Enumerative Combinatoric Algorithms

Contents

1	Enu	merating vs. Counting	2					
	1.1	Example 1: Spanning Paths	2					
		Example 2: Blokus	2					
		1.2.1 Fingerprints	4					
	1.3	Example Spanning Trees on Ladders	5					
2	Incl	usion – Exclusion Principle	6					
	2.1	Example: Multipliers	6					
	2.2	Example: Relatively Prime Numbers	6					
	2.3	Example: Number of Words	8					
3	The Pigeon Hole Principle							
	3.1	Example: People in Vienna	8					
	3.2	Example: Division of odd numbers	8					
	3.3	Example: Lossless Data Compression	9					
4	Reverse Search							
	4.1	Example: Triangulations	10					
	4.2	Basic Idea	10					
	4.3	Example: Poker Chips Stacking	10					
	4.4	Example: Tic Tac Toe	11					
	4.5	Example: Connect Four (4 Gewinnt)	12					
	4.6	Algorithm	12					
		Evample: Triangulations	12					

1 Enumerating vs. Counting

1.1 Example 1: Spanning Paths

Given: n points in convex position

Question: How many straight line planar (crossing-free) spanning paths (all points are used) are there?

 \bullet n=1

• n = 2

• n = 3: 4 paths

• n = 4: 8 paths

- n = 5:
 - more possibilites \rightarrow we go towards counting rather than enumerating
 - look at possible types of paths, in CW and CCW direction for each of the five starting points. Divide by 2 for identical paths obtained with different starting points (since paths have 2 ends)

1.2 Example 2: Blokus

Definition

- consists of unit squares connected via edges (not just connected through vertices)
- *n*-polyomino has *n* unit squares
- Animal: does not contain holes

- free: rotation/mirroring is not taken into account
- fixed: rotated/mirrored polyominoes are regarded as being distinct

Question: How many n-polyominoes are there?

• n = 1:

fixed: 19, free: 5

1
• $n = 2$:
-
fixed: 2, free: 1
• $n = 3$:
- 0 0
- 🗆 × 4
fixed: 6, free: 2
• $n=4$:
- 🗆 🗆 🗆 ×2
□ - □ ×8 □ □
$ \square$ \square \times 4 (reflection has same effect as rotation)
-
- 🗆 🗆 × 1

Enumerate/Construct all polyominoes

- construct the (n+1)-ominoes from the n-ominoes. This works because we can show that from each (n+1)-ominoes you can remove a square and get a valid n-omino (idea: construct an arbitrary spanning tree, remove leaf)
- find and remove duplicates
- how many (n + 1)-ominoes are generated?

maximum number: 2n + 2 or 4n - 2|E| Why?

 \square : 4 possibilities to add a square (at each edge)

 $4n - 2|E| \rightarrow 4n - 2(n-1) = 2(n+2)$

How to find duplicates? compare every pair $\rightarrow O(k^2n)$

1.2.1 Fingerprints

- maps an object (here: polyomino) to a *unique* representation, independent of translation, rotation, reflection
- sort the fingerprints (insertion sort)
- binary search

One possibility for polyominoes: use vector representations on a coordinate system

Examples:

This is lexicographically smaller than the first one

Generally:

- 1. generate all 8 transformations (4 rotations, 2 reflections)
- 2. take the lexicographically smallest one $\rightarrow O(1) \cdot O(n)$ for an n-omino

$$f'(n)$$
 fingerprints generated in total $\to f'(n) \left(O(n) + \log(f'(n) \cdot O(n)) \right)$

$$\lim_{n \to \infty} \frac{f(n+1)}{f(n)} = \lambda$$
, $3.98 < \lambda < 4.65$

f(n) is known up to n = 56.

1.3 Example Spanning Trees on Ladders

with n rangs

Question: Number of spanning trees on a ladder with n range

•
$$n = 1$$
 \bigcirc \bigcirc \bigcirc \bigcirc

= 1

Answer: Counting spanning trees on a ladder (with n rangs) \Leftrightarrow counting spanning trees on a 2n grid

$$n \to n+1$$

- 1. The 2 rightmost vertices for n share a connected component $\rightarrow A(n)$
- 2. The 2 rightmost vertices for n are in different connected components $\rightarrow B(n)$

Consider case 1

$$A(n+1) = 3A(n) + 1B(n)$$

Consider case 2

$$A(1) = \frac{1}{2\sqrt{3}} \left((2 + \sqrt{3})^1 - (2 - \sqrt{3})^1 \right) = \frac{2\sqrt{3}}{2\sqrt{3}}$$
$$A(2) = \dots = \frac{8\sqrt{3}}{2\sqrt{3}} = 4$$

$$A(n) = 4A(n-1) - A(n-2)$$
 (1)

$$= \frac{4}{2\sqrt{3}} \left((2+\sqrt{3})^{n-1} - (2-\sqrt{3})^{n-1} \right) - \frac{1}{2\sqrt{3}} \left((2+\sqrt{3})^{n-2} - (2-\sqrt{3})^{n-2} \right) \tag{2}$$

2 Inclusion – Exclusion Principle

2.1 Example: Multipliers

$$S = \{1, \dots, 100\}$$

Question: How many numbers in *S* are multipliers of 6 or 7?

$$|S_6| = \lfloor \frac{100}{6} \rfloor = 16, |S_6| = 14$$

$$|S_{6,7}| \neq |S_6| + |S_6|$$
:

$$|D_{6,7}| = |D_{6}| + |D_{6}| - |D_{6} \% 7|$$

2.2 Example: Relatively Prime Numbers

$$S = \{1, \dots, 180\}$$

Question: How many numbers in *S* are relatively prime to 180?

Idea: Count all numbers *not* relatively prime to $180 \rightarrow T$. |T| = ?

$$|T_2| = 90$$

$$|T_2| = 60$$

$$|T_2| = 36$$

$$|T| = |T_2| + |T_3| + |T_5| - (|T_2 \cap T_3| + |T_2 \cap T_5| + |T_3 \cap T_5|) + |T_2 \cap T_3 \cap T_5|$$

$$|T| = 90 + 60 + 36 - (30 + 18 + 12) + 6 = 132$$

$$|S| - |T| = 48$$

In general:

$$\mathcal{A} = \{A_i\}_{i=1}^n, I = \{1, \dots, n\}$$
$$|_{i \in I} A_i| = \sum_{i=1}^n \left((-1)^{i-1} \sum_{J \subseteq I, |J| = i} |\bigcap_{j \in J} A_j| \right)$$

Proof: $x \in A_1 \cup \cdots \cup A_n$, x is contained in m sets A_i .

$$|A_1 \cup \cdots \cup A_n| = \sum_{n} (A_n) - \sum_{n} (A_n \cap A_n) - \sum_{n} (A_n \cap$$

- 1. for (single) sets *not* containing $x \to +0$
- 2. If in any $A_i \cap \cdots \cap A_j$ at least one of the sets does *not* contain $x \to \pm 0$
- 3. \rightarrow only consider intersections of sets where all sets contain x

 $\binom{m}{k}$ intersections of k sets, all sets containing $x \to \pm 1$

$$\Rightarrow + \binom{m}{1} - \binom{m}{2} + \dots + (-1)^{m-1} \binom{m}{m} = 1$$

$$\binom{m}{0} + \binom{m}{1} - \binom{m}{2} + \dots + (-1)^m \binom{m}{m} = 0$$

Pascal's triangle

2.3 Example: Number of Words

Given: Language L with alphabet $\Sigma = \{A, B, C\}$ and every word of L consists of 10 characters.

Question: How many words of *L* contain each character at least once?

$$|G| = |L| - |X| = 3^{10} - (3 \cdot 2^{10} - 3 + 0) = 55980$$

$$|S_A| = |S_B| = |S_C| = 2^{10}$$

$$|S_A \cap S_B| = |S_A \cap S_C| = |S_B \cap S_C| = 1$$

$$|S_A \cap S_B \cap S_C| = 0$$

$$|X| = |S_A| + |S_B| + |S_C| - |S_A \cap S_B| - |S_A \cap S_C| - |S_B \cap S_C| + |S_A \cap S_B \cap S_C|$$

3 The Pigeon Hole Principle

If n elements are distributed to k sets, then there exists at least one set containing at least $\lceil \frac{n}{k} \rceil$ elements.

3.1 Example: People in Vienna

Claim: In Vienna there exist at least two persons with the exact same number of hairs on their head.

• human: at most $\approx 500,000$ hairs

• Vienna: $> 1.7 \cdot 10^6$ citizens

Idea: Take 500,000 people. If 2 of them have the same amount of hair, then we are done. If not, add one more person, whose amount of hair must then already be present.

3.2 Example: Division of odd numbers

Given: $1, 3, 7, 15, 31, \dots; a_i := 2^i - 1, i \ge 1$ and q > 0 arbitrary odd number.

Claim: At least one of the a_i 's is (integer) divisible by q.

Proof: Consider all a_i , $1 \le i \le q$

- If one of these a_i is divisible by q, then we are done
- otherwise: $a_i = d_i \cdot q + r_i$, $0 < r_i < q$; $q \ge n > m > 0$ $\Rightarrow (q-1) \text{ remainders p.h.p.} \exists r_m, r_n \text{ such that } r_m = r_n$ Then $(a_n a_m) = (d_n d_m)q + \underbrace{(r_n r_m)}_{0}$ $(2^n 1) (2^m 1) = 2^n 2^m = 2^m \underbrace{(2^{n-m} 1)}_{-a}.$

 2^m is even and thus not divisible by q.

In general: if $A_1, ... A_k$ are finite (pairwise disjoint) sets and $|A_1 \cup ... \cup A_k| > kr$, then $\exists i$ such that $|A_i| > r$.

Proof: Assume for the sake of contradiction that all $|A_i| \le r$

$$k \cdot r \ge \sum_{i=1}^{k} |A_i| \ge |A_1 \cup \dots \cup A_k| > k \cdot r$$

3.3 Example: Lossless Data Compression

... cannot guarantee compression for all input data!

- file \rightarrow string of bits
- assume that each file is transformed into a *distinct* file that is not larger
- let F be the file with the least number of bits (M) that compresses $\rightarrow N$ bits
- $N < M : 2^N + 1$ cannot be all distinct

4 Reverse Search

- Avis, Fukuda 1992
- enumerating data/objects/elements with almost no structure
- algorithmic
- count all objects exactly once, no overcounting

4.1 Example: Triangulations

Given: set S of labelled points in convex position

Question: # of triangulations on S.

Flip on triangulations: 4 points, remove the diagonal and add the other diagonal

4.2 Basic Idea

- abstract graph G(V, E)
- vertices V: elements to be enumerated, |V| is very large
- edges $e \in E : e = v_1, v_2; v_1, v_2 \in V$
- \Rightarrow *G* is an undirected graph
- G must be connected
- task: enumerate all vertices of G
- idea: breadth-first or depth-first search: O(|V| + |E|) which is ok, but too much space necessary

4.3 Example: Poker Chips Stacking

Given: four colours (red, green, blue, white) of poker chips

Task: build stacks of height ≤ 30 such that at most 3 chips of equal colour appear directly after another

- v_{Φ} : empty stack
- neighbours:

- 'successors': add a chip on top of the stack
- 'predecessors': remove the topmost chip from the stack
- depth-first search

• store current stack.

Nodes that have already been visited can be deduced from the stack composition.

Requirements:

- unique root
- successors and predecessors in arbitrary but fixed order neighbour relation $\gamma(v,k)\in\Gamma(v)$ (kth neighbour)
- a unique predecessor function $f(v), f: v \to v$ in G(V, E)
 - 1. $\exists v_0 \in V : f(v_0) = v_0$: root
 - 2. $\forall v \in V \setminus \{v_0\} : f(v) \in \Gamma(v)$: exactly one root
 - 3. $\forall v \in V \setminus \{v_0\} \forall x \in \mathbb{N} : f^x(v) \neq v$: cycle-free $(f^x = f(f \dots f(v) \dots)) x$ times \rightarrow reaching the root in finite time $f^{|V|}(v) = v_0$

4.4 Example: Tic Tac Toe

Given:

Task: Enumerate all valid game positions (not considering symmetries)

- *V*: game positions
- labelled board cells
- neighbours $\gamma(v, k)$: legally add k-th mark or remove one
- predecessor function: empty board as root, otherwise remove highest legal mark
- when iterating over the possible positions, check each node's predecessor to see if it has been visited before

4.5 Example: Connect Four (4 Gewinnt)

:	:	:	:	:	:
			Χ		
			О		

too complex for reverse search, NP-hard

4.6 Algorithm

Complexity Analysis

4.7 Example: Triangulations