

Audio-visual object classification for human-robot collaboration

Poster number: 9401

Alessio Xompero, Yik Lung Pang, Timothy Patten, Ahalya Prabhakar, Berk Calli, Andrea Cavallaro {a.xompero,y.l.pang,a.cavallaro}@qmul.ac.uk, timothy.patten@uts.ed.au,

ahalya.prabhakar@epfl.ch, bcalli@wpi.edu

1. Introduction

Assistive scenarios at home or workplace (human-to-robot handovers)

Challenges:

- varying physical properties of household containers
- different types and amount of contents
- hand occlusions

CORSMAL simulator (R2S) [1]:

- assessing the accuracy of the estimations
- visualizing the safeness of human-to-robot handovers

http://corsmal.eecs.qmul.ac.uk/challenge.html

3. IEEE ICASSP 2022 Challenge entries

Filling type and level classification [3][4]

Container mass estimation [2][3]

Container mass, capacity, and dimensions estimation [4]

depth

Performance scores and challenge results (combined CCM test sets)

																	functio
<u>T1</u>	T2	2 T3	3 T4	T5	Description	Unit	Measure	Score	Weight	Type	R2S	Random	Average	[2]	[3]	[4]	Tarrotto
•	0	0	0	0	Filling level		λ^j	$s_1 = \bar{F}_1(\lambda^1, \dots, \lambda^J, \hat{\lambda}^1, \dots, \hat{\lambda}^J)$	$\pi_1 = 1/8$	Direct	0	37.62	33.15	-	65.73	77.40	T ()
0	•	0	0	0	Filling type		$ au^j$	$s_2 = \bar{F}_1(\tau^1, \dots, \tau^J, \hat{\tau}^1, \dots, \hat{\tau}^J)$	$\pi_2 = 1/8$	Direct	0	24.38	23.01	-	80.72	99.13	T: task
0	0	•	0	0	Capacity	mL	γ^j	$s_3 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{I}_j e^{-\varepsilon^j (\gamma^j, \widehat{\gamma}^j)}$	$\pi_3 = 1/8$	Direct	0	24.58	40.73	-	72.26	59.51	
0	0	0	•	0	Container mass	g	m_c^j	$s_4 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{I}_j e^{-\varepsilon^j (m_c^j, \widehat{m}_c^j)}$	$\pi_4 = 1/8$	Direct	0	29.42	22.06	49.64	40.19	58.78	
0	0	0	0	•	Width at the top	mm	w_t^j	$s_5 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{I}_j \sigma_1(w_t^j, \widehat{w}_t^j)$	$\pi_5 = 1/24$	Direct	0	32.33	76.89	-	69.09	80.01	
0	0	0	0	•	Width at the bottom	mm	w_b^j	$s_6 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{I}_j \sigma_1(w_b^j, \widehat{w}_b^j)$	$\pi_6 = 1/24$	Direct	0	25.36	58.19	-	59.74	76.09	
0	0	0	0	•	Height	mm	h^j	$s_7 = \frac{1}{J} \sum_{j=1}^J \mathbb{I}_j \sigma_1(h^j, h^j)$	$\pi_7 = 1/24$	Direct	0	42.48	64.32	-	70.07	74.33	
•	•	•	0	0	Filling mass	g	m_f^j	$s_8 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{I}_j e^{-\epsilon^j (m_f^j, \widehat{m}_f^j)}$	$\pi_8 = 1/8$	Indirect	0	35.06	42.31	-	70.50	65.25	
•	•	•	•	•	Object mass	g	m^{j}	$s_9 = \frac{1}{J} \sum_{j=1}^J \mathbb{I}_j \psi^j \left(m^j, \widehat{m}^j \right)$	$\pi_9 = 1/8$	Indirect	•	56.31	58.30	53.54	60.41	71.19	
•	•	•	•	•	Pose at delivery	(mm,°)	(α^j,β^j)	$s_{10} = \frac{1}{J} \sum_{j=1}^{J} \Delta_j(\alpha^j, \beta^j, \eta, \phi)$	$\pi_{10} = 1/8$	Indirect	•	72.11	70.01	60.54	73.17	79.32	
•	•	0	0	0	Joint filling type and	level		$s_{11} = \bar{F}_1(\lambda^1, \tau^1, \dots, \hat{\lambda}^1, \hat{\tau}^1, \dots)$	-	Direct	0	10.49	8.88	-	59.32	78.16	
0	0	•	0	•	Container capacity a	and dimer	nsions	$s_{12} = s_3/2 + (s_5 + s_6 + s_7)/6$	-	Direct	0	28.99	53.60	-	69.28	68.16	
•	•	•	•	•	Overall score			$S = \sum_{l=1}^{10} \pi_l s_l$	-	Indirect	-	39.11	44.51	-	66.16	73.43	

5. Conclusion

- A framework to design audio-visual solutions for the estimation of physical properties of manipulated containers
- 5 tasks, 13 performance scores, 10 leaderboards (facilitate comparisons)
- Simulator: assessing the accuracy of the estimations & visualizing the safeness of human-to-robot handovers

References

- [1] Y. Pang, A. Xompero, C. Oh, A. Cavallaro, "Towards safe human-to-robot handovers of unknown containers", IEEE RO-MAN, 2021
- [2] T. Apicella, et al., "Container localization and mass estimation with an RGB-D camera", IEEE ICASSP, 2022
- [3] T. Matsubara, et al., "Shared transformer encoder with mask-based 3D model estimation for container mass estimation", IEEE ICASSP, 2022 [4] H. Wang, et al., "Improving generalization of deep networks for estimating physical properties of containers and fillings", IEEE ICASSP, 2022

Acknowledgment

This work is supported by the CHIST-ERA program through the project CORSMAL, under UK EPSRC grant EP/. S031715/1 and Swiss NSF grant 20CH21 180444.

I: indicator

function