Algoritmi e Strutture Dati

Cicli ciclabili (cicli)

Testo del problema

Slides originali su: judge.science.unitn.it/slides/asd19/prog1.pdf

Un nuovo sindaco in città. A Trento è stato eletto un nuovo sindaco! È un temuto professore di algoritmi, che nel tempo libero ha deciso di dedicarsi alla politica. Con il partito «Algoritmi, Cricche e Libertà», ha stravinto le elezioni!

Il programma del nuovo sindaco. Oltre ad avere a cuore i suoi studenti, il nuovo sindaco tiene molto alla città ed i suoi cittadini. Dopo un consulto con l'assessore alla Salute (M. F.) e l'assessore allo Sport (M. B.), ha stilato una lista di interventi che vorrà fare per la città. Tra le varie cose, ha pensato di incentivare l'uso delle biciclette e costruire nuove piste ciclabili! In realtà, stufo di trovare i 5 sempre troppo pieni, vorrebbe convincere gli studenti ad andare a Povo in bicicletta, per poi riuscire finalmente a trovare un posto sull'autobus!

Le nuove piste ciclabili. Per attuare ciò, ha identificato N luoghi principali in tutta la città, punti di maggior interesse per gli abitanti. Le piste ciclabili già presenti e che verranno costruite sono tutte bidirezionali e collegano ciascuna due luoghi diversi. Come primo obiettivo, ha voluto assicurarsi che tutti i luoghi siano sempre raggiungibili dovunque ci si trovi in città.

Cicli ciclabili. Dopo un ulteriore consulto con il Vicesindaco (C. C.) - con delega al Riposo e al Divertimento - si decide di introdurre una miglioria alle piste che ridurrà la fatica degli studenti: ora nessuno dovrà più fare giri inutilmente!

Tutti i luoghi che fanno parte di un *percorso circolare semplice*, dovranno essere collegati tra loro in maniera diretta. Un percorso circolare semplice è un insieme di piste ciclabili che collega un punto della città a se stesso, senza passare per nessun luogo due volte. In altre parole, l'insieme di luoghi in ogni ciclo semplice, costituisce un sottografo completo.

Il vostro compito

Dopo l'inaugurazione delle nuove piste ciclabili, vari abitanti si chiedono come raggiungere i vari punti della città nel modo più veloce possibile. Sono molte le domande che arrivano al sindaco, che avrà bisogno di aiuto per rispondere a tutti! Il vostro compito è rispondere a tutte le domande nel modo più efficiente possibile. Il sindaco vi fornirà:

- ullet la mappa della città, con gli N luoghi di interesse e le piste ciclabili che ha fatto costruire, facendo rispettare i requisiti sopra elencati
- un elenco di tutte le richieste dei cittadini, che indicheranno il punto da cui vogliono partire e quello che vogliono raggiungere.

Per ciascuna richiesta dovrete comunicare la **minima distanza** che il cittadino dovrà percorrere, in termini di numero di piste ciclabili attraversate.

Esempio

Le figure fig. 1 e fig. 2, forniscono due esempi di mappe valide della città. In input, oltre alla descrizione della mappa, troverete Q richieste, $q_j = (u_j, v_j)$, dove u_j e v_j rappresentano rispettivamente il luogo di partenza e di arrivo tra i quali dovrete calcolare la distanza minima, ovvero il numero minimo di piste ciclabili da attraversare per andare da u_j a v_j .

Facendo riferimento alla mappa in figura fig. 1, un esempio di lista di richieste è il seguente:

- (0, 1), numero minimo di piste ciclabili da attraversare: 1
- (6, 3), numero minimo di piste ciclabili da attraversare: 2
- (3, 1), numero minimo di piste ciclabili da attraversare: 3
- (6, 5), numero minimo di piste ciclabili da attraversare: 1
- (3, 5), numero minimo di piste ciclabili da attraversare: 2

Le risposte saranno quindi R = [1, 2, 3, 1, 2].

Nota: Vi garantiamo che la mappa di input rispetterà sempre i requisiti stabiliti sopra, quindi: sarà connessa e ogni ciclo semplice farà parte di un sottografo completo. Pertanto non ci saranno mai casi come quelli rappresentati in figura fig. 3 dove esiste un percorso circolare semplice tra i nodi [0, 5, 6, 10, 2] che non fa parte di un sottografo completo. Inoltre in alcuni casi di test i grafi di input saranno alberi, in altri saranno alberi con una cricca, come rappresenta la figura fig. 4.

Figura 1: Esempio di mappa valida della città con N=7 luoghi, e M=12 piste. Ogni percorso circolare semplice fa parte di un sottografo completo.

Figura 2: Esempio di mappa valida della città con N=11 luoghi, e M=17 piste. Ogni percorso circolare semplice fa parte di un sottografo completo.

Figura 3: Esempio di mappa errata della città: esiste un percorso circolare semplice tra i nodi [0,5,6,10,2] che non fa parte di un sottografo completo.

Figura 4: Albero con una cricca (costruzione dell'esempio fig. 1): viene aggiunto ad un albero un arco tra due nodi in modo da creare un ciclo e vengono collegati tutti i nodi che fanno parte del ciclo.

Input/Output

Input: un file con 1 + M + Q righe.

- La prima riga riporta 3 numeri interi positivi: N, M e Q, rispettivamente il numero di luoghi, di piste ciclabili e di richieste;
- Le successive M righe descrivono la mappa: ciascuna riga contiene due interi a_i e b_i , compresi tra 0 ed N-1, ad indicare che a_i e b_i sono collegati da una pista ciclabile;
- Le successive Q righe forniscono le richieste: ciascuna contiene due interi u_j e v_j , compresi tra 0 ed N-1, i luoghi tra i quali si vuole conoscere la distanza minima;

Output: un file con Q righe.

• La j-esima riga deve contenere la risposta alla j-esima richiesta q_j : ossia il minimo numero di piste ciclabili che bisogna percorre per arrivare da u_j a v_j .

Assunzioni e casi di test

Assunzioni

- $1 \le N \le 50000$
- $1 \le M \le 500000$
- $1 \le Q \le 50000$
- Ogni grafo è connesso.
- Ogni grafo è non diretto.

Casi di test

- 20 casi di test in totale;
- In almeno 6 casi $N \le 10000$ e $Q \le 10000$;
- In almeno 10 casi l'input è un albero;
- In almeno 14 casi l'input è un albero con al più una cricca.

I limiti di tempo e memoria sono:

- Tempo limite massimo: 2 secondi;
- Memoria massima: 32 MB;

Punteggi e correttore

Ogni caso di test vale 5 punti. Il punteggio massimo è di 100 punti. Per ogni caso di test per cui la vostra soluzione fornisce un output entro i limiti di tempo e memoria:

- se avete calcolato correttamente tutte le distanze richieste ottenete 5 punti;
- in caso contrario, si prendono 0 punti.

Nota: se uno o più risposte sono errate si ottengono comunque 0 punti.

Valutazione

Per valutazione del progetto:

- Conta il punteggio dell'ultimo sorgente inviato al sistema;
- Il progetto è superato con un punteggio non inferiore a 30 punti;
- C'è un limite di 40 sottoposizioni per gruppo;

Esempi di input/output

File input.txt	File output.txt
7 12 5	1
0 1	2
0 2	3
0 4	1
0 5	2
0 6	
2 3	
2 4	
2 5	
2 6	
4 5	
4 6	
5 6	
0 1	
6 3	
3 1 6 5	
3 5	
File input.txt	File output.txt
11 17 5	1
0 5	3
0 6	3
	2
2 10	2 1
3 9	
4 7	
4 8	
4 9	
4 10	
5 6	
6 10	
7 8	
7 9	
7 10	
8 9	
8 10	
9 10	
9 10	
1 3	
2 3	
2 3 9 1	
2 3	