Министерство на образованието и науката Съюз на математиците в България

Пролетно математическо състезание "проф. Дочо Дочев"

Русе, 30 март 2024 г.

Русе, 2024 г.

Условия, кратки решения и критерии за оценяване

Задача 9.1. Да се реши неравенството:

$$\frac{x^2 - |x - 1| - 4}{x - 4} \ge 2x - 1.$$

Отговор. $x \in (-\infty; 1] \cup (4; 7]$.

Pewehue. Да отбележим, че $x \neq 4$ и |x-1| = x-1 за x > 1, в противен случай |x-1| = 1-x. Случай 1. x > 1.

Разкриваме модула и привеждаме под общ знаменател. Получаваме:

$$\frac{x^2 - 8x + 7}{x - 4} \le 0.$$

Разлагаме числителя:

$$\frac{(x-7)(x-1)}{x-4} \le 0.$$

От тук получаваме решението $x \in (4, 7]$.

Случай 2. x < 1.

Разкриваме модула и привеждаме под общ знаменател. Получаваме:

$$\frac{x^2 - 10x + 9}{x - 4} \le 0.$$

Разлагаме числителя:

$$\frac{(x-9)(x-1)}{x-4} \le 0.$$

От тук получаваме решението $x \in (-\infty, 1]$.

Окончателното решение е обединението на двата интервала.

Оценяване. (6 точки) 1 т. за разкриване на модула и дефиниционно множество, по 2 т. за случай, 1 т. за отговор.

 ${f 3}$ адача ${f 9.2}$ Даден е триъгълникът ABC и M - среда на AB. Дадени са ъглите $\angle ABC=30^\circ$ и $\angle BCM = 105^{\circ}$. Да се докаже, че CM.AC = BM.BC.

Pешение. Построяваме AA_1 височината от т.A в $\triangle ABC$. Да отбележим че тя лежи на продължението на BC, защото този триъгълник е тъпоъгълен. Триъгълникът $\triangle AA_1B$ е правоъгълен с ъгъл 30° . Следователно $AA_1 = AM = A_1M = BM = x$. Последователно намираме директно:

 $\angle CMB = 45^{\circ}$ (от сбора на ъгли в $\triangle CMB$);

 $\angle A_1 M A = 60^{\circ} (\triangle A M A_1 \text{ е равностранен триъгълник});$

 $\angle A_1MC = 75^{\circ}$ (от сбора на ъгли върху правата AB при точка M);

 $\angle MCA_1 = 75^{\circ}$ (външен ъгъл за $\triangle MCB$).

Значи $\triangle MCA_1$ е равнобедрен. Тогава $CA_1 = x$ и $\triangle AA_1C$ е равнобедрен и правоъгълен, следователно $\angle ACA_1 = 45^{\circ}$ и следователно $\angle ACM = 30^{\circ}$.

Ще пресметнем лицето на $\triangle ACM$ по два различни начина.

 $S_{ACM} = \frac{AC.CM}{4}$, защото $\angle ACM = 30^\circ$, т.е. височината към AC е равна на MC/2. Да, но също така M е среда на AB. Значи $S_{ACM} = \frac{S_{ABC}}{2} = \frac{BC.AA_1}{4} = \frac{BC.BM}{4}$.

От двете формули за лице директно получаваме търсеното.

Оценяване. (6 точки) 1т. за построение на A_1 . 1т. за $AA_1 = AM = A_1M = BM$. 2т. за $\angle ACM = 30$. По 1т. за всяка от двете формули за лице на $\triangle ACM$.

Задача 9.3 Наричаме n прави в равнината mpunocoчнu, ако могат да бъдат разделени в три непразни множества, X, Y, Z. Всеки две прави от едно и също множество са успоредни помежду си, никои две прави от различни множества не са успоредни помежду си и никои три прави не се пресичат в една точка.

С S_n бележим максималният брой области, на които n трипосочни прави могат да разделят равнината. Като за област считаме свързана част от равнината, не задължително крайна, чиито граници са определени от трипосочните прави.

Кое е най-голямото n за което $S_n < 128$?

Решение. Ще изведем обща формула за броят на областите. Нека трите множества имат брой на елементите съответно $|X|=x, \ |Y|=y$ и |Z|=z. Първите две разделят равнината на общо (x+1)(y+1) области. Всяка права от третото множество се пресича от останалите в x+y точки и се разделя на x+y+1 части. Всяка от тях разделя една от получените вече области на две. Така получаваме обща формула:

$$S_{x,y,z} = (x+1)(y+1) + z(x+y+1) = x+y+z+xy+xz+yz+1.$$

Отбелязваме, че n=x+y+z. Освен това, имаме че $3(xy+yz+zx)\leq (x+y+z)^2=n^2$ (еквивалентно на $(x-y)^2+(y-z)^2+(z-x)^2\geq 0$). Значи $S_{x,y,z}\leq n^2/3+n+1$, което е по-малко от 128 за n=18 (всъщност, $S_{6,6,6}=127$, т.е. $S_{18}=127$). Също, $S_{6,6,7}=140$, значи $S_n>128$ за $n\geq 19$. Следователно отговорът е 18.

Оценяване. (7 точки) 3т. за извеждане на формулата за броят области. 3т. за ограничението отгоре с функция на n. 1т за довършване.

Задача 9.4. За нечетно естествено число n > 1 дефинираме множеството от различните остатъци на степени на двойката при деление на n:

$$S_n = \{ a \mid a < n, \exists k \in \mathbb{N} : 2^k \equiv a \pmod{n} \}.$$

Съществуват ли различни нечетни числа m и r такива, че $S_m = S_r$?

Решение. Не! Съществува естествено число s, такова че $2^s\equiv 1\pmod n$ (например $s=\varphi(n)$ от теоремата на Ойлер или понеже редицата от степените на 2 по модул n е периодична). Имаме $2^{s-1}\equiv \frac{n+1}{2}\pmod n$ и значи $x=\frac{n+1}{2}\in S_n$, но 2x=n+1>n не е в S_n . Също, ако $t\leq \frac{n-1}{2}$ е от S_n , то 2t< n също е. Следователно най-малкото естествено число t, такова че $t\in S_n$ и $2t\not\in S_n$, е $\frac{n+1}{2}$. Понеже това число е различно за различни n, получаваме исканото.

Оценяване. (7 точки) 3 т. за обосновка, че $x \in S_n, 2x \notin S_n$, е вярно за $x = \frac{n+1}{2}$; 3 т. за обосновка, че $x \leq \frac{n-1}{2}$ не изпълняват това свойство; 1 т. за довършване.