Modern Algebra I – Homework 3

Junwoo Yang

April 3, 2019

1. Find all generators of \mathbb{Z}_6 , \mathbb{Z}_8 , \mathbb{Z}_{20} .

Proof. If n is generator of \mathbb{Z}_k , then gcd(n,k) = 1 for $n \in \mathbb{Z}_k$.

- (a) $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$. $\langle 1 \rangle = \langle 5 \rangle = \mathbb{Z}_6$. \therefore generators of $\mathbb{Z}_6 = \{1, 5\}$.
- (b) $\mathbb{Z}_8 = \{0, 1, 2, 3, 44, 5, 6, 7\}. \langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle = \mathbb{Z}_8.$: generators of $\mathbb{Z}_8 = \{1, 3, 5, 7\}.$

(c)
$$\mathbb{Z}_{20} = \{0, 1, 2, \dots, 19\}$$
. generators of $\mathbb{Z}_{20} = \{1, 3, 7, 9, 11, 13, 17, 19\}$.

2. List the elements of the subgroups $\langle 3 \rangle$, $\langle 7 \rangle$ in U(20).

Proof.
$$U(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}, \langle 3 \rangle = \{1, 3, 9, 7\}, \langle 7 \rangle = \{1, 7, 9, 3\}.$$

3. Let a be an element of a group and let |a| = 15. Compute the orders of a^3 , a^5 , a^6 , a^{10} of G.

Proof.
$$|a| = 15 \Rightarrow a^{15} = e$$
. $(a^3)^5 = (a^5)^3 = (a^6)^5 = (a^{10})^3 = e$. $\therefore |a^3| = 5, |a^5| = 3, |a^6| = 5, |a^{10}| = 3$.

4. In \mathbb{Z}_{24} list all generators for the subgroup of order 8. Let $G = \langle a \rangle$ and let |a| = 24. List all generators for the subgroup of order 8.

Proof. $\mathbb{Z}_{24} = \langle 1 \rangle$ is cyclic group of order 24. Subgroup of order 8 is $|\langle 1^k \rangle| = \frac{24}{\gcd(24,k)} = 8$. $\gcd(24,k) = 3$. Therefore k = 3,9,15,21. $\langle 3 \rangle = \langle 9 \rangle = \langle 15 \rangle = \langle 21 \rangle$. All generators of $\langle 3 \rangle$ are of the form $k \cdot 3$ where $\gcd(8,k) = 1$. Thus, k = 1,3,5,7 and the generators of $\langle 3 \rangle$ are 3,9,15,21. In $\langle a \rangle$, there is a unique subgroup of order 8 which is $\langle a^3 \rangle = \langle a^9 \rangle = \langle a^{15} \rangle = \langle a^{21} \rangle$. All generators of $\langle a^3 \rangle$ are of the form $(a^3)^k$ where $\gcd(8,k) = 1$. Therefore, k = 1,3,5,7 and the generators of $\langle a^3 \rangle$ are a^3, a^9, a^{15} , and a^{21} .

5. Determine the subgroup lattices for \mathbb{Z}_{24} .

Proof. Subgroup of \mathbb{Z}_{24} are

$$\{0, 1, 2, \cdots, 23\}, \{0, 2, 4, \cdots, 22\}, \{0, 3, 6, \cdots, 21\}, \{0, 4, 8, \cdots, 22\},$$

 $\{0, 6, 12, 18\}, \{0, 8, 16\}, \{0, 12\}, \{0\}.$

The lattices is

6. Let p be a prime number. Find the number of generators of the cyclic group \mathbb{Z}_{p^r} , where r is an positive integer.

Proof. For any x in the set of generators of \mathbb{Z}_{p^r} , $\gcd(x, p^r) = 1$. Since p is prime, $x \in \mathbb{Z}_{p^r}$. If $\gcd(x, p^r) \neq 1$, then x = np for $n = 0, 1, \cdots$.

$$\therefore \underbrace{0, p, 2p, \cdots, p^r - p}_{p^{r-1} - 1} \text{ are not generator.}$$

Therefore, the number of generators of \mathbb{Z}_{p^r} is $|\mathbb{Z}_{p^r}| - (p^{r-1} - 1 + 1) = p^r - p^{r-1}$.

7. Show that \mathbb{Z}_p has no proper nontrivial subgroups if p is a prime number.

Proof. $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$. For all $x \in \mathbb{Z}_p \setminus \{0\}$, $\gcd(x, p) = 1$. Thus, all x are generator,

$$|\langle x \rangle| = |x| = \frac{p}{\gcd(x, p)} = \frac{p}{1} = p.$$

Since \mathbb{Z}_p is cyclic, H must be cyclic. Thus, $H = \langle a \rangle$ for $a \in \mathbb{Z}_p$.

- (i) a = 0, H is trivial subgroup.
- (ii) $a \neq 0, a \in \mathbb{Z}_p^*, |H| = |\langle a \rangle| = |a| = p = |\mathbb{Z}_p| \Rightarrow H = \mathbb{Z}_p.$

Therefore, subgroup of \mathbb{Z}_p is always either $\{0\}$ or \mathbb{Z}_p .

8. Let a and b be elements of a group. If |a| = 10 and |b| = 21, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Proof. $\langle a \rangle \cap \langle b \rangle$ is a group. Let $c \in \langle a \rangle \cap \langle b \rangle$. Then, $c \in \langle a \rangle$, $c \in \langle b \rangle$. Thus, $|c| | \gcd(10, 21) = 1 \Rightarrow |c| = 1$. So, c' = c = e. Therefore, only elements of $\langle a \rangle \cap \langle b \rangle$ is e.

9. Suppose that |x| = n. Find a necessary and sufficient condition on r and s such that $\langle x^r \rangle \subseteq \langle x^s \rangle$.

Proof.
$$\langle x^r \rangle \subseteq \langle x^s \rangle$$
 if and only if $x^r \in \langle x^s \rangle$. $|x^s| = \frac{n}{(n,s)} \Big| n$. $\langle x^s \rangle = \langle x^{(n,s)} \rangle = \{1, x^{(n,s)}, x^{2(n,s)}, \cdots \}$. $\therefore \forall k | n$, subgroup of $\langle a \rangle : \left\{1, a^{\frac{n}{k}}, a^{\frac{2n}{k}} \cdots a^{\frac{(k-1)n}{k}}\right\} = \langle a^{\frac{n}{k}} \rangle$.

$$\therefore x^r \in \langle x^s \rangle = \langle x^{(n,s)} \rangle \Leftrightarrow (n,s) | r.$$