Association testing and GWAS

Line Skotte, Medical and Population Genetics Course, August 2018

Outline

- 1. Introduction
 - Motivation
 - Plan for today
- 2. Single SNP tests
 - A range of tests
 - Limitations
 - Effect sizes
 - Design
- 3. Quantitative traits
- 4. Genome-Wide Association Studies (GWASs)
 - Introduction to GWAS
 - How to perform a GWAS
 - Assessing results
 - Lots and lots of QC
 - GWAS perspectives (if time allows)

What and why?

- ▶ Goal: to identify (map) genetic variants that have an effect on a trait
- ► Typically **disease related traits**, e.g. febrile seizures

What and why?

- ► Goal: to identify (map) genetic variants that have an effect on a trait
- ► Typically disease related traits, e.g. febrile seizures
- ► Motivation: reaching this goal can help
 - reveal the underlying genetic architecture
 - hopefully lead to better understanding of what causes the disease
 - ▶ in turn ideally lead to better treatment and/or prevention

What and why?

- ► Goal: to identify (map) genetic variants that have an effect on a trait
- ► Typically disease related traits, e.g. febrile seizures
- ► Motivation: reaching this goal can help
 - reveal the underlying genetic architecture
 - ▶ hopefully lead to better understanding of what causes the disease
 - ► in turn ideally lead to better treatment and/or prevention
- ▶ Note, can also be used in e.g. evolutionary studies!

Plan for today (to teach you how)

▶ This afternoon:

- ► How to test if a genetic variant potentially affects a trait (single SNP tests)
- ► How to search the genome for variants that affect a given trait (GWAS)
- ► We will assume we have genotyping data (e.g. from SNP chip)
- ▶ We will assume there is no population structure
- ► We will look at disease status traits:

► And quantitative traits:

Quantitative trait value

Outline

- Introduction
 - Motivation
 - Plan for today
- 2. Single SNP tests
 - A range of tests
 - Limitations
 - Effect sizes
 - Design
- 3. Quantitative traits
- 4. Genome-Wide Association Studies (GWASs)
 - Introduction to GWAS
 - How to perform a GWAS
 - Assessing results
 - Lots and lots of QC
 - GWAS perspectives (if time allows)

How do we test if a genetic variant potentially has an effect on a disease?

How do we test if a genetic variant potentially has an effect on a disease?

▶ Idea: test for association between the variant and disease status (case/control)

Genotype (number of copies of variant)

How do we test if a genetic variant potentially has an effect on a disease?

Idea: test for association between the variant and disease status (case/control)

Genotype (number of copies of variant)

► Rationale: this is what we expect if the variant affects the trait

How do we test if a genetic variant potentially has an effect on a disease?

▶ Idea: test for association between the variant and disease status (case/control)

Genotype (number of copies of variant)

- ▶ Rationale: this is what we expect if the variant affects the trait
- ▶ Approach: test null hypothesis, H_0 , of no association (independence)

A range of tests

χ^2 test for independence

	AA	Aa	aa	Total
Case	441	418	141	1000
Control	749	611	140	1500
Total	1190	1029	281	2500

A range of tests

χ^2 test for independence

► A test which you can apply to counts tables for two categorical variables E.g. disease status and genotypes:

	AA	Aa	aa	Total
Case	441	418	141	1000
Control	749	611	140	1500
Total	1190	1029	281	2500

▶ The null hypothesis, H_0 , of the test, is **no association** (independence)

	AA	Aa	aa	Total
Case	441	418	141	1000
Control	749	611	140	1500
Total	1190	1029	281	2500

- ▶ The null hypothesis, H_0 , of the test, is **no association** (independence)
- ► Has the test statistic $X^2 = \sum_i \frac{(O_i E_i)^2}{E_i}$ (measures how far your observed data is from what you expect if H_0 is true)

	AA	Aa	aa	Total
Case	441	418	141	1000
Control	749	611	140	1500
Total	1190	1029	281	2500

- ▶ The null hypothesis, H_0 , of the test, is **no association** (independence)
- ► Has the test statistic $X^2 = \sum_i \frac{(O_i E_i)^2}{E_i}$ (measures how far your observed data is from what you expect if H_0 is true)
- ▶ If H_0 is true then $X^2 \sim \chi^2$ (This means we can use χ^2 to translate X^2 to p-value i.e. the probability of seeing $\geq X^2$ if H_0 is true)

	AA	Aa	aa	Total
Case	441	418	141	1000
Control	749	611	140	1500
Total	1190	1029	281	2500

- ▶ The null hypothesis, H_0 , of the test, is **no association** (independence)
- ► Has the test statistic $X^2 = \sum_i \frac{(O_i E_i)^2}{E_i}$ (measures how far your observed data is from what you expect if H_0 is true)
- ▶ If H_0 is true then $X^2 \sim \chi^2$ (This means we can use χ^2 to translate X^2 to p-value i.e. the probability of seeing $\geq X^2$ if H_0 is true)
- We use this to decide whether we reject the null hypothesis (we reject when p is small and see it as evidence for association)

- ► Can be applied to genotype count tables
- So assume we have observed this data:

	AA	Aa	aa	Total
Case	$O_1 = 441$	$O_3 = 418$	$O_5 = 141$	1000
Control	$O_2 = 749$	$O_4 = 611$	$O_6 = 140$	1500
Total	1190	1029	281	2500

A range of tests

χ^2 tests - test with genotype counts

- Can be applied to genotype count tables
- So assume we have observed this data:

	AA	Aa	aa	Total
Case	$O_1 = 441$	$O_3 = 418$	$O_5 = 141$	1000
Control	$O_2 = 749$	$O_4 = 611$	$O_6 = 140$	1500
Total	1190	1029	281	2500

► **Expected under** *H*₀: if there is no association between the SNP and disease we would expect proportions of cases within the genotype categories to be the same (here 1000/2500=0.4, i.e. 40%).

A range of tests

χ^2 tests - test with genotype counts

- ► Can be applied to genotype count tables
- So assume we have observed this data:

	AA	Aa	aa	Total
Case	$O_1 = 441$	$O_3 = 418$	$O_5 = 141$	1000
Control	$O_2 = 749$	$O_4 = 611$	$O_6 = 140$	1500
Total	1190	1029	281	2500

- ► **Expected under** *H*₀: if there is no association between the SNP and disease we would expect proportions of cases within the genotype categories to be the same (here 1000/2500=0.4, i.e. 40%).
- ▶ So e.g. we would expect 40% of those with genotype AA to be cases and the rest to be controls. Thus E_1 =0.4×1190=476 and E_2 =1190-476=714

- ► Can be applied to genotype count tables
- So assume we have observed this data:

	AA	Aa	aa	Total
Case	$O_1 = 441$	$O_3 = 418$	$O_5 = 141$	1000
Control	$O_2 = 749$	$O_4 = 611$	$O_6 = 140$	1500
Total	1190	1029	281	2500

- ► Expected under H₀: if there is no association between the SNP and disease we would expect proportions of cases within the genotype categories to be the same (here 1000/2500=0.4, i.e. 40%).
- ▶ So e.g. we would expect 40% of those with genotype AA to be cases and the rest to be controls. Thus E_1 =0.4×1190=476 and E_2 =1190-476=714
- ▶ Small exercise: what would E_3 and E_4 be?

A range of tests

χ^2 tests - test with genotype counts

► So we have:

Observed	AA	Aa	aa	Total
Case	$O_1 = 441$	O ₃ =418	$O_5 = 141$	1000
Control	$O_2 = 749$	$O_4 = 611$	O ₆ =140	1500
Total	1190	1029	281	2500

Expected	AA	Aa	aa	Total
Case	E ₁ =476	$E_3 = 411.6$	$E_5 = 112.4$	1000
Control	$E_2 = 714$	$E_4 = 617.4$	$E_6 = 168.6$	1500
Total	1190	1029	281	2500

► So we have:

Observed	AA	Aa	aa	Total
Case	$O_1 = 441$	O ₃ =418	$O_5 = 141$	1000
Control	$O_2 = 749$	$O_4 = 611$	O ₆ =140	1500
Total	1190	1029	281	2500

Expected	AA	Aa	aa	Total
Case	E ₁ =476	$E_3 = 411.6$	$E_5 = 112.4$	1000
Control	E ₂ =714	$E_4 = 617.4$	E ₆ =168.6	1500
Total	1190	1029	281	2500

► So we have:

Observed	AA	Aa	Aa aa To	
Case	$O_1 = 441$	O ₃ =418	$O_5 = 141$	1000
Control	$O_2 = 749$	$O_4 = 611$	O ₆ =140	1500
Total	1190	1029	281	2500

Expected	AA	Aa	aa	Total
Case	E ₁ =476	$E_3 = 411.6$	$E_5 = 112.4$	1000
Control	E ₂ =714	$E_4 = 617.4$	E ₆ =168.6	1500
Total	1190	1029	281	2500

▶ Using the χ^2 -distribution with 2 df we get a p-value for χ^2 (p \simeq 0.00025)

So we have:

Observed	AA	Aa aa Tot		Total
Case	$O_1 = 441$	O ₃ =418	$O_5 = 141$	1000
Control	$O_2 = 749$	$O_4 = 611$	O ₆ =140	1500
Total	1190	1029	281	2500

Expected	AA	Aa	aa	Total
Case	E ₁ =476	$E_3 = 411.6$	$E_5 = 112.4$	1000
Control	$E_2 = 714$	$E_4 = 617.4$	$E_6 = 168.6$	1500
Total	1190	1029	281	2500

- ▶ Using the χ^2 -distribution with 2 df we get a p-value for X^2 (p \simeq 0.00025)
- ► Tells us that the probability of getting a X^2 value 16.5838 or higher **if** there is no association is low (p \simeq 0.00025<0.05)

So we have:

Observed	AA	Aa	aa Tota	
Case	$O_1 = 441$	$O_3 = 418$ $O_5 = 141$ 10		1000
Control	$O_2 = 749$	$O_4 = 611$	O ₆ =140	1500
Total	1190	1029	281	2500

Expected	AA	Aa aa To		Total
Case	$E_1 = 476$	$E_3 = 411.6$	$E_5 = 112.4$	1000
Control	$E_2 = 714$	$E_4 = 617.4$	$E_6 = 168.6$	1500
Total	1190	1029	281	2500

- ▶ Using the χ^2 -distribution with 2 df we get a p-value for χ^2 (p \simeq 0.00025)
- ► Tells us that the probability of getting a X^2 value 16.5838 or higher **if** there is no association is low (p \simeq 0.00025<0.05)
- We therefore reject the null hypothesis of no association and conclude that the variant is associated with the disease status

▶ In a similar way we can test for association assuming specific inheritance models by rewriting the table accordingly and doing a χ^2 test

- In a similar way we can test for association assuming specific inheritance models by rewriting the table accordingly and doing a χ^2 test
- ► E.g. assuming a **recessive model** we can rewrite the genotype counts table:

Our genotype counts	AA	Aa	aa	Total
Case	441	418	141	1000
Control	749	611	140	1500
Total	1190	1029	281	2500

to

Counts of homozygous carriers vs others	AA or Aa	aa	Total
Case	441+418=859	141	1000
Control	749+611=1360	140	1500
Total	2219	281	2500

- In a similar way we can test for association assuming specific inheritance models by rewriting the table accordingly and doing a χ^2 test
- ► E.g. assuming a **recessive model** we can rewrite the genotype counts table:

Our genotype counts	AA	Aa	aa	Total
Case	441	418	141	1000
Control	749	611	140	1500
Total	1190	1029	281	2500

to

Counts of homozygous carriers vs others	AA or Aa	aa	Total
Case	441+418=859	141	1000
Control	749+611=1360	140	1500
Total	2219	281	2500

▶ Then the same as before: we use a χ^2 test for association w. df=1

- ▶ In a similar way we can test for association assuming specific inheritance models by rewriting the table accordingly and doing a χ^2 test
- ► E.g. assuming a **recessive model** we can rewrite the genotype counts table:

Our genotype counts	AA	Aa	aa	Total
Case	441	418	141	1000
Control	749	611	140	1500
Total	1190	1029	281	2500

to

Counts of homozygous carriers vs others	AA or Aa	aa	Total
Case	441+418=859	141	1000
Control	749+611=1360	140	1500
Total	2219	281	2500

- ▶ Then the same as before: we use a χ^2 test for association w. df=1
- ▶ How would you test assuming a dominant model?

Other inheritance models

► Commonly considered genetic inheritance models:

- ► Testing under an additive genetic inheritance models is more tricky can be done using e.g. an Armitage trend test
- ► Testing under a multiplicative model can be done using logistic regression

Logistic regression

▶ Based on the following general model

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1^i + \ldots + \beta_n x_n^i$$

where the β s are regression coefficients (effect sizes).

► The *xⁱ*s are determined by the genotype of individual *i* and the inheritance model

► Based on the following general model

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1^i + \ldots + \beta_n x_n^i$$

where the β s are regression coefficients (effect sizes).

- The xⁱs are determined by the genotype of individual i and the inheritance model
- ▶ E.g. for a simple multiplicative inheritance model we have

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1^i$$

where x_1^i is the number number of copies of the variant so 0, 1 or 2

Logistic regression

▶ Based on the following general model

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1^i + \ldots + \beta_n x_n^i$$

A range of tests

where the β s are regression coefficients (effect sizes).

- The xⁱs are determined by the genotype of individual i and the inheritance model
- ▶ E.g. for a simple multiplicative inheritance model we have

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1^i$$

where x_1^i is the number number of copies of the variant so 0, 1 or 2

ightharpoonup Test if eta_1 is zero (no association between the variant and the trait)

A range of tests

Why is logistic regression a good framework to use?

Logistic regression is very convenient due to its flexibility:

▶ Most inheritance models can be tested (by recoding x^i):

Genotypes	multiplicative	dominant	recessive	genotypes	
AA	0	0	0	0	0
Aa	1	1	0	1	0
aa	2	1	1	1	1

Logistic regression is very convenient due to its flexibility:

▶ Most inheritance models can be tested (by recoding x^i):

Genotypes	multiplicative	dominant	recessive	genotypes	
AA	0	0	0	0	0
Aa	1	1	0	1	0
aa	2	1	1	1	1

- ► Can incorporate other factors in the model
 - discrete factors such as gender
 - ► continuous factors such as age

Can be used to correct for possible confounding factors Can be used for metaanalysis by incl a factor for the different studies

Exercise

Let's try to perform some of these tests in R:

Solve exercise 1A, 1B, 1C and 1D (+ 1E if you have time)

Introduction
Single SNP tests
Quantitative traits
enome-Wide Association Studies (GWASs)

A range of tests Limitations Effect sizes Design

Causality?

Causality?

► No, not necessarily!

Causality?

- ▶ No, not necessarily!
- ▶ We expect to see some loci highly correlated w. causal variant, e.g:

Causal	Other	locus
A	G	
A	G	
A	G	
A	G	
A	G	
C	T	
C	T	
C	T	

Causality?

- ▶ No, not necessarily!
- ▶ We expect to see some loci highly correlated w. causal variant, e.g:

Causal	Other	locus
A	G	
A	G	
A	G	
A	G	
A	G	
C	T	
C	T	
C	T	

► This means that we see association in loci that are in high LD with the causal SNP

So you have to be careful what you conclude from an association signal!

Other important limitations

One also has to be aware of the underlying assumptions:

▶ In all the tests there is an assumption that the individuals are independent (unrelated) and from a homogenous (unstructured) population

Other important limitations

One also has to be aware of the underlying assumptions:

- ▶ In all the tests there is an assumption that the individuals are independent (unrelated) and from a homogenous (unstructured) population
- ▶ If these assumptions are violated you risk getting false positives!

Other important limitations

One also has to be aware of the underlying assumptions:

- ▶ In all the tests there is an assumption that the individuals are independent (unrelated) and from a homogenous (unstructured) population
- ▶ If these assumptions are violated you risk getting false positives!
- ▶ Hence Quality Control (QC) and appropriate modelling is crucial!

Effect sizes for case-control data - relative risk

Relative risk - definition

$$RR = \frac{P(Case|Exposed)}{P(Case|Not exposed)}$$

where exposed depends on model, e.g. exposed=aa under recessive model

I.e. how many times higher the risk of disease is for exposed

Relative risk - example with recessive model

	Cases	Controls	Total
Exposed (g=aa)	100	100	200
Not exposed (g=AA or Aa)	400	3600	4000

- ▶ $P(Case|Exposed) = \frac{100}{200} = \frac{1}{2}$
- ► $P(Case|Not\ exposed) = \frac{400}{4000} = \frac{1}{10}$
- ► $RR = \frac{1/2}{1/10} = 5$

Effect sizes for case-control data - odds ratio

Odds ratio - definition

$$OR = \frac{ODD_{Exposed}}{ODD_{Not \ Exposed}} = \frac{\frac{P(Case | Exposed)}{P(Control | Exposed)}}{\frac{P(Case | Not \ exposed)}{P(Control | Not \ exposed)}}$$

where exposed depends on model, e.g. exposed=aa under recessive model l.e. how many times higher the *odds* of disease is for exposed

Odds ratio - example with recessive model

	Cases	Controls	Total
Exposed (g=aa)	100	100	200
Not exposed (g=AA or Aa)	400	3600	4000

►
$$\frac{P(Case|Exposed)}{P(Control|Exposed)} = \frac{100/200}{100/200} = \frac{100}{100} = 1$$

►
$$\frac{P(Case|Not\ exposed)}{P(Control|Not\ exposed)} = \frac{400/4000}{3600/4000} = \frac{400}{3600} = 1/9$$

►
$$OR = \frac{1}{1/9} = 9$$
 (very high for an association study!)

Effect size estimates from logistic regression

▶ In logistic regression the ORs are estimated directly: In the model we estimate the effect size β_1

$$\log\left(\frac{p_i}{1-p_i}\right)=\beta_0+\beta_1x_1^i\ldots$$

Effect size estimates from logistic regression

▶ In logistic regression the ORs are estimated directly: In the model we estimate the effect size β_1

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1^i \dots$$

► Example: recessive model

$$\frac{\mathsf{ODD}_{\mathsf{aa}}}{\mathsf{ODD}_{\mathsf{aA/AA}}} = \frac{\frac{\rho_{\mathsf{aa}}}{1 - \rho_{\mathsf{aa}}}}{\frac{\rho_{\mathsf{aA/AA}}}{1 - \rho_{\mathsf{aA/AA}}}} = \frac{\mathsf{exp}(\beta_0 + \beta_1)}{\mathsf{exp}(\beta_0)} = \mathsf{exp}(\beta_1)$$

► In logistic regression the ORs are estimated directly:

In logistic regression the ORs are estimated directly In the model we estimate the effect size β_1

$$\log\left(\frac{p_i}{1-p_i}\right)=\beta_0+\beta_1x_1^i\ldots$$

► Example: recessive model

$$\frac{\mathsf{ODD}_{\mathit{aa}}}{\mathsf{ODD}_{\mathit{aA/AA}}} = \frac{\frac{p_{\mathit{aa}}}{1 - p_{\mathit{aa}}}}{\frac{p_{\mathit{aA/AA}}}{1 - p_{\mathit{aA/AA}}}} = \frac{\mathsf{exp}(\beta_0 + \beta_1)}{\mathsf{exp}(\beta_0)} = \mathsf{exp}(\beta_1)$$

▶ So we can get OR by taking the exp() of β_1

Effect size estimates from logistic regression

▶ In logistic regression the ORs are estimated directly: In the model we estimate the effect size β_1

$$\log\left(\frac{p_i}{1-p_i}\right)=\beta_0+\beta_1x_1^i\ldots$$

► Example: recessive model

$$\frac{\mathsf{ODD}_{\mathit{aa}}}{\mathsf{ODD}_{\mathit{aA/AA}}} = \frac{\frac{p_{\mathit{aa}}}{1 - p_{\mathit{aa}}}}{\frac{p_{\mathit{aA/AA}}}{1 - p_{\mathit{aA/AA}}}} = \frac{\mathsf{exp}(\beta_0 + \beta_1)}{\mathsf{exp}(\beta_0)} = \mathsf{exp}(\beta_1)$$

- ▶ So we can get OR by taking the exp() of β_1
- ▶ If time allows do exercise 1F

Design

► Will your study answer your research question? **Key: power**

Design

- ► Will your study answer your research question? **Key: power**
- ▶ Power is the probability that a true association is found when testing

Crucial for whether the study is worth performing!

Design

- ► Will your study answer your research question? **Key: power**
- ▶ Power is the probability that a true association is found when testing

Crucial for whether the study is worth performing!

► Before you start your study: calculate power for your study and assess it Rule of thumb: power should be at least 0.8

- ▶ Power depends on
 - ► the inheritance mode, e.g. recessive effect
 - ► the effect size, e.g. OR of 1.3 (the bigger the higher power)
 - ▶ the frequency of allele, e.g. 0.04 (the bigger the higher power)
 - **the rejection criterion**, e.g. p < 0.05 (the bigger the higher power)
 - ▶ the number of samples (the bigger the higher power)
 - the test you use

- ▶ Power depends on
 - ▶ the inheritance mode, e.g. recessive effect
 - ► the effect size, e.g. OR of 1.3 (the bigger the higher power)
 - ► the frequency of allele, e.g. 0.04 (the bigger the higher power)
 - **the rejection criterion**, e.g. p < 0.05 (the bigger the higher power)
 - the number of samples (the bigger the higher power)
 - the test you use
- ► Can often be calculated using "power-calculators"

- ► Power depends on
 - ▶ the inheritance mode, e.g. recessive effect
 - ► the effect size, e.g. OR of 1.3 (the bigger the higher power)
 - ► the frequency of allele, e.g. 0.04 (the bigger the higher power)
 - **the rejection criterion**, e.g. p < 0.05 (the bigger the higher power)

Design

- ▶ the number of samples (the bigger the higher power)
- ▶ the test you use
- ► Can often be calculated using "power-calculators"
- ► So before you start: Do power calculations to make sure you will have enough samples!

- ► Power depends on
 - ▶ the inheritance mode, e.g. recessive effect
 - ► the effect size, e.g. OR of 1.3 (the bigger the higher power)
 - ► the frequency of allele, e.g. 0.04 (the bigger the higher power)
 - **the rejection criterion**, e.g. p < 0.05 (the bigger the higher power)
 - ▶ the number of samples (the bigger the higher power)
 - ▶ the test you use
- ► Can often be calculated using "power-calculators"
- ► So before you start: Do power calculations to make sure you will have enough samples!
- ▶ To detect association we might not choose the model that is most correct, but instead choose the model that has the most power

Outline

- Introduction
 - Motivation
 - Plan for today
- 2. Single SNP tests
 - A range of tests
 - Limitations
 - Effect sizes
 - Design

3. Quantitative traits

- 4. Genome-Wide Association Studies (GWASs)
 - Introduction to GWAS
 - How to perform a GWAS
 - Assessing results
 - Lots and lots of QC
 - GWAS perspectives (if time allows)

Quantitative trait

► Distribution of the trait in the population

Quantitative trait

► Distribution of the trait in the population

▶ If a variant influence the trait value, we expect:

Linear regression

► Based on the following general model

$$\mathsf{E}(y_i) = \beta_0 + \beta_1 x_1^i + \ldots + \beta_n x_n^i$$

where the β s are regression coefficients (effect sizes).

► The x^i s are determined by the genotype of individual i and the inheritance model

Linear regression

► Based on the following general model

$$\mathsf{E}(y_i) = \beta_0 + \beta_1 x_1^i + \ldots + \beta_n x_n^i$$

where the β s are regression coefficients (effect sizes).

- The xⁱs are determined by the genotype of individual i and the inheritance model
- ▶ E.g. for a simple additive inheritance model we have

$$\mathsf{E}(y_i) = \beta_0 + \beta_1 x_1^i$$

where x_1^i is the number number of copies of the variant so 0, 1 or 2

Linear regression

Based on the following general model

$$\mathsf{E}(y_i) = \beta_0 + \beta_1 x_1^i + \ldots + \beta_n x_n^i$$

where the β s are regression coefficients (effect sizes).

- The xⁱs are determined by the genotype of individual i and the inheritance model
- ▶ E.g. for a simple additive inheritance model we have

$$\mathsf{E}(y_i) = \beta_0 + \beta_1 x_1^i$$

where x_1^i is the number number of copies of the variant so 0, 1 or 2

▶ Test if β_1 is zero (no association between the variant and the trait)

Introduction to GWAS
How to perform a GWAS
Assessing results
Lots and lots of QC
GWAS perspectives (if time allows

Outline

- 1. Introduction
 - Motivation
 - Plan for today
- 2. Single SNP tests
 - A range of tests
 - Limitations
 - Effect sizes
 - Design
- 3. Quantitative traits
- 4. Genome-Wide Association Studies (GWASs)
 - Introduction to GWAS
 - How to perform a GWAS
 - Assessing results
 - Lots and lots of QC
 - GWAS perspectives (if time allows)

Introduction to GWAS
How to perform a GWAS
Assessing results
Lots and lots of QC
GWAS perspectives (if time allows

Types of association studies

- ► Candidate causative genetic variant
 - ▶ 1 SNP or deletion, duplication. Evidence from other study
- ► Candidate causative gene
 - ► 5-50 SNPs. Evidence from other study or function
- Candidate causative region
 - ▶ 100s of SNPs Evidence from other study
- ► Genome-wide (GWAS)
 - ► >500,000 SNPs. No prior evidence required

Why GWAS?

- ▶ If we look at 500.000 SNPs we are likely not to have the causal SNP!
- ▶ But, remember SNPs in high LD with a causal SNP will also be associated:

Why GWAS?

▶ SNPs are in high LD in blocks along the human genome

Introduction to GWAS How to perform a GWAS Assessing results Lots and lots of QC GWAS perspectives (if time allows)

Why GWAS?

▶ By testing a few SNPs in each block most common SNPs are indirectly tested

Why GWAS?

- ▶ By testing a few SNPs in each block most common SNPs are indirectly tested
- ▶ We can test most common SNPs (indirectly) by using $\geq 500,000$ SNPs

Introduction to GWAS How to perform a GWAS Assessing results Lots and lots of QC GWAS perspectives (if time allows)

Why GWAS?

- ▶ By testing a few SNPs in each block most common SNPs are indirectly tested
- ▶ We can test most common SNPs (indirectly) by using $\geq 500,000$ SNPs
- ▶ Pro: Cheap! (only need to genotype $\geq 500,000$ SNPs) Con: We are far from sure the identified SNPs (if any) are causal!

When GWAS?

Strategies for locating disease loci

How GWAS (step-by-step overview)

- 1. Collect samples and traits of interest (based on power calculations!)
- 2. Genotype samples at a number of SNP loci (\geq 500,000)
- Lots and lots of quality control (QC)!
- 4. Statistically test each SNP for association
- 5. Assess the results:
 - ► make sure things went OK
 - ► identify associated SNPs
- 6. Identify causal variant (if possible)
- 7. Replicate associations in a different dataset
- 8. Investigate what the underlying biological mechanism is
- 9. Ideal longterm goal/hope: better prevention or treatment

GWAS step-by-step

- 1. Collect samples and traits of interest (based on power calculations!)
- 2. Genotype samples at a number (\geq 500,000) of SNP loci
- 3. Lots and lots of quality control (QC)!
- 4. Statistically test each SNP for association
- 5. Assess the results:
 - ▶ make sure things went OK
 - identify associated SNPs
- 6. Identify causal variant (if possible)
- 7. Replicate associations in a different dataset
- 8. Investigate what the underlying biological mechanism is
- 9. Ideal longterm goal/hope: better prevention or treatment

Statistically test each SNP for association

- ▶ Use one of the tests you just learned how to perform
- ► There are programs like PLINK2 that will help you do this
- ► Can be done using one 1-line command
- ► Also offers functions for doing QC (we'll see that later)

Identify associated SNPs

Introduction to GWAS
How to perform a GWAS
Assessing results
Lots and lots of QC
GWAS perspectives (if time allows)

What p-value threshold to use

▶ Usually for a single test we use a p-value threshold of $\alpha = 0.05$

What p-value threshold to use

- \blacktriangleright Usually for a single test we use a p-value threshold of $\alpha=0.05$
- ▶ If you perform many tests w. this α some will be falsely rejected With threshold 0.05 thousands of false positives!! (-log(0.05)=1.3)

So we have to correct for multiple testing

What p-value threshold to use

- \blacktriangleright Usually for a single test we use a p-value threshold of $\alpha=0.05$
- ▶ If you perform many tests w. this α some will be falsely rejected With threshold 0.05 thousands of false positives!! (-log(0.05)=1.3)

So we have to correct for multiple testing

- ▶ Often **Bonferroni correction** is used; α is divided by the number of tests:
 - \blacktriangleright E.g. 100000 SNPs and $\alpha=0.05$
 - ▶ Bonferroni corrected $\alpha = 0.05/100000 = 0.0000005 = 5 \times 10^{-7}$
 - ▶ Which on the Manhattan plot is $-log_{10}(5 \times 10^{-7}) = 6.3$

Introduction
Single SNP tests
Quantitative traits
Genome-Wide Association Studies (GWASs)

Introduction to GWAS
How to perform a GWAS
Assessing results
Lots and lots of QC
GWAS perspectives (if time allows)

Exercise

Solve exercise 2A, i.e. perform your first GWAS analysis :)

Make sure things went OK!

QQ-plots and genomic control inflation factor λ

If so most of the dots will be on the x=y line and $\lambda \simeq 1$

Introduction
Single SNP tests
Quantitative traits
Genome-Wide Association Studies (GWASs)

Introduction to GWAS
How to perform a GWAS
Assessing results
Lots and lots of QC
GWAS perspectives (if time allows)

Exercise

Solve exercise 2B, i.e. check if your results look OK...

Introduction to GWAS
How to perform a GWAS
Assessing results
Lots and lots of QC
GWAS perspectives (if time allows)

Lots and lots of QC

```
This shows why we usually do QC first ...! :)
```

Let's therefore return to that step (we wont go through all QCs, but some important ones)

Sample mislabling?

- ▶ One thing that can go wrong is the samples can be misslabled
- ► If so, genotypes won't match phenotypes
- ► This is difficult to catch
- ▶ But a simple check is to see of gender is correct
- ▶ If not the disease status is likely not to be either...
- ► We can check this using PLINK2

Sample mislabling?

- ▶ One thing that can go wrong is the samples can be misslabled
- ► If so, genotypes won't match phenotypes
- ► This is difficult to catch
- ▶ But a simple check is to see of gender is correct
- ▶ If not the disease status is likely not to be either...
- ► We can check this using PLINK2
- ► **Exercise**: try checking it for your data (exercise 2C)

Closely related individuals or duplicates?

- All association tests mentioned assume that the participants are independent samples from a population
- ► This would not be the case if some participants
 - are closely related
 - represented more than once
- ▶ One way to check if this is the case is to use PLINK2 (again)

Closely related individuals or duplicates?

- All association tests mentioned assume that the participants are independent samples from a population
- ► This would not be the case if some participants
 - are closely related
 - represented more than once
- ▶ One way to check if this is the case is to use PLINK2 (again)
- ► Exercise: try checking it for your data (exercise 2D)

Batch biases/non-random genotyping error?

- Sometimes the data handling/generation process can lead to non-random genotyping errors
- ▶ E.g. if all cases were genotyped first and then all controls, then changes in genotyping procedure along the way may lead to non-random differences in genotypes between cases and controls
- ► This may lead the false positive association test results

Batch biases/non-random genotyping error?

- ► Sometimes the data handling/generation process can lead to non-random genotyping errors
- ▶ E.g. if all cases were genotyped first and then all controls, then changes in genotyping procedure along the way may lead to non-random differences in genotypes between cases and controls
- ► This may lead the false positive association test results
- ► Exercise: try checking it for your data (exercise 2E+F if there is time)

Additional important checks?

- ▶ Other additional signs of something being wrong include:
 - ► high missingness in specific loci/individuals
 - ► loci (strongly) out of Hardy-Weinberg Equilibrium (why?)
- ► Furthermore, low frequency variants tend to be difficult to genotype
- Removing such loci/individuals can help a lot

Additional important checks?

- ▶ Other additional signs of something being wrong include:
 - ► high missingness in specific loci/individuals
 - ► loci (strongly) out of Hardy-Weinberg Equilibrium (why?)
- ► Furthermore, low frequency variants tend to be difficult to genotype
- ► Removing such loci/individuals can help a lot
- ► Exercise: try rerunning your analyses with these QC filters (exercise 2G)

First study went extremely well!

- ► Study of age-related Macular Degeneration (Klein et al. 2005)
- ▶ 96 cases and 50 controls, 100K SNPs

► SNP in *CFH* w large effect (OR=7.4)+led to new biological insight

Introduction to GWAS How to perform a GWAS Assessing results Lots and lots of QC GWAS perspectives (if time allows)

Turned out to be unusual...

- MANY studies and many associations
- ► But in the beginning few were replicated (underpowered, population structure, insufficient corr. for multiple tests)
- ► So later studies have many more samples and are much stricter
- ► And most found small effect sizes and limited biological insight

NGS enters the stage

- ► Reference panels
 - ► 1000 genomes project
 - ► Haplotype reference consortium
- ► Imputation:

► Results in posterior genotype probabilities.

Dealing with uncertain genotypes in associations

► The easy solution: DOSAGE

$$E[g] = \sum_{g=0}^{2} g \ p(G = g|X)$$

▶ The complicated solution: Full likelihood model

$$p(y|X) = \prod_{i} \sum_{g} p(y_i|G_i = g)p(G_i = g|X_i)$$

 Same goes for association studies based on directly on sequencing data.