Trimmed https://cp-algorithms.com/ for NSSPC Usage

Contents

1.	Algebra	1
	1.1. Euclidean algorithm for computing the greatest common divisor	1
	1.2. $n^{ m th}$ Fibonacci number using Fast Doubling Method	1
	1.3. Sieve of Eratosthenes (finding prime numbers in a segment $[1;n]$)	2
	1.3.1. Regular sieve	2
	1.3.2. Segmented sieve (counting primes)	2
	1.3.3. Finding primes in range	3
	1.4. Primality test	3
	1.5. Integer factorization	3
	1.5.1. Trial division	3
	1.5.2. Pollard's $p-1$ method	5
	1.5.3. Pollard's rho algorithm	6
	1.6. Number/Sum of divisors	7
	1.6.1. Number of divisors	7
	1.6.2. Sum of divisors	7
	1.7. Gray code	8
	1.7.1. Finding gray code	8
	1.7.2. Finding inverse gray code	8
2.	String Processing	8
	2.1. String hashing	8
	2.2. Task - Finding repetitions	8
	Combinatorics	
	3.1. Finding Power of Factorial Divisor	9
4.	Miscellaneous	10
	4.1. Longest increasing subsequence	
	4.1.1. Solution in $O(n^2)$ with dynamic programming	
	4.1.2. Solution in $O(n \log n)$ with dynamic programming and binary search	11

Do note that the 'Graphs' section is not considered as its algorithms can be found in Competitive Programmer's Handbook by Antti Laaksonen.

1. Algebra

1.1. Euclidean algorithm for computing the greatest common divisor

```
\gcd(a,b) = \begin{cases} a, & \text{if } b = 0 \\ \gcd(b,a \bmod b), & \text{otherwise.} \end{cases} int gcd (int a, int b) {
    if (b == 0)
        return a;
    else
        return gcd (b, a % b);
}
```

Note that since C++17, gcd is implemented as a standard function in C++.

1.2. $n^{ m th}$ Fibonacci number using Fast Doubling Method

```
pair<int, int> fib (int n) {
   if (n == 0)
```

```
return {0, 1};

auto p = fib(n >> 1);
int c = p.first * (2 * p.second - p.first);
int d = p.first * p.first + p.second * p.second;
if (n & 1)
    return {d, c + d};
else
    return {c, d};
}
```

The above code returns F_n and F_{n+1} as a pair.

1.3. Sieve of Eratosthenes (finding prime numbers in a segment [1; n])

1.3.1. Regular sieve

```
int n;
vector<bool> is_prime(n+1, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; i++) {
    if (is_prime[i] && (long long)i * i <= n) {
        for (int j = i * i; j <= n; j += i)
            is_prime[j] = false;
    }
}</pre>
```

Time complexity: $O(n \log \log n)$

Memory complexity: O(n)

1.3.2. Segmented sieve (counting primes)

```
int count primes(int n) {
    const int S = 10000;
    vector<int> primes;
    int nsqrt = sqrt(n);
    vector<char> is prime(nsqrt + 2, true);
    for (int i = 2; i <= nsqrt; i++) {</pre>
        if (is_prime[i]) {
            primes.push_back(i);
            for (int j = i * i; j <= nsqrt; j += i)</pre>
                is_prime[j] = false;
        }
    }
    int result = 0;
    vector<char> block(S);
    for (int k = 0; k * S <= n; k++) {
        fill(block.begin(), block.end(), true);
        int start = k * S;
        for (int p : primes) {
            int start_idx = (start + p - 1) / p;
            int j = max(start_idx, p) * p - start;
            for (; j < S; j += p)
                block[j] = false;
        if (k == 0)
```

- 2 / 11

```
block[0] = block[1] = false;
         for (int i = 0; i < S \&\& start + i <= n; i++) {
             if (block[i])
                 result++;
        }
    }
    return result;
}
Time complexity: O(n \log \log n)
Memory complexity: O(\sqrt{n} + S)
1.3.3. Finding primes in range
vector<char> segmentedSieve(long long L, long long R) {
    // generate all primes up to sqrt(R)
    long long lim = sqrt(R);
    vector<char> mark(lim + 1, false);
    vector<long long> primes;
    for (long long i = 2; i \le \lim_{i \to \infty} ++i) {
        if (!mark[i]) {
             primes.emplace_back(i);
             for (long long j = i * i; j \le lim; j += i)
                 mark[j] = true;
        }
    }
    vector<char> isPrime(R - L + 1, true);
    for (long long i : primes)
         for (long long j = max(i * i, (L + i - 1) / i * i); j <= R; j += i)
             isPrime[j - L] = false;
    if (L == 1)
        isPrime[0] = false;
    return isPrime;
}
Time complexity: O\left((R-L+1)\log\log(R)+\sqrt{R}\log\log\sqrt{R}\right)
1.4. Primality test
bool isPrime(int x) {
    for (int d = 2; d * d <= x; d++) {
        if (x % d == 0)
             return false;
    }
    return x >= 2;
```

This is the simplest form of a prime check. You can optimize this function quite a bit, for instance by only checking all odd numbers in the loop, since the only even prime number is 2.

1.5. Integer factorization

1.5.1. Trial division

1.5.1.1. Unoptimized trial division

If we cannot find any divisor in the range $[2; \sqrt{n}]$, then the number itself has to be prime.

```
vector<long long> trial_division1(long long n) {
  vector<long long> factorization;
  for (long long d = 2; d * d <= n; d++) {
     while (n % d == 0) {
        factorization.push_back(d);
        n /= d;
     }
  }
  if (n > 1)
     factorization.push_back(n);
  return factorization;
}
```

1.5.1.2. Wheel factorization

Once we know that the number is not divisible by 2, we don't need to check other even numbers. This leaves us with only 50% of the numbers to check. After factoring out 2, and getting an odd number, we can simply start with 3 and only count other odd numbers.

```
vector<long long> trial_division2(long long n) {
   vector<long long> factorization;
   while (n % 2 == 0) {
       factorization.push_back(2);
       n /= 2;
   }
   for (long long d = 3; d * d <= n; d += 2) {
       while (n % d == 0) {
         factorization.push_back(d);
        n /= d;
       }
   }
   if (n > 1)
       factorization.push_back(n);
   return factorization;
}
```

If the number is not divisible by 3, we can also ignore all other multiples of 3 in the future computations. So we only need to check the numbers $5, 7, 11, 13, 17, 19, 23, \ldots$ We can observe a pattern of these remaining numbers. We need to check all numbers with $d \mod 6 = 1$ and $d \mod 6 = 5$. So this leaves us with only 33.3% percent of the numbers to check. We can implement this by factoring out the primes 2 and 3 first, after which we start with 5 and only count remainders 1 and 5 modulo 6.

Here is an implementation for the prime number 2, 3 and 5:

```
vector<long long> trial_division3(long long n) {
  vector<long long> factorization;
  for (int d : {2, 3, 5}) {
     while (n % d == 0) {
        factorization.push_back(d);
        n /= d;
     }
}
static array<int, 8> increments = {4, 2, 4, 2, 4, 6, 2, 6};
int i = 0;
for (long long d = 7; d * d <= n; d += increments[i++]) {
     while (n % d == 0) {
        factorization.push_back(d);
     }
}</pre>
```

- 4 / 11

```
n /= d;
        }
        if (i == 8)
            i = 0;
    }
    if (n > 1)
        factorization.push back(n);
    return factorization;
}
1.5.1.3. Precomputed primes
vector<long long> primes;
vector<long long> trial_division4(long long n) {
    vector<long long> factorization;
    for (long long d : primes) {
        if (d * d > n)
            break;
        while (n % d == 0) {
            factorization.push_back(d);
            n /= d;
        }
    }
    if (n > 1)
        factorization.push back(n);
    return factorization;
}
1.5.2. Pollard's p-1 method
long long pollards_p_minus_1(long long n) {
    int B = 10;
    long long g = 1;
    while (B \leq 1000000 && g < n) {
        long long a = 2 + rand() % (n - 3);
        g = gcd(a, n);
        if (g > 1)
            return g;
        // compute a^M
        for (int p : primes) {
            if (p >= B)
                 continue;
            long long p power = 1;
            while (p_power * p <= B)</pre>
                 p_power *= p;
            a = power(a, p_power, n);
            g = gcd(a - 1, n);
            if (g > 1 \&\& g < n)
                 return g;
        }
        B *= 2;
    return 1;
}
Time complexity: O(B \log B \log^2 n) per iteration
```

1.5.3. Pollard's rho algorithm

1.5.3.1. Floyd's cycle-finding algorithm

```
long long mult(long long a, long long b, long long mod) {
    return (__int128)a * b % mod;
}
long long f(long long x, long long c, long long mod) {
    return (mult(x, x, mod) + c) % mod;
}
long long rho(long long n, long long x0=2, long long c=1) {
    long long x = x0;
    long long y = x0;
    long long g = 1;
    while (g == 1) {
        x = f(x, c, n);
        y = f(y, c, n);
        y = f(y, c, n);
        g = gcd(abs(x - y), n);
    }
    return g;
}
If GCC is not available, you can using a similar idea as binary exponentiation:
long long mult(long long a, long long b, long long mod) {
    long long result = 0;
    while (b) {
        if (b & 1)
            result = (result + a) % mod;
        a = (a + a) % mod;
        b >>= 1;
    return result;
}
1.5.3.2. Brent's algorithm
long long brent(long long n, long long x0=2, long long c=1) {
    long long x = x0;
    long long g = 1;
    long long q = 1;
    long long xs, y;
    int m = 128;
    int l = 1;
    while (g == 1) {
        y = x;
        for (int i = 1; i < l; i++)</pre>
            x = f(x, c, n);
        int k = 0;
        while (k < l \&\& g == 1) \{
            xs = x;
            for (int i = 0; i < m \&\& i < l - k; i++) {
                x = f(x, c, n);
                q = mult(q, abs(y - x), n);
            }
```

- 6 / 11

```
g = gcd(q, n);
            k += m;
        }
        l *= 2;
    }
    if (g == n) {
        do {
            xs = f(xs, c, n);
            g = gcd(abs(xs - y), n);
        } while (g == 1);
    return g;
}
```

1.6. Number/Sum of divisors

```
1.6.1. Number of divisors
long long numberOfDivisors(long long num) {
    long long total = 1;
    for (int i = 2; (long long)i * i \le num; i++) {
        if (num % i == 0) {
            int e = 0;
            do {
                e++;
                num /= i;
            } while (num % i == 0);
            total *= e + 1;
        }
    }
    if (num > 1) {
        total *= 2;
    }
    return total;
}
1.6.2. Sum of divisors
long long SumOfDivisors(long long num) {
    long long total = 1;
    for (int i = 2; (long long)i * i \le num; i++) {
```

```
if (num % i == 0) {
        int e = 0;
        do {
            e++;
            num /= i;
        } while (num % i == 0);
        long long sum = 0, pow = 1;
        do {
            sum += pow;
            pow *= i;
        } while (e-- > 0);
        total *= sum;
    }
if (num > 1) {
```

```
total *= (1 + num);
}
return total;
}
```

1.7. Gray code

1.7.1. Finding gray code

```
int g (int n) {
    return n ^ (n >> 1);
}
```

1.7.2. Finding inverse gray code

```
int rev_g (int g) {
  int n = 0;
  for (; g; g >>= 1)
    n ^= g;
  return n;
}
```

2. String Processing

2.1. String hashing

```
long long compute_hash(string const& s) {
   const int p = 31;
   const int m = 1e9 + 9;
   long long hash_value = 0;
   long long p_pow = 1;
   for (char c : s) {
      hash_value = (hash_value + (c - 'a' + 1) * p_pow) % m;
      p_pow = (p_pow * p) % m;
   }
   return hash_value;
}
```

2.2. Task - Finding repetitions

Main-Lorentz algorithm:

```
vector<int> z_function(string const& s) {
    int n = s.size();
    vector<int> z(n);
    for (int i = 1, l = 0, r = 0; i < n; i++) {
        if (i \le r)
            z[i] = min(r-i+1, z[i-l]);
        while (i + z[i] < n \& s[z[i]] == s[i+z[i]])
            z[i]++;
        if (i + z[i] - 1 > r) {
            l = i;
            r = i + z[i] - 1;
        }
    }
    return z;
}
int get z(vector<int> const& z, int i) {
    if (0 <= i && i < (int)z.size())</pre>
```

- 8 / 11

```
return z[i];
    else
        return 0;
}
vector<pair<int, int>> repetitions;
void convert to repetitions(int shift, bool left, int cntr, int l, int k1, int k2) {
    for (int l1 = max(1, l - k2); l1 \le min(l, k1); l1++) {
        if (left && l1 == l) break;
        int 12 = 1 - 11;
        int pos = shift + (left ? cntr - l1 : cntr - l - l1 + 1);
        repetitions.emplace_back(pos, pos + 2*l - 1);
    }
}
void find_repetitions(string s, int shift = 0) {
    int n = s.size();
    if (n == 1)
        return;
    int nu = n / 2;
    int nv = n - nu;
    string u = s.substr(0, nu);
    string v = s.substr(nu);
    string ru(u.rbegin(), u.rend());
    string rv(v.rbegin(), v.rend());
    find_repetitions(u, shift);
    find repetitions(v, shift + nu);
    vector<int> z1 = z_function(ru);
    vector<int> z2 = z_function(v + '#' + u);
    vector<int> z3 = z_function(ru + '#' + rv);
    vector<int> z4 = z_function(v);
    for (int cntr = 0; cntr < n; cntr++) {</pre>
        int l, k1, k2;
        if (cntr < nu) {</pre>
            l = nu - cntr;
            k1 = get_z(z1, nu - cntr);
            k2 = get_z(z2, nv + 1 + cntr);
        } else {
            l = cntr - nu + 1;
            k1 = get z(z3, nu + 1 + nv - 1 - (cntr - nu));
            k2 = get_z(z4, (cntr - nu) + 1);
        if (k1 + k2 >= 1)
            convert_to_repetitions(shift, cntr < nu, cntr, l, k1, k2);</pre>
    }
}
```

3. Combinatorics

3.1. Finding Power of Factorial Divisor

You are given two numbers n and k. Find the largest power of k x such that n! is divisible by k^x .

```
int fact_pow (int n, int k) {
    int res = 0;
    while (n) {
        n /= k;
        res += n;
    }
    return res;
}
```

4. Miscellaneous

4.1. Longest increasing subsequence

We are given an array with n numbers: a[0...n-1]. The task is to find the longest, strictly increasing, subsequence in a.

Formally we look for the longest sequence of indices $i_1, ... i_k$ such that

```
i_1 < i_2 < dots < i_k, quad a[i_1] < a[i_2] < dots < a[i_k]
```

4.1.1. Solution in $O(n^2)$ with dynamic programming

4.1.1.1. Finding the length

```
int lis(vector<int> const& a) {
   int n = a.size();
   vector<int> d(n, 1);
   for (int i = 0; i < n; i++) {
      for (int j = 0; j < i; j++) {
        if (a[j] < a[i])
            d[i] = max(d[i], d[j] + 1);
      }
   }
   int ans = d[0];
   for (int i = 1; i < n; i++) {
      ans = max(ans, d[i]);
   }
   return ans;
}</pre>
```

4.1.1.2. Restoring the subsequence

```
vector<int> lis(vector<int> const& a) {
   int n = a.size();
   vector<int> d(n, 1), p(n, -1);
   for (int i = 0; i < n; i++) {
      for (int j = 0; j < i; j++) {
        if (a[j] < a[i] && d[i] < d[j] + 1) {
            d[i] = d[j] + 1;
            p[i] = j;
        }
    }
}

int ans = d[0], pos = 0;
for (int i = 1; i < n; i++) {
    if (d[i] > ans) {
      ans = d[i];
    }
}
```

- 10 / 11

```
pos = i;
        }
    }
    vector<int> subseq;
    while (pos != -1) {
        subseq.push back(a[pos]);
        pos = p[pos];
    reverse(subseq.begin(), subseq.end());
    return subseq;
}
4.1.2. Solution in O(n \log n) with dynamic programming and binary search
int lis(vector<int> const& a) {
    int n = a.size();
    const int INF = 1e9;
    vector<int> d(n+1, INF);
    d[0] = -INF;
```

if (d[l-1] < a[i] && a[i] < d[l])</pre>

for (int i = 0; i < n; i++) {

d[l] = a[i];

for (int l = 0; l <= n; l++) {

if (d[l] < INF)
 ans = l;</pre>

}

}

}

int ans = 0;

return ans;

It is also possible to restore the subsequence using this approach. This time we have to maintain two auxiliary arrays. One that tells us the index of the elements in d[]. And again we have to create an array of "ancestors" p[i]. p[i] will be the index of the previous element for the optimal subsequence ending in element i.

int l = upper bound(d.begin(), d.end(), a[i]) - d.begin();

It's easy to maintain these two arrays in the course of iteration over the array a[] alongside the computations of d[]. And at the end it is not difficult to restore the desired subsequence using these arrays.

- 11 / 11