Linear models Modeling... linearly!

Samuel Robinson, Ph.D.

Sep. 22, 2023

Part 1: How do they work?

Outline

What are linear models? How do I fit them?

Outline

- What are linear models? How do I fit them?
- Making sure the model is working properly

Outline

- What are linear models? How do I fit them?
- Making sure the model is working properly
- Plotting and interpreting model results

Motivation

- I measured 2 things and I want to know if they're related to each other
- I have groups of data, and I want to know whether the means are different

Linear models go by many different names. All these models are all doing exactly the same thing:

Linear regression

- Linear regression
- Least-squares regression

- Linear regression
- Least-squares regression
- Simple linear model (SLM)

- Linear regression
- Least-squares regression
- Simple linear model (SLM)
- Multiple linear model/regression

- Linear regression
- Least-squares regression
- Simple linear model (SLM)
- Multiple linear model/regression
- Analysis of Variance (ANOVA)

- Linear regression
- Least-squares regression
- Simple linear model (SLM)
- Multiple linear model/regression
- Analysis of Variance (ANOVA)
- Analysis of Covariance (ANCOVA)

- Linear regression
- Least-squares regression
- Simple linear model (SLM)
- Multiple linear model/regression
- Analysis of Variance (ANOVA)
- Analysis of Covariance (ANCOVA)

Linear models go by many different names. All these models are all doing exactly the same thing:

- Linear regression
- Least-squares regression
- Simple linear model (SLM)
- Multiple linear model/regression
- Analysis of Variance (ANOVA)
- Analysis of Covariance (ANCOVA)

I use a set of terminology that I find very helpful, from Berliner (1996). I'll be using it here, as well as for describing more complex models.

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \dots + b_i \mathbf{x}_i$$
$$\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$$

All linear models take the form:

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \dots + b_i \mathbf{x}_i$$
$$\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$$

• *y* is the thing you're interested in predicting

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \dots + b_i \mathbf{x}_i$$
$$\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$$

- *y* is the thing you're interested in predicting
- \hat{y} is the *predicted value* of y

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \dots + b_i \mathbf{x}_i$$
$$\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$$

- *y* is the thing you're interested in predicting
- \hat{y} is the *predicted value* of y
- $x_1...x_i$ are predictors of y

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \dots + b_i \mathbf{x}_i$$
$$\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$$

- *y* is the thing you're interested in predicting
- \hat{y} is the *predicted value* of y
- $x_1...x_i$ are predictors of y
- $b_1...b_i$ are coefficients for each predictor x_i

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \dots + b_i \mathbf{x}_i$$
$$\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$$

- *y* is the thing you're interested in predicting
- \hat{y} is the *predicted value* of y
- $x_1...x_i$ are predictors of y
- $b_1...b_i$ are coefficients for each predictor x_i
- b_0 is the *intercept*, a coefficient that doesn't depend on predictors

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \dots + b_i \mathbf{x}_i$$
$$\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$$

- *y* is the thing you're interested in predicting
- \hat{y} is the *predicted value* of y
- $x_1...x_i$ are predictors of y
- $b_1...b_i$ are coefficients for each predictor x_i
- b_0 is the *intercept*, a coefficient that doesn't depend on predictors
- $y \sim Normal(\hat{y}, \sigma)$ means:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 ... + b_i x_i$$

 $y \sim Normal(\hat{y}, \sigma)$

- y is the thing you're interested in predicting
- \hat{y} is the *predicted value* of y
- $x_1...x_i$ are predictors of y
- $b_1...b_i$ are coefficients for each predictor x_i
- b_0 is the *intercept*, a coefficient that doesn't depend on predictors
- $y \sim Normal(\hat{y}, \sigma)$ means:
 - "y follows a Normal distribution with mean \hat{y} and SD σ "

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 ... + b_i x_i$$

 $y \sim Normal(\hat{y}, \sigma)$

- y is the thing you're interested in predicting
- \hat{y} is the *predicted value* of y
- $x_1...x_i$ are predictors of y
- $b_1...b_i$ are coefficients for each predictor x_i
- b_0 is the *intercept*, a coefficient that doesn't depend on predictors
- $y \sim Normal(\hat{y}, \sigma)$ means:
 - "y follows a Normal distribution with mean \hat{y} and SD σ "

All linear models take the form:

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \dots + b_i \mathbf{x}_i$$
$$\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$$

- y is the thing you're interested in predicting
- \hat{y} is the *predicted value* of y
- $x_1...x_i$ are predictors of y
- $b_1...b_i$ are coefficients for each predictor x_i
- b₀ is the intercept, a coefficient that doesn't depend on predictors
- $y \sim Normal(\hat{y}, \sigma)$ means:
 - "y follows a Normal distribution with mean \hat{y} and SD σ "

This may look terrifying, but let's use a simple example:

mpg is the thing you're interested in predicting

$$m\hat{p}g = b_0 + b_1 disp$$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg

$$m\hat{p}g = b_0 + b_1 disp$$

- mpg is the thing you're interested in predicting
- *mpg* is the *predicted value* of *mpg*
- disp is the predictor of mpg

$m\hat{p}g = b_0 + b_1 disp$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- disp is the predictor of mpg
- b₀ is the *intercept*, b₁ is the *coefficient* (slope) for *disp*

$$m\hat{p}g = b_0 + b_1 disp$$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- disp is the predictor of mpg
- b₀ is the intercept, b₁ is the coefficient (slope) for disp
- $mpg \sim Normal(m\hat{p}g, \sigma)$ means:

$$m\hat{p}g = b_0 + b_1 disp$$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- disp is the predictor of mpg
- b₀ is the intercept, b₁ is the coefficient (slope) for disp
- $mpg \sim Normal(mpg, \sigma)$ means:
 - "mpg follows a Normal distribution with mean \red{mpg} and SD σ "

 $m\hat{p}g = b_0 + b_1 disp$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- disp is the predictor of mpg
- b₀ is the *intercept*, b₁ is the coefficient (slope) for disp
- $mpg \sim Normal(mpg, \sigma)$ means:
 - "mpg follows a Normal distribution with mean \red{mpg} and SD σ "
- σ isn't displayed on the figure.
 Where is it?

 $m\hat{p}g = b_0 + b_1 disp$

 σ isn't displayed on the figure. Where is it?

• σ is the "leftover" or "residual" variance

 σ isn't displayed on the figure. Where is it?

- σ is the "leftover" or "residual" variance
- i.e. variation between samples that the model couldn't explain

 σ isn't displayed on the figure. Where is it?

- *σ* is the "leftover" or "residual" variance
- i.e. variation between samples that the model couldn't explain
- Since $y \sim Normal(\hat{y}, \sigma)$, this means that points are normally distributed around the *entire line* of \hat{y}

 σ isn't displayed on the figure. Where is it?

- *σ* is the "leftover" or "residual" variance
- i.e. variation between samples that the model couldn't explain
- Since $y \sim Normal(\hat{y}, \sigma)$, this means that points are normally distributed around the *entire line* of \hat{y}
- If you took a vertical slice at each part of the x-axis, the distribution would be Normal

How do I get R to fit this model?

1m is one of the main functions used for linear modeling:

```
#Formula= y \sim x, data = Name of the dataframe containing mpg & disp
mod1 <- lm(mpg ~ disp, data = mtcars); summary(mod1)</pre>
##
## Call:
## lm(formula = mpg ~ disp, data = mtcars)
## Residuals:
      Min
               10 Median
                                     Max
## -4.8922 -2.2022 -0.9631 1.6272 7.2305
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.599855 1.229720 24.070 < 2e-16 ***
## disp
              -0.041215 0.004712 -8.747 9.38e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.251 on 30 degrees of freedom
## Multiple R-squared: 0.7183, Adjusted R-squared: 0.709
## F-statistic: 76.51 on 1 and 30 DF. p-value: 9.38e-10
```

For a detailed breakdown of 1m's output, click here

Simulate data

Now that we know how linear models work, we can simulate our own data:

```
#Parameters:
b0 <- 1 #Intercept
b1 <- 2 #Slope
sigma <- 3 #SD
#Make up some data:
x <- 0:30 #Predictor values
#Predicted y values
pred v \leftarrow b0 + b1*x
#Add "noise" around pred y
actual_y <- rnorm(n = length(pred_y),</pre>
                   mean = pred_y,
                   sd= sigma)
```


Fit a model from simulated data

Multiple R-squared: 0.9748, Adjusted R-squared: 0.9739
F-statistic: 1122 on 1 and 29 DF, p-value: < 2.2e-16</pre>

How does R do at finding the coefficients? Remember: $b_0 = 1, b_1 = 2, \sigma = 3$

```
fakeDat <- data.frame(x = x, y = actual_y, pred = pred_y) #Simulated data in a dataframe
mod1sim <- lm(v ~ x, data = fakeDat); summary(mod1sim) #Fit model</pre>
##
## Call:
## lm(formula = v ~ x, data = fakeDat)
## Residuals:
      Min
              10 Median
                                   Max
## -5.7568 -1.7623 -0.2176 1.9419 5.3572
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.02974
                      1.00445
                                 2.021
                                       0.0526
              1 92670
                      0.05751 33.499
                                       <20-16 ***
## v
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.864 on 29 degrees of freedom
```

Fit a model from simulated data

How does R do at finding the coefficients? Remember: $b_0 = 1, b_1 = 2, \sigma = 3$

```
fakeDat <- data.frame(x = x, y = actual_y, pred = pred_y) #Simulated data in a dataframe
mod1sim <- lm(y ~ x, data = fakeDat); summary(mod1sim) #Fit model</pre>
##
## Call:
## lm(formula = v ~ x, data = fakeDat)
## Residuals:
      Min
              10 Median
## -5.7568 -1.7623 -0.2176 1.9419 5.3572
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.02974 1.00445
                                 2.021 0.0526
              1 92670
                      0 05751 33 499 <2e-16 ***
## v
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.864 on 29 degrees of freedom
## Multiple R-squared: 0.9748, Adjusted R-squared: 0.9739
## F-statistic: 1122 on 1 and 29 DF, p-value: < 2.2e-16
```

Modeling philosophy: all models are approximating a generative process.

It is up to us to think about what this process might be like.

This uses exactly the same math!

• *mpg* is the thing you're interested in predicting

$$m\hat{p}g = b_0 + b_1am$$

This uses exactly the same math!

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg

$m\hat{p}g = b_0 + b_1am$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- am is the predictor of mpg

$$m\hat{p}g = b_0 + b_1 am$$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- am is the predictor of mpg
 - set of 0s and 1s, not continuous

$$m\hat{p}g = b_0 + b_1am$$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- am is the predictor of mpg
 - set of 0s and 1s, not continuous
- b₀ is the *intercept*, b₁ is the coefficient for am

$$m\hat{p}g = b_0 + b_1 am$$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- am is the predictor of mpg
 - set of 0s and 1s, not continuous
- b₀ is the *intercept*, b₁ is the coefficient for am
- Where is σ ?

$$m\hat{p}g = b_0 + b_1 am$$

How do I get R to fit this model?

Syntax is exactly the same for this model

```
#Formula structure: y ~ x
mod2 <- lm(mpg ~ am, #mpg depends on am
            data = mtcars) #Name of the dataframe containing mpg & am
summary(mod2)
## Call:
## lm(formula = mpg ~ am. data = mtcars)
## Residuals:
     Min 10 Median
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147 1.125 15.247 1.13e-15 ***
               7.245
                      1.764 4.106 0.000285 ***
## am
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF. p-value: 0.000285
```

• Simulate your own data with 2 discrete levels. My suggestion:

- Simulate your own data with 2 discrete levels. My suggestion:
 - StealBorrow my code, and change the predictor from continuous to discrete

- Simulate your own data with 2 discrete levels. My suggestion:
 - StealBorrow my code, and change the predictor from continuous to discrete
 - Useful command: rep (replicate)

- Simulate your own data with 2 discrete levels. My suggestion:
 - StealBorrow my code, and change the predictor from continuous to discrete
 - Useful command: rep (replicate)
 - e.g. rep(x=c(0,1),each=10)

- Simulate your own data with 2 discrete levels. My suggestion:
 - StealBorrow my code, and change the predictor from continuous to discrete
 - Useful command: rep (replicate)
 - e.g. rep(x=c(0,1),each=10)
 - Useful command: rnorm (generate normally-distributed data)

- Simulate your own data with 2 discrete levels. My suggestion:
 - StealBorrow my code, and change the predictor from continuous to discrete
 - Useful command: rep (replicate)
 - e.g. rep(x=c(0,1),each=10)
 - Useful command: rnorm (generate normally-distributed data)
 - e.g. rnorm(n=100,mean=0,sd=1)

- Simulate your own data with 2 discrete levels. My suggestion:
 - StealBorrow my code, and change the predictor from continuous to discrete
 - Useful command: rep (replicate)
 - e.g. rep(x=c(0,1),each=10)
 - Useful command: rnorm (generate normally-distributed data)
 - e.g. rnorm(n=100,mean=0,sd=1)
- Use 1m to fit a model to the data you just simulated

- Simulate your own data with 2 discrete levels. My suggestion:
 - StealBorrow my code, and change the predictor from continuous to discrete
 - Useful command: rep (replicate)
 - e.g. rep(x=c(0,1),each=10)
 - Useful command: rnorm (generate normally-distributed data)
 - e.g. rnorm(n=100,mean=0,sd=1)
- Use 1m to fit a model to the data you just simulated
 - How does R do at guessing your coefficients?

Part 2: More bells and whistles

Motivation

- I have 2+ groups of data, and I want to know whether the means are different
- I have 2+ groups of bivariate data, and I want to know whether the relationships differ between groups

Categorial data, 3 categories

The more factor levels, the more coefficients:

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- gear is the predictor of mpg
- set of 0s and 1s
- gears₄ = "is this data point from a 4-gear car?"
- $b_0 = intercept$
- $[b_1, b_2]$ = are coefficients for gears

How do I get R to fit this model?

```
#Formula structure: u ~ x
mod1 <- lm(mpg ~ factor(gear), #mpg depends on gears
            data = mtcars) #Name of the dataframe containing mpg & gears
summary(mod1)
##
## Call:
## lm(formula = mpg ~ factor(gear), data = mtcars)
## Residuals:
      Min
             10 Median 30
## -6.7333 -3.2333 -0.9067 2.8483 9.3667
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.107 1.216 13.250 7.87e-14 ***
## factor(gear)4 8.427 1.823 4.621 7.26e-05 ***
## factor(gear)5 5.273 2.431 2.169 0.0384 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.708 on 29 degrees of freedom
## Multiple R-squared: 0.4292, Adjusted R-squared: 0.3898
## F-statistic: 10.9 on 2 and 29 DF, p-value: 0.0002948
```

Dummy variables

mod1Matrix <- model.matrix(mod1) #Get model matrix (columns used to predict mpg)
head(mod1Matrix,28) #Show first 28 rows of model matrix</pre>

##		(Intercept)	factor(gear)4	factor(gear)5
##	Mazda RX4	1	1	0
##	Mazda RX4 Wag	1	1	0
##	Datsun 710	1	1	0
##	Hornet 4 Drive	1	0	0
##	Hornet Sportabout	1	0	0
##	Valiant	1	0	0
##	Duster 360	1	0	0
##	Merc 240D	1	1	0
##	Merc 230	1	1	0
##	Merc 280	1	1	0
##	Merc 280C	1	1	0
##	Merc 450SE	1	0	0
##	Merc 450SL	1	0	0
##	Merc 450SLC	1	0	0
##	Cadillac Fleetwood	1	0	0
	Lincoln Continental	1	0	0
	Chrysler Imperial	1	0	0
##	Fiat 128	1	1	0
##	Honda Civic	1	1	0
##	Toyota Corolla	1	1	0
##	Toyota Corona	1	0	0
##	Dodge Challenger	1	0	0
##	AMC Javelin	1	0	0
##		1	0	0
	Pontiac Firebird	1	0	0
	Fiat X1-9	1	1	0
##	Porsche 914-2	1	0	1
##	Lotus Europa	1	0	1

What about if 2 things are both important?

- Suppose that both disp and gears are important for predicting mpg?
- This is very similar to the last example, except that now we've added disp
- gears now changes the intercept, while disp changes the slope of all the lines
- Does it look like gear is very important?

How do I get R to fit this model?

```
#mpg depends on disp and gears
mod2 <- lm(mpg ~ disp+factor(gear), data = mtcars)</pre>
summary(mod2)
##
## Call:
## lm(formula = mpg ~ disp + factor(gear), data = mtcars)
##
## Residuals:
      Min
              10 Median
## -4.9155 -2.1892 -0.9054 1.5790 7.2498
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.411183
                          2.627966 11.192 7.58e-12 ***
## disp
               -0.040774
                          0.007601 -5.364 1.03e-05 ***
## factor(gear)4 0.138017
                          2.021332 0.068
                                             0.946
## factor(gear)5 0.224712 1.976090 0.114 0.910
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.365 on 28 degrees of freedom
## Multiple R-squared: 0.7185, Adjusted R-squared: 0.6883
## F-statistic: 23.82 on 3 and 28 DF, p-value: 7.31e-08
```

Dummy variables

```
mod2Matrix <- model.matrix(mod2) #Get model matrix (columns used to predict mpg)
colnames(mod2Matrix) <- gsub('factor\\(gear\\)', 'gear', colnames(mod2Matrix)) #Shorten colnames
head(mod2Matrix,28) #Show first 28 rows of model matrix</pre>
```

##		(Intercept)	disp	gear4	gear5
##	Mazda RX4	1	160.0	1	0
##	Mazda RX4 Wag	1	160.0	1	0
##	Datsun 710	1	108.0	1	0
##	Hornet 4 Drive	1	258.0	0	0
##	Hornet Sportabout	1	360.0	0	0
##	Valiant	1	225.0	0	0
##	Duster 360	1	360.0	0	0
##	Merc 240D	1	146.7	1	0
##	Merc 230	1	140.8	1	0
##	Merc 280	1	167.6	1	0
##	Merc 280C	1	167.6	1	0
##	Merc 450SE	1	275.8	0	0
##	Merc 450SL	1	275.8	0	0
##	Merc 450SLC	1	275.8	0	0
##	Cadillac Fleetwood	1	472.0	0	0
##	Lincoln Continental	1	460.0	0	0
##	Chrysler Imperial	1	440.0	0	0
##	Fiat 128	1	78.7	1	0
##	Honda Civic	1	75.7	1	0
##	Toyota Corolla	1	71.1	1	0
##	Toyota Corona	1	120.1	0	0
##	Dodge Challenger	1	318.0	0	0
##	AMC Javelin	1	304.0	0	0
##	Camaro Z28	1	350.0	0	0
##	Pontiac Firebird	1	400.0	0	0
##	Fiat X1-9	1	79.0	1	0
##	Porsche 914-2	1	120.3	0	1

Interlude: problems with plotting raw data

- Say that I've fit the following model:
 mpg ~ disp + factor(gear)
- All of the plots below are using raw data, but which one is "telling the truth"?
- Answer: \mathbf{c} . a and b are hiding the effect of the other variable

Rule for plotting model results:

If the model uses N variables, you should show all N effects simultaneously

Other names for partial effects:

Incorrect example, using raw data:

```
#Fit model with 5 variables (all important)
simMod <- lm(y~X1+X2+X3+X4+X5,data=pred)
#Incorrect way, using raw data
plot(y~X5,data=pred,pch=19,cex.lab=3)</pre>
```


Rule for plotting model results:

- If the model uses N variables, you should show all N effects simultaneously
- ② If this is impractical, you should use a partial effects plot

Other names for partial effects:

Incorrect example, using raw data:

```
#Fit model with 5 variables (all important)
simMod <- lm(y~X1+X2+X3+X4+X5,data=pred)
#Incorrect way, using raw data
plot(y~X5,data=pred,pch=19,cex.lab=3)</pre>
```


Rule for plotting model results:

- If the model uses N variables, you should show all N effects simultaneously
- ② If this is impractical, you should use a partial effects plot

Other names for partial effects:

 counterfactual plot, predictor effect plot, leverage plot Incorrect example, using raw data:

```
#Fit model with 5 variables (all important)
simMod <- lm(y-X1+X2+X3+X4+X5,data=pred)
#Incorrect way, using raw data
plot(y-X5,data=pred,pch=19,cex.lab=3)</pre>
```


Rule for plotting model results:

- If the model uses N variables, you should show all N effects simultaneously
- ② If this is impractical, you should use a partial effects plot

Other names for partial effects:

- counterfactual plot, predictor effect plot, leverage plot
- Try using effects or ggeffects.
 Requires the effects and ggeffect packages

Incorrect example, using raw data:

```
#Fit model with 5 variables (all important)
simMod <- lm(y~X1+X2+X3+X4+X5,data=pred)
#Incorrect way, using raw data
plot(y~X5,data=pred,pch=19,cex.lab=3)</pre>
```


Partial effects plots - using effects

library(effects) #Load effects package
simModEff <- predictorEffects(simMod,partial.residuals=TRUE) #Calculate partial effects
#Plot partial effects
plot(simModEff,lines=list(col='red'), partial.residuals=list(pch=19,col='black',cex=0.25))</pre>

X4 predictor effect plot

X5 predictor effect plot

Partial effects nlots - using ganredict

```
library(ggeffects) #Load ggeffects package
simModEff2 <- ggeffect(simMod,terms=c('X5')) #Calculate partial effects for X5
plot(simModEff2) #Plot effect of X5
```


Interactions

What if the slopes and intercepts differ between groups?

Interactions


```
egin{aligned} 	extbf{mpg} &= b_0 + b_1 	ext{disp} \ &+ b_2 	ext{gears}_4 + b_3 	ext{gears}_5 \ &+ b_4 	ext{(disp} 	imes 	ext{gears}_4) \ &+ b_5 	ext{(disp} 	imes 	ext{gears}_5) \end{aligned}
egin{aligned} 	ext{mpg} &\sim 	ext{Normal(mpg, $\sigma$)} \end{aligned}
```

- Interactions occur when predictors are multiplied
- In this case, disp is multiplied by gears₄ and gears₅
- gears now changes the intercept and the slope of the relationship between mpg and disp

How do I get R to fit this model?

```
#mpq depends on disp interacted (*) with gears
mod2 <- lm(mpg ~ disp*factor(gear), data = mtcars)</pre>
summary(mod2)
##
## Call:
## lm(formula = mpg ~ disp * factor(gear), data = mtcars)
##
## Residuals:
      Min
              10 Median
                                    Max
## -4.5986 -1.5990 -0.0143 1.6329 4.9926
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.515566
                             2.462431 9.956 2.32e-10 ***
## disp
               -0.025770 0.007265 -3.547 0.001505 **
## factor(gear)4 15.051963
                             3.558043 4.230 0.000256 ***
## factor(gear)5
                7 145380
                             3 535913 2 021 0 053711
## disp:factor(gear)4 -0.096442
                             0.021261 -4.536 0.000114 ***
## disp:factor(gear)5 -0.025005 0.013320 -1.877 0.071742 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.579 on 26 degrees of freedom
## Multiple R-squared: 0.8465, Adjusted R-squared: 0.817
## F-statistic: 28.67 on 5 and 26 DF, p-value: 8.452e-10
```

Beware of fitting too many interactions, or else the *Bilbo effect* occurs!

Dummy variables

```
mod2Matrix <- model.matrix(mod2) #Get model matrix (columns used to predict mpg)
colnames(mod2Matrix) <- gsub('factor\\(gear\\)', 'gear', colnames(mod2Matrix)) #Shorten colnames
head(mod2Matrix,28) #Show first 28 rows of model matrix</pre>
```

##		(Intercept)	disp	gear4	gear5	disp:gear4	disp:gear5
##	Mazda RX4	1	160.0	1	0	160.0	0.0
##	Mazda RX4 Wag	1	160.0	1	0	160.0	0.0
##	Datsun 710	1	108.0	1	0	108.0	0.0
##	Hornet 4 Drive	1	258.0	0	0	0.0	0.0
##	Hornet Sportabout	1	360.0	0	0	0.0	0.0
##	Valiant	1	225.0	0	0	0.0	0.0
##	Duster 360	1	360.0	0	0	0.0	0.0
##	Merc 240D	1	146.7	1	0	146.7	0.0
##	Merc 230	1	140.8	1	0	140.8	0.0
##	Merc 280	1	167.6	1	0	167.6	0.0
##	1102 0 2000	1	167.6	1	0	167.6	0.0
##	Merc 450SE	1	275.8	0	0	0.0	0.0
##	1102 0 10000	1	275.8	0	0	0.0	0.0
##	Merc 450SLC	1	275.8	0	0	0.0	0.0
##	Cadillac Fleetwood	1	472.0	0	0	0.0	0.0
	Lincoln Continental	_	460.0	0	0	0.0	0.0
	Chrysler Imperial	1	440.0	0	0	0.0	0.0
	Fiat 128	1	78.7	1	0	78.7	0.0
##	Honda Civic	1	75.7	1	0	75.7	0.0
##	Toyota Corolla	1	71.1	1	0	71.1	0.0
	Toyota Corona	_	120.1	0	0	0.0	0.0
##	Dodge Challenger		318.0	0	0	0.0	0.0
##	AMC Javelin	1	304.0	0	0	0.0	0.0
##	Camaro Z28	1	350.0	0	0	0.0	0.0
##	Pontiac Firebird	1	400.0	0	0	0.0	0.0
##	Fiat X1-9	1	79.0	1	0	79.0	0.0
##	Porsche 914-2	1	120.3	0	1	0.0	120.3

• Since you're all bat folks, here's some bat data!

- Since you're all bat folks, here's some bat data!
 - batDat.csv

- Since you're all bat folks, here's some bat data!
 - batDat.csv
- Data: 100 bat weights from 2 cities, recorded along with sex and age

- Since you're all bat folks, here's some bat data!
 - batDat.csv
- Data: 100 bat weights from 2 cities, recorded along with sex and age
- How do these variables affect bat weight?

- Since you're all bat folks, here's some bat data!
 - batDat.csv
- Data: 100 bat weights from 2 cities, recorded along with sex and age
- How do these variables affect bat weight?
 - Think about how these variables might be related to weight using your brain

- Since you're all bat folks, here's some bat data!
 - batDat.csv
- Data: 100 bat weights from 2 cities, recorded along with sex and age
- How do these variables affect bat weight?
 - Think about how these variables might be related to weight using your brain
 - Fit a model using 1m

- Since you're all bat folks, here's some bat data!
 - batDat.csv
- Data: 100 bat weights from 2 cities, recorded along with sex and age
- How do these variables affect bat weight?
 - Think about how these variables might be related to weight using your brain
 - Fit a model using 1m
 - Make some plots, using effects or ggeffects

Part 3: Models behaving badly

Are my model results reliable?

• Residual checks

Are my model results reliable?

- Residual checks
- Transformations

Are my model results reliable?

- Residual checks
- Transformations
- Collinearity

Are my model results reliable?

- Residual checks
- Transformations
- Collinearity
- How much stuff should I put into my model?

Assumptions of linear regression

There are 3 main assumptions to this model:

 The relationship between disp and mpg is linear

This is pretty easy to see if you only have 1 variable, but. . .

$$m\hat{p}g = b_0 + b_1 disp$$

Assumptions of linear regression

There are 3 main assumptions to this model:

- The relationship between disp and mpg is linear
- 2 mpg (the data) is Normally distributed around mpg (the line)

This is pretty easy to see if you only have 1 variable, but. . .

$$m\hat{p}g = b_0 + b_1 disp$$

Assumptions of linear regression

There are 3 main assumptions to this model:

- The relationship between disp and mpg is linear
- 2 mpg (the data) is Normally distributed around mpg (the line)
- $\ensuremath{\mathfrak{S}}\ \sigma$ is the same everywhere This is pretty easy to see if you only have 1 variable, but. . .

 $m\hat{p}g = b_0 + b_1 disp$

What if I have many variables?

Solution: residual checks

Some common ways of checking the assumptions: residual plots

```
mod1 <- lm(mpg~disp*factor(gear),data=mtcars) #Fits model
par(mfrow=c(1,2),mar=c(3,3,1,1)+1) #Splits plot into 2
plot(mod1, which=c(1,2)) #1st and 2nd residual plots</pre>
```


Solution: residual checks

Some common ways of checking the assumptions: residual plots

```
mod1 <- lm(mpg~disp*factor(gear),data=mtcars) #Fits model
par(mfrow=c(1,2),mar=c(3,3,1,1)+1) #Splits plot into 2
plot(mod1, which=c(1,2)) #1st and 2nd residual plots</pre>
```


Problem 1: Non-linear relationship

lm(y1~x,data=d1)

y1 clearly follows a hump-shaped

Solution: transform predictors

 $lm(y1\sim poly(x,2), data=d1)$

log and square-root transformations are

Problem 2a: Non-normal response

lm(y2~x,data=d1)

y2 is count data (integers ≥ 0). Very

Solution: transform data to meet assumptions

Problem 2b: Non-normal response

Solution: use a Generalized Linear Model (GLM)

Problem: variables are on different scales

Problem: variables are on different scales

Solution: scale data/predictors before fitting


```
#Subtracts mean, divides by SD
d1$s.y4 <- scale(y4)
d1$s.x3 <- scale(x3)
lm(s.y4~s.x3.data=d1) #Refit
```


• Residuals are the same as before

Solution: scale data/predictors before fitting


```
#Subtracts mean, divides by SD
d1$s.y4 <- scale(y4)
d1$s.x3 <- scale(x3)
lm(s.y4~s.x3,data=d1) #Refit
```


- Residuals are the same as before
- Coefficients are now related to *scaled* data and predictor

But wait... there's more (assumptions)!

One more assumption:

4 If you have 2+ predictors in your model, the predictors are not related to each other

lm(y0~x+x2,data=d1)

But wait... there's more (assumptions)!

One more assumption:

- 4 If you have 2+ predictors in your model, the predictors are not related to each other
- Say we have 2 predictors, x and x2:

lm(y0~x+x2,data=d1)

But wait... there's more (assumptions)!

One more assumption:

- 4 If you have 2+ predictors in your model, the predictors are not related to each other
- Say we have 2 predictors, x and x2:

lm(y0~x+x2,data=d1)

 Model fits, and residuals look OK, but there's trouble ahead!

Uh oh! Collinearity!

```
#Function to print correlation (r) value
corText <- function(x,y){
  text(0.5,0.5,round(cor(x,y),3))
}

#Pairplot of y0, x, and x2
pairs(d1[,c('y0','x','x2')],lower.panel=corText)</pre>
```


 x and x2 mean basically the same thing!

```
library(car)
#VIF scores:
#1 = no problem
# 1-5 = some problems
# 5+ = big problems!
vif(m2)
## 11.31812 11.31812
```

naire() is useful for looking at relations

Uh oh! Collinearity!

```
#Function to print correlation (r) value
corText <- function(x,y){
  text(0.5,0.5,round(cor(x,y),3))
}

#Pairplot of y0, x, and x2
pairs(d1[,c('y0','x','x2')],lower.panel=corText)</pre>
```


- x and x2 mean basically the same thing!
- Also revealed using variance-inflation factors (VIFs):

```
library(car)

#VIF scores:

# 1 = no problem

# 1-5 = some problems!

# 5+ = big problems!

vif(m2)

## x x2

## 11.31812 11.31812
```

nairs () is useful for looking at relations

Is collinearity really that bad?

#Correct model

 $m1 \leftarrow lm(y0~x,data=d1)$

	Estimate	Std. Error	Pr(> t)
(Intercept)	0.7851936	0.1943002	0.0001059
×	-0.1900346	0.0342596	0.0000002

$\#Incorrect\ model$

 $m2 \leftarrow lm(y0~x+x2,data=d1)$

	Estimate	Std. Error	Pr(> t)
(Intercept)	0.7860300	0.1955770	0.0001155
×	-0.1812556	0.1158464	0.1209288
×2	-0.0094931	0.1196074	0.9369028

• Increases SE of each term, so model may "miss" important terms

Is collinearity really that bad?

#Correct model

 $m1 \leftarrow lm(y0\sim x, data=d1)$

	Estimate	Std. Error	Pr(> t)
(Intercept)	0.7851936	0.1943002	0.0001059
×	-0.1900346	0.0342596	0.0000002

$\#Incorrect\ model$

 $m2 \leftarrow lm(y0~x+x2,data=d1)$

	Estimate	Std. Error	Pr(> t)
(Intercept)	0.7860300	0.1955770	0.0001155
×	-0.1812556	0.1158464	0.1209288
×2	-0.0094931	0.1196074	0.9369028

- Increases SE of each term, so model may "miss" important terms
- Gets worse with increasing correlation, or if many terms are correlated!

1 I care about predicting things

- 1 I care about predicting things
- Use dimensional reduction (e.g. PCA) and re-run model

- 1 I care about predicting things
- Use dimensional reduction (e.g. PCA) and re-run model
- 2 I care about what's causing things

- 1 I care about predicting things
- Use dimensional reduction (e.g. PCA) and re-run model
- 2 I care about what's causing things
- Design experiment to separate cause and effect

- 1 I care about predicting things
- Use dimensional reduction (e.g. PCA) and re-run model
- 2 I care about what's causing things
 - Design experiment to separate cause and effect
- Think about what is causing what.
 Graphical models are helpful for this

- 1 I care about predicting things
- Use dimensional reduction (e.g. PCA) and re-run model
- 2 I care about what's causing things
 - Design experiment to separate cause and effect
- Think about what is causing what.
 Graphical models are helpful for this
 - Not all variables have to be included!

- 1 I care about predicting things
- Use dimensional reduction (e.g. PCA) and re-run model
- 2 I care about what's causing things
 - Design experiment to separate cause and effect
- Think about what is causing what.
 Graphical models are helpful for this
 - Not all variables have to be included!

 Simple graphical model, where the effect of A on D is mediated by B.

$$lm(D \sim B + C)$$

- 1 I care about predicting things
- Use dimensional reduction (e.g. PCA)
 and re-run model
- 2 I care about what's causing things
 - Design experiment to separate cause and effect
- Think about what is causing what.
 Graphical models are helpful for this
 - Not all variables have to be included!

- Simple graphical model, where the effect of A on D is mediated by B.
- "Correct" 1m model of D:

$$lm(D \sim B + C)$$

• Guess what... more bat data! This time there are 6 variables that were measured. We're interested in predicting bats (counts of bats per night).

- Guess what... more bat data! This time there are 6 variables that were measured.
 We're interested in predicting bats (counts of bats per night).
- Formulate a causal model that seems reasonable

- Guess what... more bat data! This time there are 6 variables that were measured.
 We're interested in predicting bats (counts of bats per night).
- Formulate a causal model that seems reasonable
 - Draw it out on paper/in PowerPoint using flow diagrams

- Guess what... more bat data! This time there are 6 variables that were measured. We're interested in predicting bats (counts of bats per night).
- Formulate a causal model that seems reasonable
 - Draw it out on paper/in PowerPoint using flow diagrams
- Fit an 1m model of bats from your causal model, check the assumptions, and update as necessary

Here's the answer

This is the true process that generated the data. Model for bats should look like:

lm(log(bats+0.1)~poly(temp,2)+light+bugs,data=dat)