Estatística Espacial Geoestatística II

Raquel Menezes

Departamento de Matemática Universidade do Minho

Outubro de 2023

Krigagem - predição espacial linear ótima

Dependendo dos pressupostos sobre $\mu(.)$, tem-se:

• Krigagem simples: $\mu(\mathbf{x})$ é conhecido pouco realista

• Krigagem ordinária: $\mu(x) = \mu$ é desconhecido

ullet Krigagem com tendência externa 1 : $\mu({f x}) = \sum_{j=0}^{
ho} f_j({f x}) eta_j$ o mais realista

onde $\beta=(\beta_0,\ldots,\beta_p)^t\in\mathbb{R}^{p+1}$ desconhecido e $\{f_j(.):j=0,\ldots,p\}$ são funções explicativas conhecidas (considere-se $f_0(.)\equiv 1$)

Notas

- Pesos $\lambda = (\lambda_0, \dots, \lambda_n)^t$ são obtidos como soluções das **equações de kriging**.
- Para além da predição $\hat{Y}(\mathbf{x}_0)$, também se obtém uma estimativa para $E[(\hat{Y}(\mathbf{x}_0) Y(\mathbf{x}_0))^2]$, referida como **variância de kriging** $\sigma_K^2(\mathbf{x}_0)$.

Predição espacial via kriging

Na predição espacial, uma questão básica é, dado um conjunto de n observações de Y(.) nos pontos x_i , i=1,...,n, qual é o valor obtido por Y(.) em x_0 , onde os dados não estão disponíveis?

 Tendo em mente que algumas observações nas proximidades de x₀ estão mais relacionadas do que outras ao valor verdadeiro no ponto x₀, pode-se adotar uma média ponderada:

$$\widehat{Y}(\mathbf{x_0}) = \sum_{i=1}^n \lambda_i Y(\mathbf{x_i}) + \lambda_0$$

onde λ_i são funções de ponderação, que determinam a importância dos locais vizinhos de \mathbf{x}_0

 Normalmente, a estimação de um variograma válido desempenha aqui um papel decisivo, já que é habitualmente usado para encontrar a solução ótima de λ_i. O método é chamado de krigagem ordinária e pode ser aplicado a um processo intrinsecamente estacionário.

2/8

Exemplo 3: Conteúdo de cálcio em amostras de solo

- Amostras de solo retiradas da camada de 0-20 cm em 178 locais dentro de uma determinada área de estudo dividida em três subáreas.
- A primeira região é normalmente inundada durante a estação das chuvas e não é usada como área experimental. Os níveis de cálcio representariam o conteúdo natural da região. A segunda região já recebeu fertilizantes há algum tempo e costuma ser ocupada por arrozais.

A terceira região recebeu fertilizantes recentemente e é frequentemente utilizada como área experimental.

¹Referido como "krigagem universal" se as covariáveis se restringem às próprias coordenadas.

Exemplo 3: Conteúdo de cálcio

Area 1 é a área de referencia no não anarece na fórmula

 $\mathsf{Calcium}(\mathsf{x}) = \alpha + \beta_1 \; \mathsf{IF}(\mathsf{Area2}(\mathsf{x})) + \beta_2 \mathsf{IF}(\mathsf{Area3}(\mathsf{x})) + \beta_3 \mathsf{Latitude}(\mathsf{x}) + \mathsf{S}(\mathsf{x}) + \epsilon(\mathsf{x})$

	estimate	s.e.	p-value
α	163.69	37.07	< 0.001
β_1	5.96	3.17	0.061
β_2	7.19	4.18	0.086
Ba	-0.023	0.007	< 0.001

a latitude(beta3) é relevante, a área se considerarmos um alfa até 5% não é significativa

Variogram for residual data

Nota: Para a modelação de dados, iremos considerar um modelo exponencial com $\hat{\tau}^2$ =44.32, $\hat{\sigma}^2$ =55.2 e $\hat{\phi}$ =202.5.

5/8

Diagnóstico do modelo – validação-cruzada

- Suponha que um variograma $\gamma_{\widehat{\theta}}$ foi ajustado aos dados $\{Y(\mathbf{x_i}): i=1,...,n\}$, e que conhecemos algum método de predição baseado em $\gamma_{\widehat{\theta}}$ (por exemplo, um método de kriging).
- Uma forma de diagnosticar a qualidade do ajuste passa por fazer a validação cruzada:
 - **3** Estima-se a observação $Y(\mathbf{x})$ em cada \mathbf{x}_i à custa dos dados vizinhos $Y_i = Y(\mathbf{x}_i), \ j \neq i$, excluindo-se a si próprio.
 - ② Para cada $\mathbf{x_i}$, obtem-se uma predição $\widehat{Y}_{-i} = \widehat{Y}(\mathbf{x_i})$ e a respectiva variância σ^2_{-i} .
 - 3 Calcula-se um erro predição $PE_i = Y_i \widehat{Y}_{-i}$.

Exemplo 3: Cálcio - kriging com tendência externa

- Considerando a superfície/tendência estimada anteriormente, prosseguimos com a previsão espacial sobre uma grelha (pontos vermelhos no painel esquerdo).
- As estimativas de krigagem, no painel central, confirmam que a Area 3 é a que apresenta os maiores valores de cálcio, enquanto a Area 1 é a que apresenta os menores valores.
- Desvios padrão de previsão (um indicador de erro), no painel direito, são maiores em locais com menos pontos amostrados.

6/8

Validação-cruzada (cont.)

A proximidade dos valores estimados \widehat{Y}_{-i} e verdadeiros Y_i pode avaliada por:

• erro quadrático médio (EQM)

$$EQM = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_{-i})^2, \tag{1}$$

• erro quadrático médio standardizado (EQMS)

$$EQMS = \frac{1}{n} \sum_{i=1}^{n} \frac{(Y_i - \widehat{Y}_{-i})^2}{\widehat{\sigma}_{-i}^2}.$$
 (2)

Para avaliar a qualidade de ajuste do variograma $\gamma_{\widehat{\alpha}}$:

- a média em (1) deve ser aprox. 0 e a raiz da expressão dada em (2) deve ser aprox. 1.
- Alternativamente, pode-se analisar o histograma dos erros standardizados e confirmar que seguem (aprox.) uma normal standard.

7/8 8/8