Övningar till lektion 7

Naturlig deduktion för första ordningens logik, samt mer om sanning och konsekvens

- 1. Bevisa följande sekventer med naturlig deduktion:
 - (a) $\forall x \mathbf{P}(x) \land \forall x \mathbf{Q}(x) \vdash \forall x (\mathbf{P}(x) \land \mathbf{Q}(x))$
 - (b) $\{ \forall x (\mathbf{P}(x) \land \mathbf{Q}(x)), \ \forall y (\mathbf{Q}(y) \rightarrow \mathbf{R}(y)) \} \vdash \forall z (\mathbf{P}(z) \land \mathbf{R}(z)) \}$
 - (c) $\exists x (\mathbf{P}(x) \land \mathbf{Q}(x)) \vdash \exists x \mathbf{P}(x) \land \exists x \mathbf{Q}(x)$
 - (d) $\neg \exists x \mathbf{Q}(x) \vdash \forall x \neg \mathbf{Q}(x)$
 - (e) $\exists x \neg \mathbf{P}(x) \vdash \neg \forall x \mathbf{P}(x)$
 - (f) $\forall x \mathbf{P}(x) \lor \forall x \mathbf{Q}(x) \vdash \forall x (\mathbf{P}(x) \lor \mathbf{Q}(x))$
 - (g) $\{ \forall x \ (\mathbf{P}(x) \lor \mathbf{Q}(x)), \ \exists x \neg \mathbf{P}(x) \} \vdash \exists x \mathbf{Q}(x) \}$
 - (h) $\vdash \forall x \ (\mathbf{P}(x) \lor \neg \mathbf{P}(x))$
 - (i) $\{ \forall x \ (\mathbf{P}(x) \land \mathbf{Q}(x)), \ \exists x \neg \mathbf{P}(x) \} \vdash \exists x \neg \mathbf{Q}(x) \}$
 - (j) $\vdash \exists x (\mathbf{P}(x) \lor \mathbf{Q}(x)) \leftrightarrow (\exists x \mathbf{P}(x) \lor \exists x \mathbf{Q}(x))$
 - (k) $\vdash \exists x \neg \mathbf{P}(x) \leftrightarrow \neg \forall x \mathbf{P}(x)$

I uppgift 2 och 3 nedan visas hur man kan härleda bevisregler för \exists om man har reglerna för \forall och använder $\exists x \varphi(x)$ som en förkortning av formeln $\neg \forall x \neg \varphi(x)$. De härledda bevisen kan betraktas som förkortningar av de längre bevisen. I uppgift 2 och 3 ska du därför inte använda reglerna för \exists .

- 2. Konstruera ett formellt bevis för $\mathbf{P}(\mathbf{c}) \vdash \neg \forall x \neg \mathbf{P}(x)$, där \mathbf{c} är en sluten term.
- 3. Anta att \mathcal{D} är ett formellt bevis (med naturlig deduktion) som vittnar om att $\mathbf{P}(\mathbf{c}) \vdash \mathbf{A}$, där \mathbf{c} är en ny (godtycklig) konstantsymbol som inte förekommer i den slutna formeln \mathbf{A} . Konstruera ett formellt bevis (som har \mathcal{D} som ett delbevis) som vittnar om att $\neg \forall x \neg \mathbf{P}(x) \vdash \mathbf{A}$.
- 4. (svårare) Bevisa följande sekvent med naturlig deduktion:

$$\exists x \exists y \forall z (x = z \lor y = z) \vdash \forall x \forall y \forall z (x = y \lor y = z \lor x = z)$$

- 5. Låt σ vara en signatur och $\varphi \in LR(\sigma)$ en sats. Låt också \mathcal{A} vara en σ -struktur.
 - (a) Då gäller ju $\mathcal{A} \models \varphi$ eller $\mathcal{A} \models \neg \varphi$. Varför?
 - (b) Ge exempel på en sats $\psi \in LR(\sigma)$ så att $\not\models \psi$ och $\not\models \neg \psi$. (Det går att göra oavsett vad signaturen σ är.)
 - (c) Låt $\psi \in LR(\sigma)$ vara en sats som inte är formellt bevisbar, dvs $\not\vdash \psi$. Kan man vara säker på att $\vdash \neg \psi$? Förklara! (Vänta med denna del tills vi har gått igenom sundhetssatsen för första ordningens logik.)
- 6. Skriv följande formler på $prenex\ normalform$, där vi antar att a är en konstantsymbol, P och Q är 1-ställiga relationssymboler och R är en 2-ställig relationssymbol:

(a)
$$\neg(\forall x P(x) \land \forall y Q(y))$$

- (b) $\exists z \neg \forall x (R(x,z) \rightarrow \exists y R(y,z))$
- (c) $\forall x \exists y (R(x,y) \lor R(y,x)) \to R(a,a)$
- 7. Låt $\sigma = \langle ; ; P \rangle$ med ställighet $\langle ; ; 2 \rangle$. Betrakta följande tre σ -strukturer:

 $\mathcal{A}_1 = \langle \mathbb{N}; ; ; P^{\mathcal{A}_1}, \rangle, \, \text{där } P^{\mathcal{A}_1} \text{ tolkas som } < \text{på } \mathbb{N}.$

 $\mathcal{A}_2 = \langle \mathbb{Z}; ; P^{\mathcal{A}_1} \rangle$, där $P^{\mathcal{A}_2}$ tolkas som \leq på \mathbb{Z} (= mängden av alla heltal).

 $\mathcal{A}_3 = \langle \mathbb{Q}; ; P^{\mathcal{A}_1} \rangle$, där $P^{\mathcal{A}_3}$ tolkas som $\leq \text{på } \mathbb{Q}$ (= mängden av alla rationella tal).

- (a) Ange en sats $\varphi \in LR(\sigma)$ så att $\mathcal{A}_1 \models \varphi$ och $\mathcal{A}_2 \models \neg \varphi$.
- (b) Ange en sats $\tau \in LR(\sigma)$ så att $A_2 \models \tau$ och $A_3 \models \neg \tau$.
- (c) Ange en sats $\xi \in LR(\sigma)$ så att $A_3 \models \xi$ och $A_1 \models \neg \xi$
- 8. (svårare) Låt $\sigma_0 = \langle ; ; \rangle$, så σ_0 har varken konstantsymboler, funktionssymboler eller relationssymboler. Likväl finns det gott om formler (såväl slutna som öppna) i $LR(\sigma_0)$, faktiskt oändligt många. Exempelvis är detta en sats i $LR(\sigma_0)$: $\forall x(x=x)$.
 - (a) Skriv satser i detta språk som tolkas som:
 - (i) Det finns exakt 3 element.
 - (ii) Det finns minst 2 element x har egenskapen $\varphi(x)$ (där $\varphi(x)$ är en godtycklig formel i språket med den fria variabeln x).
 - (iii) Det finns exakt ett element som har egenskapen $\varphi(x)$.
 - (b) Ange en teori Γ i detta språk sådan att

 $\mathcal{A} \models \Gamma$ om och endast om \mathcal{A} är oändlig

gäller för varje struktur \mathcal{A} .

Anmärkning 1: En struktur kallas oändlig om dess universum är en oändlig mängd.

Anmärkning 2: Mängden Γ får vara oändlig.

9. (svårare) Låt σ vara signaturen från Uppgift 7. För att underlätta läsningen skriver vi i denna uppgift $x \leq y$ i stället för P(x,y). Låt T vara teorin nedan. En modell för T kallas för en partiell ordning.

$$T = \{ \forall x \forall y \forall z \ ((x \le y \land y \le z) \longrightarrow x \le z), \ \forall x \forall y \ ((x \le y \land y \le x) \longrightarrow x = y) \}$$

- (a) Låt $\varphi = \exists x \, \forall y \, (x \leq y \vee y \leq x)$. Ange partiella ordningar \mathcal{A} och \mathcal{B} så att $\mathcal{A} \models \varphi$ och $\mathcal{B} \models \neg \varphi$.
- (b) Låt $\psi = \forall x \forall y \exists z ((x \leq z \land y \leq z) \lor (z \leq x \land z \leq y))$, och ange partiella ordningar \mathcal{A} och \mathcal{B} så att $\mathcal{A} \models \psi$ och $\mathcal{B} \models \neg \psi$.
- (c) Visa att ingen av $\psi, \varphi, \neg \psi$ eller $\neg \varphi$ är logiska sanningar.