Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Mathematics

Continuous Assessment Test ~ I Question Paper

Degree & Branch	n of Managhadessen in Signature design (all the contemporaries and extension of the contemporaries and the contemp				Semester	IV
Subject Code & Name					Regulation: 2021	
Academic Year	2022-2023	Batch	2021-2022	Date	17.04.2023	FN
Time: 90 Minutes	Answer All Questions			Maximum: 50 Marks		

$Part - A (4 \times 2 = 8 Marks)$

	Transcription of the Control of the	KL	СО	PI
1	If X represents the outcome, when fair die is tossed, find the MGF of X and hence find $E(X)$	K2	COI	1.1.1
2.	A continuous random variable X has probability density function $f(x) = kxe^{\frac{-x}{2}}, x > 0$, find k .	K2	COI	1.1.1
3.	Let X be a random variable with $E(X) = 1$ and $E(X(X - 1)) = 4$, find $var(\frac{x}{2}) = 1$	K2	COI	American American
4	If X is normal random variable with mean zero and variance σ^2 . Find the pdf of $y = e^x$.	K2	CO1	2.1.3

 $Part - B (3 \times 6 = 18 Marks)$ CO PI KL K2 COI 1.1.1 Find the mean, variance and the mgf of Exponential distribution De 5 COI 1.1.1 K2 State and Prove Memory less property for Geometric distribution 6. Buses arrive at a specified bus stop at 15 minutes intervals starting at 2.1.3 COI **K**3 7. 7am. If a passenger arrives at the bus stop at a random time which is uniformly distributed between 7 and 7.30 am. Find the probability that he waits (a) less than 5 minutes (b) at least 12 minutes for a 25 bus.

	$Part - C (2 \times 12 = 24 Marks)$	KL	СО	PI
8.	 (a) Prove that the sum of two independent Poisson variates is Poisson but the difference is not. (b) If X and Y are independent Poisson random variables. Prove that the conditional distribution of X given X+Y is Binomial 	К3	COI	2.1.3
المنافقة المسودسة الماري والمورد	(Or)			

9.	(a) If the cumulative distribution function of a random variable X is $F(x) = \begin{cases} 1 - \frac{4}{x^2}, & x > 2 \\ 0, & x \le 2 \end{cases}$ find pdf and hence find $P(4 < X < 5)$. (b) In a distribution exactly normal, 7% of the items are under 35 and 89% are under 63. Find the mean and S.D of the distribution. From the normal table:	K3	COL	2.1.3
	Area = 0.19, Z = 0.5 Area = 0.29, Z = 0.81 Area = 0.39, Z = 1.23 Area = 0.41, Z = 1.35 Area = 0.42, Z = 1.4 Area = 0.43, Z = 1.48			
10.	If the density function of a continuous random variable X is given by $f(x) = \begin{cases} ax & 0 \le x < 1 \\ a & 1 \le x < 2 \\ 3a - ax & 2 \le x < 3 \\ 0 & otherwise \end{cases}$ (a) Find the value of a (b) Find the cumulative distribution function of X.	К3	COI	2.1.3
	(Or)		•	
11.	The joint probability function of two discrete random variables X and Y is given by $f(x, y) = c(2x + y)$ where x and y can assume all integers such that $0 \le x \le 2$ and $0 \le y \le 3$ (i) find the value of c $\forall A \mid$ (ii) find the marginal distributions of X and Y \Rightarrow (iii) find $P(X \ge 1, Y \le 2)$	K3	CO2	2.1.3

CO1: Identify standard distributions and apply them.

CO2: Solve problems in two dimension random variables and find the correlation between them 25/

CO2: Solve problems in two dimension random variables and find the correlation between them

$$\begin{array}{c}
\lambda \\
\lambda - t
\end{array}$$

$$\begin{array}{c}
\lambda \\
\lambda - t
\end{array}$$