Newton Raphson Method

Swapnil Singh Bank of Lithuania, KTU November 25, 2024

Newton-Raphson Method: Overview

- **Purpose:** Find roots of equation f(x) = 0 or minimum/maximum of function
- Key Idea: Use local quadratic approximation
- Advantages:
 - Quadratic convergence when close to solution
 - Efficient for smooth functions
 - Works well for multi-dimensional problems
- Disadvantages:
 - Requires derivatives
 - Sensitive to starting point
 - May not converge for poor initial guesses

Mathematical Foundation

For Root Finding:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

For Optimization:

- Find where gradient is zero: $\nabla f(x) = 0$
- Update formula:

$$x_{k+1} = x_k - [H(x_k)]^{-1} \nabla f(x_k)$$

where:

- $\nabla f(x_k)$ is the gradient
- $H(x_k)$ is the Hessian matrix

Convergence Properties

Quadratic Convergence:

• Error reduces quadratically:

$$||e_{k+1}|| \le C||e_k||^2$$

- Requires:
 - Smooth function
 - Good initial guess
 - Non-singular Hessian at solution

Conditions for Minimum:

- First-order: $\nabla f(x^*) = 0$
- Second-order: $H(x^*)$ is positive definite

Algorithm Implementation

```
[H] Input: Initial guess x_0, tolerance \epsilon, max iterations N

Output: Optimal point x^*
k \leftarrow 0 while k < N do

Compute gradient: g_k = \nabla f(x_k) Compute Hessian: H_k = H(x_k) if \|g_k\| < \epsilon then \|\mathbf{return}\|_{X_k}

Solve: H_k d_k = -g_k Update: x_{k+1} = x_k + d_k k \leftarrow k+1 return x_k
```

MATLAB Implementation Tips

Key Components:

- Function Evaluation:
 - Define objective function
 - Compute gradient analytically or numerically
 - Compute Hessian analytically or numerically
- Linear System Solution:
 - Use mldivide (backslash) operator
 - Check condition number
 - Handle singular matrices
- Convergence Check:
 - Gradient norm
 - Step size
 - Function value change

Practical Considerations

Implementation Challenges:

- Choose appropriate stopping criteria
- Handle ill-conditioned Hessians
- Select good initial point
- Deal with non-convex functions

Improvements:

- Line search for step size
- Trust region methods
- Quasi-Newton methods (BFGS)
- Regularization for ill-conditioning