Базы данных Лекция №2

Модели данных. Реляционная модель данных

Понятие модели данных

Модель данных — это совокупность правил порождения структур данных в базе данных, операций над ними, а также ограничений целостности, определяющих допустимые связи и значения данных, последовательность их изменения [ГОСТ 20886-85].

Модель данных состоит из трёх частей:

1. Набор типов структур данных.

- Здесь можно провести аналогию с языками программирования, в которых тоже есть предопределённые типы структур данных, такие как скалярные данные, векторы, массивы, структуры (например, тип *struct* в языке Си) и т.д.
- **2. Набор операторов или правил вывода**, которые могут быть применены к любым правильным примерам типов данных, перечисленных в (1), чтобы находить, выводить или преобразовывать информацию, содержащуюся в любых частях этих структур в любых комбинациях.
- **3. Набор общих правил целостности**, которые прямо или косвенно определяют множество непротиворечивых состояний базы данных и/или множество изменений её состояния.

Модели данных

- Иерархическая модель данных (ИМД).
- Сетевая модель данных (СМД).
- Реляционная модель данных (РМД).
- Объектно-реляционная модель данных (ОРМД).

 Стандарт SQL-3 (SQL-2003). Oracle (с версии 8.0), DB2, Informix, PostgreSQL, SQL Server 2008 и др.)
- Объектно-ориентированная модель данных (ООМД). О2, GemStone, Iris и др.
 - Стандарт ODMG 3.0 (Object Database Management Group).
- Многомерные базы данных.
- Потоковые базы данных.

Иерархическая модель данных (ИМД)

Иерархическая модель данных — это модель данных, где используется представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня)

Атрибут (элемент данных,	наименьшая единица структуры данных. Обычно каждому элементу при описании базы данных присваивается уникальное имя. По этому имени к нему обращаются при обработке. Элемент
поле)	данных также часто называют полем.
Запись (сегмент)	именованная совокупность атрибутов. Использование записей позволяет за одно обращение к базе получить некоторую логически связанную совокупность данных. Именно записи изменяются, добавляются и удаляются. Тип записи определяется составом ее атрибутов. Экземпляр записи - конкретная запись с конкретным значением элементов.
Групповое	иерархическое отношение между записями двух типов. Родительская запись (владелец
отношение	группового отношения) называется исходной записью, а дочерние записи (члены группового
	отношения) - подчиненными. Иерархическая база данных может хранить только такие
	древовидные структуры.

Иерархическая модель данных (ИМД)

Графическая диаграмма концептуальной схемы базы данных называется *деревом определения*. Пример иерархической базы данных:

Иерархическая модель реализует *отношение* между исходной и дочерней записью по схеме 1:М, то есть одной родительской записи может соответствовать любое число дочерних.

Иерархическая модель данных (ИМД)

Сетевая модель данных (СМД)

Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.

<u>Режим включения подчиненных</u> записей:

•автоматический - невозможно занести в БД запись без того, чтобы она была сразу же закреплена за неким владельцем;

•ручной - позволяет запомнить в БД подчиненную запись и не включать ее немедленно в экземпляр группового отношения. Эта операция позже инициируется пользователем.

Сетевая модель данных (СМД)

Реляционная модель данных (РМД)

- В 1970 г. американский математик Э. Ф. Кодд опубликовал статью, с которой отсчитывается начало существования РМД.
- РМД основана на теории множеств.

Отношение	таблица данных
Атрибут	Поле, столбец таблицы
Схема отношения	Строка заголовков столбцов (атрибутов) таблицы
Домен	Совокупность допустимых значений (тип данных)
Кортеж	Строка таблицы
Кардинальность	Количество строк (кортежей)
Степень отношения	Количество полей (столбцов, атрибутов)
Первичный ключ (РК)	Уникальный ключ; атрибут, который идентифицирует кортеж
Внешний ключ (FK)	Служит для организации связи между таблицами

Реляционная модель данных (РМД)

Отношение обладает основными свойствами:

- 1. В отношении не должно быть одинаковых кортежей, т.к. это множество.
- 2. Порядок кортежей и атрибутов в отношении несущественен.
- 3. Атомарность значений атрибутов

Целое Номер	Строка Имя	Строка Должность	Целое Деньги		Типы данных Домены
Табельный номер	Имя	Должность	Оклад	Премия	Атрибуты
2934	Иванов	Инженер	1120	400	
2935	Петров	Вед. инженер	1440	500	Кортежи
2936	Климов	Бухгалтер	920	350	

Пример таблицы реляционной БД

Табельный номер	ФИО сотрудника	Должность	Оклад	Год рождения	<u>Отдел</u>
023	Волкова Елена Павловна	секретарь	26000	1985	2
113	Белов Сергей Юрьевич	инженер	39800	1980	1
101	Рогов Сергей Михайлович	директор	62000	1972	2
056	Панина Анна Алексеевна	инженер- программист	41800	1978	1
					·
023	Фролов Юрий Вадимович	начальник отдела	49200	1971	9

Реляционная модель данных (РМД)

Структурная часть — единственной структурой данных, используемой в реляционных базах данных, является нормализованное отношение.

Манипуляционная часть - фундаментальные механизмы манипулирования реляционными базами данных:

- **Реляционная алгебра** (объединение, разность, пересечение, декартово произведение, выборка, проекция, деление, соединение)
- Реляционное исчисление
- **Целостная часть** базовые требования целостности, которые должны поддерживаться в любой реляционной СУБД:
 - Требование целостности сущностей
 - Требование целостности по ссылкам

Связь один-к-одному: Сотрудник-Паспортные данные

Таблица «Сотрудники»

	10			
Табельный	ФИО	Отдел		
номер	сотрудника			

	1 /	
023	Волкова Елена Павловна	2
113	Белов Сергей Юрьевич	1
101	Рогов Сергей Михайлович	2
056	Панина Анна Алексеевна	1
098	Фролов Юрий	9

Вадимович

Таблица «Паспортные данные»

	TH	Серия	Номер
,	023	1206	689689
,	113	1202	700700
_	101	1022	456456
	098	1203	555555

Связь один-ко-многим: Отделы – Сотрудники

Таблица «Сотрудники»

Табельный	ФИО	<u>Отдел</u>
номер	сотрудника	
023	Волкова Елена Павловна	2
113	Белов Сергей Юрьевич	1
101	Рогов Сергей Михайлович	2
056	Панина Анна Алексеевна	1
098	Фролов Юрий Вадимович	9

Таблица «Отделы»

Номер отдела	Название отдела
1	Информационный отдел
2	Администрация
3	Отдел кадров
•••	
9	Проектный отдел

«Номер отдела» - первичный ключ в таблице «Отделы»

«Отдел» – внешний ключ в таблице «Сотрудники»

Связь многие-ко-многим: Проекты – Сотрудники

Таблица «Сотрудники»

ФИО	Номер (PK)				
Волкова Е.П.	023		Таблиц	а «Участи	(e»
Белов С.Ю.	113		<u>Участник</u>	Роль	Проект
Рогов С.М.	101		023	исполнитель	<u>(FK)</u> 23/H
Іанина А.А.	056		098	руководитель	18-K
рролов Ю.В.	098	X	098	исполнитель	09/P
1225			101	консультант	23/H
	•••		056	руководитель	18-K

Таблица «Проекты»

	Шифр (РК)	Название проекта
F	23/H	АИС "Налог"-2
1	18-К	ИПС "Жители"
7	09/P	ГИС "Город"

В таблице «Участие»:

«Участник» – внешний ключ к таблице «Сотрудники»

«Проект» – внешний ключ к таблице «Проекты»

Пример связи внутри таблицы

Табельный номер	ФИО сотрудника	Должность	Оклад	<u>Начальник</u>
023	Волкова Елена Павловна	секретарь	26000	101
113	Белов Сергей Юрьевич	инженер	39800	205
101	Рогов Сергей Михайлович	директор	62000	NULL
205	Махова Ольга Алексеевна	начальник отдела	51300	101

Реляционная алгебра

Реляционная алгебра (РА) или реляционное исчисление (РИ) — инструмент для манипулирования табличными данными в реляционных БД.

Любой запрос к БД можно записать в виде некоторой формулы РА или некоторого выражения (РИ).

Средства РА и РИ эквиваленты между собой, однако отличаются уровнем процедурности.

Реляционная алгебра определена Коддом.

Реляционные операторы обладают важным свойством: они замкнуты относительно понятия отношения. Это означает, что выражения РА определяются над отношениями реляционной БД и результатом вычисления также является отношение.

Операции реляционной алгебры

- ✓ Операции РА применяются к отношениям и в результате применения операций РА получаются отношения (таблицы).
- ✓ Различают унарные и бинарные операции РА: унарные применяются к одному отношению (таблице), бинарные к двум.

Существует пять основных операций РА:

- ✓ селекция;
- ✓ проекция;
- ✓ декартово произведение;
- ✓ объединение;
- ✓ разность;

и три вспомогательных операции РА, которые могут быть выражены через основные:

- ✓ пересечение;
- ✓ соединение;
- ✓ деление.

> Проекция (π)

Это унарная операция (выполняемая над одним отношением), служащая для выбора подмножества атрибутов из отношения R. Она уменьшает степень отношения и может уменьшить кардинальность отношения за счёт исключения одинаковых кортежей.

Товар	Категория	Дата поступления
Монитор	ПК	10.02.2023
Кефир	Молочные продукты	11.02.2023
Кефир	Молочные продукты	12.02.2023
Монитор	ПК	15.02.2023

Товар	Категория
Монитор	ПК
Кефир	Молочные продукты

SELECT DISTINCT Товар, Категория FROM Товары

> Селекция, выборка (select, σ).

Это унарная операция, результатом которой является подмножество кортежей исходного отношения, соответствующих условиям, которые накладываются на значения определённых атрибутов.

Дата поступления = 10.02.2023

Товар	Категория	Дата поступления
Монитор	ПК	10.02.2023
Кефир	Молочные продукты	11.02.2023
Кефир	Молочные продукты	12.02.2023
Монитор	ПК	10.02.2023

Товар	Категория	Дата поступления
Монитор	ПК	10.02.2023
Монитор	ПК	10.02.2023

✓ Объединение (union).

Объединением двух односхемных отношений R и S называется отношение T = R U S, которое включает в себя все кортежи исходных отношений без повторов.

Товар	Категория	Дата поступления
Клавиатура	ПК	08.02.2023
Кефир	Молочные продукты	12.02.2023

Товар	Категория	Дата поступления
Монитор	ПК	10.02.2023
Кефир	Молочные продукты	12.02.2023

	Товар	Категория	Дата поступления
\	Монитор	ПК	10.02.2023
	Кефир	Молочные продукты	12.02.2023
	Клавиатура	ПК	08.02.2023

✓ Объединение (union).

Имя	Возраст
Алёна	34
Дмитрий	28
Георгий	29
Ольга	54
Светлана	34

Имя	Возраст
Наталья	28
Ольга	54
Георгий	29
Дмитрий	28

SELECT Имя, Возраст FROM Кружок1 UNION SELECT Имя, Возраст FROM Кружок2

Имя	Возраст
Алёна	34
Дмитрий	28
Георгий	29
Ольга	54
Светлана	34
Наталья	28

✓ Разность (except).

Разность возвращает отношение, содержащее все кортежи, которые принадлежат первому из заданных отношений и не принадлежат второму

Товар	Категория	Дата поступления
Клавиатура	ПК	08.02.2023
Кефир	Молочные продукты	12.02.2023

Товар	Категория	Дата поступления
Монитор	ПК	10.02.2023
Кефир	Молочные продукты	12.02.2023

Товар	Категория	Дата поступления
Клавиатура	ПК	08.02.2023

Выполнить A MINUS В

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Петров	2000
3	Сидоров	3000

Таблица 1 Отношение А

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Пушников	2500
4	Сидоров	3000

Таблица 2 Отношение В

SELECT TH, Фамилия, Зарплата FROM A EXCEPT SELECT TH, Фамилия, Зарплата FROM B

Табельный номер	Фамилия	Зарплата
2	Петров	2000
3	Сидоров	3000

SELECT Фамилия, Зарплата FROM A EXCEPT SELECT Фамилия, Зарплата FROM B

Фамилия	Зарплата	
Петров	2000	

✓ Пересечение (intersect).

Пересечение двух односхемных отношений R и S есть подмножество кортежей, принадлежащих обоим отношениям.

Это можно выразить через разность: $R \cap S = R - (R - S)$.

Товар	Категория	Дата поступления
Клавиатура	ПК	08.02.2023
Кефир	Молочные продукты	12.02.2023

Товар	Категория	Дата поступления
Монитор	ПК	10.02.2023
Кефир	Молочные продукты	12.02.2023

Товар	Категория	Дата поступления
Кефир	Молочные продукты	12.02.2023

Выполнить A INTERSECT В

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Петров	2000
3	Сидоров	3000

Таблица 1 Отношение А

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Пушников	2500
4	Сидоров	3000

Таблица 2 Отношение В

SELECT TH, Фамилия, Зарплата FROM A INTERSECT SELECT TH, Фамилия, Зарплата FROM B

Табельный номер	Фамилия	Зарплата
1	Иванов	1000

SELECT Фамилия, Зарплата FROM A INTERSECT SELECT Фамилия, Зарплата FROM B

Фамилия	Зарплата
Иванов	1000
Сидоров	3000

> Деление

Из первой таблицы извлекаются значения строк, для которых присутствуют все комбинации значений из второй таблицы

\sim				
()	тнош	ени	тe.	А

S	P
S1	P1
S1	P2
S1	P3
S1	P4
S2	P1
S2	P3
S3	P2
S3	P3

Отношение В

P
P1

Отношение В2

P
P1
P2

Отношение В1

P
P 2
P3

Результат:

A/B	A/B1	A/B2
S1	S1	S1
S2	S3	

Основа реляционной алгебры Проекция Объединение Выборка Произведение Пересечение Вычитание Б Соединение Деление Д Ж Ж Д E Ж

ООБД. Основные характеристики

Объектно-ориентированные базы данных — базы данных, в которых информация представлена в виде объектов, как в объектно-ориентированных языках программирования.

В объектно-ориентированной модели данных любая сущность реального мира представляется всего одним понятием — объектом. С объектом ассоциируется состояние и поведение. Состояние объекта определяется значениями его свойств — атрибутов.

Значениями свойства могут являться примитивные значения (такие, как строки или целые числа) и непримитивные объекты. Непримитивный объект, в свою очередь, состоит из набора свойств.

Поведение объекта определяется с помощью *методов*, которые оперируют над состоянием объекта.

ООБД. Основные характеристики

Объекты, обладающие одними и теми же свойствами и поведением, группируются в *классы*. Объект может быть экземпляром только одного класса или нескольких классов.

Соотношение терминов реляционной (РБД) и объектно-ориентированной (ООБД) баз данных

РБД	ООБД	
Отношение	Класс	
Столбец (атрибут)	Атрибут (поле) класса	
Кортеж	Экземпляр класса (объект)	
Иерархия отношений	Иерархия классов	
Отношения "потомок"	Подкласс	
Отношения "предок"	Суперкласс	
Правила преобразования данных	Методы	