MATH 60604A Exercice 3

3.1 We consider three nested regression models for modelling the number of car accidents according to region (region). The variables risk class (risk) has 3 categories and the number of years of driving experience (exp) is broken down into 4 categories.

| Model | variables           | <i>p</i> + 1 | $\ell(\widehat{m{eta}})$ | AIC     | BIC     |
|-------|---------------------|--------------|--------------------------|---------|---------|
| $M_1$ | risk                | 3            | -244.566                 | 495.132 | 510.362 |
| $M_2$ | risk+region         | *            | -151.620                 | *       | *       |
| $M_3$ | risk + region + exp | 10           | -139.734                 | 299.468 | 350.235 |

Table 1: Goodness-of-fit measures for three nested regression models with the number of parameters in each model (p+1), the value of the log-likelihood function evaluated at the maximum likelihood estimate  $(\ell(\widehat{\pmb{\beta}}))$  and information criteria.

What is the difference between AIC and BIC of Model M<sub>2</sub> (in absolute value)?

3.2 A random variable X follows a geometric distribution with parameter p if its probability mass function is

$$P(X = x) = (1 - p)^{x-1}p, \qquad x = 1, 2, ...$$

- (a) Write the likelihood and the log-likelihood of the *n* sample.
- (b) Derive the maximum likelihood estimator for the parameter p.
- (c) Compute the observed information matrix.
- (d) Suppose we have a sample of 15 observations, {5,6,3,7,1,2,11,8,7,34,1,7,10,1,0}, whose sum is 103. Compute the maximum likelihood estimate and its approximate standard error.
- (e) Compute the likelihood ratio and the Wald test statistics. Perform a test at level 5% for  $\mathcal{H}_0$ :  $p_0 = 0.1$  against the two-sided alternative  $\mathcal{H}_a$ :  $p_0 \neq 0.1$ .
- 3.3 We consider the failure time of an engine based on its level of corrosion w. Failure time T is modelled with an exponential distribution with density  $f(t) = \lambda \exp(-\lambda t)$ , but whose rate parameter  $\lambda = aw^b$ ; if b = 0, the failure time is  $a^{-1}$ . Assume we have an n sample of independent observations with  $w_i$  assumed known. [Coles (2001)]
  - (a) Write down the log-likelihood of the model.
  - (b) Derive the observed and the Fisher information matrices.
  - (c) Show that the profile log-likelihood for *b* is

$$\ell_{\mathsf{p}}(b) = n \ln(\widehat{a}_b) + b \sum_{i=1}^{n} \ln(w_i) - \widehat{a}_b \sum_{i=1}^{n} w_i^b t_i,$$

and give an explicit formula for the partial maximum likelihood estimator  $\hat{a}_b$ .

page 1 of 1 Compiled 06/10/2020 at 15:30