

Bevezetés, funkcionális elemek

Digitális technika 2. BMEVIIIAA02

elődás 2020/21 tavaszi félév

Digitális rendszerek

Tervezés folyamata

- Informális leírás
- Formalizálás
- Szisztematikus struktúra keresés (optimalizálás)
- Építő elem választás
- Megvalósítás

Elvi logikai rajz

Szisztematikus

Fizikai megvalósítás

Elvi logikai rajz

Logikai érték Fizikai érték

0,1

??,??

- Nyomás
- Mágnesezettség
- Fényintenzitás
- Ellenállás
- Áram
- Feszültség

Feszültség logika

TTL logika

V _{cc}	5V
V _{OH}	2.4V
V _{IH}	2.0V
V _{IL}	0.8V
V _{OL}	0.4V
V _T	1.5V

Logikai érték	Jelölés	Pozitív logika	Negatív Iogika	
igaz	1	Н	L	
hamis	0	L	Н	

Építőelemek kimenetei

Totem-pole

L-szint: K1: nyit, K2: zár **H**-szint: K1: zár, K2: nyit

Kimenetek nem köthetők össze

Építőelemek kimenetei

Open-collector (Nyitott kollektoros)

R: külső ellenállás

L-szint: K2: zár H-szint: K2: nyit

A kimenetek összeköthetők

Huzalozott logikai kapcsolat

Α	В	F	
L	L	L	Huzalozott ÉS
L	Η	L	_
Η	L	L	$F = A \cdot B$
Н	Н	Н	

	Λ	D	Е
Huzalozott NOR	A	В	
142415251111511	L	L	п
	L	Н	Н
F = A + B	Н	L	Н
I - II + D	Н	Н	L

Építőelemek kimenetei

Three-state (Háromállapotú)

L-szint: K1: nyit, K2: zár

H-szint: K1: zár, K2: nyit

3. állapot: K1 nyit, K2 nyit

A kimenetek összeköthetők, ha egyszerre legfeljebb egy kimenet aktív

Multiplexer

$$Y = A \cdot \overline{S} + B \cdot S$$

4/1 Multiplexer

Multiplexer

2 bemenetű kombinációs hálózat 4/1 Multiplexerrel

3 bemenetű kombinációs hálózat 4/1 Multiplexerrel

Multiplexer engedélyező bemenettel

Demultiplexer

A=X, ha S=0
$$A = X \cdot \overline{S}$$

B=X, ha S=1 $B = X \cdot S$

A nem aktív kimenet 0 értékű

Enkóder

A kimeneten az aktív bemenet sorszáma látszik

D3	D2	D1	D0	Y1	Y0
1	0	0	0	1	1
0	1	0	0	1	0
0	0	1	0	0	1
0	0	0	1	0	0

Mi történjen, ha több bemenet aktív?

→ Prioritás

D0		D3	D2	D1	D0	Y1	Y0
—D1	Y0	1	Х	Х	Х	1	1
—D2	Y1	0	1	Х	Х	1	0
—D3	ΥI	0	0	1	Х	0	1
<u> </u>		0	0	0	1	0	0

Prioritási sorrend: D3, D2, D1, D0

Mi történjen, ha egyik bemenet sem aktív?

→ "Érvényes" kimenet (V – valid)

D3	D2	D1	D0	Y1	Y0	٧
0	0	0	0	0	0	0
1	х	Х	Х	1	1	1
0	1	х	Х	1	0	1
0	0	1	Х	0	1	1
0	0	0	1	0	0	1

Dekóder

Az a kimenet aktív, amelyik sorszáma a bemeneten van

X1	X0	Y3	Y2	Y1	Y0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

n-ből 1 kód

Dekóder alacsony aktív kimenettel

X1	X0	Y3	Y2	Y1	Y0
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

Dekóder / demultiplexer

Е	X1	X0	Y3	Y2	Y1	Y0
0	Х	Х	1	1	1	1
1	0	0	1	1	1	0
1	0	1	1	1	0	1
1	1	0	1	0	1	1
1	1	1	0	1	1	1

Ē	X1	X0	Y3	Y2	Y1	Y0
1	Х	Х	1	1	1	1
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1

Komparátor Bináris számok összehasonlítása

F2	<u>B1</u>	
	0 1 1 1	
	0 0 1 1 A0	$F2 = B1 \cdot \overline{A1} + B0 \cdot \overline{A1} \cdot \overline{A0} + B1 \cdot B0 \cdot \overline{A0}$
۸ 1	0 0 0 0	TE - DI MI DO MI MO DI DO MO
Αı	0 0 1 0	

_	Α		В			
A1	A0	В1	В0	F0	F1	F2
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

B0

Komparátor - kaszkádosítás $X_{3..0} >=< Y_{3..0}$

$$X_{3..0} >=< Y_{3..0}$$

$$X>Y = F0_1 + F1_1 \cdot F0_0$$
 21 > 13 23 > 21

$$X=Y = F1_1 \cdot F1_0$$
 23 > 23

$$X < Y = F2_1 + F1_1 \cdot F2_0$$

$$\overline{X > Y} \neq X < Y$$

$$\overline{X > Y} = X \le Y$$

4 bites kaszkádosítható komparátor

Érvénytelen kombináció a kaszkád bemeneteken

Bemenetek					Kimenetek		
A ₃₀ ? B ₃₀	A>B	A=B	A <b< th=""><th>A>B</th><th>A=B</th><th>A<b< th=""></b<></th></b<>	A>B	A=B	A <b< th=""></b<>	
A > B	X	Х	X	1	0	0	
A < B	X	X	Х	0	0	1	
A = B	1	0	0	1	0	0	
A = B	0	0	1	0	0	1	
A = B	0	1	0	0	1	0	
A = B	1	1	0	0	1	0	
A = B	0	1	1	0	1	0	
A = B	1	1	1	0	1	0	
A = B	0	0	0	1	0	1	
A = B	1	0	1	0	0	0	

8 bites komparátor

16 bites komparátor – soros kaszkádosítás

16 bites komparátor – soros kaszkádosítás megvalósítása szimulátorban

16 bites komparátor megvalósítása szimulátorban

8 bites komparátor

P=Q	P>Q	
0	1	P=Q
1	0	P>Q
1	1	P <q< td=""></q<>

Kimenet n-ből 1 kód

16 bites komparátor $X_{15..0} >=< Y_{15..0}$

$$X_{15..0} > = < Y_{15..0}$$

Kettes komplemens komparálás

4 bites kettes komplemes

Azonos előjel esetén a komparálás helyesen működik

Különböző előlel esetén a komparálás eredményét negálni kell

- 1. Kombinációs hálózat
- 2. Negáljuk az előjel biteket
- 3. Megcseréljük az operandusok előjel bitjeit

Katalógus áramkörök

Interfész jelölések

