### Lecture #1: Introduction to CS1090A

aka STAT109A, AC209A, CSCIE-109A

### CS109A Introduction to Data Science

Pavlos Protopapas, Kevin Rader and Chris Gumb



### Lecture Outline

- What is data science?
- Why data science?
- How to learn and why take CS109A?
- What is this class: who, how, what?
- Demo

### Lecture Outline

- What is data science?
- Why data science?
- How to learn and why take CS109A?
- What is this class: who, how, what?
- Demo

# A little bit of history

# History: The Evolution of Data Science: Early Methods

In ancient times, scientific knowledge was largely based on empirical observations. People would gather data through direct experience, such as counting stars in the sky or measuring crop yields.



# History: The Evolution of Data Science: Early Methods

In ancient times, scientific knowledge was largely based on empirical observations. People would gather data through direct experience, such as counting stars in the sky or measuring crop yields.



#### The Evolution of Data Science: From Observation to Innovation

Thousands of years ago, science was primarily empirical in nature. Individuals would observe and count entities like stars and crops. This collected data was then used to construct devices that helped explain these phenomena.





PROTOPAPAS, RADER

# The Evolution of Data Science: The Age of Equations

A few centuries ago, the approach to science shifted significantly. Researchers began using mathematical equations, often in the form of differential equations, to describe relationships and phenomena.

$$F = G \frac{m_1 m_2}{d^2}$$

$$\nabla \cdot E = 0 \quad \nabla \times E = -\frac{1}{c} \frac{\partial H}{\partial t}$$

$$\nabla \cdot H = 0 \quad \nabla \times H = \frac{1}{c} \frac{\partial E}{\partial t}$$

$$i\hbar\frac{\partial}{\partial t} - \Psi = \widehat{H}\Psi$$

$$E = mc^2$$

$$\rho \left( \frac{\partial v}{\partial t} + v \cdot \nabla v \right) = -\nabla p + \nabla \cdot T + f$$

# The Evolution of Data Science: The Computational Era

Approximately a century ago, another paradigm shift occurred in science with the emergence of computational approaches. This allowed for complex simulations and analyses that were previously unimaginable.





# The Rise of Data Science and Machine Learning

In more recent times, the focus has shifted yet again to data science and machine learning. These disciplines specialize in extracting patterns and insights from large sets of data, revolutionizing how we understand and interact with the world.



- Interdisciplinary
- Data and task focused
- Resource aware
- Adaptable to changes in the environment and needs

#### The Potential of Data Science

#### Disease Diagnosis



Detecting malaria from blood smears

#### **Drug Discovery**



Discovering new drug combinations
PROTOPAPAS, RADER using language models

#### Generative Al



Creating images from text prompts

#### Transportation



Self driving trucks for safe night shipping

#### The Potential of Data Science

#### Disease Diagnosis



Detecting malaria from blood smears

#### **Drug Discovery**



Discovering new drug combinations
PROTOPAPAS, RADER using language models

#### Generative Al



Creating images from text prompts

#### Transportation



Self driving trucks for safe night shipping

#### The Potential of Data Science



Some DS models for evaluating job applications in some fields show bias in favor of male candidates



Risk models used in US courts have shown to be biased against nonwhite defendants

#### The Data Science Process

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

#### The Data Science Process

Ask an interesting question

Get the Data

**Explore the Data** 

Model the Data

Communicate/Visualize the Results

What is the scientific goal?

What do you want to predict or estimate?

What would you do if you had all of the

data?

#### The Data Science Process

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

How were the data sampled?

Which data are relevant?

Are there privacy issues?

#### The Data Science Process

Ask an interesting question

Get the Data

**Explore the Data** 

Model the Data

Communicate/Visualize the Results

Plot the data.

Are there anomalies or egregious issues?

Are there patterns?

#### The Data Science Process

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

Build a model.

Fit the model.

Validate the model.

#### The Data Science Process

Ask an interesting question

Get the Data

**Explore the Data** 

Model the Data

Communicate/Visualize the Results

What did we learn?

Do the results make sense?

Can we effectively tell a story?

### Lecture Outline

- What is data science?
- Why data science?
- How to learn and why CS109A?
- What is this class: who, how, what?
- Demo





# But if you decide to do it...

- → It's a lot of fun!
- → You will be on the cutting edge of research and industry
- → You'll make lots of money doing something you'll enjoy
- → It's not that hard to start and do!



24





[ Companies











# 50 Best Jobs in America for 2022

|    | Job Title                 | Median Base Salary | Job Satisfaction | Job Openings |           |
|----|---------------------------|--------------------|------------------|--------------|-----------|
| #1 | Enterprise Architect      | \$144,997          | 4.1/5            | 14,021       | View Jobs |
| #2 | Full Stack Engineer       | \$101,794          | 4.3/5            | 11,252       | View Jobs |
| #3 | Data Scientist            | \$120,000          | 4.1/5            | 10,071       | View Jobs |
| #4 | Devops Engineer           | \$120,095          | 4.2/5            | 8,548        | View Jobs |
| #5 | Strategy Manager          | \$140,000          | 4.2/5            | 6,977        | View Jobs |
| #6 | Machine Learning Engineer | \$130,489          | 4.3/5            | 6,801        | View Jobs |
|    |                           |                    |                  |              |           |

# Why?

#### Jobs!



# I want to do it because ....

PROTOPAPAS, RADER

### Lecture #22: Generative Model

CS109B, STAT109B, AC209B, CSCIE-109B

### CS109B Introduction to Data Science

Pavlos Protopapas, Alex Young





#### Lecture #22: Generative Model

CS109B, STAT109B, AC209B, CSCIE-109B

### CS109B Introduction to Data Science

Pavlos Protopapas, Alex Young





### Lecture Outline

- What is data science?
- Why data science?
- How to learn and why CS109A?
- What is this class: who, how, what?
- Demo



Learn by Reading







# explained.ai

Deep explanations of machine learning and related topics.

Website created by Terence Parr.



Terence is a professor of computer science and was founding director of the MS in data science program at the University of San Francisco. While he is best known for creating the ANTLR parser generator,

Terence actually started out studying neural networks in grad school (1987). After 30 years of parsing, he's back to machine learning and really enjoys trying to explain complex topics deeply and in the simplest possible way. Follow <code>@the\_antlr\_guy</code>.



#### **DEEP LEARNING**

DS-GA 1008 · SPRING 2021 · NYU CENTER FOR DATA SCIENCE

| INSTRUCTORS | Yann LeCun & Alfredo Canziani |  |  |
|-------------|-------------------------------|--|--|
| LECTURES    | Wednesday 9:30 – 11:30, Zoom  |  |  |
| PRACTICA    | Tuesdays 9:30 – 10:30, Zoom   |  |  |
| FORUM       | r/NYU_DeepLearning            |  |  |
| DISCORD     | NYU DL                        |  |  |
| MATERIAI    | 2021 repo Full Stack D        |  |  |

Deep Learning

Spring 2021 Fall 2019

Lecture 10: Testing & Explainability **Learn by Watching** 

Q Search



Check the repo's README.md and learn about:

- Content new organisation
- The semester's second half intellectual dilemma
- This semester repository
- Previous releases

#### Lectures



Wa do a blitz ravious of the fundamentals of door learning, and introduce the endebace we will

Week 1: Fundamentals



Convolutional Neural

Networ 12:36

Weights & Biases

SUBSCRIBE

3. Cor

Weights





### Lecture Outline

- What is data science?
- Why data science?
- How to learn and why CS109A?
- What is this class: who, how, what?
- Demo



# Digestion Time

#### Lecture Outline

- What is data science?
- Why data science?
- How to learn and why CS109A?
- What is this class: who, how, what?
- Demo

#### Who? Instructors



**Pavlos Protopapas** 

Scientific Director For DS and CSE masters programs Principle Investigator of StellarDNN, a research lab within IACS/SEAS. Research in the intersection of astronomy, ML and statistics. He uses Neural Networks to solve problems in astronomy and physics and applying NLP techniques in astronomical time series analysis.

He loves classical music and opera, and he often visits the Boston Symphony Orchestra.

A certified cook from *Le Cordon Bleu* but loves eating more than cooking.

<u>Funny fact:</u> During a failed military service he was declared the worst soldier in NATO.

tiktok: @pavlosprotopapas

#### Who? Instructors



**Kevin Rader** 

Senior Preceptor and Associate-DUS in Statistics Primary role is undergraduate education, teaching several 100-level Stat courses from intro stat (104) to biostatistical methods (116).

Advises undergraduate research that applies data science and statistical analysis techniques in the domains of sports, medicine, and policy.

Loves all things Philadelphia, especially those concerning the national bird of the US

Go Birds!

Has a passion for growing and cooking his own food (mostly to help supply Pavlos' eating habits).

<u>Fun fact:</u> coaching 4<sup>th</sup> grade girls' soccer. Soccer analytics have not helped so far. 0 - 1 as a coach so far.

is not on tiktok...yet

## Who? Preceptor



Chris Gumb
Preceptor
SEAS

Chris has been a member of the CS109A & B teaching staff for the past 8 years.

As preceptor, he teaches some lectures, coordinates the TF team, develops course materials, and handles logistics.

When not answering your Ed posts and emails he enjoys making music and seeing films with friends.

Frequently spotted at the local independent movie theaters, he's basically made of popcorn 🌎

# Who? ~30 Teaching Fellows!

Wenqi Shi

Christian Rodrigo Cruz Flores

Carol (Xuan) Long

Joshua Price

Hao Shen

Paula Rodriguez Diaz

Leslie (Shixuan) Gu

**Antony Tan** 

Michelle (Mingxiao) Song

Alissia Di Maria

Junyang Deng

Diksha Chugh

Bowen Xu

Steven Liu

Songhan Hu

Omar Abdel Haq

**Haoran Zhang** 

Victoria (Xu) Tang

Yuan Tang

Rashmi Banthia

Victoria Okereke

**Daniel More Torres** 

Dhati Oommen

Josh Kaplan

**Teodor Malchev** 

Kasim Domac

Maitri Shah

Aseel Rawashdeh

Michel Arab

... and more!

#### What?

The material of the course will integrate the five key facets of an investigation using data:

- 1. Data collection: data wrangling, cleaning, and sampling to get a suitable data set.
- 2. Data management: accessing data quickly and reliably.
- 3. Exploratory data analysis; generating hypotheses and building intuition.
- 4. Prediction and statistical learning.
- 5. Communication: summarizing results through visualization, stories, and interpretable summaries.

#### Goals of the course

#### Theory/Intuition

- Key concepts in statistical analysis & machine learning
- Important metrics for evaluation
- Extracting insights from analysis of the models

#### Practice

- Implement ML and deep learning models using python libraries
- Using free online tools and resources for data science
- 3. Handling different kinds of data

#### Impact

- Solving real-life problems using DS
- Evaluating the social impact of DS

PROTOPAPAS, RADER

#### Weeks 1-2: Data

Data Formats + Web Scraping

Pandas

Data Viz and EDA

#### Weeks 3-5: Regression

**kNN** Regression

Linear Regression

Multi and Poly Regression

Model Selection and Cross Validation

Inference

Ridge and Lasso Regularization

#### Week 6: Bayesian Modeling

Bayesian Inferential Framework

Bayesian Linear Regression

#### Weeks 7-9: Classification

kNN Classification Logistic Regression Hierarchical Modeling

#### Week 8: Midterm

Midterm (October 22-24 in Section)

#### Week 10: Data Issues

Missingness

Causal Inference

Biases and Ethical Considerations

#### Weeks 11`-14: Tree-Based Models

**Decision Trees** 

Bagging

Random Forest

**Boosting Methods** 

Mixture of Experts

#### CS109B

- A. Neural Networks:
  - MLP
  - CNNs
  - RNNs
  - Generative models
  - Deep RL
- B. Unsupervised Learning
- C. Dimension Reduction

#### **AC215 Next Fall**

- A. Productionize Data Science, from notebooks to the cloud
- B. Big models, transfer learning and architecture learning
- C. Design and Development
- D. Deployment, Scaling, & Automation

#### Other related courses: not an exclusive list

- CS 171/271 (Visualization)
- CS 181 (ML)
- CS 182 (AI)
- CS 187 (NLP)
- Stat 110 (Probability)
- Stat 111 (Inference)
- Stat 139 (Linear Models)
- Stat 149 (Generalized Linear Models)

- Stat 131 (Time Series)
- Stat 171 (Stochastic Processes)
- Stat 195 (Statistical Machine Learning).
- CS 208 (Privacy)
- CS 282R (ML: Generative Models)
- CS 282BR (Sequential Learning)
- AC 295/CS 287 (DL for NLP)

# Why?

Why are you here?

#### Why am I here?

To provide the statistical/inferential/interpretive perspective:

- 1. What can our results tell us about the **relationships** between variables in the data? Do these relationships **vary** across individuals/observations?
- 2. How much **uncertainty** is there in the predictions and the estimates?
- 3. Are there any **data issues**? Think about: biases, missing data, ethical considerations, missing features/variables to collect or engineer, etc.

# Digestion Time

# **Course Components**

#### Lectures, Sections, and Office Hours

In lecture we'll cover the material that you will need to complete the homework and to survive the rest of your life in CS109A.

We will use a mix of slides and optional exercises via edstem.

- 1. Lecture slides and associated notebooks will be posted before lecture on *edstem*.
- 2. Lectures will be video taped (and live streamed for the extension school students) and are usually posted on Canvas within 24 hours.

Mon & Wed 10:30-11:45am in person @Lowell Lecture Hall and @Zoom for Extension School Students (zoom link is on canvas under zoom).

#### **Lecture format**



PROTOPAPAS, RADER 54

#### Lectures, Sections, and Office Hours

Sections will be a mix of review material, tutorials on how to practically solve problems with Python libraries, and some hands-on exercises.

Section attendance is required!

Quizzes and the Midterm will be administered in Section.

DCE: Proctorio will be used for quizzes and the midterm.

You are assigned to a specific section. The full section schedule will be posted on Canvas.

#### Attendance

Attending class isn't just required; it's something I look at closely when deciding on academic and professional recommendations.

Please understand that consistent presence and engagement in the classroom are highly valued in this course.



#### Attendance

#### From the Syllabus:

- Attendance is required for all on-campus students and will be recorded throughout the semester.
- Tobe eligible for certain letter grades, students must meet the following minimum attendance requirements (lectures and sections combined):
  - A requires at least 66% attendance
  - A- requires at least 50% attendance
  - B+ requires at least 33% attendance

Protopapas, Rader

57

#### Attendance

All lectures are videotaped, so you can watch them later if you can't attend.

For every 4 sessions attended (lecture or section), students earn 1 late day, which can be used on homework (up to 2 per assignment)\*



\*DCE students are automatically granted 4 late days

#### Lectures, Sections, and Office Hours

Office hours will be posted before next week.

There will be a Google calendar made available through Canvas with all course components and OHs.

# Assignments

## Five Graded Components

#### Homework: 30%

Homework 0: 1% Homeworks 1-5: 29%

Students are encouraged to work in pairs on HW assignments.

#### **Section Quizzes: 10%**

Two 30-minute in-section quizzes (not cumulative)

Quiz 1: Sept 28-Oct 2

Quiz 2: Nov 16-20

You will be allowed 1 page of reference notes.

#### Midterm: 18%

1 in-section Midterm, with a mix of multiple choice, short answer, and coding questions.

Multiple choice and short answer will be in-person with 2 reference sheets allowed, coding questions will be a timed take-home exam.

#### Final Exam: 22%

3-hour seated exam during exams period (tentatively scheduled for Dec. 11) with 4 sheets of reference notes. Roughly 90+ minutes of conceptual questions and 80+ minutes of coding

#### Project: 20%

Milestone dates and details to be announced soon.

## Homework(s)

#### There will be 5 homeworks (not including Homework 0):

- Homework 0 (due Sept 9<sup>th</sup>; all honest attempts get full credit)
- Homework 1 Web scraping, BeautifulSoup, Pandas, Plotting & EDA
- Homework 2 Regression: kNN, and LinReg (Multi- & polynomial)
- Homework 3 Regularization, Inference, and Bayesian Linear Regression
- Homework 4 Classification: Logistic Regression and Hierarchical Models
- Homework 5 Trees, Forests, and Boosting.

# Final Project

There will be a final group project (3-5 students) due during reading period.

- You can propose to use a (public) data set of your choice and your own project definition (to be approved by the instructors).
- Project proposal process starts in late September.

## Homework(s)

You are encouraged but not required to submit in pairs on HWs 1-5

We will be using the Groups function on Canvas to do this, details to be announced later.

HWs 1-5 are **due 10pm on Tuesdays**, and homework will be released on Tuesdats.

Late submission policy: students can earn late days based on attendance — at most 2 late days can be applied to any single homework. Outside of these allotted late days, late homework will **not be accepted**.

# Digestion Time

# Help

#### The process to get help is:

1. Post the question on *Edstem*, and hopefully, your peers will answer. The

teaching staff will also monitor and respond to posts.

- 2. Attend Office Hours; this is the best way to get help.
- 3. For private matters, send an email to the Helpline: cs1090a2025@gmail.com.
- 4. For personal matters, send an email to Pavlos and Kevin.

Weekends will be slow days, so please be patient!

Prompt for LLMs: Write an email to a cranky professor. Keep it concise and under 30 words.

66

#### Tools for the course

#### edstem



- Discussion Forum
- Reading assignments
- Lecture slides
- Section material
- Hands on exercises

#### Canvas



- Syllabus
- Schedule
- Homework Assignments
- Video Recordings
- Grades

PROTOPAPAS, RADER

#### Can I audit this class?

Yes, CS109A does accept auditors, but all auditors must agree to abide by the rules described in the syllabus

# Can I take this class <u>asynchronously</u>?

College students: This is not allowed.

Graduate students: This is not ideal. Attending classes is very important and part of being a student here. The decision is yours and your program academic coordinator. We feel you should attend at least 50% of the classes.

# Am I prepared for this class?

Proficiency in Python, basic math (calculus), basic stats/probability are expected.

HW0 will give you a sense of whether you have the pre-reqs.

# If I miss a class, will it affect my grade?



I have a trip planned during the midterm. Can I take the midterm earlier or later?

Midterm is administered in section the week of 10/20-10/24.

Final Exam is a 3-hour exam, tentatively scheduled for 12/11.

\*DCE will be administered via Proctorio.

Make sure these are on your calendar!

I have a project in mind. Can I use it for the course?

Yes, as long as the data are public and you're willing to work with other students.

#### Lecture Outline

- What is data science?
- Why data science?
- How to learn and why take CS109A?
- What is this class: who, how, what?
- Demo





# CS109A GAIVIE Time



Based on our "linear" model, what would most likely be the number of checkouts for a distance of 2.5 miles from the city center?

#### **Options**

A. 45000

B. 12530

C. 1450

D. 650





What is the goal of CS109A (from the teaching staff's perspective)?

#### **Options**

- A. To teach you practical data science.
- B. To make your life difficult and painful.
- C. To predict the next stock price crash.
- D. To enable computers to talk.

# THANK YOU

Course staff available to answer questions after class today in:

Lowell Lecture Hall from 11:45 AM – 1:00 PM