_y + (T_0 - T_y)e^{-k \cdot t}$.

Tee laskelma, jolle annetaan T_y , ajanhetket t_1 ja t_2 ja vastaavat T:n arvot T_1 ja T_2 , ja joka laskee T_0 :n ja k:n ja piirtää allaolevan näköisen kuvan (T:n kuvaaja välillä t=0...5/k ja pisteet $[t_1,T_1]$ ja $[t_2,T_2]$)

ohje:

$$\begin{cases} T_1 = T_y + (T_0 - T_y)e^{-k \cdot t_1} \\ T_2 = T_y + (T_0 - T_y)e^{-k \cdot t_2} \end{cases} \to \begin{cases} T_1 - T_y = (T_0 - T_y)e^{-k \cdot t_1} \\ T_2 - T_y = (T_0 - T_y)e^{-k \cdot t_2} \end{cases}$$

$$\frac{\ln}{1} \begin{cases} \ln(T_1 - T_y) = \ln(T_0 - T_y) - k \cdot t_1 \\ \ln(T_2 - T_y) = \ln(T_0 - T_y) - k \cdot t_2 \end{cases} \to k, T_0$$