

ORDER NO. ARP 1507

MODEL PD-91 HAS TWO VERSIONS:

Type Power requirement		Export destination		
KU/CA	AC 120 V only	U.S.A. and Canada		
HEM	AC 220 V, 240 V (switchable)	European continent		

- This manual is applicable to the KU/CA and HEM types.
- For the HEM type, refer to pages 133 and 134.
- Ce manuel pour le service comprend les explications en français de réglage. (p. 59 p. 73).
- Este manual de servicio trata del método ajuste escrito en español. (p. 74 p. 88).

CONTENTS

1. SAFETY INFORMATION 2	10. ADJUSTMENTS	44
2. SPECIFICATIONS 4		59
3. PANEL FACILITIES 5		
4. DISASSEMBLY11		89
5. EXPLODED VIEWS AND PARTS LIST14		
6. P.C. BOARDS CONNECTION DIAGRAM29		
7. SCHEMATIC DIAGRAM33		
8. ELECTRICAL PARTS LIST39		
9. PACKING43	16. FOR HEM TYPE	133

1. SAFETY INFORMATION

-(FOR USA MODEL ONLY)-

1. SAFETY PRECAUTIONS

The following check should be performed for the continued protection of the customer and service technician.

LEAKAGE CURRENT CHECK

Measure leakage current to a known earth ground (water pipe, conduit, etc.) by connecting a leakage current tester such as Simpson Model 229-2 or equivalent between the earth ground and all exposed metal parts of the appliance (input/output terminals, screwheads, metal overlays, control shaft, etc.). Plug the AC line cord of the appliance directly into a 120V AC 60Hz outlet and turn the AC power switch on. Any current measured must not exceed 0.5mA

AC Leakage Test

ANY MEASUREMENTS NOT WITHIN THE LIMITS OUT-LINED ABOVE ARE INDICATIVE OF A POTENTIAL SHOCK HAZARD AND MUST BE CORRECTED BEFORE RETURNING THE APPLIANCE TO THE CUSTOMER.

2. PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in the appliance have special safety related characteristics. These are often not evident from visual inspection nor the protection afforded by them necessarily can be obtained by using replacement components rated for voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Service Manual.

Electrical components having such features are identified by marking with a \wedge on the schematics and on the parts list in this Service Manual.

The use of a substitute replacement component which does not have the same safety characteristics as the PIONEER recommended replacement one, shown in the parts list in this Service Manual, may create shock, fire, or other hazards.

Product Safety is continuously under review and new instructions are issued from time to time. For the latest information, always consult the current PIONEER Service Manual. A subscription to, or additional copies of, PIONEER Service Manual may be obtained at a nominal charge from PIONEER.

-(FOR EUROPEAN MODEL ONLY)-

CVAROITUS! -

LAITE SISÄLTÄÄ LASERDIODIN, JOKA LÄHETTÄÄ NÄKYMÄTÖNTÄ, SILMILLE VAARALLISTA INFRAPUNASÄTEILYÄ LAITTEEN SISÄLLÄ ON LASERDIODIN LÄHEISYYDESSÄ KUVAN, 1. MUKAINEN VAROITUSMERKKI.

LASER Kuva 1 Lasersateilyn varoitusmerkki

-WARNING!-

DEVICE INCLUDES LASER DIODE WHICH EMITS INVISIBLE INFRARED RADIATION WHICH IS DANGEROUS TO EYES. THERE IS A WARNING SIGN ACCORDING TO PICTURE 1 INSIDE THE DEVICE CLOSE TO THE LASER DIODE.

LASER
Picture 1
Warning sign for laser radiation

IMPORTANT

PIONEER COMPACT DISC PLAYER APPARATUS CONTAINS LASER OF HIGHER CLASS THAN 1. SERVICING OPERATION OF THE APPARATUS SHOULD BE DONE BY A SPECIALLY INSTRUCTED PERSON.

ADVERSEL: -

USYNLIG LASERSTRÄLING VED ÅBNING NÅR SIKKERHEDSAFBRYDERE ER UDE AF FUNKTION UNDGÅ UDSAETTELSE FOR STRÅLING.

· VIKTIGT -

APARATEN INNEHÅLLER LASER AV HÖGRE KLASS ÄN 1. INGREPP I APPARATEN BÖR GÖRAS AV SPECIELLT UTBILDAD PERSONAL.

LABEL CHECK

CAUTION
INVISIBLE LASER
RADIATION WHEN OPEN,
AVOID EXPOSURE
TO BEAM PRW1018

HEM model

CAUTION

LASERRADIATION WHEN OPEN, AVOID EXPOSURE TO BEAM ADVARSEL

FARE FOR USYNUG LASERSTRÂLING VED ÅBNING AF DÆKSEL UNDGÅ AT UDSÆTTE ØJINENE FOR STRÅLING.

VORSICHT!

UNSICHTBARE LASER STRAHLUNG TRITT AUS. WENN DECKEL (ODER KLAPPE) GEOFFNET ISTI NICHT DEM STRAHL AUSSETZEN.

PRIV-175

ADDITIONAL LASER PRECAUTIONS

1. Laser Interlock Mechanism

The clamp switch (S1305) detects the completion of the Load in operation, and the ON/DFF status of the clamp switch is in turn detected by the microcomputer. The laser diode is designed not to oscillate while the clamp switch is in OFF status.

Consequently, if S1305 is accidentally short-circuited, the interlock mechanism will become incapable of operation.

Moreover, when short-circuiting occurs between Pins 4 or 5 of CXA1081S (IC 301) and GNID, or between Pin 29 of CXA1081S (IC 301) and GNID, or between the terminals of Q 304 (a Fault Condition will occur in all three cases), the laser diode will oscillate continuously.

Note that during TEST Mode (see page 44), the interlock mechanism does not operate.

While the bonnet is in opened status, if while the bonnet is open, the pickup is positioned so that clamp base aperture and the exterior of the objective lens are visible and the clamp base is subsequently removed, the pickup can be flooded with radiation of more than class 1 of the laser optical system during any Fault Condition in Item 1 above or during TEST Mode.

2. SPECIFICATIONS

1. General
Type Compact disc digital audio system
Usable discs Compact Disc
Signal format Sampling frequency: 44.1 kHz
Quantized bit number: 16 bit linear
D/A conversion 18 bit
Power requirements
European models AC 220 V, 50/60 Hz
U.S., Canadian models AC 120 V, 60 Hz
Power consumption 29 W
Operating temperature +5°C - +35°C
(+41°F - +95°F)
Weight 11.7 kg (25 lb, 13 oz)
External dimensions
458(W) x 425(D) x 129(H) mm
$18-1/16(W) \times 16-13/16(D) \times 5-3/32(H)$ in

2. Audio section

3. Output terminal

Optical digital output terminal Coaxial digital output terminal Audio line output terminal Headphone jack (with volume control)

4. Functions

- Play
- Pause
- Manual search
- Track search
- Index search
- Direct track search
- All track repeat
- Programmed repeat
- Programmed playback
- Pause program
- Add-on program
- Auto program editing
- Time fade editing
- Music Window (remote control)
- One touch fade (remote control)
- Fade time variation
- Random play
- Programmed random play
- Auto space
- Memory backup
- Timer start
- Random timer start
- Program timer start

5. Accessories

Remote control unit	1
Size AAA/R03 dry cell batteries	
Output cable	
• Operating instructions	1

NOTE:

Specifications and design subject to possible modifications without notice, due to improvement.

3. PANEL FACILITIES

FRONT PANEL

Indicators

PROGRAM

: Lights after programming (after program has been memorized).

REPEAT

: Lights during repeat play.

RANDOM

: Lights during random playing.

TIME/REMAIN/TOTAL

: Changes each time the TIME key

is pressed.

TIME

: Displays the track number of the track being played, the index*1 number, and the playback time

(minutes and seconds).

REMAIN

: Indicates the time remaining on

the track being played.

When the TIME key is pressed again, the time remaining on the

disc will be displayed.

• TOTAL

: Displays the total number of tracks on one disc (TRACK) and the overall playback time (MIN,

SEC).

Programmed playback operation, displays the remaining playback time of the programmed tracks (REMAIN), and the total playback time

(TOTAL).

TRACK

: Indicates current track number, and track numbers within program. The lower figures light up in accordance with the number of tracks recorded on the disc, and the numbers of the tracks which have been played extinguish in order. (During programmed playback only the programmed tracks light.) Above number 21 the mark lights.

MIN

: Displays the playback time or re-

maining time in minutes.

SEC

: Displays the playback time or re-

maining time in seconds.

Also, the auto space operation time (in seconds) and the fade-in and fade-out setting times (in

seconds) are displayed.

MUSIC WINDOW

: Lights when a Music Window has

been programmed.

IN (™anutt)

: Lights when the Music Window program starts or during fade-in.

OUT (mmeet)

: Lights when the Music Window

LEVEL

program ends or during fade-out. : Displays the volume during fade-

in and fade-out.

ATT

: Displays the volume decrease

(-dB) of fade-in and fade-out.

INDEX

: Displays the index*1 number of the music section of a track or the

track division.

STEP

: Displays the program steps.

AUTO PROGRAM: Displayed when Auto Program

Editing is set or operated.

TIME FADE

: Displayed when Time Fade Editing

is set or operated.

AUTO SPACE

: Lights during auto space playback.

*1 The INDEX is a signal which is recorded within a track, to indicate division of the track into separate tunes and items of music.

OPEN/CLOSE key

Press when you wish to eject or load a disc. Each time the key is pressed, the tray is alternately pushed out or pulled in.

Disc Tray

This is where the disc is set. When power is switched ON and the OPEN/CLOSE key is pressed, the tray is ejected forward.

To insert the tray, press the OPEN/CLOSE key, or lightly push the tray in with your finger. During play operation, pressing the PLAY key causes the tray to be inserted automatically.

STOP key (□)

Press to stop playback. When pressed, the player goes into stop mode and all operations stop.

Press to clear a program. When pressed during stop mode, the program stored in memory is cleared.

PAUSE key (00)/Indicator

Press to temporarily interrupt playback. When pressed again, the pause mode is cancelled and playback resumes.

PLAY key (▷)/Indicator

Press to begin playback, and to cancel the pause mode.

TRACK SEARCH keys

When the player is in the normal play, (or during programmed or Music Window playback) or pause modes, these keys are pressed to search for a desired track. Pressing either key causes the player to advance to the next track, or return to the previous track. The keys can also be used to check the contents of a program during program entry (but only when the player is stopped).

: When pressed once, the disc playback advances to the beginning of the next track on the disc; when pressed continuously, the disc playback moves to the beginning of succeeding tracks on the disc. (During programmed playback, it moves to the beginning of the next programmed track.) During Music Window playback, the player advances to the beginning of the next programmed window.

when pressed once, the disc playback returns to the beginning of the currently playing track; when pressed continuously, the disc playback moves further in reverse to the beginning of previous tracks on the disc. (During programmed playback it returns to the beginning of the previously programmed track.)

During Music Window playback it returns

During Music Window playback, it returns to the beginning of the previously programmed window.

MANUAL SEARCH keys

When the player is in play or pause modes, these keys are pressed to perform fast forward or fast backward operations, to allow manual searching. These operations are only carried out during the time either key is pressed.

- [>>] : Fast forward operation (If fast forward operation is performed to the end of the disc," End" will be displayed and the player will enter pause mode.)
- [==] : Fast backward operation (If fast backward operation is performed to the beginning of the disc, the player will enter play mode.)
- For programmed playback, when the forward search reaches the next track, it will enter the pause mode. When it reaches the beginning of the track in backward search, the player will enter the playback mode.

REPEAT key

Press to perform repeat playback

- If pressed during normal playback mode, all tracks on the disc will be repeatedly played back.
- If pressed during programmed playback, the programmed tracks will be repeatedly played back in the programmed order.
- When all the tracks have been played at random during random play, the same tracks will be played again in a new pattern.

TIME key

• Use to select the method for displaying the playing time on the indicator panel.

Each time the key is pressed, the indication changes from TIME, REMAIN, to TOTAL in that order. (For details concerning the display contents, refer to the explanation about the indicators.)

 If pressed after pressing the TRACK NO. key, the playback time of the selected track only is displayed.

PROGRAM key (PROGRAM MEMORY)

Used to program a sequence of tracks.

 Press this key after selecting a desired track with the TRACK NO. keys. Tracks will be added to the program in the order in which a track is selected.

CLEAR key (PROGRAM CLEAR)

Press this key to delete the last operation in the program or Music Window program during program input.

If pressed during program or Music Window playback, the entire program will be deleted.

Also, in the program time fade editing mode, the editing mode will be cancelled. If the key is pressed again, the program will be deleted.

Output selector (OUTPUT)

Select the output terminal to be used.

ANALOG

: When using only the audio output

terminal

вотн

: When using both the audio output terminal and digital output termi-

nal

DIGITAL

: When using only the digital ter-

minal

 The circuit not in use is inactivated to prevent any detrimental effect on sound quality.

TRACK NO. keys (1 to 0)

- Use to specify track numbers (track 1 track 99) for selection of tracks, program entry, or to confirm playback time.
- For Auto Program Edit or Time Fade Edit operation, the track number keys are used to specify the time period (in minutes).

REMOTE SENSOR window

AUTO SPACE kev

During playback, there will be a pause of about three seconds before the next track is played.

DISPLAY OFF key

Press this key to turn off the indicator display. The unused circuits are turned off to prevent any detrimental effect on sound quality.

- When an operation key is pressed, the display will go on for a few seconds.
- When not in playback mode (STOP, PAUSE, etc.), the display will be on.

RANDOM play key

Press to begin random playback.

INDEX SEARCH keys

Searches, during playback or pause, for the music section of a track or the track index. When pressed, the unit will return to the previous index or advance to the next index

DD: Advances to the next index number.

Returns to the index number of the currently-playing music section or track.

POWER switch

Press to turn power to the unit ON and OFF. If there is a disc in the unit when power is turned ON, playback will begin automatically. (Timer start function)

AUTO PGM EDIT key

Press to program a tune which may be played back within a specified time.

PHONES (headphones) jack

When you wish to use headphones, insert the plug for the headphones into the headphone jack.

PHONES LEVEL control knob

Use to adjust the level of sound when using headphones. Turning the knob to the right increases the sound level.

TIME FADE EDIT key

Press this key when ending play at a desired time with fade out.

REMOTE CONTROL UNIT

Refer to player front panel section regarding other key functions not specified here.

REAR PANEL

 The coaxial cable and optical fiber cable are sold separately.

Flowchart

speed sensor units you must first remove the spindle motor.

Parts List of Chassis

Mark	No	. Part No.	Description	Mark No.	Part No.	Description
	1		•••	101.		Primary board assembly
	2	. RNH-184	Cord holder	102.		Regulator board assembly
Δ	3	. CM-22C	Strain relief	103.		Main board assembly
Δ	4	. PDG1002	AC Power cord	104.		Headphone board assembly
	5	. PKB1008	1P pin jack	105.		Adjustment board assembly
<u> </u>	* 6	. PTT1039	Power transformer (AC120V)	106.		GND plate
	7			107.		Connector assembly
Δ	8	. CKDYF103Z50	Ceramic capacitor	108.		Heat sink
	9	. PBA1008	Screw (A)	109.		Rear angle
	10	. AMR1159	Leg assembly	110.		Cushion (B)
	11	. PCZ30P050FZK	Screw	111.		
	12	. PEB1054	Damper rubber (A)	112.		Base
	13	. PEB1055	Damper rubber (B)	113.		Rear base
	14	. VBE1003	Washer	114.		P board angle
	15	. PAC1208	Headphone Knob	115.		S board angle
	16	. AMZ40P080FMC	Screw	116.		Front stay
	17	. BBZ30P060FCC	Screw	117.		Binder holder
	18	. BBZ30P080FCC	Screw	118.		Side plate (L)
	19	. BBZ30P080FRD	Screw	119.		Side plate (R)
	20	. IBZ30P080FCC	Screw	120.		A board stay
	21	. IBZ30P060FCC	Screw	121.		Switch angle
	22	. AMZ40P180FRD	Screw	122.		Shield plate (A)
	23	. PNM1008	Cushion	123.		Shield plate (B)
	24	. IBZ30P120FCC	Screw	124.		Leg assembly (B)
	25	. PYY1043	D/A converter assembly	125.		Screw angle (HEM only)
	26	. PMZ30P060FCC	Screw	126.		Cushion rubber
	27	. PNW1236	Clamp knob	127.		Schmidt board assembly
				128.		• • •
				129.		IC (IC500, IC600)

Parts List of Mechanism Assembly

	Mark	No.	Part No.	Description	Mark	No.	Part No.	Description
		1.	PWY1004	Pick-up assembly		46.	PBP-001	Steel ball ø4
		2.	PBH1028	Lever spring		47.	PNB1049	Yoke
٨		3.	PBH1029	Shaft spring		48.		
\vdash		4.	PBH1030	Float spring		49.	PNW1220	Worm
		5.	PBK1021	Adjustment spring		50.	PNW1221	Worm wheel
		6.	PBK1022	Stopper spring		51.	PNW1222	Clamp drive plate
		7.	PBM-015	Plastic rivet		52.	PNW1223	Clamp
		8.		Stopper rubber		53.	PNW1224	Clamp cam
		9.	PEB1036	Damper rubber		54.	PNW1225	Clamper holder
		10.	PEB1048	Stopper rubber	**	55.	VSK-015	Leaf switch
		11.	PLA 1024	Disc table	**	56.	PNW1212	Drive pulley
			PLA1025	Adjustment lead ring		57.	PBA-125	Motor hold screw
		13.	PLA1026	Guide bar		58.		
			PLA1027	Shaft		59.	PNW1219	Slide guide
		15.	PLM1001	Roller		60.	PNW1208	Clamper
		16.	PNB1048	Adjustment lever	**	61.	PXM-151	Motor (CLAMP)
		17.	PNW1432	Stopper		62.	PBH1026	Slide cam spring
	**	18.	PXM1005	Spindle motor		63.	PNW1215	Tray
D		19.	PBH1027	Table spring		64.	PNW1216	Disc plate
		20.	IBZ30P080FCC	Screw		65.	PNW1217	Slide cam
		21.	PMZ26P060FCU	Screw		66.	PNW1218	Connected lever unit
		22.	PMZ30P080FCU	Screw			PMZ26P030FCU	Screw
		23.	PBA1021	Float screw		68.	PBA1024	Screw
		24.	IBZ30P060FCC	Screw		69.	PMZ30P160FCU	Screw
		25.	PBA1020	Adjustment screw		70.	PMZ30P350FCU	Screw
		26.	RNH-184	Cord holder		71.	WS30FMC	Washer
		27.	PBH1048	Float spring (F)				
		28.	WT40D065D025	Washer		101.		Mechanism chassis
		29.	ZMD30H040FBT	Screw		102.		Mechanism support
		30.	PYY1038	Drive unit		103.		Slide base
						104.		Linear flexible
		31. 32.		Speed Det. unit Wire spring		105.		Carriage
		33.		Wire unit		106.		Mechanism base unit
	**	34.		Belt		107.		Motor holder
		35.		Stopper		108.		Clamp base
				•		109.		GND lead unit
		36.	PLA1028	Guide bar		110.		Rubber cushion
		37.	PNW1210	Slider unit				
		38.	PNW1211	Gear pulley		111.		Loading base
	**	39.	PNW1213	Pulley		112.		Holder
		40.	PNW1214	L guide		113.		GND plate
_						114.		Loading board assembly
		41.	BBZ30P060FCC	Screw		115.		Magnet (CLAMP ME(⊮A.)
		42.	PMZ20P080FMC	Screw				
		43.	PMZ20P040FMC	Screw				
			WT25D047D025	Washer				
	**	45.	PYY-507	Motor assembly (LOADING)				

• ICs and Transistors

CXA1082AS NJM79M12FA

CXD1135QZ

ICP-F10

LC3517AML-15

NJM072DE NJM5532DD NJM5534DD M5238P

NJM78M05FA NJM78M12FA

NJM79M05FA NJM79M12FA

PD0026A

TA7256P

NJM79M15FA

NJM78M12A

2SA1048

2SA1399 2SC3581

DTA124ES DTC124ES

PDE023

PDG010

NJM79L12A

2SC2602

2SD1302

2SJ104 2\$K364

2SK241

TC74HCU04P TC74HC74P TC74HC00P

M5238PF

NJM78M15FA

5.4 REMOTE CONTROL UNIT

Parts List of Remote Control Unit

Mark	No.	Part No.	Description	
	1.	PAM1071	Filter	
	2.	PNW1153	Battery cover	
	3.	PNW1278	Case (T)	
	4.	PNW1279	Case (B)	

ويرد

PD-91

• Wave Forms

28

8. ELECTRICAL PARTS LIST

- Parts without part number cannot be supplied.
- Parts marked by "O" are not always kept in stock. Their delivery time may be longer than usual or they may be unavail-
- The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- For your parts Stock Control, the fast moving items are indicated with the marks ** and *.

 ** GENERALLY MOVES FASTER THAN *

- This classification shall be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

 When ordering resistors, first convert resistance values into code form as shown in the following examples.

 Ex. 1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J = 5%, and K = 10%).

560Ω	56×10^{1}	561	
			RD1/4PS 4 7 3 J
0.5Ω	0R5		RN2H @ 🖫 🗓 K
			RS1P @ 🗆 @ K

Misce	llaneous Parts		<u>Ma</u>	rk	Symbol & Description	Part No.	
D C D	OARD ASSEMBLIES		**		IC708	M5218L	
P.C. D	OAND ASSEMBLIES				IC502, IC602	M5238PF	
Mark	Symbol & Description	Part No.			IC7, IC8	NJM072DE	
	Main board assembly				IC501, IC601	NJM5532DD	
	Primary board assembly			**	IC503, IC603	NJM5534DD	
	Regulator board assembly				·		
	Function board assembly	PWZ1035	A		IC26, IC701, IC702	NJM78M05FA	
•	Headphone board assembly		A		IC22	NJM78M12FA	
	, rodapilono dodi a assembi,		A		IC706	NJM78M15FA	
	LCCS board assembly		A		IC703	NJM79L12A NJM79M05FA	
	Adjustment board assembly		Δ	**	IC21	NJW / SWUSFA	
	Loading board assembly				IC23	NJM79M12FA	
	Schmidt board assembly		∆ .		IC707	NJM79M15FA	
			213		IC700	PDE023	
OTHER	RS				IC11	PD0026A	
Mark	Symbol & Description	Part No.		**	IC3	PD3094B	
	Pick-up assembly	PWY1004			101 106 100	TA7256P	
	D/A converter assembly	PYY1043			IC1, IC6, IC9 IC2, IC16	TC74HCU04P	
	·				IC705	TC74HC004F	
⚠	Strain relief	CM-22C			IC19	TC74HC74P	
\triangle	AC power cord	PDG1002		**	IC19	YM3414	
△ ★	Power transformer (AC120V)	PTT1039		* *	1014	11015414	
⚠	Ceramic capacitor	CKDYF103Z50			Q12, Q18	DTA124ES	
	1P pin jack	PKB1008			Q8, Q13, Q20 — Q22, Q712	DTC124ES	
÷.			A		Q14	2SA1048	
~ **	Spindle motor	PXM1005	۳.		Q304	2SA1399	
**	Motor assembly (LOADING)	PYY-507			Q9, Q16	2SA933S	
**	Leaf switch (OPEN/CLAMP)	VSK-015		^ ^	40, 410		
**	Motor assembly (CLAMP)	PXM-151		**	Q510, Q610	2SC1740LN	
					Q10, Q15	2SC1740S	
N	Dan I Annamakka				Q1, Q11, Q301 — Q303	2SC1740SLN	
Main Board Assembly					Q500, Q600	2SC2602	
SEMIC	ONDUCTORS			**	Q511, Q512, Q611, Q612	2SD1302	
Mark	Symbol & Description	Part No.		**	Q502, Q507, Q509, Q602, Q607,	2SJ104	
	10201	CXA1081S			Q609		
**	IC301	CXA10815 CXA1082AS		* *	Q503, Q505, Q603, Q605	2SK241	
**	IC5	CXD1135QZ			Q501, Q506, Q508, Q601, Q606,	2SK364	
**	IC12	ICP-F10		~ ~	Q608	20034	
△ ★★	IC100 — IC105	ICF-FIU					

LC3517AML-15

+ b B610, D802, D801, D802 HZSCLL C824, C824 CETA470M16 * b D50, D802 MT222B C502, C802 CEZA401M16 * b D111 RDZ7E82 C72, C802, C801, C800, C801, C700, C700, C700, C703 CEZA471M16 * b D12 - D23 S556B C73, C705 - C707, C723 - C723 C723 - C723 * b D12 - D9, D24, D31, D40 - D43, D505 - D607, D805 - D607, D700, D701, D1201 - D1204 C812, C83 C805 - C507, C509, C511, C512, C613, C611, C612, C613, C614, C726 - C729 CFTXA170JJ50 COLLS AND FILTERS T0714 - D717 D700, D700, D1201 - D1204 D700, D700, D1201 - D1204 C613, C693, C508, C510, C603, C508, C610 CFTXA473JJ50 Kark Symbol & Description Part No. C613, C693, C508, C510, C603, C508, C610 CFTXA473JJ50 CKCYF103250 CAPACITORS Part No. C11, C12, C126, C126, C612, C32, C32, C32, C32, C32, C32, C32, C3	Mark	Symbol & Description	Part No.	Mark	Symbol & Description	Part No.
★ DESOL DB00	_	DE01 DE02 DE01 DE02	H73CU		C532, C632	CEYA470M16
## 0110						
# D11						
Mark Symbol & Description Part No. C27, C48 C24, C123 C27, C48 C27, C48 C27, C48 C27, C48 C27, C48 C27, C48 C27, C133 C275 C27, C134 C275 C28, C33, C316 C371, C372 C373 C374					•	
	*	ווט				
★ 07 − 09, D24, D31, D40 − D43, D50 − D607, D605 − D607,			(RD27EB3)			CFIXATUSJSU
Date	∧ ★	D12 - D23	S5566B			
D	*	D7 — D9, D24, D31, D40 — D43,	1SS254		C505 — C507, C509, C511, C512,	CFTXA104J50
L x D714 = D717 100F2 C711, C712 C503, C608, C608, C600, C603, C608, C600, C67XA394J50 CFXAA394J50 COILS AND FILTERS Part No. C541, C641, C726 ← C72, C73 CFTXA471J50 C713 CFTXA471J50 C713 C73, C94, C96, C96, C98, C713, C103, C109, C110, C111, C112, C115, C115, C112, C122, C126 ← C128, C132 CFTXA471J50 CKCYF103250 C62, C71 − C73, C94, C96 ← C99, CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CRCYF103250 CRC		D505 — D507, D605 — D607,			C538, C605 — C607, C609, C611,	
COILS AND FILTERS Symbol & Description Part No. C541, C641, C726 C729 CFTXA3794J50		D700, D701, D1201 — D1204			C612, C638	
Collab And Filt Terms	∆ ★	D714 — D717	10DF2		C711, C712	CFTXA105J50
Mark Symbol & Description Part No. C713 (C49, C51, C54, C56, C60) (C62, C71 — C73, C94, C96 — C98) (C67) (C710, C110, C111, C115, C115, C116, C120, C112, C112, C115, C116, C120, C126 — C128, C132 CFFTXA473J50 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CKCYF103250 CCCCCH030050 CKCYF473250 CCCCCH030050 CCCCH030050 CCCCH030050 CCCCH030050 CCCCH030050 CCCCH030050 CCCCH030050 CCCCSL101J50 C032, C32, C32, C32, C32, C323 CCCCSL101J50 C133 CMC270150 CMA220J500 C036, C618, C619 CMA200500 CCCSL21J50 C036, C635 C635 CMCYF473250 CMA220J500 C036, C618, C619 CMA102J50 C036, C618, C619 CMA220J500 C036, C618, C619 C036, C619 C036, C618, C618, C619 C036, C618, C618, C618, C618, C618, C618, C618, C618,					C503, C508, C510, C603, C608, C610	CFTXA394J50
Mark Symbol & Description Part No. C13, C49, C51, C54, C56, C69. C57, C77, C73, C94, C96 − C99, CKCYF103Z50 C52, C71 − C73, C94, C96 − C99, C111, C112, C115, C116, C120, C126 − C128, C132 C74 − C76, C82 − C84 − C78, C82 − C84 − C76, C82 − C84, C74, C74, C74, C74, C74, C74, C74, C7	COILS	AND FILTERS				
L1 − L3, L5, L701 (1µH) LRA010K C62, C71 − C73, C94, C96 − C98 FTL1001 C103, C109, C111, C112, C115, C115, C116, C120, C126 − C128, C132 FTL1001 C103, C109, C111, C112, C115, C115, C116, C120, C126 − C128, C132 CKCYF103Z50 C2 − C4, C9, C15, C21, C22, C29, CKCYF473Z50 C22 − C4, C9, C15, C21, C22, C29, C33, C36, C119, C121, C122, C129 − C131, C320, C32, C1201 C124, C125, C129 − C131, C320, C32, C1201 C103, C322, C322, C323 CCCCL9300J56 C10, C302, C322, C323 CCCCL9300J56 C10, C302, C322, C323 CCCSL101J56 C138 − C136 C366 − C00, C22, C136 − C136 − C00, C131 − C143, C730 CKDYF103Z50 − CKDYF473Z50 − C64, C136 − C136 − C00, C131 − C134 − C143, C730 − CKDYF103Z50 − CKDYF473Z50 − C635, C635 − CMA220J500 − C136 − C136 − C00, C131 − C139 − C00, C22 − C00, C2147J50 − C2314 − C00, C22 − C00, C2147J50 − C214, C139 − C139 − C00, C214, C140,	Mark	Symbol & Description	Part No.			
Table		11 - 13, L5, L701 (1μH)	LRA010K			
F1, F301 3 terminal filter VTH1001						
CAPACITORS ∆ C74 − C76, C92 − C84 CC1-C1, C28, C23, C28, C21, C28, C29, C21, C28, C29, C24, C9, C15, C21, C28, C29, C23, C36, C119, C121, C122, C124, C125, C129, C121, C122, C124, C123, C120, C124, C123, C123, C122, C124, C123, C123, C124, C123, C123, C124, C123, C124, C12						
CAPACTORS C2 - C4, C9, C15, C21, C22, C28, C37, C36, C119, C121, C122. C32, C136, C119, C121, C122. C124, C126, C129 - C131, C320. CEXP C10, C302, C322, C323 CCCCH080050 C140 - C143, C730 CKDYF103Z50 CKDYF103Z50 CKDYF473Z50 CCDSL27150 CCSL37150 CCS18, C636, C636 CMA470J500 CCS18, C636, C636 CMA470J500 CCSCCCSL680J60 CCSCCSCESU160 CCSCCSCESU160 CCSCCSCESU160 CCSCCSCESU160 CCSCCSCESU160 CCSCCSCESU160 CCSCCSCESU160 CCSCCSCCSCESU160		F1, F301 3 terminal filter	VTH1001		674 676 699 694	CKCVE1027E0
CAPACITORS Mail Symbol & Description Part No. C12, C125, C129 − C131, C320, C321, C320 CCCCH0800150 C47, C48 CCCCCH0300J50 C140 − C143, C730 CKDYF103Z50 C42, C123 CCCCH1030J50 C133 CKDYF473Z50 C48 CCCSL150J50 C133 CKDYF473Z50 C48 CCCSL221J50 C535, C635 CMA20J500 C136 CCCSL221J50 C535, C635 CMA20J500 C137 CCCSL471J50 C535, C635 CMA270J500 C314 CCCSL561J50 C536, C636 CMA470J500 C22 CCCSL568J50 C520, C88, C92 C0MA103J50 C66 CANPTIOMD25 C16, C18, C19, C106, C107 C0MA103J50 C66 CEANPTOM10 C22, C88, C92 C0MA103J50 C17 CEANPTOM10 C24 C0MA123J50 C10 C14, C27, C30, C35, C39, C50, C68 C24 C0MA123J50 C10 C1, C14, C27, C30, C35, C39, C50, C68 C44 C0MA23J50 C10 C1, C14, C27, C30, C35, C39, C50, C68				213		
Mark Symbol & Description Part No. C124, C125, C129 — C131, C320. C124, C1201 C47, C48 CCCCCH080050 C140 — C143, C730 CKDYF103Z50 C42, C123 CCCSL101J50 C133 CKDYF473Z50 C46 CCCSL160J50 C518, C519, C618, C619 CMA0300500 C117 CCSL22J150 C535, C635 CMA22QJ500 C117 CCSL471J50 C536, C636 CMA270J500 C124 C133 — C139 CCDSL22J150 C536, C636 CMA470J500 C20 CCSL680J50 C20, C89, C92 C0MA103J50 C66 CEANP100M25 C16, C18, C19, C106, C107 C0MA103J50 C17 CEANP470M10 C22 C20, C316 C24 C0MA152J50 C101 CEAS C108, C63, C63, C63, C63, C63, C63, C63, C63	CADA	OITORS				CKC1F4/3250
Mark Symbol & Description	CAPA	CITURS				
C10, C302, C322, C323 CCCCSL100J50 C140 — C143, C730 CKDYF103Z50 C42, C123 CCCSL150J50 C138, C519, C618, C619 CKDYF473Z50 C46 CCCSL150J50 C518, C519, C618, C619 CKDYA220J500 C136 CCCSL221J50 C535, C635 CMA220J500 C117 CCCSL471J50 C513, C613 CMA270J500 C22 CCSL680J50 C536, C636 CMA470J500 C137 — C139 CCDSL221J50 C91, C306, C317 CQMA10J55 C66 CEANP400M25 C16, C18, C19, C106, C107 CQMA10J50 C77 CEANP470M10 C24 CQMA152J50 C101 CEASR47M50 C24 CQMA152J50 C102, C316, C33, C35, C39, C50, C61, C63, C65, C108, C103, C65, C61, C63, C65, C108, C103, C65, C61, C63, C65, C108, C103, C65, C61, C63, C65, C108, C103, C63, C65, C61, C63, C65, C108, C102, C104, C105 C51, C304 CQMA223J50 C67 CEAS101M50 C12 CQMA37J50 C69 CEAS101M50 C12 CQMA47J150 C31, C313, C318, C1202 C31, C304 CQMA47J150 C34 C69, C62, C62, C62, C62, C62, C62, C6	Mark	Symbol & Description	Part No.			
C42, C123 CCCSL101J50 C133 CKDYF473Z50 C46 CCCSL150J50 C518, C619, C618, C619 CMA030D500 C136 CCCSL21J50 C535, C635 CMA220J500 C117 CCCSL47J50 C513, C613 CMA270J500 C22 CCCSL561J50 C536, C636 CMA470J500 C22 CCCSL586J50 C20, C89, C92 CQMA102J50 C66 CEANP100M25 C91, C306, C317 CQMA102J50 C66 CEANP470M10 C62, C16, C18, C19, C106, C107 CQMA104J50 C101 CEAS10M50 C24 CQMA152J50 C101 CEAS100M50 C25 CQMA152J50 C10, C14, C27, C30, C35, C39, C50, C10, C63, C65, C108, C634, C64, C64, C64, C64, C64, C64, C64, C6		C47, C48	CCCCH080D50			
C46 CCCSL150J50 C518, C519, C618, C619 CMA030D500 C136 CCCSL221J50 C535, C635 CMA220J500 C117 CCCSL47JJ50 C513, C613 CMA27OJ500 C21 CCCSL561J50 C536, C636 CMA47OJ500 C22 CCCSL680J50 C20, C89, C92 CQMA102J50 C137 − C139 CCDSL221J50 C91, C306, C317 CQMA103J50 C66 CEANP100M25 C16, C18, C19, C106, C107 CQMA103J50 C77 CEASR47M50 C24 CQMA152J50 C101 CEASR47M50 C25 CQMA153J50 C101 CEASR47M50 C25 CQMA153J50 C10, C113, C114, C303, C357, C35 CEAS101M10 C8 C0MA223J50 C10, C113, C114, C303, C307, C312, C313, C318, C1202 C31, C304 C0MA333J50 C69 CEAS101M50 C12, C301 CQMA472J50 C34 C68 CQMA473J50 C34 CQMA473J50 C37, C38, C43, C45, C67, C88, CEAS20M50 C6 CQMA473J50 C30 C308, C309 CEAS210M10 <		C10, C302, C322, C323	CCCCH300J50		C140 — C143, C730	CKDYF103Z50
C136		C42, C123	CCCSL101J50		C133	CKDYF473Z50
C117 CCCSL471J50 C314 CCCSL561J50 C314 CCCSL561J50 C314 CCCSL561J50 C22 CCCSL560J50 C20, C88, C92 C0MA470J500 C26 C317 C139 CCDSL221J50 C16 C18, C19, C106, C107 C0MA10J50 C66 CEANP100M25 C16, C18, C19, C106, C107 C0MA10J50 C7 C0MA10J450 C0MA10J450 C7 C0MA10J45		C46	CCCSL150J50		C518, C519, C618, C619	CMA030D500
C117		C136	CCCSL221J50		C535, C635	CMA220J500
C314 CCCSL561J50 C536, C636 CMA470J500 C22 CCCSL680J50 C20, C89, C92 CQMA102J50 C66 CESL22JJ50 C91, C306, C317 CQMA103J50 C66 CEANP100M25 C16, C18, C19, C106, C107 CQMA104J50 C17 CEANP470M10 C22 CQMA124J50 C101 CEAS100M50 C25 CQMA153J50 C101, C14, C27, C30, C35, C39, C50, C6AS101M10 C8 CQMA22J50 C53, C55, C61, C63, C65, C108, C110, C113, C114, C303, C307, C312, C313, C318, C1202 C31, C304 CQMA33J50 C69 CEAS101M50 C12 CQMA471J50 C308, C309 CEAS220M50 C6 CQMA477J50 C308, C309 CEAS221M10 Δ C720, C721 CQMA477J50 C308, C309 CEAS221M10 Δ C720, C721 CQMA477J50 C308, C309 CEAS220M50 C6 CQMA477J50 C37, C38, C43, C45, C67, C88 CEAS330M35 C5 C5 CQMA477J50 C68 CEAS470M50 C70, C72, C72, C72, C72, C72, C72, C72, C72					C513, C613	CMA270J500
C22 CCCSL680J50 C20, C89, C92 CQMA102J50 C137 − C139 CCDSL22JS9 C91, C306, C317 CQMA103J50 C66 CEANP100M25 C16, C18, C19, C106, C107 CQMA103J50 C17 CEANP470M10 C7 CQMA124J50 C101 CEASR47M50 C24 CQMA152J50 C101, C14, C27, C30, C35, C39, C50, C55, C61, C63, C65, C108, C110, C113, C114, C303, C307, C35, C39, C50, C63, C61, C63, C65, C108, C110, C113, C114, C303, C307, C312, C313, C318, C1202 C5 CQMA22J50 C69 CEAS101M50 C12 CQMA332J50 C34 CGMA333J50 C31, C304 CQMA333J50 C302, C313, C318, C1202 C31, C304 CQMA333J50 C69 CEAS101M50 C12 CQMA333J50 C304 CEAS220M50 C6 CQMA471J50 C34 CEAS220M50 C6 CQMA471J50 C34 CEAS220M50 C6 CQMA473J50 C33, C330, C35, C95, C104, C105 A C720, C721 CQSF472J125 C52 CEAS332M16 C40 (0.47F15.5V) PCH1057 C6		C117	CCCSL471J50			
C137 − C139		C314	CCCSL561J50		C536, C636	CMA470J500
C66 CEANP100M25 C16, C18, C19, C106, C107 CQMA104J50 CQMA124J50 CQMA124J50 C17 CEANP470M10 C24 CQMA152J50 CQMA152J50 CQMA153J50 CQMA153J50 CQMA153J50 CQMA153J50 CQMA153J50 CQMA153J50 CQMA153J50 CQMA22J50		C22	CCCSL680J50		C20, C89, C92	CQMA102J50
C17		C137 - C139	CCDSL221J50		C91, C306, C317	CQMA103J50
C17 C232, C316 CEASR47M50 C24 COMA152J50 C101 CEASR47M50 C25 CQMA153J50 C1, C14, C27, C30, C35, C39, C50, C55, C61, C63, C65, C108, C110, C113, C114, C303, C307, C312, C313, C318, C1202 C5 C41, C44, C305 CQMA223J50 C69 CEAS101M50 C12 CQMA471J50 C34 C31, C304 CQMA471J50 C34 C69 CEAS101M50 C12 CQMA471J50 C34 C69 CEAS101M50 C102, C301 CQMA471J50 C34 C69 CEAS10M50 C6 CQMA473J50 C34 C69 CEAS20M50 C6 CQMA473J50 C308, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, CEAS332M16 C40 C4718, C719 (3300µF/35V) PCH1057 C52 <td< td=""><td></td><td>C66</td><td>CEANP100M25</td><td></td><td>C16, C18, C19, C106, C107</td><td>CQMA104J50</td></td<>		C66	CEANP100M25		C16, C18, C19, C106, C107	CQMA104J50
C32, C316 CEASR47M50 C24 CQMA152J50 C101 CEAS100M50 C25 CQMA153J50 C1, C14, C27, C30, C35, C39, C50, C65, C61, C63, C65, C108, C110, C113, C114, C303, C307, C312, C313, C318, C1202 C5 CQMA22J50 C69 CEAS101M50 C12 CQMA471J50 C34 CEAS101M50 C12 CQMA471J50 C34 CEAS220M50 C6 CQMA473J50 C308, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, C5AS330M35 C5 C40, C47F,55V) PCH1057 C52 CEAS322M16 C40 (0.47F,55V) PCH1059 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1066 C701, C702 CENA102M16 C709, C710 C709, C710 PCH1067 C79, C80, C86, C87 CENA102M35 C527, C627, C627 (4700pF) PCH1067 C77, C78 CENA322M25 C526, C626 (68000pF) PCL1008 C542, C543, C642, C643					C7	CQMA124J50
C101 CEAS100M50 C25 COMA153J50 C1, C14, C27, C30, C35, C39, C50, C53, C55, C61, C63, C65, C108, C55, C61, C63, C65, C108, C110, C113, C114, C303, C307, C312, C313, C318, C1202 C5 C41, C44, C305 C0MA224J50 C69 CEAS101M50 C12 C0MA471J50 C70 CEAS101M50 C102, C301 C0MA472J50 C34 CEAS220M50 C6 C0MA473J50 C308, C309 CEAS221M10 Δ C720, C721 C0SF472J125 C37, C38, C43, C45, C67, C88, C58330M35 C53, C59, C104, C105 Δ C718, C719 (3300μF/35V) PCH1057 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1069 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1062 C79, C80, C86, C87 CENA102M16 C709, C710 (1000μF/25V) PCH1066 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C521, C621,		C17	CEANP470M10			
C1, C14, C27, C30, C35, C39, C50, C53, C65, C61, C63, C65, C108, C53, C55, C61, C63, C65, C108, C110, C113, C114, C303, C307, C312, C313, C318, C1202 C52 C41, C44, C305 CQMA224J50 C69 CEAS101M50 C12 CQMA471J50 C308, C309 CEAS220M50 C102, C301 CQMA473J50 C37, C38, C43, C45, C67, C88, C93, C93, C95, C104, C105 CEAS221M10 Δ C720, C721 CQSF472J125 C52 CEAS330M35 CEAS330M35 C718, C719 (3300μF/35V) PCH1057 C68 CEAS470M50 C70, C721 PCH1057 C68 CEAS470M50 C709, C710 (1000μF/55V) PCH1062 C69 CEAS470M50 C709, C710 (1000μF/55V) PCH1062 C79, C80, C86, C87 CENA102M16 C708 (2200μF/16V) PCH1067 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C522, C543, C642, C643 CENA332M25 C526, C626 (68000pF) PCL1008 Δ C81, 85 CENA470M25 C529, C629 (12000pF) PCL1002 C525, C533, C625, C633 CEYA2R2M50 C530, C630 (680pF) VCE1005 C704 CEYA2R2M50 C550, C634, C604, C634 VCH1007		C32, C316	CEASR47M50		C24	CQMA152J50
C63, C65, C61, C63, C65, C108, C110, C113, C114, C303, C307, C312, C313, C318, C1202 C41, C44, C305 CQMA323J50 C69 CEAS101M50 C12 CQMA471J50 C70 CEAS101M50 C12 CQMA471J50 C34 CEAS220M50 C6 CQMA473J50 C37, C38, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, C90, C93, C95, C104, C105 CAS330M35 Δ C718, C719 (3300μF/35V) PCH1057 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1062 C79, C80, C86, C87 CENA102M16 C708 (2200μF/16V) PCH1067 C79, C80, C86, C87 CENA332M25 C527, C627 (4700pF) PCL1006 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 Δ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1008 Δ C51, C621 (470pF) PCL1006 C521, C621 (470pF) PCL1006 C525, C533, C625, C633 CENA70M25 C529, C629 (12000pF) PCL1002		C101	CEAS100M50		C25	CQMA153J50
C110, C113, C114, C303, C307, C312, C313, C318, C1202 C21, C304 CQMA333J50 Δ C69 CEAS101M50 C12 CQMA471J50 C34 CEAS220M50 C6 CQMA473J50 C308, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, CEAS330M35 C718, C719 (3300μF/35V) PCH1057 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1059 C68 CEAS470M50 C709, C710 (1000μF/55V) PCH1062 C79, C80, C86, C87 CENA102M16 C708 (2200μF/16V) PCH1067 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C524, C543, C642, C643 CENA332M25 C526, C626 (68000pF) PCL1009 Δ C81, 85 CENA332M25 C526, C629 (12000pF) PCL1002 C525, C533, C625, C633 CEYA2R2M50 C529, C629 (12000pF) PCL1002 C704 CEYA2R2M50 C5504, C534, C604, C634 VCH1007		C1, C14, C27, C30, C35, C39, C50,	CEAS101M10		C8	CQMA223J50
C312, C313, C318, C1202 C69 CEAS101M50 C12 CQMA471J50 Δ C70 CEAS101M50 C102, C301 CQMA472J50 C34 CEAS220M50 C6 CQMA473J50 C308, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, CEAS330M35 C90, C93, C95, C104, C105 Δ C718, C719 (3300μF/35V) PCH1057 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1066 C701, C702 CENA102M16 C708 (2200μF/16V) PCH1067 C79, C80, C86, C87 CENA332M25 C527, C627 (4700pF) PCL1006 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1008 Δ C81, 85 CENA332M25 C529, C629 (12000pF) PCL1009 C524, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL10022 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CEYA2RZM50 C504, C534, C604, C634 VCH1007		C53, C55, C61, C63, C65, C108,			C5	CQMA224J50
C69 CEAS101M50 C12 CQMA471J50 Δ C70 CEAS101M50 C102, C301 CQMA471J50 C34 CEAS20M50 C6 CQMA473J50 C308, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, CEAS330M35 C90, C93, C95, C104, C105 Δ C78, C539, C540, C639, C640(100μF/50V) PCH1057 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1062 C79, C80, C86, C87 CENA102M35 C77, C78 CENA102M35 C77, C78 CENA332M25 C527, C627 (4700pF) PCH1066 C52, C542, C543, C642, C643 CENA332M25 C529, C629 (12000pF) PCL1008 Δ C81, 85 CENA332M25 C529, C629 (12000pF) PCL1008 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) PCL1022 C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007		C110, C113, C114, C303, C307,			C41, C44, C305	CQMA332J50
Δ C69 CEAS101M50 C12 CQMA471J50 C70 CEAS101M50 C102, C301 CQMA472J50 C34 CEAS220M50 C6 CQMA473J50 C308, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, CEAS330M35 C718, C719 (3300μF/35V) PCH1057 C50, C93, C95, C104, C105 Δ C718, C719 (3300μF/35V) PCH1057 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1062 C701, C702 CENA102M16 C708 (2200μF/16V) PCH1067 C79, C80, C86, C87 CENA332M25 C527, C627 (4700pF) PCL1006 C77, C78 CENA332M25 C526, C626 (68000pF) PCL1008 Δ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C525, C533, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1002 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CE		C312, C313, C318, C1202				
Δ C70 CEAS101M50 C102, C301 CQMA472J50 C34 CEAS220M50 C6 CQMA473J50 C308, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, CEAS330M35 C718, C719 (3300μF/35V) PCH1057 C50, C93, C95, C104, C105 Δ C718, C719 (3300μF/35V) PCH1057 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1059 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1062 C701, C702 CENA102M16 C708 (2200μF/16V) PCH1067 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C770, C78 CENA332M25 C521, C621 (470pF) PCL1008 Δ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CEYA2R2M50 C504, C534, C604, C634 VCH1007					C31, C304	
C34 CEAS220M50 C6 CQMA473J50 C308, C309 CEAS221M10 Δ C720, C721 CQSF472J125 C37, C38, C43, C45, C67, C88, CEAS330M35 C718, C719 (3300μF/35V) PCH1057 C90, C93, C95, C104, C105 Δ C718, C719 (3300μF/35V) PCH1057 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1066 C701, C702 CENA102M16 C708 (2200μF/16V) PCH1067 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C521, C621 (470pF) PCL1008 C521, C621 (470pF) PCL1008 Δ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CEYA2R2M50 C529, C634, C634, C604, C634 VCH1007		C69	CEAS101M50			CQMA471J50
C308, C309 C2AS221M10 Δ C720, C721 C0SF472J125 C37, C38, C43, C45, C67, C88, C90, C93, C95, C104, C105 C52 C68 C68 C701, C702 CENA102M16 C701, C702 CENA102M35 C77, C78 C79, C80, C86, C87 C77, C78 C81, 85 C81, 85 C81, 85 C81, 85 C81, 85 CENA332M25 CENA470M25 C524, C543, C642, C643 CENA470M25 C525, C533, C625, C633 CEYA100M50 C704 CEYA2R2M50 C58 CEYA330M25 C69 C704 C69 C69 C704 C69 C704 C69 C706 C707 C707 C708 C708 C709 C709 C709 C709 C709 C709 C709 C709	\triangle	C70 .	CEAS101M50		C102, C301	CQMA472J50
C37, C38, C43, C45, C67, C88, CEAS330M35 C90, C93, C95, C104, C105 C52 C68 C68 C701, C702 CENA102M16 C79, C80, C86, C87 C77, C78 C79, C78 C81, 85 C709, C710 C1000µF/25V) PCH1062 C709, C710 C1000µF/25V) PCH1062 C709, C70 C709, C710 C1000µF/25V) PCH1062 C709, C709, C710 C709, C710 C100µF/25V) PCH1062 C709, C709, C710 C709, C70 C709, C710 C90, C709 C709, C70 C90, C709 C709, C70 C90, C709 C709, C70 C90, C709 C709, C		C34	CEAS220M50		C6	CQMA473J50
C90, C93, C95, C104, C105 C52 CEAS332M16 C704 C709, C710 (1000μF/55V) PCH1059 C68 C701, C702 CENA102M16 C79, C80, C86, C87 C77, C78 CENA332M25 C81, 85 C82, C627 C82, C627 C820, C627 C920, C627 C		C308, C309	CEAS221M10	Δ	C720, C721	CQSF472J125
C539, C540, C639, C640 (100μF/50V) PCH1059 C52 CEAS332M16 C40 (0.47F/5.5V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1066 C701, C702 CENA102M16 C708 (2200μF/16V) PCH1067 C79, C80, C86, C87 CENA102M35 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C521, C621 (470pF) PCL1008 Δ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007		C37, C38, C43, C45, C67, C88,	CEAS330M35			
C52 CEAS332M16 C40 (0.47F/5.5V) PCH1062 C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1066 C701, C702 CENA102M16 C708 (2200μF/16V) PCH1067 C79, C80, C86, C87 CENA102M35 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C521, C621 (470pF) PCL1008 Δ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007		C90, C93, C95, C104, C105		Δ	C718, C719 (3300µF/35V)	PCH1057
C68 CEAS470M50 C709, C710 (1000μF/25V) PCH1066 C701, C702 CENA102M16 C708 (2200μF/16V) PCH1067 C79, C80, C86, C87 CENA102M35 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C521, C621 (470pF) PCL1008 Δ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007					C539, C540, C639, C640 (100µF/50V)	PCH1059
C701, C702 CENA 102M16 C708 (2200μF/16V) PCH1067 C79, C80, C86, C87 CENA 102M35 C77, C78 CENA 332M25 C527, C627 (4700pF) PCL1006 C521, C621 (470pF) PCL1008 Δ C81, 85 CENA 332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA 470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA 100M50 C530, C630 (680pF) VCE1005 C704 CEYA 282M50 C58 CEYA 330M25 C504, C534, C604, C634 VCH1007		C52	CEAS332M16		C40 (0.47F/5.5V)	PCH1062
C79, C80, C86, C87 C77, C78 CENA102M35 C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C521, C621 (470pF) PCL1008 △ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C540 C540 C550 C704 CEYA2R2M50 C58 C504, C534, C604, C634 VCH1007		C68	CEAS470M50		C709, C710 (1000µF/25V)	PCH1066
C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C521, C621 (470pF) PCL1008 △ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007		C701, C702	CENA102M16		C708 (2200μF/16V)	PCH1067
C77, C78 CENA332M25 C527, C627 (4700pF) PCL1006 C521, C621 (470pF) PCL1008 △ C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007						
C521, C621 (470pF) PCL1008 C81, 85 CENA332M25 C526, C626 (68000pF) PCL1009 C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007					C527, C627 (4700pF)	PCL1006
C542, C543, C642, C643						PCL1008
C542, C543, C642, C643 CENA470M25 C529, C629 (12000pF) PCL1022 C525, C533, C625, C633 CEYA100M50 C530, C630 (680pF) VCE1005 C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007	Δ	C81, 85	CENA332M25		C526, C626 (68000pF)	PCL1009
C525, C533, C625, C633					C529, C629 (12000pF)	PCL1022
C704 CEYA2R2M50 C58 CEYA330M25 C504, C534, C604, C634 VCH1007					·	VCE1005
C58 CEYA330M25 C504, C534, C604, C634 VCH1007					• •	
					C504, C534, C604, C634	VCH1007

(10µF/25V)

** IC13

RESISTORS

Mark		Symbol & De	scription	Part No.
	*	VR2	Semi-fixed (10kΩ)	VRTB6VS103
	*	VR3 - VR7	Semi-fixed (2.2kΩ)	VRTB6VS223
	*	VR1, VR9	Semi-fixed (47kΩ)	VRTB6VS473
	*	VR8	Semi-fixed (1KΩ)	VRTS6VS102
		R519, R619		RDM1/2P471J
		•	R532, R604, R607, R632	RDM1/2P□□□F
		R509 - R51		
		R620, R724	4	RDR1/4PM□□□J
		R500 - R50	2, R505, R506, R517,	
			25, R527 — R531, R600	
		- R602, R6	05, R606, R617, R621	
		- R625, R6	27 – R631, R722,	
		R723, R725	, R726, R730, R1201	
		R7, R91, R3	04	RD1/2PM□□□J
		R31		RN1/6PQ3601F

OTHERS

Mark	Symbol &	Description	Part No.
	JA1202	1P pin jack (DIGITAL OUT (COA)	PKB1004 KIAL))
	JA1201	Optical output unit	TOTX172
		(DIGITAL OUT (OPTI	CAL))
1	★ X1	Crystal resonator (16.9344MHz)	PS\$1001
	DL301, D3	302 Delay line (200msec)	PTF1009

Other resistors

Primary Board Assembly

SWITCHES

Mark		Symbol & Description		Part No.	
Δ	**	S801	Power switch	PSA-009	

FILTER

Mark	Symbol & De	escription	Part No.
◭	L801	Line filter	PTL1002

CAPACITORS

Mark	Symbol & Description	Part No.
⚠	C802 — C804	VCG-048
	Ceramic capacitor	
	(0.01 _µ F/AC125V)	

Regulator Board Assembly

SEMICONDUCTOR

Mark		ymbol & Description Part No.	
_			******************************
Δ	-+	IC20	NJM78M05A

Function Board Assembly (PWZ1035)

SEMICONDUCTORS

Mark	Symbol 8	Description	Part No.
**	IC401		PDG010
**	Q401 —	Q403	DTA124ES
**	Q404		2SA933S
**	Q405 —	Q408	2SC1740S
*	D403	LED	SLH-56MC3H
*	D401	LED	SLH-56VC3H
*	D402	LED	SLH-56YC3HYL

SWITCHES

RD1/6PM□□□J

Mark	Symbol & Description	Part No.
**	S401 - S416, S419 - S421,	PSG-064
**	S423 - S432 Tact switch	
	√0 − 9, PGM, CLR, \	
	/ TRK. FWD, TRK. REV, \	
	IDX. FWD, IDX. REV,	
	MAN. FWD, MAN. REV,	•
	T-FADE, AUT-PGM,	
	RANDOM, REP., TIME,	
	A-SPACE, D-OFF,	
	PAUSE, PLAY, OP/CL,	
	STOP	

COILS AND FILTER

Mark	Symbol & De	scription	Part No.	
	L401, L402	Coil (1μH)	LRA010K	
	F401	3 terminal filter	VTH1001	

CAPACITORS

Mark	Symbol & Description	Part No.
	C402	CEJA100M50
	C403	CEJA101M10
	C404 C406	CKPUYF1O3Z25
	C407 - C410	CKPUYF223Z25

RESISTORS

Mark	Symbol	& Description	Part No.	
	R421 R420	Resistor array (15k Ω x 10) Resistor array (15k Ω x 4)	RA10S153J RA4S153J	
		Other resistors	RD1/6PM□□□J	

OTHERS

Mark	Symbol &	Description	Part No.	
*	V401	Fluorescent tube Remote sensor unit	PEL1011 BX-1387	

Headphone Board Assembly

CAPACITORS

Mark	Symbol & Description	Part No.	
	C900	CKCYF473Z50	
	C901, C902	CKDYF103Z50	

RESISTORS

Mark	Symbol &	Description	Part No.
*	VR900	Variable resistor (20k Ω) (PHONES LEVEL)	PCS1001

OTHERS

Mark	Symbol & De	Part No.	
	JA900	Headphone jack	PKN1003

LCCS Board Assembly

SWITCH

Mark	Symbol &	Description	Part No.	
**	\$1101	Rotary switch (OUTPUT)	PSB1004	

Adjustment Board Assembly

RESISTORS

Mark	Symbol & Description	Part No.	
**	VR1501 — VR1504	Semi-fixed (100k Ω)	VRTS6HS104
	Other re	esistors	RD1/6PM□□□J

Roading Board Assembly

SEMICONDUCTORS

Mark	Symbol & Description	Part No.	
*	D1301, D1302	1SS254	

SWITCHES

<u>Mark</u>	Symbol & Descrip	tion	Part No.	
**	S1301 - S1304	Slide switch	PSH1005	

D/A Converter Assembly (PYY1043)

This assembly includes either the IC500 or IC600 D/A Converter IC and Adjustment Board Assembly.

Note) The VR on the Adjustment Board Assembly has been set at the factory. Under no circumstances attempt to re-adjust it.

Schmidt Board Assembly

SEMICONDUCTOR

Mark	Symbol & Description	Part No.	
**	IC1501	TC74HCU04P	

CAPACITOR

Mark	Symbol & Description	Part No.	
•	C1501	CKCYF103Z50	

RESISTORS

Mark	Symbol & Description	Part No.
	All resistors	RD1/6PM□□□J

9. PACKING

Parts List of Packing

Mark	No.	Part No.	Description
	1.	PDE1003	Audio cord
	2.	Z21-013	Polyethylene bag
	3.	PWW1017	Remote control unit
	4.	PHA1040	Protector (F)
	5.	PHA1041	Protector (R)
	6.	PHC1018	Spacer (IN TRAY)
	7.	PHG1152	Packing case
	8.	PNW1236	Clamp knob
	9.	PHL1003	Sheet
	10.	PHC1022	Sheet
	50.		Operating instructions (English)
	51.		Battery UM-4

10. ADJUSTMENTS

A full list of adjustments is given below. Perform adjustments in the order in which they are given on the list.

List of Adjustments

- 1. Tracking offset, focus offset and RF offset adjustments
- 2. Tracking return offset and focus return offset adjustments
- 3. LD (laser pick-up) power check
- 4. Focus lock, spindle lock checks
- 5. Grating adjustment
- 6. Tracking balance adjustment
- 7. Tangential adjustment
- 8. Radial adjustment
- 9. RF level check
- 10. Focus gain adjustment
- 11. Tracking gain adjustment
- 12. VCO Free run frequency adjustment
- 13. Focus Error Check

• Measurement Devices Required

- 1. Dual trace oscilloscope
- 2. Optical power meter
- 3. Test disc (YEDS7)
- 4. Focus and tracking adjustment filters
- 5. Loop gain adjustment bandpass filter
- 6. Signal generator
- 7. Grating driver
- 8. Other regular measuring equipment

Note) The VR on the Adjustment Board Assembly has been set at the factory. Under no circumstances attempt to re-adjust it.

• The Test Mode

Adjustments are to be made while the unit is in the Test Mode.

How to Get In and Out of the Test Mode

- 1 With the Test Mode jumper short-circuited, turn the POWER SW to ON.
- ② Activating either MANUAL SEARCH FWD [►►] or REV [◄◄] will then put the unit into the Test Mode.
- (3) To exit the Test Mode turn the POWER SW to OFF.

In the Test Mode the CD player operating keys will have the functions designated in Table 10-1.

Names of Adjustment VRs

VR1: Focus return offset (FR. OF)

VR2: RF offset (RF. OF)

VR3: Focus gain (FO. GA)

VR4: Tracking gain (TR. GA)

VR5: Tracking balance (TR. BL)

VR6: Focus offset (FO. OF)

VR7: Tracking offset (TE. OF)

VR8: VCO frequency (VCOA)

VR9: Tracking return offset (TR. OF)

Location of Adjustment Screws

In the Test Mode each servo can be independently opened and closed. Consequently, to return to normal PLAY mode, each servo has to be closed in the right order (serial sequence) before PLAY mode can be reset.

Remember that once you are in the Test Mode, simply pressing the PAUSE key [••] will not put the unit back into PLAY mode.

For instance, in order to go from STOP to PLAY mode:

* The servos are to be operated in serial sequence when in the Test Mode.

Control Key Functions When CD Player is in Test Mode

Symbol	Key Name	Test Mode Function	Explanation
44	TRACK BACK	Turns laser diode on	The laser diode will light up.
▶ ▶	TRACK FWD	Focus servo closed	The laser diode will light up, the focus actuator is moved UP/DOWN and the focus servo is closed.
>	PLAY	Spindle servo closed	After the spindle motor starts turning, the servo is closed in the CLV-H mode.
11	PAUSE	Tracking servo closed/open	Operates as a toggle switch. When pressed once the tracking servo is closed and the unit goes into PLAY mode. However, since the focus and spindle servos are closed, the PAUSE indicator will light up. When pressed a second time the tracking servo is opened.
44	MANUAL SERCH REV	Carriage reverse (from outer to inner tracks)	Rapidly moves the carriage towards the innermost disc tracks at a speed of 1 cm/sec. There is no automatic carriage STOP when the carriage reaches the innermost track so be careful not to move the carriage too far.
>>	MANUAL SERCH FWD	Carriage forward (from inner to outer tracks)	Rapidly moves the carriage toward the outer disc tracks at a speed of 1 cm/sec. There is no automatic carriage STOP when the carriage reaches the outermost track, so be careful not to move the carriage too far.
	REPEAT	Lens moved UP/DOWN	The laser diode lights up, the focus actuator is moved UP/DOWN, but the focus servo is not closed.
	STOP	Stop	All servos are stopped and reset to initial status.
A	OPEN/CLOSE	Disc tray opened/closed	Opens and closes disc tray. However, the pick-up does not return to rest position when the tray is open. Closing the tray has no effect on the pick-up either.

Table 10-1

Step No.	Oscillosc	ope Range	Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence
otep ito.	V	Н	Point	Point	Specification	, ajestisik spataloli sequence
1	TRAC	KING O	FFSET,	FOCUS O	FFSET AND RF	OFFSET ADJUJSTMENTS
						Set the CD player to Test Mode. (Refer to page 44)
			TP1 Pin4 (TR.ER)	VR7 (TE.OF)	0V ± 50mV	Adjust VR7 (TE.OF : Tracking Error Offset) so that TP1 Pin 4 (TE : Tracking Error) registers a voltage of 0V ± 50mV.
			TP1 Pin6 (FO.ER)	VR6 (FO.OF)	0V ± 50mV	Adjust VR6 (FO.OF : Focus Error Offset) so that TP1 Pin 6 (FO.ER : Focus Error) registers a voltage of 0V ± 50mV.
			TP301 Pin1 (RF)	VR2 (RF.OF)	100mV ± 50mV	Adjust VR2 (RF.OF: RF Offset) so that TP301 Pin 1 RF output voltage registers 100mV ± 50mV.
2	TRAC	KING RI	ETURN	OFFSET A	ND FOCUS RE	TURN OFFSET ADJUSTMENTS
_						Set the CD player to Test Mode. (Refer to page 44)
			TP1 Pin2 (TR.RT)	VR9 (TR.OF)	0V ^{+ 20} mV	 Adjust VR9 TR.OF (Tracking Return Offset) so that TP1 Pin 2 TR.RT (Tracking Return) registers a voltage of OV⁺²⁰₋₁₀ mV.
			TP1 Pin8 (FO.RT)	VR1 (FR.OF)	35mV ± 17.5mV	Adjust VR1 FR.OF (Focus Return Offset) so that TP1 Pin 8 FO.RT (Focus Return) registers a voltage of 35mV ± 17.5mV.
3	LD (L	ASER DI	ODE) P	OWER CH	ECK	
				VR (A)	Standard Specifi- cation: Under 0.13mW	Set the CD player to Test Mode. (Refer to page 44) Press the TRACK BACK key (◄ ◄) to turn the LD (laser diode) ON. Place the optical power meter sensor directly above the objective lens and verify that LD power is at its proper specification level: 0.13mW ± 0.10mW. If LD power is not at its proper specification level, adjust the VR for LD power control, VR .

Step No.	Oscilloscope Range		Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence						
	٧	н	Point	Point	Specification							
4	FOCU	FOCUS LOCK AND SPINDLE LOCK CHECK										
	V 0.5/div	H 100msec /div	TP301 Pin1 (RF Output)		RF output generated Normal rotation	 Load the test disc into the player. Set the CD Player to Test Mode. (Refer to page 44) Use the MANUAL SEARCH FWD key [▶▶] to move the pick-up to the center of the disc. This operation must be performed! Observe RF output from TP301 Pin 1 RF with an oscilloscope. Then, after pressing the TRACK FWD key [▶▶], verify whether or not an RF signal is being output. Press the PLAY key and verify that the disc is rotating clockwise and at normal speed (disc rotational speed near the center is about 300 RPMs). 						

Step No.	Oscilloscope Range		1631	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence					
	V	Н	Point	Point	Specification						
5-1	GRATING ADJUSTMENT (1) (WITH ϕ 80 DISC)										
	Pin4 (TR.ER Pin5 (GND)	10+-			Null point Oscilloscope connections Maximum	 Load the test disc into the player. (φ80) Set the CD player to Test Mode. (Refer to page 44.) Press the TRACK FWD key [▶▶] and then the PLAY key [▶] in that order to close the focus and spindle servos. (The tracking servo is left open.) Use the MANUAL SEARCH FWD KEY [▶▶] to move the pick-up to the outermost circumference of the o80 disc. By moving the pick-up to this position, the Grating Adjustment Screw becomes accessible with a screwdriver from above. (See Fig. 10-3) Observe the waveform output by TP1 Pin 4 TR.ER (Tracking Error) in the oscilloscope. Insert a low pass filter with a cutoff of 4kHz. (See Fig. 10-2.) Use a screwdriver to rotate the Grating Adjustment Screw until you find the null point waveform like that shown in Photograph 10-1. Next, turn the screwdriver slowly clockwise from the null point until 					
	Pin9 (PDE)	CN301	X-axis R328 Y-axis R327 9k Ω R327	Grating	Phase difference 180° Y-axis IC301 ID X-axis	 the first point where maximum amplitude of the waveform (tracking error signal) is reached. (See Photograph 10-3.) Connect the X-axis of the oscilloscope to the CN301 (PDF) side of R328, the Y-axis to the CN301 (PDE) side of R327, and insert a low pass filter with a cutoff of 4kHz. Move the pick-up to the outermost track of the φ80 disc. The Lissajous figure should be more or less a single line. If it is not, adjust the grating until the Lissajous figure is a single line. (See Photographs 10-4,5.) 					

Step No.	Oscillosco	pe Range	Test Adjustment		Verification Item/Adjustment	Adjustment Operation Sequence	
	v	н	Point	Point	Specification		
5-2	GRATI	NG AD	JUSTM	ENT (2) (V	VITH A DISC O	F OVER 60 MIN. PLAYING TIME)	
						Load the test disc into the player.	
						Set the CD player to Test Mode. (Refer to page 44.)	
						 Press the TRACK FWD key [▶▶] and then the PLAY key [▶] in that order to close the focus and spindle servos. (The tracking ser- vo is left open.) 	
						 Use the MANUAL SEARCH FWD KEY [▶▶] to move the pick-up to the outermost track of the test disc. By moving the pick-up to this position, the Grating Adjustment Screw becomes accessible with a screwdriver from above. (See Fig. 10-3) 	
	1V/div	5ms/div	TP1 Pin4 (TR.ER)	Grating	Null point	Observe the waveform output by TP1 Pin 4 TR.ER (Tracking Error) in the oscilloscope. Insert a low pass filter with a cutoff of 4kHz. (See Fig. 10-2.)	
		TP1 [-	L.P.F.	' 	'	Use a screwdriver to rotate the Grating Adjustment Screw until you find the null point waveform like that shown in Photograph 10-1	
	Pin4		39k Ω W\	1			
	(TR.ER)		<u> </u>	D.001μF	Oscilloscope connections		
	Pin5 (GND)			<u> </u>			
		L .	Fig. 1	0-2			
				Grating	Maximum amplitude	 Next, turn the screwdriver slowly clockwise from the null point unt the first point where maximum amplitude of the waveform (track ing error signal) is reached. (See Photograph 10-3.) 	
	5mV/div	5ms/div	X-axis R328 Y-axis R327	Grating	Phase difference 0	Connect the X-axis of the oscilloscope to the CN301 (PDF) side of R328, the Y-axis to the CN301 (PDE) side of R327, apply the signal in AC-coupled mode and move the pick-up to the center of the disc. The Lissajous figure at this time should be more or less a single line. If it is not, move the pick-up back to the outermost circumference and adjust the grating until the Lissajous figure is a single line. (See Photographs 10-4,5.)	

Fig. 10-3 Grating Adjustment

Photograph 10-2 Waveform off Null Point

Photograph 10-1 Null Point waveform

Photograph 10-3 Maximum Amplitude

Photograph 10-4

Photograph 10-5

	Oscillosco	pe Range	Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence
Step No.	V	Н	Point	Point	Specification	Adjustment operation codes.
6	TRACI	KING BA	ALANCI	E ADJUST	MENT	·
						 Load the test disc into the player. Set the CD player to Test Mode. (Refer to page 44.)
						 Use the MANUAL SEARCH FWD key[►►] to move the pick-up to the center of the disc.
						Press the TRACK FWD key [▶▶], then the PLAY key [▶] to start disc rotation.
	0.5V/dív	5msec /div	TP1 Pin4 (TR.ER)	VR5 (TR.BL)		Observe the waveform output by TP1 Pin 4 TR.ER (Tracking Error) in the oscilloscope. Adjust VR5 TR.BL (Tracking Balance) so that all DC components are eliminated from the signal.
					30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	
						Photograph 10-6 Signal with DC Components Photograph 10-7 Signal without DC Components

Fig. 10-5 Tangential Adjustment

Photograph 10-9

Skewed Form (Bad)

Ideal Form

Photograph 10-8

Photograph 10-10

Photograph 10-11

04 61	Oscilloso	ope Range	Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence	
Step No.	V	Н	Point	Point	Specification	A STATE OF THE STA	
7	TANC	SENTIAL	ADJUS	STMENT			
						Load the test disc into the player.	
						Set the CD player to Test Mode. (Refer to page 44.)	
						 Use the MANUAL SEARCH FWD key [▶▶] to move the pick-up to the center of the disc. With the pick-up in this position the tan- gential adjustment screw becomes accessible from above. (See Fig. 10-5.) 	
						 Press the TRACK FWD key [▶▶], the PLAY key [▶] and then the PAUSE key [■■] in that order to close all servos. (The PAUSE in- dicator will light up.) 	
			TP301 Pin1 (RF Output)	Tangential Adjustment Screw	Optimal crosshatch pattern	Observe the waveform of RF output from the TP301 Pin 1 RF in the oscilloscope. Turn the tangential adjustment screw until the ideal single crosshatch pattern is achieved. (Fig. 10-5.)	
						The proper adjustment point is that point where any further turning of the tangential adjustment screw in either direction will degrade the crosshatch pattern. The aim is to achieve an overall good waveform pattern with crosshatch lines forming a single diamond shape (Photograph 10-8). At the proper adjustment point you should still be able to make out the relatively fine lines that form the diamond.	
						TP301 Pin1 (RF) Pin2 (GND) Fig. 10-4	

Step No.	Oscilloso	ope Range	Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence
Otop ito.	٧	н	Point	Point	Specification	
8	RADI	AL ADJI	JSTME	VT		
						Load the test disc into the player.
	To a supplier of the supplier	ACCC		-		Set the CD player to Test Mode. (Refer to page 44.)
						 Use the MANUAL SEARCH FWD key [▶▶] to move the pick-up to the center of the disc. With the pick-up in this position the radial adjustment screw becomes accessible from above. (See Fig. 10-5.)
						 Press the TRACK FWD key [▶▶], the PLAY key [▶] and then the PAUSE key [■■] in that order to close all servos. (The PAUSE in- dicator will light up.)
			TP301 Pin1 (RF Output)	Radial Adjustment Screw	Optimal crosshatch pattern	Observe the waveform of RF output from the TP301 Pin 1 RF in the oscilloscope. Adjust the radial adjustment screw until the ideal single crosshatch pattern is achieved. (Fig. 10-5.)
						 The proper adjustment point is that point where any further turning of the radial adjustment screw in either direction will degrade the crosshatch pattern. The aim is to achieve an overall good waveform pattern with crosshatch lines forming a single diamond shape (Photograph 10-8). At the proper adjustment point you should still be able to make out the relatively fine lines that form the diamond.
						Be sure to perform the tangential and radial adjustments in turn more than twice.
						TP301 Pin1 (RF) Pin2 (GND)
						Fig. 10-4

Step No.	Oscillosco	pe Range	Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence
Step No.	V	н	Point	Point	Specification	
9	RF LE	VEL CHE	ECK			
						Set the CD player to Test Mode. (Refer to page 44.)
						Connect the oscilloscope probe to TP301 Pin 1 RF (RF Output).
			TP301 Pin1 (RF)	Check	1.6V±0.1V	 With the test disc playing, measure the P-P voltage of the RF waveform to verify that it is at 1.6V ± 0.1V.
			TP301 Pin1 (RF)	VR (A)	1.6V±0.1V	If the P-P voltage level is not at 1.6V ± 0.1V, adjust VR until the voltage level is correct.

Carr Na	Oscillosc	ope Range	Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence	
Step No.	V	Н	Point	Point	Specification	Aujustinent Operation Dequence	
10	FOCU	S GAIN	ADJUS	TMENT			
		CH2 (Y) ,, 5mV/div , 10:1	X-axis TP1 Pin7 (FO.IN) Y-axis TP1 Pin6 (FO.ER)	VR3 (FO.GA)	Phase Difference 90°	 With POWER OFF, connect oscilloscope and signal generator as shown in Fig. 10-6. Set the CD player to Test Mode. (Refer page .44) Press the TRACK FWD key [▶▶], the PLAY key [▶] and the PAUSE key [▮] in that order to turn focus, spindle and tracking servos ON. Turn the signal generator POWER ON and output a 1kHz signal at 1Vp-p. Note: Some signal generators momentarily generate DC when they are turned on. For this reason, it is advisable to connect the oscilloscope only after signal generator POWER is ON.) Adjust VR3 FO.GA (Focus Gain) so that the Lissajous figure on the oscilloscope becomes a perfect circle (Phase Difference 90). Pin7 (FO.IN) Pin5 (GND) Pin6 (FO.ER) Fig. 10-6 	

Photograph 10-12 Gain too high

Photograph 10-13 Optimal gain

Photograph 10-14 Gain too low

Cana Ni.	Oscillosc	ope Range	Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence	
Step No.	V	Н	Point	Point	Specification		
11	TRAC	KING G	AIN AD	JUSTMEN	Т		
	50mV/di	CH2 (Y) v, 5mV/div e 10:1	X-axis TP1 Pin3 (FO.IN) Y-axis TP1 Pin4 (TR.ER)	VR4 (TB.GA)	Phase Difference 90°	 With POWER OFF, connect oscilloscope and signal generator as shown in Fig. 10-7. Set the CD player to Test Mode. (Refer page 44.) Press the TRACK FWD key [▶►], the PLAY key [▶] and the PAUSE key [№] in that order to turn focus, spindle and tracking servos ON. Turn the signal generator POWER ON and output a 1kHz signal at 2Vp-p. Note: Some signal generators momentarily generate DC when they are turned on. For this reason, it is advisable to connect the oscilloscope only after signal generator POWER is ON.) Adjust VR4 TR.GA (Tracking Gain) so that the Lissajous figure on the oscilloscope becomes a perfect circle (Phase Difference 90). TP1 100kΩ (10: 1) Pin3 (TR.IN) Pin5 (GND) Pin4 (TR.ER) 	

Photograph 10-15 Gain too high

Photograph 10-16 Optimal gain

Photograph 10-17 Gain too low

Step No.	Oscillosco	pe Range	Test	Adjustment	Verification Item/Adjustment	Adjustment Operation Sequence
Step ivo.	V	Н	Point	Point	Specification	
12	VCO I	REE RU	N FREC	QUENCY A	DJUSTMENT	
			TP3 Pin2		Frequency 4.375MHz ±0.05MHz	 Set the CD player to Test Mode. (Refer page 44.) Short the ASY and GND jumpers with an alligator clip. Connect a frequency counter (10MHz range) to TP3 Pin 2. Adjust VR8 (VCO.A) until you get a 4.375MHz ± 0.05MHz reading on the frequency counter. Note: Perform this adjustment while the CD player is in the STOP mode.
13	FOCU	S ERRO	R CHEC	:K		
			TP1 Pin6 (FO.ER)	Check	Waveform	Set the CD player to Test Mode. (Refer page 44.) Connect TP1Pin 7 FO.IN (Focus In) to GND. Press the TRACK FWD key and verify the waveform generated by TPI Pin 6 FO.ER (Focus Error) on the oscilloscope. 2V:Div 1mS/Div S-shaped waveform generated by FO.ER

10. RÉGLAGE

La liste complète des réglages est donnée ci-dessous. Effectuer les réglages dans l'ordre de cette liste.

Liste des réglages

- 1. Réglage de poursuite, réglage de focalisation et réglage du décalage radiofréquence.
- 2. Réglage du retour de poursuite et réglage du retour de focalisation
- 3. Vérification de la puissance de la diode laser
- 4. Vérification du calage de focalisation et du calage du moteur d'entraînement
- 5. Réglage du réseau optique
- 6. Réglage de l'équilibrage de la poursuite
- 7. Réglage tangentiel
- 8. Réglage radial
- 9. Réglage du niveau radiofréquence
- 10. Réglage du gain de la boucle de focalisation
- 11. Réglage du gain de la boucle de poursuite
- 12. Réglage de la fréquence d'oscillation libre du VCO
- 13. Vérification de l'erreur de focalisation

• Appareils de mesure requis

- 1. Oscilloscope double trace
- 2. Appareil de mesure de la puissance lumineuse
- 3. Disque d'essai (YEDS7)
- 4. Filtre pour le réglage de la focalisation et de la poursuite
- 5. Filtre passe-bande pour le réglage du gain de boucle
- 6. Générateur de fréquence
- 7. Tournevis pour réseau optique
- 8. Outillage habituel

Remarque: Les résistances variables (VR) du circuit du convertisseur D/A ont été réglées en usine. Ne tenter, en aucun cas, de modifier ces réglages.

Mode essai

Les réglages doivent être effectués alors que l'appareil est en mode essai.

Comment venir en mode essai et comment le quitter

- 1 Placer le cavalier de mode essai et mettre l'interrupteur général sur la position ON.
- ② L'appareil vient en mode essai lorsque l'on appuie sur MANUAL SEARCH FWD [►►] ou REV [◄◄].
- 3 Pour quitter le mode essai, placer l'interrupteur général sur OFF.

En mode essai, les touches du lecteur ont les fonctions énumérées au tableau 10-1.

Nom des résistances variables (VR)

VR1: Décalage du retour de focalisation (FR. OF)

VR2: Décalage radiofréquence (RF. OF)

VR3: Gain de la boucle de focalisation (FO. GA)

VR4: Gain de la boucle de poursuite (TR. GA)

VR5: Equilibrage de poursuite (TR. BL)

VR6: Erreur de focalisation (FO. OF)

VR7: Erreur de poursuite (TE. OF)

VR8: Fréquence de l'oscillateur local (VCO)

VR9: Décalage du retour de poursuite (TR. OF)

Emplacement des points de réglage

En mode essai, chaque boucle d'asservissement peut être ouverte ou fermée indépendamment. En conséquence, pour revenir en mode lecture, chaque boucle d'asservissement doit être fermée dans un ordre précis (ordre séquentiel). Se rappeler que, l'appareil étant dans le mode essai, le simple fait d'appuyer sur la touche PAUSE [••] ne suffit pas à le replacer en mode lecture.

Ainsi, pour passer de l'arrêt au mode lecture la séquence suivante doit être réalisée:

* Les asservissements ne fonctionnent pas dans l'ordre séquentiel lorsque l'appareil est en mode essai.

• Rôle des touches de commande lorsque l'appareil est en mode essai

Symbole	Nom de la touche	Fonction en mode essai	Remarques
144	TRACK BACK	Met la diode laser sous tension.	La diode laser s'éclaire.
>>	TRACK FWD	Ferme la boucle d'asservis- sement de focalisation.	La diode laser s'éclaire, l'actuateur de focalisation se déplace vers le haut et vers le bas et la boucle d'asservissement de focalisation se ferme.
>	PLAY	Ferme la boucle d'asservis- sement du moteur d'entraî- nement.	Après mis en rotation du moteur d'entraînement, la boucle d'asservissement se ferme en mode CLVH.
11	PAUSE	Ouvre et ferme la boucle d'asservissement de poursuite.	Fonctionne comme un basculeur. Une pression sur cette touche ferme la boucle d'asservissement de poursuite et l'appareil vient en mode lecture. Par ailleurs, du fait que les boucles d'asservissement de focalisation et du moteur d'entraînement sont fermées, le témoin PAUSE s'éclaire. Une seconde pression sur cette touche ouvre la boucle d'asservissement de poursuite.
44	MANUAL SERCH REV	Déplace le chariot des pla- ges extérieures vers les pla- ges intérieures.	Déplace rapidement le chariot vers l'intérieur du disque à une vites- se de 1cm/s. Il n'existe aucun dispositif pour arrêter le chariot lor- squ'il atteint la plage la plus intérieure; en conséquence, veiller à ne pas déplacer le chariot outre mesure.
>>	MANUAL SERCH FWD	Déplace le chariot des pla- ges intérieures vers les pla- ges extérieures.	Déplace rapidement le chariot vers l'extérieur du disque à une vitesse de 1cm/s. Il n'existe aucun dispositif pour arrêter le chariot lorsqu'il atteint la plage la plus extérieure; en conséquence, veiller à ne pas déplacer le chariot outre mesure.
	REPEAT	Déplace le bloc optique vers le haut et vers le bas.	La diode laser s'éclaire, l'actuateur de focalisation se déplace vers le haut et vers le bas mais la boucle d'asservissement de focalisa- tion ne se ferme pas.
	STOP	Arrête le fonctionnement.	Arrête tous les asservissements et replace l'appareil dans son état initial.
4	OPEN/CLOSE	Ouvre et ferme le tiroir.	Ouvre et ferme le tiroir. Cependant, le capteur ne revient sur sa po- sition de garage lorsque le tiroir est ouvert. La fermeture du tiroir est également sans effet sur le capteur.

Numéro	Gamme de l'o	oscilloscope	Point d'essai	Point de réglage	Point à vérifier /Caractéristique	Ordre des opérations de réglage
d'ordre 1		H E DE POU RÉQUENC	RSUITE,		de réglage	SATION ET RÉGLAGE DU DÉCALAGE
						Placer le lecteur en mode essai. (Se reporter page 59.)
			TP1 Borne 4 (TR.ER)	VR7 (TE.OF)	0V ± 50mV	 Régler VR7 (TE. OF: Erreur de poursuite) de manière que la tension sur la borne 4 de TP1 soit égale à 0 V ± 50 mV.
			TP1 Borne 6 (FO.ER)	VR6 (FO.OF)	0V ± 50mV	• Régler VR6 (FO. OF: Erreur de focalisation) de manière que la tension sur la borne 6 de TP1 soit égale à 0 V \pm 50 mV.
			TP301 Borne 1 (RF)	VR2 (RF.OF)	100mV ± 50mV	 Régler VR2 (RF. OF: Décalage radiofréquence) de manière que la tension sur la borne 1 de TP301 soit égale à 0 V ± 50 mV.
2	RÉGLAGI	E DU RET	OUR DE	POURSUI	TE ET DU RE	TOUR DE FOCALISATION
•						Placer le lecteur en mode essai. (Se reporter page 59.)
			TP1 Borne 2 (TR.RT)	VR9 (TR.OF)	0V + 20 mV	 Régler VR9 TR.OF (Décalage du retour de poursuite) de manière que la tension sur la borne 2 TR.RT (Retour de poursuite) de TP1 soit égale à 0 V + 20/- 10 mV.
			TP1 Borne 8 (FO.RT)	VR1 (FR.OF)	35mV ± 17.5mV	 Régler VR1 FR.OF (Décalage du retour de focalisation) de manière que la tension sur la borne 8 FO.RT (Retour de focalisation) soit égale à 35 mV ± 17,5 mV.
3	VÉRIFICA	ATION DE	LA PUIS	SANCE D	DE LA DIODE I	LASER
						 Placer le lecteur en mode essai. (Se reporter page 59.) Appuyer sur la touche TRACK BACK (I◀◀) afin de mettre la diode laser sous tension. Placer le capteur de l'appareil de mesure de la puissance directement au-dessus du bloc optique et vérifier que la puissance de la diode est égale à la valeur nominale, à savoir: 0,13 mW ± 0,01 mW.
				VR(A)	Valleur nominale: moins de 0,13 mW	Si la puissance fournie par la diode n'est pas égale à cette valeur, agir sur la résistance variable de commande de la puissance, VR.

Numéro d'ordre	Gamme de I V	'oscilloscope H	Point d'essai	Point de réglage	Point à vérifier /Caractéristique de réglage	Ordre des opérations de réglage
4		ATION DU AÎNEMENT		E DE FOC	ALISATION E	ET DU CALAGE DU MOTEUR
	V O.5V/div	H 100msec/div	TP301 Borne 1 (Sortie ra- diofré- quence)		Génération d'un signal radio- fréquence Rotation normale	 Mettre en place le disque d'essai. Placer le lecteur en mode essai. (Se reporter page 59.) Déplacer le capteur vers le centre du disque au moyen de la touche MANUAL SEARCH FWD [▶▶]. Cette manoeuvre doit obligatoirment être réalisée. Brancher l'oscilloscope sur la sortie du signal radiofréquence, borne 1 de TP301. Appuyer sur la touche TRACK FWD [▶▶] et noter si un signal radiofréquence est présent sur cette borne. Appuyer sur la touche PLAY et s'assurer que le disque tourne dans le sens des aiguilles d'une montre et que sa vitesse de rotation est normale (la vitesse normale, près du centre, est de l'ordre de 300 tr/mn).

Numéro	Gamme de l'	oscilloscope	Point	Point de	Point à vérifier /Caractéristique	Ordre des opérations de réglage
d'ordre	v	н	d'essai	réglage	de réglage	
5-1	RÉGLAG	E DU RÉS	EAU OP1	FIQUE (1)	(AVEC UN D	ISQUE DE DIAMÈTRE 80)
						• Mettre en place le disque d'essai (φ80)
						Placer le lecteur en mode essai. (Se reporter page 59)
						 Appuyer sur la touche TRACK FWD [►►] puis sur la touche PLAY [►] de manière à fermer les boucles d'asservissement de focalisation et du moteur d'entraînment. (La boucle d'asservissement de poursuite est conservée ouverte.)
						 Amener le capteur au-dessus de la circonférence du disque de diamètre 80 au moyen de la touche MANUAL SEARCH FWD [▶▶]. Le capteur étant dans cette posi- tion, la vis de réglage du réseau optique devient accessi- ble au moyen d'un tournevis. (Se reporter à la fig. 10-3.)
	1V/div	5ms/div	TP1 Borne 4 (TR.ER)	Réseau optique	Origine	 Brancher l'oscilloscope sur la borne 4 TR.ER (Erreur de poursuite) de TP1. Raccorder un filtre passse-bas dont la fréquence de coupure est égale à 4 kHz. (Se reporter à la fig. 10-2.) Tourner la vis jusqu'à ce que l'allure de l'onde soit semblable à celle de la photographie 10-1.
		тр1 [L.P.F. 			
	Borne 4 (TR.ER) Borne 5 (GND)	39k	0.00	1 n F	_ cordement de cilloscope _	
			Fig. 10-2	2		
				Réseau optique	Amplitude ma- ximale	 Cela étant, tourner doucement la vis dans le sens des aiguilles d'une montre jusqu'à ce que le premier maximum de l'amplitude de l'onde (signal d'erreur de poursuite) soit obtenu. (Se reporter à la photographie 10-3).
	5mV/div	XY	Axe des X	Réseau optique	Décalage de phase 180°	Brancher l'entrée X de l'oscilloscope sur la borne PDF de CN301, côté R328, et l'entrée Y sur la borne PDE de CN301, côté R327, à travers deux filtres passe-bas de fréquence de coupure égale à 4 kHz. Déplacer le capteur jusqu'à ce qu'il soit audessus de la
	CI Borne 9 (PDE)	39k N301 W		000P	- Axe des Y	plage la plus extérieure du disque de diamètre 80. La figure de Lissajous ainsi obtenue doit ressembler grossièrement à une droite. Dans le cas contraire, agir sur la vis de réglage. (Se reporter aux photographies 10-4 et 10-5.)
	Borne 5 (PDF)	39k	R328 Ω 110	7000P	Axe des X	

Numéro	Gamme de l'	oscilloscope	Point	Point de	Point à vérifier /Caractéristique	Ordre des opérations de réglage
d'ordre	V	н	d'essai	réglage	de réglage	Ordre des operations de regiage
5-2	RÉGLAG MINUTE		EAU OP	FIQUE (2)	(AVEC UN D	ISQUE D'UNE DURÉE SUPÉRIEURE À 60
	Borne 4 (TR.ER) Borne 5 (GND)	39ks	0.001	μ l'osci	Origine ordement de illoscope	 Mettre en place le disque d'essai (φ80) Placer le lecteur en mode essai. (Se reporter page 59.) Appuyer sur la touche TRACK FWD [▶▶] puis sur la touche PLAY [▶▶] de manière à fermer les boucles d'asservissement de focalisation et du moteur d'entraînement. (La boucle d'asservissement de poursuite est conservée ouverte.) Amener le capteur au-dessus de la plage la plus extérieure au moyen de la touche MANUAL SEARCH FWD [▶▶]. Le capteur étant dans cette position, la vis de réglage du réseau optique devient accessible au moyen d'un tournevis. (Se reporter à la fig. 10-3.) Brancher l'oscilloscope sur la borne 4 TR.ER (Erreur de poursuite) de TP1. Raccorder un filtre passse-bas dont la fréquence de coupure est égale à 4 kHz. (Se reporter à la fig. 10-2.) Tourner la vis jusqu'à ce que l'allure de l'onde soit semblable à celle de la photographie 10-1.
			Fig. 10-2	Réseau optique	Amplitude maximale	Cela étant, tourner doucement la vis dans le sens des aiguilles d'une montre jusqu'à ce que le premier ma ximum de l'amplitude de l'onde (signal d'erreur de poursuite) soit obtenu. (Se reporter à la photographie 10-3).
	5mV/div	5ms/div	Axe des X, axe des Y	Réseau optique	Décalage de phase	Brancher l'entrée X de l'oscilloscope sur la borne PDF de CN301, côté R328, et l'entrée Y sur la borne PDE de CN301, côté R327, (couplage alternatif). Amener le capteur au centre du disque. La figure de Lissajous ainsi obtenue doit ressember grossièrement à une droite. Dans le cas contraire, an ener le capteur au-dessus de la circonférence extérieure du disque et reprendre le réglage. (Se reporter aux phographies 10-4 et 10-5.)

Figure 10-3 Réglage du réseau optique

Photographie 10-2 Allure de l'onde en dehors du minimum

Photographie 10-4

Photographie 10-1 Allure de l'onde à son minimum

Photographie 10-3 Amplitude maximale de l'onde

Photographie 10-5

Numéro	Gamme de l	'oscilloscope	Point	Point de	Point à vérifier	Ordro dos enéveriens de réglace
d'ordre	v	Н	d'essai	réglage	/Caractéristique de réglage	Ordre des opérations de réglage
6	RÉGLAG	E DE L'ÉC	UILIBRA	AGE DE P	OURSUITE	
						Mettre en place le disque d'essai.
					***************************************	Placer le lecteur en mode essai. (Se reporter page 59.) Amener le chariot au centre du disque au moyen de la tou-
					***************************************	che MANUAL SEARCH FWD [►►].
	*					Appuyer sur la touche TRACK FWD [▶▶] puis sur la touche PLAY [▶] pour mettre le disque en rotation.
	0.5V/div	5msec/div	TP1 Borne 4 (TR.ER)	VR5 (TR.BL)		Brancher l'oscilloscope sur la borne 4 TR.ER (Erreur de poursuite) de TP1. Régler VR5 TR.BL (Equilibrage de pour- suite) de sorte que toutes les composantes continues soient éliminées.
					Photog continu	raphie 10-7 Allure du signal sans composantes

Figure 10-5 Réglage tangentiel

Photographie 10-9

Que doit-on rechercher

Photographie 10-10

Le signal est déformé

Le signal est correct

Le signal est déformé

Photographie 10-11

Photographie 10-8

Numéro	Gamme de l'	oscilloscope	Point	Point de	Point à vérifier /Caractéristique	Ordre des opérations de réglage
d'ordre	V	Н	d'essai	réglage	de réglage	ordre des operations de regiage
7	RÉGLAG	E TANNG	ENTIEL	T'		
						Mettre en place le disque d'essai.
						Placer le lecteur en mode essai. (Se reporter page 59.)
						Amener le capteur au centre du disque au moyen de la touche MANUAL SEARCH FWD [▶▶]. Le capteur étant dans cette position, la vis de réglage tangentiel devient accessible au moyen d'un tournevis. (Se reporter à la fig. 10-5.)
						Appuyer sur la touche TRACK FWD [▶▶] puis sur la touche PLAY [▶] et enfin sur la touche PAUSE [■] pour fermer toutes les boucles d'asservissement. (Le témoin PAUSE s'éclaire.)
			TP301 Borne 1 (Sortie radiofré- quence)	Vis de régla- ge tangentiel	Meilleur motif de hachures en croix	Brancher l'oscilloscope sur la borne 1 de TP1 (sortie ra- diofréquence). Agir sur la vis de réglage tangentiel pour obtenir le meilleur motif de hachures en croix. (Se repor- ter à la figure 10-5.)
						Le point de réglage est obtenu lorsque le motif est le meilleur et que toute nouvelle action sur la vis ne peut que le dégrader. On doit chercher à obtenir un motif formant un losange aussi régulier que possible. (Se reporter à la photographie 10-8.) Lorsque le réglage est correct, on doit être en mesure de distinguer les lignes qui composent le losange.
					(TP301 Borne 1 GND) Fig. 10-4

Numéro	Gamme de l'	oscilloscope	Point	Point de	Point à vérifier /Caractéristique	Ordre des opérations de réglage
d'ordre	v	Н	d'essai	réglage	de réglage	Office des aperations de regiage
8	RÉGLAG	E RADIAL				
						Mettre en place le disque d'essai.
						Placer le lecteur en mode essai. (Se reporter page 59.)
						 Amener le capteur au centre du disque au moyen de la tou- che MANUAL SEARCH FWD [►►]. Le capteur étant dans cette position, la vis de réglage radial devient accessible au moyen d'un tournevis. (Se reporter à la fig. 10-5.)
	•					Appuyer sur la touche TRACK FWD [▶▶] puis sur la touche PLAY [▶] et enfin sur la touche PAUSE [▮▮] pour fermer toutes les boucles d'asservissement. (Le témoin PAUSE s'éclaire.)
			TP301 Borne 1 (Sortie radiofré- quence)	Vis de réglage radial	Meilleur motif de hachures en croix.	Brancher l'oscilloscope sur la borne 1 de TP301 (sortie radiofréquence). Agir sur la vis de réglage radial pour obtenir le meilleur motif de hachures en croix. (Se reporter à la fig. 10-5.)
						Le point de réglage est obtenu lorsque le motif est le meilleur et que toute nouvelle action sur la vis ne peut que le dégrader. On doit chercher à obtenir un motif formant un losange aussi régulier que possible. (Se reporter à la photographie 10-8.) Lorsque le réglage est correct, on doit être en mesure de distinguer les lignes qui composent le losange.
						Veiller à effectuer les réglages tangentiel et radial, l'un après l'autre, plus de deux fois.
						TP301 Borne 1 (RF) Borne 2 (GND)
						Fig. 10-4

Gamme de l	'oscilloscope	Point	Point de	Point à vérifier	Ordro dos entratione do ráplaco
v .	н	d'essai	réglage	réglage	Ordre des opérations de réglage
VÉRIFIC	ATION DU	NIVEA	U RADIOF	RÉQUENCE	
					Placer le lecteur en mode essai. (Se reporter page 59.)
					Brancher la sonde de l'oscilloscope sur la borne 1 de TP301 (sortie radiofréquence).
		TP301 Borne 1 (RF)	Vérification	1.6V±0.1V	 Lire le disque d'essai et vérifier que la tension crête à crête du signal radiofréquence est égale à 1,6 V± 0,1 V.
		TP301 Borne 1 (RF)	VR(A)	1.6V±0.1V	Dans le cas contraire, agir sur la résistance variable VRA.
	v .		V H d'essai VÉRIFICATION DU NIVEA TP301 Borne 1 (RF) TP301 Borne 1	V H d'essai réglage VÉRIFICATION DU NIVEAU RADIOF TP301 Borne 1 (RF) TP301 Borne 1 VRA Borne 1	V H Point de réglage /Caractéristique de réglage VÉRIFICATION DU NIVEAU RADIOFRÉQUENCE TP301 Vérification 1.6V±0.1V TP301 VRA 1.6V±0.1V Borne 1 Borne 1

Numéro	Gamme de l	'oscilloscope	Point d'essai	Point de réglage	Point à vérifier /Caractéristique	Ordre des opérations de réglage
d'ordre	٧	Н	u essai	. cglage	de réglage	
10	RÉGLAG	E DU GAI	V DE LA	BOUCLE D	'ASSERVISSI	EMENT DE FOCALISATION
	20mV/di), CH2 (Y) v, 5mV/div le 10:1	Axe des X TP1 Borne 7 (FO.IN) Axe des Y TP1 Borne 6 (FO.ER)	VR3 (FO.GA)	Déphasage 90° Borr (FO Borr (FO	OSC 1,2kHz 1Vp-p

Photographie 10-12 Gain trop élevé

Photographie 10-13 Gain correct

Photographie 10-14 Gain trop faible

Numéro	Gamme de I	'oscilloscope	Point	- 1	Point à vérifier /Caractéristique	Ordre des opérations de réglage
d'ordre	٧	н	d'essai	rêglage	de réglage	orato dos oporacións do regiago
11	RÉGLAG	E DU GAII	V DE LA	BOUCLE [O'ASSERVISS	EMENT DE POURSUITE
	50mV/div	, CH2 (Y) r, 5mV/div e 10: 1	Axe des X TP1 Borne 3 (TR.IN) Axe des Y TP1 Borne 4 (TR.ER)	VR4 (TR.GA)	Déphasage 90° Borne (Tr.IN Borne (GND Borne (TR.E	OSC X Y Y Y Y Y Y Y Y Y

Photographie 10-15 Gain trop élevé

Photographie 10-16 Gain correct

Photographie 10-17 Gain trop faible

Numéro	Gamme de l'	oscilloscope	Point	Point de	Point à vérifier /Caractéristique	Ordre des opérations de réglage
d'ordre	V	Н	d'essai	réglage	de réglage	
12	RÉGLAGI	E DE LA F	RÉQUEN	CE D'OSC	ILLATION LIB	RE DU VCO
			TP3 Borne 2		Fréquence 4,375MHz ± 0.05MHz	 Placer le lecteur en mode essai. (Se reporter page 59.) Court-circuiter ASY et GND à l'aide d'une pince crocodile. Brancher un compteur de fréquence (classe 10 MHz) sur la borne 2 de TP3. Régler VR8 (VCO.A) pour obtenir une fréquence égale à 4,375 MHz ± 0,05 MHz. Remarque: Ce réglage doit être effectué alors que le lecteur est arrêté.
13	VÉRIFICA	ATION DE	L'ERREU	R DE FOC	ALISATION	
			TP1 Borne 6 (FO.ER)	Vérification	Forme d'onde	 Placer le lecteur en mode essai. (Se reporter page 59.) Placer une jarretière entre la borne 7 FO.IN (Entrée focalisation) de TP1 et la masse (GND). Appuyer sur la touche TRACK FWD et vérifier au moyem de l'oscilloscope, l'allure du signal présent sur la borne 6 FO.ER (Erreur de focalisation) de TP1. 2V/Div 1mS/Div Allure en S de l'onde produite par FO.ER

10. AJUSTE

A continuación se da una lista completa de los ajustes. Realice los ajustes en el orden que salen en la lista.

• Lista de los ajustes

- 1. Ajustes del descentramiento de seguimiento, del descentramiento de foco y del descentramiento de RF
- 2. Ajustes del descentramiento de retorno de seguimiento y del descentramiento de retorno de foco
- 3. Comprobación de la luminosidad de LD (laser diódico)
- 4. Comprobación del enclavamiento del eje y del enclavamiento del foco
- 5. Ajuste de rejilla
- 6. Ajuste del balance de seguimiento
- 7. Ajuste tangencial
- 8. Ajuste radial
- 9. Comprobación del nivel RF
- 10. Ajuste de la ganancia de foco
- 11. Ajuste de la ganancia de seguimiento
- 12. Ajuste de frecuencia en marcha libre de VCO
- 13. Comprobación de error de foco

• Dispositivos necesarios para la medición

- 1. Osciloscopio de seguimiento doble
- 2. Medidoróptico de luminosidad
- 3. Disco de pruebas (YEDS7)
- 4. Filtros de ajuste de seguimiento y foco
- 5. Filtro de paso de banda para el ajuste de la ganancia de bucle
- 6. Generador de señales
- 7. Destornillador de rejillas
- 8. Otros equipos normales de medición

Nota) El VR del tablero de ajustes ha sido ajustado en la fábrica. No intente reajustarlo bajo ninguna circunstancia.

Modo de pruebas

Los ajustes deben realizzarse con la unidad en el modo de pruebas.

· Cómo entrar y salir del modo de pruebas ·

- ① Con el puente de conexión del modo de pruebas cortocircuitado, gire el interruptor POWER SW a la posición ON.
- ② Si luego activa la función MANUAL SEARCH FWD [►►] o REV [◄◄], la unidad se establecerá en el modo de pruebas.
- 3 Para salir del modo de pruebas, gire el interruptor POWER SW a la posición OFF.

En el modo de pruebas, las teclas de funcionamiento del tocadiscos CD tienen las funciones designadas en la tabla 10-1.

• Nombres de los VR de ajuste

VR1: Descentramiento de retorno de foco (FR. OF)

VR2: Descentramiento de RF (RF. OF)

VR3: Ganancia de foco (FO. GA)

VR4: Ganancia de seguimiento (TR. GA)

VR5: Balance de seguimiento (TR. BL)

VR6: Descentramiento de foco (FO. OF)

VR7: Descentramiento de seguimiento (TE. OF)

VR8: Frecuecia VCO (VCOA)

VR9: Descentramiento de retorno de seguimiento (TR. OF)

Localización de los tornillos de ajuste

En el modo de pruebas cada servodispositivo puede abrirse y cerrarse independientemente. Por lo tanto, para volver al modo de reproducción normal, debe cerrarse cada servodispositivo en el orden adecuado (secuencia en serie) antes de poder reestablecerse el modo de reproducción. Recuerde que, una vez está en el modo de pruebas, simplemente presionando la tecla PAUSE [••] la unidad de se establecerá en el modo de reproducción.

Por ejemplo, para pasar del modo de parada al modo de reproducción:

* En el modo de pruebas, los servodispositivos deben activarse en el orden de la secuencia en serie.

Funciones de las teclas de control cuando el tocadiscos CD está en el modo de pruebas

Símbolo	Nobre de la tecla	Función en el modo de pruebas	Explicación
144	TRACK BACK	Se activa el laser diódico	Se enciende el laser diódico
►N	TRACK FWD	Se cierra el servofoco	Se enciende el laser diódico, se mueve el activador de foco hacia arriba/hacia abajo, y se cierra el servofoco.
>	PLAY	Se cierra el servoeje.	Después que el motor del eje empiece a girar, se cierra el servo- dispositivo en el modo CLV-H.
11	PAUSE	Se abre y se cierra el servose- guimiento.	Funciona como un conmutador de palanca. Cuando se presiona una vez, se cierra el servoseguimiento y la unidad se establece en el modo de reproducción. Sin embargo, puesto que el servofoco y el servoeje están cerrados, se encederá el indicador PAUSE. Cuando se presiona otra vez, se abre el servoseguimiento.
44	MANUAL SERCH REV	Retroceso del carro (de los sur- cos exteriores a los interiores)	El carro se desplaza rápidamente hacia los surcos interiores del disco a una velocidad de 1 cm/seg. No hay provisto ningún dispositivo de parada automática del carro cuando éste alcanza el último surco del disco, por lo tanto tenga cuidado en no mover el carro demasiado lejos.
>>	MANUAL SERCH FWD	Avance del carro (de los sur- cos interiores a los exteriores)	El carro se desplaza rápidamente hacia los surcos exteriores del disco a una velocidad de 1 cm/seg. No hay provisto ningún dispositivo de parada automática del carro cuando éste alcanza el último surco del disco, por lo tanto tenga cuidado en no mor er el carro demasiado lejos.
	REPEAT	Desplazamiente mueve las lentes hacia arriba/hacia abajo	Se enciende el laser diódico, se mueve el activador de oco hacia arriba/hacia abajo, pero no se cierra el servofoco.
	STOP	Se interrumpe el funciona- miento	Se paran todos los servodispositivos y la unidad se repore al estado inicial.
A	OPEN/CLOSE	Se abre y se cierra la bandeja de discos	Se abre y se cierra la bandeja de discos. Sin embargo, el fonocaptor no retorna a la posición de apoyo cuando la bandeja entá abierta. El cierre de la bandeja tampoco tiene ningún efecto sotere el fonocaptor.

Tabla 10-1

	Margen del	osciloscopio	Punto de	Punto de	Punto de verifica- ción/especifica-	Secuencia de la operación de ajuste
paso	V	н	prueba	ajuste	ción del ajuste	·
1		S DEL DES ESCENTR			DE SEGUIMIE	ENTO, DEL DESCENTRAMIENTO DE FOCO
						Establezca el tocadiscos CD en el modo de pruebas. (Re- fiérase a la página 74.)
			TP1 Aguja4 (TR.ER)	VR7 (TE.OF)	0V ± 50mV	 Ajuste VR7 (TE.OF: descentramiento de error de se- guimiento) de manera que la aguja 4 TP1 (TE.OF: error de seguimiento) registre un tensión de 0V ± 50mV.
			TP1 Aguja6 (FO.ER)	VR6 (FO.OF)	0V ± 50mV	 Ajuste VR6 (FO.OF: descentramiento de error de se- guimiento) de manera que la aguja
			TP301 Aguja1 (RF)	VR2 (RF.OF)	100mV ± 50mV	 Ajuste VR2 (RF.OF: descentramiento de RF) de manera que la aguja ① TP301 registre una tensión de salida RF de 100mV ± 50mV.
2		S DEL DE DE RETO			DE RETORN	O DE SEGUIMIENTO Y DEL DESCENTRA
						• Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.)
			TP1 Aguja2 (TR.RT)	VR9 (TR.OF)	0V = 10 mV	 Ajuste VR9 (TR.OF: descentramiento de error de se- guimiento) de manera que la aguja ② TP1 (TR.RT: retor- no de seguimiento) registre una tensión de OV ⁺²⁰₋₁₀ mV.
			TP1 Aguja8 (FO.RT)	VR1 (FR.OF)	35mV ± 17.5mV	Ajuste VR1 (FR.OF: descentramiento de retorno de focol de manera que la aguja ® TP1 (FO.RT: retorno de focol
						registre una tensión de 35mV ±17,5mV.
3	COMPRO	OBACIÓN	DE LA L	UMINOSI	DAD DE LD (L	registre una tensión de 35mV ±17,5mV. ASER DIÓDICO)
3	COMPRO	OBACIÓN	DE LA L	UMINOSI	DAD DE LD (L	
3	COMPRO	OBACIÓN	DE LA L	UMINOSI	DAD DE LD (L	• Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.)
3	COMPRO	DBACIÓN	DE LA L	UMINOSI	DAD DE LD (L	 ASER DIÓDICO) Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.) Presione la tecla TRACK BACK [◄◄] para conectar el LD

No. de	Margen del	osciloscopio	Punto de prueba	Punto de ajuste	Punto de verifica- ción/especifica-	Secuencia de la operación de ajuste
paso	٧	н	prueba	ajuste	ción del ajuste	
4	COMPR	OBACIÓN	DEL ENG	CLAVAMI	ENTO DEL EJI	E Y YEL ENCLAVAMIENTO DEL FOCO
						Introduzca el disco de pruebas en el tocadiscos.
						Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.)
						 Con la tecla MANUAL SEARCH FWD [►►] mueva el fonocaptor al centro del disco. No se olvide de realizar este paso!
	V 0.5V/div	H 100msec/div	TP301 Aguja1 (Salida de RF)		Se geneva salida de RF	Observe la salida de RF desde la aguja ① TP301 RF con un osciloscopio. Luego, después de presionar la tecla TRACK FWD [▶▶], compruebe si sale o no la señal RF.
			NF)		Rotación normal	 Presione la tecla PLAY y compruebe que el disco esté gi- rando hacia la derecha a velocidad normal (la velocidad de rotación del disco cerca del centro es de 300 rpm).

No. de	Margen del	osciloscopio	Punto de	Punto de	Punto de verifica- ción/especifica-	Secuencia de la operación de ajuste
paso	V	н	prueba	ajuste 	ción del ajuste	Coddinat do la operación de cjaste
5-1	AJUSTE	DE REJIL	LA (1) (0	CON UN E	OISCO DE φ80)
	Aguja (TR.Ef Aguja (GND	5	1	O1μF del	Punto nulo exiones osciloscopio	 Introduzca el disco de pruebas en el tocadiscos (φ80). Establezca el tocadiscos CD en el modo de pruebas. Refiérase a la página 74.) Presione la tecla TRACK FWD (▶▶) y luego la tecla PLAY [▶] en este orden para cerrar el servofoco y el servoeje. (El servoseguimiento se deja abierto.) Con la tecla MANUAL SEARCH FWD [▶▶] mueva el fonocaptor al extemo exterior de la circunferencia del disco de φ80. Al mover el fonocaptor a esta posición, se puede tener acceso al tornillo de ajuste de rejilla con un destornillador aplicado desde de arriba. (Vea la Fig. 10-3.) Observe la salida de forma de onda en la aguja ④ TP1 (TR.ER: error de seguimiento) en el un osciloscopio. Inserte un filtro de paso bajo con un punto de corte de 4kHz. (Vea la Fig. 10-2.) Con un destornillador haga girar el tornillo de ajuste de rejilla hasta que encuentre la forma de onda de punto nulo parecida a la que se muestra en la Fotografía 10-1.
	5mV/div C Aguja9 (PDE) Aguja5 (PDF)		R327 #	Rejilla Rejilla	Amplitud máxima 180° de diferenia de fase — Eje Y IC301	 Luego, gire el destornillador lentamente hacia la derecha a partir del punto nulo hasta que alcance el primer punto de máxima amplitud de la forma de onda (señal de error de seguimiento). (Vea la Fotografía 10-3.) Conecte el eje X del osciloscopio con el lado CN301 (PDF) de R328, el eje Y con el lado CN301 (PDE), e inserte un filtro de paso bajo con un punto de corte de 4kHz. Mueva el fonocaptor al primer surco exterior del disco de φ80. La figura Lissajous tiene que aparecer más o menos como una sóla línea. Si no es así, ajuste la rejilla hasta que la figura Lissajous sea un sóla línea. (Vea las Fotografías 10-4,5.)

No. de paso	Margen del osciloscopio		Punto de	Punto de	Punto de verifica- ción/especifica-	Secuencia de la operación de ajuste
	V	н	prueba	ajuste	ción del ajuste	
5-2		DE REJIL UCCIÓN)	LA (2) (C	CON UN E	S DE 60 MIN. DE TIEMPO DE	
						• Introduzca el disco de pruebas en el tocadiscos.
						 Establezca el tocadiscos CD en el modo de pruebas. (Re fiérase a la página 74.)
						 Presione la tecla TRACK FWD [►►] y luego la tecla PLA [►] en este orden para cerrar el servofoco y el servoeje (El servoseguimiento se deja abierto.)
						 Con la tecla MANUAL SEARCH FWD [▶▶] mueva el fo nocaptor al extremo exterior de la circunferencia del dis co de
	1V/div	5ms/div	TP1 Aguja4 (TR.ER)	Rejilla		 Punto nulo * Observe la salida de forma de onda en la agu ja ④ TP1 (TR.ER: error de seguimiento) en el oscilosco pio. Inserte un filtro de paso bajo con un punto de cort de 4kHz. (Vea la Fig. 10-2.)
	į	TP1 [-	L.P.F.			 Con un destornillador haga girar el tornillo de ajuste de re jilla hasta que encuentre la forma de onda de punto nul parecida a la que se muestra en la Fotografía 1 0-1.
	Aguja4 (TR.ER) Aguja5 (GND) Fig. 10-2					
				Rejilla	Amplitud máxima	Luego, gire el destornillador lentamente haciala derech a partir del punto nulo hasta que alcance el prim er punt de máxima amplitud de la forma de onda (señal de erro de seguimiento). (Vea la Fotografía 10-3.)
	5mV/div	5ms/div	Eje X R328 Eje Y R327	Rejilla	Diferencia de fase	• Conecte el eje X del osciloscopio con el lado CN3 O1 (PDI de R328, el eje Y con el lado CN3O1 (PDE) de R327, ap que la señal en el modo de acoplamiento de CA y muevel fonocaptor al centro del disco. Entonces la figura Lissajous tiene que aparecermas o mos como una sóla línea. Si no es así, muevaptra vez fonocaptor al extremo exterior de la circunferencia y ajus la rejilla hasta que la figura Lissajous sea un sólalímea. (Ve

Figura 10-3 Ajuste de rejilla

Fotografía 10-2 Forma de onda descentrada de punto nulo

Fotografía 10-4

Fotografía 10-1 Forma de onda de punto nulo

Fotografía 10-3 Amplitud máxima

Fotografía 10-5

No. de	Margen del osciloscopio		Punto de	Punto de	Punto de verifica- ción/especifica-	Secuencia de la operación de ajuste
paso	V	Н	prueba	ajuste	ción del ajuste	, , , , , , , , , , , , , , , , , , , ,
6	AJUSTE	DEL BAL	ANCE D	E SEGUI	MUENTO	
						Introduzca el disco de pruebas en el tocadiscos.
						Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.)
						Con la tecla MANUAL SEARCH FWD [▶▶] mueva el fonocaptor al centro del disco.
		***	***			Presione la tecla TRACK FWD [▶▶], y luego la tecla PLAY [▶] para iniciar la rotación del disco.
	0.5V/div	5msec/div	TP1 Aguja4 (TR.ER)	VR5 (TR.BL)		Observe la salida de forma de onda en la aguja ④ TP1 (TR.ER: error de seguimiento) en el osciloscopio. Ajuste VR5 (TR.BL: balance de seguimiento) de manera que todos los componentes de CC estén fuera de la señal.
					9d - 1	rafía 10-6 Señal con los componentes de CC
						grafía 10-7 Señal sin los componentes de CC

Fig. 10-5 Ajuste tangencial

Fotografia 10-9

Qué hay que mirar

Fotografía 10-10

Forma oblicua (incorrecto)

Forma ideal

Forma oblicua (incorrecto)

Fotografía 10-11

No. de		osciloscopio	Punto de prueba	Punto de ajuste	Punto de verifica- ción/especifica-	Secuencia de la operación de ajuste
7	V AJUSTE	TANGEN			ción del ajuste	
						Introduzca el disco de pruebas en el tocadiscos.
						• Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.)
						 Con la tecla MANUAL SEARCH FWD [►►] mueva el fonocaptor al centro del disco. Con el fonocaptor en esta posición se tiene acceso al tornillo de ajuste de tangencial desde arriba. (Vea la Fig. 10-5.)
						 Presione la tecla TRACK FWD [►►], la tecla PLAY [►] y la tecla PAUSE [■■ en este orden para cerrar todos los servodispositivos. (Se encenderá el indicador PAUSE.)
			TP301 Aguja1 (Salida de RF)	Tornillo de ajuste tangencial	lmagen de cuadrícula óptima	Observe la forma de onda de la salida de RF en la aguja TP301 RF en el osciloscopio. Gire el tornillo de ajuste de tangencial hasta que se logre la única imagen ideal de cuadrícula. (Fig. 10-5).
						• El punto de ajuste idóneo es aquel en el cual si se gira más el tornillo de ajuste de tangencial en cualquier di rección, se degrada la imagen de cuadrícula. El objetivo es lograr una buena imagen de forma de onda con líneas cruzadas que formen una sóla figura en forma de diamante (Fotografía 10-8). En el punto de ajuste idóneo incluso podrá distinguir las líneas relativamente claras que forman el diamante.
						TP301 Aguja1 (RF)
						Aguja2 (GND) Fig. 10-4

No. de	Margen del	osciloscopio	Punto de	Punto de	Punto de verifica-	
paso	٧	н	prueba	ajust e	ción/especifica- ción del ajuste	Secuencia de la operación de ajuste
8	AJUSTE	RADIAL				
						Introduzca el disco de pruebas en el tocadiscos.
						Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.)
						 Con la tecla MANUAL SEARCH FWD [►►] mueva el fo- nocaptor al centro del disco. Con el fonocaptor en esta posición se tiene acceso al tornillo de ajuste radial desde arriba. (Vea la Fig. 10-5.)
						 Presione la tecla TRACK FWD [▶▶], la tecla PLAY [▶] y la tecla PAUSE [■ en este orden para cerrar todos los servodispositivos. (Se encenderá el indicador PAUSE.)
			TP301 Aguja1 (Salida de RF)	Tornillo de ajuste radial	lmagen de cuadrícula óptima	Observe la forma de onda de la salida de RF en la aguja TP301 RF en el osciloscopio. Gire el tornillo de ajuste radial hasta que se logre la única imagen ideal de cuadrícula. (Fig. 10-5).
						• El punto de ajuste idóneo es aquel en el cual si se gira más el tornillo de ajuste radial en cualquier dirección, se degrada la imagen de cuadrícula. El objetivo es lograr una buena imagen de forma de onda con líneas cruzadas que formen una sóla figura en forma de diamante (Fotografía 10-8). En el punto de ajuste idóneo incluso podrá distinguir las líneas relativamente claras que forman el diamante.
						 Cerciórase de realizar los ajustes tangencial y radíal alter- nativamente más de dos veces.
						TP301 Aguja1 (RF) Aguja2 (GND) Fig. 10-4

No. de	Margen del osciloscopio		Punto de	Punto de	Punto de verifica- ción/especifica-	Secuencia de la operación de ajuste
paso	V	Н	prueba	ajuste	ción del ajuste	
9	COMPR	OBACIÓN	DEL NIV	EL RF		
						• Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.)
						Conecte la sonda del osciloscopio en la aguja ① TP301 RF (salida de RF).
			TP301 Aguja1 (RF)	Comprobaci- ón	1.6V±0.1V	• Mientras reproduce el disco de pruebas, mida la tensión P-P de la forma de onda de RF para comprobar que seade $1,6V~\pm0,1V$.
			TP301 Aguja1 (RF)	VR(A)	1.6V±0.1V	 Si el nivel de tensión P-P no es de 1,6V ±0,1V, ajuste VRA hasta que el nivel de tensión sea el correcto.

No. de	Margen del	osciloscopio	Punto de	Punto de	Punto de verifica- ción/especificación	Secuencia de la operación de ajuste					
paso	V	Н	prueba	ajuste	del ajuste						
10	AJUSTE DE LA GANANCIA DE FOCO										
	20mV/div	, CH2 (Y) v, 5mV/div a 10: 1	Eje X TP1 Aguja7 (FO.IN) Eje Y TP1 Aguja6 (FO.ER)	VR3 (FO.GA)	90° de diferencia de fase Agu (FO Agu (FO	gura de Lissajous del osciloscopio sea un círculo perfecto (90° de diferencia de fase).					

Fotografia 10-12 Ganancia demasiado alta

Fotografía 10-13 Ganancia óptima

Fig. 10-6 Fotografía 10-14 Ganancia demasiado baja

No. de	Margen del os	ciloscopio	Punto de	Punto de	Punto de verifica- ción/especificación	Secuencia de la operación de ajuste					
paso	v	Н	prueba	aĵuste	del ajuste						
11	AJUSTE DE LA GANANCIA DE SEGUIMIENTO										
						 Con la alimentación desconectada, couecte el osciloscopio y el generador de señales tal como se indica en la Fig. 10-7. 					
						• Establezca el tocadiscos CD en el modo de pruebas. (Refiéra- se a la página 74.)					
						 Presione la tecla TRACK FWD [▶▶], la tecla PLAY [▶] y la tecla PAUSE [■■] en este orden para activar el servofo- co, el servoeje y el servoseguimiento. 					
						 Conecte el generador de señales y dé salida a una señal de 1kHz a 2Vp-p. Nota: Algunos generadores de señales generan momentá- neamente corriente de CC cuando se los conecta. Po esta razón, es aconsejable conectar el osciloscopio después de haber conectado el generador de señales. 					
	CH1 (X), 0 50mV/div, Sonda 1	5mV/div	Eje X TP1 Aguja3 (TR.IN) Eje Y TP1 Aguja4 (TR.ER)	VR4 (TR.GA)	Ag:	Ajuste VR4 (TR.GA: ganancia de seguimiento) de manera que la figura de Lissajous del osciloscopio sea un circulo perfecto (90° de diferencia de fase). TP1					

Fotografía 10-15 Ganancia demasiado alta

Fotografía 10-16 Ganancia óptima

Fotografía 10-17 Ganancia demasiado baja

No. de	Margen del	osciloscopio	Punto de	Punto de	Punto de verifi- cación/especifica-	Secuencia de la operación de ajuste
paso	V	н	prueba	ajuste	ción del ajuste	
12	AJUSTE	DE FRECU	JENCIA E	EN MARCI	HA LIBRE DE \	/CO
			TP3 Aguja2		Frecuencia 4.375MHz ± 0.05MHz	 Establezca el tocadiscos CD en el modo de pruebas. (Refiérase a la página 74.) Cortocircuite los puentes de conexión ASY y GND con una pinza cocodrilo. Conecte un frecuencímetro (10MHz de margen) a la aguja 2 TP3. Ajuste VR8 (VCO.A) hasta que obtenga una lectura de 4,375MHz ±0,05MHz en el frecuencímetro. Nota: Realice este ajuste con el tocadiscos CD en el modo de parada.
13	COMPRO	DBACIÓN	DE ERRO	PR DE FOC	0	Establezca el tocadiscos CD en el modo de pruebas. (Refiéra-
			TP1 Aguja6 (FO.ER)	Compro- bación	Forma de onda	 Se a la página 74.) Conecte la aguja (2) TP1 (FO.IN: entrada de foco) a GND. Presione la tecla TRACK FWD para comprobar la forma de onda generada por la aguja (6) TP1 (FO.ER: error de foco) en el osicloscopio.
						2V/Div 1mS/Div
	***************************************					Forma de onda en 5 geuerada por FO.ER
						Forma de onda en 5 geuerada por Fo

11. BLOCK DIAGRAM TRACK COUNT PULS GENELATOR 10 502 (1/2) L ch IC 602 (2/2) SAMPLE & MASTER CLOCK OSCILLATOR POWER SUPPLY **•**•••• 000~0 POWER TRANSFORMER AC120V 60Hz

12. PICK-UP DESCRIPTION

12.1 THE OPTICAL PATH AND OPTICAL PARTS

Fig. 2-1

Fig. 12-1 shows the arrangement of the optical assembly, or pick-up. The wave length of the light emitted by the laser diode is 780-790nm and is virtually invisible. The extremely tiny beam of light emitted by the LD is elliptic in form and radiates at a fixed angle of divergence. When the beam hits the diffraction grating it is diffracted into one main beam, 0, and two sub-beams, ± 1 .

Additional sub-beams, ± 2 , $3 \dots n$, are also generated, but these are weak and not used in the system. Next, the beams hit the semi-transparent mirror where 50% of the light is reflected and the rest is lost. The beam reflected off the semi-transparent mirror then hits the reflecting mirror where all the light is reflected onto the objective lens (finite type).

Because the pick-up in this CD player employs a finite objective lens (called 'finite' because focal length on the LD side is finite), a collimator is not necessary. The objective lens concentrates the reflected light into three extremely narrow beams, a main beam and two smaller sub-beams. The three beams are reflected off the surface of the disc, where again they pass through the objective lens. The beams then hit the semi-transparent mirror again where half of the light is reflected back onto the laser diode and the other half passes through the semi-transparent mirror and reaches the photodetectors.

This is a basic summary of the optical path. Next we will discuss in some detail the important parts in the pickup.

12.2 IMPORTANT PARTS IN THE PICK-UP ASSEMBLY

(1) The Laser Diode (LD)

A new and smaller LD, the $\phi 5.6$ size, has now been developed to replace the previous $\phi 9$ size. The new LD is more lightweight and generates narrower beams of light.

(2) Objective Lens

Thanks to the introduction of the finite objective lens, the collimator is no longer necessary in the optical assembly. Costs have thus been lowered while still maintaining high pick-up performance.

Although the finite objective lens does not carry parallel beam components the way conventional infinite lenses do, it is neverthless a high quality objective lens designed to achieve ample optical performance.

(3) Semi-Transparent Mirror

The beams of light reflected off the disc surface pass again through the objective lens and hit the semitransparent mirror. It is a well known fact that astigmatism of the light beams occurs when they are diagonally aimed at the glass surface of a semi-transparent mirror. In conventional CD players employing such semitransparent mirrors, the parts in the optical assembly were designed to counteract this astigmatism. In the pick-up of the PD-91, however, this astigmatism is actively utilized by the focus servo.

Furthermore, the multi-lens configuration found in conventional CD players has been discarded in the design of the PD-91. Again, greater cost effectiveness has been achieved without sacrificing high level pick-up performance. In fact, the reduced number of parts in the pick-up means less likelihood of part defects and increased reliability.

(4) Axial Sliding Actuator

Precision positioning of the objective lens is a crucial factor of pick-up performance. In the PD-91 pick-up, the lens is driven by an axial sliding actuator. The actuator insures the maintenance of the micron-level precision required in positioning the objective lens vis-a-vis the audio track on the disc and stable tracking. Another advantage of the axial sliding actuator is the reduction in resonance it enjoys over conventional coil supported actuators and its smooth frrequency response.

(5) Plastic Body

Computer simulation technology was used in the design process of the LD. It was determined that a plastic LD body would be most effective in suppressing structural deformation. The actual material to be used, however, was not chosen until the new plastic LD was thoroughly tested and proved that it could provide the same reliable service as conventional aluminum LD assemblies. Part

plasticization also made possible a mounting configuration which had been impossible with conventional aluminum construction. The transition to plastic has substantially reduced the use of bonding agents in part construction thereby improving part reliability.

(6) RF and Servo Signals

Fig. 12-2 Beam Reflection on the Disc Track Surface

Fig. 12-3 Beam Focus on the Disc Surface

The light which has been focused and narrowed by the objective lens must be precisely beamed on the lands and pits that make up the signal on the disc track. The light reflected off the disc track passes again through the objective lens and travels through the semi-transparent mirror to the photodetectors.

Fig. 12-2 shows the way the signal is reflected off the disc signal track. In Fig. 12-2 (A) the beam is concentrated on a pit and in (B) it is concentrated between pits, or on land, as it is called. Where the beam is reflected off a pit, as in Fig. 12-2 (A), the light is diffracted and the light in the sections of the figure colored black is not reflected back through the objective lens. Only the center part of

the beam passes back through the objective lens and travels to the photodetectors. In (B), the beam of light is not diffracted by the pit and is completely reflected back through the objective lens and on to the photodetectors. Obviously, the amount of light reaching the photodetectors is greater in (B) than in (A). This is the key to signal transmission in the CD player. The photodetectors sense the two levels (weaker-stronger, or more simply, onoff) of light intensity which is the high frequency EFM signal from the disc and convert it into an electrical signal. The signal is converted into an RF signal by means of an arithmetic circuit.

Fig. 12-3 shows how focus detection works. In (1), the light reflecting back through the objective lens forms a circle which touches all four photodetectors (labeled A through D) equally and signifies that the disc is in focus. The reflected pattern on the photodetectors forms an oval on the four photodetectors when there is a focus error. In (2), the disc is too close to the lens and in (3), the disc is too far. (The diffraction grating has been omitted from the figure for simplicity sake since it is not directly related to the focus signal and correction process.)

In (1) the light emitted from the LD at 01 is reflected and diffracted off the disc surface and concentrated at point 02. In (2), the point at which the light is most concentrated is beyond point 02, and in (3) the light is most concentrated at a point before point 02.

Fig. 12-4 Semi-Transparent Mirror

Fig. 12-4 displays the optical characteristics of the semitransparent mirror. The lens affects only the vertical direction of the figures and not the lateral direction.

1 through 7 in Fig. 12-4 show the beam shapes at varying distances from the semi-transparent mirror. Between the straight lines 2 and 6 is the perfect circle 4. 6 corresponds to point (2) in Fig. 12-3. In order to make Fig. 12-4 coincide with Fig. 12-3 (1) to yield a circular beam shape, the photodetector must be set at 4. The beam shape in Fig. 12-3 (2) corresponds to a photodetector position in 12-4 that is relatively closer to the semi-transparent mirror, at about 3, with a horizontally elon-

gated oval shaped beam. Conversely, Fig. 12-3 (3) corresponds to a photodetector position at around (5) with a vertically elongated oval.

The possible beam shapes that hit the photodetector are shown in Fig. 12-3. The focus signal is derived by simple arithmetic based on the signals from the four photodetectors: (A+C)-(B+D).

When the objective lens is too near or far from the disc track surface most of the light does not reflect back to the photodetector. When the light that reflects back to the photodetector hits each of the four photodetectors uniformly, the focus signal is 0. When the objective lens moves too far from the disc surface it reflects a vertically elongated oval beam pattern like that of 7 in Fig. 12-4 on the photodetectors. In terms of the arithmetic for the focus signal, (A+C)>(B+D) and the focus signal is a plus figure. As the lens moves closer to the disc to correct focus, the beam shape reaches its peak (a vertical line) at 6 and the lens continues to move away from the disc surface until (A + C) - (B + D) = 0 and the beam reflects a perfect circle on the photodetectors. Conversely, when the objective lens is too close to disc surface, a horizontally elongated oval beam will fall on the photodetector. In terms of the focus signal (A+C)<(B+D) is a minus figure. As the objective lens moves away from the disc, it passes the horizontal line peak at 2 and continues until the focus signal is 0. Fig. 12-5 graphs the typical Sshaped curve derived from the (A + C) - (B + D) focus signal.

Fig. 12-5 The S-Shaped Curve

The focus servo functions to maintain a focus signal exactly equal to zero. In actuality, however, the very tiny non-linearities at the center of the S-curve show up as residual errors.

Fig. 12-6 shows how the tracking signal is detected.

As already mentioned above, the diffraction grating diffracts the light from the LD into a main beam and two sub-beams which are used to generate the tracking signal. These beams are concentrated on the disc surface in the same way as the main beam. The sub-beams should be equidistant from the main beam on the track surface, positioned in relation to the track surface and main beam as shown in Fig. 12-6. (On the actual track surface the distance from the main beam is actually proportionally larger than is shown in the diagram.) The sub-beams are reflected and diffracted back to their special photodetectors (E,F). If the beam intensity on both photodetectors is equal, the main beam is tracking properly.

Fig. 12-7 shows the wave output of the photodiodes A-F.

Fig. 12-6 Tracking Error Detection

Fig. 12-7 Tracking Error and RF Signals

13. CIRCUIT DESCRIPTION

13.1 PRE-AMP

The pre-amp circuitry processes the pick-up output signal and generates signals destined for servo, decoding and system microprocessor circuitry.

It consists primarily of an IC301:CXA1081S. Below we will discuss this circuitry in some detail. Fig. 13-1 is a block diagram of the CXA1081S.

Fig. 13-1

13.1.1 Accufocus System

The PD-91 utilizes an Accufocus System to reduce distortion in the RF signal output by the pickup. Among the four main photodetectors, the output from two of the detectors is ahead of the other two and is delayed before adding with a view towards improved frequency response, distortion, S/N ratio and increased signal readout precision. (See Fig. 13-2.)

Fig. 13-2

13.1.2 RF Amp

The output voltage from the photodiodes, output to input terminals PD1 and PD2, is amplified by about 5 times at $58k\Omega$ of resistance by RF I-V amps (1) and (2). The RF summing amp performs signal addition and the output voltage derived from the current to voltage conversion of the four photodetectors (A+B+C+D) is output to the RFO terminal. At this terminal an eye pattern check of the beam can be done.

Fig. 13-3

The low frequency components of RFO output voltage V_{RFO} are computed as follows:

$$V_{RF0} = 1.8 \times (V_A + V_B)$$

= $1.8 \times \frac{58K}{12K} \times (V_{PDA} + V_{PDB} + V_{PDC} + V_{PDD})$

13.1.3 Focus Error Amp

The Focus Error Amp subtracts the output (VB) of RF I-V amp (2) from the output (VA) of RF I-V amp (1) and outputs the voltage derived from the current to voltage conversion of photodetectors (A+C)-(B+D).

FE output voltage (low frequency) is:

$$V_{\text{FE}} = 5.4 \times (V_{\text{A}} - V_{\text{B}})$$

$$= 5.4 \times \frac{58 k \Omega}{12 k \Omega} \times (V_{\text{PDA}} + V_{\text{PDC}} - V_{\text{PDB}} - V_{\text{PDD}})$$

R301

Fig. 13-4

13.1.4 Focus OK Circuit

The Focus OK Circuit creates a timing window for switching from focus search mode to focus servo ON.

Based on the RF signal at pin No. 2, both the HPF output at pin No. 1 and the LPF output (in reverse phase) from the Focus OK amp are derived.

When Focus OK output, V_{RFI} - V_{RFO} corresponds to -0.37V, it is reversed.

Fig. 13-5

13.1.5 Tracking Error Amp

Fig. 13-6

The voltage generated by the side photodetectors (E and F), input to terminals E and F, is amplified by EI-V and FI-V amps.

$$\begin{split} V_F &= \frac{403 k \Omega}{33 k \Omega} \times V_{PDE} \\ V_E &= \left[260 k \Omega \times RA/(RB + 22 k \Omega) + (RA + 260 k \Omega) \right] / \\ &33 k \Omega \times V_{PDF} \end{split}$$

The Tracking Error Amp takes the difference in output from EI-V and FI-V amps and derives an output voltage from the current to voltage conversions originating from the E-F photodetectors.

$$\begin{split} V_{\text{TE}} &= (V_{\text{E}} - V_{\text{P}}) \times 3.2 \\ &= (V_{\text{PDE}} - V_{\text{PDF}}) \times \frac{403 \text{k}\Omega}{33 \text{k}\Omega} \times 3.2 \end{split}$$

13.1.6 Mirror Circuit

After the RFI signal is amplified, the Mirror Circuit performs peak and bottom hold functions. Peak hold can handle a traverse signal as high as 30kHz and bottom hold has a time constant that enables it to follow the rotation period of envelope fluctuations.

Fig. 13-7

The envelope signal J, DC-reproduced, is obtained by differential amplification of peak and bottom hold signals H and I. Mirror output is derived by a comparison between signal J and the peak hold signal K which is 2/3 of the peak

value at a long time-constant. Mirror output is H when the primary beam is on a mirror (or land) section of the track or when a defect is detected.

13.1.7 EMF Comparator

The EFM comparator functions to convert the RF signal into binary signals. Since the asymmetry that arises as a result of irregularities in the disc track surface cannot be eliminated by mere AC coupling, the system utilizes the fact that there is a 50% probability of occurrence of a 1 or a 0 in the digitized binary EFM signal to control the nominal voltage of the EFM comparator.

Because the EFM comparator works as a current switch, the respective levels of H and L do not become equal to the supply voltage. Therefore, feedback has to be applied through the C-MOS buffer of the decoder.

R47, R314, C91 and C316 constitute a low pass filter for obtaining the DC of (Vcc + DGND)/2(V).

Fig. 13-8

13.1.8 DEFECT Circuit

After the RFI signal is reversed, bottom hold is performed at long and short time-constants. The short time-constant bottom hold responds to defects in the disc mirror surface that are longer than 0.1msec, while the long time-constant bottom hold maintains the level where it was right before the defect was encountered on the disc mirror surface. After passing through a C-coupler, differentiation and level shifting circuit, the surface defect detection signal is generated on the basis of comparison of these two signals.

Fig. 13-9

13.1.9 APC (Automatic Power Control) Circuit

Because the LD imposes the thermal characteristics of a large load, LD output must be monitored by a photodetector and the current supply to it controlled to insure constant output. This function is performed by the APC circuit

Fig. 13-10

13.1.10 Track Count Pulse Circuit

During a search operation when the carriage makes a large movement, this circuit generates a pulse signal so that the number of tracks jumped can be counted.

Fig. 13-11

Fig. 13-12

After amplification with polarity reversal of the RFO signal, peak hold is performed and the envelope signal is demodulated (③). The track count pulse (⑤) (corresponding to the RF waveform envelope) is generated by passing the demodulated envelope signal (③) through a 4.8k—156kHz B.P.F. and performing pulse conversion with a zero cross comparator.

Because the detection band of this circuit is in the range 1.2k—125kHz, it can be used when making large carriage movements. (See. Fig. 13-13)

Fig. 13-13

13.2 THE SERVO SECTION

Signals from the system microprocessor control the normal operation of the focus, tracking, carriage, spindle and EFM-PLL servos as well as the control of special functions like focus-in, track skip, etc.

The servo section is primarily made up of IC5: CXA1082AS and IC12: CXD1135QZ. Explanations of the important sections of these ICs are given below.

Figs. 13-14 and 13-15 are block diagrams of the CXA1082AS and CXD1135QZ, respectively.

CXA 1082AS

Fig. 13-14

CXD1135QZ

Fig. 13-15

13.2.1 Command Codes

Servo control functions are performed by IC5: CXA1082AS and IC12: CXD1135QZ in conjunction with serial data from the system microprocessor. Detection output from the ICs is output through the SENS terminal.

Control data and detection output are sent via bus line that connects system microprocessor, CXA1082AS and CXD1135QZ. Fig. 13-16 is the CPU Serial Interface Timing Chart and a listing of the timing units and their durations is given in Table 13-1. Table 13-2 lists the system microprocessor data and SENS terminal modes.

Table 13-1

Item	Code	Minimum value	Standard value	Maximum value	Unit
Clock frequency	fck	_	_	1	MHz
Clock pulse width	fwck	500	_	-	ns
Setup time	tsu	500	_	_	ns
Hold time	th	500		_	ns
Delay time	t _D	500	_	_	ns
Latch pulse width	twL	1000	_	-	ns

Fig. 13-16 CPU Serial Interface Timing Chart

Table 13-2 System Microprocessor

			ADDRESS		DAT	TA .		SENS				
Control IC		ltem	D7D6D5D4	D3	D2	D1	D0	output				
	Focus Cont	rol	0000	FS4 Focus ON	FS3 Gain Down	FS2 Search ON	FS1 Search Up	FZC				
	Tracking C	ontrol	0001	Anti Shock	Brake ON	TG2 Gain Set	TG1 Gain Set	A.S				
	Tracking M	lode	0010	Tracking M	ode *1	Sled Mode	*2	TZC				
CXA1082AS	Select *3		0011	PS4 Focus Search + 2	PS3 Focus Search + 1	PS2 Sled Kick +2	PS1 Sled Kick +1	SSTOP				
	Auto Sequency *4	ency *4	0100	AS3	AS2	AS1	AS0	BUSY				
		Blind (A,E)/Overflow(C)	0101	0.18ms	0.09ms	0.045ms	0.022ms					
	*5 RAM SET	*5	*5	*5	*5	Brake (B)]	0.36ms	0.18ms	0.09ms	0.045ms	
		Kick (D)	0110	11.6ms	5.8ms	2.9ms	1.45ms	Hi-Z				
		Track Jump (N)	0111	64	32	16	8					
		Track Move (M)		128	64	32	16					
	New funct	ion control *6	1001	ZCMT	HZPD	NCLV	CRCQ	HiZ				
	Synch pro	tection, Attenuator *7	1010	GSEM	GSEL	WSEL	ATTM	Hi-Z				
CVD112E07	Counter se	et, lower 4 bits *8	1011	Tc3	Tc2	Tc1	Tc0	COMPLETE				
CXD1135QZ	Counter se	et, upper 4 bits *8	1100	Tc7	Tc6	Tc5	Tc4	COUNT				
	CLV contr	ol *9	1101	DIV	Тв	Тр	GAIN	Hi-Z				
	CLV mode	*10	1110		CLV	mode		Pw264				

Hi-Z : High impeasoce

* 1 TRACKING MODE

	D3	D2
OFF	0 0	0
ON	0.0	1
FWD JUMP	1 1	0
REV JUMP	1 1	1

* 2 SLED MODE

	D1	D0
OFF	0	0
ON	0	1
FWD MOVE	1	0
REV MOVE	1	1

*3 SELECT: Focus and carriage kick height control

*4 AUTO SEQUENCE

	AS3	AS2	AS1	AS0
CANCEL	0	0	0	0
FOCUS ON	0	1	1	1
1 TRACK JUMP	1	0	0	х
10 TRACK JUMP	1	0	1	х
2N TRACK JUMP	1	1	0	х
M TRACK MOVE	1	1	1	Х

X=0 FORWARD

X=1 REVER

- *5 RAM SET; Auto sequence timing control
- *6 ZCMT; Zero cross mute
 - HZPD; EFM-PLL defect countermeasure
 - NCLV; New CLV-P servo
 - CRCQ; Q data output sequence
- *7 GSEM, GSEL, WSEL; Frame synchronizing signal protection, Internal compensation control
 - ATTM; Attenuator control
- *8 Tc0-Tc7; Setting the frequency division ratio in the Tracking counter
- *9 CLV Control; CLV servo control

*10 CLV MODE

Mode	D3~D0	MDP terminal	MDS terminal	FSW terminal	MON terminal
STOP	0000	L	Z	L	L
KICK .	1000	Н	Z	L	Н
BRAKE	1010	L	Z	L	Н
CLV-S	1110	CLV-S	Z	L	Н
CLV-H	1100	CLV-H	Z	L	н
CLV-P	1111	CLV-P	CLV-P	Z	Н
CLV-A	0110	CLV-S or CLV-P	Z or CLV-P	L or Z	Н
CLV-A'	0101	CLV-S'P	Z or CLV-P	L or Z	Н

Z : high impedance

13.2.2 Focus Servo Circuitry

Above is a block diagram of the focus servo circuitry. When FS3 is ON, higher range gain of the focus servo can be reduced. The control is determined by the low range time-constant generated by the capacitor and internal resistor connected between terminals No. 8 and 9.

Lower range control of the focus servo in the normal playback mode is controlled by the time constant generated by the capacitor located between terminal No. 10 and GND.

The peak frequency of focus phase compensation is inversely proportional to the value of R 12 connected to terminal No. 23. When resistance is 510k, peak frequency is set at approximately 1.2kHz.

The amplitude of the focus search signal obtained when FS1 and FS2 are controlled becomes 1.1Vp-p as in the case of the constants shown in the above diagram. The height

is inversely proportional to the value of R12 which is connected between terminals No. 35 and 37. It should be remembered that when the resistance is altered not only focus search height but the height of track jump and carriage kick as well are altered. The setting can be varied by system control (serial data) within a range of 1 — 4 times.

The standard voltage for the reversed input of comparator FZC is set at 5.7% the value of Vcc and VC (terminal No. 7), i.e., $(Vcc - VC) \times 5.7\%$.

* Altering the resistance value of the resistor connected to terminal No. 23 will at the same time alter the phase compensation peak value for focus, tracking and carriage servo as well as the fc of the CVL LPF. It will, in addition also alter the dynamic range of the OP Anp and offset voltage.

(a) Focus In Sequence

Focus In Sequence drives the lens to the correct focus position over the disc surface, thereby producing the proper S-shaped focus error check waveform to close the servo loop.

The Focus In Sequence uses the built-in auto sequence function (Auto focus, Fig. 13-18) on IC5: CXA1082AS which is shown in Fig. 13-17.

When Focus In does not work on the first try, move the lens up and then down and then repeat the sequence.

Auto Focus (CXA1082AS Auto Sequence)

Fig. 13-18

Timing Chart

Fig. 13-19

13.2.3 Tracking Carriage Servo Circuitry

Fig. 13-20

Fig. 13-20 is a block diagram of the tracking carriage servo circuitry.

When TG2 is OFF, the capacitor between terminals No. 14 and 15 generates the time constant for reducing higher range gain. The peak frequency for tracking phase compensation is also inversely proportional to the value of R12 connected to Terminal No. 23. When the resistance is $510k\Omega$ the peak frequency is approximately 1.2kHz.

For track jumping in the forward or reverse directions, TM3 or TM4 must be ON. At that time, the peak voltage of terminal TAO is determined by the current value of TM3 or TM4 and feedback resistor from terminal No. 18, i.e..

Track skip peak voltage = TM3 (TM4) current value × feedback resistance value (R18).

Either TM5 or TM6 must be ON to operate carriage kick in either forward or reverse. At that time, the peak voltage for terminal SLO is determined by the current value of TM5 or TM6 and feedback resistor from terminal No. 21.

Carriage jump peak voltage = TM5 (TM6) current value × feedback resistance value (R11).

The resistor connected between terminals No. 35 and 37 determines the current level for the switches. When it is set at $120k\Omega$:

TM3, TM4 are 11μ A TM5, TM6 are $\pm 22\mu$ A.

The settings for TM5 and TM6 can be varied within a range of $\pm 1 - \pm 4$ times by system control (serial data).

S-STOP is the signal used to detect the point at the innermost circumference of the disc beyond which the linear motor should not go.

Fig. 13-21 is a circuit diagram of the carriage tircuitry only.

During normal play, the voltage at resistors R 14 and R109 (in the tracking control system) is used as the input for driving the linear motor, and servo control is applied.

The speed feedback loop (shown in the marked off section of Fig. 13-21 which is labeled A) driven by a loc linear generator in the carriage drive amp section has greatly improved carriage response.

Fig. 13-21

(a) Track Skip

Accessing TRACK SEARCH is done by means of track count jump that rapidly moves the carriage, and track jump which (as described above) uses TM3-5 to kick tracking carriage.

Track jump utilizes the auto sequence function for 1, 10 and 2N track jump (Fig. 13-22,23,24) built into IC5: CXA1082AS. This design is more automated than the conventional design where the sequencer is directly controlled by the system microprocessor.

Auto Sequence Timing Chart

1-Track Skip

BLIND (A), Brake (B) (See Fig. 13-2.)

Fig. 13-22

10-Track Skip

BLIND (A) (See Fig. 13-2.)

Fig. 13-23

2N-Track Skip

BLIND(A), Overflow(C), Kick(D) (See Fig. 13-2.)

Fig. 13-24

M Track Move

BLIND(A) (See Fig. 13-2.)

Fig. 13-25

(b) Brake Mode Circuit

The brake mode facilitates a smooth tracking close when the lens has to be moved in relation to the track after track jump.

The braking operation works by detecting the direction of movement of track and lens on the basis of the phase relation between the RF signal envelope and tracking error, slowing tracking error acceleration and switching the tracking servo into a deceleration mode.

A circuit block diagram and the waveforms in the operation are shown in Fig. 13-26. The brake mode is turned ON/OFF on demand by the system microprocessor.

How TM7 Works

Waveforms

Fig. 13-26

13.2.4. Spindle Servo Circuitry (CLV Servo)

The CLV servos control spindle rotation based on the frame synchronizing signal which includes the EFM signal. There are four sets of servos: the two coarse servos, CLV-S/CLV-S', applied when the tracking servo is open, the CLV-H servo applied during high speed access, and the CLV-P servo applied when locked. Additional servos include CLV-A, employed for the automatic switching mode between CLV-S and CLV-P, and CLV-A' for the automatic switching mode between CLV-S' and CLV-P. Depending on the mode of operation, the system microprocessor (serial data) activates the suitable servo.

We take the operation of CLV-A governing the switching between CLV-S and CLV-P as an example for explanation. If, while CLV-S is applied, we take one 8.4672MHz cycle to be T and set the frame synch signal pulse at 22T, the applied servo functions to keep disc speed at the same speed as when the PLL lock is on. Then, when the disc EFM signal clock is taken as the standard frequency, the lock discriminant signal, "LOCK", changes from $L \rightarrow H$. In response to this, CXD1135QZ switches from CLV-S to CLV-P. CLV-P does a phase comparison between WFCK (output by the VCO synchronized to the EFM signal) and RFCK (output by X'tal) and functions to keep the two equal. If CLV-P's lock should err during PLAY, servo control will immediately go to CLV-S and the whole set of operations here will once again be performed.

CXD1135QZ outputs the signals utilized by the various servos: Signals MDP (phase error signal when CLV-P is applied and speed error signal when CLV-S/S'/H are applied), FSW (filter time constant switch signal), MDN (motor ON/OFF signal). As Fig. 13-27 shows, the 200Hz LPF formed by C31 and R30 connected to terminal No. 42 of CXA1082AS and a built in LPF (at terminal No. 23, fc = 200Hz at 510 Ω k) make up a two-stage LPF that eliminates spurious carrier frequencies from the CLV servo error signals, MDP and MOS.

When CLV-S or S'mode is applied, FSW = L and fc of the LPF at terminal No. 42 is automatically lowered and filter action is enhanced.

The amplified and filtered signal V_{SPDLO} undergoes reverse polarization and amplification at IC6 and, as spindle motor control signal V_{CONT} , is input to the brushless motor PXM1005 to control rotation.

Fig. 13-27

13.2.5 EFM-PLL Circuit

Because the EFM signal output by the optical section contains 2.16MHz clock signal components, a bit clock (PLCK) originating in the the EFM-PLL circuit which is synchronized with the clock signal at 4.32MHz takes out these components.

The PDO terminal in CXD1135QZ outputs a TRI STATE signal that performs phase comparison on the PLCK (which is twice VCO) and the EFM signal. PLCK

should be in phase with the edge of the EFM signal as shown in the figure below. If the two signals are in phase the average voltage of terminal PDO will be 1/2 Vdd. If VCO frequency is too high the PDO voltage is lower and vice versa.

Timing charts for the EFM terminal, EFMO, PLCK and PDO shown below.

EFM signal and VCO are synchronized

VCO is higher than the EFM signal

VCO is lower than the EFM signal

Fig. 13-28 EFM-PLL Circuit Timing Charts

Next, as Fig. 13-29 shows, the phase comparison output, PDO, is input to terminal No. 34 of CXA1082AS, passes through a loop filter which eliminates spurious carrier frequencies coming from PWM, undergoes V-I conversion and is added to the current for the free-run frequency from terminal No. 36 to ultimately control the VCO frequency. The free-run frequency of the VCO is nearly inversely proportional to the value of R31 between terminals No. 36 and 37.

The signal generated by the VCO (8.64 MHz when locked) is returned to terminal No. 9 of CXD1135QZ where it is divided to become the phase comparison signal PLCK to form a servo loop that acts to keep the PLCK phase and the phase of the EFM signal clock components locked in synchronization.

Fig. 13-29

13.3 DEMODULATOR

The demodulator is made up principally of the single chip LSI CXD1135QZ with some added external circuits. It performs the following functions:

- 1. Reproduces the bit clock from the EFM-PLL circuit
- 2. Demodulates EFM data
- 3. Detection, protection and interpolation of frame synch signal
- 4. Error detection and correction
- 5. Interpolation average value and holds occurring just before defective spots
- 6. Sub-code signal demodulation and sub-code Q error detection
- 7. Spindle motor CLV servo
- 8. 8 bit tracking counter
- 9. CPU interphase by serial bus
- 10.Sub-code Q register
- 11. Digital audio interface output

EFM data is converted into a TTL level signal in CXA1081S and then used to perform various functions. The tracking counter uses an RF generated pulse for counting.

13.4 DIGITAL AUDIO INTERFACE

The PD-91 CD player has an optical and coaxial dual system digital interface output. The digital audio interface output from IC12 is shaped into a wave form at IC19 and is converted to format output 0.5Vp-p at inverter driver IC16 and pulse transformer L1201. Since a TTL driver can be used for optical output, after polarity is brought into agreement, optical output is sent to optical driver JA1201.

Fig. 13-30

13.5 DIGITAL ATTENUATOR

Of the digital data demodulated and de-interleaved in the decoder, the audio data is sent to the digital attenuator. Attenuator volume is set in the attenuator by control data sent from the system microprocessor. Attenuator volume and the digital data are multiplied and the digital data with an optimal level of attenuator volume are output.

Fig. 13-31

13.6 DIGITAL FILTER

The digital filter used in the PD-91 has 8 times oversampling and 18-bit output. Arithmetic is performed by a three-stage cascade consisting of FIR225 + 41 + 21 sequence with 8 times oversampling.

Fig. 13-32

13.7 SERIAL PARALLEL CONVERTER

Because the digital filter's output is the 18 bit serial data, it must be converted to parallel data before being transmitted to the D/A converter.

13.8 AUDIO SECTION

3.8.1 D/A Converter and Related Parts

The 18 bit parallel data which has passed through the serial data converter is converted to an analog signal by the D/A converters IC500,IC600. The D/A converters are of the ladder resistor type, and convert the current output. This current undergoes voltage conversion at the next stage IC 602 (1/2). Output has a peak of 10V. Q601, 602 are power boosters. Glitch noise is eliminated from the voltage converted waveform at the next stage circuit S/H.

Deglitch control derives its timing from IC700 and sampling and hold operations are performed by turning Q603, 605 ON and OFF. During sampling, Q605 is ON and Q603 is OFF. During hold, the reverse is true. When Q605 is ON output from the preceding stage is being charged by C621 and when Q605 is OFF, hold is being performed. At this stage gain is controlled at R604 and 607 and is — 9.9dB. Sample holding is as shown in the diagram below. Q606 and 607 are power boosters.

Fig. 13-33

Fig. 13-34

S/H output passes through a demphasis circuit and then through a 3-stage active LPF. When deemphasis is ON, Q610 is ON and a -6dB/oct attenuation characteristic with time constants of 50μ S, 15μ S is generated at R609,

610, C626. Deemphasis control is governed by the IC3 system controller using sub-code Q.

The 3-stage active LPF is a Butterworth LPF with fc = 40kHz.

13.8.3 Output Selector

Output ON/OFF is controlled in the PD-91 by a rotary type switch with three modes:

- 1. DIGITAL ON
- 2. BOTH ON
- 3. ANALOG ON

This control is performed at S1101.

When S1101 is set at ANALOG ON, the output of IC16 becomes H.

The output of Pin 27 DOTX is controlled by the logic of Pin 56 MD2 in IC12 and when Pin 56 is switched to "H", DIGITAL OUT output is cancelled. At this time Pin 27 outputs WFCK. This condition continues until the next

stage IC19 D-FF gives an "L" signal to CLEAR. When S1101 is set to DIGITAL ON, the ANALOG signal for the following operations is cancelled:

- 1) RSTL on the IC700 serial-parallel converter goes to "L" level and serial-parallel operations cease,
- 2) IC705 NAND input goes to "L" and deglitching ceases,
- 3) MUTING relay driver is stopped and MUTING is

When S1101 is set to BOTH ON, none of the above occurs and DIGITAL and ANALOG sections output signals normally.

14. MECHANISM DESCRIPTION

OPEN Operation

(1) Clamper UP operation

(2) Disc plate UP operation

(3) Loading tray OPEN operation

• CLOSE Operation

(1) Loading tray CLOSE operation

(2) Clamper DOWN operation

(3) Disc plate DOWN operation

15. IC INFORMATION

PDG010

• Layout of the Terminals on the IC

• Terminal Names and Functions

Terminal No.	I/O	Terminal Code	Terminal Name	When reset	After initializing	Explanation
1	0	PY ₀	STS	Н	L	Serial transmission Accept Ignore
2	1	PYı	CHIPS	_	_	Serial signal Permit Prohibit
3	1	RMC	RMC	_		Remote control signal Reception terminal
4	1	SC	CLK	_	_	Serial external clock
5	1	PX ₁	DCSL	_	_	Remote control decode Static port select
6	ı	PX ₂	DFSL	_	_	Data format select
7	l	SI	SD			Serial data
8	0	PD₀	KD₀	_	L	Key data 0
9	0	PD_1	KD ₁	_	L	Key data 1
10	0	PD ₂	KD₂	_	L	Key data 2
11	0	PD ₃	KD₃	_	L	Key data 3
12	0	PC ₃	KD₄	_	L	Key data 4
13	0	PC ₁	KD₅	_	L	Key data 5
14	0	PC ₂	KS	_	Н	Key strobe Key in No
15	0	PC₃	RKS	_	Н	Remote control key strobe Remote control in No
16	0	PF₀	KDIG 0	_	<u></u>	Key digit 0
17	0	PF_{i}	KDIG 1		7	Key digit 1
18	0	PF ₂	KDIG 2			Key digit 2
19	0	PF ₃	KDIG 3	_	7	Key digit 3
20	0	PE ₀	KDIG 4	_	7	Key digit 7
21	0	PEı	KDIG5	-	7	Key digit 5
22	0	PE ₂	KDIG 6	-	-	Key digit 6
23	0	PE ₃	KDIG 7		5	Key digit 7
24	ı	PB ₀	KIN O	-		Key in 0
25	ı	PB ₁	KIN 1	_		Key in 1
26	1	PB ₂	KIN 2	_		Key in 2
27	1	PB ₃	KIN 3		_	Key in 3
28	I/O	PA₀	KIN4/PAø		—/H	Key in 4/Static output PAø
29	1/0	PAi	KIN5/PA1	_	_/H	Key in 5/Static output PA1
30	1/0	PA ₂	KIN6/PA2		—/H	Key in 6/Static output PA2

Terminal No.	1/0	Terminal Code	Terminal Name	When reset	After initializing	Explanation
31	0	PA ₃	PA3	_	н	Static output PA3
32		Vss	GND			GND
33	0	S ₀	а	-26V	-26V	Segment a
34	0	Sı	b	-26V	~26V	Segment b
35	0	S ₂	С	-26V	- 26V	Segment c
36	0	S ₃	d	-26V	-26V	Segment d
37	0	S ₄	е	-26V	- 26V	Segment e
38	0	S ₅	f	-26V	-26V	Segment f
39	Q	S ₆	g	-26V	-26V	Segment g
40	0	S ₇	h	-26V	-26V	Segment h
41	0	S ₈	i	-26V	-26V	Segment i
42	,0	S ₉	j	-26V	- 26V	Segment j
43	0	S ₁₀	k	-26V	- 26V	Segment k
44	0	Sii	l	-26V	- 26V	Segment I
45	0	S ₁₂	m	-26V	- 26V	Segment m
46	0	S ₁₃	n	- 26V	- 26V	Segment n
47	0	S ₁₄ /T ₉	O/G10	- 26V	- 26V	Segment o/Grid 10
48	0	S ₁₅ /T ₈	P/G9	- 26V	- 26V	Segment p/ Grid 9
49	0	T ₇	G8	-26V	- 26V	Grid 8
50	0	T ₆	G 7	-26V	- 26V	Grid 7
51	0	T ₅	G6	~26V	- 26V	Grid 6
52	0	T ₄	G5	-26V	-26V	Grid 5
53	0	T ₃	G4	- 26V	-26V	Grid 4
54	0	T ₂	G3	-26V	- 26V	Grid 3
55	0	Ti	G2	- 26V	- 26V	Grid 2
56	0	To	G1	- 26V	- 26V	Grid 1
57	_	V_{FDP}	– 26V	ww	S	- 26V FL power supply
58	i	Int2	Not in use	_	_	GND
59		Int1	Not in use	– .	-	GND
60	0	Xtal	_			Clock output
61	ı	Extal	_		_	Clock input
62	l l	RES	SRES	1	_	Reset input Reset RUN
63	0	PYo	PYo	Н	Н	Static output PYo
64		V_{DD}	+ 5V			+5V micro processor power supply 5V

H: Hi-LEVEL L: Lo-LEVEL -: Hi-Imp

PD3094

• Layout of the Chip Terminals

• Terminal Names and Functions

Terminal No.	Terminal Code	Terminal Name	I/O	Reset	Explanation	
1	Vcc	-	_		GND	
2	XTAL	-	_		(OPEN)	
3	EXTAL	_	· —		Internal clock circuit output	
4	MPO	-	Input	-	+ 5V	
5	MP1	_	Input		+ 5V	
6	RES		Input	_	CPU reset input	Reset RUN
7	STBY	_	Input	_	CPU standby input	Stand-by RUN
8	NIMI	SCOR	Input		Sub code synch input	Synch
9	P20	LOK	Input	_	Focus OK	NG OK
10	P21	XLT	Ooutput	Н	LSI control data deep pulse	Execute
11	SCLK	CLK	Output	Н	Serial transmission clock	
12	Rx	SUBQ	Input	_	Sub-code Q data input	
13	Tx	DATA	Output	L	Serial data output	0 2 3 4 5 6 7
14	P25	SENS	Input	_	LSI multi-mode input	
15	P26	MUTE	Output	Н	Muting output (digital section)	OFF ON
16	P27	GFS	Input	T -	Frame synch lock	NG LOCK
17	P50	LDON	Output	Н	Laser diode ON/OFF	ON OFF
18	P51	DEMP	Output	Н	Deemphasis ON/OFF	ON OFF
19	P52	TEST	Input	<u> </u>	Test mode switch input	TEST NORMAL
20	P53	Not in use	Output	L.	(OPEN)	
21	P54	AMUTE	Output	Н	Muting output (analog section)	OFF ON
22	P55	LCCS	Input		Local circuit cancel input	CANSEL NORMAL
23	P56	Not in use	Output	L	(OPEN)	
24	P57	Not in use	Output	L	(OPEN)	
25	P60	JTMS	Input	_	Jump delay time	SHORT LONG
26	P61	Not in use	Output	L	(OPEN)	
27	P62	Not in use	Output	L	(OPEN)	
28	P63	LOAD	Input	_	Loading complete	LOAD-IN NOT
29	P64	CLOP	Input	_	Clamp-up complete	CLAMP-UP NOT
30	P65	OPEN	Input	_	Tray open complete	OPEN NOT
31	P66	CLMP	Input	-	Clamp complete	CLAMP NOT
32	P67	Not in use	Output	L	(OPEN)	
33	Vcc	_	_		+5	
34	P47	ALAT	Output	Н	Attenuation level latch pulse output	Execute

Terminal No.	Terminal Code	Terminal Name	I/O	Reset	Explanation	
35	P46	ADAT	Output	Н	Attenuation level data	0 1 2 3 4 5 6 7
36	P45	ACLK	Output	Н	Attenuation level clock	
37	P44	LIN	Output	L	Disc tray loading	Free Brake IN
38	⁻ P43	LOUT	Output	L	IN/OUT output	OUT
39	P42	CLUP	Output	L	Disc clamp	Free Brake UP
40	P41	CLDW	Output	L	UP/DOWN output	DOWN
41	P40	STS	Input	-	Display data transmission allow input	Permit Prohibit
42	Vss	_	_	_	GND	
43	P17	Not in use	Output	L	(OPEN)	
44	P16	Not in use	Output	L	(OPEN)	
45	P15	FLOF	Output	Н	FL display OFF control	ON OFF
46	P14	Not in use	Output	L	(OPEN)	
4.7	P13	Not in use	Output	L	(OPEN)	
4.8	P12	SCK	Output	Н	Display data serial transmission clock	
49	P11	SD	Output	Н	Display data serial output	
50	P10	SRES	Output	L	Key display system microprocessor reset output	RESET RUN
51	P37	RKS	Input		Remote control keep strobe input	ON OFF
52	P36	KS	Input	_	Unit key strobe input	ON OFF
53	P35	KD5	Input	_	Unit remote control key code input (MSB)	
54	P34	KD4	Input		Unit remote control key code input	
55	P33	KD3	Input		Unit remote control key code input	
56	P32	KD2	Input	_	Unit remote control key code input	
57	P31	KD1	Input	_	Unit remote control key code input	
58	P30	KDø	Input		Unit remote control key code input (LSB)	
59	P74	Not in use	Output	L	(OPEN)	•
60	P73	Not in use	Output	L	(OPEN)	
62	P71	Not in use	Output	L	(OPEN)	
63	P70	Not in use	Output	L	(OPEN)	
64	E	_	Ouptut	_	(OPEN)	

PDE023

• Layout of the Chip Terminals

Terminal Nos. and Codes

l erminal Nos. and Codes						
Terminal No.	Terminal Code	1/0				
ı	RSTL	l				
2	LRCK	I				
3	SDGR	1				
4	YDGL	I I				
5	LDAT	ı				
6	RDAT	I				
7	WCIN	1				
8	BCKI	ı				
9	Vss	Р				
10	LD 00	0				
11	LD 01	0				
12	LD 02	0				
13	LD 03	0				
14	LD 04	0				
15	LD 05	0				
16	LD 06	0				
17	Vss	Р				
18	LD 07	0				
19	LD 08	0				
20	LD 09	0				
21	LD 10	0				
22	LDII	0				
23	LD 12	0				
24	NC	NC				
25	Vss	Р				
26	LD 13	0				
27	LD 14	0				
28	LD 15	0				
29	LD 16	0				
30	LD 17	0				
31	LD 18	0				
32	Vss	Р				

- 1	: Input pin,
0	: Output pin,
В	: I/O pin,
Ρ	: Power pin,
NC	: Not connected

Terminal No.	Terminal code	1/0
64	SYSL	ı
63	Vss	Р
62	RD 18	0
61	RD 7	0
60	RD 16	0
59	RD 15	0
58	RD 14	0
57	Vss	Р
56	Vaa	Р
55	RD 13	0
54	RD 12	0
53	RDII	0
52	RD IO	0
51	RD 09	0
50	RD 08	0
49	Vss	Р
48	NC	NC
47	RD 07	0
46	RD 06	0
45	RD 05	0
44	VDD	Р
43	RD 04	0
42	RD 03	0
41	RD 02	0
40	RD0I	0
39	RD 00	0
38	Vss	Р
37	SDGS	0
36	SDGH	0
35	YDGS	0
34	YDGH	0
33	NC	NC A

PD0026

• Layout of Terminals

• Terminal Functions

Terminal No.	Terminal Code	Terminal Name	I/O	Explanation
1	16/24	16/24	Input	DATA switch terminal
2	D4	ATTENUATION DATA 4	Output	Attenuation level (0 — -36dB) display terminal Open drain output*
3	RESET	RESET	Input	IC internal reset terminal (Attenuation level, OdB)
4	DOUT	DATA OUT	Output	16-bit serial data output terminal for DAC (2 complements, MSB first)
5	ACLK	ATTENUATION CLOCK	Input	Attenuation level writing clock signal
6	ADATA	ATTENUATION DATA	Input	Attenuation level data input terminal (Binary, MSB first)
7	ALAT	ATTENUATION LATCH PULSE	Input	Attenuation level latch pulse input terminal
8	VSS			Ground terminal
9	DO	ATTENUATION DATA 0	Output	Attenuation level (OdB) display terminal Open drain output*
10	D1	ATTENUATION DATA 1	Output	Attenuation level (0 — -6dB) display terminal Open drain output*
11	D2	ATTENUATION DATA 2	Output	Attenuation level (0 — - 12dB) display terminal Open drain output*
12	D3	ATTENUATION DATA 3	Output	Attenuation level (0 — - 24dB) display terminal Open drain output*
13	WCLK	WORD CLOCK	Input	Word clock input terminal
14	DATA	DATA	Input	16-bit serial data input terminal for DAC (2 complements, MSB first)
15	BCLK	BIT CLOCK	Input	Bit clock input terminal
16	VDD			Power terminal

* Attenuation Level Indicators

		Indicator interv				
Attenuation data	Amount of ATT	D 0	DΙ	D 2	D 3	D 4
10110000((2)	0dB	*	1	1	↑	↑
10100000 (2)	- 6dB		*			
10010000 (2)	- I2dB			*		
0 1 0 0 0 0 (2)	- 24 dB				*	
0 0 0 0 0 0 (2)	- 36dB					*
000000000(2)	- ∞	_ _				

An asterisk ("*") signifies an "L" output status

YM3414

• Terminal Layout Diagram

• Terminal Functions

Terminal Code	Terminal No.	1/0	Explanation
SHL	1	0	When 1DAC, ST = "L": Lch deglitcher signal When 2DAC, ST = "H": L/Rch deglitcher signals
XO XI	2 3	0 1	There is a crystal oscillator between XI and XO. When FEN = "L" at 392fs: 17.2872MHz. When FEN = "H" at 384fs: 16.9344MHz (XI can directly receive external input)
Vdd 2	4		+5V power source terminal for crystal oscillator and deglitcher signal.
BCI	5	ı	Bit clock input terminal for input data
SDSY	6	1	L/Rch differentiation of input data and clock indicating input timing
SDI	7	I	Data input terminal
Vdd 1	8		+5V power supply terminal for digital signal section
DLO	9	0	When 1DAC, ST="L": L, Rch data output terminal When 2DAC, ST="H": Lch data output terminal
DRO	10	0	Rch data output terminal
WCO	11	0	Word clock for output data DLO, DRO
BCO	12	0	Bit clock for output data. SPC-II, SPC-III system clocck output terminal
Vss	13		GND terminal
ST	14	I	1DAC/2DAC switching terminal (1DAC="L", 2DAC="H")
FEN	15	1	System clock switching terminal (392fs = "L", 384fs"H")
SHR	16	0	Rch deglitcher signal when switched to 1DAC

LC3517

• Terminal Layout

TOP VIEW A7 🗖 1 24 🖒 Vcc A 6 🔲 2 23 🗖 A8 22 A 9 A5 🛚 3 21 🗖 WE A 4 🔲 4 20 DE A3 🗖 5 19 🗖 A10 A 2 🕇 6 18 🗖 CE A | 7 A 0 🔲 8 17 | 1/08 1/01 🗍 9 16 🗍 1/07 15 📙 1/06 1/02 🔲 10 1/03 🗍 11 14 🗍 1/05 GND | 12 13 🔲 1/04

A0~A10	Adddress input
WE	Read/write control input
ŌĒ	Output enable input
CE	Chip enable input
1/01 ~1/08	Data I/O
Vcc/GND	Power supply terminal

• Table of Function

Mode	CE	ŌĒ	WE	1/0	Power supply current
Read cycle	L	L	Н	Data output	ICCA
Write cycle	L	×	L	Data input	ICCA
Output disable	L	н	×	High impedance	ICCA
Non-select	н	x	x	High impedance	ICCS

• Terminal Function

Terminal No.	Terminal code	Explanation of terminals
1	A7	Address input
ς 8	ÃO	Address input
9 ς 11	I/01 \$ I/03	Data I/O
12	GND	GND
13	1/04 \$ 1/08	Data I/O
18	CE	Chip enable input
19	A10	Address input
20	ŌĒ	Output enable input
21	WE	Read/write control input
22	A9	
23	A8	Address uboyt
24	VCC	Power supply terminals

16. FOR HEM TYPE

CONTRAST OF MISCELLANEOUS PARTS

NOTES:

• Parts without part number cannot be supplied.

- The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- For your parts Stock Control, the fast moving items are indicated with the marks ★ ★ and ★.
 - ** GENERALLY MOVES FASTER THAN *

This classification shall be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

• Parts marked by "@" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

The PD-91/HEM type is the same as the PD-91/KU/CA type with the exception of the following sections.

		Parts		
Mark	Symbol & Description	PD-91/KU/CA	PD-91/HEM	Remarks
Δ Δ Δ * Δ *	Main board assembly Strain relief FL filter AC Power cord Power transformer (AC220/240V) Power transformer (AC120V) Operating instructions (English) Operating instructions (English/German/French/Italian) Operating instructions (Dutch/Swedish/Spanish/Portuguese)	Non supply CM-22C PAM1152 PDG1002 PTT1039 PRB1041	Non supply CCM-22B PAM1134 PDG1003 PTT1038 PRE1038	

CONTRAST OF MAIN BOARD ASSEMBLY

The Main Board Assembly (for PD-91/HEM) is the same as the Main Board Assembly (for PD-91/KU/CA) with the exception of the following sections.

Mark	Symbol & Description	Parts No.		Renarks
		KU/CA type	HEM type	Reliairs
Δ **	IC24, IC25		ICP-F15	

Schematic diagram

Line Voltage Selection for HEM Type

- 1. Disconnect the AC power cord.
- 2. Remove the bonnet case.
- 3. Change the connection of the power transformer primary lead wires as follows:

220V: Connect the blue lead wire to the No. 3 terminal on the primary board assembly and connect the violet lead wire to the No. 5 terminal.

240V: Connect the blue lead wire to the No. 5 terminal on the primary board assembly and connect the violet wire to the No. 3 terminal.

4. Stick the line voltage label on the rear panel.

Description	Part No.	
220V label	AAX-193	
240V label	AAX-192	

• P.C.Board pattern

