

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

17413

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Su b Q.	Answer			Marking Scheme	
1	a)	Advanta	ages of Super Critical Boilers (Any fo	ur – each for ½ marks)		
		2. De	provements in plant efficiency. ecrease in Coal Consumption eduction in Green House gases.			
			erall reduction in Auxiliary Power consur	nption.		
			duction in requirement of Ash dyke Land	•		
		6. Slic	ding pressure operation because of Once	through system .		
			Even distribution of heat due to spiral wall arrangement leading to less Boiler tube failure, thereby improving system continuity and availability of the station.			
		8. Lo	w thermal stress in Turbine.			
		9. The	e startup time is less for boiler.			
	b)	Differen	tiate between fire tube boilers and wat	er tube boilers		
				(Any two points each for 1 mark)		
		Sr. No	Fire tube boilers	Water tube boilers	-	
		01	Hot flue gases flow in the tubes surrounded outside by the water	Water flows in the tubes surrounded outside hot gases		
		02	Slower in operation and have low evaporation rates	faster in operation and have low evaporation rates		
		03	Failure due to Temperature stress	Failure due to Temperature stress		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

-				-	
		causing failure of feed water	causing failure of feed water		
	0.4	arrangement is minimum	arrangement is more		
	04	It can work upto 20 bar pressure only	It can work upto 200 bar pressure	 	
	05	Simple and rigid construction	Complex construction	 	
	06	More maintenance and operation cost	less maintenance and operation cost		
	07	Smaller sizes and hence not suitable	Bigger sizes and hence suitable for		
		for large power houses	large power houses		
	08	Installation is difficult	Installation is easy		
	09	Requires less floor area	Requires more floor area		
c)		pression ratio – It is the ratio of total cylin		1M each	
	-	nsion ratio - It is the ratio of volume aftonsion	er expansion to the volume before		
			(Any four – each for ½ mark)		
u)	d) Following are the applications of rotary compressor — 1) Oil refinery 2) Petrol chemical plant 3) Natural gas transmission 4) Refrigeration plant				
		Supercharging of I.C. engines			
e)		It is defined as the operation in which	the suction pipe, casing of the pump	Def.	
	and the	portion of the delivery pipe up to the	delivery valve is completely filled up	1 Mark	
	from ou	itside source with the liquid to be raised	d by the pump before the starting the	IVIAIK	
	pump.				
		This means that when there is no wate	er in the pump, it is running in air. The	Purpos e	
	pressur	e head developed is in terms of meters	of air. Whereas when there is water,	1 Morle	
	· ·	e head developed is in terms of meters o		Mark	
	·	e pressure head developed by air is neg	•		
	-	this water will not be sucked by the pum	, ,		
f)		ns of nozzles are:		1M	
		To accelerate the steam passing through		each	
		To convert pressure energy into kinetic e	nergy, thereby achieving a pressure		
	arop ad	cross the section.			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

g)	stea sha	nm and uses it to do mechanical w	that extracts thermal energy from pressurized ork through the rotation of turbine blades and	1M each		
	equ isen	stant entropy process, in which that all to the entropy of the steam I	considered to be an isentropic process, or ne entropy of the steam entering the turbine is eaving the turbine. No steam turbine is truly tropic efficiencies ranging from 20–90% based			
h)		FAD is the volume of air delivered erature and pressure.	by compressor under the intake conditions of	2M		
	C	Capacity of compressor is generally	given in terms of free air delivery.			
i)	Follo	wing are the applications of comp	pressed air in industry - (Any Four) 1/2 mark			
	each					
		1) To drive air motors in coal r	nines.			
		,				
	2) To inject fuel in air injection diesel engines.					
	3) To operate pneumatic drills, hammers, hoists, sand blasters.					
	4) For cleaning purposes.					
		5) To cool large buildings.				
		6) In the processing of food and	d farm maintenance.			
		7) In vehicle to operate air brak	ke.			
		8) For spray painting in paint in	ndustry.			
j)	Comp	parison of reciprocating compress	or with centrifugal compressor (Any 4 points)	½ Mark each		
	Sr.	Reciprocating Compressor	Centrifugal Compressor			
	01	Compression of air takes place	Compression of air takes place due to	-		
		due to reciprocating motion of				
	02	piston. Deliver of air intermittent	Delivery of air continuous.			
	03	Delivery pressure is high.	Delivery pressure is low.	-		
	04	Flow rate of air is low.	Flow rate of air is high.			
	05	Speed of compressor is low	Speed of compressor is high because of			
		because of unbalanced forces.	perfect balancing.			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION <u>Model Answer</u>

		06	It has more number of moving	It has less number of moving parts, less wear				
			parts, more wear and tear, more lubrication and maintenance	and tear therefore less lubrication and maintenance required.				
			required.	mantenance required.				
		07	Used when small quantity of air	Used when large quantity of air at lower				
		00	at high pressure required.	pressure required				
		08	It has suction and discharge	In rotary compressor, valves are replaced by				
			valves.	ports in the housing.				
	k)		peller peller	Guide vanes Impeller	1M each			
			Volute casing	Casing with guide blades				
2	a)			Function of each part – 1 mark				
_	a,	 Piston – It is the heart of the engine. It's function is to compress the fresh charge during the compression stroke and to transmit the force produced due to combustion of the charge to the connecting rod and then to the crank during the power stroke 						
		 Crank - The function of the crankshaft is to translate the line reciprocating motion of a pistons into the rotational motion required I the automobile. 						
		 Piston ring – The upper piston rings are called compression rings and to function is to provide gas tight seal and to prevent leakage of high pres gas. The lower piston rings are called oil control rings whose function provide effective seal and to prevent the leakage of oil into the en cylinder. 						
			-	of the engine in which piston reciprocates to ners are inserted into the cylinder when the				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

b	Methods of Energy saving in air compressor	1M
	1. Cooling cylinder by spraying water during compression stroke.	each
	2. Circulation of water surrounding to cylinder by providing jackets	
	3. Installing inter cooler between two cylinders	
	4. Providing greater fins on cylinder	
	5. By selecting suitable material for cylinder	
	6. By providing suitable choice of cylinder proportions i.e. short stroke and large	
	bore in construction with sleeve valve	
С	BENSON BOILER (sketch 02 marks, Explain-02 marks)	
	It is a water tube boiler capable of generating steam at	
	supercritical pressure. Figure shows the schematic of Benson boiler. Mark	
	Benson, 1992 conceived the idea of generating steam at supercritical	
	pressure in which water flashes into vapour without any latent heat	
	requirement. Above critical point the water transforms into steam in the	
	absence of boiling and without any change in volume i.e. same density.	
	Contrary to the bubble formation on tube surface impairing heat transfer	
	in the normal pressure boilers, the supercritical steam generation does not	
	have bubble formation and pulsations etc. due to it. Steam generation also	
	occurs very quickly in these boilers. As the pressure and temperatures have	
	to be more than critical point, so material of construction should be strong	
	enough to withstand thermal stresses. Feed pump has to be of large	
	capacity as pressure inside is quite high, which also lowers the plant	
	efficiency due to large negative work requirement. Benson boilers	
	generally have steam generation pressure more than critical pressure and	
	steaming rate of about 130–135 tons/hr. Thermal efficiency of these	
	boilers is of the order of 90%.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified) SUMMER-2018 EXAMINATION

17413

SUMMER-2018 EXAMINA <u>Model Answer</u>

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

Problem	Cause	Solution	
i) Compressor will not operate.	1. No electrical power.	Turn on power. Push the reset button.	Any Two causes
	2. Low oil level.	Check oil level. Replace your oil if necessary	For 2M
	3. Pressure switch not making contact.	See pressure switch adjustment.	
	4. Pressure in the tank is below the cut-in pressure.	See pressure switch adjustment. Replace pressure switch to one that Has a lower cut-in PSI	
ii) Excessive noise in operation.	1. Loose pulley, flywheel, belt, belt guard, cooler, clamps or accessories.	Tighten any loose ends.	
	2. Lack of oil in crankcase.	Check for possible damage to bearings Replenish the oil level.	Any
	3. Piston hitting the valve plate.	Remove the compressor cylinder head and inspect for foreign matter on top of the piston. Add a new gasket and reassemble the head.	Two causes For 2M
	4. Compressor floor mounting loose.	Tighten the bolts on the air compressor It may also be a good idea to replace Your vibration pads	٠.
	5. Defective crankcase.	Repair or replace.	
	6. Excessive crank end play.	Adjust and shim properly.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

17413

3 Q3 (a) For double acting pump, for one complete reevolution of the crank there are two delivery strokes + water is delivered to the pipes by the pump during these two delivery Strokes Let, D = Diameter of the piston. d = Diameter of the Piston rod ... Area on one side of the piston A = TT/4D2 Azea on the other side of the piston, where piston read is connected to the piston Y' = # D5 - 1/495 It d' the diameter of the Piston rod is very small as compared to the diameter of the piston, then it can be neglected. volume of water delivered in one reevolution of crank = A x Length of + A, x Length of stroke $= A L + A_1 L$ = (R + A,) L = [T/2 D2 + T/4 D2 - T/4 d2] x L $= 2 \frac{\pi}{4} D^2 \times L \qquad (1m)$.. Discharge of pump sec. = volume of water delivered in one revolution x No. of revolution /sn. $=2\frac{\pi}{4}D^2\times L\times \frac{N}{60}=\frac{2LAN}{60}$ - (Im)

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

17413

work done | sec = Weight of water x height

= eg x Discharge | sec x Total

= eg x Discharge | sec x height

= eg x Discharge | sec

It has cylindrical casing having an eccentrically mounted rotor inside it. The rotor has number of slots in it with rectangular vanes of spring loaded type mounted in slots. These vanes are generally non-metallic and made of fibre or carbon composites or any other wear resistant material. These vanes remain in continuous contact with casing such that leakage across the vane-casing interface is minimum or absent. It has one end as inlet end and other as the delivery end connected to receiver. Upon rotation the eccentric rotor has the vanes having differential projection out of rotor depending upon their position. Air is trapped between each set of two consecutive blades in front of inlet passage and is positively displaced to the delivery end after compressing the volume V1 initially to V2, V3 and V4. When compressed volume comes in front of delivery passage and further rotation results in the situation when partly

compressed air is forced to enter the receiver as their is no other way out. This

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

17413

cumulative transfer of partly compressed air in receiver causes irreversible compression resulting in gradual pressure rise.

(02 Marks)

Vane type compressor

(02 marks)

c) Provisions under boiler act for remedial measures are (4 provisions, each for 1 mark)

No owner of a boiler shall use the boiler or permit it to be used

- 1. Unless it has been registered in accordance with the provision of this act
- 2. In the case of any boiler which has been transferred from one state to another, until the transfer has been reported in the prescribed manner
- 3. Unless certificate or provisional order authorizing the use of the boiler is for the time being in force under this act
- 4. At a pressure higher than the maximum pressure recorded in such certificate or provisional order
- 5. Where the State Government has made rules requiring that boilers shall be in charge of persons holding certificates of proficiency or competency unless the boiler is in charge of a person holding the certificate required by such rules.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

d)	Indicated Power (ip) – It is defined as the power developed by combustion of fuel in the cylinder of engine. It is always more than brake power.	1 M each
	Break Power (bp) -The power available at the engine crankshaft is called the brake power (bp)	
	Friction Power (fp) — It is the power required to overcome the friction in engine parts. It is the difference between indicated power and break power.	
	Mechanical Efficiency- It is the ratio of the power available at the engine crankshaft (bp) to the power developed in the engine cylinder (ip).	
e)	i) Domestic water lifting – Centrifugal Pumpii) Bore wells – Submersible pump	1M each
	iii) Service station of automobile – Reciprocating pump	
	iv) Irrigation - Centrifugal Pump	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-2018 EXAMINATION Model Answer

17413

93. (f) f) W= 202 N S= 31N N= 455 29m. effective brake wheel dia = 631 mm b.P. = 2 TNT $= 2\pi \times 455 \times (202-31) \times 0.631$ = 2.572 KW ___ (2 Maiks) Indicated mean

effective Pressure = Dia. Spring

(Pm)

Length of Indicator (onstar $=\frac{422}{62}\times1.2$ = 8.17 bar - (1 mark) I.P. = Pm.L.A. N n=2 for four stroke cycle = 8.17 ×105 ×0.151 × = x(0.1)2 x 455 = 3.65 KW - (1 Maik)