EE206 Assignment 5 *

Due 10th Nov.

- 1. Find the Laplace Transform of the following functions, using the definition, NOT the tables.
 - (a) $f(t) = t^n$, where n is a natural number, i.e. $n = 0, 1, 2, \ldots$ (Hint: write $\mathcal{L}\{t^n\}$) in terms of $\mathcal{L}\{t^{n-1}\}$ using integration by parts. Then use the result to write $\mathcal{L}\{t^n\}$ in terms of $\mathcal{L}\{1\}$
 - (b) $f(t) = 2 \sinh 3t + \cos 2t$
- 2. Find the inverse Laplace transform of the following

(a)
$$\mathcal{L}^{-1}\left\{\frac{6}{s^2+36s}\right\}$$

(b)
$$\mathcal{L}^{-1} \left\{ \frac{s}{(s-2)(s-5)(s-7)} \right\}$$

(c)
$$\mathcal{L}^{-1}\left\{\frac{(s-1)^3}{s^4}\right\}$$

3. Use the Laplace transform to solve the given initial-value problems

(a)
$$y'' + 5y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 0$

(b)
$$2\frac{dy}{dt} - y = 0$$
, $y(0) = 5$

(c)
$$y' - y = 2\cos 6t$$
, $y(0) = 0$

(d)
$$y'' - 10y' + 25y = 3e^{3t}$$
, $y(0) = 0$, $y'(0) = -1$

- 4. Use the First Translation (Shift) Theorem to find either F(s) or f(t), as indicated. State in each case how the translation theorem applies.
 - (a) $\mathcal{L}\left\{\cosh(t)\cos(t)\right\}$

(b)
$$\mathcal{L}^{-1} \left\{ \frac{(s-1)^2}{(s+2)^4} \right\}$$

5. Use the Second Translation (Shift) Theorem to find either F(s) or f(t), as indicated. State in each case how the translation theorem applies.

 $^{^{*}\}mathrm{EE}$ 206 differential equation and transform methods, Siyuan Zhan PhD, Maynooth University

- (a) $\mathcal{L}\{(3t+1)\mathcal{U}(t-1)\}$
- (b) $\mathcal{L}\left\{\cos(4t-8)\mathcal{U}(t-2)\right\}$
- (c) $\mathcal{L}^{-1} \left\{ \frac{(1+e^{-s})^2}{s+3} \right\}$