数据结构

顺序表的实现

创客学院 小美老师

线性表的基本运算

线性表的基本运算

设线性表 $L=(a_0,a_1,.....,a_{n-1})$,对 L的基本运算有:

1)建立一个空表: list_create(L)

2)置空表: list_clear(L)

3)判断表是否为空: list_empty (L)。若表为空,返回值为1,否则返回 0

4)求表长: length (L)

5)取表中某个元素: GetList(L, i), 即a_i。要求0≤i≤length(L)-1

6)定位运算:Locate(L,x)。确定元素x在表L中的位置(或序号)

基本运算的相关算法

定位:确定给定元素x在表L中第一次出现的位置(或序号)。即实现Locate(L, x)。算法对应的存储结构如图所示。

7)插入:

Insert(L,x,i)。将元素x插入到表L中第i个元素a_i之前,且表长+1。

插入前: (a₀,a₁,---,a_{i-1},a_i,a_{i+1}-----,a_{n-1}) 0≤i≤n,i=n时,x插入表尾

插入后: (a₀,a₁,---,a_{i-1}, x, a_i,a_{i+1}-----,a_{n-1})

基本运算的相关算法

• **算法思路**: 若表存在空闲空间,且参数i满足: 0≤i≤L->last+1,则可进行正常插入。 插入前,将表中(L->data[L->last]~L->data[i])部分顺序下移一个位置,然后将 x插入L->data[i]处即可。算法对应的表结构。

8)删除:

Delete(L,i)。删除表L中第i个元素a_i, 且表长减1, 要求0≤i≤n-1。

删除前: (a₀,a₁,---,a_{i-1},a_i,a_{i+1}-----,a_{n-1})

删除后: (a₀,a₁,---,a_{i-1,} a_{i+1}-----,a_n)

基本运算的相关算法

删除:将表中第i个元素a_i从表中删除,即实现DeleteSqlist(L, i)。

算法思路: 若参数i满足: 0≤i≤L→last, 将表中L→data[i+1]∽L→

>data[L->last] 部分顺序向上移动一个位置,覆盖L->data[i]。

线性表的基本运算

设线性表La=(a₀a₁,,a_{m-1}), Lb= (b₀b₁,,b_{n-1}), 求La∪Lb =>La,

算法思路:依次取表Lb中的b_i(i=0,1,.....,n-1),若b_i不属于La,则将 其插入表La中。

设计清除线性表L= $(a_0, a_1, \dots, a_i, \dots, a_{n-1})$ 中重复元素的算法。

算法思路:对当前表L中的每个a_i(0≤i≤n-2),依次与a_j(i+1≤j≤n-1)

比较,若与ai相等,则删除之。

线性表的顺序存储缺点

线性表的顺序存储结构有存储密度高及能够随机存

取等优点,但存在以下不足:

- (1)要求系统提供一片较大的连续存储空间。
- (2)插入、删除等运算耗时,且存在元素在存储器

中成片移动的现象;

扫一扫, 获取更多信息

THANK YOU