

# Sensori per l'automazione

Automazione

Alessandro De Luca

## Sistemi di misura

- i **sensori** misurano grandezze fisiche e le convertono in segnali (elettrici, meccanici, pneumatici o idraulici); i relativi **trasduttori** li trasformano in segnali elettrici utili per elaborare il contenuto informativo
  - □ unità e denominazioni soggetti a standard (International System of Units = SI)

la **catena di misura** è una successione ininterrotta di strumenti e procedure collegati in modo da poter acquisire ed elaborare il segnale in ingresso (la grandezza fisica da misurare) fino all'ottenimento della lettura in uscita (la misura vera e propria)



## Proprietà dei sistemi di misura - 1

#### accuratezza

accordo dei valori misurati con un valore di riferimento standard ("ground truth" o caratteristica ideale)

#### precisione (o ripetibilità)

capacità di riprodurre in uscita valori misurati simili in campagne di misura consecutive della stessa quantità costante in ingresso

#### stabilità

capacità di mantenere le stesse caratteristiche di misura nel tempo o, ad es., in un campo operativo di temperature (simile alla precisione, ma nel lungo periodo)

## Accuratezza e Precisione



## Proprietà dei sistemi di misura - 2

#### curva di calibrazione

estrapolazione di un legame funzionale dai valori misurati tramite un modello matematico con parametri da tarare (*curve fitting*)

#### sensibilità

variazione del valore dell'uscita di misura per unità di variazione del segnale di ingresso (guadagno del sensore)

#### risposta in frequenza

dinamica del trasduttore (con eventuale ritardo di risposta) e campo di frequenze di misura, dalla continua (o meno) fino ad una massima componente frequenziale rilevabile (banda di misura)

#### rumorosità

SNR (rapporto segnale/rumore) e natura del rumore: additivo, bianco (indipendenza dei campioni) o colorato, ...

## Curve tipiche di calibrazione

$$y = kx + h$$
$$y = h \exp(kx)$$

#### lineare

esponenziale

$$y = k \log(x) + h$$

logaritmica

$$y = kx^h$$

quadratica, cubica, ecc.

$$y = k\sqrt{x} + h$$





in genere, modelli con pochi parametri (solo 1 o 2) per evitare una sovra-parametrizzazione (overfitting)

## Calibrazione del sensore/trasduttore

#### operazioni da svolgere

- 1. applicare una serie di campioni x<sub>i</sub> e registrare l'uscita
- 2. ripetere più volte la misura per ogni campione
- 3. fare la media delle letture per ogni campione  $\Rightarrow$  y<sub>i</sub>
- 4. scegliere una curva di calibrazione in una data classe (lineare, logaritmica, ...)
- 5. determinare i parametri con un metodo di curve fitting







## Proprietà dei sistemi di misura - 3

#### errore di linearità (nel modello lineare)

massimo scostamento dell'uscita misurata dalla retta che approssima al meglio le caratteristiche reali del sensore

espresso in % del campo dei valori (di misura) in uscita

#### errore di offset

valore dell'uscita di misura quando l'ingresso è nullo

□ a volte ≠ 0 dopo qualche ciclo operativo, a causa di fenomeni di isteresi

#### risoluzione

massima variazione della grandezza in ingresso che non produce variazione nell'uscita di misura

espressa in termini assoluti o in % del campo dei valori in ingresso

## Linearità, offset e risoluzione



## Non idealità nelle misure



# Sensori per la movimentazione controllata

- su grandezze "meccaniche" di tutta la catena cinematica/dinamica
- utilizzati per chiudere diversi anelli di controllo a retroazione
- legami integrali/proporzionali tra loro, ma con tecnologie diverse
  - sensori di posizione (1) (lineare o angolare)
  - sensori di velocità 2 (con misura diretta o derivata)
  - sensori di accelerazione 3 (per lo più, solo lineare)
  - sensori di coppia torcente 4 (sugli elementi di trasmissione del moto)
  - sensori (o sonde) di corrente (5) (∞ alla coppia del motore)
  - sensori (o celle) di carico 6 (mono o multi-direzionali)



## Sensori di posizione

generano un segnale elettrico proporzionale allo spostamento (angolare o lineare) di un parte meccanica rispetto ad una posizione di riferimento

spostamenti lineari: potenziometri, trasduttori di spostamento induttivi (LVDT), inductosyn

spostamenti angolari: potenziometri, inclinometri, resolver, syncro, RVDT (tutti dispositivi analogici che necessitano di conversione A/D), encoder (digitali)

i più usati in automazione, dove anche gli spostamenti lineari sono realizzati con motori in rotazione e opportune trasmissioni



## **Encoder assoluti**



- un disco ottico rotante, con settori opachi e trasparenti che si alternano su ognuna delle tracce multiple e concentriche
- dei led emettono (nel campo infrarosso)
   fasci di luce raccolti poi da foto-ricevitori
- gli impulsi luminosi sono convertiti in impulsi elettrici, processati dall'elettronica del sensore e trasmessi in uscita
- risoluzione = 360°/2<sup>Nt</sup>

quando il disco ottico ruota velocemente, l'uso di una codifica binaria potrebbe dare (grandi) errori di lettura, in corrispondenza a transizioni multiple di bit nel codice ("alee")

## Codifica assoluta



| DECIMALE | BINARIO     | GRAY |  |  |
|----------|-------------|------|--|--|
| 0        | 0000        | 0000 |  |  |
| 1        | 0001        | 0001 |  |  |
| 2        | 0010        | 0011 |  |  |
| 3        | 0011        | 0010 |  |  |
| 4        | 0100        | 0110 |  |  |
| 5        | 0101        | 0111 |  |  |
| 6        | 0110        | 0101 |  |  |
| 7        | 0111        | 0100 |  |  |
| 8        | 1000        | 1100 |  |  |
| 9        | 1001        | 1101 |  |  |
| 10       | 1010        | 1111 |  |  |
| 11       | 1011        | 1110 |  |  |
| 12       | 1100        | 1010 |  |  |
| 13       | 3 1101 1011 |      |  |  |
| 14       | 14 1110 100 |      |  |  |
| 15       | 1111        | 1000 |  |  |

encoder assoluto a **8 bit** con codifica Gray

le codifiche di zone adiacenti differiscono per **un solo** bit

# Uso degli encoder assoluti



- pronti per la misura già all'avvio ("no homing")
- due modalità operative per l'uso continuato
  - quando si spegne il servomotore, i parametri di posizione sono salvati in una memoria flash (e si attiva un freno)
  - è presente una batteria sempre attiva e l'encoder misura la posizione anche a servomotore spento
  - durata dati in memoria tampone > 20 anni
- versioni single-turn o multi-turn, ad es.
  - single-turn a 13 bit con 2<sup>13</sup> = 8192 tacche/giro (risoluzione = 0.044°)
  - multi-turn a 29 bit con 8192 tacche/giro + conteggio fino a 2<sup>16</sup> = 65536 giri
- corpo in alluminio con interfaccia disponibile per sistemi fieldbus (CANopen o PROFIBUS)
- alimentazione tipica 5/28V DC @1.2 W



ad albero cavo



con flangia

vista interna di un encoder assoluto a 13 bit: disco ottico con codifica Gray e relativa elettronica

## **Encoder incrementali**



disco ottico rotante con tre tracce, su cui si alternano aree trasparenti e opache: si misurano incrementi di spostamento angolare contando treni di impulsi ("tacche"),  $N_e$  per un giro ( $N_e = 100 \div 5000$ )

- le due tracce A e B (canali) sono in quadratura (sfasamento di 90° elettrici), in modo da permettere il riconoscimento del verso di rotazione
- la terza traccia Z serve a definire la posizione di riferimento "0", che resetta il conteggio (serve un "homing" all'avvio)
- alcuni encoder forniscono in uscita anche le tre fasi (a 120°) utili per il circuito di commutazione dei motori brushless

Le tre tracce sul disco ottico  $(qui N_e = 6)$ 

# Elaborazione del segnale



- le "frazioni di ciclo" di ogni treno di impulsi sono misurate in "gradi elettrici"
- 1° elettrico = 1° meccanico / N<sub>e</sub>,
   360° meccanici = 1 giro
- i segnali pilotano un contatore digitale, con un flip-flop di tipo D per riconoscere il verso + reset
- per migliorare la risoluzione (4×), si usano i fronti d'onda di salita e discesa dei segnali A e B
- è ora la sequenza di impulsi C a fornire il clock al contatore (Up = incrementi o Down = decrementi)



# Decodifica in quadratura



#### un'implementazione più completa

NOTA: poiché i segnali A e B potrebbero **non** essere sincronizzati al clock di sistema, si usano due flip-flop di tipo D aggiuntivi per ciascun ingresso in modo da evitare stati meta-stabili nel contatore



- si assume che sia disponibile un segnale di clock "clk" ad alta frequenza (fornito ad esempio da un FPGA), più veloce dei due segnali in quadratura A e B
- il conteggio digitale in uscita avrà una migliore risoluzione ("moltiplicata per 4")

# Moltiplicazione del conteggio

esempio di decodifica in quadratura



- un encoder incrementale con  $N_e$  = 2000 cicli (elettrici) fornisce un conteggio di N = 8000 impulsi/giro, a valle dell'elettronica di moltiplica
- la sua risoluzione finale (meccanica) è 360°/8000 = .045° (= 0° 2' 42")
- serve un contatore a 13 bit per coprire un angolo giro senza reset  $(2^{13} = 8192)$

# Accuratezza negli encoder incrementali



... a parte gli errori di quantizzazione

- errore di divisione: è il massimo ritardo tra due fronti d'onda (salita o discesa) consecutivi, in genere entro ± 25° elettrici
- lo sfasamento tra i due canali, pari a 90° elettrici nominali, può di fatto variare in un campo di ± 35° elettrici (errore di quadratura)

# Esempio di encoder incrementale



- Omron Rotary Encoder (incremental) serie E6B2-C
- risoluzione fino a 2000 impulsi/giro
- tensione di alimentazione da 5 a 24 V DC
- peso = 100 g, diametro = 0.4 cm
- inerzia =  $1 \cdot 10^{-6} \text{ kg m}^2$
- temperatura di funzionamento: -10 ÷ 70°C
- massima velocità ammessa: fino a 6000 giri/min

| una  | possibile | appl | icazione  |
|------|-----------|------|-----------|
| aria | POOCIDIIO | чррі | 100210110 |



| Item                                 | E6B2-CWZ6C                                                                                                             | E6B2-CWZ5B                                                                                                                 | E6B2-CWZ3E                                                                                                        |  |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Power supply voltage                 | 5 VDC -5% to 24 VDC +15%,<br>Ripple (p-p): 5% max.                                                                     | 12 VDC -10% to 24 VDC +15%,<br>Ripple (p-p): 5% max.                                                                       | 5 VDC -5% to 12 VDC +10%,<br>Ripple (p-p): 5% max.                                                                |  |  |  |  |  |
| Current consumption (See note 1.)    | 70 mA max.                                                                                                             | 80 mA max.                                                                                                                 |                                                                                                                   |  |  |  |  |  |
| Resolution<br>(pulses/rotation)      | 10/20/30/40/50/60/100/200/300/<br>360/400/500/600/720/800/1,000/<br>1,024/1,200/1,500/1,800/2,000 P/R                  |                                                                                                                            | 10/20/30/40/50/60/100/200/300<br>360/400/500/600/1,000/1,200/<br>1,500/1,800/2,000 P/R                            |  |  |  |  |  |
| Output phases                        | A, B, and Z                                                                                                            | A, B, and Z                                                                                                                |                                                                                                                   |  |  |  |  |  |
| Output configuration                 | NPN open-collector output                                                                                              | PNP open-collector output                                                                                                  | Voltage output (NPN output)                                                                                       |  |  |  |  |  |
| Output capacity                      | Applied voltage: 30 VDC max.<br>Sink current: 35 mA max.<br>Residual voltage: 0.4 V max.<br>(at sink current of 35 mA) | Applied voltage: 30 VDC max.<br>Source current: 35 mA max.<br>Residual voltage: 0.4 V max.<br>(at source current of 35 mA) | Output resistance: 2 kΩ<br>Sink current: 20 mA max.<br>Residual voltage: 0.4 V max.<br>(at sink current of 20 mA) |  |  |  |  |  |
| Max. response speed<br>(See note 3.) | 100 kHz                                                                                                                | 50 kHz                                                                                                                     | 100 kHz                                                                                                           |  |  |  |  |  |
| Phase difference on output           | 90°±45° between A and B (1/4T±1/8T)                                                                                    |                                                                                                                            |                                                                                                                   |  |  |  |  |  |
| Rise and fall times of output        | 1 μs max. (Control output voltage: 5 V; load resistance: 1 kΩ; cable length: 2 m)                                      | 1 μs max.<br>(Cable length: 2 m; source current: 10 mA max.)  1 μs max.<br>(Cable length: 2 m; sink current: 10 mA max.)   |                                                                                                                   |  |  |  |  |  |

## Misura indiretta della velocità

derivata numerica a partire da misure campionate/digitali di posizione

- realizzata in linea con formule di derivazione all'indietro
- □ a 1 passo (metodo di Eulero):  $\dot{q}_k = \dot{q}(kT) = \frac{1}{T}(q_k q_{k-1})$   $\Leftrightarrow$   $\dot{q}_k = \Delta q_k/T$   $\Leftarrow$  direttamente da encoder incrementale □ a 4 passi:  $\dot{q}_k = \frac{1}{T}(\frac{25}{12}q_k - 4q_{k-1} + 3q_{k-2} - \frac{4}{3}q_{k-3} + \frac{1}{4}q_{k-4})$

rumore e quantizzazione della posizione necessitano di un filtraggio per convoluzione

uso efficace di filtri non causali (ad es., di Savitzky-Golay), ma con introduzione di ritardo

filtro di Kalman per stima dello stato (è ottimo per sistemi lineari con rumori gaussiani a media nulla)





animazione di un filtro di Savitzky-Golay con polinomi cubici

## Filtro di Kalman cinematico

#### per stima della velocità



misura di posizione rumorosa (uscita dell'encoder)

a media nulla con (co-)varianze Q (matrice) e R

T = passo di campionamento

$$\boldsymbol{\xi}(k) = (x(k)\dot{x}(k))^T$$
 $\downarrow$ 
stato
 $\downarrow$ 
velocità
 $\downarrow$ 
non misurata

filtro di Kalman (lineare) che fornisce una stima  $\hat{\xi}(k)$  dello stato del modello

$$\hat{\boldsymbol{\xi}}(k) = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} \hat{\boldsymbol{\xi}}(k-1) + \boldsymbol{K}_k \left( z(k) - \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} \hat{\boldsymbol{\xi}}(k-1) \right)$$
predizione (a priori)
correzione (basata sull'uscita misurata)

usando il guadagno ottimo di Kalman  $K_{k}$ 

misura di posizione e sua stima filtrata

294.520 294.4 294.3 294.2 [mm] 294.1 Vision data ZOH of vision Encoder - KKF

velocità per derivata numerica e sua stima filtrata



## Dinamo tachimetrica

misura diretta della velocità sempre montata su asse del motore

#### principio di funzionamento (singola spira)



campo magnetico:

il flusso attraverso la spira è  $\Phi(\vec{B}) = |\vec{B}|\Sigma \cos \theta = |\vec{B}|\Sigma \cos \omega t$ 



⇒ per ridurre le oscillazioni (ripple), si usano m spire ruotate in modo regolare di 180°/m

## Esempio di dinamo tachimetrica



- Servo-Tek DC Tach Generator (B series)
- bi-direzionale
- tensione di uscita 11÷24 V @1000 RPM
- basso ripple: picco-picco < 3% del valore della continua (con un filtro a 72 KHz)
- peso = 113 g, diametro = 2.9 cm
- errore di linearità < 0.1% (a qualsiasi velocità)</li>
- stabilità 0.1% (rispetto alla temperatura)

#### **B-Series Specifications**

| Model<br>Number | Mounting | Weight<br>(approx) | Inertia<br>(approx)<br>oz -insec ² | V/1,000<br>RPM | RPM<br>(max) | Driving<br>Torque<br>(max) | Arm R<br>(ohms<br>dy-<br>namic) | Arm<br>Ind<br>(h) |
|-----------------|----------|--------------------|------------------------------------|----------------|--------------|----------------------------|---------------------------------|-------------------|
| SA-740B-1*      | Face     | 4.0 oz             | 2.27 x 10 4                        | 20.8 V         | 8,000        | 0.25 oz-in.                | 1000                            | 0.58              |
| SB-740B-1*      | Flange   | 4.0 oz             | 2.27 x 10 <sup>4</sup>             | 20.8 V         | 000,8        | 0.25 oz-in,                | 1000                            | 0.56              |
| SA-757B-1*      | Face     | 4.0 oz             | 2.27 x 10 °                        | 20.8 V         | 8,000        | 0.25 oz-in.                | 1000                            | 0.58              |
| SB-757B-1*      | Range    | 4.0 oz             | 2.27 x 10 "                        | 20.8 V         | 8,000        | 0.25 oz-in.                | 1000                            | 0.58              |



1.75 mNm (come carico)

#### **Accelerometri**

misura di accelerazione lineare basata sulle forze inerziali (senza "contatto")

- unità di misura: [m/s²] o accelerazione gravitazionale [g] (unità non-SI: 1g ≈ 9.81 m/s²) diversi principi per convertire moto accelerato (energia meccanica) in segnale elettrico
  - piezoelettrico: ceramiche (PZT) o cristalli (quarzo), buona linearità e stabilità, ampio campo dinamico fino alle alte frequenze, nessuna parte in movimento, non richiede alimentazione
- □ piezoresistivo: tollera urti/shock, misura accelerazione continua (g), richiede alimentazione
- capacitivo: elemento sensibile in silicone micro-lavorato, superiore qualità dalla continua alle basse frequenze, utilizzabile in un anello di controllo, basso costo ma risoluzione limitata
- soluzione moderna: piccoli MEMS (Micro Electro-Mechanical Systems)

uso in molteplici applicazioni: dall'analisi di vibrazioni alla navigazione a lungo raggio





animazione del principio di misura in un accelerometro piezoelettrico

# Principio di funzionamento

#### accelerometro sismico



# Caratteristica in frequenza

#### accelerometro piezoelettrico



## **Accelerometri MEMS**

- strutture MEMS molto semplici (una trave a sbalzo con massa campione e smorzamento viscoso dato da gas residui sigillati nel dispositivo), con possibilità di misura su singolo asse o tri-assiale, molto piccole e leggere
- gli accoppiamenti tra diverse direzioni di misura dell'accelerazione devono limitarsi a ≤ 3%



# Altri sensori per l'automazione

- bussole, GPS, giroscopi, piattaforme inerziali (IMU)
- celle di carico e sensori di forza/coppia
  - estensimetri (con ponte di Wheatstone), trasduttori piezoeletrici, torsiometri
- sensori di temperatura, pressione, flusso, livello, umidità, pH
  - termo-resistenze, sonde a termo-coppia, manometri, tubi di Pitot, ...
- sensori di prossimità e distanza
  - micro-switch (contatto)
  - capacitivi, induttivi
  - infrarossi, ultrasuoni
  - laser
- sistemi di visione
- sensori per altre grandezze d'interesse relative al prodotto o al processo
  - durezza, rugosità, usura di utensili, spessore, olfattivi ...

# Esempio di suite sensoriali

Monitoraggio di motore diesel con miscele e analisi gas emessi (CO2, CO, HC, NOx)



# Uso di sensori per automazione e controllo

Sistema di controllo per motore a combustione interna (emulazione hardware-in-the-loop)



## LabVIEW







Ambiente di sviluppo per applicazioni di misura, analisi e controllo, con funzioni di programmazione grafica, interfacce configurabili e facile integrazione hardware con una vasta gamma di dispositivi

♦ 🚱 📵 II 11pt Application Font 🔻 🗫 🙃 🐿 🗫



Reference Probe



Automazione 33

Fetal Probe

#### LabVIEW

- □ il più diffuso ambiente software per acquisizione dati (DAQ) e non solo
- sviluppato da National Instruments (NI) dal 1986, de facto uno standard industriale
- acquisizione dati tramite molteplici canali di comunicazione
  - bus seriali (RS-232, RS-485) o paralleli (IEEE 488), TCP/IP, connessione remota via web
  - interfaccia con schede DAQ proprietarie (CompactDAQ, CompactRIO) o di terze parti
- strumentazione virtuale (VI = Virtual Instrument)
  - con VI si emulano i dispositivi di misura (ad es., oscilloscopi) o controllo
  - le interfacce utente sono altamente personalizzabili
- programmazione grafica ad icone (G-language) o con moduli utente scritti in C
- analisi e elaborazione dei segnali
  - libreria di algoritmi veloci, efficienti, affidabili ("script nodes" con sintassi tipo Matlab)
- interfaccia con hardware in/out di misura e di controllo
  - mediante l'uso di driver, il codice è facilmente trasferibile sui diversi target hardware:
     PC desktop, computer industriali, dispositivi embedded, PLC, FPGA, Arduino, ...
- moduli dedicati alle applicazioni
  - visione, motion control, robotica (toolbox KUKA, ROS), monitoraggio e test automatizzati ...