Sucesión de Fibonacci

Leonardo Michel Domingo Sánchez

22 de junio de 2024

Índice

1. Resolución de la recurrencia 1

2. Encontrar orden de complejidad del algoritmo 4

3. Demostración por el método de inducción 4

Resumen

En este documento se resuelve la recurrencia de la sucesión de Fibonacci, además de que se comprueba que el resultado obtenido es correcto y equivalente con la recurrencia, comparándolos en resultados además de comprobar dicha equivalencia mediante el método de inducción

1. Resolución de la recurrencia

Se tiene la siguiente recurrencia con sus respectivas condiciones iniciales

$$\begin{cases} f_n = f_{n-1} + f_{n-2} \\ f_0 = 0, \ f_1 = 1 \end{cases}$$
 (1)

Para resolverla haremos cambio de variables, de la siguiente forma $t^n = f_n$

Sustituyendo en la ecuación (1) queda como:

$$t^{n} = t^{n-1} + t^{n-2}$$
$$t^{n} - t^{n-1} - t^{n-2} = 0$$

Dividiendo la ecuación entre t^{n-2} se tiene:

$$\frac{t^n}{t^{n-2}} - \frac{t^{n-1}}{t^{n-2}} - \frac{t^{n-2}}{t^{n-2}} = 0$$

$$t^2 - t - 1 = 0 (2)$$

Resolviendo para t se usará la fórmula general para ecuaciones cuadráticas que es la siguiente

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Para obtener t con la fórmula se tiene que $a=1;\ b=-1;\ c=-1$

$$t = \frac{1 \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)} \Rightarrow \frac{1 \pm \sqrt{1+4}}{2} \Rightarrow \frac{1 \pm \sqrt{5}}{2}$$
$$t_1 = \frac{1 + \sqrt{5}}{2} \; ; \; t_2 = \frac{1 - \sqrt{5}}{2}$$

Con esto se puede demostrar que la solución es de la forma $U_n = b(\frac{1+\sqrt{5}}{2})^n + d(\frac{1-\sqrt{5}}{2})^n$

Para encontrar los coeficientes consideremos las condiciones iniciales de forma que:

$$0 = U_0 = b(\frac{1+\sqrt{5}}{2})^0 + d(\frac{1-\sqrt{5}}{2})^0 \Rightarrow b(1) + d(1) \Rightarrow b+d$$
$$1 = U_1 = b(\frac{1+\sqrt{5}}{2})^1 + d(\frac{1-\sqrt{5}}{2})^1 \Rightarrow b(\frac{1+\sqrt{5}}{2}) + d(\frac{1-\sqrt{5}}{2})$$

Se obtiene el siguiente sistema de ecuaciones

$$\begin{cases} U_0 = b + d = 0 \\ U_1 = b(\frac{1+\sqrt{5}}{2}) + d(\frac{1-\sqrt{5}}{2}) = 1 \end{cases}$$

Resolviendo el sistema de ecuaciones mediante el método de suma y resta

$$-(\frac{1+\sqrt{5}}{2})(b+d) = -(\frac{1+\sqrt{5}}{2})(0) \Longrightarrow -b(\frac{1+\sqrt{5}}{2}) - d(\frac{1+\sqrt{5}}{2}) = 0$$
$$b(\frac{1+\sqrt{5}}{2}) + d(\frac{1-\sqrt{5}}{2}) = 1$$

Cancelando términos semejantes nos quedamos únicamente con lo siguiente:

$$d(\frac{1-\sqrt{5}}{2}) = 1$$
$$d(\frac{1+\sqrt{5}}{2}) = 0$$

Con lo que se tiene buscamos obtener el valor de d

$$d(\frac{1-\sqrt{5}-1-\sqrt{5}}{2}) = 1 \implies d(\frac{-2\sqrt{5}}{2}) = 1$$
$$d(-\sqrt{5}) = 1$$
$$d = \frac{1}{-\sqrt{5}}$$

Obtener el valor de b al sustituir el valor de d en la siguiente ecuación del sistema de ecuaciones

$$b + d = 0$$

$$b + (\frac{1}{-\sqrt{5}}) = 0$$

$$b = \frac{1}{\sqrt{5}}$$

Tras resolver el sistema de ecuaciones se tiene que

$$b = \frac{1}{\sqrt{5}}$$
; $d = \frac{1}{-\sqrt{5}}$

Convirtiendo a la ecuación inicial de la recurrencia f_n a lo obtenido con la ecuación U_n

Se obtiene lo siguiente:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$
$$= \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)$$

$$\therefore f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Comprobando la equivalencia de la ecuación obtenida con la ecuación inicial recurrente comparándolos para f_6

Con recurrencia:

$$f_2 = 1 + 0 = 1$$

 $f_3 = 1 + 1 = 2$
 $f_4 = 2 + 1 = 3$
 $f_5 = 3 + 2 = 5$
 $f_6 = 5 + 3 = 8$

Sin recurrencia:

$$f_6 = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^6 - \left(\frac{1 - \sqrt{5}}{2} \right)^6 \right)$$

$$f_6 = 8$$

2. Encontrar orden de complejidad del algoritmo

De acuerdo a la ecuación obtenida de f_n encontraremos el orden de complejidad de la ecuación:

$$O(g(n)) = O(\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n)) \implies O(\frac{1+\sqrt{5}}{2})^n)$$

$$\therefore O(g(n)) = O((\frac{1+\sqrt{5}}{2})^n)$$

3. Demostración por el método de inducción

Hipótesis : Se cumple que: $f_n=\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n)$

Caso base : Demostrar para n = 0

$$f_0 = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^0 - \left(\frac{1 - \sqrt{5}}{2} \right)^0 \right)$$
$$= \frac{1}{\sqrt{5}} (1 - 1) = 0$$

 $\therefore f_0 = 0$

Caso inductivo: Supongamos que se cumple

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right) \tag{3}$$

Por demostrar que se cumple: $f_{n+1} = \frac{1}{\sqrt{5}} ((\frac{1+\sqrt{5}}{2})^{n+1} - (\frac{1-\sqrt{5}}{2})^{n+1})$

Si

$$f_n = f_{n-1}((\frac{1+\sqrt{5}}{2}) - (\frac{1-\sqrt{5}}{2}))$$

entonces

$$f_{n+1} = f_n((\frac{1+\sqrt{5}}{2}) - (\frac{1-\sqrt{5}}{2})) \tag{4}$$

Sustituyendo la ecuación (3) en la ecuación (4)

$$f_{n+1} = \left(\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)\right)\left(\left(\frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)\right)$$
$$f_{n+1} = \left(\frac{1}{\sqrt{5}}\right)\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}\right) - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)$$

Como sí se cumple queda entonces demostrado que la solución de la recurrencia que se ha obtenido sí es correcta.