Metodología para la estimación de escenarios de demanda de energía eléctrica a largo plazo-Fase II (PT 001-2022)

REPORTE No 2 - Generación de escenarios

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Esquema General: Pipeline (Diagrama de Flujo)

Esquema General: Diagrama de Flujo

Esquema General: Diagrama de Flujo

Modelo de Predicción de Demanda

Modelo de Predicción de Demanda

Input:

- demanda sintética de temperatura
- Información de calendario

Categoría	Parámetros	Rango de Valores reales	Unidades Normalizadas	Unidades
	Día de la semana	0 - 6	[0 - 1]	[-]
	Mes	1 - 12	[0 - 1]	[-]
Input	Día	1 - 31	[0 - 1]	[-]
	Hora	0 - 23	[0 - 1]	[-]
	Temperatura	-30 - 60	[0 - 1]	[°C]
Output	Demanda	-	[0 - 1]	[MW]

Training

Modelo de Predicción de Demanda

Input:

- demanda sintética de temperatura
- Información de calendario

INPUTs Temp año XXX Calendario Modelo horario DEMANDA (ANN) Datos de entrenamiento TEMP Demanda norm SINTETIZADOR DE Calendario **DEMANDAS**

Datos Normalizados

Categoría	Parámetros	Rango de Valores reales	Unidades Normalizadas	Unidades
	Día de la semana	0 - 6	[0 - 1]	[-]
	Mes	1 - 12	[0 - 1]	[-]
Input	Día	1 - 31	[0 - 1]	[-]
	Hora	0 - 23	[0 - 1]	[-]
	Temperatura	-30 - 60	[0 - 1]	[°C]
Output	Demanda	-	[0 - 1]	[MW]

Training - Datos de 2008-2020

Modelo Arquitectura

hidden layer 1 hidden layer 2

In [8]: model.summary()

Model: "UTE ANN V2 norm 200"

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 1024)	7168
dropout_5 (Dropout)	(None, 1024)	0
dense_7 (Dense)	(None, 1024)	1049600
dropout_6 (Dropout)	(None, 1024)	0
dense_8 (Dense)	(None, 1024)	1049600
dropout_7 (Dropout)	(None, 1024)	0
dense_9 (Dense)	(None, 1024)	1049600
dropout_8 (Dropout)	(None, 1024)	0
dense_10 (Dense)	(None, 1024)	1049600
dropout_9 (Dropout)	(None, 1024)	0
dense_11 (Dense)	(None, 1)	1025

Total params: 4,206,593 Trainable params: 4,206,593 Non-trainable params: 0

Validación del Modelo Predictivo

Resultado del entrenamiento

Validación: Predicción Vs Real 2021

epochs

Semana 15-22 de junio

Esquema General: Diagrama de Flujo

Generación de un Escenario

Generación de un Escenario

- modelo Bottom-up
- 2. elección del año a proyectar
- 3. elección del driver o tecnología
- 4. penetración de la tecnología
- 5. modelo de consumo

Generación de un Escenario con Penetración de EVs

Universo a considerar

- Autos livianos
- Buses
- Vehículos de carga

Universo a considerar Autos livianos ~ 5 kWh/día

Proyección de penetración de la tecnología - 3 escenarios

Año 2040	Bajo	Esperado	Alto
EVs	70.000	100.000	150.000
Buses	710	1.000	1.420
Heavy EVs	4.000	5.600	7.000

Modelo de consumo

Generación de un Escenario con Penetración de EVs

Comparación de Escenarios con Distintas Proyecciones de EVs

Comparación de Escenarios con Distintas Tarifas de Carga

Esquema General: Diagrama de Flujo

Análisis Estadístico

Análisis Estadístico

- Probabilidad de excedencia 1 año random
- Predicción en base al modelo normalizado
- Proyección energía año de interés
- Proceso **bottom up** con drivers
- Análisis estadísticos de picos

Probabilidad acumulada 2050

Análisis Estadístico

- Generación N años de temperatura en forma sintética.
- Predicción en base al modelo normalizado
- Proyección energía año de interés
- Proceso bottom up con drivers
- Análisis estadísticos de picos

Probabilidad acumulada 2040

Fundación Julio Ricaldoni

Comparación de escenarios

Hipótesis:

- Año 2040
- Comparación con EVs Vs sin Evs
 - o sin EVs (rojo)
 - Con EV cargando BaU (azul)

Hipótesis:

- Año 2030 Vs 2040
- Comparación penetración EVs carga BaU
 - 2030 c/EVs (rojo)
 - 2040 c/EVs (azul)

Comparación de escenarios

Hipótesis:

- Año 2040
- Comparación con EVs Vs sin Evs
 - o sin EVs (rojo)
 - Con EV cargando BaU (azul)

Hipótesis:

- Año 2040
- Comparación penetración EVs carga BaU
 - Alta (rojo)
 - Media (azul)
 - o Baja (verde)

Comparación de escenarios

Hipótesis:

- Año 2040
- Comparación con EVs Vs sin Evs
 - o sin EVs (rojo)
 - Con EV cargando BaU (azul)

Hipótesis:

- Año 2040
- Comparación Tarifas de carga
 - 2040 s/EVs (rojo)
 - 2040 c/EVs BaU (azul)
 - o 2040 c/EVs BaU (verde)

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

