Math Review

Jordan Boyd-Graber

University of Maryland

Functions

Function Notation

- Take a number a double it
- Mathematical notation

$$f(x) = 2x \tag{1}$$

Python notation

```
def double(x):
    return 2 * x
```


$$f(x) = \exp(-x) \tag{2}$$

$$g(x) = 1 + x \tag{3}$$

$$g(x) = 1 + x$$

$$h(x) = \frac{1}{x}$$
(3)

$$f(x) = \exp(-x) \tag{2}$$

$$g(x) = 1 + x \tag{3}$$

$$h(x) = \frac{1}{x} \tag{4}$$

$$f(x) = \exp(-x) \tag{2}$$

$$g(x) = 1 + x \tag{3}$$

$$h(x) = \frac{1}{x} \tag{4}$$

$$I(x) = g(f(x)) = \frac{1}{\exp(-x)}$$
 (5)

$$f(x) = \exp(-x) \tag{2}$$

$$g(x) = 1 + x \tag{3}$$

$$h(x) = \frac{1}{x} \tag{4}$$

$$I(x) = g(f(x)) = \frac{1}{\exp(-x)}$$
 (5)

```
def neg_exp(x):
   return exp(-x)
def composition(x):
  return 1.0 / neg_exp(x)
```

from math import exp

Properties of the Exponential (and log) Function

$$\exp(a+b) = \exp(a)\exp(b) \tag{6}$$

$$\log(a+b) = \log(a)\log(b) \tag{7}$$

$$\log(a^b) = b \cdot \log(a) \tag{8}$$

Composition didn't do as much as we thought!

$$I(x) = g(f(x)) \tag{9}$$

$$=\frac{1}{\exp(-x)}\tag{10}$$

$$=\frac{1}{\exp(x)^{-1}}\tag{11}$$

$$=\frac{1}{\frac{1}{\exp(x)}}\tag{12}$$

$$=\exp x$$
 (13)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

(17)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

$$I(x) = h(g(f(x))) \tag{17}$$

(18)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

$$I(x) = h(g(f(x))) \tag{17}$$

$$=h(g(\exp(-x))) \tag{18}$$

(19)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

$$I(x) = h(g(f(x))) \tag{17}$$

$$=h(g(\exp(-x))) \tag{18}$$

$$=h(1+\exp(-x)) \tag{19}$$

(20)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

$$I(x) = h(g(f(x))) \tag{17}$$

$$=h(g(\exp(-x))) \tag{18}$$

$$=h(1+\exp(-x)) \tag{19}$$

$$=\frac{1}{1+\exp(-x)}\tag{20}$$

Courses, Lectures, Exercises and More

http://boydgraber.org

Math Review

Jordan Boyd-Graber

University of Maryland

Functions

Engineering rationale behind probabilities

- Encoding uncertainty
 - Data are variables
 - We don't always know the values of variables
 - Probabilities let us reason about variables even when we are uncertain

Engineering rationale behind probabilities

- Encoding uncertainty
 - Data are variables
 - We don't always know the values of variables
 - Probabilities let us reason about variables even when we are uncertain
- Encoding confidence
 - The flip side of uncertainty
 - Useful for decision making: should we trust our conclusion?
 - We can construct probabilistic models to boost our confidence
 - E.g., combining polls

Random variable

- Random variables take on values in a sample space.
- They can be discrete or continuous:
 - ► Coin flip: {*H*, *T*}
 - ► Height: positive real values $(0, \infty)$
 - ▶ Temperature: real values $(-\infty, \infty)$
 - Number of words in a document: Positive integers {1,2,...}
- We call the outcomes events.
- Denote the random variable with a capital letter; denote a realization of the random variable with a lower case letter.
 - ► E.g., X is a coin flip, x is the value (H or T) of that coin flip.

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$P(X=H) = 0.5$$

$$P(X=T) = 0.5$$

- And probabilities have to be greater than or equal to 0
- The probabilities over the entire space must sum to one

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$P(X=H) = 0.5$$

$$P(X=T) = 0.5$$

- And probabilities have to be greater than or equal to 0
- The probabilities over the entire space must sum to one

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$P(X=H) = 0.5$$

$$P(X=T) = 0.5$$

- And probabilities have to be greater than or equal to 0
- The probabilities over the entire space must sum to one

$$\sum P(X=x)=1$$

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$P(X = H) = 0.5$$

$$P(X=T) = 0.5$$

- And probabilities have to be greater than or equal to 0
- The probabilities over the entire space must sum to one

$$\sum_{X} P(X=x) = 1$$

A Fair Die

A Fair Die


```
def die_prob(x):
   if x in [0, 1, 2, 3, 4, 5, 6]:
     return 1.0 / 6.0
   else:
     return 0.0
```

- The most common continuous distribution is the <u>normal</u> distribution, also called the Gaussian distribution.
- The density is defined by two parameters:
 - \blacktriangleright μ : the mean of the distribution
 - σ^2 : the <u>variance</u> of the distribution (σ is the standard deviation)
- The normal density has a "bell curve" shape and naturally occurs in many problems.

Carl Friedrich Gauss 1777 – 1855

• The probability density of the normal distribution is:

$$f(x) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{\substack{\text{Does not} \\ \text{depend on } x}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$\xrightarrow{\text{Largest when } x = \mu; \\ \text{shrinks as } x \text{ moves} \\ \text{away from } \mu}$$

- Notation: $exp(x) = e^x$
- If *X* follows a normal distribution, then $\mathbb{E}[X] = \mu$.
- ullet The normal distribution is symmetric around μ .

• The probability density of the normal distribution is:

$$f(x) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{\substack{\text{Does not} \\ \text{depend on } x}} \underbrace{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}_{\substack{\text{Shrinks as } x \text{ moves} \\ \text{away from } \mu}}$$

- Notation: $exp(x) = e^x$
- If *X* follows a normal distribution, then $\mathbb{E}[X] = \mu$.
- ullet The normal distribution is symmetric around $\mu.$

• The probability density of the normal distribution is:

$$f(x) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{\text{Does not depend on } x} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
Largest when $x = \mu$; shrinks as x moves away from μ

- Notation: $\exp(x) = e^x$
- If *X* follows a normal distribution, then $\mathbb{E}[X] = \mu$.
- The normal distribution is symmetric around μ .

From Svein Linge and Hans Petter Langtangen

- What is the probability that a value sampled from a normal distribution will be within n standard deviations from the mean?
- $P(\mu n\sigma \le X \le \mu + n\sigma) = ?$

 What is the probability that a value sampled from a normal distribution will be within n standard deviations from the mean?

•
$$P(\mu - n\sigma \le X \le \mu + n\sigma) = ?$$

 $= \int_{x=\mu - n\sigma}^{\mu + n\sigma} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
 $= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{x=\mu - n\sigma}^{\mu + n\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

 What is the probability that a value sampled from a normal distribution will be within n standard deviations from the mean?

```
• P(\mu - n\sigma \le X \le \mu + n\sigma) = ?

= \int_{x=\mu - n\sigma}^{\mu + n\sigma} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)

= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{x=\mu - n\sigma}^{\mu + n\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)

>>> from scipy.stats import norm

>>> norm.cdf(1.0) - norm.cdf(-1.0)

0.6826894921370859
```


Courses, Lectures, Exercises and More

http://boydgraber.org

Math Review

Jordan Boyd-Graber

University of Maryland

Functions

Vectors

Row Vector

$$\vec{v} = \begin{bmatrix} 5 & 8 \end{bmatrix} \tag{21}$$

Column Vector

Indexing elements

$$v_1 = 5; v_2 = 8$$

Vector Addition

Scalar Multiplication

$$3 \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \cdot 5 \\ 3 \cdot 2 \end{bmatrix} = \begin{bmatrix} 15 \\ 6 \end{bmatrix} \tag{24}$$

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}^{\!\top} \! \cdot \! \begin{bmatrix} 5 \\ 2 \end{bmatrix} \! = \!$$

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} = 4 \cdot 5 + 3 \cdot 2 = 26$$
 (25)

Dot Product Definition

From Scott Hill

Courses, Lectures, Exercises and More

http://boydgraber.org

Math Review

Jordan Boyd-Graber

University of Maryland

Functions

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \tag{28}$$

$$\begin{bmatrix} 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \tag{29}$$

$$[4\cdot 5 + 2\cdot 3] = [26] \tag{30}$$

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} =$$

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \tag{28}$$

$$\begin{bmatrix} 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \tag{29}$$

- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a_{ij} with element in a_{ji}

- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a_{ij} with element in a_{ji}

- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a_{ij} with element in a_{ji}

- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a_{ij} with element in a_{ji}

- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a_{ij} with element in a_{ji}

- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a_{ij} with element in a_{jj}

- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a_{ij} with element in a_{ji}

Matrix Multiplication Rules

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} \cdot & 0 \\ \cdot & 3 \\ \cdot & 0 \\ \cdot & 2 \end{bmatrix} = \begin{bmatrix} \cdot & 14 \\ \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} \quad \begin{array}{c} \text{width of } A \\ \text{must equal} \\ \text{height of } B \end{array} \begin{bmatrix} \mid & B \\ \downarrow & B \end{bmatrix}$$
$$\begin{bmatrix} - & - & \rightarrow \\ A & \end{bmatrix} \begin{bmatrix} \bullet \\ \uparrow \\ A & \end{bmatrix}$$

From Denis Auroux

$$a_{ij} = \sum_{k} l_{ik} r_{kj} \tag{31}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (32)

$$a_{ij} = \sum_{k} l_{ik} r_{kj} \tag{31}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} ? \\ \end{bmatrix}$$
 (32)

$$a_{11} = l_{11}r_{11} + l_{12}r_{21} = 3 + 0 = 3$$

$$a_{ij} = \sum_{k} I_{ik} r_{kj} \tag{31}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix} \tag{32}$$

$$a_{ij} = \sum_{k} l_{ik} r_{kj} \tag{31}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ ? \end{bmatrix}$$
 (32)

$$a_{21} = l_{21}r_{11} + l_{22}r_{21} = 0 + 4 = 4$$

$$a_{ij} = \sum_{k} I_{ik} r_{kj} \tag{31}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \tag{32}$$

Selecting a Row

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{\top} \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} ? & \end{bmatrix}$$
 (33)

Selecting a Row

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} ? & ? \end{bmatrix}$$
 (33)

Selecting a Row

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} & ? \end{bmatrix}$$
 (33)

Selecting a Row

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 6 & ? \end{bmatrix}$$
 (33)

Selecting a Row

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 6 & ? \end{bmatrix}$$
 (33)

Selecting a Row

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 6 & 7 \end{bmatrix} \tag{33}$$

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} ? & \end{bmatrix}$$
 (34)

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} ? & ? \end{bmatrix}$$
 (34)

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} & ? \end{bmatrix}$$
 (34)

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = [9 + 0 + 0 \quad ?]$$
 (34)

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 9 & ? \end{bmatrix}$$
 (34)

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 9 & 7+8+9 \end{bmatrix}$$
 (34)

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 9 & 24 \end{bmatrix}$$
 (34)

Math Review

Slides adapted from Dave Blei and Lauren Hannah

University of Maryland

Expectations and Entropy

Expectation

An expectation of a random variable is a weighted average:

$$E[f(X)] = \sum_{x} f(x) p(x)$$
 (discrete)
=
$$\int_{-\infty}^{\infty} f(x) p(x) dx$$
 (continuous)

Expectation

Expectations of constants or known values:

•
$$E[a] = a$$

Expectation Intuition

- E[x] is most common expectation
- Average outcome (might not be an event: 2.4 children)
- · Center of mass

What is the expectation of the roll of die?

What is the expectation of the roll of die?

One die

$$1 \cdot \tfrac{1}{6} + 2 \cdot \tfrac{1}{6} + 3 \cdot \tfrac{1}{6} + 4 \cdot \tfrac{1}{6} + 5 \cdot \tfrac{1}{6} + 6 \cdot \tfrac{1}{6} =$$

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the roll of die?

One die

$$1 \cdot \tfrac{1}{6} + 2 \cdot \tfrac{1}{6} + 3 \cdot \tfrac{1}{6} + 4 \cdot \tfrac{1}{6} + 5 \cdot \tfrac{1}{6} + 6 \cdot \tfrac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

Two die

$$2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} =$$

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

Two die

$$2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} = 7$$

Entropy

- Measure of disorder in a system
- In the real world, entroy in a system tends to increase
- Can also be applied to probabilities:
 - Is one (or a few) outcomes certain (low entropy)
 - Are things equiprobable (high entropy)
- In data science
 - We look for features that allow us to reduce entropy (decision trees)
 - All else being equal, we seek models that have <u>maximum</u> entropy (Occam's razor)

Aside: Logarithms

•
$$\lg(x) = b \Leftrightarrow 2^b = x$$

- Makes big numbers small
- Way to think about them: cutting a carrot

Aside: Logarithms

•
$$\lg(x) = b \Leftrightarrow 2^b = x$$

- Makes big numbers small
- Way to think about them: cutting a carrot
- Negative numbers?

Aside: Logarithms

•
$$\lg(x) = b \Leftrightarrow 2^b = x$$

- Makes big numbers small
- Way to think about them: cutting a carrot
- Negative numbers?
- Non-integers?

Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a random variable:

$$H(X) = -E[\lg(p(X))]$$

$$= -\sum_{x} p(x) \lg(p(x))$$
 (discrete)
$$= -\int_{-\infty}^{\infty} p(x) \lg(p(x)) dx$$
 (continuous)

Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a random variable:

$$H(X) = -E[\lg(p(X))]$$

$$= -\sum_{x} p(x) \lg(p(x))$$
 (discrete)
$$= -\int_{-\infty}^{\infty} p(x) \lg(p(x)) dx$$
 (continuous)

Does not account for the values of the random variable, only the spread of the distribution.

- $H(X) \ge 0$
- uniform distribution = highest entropy, point mass = lowest
- suppose P(X = 1) = p, P(X = 0) = 1 p and P(Y = 100) = p, P(Y = 0) = 1 p: X and Y have the same entropy

Wrap up

- Probabilities are the language of data science
- You'll need to manipulate probabilities and understand marginalization and independence
- In Class: Working through probability examples
- Next: Conditional probabilities

Math Review

Slides adapted from Dave Blei and Lauren Hannah

University of Maryland

Conditional Probability

Context

- Data science is often worried about "if-then" questions
 - If my e-mail looks like this, is it spam?
 - If I buy this stock, will my portfolio improve?
- Since data science uses the language of probabilities, we need conditional probabilities (continuing probability intro)
- Also need to combine distributions

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Independence (Reminder)

Random variables X and Y are independent if and only if P(X = x, Y = y) = P(X = x)P(Y = y). How does this interact with conditional probabilities?

Conditional probabilities equal unconditional probabilities with independence:

- P(X = x | Y) = P(X = x)
- Knowing Y tells us nothing about X

Example

Example

- $A \equiv \text{First die}$
- $B \equiv$ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

Example

- $A \equiv \text{First die}$
- $B \equiv$ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

Example

- $A \equiv \text{First die}$
- $B \equiv$ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) =$$

 $P(A > 3) =$
 $P(A > 3 | B + A = 6) =$

Example

- $A \equiv \text{First die}$
- B ≡ Second die

B=1	B=2	B=3	B=4	B=5	B=6	$P(A > 3 \cap B + A = 6) = \frac{2}{36}$			
2	3	4	5	6	7	P(A > 3) =			
3	4	5	6	7	8	` ,			
4	5	6	7	8	9	P(A > 3 B + A = 6) =			
5	6	7	8	9	10				
6	7	8	9	10	11				
7	8	9	10	11	12				
	B=1 2 3 4	B=1 B=2 2 3 3 4 4 5 5 6 6 7	2 3 4 3 4 5 4 5 6 5 6 7 6 7 8	B=1 B=2 B=3 B=4 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 6 7 8 9	B=1 B=2 B=3 B=4 B=5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 6 7 8 9 10	B=1 B=2 B=3 B=4 B=5 B=6 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11			

Example

- $A \equiv \text{First die}$
- $B \equiv$ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

$$P(A > 3) = \frac{3}{6}$$

$$P(A > 3 \mid B + A = 6) =$$

Example

What is the probability that the sum of two dice is six given that the first is greater than three?

• $A \equiv \text{First die}$

 B ≡ Second die 					$P(A > 3 \cap B + A = 6) = \frac{-}{36}$			
	B=1	B=2	B=3	B=4	B=5	B=6		
A=1	2	3	4	5	6	7	$P(A>3) = \frac{3}{6}$	
A=2	3	4	5	6	7	8	2 26	
A=3	4	5	6	7	8	9 P	$(A > 3 B + A = 6) = \frac{\frac{2}{36}}{\frac{3}{6}} = \frac{2}{36} \frac{6}{3}$	
A=4	5	6	7	8	9	10	<u>=</u> 36 3	
A=5	6	7	8	9	10	11		
A=6	7	8	9	10	11	12		

Example

A=1

A=2 A=3 A=4 A=5

A=6

What is the probability that the sum of two dice is six given that the first is greater than three?

B=5

10

11

• $A \equiv \text{First die}$

B=1

7

B ≡ Second die

B=2

B=3

B=4

5

10

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

$$\frac{B=6}{7} \qquad P(A > 3) = \frac{3}{6}$$

$$\frac{8}{9} P(A > 3 | B + A = 6) = \frac{\frac{2}{36}}{\frac{3}{6}} = \frac{2}{36} \frac{6}{3}$$

$$\frac{10}{11} \qquad = \frac{1}{9}$$

12

Combining Distributions

- Somtimes distributions you have aren't what you need
 - Conditional → joint (chain)
 - Reverse conditional direction (Bayes')

The chain rule

 The definition of conditional probability lets us derive the *chain* rule, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$

The chain rule

 The definition of conditional probability lets us derive the *chain* rule, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$
$$= P(X|Y)P(Y)$$

The chain rule

 The definition of conditional probability lets us derive the *chain* rule, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$
$$= P(X|Y)P(Y)$$

- For example, let Y be a disease and X be a symptom. We may
 know P(X|Y) and P(Y) from data. Use the chain rule to obtain the
 probability of having the disease and the symptom.
- In general, for any set of N variables

$$P(X_1,...,X_N) = \prod_{n=1}^N P(X_n|X_1,...,X_{n-1})$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 1. Start with P(A|B)
- 2. Change outcome space from B to Ω
- 3. Change outcome space again from Ω to A

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 1. Start with P(A|B)
- 2. Change outcome space from B to Ω
- 3. Change outcome space again from Ω to A

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 1. Start with P(A|B)
- 2. Change outcome space from B to Ω : P(A|B)P(B)
- 3. Change outcome space again from Ω to A

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 1. Start with P(A|B)
- 2. Change outcome space from B to Ω : P(A|B)P(B)
- 3. Change outcome space again from Ω to A: $\frac{P(A|B)P(B)}{P(A)}$

