Anomaly Detection in NYC Taxi Data

Harish Pullagurla
Hari Krishna Majety
Kenneth Tran

What are Anomaly Detection in NYC Taxi Data

Harish Pullagurla
Hari Krishna Majety
Kenneth Tran

Harish Pullagurla
Hari Krishna Majety
Kenneth Tran

What are Anomalies?

- The set of data points that are considerably different than the remainder of the data
- Anomaly is a pattern in the data that does not conform to the expected behaviour
- "An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism", (Hawkins 1980)

Related Work

- Wu, Mingxi, et al. A LRT Framework for Fast Spatial Anomaly Detection.
 Research Gate, Proceedings of the 15th ACM SIGKDD, Jan. 2009.
 - Applying LRT to Anomaly Detection
 - Region pruning methods to reduce computation
- Pang, Linsey Xiaolin, et al. On Detection of Emerging Anomalous Traffic Patterns Using GPS Data. Data Knowledge Engineering, North-Holland, 18 May 2013.
 - Applying Anomaly Detection LRT to specific data sets
 - Includes case study on Beijing taxi data

Pipeline

Data Set

1.5 Million Trip Records From Jan - July 2016

1.5 Million Trip Records From Jan - July 2016

Temporal Attributes - 3 dim
Pick up & drop off Time,
Trip Duration

1.5 Million Trip Records From Jan - July 2016

Temporal Attributes - 3 dim
Pick up & drop off Time,
Trip Duration

Spatial Attributes - 4 dim Latitude , Longitude Pick up & Drop

1.5 Million Trip Records From Jan - July 2016

Temporal Attributes - 3 dim
Pick up & drop off Time,
Trip Duration

General Attributes - 4 dim
Passenger Count, Vendor Id
Transmission Type

Spatial Attributes - 4 dim
Latitude , Longitude
Pick up & Drop

Pipeline

Pipeline

Data PreProcessing

- Following data points were eliminated:
 - Data points with missing attribute values
 - Duplicates
 - Pick up and drop locations which are not within the New York city limits
 - Data points with passenger counts like 0,7,8,9
 - Trip Durations which are more than 5 standard deviations away from the mean.
- This reduced the total number of data points from 1.45 million to 1.438 million samples.

Pipeline

Existing Features

New Features

Spatial Attributes - 4 dim Latitude, Longitude Pick up & Drop

Temporal Attributes - 3 dim Pick up & drop off Time, **Trip Duration**

General Attributes - 4 dim Passenger Count, Vendor Id **Transmission Type**

Gives real world travel info like Google Maps

OSRM Data -

Existing Features

New Features

Spatial Attributes - 4 dim

Latitude , Longitude Pick up & Drop

Temporal Attributes - 3 dim

Pick up & drop off Time, Trip Duration

General Attributes - 4 dim

Passenger Count, Vendor Id Transmission Type

OSRM Data -

Gives real world travel info like Google Maps

Date Time

Extract Features such as Day of Year, week etc

Existing Features

New Features

Spatial Attributes - 4 dim

Latitude , Longitude Pick up & Drop

Temporal Attributes - 3 dim

Pick up & drop off Time, Trip Duration

General Attributes - 4 dim

Passenger Count, Vendor Id Transmission Type

OSRM Data -

Gives real world travel info like Google Maps

Date Time

Extract Features such as Day of Year, week etc

Haversine Distance

Existing Features

New Features

Spatial Attributes - 4 dim

Latitude , Longitude Pick up & Drop

Temporal Attributes - 3 dim

Pick up & drop off Time, Trip Duration

General Attributes - 4 dim

Passenger Count, Vendor Id Transmission Type

OSRM Data -

Gives real world travel info like Google Maps

Date Time

Extract Features such as Day of Year, week etc

Haversine Distance

Region Clustering

Region Labeling

K means Cluster Label Map with Full Data

Region Labeling

K means Cluster Label Map with Full Data

Cluster Label map after removing small clusters

Pipeline

What is the Likelihood Ratio Test?

Likelihood Ratio Test

$$\lambda = \frac{L(\theta_s|X_s)L(\theta_{\bar{s}}|X_{\bar{s}})}{L(\theta|X)}$$

Ratio of likelihoods between:

- Product of anomaly specific model and non-anomaly model
- Global model

How do we Model the Data for LRT?

Generalized Linear Model (GLM)

The model that encompasses a group of regressions including linear regression and logistic regression.

Consists of three parts:

- 1. Exponential family that predicted value follows
- 2. Linear predictors (i.e. $b_1x_1 + b_2x_2$)
- 3. Link function that maps linear predictors to predicted variables

Examples:

Linear Regression: Predicted follows normal with an identity link

Logistic Regression: Predicted follows Bernoulli with a logit (or inverse sigmoid) link

Data Subsampling

Assumption: Data is homogeneous, it models similarly for all subsets

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Day Sample

Hour Sample - 8 am - 12 am

Model 1 - Spatial Anomalies

- Subset data by spatial information
 - Use the K-Means clusters performed in pre-processing
- Model all data using generalized linear model (GLM)
- For each different region, model data within the region and outside of the region, using same GLM configurations
- Compute the likelihood ratio for each region

Model 2 - Temporal Anomalies

- Subset data by Temporal information
 - Consider only Lower Manhattan Region
 - Use variable day of year
- Model all data using generalized linear model (GLM)
- For each different time segment, model data within the time segment and outside of the time segment, using same GLM configurations
- Compute the likelihood ratio for each time segment

Pipeline

Demo

- Spatial Analysis
 - Top two anomalous regions were the JFK and La Guardia Airports in the city

- Temporal Analysis
 - Most anomalous January 26th After New york was hit by biggest blizzard since 1869.

- Temporal Analysis
 - Followed by June 8th President Obama tapes a show with Jimmy Fallon in Time Square

Temporal Analysis

Future Work

- Spatio-temporal analysis(Computationally intensive)
- Considering seasonality during temporal analysis
- Addressing positive correlation between data points and their likelihood values.

Project Learnings

- Different Modeling Strategies MLE, GLM
- Likelihood Ratio Test and ways to incorporate it with NY Taxi cab data