

Reinforcement Learning

Industrial AI Lab.

Prof. Seungchul Lee

Source

- David Silver's Lecture (DeepMind)
 - UCL homepage for slides (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)
 - DeepMind for RL videos (https://www.youtube.com/watch?v=2pWv7GOvuf0)
 - An Introduction to Reinforcement Learning, Sutton and Barto pdf
- CMU by Zico Kolter
 - http://www.cs.cmu.edu/~zkolter/course/15-780-s14/lectures.html
 - https://www.youtube.com/watch?v=un-FhSC0HfY&hd=1
- Deep RL Bootcamp by Rocky Duan
 - https://sites.google.com/view/deep-rl-bootcamp/home
 - https://www.youtube.com/watch?v=qO-HUo0LsO4
- Stanford Univ. by Serena Yeung
 - https://www.youtube.com/watch?v=lvoHnicueoE&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=15&t=1337s

Markov Decision Process

$$M = (S, A, P, R)$$

- *S*: set of states
- A: set of actions
- ullet P: S imes A imes S
 ightarrow [0,1]: transition probability distribution $P(s' \mid s,a)$
- ullet $R:S o \mathbb{R}$: reward function, where R(S) is reward for state s
- γ : discount factor
- ullet Policy $\pi:S o A$ is a mapping from states to actions

- The RL twist: we do not know P or R,
- They are too big to enumerate (only have the ability to act in MDP, observe states and rewards)

Limitations of MDP

- Update equations require access to dynamics model
 - → Sampling-based approximations

- Iteration over/storage for all states and actions
- Require small, discrete state-action space
 - → Q/V function fitting

Solving MDP

• (Policy evaluation) Determine value of policy π

$$egin{aligned} v_{\pi}(s) &= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \mid s_{0} = s
ight] \ &= R(s) + \gamma \sum_{s' \in S} P\left(s' \mid s, \pi(s)
ight) v_{\pi}\left(s'
ight) \end{aligned}$$

accomplished via the iteration (similar to a value iteration, but for a fixed policy)

$$v_{\pi}(s) \;\leftarrow\; R(s) + \gamma \sum_{s' \in S} P\left(s' \mid s, \pi(s)
ight) v_{\pi}\left(s'
ight), \quad orall s \in S$$

(Value iteration) Determine value of optimal policy

$$v_*(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) v_*\left(s'
ight)$$

accomplished via value iteration:

$$v(s) \leftarrow R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P\left(s' \mid s, a\right) v\left(s'
ight), \quad orall s \in S$$

Optimal Policy

• Optimal policy π_* is then

$$\pi_*(s) = rg \max_{a \in A} \sum_{s' \in S} P\left(s' \mid s, a
ight) v_*\left(s'
ight)$$

- How can we compute these quantities when *P* and *R* are unknown?
 - model-based RL
 - model-free RL

Overview of RL

Model-based RL

- A simple approach: just estimate the MDP from data (known as Monte Carlo method)
 - Agent acts in the work (according to some policy), observes episodes of experience

$$s_1, r_1, a_1, s_2, r_2, a_2, \cdots, s_m, r_m, a_m$$

We form the empirical estimate of the MDP via the counts

$$\hat{P}\left(s' \mid s, a
ight) = rac{\sum_{i=1}^{m-1} \mathbf{1}\left\{s_i = s, a_i = a, s_{i+1} = s'
ight\}}{\sum_{i=1}^{m-1} \mathbf{1}\left\{s_i = s, a_i = a
ight\}}$$

$$\hat{R}(s) = rac{\sum_{i=1}^{m-1} \mathbf{1}\{s_i = s\}r_i}{\sum_{i=1}^{m-1} \mathbf{1}\{s_i = s\}}$$

Model-based RL

- Will converge to correct MDP (and hence correct value function/policy) given enough samples of each state
- How can we ensure we get the "right" samples? (a challenging problem for all methods we present here)
- Advantages (informally): makes "efficient" use of data
- Disadvantages: requires we build the actual MDP models, not much help if state space is too large

Overview of RL

Model-free RL

- Temporal difference methods (TD, SARSA, Q-learning):
 - directly learn value function v_{π} or v_{*}
- Direct policy search:
 - directly learn optimal policy π_*

Temporal Difference (TD) Methods (1/2)

• Let's consider computing the value function for a fixed policy via the iteration

$$v_{\pi}(s) \;\leftarrow\; R(s) + \gamma \sum_{s' \in S} P\left(s' \mid s, \pi(s)
ight) \, v_{\pi}\left(s'
ight), \quad orall s \in S$$

- Suppose we are in some state s_t , receive reward r_t , take action $a_t = \pi(s_t)$ and end up in state s_{t+1}
- We cannot update v_{π} for all $s \in S$, but can we update just for s_t ?

$$v_{\pi}(s_t) \;\leftarrow\; r_t + \gamma \sum_{s' \in S} P\left(s' \mid s, a_t
ight) v_{\pi}\left(s'
ight)$$

• No, because we still do not know $P(s'|s, a_t)$ for all $s' \in S$

Temporal Difference (TD) Methods (2/2)

• But, s_{t+1} is a sample from the distribution $P(s'|s, a_t)$, so we could perform the update

$$v_{\pi}(s_t) \leftarrow r_t + \gamma v_{\pi}(s_{t+1})$$

- It is too "harsh" assignment if we assume that s_{t+1} is the only possible next state;
- Instead "smooth" the update using some $\alpha < 1$

$$v_\pi(s_t) \leftarrow (1-lpha) \left(v_\pi(s_t)
ight) + lpha \left(r_t + \gamma v_\pi(s_{t+1})
ight)$$

 This is the temporal difference (TD) algorithm. Its mathematical background will be briefly discussed later.

Issue with traditional TD algorithms

- TD lets us learn the value function of a policy π directly, without ever constructing the MDP.
- But is this really that helpful?
- Consider trying to execute greedy policy with respect to estimated v_{π}

$$\pi'(s) = rg \max_{a \in A} \sum_{s' \in S} P\left(s' \mid s, a
ight) v_{\pi}\left(s'
ight)$$

• We need a model $P(s'|s, a_t)$ anyway.

Entering the Q Function

• Q function is a value of starting state s, taking action a, and then acting according to π (or optimally for Q_*)

$$Q_{\pi}(s,a) = R(s) + \sum_{s' \in S} P\left(s' \mid s,a
ight) Q_{\pi}\left(s',\pi\left(s'
ight)
ight)$$

$$Q_*(s,a) = R(s) + \sum_{s' \in S} P\left(s' \mid s,a
ight) \max_{a'} Q_*\left(s',a'
ight)$$

$$S = R(s) + \sum_{s' \in S} P\left(s' \mid s, a
ight) v_*\left(s'
ight)$$

Optimal policy

$$\pi_*(s) = rg \max_a \sum_{s'} P\left(s' \mid s, a
ight) v_*\left(s'
ight) \quad ext{or}$$

$$\pi_*(s) = \arg\max_a Q_*(s,a)$$
 without knowing dynamics

SARSA and **Q**-learning

- Q function leads to new TD-like methods.
- As with TD, observe state s, reward r, take action a (but not necessarily $a=\pi(s)$), observe next sate s'
- ullet SARSA: estimate $Q_\pi(s,a)$ for expectation

$$Q_{\pi}(s, a) \leftarrow (1 - \alpha) \left(Q_{\pi}(s, a) \right) + \alpha \left(r_t + \gamma Q_{\pi} \left(s', \pi \left(s' \right) \right) \right)$$

ullet Q-learning: estimate $Q_st(s,a)$ for optimality

$$Q_*(s,a) \leftarrow \left(1-lpha
ight) \left(Q_*(s,a)
ight) + lpha \left(r_t + \gamma \max_{a'} Q_*\left(s',a'
ight)
ight)$$

SARSA and **Q-learning**

• The advantage of this approach is that we can now select actions without a model of MDP

ullet SARSA, greedy policy with respect to $Q_\pi(s,a)$

$$\pi'(s) = \arg\max_a Q_{\pi}(s, a)$$

ullet Q-learning, optimal policy

$$\pi^*(s) = \arg\max_a Q_*(s, a)$$

Solving Q-Value

Q-value iteration

$$egin{aligned} Q_{k+1}(s,a) &\leftarrow R(s) + \gamma \sum_{s'} P\left(s' \mid s,a
ight) \max_{a} Q_{k}\left(s',a'
ight) \ &\leftarrow 1 \cdot R(s) + \gamma \sum_{s'} P\left(s' \mid s,a
ight) \max_{a} Q_{k}\left(s',a'
ight) \ &\leftarrow \sum_{s'} P\left(s' \mid s,a
ight) \cdot R(s) + \gamma \sum_{s' \in S} P\left(s' \mid s,a
ight) \max_{a} Q_{k}\left(s',a'
ight) \ &\leftarrow \sum_{s'} P\left(s' \mid s,a
ight) \left[R(s) + \gamma \max_{a} Q_{k}\left(s',a'
ight)
ight] \ &\qquad \qquad Q_{k+1}(s,a) &\leftarrow \mathbb{E}_{s' \sim P(s' \mid s,a)} \left[R(s) + \gamma \max_{a} Q_{k}\left(s',a'
ight)
ight] &\qquad \qquad \text{Rewrite as expectation} \end{aligned}$$

Q-Learning Algorithm (1/2)

Replace expectation by samples

- 1) For an state-action pair (s,a) , receive: $s' \sim P\left(s' \mid s,a
 ight)$
- 2) Consider your old estimate: $Q_k(s,a)$
- 3) Consider your new sample estimate:

$$ext{target}\left(s'
ight) = R(s) + \gamma \max_{a'} Q_k(s',a')$$

4) Incorporate the new estimate into a running average [Temporal Difference or learning incrementally]:

$$egin{aligned} Q_{k+1}(s,a) &\leftarrow Q_k(s,a) + lpha \ \left(ext{target}\left(s'
ight) - Q_k(s,a)
ight) \ &\leftarrow \left(1 - lpha
ight) Q_k(s,a) + lpha \ ext{target}\left(s'
ight) \ &\leftarrow \left(1 - lpha
ight) Q_k(s,a) + lpha \left(R(s) + \gamma \max_{a'} Q_k\left(s',a'
ight)
ight) \end{aligned}$$

How to Sample Actions (Exploration vs. Exploitation)?

- All the methods we discussed so far had some condition like "assuming we visit each state enough", or "taking actions according to some policy"
- A fundamental question: if we don't know the system dynamics, should we take exploratory actions that will give us more information, or exploit current knowledge to perform as best we can?

- Example: a model-based procedure that does not work
 - Use all past experience to build model \hat{P} and \hat{R}
 - Find optimal policy for MDP $\widehat{M}=\left(S,A,\widehat{P},\widehat{R},\gamma\right)$ using e.g. value iteration and act according to this policy
 - Initial bad estimates may lead policy into sub-optimal region, and never explores further

Exploration: ε **-Greedy**

- Key idea: instead of acting according to the "best" policy based upon the current MDP estimate, act according to a policy that will *explore* less visited state-action pairs until we get a "good estimate"
- Choose random actions? Or
- Choose action that maximizes $Q_s(s,a)$ (i.e. greedily)?
- ε -Greedy: choose random action with probability ε , otherwise choose action greedily

$$\pi(s) = \left\{egin{array}{ll} \max_{a \in A} Q_k(s,a) & ext{with probability } 1-arepsilon & ext{exploitation} \ & ext{random action} & ext{otherwise} & ext{exploration} \end{array}
ight.$$

• Want to decrease ε as we see more examples

Q-Learning Algorithm (2/2)

```
Initialize Q(s,a) arbitrarily Repeat (for each episode): Initialize s Repeat (for each step of episode): Choose a from s using policy derived from Q (e.g., \varepsilon greedy) Take action a, observe r,s' Q_*(s,a) \leftarrow (1-\alpha) \left(Q_*(s,a)\right) + \alpha \left(r_t + \gamma \max_{a'} Q_*\left(s',a'\right)\right) s \leftarrow s' until s is terminal
```

- Q-Learning Properties
 - Amazing result: Q-learning converges to optimal policy if all state-action pairs seen frequently enough
 - With Q-learning, we can learn optimal policy without model of MDP
 - This is called off-policy learning

Overview of RL

Iterative Policy Evaluation

- Given a policy π , then evaluate the policy π
- Improve the policy by acting greedily with respect to v_{π}

Q-Learning with Gym Environment

- Agent interaction with environment
- OpenAl Gym
 - A Python API for RL environments
 - A set of tools to measure agent performance
 - Read https://gym.openai.com/docs/

Examples

Gridworld

Tetris

Atari

CartPole-v1

- Objective:
 - Balance a pole on top of a movable cart
- State:
 - [position, horizontal velocity, angle, angular speed]
- Action:
 - horizontal force applied on the cart (binary)
- Reward:
 - 1 at each time step if the pole is upright

Q-Learning

```
Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., \varepsilon greedy)

Take action a, observe r,s'

Q_*(s,a) \leftarrow (1-\alpha) (Q_*(s,a)) + \alpha (r_t + \gamma \max_{a'} Q_*(s',a')) \leftarrow s \leftarrow s'

until s is terminal

# Temporal Difference Update
```

Q table[idx state, action] = (1-LR)*Q table[idx state, action] + LR*(reward + gamma*np.max(Q table[new idx state,:]))

Nature of Learning

- We learn from past experiences
 - She has no explicit teacher but does have direct interaction to the environment
- Positive compliments vs. negative criticism

What is Reinforcement Learning?

- Computational approach to learning from interaction
 - Learn to make good sequence of decisions
 - No supervision
 - Feedback is delayed
 - Actions affect the subsequent future rewards
- The key challenge is to learn to make good decision under uncertainty

Fundamental Terminology in RL

- Markov Decision Process (MDP)
 - State, action
 - State transition probability, reward function, discount factor
- Policy, value, model
- Planning vs. learning
- Predictions vs. control
- Exploration vs. exploitation

observation

From MDP To Reinforcement Learning

 You should take good actions to get rewards, but in order to know which actions are good, we need to explore and try different actions.

- Markov decision process (offline)
 - Have mental model of how the world works.
 - Find policy to collect maximum rewards.
- Reinforcement learning (online)
 - Don't know how the world works.
 - Perform actions in the world to find out and collect rewards.

Deep Reinforcement Learning

Playing Atari [Google DeepMind, 2013]:

- Just use a neural network for $\hat{Q}_{\mathrm{opt}}(s,a)$
- Last 4 frames (images) → 3-layer NN → keystroke
- ϵ -greedy, train over 10M frames with 1M replay memory
- https://www.youtube.com/watch?v=V1eYniJ0Rnk

AlphaGo

- Supervised learning: on human games
- Reinforcement learning: on self-play games
- Evaluation function: convolutional neural network (value network)
- Policy: convolutional neural network (policy network)
- Monte Carlo Tree Search: search / lookahead

Control Inverted Pendulum

• From open-loop to closed-loop systems

Reinforcement Learning

• Software-in-the-loop

Control Uni-copter

• From open-loop to closed-loop systems

Reinforcement Learning

• Hardware-in-the-loop

Reinforcement Learning

• Learned knowledge can be transferred

