Formulaire: optique

3 avril 2013

Table des matières

1	Approximation de l'optique géométrique	1
2	La diffraction	2
3	Diffraction par les réseaux	3
4	Interférences	3
5	Interférences par division du front d'onde	3
6	Interférences par division d'amplitude	4
1 Approximation de l'optique géométrique		
□ VECTEUR D'ONDE – Pour une onde de la forme $\overrightarrow{E} = \Re e \left(\overrightarrow{\underline{E}}(\overrightarrow{r}) \exp \left(\varphi(\overrightarrow{r}) - \omega t \right) \right)$ et une expression analogue pour \overrightarrow{B} , où $\varphi(\overrightarrow{r}) \in \mathbb{R}$, alors on peut définir un vecteur d'onde local par		
	$\vec{k} = \vec{\nabla}\varphi$	1)
un	Chemin optique d'un rayon lumineux suivant le trajet Γ de A vers B da milieu d'indice relatif n a priori variable s'exprime aussi en fonction du temps mis par l'onde po propager entre A et B :	
20		2)

 \square Principe de Fermat – Du principe de Fermat qui statue que les rayons lumineux choisissent toujours le chemin optique minimal ou à défaut stationnaire on peut déduire l'équation de la trajectoire suivie par le rayon dans un milieu d'indice relatif n, avec \overrightarrow{T} le vecteur unitaire tangent à la trajectoire :

$$\left| \frac{\mathrm{d}n\vec{T}}{\mathrm{d}s} = \vec{\nabla}n \right| \tag{1.3}$$

 \square Relation de Descartes – Le jour du concours où vous aurez tout oublié de votre cours de sup sur les lentilles et l'optique géométrique, il faut juste se souvenir que pour deux points A et A' conjugués par une lentille mince de sommet S, on a toujours

$$\frac{1}{\overline{SA'}} - \frac{1}{\overline{SA}} = \text{cte}$$
 (1.4)

2012/2013 Formulaire : optique

2 La diffraction

 \Box Ordre de Grandeur du Visible – Les fréquences ν des rayonnements de la lumière visible vérifient grossièrement

$$10^{14} \text{ Hz} < \nu < 10^{15} \text{ Hz}$$
 (2.1)

 \Box ÉCLAIREMENT – L'éclairement est la puissance surfacique de rayonnement lumineux reçue par une surface dont la normale fait un angle θ avec le vecteur de POYNTING de l'onde incidente. Il s'exprime, avec $I = \langle \vec{\pi} . \vec{u} \rangle$,

$$E = I\cos\theta \tag{2.2}$$

 \square Vibration Lumineuse – C'est une grandeur scalaire \underline{A} telle que

$$I = \underline{AA^*} \tag{2.3}$$

 \square Relation direction-point – Dans le cas de la diffraction de Frauhnofer, la lumière de longueur d'onde λ sortant du dispositif diffractant dans la direction du vecteur $\overrightarrow{k} = (k_y, k_z)$ forme, après passage par une lentille de focale f, un point sur l'écran de coordonnées

$$Y = \frac{\lambda f}{2\pi} k_y \quad \text{et} \quad Z = \frac{\lambda f}{2\pi} k_z$$
 (2.4)

 \square FORMULE DE FRAUNHOFER – Si un dispositif diffractant possède une fonction de transmittance $t(\vec{r})$, alors l'amplitude diffractée en incidence normale reçue dans la direction \vec{k} vaut, l'intégrale suivante portant sur la surface du diaphragme,

$$\underline{\underline{A_d}(\vec{k})} = K \iint t(\vec{r}) \exp\left(-i\vec{k}.\vec{r}\right) d^2 \vec{r}$$
(2.5)

 \square Incidence oblique – Dans tous les problèmes de diffraction, si le rayon incident n'est pas normal au diaphragme, ce qui se passe en sortie dans la direction \overrightarrow{k} est donnée par les formules en incidence normale en remplaçant \overrightarrow{k} par

$$|\overrightarrow{k} - \overrightarrow{k}_i| \tag{2.6}$$

 \square Transformée de Fourier d'une porte – Le calcul de la diffraction par une fente de longueur infinie et de largeur a mène au calcul de l'intégrale

$$\int_{-\frac{a}{2}}^{\frac{a}{2}} \exp(-ikx) dx = a \operatorname{sinc}\left(\frac{ka}{2}\right)$$
(2.7)

 \square RAYON DE LA TACHE D'AIRY – Le rayon angulaire θ_1 de la tâche d'AIRY provoquée par la diffraction d'une onde lumineuse de longueur d'onde λ par une ouverture circulaire de rayon R vérifie

$$\sin \theta_1 = 0.61 \frac{\lambda}{R} \tag{2.8}$$

 \square Théorème de Babinet – Soit $t(\vec{r})$ une fonction de transmittance, et $t'(\vec{r}) = 1 - t(\vec{r})$. Alors l'intensité diffractée dans la direction \vec{k} est la même pour un diaphragme et de transmittance t ou t':

$$I(\vec{k}) = I'(\vec{k}) \tag{2.9}$$

Lycée Saint-Louis MP*2

3 Diffraction par les réseaux

 \Box FORMULE DU RÉSEAU – Si l'on envoie une onde de longueur d'onde dans le milieu λ formant un angle θ_i avec la normale au plan d'un réseau par transmission comportant n traits par unité de longueur, alors les directions prises pas l'onde transmise sont quantifiés et forment des angles θ_k , $k \in \mathbf{Z}$ avec la normale sortante du plan tels que

$$\sin \theta_k - \sin \theta_i = kn\lambda \tag{3.1}$$

4 Interférences

 \square Intensité résultante – Pour deux ondes d'amplitudes complexes $A_1 = A_{10}\cos(\omega t + \varphi_1)$ et $A_2 = A_{20}\cos(\omega t + \varphi_2)$, et d'intensités respectives I_1 et I_2 , alors en posant $\varphi = \varphi_1 - \varphi_2$,

$$I = 2 \langle A^2(t) \rangle = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\varphi)$$
 (4.1)

 \square CONDITION DE COHÉRENCE SPATIALE – Pour pouvoir observer des interférences avec les ondes provenant de deux sources ponctuelles S et S', si on note \overrightarrow{k}_1 et \overrightarrow{k}_2 les deux directions (éventuellement confondues) prises par les trains d'onde de S et S', alors il faut

$$\overrightarrow{(\vec{k}_1 - \vec{k}_2).\overrightarrow{SS'}} = 0 \tag{4.2}$$

☐ DIPOSITIFS PAR DIVISION DU FRONT D'ONDE – Ils sont caractérisés par

$$\overrightarrow{k}_1 \neq \overrightarrow{k}_2 \tag{4.3}$$

☐ DIPOSITIFS PAR DIVISION D'AMPLITUDE – Ils sont caractérisés par

5 Interférences par division du front d'onde

 \square Expression du déphasage - Le déphasage entre les deux moitiés du train d'onde est, avec $\delta = L_1 - L_2$ la différence de marche,

$$\varphi = \frac{2\pi}{\lambda_0} \delta \tag{5.1}$$

 \Box FORMULE APPROCHÉE – Dans le cas des trous d'YOUNG avec un milieu homogène d'indice n, $\delta = n(D_2 - D_1)$ où D_2 et D_1 sont les distances parcourues par les deux moitiés du train d'onde. Si D est la distance trous-écrans et a la distance entre les trous, alors le déphasage au point M(y) est

$$\varphi = \frac{2\pi}{\lambda} \frac{ay}{D} \tag{5.2}$$

 \square Interfrance – La distance entre deux frances sombres ou entre deux frances claires est constante et égale avec les trous d'Young à

$$i = \frac{\lambda D}{a} \tag{5.3}$$

2012/2013 Formulaire : optique

 \square FACTEUR DE VISIBILITÉ – Une figure d'interférence est caractérisée par un facteur de visibilité $v \in [0,1]$ tel que si I_1 et I_2 sont les intensités émises par les deux sources,

$$I = (I_1 + I_2)(1 + v\cos\varphi)$$
 (5.4)

6 Interférences par division d'amplitude

 \square COEFFICIENTS DE RÉFLEXION ET TRANSMISSION – Si une onde se propageant dans un milieu d'indice n_0 rencontre une lame d'indice n, alors elle est susceptible de se réfléchir ou d'être transmise à travers les deux interfaces 1 et 2 milieux et on a les relations suivantes entre les coefficients qui traduisent la conservation de l'énergie :

$$r_1 + r_2 = 0$$
 et $r_1^2 + t_1 t_2 = 1$ (6.1)

□ DIFFÉRENCE DE MARCHE – La différence de marche géométrique, à laquelle il faut entre le rayon réfléchi par la première interface et celui qui s'est réfléchi sur la deuxième interface et a donc traversé deux fois la lame est

$$\delta_{OG} = 2ne\cos r \tag{6.2}$$

 \square FONCTION D'AIRY – L'intensité transmise par un interféromètre de PÉROT et FABRY se met sous la forme suivante, où φ est le déphasage provoqué par la différence de marche de (6.2):

$$I = I_0 \frac{1}{1 + M \sin^2\left(\frac{\varphi}{2}\right)} \tag{6.3}$$

Bon courage pour apprendre ces 25 formules!