(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 24. Juni 2004 (24.06.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/053420 A1

(51) Internationale Patentklassifikation7:

Harald [DE/DE]; Mohnblumenstrasse 13, 85247 Schwabhausen (DE). GALL, Peter [DE/DE]; Stralsunderstrasse 11, 56075 Koblenz (DE).

(21) Internationales Aktenzeichen: (22) Internationales Anmeldedatum:

PCT/DE2003/004010

5. Dezember 2003 (05.12.2003)

(74) Anwalt: FEDER, Wolf-D.; Dominikanerstrasse 37, 40545 Düsseldorf (DE).

(25) Einreichungssprache:

Deutsch

F41H 5/04

(81) Bestimmungsstaaten (national): IL, JP, KR, US, ZA.

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 12. Dezember 2002 (12.12.2002) 102 57 942.3

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): KRAUSS-MAFFEI WEGMANN GMBH & CO.

Veröffentlicht:

mit internationalem Recherchenbericht

KG [DE/DE]; August-Bode-Strasse 1, 34127 Kassel (DE).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): WESTERMANN,

(54) Title: PROTECTION MODULE FOR PROTECTING OBJECTS AGAINST THREATS, ESPECIALLY AGAINST HOLLOW LOADS

(54) Bezeichnung: SCHUTZMODUL ZUM SCHUTZ VON OBJEKTEN GEGEN BEDROHUNGEN, INSBESONDERE DURCH HOHLLADUNGEN

(57) Abstract: A protection module for protecting objects against threats, especially hollow loads. The protection module is made of a material or contains a material which is configured as a three-dimensional metal grid structure or open-pored metal foam which is 5 - 40 ppi thick. A solid or liquid material can be introduced into the pores of said material. The protection module can be structured in such a way that a sequence of layers is arranged inside a housing (2',3',4',5'), said layer sequence containing layers (7,9) of material embodied in the form of a three-dimensional metal grid structure or open pored metal foam, and layers (6,8,10) of air.

(57) Zusammenfassung: Ein Schutzmodul zum Schutz von Objekten gegen Bedrohungen, insbesondere durch Hohlladungen. Das Schutzmodul ist aus einem Material aufgebaut oder enthält ein Material, das als dreidimensionale metallische Gitternetzstruktur oder offenporiger Metallschaum mit einer Dichte von 5 bis 40 ppi ausgebildet ist. In die Poren dieses Materials kann ein fester oder flüssiger Stoff als Füllmaterial eingebracht sein. Das Schutzmodul kann in der Weise aufgebaut sein, dass innerhalb eines Gehäuses (2', 3', 4', 5') eine Schichtenfolge angeordnet ist, die sowohl Schichten (7, 9) aus dem als dreidimensionale metallische Gitternetzstruktur bzw. offenporiger Metallschaum ausgebildeten Material als auch Schichten (6, 8, 10) aus Luft enthält.

Schutzmodul zum Schutz von Objekten gegen Bedrohungen, insbesondere durch Hohlladungen

Beschreibung:

Die vorliegende Erfindung betrifft ein Schutzmodul zum Schutz von Objekten gegen Bedrohungen, insbesondere durch Hohlladungen.

Zum Schutz von Objekten, beispielsweise Kampfpanzern, gegen Hohlladungen werden bereits verschiedene Arten von Schutzaufbauten eingesetzt, die meist in Schichtbauweise ausgebildet sind und aus unterschiedlichen Materialien bestehen können. Das grundsätzliche Wirkungsprinzip dieser Schutzaufbauten besteht darin, durch möglichst häufige Materialübergänge den bei einer Hohlladung entstehenden Kupferstachel weitestmöglich aufzufächern, so dass seine Penetrationswirkung signifikant reduziert wird.

PCT/DE2003/004010

WO 2004/053420

Derartige Schutzaufbauten gegen Hohlladungen werden bereits auf verschiedenen militärischen Fahrzeugen verwendet.

2

5

Die bisher entwickelten und eingesetzten Schutzaufbauten gegen Hohlladungen besitzen jedoch relativ wenig Materialübergänge und weisen hohe Flächengewichte auf.

10 Der Erfindung liegt die Aufgabe zugrunde, ein Schutzmodul zum Schutz von Objekten gegen Bedrohungen insbesondere durch Hohlladungen zu schaffen, das ein außerordentlich niedriges Flächengewicht aufweist und mit dem es möglich ist, eine weitgehende Auffächerung des bei Hohlladungen typischen Kupferstachels zu erzielen.

15

20

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Schutzmodul aus einem Material aufgebaut ist oder ein Material enthält, das als dreidimensionale metallische Gitternetzstruktur oder offenporiger Metallschaum mit einer Dichte von 5 bis 40 ppi (pores per inch) ausgebildet ist. Dabei ist es vorteilhaft, wenn die Dichte der dreidimensionalen metallischen Gitternetzstruktur bzw. des offenporigen Metallschaums 10 bis 20 ppi (pores per inch) beträgt.

Der Grundgedanke der Erfindung besteht darin, zum Aufbau eines Schutzmoduls ein Material zu verwenden, das an sich bekannt ist, aber bisher nur für 25 gänzlich andere Zwecke eingesetzt wurde. Es handelt sich um ein Material, das im allgemeinen als dreidimensionale metallische Gitternetzstruktur oder auch als offenporiger Metallschaum bezeichnet wird. Derartige Materialien sind bekannt, und ihre Herstellung ist beispielsweise in DE 199 39 155 A1 und 30 DE 199 46 528 A1 beschrieben. Das Material wurde bisher beispielsweise zum Aufbau von Wärmetauschern oder auch als Tankschutz eingesetzt.

Verwendet man dieses Material als Basismaterial zum Aufbau eines Schutzmoduls in Leichtbauweise, so erreicht man durch den speziellen Aufbau dieses 35 Materials eine außerordentlich große Anzahl von Materialübergängen zwischen dem Basismaterial und Luft bzw. einer in dieses offenporige Basismaterial eingebrachten Füllung.

Um möglichst wirksame Materialübergänge und ein geringes Flächengewicht zu erreichen, sollte die Dichte des als metallische Gitternetzstruktur bzw. offenporiger Metallschaum ausgebildeten Materials zwischen 5 und 40 ppi, vorzugsweise zwischen 10 und 20 ppi liegen (ppi = pores per inch).

Es sind prinzipiell alle Metalle zur Herstellung eines derartigen Materials verwendbar. Besonders geeignet sind gut gießbare Metalle wie Eisen bzw. Stahl, Aluminium, Silber, Gold u.a..

Es hat sich als besonders vorteilhaft erwiesen, in die Hohlräume des als metallische Gitternetzstruktur bzw. offenporiger Metallschaum ausgebildeten Materials ein Füllmaterial einzubringen. Dieses Füllmaterial kann ein fester Stoff sein, beispielsweise ein keramisches Material auf der Basis von SiO oder ein Mineral oder ein Metall, es kann aber auch als Füllmaterial ein flüssiger Stoff wie beispielsweise Wasser oder Glykol eingebracht werden.

Als typisches Basismaterial kann beispielsweise eine metallische Gitternetzstruktur oder ein offenporiger Metallschaum aus Aluminium dienen, der außen mit Stahl beschichtet ist.

Für die praktische Anwendung als Schutzmodul hat es sich als vorteilhaft erwiesen, wenn das als metallische Gitternetzstruktur oder offenporiger Metallschaum ausgebildete Material in ein Gehäuse eingebracht ist, wobei dieses Gehäuse Befestigungselemente zum Befestigen des Schutzmoduls an einem Objekt, beispielsweise einem Kampffahrzeug, aufweisen kann. Ein solches Gehäuse kann beispielsweise aus dünnen Panzerstahlblechen aufgebaut sein, in das dieses Material, ggf. mit zusätzlichen Luftzwischenräumen, eingebracht ist.

Die Dicke der verwendeten Materialschicht bzw. des Schutzmoduls richtet sich nach dem Aufbau des Schutzmoduls und nach der zu erwartenden Bedrohung.

5

10

4

Sie kann beispielhaft 40 bis 100 mm betragen, aber auch dünner oder dicker sein.

5

Im folgenden werden anhand der beigefügten Zeichnungen Ausführungsbeispiele für ein Schutzmodul nach der Erfindung näher erläutert.

In den Zeichnungen zeigen:

10

- Fig. 1 in einer perspektivischen Darstellung ein aus einer dreidimensionalen metallischen Gitternetzstruktur bzw. einem offenporigen Metallschaum bestehendes Materialstück;
- 15 Fig. 2 in einem Längsschnitt ein mit einem Materialstück analog Fig. 1 aufgebautes Schutzmodul;
 - Fig. 3 in einer Darstellung analog Fig. 2 ein in Schichtbauweise aufgebautes Schutzmodul.

20

25

- Fig. 1 zeigt ein Materialstück 1, das als räumliche metallische Gitternetzstruktur bzw. offenporiger Metallschaum ausgebildet und nach bekannten Verfahren hergestellt ist. Die in Fig. 1 verwendete Kreuzschraffur soll die Struktur des Materialstücks 1 lediglich symbolisch andeuten. Das Material kann beispielsweise ein offenporiger Aluminiumschaum sein mit in unregelmäßiger statistischer Verteilung angeordneten Querschnittsflächen.
- Fig. 2 zeigt ein Schutzmodul mit beispielsweise aus Stahl bestehenden Wänden 2, 3, 4 und 5, das mit einem Material 1' gefüllt ist, das in der beschriebenen Weise als räumliche metallische Gitternetzstruktur bzw. offenporiger Metallschaum ausgebildet ist.

5

Fig. 3 zeigt eine andere Ausführungsform eines Schutzmoduls mit beispielsweise aus Stahl bestehenden Wänden 2', 3', 4' und 5', das in Schichtbauweise aufgebaut ist, also beispielsweise in der Reihenfolge Frontblech 2'-Luft 6offenporiger Metallschaum 7-Luft 8-offenporiger Metallschaum 9-Luft 10-Abschlussblech 3'.

Selbstverständlich ist hier eine Vielzahl von Anordnungen der Schichtung

möglich. Ebenso können unterschiedliche Materialien zum Aufbau der
Schichten verwendet werden und anstelle der Luftzwischenräume können Füllungen beispielsweise aus einem keramischen oder mineralischen Material oder einer Flüssigkeit verwendet werden.

15

5

20

25

30

6

Patentansprüche

 Schutzmodul zum Schutz von Objekten gegen Bedrohungen, insbesondere durch Hohlladungen, dadurch gekennzeichnet, dass es aus einem Material aufgebaut ist oder ein Material enthält, das als dreidimensionale metallische Gitternetzstruktur oder offenporiger Metallschaum mit einer Dichte von 5 bis 40 ppi (pores per inch) ausgebildet ist.

10

- Schutzmodul nach Anspruch 1, dadurch gekennzeichnet, dass die Dichte der dreidimensionalen metallischen Gitternetzstruktur bzw. des offenporigen Metallschaums 10 bis 20 ppi (pores per inch) beträgt.
- Schutzmodul nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in die Hohlräume bzw. Poren der dreidimensionalen metallischen Gitternetzstruktur bzw. des offenporigen Metallschaums ein Füllmaterial eingebracht ist.
- Schutzmodul nach Anspruch 3, dadurch gekennzeichnet, dass das Füllmaterial ein fester Stoff ist.
 - 5. Schutzmodul nach Anspruch 4, dadurch gekennzeichnet, dass das Füllmaterial ein keramisches Material ist.

- Schutzmodul nach Anspruch 4, dadurch gekennzeichnet, dass das Füllmaterial ein mineralisches Material ist.
- Schutzmodul nach Anspruch 3, dadurch gekennzeichnet, dass das Füllmaterial ein flüssiger Stoff ist.

- Schutzmodul nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das als dreidimensionale metallische Gitternetzstruktur oder offenporiger Metallschaum ausgebildete Material (1', 7, 9) in ein Gehäuse (2 bis 5; 2' bis 5') eingebracht ist.
 - Schutzmodul nach Anspruch 8, dadurch gekennzeichnet, dass das Gehäuse Befestigungselemente zum Befestigen des Schutzmoduls an einem Objekt aufweist.
 - 10. Schutzmodul nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das als dreidimensionale metallische Gitternetzstruktur oder offenporiger Metallschaum ausgebildete Material in mindestens einer Schicht in ein als Sandwichplatte ausgebildetes Schutzmodul eingebracht ist.
- 11. Schutzmodul nach den Ansprüchen 8 oder 10, dadurch gekennzeichnet,
 dass im Schutzmodul zwischen Schichten aus dem als dreidimensionale
 Gitternetzstruktur oder offenporiger Metallschaum ausgebildeten Material
 Luftzwischenräume angeordnet sind.
 - 12. Schutzmodul nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass das als dreidimensionale metallische Gitternetzstruktur oder offenporiger Metallschaum ausgebildete Material an mindestens einer Seite mit einem Beschichtungsmaterial, insbesondere einem Metall, beschichtet ist.
- 13. Schutzmodul nach Anspruch 12, dadurch gekennzeichnet, dass das Beschichtungsmaterial aus einem anderen Stoff besteht, als das als dreidimensionale metallische Gitternetzstruktur bzw. offenporiger Metallschaum ausgebildete Material.

10

15

