Metric and Topological Spaces

IB Mich

1 Metric Spaces

- Metric Space = (X, d), a set X, a metric d, satisfying the axioms:
 - 1. $d(a,b) \ge 0$, with equality iff a = b (Positive definite)
 - 2. d(a,b) = d(b,a) (Symmetric)
 - 3. $d(a,c) \le d(a,b) + d(b,c)$ (Triangle inequality)
- Examples:
 - On \mathbb{R}^n : discrete metric (1 if equal, 0 otherwise), Euclidean metric, Manhattan metric, British railway metric
 - On \mathbb{Z} : *p*-adic metric
 - On C[0,1]: uniform metric $(d(f,g) = \max_{x \in [0,1]} |f(x) g(x)|)$
 - Counting (Hamming metric)
- Metric subspace: subset with same metric
- Convergence and continuity can be defined via metric: (see below for alternative definitions of continuity)
- Notions in vector space naturally give metric space:
 - Norm: (positive definite, triangle inequality, scalable), e.g. L^1, L^2 , uniform norm L^{∞}
 - Inner product: (positive definite, symmetric, linear), e.g. dot product, integral etc. Cauchy-Schwarz give triangle inequality

Open and closeness

- Open ball: $B_r(x) = \{y \in X : d(x,y) < r\}$ Closed ball: $\bar{B}_r(x) = \{y \in X : d(x,y) \le r\}$
- Open subset: $U \subseteq X$ is open if $\forall x \in U, \exists \delta > 0$ s.t. $B_{\delta}(x) \subseteq U$ (Every point is interior point)

Closed subset: C is closed in X if $X \setminus C$ is open (Open or close is a property of the *subset*, depends on the parent set

as well)

- Open neighbourhood of x in X: an open subset in X containing x
- Limit point: any point x s.t. there exists sequence $x_n \to x$ (can be approached using a sequence)
- $C \subseteq X$ is closed iff every limit point of C belongs to C
- Properties:
 - $-\emptyset$ and X are open subsets of X
 - Union (finite or infinite, both countable and uncountable) of open sets is an open set
 - Finite intersection of open sets is open

Alternate characterisation of continuity

Using open/close sets, or $\varepsilon - \delta$ definition: Given metric spaces (X, d_x) and (Y, d_y) , $f: X \to Y$, f is continuous

- $\forall x_n \to x, f(x_n) \to f(x)$
- $U \subseteq Y$ open $\implies f^{-1}(U) \subseteq X$ open
- $C \subseteq Y$ open $\implies f^{-1}(C) \subseteq X$ closed
- $\forall x \in X, \forall \varepsilon > 0, \exists \delta > 0 \text{ such that } f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$

Composition of continuous functions is continuous

• A sequence x_n is Cauchy if for all $\varepsilon > 0, \exists N(\varepsilon)$ s.t.

$$d(x_m, x_n) < \varepsilon$$
 whenever $n, m \ge N(\varepsilon)$

(same as IA Analysis)

• A metric space is complete if every Cauchy sequences converges (not a topological property)

2 Topological Spaces

- Topological Space: a set X (the space) and $\tau \subseteq \mathbb{P}(X)$, (the topology) s.t.
 - $-\emptyset, X \in \tau$
 - $-V_{\alpha} \in \tau$ for all $\alpha \in A \implies \bigcup_{\alpha \in A} V_{\alpha} \in \tau$ (finite or ctbly/unctbly infinite)
 - $-V_1, V_2, \dots V_n \in \tau \implies \bigcap_{i=1}^n V_i \in \tau$ (must be finite)

(X is the collection of points, and τ is all subsets we designate to be open)

- Induced topology: From a given metric d, set τ to be the open subsets of X under d
- Examples:
 - Coarse/indiscrete Topology: $\tau = \{\emptyset, X\}$
 - Discrete Topology: all subsets $\tau = \mathbb{P}(X)$ (from discrete metric)
 - Cofinite Topology: $\tau = \{A \subseteq X : X \setminus A \text{ is is finite or } A = \emptyset\}$
 - Right Order Topology on \mathbb{R} : $\tau=\{(a,\infty):a\in\mathbb{R}\}\cup\{\mathbb{R}=(-\infty,\infty),\emptyset\}$
- Continuity, close subsets can be defined only using open sets given by topology

Interior and Closure

Given a topological space (X, τ) , and $A \subseteq X$,

• The interior of A is the union of all open sets, i.e. the largest open set contained in A:

Int
$$(A) = \bigcup \{ U \in \tau : U \subseteq A \}$$

• The closure of A is the intersection of all closed sets, i.e. the smallest closed set containing A:

$$Cl(A) = \bigcap \{F \text{ closed} : F \supseteq A\}$$

 $(\operatorname{Cl}(A^c))^c = \operatorname{Int}(A), \quad (\operatorname{Int}(A^c))^c = \operatorname{Cl}(A)$

- In a metric space (X, d), the closure of $A \subseteq X$ adds in all the limit points of A in X
- A subset $A \subseteq X$ is a dense in $F \subseteq X$ if Cl(A) = F

Homeomorphism

A function $f: X \to Y$ is a homeomorphism $(X \simeq Y, \text{ homeomorphic,} \text{ regarded as the same})$ if

- \bullet f is a bijection
- both f and f^{-1} are continuous

(Must require inverse to also be continuous, since continuous function might not continuous inverse)

- Homeomorphism is an equivalence relation
- Topological properties are preserved by homeomorphisms (things defined only using open sets)

Sequences

- Open neighbourhood can now be defined using the open sets given by the topology: an open subset $U \subseteq X$ s.t. $x \in U$
- Convergent sequence: $x_n \to x$ if for any open neighbourhood U of x, $\exists N \text{ s.t. } x_n \in U$ for all n > N
- A limit point $x \in A \subseteq X$ has sequence $x_n \to x$ where $x_n \in A$ for all n (i.e. for all open neighbourhood U of x, $U \cap A \neq \emptyset$) (Alternative defn's exist)
- If *U* is closed, it contains all its limit points (converse not true for topological space)

In this definition, limit of sequence (if exists) may not be unique, but a special class, Hausdorff space:

- X is a Hausdorff space if for any $x_1, x_2 \in X$, there exist open neighbourhoods U_1 of x_1 , and U_2 of x_2 , s.t. $U_1 \cap U_2 = \emptyset$ (Can separate any two points by open neighbourhoods)
- Any sequence in a Hausdorff space has at most one limit
- Is a topological property

3 New Topological Spaces From Old

Subspace topology

If (X, τ_X) is a topology, $Y \subseteq X$, then the subspace topology on (Y, τ_Y) is given by $\tau_Y = \{Y \cap U \mid U \in \tau_X\}$ (open sets in Y are given by intersecting Y with open sets in X)

• If $Y \subseteq X$, with inclusion $\iota: Y \to X$, then if $f: Z \to Y$ is continuous iff $\iota \circ f: Z \to X$ is continuous

(Defining property: Topology on Y is the smallest topology on Y for which the inclusion $\iota Y \to X$ is continuous)

Product topology

- Basis: for a topological space (X, τ) , a subset $\mathcal{B} \subset \tau$ is a basis for the topology if every $U \in \tau_X$ is a union of elements in \mathcal{B}
- If $(X, \tau_X), (Y, \tau_Y)$ are topological spaces, define product topology on $X \times Y$ using basis

$$\mathcal{B} = \{U_X \times U_Y \mid U_X \in \tau_X, U_Y \in \tau_y\}$$

Alternatively, define by: $V_X \times V_Y \subseteq X \times Y$ is open if for all $(x, y) \in V_X \times V_Y$, there exist open neighbourhoods U_X of x, U_Y of y s.t. $(x, y) \in U_X \times U_Y \subseteq V_X \times V_Y$

Projection maps are continuous

(Defining property: f is continuous iff $\pi_i \circ f$ are continuous)

Quotient topology

Given \sim an equivalence relation on X, quotient map $q: X \to X/\sim$ by q(x)=[x], define quotient topology by: U is open in X/\sim if $q^{-1}(U)$ is open in X

Quotient maps are continuous by construction of X/\sim

(Defining property: $f: X \sim \to Y$ is continuous if and only if $f \circ q: X \to Y$ is continuous)

4 Connectivity

Topological space X is disconnected if $X = A \cup B$, union of two non-empty disjoint open sets (topological property of the space)

- X is disconnected iff \exists homeomorphism $X \to \{0,1\}$ with discrete topology (alternative characterisation)
- $f: X \to Y$ cts, X connected, then im f connected.
- Path from x_0 to x_1 : continuous $\gamma:[0,1]\to X$ s.t. $\gamma(0)=x_0$ and $\gamma(1)=x_1$
- Path connected: there is a path between any 2 points
- Path connected \implies connected
- $f: X \to Y$ homeomorphism, then restricting to any subset $A \subset X$, $f|_A: A \to f(A)$ is also homeomorphism Homeomorphic spaces stay homeomorphic after taking away points
- (n-connectedness)

Components: cut up disconnected space into components

• Path components: $x \sim y$ if there exists path from x to y, take X/\sim the equivalence classes

• Connected components (regular connectivity):

$$C(x) = \bigcup \{\text{connected subsets of } X \text{ containing } x\}$$

, also connected, equivalence classes (read notes again) maximal connected subspaces

5 Compactness

Open cover of X: a family of open sets $\{U_{\alpha} : \alpha \in A\}$ such that $\bigcup_{\alpha \in A} U_{\alpha} = X$ Compactness: every open cover of X has a finite subcover

- Finite subspace is compact, [0, 1] is compact (read proof again)
- Closed subset of compact space is compact (as subspace topology)
- If X Hausdorff, C compact \implies closed in X
- Compact metric space is bounded
- Heine-Borel
- Image of compact set under continuous map is compact
- Maximum value theorem
- If X and Y are compact, then $X \times Y$ is compact
- Compact metric space is complete

Sequential Compactness:

X is sequentially compact if any sequence (x_n) in X has convergent subsequence Equivalent to compactness for metric spaces