0.1 定义、定理和命题

命题 0.1 (行列式计算常识)

(2) 设 n 阶行列式 $D = \det(a_{ij})$, 把 D 上下翻转 (**行倒排**)、或左右翻转 (**列倒排**) 分别得到 D_1 、 D_2 ; 把 D **逆 时针旋转** 90°、或**顺时针旋转** 90° 分别得到 D_3 、 D_4 ; 把 D 依副对角线翻转、或依主对角线翻转分别得到 D_5 、 D_6 . 易知

$$D_{1} = \begin{vmatrix} a_{n1} & \cdots & a_{nn} \\ \vdots & & \vdots \\ a_{11} & \cdots & a_{1n} \end{vmatrix}, D_{2} = \begin{vmatrix} a_{1n} & \cdots & a_{11} \\ \vdots & & \vdots \\ a_{nn} & \cdots & a_{n1} \end{vmatrix}, D_{3} = \begin{vmatrix} a_{1n} & \cdots & a_{nn} \\ \vdots & & \vdots \\ a_{11} & \cdots & a_{n1} \end{vmatrix},$$

$$D_{4} = \begin{vmatrix} a_{n1} & \cdots & a_{11} \\ \vdots & & \vdots \\ a_{nn} & \cdots & a_{1n} \end{vmatrix}, D_{5} = \begin{vmatrix} a_{nn} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{11} \end{vmatrix}, D_{6} = \begin{vmatrix} a_{nn} & \cdots & a_{n1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{11} \end{vmatrix}.$$

则一定有

$$D_1 = D_2 = D_3 = D_4 = (-1)^{\frac{n(n-1)}{2}} D,$$

 $D_5 = D_6 = D.$

- (3) 设 $A = (a_{i,j})$ 为 n 阶复矩阵, 则一定有 $|A| = \overline{|A|}$.
- (4) 若 |A| 是 n 阶行列式,|B| 是 m 阶行列式,它们的值都不为零,则

$$\begin{vmatrix} A & O \\ O & B \end{vmatrix} = (-1)^{mn} \begin{vmatrix} O & A \\ B & O \end{vmatrix}.$$

证明 (1) 运用行列式的定义即可得到结论.

$$(2) D_{1} = \begin{vmatrix} a_{n1} & \cdots & a_{nn} \\ \vdots & \vdots \\ a_{11} & \cdots & a_{1n} \end{vmatrix} \xrightarrow{r_{i} \leftarrow r_{i+1}} (-1)^{n-1} \begin{vmatrix} a_{n-1,1} & \cdots & a_{n-1,n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{r_{i} \leftarrow r_{i+1}} (-1)^{n-1+n-2} \begin{vmatrix} a_{n-2,1} & \cdots & a_{n-2,n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

$$= \cdots = (-1)^{n-1+n-2+\cdots+1} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$D_{2} = \begin{vmatrix} a_{1n} & \cdots & a_{11} \\ \vdots & \vdots \\ a_{nn} & \cdots & a_{n1} \end{vmatrix} \xrightarrow{j_{i} \leftarrow j_{i+1}} (-1)^{n-1} \begin{vmatrix} a_{1,n-1} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n,n-1} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{j_{i} \leftarrow j_{i+1}} (-1)^{n-1+n-2} \begin{vmatrix} a_{1,n-2} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n,n-2} & \cdots & a_{nn} \end{vmatrix}$$

$$= \cdots = (-1)^{n-1+n-2+\cdots+1} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$D_{3} = \begin{vmatrix} a_{1n} & \cdots & a_{nn} \\ \vdots & & \vdots \\ a_{11} & \cdots & a_{n1} \end{vmatrix} \xrightarrow{\text{ff}(\text{M}^{\frac{1}{2}})} \left(-1\right)^{\frac{n(n-1)}{2}} \begin{vmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D^{T} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$D_{4} = \begin{vmatrix} a_{n1} & \cdots & a_{11} \\ \vdots & & \vdots \\ a_{nn} & \cdots & a_{1n} \end{vmatrix} \xrightarrow{\text{M}(\text{M}^{\frac{1}{2}})} \left(-1\right)^{\frac{n(n-1)}{2}} \begin{vmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D^{T} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$D_{5} = \begin{vmatrix} a_{nn} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{11} \end{vmatrix} \xrightarrow{\text{W}(\text{M}^{\frac{1}{2}})} \left(-1\right)^{\frac{n(n-1)}{2}} \left(-1\right)^{\frac{n(n-1)}{2}} \cdot (-1)^{\frac{n(n-1)}{2}} \cdot (-1)^{\frac{n(n-1)}$$

(3) 复数的共轭保持加法和乘法: $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2},\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}$, 故由行列式的组合定义可得

$$|A| = \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} a_{k_{11}} a_{k_{22}} \dots a_{k_{nn}}$$
$$= \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} \overline{a_{k_{11}}} \cdot \overline{a_{k_{22}}} \dots \overline{a_{k_{nn}}} = |\overline{A}|.$$

(4) 将 |A| 的第一列依次和 |B| 的第 m 列, 第 m-1 列, …, 第一列对换, 共换了 m 次; 再将 |A| 的第二列依次和 |B| 的第 m 列, 第 m-1 列, …, 第一列对换, 又换了 m 次; … 依次类推, 经过 mn 次对换可将第二个行列式变为第一个行列式. 因此 $|D| = (-1)^{mn} |C|$, 于是由行列式的基本性质可得

$$\begin{vmatrix} A & O \\ O & B \end{vmatrix} = (-1)^{mn} \begin{vmatrix} O & A \\ B & O \end{vmatrix}.$$

命题 0.2 (奇数阶反对称行列式的值等于零)

如果 n 阶行列式 |A| 的元素满足 $a_{ij}=-a_{ji}(1\leq i,j\leq n)$, 则称为反对称行列式. 求证: 奇数阶反对称行列式的值等于零.

笔记 证法二的想法是将行列式按组合的定义写成 (n-1)! 个单项的和. 然后将其两两分组再求和 (因为一共有 (n-1)! 个单项, 即和式中共有偶数个单项, 所以只要使用合适的分组方式就一定能够将其两两分组再求和), 最后发现 每组的和均为 0.

构造的这个映射 φ 的目的是为了更加准确、严谨地说明分组的方式. 证明这个映射 φ 是一个双射是为了保证原来的和式中的每一个单项都能与和式中另一个单项一一对应. 然后利用反证法证明了这两个一一对应的单项一定互不相同 (注: 我认为这步有些多余. 这里应该只需要说明这两个一一对应的单项是原和式中不同的单项即可,即这两个单项的角标不完全相同就行, 其实, 这个在我们定义映射 φ 的时候就已经满足了. 满足这个条件就足以说明原和式可以按照这种方式进行分组. 并且利用反对称行列式的性质也能够证明这两个单项不仅互不相同,还能进一步得到这两个单项互为相反数). 于是我们就可以将原和式中的每一个单项与其在双射 φ 作用下的像看成一组, 按照这种方式就可以将原和式进行分组再求和.

证明 证法一 (行列式的性质): 由反对称行列式的定义可知,|A| 的转置 |A'| 与 |A| 的每个元素都相差一个符号,将 |A'| 的每一行都提出公因子 -1 可得 $|A| = |A'| = (-1)^n |A| = -|A|$,从而 |A| = 0.

证法二(行列式的组合定义): 由于 |A| 的主对角元全为 0, 故由组合定义, 只需考虑下列单项:

$$T = \{a_{k_1 1} a_{k_2 2} \cdots a_{k_{nn}} \mid k_i \neq i (1 \le i \le n)\}$$

定义映射 $\varphi: T \to T, a_{k_11}a_{k_22}\cdots a_{k_{nn}} \mapsto a_{1k_1}a_{2k_2}\cdots a_{nk_n}$. 显然 $\varphi^2 = \mathrm{Id}_T$, 于是 φ 是一个双射. 我们断言: $a_{k_11}a_{k_22}\cdots a_{k_{nn}}$

和 $a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 作为 |A| 的单项不相同,否则 $\{1,2,\cdots,n\}$ 必可分成若干对 $(i_1,j_1),\cdots,(i_t,j_t)$, 使得 $a_{k_11}a_{k_22}\cdots a_{k_{nn}}=a_{i_1j_1}a_{j_1i_1}\cdots a_{i_tj_t}a_{j_ti_t}$, 这与 n 为奇数矛盾. 将上述两个单项看成一组,则它们在 |A| 中符号均为 $(-1)^{\tau(k_1k_2\cdots k_n)}$. 由于 |A| 反对称, 故

$$a_{1k_1}a_{2k_2}\cdots a_{nk_n}=(-1)^n a_{k_1}a_{k_2}\cdots a_{k_{nn}}=-a_{k_1}a_{k_2}\cdots a_{k_{nn}}$$

从而每组和为0,于是|A|=0.

命题 0.3 (" 爪" 型行列式)

证明 n 阶行列式:

$$|\mathbf{A}| = \begin{vmatrix} a_1 & b_2 & \cdots & b_n \\ c_2 & a_2 & & \\ \vdots & & \ddots & \\ c_n & & & a_n \end{vmatrix} = a_1 a_2 \cdots a_n - \sum_{i=2}^n a_2 \cdots \widehat{a_i} \cdots a_n b_i c_i.$$

Ŷ 笔记 记忆"爪"型行列式的计算方法和结论.

证明 当 $a_i \neq 0 (\forall i \in [2, n] \cap \mathbb{N})$ 时, 我们有

$$|A| = \begin{vmatrix} a_1 & b_2 & \cdots & b_n \\ c_2 & a_2 & & \\ \vdots & & \ddots & \\ c_n & & & a_n \end{vmatrix} \frac{\left(-\frac{c_i}{a_i}\right)j_{i+j_1}}{\underbrace{i=2,\cdots,n}} \begin{vmatrix} a_1 - \sum_{i=2}^n \frac{b_i c_i}{a_i} & b_2 & \cdots & b_n \\ 0 & & a_2 & & \\ \vdots & & & \ddots & \\ 0 & & & a_n \end{vmatrix}$$

$$= \left(a_1 - \sum_{i=2}^n \frac{b_i c_i}{a_i}\right) \prod_{i=2}^n a_i = a_1 a_2 \cdots a_n - \sum_{i=2}^n a_2 \cdots \widehat{a_i} \cdots a_n b_i c_i.$$

当 $\exists i \in [2, n] \cap \mathbb{N}$ s.t. $a_i = 0$ 时,则 $a_1 a_2 \cdots a_n - \sum_{i=2}^n a_2 \cdots \widehat{a_i} \cdots a_n b_i c_i = -a_2 \cdots \widehat{a_i} \cdots a_n b_i c_i$. 此时,我们有

$$a_n$$
 a_n a_2 a_{i-1} a_{i+1} a_{i+1} a_n a_{i+1} a_n a_n

综上所述,原命题得证. □

命题 0.4 (分块" 爪"型行列式)

计算 n 阶行列式 $(a_{ii} \neq 0, i = k+1, k+2, \dots, n)$:

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & a_{1k} & a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} & a_{k,k+1} & \cdots & a_{kn} \\ a_{k+1,1} & \cdots & a_{k+1,k} & a_{k+1,k+1} & & & \vdots \\ \vdots & & \vdots & & \ddots & & & \vdots \\ a_{n1} & \cdots & a_{nk} & & & & a_{nn} \end{vmatrix}$$

笔记 记忆分块"爪"型行列式的计算方法即可,计算方法和"爪"型行列式的计算方法类似.

解

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & a_{1k} & a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} & a_{k,k+1} & \cdots & a_{kn} \\ a_{k+1,1} & \cdots & a_{k+1,k} & a_{k+1,k+1} & & & \vdots \\ \vdots & & & \vdots & & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk} & & & a_{nn} \end{vmatrix}$$

$$\frac{-\frac{a_{i1}}{a_{ii}}j_{i}+j_{1}, -\frac{a_{i2}}{a_{ii}}j_{i}+j_{2}, \cdots, -\frac{a_{in}}{a_{ii}}j_{i}+j_{k}}{i=k+1,k+2, \cdots, n} = \begin{vmatrix} c_{11} & \cdots & c_{1k} & a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ c_{k1} & \cdots & c_{kk} & a_{k,k+1} & \cdots & a_{kn} \\ 0 & \cdots & 0 & a_{k+1,k+1} & & \vdots \\ \vdots & & \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & & a_{nn} \end{vmatrix}$$

其中
$$C = \begin{pmatrix} c_{11} & \cdots & c_{1k} \\ \vdots & & \vdots \\ c_{k1} & \cdots & c_{kk} \end{pmatrix}$$
, $B = \begin{pmatrix} a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k,k+1} & \cdots & a_{kn} \end{pmatrix}$, $\Lambda = \begin{pmatrix} a_{k+1} \\ \vdots \\ a_n \end{pmatrix}$.并且 $c_{pq} = a_{pq} - \sum_{i=k+1}^n \frac{a_{iq}a_{pi}}{a_{ii}}$, $p, q = 1, 2, \cdots, n$.

推论 0.1 (" 爪" 型行列式的推广)

计算 n 阶行列式:

$$|A| = \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n - a_n \end{vmatrix}.$$

笔记 这是一个有用的模板 (即行列式除了主对角元素外, 每行都一样).

记忆该命题的计算方法即可,即先化为"爪"型行列式,再利用"爪"型行列式的计算结果,

解 当 $a_i \neq 0 (\forall i \in [2, n] \cap \mathbb{N})$ 时, 我们有

$$|A| = \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n - a_n \end{vmatrix} = \frac{(-1)r_1 + r_i}{i = 2, \dots, n} \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ a_1 & -a_2 & 0 & \cdots & 0 \\ a_1 & 0 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_1 & 0 & 0 & \cdots & -a_n \end{vmatrix}$$

$$\frac{\Rightarrow \underbrace{\emptyset 0.3}}{=} \left[(x_1 - a_1) + \sum_{i=2}^n \frac{a_1 x_i}{a_i} \right] \prod_{i=2}^n (-a_i) = (-1)^{n-1} \left[(x_1 - a_1) + \sum_{i=2}^n \frac{a_1 x_i}{a_i} \right] \prod_{i=2}^n a_i$$

$$= (-1)^{n-1} \left[(x_1 - a_1) \prod_{i=2}^n a_i + \sum_{i=2}^n a_1 a_2 \cdots \widehat{a_i} \cdots a_n x_i \right].$$

当 $\exists i \in [2, n] \cap \mathbb{N}$ s.t. $a_i = 0$ 时, 我们有

$$|\mathbf{A}| = \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n - a_n \end{vmatrix} = \frac{\begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ a_1 & -a_2 & 0 & \cdots & 0 \\ a_1 & 0 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_1 & 0 & 0 & \cdots & -a_n \end{vmatrix}$$

$$\stackrel{\text{$\rightleftharpoons \pm 0.3}}{=} (x_1 - a_1)(-a_2)(-a_3) \cdots (-a_n) - \sum_{i=2}^n (-a_2) \cdots \widehat{(-a_i)} \cdots (-a_n)a_1x_i$$

$$= (-1)^{n-1} (x_1 - a_1) \prod_{i=2}^n a_i + (-1)^{n-1} \sum_{i=2}^n a_1a_2 \cdots \widehat{a_i} \cdots a_nx_i$$

$$= (-1)^{n-1} \left[(x_1 - a_1) \prod_{i=2}^n a_i + \sum_{i=2}^n a_1a_2 \cdots \widehat{a_i} \cdots a_nx_i \right].$$

$$\text{$\not : \pm \vec{n} \times |A| = (-1)^{n-1} \left[(x_1 - a_1) \prod_{i=2}^n a_i + \sum_{i=2}^n a_1a_2 \cdots \widehat{a_i} \cdots a_nx_i \right].}$$

命题 0.5

设 $|A|=|a_i|$ 是一个 n 阶行列式, A_{ij} 是它的第 (i,j) 元素的代数余子式,求证:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & x_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ y_1 & y_2 & \cdots & y_n & z \end{vmatrix} = z|A| - \sum_{i=1}^n \sum_{j=1}^n A_{ij}x_iy_j.$$

室 笔记 根据这个命题可以得到一个关于行列式 |A| 的所有代数余子式求和的构造:

$$-\sum_{i,j=1}^{n} A_{ij} = \begin{vmatrix} \mathbf{A} & \mathbf{1} \\ \mathbf{1}' & 0 \end{vmatrix} = \begin{vmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} & \mathbf{1} \\ 1 & 1 & \cdots & 1 & 0 \end{vmatrix} = \begin{vmatrix} \boldsymbol{\beta}_{1} & 1 \\ \boldsymbol{\beta}_{2} & 1 \\ \vdots & \vdots \\ \boldsymbol{\beta}_{n} & 1 \\ \mathbf{1}' & 0 \end{vmatrix}.$$

其中 |A| 的列向量依次为 $\alpha_1, \alpha_2, \dots, \alpha_n, |A|$ 的行向量依次为 $\beta_1, \beta_2, \dots, \beta_n$. 并且 1 表示元素均为 1 的列向量,1′ 表示 1 的转置. (令上述命题中的 $z=0, x_i=y_i=1, i=1,2,\dots,n$ 即可得到.)

 \dot{z} 如果需要证明的是矩阵的代数余子式的相关命题, 我们可以考虑一下这种构造, 即令上述命题中的 z=0 并且 特定/任取 x_i, y_i .

证明 证法一: 将上述行列式先按最后一列展开,展开式的第一项为

$$(-1)^{n+2} x_1 \begin{vmatrix} a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ y_1 & y_2 & \cdots & y_n \end{vmatrix}.$$

再将上式按最后一行展开得到

$$(-1)^{n+2} x_1 \left[(-1)^{n+1} (-1)^{1+1} y_1 A_{11} + (-1)^{n+2} (-1)^{1+2} y_2 A_{12} + \dots + (-1)^{n+n} (-1)^{1+n} y_n A_{1n} \right]$$

$$= (-1)^{n+2} x_1 (-1)^{n+1} \left[(-1)^2 y_1 A_{11} + (-1)^4 y_2 A_{12} + \dots + (-1)^{2n} y_n A_{1n} \right]$$

$$= -x_1 (y_1 A_{11} + y_2 A_{12} + \dots + y_n A_{1n})$$

$$= -x_1 \sum_{i=1}^n y_i A_{1i}.$$

同理可得原行列式展开式的第 $i(i = 1, 2, \dots, n-1)$ 项为

$$(-1)^{n+1+i} x_i \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i-1,1} & a_{i-1,2} & \cdots & a_{i-1,n} \\ a_{i+1,1} & a_{i+1,2} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ y_1 & y_2 & \cdots & y_n \end{vmatrix}.$$

将上式按最后一行展开得到 z |A|.

$$\begin{split} &(-1)^{n+1+i}\,x_i\left[(-1)^{n+1}\,(-1)^{i+1}\,y_1A_{i1} + (-1)^{n+2}\,(-1)^{i+2}\,y_2A_{i2} + \dots + (-1)^{n+n}\,(-1)^{i+n}\,y_nA_{in}\right] \\ &= (-1)^{n+1+i}\,x_i\,(-1)^{n+1}\,\left[(-1)^{i+1}\,y_1A_{i1} + (-1)^{i+2+1}\,y_2A_{i2} + \dots + (-1)^{i+n+n-1}\,y_nA_{in}\right] \\ &= (-1)^{2i+1}\,y_1A_{i1} + (-1)^{2i+3}\,y_2A_{i2} + \dots + (-1)^{2i+2n-1}\,y_nA_{in} \\ &= -x_i\,(y_1A_{i1} + y_2A_{i2} + \dots + y_nA_{in}) \\ &= -x_i\,\sum_{i=1}^n y_jA_{ij}. \end{split}$$

而展开式的最后一项为z|A|.

因此,原行列式的值为

$$z|A| - \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i y_j.$$

证法二:设 $\mathbf{x} = (x_1, x_2, \dots, x_n)', \mathbf{y} = (y_1, y_2, \dots, y_n)'$. 若 A 是非异阵,则由降阶公式可得

$$\begin{vmatrix} A & \mathbf{x} \\ \mathbf{y'} & z \end{vmatrix} = |A|(z - \mathbf{y'}A^{-1}\mathbf{x}) = z|A| - \mathbf{y'}A^*\mathbf{x}.$$

对于一般的方阵 A, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_n + A$ 为非异阵. 由非异阵情形的证明可得

$$\begin{vmatrix} t_k I_n + A & \mathbf{x} \\ \mathbf{y}' & z \end{vmatrix} = z|t_k I_n + A| - \mathbf{y}'(t_k I_n + A)^* \mathbf{x}.$$

注意到上式两边都是关于 t_k 的多项式, 从而关于 t_k 连续. 上式两边同时取极限, 令 $t_k \rightarrow 0$, 即有

$$\begin{vmatrix} A & x \\ y' & z \end{vmatrix} = z|A| - y'A^*x = z|A| - \sum_{i=1}^n \sum_{j=1}^n A_{ij}x_iy_j.$$

例题 **0.1** 设 n 阶行列式 $|A| = |a_{ij}|, A_{ij}$ 是元素 a_{ij} 的代数余子式, 求证:

$$|B| = \begin{vmatrix} a_{11} - a_{12} & a_{12} - a_{13} & \cdots & a_{1,n-1} - a_{1n} & 1 \\ a_{21} - a_{22} & a_{22} - a_{23} & \cdots & a_{2,n-1} - a_{2n} & 1 \\ a_{31} - a_{32} & a_{32} - a_{33} & \cdots & a_{3,n-1} - a_{3n} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} - a_{n2} & a_{n2} - a_{n3} & \cdots & a_{n,n-1} - a_{nn} & 1 \end{vmatrix} = \sum_{i,j=1}^{n} A_{ij}.$$

证明 证法一:设 |A| 的列向量依次为 $\alpha_1, \alpha_2, \cdots, \alpha_n$, 并且 1 表示元素均为 1 的列向量. 则

$$|B| = |\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \cdots, \alpha_{n-1} - \alpha_n, 1| = \frac{j_i + j_{i-1}}{i = n-1, n-2, \cdots, 2} |\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \cdots, \alpha_{n-1} - \alpha_n, 1|.$$

将最后一列写成 $(\alpha_n + 1) - \alpha_n$, 进行拆分可得

$$\begin{aligned} |B| &= |\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \cdots, \alpha_{n-1} - \alpha_n, (\alpha_n + 1) - \alpha_n| \\ &= |\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \cdots, \alpha_{n-1} - \alpha_n, \alpha_n + 1| - |\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \cdots, \alpha_{n-1} - \alpha_n, \alpha_n| \\ &= |\alpha_1 + 1, \alpha_2 + 1, \cdots, \alpha_{n-1} + 1, \alpha_n + 1| - |\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \alpha_n|. \end{aligned}$$

根据行列式的性质将 $|\alpha_1+1,\alpha_2+1,\cdots,\alpha_{n-1}+1,\alpha_n+1|$ 每一列都拆分成两列, 然后按 1 所在的列展开得到

$$|B| = |\alpha_1 + 1, \alpha_2 + 1, \dots, \alpha_{n-1} + 1, \alpha_n + 1| - |\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n|$$

$$= |\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n| + \sum_{i=1}^n A_{ij} - |\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n| = \sum_{i=1}^n A_{ij}.$$

证法二:设|A|的列向量依次为 $\alpha_1,\alpha_2,\cdots,\alpha_n$,并且1表示元素均为1的列向量.注意到

$$-\sum_{i,j=1}^n A_{ij} = \begin{vmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{vmatrix}.$$

依次将第i列乘以-1加到第i-1列上去 $(i=2,3,\cdots,n)$,再按第n+1行展开可得

$$-\sum_{i,j=1}^{n} A_{ij} = \begin{vmatrix} \alpha_1 - \alpha_2 & \alpha_2 - \alpha_3 & \cdots & \alpha_{n-1} - \alpha_n & \alpha_n & 1 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{vmatrix}$$
$$= -|\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \cdots, \alpha_{n-1} - \alpha_n, 1| = -|B|.$$

结论得证.

例题 0.2 设 n 阶矩阵 A 的每一行、每一列的元素之和都为零,证明:A 的每个元素的代数余子式都相等.

证明 证法一:设 $A = (a_{ij}), x = (x_1, x_2, \dots, x_n)', y = (y_1, y_2, \dots, y_n)',$ 不妨设 $x_i y_j$ 均不相同, $i, j = 1, 2, \dots, n$. 考虑如下 n+1 阶矩阵的行列式求值:

$$B = \begin{pmatrix} A & \mathbf{x} \\ \mathbf{y'} & 0 \end{pmatrix}$$

一方面, 由命题 0.5可得 $|B| = -\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i y_j$. 另一方面, 先把行列式 |B| 的第二行, …, 第 n 行全部加到第一行

上; 再将第二列, \cdots , 第n 列全部加到第一列上, 可得

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & x_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ y_1 & y_2 & \cdots & y_n & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & \cdots & 0 & \sum_{i=1}^{n} x_i \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ y_1 & y_2 & \cdots & y_n & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & \cdots & 0 & \sum_{i=1}^{n} x_i \\ 0 & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} & x_n \\ \sum_{j=1}^{n} y_j & y_2 & \cdots & y_n & 0 \end{vmatrix}$$

依次按照第一行和第一列进行展开, 可得 $|B| = -A_{11} \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j$. 比较上述两个结果, 又由于 $x_i y_j$ 均不相同, 因此可得 A 的所有代数余子式都相等.

证法二:由假设可知 |A|=0(每行元素全部加到第一行即得),从而 A 是奇异矩阵. 若 A 的秩小于 n-1,则 A 的任意一个代数余子式 A_{ij} 都等于零,结论显然成立. 若 A 的秩等于 n-1,则线性方程组 Ax=0 的基础解系只含一个向量. 又因为 A 的每一行元素之和都等于零,所以由命题??可知,我们可以选取 $\alpha=(1,1,\cdots,1)'$ 作为 Ax=0 的基础解系. 由命题??的证明可知 A^* 的每一列都是 Ax=0 的解,从而 A^* 的每一列与 α 成比例,特别地, A^* 的每一行都相等. 对 A' 重复上面的讨论,可得 $(A')^*$ 的每一行都相等. 注意到 $(A')^*=(A^*)'$,从而 A^* 的每一列都相等,于是 A 的所有代数余子式 A_{ij} 都相等.

命题 0.6 (三对角行列式)

求下列行列式的递推关系式(空白处均为0):

$$D_n = \begin{vmatrix} a_1 & b_1 \\ c_1 & a_2 & b_2 \\ & c_2 & a_3 & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots & \ddots \\ & & & \ddots & a_{n-1} & b_{n-1} \\ & & & & c_{n-1} & a_n \end{vmatrix}$$

拿 笔记 记忆三对角行列式的计算方法和结果: $D_n = a_n D_{n-1} - b_{n-1} c_{n-1} D_{n-2} (n \ge 2)$, 即按最后一列 (或行) 展开得到递推公式.

解 显然 $D_0 = 1, D_1 = a_1$. 当 $n \ge 2$ 时, 我们有

 $= a_n D_{n-1} - b_{n-1} c_{n-1} D_{n-2}.$

推论 0.2

计算 n 阶行列式 ($bc \neq 0$):

$$D_n = \begin{vmatrix} a & b & & & & & \\ c & a & b & & & & \\ & c & a & b & & & \\ & & \ddots & \ddots & \ddots & \ddots & \\ & & & c & a & b \\ & & & c & a \end{vmatrix}.$$

章 笔记 解递推式: $D_n = aD_{n-1} - bcD_{n-2} (n \ge 2)$ 对应的特征方程: $x^2 - ax + bc = 0$ 得到两根 $\alpha = \frac{a + \sqrt{a^2 - 4bc}}{2}$, $\beta = \frac{a - \sqrt{a^2 - 4bc}}{2}$, 由 Vieta 定理可知 $a = \alpha + \beta$, $bc = \alpha\beta$. 若 a, b, c 均为复数,则上述特征方程

解 由命题 0.6可知, 递推式为 $D_n = aD_{n-1} - bcD_{n-2} (n \ge 2)$. 又易知 $D_0 = 1, D_1 = a$. 令 $\alpha = \frac{a + \sqrt{a^2 - 4bc}}{2}, \beta = \frac{a - \sqrt{a^2 - 4bc}}{2}$, 则 $a = \alpha + \beta, bc = \alpha\beta$, 于是 $D_n = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2} (n \ge 2)$. 从而

$$D_{n} - \alpha D_{n-1} = \beta \left(D_{n-1} - \alpha D_{n-2} \right), D_{n} - \beta D_{n-1} = \alpha \left(D_{n-1} - \beta D_{n-2} \right).$$

于是

$$D_n - \alpha D_{n-1} = \beta^{n-1} (D_1 - \alpha D_0) = \beta^{n-1} (a - \alpha) = \beta^n,$$

$$D_n - \beta D_{n-1} = \alpha^{n-1} (D_1 - \beta D_0) = \alpha^{n-1} (a - \beta) = \alpha^n.$$

因此, 若 $a^2 \neq 4bc(\text{即}\alpha \neq \beta)$, 则联立上面两式, 解得

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta};$$

若 $a^2=4bc($ 即 $\alpha=\beta)$, 则由 $a=\alpha+\beta$ 可知, $\alpha=\beta=\frac{a}{2}$. 又由 $D_n-\alpha D_{n-1}=\beta^n$ 可得

$$D_n = \left(\frac{a}{2}\right)^n + \frac{a}{2}D_{n-1} = \left(\frac{a}{2}\right)^n + \frac{a}{2}\left(\left(\frac{a}{2}\right)^{n-1} + \frac{a}{2}D_{n-2}\right) = 2\left(\frac{a}{2}\right)^n + \left(\frac{a}{2}\right)^2D_{n-2} = \dots = n\left(\frac{a}{2}\right)^n + \left(\frac{a}{2}\right)^nD_0 = (n+1)\left(\frac{a}{2}\right)^n.$$
 综上,我们有

$$D_n = \begin{cases} \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}, a^2 \neq 4bc, \\ (n+1) \left(\frac{\alpha}{2}\right)^n, a^2 = 4bc. \end{cases}$$

命题 0.7 (大拆分法)

设 t 是一个参数,

$$|A(t)| = \begin{vmatrix} a_{11} + t & a_{12} + t & \cdots & a_{1n} + t \\ a_{21} + t & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + t & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix}$$

求证:

$$|A(t)| = |A(0)| + t \sum_{i,j=1}^{n} A_{ij},$$

其中 A_{ij} 是 a_{ij} 在 |A(0)| 中的代数余子式.

拿 笔记 大拆分法的想法: **将行列式的每一行/列拆分成两行/列**, 得到

$$|A(t)| = |A(0)| + t \sum_{j=1}^{n} |A_j| . \sharp \, \psi A_j = \begin{pmatrix} 1 & \cdots & i & \cdots & n \\ a_{11} & \cdots & t & \cdots & a_{1n} \\ a_{21} & \cdots & t & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & t & \cdots & a_{nn} \end{pmatrix}, j = 1, 2, \cdots, n.$$

大拆分法的关键是**拆分**, 根据行列式的性质将原行列式拆分成 2^n 个行列式.(不一定需要公共的 t). 不仅要熟悉大拆分法的想法还要记住大拆分法的这个命题.

注 大拆分法后续计算不一定要按行/列展开, 拆分的方式一般比较多, 只要拆分的方式方便后续计算即可. 证明 将行列式第一列拆成两列再展开得到

$$|A(t)| = \begin{vmatrix} a_{11} & a_{12} + t & \cdots & a_{1n} + t \\ a_{21} & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix} + \begin{vmatrix} t & a_{12} + t & \cdots & a_{1n} + t \\ t & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & & \vdots \\ t & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix}.$$

将上式右边第二个行列式的第一列乘-1加到后面每一列上,得到

$$|A| = \begin{vmatrix} a_{11} & a_{12} + t & \cdots & a_{1n} + t \\ a_{21} & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix} + \begin{vmatrix} t & a_{12} & \cdots & a_{1n} \\ t & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ t & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$$

再对上式右边第一个行列式的第二列拆成两列展开,不断这样做下去就可得到

$$|A(t)| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} t & a_{12} & \cdots & a_{1n} \\ t & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ t & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \cdots + \begin{vmatrix} a_{11} & a_{1n} & \cdots & t \\ a_{21} & a_{2n} & \cdots & t \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{nn} & \cdots & t \end{vmatrix} = |A(0)| + \sum_{j=1}^{n} |A_{j}|.$$

其中
$$A_j = \begin{pmatrix} a_{11} & \cdots & t & \cdots & a_{1n} \\ a_{21} & \cdots & t & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & t & \cdots & a_{nn} \end{pmatrix}, j = 1, 2, \cdots, n.$$
 将 A_j 按第 j 列展开可得

$$A_{j} = \begin{vmatrix} a_{11} & \cdots & t & \cdots & a_{1n} \\ a_{21} & \cdots & t & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & t & \cdots & a_{nn} \end{vmatrix} = t \left(A_{1j} + A_{2j} + \cdots + A_{nj} \right) = t \sum_{i=1}^{n} A_{ij}.$$

从而

$$|A(t)| = |A(0)| + \sum_{i=1}^{n} A_i = |A(0)| + t \sum_{i=1}^{n} \sum_{i=1}^{n} A_{ij} = |A(0)| + t \sum_{i,j=1}^{n} A_{ij}.$$

推论 0.3 (推广的大拆分法)

设

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix},$$

则

$$|A(t_1, t_2, \dots, t_n)| = \begin{vmatrix} a_{11} + t_1 & a_{12} + t_2 & \dots & a_{1n} + t_n \\ a_{21} + t_1 & a_{22} + t_2 & \dots & a_{2n} + t_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + t_1 & a_{n2} + t_2 & \dots & a_{nn} + t_n \end{vmatrix} = |A| + \sum_{j=1}^n \left(t_j \sum_{i=1}^n A_{ij} \right).$$

笔记 记忆这种推广的大拆分法的想法 (即**将行列式的每一行/列拆分成两行/列**).

这里推广的大拆分法的关键也是**要找到合适的** t_1, t_2, \cdots, t_n 进行拆分将原行列式拆分成更好处理的形式. 注 大拆分法后续计算不一定要按行/列展开, 拆分的方式一般比较多, 只要拆分的方式方便后续计算即可. 证明 运用大拆分法的证明方法不难得到.

命题 0.8 (小拆分法)

设

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix},$$

并且 a_{in} 可以拆分成 $b_{in} + c_{in}$, $i = 1, 2, \dots, n$.

则

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & b_{1n} + c_{1n} \\ a_{21} & a_{22} & \cdots & b_{2n} + c_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & b_{nn} + c_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & b_{1n} \\ a_{21} & a_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & b_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & c_{1n} \\ a_{21} & a_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & b_{nn} \end{vmatrix}.$$

Ŷ 笔记 记忆小拆分法的想法(即拆边列/行,再展开得到递推式).

注 若已知的拆分不是最后一列而是其他的某一行或某一列,则可以通过<mark>倒排、旋转、翻转、两行或两列对换</mark>的方 法将这一行或一列变成最后一列,再按照上述方法进行拆分即可.

小拆分法后续计算也不一定要按行/列展开, 拆分的方式一般比较多, 只要拆分的方式方便后续计算即可. 证明 由行列式的性质可直接得到结论.

命题 0.9

计算 n 阶行列式:

$$D_{n} = \begin{vmatrix} x_{1} & y & y & \cdots & y & y \\ z & x_{2} & y & \cdots & y & y \\ z & z & x_{3} & \cdots & y & y \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ z & z & z & \cdots & x_{n-1} & y \\ z & z & z & \cdots & z & x_{n} \end{vmatrix}.$$

章 笔记 解法二:
$$f(x) \triangleq \begin{vmatrix} x_1+x & y+x & \cdots & y+x \\ z+x & x_2+x & \cdots & y+x \\ \vdots & \vdots & & \vdots \\ z+x & z+x & \cdots & x_n+x \end{vmatrix} = \begin{vmatrix} x_1+x & y+x & \cdots & y+x \\ z-x_1 & x_2-y & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ z-x_1 & z-y & \cdots & x_n-y \end{vmatrix}$$
, 再按第一行展开可得 $f(x)$ 一定

为关于x的线性函数.

解解法一(小拆分法):对第 n 列进行拆分即可得到递推式:(对第 1 或 n 行 (或列)拆分都可以得到相同结果)

$$D_{n} = \begin{vmatrix} x_{1} & y & y & \cdots & y & y+0 \\ z & x_{2} & y & \cdots & y & y+0 \\ z & z & x_{3} & \cdots & y & y+0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ z & z & z & \cdots & x_{n-1} & y+0 \\ z & z & z & \cdots & z & y+x_{n}-y \end{vmatrix} = \begin{vmatrix} x_{1} & y & y & \cdots & y & y \\ z & x_{2} & y & \cdots & y & y \\ z & z & x_{3} & \cdots & y & y \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ z & z & z & \cdots & x_{n-1} & y \\ z & z & z & \cdots & z & y \end{vmatrix} + \begin{vmatrix} x_{1} & y & y & \cdots & y & 0 \\ z & x_{2} & y & \cdots & y & 0 \\ z & z & x_{3} & \cdots & y & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ z & z & z & \cdots & x_{n-1} & y \\ z & z & z & \cdots & z & x_{n-1} & 0 \\ z & z & z & z & \cdots & z & x_{n}-y \end{vmatrix}$$

$$= \begin{vmatrix} x_{1} - z & 0 & 0 & \cdots & 0 & 0 \\ 0 & x_{2} - z & 0 & \cdots & 0 & 0 \\ 0 & 0 & x_{3} - z & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x_{n-1} - z & 0 \\ z & z & z & \cdots & z & y \end{vmatrix} + (x_{n} - y) D_{n-1} = y \prod_{i=1}^{n-1} (x_{i} - z) + (x_{n} - y) D_{n-1}.$$
 (1)

将原行列式转置后,同理可得

$$D_{n} = D_{n}^{T} = \begin{vmatrix} x_{1} & z & z & \cdots & z & z+0 \\ y & x_{2} & z & \cdots & z & z+0 \\ y & y & x_{3} & \cdots & z & z+0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ y & y & y & \cdots & x_{n-1} & z+0 \\ y & y & y & \cdots & y & z+x_{n}-z \end{vmatrix} = \begin{vmatrix} x_{1} & z & z & \cdots & z & z \\ y & x_{2} & z & \cdots & z & z \\ y & y & x_{3} & \cdots & z & z \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ y & y & y & \cdots & x_{n-1} & z \\ y & y & y & \cdots & y & z \end{vmatrix} + \begin{vmatrix} x_{1} & z & z & \cdots & z & 0 \\ y & x_{2} & z & \cdots & z & 0 \\ y & y & x_{3} & \cdots & z & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ y & y & y & \cdots & x_{n-1} & z \\ y & y & y & \cdots & y & z \end{vmatrix} + \begin{vmatrix} x_{1} & z & z & \cdots & z & 0 \\ y & x_{2} & z & \cdots & z & 0 \\ y & y & y & x_{3} & \cdots & z & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ y & y & y & \cdots & x_{n-1} & z \\ y & y & y & \cdots & y & z - z \end{vmatrix}$$

$$\begin{vmatrix} y & y & y & \cdots & x_{n-1} & z+0 \\ y & y & y & \cdots & y & z+x_n-z \end{vmatrix} \begin{vmatrix} y & y & y & \cdots & x_{n-1} & z \\ y & y & y & \cdots & y & z \end{vmatrix} \begin{vmatrix} y & y & y & \cdots & x_{n-1} & 0 \\ y & y & y & \cdots & y & z \end{vmatrix}$$

$$= \begin{vmatrix} x_1 - y & 0 & 0 & \cdots & 0 & 0 \\ 0 & x_2 - y & 0 & \cdots & 0 & 0 \\ 0 & 0 & x_3 - y & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x_{n-1} - y & 0 \\ y & y & y & \cdots & y & z \end{vmatrix} + (x_n - z) D_{n-1}^T = z \prod_{i=1}^{n-1} (x_i - y) + (x_n - z) D_{n-1}.$$

$$\stackrel{\text{$\neq z \neq y \text{ In } } \text{$\neq z \notin \{1\}$ (2) $\frac{1}{2}$ $\f$$

若 z ≠ y, 则联立(1)(2)式, 解得

$$D_n = \frac{1}{z - y} \left[z \prod_{i=1}^n (x_i - y) - y \prod_{i=1}^n (x_i - z) \right];$$

若z=y,则由(1)式递推可得

$$D_{n} = y \prod_{i=1}^{n-1} (x_{i} - y) + (x_{n} - y) D_{n-1}$$

$$= y \prod_{i=1}^{n-1} (x_{i} - y) + (x_{n} - y) \left(y \prod_{i=1}^{n-2} (x_{i} - y) + (x_{n-1} - y) D_{n-2} \right)$$

$$= y \prod_{j \neq n} (x_{i} - y) + y \prod_{j \neq n-1} (x_{i} - y) + (x_{n} - y) (x_{n-1} - y) D_{n-2}$$

$$= \dots = y \sum_{i=1}^{n} \prod_{j \neq i} (x_{j} - y) + \prod_{i=1}^{n} (x_{i} - y) D_{0}$$

$$= y \sum_{i=1}^{n} \prod_{j \neq i} (x_{j} - y) + \prod_{i=1}^{n} (x_{i} - y).$$

$$\begin{vmatrix} x_{1} + x & y + x & \dots & y + x \end{vmatrix}$$

解法二(大拆分法):令 $f(x) \triangleq \begin{vmatrix} x_1 + x & y + x & \cdots & y + x \\ z + x & x_2 + x & \cdots & y + x \\ \vdots & \vdots & & \vdots \end{vmatrix}$, 则 f(x) 一定是线性函数, 从而设 f(x) = ax + b. 注

意到

$$f(-z) = \begin{vmatrix} x_1 - z & y - z & \cdots & y - z \\ 0 & x_2 - z & \cdots & y - z \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & x_n - z \end{vmatrix} = \prod_{i=1}^n (x_i - z), \quad f(-y) = \begin{vmatrix} x_1 - y & 0 & \cdots & 0 \\ z - y & x_2 - y & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ z - y & z - y & \cdots & x_n - y \end{vmatrix} = \prod_{i=1}^n (x_i - y).$$

当 $y \neq z$ 时, 将上式代入 f(x) = ax + b(即线性函数 f(x) 过两点 (-y, f(-y)), (-z, f(-z)), 再利用两点式) 解得

$$f(x) = \frac{f(-z) - f(-y)}{-z - (-y)}(x+y) + f(-y) = \frac{\prod_{i=1}^{n} (x_i - z) - \prod_{i=1}^{n} (x_i - y)}{y - z}(x+y) + \prod_{i=1}^{n} (x_i - y).$$

从而此时就有

$$D_n = f(0) = \frac{y \prod_{i=1}^n (x_i - z) - z \prod_{i=1}^n (x_i - y)}{y - z}.$$
 (3)

当 y=z 时, 将 D_n 看作关于 y 的连续函数, 记为 $g(y)=D_n$, 则此时由 g 的连续性及(3)式和 L'Hospital 法则可得

$$D_n = g(z) = \lim_{y \to z} g(y) = \lim_{y \to z} \frac{y \prod_{i=1}^n (x_i - z) - z \prod_{i=1}^n (x_i - y)}{y - z}$$

$$= \lim_{y \to z} \frac{\prod_{i=1}^n (x_i - z) + y \sum_{i=1}^n \prod_{j \neq i} (x_j - y)}{1} = \prod_{i=1}^n (x_i - z) + z \sum_{i=1}^n \prod_{j \neq i} (x_j - z).$$

例题 0.3

(1) 计算

$$|B| = \begin{vmatrix} 2a_1 & a_1 + a_2 & \cdots & a_1 + a_n \\ a_2 + a_1 & 2a_2 & \cdots & a_2 + a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n + a_1 & a_n + a_2 & \cdots & 2a_n \end{vmatrix}.$$

(2) 求下列 n 阶行列式的值:

$$|\mathbf{A}| = \begin{vmatrix} 0 & a_1 + a_2 & \cdots & a_1 + a_{n-1} & a_1 + a_n \\ a_2 + a_1 & 0 & \cdots & a_2 + a_{n-1} & a_2 + a_n \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n-1} + a_1 & a_{n-1} + a_2 & \cdots & 0 & a_{n-1} + a_n \\ a_n + a_1 & a_n + a_2 & \cdots & a_n + a_{n-1} & 0 \end{vmatrix}.$$

第记 (2)解法一中不仅使用了升阶法还使用了分块"爪"型行列式的计算方法.观察到各行各列有不同的公共项,因此可以利用升阶法将各行各列的公共项消去.

注 (2) 不妨设的原因: 若只有 $a_{i_1}, a_{i_2}, \cdots, a_{i_m} = 0, i_1, i_2, \cdots, i_m \in 1, 2, \cdots, n$,则可将 |A| 看作关于 $a_{i_1}, a_{i_2}, \cdots, a_{i_m}$ 连续的多元多项式函数 $g(a_{i_1}, a_{i_2}, \cdots, a_{i_m})$,于是由 g 的连续性可得 $g(0, 0, \cdots, 0) = \lim_{\substack{(a_{i_1}, a_{i_2}, \cdots, a_{i_m}) \to (0, 0, \cdots, 0)}} g(a_{i_1}, a_{i_2}, \cdots, a_{i_m})$. 因此就可以由 $a_i \neq 0$ ($1 \leq i \leq n$) 时的行列式 |A| 的值,推出只有 $a_{i_1}, a_{i_2}, \cdots, a_{i_m} = 0, i_1, i_2, \cdots, i_m \in 1, 2, \cdots, n$ 时的行列式 |A| 的值。故可以这样不妨设.

解

(1) 注意到
$$B = \begin{pmatrix} 2a_1 & a_1 + a_2 & \cdots & a_1 + a_n \\ a_2 + a_1 & 2a_2 & \cdots & a_2 + a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n + a_1 & a_n + a_2 & \cdots & 2a_n \end{pmatrix} = \begin{pmatrix} 1 & a_1 \\ 1 & a_2 \\ \vdots & \vdots \\ 1 & a_n \end{pmatrix} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$$
. 由 Cauchy-Binet
$$\begin{vmatrix} 0, & n \ge 3, \\ -(a_1 - a_2)^2, & n = 2, \\ 2a_1, & n = 1. \end{vmatrix}$$

(2) 不妨设 $a_i \neq 0 (1 \leq i \leq n)$.

解法一(升阶法):

$$|A| \xrightarrow{\text{\#N}} \begin{vmatrix} 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & a_1 + a_2 & \cdots & a_1 + a_{n-1} & a_1 + a_n \\ 0 & a_2 + a_1 & 0 & \cdots & a_2 + a_{n-1} & a_2 + a_n \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & a_{n-1} + a_1 & a_{n-1} + a_2 & \cdots & 0 & a_{n-1} + a_n \\ 0 & a_n + a_1 & a_n + a_2 & \cdots & a_n + a_{n-1} & 0 \end{vmatrix}$$

$$\frac{r_1 + r_i}{a_{n-1} + a_{n-1} + a_{n-1} + a_{n-1}} = \frac{1 - a_1 - a_2 - \cdots - a_{n-1} - a_n}{1 - a_1 - a_1 - a_2 - \cdots - a_2 - a_2} = \frac{1 - a_1 - a_2 - \cdots - a_{n-1} - a_n}{1 - a_1 - a_1 - a_2 - \cdots - a_{n-1} - a_n} = \frac{1 - a_1 - a_1 - a_2 - \cdots - a_{n-1} - a_n}{1 - a_1 - a_1 - a_1 - a_2 - a_2 - \cdots - a_2 - a_2} = \frac{1 - a_1 - a_1 - a_1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1 - a_1}{1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1 - a_1}{1 - a_1 - a_1} = \frac{1 - a_1}{1 - a_1} = \frac{1 -$$

$$\frac{j_1+j_i}{i=1,3,4\cdots,n+2} = \begin{vmatrix}
1 & 0 & 1 & 1 & \cdots & 1 & 1 \\
0 & 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\
-a_1 & 1 & -2a_1 & 0 & \cdots & 0 & 0 \\
-a_2 & 1 & 0 & -2a_2 & \cdots & 0 & 0_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-a_{n-1} & 1 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\
-a_n & 1 & 0 & 0 & \cdots & 0 & -2a_n
\end{vmatrix}$$

$$\frac{j_1+j_i}{\overline{i=1,3,4\cdots,n+2}} = \begin{bmatrix} 1 & 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ -a_1 & 1 & -2a_1 & 0 & \cdots & 0 & 0 \\ -a_2 & 1 & 0 & -2a_2 & \cdots & 0 & 0_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n-1} & 1 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ -a_n & 1 & 0 & 0 & \cdots & 0 & -2a_n \end{bmatrix}$$

$$\frac{-1}{2}j_i+j_1 = \begin{bmatrix} 1 - \frac{n}{2} & \frac{S}{2} & 1 & 1 & \cdots & 1 & 1 \\ \frac{T}{2} & 1 - \frac{n}{2} & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & -2a_2 & \cdots & 0 & 0_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -2a_n \end{bmatrix}$$

其中 $S = a_1 + a_2 + \dots + a_n, T = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$. 注意到上述行列式是分块上三角行列式, 从而可得

$$|A| = (-2)^n \prod_{i=1}^n a_i \cdot \frac{(n-2)^2 - ST}{4} = (-2)^{n-2} \prod_{i=1}^n a_i [(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{1}{a_i})].$$

从而利用直接计算两个矩阵和的行列式的结论得到

$$|A| = |B| + |C| + \sum_{1 \leqslant k \leqslant n-1} \left(\sum_{1 \leqslant i_1 \leqslant i_2 \leqslant \cdots \leqslant i_k \leqslant n} B \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} \widehat{C} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} \widehat{C} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} \underbrace{C} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} \underbrace{C} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} \underbrace{dit}_{j_2 \leqslant \cdots \leqslant j_k \leqslant n} \underbrace{dit}_{j_2 \leqslant \cdots \leqslant j_k \leqslant n} \underbrace{dit}_{j_2 \leqslant \cdots \leqslant j_k} \underbrace{dit}_{j_2 \leqslant$$

$$= (-2)^n a_1 a_2 \cdots a_n - (-2)^n \sum_{1 \leq i \leq n} a_1 a_2 \cdots a_n + (-2)^{n-2} \sum_{1 \leq i < j \leq n} [-(a_i - a_j)^2 a_1 \cdots \hat{a}_i \cdots \hat{a}_j \cdots a_n]$$

$$= (-2)^n a_1 a_2 \cdots a_n - (-2)^n n a_1 a_2 \cdots a_n - (-2)^{n-2} \sum_{1 \leq i < j \leq n} \frac{(a_i - a_j)^2}{a_i a_j}$$

$$= (-2)^n \prod_{i=1}^n a_i (1 - n) - (-2)^{n-2} \prod_{i=1}^n a_i \sum_{1 \leq i < j \leq n} \frac{(a_i - a_j)^2}{a_i a_j}$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i [(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{1}{a_i})]$$

$$= (-2)^n \prod_{i=1}^n a_i (1 - n) - (-2)^{n-2} \prod_{i=1}^n a_i \sum_{1 \leq i < j \leq n} \frac{(a_i - a_j)^2}{a_i a_j}$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[4 - 4n - \sum_{1 \leq i < j \leq n} \frac{(a_i - a_j)^2}{a_i a_j} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[4 - 4n - \sum_{1 \leq i < j \leq n} \frac{(a_i - a_j)^2}{a_i a_j} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[4 - 4n - \sum_{1 \leq i < j \leq n} \frac{a_j}{a_j a_j} + \sum_{1 \leq i < j \leq n} 2 \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[4 - 4n - \sum_{1 \leq i , j \leq n} \frac{a_j}{a_j} + \sum_{1 \leq i < j \leq n} 2 \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[4 - 4n - \sum_{1 \leq i , j \leq n} \frac{a_j}{a_j} - \sum_{i=1}^n \frac{a_i}{a_j} \right] + \sum_{i=1}^{n-1} \sum_{j=i+1}^n 2 \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[4 - 4n - \sum_{1 \leq i , j \leq n} \frac{a_j}{a_j} - \sum_{i=1}^n \frac{a_i}{a_j} \right] + \sum_{i=1}^{n-1} \sum_{j=i+1}^n 2$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[4 - 4n + n + n (n-1) - \sum_{i=1}^n \sum_{j=1}^n \frac{a_i}{a_j} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[n^2 - 4n + 4 - \sum_{i=1}^n a_i \sum_{j=1}^n \frac{a_j}{a_j} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{a_i}{a_i} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{a_i}{a_i} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{a_i}{a_i} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{a_i}{a_i} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{a_i}{a_i} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{a_i}{a_i} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{a_i}{a_i} \right]$$

$$= (-2)^{n-2} \prod_{i=1}^n a_i \left[(n-2)^2 - (\sum_{i=1}^n a_i)(\sum_{i=1}^n \frac{a_i}{a_i} \right]$$

$$=\begin{vmatrix} -2a_1 & & & \\ & -2a_2 & & \\ & & \ddots & \\ & & -2a_n \end{vmatrix} \cdot \begin{vmatrix} I_2 - \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} -\frac{1}{2a_1} & & \\ & -\frac{1}{2a_2} & & \\ & & -\frac{1}{2a_n} \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ \vdots & \vdots \\ a_n & 1 \end{pmatrix} = (-2)^n \prod_{i=1}^n a_i \begin{vmatrix} I_2 - \begin{pmatrix} -\frac{1}{2a_1} & -\frac{1}{2a_2} & \cdots & -\frac{1}{2a_n} \\ -\frac{1}{2} & -\frac{1}{2} & \cdots & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_n & 1 \end{pmatrix} \end{vmatrix} = (-2)^n \prod_{i=1}^n a_i \begin{vmatrix} I_2 - \begin{pmatrix} -\frac{n}{2} & -\frac{1}{2} \sum_{i=1}^n \frac{1}{a_i} \\ -\frac{1}{2} \sum_{i=1}^n a_i & -\frac{n}{2} \end{pmatrix} = (-2)^n \prod_{i=1}^n a_i \begin{vmatrix} \frac{n+2}{2} & \frac{1}{2} \sum_{i=1}^n \frac{1}{a_i} \\ \frac{1}{2} \sum_{i=1}^n a_i & \frac{n+2}{2} \end{vmatrix} = (-2)^{n-2} \prod_{i=1}^n a_i \left[(n+2)^2 - \left(\sum_{i=1}^n a_i \right) \left(\sum_{i=1}^n \frac{1}{a_i} \right) \right].$$

结论 对角矩阵行列式的子式和余子式:

$$\begin{tabular}{ll} |A| = \left| \begin{array}{cccc} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{array} \right|, \\ \begin{tabular}{ll} |J| | |I| | |$$

零, 其中
$$k = 1, 2, \dots, n$$
.
记 $\widehat{A}\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 为 $A\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 的代数余子式 $(n - k \ \text{M})$. 于是 $\widehat{A}\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 除 $\widehat{A}\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix}$ 外也都为零, 其中 $k = 1, 2, \cdots, n$.
并且

$$A \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix} = a_{i_1} a_{i_2} \cdots a_{i_k},$$

$$\widehat{A} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix} = a_1 \cdots \widehat{a}_{i_1} \cdots \widehat{a}_{i_2} \cdots \widehat{a}_{i_k} \cdots a_n$$

其中 $k = 1, 2, \dots, n$.

命题 0.10 (行列式的求导运算)

设 $f_{ii}(t)$ 是可微函数,

$$F(t) = \begin{vmatrix} f_{11}(t) & f_{12}(t) & \cdots & f_{1n}(t) \\ f_{21}(t) & f_{22}(t) & \cdots & f_{2n}(t) \\ \vdots & \vdots & & \vdots \\ f_{n1}(t) & f_{n2}(t) & \cdots & f_{nn}(t) \end{vmatrix}$$

求证:
$$\frac{d}{dt}F(t) = \sum_{j=1}^{n} F_{j}(t)$$
, 其中
$$F_{j}(t) = \begin{vmatrix} f_{11}(t) & f_{12}(t) & \cdots & \frac{d}{dt} f_{1j}(t) & \cdots & f_{1n}(t) \\ f_{21}(t) & f_{22}(t) & \cdots & \frac{d}{dt} f_{2j}(t) & \cdots & f_{2n}(t) \\ \vdots & \vdots & & \vdots & & \vdots \\ f_{n1}(t) & f_{n2}(t) & \cdots & \frac{d}{t} f_{nj}(t) & \cdots & f_{nn}(t) \end{vmatrix}$$

证明 证法一(数学归纳法):对阶数 n 进行归纳. 当 n=1 时结论显然成立. 假设 n-1 阶时结论成立, 现证 n 阶的情形.

将 F(t) 按第一列展开得

$$F(t) = f_{11}(t) A_{11}(t) + f_{21}(t) A_{21}(t) + \cdots + f_{n1}(t) A_{n1}(t).$$

其中 $A_{i1}(t)$ 是元素 $f_{i1}(t)$ 的代数余子式. $(i = 1, 2, \dots, n)$

从而由归纳假设可得

于是,我们就有

$$\frac{d}{dt}F(t) = \frac{d}{dt} \left[f_{11}(t) A_{11}(t) + f_{21}(t) A_{21}(t) + \dots + f_{n1}(t) A_{n1}(t) \right]
= f'_{11}(t) A_{11}(t) + f'_{21}(t) A_{21}(t) + \dots + f'_{n1}(t) A_{n1}(t) + f_{11}(t) A'_{11}(t) + f_{21}(t) A'_{21}(t) + \dots + f_{n1}(t) A'_{n1}(t)
= \sum_{i=1}^{n} f'_{i1}(t) A_{i1}(t) + f_{11}(t) \sum_{k=2}^{n} A_{11}^{k}(t) + f_{21}(t) \sum_{k=2}^{n} A_{21}^{k}(t) + \dots + f_{n1}(t) \sum_{k=2}^{n} A_{n1}^{k}(t)
= \sum_{i=1}^{n} f'_{i1}(t) A_{i1}(t) + \sum_{i=1}^{n} \left(f_{i1}(t) \sum_{k=2}^{n} A_{i1}^{k}(t) \right)
= \sum_{i=1}^{n} f'_{i1}(t) A_{i1}(t) + \sum_{i=1}^{n} f_{i1}(t) \left(A_{i1}^{2} + A_{i1}^{3} + \dots + A_{i1}^{n} \right)
= \sum_{i=1}^{n} f'_{i1}(t) A_{i1}(t) + \sum_{i=1}^{n} f_{i1}(t) A_{i1}^{2} + \sum_{i=1}^{n} f_{i1}(t) A_{i1}^{3} + \dots + \sum_{i=1}^{n} f_{i1}(t) A_{i1}^{n}
= F_{1}(t) + F_{2}(t) + F_{3}(t) + \dots + F_{n}(t)
= \sum_{i=1}^{n} F_{j}(t).$$

故由数学归纳法可知结论对任意正整数都成立.

证法二(行列式的组合定义):由行列式的组合定义可得

$$F(t) = \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} f_{k_1 1}(t) f_{k_2 2}(t) \dots f_{k_n n}(t).$$

因此

$$\frac{d}{dt}F(t) = \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} f_{k_{11}}(t) f_{k_{22}}(t) \dots f_{k_{nn}}(t)
+ \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} f_{k_{11}}(t) f_{k_{22}}(t) \dots f_{k_{nn}}(t)
+ \dots + \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} f_{k_{11}}(t) f_{k_{22}}(t) \dots f_{k_{nn}}(t)
= F_1(t) + F_2(t) + \dots + F_n(t).$$

命题 0.11 (直接计算两个矩阵和的行列式)

设 A, B 都是 n 阶矩阵, 求证:

$$|A + B| = |A| + |B| + \sum_{1 \le k \le n-1} \left(\sum_{\substack{1 \le i_1 < i_2 < \dots < i_k \le n \\ 1 \le j_1 < j_2 < \dots < j_k \le n}} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \widehat{B} \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \right).$$

其中
$$\widehat{\mathbf{B}}$$
 $\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 是 $|\mathbf{B}|$ 的 k 阶子式 \mathbf{B} $\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 的代数余子式.

筆记 当 A,B 之一是比较简单的矩阵 (例如对角矩阵或秩较小的矩阵) 时, 可利用这个命题计算 |A+B|. 解 设 $|A|=|\alpha_1,\alpha_2,\cdots,\alpha_n|,|B|=|\beta_1,\beta_2,\cdots,\beta_n|$, 其中 $\alpha_j,\beta_j(j=1,2,\cdots,n)$ 分别是 A 和 B 的列向量. 注意到 $|A+B|=|\alpha_1+\beta_1,\alpha_2+\beta_2,\cdots,\alpha_n+\beta_n|$.

对 |A+B|, 按列用行列式的性质展开, 使每个行列式的每一列或者只含有 α_j , 或者只含有 β_j (即利用大拆分法按列向量将行列式完全拆分开), 则 |A+B| 可以表示为 2^n 个这样的行列式之和. 即 (并且单独把 k=0,n 的项分离出来, 即将 |A|、|B| 分离出来)

$$\begin{aligned} |\boldsymbol{A} + \boldsymbol{B}| &= |\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_n + \beta_n| \\ &= |\boldsymbol{A}| + |\boldsymbol{B}| + \sum_{1 \leq k \leq n-1} \sum_{1 \leq j_1 \leq j_2 \leq \cdots \leq j_k \leq n} |\beta_1, \cdots, \alpha_{j_1}, \cdots, \alpha_{j_2}, \cdots, \alpha_{j_k}, \cdots, \beta_n| . \end{aligned}$$

再对上式右边除 |A|、|B| 外的每个行列式用 Laplace 定理按含有 A 的列向量的那些列展开得到

$$\begin{split} |\boldsymbol{A} + \boldsymbol{B}| &= |\boldsymbol{A}| + |\boldsymbol{B}| + \sum_{1 \leqslant k \leqslant n-1} \sum_{1 \leq j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\boldsymbol{\beta}_1, \dots, \boldsymbol{\alpha}_{j_1}, \dots, \boldsymbol{\alpha}_{j_2}, \dots, \boldsymbol{\alpha}_{j_k}, \dots, \boldsymbol{\beta}_n| \\ &= |\boldsymbol{A}| + |\boldsymbol{B}| + \sum_{1 \leqslant k \leqslant n-1} \sum_{1 \leqslant j_1, j_2, \dots, j_k \leqslant n} \sum_{1 \leqslant i_1, i_2, \dots, i_k \leqslant n} \boldsymbol{A} \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \widehat{\boldsymbol{B}} \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \\ &= |\boldsymbol{A}| + |\boldsymbol{B}| + \sum_{1 \leq k \leq n-1} \begin{pmatrix} \sum_{\substack{1 \leq i_1 < i_2 < \dots < i_k \leq n \\ 1 \leq i_1 < i_2 < \dots < i_k < n}} \boldsymbol{A} \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \widehat{\boldsymbol{B}} \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \end{pmatrix}. \end{split}$$

例题 0.4 设

$$f(x) = \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix},$$

其中x是未定元, a_{ij} 是常数. 证明: f(x)是一个最高次项系数为1的n次多项式,且其n-1次项的系数等于 $-(a_{11}+$ $a_{22} + \cdots + a_{nn}$).

笔记 注意 f(x) 的每行每列除主对角元素外,其他元素均不相同.因此 f(x) 并不是推广的"爪"型行列式. 解 由行列式的组合定义可知, f(x) 的最高次项出现在组合定义展开式中的单项 $(x-a_{11})(x-a_{22})\cdots(x-a_{nn})$ 中, 且展开式中的其他单项作为x的多项式其次数小于等于n-2. 因此f(x)是一个最高次项系数为1的n次多项式, 且其n-1次项的系数等于 $-(a_{11}+a_{22}+\cdots+a_{nn})$.

注 将这个例题进行推广再结合直接计算两个矩阵和的行列式的结论可以得到下述推论.

推论 0.4

设 $A = (a_{ij})$ 为n阶方阵,x为未定元,

$$f(x) = |xI_n - A| = \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix}$$

证明: $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$, 其中

$$a_k = (-1)^k \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ i_1 & i_2 & \dots & i_k \end{pmatrix}, 1 \le k \le n.$$

笔记 需要注意上述推论中 $a_1 = -(a_{11} + a_{22} + \cdots + a_{nn}), a_n = (-1)^n |A|$.

证明 注意到 xI_n 非零的 n-k 阶子式只有 n-k 阶主子式,并且其值为 x^{n-k} ,其余 n-k 阶子式均为零. 记 $\widehat{xI_n}\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 是 $xI_n\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 的代数余子式,则 $\widehat{xI_n}\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 是 xI_n 非零的 n-k阶子式. 于是我们有

$$\widehat{xI_n} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} = x^{n-k}.$$

再利用直接计算两个矩阵和的行列式的结论就可以得到

$$f(x) = |xI_n - A| = \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix} = \begin{vmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & -a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix} + \begin{vmatrix} x & 0 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & x \end{vmatrix}$$

$$= \begin{vmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & -a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & -a_{nn} \end{vmatrix} + \begin{vmatrix} x & 0 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & x \end{vmatrix} + \sum_{1 \le k \le n-1} \sum_{\substack{1 \le i_1, i_2, \cdots, i_k \le n \\ 1 \le j_1, j_2, \cdots, j_k \le n}} (-A) \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} \widehat{xI_n} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$$

$$= (-1)^n |A| + x^n + \sum_{1 \le k \le n-1} \sum_{1 \le i_1, i_2, \dots, i_k \le n} (-1)^k A \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix} \widehat{xI_n} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix}$$

$$1 \leq k \leq n-1 \quad 1 \leq i_1, i_2, \cdots, i_k \leq n \qquad \qquad \langle i_1 \quad i_2 \quad \cdots \quad i_k \rangle \qquad \langle i_1 \quad i_2 \quad \cdots \quad i_k \rangle$$

$$= x^{n} + \sum_{1 \leq k \leq n-1} (-1)^{k} \sum_{1 \leq i_{1}, i_{2}, \dots, i_{k} \leq n} A \begin{pmatrix} i_{1} & i_{2} & \dots & i_{k} \\ i_{1} & i_{2} & \dots & i_{k} \end{pmatrix} \cdot x^{n-k} + (-1)^{n} |A|$$

$$= x^{n} + \sum_{1 \leq k \leq n-1} x^{n-k} (-1)^{k} \sum_{1 \leq i_{1}, i_{2}, \dots, i_{k} \leq n} A \begin{pmatrix} i_{1} & i_{2} & \dots & i_{k} \\ i_{1} & i_{2} & \dots & i_{k} \end{pmatrix} + (-1)^{n} |A|.$$

因此 $f(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$, 其中

$$a_k = (-1)^k \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ i_1 & i_2 & \dots & i_k \end{pmatrix}, 1 \le k \le n.$$

命题 0.12

设 $f_k(x) = x^k + a_{k1}x^{k-1} + a_{k2}x^{k-2} + \dots + a_{kk}$, 求下列行列式的值: $\begin{vmatrix} 1 & f_1(x_1) & f_2(x_1) & \cdots & f_{n-1}(x_1) \\ 1 & f_1(x_2) & f_2(x_2) & \cdots & f_{n-1}(x_2) \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & f_1(x_n) & f_2(x_n) & \cdots & f_{n-1}(x_n) \end{vmatrix}.$

🔮 笔记 知道这类行列式化简的操作即可. 以后这种行列式化简操作不再作额外说明.

解 利用行列式的性质可得

$$\begin{vmatrix} 1 & f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{n-1}(x_{1}) \\ 1 & f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{n-1}(x_{2}) \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & f_{1}(x_{n}) & f_{2}(x_{n}) & \cdots & f_{n-1}(x_{n}) \end{vmatrix} = \begin{vmatrix} 1 & x_{1} + a_{11} & x_{1}^{2} + a_{21}x_{1} + a_{22} & \cdots & x_{1}^{n-1} + a_{n-1,1}x_{1}^{n-2} + \cdots + a_{n-1,n-2}x_{1} + a_{n-1,n-1} \\ 1 & x_{2} + a_{11} & x_{2}^{2} + a_{21}x_{2} + a_{22} & \cdots & x_{2}^{n-1} + a_{n-1,1}x_{2}^{n-2} + \cdots + a_{n-1,n-2}x_{2} + a_{n-1,n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n} + a_{11} & x_{n}^{2} + a_{21}x_{n} + a_{22} & \cdots & x_{n}^{n-1} + a_{n-1,1}x_{n}^{n-2} + \cdots + a_{n-1,n-2}x_{n} + a_{n-1,n-1} \\ -a_{i,i-1}j_{2} + j_{i+1}, i = 1, 2, \cdots n - 1 \\ -a_{i,i-1}j_{2} + j_{i+1}, i = 2, 3, \cdots, n - 1 \\ & \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_{j} - x_{i}).$$

命题 0.13 (多项式根的有限性)

设多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

若 f(x) 有 n+1 个不同的根 b_1, b_2, \dots, b_{n+1} , 即 $f(b_1) = f(b_2) = \dots = f(b_{n+1}) = 0$, 求证: f(x) 是零多项式, 即 $a_n = a_{n-1} = \dots = a_1 = a_0 = 0$.

证明 由 $f(b_1) = f(b_2) = \cdots = f(b_{n+1}) = 0$,可知 $x_0 = a_0, x_1 = a_1, \cdots, x_{n-1} = a_{n-1}, x_n = a_n$ 是下列线性方程组的解: $\begin{cases} x_0 + b_1 x_1 + \cdots + b_1^{n-1} x_{n-1} + b_1^n x_n = 0, \\ x_0 + b_2 x_1 + \cdots + b_2^{n-1} x_{n-1} + b_2^n x_n = 0, \\ & \cdots \cdots \end{cases}$

$$x_0 + b_{n+1}x_1 + \dots + b_{n+1}^{n-1}x_{n-1} + b_{n+1}^n x_n = 0.$$

上述线性方程组的系数行列式是一个 Vandermode 行列式, 由于 $b_1, b_2, \cdots, b_{n+1}$ 互不相同, 所以系数行列式不等于零. 由 Crammer 法则可知上述方程组只有零解. 即有 $a_n = a_{n-1} = \cdots = a_1 = a_0 = 0$.

命题 0.14 (Cauchy 行列式)

证明:

$$|A| = \begin{vmatrix} (a_1 + b_1)^{-1} & (a_1 + b_2)^{-1} & \cdots & (a_1 + b_n)^{-1} \\ (a_2 + b_1)^{-1} & (a_2 + b_2)^{-1} & \cdots & (a_2 + b_n)^{-1} \\ \vdots & \vdots & & \vdots \\ (a_n + b_1)^{-1} & (a_n + b_2)^{-1} & \cdots & (a_n + b_n)^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le m} (a_j - a_i)(b_j - b_i)}{\prod\limits_{1 \le i < j \le m} (a_i + b_j)}.$$

\$

笔记 需要记忆 Cauchy 行列式的计算方法.

- 1. 分式分母有公共部分可以作差, 得到的分子会变得相对简便.
- 2. 行列式内行列做加减一般都是加减同一行(或列). 但是在循环行列式中, 我们一般采取相邻两行(或列)相加减的方法.

证明

$$|A| = \frac{1}{\begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \frac{1}{a_2 + b_2} & \frac{1}{a_2 + b_n} \\ \frac{1}{a_2 + b_1} & \frac{1}{a_2 + b_2} & \frac{1}{a_2 + b_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \cdots & \frac{1}{a_n + b_n} \\ \frac{1}{b_n - b_1} & \frac{1}{b_n - b_1} & \frac{b_n - b_2}{b_n - b_2} & \cdots & \frac{b_n - b_{n-1}}{(a_1 + b_n)(a_1 + b_n)} & \frac{1}{a_1 + b_n} \\ \frac{-j_{n+k}}{i_{n-1} - \dots, 1} & \frac{1}{(a_1 + b_1)(a_1 + b_n)} & \frac{b_n - b_2}{b_n - b_2} & \cdots & \frac{b_n - b_{n-1}}{(a_1 + b_2)(a_1 + b_n)} & \frac{1}{a_1 + b_n} \\ \frac{-j_{n+k}}{i_{n-1} - \dots, 1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_1 + b_{n-1}} & 1\\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_1 + b_{n-1}} & 1\\ \frac{1}{a_1 + b_1} & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_2 + b_{n-1}} & 1\\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \cdots & \frac{1}{a_1 + b_{n-1}} & 1\\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \cdots & \frac{1}{a_1 + b_{n-1}} & 1\\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \cdots & \frac{1}{a_n + b_{n-1}} & 1\\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \frac{1}{a_n + b_{n-1}} & \frac{1}{a_1 + b_{n-1}} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_n - a_1} & \frac{1}{a_n + b_2} & \cdots & \frac{1}{a_n + b_{n-1}} & \frac{1}{a_1 + b_{n-1}} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_n - a_1} & \frac{1}{a_n + b_1} & \frac{1}{a_1 + b_2} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_n - a_1} & \frac{1}{a_n + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_n - a_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_n - a_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} \\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_1 + b_1} & 0\\ \frac{1}{a_$$

$$\frac{\frac{1}{k \sqrt[3]{n}} \frac{1}{\sum_{i=1}^{n-1} (b_n - b_i)(a_n - a_i)}{\prod_{i=1}^{n} (a_i + b_n) \prod_{k=1}^{n-1} (a_n + b_k)} \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \dots & \frac{1}{a_1 + b_{n-1}} \\ \frac{1}{a_2 + b_1} & \frac{1}{a_2 + b_2} & \dots & \frac{1}{a_2 + b_{n-1}} \\ \vdots & \vdots & & \vdots \\ \frac{1}{a_{n-1} + b_1} & \frac{1}{a_{n-1} + b_2} & \dots & \frac{1}{a_{n-1} + b_{n-1}} \end{vmatrix}$$

$$= \frac{\prod_{i=1}^{n-1} (b_n - b_i)(a_n - a_i)}{\prod_{i=1}^{n} (a_i + b_n) \prod_{k=1}^{n-1} (a_n + b_k)} \cdot D_{n-1}.$$

不断递推下去即得

$$D_{n} = \frac{\prod\limits_{i=1}^{n-1}(b_{n}-b_{i})(a_{n}-a_{i})}{\prod\limits_{j=1}^{n}(a_{j}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot D_{n-1} = \frac{\prod\limits_{i=1}^{n-1}(b_{n}-b_{i})(a_{n}-a_{i})}{\prod\limits_{j=1}^{n}(a_{j}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot \frac{\prod\limits_{i=1}^{n-1}(b_{n-1}-b_{i})(a_{n-1}-a_{i})}{\prod\limits_{j=1}^{n}(a_{j}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot D_{n-2}$$

$$= \cdots = \frac{\prod\limits_{i=1}^{n-1}(b_{n}-b_{i})(a_{n}-a_{i})}{\prod\limits_{j=1}^{n}(a_{j}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot \frac{\prod\limits_{i=1}^{n-1}(b_{n-1}-b_{i})(a_{n-1}-a_{i})}{\prod\limits_{j=1}^{n}(a_{j}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-1}(b_{n-1}-b_{i})(a_{n-1}-a_{i})}{\prod\limits_{j=1}^{n}(a_{j}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-1}(a_{n-1}+b_{k})}{\prod\limits_{j=1}^{n}(a_{n}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-1}(a_{n-1}+b_{k})}{\prod\limits_{j=1}^{n}(a_{n}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-1}(a_{n}+b_{n})\prod\limits_{j=1}^{n-1}(a_{n}+b_{n})}{\prod\limits_{j=1}^{n-1}(a_{n}+b_{n})\prod\limits_{k=1}^{n-1}(a_{n}+b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-1}(a_{n}+b_{n})\prod\limits_{j=1}^{n-1}(a_{n}+b_{n})}{\prod\limits_{j=1}^{n-1}(a_{n}+b_{n})\prod\limits_{j=1}^{n-1}(a_{n}+b_{n})} \cdot \frac{\prod\limits_{j=1}^{n-1}(a_{n}+b_{n})\prod\limits_{j=1}^{n-1}(a_{n}+b_$$

例题 0.5 证明:

$$A = \left(\frac{1}{i+j}\right)_{1 \leqslant i,j \leqslant n} \in \mathbb{R}^{n \times n}$$

是正定矩阵.

证明 由Cauchy 行列式可知,对A的所有m 阶顺序主子式,我们都有

$$\begin{vmatrix} (1+1)^{-1} & (1+2)^{-1} & \cdots & (1+m)^{-1} \\ (2+1)^{-1} & (2+2)^{-1} & \cdots & (2+m)^{-1} \\ \vdots & \vdots & & \vdots \\ (m+1)^{-1} & (m+2)^{-1} & \cdots & (m+m)^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le m} (j-i)^2}{\prod\limits_{1 \le i < j \le m} (i+j)} > 0.$$

故 A 是正定矩阵.

命题 0.15

计算下列行列式的值:

$$|A| = \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} & b_1^{n-1} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} & b_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \end{vmatrix}$$

解 若所有的 $a_i(i = 1, 2, \dots, n)$ 都不为 0, 则有

$$|A| = \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} & b_1^{n-1} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} & b_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \end{vmatrix} = \prod_{i=1}^n a_i^{n-1} \begin{vmatrix} 1 & \frac{b_1}{a_1} & \cdots & \frac{b_1^{n-2}}{a_1^{n-2}} & \frac{b_1^{n-1}}{a_1^{n-1}} \\ 1 & \frac{b_2}{a_2} & \cdots & \frac{b_2^{n-2}}{a_2^{n-2}} & \frac{b_2^{n-1}}{a_2^{n-1}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \frac{b_n}{a_n} & \cdots & \frac{b_n^{n-2}}{a_n^{n-2}} & \frac{b_n^{n-2}}{a_n^{n-2}} \end{vmatrix}$$

$$= \prod_{i=1}^n a_i^{n-1} \prod_{1 \leq i < j \leq n} \left(\frac{b_j}{a_j} - \frac{b_i}{a_i} \right) = \prod_{i=1}^n a_i^{n-1} \prod_{1 \leq i < j \leq n} \frac{a_i b_j - a_j b_i}{a_j a_i} = \prod_{1 \leq i < j \leq n} (a_i b_j - a_j b_i).$$

若只有一个 a_i 为0,则将原行列式按第i行展开得到具有相同类型的n-1阶行列式

为 0, 则将原行列式按第
$$i$$
 行展开得到具有相同类型的 $n-1$ 阶行列式
$$|A| = \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} & b_1^{n-1} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} & b_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_i^{n-1} & a_i^{n-2}b_i & \cdots & a_ib_i^{n-2} & b_i^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \\ \end{vmatrix} = \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} & b_1^{n-1} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} & b_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & b_i^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \\ a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{i+1}^{n-1} & a_{i+1}^{n-2}b_{i+1} & \cdots & a_{i+1}b_{i+1}^{n-2} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} \end{vmatrix}$$

此时同理可得

$$|A| = (-1)^{n+i} b_i^{n-1} \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} \\ \vdots & \vdots & & \vdots \\ a_{i-1}^{n-1} & a_{i-1}^{n-2}b_{i-1} & \cdots & a_{i-1}b_{i-1}^{n-2} \\ a_{i+1}^{n-1} & a_{i+1}^{n-2}b_{i+1} & \cdots & a_{i+1}b_{i+1}^{n-2} \\ \vdots & \vdots & & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} \end{vmatrix} = (-1)^{n+i} b_i^{n-1} \prod_{\substack{1 \le k \le n \\ k \ne i}} a_k^{n-1} \begin{vmatrix} \frac{b_1}{a_1} & \cdots & \frac{b_1^{n-2}}{a_2^{n-2}} \\ \vdots & \vdots & & \vdots \\ \frac{b_{i+1}}{a_{i+1}} & \cdots & \frac{b_{i+1}^{n-2}}{a_{i+1}^{n-2}} \\ \vdots & \vdots & & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} \end{vmatrix}$$

$$\begin{split} &= (-1)^{n+i} \, b_i^{n-1} \prod_{\substack{1 \le k \le n \\ k \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} \left(\frac{b_l}{a_l} - \frac{b_k}{a_k}\right) = (-1)^{n+i} \, b_i^{n-1} \prod_{\substack{1 \le k \le n \\ k \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} \frac{a_k b_l - a_l b_k}{a_k a_l} \\ &= (-1)^{n+i} \, b_i^{n-1} \prod_{\substack{1 \le k \le n \\ k \ne i}} a_k \cdot \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} (a_k b_l - a_l b_k) = (-1)^{n-i} \, b_i^{n-1} \prod_{\substack{1 \le k \le n \\ k \ne i}} a_k \cdot \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} (a_k b_l - a_l b_k) \\ &= \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} (a_k b_l - a_l b_k) \cdot (a_i = 0) \, . \end{split}$$

若至少有两个 $a_i = a_j = 0$, 则第i 行与第j 行成比例,因此行列式的值等于0. 经过计算发现,后面两种情形的答案都可以统一到第一种情形的答案.

综上所述,
$$|A| = \prod_{1 \le i < j \le n} (a_i b_j - a_j b_i).$$

结论 连乘号计算小结论:

$$(1) \prod_{1 \le i < j \le n} a_i a_j = \prod_{i=1}^n a_i^{n-1}.$$

证明:
$$\prod_{1 \leq i < j \leq n} a_i a_j = \underbrace{a_2 a_1 \cdot a_3 a_2 a_3 a_1 \cdot a_4 a_3 a_4 a_2 a_4 a_1 \cdots \underbrace{a_k a_{k-1} a_k a_{k-2} \cdots a_k a_1}_{n-1} \cdots \underbrace{a_n a_{n-1} a_n a_{n-2} \cdots a_n a_1}_{n-1}$$

$$\frac{\text{从左往右按组计数}}{\text{day}} a_1^{n-1} a_2^{1+n-2} a_3^{2+n-3} a_4^{3+n-4} \cdots a_k^{k-1+n-k} \cdots a_n^{n-1} = \prod_{i=1}^n a_i^{n-1}.$$

$$(2)\prod_{\substack{1\leq i< j\leq n\\i,j\neq k}}a_ia_j=\prod_{\substack{1\leq i\leq n\\i\neq k}}a_i^{n-2}, 其中 \ k\in [1,n]\cap \mathbb{N}_+.$$

注意: 从第k-1组开始, 后面每组都比原来少一对 (后面每组均缺少原本含 a_k 的那一对).

命题 0.16 (行列式的刻画)

设 f 为从 n 阶方阵全体构成的集合到数集上的映射, 使得对任意的 n 阶方阵 A, 任意的指标 $1 \le i \le n$, 以及任意的常数 c, 满足下列条件:

- (1) 设 A 的第 i 列是方阵 B 和 C 的第 i 列之和, 且 A 的其余列与 B 和 C 的对应列完全相同, 则 f(A) = f(B) + f(C);
- (2) 将 \mathbf{A} 的第 i 列乘以常数 c 得到方阵 \mathbf{B} , 则 $f(\mathbf{B}) = c f(\mathbf{A})$;
- (3) 对换 **A** 的任意两列得到方阵 **B**, 则 f(B) = -f(A);
- (4) $f(I_n) = 1$, 其中 I_n 是 n 阶单位阵.

求证:f(A) = |A|.

室 笔记 这个命题给出了行列式的刻画:在方阵 n 个列向量上的多重线性和反对称性,以及正规性 (即单位矩阵处的取值为 1), 唯一确定了行列式这个函数.

证明 设 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 其中 α_k 为 A 的第 k 列, e_1, e_2, \dots, e_n 为标准单位列向量, 则

$$\alpha_j = a_{1j}e_1 + a_{2j}e_2 + \dots + a_{nj}e_n = \sum_{k=1}^n a_{kj}e_k, j = 1, 2, \dots, n.$$

从而由条件(1)和(2)可得

$$f(A) = f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) = f\left(\sum_{k_{1}=1}^{n} a_{k_{1}1} e_{k}, \alpha_{2}, \dots, \alpha_{n}\right)$$

$$= a_{11} f(e_{1}, \alpha_{2}, \dots, \alpha_{n}) + a_{21} f(e_{2}, \alpha_{2}, \dots, \alpha_{n}) + \dots + a_{n1} f(e_{n}, \alpha_{2}, \dots, \alpha_{n})$$

$$= \sum_{k_{1}=1}^{n} a_{k_{1}1} f(e_{k_{1}}, \alpha_{2}, \dots, \alpha_{n}) = \sum_{k_{1}=1}^{n} a_{k_{1}1} f\left(e_{k_{1}}, \sum_{k_{2}=1}^{n} a_{k_{2}2} e_{k_{2}}, \dots, \alpha_{n}\right)$$

$$= \sum_{k_{1}=1}^{n} a_{k_{1}1} \left[a_{12} f(e_{k_{1}}, e_{1}, \dots, \alpha_{n}) + a_{22} f(e_{k_{1}}, e_{2}, \dots, \alpha_{n}) + \dots + a_{n2} f(e_{k_{1}}, e_{n}, \dots, \alpha_{n})\right]$$

$$= \sum_{k_{1}=1}^{n} a_{k_{1}1} \sum_{k_{2}=1}^{n} a_{k_{2}2} f(e_{k_{1}}, e_{k_{2}}, \dots, \alpha_{n}) = \dots = \sum_{k_{1}=1}^{n} a_{k_{1}1} \sum_{k_{2}=1}^{n} a_{k_{2}2} \dots \sum_{k_{n}=1}^{n} a_{k_{n}n} f(e_{k_{1}}, e_{k_{2}}, \dots, e_{k_{n}})$$

$$= \sum_{k_{1}=1}^{n} \sum_{k_{2}=1}^{n} \dots \sum_{k_{n}=1}^{n} a_{k_{1}1} a_{k_{2}2} \dots a_{k_{n}n} f(e_{k_{1}}, e_{k_{2}}, \dots, e_{k_{n}}) = \sum_{(k_{1}, k_{2}, \dots, k_{n})} a_{k_{1}1} a_{k_{2}2} \dots a_{k_{n}n} f(e_{k_{1}}, e_{k_{2}}, \dots, e_{k_{n}}).$$

$$f(e_{k_1}, e_{k_2}, \cdots, e_{k_n}) = (-1)^{\tau(k_1 k_2 \cdots k_n)} f(I_n) = (-1)^{\tau(k_1 k_2 \cdots k_n)}.$$

于是由行列式的组合定义可知

$$f(\mathbf{A}) = \sum_{(k_1, k_2, \cdots, k_n)} a_{k_1 1} a_{k_2 2} \cdots a_{k_n n} f(\mathbf{e}_{k_1}, \mathbf{e}_{k_2}, \cdots, \mathbf{e}_{k_n}) = \sum_{(k_1, k_2, \cdots, k_n)} (-1)^{\tau(k_1 k_2 \cdots k_n)} a_{k_1 1} a_{k_2 2} \cdots a_{k_n n} = |\mathbf{A}|.$$