Practice Exam 2 Solutions

CS181: Fall 2021

- 1. $(1|01)^*(0|\epsilon)$. There may well be other clean ways to write this.
- 2. No. Consider the following simple example. Let M be an NFA consisting of a single state (the start state) which is also an accepting state, and no transitions. The language accepted by M is $\{\epsilon\}$ (only the empty string). The language accepted by the NFA M' is the empty language, \emptyset . Clearly, \emptyset is not the compliment of $\{\epsilon\}$.
- 3. (a) The current state. (b) The head position. (c) The tape contents.
- 4. Given a TM M and a string $x \in \{0,1\}^*$, we write $M(x) = \bot$ to denote that M does not halt on input x. We define EVAL: $\{0,1\}^* \to \{0,1\}^* \cup \{\bot\}$ as EVAL($\langle M \rangle, x \rangle = M(x)$. The universality theorem states that there exists a TM U_{TM} which computes EVAL. That is, for all (M,x), we have $U_{TM}(\langle M \rangle, x) = M(x)$.
- 5. Use a machine that supposedly computes F to compute HALT.
- 6. 6.1: A function $F: \{0,1\}^* \to \{0,1\}$ is called a semantic property (or just semantic) if the following holds: for any two TMs M_1 and M_2 , if $M_1(x) = M_2(x)$ for all $x \in \{0,1\}^*$, then $F(\langle M_1 \rangle) = F(\langle M_2 \rangle)$. Remark: In words, a function is semantic if its output is the same given encodings of TMs which compute the same language. That is, F depends on the the function computed by the machine, not on the encoding of the machine. Rice's Theorem states that all non-trivial semantic properties are uncomputable.
 - 6.2: The second and the fourth functions are semantic.
- 7. 7.1 Add ε-transitions connecting all accept states of M₁ to the start state of M₂.
 7.2: Add a new state s and label it as the start. Connect s to the start states of M₁ and M₂ via ε-transitions.
- 8. Suppose for the sake of contradiction that L is regular. Thus, by the pumping lemma, there exists p>0 such that the statement of the pumping lemma holds. Consider the string $x=0^p10^p10^{p^2}\in L$. By PL, we can write x=abc where $0<|b|\leq |ab|\leq p$ and so $b=0^q$ for some $0< q\leq p$. Thus, $ab^2c=0^{p+q}10^p10^{p^2}$. By PL, we have $ab^2c\in L$. However, clearly $(p+q)\cdot p\neq p^2$ and so $ab^2c\notin L$. This is a contradiction and so it follows that L is not regular.
- 9. Suppose for the sake of contradiction that L is regular. Thus, by the pumping lemma, there exists p > 0 such that the statement of the pumping lemma holds. Consider the string $x = 0^p 1^p \in L$. By PL, we can write x = abc where |b| > 0. Thus, $ac = 0^q 1^p$ where q < p and so clearly $ac \notin L$. However, by PL, we have $ac \in L$. This is a contradiction and so it follows that L is not regular.

¹By non-trivial, we mean that F is not constant. I.e. F is not the all 1's function or the all 0's function.

- 10. We design a 2-tape TM. We begin with the first tape initialized as \triangleright , x[0], x[1], ..., x[n-1], \emptyset , \emptyset ... and the second tape initialized as \triangleright , \emptyset , \emptyset ,
 - (a) Copy the contents of tape 1 to tape 2. Move head 1 and head 2 left until we see ▷.
 - (b) Move head 2 right 2 steps.
 - (c) If head 2 sees a \emptyset , then halt and return the contents of tape 1 between \triangleright and head 1.
 - (d) Move head 1 right 1 step.
 - (e) Repeat from step (b).
- 11. No, this program does not compute the toddler function. The first line of the program aims to compute $M(\langle M \rangle)$ by running the universal TM, $U_{TM}(\langle M \rangle, \langle M \rangle)$. However, if M does not halt on input $\langle M \rangle$, then U_{TM} does not halt on input $(\langle M \rangle, \langle M \rangle)$ and so line 1 of the infant program may run forever. A simple example of an input that causes this is the following. Simply let M be a TM which runs an infinite loop given any input. Observe that infant $(\langle M \rangle)$ does not output Toddler $(\langle M \rangle)$ and so the infant program does not compute the toddler function.