Taller de Programación - 30 Ejercicios de Entrevistas Técnicas

Problema 1

Validación de Paréntesis Dada una cadena que contiene solo los caracteres '(', ')', '{', '}', '[' y ']', determina si la cadena es válida.

Entrada: Una cadena s $(1 \le |s| \le 10^4)$.

Salida: true si la cadena es válida, false en caso contrario.

Ejemplo: Entrada: "() $\{\}$ " \rightarrow Salida: true

Problema 2

Máxima Suma de Subarreglo Encuentra el subarreglo contiguo con la suma máxima en un arreglo de enteros.

Entrada: Un arreglo A de n enteros $(-10^3 \le A_i \le 10^3, 1 \le n \le 10^5)$.

Salida: La suma máxima encontrada.

Ejemplo: Entrada: $[-2,1,-3,4,-1,2,1,-5,4] \rightarrow Salida: 6$

Problema 3

Ordenar Colores Ordena un arreglo de n objetos coloreados rojo, blanco o azul representados por $0,\,1$ y 2 respectivamente.

Entrada: Un arreglo A de n enteros (solo 0, 1 o 2).

Salida: El arreglo ordenado (in-place).

Ejemplo: Entrada: $[2,0,2,1,1,0] \rightarrow \text{Salida}$: [0,0,1,1,2,2]

Problema 4

Intersección de Dos Arreglos Dados dos arreglos, devuelve su intersección (elementos comunes).

Entrada: Dos arreglos A y B de enteros $(1 \le |A|, |B| \le 10^5)$.

Salida: Lista de elementos comunes en cualquier orden.

Ejemplo: Entrada: [1,2,2,1], $[2,2] \rightarrow Salida$: [2,2]

Problema 5

Máxima Profundidad de Árbol Binario Calcula la máxima profundidad de un árbol binario.

Entrada: Raíz de un árbol binario.

Salida: Entero representando la profundidad máxima.

Ejemplo: Para $[3,9,20,\text{null},\text{null},15,7] \rightarrow \text{Salida: 3}$

Problema 6

Invertir Lista Enlazada Invierte una lista enlazada de forma iterativa.

Entrada: Cabeza de una lista enlazada.

Salida: Nueva cabeza de la lista invertida.

Ejemplo: $1-i,2-i,3-i,4-i,5 \rightarrow 5-i,4-i,3-i,2-i,1$

Problema 7

Validar Sudoku Determina si un tablero de Sudoku 9x9 es válido.

Entrada: Matriz 9x9 con caracteres del '1' al '9' o '.'.

Salida: true si es válido, false en caso contrario.

Nota: No es necesario resolverlo, solo validar.

Problema 8

Combinación de Monedas Calcula el número de combinaciones para formar una cantidad con monedas dadas.

Entrada: Arreglo de monedas y cantidad objetivo.

Salida: Número de combinaciones posibles.

Ejemplo: Monedas: [1,2,5], objetivo: $5 \rightarrow$ Salida: 4

Problema 9

Número de Islas Cuenta el número de islas en una matriz 2D ('1' es tierra, '0' es agua).

Entrada: Matriz $m \times n$ de caracteres '0' y '1'.

Salida: Número de islas.

Ejemplo: Matriz 4x5 con 1 isla \rightarrow Salida: 1

Problema 10

Subconjuntos Genera todos los subconjuntos posibles de un conjunto de enteros distintos.

Entrada: Arreglo de n enteros distintos $(0 \le n \le 10)$.

Salida: Lista de todos los subconjuntos.

Ejemplo: Entrada: $[1,2,3] \rightarrow \text{Salida}$: [[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

Problema 11

Palíndromo en Lista Enlazada Determina si una lista enlazada es un palíndromo.

Entrada: Cabeza de lista enlazada.

Salida: true si es palíndromo, false en caso contrario.

Ejemplo: $1-i2-i2-i1 \rightarrow \text{Salida}$: true

Problema 12

Camino Mínimo en Matriz Encuentra la suma mínima de un camino desde la esquina superior izquierda hasta la inferior derecha en una matriz.

Entrada: Matriz $m \times n$ de enteros no negativos.

Salida: Suma mínima del camino.

Ejemplo: $[[1,3,1],[1,5,1],[4,2,1]] \rightarrow \text{Salida: 7}$

Problema 13

Búsqueda en Rotación Ordenada Busca un elemento en un arreglo ordenado pero rotado.

Entrada: Arreglo ordenado rotado y un objetivo.

Salida: Índice del objetivo o -1 si no está presente.

Ejemplo: [4,5,6,7,0,1,2], objetivo: $0 \rightarrow \text{Salida}$: 4

Problema 14

Clonar Grafo Conectado Clona un grafo no dirigido conectado.

Entrada: Nodo de referencia de un grafo con nodos val, neighbors.

Salida: Copia profunda del grafo.

Problema 15

Contenedor con Más Agua Encuentra dos líneas que junto con el eje x formen un contenedor que contenga la mayor cantidad de agua.

Entrada: Arreglo de n enteros no negativos (alturas).

Salida: Máxima cantidad de agua posible.

Ejemplo: $[1,8,6,2,5,4,8,3,7] \rightarrow \text{Salida: 49}$

Problema 16

Reconstruir Itinerario Reconstruye un itinerario de vuelos formando un camino válido.

Entrada: Lista de boletos [desde, hacia].

Salida: Itinerario en orden.

Ejemplo: [["JFK","SFO"],["JFK",.^ATL"],["SFO",.^ATL"],[.^ATL","JFK"],[.^ATL","SFO"]] \rightarrow Salida: ["JFK",.^ATL","JFK",.^SFO",.^ATL","SFO"]

Problema 17

Cadena Más Larga sin Repetir Encuentra la longitud de la subcadena más larga sin caracteres repetidos.

Entrada: Cadena $s (0 \le |s| \le 5 \times 10^4)$.

Salida: Longitud máxima.

Ejemplo: .abcabcbb" \rightarrow Salida: 3

Problema 18

Merge k Listas Ordenadas Combina k listas enlazadas ordenadas en una sola lista ordenada.

Entrada: Arreglo de k listas enlazadas ordenadas.

Salida: Lista enlazada combinada ordenada.

Problema 19

Eliminar N-ésimo Nodo del Final Elimina el n-ésimo nodo desde el final de una lista enlazada.

Entrada: Cabeza de lista y entero n.

Salida: Cabeza de lista modificada.

Ejemplo: 1- \dot{i} 2- \dot{i} 3- \dot{i} 4- \dot{i} 5, $n=2\to 1$ - \dot{i} 2- \dot{i} 3- \dot{i} 5

Problema 20

Permutaciones Genera todas las permutaciones de un arreglo de enteros distintos.

Entrada: Arreglo de n enteros $(1 \le n \le 6)$.

Salida: Todas las permutaciones posibles.

Ejemplo: $[1,2,3] \rightarrow \text{Salida: } [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]$

Problema 21

Validador de BST Determina si un árbol binario es un árbol de búsqueda binaria (BST) válido.

Entrada: Raíz de árbol binario.

Salida: true si es BST válido, false en caso contrario.

Ejemplo: $[2,1,3] \rightarrow \text{Salida: true}$

Problema 22

Máximo Producto Subarreglo Encuentra el producto máximo en un subarreglo contiguo.

Entrada: Arreglo de enteros ($|A_i| \le 10$, $1 \le n \le 2 \times 10^4$).

Salida: Producto máximo.

Ejemplo: $[2,3,-2,4] \rightarrow \text{Salida: 6}$

Problema 23

Diseñar Cache LRU Implementa una caché LRU (Least Recently Used).

Entrada: Capacidad y operaciones get/put.

Salida: Valor para get, nada para put.

Ejemplo: Capacidad=2: put(1,1), put(2,2), $get(1)\rightarrow 1$, put(3,3), $get(2)\rightarrow -1$

Problema 24

Palabra Más Corta en Teclado Dado un arreglo de palabras y un teclado de filas (cada fila es un conjunto de caracteres), encuentra para cada palabra si puede ser escrita con caracteres de una sola fila.

Entrada: Lista de palabras $(1 \le n \le 20)$.

Salida: Lista de palabras que cumplen la condición.

Ejemplo: Palabras: ["Hola",.^lgo",.^diós"], Filas: ["qwertyuiop",.^asdfghjkl","zxcvbnm"] → Salida: [.^lgo",.^diós"]

Problema 25

Rotar Imagen Rota una imagen (matriz n x n) 90 grados en sentido horario.

Entrada: Matriz n x n de enteros.

Salida: Matriz rotada (in-place).

Ejemplo: $[[1,2,3],[4,5,6],[7,8,9]] \rightarrow [[7,4,1],[8,5,2],[9,6,3]]$

Problema 26

Decodificar Cadena Decodifica una cadena codificada con el formato $k[encoded_string]$.

Entrada: Cadena válida $(1 \le |s| \le 30)$.

Salida: Cadena decodificada.

Ejemplo: "3[a]2[bc]" \rightarrow .aabcbc"

Problema 27

Suma de Dos Números Dado un arreglo y un objetivo, encuentra dos números que sumen el objetivo.

Entrada: Arreglo de enteros y entero objetivo.

Salida: Índices de los dos números.

Ejemplo: [2,7,11,15], objetivo=9 \rightarrow Salida: [0,1]

Problema 28

Simular Cola con Pilas Implementa una cola usando dos pilas.

Entrada: Operaciones push, pop, peek, empty.

Salida: Resultados de las operaciones.

Problema 29

Validar Palíndromo Determina si una cadena es palíndromo considerando solo caracteres alfanuméricos e ignorando mayúsculas/minúsculas.

Entrada: Cadena s $(0 \le |s| \le 2 \times 10^5)$.

Salida: true si es palíndromo, false en caso contrario.

Ejemplo: Ün hombre, un plan, un canal: Panamá"→ Salida: true

Problema 30

Buscar en BST Busca un valor en un árbol de búsqueda binaria.

Entrada: Raíz de BST y valor a buscar.

Salida: Nodo que contiene el valor o null.

Ejemplo: BST: [4,2,7,1,3], valor: $2 \rightarrow$ Salida: nodo con valor 2