Министерство образования Республики Беларусь

Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления

Кафедра Интеллектуальных информационных технологий

ОТЧЁТ Типовой расчёт

Выполнил:	Заяц Д. А.
Проверил:	Самсонов П. А.

Вариант: 6.

Таблица значений:

	6
-0.5	1.6313
-0.412	1.47756
-0.324	1.38862
-0.236	1.25078
-0.148	1.17048
-0.06	1.05118
0.028	0.982116
0.116	0.8818
0.204	0.824781
0.292	0.742362
0.38	0.697
0.468	0.630556
0.556	0.595805
0.644	0.543107
0.732	0.517675
0.82	0.476544
0.908	0.459175
0.996	0.427691
1.084	0.417327
1.172	0.393931
1.26	0.389793
1.348	0.373315
1.436	0.374944
1.524	0.3646
1.612	0.371874
1.7	0.367249

^{*}При решении типового расчета использовалось 25 узлов (первый узел не учитывается).

Апроксимация функции, использую команду InterpolatingPolynomial:

Вход:

```
In[1922]:= "Типовой расчет. Вариант 6"
        "Задание 1"
        \mathtt{data} = \; \{\{-0.412,\, 1.47756\},\, \{-0.324,\, 1.38862\},\, \{-0.236,\, 1.25078\},\,
            \{-0.148, 1.17048\}, \{-0.06, 1.05118\}, \{0.028, 0.982116\},
             \{ \texttt{0.116, 0.8818} \}, \, \{ \texttt{0.204, 0.824781} \}, \, \{ \texttt{0.292, 0.742362} \}, \, \{ \texttt{0.38, 0.697} \}, 
            \{0.468, 0.630556\}, \{0.556, 0.595805\}, \{0.644, 0.543107\},
            \{0.732, 0.517675\}, \{0.82, 0.476544\}, \{0.908, 0.459175\},
            \{0.996, 0.427691\}, \{1.084, 0.417327\}, \{1.172, 0.393931\},
            \{1.26, 0.389793\}, \{1.348, 0.373315\}, \{1.436, 0.374944\},
            {1.524, 0.3646}, {1.612, 0.371874}, {1.7, 0.367249}};
        1 = Length[data];
        (*Встроенная функция для нахождения интерполяционного полинома*)
        inpln := InterpolatingPolynomial[data, x]; Collect[inpln, x]
        gr1 = Plot[inpln, {x, -0.5, 1.788}];
        gr2 = ListPlot[data];
        Show[gr2, gr1]
                                     with the second
```

Задание 1.

Постройте интерполяционный многочлен степени n=24 для функции f(x), выведите его график и оцените его поведение на отрезке. Постройте многочлены меньшей степени на отрезке, используя не все узлы сетки:

- используете значения функции в нечетных узлах (n=12);
- используете значения функции в каждом 3- узле (n=7);
- используете значения функции в каждом 5- узле (n=4).

Сравните результаты и сделайте выводы о зависимость погрешности интерполирования от числа узлов.

При интерполировании алгебраическими многочленами наиболее употребительны многочлены в форме Ньютона и Лагранжа. Для первых двух вариантов задания будем использовать многочлены в форме Ньютона, для последующих двух - в форме Лагранжа.

1) n = 24:

```
"Типовой расчет. Вариант 6"
 \begin{array}{l} \text{data} = \{ \{ -0.412, 1.47756 \}, \{ -0.324, 1.38862 \}, \{ -0.236, 1.25078 \}, \{ -0.148, 1.17048 \}, \{ -0.06, 1.05118 \}, \{ 0.028, 0.982116 \}, \{ 0.116, 0.8818 \}, \{ 0.204, 0.824781 \}, \{ 0.292, 0.742362 \}, \{ 0.38, 0.697 \}, \{ 0.486, 0.630556 \}, \\ \{ (0.556, 0.595805 \}, \{ 0.644, 0.543107 \}, \{ 0.732, 0.517675 \}, \{ 0.82, 0.476544 \}, \{ 0.908, 0.459175 \}, \{ 0.996, 0.427691 \}, \{ 1.084, 0.417327 \}, \{ 1.172, 0.393931 \}, \{ 1.26, 0.389793 \}, \{ 1.348, 0.373315 \}, \{ 1.436, 0.374944 \}, \\ \{ 1.524, 0.3646 \}, \{ 1.612, 0.371874 \}, \{ 1.7, 0.367249 \} \}; \end{array} 
 inpln := InterpolatingPolynomial[data, x]; Collect[inpln, x]
 gr1 = Plot[inpln, {x, -0.5, 1.788}];
 Show[gr2, gr1]
                              в контейнеры xdata и ydata*)
 For[i = 0, i < 1, i++,

xdata[i] = data[i+1][1];
    ydata[i] = data[i+1][2];
n = 1 - 1;
 Array[xdata, {n + 1, θ}];
Array[ydata, {n+1, 0}];
Array[difftab, {n+1, n+1}, {0, 0}];
 For[i = 1, i ≤ n, i++,
For[i = 1, 1 ≤ n, i++,

For[j = n, j ≥ n - i, j --, difftab[j, i] = ""]];

For[j = 0, j ≤ n, j++, difftab[j, 0] = ydata[j]];
For i = 1, i \le n, i++,
    For j = 0, j \le n - i, j++,
     difftab[j, i] = \frac{difftab[j+1, i-1] - difftab[j, i-1]}{difftab[j, i]} \Big| \Big|;
PaddedForm[TableForm[arr], {6, 5}]
pln = difftab[\theta, \theta] + difftab[\theta, 1] * (x - xdata[\theta]);
For [i = 2, i \le n, i++,
   pln = lst[i - 1] + difftab[0, i] \star \prod_{i=1}^{n-1} (x - xdata[i]);
    lst = Append[lst, pln];];
                                            многочлена Ньютона 24 степени∗)
nwtn[x_] := N[lst[n]];
Collect[nwtn[x], x]
```

```
1.47756
                      -1.01068
                                                                                                                                613.87900
                                                                                                                                                            -2228.83000
                                                                                                                                                                                            6935.47000
                                                                                                                                                                                                                          -18880.90000
                                                                                                                                                                                                                                                                                                                              197007.00000
                                                                                                                                                                                                                                                                                                                                                                -357632.00000
                                                                                                                                                                                                                                                                                                                                                                                                    599427.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                     -933235.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.35661 × 10
                                                                                                                                                                                                                                                                                             91205.00000
1.38862
                     -1.56636
                                                3.71513
                                                                        -23.61070
                                                                                                    129.07700
                                                                                                                                -562.94400
                                                                                                                                                             2043.42000
                                                                                                                                                                                           -6356.70000
                                                                                                                                                                                                                          17303.10000
                                                                                                                                                                                                                                                           -41870.80000
                                                                                                                                                                                                                                                                                                                            -180652.00000
                                                                                                                                                                                                                                                                                                                                                                 328113.00000
                                                                                                                                                                                                                                                                                                                                                                                                   -550319.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                      857485.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -1.24770 × 10<sup>6</sup>
                     -0.91250
-1.35568
-0.78482
-1.13995
                                               -2.51808
3.24354
-2.01782
                                                                        21.82430
-19.92940
18.23230
                                                                                                   -118.61900
108.41400
-99.52690
                                                                                                                                515.98300
-472.59300
433.30100
-397.53500
                                                                                                                                                            -1872.30000
1715.71000
-1573.55000
1445.28000
                                                                                                                                                                                                                          -15858.50000
14546.00000
-13361.70000
                                                                                                                                                                                                                                                           38389.60000
-35237.00000
32400.90000
                                                                                                                                                                                                                                                                                             -83666.60000
76861.40000
-70757.40000
                                                                                                                                                                                                                                                                                                                                                                 -301452.00000
277529.00000
-256197.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.15024 × 10<sup>6</sup>
-1.06356 × 10<sup>6</sup>
986967.00000
-919764.00000
1.25078
                                                                                                                                                                                            5824.70000
                                                                                                                                                                                                                                                                                                                              165835.00000
                                                                                                                                                                                                                                                                                                                                                                                                    506102.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                       789485.00000
1.25078
1.17048
1.05118
0.98212
                                                                                                                                                                                                                                                           -29865.50000
                                                2.79552
                                                                        -16.80110
                                                                                                    91.12540
                                                                                                                                                                                                                                                                                                                                                                 237295.00000
0.88180
                      -0.64794
                                               -1.63998
                                                                         15.27500
                                                                                                   -83.78980
                                                                                                                                 365.57400
                                                                                                                                                            -1330.38000
                                                                                                                                                                                           4153.16000
                                                                                                                                                                                                                          -11353.70000
                                                                                                                                                                                                                                                           27612.90000
                                                                                                                                                                                                                                                                                             60496.60000
                                                                                                                                                                                                                                                                                                                              120611.00000
                                                                                                                                                                                                                                                                                                                                                                -220657.00000
                                                                                                                                                                                                                                                                                                                                                                                                    373056.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                     -586358.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          861260.00000
                    -0.64/94

-0.93658

-0.51548

-0.75505

-0.39490

-0.59884

-0.28900
                                                                                                  -83.78980
77.06270
-71.15770
65.90360
-61.26580
57.26940
-53.73420
                                                2.39263
-1.36118
2.04629
                                                                                                                                                                                                                                                           -25624.10000
23880.50000
-22363.70000
21056.30000
                                                                                                                                                                                                                                                                                                                                                                 206119.00000
-193523.00000
182719.00000
-173570.00000
0.82478
                                                                        -14.21900
                                                                                                                                -336.86500
                                                                                                                                                             1227.97000
                                                                                                                                                                                            -3839.81000
                                                                                                                                                                                                                           10515.70000
-9778.56000
                                                                                                                                                                                                                                                                                             56255.20000
                                                                                                                                                                                                                                                                                                                             -112402.00006
                                                                                                                                                                                                                                                                                                                                                                                                    349338.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                      550504.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -810794.00000
0.82478
0.74236
0.69700
0.63056
                                                                                                                                311.50300
-289.02100
269.39800
                                                                                                                                                                                                                                                                                                                             105259.00000
-99101.10000
93850.70000
                                                                                                                                                                                                                                                                                                                                                                                                    328883.00000
311441.00000
296783.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                       -519744.00006
493688.00006
                                                -1.15877
1.76046
                                                                                                                                                                                            3110.04000
                                                                                                                                                                                                                                                                                                                                                                                                                                     -471988.00000
                                                                        -10.50790
                                                                                                                                -252.28100
                                                                                                                                                             927.75400
                                                                                                                                                                                            -2928.37000
2773.56000
                                                                                                                                                                                                                           8099.33000
                                                                                                                                                                                                                                                           -19941.90000
19005.60000
                                                                                                                                                                                                                                                                                                                              89438.70000
85804.30000
0.54311
                                                -1.01362
                                                                         9.65092
                                                                                                                                 237.57300
                                                                                                                                                            -876.12000
                                                                                                                                                                                                                          -7694.68000
                                                                                                                                                                                                                                                                                             -42318.10000
                                                                                                                                                                                                                                                                                                                                                                -159755.00000
0.51768
0.47654
0.45918
0.42769
0.41733
0.39393
0.38979
                                                                        9.03692

-9.26353

8.61738

-8.35251

7.89712

-7.72788

7.44638

-7.35662

7.23703
                                                                                                  -53.73420

50.79800

-48.20990

46.16370

-44.38920

43.10870

-42.05400

41.45920

-41.06810
                                                                                                                               237.57300
-225.01800
214.48500
-205.80200
198.85900
-193.55200
189.80300
-187.56200
                                                                                                                                                           -8/6.12000
832.39300
-795.99900
766.40300
-743.20200
726.05000
-714.70600
                                                                                                                                                                                           -2643.49000
2536.37000
-2450.66000
2385.15000
-2338.89000
                                                                                                                                                                                                                          7357.76000
-7083.84000
6869.04000
-6710.28000
                                                                                                                                                                                                                                                           -18234.30000
17617.30000
-17145.60000
                      -0.46740
-0.19738
-0.35777
-0.11777
-0.26586
-0.04702
-0.18725
0.01851
-0.11755
0.08266
-0.05256
                                                1.53422
-0.91135
                                                                                                                                                                                                                                                                                                                             -82896.4000
 0.37332
0.37494
 0.37187
0.36725
```

 $\frac{1.16478 - 6.42196 \times - 41.5908 \times^{2} - 1567.01 \times^{3} - 6498.47 \times^{6} - 59407. \times^{5} + 543724. \times^{6} - 756425. \times^{7} - 7.56572 \times 10^{6} \times^{8} + 3.7839 \times 10^{7} \times^{9} - 4.2053 \times 10^{7} \times^{10} - 1.91239 \times 10^{8} \times^{11} + 8.34938 \times 10^{8} \times^{12} - 1.27364 \times 10^{9} \times^{12} + 2.210997 \times 10^{8} \times^{14} + 4.86181 \times 10^{9} \times^{15} - 1.1086 \times 10^{10} \times^{18} + 1.49329 \times 10^{10} \times^{17} - 1.38874 \times 10^{10} \times^{19} + 9.30004 \times 10^{9} \times^{19} - 4.51528 \times 10^{9} \times^{29} + 1.55446 \times 10^{9} \times^{21} - 3.61096 \times 10^{8} \times^{22} + 5.08423 \times 10^{9} \times^{23} - 3.28158 \times 10^{9} \times^{24} + 1.049329 \times 10^{10} \times 10^$

2) значения функции в нечетных узлах (n=12)

```
используете значения функции в нечетных узлах (n=12)"
data1 = ([-0.412, 1.47756], [-0.236, 1.25078], [-0.06, 1.05118], [0.116, 0.8818], [0.292, 0.742362], [0.468, 0.630556], [0.644, 0.543107], [0.82, 0.476544], [0.996, 0.427691], [1.172, 0.393931], [1.348, 0.373315], [1.524, 0.3646], [1.7, 0.367249]);

l = Length [data1];
                      ых в контейнеры xdata и ydata*)
For [i = 0, i < 1, i++,

xdata1[i] = data1[i+1][1];

ydata1[i] = data1[i+1][2];
n1 = 1 - 1;
(*coздание и заполнение та
Array[xdata1, {n1+1,0}];
Array/Mata1, (n1 +1, 0}];
Array/data1, (n1 +1, 0}];
Array/datf1, (n1 +1, 0];
Array/difftab1, (n1 +1, n1 +1), (0, 0)];
For[i = 1, i ≤ n1, i++,
For[j = 0, j ≤ n1, j ++, difftab1[j, 0] = ydata1[j]];
For [i = 1, i \le n1, i++,
  For [j = 0, j \le n1 - i, j++,
    difftab1[j, i] = \frac{difftab1[j+1, i-1] - difftab1[j, i-1]}{vdata[[i, i]] - vdata[[i]]} \Big] \Big];
(*формирование интерполяционных многочленов пыштопа») pln1 = difftab1[0, 0] + difftab1[0, 1] * (x-xdata1[0]);
For [i = 2, i \le n1, i++,
  pln1 = lst1[[i-1]] + difftab1[\theta, i] * \prod_{i=1}^{i-1} (x - xdata1[i]);
  lst1 = Append[lst1, pln1];];
                                              гочлена Ньютона 12 степени»)
nwtn1[x_] := N[lst1[n1]];
Collect[nwtn1[x], x]
```

```
используете значения функции в нечетных узлах (n=12)
Out[2164]//PaddedForm=
          1.47756
                      -1.28852
                                     0.43873
                                                   0.09294
                                                                                                    -0.01023
                                                                                                                  -0.00300
                                                                                                                                0.00267
                                                                                                                                                            0.00056
                                                                                                                                                                                              4.72651×10<sup>-6</sup>
         1.25078
1.05118
                      -1.13409
-0.96239
                                     0.48780
                                                  -0.00850
                                                                -0.08824
-0.04190
                                                                               0.05265
0.03795
                                                                                                   -0.01393
                                                                                                                  0.00076
                                                                                                                                0.00084
                                                                                                                                             -0.00017
                                                                                                                                                            9.66296×10<sup>-6</sup>
                                                                                                                                                                               -0.00027
                                     0.48331
                                                  -0.07062
                                                                                                    -0.01299
                                                                                                                  0.00193
                                                                                                                                0.00057
                                                                                                                                             -0.00015
                                                                                                                                                           -0.00052
          0.88180
                      -0.79226
                                     0.44602
                                                  -0.10012
                                                                -0.00851
                                                                               0.02423
                                                                                                   -0.01061
                                                                                                                  0.00273
                                                                                                                                0.00032
                                                                                                                                             -0.00107
          0.74236
                       -0.63526
                                     0.39316
                                                  -0.10611
          0.63056
                       -0.49687
                                     0.33713
                                                  -0.09709
                                                                 0.02427
                                                                               0.00538
                                                                                                   -0.00332
                                                                                                                  0.00125
          0.54311
                       -0.37820
                                     0.28587
                                                  -0.08000
                                                                 0.02901
                                                                               0.00188
                                                                               2.61549 × 10<sup>-14</sup>
          0.47654
                      -0.27757
                                     0.24362
                                                  -0.05958
-0.03800
                                                                 0.03066
          0.42769
                      -0.19182
                                     0.21216
                                                                 0.03066
         0.39393
0.37332
                      -0.11714
-0.04952
                                     0.19210
0.18343
                                                  -0.01642
          0.36460
                       0.01505
          0.36725
```

 $0.99 - 0.989996 \ x + 0.495043 \ x^2 - 0.000257397 \ x^3 - 0.123768 \ x^4 + 0.0677959 \ x^5 - 0.00667308 \ x^6 - 0.0123179 \ x^7 + 0.0114881 \ x^8 - 0.00634917 \ x^9 + 0.00211102 \ x^{10} - 0.000316034 \ x^{11} + 4.72651 \times 10^{-6} \ x^{12}$ Out[2170]=

л(2170)= используете значения функции в каждом 3- узле (n=7)

3) значения функции в каждом 3-ем узле (n=7)

используете значения функции в каждом 3- узле (n=7)

Out[2179]=

 $1.01654 - 1.25146 \, x + 0.688714 \, x^2 + 3.78066 \, x^3 - 12.1168 \, x^4 + 14.6673 \, x^5 - 7.97852 \, x^6 + 1.623 \, x^7 + 1.623 \,$

Out[2180]-

Out[2195]=

2) значения функции в каждом 5-ом узле (n=4)

Вход:

```
"используете значения функции в каждом 5-узле (n=4)"
\mathtt{data3} = \{\{-0.06, 1.05118\}, \{0.38, 0.697\}, \{0.82, 0.476544\}, \{1.26, 0.389793\}, \{1.7, 0.367249\}\};
13 = Length[data3];
(*перенос данных в контейнеры xdata и ydata*)
For [i = 0, i < 13, i++,
  xdata3[i] = data3[i+1][[1]];
  ydata3[i] = data3[i+1][2];
 ];
n3 = 13 - 1;
(*cоздание и заполнение таблицы разностей*)
Array[xdata3, {n3 + 1, 0}];
Array[ydata3, {n3+1, 0}];
pln3 = \sum_{i=0}^{n3} ydata3[i] * \prod_{i=0}^{n3} If[i \neq j, \frac{x - xdata3[j]}{xdata3[i] - xdata3[j]}, 1];
(*Формирование интерполяционного многочлена Лагранжа*)
lgr3[x_] := Collect[pln3, x];
1gr3[x]
```

0.5

Видим, что при увеличении количества узлов, точность интерполирования увеличивается. Интерполирующие многочлены 4ой и 7ой степеней "пропускают" некоторые узлы, в то время как многочлены 11ой и 24ой степеней визуально "попадают" во все узлы.

1.0

Задание 2.

Постройте сплайн, аппроксимирующий функцию f(x) по значениям в узлах, выведите его график и сравните его с графиком интерполяционного многочлена степени, построенного по тем же узлам.

Для данного задания будем строить кубический сплайн, т.е. каждый многочлен на его частичных интервалах будет третьей степени.

```
"Типовой расчет. Вариант 6"
 "Задание 2"
(ata = ((-0.42), 1.4776), (-0.324, 1.38862), (-0.236, 1.25978), (-0.148, 1.17048), (-0.06, 1.05118), (0.028, 0.982116), (0.116, 0.8818), (0.204, 0.824781), (0.292, 0.742362), (0.38, 0.697), (0.468, 0.630556), (0.556, 0.595805), (0.644, 0.543107), (0.732, 0.517675), (0.82, 0.476544), (0.908, 0.459175), (0.996, 0.427691), (1.084, 0.417327), (1.172, 0.393931), (1.26, 0.389793), (1.348, 0.373315), (1.436, 0.374944), (1.524, 0.3646), (1.612, 0.371874), (1.7, 0.367249));
1 = Length[data];
inpln := InterpolatingPolynomial[data, x]; Collect[inpln, x];
gripln = Plot[inpln, {x, -0.5, 1.788}];
data1 = {(-0.412, 1.47756), (-0.236, 1.25078), (-0.66, 1.05118), (0.116, 0.8818), (0.292, 0.742362), (0.468, 0.630556), (0.644, 0.543107), (0.82, 0.476544), (0.996, 0.427691), (1.172, 0.393931), (1.348, 0.373315), (1.524, 0.3646));
11 = Length[data1];
For[i = 0, i < 11, i++,
    xdata1[i] = data1[i+1][1];
    ydata1[i] = data1[i+1][2];
];</pre>
n1 = 11 - 1;
Array[xdata1, {n1+1, 0}];
Array[ydata1, {n1+1, 0}];
                                                   |x - xdata1[j]
pln1 = \sum_{j=0}^{n1} ydata1[i] * \prod_{j=0}^{n1} If \left[ i \neq j, \frac{k - xdata1[j]}{xdata1[i] - xdata1[j]}, 1 \right];
M-1-1, Array[м, n, 0]; Array[үр, q, r, о}, n, 1]; For[i=0,i≤n,i++, (*Метод прогонки для расчета коэф d[i] = xdata[i+1] - xdata[i];
    w[i] = ydata[i+1] - ydata[i]];
p[1] = 0; r[n] = 0;
For[i = 1, i ≤ n, i++,
           p[i] = d[i-1];
            r[i] = d[i];
            q[i] = 2 * (d[i] + d[i-1]);
o[i] = 3 * (w[i] / d[i] - w[i-1] / d[i-1])];
        o[1] = 3* (W[1] / d[1] - W[1 - 1] / d[1 - 1])];

Array[u, n, 1]; Array[v, n, 1]; Array[cs, n, 0];

u[1] = -r[1] / q[1];

for [i = 2, i < n, i++,
            s = q[i] + p[i] * u[i - 1];
u[i] = -r[i] / s;
            v[i] = (o[i] -p[i] *v[i-1]) /s];
         cs[n] = 0;
         For [i = n - 1, i \ge 1, i - -
            cs[i] = u[i] * cs[i+1] + v[i]];
         spln[xdata_{-}, ydata_{-}, c=n_{-}, x_{-}] := Block[{i = 0, h1, a1, b1, c1, d1, t1}, While[x > xdata[i+1], i++]; (*Pacчет κο϶φφιциентов рассчитанного сплайна*) h1 = xdata[i+1] - xdata[i];
              a1 = ydata[i];
              b1 = (ydata[i+1] - ydata[i]) / h1 - (cs[i+1] + 2 * cs[i]) * h1 / 3;
              c1 = cs[i];
              d1 = (cs[i+1] - cs[i]) / (3*h1);
              t1 = x - xdata[i];
              Return[a1 + b1 * t1 + c1 * t1 * t1 + d1 * t1 * t1 * t1]];
         \mathsf{sq}[x\_] := \mathsf{spln}[\mathsf{xdata}, \mathsf{ydata}, \mathsf{cs}, \mathsf{n}, x] \, (\star \phi \mathsf{y} \mathsf{н} \mathsf{k} \mathsf{ци}\mathsf{я-cc} \mathsf{s} \mathsf{n} \mathsf{h} \mathsf{a} \; \mathsf{pacc} \mathsf{ч} \mathsf{u} \mathsf{r} \mathsf{a} \mathsf{h} \mathsf{h} \mathsf{i} \mathsf{m} \mathsf{i} \mathsf{n} \mathsf{n} \mathsf{n})
         gr1 := ListPlot[data];
         gr2 := Plot[{lgr1[x], sq[x]}, {x, xdata[0], xdata[n]}, PlotLegends → {"Интерполяционный многочлен Лангранжа 11-ой степени", "Рассчитанный сплайн"}]
         Show[{gr1, gr2}]
```


Задание 3.

Постройте для функции f(x) многочлены наилучшего среднеквадратичного приближения P(x) n * степени n = 1,2. Вычислите для каждого многочлена сумму квадратов отклонения в узлах, сравните

их значения и сделайте выводы. Выведите графики узлов и многочленов P(x) n *, аппроксимирующих функцию.

Вход:

```
"Immode procest. Reputer 6"
"Salament 2"
"InfoRedown parts 1"
| InfoRedown parts 2"
| In
```

Выход:

Результат работы программы показывает, что сумма квадратов отклонения в узлах для многочлена 2ой степени меньше, чем для многочлена 1ой степени. Это также продемонстрировано на графике, график многочлена 2ой степени располагается ближе к узлам, "задевая" некоторую часть из них.

Задание 4.

Вычислите для таблично заданной определенный интеграл следующими методами:

- методами левых и правых прямоугольников;

- методом трапеций;
- методом Симпсона.

Сравните полученные приближенные значения интеграла и сделайте выводы о точности результата.

Вход:

```
In[2405]:= "Типовой расчет. Вариант 6"
                                                       "Задание 4"
                                                         (*Табличные данные*
                                                     \mathtt{data} = \{ \{-0.412, 1.47756\}, \{-0.324, 1.38862\}, \{-0.236, 1.25078\}, \{-0.148, 1.17048\}, \{-0.06, 1.05118\}, \{0.028, 0.982116\}, \{0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8818\}, \{-0.116, 0.8
                                                                             \{0.204,\,0.824781\},\,\{0.292,\,0.742362\},\,\{0.38,\,0.697\},\,\{0.468,\,0.630556\},\,\{0.556,\,0.595805\},\,\{0.644,\,0.543107\},\,\{0.732,\,0.517675\},\,\{0.82,\,0.476544\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.8247811\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,\{0.824781\},\,
                                                                               \{0.908,\,0.459175\},\,\{0.996,\,0.427691\},\,\{1.084,\,0.417327\},\,\{1.172,\,0.393931\},\,\{1.26,\,0.389793\},\,\{1.348,\,0.373315\},\,\{1.436,\,0.374944\},\,\{1.524,\,0.3646\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.389793\},\,\{1.916,\,0.3897
                                                                               {1.612, 0.371874}, {1.7, 0.367249}};
                                                         n = Length[data] - 1;
                                                       For [i = 0, i < n + 1, i++,
                                                                      xdata[i] = data[i+1][[1]];
                                                                    ydata[i] = data[i+1][2];
                                                       inpln := InterpolatingPolynomial[data, x]; Collect[inpln, x];
                                                         "Встроенная функция
                                                       resx = NIntegrate[inpln, {x, xdata[0], xdata[n]}]
                                                     h = (xdata[n] - xdata[0]) / n;
                                                         "Метод левых прямоугольников"
                                                     resx = N \left[ h * \sum_{k=0}^{n-1} y data[k] \right]
                                                       "Метод правых прямоугольников"
                                                     resx = N \left[ h * \sum_{k=1}^{n} y data[k] \right]
                                                       "метод трапеций"
                                                     resx = N\left[h/2*\left(ydata[0]+ydata[n]+2*\sum_{k=1}^{n-1}ydata[k]\right)\right]
                                                       "метод парабол"
                                                     resx = N \left[ h / 3 * \left( y data[0] + y data[n] + 4 * \sum_{k=1}^{n-1} If[Mod[k, 2] = 1, y data[k], 0] + 2 * \sum_{k=2}^{n-1} If[Mod[k, 2] = 0, y data[k], 0] \right) \right]
```

```
Типовой расчет. Вариант 6
Out[2406]=
        Задание 4
Out[2411]=
        Встроенная функция
Out[2412]=
        68.7146
Out[2414]=
        Метод левых прямоугольников
Out[2415]=
        1,47867
Out[2416]=
        Метод правых прямоугольников
Out[2417]=
        1.38096
Out[2418]=
        метод трапеций
Out[2419]=
        1.42981
Out[2420]=
        метод парабол
Out[2421]=
        1.43366
```

Как видим, результат встроенной функции и остальных методов существенно отличается.

Это связано с тем, что результат мы высчитываем, по заданным в таблице точкам. Напомним, график интерполирующего многочлена для наших данных выглядит так:

```
Типовой расчет. Вариант 6
Out[1923]=
                                                                                                                                                                                      Задание 1
Out[1926]=
                                                                                                                                                                                  1.16478 - 6.42196 x - 41.5008 x^2 + 1567.01 x^3 - 6408.47 x^4 -
                                                                                                                                                                                                               59\,407.\,x^5+543\,724.\,x^6-756\,425.\,x^7-7.56572\times10^6\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^8+3.7839\times10^7\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,x^9-10^9\,
                                                                                                                                                                                                               \textbf{4.20653} \times \textbf{10}^{7} \, \textbf{x}^{\textbf{10}} - \textbf{1.91239} \times \textbf{10}^{8} \, \textbf{x}^{\textbf{11}} + \textbf{8.34038} \times \textbf{10}^{8} \, \textbf{x}^{\textbf{12}} - \textbf{1.27364} \times \textbf{10}^{9} \, \textbf{x}^{\textbf{13}} - \textbf{1.27364} \times \textbf{10}^{9} \, \textbf{x}^{\textbf{13}} + \textbf{1.27364} \times \textbf{10}^{9} \, \textbf{x}^{\textbf{10}} + \textbf{10}^{9} \, \textbf{x}^{\textbf{10}
                                                                                                                                                                                                               \textbf{2.10097} \times \textbf{10}^{8} \, \textbf{x}^{\textbf{14}} + \textbf{4.86181} \times \textbf{10}^{9} \, \textbf{x}^{\textbf{15}} - \textbf{1.1086} \times \textbf{10}^{\textbf{10}} \, \textbf{x}^{\textbf{16}} + \textbf{1.49329} \times \textbf{10}^{\textbf{10}} \, \textbf{x}^{\textbf{17}} - \textbf{1.1086} \times \textbf{10}^{\textbf{10}} \, \textbf{x}^{\textbf{10}} + \textbf{1.49329} \times \textbf{10}^{\textbf{10}} \, \textbf{x}^{\textbf{10}} + \textbf{10}^{\textbf{10}} \,
                                                                                                                                                                                                               \textbf{1.38874} \times \textbf{10}^{\textbf{10}} \; \textbf{x}^{\textbf{18}} + \textbf{9.30604} \times \textbf{10}^{9} \; \textbf{x}^{\textbf{19}} - \textbf{4.51528} \times \textbf{10}^{9} \; \textbf{x}^{\textbf{20}} \; + \\
                                                                                                                                                                                                               1.55446 \times 10^9 \text{ x}^{21} - 3.61086 \times 10^8 \text{ x}^{22} + 5.08423 \times 10^7 \text{ x}^{23} - 3.28158 \times 10^6 \text{ x}^{24}
Out[1929]=
                                                                                                                                                                                                                                                                                                                                                                                                 10
                                                                                                                                                                                                                                                                                                                                                                                         d.8
                                                                                                                                                                                                                                                                                                                                                                                         06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.0
```

Действительно, учитывая то, как "строятся" прямоугольники, трапеции или параболы в соответствующих методах, результаты будут различаться.

Теперь попробуем взять многочлен 12-ой степени, его график:

И получаем следующий результат:

```
Out[2422]=
        Типовой расчет. Вариант 6
Out[2423]=
        Задание 4
Out[2428]=
       Встроенная функция
Out[2429]=
        1.41464
Out[2431]=
       Метод левых прямоугольников
Out[2432]=
        1.51596
Out[2433]=
       Метод правых прямоугольников
Out[2434]=
       1.32055
Out[2435]=
       метод трапеций
Out[2436]=
        1.41826
Out[2437]=
       метод парабол
Out[2438]=
        1.41463
```

Теперь значения встроенной функции и остальных методов близки, а ,судя по результату выполнения программы, метод парабол демонстрирует наилучшую точность.