Slide 8-Finding Matrix Inverse by using elementary matrices/row operations MAT2040 Linear Algebra

Definition 8.1 (Row Equivalent Matrices) Let $A \in \mathbb{R}^{m \times n}$ and suppose we apply a series of elementary row operations $\mathrm{op}_1, \mathrm{op}_2, \cdots, \mathrm{op}_k$ on A and obtain the matrix B. Then, matrix A is said to be **row** equivalent to matrix B.

Moreover, suppose the corresponding elementary matrix for elementary row operation op_i $(i=1,\cdots,k)(i=1,\cdots,k)$, then

$$EA = B$$
,

where $E = E_k E_{k-1} \cdots E_1$.

Illustration:

$$A \xrightarrow{op_1} A_1 \xrightarrow{op_2} A_2 \xrightarrow{op_3} \cdots \xrightarrow{op_k} A_k = B.$$

Thus,
$$B = E_k A_{k-1} = E_k E_{k-1} A_{k-2} = \cdots = E_k E_{k-1} \cdots E_2 A_1 = E_k E_{k-1} \cdots E_1 A = EA$$
.

Theorem 8.2 (Equivalent conditions for invertible matrix)

 $A \in \mathbb{R}^{n \times n}$, the following are equivalent:

- (1) A is invertible,
- (2) the linear system $A\mathbf{x} = \mathbf{0}$ has only a trivial solution,
- (3) matrix A is row equivalent to I_n ,
- (4) A is a product of elementary matrices,
- (5) there exists an invertible matrix $E \in \mathbb{R}^{n \times n}$ such that $EA = I_n$.
- (6) $A\mathbf{x} = \mathbf{b}$ has a unique solution for any \mathbf{b} .

Proof.

$$(1) \Rightarrow (2)$$

Since A is invertible, then $A\mathbf{x} = \mathbf{0}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{0} = \mathbf{0}$.

$$(2) \Rightarrow (3)$$

Suppose

$$[A|\mathbf{0}] \xrightarrow{\text{elementary row operations}} [B|\mathbf{0}] (\text{reduced row - echelon form})$$

Since the linear system $A\mathbf{x} = \mathbf{0}$ has only a trivial solution, thus each row of B must has a leading 1.

Thus, $B = I_n$.

$$(3) \Rightarrow (4)$$

By theorem 8.2, there are elementary matrices E_1, \dots, E_k , such that $E_k \dots E_1 A = I_n$. Thus $A = E_1^{-1} \dots E_k^{-1}$ is a product of elementary matrices since $E_1^{-1}, \dots, E_k^{-1}$ are also elementary matrices.

$$(4)\Rightarrow(5)$$

Suppose $A = E_1 \cdots E_k$ (E_1, \cdots, E_k are elementary matrices), then $E_k^{-1} \cdots E_1^{-1} A = I_n$. Let $E = E_k^{-1} \cdots E_1^{-1}$, then E is invertible and $EA = I_n$.

$$(5) \Rightarrow (1)$$

Since $EA = I_n$ and E is invertible, then $A = E^{-1}$ is also invertible, and $A^{-1} = E$

$$(1)\Rightarrow (6)$$

 $A\mathbf{x} = \mathbf{b} \Rightarrow \mathbf{x} = A^{-1}\mathbf{b}$ is the unique solution for any \mathbf{b} .

$$(6) \Rightarrow (1)$$

If A is singular, then $A\mathbf{x} = \mathbf{0}$ has infinity many solutions from (2) by the contrapositive statement. Now taking $z \neq 0$ is the solution of Ax = 0, and suppose that **y** is the unique solution of A**x** = **b**. then

A(y+z) = Ay + Az = b + 0 = b, thus y+z is also the solution of

 $A\mathbf{x} = \mathbf{b}$. But $\mathbf{y} \neq \mathbf{y} + \mathbf{z}$. This is a contradiction.

5 / 14

Remark.

If A is invertible, then A is row equivalent to I, i.e., $A \xrightarrow{\text{row op}_1, \cdots, \text{op}_k} I$, suppose the corresponding elementary matrices for the row operations $\text{op}_1, \text{op}_2, \cdots, \text{op}_k$ are E_1, E_2, \cdots, E_k , then $I = E_k \cdots E_1 A$. Thus, $A^{-1} = E_k \cdots E_1 I$. Thus, for the same series of elementary row operations, it will transforms a nonsingular matrix A to I and transform I to A^{-1} . This suggests a method to find A^{-1} by performing row operations for augmented matrix [A|I].

Method to find A^{-1} (A is invertible)

$$[A|I] \xrightarrow{\text{Gauss Jordan elimination}} [I|P]$$
, then $P = A^{-1}$.

Illustration: Suppose elementary row operations $\operatorname{op}_1, \operatorname{op}_2, \cdots, \operatorname{op}_k$ (the corresponding elementary matrices are E_1, E_2, \cdots, E_k) are used in the Gauss-Jordan elimination for [A|I] to obtain the reduced row echelon form [I|P]. Then, $E_k \cdots E_1[A|I] = [I|P] \Rightarrow E_k \cdots E_1A = I, E_k \cdots E_1I = P \Rightarrow P = E_k \cdots E_1 = A^{-1} \Rightarrow P = A^{-1}$.

Example 8.3 Find the inverse of the following matrix

$$(1) \quad A = \left[\begin{array}{rrr} 1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3 \end{array} \right]$$

Perform Gauss-Jordan elimination:

$$[A|I] = \begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \\ 0 & -6 & -3 & -2 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 0 & \frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \\ 0 & 2 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 2 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Thus

$$A^{-1} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \end{bmatrix}$$

$$(2) \quad A = \left[\begin{array}{rrr} -7 & -6 & -12 \\ 5 & 5 & 7 \\ 1 & 0 & 4 \end{array} \right]$$

$$[A|I] = \left[\begin{array}{cc|cc|c} -7 & -6 & -12 & 1 & 0 & 0 \\ 5 & 5 & 7 & 0 & 1 & 0 \\ 1 & 0 & 4 & 0 & 0 & 1 \end{array} \right] \rightarrow \left[\begin{array}{cc|cc|c} 1 & 0 & 0 & -10 & -12 & -9 \\ 0 & 1 & 0 & \frac{13}{2} & 8 & \frac{11}{2} \\ 0 & 0 & 1 & \frac{5}{2} & 3 & \frac{5}{2} \end{array} \right]$$

Thus

$$A^{-1} = \begin{bmatrix} -10 & -12 & -9\\ \frac{13}{2} & 8 & \frac{11}{2}\\ \frac{5}{2} & 3 & \frac{5}{2} \end{bmatrix}$$

Method to find X such that AX = B (A is invertible)

$$[A|B] \xrightarrow{\text{Gauss Jordan elimination}} [I|X]$$
, then $X = A^{-1}B$.

Illustration: Suppose elementary row operations $\operatorname{op}_1, \operatorname{op}_2, \cdots, \operatorname{op}_k$ (the corresponding elementary matrices are E_1, E_2, \cdots, E_k) are used in the Gauss-Jordan elimination for [A|B] to obtain the reduced row echelon form [I|P]. Then, $E_k \cdots E_1[A|B] = [I|P] \Rightarrow E_k \cdots E_1A = I, E_k \cdots E_1B = X \Rightarrow E_k \cdots E_1 = A^{-1} \Rightarrow X = A^{-1}B$.

Example 8.4 Find the solution X such that AX = B where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -3 \\ -4 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 15 & -15 & -30 \\ 15 & 30 & -15 \\ 5 & -10 & -5 \end{bmatrix}$$

Set

$$[A|B] = \begin{bmatrix} 1 & 2 & 3 & 15 & -15 & -30 \\ -2 & -1 & -3 & 15 & 30 & -15 \\ -4 & 5 & 6 & 5 & -10 & -5 \end{bmatrix}$$

and perform Gauss-Jordan elimination to reduce it into

$$\left[\begin{array}{ccc|ccc|ccc|ccc}
1 & 0 & 0 & 11 & -1 & -20 \\
0 & 1 & 0 & 41 & 14 & -65 \\
0 & 0 & 1 & -26 & -14 & 40
\end{array}\right]$$

Thus

$$X = \left[\begin{array}{rrr} 11 & -1 & -20 \\ 41 & 14 & -65 \\ -26 & -14 & 40 \end{array} \right]$$

Theorem 8.5 (Nonsingular Product has Nonsingular Terms) Suppose that A and B are square matrices with the same size. The product AB is nonsingular if and only if A and B are both nonsingular.

Proof.

$$\Leftarrow$$
 Since $(AB)^{-1} = B^{-1}A^{-1}$, $(AB)^{-1}$ exists.

 \Rightarrow For this portion of the proof we will form the logically-equivalent contrapositive statement: "AB is nonsingular implies A and B are both nonsingular" is equivalent to "A or B is singular implies AB is singular".

12 / 14

Proof for Theorem 8.5

Case (1). Suppose B is singular, then there is z nonzero vector \mathbf{z} s.t. $B\mathbf{z} = \mathbf{0}$, thus

$$ABz = A(Bz) = A0 = 0$$

Therefore $AB\mathbf{x} = \mathbf{0}$ has a nonzero solution, this means that AB is singular.

Case (2). Suppose B is invertible and A is singular, then if AB is invertible, then there is a invertible matrix C, s.t. ABC = I, thus $A = C^{-1}B^{-1}$ which is invertible. This is a contradiction with the assumption A is singular.

Theorem 8.6 (One-Sided Inverse Verification is Sufficient) Suppose $A, B \in \mathbb{R}^{n \times n}$. If $BA = I_n$, then $AB = I_n$.

Proof. By theorem 8.5, both *A* and *B* are invertible. By theorem 8.2, there exists $E \in \mathbb{R}^{n \times n}$, s.t. EB = I. Thus

$$AB = IAB = (EB)AB = E(BA)B = EIB = EB = I.$$