Basics on NorESM model output

Yanchun He

Nansen Environment and Remote Sensing Center 27 November, 2023

Directories storing model output

1. Run directory: (on Fram/Betzy)
 // cluster/work/users/<username>/noresm/cases/\$CASE

2. Short-term archive: (on Fram/Betzy)

/cluster/work/users/<username>/archive/cases/\$CASE

NOTE, files older than 21 days might be automatic deleted (see Fram/Betzy documentation)

3. Medium/Long-term archive: should archive the data to the NIRD project areas, e.g., /projects/NS2345K for INES project.

Archive structure of model output

History File Naming Conventions

- All history output files are written in NetCDF-3 format, and automatically converted to compressed NetCDF-4 format (with tool noresm2netcdf4)
- Output of each component store seperately as <component>/hist, e.g, atm/hist ocn/hist, etc. Restart files are stored under rest/hist.

Example history file names:

- <compset name>_<resolution sname>_<opt_desc_string>_<component>.<frequency>_<date>.nc
- N1850frc2_f19_tn14_Workshop2021.blom.hm.0001-01.nc
- N1850frc2_f19_tn14_Workshop2021.cam.h0.0001-01.nc

By default, ho, hm denotes that the time sampling frequency is monthly.

Other frequencies are saved under the h1, h2, etc.

Different time sampling frequencies have distinct tags in the file names.

A full list of the tags:

```
= blom yearly
         - blom.hy
         - blom.hbgcy = blom/bgc yearly
         - blom.hm
                      = blom monthly
         - blom.hbgcm = blom/bgc monthly
         - blom.hd
                      = blom daily
         - blom.hbgcd = blom/bgc daily
         - cice.h = ice monthly
         - cice.h1
                     = ice daily
         - cam.h0
                      = cam monthly
         - cam.h1 = cam daily
         - cam.h2 = cam 6-hourly average
- cam.h3 = cam 6-hourly instant
         - cam.h4
                      = cam 3-hourly average
         - cam.h5
                      = cam 3-hourly instant
         - clm2.h4
                      = clm yearly
         - clm2.h0
                      = clm monthly
         - clm2.h1
                      = clm daily
                      = clm 3-hourly average
         - clm2.h2
                      = clm 3-hourly instant
         - clm2.h3
NorESM User Workshop, 27th, November 2023
```

<div class="columns"> <div>

NorESM horizontal and vertical grid system

Horizontal grids

- NorESM2-LM (CAM) for CMIP6: 2x2 degree
- NorESM2-MM (CAM) for CMIP6: 2x2 degree
- NorESM1 (MICOM) for CMIP5: bipolar grid
- NorESM2-LM/MM (BLOM) for CMIP6: tripolar grid

CAM: 2x2 degree

```
$ ncdump -h NHIST_f19_tn14_20200909_test1.cam.h0.2000-06.nc
netcdf NHIST_f19_tn14_20200909_test1.cam.h0.2000-06 {
dimensions:
    lat = 96 ;
    lon = 144 ;
    zlon = 1 ;
    nbnd = 2 ;
    time = UNLIMITED ; // (1 currently)
    chars = 8 ;
    lev = 32 ;
    ilev = 33 ;
```

</div> <div> </div> </div>

<div class="columns"> <div>

NorESM horizontal and vertical grid system

Horizontal grids

- NorESM2-LM (CAM) for CMIP6: 2x2 degree
- NorESM2-MM (CAM) for CMIP6: 2x2 degree
- NorESM1 (MICOM) for CMIP5: bipolar grid
- NorESM2-LM/MM (BLOM) for CMIP6: tripolar grid

CAM: 1x1 degree

```
$ ncdump -h NHISTfrc2_f09_tn14_20200718.cam.h0.2000-06.nc
netcdf NHISTfrc2_f09_tn14_20200718.cam.h0.2000-06 {
    dimensions:
        lat = 192 ;
        lon = 288 ;
        zlon = 1 ;
        nbnd = 2 ;
        time = UNLIMITED ; // (1 currently)
        chars = 8 ;
        lev = 32 ;
        ilev = 33 ;
```

</div> <div> </div> </div>

NorESM horizontal and vertical grid system

Horizontal grids

- NorESM2-LM (CAM) for CMIP6: 2x2 degree
- NorESM2-MM (CAM) for CMIP6: 2x2 degree
- NorESM1 (MICOM) for CMIP5: bipolar grid
- NorESM2-LM/MM (BLOM) for CMIP6: tripolar grid

BLOM: 1x1 degree (tripolar)

</div> <div>

Horizontal Arakawa-C grid staggering of variables

NorESkinus sro#binages/grid2d\bvengewidth="500px" alt="Arakawa-C (https://xgcm.readthedocs.io/en/latest/grids.html)"> </div>

NorESM horizontal and vertical grid system

Vertical grids

<div class="columns"> <div>

- CAM: terrian-following sigma coordinate
- BLOM: isopycnic (potential density σ_2) coordinated vertical coordinate

```
float temp(time, sigma, y, x) ;
    temp:_FillValue = 9.96921e+36f ;
    temp:units = "degC" ;
    temp:long_name = "Temperature" ;
    temp:coordinates = "plon plat" ;
    temp:cell_measures = "area: parea" ;

float templvl(time, depth, y, x) ;
    templvl:_FillValue = 9.96921e+36f ;
    templvl:units = "degC" ;
    templvl:long_name = "Temperature" ;
    templvl:standard_name = "Ocean temperature" ;
    templvl:coordinates = "plon plat" ;
    templvl:coordinates = "area: parea" ;
```

 </div> <div> </div> </div>

NorESM output time axis/variable

BLOM

The time coordinate variable in ocean model BLOM history represents the middle of the averaging period for variables that are averages.

Notime_bounds for the time axis.

BLOM output

```
$ ncdump -t -v time N1850frc2_f19_tn14_Workshop2020.blom.hm.0001-01.nc |tail -4
data:
    time = "0001-01-17";
}
```

NorESM output time axis/variable

CAM

The time coordinate variable in atmospheric model CAM history and timeseries files represents the end of the averaging period for variables that are averages (inherited from CESM). Its time_bnds attribute of time axis gives over which period the field is averaged.

```
Example File: N1850frc2_f19_tn14_Workshop2020.cam.h0.0001-01.nc
```

When the time coordinate variable is translated, the time is 00Z Februray 1st 0001, even though the file holds averaged variables for January 0001.

CAM output

The end!