8 Gradient Method

• Gradient algorithm:

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \nabla f\left(\boldsymbol{x}^{(k)}\right).$$

- Define $g^{(k)} := \nabla f\left(\boldsymbol{x}^{(k)}\right)$ and set descent direction to $\boldsymbol{d}^{(k)} = -\boldsymbol{g}^{(k)}$.
- Step size α_k can be chosen in many different ways.
- $\bullet\,$ For sufficiently small step size, the gradient algorithm has descent property.

Define $\phi(\alpha) := f(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)})$, then ϕ has Taylor expansion:

$$f\left(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)}\right) = f\left(\boldsymbol{x}^{(k)}\right) - \alpha \left\|\boldsymbol{g}^{(k)}\right\|^2 + o(\alpha)$$

For α sufficiently small, we have

$$f\left(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)}\right) \le f\left(\boldsymbol{x}^{(k)}\right)$$

▶ PROPOSITION Suppose $\mathbf{g}^{(k)} = \nabla f\left(\mathbf{x}^{(k)}\right) \neq \mathbf{0}$. There exists $\bar{\alpha} > 0$ such that for all $\alpha_k \in (0, \bar{\alpha})$, we have $f\left(\mathbf{x}^{(k+1)}\right) < f\left(\mathbf{x}^{(k)}\right)$

• Remark: if $g^{(k)} = 0$, the FONC holds.

Short proof:

By chain rule, we have

$$\phi'(0) = f(\mathbf{x}^{(k)}) = -\|\mathbf{g}^{(k)}\|^2 < 0.$$

Gradient is negative thus function value is decreasing. Hence, there exists $\bar{\alpha} > 0$ such that for all $\alpha_k \in (0, \bar{\alpha})$, we have

$$\phi\left(\alpha_k\right) < \phi(0).$$

Rewriting, we obtain

$$f\left(\boldsymbol{x}^{(k+1)}\right) < f\left(\boldsymbol{x}^{(k)}\right).$$

- A variety of options exist for selecting α_k .
- If α_k too small, an increased number of iterations may be needed to get optimal solution x^* .
- If α_k too big, algorithm may lead to an oscillated track (zig-zag) around \boldsymbol{x}^* (overshoot).
- General approach is to set a constant $\alpha_k = \alpha$ for all k.
- Steepest approach change α_k with each successive iteration.

8.1 Steepest descent algorithm

• Greedy scheme to pick for α_k .

$$\alpha_k = \underset{\alpha>0}{\operatorname{arg min}} f\left(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)}\right).$$

- The steepest descent algorithm has the descent property.
- **PROPOSITION** 8.1 Let $\{x^{(k)}\}$ be obtained by steepest descent method,

$$(\boldsymbol{x}^{(k+2)} - \boldsymbol{x}^{(k+1)})^{\top} (\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}) = 0.$$

Short Proof:

Based on definition,

$$x^{(k+2)} = x^{(k+1)} - \alpha_{k+1} g^{(k+1)},$$

 $x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}.$

Let $\phi(\alpha) = f\left(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)}\right) = f\left(\boldsymbol{x}^{(k+1)}\right)$. Since $\alpha_k = \arg\min\phi(\alpha)$, by FONC, we have $\phi'\left(\alpha_k\right) = 0$.

Hence,

$$\phi'\left(\alpha_{k}\right) = \nabla f\left(\boldsymbol{x}^{(k)} - \alpha_{k}\boldsymbol{g}^{(k)}\right)^{\top}\boldsymbol{g}^{(k)} = \nabla f\left(\boldsymbol{x}^{(k+1)}\right)^{\top}\boldsymbol{g}^{(k)} \overset{\boldsymbol{g}^{(k)} = \nabla f\left(\boldsymbol{x}^{(k)}\right)}{===} \boldsymbol{g}^{(k)} \boldsymbol{g}^{(k)} = 0.$$

Therefore,

$$(\boldsymbol{x}^{(k+2)} - \boldsymbol{x}^{(k+1)})^{\top} (\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}) = \alpha_{k+1} \alpha_k \boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{g}^{(k)} = 0.$$

- For a prescribed $\epsilon > 0$, terminate the iteration if one of the followings is met:
 - $\circ \|\boldsymbol{g}^{(k)}\| < \epsilon;$
 - $\circ \|\boldsymbol{x}^{(k+1)} \boldsymbol{x}^{(k)}\| < \epsilon;$
 - $\circ |f(\boldsymbol{x}^{(k+1)}) f(\boldsymbol{x}^{(k)})| < \epsilon.$
- More preferable choices using "relative change", because they are "scale-free".
 - $\circ \left| f\left(\boldsymbol{x}^{(k+1)}\right) f\left(\boldsymbol{x}^{(k)}\right) \right| / \left| f\left(\boldsymbol{x}^{(k)}\right) \right| < \epsilon;$
 - $\circ \| \boldsymbol{x}^{(k+1)} \boldsymbol{x}^{(k)} \| / \| \boldsymbol{x}^{(k)} \| < \epsilon.$

8.2 Analysis of optimization algorithms

- Globally convergent: starting from any initial point $x^{(0)}$, an algorithm that generates sequence $x^{(k)} \to x^*$, where x^* satisfying the FONC.
- Locally convergent: starting from an initial point $x^{(0)}$ is sufficiently close to x^* , an algorithm generates sequences converges to x^* .
- Rate of convergence: how fast an algorithm converges.