# **BlockChain Technologies**



### PUBLIC KEY SCHEME FOR CONFIDENTIALITY



### PUBLIC KEY SCHEME FOR AUTHENTICATION



### CONFIDENTIALITY AND AUTHENTICATION



# RSA

- ➤ One of the first proposals on implementing the concept of public-key cryptography was that of Rivest, Shamir, Adleman 1977: RSA
- The RSA scheme works like a block cipher in which the plaintext and the ciphertext are integers between 0 and n-1 for some fixed n
  - $\triangleright$  Typical size for n is 1024 bits (or 309 decimal digits)
  - ➤ To be secure with today's technology size should between 1024 and 2048 bits
- ➤ Idea of RSA: it is a difficult math problem to factorize (large) integers
  - $\triangleright$  Choose p and q odd primes, and compute n = pq
  - $\triangleright$  Choose integers d, e such that  $M^{ed} = M \mod n$ , for all M < n
  - **Plaintext**: can be considered a number M with M < n
  - **Encryption**:  $C = M^e \mod n$
  - **Decryption**:  $C^d \mod n = M^{ed} \mod n = M$
  - **Public key:**  $PU = \{e, n\}$  and **Private key:**  $PR = \{d, n\}$

# ATTACKING RSA

- **▶ Brute force attacks**: try all possible private keys
  - As in the other cases defend using large keys: nowadays integers between 1024 and 2048 bits

#### ➤ Mathematical attacks

- Factor n into its two primes p,q: this is a hard problem for large n
  - ➤ Challenges by RSA Labs to factorize large integers
  - Last solved RSA challenge: 829 bits (Feb 2020)
- Determine  $\phi(n)$  directly without first determining p, q: this math problem is equivalent to factoring
- Determine d directly, without first determining  $\phi(n)$ : this is believed to be at least as difficult as factoring

# DISCRETE LOGARITHM PROBLEM

Let p be a prime number. We represent the set of all powers of number a modulo p with  $\langle a \rangle_p$ :

$$\langle 2 \rangle_7 = \{1,2,4\}$$
  $\langle 3 \rangle_7 = \{1,3,2,6,4,5\}$ 

- $\triangleright$  We call g a generator of  $\mathbb{Z}^*$  if  $q > q > p = \mathbb{Z}^*$
- $\triangleright \mathbb{Z}_p^*$  definitely has a generator which is not necessarily unique.
  - $\triangleright$  Having the factorization of p-1, it is easy to find a generator for  $\mathbb{Z}^*_p$ .
- ➤ Discrete Logarithm problem (DLP): Given prime number p, an arbitrary generator g of  $\mathbb{Z}^*_p$  and  $g^\alpha \mod p$  (where  $\alpha$  is a random integer in  $\mathbb{Z}_{p-1}$ ), find  $\alpha$ .
- $\triangleright$  For large values of p, solving DLP is computationally infeasible.

# DIFFIE-HELLMAN PROBLEM

- ▶ Diffie-Hellman Problem (DHP): Given prime number p, an arbitrary generator g of  $Z_p^*$ ,  $g^{\alpha}$  mod p and  $g^{\beta}$  mod p (where  $\alpha$  and  $\beta$  are random integers in  $\mathbb{Z}_{p-1}$ ), find  $g^{\alpha\beta}$  mod p.
  - ➤ Solving DHP is easier than solving DLP.

    ➤ It is obvious that if we solve DLP efficiently, we have solved DHP efficiently!
  - The opposite is not proved yet, i.e. solving DHP efficiently will not result in an efficient solution for DLP.
  - There is no known method for solving DHP without solving DLP first.

# DIFFIE-HELLMAN KEY AGREEMENT

Alice

Alice selects random  $\alpha$ 

 $g^{\alpha} \bmod p$   $g^{\beta} \bmod p$ 

Alice computes  $(g^{\beta})^{\alpha} = g^{\alpha\beta} \mod p$  as the shared key (session key)

Bob

Bob selects random  $\beta$ 

Bob computes  $(g^{\alpha})^{\beta} = g^{\alpha\beta} \mod p$  as the shared key (session key)



# DIGITAL SIGNATURE



# WHAT WE WANT FROM SIGNATURES

Only you can sign, but anyone can verify

Signature is tied to a particular document can't be cut-and-pasted to another doc

# API FOR DIGITAL SIGNATURES

sig := sign(sk, message)

isValid := verify(pk, message, sig)

can be randomized algorithms

# REQUIREMENTS FOR SIGNATURES

```
"valid signatures verify"
verify(pk, message, sign(sk, message)) == true

"can't forge signatures"
adversary who:
knows pk
gets to see signatures on messages of his choice
can't produce a verifiable signature on another message
```



# DIGITAL SIGNATURE ALGORITHM

- > What Is DSA (Digital Signature Algorithm)?
- >DSA is a United States Federal Government standard for digital signatures.
- ➤It was proposed by the National Institute of Standards and Technology (NIST) in August 1991 for use in their Digital Signature Standard (DSS)
- ➤ It was specified in FIPS 186 in 1993.
- Latest update as a standard (FIPS 186-4) in 2013
- ➤ DSA is based on ElGamal public-key cryptosystem

# DSA SCHEMA





# KEY GENERATION IN DSA

- The first part of the DSA is the public key and private key generation:
- $\triangleright$  Choose a prime number q, which is called the **prime divisor**.
- rightharpoonup Choose another prime number p, such that  $(p-1) \mod q = 0$ .
  - $\triangleright p$  is called the **prime modulus** and its length is more than 512 bits.
- rightharpoonup Choose an integer g, such that 1 < g < p,  $g^q \mod p = 1$ 
  - This may be done by setting  $g = h^{(p-1)/q} \mod p$ .
  - $\triangleright q$  is also called g's multiplicative order modulo p.
- rightharpoonup Choose an integer, such that 0 < x < q.
- $\triangleright$  Compute y as  $g^x \mod p$
- $\triangleright$  Package the public key as  $\{p,q,g,y\}$
- $\triangleright$  Package the private key as  $\{p,q,g,x\}$

# SIGNING IN DSA

- $\triangleright$  Let H be the hashing function and m the message.
- $\triangleright$  Generate a random per-message value k where 1 < k < q
- $ightharpoonup \operatorname{Calculate} r = (g^k \bmod p) \bmod q$ 
  - $\triangleright$  In the unlikely case that r = 0, start again with a different random k
- ightharpoonup Calculate  $s = k^{-1}(H(m) + xr) \mod q$ 
  - $\triangleright$  In the unlikely case that s = 0, start again with a different random k
- $\triangleright$  Package the digital signature as (r, s).

# VERIFYING THE SIGNATURE

- $\triangleright$  Reject the signature if 0 < r, s < q is not satisfied.
- > Calculate  $w = s^{-1} \mod q$ >  $s = k^{-1} (H(m) + xr) \mod q$   $\rightarrow w = k (H(m) + xr)^{-1} \mod q$
- > Calculate  $u_1 = H(m) \cdot w \mod q$ >  $u_1 = H(m)k (H(m) + xr)^{-1} \mod q$
- ➤ Calculate  $u_2 = r$ .  $w \mod q$ ➤  $u_2 = kr (H(m) + xr)^{-1} \mod q$
- ightharpoonup Calculate  $v = (g^{u_1}y^{u_2} \bmod p) \mod q$ 
  - $v = (g^{u_1+xu_2} \mod p) \mod q = (g^k (H(m) +rx)(H(m)+rx)^{-1}) \mod p) \mod q$   $= (g^k \mod p) \mod q$
- $\triangleright$  The signature is invalid unless v = r.