kaggle

Kaggle Actuarial Loss Prediction

Presenter: Yi Li

PRISM Public Risk Innovation, Solutions, and Management

About me

- ❖ Yi Li
- ❖ Sr. Data Scientist @ Public Risk Innovation, Solutions, and Management ❖ PRISM
- Featured content creator on Towards Data Science, Level Up Programming etc. //medium.com/@yilistats

Agenda

Actuarial loss prediction overview

 The Actuaries Institute of Australia, Institute and Faculty of Actuaries and the Singapore Actuarial Society are delighted to host the Actuarial loss prediction competition 2020/21.

Goal

Predict workers compensation claims using highly realistic synthetic data

Evaluation Metric

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(y(i) - y(\widehat{i}) \right)^{2}}$$

Dataset

- Training = (54,000, 15)
- Testing = (36,000, 14)

Highlights

- Data is not specific to any legal jurisdiction or country;
- Final winners were determined based on the leaderboard (LB)

Actuarial loss prediction overview (cont'd)

Sample dataset

	0	1	2
ClaimNumber	WC8285054	WC6982224	WC5481426
DateTimeOfAccident	2002-04-09T07:00:00Z	1999-01-07T11:00:00Z	1996-03-25T00:00:00Z
DateReported	2002-07-05T00:00:00Z	1999-01-20T00:00:00Z	1996-04-14T00:00:00Z
Age	48	43	30
Gender	М	F	M
MaritalStatus	М	М	U
DependentChildren	0	0	0
DependentsOther	0	0	0
WeeklyWages	500	509.34	709.1
PartTimeFullTime	F	F	F
HoursWorkedPerWeek	38	37.5	38
DaysWorkedPerWeek	5	5	5
ClaimDescription	LIFTING TYRE INJURY TO RIGHT ARM AND WRIST INJURY	STEPPED AROUND CRATES AND TRUCK TRAY FRACTURE	CUT ON SHARP EDGE CUT LEFT THUMB
Initial Incurred Calims Cost	1500	5500	1700
UltimateIncurredClaimCost	4748.2	6326.29	2293.95

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis (cont'd)

Summary statistics of each numeric variables indicate that standardization is needed.

	count	mean	std	min	25%	50%	75%	max
Age	54000.00000	33.84237	12.12216	13.00000	23.00000	32.00000	43.00000	81.00000
DependentChildren	54000.00000	0.11919	0.51778	0.00000	0.00000	0.00000	0.00000	9.00000
DependentsOther	54000.00000	0.00994	0.10935	0.00000	0.00000	0.00000	0.00000	5.00000
WeeklyWages	54000.00000	416.36481	248.63867	1.00000	200.00000	392.20000	500.00000	7497.00000
HoursWorkedPerWeek	54000.00000	37.73508	12.56870	0.00000	38.00000	38.00000	40.00000	640.00000
DaysWorkedPerWeek	54000.00000	4.90576	0.55213	1.00000	5.00000	5.00000	5.00000	7.00000

Exploratory Data Analysis (cont'd)

❖ InitialIncurred and UltimateIncurred are severely right skewed → Log transformation

Features Selection/ Engineering

Features Selection/Engineering

- The current model uses both the original features and derived features
- Key derived features:
 - o Integer part of the claim number: e.g., WC8285054 \rightarrow 8285054
 - Year and Month of the Accident derived from the DateTimeofAccident: e.g., 2002-04-09T07:00:00Z → 2002, 04
 - <u>Year the claim reported</u> derived from the <u>DateReported</u>: e.g. 1996-04-14T00:00:00Z →
 1996
 - Report delay in Weeks and Months: e.g., week/month of reported week/month of accident
 - Hourly wages derived from the WeeklyWages

Feature correlation,

- Multicollinearity issue?
- No variable has a strong correlation with the (log) UltimateIncurredLoss by itself → interactions

- 0.2

Key derived features: Claims Description

Part of Body: Hand		ClaimDescription	UltimateIncurredClaimCost	
Cause of Injury: Slip	\sim	SLIPPED ON WET FLOOR FRACTURED BASE OF HAND	4027135.93500	11027
		WHILST MASSAGING FELT PAIN SOFT TISSUE INJURY LEFT HAND	865770.64860	23036
		TABLE TIPPED OVER SOFT TISSUE INJURY RIGHT HAND	823706.30120	37813
Part of Body: Hand Cause of Injury:		LIFTING BACK BACK STRAIN	768485.11820	3193
Unknown		SHEARING HAND PIECE BLISTER RIGHT HAND	742003.23350	923
		LIFTING PARTS STRAIN BACK LOWER BACK STRAIN	741498.02750	47532
	1	LIFTING BOX FROM TOOL BOX HERNIA	713784.06360	28959
Part of Body: Lower Back Cause of Injury: Lifting		LIFTING DRUM LOWER BACK PAIN	608650.42590	25148
Jacob St. Injury: Enting				

How to incorporate the Parts of Body and Cause of Injury into modeling?

Unique Parts of Body = 44

['Unknown', 'forearm', 'external', 'hand', 'foreign body', 'arms', 'hernia', 'eyes', 'conjunctivitis', 'concussion', 'chemicals', 'stress', 'wrists', 'fingers', 'teeth', 'wrist', 'legs', 'disc', 'shoulders', 'hands', 'thoracic', 'abdominal', 'vertebrae', 'fumes', 'knees', 'hips', 'depression', 'achilles', 'biceps', 'cervical', 'trapezius', 'bicep', 'ankles', 'hearing', 'thighs', 'toes', 'lungs', 'feet', 'dizziness', 'anxiety', 'asthma', 'blindness', 'eardrum', 'nausea']

Unique Cause of Injury = 78

- One-hot or dummy encoding are sparse for high-dimensional categorical variables,
 - Cause of Injury has 78 values. With one-hot encoding, each value will be mapped to a vector containing 78 integers, and 77 are zeros → not computationally efficient;
- ❖ Reduce the dimensionality of categorical variables → Entity Embedding (Guo & Berkhahn, 2016)

Head	0.4	-0.3	0.6	0.1
Shoulders	0.2	0.2	0.5	-0.3
Knees	0.1	-1.0	1.3	0.9
Depression	-0.6	0.5	1.2	0.7
Forearm	0.9	0.2	-0.1	0.6
Lungs	0.4	1.1	0.3	-1.5
Concussion	0.3	-0.2	0.6	0.0

- Inspired by word2vec;
- Refers to the **representation** of categories by n-dimensional numeric vectors;
- Build a Neural Network model to predict (log)
 UltimateIncurredLoss with each categorical variable;
- Often used as a part of standard training process of Neural Network model, but weights/vectors can also be extracted as input features for other machine learning algorithms;

- Dichotomize InitialIncurred (labeled as Severity):
 - value >= 95% coded as 'High'; values < 95% coded as 'Low'

Feature transformation prior to modeling

Model Training Methodology

Model Training Methodology

ORIGINAL FEATURES

- Transformed
- Target: Log UltimateIncurred

DERIVED FEATURES

- Basic feature engineering
- · Entity embedding

MODEL BUILDING & TUNING

- Training: Validation set = 0.8:0.2
 - · Objective function: MSE
 - Hyperparameters tuning

PREDICTION

Make final predictions against the testing set

- Training set = 54,000*0.8 = 43,200;
 Validation set = 54,000*0.2 = 10,800;
- 10-Fold Cross-Validation to measure the training performance;
- Bayesian optimization method to select the optimal set of hyperparameters.

$$x^* = \arg\min_{x \in \mathcal{X}} f(x)$$

$$P(error|hyperparameters) = \frac{P(hyperparameters|error)P(error)}{P(hyperparameter)}$$

The K-Fold Cross-Validation:

- Training data is split into K subsets, e.g., 10 in the current model;
- K models are trained using all subsets but one;
- Performance of each of the K models is tested on the last subset;
- Average to get the final K-Fold performance.

This approach is efficient and universally works regardless of the modeling algorithms.

Stacking model with two Gradient Boosting Machines (GBM) models – LightGBM and Xgboost – as base learners outperformed.

Algorithm 1 Friedman's Gradient Boost algorithm

Inputs:

- input data $(x, y)_{i=1}^{N}$
- number of iterations M
- choice of the loss-function $\Psi(y, f)$
- choice of the base-learner model $h(x, \theta)$

Algorithm:

- 1: initialize \hat{f}_0 with a constant
- 2: **for** t = 1 to M **do**
- 3: compute the negative gradient $g_t(x)$
- 4: fit a new base-learner function $h(x, \theta_t)$
- 5: find the best gradient descent step-size ρ_t:

$$\rho_t = \arg\min_{\rho} \sum_{i=1}^{N} \Psi \left[y_i, \widehat{f}_{t-1}(x_i) + \rho h(x_i, \theta_t) \right]$$

6: update the function estimate: $\widehat{f}_t \leftarrow \widehat{f}_{t-1} + \rho_t h(x, \theta_t)$

7: end for

Friedman, 2001 Greedy function approximation: A gradient boosting machine

Image Source

Each successive model is built to reduce the errors, a.k.a, *pseudo-residuals*, of all the previous models.

Stacking model with two Gradient Boosting Machines (GBM) models – LightGBM and Xgboost – as base learners outperformed.

- ❖ Stacking model with two Gradient Boosting Machines (GBM) models LightGBM and Xgboost as base learners outperformed → Greedy search to find the weight to each base learner:
 - Prediction = 0.85 * LightGBM + 0.15 * Xgboost

Top 6 features identified by the models,

- Things not worked for the public LB, but worked for the private LB (final standing):
 - Ensemble model: Lasso regression to create a meta-feature, and then including this meta-feature as one predictor to the two base learners
 - More derived features:
 - Binned Initial Incurred Claims Cost
 - Initial Incurred Cost Per Payroll = Initial
 Incurred Claims Cost / WeeklyWages

Unsuccessful Attempts

Unsuccessful Attempts

- Latent Dirichlet Allocation (LDA) topic modeling on Claims Descriptions (inspired by the discussions in the Kaggle forum)
 - Also tried to standardize some words (e.g., stemming and lemmatization) in the Claims
 Descriptions before LDA, e.g., convert 'strained' to 'strain', convert 'laceration' to
 'lacerate'; however, neither seems to work
- Leave One out (LOO) or Frequency encoding for the derived Part of Body variable
- Other derived variables, e.g., Total Dependents = Dependent Children + Dependent Other
- Neural Network model: neither as another base learner nor creating a meta-feature predicted by other features

Final Thoughts

Final Thoughts & Future Explorations

- There's no Evaluation Date in this dataset, hence the Claim Age cannot be calculated. It would be interesting to explore the importance of Claim Age in predicting the ultimate claim loss.
- If the evaluation date is available, it can be used to build out the loss triangle and explore how to incorporate the loss triangle into the machine learning models.

 Other objective functions, e.g., Gamma or Tweedie as they are popular distributions in actuarial loss modeling.

Thank you!

Yi Li

yilistats@gmail.com

medium.com/@yilistats

Public Risk Innovation, Solutions, and Management

Appendix

['WeeksReportDelay', 'MonthsReportDelay', 'MonthOfAccident']

