Department of Electronic and Telecommunication Engineering University of Moratuwa

Sri Lanka

EN1060 SIGNALS AND SYSTEMS: TUTORIAL 01

September 19, 2016

1. A continuous time signal is given in Figure 1. Sketch and label the following signals.

(a)
$$x(t-2)$$
 (b) $x(t+1)$ (c) $x(-t+1)$ (d) $x(3t/2)$ (e) $x(t/3)$

Figure 1:

2. A discrete time signal is shown in Figure 2. Sketch and label each of the following signals.

(a)
$$x[n+1]$$
 (b) $x[2n]$ (c) $x[-n]$ (d) $x[-n+2]$ (e) $x[-2n+1]$

Figure 2:

- 3. Find the even and odd parts of the x(t) signal given in Figure 3.
- 4. Using the discrete time signals $x_1[n]$ and $x_2[n]$ shown in Figure 4, represent each of the following signals by a graph.

(a)
$$y[n] = x_1[n] + x_2[n]$$
 (b) $y[n] = 2x_1[n]$ (c) $y[n] = x_1[n]x_2[n]$

5. Show that

$$\int_{-a}^{a} x(t)dt = \begin{cases} 2\int_{0}^{a} x(t)dt, & \text{if } x(t) \text{ is even,} \\ 0, & \text{if } x(t) \text{ is odd.} \end{cases}$$

6. Show that the complex exponential signal $x(t) = e^{j\omega t}$ is periodic and that its fundamental period is $2\pi/\omega$.

1

Figure 3:

Figure 4:

- 7. Show that the complex exponential signal $x[n] = e^{j\omega n}$ is periodic only if $\omega/2\pi$ is a rational number.
- 8. Consider the sinusoidal signal $x(t) = \cos(15t)$.
 - (a) Find the value of sampling interval T such than x[n] is a periodic sequence.
 - (b) Find the fundamental period of x[n] if $T = 0.1\pi$ seconds.
- 9. Determine whether or not each of the following signals are periodic. If periodic, find the fundamental period.

(a)
$$x(t) = 2e^{j(t+\pi/4)}$$

(b)
$$x[n] = e^{j(\pi/4)n}$$

(c)
$$x(t) = \cos(t + \pi/4)$$

(d)
$$x(t) = \cos(t) + \sin(\sqrt{2}t)$$

(e)
$$x[n] = \cos^2(\pi n/8)$$

10. Determine whether the following signals are energy signals, power signals, or neither.

(a)
$$x(t) = e^{-at}u(t)$$
, $a > 0$ (b) $x(t) = A\cos(\omega t + \theta)$ (c) $x[n] = 3u[n]$ (d) $x[n] = 3e^{j3n}$