

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ABTOPCKOE CBNAETEA BCTBO

No

1396950

На основании полномочий, предоставленных Правительством СССР, Государственный комитет СССР по делам изобретений и открытий

"Устройство для нанесения покрытии вакуумным торцовым ускорителем плазмы"

Автор (авторы): Гороховский Владимир Ильич, Пискунов Александр Климентьевич, Урюков Борис Алексеевич, Аносов Юрий Леонтьевич, Солнцев Александр Михайлович, Ганопольский Юлий Абрамович, Сквирский Виктор Ефимович, Гольдинер Евгений Георгиевич и Гутник Геннадий Николаевич

Заявитель:

Заявка № 4060662

Приоритет изобретения 22 апреля 1986г Зарегистрировано в Государственном реестре изобретений СССР

15 января 1988г. Действие авторского свидетельства распространяется на всю территорию Союза ССР.

Председатель Комитета

Пачальник отдела

Topaling 7

(19) <u>SU</u>(11) 1396950 A

(5D 4 H 05 H 1/26

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 4060662/24-25

(22) 22.04.86

(72) В.И.Гороховский, А.К.Пискунов, Б.А.Урюков, Ю.Л.Аносов, А.М.Солнцев, Ю.А.Ганопольский, В.Е.Сквирский, Е.Г.Гольдинер и Г.Н.Гутник (53) 533.9 (088.8)

(56) Авторское свидетельство СССР № 605425, кл. С 23 С 13/08, 1967.

Авторское свидетельство СССР № 1240325, кл. Н 05 Н 1/26, 1984. (54) УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ ВАКУУМНЫМ ТОРЦОВЫМ УСКОРИТЕЛЕМ ПЛАЗМЫ

(57) Изобретение относится к технологии и оборудованию для нанесения покрытий из плазмы электропроводящих материалов в вакууме. Целью изобре-

тения является повышение производительности процесса нанесения покрытий путем осаждения на подложке материала из потока металлической плазмы. Поток образуется за счет смешивания потока плазмы, генерируемого источником плазмы, и понизированного дугой несамостоятельного разряда пара, который генерируется источником пара. Несамостоятельный дуговой разряд производят в среде пара между фронтом потока плазмы и поверхностью тигля источника пара при помощи дсполнительного источника питания, положительный полюс которого подсоединен к тиглю источника пара, а отрицательный полюс - к катоду источника плазмы. 2.з.п. ф-лы, 2 ил.

Плопретение относится к технолоили и оборудованию для нанесения покрытий из плазмы электропроводящих материалов в вакууме и может быть использовано в приборостроении, в инструментальном производстве, в электронной технике и других отраслях народного хозяйства.

Целью изобретения является повышение производительности процесса нанесения покрытий.

На фиг. 1 изображено предлагаемое устройство; на фиг. 2 - то же, сечение по A-A.

Устройство содержит охваченный транспортирующим соленоидом 1 плазковод 2 с установленными на его гранях подложкодержателем 3, двумя нсточниками плазмы 4 и 5, двумя источниками пара 6 и 7 и системой вакуумной откачки, причем источник реле б размещен встречно подложкодержателю. 3 и перпендикулярно источнику плазмы 4, а источник пара 7 размещен встреч-25 но источнику плазмы 5 и перпендикупярно подпожкодержателю 3, при этом источники пара 6,7 подключены, к попожительным полисам дополнительных источников питания 8; 9, а источни- 30 ки плазмы - к отрицательным полюсам этих же источников, в то же время источники пара 6,7 и источники плазмы 4,5 подключены аналогично к собственным источникам питания - 10, 11 и 12, 13 соответственно.

Устройство работает следующим образом.

В подпожкодержатель 3 устанавли-. вают подложку, предварительно подготовленную для нанесения покрытий, герметизируют плазмовод 2 и откачивают его при помощи системы вакуумной откачки до давления порядка 2.10-5 ... $8 \cdot 10^{-5}$ мм рт.ст. Затем с помощью 45 подкигающего устройства (не показано) производят инициирование вакуумной дуги в источнике плазмы 4(5). Источником плазмы является катодное пятно, которое хаотически перемещается по рабочей поверхности катода и вследствие высокой его температуры (до 2-10 °C) испаряет материал катода, заряженную компоненту плазмы которого используют для нанесения покрытий. Включают транспортирующий соленонд 1, магнитное поле которого транспортирует плазму. В плазму вводят более мощный поток нонизирован-

ного несамостоятельным дуговым разрядом пара, который генерируется источником пара 6(7), подключенный предварительно к собственному источнику 10(11) и к положительному полису дополнительного источника питания 8(3). При этом собственные источники питания источников пара 6(7) обеспечивают разогрев и испарание материала покрытия, а дополнительные источники 8(9) обеспечивают несамостоятельный дуговой разряд между фронтом плазии, генерируемой источниками плазмы 4(5) и поверхностями тиглен (не показаны) источников пара 6(7) непосредственно в потоке пара для его нонизации. Ионизированный пар представляет собой плазму, которая смешивается с основным потоком плазмы. Смешанный поток транспортируется магнитным полем транспортирующего соленоида 1 к подложке и осаждается на ней в виде покрытий. После завершения процесса плазмовод 2 разгерметизируют, подложку извлекают и исследуют тольшну слоя покрытия и другие необходимые качественные параметры.

Рассмотрим первый случай, когда работают источник плазны 4 и источник пара 6:

устанавливают подпожку в подпожкодержатель 3;

герметизируют плазмовод 2 и откачивают при помощи системы вакуумной откачки до заданного давления;

иницинруют вакуумную дугу в источнике плазмы 4. При этом источник плазмы 4 подключают к собственному источнику питания 12;

транспортируют заряженную компоненту дуговой плазмы к подложке посредством магнитного поля транспортирующего соленонда 1. В этот поток вводят поток нонизированного несамосто-ятельным дуговым разрядом пара, для этого источник пара б подключают к собственному источнику питания 11 при одновременном полключении источников плазны 4 и пара 6 к дополнительному источнику питания 9. При этои дуговой разряд осуществляют межну фронтом диффузной плазми и рабочей поверхностью тигля источника пара ба Смешанный поток поинзированного нара с плазмой транспортируют магнитным полем транспортирующего соленонда 1 к подложке, где поток осаждается на ее поверхности в виде покрытия.

45

После образования слоя покрытия необходиной толшины процесс прекращают, плазмовод разгерметизируют и извлекают подложку.

Рассмотрим второй случай, когда работают источник пара 7 и источник плазны 5.

Этот случай отличается от перного тем, что основным потоком является поток ионизированного пара, к которому присоединяется поток плазмы. при этом поток плазмы направлен встречно потоку пара, фронт потока ти тигля источника пара 7, дуга несамостоятельного разряда короче и интенсивнее. Процесс ионизации более интенсивный, что увеличивает количество нонизированного пара.

Спедовательно, второй случай отличается от первого большей производительностью за счет более интенсивного процесса нонизации паров.

II р и м е р 1. Исходные данные. В качестве подложки использовали диск из стали 45 диаметром 160 мм и толщиной 5 мм. Катод источника плазмы изготавливали из электролитической меди МОО. В источнике пара, выполненном в виде молибденового тигля, использовали также электролитическую медь МОО в качестве испаряемого материала. Подпожкодержатель подключали к источнику отрицательного потенциала напряжением 110 В, ток дуги подбирали равным 120 А, напряженность магнитного поля транспортирующего соленонда выбирали равной 160 Э. Расположение источников пара и плазмы и подложкодержателя соотпетствует вышеприведенному первому случаю.

Подложку устанавливали в подложкодержатель и герметизировали плазмовод.

Производили откачку воздуха из плазмовода при помощи системы вакуумной откачки до давления остаточных газов, равного 2·10 -5 мм рт.ст. Загем включали источник плазмы - торцовый ускоритель и одновременно подключали обмотку гранспортирующего соленонда. Замеряли ионный ток в цепи подложки, который достигал значения 2 А. Включали источник пара и доводили расход пара до значений 1 кг/ч, при помощи источника 11 кВт. производим нонизацию паров за счет

TOISTE COMMITTENTOOMED PR REMEREDO ризряда метлу диафузисинени поточен иназим и поверхностил испарленто материала при помощи подминистия поточников пара и иласили и пополийтельного источника питания напряжением 30 В и током 100 А. Помаряли при отом нонивий ток в изим поддожим. Он 10 достигал значений, разных 16,5-17 А, то есть более, чем в 8 раз превышал значения понного тожа баз пара.

Процесс нанесения покрытий производили в течение 10 имн. затем камеплазмы значительно ближе к поверхнос- 15 ру разгерметизировали, извлекали подложку и замеряли телшину слоя покрытия, которая в среднем была равна 16,4 мкм (у прототила за это же время толшина слоя была равна 2 мкм). Сле-20 довательно, рост нонного тока соответствует увеличению толожны слоя покрытия, что позволяет понтролировать производительность процесса в процессе напыления.

Пример 2. Исколича панима 25 аналогичны примеру 1. Расположение источников пара 7 и плазмы 5 относительно друг друга встречно, а относительно подложкодержателя 3 -30 перпендикулярно - как по втором слу-

Параметры процесса были также одинаковы и с приведенными в примере1.

При подключении источников пара и плазмы к дополнительному источнику, понный ток достигал значений 20 -20,5 А, что значительно больше, чем в примере 1, при этом толина слоя покрытия также быта разна 20,2 гим.

Как видно из приводенили примеров процесс нанесения попрытии имеет высокую производительность,

Формула изобретения

1. Устройство для панесения покрытий вакуумным торцовым ускорителам плазмы, содержащее омначанный транспортирующим соленонном илазмовод с установлениыми на его смежных граних подложкодержателем и торновым ускорителем плазмы и систаму вакуумной откачки, отличаншаеся тем. что, с целью повышения производительности, оно дополнительно снабжено поточником пара, установлением на однон на граней плазмовода и изслированно ему, при этом источите пала подключен к положительному полису дополнительного источника плания, отрицательный полюс которого подсоединен к катоду источника плазмы.

2. Устройство по п. 1, о т л и ч а- 5 ю щ е е с я тем, что источник пара установлен встречно подложкодержате-

лю, при этом устройство поновинтельно снабжено источником плазия, размещенным перпенинкулярно источнику пара.

3. Устройство по п.1, о т л и ч а- ю щ е е с я тем, что источник пара установлен встречно источнику плазмы.

Редактор Н. Каменская Техред М. Дидык Корректор М. Лемчик

Баказ 444/ДСП Тираж 341 Подписное

ВНИИЛИ Государственного комитета СССР
по делам изобретсний и открытий
13035, Москва, Ж-35, Рлушская наб., д. 4/5