

A Beginner's Guide to Hands-On Al Concepts and Coding

Shier Nee Saw, PhD

Department of Artificial Intelligence,
Faculty of Computer Science and Information Technology,
Universiti Malaya

sawsn@um.edu.my

https://shiernee.com

Outline

- 1. Artificial Intelligence Overview
- 2. Classification Concept
- 3. Hands-on Python Workshop

What is AI? ML? DL?

History of Al

"Can machines think?"

Alan Turing introduce a method

for machine intelligence

nologies/alan-turing-%E2%80%9Ccomputing-machinery-andintelligence%E2%80%9D-1950

First Al Winter

https://www.bbc.com/news/technology-35785875

Alpha Go defeated Lee Sedol, world champion of Go

1950

1966

1980

1987

Second Al

Winter

2016

Now

First Chatbot:

ne original program was described by Joseph Weizenbaum in 1966 his implementation by Norbert Landsteiner 2005. ZA: Is something troubling you ? What is the connection, do you suppose ? They're always bugging us about something or other

Expert

Asia-Oceania J. Obstet. Gynaecol. Vol. 20, No. 1: 19-23 19.

Development and Evaluation of a Computer Expert System for the Management of Fetal Distress

K. K. Wong, 1) K. H. Ng, 2) S. H. Nah, 3) K. Yusof, 1) and K. Rajeswari 1)

- 1) Department of Obstetrics and Gynaecology, University of Malaya, Kuala Lumpur, Malaysia
- 2) Department of Radiology, University of Malaya, Kuala Lumpur, Malaysia
- Berkeley Systems Sdn Bhd, Petaling Jaya, Malaysia

Al in everywhere

AI Techniques

Supervised Learning

Labelled data with guidance

Unsupervised Learning

No labelled without guidance

Reinforcement Learning

Interacts with environment, decide action, learns by trial and error method

Supervised Learning - Classification

index	$_{ m sl}$	sw	pl	pw	label
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
50	7.0	3.2	4.7	1.4	Versicolor
149	5.9	3.0	5.1	1.8	Virginica

input space,
$$X = numeric\ features$$

 $X = \mathbb{R}^4$
 $f: X \to Y$

Convolutional Neural Network

When your input is a Grey Scaled Image

input space, X = set of images $X = \mathbb{R}^{D}, where D = 2$ $f: X \to Y$

UNIVERSITY OF MALAYA

Supervised Learning - Classification

Regression: y = f(x) y = mx+c

Activation function: Convert to probabilities

Data Preparation

Data Splitting (Train/Test)

Model Training

Model Evaluation

Data	Outlook	Humidity	Windy	Label
Data1	Sunny	High	False	Cold
Data2	Overcast	Normal	True	Hot
Data3	Rainy	High	False	Hot
•••	•••	•••		•••
DataN	DataN Rainy		False	Cold

Data Preparation

Data Splitting (Train/Test)

Model Training

Model Evaluation

70% Training

30% Test

	Data	Outlook	Humidity	Windy	Label
	Data1	Sunny	High	False	Cold
Data2		Overcast	Normal	True	Hot
	Data3	Rainy	High	False	Hot
	•••	•••	•••		
	DataN	Rainy	Normal	False	Cold

Data Outlook Humidity Windy Label Prediction High Sunny False Cold Cold Data1 70% Data2 **Overcast** Normal True Hot Hot Training Data3 Rainy High False Hot Hot • • • • • • Rainy False DataN Normal Cold

Data	Outlook	Humidity	Windy	Label	Prediction
Data1	Sunny	High	False	Cold	Cold
Data2	Overcast	Normal	True	Hot	Hot
Data3	Rainy	High	False	Hot	Hot
•••	•••	•••		•••	
DataN	Rainy	Normal	False	Cold	Hot

Model Evaluation

A perfect model should predict all testing data correctly

→ Accuracy = 100% (the higher the better)

Hands-on Python Workshop

Course Materials

1. Please go to this link. We will go through the code here.

https://github.com/shiernee/2024 ACOMP WORKSHOP/blob/main/2024ACOMP AI Workshop.ipynb

2. Click "Open in Colab"

3. Save a copy in your drive.

- File
- Save a copy in Drive

Google Colab

1. Please go to this link. We will go through the code here.

https://github.com/shiernee/2024 ACOMP WORKSHOP/blob/main/2024ACOMP AI Workshop.ipynb

- 2. Click "Open in Colab"
- 3. Save a copy in your drive.
- File
- Save a copy in Drive
- You should see the name change to "Copy of Al_Workshop_Day1.ipynb"

Classification

- 1. To try with your datasets. Replace the datasets to your datasets for
 - X, y

```
from sklearn import svm

breast_data = datasets.load_breast_cancer()

X = breast_data.data
y = breast_data.target
```


Day 1 Conclude

- 1. Artificial Intelligence Overview
- 2. Classification Concept

https://docs.google.com/forms/d/e/1FAIpQLSejvj7aNFcmcpDjV

3. Hands-on Python Workshop JLtrCbaQ/viewform

Feedback

Link -

https://docs.google.com/forms/d/e/1FAIpQLSejvj7aNFcmcpDjV8v

Ik1uYKDgRybQoJHHSZIN3P_JLtrCbaQ/viewform

Additional Info

- K-fold cross validation https://machinelearningmastery.com/k-fold-cross-validation/
- Hyperparameter Tuning –
 https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/
- 3. AutoML Framework https://nbviewer.org/github/pycaret/pycaret/blob/master/tutorials/Binary%20Cla ssification%20Tutorial%20Level%20Beginner%20-%20%20CLF101.ipynb