

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

КОЛЛОКВИУМ

Линейная алгебра и аналитическая геометрия

1 курс, 2 семестр

Ответы подготовили студенты группы ИУ9-22Б Лавров Родион и Горин Владимир

Желаем вам успешной подготовки!

Коллоквиум

1. Дайте определения и приведите примеры линейного (векторного) пространства, линейного подпространства, линейной оболочки. Дайте определения базиса, размерности векторного пространства. Какое векторное пространство называется бесконечномерным? Докажите утверждение о дополнении системы линейно независимых векторов до базиса. Дайте определение изоморфизма векторных пространств. Докажите, что два векторных пространства V и W изоморфны тогда и только тогда, когда dim V = dim W.

Определение 1. Пусть \mathfrak{R} – произвольное поле. **Векторным** (или **линейное**) **пространством** над \mathfrak{R} называется множество V элементов (именуемых векторами), удовлетворяющее следующим аксиомам

```
1. x + y = y + x

2. (x + y) + z = x + (y + z)

3. x + 0 = x

4. x + (-x) = 0

5. 1 * x = x

6. (\alpha \beta)x = \alpha(\beta x) \quad \forall \alpha, \beta \in R

7. (\alpha + \beta)x = \alpha x + \beta x

8. \lambda(x + y) = \lambda x + \lambda y
```

Примеры: Пример 1 (нульмерное пространство). Над любым полем $\mathfrak K$ существует нульмерное (одноэлементное) векторное пространство $V = \{0\}$ с законом умножения на скаляры $\lambda_0 = 0$.

Пример 2 (основное поле $\mathfrak K$ как одномерное координатное пространство). По определению $V=\mathfrak K$, основные операции в V совпадают с операциями в $\mathfrak K$. Если 1 — единица поля $\mathfrak K$, то можно считать, что $\mathfrak K=\langle 1\rangle$ — линейная оболочка, натянутая на 1.

Более ясно: если поле \mathfrak{K} — расширение своего подполя \mathfrak{P} , то \mathfrak{K} можно рассматривать как векторное пространство над \mathfrak{P} . Например, поле комплексных чисел \mathbb{C} — векторное пространство над полем вещественных чисел \mathbb{R} , а \mathbb{R} — векторное пространство над полем рациональных чисел \mathbb{Q} .

Пример 3 (п-мерное координатное пространство \mathfrak{K}^n ; см. [ВА 1, гл. 2], где поле \mathbb{R} можно заменить на произвольное поле \mathfrak{K}). При n=1 получается предыдущий пример. Мы увидим вскоре (см. § 3), что всякое подпространство $U \subset \mathfrak{K}^n$ является пространством решений некоторой линейной однородной системы.

Пример 4 (пространство функций). В [ВА І, гл. 1, § 4, п. 1] было введено кольцо функций K^X , которое на самом деле является ещё векторным пространством над K (кольцо K нужно заменить на поле). Итак, X — произвольное множество, \mathfrak{K} — поле, \mathfrak{K}^X — множество отображений (функций) $f: X \to \mathfrak{K}$, наделённое поточечными операциями сложения и умножения на скаляры:

$$(f+g)(x)=f(x)+g(x)$$
 для всех $x\in X;$ $(\lambda f)(x)=\lambda(f(x))$ для всех $\lambda\in F, \quad x\in X.$

В анализе чаще всего рассматриваются вещественнозначные функции, определённые на всей прямой или на интервале $(a,b) \subset \mathbb{R}$. Легко проверяется, что линейное пространство $\mathbb{R}^{(a,b)}$ содержит в качестве

подпространств пространство $\mathbb{R}^{(a,b)}_{\mathrm{cont}}$ всех непрерывных функций, пространство $\mathbb{R}^{(a,b)}_{\mathrm{diff}}$ всех непрерывно дифференцируемых функций и т.д., поскольку все отмеченные свойства сохраняются при сложении функций и умножении их на скаляры.

Пример 5. Многочлены $f \in \mathfrak{K}[t]$ степени $\leq n-1$ с обычными операциями сложения многочленов и умножения их на скаляры образуют векторное пространство P_n . Следует отметить, что многочлены степени, равной фиксированному числу k, линейного пространства не составляют. Однако формы степени k от m переменных, рассматриваемые вместе с нулём, образуют векторное пространство.

Пример 6. Пусть g(t) — фиксированная непрерывная на отрезке [0,1] вещественная функция, отличная от нуля на некотором интервале $J\subset [0,1]$, а $V_n(g)$ — множество функций вида f(t)g(t), где f(t) — многочлен степени $\leq n-1$. Тогда P_n^g — векторное пространство, содержащееся в $\mathbb{R}^J_{\mathrm{cont}}$.

Пример 7. Пространство матриц.

Пример 4 (пространство функций). В [ВА I, гл. 1, § 4, п. 1] было введено кольцо функций K^X , которое на самом деле является ещё векторным пространством над K (кольцо K нужно за

Определение 2. Пусть V – векторное пространство над полем $\mathfrak{R},\ U\subset V$ – его подмножество, являющееся аддитивной подгруппой в V и переходящее в себя при умножении на скаляры. Тогда ограничение на U операций, определённых в V, наделяет U строением векторного пространства. Оно называется **линейным подпространнством** в V

Определение 3. Линейная оболочка – это множество (пространство) всевозможных линейных комбинаций векторов.

Определение 4. Линейное пространство V, в котором существует n – линейно независимых векторов, но нет линейно независимых систем с большим числом векторов (большего ранга), называется n – мерным.

Определение 5. Пусть V-n-мерное векторное пространство над полем \mathfrak{R} . Любая система из n линейно независимых векторов $e_1,\ldots,e_n\in V$ называется **базисом** пространства V.

Теорема 1. Всякую систему из $s \leq n$ линейно независимых векторов f_1, \ldots, f_s пространства V можно дополнить до базиса. В частности, любой вектор $v \neq 0$ можно включить в базис.

Доказательство: Рассмотрим систему векторов $f_1,\ldots,f_s;e_1,\ldots e_n$ (1) Выбросим теперь из системы все те векторы, которые выражаются линейно через предыдущие. По условию $f_1,\ldots f_s$ л/н, поэтому ни один из них выброшен не будет, и оставшаяся система примет вид: $f_1,\ldots f_s;e_{i_1},\ldots,e_{i_t}$ (2). Любое нетривиально соотношение $\alpha_1f_1+\ldots+\alpha_sf_s+\beta_1e_{i_1}+\ldots+\beta_te_{i_t}$ содержало бы коэффициент $\beta_k\neq 0$ с максимальным номером k, и мы выразили бы вектор e_{i_k} через предыдущие векторы системы (2), что исключено по построению. С другой стороны, все векторы из V выражаются линейно через базис $(e_1,\ldots e_n)$, тем более через систему (1), а стало быть, и через систему (2). Таким образом л/н система (2) максимальная. Она будет базисом пространства V, а e_{i_1},\ldots,e_{i_t} – искомым дополнением.

Определение 6. Векторные пространства V и W над полем K называются **изоморфными**, если существует биективное отображение $f:V\to W$, для которого $f(\alpha u+\beta v)=\alpha f(u)+\beta f(v)$ для всех $\alpha,\beta\in K$, $u,v\in V$

Теорема 2. Все векторные пространства одинаковой размерности n над K изоморфны. Более точно: все они изоморфны координатному пространству \mathbb{R}^n

Доказательство: Пусть $(e_1, \dots e_n)$ – базис n–мерного пространства V. Координаты $\alpha_1, \dots \alpha_n$, произвольного вектора $x = \alpha_1 e_1 + \dots + \alpha_n e_n$ однозначно определены, поэтому соответствие $f: x \to (\alpha_1, \dots \alpha_n)$

между векторами из V и R^n биективно. Если $y = \beta_1 e_1 + \ldots + \beta_n e_n$, то

$$\alpha x + \beta y = (\alpha \alpha_1 + \beta \beta_1)e_1 + \ldots + (\alpha \alpha_n + \beta \beta_n)e_n$$

Стало быть

$$f(\alpha x + \beta y) = (\alpha \alpha_1 + \beta \beta_1, \dots, \alpha \alpha_n + \beta \beta_n) = \alpha(\alpha_1, \dots \alpha_n) + \beta(\beta_1, \dots, \beta_n) = \alpha f(x) + \beta f(y)$$

что и является выражением свойств изоморфизма.

2) Дайте определения и приведите примеры линейных подпространств, суммы и пересечения подпространств, прямой суммы подпространств, внешней прямой суммы. Сформулируйте и докажите теорему о формуле Грассмана.

Определение 7. Пересечение: $U_1\cap U_2=\{u\mid u\in U_1,\ u\in U_2\}$ Определение 8. Сумма: $U_1+U_2=\{u_1+u_2\mid u_1\in U_1,\ u_2\in U_2\}$

Определение 9. Если каждый вектор $u\in U$ может быть представлен одним и только одним способом в виде $u=u_1+u_2+\ldots+u_m$ ($u_i\in U_i$), то сумма $U_1+\ldots+U_m$ называется прямой и обозначается $U=U_1\oplus U_2\oplus\ldots\oplus U_m$

Определение 10. Внешняя прямая сумма – прямая сумма двух векторных пространств над одним и тем же полем \mathfrak{R} , заранее никуда не вложенных в качестве подпространств.

Теорема Грассмана. Пусть U и W - конечномерные подпространства векторного пространства V. Тогда $dim(U+W)=dim(U)+dim(W)-dim(U\cap W)$

Доказательство: Пусть $dim(U)=k,\quad dim(V)=l,\quad dim(U\cap W)=m.$ Так как $(U\cap W)\subset U,W$, то $m\leq k, m\leq l.$ Выберем в $U\cap W$ базис (e_1,\ldots,e_m) и, дополним его, с одной стороны до базиса $(e_1,\ldots e_m;a_1,\ldots,a_{k-m})$ подпространства U, а с другой стороны – до базиса $(e_1,\ldots e_m;b_1,\ldots,b_{l-m})$ подпространства W. Каждый вектор суммы U+W имеет вид u+w, где $u\in U, w\in W$, а это значит, что

$$U+W=\langle e_1,\ldots e_m;a_1,\ldots,a_{k-m};b_1,\ldots,b_{l-m}\rangle$$

Если мы докажем, что система $e_1, \dots e_m; a_1, \dots, a_{k-m}; b_1, \dots, b_{l-m}$ л/з то стало быть dim(U+W)=m+(k-m)+(l-m)=k+l-m Предположим, что это не так, и пусть

$$\sum_{s=1}^{m} \gamma_s e_s + \sum_{i=1}^{k-m} lpha_i a_i + \sum_{j=1}^{l-m} eta_j b_j = 0$$
 (*)

нетривиальное линейное соотношение. Тогда мы имеем

$$\sum_{s=1}^m \gamma_s e_s + \sum_{i=1}^{k-m} lpha_i a_i = -\sum_{j=1}^{l-m} eta_j b_j$$

где в левой части равенства стоит элемент из U , а в правой — элемент из W. Значит, перед нами вектор из $U\cap W$, и мы можем записать $-\sum_{j=0}^{l-m}\beta_jb_j=\sum_{s=1}^m\delta_se_s$ или $\sum_{s=1}^m\delta_se_s+\sum_{j=1}^{l-m}\beta_jb_j=0$ Но линейная зависимость базисной системы $\{e_1,\ldots,e_m;b_1,\ldots,b_{l-m}\}$ подпространства W должна быть тривиальной. В частности, $\beta_1=\ldots=\beta_{l-m}=0$, и соотношение (*), превратившееся теперь в линейную зависимость базисной системы $\{e_1,\ldots,e_m;a_1,\ldots,a_{k-m}\}$ подпространства U, также должно быть тривиальным: $\gamma_1=\ldots=\gamma_m=\alpha_1=\ldots=\alpha_i$ Мы пришли к желаемому противоречию.

3) Дайте определения и приведите примеры линейных подпространств, суммы и пересечения подпространств, прямой суммы подпространств. Сформулируйте и докажите критерии прямой суммы: представление нулевого вектора, теорема о нулевом пересечении, размерность прямой суммы.

Представление нулевого вектора. Сумма $U = U_1 + U_2 + \ldots + U_m$ будет прямой и в том случае, когда однозначность записи $u = u_1 + u_2 + \ldots + u_m$ имеет место лишь для нулевого вектора, т.е.

$$0 = u_1 + u_2 \ldots + u_m \implies u_1 = 0, \ u_2 = 0, \ \ldots, \ u_m = 0$$

Доказательство: В самом деле, если это более слабое условие выполнено, то из двух разложений

$$u_1 + u_2 + \ldots + u_m = u = u_1' + u_2' + \ldots + u_m'$$

следовало бы $0=(u_1-u_1')+(u_2-u_2')+\ldots+(u_m-u_m')$, где $u_i-u_i'\in V_i$. По предположению $u_i-u_i'=0,\ 1\leq i\leq m$, или $u_1=u_1',\ u_2=u_2',\ \ldots,\ u_m=u_m'$, т.е. выполнено свойство разложения в прямую сумму.

Теорема о нулевом пересечении. Сумма $U = U_1 + U_2 + \ldots + U_m$ является прямой тогда и только тогда, когда

$$U_i \cap (U_1 + \ldots + \widehat{U_i} + \ldots + U_m) = 0 \tag{1}$$

для i = 1, 2, ..., m.

Доказательство: \Rightarrow Предположим, что наша сумма прямая. Рассмотрим произвольный вектор $x \in U_i \cap (U_1 + \ldots + \widehat{U_i} + \ldots + U_m)$ где индекс i фиксирован. Тогда $x = u_1 + \ldots + \widehat{u_i} + \ldots + u_m$, и для нулевого вектора мы получим два разложения:

$$0 + \ldots + 0 + 0 + 0 + \ldots + 0 = 0 = u_1 + \ldots + u_{i-1} + (-x) + u_{i+1} + \ldots + u_m$$

Так как сумма прямая, разложения совпадают $\implies -x = 0 \implies$ условие (1) выполнено.

 \Leftarrow Обратно, предполагая справедливым (1), докажем единственность разложения нулевого вектора (этого, как мы знаем, достаточно, чтобы сумма была прямой). В самом деле, будем исходить из какого-нибудь разложения $0=a_1+\ldots+a_i+\ldots+a_m$. Тогда при любом $i=1,2,\ldots,m$ имеем

$$-a_i=a_1+\ldots+a_{i-1}+a_{i+1}+\ldots+a_m\in U_i\cap (U_1+\ldots+\widehat{U_i}+\ldots+U_m)=0.$$

Стало быть, $a_i = 0$.

Теорема о размерность прямой суммы. Сумма $U = U_1 + U_2 + \cdots + U_m$ является прямой тогда и только тогда, когда

$$\dim U = \sum_{i=1}^{m} \dim U_i. \tag{2}$$

Доказательство: Проводим его индукцией по m. При m=2 справедливость утверждения отмечена выше, а в случае произвольного m воспользуемся теоремами <u>Грассмана</u> и <u>нулевого вектора</u>. Именно, если сумма прямая, то прямой будет и сумма $U_1+\cdots+\widehat{U_i}+\cdots+U_m$, а тогда

$$\dim U = \dim U_i + \dim \left(U_1 + \dots + \widehat{U_i} + \dots + U_m \right) - \dim \left(U_i \cap \left(U_1 + \dots + \widehat{U_i} + \dots + U_m \right) \right) =$$

$$= \dim U_i + \left(\dim U_1 + \dots + \dim \widehat{U_i} + \dots + \dim U_m \right) - 0 = \sum_{i=1}^m \dim U_i.$$

Обратно, если формула (2) верна, то объединение базисов подпространств U_i будет базисом в U, и, значит, сумма прямая.

4) Дайте определение факторпространства линейного пространства по подпространству, обоснуйте корректность введённых операций. Докажите утверждение о размерности факторпространства.

Определение 11. Факторпространства V = V/L – пространство всех смежных классов пространства V по подпространству L.

Утверждение о размерности факторпространства: Пусть L — произвольное подпространство в V. Тогда: $\dim V/L = \dim V - \dim L$. Другими словами, $\dim V/L = \operatorname{codim}_V L$.

Доказательство: По теореме 9 найдётся такое подпространство $M\subset V$, что $V=L\oplus M$, причём $\dim M=\dim V-\dim L$. По теореме 10 это подпространство M изоморфно фактор-пространству V/L.

5) Дайте определения и приведите примеры линейных функций и сопряженного пространства. Как изменяются значения линейной функции на базисных векторах при переходе от одного базиса к другому? Дайте определение и докажите теорему о существовании двойственного базиса.

Определение 11. Отображение $f:V o\mathfrak{R}$, обладающее свойством $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ $\forall \alpha,\beta\in\mathfrak{R}\quad x,y\in V$, называется линейной функцией на V.

Определение 12. Относительно введённых операций сложения и умножения на скаляры линейные функции составляют векторное пространство $V^* = \zeta(V, F)$, сопряжённое к V.

Изменение значений линейной функции на базисных векторах. Пусть

 $\langle e_1,\dots,e_n
angle=V=\langle e_1',\dots,e_n'
angle,\quad e_j'=a_{1j}e_1+a_{2j}e_2+\dots+a_{nj}e_n,\quad j=1,2,\dots,n$ — формулы перехода от базиса (e_1,\dots,e_n) к базису (e_1',\dots,e_n') . Если теперь

$$\lambda_1eta_1+\ldots+\lambda_neta_n=f(v)=\lambda_1'eta_1'+\ldots+\lambda_n'eta_n'$$

где $\lambda_1,\ldots,\lambda_n$ и $\lambda'_1,\ldots,\lambda'_n$ — координаты вектора $v\in V$ в базисе (e_1,\ldots,e_n) и (e'_1,\ldots,e'_n) соответственно, то, как легко видеть,

$$eta_j' = f(e_j') = f(a_{1j}e_1 + a_{2j}e_2 + \ldots + a_{nj}e_n) = a_{1j}f(e_1) + a_{2j}f(e_2) + \ldots + a_{nj}f(e_n) =$$
 $= a_{1j}eta_1 + a_{2j}eta_2 + \ldots + a_{nj}eta_n$

Теорема о существовании двойственного базиса. Пусть V — векторное пространство размерности n над полем \mathfrak{R} . Тогда двойственное пространство V^* также имеет размерность n. Если (e_1,\ldots,e_n) — базис в V, а e^1,\ldots,e^n – линейные функции, для которых

$$e^i(e_j) = egin{cases} 1, & ext{при} & i=j \ 0, & ext{при} & i
eq j \end{cases}$$

то (e^1,\ldots,e^n) – базис в V^* .

Доказательство: При заданном базисе (e_1,\ldots,e_n) пространства V имеется взаимно однозначное соответствие $\Phi:f\mapsto (\beta_1,\ldots,\beta_n)$ между линейными функциями и системами из n скаляров. Эти системы мы отождествляем с векторами координатного пространства \mathfrak{R}^n и замечаем, что если

$$f\mapsto (eta_1,\ldots,eta_n), g\mapsto (\gamma_1,\ldots,\gamma_n)$$
 , TO

 $f+g\mapsto (eta_1+\gamma_1,\dots,eta_n+\gamma_n),\quad \lambda f\mapsto (\lambdaeta_1,\dots,\lambdaeta_n).$ Таким образом, Φ — изоморфизм векторных пространств V^* и \mathfrak{R}^n , в частности $\dim V^*=\dim\mathfrak{R}^n=n.$ Задав скаляры $eta_j=0$ для $j\neq i, eta_i=1$, и положив

 $e^i(e_j) = \delta_{ij}, \quad j = 1, \dots, n$, мы определим линейную функцию

$$e^i \in V^*: \quad e^i \left(\sum \lambda_j e_j
ight) = \sum \lambda_j e^i (e_j) = \sum \lambda_j eta_j = \lambda_i$$

Функции e^1, \ldots, e^n , очевидно, линейно независимы, поскольку независимы соответствующие им векторыстроки $(0, \ldots, 1, \ldots, 0)$ в \mathfrak{R}^n .

6) Дайте определения сопряженного пространства и двойственного базиса. Сформулируйте и докажите теорему о существовании естественного изоморфизма между пространствами V и V^{**}

Определение 13. Базис (e^1, \ldots, e^n) пространства V^* , указанный в формулировке теоремы <u>1</u>, называется **двойственным** для данного базиса (e_1, \ldots, e_n) пространства V.

Теорема о естественном изоморфизме. Существует канонический изоморфизм $\varepsilon: V \to V^{**}$, определённый формулами

$$arepsilon(x)=arepsilon_x,\quad arepsilon_x(f)=f(x)$$

Здесь $x \in V, \, f \in V^*, \, \varepsilon_x \in V^{**}.$

Доказательство. Линейность ε проверяется непосредственно. Действительно,

 $arepsilon_{lpha x+eta y}(f)=f(lpha x+eta y)=lpha f(x)+eta f(y)=lpha arepsilon_x(f)+eta arepsilon_y(f)=(lpha arepsilon_x+eta arepsilon_y)(f)$ для всякой линейной функции f:V o F. Отсюда $arepsilon_{lpha x+eta y}=lpha arepsilon_x+eta arepsilon_y$, т. е. arepsilon(lpha x+eta y)=lpha arepsilon(x)+eta arepsilon(y). Чтобы убедиться в биективности arepsilon, выберем в V и V^* двойственные базисы $V=\langle e_1,\ldots,e_n \rangle,\ V^*=\langle e^1,\ldots,e^n \rangle$. Тогда

$$arepsilon_{e_j}(e^i) = e^i(e_j) = \delta_{ij}$$

Апеллируя к доказательству теоремы 1, мы видим, что справедливо равенство $V^{**} = \langle \varepsilon_{e_1}, \varepsilon_{e_2}, \dots, \varepsilon_{e_n} \rangle$, т. е. (ε_{e_j}) — базис в V^{**} , двойственный к (e^i) . Сюръективность и инъективность ε теперь очевидны. Каноничность изоморфизма ε заключена в его определении.

7) Дайте определение и приведите примеры евклидовых пространств. Сформулируйте и докажите неравенство Коши — Буняковского, приведите примеры его частных случаев. Дайте определение углов и длин в евклидовом пространстве. Сформулируйте и докажите неравенство треугольника, приведите примеры его частных случаев.

Определение 14. Евклидовым векторным пространством называется вещественное векторное пространство V с выделенной на нём симметричной билинейной формой $(x,y)\mapsto (x|y)$ такой, что соответствующая квадратичная форма $x\mapsto (x|x)$ (или просто (x|x)) положительно определена.

Примеры: Пример 1. Пусть $V=P_n$ — вещественное векторное пространство многочленов степени $\leq n-1$. Сопоставление любым двум векторам (многочленам) $f,g\in V$ числа

$$(f|g) = \int_a^b f(t)g(t) \, dt$$

([a,b] — фиксированный отрезок на $\mathbb R$) также задаёт скалярное произведение на V, как это легко усмотреть из свойств определённого интеграла. Было бы неудобно выражать то же самое скалярное произведение (2) в терминах "естественного" базиса $1,t,\ldots,t^{n-1}$. Следует заметить, что соотношением (2) задаётся скалярное произведение и на бесконечномерном пространстве C(a,b) непрерывных функций (на отрезке

[a,b]). Соответствующее бесконечномерное евклидово векторное пространство обозначается символом $C_2(a,b)$.

Пример 2. Координатное пространство \mathbb{R}^n , состоящее из всевозможных наборов вещественных чисел (x_1, x_2, \dots, x_n) , где скалярное произведение определяется формулой

$$(x,y) = \sum_{i=1}^n x_i y_i = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Неравенство Коши–Буняковского. Каковы бы ни были векторы x,y евклидова векторного пространства V , справедливо неравенство

$$|(x|y)| \le ||x|| \cdot ||y|| \tag{4}$$

Доказательство. Из положительной определённости скалярного произведения (свойство ііі)) следует, что

$$\lambda^{2}(x|x) - 2\lambda(x|y) + (y|y) = (\lambda x - y|\lambda x - y) \ge 0$$

$$\tag{5}$$

где λ — произвольное вещественное число. При фиксированных векторах $x,y\in V$ мы рассматриваем левую часть (5) как квадратный трёхчлен $f(\lambda)$. Так как $f(\lambda)\geq 0$ для всех $\lambda\in\mathbb{R}$, то для его дискриминанта $D(f)=(2(x|y))^2-4(x|x)\cdot(y|y)$ должно выполняться неравенство $D(f)\leq 0$, откуда

$$(x|y)^2 \le (x|x) \cdot (y|y) \tag{6}$$

Взяв положительный квадратный корень из обеих частей неравенства (6) и воспользовавшись определением длины вектора, мы приходим к неравенству (4), в левой части которого стоит абсолютная величина скаляра (x|y).

Частный случай: Если $|x|y|=\|x\|\|y\|$, то D(f)=0, т.е. трёхчлен

f имеет один вещественный корень λ_0 . Согласно (5) имеем $(\lambda_0 x - y | \lambda_0 x - y) = 0$, откуда $y = \lambda_0 x$. Следовательно, лишь для коллинеарных (пропорциональных) векторов скалярное произведение по абсолютной величине равно произведению их длин.

Определение 15. Длиной (или нормой) ||v|| любого вектора $v \in V$ называется неотрицательное вещественное число $||v|| = \sqrt{(v|v)}$

Определение 16. Неравенство Коши—Буняковского означает, что $-1 \leq \frac{(x|y)}{\|x\|\cdot\|y\|} \leq 1$. Стало быть, отношение $(x|y)/(\|x\|\cdot\|y\|)$ является косинусом вполне определённого угла φ :

$$\cos arphi = rac{(x|y)}{\|x\|\cdot\|y\|}, \quad 0 \leq arphi \leq \pi$$

Именно этот угол φ и считается, по определению, **углом между векторами** x и y.

Неравенство треугольника. Длины векторов x, y и x + y связаны неравенством

$$||x \pm y|| \le ||x|| + ||y|| \tag{10}$$

Доказательство. Действительно, используя неравенство (4), получаем

$$\|x \pm y\|^2 = \|x\|^2 + \|y\|^2 \pm 2(x|y) \le \|x\|^2 + \|y\|^2 + 2|(x|y)| \le$$

 $\le \|x\|^2 + \|y\|^2 + 2\|x\| \cdot \|y\| = (\|x\| + \|y\|)^2$

8) Дайте определение линейной независимости векторов, ортогональности векторов. Докажите линейную независимость системы ненулевых ортогональных векторов. <mark>Как</mark> вычисляется скалярное произведение в произвольном базисе? в ортонормированном базисе? Докажите теорему о дополнении ортонормированной системы векторов до ортонормированного базиса. Опишите процесс ортогонализации Грама — Шмидта и получение QR-разложения матрицы. !!!!

Определение 17. Векторы **x** и **y** называются *ортогональными* (обозначение $x \perp y$), когда угол между ними равен $\pi/2$, т.е. (x|y) = 0.

Теорема 4. Любые ненулевые взаимно ортогональные векторы $e_1, \dots, e_m \in V$ линейно независимы. Если при этом $\dim V = n$ и m = n, то векторы e_i образуют ортогональный базис в V.

Доказательство. Второе утверждение вытекает (по определению размерности) из первого, которое мы сейчас и докажем. Предположим, что $\alpha_1e_1+\alpha_2e_2+\ldots+\alpha_me_m=0$ — нетривиальное соотношение между векторами e_1,\ldots,e_m . Пусть, скажем, $\alpha_k\neq 0$. Умножив скалярно на e_k обе части нашего линейного соотношения, получим

$$0 = (0|e_k) = (\alpha_1 e_1 + \ldots + \alpha_m e_m | e_k) = \alpha_1(e_1|e_k) + \ldots + \alpha_k(e_k|e_k) + \ldots + \alpha_m(e_m|e_k) = \alpha_k(e_k|e_k)$$

поскольку по условию $(e_i|e_k)=0$ при $i\neq k$. С другой стороны, $(e_k|e_k)\neq 0$, и мы приходим к заключению, что $\alpha_k=0$. Полученное противоречие доказывает теорему.

Теорема 6 (процесс ортогонализации). Пусть e_1, \ldots, e_m — система из m линейно независимых векторов евклидова векторного пространства V. Тогда существует ортонормированная система векторов e'_1, \ldots, e'_m такая, что линейные оболочки $L_i = \langle e_1, \ldots, e_i \rangle$ и $L'_i = \langle e'_1, \ldots, e'_i \rangle$ совпадают при $i = 1, 2, \ldots, m; m \leq n$.

Доказательство. Возьмём в качестве e_1' вектор λe_1 , где $\lambda = ||e_1||^{-1}$. Так как $L_1 = \langle e_1' \rangle = L_1'$, то это даёт утверждение теоремы при i=1. Пусть уже построена нужная система e_1',\ldots,e_k' ; $1 \leq k < m \ (L_i = L_i'; \ i=1,\ldots,k)$. Покажем, как найти вектор e_{k+1}' . Вектор e_{k+1} не может содержаться в $L_k' = L_k$ (иначе e_{k+1} выражался бы линейно через e_1,\ldots,e_k), поэтому $L_{k+1} = \langle e_1,\ldots,e_k,v \rangle$, где

$$v=e_{k+1}-\sum_{i=1}^k \lambda_i e_i'$$

с произвольными скалярами $\lambda_1,\dots,\lambda_k$. Постараемся подобрать λ_i так, чтобы вектор v был ортогонален к L_k' . Для этого необходимо и достаточно выполнения условий

$$0 = (v|e_j') = (e_{k+1}|e_j') - \left(\sum_{i=1}^k \lambda_i e_i'|e_j'
ight) = (e_{k+1}|e_j') - \sum_{i=1}^k \lambda_i (e_i'|e_j') = (e_{k+1}|e_j') - \lambda_j, \ j = 1, \dots, k$$

Таким образом, при $\lambda_j=(e_{k+1}|e_j')$ получаем вектор $v\neq 0$, ортогональный к L_k' . Полагая $e_{k+1}'=\mu v$ с $\mu=||v||^{-1}$, мы придём к ортонормированной системе e_1',\dots,e_{k+1}' , причём $L_{k+1}=L_{k+1}'$. В результате получим искомую систему e_1',\dots,e_m' .

Теоремы 5. Всякая ортонормированная система векторов евклидова векторного пространства V дополняема до ортонормированного базиса в V.

Доказательство. Согласно теореме $\underline{3}$ из §2 гл. 1, имеющуюся по условию ортонормированную систему e_1,\ldots,e_m можно дополнить до базиса $e_1,\ldots,e_m,e_{m+1},\ldots,e_n$. К этому базису применим процесс ортогонализации, описанный в теореме 6, не затрагивая при этом первые m векторов.

Пример QR-разложения

Рассмотрим матрицу:

$$A = egin{pmatrix} 1 & 2 & 4 \ 3 & 3 & 2 \ 4 & 1 & 3 \end{pmatrix}$$

Через a_1, a_2, a_3 обозначим векторы-столбцы заданной матрицы A. Получаем следующий набор векторов:

$$a_1=egin{pmatrix}1\3\4\end{pmatrix},\,a_2=egin{pmatrix}2\3\1\end{pmatrix},\,a_3=egin{pmatrix}4\2\3\end{pmatrix}$$

Далее, применяем алгоритм ортогонализации Грама — Шмидта и нормируем полученные вектора, получаем следующий набор:

$$e_1 = egin{pmatrix} rac{\sqrt{26}}{26} \\ rac{3\sqrt{26}}{26} \\ rac{3\sqrt{26}}{26} \\ rac{4\sqrt{26}}{26} \end{pmatrix}, \ e_2 = egin{pmatrix} rac{33\sqrt{3614}}{3614} \\ rac{34\sqrt{3614}}{3614} \\ rac{34\sqrt{3614}}{3614} \end{pmatrix}, \ e_3 = egin{pmatrix} rac{9\sqrt{139}}{139} \\ -rac{7\sqrt{139}}{139} \\ rac{3\sqrt{139}}{139} \end{pmatrix}$$

Из полученных векторов e_1, e_2, e_3 составляем по столбцам матрицу Q из разложения:

$$Q = egin{pmatrix} \sqrt{\frac{26}{26}} & rac{37\sqrt{3614}}{3614} & rac{9\sqrt{139}}{139} \\ Q = & rac{3\sqrt{26}}{26} & rac{33\sqrt{3614}}{3614} & -rac{7\sqrt{139}}{139} \\ \sqrt{rac{4\sqrt{26}}{26}} & rac{34\sqrt{3614}}{3614} & rac{3\sqrt{139}}{139} \end{pmatrix}$$

Полученная матрица является ортогональной, это означает, что $Q^{-1} = Q^T$.

Найдем матрицу R из выражения $R=Q^{-1}A=Q^TA$:

$$R = egin{pmatrix} \sqrt{26} & 3\sqrt{rac{2}{13}} + rac{9}{\sqrt{26}} & 11\sqrt{rac{2}{13}} \end{pmatrix} \ R = egin{pmatrix} 0 & \sqrt{rac{3614}{26}} & rac{56}{\sqrt{3614}} \ 0 & 0 & rac{31}{\sqrt{139}} \end{pmatrix}$$

Получили разложение A=QR.

9) Дайте определения ортонормированного базиса и ортогональной матрицы. Сформулируйте и докажите утверждение об ортогональных матрицах как матрицах перехода от одного ортонормированного базиса к другому. Сформулируйте и докажите групповые свойства ортогональных матриц. !!!!

$$a_{1i}a_{1j} + a_{2i}a_{2j} + \ldots + a_{ni}a_{nj} = \begin{cases} 0 & \text{при } i \neq j, \\ 1 & \text{при } i = j. \end{cases}$$
 (15)

$$A^t \cdot A = E \tag{16}$$

Определение 18. Квадратная матрица $A=(a_{ij})$, удовлетворяющая одному из эквивалентных условий (15), (15'), (16), (16'), называется *ортогональной*. Множество всех ортогональных матриц порядка n обозначается символом O(n).

Непосредственно проверяется (и мы к этому ещё вернёмся), что O(n) — группа. Она называется ортогональной группой. Если теперь A — произвольная ортогональная матрица, то система векторов (e'_1,\ldots,e'_n) , полученная из ортонормированного базиса (e_1,\ldots,e_n) по формулам (14), будет также ортонормированным базисом.

Доказательство:

1. Матрица перехода между ортонормированными базисами ортогональна

Пусть даны два ортонормированных базиса в \mathbb{R}^n (или в унитарном пространстве \mathbb{C}^n):

• Старый базис: e_1, e_2, \dots, e_n

• Новый базис: e'_1, e'_2, \dots, e'_n

Матрица перехода A определяется так:

$$e_j'=\sum_{i=1}^n a_{ij}e_i, \quad j=1,2,\ldots,n.$$

Так как оба базиса ортонормированы, скалярные произведения удовлетворяют условиям:

$$(e_i',e_j')=\delta_{ij}, \quad (e_i,e_j)=\delta_{ij},$$

где δ_{ij} = 1 при i=j, 0 при i!=j.

Выразим скалярное произведение новых базисных векторов через матрицу A:

$$(e_i',e_j') = \left(\sum_{k=1}^n a_{ki}e_k,\sum_{l=1}^n a_{lj}e_l
ight) = \sum_{k,l=1}^n a_{ki}a_{lj}(e_k,e_l) = \sum_{k=1}^n a_{ki}a_{kj}.$$

Так как базис e' ортонормирован, получаем:

$$\sum_{k=1}^n a_{ki} a_{kj} = \delta_{ij}.$$

Это означает, что $A^TA = E$, то есть матрица A ортогональна.

2. Всякая ортогональная матрица является матрицей перехода между ортонормированными базисами

Обратно, пусть A — произвольная ортогональная матрица ($A^TA=E$). Построим новый базис e_1', e_2', \ldots, e_n' по правилу:

$$e_j' = \sum_{i=1}^n a_{ij} e_i.$$

Проверим, что этот базис ортонормирован:

$$(e_i',e_j') = \sum_{k=1}^n a_{ki} a_{kj} = \delta_{ij},$$

так как $A^T A = E$.

Таким образом, любая ортогональная матрица задаёт переход от одного ортонормированного базиса к другому.

Формулировка групповых свойств

Множество O(n) всех ортогональных матриц удовлетворяет следующим аксиомам группы:

1. Замкнутость относительно умножения:

Если $A, B \in O(n)$, то $AB \in O(n)$.

2. Ассоциативность:

Для любых $A,B,C\in O(n)$ выполняется (AB)C=A(BC).

3. Наличие нейтрального элемента (единичной матрицы):

Существует $I \in O(n)$ такая, что AI = IA = A для любой $A \in O(n)$.

4. Наличие обратного элемента:

Для любой $A \in O(n)$ существует $A^{-1} \in O(n)$ такая, что $AA^{-1} = A^{-1}A = I$.

Доказательства групповых свойств

(1) Замкнутость относительно умножения

Пусть $A, B \in O(n)$, то есть $A^T A = I$ и $B^T B = I$.

Покажем, что AB тоже ортогональна:

$$(AB)^{T}(AB) = B^{T}A^{T}AB = B^{T}(A^{T}A)B = B^{T}IB = B^{T}B = I.$$

Следовательно, $AB \in O(n)$.

(2) Ассоциативность

Ассоциативность следует из общего свойства матричного умножения:

$$(AB)C = A(BC).$$

(3) Наличие нейтрального элемента

Единичная матрица I ортогональна, так как $I^T I = I$.

Для любой $A \in O(n)$ выполняется:

$$AI = IA = A$$
.

(4) Наличие обратного элемента

Для $A \in O(n)$ обратная матрица A^{-1} существует и равна A^T , так как:

$$A^T A = A A^T = I$$
.

Кроме того, A^{T} тоже ортогональна:

$$(A^T)^T A^T = A A^T = I.$$

Значит, $A^{-1}=A^T\in O(n)$.

10) Дайте определения ортогонального дополнения к подпространству и прямой суммы подпространств. Докажите теорему о том, что $V = U \oplus U^{\perp}$ и $U^{\perp \perp} = U$.

Определение 19. Множество всех векторов $x \in V$, ортогональных подпространству $U \subset V$, образует подпространство U^\perp (ввиду линейности условия $x \perp U$), которое называется **ортогональным дополнением** подпространства U.

Теорема 7. Пусть L — подпространство конечномерного евклидова векторного пространства V, L^{\perp} — его ортогональное дополнение. Тогда

$$V = L \oplus L^{\perp}, \quad (L^{\perp})^{\perp} = L \tag{11}$$

Доказательство. Возьмём в L какой-нибудь ортонормированный базис (e_1,\ldots,e_m) . Пусть $w\in V$. Рассмотрим вектор

$$v=w-\sum_{i=1}^m (w|e_i)e_i$$

Так как $(v|e_j)=(w|e_j)-\sum_{i=1}^m(w|e_i)(e_i|e_j)=(w|e_j)-(w|e_j)\cdot 1=0; j=1,2,\ldots,m$, то вектор v ортогонален подпространству L. Это значит, что w=u+v, где $u=\sum_{i=1}^m(w|e_i)e_i\in L$ и $v\in L^\perp$. Итак, $V=L+L^\perp$. Пусть $x\in L\cap L^\perp$. Так как $x\in L$, то $(x|L^\perp)=0$. Но, в частности, $L^\perp\ni x$, так что (x|x)=0, откуда получаем x=0. Следовательно, $V=L\oplus L^\perp$ — прямая сумма. Из разложения w=u+v ($u\in L,v\in L^\perp$) имеем $(w|u)=(u+v|u)=(u|u)+(v|u)=||u||^2$, аналогично, $(w|v)=||v||^2$. Если теперь $w\in (L^\perp)^\perp$, то (w|v)=0 и $||v||^2=0$, откуда $w=u\in L$. Стало быть, $(L^\perp)^\perp\subseteq L$. Так как, далее, $(L^\perp)^\perp$ — подпространство, ортогональное к L^\perp , а $(L|L^\perp)=0$, то $L\subseteq (L^\perp)^\perp$. Следовательно, $(L^\perp)^\perp=L$.

11) Дайте определения сопряженного пространства, евклидова пространства, изоморфизма линейных пространств. Сформулируйте и докажите теоремы об изоморфизме евклидовых пространств одинаковой размерности и об изоморфизме линейных пространств V и V^* в случае евклидовых пространств.

Теорема 8. Любые евклидовы векторные пространства V,V' одинаковой конечной размерности изоморфны. Это значит, что существует изоморфное отображение $f:V\to V'$ векторных пространств (см. определение в п. 3 из § 2 гл. 1), сохраняющее скалярное произведение, т.е.

$$(x|y) = (f(x)|f(y))'$$

(12)

((*|*)' — скалярное произведение на V').

Доказательство. Рассмотрим ортонормированный базис (e_1, \ldots, e_n) в V и какой-то ортонормированный базис (e'_1, \ldots, e'_n) в V'. Соответствие

$$f: x = x_1e_1 + \ldots + x_ne_n \mapsto x' = x_1e'_1 + \ldots + x_ne'_n$$

очевидно, биективно. Как и в случае теоремы 5 из п. 3 § 2 гл. 1, непосредственно проверяется, что f — изоморфизм векторных пространств. Так как в V и в V' скалярные произведения (x|y), (x'|y')' вычисляются по одной и той же формуле (1) (в силу выбора базисов), то условие (12) изоморфизма евклидовых векторных пространств также выполнено. \square

Теорема 9. Отображение $\Phi: \mathbf{v} \mapsto (\mathbf{v}|*) = \Phi_{\mathbf{v}}$ есть естественный изоморфизм векторных пространств V и V^* . При этом изоморфизме ортонормированный базис $\mathbf{e}_1, \dots, \mathbf{e}_n$ евклидова векторного пространства V отождествляется с дуальным к нему базисом f_1, \dots, f_n пространства V^* .

Доказательство. Так как скалярное произведение $(\mathbf{v}|\mathbf{x})$ линейно по \mathbf{v} , то отображение Φ линейно:

$$\Phi_{(\alpha u + \beta v)} = (\alpha u + \beta v | *) = \alpha(u | *) + \beta(v | *) = \alpha \Phi_u + \beta \Phi_v.$$

Далее, Ker $\Phi=0$, поскольку $\mathbf{v}\in\mathrm{Ker}\Phi\implies (\mathbf{v}|\mathbf{x})=0\quad \forall\mathbf{x}\in V$ и, в частности, $(\mathbf{v}|\mathbf{v})=0\mapsto\mathbf{v}=0$. Как всякий элемент пространства V^* , линейная форма $(\mathbf{v}|*)$ линейно выражается через двойственные к (\mathbf{e}_i) базисные

векторы $e^1,\ldots,e^n\in V^*$. В частности,

$$\Phi_{\mathbf{e}_i} = (\mathbf{e}_i|*) = \sum_{j=1}^n a_{ij} e^j, \quad i=1,\dots,n.$$

Так как $(\mathbf{e}_1,\ldots,\mathbf{e}_n)$ — ортонормированный базис, то

$$a_{ij} = \sum_{k=1}^n a_{ik} \delta_{jk} = \sum_{k=1}^n a_{ik} e^k(\mathbf{e}_j) = (\mathbf{e}_i | \mathbf{e}_j) = \delta_{ij},$$

откуда

$$(\mathbf{e}_i|*) = e^i \tag{13}$$

Это даёт нам сюръективность, а следовательно, и биективность Φ . Вместе с тем соотношением (13) устанавливается справедливость заключительного утверждения теоремы.

12) Дайте определение и приведите примеры билинейных функций. Что называется матрицей билинейной функции в некотором базисе? Сформулируйте и докажите утверждение о связи матриц билинейной функции в разных базисах. Что называется рангом билинейной функции? Докажите, что ранг билинейной функции не зависит от выбора базиса.

Определение 20. В соответствии с общим определением, **билинейная форма** f на векторном пространстве V над $\mathbb R$ характеризуется свойствами:

$$f(\alpha u + \beta v, w) = \alpha f(u, w) + \beta f(v, w), \quad f(w, \alpha u + \beta v) = \alpha f(w, u) + \beta f(w, v) \tag{2}$$

для всех $u, v, w \in V$, $\alpha, \beta \in \mathbb{R}$.

Определение 21. Матрица $F = (f_{ij})$, где $f_{ij} = f(e_i, e_j)$, называется матрицей билинейной формы f на V в базисе (e_1, \ldots, e_n) .

Теорема 1. Матрицы F и F' билинейной формы f на V в базисах (e_i) и (e'_i) связаны соотношением

$$F' = A^t \cdot F \cdot A,\tag{5}$$

где A — матрица перехода от (e_i) к (e'_i) .

Доказательство. Аксиоматическое определение билинейной формы f свойствами (2) свободно от выбора какого-либо базиса в V. Чтобы матричная запись f имела реальную ценность, нужно соответствие $f\mapsto F$ дополнить правилом изменения матрицы F при переходе к новому базису. Пусть наряду с (e_1,\ldots,e_n) в V задан еще один базис (e'_1,\ldots,e'_n) вместе с матрицей перехода $A=(a_{ij})$:

$$e_j' = \sum_{i=1}^n a_{ij} e_i, \quad j=1,\dots,n$$

Если $x_1e_1+\ldots+x_ne_n=x=x_1'e_1'+\ldots+x_n'e_n'$, то координатные столбцы X и X' связаны соотношением X=AX'. Пусть теперь $F=(f_{ij})$ — матрица билинейной формы f в базисе (e_i) , а $F'=(f_{ij}')$ — матрица той же формы f в базисе (e_i') , т.е. $f_{ij}=f(e_i,e_j)$ и $f_{ij}'=f(e_i',e_j')$. Так как $^t(AX')=^tX'\cdot ^tA$ и так как значение f(x,y) не зависит от выбора базиса, то

$${}^tX'F'Y' = f(x,y) = {}^tXFY = {}^t(AX')F(AY') = {}^tX' \cdot {}^tA \cdot F \cdot A \cdot Y'$$

Сравнивая левую и правую части, приходим к заключению.

Определение 22. Матрицы F и $F' = {}^t A F A$ с $\det A \neq 0$ называются *конгруэнтными*. *Рангом* билинейной формы f называется ранг соответствующей ей в каком-нибудь базисе (e_i) матрицы F.

Следствие. Рана $\mathrm{rank} f$ билинейной формы f является её инвариантом, не зависящим от выбора базиса. **Доказательство.** Обозначим через L_f множество тех $x \in V$, для которых f(x,y)=0 при всех $y \in V$. Короче: f(x,V)=0. Очевидная проверка показывает, что L_f — подпространство в V. Его называют левым радикалом или ядром формы f. Ясно, что $\dim L_f$ — величина, зависящая только от f. Пусть (e_1,\ldots,e_n) — базис в V. Условие $x \in L_f$ равносильно тому, что

$$f(x, e_1) = 0, \ldots, f(x, e_n) = 0$$

Эта система уравнений определяется линейными функциями $x\mapsto f_j(x)=f(x,e_j)=0,\ j=1,\dots,n.$ Координатами функций f_j являются скаляры $f_j(e_i)$, т.е. коэффициенты $f(e_i,e_j)=f_{ij}$, **i**-й строки матрицы F. Стало быть, ранг системы линейных форм $f_1,\dots,f_n\in V^*$ совпадает с рангом матрицы $F=(f_{ij})$, и если он равен r, то по теореме 7 из [BA I, гл. 2, § 3] имеет место равенство $\dim L_f=n-r$. Другими словами, $r=\dim V-\dim L_f$ — величина, не зависящая от выбора базиса.

13) Дайте определение и приведите примеры симметрических и кососимметрических билинейных функций, симметрических и кососимметрических матриц. Сформулируйте и докажите теорему о представлении пространства всех билинейных функций в виде прямой суммы подпространств симметрических и кососимметрических билинейных функций.

Определение 23. билинейная форма $f: V \times V \to \mathbb{R}$ называется симметричной, когда f(x,y) = f(y,x) для всех $x,y \in V$, и кососимметричной, когда f(x,y) = -f(y,x).

Определение 24. матрица $A=(a_{ij})$ называется симметричной, когда $A^t=A$ для всех, и кососимметричной, когда $A^t=-A$.

Теорема 2. Если $\operatorname{char}\mathfrak{K} \neq 2$, то пространство $L_2(V,\mathfrak{K})$ всех билинейных форм является прямой суммой

$$L_2(V,\mathfrak{K})=L_2^+(V,\mathfrak{K})\oplus L_2^-(V,\mathfrak{K})$$

подпространств $L_2^+(V,\mathfrak{K}),\,L_2^-(V,\mathfrak{K})$ симметричных и кососимметричных билинейных форм. Доказательство. Если $f\in L_2^+(V,\mathfrak{K})\cap L_2^-(V,\mathfrak{K})$, то

$$f(x,y) = f(y,x) = -f(x,y) \implies 2f(x,y) = 0 \implies f(x,y) = 0$$

(поскольку по условию $\mathrm{char}\mathfrak{K}\neq 2$), откуда f=0. Следовательно, сумма $L_2^++L_2^-$ прямая. С другой стороны, соотношение $f(x,y)=\frac{1}{2}\{f(x,y)+f(y,x)\}+\frac{1}{2}\{f(x,y)-f(y,x)\}$ или соответствующее матричное соотношение $F=\frac{1}{2}(F+^tF)+\frac{1}{2}(F-^tF)$ показывает, что всякая билинейная форма f представляется в виде суммы симметричной и кососимметричной форм.

14) Дайте определения квадратичной формы и билинейной функции, полярной к квадратичной форме. Докажите, что любая квадратичная форма однозначно определяется по своей полярной форме. Дайте определение матрицы квадратичной формы в заданном базисе. Что называется каноническим видом квадратичной формы? Сформулируйте и докажите теорему о существовании канонического базиса квадратичной формы.

Определение 25. Квадратичной формой на конечномерном векторном пространстве V над \mathfrak{K} называется функция $q:V\to\mathfrak{K}$, обладающая двумя свойствами:

1. $q(-\mathbf{v}) = q(\mathbf{v}) \quad \forall \mathbf{v} \in V;$

2. отображение $f: V \times V \to \mathfrak{K}$, определённое формулой

$$f(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \{ q(\mathbf{x} + \mathbf{y}) - q(\mathbf{x}) - q(\mathbf{y}) \}$$
(6)

является билинейной формой на V (очевидно, симметричной). Её ранг называется также рангом q: $\mathrm{rank}\,q=\mathrm{rank}\,f$.

Определение 26. Говорят, что симметричная билинейная форма f, определённая формулой (1), получается из q поляризацией или что f — билинейная форма, *полярная* к квадратичной форме q.

Теорема 3. Каждая квадратичная форма q однозначно восстанавливается по своей полярной форме f; другими словами, $q=q_f$.

Доказательство. Положим в (6) y=-x: $-f(x,x)=\frac{1}{2}\{q(0)-q(x)-q(-x)\}$,отсюда $q(x)=f(x,x)+\frac{1}{2}q(0)$. Так как f — билинейная форма, то f(0,0)=0. Поэтому при x=0 имеем $q(0)=\frac{1}{2}q(0)$, т.е. q(0)=0. Значит, q(x)=f(x,x).

Определение 27 Матрицей квадратичной формы $q=q_f$ относительно базиса (e_1,\ldots,e_n) пространства V называется матрица F билинейной формы f, полярной к q. Стало быть, $F=(f_{ij})$, где

$$f_{ij} = rac{1}{2} \{q(e_i + e_j) - q(e_i) - q(e_j)\}, \quad i,j = 1,2,\ldots,n.$$

Определение 28. Говорят, что квадратичная форма q имеет в базисе (e_1,\ldots,e_n) пространства V канонический (или диагональный) вид, если для каждого вектора $x=\sum x_ie_i\in V$ значение q(x) вычисляется по формуле: $q(x)=\sum_i f_{ii}x_i^2$

Теорема 4. Для всякой симметричной билинейной формы f на V существует канонический базис. **Доказательство.** При n=1 утверждение очевидно, поэтому можно использовать индукцию по n. Если f(x,y)=0 для всех $x,y\in V$ (т.е. f=0), то теорема очевидна: любой базис годится. Если же $f\neq 0$, то отлична от нуля и соответствующая квадратичная форма (равенства (6), (8) или теорема 3). Пусть e_1 — такой вектор, что $f(e_1,e_1)=q(e_1)\neq 0$. Тогда линейная функция $f_1:x\mapsto f(x,e_1)$ отлична от нуля ($f_1(e_1)\neq 0$). По теореме 4 из § 3 линейное подпространство

$$L=\mathrm{Ker} f_1=\{x\in V\mid f_1(x)=0\}$$

имеет размерность n-1, т.е. является гиперплоскостью. По предположению индукции L обладает базисом (e_2,\ldots,e_n) , в котором матрица формы f, ограниченной на L, диагональна, т.е.

$$f(e_i, e_j) = 0$$
 при $i \neq j$, $i, j = 2, \dots, n$.

Так как по построению $f(e_i,e_1)=0,\,i=2,3,\ldots,n$, то мы получаем свойства $f(e_i,e_j)=0,\,i\neq j$, характеризующие канонический базис (e_k) , если только система векторов e_1,e_2,\ldots,e_n линейно независима. Предположив противное, мы в любом соотношении

 $lpha_1e_1+lpha_2e_2+\cdots+lpha_ne_n=0$ имели бы коэффициент $lpha_1
eq 0$, поскольку (e_2,\ldots,e_n) — базис в L. Но в таком случае $e_1=\sum_{i>1}eta_ie_i$ и

$$0
eq f_1(e_1) = f_1\left(\sum_{i>1}eta_ie_i
ight) = \sum_{i>1}eta_if_1(e_i) = 0$$

противоречие, доказывающее теорему.

Следствие 1. Пусть на векторном пространстве V размерности n над полем \mathfrak{K} задана квадратичная форма q ранга r < n. Тогда в V существует базис (e_i) , в котором q принимает канонический вид:

$$q(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \ldots + \lambda_r x_r^2$$
(10)

15) Дайте определения квадратичной формы и билинейной функции, полярной к квадратичной форме, приведите примеры. Опишите алгоритм Лагранжа. Сформулируйте теорему о формуле Якоби.

Алгоритм Лагранжа. Обозначим за B матрицу квадратичной формы. Пусть, например, $b_{11} \neq 0$. Тогда рассматриваем все слагаемые, содержащие x_1 :

$$\sigma_1 = b_{11}x_1^2 + 2b_{12}x_1x_2 + \ldots + 2b_{1n}x_1x_n + r(x_2, \ldots, x_n)$$

и выделяем полный квадрат в σ_1 :

$$\sigma_1 = rac{1}{b_{11}}(b_{11}x_1 + \ldots + b_{1n}x_n)^2 - \gamma + r(x_2,\ldots,x_n).$$

Обозначаем $y_1 = b_{11}x_1 + \ldots + b_{1n}x_n$. Тогда квадратичная форма примет вид

$$\sigma_1=rac{1}{b_{11}}(y_1)^2-\gamma++r(x_2,\ldots,x_n),$$

причем γ не содержит слагаемых с x_1 . В этом выражении тоже выделяем полный квадрат и повторяем процедуру до тех пор, пока не придем к каноническому виду. При этом переменные x_i последовательно исключаются из квадратичной формы. Если $b_{11}=0$, но $b_{kk}\neq 0$ для некоторого k, можно рассмотреть слагаемые, содержащие x_k . При этом переменные квадратичной формы последовательно исключаются из рассмотрения. Если на очередном шаге получается квадратичная форма, которая не содержит полных квадратов, но содержит слагаемое x_ix_k для некоторых j,k, можно сделать замену

$$x_j=x_j'+x_k',\quad x_k=x_j'-x_k',$$

после чего квадратичная форма будет содержать квадраты некоторых переменных.

Метод Якоби. Пусть q — квадратичная форма на V с матрицей F, все главные миноры (13) которой отличны от нуля. Тогда существует базис (e'_1,\ldots,e'_n) пространства V, в котором q(x) принимает канонический вид:

$$q(x) = \frac{\Delta_0}{\Delta_1} (x_1')^2 + \frac{\Delta_1}{\Delta_2} (x_2')^2 + \ldots + \frac{\Delta_{n-1}}{\Delta_n} (x_n')^2$$
(14)

16) Дайте определение квадратичной формы. Сформулируйте и докажите утверждения о нормальных видах квадратичной формы над полем комплексных и действительных чисел. Что называется индексами инерции? Сформулируйте и докажите закон инерции. Дайте определения невырожденной квадратичной формы, положительно (отрицательно) определённой квадратичной формы. Сформулируйте критерий Сильвестра.

Определение 29. Ранг вещественной квадратичной формы называется также её *индексом инерции*, число s — положительным индексом инерции, число r-s — отрицательным индексом инерции. Под сигнатурой формы понимают либо пару (s,r-s), либо разность 2s-r между числом положительных и числом отрицательных квадратов.

Закон инерции. Пусть q — квадратичная форма на n-мерном векторном пространстве V над R. Тогда целые числа r и $s,s\leq r\leq n$, входящие в нормальный вид (11), зависят только от q.

Доказательство. Инвариантность r нам известна, так что нужно лишь убедиться в инвариантности (независимости от выбора канонического базиса) числа s. Предположим, что в каком-то другом базисе (e'_1, \ldots, e'_n) форма q имеет нормальный вид

$$q(x) = (x_1')^2 + \ldots + (x_t')^2 - (x_{t+1})^2 - \ldots - (x_r')^2$$
(11')

с t положительными членами ($x = \sum_{i=1}^n x_i e_i = \sum_{i=1}^n x_i' e_i'$). При $t \neq s$ без ограничения общности считаем t < s . Рассмотрим в V подпространства

$$L = \langle e_1, \dots, e_s \rangle_R, \quad L' = \langle e_{t+1}, \dots, e'_n \rangle_R.$$

Так как $\dim(L+L') \leq \dim V \leq n$, то по теореме 6 из § 2 имеем

$$\dim(L\cap L')=\dim L+\dim L'-\dim(L+L')\geq s+(n-t)-n=s-t>0.$$

Стало быть, существует ненулевой вектор $a \in (L \cap L')$:

$$0 \neq a = a_1 e_1 + \ldots + a_s e_s = a'_{t+1} e_{t+1} + \ldots + a'_n e'_n$$

Согласно (11) $q(a)=a_1^2+\ldots+a_s^2>0$. В то же время согласно (11') $q(a)=-(a'_{t+1})^2-\ldots-(a'_r)^2\leq 0$ (возможно, что $r< n, a'_{t+1}=\ldots=a'_r=0$). Полученное противоречие устраняется только в случае s=t.

Определение 30. Невырожденная квадратичная форма $q:V\to\mathbb{R}$ называется положительно (соответственно отрицательно) определённой или просто положительной (отрицательной), когда q(x)>0 (q(x)<0) для любого вектора $x\neq 0$. Форма q называется положительно полуопределённой (или неотрицательной), если $q(x)\geq 0$ для всех $x\in V$. Наконец, форма q неопределённая, если она принимает как положительные, так и отрицательные значения.

Теорема 8 (критерий Сильвестра). Квадратичная форма q на n-мерном вещественном векторном пространстве V в том и только том случае является положительно определённой, когда все главные миноры $\Delta_1, ..., \Delta_n$ её матрицы $F = (f_{ij})$ положительны.

17) Дайте определение линейного отображения и приведите примеры. Что называется ядром Kerf и образом Imf линейного отображения $f:V\to W$? Докажите, что ядро и образ линейного отображения являются подпространствами в соответствующих пространствах. Докажите, что f инъективно тогда и только тогда, когда $Kerf=\{\mathbf{0}\}$. Докажите формулу dim(Kerf)+dim(Imf)=dim(V).

Определение 31. Пусть V,W — векторные пространства размерается n,m над одним и тем же полем $\mathfrak{K}.$ Отображение $f:V\to W$ называется **линейным**, если $f(x+y)=f(x)+f(y),\quad f(\lambda x)=\lambda f(x).$

Определение 32. С любым линейным отображением $f:V \to W$ ассоциируются два подпространства — его **ядро** $\mathrm{Ker}\ f = \{v \in V | f(v) = 0\}$ и **образ** $\mathrm{Im}\ f = \{w \in W | w = f(v)$ для некоторого $v \in V\}$.

Теорема 66. Заметим, что инъективность f равносильна равенству $\operatorname{Ker} f = \{0\}$. Действительно, в случае $f(x) = f(y), x \neq y$, имеем $0 \neq x - y \in \operatorname{Ker} f$. Обратно: если $0 \neq x \in \operatorname{Ker} f$, то f(x) = 0 = f(0).

Теорема 67. Пусть V — конечномерное векторное пространство над полем $\mathbb{R}, f: V \to W$ — линейное отображение. Тогда $\operatorname{Ker} f$ и $\operatorname{Im} f$ конечномерны и

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim V.$$

Доказательство (ср. с доказательством аналогичной теоремы в [ВА I, гл. 2, § 3]). Так как $\operatorname{Ker} f \subset V$, то $\dim \operatorname{Ker} f \leq \dim V < \infty$. Выберем базис (e_1, \ldots, e_k) в $\operatorname{Ker} f$ и дополним его в соответствии с теоремой 3 из §2 гл. 1 до базиса $(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$ пространства V. Любой вектор из $\operatorname{Im} f$ имеет вид

$$f\left(\sum_{i=1}^n lpha_i e_i
ight) = \sum_{i=k+1}^n lpha_i f(e_i), \quad lpha_i \in \mathbb{R},$$

т.е. векторы $f(e_{k+1}),\dots,f(e_n)$ порождают $\operatorname{Im} f$. Остаётся показать их линейную независимость. Предположим, что $\sum_{i=k+1}^n \lambda_i f(e_i) = 0$. Тогда $f\left(\sum_{i=k+1}^n \lambda_i e_i\right) = 0$, значит $\sum_{i=k+1}^n \lambda_i e_i \in \operatorname{Ker} f$, т.е. $\sum_{i=k+1}^n \lambda_i e_i = \sum_{j=1}^k \lambda_j e_j$. По линейной независимости базиса $\lambda_{k+1} = \dots = \lambda_n = 0$. Следовательно, $\dim \operatorname{Im} f = n - k$.

18) Дайте определение линейного отображения $f:V\to W$, ядра и образа линейного отображения. Докажите, что если $U=\langle e_1,\dots,e_n\rangle\subset V$, то $f(U)=\langle f(e_1),\dots,f(e_n)\rangle\subset W$. Дайте определение матрицы линейного отображения относительно заданных базисов и ранга линейного отображения. Докажите, что ранг линейного отображения совпадает с рангом его матрицы при любом выборе базисов в пространствах V и W. Сформулируйте и докажите утверждение о связи линейной комбинации и композиции линейных отображений с их матрицами в фиксированных базисах.

Теорема 2. Пусть $f:V\to W$ — линейное отображение. Если $U=\langle e_1,\cdots,e_s\rangle\subset V$, то $f(U)=\langle f(e_1),\cdots,f(e_s)\rangle\subset W$. В частности,

$$\dim f(U) \leq \dim U$$
.

Доказательство. По условию любой вектор $u \in U$ записывается в виде $u = \alpha_1 e_1 + \dots + \alpha_s e_s$, поэтому $f(u) = \alpha_1 f(e_1) + \dots + \alpha_s f(e_s)$, а это и означает, что $f(U) = \langle f(e_1), \dots, f(e_s) \rangle$. В том случае, когда система $\langle e_1, \dots, e_s \rangle$ была базисной для U, система $(f(e_1), \dots, f(e_s))$, вообще говоря, не обязана быть базисной для f(U), поэтому $\dim f(U) \leq s = \dim U$. Вполне может случиться, что $U \subseteq \operatorname{Ker} f$ и $f(U) = \{0\}$.

Определение 33. Любой вектор из образа ${\rm Im}\ f\subset W$ является линейной комбинацией векторов:

$$egin{aligned} f(v_1) &= a_{11}w_1 + a_{21}w_2 + \cdots + a_{m1}w_m, \ f(v_2) &= a_{12}w_1 + a_{22}w_2 + \cdots + a_{m2}w_m, \ &dots \ f(v_n) &= a_{1n}w_1 + a_{2n}w_2 + \cdots + a_{mn}w_m. \end{aligned}$$

Матрица

$$M_f = egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}$$

называется матрицей линейного отображения $f:V\to W$ относительно базисов $(v_1,\ldots,v_n),\,(w_1,\ldots,w_m)$ (или в базисах $(v_j),\,(w_i)$).

Определение 34. Размерность подпространства ${\rm Im}\ f$ называется также **рангом** (${\rm rank}\ f$) **линейного отображения** f.

Теорема. Ранг линейного отображения $f:V\to W$ и отвечающей ему матрицы M_f (при любом выборе базисов в V и W) совпадают.

Доказательство. Координаты вектора $f(\mathbf{v}_j)$ составляют j-й столбец матрицы M_f . Поэтому $\mathrm{rank}\ \{f(\mathbf{v}_1),\ldots,f(\mathbf{v}_n)\}=\mathrm{rank}\ M_f$, а так как всегда $\mathrm{rank}\ \{f(\mathbf{v}_1),\ldots,f(\mathbf{v}_n)\}=\dim\ \langle f(\mathbf{v}_1),\ldots,f(\mathbf{v}_n)\rangle_{\mathfrak{K}}=\dim\ \mathrm{Im}\ f$, то $\dim\ \mathrm{Im}\ f=\mathrm{rank}\ M_f$.

Утверждение (Линейная комбинация линейных отображений):

Пусть $\varphi, \psi: V \to W$ - линейные отображения с матрицами A и B в фиксированных базисах. Тогда для $\alpha, \beta \in \mathbb{R}$ (или \mathbb{C}) матрица отображения $\alpha \varphi + \beta \psi$ равна $\alpha A + \beta B$.

Доказательство: Пусть $\{v_i\}$ - базис V, $\{w_i\}$ - базис W По определению:

$$arphi(v_j) = \sum_i a_{ij} w_i, \quad \psi(v_j) = \sum_i b_{ij} w_i$$

Тогда:

$$(lpha arphi + eta \psi)(v_j) = lpha \sum_i a_{ij} w_i + eta \sum_i b_{ij} w_i = \sum_i (lpha a_{ij} + eta b_{ij}) w_i$$

Следовательно, матрица имеет элементы $lpha a_{ij} + eta b_{ij}$

Утверждение. (Композиция линейных отображений)

Пусть $\varphi:V\to U$ и $\psi:U\to W$ с матрицами A (размер $m\times n$) и B (размер $k\times m$). Тогда матрица $\psi\circ\varphi$ равна BA (размер $k\times n$).

Доказательство: Пусть $\{v_i\}$, $\{u_i\}$, $\{w_l\}$ - базисы V, U, W По определению:

$$arphi(v_j) = \sum_i a_{ij} u_i, \quad \psi(u_i) = \sum_l b_{li} w_l$$

. Тогда композиция:

$$\psi(arphi(v_j)) = \psi\left(\sum_i a_{ij} u_i
ight) = \sum_i a_{ij} \psi(u_i) = \sum_l \left(\sum_i b_{li} a_{ij}
ight) w_l$$

Коэффициент $\sum_i b_{li} a_{ij}$ - элемент матрицы BA

19) Дайте определение линейного оператора. Что называется матрицей линейного оператора? Сформулируйте и докажите утверждение об изменении матрицы линейного оператора при переходе к новому базису и дайте определение подобных матриц. Дайте определения следа, ранга и определителя линейного оператора. Докажите их корректность.

Определение 35. Линейный оператор на векторном пространстве V – это линейное отображение ${\mathcal A}$: $V \to V$.

Определение 36 Пусть V — n-мерное векторное пространство над полем $\mathfrak{K}, \mathcal{A}: V \to V$ — линейный оператор. Выбрав в V базис (e_1, \dots, e_n) , мы можем задать \mathcal{A} его **матрицей** $A = (a_{ki})$, так что $\mathcal{A}e_i = \sum_k a_{ki}e_k$.

Теорема 3. Матрица A' линейного оператора \mathcal{A} в базисе (e'_1, \ldots, e'_n) получается из матрицы A того же оператора \mathcal{A} в базисе (e_1, \ldots, e_n) по формуле $A' = B^{-1}AB$, где B — матрица перехода от (e_i) к (e'_i) .

Доказательство. Пусть, как обычно, $\sum_i x_i e_i = x = \sum_i x_i' e_i'$ — запись произвольного вектора $x \in V$ в исходном и новом (штрихованном) базисе; $X = [x_1, \dots, x_n], \ X' = [x_1', \dots, x_n']$ — соответствующие столбцы координат. Далее, пусть $Y = AX', \ Y' = A'X', \ \text{где } A, \ A'$ — матрицы линейных операторов в базисах e и e' соответственно. Так как

, TO

$$ABX' = AX = Y = BY' = BA'X'.$$

Ввиду произвола в выборе столбца X' (вектора $x \in V$) имеем AB = BA', откуда $A' = B^{-1}AB$.

Определение 37. Говорят, что матрица A' **подобна** матрице A и пишут $A' \sim A$, если существует невырожденная матрица B, связывающая A и A' соотношением

$$A' = B^{-1}AB$$
.

Предполагается, что все матрицы квадратные одинакового порядка, с коэффициентами из одного и того же поля \mathfrak{K} .

Определение 38. Пусть \mathcal{A} — линейный оператор на V. Его **определителем** называется определитель $\det A$ матрицы A, соответствующей A в каком-нибудь базисе пространства V. Так как $\det(B^{-1}AB) = \det A$, то $\det A$ — инвариант оператора A. Обратимым матрицам отвечают обратимые операторы, поэтому $\det A \neq 0$ — необходимое и достаточное условие обратимости оператора A. В случае $\det A = 0$ мы имеем дело с вырожденным линейным оператором A.

Определение 39. Назовём теперь *следом* линейного оператора A выражение

$$\operatorname{tr} A = \operatorname{tr} A = \sum_{i=1}^n a_{ii},$$

где $A=(a_{ij})$ — матрица, отвечающая A (tr — сокращение от английского trace). Как известно и как легко проверяется, ${\rm tr}\ AB={\rm tr}\ BA$ для любых матриц $A,\ B$ одинакового порядка. Применяя это соотношение к матрицам $B^{-1}A$ и B, где B невырождена, получим

$$\operatorname{tr} (B^{-1}AB) = \operatorname{tr} (B \cdot B^{-1}A) = \operatorname{tr} A.$$

Значит, определение следа оператора корректно, т.е. не зависит от выбора базиса в V. Аналогом является соотношение $\operatorname{tr} \mathcal{AB} = \operatorname{tr} \mathcal{BA}$.

20) Дайте определение линейного оператора и приведите примеры. Что называется алгеброй над полем, подалгеброй, размерностью алгебры? Как определяется алгебра пинейных операторов? Сформулируйте и докажите теорему об изоморфизме алгебры линейных операторов и алгебры матриц. Сформулируйте и докажите утверждение о размерности алгебры линейных операторов.

Определение 40. Кольцо K, являющееся одновременно векторным пространством над полем $\mathfrak K$ таким, что $\lambda(ab)=(\lambda a)b=a(\lambda b)$ для всех $\lambda\in\mathfrak K$, $a,b\in K$, называется **алгеброй** над $\mathfrak K$. Размерность K как векторного пространства называется **размерностью алгебры** K над $\mathfrak K$. Всякое векторное подпространство $L\subseteq K$, замкнутое относительно операции умножения в $K(L\cdot L\subseteq L)$, называется **подалгеброй** алгебры K.

Теорема: Если $\dim V=n<\infty$, то алгебра $\mathcal{L}(V)$ изоморфна алгебре матриц $M_n(\mathbb{F})$. **Доказательство:** Фиксируем базис $\{e_1,\ldots,e_n\}$ в V. Построим отображение $\Phi:\mathcal{L}(V)\to M_n(\mathbb{F})$, сопоставляющее оператору φ его матрицу A_{φ} в этом базисе Проверим свойства:

- Линейность: $\Phi(\alpha \varphi + \beta \psi) = \alpha A_{\varphi} + \beta A_{\psi} = \alpha \Phi(\varphi) + \beta \Phi(\psi)$
- Сохраняет умножение: $\Phi(\varphi \circ \psi) = A_{\varphi}A_{\psi} = \Phi(\varphi)\Phi(\psi)$
- Биективность: Каждой матрице соответствует единственный оператор.

Утверждение: $\dim \mathcal{L}(V) = n^2$, где $n = \dim V$.

Доказательство: При изоморфизме $\mathcal{L}(V)\cong M_n(\mathbb{F})$ размерности совпадают. Базис $M_n(\mathbb{F})$ образуют матричные единицы E_{ij} (1 на позиции (i,j)). Число матриц E_{ij} равно n^2 , а значит dim $M_n(\mathbb{F})$ = dim $\mathcal{L}(V)$ = n^2

(*Примечание*: это не единичная матрица в привычном понимании, а матрица, в которой элемент a_{ij} равен единице, а остальные нулю.)

21) Дайте определение линейного оператора и приведите примеры. Что называется алгеброй, порождённой линейным оператором? Дайте определение минимального многочлена линейного оператора. Сформулируйте и докажите свойства минимального многочлена. Дайте определение нильпотентного оператора и индекса нильпотентности, приведите примеры.

Определение 41. Если \mathcal{A} – линейный оператор, то порождённая им подалгебра $\mathcal{R}[\mathcal{A}]$ есть наименьшая подалгебра, содержащая \mathcal{A} .

Определение 42. Говорят, что многочлен f(t) аннулирует линейный оператор \mathcal{A} , если $f(\mathcal{A}) = \mathcal{O}$. Нормализованный (т.е. со старшим коэффициентом 1) многочлен минимальной степени, аннулирующий \mathcal{A} , называется **минимальным многочленом оператора** \mathcal{A} .

$$\mu_{\mathcal{A}}(t) = t^m + \mu_1 t^{m-1} + \ldots + \mu_{m-1} t + \mu_m$$

Теорема 1. Для всякого линейного оператора $\mathcal A$ существует минимальный многочлен $\mu_{\mathcal A}(t)$. Его степень совпадает с размерностью алгебры $R[\mathcal A]$. Оператор $\mathcal A$ обратим тогда и только тогда, когда свободный член μ_m многочлена (6) отличен от нуля.

Доказательство заключительной части теоремы столь же просто, как и проведённое выше доказательство первой части. Именно, если $\mu_m=0$, то

$$\mathcal{O} = \mu_{\mathcal{A}}(\mathcal{A}) = \mathcal{A}(\mathcal{A}^{m-1} + \mu_1 \mathcal{A}^{m-2} + \ldots + \mu_{m-1} \mathcal{E}).$$

Значит, у $\mathcal A$ есть делитель нуля $\mathcal A^{m-1} + \mu_1 \mathcal A^{m-2} + \ldots + \mu_{m-1} \mathcal E \neq \mathcal O$ (минимальность $\mu_{\mathcal A}(t)$), а делитель нуля в кольце не может быть обратимым. Если, напротив, $\mu_m \neq 0$, то соотношение

$$\mathcal{A}(-\mu_m^{-1}\mathcal{A}^{m-1} - \mu_m^{-1}\mu_1\mathcal{A}^{m-2} - \ldots - \mu_m^{-1}\mu_{m-1}\mathcal{E}) = \mathcal{E},$$

вытекающее из $\mu_{\mathcal{A}}(\mathcal{A}) = \mathcal{O}$, в явном виде задаёт оператор, обратный к \mathcal{A} .

Теорема 2. Любой аннулирующий многочлен f(t) оператора $\mathcal A$ делится без остатка на минимальный многочлен $\mu_{\mathcal A}(t)$.

Доказательство. По предположению линейный оператор $f(\mathcal{A})$ (см. (4)) равен нулевому оператору \mathcal{O} . Если $f(t) = q(t)\mu_{\mathcal{A}}(t) + r(t)$ — результат деления f(t) на $\mu_{\mathcal{A}}(t)$ с остатком r(t), то

$$\mathcal{O} = f(\mathcal{A}) = q(\mathcal{A}) \cdot \mathcal{O} + r(\mathcal{A}),$$

откуда $r(\mathcal{A}) = \mathcal{O}$. Но $\deg r(t) < \deg \mu_{\mathcal{A}}(t)$, так что в соответствии с определением минимального многочлена имеем r(t) = 0.

Определение 43. Линейный оператор \mathcal{A} называется **нильпотентным**, если $\mathcal{A}^m = \mathcal{O}$ для некоторого m > 0; наименьшее такое натуральное число m называется **индексом нильпотентности**.

22) Дайте определения собственного вектора и собственного значения линейного оператора. Что называется характеристическим многочленом линейного оператора?

Докажите, что определение характеристического многочлена корректно, то есть не зависит от выбора базиса. Сформулируйте и докажите утверждение о связи собственных значений линейного оператора и корнях его характеристического многочлена.

Определение 44. Любой ненулевой вектор из одномерного подпространства, инвариантного относительно \mathcal{A} , называется **собственным вектором** оператора \mathcal{A} . Если x — собственный вектор: $\mathcal{A}x = \lambda x$, то скаляр $\lambda \in \mathbb{R}$ называется **собственным значением** оператора \mathcal{A} , отвечающим собственному вектору x.

$$\chi_{\mathcal{A}}(t) = \det(tE - \mathcal{A}) = t^n + \chi_1 t^{n-1} + \ldots + \chi_{n-1} t + \chi_n$$
(10)

Определение 45. Многочлен (10) называется *характеристическим многочленом* матрицы \mathcal{A} . Уравнение $\chi_{\mathcal{A}}(t)=0$ называется также *характеристическим*.

Теорема. Полагаем $\chi_A(t):=\chi_A(t)$. Определяющее равенство (10) показывает, что скаляр $\lambda\in\mathbb{R}$ является собственным значением оператора A тогда и только тогда, когда $\chi_A(\lambda)=0$, т.е. λ — корень характеристического многочлена. Если многочлен $\chi_A(t)$ не имеет корней в \mathbb{R} , то у оператора A нет собственных векторов. Всякий линейный оператор, действующий на комплексном векторном пространстве, обладает собственными векторами.

23) Дайте определения и приведите примеры линейных операторов и инвариантных подпространств. Сформулируйте и докажите теоремы об инвариантных подпространствах линейного оператора над полем комплексных чисел и над полем действительных чисел.

Определение 46. Подпространство $U\subset V$ инвариантно относительно линейного оператора $\mathcal{A}:V\to V$, если $\mathcal{A}U\subset U$.

Например, $\operatorname{Ker} \mathcal{A}$ и $\operatorname{Im} \mathcal{A}$ — инвариантные подпространства, хотя, возможно, и тривиальные, т.е. совпадающие с $\{0\}$ или с V.

Теорема 7. Всякий комплексный (соответственно вещественный) линейный оператор A имеет одномерное (соответственно одномерное или двумерное) инвариантное подпространство.

Доказательство. Так как характеристический многочлен $\chi_A(t)$ имеет в $\mathbb C$ хотя бы один корень, то известный метод нахождения собственных векторов заведомо даст одномерное инвариантное подпространство исходного пространства V. В случае вещественного поля $\mathbb R$ рассмотрим минимальный многочлен $\mu_A(t)$ оператора A (см. определение 2 из § 2). Его коэффициенты лежат в $\mathbb R$. Если $\mu_A(t)$ имеет вещественный корень α , то

$$\mu_A(t) = (t - \alpha)g(t), \quad g(t) \in \mathbb{R}[t].$$

Так как $g(A) \neq 0$ в силу минимальности $\mu_A(t)$, то $g(A)u \neq 0$ для некоторого вектора $u \in V$. Но

$$(A - \alpha \epsilon) = (A - \alpha \epsilon)g(A)u = \mu_A(A)u = 0,$$

откуда $Av = \alpha v$, т.е. v — собственный вектор.

Предположим теперь, что A не имеет собственных векторов. Тогда по доказанному у $\mu_A(t)$ нет вещественных корней. Но по теореме о многочленах с вещественными коэффициентами мы имеем право записать

$$\mu_A(t) = (t^2 - \alpha t - \beta)h(t), \quad \alpha, \beta \in \mathbb{R}, \quad h(t) \in \mathbb{R}[t].$$

Снова v=h(A)u
eq 0 для некоторого $u \in V$ и

$$A^2v - \alpha Av - \beta v = \mu_A(A)u = 0.$$

Получается, что $A^2v = \alpha Av + \beta v$, а так как $Av \neq \lambda v$ (одномерного инвариантного подпространства нет), то $L = \langle v, Av \rangle$ — двумерное инвариантное подпространство.

24) Дайте определения собственного вектора и собственного значения линейного оператора, собственного подпространства. Дайте определение геометрической и алгебраической кратности собственного значения, сформулируйте и докажите неравенство между ними.

Определение 47. Очевидная импликация

$$Ax = \lambda x, Ay = \lambda y \implies A(\alpha x + \beta y) = \lambda(\alpha x + \beta y)$$

даёт основание называть V^λ собственным подпространством оператора $\mathcal A$, ассоциированным с λ . Его размерность $\dim V^\lambda$ называется **геометрической кратностью** собственного значения λ .

Определение 48. Кратность λ как корня характеристического многочлена $\chi_{\mathcal{A}}(t)$ называется **алгебраической кратностью** собственного значения λ оператора \mathcal{A} .

Теорема 4. Геометрическая кратность собственного значения λ не превосходит его алгебраической кратности.

Доказательство. По определению геометрическая кратность есть размерность m пространства V^λ решений уравнения $\mathcal{A}x=\lambda x$. Очевидно, что V^λ инвариантно относительно \mathcal{A} , и если \mathcal{A}' — ограничение \mathcal{A} на V^λ , то $\det(t\mathcal{E}'-\mathcal{A}')=(t-\lambda)^m$, причём $\chi_{\mathcal{A}}(t)=(t-\lambda)^mq(t)$, где q(t) — некоторый многочлен из $\mathbb{R}[t]$. Пусть λ — корень кратности $k\geq 0$ многочлена q(t). В таком случае алгебраической кратностью λ будет m+k.

25) Дайте определение инвариантного подпространства и определение оператора, индуцированного на факторпространстве по инвариантному подпространству. Сформулируйте и докажите теорему о виде матрицы линейного оператора при наличии инвариантных подпространств.

Теорема 2. Пространство V является прямой суммой двух подпространств U, W, инвариантных относительно линейного оператора $\mathcal{A}: V \to V$, тогда и только тогда, когда матрица A этого оператора в каком-либо базисе принимает клеточно-диагональный вид (5').

Доказательство. Наличие собственного инвариантного подпространства $\{0\}\subset U\subset V$ даёт возможность упростить матрицу A оператора $\mathcal A$ путём выбора надлежащего базиса в V. Именно, если дополнить базис (e_1,\ldots,e_m) в U до базиса $(e_1,\ldots,e_m,e_{m+1},\ldots,e_n)$ в V, то из условия $\mathcal Ae_i\in U, 1\leq i\leq m$, следует, что в этом базисе матрицей оператора $\mathcal A$ будет

$$A=egin{array}{ccc} A_1 & A_0 \ 0 & A_2 \end{array},$$

где A_1 - $m \times m$ -матрица, A_2 - $(n-m) \times (n-m)$ -матрица и A_0 - $m \times (n-m)$ -матрица. На A_1 можно смотреть как на матрицу линейного оператора \mathcal{A}_U — оператора \mathcal{A} , ограниченного на U (удобно положить $A_1 = A_U$).

Представим на минуту, что A_0 — нулевая матрица. Тогда, очевидно, $W=\langle e_{m+1},\dots,e_n\rangle$ тоже будет инвариантным подпространством в V, а A_2 — матрицей оператора \mathcal{A}_W . В этом случае говорят о прямой сумме операторов

$$\mathcal{A} = \mathcal{A}_U + \mathcal{A}_W$$

соответствующей разложению $V=U\oplus W$ в прямую сумму инвариантных подпространств. Матрица прямой суммы операторов имеет клеточно-диагональный вид:

$$A=egin{array}{ccc} A_U & 0 \ 0 & A_W \end{array} = A_U + A_W.$$

откуда и вытекает сказанное в теореме.

26) Дайте определения собственного вектора, собственного значения и спектра линейного оператора. Какой спектр называется простым? Докажите, что собственные векторы, отвечающие различным собственным значениям, линейно независимы. Дайте определение диагонализируемого линейного оператора. Докажите, что оператор с простым спектром диагонализируем.

Определение 49. Множество всех собственных значений линейного оператора \mathcal{A} называют **спектром** этого оператора и обозначают символом $\operatorname{Spec} \mathcal{A}$.

Теорема я хз какая их слишком много Собственные векторы, принадлежащие к различным собственным значениям, линейно независимы.

Доказательство. Пусть $\lambda_1,\dots,\lambda_m$ — какие-то различные собственные значения, $V^{\lambda_1},\dots,V^{\lambda_m}$ — соответствующие собственные подпространства. Выберем в каждом V^{λ_i} по одному собственному вектору e_i . Нужно доказать их линейную независимость. Для m=1 утверждение верно. Рассуждая по индукции относительно m и предполагая существование нетривиальной линейной зависимости

$$\alpha_1 e_1 + \alpha_2 e_2 + \cdots + \alpha_m e_m = 0,$$

где, скажем, $\alpha_1 \neq 0$, мы применим к обеим частям этого равенства оператор \mathcal{A} . Так как $\mathcal{A}e_i = \lambda_i e_i$, то

$$\alpha_1\lambda_1e_1 + \alpha_2\lambda_2e_2 + \cdots + \alpha_m\lambda_me_m = 0.$$

Умножая первое соотношение на λ_m и вычитая из него второе, приходим к линейной зависимости первых m-1 векторов:

$$lpha_1(\lambda_m-\lambda_1)e_1+\cdots+lpha_{m-1}(\lambda_m-\lambda_{m-1})e_{m-1}=0.$$

По предположению индукции $lpha_i(\lambda_m-\lambda_i)=0,\,i=1,\ldots,m-1.$ Но

$$\alpha_1 \neq 0, \quad \lambda_m \neq \lambda_i, \quad i < m \implies \alpha_1(\lambda_m - \lambda_1) \neq 0.$$

Полученное противоречие доказывает наше утверждение.

Определение 50. Линейный оператор \mathcal{A} на n-мерном пространстве V называется **диагонализируемым**, если существует базис (e_i) , относительно которого матрица оператора принимает диагональный вид

$$A = egin{array}{ccccc} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n \end{array}$$

Теорема 5. Линейный оператор \mathcal{A} с простым спектром диагонализируем. (Примечание: спектр простой, если все его точки простые, иными словами - все точки спектра имеют геометрическую кратность 1.

Доказательство. Формулировка теоремы предполагает, что многочлен $\chi_{\mathcal{A}}(t)$ имеет в основном поле \mathfrak{K} ($n=\dim V$) различных корней $\lambda_1,\ldots,\lambda_n$, которым отвечают собственные векторы $e_i,\,i=1,\ldots,n$. По лемме 1 эти векторы линейно независимы. Значит, $V=\langle e_1,\ldots,e_n\rangle$, и так как $\mathcal{A}e_i=\lambda_i e_i$, то $A=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$.

27) Дайте определение диагонализируемого линейного оператора. Сформулируйте и докажите критерий диагонализируемости.

Теорема Пусть \mathcal{A} — линейный оператор на конечномерном векторном пространстве V над полем \mathfrak{K} . Для диагонализируемости \mathcal{A} необходимо и достаточно выполнения следующих двух условий:

- 1. все корни характеристического многочлена $\chi_A(t)$ лежат в \mathfrak{K} ;
- 2. геометрическая кратность каждого собственного значения λ совпадает с его алгебраической кратностью.

Доказательство. Пусть выполнены условия 1, 2. Если $\lambda_1, \ldots, \lambda_m$ — различные корни многочлена $\chi_{\mathcal{A}}(t)$, а k_1, \ldots, k_m — их кратности, то

$$\dim V^{\lambda_i} = k_i, \quad k_1 + k_2 + \ldots + k_m = n \tag{11}$$

По лемме 1 любая совокупность не равных одновременно нулю векторов $v_i \in V^{\lambda_i}, \, i=1,\dots,m$, линейно независима, так что

$$V^{\lambda_i} \cap (V^{\lambda_1} + \ldots + \widehat{V^{\lambda_i}} + \ldots + V^{\lambda_m}) = 0 \tag{12}$$

Значит (см. теорему 7 из § 2 гл. 1), сумма $V^{\lambda_1} + \ldots + V^{\lambda_m}$ прямая, а с учётом равенств (11) получаем

$$V = V^{\lambda_1} \oplus \ldots \oplus V^{\lambda_m} \tag{13}$$

Взяв за базис в V объединение базисов в V^{λ_i} , мы придём к собственному базису, т.е. к базису, состоящему из n линейно независимых собственных векторов оператора \mathcal{A} . Его существование эквивалентно диагонализируемости \mathcal{A} .

Обратно: пусть оператор $\mathcal A$ диагонализируем. Снова обозначим через $\lambda_1,\dots,\lambda_m$ его различные собственные значения и положим $l_i=\dim V^{\lambda_i},\,1\leq i\leq m.$ Условие (12) по-прежнему выполнено, а так как V имеет собственный базис, состоящий из элементов подпространств V^{λ_i} , то $V^{\lambda_1},\dots,V^{\lambda_m}$ порождают V^{λ_m} . Из этого мы заключаем, что имеет место равенство (13). Относительно базиса, получающегося объединением базисов в V^{λ_i} , матрицей оператора $\mathcal A$ будет

$$A = \operatorname{diag}(\lambda_1, \ldots, \lambda_1; \ldots; \lambda_m, \ldots, \lambda_m).$$

Из равенства

$$\chi_{\mathcal{A}}(t) = \det(tE-A) = (t-\lambda_1)^{l_1} \dots (t-\lambda_m)^{l_m}$$

вытекает, что все корни многочлена $\chi_{\mathcal{A}}(t)$ принадлежат \mathfrak{K} , т.е. выполнено условие 1, и что целое число l_i совпадает с алгебраической кратностью k_i корня λ_i (см. (11)) для $i=1,\ldots,m$.

28) Дайте определение сопряжённого оператора и сформулируйте его основные свойства. Сформулируйте и докажите теорему о матрице сопряжённого оператора в двойственном базисе. Докажите теорему о том, что всякий комплексный линейный оператор обладает инвариантной гиперплоскостью.

Определение 51. Линейный оператор \mathcal{A}^* на V^* , заданный соотношением

$$(\mathcal{A}^*f, x) := (f, \mathcal{A}x), \tag{14}$$

называют оператором, сопряжённым к $\mathcal{A} \in L(V)$. Символ \mathcal{A}^*f представляет собой линейную функцию на V, и соответствие $\mathcal{A}^*: f \mapsto \mathcal{A}^*f$ при переменном f определяет линейное отображение $V^* \to V^*$.

Итак, мы имеем отображение $L(V) \to L(V^*)$, а именно $*: \mathcal{A} \mapsto \mathcal{A}^*$. Непосредственно из определения мы выводим следующие его свойства:

$$\mathcal{O}_{V}^{*} = \mathcal{O}_{V^{*}}, \quad \mathcal{E}_{V}^{*} = \mathcal{E}_{V^{*}}, \quad (\alpha \mathcal{A})^{*} = \alpha \mathcal{A}^{*},$$
$$(\mathcal{A} + \mathcal{B})^{*} = \mathcal{A}^{*} + \mathcal{B}^{*}, \quad (\mathcal{A}\mathcal{B})^{*} = \mathcal{B}^{*}\mathcal{A}^{*}. \tag{15}$$

Теорема 8. Если в базисе (e_i) пространства V линейный оператор $\mathcal A$ имеет матрицу $A=(a_{ij})$, то в дуальном базисе (e^i) пространства V^* сопряжённый к $\mathcal A$ оператор $\mathcal A^*$ имеет транспонированную матрицу ${}^t\!A$: матрица $\mathcal A^*$ равна $(a_{ij}^*)={}^tA$.

Доказательство. Для задания оператора \mathcal{A}^* в матричном виде выберем в V и V^* дуальные базисы (e_i) , (e^i) . Если $\mathcal{A}e_j=\sum_{k=1}^n a_{kj}e_k$, то

$$(e^i,\mathcal{A}e_j)=\sum_{k=1}^n a_{kj}(e^i,e_k)=\sum_{k=1}^n a_{kj}\delta_{ik}=a_{ij}.$$

Полагая далее

$$\mathcal{A}^*e^i=\sum_{k=1}^n a_{ki}^*e^k,$$

получаем $(\mathcal{A}^*e^i,e_j)=\sum_{k=1}^n a_{ki}^*(e^k,e_j)=a_{ji}^*$. С другой стороны, согласно определению (14) имеем $(\mathcal{A}^*e^i,e_j)=(e^i,\mathcal{A}e_j)=a_{ij}$. Следовательно, $a_{ji}^*=a_{ij}$, что и доказывает утверждение теоремы.

Теорема 9. Всякий комплексный линейный оператор \mathcal{A} на V обладает инвариантной гиперплоскостью.

Доказательство. Пусть $\dim V = n$. Как мы знаем, $\dim \operatorname{Ker} f = n-1$ для любой линейной функции $f \neq 0$ на V . Возьмём теперь в качестве f собственный вектор линейного оператора \mathcal{A}^* на V^* . Он существует по теореме 7, и если λ — отвечающее ему собственное значение, то, как следует из определяющего равенства (14):

$$x \in \operatorname{Ker} f \implies 0 = \lambda(f, x) = (\lambda f, x) = (\mathcal{A}^* f, x) = (f, \mathcal{A}x) \implies \mathcal{A}x \in \operatorname{Ker} f.$$

Это и означает, что $\operatorname{Ker} f$ — искомая гиперплоскость. \square

29) Дайте определение линейного оператора и приведите примеры. Сформулируйте и докажите теорему о приведении матрицы линейного оператора к треугольному виду.

Теорема 1. Матрицу линейного оператора \mathcal{A} всегда можно привести (в смысле подобия) к верхнетреугольному виду.

Доказательство. Проще всего в этом убедиться рассуждением по индукции. По теореме 9 из § 3 пространство V содержит инвариантную относительно \mathcal{A} гиперплоскость U: $\mathcal{A}U \subset U$. По предположению индукции в U можно выбрать такой базис (e_1, \ldots, e_{n-1}) , что $\mathcal{A}e_i = \lambda_i e_i + v_i$, где $v_i \in \langle e_1, \ldots, e_{i-1} \rangle$.

Имеем $V=\langle U,e_n\rangle$, где e_n — произвольный вектор, не содержащийся в U. Пусть $\mathcal{A}e_n=\lambda_n e_n+u$, где $u\in U$. Таким образом, в базисе (e_1,\ldots,e_{n-1},e_n) действие оператора \mathcal{A} выражается матрицей верхнетреугольного вида:

$$A = egin{pmatrix} \lambda_1 & * & \cdots & * \ 0 & \lambda_2 & \cdots & * \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

30) Дайте определения линейного оператора и приведите примеры. Сформулируйте и докажите теорему Гамильтона — Кэли. Докажите, что характеристический многочлен линейного оператора делится без остатка на его минимальный многочлен.

Теорема 2 (теорема Гамильтона—Кэли). Линейный оператор \mathcal{A} и соответствующая ему матрица A (в любом базисе) аннулируются своим характеристическим многочленом $\chi_{\mathcal{A}}(t)$, т.е.

$$\chi_{\mathcal{A}}(\mathcal{A}) = \mathcal{O}.$$

Доказательство. Так как это утверждение не зависит от выбора базиса (см. п. 3 § 2), то естественно воспользоваться теоремой 1; с самого начала считая матрицу A в базисе (e_1, \ldots, e_n) имеющей треугольный вид (1). Рассмотрим цепочку A-инвариантных подпространств

$$V = V_0 \supset V_1 \supset \ldots \supset V_{n-1} \supset V_n = 0,$$

где $V_k=\langle e_1,e_2,\ldots,e_{n-k}
angle$. Так как $(\mathcal{A}-\lambda_{n-k}\mathcal{E})e_{n-k}\in V_{k+1}$, то

$$(\mathcal{A} - \lambda_{n-k}\mathcal{E})V_k \subset V_{k+1}$$

и, следовательно,

$$\chi_{\mathcal{A}}(\mathcal{A})V = \prod_{i=1}^{n} (\mathcal{A} - \lambda_{i}\mathcal{E})V =$$

$$= (\mathcal{A} - \lambda_{1}\mathcal{E}) \cdots (\mathcal{A} - \lambda_{n}\mathcal{E})V_{0} \subset (\mathcal{A} - \lambda_{1}\mathcal{E}) \cdots (\mathcal{A} - \lambda_{n-1}\mathcal{E})V_{1} \subset$$

$$\subset (\mathcal{A} - \lambda_{1}\mathcal{E}) \cdots (\mathcal{A} - \lambda_{n-2}\mathcal{E})V_{2} \subset \cdots \subset (\mathcal{A} - \lambda_{1}\mathcal{E})V_{n-1} = 0.$$

Но

$$\chi_{\mathcal{A}}(\mathcal{A})V = 0 \Longleftrightarrow \chi_{\mathcal{A}}(\mathcal{A}) = \mathcal{O}. \square$$

Следствие. Минимальный многочлен для линейного оператора является делителем характеристического многочлена $\chi_{\mathcal{A}}(t)$, делящимся на все линейные множители $t-\lambda$, где $\lambda \in \operatorname{Spec}(\mathcal{A})$.

Доказательство. По определению $\mu_{\mathcal{A}}(\mathcal{A}) = \mathcal{O}$, а по теореме 2 $\chi_{\mathcal{A}}(\mathcal{A}) = \mathcal{O}$. Делимость $\chi_{\mathcal{A}}(t)$ на $\mu_{\mathcal{A}}(t)$ вытекает теперь из теоремы 2 из § 2.

Если λ — собственное значение оператора \mathcal{A} , то

$$\mathcal{A}v = \lambda v \Rightarrow 0 = \mu_{\mathcal{A}}(\mathcal{A})v = \mu_{\mathcal{A}}(\lambda)v \Rightarrow \mu_{\mathcal{A}}(\lambda) = 0 \Rightarrow (t - \lambda) \mid \mu_{\mathcal{A}}(t)$$

(мы повторили вывод импликации (7) из § 3).

31) Дайте определения жордановой клетки, жордановой матрицы и жорданова базиса. Сформулируйте основную теорему о жордановой нормальной форме и выведите из неё следствие о связи диагонализируемости линейного оператора и кратности корней его минимального многочлена.

Определение 52.

а) Назовём (верхней) **клеткой Жордана** размера $m \times m$ (или порядка m), соответствующей собственному

б) **Жордановой матрицей** называется матрица, состоящая из диагональных блоков $J_{m_i}(\lambda_i)$ и нулей вне этих блоков:

$$J=egin{array}{cccc} J_{m_1}(\lambda_1) & \cdots & 0 \ & dots & dots & \ddots & dots \ 0 & \cdots & J_{m_s}(\lambda_s) \end{array}$$

в) **Жордановым базисом** для линейного оператора $A:V\to V$ называется такой базис пространства V, в котором матрица оператора A является жордановой, или, как говорят, имеет жордановую нормальную форму (ЖНФ) J(A).

Основная теорема. Каждая квадратная матрица A порядка n над алгебраически замкнутым полем $\mathfrak K$ (в частности, над $\mathbb C$) приводится к жордановой нормальной форме. Именно, существует невырожденная матрица C, для которой $C^{-1}AC=J(A)=J$ — матрица вида (2). С точностью до перестановки клеток жорданова нормальная форма матрицы единственна.

Следствие. Квадратная матрица A над $\mathbb C$ диагонализируема тогда и только тогда, когда её минимальный многочлен $\mu_A(t)$ не имеет кратных корней.

32) Дайте определения корневого вектора и корневого подпространства. Сформулируйте и докажите их простейшие свойства. Сформулируйте и докажите утверждение о разложении линейного пространства в прямую сумму корневых подпространств.

Определение 53. Множество векторов

$$V(\lambda) = \{v \in V \mid (\mathcal{A} - \lambda \mathcal{E})^k v = 0$$
 для некоторого $k \in \mathbb{N}\}$

называется **корневым подпространством**, соответствующим собственному значению $\lambda \in \operatorname{Spec} \mathcal{A}$. Векторы v называются *корневыми*.

(Примечание: свойства и доказательства взяты из лекций МГУ - удачи разобраться...) Свойства корневых подпространств (при $\dim V < \infty$):

- 1. $V^{\lambda}(\mathcal{A})$ инвариантно относительно \mathcal{A}
- 2. $\dim V^{\lambda}(\mathcal{A}) =$ алгебраическая кратность λ
- 3. $(\mathcal{A} \lambda \mathcal{E})|_{V^{\lambda}} = B$ нильпотентный оператор, т.е. $\exists m : B^m = 0$
- 4. $(\mathcal{A} \mu \mathcal{E})|_{V^{\lambda}}$ невырожден при $\mu \neq \lambda$

Доказательство.

1) Положим $V_k^\lambda = \mathrm{Ker}\,(\mathcal{A} - \lambda\mathcal{E})^k$. Тогда:

$$V_{\lambda} = V_1^{\lambda} \subset V_2^{\lambda} \subset \cdots \subset V_h^{\lambda} = V^{\lambda}$$

Заметим, что $(\mathcal{A}-\lambda\mathcal{E})(V_k^\lambda)\subset V_{k-1}^\lambda\subset V_k^\lambda$. Таким образом, V_k^λ инвариантно относительно $\mathcal{A}-\lambda\mathcal{E}$, откуда следует, что V_k^λ инвариантно и относительно \mathcal{A} . В частности, $V_h^\lambda=V^\lambda$ инвариантно относительно \mathcal{A} .

3) Выберем в V^λ базис, согласованный с цепочкой подпространств V_k^λ $(k=1,\ldots,h)$:

•
$$(e_1,\ldots,e_{m_1})$$
 — базис V_1^λ

$$ullet$$
 $(e_1,\ldots,e_{m_1},\ldots,e_{m_2})$ — базис V_2^λ

• ...

$$ullet$$
 $(e_1,\ldots,e_{m_1},\ldots,e_{m_k})$ — базис V^λ

Для любого $k=1,\ldots,h$: $B(V_k^\lambda)\subseteq V_{k-1}^\lambda$ (считаем $V_0^\lambda=\{0\}$). Отсюда следует, что для любого $j=1,\ldots,m$:

$$Be_i \in \langle e_1, \dots, e_{i-1} \rangle \Rightarrow B^m = 0,$$

где $m=\dim V^{\lambda}$ (на самом деле даже $B^h=0$).

В этом базисе матрица оператора B имеет вид:

$$B = \begin{pmatrix} 0 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

Тогда матрица оператора $\mathcal{A}|_{V^{\lambda}} = B + \lambda E$:

$$A = egin{pmatrix} \lambda & \cdots & * \ dots & \ddots & dots \ 0 & \cdots & \lambda \end{pmatrix}$$

A матрица оператора $(\mathcal{A} - \mu \mathcal{E})|_{V^{\lambda}}$:

$$A-\mu E=egin{pmatrix} \lambda-\mu & \cdots & * \ dots & \ddots & dots \ 0 & \cdots & \lambda-\mu \end{pmatrix}$$

Эта матрица невырождена при $\mu \neq \lambda$, значит, и оператор $(\mathcal{A} - \mu \mathcal{E})|_{V^{\lambda}}$ невырожден при $\mu \neq \lambda$.

2) Дополним базис (e_1, \dots, e_m) до базиса (e_1, \dots, e_n) пространства V. В этом базисе матрица оператора $\mathcal A$ имеет блочный вид:

$$A = egin{pmatrix} A|_{V^\lambda} & C \ 0 & A|_{V/V^\lambda} \end{pmatrix}$$

где

$$A|_{V^{\lambda}} = egin{pmatrix} \lambda & \cdots & * \ dots & \ddots & dots \ 0 & \cdots & \lambda \end{pmatrix}$$

— матрица $\mathcal{A}|_{V^\lambda}$ (размера m imes m), а $A|_{V/V^\lambda}$ — матрица оператора $\mathcal{A}|_{V/V^\lambda}$.

Характеристический многочлен оператора \mathcal{A} :

$$\chi_{\mathcal{A}}(t) = \det(tE-A) = egin{array}{cc} tE-A|_{V^\lambda} & -C \ 0 & tE-A|_{V^{/V^\lambda}} & = \chi_{A|_{V^\lambda}}(t)\chi_{A|_{V^{/V^\lambda}}}(t) = (t-\lambda)^m\chi_{A|_{V^{/V^\lambda}}}(t) \end{array}$$

При этом λ не является корнем $\chi_{A|_{V/V^{\lambda}}}(t)$. Докажем от противного: если бы существовал собственный вектор $v+V^{\lambda}\in V/V^{\lambda}$ с собственным значением λ , то $v\not\in V^{\lambda}$ и $(\mathcal{A}-\lambda\mathcal{E})(v+V^{\lambda})=V^{\lambda}$. Тогда $v'=(\mathcal{A}-\lambda\mathcal{E})v\in V^{\lambda}$, т.е. v' — корневой вектор. Но тогда и v — корневой вектор, что приводит к противоречию.

Следовательно, алгебраическая кратность λ равна $m=\dim V^{\lambda}$. \square

Теорема 3. Пусть $\mathcal{A}:V o V$ — линейный оператор с характеристическим многочленом

$$\chi_{\mathcal{A}}(t) = \prod_{i=1}^p (t-\lambda_i)^{n_i}; \quad \lambda_i
eq \lambda_j$$
 при $i
eq j.$

Тогда $V=V(\lambda_1)\oplus\ldots\oplus V(\lambda_p)$ — прямая сумма корневых подпространств $V(\lambda_i)$, каждое из которых инвариантно относительно $\mathcal A$ и имеет размерность $\dim V(\lambda_i)=n_i$. Оператор $\mathcal A-\lambda_i\mathcal E$, нильпотентный на $V(\lambda_i)$, действует невырожденным образом на подпространстве

$$V_i = V(\lambda_1) \oplus \ldots \oplus V(\lambda_{i-1}) \oplus V(\lambda_{i+1}) \oplus \ldots \oplus V(\lambda_p).$$

Наконец, λ_i — единственное собственное значение оператора $\mathcal{A}|_{V(\lambda_i)}.$

Доказательство. Ни один из простых множителей $t-\lambda_k$ не может быть делителем одновременно всех многочленов

$$\chi_i(t) = \prod_{j
eq i} (t-\lambda_j)^{n_j}, \quad i=1,2,\ldots,p,$$

и поэтому $\mathrm{HOД}(\chi_1(t),\ldots,\chi_p(t))=1.$ Найдутся, стало быть, многочлены $f_1(t),\ldots,f_p(t)\in\mathbb{C}[t]$, для которых

$$\sum_{i=1}^{p} \chi_i(t) f_i(t) = 1. \tag{4}$$

Подпространства

$$W_i = \chi_i(\mathcal{A}) f_i(\mathcal{A}) V = \{ \chi_i(\mathcal{A}) f_i(\mathcal{A}) v \mid v \in V \}, \quad 1 \leq i \leq p,$$

инвариантны относительно \mathcal{A} :

$$\mathcal{A}W_i = \chi_i(\mathcal{A}) f_i(\mathcal{A}) \mathcal{A}V \subset \chi_i(\mathcal{A}) f_i(\mathcal{A})V = W_i.$$

Кроме того,

$$(\mathcal{A}-\lambda_i\mathcal{E})^{n_i}W_i=\chi_{\mathcal{A}}(\mathcal{A})f_i(\mathcal{A})V=0$$

(поскольку по теореме 2 $\chi_{\mathcal{A}}(\mathcal{A}) = \mathcal{O}$), так что

$$W_i \subset V(\lambda_i).$$
 (5)

Соотношение (4), переписанное в виде

$$\mathcal{E} = \sum_{i=1}^p \chi_i(\mathcal{A}) f_i(\mathcal{A}),$$

даёт нам разложение

$$V = \sum_{i=1}^{p} W_i$$

и тем более (ввиду включения (5))

$$V = \sum_{i=1}^p V(\lambda_i).$$

Предположим, что $v\in V(\lambda_i)\cap V_i$, где $V_i=\sum_{j\neq i}V(\lambda_j)$. Тогда $(\mathcal{A}-\lambda_i\mathcal{E})^{n_i}v=0$, а так как $v=\sum_{j\neq i}v_j$ и $(\mathcal{A}-\lambda_j\mathcal{E})^{n_i}v_j=0$, то и $\left\{\prod_{j\neq i}(\mathcal{A}-\lambda_j\mathcal{E})^{n_j}\right\}v=0$. Но из взаимной простоты многочленов $(t-\lambda_i)^n, c(t)=\prod_{j\neq i}(t-\lambda_j)^n$ следует существование a(t),b(t), для которых

$$a(t)(t-\lambda_i)^n+b(t)c(t)=1.$$

Получаем

$$v=a(\mathcal{A})(\mathcal{A}-\lambda_i\mathcal{E})^{n_i}v+b(\mathcal{A})\left\{\prod_{j
eq i}(\mathcal{A}-\lambda_j\mathcal{E})^{n_j}
ight\}v=0,$$

т.е. пространства $V(\lambda_i)$ и V_i не пересекаются. Значит, мы имеем разложение

$$V = V(\lambda_1) \oplus \ldots \oplus V(\lambda_p) \tag{6}$$

в прямую сумму \mathcal{A} -инвариантных подпространств.

Из включения (5) и из разложения (6) непосредственно вытекает, что $W_i = V(\lambda_i)$. Таким образом, для $V(\lambda_i)$ получено эффективное выражение

$$V(\lambda_i) = \chi_i(A) f_i(A) V$$
,

где $\chi_i(t), f_i(t)$ — многочлены из тождества (4). В частности,

$$(A - \lambda_i \epsilon)^n V(\lambda_i) = 0.$$

Минимальным многочленом для A на $V(\lambda_i)$ будет некоторый делитель многочлена $(t-\lambda_i)^{n_i}$. Отсюда следует, во-первых, что λ_i — единственное собственное значение оператора $A|_{V(\lambda_i)}$. Далее, в базисе, являющемся объединением базисов пространств $V(\lambda_i)$, оператор A имеет матрицу

$$A = \begin{array}{ccc} A_1 & \cdots & 0 \\ 0 & \cdots & A_n \end{array},$$

где A_i — матрица порядка $n_i'=\dim V(\lambda_i)$ с единственным собственным значением λ_i и характеристическим многочленом

$$\chi_{A_i}(t)=(t-\lambda_i)^{n_i'},\quad n_i'\leq n_i.$$

Так как $\chi_A(t) = \prod_{i=1}^p \chi_{A_i}(t)$, то $n=n_1'+\cdots+n_p'$ и $n_i'=n_i$.

Осталось доказать невырожденность ограничения $(A-\lambda_i\epsilon)|_{V_i}$. Но это понятно: в противном случае $\{\operatorname{Ker}(A-\lambda_i\epsilon)\}\cap V_i\neq 0$ и $Av-\lambda_iv=0$ для некоторого $0\neq v\in V_i$. Однако на V_i характеристическим многочленом для A является $\chi_i(t)=\prod_{j\neq i}(t-\lambda_j)^{n_j}$, и λ_i собственным значением быть не может.