

COMP417 Introduction to Robotics and Intelligent Systems

Lecture 13: GraphSLAM

Florian Shkurti Computer Science Ph.D. student florian@cim.mcgill.ca

Goal

• Enable a robot to simultaneously build a map of its environment and estimate where it is in that map.

• This is called SLAM (Simultaneous Localization And Mapping)

Goal

- Enable a robot to simultaneously build a map of its environment and estimate where it is in that map.
- This is called SLAM (Simultaneous Localization And Mapping)
- Today we are going to look at the batch version, i.e. collect all measurements and controls, and later form an estimate of the states and the map.
- We are going to solve SLAM using least squares

MORESLAM system, McGill, 2016

MORESLAM system, McGill, 2016

Laser-based SLAM with a Ground Robot

Erik Nelson, Nathan Michael

Carnegie Mellon University

Source Code: https://github.com/erik-nelson/blam

Google
Cartographer:
2D and 3D laser
SLAM

Code: https://github.com/googlecartographer/cartographer

SLAM: possible problem definitions

SLAM: possible problem definitions

Filtering SLAM

$$p(\mathbf{x}_t, \mathbf{m}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}, \mathbf{x}_0)$$

SLAM: possible problem definitions

Filtering SLAM

$$p(\mathbf{x}_t, \mathbf{m}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}, \mathbf{x}_0)$$

From "Computer Vision: Models, Learning, and Inference" Simon Prince

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5||\mathbf{x} - \boldsymbol{\mu}||_{\mathbf{\Sigma}}^{2})$$

Shortcut notation: $||\mathbf{x}||_{\Sigma}^2 = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}$

Note: The shapes of these covariances are important, you should know them well. In particular, when are x1 and x2 correlated?

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5||\mathbf{x} - \boldsymbol{\mu}||_{\mathbf{\Sigma}}^{2})$$

Shortcut notation: $||\mathbf{x}||_{\Sigma}^2 = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}$

x1 and x2 are correlated when the shape of the ellipse is rotated, i.e. when there are nonzero off-diagonal terms in the covariance matrix. In this example, (e) and (f)

Confidence regions

• To quantify confidence and uncertainty define a confidence region R about a point x (e.g. the mode) such that at a confidence level $c \le 1$

$$p(x \in R) = c$$

- we can then say (for example) there is a 99% probability that the true value is in R
- e.g. for a univariate normal distribution $N(\mu,\sigma^2)$

$$p(|x - \mu| < \sigma) \approx 0.67$$

 $p(|x - \mu| < 2\sigma) \approx 0.95$
 $p(|x - \mu| < 3\sigma) \approx 0.997$

Expectation

• Expected value of a random variable X:

$$E_{p(X)}[X] = \int_{x} xp(X=x)dx$$

• E is linear: $E_{p(X)}[X+c] = E_{p(X)}[X] + c$

$$E_{p(X)}[AX + b] = AE_{p(X)}[X] + b$$

• If X,Y are independent then [Note: inverse does not hold]

$$E_{p(X,Y)}[XY] = E_{p(X)}[X]E_{p(Y)}[Y]$$

Covariance Matrix

• Measures linear dependence between random variables X, Y. Does **not** measure independence.

$$Cov[X, Y] = E[XY] - E[X]E[Y]$$

Variance of X

$$Var[X] = Cov[X] = Cov[X, X] = E[X^2] - E[X]^2$$

$$Cov[AX + b] = ACov[X]A^{T}$$

$$Cov[X + Y] = Cov[X] + Cov[Y] - 2Cov[X, Y]$$

Covariance Matrix

• Measures linear dependence between random variables X, Y. Does **not** measure independence.

$$Cov[X, Y] = E[XY] - E[X]E[Y]$$

• Entry (i,j) of the covariance matrix measures whether changes in variable X_i co-occur with changes in variable Y_j

• It does not measure whether one causes the other.

Correlation does not imply causation

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

tylervigen.com

Correlation does not imply causation

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

◆ Bedsheet tanglings**◆** Cheese consumed

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5||\mathbf{x} - \boldsymbol{\mu}||_{\mathbf{\Sigma}}^{2})$$

For multivariate Gaussians:

$$E[\mathbf{x}] = \boldsymbol{\mu}$$

$$\operatorname{Cov}[\mathbf{x}] = \mathbf{\Sigma}$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5||\mathbf{x} - \boldsymbol{\mu}||_{\mathbf{\Sigma}}^{2})$$

Since we have 2D examples here:

$$\operatorname{Cov}[\mathbf{x}] = \mathbf{\Sigma} = \begin{bmatrix} \operatorname{Cov}[x_1, x_1] & \operatorname{Cov}[x_1, x_2] \\ \operatorname{Cov}[x_2, x_1] & \operatorname{Cov}[x_2, x_2] \end{bmatrix}^{x_2}$$
$$= \begin{bmatrix} \operatorname{Var}[x_1] & \operatorname{Cov}[x_1, x_2] \\ \operatorname{Cov}[x_2, x_1] & \operatorname{Var}[x_2] \end{bmatrix}^{-5}$$

SLAM: graph representation

Map $\mathbf{m} = \{\mathbf{m}_0, \mathbf{m}_1\}$ consists of landmarks that are easily identifiable and cannot be mistaken for one another.

i.e. we are avoiding the data association problem here.

SLAM: graph representation

Map $\mathbf{m} = \{\mathbf{m}_0, \mathbf{m}_1\}$ consists of landmarks that are easily identifiable and cannot be mistaken for one another.

SLAM: graph representation

 \mathbf{m}_1

Notice that the graph is mostly sparse as long as not many states observe the same landmark.

That implies that there are many symbolic dependencies between random variables in

$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

that are not necessary and can be dropped.

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

See least squares lecture

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)} \right]$$

by definition of conditional distribution

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)} \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)$$

denominator does not depend on optimization variables

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)} \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\prod_{t=1}^{T} p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \prod_{t=0}^{T} \prod_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$
See Appendix 1 for the derivation of this step

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$\mathbf{x}_{1:T}^{*}, \mathbf{m}^{*} = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_{0})$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_{0})}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_{0})} \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_{0})$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\prod_{t=1}^{T} p(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \prod_{t=0}^{T} \prod_{\mathbf{z}_{t}^{(k)} \in \mathbf{z}_{t}} p(\mathbf{z}_{t}^{(k)} | \mathbf{x}_{t}, \mathbf{m}_{k}) \right]$$

Probabilistic dynamics model

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)} \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\prod_{t=1}^{T} p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \prod_{t=0}^{T} \prod_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\sum_{t=1}^{T} \log p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \sum_{t=0}^{T} \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} \log p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\sum_{t=1}^{T} \log p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \sum_{t=0}^{T} \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} \log p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

Main GraphSLAM assumptions:

1. Uncertainty in the dynamics model is Gaussian

$$\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \mathbf{w}_t$$
 $\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_t)$ so $\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1} \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}), \mathbf{R}_t)$

2. Uncertainty in the sensor model is Gaussian

$$egin{aligned} \mathbf{z}_t^{(k)} &= \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k) + \mathbf{v}_t \ \mathbf{v}_t &\sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t) \ \mathbf{so} \ \mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k &\sim \mathcal{N}(\mathbf{h}(\mathbf{x}_t, \mathbf{m}_k), \mathbf{Q}_t) \end{aligned}$$

SLAM: noise/errors

$$\mathbf{x}_1|\mathbf{x}_0,\mathbf{u}_0 \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_0,\mathbf{u}_0),\mathbf{R}_0)$$

Expected to end up at $\mathbf{x}_1 = \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)$ from \mathbf{x}_0

SLAM: noise/errors

$$\mathbf{x}_1|\mathbf{x}_0,\mathbf{u}_0 \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_0,\mathbf{u}_0),\mathbf{R}_0)$$

Expected to end up at $\mathbf{x}_1 = \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)$ from \mathbf{x}_0 but we might end up around it, within the ellipse defined by the covariance matrix \mathbf{R}_0

SLAM: noise/errors

$$\mathbf{z}_1^{(0)}|\mathbf{x}_1,\mathbf{m}_0 \sim \mathcal{N}(\mathbf{h}(\mathbf{x}_1,\mathbf{m}_0),\mathbf{Q}_1)$$

Expected to get measurement $\mathbf{h}(\mathbf{x}_1, \mathbf{m}_0)$ at state \mathbf{x}_1 but it might be somewhere within the ellipse defined by the covariance matrix \mathbf{Q}_1

GraphSLAM: SLAM as a least squares problem

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\sum_{t=1}^T \log p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \sum_{t=0}^T \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} \log p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[-\sum_{t=1}^T ||\mathbf{x}_t - \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})||_{\mathbf{R}_t}^2 - \sum_{t=0}^T \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} ||\mathbf{z}_t^{(k)} - \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k)||_{\mathbf{Q}_t}^2 \right]$$

$$\mathbf{Notation:}$$

$$\mathbf{x}^T \mathbf{Q}^{-1} \mathbf{x} = ||\mathbf{x}||_{\mathbf{Q}}^2$$

Notation:

$$\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1} \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}), \mathbf{R}_t)$$

$$\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k \sim \mathcal{N}(\mathbf{h}(\mathbf{x}_t, \mathbf{m}_k), \mathbf{Q}_t)$$

GraphSLAM: SLAM as a least squares problem

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\sum_{t=1}^T \log p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \sum_{t=0}^T \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} \log p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[-\sum_{t=1}^T ||\mathbf{x}_t - \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})||_{\mathbf{R}_t}^2 - \sum_{t=0}^T \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} ||\mathbf{z}_t^{(k)} - \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k)||_{\mathbf{Q}_t}^2 \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmin}} \left[\sum_{t=1}^T ||\mathbf{x}_t - \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})||_{\mathbf{R}_t}^2 + \sum_{t=0}^T \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} ||\mathbf{z}_t^{(k)} - \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k)||_{\mathbf{Q}_t}^2 \right]$$

$$\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1} \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}), \mathbf{R}_t)$$

$$\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k \sim \mathcal{N}(\mathbf{h}(\mathbf{x}_t, \mathbf{m}_k), \mathbf{Q}_t)$$

GraphSLAM: example

 \mathbf{m}_1

Need to minimize the sum of the following quadratic terms:

$$egin{aligned} \|\mathbf{x}_1 - \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)\|_{\mathbf{R}_1}^2 \ \|\mathbf{x}_2 - \mathbf{f}(\mathbf{x}_1, \mathbf{u}_1)\|_{\mathbf{R}_2}^2 \ \|\mathbf{x}_3 - \mathbf{f}(\mathbf{x}_2, \mathbf{u}_2)\|_{\mathbf{R}_3}^2 \ \|\mathbf{z}_0^{(0)} - \mathbf{h}(\mathbf{x}_0, \mathbf{m}_0)\|_{\mathbf{Q}_0}^2 \ \|\mathbf{z}_1^{(0)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_0)\|_{\mathbf{Q}_1}^2 \ \|\mathbf{z}_1^{(1)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_1)\|_{\mathbf{Q}_1}^2 \ \|\mathbf{z}_1^{(1)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_1)\|_{\mathbf{Q}_1}^2 \ \|\mathbf{z}_2^{(1)} - \mathbf{h}(\mathbf{x}_2, \mathbf{m}_1)\|_{\mathbf{Q}_2}^2 \end{aligned}$$

with respect to variables: $\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{m}_0 \ \mathbf{m}_1$ initial state \mathbf{x}_0 is given

GraphSLAM: example

 \mathbf{m}_1

Need to minimize the sum of the following quadratic terms:

$$egin{aligned} ||\mathbf{x}_1 - \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)||_{\mathbf{R}_1}^2 \ ||\mathbf{x}_2 - \mathbf{f}(\mathbf{x}_1, \mathbf{u}_1)||_{\mathbf{R}_2}^2 \ ||\mathbf{x}_3 - \mathbf{f}(\mathbf{x}_2, \mathbf{u}_2)||_{\mathbf{R}_3}^2 \ ||\mathbf{z}_0^{(0)} - \mathbf{h}(\mathbf{x}_0, \mathbf{m}_0)||_{\mathbf{Q}_0}^2 \ ||\mathbf{z}_1^{(0)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_0)||_{\mathbf{Q}_1}^2 \ ||\mathbf{z}_1^{(1)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_1)||_{\mathbf{Q}_1}^2 \ ||\mathbf{z}_2^{(1)} - \mathbf{h}(\mathbf{x}_2, \mathbf{m}_1)||_{\mathbf{Q}_2}^2 \end{aligned}$$

with respect to variables: $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \mathbf{m}_0 \quad \mathbf{m}_1$ initial state \mathbf{x}_0 is given

Examples of dynamics and sensor models

$$\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \mathbf{w}_t$$

Can be any of the dynamical systems we saw in Lecture 2.

$$\mathbf{z}_t^{(k)} = \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k) + \mathbf{v}_t$$

 $\mathbf{z}_{t}^{(k)}$ can be any of the sensors we saw in Lecture 4:

- Laser scan $\{(r_i, \theta_i)\}_{i=1:K}$ where \mathbf{m}_k is an occupancy grid
- Range and bearing (r, θ) to the landmark $\mathbf{m}_k = (x_k, y_k, z_k)$
- Bearing measurements from images
- Altitude/Depth
- Gyroscope
- Accelerometer

Appendix 1

$$\begin{aligned} \text{Claim:} & & p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) &= & p(\mathbf{x}_0) \prod_{t=1}^T p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \prod_{t=0}^T \prod_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \\ \text{Proof:} & & & & & & & & \\ p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) &= & p(\mathbf{z}_T | \mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T-1}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T-1}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & p(\mathbf{z}_T | \mathbf{x}_T, \mathbf{m}) p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T-1}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & p(\mathbf{z}_T | \mathbf{x}_T, \mathbf{m}) p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T-2}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T-2}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & p(\mathbf{z}_T | \mathbf{x}_T, \mathbf{m}) p(\mathbf{z}_{T-1} | \mathbf{x}_{T-1}, \mathbf{m}) p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T-2}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) p(\mathbf{x}_{1:T-1}, \mathbf{m}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) p(\mathbf{x}_T | \mathbf{x}_{T-1}, \mathbf{u}_{T-1}) p(\mathbf{x}_{1:T-1}, \mathbf{m}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) p(\mathbf{x}_T | \mathbf{x}_{T-1}, \mathbf{u}_{T-1}) p(\mathbf{x}_{1:T-1}, \mathbf{m}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) p(\mathbf{x}_T | \mathbf{x}_{T-1}, \mathbf{u}_{T-1}) p(\mathbf{x}_{1:T-1}, \mathbf{m}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) p(\mathbf{x}_T | \mathbf{x}_{T-1}, \mathbf{u}_{T-1}) p(\mathbf{x}_{T-1} | \mathbf{x}_{T-2}, \mathbf{m}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) p(\mathbf{x}_T | \mathbf{x}_{T-1}, \mathbf{u}_{T-1}) p(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) p(\mathbf{x}_T | \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{u}_{T-1}) p(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) p(\mathbf{x}_T | \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{u}_{T-1}, \mathbf{u}_{T-1}, \mathbf{u}_{0:T-1}, \mathbf{x}_0) \\ &= & \prod_{t=0}^T p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{u}_{0:T-1}, \mathbf{u}_{0:T-1},$$

Appendix 1

Claim:
$$p(\mathbf{z}_t|\mathbf{x}_t,\mathbf{m}) = \prod_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} p(\mathbf{z}_t^{(k)}|\mathbf{x}_t,\mathbf{m}_k)$$
 where $\mathbf{z}_t = \{\mathbf{z}_t^{(k)} \text{ iff landmark } \mathbf{m}_k \text{ was observed}\}$ $\mathbf{m} = \{\text{landmarks } \mathbf{m}_k\}$

Proof:

Suppose without loss of generality that $\mathbf{z}_t = {\{\mathbf{z}_t^{(k)}, k = 1...K\}}$ and $\mathbf{m} = {\{\mathbf{m}_k, k = 1...K\}}$ i.e. that all landmarks were observed from the state at time t. Then:

$$\begin{aligned} p(\mathbf{z}_{t}^{(1)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) &= p(\mathbf{z}_{t}^{(1)}|\mathbf{z}_{t}^{(2)},...,\mathbf{z}_{t}^{(K)},\mathbf{x}_{t},\mathbf{m}) \ p(\mathbf{z}_{t}^{(2)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) \\ &= p(\mathbf{z}_{t}^{(1)}|\mathbf{x}_{t},\mathbf{m}_{1}) \ p(\mathbf{z}_{t}^{(2)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) \\ &= p(\mathbf{z}_{t}^{(1)}|\mathbf{x}_{t},\mathbf{m}_{1}) \ p(\mathbf{z}_{t}^{(2)}|\mathbf{z}_{t}^{(3)},...,\mathbf{z}_{t}^{(K)},\mathbf{x}_{t},\mathbf{m}) \ p(\mathbf{z}_{t}^{(3)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) \\ &= p(\mathbf{z}_{t}^{(1)}|\mathbf{x}_{t},\mathbf{m}_{1}) \ p(\mathbf{z}_{t}^{(2)}|\mathbf{x}_{t},\mathbf{m}_{2}) \ p(\mathbf{z}_{t}^{(3)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) \\ &\dots \\ &= \prod_{k=1}^{K} p(\mathbf{z}_{t}^{(k)}|\mathbf{x}_{t},\mathbf{m}_{k}) \end{aligned}$$