Software Testing and Validation

Corso di Laurea in Informatica

The NuSMV Model Checker

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

CTL (and LTL) Model Checking

- We saw the theoretical algorithm for CTL model checking
 - ullet we said it was not effective, as it required S and R to be in RAM
- Actually, there are methodologies which are able to fit S and R in RAM, also for industrial-sized models
- The "father" of the model checkers using such technologies is SMV
 - Symbolic Model Verifier
 - it has then been refactored as NuSMV
- This set of techniques is referred to as symbolic model checking
 - Murphi and SPIN style is dubbed explicit model checking

CTL (and LTL) Model Checking

- In order to understand how symbolic model checking works, we need some preliminaries
- ROBDDs
 - needed to actually fit S and R in RAM
- μ -calculus
 - together with fixpoint computation
 - extension of λ -calculus
 - needed to efficiently implement CTL and LTL model checking using ROBDDs

ROBDD

- Reduced Ordered (Complemented Edges) Binary Decision Diagrams
 - sometimes called simply OBDDs, and even BDDs
 - here we stick to the precise notation, by also outlining the differences
- Let us start with the basis: BDD
- A BDD is a data structure representing a boolean function
 - of course, OBDDs and ROBDDs are data structures as well
 - we will define them in the following

Boolean Functions

- In our setting a boolean function is $f: \mathbb{B}^n \to \mathbb{B}$
 - where $\mathbb{B} = \{0,1\}$ is the set of boolean values
 - 0 stands for false, 1 for true
 - thus, our boolean functions have n boolean variables as arguments
 - and return a single boolean value

Examples:

- 0 and 1 are boolean functions with n = 0
- complementation $(f(x) = \neg x)$ and identity (f(x) = x) are boolean functions with n = 1
- AND $(f(x, y) = x \land y)$, OR $(f(x, y) = x \lor y)$ are boolean functions with n = 2
- generally speaking, there are 2^{2^n} different boolean functions of n boolean variables

All Boolean Functions of 2 Variables

p	q	F ⁰	NOR ¹	#2	¬p³	 →4	¬q ⁵	XOR ⁶	NAND ⁷	AND ⁸	XNOR ⁹	q ¹⁰	→ ¹¹	p ¹²	←13	OR ¹⁴	T ¹⁵
т	т	F	F	F	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т
F	т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т
F	F	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т

Boolean Functions Representation

- Roughly speaking, if you have f(x) = x + 1 with $x \in \mathbb{R}$, you can only represent f through its computation
 - rules s.t., given x, you compute x + 1
- For boolean functions, the explicit tabular representation is also possible (*truth table*)
 - a table with n+1 columns
 - first n columns are for variables values
 - last column is for function value
 - of course, you need 2ⁿ rows

Boolean Functions Representation

- A truth table must take into account all possible values for all its n arguments
- Which leads to a $O(2^n)$ RAM required
 - even with optimizations (e.g., only 1 column is actually needed)
- This also implies $O(2^n)$ time to compute composition of functions
 - e.g., $f \wedge g$
- One very good thing about truth tables: they are canonical
 - for a function f, given the (standard) order of the lines, there is only one truth table

Boolean Functions Representation

- What about CNF or DNF?
 - CNF: $(x_1 + x_2)(\bar{x}_3 + x_4)$
 - DNF: $x_1\bar{x}_3 + x_1x_4 + x_2\bar{x}_3 + x_2x_4$
 - recall that + is OR, · is AND, ¬ is negation
- Difficult to compute function compositions
- Difficult to obtain a minimal representation
- Above all, not canonical: there may be multiple CNFs or DNFs for the same function
 - also if you consider the minimal one

Boolean Functions for Model Checking

- In Model Checking algorithms, the following operations are needed:
 - compute the returned value for a given tuple of values b_1, \ldots, b_n
 - could be ok for truth tables
 - test of equivalence between boolean functions $f_1 \equiv f_2$
 - not ok for truth tables
 - needs canonicity
 - compute the representation of a logical combination of boolean functions
 - e.g.: given the representation of f_1, f_2 , compute the representation of $f_1 \wedge f_2$
 - not ok for truth tables
- Goal: find a representation able to fulfill such requirements
 - while possibly requiring less than $O(2^n)$

Binary Decision Diagrams

- Roughly speaking, it is a connected DAG (Directed Acyclic Graph), i.e., a tree
 - only one root
 - each internal node has two successors
 - nodes are labeled by boolean variables
 - edges are labeled by boolean values
 - only two leaves, labeled with boolean values

Binary Decision Diagrams

Represented function: $f(a, b, c, d) = ab + \bar{a}cd + a\bar{b}cd$

BDDs: Formal Definition

- A BDD is a tuple $\mathcal{B} = \langle V, E, r, \mathcal{V}, \text{var}, \text{low}, \text{high} \rangle$ where:
 - V is a finite set of nodes containing two special nodes 0 and 1
 - $E \subseteq V \times V$ is a set of edges s.t.:
 - there are no cycles, i.e., for all path $\pi = v_0, \ldots, v_n$, where $\forall i = 0, \ldots, n.$ $v_i \in V$ and $\forall i = 0, \ldots, n-1.$ $(v_i, v_{i+1}) \in E$, we have that $i \neq j$ implies $v_i \neq v_j$
 - let $S(v) = \{w \in V \mid (v, w) \in E\}$ be the set of successors of v
 - each internal node has exactly two successors, i.e., $\forall v \in V \setminus \{0,1\}. |S(v)| = 2$
 - ullet 0 and 1 are terminal nodes, i.e., $\forall v \in \{0,1\}$. |S(v)| = 0
 - $r \in V$ is the root (i.e., $\forall v \in V$. $(v, r) \notin E$)
 - low, high : $V \to V$ is the labeling of edges
 - the labeling must be consistent with E, i.e., $\forall v \in V$. low(v), $high(v) \in S(v)$

BDDs: Formal Definition

- A BDD is a tuple $\mathcal{B} = \langle V, E, r, \mathcal{V}, \text{var}, \text{low}, \text{high} \rangle$ where:
 - \bullet \mathcal{V} is a finite set of boolean variables
 - \bullet thus, the boolean function represented by ${\cal B}$ will depend on variables in ${\cal V}$
 - ullet it may be a subset of ${\mathcal V}$
 - $\operatorname{var}:V\to\mathcal{V}$ is the labeling of nodes
- ullet A maximal path in ${\cal B}$ starts from r and ends up either in ${f 0}$ or ${f 1}$
- ullet The semantics of ${\cal B}$ is the boolean function represented by ${\cal B}$
 - ullet intuitively, we follow all maximal paths which end up in 1
 - formally: next slide

BDDs: Semantics

- Given a BDD $\mathcal{B} = \langle V, E, r, \mathcal{V}, \text{var}, \text{low}, \text{high} \rangle$, we recursively define the semantics of each node $v \in V$
 - each node may be seen as the root of a subtree...
 - ullet notation: $[\![v]\!]_{\mathcal{B}}$, or simply $[\![v]\!]$ when \mathcal{B} is understood
- Terminal nodes denote the boolean constants:

$$[0] = false, [1] = true$$

- For internal nodes $v \in V \setminus \{0, 1\}$, semantics is defined as $||v|| = \text{var}(v) ||\text{high}(v)|| + \overline{\text{var}(v)} ||\text{low}(v)||$
 - recall that + is OR, \cdot is AND, $\bar{\cdot}$ is negation
- The semantics of \mathcal{B} is of course [r]

Canonicity of BDDs

- ullet For a given BDD ${\cal B}$, we have a unique represented boolean function
- Given a boolean function f, there is a BDD \mathcal{B} representing f, i.e., $[r]_{\mathcal{B}} = f$
- However, there may be a BDD $\mathcal{B}' \neq \mathcal{B}$ s.t. $[\![r']\!]_{\mathcal{B}'} = f$ as well thus. BDDs are not canonical
- Thus, ROBDDs are introduced: by setting limitations, they achieve canonicity
 - for a boolean function f, there exists a unique ROBDD representing f
- Furthermore, for increasing efficiency, complemented edges are introduced
 - number of nodes is reduced

OBDDs

- An OBDD (Ordered BDD) $\mathcal{B} = \langle V, E, r, \mathcal{V}, \text{var}, \text{low}, \text{high}, \text{ord} \rangle$, is a BDD with an additional ord function
- ullet Namely, $\mathrm{ord}:\mathcal{V}
 ightarrow \{1,\ldots,|\mathcal{V}|\}$
- The following properties must hold
 - ord is injective, i.e., $\forall v, w \in \mathcal{V}$. ord $(v) = \operatorname{ord}(w) \to v = w$
 - note that this implies that ord is indeed bijective...
 - defines an *ordering* on variables in V, e.g., if ord(v) = 10 then v is the tenth variable
 - given a path π on \mathcal{B} , variables on nodes follow ord
 - i.e., $\forall \pi = v_0, \dots, v_n$ s.t. $\forall i = 0, \dots, n$. $v_i \in V$ and $\forall i = 0, \dots, n-1$. $(v_i, v_{i+1}) \in E$ and $v_n \notin \{0, 1\}$, we have that i < j implies $\operatorname{ord}(\operatorname{var}(v_i)) < \operatorname{ord}(\operatorname{var}(v_i))$

OBDDs

Supposing that $V = \mathcal{V}$, a possible ordering is: $\operatorname{ord}(a) = 1, \operatorname{ord}(b) = 2, \operatorname{ord}(c) = 3, \operatorname{ord}(d) = 4$ If b were connected to d instead of c, also: $\operatorname{ord}(a) = 1, \operatorname{ord}(b) = 3, \operatorname{ord}(c) = 2, \operatorname{ord}(d) = 4$

COBDDs

- A COBDD (Complemented edges OBDD) $\mathcal{B} = \langle V, E, r, \mathcal{V}, \mathrm{var}, \mathrm{low}, \mathrm{high}, \mathrm{ord}, \mathrm{flip} \rangle \text{, is an OBDD with an additional flip} : V \setminus \{\mathbf{1}\} \rightarrow \{0,1\}$
- For an internal node v, if flip(v) holds then the *else edge* of v is complemented
- There is now only one terminal node 1
 - ullet 0 is not needed because of complementation
- Semantics changes, also a flipping bit $b \in \{0,1\}$ is necessary
- ullet Terminal node denote the boolean constants: $[\![{f 1},b]\!]=ar{b}$
- For internal nodes $v \in V \setminus \{1\}$, semantics is defined as $\llbracket v, b \rrbracket = \text{var}(v) \llbracket \text{high}(v), b \rrbracket + \overline{\text{var}(v)} \llbracket \text{low}(v), b \oplus \text{flip}(v) \rrbracket$
- Semantics of \mathcal{B} is [r, flip(r)]

COBDDs

Represented function: $f(a, b, c, d) = ab + \bar{a}cd + a\bar{b}cd$

straight: then, dashed: else, dotted: complemented else

ROBDDs

- A ROBDD (Reduced OBDD) ${\cal B}$ is a COBDD with the least number of nodes
 - among the ones representing the same boolean function
- From now on, as usual in the literature, we will use OBDD as synonym for ROBDD
- Efficient algorithms (O(n), being n the number of nodes) exist to compute the AND and the OR of two OBDDs
 - negation is O(1): just complement flip(r)!
- Typically implemented with hash tables of already computed ROBDDs
 - speedup computations, make it easier to find shared subtrees
 - equality check is O(1): just compare r and r'
- Furthermore: multi-rooted DAG can be used to represent multiple functions, sharing some nodes

Other Important OBDD Operations

- Application: given the OBDD for $f(x_1, ..., x_i, ..., x_n)$, compute the OBDD for $f(x_1, ..., 0, ..., x_n)$ or $f(x_1, ..., 1, ..., x_n)$
 - sometimes also written $f(x_1,\ldots,x_n)|_{x_i=0}$ or $f(x_1,\ldots,x_n)|_{x_i=1}$
 - Shannon expansion: for every boolean function f, $f(x_1,...,x_n) = \bar{x}_i f(x_1,...,x_n)|_{x_i=0} + x_i f(x_1,...,x_n)|_{x_i=1}$
- Given f(x, y), compute the OBDD for:
 - existentialization: $\exists x: f(x,y) \equiv f(0,y) + f(1,y)$
 - universalization: $\forall x. \ f(x,y) \equiv f(0,y) \cdot f(1,y)$
 - both generalized to multiple variables x_1, \ldots, x_n
- Given f(x), g(x), h(x), compute the OBDD for ITE(f, g, h)
 - ITE stands for if-then-else
 - thus, $ITE(f, g, h) = fg + \bar{f}h$

OBDD and Model Checking

- OBDDs extremely good in representing characteristic functions of finite sets
 - the characteristic function $\chi:U\to\{0,1\}$ of a set $X\subseteq U$ is defined as

$$\chi(x) = \begin{cases} 1 & \text{if } x \in X \\ 0 & \text{otherwise} \end{cases}$$

- If *U* is finite, then each element $x \in U$ may be encoded using $n = \lceil \log(|U|) \rceil$ boolean variables x_1, \ldots, x_n
- ullet Thus, χ may be represented by an OBDD on x_1,\ldots,x_n
 - as for Model Checking, we may represent S, Reach(S), R, ...
 - R will need 2n variables!
 - CTL Model Checking algorithm becomes feasible!
 - for many interesting real-sized systems, S, Reach(S), R will now fit in RAM

OBDD and Model Checking

- The most difficult part is to derive the OBDD for *R* directly from the model specification
 - i.e., from the model checker input language
 - it would be rather difficult to do it with SPIN
 - especially because it has a dynamic state space
 - also the one for Murphi would require some effort
 - S is easy, you only have to look at global variables
 - not in SPIN...
- NuSMV input language is tailored to be easily translated into OBDDs
 - also into CNF, as we will see...

NuSMV

- SMV (Symbolic Model Verifier): McMillan implementation of the ideas in the famous paper "Symbolic model checking: 10²⁰ states and beyond"
 - McMillan PhD dissertation about SMV is one of the most important dissertations in Computer Science
- SMV has been then re-written and standardized by the research group in Trento (also Genova and CMU collaborated), thus becoming NuSMV
 - the engine is still McMillan's work
 - code has been nearly entirely commented, and made more readable
 - some features has been added: interactive mode, bounded model checking
 - OBDDs are handled via the CUDD library (Somenzi at Colorado University)

 Somenzi at Cultura (Somenzi at Cultura (Somenzi


```
Taken from examples/smv-dist/short.smv
MODULE main
VAR.
  request : {Tr, Fa}; -- same as saying boolean
                      -- (stand for True and False)
  state : {ready, busy};
ASSIGN
  init(state) := ready;
  next(state) := case
                   state = ready & (request = Tr): busy;
                   TRUE : {ready,busy};
                 esac;
SPEC
  AG((request = Tr) -> AF state = busy)
```

- One module, there may be more, but one of them must be named main
- Module variables are those declared with VAR
- Base types are like Murphi ones: enumerations and integer subranges, plus the word type (i.e., an array of bits)
- Arrays are possible, but can be indexed only with constants
- Structures are modeled through modules
 - that is, each module has its variables (fields of a structure) and may be instantiated many times

- ASSIGN section specifies the set I (via init) and the relation R (via next)
 - as in Murphi, there expressions which are essentially guard/action
 - differently from Murphi, each action deals with one variable only
 - the guard may be defined on any other variable (and it is typically the case)
 - if something is not specified, then it is understood to be non-deterministic
 - indirect specification; also direct specification is allowed, as we will see

NuSMV Input Language: ASSIGN

- E.g., in short.smv initial states are those in which state is ready and request may be either Tr or Fa
- Thus, there are 2 initial states $I = \{\langle \texttt{ready}, \texttt{Tr} \rangle, \langle \texttt{ready}, \texttt{Fa} \rangle \}$, which may be represented with $\langle \texttt{ready}, \bot \rangle$
- Also next(request) is not specified; before analyzing what does this mean, let us see next(state)
- The case expression works as follows: the first condition C
 which is evaluated to true is fired, other true guards possibly
 following C are ignored

NuSMV Input Language: ASSIGN

- This allows to put 1 (i.e., true) as the last guard, representing the "default" case
- NuSMV also checks if a case expression is exhaustive in its conditions, as this allows it to assume that R is total
- Note that the last condition on state leads to a non-deterministic transition: if the first guard is false, then state may take any value between ready e busy, that is any value in its domain
- In general, any subset of the variable domain may be used

NuSMV Input Language: ASSIGN

- request is completely non-deterministic, as it does not occur in any next
- I.e., if other rules tells that the system may go from s to t and $(\texttt{request} = \texttt{Fa}) \in L(t)$, then there exists a transition from s to t' with $(\texttt{request} = \texttt{Tr}) \in L(t')$ and $L(t) \setminus \{(\texttt{request} = \texttt{Fa})\} = L(t') \setminus \{(\texttt{request} = \texttt{Tr})\}$
- Simply stated, if the system may go from s to t and request
 has a value v in t, then the system may also go from s to t'
 s.t. t and t' only differ in the value of request, which is
 different from v
- By combining all non-determinism in this example, the Kripke structure defined here excludes just two transitions

Automata for short.smv: I and R

OBDDs for short.smv: /

Straight lines are then-edges
Dashed lines are else-edges
Dotted lines are complemented-else-edges

OBDDs for short.smv: R

Straight lines are then-edges
Dashed lines are else-edges
Dotted lines are complemented-else-edges
request.0 "false" edge corresponds to Tr

next(state.0)

Trans

0x22

0x20


```
MODULE main
VAR.
  request : {Tr, Fa};
  state : {ready, busy};
ASSTGN
  init(state) := ready;
  next(state) := case
                    state = ready & (request = Tr): busy;
                    TRUE : {ready, busy};
                 esac;
SPEC
  AG((request = Tr) -> AF state = busy)
```

```
MODULE main
VAR.
  request : {Tr, Fa};
  state : {ready, busy};
ASSTGN
  init(state) := ready;
  next(state) := case
                   state = ready & (request = Tr): busy;
                   TRUE : ready;
                 esac;
SPEC
  AG((request = Tr) -> AF state = busy)
```

OBDDs for short.smv: R

UNIVERSITÀ DEGLI STUDI DELL'AQUILA

OBDDs for short.soloready.smv: R

OBDDs for short.smv: Reach

The one for soloready is the same


```
MODULE main
VAR.
  request : {Tr, Fa};
  state : {ready, busy};
ASSTGN
  init(state) := ready;
  next(state) := case
                    state = ready & (request = Tr): busy;
                   TRUE : ready;
                 esac;
  next(request) := request;
SPEC
  AG((request = Tr) -> AF state = busy)
```

<code>OBDDs</code> for <code>short.soloready.req_const.smv</code>: R

OBDDs for short.soloready.req_const.smv: Reach


```
MODULE main
VAR
   m1 : 0..15; -- m1.0 is MSB!
   m2 : 0..15;
   m3 : 0..30;
ASSIGN
   next(m3) := m1 + m2;
SPEC
   AG(m3 <= 30);</pre>
```



```
MODULE main
VAR.
  m1 : 0..15;
  m2 : 0..15;
  m3 : 0..30;
ASSIGN
  next(m3) := case
    m1*m2 \le 30: m1*m2;
    TRUE: m3;
  esac;
SPEC
  AG(m3 \le 30);
```


OBDDs for Adder and Multiplier: I

This is a set with $16 \cdot 16 \cdot 31 = 7936$ elements Just one node to represent it...

OBDDs for Adder: R

OBDDs for Multiplier: R

- Number of variables is 13 for both models
 - 4 each for m1 and m2, plus 5 for m3
- Number of BDD nodes:
 - adder: 47
 - multiplier: 538

- No magic: SAT could be solved using OBDDs
 - just represent the instance with an OBDD and check if it is different from 0
 - very roughly speaking: if it were possible to solve it "efficiently" in this way, P=NP...
- Thus, there are boolean functions for which OBDDs representation is exponential, regardless of variable ordering
 - one example is the multiplier seen above
- It is not possible to say if OBDDs will be a good way to represent a problem, before trying it
 - for the adder, it is much more efficient
- Furthermore, finding a variable order in order to minimize the OBDD representation for a given function is an NP-complete problem

- This also holds for Model Checking in general
- Not possible to say a-priori if a system will fit in the available resources when using a model checker
 - RAM and computation time
- Also, it is not possible to decide which model checker is better
 - explicit (Murphi-or-SPIN like) or symbolic (NuSMV like)?
- However, we are going to see some guidelines
 - as for OBDDs: a good ordering is to interleave present and future variables
 - variable ordering: if OBDDs grow, the model checker can try a different variable ordering


```
MODULE counter_cell(carry_in)
VAR value : boolean;
ASSIGN
  init(value) := 0;
  next(value) := (value + carry_in) mod 2;
DEFINE carry_out := value & carry_in;
MODULE main
VAR.
  bit0 : counter_cell(1);
  bit1 : counter_cell(bit0.carry_out);
  bit2 : counter_cell(bit1.carry_out);
SPEC AG(!bit3.carry_out)
```


Counter Cell

- 2 modules, main and counter_cell
- Main instantiates the module counter_cell for 3 times
- This is an hardware-like instantiation: the main module contains 3 equal copies of the counter_cell module, the only difference being the lines in input
- Note that this means the module main will have 3 copies of variable value

- Note that carry_out (being inside a DEFINE section) is not a variable, as it is only a shortcut for the expression it defines
 - i.e., there will not be a corresponding variable in the OBDD
 - and indeed, it is not declared as a variable...
- Hence, bit0 will always sum 1 to its internal variable, and bit1 will sum 1 only if bit0 will generate a carry
- The main module defines a counter from 0 to 7


```
MODULE user(semaphore)
VAR.
  state : {idle, entering, critical, exiting};
ASSIGN
  init(state) := idle;
  next(state) :=
    case
      state = idle: entering;
      state = entering & !semaphore: critical;
      state = critical: {critical, exiting};
      state = exiting: idle;
      TRUE : state;
    esac;
```

```
next(semaphore) :=
  case
  state = entering: TRUE;
  state = exiting: FALSE;
  TRUE: semaphore;
  esac;
```



```
MODULE main
VAR.
  semaphore : boolean;
  proc1 : process user(semaphore);
  proc2 : process user(semaphore);
ASSTGN
  init(semaphore) := FALSE;
SPEC
  AG(!(proc1.state = critical & proc2.state = critical))
LTLSPEC
  G F proc1.state = critical
```

- In the previous examples, all variables were evolving at the same time
- There is a global clock as in a synchronous digital circuit: given the current value for all variables in the current clock tick, in the next clock tick all variables may change their variables at the same time (synchronously: hardware parallel execution)
- In this example, instead, instantations are processes
- I.e., just one variable at a time may change; other variables are forced to stay fixed
- No dynamic process spawning as in SPIN: the number of processes is known from the beginning

- Synchronous vs. asynchronous systems
- In asynchronous systems, there is essentially one (implicit) additional module, which acts as a scheduler
- This is indeed what the verification algorithm does
- Each process is automatically provided with an additional variable running which is true iff that process is currently running


```
MODULE inverter(input)
VAR.
  output : boolean;
ASSIGN
  init(output) := 0;
  next(output) := !input;
MODULE main
VAR.
  gate1 : process inverter(gate3.output);
  gate2 : process inverter(gate1.output);
  gate3 : process inverter(gate2.output);
SPEC
  AG(!gate2.output | !gate3.output)
```

Inverter Cell

Using direct specification it is possible to define non-total transition relations or empty initial states set

```
MODULE inverter(input)
VAR
   output : boolean;
INIT
   output = 0
TRANS
   next(output) = !input
```



```
Without processes, is it equivalent?
MODULE inverter(input)
VAR.
  output : boolean;
ASSIGN
  init(output) := 0;
  next(output) := !input union output;
                 -- or {!input, output}
MODULE main
VAR.
  gate1 : inverter(gate3.output);
  gate2 : inverter(gate1.output);
  gate3 : inverter(gate2.output);
```


NuSMV As A Tool

- NuSMV is provided with an interactive shell, as there are many tasks it may accomplish (simulation, many verification options); see user maual from chapter 3, especially Figure 3.1 at page 87
- Differently from explicit model checkers, no need to give separate commands to generate a file to be compiled and executed: all is represented as OBDDs, you only have to use them properly
- Executing a non-interactive verification in NuSMV is the same as giving the following list of interactive commands
- 1. read_model reads and stores the syntactic structure of the input model
 - no OBDDs here: tree-like structure, but representing the syntactic structure of the input (abstract syntax tree)

NuSMV As A Too

- 2. flatten_hierarchy (recursively) brings inside main all modules instantiated by main
 - very similar to the unfolding we mentioned for Murphi and SPIN: for such explicit model checkers, this was only needed for theoretical purposes, in order to define the Kriepke structure of an input model
 - here, it must be actually performed in the source code of NuSMV, in order to then be able to encode R and I as OBDDs
 - to this aim, there must be only one module, the main, containing all variables coming from the modules it instantiates (to be applied recursively)
 - note that, again, this resembles digital circuits, where such a flattening is a natural operation
 - this could entail adding a scheduler module if processes are used

NuSMV As A Tool

- 3. encode_variables for each variable x with domain D s.t. |D| > 2, NuSMV defines $x_1 \ldots, x_m$ boolean variables with $m = \lfloor \log_2 |D| \rfloor + 1$; it also defines the encoding for constants used in the input models
- 4. build_flat_model combines the result of the preceding operations to obtain the flattenized and boolenized syntactic structure which represents the Kriepke structure defined by the input model
- 5. build_model from the syntactic structure to OBDDs for R
 ed I (plus other ones)
- 6. check_ctlspec (or check_ltlspec, or both, depending on what you have to verify); it starts the actual verification
 - we will be back soon on these last 2 steps

From Syntactic Structure to OBDDs

- How does build_model work?
- All operations must be implemented bitwise (bit-vector)
 - this means that we have to build the corresponding digital circuit, remember the Digital Systems Design course?
 - if we have to implement a sum between two variables encoded with maximum 4 bits (note that result is on 5 bits):

From Syntactic Structure to OBDDs

- Analogously, you can represent other arithmetic operations (subtract, multiply, divide)
- With other simple digital circuits, also equality and ordering can be easily implemented
 - e.g., next(a) = b + c is translated in this way:
 - \bullet multiple OBDDs are used to sum all bits of b and c
 - an OBDD B is created which is true iff all variables of next(a) are equal to such OBDDs
 - e.g., next(a) = case a < b: b + c; TRUE : a is translated in this way:
 - again we have B as before, plus an OBDD C which is true if a
 b
 - then, NuSMV computes the OBDD ITE(C, B, a)

- From a NuSMV model \mathcal{M} (defined with the ASSIGN section) to the corresponding Kriepke structure $\mathcal{S} = (S, I, R, L)$
 - $V = \langle v_1, \dots, v_n \rangle$ is the set of variables defined inside the main module of \mathcal{M} , with domains $\langle D_1, \dots, D_n \rangle$
 - note that each D_i may be the instantiation of other modules
 - in which case, again, all variables must be considered as unfolded
 - that is, if a variable v is the instantiation of a module with k variables, then v counts as k variables instead of one
 - if one of such k variables is another instantiation, this procedure must be recursively repeated
 - NuSMV calls this operation hierarchy flattening
 - essentially, it is the same as for records in Murphi
 - simple types are the recursion base step

- $S = D_1 \times ... \times D_n$ (as in Murphi)
- I is defined by looking at init predicates
 - $s \in I$ iff, for all variables $v \in V$, $s(v) \in \text{init}(v)$
 - note that, by NuSMV syntax, each init(v) is actually a set (possibly a singleton)
 - if init(v) is not specified in \mathcal{M} , then any value for v is ok: in this case, formally, if $s \in I$, then also $s' \in I$ being $s'(v') = s(v') \forall v' \neq v$

- R is defined by looking at next predicates
 - we assume all next predicates to be defined by the case construct (if not, simply assume it is the case construct with just one TRUE condition)
 - for each (flattened) variable v, we name $g_1(v), \ldots g_{k_v}(v)$ the conditions (guards) of the case for next(v), and $a_1(v), \ldots a_{k_v}(v)$ the resulting values (actions) of the case for next(v)
 - note that, by NuSMV syntax, each $a_i(v)$ is actually a set (possibly a singleton)
 - $(s, s') \in R$ iff, for all variables $v \in V$, if $g_i(s(v)) \land \forall i < i \neg g_i(s(v)) \text{ then } s'(v) \in a_i(v)$
 - that is, s may go in s' iff, for all variables v, if the values of vin s satisfy the guard g_i (and none of the preceding guards for the same variable), then the value of v in s' is one of the values specified by the case for guard g_i
 - note that, in doing this, you also have to resolve inputs for modules

- $AP = \{(v = d) \mid v = v_i \in V \land d \in D_i\}$
- $(v = d) \in L(s)$ iff variable v has value d in s
- ullet If, instead, the NuSMV model ${\mathcal M}$ is defined with the TRANS section, then
 - $V = \langle v_1, \dots, v_n \rangle$ is the set of variables as above and $S = D_1 \times \dots \times D_n$
 - I is defined by looking at INIT section
 - $s \in I$ iff, for all variables $v \in V$ and for all INIT sections \mathcal{I} , $\mathcal{I}(s(v))$ holds
 - R is defined by looking at TRANS section
 - $(s, s') \in R$ iff, for all variables $v \in V$ and TRANS sections T, T(s(v), s'(v)) holds

λ -calculus: Representing Functions

- In a nutshell: using f(x) has some drawbacks
 - you are forced to name a function (f in the example above)
 - it is not always clear if a letter is a parameter or an argument
 - it is not computationally clear what happens for multiple inputs
 - f(x,y): do you have to provide both x, y, otherwise you get an error?
 - as an alternative, you may provide just one argument, and obtain a new function
 - e.g. f(x,y) = x + y, we have that f(x,4) is a function on x

λ -calculus: Representing Functions

- Instead of writing f(x) = E(x), for some expression E(x), we write $\lambda x.E(x)$
 - if you want, you can name a function $f(x) = \lambda x.E(x)$
- $\lambda(x,y).x+y$: both arguments must be given, otherwise it is an error
- $\lambda x \lambda y.x + y$: if you provide x = 4 only, you get a function $\lambda y.4 + y$
- If an OBDD contains variables x_1, \ldots, x_n , then it represent some function $\lambda x_1 \ldots \lambda x_n$. $E(x_1, \ldots, x_n)$

- In a nutshell: we have a set L with an ordering \leq
 - \leq could be partial, i.e., not defined on some pair $(l_1, l_2) \in L \times L$
 - L, \leq is a *complete lattice* if any subset $A \subseteq L$ has a greatest lower bound and a least upper bound in L
 - $\sup A = \min\{\xi \in L \mid \forall \alpha \in A. \ \alpha \leq \xi\} \rightarrow \sup A \in L$
 - inf $A = \max\{\xi \in L \mid \forall \alpha \in A. \ \xi \leq \alpha\} \rightarrow \inf A \in L$

- Let $I = \{0, ..., 10\}$, then $2^I, \subseteq$ is a complete lattice
 - e.g., $\{0,1,2\} \leq \{0,1,2,3\},$ whilst $\{0,1,2\},\{0,1,3\}$ cannot be compared
 - $\sup\{\{0,1,2\},\{0,1,3\}\} = \min\{\xi \in 2^I \mid \forall \alpha \in \{0,1,2\},\{0,1,3\}.\alpha \subseteq \xi\} = \min\{\{0,1,2,3\},\dots,I\} = \{0,1,2,3\}$
 - $\inf\{\{0,1,2\},\{0,1,3\}\} = \max\{\xi \in 2^I \mid \forall \alpha \in \{0,1,2\},\{0,1,3\}.\xi \subseteq \alpha\} = \max\{\{0,1\},\dots,\varnothing\} = \{0,1\}$
- 2^{I} , \subseteq is always a complete lattice, if I is a finite set
 - sup $J = \bigcup_{\xi \in J} \xi$, inf $J = \bigcap_{\xi \in J} \xi$
 - at the worst, sup J = I and inf $J = \emptyset$

- Suppose you have a function $T:L\to L$. An element $\xi\in L$ is a fixpoint of T iff $T(\xi)=\xi$
- Given a T, there may be several fixpoints: we are interested in the maximum or the minimum of such fixpoints
 - notation μT and νT
 - ullet where typically T is expressed with a λ notation
 - $\mu T \equiv \xi$ s.t. $T(\xi) = \xi \land \forall \rho \in L. T(\rho) = \rho \rightarrow \xi \leq \rho$
 - $\nu T \equiv \xi$ s.t. $T(\xi) = \xi \land \forall \rho \in L. T(\rho) = \rho \rightarrow \rho \leq \xi$

- Let again $I = \{1, ..., 10\}$
- Let $T: 2^I \to 2^I$ be defined as $T(\xi) = \xi$, or better $T \equiv \lambda \xi. \xi$
 - we have $\mu T = \emptyset$, $\nu T = I$
- Let $T \equiv \lambda \xi . \emptyset$
 - we have $\mu T = \nu T = \emptyset$
- Let $T \equiv \lambda \xi$. $\xi \cup \{10\}$
 - we have $\mu T = \{10\}, \nu T = I$
- Let $T \equiv \lambda \xi$. $\xi \setminus \{10\}$
 - we have $\nu T = \{0, \dots, 9\}, \mu T = \emptyset$

- We define sets by their characteristic function, thus let us rewrite the previous examples
 - ullet thus the ξ in $\lambda \xi$ is a function $\xi:I o \{0,1\}$
 - it represents a set X, thus $\xi(x) = 1$ iff $x \in X$
- $T \equiv \lambda \xi . \xi$ is ok also if ξ is a characteristic function
- $T \equiv \lambda \xi.\emptyset$ could be rewritten as $T \equiv \lambda \xi.\lambda x.0$
- $T \equiv \lambda \xi. \xi \cup \{10\}$ could be rewritten as $T \equiv \lambda \xi. \lambda x. [x = 10 \rightarrow 1] \land [x \neq 10 \rightarrow \xi(x)]$ • $\mu T \equiv \lambda x. x = 10, \nu T \equiv \lambda x. 1$
- $T \equiv \lambda \xi . \xi \setminus \{10\}$ could be rewritten as $T \equiv \lambda \xi . \lambda x . [x = 10 \rightarrow 0] \land [x \neq 10 \rightarrow \xi(x)]$
 - $\nu T \equiv \lambda x. x \neq 10, \mu T \equiv \lambda x.0$

- We deal with monotonic (i.e., increasing or decreasing) T, thus fixpoints always exists
 - $\xi \leq \rho \rightarrow T(\xi) \leq T(\rho)$, T monotonically increasing
 - $\xi \leq \rho \rightarrow T(\rho) \leq T(\xi)$, T monotonically decreasing
- Previous examples are all monotonic
- By (weak) Knaster-Tarski theorem, $\mu T = \inf\{\xi \mid T(\xi) \le \xi\}$
 - analogously, $\nu T = \sup\{\xi \mid T(\xi) \ge \xi\}$

μ -calculus: Fixpoints Computation

- Consequence of Knaster-Tarski: computing μT and νT may be done as follows
- For $k \ge 1$, let $T^k(\xi) = T(T^{k-1}(\xi))$, with $T^1 = T$
- For least fixpoints (μT) , start with \varnothing , and apply T since $T^k(\varnothing) = T^{k-1}(\varnothing)$
 - of course, $\emptyset = \lambda x.0$
- For greatest fixpoints (νT) , start with U, and apply T since $T^k(U) = T^{k-1}(U)$
 - of course, $U = \lambda x.1$
- At most, k = |U|

Computation of Fixpoints in CTL Model Checking

- Given a KS S = (S, I, R, L), we want to label states, i.e., to identify subsets of S
 - those for which a given labeling holds
 - labels are CTL/LTL subformulas
- Thus, $L=2^S$, \leq is \subseteq and $T:2^S \rightarrow 2^S$
 - in the following, $x = x_1, \dots, x_n$ with $n = \lceil \log |S| \rceil$
 - characteristic functions of subsets of S
 - thus, each subset of S (member of 2^S) is an OBDD
 - hence, a T takes an OBDD and returns another (possibly modified) OBDD
- At most, k = |S|
 - usually, much less than that

- The "really interesting" fixpoints are those which are recursively defined
 - typically, basing on some other already defined sets, i.e., characteristic functions
 - e.g., $T \equiv \lambda \xi. \lambda x. f(x) \lor \xi(x)$, where $f: S \to \{0,1\}$ is known
 - the compactly-written least and greatest fixpoints are $\mu Q.\lambda x.f(x) \vee Q(x)$ and $\nu Q.\lambda x.f(x) \vee Q(x)$
 - e.g., $T \equiv \lambda \xi . \lambda x . f(x) \wedge \xi(x)$
 - e.g., $T \equiv \lambda \xi . \xi(x)$
- By the Knaster-Tarski theorem and the previous reasoning, we may apply the following algorithms
 - least fixpoints μ are computed for increasing T
 - ullet greatest fixpoints u are computed for decreasing T
 - viceversa are trivial: μT is $\lambda x.0$ for decreasing T and νT is $\lambda x.1$ for increasing T

Computation of Least (Minimum) Fixpoint

```
OBDD lfp(MuFormula T) /* \mu Z.T(Z) */
{
  Q = \lambda x. 0:
  Q' = T(Q);
  /* T clearly says where Q must be replaced */
  /* e.g.: if \mu Z. \lambda x. f(x) \vee Z(x), then
      Q' = \lambda x. f(x) \vee Q(x) */
  while (Q \neq Q') {
    Q = Q';
    Q' = T(Q);
  return Q; /* or Q', they are the same... */
```

Computation of Greatest (Maximum) Fixpoint

```
OBDD gfp(NuFormula T) /* \nu Z.T(Z) */ {  Q = \lambda x.1; \\ Q' = T(Q); \\ \text{while } (Q \neq Q')  {  Q = Q'; \\ Q' = T(Q); \\ \} \\ \text{return } Q;
```

Symbolic Model Checking of AGp

- The idea is to compute the set of reachable states, and check if for all of them p holds
- Reach = μZ . λx . $[I(x) \lor \exists y : (Z(y) \land R(y,x))]$
 - \bullet of course, we get an OBDD on x as a result
 - recall that x (and y) is a vector of all boolean variables
- $\forall x \in S$. Reach $(x) \rightarrow p(x)$
 - computationally easier: check that $\operatorname{Reach}(x) \wedge \neg p(x) = 0$
 - otherwise, we have a reachable state for which p does not hold...

Symbolic CTL Model Checking

- All CTL formulas can be reduced to 3: EXf, f EU g, EGf
 - all other formulas may be reduced to these three, using negation and other boolean combinations
 - with OBDDs, we can do all such things!
- Given OBDDs for f (and g), we compute the OBDD representing EXf, f EU g, EGf
 - that is, the OBDD for the set $X = \{s \in S \mid S, s \models \mathbf{EX}f\}$ etc
- Let it be *B*: then, simply check $\neg B(x) \land I(x) = 0$
 - recall that $\mathcal{S} \models \Phi$ iff $\forall s \in I$. $\mathcal{S}, s \models \Phi$
- **EX** f does not require a fixpoint computation: it is equivalent to (the OBDD representing) λx . $\exists y : R(x,y) \land f(y)$

Symbolic CTL Model Checking

- For f EU g, recall that it is equivalent to the CTL formula g ∨ (f ∧ EX(f EU g))
- Thus, $f \in U = \mu Z$. λx . $g(x) \lor (f(x) \land EXZ(x)) = \mu Z$. λx . $g(x) \lor (f(x) \land (\exists y : R(x,y) \land Z(y)))$
 - note that $g(x) \lor (f(x) \land \mathbf{EX}Z(x))$ is increasing, i.e. for $Z_1 \subseteq Z_2$ we have that $(g(x) \lor (f(x) \land \mathbf{EX}Z_1(x)) \to (g(x) \lor (f(x) \land \mathbf{EX}Z_2(x))$
- Analogously: **EG** $f = f \land \mathbf{EX}(\mathbf{EG}f)$, thus **EG** $f = \nu Z$. λx . $f(x) \land \mathbf{EX}Z(x) = \nu Z$. λx . $f(x) \land (\exists y : R(x,y) \land Z(y))$
 - note that $f(x) \wedge \mathbf{EX} Z(x)$ is decreasing, i.e. for $Z_1 \subseteq Z_2$ we have that $(f(x) \wedge \mathbf{EX} Z_2(x)) \rightarrow (f(x) \wedge \mathbf{EX} Z_1(x))$

CTL Model Checking

```
bool checkCTL(KS S, CTL \varphi) {
   let S = \langle S, I, R, L \rangle;
    B = LblSt(\varphi);
    return \lambda x. I(x) \wedge \neg B(x) = \lambda x. 0;
}
OBDD Lb1St(CTL \varphi) { /* also S = \langle S, I, R, L \rangle */
  if (\exists p \in AP. \varphi = p) return \lambda x. p(x);
 else if (\varphi = \neg \phi) return \lambda x. \neg LblSt(\phi)(x);
  else if (\varphi = \phi_1 \wedge \phi_2)
   return \lambda x.LblSt(\phi_1)(x)\wedgeLblSt(\phi_2)(x);
 else if (\varphi = \mathbf{E} \mathbf{X} \phi)
   return \lambda x. \exists y : R(x,y) \land LblSt(\phi)(y);
  else if (\varphi = \mathbf{E}\mathbf{G}\phi)
    return gfp (\nu Z. \lambda x. \text{LblSt}(\phi)(x) \wedge (\exists y : R(x,y) \wedge Z(y)));
  else if (\varphi = \phi_1 \text{ EU } \phi_2)
   return lfp (\mu Z. \lambda x. \text{LblSt}(\phi_2)(x) \vee
       (LblSt (\phi_1)(x) \wedge (\exists y : R(x,y) \wedge Z(y)));
```