Law of Large Numbers Describle the behavior of the sample mean of I. i.d. as the sample size grows. X1. X2, ___, Xn i.i.d. with some distribution. $M < \infty$ $6^2 < \infty$ $\overline{\chi} = \frac{1}{2} (\chi_1 + \chi_2 + \cdots + \chi_n)$ Theorem: (Week Law of Large Numbers). $\forall \leq >0$, $P(|\bar{x}-\mu|>\epsilon) \longrightarrow 0$ (converge to M in Probability). Proof: by Chebychev's inequality. $P(|\bar{x}-\mu|>\xi) \leq \frac{\delta^2}{n \leq 2} \quad (Var \bar{x} = \frac{\delta^2}{n})$ $\frac{2}{n \cdot \infty} = \frac{6^2}{n \cdot 5^2} = 0$ => 1.4.5 also converges to O. Strong law of large numbers; with probability ((wp 1) or almost surely (as), X -> M as n -> 00

Difference between convergence Probability and wp/(as)

P{ $\{ x-\mu \} \ge \} \rightarrow 0$ as $n \rightarrow +\infty$ for $\forall \le >0$. M N $\rightarrow \infty$ countercases the influence of outliers D Strong Law of Large Numbers. P{ $\{ x-\mu \} \ge as \ n-n\infty \} = 0$ for $\forall \le >0$. M $n \rightarrow \infty$ makes outliers	Neak Law of large Numbers	
Description of Large Numbers. P($ x-\mu $) $\leq as n-n\infty$ $= 0$ for $\forall \leq so$. Multiplication $= so$ $=$		
Description of Large Numbers. P($ x-\mu $) $\leq as n-n\infty$ $= 0$ for $\forall \leq so$. Multiplication $= so$ $=$		
Strong Law of Large Numbers. $P\{ \overline{x}-\mu \} \leq as n-H\infty\} = 0 \text{ for } \forall \leq >0.$ $n\to\infty \text{ makes outliers}$	M	· · · · · · · · · · · · · · · · · · ·
DStrong Law of Large Numbers. $P\{ \bar{x}-\mu \} \ge as n-H\infty\} = 0 \text{for } \forall \le >0.$ Municipal Markes outliers		
$P\{ x-\mu \} \leq as n-H\infty\} = 0 \text{for } \forall \leq so.$ $M n-\infty \text{makes outliers}$		
$\frac{1}{m} = \frac{1}{m} = \frac{1}$		
don't exist.		
	don't exist.	

Central Limit Theorem (CLT)

$$Z = \frac{\overline{X} - \mu}{\sqrt{n}} \xrightarrow{D} N(0,1) \text{ as } n \to +\infty.$$

Z converges in distribution to N(0,1)as $n \to \infty$, i.e. $P\left\{\frac{X_1 + X_2 + \dots + X_n - nM}{6 \sqrt{n}} \le a\right\}$

Proof: Assume Xi's MaF exist

Assume M=0 $\delta^2=1$, we can use linear transformations to get other situations.

MaF of $\chi_i: M(t) = E(e^{t\chi_i})$,

 $\mathcal{M}(0) = 1$, $\mathcal{M}'(0) = E \chi_i = 0$, $\mathcal{M}''(0) = E \chi_i^2 = 1$.

 $MGF of In X: M_{new}(t) = E(e^{t In X}) = E(e^{t In X})$ $= E e^{t In X} \cdot E e^{t In X} \cdot E e^{t In X}$

=[M(赢)]ⁿ

 $\mathcal{M}\mathcal{A}F \circ f \geq \sim \mathcal{N}(0,1) \colon \mathcal{M}_{\mathbf{z}}(t) = E\left(\mathcal{C}^{t^{\mathbf{z}}}\right) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \mathcal{C}^{-\frac{\pi^{2}}{2} + \pi t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \mathcal{C}^{-\frac{1}{2}(x-t)^{2} + \frac{t^{2}}{2}} dx = \mathcal{C}^{\frac{t^{2}}{2}}$

$$\frac{1}{n \to \infty} \log M_{now}(t) = \frac{2}{n \to \infty} n \log M_{(\sqrt{n})} \frac{t}{\sqrt{n}}$$

$$= \frac{2}{y \to 0} \frac{\log M_{(yt)}}{y^2}$$

$$= \frac{2}{y \to 0} \frac{t M'_{(yt)}}{2y M_{(yt)}}$$

$$= \frac{2}{y \to 0} \frac{t^2 M''_{(yt)}}{2M_{(yt)} + 2y t M'_{(yt)}}$$

$$= \frac{t^2 M''_{(0)}}{2M_{(0)}} = \frac{t^2}{2}$$

Hence
$$M_{new}(t) = M_{z}(t)$$

$$= \sum_{\overline{Nn}} \frac{\nabla}{\sqrt{N}} D_{N}(0,1) \quad \text{as } n \to \infty.$$

Chi-Square distribution.

Let $V = Z_1^2 + \cdots + Z_n^2$ where Z_1 are $z_1 \cdot d_1 \cdot N(0,1)$ $V \sim X_n^2$ is said to have <u>Chi-Square</u> distribution

with n degrees of freedom.

Theorem: X_n^2 is the same as Gamma $(\frac{n}{2}, \frac{1}{2})$.

Proof: $F_{Z_1^2}(x) = P(Z_1^2 \le x)$

$$= P(-\sqrt{x} \le Z \le \sqrt{x})$$

$$= 2 \overline{\rho}(\sqrt{x}) - 1$$

$$f_{Z^{2}}(x) = \frac{\phi(\sqrt{x})}{\sqrt{x}} = \frac{1}{\sqrt{2\pi}x} e^{-\frac{x}{2}} \rightarrow P.d. \text{ for Gamma}(\frac{1}{2}\frac{1}{2})$$
Hence $X_{(n)} = Z_{1}^{2} + Z_{2}^{2} + --+Z_{n}^{2} \sim Gamma(\frac{n}{2}\frac{1}{2})$

$$= X_{(n)}^{2} = n \cdot E Z^{2} = n$$

$$= n \cdot (3-1)$$

$$= \frac{n}{2}$$

$$= 2n$$

$$M_{\chi_{(n)}^2}(t) = \left(\frac{1}{1-2t}\right)^{\frac{n}{2}}, t < \frac{1}{2}$$

Example:
$$\chi_{i}, -..., \chi_{n} \sim \mathcal{N}(M.6^{2})$$

$$S_{n}^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (\chi_{j} - \bar{\chi})^{2}$$
Fact: $S_{n}^{2} (n-1) \sim \chi_{(n-1)}^{2}$

Assume
$$Z_{i} \sim N(0,1)$$

 $\sum_{i=1}^{n} Z_{i}^{2} - n \bar{Z}^{2} = \sum_{i=1}^{n} (Z_{i} - \bar{Z})^{2}$
 $\sum_{i=1}^{n} Z_{i}^{2} = \sum_{i=1}^{n} (Z_{i} - \bar{Z})^{2} + n \bar{Z}^{2}$

Hence, $M \text{ CuF } \text{ of } \sum_{i=1}^{n} (Z_i - \overline{Z})^2 + n \overline{Z}^2$ is $(\frac{1}{1-2t})^{\frac{n}{2}}$ Since $\sum_{i=1}^{n} (Z_i - \overline{Z})^2$ is independent of \overline{Z} and $\overline{Z} \sim (0, \frac{1}{n}) \implies n \overline{Z}^2 \sim \chi_{(1)}^2$ We know $M_{\sum (\overline{Z}_i - \overline{Z}_j)^2}(t) \cdot M_{n \overline{Z}_i}(t) = M_{\chi_{00}}(t)$ $M_{\sum (\overline{Z}_i - \overline{Z}_j)^2}(t) = (\frac{1}{1-2t})^{\frac{n}{2}} / (\frac{1}{1-2t})^{\frac{1}{2}}$ $= (\frac{1}{1-2t})^{\frac{n+1}{2}}$ $\Rightarrow \sum (Z_i - \overline{Z}_j)^2 \sim \chi_{(n-1)}^2$ $\Rightarrow \sum (Z_i - \overline{Z}_j)^2 \sim \chi_{(n-1)}^2$

Define: t - distribution $T = \frac{Z}{\sqrt{V/n}}, \quad Z \sim N(0,1) \quad V \sim \chi_{uv}^{2}$ T is called the t-distribution with n degrees of freedom. $f(t) = \frac{\Gamma(\frac{n+l}{2})}{\sqrt{n\pi} \Gamma(\frac{n}{2})} \left(1 + \frac{t^{2}}{n}\right)^{-\frac{n+l}{2}}$

Properties: 1. Symmetry: if T~tn, -T~tn

2. t, is the same as Cauchy distribution.

3. As n→∞, the tn distribution approaches the standard Normal distribution.

Proof:
$$DT = \frac{Z}{\sqrt{\frac{V}{N}}} - 7 = \frac{-Z}{\sqrt{\frac{V}{N}}}, -Z \sim N(\omega, 1)$$

1). when
$$n=1$$
 $T=\frac{Z}{V}$, $Z\sim N(0,1)$ $V\sim N(0,1)$

3)
$$n \rightarrow \infty$$
 $\frac{V}{n} = \frac{Z_{i+-}^2 + Z_n^2}{n} \rightarrow E(Z_{i}^2) = 1$
 $\Rightarrow 7 \rightarrow Z \sim N(0,1)$