

CS-671 DEEP LEARNING AND APPLICATIONS

ASSIGNMENT 4

Autoencoders

Submitted by: Group 13 Prachi Sharma (V21078) Ayush Tiwari (T22053)

Instructor: Prof. A D Dileep

Table of Contents

Autoencoders	2
1. Types of Autoencoders	3
2. Denoising Autoencoders	4
Experiments, Results	5
and Analysis	5
1. Dimensionality reduction using PCA	6
A. 32 Principal Components	7
B. 64 Principle Components	8
C. 128 Principle Components	10
D. 256 Principle Components	11
E. Best Reduced Dimension Representation	13
2. Reconstruction and Dimensionality reduction using Autoencoders	14
2.1. Single hidden layer autoencoder	14
A. Architecture 1 - 784I-32H-784O	16
B. Architecture 2 - 784I-64H-784O	19
C. Architecture 3 – 784I-128H-784O	22
D. Architecture 4 – 784I-256H-784O	25
E. Best Reduced Dimension Representation	28
2.2. Three hidden layers autoencoder	30
A. Architecture 1 - 784I-400H-32H-400H-784O	32
B. Architecture 2 - 784I-400H-64H-400H-784O	35
C. Architecture 3 - 784I-400H-128H-400H-784O	38
D. Architecture 4 - 784I-400H-256H-400H-784O	41
E. Best Reduced Dimension Representation	44
3. Reconstruction and Dimensionality reduction using Denoising Autoencoders	45
3.1. 20% noise	47
3.2. 40% noise	51
3. Inferences and Conclusion	55

Autoencoders

Autoencoders are a type of feedforward neural networks that find applications in various types of unsupervised learning tasks, like input reconstruction and dimensionality reduction. The basic idea behind an autoencoder is to have an output layer with the same dimension as inputs and try to reconstruct each input by passing it through the network. It has two main parts:

- an *encoder* that encodes the input x into a hidden representation h and,
- a *decoder* that decodes the input again from the hidden representation.

The purpose of an autoencoder is to reconstruct the input with minimum distortion and learn useful characteristics of input.

Figure 2.5: Structure of an autoencoder, mapping an input x through hidden representation h to an output reconstruction r. f is the encoder function and g is the decoder function. Image source: (Bengio et al., 2016)

1. Types of Autoencoders

An autoencoder is of two types depending on the number of units in the hidden representation, also called as encoded representation. An *overcomplete autoencoder* has its hidden representation dimension more than the input dimension. A trivial overcomplete autoencoder is when the autoencoder can learn to exactly copy the input x to the hidden layer and then copy the hidden representation h into reconstruction r. This type of encoding may not give any useful information about the hidden properties of the input. An *undercomplete autoencoder* has its hidden representation dimension less than the input dimension. It tries to learn the most important features of the input vectors x_n as:

- Encoding: $h_n = f(W^T x_n + w_0^{(e)})$
- Decoding: $r_n = g(W^{*T}h_n + w_0^{(d)})$
- Loss function: $L(\theta)$, θ is model parameters

Choice of activation functions for encoder and decoder functions depends on the type of input variables. In general, sigmoidal function is typically used for encoder functions. For decoder functions, in case of real values, we use linear activation function and logistic for binary

input variables. The loss function is the mean squared error between true input and reconstructed representation:

$$L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=0}^{d} (r_{ij} - x_{ij})^{2}$$

2. Denoising Autoencoders

To avoid memorization and enable more generalization in the model, we regularize it in different ways. A *denoising autoencoder* is one way to add regularization. In denoising autoencoders, noise is added to the input data using some probabilistic measure before feeding it to the network. The loss function is then calculated between the original input data and the final reconstruction. This way, the network has to depend on the hidden information to learn input data using the noisy data, making it more robust to unseen data.

Experiments, Results and Analysis

1. Dimensionality reduction using PCA

In this section, we have reduced the original input dimension of 784 to a dimension of 32, 64, 128 and 256 using Principal Component Analysis technique. The inputs are transformed into a new coordinate system defined by principal components and these transformations are then used as input to FCNNs to perform classification. The classification accuracy of each model on the validation set is compared to decide the best architecture for a particular compressed representation. Finally, test accuracy for all best performing models is compared to observe the best reduced representation.

To check classification performance of reduced representation, we have done experiments on 3 different FCNN architectures.

Architect ure	Input layer	Hidden layer 1	Hidden layer 2	Hidden layer 3	Hidden layer 4	Hidden layer 5	Output
A		512	256	128	-	-	5
В	32/64/128/ 256	512	256	128	64	-	5
С		512	256	128	64	32	5

Parameter values for all models:

Parameters	Values
Hidden layer activation function	Logistic
Output layer activation function	Softmax
Loss function	Cross Entropy
Learning rate (η)	0.001
Batch size	32
Optimiser	Adam
Beta 1 (β ₁)	0.9
Beta 2 (β ₂)	0.999

Epsilon (ϵ)	10 ⁻⁸
Convergence criterion	difference between successive epochs is less than or equal to 10^{-4} .

A. 32 Principal Components

Results and Observations:

Comparison of various model performance						
Architecture	Error vs epoch	Training accuracy	Validation Accuracy			
32-512-256-128-5	0.5	97.05%	94.80%			
32-512-256-128-64-5	1 layer 4 0.5 -	97.95%	95.17%			
32-512-256-128-64-32-5	1 inyer5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98.84%	95.25%			

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 5 hidden layers (32-512-256-128-64-32-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL					
	P	749	4	3	3	0
	R E	4	713	21	6	15
	D I	4	25	709	8	13
	C T	1	14	4	738	2
	E D	4	6	15	5	729
Classification accuracy	Train		Validation		Test	
	98.84%		95.2	25%	95.4	11%

B. 64 Principle Components

Results and Observations:

Comparison of various model performance							
Architecture Error vs epoch Training accuracy Validation Accuracy							
64-512-256-128-5	layer3	97.63%	96.54%				

64-512-256-128-64-5	Sayer4 0.5 0.4 0.4 0.5 0.1 0.5 0.1 0.5 0.5 0.5 0.5	98.42%	94.83%
64-512-256-128-64-32-5	byer5 03 04 10 03 04 02 0 2 0 4 0 0 12 14 000 0 2 4 0 8 000 0 12 14	99.04%	95.57%

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 3 hidden layers (64-512-256-128-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL					
	P	746	4	4	2	3
	R E	4	695	34	17	9
	D I	3	9	736	3	8
	C T	2	8	5	741	3
	E D	6	3	24	5	731
Classification accuracy	Train		Validation		Test	
	97.63%		96.5	54%	96.1	7%

C. 128 Principle Components

Results and Observations:

	Comparison of various model performance						
Architecture	Error vs epoch	Training accuracy	Validation Accuracy				
128-512-256-128-5	0.5 bayer3	98.15%	96.02%				
128-512-256-128-64-5	0.5 Sayyer 4 0.5 0.4 0.5 0	98.84%	96.15%				
128-512-256-128-64-3 2-5	0.3 layer5 0.4	99.17%	96.04%				

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 4 hidden layers (128-512-256-128-64-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL					
	P	745	7	5	2	0
	R E	0	727	14	8	10
	D I	1	21	719	3	15
	C T	5	12	1	737	4
	E D	5	8	12	4	730
Classification accuracy	Train		Validation		Test	
	98.84%		96.1	5%	96.	.07

D. 256 Principle Components

Results and Observations:

Comparison of various model performance						
Architecture	Error vs epoch	Training accuracy	Validation Accuracy			
256-512-256-128-5	Sayer3 S	98.52%	96.49%			
256-512-256-128-64-5	1	99.24%	96.41%			

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 5 hidden layers (256-512-256-128-64-32-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL					
	P	753	3	1	1	1
	R E	5	719	13	13	9
	D I	3	20	723	5	8
	C T	1	12	3	739	4
	E D	6	5	16	2	730
Classification accuracy	Train		Validation		Test	
	99.06%		96.52%		96.41%	

E. Best Reduced Dimension Representation

I. Performance comparison with different models

Architecture	Classification Accuracy on Test data
784-512-256-128-64-10 (Best of Assignment 3)	97.44%
64-512-256-128-64-5 (Best of PCA)	96.17%

2. Reconstruction and Dimensionality reduction using

Autoencoders

2.1. Single hidden layer autoencoder

For single hidden layer autoencoder, we have considered 4 architectures

Architecture	Input layer	Hidden layer (Bottleneck layer)	Output layer
1	784	32	784
2	784	64	784
3	784	128	784
4	784	256	784

The output layer has 784 neurons since the flattened input has 784 neurons and our task is to reconstruct the input using different autoencoders. The data is normalized using MinMax normalization to scale all input features in the range of [0,1].

Parameters for all models:

Parameters	Values
Hidden layer activation function	Logistic
Output layer activation function	Logistic
Loss function	Mean Squared Error
Batch size	32
Learning rate (η)	0.001
Optimiser	Adam

Beta 1 (β ₁)	0.9
Beta 2 (β ₂)	0.999
Epsilon (ϵ)	10^{-8}
Convergence criterion	Difference between successive epochs is less than or equal to 10^{-4} .

Further, to check classification performance of reduced representation, encoded representation (output of bottleneck layer) is then used to train different fully connected neural networks. We have done experiments on 3 different FCNN architectures.

Architect ure	Input layer	Hidden layer 1	Hidden layer 2	Hidden layer 3	Hidden layer 4	Hidden layer 5	Output
A		512	256	128	-	-	5
В	32/64/128/ 256	512	256	128	64	-	5
С		512	256	128	64	32	5

Parameter values for all models:

Parameters	Values
Hidden layer activation function	Logistic
Output layer activation function	Softmax
Loss function	Cross Entropy
Learning rate (η)	0.001
Batch size	32
Optimiser	Adam
Beta 1 (β ₁)	0.9
Beta 2 (β ₂)	0.999
Epsilon (ϵ)	10 ⁻⁸

Convergence criterion	difference between successive epochs is less than
	or equal to 10^{-4} .

The classification accuracy of each model on the validation set is compared to decide the best architecture for a particular compressed representation. Finally, test accuracy for all best performing models is compared to observe the best reduced representation.

A. Architecture 1 - 784I-32H-7840

Results and Observations of Autoencoder:

Original and reconstructed image of train data				
Original Image	3 6 9			

Original and reconstructed image of validation data				
Original Image	1 a 3 6 9			
Reconstructed Image	1 a 3 6 9			

Original and reconstructed image of test data				
Original Image	1 2 3 6 9			
Reconstructed Image	1 2 3 6 9			

Results and Observations of FCNNs:

Comparison of various model performance					
Architecture	Error vs epoch	Training accuracy	Validation Accuracy		
32-512-256-128-5	04 03 03 03 04 01 00 0 10 20 10 40 50	99.75%	98.81%		
32-512-256-128-64-5	04 04 03 03 00 00 00 00 00 00 00 00 00 00 00	100%	98.89%		
32-512-256-128-64-32-5	05 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99.72%	98.55%		

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 4 hidden layers (32-512-256-128-64-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL					
	P	749	7	2	1	0
	R E	4	747	4	1	5
	D I	1	5	747	1	5
	C T	1	3	3	750	2
	E D	2	2	3	0	752
Classification accuracy	Train		Validation		Test	
	100%		98.8	39%	98.6	58%

B. Architecture 2 - 784I-64H-7840

Results and Observations of Autoencoder:

Original and reconstructed image of train data						
Original Image	1 2 3 6 9					
Reconstructed Image	a 3 6 9					

Original and reconstructed image of validation data					
Original Image	1 a 3 6 9				
Reconstructed Image	Reconstructed Image				

Original and reconstructed image of test data					
Original Image	1 2 3 6 9				

Reconstructed Image

Results and Observations of FCNNs:

Comparison of various model performance						
Architecture	Error vs epoch	Training accuracy	Validation Accuracy			
64-512-256-128-5	04 02 03 30 30 40 90 60 Epoch	100%	98.63%			
64-512-256-128-64-5	0.4 Jo 0.3 Jo 20 Jo 40 Jo Epoch	100%	98.66%			
64-512-256-128-64-32-5	0.5 0.4 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	99.91%	98.55%			

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 4 hidden layers (128-512-256-128-64-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL
------------------	--------

	P R	754	3	0	1	1
	E D	2	743	6	2	6
	I C	2	3	748	2	4
	T E	2	3	2	751	1
	D	4	0	3	1	751
Classification accuracy	Train		Validation		Test	
	100%		98.6	56%	98.7	73%

C. Architecture 3 - 784I-128H-7840

Results and Observations of Autoencoder:

Original and reconstructed image of train data						
Original Image	1 2 3 6 9					
Reconstructed Image	1 2 3 6 9					

Original and reconstructed image of validation data					
Original Image	1 a 3 6 9				
Reconstructed Image	1 a 3 6 9				

Original and reconstructed image of test data					
Original Image	1 2 3 6 9				

Reconstructed Image

Results and Observations of FCNNs:

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 5 hidden layers (128-512-256-128-64-32-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL
	1101011

	P R	752	4	1	2	0
	E D	4	732	14	5	4
	I C	1	10	741	1	6
	T E	1	5	3	748	2
	D	3	2	7	1	746
Classification accuracy	Train		Validation		Test	
	100%		98.2	26%	97.9	99%

D. Architecture 4 - 784I-256H-7840

Results and Observations of Autoencoder:

Original and reconstructed image of train data				
Original Image	1 2 3 6 9			
Reconstructed Image	1 2 3 6 9			

Original and reconstructed image of validation data				
Original Image	1 a 3 6 9			
Reconstructed Image	1 A 3 6 9			

Original and reconstructed image of test data			
Original Image	1 2 3 6 9		

Reconstructed Image

Results and Observations of FCNNs:

Comparison of various model performance						
Architecture	Error vs epoch	Training accuracy	Validation Accuracy			
256-512-256-128-5	05 - 04 - 03 - 03 - 05 - 04 - 05 - 05 - 05 - 05 - 05 - 05	100%	97.92%			
256-512-256-128-64-5	05 0 10 20 20 20 60 Epoch	100%	97.79%			
256-512-256-128-64-32- 5	06 05 05 05 05 05 05 05 05 05 05 05 05 05	99.68%	97.36%			

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 5 hidden layers (256-512-256-128-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL
------------------	--------

	P R	751	3	3	1	1
	E D I C T E	3	734	11	6	5
		2	10	739	3	5
		2	7	2	747	1
	D	5	3	9	0	742
Classification accuracy	Train		Valid	ation	Te	est
	100%		97.9	01%	97.8	33%

E. Best Reduced Dimension Representation

II. Performance comparison with different models

Architecture	Classification Accuracy on Test data
784-512-256-128-64-10 (Best of Assignment 3)	97.44%
64-512-256-128-64-5 (Best of PCA)	96.17%
64-512-256-128-64-5 (Best of single layer AE)	98.73%

III. Weight visualization

Visualization of inputs that maximally activate each neuron

2.2. Three hidden layers autoencoder

For three hidden layer autoencoder, we have considered 4 architectures

Architecture	Input layer	Hidden layer 1	Hidden layer 2 (Bottleneck layer)	Hidden layer 3	Output layer
1	784	400	32	400	784
2	784	400	64	400	784
3	784	400	128	400	784
4	784	400	256	400	784

The output layer has 784 neurons since the flattened input has 784 neurons and our task is to reconstruct the input using different autoencoders. The data is normalized using MinMax normalization to scale all input features in the range of [0,1].

Parameters for all models:

Parameters	Values		
Hidden layer activation function	Logistic		
Output layer activation function	Logistic		
Loss function	Mean Squared Error		
Batch size	32		
Learning rate (η)	0.001		
Optimiser	Adam		
Beta 1 (β ₁)	0.9		
Beta 2 (β ₂)	0.999		
Epsilon (ϵ)	10 ⁻⁸		

Convergence criterion	Difference between successive epochs is less than
	or equal to 10^{-4} .

Further, to check classification performance of reduced representation, encoded representation (output of bottleneck layer) is then used to train different fully connected neural networks. We have done experiments on 3 different FCNN architectures.

Architect ure	Input layer	Hidden layer 1	Hidden layer 2	Hidden layer 3	Hidden layer 4	Hidden layer 5	Output
A		512	256	128	-	-	5
В	32/64/128/ 256	512	256	128	64	-	5
С		512	256	128	64	32	5

Parameter values for all models:

Parameters	Values		
Hidden layer activation function	Logistic		
Output layer activation function	Softmax		
Loss function	Cross Entropy		
Learning rate (η)	0.001		
Batch size	32		
Optimiser	Adam		
Beta 1 (β ₁)	0.9		
Beta 2 (β ₂)	0.999		
Epsilon (ε)	10 ⁻⁸		
Convergence criterion	difference between successive epochs is less than or equal to 10^{-4} .		

The classification accuracy of each model on the validation set is compared to decide the best architecture for a particular compressed representation. Finally, test accuracy for all best performing models is compared to observe the best reduced representation.

A. Architecture 1 - 784I-400H-32H-400H-7840

Results and Observations of Autoencoder:

Results and Observations of FCNNs:

Comparison of various model performance								
Architecture	Error vs epoch	Training accuracy	Validation Accuracy					
32-512-256-128-5	0.6 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	99.25%	98.24%					
32-512-256-128-64-5	0.5 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	99.29%	98.36%					
32-512-256-128-64-32-5	0.7 0.6 0.3 0.9 0.1 0.2 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	99.03%	98.21%					

Results on best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 4 hidden layers (32-512-256-128-64-5) performs best. Following is the confusion matrix and classification accuracy on test data for the best selected model.

Confusion matrix	ACTUAL						
	P	753	3	3	0	0	
	R E D I C	4	744	6	0	5	
		1	4	748	1	5	
		1	5	0	752	1	
	E D	2	3	4	0	750	
Classification accuracy	Train		Validation		Test		
	99.29%		98.36%		98.73%		

B. Architecture 2 - 784I-400H-64H-400H-7840

Results and Observations of Autoencoder:

Results and Observations of FCNNs:

Results on best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 4 hidden layers (64-512-256-128-64-5) performs best. Following is the confusion matrix on test data and classification accuracy for the best selected model.

Confusion matrix	ACTUAL
------------------	--------

	P R	746	9	3	1	0
	E D	1	739	11	1	7
	I C	1	3	750	2	3
	T E	0	4	4	750	1
	D	4	2	19	1	733
Classification accuracy	Train		Validation		Test	
	99.42%		98.3	36%	97.9	97%

C. Architecture 3 - 784I-400H-128H-400H-7840

Results and Observations:

Results and Observations:

Results on best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 3 hidden layers (128-512-256-128-5) performs best. Following is the confusion matrix on test data and classification accuracy for the best selected model.

Confusion matrix A C T U A L	Confusion matrix	ACTUAL
------------------------------	------------------	--------

	P R	750	6	1	2	0
	E D	1	744	8	3	3
	I C	2	5	745	3	4
	T E	0	2	0	756	1
	D	2	3	8	0	746
Classification accuracy	Train		Validation		Test	
	99.41%		98.2	21%	98.5	57%

D. Architecture 4 - 784I-400H-256H-400H-7840

Results and Observations:

Results and Observations:

	Comparison of various model performance								
Architecture	Error vs epoch	Training accuracy	Validation Accuracy						
256-512-256-128-5	04- 04- 04- 04- 04- 04- 04- 04- 04- 04-	99.50%	98.20%						
256-512-256-128-64-5	0.4 0.3 0.3 0.3 0.1 0.1 0.5 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	99.63%	98.18%						
256-512-256-128-64-32- 5	0.6 - 0.5 -	99.52%	98.25%						

Results on best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 5 hidden layers (256-512-256-128-64-32-5) performs best. Following is the confusion matrix on test data and classification accuracy for the best selected model.

Confusion matrix	ACTUAL
-------------------------	--------

	P R	750	5	3	0	1
	E D	1	740	11	1	6
	I C	3	5	745	2	4
	T E	1	8	1	748	1
	D	4	5	6	0	744
Classification accuracy	Train		Validation		Test	
	99.52%		98.2	25%	98.2	20%

E. Best Reduced Dimension Representation

IV. Performance comparison with different models

Architecture	Classification Accuracy on Test data
784-512-256-128-64-10 (Best of Assignment 3)	97.44%
64-512-256-128-64-5 (Best of PCA)	96.17%
64-512-256-128-64-5 (Best of single hidden layer AE)	98.73%
128-512-256-128-5 (Best of three hidden layers AE)	98.57%

3. Reconstruction and Dimensionality reduction using

Denoising Autoencoders

For the single hidden layer denoising autoencoder, we have considered the architecture with best reconstruction from our experiments with different autoencoders. The single hidden layer autoencoder with best classification performance on test data is considered to be giving best input representation among all.

Architecture	Input layer Hidden layer (Bottleneck layer)		Output layer
1	784	64	784

The output layer has 784 neurons since the flattened input has 784 neurons and our task is to reconstruct the input using the denoising autoencoders with 20% and 40% noise. The data is normalized using MinMax normalization to scale all input features in the range of [0,1].

Parameters for all models:

Parameters	Values
Hidden layer activation function	Logistic
Output layer activation function	Logistic
Loss function	Mean Squared Error
Batch size	32
Learning rate (η)	0.001
Optimiser	Adam
Beta 1 (β ₁)	0.9
Beta 2 (β ₂)	0.999
Epsilon (ϵ)	10 ⁻⁸

Convergence criterion	Difference between successive epochs is less than
	or equal to 10^{-4} .

Further, to check classification performance of reduced representation, encoded representation (output of bottleneck layer) is then used to train different fully connected neural networks. We have done experiments on 3 different FCNN architectures.

Architect ure	Input layer	Hidden layer 1	Hidden layer 2	Hidden layer 3	Hidden layer 4	Hidden layer 5	Output
A		512	256	128	-	-	5
В	32/64/128/ 256	512	256	128	64	-	5
С		512	256	128	64	32	5

Parameter values for all models:

Parameters	Values
Hidden layer activation function	Logistic
Output layer activation function	Softmax
Loss function	Cross Entropy
Learning rate (η)	0.001
Batch size	32
Optimiser	Adam
Beta 1 (β ₁)	0.9
Beta 2 (β ₂)	0.999
Epsilon (ϵ)	10 ⁻⁸
Convergence criterion	difference between successive epochs is less than or equal to 10^{-4} .

The classification accuracy of each model on the validation set is compared to decide the best architecture for a particular compressed representation. Finally, test accuracy for all best performing models is compared to observe the best reduced representation.

3.1. 20% noise

Results and Observations of Denoising Autoencoder:

Results and Observations of FCNNs:

Comparison of various model performance					
Architecture	Error vs epoch	Training accuracy	Validation Accuracy		
64-512-256-128-5	0.7 0.6 0.5 0.5 0.6 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	99.48%	98.38%		
64-512-256-128-64-5	0.6 - 0.5 -	99.36%	98.39%		
64-512-256-128-64-32-5	0.6 0.6 0.6 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	99.39%	98.34%		

Results of best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 4 hidden layers (64-512-256-128-64-5) performs best. Following is the confusion matrix on test data and classification accuracy for the best selected model.

Confusion matrix	ACTUAL					
	P	753	4	1	1	0
	R E	4	741	6	1	7
	D I	0	4	750	1	4
	C T	2	3	0	754	0
	E D	5	1	7	1	745
Classification accuracy	Train		Validation		Test	
	99.36%		99.39%		98.69%	

Weight visualization:

3.2. 40% noise

Results and Observations of Denoising Autoencoder:

Results and Observations o FCNNs:

Comparison of various model performance					
Architecture	Error vs epoch	Training accuracy	Validation Accuracy		
64-512-256-128-5	0.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	99.40%	98.43%		
64-512-256-128-64-5	0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	99.31%	98.32%		
64-512-256-128-64-32-5	0.5 0.4 0.5 0.03 0.0	99.31%	98.32%		

Results on best selected architecture on test data:

On comparing validation accuracy of different FCNN, we can observe that the network with 3 hidden layers (64-512-256-128-5) performs best. Following is the confusion matrix on test data and classification accuracy for the best selected model.

Confusion matrix	ACTUAL					
	P	751	5	2	0	1
	R E	3	741	8	1	6
	D I	1	6	747	1	4
	C T	1	4	1	750	3
	E D	3	2	5	0	749
Classification accuracy	Train		Validation		Test	
	99.40%		98.43%		98.49%	

Weight visualization:

3. Inferences and Conclusion

In this assignment, we performed different experiments to understand the role of autoencoders in reconstruction, dimensionality reduction and classification of input patterns. We did dimensionality reduction using PCA as well as single and three hidden layer autoencoders. This compressed input was then sent to a classifier neural network to perform classification. We also did similar tasks with denoising autoencoders. The inferences and conclusions that we can draw from our experiments are as follows:

- The measure we have used to compare reconstruction in case of autoencoders is the Mean Squared Error (MSE). If we compare the MSE for the same dimension in single and three hidden layer autoencoders, in most cases, single hidden layer autoencoders have lesser MSE values. Also, in some cases, the difference in MSEs of both autoencoders is ≈ 0.005
- The denoising autoencoders have comparatively larger MSEs than that of a standard autoencoder with the same architecture because it is trained to reconstruct clean inputs from noisy inputs and has an additional task to remove noise from inputs while learning.
- On observing the classification accuracy on train, validation and test data, it can be noted that, in all cases, single hidden layer autoencoder has 100% test accuracy while three hidden layer autoencoder has accuracy > 99%. However, on validation and test data, the performance of both autoencoders is highly competitive.
- Principal component analysis technique also works well at classification with accuracy
 95% on validation as well as test data. It is possible that with PCA, compressed representation is not able to retrieve all the relevant information required to predict output labels.
- It is evident that denoising autoencoders, although have higher MSEs, their compressed representation performs really well at classification with accuracy > 99% on validation data. The reason might be since denoising acts as a regularization, denoising autoencoder's compressed representation is able to keep more relevant information about the inputs that is required to predict the output labels.
- The weight visualization also depicts that the hidden representation in denoising autoencoder has learnt more strokes than in case of single hidden layer autoencoders.

We saw that autoencoders are a very good way to reconstruct input patterns as well as reduce its dimension. From our current as well as previous experiments, one can conclude that using an autoencoder to reduce dimension and retain useful information in inputs to further perform the task at hand can improve our results as well as decrease our training time. Also, adding regularization, like adding noise, can make our model more robust to overfitting.

References

1. Bengio, Y., Courville, A., & Goodfellow, I. (2016). *Deep Learning*. MIT Press.