Assignment - Time Series Analysis

1. Answer the following:

- (a) Determine and sketch the magnitude and phase spectra of the following periodic signals:
 - (i) $x[n] = 4\sin(\frac{\pi(n-2)}{3}n)$, (ii) $x[n] = \cos(\frac{2\pi}{3}n) + \sin(\frac{2\pi}{5}n)$ and (iii) $x[n] = \cos(\frac{2\pi}{3}n)\sin(\frac{2\pi}{5}n)$
- (b) Determine the periodic signal x[n] with period N=8 if its Fourier coefficients are given by $c_k=\cos(\frac{\pi k}{4})+\sin(\frac{3\pi k}{4})$.

2. Answer the following:

- (a) A signal x[n] has the following Fourier Transform: $X(\omega) = \frac{1}{1 ae^{-j\omega}}$. Determine the Fourier Transform of the following signals:
 - (i) x[2n+1] (ii) $e^{\pi n/2}x[n+2]$ (iii) $x[n]\cos[0.3\pi n]$ and (iv) $x[n]\star x[n-1]$
- (b) Consider the periodic signal x[n]=1,0,1,2,3,2 starting from n=0. Verify Parseval's theorem for this case.

3. Answer the following:

An FIR filter is described by the difference equation: y[n] = x[n] + x[n-4].

- (a) Compute and sketch its magnitude and phase response.
- (b) Compute its response to the input $x[n] = \cos(\frac{\pi}{2}n) + \cos(\frac{\pi}{4}n)$
- (c) Explain the results obtained in part (b) using those from part (a)

4. Answer the following:

If $w_1[k]=(1+c_1q^{-1})e_1[k]$ and $w_2[k]=(1+c_2q^{-1})e_2[k]$, show that $w_3[k]=w_1[k]+w_2[k]$ may be written as $w_3[k]=(1+c_3q^{-1})e_3[k]$, and derive an expression for c_3 and $\sigma_{e_3}^2$ in terms of the other two processes.