Inquire, __Inspire and ____ Innovate

TMA1201 Tutorial 05 - T3 Relation and function

- Suppose $A = \{1, 2, 3\}$ and $B = \{0, 2, 6, 9\}$ and R is relation on sets A and B that $R = \{(x, y) \in A \times B \mid x \text{ divides } y\}$
 - i) Find the Cartesian products of $A \times B$
 - ii) List all the elements of R.
 - iii) Draw the corresponding arrow diagrams of $A \times B$ and R.
- 2 Given

 $P = \{(1,1), (1,2), (2,5), (3,6), (4,2), (5,0)\}$ and $Q = \{(0,1), (2,1), (3,5), (6,2)\}$

Find

a) P^2

b) Q^2

c) $P \circ Q$

d) $O \circ P$

- 3. Given two relations $R = \{(1,1), (2,1), (3,2), (4,3)\}$ and $T = \{(1,3), (2,2), (2,3), (3,3), (3,4), (4,4)\}$ on the set $S = \{1,2,3,4\}$.
 - a) Is R reflexive? Is R symmetric? Is R antisymmetric? Is R transitive? Justify each of your answer.
 - b) Is R an equivalence relation? Is R a partial order relation? Justify each of your answer.
 - c) Is R a function? Is T a function? Justify each of your answer.
 - d) Find R^{-1} and T^{-1} .
 - e) Find $R \circ T$ and $T \circ R$.
- 4. Determine whether the following relations, R_1 and R_2 on the set of integers is reflexive, symmetric, antisymmetric, and/or transitive. Justify your answer.
 - a) $R_1 = \{(x,y) \mid x + y = 0\}$
 - b) $R_2 = \{(u,v) \mid uv \ge 0\}$
- 5. Suppose $C = \{0, 1, 2\}$, $D = \{3, 5, 7, 14\}$ and the relation $R = \{(x, y) \in C \times D \mid 2x + 5 = y\}$ and $S = \{(x, y) \in C \times D \mid x + y \text{ divisible by 5}\}$.
 - a) List all the elements of *R*. Determine whether *R* is a function? Explain your answer
 - b) List all the elements of *S*. Determine whether *S* is a function? Explain your answer.

6. Let f, g and h be the following functions.

$$f: Z \to \{-1, 1\}$$
 defined as $f(x) = \begin{cases} 1, & \text{if } x \text{ is even.} \\ -1, & \text{if } x \text{ is odd.} \end{cases}$

$$g: \mathbb{Z} \to \mathbb{R}$$
 defined as $g(x) = x^2 - \frac{1}{2}$.

$$h: \{x \mid x \in R \land x \ge 0\} \rightarrow \mathbb{R} \text{ defined as } h(x) = \sqrt{x} + 2.$$

- a) Determine the range of f, g and h.
- b) Is f one to one? Is g one to one? Is h one to one?
- c) Is f onto? Is g onto? Is h onto?

7. Suppose

$$f: R^+ \to R^+$$
 where $f(x) = \sqrt{2x}$ and $g: Z^+ \to Z$ and $g(x) = x^4 + 2$.

- a) Determine the range of f and g.
- b) Is f one to one? Is g one to one? Explain your answers.
- c) Is f onto? Is g onto? Explain your answer.