C Data Types

In this tutorial, you will learn about basic data types such as int, float, char etc. in C programming.

In C programming, data types are declarations for variables. This determines the type and size of data associated with variables. For example,

int myVar;

Here, myvar is a variable of int (integer) type. The size of int is 4 bytes.

Basic types

Here's a table containing commonly used types in C programming for quick access.

Type	Size (bytes)	Format Specifier
int	at least 2, usually 4	%d, %i
char	1	%с
float	4	%f
double	8	%lf
short int	2 usually	%hd
unsigned int	at least 2, usually 4	%u
long int	at least 4, usually 8	%ld, %li
long long int	at least 8	%11d, %11i
unsigned long int	at least 4	%lu
unsigned long long ir	t at least 8	%llu
signed char	1	%с
unsigned char	1	%с
long double	at least 10, usually 12 or 16	%Lf

C Basic	32-bit		64-bit	
Data Types	CPU		CPU	
	Size (bytes)	Range	Size (bytes)	Range
char	1	-128 to 127	1	-128 to 127
short	2	-32,768 to 32,767	2	-32,768 to 32,767
int	4	-2,147,483,648 to 2,147,483,647	4	-2,147,483,648 to 2,147,483,647
long	4	-2,147,483,648 to 2,147,483,647	8	- 9,223,372,036,854,775,808- 9,223,372,036,854,775,807
long long	8	9,223,372,036,854,775,808- 9,223,372,036,854,775,807	8	9,223,372,036,854,775,808- 9,223,372,036,854,775,807
float	4	3.4E +/- 38	4	3.4E +/- 38
double	8	1.7E +/- 308	8	1.7E +/- 308

int

Integers are whole numbers that can have both zero, positive and negative values but no decimal values. For example, 0, -5, 10

We can use int for declaring an integer variable.

```
int id;
```

Here, id is a variable of type integer.

You can declare multiple variables at once in C programming. For example,

```
int id, age;
```

The size of int is usually 4 bytes (32 bits). And, it can take 2₃₂ distinct states from -21474836480 2147483647.

float and double

Float and double are used to hold real numbers.

```
float salary;
double price;
```

In C, floating-point numbers can also be represented in exponential. For example,

```
float normalizationFactor = 22.442e2;
```

What's the difference between float and double?

The size of float (single precision float data type) is 4 bytes. And the size of double (double precision float data type) is 8 bytes.

char

Keyword char is used for declaring character type variables. For example,

```
char test = 'h';
```

The size of the character variable is 1 byte.

void

void is an incomplete type. It means "nothing" or "no type". You can think of void as **absent**. For example, if a function is not returning anything, its return type should be void. Note that, you cannot create variables of void type.

short and long

If you need to use a large number, you can use a type specifier long. Here's how:

```
long a;
long long b;
long double c;
```

Here variables a and b can store integer values. And, c can store a floating-point number.

If you are sure, only a small integer ([-32,767, +32,767] range) will be used, you can use short.

```
short d;
```

You can always check the size of a variable using the <code>sizeof()</code> operator.

```
#include <stdio.h>
int main() {
    short a;
    long b;
    long long c;
    long double d;

    printf("size of short = %d bytes\n", sizeof(a));
    printf("size of long = %d bytes\n", sizeof(b));
    printf("size of long long = %d bytes\n", sizeof(c));
    printf("size of long double= %d bytes\n", sizeof(d));
    return 0;
}
```

signed and unsigned

In C, signed and unsigned are type modifiers. You can alter the data storage of a data type by using them:

- signed allows for storage of both positive and negative numbers
- •unsigned allows for storage of only positive numbers

For example,

```
// valid codes
unsigned int x = 35;
int y = -35; // signed int
int z = 36; // signed int

// invalid code: unsigned int cannot hold negative integers
unsigned int num = -35;
```

Here, the variables x and x are x and x and x and x are x are x and x are x are x and x are

Considering the size of int is 4 bytes, variable y can hold values from -2_{31} to 2_{31} -1, whereas variable x can hold values from 0 to 2_{32} -1.

Derived Data Types

Data types that are derived from fundamental data types are derived types. For example: arrays, pointers, function types, structures, etc.

We will learn about these derived data types in later tutorials.

- ●bool type
- ●Enumerated type
- Complex types

