EEE126 Doğrusal Cebir

Dr. Öğr. Üyesi Işık İlber Sırmatel

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı

Dersle ilgili bilgiler - Giriş

Doğrusal cebir:

Doğrusal denklemlerin/fonksiyonların incelenmesi

$$\underbrace{\begin{bmatrix} 2 & 3 \\ 5 & 2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 3 \\ 5 \end{bmatrix}}_{b}$$

$$Ax = b$$

Dersle ilgili bilgiler - Genel

dersin kodu/ismi: EEE126 Doğrusal Cebir

öğretim üyesi/ofis: Işık Ilber Sırmatel/B-32

e-posta: isik.sirmatel@gmail.com

notlandırma: ara sınav %40, final %60

yoklama: %80 zorunlu (12/15 hafta)

Dersle ilgili bilgiler - Haftalık plan

hafta	kısım	konu
1	vektörler	giriş, doğrusal fonksiyonlar
2	vektörler	norm ve uzaklık, doğrusal bağımsızlık
3	matrisler	giriș, doğrusal denklemler
4	matrisler	matris çarpımı, matris ayrıştırmaları
5	matrisler	matris tersi, doğrusal denklem çözümü
6	matrisler	determinant, özdeğerler, özvektörler
7	matrisler	köşegenleştirme, dinamik sistemler
8		ara sınav
9	matrisler	simetrik matrisler, pozitif tanımlılık
10	matrisler	tekil değer ayrıştırması
11	en küçük kareler	giriş, eğri uydurma, sınıflandırma
12	en küçük kareler	çok amaçlı ve kısıtlı en küçük kareler
13	en küçük kareler	doğrusal-olmayan en küçük kareler
14	uygulamalar	optimizasyon, makine öğrenmesi
15	uygulamalar	kestirme ve kontrol, otonom sürüş

Dersle ilgili bilgiler - Sınavlar

sınav süresi: 90 dakika

sınav yöntemi: klasik yazılı

sınavlarda hesap makinası ve formül kağıdı serbest

formül kağıdı: ara sınav ightarrow arkalı-önlü 1 A4 kağıdı

formül kağıdı: final o arkalı-önlü 2 A4 kağıdı

formül kağıdına öğrenci istediği her şeyi yazabilir

sınavlar için öğrencilerin sorumlu olduğu kaynak: sadece ders slaytları

Doğrusal cebrin tanımı

Doğrusal cebir, sonlu boyutlu vektör uzayları üzerindeki doğrusal fonksiyonların incelenmesiyle ilgili matematik dalıdır.

Niçin doğrusal cebir öğrenmeliyiz?

- ▶ ders, bunlar ve başka birçok alana temel teşkil ediyor
- derste teori (10 hafta), en küçük kareler yöntemi (3 hafta), ve uygulamalar (2 hafta) ile ilgileneceğiz

Mühendislik/matematik matrisi

Örnek: Roket fırlatma ve indirme

Programlama dilleri (sayısal hesaplama)

Kaynaklar (EEE126)

dersin web sayfası (haftada bir bakın): sirmatel.github.io/teaching/EEE126 (duyurular buradan yapılacak)

- ▶ Ders kitabi: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares. Stephen Boyd, Lieven Vandenberghe
- ► **Ders videoları:** Introduction to Applied Linear Algebra. Stephen Boyd, Stanford
- ► Çözümlü sorular: Problem Sets and Exams (Linear Algebra). Gilbert Strang, MIT
- ► Ek kaynak: Linear Algebra. Gilbert Strang, MIT

Genel mesleki tavsiyeler

aşağıdaki konuları çok iyi bilen (ve çalıştığı iş koluna özgü yeterli uzmanlığı olan) bir insan günümüzde her ülkede ve (özellikle STEM ile ilgili) her iş kolunda çalışabilir ve başarılı olur:

- **▶** İngilizce
- ► mühendislik matematiği (doğrusal cebir, olasılık ve istatistik, çok değişkenli hesap, sayısal analiz/sayısal yöntemler, optimizasyon, . . .)
- **▶** bilgisayar bilimi

Kaynaklar (genel)

- ▶ İngilizce: Duolingo, Memrise, Busuu, ...
- ➤ açık dersler: MIT OpenCourseWare, Stanford Engineering Everywhere, MERLOT (arama), . . .
- ▶ temel bilgisayar bilimi: CS50 Introduction to Computer Science (Harvard)
- programlama/sayısal hesaplama: Python/SciPy, GNU Octave, MATLAB, Scilab, Julia, . . .