TI-Z. Übung Afg. 1

Henning Lehmann Parya Nemtsava

1. $\forall i \in \mathbb{N} \setminus \{0\}$: $2' \mod 2 = 0$, de jede Eweier potenz trivialer
weise ohne Rest durch 2 teilber ist. Die Summe mehrerer

Zweierpotenzen ist ebenfalls durch 2 teilber: $\binom{N-1}{2}2'$ mod 2=0

und ebenfalls $(\sum_{i=1}^{N-1}b_i, 2')\mod Z = 0$. Da $b_0 \in \{0, 1\}$, ist

bo mod $Z = b_0$. Zusammenge fasst: $\binom{N-1}{2}b_i, 2'$ mod $2 = \binom{N-1}{2}b_i, 2'$ mod 2= $\binom{N-1}{2}b_i, 2'$ mod 2= $\binom{N-1}{2}b_i, 2'$ mod 2= $\binom{N-1}{2}b_i, 2'$ mod 2mod 2 = bmod 2 = bmod 2 = 0

560

2. Eingabæ: Pezimalzahl x

Aungabæ: Binärstellen bo ... bn-1

n L L(ogz (x))

for i=0 to n:

b; t x mod 2

x t Lx/Z]

veturn bo... bn-1

Zeile Z: 18:2 = 9 Rest O

Es fehlt am Ende:

1:2 = 0 Rest 7

Zum Schluss wurden die Binärstellen
in der verkehrten Reihenfolge zu-

sammengesetzt. Nach Korrektur dieser drei Fehler: (37) = (100101)

Dezimal	Binär [*]	Oktal [*]	Hexadezimal [*]	9-Bit Zweierkomplement
198	100 0110	306	C 6	011000110
173	10101101	255	AD	010101101
349	1 0101 1101	535	15D	_
1196	100 1010 1100	2254	4AC	_
-171	_	1	~	101010101

[*] Vorzeichenlose Zahlen

```
Af_{9.3}
① i. 1000.0000 iii. 0000.10000 v. 0000.00011

iii. 1001.1000 iv. 0000.00100 vi. keine Darstellung, de zu groß
② i. -(2^{-6}) = 0,015625 iii. 9,6640625 v. 7,96875

ii. 0 iv. -9,6796873 vi. -8

Af_{9.4}
G = 11111,101_2 = 1,111101_2 \cdot (2^{-4})

Expand i 120
```

Exponent: 100 +1111111 = 10000011

Exponent: 104 + 1111111 10000100

Aufgerundet

IEEE 754: 0100001000000101100110011001101

Afg. 5

Z. Info ist toll!

Afg. 6

1. "": 01100101

"€": 1110 0010 10000010 10101100

- 2. Die Binärsequenz kodiert den Buchstaben "a". Dieser Buchstabe könnte aber auch als einzelnes Byte (01100001) kodiert werden, da nur die letzten 7 Bits Einsen enthalten.
- 3. Nur dann, wenn die ersten 128 Zeichen des Latin-1-Zeichensatzes verwendet werden, damit das erste Bit jedos Bytes O ist (wie bei der UTF-8-Kadierung von 7-Bit-Zeichen).
- 4. Für die BMP müssen im schlimmsten Fall 16 Bits kodiert werden. Diese werden in UTF-16 mit 2 Bytes, und in UTF-8 mit 3 Bytes Kodiert. Daher ist eine UTF-8 Datei im worst case 1,5-mal so groß wie eine UTF-16 Datei.

Afg. 7

- 1. Code-Distanz = n, da sich z.B. zwischen dem a und dem b nur die letzten n Bits verändern.
- 2. Es können bis zu u-1 Bitfehler erkannt, und bis zu L(n-1)/2]
 Bitfehler korrigiert werden.