Notations:

LI: Linearly independent

LD: Linearly dependent

x, d, b, etc, that is characters in boldface represent (column) vectors

 $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0} \}.$

Observation 5: Suppose if a LPP has an unbounded feasible region, then there exists a vector $\mathbf{d} \neq \mathbf{0}$ such that starting from any point of the feasible region if you move in the positive direction of \mathbf{d} , then you will always remain inside the feasible region.

That is for any $\mathbf{x} \in Fea(LPP)$, $\mathbf{x} + \alpha \mathbf{d} \in Fea(LPP)$ for all $\alpha \geq 0$.

Then $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S = Fea(LPP).

Throughout our discussion, **d** will denote a column vector given by $\mathbf{d} = [d_1, ..., d_n]^T$.

Definition: Given a nonempty convex set S, $S \subset \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S if for all $\mathbf{x} \in S$, $\mathbf{x} + \alpha \mathbf{d} \in S$ for all $\alpha \geq 0$.

From the definition it is clear that if **d** is a direction of a convex set S, then for all $\gamma > 0$,

since $\mathbf{x} + \alpha \mathbf{d} = \mathbf{x} + (\frac{\alpha}{\gamma})\gamma \mathbf{d} \in S$ for all $\alpha \geq 0$,

 $\gamma \mathbf{d}$ is again a direction for all $\gamma > 0$.

Two directions $\mathbf{d}_1, \mathbf{d}_2$ of S are said to be distinct if $\mathbf{d}_1 \neq \gamma \mathbf{d}_2$ for any $\gamma > 0$ (or equivalently $\mathbf{d}_2 \neq \beta \mathbf{d}_1$ for any $\beta > 0$).

Result: The set of all directions of $S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ is given by $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad A_{m \times n} \mathbf{d} \leq \mathbf{0}, \quad \mathbf{d} \geq \mathbf{0} \}$ or $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad \mathbf{a}_i^T \mathbf{d} \leq \mathbf{0}, \text{ for all } i = 1, 2, \dots, m, \quad \mathbf{d} \geq \mathbf{0} \}.$

Proof: If $\mathbf{d} \in D$ and $\mathbf{x} \in S$,

then $\mathbf{x} + \alpha \mathbf{d} \geq \mathbf{0}$ for all $\alpha \geq 0$, since $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{d} \geq \mathbf{0}$. (1)

Also $A(\mathbf{x} + \alpha \mathbf{d}) = A\mathbf{x} + \alpha A\mathbf{d} \leq \mathbf{b}$, for all $\alpha \geq 0$ since $A\mathbf{x} \leq \mathbf{b}$, $A\mathbf{d} \leq \mathbf{0}$. (2)

From (1) and (2), $\mathbf{x} + \alpha \mathbf{d} \in S$ for all $\alpha \geq 0$.

Hence if $\mathbf{d} \in D$ then \mathbf{d} is a direction of S. (*)

If **d** does not belong to *D* then either $d_i < 0$ for some i = 1, 2, ..., n, or $(A\mathbf{d})_j = \mathbf{a}_j^T \mathbf{d} > 0$ for some j = 1, 2, ..., m.

If $d_i < 0$ for some i = 1, 2, ..., n then given any $\mathbf{x} \in S$ there exists $\alpha > 0$ sufficiently large such that, $x_i + \alpha d_i < 0$, which implies $(\mathbf{x} + \alpha \mathbf{d})$ does not belong to S for all such α implies \mathbf{d} is not a direction of S.

If $(A\mathbf{d})_j = \mathbf{a}_j^T \mathbf{d} > 0$ for some j = 1, 2, ..., m, then given any $\mathbf{x} \in S$ there exists $\alpha > 0$ sufficiently large such that

 $(A\mathbf{x})_j + \alpha(A\mathbf{d})_j > 0$, hence $(\mathbf{x} + \alpha\mathbf{d})$ does not belong to S for all such α , implies \mathbf{d} is not a direction of S.

Hence if **d** does not belong to D then **d** cannot be a direction of S. (**)

(*) and (**) together gives the required result.

Remark: Note that the set of all directions of S = Fea(LPP) is a convex set.

In fact if \mathbf{d}_1 and \mathbf{d}_2 are two directions of S, then $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$ will again be a direction of S, for any α, β nonnegative (as long as both α, β are not equal to zero).

Definition: A direction \mathbf{d} of S is called an **extreme direction** of S, if it cannot be written as a positive linear combination of two distinct directions of S,

that is, if $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$, for $\alpha, \beta > 0$ and $\mathbf{d}_1, \mathbf{d}_2 \in D$ then $\mathbf{d}_1 = \gamma \mathbf{d}_2$ for some $\gamma > 0$.

It is clear that if D denotes the set of all directions of S (which might even be the empty set if S is bounded) then $D' = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \geq \mathbf{0}, A\mathbf{d} \leq \mathbf{0}, \sum_i d_i = 1 \}$ is a set of all distinct directions of

Also each $\mathbf{d} \in D$ is of the form $\mathbf{d} = \alpha \mathbf{d}'$ for some $\mathbf{d}' \in D'$ and $\alpha = \sum_i d_i (> 0)$.

Note that D' can be written as

$$D' = \left\{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \ge \mathbf{0}, \begin{bmatrix} A \\ 1 & 1, ..., & 1 \\ -1 & -1, ..., & -1 \end{bmatrix} \mathbf{d} \le \begin{bmatrix} \mathbf{0} \\ 1 \\ -1 \end{bmatrix} \right\}.$$

The set D' now looks exactly like the feasible region of an LPP, hence if D' is nonempty then D'has at least one extreme point (why?).

Result: $\underline{\mathbf{d}}$ is an extreme direction of S if and only if $\underline{\mathbf{d}'} = \underline{\underline{\mathbf{d}}}_{\sum_i d_i}$ is an extreme point of D'

Proof: Let $\mathbf{d}_1, \mathbf{d}_2 \in D$ and $\alpha, \beta > 0$, such that $\mathbf{d}_1 \neq \gamma \mathbf{d}_2$ for any $\gamma > 0$,

$$\underline{\mathbf{d}} = \alpha \underline{\mathbf{d}}_{1} + \beta \underline{\mathbf{d}}_{2}, \iff \underline{\sum_{i} d_{i}} = \alpha \left(\frac{\sum_{i} d_{1i}}{\sum_{i} d_{i}} \right) \frac{d_{1}}{\sum_{i} d_{1i}} + \beta \left(\frac{\sum_{i} d_{2i}}{\sum_{i} d_{i}} \right) \frac{\mathbf{d}}{\sum_{i} d_{2i}},$$
where $\underline{\mathbf{d}} = (d_{1}, ..., d_{n})^{T}, \underline{\mathbf{d}}_{1} = (d_{11}, ..., d_{1n})^{T}$ and $\underline{\mathbf{d}}_{2} = (d_{21}, ..., d_{2n})^{T}.$

If $\underline{\mathbf{d}}' = \frac{\underline{\mathbf{d}}}{\sum_i d_i}$, $\underline{\mathbf{d}}'_1 = \frac{\underline{\mathbf{d}}_1}{\sum_i d_{1i}}$ and $\underline{\mathbf{d}}'_2 = \frac{\underline{\mathbf{d}}_2}{\sum_i d_{2i}}$, then $\underline{\mathbf{d}}', \underline{\mathbf{d}}'_1, \underline{\mathbf{d}}'_2 \in D'$. Since $\underline{\mathbf{d}}, \underline{\mathbf{d}}_1$ and $\underline{\mathbf{d}}_2$ are all nonnegative and nonzero vectors, $\sum_i d_i, \sum_i d_{1i}, \sum_i d_{2i} > 0$ and since $\underline{\mathbf{d}} = \alpha \underline{\mathbf{d}}_1 + \beta \underline{\mathbf{d}}_2$, $\sum_i d_i = \alpha(\sum_i d_{1i}) + \beta(\sum_i d_{2i})$. From $(\overline{**}) \underline{\mathbf{d}} = \alpha \underline{\mathbf{d}}_1 + \beta \underline{\mathbf{d}}_2 \iff \underline{\mathbf{d}}' = \lambda \underline{\mathbf{d}}_1' + (1 - \lambda)\underline{\mathbf{d}}_2'$, where $\lambda = \alpha(\sum_i d_{1i})$ and $0 < \lambda < 1$.

Hence $\underline{\mathbf{d}}$ is not an extreme direction of $S \iff \underline{\mathbf{d}'}$ is not an extreme point of D'.

Remark: Hence the number of extreme directions of S is finite (why?).

Also since D' is a polyhedral set (like the set, Fea(LPP) = S), if $D' \neq \phi$, then D' must have atleast one extreme point (not proved as yet),

hence if Fea(LPP) = S is unbounded then (since D' is then a nonempty set, which is of the same form as S, hence will have at least one extreme point) S must have at least one extreme direction. Also the extreme directions of S which are also extreme points of D' (after suitable normalization)

will lie on n LI hyperplanes defining D'. Since any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ cannot be orthogonal to n LI vectors, so **d** cannot lie on n LI hyperplanes of the (m+n) hyperplanes given by,

 $\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\}\$ for $i = 1, 2, \dots, m$, and $\{\mathbf{d} \in \mathbb{R}^n : -\mathbf{e}_j^T \mathbf{d} = \mathbf{0}\}\$ for $j = 1, 2, \dots, n$.

So if $\mathbf{d} \in D'$, is an extreme direction of S or an extreme point of D', then it should should lie on (n-1) LI hyperplanes of the above mentioned (m+n) hyperplanes, which together with the hyperplane $\{\mathbf{d} \in \mathbb{R}^n : [1, 1, \dots, 1]\mathbf{d} = 1\}$ on which **d** must necessarily lie (since $\mathbf{d} \in D'$), should give a collection of n LI hyperplanes, on which **d** should lie.

So any $\mathbf{d} \in D$, which lies on (n-1) LI hyperplanes out of the (m+n) hyperplanes given by $\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\} \text{ for } i = 1, 2, \dots, m, \text{ and } \{\mathbf{d} \in \mathbb{R}^n : -\mathbf{e}_i^T \mathbf{d} = \mathbf{0}\} \text{ for } j = 1, 2, \dots, n,$ will be an extreme direction of S.

Exercise: Check that if $\{H_1,\ldots,H_{n-1}\}$ is an LI collection of hyperplanes from the (m+n)defining hyperplanes of D, then $\{H, H_1, \dots, H_{n-1}\}$ is LI where $H = \{\mathbf{d} \in \mathbb{R}^n : [1, 1, \dots, 1]\mathbf{d} = 1\}$.

Example 2: (revisited) Consider the problem,

Min - x + 2y

subject to

 $x + 2y \ge 1$

 $-x + y \le 1$,

 $x \ge 0, y \ge 0.$

Note that here the set of all directions of S is given by

$$D = \{ \mathbf{d} \in \mathbb{R}^2 : [-1, -2] \mathbf{d} \le 0, [-1, 1] \mathbf{d} \le 0, \mathbf{d} \ge \mathbf{0} \}.$$

Also if $\mathbf{d} \in D$ is an extreme direction of S then it has to lie on exactly one of the hyperplanes given by

(i)
$$\{\mathbf{d} \in \mathbb{R}^2 : [-1, -2]\mathbf{d} = 0\}, (ii) \{\mathbf{d} \in \mathbb{R}^2 : [-1, 1]\mathbf{d} = 0\}, (iii) \{\mathbf{d} \in \mathbb{R}^2 : d_1 = 0\},$$

(iv) $\{\mathbf{d} \in \mathbb{R}^2 : d_2 = 0\}.$

Note that there exists no $\mathbf{d} \geq \mathbf{0}$, $\mathbf{d} \neq \mathbf{0}$ such that $[-1, -2]\mathbf{d} = 0$.

Also if $\mathbf{d} \geq \mathbf{0}$, $\mathbf{d} \neq \mathbf{0}$ satisfies the condition $d_1 = 0$, then $[-1, 1]\mathbf{d} \leq 0$ cannot be satisfied, hence \mathbf{d} does not belong to D.

Hence $\mathbf{d} \in D$, is an extreme direction of S if and only if it lies on either the hyperplane

 $\{\mathbf{d} \in \mathbb{R}^2 : [-1, 1]\mathbf{d} = 0\}, \text{ or in } \{\mathbf{d} \in \mathbb{R}^2 : d_2 = 0\}.$

Hence $\mathbf{u} = [1,1]^T$ and any positive scalar multiple of \mathbf{u} (they are all same as directions), and $\mathbf{v} = [1,0]^T$ and any positive scalar multiple of \mathbf{v} , are the only possible extreme directions of S = Fea(LPP) of the LPP given above.

Theorem: If $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ is nonempty, then S has at least one extreme point.

Proof: Consider $\mathbf{x} \in S$. If \mathbf{x} is an extreme point of S, then done.

If not, then **x** lies in **exactly**, $0 \le k < n$, LI hyperplanes, and there exists $\mathbf{x}_1, \mathbf{x}_2$ distinct elements of S such that **x** lies strictly in between and on the line segment joining $\mathbf{x}_1, \mathbf{x}_2$, that is,

there exists $0 < \lambda < 1$, such that $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$.

Let the k LI hyperplanes on which **x** lies be H_{i_1}, \ldots, H_{i_k} , and let the corresponding normals be $\tilde{\mathbf{a}}_{i_j}$, $j = 1, 2, \ldots, k$.

Then the set of vectors, $\{\tilde{\mathbf{a}}_{i_1}, \dots, \tilde{\mathbf{a}}_{i_k}\}$ is LI. Also note that each of \mathbf{x}_1 and \mathbf{x}_2 also lie on the same k, LI hyperplanes (we have seen this earlier also while proving the equivalence of the definition of corner points and extreme points), on which \mathbf{x} lies.

If $\mathbf{d} = \mathbf{x}_2 - \mathbf{x}_1$, then note that $\mathbf{d} \neq \mathbf{0}$ and \mathbf{d} is orthogonal to the normals of each of the k hyperplanes on which \mathbf{x} lies, that is for all $j = 1, \ldots, k$, $\tilde{\mathbf{a}}_{i_j}^T \mathbf{d} = \tilde{\mathbf{a}}_{i_j}^T (\mathbf{x}_2 - \mathbf{x}_1) = \tilde{b}_{i_j} - \tilde{b}_{i_j} = 0$. Since $\mathbf{x} \geq 0$ and $\mathbf{d} \neq \mathbf{0}$, there exists an $\alpha > 0$ large, such that either $\mathbf{x} + \alpha \mathbf{d}$ does not belong to S

Since $\mathbf{x} \geq 0$ and $\mathbf{d} \neq \mathbf{0}$, there exists an $\alpha > 0$ large, such that either $\mathbf{x} + \alpha \mathbf{d}$ does not belong to S or $\mathbf{x} - \alpha \mathbf{d}$ does not belong to S.

Let us assume that $\mathbf{x} - \alpha \mathbf{d}$ does not belong to S for α large, and let $\gamma = \max\{\alpha > 0 : \mathbf{x} - \alpha \mathbf{d} \in S\}$, then note that $\gamma > 0$.

Also, $\mathbf{x}_0 = \mathbf{x} - \gamma \mathbf{d} \in S$ and lies in each of the k LI hyperplanes on which \mathbf{x} lies and also lies in one more hyperplane say H_{i_0} , which obstructs further movement along the direction of $-\mathbf{d}$, starting from \mathbf{x}

Let the normal vector of H_{i_0} be $\tilde{\mathbf{a}_{i_0}}$,

then
$$\tilde{\mathbf{a}_{i_0}}^T(\mathbf{x} - \gamma \mathbf{d}) = \tilde{b_{i_0}}$$
, but $\tilde{\mathbf{a}_{i_0}}^T(\mathbf{x} - \alpha \mathbf{d}) > \tilde{b_{i_0}}$ for all $\alpha > \gamma$. (**)

Observe that the hyperplanes $H_{i_0}, H_{i_1}, H_{i_2}, \dots, H_{i_k}$, are LI.

If not, then suppose the set $\{\tilde{\mathbf{a}}_{i_0}, \tilde{\mathbf{a}}_{i_1}, \dots, \tilde{\mathbf{a}}_{i_k}\}$ is LD.

Since $\{\tilde{\mathbf{a}}_{i_1}, \dots, \tilde{\mathbf{a}}_{i_k}\}$ is LI it means that $\tilde{\mathbf{a}}_{i_0}$ can be written as a linear combination of $\tilde{\mathbf{a}}_{i_1}, \dots, \tilde{\mathbf{a}}_{i_k}$, which implies \mathbf{d} is also orthogonal to $\tilde{\mathbf{a}}_{i_0}$, that is $\tilde{\mathbf{a}}_{i_0}^T \mathbf{d} = \mathbf{0}$.

But then $\tilde{\mathbf{a}_{i_0}}^T(\mathbf{x} - \alpha \mathbf{d}) = \tilde{\mathbf{a}_{i_0}}^T \mathbf{x} = \tilde{\mathbf{a}_{i_0}}^T(\mathbf{x} - \gamma \mathbf{d}) = \tilde{b_{i_0}}$ for all $\alpha \in \mathbb{R}$, which contradicts (**). Hence the hyperplanes $H_{i_0}, H_{i_1}, H_{i_2}, \dots, H_{i_k}$ are LI, and we obtain an $\mathbf{x}_0 \in S$, which lies in at least (k+1), LI hyperplanes defining S. If \mathbf{x}_0 is an extreme point, then again done. If not then continue as before starting now from the point \mathbf{x}_0 . Hence after at (n-k) steps we will find a feasible point which lies on exactly n LI hyperplanes defining S, and hence is an extreme point of S.

Remark: Note that the above result is not necessarily true for any polyhedral set.

For example take any single half space, or say a straight line in \mathbb{R}^n , which are polyhedral sets, but does not have any extreme point.

The theorem works for Fea(LPP) because of the nonnegativity constraints, that is because Fea(LPP)is given a supply of n LI hyperplanes, among the (m+n) hyperplanes defining S.

Exercise: Can you find a nonempty polyhedral set $S, S \subset \mathbb{R}^3$ which has two defining hyperplanes but does not have any extreme point.

Exercise: Can you find a nonempty polyhedral set $S, S \subset \mathbb{R}^3$ which has three defining hyperplanes (not necessarily the nonnegativity constraints) but does not have any extreme point.

Definition: Given S, a nonempty subset of \mathbb{R}^n , and $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in S$, $\sum_{i=1}^{k} \lambda_i \mathbf{x}_i$, is called a convex combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$, where $0 \le \lambda_i \le 1$ for all $i = 1, 2, \dots, k$, and $\sum_{i=1}^{k} \lambda_i = 1$.

Result: Given $\phi \neq S \subset \mathbb{R}^n$, S is a convex set if and only if for all $k \in \mathbb{N}$, the convex combination of any k points of S is again an element of S.

Proof: 'If part' is obvious, follows from the definition of convex sets.

To show the 'Only if' part, that is if S is a convex set then the convex combination of finitely many points of S should belong to S, that is for all $k \in \mathbb{N}$,

the convex combination of any k points of S is an element of S.

We will prove this by induction on k.

Since S is convex so the result is true for k=2.

Assume that the convex combination of any $n \leq k$ points of S is in S, to show that the convex combination of any (k+1) points of S is in S.

Let $\mathbf{x} = \sum_{i=1}^{k+1} \lambda_i \mathbf{x}_i$, where $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{k+1} \in S$, $0 \le \lambda_i \le 1$, for all $i = 1, 2, \dots, k+1$ and $\sum_{i=1}^{k+1} \lambda_i = 1$, then $\mathbf{x} = (1 - \lambda_{k+1})(\sum_{i=1}^k \frac{\lambda_i \mathbf{x}_i}{\sum_{i=1}^k \lambda_i}) + \lambda_{k+1} \mathbf{x}_{k+1}$.

Note that $\sum_{i=1}^k \frac{\lambda_i \mathbf{x}_i}{\sum_{i=1}^k \lambda_i} \in S$ by induction hypothesis and $\mathbf{x}_{k+1} \in S$.

Hence \mathbf{x} which is now expressed as a convex combination of two points of S, belongs to S.

We assume the following result without proof.

Theorem: (Representation Theorem) If $S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ is nonempty and if $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ are the extreme points of S and $\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_r$ are the extreme directions of S (the set of directions is the empty set if S is bounded) then $\mathbf{x} \in S$ if and only if

$$\mathbf{x} = \sum_{i=1}^{\kappa} \lambda_i \mathbf{x}_i + \sum_{j=1}^{r} \mu_j \mathbf{d}_j$$

 $\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}_i + \sum_{j=1}^{r} \mu_j \mathbf{d}_j$ where $0 \le \lambda_i \le 1$ for all $i = 1, 2, \dots, k$, $\sum_i \lambda_i = 1$, and $\mu_j \ge 0$, for all $j = 1, 2, \dots, r$.

That is, \mathbf{x} can be written as a convex combination of the extreme points of S plus a nonnegative linear combination of the extreme directions of S.

Proof: The '**If part**' can be verified easily.

That is, if \mathbf{x} is of the form

$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}_i + \sum_{j=1}^{r} \mu_j \mathbf{d}_j$$

where $0 \le \lambda_i \le 1$, for all $i = 1, 2, \ldots, k$, $\sum_{i=1}^k \lambda_i = 1$, and $\mu_i \ge 0$ for all $j = 1, 2, \ldots, r$,

then to see that $\mathbf{x} \in S$.

 $\mathbf{x} \geq \mathbf{0}$ is obvious, since each of the \mathbf{x}_i 's and \mathbf{d}_i 's are nonnegative vectors, and all that λ_i 's and μ_i 's are nonnegative.

Also for any \mathbf{a}_s^T , where \mathbf{a}_s^T is the s th row of $A, s = 1, 2, \dots, m$,

since
$$\mathbf{d}_j \in D$$
, for all $j = 1, 2, ..., r$, $\mathbf{a}_s^T \mathbf{d}_j \leq 0$ (1) and since $\mathbf{x}_i \in S$ for all $i = 1, 2, ..., k$, $\mathbf{a}_s^T \mathbf{x}_i \leq b_s$. (2)

and since
$$\mathbf{x}_i \in S$$
 for all $i = 1, 2, \dots, k$, $\mathbf{a}_s^T \mathbf{x}_i \le b_s$. (2)

From (1) and (2) it follows

From (1) and (2) it follows
$$\mathbf{a}_s^T \mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{a}_s^T \mathbf{x}_i + \sum_{j=1}^r \mu_j \mathbf{a}_s^T \mathbf{d}_j \leq \sum_{i=1}^k \lambda_i \mathbf{a}_s^T \mathbf{x}_i \leq \sum_{i=1}^k \lambda_i b_s = b_s$$
 since $0 \leq \lambda_i \leq 1$, $\sum_{i=1}^k \lambda_i = 1$, and $\mu_j \geq 0$ for all $j = 1, 2, \dots, r$.

since
$$0 \le \lambda_i \le 1$$
, $\sum_{i=1}^k \lambda_i = 1$, and $\mu_j \ge 0$ for all $j = 1, 2, \dots, r$

Hence $\mathbf{a}_s^T \mathbf{x} \leq b_s$, for all s = 1, 2, ..., m.

Hence **x** satisfies the condition A**x** \leq **b** and since **x** \geq **0**, **x** \in S.

'Only if' part.

Let us assume that S is unbounded and let \mathbf{x}_0 be an arbitrary element of S.

If \mathbf{x}_0 is an extreme point of S, WLOG let us assume $\mathbf{x}_0 = \mathbf{x}_1$,

then
$$\mathbf{x}_0 = 1.\mathbf{x}_1 + 0.\mathbf{x}_2 + \ldots + 0.\mathbf{x}_k + 0.\mathbf{d}_1 + \ldots + 0.\mathbf{d}_r$$

which is a convex combination of the extreme points of S and nonnegative linear combination of extreme directions of S.

If not, that is if \mathbf{x}_0 is not an extreme point of S then choose an M > 0, large such that $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_k \in \overline{S}$ where $\overline{S} = \{\mathbf{x} \in S : \sum_{i=1}^n x_i \leq M\}$, and also such that none of the extreme points of S or \mathbf{x}_0 lies on the newly added hyperplane $H_0 = {\mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n x_i = M}$.

Note that \overline{S} is bounded.

Since \overline{S} has m+n+1 constraints of which (m+n) come from S, so all the extreme points of S are also extreme points of \overline{S} (since they lie on n LI hyperplanes defining S), but some new extreme points may have been added to \overline{S} due to the addition of the new hyperplane H_0 .

Since \mathbf{x}_0 is not an extreme point of S or \overline{S} , let us assume that it lies on exactly k $(0 \le k < n)$ LI hyperplanes defining S. Also there exists a line segment $L_{\mathbf{X}_0}$ (with \mathbf{x}_0 sitting in between) with boundary points y_1, y_2 totally contained in S.

Note that both $\mathbf{y}_1, \mathbf{y}_2$ also lies on the k LI hyperplanes on which \mathbf{x}_0 lies. Let $\mathbf{d} = \mathbf{y}_1 - \mathbf{y}_2$, then $\mathbf{x}_0 + \alpha \mathbf{d} \in \overline{S}$ for $\alpha > 0$ sufficiently small.

Let $\gamma = \max\{\alpha : \mathbf{x}_0 + \alpha \mathbf{d} \in \overline{S}\}\$ (there exists such a $\gamma > 0$ since \overline{S} is bounded).

Let $\mathbf{y} = \mathbf{x}_0 + \gamma \mathbf{d}$, then \mathbf{y} lies on at least (k+1) LI hyperplanes defining \overline{S} of which k are from S, in common with $\mathbf{x}_0, \mathbf{y}_1, \mathbf{y}_2$.

Now by starting with y and repeating the above process, after at most n-k-1 steps we will be able to find an extreme point of \overline{S} , call it \mathbf{x}_{i_1} such that that this extreme point lies on n lie hyperplanes defining \overline{S} of which k are common with \mathbf{x}_0 .

Consider the line segment joining \mathbf{x}_{i_1} and \mathbf{x}_0 (all points on this line segment will be in \overline{S} since it is a convex set) and extend it further from \mathbf{x}_0 in the positive direction of the vector $\mathbf{d}_0 = \mathbf{x}_0 - \mathbf{x}_{i_1}$ (you will be able to extend it further from \mathbf{x}_0 since otherwise if there is any obstruction of movement at \mathbf{x}_0 , then it must be by a hyperplane which is LI to the first k hyperplanes on which \mathbf{x}_0 lies, which will contradict that \mathbf{x}_0 lies on exactly k LI hyperplanes defining S).

Let $\beta = \max\{\alpha : \mathbf{x}_{i_1} + \alpha \mathbf{d}_0 \in \overline{S}\}\$ (there exists such a $\beta > 1$ since \overline{S} is bounded) and let $\mathbf{y}_0 = \mathbf{x}_{i_1} + \beta \mathbf{d}$, then \mathbf{y}_0 lies on at least (k+1) LI hyperplanes defining \overline{S} of which k are from S, in common with ${\bf x}_0, {\bf x}_{i_1}.$

Note that $\mathbf{x}_0 = \lambda_1 \mathbf{x}_{i_1} + (1 - \lambda_1) \mathbf{y}_0$ for some $0 \le \lambda_1 \le 1$, that is \mathbf{x}_0 is written as a convex combination of an extreme point \mathbf{x}_{i_1} of \overline{S} and \mathbf{y}_0 which lies on at least (k+1) LI hyperplanes defining \overline{S} .

Now repeating the same process by starting with y_0 , after a finite number of steps we will be able to write $\mathbf{y}_0 = \lambda_2 \mathbf{x}_{i_2} + (1 - \lambda_2) \mathbf{y}_{00}$ for some $0 \le \lambda_2 \le 1$, where \mathbf{x}_{i_2} is an extreme point of \overline{S} and \mathbf{y}_{00} lies on at least (k+2) LI hyperplanes defining S.

Hence $\mathbf{x}_0 = \lambda_1 \mathbf{x}_{i_1} + (1 - \lambda_1) \mathbf{y}_0 = \lambda_1 \mathbf{x}_{i_1} + (1 - \lambda_1) (\lambda_2 \mathbf{x}_{i_2} + (1 - \lambda_2) \mathbf{y}_{00})$

 $= \lambda_1 \mathbf{x}_{i_1} + (1 - \lambda_1) \lambda_2 \mathbf{x}_{i_2} + (1 - \lambda_1)(1 - \lambda_2) \mathbf{y}_{00}.$

That is, $\mathbf{x}_0 = \beta_1 \mathbf{x}_{i_1} + \beta_2 \mathbf{x}_{i_2} + \beta_3 \mathbf{y}_{00}$, where $0 \le \beta_i \le 1$ for all i = 1, 2, 3 and $\sum_{i=1}^3 \beta_i = 1$.

Continuing this process after at most n-k-2 steps, we will be able to write \mathbf{x}_0 as a convex combination of extreme points of \overline{S} ,

let $\mathbf{x}_0 = \sum_{j=1}^p \lambda_j \mathbf{x}_{i_j}$, (***) where $0 \le \lambda_j \le 1$ for all $j = 1, 2, \dots, p$ and $\sum_{j=1}^p \lambda_j = 1$. If all the extreme points in that above expression (of \mathbf{x}_0) are also extreme points of S then we are done.

If not then WLOG let \mathbf{x}_{i_1} be an extreme point of \overline{S} , which is not an extreme point of S, which implies \mathbf{x}_{i_1} lies on (n-1) LI defining hyperplanes of S (WLOG assume that the respective normals are $\tilde{\mathbf{a}}_i$, i = 1, ..., n-1) and on the added hyperplane H_0 with normal $[1, ..., 1]^T$.

Let $\mathbf{d}_2 \neq \mathbf{0}$ be a vector orthogonal to each of these (n-1) normals (that is $\tilde{\mathbf{a}}_i^T \mathbf{d}_2 = 0$, for all $i=1,\ldots,n-1$), (why does this vector exist?) and since $\mathbf{d}_2\neq\mathbf{0}$, it cannot be orthogonal to the normal of H_0 (why?).

Further $\mathbf{x}_{i_1} \pm \alpha \mathbf{d}_2$, (for any given $\alpha > 0$) cannot both lie on the same closed half space defined by H_0 and hence cannot both belong to S (since \mathbf{x}_{i_1} lies on H_0 that is $[1,\ldots,1]^T\mathbf{x}_{i_1}=M$, and $d_2 \neq 0$).

WLOG let $\mathbf{x}_{i_1} - \alpha \mathbf{d}_2 \in \overline{S}$.

Since \overline{S} is bounded, there exists $\delta > 0$, sufficiently large such that $\mathbf{x}_{i_1} - \delta \mathbf{d}_2$ is not in \overline{S} .

Let $\theta = \max\{\delta : \mathbf{x}_{i_1} - \delta \mathbf{d}_2 \in \overline{S}\}$ and let $\mathbf{z} = \mathbf{x}_{i_1} - \theta \mathbf{d}_2$.

Then **z** lies on the (n-1) LI hyperplanes of S on which \mathbf{x}_{i_1} lies and another extra hyperplane of S (it cannot be H_0) which is LI to the previous (n-1), (since it obstructs indefinite movement along positive direction of \mathbf{d}_2), hence \mathbf{z} is an extreme point of S.

Check that $\mathbf{z} + \alpha \mathbf{d}_2 \in S$ for all $\alpha > 0$, hence $\mathbf{d}_2 \neq \mathbf{0}$ is a direction of S and since it satisfies $\tilde{\mathbf{a}}_i^T \mathbf{d}_2 = 0$, for all $i = 1, \dots, n-1$, that is it lies on (n-1) LI hyperplanes defining D(the set of directions of S), hence \mathbf{d}_2 is an extreme direction of S.

Also since $\mathbf{x}_{i_1} = \mathbf{z} + \theta \mathbf{d}_2$, if we substitute this expression of \mathbf{x}_{i_1} in (***), and do this similarly for all other extreme points of S which are not extreme points of S in (***) then finally we would have written \mathbf{x}_0 as a linear combination of the extreme points of S plus a nonnegative linear combination of the extreme directions of S.

Remark: If $S \neq \phi$ is bounded then there is no need to add H_0 to the existing set of (m+n)defining hyperplanes of S in the above proof, and the process followed above terminates at (***).

Observation 6: If S = Fea(LPP) is a bounded set then any $\mathbf{x} \in S$ can be written as a convex combination of the extreme points of S.

Observation 7: Since D', the set of distinct directions of S (if it is nonempty) is a bounded set because of the constraints $\mathbf{d} \geq \mathbf{0}$ and $\sum_{i=1}^n d_i = 1$, so any $\mathbf{d} \in D'$ can be written as a convex combination of the extreme points of D'. So any direction $\mathbf{d} \in D$ of S can be written as a nonnegative linear combination of the extreme directions of S.

Observation 8: Note that if there exists a $\mathbf{d} \in D$ such that $\mathbf{c}^T \mathbf{d} < 0$ then the LPP(*)

((*) Min $\mathbf{c}^T \mathbf{x}$, subject to $A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}$)

does not have an optimal solution.

Since for any given $\mathbf{x} \in S$, $\mathbf{c}^T(\mathbf{x} + \alpha \mathbf{d}) = \mathbf{c}^T \mathbf{x} + \alpha \mathbf{c}^T \mathbf{d}$ can be made smaller than any real M, by choosing $\alpha > 0$ sufficiently large.

Exercise: If $\mathbf{c}^T \mathbf{d}_j \geq 0$ for all extreme directions \mathbf{d}_j of the nonempty and unbounded feasible region S of a LPP, then does it imply that $\mathbf{c}^T \mathbf{d} \geq 0$ for all directions $\mathbf{d} \in D$, of the feasible region S?

Ans is **yes**, since any $\mathbf{d} \in D$ can be written as a **nonnegative** linear combinations of the extreme directions of S, that is,

 $\mathbf{d} = \sum_{j=1}^{r} \mu_j \mathbf{d}_j$, for some $\mu_j \geq 0$ for all $j = 1, 2, \dots, r$,

where \mathbf{d}_j 's are the (instead of writing \mathbf{the} , should be more correctly written as, a set of) extreme directions of S.

Hence $\mathbf{c}^T \mathbf{d} = \sum_{j=1}^r \mu_j \mathbf{c}^T \mathbf{d}_j \ge 0.$

Observation 9: From the representation theorem of S we can see that if $S \neq \phi$ and $\mathbf{c}^T \mathbf{d}_j \geq 0$ for all j = 1, 2, ..., r, then LPP(*) has an optimal solution, and the optimal solution is attained at an extreme point of S.

If
$$\mathbf{c}^T \mathbf{d}_j \geq 0$$
 for all $j = 1, 2, ..., r$, then for all $\mathbf{x} \in S$, $\mathbf{c}^T \mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{c}^T \mathbf{x}_i + \sum_{j=1}^r \mu_j \mathbf{c}^T \mathbf{d}_j \geq \sum_{i=1}^k \lambda_i \mathbf{c}^T \mathbf{x}_i$ (1) where $0 \leq \lambda_i \leq 1$ for all $i = 1, 2, ..., k$, $\sum_{i=1}^k \lambda_i = 1$, and $\mu_j \geq 0$, for all $j = 1, 2, ..., r$. If \mathbf{x}_{i_0} is the the extreme point such that, $\mathbf{c}^T \mathbf{x}_{i_0} = \min\{\mathbf{c}^T \mathbf{x}_i : i = 1, 2, ..., k\}$, (note that $i_0 \in \{1, 2, ..., k\}$) then from (1), $\mathbf{c}^T \mathbf{x} \geq \sum_{i=1}^k \lambda_i \mathbf{c}^T \mathbf{x}_i \geq (\sum_{i=1}^k \lambda_i) \mathbf{c}^T \mathbf{x}_{i_0} = \mathbf{c}^T \mathbf{x}_{i_0}$, for all $\mathbf{x} \in S$. Hence the LPP(*) has an optimal solution, and the extreme point \mathbf{x}_{i_0} of S is an optimal solution.

Observation 10: From the representation theorem of S we can also see that if S = Fea(LPP) is nonempty and bounded then the LPP(*) has an optimal solution and the optimal value is attained at an extreme point.

```
If S is bounded then for all \mathbf{x} \in S, \mathbf{c}^T \mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{c}^T \mathbf{x}_i for some \lambda_i, i = 1, \ldots, k where 0 \le \lambda_i \le 1 for all i = 1, 2, \ldots, k, \sum_{i=1}^k \lambda_i = 1.
Again take \mathbf{x}_{i_0} as the the extreme point such that, \mathbf{c}^T \mathbf{x}_{i_0} = \min\{\mathbf{c}^T \mathbf{x}_i : i = 1, 2, \ldots, k\}, then by repeating the above calculations we get \mathbf{c}^T \mathbf{x} \ge \mathbf{c}^T \mathbf{x}_{i_0} for all \mathbf{x} \in S.
Hence the LPP(*) has an optimal solution and the extreme point \mathbf{x}_{i_0} is an optimal solution.
```

From the above observations we can conclude the following:

Conclusion 1: If $S = Fea(LPP) \neq \phi$, then the LPP (*) has an optimal solution if and only if one of the following is true:

- (i) S = Fea(LPP) is bounded (also seen before by using extreme value theorem)
- (ii) S = Fea(LPP) is unbounded and $\mathbf{c}^T \mathbf{d}_j \geq 0$ for all extreme directions \mathbf{d}_j of the feasible region S (follows from observation 6 and observation 7).

Conclusion 2: If LPP (*) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.

Exercise: Give an example of a **nonlinear** function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is a closed and bounded polyhedral subset of \mathbb{R} , (what are these sets?) such that f has a minimum value in S but the minimum value is not attained at any extreme point of S.

Conclusion 3: If S = Fea(LPP) is nonempty, and there exists an $M \in \mathbb{R}$ such that for all $\mathbf{x} \in S$, $\mathbf{c}^T \mathbf{x} \geq M$, then the LPP (*) has an optimal solution.

To understand the significance of the previous result solve the following problems.

Exercise: Give an example of a **linear** function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is not a polyhedral subset of \mathbb{R} , such that $f(x) \geq 1$ but f does not have a minimum value in S.

Exercise: Give an example of a **nonlinear** function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is a polyhedral subset of \mathbb{R} , such that $f(x) \geq 1$ but f does not have a minimum value in S.

We can come to similar conclusions if we consider a linear programming problem, LPP(**) as

(**) Max
$$\mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}$.

Conclusion 1a: If $S = Fea(LPP) \neq \phi$, then the LPP (**) has an optimal solution if and only if one of the following is true:

- (i) S = Fea(LPP) is bounded
- (ii) S = Fea(LPP) is unbounded and $\mathbf{c}^T \mathbf{d}_j \leq 0$ for all extreme directions \mathbf{d}_j of the feasible region S.

Conclusion 2a: If a LPP (**) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.

Conclusion 3a: If S = Fea(LPP) is nonempty, and there exists an $M \in \mathbb{R}$ such that for all $\mathbf{x} \in S$, $\mathbf{c}^T \mathbf{x} \leq M$, then the LPP (**) has an optimal solution.