Appunti di Matematica Discreta

delle lezioni della prof.ssa L. Di Terlizzi

SIMONE FIDANZA

Corso di laurea in Informatica L-31, Università degli studi di Bari "Aldo Moro"

Indice

1	Ce	Cenni di Logica 5									
	1.1	1.1 Proposizioni Atomiche									
	1.2	Con	nettivi Logici	6							
		1.2.1	Negazione	6							
		1.2.2	Disgiunzione	6							
		1.2.3	Congiunzione	7							
		1.2.4	Implicazione	7							
		1.2.5	Doppia implicazione	8							
	1.3	Forn	nule della logica proposizionale	8							
	1.4	Rego	ole di inferenza	10							
		1.4.1	Modus Ponens o Metodo di Dimostrazione Diretta	10							
		1.4.2	Modus Tollens	11							
		1.4.3	Dimostrazione per contrapposizione	11							
		1.4.4	Dimostrazione per assurdo	12							
	1.5	Pred	licati	12							
2	Ce	nni di	Teoria degli Insiemi	15							
	2.1		neri razionali	16							
		2.1.1	Decimali e Frazioni	16							
	2.2	Num	neri reali	17							
	2.3		emi numerici	17							
	2.4		zioni	23							
		2.4.1	Relazioni d'ordine	26							
		2.4.2	Relazioni d'equivalenza	29							
	2.5	Funz	zioni	33							
		1 0111		00							
_	١٦		1 11 C								
L	Ле	ncc	o delle figure								
			O								
			resentazione dell'insieme unione	18							
			resentazione dell'insieme intersezione	19							
	2.3.3	3 Insier	me $C_A(B)$, complementare di B rispetto ad A	20							
	2.3.4	l Insier	ne differenza tra due insiemi A, B nel caso in cui $B \subseteq A$	21							
	2.3.5	Gene	rico punto di coordinate (x_0, y_0) all'interno del piano cartesiano $\mathbb{R} \times \mathbb{R}$	22							
	2.4.1	Biset	trice del 1º e 3º quadrante	24							

Elenco delle tabelle

1.2.1	Tabella di verità della negazione (\neg)
1.2.2	Tabella della verità della disgiunzione (V)
1.2.3	Tabella della verità della Congiunzione (\wedge)
1.2.4	Tabella di verità dell'IMPLICAZIONE (\longrightarrow)
1.2.5	Tabella di verità della doppia implicazione (\longleftrightarrow)
1.3.1	Tabella di verità dell'eq. 1.3.1

Lista dei Teoremi

1.2.1	Paradosso di Russel
1.3.1	Definizione (conseguenza logica)
1.3.2	Definizione (formule semanticamente equivalenti)
1.3.3	Proposizione
1.5.1	Definizione (predicato)
2.3.1	Definizione (sottoinsieme improprio)
2.3.2	Definizione (insiemi uguali)
2.3.3	Definizione (sottoinsieme proprio)
2.3.4	Definizione (insieme vuoto)
2.3.5	Proposizione (proprietà dell'inclusione)
2.3.6	Definizione (insieme unione)
2.3.7	Proposizione (proprietà dell'unione)
2.3.8	Definizione (insieme intersezione)
2.3.9	Proposizione (proprietà dell'intersezione)
2.3.10	Proposizione (proprietà di intersezione e unione)
2.3.11	Definizione (insieme complementare)
2.3.12	Proposizione (leggi di De Morgan, proprietà complementare) 20
2.3.13	Definizione (insieme differenza)
2.3.14	Definizione (insieme delle parti)
2.3.15	Definizione (insiemi disgiunti)
2.3.16	Definizione (prodotto cartesiano)
2.4.1	Definizione (relazione)
2.4.2	Definizione (relazione riflessiva)
2.4.3	Definizione (relazione simmetrica)
2.4.4	Definizione (relazione antisimmetrica)
2.4.5	Definizione (relazione transitiva)
2.4.6	Definizione (relazione d'ordine)

2.4.7	Definizione (divisibilità)	7
2.4.8	Proposizione (proprietà divisibilità)	7
2.4.9	Definizione (insieme totalmente ordinato)	7
2.4.10	Definizione (minimo e massimo)	3
2.4.11	Proposizione (unicità massimo e minimo)	3
	Definizione (relazione d'equivalenza)	
2.4.13	Definizione (classe d'equivalenza)	9
	Proposizione (proprietà classi d'equivalenza)	
2.4.15	Proposizione	2
2.4.16	Definizione (partizione)	2
2.4.17	Definizione (insieme quoziente)	2
2.5.1	Definizione (relazione funzionale)	3
2.5.2	Definizione (funzione)	

Capitolo 1

Cenni di Logica

1.1 Proposizioni Atomiche

Le proposizioni possono essere distinte in:

- proposizioni atomiche, dette anche proposizioni semplici;
- proposizioni molecolari, dette anche proposizioni composte.

Una proposizione si dice **atomica** o semplice se è formata da un soggetto, da un verbo ed eventualmente da uno o più complementi. In altre parole la proposizione atomica non può essere scomposta in parti più semplici. Queste proposizioni permettono di dire con certezza se siano Vere (V) o False (F) Alcuni esempi sono i seguenti:

- a) 5 è un numero primo (V);
- b) 10 è un numero dispari (F);
- c) Roma si trova in Piemonte (F).

Proposizioni come "la matematica è bella" non permettono di dire se siano Vere o False

Si prenda la proposizione "x è un numero positivo". Questa non è una proposizione atomica e non è possibile dire se sia V o F poiché è presente un'incognita, ovvero x; in base all'insieme di appartenenza di x il valore (V/F) della proposizione cambia. È necessario sostituire un numero al posto di x, sostituendo 3/2 la proposizione risulta V, sostituendo $-\sqrt{2}$ risulta F.

Per poter conoscere il valore della proposizione precedente è possibile utilizzare dei quantificatori:

- \forall "per ogni";
- \exists "esiste".

Questi quantificatori hanno senso se la variabile varia in un universo, quest'ultimo non è altro che un insieme.

Un insieme in Matematica è un raggruppamento di elementi di qualsiasi tipo numerico, logico o concettuale) che può essere individuato mediante una caratteristica comune agli elementi che vi appartengono oppure per semplice elencazione degli elementi dell'insieme. L'insieme dei numeri naturali (\mathbb{N} , ad esempio, racchiude al suo interno tutti i numeri interi positivi. Gli oggetti di un insieme vengono detti **elementi**. L'argomento verrà trattato approfonditamente nel capitolo Cenni di Teoria degli Insiemi.

Se A è un insieme e a è un suo elemento è possibile scrivere

$$a \in A$$
 oppure $A \ni a$

che si legge "a appartiene ad A" oppure "a è elemento di A". Al contrario, per esprimere la non appartenenza all'insieme si scriverà

$$a \notin A$$
 oppure $A \not\ni a$

Esempio. Si prenda come universo l'insieme \mathbb{N} che è definito come $\mathbb{N} := \{0, 1, 2, \dots, n\}$. La proposizione $1 \in \mathbb{N}$ risulta essere \mathbb{V} . Prendendo la proposizione $\forall x \in \mathbb{N} \ x \geq 0$ essa risulta 1 considerando lo 0 positività).

Si prenda ora l'insieme $\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$, l'insieme dei numeri relativi. Prendendo la proposizione $\forall x \in \mathbb{Z} \ x \geq 0$ essa risulterà 0. Scrivendo invece $\exists x \in \mathbb{Z} \ \text{t.c.} \ x \geq 0$ la proposizione risulta V.

1.2 Connettivi Logici

Un connettivo logico o operatore logico, è un elemento grammaticale di collegamento che instaura fra due proposizioni a e b una qualche relazione che dia origine ad una terza proposizione c con un valore vero o falso, in base ai valori delle due proposizioni ed al carattere del connettivo utilizzato. I connettivi logici permettono dunque di formare delle proposizioni più complesse.

1.2.1 Negazione

Il primo connettivo logico è la NEGAZIONE: data una proposizione atomica a, la sua negazione si indica con $\neg a$ oppure con \bar{a} e si legge "non a". Dunque $\neg a$ è negazione di a, di conseguenza se a è V allora $\neg a$ è F e, al contrario, se a è F allora $\neg a$ è V. Se una proposizione è vera le si assegna il valore 1, se è falsa le si assegna il valore 0.

Tab. 1.2.1: Tabella di verità della negazione (\neg)

a	$\neg a$	a	$\neg a$
V	F	1	0
F	V	0	1

Esempio. Si prenda la proposizione b: "10 è un numero dispari" che ha valore 0, la sua negazione $\neg b$ sarà "10 **non** è un numero dispari e assume valore" 1.

Esempio. Si prenda la proposizione p: "Milano è la capitale dell'Italia", essa ha valore 0, però la sua negazione $\neg p$, "Milano non è la capitale dell'Italia", ha valore 1.

1.2.2 Disgiunzione

Il secondo connettivo logico è la DISGIUNZIONE, essa si indica col simbolo " \vee ". Prese due proposizioni a, b la proposizione $a \vee b$ si legge " $a \circ b$ " e si chiama disgiunzione di $a \circ b$.

Esempio. Si prendano le proposizioni p: " $\sqrt{2}$ è un numero razionale" (0) e q: "5 è un numero pari" (0). Si avrà che $p \vee q$: "($\sqrt{2}$ è un numero razionale) \vee (5 è un numero pari)" risulterà essere Falsa (0).

Preso q': "5 è un numero dispari", si ha che $p \vee q'$: " $(\sqrt{2}$ è un numero razionale) \vee (5 è un numero dispari)" che ha valore di verità (1).

\overline{a}	b	$a \vee b$
1	1	1
1	0	1
0	1	1
0	0	0

Tab. 1.2.2: Tabella della verità della disgiunzione (\vee)

1.2.3 Congiunzione

Il terzo connettivo logico è la CONGIUNZIONE, essa si indica con il simbolo "(\land)". Prese due proposizioni atomiche a e b, allora la proposizione $a \land b$ si legge "a e b" si dice congiunzione di a e b.

Tab. 1.2.3: Tabella della verità della congiunzione (\wedge)

\overline{a}	b	$a \wedge b$
1	1	1
1	0	0
0	1	0
0	0	0

Esempio. Si prendano le proposizioni p: "la mosca è un insetto" (1) e q: "4 è un multiplo di 2" (1). La proposizione $p \wedge q$: "(la mosca è un insetto) \wedge (4 è un multiplo di 2)" (1).

Esempio. Si prendano le proposizioni r: "l'asino vola" (0) e s " $\sqrt{2}$ è positivo" (1). La proposizione $r \wedge s$: "(l'asino vola) \wedge ($\sqrt{2}$ è positivo)" risulta essere falsa (0)

1.2.4 Implicazione

Il quarto connettivo logico è l'IMPLICAZIONE, essa si indica con il simbolo " \longrightarrow ". Prese due proposizioni atomiche a e b, allora la proposizione $a \longrightarrow b$ si legge "a implica b" oppure "se a allora b" e presenta la seguente tabella di verità

Tab. 1.2.4: Tabella di verità dell'IMPLICAZIONE (\longrightarrow)

\overline{a}	b	$a \longrightarrow b$
1	1	1
1	0	0
0	1	1
0	0	1

Paradosso di Russel 1.2.1. Se 1 = 2 allora io sono il Papa. Se 1 = 2 allora io e il Papa siamo due, ma 2 = 1 allora io sono il Papa.

Il paradosso si verifica poiché si parte da una proposizione falsa.

Esempio. Prese le proposizioni a: "l'automobile viaggia" e b: "l'automobile ha carburante". Ne risulta che se la a ha valore di verità 1, allora b ha valore di verità 1; se, invece, a ha valore di verità 0, allora non è possibile dire che b sia vera.

1.2.5 Doppia implicazione

Il quinto connettivo logico è la DOPPIA IMPLICAZIONE, essa si indica con " \longleftrightarrow ". Prese due proposizioni atomiche a e b, allora la proposizione $a \longleftrightarrow b$ si legge "a se e solo se b" e corrisponde a $(a \longrightarrow b) \land (b \longrightarrow a)$. Ha la seguente tabella di verità.

\overline{a}	b	$a \longrightarrow b$	$b \longrightarrow a$	$(a \longrightarrow b) \land (b \longrightarrow a)$	\overline{a}	b	$a \longleftrightarrow b$
1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0
0	1	1	0	0	0	1	0
0	0	1	1	1	0	0	1

Tab. 1.2.5: Tabella di verità della doppia implicazione (←→)

1.3 Formule della logica proposizionale

Siano a_1, a_2, \ldots, a_n dei simboli. Una formula si ottiene nel modo seguente:

- 1. a_1, a_2, \ldots, a_n sono formule;
- 2. se a, b sono formule, sono formule anche:

$$\neg a$$
, $a \wedge b$, $a \vee b$, $a \longrightarrow b$, $a \longleftrightarrow b$

3. le formule si ottengono esclusivamente da 1. e 2.

Esempio. Siano p, q, r delle formule allora anche

$$(p \land (q \longrightarrow r)) \longleftrightarrow ((\neg q) \lor (\neg r))$$
 (eq. 1.3.1)

$$((\neg p) \longrightarrow (q \land r)) \lor (p \longrightarrow q)$$
 (eq. 1.3.2)

risultano essere delle formule. L'ordine da seguire è il seguente:

- 1. negazione (\neg) ;
- 2. congiunzione e disgiunzione (\land, \lor) ;
- 3. implicazione e doppia implicazione $(\longrightarrow, \longleftrightarrow)$.

È dunque possibile eliminare delle parentesi che risultano essere in eccesso, l'eq. 1.3.1 si scriverà:

$$(p \land (q \longrightarrow r)) \longleftrightarrow (\neg q \lor \neg r)$$

e l'eq. 1.3.2 diventa:

$$(\neg p \longrightarrow q \land r) \lor (p \longrightarrow q).$$

La tavola di verità, ad esempio, dell'eq. 1.3.1 è la tabella 1.3.1.

Nel caso di una formula con k variabili si esamineranno 2^k casi differenti.

Se la tavola di verità di una formula è sempre vera, allora tale formula si dice tautologia; se è sempre falsa si dice <u>contraddizione</u>.

p	q	r	$p \longrightarrow r$	$p \wedge (q \longrightarrow r)$	$\neg q$	$\neg r$	$\neg q \vee \neg r$	$(p \land (q \longrightarrow r)) \longleftrightarrow (\neg q \lor \neg r)$
1	1	1	1	1	0	0	0	0
1	1	0	0	0	0	1	1	0
1	0	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1
0	1	1	1	0	0	0	0	1
0	1	0	0	0	0	1	1	0
0	0	1	1	0	1	0	1	0
0	0	0	1	0	1	1	1	0

Tab. 1.3.1: Tabella di verità dell'eq. 1.3.1

Esempio. Sia a una formula. Si avrà che $a \wedge \neg a$ è una contraddizione, infatti:

a	$\neg a$	$a \land \neg a$
1	0	0
0	1	0

Al contrario, $\neg a \lor a$ è una tautologia, infatti:

\overline{a}	$\neg a$	$a \vee \neg a$
1	0	1
0	1	1

Esempio. Siano a, b due formule. Un altro esempio di tautologia è la seguente formula

$$\neg(a \land b) \longleftrightarrow \neg a \lor \neg b,$$

la tabella di verità è la seguente:

\overline{a}	b	$a \wedge b$	$\neg(a \land b)$	$\neg a$	$\neg b$	$\neg a \lor \neg b$	$\neg(a \land b) \longleftrightarrow \neg a \lor \neg b$
1	1	1	0	0	0	0	1
1	0	0	1	0	1	1	1
0	1	0	1	1	0	1	1
0	0	0	1	1	1	1	1

Esempio. Siano a: "5 è pari" e b: "3 è primo" due proposizioni. Si avrà che:

- $a \wedge b$ è Falsa (0);
- $\neg(a \land b)$ è Vera (1);
- $\neg(a \land b) \longleftrightarrow \neg a \lor \neg b \implies (5 \text{ è dispari}) \lor (3 \text{ non è primo}) \text{ è Vera } (1).$

Definizione 1.3.1 (conseguenza logica). Siano a, b due formule. Si dice che b è conseguenza logica di a e si scrive

$$a \implies b$$

se b è vero ogni qualvolta a è vera.

Definizione 1.3.2 (formule semanticamente equivalenti). Siano a, b due formule. Si dice che a e b sono semanticamente equivalenti se b è conseguenza logica di a e a è conseguenza logica di b:

$$a \iff b \quad vuol \ dire \quad [a \implies b] \land [b \implies a].$$

Proposizione 1.3.3. Siano a, b due formule. Risulta che a e b sono semanticamente equivalenti se e soltanto se hanno la stessa tavola di verità.

DIMOSTRAZIONE:

LHS: Supponiamo che a e b siano semanticamente equivalenti. Se a ha valore di verità 1, allora anche b ha valore di verità 1, perché b è conseguenza logica di a. Se a ha valore di verità 0, allora anche b ha valore di verità 0, perché se b avesse valore di verità 1, a, che è conseguenza logica di b, avrebbe valore di verità 1. Scambiando tra loro a e b si deduce che a e b hanno la stessa tavola di verità.

RHS: Supponiamo che a e b abbiano la stessa tavola di verità. Se a ha valore di verità 1, allora anche b ha valore di verità 1 e quindi b è conseguenza logica di a. Se b ha valore di verità 1, allora anche a ha valore di verità 1 e quindi a è conseguenza logica di b e dunque a e b sono semanticamente equivalenti.

Osservazione. Siano a, b due formule. Allora $a \iff b$ se e solo se $a \iff b$ è una tautologia.

1.4 Regole di inferenza

Nella logica matematica una regola di inferenza è uno schema formale che si applica nell'eseguire un'inferenza. In altre parole, è una regola che permette di passare da un numero finito di proposizioni assunte come premesse a una proposizione che funge da conclusione.

1.4.1 Modus Ponens o Metodo di Dimostrazione Diretta

Nella logica, il modus ponens, è una semplice e valida regola d'inferenza, che afferma che se $P \longrightarrow Q$ è una proposizione Vera, e anche la premessa P è Vera, allora la conseguenza Q è vera; in notazione con operatori logici:

$$(P \land (P \longrightarrow Q)) \implies Q.$$

La conclusione si evince dalla tabella di verità:

\overline{P}	Q	$P \longrightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

infatti quando $P \in P \longrightarrow Q$ sono Vere, anche Q è vero.

Esempio. Se n è un numero intero pari, allora anche n^2 è un numero intero pari. Dunque la proposizione P: "n è pari" afferma che $\exists h$ t.c. n=2h. Verifichiamo che la proposizione Q: " n^2 è pari" sia Vera:

$$n^2 = (2h)^2 = 2^2h^2 = 2(2h^2)$$

che è effettivamente un numero pari dato che $\exists k=2h^2 \ \text{t.c.} \ n^2=2k.$

1.4.2 Modus Tollens

Siano P,Q due formule. Il modus tollens asserisce che se $P \longrightarrow Q$ è Vera, ed è Vera anche la negazione di Q, allora la negazione di P è un enunciato vero; in simboli:

$$[(P \longrightarrow Q) \land \neg Q] \longrightarrow \neg P$$

La tabella di verità è la seguente:

\overline{P}	Q	$\neg P$	$\neg Q$	$P \longrightarrow Q$	$(P \longrightarrow Q) \land \neg Q$	$[(P \longrightarrow Q) \land \neg Q] \longrightarrow \neg P$
1	1	0	0	1	0	1
1	0	0	1	0	0	1
0	1	1	0	1	0	1
0	0	1	1	1	1	1

Grazie alla tavola di verità del modus tollens possiamo concludere che esso è una tautologia.

Esempio. Si considerino le due proposizioni P: "Luca ha sete" e Q: "Luca beve". Le loro negazioni sono $\neg P$: "Luca non ha sete" e $\neg Q$: "Luca non beve". La proposizione $P \longrightarrow Q$ equivale a: "Luca ha sete allora Luca beve". Secondo la regola del modus tollens, se $P \longrightarrow Q$ è Vera e anche $\neg Q$ è Vera, allora $\neg P$ è Vera. In questo esempio: "se Luca ha sete allora beve $(P \longrightarrow Q)$, ma Luca non beve $(\neg Q)$, quindi Luca non ha sete $(\neg P)$ ".

Osservazione. Si ricordi che il modus tollens afferma che se $P \longrightarrow Q$ è un enunciato Vero, ed è Vera anche la negazione di Q, allora $\neg P$ è un enunciato Vero. La sua corretta formulazione con i simboli dovrebbe essere la seguente:

$$[(P \longrightarrow Q) \land \neg Q] \implies \neg P,$$

ossia l'ultima implicazione dovrebbe essere un'implicazione logica. Tuttavia, poiché il modus tollens è una tautologia, i due simboli possono essere usati indistintamente.

1.4.3 Dimostrazione per contrapposizione

In matematica, la dimostrazione per contrapposizione è una regola di inferenza in cui si deduce la proposizione dalla sua contropositiva. In altre parole, la conclusione $P \longrightarrow Q$ è dedotta dimostrando che $\neg Q \longrightarrow \neg P$. Spesso questo approccio viene utilizzato quando la negazione è più semplice da dimostrare rispetto alla proposizione originale. In formule:

$$[P \longrightarrow Q] \iff [\neg Q \longrightarrow \neg P].$$

Logicamente, la validità della dimostrazione per contrapposizione può essere dimostrata osservando la seguente tavola di verità:

\overline{P}	Q	$\neg P$	$\neg Q$	$P \to Q$	$\neg Q \to \neg P$
1	1	0	0	1	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

Si può notare come $P \longrightarrow Q$ e $\neg Q \longrightarrow \neg P$ hanno la stessa tavola di verità, dunque per la proposizione 1.3.3 sono semanticamente equivalenti.

Esempio. Sia n un numero intero. Si provi che se n^2 è pari, allora n è pari. Nonostante una dimostrazione diretta (sezione 1.4.1) è possibile, usiamo la dimostrazione per contrapposizione. Il contropositivo della proposizione precedente è: "se n non è pari, n^2 non è pari". Quest'ultima proposizione può essere provata come segue: se n non è pari allora è dispari. Il prodotto di due numeri dispari è dispari, quindi $n^2 = n \cdot n$ è dispari, dunque n^2 non è pari. Avendo provato il contropositivo, possiamo affermare che la proposizione iniziale è Vera.

1.4.4 Dimostrazione per assurdo

La dimostrazione per assurdo è un tipo di argomentazione logica nella quale, muovendo dalla negazione della tesi che si intende sostenere e facendone seguire una sequenza di passaggi logico-deduttivi, si giunge a una conclusione incoerente e contraddittoria. Tale risultato, nella logica argomentativa, confermerebbe l'ipotesi iniziale, per mezzo della falsificazione della sua negazione. In formule:

$$\left[\neg Q \longrightarrow (R \land \neg R)\right] \implies Q,$$

dove R è un'altra proprietà di cui è già noto il valore di verità.

Esempio. Si consideri la proposizione Q: "non esistono x, y numeri interi tali che 3x+6y=5". Supponiamo $(\neg Q)$ che esistano due numeri interi x_0, y_0 tali che

$$3x_0 + 6y_0 = 5$$

allora

$$3(x_0 + 2y_0) = 5$$

dunque 5 sarebbe un multiplo di 3. Dunque si ha che R: "5 non è multiplo di 3" $\mathbf{e} \neg R$: "5 è multiplo di 3". Si è giunti ad una contraddizione, dunque la dimostrazione risulta conclusa.

1.5 Predicati

Si prenda in considerazione P: "x è un numero pari", questa non è una proposizione perché non è possibile sapere il suo valore di verità. Quest'ultimo dipende dal valore che l'incognita x assume: al variare di x si otterranno proposizioni che potranno essere vere o false. Una frase del genere è dunque detta **predicato** e a seconda dei valori della x si trasformerà in una proposizione Vera o una proposizione Falsa. È possibile sostituire qualsiasi valore alla x? No, perché soltanto alcuni valori della x danno un senso alla frase: "x0 è un numero pari" è Falso, ma almeno ha senso; "cerchio è un numero pari" non è né vero né falso perché la frase non ha alcun significato.

Quindi gli elementi che possono essere sostituiti alla x fanno parte di un determinato insieme e sono tali che sostituendoli alla x si ottiene una frase dotata di senso. Tale insieme è detto dominio del predicato. Il dominio è un insieme da cui vengono presi degli elementi da sostituire alla x e stabilire il valore di verità del predicato. L'insieme dei valori di x che rendono vero il predicato si chiama insieme di verità del predicato.

Per esprimere un predicato in formule si scriverà:

$$(\forall x \in U_x) (P(x))$$
$$(\exists x \in U_x) (P(x))$$

dove U_x è l'universo in cui varia la variabile x e P(x) è una proprietà che ha senso per tutti gli elementi di U_x .

1.5. PREDICATI 13

Esempio. Si consideri il predicato P(x): "x è pari". Preso $U_x = \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$. Si ha dunque $Q: (\forall x \in \mathbb{Z}) (P(x))$, ovvero:

$$Q \colon (\forall x \in \mathbb{Z}) (x \text{ è pari})$$

che risulta essere una proposizione Falsa perché, ad esempio, $\exists 5 \in \mathbb{Z}$ che è un numero dispari. Preso invece il predicato " $\forall x \in \mathbb{Z} \quad x$ è un numero intero", esso risulta essere Vero. Si consideri ora $R \colon \forall x \in \mathbb{Z} x$ è positivo è Falsa perché, ad esempio, $-2 \in \mathbb{Z}$ non verifica R.

Diamo allora la definizione di predicato.

Definizione 1.5.1 (predicato). Un predicato è un'affermazione che coinvolge una o più variabili: x, y, z, \ldots ciascuna delle quali varia in un universo U_x, U_y, U_z, \ldots con l'uso di un opportuno quantificatore.

Esempio. Si prenda in considerazione la proposizione A: "ogni numero intero relativo moltiplicato per 1 dà per risultato lo stesso numero intero", che in simboli diventa:

$$A \colon (\forall a \in \mathbb{Z}) (a \cdot 1 = 1 \cdot a = a),$$

dove P(a) è appunto $(a \cdot 1 = a \cdot a = a)$, che ricordiamo può essere scritto anche come $(a \cdot 1 = a \wedge 1 \cdot a = a)$. Ovviamente la proposizione A risulta essere Vera. Dunque $\neg A$ è Falsa:

$$\neg A \colon (\exists a \in \mathbb{Z}) \neg (P(a)) \implies (\exists a \in \mathbb{Z}) \neg (a \cdot 1 = a \cdot a = a)$$

$$\implies (\exists a \in \mathbb{Z}) [\neg (a \cdot 1 = a) \lor \neg (1 \cdot a = a)]$$

$$\implies (\exists a \in \mathbb{Z}) (a \cdot 1 \neq a \lor 1 \cdot a \neq a);$$

questo perché:

$$\neg(a \land b) \iff \neg a \land \neg b$$

Esempio. Si consideri la proposizione B: "ogni numero intero naturale è dispari". Vediamo innanzitutto come si definisce un numero dispari in \mathbb{Z} e in \mathbb{N} :

$$n \in \mathbb{Z}$$
 dispari se $\exists h \in Z$ t.c. $n = 2h + 1$, $n \in \mathbb{N}$ dispari se $\exists h \in Z$ t.c. $n = 2h + 1$.

Per esempio -15 è dispari, infatti $\exists h = -8 \in \mathbb{Z} \text{ t.c. } -15 = 2(-8) + 1.$ Scriviamo ora B in simboli:

$$B \colon (\forall n \in \mathbb{N})(n \text{ è dispari}),$$

dove P(n): n è dispari. Notiamo che B è Falsa: esiste almeno un numero pari che appartiene ad \mathbb{N} . Sarà allora Vera $\neg B$:

$$\neg B \colon (\exists n \in \mathbb{N}) \neg (P(n)) \implies (\exists n \in \mathbb{N}) \neg (n \text{ è dispari})$$
$$\implies (\exists n \in \mathbb{N}) (n \text{ non è dispari})$$
$$\implies (\exists n \in \mathbb{N}) (n \text{ è pari}),$$

come volevasi dimostrare.

Esempio. Si consideri C: "esiste un numero naturale che è un quadrato perfetto". Un quadrato è perfetto se la sua radice è numero intero. Scriviamo C in simboli:

$$C: (\exists n \in \mathbb{N})(\exists h \in \mathbb{N} \text{ t.c. } n = h^2),$$

dove P(n): $(\exists h \in \mathbb{N} \text{ t.c. } n = h^2)$. Questa proposizione è Vera: esiste, ad esempio 4 la cui radice $\sqrt{4} = 2$ verifica la relazione precedente. Logicamente $\neg C$ sarà Falsa:

$$\neg C : (\forall n \in \mathbb{N}) (\neg P(n)) \implies (\forall n \in \mathbb{N}) \neg (\exists h \in \mathbb{N} \text{ t.c. } n = h^2)$$

$$\implies (\forall n \in \mathbb{N}) (\forall h \in \mathbb{N} \neg (n = h^2))$$

$$\implies (\forall n \in \mathbb{N}) (\forall h \in \mathbb{N} n \neq h^2).$$

In generale, le negazioni dei predicati col quantificatore universale "per ogni" sono le seguenti:

$$\neg \left((\forall x \in U_x) \left(P(x) \right) \right) \implies (\exists x \in U_x) \left(\neg P(x) \right);$$

mentre per l'altro quantificatore universale "esiste" sono:

$$\neg \left((\exists x \in U_x) \left(P(x) \right) \right) \implies (\forall x \in U_x) \left(\neg P(x) \right).$$

Segue ora una lista di esempi sui predicati e le loro relative negazioni. Esempi. Sia U l'insieme di tutti gli esseri umani.

1. P_1 : tutti hanno almeno un cugino, è Falsa. In simboli:

$$P_1: (\forall x \in U)(\exists y \in U \text{ t.c. } y \text{ è cugino di } x) = 0$$

 $\neg P_1: (\exists x \in U)(\forall y \in U \text{ y non è cugino di } x) = 1$

2. P₂: tutti gli esseri umani sono cugini tra di loro, è Falsa. In simboli:

$$P_2 : (\forall x, y \in U)(x \text{ è cugino di } y)$$
 0
 $\neg P_2 : (\exists x, y \in U)(x \text{ non è cugino di } y)$ 1

3. P_3 : 3 è un numero primo, che è Vera e P_4 : $\sqrt{5}$ è un numero razionale, che è Falsa.

$$(P_3 \wedge P_4), \neg (P_3 \vee P_4), (\neg P_3 \wedge \neg P_4) = 0$$

 $\neg (P_3 \wedge P_4), (\neg P_3 \vee \neg P_4), (P_3 \vee P_4) = 1$

4. $P_5: (\forall a \in \mathbb{N}) ((\exists y \in \mathbb{Z})(y - a^2 = -1)),$ è Vera.

$$P_5 \colon (\forall a \in \mathbb{N}) \left((\exists y \in \mathbb{Z})(y = a^2 - 1) \right) \quad 1$$
$$\neg P_5 \colon (\exists a \in \mathbb{N}) \left((\forall y \in \mathbb{Z})(y \neq a^2 - 1) \right) \quad 0$$

Osservazione. Considerato il predicato

$$(\forall x \in U) (P(x))$$

si deduce che l'universale deduce il particolare:

$$(\exists x \in U) \left(P(x) \right)$$

che risulta essere Vera. Se P(x) è Vero per ogni x, lo sarà anche per una singola x. Non è Vero l'inverso, infatti:

$$(\exists x \in U) (P(x)) \longrightarrow (\forall x \in U) (P(x));$$

poiché se P(x) è Vero per una x, non è detto che lo sia per tutte le altre.

Capitolo 2

Cenni di Teoria degli Insiemi

Il concetto di Insieme è primitivo, ovvero non può essere definito senza coinvolgere altri concetti che a loro volta non possono essere definiti. Com'è possibile definire un insieme allora? Vi sono vari modi:

1. elencare tutti i suoi oggetti. Seguono alcuni esempi:

i.
$$A = \{0, -1, \sqrt{3}, 6, 28\};$$

ii.
$$B = \{a, x, b, 3\};$$

iii.
$$C = \{2, +, *, :, t\};$$

iv.
$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$
, ovvero l'insieme dei numeri naturali;

v.
$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
, ovvero l'insieme dei numeri relativi.

2. esprimere una proprietà caratteristica, ovvero una proprietà che venga verificata da tutti e soli gli oggetti facenti parte di quell'insieme. In simboli:

$$A = \left\{ x \,|\, P(x) \right\}.$$

Seguono ora degli esempi:

i.
$$D = \{x | x \text{ è una lettera dell'alfabeto italiano}\};$$

ii.
$$E = \{x \mid \forall n \in \mathbb{N} \mid x = 2n\}$$
, l'insieme dei numeri naturali pari;

iii.
$$\mathbb{N}_* = \{n \mid n \in \mathbb{N} \setminus \{0\}\};$$

iv.
$$\mathbb{N} = \{x \mid x \in \mathbb{Z}_+\}.$$

3. rappresentare graficamente l'insieme tramite diagramma di Eulero-Venn:

Dunque un insieme è formato da oggetti. Se A è un insieme, la circostanza che un oggetto a faccia parte degli oggetti che costituiscono l'insieme A si esprime dicendo che "a appartiene ad A" oppure che "a è elemento di A". In simboli si esprime tramite l'utilizzo di " \in ", ovvero il simbolo di appartenenza. Scriveremo dunque:

$$a \in A, \qquad A \ni a;$$

l'oggetto a si dice *elemento* dell'insieme A. È possibile scrivere proposizioni che hanno un senso e un valore di verità utilizzando il simbolo di appartenenza, ad esempio: $7 \in \mathbb{N}$ (V) e $\pi \in \mathbb{N}$ (F).

Se si vuole esprimere in simboli la circostanza che un oggetto a non appartenga ad A si utilizzerà " \notin ":

$$a \notin A$$
, $A \not\ni a$.

In altre parole $\neg(a \in A)$ si scrive $a \notin A$, per esempio: $\pi \notin \mathbb{N}$.

2.1 Numeri razionali

Abbiamo già introdotto gli insiemi \mathbb{N} e \mathbb{Z} , introduciamo ora l'insieme dei numeri razionali: \mathbb{Q} . Questo è l'insieme di tutte le frazioni, ovvero l'insieme di tutti i numeri decimali con cifre periodiche. \mathbb{Q} è definito nel seguente modo:

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid (p, q \in \mathbb{Z}) \land (q \neq 0) \right\}.$$

Siano $p/q, r/s \in \mathbb{Q}$ con $q, s \neq 0$. Le due frazioni saranno uguali quando:

$$\frac{p}{q} = \frac{r}{s} \iff (\exists h \in \mathbb{Z} \text{ t.c. } (r = hp) \land (s = hq)) \lor (\exists k \in \mathbb{Z} \text{ t.c. } (p = kr) \land (q = ks)).$$

Ad esempio, 1/2=2/4, perché $2=2\cdot 1$ e $4=2\cdot 2$; in questo caso h=2.

Presa la frazione p/q, chiameremo p numeratore e q denominatore. Considerata la frazione -(3/4), essa potrà essere scritta come (-3)/4 oppure come 3/(-4).

2.1.1 Decimali e Frazioni

Come detto in precedenza, i numeri razionali possono essere espressi in due modi diversi, o come frazioni o come numeri decimali. Questo vuol dire che è possibile passare da una forma all'altra, vediamo come.

Per passare da frazione a decimale il procedimento risulta essere molto semplice, è necessario dividere il numeratore per il denominatore, ad esempio:

$$\frac{10}{3} = 3.\bar{3}, \qquad \frac{1}{2} = 0.5\bar{0}$$

Nel caso in cui non sia presente alcun decimale periodico, vuol dire che viene omesso $\bar{0}$, infatti $0.5 = 0.5\bar{0}$.

Per passare da decimale a frazione il procedimento è leggermente più complesso. Siano $c \in \mathbb{Z}$, $a_1, \ldots, a_h \in \mathbb{N}$ e $b_1, \ldots, b_k \in \mathbb{N}$; si consideri il generico numero decimale q:

$$q = c.a_1 a_2 \dots a_h \overline{b_1 b_2 \dots b_k}.$$

Si ha che

$$c.a_1a_2...a_h\overline{b_1b_2...b_k} = \frac{ca_1...a_h}{10^h} + \frac{b_1...b_k}{9k \cdot 10^h}.$$

La formula precedente permette di convertire un numero decimale in una frazione, ad esempio:

$$0.\overline{9} = \frac{0}{10^0} + \frac{9}{9 \cdot 10^0} = 0 + \frac{9}{9} = 0 + 1 = 1.$$

In generale si ha che

$$a.\bar{9} = a + 0.\bar{9} = a + 1.$$

Un altro esempio è il seguente:

$$10.01\overline{211} = \frac{1001}{10^2} + \frac{211}{999 \cdot 10^2} = \frac{1001 \cdot 999 + 211}{99 \cdot 900} = \frac{1,000,21\emptyset}{99,90\emptyset} = \frac{100,021}{9,990}$$

2.2. NUMERI REALI 17

2.2 Numeri reali

Introduciamo ora l'insieme dei numeri reali. Questi sono numeri razionali e irrazionali, che sono numeri decimali non periodici. Alcuni esempi di numeri irrazionali sono

$$\sqrt{2} = 1.414213...$$

 $\sqrt{5} = 2.236067...$
 $\pi = 3.141592...$

L'insieme si denota con \mathbb{R}

2.3 Insiemi numerici

Definizione 2.3.1 (sottoinsieme improprio). Siano A, B due insiemi. Si dice che A è un sottoinsieme di B oppure che A è contenuto in B o ancora che A è incluso in B se ogni elemento di A è anche elemento di B. Si scriverà $A \subseteq B$.

Esempi. Seguono alcuni esempi di insiemi e sottoinsiemi:

- 1. $\{3, -2, 5\} \subseteq \mathbb{Z}$;
- 2. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$;
- 3. Considerati $A = \{7, a, -1, *\} \in B = \{-3, 7, a, -1, *, \cdot\}$, si ha che $A \subseteq B$;

Osservazione. Appartenenza e inclusione sono diversi: $\in \neq \subseteq$, infatti scrivere $3 \subseteq \mathbb{N}$ è errato, bisognerebbe scrivere $3 \in \mathbb{N}$ oppure $\{3\} \subseteq \mathbb{N}$.

Definizione 2.3.2 (insiemi uguali). Siano A, B due insiemi. Si dice che A = B se e solo se i due insiemi hanno gli stessi elementi, ovvero ogni elemento di A è anche elemento di B e ogni elemento di B è anche elemento di A.

Osservazione. Si avrà che A = B quando $(A \subseteq B) \land (B \subseteq A)$. In simboli scriveremo:

$$A = B \iff \left[(\forall x \in A)(x \in B) \right] \vee \left[(\forall y \in B)(y \in A) \right].$$

Osservazione. Dire che A non è sottoinsieme di B, significa dire, in simboli, che:

$$\neg (A \subseteq B) \iff \neg \left[(\forall x \in A)(x \in B) \right] \iff (\exists x \in A)(x \notin B)$$

Esempi. Seguono due esempi:

- 1. $\mathbb{Z} \nsubseteq \mathbb{N}$ perché ad esempio $\exists -4 \in \mathbb{Z}$ t.c. $-4 \notin \mathbb{N}$;
- 2. Considerati $A = \{-2, a, 3, x\}$ e $B = \{-2, a, 1, 3, y\}$ si ha che

$$[A \not\subset B] \wedge [B \not\subset A].$$

Siano A, B due insiemi. Dire che $A \neq B$ equivale a dire, in simboli, che:

$$A \neq B \iff \neg(A = B) \iff \neg[(\forall x \in A)(x \in B) \land (\forall y \in B)(y \in A)]$$

$$\iff \neg[(\forall x \in A)(x \in B)] \land \neg[(\forall y \in B)(y \in A)]$$

$$\iff [(\exists x \in A)(x \notin B)] \lor [(\exists y \in B)(y \notin A)]$$

Si deduce dunque che $A \nsubseteq B \implies A \neq B$. Se $A \subseteq B$ è contemplata la possibilità che A = B, ad esempio $\mathbb{N} \subseteq \mathbb{N}$ (\mathbb{N} è contenuto ed è uguale ad \mathbb{N}). In generale si ha che $\forall A$ insieme $A \subseteq A$

Definizione 2.3.3 (sottoinsieme proprio). Si dice che A è un sottoinsieme proprio di B se A è contenuto in B ma è diverso da B. Si utilizza il simbolo \subsetneq .

Dunque
$$A \subsetneq B \iff [(A \subseteq B) \land (A \neq B)].$$

Esempio. Tra gli insiemi numerici finora introdotti è presente la seguente relazione:

$$\mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}$$
.

Dire che $A \subsetneq B$, equivale a dire, in simboli, che

$$A \subsetneq B \iff (A \subset B) \land (B \not\subset A) \iff \left[\left((\forall x \in A)(x \in B) \right) \land \left((\exists x \in B)(x \notin A) \right) \right].$$

Definizione 2.3.4 (insieme vuoto). L'unico insieme privo di elementi è l'insieme vuoto. Esso si indica col simbolo \varnothing e valgono le seguenti relazioni:

- $(\forall x)(x \notin \varnothing);$
- $\forall A \ insieme \ \varnothing \subset A$

Proposizione 2.3.5 (proprietà dell'inclusione). Siano A, B, C insiemi. Allora risulta:

- 1. $A \subseteq A$;
- 2. $[A \subseteq B] \land [B \subseteq A] \implies A = B$;
- 3. $[A \subseteq B] \land [B \subseteq C] \implies A \subseteq C$.

Definizione 2.3.6 (insieme unione). Siano A, B due insiemi. Si dice insieme unione di A e B l'insieme

$$A \cup B = \left\{ x \mid [x \in A] \lor [x \in B] \right\}.$$

Si ha dunque che

$$x \in A \cup B \iff [x \in A] \lor [x \in B]$$

L'unione di due insiemi può essere rappresentata come nella fig. 2.3.1

Fig. 2.3.1: Rappresentazione dell'insieme unione

Esempi. Seguono vari esempi:

1. Siano $A = \{a, -1, b, -2\}$ e $B = \{3, 2, 1\}$, avremo che:

$$A \cup B = \{a, -1, b, -2, 3, 2, 1\};$$

2. Siano $X = \{a, b, c, d\}$ e $Y = \{b, e, f\}$, si ha che:

$$X \cup Y = \{a, b, c, d, e, f\};$$

3. Considerati $\mathbb{N} \in \mathbb{Z}$, $\mathbb{N} \cup \mathbb{Z} = \mathbb{Z}$.

Proposizione 2.3.7 (proprietà dell'unione). Siano A, B insiemi. Allora risulta:

- 1. $A \cup \emptyset = A$;
- 2. $[A \subset (A \cup B)] \wedge [B \subset (A \cup B)];$
- 3. $A \cup A = A$;
- 4. $A \subset B \iff A \cup B = B$.

Definizione 2.3.8 (insieme intersezione). Siano A, B due insiemi. Si dice insieme intersezione di A e B l'insieme

$$A \cap B = \{x \mid [x \in A] \land [x \in B]\}.$$

L'intersezione di due insiemi può essere rappresentata come nella fig. 2.3.2

Fig. 2.3.2: Rappresentazione dell'insieme intersezione

Proposizione 2.3.9 (proprietà dell'intersezione). Siano A, B due insiemi. Allora risulta:

- 1. $[A \cap B \subset A] \wedge [A \cap B \subset B]$;
- 2. $A \cap B = A \iff A \subset B$:
- 3. $A \cap \emptyset = \emptyset$;
- 4. $A \cap A = A$

Proposizione 2.3.10 (proprietà di intersezione e unione). $Siano\ A, B, C\ insiemi.\ Allora:$

1. Proprietà associative:

$$\left[(A \cup B) \cup C = A \cup (B \cup C) \right] \wedge \left[(A \cap B) \cap C = A \cap (B \cap C) \right];$$

2. Proprietà commutative:

$$[A \cup B = B \cup A] \wedge [A \cap B = B \cap A];$$

3. Proprietà distributive

$$\left[(A \cap B) \cup C = (A \cup C) \cap (B \cup C) \right] \wedge \left[(A \cup B) \cap C = (A \cup B) \cap (B \cup C) \right].$$

Definizione 2.3.11 (insieme complementare). Siano A, B insiemi con $B \subsetneq A$. Si dice insieme complementare di B rispetto ad A l'insieme

$$C_A(B) = \{ x \in A \mid x \notin B \}.$$

Dunque

$$x \in \mathcal{C}_A(B) \iff [x \in A] \land [x \notin B].$$

L'insieme complementare è rappresentato graficamente nella fig. 2.3.3

Fig. 2.3.3: Insieme $C_A(B)$, complementare di B rispetto ad A

Esempi. Seguono due esempi:

- 1. $\mathcal{C}_{\mathbb{Z}}(\mathbb{N}) = \{x \in isdivZn \text{ è negativo}\} = \{\dots, -3, -2, -1\}$
- 2. Presi $A = \{1, 2, 3, 4, 5, 6\}$ e $B = \{1, 3, 5\},$ si ha

$$C_A(B) = \{2, 4, 6\}.$$

Proposizione 2.3.12 (leggi di De Morgan, proprietà complementare). Siano A, B, C insiemi, con $B, C \subsetneq A$. Risulta:

- 1. $C_A(A) = \emptyset$:
- 2. $C_A(\emptyset) = A$;
- 3. $B \cup C_A(B) = A$;
- 4. $C_A(B \cup C) = C_A(B) \cap C_A(C)$;
- 5. $C_A(B \cap C) = C_A(B) \cup C_A(C)$.

I punti 4. e 5. sono noti come *leggi di De Morgan*. Dimostriamo la prima legge di De Morgan.

DIMOSTRAZIONE: Siano A, B, C insiemi, con $B, C \subsetneq A$; per provare la prima legge di De Morgan è necessario provare che:

$$\left\lceil \mathbb{C}_A(B \cup C) \subseteq \left(\mathbb{C}_A(B) \cap \mathbb{C}_A(C) \right) \right\rceil \wedge \left\lceil \left(\mathbb{C}_A(B) \cap \mathbb{C}_A(C) \right) \subseteq \mathbb{C}_A(B \cup C) \right\rceil.$$

Sia $x \in A$. Dire che $x \in \mathcal{C}_A(B \cup C)$ equivale a dire che $(x \in A) \land (x \notin B \cup C)$, ovvero $(x \in A) \land \neg (x \in B \cup C)$. Ma questo è come scrivere $(x \in A) \land \neg (x \in B \cup C)$, che

negando la seconda parte diventa $(x \in A) \land (x \notin B \lor x \notin C)$. Ma allora questo è come dire che $(x \in A) \land (x \notin B) \lor (x \notin C)$

$$x \in \mathcal{C}_A(B \cup C) \iff ((x \in A) \land (x \notin B)) \lor ((x \in A)(x \notin C))$$

$$\iff x \in \mathcal{C}_A(B) \land x \in \mathcal{C}_A(C)$$

$$\iff x \in \mathcal{C}_A(B) \cap \mathcal{C}_A(C).$$

La legge risulta essere dimostrata.

Definizione 2.3.13 (insieme differenza). Siano A, B insiemi. Si dice insieme differenza di $A \in B$ e si indica con i simboli A - B oppure $A \setminus B$ l'insieme:

$$A \setminus B = \{ x \in A \, | \, x \notin B \} \, .$$

Osservazione. Siano A, B insiemi. Se $B \subseteq A$ allora $A \setminus B = \mathcal{C}_A(B)$

Fig. 2.3.4: Insieme differenza tra due insiemi A,Bnel caso in cui $B\subseteq A.$

Dunque $A \setminus B = \mathcal{C}_A(A \cap B)$.

Esempi. Seguono due esempi:

1. Siano $A = \{x, y, z\}$ e $B = \{a, b, x\}$. Si ha che:

$$A \setminus B = \{y, z\}, \qquad B \setminus A = \{a, b\}.$$

2. L'insieme dei numeri irrazionali può essere indicato con $\mathbb{R} \setminus \mathbb{Q}$.

Definizione 2.3.14 (insieme delle parti). Sia A un insieme. L'insieme di tutti i sottoinsiemi di A si dice insieme delle parti di A. Si indica col simbolo

$$\mathcal{S}^{(A)}$$

Esempi. Seguono degli esempi:

1. Sia $A = \{a, b, c\}$, si ha

$$\mathcal{O}(A) = \left\{ \varnothing, \left\{a\right\}, \left\{b\right\}, \left\{c\right\} \left\{a,b\right\}, \left\{b,c\right\}, \left\{a,c\right\}, \left\{a,b,c\right\} \right\};\right.$$

- 2. $\mathcal{P}(\varnothing) = \{\varnothing\};$
- 3. Sia $B = \{1\}$, si ha $\mathcal{O}(B) = \{\emptyset, \{1\}\}$.

Osservazione. Sia A un insieme. Si ha che $[\varnothing \in \mathscr{D}(A)] \wedge [A \in \mathscr{D}(A)]$

Definizione 2.3.15 (insiemi disgiunti). Siano A, B insiemi. Si dice che A e B sono disgiunti quando $A \cap B = \emptyset$

Esempi. Seguono due esempi:

1. Sia P l'insieme dei numeri interi pari e sia D l'insieme dei numeri interi dispari. Si ha

$$P \cap D = \emptyset$$

e dunque P e D sono disgiunti. Inoltre $P \cup D = \mathbb{Z}$.

2. Siano $A = \{1, 2, 3, 4\}$ e $B = \{0, 6, 9, 8\}$. Si ha che

$$A \cap B = \emptyset$$

e quindi A e B sono disgiunti.

Osservazione. Siano a, b due oggetti. Si ha che $\{a, b\} = \{b, a\}$. È quindi irrilevante l'ordine in cui si scrivono gli elementi. Per questo $\{a, b\}$ si chiama coppia non ordinata.

Siano A un insieme e $a, b \in A$. Si indica col simbolo (a, b) la coppia ordinata la cui prima coordinata è a e la seconda coordinata è b. Si ha che $(a, b) \neq (b, a)$.

Naturalmente si possono considerare le coppie ordinate di elementi di insiemi diversi: se X, Y sono due insiemi, con $x \in X$ e $y \in Y$ si ha che $(x, y) \neq (y, x)$.

Definizione 2.3.16 (prodotto cartesiano). Siano A, B due insiemi. L'insieme i cui elementi sono tutte le possibili coppie aventi prima coordinata un elemento di A e seconda coordinata un elemento di B si dice prodotto cartesiano di A e B. Questo insieme si indica col simbolo $A \times B$. Quindi

$$A \times B = \{(a, b) | [a \in A] \land [b \in B] \}$$

Osservazione. Siano A, B due insiemi con $A \neq B$. Si ha che

$$A \times B \neq B \times A$$
.

Esempio. Un esempio di prodotto cartesiano è $\mathbb{R} \times \mathbb{R}$

Fig. 2.3.5: Generico punto di coordinate (x_0, y_0) all'interno del piano cartesiano $\mathbb{R} \times \mathbb{R}$

Il piano cartesiano può essere rappresentato con $\mathbb{R} \times \mathbb{R}$.

Esempio. Siano $A = \{a, b, c\}$ e $B = \{1, 2, 3, 4\}$. Si ha che

$$A \times B = \{(a, 1), (a, 2), (a, 3), (a, 4),$$
$$(b, 1), (b, 2), (b, 3), (b, 4),$$
$$(c, 1), (c, 2), (c, 3), (c, 4)\},$$

2.4. RELAZIONI 23

mentre

$$B \times A = \{(1, a), (1, b), (1, c),$$
$$(2, a), (2, b), (2, c),$$
$$(3, a), (3, b), (3, c),$$
$$(4, a), (4, b), (4, c)\}.$$

Dunque $A \times B \neq B \times A$ e in questo caso $A \times B \cap B \times A = \emptyset$.

2.4 Relazioni

Definizione 2.4.1 (relazione). Siano A, B due insiemi. Una relazione tra gli elementi di A e quelli di B è un sottoinsieme del prodotto cartesiano $A \times B$.

In altri termini una relazione tra gli elementi di A e gli elementi di B è un insieme di coppie ordinate la cui prima coordinata è un elemento di A mentre la seconda coordinata è un elemento di B.

Esempi. Seguono degli esempi:

1. Siano $A = \{a, b, c\}$ e $B = \{1, 2, 3, 4\}$. Si ha

$$\mathcal{R}^{0}_{(A\times B)} = \{(a,1)\} \subseteq A \times B$$

dove $\mathcal{R}^0_{(A\times B)}$ è una relazione tra gli elementi di A e gli elementi di B. Anche

$$\mathcal{R}^{1}_{(A\times B)} = \{(b,1), (b,2), (c,3), (c,4)\}$$

è una relazione e $\mathcal{R}^1_{(A\times B)}\subseteq A\times B;$

2. una relazione su $\mathbb{R} \times \mathbb{R}$ può essere la seguente:

$$\mathcal{R}^2_{\mathbb{R}^2} = \left\{ (\sqrt{2}, 3), (5, -2), (-\sqrt{3}, -\sqrt{3}) \right\}.$$

Di nuovo, $\mathcal{R}^2_{\mathbb{R}^2} \subseteq \mathbb{R} \times \mathbb{R}$;

3. una relazione di $\mathbb{Z} \times \mathbb{Z}$ è la seguente:

$$\mathcal{R}_{\mathbb{Z}^2}^3 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : b = 2a\}$$

e ancora $\mathcal{R}^3_{\mathbb{Z}^2}\subseteq \mathbb{Z}\times \mathbb{Z}$ e si ha

$$\mathcal{R}^{3}_{\mathbb{Z}^{2}} = \{\dots, (0,0), (1,2), (-1,-2), (3,6), \dots\};$$

4. una relazione su $\mathbb{N} \times \mathbb{Z}$ è:

$$\mathcal{R}^{4}_{\mathbb{N}\times\mathbb{Z}^{2}}=\left\{(n,m)\in\mathbb{N}\times\mathbb{Z}:m=-n\right\}\subseteq\mathbb{Z}\times\mathbb{Z}.$$

 $\mathcal{R}^4_{(\mathbb{N} \times \mathbb{Z})}$ è una relazione tra gli elementi di \mathbb{N} e quelli di \mathbb{Z} ;

5. una relazione su $\mathbb{Z} \times \mathbb{Z}$ è:

$$\mathcal{R}_{\mathbb{Z}^2}^{\scriptscriptstyle 5} = \big\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : m = -n\big\} \subseteq \mathbb{Z} \times \mathbb{Z}.$$

Notiamo che $\mathcal{R}^4_{(\mathbb{N}\times\mathbb{Z})} \neq \mathcal{R}^5_{\mathbb{Z}^2}$, visto che il prodotto cartesiano prende in considerazione due insiemi differenti.

Esempio. Sia A un insieme. Si dice diagonale di A l'insieme:

$$\Delta(A^2) = \{(a,b) \in A \times A \mid a = b\}$$

Osservazione. Sia A un insieme. Si ha

$$A \times \emptyset = \emptyset \times A = \emptyset.$$

Per questo si considerano soltanto relazioni tra gli elementi di due insiemi non vuoti.

Definizione 2.4.2 (relazione riflessiva). Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione tra gli elementi di A (o semplicemente su A). Si dice che \mathcal{R}_{A^2} è riflessiva se

$$\forall a \in A \ (a, a) \in \mathcal{R}_{A^2}$$

Esempio. La bisettrice del 1º e 3º quadrante rappresenta la diagonale $\Delta(\mathbb{R}^2)$. La diagonale è riflessiva.

Fig. 2.4.1: Bisettrice del 1º e 3º quadrante

Osservazione. Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione su A^2 . \mathcal{R}_{A^2} è riflessiva se e solo se $\Delta(A^2) \subseteq \mathcal{R}_{A^2}$.

Osservazione. Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione su A^2 . Allora, perché \mathcal{R}_{A^2} non sia riflessiva basta che $\exists x \in A$ t.c. $(x,x) \notin \mathbb{R}$.

Esempio. Sia X l'insieme dei residenti a Bari. La relazione

$$\mathcal{R}_{X^2} = \{(x, y) \in X \times X \mid x \text{ ha la stessa madre di } y\}$$

risulta essere simmetrica e riflessiva.

Definizione 2.4.3 (relazione simmetrica). Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione su A^2 . Si dice che \mathcal{R}_{A^2} è simmetrica se

$$(\forall x, y \in A) ((x, y) \in \mathcal{R}_{A^2} \implies (y, x) \in \mathcal{R}_{A^2}).$$

Definizione 2.4.4 (relazione antisimmetrica). Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione su A^2 . Si dice che \mathcal{R}_{A^2} è antisimmetrica se

$$(\forall a, b \in A) ((a, b) \in \mathcal{R}_{A^2} \land (b, a) \in \mathcal{R}_{A^2}) \implies a = b.$$

Equivalente mente

$$(\forall a, b \in A, \ a \neq b) ((a, b) \in \mathcal{R}_{A^2} \implies (b, a) \notin \mathcal{R}_{A^2}).$$

Osservazione. Una relazione simmetrica **non** può essere antisimmetrica e una relazione antisimmetrica **non** può essere simmetrica, a esclusione della diagonale Δ .

2.4. RELAZIONI 25

Esempio. wtf

Siano $a, b \in \mathbb{R}$ con $a \leq b \land b \leq a \implies a = b$. Sia $\mathcal{R}_{\mathbb{R}^2}$ una relazione e sia $(a, b) \in \mathcal{R}_{\mathbb{R}^2}$

Definizione 2.4.5 (relazione transitiva). Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione su A^2 . Si dice che \mathcal{R}_{A^2} è transitiva se

$$(\forall a, b, c \in A) ((a, b) \in \mathcal{R}_{A^2} \land (b, c) \in \mathcal{R}_{A^2}) \implies (a, c) \in \mathcal{R}_{A^2}$$

Esempi. Sia $A = \{a, b, c, d\}$. Seguono una serie di relazioni su A^2 :

1. la relazione:

$$\mathcal{R}_{A^2}^1 = \{(a, a), (a, b), (b, b), (c, c), (d, d)\}$$

risulta essere riflessiva ma non simmetrica, perché $(a,b) \in \mathcal{R}_{A^2}^1$ ma $(b,a) \notin \mathcal{R}_{A^2}^1$, è antisimmetrica ed è transitiva;

2. la relazione:

$$\mathcal{R}_{A^2}^2 = \{(a, a), (a, b), (b, a)\}$$

non è riflessiva perché $(b,b),(c,c),(d,d)\notin\mathcal{R}_{A^2}^2$ e non è transitiva ma è simmetrica perché $(a,b)\wedge(b,a)\in\mathcal{R}_{A^2}^2$;

3. la relazione:

$$\mathcal{R}_{A^2}^3 = \{(a, b), (b, c), (a, c)\}$$

non è né riflessiva, né simmetrica ma è sia antisimmetrica che transitiva;

4. la relazione:

$$\mathcal{R}_{A^2}^4 = \big\{(a,a),(b,b),(c,c),(d,d),(a,b),(b,a),(a,c),(c,a),(b,c),(c,b)\big\}$$

è sia riflessiva, sia simmetrica e sia transitiva;

5. la relazione:

$$\mathcal{R}_{A^2}^{^5} = \big\{(a,a),(b,b),(c,c),(d,d),(a,b),(b,c),(a,c)\big\}$$

è riflessiva, antisimmetrica e transitiva, ma non è simmetrica;

6. la relazione:

$$\mathcal{R}_{A^2}^6 = \{(a, a), (b, b), (d, d), (a, b), (b, c)\}$$

non è né riflessiva, perché $(c,c) \notin \mathcal{R}_{A^2}^6$, né simmetrica, né transitiva, ma è antisimmetrica;

7. la relazione:

$$\mathcal{R}_{A^2}^{\bf 7} = \big\{(a,b), (b,c), (a,c), (b,a), (c,b), (c,a)\big\}$$

non è riflessiva e nemmeno transitiva, però è simmetrica;

8. la relazione:

$$\mathcal{R}_{A^2}^8 = \{(a,b), (b,c), (a,c), (b,a), (c,b)\}$$

non è né simmetrica, perché $(a,c)\in\mathcal{R}_{A^2}^8$ ma $(c,a)\notin\mathcal{R}_{A^2}^8$, né riflessiva, né antisimmetrica e nemmeno transitiva;

9. la relazione:

$$\mathcal{R}_{A^2}^9 = \big\{ (a,b), (b,c), (a,c), (b,a) \big\}$$

non è né simmetrica, né riflessiva, né transitiva e nemmeno antisimmetrica.

Esempio. Sia Π l'insieme delle rette di un piano fissato. Sia \mathcal{R}_{Π^2} una relazione su Π^2 :

$$\mathcal{R}_{\Pi^2} = \{(r, s) \in \Pi \times \Pi \mid r \text{ ha la stessa direzione di } s\}$$

2.4.1 Relazioni d'ordine

Definizione 2.4.6 (relazione d'ordine). Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione su A^2 . Si dice che \mathcal{R}_{A^2} è una relazione d'ordine se è riflessiva, antisimmetrica e transitiva.

Osservazione. Sia \mathcal{R}_{A^2} una relazione d'ordine sull'insieme A, essa viene denotata col simbolo \leq . Dunque

$$\forall a, b \in A \quad (a, b) \in \mathcal{R}_{A^2} \text{ si scrive } a \leq b.$$

Ad esempio, le relazioni $\mathcal{R}^1_{A^2}$ e $\mathcal{R}^5_{A^2}$, enunciate nella serie di esempi che segue la definizione 2.4.5, sono due relazioni d'ordine. Esplicitiamo la $\mathcal{R}^1_{A^2}$ tramite l'uso del simbolo della relazione d'ordine \leq :

$$a < a$$
, $b < b$, $c < c$, $d < d$, $a < b$.

Esplicitiamo ora la $\mathcal{R}_{A^2}^5$:

$$a \le a$$
, $b \le b$, $c \le c$, $d \le d$, $a \le b$, $b \le c$, $a \le c$.

Esempio. Definiamo la relazione d'ordine naturale su \mathbb{Z}

$$(\forall n, m \in \mathbb{Z}) (n \le m \iff \exists h \in \mathbb{N} : m = h + n).$$

Ad esempio $-7 \le -5$ perché -5 = 2 - 7, dove h = 2. Dunque \le è una relazione d'ordine su \mathbb{Z} .

DIMOSTRAZIONE: dimostriamo che \leq è una relazione d'ordine su \mathbb{Z} . Bisogna dimostrare che \leq è sia riflessiva che antisimmetrica che transitiva. Dimostriamo che \leq è riflessiva, ovvero che

$$(\forall n \in \mathbb{N}) (n \leq n)$$
.

Basta prendere h = 0, infatti:

$$(\forall n \in \mathbb{N}) (\exists h = 0 \in \mathbb{N} : n = 0 + n).$$

Dimostriamo ora che \leq è antisimmetrica, ovvero che

$$(\forall n, m \in \mathbb{Z}) ((n \le m \land m \le n) \implies (n = m)).$$

Siano dunque $n, m \in \mathbb{Z}$ con $(n \leq m \land m \leq n)$, questo vuol dire che

$$(\exists h \in \mathbb{N} : m = h + n) \land (\exists h \in \mathbb{N} : n = h + m).$$

Si ha dunque

$$m = h + n = h + (k + m) = (h + k) + m$$

ma allora m=(h+k)+m, dunque h+k=0, però $h,k\in\mathbb{N}$ allora necessariamente $h,k=0^1$, pertanto m=0+n, ovvero m=n. Dimostriamo che \leq è antisimmetrica. Siano $n,m,p\in\mathbb{Z}$, con $n\leq m\wedge m\leq p$; è necessario verificare che $n\leq p$. Dire che $n\leq m\wedge m\leq p$ implica

$$(\exists h \in \mathbb{N} : m = h + n) \land (\exists k \in \mathbb{N} : p = k + m),$$

$$(\forall r, s \in \mathbb{N}) (r + s = 0 \implies r = 0 \land s = 0)$$

 $^{^{1}}$ Proprietà dell'annullamento della somma in №:

2.4. RELAZIONI

allora

$$p = k + m = k + (h + n) = (k + h) + n.$$

27

Sia t = k + h, allora

$$\exists t \in \mathbb{N} : p = t + n \implies n \le p.$$

 \leq è effettivamente una relazione d'ordine su \mathbb{Z} .

Esempi. Sia A un insieme. La relazione di inclusione \subseteq è una relazione d'ordine su $\mathcal{O}(A)$

- 1. $\forall X \in \mathcal{P}(A) \ X \subseteq X, \subseteq$ è riflessiva;
- 2. $\forall X, Y \in \mathcal{P}(A) [X \subseteq Y \land Y \subseteq X] \implies X = Y, \subseteq \text{è antisimmetrica};$
- 3. $\forall X, Y, Z \in \mathcal{P}(A) [X \subseteq Y \land Y \subseteq Z] \implies X \subseteq Z, \subseteq$ è transitiva;

Definizione 2.4.7 (divisibilità). Siano $a, b \in \mathbb{Z}$ con $b \neq 0$. Si dice che b divide a oppure che b è divisore di a oppure, allo stesso modo, che a è multiplo di b oppure ancora che a moltiplica b e si scrive:

$$a \mid b$$

se e solo se $\exists h \in \mathbb{Z} : a = h \cdot b$.

Esempio. Si ha ad esempio

$$3 \mid 12, -2 \mid 8, 5 \mid 0.$$

questo perché $\exists h=4\in\mathbb{Z}:12=3h,\,\exists k=-4\in\mathbb{Z}:8=-2k$ e $\exists t=0\in\mathbb{Z}:5=5t.$

Osservazione. $\forall b \in \mathbb{Z}$, con $b \neq 0$ si ha $b \mid 0$. Infatti $\exists h = 0 \in \mathbb{Z} : 0 = hb$

Osservazione. $\forall a \in \mathbb{Z}_*$, si ha

$$a \mid a$$
, $a \mid -a$, $-a \mid a$, $-a \mid -a$.

Osservazione. $\forall a \in \mathbb{Z}$, si ha

$$1 \mid a \land -1 \mid a$$
.

Proposizione 2.4.8 (proprietà divisibilità). Siano $a, b, c \in \mathbb{Z}$ con $a \neq 0$, risulta:

- 1. $a \mid b \implies (a \mid -b \land -a \mid b \land -a \mid -b);$
- 2. $(b \neq 0 \land a \mid b \land b \mid a) \implies a = \pm b$;
- 3. $(a|b \wedge b|c) \implies a|c;$
- 4. $(a | b \wedge a | c) \implies a | b \pm c;$
- 5. $a \mid b \implies a \mid bc$.

DIMOSTRAZIONE: dimostriamo la 1. e la 2.

Definizione 2.4.9 (insieme totalmente ordinato). Sia (A, \leq) un insieme ordinato. Si dice che (A, \leq) è totalmente ordinato se

$$(\forall x, y \in A)(x \le y \lor y \land x).$$

Si dirà che è parzialmente ordinato se

$$\exists x, y \in A : x \nleq y \land y \nleq x.$$

Ad esempio, (\mathbb{Z}, \leq) è totalmente ordinato e $(\mathcal{O}(A), \subseteq)$ è parzialmente ordinato. *Esempio*. Sia $A = \{1, 2, 3, 4\}$. Si ha che:

$$\mathcal{P}(A) = \{\varnothing, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}.$$

Prendiamo, ad esempio, i due sottoinsiemi di $\mathcal{P}(A)$, $\{1,2\}$ e $\{1,3,4\}$, notiamo che

$$\{1,2\} \nsubseteq \{1,3,4\} \qquad \{1,3,4\} \nsubseteq \{1,2\}.$$

Esempio. L'insieme $(\mathbb{N}_*,|)$ è parzialmente ordinato, infatti

$$5 \nmid 16 \land 16 \nmid 5$$

Esempio. Sia $D_{20} = \{1, 2, 4, 5, 10, 20\}$. L'insieme $(D_{20}, |)$ è un insieme ordinato:

$$1|2, 1|4, \ldots, 2|4, 2|10,$$

ma non è totalmente ordinato, infatti:

$$4 \nmid 10 \wedge 10 \nmid 4$$
.

In generale, dato (A, \leq) insieme ordinato e $B \subseteq A$, con $B \neq \emptyset$, si può considerare la relazione d'ordine indotta \leq_B :

$$\forall a, b \in B \quad a \leq_B b \iff a \leq b.$$

Dunque anche (B, \leq_B) è un insieme ordinato.

Definizione 2.4.10 (minimo e massimo). Sia (A, \leq) un insieme ordinato e sia $B \subseteq A$. Sia $x_0 \in B$, esso si dice

• minimo di B se:

$$\forall x \in B \quad x_0 \le x;$$

• massimo di B se:

$$\forall x \in B \quad x \le x_0.$$

Se esiste il minimo di B (anche detto il più piccolo elemento di B) si indica con $\min(B)$; se esiste il massimo di B (anche detto il più grande elemento di B) si indica con $\max(B)$.

Proposizione 2.4.11 (unicità massimo e minimo). Sia (A, \leq) un insieme ordinato e sia $B \subseteq A$. Se esiste un minimo (o un massimo) di B, esso è unico.

DIMOSTRAZIONE: Siano $x_0, y_0 \in B$ due minimi di B. Si ha

$$\forall x \in B \ x_0 < x \land \forall x \in B \ y_0 < x.$$

In particulare

$$(x_0 \le y_0 \land y_0 \le x_0) \implies x_0 = y_0.$$

Come volevasi dimostrare.

2.4. RELAZIONI 29

Esempi. Seguono degli esempi di insiemi ordinati o meno che abbiano massimo, minimo o nessuno dei due.

- 1. (\mathbb{N}, \leq) ammette minimo, che è 0 ma non ammette massimo;
- 2. (\mathbb{Z}, \leq) non ammette né minimo, né massimo;
- 3. (\mathbb{N}_*, \leq) ammette minimo che è 1 ma non ammette massimo;
- 4. D_{20} ammette minimo che è 1 e massimo che è 20;
- 5. $(\mathcal{G}(A), \subseteq)$ ammette minimo che è \emptyset e massimo che è A;
- 6. sia $A = \{-2, 0, 1, 2, 3\}$. A ha minimo che è -2 e massimo che è 3.

2.4.2 Relazioni d'equivalenza

Definizione 2.4.12 (relazione d'equivalenza). Sia A un insieme non vuoto. Una relazione \mathcal{R}_2 su A si dice di equivalenza se è riflessiva, simmetrica e transitiva.

Esempio. Sia Π l'insieme delle rette del piano. La relazione

$$\mathcal{R}_{\Pi^2}^1 = \{(r, s) \in \Pi \times \Pi \mid r \text{ ha la stessa direzione di } s\},$$

è una relazione di equivalenza. La relazione

$$\mathcal{R}_{\Pi^{2}}^{2} = \left\{ (r,s) \in \Pi \times \Pi \mid r \text{ è perpendicolare ad } s \right\},$$

non è di equivalenza e nemmeno d'ordine.

Esempio. Sia Al'insieme dei residenti a Bari e sia $\mathcal{R}^{1}_{A^{2}}$ una relazione su $A^{2}:$

$$(\forall x,y\in A)(x,y)\in\mathbb{R}\iff x$$
ha la stessa madre di $y.$

 $\mathcal{R}^{1}_{A^{2}}$ è riflessiva, simmetrica e transitiva e quindi è di equivalenza.

Esempio. Sia A un insieme non vuoto. La diagonale

$$\Delta \left(A^2\right) = \left\{ (x, y) \in A \times A \mid x = y \right\}$$

è una relazione sia d'equivalenza che d'ordine (è l'unica che verifica entrambe le definizioni).

Definizione 2.4.13 (classe d'equivalenza). Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione di equivalenza su A. Per ogni elemento a di A si dice classe di equivalenza di a rispetto a \mathcal{R}_{A^2} il sottoinsieme di A:

$$[a]_{\mathcal{R}_{A^2}} = \{b \in A \mid (a, b) \in \mathcal{R}_{A^2}\}.$$

Esempi. Seguono una serie di esempi

1. Sia $A = \{a, b, c\}$ e sia

$$\mathcal{R}_{A^2} = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}.$$

Si ha

$$[a]_{\mathcal{R}_{A^2}} = \{a,b\} = [b]_{\mathcal{R}_{A^2}}, \quad [c]_{\mathcal{R}_{A^2}} = \{c\} \,.$$

2. La relazione:

$$\mathcal{R}'_{\mathbb{Z}^2} = \left\{ (x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x^2 = y^2 \right\};$$

risulta essere:

• riflessiva perché:

$$\forall x \in \mathbb{Z} \quad x^2 = x^2 \implies (x, x) \in \mathcal{R}'_{\mathbb{Z}^2};$$

• simmetrica perché:

$$\forall x, y \in \mathbb{Z} \quad (x, y) \in \mathcal{R}'_{\mathbb{Z}^2} \implies x^2 = y^2$$
$$\implies y^2 = x^2$$
$$\implies (y, x) \in \mathcal{R}'_{\mathbb{Z}^2};$$

• transitiva perché:

$$\forall x, y, z \in \mathbb{Z} \quad (x, y) \in \mathcal{R}'_{\mathbb{Z}^2} \wedge (y, z) \in \mathcal{R}'_{\mathbb{Z}^2} \implies x^2 = y^2 \wedge y^2 = z^2$$
$$\implies x^2 = z^2$$
$$\implies (x, z) \in \mathcal{R}'_{\mathbb{Z}^2}.$$

Si ha, per esempio:

$$[0]_{\mathcal{R}_{\mathbb{Z}^2}} = \{0\}\,, \quad [1]_{\mathcal{R}_{\mathbb{Z}^2}} = \{1, -1\} = [-1]_{\mathcal{R}_{\mathbb{Z}^2}}, \quad [2]_{\mathcal{R}_{\mathbb{Z}^2}} = \{2, -2\} = [-2]_{\mathcal{R}_{\mathbb{Z}^2}}.$$

Si evince che per ogni $x \in \mathbb{Z}$, per $x \neq 0$,

$$[x]_{\mathcal{R}'_{\mathbb{Z}^2}} = \{-x, x\}.$$

3. La relazione:

$$\mathcal{R}''_{A^2} = \left\{ (n,m) \in \mathbb{Z}_* \times \mathbb{Z}_* \mid n \cdot m > 0 \right\}$$

risulta essere di equivalenza, perché è:

• riflessiva, infatti:

$$\forall n \in \mathbb{Z}_* \quad n \cdot n = n^2 > 0 \implies (n, n) \in \mathcal{R}''_{\mathbb{Z}^2};$$

• simmetrica, infatti:

$$\forall n, m \in \mathbb{Z}_* \quad (n, m) \in \mathcal{R}''_{\mathbb{Z}^2} \implies n \cdot m > 0$$
$$\implies m \cdot n > 0$$
$$\implies (m, n) \in \mathcal{R}''_{\mathbb{Z}^2}$$

• transitiva, infatti:

$$\forall n, m, p \in \mathbb{Z}_* \quad (n, m) \in \mathcal{R}''_{\mathbb{Z}^2} \wedge (m, p) \in \mathcal{R}''_{\mathbb{Z}^2} \implies n \cdot m \cdot m \cdot p > 0$$

$$\implies np \cdot m^2 > 0$$

$$\implies np > 0$$

$$\implies (n, p) \in \mathcal{R}''_{\mathbb{Z}^2}.$$

Si ha, per esempio:

$$[1]_{\mathcal{R}''_{\mathbb{Z}^2}} = \{1, 2, 3, \dots, n\}, \quad [-1]_{\mathcal{R}''_{\mathbb{Z}^2}} = \{-1, -2, -3, \dots, -n\}.$$

2.4. RELAZIONI 31

Proposizione 2.4.14 (proprietà classi d'equivalenza). Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione di equivalenza su A. Allora risulta:

- 1. $\forall a \in A \qquad [a]_{\mathcal{R}_{A^2}} \neq \varnothing;$
- $2. \ \forall a,b \in A \quad [a]_{\mathcal{R}_{A^2}} = [b]_{\mathcal{R}_{A^2}} \iff (a,b) \in \mathcal{R}_{A^2};$
- 3. $\forall a, b \in A \quad [a]_{\mathcal{R}_{A^2}} \cap [b]_{\mathcal{R}_{A^2}} = \emptyset \iff (a, b) \notin \mathcal{R}_{A^2}.$

DIMOSTRAZIONE: Dimostriamo i 3 punti precedenti:

- 1. $\forall a \in A \quad [a]_{\mathcal{R}_{A^2}} \neq 0$ perché $a \in [a]_{\mathcal{R}_{A^2}}$ in quanto $(a, a) \in \mathcal{R}_{A^2}$;
- 2. dimostriamo la doppia implicazione:

 ${\bf LHS}:$ È necessario provare che $[a]_{\mathcal{R}_{4^2}}=[b]_{\mathcal{R}_{4^2}},$ ovvero

$$[a]_{\mathcal{R}_{A^2}} \subseteq [b]_{\mathcal{R}_{A^2}} \wedge [b]_{\mathcal{R}_{A^2}} \subseteq [a]_{\mathcal{R}_{A^2}}.$$

Siano dunque $(a,b) \in \mathcal{R}_{A^2}$ e sia $c \in [a]_{\mathcal{R}_{A^2}}$, quindi si ha che $(a,v) \in \mathcal{R}_{As^2} \land (a,b) \in \mathcal{R}_{A^2}$, dato che \mathcal{R}_{A^2} è simmetrica si ha che $(b,a) \in \mathcal{R}_{A^2} \land (a,c) \in \mathcal{R}_{A^2}$. Poiché \mathcal{R}_{A^2} è transitiva $(b,c) \in \mathcal{R}_{A^2}$ e dunque $c \in [b]_{\mathcal{R}_{A^2}}$. È stato preso $c \in [a]_{\mathcal{R}_{A^2}}$ ed è stato provato che $c \in [b]_{\mathcal{R}_{A^2}}$, da cui segue che $[a]_{\mathcal{R}_{A^2}} \subseteq [b]_{\mathcal{R}_{A^2}}$. L'altra inclusione è analoga.

RHS: Siano $a,b \in A$. Bisogna dimostrare che $(a,b) \in \mathcal{R}_{A^2}$, si supponga che $[a]_{\mathcal{R}_{A^2}} = [b]_{\mathcal{R}_{A^2}}$. Dunque, $a \in [a]_{\mathcal{R}_{A^2}} = [b]_{\mathcal{R}_{A^2}}$ e quindi $a \in [b]_{\mathcal{R}_{A^2}}$. Si ha quindi che $(b,a) \in \mathcal{R}_{A^2}$ e per simmetria anche $(a,b) \in \mathcal{R}_{A^2}$.

3. dimostriamo, anche qui, la doppia implicazione:

LHS: è necessario dimostrare che $[a]_{\mathcal{R}_{A^2}} \cap [b]_{\mathcal{R}_{A^2}} = \emptyset$. Siano $a, b \in \mathcal{R}_{A^2}$, per assurdo, si supponga che $[a]_{\mathcal{R}_{A^2}} \cap [b]_{\mathcal{R}_{A^2}} \neq \emptyset$. Allora $\exists c \in [a]_{\mathcal{R}_{A^2}} \cap [b]_{\mathcal{R}_{A^2}}$ e quindi $(a, c) \in \mathcal{R}_{A^2} \wedge (b, c) \in \mathcal{R}_{A^2}$, che per simmetria diventa $(a, c) \in \mathcal{R}_{A^2} \wedge (c, b) \in \mathcal{R}_{A^2}$ che, per transitività diventa $(a, b) \in \mathcal{R}_{A^2}$, che è assurdo.

RHS: bisogna dimostrare che $(a,b) \notin \mathcal{R}_{A^2}$. Siano $a,b \in \mathcal{R}_{A^2}$; per assurdo, si supponga che $(a,b) \in \mathcal{R}_{A^2}$ allora $b \in [b]_{\mathcal{R}_{A^2}}$ e $b \in [a]_{\mathcal{R}_{A^2}}$ per definizione di classe d'equivalenza, dunque si ha $b \in [b]_{\mathcal{R}_{A^2}} \cap [a]_{\mathcal{R}_{A^2}} = \emptyset$, che è assurdo.

La dimostrazione risulta quindi conclusa.

Osservazione. Siano A, B due insiemi, si ha

$$A \cup B = \{x \mid x \in A \lor x \in B\};$$

siano A, B, C tre insiemi, si ha:

$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C = \left\{ x \mid x \in A \lor x \in B \lor x \in C \right\}.$$

Siano A_1, \ldots, A_n insiemi, si ha:

$$A_1 \cup A_2 \cup \dots \cup A_n = \left\{ x \mid x \in A_1 \lor x \in A_2 \lor \dots \lor x \in A_n \right\}$$
$$= \left\{ x \mid \exists i = 1, \dots, n : x \in A_i \right\}$$

In generale, data una famiglia di insiemi A_i con $i \in I \subseteq \mathbb{R}$, si ha:

$$\bigcup_{i \in I} A_i = \left\{ x \mid \exists i \in I : x \in A_i \right\}$$

e

$$\forall j \in I \quad A_j \subseteq \bigcup_{i \in I} A_i$$

Proposizione 2.4.15. Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione di equivalenza su A^2 . Allora l'unione delle classi di equivalenza di x al variare di x in A è l'insieme A. In simboli:

$$\bigcup_{x\in A}\,[\,x\,]_{\mathcal{R}_{A^2}}=A.$$

DIMOSTRAZIONE: bisogna dimostrare che

$$\bigcup_{x\in A} \, [x]_{\mathcal{R}_{A^2}} \subseteq A \wedge A \subseteq \bigcup_{x\in A} \, [x]_{\mathcal{R}_{A^2}}.$$

Sia dunque

$$y\in\bigcup_{x\in A}\,[\,x\,]_{\mathcal{R}_{A^2}},$$

allora $\exists x_0 \in A: y \in [x_0]_{\mathcal{R}_{A^2}} \subseteq A$ e quindi $y \in A$. Sia ora $y \in A$, allora $y \in [y]_{\mathcal{R}_{A^2}}$ e quindi

$$y \in \bigcup_{x \in A} [x]_{\mathcal{R}_{A^2}}.$$

La dimostrazione risulta conclusa.

Definizione 2.4.16 (partizione). Sia A un insieme non vuoto e sia $\pi \subseteq \mathcal{P}(A)$. si dice che π è una partizione di A se:

- 1. $\forall X \in \pi \quad X \neq \emptyset;$
- 2. $\forall X, Y \in \pi \quad X \neq Y \implies X \cap Y = \varnothing;$
- 3. $\bigcup_{x \in \pi} x = A$.

Osservazione. Siano A un insieme e \mathcal{R}_{A^2} una relazione di equivalenza su A^2 . Allora l'insieme

$$\pi = \left\{ [a]_{\mathcal{R}_{A^2}} \mid a \in A \right\}$$

è una partizione di A. Infatti

- $1. \ \forall a \in A \quad [a]_{\mathcal{R}_{A^2}} \neq \varnothing;$
- $2. \ \forall a,b \in A \quad [a]_{\mathcal{R}_{A^2}} \neq [b]_{\mathcal{R}_{A^2}} \implies [a]_{\mathcal{R}_{A^2}} \cup [b]_{\mathcal{R}_{A^2}} = \varnothing;$
- 3. $\bigcup_{a \in A} [a]_{\mathcal{R}_{A^2}} = A.$

In generale, se π è una partizione su un insieme X ad essa si può associare una relazione di equivalenza.

Definizione 2.4.17 (insieme quoziente). Siano A un insieme non vuoto e \mathcal{R}_{A^2} una relazione di equivalenza su A^2 . Si dice insieme quoziente di A per \mathcal{R}_{A^2} e si indica con il simbolo

$$A/_{\mathcal{R}_{A^2}} \subseteq \mathcal{P}(A)$$

l'insieme di tutte le classi d'equivalenza rispetto a \mathcal{R}_{A^2} . In simboli

$$A_{/_{\mathcal{R}_{A^2}}} = \left\{ [a]_{\mathcal{R}_{A^2}} \mid a \in \mathcal{R}_{A^2} \right\}.$$

Si tratta di una partizione su A.

2.5. FUNZIONI 33

2.5 Funzioni

Definizione 2.5.1 (relazione funzionale). Siano A e B due insiemi non vuoti e sia $\mathcal{R}_{(A\times B)}\subseteq A\times B$. $\mathcal{R}_{(A\times B)}$ è una relazione funzionale se

$$\forall a \in A \quad \exists! b \in B : (a, b) \in \mathcal{R}_{(A \times B)}.$$

Osservazione. se $\exists a \in A \in \exists b_1, b_2 \in B$, con $b_1 \neq b_2$ si può avere che $(a, b_1) \in \mathcal{R}_{(A \times B)}$ ma anche $(a, b_2) \in \mathcal{R}_{(A \times B)}$ e quindi $\mathcal{R}_{(A \times B)}$ non è più una relazione funzionale.

Se $\exists a \in A$ che non è la prima coordinata di alcuna coppia, allora \mathcal{R} non è funzionale.

Esempio. Dati gli insiemi $A = \{1, 2, 3, 4, 5\}$ e $B = \{a, b, x, y\}$, la relazione

$$\mathcal{R}^{1}_{(A\times B)} = \{(1, a), (1, b), (2, a), (3, b), (4, x), (5, x)\}$$

non è funzionale perché $(1,a),(1,b)\in\mathcal{R}^{\!1}_{(A\times B)}.$ Al contrario la relazione

$$\mathcal{R}^{2}_{(A\times B)} = \{(1,a), (2,a), (3,b), (4,x), (5,y)\}$$

è funzionale. Invece, la relazione

$$\mathcal{R}^{3}_{(A\times B)} = \{(1, y), (3, x), (5, a), (4, b)\}$$

non è funzionale in quanto non esiste in $\mathcal{R}^3_{(A\times B)}$ alcuna coppia con prima coordinata 2.

Definizione 2.5.2 (funzione). Siano A, B due insiemi non vuoti e sia $\mathcal{R}_{(A \times B)}$ (per brevità \mathcal{R}) una relazione funzionale tra gli elementi di A e quelli di B. La terna $f = (A, B, \mathcal{R})$ si dice funzione o applicazione oppure mappa tra $A \in B$.

A si dice insieme di partenza o dominio di f;

B si dice insieme di arrivo di f;

 \mathcal{R} si dice grafico di f.

La funzione $f = (A, B, \mathcal{R})$ si denota col simbolo

$$f: A \to B$$

Quindi

$$\forall a \in A \quad \exists! b \in B \text{ t.c. } (a, b) \in \mathcal{R}.$$

Esempi. Seguono degli esempi:

1. $\mathcal{R}^1 = \{(x,y) \in \mathbb{N} \times \mathbb{Z} \mid y = -x\}$ è una relazione funzionale, infatti

$$\forall x \in \mathbb{N} \ \exists ! y = -x \in \mathbb{Z} \ \text{t.c.} \ (x, y) \in \mathbb{R}$$

Scriviamo la funzione come $f_1 = (\mathbb{N}, \mathbb{Z}, \mathcal{R}^1)$ e dunque $\forall x \in \mathbb{Z}$ f(x) = -x. f_1 si può scrivere anche come $f_1 : \mathbb{N} \to \mathbb{Z}$ e si ha quindi $x \mapsto -x$;

2. $\mathbb{R}^2 = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid y = -x\}$ è una relazione funzionale. Scriviamo la funzione come $f_2 = (\mathbb{Z}, \mathbb{Z}, \mathbb{R})$, essa si può quindi scrivere anche come $f_2 = \mathbb{Z} \to \mathbb{Z}$ e quindi si ha $x \mapsto -x$; 3. $\mathcal{R}^3 = \left\{ (x,y) \in \mathbb{Q}^* \times \mathbb{Q} \mid y = 2/x \right\}$ è una relazione funzionale, infatti

$$\forall x \in \mathbb{Q}^* \quad \exists! y \in \mathbb{Q} \text{ t.c. } y = 2/x$$

Scriviamo la funzione come $f_3: \mathbb{Q}^* \to \mathbb{Q}$ e quindi $x \mapsto 2/x$;

4. $\mathcal{R}^4=\left\{(x,y)\in\mathbb{Q}\times\mathbb{Q}\mid y=2/x\right\}$ non è una relazione funzionale, perché

$$\exists x = 0 \in \mathbb{Q} \text{ t.c. } \forall y \in \mathbb{Q} \quad (0, y) \notin \mathcal{R}^4;$$

5. $\mathcal{R}^5 = \{(x,y) \in \mathbb{Q}^* \times \mathbb{Q}^* \mid y = 2/x\}$ è una relazione funzionale. Scriviamo la funzione come $f_5 = (\mathbb{Q}^*, \mathbb{Q}^*, \mathcal{R}^5)$ oppure come $f_5 \colon \mathbb{Q}^* \to \mathbb{Q}^*$ e dunque $x \mapsto 2/x$.

Osservazione. Siano $f\colon A\to B$ e $g\colon C\to D$ due funzioni, segue che $x\mapsto f(x)$ e $y\mapsto g(y)$. Si ha che

$$f = g \iff A = C \land B = D \land \forall x \in A = C \quad f(x) = g(x).$$