

Encryption & Decryption – 4

Sujeet Shenoi
Tandy School of Computer Science
University of Tulsa, Tulsa, OK 74104
sujeet@utulsa.edu

EDUCATION

Using Encryption Wisely

Encryption provides a "false sense of security"

- Must be used correctly
- Practices
- Protocols

Performance

Delay Time

- Stream \leq Stream-Block \leq Block
- DES: 64-bit blocks
- RSA: 100-200-bit blocks (short blocks: limited security)

Speed

- Symmetric algorithms are much (10,000+ times) faster
- Hardware solutions are much faster
- RSA: 220K Bits/s vs 0.5K Bits/s/MIPS
- *DES: 1,200,000K Bits/s vs 400K Bits/s/MIPS

Block Replay

Transaction Format

• <u>Depositor Name</u> <u>SrcAct</u> <u>DestAct</u> <u>Amount</u> ← 24 bytes \rightarrow ← 8 \rightarrow ← 8 \rightarrow ← 8 \rightarrow 3 DES blocks 1 DES 1 DES 1 DES

Original Transactions

- \leftarrow Intruder \rightarrow \leftarrow xxx \rightarrow \leftarrow I# \rightarrow \leftarrow zz\$ \rightarrow
- \leftarrow John Doe \rightarrow \leftarrow yyy \rightarrow \leftarrow JD# \rightarrow \leftarrow 8K\$ \rightarrow

Fabricated Transaction

Block Chaining

- Prevents "Block Replay"
 - $x \oplus x = 0 (1011 \oplus 1011 = 0000)$
- Encryption
 - $C_1: \{P_1\}_K$
 - $C_2: \{P_2 \oplus C_1\}_K$
 - $C_{j}: \{P_{j} \oplus C_{j-1}\}_{K}$
- Decryption
 - $P_1: \{C_1\}_K$
 - $P_2: \{C_2\}_K \oplus C_1$
 - $-P_{j}: \{C_{j}\}_{K} \oplus C_{j-1}$

Initial Chaining Value

- Block Chaining conceals identical blocks
- Only if each block is preceded by something unique
- Suppose messages always begin with: "US Army HQ"
- Encryption
 - C_1 : $\{IV\}_K$ (IV: Random Initial Vector)
 - $C_2: \{P_1 \oplus C_1\}_K$
 - $C_{j}: \{P_{j-1} \oplus C_{j-1}\}_{K}$
- Decryption

One Way Encryption

Uses Special Functions

- $f(x) = x^3 \implies x = (f(x))^{1/3}$ (difficult to compute)
- $f(x) = x^2 \implies x = (f(x))^{1/2}$ (no unique inverse, e.g., for f(x) = 4)
- System stores f(pwd)
- User enters string
- System computes f(string) and compares with f(pwd)
- Internet Worm (Nov. 2, 1988)

Cryptographic Sealing

Integrity (as opposed to Secrecy)

- Store <file> and SHA(<file>)
- A cryptographic checksum could be the last block of a chained DES encryption

Authentication and Time Stamps

Authentication

Biometrics

Time Stamps

- Prevent replays
- Chronology
- Sender's and receiver's time stamps must match

Encryption Modes

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Cipher Feedback (CFB)
- Output Feedback (OFB)

CSEC Electronic Code Book (ECB)

- Each block is encrypted individually
- Identical plaintext blocks produce identical ciphertext blocks

IVERSITY

Electronic Code Book (ECB) (contd.)

Figure 3. "Codebook Mode Diagram"

Cipher Block Chain (CBC)

- Prevents block replay
- Self-healing (Error in block C_j affects B_j and B_{j+1})
- Encryption

```
- C_1: \{B_1\}_K (Usually B_1 = Initial Vector)
```

- $C_2: \{B_2 \oplus C_1\}_K$
- $C_{j}: \{B_{j} \oplus C_{j-1}\}_{K}$
- Decryption

$$- B_{j}: \{C_{j}\}_{K} \oplus C_{j-1}$$

Cipher Block Chain (CBC) (contd.)

Figure 4-24 Cipher Block Chaining

Cipher Block Chain (CBC) (contd.)

Figure 4. "Cipher-Block Chaining Mode Diagram"

Cipher Feedback (CFB)

- Block nature of DES is inconvenient
 - Partial final block must be padded
 (size of ciphertext > size of plaintext)
 - Encryption cannot begin until entire 64-bit block is input (secure networks: every character must be encrypted)
- CFB: Block \rightarrow Stream
 - Encryption error only affects the next 8 characters

Cipher Feedback (CFB) (contd.)

Figure 4-25 Cipher Feedback

Cipher Feedback (CFB) (contd.)

Transmitter

Data In

SKIPJACK
Encrypt Mode

Data Out

PT

CT

Data In

Data In

SKIPJACK
Encrypt Mode

Data Out

PT

PT

Figure 2. "Cipher Feed-Back Mode Diagram"

Output Feedback (OFB)

- Similar to CFB
- Main Difference
 - The term XOR'ed with plaintext (called "data block") is generated independently of plaintext and ciphertext
 - Initialization vector is used as a "seed" for data blocks

Output Feedback (OFB) (contd.)

Figure 1. "Output Feed-Back Modes Diagram"

