# Induction

# **1** Good Proofs

- correct
- complete
- clear
- \_ hrief
- elegant (clever, work of art)
- well organized (using lemma)
- inorder (fact -> proof)

# ▲ Proof techniques not to use

- Proof by example
- Proof by omission
- Proof by picture
- Too many notations

### Question

| А | В | С |               | А | В | С |
|---|---|---|---------------|---|---|---|
| D | Е | F | $\rightarrow$ | D | Е | F |
| Н | G |   |               | G | Н |   |

No squence of legal moves to invert G and H and return all other letter to their original position

Rules: no diagonal moves

# 🛕 Lemma 1

(Lemma is true statement used in proving propositions)

| А | В | С |    | А | В | С |
|---|---|---|----|---|---|---|
| D | Е | F | => | D | Е | F |
| Н | G |   |    | Н |   | G |

A row move does not change the order of the items

# Proof

In a row move, we move an item from cell i into an adjacent i+1 or i-1. Nothing else moves, hence the order of the items is preserved

# 🛕 Lemma 2

| А | В | С |    | А | В | С |
|---|---|---|----|---|---|---|
| D | Е |   | => | D | Е | G |
| F | Н | G |    | F | Н |   |

A Column move changes the relative order of precisely 2 pairs of items

### Proof

- In a column move, we move an item in cell i to a blank spot in cell i-3 or i+3.
- When a item moves 3 positions, it changes relative order with 2 other items

| А | В | С |    | А | В | С |
|---|---|---|----|---|---|---|
| F | D | G | => | D | Е | F |
| Е | Н |   |    | G | Н |   |

- A pair of letter L1 and L2 is an inversion
- (D, F), (E, F), (F, G) inversions.

#### ⚠ Lemma 3

During a move, the number of inversions can only increase by 2 or decrease by 2 or stay the same.

#### Proof

- Row move: no changes (by lemma 1)
- Column move: 2 pairs change order (by lemma 2)

Case A: Both paires are inorder  $\Rightarrow$  +2 inversions

Case B: Both paires are inverted  $\Rightarrow$  -2 inversions

Case C: One pair is inverted  $\Rightarrow$  inversion stays the same

# Corollary

(corollary is a proposition followed from a lemma)

- During a move the parity (fact of being even/odd) of the number of inversions does not change.

# Proof

– adding or substracting to does not change the parity.

# 🛕 Lemma 4

– In every state reachable from

| Α | В | С |
|---|---|---|
| D | Е | F |
| н | G |   |

#### **55** Proposition

P(n): After any sequence of n moves from the start state, the parity of number of inversion is odd

- Base Case: n = 0 (no moves are made) (start)
- Inductive Step:  $\forall$  n  $\geq$  0, Show P(n)  $\Rightarrow$  P(n+1) Consider any sequence of n + 1 moves  $M_1,M_2,M_3,\ldots,M_n$
- Let the parity after moves  $M_1,\ldots,M_n$  is odd
- By Corollary 1, we know parity of number of inversions does not change during  $M_{n+1}$
- $\therefore$  P(n)  $\Rightarrow$  P(n + 1)



# **Strong Induction Axiom**



- Let P(n) be any predicate, If P(0) is true,  $\forall \ n \Rightarrow P(0) \ \& \ P(1) \ \& \ P(2) \ \& \ ... \ \& \ P(n) \Rightarrow P(n+1) \ is \ true, then \ \forall \ n, P(n) \ is \ true.$ 

– Here it can be assumed that P(0) & P(1) & P(2) & ... & P(n) are all true, to prove P(n + 1) is true

# Question

All strategies for the n-block game produces the same score S(n).



# 🧪 Solution

Proof by Strong induction

- By Inductive Hypothesis, P(n): n blocks in a stack have the same score, i.e. n(n+1)/2
- Base Case: P(1) = 0
- Inductive Step: Assume P(1),P(2), ... , P(n) is true, to prove P(n +  $\frac{1}{2}$ 
  - ullet n+1 is splitted into k and n+1-k

$$Score = k(n+1-k) + P(k) + P(n+1-k)$$

$$= k(n+1-k) + \frac{k(k-1)}{2} + \frac{(n+1-k)(n-k)}{2}$$

$$= kn - k^2 + k + \frac{k^2 - k + n^2 + n - 2kn - k + k^2}{2}$$

$$\Rightarrow Score = \frac{n^2 + n}{2} = \frac{n(n+1)}{2}$$

Success