PRÁCTICO 6: TEORÍA DE GRUPOS - CONCEPTOS BÁSICOS.

Ejercicio 1. Investigar si los siguientes conjuntos con las respectivas operaciones que se definen son grupos:

a. El conjunto $M_{n\times n}(\mathbb{R})$ con la operación el producto usual de matrices: A*B=AB.

b. El conjunto $M_{n\times n}(\mathbb{R})$ con la operación: A*B=AB+BA.

c. El conjunto \mathbb{R}^2 con la operación: $(x_1, x_2) * (y_1, y_2) = (x_1y_1, x_2y_1 + y_2)$.

d. $G = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z} \right\}$ y * el producto matricial.

g. El conjunto $\mathbb Z$ con la operación \otimes definida por : $a\otimes b=ab-2(a+b)+6.$

Ejercicio 2. Sea $G = \{e, a, b, c, d, f\}$ tal que (G, \cdot) es un grupo. Completar la tabla de Cayley si se tiene la información parcial siguiente:

•	е	а	b	С	d	f
е	е	а	b	С	d	f
а	а		е			
b	b			f		d
С	С				b	а
d	d					b
f	f			b		

Ejercicio 3. Sea G un grupo. Probar las siguientes afirmaciones:

a. El neutro de G es único.

b. El inverso de $g \in G$ es único.

c. $(ab)^{-1} = b^{-1}a^{-1}$ para todo $a, b \in G$.

d. Si $xq = xh \Rightarrow q = h$.

e. Si $gx = hx \Rightarrow g = h$.

- **f**. $(ab)^{-1} = a^{-1}b^{-1}$ para todo $a, b \in G \Leftrightarrow G$ es abeliano.
- **g**. $(ab)^2 = a^2b^2$ para todo $a, b \in G \Leftrightarrow G$ es abeliano.
- **h**. Si $(ab)^3 = e_G$ entonces $(ba)^3 = e_G$.
- i. $(a^n)^{-1} = (a^{-1})^n$ para todo $a \in G$, $n \in \mathbb{N}$.

Ejercicio 4. Para cada uno de los grupos G, investigar si H es un subgrupo de G:

- **a**. $G=(\mathbb{Z},+)$ y $H=n\mathbb{Z}$ el conjunto de los enteros múltiplos de n (para $n\in\mathbb{Z}$ dado).
- **b**. $G = \mathbb{R} \setminus \{0\}$ con el producto y $H = \mathbb{R}^+$ el conjunto de los reales positivos.
- **c**. $G = GL_2(\mathbb{R})$ (matrices invertibles 2×2 con coeficientes reales) con el producto usual de matrices y $H = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix} \right) \in M_{2 \times 2}(\mathbb{R}) : ac \neq 0 \right\}$.
- **d**. $G = GL_2(\mathbb{R})$ y $H = \{M \in G : \det(M) = 1\}$.
- **e**. $G = \mathbb{Q}^+$ con el producto y $H = \left\{ \frac{a}{b} \in \mathbb{Q} : a \equiv 0 \pmod{7}, \mod(b,7) = 1 \right\}.$
- **f**. $G=D_3$ el grupo dihedral y $H=\left\{\mathrm{id},r,r^2s,s\right\}$ (r es una rotación y s una simetría axial).
- **g**. $G=S_3$ el grupo de permutaciones y $H=\{\left(\begin{smallmatrix}1&2&3\\1&2&3\end{smallmatrix}\right),\left(\begin{smallmatrix}1&2&3\\1&3&2\end{smallmatrix}\right)\}$.
- **h**. $G = S_3$ y $H = \{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \}$.
- i. $G = S_4 \text{ y } H = \{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \}.$

Ejercicio 5. Sean H_1 y H_2 dos subgrupos de un grupo G.

- **a**. Probar que $H_1 \cap H_2$ es un subgrupo de G.
- **b**. ¿Es $H_1 \cup H_2$ necesariamente un subgrupo de G?

Ejercicio 6. Probar que si G es un grupo **abeliano** entonces H es un subgrupo de G para los siguientes casos:

- **a**. $H = \{a \in G : a^2 = e_G\}.$
- **b**. $H = \{a^n : a \in G\}$ donde n es un entero positivo dado.

Ejercicio 7. Sean a y b dos elementos de un grupo G tales que: $a \neq e_G$, $b \neq e_G$, $a^7 = e_G$, $b^3 = e_G$ y $ab = ba^2$.

- \mathbf{a} . Probar que G no es conmutativo.
- **b**. Probar que $(ab)^2 = b^2 a^6$.
- **c**. Probar que $(ab)^3 = e_G$.