See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/23471520

N-Acyldihydropyridones as Synthetic Intermediates. A Stereoselective Synthesis of Acyclic Amino Alcohols Containing Multiple Chiral Centers

ARTICLE in THE JOURNAL OF ORGANIC CHEMISTRY · DECEMBER 2008

Impact Factor: 4.72 · DOI: 10.1021/jo802029y · Source: PubMed

CITATIONS	READS
15	17

3 AUTHORS, INCLUDING:

Daniel L Comins
North Carolina State University

251 PUBLICATIONS **5,916** CITATIONS

SEE PROFILE

J Org Chem. Author manuscript; available in PMC 2009 December 19.

Published in final edited form as:

J Org Chem. 2008 December 19; 73(24): 9744–9751. doi:10.1021/jo802029y.

N-Acyldihydropyridones as Synthetic Intermediates. A Stereoselective Synthesis of Acyclic Amino Alcohols Containing Multiple Chiral Centers

W. Stephen McCall, Teresa Abad Grillo, and Daniel L. Comins*
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Abstract

Various multisubstituted piperidines containing a phenyl group at C-2 can be opened regio- and stereoselectively with cyanogen bromide. The ring-opened products contain useful cyanamide and benzylic bromide functional groups. The benzyl bromide can be cleanly reduced, or substituted with various nucleophiles via an $S_{\rm N}2$ process to add additional heteroatoms stereoselectively. This methodology is useful for the stereoselective synthesis of uniquely substituted alkylamine derivatives containing multiple chiral centers and various functionality. Diastereomerically pure amino alcohols containing three to five contiguous stereocenters were prepared using this strategy.

Keywords

Dihydropyridones; piperidines; von Braun reaction; cyanogen bromide; piperidinols; amino alcohols; cyanamides

Introduction

Compared to acyclic intermediates, the stereocontrolled introduction of stereocenters into cyclic systems is generally easier to accomplish. This concept has been used often by organic chemists in designing routes to stereoselectively synthesize acyclic synthetic intermediates containing multiple chiral centers. Substituents are introduced into a cyclic building block with stereocontrol and then the ring is opened to yield the open chain intermediate with translation of stereochemistry. Historically, this approach to stereodefined acyclic intermediates has been designed and utilized for the synthesis of a specific target molecule, and few general methodologies have been developed to prepare chiral acyclic intermediates in this manner. This is particularly evident in piperidine chemistry and in the construction of chiral alkylamines. The stereoselective preparation of chiral amino alcohols is of particular importance to medicinal chemistry as they are found as fragments in numerous antiviral drugs, natural products, and various biologically active compounds. The opening of chiral piperidinols appeared to have considerable potential for the facile formation of these valuable functionalized intermediates.

Over the years, several methodologies have been developed in our labs in support of ongoing efforts to synthesize complex alkaloid natural products utilizing the dihydropyridone ring system as a building block.² These versatile heterocycles are readily synthesized from 1-acylpyridinium salts of 4-methoxypyridines and a nucleophile. If a chiral chloroformate is used in the formation of the 1-acylpyridinium salt, the dihydropyridones can be obtained in a highly diastereoselective fashion providing ready access to either antipode for synthetic purposes.³ The functionality and conformational bias present in these heterocycles allow regio and stereoselective substitutions to be carried out at every carbon on the ring. This chemistry is powerful for the stereocontrolled synthesis of piperidines with multiple chiral centers.²

We felt that the development of a general piperidine ring-opening reaction would broaden the scope of our dihydropyridone chemistry by allowing chiral acyclic amino alcohol derivatives with 2–5 contiguous or discontinuous stereocenters to be prepared from stereodefined piperidines with control of relative and absolute stereochemistry.

As previously described in our preliminary publication,⁴ we discovered that the von Braun tertiary amine cleavage reaction⁵ gave both stereo and regiocontrolled ring opening in high yield at the 2-position of substituted 2-phenyl-*N*-methylpiperidines **1** (Scheme 1). Herein we describe the synthesis of various piperidinols containing multiple chiral centers, and their conversion to the corresponding acyclic intermediates. This methodlogy gives rapid entry into chiral acyclic amino alcohol derivatives of the type **2** with functionality that may be manipulated in a myriad of interesting directions depending on the subsequent chemistry that is desired. The work reported herein illustrates that the methodology is general and may be applied to the preparation of various chiral amino alcohols with excellent stereocontrol.

Results and Discussion

The first system we chose to investigate was a piperidine containing 3 stereocenters. Treatment of commercially available 4-methoxypyridine, phenyl chloroformate, and phenylmagnesium bromide followed by acidic workup gave the desired dihydropyridone 3 in 83% recrystalized yield⁶ (Scheme 2). Compound 3 was then subjected to copper-mediated conjugate addition of methyl Grignard to afford preferentially the *cis* substituted piperidone 4.⁷ The diasteroselectivity was 5:1 favoring the *cis* isomer which was separated by column chromatography. LAH reduction provided the 4-piperidinol 5 as a single diastereomer. The complete facial selectivity observed during the reduction step can be explained by examining the low-energy conformation of piperidone 4 (Figure 1). Due to A^(1,3) strain, both the C-2 and C-6 substituents are held in the axial orientation. Facile reduction of the ketone carbonyl with LAH on the less hindered face occurs prior to carbamate reduction. This result is an illustrative example of how the conformational bias of these heterocycles can be effectively used for stereocontrol. The piperidinol was protected to give 6 as either an acetate or a TBS derivative.

The ring-opening reactions of piperidines $\bf 6$ were carried out under standard von Braun conditions using cyanogen bromide in refluxing CH_2Cl_2 . The only products observed were the targeted acyclic cyanamides $\bf 7$ as single diastereomers, due to both regio- and stereospecific ring opening of the intermediate cyanoammonium salt. The regioselectivity is a result of activation of the C-2, C-N bond by the phenyl substituent at the C-2 position. Structure elucidation of the precursor $\bf 6b$ through 2-D NOESY studies gave a tentative assignment of relative stereochemistry. We anticipated that the reaction would proceed through an S_N2 mechanism and assumed as such based on literature precedent; the resulting relative stereochemical assignment for products $\bf 7$ would be as shown in Scheme 2. Isolation of the von Braun product $\bf 7b$ as an X-ray quality crystal confirmed the assignment and proved unequivocally that the reaction did in fact proceed through an S_N2 mechanism with inversion of configuration.

The functionalities resulting from the ring-opening von Braun reaction are a benzylic bromide as well as a cyanamide. The benzylic bromide is synthetically useful due to its ability to be readily substituted by various nucleophiles with inversion of stereochemistry resulting in a preserved stereocenter. The cyanamide can act as an amine protecting group, or it can be modified under a variety of conditions. This functional group versatility broadens the scope of the methodology for use in the synthesis of diverse, chiral 1,3-amino alcohols. Scheme 3 shows some of the chemistry that we carried out on the ring-opened products 7 and illustrates the utility and general reactivity of these intermediates.

Substitution of the bromide 7b with sodium azide by S_N2 gave the intermediate azide 8 in high yield. Selective reduction using Pearlman's catalyst ($Pd(OH)_2$) and H_2 in EtOAc in the presence of Boc_2O afforded the Boc protected amine $9.^{11}$ The bromide 7b was carried through a double inversion sequence involving reaction with sodium picolinate and mild coppermediated methanolysis to provide 10, and a subsequent Mitsunobu reaction to give alcohol $11.^{12}$ Direct substitution of 7b with sodium benzoate in DMPU at room temperature gave the ester 12.

Catalytic hydrogenation of **7a** and **7b**, again with Pearlman's catalyst in EtOAc, provided **13a** and **13b** via hydrogenolysis of the benzylic bromide while the rest of the molecule remained intact. If the reaction solvent for reduction of **7b** was changed to methanol instead of EtOAc, not only did hydrogenolysis of the benzylic bromide occur, but concomitant reduction of the cyanamide to the formamidine **14** was observed. This functionality proved to be very stable, and under several conditions attempted, no further reduction of the formamidine occurred. Following the method of Meyers¹³, the formamidine was converted to the Cbz protected counterpart **15**, which on treatment with hydrazine under mild conditions afforded amine **16**.

Since the number and type of substituents on the piperidine could affect the ring-opening step, examples with four and five stereocenters were studied. The synthesis of the four-center precursor began with 2-phenyl-2,3-dihydropyridone 3 which was alkylated at the 3-position to give, as a single diastereomer, compound 17 (Scheme 4). Michael addition of methyl cuprate under our standard conditions afforded 4-piperidone 18. It is worthy of note at this point that the conjugate addition, with an axial substituent at the 3-position of 17, gives a single diastereomer via axial attack. A similar result was observed during a study of the Mukaiyama-Michael reaction of certain N-acyl-2,3-dihydro-4-pyridones. ¹⁴ LAH reduction proceeded smoothly to give a 7:1 mixture of piperidinols which on subsequent protection and purification provided the TBS ether 19 in 55% yield for the two steps. The relative stereochemistry assignment for 19 was confirmed through 2-D NOESY experiments. As in the reaction of 4 with LAH, the reduction of ketone 18 gave the axial alcohol intermediate as the major isomer. The von Braun reaction was carried out on substrate 19. Once again, total regioselectivity imparted by the 2-phenyl substituent occurred, as well as inversion of configuration indicative of an S_N2 reaction to afford bromide **20** in 88% yield. It was found at this time that the von Braun ring-opening reaction of our 2-phenylpiperidines proceeds smoothly at room temperature. As before, S_N2 substitution of the bromide with sodium azide provided the corresponding azide 21.

The possibility of opening a fully substituted piperidine ring was investigated next. Dihydropyridone **18** was methylated at C-5 with LiHMDS and methyl iodide to afford the all axial tetrasubstituted piperidone **22** (Scheme 5). Stereospecific reduction of the ketone carbonyl with L-Selectride provided the equatorial alcohol **23** as a single diastereomer. This time the facial selectivity observed is a result of the presence of axial C-3 and C-5 methyl groups in the low energy conformation (Figure 2). Reduction with LAH gave the *N*-methylpiperidinol **24** in 98% yield. Since the sterically hindered hydroxyl of **24** proved difficult to protect, the von Brawn ring-opening was carried out directly. It was hoped that alcohol

protection would not be needed, since an example of the von Braun reaction proceeding in the presence of hydroxyl groups has been reported. ¹⁵

The fully substituted piperidine **24** was treated with cyanogen bromide at room temperature to afford **25** in good yield. X-ray analysis of minor byproduct **26** confirmed the stereochemical assignments for **23** and **24**.⁴

To broaden the scope of this methodology, the preparation of polyhydroxy piperidines via a tetrahydropyridine intermediate was examined. ¹⁶ The 2-alkyldihydropyridone **27** was reduced under Luche conditions to the corresponding *trans*-alcohol which was methylated to provide ether **28**. ¹⁷ Lewis acid mediated phenylzinc addition, via an intermediate iminium ion, gave tetrahydropyridine **29**. ¹⁸ With the C-2 and C-6 substituents of **29** pseudo axial, dihydroxylation with OsO₄ would certainly lead to the β-diol. Since flexible stereocontrol in the incorporation of functionality is important to the scope of this methodology, we were interested to see if the all cis diol **31** could be prepared. To this end, **29** was subjected to the Woodward dihydroxylation reaction. ¹⁹ To our delight, the all *cis* piperidine **30** was obtained in 60% yield. Deprotection and reductive methylation of **30** using a one-pot procedure gave the *N*-methyl derivative **31**. ²⁰ The hydroxyl groups were protected as benzyl ethers to provide **32**. Cyanogen bromide ring-opening was again highly efficient affording a 96% yield of cyanamide **33**. The bromine of **33** was reductively removed in the presence of the benzyl ethers and cyanamide group using mild catalytic hydrogenation conditions to give **34** in near quantitative yield.

Conclusion

This methodology is of broad scope as it has the potential for use in the preparation of uniquely substituted amine derivatives containing multiple chiral centers and various functionality. The relative stereochemistry can be introduced with a high degree of control and with considerable variability. Contiguous or skip stereocenters can be introduced via appropriate conversions of the *N*-acyldihydropyridone precursor. Since introduction of substituents onto the dihydropyridone or tetrahydropyridine intermediates can be accomplished stereoselectively through direct addition² or epimerization, ^{2h,21} most desired diastereomers can be prepared efficiently in a few number of steps. The potential is there for incorporating quaternary centers, ^{2h,21} and for using other aryl or non-aryl ring-opening activating groups at the C-2 position. Although this study used racemic materials, enantiopure diastereomeric products of either antipode can be prepared by starting with readily available nonracemic dihydropyridones.³ This methodology should be amenable to the asymmetric synthesis of natural products and other biologically active compounds.

Experimental Section

The synthesis and characterization of compounds **3–5**, **6b**, **7b**, **8–9**, **12**, **17–18**, and **22–26** have been previously reported.⁴

(2S*,4R*,6S*)-1,2-Dimethyl-6-phenylpiperidin-4-yl acetate (6a)

To a solution of **5** (115 mg, 0.56 mmol) in 4 mL of THF was added acetic anhydride (62.8 mg, 0.62 mmol), TEA (75.3 mg, 0.616 mmol), and DMAP (2.8 mg, 0.03 mmol). The mixture was allowed to stir at rt for 18 h. After the reaction was deemed complete by TLC, the mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The crude residue was purified by radial PLC (30% EtOAc/hexanes) to give 109 mg (79%) of **6a** as a yellow oil. 1 H NMR (CDCl₃, 300 MHz) δ 1.18 (d, 1H, J = 8 Hz), 1.54 (q, 1H, J = 15.6 Hz), 1.68 (q, 1H, J = 15.6 Hz), 1.96 (s, 3H), 1.98 (s, 3H), 1.91–2.04 (m, 2H), 2.17–2.27 (m, 1H), 3.03 (dd, 1H, J = 12.4, 3.6 Hz), 4.76–4.87 (m, 1H), 7.20–7.32 (m, 5H); 13 C NMR (CDCl₃, 75 MHz) δ 21.5, 39.9, 40.2, 41.4, 58.0, 68.9, 71.0, 127.4, 127.6, 128.7, 144.4, 170.7; IR (neat)

1434, 1453, 1494, 1602, 1740, 2779, 2845, 2970, 3027, 3062 cm $^{-1}$; HRMS: $(M+H)^+$ calcd for $C_{15}H_{21}NO_2$ 248.1651; found 248.1647.

(1R*,3R*,5S*)-1-Bromo-5-(isocyano(methyl)amino)-1-phenylhexan-3-yl acetate (7a)

Protected piperidinol **6a** (270 mg, 1.09 mmol) was dissolved in CH₂Cl₂ (40 mL). A solution of BrCN (1.8 mL, 5.4 mmol, 3.0 M in CH₂Cl₂) was added and the reaction mixture was brought to reflux. The reaction was monitored by TLC analysis. After 3 h, the reaction mixture was cooled and concentrated under reduced pressure. The crude residue was purified by radial PLC (20–30% EtOAc/hexanes) to give compound **7a** (364 mg, 95%) as a yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 0.1 (s, 6H), 0.9 (s, 9H), 1.21 (d, 3H, J = 8.8 Hz), 1.53 (m, 1H), 1.89 (m, 1H), 2.17 (m, 1H), 2.56 (m, 1H), 5.03 (dd, 1H, J = 6.8 Hz), 7.26–7.40 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ –4.2, –3.7, 18.2, 36.9, 41.9, 47.7, 51.1, 54.5, 68.2, 117.3, 127.4, 128.8, 129.1, 142.1; IR (neat) 1508, 1560, 1655, 1685, 2209, 2362, 2857, 2896, 2930, 2954, 3032 cm⁻¹; HRMS: (M+H)⁺ calcd for C₂₀H₃₃BrN₂OSi: 425.1624; found, 425.1629.

N-((2*S**,4*R**,6*S**)-4-(*tert*-Butyldimethylsilyloxy)-6-hydroxy-6-phenylhexan-2-yl)-*N*-methylcyanamide (10)

To bromide **7b** (80 mg, 0.19 mmol) in 2.7 mL of HMPA was added freshly prepared sodium picolinate (32 mg, 0.23 mmol). The reaction was allowed to stir at rt for 18 h at which time 3 mL of brine was added along with 3 mL of Et₂O. The layers were separated and the aqueous layer was extracted with Et₂O (3×3 mL). The organic extracts were combined, washed with H_2O (2 × 2 mL) and brine (1 × 2 mL), and dried over MgSO₄. Filtration and concentration gave an oil that was dissolved in 5 mL of CHCl₃. MeOH (49 µL, 1.197 mmol) and Cu (OAc)₂ (27 mg, 0.15 mmol) were added and the mixture was stirred at rt for 18 h. Concentration afforded a crude oil that was dissolved in CH₂Cl₂. The solution was washed with 50:50 saturated NH₄Cl/20% NH₄OH solution and the layers separated. The organic layer was dried over MgSO₄ and concentrated. Purification by radial PLC (EtOAc/hexanes) gave 45 mg of benzyl alcohol 10 (63% yield overall) as an oil. ¹H NMR (CDCl₃, 300 MHz) δ 0.13 (d, 6H, J = 24.4 Hz), 0.93 (s, 9H), 1.27 (d, 3H, J = 6.4 Hz), 1.75–2.02 (m, 4), 2.84 (s, 3H), 3.09 (m, 1H), 4.12 (sextet, 1H, J = 4.4 Hz), 4.98 (dd, 1H, J = 2.8, 10.4 Hz), 7.36 (m, 5H); ¹³C NMR $(CDCl_3, 75\ MHz)\ \delta\ -4.6, \ -4.0, \ 18.2, \ 26.1, \ 37.4, \ 41.8, \ 45.8, \ 54.8, \ 68.4, \ 71.5, \ 117.2, \ 125.9,$ 127.7, 128.7, 144.8; IR (neat) 1063, 1256, 1458, 2211, 2858, 2932, 2954, 3445 cm⁻¹; HRMS $(M+H)^+$ calcd for $C_{20}H_{34}N_2O_2Si$ 363.2468, found 363.2462.

$N-((2S^*,4R^*,6R^*)-4-(tert-Butyldimethylsilyloxy)-6-hydroxy-6-phenylhexan-2-yl)-N-methylcyanamide (11)$

To benzyl alcohol **10** (45 mg, 0.12 mmol) in 2 mL of THF at -20 °C was added triphenylphosphine (65 mg, 0.25 mmol) and picolinic acid (31 mg, 0.25 mmol). After stirring for 20 min, DEAD (39 µl, 0.25 mmol) was added dropwise over 5 min and then the mixture was allowed to warm to rt over a 4 h period. The reaction mixture was concentrated under reduced pressure. The residue was triturated with hot hexanes and filtered. The filtrate was concentrated to give an oil that was taken directly on to the next step. To the crude ester was added 6 mL of CHCl₃, MeOH (39 µL, 2.7 mmol), and Cu(OAc)₂ (23 mg, 0.12 mmol), and the mixture was stirred at rt for 20 h. The reaction was quenched with 50:50 saturated NH₄Cl/25% NH₄OH solution, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were washed with H₂O and brine, dried over MgSO₄, and concentrated under reduced pressure. Purification by radial PLC (EtOAc/hexanes) gave **11** (23 mg, 53% over 2 steps) as a white solid, mp 82–83 °C; ¹H NMR (CDCl₃, 300 MHz) δ 0.11 (d, 6H, J = 5.2 Hz), 0.9 (s, 9H), 1.23 (d, 3H, J = 6.0 Hz), 1.65 (m, 1H), 1.77 (m, 1H), 1.99 (m, 2H), 2.73 (bs, 1H), 2.84 (s, 3H), 3.12 (m, 1H), 4.14 (m, 1H), 4.83 (d, 1H, J = 10 Hz), 7.26–7.35 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ –4.3, –3.8, 18.4, 26.1, 37.3, 42.4, 47.0, 54.4, 67.8, 71.7, 117.6, 125.8, 127.7, 128.7,

145.1; IR (neat) 775, 836, 1061, 2209, 2855, 2929, 2952 cm $^{-1}$; HRMS (M+H) $^+$ calcd for $C_{20}H_{34}N_2O_2Si$ 363.2468, found 363.2457.

(3S*,5S*)-5-(N-Methylcyanamido)-1-phenylhexan-3-yl acetate (13a)

To bromide **7a** (51 mg, 0.145 mmol) in EtOAc (3 mL) was added Pd(OH)₂ (40 mg, 0.06 mmol) and NaOAc (30 mg, 0.36 mmol), and the mixture was placed under a balloon pressurized atmosphere of H₂ with good stirring. After 15 h, the reaction mixture was filtered through Celite and concentrated to give 33 mg (83%) of **13a** which was used without further purification. 1 H NMR (CDCl₃, 300 MHz) δ 1.24 (d, 3H, J = 8.8 Hz), 1.65–1.74 (m, 1H), 1.83–1.99 (m, 2H), 2.04 (s, 3H), 2.64 (t, 2H, J = 10.8 Hz), 2.81 (s, 3H), 2.87–2.94 (m, 1H), 5.05–5.13 (m, 1H), 7.15–7.30 (m, 5H); 13 C NMR (CDCl₃, 75 MHz) δ 18.4, 21.4, 31.8, 36.6, 37.9, 39.7, 54.9, 71.0, 116.9, 126.3, 128.5, 128.7, 141.4, 170.9; IR (neat) 701, 749, 939, 1023, 1041, 1135, 1167, 1239, 1374, 1434, 1455, 1496, 1557, 1603, 1652, 1735, 2207, 2360, 2933, 2969, 3027, 3646, 3673, 3748, 3851 cm⁻¹; HRMS (M+H)⁺ calcd for C₁₆H₂₂N₂O₂ 275.1760, found 275.1750.

N-((2S*,4S*)-4-(tert-Butyldimethylsilyloxy)-6-phenylhexan-2-yl)-N-methylcyanamide (13b)

To benzyl bromide **7b** (28 mg, 0.06 mmol) in 3 mL of dry EtOAc was added Pd(OH)₂ (19 mg, 0.03 mmol) and NaOAc (11 mg, 0.13 mmol). The mixture was stirred under an atmosphere of H₂ at balloon pressure for 12 h. The mixture was filtered through a Celite pad with an EtOAc wash. The solvent was removed under reduced pressure to yield **13b** (23 mg, 100%) as an oil which did not need further purification. ¹H NMR (CDCl₃, 300 MHz) δ 0.07 (d, 6H, J = 6.9 Hz), 0.90 (s, 9H), 1.23 (d, 3H, J = 6.6 Hz), 1.55–1.64 (m, 1H), 1.76–1.89 (m, 2H), 2.56–2.71 (m, 2H), 2.83 (s, 3H), 3.07–3.16 (m, 1H), 3.87–3.94 (m, 1H), 7.17–7.31 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ –4.4, –3.7, 18.3, 26.1, 19.9, 31.0, 37.4, 39.9, 42.0, 54.7, 68.5, 117.4, 126.0, 128.6, 128.7, 142.4; IR (neat) 776, 1063, 1254, 1458, 2208, 2857, 2932, 2952 cm⁻¹; HRMS (M+H)⁺ calcd for C₂₀H₃₄N₂OSi 347.2519, found 347.2528.

N-((2S*,4S*)-4-(tert-Butyldimethylsilyloxy)-6-phenylhexan-2-yl)-N-methylformimidamide (14)

To bromocyanamide **7b** (30 mg, 0.07 mmol) in 2.5 mL of EtOH was added Pearlman's Catalyst (Pd(OH)₂, 4 mg, 0.03 mmol) and NaOAc (6 mg, 0.07 mmol). The mixture was placed under a balloon pressurized atmosphere of H₂ and stirred at rt for 15 h at which time the reaction was deemed complete by TLC. The mixture was filtered through a pad of Celite and then concentrated. The crude solid was triturated with CH₂Cl₂. The hot mixture was filtered and the remaining solids washed with hot CH₂Cl₂. The filtrate was concentrated under reduced pressure and the crude solid residue was recrystallized from EtOAc to give **14** (24.2 mg, 99%) as a white solid, mp 184–185 °C. ¹H NMR (CDCl₃, 300 MHz) δ 0.07 (d, 6H, J = 7.2 Hz), 0.90 (s, 9H), 1.32 (d, 3H, J = 6.6), 1.65–1.82 (m, 4H), 2.61 (m, 1H), 3.14 (s, 3H), 3.64 (bs, 1H), 3.81 (m, 1H), 7.14–7.33 (m, 5H), 7.62 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ –3.9, –3.4, 20.3, 26.2, 31.1, 32.0, 39.0, 40.9, 59.2, 68.9, 126.4, 128.5, 128.5, 153.7; IR (neat) 836.1, 1063, 1255, 1699, 2358, 2857, 2954 cm⁻¹; HRMS (M+H)⁺ calcd for C₁₉H₁₉NO₃ 349.2675, found 349.2680.

(E)-Benzyl(($(2S^*,4S^*)$ -4-(*tert*-butyldimethylsilyloxy)-6-phenylhexan-2-yl)(methyl)amino) methylenecarbamate (15)

To formamidine 14 (30 mg, 0.087) in 3 mL of Et_2O was added 3 mL of saturated aqueous NaHCO₃. The biphasic reaction mixture was cooled to 0 °C and benzyl chloroformate (16.2 mg, 0.1 mmol) was added dropwise. The reaction mixture was stirred at 0 °C for 10 min and then warmed to rt. After stirring for 1 h, the layers were separated and the aqueous layer was extracted with Et_2O . The combined extracts were washed with water and brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by radial PLC

(EtOAc/hexanes) to give **15** (40 mg, 97%) as an oil. 1 H NMR (CDCl₃, 300 MHz) δ 0.29 (d, 6H, J= 15.6 Hz), 0.91 (s, 9H), 1.28 (d, 3H, J= 6 Hz), 1.58–1.84 (m, 14H), 2.60 (m, 2H), 2.93 (s, 3H), 3.62 (m, 1H), 3.80 (m, 1H), 4.71 (s and 5.19 s, due to rotamers, 2H), 7.14–7.43 (m, 10H), 8.44 (s and 8.55 s, due to rotamers, 1H); 13 C NMR (CDCl₃, 75 MHz) δ –4.4, –3.4, 18.3, 20.3, 26.2, 29.0, 31.1, 39.5, 41.0, 56.5, 67.6, 68.7, 126.2, 127.2, 12.4, 128.6, 128.8, 137.0, 141.9, 163.1, 164.4; IR (neat) 1062, 1211, 1378, 1657, 2285, 2928, 2949, 3027 cm⁻¹. HRMS (M+H)⁺ calcd for $C_{28}H_{42}N_2O_3Si$ 483.3043, found 483.3033.

(2S*,4S*)-4-(tert-Butyldimethylsilyloxy)-N-methyl-6-phenylhexan-2-amine (16)

To the protected formamidine **15** (19 mg, 0.039 mmol) in 2 mL of a 6/4 EtOH/H₂O solution was added one drop of glacial acetic acid along with N₂H₄•H₂O (5 μ l, 0.11 mmol). The reaction was stirred at rt for 15 h and then 1 mL of water and 3 mL of Et₂O were added. The layers were separated and the water layer was extracted with Et₂O. The combined extracts were washed with brine, dried over K₂CO₃, and concentrated under reduced pressure. The residue was purified by radial PLC (EtOAc/hexanes) to give 11 mg (88%) of **16** as an oil. ¹H NMR (CDCl₃, 300 MHz) δ 0.07 (s, 6H), 0.90 (s, 9H), 1.04 (d, 3H, J = 6.0 Hz), 1.25 (s, 1H), 1.48–1.81 (m, 4H), 2.38 (s, 3H), 2.63 (m, 3H), 3.86 (m, 1H), 7.17–7.36 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ –4.2, 18.3, 20.6, 26.1, 31.9, 33.9, 39.3, 44.0, 51.8, 70.1, 126.0, 128.6, 142.7; IR (neat) 1057, 1256, 1373, 1472, 1604, 2793, 2856, 2929, 2955 cm⁻¹; HRMS (M +H)⁺ calcd for C₁₉H₃₅NOSi 322.2566, found 322.2574.

(2S*,3R*,4R*,6S*)-4-(tert-Butyldimethylsilyloxy)-1,3,6-trimethyl-2-phenylpiperidine (19)

To piperidone 18 (347 mg, 1.07 mmol) in 20 mL of THF was added portionwise LAH (241 mg, 6.44 mmol), and the mixture was heated at reflux for 4 h. The reaction was cooled to 0 $^{\circ}$ C and quenched by careful addition of 10% NaOH (0.72 mL) and H₂O (0.5 mL). Celite (3.5 g) was added and the mixture was allowed to warm to rt with stirring for 1.5 h. The mixture was filtered through a pad of Celite and concentrated under reduced pressure. A portion of the crude alcohol (115 mg, 0.52 mmol) was stirred in 10 mL of dry CH₂Cl₂ with TBSOTf (277 mg, 1.05 mmol), Et₃N (83 mg, 0.68 mmol), and a catalytic amount of imidazole (3 mg, 0.03 mmol) at rt for 1.5 h. The reaction mixture was quenched with 8 mL of saturated aqueous NaHCO₃ solution. The aqueous layer was extracted with CH₂Cl₂. The organics were combined and washed with H₂O and brine, and dried over MgSO₄. Filtration and concentration under reduced pressure gave a crude oil which was purified by radial PLC (EtOAc/hexanes) to afford 96 mg (55%) of **19** as a clear oil. ¹H NMR (CDCl₃, 300 MHz) δ 0.08 (d, 6H, J = 6.3 Hz), 0.6 (d, 3H, J = 6.3 Hz), 0.90 (s, 9H), 1.17 (d, 3H, J = 6 Hz), 1.63 (m, 2H), 1.89 (s, 3H), 2.14 (m, 2H)1H), 2.54 (d, 1H, J = 9.9 Hz), 3.3 (dt, 1H, J = 4.5, 5.4 Hz), 7.73 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ –4.4, –3.7, 15.8, 18.3, 21.9, 26.1, 40.7, 44.5, 46.1, 58.2, 74.9, 127.2, 128.0, 128.5, 128.7, 143.7, 149.9; IR (neat) 702, 835, 873, 1086, 1249, 1375, 2777, 2850, 2933, 2964 cm^{-1} ; HRMS (M+H)⁺ calcd for C₂₀H₃₅NOSi 334.2566, found 334.2560.

N-((2*S**,4*R**,5*R**,6*R**)-6-Bromo-4-(*tert*-butyldimethylsilyloxy)-5-methyl-6-phenylhexan-2-yl)-*N*-methylcyanamide (20)

To a solution of piperidine **19** (96 mg, 0.288 mmol) in 7 mL of CHCl₃ was added BrCN (0.47 mL, 1.4 mmol, 3.0 M in CH₂Cl₂). The mixture was allowed to stir at rt for 5 h and then concentrated under reduced pressure to give a yellow oil. The crude product was freed of residual BrCN under high vacuum. The crude yield was quantitative, but purification by radial PLC (EtOAc/hexanes) gave 110 mg (88%) of **20** as a yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ –0.09 (d, 6H, J = 12.6 Hz), 0.89 (s, 9H), 1.09 (d, 3H, J = 6.3 Hz), 1.28 (d, 3H, J = 6.9 Hz), 1.63 (m, 1H), 1.88 (m, 1H), 2.23 (m, 1H), 2.74 (s, 3H), 2.85 (m, 1H), 3.58 (m, 1H), 5.04 (d, 1H, J = 8.7 Hz) 7.32 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ –4.1, –3.7, 13.1, 17.9, 18.4, 26.1, 37.3, 40.5, 45.8, 55.3, 59.5, 69.8, 117.0, 128.0, 128.5, 128.9, 142.0; IR (neat) 775, 836, 1078,

 $1254,1384, 1454, 2208, 2856, 2931, 2953, 3464 \text{ cm}^{-1}$; HRMS (M+H)⁺ calcd for C₂₁H₃₅BrN₂OSi 439.1780, found 439.1765.

$N-((2S^*,4R^*,5S^*,6S^*)-6-Azido-4-(tert-butyldimethylsilyloxy)-5-methyl-6-phenylhexan-2-yl)-<math>N-$ methylcyanamide (21)

To a solution of bromocyanamide **20** (43 mg, 0.10 mmol) in 2 mL of freshly distilled DMSO was added NaN₃ (19 mg, 0.29 mmol). The mixture was stirred at rt for 18 h and then diluted with saturated aqueous NaHCO₃ (2 mL). The aqueous phase was extracted with Et₂O, and the combined extracts were washed with H₂O and brine. The mixture was dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude product was purified by radial PLC (EtOAc/hexanes) to give 31 mg (77%) of **21** as a clear oil. ¹H NMR (CDCl₃, 300 MHz) δ 0.09 (m, 1H), 0.16 (d, 6H, J = 15.3 Hz), 0.60 (d, 3H, J = 6.9 Hz), 0.9 (m, 3H), 0.94 (s, 9H), 1.27 (d, 3H, J = 6.3 Hz), 1.58–1.86 (m, 4H), 2.86 (s, 3H), 2.96 (m, 1H), 4.22 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ -4.5, -3.7, 18.2, 26.1, 37.2, 41.6, 42.6, 54.6, 68.2, 117.4, 134.1, 134.2, 136.5, 181.4; HRMS (M+H)⁺ calcd for C₂₁H₃₅N₅OSi 402.2689, found 402.2689.

2-Nonyl-4-oxo-3,4-dihydro-2H-pyridine-1-carboxylic acid benzyl ester (27)

Prepared as an oil (76%) according to the literature procedure. 6 ¹H NMR (CDCl₃, 300 MHz) δ 7.76 (d, 1H, J = 4.8 Hz), 7.37 (s, 5H), 5.32-5.21 (m, 3H), 4.58 (m, 1H), 2.79 (dd, 1H, J = 6.4, 16.4), 2.45 (d, 1H, J = 16.4), 1.61 (m, 2H), 1.25 (m, 13H), 0.8 (t, 3H, J = 5.4 Hz); 13 C NMR (CDCl₃, 75 MHz) δ 193.3, 141.7, 141.6, 135.1, 128.9, 128.8, 128.6, 107.3, 69.1, 53.6, 39.8, 31.9, 30.6, 29.6, 29.4, 25.8, 22.8, 14.3; HRMS (M+H)⁺ calcd for C₂₂H₃₁NO₃ 358.2382, found 358.2380.

(2R,*4R*)-4-Methoxy-2-nonyl-3,4-dihydro-2H-pyridine-1-carboxylic acid benzyl ester (28)

To compound 27 (733 mg, 2.05 mmol) in 80 mL of MeOH was added solid CeCl₃•7H₂O (1.53 g, 4.10 mmol) at rt and the mixture was allowed to stir for 15 min. After cooling to -40 °C, NaBH₄ (232 mg, 6.15 mmol) was added and the reaction progress was monitored by TLC. After disappearance of starting material showed completion of the reaction, acetone was added to quench excess NaBH₄. Solvent was removed in vacuo, and water was added to the crude residue. The aqueous mixture was extracted with EtOAc. The combined organic layers were washed with H₂O and brine, dried over MgSO₄, and concentrated under reduced pressure to give an oil. The oil was taken on to the next step without further purification. The oil from above was dissolved in THF (5 mL) and cooled to -40 °C and then t-BuOK (1.0 M, THF, 2.46 mmol) was added. After stirring for 20 min, MeI (0.76 mL, 12.3 mmol) was added and the mixture was allowed to slowly warm to rt. After 1 h, saturated aqueous NaHCO₃ was added. The aqueous layer was extracted with 3 × 10 mL of EtOAc. The combined extracts were washed with H₂O and brine. The organic layer was dried over MgSO₄ and concentrated to give an oil (28, 675 mg, 87% yield) that was used without further purification. ¹H NMR (CDCl₃, 300 MHz) δ 7.36 (s, 5H), 6.82 (brs, 1H), 5.20 (d, 3H, J = 12.6 Hz), 4.96 (brs, 1H), 4.29 (brs, 1H), $3.97 \text{ (m, 1H)}, 3.36 \text{ (s, 3H)}, 2.20 \text{ (brs, 1H)}, 1.72 \text{ (m, 16H)}, 0.88 \text{ (t, 3H, } J = 6.6 \text{ Hz)}; ^{13}\text{C NMR}$ 31.4, 26.1, 25.8, 22.8, 14.3; HRMS (M+H)⁺ calcd for C₂₃H₃₄NO₃ 374.2695, found 374.2709.

(2R*,6R*)-4-Methoxy-2-nonyl-3,4-dihydro-2H-pyridine-1-carboxylic acid benzyl ester (29)

To anhydrous ZnBr $_2$ (1.85 g, 8.2 mmol) in 10 mL of toluene at rt was added PhMgBr (8.2 mL, 8.2 mmol, 1.0 M in THF), and the mixture was stirred for 1 h at rt. Methyl ether **28** (675 mg, 1.81 mmol) in 10 mL of toluene at 0 °C was added followed immediately by addition of BF $_3$ ·OEt $_2$ (2.7 mmol). The mixture was stirred at 0 °C for 1 h and then allowed to slowly warm to rt and quenched with 10% HCl. The crude reaction mixture was extracted with Et $_2$ O. The combined organic layers were washed with H $_2$ O and brine, dried over MgSO $_4$, and

concentrated under reduced pressure. Purification by radial PLC (5–10% EtOAc/hexanes) gave upon reiterative purification 535 mg (73%) of the *cis* diastereoemer **29** as an oil. 1 H NMR (CDCl₃, 300 MHz) δ 7.45 (brs, 1H), 7.31-7.21 (m, 10H), 5.95 (s, 2H), 5.71 (brs, 1H), 5.19 (s, 2H), 4.50 (m, 1H), 2.44 (ddd, 1H, J = 3.0, 5.2, 13.1 Hz), 2.01 (d, 1H, J = 13.1), 1.44 (m, 1H), 1.28-0.80 (m, 14H), 0.87 (t, 3H, J = 6.9 Hz); 13 C NMR (CDCl₃, 75 MHz) δ 156.5, 142.4, 136.9, 128.6, 128.4, 128.2, 128.0, 127.2, 125.9, 124.4, 67.4, 53.6, 49.4, 34.2, 32.0, 29.8, 29.6, 29.4, 28.9, 28.8, 26.7, 22.8, 14.3; HRMS (M+H) $^{+}$ calcd for C₂₈H₃₄NO₂ 419.2824, found 419.2792.

$(2S^*,3R^*,4S^*,6R^*)$ -3,4-Dihydroxy-6-nonyl-2-phenyl-piperidine-1-carboxylic acid benzyl ester (30)

To olefin **29** (336 mg, 0.83 mmol) in 4 mL of AcOH was added AgOAc (288 mg, 1.64 mmol) and I_2 (208 mg, 0.83 mmol). The mixture was allowed to stir at rt for 12 h and then AcOH:H₂O (24:1) was added and stirring was continued for 2 h. Saturated brine was added and the reaction mixture was filtered through Celite. The Celite pad was washed with EtOAc and MeOH. The filtrate was concentrated to remove solvent and then a solution of 2.0 M KOH/MeOH was added. The mixture was stirred at rt for 4 h. Brine was added and the aqueous layer was extracted with CH₂Cl₂, and the combined extracts were dried over MgSO₄. Concentration and purification by radial PLC (20–50% EtOAc/hexanes) gave 218 mg (60%) of diol **30** as an oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.38-7.19 (m, 8H), 6.95 (m, 2H), 5.10 (d, 1H, J = 5.2 Hz), 4.99 (d, 1H, J = 12.4 Hz), 4.92 (d, 1H, J = 12.4 Hz), 4.32 (m, 1H), 4.16 (m, 1H), 3.93 (m, 1H), 2.31 (ddd, 1H, J = 6.4, 10.8, 12.4 Hz), 1.93 (m, 1H), 1.84 (m, 1H), 1.75 (ddd, 1H, J = 5.2, 10.8, 12.8 Hz), 1.33-1.25 (m, 14H), 0.89 (t, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 156.5, 140.0, 136.5, 128.9, 128.4, 127.9, 127.8, 127.4, 126.8, 71.2, 68.0, 67.5, 63.1, 51.0, 38.4, 32.1, 31.1, 29.9, 29.7, 29.5, 26.9, 22.9, 14.3.

(2S*,3R*,4S*,6R*)-1-Methyl-6-nonyl-2-phenyl-piperidine-3,4-diol (31)

A mixture of piperindiol **30** (40 mg, 0.09 mmol), formaldehyde (0.4 mL, 37% in H₂O), and Pd(OH)₂ in 9 mL of MeOH was placed under a hydrogen atmosphere (50 psi, Parr shaker overnight) at rt. The reaction mixture was filtered through Celite and the filter pad was washed with copious amounts of methanol. The filtrate was concentrated *in vacuo*, and residue was purified by column chromatography (0–20% EtOAc/hexanes) to give 20 mg (70%) of the desired *N*-methylpiperidinol **31** as an oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.35-7.27 (m, 5H), 3.66 (brs, 2H), 3.14 (s, 1H), 2.21-2.19 (m, 2H), 2.11 (m, 1H), 2.03 (s, 3H), 1.87 (m, 1H), 1.69 (dd, 1H, J = 9.0, 18.6, 12.4 Hz), 1.60-1.40 (m, 4H), 1.29-1.25 (m, 22H), 0.87 (t, 3H, J = 5.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 140.9, 128.7, 128.5, 128.3, 127.7, 73.3, 72.8, 70.6, 62.4, 40.1, 34.3, 33.8, 32.1, 30.3, 29.9, 29.8, 29.6, 24.6, 22.9, 14.3.

(2S*,3R*,4S*,6R*)-3,4-Bis-benzyloxy-1-methyl-6-nonyl-2-phenylpiperidine (32)

Diol **31** (50 mg, 0.15 mmol) was dissolved in 1.5 mL of THF and cooled to -40 °C. A solution of *t*-BuOK (1.0 M in THF, 0.45 mL) was added dropwise and the mixture was allowed to stir at -40 °C for 30 min. Benzyl bromide (0.053 mL, 0.45 mmol) was added and the reaction was allowed to warm slowly to rt over 2 h. Saturated NH₄Cl was added and the aqueous layer was extracted with Et₂O. The combined extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by radial PLC (0–20% EtOAc/hexanes) gave 64 mg (84%) of compound **32** as an oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.41 (m, 2H), 7.33-7.24 (m, 9H) 7.16 (m, 2H), 7.03 (m, 2H), 4.55 (s, 2H), 4.48 (d, 1H, J = 11.2 Hz), 4.06 (d, 3H, J = 11.2 Hz), 3.71 (s, 1H), 3.54 (ddd, 1H, J = 2.0, 4.0, 6.4 Hz), 3.06 (s, 1H), 2.13 (m, 1H), 2.01 (s, 3H), 1.90 (m, 1H), 1.67 (m, 2H), 1.52 (m, 2H), 1.40-1.20 (m, 13H), 1.88 (t, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 129.3, 128.6, 128.3, 128.1, 128.0, 127.6, 127.4, 127.2, 127.1, 79.9, 78.1, 74.6, 73.0, 70.3, 63.5, 40.8, 34.1, 32.1, 31.5, 30.3, 29.8, 29.6, 25.7, 22.9, 14.4. EIMS (M +1)+514.

N-((1*S**,2*S**,3*S**,5*S**)-2,3-Bis(benzyloxy-1-bromo-1-phenyltetradecan-5-yl)-*N*-methylcyanamide (33)

The protected alcohol **32** (20 mg, 0.039 mmol) was dissolved in 2 mL of CHCl₃. To this was added a 3.0 M solution of BrCN (0.15 mL) and the mixture was heated to reflux. After 2 h, the reaction mixture was cooled and filtered through a Celite plug with a CHCl₃ wash. The filtrate was concentrated *in vacuo* to give **33** as an oil (23 mg) in 96% yield. ¹H NMR analysis showed complete conversion and no further purification was necessary. ¹H NMR (CDCl₃, 300 MHz) δ 7.50-7.25 (m, 10H), 7.19 (m, 3H), 6.82 (m, 2H), 4.76 (d, 1H, J = 7.0 Hz), 4.74 (d, 1H, J = 8.4 Hz), 4.62 (d, 1H, J = 8.4 Hz), 4.54 (d, 1H, J = 7.8 Hz), 4.30 (t, 2H, J = 9.6 Hz), 4.13 (d, 1H, J = 7.8 Hz), 3.11 (m, 1H), 2.62 (s, 3H), 1.86 (ddd, 1H, J = 2.1, 7.5, 9.9 Hz), 1.70 (ddd, 1H, J = 1.5, 8.1, 9.9 Hz), 1.50-1.20 (m, 15H), 0.88 (t, 3H, J = 6.9 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 139.9, 138.2, 137.8, 128.9, 128.8, 128.7, 128.5, 128.4, 128.2, 127.9, 118.3, 82.5, 77.3, 75.4, 72.0, 59.2, 52.5, 35.8, 33.4, 32.5, 32.1, 29.8, 29.7, 29.6, 29.5, 26.4, 22.9, 14.3; LCMS (M +1)⁺ 621.

N-((2R*,3S*,5S*)-2,3-Bis(benzyloxy)-1-phenyltetradecan-5-yl)-N-methylcyanamide (34)

Crude bromide **33** (23 mg, 0.037 mmol) was dissolved in 2 mL of EtOAc. Pd(OH)₂ (10 mol %) and NaOAc (15 mg, 0.186 mmol) were added and the reaction was placed under a H₂ atmosphere (balloon pressure) and allowed to stir at rt for 12 h. The reaction mixture was then filtered through Celite with EtOAc. The filtrate was concentrated under reduced pressure to give 19 mg (99%) of pure **34** as an oil. 1 H NMR (CDCl₃, 400 MHz) δ 7.40-7.20 (m, 15H), 4.66 (d, 1H, J = 11.6 Hz), 4.64 (d, 1H, J = 11.6 Hz), 4.50 (d, 1H, J = 12.0 Hz), 4.29 (d, 1H, J = 11.6 Hz), 3.90 (td, 1H, J = 1.2, 7.2 Hz), 3.57 (d, 1H, J = 10.0 Hz), 2.96 (dd, 1H, J = 7.2, 14.0 Hz), 2.90 (m, 1H), 2.75 (dd, 1H, J = 6.4, 14.0 Hz), 2.50 (s, 3H), 1.77 (m, 2H), 1.58 (m, 1H), 1.43 (m, 1H), 1.40-1.20 (m, 14H), 0.89 (t, 3H, J = 6.4 Hz); 13 C NMR (CDCl₃, 100 MHz) δ 139.0, 138.7, 138.3, 129.7, 128.8, 128.7, 128.6, 128.5, 128.0, 127.7, 126.5, 117.8, 81.1, 76.8, 72.9, 71.7, 59.3, 37.5, 33.7, 32.1, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by the National Institutes of Health (Grant No. GM 34442). We thank the Spanish Government (Ministerio de Educación, Cultura y Deportes) for fellowship support to T. A. G.

References

- (a)De Oliveira LF, Costa VEU. Tetrahedron: Asymmetry 2004;15:2583.(b) For synthesis of 1,3-aminoalcohols, see: Raghavan S, Rajender A, Joseph SC, Rasheed MA, Kumar KR. Tetrahedron: Asymmetry 2004;15:365.(c)Menche D, Arikan F, Li J, Rudolph S. Org Lett 2007;9:267. and references cited therein. [PubMed: 17217281]
- Comins, DL.; Joseph, SP. Advances in Nitrogen Heterocycles. Moody, CJ., editor. Vol. 2. JAI Press Inc.; Greenwich, CT: 1996. p. 251Comins, DL.; Joseph, SP. Comprehensive Heterocyclic Chemistry. Vol. 2. McKillop, A., editor. Vol. 5. Pergamon Press; Oxford, England: 1996. p. 37 (c) Comins DL. J Heterocycl Chem 1999;36:1491. (d) Joseph SP, Comins DL. Curr Opin Drug Discovery Dev 2002;5:870. (e) Kuethe JT, Comins DL. J Org Chem 2004;69:5219. [PubMed: 15287764] (f) Comins DL, Sahn JJ. Org Lett 2005;7:5227. [PubMed: 16268544] (g) Young DW, Comins DL. Org Lett 2005;7:5661. [PubMed: 16321016] (h) Gotchev DB, Comins DL. J Org Chem 2006;71:9393. [PubMed: 17137366] (i) Comins DL, Higuchi K. Beil J Org Chem 2007;3(42)
- 3. (a) Comins DL, Joseph SP, Goehring RR. J Am Chem Soc 1994;116:4719. (b) Comins DL, LaMunyon DH. Tetrahedron Lett 1994;35:7343. (c) Comins DL, Guerra-Weltzien L. Tetrahedron Lett

- 1996;37:3807. (d) Waldmann H. Synthesis 1994:535.Comins, DL.; O'Connor, S.; Alawar, RS. Comprehensive Heterocyclic Chemistry III. Black, D., editor. Vol. 7. Elsevier Ltd; Oxford, England: 2008. p. 41and references cited therein
- 4. McCall WS, Abad Grillo T, Comins DL. Org Lett 2008;10:3255. [PubMed: 18582075]
- 5. (a)von Braun J. Chem Ber 1900;33:1438.Review: (b)Hageman HA. Org React 1953;7:198.
- 6. Comins DL, Brown JD. Tetrahedron Lett 1986;27:4549.
- 7. Brown JD, Foley MA, Comins DL. J Am Chem Soc 1988;110:7445.
- (a) Albright JD, Goldman L. J Am Chem Soc 1969;91:4317.
 (b) Fodor G, Abidi S, Carpenter TC. J Org Chem 1974;39:1507.
- For examples, see: (a)Demko ZP, Sharpless KB. Org Lett 2001;3:4091. [PubMed: 11735592](b)
 Nekrasov DD. Russ J Org Chem (Engl Transl) 2004;40:1387.(c)Nekrasov DD. Chem Heterocycl
 Compd 2004;40:1107.
- For recent syntheses of 1,3-amino alcohols, see: (a)Broustal G, Ariza X, Campagne JM, Garcia J, Georges Y, Marinetti A, Robiette R. Eur J Org Chem 2007:4293.(b)Raghavan S, Rajender A, Joseph SC, Rasheed MA, Kumar KR. Tetrahedron: Asymmetry 2004;15:365.
- 11. Saito S, Nakajima H, Inaba M, Moriwake T. Tetrahedron Lett 1989;30:87.
- 12. Sammukia T, Jacobs JS. Tetrahedron Lett 1999;40:2685.
- 13. Meyers AI, Boes MB, Dickman DA. Org Synth 1988;67:60.
- 14. Kuethe JT, Comins DL. Org Lett 1999;1:1031. [PubMed: 10825955]
- 15. Casy AF, Hassan MMA. Tetrahedron 1967;23:2075.
- 16. For the preparation of polyhydroxy piperidines from dihydropyridones, see: (a)Kitazume T, Murata K, Okabe A, Takahashi Y, Yamazaki T. Tetrahedron: Asymmetry 1994;5:1029.(b)Comins DL, Fulp AB. Tetrahedron Lett 2001;42:6839.(c)Tzanetou EN, Kasiotis KM, Magiatis P, Haroutounian SA. Molecules 2007;12:735. [PubMed: 17851426]
- 17. Comins DL, Foley MA. Tetrahedron Lett 1988;29:6711.
- 18. Comins DL, Chung G, Foley MA. Heterocycles 1994;37:1121.
- 19. (a) Woodward RB, Brutcher FV Jr. J Am Chem Soc 1958;80:209. (b) Mangoni L, Adinolfi M, Barone G, Parrilli M. Tetrahedron Lett 1973:4485.
- Rosenberg SH, Spina KP, Condon SL, Polakowski J, Yao Z, Kovar P, Stein HH, Cohen J, Barlow JL, Klinghofer V, Egan DA, Tricarico KA, Perun TJ, Baker WR, Kleinert HD. J Med Chem 1993;36:460. [PubMed: 8474102]
- 21. Ege M, Wanner KT. Tetrahedron 2008;64:7273.

Figure 1. Calculated lowest energy conformation of **4** (MMFF)

Figure 2. Calculated lowest energy conformation of 22 (MMFF).

 R_1 , R_2 , R_4 = H, alkyl or OBn R_3 = protecting group

SCHEME 1.

The von Braun ring-opening reaction

OMe

1. PhoCocl,
THF, -23 °C

2. PhMgBr
3. H₃O⁺
CO₂Ph
62%

CO₂Ph
83%

3

CO₂Ph
62%

CO₂Ph
62%

CO₂Ph
62%

CO₂Ph
64

CO₂Ph
65

CO₂Ph
66

CO₂Ph
67

CH₂Cl₂,
$$\Delta$$
95-99%

Ta R = Ac (95%)
b R = TBS (99%)

SCHEME 2. Synthesis of cyanamides 7

SCHEME 3. Reactions of Bromide 7

SCHEME 4. Synthesis of Cyanamide 21

SCHEME 5.Synthesis of Cyanamide 25

$$C_9H_{19}$$
 Ph C_9H_{19} Ph C_9H

SCHEME 6.Synthesis of Cyanamide 34