Universidade de Pernambuco - UPE Escola Politécnica de Pernambuco - POLI

Disciplina: Teoria da Informação - Prof $^{\underline{a}}$ Verusca Severo - 2020.2 $6^{\underline{o}}$ Lista de Exercícios

-Só serão aceitas as respostas com as devidas justificativas e/ou cálculos-

1. Seja S uma fonte discreta sem memória cujo alfabeto é composto por 5 símbolos $\{S_0, S_1, S_2, S_3, S_4\}$. A probabilidade com que a fonte S emite cada um dos símbolos do seu alfabeto pode ser obtida a partir do histograma da frequência de emissão apresentado na Figura 1.

Figura 1: Quesito 1 - 6º Lista de Exercícios.

- (a) Calcule a entropia da fonte S.
- (b) Construa um código binário Prefixo do tipo Huffman para esta fonte.
- (c) Calcule o comprimento médio para o código encontrado e verifique se ele satisfaz o teorema da codificação.
- (d) Calcule a eficiência do código construído.
- **2.** Considere que uma determinada fonte F gera os símbolos apresentados na Tabela 1 com as seguintes probabilidades:

Tabela 1: Quesito 2 - 6° Lista de Exercícios.

	f_1			f_4			
$P(f_i)$	0,5	0,26	0,11	0,04	0,04	0,03	0,02

- (a) Construa para essa fonte um código binário prefixo de Huffman.
- (b) Calcule a eficiência do código construído na letra (a).
- (c) Construa para essa fonte um código ternário (3 dígitos) prefixo de Huffman.
- (d) Calcule a eficiência do código construído na letra (c).

 ${\bf 3.}$ A fonte de informação X gera os símbolos mostrados na Tabela 2 com as probabilidades:

Tabela 2: Quesito 3 - 6° Lista de Exercícios.

100 0 111110				
X	$P(x_i)$			
x_1	0,2			
x_2	0,1			
x_3	0,1			
x_4	0,06			
x_5	0,05			
x_6	0,05			
x_7	0,05			
x_8	0,04			
x_9	0,04			
x_{10}	0,04			
x_{11}	0,04			
x_{12}	0,03			
x_{13}	0,03			
x_{14}	0,03			
x_{15}	0,03			
x_{16}	0,02			
x_{17}	0,02			
x_{18}	0,02			
x_{19}	0,02			
x_{20}	0,02			
x_{21}	0,01			

- (a) Codifique os símbolos utilizando o codificador de Huffman tradicional.
- (b) Codifique os símbolos utilizando o codificador de Huffman truncado para M=12.
- (c) Compare as eficiências dos códigos obtidos nas lestras (a) e (b).

 $Bons\ estudos!!!\ =)$