Matemática Discreta

Mariam Cobalea

Universidad de Málaga Dpto. de Matemática Aplicada

Introducción

- ➤ La noción de "conjunto" es uno de los conceptos básicos de Matemáticas.
- > La Teoría de Conjuntos se define mediante un Sistema Axiomático.
- > Se entiende por
 - conjunto: cualquier colección de objetos que se puede tratar como una entidad.
 - elemento: cada uno de esos objetos.

Los objetos de un conjunto pueden ser

- físicos (un conjnto de estudiantes o un conjunto de ciudades), o bien
- abstractos (un conjunto de números o de ideas)

Especificación de conjuntos

Dado un objeto x y un conjunto 5, puede ocurrir que:

• x sea un elemento de S, entonces se escribe:

 $x \in S$ y se lee:

x pertenece a S

② x no sea un elemento de S, entonces se escribe:

 $x \notin S$ y se lee:

x no pertenece a S

Mariam Cobalea (UMA) Matemática Discreta 3 / 36

Especificación de conjuntos

- > Un conjunto se caracteriza por sus elementos.
- Por lo tanto, un conjunto se puede especificar estableciendo qué objetos están en él.
- Esto se puede hacer de varias maneras:
 - Explícitamente
 - Implícitamente

Especificación de conjuntos

Explícitamente

- ✓ En algunos casos se puede dar una lista de sus elementos.
- ✓ La notación que se usa es la siguiente: los elementos se separan por comas y la lista se delimita por llaves.

Por ejemplo, un conjunto cuyos elementos son 0 y 1 se designa

$$\{0, 1\}$$

✓ Cuando el número de elementos sea suficientemente grande se pueden usar puntos suspensivos. Por ejemplo, el conjunto de los enteros múltiplos de tres se denota

$$\{ \cdots, -6, -3, 0, 3, 6, \cdots \}$$

Especificación de conjuntos

• ¡OJO!: Hay que tener cuidado de que no exista ambigüedad.

Ejemplo Si escribimos $\{3,5,7,\cdots,23\}$ se puede interpretar como

- Enteros impares desde 3 hasta 23, que es el conjunto {3,5,7,9,11,13,15,17,19,21,23}, o bien
- Enteros primos desde 3 hasta 23, que es el conjunto {3,5,7,11,13,17,19,23}

Especificación de conjuntos

Conjuntos numéricos

- $\mathbb{N} = \{0, 1, 2, 3, \dots\}$: Conjunto de los números naturales.
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$: Conjunto de los números enteros.
- $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$: Conjunto de los números enteros positivos.
- Q: Conjuntos de los números racionales.
- R: Conjuntos de los números reales.

Especificación de conjuntos

Implicitamente

- ✓ En otros casos no podemos (o no nos interesa) dar la lista. Por eso, necesitamos otra forma de describir estos conjuntos.
- \checkmark Esta especificación se hace mediante un predicado $\mathcal P$ con una variable libre.
- ✓ La notación es $S = \{ \ x \quad | \quad \mathcal{P}(x) \ \}$ que significa

" S es el conjunto de todos los elementos ${\bf x}$ que verifican el predicado ${\cal P}$ "

Ejemplo El conjunto S de las soluciones de la ecuación $x^2 - 5x + 6 = 0$ se puede representar

$$\{ x \mid x^2 - 5x + 6 = 0 \}$$

Especificación de conjuntos

- Para determinar si un elemento c está en s, basta con estudiar si el predicado p se verifica para dicho elemento.
- ightharpoonup Un elemento c estará en s si y solo si verifica el predicado s.

$$c \in S \iff \mathcal{P}(c)$$
 es verdadero

Ejemplo
$$3 \in S = \{ x \mid x^2 - 5x + 6 = 0 \}$$
, ya que

$$3^2 - 5 \cdot 3 + 6 = 0$$

Ejercicio Sea
$$A = \{x \mid 3x = 6\}$$
 ¿Es $A = 2$?

Mariam Cobalea (UMA) Matemática Discreta 9 /

Especificación de conjuntos

Ejemplo El conjunto de enteros comprendidos entre 0 y 1 se puede representar:

$$\{ x \mid x \in \mathbb{Z} \land 0 < x < 1 \}$$

- > Como sabemos, no existen enteros comprendidos entre 0 y 1.
- > Así pues, nos encontramos con un conjunto sin elementos.
- \triangleright A este conjunto se le conoce como *conjunto vacío* y se denota \emptyset .

$$\emptyset = \{\}$$

- > En muchas aplicaciones, es habitual trabajar en un conjunto fijo, un conjunto que contiene todos los objetos que estamos considerando.
- \succ Este conjunto se llama Universo o conjunto universal y se denota \mathcal{U} .

Mariam Cobalea (UMA) Matemática Discreta 10 / 36

Igualdad e Inclusión de conjuntos

Definición

Dos conjuntos A y B son **iguales** si tienen los mismos elementos.

$$A = B$$
 $\stackrel{def.}{\Longleftrightarrow}$ $\forall x (x \in A \iff x \in B)$

Cada elemento del conjunto A es un elemento del conjunto B y cada elemento del conjunto B es un elemento del conjunto A.

Ejemplo Son iguales los conjuntos

$$\textit{A} = \{ \; \textit{x} \; | \; \textit{x}^2 - 5\textit{x} + 6 = 0 \; \} \quad \textit{y} \quad \textit{B} = \{2,3\}$$

Mariam Cobalea (UMA) Matemática Discreta 11

Igualdad e Inclusión de conjuntos

 Un conjunto se especifica explícitamente con una lista y el orden en la lista no importa

$${a,b,c,} = {b,a,c}$$

- ◆ Además, $\{a,b,a\} = \{a,b\} = \{a,a,a,b,b\}$ son especificaciones diferentes del mismo conjunto.
- Por otra parte, el mismo conjunto se puede especificar implícitamente con distintos predicados.

Ejemplo

$$\{x \mid x = 0\} = \{x \mid x \in \mathbb{Z} \land -1 < x < 1\}$$

Igualdad e Inclusión de conjuntos

Definición

Dados los conjuntos A y B, se dice que A está contenido en B si todo elemento de A es también un elemento de B.

$$A \subseteq B \qquad \stackrel{def.}{\Longleftrightarrow} \qquad \forall x(x \in A \rightarrow x \in B)$$

Se denota $A \subseteq B$ y se lee:

"el conjunto A está contenido en el conjunto B"

- Si $A \subseteq B$, se dice que A es un **subconjunto** de B.
- Y si en el conjunto B podemos encontrar elementos que no están en A, decimos que A es un *subconjunto propio* de B. Lo denotamos $A \subset B$.

$$A \subset B \iff A \subset B \land A \neq B$$

Mariam Cobalea (UMA) Matemática Discreta 13

Igualdad e Inclusión de conjuntos

Ejemplo Sean los conjuntos:

$$A = \{3,5\}, B = \{x \mid x \text{ es un entero primo menor que 9 }\}, C = \{2,3,5,7\}$$

- Veamos que A es un subconjunto propio de B
 - > 3 \in A y 3 un entero primo menor que 9, luego 3 \in B
 - \gt 5 \in A y 5 es un entero primo menor que 9, luego 5 \in B
 - > 7 \in *B* pero 7 \notin *A*
 - \triangleright Por lo tanto, $A \subset B$.
- Veamos que B = C
 - $ightharpoonup C \subseteq B$, ya que todo elemento de C es un elemento de B.
 - \succ Como además todo elemento de *B* está en *C*, tenemos que $B \subseteq C$.
 - \rightarrow Así, B = C.

Igualdad e Inclusión de conjuntos

Ejercicio 1 Sean los conjuntos:

$$B = \{1,3\}, C = \{1,5,9\}, D = \{1,2,3,4,5\}, E = \{1,3,5,7,9\}$$

Inserte el símbolo correcto \subseteq o $\not\subseteq$ entre:

- i) B y C ii) B y D
- iii) B y E iv) C y D
- v) C y E vi) D y E

Teorema

El conjunto vacío está contenido en todos los conjuntos.

Igualdad e Inclusión de conjuntos

• [OJO!]: NO hay que confundir la pertenencia \in de un elemento en un conjunto con la inclusión \subseteq entre conjuntos.

Ejercicio 2

Establece si son verdaderas o falsas las siguientes afirmaciones:

- i) $a \in \{a\}$ ii) $a \subseteq \{a\}$
- iii) $\{a\} \in \{a\}$ iv) $\{a\} \subseteq \{a\}$
- v) $\{a,b\} \in \{a,\{a,b\}\}\$ vi) $\{a,b\} \subseteq \{a,\{a,b\}\}\$

16 / 36

Igualdad e Inclusión de conjuntos

Ejercicio 2

Establece si son verdaderas o falsas las siguientes afirmaciones:

i)
$$a \in \{a\}$$

ii)
$$a\subseteq\{a\}$$

iii)
$$\{a\} \in \{a\}$$

iii)
$$\{a\} \in \{a\}$$
 iv) $\{a\} \subseteq \{a\}$

v)
$$\{a,b\} \in \{a,\{a,b\}\}\$$
 vi) $\{a,b\} \subseteq \{a,\{a,b\}\}\$

vi)
$$\{a,b\}\subseteq\{a,\{a,b\}\}$$

Ejercicio 3

Establece si son verdaderas o falsas las siguientes afirmaciones:

i)
$$\emptyset \subseteq \{\emptyset\}$$
 ii) $\emptyset \in \{\emptyset\}$

ii)
$$\emptyset \in \{\emptyset\}$$

iii)
$$\{\emptyset\}\subseteq$$

iii)
$$\{\emptyset\}\subseteq\emptyset$$
 iv) $\{\emptyset\}\in\{\emptyset\}$

 $\{\emptyset\}$ representa un conjunto cuyo único elemento es el conjunto vacío.

Conjunto de las partes de un conjunto

Definición

El conjunto de las partes de un conjunto S, denotado $\mathcal{P}(S)$, es el conjunto de todos sus posibles subconjuntos.

$$\mathcal{P}(S) = \{X \mid X \subseteq S\}$$

Ejemplo 1 Para el conjunto $S = \{1, 2, \}$, tenemos que

$$\mathcal{P}(S) = \{\varnothing, \{1\}, \{2\}, \{1, 2\}\}$$

Ejemplo 2

Dado un alfabeto Σ , un *lenguaje* es cualquier subconjunto de Σ^* .

Así, el conjunto $\mathcal{P}(\Sigma^*)$ de las partes de Σ^* es el conjunto de todos los posibles lenguajes que se pueden definir con símbolos de Σ .

Mariam Cobalea (UMA) Matemática Discreta 18 / 36

Conjunto de las partes de un conjunto

Representación en ordenador

Dado un conjunto S formado por n elementos, cada subconjunto $X \subseteq S$ se puede representar mediante cadenas binarias de longitud n.

De esta forma, el conjunto de todas las posibles cadenas binarias de longitud n representará al conjunto $\mathcal{P}(S)$.

Ejemplo El subconjunto $C = \{a, c\}$ del conjunto $S = \{a, b, c\}$ se puede representar como la cadena binaria 101.

Y el conjunto

$$\{000, 100, 010, 001, 110, 101, 011, 111\}$$

representará al conjunto de las partes de S.

Operaciones entre conjuntos

Dados los conjuntos A y B, podemos formar otros conjuntos a partir de ellos.

Definición

La unión de dos conjuntos A y B es el conjunto

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Definición

La intersección de dos conjuntos A y B es el conjunto

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Si $A \cap B = \emptyset$, se dice que los conjuntos A y B son disjuntos.

Propiedades de la unión y la intersección de conjuntos

Teorema

Sean los conjuntos A, B, C $\subseteq \mathcal{U}$. Se verifican las siguientes propiedades:

```
1. Conmutativa: A \cup B = B \cup A
                                                     A \cap B = B \cap A
```

2. Asociativa:
$$A \cup (B \cup C) = (A \cup B) \cup C$$
 $A \cap (B \cap C) = (A \cap B) \cap C$

3. Absorción:
$$A \cup (A \cap B) = A$$
 $A \cap (A \cup B) = A$

4. Idempotencia:
$$A \cup A = A$$
 $A \cap A = A$

Mariam Cobalea (UMA) Matemática Discreta 21 / 36

Propiedades de la unión y la intersección de conjuntos

Teorema

Sean los conjuntos A, B, C $\subseteq \mathcal{U}$. Se verifican las siguientes propiedades:

5. Cotas:
$$A \subseteq B \iff A \cup B = B \iff A \cap B = A$$

6. Identidad:
$$\varnothing \cup A = A$$
 $A \cap \mathcal{U} = A$

7. Dominancia:
$$A \cup \mathcal{U} = \mathcal{U} \qquad \varnothing \cap A = \varnothing$$

8. Distributiva:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Mariam Cobalea (UMA) Matemática Discreta 22 /

Propiedades de la unión y la intersección de conjuntos

 La propiedad asociativa de la unión y de la intersección permite prescindir de los paréntesis cuando aplicamos estos operadores a más de dos conjuntos

$$A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C)$$

$$A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C)$$

También podremos utilizar expresiones del tipo

$$\bigcup_{i=1}^n A_i, \qquad \bigcap_{i=1}^n A_i$$

para representar la unión y la intersección, respectivamente, de una familia de conjuntos.

23 / 36

Partición de un conjunto

Definición

Una partición de un conjunto S es una familia $\mathcal{T} = \{S_1, ..., S_k\}$ de subconjuntos de S, tales que son disjuntos dos a dos y su unión es S.

- $\forall i, j \ \mathsf{S}_i \cap \mathsf{S}_j = \varnothing$,
- $S_1 \cup S_2 \cup ... \cup S_k = S$

Ejemplo La familia
$$\mathcal{\Pi}=\big\{\ \{1,3\},\{2,5\},\{4\}\big\}$$
 es una partición del conjunto
$$S=\{1,2,3,4,5\}$$

Ejemplo Una partición del conjunto $\mathbb N$ es

$$\{\{x \in \mathbb{N} \mid x \text{ es par }\}, \{x \in \mathbb{N} \mid x \text{ es impar }\}\}$$

Ejercicio Dado el conjunto $S = \{a, b, c\}$, halla el conjunto de todas las particiones de S.

Mariam Cobalea (UMA) Matemática Discreta 24 /

Operaciones entre conjuntos

Definición

La **diferencia** de dos conjuntos A y B es el conjunto de elementos de A que no están en B

$$A - B = \{x \mid x \in A \land x \notin B\}$$

- \checkmark A-B también se llama complemento relativo de B en A.
- ✓ Para $A \subseteq \mathcal{U}$, el complemento relativo de A en \mathcal{U} recibe el nombre de *complementario* de A y se denota \overline{A} .

Ejemplo
$$A = \{1, 2, 3, 4\}, B = \{3, 5, 7\}, A - B = \{1, 2, 4\}$$

Ejercicio Demuestra que
$$A - B = A \cap \overline{B}$$
 (*)

Mariam Cobalea (UMA) Matemática Discreta 25

Propiedades de la unión, intersección y complementación de conjuntos

Teorema

Sean los conjuntos A, B, C $\subseteq \mathcal{U}$. Se verifican las siguientes propiedades:

 $A \cup \overline{A} = \mathcal{U}; \qquad A \cap \overline{A} = \emptyset$ 9. Complemento:

10. DeMorgan:

 $\overline{(A \cup B)} = \overline{A} \cap \overline{B}; \qquad \overline{(A \cap B)} = \overline{A} \cup \overline{B}$

11. Involución:

 $\overline{\overline{(A)}} = A$

Sean $A, B, C \subseteq \mathcal{U}$. Se verifican las siguientes propiedades:

$$A \cup B = B \cup A$$
;

$$A \cap B = B \cap A$$

2. Asociativa:
$$A \cup (B \cup C) = (A \cup B) \cup C$$
;

3. Absorción:
$$A \cup (A \cap B) = A$$
;

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup A = A$$
:

$$A\cap (A\cup B)=A$$

$$\varnothing$$
, \mathcal{U} , $\varnothing \subset \mathbf{A} \subset \mathcal{U}$

$$\varnothing, \ \mathcal{U}, \ \varnothing \subseteq \mathsf{A} \subseteq \mathsf{A}$$

$$A \cup B = B$$

$$A \subseteq B \iff A \cup B = B \iff A \cap B = A$$

$$\varnothing \cup A = A;$$

 $A \cup \mathcal{U} = \mathcal{U}:$

$$A \cap \mathcal{U} = A$$

 $A \cap A = A$

8. Distributiva:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
; $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$\varnothing \cap A = \varnothing$$

$$A \cup \overline{A} = \mathcal{U}$$
;

$$A \cap \overline{A} = \emptyset$$

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B};$$

$$\overline{(A\cap B)}=\overline{A}\cup\overline{B}$$

$$\overline{(A)} = A$$

Matemática Discreta

27 / 36

Propiedades de la unión, intersección y complementación de conjuntos

 Para poder trabajar con mayor flexibilidad con los subíndices, otra posible notación para la unión e intersección de familias de conjuntos será

$$\bigcup_{i=I} A_i, \qquad \bigcap_{i=I} A_i$$

 Sobre estas notaciones extendidas, podremos aplicar las propiedades de distribución y de De Morgan generalizadas:

$$A \cap \bigcup_{i \in \mathcal{I}} B_i = \bigcap_{i \in I} (A \cup B_i);$$
 $A \cup \bigcap_{i \in \mathcal{I}} B_i = \bigcup_{i \in I} (A \cap B_i)$

$$\overline{\bigcup_{i \in \mathcal{I}} B_i} = \bigcap_{i \in I} \overline{B_i}$$

$$\overline{\bigcap_{i \in \mathcal{I}} B_i} = \bigcup_{i \in I} \overline{B_i}$$

28 / 36

Propiedades de la unión, intersección y complementación de conjuntos

Ejercicio Sean los conjuntos

 $A_1 = \{-2, -1, 0, 1, 2\}, A_2 = \{0, 1, 2\}, A_3 = \{-1, 0, 1\}$ y sea el conjunto de indices $I = \{1, 2, 3\}$. Determina los siguientes conjuntos:

(a)
$$\bigcup_{i \in T} A_i$$

(a)
$$\bigcup_{i \in I} A_i$$
 (b) $\bigcap_{i \in I} A_i$

Tomando \mathbb{Z} como conjunto universal, determina:

(c)
$$\bigcup_{i \in \mathsf{T}} \overline{A_i}$$

(c)
$$\bigcup_{i \in I} \overline{A_i}$$
 (d) $\bigcap_{i \in I} \overline{A_i}$

Propiedades de la unión, intersección y complementación de conjuntos

Ejercicio

En el conjunto de los números naturales se consideran los subconjuntos

- P: conjunto de números primos; D: conjunto de múltiplos de dos;
- T: conjunto de múltiplos de tres; I: conjunto de números impares y
- S: conjunto de múltiplos de seis.
 - Determina: a) $P \cap I$, b) $P \cap D$, c) $D \cap T$, d) $D \cap S$, e) $I \cap S$.
 - Describe el complementario de: f) P, g) I, h) D.
 - Determina: i) $P \cup I$, j) P I, k) $\overline{D \cap I}$.

Teorema (Propiedades de la diferencia de conjuntos)

Sean A, B, C $\subseteq \mathcal{U}$. Se verifican las siguientes propiedades:

Elemento Neutro:
$$A - \emptyset = A$$

Elemento Simétrico :
$$A - A = \emptyset$$

Antidistributiva :
$$A - (B \cup C) = (A - B) \cap (A - C)$$

$$A-(B\cap C) = (A-B)\cup (A-C)$$

Distrib. de
$$\cap$$
 resp. $-$: $A \cap (B - C) = (A \cap B) - (A \cap C)$

Distrib. de
$$-$$
 resp. \cap : $(A \cap B) - C = (A - C) \cap (B - C)$

Distrib. de
$$-$$
 resp. \cup : $(A \cup B) - C = (A - C) \cup (B - C)$

• ¡OJO!: Ya que la diferencia no es conmutativa, la distributividad de \cap resp. — solo es válida por la izquierda

Mariam Cobalea (UMA) Matemática Discreta 31

Operaciones entre conjuntos

Definición

La diferencia simétrica de los conjuntos A y B es el conjunto

$$A \triangle B = \{x \in \mathcal{U} \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\}$$

Ejemplo La diferencia simétrica de $A = \{1, 2, 3, 4\}$, $B = \{3, 5, 7\}$ es

$$A \triangle B = \{1, 2, 4, 5, 7\}$$

Ejercicio: Demuestra que

$$A \triangle B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

Mariam Cobalea (UMA) Matemática Discreta 32 / 36

Teorema (Propiedades de la diferencia simétrica de conjuntos)

Sean A, B, $C \subseteq \mathcal{U}$. Se verifican las siguientes propiedades:

Asociativa:
$$A \triangle (B \triangle C) = (A \triangle B) \triangle C$$

Elemento Neutro:
$$A \triangle \varnothing = A$$

Elemento Simétrico:
$$A \triangle A = \emptyset$$

Distributiva de la intersección

respecto de
$$\triangle$$
 $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$

¿Cómo demostrar propiedades de las operaciones de conjuntos?

Ejercicio 1 Sean $A, B, C \subseteq \mathcal{U}$. Demuestra que:

$$A\cap (B-C)=(A\cap B)-(A\cap C)$$

Solución: Podemos demostrar esta igualdad usando las propiedades de la unión, intersección y complementación de conjuntos.

$$(A \cap B) - (A \cap C) = (A \cap B) \cap \overline{(A \cap C)}$$
 (Def. 2 diferencia de conj.)

$$= (A \cap B) \cap (\overline{A} \cup \overline{C})$$
 (De Morgan)

$$= \left((A \cap B) \cap \overline{A} \right) \cup \left((A \cap B) \cap \overline{C} \right)$$
 (Distributiva)

$$= \emptyset \cup \left((A \cap B) \cap \overline{C} \right)$$
 (Complemento)

$$= \left((A \cap B) \cap \overline{C} \right)$$
 (Identidad)

$$= \left(A \cap (B \cap \overline{C}) \right)$$
 (Asociativa)

$$= A \cap (B - C)$$

¿Cómo refutar propiedades de las operaciones de conjuntos?: Contraejemplos

Ejercicio 2 Sean $A, B, C \subseteq \mathcal{U}$. Demuestra o refuta

$$A - (B \triangle C) = (A - B) \triangle (A - C)$$

Solución: Esta igualdad no se verifica, por eso hay que refutarla. Para ello, basta con dar conjuntos *A*, *B* y *C* tales que

$$A - (B \triangle C) \neq (A - B) \triangle (A - C)$$

Si tomamos $A = \{-3, -2, -1, 0, 1, 2\}$, $B = \{0, 1, 2, 3, 4\}$, $C = \{-3, -1, 2, 4\}$, tenemos que

$$(B\triangle C) = \{0, 1, 3, -3, -1\},$$
 $A - (B\triangle C) = \{-2, 2\}$

Sin embargo,

$$(A - B) = \{-3, -2, -1\},$$
 $(A - C) = \{-2, 0, 1\},$ $(A - B) \triangle (A - C) = \{-3, -1, 0, 1\}$

Mariam Cobalea (UMA) Matemática Discreta 35 / 36

Demostrar o refutar propiedades de las operaciones de conjuntos

Ejercicio Sean A, B y C subconjuntos de un universo \mathcal{U} .

- Demuestra que son ciertas las siguientes igualdades:
 - $\bullet A \cap (B-C) = (A \cap B) (A \cap C)$
 - **a**→ (B ∩ C) = (A B) ∪ (A C)
 - $A (B \cup C) = (A B) \cap (A C)$
 - $(A \cup B) C = (A C) \cup (B C)$
- Oa un contraejemplo para demostrar que no se verifican las igualdades:
 - $\bullet A (B C) = (A B) C$
 - $(A-B) \cup B = A$
 - **3** $A (B \cap C) = (A B) \cap (A C)$
 - $\bullet \ A\triangle(B\cup C)=(A\triangle B)\cup(A\triangle C)$
 - $A (B \triangle C) = (A B) \triangle (A C)$