Du Big Bang à l'apocalypse: Symétries et solitons dans la cosmologie

Éric Dupuis

Université de Montréal, département de physique Conférences du vendredi des stagiaires

04-07-2014

Bonne fête Boson de Higgs!: 4 juillet 2012 - ...

- Cosmologie
 - Cosmologie 101
 - Notions de symétrie
 - Symétrie et cosmologie
- Solitons Appareillage mathématique
 - Équation d'ondes et soliton
 - Formalisme Lagrangien
 - Kink
- 3 Quotidien en cosmologie théorique des particules

Cosmologie 101

- Cosmologie : Structure/origine/évolution de l'univers
 - Big Bang
 - Modèles inflationnistes
 - Expansion de l'univers

État d'origine \rightarrow État actuel

Big Bang:

- -Matière compressée
- -Température très élevée
- -État instable

Forme symétrique : Importance en cosmologie

La symétrie en physique

Définition (approximative)

La **symétrie** d'un système physique définit une transformation qui le laisse invariant.

Théorème de Noether : Symétries \leftrightarrow Lois de conservations.

Symétrie de l'univers (postultats de la relativité restreinte)

• Homogénéitié : Invariance sous translation $\rightarrow \vec{p}$

2 Isotropie : Invariance sous rotation $\rightarrow \vec{L}$

Groupe : Fermeture, Identité, Inverse, Associativité.

Symétries ↔ Générateurs du groupe.

Exemple: U(n), O(n), SU(n), SO(n)

Ferroaimant de Heisenberg : Dipôles magnétiques en 2D

$$H = -J \sum_{i} \sum_{voisinsj} \vec{S}_i \cdot \vec{S}_j$$

Invariance de H sous rotation dans le plan **SO(2)**

Vide : Température de Curie

Brisure spontanée de symétrie

Les lois de la nature peuvent posséder des symétries qui ne laissent toutefois pas l'état de vide (fondamental) invariant.

Mécanisme de Kibble

Vides dégénérés, différant dans l'espace : défauts topologiques (solitons)

Brisure de symétrie - Particules

Grande unification:

$$G \rightarrow H \rightarrow ... \rightarrow SU(3) \times U(1)$$

Symétrie élecrofaible : Glashow, Salam et Weinberg

$$SU(2) \times U(1)$$

Mécanisme de Higgs : Bosons de Goldstone

Supposition : Univers est dans un potentiel V

- 1) Origine $\rightarrow \max(U)$, Big Bang
- 2) État actuel
- → symétrie brisée?
- \rightarrow défauts topologiques, solitons ?
- **3)** Évolution future
- \rightarrow vide métastable?
- \rightarrow Vers un vrai vide? **solitons?**

Solitons

Brisure de symétrie :

 \rightarrow Défauts topologiques : signature des solitons (Ils sont parmi nous?)

Intérêt cosmologique :

→ Influence sur le taux de transition vers un vrai vide

Équation d'ondes et solitons

Champ scalaire défini dans \mathbb{R}^d : $\phi(\vec{x},t)$ (champ???)

$$V = 0$$

Équation d'onde :
$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \Box \phi = 0$$

- 1) Forme et vitesse de l'onde conservées
- 2) Deux ondes retrouvent asymptotiquement leur forme/vitesse

$V \neq 0$

Terme dispersif :
$$+m^2\phi$$
 (Klein-Gordon)

$$\Rightarrow k^2 \rightarrow k^2 + m^2$$

Terme non-linéaire :
$$+\phi^3$$

Solitons
$$1)+2$$

Sur sa monture, John Russell poursuit sa destinée, vers l'onde solitaire!

En image

Description d'un soliton topologique

- 1) Densité d'énergie $\epsilon(x,t)$ d'un soliton (1+1 dim.)
- → Localisée dans l'espace (finitude)
- ightarrow Conservée et non-nulle

$$\epsilon(x,t) = \mathcal{H}[\phi] = \frac{1}{2}(\partial_x \phi)^2 + V(\phi)$$

Énergie finie : $\lim_{x \to \pm \infty} \mathcal{H} = 0$

- $\rightarrow \lim_{x \to +\infty} \partial_x \phi = 0$
- $ightarrow \lim_{x
 ightarrow \pm \infty} \phi[x] = g^{(i)}$ où les $g^{(i)}$ sont les min. de V
- 2) Structure des vides non triviale

Invariant de Lorentz : $x_{\mu}x^{\mu}$

$$x^{\mu} = (x_0, \vec{x}) \qquad x_{\mu} = (x_0, -\vec{x})$$
$$\partial^{\mu} = (\frac{1}{c}\partial_t, -\nabla)$$
$$\partial_{\mu}\partial^{\mu} = \frac{1}{c^2}\partial_t^2 - \nabla^2$$

(Indices répétés : Notation d'Einstein)

Principe d'Hamilton : chemin classique \leftrightarrow minimum d'action

- **1** Action : $S[\phi] = \int dt (L[\phi]) = \int d^{\mu}x (\mathcal{L}[\phi])$

$$\Rightarrow$$
 Euler-Lagrange : $\partial_{\mu}\left(rac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}
ight)=rac{\partial \mathcal{L}}{\partial \phi}$

1 Théorie des champs : $\mathcal{L}[\phi] = \frac{1}{2} \partial_{\mu} \phi (\partial^{\mu} \phi)^* - V$

Kink: cas de figure typique

Sous : $\phi \rightarrow -\phi$ (Z_2)

$$\mathcal{L}
ightarrow \mathcal{L}$$

$$\phi_0 \rightarrow -\phi_0$$

Théorie des champs :

- \rightarrow Champ scalaire $\phi \in \mathbb{R}$
- ightarrow 1+1 dimensions
- \rightarrow solutions statiques

$$V(\phi) = \frac{\lambda}{4}(|\phi|^2 - \frac{m^2}{\lambda})^2$$

Analogie mécanique classique

$$\mathcal{H}[\phi] = rac{1}{2}\partial_{\mu}\phi(\partial_{\mu}\phi)^* + V$$

Champ

$\bullet \mathcal{H} = \frac{1}{2} (\partial_t \phi)^{2r} + \frac{1}{2} (\partial_x \phi)^2 + V(\phi)$

$$E_{\phi} = \int dx \left[\frac{1}{2} (\partial_x \phi)^2 + V(\phi) \right]$$

Particule

Kink

éq. du mouv. : non-linéaire + dispersif $\Longrightarrow_{Euler-Lagrange} \phi'' = \lambda \phi^3 - m^2 \phi$

$$\phi(x) = \frac{m}{\sqrt{\lambda}} \tanh \left[\frac{m}{\sqrt{2}} (x - x_0) \right]$$

$$\epsilon(x) = \frac{m^4}{\sqrt{2\lambda}} sech^4 \left[\frac{m}{\sqrt{2}} (x - x_0) \right]$$

$$\phi(x=\infty)-\phi(x=-\infty)$$
 conservé (charge topologique Q= $\int k_0 dx$)

- $\rightarrow \, \mathsf{D\'eformations} \,\, \mathsf{continues} \,\, \mathsf{impossibles}$
- → Secteurs topologiques non connectés

Configuration non triviale de vides \to Solution non dissipative (Continuité de la solution en x)

Retour - Cosmologie et solitons

- Symétries brisées dans la nature (MS, ferroaimant)
- Structure non triviale des vides dans l'univers
 - $\rightarrow \text{ d\'efauts topologiques} \rightarrow \text{solitons}$
- ② ⇒ Mur de domaine (sym. discrète 1 dim.)
 - ⇒ Corde Cosmique (cylindrique)
 - ⇒ Monopôle (sphérique)
- Évolution de l'univers?

Taux de désintégration du faux vide

Effet tunnel quantique

Espace Euclidien : $t \rightarrow i\tau$ Quantique Min. \rightarrow Classique Euc.

 $ightarrow \min(S_E)
ightarrow {
m Bounce},$ Instanton $ightarrow {
m Int\'egrale}$ de chemin : ${
m T}/V pprox {
m e}^{-So/\hbar}$

Equation d'ondes et solito Formalisme Lagrangien Kink

Fluctuation d'un soliton : autre source de désintégration!!!

Potentiel à deux champs $\phi(x,t)$ et $\psi(x,t)$

$$V(\phi,\psi) = (\psi^2 - \delta_1)(\psi^2 - 1)^2 + \frac{\alpha}{\psi^2 + \gamma}[(\phi^2 - 1)^2 - \frac{\delta_2}{4}(\phi - 2)(\phi + 1)^2]$$

- 1+1 dimensions, on cherche une solution statique
- 2 Paramètres : $\alpha, \gamma, \delta_1, \delta_2$
- $oldsymbol{\circ} \gamma$: couplage
- $oldsymbol{\alpha}$: Importance du 2ème terme

Ordre 6, CLASSIQUE!

 $oldsymbol{\delta}_2
ightarrow {\sf Contrôle}$ de la séparation entre minimum sur l'axe ϕ

À venir...

Solutions aux équations de mouvements (contraintes à $\lim_{x\to\pm\infty}$)

Tester la stabilité de la solution

Trouver une borne maximale sur l'action \rightarrow borne minimale sur T

