Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Trees

Trees

General Trees

Binary Trees

Implementing Trees

□ Tree Traversal Algorithms

Lists and Iterators - Review

- Lists represent a linear sequence of elements, with more general support for adding or removing elements at arbitrary positions.
- Java defines a general interface,
 java.util.List, that includes also index-based methods
- An array list can be implemented using arrays
 - Add and remove operations run in O(n) time

Dynamic Array-based Array List

- A dynamic array list can be also implemented using arrays
- When the array is full, we replace the array with a larger one
 - Incremental strategy: increase the size by a constant c
 - The amortized time of a push operation is O(n)
 - Doubling strategy: double the size
 - The amortized time of a push operation is O(1)

Positional Lists

- Positional list ADT uses a position element that acts as a marker or token within the broader positional list.
- A position p is unaffected by changes elsewhere in a list.
- A position instance p is a simple object, supporting only getElement() method returning the element stored at position p.
- Use a doubly linked list to implement a positional list

What is a Tree

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node
 without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum dept of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

Subtree: tree consisting of a node and its descendants

Tree Terminology

Edges and Paths in Trees

- An *edge* of tree T is a pair of nodes (u, v) such that u is the parent of v, or vice versa. Example: (C,G)
- A path of T is a sequence of nodes such that any two consecutive nodes in the sequence form an edge. Example (B, F, J).

Tree Terminology

Ordered Trees

- A tree is ordered if there is a meaningful linear order among the children of each node; that is, we purposefully identify the children of a node as being the first, second, third, and so on.
- Such an order is usually visualized by arranging siblings left to right, according to their order.

Tree ADT

10

Tree ADT

- We use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - Iterator iterator()
 - Iterable positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - Iterable children(p)
 - Integer numChildren(p)

- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)

 Additional update methods may be defined by data structures implementing the Tree ADT

Java Interface

Methods for a Tree interface:

```
/** An interface for a tree where nodes can have an arbitrary number of children. */
    public interface Tree<E> extends Iterable<E> {
      Position<E> root();
      Position<E> parent(Position<E> p) throws IllegalArgumentException;
      Iterable < Position < E>> children (Position < E> p)
                                        throws IllegalArgumentException;
      int numChildren(Position<E> p) throws IllegalArgumentException;
      boolean isInternal(Position<E> p) throws IllegalArgumentException;
8
      boolean isExternal(Position<E> p) throws IllegalArgumentException;
9
      boolean isRoot(Position<E> p) throws IllegalArgumentException;
10
      int size();
11
      boolean isEmpty();
12
      Iterator<E> iterator();
13
14
      Iterable < Position < E >> positions();
15
```

An AbstractTree Base Class in Java

```
/** An abstract base class providing some functionality of the Tree
interface. */
public abstract class AbstractTree<E> implements Tree<E>
{
    public boolean isInternal(Position<E> p) { return numChildren(p) > 0; }
    public boolean isExternal(Position<E> p) { return numChildren(p) == 0; }
    public boolean isRoot(Position<E> p) { return p == root(); }
    public boolean isEmpty() { return size() == 0; }
    ........
}
```

Computing depth

□ Let p be a position within tree T. The depth of p is the number of ancestors of p, other than p itself.

Computing depth

- □ The depth of *p* can also be recursively defined as follows:
 - If *p* is the root, then the depth of *p* is 0.
 - Otherwise, the depth of p is one plus the depth of the parent of p.

```
/** Returns the number of levels separating Position p from the root. */
public int depth(Position<E> p) {
    if (isRoot(p))
        return 0;
    else
        return 1 + depth(parent(p));
}
```

Computing height

- Formally, we define the *height* of a position *p* in a tree
 Tas follows:
 - If p is a leaf, then the height of p is 0.
 - Otherwise, the height of p is one more than the maximum of the heights of p's children.

Computing height

- The following method computes the height of a subtree rooted at position p using the recursive definition.
- The base case is would be when p is an external position, hence the height is 0:

Tree Traversal

- A traversal of a tree T is a systematic way of accessing, or "visiting," all the positions of T
- In a preorder traversal of a tree T, the root of T is visited first and then the subtrees rooted at its children are traversed recursively.
 - If the tree is ordered, then the subtrees are traversed according to the order of the children.
- In postorder traversal of a tree it recursively traverses the subtrees rooted at the children of the root first, and then visits the root.
 - In some sense, this algorithm can be viewed as the opposite of the preorder traversal(hence, the name "postorder")

Preorder Traversal

- A **traversal** visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v)
visit(v)
for each child w of v
preorder (w)

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)

for each child w of v

postOrder (w)

visit(v)

Binary Trees

- A binary tree is an ordered tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees).
 - Each child node is labeled as being either a left child or a right child.
 - A left child precedes a right child in the order of children of a node.
- The subtree rooted at a left or right child of an internal node \(\nu\) is called a **left subtree** or **right subtree**, respectively, of \(\nu\).

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Binary Trees

- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree
- A binary tree is *proper* if each node has either zero or two children.
 - Some people also refer to such trees as being *full* binary trees.
 - In a proper binary tree, every internal node has exactly two children.
- A binary tree that is not proper is improper.

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- □ Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

Properties of Proper Binary Trees

- **Notation**
 - *n* number of nodes
 - e number of external nodes
 - *i* number of internal nodes

h height

$$e = i + 1$$

$$n = 2e - 1$$

■
$$h \leq i$$

■
$$h \le (n-1)/2$$

$$e \le 2^h$$

■
$$h \ge \log_2 e$$

$$\bullet h \ge \log_2(n+1) - 1$$

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT,
 i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position left(p)
 - position right(p)
 - position sibling(p)

- The above methods
 return null when there
 is no left, right, or
 sibling of p,
 respectively
- Update methods may be defined by data structures implementing the BinaryTree ADT

Defining a BinaryTree Interface

- Extends the Tree interface to add the three new behaviors.
 - In this way, a binary tree is expected to support all the functionality that was defined for general trees

```
/** An interface for a binary tree, in which each node has at most two children. */
public interface BinaryTree<E> extends Tree<E> {
    /** Returns the Position of p's left child (or null if no child exists). */
    Position<E> left(Position<E> p) throws IllegalArgumentException;
    /** Returns the Position of p's right child (or null if no child exists). */
    Position<E> right(Position<E> p) throws IllegalArgumentException;
    /** Returns the Position of p's sibling (or null if no sibling exists). */
    Position<E> sibling(Position<E> p) throws IllegalArgumentException;
}
```

Defining an AbstractBinaryTree Base Class

```
/** An abstract base class providing some functionality of the BinaryTree interface.*/
    public abstract class AbstractBinaryTree<E> extends AbstractTree<E>
                                                    implements BinaryTree<E> {
      /** Returns the Position of p's sibling (or null if no sibling exists). */
 4
 5
      public Position<E> sibling(Position<E> p) {
        Position<E> parent = parent(p);
        if (parent == null) return null;
                                                        // p must be the root
        if (p == left(parent))
                                                        // p is a left child
 9
          return right(parent);
                                                        // (right child might be null)
                                                        // p is a right child
10
        else
                                                        // (left child might be null)
11
          return left(parent);
12
13
      /** Returns the number of children of Position p. */
14
      public int numChildren(Position<E> p) {
15
        int count=0:
16
        if (left(p) != null)
17
          count++:
18
        if (right(p) != null)
19
          count++:
20
        return count:
21
22
      /** Returns an iterable collection of the Positions representing p's children. */
23
      public Iterable < Position < E >> children(Position < E > p) {
24
        List < Position < E>> snapshot = new ArrayList <> (2); // max capacity of 2
25
        if (left(p) != null)
          snapshot.add(left(p));
26
        if (right(p) != null)
          snapshot.add(right(p));
28
        return snapshot;
29
30
31
```

Implementing Trees

- A natural way to realize a binary tree *T* is to use a linked structure, with a node that maintains references to the element stored at a position *p* and to the nodes associated with the children and parent of *p*.
 - If p is the root of T, then the parent field of p is null.
 - Likewise, if p does not have a left child (respectively, right child), the associated field is null.
- The tree itself maintains an instance variable, called root, storing a reference to the root node (if any), and a variable, called size, that represents the overall number of nodes of T.

Linked Structure for General Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT

Java Implementation

- LinkedBinaryTree class:
 - Inner Node class, which implements the Position interface.
 - Instance variables: element, parent, left, right
 - createNode method that returns a new node instance (factory pattern).
 - Two instance variables: root and size
 - The validate(p) method, followed by the accessors size, root, left, and right.
 - six update methods for a linked binary tree:,
 - addRoot, addLeft, addRight, set, attach, remove

Java Implementation

Running times of the LinkedBinaryTree methods,
 including derived methods that are inherited from the
 AbstractTree and AbstractBinaryTree classes:

Method	Running Time
size, isEmpty	O(1)
root, parent, isRoot, isInternal, isExternal	O(1)
numChildren(p)	O(1)
children(p)	$O(c_p + 1)$
depth(p)	$O(d_p + 1)$
height	O(n)

Table 8.2: Running times of the accessor methods of an n-node general tree implemented with a linked structure. We let c_p denote the number of children of a position p, and d_p its depth. The space usage is O(n).

Array-Based Representation of Binary Trees

Nodes are stored in an array A

Node v is stored at A[rank(v)], where:

- \blacksquare rank(root) = 0
- if node is the left child of parent(node),rank(node) = 2 ⋅ rank(parent(node)) + 1
- if node is the right child of parent(node),rank(node) = 2 · rank(parent(node)) + 2

Preorder Tree Traversal Algorithm

- A traversal of a tree T is a systematic way of accessing, or "visiting," all the positions of T.
- In the tree below the **preorder** algorithm:
 - Visits the root
 - Recursively traverses the subtree for each child of root

Figure 8.13: Preorder traversal of an ordered tree, where the children of each position are ordered from left to right.

Preorder Tree Traversal Algorithm

Algorithm preorder(*p*):

```
perform the "visit" action for position p { this happens before any recursion } for each child c in children(p) do preorder(c) { recursively traverse the subtree rooted at c }
```


Figure 8.13: Preorder traversal of an ordered tree, where the children of each position are ordered from left to right.

Postorder Tree Traversal Algorithm

□ In a **postorder traversal**, a node is visited after its descendants:

```
Algorithm postorder(p):

for each child c in children(p) do

postorder(c) { recursively traverse the subtree rooted at c }

perform the "visit" action for position p { this happens after any recursion }
```

Code Fragment 8.13: Algorithm postorder for performing the postorder traversal of a subtree rooted at position p of a tree.

Figure 8.14: Postorder traversal of the ordered tree of Figure 8.13.

- A breadth-first traversal is a common approach used in software for playing games.
 - traverse a tree so that we visit all the positions at depth d before we visit the positions at depth d+1.

A game tree represents the **possible choices of moves** that might be made by a player (or computer) during a game, with the root of the tree being the initial configuration for the game.

Figure 8.15: Partial game tree for Tic-Tac-Toe when ignoring symmetries; annotations denote the order in which positions are visited in a breadth-first tree traversal.

- Visit the root (perform an action)
- Visit the left child
- Next, we need to visit the right child,
 But there is no link from A to D!
- So, for each node, we need to maintain a list of references to children nodes, known as discovered nodes, not visited yet.
- We can remove the node, then process its children
- A queue is a FIFO data structure and can do that.
 - Just initialize the queue to contain the root.

Trees 40

- 1. visit the node
- 2. add references to its children (enqueue)
- 3. remove the node (dequeue)

- We use a queue to produce a FIFO (i.e., first-in first-out) semantics for the order in which we visit nodes.
- The overall running time is O(n), due to the n calls to enqueue and n calls to dequeue.

```
Algorithm breadthfirst():

Initialize queue Q to contain root()

while Q not empty do

p = Q.dequeue() { p is the oldest entry in the queue }

perform the "visit" action for position p

for each child c in children(p) do

Q.enqueue(c) { add p's children to the end of the queue for later visits }

Code Fragment 8.14: Algorithm for performing a breadth-first traversal of a tree.
```

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

Algorithm *inOrder(v)*

if $left(v) \neq null$

inOrder(left(v))

visit(v)

if $right(v) \neq null$

inOrder (right (v))

Inorder Traversal of a Binary Tree

 During an **inorder** traversal, we visit a position between the recursive traversals of its left and right subtrees.

```
Algorithm inorder(p):

if p has a left child lc then

inorder(lc) { recursively traverse the left subtree of p }

perform the "visit" action for position p

if p has a right child rc then

inorder(rc) { recursively traverse the right subtree of p }
```

Code Fragment 8.15: Algorithm inorder for performing an inorder traversal of a subtree rooted at position p of a binary tree.

Inorder Traversal of a Binary Tree

Figure 8.16: Inorder traversal of a binary tree.

Using a binary tree to represent an arithmetic expression: $3+1\times3/9$ -5+2-3x7-4+6.

Implementing Tree Traversals in Java - preorder

- iterator(): Returns an iterator for all elements in the tree.
- positions(): Returns an iterable collection of all positions of the tree.

Implementing Tree Traversals in Java - postorder

Implementing Tree Traversals in Java - breadthfirst

```
/** Returns an iterable collection of positions of the tree in breadth-first order. */
      public Iterable < Position < E >> breadthfirst() {
        List < Position < E >> snapshot = new ArrayList <>();
        if (!isEmpty()) {
          Queue<Position<E>> fringe = new LinkedQueue<>();
          fringe.enqueue(root());
                                                       // start with the root
          while (!fringe.isEmpty()) {
             Position\langle E \rangle p = fringe.dequeue();
                                                      // remove from front of the queue
                                                      // report this position
             snapshot.add(p);
10
             for (Position<E> c : children(p))
               fringe.enqueue(c);
11
                                                       // add children to back of queue
12
13
14
        return snapshot;
15
```

Code Fragment 8.21: An implementation of a breadth-first traversal of a tree. This code should be included within the body of the AbstractTree class.

Binary Search Trees

- A binary search tree S is a proper binary tree T such that, for each internal position p of T:
 - Position p stores an element of S, denoted as e(p).
 - Elements stored in the left subtree of p (if any) are less than e(p).
 - Elements stored in the right subtree of p (if any) are greater than e(p).

Figure 8.17: A binary search tree storing integers. The solid path is traversed when searching (successfully) for 42. The dashed path is traversed when searching (unsuccessfully) for 70.

Applications of Tree Traversals Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

Algorithm printExpression(v) if left (v) \neq null print("(")) inOrder (left(v)) print(v.element ()) if right(v) \neq null inOrder (right(v)) print (")")

$$((2 \times (a - 1)) + (3 \times b))$$

Applications of Tree Traversals - Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees


```
Algorithm evalExpr(v)
if isExternal (v)
return v.element ()
else
x \leftarrow evalExpr(left(v))
y \leftarrow evalExpr(right(v))
\Diamond \leftarrow operator stored at v
return x \Diamond y
```

Applications of Tree Traversals – Euler Tour Traversal

- Generic traversal of a binary tree
- Includes special cases: the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)

