

(19) RU (11) 2 176 311 (13) C2

(51) Int. Cl. 7 E 21 B 43/16, 43/14, 43/30

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 99117878/03, 16.08.1999

(24) Effective date for property rights: 16.08.1999

(46) Date of publication: 27.11.2001

(98) Mail address: 634034, g.Tomsk, pr. Lenina, 30, Tomskij politekhnicheskij universitet, otdel intellektual/noj i prom. sobstvennosti

- (71) Applicant:OAO "Tomskgazprom",Tomskij politekhnicheskij universitet
- (72) Inventor: Zhvachkin S.A., Parovinchak M.S., Lunev V.I., Shevljuk V.V., Filatov A.V.
- (73) Proprietor.
 OAO "Tomskgazprom",
 Tomskij politekhnicheskij universitet

(54) METHOD OF DEVELOPMENT OF GAS CONDENSATE-OIL DEPOSIT

(57) Abstract:

development of hydrocarbon FIELD: deposits complicated with presence of zones different rock permeabilities. SUBSTANCE: method includes tapping of producing section with central vertical and peripheral inclined wells. They have parts located within continuous formation along its strike. Wells are to be perforated. Producing section is tapped by wells according to regular geometric pattern and from one derrick substructure. Peripheral inclined wells are drilled at preset zenith getting angle. It provides for bottom-hole to designed depth in foot of continuous producing formation to corners of regular hexagon. In three wells located through 120 deg along occurrence of continuous formation, in direction of its maximum saturation with hydrocarbons, gently sloping areas are drilled with wells from roof to foot of formation, and they are Perforation provided with strainers. wells is made in two stages. At the first stage, subject to perforation are intervals in all wells in zone of discontinuous formations. At the second stage, continuous formations in vertical well and in inclined having no sloping areas

perforated. EFFECT: increased well production rate and hydrocarbon recovery factor from producing formation, reduced expenditures for well drilling and for field equipment. 5 dwg

фиг.1

() ()

(19) RU (11) 2 176 311 (13) C2

(51) MПK⁷ E 21 B 43/16, 43/14, 43/30

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 99117878/03, 16.08.1999

(24) Дата начала действия патента: 16.08.1999

- (46) Дата публикации: 27.11.2001
- (56) Ссылки: RU 2112868 C1, 10.06.1998. RU 2061845 C1, 10.06.1996. RU 2012782 C1, 15.05.1994. RU 2012792 C1, 15.05.1994. RU 2027848 C1, 27.01.1995. RU 2049912 C1, 10.12.1995. RU 2018638 C1, 30.08.1994. US 3788398 A, 29.01.1974. US 3856086 A, 24.12.1974. AMEЛИН И.Д. Особенности разработки нефтегазовых залежей. М.: Недра, 1978, с.65. АФАНАСЬЕВА А.В. и др. Анализ разработки нефтегазовых залежей. М.: Недра, 1954, с. 67 и 68. МАРТЕС В.Н. и др. Анализ разработки нефтегазовых и нефтегазоконденсатных залежей. Обзорная инф. Серия: Нефтепромысловое дело. М.: ВНИИОЭНГ, 1976, с. 14-16.
- (98) Адрес для переписки: 634034, г.Томск, пр. Ленйна, 30, Томский политехнический университет, отдел интеллектуальной и пром. собственности

- (71) Заявитель: ОАО "Томскгазпром", Томский политехнический университет
- (72) Изобретатель: Жвачкин С.А., Паровинчак М.С., Лунев В.И., Шевлюк В.В., Филатов А.В.
- (73) Патентообладатель: ОАО "Томскгазпром", Томский политехнический университет

(54) СПОСОБ РАЗРАБОТКИ ГАЗОКОНДЕНСАТНО-НЕФТЯНОГО МЕСТОРОЖДЕНИЯ

(57)
Изобретение относится к разработке месторождений углеводородов, а именно к способам разработки месторождений углеводородов, осложненных наличием зон с различной проницаемостью горных пород, и может найти применение при разработке газоконденсатно-нефтяных месторождений.

газоконденсатно-нефтяных месторождений. Обеспечивает повышение дебита скважин и коэффициента извлечения углеводородов из продуктивных пластов, а также снижение расходов на бурение скважин и обустройство промысла. Сущность изобретения: вскрывают продуктивный разрез скважинами с центральной вертикальной скважинами и периферийными наклонными скважинами. Они имеют участки, расположенные в пределах сплошного пласта по его простиранию. Скважины перфорируют. Продуктивный разрез вскрывают скважинами по правильной

геометрической сетке и с одного бурового основания. Периферийные наклонные скважины проходят под заданным зенитным углом. Это обеспечивает попадание забоя скважин на проектной глубине в подошве сплошного продуктивного пласта в углы правильного шестиугольника. В Tpex скважинах, расположенных через 120°, по простиранию сплошного пласта в направлении наибольшей насыщенности углеводородами бурят пологонаклонные участки от кровли и до подошвы пласта и оборудуют их фильтрами. Перфорацию скважин производят поэтапно в две стадии. На первой стадии перфорируют интервалы во всех скважинах в зоне прерывистых пластов. На второй стадии перфорируют сплошной пласт в вертикальной скважине и наклонных скважинах, не имеющих пологонаклонных участков. 5 ил.

RU 2176311 C2

Изобретение относится к разработке месторождений углеводородов, а именно к способам разработки месторождений углеводородов, осложненных наличием зон с различной проницаемостью горных пород, и может найти применение при разработке газоконденсатных и газоконденсатно-нефтяных месторождений.

Известен метод кустового бурения скважин, применяемый при добыче углеводородного сырья [1]. Его сущность заключается в том, что с одного бурового основания проходят несколько наклонных скважин с определенными зенитными углами. Метод кустового бурения, несмотря на некоторые технологические усложнения, весьма эффективен, т.к. позволяет значительно снизить затраты времени на демонтаж, перевозку и монтаж бурового оборудования и соответственно уменьшить стоимость буровых работ.

Известен способ увеличения поверхности вскрытия продуктивного пласта и расширения зоны дренирования при разработке месторождений нефти и газа за счет проходки в продуктивном пласте горизонтальных участков скважин [2]. Несмотря на определенные технологические трудности бурения горизонтальных скважин, способ делает возможным повысить дебит скважин и коэффициент извлечения углеводородов из пласта без увеличения объема буровых работ, что снижает стоимость добываемых углеводородов.

Известно, что для повышения выхода полезных компонентов, в частности из. газоконденсатно-нефтяных месторождений, обусловленное спецификой их геологического строения, существенное значение имеет порядок вскрытия продуктивных пластов и ввода скважин в эксплуатацию [3]. Задача состоит в том, чтобы на начальном этапе разработки месторождений добиться максимального выхода углеводородов из прерывистых пластов, обладающих низкой проницаемостью. Этим и объясняется тот факт, что применяемые в настоящее время способы разработки иесторождений углеводородов, как правило, различаются между собой порядком перфорации участков продуктивной толщи и ввода скважин в эксплуатацию.

Общеизвестно, что месторождения углеводородного сырья могут значительно отличаться друг от друга по составу и свойствам углеводородов, геологическому строению; условиям залегания продуктивных пластов, их проницаемости и т. п. По этой причине до настоящего времени не созданы универсальные методики размещения скважин эксплуатационных разрабатываемом месторождении. Скважины разбуривают по стандартной дихотомической, квадратной, прямоугольной или иной сетке, а также используют для этой цели 5-, 7-, 9-точечные ячейки [4]. Естественно, в каждом конкретном случае выбирают геометрическую сетку или ячейку для размещения скважин, которая с учётом вышеизложенных факторов обеспечивает максимальный выход углеводородов при минимальных финансовых и трудовых затратах на разработку месторождения.

Известен способ разработки нефтяного пласта [5]. Сущность его заключается в

следующем. Бурят вертикальные скважины, располагая их по геометрической сетке, представляющей собой два правильных, развернутых относительно друг друга на 30 ^о шестиугольника с добывающими скважинами на сторонах, в углах и в центре шестиугольников. Проходят дополнительные. скважины, вскрывая прерывистую часть пласта, и располагают их в пределах внутреннего шестиугольника, симметрично внешнему. Вскрытие пластов производят в два этапа: на первом - вскрывают прерывистую часть разреза в скважинах, расположенных на сторонах внешнего шестиугольника и в добывающих дополнительных скважинах, на втором - в скважинах на сторонах внешнего шестиугольника вскрывают весь продуктивный

Основные недостатки способа заключаются в сложности геометрической сетки разбуривания, большом объеме буровых работ и связанных с ними значительных затрат времени на монтажно-демонтажные работы и перевозку буровых вышек это увеличивает капитальные вложения на разработку месторождения.

Известен также способ разработки нефтяного пласта [6]. Согласно указанному способу нефтяной пласт разбуривают 5-точечными ячейками. Ячейка содержит добывающие вертикальные скважины, располагаемые в углах квадрата. Эта продуктивном пласте. В центре квадрата бурят вертикальную нагнетательную скважину.

Недостаток способа состоит в том, что велика вероятность попадания нагнетательной скважины в зону пониженной проницаемости пласта, что снижает дебит скважин и нефтеотдачу пласта.

Наиболее близким техническим решением того же назначения, что и предпагаемое изобретение, является способ разработки нефтяных залежей по п. РФ N 2112868 [7]. Сущность способа состоит в следующем. Нефтегазовую залежь разбуривают добывающими и нагнета ощими скважинными состоящими системами, ИЗ одного вертикального и по крайней мере двух псевдогоризонтальных стволов. Скважинные системы располагают по простиранию залежи. этом вертикальными скважинами вскрывают газоконденсатную шапку, а псевдогоризонтальными - нефтяные оторочки.

Основными недостатками прототипа по п. РФ N 2112868 являются:

 ограниченная область применения (преимущественно для вытянутых залежей; сложенными непрерывистыми пластами),

- значительный объем буровых работ за счет большого числа нагнетательных скважин.

Поставлена задача - используя простую сетку вскрытия месторождения ограниченным количеством скважин, обеспечить при разработке газоконденсатно-нефтяного месторождения высокое значение дебита скважин и коэффициента извлечения углеводородов из продуктивных пластов, а также снижение расходов на бурение скважин и обустройство промысла.

Поставленная задача решена спедующим образом. С одного бурового основания бурится куст скважин, состоящий из одной центральной вертикальной и шести периферийных наклонных скважин. Все

скважины являются добывающими. Угол наклона периферийных скважин к горизонту задается таким, чтобы обеспечить попадание их забоя на проектной глубине в подошве сплошного пласта в углы правильного шестиугольника. В трех наклонных скважинах, расположенных под углом 120° относительно друг друга, в сплошном пласте от его кровли и до подошвы по простиранию пласта в направлении наибольшей насыщенности углеводородами бурятся пологонаклонные участки, которые после проходки оборудуются фильтрами. Вскрытие продуктивных пластов производится в две стадии: на первой - во всех скважинах перфорируются интервалы, пересекающие прерывистые пласты, на второй - в вертикальной скважине и в скважинах, не имеющих пологонаклонных перфорируется участков, интервал, расположенный в сплошном пласте.

Далее сущность изобретения поясняется чертежами, на которых изображены:

- на фиг. 1 изометрическое изображения куста скважин по шестиугольной схеме с центральной скважиной;
- на фиг. 2 горизонтальная проекция куста скважин по шестиугольной схеме с центральной скважиной,
- на фиг. 3 схема пересечения сплошного и прерывистых продуктивных пластов вертикальной и наклонной скважинами и наклонной скважиной с пологонаклонным участком;
- на фиг. 4 план разработки Северо Васюганского газоконденсатного месторождения, составленный ОАО "Томсктаз";
- на фиг. 5 план разработки Северо Васюганского газоконденсатного месторождения, составленный "ТюменНИИГипрогаз".

Реализация предложенного способа показана на примере разработки части Мыльджинского газоконденсатно-нефтяного месторождения в Томской области. С одного бурового основания 1 бурится куст скважин, центральной состоящий из одной вертикальной 2 и шести периферийных наклонных 3 скважин (фиг.1, 2). Все скважины являются добывающими. Зенитный угол наклонных скважин 3 находится в пределах 22 - 24°, что обеспечивает попадание забоя скважин в подошве сплошного пласта на глубине 2200 - 2400 м в углы правильного шестиугольника на расстоянии около 1000 м вертикальной скважины. забоя расположенной в центре шестиугольника. Таким образом сплошной пласт вскрывается вертикальной скважиной под углом 90°, а тремя наклонными скважинами через 120° под заданным углом 66 - 68° к горизонту. Остальные три наклонные скважины, также расположенные через 120°, пересекают сплошной пласт по его простиранию пологонаклонными участками 4 (фиг. 3). Угол наклона этих участков скважин выбирается исходя из мощности сплошного пласта с таким расчетом, чтобы их траектория проходила в пределах сплошного пласта от его кровли и до подошвы на расстоянии 250 - 500 м от угла шестиугольника. При этом эти участки направляются в сторону наибольшей насыщенности пласта углеводородами. В процессе обсадки этих скважин участки 4 оборудуются фильтрами.

Перфорация скважин производится в две стадии: на первой стадии во всех скважинах перфорируются участки, расположенные в прерывистых пластах 5, на второй стадии - по мере снижения пластового давления - перфорируются участки вертикальной и трех наклонных скважин, не имеющих наклонных участков в сплошном пласте 6 (фиг. 3).

В настоящее время ОАО "Томскгаз" приступает к реализации проекта разработки Северо - Васюганского газоконденсатного месторождения, в основу которого также положен предлагаемый способ (фиг. 4). На месторождении планируется разбурить 3 куста скважин с общим количеством 21 скважина. вложения на бурение Капитальные составляют 40 млн. долл. США при общих капитальных затратах - 75 млн. долл. США. обладает несомненными проект преимуществами перед проектом. НИИГипрогаз, Тюменским разработанным основой которого является использование 3 и 5-точечных ячеек с квадратной и прямоугольной сеткой расположения вертикальных скважин (фиг. 5). Проектом "ТюменНИИГипрогаз" предусматривается разбуривание 10 ячеек с общим количеством 44 скважины. Капитальные вложения на бурение составляют 80 млн. долл. США при общих капитальных вложениях - 235 млн. долл. США.

Отсюда видны технические, технологические и экономические преимущества предлэженного способа разработки газоконденсатно-нефтяных месторождений.

Таким образом, предлагаемый способ озволяет:

- повысить дебит скважин и коэффициент извлечения углеводородов из продуктивных пластов;
- сократить количество эксплуатационных скважин;

¢

œ

- сократить затраты времени на монтажно-демонтажные работы и перевозку буровой вышки;
 - уменьшить расходы на обвязку скважин и обустройство промысла;
 - улучшить экологическую обстановку в районе промысла.

Источники информации

- 1. Справочник инженера по бурению. Т. 2./ Под ред. В.И. Мицевича и Н.А. Сидорова.- М.: Недра, 1973.
- А. М. Григорян. Вскрытие пластов многозабойными и горизонтальными скважинами.- М.: Недра, 1989.
- 3. Ю. В. Желтов и др. Разработка и эксплуатация нефтегазоконденсатных месторождений.- М.: Недра, 1979.
- 4. В.Д. Лысенко. Разработка нефтяных месторождений. Теория и практика.- М.: Недра, 1996.
- 5. Патент РФ N 2012792, Е 21 В 43/30, 43/20. Способ разработки нефтяной залежи. Б.И. N 9,1994 г.
- 6. Патент США N 4727937, НКИ 166 245. Способ разработки нефтяного пласта, 1986 г.
- 7. Патент РФ N 2112868, E 21 В 43/16, 43/00. Способ разработки нефтегазовых залежей. Б.И. N 16, 1998 г.

Формула изобретения:

Способ разработки газоконденсатно нефтяного месторождения, включающий

-5

вскрытие продуктивного разреза скважинами с центральной вертикальной скважиной и периферийными наклонными скважинами, имеющими участки, расположенные в пределах сплошного пласта по его простиранию, и перфорацию скважин, отличающийся тем, что продуктивный разрез вскрывают скважинами по правильной геометрической сетке и с одного бурового основания, а периферийные наклонные скважины проходят с заданным зенитным углом, обеспечивающим попадание их забоя на проектной глубине в подошве сплошного продуктивного пласта в углы правильного

шестиугольника, причем в трех скважинах, расположенных через 120°, по простиранию сплошного пласта в направлении его наибольшей насыщенности углеводородами бурят пологонаклонные участки от кровли и до подошвы пласта и оборудуют их фильтрами, а перфорацию скважин производят поэтапно в две стадии: на первой стадии перфорируют интервалы во всех скважинах в зоне прерывистых пластов, на второй стадии сплошной пласт в вертикальной скважине и наклонных скважинах, не имеющих пологонаклонных участков.

RU 2176311 C2

2176311 C2

æ ⊂

