姓名: _____

学号:_____

大 连 理 工 大 学

院系: _____

课程名称: 线性代数与解析几何 试卷: A 考试形式: 闭卷

____ 级____ 班

授课院(系): 数学科学学院 考试日期: 2016年1月15日 试卷共 6 页

	_	1 1	111	四	五	六	七	八	九	总分
标准分	30	10	10	10	10	10	8	6	6	100
得 分										

装

得分一、(每小题 3 分, 共 30 分) 填空题
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \ \boldsymbol{\mu} \boldsymbol{a} \boldsymbol{b}^T = \begin{bmatrix} 2 & -1 & 3 \\ 4 & -2 & 6 \\ 6 & -3 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ k & k & 0 & 0 \\ k^2 & 0 & k & 0 \\ k^3 & 0 & 0 & k \end{bmatrix} = \underbrace{-k^3 - 2k^4 - 2k^5}$$

订

3. 已知矩阵
$$A$$
 满足 $A^2 + 2A - E = O$, 则 $(A + 3E)^{-1} = -\frac{1}{2}(A - E)$

4. 设
$$\mathbf{A} = \begin{bmatrix} k+1 & 1 & 1 & 1 \\ 2 & k+2 & 2 & 2 \\ 3 & 3 & k+3 & 3 \\ 4 & 4 & 4 & k+4 \end{bmatrix}$$
, $r(\mathbf{A}) = 3$, 则 k 需满足 $k = -10$

5. 设向量组 $\mathbf{a}_1, \mathbf{a}_2$ 和向量组 $\mathbf{b}_1, \mathbf{b}_2$ 都是向量空间V的基, $\mathbf{b}_1 = \begin{bmatrix} 1, -1, 2 \end{bmatrix}^T, \mathbf{b}_2 = \begin{bmatrix} 3, 1, -1 \end{bmatrix}^T$,从 $\mathbf{a}_1, \mathbf{a}_2$

到
$$\boldsymbol{b}_1, \boldsymbol{b}_2$$
的过渡矩阵为 $\begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$,则 $\boldsymbol{a}_1 = \underline{\begin{bmatrix} 4,0,1 \end{bmatrix}^T}, \boldsymbol{a}_2 = \underline{\begin{bmatrix} 5,-1,3 \end{bmatrix}^T}$

线

[6.
$$f(x_1, x_2, x_3) = x_1^2 + 9x_2^2 + 2x_3^2 + 2kx_1x_2 + 2x_1x_3 + 6x_2x_3$$
为正定二次型的充要条件是

k 满足 0 < k < 3

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{2015} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{2016} = \begin{bmatrix} 1 & 1 & 2018 \\ 1 & 1 & 2017 \\ 0 & 1 & 3 \end{bmatrix}$$

8. 已知方程 $ax^2 + ay^2 + az^2 + 4xy + 4xz + 4yz = b$ 所表示的曲面为单叶双曲面,则 a 和 b 需满

足 $_{-4} < a < 2$ 且b<0

- 9. 设A 既是正交矩阵又是正定矩阵,则 $AA^* = E$
- 10. 设A 为三阶方阵, $A^3 = A, |A| > 0, tr(A) < 0$,则|A + 2E| = 3

分 二、(每小题 2 分, 共 10 分)选择题

1.设A 为三阶可逆矩阵,将A 的1,2 列对调得到B,再将B 的第 2 列加到第 3 列得

到
$$C$$
,则 $C^{-1}A = (B)$

$$(A) \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc}
 & 0 & 1 & 1 \\
 & 1 & 0 & 0 \\
 & 0 & 0 & 1
\end{array}$$

$$\begin{array}{c|cccc}
(D) & 0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}$$

- 2. 下列选项正确的是(A
- (A) 若A,B为同阶可逆矩阵,则A与B等价. (B) 若矩阵A满足 $A^2 = O$,则A = O.
- (C) 若方阵 \mathbf{A} 经过初等变换化为 \mathbf{B} ,则 $|\mathbf{A}| = |\mathbf{B}|$.
- (D) 若 $A^* = B^*$, A = B.
- 3. 对任意 a,b,c,下列向量组中线性无关的是(C)
- (A) (a,1,2),(2,b,3),(0,0,0)
- (B) (b,1,1),(1,a,3),(2,3,c),(a,1,c)
- (C) (1,a,1,1),(1,b,1,0),(1,c,0,0)
- (D) (1,1,1,a),(2,2,2,b),(0,0,0,c)
- 4. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是四阶方阵, $(1,0,1,0)^T$ 是Ax = 0 的基础解系,则 $A^*x = 0$ 的 基础解系可为(D)

- (A) α_1, α_2 (B) α_1, α_3 (C) $\alpha_1, \alpha_2, \alpha_3$ (D) $\alpha_2, \alpha_3, \alpha_4$
- 5.下列矩阵中不可相似对角化的是(

$$(A) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(B) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

$$\text{(A)} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{(B)} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \qquad \text{(C)} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \qquad \text{(D)} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$(D) \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

得分
 三、(10分)(1)设
$$A = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, 求 A^{-1} .

解: (1)

$$A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \dots 5$$
 分(思路正确给 3 分,只有 1 个数算错给 4 分)

(2) 由
$$A^{-1}BA = 2E - A^{-1}B$$
, 得 $A^{-1}B(A+E) = 2E$, $B(A+E) = 2A$

$$|\mathbf{B}| = \frac{|2\mathbf{A}|}{|\mathbf{A} + \mathbf{E}|} \qquad \cdots 3 \, \mathcal{A}$$

得分 四、(10分) 求向量组 $\mathbf{a}_1 = \begin{bmatrix} 1,3,2,0 \end{bmatrix}^T$, $\mathbf{a}_2 = \begin{bmatrix} 2,-1,4,1 \end{bmatrix}^T$, $\mathbf{a}_3 = \begin{bmatrix} -3,5,-6,-2 \end{bmatrix}^T$,

 $a_4 = [2, -1, 0, 1]^T, a_5 = [7, 0, 6, 3]^T$ 的秩和一个极大无关组,并将其余向量用 该极大无关组线性表示。

秩为3

$$a_3 = a_1 - 2a_2, a_5 = a_1 + a_2 + 2a_4$$
 2 f

得 分 五、(10分) 设平面 π_1 和 π_2 的方程分别为 x+2y+z-2=0 和 -x+y+z-4=0.

- (1) 求平面 π_1 和 π_2 的交线 L的点向式方程.
 - (2) 求经过平面 π_1 和 π_2 的交线且与平面 π_1 垂直的平面 π_3 的方程。

解: (1) 交线
$$L$$
 的点向式方程为 $\frac{x+2}{-1} = \frac{y-2}{2} = \frac{z}{-3}$ ············ 5 分

(2)
$$4x - y - 2z + 10 = 0$$
 5 $\%$

得分 六、(10分) 当k满足什么条件时,方程组 $\begin{cases} x_1 - x_2 + x_3 = 1\\ 2x_1 + kx_2 + 3x_3 = 1\\ -kx_1 - 2x_2 = 4 \end{cases}$

有唯一解: 无解: 有无穷多解? 在有无穷多解时, 求出其通解.

解:
$$[\mathbf{A}, \mathbf{b}] = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & k & 3 & 1 \\ -k & -2 & 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & k+2 & 1 & -1 \\ 0 & -k-2 & k & k+4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & k+2 & 1 & -1 \\ 0 & 0 & k+1 & k+3 \end{bmatrix} \cdots 2$$
 分

当k ≠ -2 且k ≠ -1 时,有唯一解 ···········2 分

当k = -1时,无解 ············2 分

当k = -2时,有无穷多解 ············2 分

$$[A,b] → \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ } 通解为 x = c \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \cdots 2$$

得分 七、(8分)设
$$\mathbf{A} = \begin{bmatrix} 0 & -1 & -1 \\ 1 & -2 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$
,求可逆矩阵 \mathbf{P} 和对角矩阵 $\mathbf{\Lambda}$,使 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda}$.

解:特征值为 $\lambda_1 = -1$ (2重), $\lambda_2 = 0$ (单) ············3分

$$\lambda_1 = -1$$
 对应的特征向量为 $p_1 = \begin{bmatrix} 1,1,0 \end{bmatrix}^T$, $p_2 = \begin{bmatrix} 1,0,1 \end{bmatrix}^T$ (满足: $-x_1 + x_2 + x_3 = 0$)

$$\lambda_2 = 0$$
 对应的特征向量为 $\boldsymbol{p}_3 = \begin{bmatrix} 1, 1, -1 \end{bmatrix}^T$ ·············· 3 分

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}, \mathbf{\Lambda} = \begin{bmatrix} -1 & & \\ & -1 & \\ & & 0 \end{bmatrix} \qquad \cdots \cdots 2 \, \mathcal{H}$$

得 分 八、(6 分) 设 $n \ge 2$, $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为线性无关的 m 元列向量组, $\alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, $\beta_k = 2(\alpha - \alpha_k)$,其中 $k = 1, 2, \cdots, n$,证明:向量组 $\beta_1, \beta_2, \cdots, \beta_n$ 线性无关。

$$\widetilde{\mathbf{H}}: \ \left[\beta_1, \beta_2, \cdots, \beta_n\right] = \left[\alpha_1, \alpha_2, \cdots, \alpha_n\right] \mathbf{P}, \quad \mathbf{P} = \begin{bmatrix} 0 & 2 & \cdots & 2 \\ 2 & 0 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ 2 & 2 & \cdots & 0 \end{bmatrix} \cdots \cdots \cdots 2 \, \text{fr}$$

因为 $|P| = 2(n-1)(-2)^{n-1}$,P 可逆,所以 $r([\beta_1, \beta_2, \dots, \beta_n]) = r([\alpha_1, \alpha_2, \dots, \alpha_n]) = n$

向量组 $\beta_1,\beta_2,\cdots,\beta_n$ 线性无关。·········4分

得分 九、
$$(6 分)$$
设 α , β 为正交的三元单位列向量,证明: $A = \alpha \beta^T + \beta \alpha^T = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 相似。

证: 由 α, β 为正交的三元单位列向量,得 $\alpha^T \beta = \beta^T \alpha = 0, \alpha^T \alpha = \beta^T \beta = 1$

$A\alpha = \beta, A\beta = \alpha$	1分
$A(\alpha + \beta) = \alpha + \beta, A(\alpha - \beta) = -(\alpha - \beta)$	
由 α, β 为正交的单位列向量还可知, $\alpha + \beta \neq 0, \alpha - \beta \neq 0$	
所以1,-1为A的特征值	3 分
由 $r(A) = r(\alpha \beta^T + \beta \alpha^T) \le r(\alpha \beta^T) + r(\beta \alpha^T) \le 2$ 可知, 0 为 A	的特征值1分
由于 A, B 为对称矩阵,对称矩阵相似的充要条件是特征值相同,所以 $A 与 B$ 相似。	B 的特征值也是1,-1,0