Project Development Phase Delivery of Sprint -1

Team ID	PNT2022TMID31754
Project Name	Smart Farmer-IOT Enabled Smart FarmingApplication

In Sprint-1 we are going to develop the python code and Wokwi Online ESP32 Simulator and connecting to IBM Watson Platform

1. Introduction

The main aim of this project is to help farmers automate their farms by providing them with a Web App through which they can monitor the parameters of the field like Temperature, soil moisture, humidity and etc. And control the equipment like water motor and other devices remotely via internet without their actual presence in the field.

2. Problem Statement

Farmers are to be present at farm for its maintenance irrespective of the weather conditions. They have to ensure that the crops are well watered and the farm status is monitored by them physically. Farmer have to stay most of the time in field in order to get a good yield. In difficult times like in the presence of pandemic also they have to work hard in their fields risking their lives to provide food for the country.

3. Proposed Solution

In order to improve the farmer's working conditions and make them easier, we introduce IoT services to him in which we use cloud services and internet to enable farmer to continue his work remotely via internet. He can monitor the field parameters and control the devices in farm.

4 . Software Requirements

- 1.Python IDLE 3.7.0 (64-Bit)
- 2.IBM Watson Platform
- 3.IBM Node-Red
- 4. MIT App Inventor

First install the python 3.7.0 version idle . Go to command prompt and type python -version we can get version.

After that open python idle we can see python shell.

```
| Be ptden 2.7.5 Net | Street | Street
```

Click on file and open new file the window appear as shown below.

Before writing the python script we have install pip ibmiotf install. After that we have to write the python code.

Python code to connect the IBM Watson platform

```
pythonprogspy. C\Uters\Admin\AppButalLocalPrograms\Pythonprogspy(3.7a)\
File Edit Formst Num Options Window Help

Import time
Import time
Import instead
Imp
```

CODE:

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "9lglg1 " deviceType = "
Arduino " deviceId = "1234567" authMethod
= "token" authToken = "123456789 "
  def
myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
print(cmd)
try:
    deviceOptions = {"org": organization, "type": deviceType,
"id": deviceId, "auth-method": authMethod, "auth-token":
authToken}
    deviceCli = ibmiotf.device.Client(deviceOptions)
    #............
except Exception as e:
    print("Caught exception connecting device: %s" % str(e))
    sys.exit()
```

```
# Connect and send a datapoint "hello" with value "world" into
the cloud as an event of type "greeting" 10 times
deviceCli.connect()
while
True:
       temperature=random.randint(0,100)
humidity=random.randint(0,100)
                                soil=
random.randint(0,100)
        data = {'temperature' : temperature,
'humidity': humidity ,'soil':soil} #print data
def myOnPublishCallback():
           print ("Published Temperature = %s C" % temperature,
"Humidity = %s %%" % humidity, "soil Moisture = %s %%"% soil, "to
IBM Watson")
        success = deviceCli.publishEvent("IoTSensor", "json",
data, qos=0, on publish=myOnPublishCallback) if not
success:
                    print("Not connected to IoTF")
time.sleep(1)
       deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

Simulation output in the python idle:

```
File Edit Shell Debug Options Window Help

File Edit Shell Debug Options Window Help

Fython 3.7.0 (v3.7.0:ibf9ec5098, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

RESTART: C:\USers\Admin\AbpData\Local\Programs\Python\Python\Pythonprog.py

RESTART: C:\USers\Admin\AbpData\Local\Programs\Python\Python\Pythonprog.py

RESTART: C:\USers\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\USers\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\Users\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\Users\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\Users\Admin\AbpData\Local\Programs\Python\Python\Pythonprog.py

RESTART: C:\Users\Admin\AbpData\Local\Programs\Python\Python\Pythonprog.py

RESTART: C:\Users\Admin\AbpData\Local\Programs\Python\Python\Pythonprog.py

RESTART: C:\Users\Admin\AbpData\Local\Programs\Python\Python\Pythonprog.py

RESTART: C:\Users\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\Users\Admin\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\Users\Admin\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\Users\Admin\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\Users\Admin\Admin\AbpData\Local\Programs\Python\Pythonprog.py

RESTART: C:\Users\Admin\Admin\Admin\AbpData\Local\Programs\Pythonprog.py

RESTART: C:\Users\Admin\Admin\Admin\Admin\AbpData\Local\Programs\Pythonprog.py

RESTART: C:\Users\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\Admin\
```


Python output Showing in IBM Watson platform:

 $\textbf{WOKWI Online Simulator ESP32:} \verb| https://wokwi.com/projects/322410731508073042| \\$

```
#define DHTPIN 15 // what pin we're connected to
#define DHTTYPE DHT22 // define type of sensor DHT 11
#define LED 2
DHT dht (DHTPIN, DHTTYPE);// creating the instance by passing pin and typr of dht
connected void callback(char* subscribetopic, byte* payload, unsigned int
payloadLength);
//----credentials of IBM Accounts-----
#define ORG "rr454u"//IBM ORGANITION ID
#define DEVICE TYPE "sensor"//Device type mentioned in ibm watson IOT Platform
#define DEVICE ID "sensor 1"//Device ID mentioned in ibm watson IOT Platform
#define TOKEN "12345678"
                           //Token
String data3; float h, t;
//----- Customise the above values ----- char server[] = ORG
".messaging.internetofthings.ibmcloud.com";// Server Name char publishTopic[] =
"iot-2/evt/Data/fmt/json";// topic name and type of event perform and format in
which data to be send char subscribetopic[] = "iot-2/cmd/command/fmt/String";//
cmd REPRESENT command type AND COMMAND IS TEST OF FORMAT STRING
char authMethod[] = "use-token-auth";// authentication method char
token[] = TOKEN; char clientId[] = "d:" ORG ":" DEVICE TYPE ":"
DEVICE_ID;//client id
//-----
WiFiClient wifiClient; // creating the instance for wificlient
PubSubClient client(server, 1883, callback ,wifiClient); //calling the predefined
client id by passing parameter like server id, portand wificredential
void setup()// configureing the ESP32
  Serial.begin(115200);
dht.begin(); pinMode(LED,OUTPUT);
delay(10); Serial.println();
wificonnect(); mqttconnect();
} void loop()// Recursive
Function
    h = dht.readHumidity();
t = dht.readTemperature();
  Serial.print("Temperature:");
  Serial.println(t);
  Serial.print("Humidity:");
  Serial.println(h);
  PublishData(t, h);
delay(1000);
              if
(!client.loop()) {
mqttconnect();
  }
}
```

```
/*....retrieving to
Cloud....*/
 void PublishData(float temp, float humid) {
mqttconnect();//function call for connecting to ibm
 /*
    creating the String in in form JSon to update the data to ibm cloud
  */
 String payload = "{\"Temperature\":";
payload += temp;
  payload += "," "\"Humidity\":";
payload += humid; payload +=
"}";
 Serial.print("Sending payload: ");
 Serial.println(payload);
 if (client.publish(publishTopic, (char*) payload.c_str())) {
    Serial.println("Publish ok");// if it sucessfully upload data on the cloud
then it will print publish ok in Serial monitor or else it will print publish
failed
        } else {
   Serial.println("Publish failed");
  }
}
void mqttconnect() {    if
(!client.connected()) {
   Serial.print("Reconnecting client to ");
Serial.println(server);
   while (!!!client.connect(clientId, authMethod, token)) {
Serial.print(".");
                    delay(500);
   }
    initManagedDevice();
    Serial.println();
  } } void wificonnect() //function defination for
wificonnect
 Serial.println();
 Serial.print("Connecting to ");
 WiFi.begin("Wokwi-GUEST", "", 6);//passing the wifi credentials to establish the
           while (WiFi.status() != WL_CONNECTED) {          delay(500);
connection
   Serial.print(".");
 Serial.println("");
```

```
Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
} void
initManagedDevice() {
  if (client.subscribe(subscribetopic)) {
Serial.println((subscribetopic));
    Serial.println("subscribe to cmd OK");
  } else {
    Serial.println("subscribe to cmd FAILED");
}
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength)
 Serial.print("callback invoked for topic: ");
  Serial.println(subscribetopic);
  for (int i = 0; i < payloadLength; i++) {</pre>
    //Serial.print((char)payload[i]);
data3 += (char)payload[i];
 Serial.println("data: "+ data3);
if(data3=="lighton")
 {
Serial.println(data3);
digitalWrite(LED,HIGH);
  }
else
Serial.println(data3); digitalWrite(LED,LOW);
  } data3="";
}
```

Simulation Output in the Wokwi web site:

```
WOKWî ☐ SAVE → SHARE → esp:
    esp32-dht22.ino ● diagram.json ● libraries.txt ● Library Manager ▼
                                                                                                                                                         Simulation
                                                                                                                                                                                                                                                                            Ō00:38.391 ⊘99%
                                                                                                                                                      5 0 0
     121
             void initManagedDevice() {
   if (client.subscribe(subscribetopic)) {
      Serial.println((subscribetopic));
      Serial.println("subscribe to cmd OK");
   } else {
               } eise {
    Serial.println("subscribe to cmd FAILED");
}
     129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
150
151
              void callback(char* subscribetopic, byte* payload, unsigned int payloadlength)
{
                 Serial.print("callback invoked for topic: ");
Serial.println(subscribetopic);
for (int i = 0; i < payloadtength; i++) {
    //Serial.print((char)payload[i]);</pre>
                   data3 += (char)payload[i];
                 Serial.println("data: "+ data3);
if(data3=="lighton")
              {
Serial.println(data3);
digitalWrite(LED,HIGH);
                                                                                                                                                    Connecting to ...
                 }
else
                                                                                                                                                    WiFi connected
             {
    Serial.println(data3);
    digitalWrite(LED,LOW);
                                                                                                                                                    IP address:
                                                                                                                                                    10.10.0.2
                                                                                                                                                    Reconnecting client to 91glg1.messaging.internetofthings.ibmcloud.com
              data3="";
```

Wokwi Simulation Output in the IBM Watson Platform:

