(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 12 April 2007 (12.04.2007)

(51) International Patent Classification: C12Q 1/68 (2006.01)

(21) International Application Number:

PCT/EP2006/010132

(22) International Filing Date:

29 September 2006 (29.09.2006)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

05109025.6

29 September 2005 (29.09.2005) EP

(71) Applicant (for all designated States except US): UNI-**VERSITÄT ZU KÖLN** [—/DE]; Albertus-Magnus-Platz, 50923 Köln (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KRUT, Oleg [RU/DE]; Schiefersburger Weg 93, 50937 Köln (DE). PALKA-SANTINI, Marie [FR/DE]; Mohnweg 2, 50858 Köln (DE). CLEVEN, Berit [DE/DE]; Bachstr. 53919 Weilerswist (DE). KRÖNKE, Martin [DE/DE]; Eugen-Langen-Str. 2, 50968 Köln (DE).

(10) International Publication Number WO 2007/039319 A2

(74) Agent: HELBING, Jörg; P.O. Box 10 22 41, 50462 Köln (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ANALYTICAL DEVICE FOR RAPID IDENTIFICATION OF PATHOGENS

(57) Abstract: The present invention provides an analytical device, especially a DNA microarray, for identification and characterisation of microorganisms in a sample or clinical specimen. Furthermore, it provides for a method for rapid identification and strain profiling of different microbial species in a sample or clinical specimen, especially in a blood culture, utilizing said analytical device.

WO 2007/039319 PCT/EP2006/010132

Analytical device for Rapid Identification of Pathogens

The present invention provides an analytical device, especially a DNA microarray, for identification and characterisation of microorganisms in a sample or clinical specimen. Furthermore, it provides for a method for rapid identification and strain profiling of different microbial species in a sample or clinical specimen, especially in a blood culture, utilizing said analytical device.

Background

5

10

15

20

25

30

Isolation, identification and characterisation of bacteria and fungi from such diverse samples like food, environmental samples, clinical specimens, and veterinary samples is still a challenge for today's analytical laboratories. This is due to the fact that generally the identification of microorganisms includes three steps: (a) enrichment of microorganisms by culture, (b) subculture on solid media (preparation of a pure culture), and (c) performing a set of biochemical reactions specific for a particular pathogen. All these steps are dependent on the bacterial growth (slow), they are poorly automated (lot of manual work), and complex (require well educated personal).

Isolation, identification and characterisation of bacteria and fungi from clinical specimens is a main task of microbiological routine diagnostics. In fact, microorganisms are ubiquitous in certain areas of the human body. For this reason isolation and identification of pathogenic bacteria from clinical material and discrimination of specific pathogens from contaminations with indigenous or environmentally encountered microorganisms is a requirement for the correct diagnosis of infectious diseases. Additionally, accurate identification of antibiotic resistance and particular virulence factors provide important information enabling the clinician to choose effective antimicrobial therapy.

In the course of infection, many specimen types can be used for direct identification of the pathogens. These include, but are not limited to, liquor in the course of bacterial meningitis, sputum from patients with bacterial pneumonia, urine in the course of upper and lower urinary tract infections, punktate from sites of deep purulent infections (such as abscess, phlegmone, lung emphysema and septic arthritis), stool from patients with gastrointestinal tract infections, pus, swabs or wound fluid from purulent infections of the skin and wounds. Sometimes, bacteria

WO 2007/039319 PCT/EP2006/010132 - 2 -

are represented in the specimen only in minor numbers, thus, indirect identification of pathogens after culture of specimens in liquid media is employed. Important examples are enrichment cultures of food samples during outbreaks of food borne infections and blood cultures for diagnosis of bloodstream infections.

5

10

15

20

25

30

The invasion of the bloodstream by microorganisms, especially bacteremia and fungemia, represents one of the most serious consequences of infections and is a high ranked cause of death (Mylotte, J.M. and Tayara, A., Eur. Clin. Microbiol. Infect. Dis. 19:157-163 (2000); Reimer, L.G. et al., Clin. Microbiol. Rev. 10:444-465 (1997)). Bacteremia is the means by which local infections spread hematogenously to distant organs. This hematogenous dissemination of bacteria is part of the pathophysiology of, e.g., meningitis and endocarditis, Pott's disease and many other forms of osteomyelitis. In the hospital, indwelling catheters are a frequent cause of bacteremia and subsequent nosocomial infections, since they provide a means by which bacteria normally found on the skin can enter the bloodstream. Other causes of bacteremia include dental procedures, urinary tract infections, intravenous drug use, and colorectal cancer.

Systemic fungal infection is becoming more and more common in modern hospitals. The most common fungal infections are candidiasis and aspergillosis, but other such Histoplasmosis, systemic fungal infections as Blastomycosis, Coccidioidomycosis and Cryptococcosis are also of increasing relevance. Systemic fungal infections in hospitals are commonly seen in immune compromised patients and - like bacteremia - in patients with indewelling catheters. Due to underlying serious illnesses and possible resistance of the pathogens to antifungal agents, patients with systemic fungal infections often have poor clinical outcomes. Infections due to Candida species are the fourth most important cause of nosocomial bloodstream infection.

Bacteremia is operationally defined as the presence of viable bacteria as evidenced by positive blood cultures. Fungemia is similarly defined as the presence of viable fungi as evidenced by positive blood cultures. When bacteremia or fungemia occurs in the presence of systemic symptoms (such as fever or chills) the condition is designated as sepsis; and in the setting of more severe disturbances of

WO 2007/039319 PCT/EP2006/010132
- 3 -

temperature, respiration, heart rate or white blood cell count, is characterised as systemic inflammatory response syndrome (SIRS).

Many septic episodes are nosocomial and often due to microorganisms with increased and multiple antimicrobial resistance. Staphylococcus aureus, Escherichia Coaqulase-negative staphylococci (CoNS), Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus spp., Streptococcus spp., Candida albicans and Enterobacter cloacae are the most frequent etiological agents of bacteremia and fungemia in Europe (Decousser, J. W. et al., J. Antimicrob. Chemother. 51:1214-22 (2003); Lyytikainen, O. et al., Clin. Infect. Dis. 35:314-9 (2002); Reacher, M.H. et al., BMJ 320:213-6 (2000); Rosenthal Kreuberger, E.J., Int. J. Antimicrob. Agents 24:196-8 (2004)) and the USA (Bourbeau, P.P. and Pohlman, J.K., J. Clin. Microbiol. 39:2079-82 (2001); Reimer, L.G. et al., Clin. Microbiol. Rev. 10:444-65 (1997); Reisner, L.G. et al., J. Clin. Microbiol. 37:2024-6 (1999); Wilson, M.L. et al., J. Clin. Microbiol. 37:1709-13 (1999)).

5

10

15

20

25

30

Nosocomial bacteremia and especially sepsis require an immediate antibiotic therapy, even when the causative bacteria are still unknown. Thus, said therapy has to be performed as empirical initial therapy (Rello, J. et al., Intensive Care Med. 20:94-98 (1994)), which covers the complete spectrum of relevant pathogens. However, the increase of bacterial resistance lowers the chance of success for such empirical antibiotic treatments considerably (Mylotte, J.M. and Tayara, A., Eur. Clin. Microbiol. Infect. Dis. 19:157-163 (2000); Weinstein, M.P. et al., Clin. Infect. Dis. 24:584-602 (1997)). This primary therapy can only be replaced by a specific treatment after a thorough microbial diagnosis which usually takes 76-120 h (Bourbeau, P.P. and Pohlman, J.K., J. Clin. Microbiol. 39:2079-2082 (2001)). A fast track diagnosis which shortens this lag time would increase the chance of therapy success.

Rapid and reliable detection of bloodstream infections, including characterisation of the pathogen to the species level and determination of its antibiotic susceptibility pattern, is crucial for several reasons: (i) Appropriate antimicrobial agents can be selected, and thus, unnecessary treatment with ineffective antibiotics can be avoided; (ii) the prognosis of the patients can be improved; (iii) the acquisition of resistances in pathogens may be decelerated and (iv) expenditures on antimicrobials and overall hospital costs can be reduced (Barenfanger, J. et al., J.

WO 2007/039319 PCT/EP2006/010132 - 4 -

Clin. Microbiol. 37:1415-8 (1999); Doern, G.V. et al., J. Clin. Microbiol. 32:1757-62 (1994); Trenholme, G.M. et al., J. Clin. Microbiol. 27:1342-5 (1989); Wheeler, A.P. and Bernard, G.R., N. Engl. J. Med. 340:207-14 (1999)). Therefore, there is a strong need for rapid tests for specific and sensitive identification of bacteria and pathogenic fungi directly from blood cultures.

5

10

15

20

25

30

The diagnosis of bacteremia commonly relies on blood cultures where the growth of microorganisms is continuously monitored by automated devices (James, P.A. and Al-Shafi, K.M., J. Clin. Pathol. 53:231-233 (2000); Reisner, B.S. and Woods, G.L., J. Clin. Microbiol. 37:2024-2026 (1999); Wilson, M.L. et al., J. Clin. Microbiol 37:1709-1713 (1999)). Although such continuous-reading and computed systems decrease the time for detection of positive blood cultures, definitive pathogen identification from positive blood cultures still requires traditional Gram-staining, sub-culturing and susceptibility testing, delaying the identification of pathogens for one to three days (Levi, K. and Towner, K.J., J. Clin. Microbiol. 41:3890-3892 (2003); Oliveira, K. et al., J. Clin. Microbiol. 41:889-891 (2003); Oliveira, K. et al., J. Clin. Microbiol. 40:247-251 (2002); Tan, T.Y. et al., J. Clin. Microbiol. 39:4529-4531 (2001)). The subculture procedure with subsequent species identification and determination of antibiotic resistance is time-consuming and elaborate. The biochemical and immunological assays like testing with coagulase, nuclease or latex agglutination are not always reliable. Antigenic and biochemical variations of bacteria grown in blood culture, inhibitory action of blood culture medium components as well as the presence of more than one microbial species may mislead data interpretation.

Staphylococci are the most important and frequent group of pathogens growing in blood culture, responsible for 30% to more than 50% of all bacteremia events (James, P.A. and Al-Shafi, K.M., J. Clin. Pathol. 53:231-233 (2000); Reisner, B.S. and Woods, G.L., J. Clin. Microbiol. 37:2024-2026 (1999); Velasco, E. et al., Sao Paulo Med. J. 118:131-138 (2000)) with a mortality rate ranging from 13 to 50% (McClelland, R.S. et al., Arch. Intern. Med. 159:1244-1247 (1999); Rello, J. et al., Intensive Care Med. 20:94-98 (1994); Weinstein, M.P. et al., Clin. Infect. Dis. 24:584-602 (1997)). The emergence of *S. aureus* strains with multiple resistance to antibiotics makes empirical therapy prone to fail (Tan, T.Y. et al., J. Clin. Microbiol. 39:4529-4531 (2001)). *S. aureus* is generally regarded as a virulent

pathogen, whereas CoNS are either considered as a cause of catheter-associated nosocomial bacteremia or, more frequently, as blood culture contamination. Thus, a sub-genus identification of gram-positive cocci in clusters (CPCC) is of great clinical significance (Oliveira, K. et al., J. Clin. Microbiol. 41:889-891 (2003)).

Methods used up to date for direct identification of *S. aureus* growing in blood culture bottles include biochemical tests, like detection of thermostable nuclease or tube coagulase test, or commercial antibody-based kits connected with the disadvantages listed above.

10

15

20

25

30

Besides S. aureus and coagulase-negative staphylococci, E. coli, Klebsiella spp., Enterobacter spp., Proteus spp., Pseudomonas aeruginosa, Streptococcus pneumoniae, beta hemolytic Streptococci and Enterococcus spp. belong to the most frequent reported pathogens causing bacteremia (Reimer, L.G. et al., Clin. Microbiol. Rev., 10:444-65 (1997); Reacher, M.H. et al., BMJ, 320:213-6 (2000); Lyytikainen, O. et al., Clin. Infect. Dis., 35:e14-9 (2002)) In order to reduce the time needed for identification and susceptibility testing, the possibility of combining an automated blood culture system with an automated identification and susceptibility testing system by direct inoculation from positive blood cultures has been studied for gram-positive cocci as well as for gram-negative rods by several groups of investigators, but with varying success (Reimer, L.G. et al., Clin. Microbiol. Rev., 10:444-65 (1997); Hansen, D.S. et al., Clin. Microbiol. Infect., 8:38-44 (2002); Ling, T.K. et al., J. Clin. Microbiol., 41:4705-7 (2003); Funke, G. and Funke-Kissling, P., J. Clin. Microbiol., 42:1466-70 (2004)). Although the authors saw some potential of the combined system to allow the agar isolation step to be skipped, the system is hampered by the fact that (i) the blood culture sample has to undergo a time-consuming separation procedure for the enrichment of bacterial cells, (ii) the identification rate varies depending on the employed identification system and (iii) the performance is not equally good for gram-negative and gram-positive pathogens (Reimer, L.G. et al., Clin. Microbiol. Rev., 10:444-65 (1997); Ling, T.K. et al., J. Clin. Microbiol., 41:4705-7 (2003); Funke, G. and Funke-Kissling, P., J. Clin. Microbiol., 42:1466-70 (2004)).

Considerable progress was made using nucleic acid-based methods for the identification and genotyping of bacteria or fungi in blood specimens. Assays employing ribosomal RNA-based oligonucleotide probes like fluorescence *in situ*

hybridisation (FISH) (Chapin, K. and Musgnug, M., J. Clin. Microbiol. 41:4324-7 (2003); Jansen, G.J. et al., J. Clin. Microbiol. 38:814-7 (2000); Kempf, V.A. et al., J. Clin. Microbiol. 38:830-8 (2000); Oliveira, K. et al., J. Clin. Microbiol. 41-889-91 (2003)) or microarrays (Anthony, R.M. et al., J. Clin. Microbiol. 38:781-8 (2000); Marlowe, E.M. et al., J. Clin. Microbiol. 41:5127-33 (2003); Sogaard, M. et al., J. Clin. Microbiol., 43:1947-9 (2005)) provide for rapid species identification in blood cultures. However, methods solely based on ribosomal RNA probes allow species identification only, and do not provide information on antibiotic susceptibility and other strain specific characteristics (e.g. virulence genes). For the molecular detection of antibiotic resistances in staphylococci, several multiplex PCR-based assays were described (Martineau, F. et al., Antimicrob. Agents Chemother. 44:231-8 (2000); Shrestha, N.K. et al., Approved standard M2-4A, Villanova, PA (1990); Strommenger, B.C. et al. J. Clin. Microbiol. 41:4089-94; Tan, T.Y. et al., J. Clin. Microbiol. 39:4529-31 (2001)). Several groups have successfully identified S. aureus and more specifically methicillin-resistant S. aureus strains (MRSA) from blood cultures by using DNA probes (Levi, K. and Towner, K.J., J. Clin. Microbiol. 41:3890-3892 (2003); Poulsen, A.B. et al., J. Antimicrob. Chemother. 51:419-421 (2003)), peptide nucleic acid probes (Oliveira, K. et al., J. Clin. Microbiol. 41:889-891 (2003)), multiplex PCR (Mason, W. J. et al., J. Clin. Microbiol. 39:3332-3338 (2001)), gel-based PCR (Krishnan, P.U. et al., J. Clin Pathol. 55:745-748 (2002)), and real-time PCR (Shrestha N.K. et al., J. Clin. Microbiol. 40:2659-2661 (2002); Tan, T.Y. et al., J. Clin. Microbiol. 39:4529-4531 (2001)).

5

10

15

20

25

30

However, the use of such molecular assays suffers from two main restrictions: First, they rely on a pre-identification of the pathogen since their discriminatory capacity is technically limited, for instance by the number of fluorochromes available for labelling the probes or, in the case of multiplex PCR, by the capacity of resolution in gel electrophoresis. These molecular assays are thus usually not scalable and unfit for high throughput analysis.

The last years have witnessed the emergence of many DNA microchip projects arraying genes of microorganisms (Ye, R.W. et al., J. Microbiol. Methods 47:257-272 (2001)). They can detect tens of thousands of DNA sequences in a single hybridisation step (DeRisi, J.L. et al., Science 278:680-686 (1997); Duggan, D.J. et al., Nat. Genet. 21:10-14 (1999); Lashkari, D.A. et al., Proc. Natl. Acad. Sci. USA

WO 2007/039319 PCT/EP2006/010132 - 7 -

94:13057-13062 (1997)). Originally developed for gene expression profiling, DNA sequence analysis and genotyping, microarrays were recently also used to identify viral (Wang, R.F. et al., FEMS Microbiol. Lett. 213:175-182 (2002)) and bacterial (Bekal, S. et al., J. Clin. Microbiol. 41:2113-2125 (2003)) pathogens in environmental and clinical samples.

5

10

15

20

25

30

Most of the published reports employed oligonucleotide microarrays containing a reduced number of spotted probes and representing a single bacterial species only (Volokhov, D. et al., J. Appl. Microbiol. 95:787-798 (2003); Volokhov, D. et al., J. Clin. Microbiol. 41:4071-4080 (2003); Volokhov, D. et al., J. Clin. Microbiol. 40:4720-4728 (2002)). Such arrays were used to identify pathogenic strains belonging to a pre-identified species (Chizhikov, V. et al., Appl. Environ. Microbiol. 67:3258-3263 (2001)), to distinguish between species of the same genus (Volokhov, D. et al., J. Clin. Microbiol. 41:4071-4080 (2003); Volokhov, D. et al., J. Clin. Microbiol. 40:4720-4728 (2002)) or to detect genes encoding resistance to a certain antibiotic (Volokhov, D. et al., J. Appl. Microbiol. 95:787-798 (2003)).

Further microarrays for detection of bacteria and fungi are known in the art (Nakamura, M. et al., Abstracts of the general meeting of the American society for microbiology, abstract No C219 (2003); Wang, R.-F. et al., Molecular and Cellular Probes 223-224 (2004); Lehner, A. et al., FEMS Microbiol. Lett. 133-142 (2005); EP 1310569; WO 92/07096; US-B1-6,747,137). However, all these microarrays have in common the use of short oligonucleotides with a maximum length of 40 nt ("short oligonucleotides"). They are short-oligonucleotide microarrays. Although such short-oligonucleotide microarrays could be rapidly designed and built up they carry some intrinsic disadvantages: like all methods based on single and often short DNA sequences they show reduced reliability and sensitivity (Stears, R.L. et al., Nat. Med. 9:140-145 (2003)). To palliate the high probability of non-specific hybridisation due to the short size (20-40 bp) of the oligonucleotides it is necessary to design many partially overlapping oligonucleotides in order to confirm the presence of a gene. This consequent increase in complexity makes it extremely difficult to set up the optimal hybridisation conditions necessary for producing trustful results. Moreover, surface-bound short oligonucleotides have poor hybridisation properties and are highly sensitive to single nucleotide polymorphisms (Hughes, T.R. et al., Nat. Biotechnol. 19:342-347 (2001)). For these reasons, oligonucleotide microarrays using oligonucleotides with a maximum length of 40 nt are unsuitable for routine diagnostics.

Up to now, diagnosis of bacteremia by microarrays is limited to species identification by oligonucleotides for 23S and 18S RNA sequences, which is still strictly experimental (Anthony, R.M. et al., J. Clin. Microbiol. 38:781-788 (2000)) and carries along the methodological weakness associated to the use of short oligonucleotides as hybridisation probes.

A DNA microarray employing capture probes of more than 40 nt length amplified by PCR was described by Fitzgerald et al. (Fitzgerald, J.R. at al., Proc. Natl. Acad. Sci. USA 98(15):8821-8826 (2001)). To investigate molecular population genetics of *Staphylococcus aureus* on a genome scale, a microarray comprising 2817 complete ORFs of *S. aureus* strain COL was constructed, representing >90% of the *S. aureus* genome. The microarray was able to discriminate 36 *S. aureus* strains. However, since it was not designed for the identification of different bacterial species, it was not tested for possible cross reactions with other bacteria besides *S. aureus*. Due to the conservative nature of many house-keeping proteins and genes, respectively, cross reactions of the microarray with CoNS strains and other bacterial species will occur. Unspecific cross reactions combined with the high number of probes (2817) result in a high complexity of the microarray data, not applicable to routine diagnostics. Furthermore, PCR amplification of long ORFs is a difficult procedure, in particular for bacteria with DNA of high GC-content.

The aim of present invention is to provide a gene-segment based analytical device, especially a microarray, for species specific identification and characterisation of different microorganisms, especially different bacteria and pathogenic fungi, present in a sample or clinical specimen which does not possess the drawbacks of the short-oligonucleotide microarray as outlined above. Said device/microarray must allow the specific identification of the target species and should furthermore allow the differentiation (i.e. distinguish) between different target microorganisms present in the sample or clinical specimen. It must furthermore provide a high reliability and sensitivity of detection.

Summary of the Invention

5

10

15

20

25

30

The present invention provides an analytical device, which is preferably a DNA microarray, for the identification and characterisation of microorganisms in

biological samples, especially of microorganisms connected with bacteremia, fungemia and sepsis. Species specific gene probes in this device/microarray allow the identification of different microbial species, whilst antibiotic resistance and virulence gene probes allow for the genotypic discrimination within a species. The device/microarray can be designed to allow species identification, virulence determination and resistance determination independently from each other or simultaneously, and furthermore said determinations can be performed for one or more different microbial species and strains with one device/microarray. Furthermore, different microbial species and strains are discriminated, even in a polymicrobial sample (specimen with more than one pathogen).

The device/DNA microarray according to present invention thus demonstrates the feasibility of simultaneously identifying and characterising different microbial species in a sample or clinical specimen, especially in blood samples, without prior PCR amplification of target DNA or pre-identification of the pathogen. This can reduce sample processing time to a single day and less.

The invention furthermore provides a method for rapid identification and characterisation of microorganisms, especially of bacteria, yeasts and filamentous fungi, using the device/microarray of the invention. The method is quick, can be automated, leads to reproducible results and allows an early choice of specific antibiotics for treatment of bacteremia, fungemia or sepsis.

In particular, the present invention provides

5

10

15

20

25

- (1) an analytical device for direct identification and characterisation of microorganisms in a sample or clinical specimen, wherein the analytical device comprises species specific gene probes which are (i) selected from DNA sequences or partial DNA sequences of the microorganisms to be identified or DNA sequences complementary or homologous thereto, and (ii) have a length of at least 100 nucleotides (nt);
- (2) the use of the analytical device as defined in (1) above for *in vitro* identification and characterisation of microorganisms in a sample or in a clinical specimen, preferably in a clinical specimen, more preferably for the diagnosis of a clinical condition, most preferably for the diagnosis of bacteremia, fungemia or sepsis;
- (3) an *in vitro* method for identification and characterisation of microorganisms in a sample or in a clinical specimen comprising

- (a) isolating the total DNA from the sample or clinical specimen and labelling the DNA with a reporter molecule, preferably a fluorochrome;
- (b) applying the DNA thus obtained to the analytical device as defined in (1) above and hybridising the DNA with the gene probes of the device; and
- (c) detecting DNA bound to the device by determination of the amount of the reporter molecules bound to the device; and
- (4) a kit for detection of microorganisms in a sample or clinical specimen comprising the analytical device of embodiment (1).

Brief description of the Figures

5

15

20

- 10 <u>Fig. 1:</u> DNA microarray analyses of 58 clinical isolates, reference strains and blood cultures.
 - Each column shows the results of an individual hybridisation with target DNA prepared from: *S. aureus* ATCC 29213 (1), MW2 (2), clinical isolates (3-7), positive blood cultures (8-11); *P. aeruginosa* ATCC 27853 (12), clinical isolates (13-17), positive blood culture (18); *E. coli* ATCC 25922 (19), clinical isolates (20-25), positive blood cultures (26-27); *S. epidermidis* clinical isolates (28-32), positive blood cultures (33-35); clinical isolates of *S. auricularis* (36), *S. capitis* (37), *S. haemolyticus* (38), *S. hominis* (39), and *S. warneri* (40). Other Gram-negative species included a *Proteus mirabilis* positive blood culture (41), clinical isolates of *Proteus mirabilis* (42-43), *Serratia marcescens* (44-45), *Klebsiella pneumonia* (46-48), *Stenotrophomonas maltophilia* (49), *Acinetobacter baumannii* (50), *Enterobacter cloacae* (51) and *Enterobacter aerogenes* (52); other Gram-positive species included clinical isolates of *Micrococcus* spp. (53), *Enterococcus* spp. (54), *Enterococcus faecalis* (55) and *Streptococcus pneumoniae* (56) and two positive blood cultures of *S. pneumoniae* (57-58).
 - (A) Hybridisation of DNA prepared from bacterial isolates, reference strains and blood cultures with *E. coli* gene probes;
 - (B) hybridisation with P. aeruginosa gene probes;
 - (C) hybridisation with S. aureus gene probes.
- 30 Grey boxes represent gene probes which hybridised with the respective target DNA, white boxes represent gene probes which showed no hybridisation with the respective target DNA.

- <u>Fig. 2:</u> Validation of the *S. aureus* microarray of example 1.11. 2 μ g genomic DNA from *S. aureus* strain T94 were labelled either with Cy3 or Cy5, combined and hybridised as described in Example 1.11. Cy3: green signal; Cy5: red signal; double-hybridisation: yellow signal.
- 5 A) Overlay of microarray scanned using Cy3 and Cy5 filter sets;
 - B) Scatterplot of normalized fluorescence intensities of individual gene probes after microarray hybridisation. The signal intensities from both channels correlate highly with each other ($r^2 = 0.97$).
- Fig. 3: Specific identification of *S. aureus* from distantly related bacteria using the microarray of example 1.11. 2 μg of *S. aureus* DNA were co-hybridised with 2 μg of pure *E. coli* (A) or *P. aeruginosa* (B) genomic DNA. Obtained hybridisation patterns are represented as bar codes, where the 140 spotted gene segments appear subsequently and are clustered in categories (NC: negative control; PC: positive control; Antibiotic Resistance Determinants; Virulence Factors and Metabolic
 Functions (see Tab. 6)). Positive hybridisation is indicated by a bar while negative spots are represented by an empty area. Both assays show clear *S. aureus* discrimination with practically no cross hybridisation between DNA from said gram negative bacteria and *S. aureus* selected genes, while the positive control (16S RNA sequence) reveals the good quality of hybridisation.
- Fig. 4: Specific identification of *S. aureus* from coagulase negative staphylococci using the microarray of example 1.11. 2 μg of *S. aureus* DNA were co-hybridised with 2 μg of *S. epidermidis* (A) or *S. saprophyticus* (B) genomic DNA. Obtained hybridisation patterns are illustrated by scanned fluorescent picture data (A: *S. aureus*: green signal; *S. epidermidis*: red signal; B: *S. aureus*: red signal; *S. saprophyticus*: green signal) and transformed in bar codes (see legend of Fig. 3). All specific *S. aureus* virulence factor genes hybridised exclusively with *S. aureus* DNA. Yellow spots showing cross-hybridisation correspond to some shared antibiotic resistance determinants and genes associated to metabolic functions.
 - Fig. 5: Specificity of the S. aureus microarray of example 1.11.
- A) Scan of microarray hybridised with 2 μg each of genomic DNA from *S. aureus* strain T103 (Cy3, represented in green) or T100 (Cy5, represented in red), showing remarkable genotypic differences between strains.

- B) PCR amplification of the genes from genomic DNA of *S. aureus* (strains T100 and T103) validating results of the microarray hybridisation shown in (A).
- <u>Fig. 6:</u> Identification and characterisation of *S. aureus* from positive blood culture using the microarray of example 1.11.
- 2 μg of DNA prepared from blood culture positive for *S. aureus* (strain T95) was cohybridised with 2 μg of DNA prepared from sterile blood culture or with 2 μg of pure *S. aureus* genomic DNA for 4 hours. Positive and negative spots are transformed in a bar code scheme (see legend of Fig. 3).
- Sterile blood culture DNA did not cross-hybridise with spotted *S. aureus* genes (A).

 Blood culture positive for *S. aureus* produced a fluorescent hybridisation pattern almost identical to the pattern obtained with pure *S. aureus* genomic DNA (B).
- Fig. 7: Hybridization profiles obtained in Example 2 after microarray hybridization with DNA obtained from six bacterial target strains: (A) *S. aureus* ATCC 29213, (B) *S. epidermidis* BC 1920, (C) *S. pyogenes* DSM 11723, (D) *S. pneumoniae* ATCC 49619, (E) *E. faecalis* UW 700700/95, (F) *E. faecium* VRE9182 and two non-target strains: (G) *E. casseliflavus* UW703/95 and (H) *S. angiosus* DSM 20563.. Each bar represents the fluorescent signal of one capture probe. Fluorescent signals of the 930 probes represent the median intensity of four spots from which the local background was substracted. Probe IDs are given in Table 8.
- Fig. 8: Specificity of the microarray for *Candida albicans* in Example 2. (A) Hybridization profile obtained for *C. albicans* ATCC 10231. (B) Specificity of two *C. albicans* capture probes. Hybridization signals were determined for the two probes after hybridization with DNA obtained from 44 different microbial strains (see Table 9 for strain identification).
- 25 <u>Fig. 9:</u> Specificity of selected capture probes for (A) *Klebsiella oxytoca*, (B) *K. pneumoniae*, (C) *Proteus vulgaris* and (D) *P. mirabilis* does allow species discrimination. Fluorescence intensities refer to hybridization signals obtained for the respective probes after hybridization with DNA isolated from 44 different microbial strains (see Table 9 for strain identification).
- 30 <u>Fig. 10:</u> Specificity of selected capture probes for the coagulase-negative staphylococci (A) *S. epidermidis*, (B) *S. haemolyticus*, (C) *S. warneri* and (D) *S. saprophyticus*. Fluorescence intensities refer to hybridization signals obtained for

the respective probes after hybridization with DNA isolated from 44 different microbial strains (see Table 9 for strain identification).

Definitions

5

10

15

20

25

30

In the framework of the present invention the following terms and definitions are used.

An "analytical device" in the context of present invention is any solid support onto which DNA gene probes are attached in a way permitting hybridisation of the DNA in the sample and subsequent detection of the bound DNA. This includes microtiter plates coated with one or several DNA gene probes per well, glass surfaces (like, e.g., microscopic slides) with DNA spots, filter paper disks, membranes, gold electrodes and beads (particles with a diameter of from 1 nm to several µm made of glass, plastic, metal etc.) coated with DNA, etc.. The beads may be used in a multi-chamber system, preferably in a microfluidic multi-chamber system, wherein each chamber contains a population of beads. Each bead has an attached DNA sequence and the whole beads population in one chamber will carry the same DNA sequence, each chamber corresponding then to a specific capture probe. The target DNA to be analysed flows through the multi-chamber system and will hybridize with the complementary DNA sequences attached to the beads. Beads could be also attached to a surface by magnetic force, i.e. paramagnetic beads coupled with DNA could be attached on the surface of the magnet and arrange in a lattice structure. Vice versa, beads made of a magnetic material could be attached to an iron surface.

The analytical device of present application is preferably a DNA microarray, a (magnetic) bead or set of beads coated with DNA probes or a microtiter plate coated with DNA probes. More preferred it is a (magnetic) bead or set of beads coated with DNA probes or a DNA microarray. In the most preferred aspect of present invention it is a DNA microarray.

A "DNA microarray" consists of a collection of nucleic acid sequences, preferably DNA sequences, immobilized onto a solid support, such as glass, plastic or silicon chips, in a latticed pattern (forming an "array"). Each unique sequence of said sequences forms a tiny feature on the microarray called a "spot" or "capture probe". The size of these spots varies from one system to another, but is usually

less than two hundred micrometers in diameter, thus up to tens of thousands of spots can be arrayed in a total area of a few square centimeters. DNA microarrays provide a means to detect and quantify large numbers of discrete nucleic sequences in parallel. In a microarray hybridisation the nucleic acids in the sample that is being analysed (called "target") are expected to form duplexes specifically with the corresponding capture probes. Occurrence or absence of duplex formation indicate the presence or absence of said target. For routine microarray analysis, said target is commonly converted to a labelled population of nucleic acids, using reporter molecules. Hybridisation of said labelled target DNA molecules from the tested samples with complementary DNA sequences affixed in specific spots on the array can thus be detected by examination for the presence of said label on the array using a microarray scanner (Müller, H.-J., Röder, T., "Der Experimentator: Microarrays", Spektrum Akademischer Verlag, Heidelberg (2004)).

In the following, the invention is exemplified for a DNA microarray (synonym: "array"). The invention can, however, also be performed using any other of the analytical devices as listed above.

"Gene probe" or "gene probe derived from..." refers to a DNA sequence present on the microarray of present invention and used as a capture probe. It is a DNA segment (see below) which is complementary to a target DNA sequence, preferably to a microbial, more preferably to a bacterial or fungal gene or gene segment. Said gene probe is prepared by any known method of DNA synthesis, and preferably prepared by cloning the respective PCR-amplified gene or gene segment into a plasmid/vector. The recombinant gene or gene segment is then amplified by PCR, isolated from the amplification mix, purified (preferably by ethanol-purification) and finally spotted onto the array.

An "isolate" is a microbial, especially a fungal or bacterial strain isolated from a given specimen, wherein the isolation includes at least one *in vitro* propagation.

A "clinical isolate" is an isolate from a clinical specimen.

5

10

15

20

25

30

"Coagulase-negative staphylococci" ("CoNS") are bacteria of the genus Staphylococcus which are negative for a bacterial coagulase (do not induce clotting of a serum). These are all Staphylococci with the exception of *S. aureus*. Preferred CoNS in the context of present invention are *Staphylococcus epidermidis*,

Staphylococcus haemolyticus, Staphylococcus lugdunensis and Staphylococcus warneri, of which Staphylococcus epidermidis is especially preferred.

An "isolated DNA" is a DNA separated or purified from the organism it is naturally associated with or from the clinical specimen in which it occurs. This comprises biochemically or biophysically purified native DNA, recombinant DNA, chemically synthesized DNA and DNA analogues (e.g. peptide nucleic acids).

"Native" is synonymous to "naturally (occuring)".

5

10

15

20

25

30

A "DNA segment" or "gene segment" is an isolated DNA which contains or consists of a part of the native full-length sequence of a gene which is still able to hybridize to the native sequence under stringent hybridisation conditions. Although the present invention is in the following exclusively described as relating to "DNA" sequences, it is not to be construed as being limited thereto. Rather, if the term "DNA" is used in connection with the gene probes or target sequences of present invention, it includes other polynucleotides (like RNA or RNA/DNA hybrids), and DNA analogues such as PNA, phosphonate backbone DNA, artificial pentose or hexose backbone DNA which is able to hybridize with native DNA etc.. Furthermore, modified bases like deoxy bases, inosine or aminoallylcytosine may be used on all DNA, RNA and PNA backbones. However, DNA itself is the preferred polynucleotide for performance of the invention.

The DNA sequences used as gene probes in present invention are either identical, substantially identical or homologous to the complementary native target sequences (i.e. they are "derived from" said target sequences). In the context of present invention, when a specific DNA sequence is denominated, this encompasses not only said specific sequence, but also the sequences substantially identical or homologous thereto, i.e. its substitution mutants. "Substantially identical" means that the DNA contains mutations of up to 10% of the total number of nt in comparison with the native DNA sequence and/or has a nucleotide identity of > 90% to the corresponding native DNA segment. Said mutations are preferably single nucleotide polymorphisms or point mutations and include the mutation of not only a single but also a few (up to 10 nt, preferably up to 5 nt) consecutive nt. "Homologous" or "homologue" refers to a DNA sequence which has a sequence identity of more than 70% of the corresponding native DNA sequence and encompasses the substantially identical DNA sequences. Preferably, the sequences

used as gene probes are at least substantially identical to the corresponding native DNA sequence.

Preferred gene probes of the present invention are the DNA sequences listed in the sequence protocol, their complementary sequences or their corresponding native DNA segment.

5

10

15

20

30

The DNA sequences used as gene probes in present invention may also be deletion or addition mutants of the corresponding native DNA segments. In case of deletion mutants, the minimum length of the DNA sequences suitable as probes in present invention is 100 nt. Preferably, the deletions take place at the 5'- and/or 3'terminus of the native DNA segment. In case of addition mutants, the added nucleotides may sum up to a total of 90% of the nucleotide number of the native DNA segment, if added at the 5'- or 3'-terminus of the DNA sequence. Alternatively, the additions and deletions may be of one isolated nucleotide or of 2 or more consecutive nucleotides at one or more internal site(s) of the native DNA segment. Preferably, 0-30% nucleotides of the corresponding native DNA segment are added or deleted. It is most preferred that the addition or deletion mutants used as gene probes in present invention comprise one or more segment(s) of at least 100 consecutive nt each, which are derived from one gene, and/or sequences homologous (70% homology) or complementary thereto. These segments may be embedded in or fused to other DNA sequences, which will not hybridize under stringent conditions with either human or bacterial DNA or the DNA of the target microorganism. Said other DNA sequences preferably have a maximum length which adds up with the length of the enclosed segment(s) to not more than the upper limit for the length of gene probes suitable for present invention.

A "positive blood culture" is an *in vitro* culture started from whole blood or blood components wherein the growth of microorganisms has been detected. Said growth is indicated by a positive growth index. The detection is preferably done by monitoring CO₂ production in the blood culture.

"Direct identification" of microorganisms refers to an identification method which comprises isolation of DNA from a sample or clinical specimen, but does not require an amplification of the genetic material of the microorganisms after said isolation in order to identify the microorganisms using the method of present invention. The isolated genetic material is labelled and applied to the DNA microarray of present

invention without prior amplification, i.e. directly after isolation or after a short workup step.

"Species-specific" probe(s) means that a species can be identified specifically and unambiguously using said probe or set of probes.

5 "Differentiation" means the discrimination among distinct and different species, genera or groups of pathogens.

A "detection method" in the context of the present invention is a method for determination of hybridisation of DNA molecules contained in a sample to the probes on the solid support of the microarray of present invention. This method may be any textbook method for detection of DNA hybridisation on microarrays, e.g. direct detection or labelling of target DNA with a reporter molecule and consecutive visualisation of the reporter molecule. Preferred detection methods are said labelling method and the direct detection by electrical biosensors or mass spectrometry (Liu, R. H. et al., Anal. Chem. 76(7):1824-31 (2004); Stomakhin, A. A. et al., Nucleic Acids Res. 28(5):1193-8 (2000)).

10

15

20

25

30

A "reporter molecule" in the context of the method of the present invention is a chemical or physical marker which allows differentiation of labelled from unlabelled DNA by physical, chemical or immunological methods. The labelling method includes, but is not limited to radioactive labelling (e.g. with 33P, 32P), fluorescent/luminescent/chromophor labelling and hapten labelling (i.e. psoralen or DIG). It is followed by an appropriate detection step necessary to determine the presence and/or quantity of the reporter molecule, namely scintillation counting (e.g. phosphoimaging); photooptic measurement (e.g. fluorescence measurement, luminescence measurement) and antibody-based detection (including colorimetric, luminescence or fluorescence detection), respectively. Preferably, the reporter molecule is a fluorochrome/fluorophor (both terms are used as synonyms in the context of present invention) which includes but is not limited to cyanines, fluoresceins and rhodamines. More preferably, it is of the cyanine group of fluorophores. Most preferably, it is selected from the group consisting of the fluorophores Cy3, Cy5 or Alexa Fluor 647 and Alexa Fluor 546. The ratio of base to dye molecules (BDR) in DNA labelled with such reporter molecules is preferably less or equal to 60.

A "target species" is a species for which species-specific capture probes are present in the microarray, allowing species identification by positive hybridisation. "Nontarget species" are all other species.

Detailed description of the invention

5

10

15

25

30

The present invention provides an analytical device, preferably a DNA microarray, and its use for rapid identification and characterisation of microorganisms in a sample or clinical specimen (embodiments (1) to (3)). The invention is exemplified in the following by the most preferred embodiment of the analytical device (1), namely a DNA microarray. The invention can, however, also be performed using any other of the analytical devices as listed above. Thus, unless otherwise stated, in the following the term "DNA microarray of embodiment (1)" is to be understood as "analytical device of embodiment (1)".

The DNA microarray of embodiment (1) of the invention comprises gene specific DNA sequences as capture probes, which allow the identification of microbial species ("target species"), especially of bacterial and fungal species, and/or their further characterisation with regard to antibiotic resistance and virulence. Preferably, it allows the identification and characterisation of the target species. It is specific, applicable to the analysis of DNA isolated from blood cultures and suitable to detect resistance genes.

The DNA microarray of embodiment (1) comprises at least 1 species specific probe per target species. In a preferred aspect of the invention, it additionally comprises one or more virulence and/or resistance gene probe(s).

A further preferred aspect of embodiment (1) is that the DNA microarray comprises species specific probes for more than one or multiple microbial species, i.e. for a plurality of species. The DNA microarray of this preferred aspect of embodiment (1) allows the simultaneous detection of a plurality of microbial species in a sample without previous isolation and/or amplification of single species. It furthermore allows a one-step determination of whether certain microorganisms are present in a sample or not, even if the sample comprises a plurality of different microbial strains.

One important feature of the microarray of the present invention is that the panel of probes can be continually extended to include sequences for additional species, variant isolates or antibiotic resistance determinants as they are characterised and available. The accuracy, range and discriminatory power of the gene-segment based microarray can be refined by adding or removing gene probes to the panel without significantly increasing complexity or costs. In a pilot study, three important species causing bacteremia were selected to provide a proof of principle (examples 1.1-1.10). The range of organisms that can be identified can be easily expanded by increasing the number of gene probes on the array. For example, addition of a few probes specific for *S. epidermidis* and other CoNS will allow for the species identification of coagulase-negative staphylococci. Furthermore, due to a specific hybridisation pattern for each species it will also allow the identification of mixed blood cultures with more than one pathogen.

5

10

15

20

25

A second important feature of this microarray format is the length of the DNA sequences used as gene probes. They are at least 100 nt, preferably 100-3000 nt long. In an especially preferred aspect of embodiment (1) the length of the gene probes is from 100 to 1000 nt, most preferably from 200 to 800 nt. Thus, one probe per gene is usually sufficient to produce strong signals and high specificity (Stears, R.L. et al., Nat. Med., 9:140-5 (2003)). For long probes like these, minor point mutations are likely to only slightly reduce duplex formation, which does not lead to the loss of hybridisation signals. In contrast, short oligonucleotide microarrays sometimes lack specificity and require multiple short oligonucleotides per one gene.

The microorganisms or microbial DNA to be detected using the microarray of present invention are preferably bacteria (such as *Staphylococci, Enterococci, Streptococci, E. coli, P. aeruginosa, Klebsiella* spp., *Proteus* spp., *Enterobacter* spp., *Acinetobacter* spp. and *Stenotrophomonas* spp.) or fungi (such as yeasts and filamentous fungi, in particular *Candida* spp., *Aspergillus* spp., *Cryptococcus* spp., *Malassezia* spp., *Trichosporin* spp.), respectively bacterial or fungal DNA. The microarray is especially suitable for direct identification and characterisation of bacteria and *C. albicans*.

In a preferred aspect of embodiment (1) the analytical device is suitable for species specific identification of one microbial strain or (preferably) a plurality of microbial strains in clinical specimens comprising microbial strains, especially bacteria and/or fungi. It furthermore allows differentiation of the target species from each other

and from non-target-species contained in one sample comprising a plurality of microbial strains.

5

10

15

20

25

In one preferred aspect of embodiments (1), (2) and (3), the DNA microarray is feasible to identify and characterize any of the microorganisms, including the fungi and bacteria as defined above, known as etiological agents of fungemia, bacteremia or sepsis. In another preferred aspect of (1), it is feasible to characterize the bacteria known as etiological agents of bacteremia or sepsis. More preferably, it is feasible to identify and characterize at least 90 % of said microorganisms or bacteria. Equally more preferably it is feasible to identify and characterize microorganisms selected from the group consisting of S. aureus, Coagulasenegative staphylococci, Enterococci, Streptococci, E. coli, Klebsiella spp., Proteus spp, P. aeruginosa, Acinetobacter spp. and Candida albicans, most preferably microorganisms selected from the group consisting of S. aureus, CoNS (including Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus lugdunensis, Staphylococcus warneri, Staphylococcus saprophyticus, Staphylococcus hominis), C. albicans, Enterococcus faecalis, Enterococcus faecium, E. coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris, P. aeruginosa, Acinetobacter baumannii, Streptococcus agalactiae, Streptococcus bovis, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes.

In a first most preferred aspect of embodiment (1), the DNA microarray is suitable for species specific identification of microorganisms selected from the group consisting of Staphylococci, *E. coli* and Candida sp., preferably for species specific identification of Staphylococci, especially of *S. aureus*. More preferably, it is suitable for species specific identification of Staphylococci and at least one of *E. coli* and *Candida albicans*.

In a second most preferred aspect of embodiment (1), the DNA microarray is suitable to identify and characterize at least *S. aureus, Coagulase-negative staphylococci, E. coli, Enterococcus faecalis* and *faecium* and *Candida albicans*.

In addition to above aspects, the DNA microarray is in a preferred embodiment of present invention suitable for additional species specific identification or differentiation of *Klebsiella pneumoniae*, *Klebsiella oxytoca*, *Streptococcus*

pneumoniae, Streptococcus pyogenes, Pseudomonas aeruginosa, Proteus mirabilis and/or Proteus vulgaris.

The practicability and specificity of the DNA microarray for the identification and characterisation of *Staphylococcus aureus*, *Escherichia coli* and *Pseudomonas aeruginosa* was evaluated with clinical isolates and positive blood cultures (Examples 1.1-1.10). Especially preferred is a microarray which allows identification and characterisation of *S. aureus*. The latter microarray allows the detection of every *S. aureus* isolate, unambiguously identifies most of important virulence genes such as *tsst-1*, *sea*, *seb*, *eta* and antibiotic resistance genes such as *mecA*, *aacA-aphD*, *blaZ*, *ermA* and specifically distinguishes *S. aureus* from unrelated gram negative bacteria, e.g. *Escherichia coli* or *Pseudomonas aeruginosa*, as well as from closely related CoNS (Example 1.11, Fig. 2-6).

5

10

15

20

25

In another preferred aspect of the invention, the microarray of (1) is suitable for diagnosis of fungemia, bacteremia or sepsis; especially for diagnosis of bacteremia, candidemia, and bacterial or *Candida* sepsis.

The present invention provides a novel approach for detection of microorganisms, especially of bacteria and fungi, by microarrays: using gene-segments it allows species identification by probing a large and diverse set of species-specific genes. Such an approach is reliable since it makes possible to identify a pathogen even when some genes have been deleted from its genome. Furthermore, the selected DNA probes are at least 100 nt, preferably 200 to 800 nt long and are therefore not sensitive to single nucleotide polymorphisms or CG-content variations in the targets. Therefore, a gene segment array according to present invention is useful for indicating the presence of a gene even though the sequence may be slightly altered e.g. by point mutations (Southern, E. et al., Nat. Genet. 21:5-9 (1999)). Additionally, it permits species virulence and antibiotics resistance profiling all together in a single-step test. Thus, present invention provides for a significant improvement compared to the classical approach focused on the detection of a short evolutionary conserved sequence like 16S RNA.

The number and perfect composition of gene-segments necessary for a correct species identification, virulence determination and resistance profiling must be determined by empiric specificity tests. Thus, in a preferred aspect of the invention, the DNA microarray of embodiment (1) comprises the minimal number of species

specific gene probes which is sufficient for species identification, the minimal number of virulence gene probes which is sufficient for virulence determination, and/or the minimal number of resistance gene probes which is sufficient for determination of resistance of a specific microorganism. Preferably, the minimal number of gene probes in this aspect of the invention is: for correct species identification at least 1 species specific gene probes per target species, more preferably at least 2 different species specific gene probes per target species, even more preferably at least 10, most preferably at least 20; for virulence determination at least 1 gene probe per target species, more preferably at least 5 different gene probes, even more preferably at least 20 different gene probes, most preferably gene probes for all known virulence factors of each target species; for determination of resistance at least 1 gene probe per antibiotic class or resistance factor, more preferably at least 5 different gene probes, most preferably all known gene-coded resistance determinants in the target species.

5

10

25

- Generally, the DNA microarray of embodiment (1) comprises gene probes which are specific for a microbial species, bacterial/fungal species or a group of microorganisms to be identified. Said gene probes are preferably DNA sequences selected from three different groups, namely (a) species specific gene probes; (b) virulence gene probes; and/or (c) resistance gene probes.
- 20 Preferably, the species specific set of gene probes for each species to be identified and characterised is selected from species specific gene probes (a) for
 - (i) Staphylococcus aureus including gene probes derived from clfA, clfB, coa, lytM, NAG, sodA, sodB, epiP-bsaP, geh, hemC, hemD, hsdS, lip, menC, nuc, SAV0431, SAV0440, SAV0441, spa, ebpS, fbpA, fib, fnbB, srtA, stpC, fnbA, femA, fmhB, fmhA;
 - (ii) Escherichia coli including gene probes derived from b1169, fliCb, nfrB, yacH, ycdS, yciQ, shuA;
 - (iii) Staphylococcus epidermidis including gene probes derived from ardeSE0106, ardeSE0107, atlE, agrB, alphSE1368, gad, glucSE1191, icaB, mvaSSepid, nitreSE1972, nitreSE1974, nitreSE1975, oiamtSE1209, ORF1Sepid, ORF3bSepid, qacR, ureSE1865, ureSE1867;
 - (iv) Staphylococcus haemolyticus including gene probes derived from femBShaemolyt, mvaDShaemolyt, mvaSShaemolyticus, RNApolsigm;

- (v) Staphylococcus lugdunensis including gene probes derived from agrB2Stalugd, agrC2Stalugd, slamStalugd;
- (vi) Staphylococcus warneri including gene probes derived from msrw1Stwar, nukMStwar, proDStwar, proMStwar, sigrpoStwar, tnpStwar;
- 5 (vii) Staphylococcus saprophyticus including gene probes derived from RNApolsigmSsapro;
 - (viii) Staphylococcus hominis including gene probes derived from ydhK;

15

- (ix) Candida albicans including gene probes derived from ARG56, ASL43f, BGL2, CCT8, CDC37, CEF3, CHS1, CHS2, CHS4, CHS5, CHT1, CHT2, CHT4, CSA1,
- 5triphosphatase, AAF1, ADH1, ALS1, ALS7, EDT1, ELF, ESS1, FAL1, GAP1, GNA1, GSC1, GSL1, HIS1, HTS1, HWP1, HYR1, INT1a, KRE15f, KRE6, KRE9, MIG1, MLS1, MP65, NDE1, PFK2, PHR1, PHR2, PHR3, PRA1, PRS1, RBT1, RBT4, RHO1, RNR1, RPB7, RPL13, RVS167, SHA3, SKN1, SRB1, TCA1, TRP1, YAE1, YRB1, YST1exon2;
 - (x) Enterococcus faecalis including gene probes derived from arcA, arcC, bkdA, camE1, csrA, dacA, dfr, dhoD1a, ABC-eltA, agrBfs, agrCfs, dnaE, ebsA, ebsB, eep, efaR, gls24_glsB, gph, gyrAEf, metEf, mntHCb2, mob2, mvaD, mvaE, parC, pcfG, phoZ, polC, ptb, recS1, rpoN, tms, tyrDC, tyrS;
 - (xi) Enterococcus faecium including gene probes derived from bglB, bglR, bglS, efmA, efmB, efmC, mreC, mreD, mvaDEfaecium, mvaEEfaecium, mvaK1Efaecium, mvaK2Efaecium, mvaSEfaecium, orf3_4Efaeciumb, orf6_7Efaecium, orf7_8Efaecium, orf9_10Efaecium;
 - (xii) Klebsiella pneumonia including gene probes derived from atsA, budC, citA, citW, citX, dalK, acoA, acoB, acoC, ahlK, fimK, glfKPN2, ltrA, mdcC, mdcH, nifF, nifK, nifN, tyrP, wbbO, wzb, wzmKPN2, wztKPN2, yojH, liac;
- 25 (xiii) *Klebsiella oxytoca* including gene probes derived from *gatY*, *pelX*, *tagH*, *tagT*;
 - (xiv) *Pseudomonas aeruginosa* including gene probes derived from *glpR*, *lasRb*, *OrfX*, *pa0260*, *pa0572*, *pa0625*, *pa0636*, *pa1046*, *pa1069*, *pa1846*, *pa3866*, *pa4082*, *pilAp*, *PilAp2*, *pilC*, *PstP*, *uvrDII*, *vsmI*, *vsmR*, *xcpX*;
- 30 (xv) Streptococcus pneumoniae including gene probes derived from cap1EStrpneu, cap1FStrpneu, cap1GStrpneu, cap3AStrpneu, cap3BStrpneu, celAStrpneu, celBStrpneu, cglAStrpneu, cglBStrpneu, cglCStrpneu, cglDStrpneu, cinA, cps14EStrpneum, cps14FStrpneum, cps14GStrpneum, cps14HStrpneum, cps19aHStrpneum, cps19aIStrpneum, cps19aKStrpneum, cps19fGStrpneum,

15

20

cps23fGStrpneum, dexB, dinF, 1760Strpneu, acyPStrpneu, endAStrpneu, exoAStrpneu, exp72, fnlAStrpneu, fnlBStrpneu, fnlCStrpneu, gct18Strpneum, immunofrag1Strpneu, hexB1, hftsHstrpneu, immunofrag2Strpneu, immunofrag3Strpneu, kdtBStrpneu, lysAStrpneu, pcpBStrpneu, pflCStrpneu, plpA, purRStrpneu, pyrDAStrpneum, 5 prtA1Strpneu, pspC1Strpneu, pspC2, SP0837_38Strpneu, SP0828Strpneu, SP0830Strpneu, SP0833Strpneu, SP0839Strpneu, ugdStrpneu, uncC, vicXStrepneu, wchA6bStrpneum, wci4Strpneum, wciK4Strpneum, wciL4Strpneum, wciN6bStrpneum, wciP6bStrpneum, wciY18Strpneum, wzdbStrpneum, wciO6bStrpneum, wze6bStrpneum, wzy18Strpneum, wzy4Strpneum, wzy6bStrpneum, xpt; 10

- (xvi) Streptococcus agalactiae including gene probes derived from cpsA1Strgal, cpsB1Strgal, cpsC1Strgal, cpsD1Strgal, cpsE1Strgal, cpsG1Strgal, cpsIStragal, cpsIStragal, cpsIStragal, cpsIStragal, cpsIStragal, cpsIStragal, cpsIStragal, cpsIStragal, cpsIStragal, cylEStragal, cylFStraga, cylHStraga, cylIStraga, cylIStraga, cylIStraga, cylIStraga, cylIStraga, 0487Straga, 0488Straga, 0493Straga, 0495Straga, 0498Straga, 0500Straga, 0502Straga, 0504Straga, folDStraga, neuA1Strgal, neuB1Strgal, neuC1Strgal, neuD1Strgal, recNStraga, ileSStraga;
- (xvii) Streptococcus pyogenes including gene probes derived from cyclStrpyog, fah_rph_hlo_Strpyog, int, int315.5, oppD, SPy0382Strpyog, SPy0390Strpyog, SpyM3 1351, vicXStrpyog;
- (xviii) Streptococcus mutans including gene probes derived from 573Stprmut, 580SStprmut, 581_582SStprmut, 584SStprmut, dltAStrmut, dltBStrmut, dltCppx1Strmut, dltDStrmut, lichStrbov, lytRStprmut, lytSStprmut, pepQStrrmut, pflCStrmut, recNStprmut, ytqBStrmut;
- 25 (xix) Proteus mirabilis including gene probes derived from atfA, atfB, atfC, ccmPrmi1, cyaPrmi, flfB, flfD, flfN, flhD, floA, ftsK, gstB, hemCPrmi, hemDPrmi, hev, katA, lpp1, menE, mfd, nrpA, nrpB, nrpG, nrpS, nrpT, nrpU, pat, pmfA, pmfC, pmfE, ppaA, rsbA, rsbC, speB, stmA, stmB, terA, terD, umoA, umoB, umoC, ureR, xerC, ygbA;
- 30 (xx) *Proteus vulgaris* including gene probes derived from *envZPrvu*, *frdC*, *frdD*, *lad*, *tna2*:
 - (xxi) Acinetobacter baumanii including gene probes derived from carO, gacS, dhbA, dhbB, sid, csuD, csuC, tnp-ACIBA, waaA-ACIBA, csuB, csuA_B, csuA, put1, por, abc, furACIBA, dec, cysI, trpE, put3, ompA-ACIBA.

Preferably, the virulence specific set of gene probes for each species to be identified and characterised is selected from virulence gene probes (b) for

- (i) Staphylococcus aureus including gene probes derived from bsaE, bsaG, cap5h, cap5i, cap5j, cap5k, cap8H, cap8I, cap8J, cap8K, I-hld, I-hysA, I-IgGbg, EDIN, eta, etb, hglA, hglB, hglC, hla, hlb, lukF, lukS, NAG, sak, sea, seb, sec1, seg, seh, sel, set15, set6, set7, set8, sprV8, tst, I-sdrC, I-sdrD, I-sdrE;
- (ii) Escherichia coli including gene probes derived from b1202, eae, eltB, escR, escT, escU, espB, fes, fteA, hlyA, hlyB, iucA, iucB, iucC, papG, rfbE, shuA, SLTII, toxA-LTPA, VT2vaB;
- 10 (iii) Staphylococcus epidermidis including gene probes derived from gcaD, hld_orf5, icaC, icaD, icaR, psm_beta1and2, purR, spoVG, yabJ;
 - (iv) Staphylococcus haemolyticus including gene probes derived from lipShaemolyt;
 - (v) Staphylococcus lugdunensis including gene probes derived from fblStalugd, slushABCStalugd;
- 15 (vi) Staphylococcus warneri including gene probes derived from gehAStwar;

5

- (vii) Candida albicans including gene probes derived from CCN1, CDC28, CLN2, CPH1, CYB1, EFG1, MNT1, RBF1, RBF1, RIM101, RIM8, SEC14, SEC4, TUP1, YPT1, ZNF1CZF1;
- (viii) Enterococcus faecalis including gene probes derived from asa1, asp1, cgh,
 cylA, cylB, cylI, cylL_cylS, cylM, ace, ef00108, ef00109, ef0011, ef00113, ef0012,
 ef0022, ef0031, ef0032, ef0040, ef0058, enlA, esa, esp, gelE, groEL, groES, rt1,
 sala, salb, sea1, sep1, vicK, yycH, yycI, yycJ;
 - (ix) Enterococcus faecium including gene probes derived from entA_entI, entD, entR, oep, saqA;
- 25 (x) Klebsiella pneumonia including gene probes derived from cim, aldA, hemly, pSL017, pSL020, rcsA, rmlC, rmlD, waaG, wbbD, wbbM, wbbN, wbdA, wbdC, wztKpn, yibD;
 - (xi) *P. aeruginosa* including gene probes derived from *aprA*, *aprE*, *ctx*, *algB*, *algN*, *algR*, *ExoS*, *fpvA*, *lasRa*, *lipA*, *lipH*, *Orf159*, *Orf252*, *pchG*, *PhzA*, *PhzB*, *PLC*, *plcN*, *plcR*, *pvdD*, *pvdF*, *pyocinS1*, *pyocinS1im*, *pyocinS2*, *pys2*, *rbf303*, *rhlA*, *rhlB*, *rhlR*, *TnAP41*, *toxA*;
 - (xii) Streptococcus pneumoniae including gene probes derived from igaStrpneu, lytA, nanA, nanBStrpneu, pcpCStrpneu, ply, prtAStrpneu, pspA, SP0834Strpneu, sphtraStrpneu, wciJStrpneu, wziyStrpneu, wzxStrpneu;

- (xiii) Streptococcus agalactiae including gene probes derived from CAMPfactor, 0499Straga, hylStragal, lipStragal;
- (xiv)Streptococcus pyogenes including gene probes derived from DNaseIStrpyog, fba2Strpyog, fhuAStrpyog, fhuB1Strpyog, fhuDStrpyog, fhuGStrpyog, hylA, hylP, hylp2, oppB, ropB, scpAStrpyog, sloStrpyog, smez- Strpyog, sof, speA, speB2Strpyog, speCStrpyog, speJStrpyog, srtBStrpyog, srtCStrpyog, srtEStrpyog, srtFStrpyog, srtGStrpyog, srtTStrpyog, vicKStrpyog;

5

10

15

20

25

- (xv) Streptococcus mutans including gene probes derived from hlyXStrmut, perMStrmut;
- (xvi) *Proteus mirabilis* including gene probes derived from *flaA*, *laD*, *fliA*, *hpmA*, *hpmB*, *lpsPrmi*, *mrpA*, *mrpB*, *mrpC*, *mrpD*, *mrpE*, *mrpF*, *mrpG*, *mrpH*, *mrpI*, *mrpJ*, *patA*, *putA*, *uca*, *ureDPrmi*, *ureEPrmi*, *ureFPrmi*, *zapA*, *zapB*, *zapD*, *zapE*.

Preferably, the resistance specific set of gene probes is selected from resistance gene probes (c) derived from genes coding for

- (i) beta-lactams resistance including gene probes derived from blaIMP-7, mecISepid, blaOXA-10, blaB, ampC, I-blaR, blaOXA-32, bla-CTX-M-22, pbp2aStrpneu, blaSHV-1, blaOXA-2, blaRShaemolyt, blaIMP-7, I-mecR, blaOXY, dacCStrpyog, mecA, blaIShaemolyt, blavim, pbp2b, pbp2primeSepid, pbp2x, pbp3Saureuc, pbp4, pbp5Efaecium, pbpC, I-mecI, pbp1a, I-blaI, blaTEM-106, blaOXY-KLOX, ftsWEF, cumA, blaPER-1, bla_FOX-3, blaA, psrb, mecR1Sepid, blaZ, blaOXA-1, fox-6, blaPrmi;
- (ii) aminoglycosides resistance including gene probes derived from aacA_aphDStwar, aacC1, aacC2, strB, aadA, aadB, aadD, aacA4, strA, aph-A3, aacC1, aacA4, aacA-aphD, I-spc, aphA3; aacA4ENCL, aac(6p)-lb7;
- (iii) macrolides-lincosamines-streptogramins resistance including gene probes derived from ermC, linB, satSA, mdrSA, I-linA, ermB, ermA, satA, msrA, mphBM, mefA, mrx;
- (iv) trimethoprim resistance including gene probes derived from dfrA, dfrStrpneu;
- 30 (v) chloramphenicol resistance including gene probes derived from *cat*, *catEfaecium*, *cmlA5*;
 - (vi) tetracyclines resistance including gene probes derived from tetAJ, tetL, tetM;

- (vii) glycopeptides resistance including gene probes derived from vanH(tn), vanA, vanHB2, vanR, vanRB2, vanS(tn), vanSB2, vanWB2, ddl, ble, vanXB2, vanY(tn), vanYB2, vanB, vanZ(tn), vanC-2, vanX(tn);
- (viii) multiple target resistance including gene probes derived from acrB, mexB, I-qacA, sulI, sul, cadBStalugd, mexA, acrR, emeA, acrA, rtn, abcXStrpmut, qacEdelta1, elkT-abcA, I-cadA, albA, wzm, msrCb, nov, wzt, wbbl, norA23, mexR, arr2, mreA, I-cadC, uvrA, AdeR-ACIBA, adeA-ACIBA, adeB-ACIBA, adeC-ACIBA, AdeS-ACIBA;

5

- (ix) fungicides resistance, especially *C. albicans* fungicide resistance, including gene probes derived from *CRD2*, *CDR1*, *MET3*, *FET3*, *FTR2*, *MDR1-7*, *ERG11*, *SEC20*.
 - Most preferably, the resistance specific set of gene probes is selected from resistance gene probes (c) derived from genes coding for
 - (i) beta-lactams resistance including gene probes derived from *bla-CTX-M-22*, *blaSHV-1*, *blaTEM-106*, *mecA*, *blaZ*;
- (ii) aminoglycosides resistance including gene probes derived from aacC1, aacC2, aadA, aadB, aadD, aacA4, aph-A3, aacC1, aacA4, aacA-aphD, aphA3;
 - (iii) macrolides-lincosamines-streptogramins resistance including gene probes derived from *ermA*, *ermB*, *ermC*;
 - (iv) tetracyclines resistance including gene probes derived from tetAJ, tetL, tetM
- 20 (vii) glycopeptides resistance including gene probes derived from *vanA*, *vanB*, *vanC-2*.
 - The most relevant resistance gene probes are probes derived from and specific for *mecA*. This is due to the fact that *mecA* is common to all Staphylococci including *S. aureus* and CoNS.
- 25 Since the same resistance phenotype is determined by many different genotypes, it is preferred to use a plurality of resistance gene probes for unambiguous and comprehensive prediction of antibiotic resistance. The largest available set of resistance probes is most preferred.
- For the virulence assessment of a certain strain and the sub-species strain discrimination, it is preferred to use a plurality of virulence gene probes for unambigous and comprenehsinve virulence determination. The use of the highest available number of genotypic markers is most favourable.

Furthermore, the microarray may contain a set of gene probes which serve as controls. Preferably, such a set of control gene probes is selected from group (d) consisting of control gene probes coding for

- (i) negative controls, namely DNA sequences which will not hybridise with human DNA or bacterial, fungal or the microbial target DNA under the hybridisation conditions of the method of present invention, including gene probes derived neither from fungal, bacterial or target microbial nor from human genes, preferably gene probes derived from plant genes, more preferably from *Arabidopsis thaliana* or *Glycine max* genes;
- 10 (ii) positive controls including segments of ribosomal DNA from bacterial target species, preferably 16S DNA, and segments of conserved human genes;
 - (iii) positive controls specific for DNA added to the sample ("spiked DNA"), namely DNA sequences which will not hybridise with human DNA or the fungal, bacterial or microbial target DNA under the hybridisation conditions of the method of present invention, including gene probes derived neither from fungal, bacterial or target microbial nor from human genes, preferably gene probes derived from mouse or amoeba genes, most preferably from *Mus musculus* or *Dictyostelium discoideum* genes.

These control gene probes are necessary to

5

15

20

25

- a) detect non-specific hybridisation;
- b) optimise hybridisation conditions and image acquisition and analysis;
- c) provide positive controls for the quality of probe preparation, hybridisation and detection; and/or
- d) control technical aspects of the entire detection procedure including labelling, hybridisation and detection steps.

In a preferred aspect of embodiment (1), the microarray contains DNA sequences selected from the group consisting of the SEQ ID NOs: 1-918 and 2842-2908, complementary sequences thereto, addition mutants, deletion mutants, substitution mutants and homologues thereof as gene probes.

More preferably, in order to identify a specific microbial species, bacterial species or group of bacteria, the gene probes of group (a) are selected from SEQ ID NO:1-99, 142-152, 174-199, 209-214, 216-219, 222-229, 231-291, 308-342, 377-393, 399-431, 449-490, 523-591, 606-639, 645-656, 687-701, 706-749, 776-781, 2843-

2863, 2902 and 2903 (compare Tab. 1). Equally, in order to determine virulence of a specific micororganism or bacterial species, the gene probes of group (b) are selected from SEQ ID NO: 100-141, 153-173, 200-208, 215, 220-221, 230, 292-307, 343-376, 394-398, 432-448, 491-522, 592-605, 640-644, 657-686, 702-705, 750-775 and 782-784 (compare Tab. 1). Equally, in order to determine antibiotic resistance of a specific microbial or bacterial species, the gene probes of group (c) are selected from SEQ ID NO:785-918, 2864-2875, 2888 and 2907-2908, preferably from SEQ ID NO:785-909, 2864-2875, 2888 and 2907-2908 (compare Tab. 1). Equally, in order to provide the required controls (negative, positive, hybridisation controls), the gene probes of group (d) are selected from SEQ ID NO:919-947, preferably from SEQ ID NO:919-925 and 944-947, more preferably from SEQ ID NO: 919 and 921 (compare Tab. 1).

<u>Tab. 1:</u> Preferred gene probes for species identification, virulence determination and resistance determination of microorganisms

15 a) probes for species identification

5

SEQ ID NO	Probe
1	cataSaur_1_1
2	cataSaur_1_2
3	clfA_1_1
4	clfB_1_1
5	coa_1_1
6	coa_1_2
7	I-clpC_1_1
8	I-clpP_1_1
9	I-ctaA_1_1
10	I-ctsR_1_1
11	I-dltA_1_1
12	I-dltB_1_1
13	I-dltC_1_1
14	I-dnaK_1_1
15	I-elkT_1_1
16	I-femD_1_1
17	I-glnA_1_1
18	I-glnR_1_1
19	I-grlA_1_1
20	I-grlB_1_1
21	I-groEL_1_1
22	I-groES_1_1
23	I-hemA_1_1
24	I-hemE_1_1
25	I-hemH_1_1
26	I-hemL_1_1
27	I-hemY_1_1
28	I-lepA_1_1

1-lrgA 1 1 1 1 1 1 1 1 1 1	SEQ ID NO	Probe
30 I-irgB 1 1 1 1 1 1 1 1 1 1	29	I-lrgA_1_1
31	30	
32		I-lytM_1_1
34		
34		
35		I-menE 1_1
36 I-mreR 1 1 1 1 1 1 1 1 1 1		
37		
38		
1-mutS 1 1 1 1 1 1 1 1 1 1		
40		
1-pbg 1		
1-pbpF 1		
1-pdhC_1_1		I-pbpF 1 1
45		I-pdhB 1 1
45		I-pdhC 1 1
46		
47 I-rsbW_1 1 1 48 I-sgp_1 1 1 1 1 1 1 1 1 1 1		
48		
49 I-sirR 1_1 50 I-sodA 1_1 51 I-sodB_1_1 52 I-sstB_1_1 53 I-sstC_1_1 55 I-sstC_1_1 55 I-sstC_1_1 56 I-trx_1_1 57 I-yhiN_1_1 58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1 66 hsdS_2_1 68 lip_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rp8_1_1 74 SAV0431_1 75 SAV0449_1_1 76 SAV0440_1_1 77 SAV0441_1_1 79 sp8_1_2 80 sstC_1_1		
50 I-sodA_1_1 51 I-sodB_1_1 52 I-sstA_1=1 53 I-sstC_1=1 54 I-sstC_1=1 55 I-sstD_1=1 56 I-trx_1=1 57 I-yhiN_1=1 58 epiP-bsaP_1=1 59 geh_1=1 60 gyrA_1=1 61 gyrB_1=1 62 hemB_1=1 63 hemC_1=1 64 hemD_1=1 65 hemN_1=1 66 hsdS_1=1 67 hsdS_2=1 68 lip_1=1 70 murC_1=1 71 nuc_1=1 72 pdhD_1=1 73 rpoB_1=1 74 SAV043=1=1 75 SAV0440=1=1 77 SAV0441=1 79 spa_1=2 80 sstC_1=1		
51 I-sodB_1_1 52 I-sstA_1_1 53 I-sstB_1 54 I-sstC_1_1 55 I-sstD_1_1 56 I-trx_1_1 57 I-yhlN_1 58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 heMN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV043_1_1_1 75 SAV043_9_1_1 76 SAV044_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		
52 I-sstA_1_1 53 I-sstB_1 54 I-sstC_1 55 I-stD_1 56 I-trx_1_1 57 I-yhiN_1_1 58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1 62 hemB_1_1 63 hemC_1.1 64 hemD_1_1 65 hemN_1.1 66 hsdS_1_1 67 hsdS_2.1 68 lip_1_1 69 menC_1.1 70 murC_1_1 71 nuc_1.1 72 pdhD_1_1 73 rpoB_1.1 74 SAV0439_1.1 75 SAV0440_1.1 77 SAV0441_1.1 78 sigB_1.1 79 spa_1.2 80 sstC_1_1		
53 I-sstB_1_1 54 I-sstC_1_1 55 I-sstD_1_1 56 I-trx_1_1 57 I-yhiN_1_1 58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0439_1_1 75 SAV0440_1_1 76 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		
54 I-sstC_1_1 55 I-sstD_1_1 56 I-trx_1_1 57 I-yhiN_1_1 58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1_1 76 SAV0440_1_1 77 SAV0441_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		
55 I-sstD_1_1 56 I-trx_1 1 57 I-yhiN_1_1 58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56 I-trx_1_1 57 I-yhiN_1_1 58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rp0B_1_1 74 SAV0431_1_1 75 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		
57 I-yhiN_1_1 58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0440_1 77 SAV0441_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		
58 epiP-bsaP_1_1 59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0440_1_1 76 SAV0441_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		
59 geh_1_1 60 gyrA_1_1 61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		
60		
61 gyrB_1_1 62 hemB_1_1 63 hemC_1_1 64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0440_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1	60	
63	61	gyrB_1_1
64 hemD_1_1 65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0449_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1	62	hemB_1_1
65 hemN_1_1 66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1 1 75 SAV0440_1_1 76 SAV0441_1_1 77 spa_1_2 80 sstC_1_1	63	
66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		hemD_1_1
66 hsdS_1_1 67 hsdS_2_1 68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1	65	hemN_1_1
68 lip_1_1 69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		hsdS_1_1
69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		
69 menC_1_1 70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1		lip_1_1
70 murC_1_1 71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0449_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1	69	menC_1_1
71 nuc_1_1 72 pdhD_1_1 73 rpoB_1_1 74 SAV0431_1_1 75 SAV0439_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1	70	
73	71	
73	72	
74 SAV0431_1_1 75 SAV0439_1_1 76 SAV0440_1_1 77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1	73	rpoB_1_1
76	74	
76	75	
77 SAV0441_1_1 78 sigB_1_1 79 spa_1_2 80 sstC_1_1	76	
79	77	SAV0441_1_1
79	78	sigB_1_1
80 sstC_1_1		spa_1_2
		sstC_1_1
	81	tag_1_1

SEQ ID NO	Probe
82	tyrA_1_1
83	I-aroC_1_1
84	I-aroA_1_1
85	I-cna_1_1
86	I-ebpS_1_1
87	I-eno_1_1
88	I-fbpA_1_1
89	I-fib_1_1
90	I-fnbB_1_1
91	I-srtA_1_1
92	I-stpC_1_1
93	I-fnbA_1_1
94	I-spa_1_1
95	I-aroE_1_1
96	I-aroF_1_1
97	I-aroG_1_1
98	I-asp23_1_1
99	I-atl_1_1
142	b1169_1_1
143	envZ_1_1
144	fliCb_1_1
145	nfrB_1_1
146	nlpA_1_1
147	pilAe_1_1
148	yacH_1_1
149	yagX_1_1
150	ycdS_1_1
151	yciQ_1_1
152	ymcA_1_1
174	ardeSE0106_1_1
175	ardeSE0107_1_1
176	aroiSE0105_1_1
177	atlE_1_1
178	agrB_1_1
179	agrC_1_1
180	alphSE1368_1_1
181	gad_1_1
182	glucSE1191_1_1
183	hsp10_1_1
184	icaA_1_1
185	icaB_1_1
186	mvaSSepid_1_1
187	nitreSE1972_1_1
188	nitreSE1974_1_1
189	nitreSE1975_1_1
190	oiamtSE1209_1_1
191	ORF1Sepid_1_1
192	ORF3bSepid_1_1
193	qacR_1_1
194	sin_1_1
195	ureSE1861_1_1
196	ureSE1863_1_1
197	ureSE1864_1_1

SEQ ID NO	Probe
198	ureSE1865_1_1
199	ureSE1867_1_1
209	folQShaemolyt_1_1
210	mvaCShaemolyticus_1_1
211	mvaDShaemolyt_1_1
212	mvaK1Shaemolyticus_1_1
213	mvaSShaemolyticus_1_1
214	RNApolsigm_1_1
216	agrB2Stalugd_1_1
217	agrC2Stalugd_1_1
218	agrCStalugd_1_1
219	slamStalugd_1_1
222	RNApolsigmSsapro_1_1
223	RNApolsigmSsapro_1_2
224	msrw1Stwar_1_1
225	nukMStwar_1_1
226	proDStwar_1_1
227	proMStwar_1_1
228	sigrpoStwar_1_1
229	tnpStwar_1_1
231	ARG56_1_1
232	ASL43f_1_1
233	BGL2_1_1
234	CACHS3_1_1
235	CCT8_1_1
236	CDC37_1_1
237	CEF3_1_1
238	CHS1_1_1
239	CHS2_1_1
240	CHS4_1_1
241	CHS5_1_1
242	CHT1_1_1
243	CHT2_1_1
244	CHT4_1_1
245	CSA1_1_1
246	5triphosphatase_1_1
247	AAF1_1_1
248	ADH1_1_1
249	ALS1_1_1
250	ALS7_1_1
251	EDT1_1_1
252	ELF_1_1
253	ESS1_1_1
254	FAL1_1_1
255	GAP1_1_1
256	GNA1_1_1
257	GSC1_1_1
258	GSL1_1_1
259	HIS1_1_1
260	HTS1_1_1
261	HWP1_2_1
262	HYR1_1_1
263	INT1a_1_1

WO 2007/039319 PCT/EP2006/010132

SEQ ID NO	Probe
264	KRE15f_1_1
265	KRE6_1_1
266	KRE9 1 1
267	MIG1_1_1
268	MLS1_1_1
269	MP65_1_1
270	NDE1_1_1
271	PFK2_1_1
272	PHR1_1_1
273	PHR2 1 1
274	PHR3 1 1
275	PRA1_1_1
276	PRS1_1_1
277	RBT1_1_1
278	RBT4_1_1
279	RH01_1_1
280	RNR1_1_1
281	RPB7_1_1
282	RPL13_1_1
283	RVS167_1_1
284	SHA3_1_1
285	SKN1_1_1
286	SRB1_1_1
287	TCA1_1_1
288	TRP1_1_1
289	YAE1_1_1
290	YRB1_1_1
291	YST1exon2_1_1
308	arcA_1_1
309	arcC_1_1
310	bkdA_1_1
311	cad_1_1
312	camE1_1_1
313	csrA_1_1
314	dacA 1 1
315	dfr_1_1
316	dhoD1a_1_1
317	ABC-eltA_1_1
318	agrBfs_1_1
319	agrCfs_1_1
320	dnaE_1_1
321	ebsA_1_1
322	ebsB_1_1
323	eep_1_1
324	efaR_1_1
325	gls24_glsB_1_1
326	gph_1_1
327	gyrAEf_1_1
328	metEf_1_1
329	mntHCb2_1_1
330	mob2_1_1
331	mvaD_1_1
332	mvaE_1_1

SEQ ID NO	Probe
333	parC_1_1
334	pcfG_1_1
335	phoZ_1_1
336	polC_1_1
337	ptb_1_1
338	recS1_1_1
339	rpoN_1_1
340	tms_1_1
341	tyrDC_1_1
342	tyrS_1_1
377	bglB_1_1
378	bgIR_1_1
379	bglS_1_1
380	efmA_1_1
381	efmB_1_1
382	efmC_1_1
383	mreC_1_1
384	mreD_1_1
385	mvaDEfaecium_1_1
386	mvaEEfaecium_1_1
387	mvaK1Efaecium_1_1
388	mvaK2Efaecium_1_1
389	mvaSEfaecium_1_1
390	orf3_4Efaeciumb_1_1
391	orf6_7Efaecium_1_1
392	orf7_8Efaecium_1_1
393	orf9_10Efaecium_1_1
399	atsA_1_1
400	atsB_1_1
401	budC_1_1
402	citA_1_1
403	citW_1_1
404	citX_1_1
405	dalD_1_1
406	dalK_1_1
407	dalT_1_1
408	acoA_1_1
409	acoB_1_1
410	acoC_1_1
411	ahlK_1_1
412	fimK_1_1
413	glfKPN2_1_1
414	ltrA_1_1
415	mdcC_1_1
416	mdcF_1_1
417	mdcH_1_1
418	mrkA_1_1
419	mtrK_1_1
420	nifF_1_1
421	nifK_1_1
422	nifN_1_1
423	tyrP_1_1
424	ureA_1_1

SEQ ID NO	Probe
425	wbbO_1_1
426	wza_1_1
427	wzb_1_1
428	wzmKPN2_1_1
429	wztKPN2_1_1
430	yojH_1_1
431	liac_1_1
449	cymA_1_1
450	cymD_1_1
451	cymE_1_1
452	cymH_1_1
453	cymI_1_1
454	cymJ_1_1
455	ddrA_1_1
456	fdt-1_1_1
457	fdt-2_1_1
458	fdt-3_1_1
459	gatY_1_1
460	hydH_1_1
461	masA_1_1
462	nasA_1_1
463	nasE_1_1
464	nasF_1_1
465	pehX_1_1
466	pelX_1_1
467	tagH_1_1
468	tagK_1_1
469	tagT_1_1
470	glpR_1_1
471	lasRb_1_1
472	OrfX_1_1
473	pa0260_1_1
474	pa0572_1_1
475	pa0625_1_1
476	pa0636_1_1
477	pa1046_1_1
478	pa1069_1_1
479	pa1846_1_1
480	pa3866_1_1
481	pa4082_1_1
482	pilAp_1_1
483	PilAp2_1_1
484	pilC_1_1
485	PstP_1_1
486	purK_1_1
487	uvrDII_1_1
488	vsmI_1_1_
489	vsmR_1_2
490	xcpX_1_1
523	cap1EStrpneu_1_1
524	cap1FStrpneu_1_1
525	cap1GStrpneu_1_1
526	cap3AStrpneu_1_1

SEQ ID NO	Probe
527	cap3BStrpneu_1_1
528	celAStrpneu_1_1
529	celBStrpneu_1_1
530	cglAStrpneu_1_1
531	cglBStrpneu_1_1
532	cglCStrpneu_1_1
533	cglDStrpneu_1_1
534	cinA_1_1
535	cps14EStrpneum_1_1
536	cps14FStrpneum_1_1
537	cps14GStrpneum_1_1
538	cps14HStrpneum_1_1
539	cps19aHStrpneum_1_1
540	cps19aIStrpneum_1_1
541	cps19aKStrpneum_1_1
542	cps19fGStrpneum_1_1
543	cps23fGStrpneum_1_1
544	dexB_1_1
545	dinF_1_1
546	1760Strpneu_1_1
547	acyPStrpneu_1_1
548	endAStrpneu_1_1
549	exoAStrpneu_1_1
550	exp72_1_1
551	fnlAStrpneu_1_1
552	fnlBStrpneu_1_1
553	fnlCStrpneu_1_1
554	gct18Strpneum_1_1
555	hexB1_1_1
556	hftsHstrpneu_1_1
557	immunofrag1Strpneu_1_1
558	immunofrag2Strpneu_2_1
559	immunofrag3Strpneu_2_1
560	kdtBStrpneu_1_1
561	lysAStrpneu_1_1
562	pcpBStrpneu_1_1
563	pflCStrpneu_1_1
564	plpA_1_1
565	prtA1Strpneu_1_1
566	pspC1Strpneu_1_1
567	pspC2_1_1
568	purRStrpneu_1_1
569	pyrDAStrpneum_1_1
570	SP0828Strpneu_1_1
571	SP0830Strpneu_1_1
572	SP0833Strpneu_1_1
573	SP0837_38Strpneu_1_1
574	SP0839Strpneu_1_1
575	ugdStrpneu_1_1
576	uncC_1_1
577	vicXStrepneu_1_1
578	wchA6bStrpneum_1_1
579	wci4Strpneum_1_1

S80	SEQ ID NO	Probe
S81	580	wciK4Strpneum_1_1
S83	581	
S84	582	wciN6bStrpneum_1_1
S84		
S85		
S86		
S87		
S88		
S89		wzy18Strpneum 1 1
S90		
S91		wzy6bStrpneum_1_1
606 cpsAlStrgal 1 1 607 cpsBlStrgal 1 1 608 cpsClStrgal 1 1 609 cpsDlStrgal 1 1 610 cpsElStrgal 1 1 611 cpsGlStrgal 1 1 612 cpsIStragal 1 1 613 cpsIStragal 1 1 614 cpsKStragal 1 1 615 cpsKStragal 1 1 616 cpsYStragal 2 1 617 cpsYStragal 2 1 618 cylBStraga 1 1 619 cylEStraga 1 1 620 cylFStraga 1 1 621 cylHStraga 1 1 622 cylIStraga 1 1 623 cylIStraga 1 1 624 cylKStraga 1 1 625 0487Straga 1 1 626 0488Straga 1 1 627 0493Straga 1 1 628 0495Straga 1 1 630 0500Straga 1 1 631 0502Straga 1 1 632 0504Straga 1 1 633 folDStraga 1 1 634 neuAlStrgal 1 1		
607 cpsB1Strgal_1_1 608 cpsC1Strgal_1_1 609 cpsD1Strgal_1_1 610 cpsE1Strgal_1_1 611 cpsG1Strgal_1_1 612 cpsIStragal_1_1 613 cpsIStragal_1_1 614 cpsKStragal_1_1 615 cpsMStragal_1_1 616 cpsYStragal_1_1 617 cpsYStragal_1_1 618 cylBStraga_1_1 619 cylEStraga_1_1 620 cylFStraga_1_1 621 cylHStraga_1_1 622 cylIStraga_1_1 623 cylIStraga_1_1 624 cylKStraga_1_1 625 048Straga_1_1 626 048Straga_1_1 627 0493Straga_1_1 628 0495Straga_1_1 630 050OStraga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuB1Strgal_1_1 635 neuB1Strgal_1_1		
608 cpsC1Strgal_1_1 609 cpsD1Strgal_1_1 610 cpsE1Strgal_1_1 611 cpsG1Strgal_1_1 612 cpsIStragal_1_1 613 cpsIStragal_1_1 614 cpsKStragal_1_1 615 cpsMStragal_1_1 616 cpsYStragal_1_1 617 cpsYStragal_1_1 618 cylBStraga_1_1 619 cylEStraga_1_1 620 cylFStraga_1_1 621 cylIStraga_1_1 622 cylIStraga_1_1 623 cylIStraga_1_1 624 cylKStraga_1_1 625 0487Straga_1_1 626 0488Straga_1_1 627 0493Straga_1_1 628 0495Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuAlStrgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1		
609 cpsD1Strgal_1_1 610 cpsE1strgal_1_1 611 cpsGStrgal_1_1 612 cpsIStragal_1_1 613 cpsJStragal_1_1 614 cpsKStragal_1_1 615 cpsMStragal_1_1 616 cpsYStragal_1_1 617 cpsYStragal_1_1 618 cylEStraga_1_1 619 cylEStraga_1_1 620 cylFStraga_1_1 621 cylHStraga_1_1 622 cylIStraga_1_1 623 cylIStraga_1_1 624 cylKStraga_1_1 625 0487Straga_1_1 626 0488Straga_1_1 627 0493Straga_1_1 628 0495Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuB1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuB1Strgal_1_1		
610		
611	h	
612		
613		
614		
615		
616		
617		
618		
619		
620		
621		
622 cyllStraga_1_1 623 cylStraga_1_1 624 cylKStraga_1_1 625 0487Straga_1_1 626 0488Straga_1_1 627 0493Straga_1_1 628 0495Straga_1_1 629 0498Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	621	
624 cylKStraga_1_1 625 0487Straga_1_1 626 0488Straga_1_1 627 0493Straga_1_1 628 0495Straga_1_1 629 0498Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	622	
624 cylKStraga_1_1 625 0487Straga_1_1 626 0488Straga_1_1 627 0493Straga_1_1 628 0495Straga_1_1 629 0498Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	623	
626 0488Straga_1_1 627 0493Straga_1_1 628 0495Straga_1_1 629 0498Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	624	cylKStraga_1_1
627 0493Straga_1_1 628 0495Straga_1_1 629 0498Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	625	
628 0495Straga_1_1 629 0498Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	626	0488Straga_1_1
629 0498Straga_1_1 630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	627	0493Straga_1_1
630 0500Straga_1_1 631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	628	0495Straga_1_1
631 0502Straga_1_1 632 0504Straga_1_1 633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	629	0498Straga_1_1
632	630	0500Straga_1_1
633 folDStraga_1_1 634 neuA1Strgal_1_1 635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	631	0502Straga_1_1
634	632	0504Straga_1_1
635 neuB1Strgal_1_1 636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	633	folDStraga_1_1
636 neuC1Strgal_1_1 637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1		
637 neuD1Strgal_1_1 638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1	635	neuB1Strgal_1_1
638 recNStraga_1_1 639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1		neuC1Strgal_1_1
639 ileSStraga_1_1 645 cyclStrpyog_1_1 646 fah_rph_hlo_Strpyog_1_1 647 int_1_1		
645		
646 fah_rph_hlo_Strpyog_1_1 647 int_1_1		ileSStraga_1_1
647 int_1_1		
		fah_rph_hlo_Strpyog_1_1
649 in+21F F 1 1		
	648	int315.5_1_1
649 murEStrpyog_1_1		murEStrpyog_1_1
650 oppA_1_1		
651 oppCStrpyog_1_1	651	oppCStrpyog_1_1

SEQ ID NO	Probe
652	oppD_1_1
653	SPy0382Strpyog_1_1
654	SPy0390Strpyog_1_1
655	SpyM3_1351_1_1
656	vicXStrpyog_1_1
687	573Stprmut_1_1
688	580SStprmut_1_1
689	581_582SStprmut_1_1
690	584SStprmut_1_1
691	dltAStrmut_1_1
692	dltBStrmut 1 1
693	dltCppx1Strmut_1_1
694	dltDStrmut_1_1
695	lichStrbov 1 1
696	lytRStprmut_1_1
697	lytSStprmut_1_1
698	pepQStrrmut_1_1
699	pflCStrmut_1_1
700	recNStprmut_1_1
701	ytgBStrmut_1_1
706	atfA_1_1
707	atfB_1_1
708	atfC_1_1
709	ccmPrmi1_1_1
710	cyaPrmi_1_1
711	aad_1_1
712	flfB_1_1
713	flfD_1_1
714	flfN_1_1
715	flhD_1_1
716	floA_1_1
717	ftsK_1_1
718	gstB_1_1
719	hemCPrmi_1_1
720	hemDPrmi_1_1
721	hev_1_1
722	katA_1_1
723	lpp1_1_1
724	menE_1_1
725	mfd_1_1
726	nrpA_1_1
727	nrpB_1_1
728	nrpG_1_1
729	nrpS_1_1
730	nrpT_1_1
731	nrpU_1_1
732	pat_1_1
733	pmfA_1_1
734	pmfC_1_1
735	pmfE_1_1
736	ppaA_1_1
737	rsbA_1_1
738	rsbC_1_1

SEQ ID NO	Probe
739	speB_1_1
740	stmA_1_1
741	stmB_1_1
742	terA_1_1
743	terD_1_1
744	umoA_1_1
745	umoB_1_1
746	umoC_1_1
747	ureR_1_1
748	xerC_1_1
749	ygbA_1_1
776	envZPrvu_1_1
777	frdC_1_1
778	frdD 1 1
779	infBPrvu 1 1
780	lad_1_1
781	tna2_1_1
2843	carO 1 1
2844	gacS_1_1
2845	dhbA_1_1
2846	dhbB_1_1
2847	sid_1_1
2848	csuD_1_1
2849	csuC_1_1
2850	tnp-ACIBA_1_1
2851	waaA-ACIBA_1_1
2852	csuB_1_1
2853	csuA B 1 1
2854	csuA_1_1
2855	put1_1_1
2856	por_1_1
2857	abc_1_1
2858	furACIBA_1_1
2859	dec_1_1
2860	cysI_1_1
2861	trpE_1_1
2862	put3_1_1
2863	ompA-ACIBA_1_1
2902	coa_3_1
2903	coa_2_2
2876	asr_1_1
2877	lacZ_1_1
2878	ehuS_1_1
2879	ehuV_1_1
2880	slyA_1_1
2881	ORF165_1_1
2882	ehuU_1_1
2883	ehuT_1_1
2884	ORF295_1_1
2885	ehuA_1_1
2886	ORF400_1_1
2887	H+ATPase_1_1
2889	smeE_1_1

SEQ ID NO	Probe
2890	eE_1_1
2891	StmPr1_1_1
2892	eD_2_1
2893	ppi_1_1
2894	pmp-STEMA_1_1
2895	pam_1_1
2896	ORF4-STEMA_1_1
2897	ORF2-STEMA_1_1
2898	et_1_1
2899	eF_1_1
2900	StmPr2_1_1
2901	smeF4494_1_1
2904	fasCAXStrdysg_1_1
2906	ydhK_1_1

b) virulence probes

SEQ ID NO	Probe
100	bsaE_1_1
101	bsaG_1_1
102	cap5h_1_1
103	cap5i_1_1
104	cap5j_1_1
105	cap5k_1_1
106	cap8H_1_1
107	cap8I_1_1
108	cap8J_1_1
109	cap8K_1_1
110	I-hld_1_1
111	I-hysA_1_1
112	I-IgGbg_1_1
113	EDIN_1_1
114	eta_1_1
115	etb_1_1
116	hglA_1_1
117	hglA_2_1
118	hglB_1_1
119	hglC_2_1
120	hla_1_1
121	hlb_1_2
122	lukF_1_1
123	lukS_1_1
124	lukS_2_1
125	NAG_1_1
126	sak_1_1
127	sea_1_1
128	seb_1_1
129	sec1_1_1
130	seg_1_1
131	seh_1_1
132	sel_1_1
133	set15_1_1

SEQ ID NO	Probe
134	set6_1_1
135	set7_1_1
136	set8_1_1
137	sprV8_1_1
138	tst_1_1
139	I-sdrC_1_1
140	I-sdrD_1_1
141	I-sdrE_1_1
153	b1202 1 1
154	eae_1_1
155	eltB_1_1
156	escR_1_1
157	escT_1_1
158	escU_1_1
159	espB_1_1
160	fes_1_1
161	fes_2_1
162	fteA_1_1
163	hlyA_1_1
164	hlyB_1_1
165	iucA_1_1
166	iucB_1_1
167	iucC_1_1
168	papG_1_1
169	rfbE_1_1
170	shuA_1_1
171	SLTII_1_1
172	toxA-LTPA_1_1
173	VT2vaB_1_1
200	gcaD_1_1
201	hld_orf5_1_1
202	icaC_1_1
203	icaD_1_1
204	icaR_1_1
205	psm_beta1and2_1_1
206	purR_1_1
207	spoVG_1_1
208	yabJ_1_1
215	lipShaemolyt_1_1
220	fblStalugd_1_1
230	slushABCStalugd_1_1
292	gehAStwar_1_1
293	CCN1_1_1 CDC28_1_1
294	CLN2_1_1
295	CPH1_1_1
296	CYB1_1_1
297	EFG1_1_1
298	MNT1_1_1
299	RBF1_1_1
300	RBF1_2_1
301	RIM101_1_1
302	RIM8_1_1

SEQ ID NO	Probe
303	SEC14_1_1
304	SEC4_1_1
305	TUP1_1_1
306	YPT1_1_1
307	ZNF1CZF1_2_1
343	asa1_1_1
344	asp1_1_1
345	cgh_1_1
346	cylA_1_1
347	cylB_1_1
348	cylI_1_1
349	cylL_cylS_1_1
350	cylM_1_1
351	ace_1_1
352	ef00108 1 1
353	ef00109 1 1
354	ef0011 1 1
355	ef00113 1 1
356	ef0012 1 1
357	ef0022 1 1
358	ef0031 1 1
359	ef0032 1 1
360	ef0040_1_1
361	ef0058_1_1
362	enlA_1_1
363	esa_1_1
364	esp_1_1
365	gelE_1_1
366	groEL_1_1
367	groES_1_1
368	rt1_1_1
369	sala_1_1
370	salb_1_1
371	sea1_1_1
372	sep1_1_1
373	vicK_1_1
374	yycH_1_1
375	yycI_1_1
376	yycJ_1_1
394	entA_entI_1_1
395	entD_1_1
396	entR_1_1
397	oep_1_1
398	sagA_1_2
432	cim_1_1
433	aldA_1_1
434	aldA_2_1
435	hemly_1_1
436	pSL017_1_1
437	pSL020_1_1
438	rcsA_1_1
439	rmIC_1_1
440	rmlD_1_1

SEQ ID NO Probe 441
442 wbbD 1 1 443 wbbM 1 1 444 wbbM 1 1 445 wbdA 1 1 446 wbdC 1 1 447 wztKpn 1 1 448 yibD 1 1 491 aprA 1 1 492 aprE 1 1 493 ctx 1 2 494 algB 1 1 495 algN 1 1 496 algR 1 1 497 ExoS 1 1 498 fpvA 1 1 499 lasRa 1 1 500 lipA 1 1 501 lipH 1 1 502 Orf159 1 2 503 Orf252 1 1 504 pchG 1 1 505 Ph2A 1 1 506 Ph2B 1 1 507 PLC 1 1 508 plcN 1 1 509 plcR 1 1 510 pvdD 1 1 511 pvdF 1 2 512 pyocinS1 1 1 513 pyocinS2 1 1 514 pyocinS2 1 1 515 pys2 1 1 516 pys2 2 1 517 rbf303 1 1 518 rhlA 1 1 520 rhlR 1 1 520 rhlR 1 1 520 rhR 1 1 521 TAPPH 1 1 522 traPPH 1 1 523 rhR 1 1 534 pyocinS2 1 1 535 pys2 1 1 536 rhlA 1 1 537 rhB 1 1 538 rhlA 1 1 539 ligStrpneu 1 1
443 wbbM_1 1 444 wbbN_1 1 445 wbdA 1 446 wbdC 1 1 447 wztKpn_1 1 448 ylbD_1 1 449 aprA_1 1 491 aprA_1 1 492 aprE_1 1 493 ctx_1 2 494 algB_1 1 495 algN_1 1 496 algR_1 1 497 ExoS_1 1 498 fpvA_1 1 499 lasRa_1 1 500 lipA_1 1 501 lipH_1 1 502 Orf159_1 2 503 Orf252_1 1 504 pchG_1 1 506 PhzB_1 1 507 PLC_1 1 509 plcR_1 1 510 pvdD_1 1 511 pvdF_1 2 512 pyocinS1 in 1 514 pyocinS2_1 1 515 pys2_1 1 516 pys2_2 1 517 rbf303_1 1 518 rhlA_1 1 519 pvdR_1 1 519 pvdR_1 1 510 rhlR_1 1 511 pvdR_1 1 512 pyocinS1 in 1 513 pyocl s1 in 1 514 pyocinS2_1 1 515 pys2_1 1 516 pys2_2 1 517 rbf303_1 1 518 rhlA_1 1 520 rhlR_1 1 520 rhlR_1 1 521 TrAP41_1 2 522 toxA_1 1 522 ligaStrpneu_1 1 533 pycl igaStrpneu_1 1 534 pyocinS1 in 1 555 rhlA_1 1 556 pys2_2 toxA_1 1 5592 ligaStrpneu_1 1 592 ligaStrpneu_1 1 593 lytA_1 1
444 wbbN 1 1 445 wbdA 1 1 446 wbdC 1 1 447 wztKpn 1 1 448 yibD 1 1 491 aprA 1 1 492 aprE 1 1 493 ctx 1 2 494 algB 1 1 495 algN 1 1 496 ExoS 1 1 497 ExoS 1 1 498 fpvA 1 1 500 lipA 1 1 501 lipH 1 1 502 Orf159 1 2 503 Orf252 1 1 504 pchG 1 1 506 PhzB 1 1 507 PLC 1 1 508 plcR 1 1 510 pvdD 1 2 511 pvdF 1 2 512 pyocinS1 1 1 514 pyocinS2 1 1 515 pys2 1 1 516 pys2 2 1 517 rbf303 1 1 518 rhlA 1 1 519 ptd 1 1 520 rhlR 1 1 521 TrAP41 1 2 522 toxA 1 529 ligStrpneu 1 1 530 light 1 1 531 light 1 1 541 light 1 1 552 light 1 1 553 light 1 1 554 light 1 1 555 light 1 1 555 light 1 1 556 light 1 1 557 rbf303 1 1 558 rhlA 1 1 559 rhlB 1 1 559 rhlB 1 1 559 rhlB 1 1 550 rhlR 1 1 550 rhlR 1 1 551 TrAP41 1 2 552 toxA 1 1 559 light 1 1 550 rhlR 1 1
445 wbdA_1_1 446 wbdC_1_1 447 wztKpn_1_1 448 yibD_1_1 491 aprA_1_1 492 aprE_1_1 493 ctx_1_2 494 algB_1_1 495 algN_1_1 496 algR_1_1 497 ExoS_1_1 499 lasRa_1_1 500 lipA_1_1 501 lipH_1_1 502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 505 PhzA_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1 in 1 511 pvdF_1_2 512 pyocinS2_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf30_3_1_1 518 rhiA_1_1 519 rhiB_1_1 520 rhiR_1_1 521 TnAP41_1_2 522 toxA_1_1 529 igaStrpneu_1_1 529 igaStrpneu_1_1 529 igaStrpneu_1_1 529 igaStrpneu_1_1 520 rhiR_1_1 520 rhiR_1_1 520 igaStrpneu_1_1 520 igaStrpneu_1_1 520 rhiR_1_1 520 igaStrpneu_1_1 520 rhiR_1_1 520 rhiR_1_1 520 igaStrpneu_1_1 520 rhiR_1_1 520 igaStrpneu_1_1 520 rhiR_1_1 520 rhiR_1_1 520 igaStrpneu_1_1
446 wbdC_1 1 447 wztKpn 1_1 448 yibD_1.1 491 aprA_1.1 492 aprE_1.1 493 ctx_1.2 494 algB_1.1 495 algN_1.1 496 algR_1.1 497 ExoS_1.1 498 fpvA_1.1 499 lasRa_1.1 500 lipA_1.1 501 lipH_1.1 502 Orf159_1.2 503 Orf252_1.1 506 PhzB_1.1 506 PhzB_1.1 507 PLC_1.1 508 plcN_1.1 509 plcR_1.1 510 pvdD_1.1 511 pvdF_1.2 512 pyocinS1_1.1 514 pyocinS2_1.1 515 pys2_1.1 516 pys2_2.1 517 rbf303_1.1 518 rhlA_1.1 520 rhlR_1.1 521 TnAP41_1.2 522 toxA_1.1 529 ligaStrpneu_1.1 529 ligaStrpneu_1.1 520 rhlR_1.1 521 TnAP41_1.2 522 toxA_1.1 523 liytA_1.1 524 positypeu_1.1 525 ligaStrpneu_1.1 526 ligaStrpneu_1.1 527 rhaP41_1.2 529 ligaStrpneu_1.1 529 ligaStrpneu_1.1 520 rhlR_1.1 520 rhlR_1.1 520 rhlR_1.1 520 rhlR_1.1 520 rhlR_1.1 520 ligaStrpneu_1.1
447 wztKpn_1_1 448 yibD_1_1 491 aprA_1_1 492 aprE_1_1 493 ctx 1_2 494 algB_1_1 495 algN_1_1 496 algR_1_1 497 ExoS_1_1 498 fpvA_1_1 499 lasRa_1_1 500 lipA_1_1 501 lipH_1_1 502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 505 PhzA_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcR_1_1 510 pvdD_1_1 511 pydF_1_2 512 pyocinS1_in_1 513 pyocinS1_in_1 514 pyocinS2_i_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 520 rhlR_1_1 521 TapP41_1_2 522 toxA_1_1 523 ligStrpneu_1_1 524 parameters 525 ligStrpneu_1_1 527 TapP41_1_2 528 ligStrpneu_1_1 529 ligStrpneu_1_1 530 ligA_1_1 540 ligH_1_1 551 light_1_1 552 light_1_1 553 light_1_1 554 light_1_1 555 light_1_1 555 light_1_1 556 light_1_1 557 rbf303_1_1 558 rhlA_1_1 559 light_1_1 559 light_1_1 550 rhlR_1_1
448 yibD_11 491 aprA_1 492 aprE_1 493 ctx_1_2 494 algB_1_1 495 algN_11 496 algR_1_1 497 ExoS_1_1 498 fpvA_1_1 499 lasRa_1_1 500 lipA_1_1 501 lipH_1 1 502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1im_1 1 514 pyocinS2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 519 rhlB_1_1 520 rhlR_1_1 521 pyocinS1_1 521 pyocinS1_1 531 prdF_1_1 532 rhlB_1_1 533 prdF33_1_1 534 pyocinS1im_1 1 535 prdF3_1_1 536 prdF3_1_1 537 rbf303_1_1 538 rhlA_1_1 539 rhlB_1_1 530 rhlR_1_1 530 rhlR_1_1 531 pyocinS1_1 531 pyocinS1_1 532 rhlB_1_1 533 pyocinS1_1 534 pyocinS1_1 535 rhlB_1_1 535 rhlB_1_1 536 rhlR_1_1 537 rhlB_1_1 538 rhlA_1_1 539 rhlB_1_1 540 rhlR_1_1 550 rhlR_1_1
491 aprA 1 1 492 aprE 1 1 493 ctx 1 2 494 algB 1 1 495 algN 1 1 496 algR 1 1 497 ExoS 1 1 498 fpvA 1 1 500 lipA 1 1 501 lipH 1 1 502 Orf159 1 2 503 Orf252 1 1 504 pchG 1 1 505 PhzA 1 1 506 PhzB 1 1 507 PLC 1 1 508 plcN 1 1 509 plcR 1 1 510 pvdD 1 1 511 pvdF 1 2 512 pyocin51 1 1 513 pyocin51 1 1 514 pyocin52 1 1 515 pys2 1 1 516 pys2 2 1 517 rbf303 1 1 518 rhlB 1 1 519 rhlB 1 1 520 rhlR 1 1 521 trAP41 1 2 522 toxA 1 1 592 ligaStrpneu 1 1 593 ligaStrpneu 1 1 593 lytA 1 1
492 aprE 1 1 493 ctx 1 2 494 algB 1 1 495 algN 1 1 496 algR 1 1 497 ExoS 1 1 498 fpvA 1 1 499 lasRa 1 1 500 lipA 1 1 501 lipH 1 1 502 Orf159 1 2 503 Orf252 1 1 504 pchG 1 1 505 PhzA 1 1 506 PhzB 1 1 507 PLC 1 1 508 plcN 1 1 509 plcR 1 1 510 pvdD 1 1 511 pvdF 1 2 512 pyocinS1 in 1 1 514 pyocinS2 1 1 515 pys2 2 1 515 pys2 2 1 517 rbf303 1 1 518 rhlA 1 1 519 rhlB 1 1 520 rhlR 1 1 521 TnAP41 1 2 522 toxA 1 1 524 pla 1 524 pla 1 525 pla 1 525 pla 1 526 pla 1 1 527 rbf303 1 1 538 rhlA 1 1 549 rhlB 1 1 559 rhlB 1 1 550 rhlR 1 1
493
494 algB_1_1 495 algN_1_1 496 algR_1_1 497 ExoS_1_1 498 fpvA_1_1 499 lasRa_1_1 500 lipA_1_1 501 lipH_1_1 502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 505 PhzA_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 519 rhlB_1_1 520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 593 lytA_1_1 594 nanA_1_1 594
495 algN_1_1 496 algR_1_1 497 ExoS_1_1 498 fpvA_1_1 499 lasRa_1_1 500 lipA_1_1 501 lipH_1_1 502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_in_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 519 rhlB_1_1 510 rlR_1_1 520 rhlR_1_1 531 TrAP41_1_2 532 lgaStrpneu_1_1 533 lya anaA_1_1 544 pyocinS1_1_1 555 pys2_1 in_1 551 rbf303_1_1 551 rhf303_1_1 551 rhf303_1_1 551 rhf303_1_1 551 rhlB_1_1 552 rhRAP41_1_2 552 toxA_1_1 559 ligaStrpneu_1_1 559 ranA_1_1 559 ranA_1_1 559 ranA_1_1 559 ranA_1_1
496 algR_1_1 497 ExoS_1_1 498 fpvA_1_1 499 lasRa_1_1 500 lipA_1_1 501 lipH_1 1 502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 505 PhzA_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1_1_1 514 pyocinS2_1_1 515 pys2_2_1 516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 519 rhlB_1_1 520 rhRR_1_1 521 TnAP41_1_2 522 toxA_1_1 593 lytA_1_1 594 nanA_1_1
497 ExoS 1_1 498 fpvA_1_1 499 lasRa_1_1 500 lipA_1 1 501 lipH_1_1 502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 505 PhzA_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS2_1_1 514 pyocinS2_1_1 515 pys2_2_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 593 liytA_1_1 594 nanA_1_1
498
499
S00
501 lipH_1_1 502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 505 PhzA_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS2_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_1_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 552 toxA_1_1 553 sys_1_1 554 nanA_1_1 554 nanA_1_1
502 Orf159_1_2 503 Orf252_1_1 504 pchG_1_1 505 PhzA1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1 1 516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 519 rhlB_1_1 520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 594 nanA_1_1
503 Orf252_1_1 504 pchG_1_1 505 PhzA_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 519 rhlB_1 1 520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 593 lytA_1_1 594 nanA_1_1
504 pchG_1_1 505 PhzA_1 1 506 PhzB_1 1 507 PLC_1 1 508 plcN_1_1 509 plcR_1 1 510 pvdD_1 1 511 pvdF_1_2 512 pyocinS1_1 1 513 pyocinS1im_1 1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1 1 518 rhlA_1_1 519 rhlB_1 1 520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
505 PhzA_1_1 506 PhzB_1_1 507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 519 rhlB_1_1 520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
506 PhzB 1 1 507 PLC 1 1 508 plcN_1 1 509 plcR 1 1 510 pvdD_1 1 511 pvdF 1 2 512 pyocinS1 1 1 513 pyocinS1im 1 1 514 pyocinS2 1 1 515 pys2_1 1 516 pys2_2 1 517 rbf303_1 1 518 rhlA_1 1 519 rhlB_1 1 520 rhlR_1 1 521 TnAP41 1 2 522 toxA_1 1 593 lytA_1 1 594 nanA_1 1
507 PLC_1_1 508 plcN_1_1 509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
508 plcN 1 1 509 plcR_1 1 510 pvdD_1 1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS2_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 519 rhlB_1_1 520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
509 plcR_1_1 510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
510 pvdD_1_1 511 pvdF_1_2 512 pyocinS1_1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
511 pvdF 1_2 512 pyocinS1 1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
512 pyocinS1 1_1 513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
513 pyocinS1im_1_1 514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
514 pyocinS2_1_1 515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
515 pys2_1_1 516 pys2_2_1 517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
516 pys2_2_1 517 rbf303_1_1 518 rhlA_1_1 519 rhlB_1_1 520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
517 rbf303_1_1 518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
518 rhIA_1_1 519 rhIB_1_1 520 rhIR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
520 rhlR_1_1 521 TnAP41_1_2 522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
522 toxA_1_1 592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
592 igaStrpneu_1_1 593 lytA_1_1 594 nanA_1_1
593 lytA_1_1 594 nanA_1_1
595 nanBStroneu 1 1
JJJ HalibJupiicu_i_i
596 pcpCStrpneu_1_1
597 ply_1_1
598 prtAStrpneu_1_1
599 pspA_1_2
600 SP0834Strpneu_1_1
601 SP0834Strpneu_1_2
602 sphtraStrpneu_1_1
603 wciJStrpneu_1_1
604 wziyStrpneu_1_1

WO 2007/039319 PCT/EP2006/010132

SEQ ID NO	Probe
605	wzxStrpneu_1_1
640	CAMPfactor 1 1
641	CAMPfactor_2_1
642	0499Straga_1_1
643	hylStragal_1_1
644	lipStragal_1_1
657	DNaseIStrpyog_1_1
658	fba2Strpyog_1_1
659	fhuAStrpyog_1_1
660	fhuB1Strpyog_1_1
661	fhuDStrpyog_1_1
662	fhuGStrpyog_1_1
663	hylA_1_1
664	hylP_1_1
665	hylp2_1_1
666	oppB_1_1
667	ropB_1_1
668	scpAStrpyog_1_1
669	sloStrpyog_1_1
670	smez-4Strpyog_1_1
671	sof_1_1
672	sof_2_1
673	speA_1_1
674	speB2Strpyog_1_1
675	speCStrpyog_1_1
676	speJStrpyog_1_1
677	srtBStrpyog_1_1
678	srtCStrpyog_1_1
679	srtEStrpyog_1_1
680	srtFStrpyog_1_1
681	srtGStrpyog_1_1
682	srtIStrpyog_1_1
683	srtKStrpyog_1_1
684	srtRStrpyog_1_1
685	srtTStrpyog_1_1
686	vicKStrpyog_1_1
702	hlyXStrmut_1_1
703	igaStrmitis_1_1
704	igaStrsanguis_1_1
705	perMStrmut_1_1
750	flaA_1_1
751	flaD_1_1
752	fliA_1_1
753	hpmA_1_1
754	hpmB_1_1
755	lpsPrmi_1_1
756	mrpA_1_1
757	mrpB_1_1
758	mrpC_1_1
759	mrpD_1_1
760	mrpE_1_1
761	mrpF_1_1
762	mrpG_1_1

SEQ ID NO	Probe
763	mrpH_1_1
764	mrpI_1_1
765	mrpJ_1_1
766	patA_1_1
767	putA_1_1
768	uca_1_1
769	ureDPrmi_1_1
770	ureEPrmi_1_1
771	ureFPrmi_1_1
772	zapA_1_1
773	zapB_1_1
774	zapD_1_1
775	zapE_1_1
782	end_1_1
783	pqrA_1_1
784	urg_1_1
2905	sloStrep_1_1

c) resistance probes

SEQ ID NO	Probe
785	blaIMP-7_1_1
786	mecISepid_1_1
787	blaOXA-10_1_2
788	blaB_1_1
789	ampC_1_1
790	I-blaR_1_1
791	blaOXA-32_1_1
792	bla-CTX-M-22_1_1
793	pbp2aStrpneu_1_1
794	blaSHV-1_1_1
795	blaOXA-2_1_1
796	blaRShaemolyt_1_1
797	blaIMP-7_1_2
798	I-mecR_1_1
799	blaOXY_1_1
800	dacCStrpyog_1_1
801	femA_1_1
802	mecA_1_1
803	blaIShaemolyt_1_1
804	blavim_1_1
805	pbp2b_1_1
806	pbp2primeSepid_1_1
807	pbp2x_1_1
808	pbp3Saureuc_1_1
809	pbp4_1_1
810	pbp5Efaecium_1_1
811	pbpC_1_1
812	I-mecI_1_1
813	pbp1a_1_1
814	I-blaI_1_1
815	blaTEM-106_1_1

SEQ ID NO	Probe
816	blaOXY-KLOX_1_1
817	ftsWEF_1_1
818	fmhB_1_1
819	cumA_1_1
820	femBShaemolyt_1_1
821	blaPER-1_1_1
822	bla_FOX-3_1_1
823	blaA_1_1
824	psrb_1_1
825	fmhA_1_1
826	mecR1Sepid_1_1
827	blaZ_1_1
828	blaOXA-1_1_1
829	fox-6_1_1
830	blaPrmi_1_1
831	aacA_aphDStwar_1_1
832	aacC1_1_2
833	aacC2_1_1
834	strB_1_1
835	aadA_1_1
836	aadB_1_2
837	aadD_1_1
838	aacA4_1_2
839	strA_1_1
840	aph-A3_1_1
841	aacC1_1_1
842	aacA4_1_1
843	aacA-aphD_1_1
844	I-spc_1_1
845	aphA3_1_1
846	ermC_1_1
847	linB_1_1
848	satSA_1_1
849 850	mdrSA_1_1
851	I-linA_1_1 ermB 1 2
852 853	ermA_1_1 satA_1_1
854	msrA_1_1
855	mphBM_1_1
856	mefA_1_1
857	mrx_1_1
858	dfrStrpneu_1_1
859	dfrA_1_1
860	cmIA5_1_1
861	catEfaecium_1_1
862	cat_1_1
863	tetAJ_1_1
864	tetL_1_1
865	tetM_1_1
866	vanH(tn)_1_1
867	vanA_1_1
868	vanHB2_1_1
	L

SEQ ID NO	Probe
869	vanR_1_1
870	vanRB2_1_1
871	vanS(tn)_1_1
872	vanSB2_1_1
873	vanWB2_1_1
874	ddl_1_1
875	ble_1_1
876	vanXB2_1_1
877	vanY(tn)_1_1
878	vanYB2 1 1
879	vanB_1_1
880	vanZ(tn)_1_1
881	vanC-2_1_1
882	vanX(tn)_1_1
883	acrB_1_1
884	mexB_1_2
885	I-qacA_1_1
886	sulI_1_1
887	sul_1_1
888	cadBStalugd_1_1
889	mexA_1_1
890	acrR 1 1
891	emeA_1_1
892	acrA_1_1
893	rtn_1_1
894	abcXStrpmut_1_1
895	qacEdelta1_1_1
896	elkT-abcA 1 1
897	I-cadA 1 1
898	albA_1_1
899	wzm_1_1
900	msrCb_1_1
901	nov_1_1
902	wzt_1_1
903	wbbl_1_1
904	norA23_1_1
905	mexR_1_1
906	arr2_1_1
907	mreA_1_1
908	I-cadC_1_1
909	uvrA_1_1
910	CRD2_1_1
911	CDR1_1_1
912	CDR1_2_1
913	MET3_1_1
914	FET3_1_1
915	FTR2_1_1
916	MDR1-7_1_1
917	ERG11_1_1
918	SEC20_1_1
2864	aacA4ENCL_1_1
2865	AdeR-ACIBA_1_1
2866	adeA-ACIBA_1_1
	•

SEQ ID NO	Probe
2867	aac(6p)-lb7_1_1
2868	adeB-ACIBA_1_1
2869	adeC-ACIBA_1_1
2870	AdeS-ACIBA_1_1
2871	blaL2_1_1
2872	blaMIR-3_1_1
2873	ampR_1_1
2874	ampC-ENCL_1_1
2875	blaL1_1_1
2888	sulII_1_1
2907	tetA-ACIBA_1_1
2908	tetR-ACIBA_1_1

d) controls and utility

SEQ ID NO	Probe
919	rbcL_1_1
925	rbcL_1_2
920	LDHA(hu)_1_1
921	GAPD(hu)_1_1
922	b-Act(hu)_1_1
923	ARHGDIA(hu)_1_1
924	PGK1(hu)_1_1
926	16SPa_1_1
927	23SEfaecium_2_1
928	16SStrepyog_1_1
929	16SStrepneu_1_1
930	16SStrepagalactiae_1_1
931	16SEfaecium_1_1
932	16SEfaecium_2_1
933	16SRNAEf_2_1
934	16SKpn_1_1
935	16SSa_3_1
936	16SRNAEf_1_1
937	16SShominis_1_1
938	16SShaemolyt_1_1
939	23SEfaecium_1_1
940	16SrRNAPrmi_1_1
941	16SrRNAPrvu1_1_1
942	16SSa_1_1
943	16SKlox_1_1
944	p53_1_1
945	0135mihck_1_1
946	FAN_1_1
947	0270cap_1_1
2842	16SStrepdysgal_1_1

The DNA microarray of (1) is preferably suitable for

5 (I) identification of *Staphylococcus aureus* and comprises one or more or all gene probes selected from SEQ ID NO:3-6, 31, 40, 50, 51, 58, 59, 63, 64, 66-69, 71,

74, 76, 77, 79, 2902 and 2903, preferably at least one of the gene probes represented by SEQ ID NO:71, 68, 4 and 69; and/or

(II) identification of *Escherichia coli* and comprises one or more or all gene probes selected from SEQ ID NO:142, 144, 145, 148, 150-152, 160, 161 and 170, preferably at least one of the gene probes represented by SEQ ID NO:145, 160, 161 and 170; and/or

5

10

30

- (III) identification of *Staphylococcus epidermidis* and comprises gene probes selected from SEQ ID NO:174, 175, 177, 178, 180-182, 185-193, 198 and 199, preferably at least one of the gene probes represented by SEQ ID NO:177, 178 and 190; and/or
- (IV) identification of *Staphylococcus haemolyticus* and comprises one or more or all gene probes selected from SEQ ID NO:211, 213 and 214, preferably at least one of the gene probes represented by SEQ ID NO:211 and 214; and/or
- (V) identification of Staphylococcus lugdunensis and comprises one or more or all gene probes selected from SEQ ID NO:216, 217 and 219-221, preferably at least one of the gene probes represented by SEQ ID NO:216, 219, 220 and 221; and/or (VI) identification of Staphylococcus warneri and comprises one or more or all gene probes selected from SEQ ID NO:224-228 and 230 preferably at least one of the gene probes represented by SEQ ID NO:224, 226 and 230; and/or
- (VII) identification of Staphylococcus saprophyticus and comprises one or more or all gene probes selected from SEQ ID NO:222 and 223; and/or (VIII) identification of Staphylococcus hominis and comprises one or more or all gene probes selected from SEQ ID NO:2096, 194 and 229 (do hybridise with S. hominis DNA) and 211 and 214 (do not hybridise with S. hominis DNA); and/or
- 25 (IX) identification of *Candida albicans* and comprises one or more or all gene probes selected from SEQ ID NO:231-291, preferably at least one of the gene probes represented by SEQ ID NO:232 and 249; and/or
 - (X) identification of *Enterococcus faecalis* and comprises one or more or all gene probes selected from SEQ ID NO:308-310 and 312-342, preferably at least one of the gene probes represented by SEQ ID NO:308, 310 and 314; and/or
 - (XI) identification of *Enterococcus faecium* and comprises one or more or all gene probes selected from SEQ ID NO:377-393, preferably at least one of the gene probes represented by SEQ ID NO:380 and 385; and/or

- (XII) identification of *Klebsiella pneumoniae* and comprises one or more or all gene probes selected from SEQ ID NO:399, 401-404, 408-415, 417, 420-423, 425 and 427-431, preferably at least one of the gene probes represented by SEQ ID NO:401, 410 and 430; and/or
- 5 (XIII) identification of *Klebsiella oxytoca* and comprises one or more or all gene probes selected from SEQ ID NO:459 and 466-469, preferably at least one of the gene probes represented by SEQ ID NO:459, 468 and 469; and/or
 - (XIV) identification of *Pseudomonas aeruginosa* and comprises one or more or all gene probes selected from SEQ ID NO:470-485, 487-493 and 505, preferably at least one of the gene probes represented by SEQ ID NO:471, 474, 488 and 505; and/or

10

20

- (XV) identification of *Streptococcus pneumoniae* and comprises one or more or all gene probes selected from SEQ ID NO:523-591, preferably at least one of the gene probes represented by SEQ ID NO:558 and 562; and/or
- 15 (XVI) identification of *Streptococcus agalactiae* and comprises one or more or all gene probes selected from SEQ ID NO:606-639, preferably at least one of the gene probes represented by SEQ ID NO: 606 and 619; and/or
 - (XVII) identification of *Streptococcus pyogenes* and comprises one or more or all gene probes selected from SEQ ID NO:645-648, 652, 655, 656, 658 and 660, preferably at least one of the gene probes represented by SEQ ID NO:645, 658 and 660; and/or
 - (XVIII) identification of *Streptococcus mutans* and comprises one or more or all gene probes selected from SEQ ID NO:687-701, preferably at least one of the gene probes represented by SEQ ID NO:687, 691 and 692; and/or
- 25 (XIX) identification of *Proteus mirabilis* and comprises one or more or all gene probes selected from SEQ ID NO:706-710, 712-742 and 744-749, preferably at least one of the gene probes represented by SEQ ID NO:721, 725 and 735; and/or (XX) identification of *Proteus vulgaris* and comprises one or more or all gene probes selected from SEQ ID NO:776-778 and 780-781, preferably at least one of the gene probes represented by SEQ ID NO:776, 777 and 781; and/or
 - (XXI) identification of *Acinetobacter baumanii* and comprises one or more or all gene probes selected from SEQ ID NO:2843-2863, preferably at least one of the gene probes represented by SEQ ID NO:2858 and 2863.

In a preferred aspect of present invention, the DNA microarray of embodiment (1) is suitable for species specific identification of at least *S. aureus* and preferably comprises gene probes selected from SEQ ID NO:3-6, 31, 40, 50, 51, 58, 59, 63, 64, 66-69, 71, 74, 76, 77, 79, 2902 and 2903, more preferably from SEQ ID NO:4, 68, 69 and 71, even more preferably comprises at least SEQ ID NO:71.

5

10

30

In a second preferred aspect, the DNA microarray is suitable for species specific identification of at least *S. aureus, E. coli,* CoNS, Enterococcus sp., and/or Candida sp., and preferably comprises gene probes selected from

- a) SEQ ID NO:4, 68, 69 and 71, preferably SEQ ID NO: 71 for identification of *S. aureus*;
 - b) SEQ ID NO: 145, 160, 161 and 170, preferably SEQ ID NO:145 for identification of *E. coli*;
 - c) SEQ ID NO:177, 178 and 190, preferably SEQ ID NO:178 for identification of *S. epidermidis*;
- d) SEQ ID NO:60, 61, 70, 72, 78 and 125, preferably SEQ ID NO:78 for identification of the genus Staphylococci including *S. aureus*;
 - e) SEQ ID NO:210, 224 and 2906, preferably 2906 for identification of CoNS;
 - f) SEQ ID NO:308, 310 and 314, preferably SEQ ID NO:310 for identification of Enterococcus faecalis;
- 20 g) SEQ ID NO:380 and 385, preferably SEQ ID NO:380 for identification of Enterococcus faecium;
 - h) SEQ ID NO:232 and 249, preferably SEQ ID NO:249 for identification of *Candida albicans*;
- respectively. These microorganisms are the prevalent microorganisms in clinical samples and/or are of the highest diagnostic relevance. The probes listed under (a) to (h) are the most reliable probes for identification of said microorganisms.
 - From above second preferred aspect, there can be selected a set of probes which is even more preferred, namely SEQ ID NO:71, 2906, 145 and 249. A DNA microarray comprising one, several or all of said four probes is suitable for species specific detection or differentiation of

- (i) S. aureus if it comprises SEQ ID NO:71;
- (ii) CoNS if it comprises SEQ ID NO:2906;
- (iii) E. coli if it comprises SEQ ID NO:145; and/or
- (iv) Candida albicans if it comprises SEQ ID NO:249.
- 5 This set of four probes thus forms an especially preferred set of probes for embodiment (1).

There are some further sets of probes which are especially preferred for the DNA microarray of embodiment (1). Namely, there are a few DNA microarrays which form preferred aspects of embodiment (1). They are suitable for species-specific identification and differentiation of the following sets of microorganisms and therefore comprise at least the minimum number of probes which are necessary for the species specific identification:

(A) S. aureus;

10

- (B) Staphylococci including S. aureus and CoNS;
- 15 (C) set (A) or (B) additionally including *E. coli*;
 - (D) any of the sets of (A) to (C) additionally including C. albicans;
 - (E) any of the sets of (A) to (D) additionally including Enterococcus sp.;
 - (F) any of the sets of (A) to (E) additionally including Proteus sp. and/or *P. aeruginosa*.
- 20 Sets (B), (C) and (D) are preferred, set (D) is especially preferred.

In addition, the DNA microarray of embodiment (1) may be suitable for additional species specific identification or differentiation of one or more of *Klebsiella pneumoniae*, *Klebsiella oxytoca*, *Streptococcus pneumoniae*, *Streptococcus pyogenes*, *Pseudomonas aeruginosa*, *Proteus mirabilis* and *Proteus vulgaris*.

In a further especially preferred aspect, the DNA microarray of (1) is suitable for (I) virulence determination of *Staphylococcus aureus* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:100-141; and/or (II) virulence determination of *Escherichia coli* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:153-173; and/or

- (III) virulence determination of *Staphylococcus epidermidis* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:200-208; and/or
- (IV) virulence determination of *Staphylococcus haemolyticus* and comprises the gene probe of group (b) represented by SEQ ID NO:215; and/or
- (V) virulence determination of *Staphylococcus lugdunensis* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:220-221; and/or
- (VI) virulence determination of *Staphylococcus warneri* and comprises the gene probe of group (b) represented by SEQ ID NO:230; and/or
- (VII) virulence determination of *Candida albicans* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:292-307; and/or
- (VIII) virulence determination of *Enterococcus faecalis* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:343-376; and/or
- 15 (IX) virulence determination of *Enterococcus faecium* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:394-398; and/or
 - (X) virulence determination of *Klebsiella pneumonia* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:432-448; and/or
 - (XI) virulence determination of Klebsiella oxytoca; and/or

5

10

25

30

- 20 (XII) virulence determination of *Pseudomonas aeruginosa* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:491-522; and/or
 - (XIII) virulence determination of *Streptococcus pneumoniae* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:592-605; and/or
 - (XIV) virulence determination of *Streptococcus agalactiae* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:640-644; and/or
 - (XV) virulence determination of *Streptococcus pyogenes* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:657-686; and/or
 - (XVI) virulence determination of *Streptococcus mutans* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:702-705; and/or

(XVII) virulence determination of *Proteus mirabilis* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:750-775; and/or (XVIII) virulence determination of *Proteus vulgaris* and comprises one or more or all of the gene probes of group (b) selected from SEQ ID NO:782-784.

5

10

20

25

30

In a further especially preferred aspect, the DNA microarray of (1) is suitable for antibiotic resistance determination of (I) Staphylococcus aureus, (II) Escherichia coli, (III) Staphylococcus epidermidis, (IV) Staphylococcus haemolyticus, (V) Staphylococcus lugdunensis, (VI) Staphylococcus warneri, (VIII) Enterococcus faecalis, (IX) Enterococcus faecium, (X) Klebsiella pneumonia, (XI) Klebsiella oxytoca, (XII) Pseudomonas aeruginosa, (XIII) Streptococcus pneumoniae, (XIV) Streptococcus agalactiae, (XV) Streptococcus pyogenes, (XVI) Streptococcus viridans, (XVII) Proteus mirabilis, and/or (XVIII) Proteus vulgaris and comprises one or more or all of the gene probes of group (c) selected from SEQ ID NO:785-909; 2864-2875, 2888, 2907-2908 and/or

it is suitable for antibiotic resistance determination of (VII) *Candida albicans* and comprises one or more or all of the gene probes of group (c) selected from SEQ ID NO:910-918.

In a preferred embodiment, the microarray of (1) is suitable for identification and characterisation, i.e. virulence and/or resistance determination, of the target microorganism and comprises one or more or all of the gene probes of group (a) and additionally one or more or all of the gene probes of group (b) and group (c) for each organism as listed above.

If the identification and/or characterisation of *S. aureus*, *E. coli* and/or *P. aeruginosa* is the aim of a test using the array, then the array comprises preferably at least the core gene probes designated in example 1.7, more preferably all the sequences listed in Tab. 2 and/or Tab. 6. Even more preferred, it consists of said sequences.

The gene probes were considered as most preferable if they were i) known previously to be species-specific, ii) bioinformatically selected to have the least chance to hybridise with nontarget genes and iii) empirically proven to be specific in a series of experiments (see Examples).

In a most especially preferred aspect, the DNA microarray of (1) comprises the following gene probes, even more preferably consists of the following gene probes:

- (I) When the DNA microarray is suitable for identification and characterisation of Staphylococcus aureus, it comprises
- (a) the gene probes represented by SEQ ID NO:3-6, 31, 40, 50, 51, 58, 59, 63, 64, 66-69, 71, 74, 76, 77, 79, 2902 and 2903; and at least one of
- 5 (b) the gene probes represented by SEQ ID NO:100-141 and
 - (c) the gene probes represented by SEQ ID NO:785-909, 2864-2875, 2888, 2907, 2908.
 - (II) When the DNA microarray is suitable for identification and characterisation of *Escherichia coli*, it comprises
- (a) the gene probes represented by SEQ ID NO:142, 144, 145, 148, 150-152, 160,161 and 170; and at least one of
 - (b) the gene probes represented by SEQ ID NO:153-173 and
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875, 2888, 2907, 2908.
- 15 (III) When the DNA microarray is suitable for identification and characterisation of Staphylococcus epidermidis, it comprises
 - (a) the gene probes represented by SEQ ID NO:174, 175, 177, 178, 180-182, 185-193, 198 and 199; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 200-208 and
- 20 (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875, 2888, 2907, 2908.
 - (IV) When the DNA microarray is suitable for identification and characterisation of Staphylococcus haemolyticus, it comprises
- (a) the gene probes represented by SEQ ID NO:211, 213 and 214; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 215 and
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
- (V) When the DNA microarray is suitable for identification and characterisation of
 Staphylococcus lugdunensis, it comprises
 - (a) the gene probes represented by SEQ ID NO:216, 217 and 219-221; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 220-221 and

- (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
- (VI) When the DNA microarray is suitable for identification and characterisation of Staphylococcus warneri, it comprises
- 5 (a) the gene probes represented by SEQ ID NO:224-228 and 230; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 230 and
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
- 10 (VII) When the DNA microarray is suitable for identification and characterisation of Staphylococcus saprophyiticus, it comprises
 - (a) the gene probes represented by SEQ ID NO:222 and 223; and at least one of
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
- 15 (VIII) When the DNA microarray is suitable for identification and characterisation of Staphylococcus hominis, it comprises
 - (a) the gene probes represented by SEQ ID NO:2096, 194, 229, 211 and 214; and at least one of
- (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 20 2908.
 - (IX) When the DNA microarray is suitable for identification and characterisation of *Candida albicans*, it comprises
 - (a) the gene probes represented by SEQ ID NO:231-291; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 292-307 and
- 25 (c) the gene probes represented by SEQ ID NO: 910-918, 2864-2875 2888, 2907, 2908.
 - (X) When the DNA microarray is suitable for identification and characterisation of Enterococcus faecalis, it comprises
 - (a) the gene probes represented by SEQ ID NO:308-310 and 312-342; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 343-376 and

30

(c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.

- (XI) When the DNA microarray is suitable for identification and characterisation of Enterococcus faecium, it comprises
- (a) the gene probes represented by SEQ ID NO:377-393; and at least one of
- (b) the gene probes represented by SEQ ID NO: 394-398 and
- 5 (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
 - (XII) When the DNA microarray is suitable for identification and characterisation of Klebsiella pneumonia, it comprises
 - (a) the gene probes represented by SEQ ID NO:399, 401-404, 408-415, 417, 420-
- 10 423, 425 and 427-431; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 432-448 and
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
- (XIII) When the DNA microarray is suitable for identification and characterisation of 15 *Klebsiella oxytoca,* it comprises
 - (a) the gene probes represented by SEQ ID NO:459 and 466-469; and at least one of
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
- 20 (XIV) When the DNA microarray is suitable for identification and characterisation of *Pseudomonas aeruginosa*, it comprises
 - (a) the gene probes represented by SEQ ID NO:470-485, 487-493 and 505; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 491-522 and
- 25 (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
 - (XV) When the DNA microarray is suitable for identification and characterisation of Streptococcus pneumoniae, it comprises
 - (a) the gene probes represented by SEQ ID NO:523-591; and at least one of
- 30 (b) the gene probes represented by SEQ ID NO: 592-605 and
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
 - (XVI) When the DNA microarray is suitable for identification and characterisation of Streptococcus agalactiae, it comprises

- (a) the gene probes represented by SEQ ID NO:606-639; and at least one of
- (b) the gene probes represented by SEQ ID NO: 640-644 and
- (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
- 5 (XVII) When the DNA microarray is suitable for identification and characterisation of Streptococcus pyogenes, it comprises
 - (a) the gene probes represented by SEQ ID NO:645-648, 652, 655-656, 658 and 660; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 657-686 and
- (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
 - (XVIII) When the DNA microarray is suitable for identification and characterisation of *Streptococcus mutans*, it comprises
 - (a) the gene probes represented by SEQ ID NO:687-701; and at least one of
- 15 (b) the gene probes represented by SEQ ID NO: 702-705 and
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
 - (XIX) When the DNA microarray is suitable for identification and characterisation of *Proteus mirabilis*, it comprises
- 20 (a) the gene probes represented by SEQ ID NO:706-710, 712-742 and 744-749; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 750-775 and
 - (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
- 25 (XX) When the DNA microarray is suitable for identification and characterisation of *Proteus vulgaris*, it comprises
 - (a) the gene probes represented by SEQ ID NO:776-778 and 780-781; and at least one of
 - (b) the gene probes represented by SEQ ID NO: 782-784 and
- 30 (c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.
 - (XXI) When the DNA microarray is suitable for identification and characterisation of Acinetobacter baumanii, it comprises
 - (a) the gene probes represented by SEQ ID NO:2843-2863; and at least one of

(c) the gene probes represented by SEQ ID NO: 785-909, 2864-2875 2888, 2907, 2908.

The DNA microarray which is a preferred aspect of embodiment (1) can be fabricated using textbook methods for microarray production, including printing with fine-pointed pins onto the solid support, photolithography using pre-made masks or dynamic micromirror devices, ink-jet printing or electrochemistry on microelectrode arrays (Müller, H.-J., Röder, T., "Der Experimentator: Microarrays, Spektrum Akademischer Verlag, Heidelberg (2004)). Preferred fabrication methods are printing methods spotting the gene probes onto the solid surface of the microarray. The attachment of the spotted DNA to the surface is achieved by covalent or non-covalent binding, preferably by non-covalent binding, more preferably by electrostatic interaction (ionic binding), most preferably by ionic binding of the DNA to amino groups present on the surface of the solid support. Any amino-functionalized microarray support can be used, but gamma aminopropyl silane (GAPS™) coated slides, especially UltraGAPS™ coated glass slides, are preferred in present invention.

The amount of DNA per spot printed onto the array is from 0.1 to 15.0 ng, preferably from 0.1 to 0.2 ng.

Thus, the present invention also pertains to a method for fabrication of a microarray of embodiment (1), which method comprises spotting the gene probes listed above to an appropriate solid support.

The sample of embodiments (1) to (4) may be any sample containing microorganisms, including food samples, environmental samples and clinical specimens. A sample which is a clinical specimen is preferred. The sample or clinical specimen of embodiments (1) to (4) is preferably selected from the group consisting of whole blood, serum, urine, saliva, liquor, sputum, punktate, stool, pus, swabs, wound fluid and positive blood cultures, more preferably is whole blood or a positive blood culture, most preferably is a positive blood culture. If blood culture is used as DNA source, 0.5 ml positive blood culture is sufficient for identification and characterisation of the microorganisms and bacteria present without prior amplification of the target DNA.

Thus, the microarray of present application is

5

10

15

20

25

30

- (i) a robust diagnostic tool, detecting all tested bacterial reference strains and clinical isolates;
- (ii) sensitive enough to yield positive signals with e.g. only 20 ng of purified genomic S. aureus DNA or 2 μ g of DNA extracted from blood culture which contains a high percentage of human DNA;
- (iii) highly specific, distinguishing e.g. *S. aureus* from distantly related gramnegative bacteria like *Escherichia coli* or *Pseudomonas aeruginosa* as well as from closely related CoNS;
- (iv) precise enough to identify virulence factors and antibiotic resistance determinant genes without previous amplification by PCR.
 - Moreover, the whole procedure can be accomplished the same day after blood cultures become positive (e.g. in the Bactec[®]). Rapid identification of the causative pathogen in fungemia, bacteremia and sepsis is crucial for several reasons:
- (i) appropriate antimicrobial therapy should be started as early as possible and unnecessary treatment avoided;
- (ii) the prognosis of the patients with sepsis may be improved; and

5

10

15

30

(iii) expenditures on antimicrobials and prolonged hospitalisation can be reduced.

The DNA microarray of embodiment (1) is especially suitable for diagnosis of

- (i) bacteremia, fungemia or sepsis, wherein the device preferably comprises probes
 for species specific identification of at least *S. aureus, E. coli,* CoNS, Enterococcus sp., and Candida sp.;
 - (ii) respiratory tract infections, wherein the device preferably comprises probes for species specific identification of at least Candida sp., *S. aureus* and *P. aeruginosa*; and/or
- 25 (iii) urinary tract infections, wherein the device preferably comprises probes for species specific identification of at least *E. coli*, Enterococci sp., Candida sp. and Proteus sp..

With the gene-segment based microarray of (1) there is an excellent correlation between genotypic detection of antibiotic resistance determinants and phenotypic typing using conventional susceptibility testing. In one aspect of the invention, the detection of the resistance genes *mecA*, *blaZ*, *ermA*, *ermC*, *msrSA*, *aadD* and *aacA-aphD* by microarray hybridisation allows for reliable prediction of oxacillin, penicillin, erythromycin, tobramycin and gentamicin resistance in a single assay.

By microarray hybridisation according to present invention it is furthermore possible to discriminate multi-resistant and multi-susceptible MRSA (strain MW2). Multi-susceptible MRSA have been shown to be susceptible to tobramycin and erythromycin (Polyzou, A. et al., J. Antimicrob. Chemother. 48:231-4 (2001); Pournaras, S. et al., J. Clin. Microbiol. 39:779-81 (2001)).

5

10

15

20

25

30

In a preferred aspect of the invention, simultaneous comprehensive resistance genotyping for oxacillin, macrolide and aminoglycoside resistance genes (preferably *mecA*, *aadD*, *aacA-aphD*, *ermA*,*B*,*C* and *msrSA*) by microarray hybridisation allows the rapid discrimination of multi-resistant or multi-susceptible strains and in consequence other therapeutic options with e.g. macrolides and may reduce reliance on vancomycin (Polyzou, A. et al., J. Antimicrob. Chemother. 48:231-4 (2001); Pournaras, S. et al., J. Clin. Microbiol. 39:779-81 (2001)).

One preferred aspect of embodiment (1) is a DNA microarray for the identification and characterisation of the three important bacteremia causing species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa in a sample, preferably in blood culture. The microarray allows simultaneous species identification and detection of important virulence and antibiotic resistance genes in a single assay. Preferably, this array consists of 2-20 species specific gene probes, 1-20 virulence gene probes and 1-20 resistance gene probes of at least 100 nt length, more preferably of 200-800 nt length. One especially preferred embodiment is an array comprising or consisting of the gene probes listed in Tab. 2. The probes may be amplified from recombinant plasmids or synthesized by any other method know in the art. These probes represent genes encoding house-keeping proteins, virulence factors and antibiotic resistance determinants. Evaluation with 42 clinical isolates, 3 reference strains and 13 positive blood cultures revealed that this DNA microarray is highly specific in identifying S. aureus, E. coli and P. aeruginosa strains and in discriminating them from closely related Gram-positive and Gramnegative bacterial strains also known to be etiological agents of bacteremia. In Example 1.6 and 1.7, this array was successful in identifying all tested 27 E. coli, P. aeruginosa and S. aureus strains and in discriminating them from 21 closely related Gram positive and Gram negative bacterial strains. There is a nearly perfect correlation between genotypic antibiotic resistance by hybridisation to the S. aureus resistance gene probes mecA (oxacillin/methicillin resistance), aacA-aphD (gentamicin resistance), *ermA* (erythromycin resistance) and *blaZ* (penicillin resistance) and the *E. coli* resistance gene probes *blaTEM-106* (penicillin resistance) and *aacC2* (aminoglycoside resistance) and phenotypic antibiotic resistance determined by conventional susceptibility testing (Example 1.10).

One further preferred aspect of embodiment (1) of the invention is a DNA microarray for the identification and characterisation of *S. aureus* in a sample, preferably in blood culture. Evaluation with 10 clinical isolates, 6 reference strains and 10 positive blood cultures revealed that this DNA microarray is highly specific in identifying *S. aureus* and in discriminating them from closely related Grampositive and Gram-negative bacterial strains also known to be etiological agents of bacteremia (Example 1.11).

5

10

15

20

25

30

The DNA microarray is - in the context of embodiment (2) - preferably used for *in vitro* differentiation of a plurality of different microbial strains contained in one sample and/or for species-specific identification of one or more microbial strain(s) contained in a mixture of a plurality of microorganisms. The DNA microarray of embodiment (1) is advantageous for this kind of use, as it allows the simultaneous determination of the presence or absence in the analysed sample of all those microbial strains for which the device comprises species specific probes. The array is also suitable for identification and determination of single or of a selection of microbial strains in a mixture of strains, especially in a clinical sample containg additional component, without prior isolation of the target strain. These advantages (simultaneous determination and applicability to clinical samples and mixtures) make the DNA microarray of embodiment (1) superior to conventional techniques of DNA amplification for identification of microbial strains like PCR.

The method of embodiment (3) comprises - after isolating the total DNA (including non-microbial DNA) from a sample - the steps of immediate labelling and microarray-based detection of this isolated DNA with or without, preferably without, further DNA amplification steps after the DNA isolation. It is one advantage of the method (3) that it can be performed without said further DNA amplification steps, i.e. the isolated DNA is labelled and applied to the microarray without prior amplification. The use of a single protocol for all microbial species comprising all steps of a microarray procedure including DNA preparation and DNA-chip hybridisation, is essential for testing blood cultures or other clinical specimens,

where the bacterial diagnosis is usually uncertain. Preferably, a DNA preparation protocol employing sonication for simultaneous cell disruption and target DNA fragmentation is the method of choice to increase the sensitivity of the microarray, in particular towards low-copy number and/or plasmid encoded genes which may be underrepresented in the target DNA.

5

20

The method of embodiment (3) is preferably a method for diagnosis of bacteremia, fungemia or sepsis. Furthermore, the sample or clinical specimen used in embodiment (3) is preferably blood or derived from blood, more preferably is a blood culture. Most preferably, the clinical specimen is a positive blood culture.

To obtain positive signals in the method of embodiment (3), 100 pg of purified genomic microbial DNA may be sufficient (lower detection limit), but preferably at least 1 ng of said DNA should be present in the sample. Usually, at least 10 ng, preferably at least 20 ng, more preferably at least 1 μg of purified genomic microbial DNA or at least 1 μg, preferably at least 2 μg of DNA extracted from blood culture are required. 500 μl of positive blood culture yield enough DNA for several hybridisations.

In a preferred aspect of the method of embodiment (3), the DNA isolated in step (a) is labelled and applied to the analytical device without prior amplification, preferably is labelled by random priming. In a further preferred aspect, the DNA isolated in step (a) is fragmented before the labelling reaction. Both aspects simplify and speed up the analysis in comparison to convention methods.

In the method of embodiment (3), the ratio of microbial DNA to total DNA isolated from said sample or clinical specimen is less than or equal to 100 %, preferably is from 1% to 99%, more preferably from 30 to 60%.

The labelling reaction of the method of embodiment (3) may be any DNA labelling reaction known in the art. However, chemical labelling reactions consisting of chemical attachment of a reporter molecule to the sample DNA and labelling by integration of labelled nucleotides into the sample DNA are preferred. Preferably the reporter molecules are fluorophores, more preferably are of the cyanine group of fluorophores. Most preferably, the DNA is labelled with Cy3, Cy5 and/or Alexa Fluor 647 and Alexa Fluor 546. The ratio of bases to dye molecules (BDR) is preferably less or equal to 60.

The detection of the reporter molecule in the method of embodiment (3) of the invention is preferably done by using a suitable detection system for the bound reporter molecule. This detection system is preferably based on visualization of the reporter molecule, more preferably on fluorescence detection. Furthermore, the detection is preferably done by a microarray scanner or microarray reader.

5

10

15

20

25

30

In the method of embodiment (3) of the invention, the DNA microarray can be substituted by any other solid support onto which DNA gene probes are attached in a way permitting hybridisation of the DNA in the sample and subsequent detection of the bound DNA. This includes the use of microtiter plates coated with one or several DNA gene probes per well, of glass surfaces (like, e.g., microscopic slides) with DNA spots, of filter paper disks, membranes, gold electrodes and beads (particles with a diameter of from 1 nm to several µm made of glass, plastic, metal etc.) coated with DNA, etc.. The beads are preferably used in a multi-chamber system, more preferably in a microfluidic multi-chamber system, wherein each chamber contains a population of beads. Each bead has an attached DNA sequence and the whole beads population in one chamber will carry the same DNA sequence, each chamber corresponding then to a specific capture probe. The target DNA to be analysed flows through the multi-chamber system and will hybridize with the complementary DNA sequences attached to the beads. Beads could be also attached to a surface by magnetic force, i.e. paramagnetic beads coupled with DNA could be attached on the surface of the magnet and arrange in a lattice structure. Complimentary, beads made of a magnetic material could be attached to an iron surface.

The use of the DNA coated beads or of a DNA microarray of embodiment (1) is preferred. The use of a DNA array is especially preferred.

Thus, in one preferred aspect, in the method of embodiment (3) the analytical device is a DNA microarray. In this case, the detection is preferably performed using a DNA microarray reader. In a second preferred aspect, the analytical device is a DNA coated bead or a set of DNA coated beads (plurality of DNA coated beads). In this case, the application and/or detection step is preferably performed in a microfluidic device.

The kit of embodiment (4) of the invention may additionally comprise reagents for the labelling reactions of embodiment (3) and/or reagents necessary for the hybridisation step of the method of embodiment (3).

The present invention is described in more detail by reference to the following examples. It should be understood that these examples are for illustrative purpose only and are not to be construed as limiting the invention.

Examples

5

10

25

30

In the experimental examples described below, standard techniques of recombinant DNA technology were used that were described in various publications, e.g. Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, or Ausubel et al. (1987), Current Protocols in Molecular Biology 1987-1988, Wiley Interscience. Unless otherwise indicated, all enzymes and kits were used according to the manufacturers' specifications.

Example 1.1: Materials and Methods

Reference strains, clinical isolates and culture conditions: Bacterial reference strains were obtained from the American Type Culture Collection (ATCC, Manassas, Va.), the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) or the network on antimicrobial resistance in Staphylococcus aureus (NARSA, Herndon, Virginia). Clinical isolates were obtained from the inventors' clinical routine microbiology laboratory.

The following bacteria were used for evaluation of the specificity of the microarray in Examples 1.2-1.10: Staphylococcus aureus (ATCC 25923, NRS123 alias MW2, 5 clinical isolates), Staphylococcus epidermidis (5 clinical isolates), Staphylococcus (clinical isolate), Staphylococcus haemolyticus capitis (clinical isolate). Staphylococcus hominis (clinical isolate), Staphylococcus warneri (clinical isolate), Staphylococcus auricularis (clinical isolate), Micrococcus spp. (clinical isolate), Escherichia coli (ATCC 25922, 6 clinical isolates), Pseudomonas aeruginosa (ATCC27853, 5 clinical isolates), Klebsiella pneumoniae (3 clinical isolates), Proteus mirabilis (2 clinical isolates), Serratia marcescens (2 clinical isolates), Enterobacter cloacae (clinical isolate), Enterobacter aerogenes (clinical isolate), Acinetobacter baumannii (clinical isolate), Stenotrophomonas maltophilia (clinical isolate), Enterococcus spp. (clinical isolate), Enterococcus faecalis (clinical isolate) and

Streptococcus pneumoniae (clinical isolate). Bacterial strains and clinical isolates were grown over night at 37 °C with constant shaking in 5 ml Luria-Bertani (LB) broth or tryptic soy broth (TSB, 30 g/l, Merck) containing 3 g/l yeast extract. Enterococci and streptococci were grown in 10 ml TSB plus yeast without agitation under 5% CO_2 . Overnight cultures were harvested at 2,560 g for 10 min. After discarding the supernatant the pellet was washed in 1 ml TE (10 mM Tris-HCl, pH 7.5 and 1 mM EDTA) and recovered by centrifugation at 17,900 g for 10 min. Cell pellets were used for DNA preparation.

Blood cultures: Aerobic and anaerobic blood culture bottles (BACTEC®, Becton Dickinson, Heidelberg, Germany) were inoculated with blood from patients with suspected sepsis and placed in a BACTEC® 9240 blood culture system (Becton Dickinson), a continuous-reading, automated, and computed blood culture system that detects the growth of microorganisms by monitoring CO₂ production. Incubation was performed according to the manufacturer's recommendations. Bottles with a positive growth index were removed from the incubator, and aliquots of 1 ml of the blood culture suspensions were taken aseptically with a needle syringe. 1 ml-aliquots of the blood culture suspensions were mixed with 1 ml 0.1% Triton®-X-100 and kept at room temperature for 5 min in order to disrupt human blood cells. Bacterial cells were then harvested at 17,900 g for 10 min, pellets were washed in 1 ml TE, recovered by centrifugation and used for DNA preparation. For conventional identification and susceptibility testing, a second 1 ml-aliquot was examined by Gram-stain and subcultured on agar plates. The organisms grown on agar plates were characterised and tested for susceptibility using a VITEK-2 system (bioMérieux, Inc., Nürtingen, Germany), Etest strips (AB BIODISK, Solna, Sweden) or disk diffusion tests following the method recommended by the National Committee for Clinical Laboratory Standards (NCCLS) (Standards, N.C.f.C.L., Approved standard M2-4a, Villanova, PA (1990)).

For microarray hybridisation experiments, DNA was prepared from 13 blood cultures positive for *S. aureus* (4), *S. epidermidis* (3), *S. pneumoniae* (2), *P. aeruginosa* (1), *E. coli* (2) and *P. mirabilis* (1).

Example 1.2: DNA preparation

5

10

15

20

25

30

Total cellular DNA was extracted and purified either by using the First-DNA Alltissue kit (GEN-IAL GmbH, Troisdorf, Germany) following the instructions of the supplier or by enzymatic lysis followed by phenol/chloroform extraction. For the latter protocol, cell pellets were resuspended in 500 µl lysis buffer (20 mM Tris-HCI, pH 8.0, 2 mM EDTA, pH 8.0, and 1.2% Triton®-X-100) and lysozyme (Sigma, Taufkirchen, Germany) was added to reach a final concentration of 0.8 mg/ml. In addition, lysostaphin (Sigma) was added to a final concentration of 0.2 mg/ml to promote staphylococcal lysis or mutanolysin (0.5 U/µl; Sigma) was added to lyse Streptococci and Enterococci. After incubation at 37°C for one hour, cell lysates were treated with Proteinase K (1 mg/ml; Sigma) for 1 hour at 55°C and then with RNase A (0.2 mg/ml; Qiagen, Hilden, Germany) for 1 hour at 37°C. The volume was increased by the addition of 200 µl TE and the salt concentration was adjusted to 0.7 M by addition of 5 M NaCl. A 10% CTAB (cetyltrimethylammonium bromide) solution in 0.7 M NaCl was added to a final concentration of 1% and incubated at 65°C for 20 min in order to release DNA from polysaccharide DNA complexes. DNA was then extracted once with phenol/chloroform/isoamyl alcohol (25:24:1) and once with chloroform/isoamyl alcohol (24:1) prior to precipitation with one volume of isopropanol. After centrifugation at 17,900 g for 30 min, DNA pellets were washed in 70% ethanol and resuspended in 50-100 µl TE.

Concentration, purity and size of the purified DNA preparations were determined by UV-spectrophotometry (lambda 40, PerkinElmer, Boston USA) and 1% agarose gel electrophoresis.

Example 1.3: DNA labelling

5

10

15

20

25

30

Total DNA from commercially available reference strains, clinical isolates and blood cultures was labelled by a non-enzymatic chemical labelling method using the Label It Cy3/Cy5 kits (Mirus, Madison, USA) or the ULYSIS Alexa Fluor 467 Nucleic Acid Labelling Kit (Molecular Probes; Eugene, USA). Prior to labelling, each target DNA was spiked with three gene segments (1 μ l each, 30 μ l) amplified by PCR from selected recombinant plasmids to serve as internal positive controls.

For labelling with the Label It Cy3/Cy5 kit 5 μ g of high molecular weight DNA (>20 kb) were mixed with 7.5 μ l reagent in a total volume of 50 μ l and incubated for 2 hours at 37°C according to the recommendations by the supplier. After adjusting the volume to 200 μ l with H₂O and adding 0.1 volume of 5 M NaCl, unbound label was removed by precipitation with 2 volumes of ice-cold absolute ethanol for at least 30 min at -20°C. The labelled DNA was recovered by centrifugation at 17,900

g for 30 min. The pellet was washed with 70% ethanol and resuspended in 70 μ l TE.

For labelling with the Ulysis Alexa Fluor 647 kit, 1 μ g DNA was denatured at 95°C for 5 min, cooled on ice, mixed with 20 μ l labelling buffer and 5 μ l reagent and incubated at 80°C for 15 min according to the instructions of the manufacturer. Unbound dye was removed by ethanol precipitation as described above. The relative labelling efficiency of a reaction was evaluated by calculating the approximate ratio of bases to dye molecules (acceptable labelling ratios for nucleic acid were \leq 60). This ratio and the amount of recovered labelled DNA was determined by measuring the absorbance of the nucleic acids at 260 nm and the absorbance of the dye at its absorbance maximum using a lambda40 UV-spectrophotometer (PerkinElmer) and plastic disposable cuvettes for the range from 220 nm to 1,600 nm (UVette; Eppendorf, Hamburg, Germany).

Example 1.4: Microarray construction

5

10

15 Cloned PCR-products were used to generate probes for the DNA microarray. All together 120 gene segments representing virulence genes, antibiotic resistant determinants and species specific metabolic and structural genes from *S. aureus* (40), *E. coli* (31) and *P. aeruginosa* (49) were represented on the microarray (Tab. 2).

Tab. 2: Gene probes with SEQ ID NOs, function, gi numbers and primer sequences. E. coli gene probes (1-31), P. aeruginosa gene probes (32-80), S. aureus gene probes (81-120).

Ar- ray No.	Sym- bol	Function	gi number	gene probe SEQ ID NO	Primer forward [SEQ ID NO]	Primer reverse [SEQ ID NO]
1	envZ	Inner membrane osmosensor	453286	143		ATCCGCCAGTTGCTT AAC [1234]
2		Enterochelin esterase (siderophore)	145916	161	1	GGCAATAGCTTTCAC CAG [1270]
3		Enterochelin esterase (siderophore)	145916	160	1	CAATAGCTTTCACCA GGG [1268]

		ı — — — — — — — — — — — — — — — — — — —	, ,		T	
4	nfrB	Bacteriophage N4 receptor, inner membrane protein	16127994	145	ATGGAATTGCGTCT GTTC [1237]	AAGTTTAGCCACAGC AGG [1238]
5	уасН	Putative membrane protein	16127994	148	GACTCGGTACAGC GATTG [1242]	CTGACGTTGGGTATC TCG [1243]
6	yagX	Putative enzyme	16127994	149	CTTTACGACGGTTC TCCC [1244]	AATCTTCCCTGCTGA AATG [1245]
7	ycdS	Putative outer membrane protein	16127994	150	TTGAAACTTCTTAC TGCCG [1246]	AATTTCTAATGCAGC GTATTG [1247]
8	<i>b</i> 1169		16127994	142	GTTTGGGACTTATT GCTCTG [1230]	CATCAGCCACAGTTT CAAG [1231]
9		Putative outer membrane protein	16127994	153	GAATACCAAAGCA GATCGTC [1252]	CCGAGATCGACAACA GAG [1253]
10	fliCb	Flagellar H antigen	8071787	144	ACCACGACAGGTC TTTATG [1234]	AGAGAGGCACCGTC ACTAC [1235]
11	iucA	Aerobactin synthesis (siderophore)	474189	165	CATCAGGCAGTTAT CCTGTC [1276]	AGTCGTCCTCCTGCA TTAC [1277]
12	iucB	Aerobactin synthesis (siderophore)	474189	166	TTCACAGCGGATAT GGAC [1278]	CACTTTGCTCCCAGA AATAC [1279]
13	iucC	Aerobactin synthesis (siderophore)	474189	167	AGACTGGGATTTG GTCAAC [1280]	AGACACCATCCTGCC TTC [1281]
14	papG	Adhesin, P-pili protein	42307	168	GGAGTATATTGCGT GGGTAG [1282]	AAGATTCACCATAGA GGCG [1283]
15	yciQ	Putative membrane protein	16127994	151	ATAGCAGGGCTGT TTGTATC [1248]	GACACGGAAACCAA ATTAAC [1249]
16	ymcA	Hypothetical protein	16127994	152	TATTGTCATCGCGC AGAG [1250]	TGTTGGGTTGAAAGA GTAGC [1251]
17	eae	Genetic locus necessary for the production of attaching and effacing lesions on tissue culture, OM protein adhesin	145852	154	CTAACTCATTGTGG TGGAGC [1254]	CTTGTCATCGGTCAT GTTG [1255]
18	eltB	Enterotoxin subunit B	145830	155	GGCGTTACTATCCT CTCTATG [1256]	TTTCCATACTGATTG CCG [1257]
19	escR	Secretion	2897961	156	TTTGTTGTTATTGG TACTTCATTC [1258]	ATCGAAATTGTTACT GGCG [1259]
20	escT	Secretion	2897961	157	ATAGTAG [1260]	GAATACGTTTAGTTG AGGCG [1261]
21	escU	Secretion	2897961	158	AAGTGAAGAGGTA ATGGCTG [1262]	TACCATCAGTATCCT TGGC [1263]

	T	In	<u> </u>	150	Γ	Γ
22	espB	Protein secreted by enteropathoge nic E. coli	1657262	159	GATGGTGACTCTAT TGCAGG [1264]	CCATACGATTCTGGA CCTC [1265]
23	hlyA	Enterohemorrh agic Escherichia coli hemolysin	525328	163	CTTGGAAATGTTGG TAAAGC [1272]	TAAACTCCTTCGGTT GAGC [1273]
24	hlyB	Enterohemorrh agic Escherichia coli hemolysin	1247757	164	TCAATGCTGAAACT ATAAGGC [1274]	ACTTAGCACCCAGTT CGAC [1275]
25	SLTII	Shiga-like toxin type II	304950	171	TTCTTCGGTATCCT ATTCCC [1288]	TGTGAGGTCCACTTC TTCC [1289]
26	toxA- LTPA	Subunit A of heat-labile enterotoxin	148027	172	AAATGGCGACAAAT TATACC [1290]	CTGGGTCTCCTCATT ACAAG [1291]
27	VT2va B	Verotoxin-2 variant, beta- subunit, shiga- like toxin	148261	173	AAGAAGATGTTTAT GGCGG [1292]	GATTCACAGGTACTG GATTTG [1293]
28	aacC2	aminoglyco- side-(3)-N- acetyltrans- ferase	45769	833	1	CGAAATGCTTCTCAA GATAGG [2613]
29		Class A beta- lactamase	21464484	815		TCTCAGCGATCTGTC TATTTC [2577]
30	strB	Streptomycin resistance protein B	17129524	834	AAGTTTCATTGCCA GACG [2614]	TAGACTGCGTTGCTC CTC [2615]
31		Dihydropteroat e synthase, sulfonamide resistance	17129524	887	1	AATTCTTGCGGTTTC TTTC [2721]
32	algB	Alginate biosynthesis (exopolysacch aride)	150990	494	GCCTC	GAGGATGAGGATGT TGGC [1935]
33	algN	Alginate biosynthesis (exopoly- saccharide)	150999	495	GACTGGCTGAATC GTCTC [1936]	GCAGGTCGTACCAG GAAG [1937]
34	algR	Alginate biosynthesis (exopoly- saccharide)	151003	496		TTCAGGTAGAGCTG GAAATG [1939]
35	IANTA I	Alkaline protease	45279	491		CGACGAAGTGGATA TTGG [1929]
36	aprE	Alkaline	45279	492	GGTCAAGCACATC	ACTTCCTTGCGGTAC TCC [1931]

	т	<u> </u>	T	4=0	T	I
37	glpR	Repression of glycerol metabolic enzymes (glp=glycerol-3-phosphate)	1399486	470	CAAGCACAACAAG AAATACG [1886]	TAGACCTCCGAAGA GTTGC [1887]
38	lasRa	Elastase, virulence protein	309873	499	CTGGGACGTTAGT GTCATC [1944]	GTCTTGGCATTGAGT TCG [1945]
39	lasRb	Transcriptional activator of elastase	151325	471	GAGCGACCTTGGA TTCTC [1888]	ATAAGACCCAAATTA ACGGC [1889]
40	lipA	Extracellular triacylglycerol lipase	45340	500	AAGAAGTCTCTGCT CCCC [1946]	ACGATTTCCTCCACC TGT [1947]
41	lipH	Lipophilic protein necessary for the expression of active lipase	483463	501	ATGGCAGTTTCAGT GTCG [1948]	CGAAATAGTCGTCCA GCC [1949]
42	mexA	Multidrug resistance protein MexA precursor	5616092	889	CTCGACCCGATCTA CGTC [2724]	GTCTTCACCTCGACA CCC [2725]
43	Orf25 2	DnaJ-like protein	4545242	503	GACCTGCTGTTCCA GTTG [1952]	AATTCACGGGTTTTC TCG [1953]
44	OrfX	Regulatory protein, glycerol metabolism	1399486	472	ATGGATGCTCGGG TACTG [1890]	CTCAGCTACAGCCAC GAC [1891]
45	pa026 0	Hypothetical protein	15595198	473	GATCGTCTCTGCCC AGTC [1892]	ACATTGATGGTGTCG TCC [1893]
46	pa057 2	Hypothetical protein	15595198	474	AGGAGAGAACATG AGTCGC [1894]	TCCTTGTCCCAGTAG TTACC [1895]
47	pa104 6	Hypothetical protein	15595198	477	AGGCATCCATCGA GCTAC [1900]	AACGTCCGAGCAGG ATAC [1901]
48		Hypothetical protein	15595198	478	GCGAGGAGGTATT CGACA [1902]	CCCTTCTGCGAGTAG TGTT [1903]
49	pa184	Hypothetical protein	15595198	479		CAGGAACAGGTGCT CGTAG [1905]
50	pa408	Hypothetical protein	15595198	481		GAGCCGTAGGTGTT ATCG [1909]
51	pchG	pyochelin	4325021	504		GTCGAACAACGCGA ACAG [1955]
52	PhzA	Phenazine biosynthesis proteins (low molecular weight toxins)	5616088	505	GTTGAAAGGGTTTA CCGAC [1956]	AATTTCTGCATCGGG TTC [1957]

53	PLC	Phospholipase C (heat labile- hemolysin)	151492	507	GACTTCGCTGTTCG ACTTC [1960]	TCGGTTCGAGTTCAT AGC [1961]
54	plcN	Non-hemolytic phospholipase C	151497	508	GTGTTCCAGGTGTT CGAC [1962]	GATAGACGTTGTCCT TGACC [1963]
55	plcR	Phospholipase C regulation	151499	509	ACAACCTGGAACA GCAACT [1964]	CGACTCTTGCGCGTA TTC [1965]
56	PstP	Phosphoenolpy ruvate-protein phosphotransf erase	4545246	485	GAAGTGAACTCCG CCAAG [1916]	TCGAGCATCATCAGG TAGAC [1917]
57	purK	AIR carboxylase II, purine biosynthesis	1621599	486	TCGAGAAGTCGAT GTTCAAG [1918]	CTTGCCGTAGTGATG CAG [1919]
58	rhIA	Rhamnosyl- transferase involved in rhamnolipid biosurfactant synthesis	452502	518		CTCCAGGTCGAGGA AATG [1983]
59	Irnik	Rhamnolipid regulation	1117916	520	TTCGATTACTACGC CTATGG [1986]	GGTCCATTGCAGGAT CTC [1987]
60	toxA	Exotoxin A precursor	15595198	522	GTGCGCTACAGCT ACACG [1990]	CTTGCCTTCCCAGGT ATC [1991]
61	uvrDII	DNA helicase II UvrD	3249556	487		TGAGGATAGTCCCTT CGC [1921]
62		Autoinducer synthesis protein	695153	488		AATATCTTCATCGCC AGTTG [1923]
63	хсрХ	Secretion protein, translocation of exoproteins across outer membrane	45433	490	ACTG [1926]	TGCAAGGTACTCACC AGC [1927]
64		Exoenzyme S, secreted toxin	13892017	497		GATACTCTGCTGACC TCGC [1941]
65		Ferripyoverdin e receptor	1633044	498	AATGCGATAACCAT CAGC [1942]	CCGTCGTACTGGAA GTTG [1943]
66		Hypothetical protein	15595198	475	AGGAGCAACTGAA GCGAC [1896]	TCTGCCTTTACCCAG GAC [1897]
67	F :	Hypothetical protein	15595198	476	AAGGTTGGCAGGA TCAAC [1898]	CTAGTGGCGAAATTG AACAG [1899]
68	pa386 6	Hypothetical protein	15595198	480	TTCCCTAACGAATG CTGTC [1906]	CGTTGCTCCCTCATA CAC [1907]
69	PhzB	Phenazine biosynthesis proteins (low molecular weight toxins)	5616088	506		TTCTCGTAGTAACCC TCGG [1959]

	1	Type IV pilin,	[482	1	
70	pilAp	involved in twitching motility and attachment	18535593	402	GCTTTACCTTGATC GAACTG [1910]	TCAATAGAGCCAGTC ACACC [1911]
71	PilAp2	type IV pilin, involved in twitching motility and attachment	21629637	483	TGCCGTGAGTGAA ATCAG [1912]	CGTAGTTGGCTTTCC AGTT [1913]
72	piIC	Pilin biogenesis protein	18535591	484	GGTATCAACCCACT AAAGGTC [1914]	GTCCAGAGCTTCTAC CAGAG [1915]
73	pvdD	Pyoverdine synthetase D (siderophore)	1633044	510	GTCAAGGGTGTTG TCTGC [1966]	CTCTGCACAAACTCA GGG [1967]
74	S1	PyocinS1, bacteriocin	286179	512	CTTCAGTTCCGAGA TGCC [1970]	GTAACGAACGCTATC GGG [1971]
75	pyocin S1im	Immunity protein of pyocin S1	286179	513	ATATACGGAAAAAG AGTTTCTTGAG [1972]	AGCACGCCATTCTTT AACTTC [1973]
76	pyocin S2	PyocinS2	286182	514	TATACGGCTTCAGA CTTTCC [1974]	TGGCATAAGTATTGG CAG [1975]
77	pys2(1)	PyocinS2	15595198	515	TCGCCAATAAGAAG AAATTG [1976]	AGTGGTACTCGAAG GGTTCT [1977]
78	pys2(2)	PyocinS2	15595198	516	ATCCAGTATATTCC TGCTCG [1978]	TGCAATTTCTTCTTAT TGGC [1979]
79	rbf30 3	B-band LPS (O-antigen) biosynthesis	836903	517	ATCGTTCTGGTCTT CCTTG [1980]	ACCAAAGAGTGTTGA TAGCC [1981]
80	rhIB	Rhamnosyl- transferase involved in rhamnolipid biosurfactant synthesis	452502	519	AACGCTTTCTCGAT CAGG [1984]	GATACTGTGCGGTTG TGA [1985]
81	femA	Factor essential for methicillin resistance	4929298	801		TCACGCTCTTCATTT AGTTCT [2549]
82	fmhA	Factor essential for methicillin resistance	4574232	825	TGACTTCGGATGA GTTCAAT [2596]	GCTGTTAATTGTTGT TGCTTT [2597]
83	fmhB	Factor essential for methicillin resistance, putative	4574234	818	CTCACCCAAATGGA GATTTA [2582]	CTTGCTTTTCAGATG TTTCC [2583]
84	gyrA	DNA gyrase subunit A	296393	60	AGGCTCGTATGATT GAAAAA [1066]	GGTTTTGAGCACGAT ATGTAG [1067]
85	gyrB	DNA gyrase subunit B	296393	61	TTGGCACAACTGAT AAGACA [1068]	AAAAATCGTTCAAAG TGCTC [1069]

86	hemB	Porphobilinoge ne synthase	2589180	62	ATCATCAGCGACAA TGAGAG [1070]	TTTTAACATCTCGA ACTATATCTAA [1071]
87	hemN	Oxygen- independent coproporphyrin ogen oxidase	14349226	65	TCTTCCATTCTCTC AGTCAAA [1076]	AGACCATGTATGTAG GTGGC [1077]
88	hla	α-Hemolysin	46763	120	•	GTAGCGAAGTCTGG TGAAAA [1187]
89	lip	Lipase	393265	68	TGCATCTTCCATTT TAATAGC [1082]	GTCATTGTCCTTTGT TGGTT [1083]
90	menC	o-Succinyl- benzoic acid synthetase	1255258	69	TTGACAGCTTTGCA TTTTTA [1084]	GGCTTTGTTGCTTTT AATGA [1085]
91		N-acetyl- glucosaminida se	2506026	125	AAGTTGCTCAAATA CAAGCTG [1196]	TGATGTTAGCCCAAT CTACA [1197]
92	norA2 3	Quinolone resistance protein	4115706	904	GGTTACTTGTTGCT GCTTTT [2754]	CGTAATCGCAATCGA AATA [2755]
93	пис	Nuclease	46623	71	TGGCTATCAGTAAT GTTTCG [1088]	GAATCAGCGTTGTCT TCG [1089]
94	rpoB	RNA poly- merase B- subunit	677848	73	TGGAAGACATCGT AAACGTA [1092]	TGGATCAAAGAAACG TGAAT [1093]
95	tag	DNA-3- methyladenine glycosidase	6434027	81	TTTTGATTTATCTTC TGACGG [1108]	CATTCATTTTATTCCC ACCT [1109]
96	16SSa	16S rRNA	46498	942	TCTCTGATGTTAGC GGCGG [2830]	TCAGGCTTTCGCCCA TT [2831]
97	clfB	Clumping factor B	3393010	4	TAGCATAGCAACAA ACAGTGA [954]	GTTTTGACCTGAAGC TGTATC [955]
98	EDIN	Epidermal cell differentiation inhibitor	152997	113	AAAGATAGTTCTAA GATAAATGGTC [1172]	GGCCATTATTGGTCT GTTG [1173]
99	elkT- abcA	Lantibiotic epilancin K7 tranlocator	1841513	896	ATTAGAAATTGCGA CTGGTG [2738]	AGCGTGTCATATCCT TCATC [2739]
100	epiP- bsaP	Biosynthesis of lantibiotic epidermin; serine protease	21204850	58	1	GTCAAACGAGTGCTA ATGGT [1063]
101	geh	Lipase precursor; glycerol ester hyderolase	153019	59	TTCAATAGGCGTG GTGTC [1064]	TTATCTGTCGGTTTC TCTGG [1065]
102	mreA	ABC transporter	7548683	907	TACGATGACACCA GTCTTTG [2760]	ATCGACAAAACGTAC AGGAT [2761]
103	murC	UDP-N- acetylmuramo yl-L-alanine synthetase	2642658	70		GGATATTTCTTTCGT GCTGT [1087]

		1				T
104	sak	Staphylokinase	47425	126	TGTTATTATTCTCA TTTTCTTCAAT [1198]	ATGCTCTGATAAATC TGGGA [1199]
105	sea	Enterotoxin A	153120	127	TTTTATTCATTGCC CTAACG [1200]	TTTTCAGAGTTAATC GTTTTATTATC [1201]
106	sec1	Enterotoxin C	46566	129	AATTTTTGGCACAT GATTTA [1204]	CTTTTATGTCTAGTT CTTGAGCTG [1205]
107	etb	Exfoliative toxine B precursor	153011	115	TTTTAGCAGCGTCA ATTTTT [1176]	CTGATCCAGAGTTTC CTACCT [1177]
108	seb	Enterotoxin B	152999	128	CGTAGATGTGTTTG GAGCTA [1202]	CTTGAGCAGTCACCT TTTTC [1203]
109	sstC	Iron transport protein	3724154	80	TGATATTGGAAGAT ATTAGCATAGA [1106]	TGACAATCGCTITAT TCATIT [1107]
110	tst	Toxic shock syndrome toxin	18266750	138	TTTTTATCGTAAGC CCTTTG [1222]	CAATAACCACCCGTT TTATC [1223]
111	aacA- aphD	Bifunctional aminoglyco- side modifying enzyme	3676412	843	AGATTTGCCAGAAC ATGAAT [2632]	TGTTGCATTTAGTCT TTCCA [2633]
112	aadD	Aminoglyco- side acetyl transferase	21623792	837	GCTATTGGTGTTTA TGGCTC [2620]	CTGATTGCTTAACTG CTTCA [2621]
113	aph- A3	3'5'-amino- glycoside acetyl- transferase	1272325	840	GAGAATATCACCG GAATTGA [2626]	GCTCGACATACTGTT CTTCC [2627]
114	blaZ	β-lactamase	1575124	827	TGCTTTAGTTTTAA GTGCATGT [2600]	TCCTTCATTACACTC TTGGC [2601]
115	cat	Chlorampheni- col acetyl- transferase	46651	862	AGAAAATTGGGATA GAAAAGAA [2670]	CTGCAAGGCAACTG GTAT [2671]
116	dfrA	S1 dihydro- folate reductase	3676404	859	CAATTACCTTGGCA CTTACC [2664]	CCCTTTTCTACGCAC TAAAT [2665]
117	ermA	rRNA methylase	13785452	852	CCAGAAAAACCCTA AAGACA [2650]	AAAGAACACGATATT CACGG [2651]
118	ermC	Adenine methylase	4138444	846	ACACAGTCAAAACT TTATTACTTCA [2638]	CAACAAGTITATITT CTGTAGTTT [2639]
119	msrS A	Macrolide antibiotic resistance	3892641	854	GACAGATTTTCGAT CCCTTA [2654]	CCTTTTTGTTTTGAT GCACT [2655]
120	mecA	Penicillin bin- ding protein 2'	13785452	802	AGTTGTAGTTGTCG GGTTTG [2550]	TGAAGTCGCTTTTCC TAGAG [2551]

S. aureus, E. coli and P. aeruginosa genes were selected from the literature and databases, and compared by BLAST analysis to all other sequences available in the

NCBI database. Primers were designed to amplify gene segments of 200-810 bp length and devoid of apparent homology with genes of other bacterial species and *Homo sapiens*. Gene segments were amplified by using the puReTaq Ready-To-Go PCR beads (Amersham Biosciences, Freiburg, Germany) and cloned into the pDrive Cloning Vector (Qiagen, Hilden, Germany) according to the recommendations of the suppliers and transformed into competent *Escherichia coli* (XL-1-Blue) cells using the calcium chloride protocol (Sambrook, J., Russel D.W., Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY (2001)).

For quality control purposes, all gene probes were partially sequenced and verified (with the BigDye kit 1.1 and an 377 DNA sequencer; Applied Biosystems, Foster City, USA). All sequences obtained were identical or substantially identical (>90% sequence identity) to those obtained from the database.

For DNA-probe production 120 recombinant plasmids containing *S. aureus*, *E. coli* and *P. aeruginosa* gene segments were used for re-amplification. Amplicons were purified and spotted in 4 replicates per slide on UltraGAPSTM Coated Slides (gamma amino propyl silane coated slides, Corning, NY, USA). Approximately 1 nl DNA (with a concentration of about 0.1 to about 0.2 ng/nl) per spot was spotted onto the slide with a Biorobotics Microgrid Microarrayer (Genomic Solutions, Ann Arbor, MI, USA).

Example 1.5: Hybridisation and scanning

5

10

15

20

25

30

All experiments described represent dual co-hybridisations of two different target DNA samples labelled respectively with Cy3, Cy5 or Alexa647. After removal of unbound label, Cy3 and Cy5/Alexa647 labelled DNAs were pooled and mixed with 10 µg of Salmon Sperm DNA and 50 µg of poly-A-DNA. The mixture was frozen in liquid nitrogen and lyophilised in the dark. Prior to hybridisation the target DNA was reconstituted in 33 µl H₂O and 55 µl 2x hybridisation solution (Memorec Biotec GmbH, Cologne, Germany) and chemically denatured with 11 µl denaturation buffer D1 (Mirus) and neutralized with 11 µl buffer N1 (Mirus) according the instructions of the supplier. Hybridisation was automatically performed with a TECAN Hybridisation Station (HS400, TECAN, Salzburg, Austria). The arrays were prewashed at 60°C for 1 min with 0.2% SDS and 4x SSC and prehybridised in 120 µl denatured prehybridisation buffer (Memorec) for 30 min at 60°C at mild agitation. After injection of 110 µl labelled DNA, hybridisation was performed at 60°C for 18 hours at mild agitation. The arrays were washed at 50°C in primary

wash buffer (Memorec) - five cycles of 1 min wash time and 30 s soak time - and in secondary wash buffer (Memorec) - five cycles of 20 s wash time and 30 s soak time -, and finally dried at 30° C with N_2 (2.7 bar) for 3 min. Hybridised arrays were scanned with a Scan Array 5000 laser scanner (PerkinElmer). Laser light of wavelengths at 532 and 635 nm was used to excite Cy3 dye and Cy5/Alexa647 dye, respectively. Fluorescent images were analysed by the ImaGene software (BioDiscovery, El Segundo, CA, USA).

Example 1.6: Specificity

5

15

In order to allow the simultaneous and rapid identification of *S. aureus*, *E. coli* and *P. aeruginosa* grown in blood culture specimens from septicemic patients, a microarray comprising a set of 40 *S. aureus*, 31 *E. coli* and 49 *P. aeruginosa* gene probes of 200 to 810 bp length was developed (Tab. 2).

The specificity of the DNA-chip was validated firstly (compare Example 1.1) with 45 well characterised clinical isolates and reference strains of the three target species as well as other related bacteria and secondly (compare Example 1.2) with 13 blood cultures from sepsis patients.

In all assays, three PCR-amplified DNA-segments, which had been added to each DNA preparation as a positive control, hybridised with the corresponding probes, indicating that labelling and hybridisation had performed efficiently.

- Hybridisation experiments with *S. aureus*, *E. coli* and *P. aeruginosa* target DNAs, respectively, revealed specific hybridisation with the species-specific gene probes (Fig. 1). There was no cross-hybridisation between the three species with the exception of the *S. aureus* 16S rRNA gene probe (16SSa, Fig. 1C), which hybridised also with *E. coli* and *P. aeruginosa* target DNA.
- Identification of *E. coli*, *P. aeruginosa* and *S. aureus* reference strains, clinical isolates and blood cultures (BC) by microarray analysis corresponded by 100% with the conventional identification results (Fig. 1).

Example 1.7: Detection and discrimination

Example 1.7A: Detection and discrimination of E. coli

30 All DNA samples from 9 *E. coli* strains hybridised always with seven *E. coli* gene probes (*envZ*, *fes* (1) and (2), *nfrB*, *yacH*, *yagX*, *ycdS*) (Fig. 1A, columns 19 to 27);

in the following these genes are designated as core genes. With 14 *E. coli* gene probes variable hybridisation was observed including the antibiotic resistance gene probes *bla-TEM106*, *sul*, *strB* and *aacC2*. Such a variable hybridisation profile is expected for antibiotic resistance genes since acquired resistance to antimicrobials is strain specific. For 11 *E. coli* virulence gene probes (*eae*, *eltB*, *escR*, *escT*, *escU*, *espB*, *hlyA*, *hlyB*, *SLTII*, *toxA-LTPA*, *VT2vaB*) no hybridisation signals were detected with any of the tested *E. coli* isolates and blood cultures. Since these virulence genes are known to be specific for particular *E. coli* pathotypes (Bekal, S. et al., J. Clin. Microbiol., 41:2113-25 (2003)), it was not surprising that they were not present in the tested strains. The *eae*, *esc* and *esp* genes for example are encoded on a chromosomal pathogenicity island, which is typical for enteropathogenic *E. coli* exhibiting the unique virulence mechanism known as attaching and effacing (AE) (Elliott, S.J. et al., Mol. Microbiol., 28:1-4 (1998)). The alpha-hemolysin (*hly*) operon is encoded on a large plasmid of enterohemorrhagic *E. coli* strains (Schmidt, H. et al., Infect. Immun. 63:1055-61 (1995)).

Example 1.7B: Detection and discrimination of Pseudomonas aeruginosa

DNA samples obtained from *P. aeruginosa* uniformly hybridised with 32 out of 49 *P. aeruginosa* specific gene segments including the *mexA* gene probe (core genes). Variable hybridisation was observed with 17 probes allowing for discrimination of individual *P. aeruginosa* isolates (Fig. 1B, columns 12 to 18).

Example 1.7C: Detection and discrimination of S. aureus

5

10

15

20

25

30

Hybridisation experiments performed with 11 *S. aureus* target DNAs revealed signals in all assays with 16 *S. aureus* gene segments (core genes) (Fig. 1C, columns 1 to 11). Variable hybridisation was observed with 14 *S. aureus* gene probes including the 6 antibiotic resistance gene segments *aadD*, *aacA-aphD*, *blaZ*, *dfrA*, *ermA* and *mecA* and the virulence genes *sak*, *sea*, *sec1* and *EDIN*. The gene probes *geh*, *mreA*, *clfB* and *elkT-abcA* hybridised with 8, 10 (*mreA* and *clfB*) and 6 target DNAs respectively. However, PCR amplification of the four genes was positive for all 11 *S. aureus* target DNAs (not shown) suggesting that the four genes were present in all strains investigated and that these gene probes did not allow reliable detection of the four genes in *S. aureus*.

No hybridisation was observed with 10 probes including the toxin genes *seb, tst* and *etb*. In contrast to the community-acquired, multi-susceptible MRSA strain

MW2 that hybridised to *mecA* and *blaZ* only, all six clinical MRSA strains showed the same multiresistant hybridisation pattern and their DNA hybridised to *ermA* (erythromycin resistance), *mecA* (oxacillin resistance) and the *aadD* gene (tobramycin resistance). As for the majority of multiresistant MRSA strains the *ermA* and *aadD* genes were shown to be located upstream and downstream, respectively, of the *mecA* gene in the *mec* chromosomal region (Chambers, H.F., Clin. Microbiol. Rev., 10:781-91 (1997); Polyzou, A. et al., J. Antimicrob. Chemother., 48:231-4 (2001)). Hybridisation to the core gene probes permitted the identification of *S. aureus*, while hybridisation to antibiotic resistance gene probes allowed for discrimination of strains.

Example 1.7D: Discrimination of *E. coli*, *P. aeruginosa* and *S. aureus* from related bacterial species

Co-hybridisation experiments performed with related bacterial species confirmed the high specificity of the DNA-chip (Fig. 1): For *S. epidermidis* and all other Coagulase-negative staphylococci, cross-hybridisation was observed only with the *S. aureus* 16S rRNA gene probe (16SSa, Fig. 1C) and several common staphylococcal antibiotic resistance determinants (*aadD*, *aacA-aphD*, *aph-A3*, *blaZ*, *cat*, *dfrA*, *ermA*, *ermC*, *mdrSA*, *mecA*) (Fig. 1C, columns 28 to 36). There was no cross-hybridisation with other metabolic or virulence genes of *S. aureus*.

The *Micrococcus* spp. isolate showed no hybridisation with the DNA-chip (column 53). Streptococci (column 56 to 58) and enterococci (columns 54 and 55) showed hybridisation with the staphylococcal 16S RNA gene probe and once with the staphylococcal *aph-A3* aminoglycoside resistance gene probe (*Enterococcus* spp.) (Fig. 1C). Out of 12 strains of seven Gram-negative species (columns 41 to 52), two hybridised with the *S. aureus* 16S rRNA gene probe (*Klebsiella pneumoniae* and *Proteus mirabilis*, Fig. 1C, columns 41 and 47) and one clinical isolate of *Proteus mirabilis* hybridised with the *E. coli* resistance genes *bla-TEM106* (β-lactam resistance), *sul* (sulfonamide resistance) and *strB* (streptomycin resistance) (Fig. 1A, column 42). *Serratia*, *Stenotrophomonas*, *Acinetobacter* and *Enterobacter* species showed no cross-hybridisation with any gene probe.

Example 1.8: Sensitivity

5

10

15

20

25

30

While the majority of *P. aeruginosa* probes allowed unambiguous identification, some probes showed variable hybridisation patterns when microarray hybridisation

PCT/EP2006/010132

was performed with different target DNA samples prepared from the same isolate (Tab. 3).

<u>Tab. 3:</u> Microarray hybridisation signals obtained with different target DNA preparations of *Pseudomonas aeruginosa* isolates.

Isolate									
		C4242		C3	8853	C3	045	C3	755
DNA amount [ng]	130ª	382ª	1350 ^b	510ª	>2400 ^b	550ª	2950 ^b	1180 ^b	>1600 ^b
BDR ^c	22	75	48	29	30	90	41	139	40
No. of hybridised gene probes ^d	38 (88%)	31 (72%)	43 (100%)	36 (88%)	41 (100%)	34 (89%)	38 (100%)	41 (95%)	43 (100%)

^a Labelled with Alexa647

5

10

15

20

25

Successful hybridisation with strong fluorescent signals depends on efficiency of DNA labelling (ratio of bases per one dye molecule) and amount of labelled DNA. For the different target DNA preparations of four clinical isolates, variable hybridisation was observed with 14 gene probes (*uvrDII*, *vsmI*, *pa1069*, *rhlR*, *rhlA*, *rhlB*, *1046*, *pyocinS*, *pyocinS1im*, *plcR*, *plcN*, *PHZb*, *rbf303* and *pIIAp2*). For example, for three different DNA preparations of isolate C4242, hybridisation to *Pseudomonas*-gene probes varied from 31 to 43 probes, respectively, depending on the labelling efficiency and amount of DNA (Tab. 3). The lowest number of signals was detected with 382 ng target DNA, that, however, showed a high base to dye ratio of 75. Overall, the results suggest that varying amounts of DNA and base to dye ratios influenced the hybridisation results of few gene probes. However, irrespective of the varying quality and quantity of the labelled target DNA, 35 of the 49 *P. aeruginosa* gene probes showed robust hybridisation results in all performed experiments.

Example 1.9: Detection and characterisation of pathogens in blood cultures

^b Labelled with Cy3 or Cy5

^c BDR: Base to dye ratio; number of nucleotides per one dye molecule

^d Number of signals obtained with *P. aeruginosa* capture probes (total 49) after hybridisation with different DNA preparations. The percentage of specific hybridisations is compared to the highest number of signals obtained for each isolate (100%).

5

10

15

Although DNA prepared from blood cultures comprises a mixture of human and bacterial DNA, the resulting hybridisation signals obtained with DNA from 1 ml positive blood culture allowed a clear and unambiguous characterisation of *S. aureus*, *E. coli* and *P. aeruginosa* present in 13 tested blood specimens (Fig. 1). In accordance to the VITEK2 characterisation, positive BACTEC® cultures were identified by microarray hybridisation as multi-resistant MRSA (Fig. 1C, column 8), penicillin-resistant *S. aureus* (column 9 and 11), multi-susceptible *S. aureus* (column 10), *E. coli* (Fig. 1A, columns 26 and 27), *P. aeruginosa* (Fig. 1B, column18), and discriminated from oxacillin resistant *Staphylococcus epidermidis* (columns 33-35), *Proteus mirabilis* (column 43) and *Streptococcus pneumoniae* (columns 57 and 58).

Example 1.10: Correlation between susceptibility testing and microarray hybridisation of selected antibiotic resistance genes

<u>S. aureus</u>: For 11 Staphylococcus aureus strains and blood cultures, susceptibility results determined by the VITEK2 system, Etest strips and disk diffusion tests were compared with the results of the microarray hybridisation assay for the simultaneous detection of antibiotic resistance genes (Tab. 4). The presence or absence of resistance genes as indicated by microarray hybridisation was confirmed by PCR with gene specific primers (results not shown).

20 <u>Tab. 4:</u> Correlation between phenotypic and genotypic antibiotic resistance for 11 S. aureus isolates and blood cultures.

Hybridisation with mecA/blaZ		
No. pos. No. neg.		
10	0	
0	1	
Hybridisation with mecA		
No. pos.	No. neg.	
7	0	
O	4	
	No. pos. 10 0 Hybridisation No. pos. 7	

c) Erythromycin resistance

Hybridisation with ermA, ermC or msrA

	No. pos.	No. neg.	
6 (resistant)	6	0	
5 (susceptible)	0	5	
d) Tobramycin resistance	Hybridisatio	n with <i>aadD</i>	
	No. pos.	No. neg.	
5 (resistant)	5	О	
6 (susceptible)	0	6	
e) Gentamicin resistance	Hybridisation with aacA-aphD		
	No. pos.	No. neg.	
0 (resistant)	0	0	
11 (susceptible)	0	11	
f) Trimethoprim resistance	Hybridisation with dfrA		
	No. pos.	No. neg.	
1 (resistant)	0	1 ^b	
10 (susceptible)	0	10	

^a Number of strains tested for resistance

5-

10

15

For the *S. aureus* strains there was a 100% correlation between phenotypic resistance to penicillin and hybridisation to the *mecA* and/or *blaZ* gene (both genes confer resistance to penicillin, Tab. 4a). Phenotypic resistance to oxacillin correlated 100% with the hybridisation of the *mecA* gene (Table 4b), between resistance to erythromycin and hybridisation to the erythromycin resistance genes ermA, ermC or msrSA (Tab. 4c) and between resistance to tobramycin and hybridisation to the aadD gene (Tab. 4d). Furthermore, they all showed 100% correlation between phenotypic susceptibility to gentamicin and no hybridisation to the resistance genes aacA-aphD (Tab. 4e). Notably the dfrA gene of the trimethoprim resistant strain MW2 (MIC of 1 μ g/ml) was not detected by microarray hybridisation (Tab. 4f), whereas PCR amplification revealed the presence of the dfrA gene.

E. coli and other Gram negative bacteria: The prototype microarray harboured only

b dfrA gene detected by PCR

four *E. coli* and one *P. aeruginosa* resistance gene probes which do not yet allow a comprehensive prediction of antibiotic resistances. Nevertheless, hybridisation with the *E. coli* resistance gene probe *blaTEM106* was observed in one *P. mirabilis* and four *E. coli* strains and correlated with phenotypic ampicillin resistance for all five strains (Tab. 5).

<u>Tab. 5:</u> Correlation between ampicillin/penicillin resistance, gentamicin/tobramycin resistance and streptomycin resistance and hybridisation with the resistance gene probes *blaTEM-106*, *aacC2*, *aph-A3* and *strB*, respectively.

Species	Resistance	<u> </u>	Hybridisation with		
	phenotype ^a -	blaTEM-106 ^b	aacC2 ^b	aph-A3 ^c	<i>strB</i> ^b
E. coli ATCC	cuccontible		_		
25922	susceptible	-	-	-	-
E. coli C4821	AMP, STR	+	-	-	+
E. coli F3437	AMP	+	-	-	-
E. coli C3941	AMP, STR	+	-	-	+
E. coli F1806 ^d	AMP, GEN,				
E. COII F1806°	TOB, STR	+	+	+	+
E. coli C4547	AMPi	••	-	-	-
E. coli C4230	AMP	-	-	-	-
E. coli C3940	susceptible	-	-	-	-
E. coli F1642 ^d	STR	-	-	-	+
P. mirabilis C4024	AMP, STR	+	-	-	+
P. mirabilis C4403	susceptible	-	-	-	-
<i>P. mirabilis</i> F1738	susceptible	-	-	-	-

^a AMP, ampicillin; GEN, gentamicin; STR, streptomycin; TOB, tobramycin; i, intermediate

10

15

5

One *E. coli* blood culture showed also resistance to tobramycin and gentamicin. This phenotypic resistance correlated with the hybridisation of the *aacC2* gene probe for aminoglycoside resistance and the *S. aureus aph-A3* probe for tobramycin/kanamycin resistance (Tab. 5). For one *P. mirabilis* and four *E. coli*

^b *E. coli* gene probes

^c S. aureus gene probes

^d Positive blood culture

strains, phenotypic resistance to streptomycin correlated with hybridisation to the *strB* probe (Tab. 5).

All *P. aeruginosa* strains hybridised with the *mexA* gene probe (Fig. 1) and showed phenotypic resistance to tetracycline, trimethoprim/sulfamehoxazole, penicillins (ampicillin, mezlocillin) and cephalosporines (cefazolin, cefixime, cefuroxime). The *mexA-mexB-oprM* operon is a determinant for a three component efflux system responsible for intrinsic and acquired multiresistance in *P. aeruginosa* (ß-lactams, fluoroquinolones, trimethoprim, sulphonamides, chloramphenicol and others) (Poole, K., Clin. Microbiol. Infect. 10:12-26 (2004)).

10 Example 1.11: Microarray for specific detection of *S. aureus*

A) Strains and Cultures

5

15

20

Reference strains and clinical isolates: The following bacteria were purchased from the American Type Culture Collection (ATCC, Manassas, Va.) or the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DMSZ, Braunschweig, Germany) and were used for evaluation of the specificity of the microarray: *Staphylococcus aureus* (ATCC 29213), *Staphylococcus epidermidis* (ATCC 12228; ATCC 18610) *Staphylococcus saprophyticus* (ATCC 14953), *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 27853). Ten clinical MRSA (methicillin resistant *S. aureus*) isolates were obtained from the inventors' clinical routine microbiology laboratory.

<u>Bacterial cultures:</u> Bacterial strains and clinical isolates were plated either onto sheep blood or onto Mueller-Hinton agar from 50% glycerol stocks. One colony was then picked and transferred to 5 ml Luria-Bertani (LB) broth and cultured overnight at 37°C.

Blood cultures: Aerobic blood culture bottles (BACTEC® Plus aerobic, Becton Dickinson, Heidelberg, Germany) were inoculated with 100 CFU of *S. aureus* after adding 10 ml blood from healthy volunteers. A BACTEC® 9240 blood culture system (Becton Dickinson) - a continuous reading, automated, and computed system detecting the growth of microorganisms by monitoring CO₂ production – was used for incubation according to the manufacturer's recommendations. Bottles with a positive growth index were removed from the incubator, and an aliquot of 1 ml of the blood culture suspension was taken aseptically with a needle syringe. The

aliquot was equally divided, with one part for subculture on agar plates and CFU determination, and one part for DNA isolation.

Additionally, in order to test the microarray upon real conditions, samples were collected from ten clinical positive blood culture specimens cultivated under the same conditions as described above. Six of them were positive for different *S. aureus* strains and four for other bacterial species (*Staphylococcus epidermidis*, *Streptococcus mitis*, *E. coli* and *Klebsiella oxytoca*). Blood culture aliquots of 500 µl were used for DNA preparation.

B) Generation of the S. aureus specific microarray

5

About 140 gene segments of *S. aureus* genes, but also a few of CoNS (SEQ ID NO: 177,178,179), were selected from the literature and nucleotide databases in order to cover different functional categories (virulence factors, species-specific metabolic and structural features, antibiotic resistance determinants). Tab. 6 provides the complete list of selected genes with gene symbol, gene function and SEQ ID NO of the segments.

<u>Tab. 6:</u> Selected *S. aureus* genes, selected segments (SEQ ID NO) and primers used for segment amplification (SEQ ID NO)

Gene symbol	Functions	gene probe SEQ ID NO	Primer forward [SEQ ID NO]	Primer reverse [SEQ ID NO]
atl	autolysin	99	AGCTGAGACGACACA AGATCAAA [1144]	TTATATTGCGTTTCAAGA GCTGC [1145]
aroA	3-phosphoshikimate 1-carboxyvinyl- transferase	84	ACCTTCAATATTCGCA TCC [1114]	TATTCCGATTATTAGGCG TAG [1115]
aroC	Chorismatsynthase	83	ATGAGATACCTAACAT CAGGAGAATCA [1112]	GCTATTCTTCCATCTAATT TACGATCATA [1113]
aroE	Shikimatdehydrogen ase	95	GTTATCAATTAATACA ACCCCTGAAGC [1136]	TGGAACTAATTCTCCTTC GATTGTTA [1137]
aroF	3-deoxy-D-arabino- heptulosonate-7- phosphate synthase	96	16 16 11 16 1 1 16 16 1 16 1	ATTACACCATTAACGATA ATTGGCAT [1139]
aroG	Chorismat-Mutase	97	AGACTTATTATCTAAA CGTGGTGAACTAGC [1140]	CAAATGATTTATTGCCGT CTCCTA [1141]
asp23	alkaline shock protein	98	AAAATTGCTGGTATC GCTGCA [1142]	GTCATTACATCATCAACTT GCATGTTA [1143]
cata	catalase	1	TAAATTGTTTAGATTA CAATCAGAGG [948]	TTCAAAGTTTTCGTATGTT TCA [949]

clpC	endopeptidase	7	AATGCTGCTAACCTG CGTGAT [960]	CACGTCTAACCGCTTTAC TGATTG [961]
clpP	endopeptidase	8	AAAGTAAAGAGTAGA CTAAGCTGTCTGCTC [962]	ACCTAATAAAATTCAAGC ATTGGGA [963]
ctaA	cytochrome biosynthesis	9	AAGAATTTAAAATGGT TAGGTGTCGTA [964]	ACGTAATCGTTTTGTTGC CAAATA [965]
ctsR	transcription repressor of class III stress genes homologue	10		TTGCGTTTCTATTTAGCTC AGACA [967]
dltA	D-alanine-D-alanyl carrier protein ligase	11	ACAGAGCAGCAAAAG CGTTAGTG [968]	GACCTTGAATGAACCATT GACCAT [969]
dltB	hypothethecal membrane transporter	12	CATATGGTGATTTAC ATTCTTCTTAATTG [970]	CCTAACCATGTACTTTGT AACACTTTCA [971]
dItC	D-alanyl carrier protein	13	AAATTTATTAGCAGAA GTAGCAGAAAATG [972]	CTGAACTCTTCTAATGCTT CAACGATT [973]
dnaK	Heat-shock-protein	14	TTTAGGCGAAAATATT GGTGAAGA [974]	TITGTCGTCGTCTTTTACT TCGTT [975]
elkT	lantibiotic epilancin K7 translocator	15	1	GAGCGTATCGCATAAATA ATCTTTTC [977]
eno	2-phosphoglycerate dehydrogenase	87	CGATGTTCATCATTGG TACTGGTA [1120]	GGTGTTACTAAAGCAGTT GAAAACG [1121]
glnA	glutamine synthetase; belongs to the femC locus	17	TAGTCACCATGAAGTT GCCCC [980]	CCTCTTGAAGATGGTACA CGGAT [981]
glnR	glutamine synthetase repressor; belongs to the femC locus	18		CACCACGATTTATTGGCA AAGTT [983]
grIA	DNA tensisements	19	TTGAATCACCAAATTG AGGTTGT[984]	CAGTCGTTCAGATTTGAA TTTCTTT [985]
grlB	gyrase-like protein beta subunit B	20	[986]	AAACTTAAAATACTTTCTG AATATTGATCAT [987]
groEL	stress response; heat shock protein	21		TGTTAATGCATCGCCTTC AAC[989]
groES	stress response; heat shock protein	22	ATGTATGTTAGCACTC TITAATGTTAAGTG [990]	GTTTAGTTGTGTTTCATTT TCGTT [991]
gyrA	DNA gyrase subunit A	60	CATCATTAATTCGATT CCCTGAAT [1066]	TCATTTACTTCATCTGCAT CCTCTT [1067]
gyrB	DNA gyrase subunit B	61		AAGATTTGTGGCATATCC TGAGTTA [1069]
hemA	Glutamyl-transfer RNA reductase	23	TGTCATATTATCAACA TGTAATCGAACTG [992]	AATATCAGTAATTCCAGA ACCAAGAAGAT [993]
hemB	Porphobilinogene synthase	62	TTGATAGACATAGAA GATTGAGATCATCAG [1070]	ACTTGAGAAATTGCTGTT TTAACAAGTAG [1071]
hemC	Porphobilinogene deaminase	63	GTAAATTAGTCGTTG	GGGATAGTGGTGTATGTG TTTTAGAAATA [1073]

hemD	Uroporphyrinogene III synthase	64	TGTTGATAACATTGCT GTGATAGGAA [1074]	AATGCATCGATTTGTTGA TGTTCTA [1075]
hemE	Uroporphyrinogene decarboxylase	24	AAAATGATCAAAGGT GAAGAAACATC [994]	AATCCTCGACATTTAATG CACCTAC [995]
hemH	Ferrochelatase	25	AATGGGATTATTAGTT ATGGCTTATGG [996]	GTGGATATGGATCATTAT TCTTTTCG [997]
hemL	GSA-1- Aminotransferase	26	ATGAGATATACGAAAT CAGAAGAAGCA [998]	CTAATCTTAAAGTATCCAA TGTAGCTTCTGTA [999]
hemN	oxygen-independent coproporphyrinogen oxidase		ACAGAATCAACCTGT AGATGAGTACTTAGA T [1076]	TGATATTCGTATAACGCA CACCATC [1077]
hemY	putative involved in a late step of protoheme IX synthesis	27	AAACAGCAAGATCCT AATATTGATGTAAC [1000]	CTCTACGTACAATCGATA CTAATTCATTATCT [1001]
lepA	GTP-binding protein	28		CTATAACCAAAACCTAAT GCTTGTGAC [1003]
IrgA	holin-like protein LrgA	29	AAAGACGCATCAAAA CCAGCA [1004]	GGCTAATGACACCTAAAG AGTTAACAACT [1005]
IrgB	holin-like protein LrgA	30	GATTAACCACTTAGCA CTAAACACACCT [1006]	AATGTTTAACAAGCACTT CACGCT [1007]
lytM	peptidoglycan hydrolase	31	CGACAAACACCCAAC AAGCA [1008]	TGGCTGTTATACGCTTGG TTGT [1009]
menB	naphthoate synthase	32	GTTATCGTATTAACTG GTGAAGGTGATT [1010]	ACATTTAGTACATTACCG CCACCTAC [1011]
menC	o-succinylbenzoic acid synthetase	69	TTTAAGTCACAAATTG TAACACCGAA [1084]	TTAATTTAATTCTGGTCG GCTTTGT [1085]
menD	2-Succinyl-6- hydroxy-2,4- cyclohexadiene-1- carboxylase	33	CGTAAGGGAAGTAGT TATCAGTCCG [1012]	TTAGCTGTATACTCGAAA TCCAATCC [1013]
menE	O-succinylbenzoic acid-CoA ligase	34	ATGGACTTTTGGTTAT ATAAACAAGCAC [1014]	TATTTCAGCAATGTCACC CGTATTA [1015]
menF	Isochorismate- Synthase	35		TCACTATCTGGATCAGAA TCTTTAACAAT [1017]
murC	UDP-N- acetylmuramoyl-L- alanine synthetase	70	CTTGGGGTGATGATG AACATCTA [1086]	AAGTGTGTGGTTGAAATA CTGCAA [1087]
mutL	DNA mismatch repair protein	38	TCGTTTACATCATAAT AATCATCAGAC [1022]	ACACAGAGAATAACCAGG AGAAGA [1023]
mutS	DNA mismatch repair protein	39		TCAAGTTGCGAAATTAGC TGA [1025]
pbg	porphobilinogen synthase	41	GGTGTTCCAAACTCA AAAGATGATATA [1028]	TTGACACCATAACTCATTA TAGGAATATTG [1029]
pdhB	pyruvate dehydro- genase (lipoamide): subunit E1beta	43		TTGGTAACCAAACATTTTC AGCTT [1033]

		₁		,
pdhC	dihydrolipoamide acetyltransferase: subunit E2	44	CTGGAGATACTATTG AAGAAGACGATG [1034]	TTGCTTTTACAGTTCTGTT TTCATCTAC [1035]
pdhD	dihydrolipoamide dehydrogenase: subunit E3	72	CAGGTAAATTAGTTGT	AGTGGTAAACCTGGAACG ATATCA [1091]
rpoB	RNA polymerase B- subunit	73	ATTGTTACGTGCATTA GGTTTCTCA [1092]	TTTCTACTGGCTCGTCTAT AACGC [1093]
rsbU	putative operon encoding alternate sigma factor	45	TAGTTATCGAGATTAT CAAAGATTGGTAGA [1036]	GTAATTGTGAGTGTCCAT AAGAATCCA [1037]
rsbV	putative operon encoding alternate sigma factor	46	TGAATCTTAATATAGA AACAACCACTCAAG [1038]	ACGATCTGACACACCTAA AATGTA [1039]
rsbW	putative operon encoding alternate sigma factor	47	TCTAAAGAAGATTTTA TCGAAATG [1040]	CCCACATTGTTATTTTCTT TGTAT [1041]
sdrC	serine-aspartate repeat protein multigene family	139		CCTTTATCAATCGCAATG TC [1225]
sdrD	serine-aspartate repeat protein multigene family	140	1	AACTGAAGATAAGCCGTT TG [1227]
sdrE	serine-aspartate repeat protein multigene family	141		GCAAAACAAGATGATGCA ACG [1229]
sgp	G protein	48	TGAGATAGATGCAAT CATGTTTATGG [1042]	GAAATAGGTACAATCTCT GTAAAGTCCATATA [1043]
sigB	sigma factor B	78	i e	CTCTGAAGTCGTGATACA TGCA [1103]
sirR	sit operon metal dependent repressor	49	AATATAATTGGGAAG AAGTACATCAAGAAG [1044]	ATATTAGCAAATCGGTCT TATCTCTCA [1045]
sodA	superoxide dismutase	50	TTGAATTACCAAAATT ACCATACG [1046]	CTCCCAGAATAATGAATG GTTTAAAT [1047]
sodB	superoxide dismutase	51	GCGCATTTTGAAAAG GCA [1048]	GGGATAGCACGTAAAAGT GGAA-[1049]
srtA	tanspeptidase;sorta se that anchors surface proteins to the cell wall	91	CTGGTCCTGGATATA CTGGTTCTTT [1128]	GATTAATGACAATCGCTG GTGTG [1129]
sstA	iron transport proteins	52		CTTTGAACAGCACTCGTG CG [1051]
sstB	iron transport protein	53	TATTGCCTTATTTAGA TGTATTGCTTTT [1052]	TCGTAGCTTCAAACACAT TTTCAA [1053]
sstC	iron transport protein	54	AATCAAATGATATTGG AAGATATTAGCA [1054]	TATTCAGTATCTTGTGCTA TTGTCATTG [1055]
sstD	iron transport protein	55	CATGCGGTAACAATT CTGATAAAGA [1056]	AATTTTCGCTTTAGGTGC AGCT [1057]

		· · · · · · · · · · · · · · · · · · ·		
stpC	Potential ABC transporter	92	TTAACAATAGAACATT TAACAAAGAAG [1130]	CTCGAAATTAAGAAAGTA ACACC [1131]
tag	DNA-3- methyladenine glycosidase	81	GCATTTGGTACTAAA GATCCAGTCTACT [1108]	AACGAAAATACTGTTACT GGACCTAAAA [1109]
trx	thioredoxin reductase	56	GCTGACTATGAAGGT AAAGCTGACA [1058]	CAGCTAAGTTTTCTTTTG GTTGGA [1059]
tyrA	prephenate dehydrogenase	82		GCTGTCGAATCATTTCTA AAATATACGT [1111]
yhiN	yhiN-protein	57	CAATTGGCTTTCGATT ATTGTTGTA [1060]	AACCAATGATCTAGTGTA AATGTTAAACCT [1061]
	Virulence Factors			
clfA	clumping factor A	3	GCTTCAGTGCTTGTA GGTACGTTAA [952]	TTGATTCACTAATTCCTCC GCAT [953]
clfB	clumping factor B	4	TAATGATACATCTGAT ATTAGTGCAAACAC [954]	TTTAGCATCAGCAGCATT TACTACC [955]
cna	collagen adhesin	85	TCGAGGAATTAACAA AGGTC [1116]	ATCAGGTTTAGTTGGTGG TG [1117]
coa	staphylocoagulase	5	TGTTAGGGATACACA ACATAAAACTGA [956]	GATTITGTTTCAGATTCAC CGTATTT [957]
ebpS	cell surface elastin binding protein	86	GAACCTAGCCATCAA GACAG [1118]	GCATTATTAGAGGCATGT GG [1119]
EDIN	Epidermal cell differentiation inhibitor	113	TATCTTTAGCATTAAG CGTTTATTCAAT [1172]	TTTCTAACTAGATTTTCAT CATACTGGC [1173]
eta	exfoliative toxine A precursor	114	TGCATTTAATTTACCA AAAGAGCTT [1174]	TGGATAGCCTATTAATTC GAGTTTG [1175]
etb	exfoliative toxine B precursor	115	AAGAGCTTTATACACA CATTACGGATAA [1176]	CAAAATATTGAGAATCAT TGAACATTTC [1177]
fbpA	fibrinogen binding protein	88	CTCTTTTTACCTTTGA CGTTGGATT [1122]	GCCAAAATAGTGCTTCAA TATCAGA [1123]
fib	fibrinogen binding protein	89	GCTTTTCTGTGTGCAC TGACAGT [1124]	AGCGAAGGATACGGTCC AAG [1125]
fnbA	fibronectin-binding protein	93		AAACTGCACAACCAGCAA ATATAGA [1133]
fnbB	fibronectin-binding protein	90	CCGCCTTAATTCCTTC TCCAAA [1126]	GCGAGTTGATTTGCCATC GG [1127]
geh	lipase precursor; glycerol ester hydrolase	59		AGGTGCAGTTTTATCATT AGACGG [1065]
hla	alpha-hemolysin	120	ATGATGAAAATGAAA ACACGTATAGTC [1186]	ATTTGAGCTACTTCATTAT CAGGTAGTTG [1187]
hlb	beta-hemolysin	121	TGTTAATAAAGGCACT CCAGAGTTC [1188]	CTTTGATTGGGTAATGAT CTGAAAA [1189]
hld	delta-hemolysin	110	TTTTATCTTAATTAAG GAAGGAGTGATTTC [1166]	TAGTGAATTTGTTCACTG TGTCGATAA [1167]

aacA- aphD	bifunctional aminoglycoside modifying enzyme	843		CTTTTCTTTTGCATAACC TTTTTTC [2633]
	Antibiotic Resistance Determinants			
tst	toxic shock syndrom toxin	138	AAAATTACCTACTCCA ATAGAACTACCTTT [1222]	TTTCTGCTTCTATAGTTTT TATTTCATCA [1223]
sprV8	V8 serine protease gene	137	CAAACA [1220]	CATTGTTGCTGGTTTAAC TACTTCAC [1221]
spa	precursor	94	CTTTAGG [1134]	AGGTTAGCACTTTGACTT GG [1135]
sec	staphylococcal enterotoxin C precursor	129	11 0 1 0 0 1 0 1 1 0 1 - 1 1 -	ATTCCTAGCTTTTATGTCT AGTTCTTGAG [1205]
seb	staphylococcal enterotoxin B precursor	128	ATATATTCTATTAAGG ACACTAAGTTAGGGA AT [1202]	AGTTAGGTAATCTAATTCT TGAGCAGTCA [1203]
sea	staphylococcal enterotoxin A precursor	127	CTGATGTTTTTGATGG	TGCATGTTTTCAGAGTTA ATCGTTT [1201]
sak	staphylokinase	126		GCGCAAAGATCGAAGTCA CTTAT [1199]
nuc	nuclease	71	GCGATTGATGGTGAT ACGGTT [1088]	TTTCGCTTGTGCTTCACT TTT [1089]
NAG	N-acetyl- glucosaminidase; cytotoxin	125		TGCATTTACCCAACCAGT GC [1197]
lukS_N	leucocidin S; C- terminus	123		AATCAAAGCATCTTTGTTA TACTTT [1193]
lukS_C	leucocidin S; C- terminus	124	AGTGTTCAATGGGGA ATAAAAGCTA [1194]	GATCCTTCTAAATAACTAT TGCCATAGTG [1195]
lukF	leucocidin F	122	CATATGGCAGAGATA GTTATCATTCAACT [1190]	GATGTATGAGTTGCTCTT ATGTGATCTTTA [1191]
lip	lipase; glycerol ester hydrolase	68	TTTTAAGTGGTGGAC AAGCACAA [1082]	GATTGTTATTAGCGTTTG AATCTTGAC [1083]
IgGbg	IgG-binding protein	112	GGGTTCTTGCTGTCTT TAAGTGATT [1170]	
hysA	hyaluronate lyase	111	AAACATCAAATCGCT GTGGCT [1168]	GTGAAAGATGCCCTTGAG TGG [1169]
hlgC_C	gamma-hemolysin component C; C- terminus	119		CCAATTGACTTCATATTTC ACAGTGTA [1185]
hlgB	gamma-hemolysin component B	118	ATAGCTTCCACCCAAC ATATGGTAA [1182]	ATTTCACTTTGTGATTTTC CCAATC [1183]
hlgA_N	gamma-hemolysin component A; N- terminus	116	AAGAAAGT [1178]	ATGTTTTGAGTTATAGCT AATCGTT [1179]
hlgA_C	gamma-hemolysin component A; C- terminus	117	ACTGAAGTAGAAAGT CAGAACTCTAAAGGT [1180]	GTGTTTTCCAGTTCACTTC ATATTTAACT [1181]

aadD	aminoglycoside acetyl transferase; kanamycin resistance	837	AAGCAGAGTTCAGCC ATGAATG [2620]	CAGATGCGATGATGCAGA CC [2621]
aphA3	3' 5'-aminoglycoside acetyltransferase; kanamycin resistance	845	GAAAACC [2636]	CCAGTTTTCGCAATCCAC ATC [2637]
blaI	regulator protein	814	AGCAAGTTGAAATAT CTATGGCTGA [2574]	TCATTTAAAATGTCTCGCA ATTCTT [2575]
blaR	beta lactamase repressor	790		GCATTTTTCCCAGATGGC TT [2527]
blaZ	beta-lactamase	827	GATAAGAGATTTGCC TATGCTTCAA [2600]	TGCTTAATTTTCCATTTGC GAT [2601]
cadA	Probable cadmium- transporting ATPase (Cadmium efflux ATPase)	897	TTGGATAGTTCAACAA AAACATTAACA [2740]	
cadC	Cadmium efflux system accessory protein homolog	908	TAGCAACCTCCCTTTG ATAC [2762]	ACAAAAGATATGTGTGAA GTTACC [2763]
cat	chloramphenicol acetyltransferase	862	CCTTCTTTGATTTATG CAATTATGG [2670]	GAAGCATGGTAACCATCA CATACA [2671]
dfrA	S1 dihydrofolate reductase; trimethoprim resistance	859	ATGACATTATCAATAA	AACATGACCAGATAACTC TITAATTTCAT [2665]
ermA	rRNA methylase	852	TAGCTATCTTATCGTT GAGAAGGGAT [2650]	AAAGAAATTGTTCCTTCG ATAGTTTATT [2651]
ermB	adenine methylase	851	AACCGATACCGTTTAC GAAATTG [2648]	CGCTTGTAGAATCCTTCT TCAACA [2649]
ermC	adenine methylase	846	AACACAGTCAAAACTT TATTACTTCAAAAC [2638]	TTGCATAATTTATGGTCTA TTTCAATG [2639]
femA	factor essential for methicillin resistance	801	TAGGATTTGAACATAC TGGATTCCA [2548]	AAAGGCACTAACACACGG TCTTT [2549]
femD	putative factor essential for methicillin resistance	16	TCAGGTGAAATGTTA GAATCAGCA [978]	TAAGTCACCAAATAAGAA TGGCG [979]
fmhA	similar to Staphylococcus aureus FemA and FemB proteins	825	GTTAACGATTGATGA AACGCAAA [2596]	TGCACCATCTTGTTCAATT TGTT [2597]
fmhB	essential for addition of glycine 1 to peptidoglycan precursor	818	GAGTTATTAAATAGTT TTGAACGCCG [2582]	TTCAGGATGTTCCTTTTCT AAAGCT [2583]
linA	lincosaminide	850	GATATAGGATACAAA ATAGAAGTTGATTGG [2646]	GGTCTTTTTCTGTTAATTC ATAACCG [2647]

mecA	penicillin binding protein 2'	802		CTAATAGATGTGAAGTCG CTTTTCCT [2551]
mecI	mecI protein	812	TAATAAAACGTATGAA ATATCATCTGCA [2570]	TTTCATCTTGTGATAGATC TTCTTTTTC [2571]
mecR	mecI protein	798	TTTAAAGAATGGAAC CAAGATCAAA [2542]	TCGCCTTTTAAATGTGTA GCAAA [2543]
mreA	ABC transporter	907	GCAGTATTAGTACTTG ATGAACCAACG [2760]	GACAAAACGTACAGGATG TCCATAA [2761]
mreB	ABC transporter	36	ATGAGGTACTCTTTAA TTAGTGGTATCTTGA [1018]	ATCAGCTAATGAAATGAA GATTGCA [1019]
mreR	ABC transporter	37	GAAAATACAGAACTT GATGGTGAAATG [1020]	GCAAGACTCACATACACC ATAAACTTC [1021]
msrA	methionine sulfoxide reductase	854	TCATAAGCTGACAGA TTTTCGATCC [2654]	CTTTTAGATGAACCTACA AATCACTTGG [2655]
norA	quinolone resistance protein	904	TTAGCTTTCATAATGT CAGTTGTATTGA [2754]	ACAGTGTTTCAAATGCCG ATAAA [2755]
pbpF	penicillin-binding protein Pbp2b	42		CTATCCCAATCCATAGAC GTGTTAA [1031]
qacA	quaternary ammo- nium compound resistance protein	885		GCCCACTACAGATTCTTC AGCTAC [2717]
spc	adenyltransferase AAD9	844	ATATCAGGAAAGATT GGAAATACGG [2634]	AAAGAGGTATAGCCCATT CTGCA [2635]

In order to obtain a high specificity level, each selected gene was compared to all other gene sequences available in the NCBI database using the BLAST algorithm. From that comparison, regions (ranging from 104 to 1434 bp) devoid of apparent homology with genes of other bacterial species and Homo sapiens were defined and amplified by PCR using specifically designed primers (see Tab. 6). A mixture of the total DNA from three different S. aureus reference strains and 100 clinical isolates was used as template for amplification of S. aureus gene segments, increasing therefore the chances to amplify more seldom occurring virulence and antibiotic resistance genes. PCR products were cloned into the plasmid pCR 2.1-Topo Vector (Invitrogen, Karlruhe, Germany) which were used to transform competent Escherichia coli (XL-1-Blue) cells using the Calcium Chloride protocol (Seidman, C.E. et al., in: Ausubel, F.M. (ed.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (2000)). Recombinant plasmids containing selected gene segments were screened by restriction analysis and verified by sequencing. The plasmid library constructed was used for re-amplification and production of the bulk DNA (10 µg at a concentration of 1 µM) from each clone necessary for printing the

5

10

15

microchips. A Microgrid II spotter (BioRobotics, Cambridge, UK) and CMT-GAPS[™] coated glass slides (Corning Incorporated, Corning, USA) were used. The complete array of 140 segments of genes was spotted in 3 replicates per slide.

C) DNA purification

5 <u>a) Sample preparation</u>

<u>Bacterial cultures:</u> Overnight cultures (5 ml) were harvested at 2,560g for 10 minutes. After discarding the supernatant the pellet was washed in 1ml TE (10 mM Tris-HCl, pH 7.5 - 1 mM EDTA) and recovered by centrifugation at 17,900 g for 2 min.

Blood cultures: One ml of blood culture was mixed with 1 ml 0.1% Triton®-X-100 and kept at room temperature for 5 min in order to disrupt blood human cells and resolve bacterial clumps. Bacterial cells were then harvested at 17,900 g for 10 min. Pellets were washed in 1 ml TE and recovered as described above.

b) Purification of DNA

15 Pellets of harvested cells were resuspended in 500 µl lysis buffer (20 mM Tris-HCl, pH 8.0 - 2 mM EDTA, pH 8.0 - 1.2% Triton[®]-X-100). To promote bacterial lysis, lysozyme and lysostaphin (Sigma, Taufkirchen, Germany) were added to reach a final concentration of 0.8 mg/ml and 0.2 mg/ml respectively. To lyse Gram negative bacterial cells, only lysozyme in the indicated concentration was used. Samples were then incubated for one hour at 37°C. After treatment with Proteinase 20 K (1 mg/ml) (Sigma, Taufkirchen, Germany) for 5 hours at 55°C under mild agitation, the samples were heated at 65°C for 30 min to inactivate Proteinase K and then cooled down to 37°C. Finally, a RNAse A treatment (0.2 mg/ml) was 37°C. carried out for hour at Α pre-treatment with 1 (Cethyltrimethylammonium bromide) was performed in order to release DNA from 25 polysaccharide DNA complexes (Murray, M.G. and Thopson, W.F., Nucl. Acid Res. 8:4321-4325 (1980)). Salt concentration was adjusted to 0.7 M by adding 5 M NaCl. After thoroughly mixing, a 10% CTAB-0.7M NaCl solution was added to adjust the CTAB concentration to 1%.

The mixture was subsequently incubated under rotation for 20 min at 65°C and then extracted with one volume of chloroform/isoamyl alcohol (24:1). The samples were spun in a microcentrifuge (17,900 g) at room temperature. The aqueous phase was extracted once with chloroform/isoamyl alcohol (24:1), once with phenol/chloroform/isoamyl alcohol (25:24:1) and finally with chloroform/isoamyl alcohol (25:24:1). Genomic DNA in the aqueous phase was sonified (3 x 10 s at 12% amplitude with 20 s breaks between pulses) in a Digital Sonifier (Branson, Schwaebisch Gmuend, Germany) to obtain fragments of around 1 kb, then precipitated with one volume of isopropanol and pelleted by centrifugation for 30 min at 4°C in a microcentrifuge at 17,900 g. The pellets were washed in 70% ethanol and resuspended in 50-100 μ l TE (10 mM Tris-HCl, pH 7.5 - 1 mM EDTA). This DNA preparation was used when a high yield (hundreds of μ g) was necessary, for example to prepare samples for several hybridisations experiments.

5

10

15

20

25

30

A second protocol using DNeasy Tissue Kit (QIAGEN, Hilden, Germany) adapted to bacterial cells and allowing DNA preparation in two hours, was also used when fast preparation was the priority. The abbreviations below pertain to the manufacturer's abbreviations for buffers used in the kit. The bacterial pellet was resuspended in 1 ml ddH₂O and the cell suspension frozen in liquid N₂ for 1 minute and then placed in a 60° C thermo-block for 2 minutes. Such a treatment was repeated once and bacteria were centrifuged again for 5 minutes at 14,000g. The resulting pellet was resuspended in 180 µl lysis buffer (20 mM Tris-HCl, pH 8.0 - 2 mM EDTA, pH 8.0 -1.2% Triton-X-100). Specifically for S. aureus DNA preparation, lysostaphin (0.2mg/ml) was added and incubated 1 hour at 37°C. After, 200 µl of buffer AL (for gram positive bacteria) or buffer ATL (for gram negative) and 25 µl of the Proteinase K solution delivered with the kit were added and incubated at 70°C for 30 minutes. 200 µl of 100% ethanol were added and the suspension transferred to a DNeasy Mini Column placed into a collection tube. The column was centrifuged at 6,000 g for 1 minute, washed first with 500 µl of buffer AW1, centrifuged at 6,000 g for 1 minute, washed then with 500 µl of buffer AW2, and centrifuged at 14,000 g for 3 minutes. The column was then placed in a 1.5 ml tube and centrifuged once more at 14,000 g for 1 minute. DNA was eluted with 130 µl of buffer AE. After one minute the column was centrifuged at 6,000g for 1 minute. The eluate was reloaded in the column and centrifuged again under the same conditions in order to increase the DNA yield.

D) DNA labelling

5

10

15

Different amounts of DNA (5 ng to 5 μ g) were labelled with 3 μ l either of Cy5-dCTP or Cy3-dCTP (Amersham Pharmacia Biotech Europe, Freiburg, Germany) by random priming (1 x random primer/Klenow reaction buffer) using Klenow Polymerase (50units) (both from BioPrime DNA labelling Kit, Invitrogen, Karlsruhe, Germany) in the presence of 0.12 mM dATP's, dGTP's and dTTP's and 0.06 mM dCTP's, in a total volume of 50 μ l. After 2 hours incubation at 37°C, the reaction was interrupted by adding 5 μ l of 0.5 M EDTA and the probe purified either by MiniElute PCR or QIAquick Purification Kits (QIAGEN, Hilden, Germany), depending on the amount of labelled DNA applying two wash and two elution steps.

E) Hybridisation and detection procedure

All experiments described in the present example represent co-hybridisation of two different DNA samples labelled respectively with Cy3 and Cy5. Cy3 and Cy5 belong to the cyanine family of fluorophores and were used as reporter molecules. The photochemical properties of the two CyDye fluors were as follows: Absorption maximum at 550 nm and emission maximum at 570 nm for Cy3 and for Cy5 at 649 nm and 670 nm, respectively.

20 After purification, Cy3 and Cy5 labelled DNA were pooled and 10 µg of Salmon Sperm DNA and 50 µg of polyA DNA were added. The mixture was frozen in liquid nitrogen and lyophilized in the dark. DNA microchips were automatically hybridised in a GeneTac Hybridisation Station (Genomic Solutions, Harvard, USA) following the Corning protocol.

Shortly, 110 μl of pre-hybridisation buffer (25% Formamide, 5x SSC, 0.1% SDS, 10 mg/ml BSA) were added to each slide and incubated for one hour at 42°C. Lyophilized samples were resuspended in 110μl of hybridisation buffer (25% Formamide, 5x SSC, 0.1% SDS), denatured for 3 minutes at 90°C, added to the slides, and incubated 4 hours at 42°C. After several washing steps using successively 2 x SSC/0.1% SDS, 0.1 x SSC/0.1% SDS, and 0.1 x SSC, slides were

dried by a 2 min centrifugation step (1000 g) and read in a Scan Array 5000 (Perkin Elmer, Boston, USA) using emission filters for Cy3 and Cy5 in two separate channels. Fluorescence intensities as hybridisation indicators were then analyzed by the software ImaGene (BioBiscovery, Marina Del Rey, USA). Spots were found and segmented in order to select areas of recognizable signals for analysis. Intensity of fluorescence of each spot was measured, signal to local background ratios were calculated, spot morphology and deviation from expected spot position were considered. Cut off values for those parameters were empirically determined in pilot experiments and used to tag spots either as positive or as negative.

10 F) Validation of the detection system

5

15

20

25

30

The experimental approach adopted in present example required dual-dye hybridisations. It was therefore necessary to verify at first whether DNA samples from the same source, labelled with one or the other fluorochrome, would produce the same hybridisation pattern. Co-hybridisation experiments, combining two identical samples of 2 μ g of *S. aureus* DNA, produced strictly similar hybridisation results whatever fluorochrome was used for labelling (Fig. 2A). For better presentation gray scale images from scanning were converted in false-colour, where green and red colour represent intensity of Cy3 and Cy5 fluorochromes respectively. All spots showed double-hybridisation - yellow colour meaning the overlay between green (here assigned to Cy3 labelled DNA) and red signals (Cy5 labelled DNA). Signal intensities from both channels strongly correlated (r^2 =0,97) (Fig. 2B).

G) Sensitivity of detection

S. aureus DNA samples in decreasing amounts (from 2 µg to 5 ng) were labelled and hybridised in order to determine the minimum amount of DNA producing the expected hybridisation pattern for a certain strain. Such expected patterns were defined as those produced by the hybridisation of 2 µg of DNA. From 2 µg to 50 ng no significant differences in the hybridisation pattern were observed with no false negative spots. Detection of 20 ng DNA was still satisfying with only 5% of false negative and false positive. However, 5 ng of labelled DNA yielded weak signals with almost 95% of false negative spots (data not shown). The limit of sensitivity of the S. aureus microarray was then considered as being 20 ng DNA which

corresponds approximately to 7 x 10^6 *S. aureus* CFU (*S. aureus* genome 2.5 x 10^6 bp. 2.8 fg DNA per cell).

H) Specificity of detection

5

10

15

25

30

The specificity of the *S. aureus* microchip was demonstrated by six independently performed co-hybridisation experiments. Visual examination of pictures showing results of co-hybridisation of *S. aureus* DNA with *Pseudomonas aeruginosa* or *Escherichia coli* DNA revealed no cross-hybridisation between *S. aureus* selected gene segments and DNA probes from those Gram negative bacteria (data not shown). Transcribing these data in a bar code showing positive or negative spots (Fig. 3A and B) confirmed that only the *S. aureus* DNA sample hybridised with spotted probes.

The specificity of the microarray could be demonstrated even below the genus level. As shown in Fig. 4, some spotted *S. aureus* probes cross-hybridised with *S. epidermidis* and *S. saprophyticus* DNA samples. This is not surprising as these species are phylogenetically closely related. However, genes coding for *S. aureus* specific proteins as nuclease (*nuc*), clumping factors A and B (*clfA* and B), protein A (*spa*), V8 serine protease (*sprV8*) and alpha and beta hemolysins (*hla* and *hlb*) exclusively hybridised with *S. aureus* DNA. The presence/absence of such genes allowed unambiguous discrimination between *S. aureus* and CoNS.

20 <u>I) S. aureus strain profiling</u>

The principle of the *S. aureus* microarray was tested as a tool for strain profiling. A distinctive hybridisation pattern could be established for reference strains and 10 selected clinical isolates. For instance when DNA from clinical isolates T100 and T103 were labelled with Cy5 and Cy3, respectively, and co-hybridised, both isolates were identified as *S. aureus*, since both contained species-specific genes as e.g. clumping factor A and B (Fig. 5A).

Moreover, both strains are methicillin resistant (*mecA* positive), but only T100 contained the beta-lactamase gene. The hybridisation of T103 DNA reveals the presence of *ermA*, *ermB* and *aacA* genes indicating that the strain is resistant to erythromycin and aminoglycosides.

Apparently, T103 harbors the genes encoding enterotoxines A (eta) and B (etb) while in T100 the gene encoding enterotoxin C (etc) is present. The presence or absence of these genes was confirmed by PCR assays (Fig. 5B) and the antibiotic resistance was verified by classical antibiograms (Sahm, D. & Washington, J. A. (1991). Antibacterial susceptibility tests: dilution methods. In: Manual of Clinical Microbiology (Balows, A., Ed.), pp. 1105–16. American Society for Microbiology, Washington DC, USA) (data not shown).

J) Detection of S. aureus in spiked positive BACTEC® cultures

5

10

15

20

25

30

One possible application of the *S. aureus* microarray is to detect the bacterium growing in blood culture, i.e. after the BACTEC® signals bacterial growth. Blood culture bottles were spiked with 100 CFU of *S. aureus*. After the automated culturing system indicated bacterial growth, 1 ml was withdrawn for DNA extraction.

As shown in Fig. 6A, DNA samples prepared from sterile blood culture show no crosshybridisation with spotted *S. aureus* probes. A 2 µg DNA sample derived from blood culture containing *S. aureus* cells revealed a hybridisation pattern almost completely identical to a DNA sample isolated from an overnight LB culture inoculated with a *S. aureus* colony (Fig. 6B).

These data underscore the high sensitivity and specificity of the detection system since blood culture DNA comprises a mixture of human and bacterial DNA. Cohybridisation between DNA from blood culture positive for *S. aureus* and CoNS DNA also allowed clear identification since only the *S. aureus* probe hybridised to *S. aureus* species-specific genes (data not shown).

K) Detection of *S. aureus* in positive BACTEC® cultures inoculated with clinical specimens

Co-hybridisation with DNA from clinical blood cultures positive for *S.aureus* and CoNS (*Staphylococus epidermidis*), *Streptococcus mitis*, *E. coli* and *Klebsiella oxytoca* allowed clear species identification since the *S.aureus* probes hybridised to *S.aureus* species-specific genes only. *Staphylococcus epidermidis* positive blood culture DNA hybridised to staphylococcal metabolic genes and to some antibiotic

resistance determinant genes only. No cross-hybridisation was detected between DNA from the two gram-negative strains and the *Streptococcus* strain and *S. aureus* spotted gene probes (data not shown).

Example 2.1: Materials and Methods

5

10

15

20

25

30

Reference strains, clinical isolates and culture conditions: Bacterial reference strains were obtained from the American Type Culture Collection (ATCC, Manassas, Va.), the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany), the Collection Institute Pasteur (CIP, Paris, France) or the network on antimicrobial resistance in *Staphylococcus aureus* (NARSA, Herndon, Virginia). *Klebsiella pneumoniae* serotype O3 and serotype O8 were provided by E.M. Nielsen (Department of Bacteriology, Mycology and Parasitology, Statens Serum Institut, Copenhagen, Denmark). Clinical isolates were obtained from the inventors' clinical routine microbiology laboratory.

The following bacteria and fungi were used for evaluation of the specificity of the microarray: Acinetobacter baumannii (DSM 30008, 1 clinical isolate), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC 25922, CIP 105893, 81.88, 74.14 and 3 clinical isolates), Klebsiella oxytoca (DSM 4798, 1 clinical isolate), Klebsiella pneumoniae (DSM 681, serotype O3 strain 390 and serotype O8 strain 889), Proteus mirabilis (DSM 788, 2 clinical isolates), Proteus vulgaris (DSM 2140), Candida albicans (ATCC 10231), Enterococcus casseliflavus (clinical isolate), Enterococcus faecalis (ATCC 29212, 1 clinical isolate), Enterococcus faecium (clinical isolate), Enterococcus gallinarum (clinical isolate), Streptococcus agalactiae (DSM 2134), Streptococcus angiosus (DSM 20563), Streptococcus bovis (DSM 20480), Streptococcus dysgalactiae (DSM 20662), Streptococcus gordonii (DSM 6777), Streptococcus mutans (DSM 20523), Streptococcus pneumoniae (ATCC 49619), Streptococcus pyogenes (DSM 11723), Staphylococcus aureus (ATCC 29213, NRS123 alias MW2, 2 clinical isolates), Staphylococcus epidermidis (ATCC 1 clinical isolates), Staphylococcus haemolyticus (DSM 12228, Staphylococcus hominis (DSM 20228), Staphylococcus lugdunensis (DSM 4804), Staphylococcus saprophyticus (ATCC 14953) and Staphylococcus warneri (DSM 20316).

Bacterial and fungal reference strains and clinical isolates were grown over night at $37\,^{\circ}\text{C}$ with constant shaking in 5 ml Luria-Bertani (LB) broth or tryptic soy broth

(TSB, 30 g/l, Merck) containing 3 g/l yeast extract. Enterococci and streptococci were grown in 10 ml TSB plus yeast without agitation under 5% CO₂. Overnight cultures were harvested at 2,560 g for 10 min. After discarding the supernatant the pellet was washed in 1 ml TE (10 mM Tris-HCl, pH 7.5 and 1 mM EDTA) and recovered by centrifugation at 17,900 g for 10 min. Cell pellets were used for DNA preparation.

Example 2.2: DNA preparation

5

10

15

25

30

For microarray hybridization experiments, DNA was prepared from the strains listed in Example 2.1.

Total cellular DNA was extracted and purified by using the Bacterial Genomic DNS Purification Kit (Edge BioSystems, Gaithersburg, USA). Cell pellets were resuspended in 200 µl lysis buffer (20 mM Tris-HCl, pH 7.5, 50 mM NaCl and 10 mM EDTA, pH 8.0) and lysozyme (Sigma, Taufkirchen, Germany) was added to reach a final concentration of 7.5 mg/ml. In additon, lysostaphin (Sigma) was added to a final concentration of 0.2 mg/ml to promote Staphylococcal lysis or mutanolysin (0.5 U/µl; Sigma) was added to lyse Streptococci and Enterococci. After incubation at 37°C for one hour, 400 µl Sphaeroblast buffer were added and DNA was extracted following the instructions of the supplier.

20 Candida albicans DNA was extracted using the MasterPure Yeast DNA purification kit (Epicentre Biotechnologies, Madison USA) following the instructions of the manufacturer.

Concentration, purity and size of the purified DNA preparations were determined by UV-spectrophotometry (lambda 40, PerkinElmer, Boston USA) and 1% agarose gel electrophoresis.

Example 2.3: DNA labelling

Prior to labelling, high molecular weight DNA (\geq 12 kb) was fragmented by sonication for 30 sec at an amplitude of 80% (energy input 1500 kJ) using an ultrasonic homogenizer (Sonoplus HD 3080, Bandelin, Berlin, Germany) equipped with a BR30 booster cup for high-intensive irradiation of small and sensitive sample volumes. The size of the fragmented DNA (500-8000 bp) was checked by 1.5% agarose gel electrophoresis. Different amounts of DNA (1 to 5 μ g) were then labeled with 3 μ l either of Cy5-dCTP or Cy3-dCTP (Amersham Pharmacia Biotech

Europe, Freiburg, Germany) by random priming (1 x random primer/Klenow reaction buffer) using Klenow Polymerase (50 units) (both from BioPrime DNA labeling Kit, Invitrogen, Karlsruhe, Germany) in the presence of 0.12 mM dATP's, dGTP's and dTTP's and 0.06 mM dCTP's, in a total volume of 50 µl. Prior to labelling, each target DNA was spiked with three gene segments (1 µl each, 30 ng/µl) amplified by PCR from selected recombinant plasmids to serve as internal positive controls. After 2 hours incubation at 37°C, the reaction was interrupted by adding 5 µl of 0.5 M EDTA and unbound label was removed using the QIAquick Purification Kit (QIAGEN, Hilden, Germany). The purified labelled DNA was eluted in 80 µl TE and the relative labelling efficiency of a reaction was evaluated by calculating the approximate ratio of bases to dye molecules (acceptable labelling ratios for nucleic acid were ≤60). This ratio and the amount of recovered labelled DNA was determined by measuring the absorbance of the nucleic acids at 260 nm and the absorbance of the dye at its absorbance maximum using a lambda40 UVspectrophotometer (PerkinElmer) and plastic disposable cuvettes for the range from 220 nm to 1,600 nm (UVette; Eppendorf, Hamburg, Germany).

Example 2.4: Microarray construction

5

10

15

20

25

30

Cloned PCR-products were used to generate probes for the DNA microarray. All together 930 gene segments ("probes") were represented on the microarray (Tab. 7). They comprised probes for virulence genes, species specific metabolic and structural genes from *Candida albicans* (86), *Acinetobacter baumannii* (21), *Enterobacter cloacae* (11), *Escherichia coli* (31), *Enterococcus faecalis* (69), *E. faecium* (23), *Klebsiella oxytoca* (21), *K. pneumoniae* (50), *P. aeruginosa* (53), *Proteus mirabilis* (70), *P. vulgaris* (9), *Stenotrophomonas maltophilia* (13), *Streptococcus agalactiae* (38), *S. dysgalactiae* (1), *S. pneumoniae* (83), *S. pyogenes* (42), *S. viridans* (19, including probes for *S. mutans* and *S. bovis*), Streptococci (2), *Staphylococcus aureus* (69), *S. epidermidis* (35), *S. haemolyticus* (7), *S. hominis* (1), *S. lugdunensis* (6), *S. saprophyticus* (2) and *S. warneri* (7), as well as for bacterial antibiotic resistant determinants (131), and positive and negative controls (29).

<u>Tab. 7:</u> Gene probes on array of example 2.

n Probe Name S	eqID
----------------	------

n	Probe Name	SeqID
1	16SKpn_1_1	934
2	16SrRNAPrmi_1_1	940
3	16SRNAEf_1_1	936
4		933
5	16SShaemolyt_1_1	938
	16SShominis_1_1	937
$\overline{}$	16SStrepagalactiae_1_1	930
	16SPa 1 1	926
	16SSa 1 1	942
	16SSa_3_1	935
	16SStrepneu_1_1	929
	16SStrepyog_1_1	928
	16SKlox_1_1	943
_	16SrRNAPrvu1_1_1	941
_		
	16SEfaecium_1_1 16SEfaecium 2 1	931 932
	23SEfaecium_1_1	939
	23SEfaecium_2_1	927
	ARHGDIA(hu)_1_1	923
Company of the last	b-Act(hu)_1_1	922
_	GAPD(hu)_1_1	921
	LDHA(hu)_1_1	920
	PGK1(hu)_1_1	924
	rbcL_1_1	919
_	rbcL_1_2	925
	aac(6p)-lb7_1_1	2867
	aacA-aphD_1_1	843
	aacA4ENCL_1_1	2864
	aacC2_1_1	833
	aadB_1_2	836
	aadD_1_1	837
32	adeA-ACIBA_1_1	2866
33	adeB-ACIBA_1_1	2868
	adeC-ACIBA_1_1	2869
35	AdeR-ACIBA_1_1	2865
36	AdeS-ACIBA_1_1	2870
37	aph-A3_1_1	840
38	strA_1_1	839
39	strB_1_1	834
40	aacA_aphDStwar_1_1	831
41	aacA4_1_1	842
42	aacA4_1_2	838
43	aacC1_1_1	841
	aacC1_1_2	832
45	aadA_1_1	835
	aphA3_1_1	845
		

47 ampC-ENCL_1_1 2874 48 ampC_1_1 789 49 ampR_1_1 2873 50 blaA_1_1 823 51 blaB_1_1 788 52 blalShaemolyt_1_1 803 53 blaL1_1_1 2875 54 blaL2_1_1 2871 55 blaMIR-3_1_1 2872 56 blaOXA-1_1_1 828 57 blaOXY-KLOX_1_1 816 58 blaSHV-1_1_1 794 59 blaTEM-106_1_1 815 60 blavim_1_1 804 61 blaZ_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 793 72 pbp2x_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 809 75 pbp5Efaecium_1_1 809 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 80 blaIMP-7_1_2 879 81 blaIMP-7_1_2 797 82 blaOXA-32_1_1 795 84 blaOXA-32_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829	П	Probe Name	SeqID
48 ampC_1_1 789 49 ampR_1_1 2873 50 blaA_1_1 823 51 blaB_1_1 788 52 blalShaemolyt_1_1 803 53 blaL1_1_1 2875 54 blaL2_1_1 2871 55 blaMIR-3_1_1 2872 56 blaOXA-1_1_1 828 57 blaOXY-KLOX_1_1 816 58 blaSHV-1_1_1 794 59 blaTEM-106_1_1 815 60 blavim_1_1 804 61 blaZ_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 793 72 pbp2x_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 75 pbp5Efaecium_1_1 809 75 pbp5Efaecium_1_1 809 75 pbp5Efaecium_1_1 822 80 blaIMP-7_1_2 809 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 822 81 blaOXA-2_1_1 795 82 blaOXA-2_1_1 795 83 blaOXA-2_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829			<u> </u>
49 ampR_1_1			
50 blaA_1_1	_		
51 blaB_1_1 788 52 blalShaemolyt_1_1 803 53 blaL1_1_1 2875 54 blaL2_1_1 2871 55 blaMIR-3_1_1 2872 56 blaOXA-1_1_1 816 57 blaOXY-KLOX_1_1 816 58 blaSHV-1_1_1 794 59 blaTEM-106_1_1 815 60 blavim_1_1 804 61 blaZ_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 mecISepid_1_1 786 70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_2 797<			
52 blalShaemolyt_1_1 803 53 blaL1_1_1 2875 54 blaL2_1_1 2871 55 blaMIR-3_1_1 2872 56 blaOXA-1_1_1 816 57 blaOXY-KLOX_1_1 816 58 blaSHV-1_1_1 794 59 blaTEM-106_1_1 815 60 blavim_1_1 804 61 blaZ_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 783 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 809 75 pbp5Efaecium_1_1 820 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 799 86 blaPER-1_1_1 830 88 blaPShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829 91 mecR1Sepid_1_1 829	\vdash		<u> </u>
53 blaL1_1_1 2875 54 blaL2_1_1 2871 55 blaMIR-3_1_1 2872 56 blaOXA-1_1_1 828 57 blaOXY-KLOX_1_1 816 58 blaSHV-1_1_1 794 59 blaTEM-106_1_1 815 60 blavim_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 70 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1 1 809 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 80 blaIMP-7_1_2 797 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 799 86 blaPER-1_1_1 829 91 mecR1Sepid_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 796 89 dacCStrpyog_1_1 829 91 mecR1Sepid_1_1 829			
54 blaL2_1_1 2872 55 blaMIR-3_1_1 828 57 blaOXA-1_1_1 816 58 blaSHV-1_1_1 794 59 blaTEM-106_1_1 815 60 blavim_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 819 67 meclSepid_1_1 786 70 pbp1a_1_1 786 70 pbp1a_1_1 807 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 80 blaIMP-7_1_2 797 81 blaOXA-10_1_2 787 83 blaOXA-2_1_1 799 86 blaPER-1_1_1 820 87 blaPrmi_1_1 820 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829			
55 blaMIR-3_1_1 828 56 blaOXA-1_1_1 828 57 blaOXY-KLOX_1_1 816 58 blaSHV-1_1_1 794 59 blaTEM-106_1_1 815 60 blavim_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 70 pbp1a_1_1 803 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 80 blaIMP-7_1_2 797 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 799 86 blaPER-1_1_1 829 91 mecR1Sepid_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 796 88 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829			
56 blaOXA-1_1_1 828 57 blaOXY-KLOX_1_1 816 58 blaSHV-1_1_1 794 59 blaTEM-106_1_1 815 60 blavim_1_1 804 61 blaZ_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_2 797 81 blaOXA-2_1_1 795 84 blaOXA-2_1_1 799 85 blaOXA-10_1_2 787 87 blaPFmi_1_1 799 86 blaPER-1_1_1 829 91 mecR1Sepid_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829			
57 blaOXY-KLOX_1_1	\vdash		
58 blaSHV-1_1_1			
59 blaTEM-106_1_1 815 60 blavim_1_1 804 61 blaZ_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_2 797 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 820 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829 91 mecR1Sepid_1_1 829			
60 blavim_1_1 804 61 blaZ_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_2 797 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 829 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829			
61 blaZ_1_1 827 62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 70 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_2 797 81 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 820 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
62 cumA_1_1 819 63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 70 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 824 80 blaIMP-7_1_2 797 81 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 820 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829			
63 femA_1_1 801 64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 824 80 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 820 87 blaPFR-1_1_1 820 88 blaPER-1_1_1 821 87 blaPrmi_1_1 820 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 829			
64 femBShaemolyt_1_1 820 65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 786 70 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 799 86 blaPER-1_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 829 91 mecR1Sepid_1_1 829			-
65 fmhA_1_1 825 66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 820 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
66 fmhB_1_1 818 67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 821 87 blaPER-1_1_1 830 88 blaPER-1_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826	_		
67 ftsWEF_1_1 817 68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 820 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
68 mecA_1_1 802 69 meclSepid_1_1 786 70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 809 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 820 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
69 meclSepid_1_1 786 70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			<u> </u>
70 pbp1a_1_1 813 71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 791 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 820 87 blaPimi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 809 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826	\vdash		
71 pbp2aStrpneu_1_1 793 72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 791 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
72 pbp2x_1_1 807 73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 791 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
73 pbp3Saureuc_1_1 808 74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
74 pbp4_1_1 809 75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 791 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
75 pbp5Efaecium_1_1 810 76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
76 pbpC_1_1 811 77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
77 psrb_1_1 824 78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
78 bla-CTX-M-22_1_1 792 79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
79 bla_FOX-3_1_1 822 80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			<u> </u>
80 blaIMP-7_1_1 785 81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			822
81 blaIMP-7_1_2 797 82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			785
82 blaOXA-10_1_2 787 83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			797
83 blaOXA-2_1_1 795 84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826	82		787
84 blaOXA-32_1_1 791 85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			795
85 blaOXY_1_1 799 86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
86 blaPER-1_1_1 821 87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826	-		799
87 blaPrmi_1_1 830 88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			
88 blaRShaemolyt_1_1 796 89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			830
89 dacCStrpyog_1_1 800 90 fox-6_1_1 829 91 mecR1Sepid_1_1 826			796
90 fox-6_1_1 829 91 mecR1Sepid_1_1 826	89		800
91 mecR1Sepid_1_1 826	$\overline{}$		829
	91	mecR1Sepid_1_1	826
	92	pbp2b_1_1	805

n	Probe Name	SeqID
\vdash	pbp2primeSepid_1_1	806
	cat 1 1	862
	catEfaecium_1_1	861
	cmlA5_1_1	860
	ble 1 1	875
-	ddl 1 1	874
-	vanRB2 1 1	870
	vanSB2 1 1	872
	vanWB2 1 1	873
	vanXB2 1 1	876
	vanA 1 1	867
-	vanB_1_1	879
	vanC-2 1 1	881
_	vanH(tn)_1_1	866
	vanHB2 1 1	868
$\overline{}$	vanR 1 1	869
109	vanS(tn) 1 1	871
110	vanX(tn)_1_1	882
	vanY(tn)_1_1	877
		878
113	vanZ(tn)_1_1	880
114	ermA_1_1	852
115	ermB_1_2	851
116	ermC_1_1	846
117	linB_1_1	847
118	mdrSA_1_1	849
119	mefA_1_1	856
120	mphBM_1_1	855
121	mrx_1_1	857
122	msrA_1_1	854
123	satA_1_1	853
124	satSA_1_1	848
	abcXStrpmut_1_1	894
$\overline{}$	acrA_1_1	892
127	acrB_1_1	883
	acrR_1_1	890
_	albA_1_1	898
130	arr2_1_1	906
131	cadBStalugd_1_1	888
-		896
-	emeA_1_1	891
	mexA_1_1	889
	mexB_1_2	884
	mexR_1_1	905
137	mreA_1_1	907
138	norA23_1_1	904

n	Probe Name	SeqID
\vdash	nov_1_1	901
	gacEdelta1_1_1	895
141		893
	sul 1 1	887
	sull 1 1	886
	sulli 1 1	2888
145	wbbl_1_1	903
146	wzm_1_1	899
147	wzt_1_1	902
148	msrCb_1_1	900
149	uvrA_1_1	909
150	tetA-ACIBA_1_1	2907
151	tetAJ_1_1	863
152	tetL_1_1	864
153	tetM_1_1	865
	tetR-ACIBA_1_1	2908
155	dfrA_1_1	859
156	dfrStrpneu_1_1	858
	AAF1_1_1	247
158	ALS1_1_1	249
159	ALS7_1_1	250
160	ASL43f_1_1	232
161	BGL2_1_1	233
	CACHS3_1_1	234
163	CEF3_1_1	237
	CHS1_1_1	238
	CHS2_1_1	239
	CHS4_1_1	240
	CHS5_1_1	241
	CHT1_1_1	242
	CHT2_1_1	243
	CHT4_1_1	244
	CSA1_1_1	245
	GSC1_1_1	257
	GSL1_1_1	258
	HWP1_2_1	261
	HYR1_1_1	262
	INT1a_1_1	263
	KRE15f_1_1	264
	KRE6_1_1	265
	KRE9_1_1	266
	MP65_1_1	269
	PHR1_1_1	272
	PHR2_1_1	273
	PHR3_1_1	274
184	PRA1_1_1	275

PCT/EP2006/010132

n	Probe Name	SeqID
185	RBT1_1_1	277
186	RBT4_1_1	278
	RHO1_1_1	279
	RVS167_1_1	283
	SKN1_1_1	285
	TCA1_1_1	287
	YAE1_1_1	289
	CDR1_1_1	911
$\overline{}$	CDR1_2_1	912
	CRD2_1_1	910
	ERG11_1_1	917
	FET3_1_1	914
	FTR2_1_1	915
	MDR1-7_1_1	916
	MET3_1_1	913
	SEC20_1_1	918
	ADH1_1_1 ARG56 1 1	248
		231
	ESS1_1_1 GAP1 1 1	253
	GAP1_1_1 GNA1_1_1	255 256
	HIS1_1_1	259
$\overline{}$		268
	NDE1_1_1	270
	PFK2_1_1	271
	SRB1_1_1	286
211	TRP1 1 1	288
-	YRB1_1_1	290
	5triphosphatase_1_1	246
=	CCT8_1_1	235
215	CDC37_1_1	236
216	EDT1_1_1	251
	ELF_1_1	252
218	FAL1_1_1	254
219	HTS1_1_1	260
$\overline{}$	MIG1_1_1	267
221	PRS1_1_1	276
222	RNR1_1_1	280
	RPB7_1_1	281
	RPL13_1_1	282
225	SHA3_1_1	284
226	YST1exon2_1_1	291
$\overline{}$	CCN1_1_1	292
	CDC28_1_1	293
	CLN2_1_1	294
230	CPH1_1_1	295

- 107 -

276 envZ_1_1

143

		T
<u></u>	Probe Name	SeqID
	fliCb_1_1	144
278	nfrB_1_1	145
279	nlpA_1_1	146
280	pilAe_1_1	147
281	yacH_1_1	148
	yagX_1_1	149
	ycdS_1_1	150
_	yciQ_1_1	151
	ymcA_1_1	152
	b1202_1_1	153
	eae_1_1	154
	eltB_1_1	155
$\overline{}$	escR_1_1	156
_	escT_1_1	157
-	escU_1_1	158
_	espB_1_1	159
	—	
		160
	fes_2_1	161
	fteA_1_1	162
	hlyA_1_1	163
	hlyB_1_1	164
	iucA_1_1	165
	iucB_1_1	166
	iucC_1_1	167
	papG_1_1	168
	rfbE_1_1	169
	shuA_1_1	170
	SLTII_1_1	171
	toxA-LTPA_1_1	172
	VT2vaB_1_1	173
	ABC-eltA_1_1	317
308	agrBfs_1_1	318
309	agrCfs_1_1	319
310	arcA_1_1	308
311	arcC_1_1	309
312	bkdA_1_1	310
313	cad_1_1	311
314	camE1_1_1	312
315	csrA_1_1	313
-	dacA_1_1	314
_	dfr_1_1	315
	dhoD1a_1_1	316
	dnaE_1_1	320
_	ebsA 1 1	321
	ebsB_1_1	322
	eep_1_1	323
~~~		

n	Probe Name	SeqID
323	efaR_1_1	324
324	gls24_glsB_1_1	325
325	gph_1_1	326
	gyrAEf_1_1	327
	metEf_1_1	328
328	mntHCb2_1_1	329
$\overline{}$	mob2_1_1	330
330	mvaD_1_1	331
	mvaE_1_1	332
332	parC_1_1	333
333	pcfG_1_1	334
334	phoZ_1_1	335
	polC_1_1	336
336	ptb_1_1	337
337	recS1_1_1	338
	rpoN_1_1	339
339	tms_1_1	340
340	tyrDC_1_1	341
341	tyrS_1_1	342
342	ace_1_1	351
343	asa1_1_1	343
344	asp1_1_1	344
345	cgh_1_1	345
346	cylA_1_1	346
347	cylB_1_1	347
348	cyll_1_1	348
349	cylL_cylS_1_1	349
350	cylM_1_1	350
	ef00108_1_1	352
352	ef00109_1_1	353
353	ef0011_1_1	354
	ef00113_1_1	355
355	ef0012_1_1	356
-	ef0022_1_1	357
-	ef0031_1_1	358
	ef0032_1_1	359
	ef0040_1_1	360
360	ef0058_1_1	361
361	enlA_1_1	362
_	esa_1_1	363
$\overline{}$	esp_1_1	364
	gelE_1_1	365
	groEL_1_1	366
_	groES_1_1	367
367	<del></del>	368
368	sala_1_1	369

n Probe Name	SeqID
369 salb 1 1	370
370 sea1 1 1	371
371 sep1_1_1	372
372 vicK_1_1	373
373 yycH_1_1	374
374 yycl_1_1	375
375 yycJ_1_1	376
376 bglB_1_1	377
377 bglR_1_1	378
378 bglS_1_1	379
379 efmA_1_1	380
380 efmB 1 1	381
381 efmC_1_1	382
382 mreC_1_1	383
383 mreD 1 1	384
384 mvaDEfaecium_1_1	385
385 mvaEEfaecium_1_1	386
386 mvaK1Efaecium 1 1	387
387 mvaK2Efaecium_1_1	388
388 mvaSEfaecium 1 1	389
389 orf3 4Efaeciumb 1 1	390
390 orf6 7Efaecium 1 1	391
391 orf7 8Efaecium 1 1	392
392 orf9_10Efaecium_1_1	393
393 entA entl 1 1	394
394 entD 1 1	395
395 entR 1 1	396
396 oep_1_1	397
397 sagA_1_2	398
398 H+ATPase_1_1	2887
399 cymA_1_1	449
400 cymD_1_1	450
401 cymE_1_1	451
402 cymH_1_1	452
403 cyml_1_1	453
404 cymJ_1_1	454
405 ddrA 1 1	455
406 fdt-1 1 1	456
407 fdt-2 1 1	457
408 fdt-3 1 1	458
409 gatY_1_1	459
410 hydH_1_1	460
411 masA_1_1	461
412 nasA_1 1	462
413 nasE_1_1	463
414 nasF_1_1	464

PCT/EP2006/010132

n	Probe Name	SeqID
415	pehX_1_1	465
416	pelX_1_1	466
417	tagH_1_1	467
$\overline{}$	tagK_1_1	468
419	tagT_1_1	469
420	acoA_1_1	408
421	acoB_1_1	409
422	acoC_1_1	410
423	ahlK_1_1	411
424	atsA_1_1	399
425	atsB_1_1	400
426	budC_1_1	401
427	citA_1_1	402
428	citW_1_1	403
429	citX_1_1	404
430	dalD_1_1	405
431	dalK_1_1	406
432	dalT_1_1	407
433	fimK_1_1	412
434	glfKPN2_1_1	413
435	liac_1_1	431
436	ltrA_1_1	414
437	mdcC_1_1	415
438	mdcF_1_1	416
439	mdcH_1_1	417
440	mrkA_1_1	418
441	mtrK_1_1	419
442	nifF_1_1	420
$\overline{}$	nifK_1_1	421
	nifN_1_1	422
445	tyrP_1_1	423
_	ureA_1_1	424
_	wbbO_1_1	425
	wza_1_1	426
	wzb_1_1	427
	wzmKPN2_1_1	428
	wztKPN2_1_1	429
	yojH_1_1	430
	aldA_1_1	433
$\overline{}$	aldA_2_1	434
455		432
$\overline{}$	hemly_1_1	435
_	pSL017_1_1	436
	pSL020_1_1	437
	rcsA_1_1	438
460	rmlC_1_1	439

n	Probe Name	SeqID
461	rmiD_1_1	440
_	waaG_1_1	441
_	wbbD 1 1	442
	wbbM_1_1	443
-	wbbN_1_1	444
	wbdA_1_1	445
	wbdC 1 1	446
$\overline{}$	wztKpn_1_1	447
	yibD_1_1	448
	glpR_1_1	470
	lasRb 1 1	471
	OrfX_1_1	472
	pa0260_1_1	473
_	pa0572 1 1	474
	pa0625_1_1	475
	pa0636 1 1	476
	pa1046_1_1	477
	pa1069 1 1	478
	pa1846_1_1	479
_	pa3866 1 1	480
	pa4082_1_1	481
	pilAp_1_1	482
	PilAp2_1_1	483
484	pilC_1_1	484
_	PstP 1 1	485
_	purK_1_1	486
_	uvrDII 1 1	487
	vsml 1 1	488
	vsmR_1_2	489
	xcpX_1_1	490
	algB_1_1	494
	 algN_1_1	495
	algR_1_1	496
	aprA_1_1	491
	aprE_1_1	492
496		493
	ExoS_1_1	497
$\vdash$	fpvA_1_1	498
	lasRa_1_1	499
500		500
	lipH_1_1	501
	Orf159_1_2	502
_	Orf252 1 1	503
	pchG_1_1	504
	PhzA 1 1	505
	PhzB 1 1	506
	<del></del>	

- 113 -

n	Probe Name	SeqID
_	PLC_1_1	507
_	plcN_1_1	508
	plcR_1_1	509
	pvdD_1_1	510
	pvdF_1_2	511
	pyocinS1_1_1	512
	pyocinS1im_1_1	513
	pyocinS2_1_1	514
_	pys2_1_1	515
	pys2_2_1	516
	rbf303 1 1	517
518	rhiA 1 1	518
519	rhlB_1_1	519
520	rhIR_1_1	520
	TnAP41_1_2	521
522	toxA_1_1	522
523	aad_1_1	711
524	atfA_1_1	706
525	atfB_1_1	707
526	atfC_1_1	708
	ccmPrmi1_1_1	709
-	cyaPrmi_1_1	710
	flfB_1_1	712
	flfD_1_1	713
	flfN_1_1	714
	flhD_1_1	715
	floA_1_1	716
	ftsK_1_1	717
	gstB_1_1	718
	hemCPrmi_1_1	719
	hemDPrmi_1_1	720
538	hev_1_1 katA 1 1	721
		722
	lpp1_1_1 menE 1 1	723 724
	mfd_1_1	<del></del>
	nrpA_1_1	725 726
_	nrpB_1_1	727
	nrpG_1_1	728
	nrpS_1_1	729
	nrpT_1_1	730
	nrpU_1_1	731
_	pat_1_1	732
	pmfA_1_1	733
	pmfC_1_1	734
	pmfE_1_1	735
تت	·	

n	Probe Name	SeqID
553	ppaA_1_1	736
554	rsbA_1_1	737
555	rsbC_1_1	738
556	speB_1_1	739
557		740
	stmB_1_1	741
	terA_1_1	742
-	terD_1_1	743
561	umoA_1_1	744
	umoB_1_1	745
	umoC_1_1	746
_	ureR_1_1	747
-	xerC_1_1 vabA 1 1	748
	73	749
	flaA_1_1 flaD 1 1	750
569		751 752
	hpmA_1_1	752 753
	hpmB_1_1	753 754
$\overline{}$	lpsPrmi 1 1	755
_	mrpA_1_1	756
-	mrpB_1_1	757
	mrpC_1_1	758
	mrpD_1_1	759
$\overline{}$	mrpE_1_1	760
	mrpF_1_1	761
579	mrpG_1_1	762
580	mrpH_1_1	763
581	mrpl_1_1	764
582	mrpJ_1_1	765
583	patA_1_1	766
584	putA_1_1	767
$\overline{}$	uca_1_1	768
	ureDPrmi_1_1	769
	ureEPrmi_1_1	770
$\vdash$	ureFPrmi_1_1	771
	zapA_1_1	772
	zapB_1_1	773
	zapD_1_1	774
	zapE_1_1	775
	envZPrvu_1_1	776
$\vdash$	frdC_1_1 frdD 1 1	777
		778
		779
	lad_1_1 tna2 1 1	780 781
290	uiaz_1_1	781

n	Probe Name	SeqID
599	end_1_1	782
600	pqrA_1_1	783
601	urg_1_1	784
602	eD_2_1	2892
603	eE_1_1	2890
604	eF_1_1	2899
605	et_1_1	2898
606	ORF2-STEMA_1_1	2897
607	ORF4-STEMA_1_1	2896
608	pam_1_1	2895
609	pmp-STEMA_1_1	2894
610	ppi_1_1	2893
611	smeE_1_1	2889
612	smeF4494_1_1	2901
613	StmPr1_1_1	2891
614	StmPr2_1_1	2900
615	0487Straga_1_1	625
616	0488Straga_1_1	626
617	0493Straga_1_1	627
618	0495Straga_1_1	628
619	0498Straga_1_1	629
620	0500Straga_1_1	630
621	0502Straga_1_1	631
622	0504Straga_1_1	632
623	cpsA1Strgal_1_1	606
624	cpsB1Strgal_1_1	607
625	cpsC1Strgal_1_1	608
626	cpsD1Strgal_1_1	609
627	cpsE1Strgal_1_1	610
628	cpsG1Strgal_1_1	611
629	cpsIStragal_1_1	612
630	cpsJStragal_1_1	613
631	cpsKStragal_1_1	614
632	cpsMStragal_1_1	615
633	cpsYStragal_1_1	616
634	cpsYStragal_2_1	617
635	cylBStraga_1_1	618
636	cylEStraga_1_1	619
637	cylFStraga_1_1	620
638	cylHStraga_1_1	621
639	cyllStraga_1_1	622
	cylJStraga_1_1	623
641	cylKStraga_1_1	624
-	folDStraga_1_1	633
643	neuA1Strgal_1_1	634
644	neuB1Strgal_1_1	635

690 immunofrag3Strpneu_2_1

n Probe Name	SeqID
691 kdtBStrpneu_1_1	560
692 lysAStrpneu_1_1	561
693 pcpBStrpneu_1_1	562
694 pflCStrpneu 1 1	563
695 plpA_1_1	564
696 prtA1Strpneu_1_1	565
697 pspC1Strpneu_1_1	566
698 pspC2_1_1	567
699 purRStrpneu 1 1	568
700 pyrDAStrpneum_1_1	569
701 SP0828Strpneu_1_1	570
701 SP00203tipfied_1_1	571
703 SP0833Strpneu_1_1	572
704 SP0837 38Strpneu_1_1	573
705 SP0839Strpneu_1_1	574
706 ugdStrpneu_1_1	575
707 uncC 1 1	576
708 vicXStrepneu_1_1	577
709 wchA6bStrpneum_1_1	578
710 wci4Strpneum_1_1	579
711 wciK4Strpneum_1_1	580
712 wciL4Strpneum_1_1	581
713 wciN6bStrpneum_1_1	582
714 wciO6bStrpneum_1_1	583
715 wciP6bStrpneum_1_1	584
716 wciY18Strpneum_1_1	585
717 wzdbStrpneum_1_1	586
718 wze6bStrpneum_1_1	587
719 wzy18Strpneum_1_1	588
720 wzy4Strpneum_1_1	589
721 wzy6bStrpneum 1_1	590
722 xpt_1_1	591
723 igaStrpneu_1_1	592
724 lytA_1_1	593
725 nanA_1_1	594
726 nanBStrpneu_1_1	595
727 pcpCStrpneu_1_1	596
728 ply_1_1	597
729 prtAStrpneu_1_1	598
730 pspA_1_2	599
731 SP0834Strpneu_1_1	600
732 SP0834Strpneu_1_2	601
733 sphtraStrpneu_1_1	602
734 wciJStrpneu_1_1	603
735 wziyStrpneu_1_1	604
736 wzxStrpneu_1_1	605

	_
n Probe Name	SeqID
737 cyclStrpyog_1_1	645
738 fah_rph_hlo_Strpyog_1_1	646
739 int_1_1	647
740 int315.5 1 1	648
741 murEStrpyog_1_1	649
742 oppA_1_1	650
743 oppCStrpyog_1_1	651
744 oppD_1_1	652
745 SPy0382Strpyog_1_1	653
746 SPy0390Strpyog_1_1	654
747 SpyM3_1351_1_1	655
748 vicXStrpyog_1_1	656
749 DNaselStrpyog_1_1	657
750 fba2Strpyog_1_1 751 fhuAStrpyog 1 1	658
	659
752 fhuB1Strpyog_1_1	660
753 fhuDStrpyog_1_1	661
754 fhuGStrpyog_1_1	662
755 hylA_1_1	663
756 hylP_1_1	664
757 hylp2_1_1	665
758 oppB_1_1	666
759 ropB_1_1	667
760 scpAStrpyog_1_1	668
761 sloStrpyog_1_1	669
762 smez-4Strpyog_1_1	670
763 sof_1_1	671
764 sof_2_1	672
765 speA_1_1	673
766 speB2Strpyog_1_1	674
767 speCStrpyog_1_1	675
768 speJStrpyog_1_1	676
769 srtBStrpyog_1_1	677
770 srtCStrpyog_1_1	678
771 srtEStrpyog_1_1	679
772 srtFStrpyog_1_1	680
773 srtGStrpyog_1_1	681
774 srtlStrpyog_1_1	682
775 srtKStrpyog_1_1	683
776 srtRStrpyog_1_1	684
777 srtTStrpyog_1_1	685
778 vicKStrpyog_1_1	686
779 573Stprmut_1_1	687
780 580SStprmut_1_1	688
781 581_582SStprmut_1_1	689
782 584SStprmut_1_1	690

n	Probe Name	SeqID
$\vdash$	dltAStrmut_1_1	691
784	dltBStrmut_1_1	692
785	dltCppx1Strmut_1_1	693
	dltDStrmut_1_1	694
	lichStrbov_1_1	695
	lytRStprmut_1_1	696
$\vdash$	lytSStprmut_1_1	697
	pepQStrrmut_1_1	698
	pflCStrmut_1_1	699
	recNStprmut_1_1	700
_	ytqBStrmut_1_1	701
	hlyXStrmut_1_1	702
	igaStrmitis_1_1 igaStrsanguis 1 1	703 704
	<u> </u>	
	perMStrmut_1_1 fasCAXStrdysg_1_1	705 2904
	sloStrep_1_1	2905
	cataSaur_1_1	2903
$\overline{}$	cataSaur_1_1	2
_	clfA_1_1	3
	clfB_1_1	3 4
_	coa_1_1	5
	coa_1_2	6
$\overline{}$	coa_2_2	2903
807	coa_3_1	2902
808	epiP-bsaP_1_1	58
809	geh_1_1	59
	gyrA_1_1	60
	gyrB_1_1	61
-	hemB_1_1	62
	hemC_1_1	63
	hemD_1_1	64
$\overline{}$	hemN_1_1	65
<del>-</del>	hsdS_1_1	66
<b>——</b>	hsdS_2_1	67
_	lip_1_1	68
$\overline{}$	menC_1_1	69 70
	murC_1_1 nuc_1_1	70 71
<del></del>	pdhD_1_1	71
-	rpoB_1_1	73
_	SAV0431 1 1	74
	SAV0431_1_1 SAV0439_1_1	75
	SAV0440_1_1	76
-	SAV0441 1 1	77
	sigB_1_1	
828	sigB_1_1	78

n	Probe Name	SeqID
829	spa_1_2	79
	sstC_1_1	80
831		81
	tyrA_1_1	82
-	bsaE 1 1	100
	bsaG_1_1	101
	cap5h_1_1	102
-	cap5i_1_1	102
	cap5i_1_1	103
	<del></del>	105
)	cap8H_1_1	106
	cap8I_1_1	107
	cap8J_1_1	108
_	cap8K_1_1	109
$\blacksquare$	EDIN_1_1	113
844		114
845	etb_1_1	115
846	hglA_1_1	116
847	hglA_2_1	117
848	hglB_1_1	118
849	hglC_2_1	119
850	hla_1_1	120
851		121
852	lukF_1_1	122
	lukS 1 1	123
	lukS_2_1	124
	NAG 1 1	125
856		126
857		127
858		128
$\overline{}$	sec1_1_1	129
		130
000		Ť
$\vdash$	seh_1_1	131
_	sel_1_1	132
	set15_1_1	133
	set6_1_1	134
_	set7_1_1	135
	set8_1_1	136
_	sprV8_1_1	137
868		138
	agrB_1_1	178
	agrC_1_1	179
871	alphSE1368_1_1	180
872	ardeSE0106_1_1	174
873	ardeSE0107_1_1	175
874	aroiSE0105_1_1	176

n	Probe Name	SeqID
$\vdash$	atlE_1_1	177
$\vdash$	gad_1_1	181
	glucSE1191_1_1	182
$\overline{}$	hsp10 1 1	183
	icaA_1_1	184
	icaB 1 1	185
	mvaSSepid_1_1	186
882	nitreSE1972_1_1	187
	nitreSE1974 1 1	188
	nitreSE1975 1 1	189
885	oiamtSE1209_1_1	190
	ORF1Sepid_1_1	191
	ORF3bSepid_1_1	192
	qacR_1_1	193
889		194
-	ureSE1861_1_1	195
	ureSE1863_1_1	196
	ureSE1864_1_1	197
893	ureSE1865_1_1	198
894	ureSE1867 1 1	199
895	gcaD_1_1	200
	hld_orf5_1_1	201
897	icaC_1_1	202
898	icaD_1_1	203
899	icaR_1_1	204
900	psm_beta1and2_1_1	205
901	purR_1_1	206
902	spoVG_1_1	207
	yabJ_1_1	208
904	folQShaemolyt_1_1	209
905	mvaCShaemolyticus_1_1	210
906	mvaDShaemolyt_1_1	211
	mvaK1Shaemolyticus_1_1	212
908	mvaSShaemolyticus_1_1	213
909	RNApolsigm_1_1	214
910	lipShaemolyt_1_1	215
911	ydhK_1_1	2906
912	agrB2Stalugd_1_1	216
913	agrC2Stalugd_1_1	217
914	agrCStalugd_1_1	218
915	slamStalugd_1_1	219
916	fblStalugd_1_1	220
917	slushABCStalugd_1_1	221
918	RNApolsigmSsapro_1_1	222
919	RNApolsigmSsapro_1_2	223
920	msrw1Stwar_1_1	224

- 122 -

n	Probe Name	SeqID
921	nukMStwar_1_1	225
922	proDStwar_1_1	226
923	proMStwar_1_1	227
924	sigrpoStwar_1_1	228
925	tnpStwar_1_1	229
	gehAStwar_1_1	230
927	0135mihck_1_1	945
	0270cap_1_1	947
929	FAN_1_1	946
930	p53_1_1	944

WO 2007/039319

5

10

15

20

25

All genes were selected from the literature and databases, compared by BLAST analysis to all other sequences available in the NCBI database. Primers were designed to amplify gene segments of 200 to 800 bp length devoid of apparent homology with genes of other bacterial species and *Homo sapiens*. Gene segments were amplified by using the puReTaq Ready-To-Go PCR beads (Amersham Biosciences, Freiburg, Germany) and cloned into the pDrive Cloning Vector (Qiagen, Hilden, Germany) according to the recommendations of the suppliers and transformed into competent *Escherichia coli* (XL-1-Blue) cells using the calcium chloride protocol (Sambrook, J. and Russell, D.W. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York, N.Y).

For quality control purposes, all gene probes were partially sequenced and verified (with the BigDye kit 1.1 and an 377 DNA sequencer; Applied Biosystems, Foster City, USA). All sequences obtained were identical or substantially identical (>90% sequence identity) to those obtained from the database.

For DNA-probe production 930 recombinant plasmids containing the 930 selected gene segments were used for re-amplification. Amplicons were purified and spotted in 4 replicates per slide on UltraGAPS™ Coated Slides (gamma amino propyl silane coated slides, Corning, NY, USA). Approximately 1 nl DNA (with a concentration of about 0.1 to about 0.2 ng/nl) per spot was spotted onto the slide with a Biorobitics Microgrid Microarrayer (Genomic Solutions, Ann Arbor, MI, USA).

#### Example 2.5: Hybridization and scanning

All experiments described represent dual co-hybridizations of two different target DNA samples labelled respectively with Cy3 or Cy5. After removal of unbound label, Cy3 and Cy5 labelled DNAs were pooled and mixed with 10 µg of Salmon Sperm

DNA and 50 µg of poly-A-DNA. The mixture was frozen in liquid nitrogen and lyophilized in the dark. Prior to hybridization the target DNA was reconstituted in 110 µl hybridization solution (30% formamide, 0.1% SDS, 5xSSC) and denatured by heating at 95°C for 3 min prior to hybridization. Hybridization was automatically performed with a TECAN Hybridization Station (HS400, TECAN, Salzburg, Austria). The arrays were prewashed at 42°C for 1 min with 5x SSC and prehybridized in 110 µl denatured prehybridization buffer (30% formamide, 0.1% SDS, 5xSSC, 10mg/ml BSA) for 30 min at 42°C at mild agitation. After injection of 110 µl labelled DNA, hybridization was performed at 60°C for 18 hours at medium agitation. The arrays were washed at 42°C in wash buffer I (1x SSC, 0.1% SDS) - three cycles of 30 sec wash time and 2 min soak time -, in wash buffer II (0.1x SSC, 0.1% SDS) - five cycles of 30 sec wash time and 2 min soak time - and wash buffer III (0.1x SSC) four cycles of 30 sec wash time and 2 min soak time - and finally dried at 30°C with N₂ (2.7 bar) for 3 min. Hybridized arrays were scanned with GenPix Personal Axon 4100A laser scanner (Axon Instruments, Union City, CA, USA). Laser light of wavelengths at 532 and 635 nm was used to excite Cy3 dye and Cy5 dye, respectively. Fluorescent images were analyzed by the GenePix Pro 6.0 and Acuity 4.0 software (Axon Instruments). For each feature (gene probe) the median pixel intensity of wavelength 635 nm or 532 nm, respectively, was determined and the median background of the respective wavelength subtracted (F635 Median - B635 and F532 Median - B532, respectively).

#### Example 2.6: Specificity

5

10

15

20

25

30

In order to allow the simultaneous and rapid identification, differentiation and characterisation of pathogens causing sepsis, a microarray comprising a set of 930 gene probes of 200 to 800 bp length was developed (Tab. 7). The clinically most relevant sepsis causing pathogens were represented on the microarray by gene probes specific for the genera and species *E. coli* (31), *Staphylococcus aureus* (69) and coagulase negative staphylococci (58), *P. aeruginosa* (53), *Streptococcus* spp. (185), *Enterococcus* spp.(92), *Proteus* spp. (79), *Klebsiella* spp.(71), *Enterobacter* spp. (11), *Stenotrophomonas maltophilia* (13), *Acinetobacter baumannii* (21) and *Candida albicans* (86). To allow for parallel detection of antibiotic resistance determinants, the array contained 131 bacterial resistance gene probes.

To facilitate the optimization, validation and standardization of microarray analysis, a set of 29 control probes was included. Different 16S rRNA gene probes (18) served as positive hybridization controls for bacterial DNA. The gene probe rbcL_1_2 (segment of the rubisco gene of *Hordeum vulgaris*) was prelabelled with Cy3 and Cy5 and spotted onto each subarray for visualisation of the array orientation. Gene probes derived from *Mus musculus* (2), *Dictyostelium discoideum* (2), *Homo sapiens* (5), *Hordeum vulgaris* (1) were included as negative or positive hybridization controls. In all assays, one to five PCR-amplified DNA-segments, which had been added to each DNA preparation as a positive control, hybridized with the corresponding probes, indicating that labelling and hybridization had performed efficiently.

5

10

15

The specificity of the DNA-chip was validated with 44 well characterized clinical isolates and reference strains of the target species (40) as well as other related bacteria (4) (Table 8).

<u>Tab. 8:</u> Microorganism strains used for microarray validation. Non-target species are Nos 21, 25, 27 and 30.

No	Species	Strain	Dye
1	A. baumannii	DSM 30008	Cy5
2	A. baumannii	5256-2	СуЗ
3	P. aeruginosa	ATCC 27853	Су3
4	E. coli	CIP 105893	СуЗ
5	E. coli	ATCC 25922	Cy5
6	E. coli	CIP 81.88	СуЗ
7	E. coli	CIP 74.14	Cy5
8	E. coli	U10338-1	Cy5
9	E. coli	U10164-2	Cy5
10	E. coli	U10248-1	Cy5
11	K. oxytoca	DSM 4798	Cy5
12	K. oxytoca	U10274	Cy5
13	K. pneumoniae	DSM 681	СуЗ
14	K. pneumoniae	O3-390	СуЗ
15	K. pneumoniae	O8-889	СуЗ
16	P. mirabilis	DSM 788	Cy5
17	P. mirabilis	U10515	Cy5
		·	

18	P. mirabilis	U9979-1	Cy5
19	P. vulgaris	DSM 2140	Cy5
20	C. albicans	ATCC 10231	СуЗ
21	E. casseliflavus	UW703/95	Cy5
22	E. faecalis	ATCC 29212	Cy5
23	E. faecalis	UW700/95	Cy5
24	E. faecium	VRE 9182	СуЗ
25	E. gallinarum	UW701/97	СуЗ
26	S. agalactiae	DSM 2134	Cy5
27	S. angiosus	DSM 20563	СуЗ
28	S. bovis	DSM 20480	Cy3
29	S. dysgalactiae	DSM 20662	Cy3
30	S. gordonii	DSM 6777	Cy5
31	S. mutans	DSM 20523	Су3
32	S. pneumoniae	ATCC 49619	СуЗ
33	S. pyogenes	DSM 11723	Cy3
34	S. aureus	ATCC 29213	СуЗ
35	S. aureus	P2716	Cy3
36	S. aureus	C5010	Cy3
37	S. aureus	MW2	Cy3
38	S. epidermidis	ATCC 12228	Cy5
39	S. epidermidis	BC 1920	Cy5
40	S. haemolyticus	DSM 20263	Cy5
41	S. hominis	DSM 20228	Cy5
42	S. lugdunensis	DSM 4804	CY3
43	S. saprophyticus	ATCC 14953	СуЗ
44	S. warneri	DSM 20316	Cy5

Hybridization experiments with DNA obtained from the respective target strains revealed hybridization profiles specific for the different species and genera (Fig. 7). In contrast, non-target organisms hybridized nearly exclusively with 16S rRNA (Probe Nos. 1-24) and antibiotic gene probes (Probe Nos. 26-156) (Fig. 7 panels G and H).

Example 2.7: Specificity of hybridization profiles for fungi

DNA of the fungus *Candida albicans* hybridized specifically with the *Candida* gene probes (Probe Nos. 157-242) including *Candida* resistance probes but not with bacterial 16 rRNA or species specific probes (Fig. 8, panel A). The specificity of two selected *Candida* probes is demonstrated in Fig. 8 panel B, the probes *ALS1* and *ASL43f* hybridized only with DNA obtained from *C. albicans* and not with any DNA obtained from the 43 bacterial strains.

#### Example 2.8: Specificity of hybridization profiles for Gram-negative bacteria

5

10

15

20

25

30

Strains of the genus Klebsiella showed specific hybridization with the Klebsiella gene probes (Probe Nos. 399-469). For this genus cross hybridization with lower intensity of the fluorescent signals was observed with some E. coli and P. aeruginosa probes (Nos. 275-306 and 470-522, respectively). This is also the case for bacterial strains of the genus Proteus, which show major hybridization with the Proteus gene probes allowing unambiguous identification (Probe Nos. 523-601). Vice versa, P. aeruginosa and E. coli can be easily identified by their hybridization profiles, but show minor cross hybridization with gene probes of Klebsiella, E. coli and P. aeruginosa, respectively. The E. coli reference strain CIP 105893 and the clinical isolate U10164-2 show nearly identical hybridization profiles, demonstrating the high reproducibility of the assay. Strains of the non-fermenting Gram-negative bacterium A. baumannii were readily identified based on their microarray hybridization profile showing specific hybridization to the A. baumannii gene probes (Nos. 243-263). The specificity of selected species specific probes is shown in Figure 9. The A. baumannnii probe csuA hybridized only with labelled DNA preparations derived from A. baumannnii strain DSM 30008 and the clinical A. baumannii isolate but not with any other of the 42 strains. The P. aeruginosa probe PhzA showed hybridization signals with a high intensity >60000 (Median fluorescence - background) only with DNA of the P. aeruginosa reference strain but with no other pathogen, demonstrating that although some P. aeruginosa probes show cross-hybridization with other Gram-negative species, unambiguous identification is feasible. Equally specific results were obtained with the E. coli probe shuA, which showed significant hybridization signals > 40000 only with DNA of the seven E. coli reference strains and clinical isolates. The closely related species K. oxytoca and K. pneumoniae were easily identified and discriminated from each other by the K. oxytoca probe tagK and the K. pneumoniae

probe *acoC*. The *P. mirabilis* probe *hpmB* was highly specific for the three *P. mirabilis* strains and isolates, while probe *enzZPrvu* was specific for *P. vulgaris*.

## Example 2.9: Specificity of hybridization profiles for Gram-positive bacteria of the genus *Enterococcus*

5

10

15

20

25

30

The microarray assay was highly specific in the identification of Gram-positive target species. Clinical isolates of the species *E. faecalis* and *E. faecium* could be identified and discriminated unambiguously by their hybridization profiles (Probe Nos. 307-375 and 376-398, respectively) (Fig. 7, panels E and F). The vancomycin resistant non-target strain *E. casseliflavus* (Fig. 7, panel G) showed hybridization to the bacterial 16S rRNA probes, the antibiotic resistance gene probes *vanC-2* (vancomycin resistance), *arr2* (Rifampin resistance) and *tetM* (tetracycline resistance) and the *S. aureus* probes *gyrA* (DNA gyrase subunit A), *rpoB* (RNA polymerase B subunit) and *sstC* (iron transport protein) only. This profile does not permit species identification but indicates a vancomycin resistant bacterium. A similar profile was obtained for the vancomycin resistant non-target strain *E. gallinarum* (not shown).

### Example 2.10: Specificity of hybridization profiles for Gram-positive bacteria of the genus *Streptococcus*

Microarray hybridization assays performed with streptococcal DNA obtained from reference strains of *S. pneumoniae*, *S. pyogenes*, *S. mutans* and *S. agalactae* revealed species specific hybridization profiles and an excellent identification and discrimination of these target organisms (Fig. 7). The species *S. dysgalactiae* and *S. bovis* (*S. viridans* group) are each represented by a single gene probe on the array (fasCAXStrdysg and lichStrbov, respectively). These probes however exhibited specific hybridization to the target DNA only, and in this way permitted identification of the two species. Additionally both species showed hybridization with the 16S rRNA gene probes and *pbp2b* (penicillin binding protein of *S. pneumoniae*). Furthermore, *S. dysgalactiae* DNA hybridized with the probes *dacCStrpyog* and *murEStrpyog* and *S. bovis* DNA with *gyrA*, *rpoB* and *sstC* as *E. casseliflavus*. The non-target species *S. gordonii* and *S. angiosus* were readily discriminated by their hybridization profiles from other streptococci, *S. gordonii* 

- 128 -

showed hybridization to the 16S rRNA genes only, *S. angiosus* DNA hybridized additionally to *gyrB* and *rpoB* (Fig. 7 H).

## Example 2.11: Specificity of hybridization profiles for Gram-positive bacteria of the genus *Staphylococcus*

5

10

15

20

25

30

Hybridization assays performed with S. aureus strains and S. epidermidis DNA produced very specific hybridization profiles with little cross hybridization (Fig. 7 AB). The specificity of selected probes for coagulase-negative staphylococci is shown in Fig. 10. S. saprophyticus, S. haemolyticus, S. lugdnunensis, S. warneri and S. hominis produced hybridization profiles distinct of those from S. aureus and S. epidermidis. For these species the following species specific probes were detected: RNAposigmSsapro_1 and _2 for S. saprophyticus, RNApolisigm and mvaDShaemolyt for S. haemolyticus, agrCStalugd, slamStalugd and fblStalug for S. lugdunensis and proDStwar, gehAStwar and msrw1Stwar for S. warneri. For S. hominis no probe proved to be species specific. The S. hominis derived probe ydhK cross hybridized with DNA of S. hominis, S. epidermidis and S. haemolyticus. However, certain probe patterns seem to be species specific for S. hominis and may allow identification and discrimination from S. haemolyticus and other CoNS (eg. hybridization of ydhK, tnpStwar and sin and absence of mvaDShaemolyt and RNApolsigm).

# Example 2.12: Detection of antibiotic resistance determinants in Gram-negative bacteria

Susceptibility results determined by the VITEK2 system were compared to the results of the microarray hybridization assay for the simultaneous detection of antibiotic resistance genes.

For the Gram-negative enterobacteria *E. coli*, *K. pneumoniae*, *K. oxytoca*, *P. mirabilis* and *P. vulgaris* there was a 100% correlation between phenotypic resistance to aminoglycosides (Gentamycin, Tobramycin) and hybridization to at least one of the aminoglycoside gene probes *aacA4*, *aacC2*, *aadA*, *aacA* and *aphDStwar* (Table 9).

<u>Tab. 9: Aminoglycoside resistance of Gram-negative enterobacteria:</u>

Strain	Aminoglycoside	Aminoglycoside

	resistance phenotype ^a	resistance gene
		<u>-</u>
E. coli CIP 105893	GENI, TOB	aacA4, aadA
E. coli ATCC 25922	susceptible	-
E. coli CIP 81.88	susceptible	-
E. coli CIP 74.14	STR	_
E. coli U10338-1	GENI, TOB	aacA4
E. coli U10164-2	GEN, TOB	aacC2
E. coli U10248-1	GEN, TOB	aacC2, strB
K. oxytoca DSM 4798	susceptible	-
K. oxytoca U10274	susceptible	-
K. pneumoniae DSM 681	susceptible	-
K. pneumoniae 390	susceptible	-
K. pneumoniae 889	susceptible	strB
P. mirabilis DSM 788	susceptible	-
P. mirabilis U10515	susceptible	aacC1
P. mirabilis U9979-1	GEN, TOB	aacC2, aadA,
		aacA_aphDStwar, strB
P. vulgaris DSM 2140	susceptible	-

^aGEN Gentamycin; TOB tobramycin; STR Streptomycin, resistance was not tested routinely; i, intermediary resistance

All enterobacterial strains which showed resistance to β-lactam antibiotics (penicillin and cephalosporines) hybridized with at least one or more β-lactamase gene probes (blaCTX-M, blaFOX-3 and -6, blaPRMI, blaTEM, blaSHV, blaOXY-KLOX, blaA) (Table 10). There was no hybridization with the resistance gene probes ampC and blaOXA with any of the tested strains.

10 <u>Tab. 10: β-lactam resistance of Gram-negative enterobacteria:</u>

Strain	ß-lactam resistance	ß-lactamase genotype ^b
	phenotype ^a	
E. coli CIP 105893	ESBL	blaCTX-M-22, blaFOX-3,
		blaFOX-6, blaPRMI, blaTEM
E. coli ATCC 25922	susceptible	_
E. coli CIP 81.88	susceptible	_
E. coli CIP 74.14	susceptible	-
E. coli U10338-1	ESBL	blaCTX-M-22, blaTEM

E. coli U10164-2	ESBL	blaCTX-M-22, blaOXY, blaPRMI,
		blaTEM
E. coli U10248-1	AMP, ASU, MEZ, PRLi,	blaCTX-M-22, blaPRMI, blaSHV,
	TZPi, CXM	blaTEM
K. oxytoca DSM 4798	AMP, ASUi, MEZi	blaOXY
K. oxytoca U10274	ESBL	blaCTX-M-22, blaOXY, blaOXY-
		KLOX, blaSHV
K. pneumoniae DSM 681	AMP, ASUi, MEZi, PRLi	blaCTX-M-22, blaFOX-3,
		blaFOX-6, blaOXY, blaSHV
K. pneumoniae 390	AMP, ASUi, MEZi	blaCTX-M-22, blaFOX-3,
		blaFOX-6, blaOXY, blaOXY-
		KLOX, blaSHV
K. pneumoniae 889	AMPi	blaCTX-M-22, blaFOX-3,
		blaFOX-6,blaOXY-KLOX,
		blaSHV
P. mirabilis DSM 788	KZi, CXMi, IMP	~
P. mirabilis U10515	ESBL,IMP	blaCTX-M-22,
P. mirabilis U9979-1	ESBL, IMP	blaCTX-M-22, blaFOX-3,
		blaFOX-6, blaOXY, blaPRMI,
		blaTEM
P. vulgaris DSM 2140	AMP, KZ	blaA ^d

^aESBL extended spectrum β-lactamases; AMP, Ampicillin; ASU, Ampicillin/Sublactam; MEZ, Mezlocillin; PRL, Piperacillin; KZ, Cefazolin; CXM, Cefuroxim; IMP, Imipenem; i, intermediary resistance

10

15

Strains susceptible to  $\beta$ -lactam antibiotics did not show significant hybridization signals (Median fluorescence – background <10000) with any of the  $\beta$ -lactamase gene probes. Although the hybridization pattern permitted the detection of different types of  $\beta$ -lactamases (blaTEM, blaSHV, blaCTX-M, blaFOX), it did, however, not allow the detection and discrimination of extended spectrum  $\beta$ -lactamases (ESBL). For the two clinical isolates of P. mirabilis the ESBL phenotype was correlated with hybridization of the acrA, -B and -R genes, which encode a multidrug efflux pump. Furthermore, for these two species, resistance to tetracycline was correlated with hybridization of the P. mirabilis derived gene probe tetAJ.

^bFluorescence signals ≥10000 were considered positive.

^cFluorescence <10000; most fluorescence signals were <30000 for the hybridization assay with *P. vulgaris* DMS 2140

### Example 2.13: Detection of antibiotic resistance determinants in Gram-positive bacteria

The phenotypic vancomycin resistance of the tested enterococci correlated by 100% with the genotypic resistance determined by microarray hybridization (Table 11).

Tab. 11: Phenotypic and genotypic resistance of Enterococcus strains.

5

10

15

20

Strain	Resistance	Resistance	1			
	phenotype	genotype				
		Aminoglycosides	Glycopeptides	Macrolides	Tetracycline	Efflux pumps
E. casseliflavus UW703/95	VAN, DA. QDi	-	vanC	-	tetM	-
E. faecalis ATCC 29212	DA, Ei, QD, TET, SXT	-	-	-	tetM	emeA
E. faecalis UW700/95	VAN, DA, E, GEN, QD, STR, SXT	aacA-aphD	vanB	ermB	-	emeA ^b
<i>E. faecium</i> VRE9182	VAN, AMPI, DA, E, QDI, STR, Teicoplanin, TET	aphA3 ^b	vanA, vanB	ermB	tetL, tetM	msrCb
E. gallinarum UW701/97	VAN, DA, QDi, SXT, TET	-	vanC	-	tetM	-

^aVAN, vancomycin; DA, clindamycin; E, erythromycin; QD, quinupristin/dalfopristin (streptogramins); STR, streptomycin, TET, tetracycline; i, intermediary resistance. ^bRelative low fluorescence intensity (Median fluorescence – background <18.000).

Hybridization to the *vanC-2* gene was observed for the two vancomycin resistant strains *E. casseliflavus* and *E. gallinarum*, which contain the *vanC-2* and the *vanC-1* gene, respectively. The *vanB* gene was detected in the clinical isolates of *E. faecalis* UW700/95 and *E. faecium* VRE9182, the latter strain also hybridized with the *vanA* gene, indicating the presence of both genes. Furthermore, these two strains showed hybridization with aminoglycoside resistance genes (*aacA-aphD* and *aphA3*, respectively) and the macrolide resistance gene *ermB* (Table 11). The presence of efflux pumps involved in macrolide resistance was indicated by microarray hybridization for both *E. faecalis* strains (*emeA*) and *E. faecium* VRE9182 (*msrCb*).

Genotypic resistance to tetracycline was detected for four of the five strains (hybridization to *tetL* and/or *tetM*).

The tested streptococci showed phenotypic susceptibility to all tested antiobitics.

For staphylococci, there was 100% correlation between phenotypic resistance to penicillin and hybridization of the *blaZ* and the *blaIShaemolyt* gene probes and between oxacillin resistance and hybridization to the *mecA* gene (Table 12).

Tab. 12: Phenotypic and genotypic resistance of Staphylococcus strains.

Strain	Resistance phenotype ^a	Resistance genotype			
•		Aminoglycosides	ß-lactams	Macrolides	Efflux pumps
S. aureus ATCC 29213	PEN	-	blaZ, blaIShaemolyt	-	msrA, mreA
S. aureus P2116	PEN, Ei, DAi,	-	blaZ, blaIShaemolyt	-	msrA, mreA
S. aureus C5010	TOB, PEN, OXA, E, DA	aadD	blaZ, blaIShaemolyt, mecA	ermA	msrA, mreA
S. aureus MW2	PEN, OXA, Trimethoprim	-		-	msrA, mreA
S. epidermidis ATCC 12228	PEN	-	blaZ, blaIShaemolyt	-	-
S. epidermidis BC1920	GEN, TOB, PEN, OXA, E, DA	aadD, aacA- aphD, aacA_aphDStwar	blaZ, blaIShaemolyt, mecA	ermC	-
S. haemolyticus DSM 20263	susceptible	-	-	-	-
S. hominis DSM 20228	susceptible	-	-	-	-
S. lugdunensis DSM 4804	susceptible	-	-	-	-
S. saprophyticus ATCC 14953	susceptible	-	-	-	-
S. warneri DSM 20316	susceptible	-	-	-	-

^aPEN, penicillin; OXA, oxacillin; DA, clindamycin; E, erythromycin; TOB, tobramycin; GEN, gentamicin; i, intermediary resistance.

10

Resistance to macrolides (erythromycin and clindamycin) was conferred by the ermA gene to the clinical MRSA isolate C5010 and by ermC to the MRSE isolate

^bRelative low fluorescence intensity (Median fluorescence – background <18.000).

WO 2007/039319 PCT/EP2006/010132
- 133 -

BC1920. Both strains also showed resistance to tobramycin, which was conferred by the *aadD* gene, additionally the *S. epidermidis* isolate was resistant to gentamycin, due to posession of the *aacA-aphD* gene (Table 12). With the exception of the *S. epidermidis* strains, all CoNS showed a susceptible phenotype and did not hybridize with any of the resistance gene probes.

5

10

15

Example 2.14: Strain discrimination and detection of virulence genes in S. aureus Virulence gene probes, showing varying fluorescence intensities after hybridization with DNA of four different *S. aureus* strains are listed in Table 13.

<u>Tab. 13:</u> Hybridization of *S. aureus* virulence gene probes: -, Median fluorescence <10000; +, Median fluorescence  $\geq$ 10000-20000; ++, Median fluorescence >20000-50000; +++, Median fluorescence <50000. Percentage of identity for gene probe sequences complementary to the genes present in the fully sequenced strain MW2 is given in the last column.

S. aureus	S. arueus	S. aureus	MRSA	MRSA	Sequence	
virulence	ATCC	P2116	C5010	MW2	identity with	
gene probes	29213				MW2	
					genome	
					sequence	
epiP-bsaP	_	-	-	+++	100%	
hsdS1	+++	-	+++	<u>.</u>	Not present	
SAV0441	+++	-	+++	+	Not present	
bsaE	-	-	+	+++	100%	
bsaG	++	++	+++	+++	100%	
cap5	+++	-	+++	-	Not present	
сар8	-	+++	-	+++	100%	
EDIN	+++	-	-	<u></u>	Not present -	
lukF	+	++	++	+++	95%	
lukS1	+	+	++	+++	98%	
sea	+++	-	+++	+++	100%	
sec1	-	-	+	+++	98%	
seg1	+++	_	+++	+	Not present	

seh	_	+	++	+++	100%
sel	-	_	+	+++	99%

5

10

15

20

25

30

For other S. aureus gene probes the fluorescence intensities were either very low (MF-B <10000) for all four strains indicating the absence of the according gene (eg. tst, eta or etb) or very high (MF-B >50000), indicating the presence of the according gene in all four strains (eg. hglA, hglB, hglC, NAG, sak, set, sprV8). Capsular polysaccharides enhance microbial virulence by rendering the bacterium resistant to phagocytosis. Among the eleven capsular serotypes of S. aureus, serotypes 5 and 8 account for ≈25% and 50%, respectively, of isolates recovered from humans. Moreover, these two serotypes, carrying the genes cap5 and cap8, are prevalent among isolates from clinical infections as well as from commensal sources. By microarray hybridization the cap5 gene was detected in the ATCC 29213 strain and the clinical MRSA isolate C5010, while cap8 was detected in the clinical isolate P2116 and the community-aquired MRSA strain MW2 (Table 13). The latter strain hybridized to many virulence gene probes including the leukocidin gene probes lukF and lukS and the enterotoxin gene probes sea, sec, seh and sel. This microarray gene profile is in perfect concordance with genome sequence of this fully sequenced strain, which produces the Panton-Valentine leukocidin (PVL), encoded by lukF and lukS. Panton-Valentine leukocidin forms non-specific pores in leukocyte plasma membranes, which result in increased permeability and eventual host cell lysis. While strain MW2 does not harbor the gene seg encoding enterotoxin G, this gene was detected in the ATCC strain and the clinical MRSA isolate C5010, which both also showed hybridization with sea (Enterotoxin A). In contrast, the clinical isolate P2116 showed no or only minor hybridization with these virulence probes. From these results it can be concluded that microarray hybridization patterns allow the discrimination of different S. aureus strains as well as the detection of clinically relevant virulence determinants.

Example 2.15: Strain discrimination and detection of virulence genes in *E. coli* Virulence gene probes, showing varying fluorescence intensities after hybridization with DNA of seven different *E. coli* strains are listed in Table 14.

<u>Tab. 14:</u> Hybridization of *E. coli* virulence gene probes: -, Median fluorescence <10000; +, Median fluorescence  $\geq$ 10000 -20000; ++, Median fluorescence  $\geq$ 20000-50000; +++, Median fluorescence  $\leq$ 50000.

	E. coli	E. coli	E. coli				
	CIP	ATCC	CIP	CIP	U10338-1	U10164-2	U10248-1
	105893	25922	81.88	74.14	ESBL	ESBL,	GEN-R
	ESBL					GEN-R	
<i>b</i> 1169	+++	++	+++	++	+++	+++	-
ycdS	+++	++ .	+++	++	+++	+++	<del>-</del>
ymcA	+++	+	+++	_	-	+	+
b1202	+++	-	+++	-	-	-	+++
fteA	+	+	-	++	+++	+++	++
iucA	+	++	-	_	+++	+++	+++
iucB	_	++		-	++	+++	++
iucC	+	++	-	-	+++	+++	+++
papG	_	+++	_	++	· <b>-</b>	-	+++

None of the listed genes was detected in all seven strains. Major hybridization of the iuc aerobactin synthesis genes was detected for four strains. The genes fteA (allele of papA) and papG, both involved in adhesion to host cells and virulence in urinary tract infections were detected in five strains. The three clinical isolates U10338-1, U10164-2 and U10248-1 were all isolated-from patients with urinary tract infections. Based on the virulence hybridization pattern, strains U10338-1 and U10164-2 are nearly identical, while strain U10248-1 can be clearly discriminated.

5

### **Sequence Listing – Free text**

### a) Probe sequences

SEQ ID NO	Probe name	Template source
1	cataSaur_1_1	Staphylococcus aureus
2	cataSaur_1_2	Staphylococcus aureus
3	clfA_1_1	Staphylococcus aureus
4	clfB_1_1	Staphylococcus aureus
5	coa_1_1	Staphylococcus aureus
6	coa_1_2	Staphylococcus aureus
7	I-clpC_1_1	Staphylococcus aureus
8	I-clpP_1_1	Staphylococcus aureus
9	I-ctaA_1_1	Staphylococcus aureus
10	I-ctsR_1_1	Staphylococcus aureus
11	I-dltA_1_1	Staphylococcus aureus
12	I-dltB_1_1	Staphylococcus aureus
13	I-dltC_1_1	Staphylococcus aureus
14	I-dnaK_1_1	Staphylococcus aureus
15	I-elkT_1_1	Staphylococcus aureus
16	I-femD_1_1	Staphylococcus aureus
17	I-glnA_1_1	Staphylococcus aureus
18	I-glnR_1_1	Staphylococcus aureus
19	I-grlA_1_1	Staphylococcus aureus
20	I-grlB_1_1	Staphylococcus aureus
21	I-groEL_1_1	Staphylococcus aureus
22	I-groES_1_1	Staphylococcus aureus
23	I-hemA_1_1	Staphylococcus aureus
24	I-hemE_1_1	Staphylococcus aureus
25	I-hemH_1_1	Staphylococcus aureus
26	I-hemL_1_1	Staphylococcus aureus
27	I-hemY_1_1	Staphylococcus aureus
28	I-lepA_1_1	Staphylococcus aureus
29	I-lrgA_1_1	Staphylococcus aureus
30	I-lrgB_1_1	Staphylococcus aureus
31	I-lytM_1_1	Staphylococcus aureus
32	I-menB_1_1	Staphylococcus aureus
33	I-menD_1_1	Staphylococcus aureus
34	I-menE_1_1	Staphylococcus aureus
35	I-menF_1_1	Staphylococcus aureus
36	I-mreB_1_1	Staphylococcus aureus
37	I-mreR_1_1	Staphylococcus aureus
38	I-mutL_1_1	Staphylococcus aureus
39	I-mutS_1_1	Staphylococcus aureus
40	I-NAG_1_1	Staphylococcus aureus
41	I-pbg_1_1	Staphylococcus aureus
42	I-pbpF_1_1	Staphylococcus aureus
43	I-pdhB_1_1	Staphylococcus aureus

SEQ ID NO	Probe name	Template source
44	I-pdhC_1_1	Staphylococcus aureus
45	I-rsbU_1_1	Staphylococcus aureus
46	I-rsbV_1_1	Staphylococcus aureus
47	I-rsbW_1_1	Staphylococcus aureus
48	I-sgp_1_1	Staphylococcus aureus
49	I-sirR_1_1	Staphylococcus aureus
50	I-sodA_1_1	Staphylococcus aureus
51	I-sodB_1_1	Staphylococcus aureus
52	I-sstA_1_1	Staphylococcus aureus
53	I-sstB_1_1	Staphylococcus aureus
54	I-sstC_1_1	Staphylococcus aureus
55	I-sstD_1_1	Staphylococcus aureus
56	I-trx_1_1	Staphylococcus aureus
57	I-yhiN_1_1	Staphylococcus aureus
58	epiP-bsaP_1_1	Staphylococcus aureus
59	geh_1_1	Staphylococcus aureus
60	gyrA_1_1	Staphylococcus aureus
61	gyrB_1_1	Staphylococcus aureus
62	hemB_1_1	Staphylococcus aureus
63	hemC_1_1	Staphylococcus aureus
64	hemD_1_1	Staphylococcus aureus
65	hemN_1_1	Staphylococcus aureus
66	hsdS_1_1	Staphylococcus aureus
67	hsdS_2_1	Staphylococcus aureus
68	lip_1_1	Staphylococcus aureus
69	menC_1_1	Staphylococcus aureus
70	murC_1_1	Staphylococcus aureus
71	nuc_1_1	Staphylococcus aureus
72	pdhD_1_1	Staphylococcus aureus
73	rpoB_1_1	Staphylococcus aureus
74	SAV0431_1_1	Staphylococcus aureus
75	SAV0439_1_1	Staphylococcus aureus
76	SAV0440_1_1	Staphylococcus aureus
77	SAV0441_1_1	Staphylococcus aureus
78	sigB_1_1	Staphylococcus aureus
79	spa_1_2	Staphylococcus aureus
80	sstC_1_1	Staphylococcus aureus
81	tag_1_1	Staphylococcus aureus
82	tyrA_1_1	Staphylococcus aureus
83	I-aroC_1_1	Staphylococcus aureus
84	I-aroA_1_1	Staphylococcus aureus
85	I-cna_1_1	Staphylococcus aureus
86	I-ebpS_1_1	Staphylococcus aureus
87	I-eno_1_1	Staphylococcus aureus
88	I-fbpA_1_1	Staphylococcus aureus
89	I-fib_1_1	Staphylococcus aureus

_	1	3	Ω	_
	.1.	_ >	()	

SEQ ID NO	Probe name	Template source
90	I-fnbB_1_1	Staphylococcus aureus
91	I-srtA_1_1	Staphylococcus aureus
92	I-stpC_1_1	Staphylococcus aureus
93	I-fnbA_1_1	Staphylococcus aureus
94	I-spa_1_1	Staphylococcus aureus
95	I-aroE_1_1	Staphylococcus aureus
96	I-aroF_1_1	Staphylococcus aureus
97	I-aroG_1_1	Staphylococcus aureus
98	I-asp23_1_1	Staphylococcus aureus
99	I-atl_1_1	Staphylococcus aureus
100	bsaE_1_1	Staphylococcus aureus
101	bsaG_1_1	Staphylococcus aureus
102	cap5h_1_1	Staphylococcus aureus
103	cap5i_1_1	Staphylococcus aureus
104	cap5j_1_1	Staphylococcus aureus
105	cap5k_1_1	Staphylococcus aureus
106	cap8H_1_1	Staphylococcus aureus
107	cap8I_1_1	Staphylococcus aureus
108	cap8J_1_1	Staphylococcus aureus
109	cap8K_1_1	Staphylococcus aureus
110	I-hld_1_1	Staphylococcus aureus
111	I-hysA_1_1	Staphylococcus aureus
112	I-IgGbg_1_1	Staphylococcus aureus
113	EDIN_1_1	Staphylococcus aureus
114	eta_1_1	Staphylococcus aureus
115	etb_1_1	Staphylococcus aureus
116	hglA_1_1	Staphylococcus aureus
117	hgIA_2_1	Staphylococcus aureus
118	hglB_1_1	Staphylococcus aureus
119	hgIC_2_1	Staphylococcus aureus
120	hla_1_1	Staphylococcus aureus
121	hlb_1_2	Staphylococcus aureus
122	lukF_1_1	Staphylococcus aureus
123	lukS_1_1	Staphylococcus aureus
124	lukS_2_1	Staphylococcus aureus
125	NAG_1_1	Staphylococcus aureus
126	sak_1_1	Staphylococcus aureus
127	sea_1_1	Staphylococcus aureus
128	seb_1_1	Staphylococcus aureus
129	sec1_1_1	Staphylococcus aureus
130	seg_1_1	Staphylococcus aureus
131	seh_1_1	Staphylococcus aureus
132	sel_1_1	Staphylococcus aureus
133	set15_1_1	Staphylococcus aureus
134	set6_1_1	Staphylococcus aureus
135	set7_1_1	Staphylococcus aureus

SEQ ID NO	Probe name	Template source
136	set8_1_1	Staphylococcus aureus
137	sprV8_1_1	Staphylococcus aureus
138	tst_1_1	Staphylococcus aureus
139	I-sdrC_1_1	Staphylococcus aureus
140	I-sdrD_1_1	Staphylococcus aureus
141	I-sdrE_1_1	Staphylococcus aureus
142	b1169_1_1	Escherichia coli
143	envZ_1_1	Escherichia coli
144	fliCb_1_1	Escherichia coli
145	nfrB_1_1	Escherichia coli
146	nlpA_1_1	Escherichia coli
147	pilAe_1_1	Escherichia coli
148	yacH_1_1	Escherichia coli
149	yagX_1_1	Escherichia coli
150	ycdS_1_1	Escherichia coli
151	yciQ_1_1	Escherichia coli
152	ymcA_1_1	Escherichia coli
153	b1202_1_1	Escherichia coli
154	eae_1_1	Escherichia coli
155	eltB_1_1	Escherichia coli
156	escR_1_1	Escherichia coli
157	escT_1_1	Escherichia coli
158	escU_1_1	Escherichia coli
159	espB_1_1	Escherichia coli
160	fes_1_1	Escherichia coli
161	fes_2_1	Escherichia coli
162	fteA_1_1	Escherichia coli
163	hlyA_1_1	Escherichia coli
164	hlyB_1_1	Escherichia coli
165	iucA_1_1	Escherichia coli
166	iucB_1_1	Escherichia coli
167	iucC_1_1	Escherichia coli
168	papG_1_1	Escherichia coli
169	rfbE_1_1	Escherichia coli
170	shuA_1_1	Escherichia coli
171	SLTII_1_1	Escherichia coli
172	toxA-LTPA_1_1	Escherichia coli
173	VT2vaB_1_1	Escherichia coli
174	ardeSE0106_1_1	Staphylococcus epidermidis
175	ardeSE0107_1_1	Staphylococcus epidermidis
	aroiSE0105_1_1	Staphylococcus epidermidis
177	atlE_1_1	Staphylococcus epidermidis
	agrB_1_1	Staphylococcus epidermidis
179	agrC_1_1	Staphylococcus epidermidis
180	alphSE1368_1_1	Staphylococcus epidermidis
181	gad_1_1	Staphylococcus epidermidis

SEQ ID NO	Probe name	Template source
182	glucSE1191_1_1	Staphylococcus epidermidis
183	hsp10_1_1	Staphylococcus epidermidis
184	icaA_1_1	Staphylococcus epidermidis
185	icaB_1_1	Staphylococcus epidermidis
186	mvaSSepid_1_1	Staphylococcus epidermidis
187	nitreSE1972_1_1	Staphylococcus epidermidis
188	nitreSE1974_1_1	Staphylococcus epidermidis
189	nitreSE1975_1_1	Staphylococcus epidermidis
190	oiamtSE1209_1_1	Staphylococcus epidermidis
191	ORF1Sepid_1_1	Staphylococcus epidermidis
192	ORF3bSepid_1_1	Staphylococcus epidermidis
193	qacR_1_1	Staphylococcus epidermidis
194	sin_1_1	Staphylococcus epidermidis
195	ureSE1861_1_1	Staphylococcus epidermidis
196	ureSE1863_1_1	Staphylococcus epidermidis
197	ureSE1864_1_1	Staphylococcus epidermidis
198	ureSE1865_1_1	Staphylococcus epidermidis
199	ureSE1867_1_1	Staphylococcus epidermidis
200	gcaD_1_1	Staphylococcus epidermidis
201	hld_orf5_1_1	Staphylococcus epidermidis
202	icaC_1_1	Staphylococcus epidermidis
203	icaD_1_1	Staphylococcus epidermidis
204	icaR_1_1	Staphylococcus epidermidis
205	psm_beta1and2_1_1	Staphylococcus epidermidis
206	purR_1_1	Staphylococcus epidermidis
207	spoVG_1_1	Staphylococcus epidermidis
208	yabJ_1_1	Staphylococcus epidermidis
209	folQShaemolyt_1_1	Staphylococcus haemolyticus
210	mvaCShaemolyticus_1_1	Staphylococcus haemolyticus
211	mvaDShaemolyt_1_1	Staphylococcus haemolyticus
	mvaK1Shaemolyticus_1_1	Staphylococcus haemolyticus
213	mvaSShaemolyticus_1_1	Staphylococcus haemolyticus
214	RNApolsigm_1_1	Staphylococcus haemolyticus
215	lipShaemolyt_1_1	Staphylococcus haemolyticus
216	agrB2Stalugd_1_1	Staphylococcus lugdunensis
217	agrC2Stalugd_1_1	Staphylococcus lugdunensis
	agrCStalugd_1_1	Staphylococcus lugdunensis
219	slamStalugd_1_1	Staphylococcus lugdunensis
	fblStalugd_1_1	Staphylococcus lugdunensis
	slushABCStalugd_1_1	Staphylococcus lugdunensis
	RNApolsigmSsapro_1_1	Staphylococcus saprophyticus
223	RNApolsigmSsapro_1_2	Staphylococcus saprophyticus
224	msrw1Stwar_1_1	Staphylococcus warneri
225	nukMStwar_1_1	Staphylococcus warneri
226	proDStwar_1_1	Staphylococcus warneri
227	proMStwar_1_1	Staphylococcus warneri
225 226	nukMStwar_1_1 proDStwar_1_1	Staphylococcus warneri Staphylococcus warneri

SEQ ID	Probe name	Template source
228	sigrpoStwar_1_1	Staphylococcus warneri
229	tnpStwar_1_1	Staphylococcus warneri
230	gehAStwar_1_1	Staphylococcus warneri
231	ARG56_1_1	Candida albicans
232	ASL43f_1_1	Candida albicans
233	BGL2 1 1	Candida albicans
234	CACHS3_1_1	Candida albicans
235	CCT8_1_1	Candida albicans
236	CDC37 1 1	Candida albicans
237	CEF3_1_1	Candida albicans
238	CHS1_1_1	Candida albicans
239	CHS2_1_1	Candida albicans
240	CHS4_1_1	Candida albicans
241	CHS5_1_1	Candida albicans
242	CHT1_1_1	Candida albicans
243	CHT2_1_1	Candida albicans
244	CHT4_1_1	Candida albicans
245	CSA1_1_1	Candida albicans
246	5triphosphatase_1_1	Candida albicans
247	AAF1_1_1	Candida albicans
248	ADH1_1_1	Candida albicans
249	ALS1_1_1	Candida albicans
250	ALS7_1_1	Candida albicans
251	EDT1_1_1	Candida albicans
252	ELF_1_1	Candida albicans
253	ESS1_1_1	Candida albicans
254	FAL1_1_1	Candida albicans
255	GAP1_1_1	Candida albicans
256	GNA1_1_1	Candida albicans
257	GSC1_1_1	Candida albicans
258	GSL1_1_1	Candida albicans
259-	HIS1_1_1	Candida albicans
260	HTS1_1_1	Candida albicans
261	HWP1_2_1	Candida albicans
262	HYR1_1_1	Candida albicans
263	INT1a_1_1	Candida albicans
264	KRE15f_1_1	Candida albicans
265	KRE6_1_1	Candida albicans
266	KRE9_1_1	Candida albicans
267	MIG1_1_1	Candida albicans
268	MLS1_1_1	Candida albicans
269	MP65_1_1	Candida albicans
270	NDE1_1_1	Candida albicans
271	PFK2_1_1	Candida albicans
272	PHR1_1_1	Candida albicans
273	PHR2_1_1	Candida albicans

WO 2007/03/31/		1 C 1/E1 200
	- 142 -	

SEQ ID NO	Probe name	Template source
274	PHR3_1_1	Candida albicans
275	PRA1_1_1	Candida albicans
276	PRS1_1_1	Candida albicans
277	RBT1_1_1	Candida albicans
278	RBT4_1_1	Candida albicans
279	RHO1_1_1	Candida albicans
280	RNR1_1_1	Candida albicans
281	RPB7_1_1	Candida albicans
282	RPL13_1_1	Candida albicans
283	RVS167_1_1	Candida albicans
284	SHA3_1_1	Candida albicans
285	SKN1_1_1	Candida albicans
286	SRB1_1_1	Candida albicans
287	TCA1_1_1	Candida albicans
288	TRP1_1_1	Candida albicans
289	YAE1_1_1	Candida albicans
290	YRB1_1_1	Candida albicans
291	YST1exon2_1_1	Candida albicans
292	CCN1_1_1	Candida albicans
293	CDC28_1_1	Candida albicans
294	CLN2_1_1	Candida albicans
295	CPH1_1_1	Candida albicans
296	CYB1_1_1	Candida albicans
297	EFG1_1_1	Candida albicans
298	MNT1_1_1	Candida albicans
299	RBF1_1_1	Candida albicans
300	RBF1_2_1	Candida albicans
301	RIM101_1_1	Candida albicans
302	RIM8_1_1	Candida albicans
303	SEC14_1_1	Candida albicans
304	SEC4_1_1	Candida albicans
305	TUP1_1_1 ⁻	Candida albicans
306	YPT1_1_1	Candida albicans
307	ZNF1CZF1_2_1	Candida albicans
308	arcA_1_1	Enterococcus faecalis
309	arcC_1_1	Enterococcus faecalis
310	bkdA_1_1	Enterococcus faecalis
311	cad_1_1	Enterococcus faecalis
312	camE1_1_1	Enterococcus faecalis
313	csrA_1_1	Enterococcus faecalis
314	dacA_1_1	Enterococcus faecalis
315	dfr_1_1	Enterococcus faecalis
316	dhoD1a_1_1	Enterococcus faecalis
317	ABC-eltA_1_1	Enterococcus faecalis
318	agrBfs_1_1	Enterococcus faecalis
	agrCfs_1_1	Enterococcus faecalis

SEQ ID NO	Probe name	Template source
320	dnaE_1_1	Enterococcus faecalis
321	ebsA_1_1	Enterococcus faecalis
322	ebsB_1_1	Enterococcus faecalis
323	eep_1_1	Enterococcus faecalis
324	efaR_1_1	Enterococcus faecalis
325	gls24_glsB_1_1	Enterococcus faecalis
326	gph_1_1	Enterococcus faecalis
327	gyrAEf_1_1	Enterococcus faecalis
328	metEf_1_1	Enterococcus faecalis
329	mntHCb2_1_1	Enterococcus faecalis
330	mob2_1_1	Enterococcus faecalis
331	mvaD_1_1	Enterococcus faecalis
332	mvaE_1_1	Enterococcus faecalis
333	parC_1_1	Enterococcus faecalis
334	pcfG_1_1	Enterococcus faecalis
335	phoZ_1_1	Enterococcus faecalis
336	polC_1_1	Enterococcus faecalis
337	ptb_1_1	Enterococcus faecalis
338	recS1_1_1	Enterococcus faecalis
339	rpoN_1_1	Enterococcus faecalis
340	tms_1_1	Enterococcus faecalis
341	tyrDC_1_1	Enterococcus faecalis
342	tyrS_1_1	Enterococcus faecalis
343	asa1_1_1	Enterococcus faecalis
344	asp1_1_1	Enterococcus faecalis
345	cgh_1_1	Enterococcus faecalis
346	cylA_1_1	Enterococcus faecalis
347	cylB_1_1	Enterococcus faecalis
348	cylI_1_1	Enterococcus faecalis
349	cylL_cylS_1_1	Enterococcus faecalis
350	cylM_1_1	Enterococcus faecalis
351	ace_1_1	Enterococcus faecalis
352	ef00108_1_1	Enterococcus faecalis
353	ef00109_1_1	Enterococcus faecalis
354	ef0011_1_1	Enterococcus faecalis
355	ef00113_1_1	Enterococcus faecalis
356	ef0012_1_1	Enterococcus faecalis
357	ef0022_1_1	Enterococcus faecalis
358	ef0031_1_1	Enterococcus faecalis
359	ef0032_1_1	Enterococcus faecalis
360	ef0040_1_1	Enterococcus faecalis
361	ef0058_1_1	Enterococcus faecalis
362	eniA_1_1	Enterococcus faecalis
	esa_1_1	Enterococcus faecalis
364	esp_1_1	Enterococcus faecalis
365	gelE_1_1	Enterococcus faecalis

SEQ ID NO	Probe name	Template source
366	groEL_1_1	Enterococcus faecalis
367	groES_1_1	Enterococcus faecalis
368	rt1_1_1	Enterococcus faecalis
369	sala_1_1	Enterococcus faecalis
370	salb_1_1	Enterococcus faecalis
371	sea1_1_1	Enterococcus faecalis
372	sep1_1_1	Enterococcus faecalis
373	vicK_1_1	Enterococcus faecalis
374	yycH_1_1	Enterococcus faecalis
375	yycI_1_1	Enterococcus faecalis
376	yycJ_1_1	Enterococcus faecalis
377	bglB_1_1	Enterococcus faecium
378	bgIR_1_1	Enterococcus faecium
379	bglS_1_1	Enterococcus faecium
380	efmA_1_1	Enterococcus faecium
381	efmB_1_1	Enterococcus faecium
382	efmC_1_1	Enterococcus faecium
383	mreC_1_1	Enterococcus faecium
384	mreD_1_1	Enterococcus faecium
385	mvaDEfaecium_1_1	Enterococcus faecium
386	mvaEEfaecium_1_1	Enterococcus faecium
387	mvaK1Efaecium_1_1	Enterococcus faecium
388	mvaK2Efaecium_1_1	Enterococcus faecium
389	mvaSEfaecium_1_1	Enterococcus faecium
390	orf3_4Efaeciumb_1_1	Enterococcus faecium
391	orf6_7Efaecium_1_1	Enterococcus faecium
392	orf7_8Efaecium_1_1	Enterococcus faecium
393	orf9_10Efaecium_1_1	Enterococcus faecium
394	entA_entI_1_1	Enterococcus faecium
395	entD_1_1	Enterococcus faecium
396	entR_1_1	Enterococcus faecium
397	oep_1_1	Enterococcus faecium
398	sagA_1_2	Enterococcus faecium
399	atsA_1_1	Klebsiella pneumoniae
400	atsB_1_1	Klebsiella pneumoniae
401	budC_1_1	Klebsiella pneumoniae
402	citA_1_1	Klebsiella pneumoniae
403	citW_1_1	Klebsiella pneumoniae
404	citX_1_1	Klebsiella pneumoniae
405	dalD_1_1	Klebsiella pneumoniae
406	dalK_1_1	Klebsiella pneumoniae
407 ·	dalT_1_1	Klebsiella pneumoniae
408	acoA_1_1	Klebsiella pneumoniae
409	acoB_1_1	Klebsiella pneumoniae
410	acoC_1_1	Klebsiella pneumoniae

Klebsiella pneumoniae

411

ahlK_1_1

_	1	Δ	5	_

SEQ ID NO	Probe name	Template source
412	fimK_1_1	Klebsiella pneumoniae
413	glfKPN2_1_1	Klebsiella pneumoniae
414	ltrA_1_1	Klebsiella pneumoniae
415	mdcC_1_1	Klebsiella pneumoniae
416	mdcF_1_1	Klebsiella pneumoniae
417	mdcH_1_1	Klebsiella pneumoniae
418	mrkA_1_1	Klebsiella pneumoniae
419	mtrK_1_1	Klebsiella pneumoniae
420	nifF_1_1	Klebsiella pneumoniae
421	nifK_1_1	Klebsiella pneumoniae
422	nifN_1_1	Klebsiella pneumoniae
423	tyrP_1_1	Klebsiella pneumoniae
424	ureA_1_1	Klebsiella pneumoniae
425	wbbO_1_1	Klebsiella pneumoniae
426	wza_1_1	Klebsiella pneumoniae
427	wzb_1_1	Klebsiella pneumoniae
428	wzmKPN2_1_1	Klebsiella pneumoniae
429	wztKPN2_1_1	Klebsiella pneumoniae
430	yojH_1_1	Klebsiella pneumoniae
431	liac_1_1	Klebsiella pneumoniae
432	cim_1_1	Klebsiella pneumoniae
433	aldA_1_1	Klebsiella pneumoniae
434	aldA_2_1	Klebsiella pneumoniae
435	hemly_1_1	Klebsiella pneumoniae
436	pSL017_1_1	Klebsiella pneumoniae
437	pSL020_1_1	Klebsiella pneumoniae
438	rcsA_1_1	Klebsiella pneumoniae
439	rmlC_1_1	Klebsiella pneumoniae
440	rmlD_1_1	Klebsiella pneumoniae
441	waaG_1_1	Klebsiella pneumoniae
442	wbbD_1_1	Klebsiella pneumoniae
443	wbbM_1_1	Klebsiella pneumoniae
444	wbbN_1_1	Klebsiella pneumoniae
445	wbdA_1_1	Klebsiella pneumoniae
446	wbdC_1_1	Klebsiella pneumoniae
447	wztKpn_1_1	Klebsiella pneumoniae
448	yibD_1_1	Klebsiella pneumoniae
449	cymA_1_1	Klebsiella oxytoca
450	cymD_1_1	Klebsiella oxytoca
451	cymE_1_1	Klebsiella oxytoca
452	cymH_1_1	Klebsiella oxytoca
	cymI_1_1	Klebsiella oxytoca
	cymJ_1_1	Klebsiella oxytoca
	ddrA_1_1	Klebsiella oxytoca
	fdt-1_1_1	Klebsiella oxytoca
457	fdt-2_1_1	Klebsiella oxytoca

SEQ ID NO	Probe name	Template source
458	fdt-3_1_1	Klebsiella oxytoca
459	gatY_1_1	Klebsiella oxytoca
460	hydH_1_1	Klebsiella oxytoca
461	masA_1_1	Klebsiella oxytoca
462	nasA_1_1	Klebsiella oxytoca
463	nasE_1_1	Klebsiella oxytoca
464	nasF_1_1	Klebsiella oxytoca
465	pehX_1_1	Klebsiella oxytoca
466	pelX_1_1	Klebsiella oxytoca
467	tagH_1_1	Klebsiella oxytoca
468	tagK_1_1	Klebsiella oxytoca
469	tagT_1_1	Klebsiella oxytoca
470	glpR_1_1	Pseudomonas aeruginosa
471	lasRb_1_1	Pseudomonas aeruginosa
472	OrfX_1_1	Pseudomonas aeruginosa
473	pa0260_1_1	Pseudomonas aeruginosa
474	pa0572_1_1	Pseudomonas aeruginosa
475	pa0625_1_1	Pseudomonas aeruginosa
476	pa0636_1_1	Pseudomonas aeruginosa
477	pa1046_1_1	Pseudomonas aeruginosa
478	pa1069_1_1	Pseudomonas aeruginosa
479	pa1846_1_1	Pseudomonas aeruginosa
480	pa3866_1_1	Pseudomonas aeruginosa
481	pa4082_1_1	Pseudomonas aeruginosa
482	pilAp_1_1	Pseudomonas aeruginosa
483	PilAp2_1_1	Pseudomonas aeruginosa
484	pilC_1_1	Pseudomonas aeruginosa
485	PstP_1_1	Pseudomonas aeruginosa
486	purK_1_1	Pseudomonas aeruginosa
487	uvrDII_1_1	Pseudomonas aeruginosa
488	vsmI_1_1	Pseudomonas aeruginosa
489	vsmR_1_2	Pseudomonas aeruginosa
490	xcpX_1_1_	Pseudomonas aeruginosa
-	aprA_1_1	Pseudomonas aeruginosa
	aprE_1_1	Pseudomonas aeruginosa
493	ctx_1_2	Pseudomonas aeruginosa
494	algB_1_1	Pseudomonas aeruginosa
	algN_1_1	Pseudomonas aeruginosa
	algR_1_1	Pseudomonas aeruginosa
	ExoS_1_1	Pseudomonas aeruginosa
	fpvA_1_1	Pseudomonas aeruginosa
	lasRa_1_1	Pseudomonas aeruginosa
	lipA_1_1	Pseudomonas aeruginosa
	lipH_1_1	Pseudomonas aeruginosa
502	Orf159_1_2	Pseudomonas aeruginosa
503	Orf252_1_1	Pseudomonas aeruginosa

		_

SEQ ID NO	Probe name	Template source
504	pchG_1_1	Pseudomonas aeruginosa
505	PhzA_1_1	Pseudomonas aeruginosa
506	PhzB_1_1	Pseudomonas aeruginosa
507	PLC_1_1	Pseudomonas aeruginosa
508	plcN_1_1	Pseudomonas aeruginosa
509	plcR_1_1	Pseudomonas aeruginosa
510	pvdD_1_1	Pseudomonas aeruginosa
511	pvdF_1_2	Pseudomonas aeruginosa
512	pyocinS1_1_1	Pseudomonas aeruginosa
513	pyocinS1im_1_1	Pseudomonas aeruginosa
514	pyocinS2_1_1	Pseudomonas aeruginosa
515	pys2_1_1	Pseudomonas aeruginosa
516	pys2_2_1	Pseudomonas aeruginosa
517	rbf303_1_1	Pseudomonas aeruginosa
518	rhlA_1_1	Pseudomonas aeruginosa
519	rhlB_1_1	Pseudomonas aeruginosa
520	rhlR_1_1	Pseudomonas aeruginosa
521	TnAP41_1_2	Pseudomonas aeruginosa
522	toxA_1_1	Pseudomonas aeruginosa
523	cap1EStrpneu_1_1	Streptococcus pneumoniae
524	cap1FStrpneu_1_1	Streptococcus pneumoniae
525	cap1GStrpneu_1_1	Streptococcus pneumoniae
526	cap3AStrpneu_1_1	Streptococcus pneumoniae
527	cap3BStrpneu_1_1	Streptococcus pneumoniae
528	celAStrpneu_1_1	Streptococcus pneumoniae
529	celBStrpneu_1_1	Streptococcus pneumoniae
530	cglAStrpneu_1_1	Streptococcus pneumoniae
531	cglBStrpneu_1_1	Streptococcus pneumoniae
532	cglCStrpneu_1_1	Streptococcus pneumoniae
533	cglDStrpneu_1_1	Streptococcus pneumoniae
534	cinA_1_1	Streptococcus pneumoniae
535	cps14EStrpneum_1_1	Streptococcus pneumoniae
536	cps14FStrpneum_1_1	Streptococcus pneumoniae
537	cps14GStrpneum_1_1	Streptococcus pneumoniae
538	cps14HStrpneum_1_1	Streptococcus pneumoniae
539	cps19aHStrpneum_1_1	Streptococcus pneumoniae
540	cps19aIStrpneum_1_1	Streptococcus pneumoniae
-	cps19aKStrpneum_1_1	Streptococcus pneumoniae
	cps19fGStrpneum_1_1	Streptococcus pneumoniae
543	cps23fGStrpneum_1_1	Streptococcus pneumoniae
544	dexB_1_1	Streptococcus pneumoniae
	dinF_1_1	Streptococcus pneumoniae
546	1760Strpneu_1_1	Streptococcus pneumoniae
	acyPStrpneu_1_1	Streptococcus pneumoniae
	endAStrpneu_1_1	Streptococcus pneumoniae
549	exoAStrpneu_1_1	Streptococcus pneumoniae

SEQ ID NO	Probe name	Template source
550	exp72_1_1	Streptococcus pneumoniae
551	fnIAStrpneu_1_1	Streptococcus pneumoniae
552	fnlBStrpneu_1_1	Streptococcus pneumoniae
553	fnlCStrpneu_1_1	Streptococcus pneumoniae
554	gct18Strpneum_1_1	Streptococcus pneumoniae
555	hexB1_1_1	Streptococcus pneumoniae
556	hftsHstrpneu_1_1	Streptococcus pneumoniae
557	immunofrag1Strpneu_1_1	Streptococcus pneumoniae
558	immunofrag2Strpneu_2_1	Streptococcus pneumoniae
559	immunofrag3Strpneu_2_1	Streptococcus pneumoniae
560	kdtBStrpneu_1_1	Streptococcus pneumoniae
561	lysAStrpneu_1_1	Streptococcus pneumoniae
562	pcpBStrpneu_1_1	Streptococcus pneumoniae
563	pflCStrpneu_1_1	Streptococcus pneumoniae
564	plpA_1_1	Streptococcus pneumoniae
565	prtA1Strpneu_1_1	Streptococcus pneumoniae
566	pspC1Strpneu_1_1	Streptococcus pneumoniae
567	pspC2_1_1	Streptococcus pneumoniae
568	purRStrpneu_1_1	Streptococcus pneumoniae
569	pyrDAStrpneum_1_1	Streptococcus pneumoniae
570	SP0828Strpneu_1_1	Streptococcus pneumoniae
571	SP0830Strpneu_1_1	Streptococcus pneumoniae
572	SP0833Strpneu_1_1	Streptococcus pneumoniae
573	SP0837_38Strpneu_1_1	Streptococcus pneumoniae
574	SP0839Strpneu_1_1	Streptococcus pneumoniae
575	ugdStrpneu_1_1	Streptococcus pneumoniae
576	uncC_1_1	Streptococcus pneumoniae
577	vicXStrepneu_1_1	Streptococcus pneumoniae
578	wchA6bStrpneum_1_1	Streptococcus pneumoniae
579	wci4Strpneum_1_1	Streptococcus pneumoniae
580	wciK4Strpneum_1_1	Streptococcus pneumoniae
581	wciL4Strpneum_1_1	Streptococcus pneumoniae
582	wciN6bStrpneum_1_1	Streptococcus pneumoniae
583	wciO6bStrpneum_1_1	Streptococcus pneumoniae
584	wciP6bStrpneum_1_1	Streptococcus pneumoniae
585	wciY18Strpneum_1_1	Streptococcus pneumoniae
586	wzdbStrpneum_1_1	Streptococcus pneumoniae
587	wze6bStrpneum_1_1	Streptococcus pneumoniae
588	wzy18Strpneum_1_1	Streptococcus pneumoniae
589	wzy4Strpneum_1_1	Streptococcus pneumoniae
590	wzy6bStrpneum_1_1	Streptococcus pneumoniae
591	xpt_1_1	Streptococcus pneumoniae
592	igaStrpneu_1_1	Streptococcus pneumoniae
	lytA_1_1	Streptococcus pneumoniae
594	nanA_1_1	Streptococcus pneumoniae
595	nanBStrpneu_1_1	Streptococcus pneumoniae

	T	
SEQ ID NO	Probe name	Template source
596	pcpCStrpneu_1_1	Streptococcus pneumoniae
597	ply_1_1	Streptococcus pneumoniae
598	prtAStrpneu_1_1	Streptococcus pneumoniae
599	pspA_1_2	Streptococcus pneumoniae
600	SP0834Strpneu_1_1	Streptococcus pneumoniae
601	SP0834Strpneu_1_2	Streptococcus pneumoniae
602	sphtraStrpneu_1_1	Streptococcus pneumoniae
603	wciJStrpneu_1_1	Streptococcus pneumoniae
604	wziyStrpneu_1_1	Streptococcus pneumoniae
605	wzxStrpneu_1_1	Streptococcus pneumoniae
606	cpsA1Strgal_1_1	Streptococcus agalactiae
607	cpsB1Strgal_1_1	Streptococcus agalactiae
608	cpsC1Strgal_1_1	Streptococcus agalactiae
609	cpsD1Strgal_1_1	Streptococcus agalactiae
610	cpsE1Strgal_1_1	Streptococcus agalactiae
611	cpsG1Strgal_1_1	Streptococcus agalactiae
612	cpsIStragal_1_1	Streptococcus agalactiae
613	cpsJStragal_1_1	Streptococcus agalactiae
614	cpsKStragal_1_1	Streptococcus agalactiae
615	cpsMStragal_1_1	Streptococcus agalactiae
616	cpsYStragal_1_1	Streptococcus agalactiae
617	cpsYStragal_2_1	Streptococcus agalactiae
618	cylBStraga_1_1	Streptococcus agalactiae
619	cylEStraga_1_1	Streptococcus agalactiae
620	cylFStraga_1_1	Streptococcus agalactiae
621	cylHStraga_1_1	Streptococcus agalactiae
622	cylIStraga_1_1	Streptococcus agalactiae
623	cylJStraga_1_1	Streptococcus agalactiae
624	cylKStraga_1_1	Streptococcus agalactiae
625	0487Straga_1_1	Streptococcus agalactiae
626	0488Straga_1_1	Streptococcus agalactiae
627	0493Straga_1_1	Streptococcus agalactiae
628	0495Straga_1_1	Streptococcus agalactiae
629	0498Straga_1_1	Streptococcus agalactiae
630	0500Straga_1_1	Streptococcus agalactiae
631	0502Straga_1_1	Streptococcus agalactiae
632	0504Straga_1_1	Streptococcus agalactiae
633	folDStraga_1_1	Streptococcus agalactiae
634	neuA1Strgal_1_1	Streptococcus agalactiae
635	neuB1Strgal_1_1	Streptococcus agalactiae
636	neuC1Strgal_1_1	Streptococcus agalactiae
637	neuD1Strgal_1_1	Streptococcus agalactiae
638	recNStraga_1_1	Streptococcus agalactiae
639	ileSStraga_1_1	Streptococcus agalactiae
640	CAMPfactor_1_1	Streptococcus agalactiae
641	CAMPfactor_2_1	Streptococcus agalactiae
		jet. epitococcus uguiactiue

			_	
	- 7	_	$\sim$	
_	- 1	$\neg$	u	_

SEQ ID NO	Probe name	Template source
642	0499Straga_1_1	Streptococcus agalactiae
643	hylStragal_1_1	Streptococcus agalactiae
644	lipStragal_1_1	Streptococcus agalactiae
645	cyclStrpyog_1_1	Streptococcus pyogenes
646	fah_rph_hlo_Strpyog_1_1	Streptococcus pyogenes
647	int_1_1	Streptococcus pyogenes
648	int315.5_1_1	Streptococcus pyogenes
649	murEStrpyog_1_1	Streptococcus pyogenes
650	oppA_1_1	Streptococcus pyogenes
651	oppCStrpyog_1_1	Streptococcus pyogenes
652	oppD_1_1	Streptococcus pyogenes
653	SPy0382Strpyog_1_1	Streptococcus pyogenes
654	SPy0390Strpyog_1_1	Streptococcus pyogenes
655	SpyM3_1351_1_1	Streptococcus pyogenes
656	vicXStrpyog_1_1	Streptococcus pyogenes
657	DNaseIStrpyog_1_1	Streptococcus pyogenes
658	fba2Strpyog_1_1	Streptococcus pyogenes
659	fhuAStrpyog_1_1	Streptococcus pyogenes
660	fhuB1Strpyog_1_1	Streptococcus pyogenes
661	fhuDStrpyog_1_1	Streptococcus pyogenes
662	fhuGStrpyog_1_1	Streptococcus pyogenes
663	hylA_1_1	Streptococcus pyogenes
664	hylP_1_1	Streptococcus pyogenes
665	hylp2_1_1	Streptococcus pyogenes
666	oppB_1_1	Streptococcus pyogenes
667	ropB_1_1	Streptococcus pyogenes
668	scpAStrpyog_1_1	Streptococcus pyogenes
669	sloStrpyog_1_1	Streptococcus pyogenes
670	smez-4Strpyog_1_1	Streptococcus pyogenes
671	sof_1_1	Streptococcus pyogenes
672	sof_2_1	Streptococcus pyogenes
673	speA_1_1	Streptococcus pyogenes
674	speB2Strpyog_1_1	Streptococcus pyogenes
675	speCStrpyog_1_1	Streptococcus pyogenes
676	speJStrpyog_1_1	Streptococcus pyogenes
677	srtBStrpyog_1_1	Streptococcus pyogenes
678	srtCStrpyog_1_1	Streptococcus pyogenes
679	srtEStrpyog_1_1	Streptococcus pyogenes
680	srtFStrpyog_1_1	Streptococcus pyogenes
681	srtGStrpyog_1_1	Streptococcus pyogenes
682	srtIStrpyog_1_1	Streptococcus pyogenes
683	srtKStrpyog_1_1	Streptococcus pyogenes
684	srtRStrpyog_1_1	Streptococcus pyogenes
685	srtTStrpyog_1_1	Streptococcus pyogenes
686	vicKStrpyog_1_1	Streptococcus pyogenes
687	573Stprmut_1_1	Streptococcus viridans

SEQ ID NO	Probe name	Template source
688	580SStprmut_1_1	Streptococcus viridans
689	581_582SStprmut_1_1	Streptococcus viridans
690	584SStprmut_1_1	Streptococcus viridans
691	dltAStrmut_1_1	Streptococcus viridans
692	dltBStrmut_1_1	Streptococcus viridans
693	dltCppx1Strmut_1_1	Streptococcus viridans
694	dltDStrmut_1_1	Streptococcus viridans
695	lichStrbov_1_1	Streptococcus viridans
696	lytRStprmut_1_1	Streptococcus viridans
697	lytSStprmut_1_1	Streptococcus viridans
698	pepQStrrmut_1_1	Streptococcus viridans
699	pflCStrmut_1_1	Streptococcus viridans
700	recNStprmut_1_1	Streptococcus viridans
701	ytqBStrmut_1_1	Streptococcus viridans
702	hlyXStrmut_1_1	Streptococcus viridans
703	igaStrmitis_1_1	Streptococcus viridans
704	igaStrsanguis_1_1	Streptococcus viridans
705	perMStrmut_1_1	Streptococcus viridans
706	atfA_1_1	Proteus mirabilis
707	atfB_1_1	Proteus mirabilis
708	atfC_1_1	Proteus mirabilis
709	ccmPrmi1_1_1	Proteus mirabilis
710	cyaPrmi_1_1	Proteus mirabilis
711	aad_1_1	Proteus mirabilis
712	flfB_1_1	Proteus mirabilis
713	flfD_1_1	Proteus mirabilis
714	flfN_1_1	Proteus mirabilis
715	flhD_1_1	Proteus mirabilis
716	floA_1_1	Proteus mirabilis
717	ftsK_1_1	Proteus mirabilis
718	gstB_1_1	Proteus mirabilis
719	hemCPrmi_1_1	Proteus mirabilis
720	hemDPrmi_1_1	Proteus mirabilis
721	hev_1_1	Proteus mirabilis
722	katA_1_1	Proteus mirabilis
723	lpp1_1_1	Proteus mirabilis
724	menE_1_1	Proteus mirabilis
725	mfd_1_1	Proteus mirabilis
726	nrpA_1_1	Proteus mirabilis
727	nrpB_1_1	Proteus mirabilis
728	nrpG_1_1	Proteus mirabilis
729	nrpS_1_1	Proteus mirabilis
730	nrpT_1_1	Proteus mirabilis
731	nrpU_1_1	Proteus mirabilis
732	pat_1_1	Proteus mirabilis
733	pmfA_1_1	Proteus mirabilis

SEQ ID NO	Probe name	Template source
734	pmfC_1_1	Proteus mirabilis
735	pmfE_1_1	Proteus mirabilis
736	ppaA_1_1	Proteus mirabilis
737	rsbA_1_1	Proteus mirabilis
738	rsbC_1_1	Proteus mirabilis
739	speB_1_1	Proteus mirabilis
740	stmA_1_1	Proteus mirabilis
741	stmB_1_1	Proteus mirabilis
742	terA_1_1	Proteus mirabilis
743	terD_1_1	Proteus mirabilis
744	umoA_1_1	Proteus mirabilis
745	umoB_1_1	Proteus mirabilis
746	umoC_1_1	Proteus mirabilis
747	ureR_1_1	Proteus mirabilis
748	xerC_1_1	Proteus mirabilis
749	ygbA_1_1	Proteus mirabilis
750	flaA_1_1	Proteus mirabilis
751	flaD_1_1	Proteus mirabilis
752	fliA_1_1	Proteus mirabilis
753	hpmA_1_1	Proteus mirabilis
754	hpmB_1_1	Proteus mirabilis
755	lpsPrmi_1_1	Proteus mirabilis
756	mrpA_1_1	Proteus mirabilis
757	mrpB_1_1	Proteus mirabilis
758	mrpC_1_1	Proteus mirabilis
759	mrpD_1_1	Proteus mirabilis
760	mrpE_1_1	Proteus mirabilis
761	mrpF_1_1	Proteus mirabilis
762	mrpG_1_1	Proteus mirabilis
763	mrpH_1_1	Proteus mirabilis
764	mrpI_1_1	Proteus mirabilis
765	mrpJ_1_1	Proteus mirabilis
766	patA_1_1	Proteus mirabilis
767	putA_1_1	Proteus mirabilis
768	uca_1_1	Proteus mirabilis
769	ureDPrmi_1_1	Proteus mirabilis
770	ureEPrmi_1_1	Proteus mirabilis
771	ureFPrmi_1_1	Proteus mirabilis
772	zapA_1_1	Proteus mirabilis
773	zapB_1_1	Proteus mirabilis
774	zapD_1_1	Proteus mirabilis
775	zapE_1_1	Proteus mirabilis
776	envZPrvu_1_1	Proteus vulgaris
777	frdC_1_1	Proteus vulgaris
778	frdD_1_1	Proteus vulgaris
779	infBPrvu_1_1	Proteus vulgaris
		j occus vargaris

SEQ ID NO	Probe name	Template source
780	lad_1_1	Proteus vulgaris
781	tna2_1_1	Proteus vulgaris
782	end_1_1	Proteus vulgaris
783	pqrA_1_1	Proteus vulgaris
784	urg_1_1	Proteus vulgaris
785	blaIMP-7_1_1	Pseudomonas aeruginosa
786	mecISepid_1_1	Staphylococcus epidermidis
787	blaOXA-10_1_2	Pseudomonas aeruginosa
788	blaB_1_1	Proteus vulgaris
789	ampC_1_1	Klebsiella oxytoca
790	I-blaR_1_1	Staphylococcus aureus
791	blaOXA-32_1_1	Pseudomonas aeruginosa
792	bla-CTX-M-22_1_1	Klebsiella pneumoniae
793	pbp2aStrpneu_1_1	Streptococcus pneumoniae
794	blaSHV-1_1_1	Klebsiella pneumoniae
795	blaOXA-2_1_1	Salmonella typhimurium
796	blaRShaemolyt_1_1	Staphylococcus haemolyticus
797	blaIMP-7_1_2	Pseudomonas aeruginosa
798	I-mecR_1_1	Staphylococcus aureus
799	blaOXY_1_1	Klebsiella oxytoca
800	dacCStrpyog_1_1	Streptococcus pyogenes
801	femA_1_1	Staphylococcus aureus
802	mecA_1_1	Staphylococcus aureus
803	blaIShaemolyt_1_1	Staphylococcus haemolyticus
804	blavim_1_1	Pseudomonas aeruginosa
805	pbp2b_1_1	Streptococcus pneumoniae
806	pbp2primeSepid_1_1	Staphylococcus epidermidis
807	pbp2x_1_1	Streptococcus pneumoniae
808	pbp3Saureuc_1_1	Staphylococcus aureus
809	pbp4_1_1	Enterococcus faecalis
810	pbp5Efaecium_1_1	Enterococcus faecium
811	pbpC_1_1	Enterococcus faecalis
812	I-mecI_1_1	Staphylococcus aureus
813	pbp1a_1_1	Streptococcus pneumoniae
814	I-blaI_1_1	Staphylococcus aureus
815	blaTEM-106_1_1	Escherichia coli
816	blaOXY-KLOX_1_1	Klebsiella oxytoca
817	ftsWEF_1_1	Enterococcus faecium
818	fmhB_1_1	Staphylococcus aureus
819	cumA_1_1	Proteus vulgaris
	femBShaemolyt_1_1	Staphylococcus haemolyticus
	blaPER-1_1_1	Pseudomonas aeruginosa
	bla_FOX-3_1_1	Klebsiella oxytoca
	blaA_1_1	Proteus vulgaris
824	psrb_1_1	Enterococcus faecium
825	fmhA_1_1	Staphylococcus aureus

SEQ ID NO	Probe name	Template source
826	mecR1Sepid_1_1	Staphylococcus epidermidis
827	blaZ_1_1	Staphylococcus aureus
828	blaOXA-1_1_1	Plasmid RGN238
829	fox-6_1_1	Klebsiella pneumoniae
830	blaPrmi_1_1	Proteus mirabilis
831	aacA_aphDStwar_1_1	Staphylococcus warneri
832	aacC1_1_2	Pseudomonas aeruginosa
833	aacC2_1_1	Escherichia coli
834	strB_1_1	Escherichia coli
835	aadA_1_1	Enterococcus faecalis
836	aadB_1_2	Escherichia coli
837	aadD_1_1	Staphylococcus aureus
838	aacA4_1_2	Pseudomonas aeruginosa
839	strA_1_1	Escherichia coli
840	aph-A3_1_1	Staphylococcus aureus
841	aacC1_1_1	Pseudomonas aeruginosa
842	aacA4_1_1	Pseudomonas aeruginosa
843	aacA-aphD_1_1	Staphylococcus aureus
844	I-spc_1_1	Staphylococcus aureus
845	aphA3_1_1	synthetic construct
846	ermC_1_1	Staphylococcus aureus
847	linB_1_1	Enterococcus faecium
848	satSA_1_1	Staphylococcus aureus
849	mdrSA_1_1	Staphylococcus aureus
850	I-linA_1_1	Staphylococcus aureus
851	ermB_1_2	Staphylococcus aureus
852	ermA_1_1	Staphylococcus aureus
853	satA_1_1	Enterococcus faecium
854	msrA_1_1	Staphylococcus aureus
855	mphBM_1_1	Staphylococcus aureus
856	mefA_1_1	Streptococcus pyogenes
857	mrx_1_1	Escherichia coli
858	dfrStrpneu_1_1	Streptococcus pneumoniae
859	dfrA_1_1	Staphylococcus aureus
860	cmlA5_1_1	Escherichia coli
861	catEfaecium_1_1	Enterococcus faecium
862	cat_1_1	Staphylococcus aureus
863	tetAJ_1_1	Proteus mirabilis
864	tetL_1_1	Enterococcus faecalis
865	tetM_1_1	Enterococcus faecalis
866	vanH(tn)_1_1	Enterococcus faecium
867	vanA_1_1	Enterococcus faecium
868	vanHB2_1_1	Enterococcus faecium
869	vanR_1_1	Enterococcus faecium
870	vanRB2_1_1	Enterococcus faecium
871	vanS(tn)_1_1	Enterococcus faecium

SEQ ID NO	Probe name	Template source
872	vanSB2_1_1	Enterococcus faecium
873	vanWB2_1_1	Enterococcus faecium
874	ddl_1_1	Enterococcus faecalis
875	ble_1_1	Staphylococcus aureus
876	vanXB2_1_1	Enterococcus faecium
877	vanY(tn)_1_1	Enterococcus faecium
878	vanYB2_1_1	Enterococcus faecium
879	vanB_1_1	Enterococcus faecalis
880	vanZ(tn)_1_1	Enterococcus faecium
881	vanC-2_1_1	Enterococcus flavescens
882	vanX(tn)_1_1	Enterococcus faecium
883	acrB_1_1	Proteus mirabilis
884	mexB_1_2	Pseudomonas aeruginosa
885	I-qacA_1_1	Staphylococcus aureus
886	sulI_1_1	Escherichia coli
887	sul_1_1	Escherichia coli
888	cadBStalugd_1_1	Staphylococcus lugdunensis
889	mexA_1_1	Pseudomonas aeruginosa
890	acrR_1_1	Proteus mirabilis
891	emeA_1_1	Enterococcus faecalis
892	acrA_1_1	Proteus mirabilis
893	rtn_1_1	Proteus vulgaris
894	abcXStrpmut_1_1	Streptococcus mutans
895	qacEdelta1_1_1	Escherichia coli
896	elkT-abcA_1_1	Staphylococcus aureus
897	I-cadA_1_1	Staphylococcus aureus
898	albA_1_1	Klebsiella oxytoca
899	wzm_1_1	Klebsiella pneumoniae
900	msrCb_1_1	Enterococcus faecium
901	nov_1_1	Escherichia coli
902	wzt_1_1	Klebsiella pneumoniae
903	wbbl_1_1	Klebsiella pneumoniae
904	norA23_1_1	Staphylococcus aureus
905	mexR_1_1	Pseudomonas aeruginosa
906	arr2_1_1	Escherichia coli
907	mreA_1_1	Staphylococcus aureus
908	I-cadC_1_1	Staphylococcus aureus
909	uvrA_1_1	Enterococcus faecalis
910	CRD2_1_1	Candida albicans
911	CDR1_1_1	Candida albicans
912	CDR1_2_1	Candida albicans
913	MET3_1_1	Candida albicans
914	FET3_1_1	Candida albicans
915	FTR2_1_1	Candida albicans
916	MDR1-7_1_1	Candida albicans
917	ERG11_1_1	Candida albicans

SEQ ID NO	Probe name	Template source
918	SEC20_1_1	Candida albicans
919	rbcL_1_1	Glycine max
920	LDHA(hu)_1_1	Homo sapiens
921	GAPD(hu)_1_1	Homo sapiens
922	b-Act(hu)_1_1	Homo sapiens
923	ARHGDIA(hu)_1_1	Homo sapiens
924	PGK1(hu)_1_1	Homo sapiens
925	rbcL_1_2	Glycine max
926	16SPa_1_1	Pseudomonas aeruginosa
927	23SEfaecium_2_1	Enterococcus faecium
928	16SStrepyog_1_1	Streptococcus pyogenes
929	16SStrepneu_1_1	Streptococcus pneumoniae
930	16SStrepagalactiae_1_1	Streptococcus agalactiae
931	16SEfaecium_1_1	Enterococcus faecium
932	16SEfaecium_2_1	Enterococcus faecium
933	16SRNAEf_2_1	Enterococcus faecalis
934	16SKpn_1_1	Klebsiella pneumoniae
935	16SSa_3_1	Staphylococcus aureus
936	16SRNAEf_1_1	Enterococcus faecalis
937	16SShominis_1_1	Staphylococcus hominis
938	16SShaemolyt_1_1	Staphylococcus haemolyticus
939	23SEfaecium_1_1	Enterococcus faecium
940	16SrRNAPrmi_1_1	Proteus mirabilis
941	16SrRNAPrvu1_1_1	Proteus vulgaris
942	16SSa_1_1	Staphylococcus aureus
943	16SKlox_1_1	Klebsiella oxytoca
944	p53_1_1	Mus musculus
945	0135mihck_1_1	Dictyostelium discoideum
946	FAN_1_1	Mus musculus
947	0270cap_1_1	Dictyostelium discoideum
2842	16SStrepdysgal_1_1	Streptococcus dysgalactiae
2843	carO_1_1	Acinetobacter baumannii
2844	gacS_1_1	Acinetobacter baumannii
2845	dhbA_1_1	Acinetobacter baumannii
2846	dhbB_1_1	Acinetobacter baumannii
2847	sid_1_1	Acinetobacter baumannii
2848	csuD_1_1	Acinetobacter baumannii
2849	csuC_1_1	Acinetobacter baumannii
2850	tnp-ACIBA_1_1	Acinetobacter baumannii
2851	waaA-ACIBA_1_1	Acinetobacter baumannii
2852	csuB_1_1	Acinetobacter baumannii
2853	csuA_B_1_1	Acinetobacter baumannii
2854	csuA_1_1	Acinetobacter baumannii
2855	put1_1_1	Acinetobacter baumannii
2856	por_1_1	Acinetobacter baumannii
2857	abc_1_1	Acinetobacter baumannii

SEQ ID NO	Probe name	Template source
2858	furACIBA_1_1	Acinetobacter baumannii
2859	dec_1_1	Acinetobacter baumannii
2860	cysI_1_1	Acinetobacter baumannii
2861	trpE_1_1	Acinetobacter baumannii
2862	put3_1_1	Acinetobacter baumannii
2863	ompA-ACIBA_1_1	Acinetobacter baumannii
2864	aacA4ENCL_1_1	Enterobacter cloacae
2865	AdeR-ACIBA_1_1	Acinetobacter baumannii
2866	adeA-ACIBA_1_1	Acinetobacter baumannii
2867	aac(6p)-lb7_1_1	Enterobacter cloacae
2868	adeB-ACIBA_1_1	Acinetobacter baumannii
2869	adeC-ACIBA_1_1	Acinetobacter baumannii
2870	AdeS-ACIBA_1_1	Acinetobacter baumannii
2871	blaL2_1_1	Stenotrophomonas maltophilia
2872	blaMIR-3_1_1	Enterobacter cloacae
2873	ampR_1_1	Enterobacter cloacae
2874	ampC-ENCL_1_1	Enterobacter cloacae
2875	blaL1_1_1	Stenotrophomonas maltophilia
2876	asr_1_1	Enterobacter cloacae
2877	lacZ_1_1	Enterobacter cloacae
2878	ehuS_1_1	Enterobacter cloacae
2879	ehuV_1_1	Enterobacter cloacae
2880	slyA_1_1	Enterobacter cloacae
2881	ORF165_1_1	Enterobacter cloacae
2882	ehuU_1_1	Enterobacter cloacae
2883	ehuT_1_1	Enterobacter cloacae
2884	ORF295_1_1	Enterobacter cloacae
2885	ehuA_1_1	Enterobacter cloacae
2886	ORF400_1_1	Enterobacter cloacae
2887	H+ATPase_1_1	Enterococcus faecium
2888	sulII_1_1	Acinetobacter baumannii
2889	smeE_1_1	Stenotrophomonas maltophilia
2890	eE_1_1	Stenotrophomonas maltophilia
2891	StmPr1_1_1	Stenotrophomonas maltophilia
2892	eD_2_1	Stenotrophomonas maltophilia
2893	ppi_1_1	Stenotrophomonas maltophilia
2894	pmp-STEMA_1_1	Stenotrophomonas maltophilia
2895	pam_1_1	Stenotrophomonas maltophilia
2896	ORF4-STEMA_1_1	Stenotrophomonas maltophilia
2897	ORF2-STEMA_1_1	Stenotrophomonas maltophilia
2898	et_1_1	Stenotrophomonas maltophilia
2899	eF_1_1	Stenotrophomonas maltophilia
2900	StmPr2_1_1	Stenotrophomonas maltophilia
2901	smeF4494_1_1	Stenotrophomonas maltophilia
2902	coa_3_1	Staphylococcus aureus
2903	coa_2_2	Staphylococcus aureus

	-	_	$\sim$	
_	- 1	. ^	×	_

SEQ ID NO	Probe name	Template source
2904	fasCAXStrdysg_1_1	Streptococcus dysgalactiae
2905	sloStrep_1_1	Streptococcus dysgalactiae
2906	ydhK_1_1	Staphylococcus hominis
2907	tetA-ACIBA_1_1	Acinetobacter baumannii
2908	tetR-ACIBA_1_1	Acinetobacter baumannii

## b) primer sequences

SEQ ID NO	Probe name	Direction
948	cataSaur_1_1	F(orward)
949	cataSaur_1_1	R(everse)
950	cataSaur_1_2	F
951	cataSaur_1_2	R
952	clfA_1_1	F
953	clfA_1_1	R
954	clfB_1_1	F
955	clfB_1_1	R
956	coa_1_1	F
957	coa_1_1	R
958	coa_1_2	F
959	coa_1_2	R
960	I-clpC_1_1	F
961	I-clpC_1_1	R
962	I-clpP_1_1	F
963	I-clpP_1_1	R
964	I-ctaA_1_1	F
965	I-ctaA_1_1	R
966	I-ctsR_1_1	F
967	I-ctsR_1_1	R
968	I-dltA_1_1	F
969	I-dltA_1_1	R
970	I-dltB_1_1	F
971	I-dltB_1_1	R
972	I-dltC_1_1	F
973	I-dltC_1_1	R
974	I-dnaK_1_1	F
975	I-dnaK_1_1	R
976	I-elkT_1_1	F
977	I-elkT_1_1	R
978	I-femD_1_1	F
979	I-femD_1_1	R
980	I-glnA_1_1	F
981	I-glnA_1_1	R
982	I-glnR_1_1	F

SEQ ID NO	Probe name	Direction
983	I-glnR_1_1	R
984	I-grlA_1_1	F
985	I-grlA_1_1	R
986	I-grlB_1_1	F
987	I-grlB_1_1	R
988	I-groEL_1_1	F
989	I-groEL_1_1	R
990	I-groES_1_1	F
991	I-groES_1_1	R
992	I-hemA_1_1	F
993	I-hemA_1_1	R
994	I-hemE_1_1	F
995	I-hemE_1_1	R
996	I-hemH_1_1	F
997	I-hemH_1_1	R
998	I-hemL_1_1	F
999	I-hemL_1_1	R
1000	I-hemY_1_1	F
1001	I-hemY_1_1	R
1002	I-lepA_1_1	F
1003	I-lepA_1_1	R
1004	I-lrgA_1_1	F
1005	I-lrgA_1_1	R
1006	I-lrgB_1_1	F
1007	I-lrgB_1_1	R
1008	I-lytM_1_1	F
1009	ytm_1_1  I- ytM_1_1	R
1010	I-menB_1_1	F
1011	I-menB_1_1	R
1012	I-menD_1_1	F
1013	I-menD_1_1	'R
1013	I-menE_1_1	F
1014	I-menE_1_1	'R
1016	I-menF_1_1	F
1017	I-menF_1_1	r R
1017	I-mreB_1_1	F
1019	I-mreB_1_1	R
l .		F
1020 1021	I-mreR_1_1	R
1	I-mreR_1_1	F
1022	I-mutL_1_1	ļ.
1023	I-mutL_1_1 I_mutS_1_1	R F
1024	I-mutS_1_1	
1025	I-mutS_1_1	R
1026	I-NAG_1_1	F

SEQ ID NO	Probe name	Direction
1027	I-NAG_1_1	R
1028	I-pbg_1_1	F
1029	I-pbg_1_1	R
1030	I-pbpF_1_1	F
1031	I-pbpF_1_1	R
1032	I-pdhB_1_1	F
1033	I-pdhB_1_1	R
1034	I-pdhC_1_1	F
1035	I-pdhC_1_1	R
1036	I-rsbU_1_1	F
1037	I-rsbU_1_1	R
1038	I-rsbV_1_1	F
1039	I-rsbV_1_1	R
1040	I-rsbW_1_1	F
1041	I-rsbW_1_1	R
1042	I-sgp_1_1	F
1043	I-sgp_1_1	R
1044	I-sirR_1_1	F
1045	I-sirR_1_1	R
1046	I-sodA_1_1	F
1047	I-sodA_1_1	R
1048	I-sodB_1_1	F
1049	I-sodB_1_1	R
1050	I-sstA_1_1	F
1051	I-sstA_1_1	R
1052	I-sstB_1_1	F
1053	I-sstB_1_1	R
1054	I-sstC_1_1	F
1055	I-sstC_1_1	R
1056	I-sstD_1_1	F
1057	I-sstD_1_1	R
1058	I-trx_1_1	F
1059	I-trx_1_1	R
1060	I-yhiN_1_1	F
1061	I-yhiN_1_1	R
1062	epiP-bsaP_1_1	F
1063	epiP-bsaP_1_1	R
1064	geh_1_1	F
1065	geh_1_1	R
1066	gyrA_1_1	F
1067	gyrA_1_1	R
1068	gyrB_1_1	F
1069	gyrB_1_1	R
1070	hemB_1_1	F

SEQ ID NO	Probe name	Direction
1071	hemB_1_1	R
1072	hemC_1_1	F
1073	hemC_1_1	R
1074	hemD_1_1	F
1075	hemD_1_1	R
1076	hemN_1_1	F
1077	hemN_1_1	R
1078	hsdS_1_1	F
1079	hsdS_1_1	R
1080	hsdS_2_1	F
1081	hsdS_2_1	R
1082	lip_1_1	F
1083	lip_1_1	R
1084	menC_1_1	F
1085	menC_1_1	R
1086	murC_1_1	F
1087	murC_1_1	R
1088	nuc_1_1	F
1089	nuc_1_1	R
1090	pdhD_1_1	F
1091	pdhD_1_1	R
1092	rpoB_1_1	F
1093	rpoB_1_1	R
1094	SAV0431_1_1	F
1095	SAV0431_1_1	R
1096	SAV0439_1_1	F
1097	SAV0439_1_1	R
1098	SAV0440_1_1	F
1099	SAV0440_1_1	R
1100	SAV0441_1_1	F
1101	SAV0441_1_1	R
1102	sigB_1_1	F
1103	sigB_1_1	R
1104	spa_1_2	F
1105	spa_1_2	R
1106	sstC_1_1	F
1107	sstC_1_1	R
1108	tag_1_1	F
1109	tag_1_1	R
11.10	tyrA_1_1	F
1111	tyrA_1_1	R
1112	I-aroC_1_1	F
1113	I-aroC_1_1	R
1114	I-aroA_1_1	F

**-** 162 -

	T	
SEQ ID NO	Probe name	Direction
1115	I-aroA_1_1	R
1116	I-cna_1_1	F
1117	I-cna_1_1	R
1118	I-ebpS_1_1	F
1119	I-ebpS_1_1	R
1120	I-eno_1_1	F
1121	I-eno_1_1	R
1122	I-fbpA_1_1	F
1123	I-fbpA_1_1	R
1124	I-fib_1_1	F
1125	I-fib_1_1	R
1126	I-fnbB_1_1	F
1127	I-fnbB_1_1	R
1128	I-srtA_1_1	F
1129	I-srtA_1_1	R
1130	I-stpC_1_1	F
1131	I-stpC_1_1	R
1132	I-fnbA_1_1	F
1133	I-fnbA_1_1	R
1134	I-spa_1_1	F
1135	I-spa_1_1	R
1136	I-aroE_1_1	F
1137	I-aroE_1_1	R
1138	I-aroF_1_1	F
1139	I-aroF_1_1	R
1140	I-aroG_1_1	F
1141	I-aroG_1_1	R
1142	I-asp23_1_1	F
1143	I-asp23_1_1	R
1144	I-atl_1_1	F
1145	I-atl_1_1	R
1146	bsaE_1_1	F
1147	bsaE_1_1	R
1148	bsaG_1_1	F
1149		R
1150	cap5h_1_1	F
1151	cap5h_1_1	R
1152	cap5i_1_1	F
1153	cap5i_1_1	R
1154	cap5j_1_1	F
1155	cap5j_1_1	R
1156	cap5k_1_1	F
1157		R
1158	cap8H_1_1	F

SEQ ID NO	Probe name	Direction
1159	cap8H_1_1	R
1160	cap8I_1_1	F
1161	cap8I_1_1	R
1162	cap8J_1_1	F
1163	cap8J_1_1	R
1164	cap8K_1_1	F
1165	cap8K_1_1	R
1166	I-hld_1_1	F
1167	I-hld_1_1	R
1168	I-hysA_1_1	F
1169	I-hysA_1_1	R
1170	I-IgGbg_1_1	F
1171	I-IgGbg_1_1	R
1172	EDIN_1_1	F
1173	EDIN_1_1	R
1174	eta_1_1	F
1175	eta_1_1	R
1176	etb_1_1	F
1177	etb_1_1	R
1178	hglA_1_1	F
1179	hgIA_1_1	R
1180	hgIA_2_1	F
1181	hgIA_2_1	R
1182	hglB_1_1	F
1183	hglB_1_1	R
1184	hglC_2_1	F
1185	hglC_2_1	R
1186	hla_1_1	F
1187	hla_1_1	R
1188	hlb_1_2	F
1189	hlb_1_2	R
1190	lukF_1_1	F
1191	lukF_1_1	R
1192	lukS_1_1	F
1193	lukS_1_1	R
1194	lukS_2_1	F
1195	lukS_2_1	R
1196	NAG_1_1	F
1197	NAG_1_1	R
1198	sak_1_1	F
1199	sak_1_1	R
1200	sea_1_1	F
1201	sea_1_1	R
1202	seb_1_1	F

- 164 -

SEQ ID NO	Probe name	Direction
1203	seb_1_1	R
1204	sec1_1_1	F
1205	sec1_1_1	R
1206	seg_1_1	F
1207	seg_1_1	R
1208	seh_1_1	F
1209	seh_1_1	R
1210	sel_1_1	F
1211	sel_1_1	R
1212	set15_1_1	F
1213	set15_1_1	R
1214	set6_1_1	F
1215	set6_1_1	R
1216	set7_1_1	F
1217	set7_1_1	R
1218	set8_1_1	F
1219	set8_1_1	R
1220	sprV8_1_1	F
1221	sprV8_1_1	R
1222	tst_1_1	F
1223	tst_1_1	R
1224	I-sdrC_1_1	F
1225	I-sdrC_1_1	R
1226	I-sdrD_1_1	F
1227	I-sdrD_1_1	R
1228	I-sdrE_1_1	F
1229	I-sdrE_1_1	R
1230	b1169_1_1	F
1231	b1169_1_1	R
1232	envZ_1_1	F
1233	envZ_1_1	R
1234	fliCb_1_1	F
1235	fliCb_1_1	R
1236	nfrB_1_1	F
1237	nfrB_1_1	R
1238	nlpA_1_1	F
1239	nlpA_1_1	R
1240	pilAe_1_1	F
1241		R
1242		F
1243	yacH_1_1	R
1244		F
1245		R
1246	ycdS_1_1	F

SEQ ID NO	Probe name	Direction
1247	ycdS_1_1	R
1248	yciQ_1_1	F
1249	yciQ_1_1	R
1250	ymcA_1_1	F
1251	ymcA_1_1	R
1252	b1202_1_1	F
1253	b1202_1_1	R
1254	eae_1_1	F
1255	eae_1_1	R
1256	eltB_1_1	F
1257	eltB_1_1	R
1258	escR_1_1	F
1259	escR_1_1	R
1260	escT_1_1	F
1261	escT_1_1	R
1262	escU_1_1	F
1263	escU_1_1	R
1264	espB_1_1	F
1265	espB_1_1	R
1266	fes_1_1	F
1267	fes_1_1	R
1268	fes_2_1	F
1269	fes_2_1	R
1270	fteA_1_1	F
1271	fteA_1_1	R
1272	hlyA_1_1	F
1273	hlyA_1_1	R
1274	hlyB_1_1	F
1275	hlyB_1_1	R
1276	iucA_1_1	F
1277	iucA_1_1	R
1278	iucB_1_1	F
1279	iucB_1_1	R
1280	iucC_1_1	F
1281	iucC_1_1	R
1282	papG_1_1	F
1283	papG_1_1	R
1284	rfbE_1_1	F
1285	rfbE_1_1	R
1286	shuA_1_1	F
1287	shuA_1_1	R
1288	SLTII_1_1	F
1289	SLTII_1_1	R
1290	toxA-LTPA_1_1	F

SEQ ID NO	Probe name	Direction
1291	toxA-LTPA_1_1	R
1292	VT2vaB_1_1	F
1293	VT2vaB_1_1	R
1294	ardeSE0106_1_1	F
1295	ardeSE0106_1_1	R
1296	ardeSE0107_1_1	F
1297	ardeSE0107_1_1	R
1298	aroiSE0105_1_1	F
1299	aroiSE0105_1_1	R
1300	atIE_1_1	F
1301	atIE_1_1	R
1302	agrB_1_1	F
1303	agrB_1_1	R
1304	agrC_1_1	F
1305	agrC_1_1	R
1306	alphSE1368_1_1	F
1307	alphSE1368_1_1	R
1308	gad_1_1	F
1309	gad_1_1	R
1310	glucSE1191_1_1	F
1311	glucSE1191_1_1	R
1312	hsp10_1_1	F
1313	hsp10_1_1	R
1314	icaA_1_1	F
1315	icaA_1_1	R
1316	icaB_1_1	F
1317	icaB_1_1	R
1318	mvaSSepid_1_1	F
1319	mvaSSepid_1_1	R
1320	nitreSE1972_1_1	F
1321	nitreSE1972_1_1	R
1322	nitreSE1974_1_1	F
1323	nitreSE1974_1_1	R
1324	nitreSE1975_1_1	F
1325	nitreSE1975_1_1	R
1326	oiamtSE1209_1_1	F
1327	oiamtSE1209_1_1	R
1328	ORF1Sepid_1_1	F
1329	ORF1Sepid_1_1	R
1330	ORF3bSepid_1_1	F
1331	ORF3bSepid_1_1	R
1332	qacR_1_1	F
1333	qacR_1_1	R
1334	sin_1_1	F

SEQ ID NO	Probe name	Direction
1335	sin_1_1	R
1336	ureSE1861_1_1	F
1337	ureSE1861_1_1	R
1338	ureSE1863_1_1	F
1339	ureSE1863_1_1	R
1340	ureSE1864_1_1	F
1341	ureSE1864_1_1	R
1342	ureSE1865_1_1	F
1343	ureSE1865_1_1	R
1344	ureSE1867_1_1	F
1345	ureSE1867_1_1	R
1346	gcaD_1_1	F.
1347	gcaD_1_1	R
1348	hld_orf5_1_1	F
1349	hld_orf5_1_1	R
1350	icaC_1_1	F
1351	icaC_1_1	R
1352	icaD_1_1	F
1353	icaD_1_1	R
1354	icaR_1_1	F
1355	icaR_1_1	R
1356	psm_beta1and2_1_1	F
1357	psm_beta1and2_1_1	R
1358	purR_1_1	F
1359	purR_1_1	R
1360	spoVG_1_1	F
1361	spoVG_1_1	R
1362	yabJ_1_1	F
1363	yabJ_1_1	R
1364	folQShaemolyt_1_1	F
1365	folQShaemolyt_1_1	R
1366	mvaCShaemolyticus_1_1	F
1367	mvaCShaemolyticus_1_1	R
1368	mvaDShaemolyt_1_1	F
1369	mvaDShaemolyt_1_1	R
1370	mvaK1Shaemolyticus_1_1	F
1371	mvaK1Shaemolyticus_1_1	R
1372	mvaSShaemolyticus_1_1	F
1373	mvaSShaemolyticus_1_1	R
1374	RNApolsigm_1_1	F
1375	RNApolsigm_1_1	R
1376	lipShaemolyt_1_1	F
1377	lipShaemolyt_1_1	R
1378	agrB2Stalugd_1_1	F

SEQ ID NO	Probe name	Direction
1379	agrB2Stalugd_1_1	R
1380	agrC2Stalugd_1_1	F
1381	agrC2Stalugd_1_1	R
1382	agrCStalugd_1_1	F
1383	agrCStalugd_1_1	R
1384	slamStalugd_1_1	F
1385	slamStalugd_1_1	R
1386	fblStalugd_1_1	F
1387	fblStalugd_1_1	R
1388	slushABCStalugd_1_1	F
1389	slushABCStalugd_1_1	R
1390	RNApolsigmSsapro_1_1	F
1391	RNApolsigmSsapro_1_1	R
1392	RNApolsigmSsapro_1_2	F
1393	RNApolsigmSsapro_1_2	R
1394	msrw1Stwar_1_1	F
1395	msrw1Stwar_1_1	R
1396	nukMStwar_1_1	F
1397	nukMStwar_1_1	R
1398	proDStwar_1_1	F
1399	proDStwar_1_1	R
1400	proMStwar_1_1	F
1401	proMStwar_1_1	R
1402	sigrpoStwar_1_1	F
1403	sigrpoStwar_1_1	R
1404	tnpStwar_1_1	F
1405	tnpStwar_1_1	R
1406	gehAStwar_1_1	F
1407	gehAStwar_1_1	R
1408	ARG56_1_1	F
1409	ARG56_1_1	R
1410	ASL43f_1_1	F
1411	ASL43f_1_1	R
1412	BGL2_1_1	F
1413	BGL2_1_1	R
1414	CACHS3_1_1	F
1415	CACHS3_1_1	R
1416	CCT8_1_1	F
1417	CCT8_1_1	R
1418	CDC37_1_1	F
1419	CDC37_1_1	R
1420	CEF3_1_1	F
1421	CEF3_1_1	R
1422	CHS1_1_1	ļ _F

SEQ ID NO	Probe name	Direction
1423	CHS1_1_1	R
1424	CHS2_1_1	F
1425	CHS2_1_1	R
1426	CHS4_1_1	F
1427	CHS4_1_1	R
1428	CHS5_1_1	F
1429	CHS5_1_1	R
1430	CHT1_1_1	F
1431	CHT1_1_1	R
1432	CHT2_1_1	F
1433	CHT2_1_1	R
1434	CHT4_1_1	F
1435	CHT4_1_1	R
1436	CSA1_1_1	F
1437	CSA1_1_1	R
1438	5triphosphatase_1_1	F
1439	5triphosphatase_1_1	R
1440	AAF1_1_1	F
1441	AAF1_1_1	R
1442	ADH1_1_1	F
1443	ADH1_1_1	R
1444	ALS1_1_1	F
1445	ALS1_1_1	R
1446	ALS7_1_1	F
1447	ALS7_1_1	R
1448	EDT1_1_1	F
1449	EDT1_1_1	R
1450	ELF_1_1	F
1451	ELF_1_1	R
1452	ESS1_1_1	F
1453	ESS1_1_1	R
1454	FAL1_1_1	F
1455	FAL1_1_1	R
1456	GAP1_1_1	F
1457	GAP1_1_1	R
1458	GNA1_1_1	F
1459	GNA1_1_1	R
1460	GSC1_1_1	F
1461	GSC1_1_1	R
1462	GSL1_1_1	F
1463	GSL1_1_1	R
1464	HIS1_1_1	F
1465	HIS1_1_1	R
1466	HTS1_1_1	F

SEQ ID NO	Probe name	Direction
1467	HTS1_1_1	R
1468	HWP1_2_1	F
1469	HWP1_2_1	R
1470	HYR1_1_1	F
1471	HYR1_1_1	R
1472	INT1a_1_1	F
1473	INT1a_1_1	R
1474	KRE15f_1_1	F
1475	KRE15f_1_1	R
1476	KRE6_1_1	F
1477	KRE6_1_1	R
1478	KRE9_1_1	F
1479	KRE9_1_1	R
1480	MIG1_1_1	F
1481	MIG1_1_1	R
1482	MLS1_1_1	F
1483	MLS1_1_1	R
1484	MP65_1_1	F
1485	MP65_1_1	R
1486	NDE1_1_1	F
1487	NDE1_1_1	R
1488	PFK2_1_1	F
1489	PFK2_1_1	R
1490	PHR1_1_1	F
1491	PHR1_1_1	R
1492	PHR2_1_1	F
1493	PHR2_1_1	R
1494	PHR3_1_1	F
1495	PHR3_1_1	R
1496	PRA1_1_1	F
1497	PRA1_1_1	R
1498	PRS1_1_1	F
1499	PRS1_1_1	R
1500	RBT1_1_1	F
1501	RBT1_1_1	R
1502	RBT4_1_1	F
1503	RBT4_1_1	R
1504	RHO1_1_1	F
1505	RHO1_1_1	R
1506	RNR1_1_1	F
1507	RNR1_1_1	R
1508	RPB7_1_1	F
1509	RPB7_1_1	R
1510	RPL13_1_1	F

SEQ ID NO	Probe name	Direction
1511	RPL13_1_1	R
1512	RVS167_1_1	F
1513	RVS167_1_1	R
1514	SHA3_1_1	F
1515	SHA3_1_1	R
1516	SKN1_1_1	F
1517	SKN1_1_1	R
1518	SRB1_1_1	F
1519	SRB1_1_1	R
1520	TCA1_1_1	F
1521	TCA1_1_1	R
1522	TRP1_1_1	F
1523	TRP1_1_1	R
1524	YAE1_1_1	F
1525	YAE1_1_1	R
1526	YRB1_1_1	F
1527	YRB1_1_1	R
1528	YST1exon2_1_1	F
1529	YST1exon2_1_1	R
1530	CCN1_1_1	F
1531	CCN1_1_1	R
1532	CDC28_1_1	F
1533	CDC28_1_1	R
1534	CLN2_1_1	F
1535	CLN2_1_1	R
1536	CPH1_1_1	F
1537	CPH1_1_1	R
1538	CYB1_1_1	F
1539	CYB1-1_1	R
1540	EFG1_1_1	F
1541	EFG1_1_1	R
1542	MNT1_1_1	F
1543	MNT1_1_1	R
1544	RBF1_1_1	F
1545	RBF1_1_1	R
1546	RBF1_2_1	F
1547	RBF1_2_1	R
1548	RIM101_1_1	F
1549	RIM101_1_1	R
1550	RIM8_1_1	F
1551	RIM8_1_1	R
1552	SEC14_1_1	F
1553	SEC14_1_1	R
1554	SEC4_1_1	F

- 172 **-**

PCT/EP2006/010132

SEQ ID NO	Probe name	Direction
1555	SEC4_1_1	R
1556	TUP1_1_1	F
1557	TUP1_1_1	R
1558	YPT1_1_1	F
1559	YPT1_1_1	R
1560	ZNF1CZF1_2_1	F
1561	ZNF1CZF1_2_1	R
1562	arcA_1_1	F
1563	arcA_1_1	R
1564	arcC_1_1	F
1565	arcC_1_1	R
1566		F
1	bkdA_1_1	R
1567	bkdA_1_1	F
1568	cad_1_1	
1569	cad_1_1	R F
1570	camE1_1_1	
1571	camE1_1_1	R
1572	csrA_1_1	F
1573	csrA_1_1	R
1574	dacA_1_1	F
1575	dacA_1_1	R
1576	dfr_1_1	F
1577	dfr_1_1	R
1578	dhoD1a_1_1	F
1579	dhoD1a_1_1	R
1580	ABC-eltA_1_1	F
1581	ABC-eltA_1_1	R
1582	agrBfs_1_1	F
1583	agrBfs_1_1	R
1584	agrCfs_1_1	F
1585	agrCfs_1_1	R
1586	dnaE_1_1	F
1587	dnaE_1_1	R
1588	ebsA_1_1	F
1589	ebsA_1_1	R
1590	ebsB_1_1	F
1591	ebsB_1_1	R
1592	eep_1_1	F
1593	eep_1_1	R
1594	efaR_1_1	F
1595	efaR_1_1	R
1596	gls24_glsB_1_1	F
1597	gls24_glsB_1_1	R
1598	gph_1_1	F

SEQ ID NO	Probe name	Direction
1599	gph_1_1	R
1600	gyrAEf_1_1	F
1601	gyrAEf_1_1	R
1602	metEf_1_1	F
1603	metEf_1_1	R
1604	mntHCb2_1_1	F
1605	mntHCb2_1_1	R
1606	mob2_1_1	F
1607	mob2_1_1	R
1608	mvaD_1_1	F
1609	mvaD_1_1	R
1610	 mvaE_1_1	F
1611	mvaE_1_1	R
1612	parC_1_1	F
1613	parC_1_1	R
1614	pcfG_1_1	F
1615	pcfG_1_1	R
1616	phoZ_1_1	F
1617	phoZ_1_1	R
1618	polC_1_1	F
1619	polC_1_1	R
1620	ptb_1_1	F
1621	ptb_1_1	R
1622	recS1_1_1	F
1623	recS1_1_1	R
1624	rpoN_1_1	F
1625	rpoN_1_1	R
1626	tms_1_1	F
1627	tms_1_1	R
1628	tyrDC_1_1	F
1629	tyrDC_1_1	R
1630	tyrS_1_1	F
1631	tyrS_1_1	R
1632	asa1_1_1	F
1633	asa1_1_1	R
1634	asp1_1_1	F
1635	asp1_1_1	R
1636	cgh_1_1	F
1637	cgh_1_1	R
1638	cylA_1_1	F
1639	cylA_1_1	R
1640	cylB_1_1	F
1641	cylB_1_1	R
1642	cylI_1_1	F

SEQ ID NO	Probe name	Direction
1643	cylI_1_1	R
1644	cylL_cylS_1_1	F
1645	cylL_cylS_1_1	R
1646	cylM_1_1	F
1647	cylM_1_1	R
1648	ace_1_1	F
1649	ace_1_1	R
1650	ef00108_1_1	F
1651	ef00108_1_1	R
1652	ef00109_1_1	F
1653	ef00109_1_1	R
1654	ef0011_1_1	F
1655	ef0011_1_1	R
1656	ef00113_1_1	F
1657	ef00113_1_1	R
1658	ef0012_1_1	F
1659	ef0012_1_1	R
1660	ef0022_1_1	F
1661	ef0022_1_1	R
1662	ef0031_1_1	F
1663	ef0031_1_1	R
1664	ef0032_1_1	F
1665	ef0032_1_1	R
1666	ef0040_1_1	F
1667	ef0040_1_1	R
1668	ef0058_1_1	F
1669	ef0058_1_1	R
1670	enIA_1_1	F
1671	enIA_1_1	R
1672	esa_1_1	F
1673	esa_1_1	R
1674	esp_1_1	F
1675	esp_1_1	R
1676	gelE_1_1	F
1677	gelE_1_1	R
1678	groEL_1_1	F
1679	groEL_1_1	R
1680	groES_1_1	F
1681	groES_1_1	R
1682	rt1_1_1	F
1683	rt1_1_1	R
1684	sala_1_1	F
1685		R
1686	salb_1_1	F

SEQ ID NO	Probe name	Direction
1687	salb_1_1	R
1688	sea1_1_1	F
1689	sea1_1_1	R
1690	sep1_1_1	F
1691	sep1_1_1	R
1692	vicK_1_1	F
1693	vicK_1_1	R
1694	yycH_1_1	F
1695	yycH_1_1	R
1696	yycI_1_1	F
1697	yycI_1_1	R
1698	yycJ_1_1	F
1699	yycJ_1_1	R
1700	bgIB_1_1	F
1701	bgIB_1_1	R
1702	bgIR_1_1	F
1703	bgIR_1_1	R
1704	bgIS_1_1	F
1705	bgIS_1_1	R
1706	efmA_1_1	F
1707	efmA_1_1	R
1708	efmB_1_1	F
1709	efmB_1_1	R
1710	efmC_1_1	F
1711	efmC_1_1	R
1712	mreC_1_1	F
1713	mreC_1_1	R
1714	mreD_1_1	F
1715	mreD_1_1	R
1716	mvaDEfaecium_1_1	F
1717	mvaDEfaecium_1_1	R
1718	mvaEEfaecium_1_1	F
1719	mvaEEfaecium_1_1	R
1720	mvaK1Efaecium_1_1	F
1721	mvaK1Efaecium_1_1	R
1722	mvaK2Efaecium_1_1	F
1723	mvaK2Efaecium_1_1	R
1724	mvaSEfaecium_1_1	F
1725	mvaSEfaecium_1_1	R
1726	orf3_4Efaeciumb_1_1	F
1727	orf3_4Efaeciumb_1_1	R
1728	orf6_7Efaecium_1_1	F
1729	orf6_7Efaecium_1_1	R
1730	orf7_8Efaecium_1_1	F

SEQ ID NO	Probe name	Direction
1731	orf7_8Efaecium_1_1	R
1732	orf9_10Efaecium_1_1	F
1733	orf9_10Efaecium_1_1	R
1734	entA_entI_1_1	F
1735	entA_entI_1_1	R
1736	entD_1_1	F
1737	entD_1_1	R
1738	entR_1_1	F
1739	entR_1_1	R
1740	oep_1_1	F
1741	oep_1_1	R
1742	sagA_1_2	F
1743	sagA_1_2	R
1744	atsA_1_1	F
1745	atsA_1_1	R
1746	atsB_1_1	F
1747	atsB_1_1	R
1748	budC_1_1	F
1749	budC_1_1	R
1750	citA_1_1	F
1751	citA_1_1	R
1752	citW_1_1	F
1753	citW_1_1	R
1754	citX_1_1	F
1755	citX_1_1	R
1756	dalD_1_1	F
1757	dalD_1_1	R
1758	dalK_1_1	F
1759	dalK_1_1	R
1760	dalT_1_1	F
1761	dalT_1_1	R
1762	acoA_1_1	F
1763	acoA_1_1	R
1764	acoB_1_1	F
1765	acoB_1_1	R
1766	acoC_1_1	F
1767	acoC_1_1	R
1768	ahlK_1_1	F
1769	ahlK_1_1	R
1770	fimK_1_1	F
1771	 fimK_1_1	R
1772	glfKPN2_1_1	F
1773	glfKPN2_1_1	R
1774		F

SEQ ID NO	Probe name	Direction
1775	ltrA_1_1	R
1776	mdcC_1_1	F
1777	mdcC_1_1	R
1778	mdcF_1_1	F
1779	mdcF_1_1	R
1780	mdcH_1_1	F
1781	mdcH_1_1	R
1782	mrkA_1_1	F
1783	mrkA_1_1	R
1784	mtrK_1_1	F
1785	mtrK_1_1	R
1786	nifF_1_1	F
1787	nifF_1_1	R
1788	nifK_1_1	F
1789	nifK_1_1	R
1790	nifN_1_1	F
1791	nifN_1_1	R
1792	tyrP_1_1	F
1793	tyrP_1_1	R
1794	ureA_1_1	F
1795	ureA_1_1	R
1796	wbbO_1_1	F
1797	wbbO_1_1	R
1798	wza_1_1	F
1799	wza_1_1	R
1800	wzb_1_1	F
1801	wzb_1_1	R
1802	wzmKPN2_1_1	F
1803	wzmKPN2_1_1	R
1804	wztKPN2_1_1	F
1805	wztKPN2_1_1	R
1806	yojH_1_1	F
1807	yojH_1_1	R
1808	liac_1_1	F
1809	liac_1_1	R
1810	cim_1_1	F
1811	cim_1_1	R
1812	aldA_1_1	F
1813	aldA_1_1	R
1814	aldA_2_1	F
1815	aldA_2_1	R
1816	hemly_1_1	F
1817	hemly_1_1	R
1818	pSL017_1_1	F

SEQ ID NO	Probe name	Direction
1819	pSL017_1_1	R
1820	pSL020_1_1	F
1821	pSL020_1_1	R
1822	rcsA_1_1	F
1823	rcsA_1_1	R
1824	rmlC_1_1	F
1825	rmIC_1_1	R
1826	rmID_1_1	F
1827	rmID_1_1	R
1828	waaG_1_1	F
1829	waaG_1_1	R
1830	wbbD_1_1	F
1831	wbbD_1_1	R
1832	wbbM_1_1	F
1833	wbbM_1_1	R
1834	wbbN_1_1	F
1835	wbbN_1_1	R
1836	wbdA_1_1	F
1837	wbdA_1_1	R
1838	wbdC_1_1	F
1839	wbdC_1_1	R
1840	wztKpn_1_1	F
1841	wztKpn_1_1	R
1842	yibD_1_1	F
1843	yibD_1_1	R
1844	cymA_1_1	F
1845	cymA_1_1	R
1846	cymD_1_1	F
1847	cymD_1_1	R
1848	cymE_1_1	F
1849	cymE_1_1	R
1850	cymH_1_1	F
1851	cymH_1_1	R
1852	cymI_1_1	F
1853	cymI_1_1	R
1854	cymJ_1_1	F
1855	cymJ_1_1	R
1856	ddrA_1_1	F
1857	ddrA_1_1	R
1858	fdt-1_1_1	F
1859	fdt-1_1_1	R
1860	fdt-2_1_1	F
1861	fdt-2_1_1	R
1862	fdt-3_1_1	F

SEQ ID NO	Probe name	Direction
1863	fdt-3_1_1	R
1864	gatY_1_1	F
1865	gatY_1_1	R
1866	hydH_1_1	F
1867	hydH_1_1	R
1868	masA_1_1	F
1869	masA_1_1	R
1870	nasA_1_1	F
1871	nasA_1_1	R
1872	nasE_1_1	F
1873	nasE_1_1	R
1874	nasF_1_1	F
1875	nasF_1_1	R
1876	pehX_1_1	F
1877	pehX_1_1	R
1878	pelX_1_1	F
1879	pelX_1_1	R
1880	tagH_1_1	F
1881	tagH_1_1	R
1882	tagK_1_1	F
1883	tagK_1_1	R
1884	tagT_1_1	F
1885	tagT_1_1	R
1886	glpR_1_1	F
1887	glpR_1_1	R
1888	lasRb_1_1	F
1889	lasRb_1_1	R
1890	OrfX_1_1	F
1891	OrfX_1_1	R
1892	pa0260_1_1	F
1893	pa0260_1_1	R
1894	pa0572_1_1	F
1895	pa0572_1_1	R
1896	pa0625_1_1	F
1897	pa0625_1_1	R
1898	pa0636_1_1	F
1899	pa0636_1_1	R
1900	pa1046_1_1	F
1901	pa1046_1_1	R
1902	pa1069_1_1	F
1903	pa1069_1_1	R
1904	pa1846_1_1	F
1905	pa1846_1_1	R
1906	pa3866_1_1	F

SEQ ID NO	Probe name	Direction
1907	pa3866_1_1	R
1908	pa4082_1_1	F
1909	pa4082_1_1	R
1910	pilAp_1_1	F
1911	pilAp_1_1	R
1912	PilAp2_1_1	F
1913	PilAp2_1_1	R
1914	pilC_1_1	F
1915	pilC_1_1	R
1916	PstP_1_1	F
1917	PstP_1_1	R
1918	purK_1_1	F
1919	purK_1_1	R
1920	uvrDII_1_1	F
1921	uvrDII_1_1	R
1922	vsmI_1_1	F
1923	vsmI_1_1	R
1924	vsmR_1_2	F
1925	vsmR_1_2	R
1926	xcpX_1_1	F
1927	xcpX_1_1	R
1928	aprA_1_1	F
1929	aprA_1_1	R
1930	aprE_1_1	F
1931	aprE_1_1	R
1932	ctx_1_2	F
1933	ctx_1_2	R
1934	algB_1_1	F
1935	algB_1_1	R
1936	algN_1_1	F
1937	algN_1_1	R
1938	algR_1_1	F
1939	algR_1_1	R
1940	ExoS_1_1	F
1941	ExoS_1_1	R
1942	fpvA_1_1	F
1943	fpvA_1_1	R
1944	lasRa_1_1	F
1945	lasRa_1_1	R
1946	lipA_1_1	F
1947	lipA_1_1	R
1948	lipH_1_1	F
1949	lipH_1_1	R
1950	Orf159_1_2	F

SEQ ID NO	Probe name	Direction
1951	Orf159_1_2	R
1952	Orf252_1_1	F
1953	Orf252_1_1	R
1954	pchG_1_1	F
1955	pchG_1_1	R
1956	PhzA_1_1	F
1957	PhzA_1_1	R
1958	PhzB_1_1	F
1959	PhzB_1_1	R
1960	PLC_1_1	F
1961	PLC_1_1	R
1962	plcN_1_1	F
1963	plcN_1_1	R
1964	plcR_1_1	F
1965	plcR_1_1	R
1966	pvdD_1_1	F
1967	pvdD_1_1	R
1968	pvdF_1_2	F
1969	pvdF_1_2	R
1970	pyocinS1_1_1	F
1971	pyocinS1_1_1	R
1972	pyocinS1im_1_1	F
1973	pyocinS1im_1_1	R
1974	pyocinS2_1_1	F
1975	pyocinS2_1_1	R
1976	pys2_1_1	F
1977	pys2_1_1	R
1978	pys2_2_1	F
1979	pys2_2_1	R
1980	rbf303_1_1	F
1981	rbf303_1_1	R
1982	rhIA_1_1	F
1983	rhIA_1_1	R
1984	rhlB_1_1	F
1985	rhlB_1_1	R
1986	rhIR_1_1	F
1987	rhlR_1_1	R
1988	TnAP41_1_2	F
1989	TnAP41_1_2	R
1990	toxA_1_1	F
1991	toxA_1_1	R
1992	cap1EStrpneu_1_1	F
1993	cap1EStrpneu_1_1	R
1994	cap1FStrpneu_1_1	F

SEQ ID NO	Probe name	Direction
1995	cap1FStrpneu_1_1	R
1996	cap1GStrpneu_1_1	F
1997	cap1GStrpneu_1_1	R
1998	cap3AStrpneu_1_1	F
1999	cap3AStrpneu_1_1	R
2000	cap3BStrpneu_1_1	F
2001	cap3BStrpneu_1_1	R
2002	celAStrpneu_1_1	F
2003	celAStrpneu_1_1	R
2004	celBStrpneu_1_1	F
2005	celBStrpneu_1_1	R
2006	cglAStrpneu_1_1	F
2007	cglAStrpneu_1_1	R
2008	cglBStrpneu_1_1	F
2009	cglBStrpneu_1_1	R
2010	cglCStrpneu_1_1	F
2011	cglCStrpneu_1_1	R
2012	cglDStrpneu_1_1	F
2013	cglDStrpneu_1_1	R
2014	cinA_1_1	F
2015	cinA_1_1	R
2016	cps14EStrpneum_1_1	F
2017	cps14EStrpneum_1_1	R
2018	cps14FStrpneum_1_1	F
2019	cps14FStrpneum_1_1	R
2020	cps14GStrpneum_1_1	F
2021	cps14GStrpneum_1_1	R
2022	cps14HStrpneum_1_1	F
2023	cps14HStrpneum_1_1	R
2024	cps19aHStrpneum_1_1	F
2025	cps19aHStrpneum_1_1	R
2026	cps19aIStrpneum_1_1	F
2027	cps19aIStrpneum_1_1	R
2028	cps19aKStrpneum_1_1	F
2029	cps19aKStrpneum_1_1	R
2030	cps19fGStrpneum_1_1	F
2031	cps19fGStrpneum_1_1	R
2032	cps23fGStrpneum_1_1	F
2033	cps23fGStrpneum_1_1	R
2034	dexB_1_1	F
2035	dexB_1_1	R
2036	dinF_1_1	F
2037	dinF_1_1	R
2038	1760Strpneu_1_1	F

SEQ ID NO	Probe name	Direction
2039	1760Strpneu_1_1	R
2040	acyPStrpneu_1_1	F
2041	acyPStrpneu_1_1	R
2042	endAStrpneu_1_1	F
2043	endAStrpneu_1_1	R
2044	exoAStrpneu_1_1	F
2045	exoAStrpneu_1_1	R
2046	exp72_1_1	F
2047	exp72_1_1	R
2048	fnlAStrpneu_1_1	F
2049	fnlAStrpneu_1_1	R
2050	fnlBStrpneu_1_1	F
2051	fnlBStrpneu_1_1	R
2052	fnlCStrpneu_1_1	F
2053	fnlCStrpneu_1_1	R
2054	gct18Strpneum_1_1	F
2055	gct18Strpneum_1_1	R
2056	hexB1_1_1	F
2057	hexB1_1_1	R
2058	hftsHstrpneu_1_1	F
2059	hftsHstrpneu_1_1	R
2060	immunofrag1Strpneu_1_1	F
2061	immunofrag1Strpneu_1_1	R
2062	immunofrag2Strpneu_2_1	F
2063	immunofrag2Strpneu_2_1	R
2064	immunofrag3Strpneu_2_1	F
2065	immunofrag3Strpneu_2_1	R
2066	kdtBStrpneu_1_1	F
2067	kdtBStrpneu_1_1	R
2068	lysAStrpneu_1_1	F
2069	lysAStrpneu_1_1	R
2070	pcpBStrpneu_1_1	F
2071	pcpBStrpneu_1_1	R
2072	pflCStrpneu_1_1	F
2073	pflCStrpneu_1_1	R
2074	plpA_1_1	F
2075	plpA_1_1	R
2076	prtA1Strpneu_1_1	F
2077	prtA1Strpneu_1_1	R
2078	pspC1Strpneu_1_1	F
2079	pspC1Strpneu_1_1	R
2080	pspC2_1_1	F
2081	pspC2_1_1	R
2082	purRStrpneu_1_1	F

SEQ ID NO	Probe name	Direction
2083	purRStrpneu_1_1	R
2084	pyrDAStrpneum_1_1	F
2085	pyrDAStrpneum_1_1	R
2086	SP0828Strpneu_1_1	F
2087	SP0828Strpneu_1_1	R
2088	SP0830Strpneu_1_1	F
2089	SP0830Strpneu_1_1	R
2090	SP0833Strpneu_1_1	F
2091	SP0833Strpneu_1_1	R
2092	SP0837_38Strpneu_1_1	F
2093	SP0837_38Strpneu_1_1	R
2094	SP0839Strpneu_1_1	F
2095	SP0839Strpneu_1_1	R
2096	ugdStrpneu_1_1	F
2097	ugdStrpneu_1_1	R
2098	uncC_1_1	F
2099	uncC_1_1	R
2100	vicXStrepneu_1_1	F
2101	vicXStrepneu_1_1	R
2102	wchA6bStrpneum_1_1	F
2103	wchA6bStrpneum_1_1	R
2104	wci4Strpneum_1_1	F
2105	wci4Strpneum_1_1	R
2106	wciK4Strpneum_1_1	F
2107	wciK4Strpneum_1_1	R
2108	wciL4Strpneum_1_1	F
2109	wciL4Strpneum_1_1	R
2110	wciN6bStrpneum_1_1	F
2111	wciN6bStrpneum_1_1	R
2112	wciO6bStrpneum_1_1	F
2113	wciO6bStrpneum_1_1	R
2114	wciP6bStrpneum_1_1	F
2115	wciP6bStrpneum_1_1	R
2116	wciY18Strpneum_1_1	F
2117	wciY18Strpneum_1_1	R
2118	wzdbStrpneum_1_1	F
2119	wzdbStrpneum_1_1	R
2120	wze6bStrpneum_1_1	F
2121	wze6bStrpneum_1_1	R
2122	wzy18Strpneum_1_1	F
2123	wzy18Strpneum_1_1	R
2124	wzy4Strpneum_1_1	F
2125	wzy4Strpneum_1_1	R
2126	wzy6bStrpneum_1_1	F

SEQ ID NO	Probe name	Direction
2127	wzy6bStrpneum_1_1	R
2128	xpt_1_1	F
2129	xpt_1_1	R
2130	igaStrpneu_1_1	F
2131	igaStrpneu_1_1	R
2132	lytA_1_1	F
2133	lytA_1_1	R
2134	nanA_1_1	F
2135	nanA_1_1	R
2136	nanBStrpneu_1_1	F
2137	nanBStrpneu_1_1	R
2138	pcpCStrpneu_1_1	F
2139	pcpCStrpneu_1_1	R
2140	ply_1_1	F
2141	ply_1_1	R
2142	prtAStrpneu_1_1	F
2143	prtAStrpneu_1_1	R
2144	pspA_1_2	F
2145	pspA_1_2	R
2146	SP0834Strpneu_1_1	F
2147	SP0834Strpneu_1_1	R
2148	SP0834Strpneu_1_2	F
2149	SP0834Strpneu_1_2	R
2150	sphtraStrpneu_1_1	F
2151	sphtraStrpneu_1_1	R
2152	wciJStrpneu_1_1	F
2153	wciJStrpneu_1_1	R
2154	wziyStrpneu_1_1	F
2155	wziyStrpneu_1_1	R
2156	wzxStrpneu_1_1	F
2157	wzxStrpneu_1_1	R
2158	cpsA1Strgal_1_1	F
2159	cpsA1Strgal_1_1	R
2160	cpsB1Strgal_1_1	F
2161	cpsB1Strgal_1_1	R
2162	cpsC1Strgal_1_1	F
2163	cpsC1Strgal_1_1	R
2164	cpsD1Strgal_1_1	F
2165	cpsD1Strgal_1_1	R
2166	cpsE1Strgal_1_1	F
2167	cpsE1Strgal_1_1	R
2168	cpsG1Strgal_1_1	F
2169	cpsG1Strgal_1_1	R
2170	cpsIStragal_1_1	F

WO 2007/039319 PCT/EP2006/010132

SEQ ID NO	Probe name	Direction
2171	cpsIStragal_1_1	R
2172	cpsJStragal_1_1	F
2173	cpsJStragal_1_1	R
2174	cpsKStragal_1_1	F
2175	cpsKStragal_1_1	R
2176	cpsMStragal_1_1	F
2177	cpsMStragal_1_1	R
2178	cpsYStragal_1_1	F
2179	cpsYStragal_1_1	R
2180	cpsYStragal_2_1	F
2181	cpsYStragal_2_1	R
2182	cylBStraga_1_1	F
2183	cylBStraga_1_1	R
2184	cylEStraga_1_1	F
2185	cylEStraga_1_1	R
2186	cylFStraga_1_1	F
2187	cylFStraga_1_1	R
2188	cylHStraga_1_1	F
2189	cylHStraga_1_1	R
2190	cylIStraga_1_1	F
2191	cylIStraga_1_1	R
2192	cylJStraga_1_1	F
2193	cylJStraga_1_1	R
2194	cylKStraga_1_1	F
2195	cylKStraga_1_1	R
2196	0487Straga_1_1	F
2197	0487Straga_1_1	R
2198	0488Straga_1_1	F
2199	0488Straga_1_1	R
2200	0493Straga_1_1	F
2201	0493Straga_1_1	R
2202	0495Straga_1_1	F
2203	0495Straga_1_1	R
2204	0498Straga_1_1	F
2205	0498Straga_1_1	R
2206	0500Straga_1_1	F
2207	0500Straga_1_1	R
2208	0502Straga_1_1	F
2209	0502Straga_1_1	R
2210	0504Straga_1_1	F
2211	0504Straga_1_1	R
2212	folDStraga_1_1	F
2212	folDStraga_1_1	R
2214	neuA1Strgal_1_1	F
EC17	lucaurocagnii i i	<u></u>

SEQ ID NO	Probe name	Direction
2215	neuA1Strgal_1_1	R
2216	neuB1Strgal_1_1	F
2217	neuB1Strgal_1_1	R
2218	neuC1Strgal_1_1	F
2219	neuC1Strgal_1_1	R
2220	neuD1Strgal_1_1	F
2221	neuD1Strgal_1_1	R
2222	recNStraga_1_1	F
2223	recNStraga_1_1	R
2224	ileSStraga_1_1	F
2225	ileSStraga_1_1	R
2226	CAMPfactor_1_1	F
2227	CAMPfactor_1_1	R
2228	CAMPfactor_2_1	F
2229	CAMPfactor_2_1	R
2230	0499Straga_1_1	F
2231	0499Straga_1_1	R
2232	hylStragal_1_1	F
2233	hylStragal_1_1	R
2234	lipStragal_1_1	F
2235	lipStragal_1_1	R
2236	cyclStrpyog_1_1	F
2237	cyclStrpyog_1_1	R
2238	fah_rph_hlo_Strpyog_1_1	F
2239	fah_rph_hlo_Strpyog_1_1	R
2240	int_1_1	F
2241	int_1_1	R
2242	int315.5_1_1	F
2243	int315.5_1_1	  R
2244	murEStrpyog_1_1	F
2245	murEStrpyog_1_1	R
2246	oppA_1_1	F
2247	oppA_1_1	R
2248	oppCStrpyog_1_1	F
2249	oppCStrpyog_1_1	R
2250	oppD_1_1	F
2251	oppD_1_1	R
2252	SPy0382Strpyog_1_1	F
2253	SPy0382Strpyog_1_1	R
2254	SPy0390Strpyog_1_1	F
2255	SPy0390Strpyog_1_1	
2256		R F
2257	SpyM3_1351_1_1 SpyM3_1351_1_1	
Į.	SpyM3_1351_1_1 vioVStravog_1_1	R
2258	vicXStrpyog_1_1	F

SEQ ID NO	Probe name	Direction
2259	vicXStrpyog_1_1	R
2260	DNaseIStrpyog_1_1	F
2261	DNaseIStrpyog_1_1	R
2262	fba2Strpyog_1_1	F
2263	fba2Strpyog_1_1	R
2264	fhuAStrpyog_1_1	F
2265	fhuAStrpyog_1_1	R
2266	fhuB1Strpyog_1_1	F
2267	fhuB1Strpyog_1_1	R
2268		F
1	fhuDStrpyog_1_1	
2269	fhuDStrpyog_1_1	R F
2270	fhuGStrpyog_1_1	
2271	fhuGStrpyog_1_1	R
2272	hylA_1_1	F
2273	hylA_1_1	R
2274	hylP_1_1	F
2275	hylP_1_1	R
2276	hylp2_1_1	F
2277	hylp2_1_1	R
2278	oppB_1_1	F
2279	oppB_1_1	R
2280	ropB_1_1	F
2281	ropB_1_1	R
2282	scpAStrpyog_1_1	F
2283	scpAStrpyog_1_1	R
2284	sloStrpyog_1_1	F
2285	sloStrpyog_1_1	R
2286	smez-4Strpyog_1_1	F
2287	smez-4Strpyog_1_1	R
2288	sof_1_1	F
2289	sof_1_1	R
2290	sof_2_1	F
2291	sof_2_1	R
2292	speA_1_1	F
2293	speA_1_1	R
2294	speB2Strpyog_1_1	F
2295	speB2Strpyog_1_1	R
2296	speCStrpyog_1_1	F
2297	speCStrpyog_1_1	R
2298	speJStrpyog_1_1	F
2299	speJStrpyog_1_1	R
2300	srtBStrpyog_1_1	F
2301	srtBStrpyog_1_1	r R
2302	srtCStrpyog_1_1	F
2302	SICSUPY09_1_1	<u>l'</u>

SEQ ID NO	Probe name	Direction
2303	srtCStrpyog_1_1	R
2304	srtEStrpyog_1_1	F
2305	srtEStrpyog_1_1 srtEStrpyog_1_1	r R
2306	srtFStrpyog_1_1	F
2307	srtFStrpyog_1_1	r R
2308	srtGStrpyog_1_1	F
2309	srtGStrpyog_1_1 srtGStrpyog_1_1	R
2310		F
2311	srtIStrpyog_1_1 srtIStrpyog_1_1	R
2312	., - =	F
2312	srtKStrpyog_1_1	F  R
2314	srtKStrpyog_1_1	F
1	srtRStrpyog_1_1	R
2315	srtRStrpyog_1_1	F
2316	srtTStrpyog_1_1	l
2317	srtTStrpyog_1_1	R F
2318	vicKStrpyog_1_1	I .
2319	vicKStrpyog_1_1	R
2320	573Stprmut_1_1	F
2321	573Stprmut_1_1	R
2322	580SStprmut_1_1	F
2323	580SStprmut_1_1	R
2324	581_582SStprmut_1_1	F
2325	581_582SStprmut_1_1	R -
2326	584SStprmut_1_1	F
2327	584SStprmut_1_1	R
2328	dltAStrmut_1_1	F
2329	dltAStrmut_1_1	R
2330	dltBStrmut_1_1	F
2331	dltBStrmut_1_1	R
2332	dltCppx1Strmut_1_1	F
2333	dltCppx1Strmut_1_1	R
2334	dltDStrmut_1_1	F
2335	dltDStrmut_1_1	R
2336	lichStrbov_1_1	F
2337	lichStrbov_1_1	R
2338	lytRStprmut_1_1	F
2339	lytRStprmut_1_1	R
2340	lytSStprmut_1_1	F
2341	lytSStprmut_1_1	R
2342	pepQStrrmut_1_1	F
2343	pepQStrrmut_1_1	R
2344	pflCStrmut_1_1	F
2345	pflCStrmut_1_1	R
2346	recNStprmut_1_1	F

SEQ ID NO	Probe name	Direction
2347	recNStprmut_1_1	R
2348	ytqBStrmut_1_1	F
2349	ytqBStrmut_1_1	R
2350	hlyXStrmut_1_1	F
2351	hlyXStrmut_1_1	R
2352	igaStrmitis_1_1	F
2353	igaStrmitis_1_1	R
2354	igaStrsanguis_1_1	F
2355	igaStrsanguis_1_1	R
2356	perMStrmut_1_1	F
2357	perMStrmut_1_1	R
2358	atfA_1_1	F
2359	atfA_1_1	R
2360	atfB_1_1	F
2361	atfB_1_1	R
2362	atfC_1_1	F
2363	atfC_1_1	R
2364	ccmPrmi1_1_1	F
2365	ccmPrmi1_1_1	R
2366	cyaPrmi_1_1	F
2367	cyaPrmi_1_1	R
2368	aad_1_1	F
2369	aad_1_1	R
2370	flfB_1_1	F
2371	flfB_1_1	R
2372	flfD_1_1	F
2373	flfD_1_1	R
2374	flfN_1_1	F
2375	flfN_1_1	R
2376	flhD_1_1	F
2377	flhD_1_1	R
2378	floA_1_1	F
2379	floA_1_1	R
2380	ftsK_1_1	F
2381	ftsK_1_1	R
2382	gstB_1_1	F
2383	gstB_1_1	R
2384	hemCPrmi_1_1	F
2385	hemCPrmi_1_1	R
2386	hemDPrmi_1_1	F
2387	hemDPrmi_1_1	R
2388	hev_1_1	F
2389	hev_1_1	R
2390	katA_1_1	F

SEQ ID NO	Probe name	Direction
2391	katA_1_1	R
2392	lpp1_1_1	ļ _F
2393	pp1_1_1	R
2394	menE_1_1	F
2395	menE_1_1	R
2396	mfd_1_1	F
2397	mfd_1_1	R
2398	nrpA_1_1	F
2399	nrpA_1_1	R
2400	nrpB_1_1	F
2401	nrpB_1_1	R
2402	nrpG_1_1	F
2403	nrpG_1_1	R
2404	nrpS_1_1	F
2405	nrpS_1_1	R
2406	nrpT_1_1	F
2407	nrpT_1_1	R
2408	nrpU_1_1	F
2409	nrpU_1_1	R
2410	pat_1_1	F
2411	pat_1_1	R
2412	pmfA_1_1	F
2413	pmfA_1_1	R
2414	pmfC_1_1	F
2415	pmfC_1_1	R
2416	pmfE_1_1	F
2417	pmfE_1_1	R
2418	ppaA_1_1	F
2419	ppaA_1_1	R
2420	rsbA_1_1	F
2421	rsbA_1_1	R
2422	rsbC_1_1	F
2423	rsbC_1_1	R
2424	speB_1_1	F
2425	speB_1_1	R
2426	stmA_1_1	F
2427	stmA_1_1	R
2428	stmB_1_1	F
2429	stmB_1_1	R
2430	terA_1_1	F
2431	terA_1_1	R
2432	terD_1_1	F
2433	terD_1_1	R
2434	umoA_1_1	F

SEQ ID NO	Probe name	Direction
2435	umoA_1_1	R
2436	umoB_1_1	F
2437	umoB_1_1	R
2438	umoC_1_1	ļF
2439	umoC_1_1	R
2440	ureR_1_1	F
2441	ureR_1_1	R
2442	xerC_1_1	F
2443	xerC_1_1	R
2444	ygbA_1_1	F
2445	ygbA_1_1	R
2446	flaA_1_1	F
2447	flaA_1_1	R
2448	flaD_1_1	F
2449	flaD_1_1	R
2450	fliA_1_1	F
2451	fliA_1_1	R
2452	hpmA_1_1	F
2453	hpmA_1_1	R
2454	hpmB_1_1	F
2455	hpmB_1_1	R
2456	lpsPrmi_1_1	F
2457	lpsPrmi_1_1	R
2458	mrpA_1_1	F
2459	mrpA_1_1	R
2460	mrpB_1_1	F
2461	mrpB_1_1	R
2462	mrpC_1_1	F
2463	mrpC_1_1	R
2464	mrpD_1_1	F
2465	mrpD_1_1	R
2466	mrpE_1_1	F
2467	mrpE_1_1	R
2468	mrpF_1_1	F
2469	mrpF_1_1	R
2470	mrpG_1_1	F
2471	mrpG_1_1	R
2472	mrpH_1_1	F
2473	mrpH_1_1	R
2474	mrpI_1_1	F
2475	mrpI_1_1	R
2476	mrpJ_1_1	F
2477	mrpJ_1_1	R
2478	patA_1_1	F

SEQ ID NO	Probe name	Direction
2479	patA_1_1	R
2480	putA_1_1	F
2481	putA_1_1	R
2482	uca_1_1	F
2483	uca_1_1	R
2484	ureDPrmi_1_1	F
2485	ureDPrmi_1_1	R
2486	ureEPrmi_1_1	F
2487	ureEPrmi_1_1	R
2488	ureFPrmi_1_1	F
2489	ureFPrmi_1_1	R
2490	zapA_1_1	F
2491	zapA_1_1	R
2492	zapB_1_1	F
2493	zapB_1_1	R
2494	zapD_1_1	F
2495	zapD_1_1	R
2496	zapE_1_1	F
2497	zapE_1_1	R
2498	envZPrvu_1_1	F
2499	envZPrvu_1_1	R
2500	frdC_1_1	F
2501	frdC_1_1	R
2502	frdD_1_1	F
2503	frdD_1_1	R
2504	infBPrvu_1_1	F
2505	infBPrvu_1_1	R
2506	lad_1_1	F
2507	lad_1_1	R
2508	tna2_1_1	F
2509	tna2_1_1	R
2510	end_1_1	F
2511	end_1_1	R
2512	pqrA_1_1	F
2513	pqrA_1_1	R
2514	urg_1_1	F
2515	urg_1_1	R
2516	blaIMP-7_1_1	F
2517	blaIMP-7_1_1	R
2518	mecISepid_1_1	F
2519	mecISepid_1_1	R
2520	blaOXA-10_1_2	F
2521	blaOXA-10_1_2	R
2522	blaB_1_1	F

SEQ ID NO	Probe name	Direction
2523	blaB_1_1	R
2524	ampC_1_1	F
2525	ampC_1_1	R
2526	I-blaR_1_1	F
2527	I-blaR_1_1	R
2528	blaOXA-32_1_1	F
2529	blaOXA-32_1_1	R
2530	bla-CTX-M-22_1_1	F
2531	bla-CTX-M-22_1_1	R
2532	pbp2aStrpneu_1_1	F
2533	pbp2aStrpneu_1_1	R
2534	blaSHV-1_1_1	F
2535	blaSHV-1_1_1	R
2536	blaOXA-2_1_1	F
2537	blaOXA-2_1_1	R
2538	blaRShaemolyt_1_1	F
2539	blaRShaemolyt_1_1	R
2540	blaIMP-7_1_2	F
2541	blaIMP-7_1_2	R
2542	I-mecR_1_1	F
2543	I-mecR_1_1	R
2544	blaOXY_1_1	F
2545	blaOXY_1_1	R
2546	dacCStrpyog_1_1	F
2547	dacCStrpyog_1_1	R
2548	femA_1_1	F
2549	femA_1_1	R
2550	mecA_1_1	F
2551	mecA_1_1	R
2552	blaIShaemolyt_1_1	F
2553	blaIShaemolyt_1_1	R
2554	blavim_1_1	F
2555	blavim_1_1	R
2556	pbp2b_1_1	F
2557	pbp2b_1_1	R
2558	pbp2primeSepid_1_1	F
2559	pbp2primeSepid_1_1	R
2560	pbp2x_1_1	F
2561	pbp2x_1_1	R
2562	pbp3Saureuc_1_1	F
2563	pbp3Saureuc_1_1	R
2564	pbp4_1_1	F
2565	pbp4_1_1	R
2566	pbp5Efaecium_1_1	F

SEQ ID NO	Probe name	Direction
2567	pbp5Efaecium_1_1	R
2568	pbpC_1_1	F
2569	pbpC_1_1	R
2570	I-mecI_1_1	F
2571	I-mecI_1_1	R
2572	pbp1a_1_1	F
2573	pbp1a_1_1	R
2574	I-blaI_1_1	F
2575	I-blaI_1_1	R
2576	blaTEM-106_1_1	F
2577	blaTEM-106_1_1	R
2578	blaOXY-KLOX_1_1	F
2579	blaOXY-KLOX_1_1	R
2580	ftsWEF_1_1	F
2581	ftsWEF_1_1	R
2582	fmhB_1_1	F
2583	fmhB_1_1	R
2584	cumA_1_1	F
2585	cumA_1_1	R
2586	femBShaemolyt_1_1	F
2587	femBShaemolyt_1_1	R
2588	blaPER-1_1_1	F
2589	blaPER-1_1_1	R
2590	bla_FOX-3_1_1	F
2591	bla_FOX-3_1_1	R
2592	blaA_1_1	F
2593	blaA_1_1	R
2594	psrb_1_1	F
2595	psrb_1_1	R
2596	fmhA_1_1	F
2597	fmhA_1_1	R
2598	mecR1Sepid_1_1	F
2599	mecR1Sepid_1_1	R
2600	blaZ_1_1	F
2601	blaZ_1_1	R
2602	blaOXA-1 1 1	F
2603	blaOXA-1_1_1	R
2604	fox-6_1_1	F
2605	fox-6_1_1	R
2606	blaPrmi_1_1	F
2607	blaPrmi_1_1	R
2608	aacA_aphDStwar_1_1	F
2609	aacA_aphDStwar_1_1	R
2610	aacC1_1_2	F

SEQ ID NO	Probe name	Direction
2611	aacC1_1_2	R
2612	aacC2_1_1	F
2613	aacC2_1_1	R
2614	strB_1_1	F
2615	strB_1_1	R
2616	aadA_1_1	F
2617	aadA_1_1	R
2618	aadB_1_2	F
2619	aadB_1_2	R
2620	aadD_1_1	F
2621	aadD_1_1	R
2622	aacA4_1_2	F
2623	aacA4_1_2	R
2624	strA_1_1	F .
2625	strA_1_1	R
2626	aph-A3_1_1	F
2627	aph-A3_1_1	R
2628	aacC1_1_1	F
2629	aacC1_1_1	R
2630	aacA4_1_1	F
2631	aacA4_1_1	R
2632	aacA-aphD_1_1	F
2633	aacA-aphD_1_1	R
2634	I-spc_1_1	F
2635	I-spc_1_1	R
2636	aphA3_1_1	F
2637	aphA3_1_1	R
2638	ermC_1_1	F
2639	ermC_1_1	R
2640	linB_1_1	F
2641	linB_1_1	R
2642	satSA_1_1	F
2643	satSA_1_1	R
2644	mdrSA_1_1	F
2645	mdrSA_1_1	R
2646	I-linA_1_1	F
2647	I-linA_1_1	R
2648	ermB_1_2	F
2649	ermB_1_2	R
2650	ermA_1_1	F
2651	ermA_1_1	R
2652	satA_1_1	F
2653	satA_1_1	R
2654	msrA_1_1	F

SEQ ID NO	Probe name	Direction
2655	msrA_1_1	R
2656	mphBM_1_1	F
2657	mphBM_1_1	R
2658	mefA_1_1	F
2659	mefA_1_1	R
2660	mrx_1_1	F
2661	mrx_1_1	R
2662	dfrStrpneu_1_1	F
2663	dfrStrpneu_1_1	R
2664	dfrA_1_1	F
2665		R
2666	cmlA5_1_1	F
2667		R
2668		F
2669		R
2670	cat_1_1	F
2671		R
2672		F
2673	tetAJ_1_1	R
2674	tetL_1_1	F
2675		R
2676		F
2677		R
2678	vanH(tn)_1_1	F
2679		R
2680	vanA_1_1	F
2681	vanA_1_1	R
2682	vanHB2_1_1	F
2683-	vanHB2_1_1	R
2684		F
2685		R
2686	vanRB2_1_1	F
2687	vanRB2_1_1	R
2688	vanS(tn)_1_1	F
2689	vanS(tn)_1_1	R
2690	vanSB2_1_1	F
2691	vanSB2_1_1	R
2692		F
2693		R
2694		F
2695		R
2696		F
2697		R
2698	vanXB2_1_1	F

SEQ ID NO	Probe name	Direction
2699	vanXB2_1_1	R
2700	vanY(tn)_1_1	F
2701	vanY(tn)_1_1	R
2702	vanYB2_1_1	F
2703	vanYB2_1_1	R
2704	vanB_1_1	F
2705	vanB_1_1	R
2706	vanZ(tn)_1_1	F
2707	vanZ(tn)_1_1	R
2708	vanC-2_1_1	F
2709	vanC-2_1_1	R
2710	vanX(tn)_1_1	F
2711		R
2712		F
2713		R
2714	mexB_1_2	F
2715	mexB_1_2	R
2716	I-qacA_1_1	F
2717	I-qacA_1_1	R
2718	sulI_1_1	F
2719	sulI_1_1	R
2720	sul_1_1	F
2721	sul_1_1	R
2722	cadBStalugd_1_1	F
2723	cadBStalugd_1_1	R
2724	mexA_1_1	F
2725	mexA_1_1	R
2726	acrR_1_1	F
2727	acrR_1_1	R
2728	emeA_1_1	F
2729	emeA_1_1	R
2730	acrA_1_1	F
2731	acrA_1_1	R
2732	rtn_1_1	F
2733	rtn_1_1	R
2734	abcXStrpmut_1_1	F
2735	abcXStrpmut_1_1	R
2736	qacEdelta1_1_1	F
2737	qacEdelta1_1_1	R
2738	elkT-abcA_1_1	F
2739	elkT-abcA_1_1	R
2740	I-cadA_1_1	F
2741	I-cadA_1_1	R
2742	albA_1_1	F

SEQ ID NO	Probe name	Direction
2743	albA_1_1	R
2744	wzm_1_1	F
2745	wzm_1_1	R
2746	msrCb_1_1	F
2747	msrCb_1_1	R
2748	nov_1_1	F
2749	nov_1_1	R
2750	wzt_1_1	F
2751	wzt_1_1	R
2752	wbbl_1_1	F
2753	wbbl_1_1	R
2754	norA23_1_1	F
2755	norA23_1_1	R
2756	mexR_1_1	F
2757	mexR_1_1	R
2758	arr2_1_1	F
2759	arr2_1_1	R
2760	mreA_1_1	F
2761	mreA_1_1	R
2762	I-cadC_1_1	F
2763	I-cadC_1_1	R
2764	uvrA_1_1	F
2765	uvrA_1_1	R
2766	CRD2_1_1	F
2767	CRD2_1_1	R
2768	CDR1_1_1	F
2769	CDR1_1_1	R
2770	CDR1_2_1	F
2771	CDR1_2_1	R
2772	MET3_1_1	F
2773	MET3_1_1	R
2774	FET3_1_1	F
2775	FET3_1_1	R
2776	FTR2_1_1	F
2777	FTR2_1_1	R
2778	MDR1-7_1_1	F
2779	MDR1-7_1_1	R
2780	ERG11_1_1	F
2781	ERG11_1_1	R
2782	SEC20_1_1	F
2783	SEC20_1_1	R
2784	rbcL_1_1	F
2785	rbcL_1_1	R
2786	LDHA(hu)_1_1	F

SEQ ID NO	Probe name	Direction
2787	LDHA(hu)_1_1	R
2788	GAPD(hu)_1_1	F
2789	GAPD(hu)_1_1	R
2790	b-Act(hu)_1_1	F
2791	b-Act(hu)_1_1	R
2792	ARHGDIA(hu)_1_1	F
2793	ARHGDIA(hu)_1_1	R
2794	PGK1(hu)_1_1	F
2795	PGK1(hu)_1_1	R
2796	rbcL_1_2	F
2797	rbcL_1_2	R
2798	16SPa_1_1	F
2799	16SPa_1_1	R
2800	23SEfaecium_2_1	F
2801	23SEfaecium_2_1	R
2802	16SStrepyog_1_1	F
2803	16SStrepyog_1_1	R
2804	16SStrepneu_1_1	F
2805	16SStrepneu_1_1	R
2806	16SStrepagalactiae_1_1	F
2807	16SStrepagalactiae_1_1	R
2808	16SEfaecium_1_1	F
2809	16SEfaecium_1_1	R
2810	16SEfaecium_2_1	F
2811	16SEfaecium_2_1	R
2812	16SRNAEf_2_1	F
2813	16SRNAEf_2_1	R
2814	16SKpn_1_1	F
2815	16SKpn_1_1	R
2816	16SSa_3_1	F
2817	16SSa_3_1	R
2818	16SRNAEf_1_1	F
2819	16SRNAEf_1_1	R
2820	16SShominis_1_1	F
2821	16SShominis_1_1	R
2822	16SShaemolyt_1_1	F
2823	16SShaemolyt_1_1	R
2824	23SEfaecium_1_1	F
2825	23SEfaecium_1_1	R
2826	16SrRNAPrmi_1_1	F
2827	16SrRNAPrmi_1_1	R
2828	16SrRNAPrvu1_1_1	F
2829	16SrRNAPrvu1_1_1	R
2830	16SSa_1_1	F

- 201 -

SEQ ID NO	Probe name	Direction
2831	16SSa_1_1	R
2832	16SKlox_1_1	F
2833	16SKlox_1_1	R
2834	p53_1_1	F
2835	p53_1_1	R
2836	0135mihck_1_1	F
2837	0135mihck_1_1	R
2838	FAN_1_1	F
2839	FAN_1_1	R
2840	0270cap_1_1	F
2841	0270cap_1_1	R
2909	16SStrepdysgal_1_1	F
2910	16SStrepdysgal_1_1	R
2911	carO_1_1	F
2912	carO_1_1	R
2913	gacS_1_1	F
2914	gacS_1_1	R
2915	dhbA_1_1	F
2916	dhbA_1_1	R
2917	dhbB_1_1	F
2918	dhbB_1_1	R
2919	sid_1_1	F
2920	sid_1_1	R
2921	csuD_1_1	F
2922	csuD_1_1	R
2923	csuC_1_1	F
2924	csuC_1_1	R
2925	tnp-ACIBA_1_1	F
2926	tnp-ACIBA_1_1	R
2927	waaA-ACIBA_1_1	F
2928	waaA-ACIBA_1_1	R
2929	csuB_1_1	F
2930	csuB_1_1	R
2931	csuA_B_1_1	F
2932	csuA_B_1_1	R
2933	csuA_1_1	F
2934	csuA_1_1	R
2935	put1_1_1	F
2936	put1_1_1	R
2937	por_1_1	F
2938	por_1_1	R
2939	abc_1_1	F
2940	abc_1_1	R
2941	furACIBA_1_1	F

WO 2007/039319 PCT/EP2006/010132

SEQ ID NO	Probe name	Direction
2942	furACIBA_1_1	R
2943	dec_1_1	F
2944	dec_1_1	R
2945	cysI_1_1	F
2946	cysI_1_1	R
2947	trpE_1_1	F
2948	trpE_1_1	R
2949	put3_1_1	F
2950	put3_1_1	R
2951	ompA-ACIBA_1_1	F
2952	ompA-ACIBA_1_1	R
2953	aacA4ENCL_1_1	F
2954	aacA4ENCL_1_1	R
2955	AdeR-ACIBA_1_1	F
2956	AdeR-ACIBA_1_1	R
2957	adeA-ACIBA_1_1	F
2958	adeA-ACIBA_1_1	R
2959	aac(6p)-lb7_1_1	F
2960	aac(6p)-lb7_1_1	R
2961	adeB-ACIBA_1_1	F
2962	adeB-ACIBA_1_1	R
2963	adeC-ACIBA_1_1	F
2964	adeC-ACIBA_1_1	R
2965	AdeS-ACIBA_1_1	F
2966	AdeS-ACIBA_1_1	R
2967	blaL2_1_1	F
2968	blaL2_1_1	R
2969	blaMIR-3_1_1	F
2970	blaMIR-3_1_1	R-
2971	ampR_1_1	F
2972	ampR_1_1	R
2973	ampC-ENCL_1_1	F
2974	ampC-ENCL_1_1	R
2975	blaL1_1_1	F
2976	blaL1_1_1	R
2977	asr_1_1	F
2978	asr_1_1	R
2979	lacZ_1_1	F
2980	lacZ_1_1	R
2981	ehuS_1_1	F
2982	ehuS_1_1	R
2983	ehuV_1_1	F
2984	ehuV_1_1	R
2985	slyA_1_1	F

WO 2007/039319 PCT/EP2006/010132

SEQ ID NO	Probe name	Direction
2986	slyA_1_1	R
2987	ORF165_1_1	F
2988	ORF165_1_1	R
2989	ehuU_1_1	F
2990	ehuU_1_1	R
2991	ehuT_1_1	F
2992	ehuT_1_1	R
2993	ORF295_1_1	F
2994	ORF295_1_1	R
2995	ehuA_1_1	F
2996	ehuA_1_1	R
2997	ORF400_1_1	F
2998	ORF400_1_1	R
2999	H+ATPase_1_1	F
3000	H+ATPase_1_1	R
3001	sulII_1_1	F
3002	sulII_1_1	R
3003	smeE_1_1	F
3004	smeE_1_1	R
3005	eE_1_1	F
3006	eE_1_1	R
3007	StmPr1_1_1	F
3008	StmPr1_1_1	R
3009	eD_2_1	F
3010	eD_2_1	R
3011	ppi_1_1	F
3012	ppi_1_1	R
3013	pmp-STEMA_1_1	F
3014	pmp-STEMA_1_1	R
3015	pam_1_1	F
3016	pam_1_1	R
3017	ORF4-STEMA_1_1	F
3018	ORF4-STEMA_1_1	R
3019	ORF2-STEMA_1_1	F
3020	ORF2-STEMA_1_1	R
3021	et_1_1	F
3022	et_1_1	R
3023	eF_1_1	F
3024	eF_1_1	R
3025	 StmPr2_1_1	F
3026	StmPr2_1_1	R
3027	smeF4494_1_1	F
3028	smeF4494_1_1	R
3029	coa_3_1	F

## - 204 -

SEQ ID NO	Probe name	Direction
3030	coa_3_1	R
3031	coa_2_2	F
3032	coa_2_2	R
3033	fasCAXStrdysg_1_1	F
3034	fasCAXStrdysg_1_1	R
3035	sloStrep_1_1	F
3036	sloStrep_1_1	R
3037	ydhK_1_1	F
3038	ydhK_1_1	R
3039	tetA-ACIBA_1_1	F
3040	tetA-ACIBA_1_1	R
3041	tetR-ACIBA_1_1	F
3042	tetR-ACIBA_1_1	R

## Claims

5

20

25

- 1. An analytical device for direct identification and characterisation of microorganisms in a sample or clinical specimen, wherein the analytical device comprises species specific gene probes which are (i) selected from DNA sequences or partial DNA sequences of the microorganisms to be identified or DNA sequences complementary or homologous thereto, and (ii) have a length of at least 100 nucleotides (nt).
- 2. The analytical device of claim 1, which is a DNA coated bead, a set of DNA coated beads, or a DNA microarray, preferably a DNA microarray.
- 3. The analytical device of claim 1 or 2 which is suitable for species specific identification of one microbial strain or a plurality of microbial strains in clinical specimens comprising microbial strains, especially bacteria and/or fungi, and which furthermore allows differentiation of the target species from each other and from non-target-species contained in one sample comprising a plurality of microbial strains.
  - 4. The analytical device of claim 3 which is suitable for species specific identification of microorganisms causing bacteremia, fungemia or sepsis in a clinical sample.
  - 5. The analytical device of any one of claims 1 to 4, wherein the device is suitable for species specific identification of microorganisms selected from the group consisting of Staphylococci, *E. coli* and Candida sp., preferably for species specific identification of Staphylococci.
  - 6. The analytical device of any one of claims 1 to 5, which is suitable for species specific identification of microorganisms selected from the group consisting of Staphylococcus aureus, Escherichia coli, CoNS (including Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus lugdunensis, Staphylococcus warneri, Staphylococcus saprophyticus), Streptococcus pneumoniae, Streptococcus pyogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Pseudomonas aeruginosa, Streptococcus agalactiae, Streptococcus mutans, Enterococcus faecalis, Enterococcus faecium, Proteus mirabilis, Proteus vulgaris, Candida albicans, Acinetobacter baumannii.
  - 7. The analytical device of claim 6, wherein the device is suitable for species specific identification of at least *S. aureus* and preferably comprises gene probes

- selected from SEQ ID NO:3-6, 31, 40, 50, 51, 58, 59, 63, 64, 66-69, 71, 74, 76, 77, 79, 2902 and 2903, more preferably from SEQ ID NO:4, 68, 69 and 71, even more preferably comprises at least SEQ ID NO:71.
- 8. The analytical device of claim 6 or 7, wherein the device is suitable for species specific identification of at least *S. aureus, E. coli,* CoNS, Enterococcus sp., and/or Candida sp., and preferably comprises gene probes selected from
  - a) SEQ ID NO:4, 68, 69 and 71, preferably SEQ ID NO: 71 for identification of *S. aureus*;
- b) SEQ ID NO: 145, 160, 161 and 170, preferably SEQ ID NO:145 for identification of *E. coli*;
  - c) SEQ ID NO:177, 178 and 190, preferably SEQ ID NO:178 for identification of *S. epidermidis*;
  - d) SEQ ID NO:60, 61, 70, 72, 78 and 125, preferably SEQ ID NO:78 for identification of the genus Staphylococci including *S. aureus*;
- e) SEQ ID NO:210, 224 and 2906, preferably 2906 for identification of CoNS;
  - f) SEQ ID NO:308, 310 and 314, preferably SEQ ID NO:310 for identification of Enterococcus faecalis;
  - g) SEQ ID NO:380 and 385, preferably SEQ ID NO:380 for identification of Enterococcus faecium;
- 20 h) SEQ ID NO:232 and 249, preferably SEQ ID NO:249 for identification of *Candida albicans*;

respectively.

- 9. The analytical device of claim 8, which is suitable for species specific detection or differentiation of
- 25 (i) S. aureus and comprises SEQ ID NO:71;
  - (ii) CoNS and comprises SEQ ID NO:2906;
  - (iii) E. coli and comprises SEQ ID NO:145; and/or
  - (iv) Candida albicans and comprises SEQ ID NO:249.

- 10. The analytical device of any one of claims 7 to 9, which is suitable for additional species specific identification or differentiation of one or more of *Klebsiella pneumoniae*, *Klebsiella oxytoca*, *Streptococcus pneumoniae*, *Streptococcus pyogenes*, *Pseudomonas aeruginosa*, *Proteus mirabilis* and *Proteus vulgaris*.
- 5 11. The analytical device of any one of claims 1 to 10, which additionally comprises virulence and/or resistance gene probes.
  - 12. The analytical device of any one of claims 1 to 11, wherein
  - (i) the length of the gene probes is from 100 to 1000 nt, preferably from 200 to 800 nt; and/or
- (ii) specific gene probes are present for each specific microbial species or group of microorganisms to be identified or differentiated, which gene probes preferably are DNA sequences selected from the groups consisting of (a) species specific gene probes, (b) virulence gene probes and (c) resistance gene probes; and/or
- (iii) the sample is selected from whole blood, serum, urine, saliva, liquor, sputum,
   punktate, stool, pus, wound fluid, swabs, positive blood cultures, preferably is positive blood cultures; and/or
  - (iv) the device further comprises DNA sequences selected from the group (d) consisting of control gene probes coding for negative controls and positive controls.
  - 13. The analytical device of claim 3, which is suitable for diagnosis of

- (i) bacteremia, fungemia or sepsis, wherein the device preferably comprises probes for species specific identification of at least *S. aureus, E. coli*, CoNS, Enterococcus sp., and Candida sp.;
  - (ii) respiratory tract infections, wherein the device preferably comprises probes for species specific identification of at least Candida sp., *S. aureus* and *P. aeruginosa*; and/or
  - (iii) urinary tract infenctions, wherein the device preferably comprises probes for species specific identification of at least *E. coli*, Enterococci sp., Candida sp. and Proteus sp..
- 14. The analytical device of any one of claims 1 to 13, wherein the set of geneprobes preferably comprises gene probes selected from

(a) species specific gene probes for

5

10

25

- (i) Staphylococcus aureus including gene probes derived from from clfA, clfB, coa, lytM, NAG, sodA, sodB, epiP-bsaP, geh, hemC, hemD, hsdS, lip, menC, nuc, SAV0431, SAV0440, SAV0441, spa, ebpS, fbpA, fib, fnbB, srtA, fnbA, femA, fmhB, fmhA;
- (ii) Escherichia coli including gene probes derived b1169, fliCb, nfrB, yacH, ycdS, yciQ, shuA;
- (iii) Staphylococcus epidermidis including gene probes derived from ardeSE0106, ardeSE0107, atlE, agrB, alphSE1368, gad, glucSE1191, icaB, mvaSSepid, nitreSE1972, nitreSE1974, nitreSE1975, oiamtSE1209, ORF1Sepid, ORF3bSepid, qacR, ureSE1865, ureSE1867;
- (iv) Staphylococcus haemolyticus including gene probes derived from femBShaemolyt, mvaDShaemolyt, mvaSShaemolyticus, RNApolsigm;
- (v) Staphylococcus lugdunensis including gene probes derived from agrB2Stalugd,15 agrC2Stalugd, slamStalugd;
  - (vi) Staphylococcus warneri including gene probes derived from msrw1Stwar, nukMStwar, proDStwar, proMStwar, sigrpoStwar, tnpStwar;
  - (vii) Staphylococcus saprophyticus including gene probes derived from RNApolsigmSsapro;
- 20 (viii) Staphylococcus hominis including gene probes derived from ydhK;
  - (ix) Candida albicans including gene probes derived from ARG56, ASL43f, BGL2, CCT8, CDC37, CEF3, CHS1, CHS2, CHS4, CHS5, CHT1, CHT2, CHT4, CSA1, 5triphosphatase, AAF1, ADH1, ALS1, ALS7, EDT1, ELF, ESS1, FAL1, GAP1, GNA1, GSC1, GSL1, HIS1, HTS1, HWP1, HYR1, INT1a, KRE15f, KRE6, KRE9, MIG1, MLS1, MP65, NDE1, PFK2, PHR1, PHR2, PHR3, PRA1, PRS1, RBT1, RBT4, RHO1, RNR1, RPB7, RPL13, RVS167, SHA3, SKN1, SRB1, TCA1, TRP1, YAE1, YRB1, YST1exon2;
  - (x) Enterococcus faecalis including gene probes derived from arcA, arcC, bkdA, camE1, csrA, dacA, dfr, dhoD1a, ABC-eltA, agrBfs, agrCfs, dnaE, ebsA, ebsB, eep, efaR, gls24_glsB, gph, gyrAEf, metEf, mntHCb2, mob2, mvaD, mvaE, parC, pcfG, phoZ, polC, ptb, recS1, rpoN, tms, tyrDC, tyrS;

- (xi) Enterococcus faecium including gene probes derived from bglB, bglR, bglS, efmA, efmB, efmC, mreC, mreD, mvaDEfaecium, mvaEEfaecium, mvaK1Efaecium, mvaK1Efaecium, mvaK2Efaecium, mvaSEfaecium, orf3_4Efaeciumb, orf6_7Efaecium, orf7_8Efaecium, orf9_10Efaecium;
- 5 (xii) Klebsiella pneumonia including gene probes derived from atsA, budC, citA, citW, citX, dalK, acoA, acoB, acoC, ahlK, fimK, glfKPN2, ltrA, mdcC, mdcH, , nifF, nifK, nifN, tyrP, wbbO, wzb, wzmKPN2, wztKPN2, yojH, liac;
  - (xiii) *Klebsiella oxytoca* including gene probes derived from *gatY*, *pelX*, *tagH*, *tagK*, *tagT*;
- 10 (xvi) Pseudomonas aeruginosa including gene probes derived from glpR, lasRb, OrfX, pa0260, pa0572, pa0625, pa0636, pa1046, pa1069, pa1846, pa3866, pa4082, pilAp, PilAp2, pilC, PstP, uvrDII, vsmI, vsmR, xcpX;
- (xv) Streptococcus pneumoniae including gene probes derived from cap1EStrpneu, cap1FStrpneu, cap1GStrpneu, cap3AStrpneu, cap3BStrpneu, celAStrpneu, 15 celBStrpneu, cqlAStrpneu, cqlBStrpneu, cqlCStrpneu, cqlDStrpneu, cinA, cps14EStrpneum, cps14FStrpneum, cps14GStrpneum, cps14HStrpneum, cps19aHStrpneum, cps19aIStrpneum, cps19aKStrpneum, cps19fGStrpneum, dinF, 1760Strpneu, acyPStrpneu, cps23fGStrpneum, dexB, endAStrpneu, exoAStrpneu, exp72, fnlAStrpneu, fnlBStrpneu, fnlCStrpneu, gct18Strpneum, 20 hftsHstrpneu, immunofrag1Strpneu, immunofrag2Strpneu, immunofrag3Strpneu, kdtBStrpneu, lysAStrpneu, pcpBStrpneu, pflCStrpneu, plpA, prtA1Strpneu, pspC1Strpneu, pspC2, purRStrpneu, pyrDAStrpneum, SP0833Strpneu, SP0828Strpneu, SP0830Strpneu, SP0837_38Strpneu, SP0839Strpneu, ugdStrpneu, uncC, vicXStrepneu, wchA6bStrpneum, 25 wci4Strpneum, wciK4Strpneum, wciL4Strpneum, wciN6bStrpneum, Strpneum, wciP6bStrpneum, wciY18Strpneum, wzdbStrpneum, wze6bStrpneum, wzy18Strpneum, wzy4Strpneum, wzy6bStrpneum, xpt;
  - (xvi) Streptococcus agalactiae including gene probes derived from cpsA1Strgal, cpsB1Strgal, cpsC1Strgal, cpsD1Strgal, cpsE1Strgal, cpsG1Strgal, cpsIStragal, cpsIStragal, cpsYStragal, cylBStraga, cylEStraga, cylFStraga, cylHStraga, cylIStraga, cylJStraga, cylKStraga, 0483Straga, 0493Straga, 0495Straga, 0498Straga, 0500Straga, 0502Straga,

0504Straga, folDStraga, neuA1Strgal, neuB1Strgal, neuC1Strgal, neuD1Strgal, recNStraga, ileSStraga;

- (xvii) Streptococcus pyogenes including gene probes derived from cyclStrpyog, fah_rph_hlo_Strpyog, int, int315.5, oppD, , SpyM3_1351, vicXStrpyog;
- 5 (xviii) Streptococcus mutans including gene probes derived from 573Stprmut, 580SStprmut, 581_582SStprmut, 584SStprmut, dltAStrmut, dltBStrmut, dltCppx1Strmut, dltDStrmut, lichStrbov, lytRStprmut, lytSStprmut, pepQStrrmut, pflCStrmut, recNStprmut, ytqBStrmut;
- (xix) Proteus mirabilis including gene probes derived from atfA, atfB, atfC, 10 ccmPrmi1, cyaPrmi, flfB, flfD, flfN, flhD, floA, ftsK, gstB, hemCPrmi, hemDPrmi, hev, katA, lpp1, menE, mfd, nrpA, nrpB, nrpG, nrpS, nrpT, nrpU, pat, pmfA, pmfC, pmfE, ppaA, rsbA, rsbC, speB, stmA, stmB, terA, umoA, umoB, umoC, ureR, xerC, ygbA;
- (xx) *Proteus vulgaris* including gene probes derived from *envZPrvu*, *frdC*, *frdD*, *lad*, 15 tna2;
  - (xxi) Acinetobacter baumanii including gene probes derived from carO, gacS, dhbA, dhbB, sid, csuD, csuC, tnp-ACIBA, waaA-ACIBA, csuB, csuA_B, csuA, put1, por, abc, furACIBA, dec, cysI, trpE, put3, ompA-ACIBA; and/or
  - (b) virulence gene probes for
- (i) Staphylococcus aureus including gene probes derived from bsaE, bsaG, cap5h, cap5i, cap5j, cap5k, cap8H, cap8I, cap8J, cap8K, I-hld, I-hysA, I-IgGbg, EDIN, eta, etb, hglA, hglB, hglC, hla, hlb, lukF, lukS, NAG, sak, sea, seb, sec1, seg, seh, sel, set15, set6, set7, set8, sprV8, tst, I-sdrC, I-sdrD, I-sdrE;
- (ii) Escherichia coli including gene probes derived from b1202, eae, eltB, escR,
   escT, escU, espB, fes, fteA, hlyA, hlyB, iucA, iucB, iucC, papG, rfbE, shuA, SLTII, toxA-LTPA, VT2vaB;
  - (iii) Staphylococcus epidermidis including gene probes derived from gcaD, hld_orf5, icaC, icaD, icaR, psm_beta1and2, purR, spoVG, yabJ;
  - (iv) Staphylococcus haemolyticus including gene probes derived from lipShaemolyt;
- 30 (v) Staphylococcus lugdunensis including gene probes derived from fblStalugd, slushABCStalugd;

- (vi) Staphylococcus warneri including gene probes derived from gehAStwar;
- (vii) Candida albicans including gene probes derived from CCN1, CDC28, CLN2, CPH1, CYB1, EFG1, MNT1, RBF1, RBF1, RIM101, RIM8, SEC14, SEC4, TUP1, YPT1, ZNF1CZF1:
- 5 (viii) Enterococcus faecalis including gene probes derived from asa1, asp1, cgh, cylA, cylB, cylI, cylL_cylS, cylM, ace, ef00108, ef00109, ef0011, ef00113, ef0012, ef0022, ef0031, ef0032, ef0040, ef0058, enlA, esa, esp, gelE, groEL, groES, rt1, sala, salb, sea1, sep1, vicK, yycH, yycI, yycJ;
- (ix) Enterococcus faecium including gene probes derived from entA_entI, entD,10 entR, oep, sagA;
  - (x) Klebsiella pneumoniae including gene probes derived from cim, aldA, hemly, pSL017, pSL020, rcsA, rmlC, rmlD, waaG, wbbD, wbbM, wbbN, wbdA, wbdC, wztKpn, yibD;
- (xi) P. aeruginosa including gene probes derived from aprA, aprE, ctx, algB, algN,
   algR, ExoS, fpvA, lasRa, lipA, lipH, Orf159, Orf252, pchG, PhzA, PhzB, PLC, plcN,
   plcR, pvdD, pvdF, pyocinS1, pyocinS1im, pyocinS2, pys2, rbf303, rhlA, rhlB, rhlR,
   TnAP41, toxA;
  - (xii) Streptococcus pneumoniae including gene probes derived from igaStrpneu, lytA, nanA, nanBStrpneu, pcpCStrpneu, ply, prtAStrpneu, pspA, SP0834Strpneu, sphtraStrpneu, wciJStrpneu, wziyStrpneu, wzxStrpneu;

- (xiii) Streptococcus agalactiae including gene probes derived from CAMPfactor, 0499Straga, hylStragal, lipStragal;
- (xiv) Streptococcus pyogenes including gene probes derived from DNaseIStrpyog, fba2Strpyog, fhuAStrpyog, fhuB1Strpyog, fhuDStrpyog, fhuGStrpyog, hylA, hylP,
   25 hylp2, oppB, ropB, scpAStrpyog, sloStrpyog, smez- Strpyog, sof, speA, speB2Strpyog, speCStrpyog, speJStrpyog, srtBStrpyog, srtCStrpyog, srtEStrpyog, srtFStrpyog, srtFStrpyog, srtTStrpyog, vicKStrpyog;
- (xvi) *Streptococcus mutans* including gene probes derived from *hlyXStrmut*, 30 *perMStrmut*;

- (xvii) *Proteus mirabilis* including gene probes derived from *flaA*, *laD*, *fliA*, *hpmA*, *hpmB*, *lpsPrmi*, *mrpA*, *mrpB*, *mrpC*, *mrpD*, *mrpE*, *mrpF*, *mrpG*, *mrpH*, *mrpI*, *mrpJ*, *patA*, *putA*, *uca*, *ureDPrmi*, *ureEPrmi*, *ureFPrmi*, *zapA*, *zapB*, *zapD*, *zapE*; and/or
- (c) resistance gene probes derived from genes coding for
- (i) beta-lactams resistance including gene probes derived from blaIMP-7, mecISepid, blaOXA-10, blaB, ampC, blaR, blaOXA-32, bla-CTX-M-22, pbp2aStrpneu, blaSHV-1, blaOXA-2, blaRShaemolyt, blaIMP-7, mecR, blaOXY, dacCStrpyog, femA, mecA, blaIShaemolyt, blavim, pbp2b, pbp2primeSepid, pbp2x, pbp3Saureuc, pbp4, pbp5Efaecium, pbpC, mecI, pbp1a, blaI, blaTEM-106, blaOXY-10 KLOX, ftsWEF, fmhB, cumA, blaPER-1, bla_FOX-3, blaA, psrb, fmhA, mecR1Sepid, blaZ, blaOXA-1, fox-6, blaPrmi;
  - (ii) aminoglycosides resistance including gene probes derived from aacA_aphDStwar, aacC1, aacC2, strB, aadA, aadB, aadD, aacA4, strA, aph-A3, aacC1, aacA4, aacA-aphD, I-spc, aphA3, ; aacA4ENCL, aac(6p)-lb7;
- 15 (iii) macrolides-lincosamines-streptogramins resistance including gene probes derived from ermC, linB, satSA, mdrSA, I-linA, ermB, ermA, satA, msrA, mphBM, mefA, mrx;
  - (iv) trimethoprim resistance including gene probes derived from dfrA, dfrStrpneu;
- (v) chloramphenicol resistance including gene probes derived from cat,20 catEfaecium, cmlA5;
  - (vi) tetracyclines resistance including gene probes derived from tetAJ, tetL, tetM;
  - (vii) glycopeptides resistance including gene probes derived from vanH(tn), vanA, vanHB2, vanR, vanRB2, vanS(tn), vanSB2, vanWB2, ddl, ble, vanXB2, vanY(tn), vanYB2, vanB, vanZ(tn), vanC-2, vanX(tn);
- (viii) multiple target resistance including gene probes derived from acrB, mexB, I-qacA, sulI, sul, cadBStalugd, mexA, acrR, emeA, acrA, rtn, abcXStrpmut, qacEdelta1, elkT-abcA, I-cadA, albA, wzm, msrCb, nov, wzt, wbbl, norA23, mexR, arr2, mreA, I-cadC, uvrA, , AdeR-ACIBA, adeA-ACIBA, adeB-ACIBA, adeC-ACIBA, AdeS-ACIBA;
- 30 (ix) fungicide resistance, especially *C. albicans* fungicide resistance, including gene probes derived from *CRD2*, *CDR1*, *MET3*, *FET3*, *FTR2*, *MDR1-7*, *ERG11*, *SEC20*.

- 15. The analytical device of any one of claims 1 to 14, wherein
- (i) the device comprises the minimal number of species specific gene probes of group (a) as defined in claim 12 or 14 which is sufficient for species identification, preferably the device comprises at least 2 different gene probes per target species of group (a); and/or
- (ii) the device comprises the minimal number of virulence gene probes of group (b) as defined in claim 12 or 14 which is sufficient for virulence determination, preferably at least 1 gene probe, more preferably at least 5 different gene probes per target species of group (b); and/or
- (iii) the device comprises the minimal number of resistance gene probes of group (c) as defined in claim 12 or 14 which is sufficient for determination of resistance, preferably at least 1 gene probe, more preferably at least 5 different gene probes of group (c); and/or
- (iv) the DNA sequences are selected from the group consisting of SEQ ID NOs 1 918 and 2842-2908, complementary sequences thereto, addition mutants, deletion mutants, substitution mutants and homologues thereof.
  - 16. The analytical device of claim 15, wherein

- (i) the gene probes of group (a) are selected from SEQ ID NO:SEQ ID NO:1-99, 142-152, 174-199, 209-214, 216-219, 222-229, 231-291, 308-342, 377-393, 399-431, 449-490, 523-591, 606-639, 645-656, 687-701, 706-749, 776-781, 2843-2863, 2902 and 2903;
- (ii) the gene probes of group (b) are selected from SEQ ID NO:100-141, 153-173, 200-208, 215, 220-221, 230, 292-307, 343-376, 394-398, 432-448, 491-522, 592-605, 640-644, 657-686, 702-705, 750-775 and 782-784; and/or
- 25 (iii) the gene probes of group (c) are selected from SEQ ID NO:785-918, 2864-2875, 2888 and 2907-2908, preferably from SEQ ID NO:785-909, 2864-2875, 2888 and 2907-2908.
  - 17. The analytical device of claim 15 or 16, which
- (I) is suitable for identification of *Staphylococcus aureus* and comprises one or more or all of the gene probes selected from SEQ ID NO:3-6, 31, 40, 50, 51, 58,

- 59, 63, 64, 66-69, 71, 74, 76, 77, 79, 2902, 2903, preferably comprises at least one of the gene probes represented by SEQ ID NO:71, 68, 4 and 69; and/or
- (II) is suitable for identification of *Escherichia coli* and comprises one or more or all of the gene probes selected from SEQ ID NO:142, 144, 145, 148, 150-152, 160, 161 and 170, preferably at least one of the gene probe represented by SEQ ID NO:145, 160, 161 and 170; and/or

10

- (III) is suitable for identification of *Staphylococcus epidermidis* and comprises gene probes selected from SEQ ID NO:174, 175, 177, 178, 180-182, 185-193, 198 and 199, preferably at least one of the gene probes represented by SEQ ID NO:177, 178 and 190; and/or
- (IV) is suitable for identification of *Staphylococcus haemolyticus* and comprises one or more or all of the gene probes selected from SEQ ID NO:211, 213 and 214, preferably at least one of the gene probes represented by SEQ ID NO:211 and 214; and/or
- (V) is suitable for identification of Staphylococcus lugdunensis and comprises one or more or all of the gene probes selected from SEQ ID NO:216, 217 and 219-221, preferably at least one of the gene probes represented by SEQ ID NO:216, 219, 220 and 221; and/or
- (VI) is suitable for identification of *Staphylococcus warneri* and comprises one or more or all of the gene probes selected from SEQ ID NO:224-228 and 230, preferably at least one of the gene probes represented by SEQ ID NO:224, 226, and 230; and/or
  - (VII) is suitable for identification of *Staphylococcus saprophyticus* and comprises one or more or all of the gene probes selected from SEQ ID NO:222 and 223; and/or
  - (VIII) is suitable for identification of *Staphylococcus hominis* and comprises one or more or all of the gene probes selected from SEQ ID NO:2096, 194, 229, 211 and 214; and/or
- (IX) is suitable for identification of *Candida albicans* and comprises one or more or all of the gene probes selected from SEQ ID NO:231-291, preferably at least one of the gene probes represented by SEQ ID NO:232 and 249; and/or

- (X) is suitable for identification of *Enterococcus faecalis* and comprises one or more or all of the gene probes selected from SEQ ID NO:308-310 and 312-342, preferably at least one of the gene probes represented by SEQ ID NO:308, 310 and 314; and/or
- 5 (XI) is suitable for identification of *Enterococcus faecium* and comprises one or more or all of the gene probes selected from SEQ ID NO:377-393, preferably at least one of the gene probes represented by SEQ ID NO:380 and 385; and/or
  - (XII) is suitable for identification of *Klebsiella pneumoniae* and comprises one or more or all of the gene probes selected from SEQ ID NO:399, 401-404, 408-415, 417, 420-423, 425 and 427-431, preferably at least one of the gene probes represented by SEQ ID NO:401, 410 and 430; and/or

- (XIII) is suitable for identification of *Klebsiella oxytoca* and comprises one or more or all of the gene probes selected from SEQ ID NO:459 and 466-469, preferably at least one of the gene probes represented by SEQ ID NO:459, 468 and 469; and/or
- 15 (XIV) is suitable for identification of *Pseudomonas aeruginosa* and comprises one or more or all of the gene probes selected from SEQ ID NO:470-485, 487-493 and 505, preferably at least one of the gene probes represented by SEQ ID NO:471, 474, 488 and 505; and/or
  - (XV) is suitable for identification of *Streptococcus pneumoniae* and comprises one or more or all of the gene probes selected from SEQ ID NO:523-591, preferably at least one of the gene probes represented by SEQ ID NO:558 and 562; and/or
  - (XVI) is suitable for identification of *Streptococcus agalactiae* and comprises one or more or all of the gene probes selected from SEQ ID NO:606-639, preferably at least one of the gene probes represented by SEQ ID NO:606 and 619; and/or
- 25 (XVII) is suitable for identification of *Streptococcus pyogenes* and comprises one or more or all of the gene probes selected from SEQ ID NO:645-648, 652, 655-656, 658 and 660, preferably at least one of the gene probes represented by SEQ ID NO:645, 658 and 660; and/or
- (XVIII) is suitable for identification of *Streptococcus mutans* and comprises one or more or all of the gene probes selected from SEQ ID NO:687-701, preferably at least one of the gene probes represented by SEQ ID NO:687, 691 and 692; and/or

- (XIX) is suitable for identification of *Proteus mirabilis* and comprises one or more or all of the gene probes selected from SEQ ID NO:706-710, 712-742 and 744-749, preferably at least one of the gene probes represented by SEQ ID NO:721, 725 and 735; and/or
- 5 (XX) is suitable for identification of *Proteus vulgaris* and comprises one or more or all of the gene probes selected from SEQ ID NO:776-778 and 780-781, preferably at least one of the gene probes represented by SEQ ID NO:776, 777 and 781; and/or
- (XXI) is suitable for identification of *Acinetobacter baumannii* and comprises one or more or all of the gene probes selected from SEQ ID NO:2843-2863, preferably at least one of the gene probes represented by SEQ ID NO:2858 and 2863.
  - 18. The analytical device of claim 17, which further comprises

20

- (I) for the characterisation of *Staphylococcus aureus*: one or more or all of the gene probes of group (b) selected from SEQ ID NO:100-141, and/or
- of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
  - (II) for the characterisation of *Escherichia coli*: one or more or all of the gene probes of group (b) selected from SEQ ID NO:153-173, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
  - (III) for the characterisation of *Staphylococcus epidermidis:* one or more or all of the gene probes of group (b) selected from SEQ ID NO:200-208, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
- 25 (IV) for the characterisation of *Staphylococcus haemolyticus*: one or more or all of the gene probe of group (b) represented by SEQ ID NO:215, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
  - (V) for the characterisation of Staphylococcus lugdunensis: one or more or all

of the gene probes of group (b) selected from SEQ ID NO:220-221, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or

(VI) for the characterisation of *Staphylococcus warneri*: one or more or all of the gene probe of group (b) represented by SEQ ID NO:230, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or

5

10

- (VII) for the characterisation of *Staphylococcus saprophyticus*: one or more or all of the gene probe of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
- (VIII) for the characterisation of *Staphylococcus hominis*: one or more or all of the gene probe of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
- (IX) for the characterisation of *Candida albicans*: one or more or all
  of the gene probes of group (b) selected from SEQ ID NO:292-307, and/or of the gene probes of group (c) selected from SEQ ID NO:910-918; and/or
  (X) for the characterisation of *Enterococcus faecalis*: one or more or all of the gene probes of group (b) selected from SEQ ID NO:343-376, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
  - (XI) for the characterisation of *Enterococcus faecium:* one or more or all of the gene probes of group (b) selected from SEQ ID NO:394-398, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
- 25 (XII) for the characterisation of *Klebsiella pneumonia*: one or more or all of the gene probes of group (b) selected from SEQ ID NO:432-448, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or

(XIII) for the characterisation of *Klebsiella oxytoca:* one or more or all of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or

(XIV) for the characterisation of *Pseudomonas aeruginosa:* one or more or all of the gene probes of group (b) selected from SEQ ID NO:491-522, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or

(XV) for the characterisation of *Streptococcus pneumoniae*: one or more or all of the gene probes of group (b) selected from SEQ ID NO:592-605, and/or

5

15

of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or

(XVI) for the characterisation of *Streptococcus agalactiae:* one or more or all of the gene probes of group (b) selected from SEQ ID NO:640-644, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or

(XVII) for the characterisation of *Streptococcus pyogenes:* one or more or all of the gene probes of group (b) selected from SEQ ID NO:657-686, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or

- 20 (XVIII) for the characterisation of Streptococcus viridans: one or more or all of the gene probes of group (b) selected from SEQ ID NO:702-705, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
- of the gene probes of group (b) selected from SEQ ID NO:750-775, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908; and/or
  - (XX) for the characterisation of Proteus vulgaris: one or more or all

(XIX) for the characterisation of Proteus mirabilis: one or more or all

of the gene probes of group (b) selected from SEQ ID NO:782-784, and/or of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908.

- (XXI) for the characterisation of Acinetobacter baumannii: one or more or all
- of the gene probes of group (c) selected from SEQ ID NO:785-909, 2864-2875, 2888, 2907-2908.
  - 19. Use of the analytical device of any one of claims 1-18 for *in vitro* identification and characterisation of microorganisms in a sample or in a clinical specimen, preferably for the diagnosis of a clinical condition, more preferably for the diagnosis of bacteremia, fungemia or sepsis.
  - 20. Use of the analytical device of any one of claims 1-18 for *in vitro* differentiation of a plurality of different microbial strains contained in one sample and/or for species-specific identification of one or more microbial strain contained in a mixture of a plurality of microorganisms.
- 15 21. An *in vitro* method for identification and characterisation of microorganisms in a sample or in a clinical specimen comprising
  - (a) isolating the total DNA from the sample or clinical specimen and labelling the DNA with a reporter molecule;
  - (b) applying the DNA thus obtained to the analytical device of anyone of claims 1-18 and hybridising the DNA with the gene probes of the analytical device; and
    - (c) detecting DNA bound to the analytical device by determination of the amount of the reporter molecules bound to the device.
    - 22. The method of claim 21,

10

20

- (i) which is a method for diagnosis of bacteremia, fungemia or sepsis; and/or
- 25 (ii) wherein the clinical specimen is a positive blood culture; and/or
  - (iii) wherein the ratio of microbial DNA to total DNA isolated from said sample or clinical specimen is less than 100 %, preferably from 1% to 99%; and/or
  - (iv) wherein the reporter molecule is a fluorochrome; and/or
- (v) wherein the determination of the amount of reporter molecules bound to the
   device is achieved by visualization of the reporter molecule; and/or

WO 2007/039319 PCT/EP2006/010132
- 220 -

- (vi) wherein the DNA isolated in step (a) is labelled and applied to the analytical device without prior amplification, preferably is labelled by random priming; and/or
- (vii) wherein the DNA isolated in step (a) is fragmented before the labelling reaction.
- 5 23. The method of claim 21 or 22, wherein the analytical device is a DNA microarray and the detection is preferably performed using a DNA microarray reader.
  - 24. The method of claim 21 or 22, wherein the analytical device is a DNA coated bead or a set of DNA coated beads, and the application and/or detection step is preferably performed in a microfluidic device.

10

25. A kit for detection of microorgamisms in a sample or clinical specimen comprising the analytical device of any one of claims 1 to 18.

Fig. 14

WO 2007/039319 PCT/EP2006/010132 2/17



 $\mathbf{\omega}$ 

Gene probes	S. aureus					P, aeru	P. aeruoinosa			E.GG.					<u>~</u>	S. evidermidis	.8			8			Sall P	Gram-negative			 			Gramoos			
Couraite	1 9 1	2	7	0	10111	10+	Ţ	45 46			20	33	10119	2	97	30	1	20 22	2	35	2	00 00	7 17	164	77 77	10 31	7 07	o En E		2	E L	Ical	
or agreem	8	1		·	<u> </u>	<u>-</u>	=	2 2			<u> </u>	77		ર	<u> </u>	3	<u> </u>	3	5	3	3	<u>}</u>	-	3	<b>₽</b>	<del>}</del>	<del>*</del> <del>?</del>	3		3	3	2	ᄋ
remy						$\exists$	1	$\dashv$	$\exists$	4	7	_	1	7	$\dashv$		4	-				_			4						$\dashv$		
fmhA																												_	_				
8µmJ								$\vdash$		L	F	L		F	$\vdash$			L	L						L			F	L	F	$\vdash$	L	Г
gyrÅ								$\vdash$		L	F	L		F	-		F	-			F	F			H	$\vdash$	L	<u> </u>	ļ	F	╁	L	Т
9,10							F	-		L	F			F	-			-			F	$\vdash$	L	F	$\vdash$				L		┝	L	П
hemB							L	-		L	$\vdash$	L		F	┞		F	H	E		L	$\vdash$		L	<u> </u>	L	L	F	F	F	╁	L	Т
hemM								$\vdash$			F	L		F	-		F	-		L	F	-		L	┞			L	F	F	╁		Т
eşų							L	$\vdash$		F	F	L		F	$\vdash$		F	$\vdash$	L	Ļ	F	H	L	L	H		上	L	ļ	F	╁	L	Т
g							L	┞		F	F	$\vdash$	t	F	$\vdash$	L	F	H	L	t	F	L	t	L	$\vdash$	L	L	ļ	İ	F	╁		Т
menC							T	╀	L	F	F	L	t	F	╁	_	ļ	+	$\pm$	t	F	$\vdash$		F	$\vdash$		L		ļ	F	+	1	Т
NAG						L	F	$\vdash$	L	F	F	L	t	F	F		L	H		L	L	-		L	$\vdash$	$\vdash$	L	t	ļ	F	t	Į	Т
norA23						L	L	$\vdash$	L	F	$\vdash$	L	L	F	-		L	L	L	L	1	L	上	L	$\vdash$	L	L	t	ļ	F	╁	İ	Т
UNC							L	$\vdash$	L	L		F		F	╀		F	$\vdash$		L	F	$\vdash$	t	L	$\vdash$	$\vdash$		L	F	F	╁	L	Т
goa								$\vdash$		F	F	$\vdash$	L	F	$\vdash$		F	$\vdash$	L	L	F	H	t	F	$\vdash$		L	L	F	F	╁	L	Т
cel							L	┝	L	L	F	L	L	F	$\vdash$	L	F	H	L	t	L	$\vdash$	t	L	┞			t	F	F	╁	İ	Т
16553	388					8	ļ	F				$oldsymbol{\perp}$	America		H		1							F	╀		L	t	ļ	F			Т
893	1			-		L	L	$\vdash$		L	F	$\perp$	-	F	-		-	L			F		t	L	$\vdash$	lacksquare	t	t	ļ	F	H	t	Т
EDIN	*		L		F	L	L	┝	L	L	F	L	<u> </u>	F	$\vdash$	t	F	F	E	L	F	F	t	L	$\vdash$	H	L	t	ļ	F	╁	Ţ	Т
elk T-abcA		211111111		Ë		L	L	╀		F	F			F	$\vdash$		F	$\perp$	L	L	F	-	L	F	-		L	ļ	F	F	╁		T
epip-osap			F					$\vdash$		L	F	L		F	$\vdash$		F	H	L	L	L	-	L	L	$\vdash$	L		F	F	F	$\vdash$	t	Т
deh		Tables						$\vdash$						F	$\vdash$		F	H	E	L	F	F	L	L							$\vdash$	İ	Т
mreA	101100	\$					F	$\vdash$		F	F				_		F	L	E		F	H	L	L	$\vdash$		L	L	F	F	┢		Τ
murc	4.00							$\vdash$		L	F	F		F	╀	$\vdash$	F	$\vdash$	E	上	-	F	L	L	F	$\vdash$		F	F	F	╁	t	Т
sak								$\vdash$		F	$\vdash$				$\vdash$			-				$\vdash$			-	-			F	F	┢		T
263								$\vdash$			H	H			$\vdash$			H													$\vdash$		
seci						Н	H	Н		H	H	$\vdash$		F	$\vdash$			H	L				E							F			1
qp			П				Ц	$\vdash$						F	$\vdash$			H							_			L			$\vdash$		П
qes							П	Н		H	Н	Н		F	H		F	H						F							-		Г
sstC														L	H							H			_				F	F	┝		
(SI								_							$\vdash$	E			E			L			L	H				F	┝		
aacA-aphD								_				_			_																┝		
Opee														L	┝		990								L					_	-		Г
aph-A3								H							$\vdash$			H						F							H		П
blaZ												F			L				ij.			F			-	-	_				$\vdash$		Π
cat								$\vdash$	Ë		F	H			-			<u> </u>													┝	L	П
dfA								$\vdash$							_							F									ig		
ermA								$\vdash$	Ц		Н	Н			$\vdash$			H						П		-					-		Г
ermC								$\dashv$				Н			Н									Ħ							$\vdash$		
msrSA								Н	H			Н			Н								Н								-		
mecA												L			-							¥				-			F	F	┝		Г

Fig. 10





Fig.2



Fig.3



Fig.4





Fig.5





Fig.6



Fig.7A



Fig.7B





Fig.7D





Fig.7F



Fig.7G



Fig.7H



Fig.8A





Fig.9A



Fig.9B



Fig.9C



Fig.9D









Fig.10D

#### SEQUENCE LISTING

<110>	Univ	versität zu	Köln				
<120>	ana:	lytical dev	ice for rap:	id identifi	cation of pa	athogens	
<130>	0623	148wo/JH/PC	H				
<150> <151>		05109025.6 5-09-29					
<160>	3042	2					
<170>	Pate	entIn versio	on 3.3				
<210> <211> <212> <213>	1 220 DNA Stap	phylococcus	aureus				
<400>	1						
taaatto	gttt	agattacaat	cagaggacgc	taaagaaaga	atttttacaa	atacagcaaa	60
tgcaato	ggaa	ggcgtaacgg	atgatgttaa	acgacgtcat	attcgtcatt	gttacaaagc	120
tgaccca	agaa	tatggtaaag	gtgttgcaaa	agcattaggt	attgatataa	attctattga	180
tcttgaa	aact	gaaaatgatg	aaacatacga	aaactttgaa			220
<210> <211> <212> <213>		phylococcus	aureus				
<400> cgtgttt	2 ggg	ttaaattcca	ttttagaacg	caacaaggta	ttgaaaactt	aactgatgaa	60
gaagete	gctg	aaattatagc	tacagatcgt	gattcatctc	aacgcgattt	attcgaagcc	120
attgaaa	aaag	gtgattatcc	aaaatggaca	atgtatattc	aagtaatgac	tgaggaacaa	180
gctaaaa	acc	ataaagataa	tccatttgat	ttaacaaaag	tatggtatca	cgatgagtat	240
cctctaa	attg	aagttggaga	gtttgaatta	aatagaaatc	cagataatta	ctttacggat	300
gttgaad	caag	ctgcgtttgc	accaactaat	attattccag	gattagattt	ttctccagac	360
aaaatgo	ctgc	aagggcgttt	attctcatat	ggcgatgcgc	aaagatatcg	attaggagtt	420
aatcatt	ggc	agattcctgt	aaaccaacct	aaaggtgttg	gtattgaaaa	tatttgtcct	480
tttagta	agag	atggtcaaat	gcgcgtagtt	gacaataacc	aaggtggagg	aacacaccat	540
tat							543

<210> <211> <212> <213>	3 701 DNA Stap	phylococcus	aureus				
<400> aaaagaa	3 aaaa	cacgcaattc	ggaaaaaatc	gattggcgtg	gcttcagtgc	ttgtaggtac	60
gttaato	eggt	tttggactac	tcagcagtaa	agaagcagat	gcaagtgaaa	atagtgttac	120
gcaatct	tgat	agcgcaagta	acgaaagcaa	aagtaatgat	tcaagtagcg	ttagtgctgc	180
acctaaa	aaca	gacgacacaa	acgtgagtga	tactaaaaca	tcgtcaaaca	ctaataatgg	240
cgaaac	gagt	gtggcgcaaa	atccagcaca	acaggaaacg	acacaatcat	catcaacaaa	300
tgcaact	tacg	gaagaaacgc	cggtaactgg	tgaagctact	actacgacaa	cgaatcaagc	360
taataca	accg	gcaacaactc	aatcaagcaa	tacaaatgcg	gaggaattag	tgaatcaaac	420
aagtaat	tgaa	acgactttta	atgatactaa	tacagtatca	tctgtaaatt	cacctcaaaa	480
ttctaca	aaat	gcggaaaatg	tttcaacaac	gcaagatact	tcaactgaag	caacaccttc	540
aaacaat	tgaa	tcagctccac	agagtacaga	tgcaagtaat	aaagatgtag	ttaatcaagc	600
ggttaat	taca	agtgcgccta	gaatgagagc	atttagttta	gcggcagtag	ctgcagatgc	660
accggca	agct	ggcacagata	ttacgaatca	gttgacgaat	g		701
<210> <211> <212> <213>		phylococcus	aureus				
<400> tagcata	4 agca	acaaacagtg	agcttaaaaa	ttctcaaaca	ttagatttac	cacaatcatc	60
accacaa	aacg	atttccaatg	cgcaaggaac	tagtaaacca	agtgttagaa	cgagagctgt	120
acgtagt	tta	gctgttgctg	aaccggtagt	aaatgctgct	gatgctaaag	gtacaaatgt	180
aaatgat	caaa	gttacggcaa	gtaatttcaa	gttagaaaag	actacatttg	accctaatca	240
aagtggt	caac	acatttatgg	cggcaaattt	tacagtgaca	gataaagtga	aatcagggga	300
ttattt	aca	gcgaagttac	cagatagttt	aactggtaat	ggagacgtgg	attattctaa	360
ttcaaat	aat	acgatgccaa	ttgcagacat	taaaagtacg	aatggcgatg	ttgtagctaa	420
agcaaca	atat	gatatcttga	ctaagacgta	tacatttgtc	tttacagatt	atgtaaataa	480
taaagaa	aaat	attaacggac	aattttcatt	acctttattt	acagaccgag	caaaggcacc	540

taaatcagga	acatatgatg	cgaatattaa	tattgcggat	gaaatgttta	ataataaaat	600
tacttataac	tatagttcgc	caattgcagg	aattgataaa	ccaaatggcg	cgaacatttc	660
ttctcaaatt	attggtgtag	atacagette	aggtcaaaac			700
<210> 5 <211> 635 <212> DNA <213> Stag	phylococcus	aureus				
<400> 5	atgcgatagt	aacaaaggat	tatagcaaag	agtcaagagt	gaatgagaac	60
		ttcagactgg				120
-			_			180
	_	ggatattta				240
		gatgacaaga				
agaaaaaaag	tgcagtatga	ggaatacaaa	aaattatacc	aaaaatataa	agaagagaat	300
ccaacctcta	aaggcttaaa	actgaaaaca	ttcgatcaat	atacaataga	agatttaact	360
atgagggaat	ataatgagtt	aacagaatca	ttaaaaagtg	ctgtaaaaga	ctttgagaaa	420
gatgttgaaa	aaatagaaaa	tcaacatcat	gatttgaaac	catttactga	tgaaatggaa	480
gagaaggcta	cttctagagt	tgatgattta	gcaaataaag	catatagtgt	ttattttgca	540
tttgttaggg	atacacaaca	taaaactgag	gcattagagt	taaaagcgaa	agtagattta	600
gttttaggtg	atgaggataa	accgcatcgt	atttc			635
<210> 6 <211> 532 <212> DNA <213> Star	phylococcus	aureus				
<400> 6	taggagttgg	atctagctta	tttacatggg	ataacaaagc	agatgggata	60
		-				
		agagtcaaga				120
_		agggagatta			_	180
ttggatattt	tagagacata	tcattatggc	gaaaaagagt	ataaagatgc	aaaagataaa	240
ttgatgacaa	gaattttagg	ggaagaccaa	taccttttag	aaagaaaaaa	agtgcagtat	300
gaggaataca	aaaaattata	ccaaaaatat	aaagaagaga	atccaacctc	taaaggctta	360
aaactgaaaa	cattcgatca	atatacaata	gaagatttaa	ctatgaggga	atataatgag	420

## WO 2007/039319 PCT/EP2006/010132 4/763

ttaacagaat	: cattaaaaag	tgctgtaaaa	gactttgaga	aagatgttga	aaaaatagaa	480
aatcaacato	: atgatttgaa	accatttact	gatgaaatgg	aagagaaggc	ta	532
<210> 7 <211> 268 <212> DNA <213> Sta		aureus				
<400> 7	2001000102	±222622262	2226116222	2002212102	2022001222	60
	acctgcgtga		_			
aatgaatgga	agaatgcaca	aaatggcatg	tcaacttcat	tgtcagaaga	agatattgct	. 120
gaagttattg	r caggatggac	aggtatccca	ttaactaaaa	tcaatgaaac	agaatctgaa	180
aaacttctta	gtctagaaga	tacattacat	gagagagtta	ttgggcaaaa	agatgctgtt	240
aattcaatca	gtaaagcggt	tagacgtg				268
		aureus				
<400> 8 aaagtaaaga	gtagactaag	cagtctgctc	tttttgtatg	agtaaaccga	ggtgtcaata	60
aattgtttac	: tatactttga	gcggaaatat	gattgaatga	agctagttga	accgtaacta	120
tatgaaatgt	tecetteaaa	gtagacattg	aaaggaacat	ttcaatcctt	tgtttgtaag	180
tcgctctaga	cattacattt	agtacatatg	ttgtttctaa	tgctcattaa	tggtattgat	240
tattctttaa	ttaaatcttc	aagtgccatt	tttaaattac	tatatttaaa	ttggaatccc	300
aatgcttgaa	tttattagg	t				321
<210> 9 <211> 350 <212> DNA <213> Sta		aureus				
<400> 9 aagaatttaa	. aatggttagg	tgtcgtagca	acqttaatqa	tgacatttgt	acaacttggt	60
-	ttaccaaaac			_		120
	tgattccaga					180
gccgtttcag	ctttgtcttt	attaatggtc	ttatggttag	ttatcactgc	atggaaacat	240
ataggctata	ttaaagaaat	taaaccttta	tcaatcatta	gtgttggatt	cttattattg	300

# WO 2007/039319 PCT/EP2006/010132 5/763

caagcattaa teggagetge t	tgctgttatt	tggcaacaaa	acgattacgt		350
<210> 10 <211> 357 <212> DNA <213> Staphylococcus a	aureus				
<400> 10					
aacgtcccat accattaatt t	ttagaaatta	agaatcctaa	aacattaatg	attaaaggta	60
aaatctttgt gtattgaagg a	ataccgataa	tcgctgaaat	aaatacgata	ggtaataata	120
cactgaagaa gaatggtggt t	tgcttaggat	cgatatattg	aataccaccg	aatacaaagt	180
taacaccatc tgctgctttt a	aataataagt	agttaaaacc	gtttgaaata	ccaccaataa	240
ccttgattcc cattgtagtt t	ttaagcaaga	taaatgcaaa	gataagctga	attgcaagta	300
aaattcctac atatttccag c	cgaatatttt	tcctgtctga	gctaaataga	aacgcaa	357
<210> 11 <211> 336 <212> DNA <213> Staphylococcus a	aureus				
<400> 11					
acagagcagc aaaagcgtta g	gtaaaccgtt	tcccaagtgc	gacgatttac	aacacatatg	60
gtccaactga agctacggta g	gcagttacaa	gtattcaaat	tacacaagaa	atcttagatc	120
aatatccgac attacctgtt g	ggcgttgaaa	gaccaggcgc	aagattatct	actacagatg	180
aaggtgaact tgttatcgaa g	ggtcaaagtg	taagtttagg	atacttaaaa	aatgaccaaa	240
aaacagctga agtatttaat t	ttcgatgacg	gtattcgtac	atatcacact	ggtgataaag	300
cgaagtttga aaatggtcaa t	tggttcattc	aaggtc			336
<210> 12 <211> 340 <212> DNA <213> Staphylococcus a	aureus				
<400> 12 catatggtga ttttacattc t	ttcttaattg	ctttaattgc	attattacca	gtcattatac	60
ttggattttt aggtaagcga a	agttacattt	ataatggcgt	agttacagca	tttatgattg	120
tgttaatctt ttcttctgat a	aaacataatc	tgtttgacca	aaagtattta	agtgttcaat	180
taattagttt tattatttac g	gtcgtatggc	aagttttatt	gataatgttt	tattatcatt	240

caaaac	caaa aaataattca	ttttcaaaat	ttgtaactgt	aatggtttta	tcaatattgc	300
cattag	cact tgtgaaagtg	ttacaaagta	catggttagg			340
<210><211><211><212><213>	13 210 DNA Staphylococcus	aureus				
<400>	13					
aaattt	atta gcagaagtag	cagaaaatga	tattgtaaaa	gaaaatccag	acgtagaaat	60
ttttgaa	agaa ggtattattg	attctttcca	aacagttgga	ttattattag	agattcaaaa	120
taaact	tgat atcgaagtat	ctattatgga	ctttgataga	gatgagtggg	caacaccaaa	180
taaaat	cgtt gaagcattag	aagagttacg				210
<210> <211> <212> <213>	14 262 DNA Staphylococcus	aureus				
	cgaa aatatcggtg	aagaagataa	aaaatctgct	gaagagaaaa	aagacgctct	60
taaaac	tgct ttagaaggtc	aagatataga	agatattaaa	tctaaaaaag	aagaacttga	120
aaaagt	gatt caagaattat	cagcaaaagt	atatgagcaa	gcggctcaac	agcaacaaca	180
agcacaa	aggt gcaaatgctg	gtcaaaacaa	cgatagtact	gtagaagatg	ctgaatttaa	240
agaagta	aaaa gacgacgaca	aa				262
<210> <211> <212> <213>	15 224 DNA Staphylococcus	aureus				
<400> ggtctta	15 atcg ttgcagctat	cactatttca	tcactaggga	gcttaagtgg	actattagtg	60
ccactg	ttta ctggacgaat	tgtagataaa	ttttccgtga	gccatatcaa	ttggaatcta	120
atcgcat	ttat ttggtggtat	ctttgttatc	aatgctttat	taagcggatt	aggtttatat	180
ttattaa	agta aaattggtga	aaagattatt	tatgcgatac	gctc		224
<210> <211> <212> <213>	16 435 DNA Staphylococcus	aureus				

## WO 2007/039319 PCT/EP2006/010132 7/763

<400> 16						
	tgttagaatc	agcattaata	gctggtttga	tttcaattgg	tgcagaagtg	60
atgcgattag	gtattatttc	aacaccaggt	gttgcatatt	taacacgcga	tatgggtgca	120
gagttaggtg	taatgatttc	agcctctcat	aatccagttg	cagataatgg	tattaaattc	180
tttggatcag	atggttttaa	actatcagat	gaacaagaaa	atgaaattga	agcattattg	240
gatcaagaaa	acccagaatt	accaagacca	gttggcaatg	atattgtaca	ttattcagat	300
tactttgaag	gggcacaaaa	atatttgagc	tatttaaaat	caacagtaga	tgttaacttt	360
gaaggtttga	aaattgcttt	agatggcgca	aatggttcaa	catcatcact	agcgccattc	420
ttatttggtg	actta					435
<210> 17 <211> 426 <212> DNA <213> Stap <400> 17	phylococcus	aureus				
	gaagttgccc	ctggtcaaca	tgaaattgac	tttaaatatg	cagatgctgt	60
tacagcatgt	gataatatcc	aaacatttaa	attggttgtt	aaaacaatcg	cacgtaaaca	120
taatttacac	gcaacattta	tgcctaaacc	attatttggt	gtgaatggta	gcggtatgca	180
ctttaacgtt	tcattattca	aaggtaaaga	aaatgcattc	tttgatccga	atactgaaat	240
gggcttaaca	gaaacagctt	accaattcac	agctggtgta	cttaaaaacg	cacgtggatt	300
tacagcggta	tgtaacccat	tagtaaactc	atacaaacgt	ttagttcctg	gttatgaagc	360
accatgttat	attgcatgga	gcggtaaaaa	ccgttcaccg	ttaatccgtg	taccatcttc	420
aagagg						426
_	phylococcus	aureus				
<400> 18 cgaatgatgc	aatcagacga	aatatggctg	tcttctctat	gagtgtagta	agtaagttaa	60
cggatttaac	gccaaggcaa	atacgttact	atgaaacaca	tgaactcatc	aaacctgaaa	120
gaacagaagg	tcaaaaacgt	ctgttctcac	tcaatgattt	ggaaagatta	ctagaaatta	180
aatcattatt	agaaaaagga	tttaatatca	aagggattaa	acaaatcatt	tatgactcac	240

aagagcattt aacaacaga	t gaacaagaga	taagaaaaaa	gatgattgta	gatgccacgc	300
aaaagcctat tggagaaac	t ttgccaataa	atcgtggtg			339
<210> 19 <211> 390 <212> DNA <213> Staphylococcu	s aureus				
<400> 19					
ttgaatcacc aaattgago	t tgttgcaaat	agaacgaagt	ttgaattaga	taatgcagaa	60
aaacgtatgc atatcgtto	a aggtttgatt	aaagcgttgt	caattttaga	taaagtaatc	120
gaattgattc gtagctcta	a aaacaagcgt	gacgctaaag	aaaaccttat	cgaagtatac	180
gagttcacag aagaacag	c tgaagcaatt	gtaatgttac	agttatatcg	tttaacaaac	240
actgatatag ttgcgcttg	a aggtgaacat	aaagaacttg	aagcattaat	caaacaatta	300
cgtcatattc ttgataacc	a tgatgcatta	ttgaatgtca	taaaagaaga	attgaatgaa	360
attaaaaaga aattcaaat	c tgaacgactg				390
<210> 20 <211> 415 <212> DNA <213> Staphylococcu	s aureus				
<400> 20 aaatccatcg agatggtaa	t atatatcatc	aaagttttaa	aaacggtggt	tcgccatctt	60
ctggtttagt gaaaaaagg	t aaaactaaga	aaacaggtac	caaagtaaca	tttaaacctg	120
atgacacaat ttttaaago	a tctacatcat	ttaattttga	tgttttaagc	gaacgactac	180
aagagtctgc gttcttatt	g aaaaatttaa	aaataacgct	taatgattta	cgcagtggta	240
aagagcgtca agagcatta	c cattatgaag	aaggaatcaa	agagtttgtt	agttatgtca	300
atgaaggaaa agaagtttt	g catgacgtgg	ctacattttc	aggtgaagca	aatggtatag	360
aggtagacgt agctttcca	a tataatgatc	aatattcaga	aagtattta	agttt	415
<210> 21 <211> 206 <212> DNA <213> Staphylococcu	s aureus				
<400> 21 gtatgcaatt tgatcgtgg	t tatcaatcac	cgtatatggt	tactgattca	gataaaatgg	60
ttgctgaatt agaacgccc	a tacattttag	taacagataa	gaaaatctcg	tctttccaag	120

atatettace tttattagaa caagtggtte aatetaateg tecaatetta attgtagetg	180
atgaagttga aggcgatgca ttaaca	206
<210> 22 <211> 380 <212> DNA <213> Staphylococcus aureus	
<400> 22 tctatttaat ttatttatga attaagttct gtattattca ataactgcta aaatatcttc	60
ttcatttaat accagatatg tttcattatc tcgtttaact tctgtaccag catattgttg	120
gaacacgaca cggtcccctt ctttcacttc aggagtcact cttgtaccat catttaatag	180
gegtecagtt cetactgeaa egataaegee ttegtttgat ttttetttag eactateagt	240
taaaacaata ccacttttag ttgtttgttc ttgttctttt ttctcaataa tcacacgatt	300
tccaattggt tttagcatga ttgttcctcc ttaaaaaacc taaagtttag cacttaacat	360
taaagagtgc taacatacat	380
<210> 23 <211> 496 <212> DNA <213> Staphylococcus aureus <400> 23	
tgtcatatta tcaacatgta atcgaactga agtatatgct gttgttgatc aaattcacac	60
aggtcgttac tatattcaac gatttctagc tcgtgcattt ggatttgaag tagatgatat	120
taaagcaatg tcagaagtaa aagtggggga cgaagcagta gaacatttat tgcgtgtcac	180
ttctggttta gattcaatcg tacttggaga aactcaaatt ttaggtcaaa taagagatgc	240
atttttctta gcgcaaagca caggtacgac aggaacaatt tttaatcatc tatttaaaca	300
ggcaattact tttgcaaaaa gagcacataa tgaaacagat atagctgata atgctgtaag	360
tgtgtcttat gctgcggtcg agttggcgaa aaaagtattt ggcaaattga aaagtaagca	420
agctatcatt attggtgcag gggaaatgag tgaattatca ctattaaatc ttcttggttc	480
tggaattact gatatt	496
<210> 24 <211> 619 <212> DNA <213> Staphylococcus aureus	

<400> 24	
aaaatgatca aaggtgaaga aacatcacat acacctgttt ggtttatgcg acaag	ctggc 60
cgttcgcaac cagaatatcg aaaattgaaa gaaaaatatt cactattcga tatta	cacat 120
cagccggagt tgtgcgctta tgtaacacat ttaccagttg ataattatca tacag	atgca 180
gcaattttat acaaagatat tatgacacca ttaaagccaa ttggtgtcga tgtag	aaatt 240
aaatcgggta ttggtccagt gattcataat ccaatcaaaa caattcaaga tgttg	agaaa 300
ctttctcaaa tagaccccga acgagatgta ccatatgtat tagatacaat taaac	tttta 360
acagaagaaa agttaaatgt gccgctaata ggatttactg gggcaccatt tacat	tagcg 420
tcatatatga ttgaaggcgg accatcgaaa aattacaatt ttacaaaagc gatga	tgtat 480
agagatgaag caacatggtt tgctttaatg aatcatttag ttgatgtatc tgtta	aatat 540
gtaacagctc aagtcgaagc aggtgccgaa ttgattcaaa ttttcgattc atggg	taggt 600
gcattaaatg tcgaggatt	619
<210> 25 <211> 578	
<212> DNA	
<213> Staphylococcus aureus	
<213> Staphylococcus aureus <400> 25	
	ccata 60
<400> 25	
<400> 25 aatgggatta ttagttatgg cttatggcac accttataaa gaaagtgaca tagag	aaaga 120
<400> 25 aatgggatta ttagttatgg cttatggcac accttataaa gaaagtgaca tagag ttatacagat attagacatg gtaaacgtcc atctgaagaa gaacttcaag atttg	aaaga 120 gctga 180
<pre>&lt;400&gt; 25 aatgggatta ttagttatgg cttatggcac accttataaa gaaagtgaca tagag ttatacagat attagacatg gtaaacgtcc atctgaagaa gaacttcaag atttg tagatatgaa tttataggtg gtttatcacc attagcaggt acaacagatg accag</pre>	aaaga 120 gctga 180 ttagg 240
<400> 25 aatgggatta ttagttatgg cttatggcac accttataaa gaaagtgaca tagag ttatacagat attagacatg gtaaacgtcc atctgaagaa gaacttcaag atttg tagatatgaa tttataggtg gtttatcacc attagcaggt acaacagatg accag tgcgctagtt tcagcattaa ataaagcata tgcagatgtt gaatttaaac tatac	aaaga 120 gctga 180 ttagg 240 ggcat 300
<400> 25 aatgggatta ttagttatgg cttatggcac accttataaa gaaagtgaca tagag ttatacagat attagacatg gtaaacgtcc atctgaagaa gaacttcaag atttg tagatatgaa tttataggtg gtttatcacc attagcaggt acaacagatg accag tgcgctagtt tcagcattaa ataaagcata tgcagatgtt gaatttaaac tatacatataaaacac atttcaccat ttatcgaaga tgcggttgaa caaatgcaca atgat	aaaga 120 gctga 180 ttagg 240 ggcat 300 tcata 360
<400> 25 aatgggatta ttagttatgg cttatggcac accttataaa gaaagtgaca tagag ttatacagat attagacatg gtaaacgtcc atctgaagaa gaacttcaag atttg tagatatgaa tttataggtg gtttatcacc attagcaggt acaacagatg accag tgcgctagtt tcagcattaa ataaagcata tgcagatgtt gaatttaaac tatacatataaaacac atttcaccat ttatcgaaga tgcggttgaa caaatgcaca atgat tactgaagca atcacggtag tactagcacc acattattct tcatttcag tagga	aaaga 120 gctga 180 ttagg 240 ggcat 300 tcata 360 aaaca 420
<400> 25 aatgggatta ttagttatgg cttatggcac accttataaa gaaagtgaca tagag ttatacagat attagacatg gtaaacgtcc atctgaagaa gaacttcaag atttg tagatatgaa tttataggtg gtttatcacc attagcaggt acaacagatg accag tgcgctagtt tcagcattaa ataaagcata tgcagatgtt gaatttaaac tatacatataaaacac atttcaccat ttatcgaaga tgcggttgaa caaatgcaca atgat tactgaagca atcacggtag tactagcacc acattattct tcatttcag taggatgacaaacgt gctgatgaag aagctgcaaa atatggtatt caacttacac atgtg	aaaga 120 gctga 180 ttagg 240 ggcat 300 tcata 360 aaaca 420 ttagc 480
<400> 25 aatgggatta ttagttatgg cttatggcac accttataaa gaaagtgaca tagag ttatacagat attagacatg gtaaacgtcc atctgaagaa gaacttcaag atttg tagatatgaa tttataggtg gtttatcacc attagcaggt acaacagatg accag tgcgctagtt tcagcattaa ataaagcata tgcagatgtt gaatttaaac tatacatataaaacac atttcaccat ttatcgaaga tgcggttgaa caaatgcaca atgat tactgaagca atcacggtag tactagcacc acattattct tcatttcag taggatgacaaacgt gctgatgaag aagctgcaaa atatggtatt caacttacac atgtg ttattatgaa caacctaaat ttattgaata ttggacgaat aaagtcaacg aaaca	aaaga 120 gctga 180 ttagg 240 ggcat 300 tcata 360 aaaca 420 ttagc 480

<210> 26 <211> 382 <212> DNA <213> Staphylococcus aureus

# WO 2007/039319 PCT/EP2006/010132 11/763

<400> 26					
<400> 26 atgagatata cgaaatcaga	agaagcaatg	aaggttgctg	aaactttaat	gcctggtggt	60
gtaaatagtc cagtacgcgc	atttaaatca	gtagatacac	cagcaatttt	tatggatcac	120
ggtaaaggtt caaaaattta	tgatatcgat	ggtaacgagt	atatcgacta	tgtactaagt	180
tgggggccac ttattttagg	acatagagac	cctcaagtta	ttagtcattt	acatgaagca	240
attgataaag gtacaagttt	tggtgcatca	acattacttg	aaaataaatt	ggcgcagctc	300
gttattgacc gagtaccttc	aatagaaaaa	gtgcgtatgg	tgtcatctgg	tacagaagct	360
acattggata ctttaagatt	ag				382
<210> 27 <211> 1099 <212> DNA <213> Staphylococcus <400> 27	aureus				
aaacagcaag atcctaatat	tgatgtaacc	atctttgaag	catcgaatcg	tccgggggga	60
aagattcaat cgtatcgtaa	agatggttat	atgattgaac	tagggcctga	atcttattta	120
ggtagaaaaa cgattatgac	agaattagcg	aaagatattg	gattagaaca	agatattgtt	180
acaaatacga ctggacaatc	atatatttt	gcgaaaaaca	aattgtatcc	tattccaggt	240
ggatcaatta tgggaattcc	gacagatatc	aaaccgtttg	tgacaactaa	attaatttca	300
ccacttggta aattaagagc	aggattagat	ttaatcaaaa	agcctataca	aatgcaagat	360
ggtgacattt ctgttggtgc	atttttcaga	gcaagattag	gtaatgaggt	acttgagaat	420
ttaatagagc ctttaatggg	tggtatttat	ggtaccgata	ttgataaatt	aagtttgatg	480
agtacgtttc ctaattttaa	agaaaaagaa	gaggcattcg	gaagtctgat	aaaaggtatg	540
aaggatgaga aaaataagcg	tctgaaacaa	agacaattat	atcctggcgc	accaaaagga	600
caattcaaac aatttaagca	tggtttaagt	tcatttattg	aagcattaga	acaagatgtg	660
aaaaataaag gtgtgacaat	acgctacaat	acgtcagtgg	atgatattat	tacatctcaa	720
aagcaatata aaattgttta	cagtaatcaa	caagaagatg	tattcgatgg	ggtattagtg	780
acaacaccgc atcaagtctt	tttgaattgg	ttcggacaag	atccagcatt	tgattacttt	840
aaaacgatgg atagtacgac	tgttgcaact	gttgtattgg	catttgatga	aaaagatatt	900
gaaaatactt atgatggtac	tggcttcgtg	attgcgagaa	cgagtgatac	agacattacc	960
gcatgtactt ggacatcgaa	aaaatggcca	tttactacac	cagaaggtaa	ggttttgatt	1020

#### **WO 2**007/039319 PCT/EP2006/010132 12/763

cgtgcgtatg taggtaaac	c aggtgatact	gtggttgatg	atcatacaga	taatgaatta	1080
gtatcgattg tacgtagag					1099
<210> 28 <211> 629 <212> DNA <213> Staphylococcus	s aureus				
<400> 28 attaacaaaa ttgatttac	c tgctgcagaa	cctgaacgcg	tgaaacaaga	aattgaagat	60
atgataggtt tagaccaaga	a cgatgttgtt	ttagcaagtg	ctaaatctaa	cattggaatt	120
gaagagatac tagagaaaa	agttgaagtt	gtgccagctc	cagatggcga	cccagaagca	180
ccactaaaag cgttaatat	tgattctgag	tatgatccat	atagaggggt	aatttcatcg	240
ataagaattg tagacggtg	tgttaaagcc	ggagataaaa	ttcgaatgat	ggcgactggt	300
aaagagttcg aagtaacaga	a agttggaatt	aatacaccta	agcagettee	agttgatgaa	360
ttaacagttg gtgatgttg	g ttatattatt	gcaagtatta	aaaatgttga	tgattctagg	420
gttggtgaca ccatcacat	agctagtaga	cctgcatcag	aaccattgca	aggttataag	480
aaaatgaatc caatggtata	a ttgcggactg	ttcccaatag	ataacaaaaa	ttataatgat	540
ttaagagaag cattagaaa	a attacaattg	aatgatgcat	cattagaatt	tgagcctgaa	600
tcgtcacaag cattaggtt	tggttatag				629
<210> 29 <211> 265 <212> DNA <213> Staphylococcus	s aureus				
<400> 29 aaagacgcat caaaaccag	acacttttt	caccaagtca	ttgtaattgc	tttagtactc	60
tttgtatcga aaataattga	a atcatttatg	ccaattccta	tgcctggatc	agtaatcggt	120
ttagtattat tatttgtatt	attatgtact	ggtgctgtta	agttaggcga	agtcgaaaaa	180
gtaggaacga cactaacaa	a taacattggc	ttactcttcg	taccagccgg	tatctcagtt	240
gttaactctt taggtgtca	tagee				265
<210> 30 <211> 278 <212> DNA					

<213> Staphylococcus aureus

## WO 2007/039319 PCT/EP2006/010132 13/763

<400> 30	ttagcactaa	atacacctta	cttcggaata	ctattatcca	ttataccatt	60
_	_					
tttcttagcg	accatattat	ttgaaaaaac	taatcgtttc	ttcttattcg	caccgctatt	120
tgtcagtatg	gtatttggtg	tggccttcct	ctatttaaca	ggcattccgt	ataagactta	180
caaaataggt	ggagacatta	tttacttctt	cttagaaccg	gcaacaatct	gttttgcgat	240
tccgttatat	aaaaagcgtg	aagtgcttgt	taaacatt			278
<210> 31 <211> 388 <212> DNA <213> Stap	phylococcus	aureus				
<400> 31			<b>.</b>	.1		60
cgacaaacac	ccaacaagca	catacacaaa	tgtcaacaca	atcacaagac	gtatettatg	60
gtacttatta	tacaattgat	tctaatgggg	attatcatca	cacacctgat	ggtaactgga	120
atcaagcaat	gtttgataat	aaagaatata	gctatacatt	cgtagatgct	caaggacata	180
cgcattattt	ttataactgt	tatccaaaaa	atgcaaatgc	caatggaagc	ggccaaacat	240
atgtgaatcc	agcaatagca	ggagataaca	atgactacac	agcgagtcaa	agccaacagc	300
atattaatca	atatggttat	caatcaaatg	taggtccaga	cgcgagctat	tattcacata	360
gtaacaacaa	ccaagcgtat	aacagcca				388
<210> 32 <211> 203 <212> DNA <213> Stap	phylococcus	aureus				
<400> 32						
gttatcgtat	taactggtga	aggtgattta	gcattctgtt	ctggtggtga	ccagaagaaa	60
cgtggacatg	gtggttatgt	aggtgaagac	caaatccctc	gcttaaatgt	attagattta	120
cagcgtttaa	ttcgtattat	tccaaaaccg	gttatcgcga	tggtaaaagg	ttatgctgta	180
ggtggcggta	atgtactaaa	tgt				203
<210> 33 <211> 1434 <212> DNA <213> Stap	1 Dhylococcus	aureus				
<400> 33 cgtaagggaa	gtagttatca	gtccgggatc	acgctcaacg	ccacttgcac	ttgcatttga	60

agcacatcca	aatattaaaa	catggataca	ccccgatgag	cgaagtgcag	cattttttgc	120
agttgggtta	attaaaggta	gtgaaagacc	tgtcgctata	ttatgtacgt	caggtacagc	180
agcagcgaat	tatacgcctg	caattgctga	aagccaaatt	agtagaattc	cattaatcgt	240
tttaacaagt	gaccgtccgc	atgaattaag	aagtgtaggc	gcaccacaag	cgattaatca	300
agtaaatatg	tttaataatt	atgtaagtta	tgagttcgat	atgcctattg	cggatgatag	360
taaagagacc	attaatgcaa	tttattatca	aatgcaaatt	gctagtcaat	atttatatgg	420
accacataaa	gggccaattc	attttaactt	gccatttaga	gatccgttaa	cacctgattt	480
gaatgcaaca	gaattgttaa	cttctgagat	gaagatttta	ccgcactatc	aaaaaagtat	540
agatgcatcg	gcattaagac	acattttaaa	taagaaaaaa	ggtttaatta	ttgtagggga	600
tatgcagcac	caagaagttg	atcaaatact	aacgtattca	acgatatatg	atttgcctat	660
tttagctgat	cctttaagtc	atttaagaaa	atttgatcat	ccgaatgtta	tctgtacata	720
tgatttgctg	tttagaagcg	gcttagactt	aaatgtggat	ttcgtaattc	gtgttgggaa	780
accagtgatt	tctaaaaagt	tgaatcaatg	gttaaagaaa	actgatgcat	ttcaaatatt	840
agtgcaaaac	aatgataaga	ttgatgtctt	tccgatagca	ccagatattt	catatgagat	900
ttctgcgaat	gatttcttta	ggtcattaat	ggaagacacg	accatcaatc	gcgtaagttg	960
gttagaaaaa	tggcaacgct	tagagaaaaa	agggcgtaaa	gaaattaaat	gttatttgga	1020
acaagctaca	gatgagagtg	cattcgttgg	tgaattgatt	aagaaaacat	ctgaaaaaga	1080
tgcattattt	attagtaata	gtatgcctat	cagagatgta	gataacttgt	tattgaataa	1140
aaatatagat	gtctatgcga	atcgtggtgc	gaatggtatt	gatggtatcg	tttcaactgc	1200
actgggtatg	gctgtgcata	aacgaataac	attattgata	ggtgatttat	cattttatca	1260
tgatatgaat	ggactattaa	tgtcaaaatt	aaataatatt	cagatgaata	ttgtattatt	1320
gaacaacgat	ggtggcggta	ttttttcata	tttaccacaa	aaagaaagtg	caactgacta	1380
ttttgaacgg	ttgtttggca	caccgacggg	attggatttc	gagtatacag	ctaa	1434
<010> 24						

<210> 34 <211> 1149 <212> DNA <213> Staphylococcus aureus

atggactttt ggttatataa acaagcacaa caaaatggac atcatattgc gataacagac 60

ggtcaagaat	cttatactta	tcaaaattta	tactgtgaag	cgagtctatt	ggctaaaaga	120
ctcaaggctt	atcaacaatc	tcgtgtcggg	ctatacatag	ataattcgat	tcaatcgatc	180
attttaatac	atgcttgttg	gttggcaaat	attgaaattg	cgatgattaa	tacaaggttg	240
acacctaatg	agatgaagaa	tcagatgagg	tcaatcgatg	tacaattgat	tttttgtacc	300
ttgccactgg	aattgcgagg	gtttcaaatt	gtatcgctgg	atgatattga	attcgctgga	360
acggatatta	caatgaacgg	tttgttggac	aacacaatgg	atatccaata	tgatacatcg	420
aatgaaactg	tggtgccgaa	agagtcgccg	tccaacatat	taaatacttc	atttaattta	480
gatgacattg	catcgattat	gtttacatca	gggacaactg	gccctcaaaa	agcggtgccg	540
caaacgtttc	gtaatcatta	tgccagtgca	atcggatgta	aagagagctt	gggatttgat	600
cgtgatacta	attggctatc	tgtcttgccg	atttatcata	tttcgggtct	cagtgtactt	660
ttaagagctg	ttattgaagg	gtttactgtg	cgcattgttg	ataaattcaa	tgccgaacaa	720
attttaacga	taattaaaaa	tgaacgcatc	acgcacattt	cgcttgtgcc	acaaacttta	780
aattggctta	tgcaacaagg	tttacatgaa	ccttataatt	tgcaaaaaat	attactcggc	840
ggtgctaaat	tatctgccac	tttgatagag	acggcattac	aatataacct	gccaatttat	900
aattcatttg	gtatgactga	gacatgttca	caatttttaa	cagcaacacc	ggaaatgttg	960
catgcacgtc	ctgacactgt	agggatgcca	agtgccaatg	tagacgttaa	aattaaaaat	1020
cctaataaag	aaggtcatgg	agaattaatg	attaaaggtg	ccaatgtgat	gaatggatat	1080
ttgtatccaa	cagatttaac	gggtacgttt	gaaaatggtt	attttaatac	gggtgacatt	1140
gctgaaata						1149
<210> 35 <211> 236 <212> DNA <213> Star	phylococcus	aureus				
<400> 35 attgataatt	tacatccaac	acctgcttta	ggtggctatc	caaaagaatt	tgcgatggat	60
	agaaagaatt					120
	atgattgtga					180
	tatttgctgg					236
		<del>-</del>	-			

<210> 36 <211> 327

<212> <213>	DNA Stap	phylococcus	aureus				
<400> atgaggt	36 cact	ctttaattag	tggtatcttg	ataggtttta	ttgcgcctct	aatcggtgct	60
tttatc	gttg	ttagacgact	atcacttata	gctgatgctc	taagtcatgt	aactttaggt	120
ggtatat	ctt	tcggtatgtt	tttacttact	attatgccaa	cactagtatt	tattaatcca	180
atgtggt	ttg	gaatcttatt	cgcaatagta	ggtgcgcttc	taattgaaaa	attaagaacg	240
tcataca	actg	cttaccaaga	aattgctatt	ccaattataa	tgagtgctgg	tatcgccttg	300
agtgcaa	atct	tcatttcatt	agctgat				327
<210> <211> <212> <213>	37 195 DNA Stap	phylococcus	aureus				
		aacttgatgg	tgaaatgaag	tttagaatcg	cttgtacaaa	ccatcatcat	60
catcatt	tta	tctgtgaaaa	gtgtggagat	acaaaggtaa	tagattattg	tccaatagat	120
cagataa	agt	tatcactacc	tggtgttaat	attcacaaac	acaaacttga	agtttatggt	180
gtatgt	gagt	cttgc					195
<210> <211> <212> <213>	38 313 DNA Stap	phylococcus	aureus				
<400> acacaga	38 agaa	taatcaagag	aagacgtttt	catctgaaga	aaqtaacaqt	aagccattta	60
			gaaatagtta				120
		-	atagctgatg				180
aaaaaga	atga	agactacttc	aaaaagcaac	aagaaattct	acaagaaatg	gatcaaacat	240
ttgatto	gaa	tgacgataca	tctgtgcaaa	attatgagaa	taaagcgtct	gatgattatt	300
atgatgt	aaa	cga					313
<210><211><211><212><213>	39 322 DNA Star	ohvl ococcus	aureus				

# WO 2007/039319 PCT/EP2006/010132 17/763

<400> 39						
	cttaacttca	ccaatgcctc	aattggtgtc	atattagata	aattcaaatt	60
tttaatttgt	agttcaatct	cgctttcttg	atcattttca	aacaaatcaa	atgatgcttg	120
ttcaaagtct	ttttgagata	aagtatcagt	tgtttcttca	acacttaagt	ttaaattttc	180
ttgattaatt	tcaggttcat	tttcgaccat	ttttaaattt	gatatcgatg	atttttacc	240
agcagacgct	tcaaactcgc	ttagaatcac	ttgtgctctg	ctaataactt	tttcaggtaa	300
atcagctaat	ttcgcaactt	ga				322
<210> 40 <211> 432 <212> DNA <213> Stap	phylococcus	aureus				
<400> 40 actcaaacag	ttagcaagat	tgctcaagtt	aaaccaaaca	acactggtat	tegtgettet	60
gtttatgaaa	aaacagcgaa	aaacggtgcg	aaatatgcag	accgtacgtt	ctatgtaaca	120
aaagagcgtg	ctcatggtaa	tgaaacgtat	gtattattaa	acaatacaag	ccataacatc	180
ccattaggtt	ggttcaatgt	aaaagactta	aatgttcaaa	acttaggcaa	agaagttaaa	240
acgactcaaa	aatatactgt	taataaatca	aataacggct	tatcaatggt	tccttggggt	300
actaaaaacc	aagtcatttt	aacaggcaat	aacattgctc	aaggtacatt	taatgcaacg	360
aaacaagtat	ctgtaggcaa	agatgtttat	ttatacggta	ctattaataa	ccgcactggt	420
tgggtaaatg	ca					432
<210> 41 <211> 353 <212> DNA <213> Stap <400> 41	phylococcus	aureus				
	actcaaaaga	tgatataggt	actggtgcat	acattcacga	tggtgttatt	60
caacaggcaa	cacgtattgc	taaaaaaatg	tatgatgact	tattaattgt	tgcagacact	120
tgtttatgtg	aatatactga	tcatggtcat	tgtggcgtga	ttgatgacca	tacacatgac	180
gttgacaatg	ataaatcatt	gccactgctt	gttaaaacag	caatttctca	agtggaagct	240
ggtgctgata	ttattgcgcc	aagtaatatg	atggatggtt	ttgttgctga	aattcgtcgt	300
ggattagatg	aagccggcta	ttacaatatt	cctataatga	gttatggtgt	caa	353

<210> <211> <212> <213>	42 399 DNA Stap	phylococcus	aureus				
<400> aacacaa	42 atcg	gaaatgttgg	atacggctga	aaagttatca	aagctaatca	agatggatac	60
taagaaa	att	acagaacgtg	ataagaaaga	tttctggatt	cagttgcatc	ctaaaaaagc	120
aaaagca	atg	atgacaaaag	aacaagctat	gttagcagat	ggaagtatta	aacaagatca	180
atatgat	aaa	caactgttat	cgaaaatcag	aaaatcacaa	ttagatgaat	tgtcttctaa	240
agattta	caa	gttttagcta	tttttcgaga	gatgaatgca	ggaacagttt	tagatccaca	300
aatgata	aaaa	aatgaagatg	tcagtgaaaa	agagtatgca	gcagtttctc	agcaactttc	360
caaatta	ecca	ggtgttaaca	cgtctatgga	ttgggatag			399
<210><211><211><212><213> 13	miso (56)	ohylococcus c_feature (56)					
<220>	miso (71)	e_feature(71) s a, c, g, c					
		aatcaatcac	atcggtgcaa	atggttcaag	aaatcaaatg	aaagcncgca	60
gaagaac	ttg	naaaaagatg	gttattctgt	tgaagtaatt	gacttacgta	ctgttcaacc	120
aatcgat	gtt	gatacaattg	tagcttcagt	tgaaaaaact	ggtcgtgcag	ttgtagttca	180
agaagca	caa	cgtcaagctg	gtgttggtgc	agcagttgta	gctgaattaa	gtgaacgtgc	240
aatcctt	tca	ttagaagcac	ctattggaag	agttgcagca	gcagatacaa	tttatccatt	300
cactcaa	gct	gaaaatgttt	ggttaccaa				329
<210><211><211><212><213>	44 303 DNA Star	phylococcus	aureus				

<400> 44	60
ctggagatac tattgaagaa gacgatgttt tagctgaggt acaaaacgat aaatcagtag	
tagaaatccc atcaccagta tctggtactg tagaagaagt tatggtagaa gaaggtacag	120
tagctgtagt tggtgacgtt attgttaaaa tcgatgcacc tgatgcagaa gatatgcaat	180
ttaaaggtca tgatgatgat tcatcatcta aagaagaacc tgcgaaagag gaagcgccag	240
cagagcaagc acctgtagct actcaaactg aagaagtaga tgaaaacaga actgtaaaag	300
caa	303
<210> 45 <211> 302 <212> DNA <213> Staphylococcus aureus	
<400> 45 tagttatcga gattatcaaa gattggtaga taaacttcaa gttcacgata aagagataga	60
cttagcttct agcttacaac aaacaatgct taaaacagat attccacaat ttgatagtat	120
tcaaattggc gttatttcag tggcggcaca aaaagtaagt ggagattatt ttaatttaat	180
tgaccataac gatggcacaa tgagctttgc tgttgcagat gtcattggaa aaggtatacc	240
agctgcttta gcaatgagta tgataaagtt tggcatggat tcttatggac actcacaatt	300
ac	302
<210> 46 <211> 254 <212> DNA <213> Staphylococcus aureus	
tgaatettaa tatagaaaca accaeteaag ataaatttta egaagttaaa gteggtggag	60
aattagatgt ttatactgtg cctgaattag aagaggtttt aacacctatg agacaagatg	120
gaactcgtga tatttatgtt aatttagaaa atgtgagtta tatggattcg acaggtttag	180
gtttattcgt aggtacatta aaagcattaa accaaaatga taaagaacta tacattttag	240
gtgtgtcaga tcgt	254
<210> 47 <211> 191 <212> DNA <213> Staphylococcus aureus <400> 47	

# WO 2007/039319 PCT/EP2006/010132 20/763

totaaanaan	attttatcga	aatacacata	ccaccatogg	cacactatot	2201112211	60
					-	
cgtttaacac	tttctggcgt	tttttcgaga	gctggtgcta	catatgatga	tattgaagat	120
gccaagatto	cagttagtga	agctgtgaca	aatgcagtta	aacatgcata	caaagaaaat	180
aacaatgtag	g					191
		aureus				
<400> 48 tgagatagat	gcaatcatgt	ttatggttaa	tgccaatgag	gaaattggac	gaggtgatga	60
atatattata	gaaatgttga	aaaatgttaa	gacaccagta	tttttagtat	taaataaaat	120
agatttagtg	catccagatg	aattaatgcc	aaagattgaa	gaatatcaaa	gttatatgga	180
ctttacagag	attgtaccta	tttc				204
		aureus				
<400> 49 aatataattg	ggaagaagta	catcaagaag	cagaaatttt	agaacatcga	atttcagatt	60
tatttgttga	aaggctggat	agcctgttaa	atttcccaga	aacttgcccg	cacggcggtg	120
tgattcctag	aaataatgaa	tataaagaga	aatatataac	aacgattttg	aattatgaac	180
ctggtgatat	cgttacaatc	aaacgtgtga	gagataagac	cgatttgcta	atat	234
		aureus				
<400> 50 ttgaattacc	aaaattacca	tacgcatttg	atgcattaga	accacatttt	gacaaagaaa	60
ctatggaaat	tcatcatgac	agacatcata	acacttatgt	tacgaaatta	aatgctgcag	120
tagaaggtac	agatttagaa	tctaaatcta	ttgaagaaat	tgttgctaat	ttagacagtg	180
taccagctaa	catccaaact	gctgtacgta	ataatggcgg	tggacattta	aaccattcat	240
tattctggga	g					251

# WO 2007/039319 PCT/EP2006/010132 21/763

<210> <211> <212> <213>	51 359 DNA Stap	phylococcus	aureus				
<400> gcgcatt	51 tttg	aaaaggcata	cttgagaata	ctaaagtgct	tgttacaatt	aaagaaccta	60
ctgttg	ctaa	ttttttcatt	gtcttgtccc	cttatattac	aatttgatta	catttacatt	120
atcatac	cgat	tacaaaagaa	atgcaacaaa	atttttgaat	cattacattt	ttttataaaa	180
atttcad	cttt	agattcacaa	taattactta	ttttgtcaat	ttatttaatg	tcaatatgtt	240
gattaat	taa	tagtgttgtc	taatgtatat	aatatttagg	tcatcgttat	agtcaacaat	300
aataag	gtat	ttcgagttga	aatttatctt	attattttc	cacttttacg	tgctatccc	359
<210> <211> <212> <213>	_	phylococcus	aureus				
<400> ttcgttq	52 gttc	ataggtgcga	gtgaactatc	aattaaagat	ttactacatt	taactgagtc	60
acageg	gaat	attttattct	caagccgaat	accaaggacg	atgagtattt	taattgctgg	120
aagttc	gttg	gctttagcag	gcttgataat	gcaacaaatg	atgcaaaata	agtttgttag	180
tccgact	caca	gctggaacga	tggaatgggc	taaactaggt	attttaattg	ctttattgtt	240
ctttcca	aacc	ggtcatattt	tattaaaact	agtatttgct	gttatttgta	gtatttgcgg	300
tacgttt	tta	tttgttaaaa	tcattgattt	tataaaagtg	aaagatgtca	tttttgtacc	360
gcttcta	agga	attatgatgg	gtgggattgt	tgcaagtttc	acaaccttca	tctcattgcg	420
cacgagt	gct	gttcaaag					438
<210> <211> <212> <213>	53 288 DNA Stap	phylococcus	aureus				
<400>	53	+++>	++~~+++-~	ataataataa	20022++2-+	atagggatat	60
_			attetacttq		_		
			attctacttg	_			120
-	-		acatttttag	_	-		180
taatgaa	agac	gtatgaacat	aagtatattt	taattgcgac	aatttgcttg	agttggatta	240

# WO 2007/039319 PCT/EP2006/010132 22/763

gtttatttag tgcgcaatg	g gtagttgaaa	atgtgtttga	agctacga		288
<210> 54 <211> 431 <212> DNA <213> Staphylococcu	s aureus				
<400> 54					
aatcaaatga tattggaag	a tattagcata	gatatcgaaa	aaggtaaatt	gacttcttta	60
attggaccta atggtgcgg	g taagagtact	ttactttcag	cgatttgtag	gttaattcgt	120
tttgataacg gtgaagtga	a aatagatgga	cggctcatgt	ctgattataa	aaataatgac	180
ttgtcgaaaa aaatatcta	attaaaacaa	acaaaccata	ctgaaatgaa	tattacggta	240
gagcagttgg taaactgtg	g acgattccct	tattctaaag	gtcgtttgac	gaaagaggat	300
catgatattg tcaatgatg	gctagatttg	ttgcaactac	aagatatcag	aaatcgtaat	360
attaagtcat tatctggtg	g acaacgtcag	cgtgcatata	ttgcaatgac	aatagcacaa	420
gatactgaat a					431
<210> 55 <211> 437 <212> DNA <213> Staphylococcu <400> 55	s aureus				
<400> 55 catgcggtaa caattctga	aaagaacaat	caaaatcaga	gactaaaggt	tctaaagata	60
cagtgaaaat tgaaaataa	c tataaaatgc	gtggcgagaa	aaaagatggt	agtgacgcta	120
aaaaagttaa agaaactgt	gaagtaccaa	aaaatcctga	aaatgcagtt	gtgttagact	180
atggcgcatt agatgtaat	g aaagaaatgg	gcttatcaga	caaagtaaaa	gcattaccta	240
aaggggaagg cggtaagtc	a ttaccgaatt	tcttagaatc	atttaaagat	gataaatata	300
caaacgttgg taatttaaa	a gaagtgaatt	ttgataaaat	tgctgcgacg	aaacccgaag	360
taatctttat ctctggacg	acagctaatc	aaaagaattt	agatgaattc	aaaaaagctg	420
cacctaaagc gaaaatt					437
<210> 56 <211> 163 <212> DNA <213> Staphylococcu. <400> 56					
gctgactatg aaggtaaag	c tgacatttta	aaattagatg	ttgatgaaaa	tccatcaact	60

# WO 2007/039319 PCT/EP2006/010132 23/763

gcagctaaat atgaagtgat	gagtattcca	acattaatcg	tctttaaaga	cggtcaacca	120
gttgataaag ttgttggttt	ccaaccaaaa	gaaaacttag	ctg		163
<210> 57 <211> 471 <212> DNA <213> Staphylococcus	aureus				
<400> 57					60
caattggctt tcgattattg	_	_	-		60
atttatttt aaaaaaattg	cacgtattaa	tacagaaaca	gctattttaa	gtgttatacc	120
aggagcacta acacaaatgc	tggtcatggc	tgaacaagac	aaacgtgcta	atttgttagt	180
tgttagctta acgcaaacat	cacgaattat	atttgttgtt	gttttagtac	cgttcatttc	240
atatttttt catgatggta	acatgcatgc	gaatggaaag	ttaacaaaag	tcttgccttt	300
atcacaagta ttaaacatag	ggcaaatagt	tattttagcg	atagctatct	ttatagttta	360
tctaattatg tctaaaataa	agtttccaac	atttcaatta	ttagcaccac	tcattgtatt	420
aattgtttgg aatttttcta	caggtttaac	atttacacta	gatcattggt	t	471
<210> 58 <211> 713 <212> DNA <213> Staphylococcus	aureus				
<211> 713 <212> DNA		aatcgcttta	tctggatgtt	tttcaagatg	60
<211> 713 <212> DNA <213> Staphylococcus <400> 58	ataacaattc	_			60 120
<211> 713 <212> DNA <213> Staphylococcus <400> 58 cttagatgtc ccatgctgat	ataacaattc ctagtgetee	cgaaacttta	ggtgtggcta	atgaagttcc	
<211> 713 <212> DNA <213> Staphylococcus <400> 58 cttagatgtc ccatgctgat atatttatca atgattaaag	ataacaattc ctagtgctcc cgttattggc	cgaaacttta agtagttaaa	ggtgtggcta	atgaagttcc tatgcatata	120
<211> 713 <212> DNA <213> Staphylococcus <400> 58 cttagatgtc ccatgctgat atatttatca atgattaaag agcttgataa atatatcttc	ataacaattc ctagtgctcc cgttattggc ccacaccgaa	cgaaacttta agtagttaaa ttgatttaaa	ggtgtggcta atgttctcct taagcaaatg	atgaagttcc tatgcatata atcctccggg	120 180
<211> 713 <212> DNA <213> Staphylococcus <400> 58 cttagatgtc ccatgctgat atatttatca atgattaaag agcttgataa atatatcttc cccttcattc atccatttat	ataacaattc ctagtgctcc cgttattggc ccacaccgaa tcataccaaa	cgaaacttta agtagttaaa ttgatttaaa attggaaaac	ggtgtggcta atgttctcct taagcaaatg tcagatagat	atgaagttcc tatgcatata atcctccggg tactcttttg	120 180 240
<211> 713 <212> DNA <213> Staphylococcus <400> 58 cttagatgtc ccatgctgat atatttatca atgattaaag agcttgataa atatatcttc cccttcattc atccatttat cgcagcaata tctgtataat	ataacaattc ctagtgctcc cgttattggc ccacaccgaa tcataccaaa cgacattgtc	cgaaacttta agtagttaaa ttgatttaaa attggaaaac catagatgca	ggtgtggcta atgttctcct taagcaaatg tcagatagat ggaacatctt	atgaagttcc tatgcatata atcctccggg tactcttttg tcacttcgcc	120 180 240 300
<211> 713 <212> DNA <213> Staphylococcus <400> 58 cttagatgtc ccatgctgat atatttatca atgattaaag agcttgataa atatatcttc cccttcattc atccatttat cgcagcaata tctgtataat atctgtagat cctactgtaa	ataacaattc ctagtgctcc cgttattggc ccacaccgaa tcataccaaa cgacattgtc gtaattttag	cgaaacttta agtagttaaa ttgatttaaa attggaaaac catagatgca tttctgtttg	ggtgtggcta atgttctcct taagcaaatg tcagatagat ggaacatctt tcattgacat	atgaagttcc tatgcatata atcctccggg tactcttttg tcacttcgcc caataccatc	120 180 240 300 360
<211> 713 <212> DNA <213> Staphylococcus <400> 58 cttagatgtc ccatgctgat atatttatca atgattaaag agcttgataa atatcttc cccttcattc atccatttat cgcagcaata tctgtataat atctgtagat cctactgtaa attaccttga tattcacgct	ataacaattc ctagtgctcc cgttattggc ccacaccgaa tcataccaaa cgacattgtc gtaattttag cgatagattt	cgaaacttta agtagttaaa ttgatttaaa attggaaaac catagatgca tttctgtttg tttcttcttg	ggtgtggcta atgttctcct taagcaaatg tcagatagat ggaacatctt tcattgacat gcgtaattga	atgaagttcc tatgcatata atcctccggg tactcttttg tcacttcgcc caataccatc ttgctttctg	120 180 240 300 360 420
<pre>&lt;211&gt; 713 &lt;212&gt; DNA &lt;213&gt; Staphylococcus  &lt;400&gt; 58 cttagatgtc ccatgctgat  atatttatca atgattaaag agcttgataa atatatcttc cccttcattc atccatttat cgcagcaata tctgtataat atctgtagat cctactgtaa attaccttga tattcacgct attaccagct gcagcaacaa</pre>	ataacaattc ctagtgctcc cgttattggc ccacaccgaa tcataccaaa cgacattgtc gtaattttag cgatagattt tttcatcttt	cgaaacttta agtagttaaa ttgatttaaa attggaaaac catagatgca tttctgtttg tttcttcttg tctaaatgtt	ggtgtggcta atgttctcct taagcaaatg tcagatagat ggaacatctt tcattgacat gcgtaattga tgatggtcat	atgaagttcc tatgcatata atcctccggg tactcttttg tcacttcgcc caataccatc ttgctttctg ttttgtccaa	120 180 240 300 360 420 480

# WO 2007/039319 PCT/EP2006/010132 24/763

aaatttgtta	ttcggtgcaa	cacctattaa	cttaccatta	gcactcgttt	gac	713
<210> 59 <211> 738 <212> DNA <213> Stap	phylococcus	aureus				
<400> 59	ataatataaa	tgttagcggc	tacaatottt	attatatat	cacatgaage	60
		caactaatgc				120
gggagaacaa	gggaatgcga	taacgtcaca	tcaaatgcag	tcaggaaagc	aattagacga	180
tatgcataaa	gagaatggta	aaagtggaac	agtgacagaa	ggtaaagata	cgcttcaatc	240
atcgaagcat	caatcaacac	aaaatagtaa	aacaatcaga	acgcaaaatg	ataatcaagt	300
aaagcaagat	tctgaacgac	aaggttctaa	acagtcacac	caaaataatg	cgactaataa	360
tactgaacgt	caaaatgatc	aggttcaaaa	tacccatcat	gctgaacgta	atggatcaca	420
atcgacaacg	tcacaatcga	atgatgttga	taaatcacaa	ccatccattc	cggcacaaaa	480
ggtaataccc	aatcatgata	aagcagcacc	aacttcaact	acacccccgt	ctaatgataa	540
aactgcacct	aaatcaacaa	aagcacaaga	tgcaaccacg	gacaaacatc	caaatcaaca	600
agatacacat	caacctgcgc	atcaaatcat	agatgcaaag	caagatgata	ctgttcgcca	660
aagtgaacag	aaaccacaag	ttggcgattt	aagtaaacat	atcgatggtc	aaaattcccc	720
agagaaaccg	acagataa					738
<210> 60 <211> 780 <212> DNA <213> Stap	phylococcus	aureus				
<400> 60	gattgaaaaa	attgcagagc	teatteataa	caaqaaaatt	gacggtatca	60
						120
-		agtttacgta				
		attttaaata				180
catttggtgt	gaatatgatt	gcacttgtaa	atggtagacc	gaagcttatt	aatttaaaag	240
aagcgttggt	acattattta	gagcatcaaa	agacagttgt	tagaagacgt	acgcaatata	300
acttacgtaa	agctaaagat	cgtgcccata	ttttagaagg	gttacgtatc	gcacttgacc	360
atatcgatga	aattatttca	acgattcgtg	agtcagatac	agataaagtt	gcaatggaaa	420

# WO 2007/039319 PCT/EP2006/010132 25/763

acgcttcaaa	ctttctgaaa	aacaagctca	agctatttta	gacatgcgtt	480
aacaggttta	gagagaaaca	aaattgaagc	tgaatataat	gagttattaa	540
tgaattagaa	gccatcttag	ctgatgaaga	agtgttatta	cagttagtta	600
gactgaaatt	agagatcgtt	tcggtgatga	gcgtcgtaca	gaaattcaat	660
tgaagactta	gaggacgaag	acttaattcc	agaagaacaa	atagtaatta	720
taataactac	attaaacgtt	tgccggtatc	tacatatcgt	gctcaaaacc	780
phylococcus	aureus				
tgataagaca	ggtactgtca	ttcgttttaa	agcagatgga	gaaatcttca	60
tgtatacaac	tatgaaacat	tacagcaacg	tattagagag	cttgctttct	120
aattcaaatc	acattaagag	atgaacgtga	tgaagaaaac	gttagagaag	180
ctatgagggc	ggtattaaat	cttatgttga	gttattgaac	gaaaataaag	240
tgatgagcca	atttatattc	atcaatctaa	agatgatatt	gaagtagaaa	300
atataactca	ggatatgcca	caaatctttt	aacttacgca	aataacattc	360
aggtggtacg	catgaagacg	gatttaaacg	tgcattaacg	cgtgtcttaa	420
tttaagtagc	aagattatga	aagaagaaaa	agatagactt	tctggtgaag	480
aggtatgaca	gcaattatat	ctatcaaaca	tggtgatcct	caattcgaag	540
gacaaaatta	ggtaattctg	aagtgcgtca	agttgtagat	aaattattct	600
tgaacgattt	tt				622
phylococcus	aureus				
acaatgagag	atatggttag	agagaatcat	gtaagaaaag	aagatttaat	60
				_	120
					180
attatgtttt	tcggtgttcc	aaactcaaaa	gatgatatag	gtactggtgc	240
	aacaggttta tgaattagaa gactgaaatt tgaagactta taataactac  Ohylococcus tgataagaca tgtatacaac aattcaaatc ctatgaggc tgatgagcca atataactca aggtggtacg tttaagtagc aggtatgaca tgaacatta tgaacgattt	aacaggttta gagagaaaca tgaattagaa gccatcttag gactgaaatt agagacgaag taataactac attaaacgtt  chylococcus aureus  tgataagaca ggtactgtca tgtatacaac tatgaaacat aattcaaatc acattaagag ctatgaggc ggtattaaat tgatgagcca attatatc atgatgacgca ggatatgcca aggtggtacg catgaagacg tttaagtagc aagattatga aggtatgaca gcaattatat gacaaaatta ggtaattctg tgaacgattt tt  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus  chylococcus aureus	aacaggttta gagagaaaca aaattgaagc tgaattagaa gccatcttag ctgatgaaga gactgaaatt agagatcgtt tcggtgatga tgaagactta gaggacgaag acttaattcc taataactac attaaacgtt tgccggtatc tgataagaca ggtactgtca ttcgttttaa tgtatacaac tatgaaacat tacagcaacg aattcaaatc acattaagag atgaacgtga ctatgaggca attaattc attaactca ggatattaaat cttatgttga tgatgagca attaattc attaactca ggatatgca caaatcttt aggtggtacg catgaagacg gattaaacg tttaagtag aagattata ctatcaaca aggtatgac gcaattatat ctatcaaca aggtatgaca gcaattatat ctatcaaca aggtatgaca gcaattatat ctatcaaca gacaaaatta ggtaattctg aagtgcgtca tgaacgatt tt	aacaggttta gagagaaaca aaattgaagc tgaatataat tgaattagaa gccatcttag ctgatgaaga agtgttatta gactgaaatt agagatcgtt tcggtgatga gcgtcgtaca tgaagactta gaggacgaag acttaattcc agaagaacaa taataactac attaaacgtt tgccggtatc tacatacgt bylococcus aureus  tgataagaca ggtactgtca ttcgtttaa agcagatgga tgatacaac tatgaaacat tacaatca tatgaaacat tacagcaacg tattagagag aattcaaatc acattaagag atgaacgtga tgaagaaaac ctatgaggce ggtattaaat cttatgtga gttattgaac tgatgagca atttatattc atcaatctaa agatgatatt ataaactca ggatatgca caaatcttt aacttacgca aggtggtacg catgaagacg gattaaacg tgcattaacg tttaagtagc aagattata ctatcaaca tggtgatcct gacaaaatta ggaaattata ctatcaaca tggtgatcct gacaaaatta tt	tgataagaca ggtactgtca ttcgttttaa agcagatgga gaaatcttca tgtatacaac tatgaaacat tacagcaacg tattagagag cttgctttct aattcaaatc acattaagag atgaacgtga tgaagaaaac gttagagaag ctatgagggc ggtattaaat cttatgttga gttattgaac gaaaataaag tgatgagcca atttatattc atcaatctaa agatgatatt gaagtagaaa atataactca ggatatgcca caaatcttt aacttacgca aataacattc aggtggtacg catgaagacg gatttaaacg tgcattaacg cgtgtcttaa tttaagtagc aagattatga aagaagaaaa agatagactt tctggtgaag aggtatgaca gcaattatat ctatcaaaca tggtgatcct caattcgaag gacaaaatta ggtaattctg aagtgcgtca agttgtagat aaattattct tgaacgattt tt

# WO 2007/039319 PCT/EP2006/010132 26/763

atacattcac	gatggtgtta	ttcaacaggc	aacacgtatt	gctaaaaaaa	tgtatgatga	300
cttattaatt	gttgcagaca	cttgtttatg	tgaatatact	gatcatggtc	attgtggcgt	360
gattgatgac	catacacatg	acgttgacaa	tgataaatca	ttgccactac	ttgttaaaac	420
agcaatttct	caagtggaag	ctggtgctga	tattattgcg	ccaagtaata	tgatggatgg	480
ttttgttgct	gaaattcgtc	gtggattaga	tgaagccggc	tattacaata	ttcctataat	540
gagttatggt	gtcaagtatg	catcaagttt	ctttggacct	tttagagatg	cagcagattc	600
agcgccatca	tttggggata	gaaaaacgta	tcagatggac	cctgctaacc	gtttggaagc	660
acttcgtgaa	ttagaaagtg	atcttaaaga	agggtgcgac	atgatgattg	ttaaacctgc	720
tctaagttat	ttagatatag	ttcgagatgt	taaaaa			756
<210> 63 <211> 200 <212> DNA <213> Stap <400> 63	hylococcus	aureus				
gtgccaattg	caggatatgc	tacaatctca	gatcaaaacg	aaatcgaatt	tacaggttta	60
attatgaccc	cagatggtaa	agaacgattt	gaatatacaa	tgaacggaac	agatccggtt	120
gagttaggca	aaacagtgag	taacaaatta	aaagagcaag	gtgcttatga	aattataaaa	180
cgcttaaatg	aacaacatta					200
<210> 64 <211> 452 <212> DNA <213> Stap <400> 64	hylococcus	aureus				
	tgctgtgata	ggaagtaaga	cagcgcaata	ttgtgaatca	cttggcattc	60
gagttgattt	tatgccaaac	gacttttctc	aagaaggatt	tttaaaatca	tttaatcaaa	120
ctaaccaaaa	aatacttttg	ccttcgagtg	aattggcgag	accattgtta	ttagcagcgt	180
tatctaaaga	taatgaagtt	gttaaaatag	atttatatac	ttcagtgcct	aacaaacaaa	240
atatacaaga	tgttaaagaa	atgatagaac	atcaacaaat	cgatgcatta	acattttcaa	300
gttcgtcggc	agtacgttat	tattttaatg	aaggatttgt	accaaaattc	aagtcgtatt	360
ttgctattgg	agaacaaaca	gcacggacca	ttaaatcata	tcaacaacca	gtaacaattg	420
cagaaattca	aacactcgaa	tcactaattg	aa			452

# WO 2007/039319 PCT/EP2006/010132 27/763

<210> <211> <212> <213>	65 757 DNA Star	phylococcus	aureus				
<400> tcttcca	65 attc	tctcagtcaa	agaaggttta	tttgatacta	aaattgcttt	actttcttta	60
tttatag	gctt	tgatataatg	attcactgga	ttgatattcg	tataacgcac	accatctaca	120
taaccad	ettg	cacctgctcc	aaatccataa	tattcctcat	taaaccagta	aaccttatta	180
tgttctq	gatt	catggccatc	taatgcaaaa	ttagatattt	cgtattgatg	gaaaggagat	240
tgttcta	atct	tagacatcaa	caactgatac	atgtcagcac	ctaaatcctc	attaggaagt	300
ttaagca	aacc	cttttctata	catattataa	aattgggttt	taggttcaag	tattaagccg	360
taactc	gaaa	tatgttgaat	atccatatct	aaagctagat	ctaaactttg	ttcaaaatct	420
tcaatc	gtct	gtttcggtaa	atgatacatt	aaatctaaac	tgattgattt	aatacctgcg	480
tttttag	gcat	ttaacaccga	agtgtaaata	tcttcagtat	tgtgcgttct	acctaaaaca	540
gacaata	aact	ccggtttgaa	tgtttgaacg	cccattgaaa	ttctatttac	tccatatttc	600
tctaata	agtt	ggactttctc	tttagttaac	tcatcaggat	ttgcttcaaa	tgtatactcg	660
cctgtga	attg	taaacgtatc	acgtattgct	ttaagtaatc	tttccaactg	attaatagaa	720
agggcc	gttg	gtgtgccgcc	acctacatac	atggtct			757
<210> <211> <212> <213>	66 464 DNA Stap	Phylococcus	aureus				
<400>	66 aato	ctttcagtaa	ctataaatag	tggcattata	aaatttagtg	aattggatag	60
			ataaaagtaa				120
atataat	tct	atgagaatgt	ggcaaggggc	tagtggtaaa	tcaaattata	atgggattgt	180
tagccct	gca	tatactgtgc	tttatccaac	acaaaatact	agctcattat	ttattggata	240
taagttt	caaa	acacatagaa	tgattcataa	atttaaaatt	aattcacaag	gattaacatc	300
agataca	atgg	aacttaaaat	ataaacaatt	aaaaaatata	aatatagata	tacctgtatt	360
ggaggaa	acaa	gaaaagatag	gtgatttctt	taaaaaaatg	gatatattga	taagtaaaca	420
gaaaatq	gaaa	attgaaatat	tagaaaaaga	gaaacaatcc	tttt		464

# WO 2007/039319 PCT/EP2006/010132 28/763

<210> <211> <212> <213>	67 533 DNA Stap	phylococcus	aureus				
<400> gtgccaq	67 gagt	tgagattccc	agggtttgaa	ggcgaatggg	aagagaagca	gttgggggat	60
cttacaç	gata	gagtaattag	gaaaaataaa	aacttagaat	cgaaaaagcc	tttaacaata	120
tccgga	cagt	taggtttaat	tgatcaaaca	gaatattta	gtaaatcagt	ttcgtcgaaa	180
aatcta	gaaa	attatacact	aataaagaat	ggagaattcg	cgtataacaa	aagttattct	240
aatgga	tacc	cattaggggc	tattaaaaga	ttaactagat	atgatagtgg	tgtattgtcc	300
tctttg	tata	tttgttttc	tattaaaagt	gaaatgtcta	aagacttcat	ggaagcatat	360
tttgat	tcga	cacactggta	tagagaagtt	tctggaattg	cagttgaggg	tgcaagaaat	420
cacgga [.]	ttat	taaatgtttc	tgtgaatgat	ttttttacta	ttctaattaa	atatccaagt	480
ttagaa	gaac	agcaaaaaat	aggcaagttc	ttcagcaaac	tcgaccgaca	aat	533
<210> <211>	68 721						
<212> <213>	DNA Stap	phylococcus	aureus				
<212> <213> <400>	DNA Stap	phylococcus attttaatag		atttttaagt	ggtggacaag	cacaagcagc	60
<212> <213> <400> tgcatc	DNA Stap 68 ttcc	-	ctacattact				60 120
<212> <213> <400> tgcatc	DNA Stap 68 ttcc gcaa	attttaatag	ctacattact gaaattcaca	ggaggataca	gttacagcac	aatctattgg	
<212> <213> <400> tgcatc: tgagaac ggatcac	DNA Stap 68 ttcc gcaa acaa	attttaatag gtgaatatgg	ctacattact gaaattcaca atgctaatta	ggaggataca tcaacgtgaa	gttacagcac	aatctattgg acgaacagca	120
<212> <213> <400> tgcatc tgagaaa ggatcaa acatac	DNA Stap 68 ttcc gcaa acaa tgaa	attttaatag gtgaatatgg actagggaaa	ctacattact gaaattcaca atgctaatta agaacttgca	ggaggataca tcaacgtgaa taatgataaa	gttacagcac aacggtgttg acaatatcag	aatctattgg acgaacagca aagaaaatca	120 180
<212> <213> <400> tgcatc tgagaaa ggatcaa acatac tcgtaaa	DNA Stap 68 ttcc gcaa acaa tgaa aaca	attttaatag gtgaatatgg actagggaaa aatttaacta	ctacattact gaaattcaca atgctaatta agaacttgca ataaagatca	ggaggataca tcaacgtgaa taatgataaa actaaaggat	gttacagcac aacggtgttg acaatatcag gataaaaaag	aatctattgg acgaacagca aagaaaatca catcgcttaa	120 180 240
<212> <213> <400> tgcatc tgagaaa ggatcaa acatac tcgtaaa taataaa	DNA Stap 68 ttcc gcaa acaa tgaa aaca	attttaatag gtgaatatgg actagggaaa aatttaacta gatgatttga	ctacattact gaaattcaca atgctaatta agaacttgca ataaagatca atacaacaaa	ggaggataca tcaacgtgaa taatgataaa actaaaggat aaataacaat	gttacagcac aacggtgttg acaatatcag gataaaaaag gctaatccta	aatctattgg acgaacagca aagaaaatca catcgcttaa gcgatgtaaa	120 180 240 300
<212> <213> <400> tgcatc tgagaaa ggatcaa acatac tcgtaaa taataaa tcaagga	DNA Stay 68 ttcc gcaa acaa tgaa aaca aaca	attttaatag gtgaatatgg actagggaaa aatttaacta gatgatttga attcaacgtg	ctacattact gaaattcaca atgctaatta agaacttgca ataaagatca atacaacaaa ttaatgatgg	ggaggataca tcaacgtgaa taatgataaa actaaaggat aaataacaat taaacaaagt	gttacagcac aacggtgttg acaatatcag gataaaaaag gctaatccta aaagtggcgt	aatctattgg acgaacagca aagaaaatca catcgcttaa gcgatgtaaa cacagcaaca	120 180 240 300 360
<212> <213> <400> tgcatc tgagaac ggatcac acatac tcgtaac taataac tcaagg gtcaaac	DNA Stap 68 ttcc gcaa acaa tgaa aaca aaca	attttaatag gtgaatatgg actagggaaa aatttaacta gatgatttga attcaacgtg gaacaggcta	ctacattact gaaattcaca atgctaatta agaacttgca ataaagatca atacaacaaa ttaatgatgg gtcaagattc	ggaggataca tcaacgtgaa taatgataaa actaaaggat aaataacaat taaacaaagt aaacgctaat	gttacagcac aacggtgttg acaatatcag gataaaaaaag gctaatccta aaagtggcgt aacaatctac	aatctattgg acgaacagca aagaaaatca catcgcttaa gcgatgtaaa cacagcaaca cttcacaaag	120 180 240 300 360 420
<212> <213> <400> tgcatch tgagaad ggatcad acatach tcgtaad taataad tcaagg gtcaaad tcgaatd	DNA Stap 68 ttcc gcaa acaa tgaa aaaca aaat gtta agag	attttaatag gtgaatatgg actagggaaa aatttaacta gatgatttga attcaacgtg gaacaggcta gcagataata	ctacattact gaaattcaca atgctaatta agaacttgca ataaagatca atacaacaaa ttaatgatgg gtcaagattc cattaaataa	ggaggataca tcaacgtgaa taatgataaa actaaaggat aaataacaat taaacaaagt aaacgctaat gttagatcaa	gttacagcac aacggtgttg acaatatcag gataaaaaaag gctaatccta aaagtggcgt aacaatctac acaagtcaac	aatctattgg acgaacagca aagaaaatca catcgcttaa gcgatgtaaa cacagcaaca cttcacaaag gagaaattgt	120 180 240 300 360 420 480
<212> <213> <400> tgcatch tgagaad ggatcad acatach tcgtaad taataad tcaagg gtcaaad tcgaat taatgad	DNA Stay 68 ttcc gcaa acaa tgaa aaaca aaat gtta agag aaag	attttaatag gtgaatatgg actagggaaa aatttaacta gatgatttga attcaacgtg gaacaggcta gcagataata gaagcaccat	ctacattact gaaattcaca atgctaatta agaacttgca ataaagatca atacaacaaa ttaatgatgg gtcaagattc cattaaataa aagtacaacc	ggaggataca tcaacgtgaa taatgataaa actaaaggat aaataacaat taaacaaagt aaacgctaat gttagatcaa acaacaaaat	gttacagcac aacggtgttg acaatatcag gataaaaaag gctaatccta aaagtggcgt aacaatctac acaagtcaac aatcaagcga	aatctattgg acgaacagca aagaaaatca catcgcttaa gcgatgtaaa cacagcaaca cttcacaaag gagaaattgt atgataaaat	120 180 240 300 360 420 480 540

С	721
<210> 69 <211> 416 <212> DNA <213> Staphylococcus aureus	
<400> 69 ttgacagett tgcattttta taaatatagt gageeattta agteacaaat tgtaacaeeg	60
aaagtcactt taacgcatcg tgattgtttg tttatcgaat tgattgatga caaaggaaat	120
gcatatttcg gggaatgtaa cgcttttcaa acagattggt atgatcatga aacaattgcc	180
tcagtgaaac atgtaattga gcaatggttc gaagataata gaaataaatc atttgaaacg	240
tatgaagcag cactaaaatt agtagattca ttggaaaata cgcctgctgc aagggcaact	300
attgtcatgg cattgtatca aatgtttcat gtactgcctt cattttcagt agcatatgga	360
gcgacagcga gcggcttatc aaataaacaa ctagagtcat taaaagcaac aaagcc	416
<210> 70 <211> 400 <212> DNA <213> Staphylococcus aureus	
<pre>&lt;400&gt; 70 gtattattgc ttggggtgat gatgaacatc tacgtaaaat tgaagcagat gttccaattt</pre>	60
attattatgg atttaaagat teggatgaca tttatgetea aaatatteaa attaeggata	120
aaggtactgc ttttgatgtg tatgtggatg gtgagtttta tgatcacttc ctgtctccac	180
aatatggtga ccatacagtt ttaaatgcat tagctgtaat tgcgattagt tatttagaga	240
agctagatgt tacaaatatt aaagaagcat tagaaacgtt tggtggtgtt aaacgtcgtt	300
tcaatgaaac tacaattgca aatcaagtta ttgtagatga ttatgcacac catccaagag	360
aaattagtgc tacaattgaa acagcacgaa agaaatatcc	400
<210> 71 <211> 613 <212> DNA <213> Staphylococcus aureus	
<400> 71 tggctatcag taatgtttcg aaagggcaat acgcaaagag gtttttcttt ttcgctacta	60
gttgcttagt gttaacttta gttgtagttt caagtctaag tagctcagca aatgcatcac	120

# WO 2007/039319 PCT/EP2006/010132 30/763

aaacagataa	cggcgtaaat	agaagtggtt	ctgaagatcc	aacagtatat	agtgcaactt	180
caactaaaaa	attacataaa	gaacctgcga	ctttaattaa	agcgattgat	ggtgatacgg	240
ttaaattaat	gtacaaaggt	caaccaatga	cattcagact	attattggtt	gatacacctg	300
aaacaaagca	tcctaaaaaa	ggtgtagaga	aatatggtcc	tgaagcaagt	gcatttacga	360
aaaaaatggt	agaaaatgca	aagaaaattg	aagtcgagtt	tgacaaaggt	caaagaactg	420
ataaatatgg	acgtggctta	gcgtatattt	atgctgatgg	aaaaatggta	aacgaagctt	480
tagttcgtca	aggcttggct	aaagttgctt	atgtttacaa	acctaacaat	acacatgaac	540
aacatttaag	aaaaagtgaa	gcacaagcga	aaaaagagaa	attaaatatt	tggagcgaag	600
acaacgctga	ttc					613
<210> 72 <211> 212 <212> DNA <213> Stages	phylococcus	aureus				
	tgctgaagtt	gattacattg	gtatgccagc	agtatgcttt	actgaacctg	60
aattagctac	agttggttat	tcagaagcgc	aagctaaaga	agaaggttta	gcaattaaag	120
cttctaaatt	tccatatgca	gcaaatggtc	gtgcattatc	attagacgat	actaacggat	180
ttgttaaact	tattacactt	aaagaagatg	at			212
<210> 73 <211> 763 <212> DNA <213> Sta	phylococcus	aureus				
<400> 73 tggaagacat	cgtaaacgta	gaaactacgc	gagaatttca	gaagtattag	aattaccaaa	60
cttaatagaa	attcaaacta	aatcttacga	gtggttccta	agagaaggtt	taatcgaaat	120
gtttagagac	atttctccaa	ttgaagattt	tactggtaat	ttgtcattag	agtttgtgga	180
ttaccgttta	ggagaaccaa	aatatgattt	agaagaatct	aaaaaccgtg	acgctactta	240
tgctgcacct	cttcgtgtaa	aagtgcgtct	aatcattaaa	gaaacaggag	aagttaaaga	300
acaagaagtc	tttatgggtg	atttcccatt	aatgactgat	acaggtacgt	tcgttatcaa	360
tggtgcagaa	cgtgtaatcg	tatctcaatt	agttcgttca	ccatccgttt	atttcaatga	420
aaaaatcgac	aaaaatggtc	gtgaaaacta	tgatgcaaca	attattccaa	accgtggtgc	480

# WO 2007/039319 PCT/EP2006/010132 31/763

atggttagaa	tatgaaacag	atgctaaaga	tgttgtatac	gtacgtattg	atagaacacg	540
taaactacca	ttaacagtat	tgttacgtgc	attaggtttc	tcaagcgacc	aagaaattgt	600
tgacctttta	ggtgacaatg	aatatttacg	taatacttta	gagaaagacg	gcactgaaaa	660
cactgaacaa	gcgttattag	aaatctatga	acgtttacgt	ccaggtgaac	caccaactgt	720
tgaaaatgct	aaaagtctat	tgtattcacg	tttctttgat	cca		763
		aureus				
<400> 74 ggcagttgta	ctcccacatg	gtgtcttatt	ccgtggtgcc	gcagaaggcg	tcattcgtcg	60
ttatttaatt	gaagaaaaga	actacttaga	agccgtgatt	ggcttaccag	tgaatatttt	120
ctatgggaca	agtattccaa	catgtatctt	agtatttaaa	aaatgttgcc	aacaagacga	180
caacgtatta	tttatcgatg	catccaatga	ttttgaaaaa	ggaaaaaatc	aaaaccattt	240
aagcgatgcc	caagtcgaac	gtattattga	cacatacaag	cgtaaagaaa	caattgataa	300
atacagttac	agtgcgacat	tacaagagat	tgccgataac	gattacaacc	taaacatacc	360
gaggtatgtc	gatacattcg	aagaagaagc	gccaattgat	ttagatcaag	tccaacaaga	420
tttgaaaaat	atcgacaaag	aaatcgcaga	aattgaacaa	gaaatcaatg	catacctgaa	480
agaacttggg	gtgttgaaag					500
<210> 75 <211> 468 <212> DNA <213> Sta		aureus				
<400> 75 tgaatagaaa	tactaggacc	acaaccggtt	atttttcaat	agaagaaata	gattcaagaa	60
aaagccttga	tgaaagagaa	acagaaaaaa	agtatcctgt	gaaaatgata	aacaataaaa	120
ttattccaac	tgaggagata	aaagatgaaa	agttgaaaaa	ggaaattgaa	aactttaagt	180
tttttgtgca	atatggcagt	tttaaaggaa	tagagaatta	tgaaaatggt	gacatttcct	240
ataattctga	agctcctatt	tattcagcga	aatataaact	gaaaaatgat	gattataatg	300
ttaaagaatt	acgaaaaaga	tataatattc	caacagaaaa	ggcgcctaaa	ttgttgttga	360
aaggttcggg	ggatttgaaa	gggtcttcag	ttggatataa	ggaaattgaa	tttatattta	420

### **WO 2007/039319** PCT/EP2006/010132 32/763

cagaaaacaa aaaagaaaac c	atatatttt	cagatggatt	aaacttaa		468
<210> 76 <211> 512 <212> DNA <213> Staphylococcus a	aureus				
<400> 76 ggtgtattag ataatgaagg t	tatggtttta	aatttggata	gaaatacacg	aacggccaag	60
ggatattatt ttgtagatac t					120
agagttgaga tgaaaaacaa t		_			180
aaagaaagaa tagaaaactt t					240
agttacaacc atggcgacgt t	ttcaattaat	agtaatgttc	caagttatga	cgcgaaattt	300
aaaatgagta ataaagatga a	aaatgttaag	caattaagaa	gccgttataa	cattcctact	360
gataaagctc caatattaaa a	aatgcatatt	gatggggact	taaaaggcag	ttccgttgga	420
tataaaaagt tagaaataga o	cttttcaaaa	gaagaaaata	gcgaattatc	aatagtcgat	480
tcattaaatt ttcaacctgc c	caaaaataaa	ga			512
<210> 77 <211> 502 <212> DNA <213> Staphylococcus a	aureus				
<211> 502 <212> DNA		gaatgatatt	aaagttagat	agaaataaga	60
<211> 502 <212> DNA <213> Staphylococcus a <400> 77	aaatcacgag				60 120
<211> 502 <212> DNA <213> Staphylococcus a <400> 77 aaccaaaagg cgagagttta a	aaatcacgag attattagag	aattgaaaga	agataaaaat	catgatgttc	
<211> 502 <212> DNA <213> Staphylococcus a <400> 77 aaccaaaagg cgagagttta a gaactgctaa aggaagttat a	aaatcacgag attattagag ccagtgaaat	aattgaaaga tggtgaataa	agataaaaat taggatagtt	catgatgttc ttggtaaaag	120
<211> 502 <212> DNA <213> Staphylococcus a <400> 77 aaccaaaagg cgagagttta a gaactgctaa aggaagttat a aaaaaatga aaagaaatat c	aaatcacgag attattagag ccagtgaaat	aattgaaaga tggtgaataa tagagtcgtt	agataaaaat taggatagtt tgaattattt	catgatgttc ttggtaaaag tcacaatatg	120 180
<211> 502 <212> DNA <213> Staphylococcus a <400> 77 aaccaaaagg cgagagttta a gaactgctaa aggaagttat a aaaaaatga aaagaaatat c atgttaaaga caaaaagtta a	aaatcacgag attattagag ccagtgaaat aaaaatgaaa cggaatgaga	aattgaaaga tggtgaataa tagagtcgtt ttactaatat	agataaaaat taggatagtt tgaattattt ttcatataat	catgatgttc ttggtaaaag tcacaatatg cctaatgctc	120 180 240
<211> 502 <212> DNA <213> Staphylococcus a <400> 77 aaccaaaagg cgagagttta a gaactgctaa aggaagttat a aaaaaatga aaagaaatat c atgttaaaga caaaagtta a gaaactttaa tcattttgat c	aaatcacgag attattagag ccagtgaaat aaaaatgaaa cggaatgaga	aattgaaaga tggtgaataa tagagtcgtt ttactaatat aaaatgacag	agataaaaat taggatagtt tgaattattt ttcatataat aaacattcaa	catgatgttc ttggtaaaag tcacaatatg cctaatgctc cagttgaaaa	120 180 240 300
<pre>&lt;211&gt; 502 &lt;212&gt; DNA &lt;213&gt; Staphylococcus a &lt;400&gt; 77 aaccaaaagg cgagagttta a gaactgctaa aggaagttat a aaaaaatga aaagaaatat c atgttaaaga caaaaagtta a gaaactttaa tcattttgat c ccaattactc tgcagaatat a</pre>	aaatcacgag attattagag ccagtgaaat aaaaatgaaa cggaatgaga aaaatgaaga	aattgaaaga tggtgaataa tagagtcgtt ttactaatat aaaatgacag caaaattatt	agataaaaat taggatagtt tgaattattt ttcatataat aaacattcaa gtttaaggga	catgatgttc ttggtaaaag tcacaatatg cctaatgctc cagttgaaaa tctggagata	120 180 240 300 360
<211> 502 <212> DNA <213> Staphylococcus a <400> 77 aaccaaaagg cgagagttta a gaactgctaa aggaagttat a aaaaaaatga aaagaaatat c atgttaaaga caaaaagtta a gaaactttaa tcattttgat c ccaattactc tgcagaatat a agagatttaa tctaaaaact a	aaatcacgag attattagag ccagtgaaat aaaaatgaaa cggaatgaga aaaatgaaga agcaagacac	aattgaaaga tggtgaataa tagagtcgtt ttactaatat aaaatgacag caaaattatt	agataaaaat taggatagtt tgaattattt ttcatataat aaacattcaa gtttaaggga	catgatgttc ttggtaaaag tcacaatatg cctaatgctc cagttgaaaa tctggagata	120 180 240 300 360 420

<210> 78 <211> 400 <212> DNA

# WO 2007/039319 PCT/EP2006/010132 33/763

<213> Staphylo	coccus aureus				
<400> 78 gcgaaagagt cgaa	atcagc taatgaaatt	. tcacctgagc	aaattaacca	atggattaaa	60
gaacaccaag aaaa	taagaa tacagatgca	caggataagt	tagttaaaca	ttaccaaaaa	120
ctaattgagt catt	ggcata taaatattct	aaaggacaat	cacatcacga	agatttagtt	180
caagttggta tggt	tggttt aataggtgco	: ataaatagat	tcgatatgtc	ctttgaacgg	240
aagtttgaag cctt	tttagt acctactgta	atcggtgaaa	tcaaaagata	tctacgagat	300
aaaacttgga gtgt	acatgt teegagaegt	attaaagaaa	ttgggccaag	aatcaaaaaa	360
gtgagcgatg aact	aaccgc tgaattagag	gcgttcacctt			400
	coccus aureus				
<400> 79 ccgttacgtt gttc	ttcagt taagttaggt	aaatgtaaaa	tttcatagaa	agcattttgt	60
tgttctttgt tgaa	tttgtt gtcagctttt	ggtgcttgtg	catcatttag	ctttttagct	120
tctgctaaaa ggtt	ageget ttggettggg	tcatctttta	agctttggat	gaaaccattg	180
cgttgttctt cgtt	taagtt aggtaaatgt	aagatttcat	agaaagcatt	ttgttgttct	240
ttgttgaatt tgtt	atccgc tttcggtgct	tgagattcat	ttaacttttt	agcttctgac	300
aataggttag cact	ttgact tgggtcatct	tttaagcttt	ggatgaaacc	attgcgttgt	360
tcttcgttca agtt	aggcat gttcaagatt	tcatagaaag	cattttgttg	ttctttgttg	420
aaattgttgt cagc	tttcgg tgcttgagat	tcgtttaatt	ttttagcttc	acctaaaacg	480
ttagtgcttt ggct	tggatc gtctttaaga	ctttgaatga	aaccattgc		529
<210> 80 <211> 528 <212> DNA <213> Staphylo	coccus aureus				
<400> 80	attago atagatatoo	r aaaaaggtaa	attgacttct	ttaattggac	60
	aagagt actttacttt		-		120
	atagat ggacggctca				180
	ttaaaa caaacaaaco				240

# WO 2007/039319 PCT/EP2006/010132 34/763

tggtaaactg	tggacgattc	ccttattcta	aaggtcgttt	gacgaaagag	gatcatgata	300
ttgtcaatga	tgcgctagat	ttgttgcaac	tacaagatat	cagaaatcgt	aatattaagt	360
cattatctgg	tggacaacgt	cagcgtgcat	atattgcaat	gacaatagca	caagatactg	420
aatatatttt	gctagatgaa	ccattaaata	atttagatat	gaagcatgct	gttcaaatta	480
tgcaaacgtt	aaaaatgtta	gcgcataaaa	tgaataaagc	gattgtca		528
	phylococcus	aureus				
	tcttctgacg	gtttaaaata	accattcttt	acccattctt	cataacgtcc	60
cgcttcaact	tcacgaggat	catattttgg	tttcatttcc	atttgctata	cctcctaaaa	120
aaataaaaat	atccatccta	tatacaaata	ggacggatat	tccgtggtac	cacctatatt	180
caagaaggat	gattaatatc	aaattcactc	ttttaacata	attggaataa	tcataccaat	240
actatcatcg	tgaaatttga	aatgcttcat	ctcttcaagc	actctagatt	atgattaacg	300
ctcaaacacg	tcttagccta	ctattaatca	cgttcagcta	agatactctg	tgggctacct	360
tcagtaagaa	aatcatttac	atactcacac	caaatcatat	gctctcttta	aaataatttg	420
aacttactct	tcccaaatcc	tatattaaac	tcttaactta	tagtataatg	attgacaaaa	480
taagtcaatg	tataggtggg	aataaaatga	atg			513
<210> 82 <211> 361 <212> DNA <213> Star	phylococcus	aureus				
<400> 82	aatcaaaatc	actcaatgct	tgcataccgc	attetegate	agtagggttt	60
		accqtatata	-		2 2 2 2 2	120
cttatagata	tgttatgtaa	actcaggata	taagtcactt	tacttatcat	acctgattca	180
-		atcatacgca	_		-	240
		agcttgggca				300
ctttcaatta	gtctttctaa	atcttgaaac	tgactttta	gctgtcgaat	catttctaaa	360
a				-		361

<210> 83 <211> 731 <212> DNA <213> Staphylococcus aureus	
<400> 83 atgagatacc taacatcagg agaatcacat ggacctcaat taacagttat tgttgaaggt	60
gtacctgcaa atttagaagt taaggttgag gatattaata aagaaatgtt taagcgtcaa	120
ggcggttacg gacgtggacg tcgtatgcaa attgaaaaag atacagtgga gattgtttcg	180
ggtgtaagaa atggttatac attaggtagc cctattacaa tggttgttac taatgatgat	240
tttacacatt ggcgaaaaat tatgggccgt gcgccaataa gcgacgaaga acgagaaaat	300
atgaaacgta caattacgaa gccaagaccg ggacatgcag atttacttgg cggtatgaaa	360
tataatcatc gtgacttacg aaatgtatta gaacgttcat ctgccagaga aacagcagca	420
cgtgtagcgg tcggtgcact atgcaaagtt ttattagaac aattagatat cgaaatatac	480
agtcgtgttg ttgagatagg tggcattaaa gataaagatt tttatgattc agaaacattt	540
aaagcaaacc ttgatcgaaa tgacgtccgt gtaattgatg atggcatcgc acaagcaatg	600
cgcgataaaa ttgatgaagc gaaaacagat ggtgattcaa tagggggcgt agttcaagtt	660
gtagttgaaa atatgcctgt tggtgtaggt agttatgtac attatgatcg taaattagat	720
ggaagaatag c	731
<210> 84 <211> 254 <212> DNA <213> Staphylococcus aureus	
<400> 84 accttcaata ttcgcatcca taagtttcaa tggtctcaag acacgatcca ttggcctttt	60
accaattgaa acatcgccag acaaaacact ttcaatacct aaaccactta acaaaccage	120
taacaatcga gtcgttgtgc cagagtttcc agtatataaa acttgatgag gtgttttaaa	180
agetttatat ecaggtgaat teacaaceaa tttatettea tettettaa tatetaegee	240
taataatcgg aata	254
<210> 85 <211> 716 <212> DNA <213> Staphylococcus aureus	

<400> 85	60
tcgaggaatt aacaaaggtc aaaggttata caacacatgt ggataacaat gatatgggca	60
acttgattgt gacgaataaa tatacgccag aaacaacatc aattagtggt gaaaaagtat	120
gggacgacaa agacaatcaa gatggtaaga gaccagaaaa agtcagtgtg aatttattgg	180
ctaacggaga gaaagtaaaa acgttagacg tgacatctga aacaaactgg aagtacgaat	240
ttaaagactt accgaagtat gatgaaggaa agaaaataga atatacagtg accgaagatc	300
acgtaaaaga ctacacaaca gacatcaacg gtacgacaat aacgaacaag tatacaccag	360
gagagacatc ggcaacagta acaaaaaatt gggatgacaa taataaccaa gacggaaaac	420
gaccaactga aatcaaagtt gagttatatc aagatggaaa agcaacagga aaaacggcaa	480
tattaaatga atctaataac tggacacata cgtggacagg attagatgaa aaagcaaaag	540
gacaacaagt aaaatacaca gtcgatgaat taacaaaagt taatggctat acaacgcatg	600
tggataacaa tgatatgggt aacttgattg tgacaaataa atatacgccg aaaaaaccga	660
ataaaccaat ctatcctgaa aaaccaaaag acaaaacacc accaactaaa cctgat	716
<210> 86 <211> 581 <212> DNA <213> Staphylococcus aureus	
<211> 581 <212> DNA	60
<211> 581 <212> DNA <213> Staphylococcus aureus <400> 86	60 120
<211> 581 <212> DNA <213> Staphylococcus aureus <400> 86 gaacctagcc atcaagacag tacacctcaa catgaagagg aatattataa taagaatgct	
<211> 581 <212> DNA <213> Staphylococcus aureus <400> 86 gaacctagcc atcaagacag tacacctcaa catgaagagg aatattataa taagaatgct tttgcaatgg ataaatcaca tccagaacca atcgaagaca atgataaaca cgatactatt	120
<pre>&lt;211&gt; 581 &lt;212&gt; DNA &lt;213&gt; Staphylococcus aureus &lt;400&gt; 86 gaacctagcc atcaagacag tacacctcaa catgaagagg aatattataa taagaatgct tttgcaatgg ataaatcaca tccagaacca atcgaagaca atgataaaca cgatactatt aaaaatgcag aaaataacac tgagcattca acagtttctg ataagagtga agctgaacaa</pre>	120 180
<pre>&lt;211&gt; 581 &lt;212&gt; DNA &lt;213&gt; Staphylococcus aureus &lt;400&gt; 86 gaacctagcc atcaagacag tacacctcaa catgaagagg aatattataa taagaatgct tttgcaatgg ataaatcaca tccagaacca atcgaagaca atgataaaca cgatactatt aaaaatgcag aaaataacac tgagcattca acagtttctg ataagagtga agctgaacaa tctcagcaac ctaaaccata ttttacaaca ggtgctaacc aatcagaaac atcaaaaaat</pre>	120 180 240
<pre>&lt;211&gt; 581 &lt;212&gt; DNA &lt;213&gt; Staphylococcus aureus &lt;400&gt; 86 gaacctagcc atcaagacag tacacctcaa catgaagagg aatattataa taagaatgct tttgcaatgg ataaatcaca tccagaacca atcgaagaca atgataaaca cgatactatt aaaaatgcag aaaataacac tgagcattca acagtttctg ataagagtga agctgaacaa tctcagcaac ctaaaccata ttttacaaca ggtgctaacc aatcagaaac atcaaaaaat gaacatgata atgattctgt aaaacaagat caagatgaac ctaaagaaca tcataatggt</pre>	120 180 240 300
<pre>&lt;211&gt; 581 &lt;212&gt; DNA &lt;213&gt; Staphylococcus aureus </pre> <pre>&lt;400&gt; 86 gaacctagcc atcaagacag tacacctcaa catgaagagg aatattataa taagaatgct tttgcaatgg ataaatcaca tccagaacca atcgaagaca atgataaaca cgatactatt aaaaatgcag aaaataacac tgagcattca acagtttctg ataagagtga agctgaacaa tctcagcaac ctaaaccata ttttacaaca ggtgctaacc aatcagaaac atcaaaaaat gaacatgata atgattctgt aaaacaagat caagatgaac ctaaagaaca tcataatggt aaaaaagcag cagctattgg tgctggaaca gcaggtgttg caggtgcagc tggtgcaatg</pre>	120 180 240 300 360
<pre>&lt;211&gt; 581 &lt;212&gt; DNA &lt;213&gt; Staphylococcus aureus </pre> <pre>&lt;400&gt; 86 gaacctagcc atcaagacag tacacctcaa catgaagagg aatattataa taagaatgct tttgcaatgg ataaatcaca tccagaacca atcgaagaca atgataaaca cgatactatt aaaaatgcag aaaataacac tgagcattca acagtttctg ataagagtga agctgaacaa tctcagcaac ctaaaccata ttttacaaca ggtgctaacc aatcagaaac atcaaaaaat gaacatgata atgattctgt aaaacaagat caagatgaac ctaaagaaca tcataatggt aaaaaagcag cagctattgg tgctggaaca gcaggtgttg caggtgcagc tggtgcaatg gctgcttcta aagctaagaa acattcaaat gacgctcaaa acaaaagtaa ttctggcaag</pre>	120 180 240 300 360 420

<210> 87 <211> 530

<212> <213>	DNA Sta	phylococcus	aureus				
<400> tcgtgca	87 atta	gtaccatcag	gtgcttcaac	tggtgaacac	gaagctgttg	aattacgtga	60
tggagat	taaa	tcacgttatt	taggtaaagg	tgttactaaa	gcagttgaaa	acgttaatga	120
aatcato	cgca	ccagaaatta	ttgaaggtga	attttcagta	ttagatcaag	tatctattga	180
taaaatq	gatg	atcgcattag	acggtactcc	aaacaaaggt	aaattaggtg	caaatgctat	240
tttaggt	tgta	tctattgcag	tagcacgtgc	agcagctgac	ttattaggtc	aaccacttta	300
caaatat	ttta	ggtggattta	atggtaagca	gttaccagta	ccaatgatga	acatcgttaa	360
tggtggt	ttct	cactcagatg	ctccaattgc	attccaagaa	ttcatgattt	tacctgtagg	420
tgctaca	aacg	ttcaaagaat	cattacgttg	gggtactgaa	attttccaca	acttaaaatc	480
aatttta	aagc	aaacgtggtt	tagaaactgc	agtaggtgac	gaaggtggtt		530
<210> <211> <212> <213> <400>	88 560 DNA Staj	phylococcus	aureus				
		gtgcttcaat	atcagatagt	tattattggg	atatcattaa	aaatctagaa	60
ttacaat	tta	ctgctgcatt	agatttatta	gaagattatc	gatatggtga	aaaagagtat	120
gaaaaaq	gcaa	aagatcaact	aatgacaagg	atattaagtg	aagtcaagta	tttacttgag	180
caaaaaa	atta	aagaatatga	caagtataaa	gatttatata	aagaatatat	gagtaaaaat	240
ccaacgt	caa	aggtaaaaag	agcaaatttt	gatcaatata	atatcgaaga	cctaagagaa	300
aaagaat	ata	atgatttact	aagttctatt	aaagatgcgg	tagaaacatt	taaatcagat	360
gtacaaa	aaaa	tagaatatga	aaataaagag	ttaaaatctt	attcttacga	agaagaaaag	420
aaggctg	gctt	ctagagttga	tgatttagca	aataaagcgt	atagcgttta	ttttgcgttt	480
gttaggg	gata	cacaacataa	aactgaggca	ttagagttaa	aagcgaaagt	ggatttagtt	540
ttaggto	gatg	aggacaaacc					560
<210> <211> <212>	89 462 DNA						

<212> DNA <213> Staphylococcus aureus

<400> 89

# WO 2007/039319 PCT/EP2006/010132 38/763

tgaaaaataa	attgatagca	aaatctttat	taacaatagc	ggcaattggt	attactacaa	60
ctacaattgc	gtcaacagca	gatgcgagcg	aaggatacgg	tccaagagaa	aagaaaccag	120
tgagtattaa	tcacaatatc	gtagagtaca	atgatggtac	ttttaaatat	caatctagac	180
caaaatttaa	ctcaacacct	aaatatatta	aattcaaaca	tgactataat	attttagaat	240
ttaacgatgg	tacattcgaa	tatggtgcac	gtccacaatt	taataaacca	gcagcgaaaa	300
ctgatgcaac	tattaaaaaa	gaacaaaaat	tgattcaagc	tcaaaatctt	gtgagagaat	360
ttgaaaaaac	acatactgtc	agtgcacaca	gaaaagcaca	aaaggcagtc	aacttagttt	420
cgtttgaata	caaagtgaag	aaaatggtct	tacaagagcg	aa		462
<210> 90 <211> 584 <212> DNA <213> Stap <400> 90	ohylococcus	aureus				
	acgcagaaag	agtaaccttg	aaatataaat	ggaaatttgg	agaaggaatt	60
aaggcgggag	attattttga	tttcacatta	agcgataatg	ttgaaactca	tggtatctca	120
acactgcgta	aagttccgga	gataaaaagt	acagatggtc	aagttatggc	gacaggagaa	180
ataattggag	aaagaaaagt	tagatatacg	tttaaagaat	atgtacaaga	aaagaaagat	240
ttaactgctg	aattatcttt	aaatctattt	attgatccta	caacagtgac	gcaaaaaggt	300
aaccaaaatg	ttgaagttaa	attgggtgag	actacggtta	gcaaaatatt	taatattcaa	360
tatttaggtg	gagttagaga	taattgggga	gtaacagcta	atggtcgaat	tgatacttta	420
aataaagtag	atgggaaatt	tagtcatttt	gcgtacatga	aacctaacaa	ccagtcgtta	480
agctctgtga	cagtaactgg	tcaagtaact	aaaggaaata	aaccaggggt	taataatcca	540
acagttaagg	tatataaaca	cattggttca	gacgatttag	ctga		584
<210> 91 <211> 545 <212> DNA <213> Stap <400> 91	phylococcus	aureus				
	tacttatcct	agtggcagca	tatttgtttg	ctaaaccaca	tatcgataat	60
tatcttcacg	ataaagataa	agatgaaaag	attgaacaat	atgataaaaa	tgtaaaagaa	120
caggcgagta	aagataaaaa	gcagcaagct	aaacctcaaa	ttccgaaaga	taaatcgaaa	180

# WO 2007/039319 PCT/EP2006/010132 39/763

gtggcaggct	atattgaaat	tccagatgct	gatattaaag	aaccagtata	tccaggacca	240
gcaacacctg	aacaattaaa	tagaggtgta	agctttgcag	aagaaaatga	atcactagat	300
gatcaaaata	tttcaattgc	aggacacact	ttcattgacc	gtccgaacta	tcaatttaca	360
aatcttaaag	cagccaaaaa	aggtagtatg	gtgtacttta	aagttggtaa	tgaaacacgt	420
aagtataaaa	tgacaagtat	aagagatgtt	aagcctacag	atgtaggagt	tctagatgaa	480
caaaaaggta	aagataaaca	attaacatta	attacttgtg	atgattacaa	tgaaaagaca	540
ggcgt						545
<210> 92 <211> 527 <212> DNA <213> Stap	phylococcus	aureus				
<400> 92 ttaacaatag	aacatttaac	aaagaagata	ggcaacaaaa	cgattctcga	agatgtatca	60
tttaagctga	aacgcggaca	aatagttggt	ctcgttggag	cgaatggtgc	aggtaaaaca	120
actttaatga	aagttatatt	aggttactct	agtttccaaa	gcgggaattt	taatgttatt	180
aacagcaagg	acgaaaaaag	caatatcggc	gcattgattg	aaaatccagg	aatatatcct	240
tttatgtctg	gatatgaaaa	cttgaagtta	ttgaatgaat	caaaaaacac	tcaagatatc	300
gataaaattg	tctcacaact	tcatatggat	gaatacattc	ataaaaaagc	taaaacgtat	360
tctcttggta	tgaaacaaaa	attaggaatt	gctatagcat	ttttaaataa	acctcaattc	420
attatcttag	atgaaccaat	gaatggctta	gatccaaaag	ctgtgcgaga	tgtacgtgaa	480
ttgattgtcc	aaaaagcgca	agaaggtgtt	actttcttaa	tttcgag		527
<210> 93 <211> 645 <212> DNA <213> Stap	phylococcus	aureus				
<400> 93 aaatggttca	gtcgtaatgg	cgacaggtga	agttttagaa	ggtggaaaga	ttagatatac	60
	gatattgaag					120
	aaaactgtac					180
	tcaaaggaat					240
caatttaaat	ggatcgattg	agacatttaa	taaagcgaat	aatagatttt	cgcatgttgc	300

# WO 2007/039319 PCT/EP2006/010132 40/763

atttattaaa cctaata	aatg gtaaaacga	c aagtgtgact	gttactggaa	ctttaatgaa	360
aggtagtaat cagaato	ggaa atcaaccaa	a agttaggata	tttgaatact	tgggtaataa	420
tgaagacata gcgaaga	agtg tatatgcaa	a tacgacagat	acttctaaat	ttaaagaagt	480
cacaagtaat atgagte	ggga atttgaatt	t acaaaataat	ggaagctatt	cattgaatat	540
agaaaatcta gataaaa	actt atgttgttc	a ctatgatgga	gagtatttaa	atggtactga	600
tgaagttgat tttagaa	acac aaatggtag	g acatccagag	caact		645
<210> 94 <211> 548 <212> DNA <213> Staphylococ <400> 94	ccus aureus				
ggtattgcat ctgtaa	cttt aggtacatt	a cttatatctg	gtggcgtaac	acctgctgca	60
aatgctgcgc aacacga	atga agctcaaca	a aatgcttttt	atcaagtgtt	aaatatgcct	120
aacttaaacg ctgatca	aacg taatggttt	t atccaaagcc	ttaaagatga	tccaagccaa	180
agtgctaacg ttttagg	gtga agctcaaaa	a cttaatgact	ctcaagctcc	aaaagctgat	240
gcgcaacaaa ataagt	tcaa caaagatca	a caaagcgcct	tctatgaaat	cttgaacatg	300
cctaacttaa acgaaga	agca acgcaatgg	t ttcattcaaa	gtcttaaaga	cgatccaagc	360
caaagcacta acgttt	tagg tgaagctaa	a aaattaaacg	aatctcaagc	accgaaagct	420
gacaacaatt tcaacaa	aaga acaacaaaa	t gctttctatg	aaatcttgaa	catgcctaac	480
ttgaacgaag aacaac	gcaa tggtttcat	c caaagcttaa	aagatgaccc	aagtcaaagt	540
gctaacct					548
	ccus aureus				
<400> 95 gttatcaatt aatacaa	accc ctgaagcaa	t tcgatacatt	aaacctgcag	attttcatgt	60
tcctggcgat atttcat	tctg cagcgttct	t tattgttgca	gcacttatca	caccaggaag	120
tgatgtaaca attcata	aatg ttggaatca	a tccaacacgt	tcaggtatta	ttgatattgt	180
tgaaaaaatg ggcggta	aata tccaacttt	t caatcaaaca	actggtgctg	aacctactgc	240
ttctattcgt attcaat	taca caccaatgc	t tcaaccaata	acaatcgaag	gagaattagt	300

# WO 2007/039319 PCT/EP2006/010132 41/763

tcca							304
<210> <211> <212> <213>	96 269 DNA Stap	phylococcus	aureus				
<400>	96		tt			tt	60
			tggtgtaggt				60
ggaagaa	atag	cacagggtgt	cgttagtatt	aatgcattta	aaggtgtaag	ttttggagaa	120
ggattta	aaag	cagctgaaaa	gcctggtagc	gaaattcaag	acgaaattct	ctacaatact	180
gaattgg	ggct	attatcgtgg	gtcaaatcac	ttaggtggtt	tagaaggcgg	tatgtcaaat	240
ggaatgo	ccaa	ttatcgttaa	tggtgtaat				269
<210> <211> <212> <213>	97 305 DNA Star	phylococcus	aureus				
<400>	97 atta	tctaaacqtq	gtgaactagc	acaaaaaatt	ggggaagaaa	aattaaaaca	60
			cacaacgtga				120
			ataatactat				180
							240
			ctgaaaatga				
acctgaa	igat	acgattgtaa	catttgataa	tgggggcatt	attggagacg	gcaataaatc	300
atttg							305
<210><211><211><212><213>	98 287 DNA Stap	phylococcus	aureus				
<400>	98						
			acgtgaagtt				60
actgata	cat	tcactaatgc	attctcaagt	ggaaataacg	ttactcaagg	tgtatctgtt	120
gaagtto	ggtg	aaaaacaagc	tgctgtagac	ttaaaagtaa	ttttagaata	tggtgaatca	180
gcaccta	aaaa	tcttccgtaa	agtaactgaa	ttagtaaaag	aacaagttaa	atatattact	240
ggtttag	gatg	ttgttgaagt	taacatgcaa	gttgacgatg	taatgac		287

<210> 99 <211> 429 <212> DNA <213> Staphylo	ococcus aureus				
<400> 99 agctgagacg acad	caagatc aaactactaa	taaaaacgtt	ttagatagta	ataaagttaa	60
agcaactact gaad	caagcaa aagctgaggt	aaaaaatcca	acgcaaaaca	tttctggcac	120
tcaagtatat caag	gaccctg ctattgtcca	accaaaaaca	gcaaataaca	aaacaggcaa	180
tgctcaagta agto	caaaaag ttgatactgo	acaagtaaat	ggtgacactc	gtgctaatca	240
atcagcgact acaa	aataata cgcagcctgt	tgcaaagtca	acaagcacta	cagcacctaa	300
aactaacact aato	gttacaa atgctggtta	. tagtttagtt	gatgatgaag	atgataattc	360
agaaaatcaa atta	aatccag aattaattaa	atcagctgct	aaacctgcag	ctcttgaaac	420
gcaatataa					429
	ococcus aureus				
<400> 100 cgggattctc tgca	attatcc cccacggcaa	cacccaaaat	aaactcttca	atgttaaaaa	60
caagacacaa atga	actgata atactaagtt	tattaatatt	gatacgaaca	caccaaagta	120
tcgagttaat aaaa	aagttga gcggtatcaa	tggtagagat	actacataca	tcaacaatat	180
tgtcaccaat aaca	aacatag cattaaccgg	atgtggatta	ataattaggt	cacctatata	240
agcaataata aata	actaaaa agcaatgtac	caaaaatgct	attgataaaa	tgaaaatctt	300
tgctcttatt tctt	ttgtaa tcgaccaatt	attacttaag	taataattaa	atgatttatt	360
tctcatttca attt	taaata acgaattaca	agccatacat	aatacaatcg	ggatgaaagc	420
aattggccaa atat	taaata gtaaagttat	atatggtgac	acactattcg	ctgttcccgt	480
attacttttg gcga	aataaga ctgtgaaaat	agcaaaacaa	agaaatacca	gcggac	536
<210> 101 <211> 637 <212> DNA <213> Staphylo	ococcus aureus				
ttaattgttc tacc	cgctcca tttattaaat	cctttaaaga	gtaaaactgc	taatagcaac	60

gtgataataa	tatagattgc	caatgttaat	gtaactggta	tactcccttc	gataaacata	120
taaacgtaac	gtgtagcata	tgtgattggt	aaatagaacc	acgaatgatc	tccaagcact	180
tctaatccaa	aataaacgtt	aaaaataaac	attaaaactc	cgacaacaat	agccattaca	240
tctttaatga	aaatactaaa	aataaaaagt	agcagtaata	taattacatt	gaaaaacaat	300
gatacgccta	taaacataag	tgttattttc	atatcatgtg	aatgccacaa	taaattaatt	360
gatgctaata	gaatacatat	ggctgtaata	gtataagtaa	aaatcattga	tgcatttaac	420
caatttagcc	tattagcttt	tcctaaaata	tgattaaagt	gaccaatatt	ttcttcaaaa	480
ttgataactt	gatagacgtt	tatagaaatt	aatagcgatg	taattgcatt	aaaactcgct	540
gtaaacaaac	ttatttgtcg	accattccat	aaatttacgt	ttaaatacca	atttataaat	600
aatataaaca	atatggttac	aataatgggt	acaaatg			637
<210> 102 <211> 507 <212> DNA <213> Star <400> 102	phylococcus	aureus				
	ggtttgctga	aaaaccagtc	ctctaaagaa	tcgaatgtta	agattcatcg	60
cttggcgtat	attacaaact	caaaatttga	tggcaataac	tatatagata	gatggtgtaa	120
aatcaggaat	tctcacattg	gtgaatacag	ttatattgga	tttggtagtg	attttaataa	180
tgtagaagta	ggaagatatt	gttcgatatc	ttcggatgta	aaaattgggt	taggaaaaca	240
tcctacacac	ttttttagct	catcaccgat	tttttattct	aataataatc	catttaacat	300
aaagcaaaag	tttatagact	ttaatgacca	accaagccgt	acaacaatta	aaaatgatgt	360
gtggattggt	gcaaatgtaa	ttattatgga	tggtttaaca	ataaatactg	gtgcagtcat	420
agcagccggc	tcagttgtta	ctaaaaatgt	aggagcatat	gaggttgttg	gtggggttcc	480
tgcaaaagtg	attaagaagc	gatttga				507
<210> 103 <211> 639 <212> DNA <213> Stap <400> 103	phylococcus	aureus				
	taaacaaata	gaaacaatta	aagacgttac	ggatgattat	aaaattgttg	60
gaatgaataa	ttcacaagct	actaataagc	gattggaaaa	tttagattgt	aattatcgtt	120

# WO 2007/039319 PCT/EP2006/010132 44/763

tgttaggtag	caaggtagat	ccaaaaaata	ttctttctaa	attaattaag	cgtataagat	180
ttgcaacagg	tgttatccga	gaaattaaag	cttataaacc	tgacgtgatt	catgcaaatg	240
atttcgacgt	attattaatg	gtctatttaa	gcaattataa	aaaagctaat	attgtttatg	300
atgcgcatga	aatatatgcg	aaaaatgcct	ttattaataa	agttccactt	atttcaaagt	360
ttgtagaaag	tatagaaaaa	cacatagtaa	aacatcgtgt	taatgccttc	gtaacagtaa	420
gtcatgcagc	aaaagaatat	tatcaatcta	aaggatataa	gaaggaagcg	aatgttatta	480
cgaatgcacc	tattttaaat	gatagcagag	aatttaaaga	aatcgaaaac	tttaaagaaa	540
ttgtatatca	aggtcaaatt	gtaatggaca	gaggatatga	agagtttatt	attgcttcat	600
cagcttttaa	acaaaatgct	ccttcattca	taattcgag			639
<210> 104 <211> 380 <212> DNA <213> Stap <400> 104	hylococcus	aureus				
actttgtgca	attatcagca	tgaacatatt	tatagtaatc	tctacattta	ctaaagaagt	60
attagggttc	cctatagagc	cggtgtatta	ctcaaccatg	gttggtatag	cattaattac	120
cacggtgttt	gctatttata	agataattgt	cacgcaagaa	attccgcgag	ggttaatatt	180
attaattgct	atatgtttgc	tttatctagc	ttttattat	ttttcaccag	ataaggaaga	240
gaaactagct	aaaaataata	ttctattctt	tttaacatgg	gcagttccag	cggcaattag	300
tggtatttat	attaaatata	taaacaaggc	tacggtagaa	agattttta	aattagtatt	360
tttcatattt	tctgtttcat					380
<210> 105 <211> 500 <212> DNA <213> Stap <400> 105	hylococcus	aureus				
ttatggatag	cgtaaagaca	ataattggta	cgttgcttat	agctttagga	ttacaatttt	60
tagcttatcc	aattattaat	caacgagtag	gtaatgaagc	gtttggttct	attttaacga	120
tttatacaat	aataacaatc	acgagtgttg	tattaggcaa	tacgcttaac	aatatacgat	180
tgattaatat	gaatctatac	aaatccaatc	attactactg	gaaatttgtg	tcgatacttt	240
taatttcaat	tctgattgag	agtatagctt	taattattgt	atttctttac	ttttttaatt	300

# WO 2007/039319 PCT/EP2006/010132 45/763

tgaacaccat	cgatattatc	tttttaattc	tacttaatat	tttaatgtgt	ttaaggattt	360
atctgaatgt	attttttagg	atgactttaa	aatataatca	gattttgtat	attgctctta	420
ttcaattttt	aggtttgctg	ataggactat	ttctatatta	tttaatccaa	aactggattg	480
tttgttttat	taccagtgaa					500
_	phylococcus	aureus				
<400> 106 gattcttggc	gctactaaca	ttaagcatat	gtcattatta	tcacattatt	taaaccacat	60
tgatttgaat	atcaatgagg	tggacattat	atacactgac	aaatatgata	tcgaagaaca	120
tatccaaggc	atcaataatt	actataaata	taaagtagat	attaaagaag	attggacatt	180
tatcaaaaaa	gctattgctt	actatcgatt	taggccatac	gctatgaaaa	ttcttaaaga	240
aaatcgttat	gattttgtca	tagtatgggg	aagttataca	ggacacttat	ttaaaagttt	300
tttagaaaaa	cactataaaa	ataaattcat	tttaaatata	agggactact	tttttgaaaa	360
taataaactt	attaagtata	gaatgaaaaa	aatcgttgat	gctagcaggg	tgacaacatt	420
atcttcagaa	ggttttctta	aatttttacc	taaatctgaa	aaatatagaa	ttatttatag	480
ttataacatg	agtattatta	gagaaagtaa	tgtaaccgat	gg		522
<210> 107 <211> 655 <212> DNA <213> Stap	phylococcus	aureus				
<400> 107 taatgtttcc	ttgccttatg	ttaggtgata	aacctttatt	atttttagca	cctataagtt	60
atggagtagg	aaagctcttt	ataagettet	cgaataatcc	gaattttaaa	ttttcgaaaa	120
ttgtatacga	tgttttaggt	tttcttagat	tagtatttat	acctgctatg	atagtgtttt	180
tccaggattc	aactatagat	aatttaccat	taggacaagc	ttattttaat	caagcggtta	240
tttatatgag	tgtggagttt	atcataggct	cgctatttat	attgatacta	tctaaattat	300
tcaaacatga	agtggtatca	agaaatagct	ttacactttc	tggatcatca	atttattaca	360
ttgtgtttgg	tcttgttatt	tgtgggattt	ttgtagcttt	tecegaagtg	cgcaaaaaca	420
tatcattttt	aattattaaa	acagatgcaa	tgggaagagg	aaccgaagca	acaagtggtt	480

taaatgttct ttttgtaatg	ctatttcaac	ttgccttagc	gttattattc	ttaataatcg	540
catatgcttc atataaaaag	tataaagaga	atcctaaaat	tatttatgtt	gtattaccgc	600
tagctatagg aattttaaat	attagtttaa	ttgttggtga	aagaagaagt	tatca	655
<210> 108 <211> 459 <212> DNA <213> Staphylococcus	aureus				
<400> 108					
gtaaaaacat ttatgaaatc	gaaaatattt	agattaatga	atacaccact	attattattt	60
tataagaaag aatatttaac	tggatattat	tttgaaaata	aagtggctgg	atggttatgg	120
gcgtggaaag ctgttccgtt	caagttgtta	ggaataaata	caagtttgcc	atttcctgca	180
gatataactg ttagaatgca	taaccctaat	aacattgttt	ttgataaaaa	tgatattcat	240
atttttcaat cgcccgggac	gtattttaat	aatttttcag	cagttatata	tataggtaga	300
ggtgtttata tagcgcctaa	cgtaggtatt	attacagcta	atcataatat	taaaaatttg	360
aagtcacatg caccaggtga	agatgtcaaa	atagggaatt	atagttggat	tggaatgaac	420
tcagttatat taccaggagt	agaattgggg	gaacataca			459
<210> 109 <211> 562 <212> DNA <213> Staphylococcus	aureus				
<400> 109 aagatacgat ttgttgattg	tgaataccaa	aaatgaccgt	agtgctaata	tactttcaca	60
aatcagtttt ttgatatcat	tgcttatttt	attaatactg	ataccaatat	ttgcgattag	120
tgcatgttta tacccaaact	ttatattaga	ttttattttc	attattatta	tgttgttttt	180
ggtaagttta acaaacattt	ttacaaatta	tctaaataag	gaaagaaagt	ataaagtgtt	240
aagtttgatt aatgtgttta	gagctggatc	aatggcttta	cttcaaatca	ttttcggact	300
tttagcatta ggaagtttag	gattaattat	tggtttttca	ttatcctata	tcgcaggcat	360
tacactagga tataaaacgt	ttaaaaagca	ctttaatatt	gtgagagata	aagaagaaac	420
taaagcatta tttttagaaa	ataaaaatca	gttagtttat	tcaacaccat	caatattatt	480
aaatagtttg tctttctcgg	ttgttgtgtt	ctttataggt	attttgtata	ccaatacaga	540
agtgggtatt tatggtatgg	cc				562

<210> 110 <211> 104 <212> DNA <213> Sta		aureus				
<400> 110		anatantta	224999999	~~t~t~~t+	annantana	60
llitatitla	attaaggaag	gagigalite	aatggcacaa	gatattattt	caacaatcag	60
tgacttagta	aaatggatta	tcgacacagt	gaacaaattc	acta		104
<210> 111 <211> 351 <212> DNA <213> Sta		aureus				
<400> 111	tcgctgtggc	tgatacgaat	gttcaaacgc	cagattatga	aaagttgagg	60
aacacatggc	tggacgttaa	ctatggttat	gataagtatg	atgagaagaa	tgacgcaatg	120
aagaagaagt	ttgaggctac	ggagaatgag	gcaaagaaat	tacttagtga	gatgaaaact	180
gaaagtgata	ggaaatactt	gtgggaaaac	tcaaaagatt	tagatacgaa	gtctgcggat	240
atgactcgta	cctatcgtaa	tattgagaaa	atcgcagaag	cgatgaagca	taaagatact	300
aagttaaaaa	tagatgaaaa	caagaagaaa	gtgaaagatg	cccttgagtg	g	351
<210> 112 <211> 278 <212> DNA			gtgaaagatg	cccttgagtg	g	351
<210> 112 <211> 278 <212> DNA <213> Sta <400> 112	phylococcus	aureus				
<210> 112 <211> 278 <212> DNA <213> Sta <400> 112 gggttcttgc	phylococcus tgtctttaag	aureus tgattcagag	aatacttctt	gtgcacgttc	tgggtgttcg	60
<210> 112 <211> 278 <212> DNA <213> Sta <400> 112 gggttcttgc	phylococcus	aureus tgattcagag	aatacttctt	gtgcacgttc	tgggtgttcg	
<210> 112 <211> 278 <212> DNA <213> Sta <400> 112 gggttcttgc cgtaatgttt	phylococcus tgtctttaag	aureus tgattcagag gttacgttgt	aatacttctt tcttctgtga	gtgcacgttc taccttttag	tgggtgttcg atgtaatact	60
<210> 112 <211> 278 <212> DNA <213> Sta <400> 112 gggttcttgc cgtaatgttt tgataaaaag	phylococcus tgtctttaag tgatgtattg	aureus tgattcagag gttacgttgt atctgttacg	aatacttctt tcttctgtga tagttgtttt	gtgcacgttc taccttttag gagttgtttg	tgggtgttcg atgtaatact gtgcttagtt	60 120
<210> 112 <211> 278 <212> DNA <213> Sta <400> 112 gggttcttgc cgtaatgttt tgataaaaag gaagtttgtt	phylococcus tgtctttaag tgatgtattg ctttttgttg	aureus tgattcagag gttacgttgt atctgttacg actcgctttt	aatacttett tettetgtga tagttgtttt getteecat	gtgcacgttc taccttttag gagttgtttg	tgggtgttcg atgtaatact gtgcttagtt	60 120 180
<pre>&lt;210&gt; 112 &lt;211&gt; 278 &lt;212&gt; DNA &lt;213&gt; Sta &lt;400&gt; 112 gggttcttgc cgtaatgttt tgataaaaag gaagtttgtt gtaattgttg &lt;210&gt; 113 &lt;211&gt; 226 &lt;212&gt; DNA</pre>	phylococcus tgtctttaag tgatgtattg cttttgttg gcgtgtttc ctgcccaac	aureus  tgattcagag gttacgttgt atctgttacg actcgctttt tagcaacttc	aatacttett tettetgtga tagttgtttt getteecat	gtgcacgttc taccttttag gagttgtttg	tgggtgttcg atgtaatact gtgcttagtt	60 120 180 240

# WO 2007/039319 PCT/EP2006/010132 48/763

gattcaacaa	ctcaagacaa	agtaagaaga	ttagattcat	ctatttctaa	atctactact	120
cctgaatctg	tatacgttta	tagactttta	aatttagatt	atttgacaag	tatcgttgga	180
tttacaaatg	aagatttata	taaattacaa	cagaccaata	atggcc		226
<210> 114 <211> 576 <212> DNA <213> Stap	phylococcus	aureus				
<400> 114	ttottattoa	agacgaactg	atacaaaaaa	accatacaaa	agcagaagtt	60
	_		_	-		120
		acatgaagag				180
		ttttagtaaa			-	
tataatacta	taggtaatgt	ttttgtaaaa	ggacaaacaa	gtgcaactgg	tgtgttaatt	240
ggaaaaaata	cagttctaac	aaatagacat	atcgctaaat	ttgctaatgg	agatccatct	300
aaagtatctt	ttagaccttc	tataaataca	gatgataacg	gtaatactga	aacaccatat	360
ggagagtatg	aagtcaaaga	aatattacaa	gaaccatttg	gtgcaggtgt	tgatttagca	420
ttaatcagat	taaaaccaga	tcaaaacggt	gtttcattag	gcgataaaat	atcgccagca	480
aaaataggga	catctaatga	tttaaaagat	ggagacaaac	tcgaattaat	aggctatcca	540
ttcgatcata	aagttaacca	aatgcacaga	agtgaa			576
<210> 115 <211> 630 <212> DNA <213> Stap	phylococcus	aureus				
<400> 115 ttttagcagc	gtcaatttt	actatttcct	tacctgtgat	tccttttgaa	agtacattac	60
aagcaaaaga	atacagcgca	gaagaaatca	gaaaattaaa	acaaaaattt	gaggttccac	120
ctacagataa	agagctttat	acacacatta	cggataatgc	aagaagtcct	tataattctg	180
ttggtacagt	gtttgtcaaa	ggtagtacat	tagctaccgg	agttttaatt	ggtaaaaata	240
caattgttac	taattaccac	gttgcaagag	aagcagccaa	aaacccatcg	aatattattt	300
ttacacccgc	tcaaaataga	gatgcagaaa	aaaatgaatt	ccctactccg	tatggaaaat	360
ttgaagctga	agaaattaaa	gaatctccgt	atggacaagg	actcgattta	gctataataa	420
aattaaaacc	aaacgaaaaa	ggggaatcag	cgggagattt	aattcaacca	gctaatatac	480

# WO 2007/039319 PCT/EP2006/010132 49/763

ctgatcatat	tgatatacaa	aaaggagaca	aatattcttt	attaggatat	ccttataatt	540
attcagctta	ctctttatat	caaagtcaga	ttgaaatgtt	caatgattct	caatattttg	600
gatatactga	ggtaggaaac	tctggatcag				630
<210> 116 <211> 330 <212> DNA <213> Star	phylococcus	aureus				
<400> 116 agaaagaaag	tgatttctat	gattaaaaat	aaaatattaa	cagcaacttt	agcagttggt	60
ttaatagccc	ctttagccaa	tccatttata	gaaatttcta	aagcagaaaa	taagatagaa	120
gatatcggcc	aaggtgcaga	aatcatcaaa	agaacacaag	acattactag	caaacgatta	180
gctataactc	aaaacattca	atttgatttt	gtaaaagata	aaaaatataa	caaagatgcc	240
ctagttgtta	agatgcaagg	cttcattagc	tctagaacaa	catattcaga	cttaaaaaaa	300
tatccatata	ttaaaagaat	gatatggcca				330
_	phylococcus	aureus				
<400> 117 tcgttacacc	gaatggtcaa	gtatctgcat	atgatcaata	cttatttgca	caagacccaa	60
ctaatccaac						
3 3 3 -	agcaagagac	tatttcgtcc	cagataatca	actacctcct	ttaattcaaa	120
		_	cagataatca tgtcacacga			
gtggctttaa	tccatcattt	attacaacat	_	aaaaggtaaa	ggtgataaaa	120
gtggctttaa gcgagtttga	tccatcattt	attacaacat ggcagaaaca	tgtcacacga	aaaaggtaaa atatgcatac	ggtgataaaa gtgacaagac	120 180
gtggctttaa gcgagtttga ctcgtttagc	tccatcattt aatcacttac cgttgataga	attacaacat ggcagaaaca aaacatgatg	tgtcacacga tggatgctac	aaaaggtaaa atatgcatac ccgaaacgtt	ggtgataaaa gtgacaagac	120 180 240
gtggctttaa gcgagtttga ctcgtttagc atgaagtgaa <210> 118 <211> 221 <212> DNA <213> Stag	tccatcattt aatcacttac cgttgataga	attacaacat ggcagaaaca aaacatgatg catgaagtaa	tgtcacacga tggatgctac cttttaaaaa	aaaaggtaaa atatgcatac ccgaaacgtt	ggtgataaaa gtgacaagac	120 180 240 300
gtggctttaa gcgagtttga ctcgtttagc atgaagtgaa <210> 118 <211> 221 <212> DNA <213> Stag <400> 118	tccatcattt aatcacttac cgttgataga ctggaaaaca	attacaacat ggcagaaaca aaacatgatg catgaagtaa aureus	tgtcacacga tggatgctac cttttaaaaa	aaaaggtaaa atatgcatac ccgaaacgtt catcacacct	ggtgataaaa gtgacaagac acagttaaat	120 180 240 300
gtggctttaa gcgagtttga ctcgtttagc atgaagtgaa <210> 118 <211> 221 <212> DNA <213> Stag <400> 118 tttaagcgta	tccatcattt aatcacttac cgttgataga ctggaaaaca ohylococcus ctatcacaca	attacaacat ggcagaaaca aaacatgatg catgaagtaa aureus gacaagatgg	tgtcacacga tggatgctac cttttaaaaa aaattaaaag	aaaaggtaaa atatgcatac ccgaaacgtt catcacacct	ggtgataaaa gtgacaagac acagttaaat	120 180 240 300 350

# WO 2007/039319 PCT/EP2006/010132 50/763

caaagtgaaa	ttgttagata	caaaagaaac	tgaaaacaat	a		221
<210> 119 <211> 337 <212> DNA <213> Stap	phylococcus	aureus				
<400> 119	+++>+++	gggtagaaag	at ant nat no		an++=+++aa	60
		ggctacaaac				
ttccagacag	cgagttacca	cctcttgtac	aaagtggatt	taacccttca	tttatcgcaa	120
cagtatctca	cgaaaaaggt	tcaagcgaca	cgagcgaatt	tgaaatcact	tatggaagaa	180
atatggatgt	cactcatgcc	attaaaagat	caacacatta	tggcaacagt	tatttagatg	240
gtcatagagt	ccataatgca	tttaaaaata	gaaactacac	tgtgaaatat	gaagtcaatt	300
ggaagactca	cgaaatcaaa	gtgaaaggac	agaattg			337
•	phylococcus	aureus				
<400> 120 gtcagctcag	taacaacaac	actattgcta	ggttccatat	tgatgaatcc	tgtcgctggt	60
gccgcagatt	ctgatattaa	tattaaaacc	ggtactacag	atattggaag	caatactaca	120
gtaaaaacag	gtgatttagt	cacttatgat	aaagaaaatg	gcatgcacaa	aaaagtattt	180
tatagtttta	tcgatgataa	aaatcacaat	aaaaaactgc	tagttattag	aacgaaaggt	240
accattgctg	gtcaatatag	agtttatagc	gaagaaggtg	ctaacaaaag	tggtttagcc	300
tggccttcag	cctttaaggt	acagttgcaa	ctacctgata	atgaagtagc	tcaaatatct	360
gattactatc	caagaaattc	gattgataca	aaagagtata	tgagtacttt	aacttatgga	420
ttcaacggta	atgttactgg	tgatgataca	ggaaaaattg	gcggccttat	tggtgcaaat	480
gtttcgattg	gtcatacact	gaaatatgtt	caacctgatt	tcaaaacaat	tttagagagc	540
ccaactgata	aaaaagtagg	ctggaaagtg	atatttaaca	atatggtgaa	tcaaaattgg	600
ggaccatatg	atagagattc	ttggaacccg	gtatatggca	atcaactttt	catgaaaact	660
agaaatggtt	ctatgaaagc	agcagataac	ttccttgatc	ctaacaaagc	aagttctcta	720
ttatcttcag	ggttttcacc	agacttcgct	ac			752

<210> 121 <211> 507 <212> DNA <213> Staphylococcu	s aureus				
<400> 121 tgttatcgac cgttttgta	t ccaaattggg	ggcaatataa	acgcgctgat	ttaatcggac	60
aatcttctta tattaaaaa	t aatgatgtcg	taatattcaa	tgaagcattt	gataatggtg	120
cttcagacaa attattaag	t aatgtgaaaa	aagaatatcc	ttaccaaaca	cctgtactcg	180
gtcgttctca atcaggttc	g gacaaaactg	aaggtagcta	ctcatcaact	gttgctgaag	240
atggtggcgt agcgattgt	a agtaaatatc	ctattaaaga	gaaaatccag	catgttttca	300
aaagcggttg tggattcga	t aatgatagca	acaaaggctt	tgtttataca	aaaatagaga	360
aaaatggtaa gaacgttca	c gttatcggta	cacatacaca	atctgaagat	tcacgttgtg	420
gtgctggaca tgatcgaaa	a attagagctg	aacaaatgaa	agaaatcagt	gactttgtta	480
aaaagaaaaa tatccccaa	a gatgaaa				507
<210> 122 <211> 213 <212> DNA <213> Staphylococcu	s aureus				
<400> 122 ggtgtcctat ctcgaaaac	a aaacgctgca	aaaaaatcaa	aaattactgt	tacttatcaa	60
agtgaaatgg atagatata	c aaacttttgg	atcaacttca	actggatagg	taataattat	120
aaagatcaca taagagcaa	c tcatacatca	atttatgaag	ttgattggga	aaatcataca	180
gttaaattaa tagatacto	a atctaaggaa	aaa			213
<210> 123 <211> 220 <212> DNA <213> Staphylococcu	s aureus				
<400> 123 ataaagaaag gaaatgatt	t tatggtcaaa	aaaagactat	tagctgcaac	attgtcgtta	60
ggaataatca ctcctatto	c tacttcgttt	catgaatcta	aagctgataa	caatattgag	120
aatattggtg attgcgctg	a ggtagtcaaa	agaacagaag	atacaagttg	cgataagtgg	180
ggggtcacac aaaatatto	a gtttgatttt	gttaaagata			220

## WO 2007/039319 PCT/EP2006/010132 52/763

<211> <212> <213>	359 DNA Stap	phylococcus	aureus				
<400> atcatta	124 aggt	aaaatgtctg	gacatgatcc	aaatttattt	gttggatata	aaccatatag	60
tcaaaat	ccg	agagactatt	ttgtgccaga	caatgaatta	ccccattag	tacacagtgg	120
tttcaat	cct	tcatttattg	caactgtttc	tcatgaaaaa	ggctcaggag	atacaagtga	180
atttgaa	aata	acgtatggca	gaaatatgga	tgttactcat	gctactagaa	gaacaacaca	240
ctatgg	caat	agttatttag	aaggatctag	aatacacaag	gcatttgtaa	acagaaatta	300
cacagtt	caaa	tatgaagtga	actggaaaac	tcatgaaatt	aaagtgaaag	gacataatt	359
<210> <211> <212> <213>	125 612 DNA Stap	phylococcus	aureus				
<400> aagttgo	125 ctca	aatacaagct	ggtttacaat	ataaaccaca	agtacaacgt	gtaccaggta	60
agtggad	caga	tgctaacttt	aatgatgtta	agcatgcaat	ggatacgaag	cgtttagctc	120
aagatco	cagc	attaaaatat	caattcttac	gcttagacca	accacaaaat	atttctattg	180
ataaaat	taa	tcaattctta	aaaggtaaag	gtgtattaga	aaaccaaggt	gctgcattta	240
acaaago	ctgc	tcaaatgtat	ggcattaatg	aagtttatct	tatctcacat	gccctattag	300
aaacagg	gtaa	cggtacttct	caattagcga	aaggtgcaga	tgtagtgaac	aacaaagttg	360
taactaa	actc	aaacacgaaa	taccataacg	tatttggtat	tgctgcatat	gataacgatc	420
ctttacc	gtga	aggtattaaa	tatgctaaac	aagctggttg	ggacacagta	tcaaaagcaa	480
tcgttgg	gtgg	tgctaaattc	atcggcaact	catatgtaaa	agctggtcaa	aatacacttt	540
acaaaat	gag	atggaatcct	gcacatccag	gaacacacca	atatgctaca	gatgtagatt	600
gggctaa	acat	ca					612
<210> <211> <212> <213>		phylococcus	aureus				
<400> tgttatt	126 att	ctcattttct	tcaattacta	atgaggtaag	tgcatcaagt	tcattcgaca	60
aaggaaa	aata	taaaaagggc	gatgacgcga	gttattttga	accaacaggc	ccgtatttga	120

# WO 2007/039319 PCT/EP2006/010132 53/763

tggtaaatgt	gactggagtt	gatggtaaag	gaaatgaatt	gctatcccct	cattatgtcg	180
agtttcctat	taaacctggg	actacactta	caaaagaaaa	aattgaatac	tatgtcgaat	240
gggcattaga	tgcgacagca	tataaagagt	ttagagtagt	tgaattagat	ccaagcgcaa	300
agatcgaagt	cacttattat	gataagaata	agaaaaaaga	agaaacgaag	tctttcccta	360
taacagaaaa	aggttttgtt	gtcccagatt	tatcagagca	t		401
<210> 127 <211> 715 <212> DNA <213> Stap <400> 127	phylococcus	aureus				
	tgccctaacg	ttgacaacaa	gtccacttgt	aaatggtagc	gagaaaagcg	60
aagaaataaa	tgaaaaagat	ttgcgaaaaa	agtctgaatt	gcagggaaca	gctttaggca	120
atcttaaaca	aatctattat	tacaatgaaa	aagctaaaac	tgaaaataaa	gagagtcacg	180
atcaattttt	acagcatact	atattgttta	aaggcttttt	tacagatcat	tcgtggtata	240
acgatttatt	agtagatttt	gattcaaagg	atattgttga	taaatataaa	gggaaaaaag	300
tagacttgta	tggtgcttat	tatggttatc	aatgtgcggg	tggtacacca	aacaaaacag	360
cttgtatgta	tggtggtgta	acgttacatg	ataataatcg	attgaccgaa	gagaaaaaag	420
tgccgatcaa	tttatggcta	gacggtaaac	aaaatacagt	acctttggaa	acggttaaaa	480
cgaataagaa	aaatgtaact	gttcaggagt	tggatcttca	agcaagacgt	tatttacagg	540
aaaaatataa	tttatataac	tctgatgttt	ttgatgggaa	ggttcagagg	ggattaatcg	600
tgtttcatac	ttctacagaa	ccttcggtta	attacgattt	atttggtgct	caaggacagt	660
attcaaatac	actattaaga	atatatagag	ataataaaac	gattaactct	gaaaa	715
_	hylococcus	aureus				
<400> 128 cgtagatgtg	tttggagcta	attattatta	tcaatgttat	ttttctaaaa	aaacgaatga	60
tattaattcg	catcaaactg	acaaacgaaa	aacttgtatg	tatggtggtg	taactgagca	120
taatggaaac	caattagata	aatatagaag	tattactgtt	cgggtatttg	aagatggtaa	180
aaatttatta	tcttttgacg	tacaaactaa	taagaaaaag	gtgactgctc	aag	233

<211> <212>	129 360 DNA Stap	phylococcus	aureus				
	129 ggc	acatgattta	atttataaca	ttagtgataa	aaaactgaaa	aattatgaca	60
aagtgaa	aac	agagttatta	aatgaaggtt	tagcaaagaa	gtacaaagat	gaagtagttg	120
atgtgta	tgg	atcaaattac	tatgtaaact	gctattttc	atccaaagat	aatgtaggta	180
aagttac	agg	tggcaaaact	tgtatgtatg	gaggaataac	aaaacatgaa	ggaaaccact	240
ttgataa	tgg	gaacttacaa	aatgtactta	taagagttta	tgaaaataaa	agaaacacaa	300
tttcttt	tga	agtgcaaact	gataagaaaa	gtgtaacagc	tcaagaacta	gacataaaag	360
<211> <212> <213>	-	phylococcus	aureus				
	130 ttg	aaggaagagg	agttattaat	tctagacagt	ttttatctca	tgatttaatt	60
tttccaa	ttg	agtataagag	ttataatgag	gttaaaactg	aattagaaaa	tacagaatta	120
gctaaca	att	ataaagataa	aaaagtagac	atttttggcg	ttccatattt	ttatacatgt	180
ataatac	cta	aatctgaacc	ggatataaac	caaaattttg	gaggttgttg	tatgtatggt	240
ggtctta	cat	ttaatagttc	agaaaatgaa	agagataaat	taattactgt	acaggtaaca	300
atcgaca	ata	gacaatcact	tggatttaca	ataactacaa	ataagaatat	ggttactatt	360
caggaac	tag	attacaaagc	aagacactgg	ctcactaaag	aaaaaagct	atacgagttt	420
gatggtt	ctg	catttgaatc	tggatatata	aaatttactg	aaaagaacaa	tacaagtttt	480
tggtttg	act	tatttcctaa	a				501
<211> <212>	131 542 DNA Stap	phylococcus	aureus				
	131 tac	acgataaaag	tgagttaaca	gatttagctt	tagctaatgc	atatggtcaa	60
tataatc	acc	cattcattaa	agaaaatatt	aagagtgatg	aaataagtgg	agaaaaagat	120

## WO 2007/039319 PCT/EP2006/010132 55/763

ttaatattta	gaaatcaagg	tgatagtggc	aatgatttga	gagtaaagtt	tgcaactgct	180
gatttagctc	agaagtttaa	aaataaaaat	gtagatatat	atggggcatc	ttttattat	240
aagtgtgaaa	aaataagtga	aaatatttct	gaatgtctat	atggaggtac	aacactaaat	300
agtgaaaaat	tggcacagga	aagggtgatt	ggtgctaatg	tttgggtaga	tggtattcaa	360
aaagaaacag	aattaatacg	aacaaataag	aaaaatgtga	cattgcaaga	attagatata	420
aagatcagaa	aaatattgtc	cgataaatat	aaaatttatt	ataaagacag	cgaaataagt	480
aaaggtctaa	ttgaatttga	tatgaaaact	cctagagatt	actcattcga	catttatgat	540
tt						542
<210> 132 <211> 343 <212> DNA <213> Stap <400> 132	phylococcus	aureus				
	aacggcgatg	taggtccagg	aaatctaaga	aatttttata	ctaaatatga	60
atatgtgaat	ttaaagaatg	ttaaagacaa	aaattcacca	gaatcacacc	gcttagaata	120
ctcgtataaa	aatgatacat	tgtatgctga	atttgacaat	gaatatataa	ctagtgatct	180
aaagggaaaa	aatgtcgatg	tttttggtat	aagctataaa	tatggttcta	actctcgtac	240
tatatatggt	ggtgttacta	aagcagaaaa	caataaatta	gattcgccaa	gaataatacc	300
tataaattta	attatcaatg	gcaagcatca	aacagttaca	act		343
<210> 133 <211> 272 <212> DNA <213> Stap <400> 133	phylococcus	aureus				
	acggaaataa	agttacattt	atagataatt	ctcaacaaat	tgatgttaca	60
ttgacaggaa	atgaaaaatt	aactgttaaa	gatgatgacg	aagtttctaa	tgttgacgtg	120
tttgtagtaa	gagaaggtag	tgacaaatca	gctatcacaa	catcgattgg	tggaattaca	180
aagacaaatg	ggactcaaca	taaagatact	gttcaaaacg	ttaatttgtc	agtttctaag	240
agtacaggtc	aacacactac	ttctgtgact	tc			272
<210> 134 <211> 450 <212> DNA						

## WO 2007/039319 PCT/EP2006/010132 56/763

<213> Staphylococcus aureus	
<400> 134 atgaaattta aagcgatagc aaaagcaagt ttagcattgg gaatgttagc aacaggtgta	60
attacatcga atgtacaatc agtacaagcg aaaacagaag ttaaacaaca aagtgaatca	120
gagttgaaac actattataa taaaccggtt ttagagcgta aaaatgttac tggatataaa	180
tatactgaaa aaggtaaaga ttatatagat gttatagtag acaatcaata ttctcaaatt	240
tetttagttg gatetgataa agacaaattt aaagatggag acaactegaa tatagatgtg	300
tttatcctta gagaaggtga cagtagacaa gcaacaaatt actcaattgg tggcgtaaca	360
aaaacaaaca gtcaaccttt tattgactat atacacacac caatccttga aatcaagaaa	420
ggtaaagaag aaccacaaag tagtttatac	450
<210> 135 <211> 500 <212> DNA <213> Staphylococcus aureus <400> 135	
gtattgaata taaaaatgtg acaggttata tcagtttcat tcaaccaagt attaaattta	60
tgaatatcat agatggtaat tetgttaata acettgettt aattggcaaa gataagcaac	120
attatcatac gggtgtacat cgtaatctta atatatttta cgttaatgag gataagagat	180
ttgaaggtgc aaagtactct attgggggta tcactagtgc aaacgataaa gctgtcgacc	240
taatagcaga agcaagagtt attaaagcag atcatattgg tgaatatgat tatgactttt	300
tcccatttaa aatagttaaa gaagcgatgt cattgaaaga gattgatttt aaattaagaa	360
aataccttat tgataattat ggtctttacg gtgaaatgag tacagggaaa attaccgtca	420
aaaagaaata ctatggaaag tatacatttg aattggataa aaagttacaa gaagaccgta	480
tgtccgatgt tatcaatgtc	500
<210> 136 <211> 384 <212> DNA <213> Staphylococcus aureus <400> 136	
gcgcaattac agtaacgacg caatcggtca aagcagaaaa aatacaatca actaaagttg	60
acaaagtacc aacgcttaaa gcagagcgat tagcaatgat aaacataaca gcaggtgcaa	120
attcagcgac aacacaagca gctaacacaa gacaagaacg cacgcctaaa ctcgaaaagg	180

## WO 2007/039319 PCT/EP2006/010132 57/763

caccaaatac	taatgaggaa	aaaacctcag	cttccaaaat	agaaaaaata	tcacaaccta	240
aacaagaaga	gcagaaatcg	cttaatatat	cagcaacgcc	agcgcctaaa	caagaacaat	300
cacaaacgac	aaccgaatcc	acaacgccga	aaactaaagt	gacaacacct	ccatcaacaa	360
acacgccaca	accaatgcaa	tcta				384
<210> 137 <211> 270 <212> DNA <213> Stap	phylococcus	aureus				
<400> 137 tttaaaagtt	agttctttat	tcgttgcaac	tttgacaaca	gcgacacttg	tgagttctcc	60
agcagcaaac	gcgttatctt	caaaggctat	ggacaatcat	ccacaacaaa	cgcagtcaag	120
caaacagcaa	acacctaaga	ttcaaaaagg	cggtaacctt	aaaccattag	aacaacgtga	180
acacgcaaat	gttatattac	caaataacga	tcgtcaccaa	atcacagata	caacgaatgg	240
tcattatgca	cccgtaactt	atattcaagt				270
<210> 138 <211> 556 <212> DNA <213> Stap	phylococcus	aureus				
<400> 138 tttttatcgt	aagccctttg	ttgcttgcga	caatcgctac	agattttacc	cctgttccct	60
tatcatctaa	tcaaataatc	aaaactgcaa	aagcatctac	aaacgataat	ataaaggatt	120
tgctagactg	gtatagtagt	gggtctgaca	cttttacaaa	tagtgaagtt	ttagataatt	180
ccttaggatc	tatgcgtata	aaaaacacag	atggcagcat	cagccttata	atttttccga	240
gtccttatta	tagecetget	tttacaaaag	gggaaaaagt	tgacttaaac	acaaaaagaa	300
ctaaaaaaag	ccaacatact	agcgaaggaa	cttatatcca	tttccaaata	agtggcgtta	360
caaatactga	aaaattacct	actccaatag	aactaccttt	aaaagttaag	gttcatggta	420
aagatagccc	cttaaagtat	tggccaaagt	tcgataaaaa	acaattagct	atatcaactt	480
tagactttga	aattcgtcat	cagctaactc	aaatacatgg	attatatcgt	tcaagcgata	540
aaacgggtgg	ttattg					556

<210> 139 <211> 532

<212> DNZ <213> Sta	A aphylococcus	aureus				
<400> 13						
gaaagtatt	c tgtaggtact	gcttcaattt	tagtagggac	aacattgatt	tttgggttaa	60
gtggtcatg	a agctaaagcg	gcagaacata	cgaatggaga	attaaatcaa	tcaaaaaatg	120
aaacgacag	c cccaagtgag	aataaaacaa	ctaaaaaagt	tgatagtcgt	caactaaaag	180
acaatacgc	a aactgcaact	gcagatcagc	ctaaagtgac	aatgagtgat	agtgcaacag	240
ttaaagaaa	c tagtagtaac	atgcaatcac	cacaaaacgc	tacagctaat	caatctacta	300
caaaaacta	g caatgtaaca	acaaatgata	aatcatcaac	tacatatagt	aatgaaactg	360
ataaaagta	a tttaacacaa	gcaaaagatg	tttcaactac	acctaaaaca	acgactatta	420
aaccaagaa	tttaaatcgc	atggcagtga	atactgttgc	agctccacaa	caaggaacaa	480
atgttaatg	a taaagtacat	ttttcaaata	ttgacattgc	gattgataaa	gg	532
<210> 140 <211> 623 <212> DN2 <213> Sta	2 A aphylococcus	aureus				
	a aataaagatg	taacagatat	aaaaatatat	caagttccta	aaggttatac	60
attaaataa	a ggatacgatg	tgaatactaa	agagcttaca	gatgtaacaa	atcaatactt	120
gcagaaaati	acatatggcg	acaacaatag	cgctgttatt	gattttggaa	atgcagattc	180
tgcttatgt	gtaatggtta	atacaaaatt	ccaatataca	aatagcgaaa	gcccaacact	240
tgttcaaatg	g gctactttat	cttcaacagg	taataaatcc	gtttctactg	gcaatgcttt	300
aggatttac	. aataaccaaa	gtggcggagc	tggtcaagaa	gtatataaaa	ttggtaacta	360
cgtatggga	gatactaata	aaaacggtgt	tcaagaatta	ggagaaaaag	gcgttggcaa	420
tgtaactgta	a actgtatttg	ataataatac	aaatacaaaa	gtaggagaag	cagttactaa	480
agaagatgg	g tcatacttga	ttccaaactt	acctaatgga	gattaccgtg	tagaattttc	540
aaacttacca	a aaaggttatg	aagtaacccc	ttcaaaacaa	ggtaataacg	aagaattaga	600
ttcaaacgg	ttatcttcag	tt				622
<210> 143	L					

<210> 141 <211> 892 <212> DNA <213> Staphylococcus aureus

## WO 2007/039319 PCT/EP2006/010132 59/763

<400> 141						
aaagttggcg	atggtaaaga	taatgtggca	gcagcgcatg	acggtaaaga	tattgaatat	60
gatacagagt	ttacaattga	caataaagtc	aaaaaaggcg	atacaatgac	gattaattat	120
gataagaatg	taattccttc	ggatttaaca	gataaaaatg	atcctatcga	tattactgat	180
ccatcaggag	aggtcattgc	taaaggaaca	tttgataaag	caactaagca	aatcacatat	240
acatttacag	actatgtaga	taaatatgaa	gatataaaat	cacgcttaac	tctatattcg	300
tatattgata	aaaaaacagt	tccaaatgag	acaagtttga	atttaacatt	tgctacagca	360
ggtaaagaaa	caagccaaaa	tgtcactgtt	gattatcaag	atccaatggt	ccatggtgat	420
tcaaacattc	aatctatctt	tacaaaatta	gatgaagata	agcaaactat	tgaacaacaa	480
atttatgtta	acccattgaa	aaaatcagca	accaacacta	aagttgatat	agctggtagt	540
caagtagatg	attatggaaa	tattaaacta	ggaaatggta	gcaccattat	tgaccaaaat	600
acagaaataa	aggtttataa	agttaactct	gatcaacaat	tgcctcaaag	taatagaatc	660
tatgatttta	gtcaatacga	agatgtaaca	agtcaatttg	ataataaaaa	atcatttagt	720
aataatgtag	caacattgga	ttttggtgat	attaattcag	cctatattat	caaagttgtt	780
agtaaatata	cacctacatc	agatggcgaa	ctagatattg	cccaaggtac	tagtatgaga	840
acaactgata	aatatggtta	ttataattat	gcaggatatt	caaacttcat	cg	892
<210> 142 <211> 747 <212> DNA <213> Esch	nerichia col	li				
<400> 142						
	tattgctctg	gcggtgggta	atgcatatgc	aacacaattg	ttggatgatt	60
atagtataat	ttcctatatg	actgatgaag	aatcgccgat	tgaaatcaaa	gataataatc	120
cgataagtaa	tggagagtat	ctaaccactg	aagacgaaag	ccatgctgtg	aaagtggatg	180
acggtgtaac	tggatatata	aataatgcca	gtgtgatgac	tagtggtgat	ggatcttatg	240
gtatttctgt	tgatagtcaa	aacaaagtat	tatatataag	cgatagcgat	attaagacct	300
ctggaagcgt	atctgacaaa	gaaaatggag	ggataacagc	cagcgcagta	gtcagtgaat	360
ttggtggcac	catctttatg	aatggtgata	attcagtcga	gtcgggtggg	gcatattcag	420
cgggactttt	aagccaggtt	aatgattctg	aaaagatggt	aaataacacc	cgtcttgaaa	480
ccacagataa	aacgaacatt	gttacctctg	gggaaaatgc	agtaggtgtt	cttgcatgtt	540

# WO 2007/039319 PCT/EP2006/010132 60/763

caagtcctgg	agagtctcga	acatgtgtcg	atgctgtaga	tgatgaagtt	agtgattcta	600
acagttacga	agttattagc	cgtgctgatt	taaaaatgaa	tggtggttcc	ataacaacta	660
atggcattaa	tagctatggt	gcttatgcta	atgggaaaaa	agcatatatt	aatttagatt	720
atgtggcact	tgaaactgtg	gctgatg				747
	nerichia col	li				
<400> 143 agcctggtga	cgacttatct	ggtggtgctg	aacttcgcga	ttttgccgag	cctccagcag	60
tttaataaag	tcctcgcgta	cgaagtgcgt	atgttgatga	ccgacaaact	gcaactggag	120
gacggcacgc	agttggttgt	gcctcccgct	ttccgtcggg	agatctaccg	tgagctgggg	180
atctctctct	actccaacga	ggctgccgaa	gaggcaggtc	tgcgttgggc	gcaacactat	240
gaattcttaa	gccatcagat	ggcgcagcaa	ctgggcggcc	cgacggaagt	gcgcgttgag	300
gtcaacaaaa	gttcgcctgt	cgtctggctg	aaaacctggc	tgtcgcccaa	tatctgggta	360
cgcgtgccgc	tgaccgaaat	tcatcagggc	gatttctctc	cgctgttccg	ctatacgctg	420
gcgattatgc	tattggcgat	aggcggggcg	tggctgttta	ttcgtatcca	gaaccgaccg	480
ttggtcgatc	tcgaacacgc	agccttgcag	gttggtaaag	ggattattcc	gccgccgctg	540
cgtgagtatg	gcgcttcgga	ggtgcgttcc	gttacccgtg	cctttaacca	tatggcggct	600
ggtgttaagc	aactggcgga	t				621
	nerichia col	i				
<400> 144 accacgacag	gtctttatga	tctgaaaacc	gaaaatacct	tgttaactac	cgatgctgca	60
ttcgataaat	tagggaatgg	cgataaagtc	accgttggcg	gcgtagatta	tacttacaac	120
gctaaatctg	gtgattttac	taccaccaaa	tctactgctg	gtacgggtgt	agacgccgcg	180
gcgcaggcta	ctgattcagc	taaaaaacgt	gatgcgttag	ctgccaccct	tcatgctgat	240
gtgggtaaat	ctgttaatgg	ttcttacacc	acaaaagatg	gtactgtttc	tttcgaaacg	300
gattcagcag	gtaatatcac	catcggtgga	agccaggcat	acgtagacga	tgcaggcaac	360

ttgacgacta	acaacgctgg	tagcgcagct	aaagctgata	tgaaagcgct	gcttaaagcc	420
gcgagcgaag	gtagtgacgg	tgcctctct				449
<210> 145 <211> 704 <212> DNA <213> Esc	herichia co	li				
<400> 145 atggaattgc	gtctgttcaa	ctatctggtc	gagcgtaaag	atctgattca	gateceggtg	60
	aacgcgaatg					120
	gcaaagatgt					180
ggcgtcggca	cctgtttcag	cegeegegee	gtgaccgcac	tgttagctga	cggtgacggt	240
attgctttcg	acgtgcagag	tcttactgaa	gattacgaca	ttggcttccg	cctgaaagaa	300
aaaggtatga	cggaaatttt	tgtccgtttt	ccggtggtgg	acgaagccaa	agaacgcgag	360
cagcgtaaat	ttttacagca	cgcgcggaca	tcaaacatga	tctgcgtgcg	cgaatatttc	420
cccgatacct	tttcgactgc	ggttcgacaa	aaatcccgct	ggatcatcgg	cattgttttc	480
caaggcttta	aaacccataa	atggacctcc	agcctgacgc	tgaactactt	tctctggcgc	540
gaccgcaaag	gggcaatcag	taactttgtc	agcttcctcg	cgatgctggt	gatgatccag	600
cttttgctgt	tgctggcgta	tgaaagtttg	tggcccgatg	cctggcattt	cctttctatt	660
ttcagcggca	gcgcatggtt	aatgaccctg	ctgtggctaa	actt		704
<210> 146 <211> 251 <212> DNA <213> Esc	herichia co	li				
<400> 146 ataatcctcg	tcatttgcag	attatggaac	tcgagggggc	gcagctcccg	cgcgtactgg	60
atgatcccaa	agttgatgta	gcgattatca	gcaccactta	cattcagcag	accgggcttt	120
ctccggtgca	cgacagcgta	tttattgaag	ataagaattc	gccgtatgtg	aatattttgg	180
tggcacggga	agataataag	aatgcagaaa	acgtgaagga	atttctgcaa	tcttatcaat	240
cacccgaagt	С					251
<010> 147						

<210> 147 <211> 423

	DNA Esch	merichia col	li				
	147 cct	cagttctacg	acggctctgg	ccgctgccac	gacggttaat	ggtgggaccg	60
ttcactt	taa	aggggaagtt	gttaacgccg	cttgcgcagt	tgatgcaggc	tctgttgatc	120
aaaccgti	tca	gttaggacag	gttcgtaccg	catcgctggc	acaggaagga	gcaaccagtt	180
ctgctgt	cgg	ttttaacatt	cagctgaatg	attgcgatac	caatgttgca	tctaaagccg	240
ctgttgc	ctt	tttaggtacg	gcgattgatg	cgggtcatac	caacgttctg	gctctgcaga	300
gttcagct	tgc	gggtagcgca	acaaacgttg	gtgtgcagat	cctggacaga	acgggtgctg	360
cgctgacq	gct	ggatggtgcg	acatttagtt	cagaaacaac	cctgaataac	ggaaccaata	420
cca							423
<211> C		nerichia col	li				
	148 tac	agcgattgcg	gcaactggcg	caacaaaccg	gctcgctgaa	gtcatcaacc	60
gaacagaa	aag	ttattaccac	aacgaagaaa	gctgtaccgg	taaaacagac	agtcacggca	120
cccgtcat	tac	catccaatac	agttttaact	gccaaccccg	tcattacaga	gccggcaaca	180
accgtcat	ttt	ccattgagcc	cgccaatcct	gatgtggtct	atattcccaa	ctacaaccca	240
accgtggt	ttt	acgggaactg	ggccaatact	gcgtatccgc	cggtttatct	gccaccacca	300
gccggaga	aac	cgtttgttga	cagctttgta	cgcggattcg	gctatagcat	gggcgttgct	360
accacgta	acg	cactattcag	cagcatcgac	tgggacgacg	acgatcatga	ccatcatcat	420
catgacaa	atg	atgattatca	tcaccacgat	ggcggtcatc	gtgacggtaa	tggctggcaa	480
cacaacgo	gcg	acaacatcaa	tatcgacgtc	aacaatttca	accgtatcac	cggtgagcat	540
cttactga	ata	agaatatggc	atggcggcac	aatccaaact	accgtaatgg	tgtgccctat	600
catgatca	agg	atatggcaaa	gcggtttcat	caaaccgatg	tcaacggcgg	aatgagcgcc	660
acgcaatt	tac	ctgccccaac	gcgcgacagc	cagcgtcagg	cggcagcaaa	tcagtttcag	720
caacgaad	cac	acgccgcacc	agtcattaca	cgagataccc	aacgtcag		768

<210> 149 <211> 788

# WO 2007/039319 PCT/EP2006/010132 63/763

<212> <213>	DNA Esci	nerichia co	li				
<400>	149						60
ctttacq	gacg	gttctcccca	ggactgaaag	cccagtttgc	cttcggcatg	gtctttttgt	60
tcgttca	agcc	cgatgccagc	gctgctgaca	taagtgcgca	gcaaataggt	ggggtgatta	120
ttccgca	aggc	cttcagtcag	gcgcttcagg	acggcatgag	cgtcccgctc	tatattcatc	180
tcgccg	gtag	ccagggtcgc	caggacgatc	agcgaatcgg	cagcgctttt	atctggctgg	240
acgatg	gaca	gctacgcatc	cggaaaatac	agctggaaga	gagtgaagat	aacgccagtg	300
tcagcga	aaca	aactcgacag	cagctgatgg	ctctggccaa	cgccccgttc	aatgaggccc	360
ttaccat	tccc	cctgactgac	aacgcgcagc	tggatctcag	cttgcgccaa	ctgctgctgc	420
agctagt	tggt	caagcgcgaa	gcgctgggca	ccgtactacg	ctcacgtagc	gaagacatcg	480
ggcagto	ccag	tgttaacacc	ctcagcagta	atctgagcta	taacttgggc	gtctataaca	540
accagtt	tgcg	taacggcggg	agcaacacat	ccagctatct	gtcgctgaat	aacgttactg	600
cactgc	gcga	acatcatgtg	gtgctcgacg	gctcgctgta	cgggatcggt	agcggtcaac	660
aggacag	gtga	attatataaa	gcgatgtatg	aacgcgattt	tgccggtcac	cgatttgccg	720
gtggaat	tgct	cgacacctgg	aacttgcagt	ccttagggcc	gatgaccgcc	atttcagcag	780
ggaagat	t						788
<210> <211> <212> <213>		nerichia col	Li				
<400> ttgaaac	150 cttc	ttactgccgc	atttttagca	gcgagtcccg	cggcgaagag	tgctgttaat	60
aacgcct	atg	atgcattgat	tattgaagct	cgcaagggta	atactcagcc	agctttgtca	120
tggtttg	gcac	taaaatcagc	actcagcaat	aaccaaattg	ctgactggtt	acagattgcc	180
ttatggg	gccg	ggcaagataa	acaggttatt	accgtttaca	accgctaccg	tcatcagcaa	240
ttaccag	gcgc	gtggttatgc	agctgtcgcc	gtcgcttatc	gtaacctgca	acaatggcaa	300
aactcg	ctta	cactgtggca	aaaggcgctc	tctctggagc	cgcaaaataa	ggattatcaa	360
cggggad	caaa	ttttaaccct	ggcagatgct	ggtcactatg	atactgcgct	ggttaaactt	420
aagcago	tta	actctggagc	accggacaaa	gccaatttac	tcgcagaagc	ctatatctat	480
aaactgo	gcgg	ggcgtcatca	ggatgaatta	cgggcgatga	cagagtcatt	acctgaaaat	540

# WO 2007/039319 PCT/EP2006/010132 64/763

gcatctacgc	aacaatatcc	cacagaatac	gtgcaggcat	tacgtaataa	tcaacttgct	600
gccgcgattg	acgatgccaa	tttaacgcca	gatattcgcg	ctgatattca	tgccgaactg	660
gtcagactgt	cgtttatgcc	tacgcgcagt	gaaagtgaac	gttatgccat	tgccgatcgc	720
gccctcgccc	aatacgctgc	attagaaatt				750
	herichia col	li				
<400> 151 atagcagggc	tgtttgtatc	atctctaagt	tatgcagaaa	acacggagat	cccttcttat	60
gaagaaggga	tetegetett	tgatgttgaa	gccactctgc	aaccagatgg	ggtgctcgac	120
atcaaagaaa	atattcattt	tcaggcgcga	aatcagcaga	ttaagcacgg	cttttatcgt	180
gatttaccac	gactatggat	gcagcctgat	ggggacgctg	cactgctgaa	ctatcatatt	240
gttggcgtca	cccgtgatgg	tattcctgaa	ccctggcatc	ttgactggca	tatcgggtta	300
atgagtattg	tcgtgggcga	taaacaacgt	ttcttgcctc	aaggcgacta	tcattatcaa	360
attcattatc	aggttaaaaa	tgctttcctg	cgtgaggggg	attctgatct	gctaatctgg	420
aacgtgaccg	gtaaccactg	gccgtttgaa	atttataaga	cccgtttttc	tctccagttc	480
tctaatattg	cgggtaatcc	atttagcgaa	atcgatcttt	ttaccggaga	agagggcgac	540
acatatcgta	atggccgcat	ccttgaggac	ggaagaattg	aatcccgcga	tccgttttat	600
cgtgaagatt	tcacggtcct	ctaccgctgg	cctcacgctt	tacttagcaa	tgcctcggct	660
ccgcaaacga	cgaatatttt	cagccatctt	cttttaccct	ccacgtcatc	gttgttaatt	720
tggtttccgt	gtc					733
	nerichia col	.i				
	gcgcagagtc	tcacgatgcg	ggcgatatca	gctttagcga	tatctttcgt	60
ggcccggctt	ccatctttgg	cggcattgag	tatcaaacgc	cgtggaatcc	cctgcgtctg	120
aaactcgaat	acgatggaaa	caattaccag	aatgatttcg	ctggcaaact	gcctcaggca	180
agccatttca	acgtcggcgc	agtttatcgc	gctgccagct	gggcagatct	caacctgagt	240

tatgaacgcg	gtaacacgtt	gatgtttggc	ttcacgttac	ggaccaattt	caacgatctg	300
cgccctgccc	tgcgcgatac	gccaaaaccg	gcatatcaac	ctgcgcctga	atctgaagga	360
ttgcagtaca	ccacggtage	aaaccaactt	accgccctga	agtataacgc	gggctttgac	420
gcgccagaaa	ttcagctacg	cgataagaca	ctgtatatgt	ctggtcagca	atacaaatac	480
cgtgactctc	gtgaagcggt	cgatcgtgcc	aaccggattc	tggtgaataa	cctgccgcaa	540
ggcgttgaga	agattagcgt	gacgcaaaag	cgcgagcata	tggcgatggt	gactaccgaa	600
accgacgtag	ccagcctgcg	caaacagctg	gcaggtacag	cgcctggtca	atcagagcca	660
ctgcaacaac	aacgtgttga	agctgaagat	ctttctgcct	ttggtcgggg	ctaccgtatt	720
cgtgaagatc	gctttagcta	ctctttcaac	ccaaca			756
<210> 153 <211> 735 <212> DNA <213> Esch <400> 153	nerichia col	Li				
gaataccaaa	gcagatcgtc	tcgctgaatt	aaaaatccgt	tcgccctcaa	ttcaactgat	60
aaaatttggc	gctattggtt	tgaatgcaat	tatcttttcc	cccctgctga	tagctgctga	120
tacaggaagt	caatatggca	ccaatattac	tattaatgat	ggtgacagaa	ttacaggaga	180
taccgccgat	ccatcaggaa	acctctatgg	tgtaatgacc	ccagcaggaa	acacgcctgg	240
caatatcaac	ctgggtaatg	atgtcaccgt	caatgtcaac	gacgcctctg	gatatgcaaa	300
aggaatcatt	attcagggca	aaaacagctc	cctgacagct	aaccgactca	cagtagatgt	360
tgttggtcaa	acctctgcca	tcggcattaa	cttaattggt	gactataccc	atgctgactt	420
aggcacaggc	agcaccatta	agagtaacga	tgacggcatc	attattgggc	atagctcaac	480
actaacagcc	actcaattca	ccattgaaaa	ctcgaacggt	ataggcctaa	ccatcaatga	540
ctatggcacc	agtgtcgatc	ttggaagcgg	aagtaaaatc	acgaccgatg	gaagtacagg	600
tgtttatatc	ggtggtctca	acggcaataa	cgccaatggt	gctgcgcgtt	ttacggctac	660
agacctgaca	atcgatgttc	agggctacag	cgccatgggg	ataaacgtac	agaaaaactc	720
tgttgtcgat	ctcgg					735

<210> 154 <211> 509 <212> DNA

## WO 2007/039319 PCT/EP2006/010132 66/763

<213> Escherichia coli	
<400> 154 ctaactcatt gtggtggagc ccaaacatga ttactcatgg tttttatgcc cggacccggc	60
acaagcataa gctaaaaaaa acatttatta tgcttagtgc tggtttagga ttgtttttt	120
atgttaatca gaattcattt gcaaatggtg aaaattattt taaattgggt tcggattcaa	180
aactgttaac tcataatagc tatcagaatc gcctttttta tacgttgaaa acaggtgaaa	240
ctgttgccga tctttctaaa tcgcaagata ttaatttatc gacgatttgg tcgttgaata	300
agcatttata cagttctgaa agcgaaatga tgaaggccga gcctggtcag cagatcattt	360
tgccactcaa aaaacttccc tttgaataca gtgccttacc acttttaggt tcggcacctc	420
ttgttgctgc aggtggtgtc gctggtcata caaataaact gactaaaatg tccccggacg	480
tgaccaaaag caacatgacc gatgacaag	509
<210> 155 <211> 338 <212> DNA <213> Escherichia coli	
<400> 155 ggcgttacta teetetetat gtgcacaegg ageteeteag tetattacag aactatgtte	60
ggaatatcac aacacacaaa tatatacgat aaatgacaag atactatcat atacggaatc	120
gatggcaggc aaaagagaaa tggttatcat tacatttaag agcggcgcaa catttcaggt	180
cgaagtcccg ggcagtcaac atatagactc ccaaaaaaaa gccattgaaa ggatgaagga	240
cacattaaga atcacatatc tgaccgagac caaaattgat aaattatgtg tatggaataa	300
taaaaccccc aattcaattg cggcaatcag tatggaaa	338
<210> 156 <211> 500 <212> DNA <213> Escherichia coli	
<pre>&lt;400&gt; 156 tttgttgtta ttggtacttc attcctgaaa atttctattg tactggggat attgaagaac</pre>	60
gcattaggca ttcaacaggt accaccaaac atggcgctaa catcagtgtc tttgatactg	120
acaatgttta ttatgtctcc gataatatta cagataaatg ataatatttc tcaggaacca	180
atcaattata ccgactctga tttttttcaa aaagttgatg agaaaatatt atcaccatat	240
cgcggtattt tagaaaaaaa tacagagaaa gacaatgtag agttttttga acgtgcagct	300

## WO 2007/039319 PCT/EP2006/010132 67/763

gctttcacga	tggggcagct	tgaagctgca	ttcaagatag	gttttttgct	ctatttaccc	420
tttattgcga	tagatttgat	catttccaat	atcttattgg	ccttgggtat	gatgatggta	480
tcgccagtaa	caatttcgat					500
<210> 157 <211> 503 <212> DNA <213> Esch	nerichia col	li				
<400> 157	gatcatagta	gagaactata	cattttcqqa	aaaattgcca	tctggaatct	60
_		ctaaaagaaa		_		120
ttactattct	tttttgggca	atagatgcgg	ctgggcagat	tattgatact	ctaagaggtt	180
caacaatatc	ttcaattttt	aacccgtcca	taagtgattc	atcttctatc	actggcgtta	240
ttttgtacca	atttatctct	gtgatctttg	ttattcatgg	tgggatacaa	agcattctgg	300
ataagctata	tttatcctac	gagatattac	cattacaagc	cgatattgca	ttcaatcgtg	360
ctttaataga	ttttttgttt	tctctatggg	attcatttat	taaactgatg	ttatcatttt	420
cagttcccat	gattatcggt	atattcttat	gtgatatggg	gtttgggttt	cttaacaaaa	480
cagcgcctca	actaaacgta	ttc				503
<210> 158 <211> 617 <212> DNA <213> Esch	nerichia col	Li				
<400> 158	gtaatggctg	cagtgcagtc	attaatotta	ttttcatttt	tttctttata	60
		atatagttgg				120
		ttcgagaaat				180
		tgattgtctt				240
aataggattc	atctttgcgg	ttgaaaaaat	aaaaccatcg	gctcagaaga	ttagtgtaaa	300
aaataacctg	aaaaatattt	tttctgtaaa	gagcatttt	gagctactta	aatcagtatt	360
taagttagtg	ataattgttc	tcattttta	ttttatgggg	cattcatatg	caaatgagtt	420
tgctaatttc	acaggactga	acgcatatca	agctcttgtc	gttgttgcct	tttttgtttt	480

caaaaaaaat tgggtaatga aactatctta aaaaaagact ctctatttat actgttaccg 360

# WO 2007/039319 PCT/EP2006/010132 68/763

tottttatgg aaaggogtgo tattoggata totactottt toagtatttg attt	ctggtt 540
ccagaagcat gagggactga agaaaatgaa aatgagtaaa gatgaggtga aacg	gagaagc 600
caaggatact gatggta	617
<210> 159 <211> 740 <212> DNA <213> Escherichia coli	
<pre>&lt;400&gt; 159 gatggtgact ctattgcagg attaccaaca aaaacaattg gcgcaaagct atca</pre>	igattca 60
gcaggccgtt tttgagagcc agaataaagc tattgaggaa aaaaaagccg cggc	
tgctttggtt ggcgggatta tttcatcagc attggggatc ttaggttctt ttgc	2
gaacaacgcg gctaaagggg ctggtgagat tgctgaaaaa gcaagctctg catc	
ggctgctggt gcggcttctg aggttgcaaa taaagctctg gtcaaggcta cgga	
tgctgatgtc gcagaggagg catccagtgc gatgcagaaa gcgatggcca caac	
agcagccagc cgtgcatctg gcgttgcaga tgatgttgcg aaagccactg actt	
agatottgca gacgeegeeg agaagacaag cagaatcaat aagttgttga atte	3 3
taaactgacc aataccacag catttgttgc cgtgaccagt cttgctgaag gtac	
gttgccaaca acaatatctg agtccgtcaa atcgactcat gaggttaatg aaca	
gaagtogotg gaaaacttoo agcaggggaa totggagotg tataaacaag acgt	
aacgcaggat gatatcacga ctcgtctgcg tgatataacg tccgctgtcc gcga	
tgaggtccag aatcgtatgg	740
<210> 160 <211> 717 <212> DNA <213> Escherichia coli	
<400> 160	
tgtttgaggt cactttctgg tggcgtgatc cccaaggttc tgaagaatac tcga	
agcgcgtatg ggtctacatc actggtgtga ccgatcacca tcagaacagc cagc	
cgatgcagcg aattgcaggc actaacgtct ggcagtggac gacacaactc aatg	
ggcgcggcag ctactgcttt attcccaccg aacgcgatga cattttttct gtac	catccc 240
ccgatcgcct cgaattgcgc gaaggctggc gaaaactatt accccaggcg atag	ccgatc 300

# WO 2007/039319 PCT/EP2006/010132 69/763

cgctgaacct	acaaagctgg	aaaggcgggc	gagggcacgc	tgtttctgca	ctcgaaatgc	360
cgcaagcgcc	tctgcaaccg	ggatgggatt	gtccgcaagc	gccagaaata	cctgccaaag	420
aaattatctg	gaaaagtgaa	cggttgaaaa	agtcacggcg	tgtatggatt	tttaccaccg	480
gcgatgcaac	agcagaagaa	cgcccgctgg	cagttttgct	cgatggcgaa	ttttgggcgc	540
aaagtatgcc	cgtctggcca	gtgctgactt	cgctgaccca	tcgtcagcaa	cttcctcccg	600
ccgtgtatgt	gttgatcgac	gctatcgaca	ccacgcaccg	cgcccacgaa	ctgccgtgta	660
atgcggattt	ctggctcgca	gtacagcaag	agttattacc	cctggtgaaa	gctattg	717
	nerichia col	li				
<400> 161 tgtttctgca	ctcgaaatgc	cgcaagcgcc	tctgcaaccg	ggatgggatt	gtccgcaagc	60
gccagaaata	cctgccaaag	aaattatctg	gaaaagtgaa	cggttgaaaa	agtcacggcg	120
tgtatggatt	tttaccaccg	gcgatgcaac	agcagaagaa	cgcccgctgg	cagttttgct	180
cgatggcgaa	ttttgggcgc	aaagtatgcc	cgtctggcca	gtgctgactt	cgctgaccca	240
tcgtcagcaa	cttcctcccg	ccgtgtatgt	gttgatcgac	gctatcgaca	ccacgcaccg	300
cgcccacgaa	ctgccgtgta	atgcggattt	ctggctcgca	gtacagcaag	agttattacc	360
cctggtgaaa	gctattgcc					379
<210> 162 <211> 402 <212> DNA <213> Esch	nerichia col	Li				
<400> 162 tatgctgctc	caactattcc	tcaggggcag	ggtaaagtaa	cttttaacgg	aactgttgtt	60
actgctccat	gcggcatttc	tcagaaatca	gctgatcagt	ctattgattt	tgggcagctt	120
tcaaaaagct	tccttgcggc	aggaggtgta	tccaaaccaa	tgaatttaga	tattgaattg	180
gttaattgtg	atatcacttc	atttaagggg	gggggaggaa	gccaggcagc	aaaaaaggg	240
actgtgaagc	tggcttttag	tggtccaagg	gtttctggtc	ataatgagga	gttagatacc	300
agcggggga	caggtactgc	aattgcagtt	caggccgcag	gtaaaaacgt	ttctttcgat	360
ggcacagaag	gtgatgctaa	taccctgaaa	gatggagata	at		402

# WO 2007/039319 PCT/EP2006/010132 70/763

<210> 163 <211> 724 <212> DNA <213> Esc	herichia co	li				
<400> 163 cttggaaatg	ttggtaaagc	tgtttcgcaa	tatattctgg	ctcagagaat	ggcacagggg	60
ttatcgacaa	cagctgcaag	tgcgggtctg	atcacatcgg	ctgttatgct	ggctatcagt	120
cctctttctt	tcctggctgc	tgcagataaa	tttgagcgag	ctaagcagct	tgaatcatat	180
tctgaacgat	ttaaaaaatt	gaattatgaa	ggggatgctt	tactcgcagc	ctttcataaa	240
gaaaccggag	ctatagatgc	agccctgaca	acaataaata	ctgtcctgag	ttctgtatct	300
gcgggagtta	gtgcagcctc	cagtgcatcc	ctcatagggg	ccccgataag	catgctggtg	360
agtgcattaa	ccggtacgat	atctggcatt	ctggaagcat	caaaacaggc	tatgtttgag	420
cacgttgcag	agaaattcgc	tgctcggatc	aatgaatggg	aaaaggagca	tggcaaaaat	480
tattttgaga	atggatatga	cgcaagacat	gctgcgtttt	tagaagactc	tctgtctttg	540
cttgctgatt	tttctcgtca	gcatgcagta	gaaagagcag	tcgcaataac	ccagcaacat	600
tgggatgaga	agatcggtga	acttgcaggc	ataacccgta	atgctgatcg	cagtcagagt	660
ggtaaggcat	atattaatta	tctggaaaat	ggagggcttt	tagaggctca	accgaaggag	720
ttta						724
<210> 164 <211> 618 <212> DNA <213> Esc	herichia col	Li				
<400> 164	aactataagg	catcagtata	atacccacac	acaagatttt	aggataacta	60
	ggcagcgaaa			_		120
	aataatttct					180
						240
	tattactaaa					
	ttttagtcgg		_			300
	agcaacagta					360
	gaaatacagg					420
agtttcttgc	gttaataaca	cctcttttt	ttcaggttgt	aatggataag	gttttagttc	480

accgggggtt	ttcaacgtta	aatattatca	caatagcatt	tattatagtg	atactttttg	540
aagtgatatt	aaccggagcc	agaacttata	ttttctctca	tactacaagt	cgtattgacg	600
tcgaactggg	tgctaagt					618
<210> 165 <211> 768 <212> DNA <213> Esch	nerichia co	li				
<400> 165	++>+aa+a+a	g20+++2gg2	at at at a a a a	~~++>++>++	ant naget ag	60
		gactttacca				
		gttcccctct				120
gctacgccca	tacgcaacag	acaattgatg	cccgccatga	ctgggccatc	ctgcgtgaaa	180
aagcgttgaa	ttttggcgag	gctgagcagg	cactgctgac	aggacacgct	ttccaccctg	240
cacctaagtc	tcatgaaccg	tttaaccgcc	aggaagctga	acgatacctg	cctgacatgg	300
cacctcactt	cccgctgcgg	tggttttcgg	tggataaaac	gcaaatcgct	ggtgaaagtc	360
tgcatcttaa	ccttcaacag	cggttgacgc	gatttgccgc	agaaaatgcg	ccccagttac	420
tcaacgaatt	aagtgacaat	caatggctgt	tecegetgeg	cccgtggcag	ggagaatatc	480
ttttccagca	agtgtggtgc	caggcacttt	ttgctaaagg	acttatcaga	gacttaggcg	540
aggccggcac	gtcgtggctg	ccgaccacct	cttcccgctc	cctctactgt	gctaccagcc	600
gcgatatgat	caagttctcc	ctgagcgttc	ggctgaccaa	ctccgtccgt	actctgtctg	660
tgaaagaggt	ggagcgagga	atgcgcctgg	cacgtctggc	gcaaaccgac	ggctggcaga	720
tgctacaggc	ccgcttccct	actttccggg	taatgcagga	ggacgact		768
<210> 166 <211> 501 <212> DNA <213> Esch	nerichia co	li				
<400> 166	atatqqactq	cgctgtgaaa	aactcgacaa	acctctaaat	cttaactaaa	60
						120
		ttgcactggc				
		atcgccgcac				180
ccgaatggtg	tgaggagcca	caggcgctga	cgcttttcgg	acaggtacaa	agcgacatta	240
tccatcgttc	cgctttctgg	cagttaccgt	tatggctgag	ttctccggca	aaccgggcct	300

## WO 2007/039319 PCT/EP2006/010132 72/763

ccggtgaaat ggttttt	gat gcagagcgtg	agatttattt	cccgcagcgc	ccccccgtc	360
cgcagggtga agtttat	cgt cgttacgatc	cacgcattcg	caggatgctg	agtttccgca	420
ttgccgatcc cgtttct	gat gcagaacgtt	tcactcgctg	gatgaacgat	ccgcgcgttg	480
agtatttctg ggagcaa	aagt g				501
<210> 167 <211> 721 <212> DNA <213> Escherichia	n coli				
<400> 167 agactgggat ttggtca	acc gccgcctggt	ggcaaaaatg	ttgtctgagc	tggagtatga	60
gcaggttttc cacgcgg	gaat ctcagggcga	tgaccgctac	tgcattaacc	tgccgggagc	120
acaatggcgc ttcatcg	gctg aacgtggtat	ctggggctgg	ctctggattg	atgctcaaac	180
tetgegetge geggaeg	gage cagtactgge	tcagacgctg	ctgatgcagc	taaagcaggt	240
actgtcaatg agcgatg	gcaa ccgttgctga	gcatatgcag	gatttgtatg	ccacgctgct	300
gggcgacctg caactac	tga aagcccgtcg	cgggctgagc	gccagtgacc	tgattaatct	360
taatgccgac cgcctgc	aat gcctgctgag	cggtcatcct	aaattcgttt	ttaataaagg	420
tcgccgtggc tggggta	aag aggcgctgga	acgatatgcg	ccagagtatg	ccaacacctt	480
cagactgcac tggctgg	gcgg taaaacgtga	acatatgatc	tggcgctgtg	ataacgagat	540
ggatattcat cagttgt	tga cggccgcaat	ggatccgcag	gagtttgccc	gcttcagtca	600
ggtctggcag gaaaacg	ggac tggatcataa	ctggctgccg	ctgccggtac	atccgtggca	660
gtggcaggaa aaaatcg	geta cegaetteat	cgctgatttt	ggcgaaggca	ggatggtgtc	720
t	•				721
<210> 168 <211> 719 <212> DNA <213> Escherichia	a coli				
<400> 168 ggagtatatt gcgtggg	gtag tattccccaa	aaaggttatg	accaaaaatg	gatatccctt	60
atttattgag gttcata	ata aaggtagctg	gagtgaggag	aatactggtg	acaatgacag	120
ctatttttt ctcaagg	ggt ataagtggga	tgagcgggcc	tttgatgcag	gtaatttgtg	180
tcagaaacca ggagaaa	ıcaa cccgtctgac	tgagaaattt	gacgatatta	ttttaaagt	240

## WO 2007/039319 PCT/EP2006/010132 73/763

cgccctacct gcagatette ctttagggga ttattetgtt acaattecat acaetteegg	300
catgcagcgt catttegega gttacttggg ggcccgtttt aaaatcccat acaatgtggc	360
caaaactctc ccaagagaga atgaaatgtt attcttattt aagaatatcg gcggatgccg	420
tccttctgca cagtctctgg aaataaagca tggtgatctg tctattaata gcgctaataa	480
tcattatgcg gctcagactc tttctgtgtc ttgcgatgtg cctgcaaata ttcgtttat	540
gctgttaaga aatacaactc cgacatacag ccatggtaag aaattttcgg ttggtctggg	600
gcatggctgg gactccattg tttcggttaa cggggtggac acaggagaga caacgatgag	660
atggtacaaa gcaggtacac aaaacctgac catcggcagt cgcctctatg gtgaatctt	719
<210> 169 <211> 561 <212> DNA <213> Escherichia coli	
<400> 169 aaatgaatgt ctggactcaa cgtggatttc atcaaaagga aactatattc agaagtttga	60
aaataaattt gcggaacaaa accatgtgca atatgcaact actgtaagta atggaacggt	120
tgctcttcat ttagctttgt tagcgttagg tatatcggaa ggagatgaag ttattgttcc	180
aacactgaca tatatagcat cagttaatgc tataaaatac acaggagcca cccccatttt	240
cgttgattca gataatgaaa cttggcaaat gtctgttagt gacatagaac aaaaaatcac	300
taataaaact aaagctatta tgtgtgtcca tttatacgga catccatgtg atatggaaca	360
aattgtagaa ctggccaaaa gtagaaattt gtttgtaatt gaagattgcg ctgaagcctt	420
tggttctaaa tataaaggta aatatgtggg aacatttgga gatatttcta cttttagctt	480
ttttggaaat aaaactatta ctacaggtga aggtggaatg gttgtcacga atgacaaaac	540
actttatgac cgttgtttac a	561
<210> 170 <211> 750 <212> DNA <213> Escherichia coli	
agcagcatca ggttctgagc tgcattgcga atcaaatgac aacggaagat attctggaga	60
aactgaaaat atcgctaaaa acgctctact gccataaaca caatatcatg atgatcctca	120
atcttaagcg gatcaatgag ctggtacgcc atcagcatat taattatctg gtgtgaacga	180

ttgaacaata	taaagaggcc	cagcaacagc	cagacctccc	gttaattata	cgttatgcag	240
taacgccttc	cggtatcaac	gaagcaattt	gcttacgcca	ttgcgcttgc	tcctgttcac	300
cttctgtacg	ttgaccataa	agttgcgcta	tctgcgtacc	atcatgggca	aacaattcca	360
gactggttac	gtgaccatcg	ctggtcggtt	tacgggtaac	ccaggcttca	gcaatgctct	420
cttctaatag	atgaagggta	aacgtcgggt	tgaaaatatt	cagccaacct	ttcattggca	480
ccacttttc	taccacaccg	gtgaaaatct	gtacgcagcc	acggttgcca	acaaacacca	540
tgatttcatt	gccatcctgc	tgtgcagatt	caagaatttg	cgccaacgca	ctgttggata	600
ctttgcaggc	caaatcgtct	gccaccagat	tgaacgcctg	ttggcgcgtc	aggttgtggc	660
gcttgagcaa	cgtaaaaaac	tgatgaacgt	cggtcatcgc	ccgccactct	tgctcgacca	720
cactggcatc	ggctcgcgtt	tgaacaactg				750
	nerichia col	li				
<400> 171 ttcttcggta	tcctattccc	gggagtttat	gatagacttt	tcgacccaac	aaagttatgt	60
ctcttcgtta	aatagtatac	ggacagagat	atcgacccct	cttgaacata	tatctcaggg	120
gaccacatcg	gtgtctgtta	ttaaccacac	cccaccgggc	agttattttg	ctgtggatat	180
acgagggctt	gatgtctatc	aggcgcgttt	tgaccatctt	cgtctgatta	ttgagcaaaa	240
taatttatat	gtggctgggt	tcgttaatac	ggcaacaaat	actttctacc	gtttttcaga	300
ttttacacat	atatcagtgc	ccggtgtgac	aacggtttcc	atgacaacgg	acagcagtta	360
taccactctg	caacgtgtcg	cagcgctgga	acgttccgga	atgcaaatca	gtcgtcactc	420
actggtttca	tcatatctgg	cgttaatgga	gttcagtggt	aatacaatga	ccagagatgc	480
atccagagca	gttctgcgtt	ttgtcactgt	cacagcagaa	gccttacgct	tcaggcagat	540
acagggagaa	tttcgtcagg	cactgtctga	aactgctcct	gtgtatacga	tgacaccgga	600
agaagtggac	ctcaca					616

<210> 172 <211> 613 <212> DNA <213> Escherichia coli

# WO 2007/039319 PCT/EP2006/010132 75/763

<400> 172						
	aaattatacc	gtgctgactc	tagaccccca	gatgaaataa	aacgttccgg	60
aggtcttatg	cccagagggc	ataatgagta	cttcgataga	ggaactcaaa	tgaatattaa	120
tctttatgat	cacgcgagag	gaacacaaac	cggctttgtc	agatatgatg	acggatatgt	180
ttccacttct	cttagtttga	gaagtgctca	cttagcagga	cagtctatat	tatcaggata	240
ttccacttac	tatatatatg	ttatagcgac	agcaccaaat	atgtttaatg	ttaatgatgt	300
attaggcgta	tacagccctc	acccatatga	acaggaggtt	tctgcgttag	gtggaatacc	360
atattctcag	atatatggat	ggtatcgtgt	taattttggt	gtgattgatg	aacgattaca	420
tcgtaacagg	gaatatagag	accggtatta	cagaaatctg	aatatagctc	cggcagagga	480
tggttacaga	ttagcaggtt	teccacegga	tcaccaagct	tggagagaag	aaccctggat	540
tcatcatgca	ccacaaggtt	gtggagattc	atcaagaaca	attacaggtg	atacttgtaa	600
tgaggagacc	cag					613
<210> 173 <211> 227 <212> DNA <213> Esc <400> 173	herichia co	li				
	ttatggcggt	tttatttgca	ttagtttctg	ttaatgcaat	ggcggcggat	60
tgcgctaaag	gtaaaattga	gttttccaag	tataatgaga	atgatacatt	cacagtaaaa	120
gtggccggaa	aagagtactg	gaccagtcgc	tggaatctgc	aaccgttact	gcaaagtgct	180
cagttgacag	gaatgactgt	cacaatcaaa	tccagtacct	gtgaatc		227
		epidermidis	3			
<400> 174 ccactttttc	tacttctaaa	acttcagcaa	gtgtttcacg	taacttgcta	gaacgagtaa	60
tttttatatc	gtccttacca	tcattttgtt	ctatggtaaa	tatattcata	ttattttctt	120
ctttaaatat	tgctgcatgt	actgtaaact	tatcgtagtc	aatcatagtt	agtactgtat	180
ctaggtgcat	aaatgtgcgt	gtattaggta	tttcaatagc	tacgattttt	ttaaaacttg	240
tqtttqcatc	tttgaaaata					260

## WO 2007/039319 PCT/EP2006/010132 76/763

<210> 175 <211> 422 <212> DNA <213> Staphylococcus epidermidis	
<400> 175	
ttgataacaa acaaattotg ctatttoatt tgaagaagto aaaatoatoa aagtatogtt	60
acctccaata gttcctaata tttctttcat ttgtaattga tctatgtaat aacttatact	120
ttgagcaaag ccaggagatg tttttattaa gacatagtta tttagcgtta taaattcaat	180
aatctcatca ctaaatattt ctaattgttt ttttgcactt aattgatttg tttgatttat	240
tttcttgtaa atatactttt tattttcaac agggattttg taaatttcta attcttgtaa	300
gtcacgagaa atagttgtca agctatagta aactccaaaa tgtcttgcca tgtaatccac	360
tatttgttgt tttttattaa actgattctg ttgtataaca gttaagataa gatttaaacg	420
tt	422
<210> 176 <211> 322 <212> DNA <213> Staphylococcus epidermidis	
<400> 176 taacactgaa ccccaatgac ctacaatatg ttctaatact tgtgccattg atggattagc	60
aagttttgaa atttggttct gctgaatgac accttgggct agtacagtca ttaagaaata	120
aatgactagc acagaaatca aaccaataac ggtagcagtt cctacatcct ttttagactt	180
tgcacgtcca gaaaagacaa cggctccttc aatccctgtg aatacccata cagttactaa	240
catagtactt tttacttgtg ccattgtatc tccccaacta aaaacgccaa cacttccact	300
agtcatacca taaaaaccgg at	322
<210> 177 <211> 733 <212> DNA <213> Staphylococcus epidermidis	
<400> 177 cctcaaacaa gcagaaaaag ctaaaagcga agttacacaa tcaactacaa atgtatctgg	60
tacacaaaca tatcaagace ctacccaagt tcaacctaaa caagacacac aaagtactac	120
atatgatgca tcattagatg aaatgagtac ttataatgaa atttcatcaa atcaaaagca	180
acaatcttta tcaacagatg atgcgaatca aaatcaaacg aattctgtta caaaaaatca	240

## WO 2007/039319 PCT/EP2006/010132 77/763

acaagaagaa acaaatgatt tgacacaaga agataaaaca tccactgata caaatcaatt	300
acaggagaca caatctgtag caaaagaaaa tgagaaagat ttaggagcta acgcaaataa	360
tgaacaacaa gacaagaaga tgactgcaag tcaaccttcc gaaaatcaag caattgaaac	420
tcaaactgct tctaatgata atgaaagcca acaaaaaagt cagcaagtaa cttctgaaca	480
aaatgaaact gctacaccta aagtatcaaa tacaaacgca tctggttata attttgatta	540
cgatgatgaa gacgatgata gctcaacaga ccatttagag cctatctcat taaacaatgt	600
gaatgctaca tctaaacaaa ctacttcata taaatataaa gaaccagctc aacgtgtaac	660
aactaatact gtaaaaaaag aaacggcatc taatcaagcg actatagata caaagcaatt	720
cacccattt agt	733
<210> 178 <211> 507 <212> DNA <213> Staphylococcus epidermidis	
cttagggaaa aagatgggta gtaatgttaa agattctaaa attacaccga ataaaataag	60
tttatttacc ggttctttag ttactaatga aataactacg atagtacaat ataaaaatat	120
ggagagtatt ttttttcgct ttacaagacg tctaggtata ggttgtttct tagttgctgc	180
aggtgcgtat aaaatggtaa taattaatcc gactaatgcc atagataaaa gaacaaaata	240
gttaatatct aactttatta ttaagtatgg aaagataata aagaaaatta tgttctgaat	300
atgacataac aatgacgaat ttgcatgcgt accgtgtgca tgtctcctaa ttaaaaaata	360
acttaaatga gttaaaagtg tgtaaaagaa agtatgaaag attattgcta gcccatacac	420
aactatagac ttttcaatat ttatcgctag tacctgcatc cctaaacgaa tttttagaaa	480
ctgtatgtga tctaagttat ttttacg	507
<210> 179 <211> 512 <212> DNA <213> Staphylococcus epidermidis	
<400> 179 cctcgcatat cagtttgtga caccatataa agtaaaataa atgatatgaa aagtactatt	60
gttattatca ataagtatct tttattgagt gacaagtagg atacttttaa tttattgaac	120
aatagttgag ttaaataagc aataattaga gttatgatta caaaagaggt aaaatgtatt	180

aactgtaaag	caaatttaaa	cggaatataa	tcttttatag	tcaaatgtat	gtatacagtt	240
atgaaattag	ttatatataa	gatcatagtg	gtgaataata	caactaatat	tgaataaagc	300
tttatttttg	tataaaagaa	aatggtgatt	attataacca	aaactattaa	tgctttactt	360
tgccaaaagt	aatacattat	tgcagaaggg	attacaatcg	taaaaacgat	tatgtaatcc	420
ctaaaattaa	atttcatatt	aatgataact	ttagtaaccc	aaatcattaa	aaagatttgt	480
aggcctgcaa	acggaaatag	attaatatca	tc			512
<210> 180 <211> 534 <212> DNA <213> Stap <400> 180	phylococcus	epidermidis	5			
	accaccatac	cttgtaaatt	ttttttagat	ttagttaaaa	tggggataca	60
agatacatcg	aaatatttag	tatgtacgtt	attaatagca	acttctaatt	gttcatagat	120
aactttttca	gttctaaaac	tttcaataat	taatttttca	atactatcat	ctatgaaacc	180
aatgtaactt	ttattttcta	ccatttgatc	agggttaaac	acctgataat	aagcatgatt	240
agcaactaca	atttctccat	gtttatcaat	catcagtact	gaactcggta	tattttctaa	300
ggtagttttt	aatctattgg	attgaatttt	ttgactattg	tttaattttt	gcaatcgtcg	360
tgctaagtca	tttgtagtca	caaataatgc	cctagtttcc	ttcacattac	tttctggaac	420
acgaacatgg	taatatccat	ctgctagaag	tgatgtagca	taagttactt	cattgatagg	480
tctaatatat	gttcgattga	tacttctact	tgctaaatag	accgtaaata	atac	534
<210> 181 <211> 286 <212> DNA <213> Stap <400> 181	ohylococcus	epidermidis	3			
	gaaaggctca	atattagcta	tcataggttt	gctaattgta	tttgttgtta	60
caggttttat	cttctttca	atgatttcag	atcaaatatt	tttcaaacat	gtcaaaccag	120
ttgaaaaggt	tgaaaaatta	gataaaactt	tagataaagc	atctaaaaag	caaatacaca	180
attatacgag	ccaacaagta	tctaacaaag	caaatacagc	ttggcgtgat	gcgtctggta	240
cagaaattaa	agaagctatg	gatagtagta	aattcataga	tgatga		286

## WO 2007/039319 PCT/EP2006/010132 79/763

<211> <212> <213>	381 DNA Stap	phylococcus	epidermidi:	s			
<400> acgacga	182 aatg	attcataagg	tttaatatgg	tctaaattta	tatcatttaa	gtgataatta	60
tgcaatt	ttta	tatctacaga	tgaaatatct	aattcaaaag	gtaggtttag	ttctgatact	120
tcattt	gtga	gattggctac	aattaataca	gtattgtttt	taaatgtgcg	tgtatatgca	180
aaaacct	tgct	tattttcagc	atcgaccata	ttaaacttac	cgtagatgta	aatcaaatca	240
gatttt	ttta	gttgaattaa	cgctttataa	taagaaagta	tcgaaaactt	atcatttagt	300
tgttgtt	ttaa	cattaatttc	tgtatagtta	gggtttacat	gaaaccatgg	cttaccagta	360
gtgaat	ccag	cattgataga	a				381
<210> <211> <212> <213>	183 272 DNA Star	phylococcus	epidermidis	5			
<400> ttaaaco	183 catt	aggaaatcgt	gtgattattg	agaagaaaga	gcaagaacaa	gcagctaaaa	60
gtggcat	cgt	tttaacagat	agcgctaaag	aaaaatcaaa	tgaaggtgtg	atcattgcag	120
ttggaca	aagg	tcgtttatta	gacaatggca	cacaagttgc	tcctcaagtc	agtgaaggtg	180
acacaat	cgt	cttccaacaa	tatgcaggta	ctgaagtaaa	acgtggcgcc	caaacatatt	240
taatttt	caaa	tgaagaagat	atattagcta	tt			272
<210> <211> <212> <213>	184 614 DNA Stap	phylococcus	epidermidis	5			
<400> tcaagac	184 cacg	ctttctagtg	ttttatctct	agaatatcct	gaaaaagaaa	ttatcattat	60
caatgat	gga	agttctgata	atactgctga	aatcatctat	gaattcaaga	aaaatcatga	120
ttttaaa	attt	gttgacctcg	aagtcaatag	aggtaaagct	aatgcactca	atgagggaat	180
caaacaa	agca	tcttacgaat	atgttatgtg	cttagatgct	gacactgtca	ttgatgacga	240
tgcgcct	ttt	tatatgattg	aagactttaa	aaagaatcca	aaattaggcg	cagttacagg	300
taatcca	acgt	attcgtaata	aaagttctat	cttaggaaaa	atacagacca	ttgaatatgc	360
aagtatt	att	ggttgtatca	agcgaagtca	atctctagca	ggagcaatca	atactatttc	420

## WO 2007/039319 PCT/EP2006/010132 80/763

aggtgttttc acactattta	aaaaaagtgc	actcaaagat	gtaggttatt	gggatactga	480
catgattact gaggatatcg	ctgtttcatg	gaaactccat	ctttttgatt	acgaaattaa	540
gtacgaacca cgcgcacttt	gctggatgtt	ggtgcctgaa	actataggtg	gtttatggaa	600
acaaagggtt cgat					614
<210> 185 <211> 329 <212> DNA <213> Staphylococcus	epidermidis	5			
<400> 185 gttttcttat tacgaaccac	attggttcta	ccaattttca	taatttaaat	ttactttcaa	60
aaaagcaatt agatgaaatg	tatgaaacag	gcttatggga	ctttgaatct	catactcatg	120
atttacacgc tcttaagaaa	ggcaataaat	cgaagttttt	agattcgtct	caatctgttg	180
ctagtaaaga tattaaaaaa	agcgaacact	atttaaataa	aaactaccca	aaaaatgaac	240
gcgcacttgc ttacccatac	ggattaatta	atgacgacaa	aataaaagct	atgaaaaaaa	300
atggaattca atatgggttt	acacttcag				329
acggaactea acacgggttt					
<210> 186 <211> 220 <212> DNA <213> Staphylococcus	·	5			
<210> 186 <211> 220 <212> DNA	epidermidis		gattttaaat	agaaaatgtc	60
<210> 186 <211> 220 <212> DNA <213> Staphylococcus <400> 186	epidermidis cacgaatatt	gttatcaata	-	-	60 120
<210> 186 <211> 220 <212> DNA <213> Staphylococcus <400> 186 ttattctgct atatgatatt	epidermidis cacgaatatt caagttcatg	gttatcaata attcaattct	aattggtcaa	agcgtttgaa	
<210> 186 <211> 220 <212> DNA <213> Staphylococcus <400> 186 ttattctgct atatgatatt acgatctgca tttgattttt	epidermidis cacgaatatt caagttcatg cagaaacctc	gttatcaata attcaattct tattctatta	aattggtcaa	agcgtttgaa	120
<210> 186 <211> 220 <212> DNA <213> Staphylococcus <400> 186 ttattctgct atatgatatt acgatctgca tttgattttt gaaatgttca tattcatcaa ctcaacatct aattgctcct <210> 187 <211> 210 <212> DNA <213> Staphylococcus	epidermidis cacgaatatt caagttcatg cagaaacctc tgaatccatc	gttatcaata attcaattct tattctatta tactaatgtt	aattggtcaa	agcgtttgaa	120 180
<210> 186 <211> 220 <212> DNA <213> Staphylococcus <400> 186 ttattctgct atatgatatt acgatctgca tttgattttt gaaatgttca tattcatcaa ctcaacatct aattgctcct <210> 187 <211> 210 <212> DNA	epidermidis cacgaatatt caagttcatg cagaaacctc tgaatccatc	gttatcaata attcaattct tattctatta tactaatgtt	aattggtcaa tttaataaag	agcgtttgaa atttgtggcg	120 180
<210> 186 <211> 220 <212> DNA <213> Staphylococcus <400> 186 ttattctgct atatgatatt acgatctgca tttgattttt gaaatgttca tattcatcaa ctcaacatct aattgctcct <210> 187 <211> 210 <212> DNA <213> Staphylococcus <400> 187	epidermidis cacgaatatt caagttcatg cagaaacctc tgaatccatc epidermidis gaaaacatga	gttatcaata attcaattct tattctatta tactaatgtt	aattggtcaa tttaataaag	agcgtttgaa atttgtggcg gcaatggttt	120 180 220

## WO 2007/039319 PCT/EP2006/010132 81/763

cgtttttgat g	ggatagtcgt	cttaaagtta				210
<210> 188 <211> 200 <212> DNA <213> Staph	nylococcus	epidermidis	5			
<400> 188						
attagagcca a	aagtactctc	caccgtaacc	ttgacttcct	tgcgctttat	aagtatctaa	60
atatgtttct t	ttatgggaag	aaggcacaac	aaaacgatct	tcatatttag	caatacctag	120
taagcgatac a	atttcagtca	tctgtctttc	agtaagtcct	aatcgttcta	atttagaagt	180
atcgaaaggt t	tggtttgtta					200
_	nylococcus	epidermidis	5			
<400> 189 tttgatacct o	gtaatttgtt	cttgccaagc	gggagtatat	ttagaagatg	cgtcatcata	60
agatgtagct t	tctagttcgt	gttcaaaacg	ttgaacacca	tattgactcg	tcattaaatc	120
ataaaccgta g	gcaattttaa	cttcttctcc	gttagctaac	tgaatagttc	tcgttgcaat	180
aggtctctca a	aagataccat	caccactgct	atcaaaatat	ggaaattgaa	tcgtttcaac	240
atgatagtca c	ctttcaacca	ttgataacat	tggatcaatt	ggtg		284
<210> 190 <211> 721 <212> DNA <213> Staph	nylococcus	epidermidis	5			
<400> 190						
agcttctcgc a	actacttgac	taggatcatt	agtgacctct	attcctacca	ttaaacctac	60
accacgtact t	caattacat	ttcttttatt	tactaaactt	tttcttaagt	tttcaataag	120
aaattgcccc t	ttgattgaa	catcattcag	caaatcagca	tcattaatga	tagaaagcgt	180
ttggtttgca g	gcagccaatg	ataatctatt	tccaccgaat	gttgtaccat	gagaaccgta	240
gccaaatgca t	gacctaaat	tctttttgcc	taacattgct	ccaataggaa	ggccattacc	300
taatccttta g	gctaatgtga	tgatatctgg	agacaattga	taatgttcat	gagcatataa	360
cttaccggtt c	ctacctatgc	ccgtttgaac	ctcgtctaca	attataagga	tatctttttg	420
tttacaatac t	catttaatt	gcttcataaa	taaaggatca	gcaggtagta	ctcctgattc	480

# WO 2007/039319 PCT/EP2006/010132 82/763

accttgaatt	atttctataa	ttacagcagc	agtattattt	gaagttaatg	atttaaatga	540
attaaaatca	ttaaaaatag	caaatttgaa	tccaggaaca	accggaccaa	attgatctgt	600
aattttcttc	tgtcctgttg	cagacattgc	gccgtacgtt	ctgccgtgaa	aagacttttt	660
aaaagcaata	atttccgact	taccagtagc	tttacgtgcg	agtttgatag	ctgcctcatt	720
С						721
	phylococcus	epidermidis	5			
<400> 191 aaagaaatta	agtctctagc	caaaatgtat	cttggtggta	gtactgaaat	taaaacatca	60
caacttaaag	gtaaggatga	ctacttaaat	gatatatact	attaccaccc	aagcgtaaaa	120
agtattatgg	aatattcaaa	tcttttacgt	aatgatttag	atttatctca	aataacaaac	180
aaaaacgatt	tcttagatca	aagagtcatt	aaacgatatg	gttcactcgt	acccttaaca	240
gaattagatg	aagacttatt	gcgtaagaac	caaaaggaat	cgactgatag	tcagaaagag	300
tctgattctt	catcacaaaa	taatgatgaa	gaagatcaaa	ctaacgaaca	aacagaccaa	360
aatagcttaa	acggaaacga	acagtaccca	aatcaacaag	acaacaatca	aaccaatggt	420
gaaaatggta	tgataaataa	tgacaattat	ccttacgcac	aataa		465
<210> 192 <211> 362 <212> DNA <213> Stap	phylococcus	epidermidis	5			
<400> 192 aaccaaacga	tgctagatga	ttqctttqaa	ataagaaagt	gtgttttcgt	cgaagaacaa	60
_		-	-	actcattcca	-	120
tatataaatg	gtgttcctat	ggcaactgct	agaattagac	ctttaaatac	tcatatttgt	180
aaaattgaac	gtgtagcaat	catcaagtgg	tatcgtggtc	ttgggtacgg	taaaaattta	240
atacatgcta	ttgaaacaat	tgcaaaaaaa	caccaataca	atgaactcac	tatgaatgct	300
caattacaag	ctcgagactt	ttacttaaaa	ctaggttact	caccttttgg	taaagtattc	360
tt						362

<210> 193 <211> 320 <212> DNA <213> Staphylococcus epidermidis	
<400> 193 agttttataa tattcagtgc aaaattcaat tattgcgttt tgaagtggat aatagtattc	60
ggttgttaaa gatagttcat tatataaata aaatttttct ctattagttt tacatttgat	120
ttgttccttt ttccactgtt cttgccattt agattcttct atatttaaaa tttctaaaaa	180
tagattttct tttgttttaa agtgataata aagattccct ttactacttt ctgataattt	240
aacaatttct ccagtagtag tggcattata tccatttttt ataaataatt cctttgcgac	300
acctagtatt ttatctttca	320
<210> 194 <211> 503 <212> DNA <213> Staphylococcus epidermidis	
tttagagaga cagctagata atttgaaaac atttggcgta gagaaaatat ttacagagaa	60
acgatcgggg aaatcagtag aaaatagacc tgtatttcaa gaagcactta actttgtgag	120
aatgggcgat agatttgtgg tagaatcgat tgatcgctta ggtcgtaatt atgatgaagt	180
gattaacaca gttaattatt taaaagataa agaggttcaa ttgatgatta ctagcttacc	240
tatgatgaat gaagtcattg gcaatccatt attagataaa tttatgaaag acctaatcat	300
tcaaatatta gcaatggttt cagaacaaga acgaaatgaa agtaaacgta gacaagcaca	360
aggtattaaa gttgcgaaag aaaatggtgt atataaagga cgccctctat tgtactcacc	420
taatgctaaa gatcctcaaa aacgcattat ttatcataga gttgtagaaa tgttagaaga	480
aggtcaagca attagtaaga ttg	503
<210> 195 <211> 320 <212> DNA <213> Staphylococcus epidermidis <400> 195	
tgaaagaagg gatagttttg cactttacac aacgtgaaca agacaaattg atgatagttg	60
tagetgetga ggttgeaegt egtagaaaag caagaggaet taaaettaat cateetgaag	120
cacttgcttt aatcagtgat gaattattag aaggcgcgcg tgatggtaaa acggtagctg	180

aactcatgag ctatggaaaa ad	caattttaa a	acgaggaaga	tgtcatggat	ggcgtagcta	240
acatgattac agaacttgaa a	ıttgaagcaa	cttttccaga	tggtactaag	ttaataacag	300
tccatcaccc aatcgtttaa					320
<210> 196 <211> 503 <212> DNA <213> Staphylococcus ep	epidermidis				
<400> 196 atgcaaatta tggagatgaa go	ctactttcg (	gtggcggaaa	atcaattcgt	gatggtatgg	60
ctcaaaatcc taatgtgaca aq	ıgagatgata (	aaaatgtagc	cgatttagtt	ttaactaacg	120
cattaattat tgattatgac aa	agattgtta	aagcagatat	cggaattaaa	aatggttata	180
tttttaagat cggtaaagct gg	gaaacccag	atataatgga	taacgttgac	atcatcattg	240
gtgcaacaac tgatattatt go	ctgctgaag	gtaaaattgt	tactgccggc	ggtatcgata	300
cacacgtgca cttcatcaat co	ctgaacaag	ctgaagttgc	acttgagagt	ggtattacaa	360
cgcatatcgg tggaggaact gg	gtgcttctg	aaggtgctaa	agcgactact	gtaacaccag	420
gaccttggca tattcatcgc at	ıtgttagaag	cagcagaaga	gatgcctatt	aatgtaggat	480
ttactggtaa aggtcaagct g	itc				503
<210> 197 <211> 452 <212> DNA <213> Staphylococcus ep	pidermidis				
<400> 197 tgattataga agaaattcaa go	gaaatattg	ctaatttatc	tcaagatgaa	aagcaaaaac	60
atgtcgaaaa agtttatctt ga	gaaaactcag	atttggttaa	acgtatacaa	cgtgttaaaa	120
cagatcacgg taatgaaata gg	ggatacgtc	ttaaacaacc	tattgaccta	caatatggtg	180
atattttata tcaagacgat a	caaacatga	ttattgtcga	tgttaatagc	gaagacttat	240
tagttattaa acctagaaat t	taaaggaaa	tgggagacat	tgctcatcaa	ctaggtaatc	300
gccatctgcc tgcccaattt ad	cagaaactg	aaatgcttat	tcaatatgac	tatcttgttg	360
aagatttatt aaaagagttg go	gtatecect	actcacatga	agacagaaag	gtcaatcaag	420
catttcgaca tataggacat to	cacatgatt	ga			452

## WO 2007/039319 PCT/EP2006/010132 85/763

<211> 524 <212> DNA	
<213> Staphylococcus epidermidis	
<400> 198 ttaacttatt cagatgggat agctatgaga attgtctacc acgcattaat taacaatgac	60
aaagataaaa ttttagatat taaccaaaaa ctcttcgtac aaaatctacc taaagaaacg	120
cgtattggcg ctaagcaaat gggtacacgc atggtaaaat tagctttaga tctttatgat	180
agtgaatgga ttcaatggta ttataatcaa atgaaaaaca ataaaattaa gcttcatcct	240
gctgtgtgct ttactatgct aggacatttt ttaggtgtag atgtggaatc catcattgat	300
tattatttat atcaaaatat ctctagcctt acccaaaatg cagtaagagc gattccttta	360
ggacaaacag ctggacagca agtcgtaact gaaatgatag cccatattga gaagacacga	420
aatcacatac tagaattgga cgaaatcgat tttggtatga ctgctcccgg cttggaactt	480
aatcaaatgg aacatgaaaa tgttcatgtt cgaatcttta tttc	524
<210> 199 <211> 500 <212> DNA <213> Staphylococcus epidermidis	
<400> 199 tcgtatatgg aatttgtagc agatcctatt attgcctatg aaaacgctaa atttttccaa	60
cataatacgt ttaatettaa agaagatagt getatgtttt acaetgatat attgaeteea	120
ggctattcat ctaatggcca agatttcacg tataattata tgcatcttat taatgaaatt	180
tacattgaca atcaattagt tgttttcgat aacatgatgt taagtcctga taaaagcaga	240
cttgacggca ttgggtatat ggaaaattat acacacttag gatcagctta ttttattcat	300
ccagatgtaa accaaagttt catagacgat atttacgcgg cggttgctga ttttcaaaaa	360
caatacgact gtagaatagg tatctcacaa ttacctactc atggattggc cgttcgtatt	420
ttgactaaaa gaactcaaat aatagaagaa attttgactc gtgttcaatc atatatcaat	480
caaacgattt atcatcgaca	500
<210> 200 <211> 363 <212> DNA <213> Staphylococcus epidermidis	
11007 600	

tgagagtgtg	aaagatacat	tgggtaatca	atcattatat	agttttcagg	ataaacaact	120
tggaacagct	catgctgtga	aaatggcaca	tgaacattta	gcagataaag	aaggaactac	180
tctagtagta	tgtggagata	caccacttat	tacataccaa	actttacaat	cacttattga	240
acatcatgaa	agtacacaat	cacatgttac	tgtattatct	gcttctacta	tcaatcctta	300
tggttatgga	cgaattatta	gaaatcataa	tggaatatta	gagcgtattg	ttgaagagaa	360
aga						363
	phylococcus	epidermidis	5			
<400> 201 agctcacggc	tttaactatg	ctatttataa	agatgtggtt	ttagatttct	gaaaactgga	60
atatattctc	tttgttgatc	tactaagtct	acatcgatat	gtgttgttag	tactccttct	120
ttatcatcta	aatggtctaa	aatttcacca	ttaggattaa	tgacaattga	atttccagca	180
taattggtgt	gaccatcatc	accacaacta	ttacaagcta	caataaaaat	atcattttcg	240
attgctctcg	cttttagtaa	tgataaccaa	tgatctagtc	ttgagctagg	ccactgcgct	300
acataaaaag	caattttagc	accttttcta	gctggatagc	gcaatatctc	tggaaatcgc	360
aagtcataac	aaatgatttg	cgtcacaagt	gtttgatcag	ataaataaaa	aggttcaggg	420
actacatttc	caccacataa	aaagtctggc	tcacgtaaca	ttggcacgag	atgtactttg	480
tcatattcat	taatcaattc	tttgttttta	ttaattgcaa	aagcagtatt	atatatatgg	540
ttttctctta	tatttgacac	tgaacctgca	atgatatcta	cattaaatgt	atgtgctaag	600
tcttttataa	agagagagct	gtctttaaga	tttttatcag	ctttttgttc	taattcttct	660
aatgcataac	cgttattcca	catttctgga	agcacgacga	cactggtatc	tttatctaag	720
tattgattaa	acttagtttt	gatattttgc	atatttttat	caacatttcc	acgttctaca	780
<210> 202 <211> 501 <212> DNA <213> Stap <400> 202	hylococcus	epidermidis	;			
	gcgtttattt	gtgtcataat	catcgtgaca	cacttactaa	cgcaaatcac	60
tttagaaaat	gaacagatgt	ctgatagttc	actcatattg	caatattata	tacgcaatat	120

ttttatttc	ggcaccccta	gttttataat	attgtctcaa	ttattaacaa	cattaaatta	180
cgaatcagta	actataaatt	atctttttc	aagatttaag	tatatttta	ttccatatct	240
tttaatcggc	ttgttctata	gttatagtga	atcacttatc	accgcttctt	cttttaaaaa	300
gcagtttatc	gaaaatgttg	ttttaggaca	atggtatggc	tatttcatta	tcataattat	360
gcagttcttt	gttctatctt	atatcattta	caaaattaat	tttagattgt	tcaatagtaa	420
aattttgctg	cttttagcat	ttatagtcca	acaatcttat	ctacattatt	ttttgaataa	480
tgacactttt	catcaattca	t				501
<210> 203 <211> 300 <212> DNA <213> Stap <400> 203	phylococcus	epidermidis	S			
	agacagaggc	aatatccaac	ggtaacctct	tatttaaata	tagttaggga	60
gagcttattt	attactatat	ccggagtatt	ttggatgtat	tgtatcgttg	tgatgattgt	120
ttatatagga	actcttatca	attctcaaat	ggaaagtgtt	ataacaatac	gtattgcatt	180
aaatgttgaa	aacacggaaa	tttacaaatt	attcggatgg	atgagtttgt	ttgtacttat	240
tatatttatc	ttttttacat	ttagtctcgc	gtttcaaaaa	tataagaaag	gtcgtgacat	300
<210> 204 <211> 406 <212> DNA <213> Stap	phylococcus	epidermidis	5			
<400> 204 catttaacag	tgaatatact	tggtctttaa	aacggtttt	actgtcctca	ataaccccga	60
atttttgtga	aaaggaggct	ctaaaatacc	aagtctcaag	aaaaagaaga	attaagttta	120
taaagtcctc	tttattcaaa	gcgatgtgcg	taggatcata	atactttatc	aattcatcat	180
gtaaggtagt	attaatttct	tgaagatggt	gtttgatttc	tgaattcagt	gcttctggag	240
cactagataa	ttgaacatat	aatttaatat	atctctcatc	aacgtcgaat	ataaatttga	300
ataaaaactg	gtaaagtccg	tcaatggaat	aattatcgtc	atggttccta	agcaaaaaat	360
ctataaagta	attgaaacaa	ttctcaacac	tttttcgata	tatttc		406

<210> 205 <211> 325

## WO 2007/039319 PCT/EP2006/010132 88/763

<212> <213>	DNA Star	phylococcus	epidermidis	5			
<400> atgtca	205 aaat	tagcagaagc	tattgcaaat	acagtaaaag	cagcacaaga	tcaagattgg	60
actaaa	ttag	gaactagtat	cgttgacatc	gtagaaagtg	gcgttagcgt	attaggtaaa	120
atcttc	ggat	tttaattaat	cttagttttt	taaaatataa	atttaaataa	ttaattaggg	180
agagat	aaac	atgtcaaaat	tagcagaagc	tattgcaaat	acagtaaaag	cagcacaaga	240
ccaaga	ttgg	actaaattag	gaactagtat	cgttgatatc	gtagaaagtg	gcgttagcgt	300
attagg	taaa	atcttcggtt	tctaa				325
<210> <211> <212> <213>	206 451 DNA Stap	phylococcus	epidermidis	5			
<400> tgacaca	206 aata	cctcatgaac	cacccaaata	agttgatacc	cctcacttat	tttgtaaaga	60
aattta	aaca	agcaaaatcg	tcaattagtg	aagacgttca	aatcattaaa	aatacgtttc	120
aaaatg	aaaa	attaggaact	attattacta	cagcaggtgc	tagcggtgga	gtaacctata	180
agccta	tgat	gagtaaatca	gaggccacag	aggttgttga	tgaggtgata	gagcaattac	240
aagaga	aaga	ccgtttgcta	cctggaggat	atttatttt	atccgattta	gttggtaatc	300
cttctc	tatt	aaataaagta	ggtaagttaa	ttgctagtat	atatatgaac	gaagaacttg	360
atgctg	ttgt	taccatagcg	actaaaggga	tatcacttgc	gaatgcagtc	gcaaacgtat	420
taaatt	tacc	tgtagtggtt	ataagaaagg	a			451
<210> <211> <212> <213> <400>	207 300 DNA Star	phylococcus	epidermidis	3			
		taagacttag	aaaaatacaa	acagacggca	gaatgaaagc	actcgtttcc	60
attacg	ctag	atgaagcttt	tgtaattcat	gatttacgtg	taattgaagg	aaactcaggt	120
cttttc	gtcg	caatgccaag	taaacgtaca	ccagatggtg	aattccgtga	catcgcgcat	180
cctatc	aatt	ctgatatgag	acaagaaatc	caagatgcag	tgatgaaagt	atatgatgaa	240
actgate	gaag	ttattccaga	caaaaatgct	acttcagata	acgaagaatc	agacgaagct	300

# WO 2007/039319 PCT/EP2006/010132 89/763

<210> <211> <212> <213>	208 380 DNA Stap	phylococcus	epidermidis	s			
<400> atgaaaa	208 ataa	tcaactcaga	taaggtaccc	gaagcactag	gcccatattc	gcatgcaact	60
gttataa	aacg	gttttgtctt	tacatcaggt	caaattccac	tcacacttga	tggaacaatt	120
gttagco	gatg	atgttcaaga	acaaactaag	caagttttag	aaaatttaac	tgtggtatta	180
aaagaag	gcag	attctgattt	gaattctgtt	gttaaagcga	caatctatat	ttctgatatg	240
aatgatt	ttc	aacaaattaa	tcaaatctat	ggaaactatt	tcgtcgaaca	ccaaccagct	300
cgtagtt	gtg	ttgaagtgtc	acggttgcct	aaagacgtaa	aggtagaaat	tgaattgata	360
ggtaaaq	gtga	aggaattata					380
<210> <211> <212> <213>	-	phylococcus	haemolyticu	15			
<400> atgaaca	209 atga	gcgacatcat	ctttcttaat	ggcatgcgtt	tttatggcta	tcatggagcg	60
cttcato	gcag	aaaatgaact	tggccaaatt	tttatagtag	atgtaacact	taaagttgat	120
ttgactg	gaag	cagggaaaac	ggataatgtc	aaagacactg	tgcattatgg	tgaggtcttt	180
gaagato	gtta	aaaacattgt	tgaagggcca	tcttgtcaat	tgatagaaca	tcttgcagaa	240
cgtat							245
<210> <211> <212> <213>	210 563 DNA Stap	phylococcus	haemolyticu	18			
<400> ttgaatt	210 ggg	aacgacagct	ttgaaaggtg	caatcgattc	agcaaatatt	gatcctaata	60
				tacaaagtgg			120
gtcaaat	tgc	gattaaagcg	ggtgtacctg	atacaacacc	agctatgaca	attaatgagg	180
tatgtgg	gatc	aggtcttaaa	gcaattatat	tagggaaaca	gttaattcaa	ttaggtgaag	240
cggatgt	agt	agcagtgggt	ggagttgaaa	gtatgacaaa	tgccccacaa	ttaatcttaa	300
aagaagg	gtca	agaaccagtg	gaaagcttta	tgcatgatgg	tttaacagat	gcctttcatt	360

# WO 2007/039319 PCT/EP2006/010132 90/763

atgtaccaat	gggtgtaaca	gctgagaaca	tagctgaaaa	atatgacatc	acgcgtgaaa	420
tgcaagatga	gttcgcaaat	cattcacaag	ctaaagcagc	taaagcgacg	caagatggta	480
aatttaataa	tgaaatcatc	ggtatgactg	acgcagaagg	ggaacaaatg	acttctgatg	540
aaggtgttcg	cccaaatagt	agt				563
	phylococcus	haemolyticu	15			
<400> 211 aatgacgatg	aaacttcctt	tgcacaccgt	gttgaagegg	atggctggga	aaatgaattg	60
gctatggttt	ttgttgttat	taataacaaa	tctaaaaagg	tatccagtcg	ttcaggcatg	120
tcacttacac	gtgatacatc	acgtttttat	caatattggt	tagataacgt	tgaaccagat	180
ttgaaagaga	ctaaagaagc	cattgctcaa	aaagatttca	agcgtatggg	t	231
	phylococcus	haemolyticu	15			
<400> 212 catcaattgt	gtgataatga	taagaattat	atgcaagttg	ttaaacatat	tggttcttta	60
gtgtattcag	ctagtgaagc	gattgagcat	catagttttg	atcaattagc	tacaatcttt	120
aatcaatgtc	aagatgactt	aagaacattg	acggtgagtc	acgacaaaat	agaaatgttt	180
cttcgcttag	gagaagagaa	tggttcagtc	gctggcaaat	taacaggtgg	cggccgtggt	240
ggtagtatgc	ttatcttagc	taaagaattg	caaacagc			278
	phylococcus	haemolyticu	15			
<400> 213 acgtatatcg	tcctgaatat	tttctaagta	gtaaatagac	ttatcgtcat	cagtttgttc	60
agtagcgtga	tcgaattcta	aatcatcgaa	tcgcttgaag	aaactttcat	agtcttcaac	120
tgaaacttct	tgacgttcat	tcaataaggc	tttatgtcct	tcaatatcta	attgttttc	180
atagccttcg	actagcgtag					200

# WO 2007/039319 PCT/EP2006/010132 91/763

<210> <211> <212> <213>	214 565 DNA Stap	phylococcus	haemolyticu	15			
<400> aatcgto	214 cac	ttgtcttttg	aaaatgactt	catataaact	ttgcctaact	taatttgaaa	60
ggtaagg	gttt	atggcgcatc	aatttataca	actagagaag	acctttaaag	cattccaaaa	120
tagtcgt	agt	agtcacgaac	aagatagatt	atttatagat	atagtaaacc	acatacaacc	180
taaactt	ttt	ataaaattta	aaagttatgg	aatacaaaat	gaagatattg	aagatttagt	240
acaagaa	act	ttaatcagga	tttatttagc	acttcataca	tttgatttta	gtacagacgt	300
tcctttt	gaa	cactatttga	attgtatcgt	acgatcgatg	cgaaatgatt	tttggagaag	360
aaaatat	att	gagactgata	agtacgatag	catcattaat	gactatgtta	ttgactacaa	420
attgaat	caa	tcaagtaaat	atattgaaga	tatttgtatg	ataaaagaga	aacgagaatt	480
gctagcg	gagt	agtttaacag	tattaagtcg	attcgagcga	aacgtagctg	aattactaat	540
gtctgat	tat	acgcctagtg	aaatt				565
<210> <211> <212> <213>		phylococcus	haemolyticu	15			
<400> ccaagat	215 gct	aatgtgtctt	caaaagaatc	ggaaatcgac	aaaaatatta	ataaagtaga	60
cgacgcg	gcag	tcttattctc	aacaaaatga	gcaacaatcc	tcaaaagccg	aaaataagga	120
aatacag	gaat	tcaacacaag	cagaacaagt	tgaaaaacag	gaacaacctg	cttctaatca	180
gacggct	aat	cactcttcaa	aagagtcctc	cattaataat	caggaaagtc	ataacaaaca	240
gcaacct	agt	gatgacaaaa	cacctaatat	caaaccagaa	aaaattgaaa	aagtagataa	300
tcataag	gcgt	attcaagatc	agtatcaaga	taaaaacaag	caggttgata	ataatcaatc	360
taacaat	tcg	caattaaacc	aaaaagaaca	tcccaattca	tcaaataata	aacaacaaaa	420
gcaacgt	cta	gatgttaaac	cacaaaacga	taaccaacaa	ttacaatctc	gaaatgatgt	480
aaaagaa	aaa	ttagataacc	agccaattga	gcaaaaagat	accaagctgc	aaagtaacaa	540
taaaago	aaa	gacaacacaa	cttctgtaaa	gtcacacagc	caacaacata	aaccgcattc	600

## WO 2007/039319 PCT/EP2006/010132 92/763

<210> 216 <211> 468 <212> DNA <213> Staphylococcus lugdunensis	
<400> 216 tgcgaattaa acagttaggc attaatgatc aaatgaattg cgtaaaattg tataatgata	60
ccaaggagcg tgacgctaat ttgaaggcga tagacaaaaa aattgaaaga tttgctagat	120
acttgcagcg tcaaaacaat ctagaccata ttcaattttt gaagatacgc ctaggcttac	180
aagtcgcatt aggtaatttt ttcaaaacta ttgttactta tggtgttgct cttttattcc	240
atacctttct ttacacatta attacacact taacgtattt tttcgttaga cgttttgcgc	300
atggtgcaca cgcaaggtca tcattgttgt gccacattca aaatttagtt ttatttgtgg	360
cattaccttg gtcaattgtg cattttcaag tgtcttggac attcatgatt tttgtagcat	420
ttatcgcatt cataattatt atatgttacg caccatcggc aactaaaa	468
<210> 217 <211> 450 <212> DNA <213> Staphylococcus lugdunensis	
<400> 217 tttaatgttg ttatttgttg ctaaaatagt agccgatatt aaatttcaaa tgagggatta	60
ttttgccatt tttggtatca taatcccttc aactatactg tttggcgtga taggtagaca	120
gtctttaata tttttgataa ttggatgttt aatattcttt tatttgaaaa taggcttata	180
ttccgtttta gcaatctttg gttctgcgct tattatgtat gttagtaatt atatttctgt	240
catccttagt gtaattgctg attatttttc tttaagttat atagttcaaa taataataat	300
attagtttcg tttactctaa tatcaataat ttgtgcttat ttcattaggt ttctattaat	360
aagctcaaaa aaaacctatc tgtatttcaa caaaatatac atatcagtaa tatctatttt	420
cettatttta tetttgatea tgetetattt	450
<210> 218 <211> 466 <212> DNA <213> Staphylococcus lugdunensis	
<400> 218 tatcaatett teaageagtt atgttaataa ttgtagetaa aattattgea aaegttaagt	60
tttacttaag ggattattta geegttgeeg geataatagt eeettetgee gtattatttg	120

# WO 2007/039319 PCT/EP2006/010132 93/763

ttgtttttgg	cagacaatca	attatctttt	tacttattat	ttgtttaata	tacttttatg	180
taaaaatagg	gttttattct	ataatcgcta	tattaggctc	tgccttaata	atgtacataa	240
gtaacttttt	ctcagtttca	ctcataatat	taataggtaa	ttttatcaaa	tttaggataa	300
tatacgtaat	aatttcttta	tcatcataca	tactgatagg	tgttttatgt	gcatttatga	360
caaaatactt	aattaataaa	ctcaaaaaaa	catacttatt	ttttaataaa	gtatacataa	420
tcgtcatatc	tactttttta	acatttacca	tcgctatatt	ttattt		466
•	phylococcus	lugdunensis	5			
<400> 219 caaaggagtg	tgattttatg	tcaaaaatgt	tagttctttt	ttctacatgt	attcttttaa	60
tgtcgatgtc	gttaattttt	atgcctgtta	gtcatgcgca	aggtttatcc	tctaagcaag	120
caacgttgta	tcagcagaat	ccaaaagata	ctaatactca	agtttcagga	aaactgaata	180
attcgaaaga	aacaaaagca	aatgatacag	caaccttatt	tgcaaactct	aaagtcaatc	240
aatatattat	cgacaatcat	cttcagcatt	cgccagtagt	aaaagatcca	cgtatggata	300
cacttcctaa	attagaatat	aaaaacggca	cttacatggg	tgttgttatt	cacgaagtgg	360
gcgaagacaa	tcgtccttta	caagtatggg	tagatcgcat	gtatgaaact	tatactagag	420
catttgtaca	cgcattcgtt	gataataacg	aaatacatct	tactgcacct	gcagaatatt	480
atgtgtgggg	agctggtcct	aaagctaatc	ca			512
	phylococcus	lugdunensis	3			
<400> 220 gaagtggagc	gtaatttgtc	aaaacaacaa	atacagcata	ataatgatgc	tactggtgac	60
actcaagatg	ataataatta	taataatgaa	atatcaaatc	aggaagcaac	aacgcagaac	120
aaacaaataa	ctcagtctga	caatgtaaat	agcgaggcac	aagcaataaa	tgaaataagc	180
gacagecate	gtacagtaaa	taaagccact	gaagcactag	acaataactc	tactttaaat	240
acatccaccg	atgtatcacc	tgcaacgaaa	caagatacaa	ctactagcaa	tcaaacaact	300
caggaaaaca	atgatgcaac	aacacaaacc	aaaacaaatt	ataagcaaga	tggtaataac	360

# WO 2007/039319 PCT/EP2006/010132 94/763

aacgtattat	cccaagtagc	aaccaatgac	aatcagtctt	caaatcaacc	acgtaacagt	420
cacctaaata	catccacagt	aacatacaac	aataatcatc	aagtaagaag	attagcaaaa	480
gttgaagcaa	caaatacaga	taataacgtt	actcagactt	cagacatatc	gaataaactc	540
tcaaatgtaa	cagcgacaat	tgaagcggca	gatacgattt	acccacataa	agcagaatat	600
gtaaatttaa	attatcgttt	ccaagcccca	gatgatgttc	aagcag		646
	phylococcus	lugdunensi:	s			
<400> 221 tgtcaggtat	cgtagatgca	attactaaag	cagtacaagc	aggtttagat	aaagattggg	60
ctacaatggc	tacaagcatt	gctgatgcaa	tcgctaaagg	tgtagacttt	atcgctggtt	120
tctttaacta	aaatataaat	tgagacttta	acaataatcg	taaaaaggag	cgtttacaat	180
atgtcaggta	tcattgaagc	aattactaaa	gcagtacaag	caggtttaga	taaagattgg	240
gctacaatgg	gcactagcat	tgcagaagca	cttgctaaag	gcattgacgc	aatttcaggc	300
ttatttggtt	aatctcaaat	ataataaata	atactattta	aaataaaaat	atttttaaag	360
gagcgaacat	atcatggacg	gaatttttga	agcaatttct	aaagcagtac	aagcaggttt	420
agacaaagac	tgggctacaa	tgggtactag	cattgcagaa	gcacttgcta	aaggtgtaga	480
ctttattatt	ggattattcc					500
<210> 222 <211> 500 <212> DNA <213> Stap	phylococcus	saprophytic	cus			
<400> 222 gaaataaccg	cattccaact	aacactttaa	ttaatggaga	aaagagaacc	aaaccaatcq	60
		gtcttaagct				120
		gaagatttgt				180
		actgatgaca				240
		tatatccgta	_			300
	_	gtcaatgatc	-		-	360
		ataggaagtc				420
		22 3			5 59	

# WO 2007/039319 PCT/EP2006/010132 95/763

tcttagaaaa	aagtatcgta	atctatttac	taaatgactt	taagccgaaa	gaaattgctg	480
aaacactaaa	tatacaaatc					500
<210> 223 <211> 432 <212> DNA <213> Stap	phylococcus	saprophytic	cus			
<400> 223		+ = + = = + = = = = = = = = = = = = = =		+ a+ + a + -		60
aagagaacca	aaccaatcga	tgtgcctgaa	accicadag	tettaagete	aatgattegt	60
agacgtttat	atcattttgc	tatacatcca	aatgaccaag	aagatttgtg	tcaagatgtg	120
ctcgtaagat	tatactgtgc	atttaaaaaa	tttgatttca	ctgatgacac	acctattgag	180
cattatgtaa	atcgtgtgat	taaaaatgta	aaaaatgatt	atatccgtaa	aaaatgctat	240
ggcaaccaac	gacaagaaat	gctggtcaat	gaatttatag	tcaatgatca	aaatagtaaa	300
acagaacacc	cacttgataa	acatatatta	gctttagaga	taggaagtca	attacaacag	360
ggattaatga	aactgacggt	cttagaaaaa	agtatcgtaa	tctatttact	aaatgacttt	420
aagccgaaag	aa					432
<210> 224 <211> 200 <212> DNA <213> Stap						
	phylococcus	warneri				
<400> 224 aaaagatatg		acgaatagtt	aaactatccg	gatcaaatgt	taactttaca	60
aaaagatatg	acataatgtt					60 120
aaaagatatg	acataatgtt aaccatcgta	acgaatagtt	aaattcgatg	ttattccatt	agcccttcca	
aaaagatatg cattcagcat gcttcagttg	acataatgtt aaccatcgta	acgaatagtt ttcaccattc	aaattcgatg	ttattccatt	agcccttcca	120
aaaagatatg cattcagcat gcttcagttg ccgccagcta <210> 225 <211> 515 <212> DNA <213> Staj	acataatgtt aaccatcgta atacgatacc	acgaatagtt ttcaccattc tggtatagtt	aaattcgatg	ttattccatt	agcccttcca	120 180
aaaagatatg cattcagcat gcttcagttg ccgccagcta  <210> 225 <211> 515 <212> DNA <213> Stap <400> 225	acataatgtt aaccatcgta atacgatacc catatactat	acgaatagtt ttcaccattc tggtatagtt	aaattcgatg	ttattccatt	agcccttcca ccacaaacaa	120 180
aaaagatatg cattcagcat gcttcagttg ccgccagcta  <210> 225 <211> 515 <212> DNA <213> Staj <400> 225 catccaattt	acataatgtt aaccatcgta atacgatacc catatactat  chylococcus acagaaccat	acgaatagtt ttcaccattc tggtatagtt warneri	aaattcgatg ttaaaaaaaag tatgactgca	ttattccatt cttgaacgcc ttattaatta	agcccttcca ccacaaacaa taatgcttac	120 180 200

acattgaaac	aacaaatctt	tcaaagaata	tctttgcgtt	ttttctaaaa	atacattgag	240
tgggttttc	aataagtgat	gtaccgtatt	atttttaata	tcttttaccg	aaacactttg	300
gaccttagta	taaaaatagg	gtactgaaag	agtttctatt	tgttttattt	ctgaatttat	360
taacttatca	cttaataaat	tttcaccgta	ctcttctagt	ttgttaaaca	agctctttcg	420
cttatttgca	taaagaggtg	atttagcagc	ttgtattaat	actgagtact	caattgtact	480
tcttggtaaa	attctcactt	ctacttctga	tgacg			515
	phylococcus	warneri				
<400> 226 tgtatcaact	ccactttatt	catattaatg	acgacgcact	tacactcaca	aagtcaaagc	60
aagacaccat	tcacttattt	ataggcaatt	ggattaaccc	atcagcccaa	aaatctatta	120
gcattcgaac	tggcgttgat	acgaatcaca	atcaatatca	aattcttcaa	attgataccg	180
aacatcaacg	tattaaactg	acttctgaag	aagatcctca	actcatgtat	attttagact	240
acgaagatac	aaaccatata	ttcatacaaa	catcagttaa	gaattcgtat	ggcacgtcaa	300
gacccataag	atacgaaaaa					320
<210> 227 <211> 271 <212> DNA <213> Stap	phylococcus	warneri				
<400> 227 agcaagttct	ttgttaattg	caactttgac	atcagegaca	ttaattaatc	cggcacatgc	60
agaaacgaca	tcatcaaccg	ataatcacca	acaaaccaca	caatctcaac	aacaaaagac	120
accgaagatt	gataaaggta	ataacgtcaa	acctgttgaa	aagaaagaac	gcgcaaatgt	180
catactacct	aacaatgatc	gacatcaaat	taatgataca	acgttaggtc	actatgctcc	240
tgttactttc	gttcaagttc	aatcaaacga	a			271
<210> 228 <211> 500 <212> DNA <213> Stap <400> 228	phylococcus	warneri				
	gtcacaacaa	ttagatatag	aattaaaagc	gatacttcaa	caattcaatt	60

## WO 2007/039319 PCT/EP2006/010132 97/763

cttttattat	gagaagaatt	aattatattt	ctcaaaatga	ttttgaaaaa	gacgaccttt	120
atcaagaagt	gctcatcaaa	atatatctag	cgcttgagcg	ccatcatttt	caatatgatg	180
attcgtttat	aaaatatata	tcgcggctca	tcaaatcagt	taaatgtgat	tactatcgac	240
ggcattacac	tcaacagaag	cgatatacga	atgtagttaa	tgatgctgtg	gttgaatatc	300
aaacgaacct	gcttaataga	gatcgagttg	aaagagaaat	attaacatgt	gaagcaatca	360
aactattgaa	cgcggcgtgt	gagaaattaa	ctaaacaaga	acgagaagta	tttgaatttt	420
atagtaaagg	ttataaacca	aaagaaatcg	cacatttact	aggtataaaa	gacaaagtag	480
tttacaatgc	gatacaacgt					500
<210> 229 <211> 400 <212> DNA <213> Stap <400> 229	phylococcus	warneri				
	acaatttaac	aaggatgtta	tcactgtagc	ggttggctac	tatctaagat	60
atgcattgag	ttatcgtgat	atatctgaaa	tattaaggga	acgtggtgta	aacgttcatc	120
attcaacggt	ctaccgttgg	gttcaagaat	atgctcccgt	tttgtatcaa	atttggaaga	180
aaaaacataa	aaaagcgtat	tataagtggc	gtgttgatga	gacatatatc	aaaattaaag	240
gacagtggtg	ttatctgtat	cgcgcgattg	atgcagatgg	acatacatta	gatatttggt	300
tgcgtaagca	acgagataat	cattcagcat	atgcgtttat	caaacgtctc	attaaacaat	360
ttggtaaacc	tcaaaaggta	attacagatc	aggcaccttc			400
<210> 230 <211> 758 <212> DNA <213> Stap <400> 230	phylococcus	warneri				
	caacaacaac	cttcagaacc	aacaaaagcg	aaagattctg	atacaaataa	60
tacgaatgtt	gaacgtcctg	aatcgaattc	gacacaaaca	tcaaatcaag	acactgacaa	120
aatgcaggat	acatcaacta	atcaaacaaa	cgaaaattct	aaacatatta	ttgataaaac	180
taatgacgtt	tcacatgaaa	ctacaaagac	aaatgataca	gatcaaacgt	catctcaaga	240
caattcagaa	caatctcttg	aagtcgactc	aaatgaggca	ccagcttcaa	atgacaaatc	300
aactccaacc	aaacaagaac	ctactaattc	aaagcaagat	attgatgaaa	catctaaacc	360

### **WO 2**007/039319 PCT/EP2006/010132 98/763

taatgaagat tcaaaacttg	taccatcaaa	gtcaaatata	acatctaaag	cagataaaca	420
agaacagtct tctaaagaac	ctgttgagga	taatgctcaa	aaagataaac	atgtatcaca	480
agaagattca tctttagaaa	agcaaggtac	acaagaggtc	ccgcagactg	acacacataa	540
agatgtcaat gtaacacctt	caaagtcatc	atcagaacaa	caactatcta	caacacaaca	600
cattacagct aaagattcta	gtgcttcaca	agaggtgcca	gttcattcac	tagattcatc	660
taaacaagat cacacaacat	cgactgagag	ccatatcaat	ttagataacc	tagataaaca	720
agcgactaaa gatcgtacac	ctacagataa	tggcgatg			758
<210> 231 <211> 562 <212> DNA <213> Candida albicar	ns				
<400> 231 aaacgcattg ttaagagacc	cagaaatcaa	aactggtaaa	gtgtctgttg	cttcatactt	60
gaagtttttg gattctgttc	aattcaagag	ttatggagac	gaacctttgg	aagtattggc	120
tattgtggta gaacaaaatg	acaaaattcc	taaattagac	gagtttttgt	catccaagac	180
aggttggtta aacaatgtta	ccgataatat	tttcaatgct	atcaagaaag	attacagtca	240
attatgttgg gttgttaatg	aaaacgatgc	caacttacct	tggtatttct	ccaaatcaga	300
tggttcattt gccaagaatg	gccaaatctt	gttttggtac	ggtttaaaca	ttgacgaagc	360
tagtaaattg attaaagaat	ttgattcttc	atctattgga	tcatcgttgt	catcttctaa	420
agaatetgge gtattcacat	ctgctcaaca	aaagcgtggt	ttccaccact	ctacagtccg	480
tagaaacacc aatcctaatc	ctccattatc	tgaaggtaag	caaaccgaga	gaaaaaaagt	540
tgctttgatt ggtgctagag	gt				562
<210> 232 <211> 524 <212> DNA <213> Candida albicar	ns				
caggtaagtc aaagtctggt	gagttatctt	ctactggttc	tgtgacaact	aatacagcaa	60
caccagatgt tccatcaact	aaagtacctt	cgaatccagg	ggcaccaggt	actggtgttc	120
caccaccttt agcaccatcg	acagaaacac	aaactaccaa	taatgtacca	ggctcaccaa	180
atatecetge cactggaaca	actgatatta	ttagagaatc	aactactgtt	tcacacacag	240

# WO 2007/039319 PCT/EP2006/010132 99/763

tgaccgggaa to	ggaaatact	ggcgttccaa	tgaatccaaa	ccctgcgttg	acaacaggca	300
cttcactgac to	ggcgcaacg	aattctgcaa	ctaacccatc	tcatgaaaca	ggtgttaata	360
caggatcagg a	ggctcaact	aatattgtca	ctccaccttc	ttctgcaact	gcgacagtgg	420
ttattccagg a	actgataat	ggtgctacta	ccaagggtca	agatacagct	ggtggcggca	480
actctaatgg a	tctactgct	accaccaata	tacaaggtgg	caat		524
<210> 233 <211> 230 <212> DNA <213> Candid	da albican	ıs				
<400> 233 gattaatgac a	tcaagggtt	tagttaaagg	cattaaaggc	aaaaacqqqa	aatcctactc	60
aagtgtccca g						120
agccatcgat g						180
tcaagctaat g		_			-	230
<210> 234 <211> 632 <212> DNA <213> Candio	da albican	s				
tctggtgaag g	tttaggaag	aaagaaatca	ttaattagac	cagaaagatc	aagaatggat	60
gaaagccatc c	acgattcca	ttatactcaa	gttgcaaatc	aagaatctaa	tcatattaaa	120
gtacagccat c	ttcaactgg	tgttgatcct	cgtaaatcaa	atgaattatc	aacatcaaga	180
tcacatttga g	taattacgc	tactccacca	catcaagagg	aagaagaaga	cgaagggatc	240
cctttaatgg a	tatacacaa	tgcttcaccc	aatgttagca	gtgaccaaaa	taatgatcta	300
aaaggtggac g	tgaagttta	tggattaaat	gatgaaatca	acgattatgg	tagttcaccc	360
aagaaaaacc a	agtcatttc	atcttcaaga	ccaatgaaca	acgaaaaacc	agctaaacct	420
aaacatgata t	atatttctg	gaaagtttat	tgttatgcta	ttacattttg	ggcaccagct	480
ccattattga a	attatttgg	attaccaaca	aaagatcgtc	aattcgcttg	gagagaaaaa	540
atagggttga t	ttcttgtat	tctttacgtt	ggggcatttg	ttgcttattt	gacttttggt	600
ttcactaaaa c	tgtttgttc	gagtcaagtg	gt			632

<210> 235 <211> 633 <212> DNA <213> Candida albicans	
<400> 235 caccaaactc aggcttattc aaacaaggat acteeteett etecaatgee gaeggageea	60
ttatcagaaa tgttgaagca gttcgtgaaa tcgcctctat cttactcacc tccatgggtc	120
caagtggaag aaacaagatc atcgtcaaca agttgggcaa aaaattcatc accaacgatg	180
ccgccaccat gcttaacgaa ttggaaattg tccaccccgt agtgaaaatc ttgatccagg	240
catcaaagca gcaggaattc gaaatgggcg acaacactaa cctagtaatc atccttgctg	300
gcgagttcct caacgttgct gaaaaattgt taacattggg cttgaatgtc agtgaaatca	360
tccaggggtt caacttggca aacaagtttg tgatgaaaac attggacgag ttggtcgttg	420
aaaaagtcga gtcgttcgaa actgacctat taaaagcagt gaagccagtg atcgccgcta	480
aacagtacgg cgtagaagat accategeea aactegtegt tgatgeegtt geeetagtta	540
tgaagaacgg gtctttcaat gtcgacaaca taagagtggt caaggtcatg ggtgcatcgc	600
tctcccaatc gcaagtggtc aagggtatgg tct	633
<210> 236 <211> 465 <212> DNA <213> Candida albicans	
<400> 236 gaatgcaaag aaacattgaa atcaagagta ttttgatcca attgaccatg tatgctaagc	60
ttaacgaaag ggtcgactat ttgttggaaa agttaacatc cactgaatta ttggatagtg	120
aaaaagtcat gtcaaagttg aattcagaat ttgatcctca agaaaaattc gattatgata	180
aattgattaa agacaagggt ctgaccttga gaaaaggatt gaaagatttg aaattcgata	240
gagaagagat tgaaaatact ccttgctata atgaaatgat tgaagatttg tttgttcaaa	300
tcaaggatga tcatccagag acaaaaaccg atggcgacaa attgattgaa tacttaaaag	360
aacatagaaa caggatcgac gatgttttgt ctaaacagac tataaaattg gatgatttat	420
tgtaccagaa agctcaattg atagtaagtg atgatttgca tacgg	465
<210> 237	

<211> 504 <212> DNA <213> Candida albicans

## WO 2007/039319 PCT/EP2006/010132 101/763

<pre>&lt;400&gt; 237 tgtctgctgc tagtgaatcc aaatattcta ctgaagtgct ttccgaatta ttgagcaaat</pre>	60
tacaagttgc tgataataag gatgaagctg cttccaacat ttccactttt ttaaactcat	120
ctattgttga acacgatgtt ccagttgaat ttttcgaaga tttgaaaaaa caaattcaat	180
ctaaagatgc taaagtttct cttgctgctt tggatgctta caaacacatt gcttcaacca	240
acggtttatc cccatccgtt gaaccatatg ttgttgactt ggttagtgaa gttgccgtta	300
aagctggtga caaaaacaag gatgttcaaa ctgctgcttc tgatgcttta ttggccattg	360
cttctgccat caccccaact gctgtcaaag ccatcttacc aaaattgatt gacaacttga	420
ccaacaccaa caaatggact gaaaaagttg ccatcttgag agctgtttct caattggttg	480
acactgctaa agctcaaatt gctt	504
<210> 238 <211> 526 <212> DNA <213> Candida albicans	
<400> 238 tgacaggttc attggtgtct tacaaaagtc ttggtaaaaa aggtggattt tggattttca	60
cattattcaa ttatctctgt atcggtgttt tgacatcttt gttcattgtc tccattggta	120
atagaccaca tgcatcaaag aatattttca aaacattaat catattgtta accatatgtg	180
cattatacgc attggtggtt ggatttgtgt ttgttatcaa tactattgct acttttggaa	240
ccggtggaac atctacctat gtgctcgtta gtattgtggt ttcattgttg tccacctatg	300
gtctttatac gttaatgtcc attttgtact tggacccatg gcacatgttg acttgttctg	360
tacaatactt tttgatgatt ccatcgtaca cttgtacatt acaaatattt gcattttgta	420
atactcacga tgtctcgtgg ggtacaaaag gtgacaacaa tccaaaagaa gatttgagta	480
atcagtacat tattgagaaa aatgccagtg gagaatttga ggctgt	526
<210> 239 <211> 621 <212> DNA <213> Candida albicans	
<400> 239 tcagatggtg atgaactgtc gattgaattt cttaaccaaa gaagcaacac tccattaaca	60
caaggaactt ataattatca taatacttct actaattcac ttaatttcca acaaccagaa	120

## WO 2007/039319 PCT/EP2006/010132 102/763

ccaatttatc gtaatcaaac tcgtacatct ttaagtgatt cttattatga tcatcccata	180
tttgacactt ctcaaacaca gatccaacct ccacatgata atccattcac tgaaagttat	240
gaaatgacag atacttcata tcaaggtaat gatcatcatt atcgtactgg tcaacctaat	300
catctcatga accccactta taaccaagct ttcattcctc atgtttatga tgaagaagat	360
aatgatgaac aagaatatga tcaacgtatt cagtataatc aatttcaagg ggatcatttt	420
gatttggcag cgattagtta tgctgatgat gaaagtcaaa gtcagttgga ctatgtcccc	480
actgaacgtg tcatacctga aggagaggaa gaagaagagg aaggtgagac gagttttgaa	540
aaagaacctg gtagtgaaac catttctggc ccatttggag aagaacgatc atttgaagaa	600
cctcctccac aacaagaagt c	621
<210> 240 <211> 607 <212> DNA <213> Candida albicans	
aactagggct gctaatgttg ccactgaatt aactgctgct gcaccttatg aattgggtaa	60
attatattat aatggatttg aagatattgt cttgattgat aaaaaatatg gattagaatt	120
atttgctcaa gcagcagcat taggtcattt acaatcagcc gccattttgg gtcatcatta	180
tgaaattgga gaaattgttc ctcaagattc taatttatca attcattatt atactcaagc	240
agcattagga ggtgatccaa attcaatgtt ggcaatgtgt gcttggtatt tagttggtag	300
tgaaccatat ttacctaaag atgataatga agcatttgaa tgggctaaac gtgctgccaa	360
ttgtaattta ccaaaagctc aatttgcttt agcaaatttt tatgaaaaag ggattggatg	420
tattaaaaat attaatgaag ctcaatcatg gtataaaaaa gctgctgaaa atggtgatga	480
aaaatetttg aaacgattaa etgataaaga attggttaaa accatteaaa aacaatggaa	540
aaagaaacct ccagtaattc ataatgaaga tggaacttct acaactaatt caggatctct	600
tgeteaa	607
<210> 241 <211> 693 <212> DNA <213> Candida albicans	
<400> 241 agtcagagca gggtcaatca tcaaaatcag atgtgatcaa gatttcgata gtgaaaaaga	60

## WO 2007/039319 PCT/EP2006/010132 103/763

agaggcagag	aaatttacca	aaattcagga	tgagatttta	caaacatttg	ctacaaattt	120
gccacaacca	ccaaatttga	aaatcaagaa	cgttactcaa	acctcgtgtg	ttttagaatg	180
ggataaacta	aacttgggca	ccgccacatt	gaaaaatctt	attttattca	aagatggtaa	240
aaaattaggc	tcaattcctc	agccattaaa	taatcgaacc	tcaaaattgt	ctggattgcc	300
aattgacaaa	tcttttaaag	tacaattacg	tttggatacc	actgctggta	ctttcttgtc	360
gaatgaaatt	gaggtaacaa	cccacaaaat	gactgatttg	tcaggaatta	ctgtgtgtct	420
tggtgacctt	acacctaatg	atcaattcaa	caaggaggac	attgaagagg	cattaaagaa	480
tatgggggca	aaatatccag	tgcaacaaca	agtcaaagtc	gacactacac	atttcctctg	540
tactagagaa	aacaaacaaa	atcctgaata	tgtgaaggca	aatgatatga	acattccaat	600
aattagacca	gagtggttga	aagcctgtga	gagagaaaga	agaatagttg	gtgttagaga	660
cttttatgtg	aaagattgtg	tcttacccga	cat			693
	dida albicar	ns				
<400> 242 gtcaacaaca	aggcaagaca	attttacttt	cacttggagg	agccacgggc	aattacgggt	60
tttcttccga	ctcagaagca	gttcaatttg	caggaacatt	atggaataaa	tttggaggtg	120
ggaaagactc	agaaagacct	tttgacgatg	caattgttga	tgggtttgat	tttgatattg	180
aaaataaaga	ccagacaggt	tatgctgctt	tagcgactca	attaagaaaa	tattttagca	240
ctggaactaa.	atcttattac	ttgtcagctg	ctccacaatg	cccataccct	gatgagtcgg	300
ttggtgactt	aatgtcccaa	gttgatttag	attttgcatt	tatacaattt	tataacaact	360
actgttcgct	caatcagcaa	ttcaactgga	actcatggag	caactatgcc	agaggtaaaa	420
gtattaaact	ttatttgggc	cttcctggct	catcatcgtc	tgctggctcc	ggatttgttg	480
gtttgtcgac	tgttcaaaga	gtcgtggcta	g			511
	dida albicar	15				
<400> 243 ctgtcaagaa	actgacgttg	acattgtttt	attgtcattc	ttgaatttgt	ttccagatcc	60

## WO 2007/039319 PCT/EP2006/010132 104/763

attgaacgtt aattttgcca accaatgtgg taacactttt gaatctggtt tgttacact	g 120
ttctcaaatt ggtgctgaca tcaaaacttg tcaatcttta ggtaaaaccg tgttgttat	c 180
tttaggtggt ggtgttggtg actatggttt cagcgatgtt gcttctgcca ctaaattcg	c 240
agacaccttg tggaacaaat tcggtgctgg tgaagatcca gaaagaccat ttgatgacg	c 300
tgttgttgat ggtttcgatt ttgacattga acacggtggt gctactgggt accctgaat	t 360
ggctactgcc ttaagaggca agttcgccaa agacacttcc aaaaactatt tcttatctg	c 420
tgctccacaa tgtccatacc ctgatgcatc tcttggtgat ttattatcca aagtcccac	t 480
tgattttgca ttcatccaat tctacaacaa	510
<210> 244 <211> 577 <212> DNA <213> Candida albicans	
<400> 244 ttggctcgat taagaaataa attaaattca aaatatatta tcacggtagc ggctcctgg	t 60
ggtagtgata atattgaaat tttgaagatt caagaaatgg ataaatattt gacattttg	
aatttaatgt gttatgattt tgctggtgaa ggctggtctt cgaaaactgc tttccattc	-
aatttatttg gtaataatgg ggataattca ttgaatgcat ctgatgttgt ccaaactta	
attaacaagg gagttcatcc aacaaaattg atattaggga tgccaatgta tggaagaata	
tttcatggtg ttgatcgacc agaaattggt attcctttta caaaagagag aaaatcagg	
tgtatagaag ctgatgttgt ggactataac aaatttggtg atacattcga ttatgaaga	t 420
tttgatccac gcaaagtggg tgcattgaaa tatgattccc atagtaagca attaattaca	
tttgataatc cccagtgtgc tagaataaaa gctagctttg tacaactgag acaattggg	
ggtgggatgt ggtgggattc tgctggtgat gtttcag	577
<210> 245 <211> 909 <212> DNA <213> Candida albicans	
<400> 245	
gctccatcta gcaactcatc tggtgttcca gctgcgccat ctaacaattc atctggtgc	t 60
tcagttgttc catcacaatc agccaacaat tcatctgctt cagctgctcc atctaacaac	120
tcatctagtg ctatttctgg aagtgttgca ccatcaagct acggaaactc taccattgca	a 180

caaccatcta	cttctacaaa	atccgatgct	gcatcaatta	ctggtccaat	tactacagac	240
aaggttataa	ccaatgagtc	tggcattgtc	tttacatcta	cagtaatcat	tacacatgtt	300
tctgaatatt	gtgaccagac	ttctgctgct	gctgttcaat	catcagcatg	tgaagaacag	360
tcaagtgcta	aatcagaaca	agcttctgct	tcatcagaac	aagttaaggt	cattactagt	420
gtggtttggt	gtgagtcatc	tattcaatct	attgaatctg	tcaaaacaag	tgcagaagct	480
gctcataaga	ctgaggttat	tgctagttgt	gcaagtgaat	taagctcttt	gagttctgct	540
aaatctgaag	ctatgaagac	tgtttctagt	ttagttgaag	ttcaaaaatc	tgcagttgcc	600
aaacaaacct	cgttggctgc	tgtacaatca	tctgctgctt	ctgtacaatt	aagtgctgct	660
cacgcccaaa	agtcgtctga	ggcagttgaa	gttgcccaaa	ctgctgttgc	tgaagcttct	720
aaagctggtg	atgaaatttc	gactgaaatt	gttaacatca	ccaagacagt	ttcttctggt	780
aaggagactg	gtgtttccca	agctactgtt	gctgctaaca	cacattcagt	tgctattgct	840
aatatggcaa	ataccaagtt	tgccagcaca	atgtcgttgt	tggtcgctag	tttcgtgttt	900
gttggtctc						909
<210> 246 <211> 537 <212> DNA	dida albicar	ns				909
<210> 246 <211> 537 <212> DNA <213> Cand <400> 246	dida albicar cagattcaac		aaaccagaac	cgactataag	tccagagttt	60
<210> 246 <211> 537 <212> DNA <213> Cand <400> 246 gacactccgt		tccaactaaa				
<210> 246 <211> 537 <212> DNA <213> Cand <400> 246 gacactccgt agaaaaccca	cagattcaac	tccaactaaa gttaacttct	ccaagtgttg	cacataaacc	tccgccacta	60
<210> 246 <211> 537 <212> DNA <213> Cand <400> 246 gacactccgt agaaaaccca ccaccgtcac	cagattcaac gcataagtct	tccaactaaa gttaacttct tggaagtagt	ccaagtgttg gagcattcga	cacataaacc gtgcaagatc	tccgccacta	60 120
<210> 246 <211> 537 <212> DNA <213> Cand <400> 246 gacactccgt agaaaaccca ccaccgtcac atcacgaaga	cagattcaac gcataagtct tgagtctggt	tccaactaaa gttaacttct tggaagtagt tgcaaacatt	ccaagtgttg gagcattcga atcgatgctt	cacataaacc gtgcaagatc atgaagaacc	tccgccacta gtccccggct agctactaaa	60 120 180
<210> 246 <211> 537 <212> DNA <213> Cand <400> 246 gacactccgt agaaaaccca ccaccgtcac atcacgaaga actgaaaaaa	cagattcaac gcataagtct tgagtctggt gaaactcgat	tccaactaaa gttaacttct tggaagtagt tgcaaacatt aaactcacca	ccaagtgttg gagcattcga atcgatgctt aagataaacc	cacataaacc gtgcaagatc atgaagaacc aactgacacc	tccgccacta gtccccggct agctactaaa ggtgccaaag	60 120 180 240
<210> 246 <211> 537 <212> DNA <213> Cand <400> 246 gacactccgt agaaaaccca ccaccgtcac atcacgaaga actgaaaaaa cttgaagaac	cagattcaac gcataagtct tgagtctggt gaaactcgat aggctgagct	tccaactaaa gttaacttct tggaagtagt tgcaaacatt aaactcacca tacaaacaaa	ccaagtgttg gagcattcga atcgatgctt aagataaacc gtagaaaagg	cacataaacc gtgcaagatc atgaagaacc aactgacacc ttgtggatag	tccgccacta gtccccggct agctactaaa ggtgccaaag tgcacctgaa	60 120 180 240 300
<210> 246 <211> 537 <212> DNA <213> Cand <400> 246 gacactccgt agaaaaccca ccaccgtcac atcacgaaga actgaaaaaa cttgaggaac ccaaaaccaa	cagattcaac gcataagtct tgagtctggt gaaactcgat aggctgagct acgagaatga	tccaactaaa gttaacttct tggaagtagt tgcaaacatt aaactcacca tacaaacaaa tcaaccagtt	ccaagtgttg gagcattcga atcgatgctt aagataaacc gtagaaaagg tttgacgacc	cacataaacc gtgcaagatc atgaagaacc aactgacacc ttgtggatag aagacgatga	tccgccacta gtccccggct agctactaaa ggtgccaaag tgcacctgaa cttgacaaaa	60 120 180 240 300 360

<210> 247 <211> 561 <212> DNA <213> Candida albicans

## WO 2007/039319 PCT/EP2006/010132 106/763

4400	
<400> 247 acatagtcag ccacaaccac aaccacaagc aacacaacca agatcaaata gaagtagact	60
gcaaacgagc ttttctaaac caagaggtag caggcaagtt agtggcagtg gcaggtcaac	120
cggggccaag aaacaatcag caatcacact gggcagtact ggtactggcc ctgcccgaaa	180
tgctgataca ggtatgacat cagttgctaa tagcacttcc acaaccacta tgacaaccac	240
caacaataac aacaaattgt ctgtttcagc cccagtaaat gtgatatatg ctaatcttcc	300
tgagagaett caacaggtgt taccageace geegttatea egtgeteeag taagaeetga	360
tgtaacggtc aatttgacat caaaacgagc caaaagaaaa tcaaaattca ctccggaaca	420
agatgacatg atcgtgaatt tgaagaaaaa ggggaaatca tgggttgaaa ttgccgaaat	480
cactggtgtt ggatcatatt tagcggcacg gaatcgattt caagttattg ttggacagca	540
aggaaataac aattcgagtg c	561
<210> 248 <211> 351 <212> DNA <213> Candida albicans	
<400> 248 tcaagaaagc tactgatggt ggtccacacg gtgctatcaa tgtctctgtt tctgaaaaag	60
ccattgacca atctgttgaa tatgttagac cattaggtaa agttgttttg gttggtttac	120
cageteacge taaagteact getecagttt tegatgetgt tgteaaatee attgaaatea	180
aaggttetta egttggtaac agaaaagaca etgetgaage tattgaette ttetecagag	240
gtttaatcaa atgtccaatc aagattgtcg gtttatctga cttgccagaa gtcttcaaat	300
tgatggaaga aggtaaaatc ttgggtagat acgtcttgga caccagtaaa t	351
<210> 249 <211> 707 <212> DNA <213> Candida albicans	
<400> 249	60
ctcagtcctt tgctacaacc actacagtta ctgctcctcc aggtggtacc gatactgtga	60
ttatcagaga gccaccaaac catactgtca ctactactga atattggtca caatcctttg	120
ctactactac tactgttact gctcctccag gtggtactga ctcagtaatt atcagagaac	180
caccaaatcc aactgtcact acaaccgagt attggtctca atcctttgct actactacta	240

## WO 2007/039319 PCT/EP2006/010132 107/763

cagttactgc tcctccaggt ggtactgact cagtaattat cagagaacct ccaaacccaa	300
ctgtcaccac cactgaatat tggtcccaat cttacgcaac cacaactact gtgactgctc	360
ctccaggagg cactgactca gtaattatca gagaaccacc aaaccacact gtcactacta	420
ctgaatactg gtcacaatca tatgccacca ctaccactgt aactgcacca ccaggtggta	480
ctgacactgt tatcattaga gagccaccaa accacactgt cactactact gagtattggt	540
ctcaatcgtt tgctactacc acaactgtaa ctggtccacc aagtggcact gatactgtta	600
tcattaggga accaccaaac ccaactgtca ccactactga atactggtct caatcatatg	660
caaccactac taccattacc getccacctg gtgaaactga taccgtt	707
<210> 250 <211> 586 <212> DNA <213> Candida albicans	
<400> 250 aacggtcata tecaaagaag ttaetggtgt ttteaaceaa tteaatteat tgatatggte	60
ttacacatac agagctcgat acgaagaaat atctactctt accgctaatg ctcaattgga	120
atgggctttg gatggtacta ttgccagtcc cggtqataca tttacattag tcatgcctg	180
tgtatataaa ttcatgacgt acgaaacctc agtgcaatta actgccaact ctattgcata	240
tgccacatgt gactttgatg ctggtgaaga cactaaaagt tittcaagtt tgaagtgtac	300
ggtgactgat gagttgacag aagataccag cgtttttgga agtgttattt tgcctattgc	360
tttcaatgtt ggaggttccg gatctaaatc tacgataaca gactccaaat gtttttcaag	420
tgggtacaac actgtcacgt tttttgacgg aaacaatcaa ctttctacaa ctgcaaattt	480
tetteccega agagaactag egtttggtet agttgttagt caaagaettt eeatgteget	540
cgatacaatg actaattttg ttatgtctac accttgtttc atgggt	586
<210> 251 <211> 692 <212> DNA <213> Candida albicans	
aacattagaa acggaacagg ccgtcctcgt aagactccca gatccaagct ctatatggtt	60
tacccccac tttcaggtga ggactcaaca aatcctgaac cagaagaggg tagttcacag	120
gaaaacaatc ccacagaacc tagttcctca caatcaaatt cagtacaaaa tcaagaccaa	180

## WO 2007/039319 PCT/EP2006/010132 108/763

agtgaagacc agagtcaact accacaacaa gaactgaata cacaacaaga gctgaataca	240
caacaagaac tgaatacgcc atcacccagg gcgtcaaaca catcaactga aactcctgct	300
cctttaagtc ccatacaacc aggaattcga aatattcctc tgggattatt attaccacaa	360
gaaaaagttg gccgtcttat gggatatcca ttttaccgcg attttaattt taccctaaat	420
ccagagagat atcagaaact tatttatgtg tttcagatac ttaaaaaatgc tgctcgtaat	480
cacagaaatg gagcttetet acttagaaag tattteetgt tagegagaag gtetaaaaga	540
acaacagaca tgtttgtaac caccatagag gaaatgcgga agaggctgtt ggaaaatagt	600
cgtaagagag agctcgagga agcgcaagaa agggaagagt caaataaaag acaacataca	660
gaatcaagtg cagaaccaaa tgcagaactg ag	692
<210> 252 <211> 506 <212> DNA <213> Candida albicans	
caaagttcca ccatttcaac tccagtagac tcattaccta caagtggaag aagtactcct	60
aatccgaatg catcaaccac ttcattaaca tcattgaata ctgctcttgc taaattaaat	120
gtttccaata ttccatttga agaaaatttg agtaatattg agaaagccgg taagatagct	180
gagattagac ccgaagtgga aaccattgtt aagataattg atgaacaaga agatttatgc	240
attattaatg aatggaaatt gaatgaaatt ttgaaatctt tattgaaacc taaaagtcct	300
gcattagtta aagaaggagc tttattaatc attcaacaat tggcaactaa atttggtggt	360
caaaccccca aagaagctta tttattacag tttttaagta ctgcttatga tatgtttact	420
gataaagata aaaatgttgt taaagctgct aaatctgcta ctgatgcatt atttggaatt	480
taccctgtgg aagcattagg atcaat	506
<210> 253 <211> 520 <212> DNA <213> Candida albicans <400> 253	
atcgacatca acaggettae cacetaattg gaegattaga gtatecagat eccataacaa	60
agagtatttc ttaaaccaat ctaccaatga gtcgtcttgg gacccacctt atggcactga	120
caaagaagta ttgaatgcat acattgcgaa gtttaaaaaac aatggttaca agccacttgt	180

## WO 2007/039319 PCT/EP2006/010132 109/763

gaatgaggat ggccaggtta gagtttctca tttgttgatc aagaacaatc aatcaagaaa	240
acccaagtet tggaagteee cagatggtat aagtagaact agagacgaat etatacagat	300
attgaagaaa catttggaaa gaatattgag tggtgaggtt aaactaagtg aattggcaaa	360
taccgaaagt gattgcagct cacatgacag aggtggtgat ttagggtttt ttagcaaagg	420
acaaatgcaa ccaccattcg aagaagccgc attcaatttg catgttggag aagtcagtaa	480
cataattgaa accaatagtg gtgtccatat cctccaaaga	520
<210> 254 <211> 507 <212> DNA <213> Candida albicans	
<pre>&lt;400&gt; 254 caatagcaca ggcacaatct ggaactggta aaactgctac tttttctatt ggtatgcttg</pre>	60
aggitataga tactaaatca aaagagigto aagcacttat citigicicci actagagagi	120
tggcaattca aatacaaaat gtggtcatgc atttaggaga ttatatgaac attcacaccc	180
atgcctgtat tggtgggaaa aatgtcggtg aggatgttaa gaaattgcag caagggcaac	240
aaatagttag tgggacacca ggtagagtga ttgatgtgat aaaaagaaga aatctacaaa	300
ctagaaatat caaggttctt attttagatg aagctgatga actttttaca aaagggttta	360
aagaacagat ctacgaaatc tacaaacatt taccaccttc ggttcaagta gtagttgtta	420
gtgccacttt gccacgtgaa gtattggaga tgacaagtaa gtttaccact gatccagtga	480
aaatcttggt gaagagggat gagattt	507
<210> 255 <211> 535 <212> DNA <213> Candida albicans	
<400> 255 ttcattcaaa ccagcettac cacaagataa actcacgggt gtagatgata tccctgatag	60
agaacttacc gatattgaaa gaatcaacat caatgctgcc aattccaatt tacaaagaaa	120
attgaaaaca agacatttac aaatgatcgc tattggatca tctataggaa ccggtctttt	180
cgttggtact ggtggtgcat taagtactgg tggaccagct gccattgttc tagcatgggc	240
cataagtgct atatcggtat ttatgacaat gcaaggatta ggtgaattgg ccgttgcatt	300
cccagtttct ggtggattca atttatacgc aagtaaattt ttagaaccag gtattggatt	360

	420
tggtgctata actatcaaat attggaatgc tagtataaat tctgatgtgt ttgttattat	480
attttggttt gtggtgcttg tgatcaccat gttgggtgta agatggtatg gtgaa	535
<210> 256 <211> 433 <212> DNA <213> Candida albicans	
<400> 256 cacaaggtta tacattcaga aaactaaaac ttactgatta tgataatcaa tatttagaaa	60
ctttaaaagt tttgacgaca gttggtgaaa tttccaaaga agatttcact gaattgtata	120
atcattggtc ttcattgcca tctatttatc atccatatgt aatcaccaat gcatcaggta	180
tagtggtagc cacggggatg ttatttgtgg agaaaaaatt gattcatgaa tgtggtaaag	240
ttggtcatat tgaagatatt tcagttgcta aatctgaaca aggtaaaaaa ttgggatatt	300
atttagtcac ttcattaacc aaagttgctc aagagaatga ttgttacaaa gtcattttag	360
attgttctcc tgaaaatgtt ggcttttatg aaaaatgtgg ttataaagat ggtggtgttg	420
aaatggtatg tag	433
adding tag	433
<210> 257 <211> 540 <212> DNA <213> Candida albicans	
<211> 540 <212> DNA <213> Candida albicans <400> 257	
<211> 540 <212> DNA <213> Candida albicans <400> 257 aaaccataaa tcaacaacca cttgcttcgt caagatgggc tgcttgtgcc attggtggtg	60
<211> 540 <212> DNA <213> Candida albicans <400> 257 aaaccataaa tcaacaacca cttgcttcgt caagatgggc tgcttgtgcc attggtggtg ttcttgcttc atttattcaa attcttgcca cacttttcga atggattttc gtgcctagag	120
<211> 540 <212> DNA <213> Candida albicans <400> 257 aaaccataaa tcaacaacca cttgcttcgt caagatgggc tgcttgtgcc attggtggtg	
<pre>&lt;211&gt; 540 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 257 aaaccataaa tcaacaacca cttgcttcgt caagatgggc tgcttgtgcc attggtggtg ttcttgcttc atttattcaa attcttgcca cacttttcga atggattttc gtgcctagag aatgggccgg tgctcaacat ttgagtcgtc gtatgctatt tttggtgtta attttcttac tcaatttggt tccaccagtt tatacattcc aaattaccaa attggtgatt tattcgaaat</pre>	120
<211> 540 <212> DNA <213> Candida albicans <400> 257 aaaccataaa tcaacaacca cttgcttcgt caagatgggc tgcttgtgcc attggtggtg ttcttgcttc atttattcaa attcttgcca cacttttcga atggatttc gtgcctagag aatgggccgg tgctcaacat ttgagtcgtc gtatgctatt tttggtgtta attttcttac	120 180
<pre>&lt;211&gt; 540 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 257 aaaccataaa tcaacaacca cttgcttcgt caagatgggc tgcttgtgcc attggtggtg ttcttgcttc atttattcaa attcttgcca cacttttcga atggattttc gtgcctagag aatgggccgg tgctcaacat ttgagtcgtc gtatgctatt tttggtgtta attttcttac tcaatttggt tccaccagtt tatacattcc aaattaccaa attggtgatt tattcgaaat</pre>	120 180 240
<pre>&lt;211&gt; 540 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 257 aaaccataaa tcaacaacca cttgcttcgt caagatgggc tgcttgtgcc attggtggtg ttcttgcttc atttattcaa attcttgcca cacttttcga atggattttc gtgcctagag aatgggccgg tgctcaacat ttgagtcgtc gtatgctatt tttggtgtta attttcttac tcaatttggt tccaccagtt tatacattcc aaattaccaa attggtgatt tattcgaaat cggcatatgc tgtgtcgatt gttggatttt tcattgctgt ggccacttta gtattctttg</pre>	120 180 240 300
<pre>&lt;211&gt; 540 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 257 aaaccataaa tcaacaacca cttgcttcgt caagatgggc tgcttgtgcc attggtggtg ttcttgcttc atttattcaa attcttgcca cacttttcga atggattttc gtgcctagag aatgggccgg tgctcaacat ttgagtcgtc gtatgctatt tttggtgtta attttcttac tcaatttggt tccaccagtt tatacattcc aaattaccaa attggtgatt tattcgaaat cggcatatgc tgtgtcgatt gttggatttt tcattgctgt ggccacttta gtattctttg ccgtcatgcc attgggtggt ttattcactt catacatgaa caagagatca agaagatata</pre>	120 180 240 300 360

<210> 258

<211> 574 <212> DNA <213> Can	dida albica	ns				
<400> 258 tattatggcg	attccacaga	gttgatattg	gtgatatcac	aaatatggaa	cagcattatc	60
atttccatgt	acagggagca	tgttctctcg	gttgaacaag	tttgcaagtt	gatttatcaa	120
cgaggagctg	atgaaaacac	tatacgacca	ccactatttt	ttgtttacga	agatgataac	180
aaattttatg	attttattaa	aatcgaaaag	gaatgggaaa	gaaggatcac	attttttgct	240
caatcgttat	caagcccttt	accagaacca	tttccagtag	tttctacacc	aacatttacc	300
gttttgattc	ctcattactc	agaaaaaata	ctattaagtt	tacaagattt	aattaaagaa	360
caaagctttt	caaaactaac	gttgctagat	tatttgaaac	aacttcattc	gaaagaatgg	420
gattcatttg	ttcaagatag	taagatgatc	caaactataa	aggaaatgga	tgaagacaag	480
tttgtacgcg	aaaatatgga	tgatttgccg	tactactgta	tcgggttcaa	agattcttca	540
ccagaaaatg	ttttacgaac	aagaatttgg	gctg			574
<210> 259						
<211> 506 <212> DNA	dida albicar	าร				
<211> 506 <212> DNA <213> Candot 400> 259	dida albican ttgctgttcc		agattatacg	aaaaatgctg	taacttattg	60
<211> 506 <212> DNA <213> Cand <400> 259 cgtttgttat		taaaaagggc				60 120
<211> 506 <212> DNA <213> Cand <400> 259 cgtttgttat agtggtgccg	ttgctgttcc	taaaaagggc tagaagatct	aatagattag	atatagcact	ttctacaaac	
<211> 506 <212> DNA <213> Cand <400> 259 cgtttgttat agtggtgccg ttgccaattg	ttgctgttcc atatacagtt	taaaaagggc tagaagatct cttgcctgca	aatagattag	atatagcact	ttctacaaac tggagaaggt	120
<211> 506 <212> DNA <213> Cand <400> 259 cgtttgttat agtggtgccg ttgccaattg aattgtgact	ttgctgttcc atatacagtt cattaatctt	taaaaagggc tagaagatct cttgcctgca tgggttagac	aatagattag gctgatatcc caaatcaaag	atatagcact cagttttcgt aagctgaaca	ttctacaaac tggagaaggt attcgacaac	120 180
<211> 506 <212> DNA <213> Can <400> 259 cgtttgttat agtggtgccg ttgccaattg aattgtgact atcgaggact	ttgctgttcc atatacagtt cattaatctt tgggtataac	taaaaagggc tagaagatct cttgcctgca tgggttagac gaaatttggt	aatagattag gctgatatcc caaatcaaag tcatgcaaat	atatagcact cagttttcgt aagctgaaca tgcagatcca	ttctacaaac tggagaaggt attcgacaac agttccagca	120 180 240
<211> 506 <212> DNA <213> Cand <400> 259 cgtttgttat agtggtgccg ttgccaattg aattgtgact atcgaggact gatggcgagt	ttgctgttcc atatacagtt cattaatctt tgggtataac tgttggattt	taaaaagggc tagaagatct cttgcctgca tgggttagac gaaatttggt agaacagctt	aatagattag gctgatatcc caaatcaaag tcatgcaaat gttggaaaga	atatagcact cagttttcgt aagctgaaca tgcagatcca aaattgtgtc	ttctacaaac tggagaaggt attcgacaac agttccagca ttcatttaca	120 180 240 300
<211> 506 <212> DNA <213> Cand <400> 259 cgtttgttat agtggtgccg ttgccaattg aattgtgact atcgaggact gatggcgagt aaattgagta	ttgctgttcc atatacagtt cattaatctt tgggtataac tgttggattt acgaaaagcc	taaaaaagggc tagaagatct cttgcctgca tgggttagac gaaatttggt agaacagctt caaacaattg	aatagattag gctgatatcc caaatcaaag tcatgcaaat gttggaaaga tcagacaaac	atatagcact cagttttcgt aagctgaaca tgcagatcca aaattgtgtc ctactaatat	ttctacaaac tggagaaggt attcgacaac agttccagca ttcatttaca cagatatgtc	120 180 240 300 360
<211> 506 <212> DNA <213> Cand <400> 259 cgtttgttat agtggtgccg ttgccaattg aattgtgact atcgaggact gatggcgagt aaattgagta ggtggttccg	ttgctgttcc atatacagtt cattaatctt tgggtataac tgttggattt acgaaaagcc ccgactattt	taaaaaagggc tagaagatct cttgcctgca tgggttagac gaaatttggt agaacagctt caaacaattg ttgtgccttg	aatagattag gctgatatcc caaatcaaag tcatgcaaat gttggaaaga tcagacaaac	atatagcact cagttttcgt aagctgaaca tgcagatcca aaattgtgtc ctactaatat	ttctacaaac tggagaaggt attcgacaac agttccagca ttcatttaca cagatatgtc	120 180 240 300 360 420

<210> 260 <211> 539 <212> DNA <213> Candida albicans

## WO 2007/039319 PCT/EP2006/010132 112/763

<400> 260	
agetaaatee aaagaegatg aegeategge atatgteggt gtegggteea tegetgetgg	60
tggccgttac gacaatttag tgggtatgtt ctccaacggt aaatccatcc cttgtgttgg	120
tgtatcgttt ggtgttgaga gattattctc catcatcaag aaccgtgcca atctcaacaa	180
catctccgcc aaccacactg acgtgtttgt tatggcattt ggcggcggcg aaggctggaa	240
cgggttctta aaagaaagaa tggaaatcac caacaagtta tggaaagctg ggatcaacgc	300
cgagtacttg tacaaatcca aagccaacat tcgtaaacaa ttcgatgccg ccgaaaaggc	360
cggcgccaaa ttagctgtca ttcttggtaa agaagagtac ccacaaggcc aattacgaat	420
caaagtgttg ggccagggag aggaaaacga aggtgagttg gtcaccaaag atgaactact	480
tgctgctgtc caggccaage tcagctctga catcgacgac atttctcgca taatcaagg	539
<210> 261 <211> 1030 <212> DNA <213> Candida albicans	
gctaccacte caaacactte tgttccaaca acttetteag aatcaactae tecagetact	60
agcccagaaa gttctgttcc agttacttct ggatcatcta ttttagctac cacttcagaa	120
tcatcatctg ctccagctac tactccaaat acatctgttc caaccactac tactgaaacc	180
aaatcatcaa gtactccatt aactactact actgaacatg atacaactgt tgtcactgtt	240
acticatgit ctaacagigt tigiaccgaa agigaagita ctaciggigt tatigicatc	300
acatctaaag atactattta caccacttac tgtccattga ctgaaactac tccagtttct	360
actgctccag ccactgaaac accaactggt acagtatcca cttctactga acaatcaact	420
actgttatta ctgttacttc atgttctgaa agctcttgta ccgaatctga agttactact	480
ggtgttgttg ttgttacttc tgaggaaact gtctacacta cattctgtcc attgactgaa	540
aacactccag gtactgattc aactccagaa gcttccattc cacctatgga aacaattcct	600
gctggttcag aatcatccat gcctgccggt gaaacctctc cagctgttcc aaaatcagat	660
gttccagcta ctgaatcagc tccagttcct gaaatgactc cagctggttc acaaccatct	720
attcctgccg gtgaaacctc tccagctgtt ccaaaatcag atgttccagc tactgaatct	780
gctcctgctc ctgaaatgac tccagctggt actgaaacta aaccagctgc tccaaaatca	840
tcagctcctg ccactgaacc ttccccagtt gctccaggta ctgaatccgc accagctggt	900

# WO 2007/039319 PCT/EP2006/010132 113/763

ccaggtgctt	cttcttctcc	aaaatcttct	gttttggcta	gtgaaacctc	accaattgct	960
ccaggtgctg	aaaccgctcc	agctggctca	agtggtgcta	ttactattcc	ggaatctagt	1020
gctgtcgtct						1030
<210> 262 <211> 528 <212> DNA <213> Cand	dida albica	ns				
<400> 262	agaagttgag	aaaggtgctt	ctttatttat	taagetggae	aatggtggtg	60
		ttatcaactt				120
_		tctacaagtt		_		180
		tatcttgatt				240
		aataatgggt		-	_	300
		actgcttatc				360
		_			_	
		ccagctacaa				420
atgaagacac	atggattaaa	cttggtaata	ctattttatc	agttgaacct	actcataatt	480
tttacttgaa	agatagtaaa	tcgtctttga	ttgttcatgc	tgtttcaa		528
<210> 263 <211> 528 <212> DNA <213> Cand	dida albican	ns				
<400> 263 caagagaaag	ggaaagaaga	gaaaaaggac	acageettte	aaacatcttt	tgatagaaat	60
tttgatcttg	ataattcaat	cgatatacaa	caaacaattc	aacatcagca	acaacagcca	120
caacaacaac	aacaactctc	acaaaccgac	aataatttaa	ttgatgaatt	ttcttttcaa	180
acaccgatga	cttcgacttt	agacctaacc	aagcaaaatc	caactgtgga	caaagtgaat	240
gaaaatcatg	caccaactta	tataaatacc	tcccccaaca	aatcaataat	gaaaaaggca	300
actcctaaag	cgtcacctaa	aaaagttgca	tttactgtaa	ctaatcccga	aattcatcat	360
tatccagata	atagagtcga	ggaagaagat	caaagtcaac	aaaaagaaga	ttcagttgag	420
ccacccttaa	tacaacatca	atggaaagat	ccttctcaat	tcaattattc	tgatgaagat	480
acaaatgctt	cagttccacc	aacaccacca	cttcatacga	cgaaacct		528

<210> 264 <211> 360 <212> DNA <213> Candida albicans	
<400> 264 cgttaactca gtcatatact acattttatt cctttttgca tcaacaatcc ttgcggcaga	60
taaaacgtcc agttcagtat cacctacttt agtatgggtc acaggtactg atgccaatgg	120
gaaattagcc accacccaat caacatatta tcaaagcttt atgagtactt ataccacagc	180
tgaaacccca tcgtctggtt ctattggatt ggggtcaatc agtggaacag taggagaaat	240
cagaacttat agtatgacta ctatatcaca aggtaatggt gggttatcaa aattcaatca	300
aaatggttta gaaatgaaga atttgtcatt tgttaaatta attggggttt cttttattgc	360
<210> 265 <211> 701 <212> DNA <213> Candida albicans	
gatccagatg ctgtaaccac agccaatgga acattaaatt tacgtatgga tgcttataaa	60
aatcataatt tattctatcg ttcaggaatg gtacaaagtt ggaatcaatt gtgttatact	120
caaggtcatt tagaaattct ggctcgttta ccaaattatg gtaatgtaac agggttatgg	180
cctgggttat ggtctatggg gaatttaggt agaccagggt atttgggatc tactgatggg	240
gtatggccat attcttacga ttcatgtgat gccggtatta cacctaatca atcttctcct	300
gatgggattt cttatttacc aggtcaaaga ttaaataaat gtacatgtcc aggtgaatta	360
catectaate gaggtgttgg tagaggtgee eetgaaattg atgttattga aggtgaagtg	420
atgactgata gtagtggtaa aaaagaaaat tgtggtgttg cctctcaatc cttacaattg	480
gcccctatgg atatttggta tattcctgat tataattggg tggaaatcta caatttttca	540
gtttcaacga tgaatactta tactggtgga ccattccaac aagcattatc agcaacaacc	600
atgttgaatg ttacatggta tgaatttggt gataatgccc ataatttcca aacttatggt	660
tatgaatatt taaatgaccc tgaaacgggt tatttacgat g	701

<210> 266 <211> 794 <212> DNA <213> Candida albicans

## WO 2007/039319 PCT/EP2006/010132 115/763

<400> 266 taatttccct tgttgtttcc ataataagat gtgttgttgc agatgttgac atcacatcac	60
caaagagtgg agaaactttt tctggtagtt ctggatcagc aagtatcaag attacctggg	120
atgattcaga cgattcagac tcaccgaaat ctttggataa tgccaaaggg tacacaattt	180
ctttatgtac tggacctact tcagatgggg atatccagtg tttggatcca ttagtcaaga	240
acgaagetat tgcaggtaaa tetaaaacag tttetattee eeagaactea gtacetaatg	300
gttattacta tttccaaatt tacgttactt tcactaatgg aggtaccact attcattatt	360
caccacgttt caaattgact ggtatgtctg gtccaactgc cactttagat gtcaccgaaa	420
caggateggt gecageggat caagetteag gatttgatae tgeaactaet geegaeteea	480
aatotttoac agttocatat accotacaaa cagggaagac cagatacgca ccaatgcaaa	540
tgcaaccagg taccaaagtg actgctacaa cctggagtat gaagttccca actagtgctg	600
ttacttacta ctcaacaaag gctggcacac caaatgtggc ctctactatt accccaggtt	660
ggagttatac tgctgaatct gccgttaact atgctagtgt tgctccatat ccaacatact	720
ggtatcctgc cagtgaacga gtgagtaagg ctacaattag tgctgctaca aagagaagaa	780
gatggttgga ttga	794
<210> 267 <211> 654 <212> DNA <213> Candida albicans	
<400> 267 acattcattg ggttcatctc cagaaaacaa taatgccctg ggtccattaa gtggagttcc	60
aactccatca ttttctaatt tgaatgatta tttccaacaa aaaagtaaca gcaataattc	120
togattattt aatgotagtt catcatcatt gagttoatta agtggaaaaa taagatotto	180
ttcatcgact aatttagctg gtttacaaag attaactcca ttaactagta ctacaaacaa	240
tacaaacaac acaacaacat ctaatactaa taataataat atgacaaaac caagtataat	300
accaaaacaa ccatcttcta catcattaaa tttagaattt tataatggca acaatcaaca	360
acaacagaat tatcataccc ataagaaatc tcgaccaaat tcaccatcac aaaccccaat	420
tcatttatca agttcacgta aaagcgctaa taatctgttt ataatatcac ctaatgaaac	480
cccattacaa actccattac aatcaccaca attaaaacca tatcaagatc aaccaccaac	540

## WO 2007/039319 PCT/EP2006/010132 116/763

aaaattaaat aatattagta gtattgctgg taatggaaca caattaccac caat	654
<210> 268 <211> 529 <212> DNA <213> Candida albicans	
<400> 268	60
tgtcccagaa agtgctaaac acattttcaa ccaagaaact ttagcatttg ttgccacttt	
gcaccgtggt ttcgaagcca gaagacaaga attgttgaac aacagaaagg aacaacaaaa	120
attaagagat caaggttict tgccagattt cttaccagaa actgaataca ttagaaatga	180
tgctacctgg actggtccac cattggctcc aggtttagtt gacagaagat gtgaaatcac	240
tggtccaacc gacagaaaaa tggttatcaa tgccttgaac tccaatgttg ctacttatat	300
ggccgatttt gaagattcat tgaccccagc ttggaaaaac ttggttgaag gtcaagtcaa	360
tetttaegat ggtgteagaa gaaacttgae tgetaacatt aatggtaaaa attatgeett	420
gaacttggac aaaggtagac acattccaac gttgattgtg agaccaagag gatggcattt	480
ggatgaaaag catgtattgg ttgacggtaa accagtttcc ggtggtatt	529
<210> 269	
<211> 647 <212> DNA <213> Candida albicans	
<211> 647 <212> DNA	60
<211> 647 <212> DNA <213> Candida albicans <400> 269	60 120
<211> 647 <212> DNA <213> Candida albicans <400> 269 ttagctcatc aacatcatca acataaagaa gaaaaaagag ctgttcatgt tgttaccacc	
<211> 647 <212> DNA <213> Candida albicans <400> 269 ttagctcatc aacatcatca acataaagaa gaaaaaagag ctgttcatgt tgttaccacc accaatgttg ttgttgtcac cattggtaat ggtgatcaaa ctaccacttt tgctgctcca	120
<pre>&lt;211&gt; 647 &lt;212&gt; DNA &lt;213&gt; Candida albicans &lt;400&gt; 269 ttagctcatc aacatcatca acataaagaa gaaaaaagag ctgttcatgt tgttaccacc accaatgttg ttgttgtcac cattggtaat ggtgatcaaa ctaccacttt tgctgctcca tctgtagctg ctgattctag tgttagtgtt tctgtcaaca ctgaaccacc tcaaaatcac</pre>	120 180
<pre>&lt;211&gt; 647 &lt;212&gt; DNA &lt;213&gt; Candida albicans &lt;400&gt; 269 ttagctcatc aacatcatca acataaagaa gaaaaaagag ctgttcatgt tgttaccacc accaatgttg ttgttgtcac cattggtaat ggtgatcaaa ctaccacttt tgctgctcca tctgtagctg ctgattctag tgttagtgtt tctgtcaaca ctgaaccacc tcaaaatcac ccaactacta ctcaagatgt tgcttctgct tctacttatc catcttccac tgatggttct</pre>	120 180 240
<pre>&lt;211&gt; 647 &lt;212&gt; DNA &lt;213&gt; Candida albicans &lt;400&gt; 269 ttagctcatc aacatcatca acataaagaa gaaaaaagag ctgttcatgt tgttaccacc accaatgttg ttgttgtcac cattggtaat ggtgatcaaa ctaccacttt tgctgctcca tctgtagctg ctgattctag tgttagtgtt tctgtcaaca ctgaaccacc tcaaaatcac ccaactacta ctcaagatgt tgcttctgct tctacttatc catcttccac tgatggtct gccgcttctt cttctgctgc cgcttcttct tcttctcaag ctggttctga accttctggt</pre>	120 180 240 300
<pre>&lt;211&gt; 647 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 269 ttagctcatc aacatcatca acataaagaa gaaaaaagag ctgttcatgt tgttaccacc accaatgttg ttgttgtcac cattggtaat ggtgatcaaa ctaccacttt tgctgctcca tctgtagctg ctgattctag tgttagtgtt tctgtcaaca ctgaaccacc tcaaaatcac ccaactacta ctcaagatgt tgcttctgct tctacttatc catcttccac tgatggttct gccgcttctt cttctgctgc cgcttcttct tcttctcaag ctggttctga accttctggt ggtgttggat ctggtggtgc taaaggtatt acttattctc catacagtga caatggtgga</pre>	120 180 240 300 360
<pre>&lt;211&gt; 647 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 269 ttagctcatc aacatcatca acataaagaa gaaaaaagag ctgttcatgt tgttaccacc accaatgttg ttgttgtcac cattggtaat ggtgatcaaa ctaccacttt tgctgctcca tctgtagctg ctgattctag tgttagtgtt tctgtcaaca ctgaaccacc tcaaaatcac ccaactacta ctcaagatgt tgcttctgct tctacttatc catcttccac tgatggttct gccgcttctt cttctgctgc cgcttcttct tcttctcaag ctggttctga accttctggt ggtgttggat ctggtggtgc taaaggtatt acttattctc catacagtga caatggtgga tgtaaatcat catctcaaat tgccagtgaa attgctcaat tatctggatt taatgtcatt</pre>	120 180 240 300 360 420
<pre>&lt;211&gt; 647 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 269 ttagctcatc aacatcatca acataaagaa gaaaaaagag ctgttcatgt tgttaccacc accaatgttg ttgttgtcac cattggtaat ggtgatcaaa ctaccacttt tgctgctcca tctgtagctg ctgattctag tgttagtgtt tctgtcaaca ctgaaccacc tcaaaatcac ccaactacta ctcaagatgt tgcttctgct tctacttatc catcttccac tgatggttct gccgcttctt cttctgctgc cgcttcttct tcttctcaag ctggttctga accttctggt ggtgttggat ctggtggtgc taaaggtatt acttattctc catacagtga caatggtgga tgtaaatcat catctcaaat tgccagtgaa attgctcaat tatctggatt taatgtcatt cgtttatacg gggttgattg tgatcaagtt gcagctgtat taatagctaa aacttcatct</pre>	120 180 240 300 360 420 480

## WO 2007/039319 PCT/EP2006/010132 117/763

<210> 270 <211> 636 <212> DNA <213> Cand	dida albican	ıs				
<400> 270 actgtcgttt	ctggtcattc	tggtaaagat	acttcctctt	ctaaatcaac	tgttgccgaa	60
tacactgggg	ttgaagaaat	cactaccacc	ttgaattatg	actatttagt	tgttggtgtt	120
ggtgctcaac	catctacttt	cggtattcct	ggagtcgctg	agaattcaac	ctttttgaaa	180
gaagtcagtg	atgcttctgc	tattagaaga	aaattgatgg	atgttattga	agctgccaat	240
attttaccta	aagatgaccc	agaaagaaag	agattattgt	ccattgttgt	ttgtggaggt	300
ggaccaacgg	gtgttgaagc	tgctggtgaa	atccaagatt	atattgacca	agatttgaag	360
aaatgggttc	ctgaagttgc	cgatgaattg	aaagtctcct	tggtggaagc	tttaccaaac	420
gttttgaaca	catttaacaa	gaaattgatt	gactatacca	aagaagtttt	caaagacact	480
aatatcaatt	tgatgactaa	taccatgatc	aaaaaagtca	atgataaaag	tttgattgca	540
aaccataaaa	accctgacgg	atctactgag	tctattgaaa	ttccatatgg	tcttttaatt	600
tgggctactg	gtaatgcacc	aagagatttc	actcgt			636
<210> 271 <211> 666 <212> DNA <213> Cand	dida albicar	ıs				
<400> 271 ggtacgaaca	gacaaacacc	tgaagaaact	gacattggta	tgattgccca	ttattttgaa	60
aaataccagt	ttgacgggtt	aattattgtt	ggaggttttg	aagcatttgt	ttcgttagag	120
caattggaaa	gatcaagagc	tatgtatcca	tcgttcagaa	ttcctatggt	tttaatccct	180
gccaccattt	caaataatgt	tcctggtacc	gaatattctt	taggggctga	tacctgtttg	240
aattcgttaa	tggaatattg	tgacattgtc	aagcaatcag	cttcagctac	cagaggtaca	300
gcatttatta	ttgatgttca	aggaggtaat	tccggataca	ttgccacatt	tgcctcatta	360
atcagtggag	cacaagcatc	ctatgttcca	gaagaaggta	tttcattaca	gcaattggaa	420
atggatatca	attcattgag	agaagcattt	gccgtggaac	aaggaatgac	aaagagtggt	480
aaattgatca	tcaagtcgag	taatgcatcc	aaagtactaa	cccacacac	attggctgac	540
atattcaacg	atgaatgtca	cggtgacttt	gacactaaga	cagctattcc	gggacacgtc	600

## WO 2007/039319 PCT/EP2006/010132 118/763

caacaaggt	g gattaccttc	accaatagat	agaagcagag	gtgatagatt	tgccattaga	660
gctgtt						666
<210> 27 <211> 58 <212> DN <213> Car	3	ns				
<400> 27	=			<b></b>		60
	ttgaatcgtc					60
tccaataat	g ggtctcagtt	tttaatcagg	ggtatcgcct	atcagcaaga	tgccgcgggc	120
tcagtttcc	ccggttacga	cgccgatcct	aatagaaaat	acaatgatcc	tttagccgat	180
gctgacgct	gtaaacgtga	cgtcaagtat	ttcaaagaat	caaacaccaa	tactttgaga	240
gtttatgct	a ttgacccaga	taaggatcat	gaagagtgta	tgaaaatttt	cagtgacgct	300
ggtatttac	a ttgttgctga	tttatcagaa	ccaactgtat	cgattaacag	aaacaaccca	360
gaatggaac	tggatttata	caaacgttat	acaaaagtca	ttgataagat	gcaagaatat	420
tctaatgtt	tgggatttt	tgctggtaac	gaagtaacta	ataatcgttc	aaataccgat	480
gcttctgca	ttgttaaggc	tgccattaga	gatatgaaga	aatacatcaa	ggagtctgat	540
tatagacaa	a ttcctgttgg	ttattcatcc	aatgatgacg	aagaaatt		588
	) A ndida albican	าร				
<400> 273	3 g ctgctacttc	attcgtttct	tccgtggctg	ccgaagattt	gcctgctatt	60
gaaattgtt	g gtaacaaatt	cttctactcc	aacaatggat	cccaatttta	catcaaaggt	120
attgcttac	aacaaaataa	cttggactcc	aacgaatcat	ttgttgaccc	attagctaat	180
cctgagcac	gtaaaagaga	tattccatac	ttggaagctg	tcgactacga	ctccaatgtc	240
atcagagtt	atgctttaga	caccagtcaa	gaccatactg	aatgtatgca	aatgttgcaa	300
gatgccggta	tttatgtcat	tgccgatttg	tcccaaccag	atgaatccat	caacagagac	360
gacccatcc	gggatttgga	tctttttgaa	agatacactt	ctgttgtcga	tttgttccac	420
aactacacta	a acattttagg	tttctttgcc	ggtaatgaag	tcaccaacaa	gaaatcaaac	480
actgacgct	ctgctttcgt	taaggctgct	atcagagata	ccaaagccta	catcaaaagc	540

## WO 2007/039319 PCT/EP2006/010132 119/763

aaaggttaca	gaagtattcc	agtcggttac	tctgccaatg	atgattccgc	catcagagtt	600
tcattagcc						609
<210> 274 <211> 684 <212> DNA <213> Cand	dida albica	ns				
<400> 274						60
		gtatttattc	_			60
catgaccatg	ttggccaaag	caggaatata	cttgtttcta	gacgtaaact	cgccattgcc	120
acaccaccac	ctaaaccgat	acgagccgtg	gaattcgtac	aacttgtact	actttgaaaa	180
tgtctttaag	gtggtagaac	agttttccca	ctacaacaac	acgctagggt	ttattgccgg	240
gaacgaaatt	gtcaacgacc	ccatctccgc	cagtgtggct	gccccatatg	tcaaagcggt	300
ggtccgcgaa	atcaaaagct	atatcgaata	caatgcacca	agaaccatcc	ccgtcggtta	360
ttcagcggcc	gacgacttga	actatcgaat	gccactagca	cagtacctcg	agtgtggcga	420
cgacaacccc	aaagaatcag	tcgactttta	tggcgtcaac	tcgtaccagt	ggtgtggcga	480
ccagacattc	tacagcagcg	ggtacaacat	cttggtcaac	gattacaaac	atttcaccaa	540
accaatgttt	ttttcggaat	atgggtgcaa	tgaggtgttg	ccgagaaatt	tcgatgaagt	600
cccagtattg	tacacaaacg	atatgataga	tgttttcagt	ggcggattgg	tatacgagtt	660
cacccaggaa	ccaaacaact	atgg				684
<210> 275 <211> 532 <212> DNA <213> Cand	dida albicar	ns				
<400> 275						
attagctgaa	catgccagag	accacacatt	gagattcggt	agcaaatcgc	catttttcag	60
aaaatacttt	ggaaatgaca	ctgcaagtgc	tgaggtcgtt	ggtcattttg	aaaatgttgt	120
cggtgctgac	aaatcatcca	ttttgtttct	ttgtgatgac	ttagatgata	agtgcaaaaa	180
tgatggctgg	gctggctatt	ggagaggttc	caaccatagt	gatcaaacta	ttatttgtga	240
cttatctttt	gttaccagaa	gatacttatc	ccaactatgc	tccggtggat	ataccgtctc	300
gaaatctaag	acaaacattt	tttgggcagg	tgacttgtta	cacagattct	ggcacttgaa	360
atcgattggt	caacttgtta	ttgaacatta	cgctgacact	tatgaggagg	ttcttgaatt	420

## WO 2007/039319 PCT/EP2006/010132 120/763

ggctcaagaa	aattcaactt	atgctgtaag	aaactcaaac	tcattgattt	attatgcttt	480
ggatgtgtat	gcatatgatg	tgacaattcc	cggcgaaggg	tgcaatggag	at	532
<210> 276 <211> 506 <212> DNA <213> Cand	dida albicar	ns				
<400> 276	cctcacaaat	tcaagggttt	ttcgatgttc	cagtagataa	cttatacact	60
						120
		catcaaggaa				
		caagagagct				180
tttgaattga	ttcataaaga	aagagccaga	gctaatgaag	tatctcgaat	ggttttagtt	240
gttgatgtca	ccgataagat	ttgtgttatt	gttgatgata	tggcggatac	ttgtggtact	300
ttggctaaag	ctgccgaagt	attgttagat	aataatgcta	aagatgtcat	tgccattgtc	360
actcatggta	tattatctgg	gaacgcaata	aaaaatatca	acaattctaa	attgaaaaaa	420
gttgtatgta	ccaacaccgt	tccatttgaa	gacaaattga	aactttgtct	taaattggat	480
acaattgata	tttctgctgt	tattgc				506
<210> 277 <211> 606 <212> DNA <213> Cand	iida albicar	as				
<400> 277 taccacgata	gctccatttc	ccttagtggt	tccaagaaca	agagagaagc	tgaaattgtc	60
aatgaagatg	gtacaattga	aaagagaact	tttggaagcg	ctggtgtaaa	tgccggtttc	120
aatgccgcat	ttgtcgtgtc	taatgccaaa	aaattatctg	acggttctta	tggtattgat	180
tgtaacttca	agagtgattc	ttctgtccaa	ttgaacctgg	cctttggtaa	aaaagttaaa	240
caattgagta	tcaccggtac	tggttattct	gatatttcat	tattaggaaa	tgttgctaat	300
ccatttgaat	ggtcagcttc	cttgaaagtc	aaagcagaaa	ttgttaaagg	aaaatgttgt	360
cttccatcag	gtttcagaat	cgttacagat	ttcgaaagca	actgtcctga	atttgatgcc	420
atcaaacaat	tttttggcag	ttctcaaata	atttacaaag	tcaatgccgt	ttctaacgca	480
attggtactt	ttgatgcttc	tgcattattc	aatgctcaag	tcaaagcctt	ccctgccaag	540
agagaattag	atgaatttga	agaattaagt	aacgatggtg	ttactcacag	caagagaact	600

## WO 2007/039319 PCT/EP2006/010132 121/763

ttgggt	606
<210> 278 <211> 625 <212> DNA <213> Candida albicans	
<400> 278	
gtggtgttac tgttggtgaa actgccaccg ttgctacaac tgttaccgtt ggtgcaactg	60
tcactggtgg tgaccaaggt caagatcaag ttcaacaatc agctgctcca gaagctggtg	120
atatteaaca ateagetgtt ceagaagetg atgatateea acaateaget gtteeagaag	180
ctgaacccac tgccgatgct gatggtggta atggtattgc aattaccgaa gtctttacca	240
ctaccattat gggtcaagag attgtttatt ccggtgttta ttacagttat ggtgaagaac	300
atacctatgg agacgttcaa gttcaaaccc tcactattgg gggtggcggc ttcccttcag	360
atgaccaata tectacaact gaagtttetg etgaggetag tecatetget gttactaett	420
cttctgctgt tgctactcct gacgccaaag tcccagactc tactaaagac gcttctcaac	480
ccgctgctac tacagctagt ggctcctctt ctggtagtaa tgactttagt ggtgttaaag	540
atacccaatt tgctcaacaa atcttggatg ctcacaacaa aaaacgtgct agacatggtg	600
ttccagattt gacttgggat gctac	625
<210> 279 <211> 220 <212> DNA <213> Candida albicans	
<400> 279	
aagagatgat ceteataeta ttgaageett gagacaacaa caacaacaae cagteteaae	60
ttctgaaggt caacaagttg ctcaaagaat tggtgctgct gattacttgg aatgttctgc	120
taaaaccggt agaggtgtta gagaagtgtt tgaagctgct actagagctt ctttaagagt	180
taaagaaaag aaggaaaaga agaagaaatg tgttgtcttg	220
<210> 280 <211> 531 <212> DNA <213> Candida albicans <400> 280	
<400> 280 taagagagat ggccgtaaag agccagtacg tttcgacaaa atcactgcca gagttcaaag	60
attatgttac ggtttgaatc caaaccacgt tgaaccagtt gctattaccc aaaaagttat	120

## WO 2007/039319 PCT/EP2006/010132 122/763

atcaggtgtt	taccaggggg	ttactactat	tgagttggac	aacttggctg	cagaaattgc	180
tgctacaatg	acaacaattc	acccagatta	cgctgtctta	gccgctagaa	ttgccgtatc	240
aaatttacat	aagcaaacca	ccaaacagta	ttccaaagtg	tctaaggatt	tatatgaata	300
cattaatcct	aagactgggt	tacactctcc	tatgatttcc	aaggaaacct	acgacatcat	360
tatggaacac	gaagatgaat	taaactcagc	cattgtttac	gacagagatt	ttaactacaa	420
ttattttggg	ttcaagactt	tggaaagatc	atatttgtta	cgtatcaacg	gtaaggttgc	480
tgaaagacca	caacatttga	tcatgagggt	tgctgtcggt	attcacggta	a	531
	dida albican	ns				
<400> 281 ttttggacct	caaatggacc	agtatttgag	agaaaaacta	ttaagtgatg	tggaaggtac	60
atgtacaggt	caatttggtt	acattgtgtg	tgttttggat	tcaatgaata	tagatgttgg	120
caagggaaga	ataattccaa	gtactgggat	ggctgaattt	gaagtcaaat	atagagctgt	180
tgtgtggaaa	ccattcaaag	gtgaagtggt	agatgcagtt	gtaacaaccg	tcaataaaat	240
gggatttttc	gccgatgttg	gcccattatc	agtgtttgtt	agtacccatt	tgataccttc	300
agatatgaaa	tttaatcctt	cagcaaaccc	accagcatat	gtgagtcccg	atgaaaacat	360
tgaaaaggga	tcgagggtta	gattgaagat	tgttggtaca	agaactgatg	tcaatgagat	420
ttacgccata	ggaagcataa	aagaagacta	tt <b>t</b>			453
	dida albicar	ns				
<400> 282 ccaagaactt	accattattg	aacaaccact	tcagaaagca	ctggcaagaa	agagtcagag	60
ttcactttga	ccaagctggt	aaaaaagctt	caagaagaca	atctagattg	agaaaagctg	120
ccaagattgc	cccaagacca	atcgatgctt	taagaccagt	cgtcagagct	ccaactgtca	180
aatacaacag	aaaagtcaga	gccggtagag	gtttcacttt	ggccgaattg	aaagccgttg	240
gtattgctcc	aaaatacgcc	agaaccattg	gtatctcagt	tgaccacaga	agacaaaaca	300
aatctcaaga	aacttttgat	gctaacgtcg	ccagattaca	agaatacaaa	tctaaattag	360

## WO 2007/039319 PCT/EP2006/010132 123/763

ttatctttga	caaaaagacc	aaggcttctg	aagttgcttc	tttcgaacaa	gttgatgtct	420
ctgccacctt	cccagttgaa	caaccagctc	cagaatctgg	tttgagagct	gttgaagttc	480
cagaacaaac	tgcttacaga	accttgagat	tggctagaaa	cgaaa		525
<210> 283 <211> 400 <212> DNA <213> Cand	dida albica	าร				
<400> 283 ttaaaggatt	caaaaagggt	gtccttaggg	ccccacagac	aatgcgtcag	aaattcaaca	60
tgggagaaat	cacccaagat	gctgtttatc	tcgatgctga	aagaagattc	aaagaaatcg	120
aaacggaaac	aaaaaagttg	agtgaagaat	ccaagaaata	tttcaatgct	gtcaatggga	180
tgttagatga	acaaattgat	tttgccaaag	ccgtggctga	gatttataaa	ccaatcagtg	240
gtagattatc	ggaccccagt	gctacggtac	cagaagataa	cccacaaggt	attgaagcat	300
cggaactgta	ccaagcagtg	gttaaagatc	tcaaagatac	cttaaaaccc	gatttggaat	360
tgattgaaaa	aagaattgtt	gaaccagcac	aagaattatt			400
<210> 284 <211> 522 <212> DNA <213> Cand						
	dida albican	ns				
<400> 284 catggcacca	dida albican gaaagaacca		cacccatcgt	ttaatcaacc	aattaattga	60
catggcacca		ccaattataa	-		J	60 120
catggcacca tatgaatcaa	gaaagaacca	ccaattataa ttgaaatcaa	tgggacaaca	gtgacaaaat	caaactgtaa	
catggcacca tatgaatcaa atatttacct	gaaagaacca tatgagtcaa	ccaattataa ttgaaatcaa gggatatttg	tgggacaaca gtcattggga	gtgacaaaat gtattgttca	caaactgtaa ttaatatcac	120
catggcacca tatgaatcaa atatttacct ttgttcaaga	gaaagaacca tatgagtcaa acattggctg	ccaattataa ttgaaatcaa gggatatttg ccattgcatc	tgggacaaca gtcattggga atttgataat	gtgacaaaat gtattgttca aatcaaaata	caaactgtaa ttaatatcac atgaagtgtt	120 180
catggcacca tatgaatcaa atatttacct ttgttcaaga taagaattat	gaaagaacca tatgagtcaa acattggctg aacccatggc	ccaattataa ttgaaatcaa gggatatttg ccattgcatc ataacaaggc	tgggacaaca gtcattggga atttgataat tgttttgagc	gtgacaaaat gtattgttca aatcaaaata aaaatcttac	caaactgtaa ttaatatcac atgaagtgtt ccatttcctc	120 180 240
catggcacca tatgaatcaa atatttacct ttgttcaaga taagaattat acaatttaat	gaaagaacca tatgagtcaa acattggctg aacccatggc atgttgaata	ccaattataa ttgaaatcaa gggatatttg ccattgcatc ataacaaggc atagaatttt	tgggacaaca gtcattggga atttgataat tgttttgagc caaattgaat	gtgacaaaat gtattgttca aatcaaaata aaaatcttac cctaatgata	caaactgtaa ttaatatcac atgaagtgtt ccatttcctc gaatagattt	120 180 240 300
catggcacca tatgaatcaa atatttacct ttgttcaaga taagaattat acaatttaat accaacttta	gaaagaacca tatgagtcaa acattggctg aacccatggc atgttgaata cgcttattag	ccaattataa ttgaaatcaa gggatatttg ccattgcatc ataacaaggc atagaatttt ttattcgttg	tgggacaaca gtcattggga atttgataat tgttttgagc caaattgaat tgatttcttc	gtgacaaaat gtattgttca aatcaaaata aaaatcttac cctaatgata aaagatgatc	caaactgtaa ttaatatcac atgaagtgtt ccatttcctc gaatagattt attactacta	120 180 240 300 360

<210> 285 <211> 500

# WO 2007/039319 PCT/EP2006/010132 124/763

<212> DNA <213> Candida albicans	
<400> 285 tataatgccc cgaaaataaa gtttaccgat actgaaggac aagaagaaca tttttatttc	60
aatcggagta acaattcaac caatgattta accagtcatg actcttcatc aactcaacta	120
caagatgcca attccagaag acaagcccca ccaccaccac cacataatcc attttctgac	180
aattcccatg aaaatagtac tgaatcatta tatcaatcag aaacaagatt tcatcaacca	240
ctacttcata atgatagtaa taatagcaat agcagtatag gcaataatag acaacgtatt	300
ccatcacaac aacatgatac actgtcatta tattcagcat caccaatatc aacatcacct	360
ttagtttcta attttcaatc atatctggac aaccaagacg aaatgactcg aggtaagtat	420
aaccagaata caaatcggtc aagttcaaat tatattcaac acagtccaac atcagcaggg	480
tacgatagat atccgcttaa	500
<210> 286 <211> 279 <212> DNA <213> Candida albicans	
<400> 286 tggaacctgt ttgtacttga cgtcattgtc gaaaaaacac ccagagaaat tgtgtaaaga	60
gaaatacgtc cacggcggta acgtgttgat cgacccaact gccaagatcc acccatctgc	120
cttaatcggt ccaaacgtca ccatcggtcc aaacgttgtt gtcggtgaag gtgctagaat	180
ccgaagatca gtgttgttgg ccaactccca agtcaaagac cacgcctggg tcaaatctac	240
cattgttggt tggaactcca gaattggaaa gtgggctag	279
<210> 287 <211> 597 <212> DNA <213> Candida albicans	
<400> 287 gatttcctag ccggaatgca cgacaatcct gagacggaag tcgatcgtcg atgcccatgg	60
tgcgtggtga aaaattttct tagaaaattt gttctttcct tcaactgctt ttaagaaaga	120
gaggttcaag tggtttaagt acgacggtca caaagattgc ggcttatgag gcccgaactg	180
agttgaaata caaaatcaag atataattat ataccttact tgtccatatt gttttataat	240
acattettea gatatttaaa tttetgtgta teaacetata aaacagagat acatteagtg	300

## WO 2007/039319 PCT/EP2006/010132 125/763

	360
tggcagacga acagattaga agcttggtaa agttctgctt tgctcaatag gtttcagatt	420
cagaaagatt gttaaaactt agatcatctt cgttcatcac aaaccaagaa ctttacggaa	480
tgtacgaata tcactttcat tagtagataa ttcgttactt aatccagtga ttaatcttga	540
ggttcgaaag atggttaata gaaatttatt tgacaattac gactaaggtt acataat	597
<210> 288 <211> 350 <212> DNA <213> Candida albicans	
<400> 288 aagacgactg agcgtgtccc ttttgtataa actttataat tttcaatgaa tcttttaccc	60
cattggtttc aacaccgcca ctaacatcgt agcccaaaat gttgtcaaat gtaggcaaat	120
totcaggggt tagcccacca gcaagtatag cttttgtagg taacttctca ataaacgtcc	180
aatcaagtaa cttcccttca cccccaactt ccgaatcaag caacggcaaa ctcacacatt	240
gcgttaacag caagctctgc tcttccaaaa ggtctagctc gtcaggaaca acatacctgg	300
gaattaaccc aaattotgta cocaaaaact ctagottato ttocagtoca	350
<210> 289	
<211> 330 <212> DNA <213> Candida albicans	
<211> 330 <212> DNA <213> Candida albicans <400> 289	60
<211> 330 <212> DNA <213> Candida albicans <400> 289 acatgtcaag aggattgttc atgtaagaat aatgaagccc ccacaacaaa gacaactgcc	60
<211> 330 <212> DNA <213> Candida albicans <400> 289 acatgtcaag aggattgttc atgtaagaat aatgaagccc ccacaacaaa gacaactgcc accacaacta atgttggtga tggccctggc cctggcccta tccctggcaa taatgatgat	120
<pre>&lt;211&gt; 330 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 289 acatgtcaag aggattgttc atgtaagaat aatgaagccc ccacaacaaa gacaactgcc accacaacta atgttggtga tggccctggc cctggcccta tccctggcaa taatgatgat gatgatgatg acatttggtc agatgatgat acgaaactaa tacctgaaaa tgatataata</pre>	120 180
<pre>&lt;211&gt; 330 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 289 acatgtcaag aggattgttc atgtaagaat aatgaagccc ccacaacaaa gacaactgcc accacaacta atgttggtga tggccctggc cctggcccta tccctggcaa taatgatgat gatgatgatg acatttggtc agatgatgat acgaaactaa tacctgaaaa tgatataata cgatcacatt ataaaaaagg gtatgttgat gggataactc aagctaaaga atcttcatta</pre>	120 180 240
<pre>&lt;211&gt; 330 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 289 acatgtcaag aggattgttc atgtaagaat aatgaagccc ccacaacaaa gacaactgcc accacaacta atgttggtga tggccctggc cctggcccta tccctggcaa taatgatgat gatgatgatg acatttggtc agatgatgat acgaaactaa tacctgaaaa tgatataata cgatcacatt ataaaaaagg gtatgttgat gggataactc aagctaaaga atcttcatta caacaaggat ttgatgatgg atatcctgaa ggtgcaaaat tagggattaa agttggtgaa</pre>	120 180 240 300
<pre>&lt;211&gt; 330 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 289 acatgtcaag aggattgttc atgtaagaat aatgaagccc ccacaacaaa gacaactgcc accacaacta atgttggtga tggccctggc cctggcccta tccctggcaa taatgatgat gatgatgatg acatttggtc agatgatgat acgaaactaa tacctgaaaa tgatataata cgatcacatt ataaaaaagg gtatgttgat gggataactc aagctaaaga atcttcatta</pre>	120 180 240
<pre>&lt;211&gt; 330 &lt;212&gt; DNA &lt;213&gt; Candida albicans </pre> <pre>&lt;400&gt; 289 acatgtcaag aggattgttc atgtaagaat aatgaagccc ccacaacaaa gacaactgcc accacaacta atgttggtga tggccctggc cctggcccta tccctggcaa taatgatgat gatgatgatg acatttggtc agatgatgat acgaaactaa tacctgaaaa tgatataata cgatcacatt ataaaaaagg gtatgttgat gggataactc aagctaaaga atcttcatta caacaaggat ttgatgatgg atatcctgaa ggtgcaaaat tagggattaa agttggtgaa</pre>	120 180 240 300
<pre>&lt;211&gt; 330 &lt;212&gt; DNA &lt;213&gt; Candida albicans  &lt;400&gt; 289 acatgtcaag aggattgttc atgtaagaat aatgaagcc ccacaacaaa gacaactgcc accacaacta atgttggtga tggccctggc cctggcccta tccctggcaa taatgatgat gatgatgatg acatttggtc agatgatgat acgaaactaa tacctgaaaa tgatataata cgatcacatt ataaaaaagg gtatgttgat gggataactc aagctaaaga atcttcatta caacaaggat ttgatgatgg atatcctgaa ggtgcaaaat tagggattaa agttggtgaa attttagcaa atttaatcaa tcaatgtaaa  &lt;210&gt; 290 &lt;211&gt; 524 &lt;212&gt; DNA</pre>	120 180 240 300

## WO 2007/039319 PCT/EP2006/010132 126/763

aatgtattct ccatgtttgg tgccaaaaaa gagaaaaaac cagaacaaga agattcagac	120
aacaagaaag aatccgataa aaaggaagaa aaagatacta gcaaatcaac tggtgatgat	180
aatgaagtag ctgaagaaga agaagctgat gtcgaattta ctccagttgt tcaattggat	240
aaaaaagttg acgttaaaac caatgaagaa gatgaagaag tcttgtataa agttagagcc	300
aaattattta gattccatgg tgattcaaaa gaatggaaag aaagaggtac tggtgatgtt	360
aaatttttaa aacataaaac tactggtaaa gttagaattt taatgagaag agataaaact	420
ttgaaaattt gtgctaatca tttgatttct gctgattatg aattgaaacc aaatattggt	480
tetgatagat ettgggttta tactgttact getgatgttt etga	524
<210> 291 <211> 513 <212> DNA <213> Candida albicans	
<pre>&lt;400&gt; 291 tctgatgttg ctgtttgttc ttcaagaact ttcggtcaaa gagctgtttt gaaatttgct</pre>	60
gctcacactg gtgctactgc cattgctggt agattcactc caggtaactt taccaattat	120
atcactcgtt cattcaaaga accaagatta gttgttgtta ctgacccaag aaccgatgct	180
caagccatca aagaatcatc ttatgttaac attccagtta ttgccttgac tgacatggac	240
tetecatetg aataegttga tgttgccatt ccatgtaaca acaaaggtaa acaetetatt	300
ggtttaatct ggtggttgct tgctagagaa gtcttgagat taagaggtat tatcccagac	360
agaactaccg aatggtcagt tatgccagat ttgtacttct acagagaccc agaagaaatt	420
gaacaaaatg ccgtcgaaga agctaaaact gaagaagttg aagaagctcc agttgctgaa	480
gctgaaaccg aatggactgg tgaaactgaa gat	513
<210> 292 <211> 613 <212> DNA <213> Candida albicans	
tegaccatae catecaatae ttgaateatt ggaattteaa accaateaae atttaattea	60
agaatattct ttagatattg tcaatacttt atctcaattg gaatcactta cattagttaa	120
teetgecatg attgatttae aaccagaaat teaatggttt atgegteeat ttttattaga	180
ttttttaatt gaattgcatt cttcatttaa attacaacca acaacattat ttttatgtct	240

## WO 2007/039319 PCT/EP2006/010132 127/763

taatattatt	gatagatatt	gtgctaaaag	aattgttttc	aaacgtcatt	atcaattagt	300
tggttgtaca	gcattatgga	ttgctagtaa	atatgaagat	aaaaactgc	gtgtacccac	360
attaaaagaa	ttaacaataa	tgtgtcgtaa	tgcttatgat	gaagaaatgt	ttgttcaaat	420
ggaaatgcat	attttaagta	ctttagattg	gtcaattggt	catccaactt	tagaagattg	480
tctacaatta	gccattgatc	tgaataattt	atctaacaac	accactaatg	atattgaaaa	540
caaaagtgta	cgtcctaatc	ggaaatcaag	tatatcatca	gctgtaactg	ctgttgctag	600
gtttctttgt	gaa					613
	dida albican	าร				
<400> 293 agaaatttgg	cctgatgtta	attatttacc	agattttaaa	tcaagtttcc	ctcaatggaa	60
aaagaaacct	ttgagtgaag	cagttccaag	tttggatgct	aatggaattg	atcttttgga	120
tcaaatgttg	gtgtatgatc	caagtagaag	aataagtgct	aaacgagctt	taattcatcc	180
ttattttaat	gataatgatg	atcgtgatca	taacaattat	aatgaagata	atattgggat	240
tgacaaacac	С					251
<210> 294 <211> 564 <212> DNA <213> Cand	dida albican	ns				
<400> 294 aacagcaacc	agaaatcaag	ttaggtatga	gaccattgtt	gttggatttc	ttaatggaag	60
ttatcactat	tctcaacttg	tctagatcta	cattcccttt	gactgtcaat	ttgattgatc	120
gttattgttc	aaccagaatt	gtcaagaaac	aacattacca	gttgttggga	ttgactagtc	180
tttggatcag	ttgtaagaac	ttggattcaa	agttcaaagt	tcctacattg	aatgatttga	240
gaaaaatttg	tgttgacagt	tattacaaag	aattgtttgt	ggaaatggag	aaacatattt	300
taaaatcatt	agaatgggtc	gtcaatgctc	cgacatttga	tgcctttatt	gatttgtatt	360
caaacttgtt	gatttctaac	agcagtaact	ttgaggttgc	aaacattatc	aaaaaatcat	420
ctcataaaat	aaaattgttt	tccaattata	ttggtgaatt	gttccagttt	tatccaaaca	480
tttattacga	ttacacatcg	tcacaaattg	ctttgattgc	tattttaatc	acggtcttga	540

## WO 2007/039319 PCT/EP2006/010132 128/763

cgttgaagat	tcctgttgat	ttaa				564
<210> 295 <211> 580 <212> DNA <213> Cand	dida albicar	າຣ				
<400> 295						
gctaccactt	taaccgacac	cggtgtatcc	tcaggattga	ataataccac	ttctggtggc	60
ggcagtgata	gtgcaacctc	cacacacaac	aacaatgagg	catcgaccaa	accaagtaat	120
ggcagtgaaa	aatcgtcacc	ggagtacact	acaactgccc	gcggtagaga	tgagtttgga	180
ttccttaatg	aagccacacc	aagtcaatac	aaagccaatt	cagattatga	agacgatttc	240
ccattggatt	atatcaatca	gaccactcaa	aattctgaag	attatattac	tttggatgca	300
aattatcagg	caggaagtta	tgcaaatatg	atcgaagaca	attacgattc	atttttggat	360
gcaacactat	ttatacctcc	aagtcttggc	gtacctacag	gtacagctgc	gactgcaaca	420
acatcaaacc	aagttgcctt	caacgacgaa	tacttgattg	aacaagccca	accaataagg	480
actccactac	ccccaatatc	atcatcaaca	atatccggat	tattacaacc	aaaatcagct	540
gctaaattct	tttcactaca	gagtgctaat	ggtggagaag			580
<210> 296 <211> 604 <212> DNA <213> Cand	dida albicar	ıs				
<400> 296 tttcatcacc	acctcaagtc	tctqtaacat	catctgaagg	agtttcacat	gtcaatacac	60
	gggtgatgtt	-		_		120
	gggtggagac					180
	tgccagtgat					240
	taacaacgac					300
	acaagctact					360
_	aggggaaaga		_			420
	tttggatgaa					480
	ttcgtactat					540
	aacattgtta					600

## WO 2007/039319 PCT/EP2006/010132 129/763

aaat						604
<210> 297 <211> 735 <212> DNA <213> Cand	dida albicar	ns				
<400> 297						
ccagcaaaca	attcctaatc	aattgtcaca	gccacaacct	cagcattaca	atggatctaa	60
tcgtaattac	acaagtgctc	ctagtggtgc	ccccatacct	tccaattcta	ccagtggacc	120
ttcacaacag	ccaccactac	caggtcaaca	agcagtacct	atcccaccac	atgtatcgac	180
aatgcaacaa	ccaactcctg	ttcaggatac	gttgaacgcc	tcgagcactt	ccactgtggg	240
gcaattccaa	ccaccaggaa	tcagaccacg	agtaacaact	accatgtggg	aagatgaaaa	300
aactttgtgc	tatcaagttg	atgccaataa	tgtgtcggtt	gtcagaagag	cagataataa	360
tatgatcaac	ggaaccaaat	tgctcaatgt	ggcccaaatg	acacgtggta	gaagagatgg	420
gattttgaaa	tcagaaaagg	tgagacacgt	tgtgaaaatc	ggatcaatgc	atttgaaagg	480
agtctggatt	ccatttgaaa	gagcattggc	catggctcaa	cgtgaacaaa	ttgtggatat	540
gttgtatcct	ttgtttgtca	gagatattaa	acgagtgatt	caaaccggag	taactcctaa	600
tgcagctgct	gcaacggccg	ccgccgctgc	cactgccact	tctgcttcgg	ctcctccacc	660
tccacctcca	cccgttgctg	ctgctactac	tactgctgct	actgctattt	ccaaaagttc	720
tagcggtaat	gggaa					735
<210> 298 <211> 563 <212> DNA <213> Cand	dida albicar	ns				
<400> 298						
gctcgtttga	ttagatttgg	gatctttgcc	cttgttttaa	taggatgtgg	ctatatcctt	60
acaagaggct	catcattcca	acctccaaat	tatcaacaaa	cacaatcacc	cgccgctcat	120
gaaaaacaga	ccggtaatgt	tgctgctgga	ggtggtgctg	gttcaggttc	cgcaggagct	180
caagttccat	taggcaaaaa	tagaggtcca	ataccaaaag	caattatggg	agctggtgaa	240
ggtggtagtg	atgctccggt	tcctcaacaa	gatattcctg	atagttatac	cctcaatgac	300
aaaattaagg	ctacatttgt	cactttggcc	cgtaactctg	atttatattc	tttagctgaa	360
tcaattagac	acgttgaaga	tcgtttcaat	aagaaattcc	attatgattg	ggttttcctc	420

# WO 2007/039319 PCT/EP2006/010132 130/763

aatgatgaag	aattcaatga	tgaatttaaa	gaaactgttg	gtagtttagt	tagtggtaac	480
actaaatttg	gtttgattcc	aaaggaacat	tggtcatatc	ctccatggat	tgatcaagaa	540
aaagctgctt	tagtccgtga	aca				563
<210> 299 <211> 554 <212> DNA <213> Cand	dida albican	าร				
<400> 299 cccaactaat	tcagcatcac	ttaaacagaa	acaacgtcaa	cagctaggaa	ttaaatccga	60
gattggtgct	tcaacatcag	acgtatatga	tccccaagtt	gctagttatt	tgagtgctgg	120
tgattcacct	agccaatttg	ccaacactgc	ccttcatcat	agtaatagtg	ttggttattc	180
tgctagtgca	gctgcagctg	ctgcggaatt	acaacaccgt	gcagaattac	aaagaaggca	240
acaacaattg	caacaacaag	aattacaaca	tcaacaggaa	cagttacaac	aatatcgaca	300
ggctcaagca	caggctcaag	cccaggcgca	agctcaaaga	gaacaccaac	agttacagca	360
tgcttatcaa	cagcaacaac	agctacacca	attgggtcaa	ctttctcaac	agttggcaca	420
accacatttg	tcacaacatg	agcatgtcag	agatgcgctc	actacggatg	aatttgatac	480
taatgaagat	cttcgttcac	gatacattga	gaatgagatt	gtaaagacat	ttaacagtaa	540
agccgaattg	gtac					554
<210> 300 <211> 503 <212> DNA <213> Cand	dida albicar	ns				
<400> 300	+ a a + a > a + + a	0200220222	+ 000000000	2++602260	2012001100	60
			tgcaacagca gtcaattagg			120
			aacaacgtca			180
_			gattggatca		_	240
			ttgcgtctca			300
			agggtaatga			360
			ttgattcaaa			420
			atcattctca			480
caaacyctya	ccciaaigil	caayctcatg	accattctca	ryyarraaya	aattegtatg	400

# WO 2007/039319 PCT/EP2006/010132 131/763

ggaaaagaag	tgggtttttg	taa				503
<210> 301 <211> 724 <212> DNA <213> Can	dida albica	ns				
<400> 301						60
	gtgtttgtgg					60
acgatcattt	gtgtgacgac	catgttggta	gaaagtcttc	gaacaatttg	tcattgactt	120
gtctttggga	aaattgtggc	acaactacag	ttaagagaga	tcacattact	tctcacttga	180
gagtccatgt	cccattgaag	cctttccatt	gtgacttgtg	tcccaaatcg	ttcaagagac	240
ctcaagattt	gaagaaacat	tccaagactc	acgctgaaga	ccatccaaag	aagttaaaaa	300
aggcacaaag	agagttgatg	aaacaacaac	aaaaagaggc	caagcaacaa	cagaaattgg	360
ccaacaagcg	agcaaactcg	atgaatgcaa	ctaccgcatc	cgatttgcaa	ttgaactact	420
attccggtaa	ccctgctgat	ggattgaact	acgacgacac	ctccagaaaa	agaagatacg	480
aaaacaattc	tcaacacaac	atgtatgtgg	ttaatagtat	tttgaacgat	ttcaacttcc	540
aacaaatggc	acaagctcca	cagcaaccag	gcgttgttgg	aacccgcagg	ttctggctga	600
gttcacccac	caagaggatg	aaagccggca	ctgagtataa	cattgatgtg	tttaacaagt	660
tgaatcattt	ggacgaccac	ttgcaccacc	accaccctca	acagcaacac	ccacaacaac	720
aata						724
<210> 302 <211> 543 <212> DNA <213> Cand	dida albicar	ns				
<400> 302						
ataacccaca	taaggtctgg	ttaccaggag	aagaaatctc	aggacaagtt	gtattaattt	60
cgaaaaagaa	tttggcaaat	atagtcataa	cgttgtcgtt	ggtggggttt	attaaaataa	120
atgcatcgtc	acatctgaag	ttgaggcctt	tgaagcatac	gttatttgat	tatactatta	180
aaatctatgg	taaagatgaa	gaagaacaaa	cagactcagc	agagtttagt	aatggacttt	240
tgaaaggcga	acatgtgttt	ccgtttattg	taaagttgcc	caataaaaga	gtatatacgt	300
cgattgattt	tgggaaaggt	tccatcaact	acattttgaa	agcagctata	ggaaactcgt	360
cgtcctatgt	gatacctgcc	tcgcccgaca	atgccagtac	tagcagttta	acgaaaaaga	420

## WO 2007/039319 PCT/EP2006/010132 132/763

aaatactaca	gaatcctagt	cacacatcag	aaaaagtcat	aagtctagta	aatccaatag	480
atgtttcgtt	attgcctcga	ccgaaaccaa	agagattgat	tctcaaagat	ccacgaacta	540
gct						543
<210> 303 <211> 315 <212> DNA <213> Cand	dida albican	ns				
<400> 303	gactactgaa	gaaatattgg	cttcttatcc	acaaatcacc	getecaaceg	60
	-	aatttaacac				120
		ggttataaag	_		_	180
-		gatattcaaa		-	_	240
	-	gttaatacca				300
ccattgttgc		,			yy	315
, ,						
<210> 304 <211> 230 <212> DNA <213> Cand	dida albicar	ns				
<400> 304						
attggtttca	aacagttact	cagcacgcca	atgaggatgc	acagatattt	ttagtaggta	60
acaagtgtga	tgatgaagta	aacagacaag	tttctaaaga	gcaaggtcaa	gaattagctg	120
ctaaattaaa	tgttccattt	ttggaagcca	gtgccaaaag	caatgaaaac	gttgactcta	180
ttttttacga	attggctagt	attatccaag	agaagcatgt	tgaagagaat		230
<210> 305 <211> 575 <212> DNA <213> Cand	dida albicar	ns				
<400> 305	acadat case	gaaatagaa	02++0++00	2021112000	attaccaaaa	60
		gaaatcccac				
		cagcacctcg				120
ccaaagactt	ggatattgac	atggtccact	ccttagacca	ctcgtcagtt	gtttgctgcg	180
tgagattttc	cagagacggc	aagttcatcg	ccaccggttg	caacaaaacc	acccaagtgt	240

## WO 2007/039319 PCT/EP2006/010132 133/763

tcaatgtcac	caccggagag	ttggtcgcca	aattgattga	cgagtcctcc	aacgaaaaca	300
aagacgacaa	caccaccgcc	tcaggcgact	tgtacatcag	atctgtgtgt	ttctcccctg	360
acggaaaact	cttggcgaca	ggtgcagaag	acaagttgat	tagaatctgg	gatttgagca	420
caaagagaat	tatcaaaatc	ttgaggggcc	acgaacaaga	catttactcg	ttagactttt	480
tccctgatgg	cgataggttg	gtttcaggct	ccggcgatag	gtcagtcaga	atctgggact	540
tgagaacctc	ccagtgttcc	ttgactttgt	cgatc			575
<210> 306 <211> 286 <212> DNA <213> Cand	dida albicar	าร				
<400> 306 aggtggtgtc	atgaaattat	tagttggtaa	taaggctgat	ttgtctgata	aaaaaatcgt	60
	gctgctaaag					120
	tcgaccaatg					180
	aacaatgcca				_	240
	ggtgaatctt					286
<210> 307 <211> 558 <212> DNA <213> Cand	dida albican	าร				
<400> 307 ttgcccaatc	agcattacaa	tttgcaacaa	agacaacagg	cacaaggaca	acaactcaaa	60
ctgcaactaa	acgagcaaaa	tgccatgatg	tctgcctcga	ctcaacaata	tcctgtccag	120
gattttacaa	atccttaccc	caatgcacag	aatcccgcag	aacaacagca	acagcaacaa	180
cctcttcgaa	cccagtcaca	acaatgggac	ggctaccaat	ctcaaccttt	gtattctgct	240
gctggtaata	ctataccatc	ctcaatccag	cagcaaatac	caccacagaa	tttgtctcca	300
tcagagcagc	aacaagtcaa	gcaacaacag	ccactgccgc	cagaacaagg	aacaaagaaa	360
aaacctggta	gaaaaccaaa	attaagaaaa	ttatcggaac	tgagttctga	aacaccacaa	420
gttccaaaaa	cagcatccag	ttcttcgagc	tcaccaactg	cagtcaattc	tggtaaacca	480
attacaaaaa	gatcgcgtat	gggatgtctt	acatgccgtc	aaagaaagaa	acgttgttgt	540
gaaacaagac	caaggtgt					558

# WO 2007/039319 PCT/EP2006/010132 134/763

<210> 308 <211> 450 <212> DNA <213> Ent		aecalis				
<400> 308 atatcgaagt	ggtctattta	gaggacttag	ctgctgaagc	gttgattaat	gaagaggtcc	60
gccgacaatt	tattgaccaa	ttcttagaag	aagccaatat	tcgcagcgaa	tcagcaaaag	120
aaaaagttag	agagttaatg	ttagaaattg	acgacaacga	agaacttatt	caaaaagcga	180
ttgctggcat	tcaaaaacaa	gaattaccta	aatatgagca	agaatttta	acagatatgg	240
ttgaagcgga	ttatccattc	attattgatc	caatgcctaa	cttatacttc	acgcgtgata	300
actttgcgac	aatggggcac	gggatttctt	taaatcatat	gtattcagta	actcgacaac	360
gggaaaccat	ttttgggcaa	tacatttttg	attatcatcc	tcgttttgct	ggaaaagagg	420
ttcctagagt	ctatgatcgt	tcagaatcaa				450
<210> 309 <211> 280 <212> DNA <213> Ent	erococcus fa	aecalis				
<400> 309 aattaaacaa	agcaggaatc	aagaaacaag	tggctactgt	tttaacacag	gtggtcgtag	60
atccagcaga	tgaggcattc	aaaaatccaa	caaaaccgat	cggtccattt	ttaacagaag	120
ctgaagccaa	agaagcaatg	caagcaggtg	ctatttttaa	agaagatgca	ggacgtggct	180
ggcgcaaagt	cgttccaagt	cctaagccaa	ttgacatcca	cgaggctgag	actattaata	240
ccttaataaa	aaatgatata	attaccattt	catgtggtgg			280
<210> 310 <211> 600 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 310 agttgcacaa	gtagcgatgg	cgatggcttt	taatcctcaa	aaagattatt	ttttaccgta	60
ttatcgtgat	atgaccgcgt	gcttggtttg	gggcatgacc	tccaaagata	ttttaatggg	120
	aaagaagcgg					180
ttcaaaagag	cataatattg	tttccttctc	ttcaacagta	agtacacaaa	tgccattagc	240
aacaggtgtt	ggttatgcag	cgcaacttca	aaaagctgat	tttgttgcat	tgaccaccac	300

# WO 2007/039319 PCT/EP2006/010132 135/763

tggggaaggc	tctgccaatc	aaggagaagt	ccaagaagct	attaactttg	caggcgtaaa	360
aaaattacca	gtcatttttg	ttgttgaaaa	taatgaatat	gcgatttctg	tcccaattga	420
agaacagtat	gccaataaac	gaatggccga	tcgcgcgaaa	gcttatggct	ttgaaggtgt	480
gaccgttgat	ggtagtgatt	ttgctgaagt	ctatctagca	tttaaagaag	cagtaaaagc	540
ggctcgcggg	aaaaaaggac	caaaattgat	tgaattaatg	gtttctcgct	tgacttctca	600
<210> 311 <211> 528 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 311 cgcagacaag	aaagacaaca	caacgaactc	ttctagcgta	gcatcttcag	aaacgaaaaa	60
atcaactgaa	tcatcagcac	cagcgaaaaa	agttgccggt	ggcgatttaa	aagatggtac	120
gtataaatta	gaagaaaaaa	atgaaaaaaa	tggttaccgt	gcagtctttg	aaatgactgt	180
aaaagacggc	aaaatcactg	aatctaaata	tgacaacatc	aatgctgacg	gcaaatctaa	240
aacagaagac	actaagtatg	aagaaagcat	gaaagcaaaa	tctggtgttg	gaccaaaaga	300
atacatcaaa	caattaaacg	attcttttgt	taaagcacaa	agcgcaagcg	gtgtggaagt	360
agtaactggt	gcgactcatt	catctgaatc	attccaaaac	tacgcacaac	aattaatcca	420
agcagcacaa	gctggtaaca	cagacacaat	cgaaatcgac	aatggggcaa	cattgaaaga	480
tggtacgtac	tcattgaaag	aaaaaaatga	ctcaaacggc	taccacac		528
<210> 312 <211> 451 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 312 ttttcacttt	taggagctat	ttttatttta	gctagttgtg	gcataggaaa	agatgctgtc	60
			caagctgctg			120
ggcaacagca	aaccattagt	aaatgtccaa	tttgatacag	aaccagcaag	tgactacage	180
tatatcttta	ctaacgatac	agaaacactt	tacgtgaatc	ctgaaacagg	aaaagtcacc	240
aaaaatactg	aagcaaatca	acttggcgaa	aacgagacag	ccttttcagc	tgctgaagtc	300
aaagaattag	gcgctgttaa	cgacgtttta	gccaaagcaa	aaaaagaagt	tggaggactt	360
tctccacgta	ttttgacttg	gaagttaacc	aaaaataaca	ataaacttgt	ttatacagta	420

# WO 2007/039319 PCT/EP2006/010132 136/763

gatgttaaaa	cgactacggc	agatgaaaaa	g			451
<210> 313 <211> 274 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 313						
caaaaccaac	agaagaagaa	ttaaaacaaa	ccttgacgga	tcttcaatat	gccgtcacac	60
aagaaaacgc	aacagaacgc	cctttttcag	gagaatatga	tgacttttac	caagacggaa	120
tctatgtaga	cattgttagt	ggcgagccgt	tgtttagctc	cctggacaaa	tacgatgctg	180
gttgtggctg	gccatccttt	accaaaccaa	ttgaaaaacg	tggcgtcaaa	gaaaaagctg	240
attttagtca	cggcatgcac	cgagtagaag	ttcg			274
	erococcus fa	aecalis				
<400> 314 ggcttagttg	tcagttgtgg	ggccttttt	gcccaaccta	ctgtgactca	cgcagaagaa	60
gatattaccg	cgattgctaa	aaaaatgggg	acgactttga	aagcggatgg	cattcccaaa	120
gcagccatcg	ttgttgatgc	tgattctgga	gaaattctct	ggtcgcagca	accagattta	180
gcgtggaatc	ctgccagtat	tgccaaagtg	atgaccatgt	acttggcctt	tgaagcaatg	240
gagcaaggaa	aatttacaat	ggatacgact	gtgactgcta	cgcaaaaaga	tgtcgatatt	300
tctaaaatat	atgccattag	taataacaaa	attacgttag	gtgttgctta	tccagtccgt	360
gaactgttaa	aaatgattgc	tgtcccctct	tctaatgtgg	cgactctcat	gttggcaaac	420
ttaatttcag	ggaaccagcc	tactgacttt	gttcatttaa	tgaatcaaaa	agcggctgaa	480
ctagggatga	caaatactac	ctattacaac	tgcagtggag	cgcaagcaag	tgcctttaac	540
ggcctgtatc	aaatgcaagg	aatt				564
<210> 315 <211> 478 <212> DNA <213> Ente <400> 315	erococcus fa	ecalis				
	tacaaaatca	aagaataatg	ttataggcaa	gaatggtaat	ataccatora	60

## WO 2007/039319 PCT/EP2006/010132 137/763

aaataaaggg	agaacaaaag	caatttagag	agttaacaac	gggtaatgtg	gttattatgg	120
ggcgaaagtc	ttatgaagaa	atcggtcatc	cgttgcctaa	tagaatgaat	attgttgttt	180
ccaccacaac	agagtatcaa	ggagataatt	tagtttcagt	taaatcatta	gaagatgcat	240
tattattggc	taaaggacga	gatgtataca	tatctggtgg	atatggacta	tttaaggaag	300
ctttgcaaat	agtagataaa	atgtatatca	cagaagtaga	tttaaatatt	gaagatggag	360
atacattctt	tccagaattt	gatatcaatg	attttgaagt	tttgataggg	gaaacacttg	420
gtgaggaagt	gaaatatacg	agaacatttt	atgtaaggaa	aaatgaattg	agtagatt	478
	erococcus fa	aecalis				
<400> 316 ttttactaaa	ccattaggtg	taaaattacc	cccattttt	gatattgcac	attttgacgc	60
aatggctgaa	attttaaata	aattcccttt	agtttacgtg	aatagtatta	atagcatcgg	120
taatggttta	tatattgaca	gtgacaagga	agaagtggtc	attaaaccaa	aaggaggctt	180
cggtggactg	ggcggcgaat	atgtcaaacc	aacagcgtta	gccaatgttc	gtgcgtttgc	240
gcaacgtttg	aaaccagaaa	tcaaaattat	tggaacgggc	ggtattacat	gtggaaaaga	300
tgtttttgag	catcttttat	gtggtgcgac	attagtacaa	gttggcacac	aattgcatca	360
agaaggtcca	caagtttttg					380
<210> 317 <211> 537 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 317	ttgttagata	aggagtatga	aaacttatat	aatagtactt	ataaagaaag	60
			tttgtcaaat	-	-	120
			tatcatgtct			180
	_		tggtatggct			240
			gggattagct			300
			atcccaaacg			360
			tcaagaaact			420

## WO 2007/039319 PCT/EP2006/010132 138/763

taatagcttt	aatctatcta	aaaaagttca	agacagactt	ttcaaaaaaa	tggaagagag	480
tgaaaggatt	catttaaagg	tagaattaag	tactttttca	gtcatggcct	tatcctc	537
<210> 318 <211> 606 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 318						
gatcaggaag	atcaatcagg	aaaaacacaa	tggacaaagt	attatctaac	cgtttatttt	60
tctggcttat	ttaattttct	gatgattctg	attttatcag	ttttatttgg	gacgttaagc	120
gaaaccttta	ttgtatacgt	cgtactgatt	tttttacggc	ctgtcgcagg	tggctggcat	180
gcaaaaacta	aatggctctg	tcgtctagaa	agcattgtta	tctatgtcgc	cataccattt	240
gtattgaaaa	attcttctgt	gagcttaccg	tttatttata	aaattctatt	gatttgcctc	300
ttagtcgtat	tattttattg	gtatgcgcca	caaggaacag	caattgaacc	tgttcagcca	360
tctgatttaa	acgtgctcaa	aaagcaaagc	cttataaggg	tgtgtttact	tattttatgt	420
agtctgtttg	tcaaagaaaa	gattgcttca	gtaatactct	acggtctcgt	catccaaggt	480
ctgatgatac	tccctgtaac	aaaaaattta	attgaaggaa	gtgtttttat	gaaatttggt	540
aaaaaaataa	ttaaaaatgt	tattgaaaaa	agagttgcaa	aagtcagtga	tggtgtggga	600
actaag						606
<210> 319 <211> 507 <212> DNA <213> Ente	erococcus fa	necalis				
<400> 319	tettaattaa	tttatgcgct	gacagtcgtt	attttacaa	gattttagt	60
						120
		caatttttaa		_	-	
		acacggagca				180
ttatcaaaat	aaattattat	ggattgcctc	aaatgttctt	ctgttgctta	taaatatctg	240
gattgcttta	aaaattccca	atagtgtttt	tttaagatta	aatcgtgtgt	tagaaaatag	300
ccgaattttt	tttggttgtt	tacttttatt	gttgattctg	ttgttacttt	ttgtgttttt	360
gatttcgcca	gagatttcac	ctgactttat	gcgaggattt	gtcacggtaa	atagttctaa	420
attggagtta	ttaataagtg	taggtttatt	tttaattctg	attggcttag	tcattgaagc	480

ttatttggaa gaacaacgta tcaacac	507
<210> 320 <211> 500 <212> DNA <213> Enterococcus faecalis	
<400> 320	
ttacgttaga agaagcatac caagagtcaa aacggatgca agaattggtc aatttttcac	60
caaataatca attgctctat aaaacagctg ttcagctaga aggattgcct cgccatgttt	120
ctacgcacgc agcaggtgtg gtaattagtg atgaaaatct tttgaatttg gttccgttac	180
aaccaggatc gaatgaaatt ttattgaccc aatttactat gaatgatgtt gaaaaaattg	240
gtcttctgaa aatggatttc ttgggcttaa gaaatttatc catcattgat gataccctca	300
cagctgttaa acgcgtctat aatcgaacca ttcgtttaaa tcagattcca ttagatgacg	360
aaacaacgct ggctttattt agaaaagggg aaacaagtgg cgttttccag tttgaatctg	420
ctggaattcg gaatgtatta agaaaattag ggccaactag cattgaagat attgctgctg	480
tcaatgccct gtatcgtcct	500
<210> 321 <211> 407 <212> DNA <213> Enterococcus faecalis	
<400> 321 tttatgaagg cccaaagaat gatcttctgc taccttcaat tcaggctttt ttatcttaag	60
tgcctcaaga aataacgaat cggttttctt tttcattaaa aagacttttg agccttcctt	120
aaattotgag gaaaaaattt cgatgotttt ttoattgtag gttacttttt ctatctgaga	180
aagcggaagt gcttttttgc gaaaccacaa aacatctctg acaattaaag atgtttctgt	240
catattaaaa gaccgcgcaa ttcctagata agcaaacaca aaaaatggaa ccatcaccag	300
attactaatc aagtaaggac cattattttc caatgctaaa attaaactaa taaataatat	360
acaaaatgtg caagaccagt aaataattgt tgatgctaat tctggct	407
<210> 322 <211> 607 <212> DNA <213> Enterococcus faecalis <400> 322	
tttacctcac cgaccaatcg cggcaacaat tgcatgtgcc tttaggcatt gttagtaatc	60

## WO 2007/039319 PCT/EP2006/010132 140/763

acgaagccga	atttaaagtg	ctgattgaag	ctttaaaaca	agcgattgcc	aatgaagaca	120
atcaacaaac	cgttcttctc	cactcagata	gtaaaattgt	tgtccaaaca	attgaaaaaa	180
actatgctaa	aaatgaaaag	taccagcctt	atttagcaga	atatcaacaa	ctagaaaaga	240
attttccttt	gctcttaatc	aaatggctac	ctgaaagtca	aaacaaagcg	gccgatatgc	300
ttgcacggca	agcattacaa	aaattttatc	ccaataaaaa	gtagcactgt	ttacttaatg	360
cttttccttt	attaatttga	taattaaaca	cgtggagcaa	aaattccaag	tgatttttgc	420
tccacgttta	aaaacagata	aacggttctg	tctcgacttc	ttcttatagc	cacttattct	480
tttgtcgtta	tttccgcaaa	ttgcccattg	gttagcgaaa	ggattgcttc	aggcgctaat	540
tcaatttgca	tgccacgttt	gcctgcagaa	acaataattg	cagaatattg	ttgagcttct	600
tcagcca						607
<210> 323 <211> 521 <212> DNA <213> Ente	erococcus fa	aecalis				
	ttagcggtct	ttctacaagg	aggcgttact	gatttaaaca	cgaatcaaat	60
tggacaagtg	attcctaatg	gcccagccgc	agaagctggg	ttgaaagaaa	acgataaagt	120
cttatcgatt	aataatcaaa	aaatcaaaaa	atacgaagat	tttacaacca	ttgtgcagaa	180
gaaccccgaa	aagccgttaa	cgttcgtagt	tgagcgtaac	ggcaaagaag	agcaactaac	240
agtgacacca	gaaaaacaaa	aagtggaaaa	acaaacaatt	ggtaaagtcg	gcgtttatcc	300
ttatatgaaa	accgatttac	cgtcaaaatt	gatgggcggt	attcaggata	ctttaaatag	360
tacgacacag	atttttaaag	cactcggctc	actattcaca	ggctttagtt	taaacaaact	420
aggtgggcca	gtcatgatgt	ttaaattatc	ggaagaagca	tccaatgctg	gagtaagtac	480
agttgtattc	ttaatggcca	tgttgtcaat	gaacttaggg	a		521
<210> 324 <211> 531 <212> DNA <213> Ente	erococcus fa	aecalis				
	ttaaagtgaa	taataaacaa	attgtttctg	gactcgatgt	ttcggcagct	60
tcggttagtg	agatgatttc	aaagttagta	aaagaagatt	tggttgagca	ttctccttat	120

## WO 2007/039319 PCT/EP2006/010132 141/763

caaggggtac	aattaactga	aaaaggctta	aaaaaagcga	gtacgttaat	tcgcaaacac	180
cgaatctggg	aagtctttt	agtagagcac	ttaaattaca	cttggaatga	tgtgcacgaa	240
gaggcagaag	ttttagaaca	tgttacttca	cagacgcttg	tgaaccgttt	agcggattat	300
ttaaatcatc	cagaattttg	tccacacggt	ggtgttattc	ccgaagataa	tcaacccatt	360
catgaggaga	aacgccaaac	gttaacagac	taccctgttg	gcacaaaaat	tcggattgca	420
cgtgtcttag	acgaaaaaga	attactggat	tatttagttt	ccattgattt	aaatattcaa	480
gaagaatata	cgattaaaga	aattgctgca	tatgaaggac	cgatcaccat	t	531
	erococcus fa	aecalis				
<400> 325 gatacgaaga	agatagcgaa	acggttcaag	ataaagtcac	agcgctgcca	agtaccggtg	60
aatttgcttc	tgacaacaga	aaagcaaaaa	gctgtgataa	ggaacagaac	aagtcaaaga	120
aaatatggaa	ccacgtgtag	aataaacagt	taaagggagg	aaacaatcat	gggctttatt	180
tgggcattaa	ttgtcggcgg	ggtcattggg	gcaatcgctg	gagcaattac	taaaaaagga	240
tcatcaatgg	cattattgca	atatcattgc	agggttagtt	ggttcaacaa	ttggtcaagc	300
catttaggca	catgggacaa	gcttagctgg	gatggctatt	gt		342
<210> 326 <211> 512 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 326 aagatggtac	gtgtattcgt	tttgacactc	tttggcaagc	aggtttgcaa	gcttgttttg	60
aaacactaag	tatgttagcc	cctcatcatt	cagcagaaat	aaaaaagata	ttagctattc	120
aggagcaacg	ttttttgcaa	aaacatttac	ttgatgaagt	cctttatcag	gaactttatc	180
aggaattggc	gcaatttgag	gaattagtcg	aacagggaat	cagcagtcga	tggctggagc	240
aatttttta	tgattattta	cgaaaaaatc	tgaaaaagat	cgaaccaatt	ggtgatttaa	300
aacagttatt	tcttgagcta	aaacggaaga	actataaaat	tggattagca	acttcagata	360
ctttgccagc	gactatgttg	attatggaat	atcttggttt	aacagaaatg	tttgatttta	420
ttgcgacagg	agatcgttac	ttaccgaaac	cagatgcgga	catgctccaa	gccttttgtc	480

512

agecaegeea	accgaaggeg	acagaagcaa				312
<210> 327 <211> 643 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 327 ttatttctgt	tgagggcaaa	gcggaagcag	gtaaatactt	gttcttcaca	accttaaaag	60
gaaccgtcaa	acggacagcc	gtaacagcct	tttctaatat	ccgtagtaat	ggattaatcg	120
ccattagctt	aaaagaagat	gatgagttag	ttaacgtagt	aacgactaat	ggcaatcaga	180
agatgattat	cggaacacat	gcaggatact	ctgtcacatt	tgatgaaaat	actgtacgtg	240
atatgggccg	gacagcatca	ggtgttcgtg	gaatccgtct	ccgcgaaaat	gattatgtgg	300
teggegeage	gattctggat	gaaaataaag	aagtcctagt	cattactgaa	aatggttatg	360
gtaagcgtac	aaaagcctct	gaatatccag	ttaaaggacg	tggcggtaaa	gggattaaga	420
cagcaaatat	cactgagaaa	aatggtccat	tagctggttt	aaccacggtc	aatggtgatg	480
aagatatctt	attgattacg	aacaaaggcg	tcattatccg	ctttaacgtt	gattctgttt	540
ctcaaacagg	acgcgcaaca	ttaggggttc	gtttaatgag	aatggaagat	ggtgccaaag	600
tggtaacaat	ggctgttgta	gaaccagaag	aagtggaaga	aga		643
<210> 328 <211> 402 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 328 ttgatcgttt	tgacgtaatg	ataaaaaaag	cgaagaaaac	ctaccaacgc	ctagacttag	60
aagaaaaggt	cactctttta	gaaggacaag	cagctgagat	tctaccaacg	ttggaaggac	120
cttatgactt	tatttttatg	gatagtgcca	aatcaaaata	cattgaattt	ttacctgaat	180
gtttacggtt	gctgccagtt	ggcggcgttt	tgatggtgga	tgatgtattt	caagctggga	240
caattttaga	ccctgctgag	gaagtaccga	aaaaaaatcg	agcaattcat	cgtaaattaa	300
accaatttt	agatgtagtc	atggctcacc	ctgatttaac	ttctacttta	gttcctcttg	360
gtgatggagt	tattttaatt	accaaagaga	aagaaacgat	ta		402

agtcatgtca attgaaggcg acagaagtaa tt

<210> 329 <211> 608

<212> DNA <213> Enterococcus faecalis	
<400> 329 agcgactaga gagcatacaa gtaaacgaac gggcgttgcc ttgtgggtgg tgacggagtt	60
agccataatg gctacagata tcgctgaggt aattggtggt gccgttgctt tgcaattatt	120
atttggtttt ccattattaa ttggtgtgtt gataacaacg tttgatgttt tattactgtt	180
gctactgaca aagttagget ttcgcaaaat cgaagcaatt gtttcttgtt taattgcagt	240
catctttttt gtttttgctt atgaagtggc attagcagat ccaaatgttg gtgaagtatt	300
acgaggtttt attccagaca caaaaatagc gacagataaa tccatgttat ttttagcctt	360
ggggatcgtt ggagcgacag tcatgcccca taacttatat ttgcattctt ccattgcgca	420
agcacggaaa tttgatcgta acgatgatgt tgagaaagcc aaagcaattc gtttcactac	480
ttgggattca aatattcaat taactgttgc tttcgtcgta aattgtttgt tgttaatttt	540
aggaggagca ttattttatg gaaccaacag tgaattaggt aaatttgttg atttatttga	600
tgetetga	608
<210> 330 <211> 450 <212> DNA <213> Enterococcus faecalis	
<400> 330 aaattgttgc acgtatggaa aaaatgaaag acggaaattt aagtggtatc caacgacata	60
atcaacgaga aaccaataat cattccaatc ctgatattga tattgagaaa tctcacttga	120
attatgactt agtcaatcct ggttcaatca attatcggga gaaaatcaaa caaatcattg	180
agagccaacg aatcagtaaa cgagcggtta gaaaagacgc agtccttgtg aacgaatgga	240
taatcactag tgataccgcc ttttttcaag agaatacaga cacacaagca ttttttaccg	300
atgttgtcgc atatttctct gatcgctgcg gtcgacaaaa tgtcgcctat gccacggtac	360
atttagacga aaccacgccc catatgcact taggaattgt gcctatgtac gaagggcgat	420
tgagcagtaa acaggtgttt agtcggcaaa	450
<210> 331 <211> 360 <212> DNA <213> Enterococcus faecalis	

<400> 331

## WO 2007/039319 PCT/EP2006/010132 144/763

caatggaaca aaggccactc tgatgaaacg tcgtttgctg aaaatattcc agctaataat	60
tgggaaaacg aattggccat gctctttatc ttaattaatg atggcgaaaa agatgtttcc	120
agccgtgatg gaatgaaacg aacagtagaa acttctagct tttatcaagg ttggttggac	180
aatgtggaaa aagatttatc ccaagttcat gaagcaatta aaacaaaaga cttccctcgt	240
ttaggagaaa tcattgaagc caatgggtta aggatgcatg gaaccacctt aggcgctgtc	300
cctccattta cttactggtc cccaggcagc ttacaagcga tggctttagt tcgccaagca	360
<210> 332 <211> 526 <212> DNA <213> Enterococcus faecalis	
<400> 332 ctgcggttaa agtcgttgca ttttctaaaa gggaaatgag tcccagataa agtgaacccg	60
tatacaagtt tootacgoga ogactataga tgatgottto ttoataacgg gotaaaatto	120
gttcctgttc tgcttcagtt tggtcggaga tttttgctaa taaggctttt ttgcccattt	180
ttgtgtaagg aatatggaac gctaaagcat cataatctgc aaaatcaaga ccggttcttt	240
ttttatgttc atcccagact tgggcaaaag attggatgta ggtttcgttt gacaaaggac	300
catcgaccat aggatacgga tggcctgttg gacgccaaaa gtcatagata tettgcgtca	360
gcatcacatt atcctctttt aaagccaaga tgcgcggttc actagcaact aacattgcaa	420
ccgccccagc tccttgtgta ggctcaccgc cagaatttaa tccatatttt gcaatatctg	480
ctgctacaac caagactttt ttatctggat gtaaggctac gtgatt	526
<210> 333 <211> 512 <212> DNA <213> Enterococcus faecalis <400> 333	
atccgactat gcgtttactg aagaacaagc tgaagcaatc gttactttac agctataccg	60
tttaaccaat acggatatta ctgatttaca agaagaagcg aaaactttag aacaacaaat	120
tgctgagtta ttgaacattt taaacaatga aaaagaacta ttctcagtca tgaaaaaaga	180
acttcgcgaa gttaaaaagc aatatggcaa tccgcgctta actcaaattg aagaggaaat	240
ccaagaaatc aagattgaaa cagccgtgtt agttgcgcag gaagacgtgg tcgtaaccgt	300
gacgcacgaa ggctatatca agcggagtag tattcgttct tatacagcat caaaaccaga	360

## WO 2007/039319 PCT/EP2006/010132 145/763

agaaatcggc	atgaaagaag	gcgacttttt	attatatgct	ggcgaagtca	atacattaga	420
tcatctttta	ctagtaacaa	ataaagggaa	tatgatctat	cgccccgtcc	atgagttgcc	480
agatttacgc	tggaaagaaa	ttggcgaaca	ta			512
<210> 334 <211> 604 <212> DNA <213> Ent	erococcus fa	aecalis				
<400> 334 aggatcaatc	gtaaatggtg	tatacaaaac	attttgttat	tcatacattt	gataaattaa	60
acaatgcctg	ctcgtatatt	gagaatgcag	aaaaaactga	agtcacgaat	gataatccgt	120
ctgaacactt	ggaacattta	tttcaatata	ttgtgaatga	cgataagaca	tacatgaaaa	180
aattagtttc	tggtcatggc	attgtggatc	caacaaatcc	ttatgaagaa	tttaaattaa	240
caaaattaca	agcagcaatt	caacgaaaaa	tegggtacae	attcgatcca	aaatcagaac	300
gattgcttcc	gccaacgtta	acagaattag	aaaaaggcaa	cgccgtttta	gcacaccatt	360
taatccaatc	attttctcca	gaagatgatt	taacgccaga	aaaaatacat	gaaatagggt	420
acaacacggt	gatggaattg	acaggtggaa	agtatgaatt	tgtgatcgcc	acacatgtcg	480
acaaagaaca	tttacacaat	catattattt	ttagttcaac	caacttaaaa	acaggtaaag	540
cctttcgctg	gcaaaaagga	accaaaagag	tctttgaaca	aatttcggat	aagattgcag	600
cgaa						604
<210> 335 <211> 451 <212> DNA <213> Enter	erococcus fa	aecalis				
<400> 335						60
	aacattggtg		_			60
	tcaatacaac		-			120
	agaagaaatt					180
	attaagtgag					240
	aatcgctcag					300
ggactactgg	cggacacaca	ggagaagatg	taaatgtcta	tgcttatggc	ccacaagcag	360
aagctttttc	aggacaaatt	gataatacag	accaagcgaa	gattatttt	ggcttagtag	420

## WO 2007/039319 PCT/EP2006/010132 146/763

atggcaccgg	gcaaaaagct	gagattaaag	a			451
<210> 336 <211> 543 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 336						5.0
gtttccgttc	aaataaccac	aaatcagaca	acatttacag	aggaacaatt	aacggattat	60
tggcagttgg	ccttgttaaa	tagtcagtgc	aatacaccgt	tagttcagaa	agtcctaaaa	120
acacagacac	cacaatttga	agatcggaaa	attatcttac	ctgttgataa	tgaagcagtt	180
attecttate	tgaagcaaca	atatttacca	attattgagg	aactttattt	ctcttatggg	240
tttcctaaat	ttcatattga	accaaaaatg	gatcaacagc	aagctgcaga	agtgttgaaa	300
aagtttgaag	agcaaaaatt	agaacaagcc	gcagcctttc	aacaacaagc	tgctgaatcg	360
cttgttaaac	atgaacaaat	gaaaaaagaa	aaacaacaac	aagcgcctgc	gtttgatggt	420
ccaattcgtt	taggtcggaa	tattcccaat	gatgaaccca	ttatgcccat	gggaaatata	480
ctggaagaag	aacgtcgtat	aacgattgaa	ggctttattt	ttgataaaga	agtgcgtgaa	540
ttg						543
<210> 337 <211> 578 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 337 aattgcagga	ggttcacaac	cagagatttt	acagctagtt	aaaaaagcac	taaaagaagc	60
cgagcaaccg	ttgcagttta	ttgtatttga	tacaaatgaa	aatcttgata	ctgaaaatct	120
ctggaaatat	gttcattgct	cagatgaggc	cgcggtagca	caggaagctg	tcagtttagt	180
tgcaaccggt	caagcacaaa	ttttattgaa	aggaattatt	cagacccaca	cattactaaa	240
agaaatgttg	aaaagtgagc	atcaattaaa	aaataaaccg	attctttccc	atgtagcaat	300
ggtggagctg	cctgcgggaa	aaaccttctt	gttaaccgat	tgtgcgatga	atatcgcccc	360
cactcaagcg	accctcattg	aaattgttga	aaatgctaaa	gaagtcgccc	aaaaattggg	420
actgcaccac	ccgaaaattg	ctttgttaag	cgcagcggaa	aatttcaatc	ctaaaatgcc	480
ttcgtctgtt	ttagcaaaag	aagtcacggc	acattttaat	aatcaacaag	aggctacggt	540
ttttgggccc	ctttcgcttg	atttagcgac	ctctgaag			578

<210> 338 <211> 320 <212> DNA <213> Enterococcus faecalis	
<400> 338 aatgcgtgat cagggtgtat gataaaactc ttggaaagag gcagaatttt gaaagttgca	60
tatgcaagag tttcatccat tggcaaaact tggaacggca aattcaagag ttaaaaaaat	120
taggagcgaa aaaaatattt gtagagaaaa aatctggcgc aagtattgaa caacgactaa	180
tttttacaga agctatctat tttgtgagag aatccgatat ttttatggta gaagccattg	240
accgattagg cagaaattac gatgaaatta ttcagacggt taatttattg aaaaataaaa	300
atgttcgact cataattaca	320
<210> 339 <211> 693 <212> DNA <213> Enterococcus faecalis	
<pre>&lt;400&gt; 339 ctcaacagct tcaacaatcc attcaaattt tacaatttaa tacggaagaa ctggctgcct</pre>	60
ttgttgaagc gaaagcacta gagaatccat taattgattt acaagtagac acgcagtaca	120
ccacagattt tccgataact agtcgttctt acaccaacca agacgaagaa aataattata	180
tgaatcaaat tccagactat catttatcat tatttgagtc tttaattgat caaattcatt	240
tgaatcaaat tccagactat catttatcat tatttgagtc tttaattgat caaattcatt tgaattaccg cgatacatac ttgcgaacat tggtattgtt tttagtagaa tatatagacg	240 300
tgaattaccg cgatacatac ttgcgaacat tggtattgtt tttagtagaa tatatagacg	300
tgaattaccg cgatacatac ttgcgaacat tggtattgtt tttagtagaa tatatagacg tgaatggtta tttaaagatt tcgttagaag aagcggcaga gaaaaccgaa gcaagcgcca	300 360
tgaattaccg cgatacatac ttgcgaacat tggtattgtt tttagtagaa tatatagacg tgaatggtta tttaaagatt tcgttagaag aagcggcaga gaaaaccgaa gcaagcgcca ttcaaatgct agatgcatta actttgttac aacagctaga tccagcaggt gtgggggcac	300 360 420
tgaattaccg cgatacatac ttgcgaacat tggtattgtt tttagtagaa tatatagacg tgaatggtta tttaaagatt tcgttagaag aagcggcaga gaaaaccgaa gcaagcgcca ttcaaatgct agatgcatta actttgttac aacagctaga tccagcaggt gtgggggcac gcaatttaca agaatgtttg atgctacaaa cagaacgaga cgataccgcg cctaacttag	300 360 420 480
tgaattaccg cgatacatac ttgcgaacat tggtattgtt tttagtagaa tatatagacg tgaatggtta tttaaagatt tcgttagaag aagcggcaga gaaaaccgaa gcaagcgcca ttcaaatgct agatgcatta actttgttac aacagctaga tccagcaggt gtgggggcac gcaatttaca agaatgtttg atgctacaaa cagaacgaga cgataccgcg cctaacttag cgtatatttt attggaggaa gagtttgatg ccttagtgag tcgtaaatgg ggcccgttag	300 360 420 480 540
tgaattaccg cgatacatac ttgcgaacat tggtattgtt tttagtagaa tatatagacg tgaatggtta tttaaagatt tcgttagaag aagcggcaga gaaaaccgaa gcaagcgcca ttcaaatgct agatgcatta actttgttac aacagctaga tccagcaggt gtgggggcac gcaatttaca agaatgtttg atgctacaaa cagaacgaga cgataccgcg cctaacttag cgtatattt attggaggaa gagtttgatg ccttagtgag tcgtaaatgg ggcccgttag ctaaaaaatt cgggattgaa ttagcagaaa ttcaattgat ttttgattat atacaaacgt	300 360 420 480 540 600

<210> 340 <211> 210 <212> DNA <213> Enterococcus faecalis

## WO 2007/039319 PCT/EP2006/010132 148/763

<400> 340						
	gtgggggagt	ttgtacacac	gctaggagat	gcccacttat	atcaaaatca	60
tgtggaacaa	atgcaagaac	aattatcacg	agaagttcgt	tctttcccaa	cgctcgtttt	120
gaatccagac	aaggcttctg	tttttgattt	tgatatggaa	gatattaaag	tagaaggcta	180
tgacccacat	ccaacgatta	aagcgccgat				210
<210> 341 <211> 504 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 341 aacqcacatc	tgaaagctac	gaaaaaactg	tcaaccatat	gaaagatgta	ttgaatgaaa	60
-		cattcagttc				120
		atgeettete				180
_		gaatettete	_	-		240
		atgagetaca				300
		ggcttatggt				360
		gaattagttg				420
	_	gacttattag				480
	agctcgttca		2 2		<i>.</i>	504
<210> 342 <211> 400 <212> DNA	erococcus fa					
<400> 342	ataacatgaa	tatcattgac	gagctagcat	gacataatac	aatcaatcaa	60
		aagagaactt				120
		tagcatgcat				180
		tcatcaccca				240
		aacaactgaa				300
						360
		aaaccaaatg		ccyycaaaya	cyccyayyca	
acaatggtga	acaactacga	ttggttatca	yaactatett			400

<211> 5 <212> D	343 585 DNA Ente	rococcus fa	aecalis				
	343 aac	attggttgtt	cttcacaaaa	atcaaccagt	aactattacc	tatggcaatt	60
tgaatgct	tag	ttatttgggt	aaaaaaattg	ctagtgctga	attccaatat	acagtgaagg	120
ccacacct	.ga	ttcaaaaggt	cgattgaatg	ctttcttaca	tgatgatcca	gtggccacaa	180
ttgtctat	gg	aattaacatt	gaccctcgta	caaagaaggc	tggtgctgag	attgaaatgc	240
tcgttcgc	ctt	ctttggagaa	gatggcaaag	aaatcttgcc	aacgaaagag	aatccatttg	300
tattttca	agg	tgcttcatta	aattcacgtg	gtgaaaacat	tacgtatgag	ttcgtaaaag	360
taggaaac	cac	ggatactgtt	catgaaatta	atggatcaaa	agtagctcgt	catggaaata	420
aagtttat	tc	taaaacggat	attgatgtag	ggacgaatgg	gatttcaata	agtgactggg	480
aagcagtt	ca	aggcaaagaa	tatattggcg	caactgttat	ttcaacacca	aatagaatta	540
aattcact	tt	cgggaatgaa	attgttaaca	atccagggta	tgacg		585
<211> 5 <212> D <213> E		rococcus fa	ecalis				
	344 act	tgctaaagta	gatccaaaaa	cggtaacaaa	acaagggatt	cgagatacct	60
ttgatgca	ıga	aaaagtgacg	attgatttat	ccaaagtgaa	agtttatcaa	gcagacgcaa	120
gtctaaac	ga	gaaagactta	aaagctgttg	ctgcagcgat	taattcagga	aaagccaaag	180
acgtgacc	gc	ttcttatgat	cttaatttag	accaaaacac	cgtcacagca	atgatgaaaa	240
ccaacgca	ıga	cggctccgtt	gttttagcaa	tggggtataa	atatttactt	gtcttgccgt	300
ttgtagtg	gaa	aaatgtagaa	ggcgattttg	aaaatacagc	tgttcagctg	acaaacgatg	360
gtgaaacg	gt	aacaaataca	gtgattaacc	atgtgccagg	tagtaatcct	tccaaagatg	420
taaaagca	iga	taaaaacggt	acagttggca	gtgtttctct	acatgataaa	gatattccgt	480
tacaaaca	ıaa	aatttattat	gaagtgaaat	cttccgaacg	tccagccaac	tatggcggaa	540
tcac							544

<210> 345 <211> 341

## WO 2007/039319 PCT/EP2006/010132 150/763

<212> DNA <213> Enterococcus faecalis	
<400> 345 cttctttcgt gctttcaacc acaatagatt gctctttatc agccaacagc caato	ggagag 60
gggataacgg aagttcatca ctaaaattaa tatttactaa attaagattc ttcaa	ataatt 120
tttttgcttc atctacagta gagcattggc ccaataccca aggaataaac tcaaa	atggag 180
aaacattttc ttttccttct tcaatttttt tataatctgc atagcctgaa aagtt	ttaatc 240
cagccattcc taatcctttt tcatttattg catcataata aagcggataa tcagc	
cagcagcaat tccaattatt gcaaaatgat gatctaaatt t	341
<210> 346 <211> 594 <212> DNA <213> Enterococcus faecalis	
<pre>&lt;400&gt; 346 aaacctggat gatagtgata ggaagtttat aggtaaatat tttaatgttt cqqaa</pre>	agggaa 60
aaaattacca gattttaaac ctgaagaagt taatagttct attttaaaca ttaat	tatttt 120
aaacaaagat tttaagtott ttaattggco atataaaaaa attttatoto atatt	
agtgaaagaa caactaggga aagatataac catagctcta attgactcgg ggatt	
gcttcatcct aatcttcaag acaataacct aagattaaaa aaccatgtta atgat	-
gttagatgaa tatggtcatg gtacacaagt tgctggagta atagacacga ttgct	•
agtaaattta aattottata aggtgatgga tgggacagat ggaaactota taaat	-
taaagctata gttgatgcta caaatgatca agtagatata ataaatgtga gtctt	3
atataaaaat atggaaatag acgacgaaag atttactgta gaagcattca gaaaa	
taactatgca agaaaaaata acattctaat tgttgcatca gcaggaaatg agtc	594
encouraged against acarecount egrogodica godggaddeg agec	334
<210> 347 <211> 504 <212> DNA <213> Enterococcus faecalis	
<400> 347	antagat 60
caaggagagc atagtgaatg tgctttggca tgtatcacta tgctacttaa ttatt	2.2
aatcaaagta cactagtaga actaagggaa aaatatgggg tgcccaaagg aggac	
atcaagaata ttcgtactgt ctttgacgaa tatggatttg atgtatcgac attta	aatca 180

## WO 2007/039319 PCT/EP2006/010132 151/763

agtttttcaa attatttaga tetteegaet eetgtaataa gttattggaa taatcaacat	240
tttgtggtca tagagaaaat aaaaaagaag aaagtattaa tcttagatcc tgcaagtaat	300
aaacgctgga ttgatatttc agaattcaaa aaaaattttt caaatatatt aatatacgca	360
cataagaaaa agactaaaaa agaaggcaaa aggaaacagt tttttttaaa gtcatttatt	420
tttacaaaat tcaaaagata tttctttagt ttaataatat tatcatttgt ttcacaactt	480
ttattactct taattcctat tgca	504
<210> 348 <211> 562 <212> DNA <213> Enterococcus faecalis	
<400> 348 gttagggcac ttagcttttg gattatttaa taaagttaga ccagagtcat taatatttgg	60
gtttataaaa ttttcgtggg aaaatcagtt taagatcaga ttaaatacac agtggggatt	120
ttttggtgga ttatttagat ataaaccaac tacgtttaat aataagaaaa ttctgaggtt	180
gttaaccggg ggaccaatat ttagtctttt ttttacatta accttttttg taaaaattga	240
ctttttcaa tattttctt tatttaattt ttcgatattt ttaattactg cagttccttt	300
taattttaac gggtttatga atgatggata caatatatat aaattagtta ctaaggatta	360
tatttttgaa atgtattata ttgtatcaaa tagcttactt aataaatata atcagtcaac	420
tttcttaaat acaactgagg tatgcaaaat aataaaaaaa aataaagaat taccattata	480
tgtgctaaat acattcttat tgtatgttat atatgagtat ttaatagaca aaaataatag	540
gaaattaaaa ctaatatacc ca	562
<210> 349 <211> 402 <212> DNA <213> Enterococcus faecalis	
tggaaaattt aagtgtagtt cctagttttg aagaactaag tgttgaggaa atggaagcga	60
ttcaaggtag tggagatgtt caggctgaga caacaccggt gtgtgctgtt gcggcgacag	120
ctgcagcaag tagtgctgct tgtggctggg ttggtggcgg tatttttact ggagtaactg	180
tagttgtgtc tttaaaacat tgttaaaata tactataaaa cttagtgagg tgaagcacag	240
tgctaaataa ggaaaatcaa gaaaactatt actctaataa attagaactt gttggtcctt	300

## WO 2007/039319 PCT/EP2006/010132 152/763

cttttgaaga	gttaagttta	gaagaaatgg	aagcgattca	aggtagtgga	gatgttcagg	360
ctgagacaac	tccagcatgt	tttaccatag	gcttaggagt	ag		402
<210> 350 <211> 562 <212> DNA <213> Ent	erococcus fa	aecalis				
<400> 350						60
	taacgagaag	-				60
gtgttcttaa	acaagatgat	ttagactact	tgattaaata	taaatatgaa	tcactggata	120
attttggatt	aggaataaca	cctattgaaa	actttcctga	taaagaagtt	gcaattcaat	180
acattaaaga	tcaatcatgg	tatatttttt	ttgaatccat	tttagattct	tataatgata	240
gtgaagagca	attattagaa	gtagatgcta	gttatccttt	tagatatttc	ttacagtatg	300
ctcgtttatt	tttacttgat	ttaaactcag	agttaaatat	ttgtacaaaa	gaattcatta	360
ttaatttatt	agaaattcta	acacaagagc	ttattcactt	aacaagtaaa	acattagtgc	420
tagatttgca	tacttttaaa	aaaaatgaac	ctctaaaggg	aaatgatagt	agcaagcgat	480
ttatctatta	tctaaaaaaa	agatttaact	ctaaaaaaga	tataatagct	ttttatacat	540
gctatcctga	gttgatgcgt	at				562
	erococcus fa	aecalis				
<400> 351 tagttggaat	gaccgagaac	gatggctcac	cacgaaaaat	caatttaaat	ggtttagggg	60
aagtttttat	ctataaagat	catgttgtag	caacatttaa	tgaaaaagtt	gaatctttac	120
ataatgtgaa	tgggcatttt	tctttcggga	ttaaaacgct	tatcaccaat	agttcgcaac	180
cgaatgtgat	agaaacggat	ttcggaacag	caacggcgac	tcaacgtttg	acgattgaag	240
gagtgaccaa	cacagagact	ggccaaattg	agcgagacta	tccgttttt	tataaagtag	300
gcgatttggc	tggagagtca	aatcaagtac	gttggttttt	aaatgtgaac	ctcaataaat	360
ccgatgtcac	agaagatatt	tcaattgcgg	atcgacaagg	aagtggtcaa	caattaaata	420
aagagagttt	tacatttgat	attgtgaatg	acaaagaaac	taaatatatt	tcacttgccg	480
agtttgagca	acaaggttat	ggcaaaattg	acttcgtaac	agataatgac	tttaatttac	540

## WO 2007/039319 PCT/EP2006/010132 153/763

gtttttatcg ggataaagca cgctttactt cctttatcgt ccgttacact	590
<210> 352 <211> 648 <212> DNA <213> Enterococcus faecalis	
<400> 352	
tcaacgtcac aaacaagaac ctgatatctg tgaaaatgca aatcaattga atgaagctgt	60
aaagcccaaa accggaaacg aaaacaaaca accaaaaata ccgaagaaaa aatctaatta	120
tagcaagtat atattcgcat tgtttaccgc acttattcta gtaattgtcg ctactggcgg	180
ctatattgtt tatacattaa aacagcaaga agtagaagct caagccaaat atgaaactgc	240
tgtaaaaaat ctcatggctt caatccaaga agagcaagac caaagtggaa tttcaacgaa	300
aatagatact ataaatgacg gagaaaataa gtgccttatt taccgtccag tttatgaaag	360
tactgttcct tttaaaaatg caaaccagct cttagacgag cttgctcaaa agcaacaaaa	420
gaagcatcgt gaaaaagaag tgcttacagt tgccagaata aaagcaacag caatatcttc	480
taaaattggt cagtatagaa ttgaagcaga tagttttatc tgggatcgca gtaaggaaaa	540
ttttaaaaag ccagacagta tttctgagaa agccatttat gtttccgaaa aaactggtaa	600
agaaatcaca aataaggatt tgattccgga tgaaggaagt ctcttagg	648
<210> 353 <211> 520 <212> DNA <213> Enterococcus faecalis	
<400> 353 tcggaagtat tgcgtttggt gggacaacat tagcttacgc tgatgaagtg cataatagta	60
taaatcagga tatacaagat tetggtagta caattattgg agaaaatgat tettetacca	120
aatcagctga gtataaaatg attcatgaaa ttgatggaac taaaattagt aacggtgaaa	180
atagtaaaga aacaactaca agttcaggaa ctatactggc tgaagaagca atagaaagtt	240
caaatcaaaa aaattcaaag acaagtgaag tcgaacagga tcttcataaa gatgtatcag	300
gatctgaatc agtaaaacaa gtagaaactt ctgattctat aaaaaaaatct gaagaatcag	360
ctgttaaaac attaaatctg gatgattcac aagagaatac taattcaata actaccaagg	420
cagaaaatga tgcgctatct acagttaatg atgaaaaagt attaaatgaa agtgatagta	480
ttatcaaatc aatteetteg gaaacagaga atgtegataa	520

# WO 2007/039319 PCT/EP2006/010132 154/763

<210> 354 <211> 668 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 354 ttgtctttgg	gcttctctct	tttttcttgc	ctatatttt	agtctttgga	ggcttacttt	60
tttttctttt	attattaacg	agtacgtcag	atacttcaaa	aaatgattgt	attcagccaa	120
gtataaataa	tccaactgat	gcgacagata	cacctaaatc	gatcgagcag	tttgtaaaaa	180
gccataaaga	tgcttacctt	ttatcatgga	aagcaggtgg	ctttttaccg	tctgctagta	240
tttctcaaac	gatggtagaa	aatgggttta	attttactaa	tccatcgggg	acgtcatttt	300
ggcaggcaca	caatatgggc	ggtgttaaaa	cgtcaaaaaa	agaagatttt	cctgtaactt	360
tagcaacatt	cggccaagat	tctgttgata	tttctggtac	aaagccaggg	tcaaacgtcg	420
gtgatggcac	tggtggggca	tatacctggt	ttaaagacta	caatgctgga	attgttggaa	480
aagcagaatt	tatggcacac	cagacactgt	atacaggtgc	tatcaataat	actgacggat	540
taagtacttt	atcagctatt	tattcaggag	gatgggctac	agaccctact	tacctcatga	600
agttacaggc	cacatataat	agcttaggca	agcagtttca	atggttggac	caagaagcaa	660
tacagaaa						668
<210> 355 <211> 517 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 355	cctatcttgt	tggtacaaag	ataaataaag	aaatatttt	tttcgataga	60
_	atatgaatag		_			120
-	tatttttgga					180
_	tataatctct		_		_	240
	tagtaattgc				-	300
	atcgatggta	_				360
	atacacaatc		-			420
	agtgctggtt					480
	agaaaagtgt			-		517

## WO 2007/039319 PCT/EP2006/010132 155/763

<210> 356 <211> 380 <212> DNA <213> Enterococcus faecalis	
<400> 356 atgtatgtat cttttgttct aagttgtttg cttggatttt ctgcctacag tctattaaat	60
aggctaaatt cgttggaatt tgtggatgtt tggttagaca aagaaacaca aaaaatcaca	120
ctaaaacgct gtttttatga tacgtctttc aagaaacaaa cactaaaaga gttagaacga	180
gtatatttcc aattaaaaga aataatcaac gtgcaaataa acaagcggtc tttaaatacg	240
aatgacatac gtaatgtacg agaactagag gaaaaacaac aagaaataaa acgattcatg	300
ttagacgttt tagaagatgc ttattggaaa gaattagcaa atatgccaga agaccaacga	360
cacttagacg attgggattt	380
<210> 357 <211> 320 <212> DNA <213> Enterococcus faecalis <400> 357	
aaagtactac cttttattgc cttagtcggc ttgttattgt tgtcaggttg tggaacagat	60
atgaaaaaga tattgactgc cgatggtggt aaatggaaag tggaagaaac acgtgcaact	120
tacacttttt ttgatgacgg taaattttca gctaatgact cagaggatag tgttagtggg	180
acatacactt atgatgaaaa aaataaaaaa ataacctttg acattactag cagaaactct	240
ttcattatgg aaaaagtaga atacaaagat aacaagatta caggggaaat tggcgaaaaa	300
caaagaacac ttataaaaca	320
<210> 358 <211> 503 <212> DNA <213> Enterococcus faecalis	
tgaacaaaaa gcacaggata gtgtaaaaga agttactgaa aatgttactc aaactatttc	60
aaacgatcaa cgtataccag ctgattttgt taggcacgtg gatggcgata ccacagtatt	120
aaaaattgac ggaaaagaac aaaaagttcg gtttttatta attgacacac ccgagactgt	180
gaaaccgaaa acaaaagtte agccgttcgg attggaaget agcaaacgca caaaagaget	240
tttgtctact gcttcagaaa ttacgtttga atatgataag ggcgataaaa cagatcgtta	300

# WO 2007/039319 PCT/EP2006/010132 156/763

cggacgagcg	ttgggctaca	tattcgtaga	tggaacatta	ctacaaaaaa	cgcttgtaag	360
tgaaggatta	gctcgtgttg	cctatgtaaa	agagcctaca	actaagtatt	tggcagaact	420
agagcaagcc	caagaacagg	ctaaaaatga	gtcactcgga	atctggagca	taccaggtta	480
tgtgacacaa	cgggggttta	gta				503
	erococcus fa	aecalis				
<400> 359 tgatgaaaat	ttaaaagaag	aagcagaaca	attatttgat	gatttagggt	taaatatgac	60
aagtgcaatt	acgattttct	taaaacagtc	tattaatgag	caagcaattc	cttttatgat	120
taataaggga	aacaaagaga	ctctacaagc	attaaaagac	attaaagaag	gaaatgttca	180
tggtggattt	tcttccgtgg	aggatttaat	ggaggattta			220
	erococcus fa	aecalis				
<400> 360 tcaaatacac	gtaagccttc	tttcgtgctt	tcaaccacaa	tagattgctc	tttatcagcc	60
aacagccaat	ggagagggga	taacggaagt	tcatcactaa	aattaatatt	tactaaatta	120
agattcttca	ataattttt	tgcttcatct	acagtagagc	attggcccaa	tacccaagga	180
ataaactcaa	atggagaaac	attttcttt	ccttcttcaa	ttttttata	atctgcatag	240
cctgaaaagt	ttaatccagc	cattcctaat	cctttttcat	ttattgcatc	ataataaagc	300
ggataatcag	caatcccagc	agcaattcca	attattgcaa	aatgatgatc	taaatttcca	360
acttctcgaa	atgaaaactt					380
	erococcus fa	aecalis				
<211> 511 <212> DNA <213> Ento		aecalis attagagata	ttcttatcct	tataaattat	tttttacgg	60

## WO 2007/039319 PCT/EP2006/010132 157/763

atatccaaat	agaacggata	gatatgttat	tatctcaaaa	ttatgatcca	gaaatttatt	180
tatttttata	tgaaaataaa	attttagaat	atgttgtaaa	tggtaatgta	caagaattaa	240
gtaatatgat	atttaaacta	agtaatggtg	ttgttcctgt	ggttagtggg	gataacgtac	300
gttctgaaaa	gaattattca	atagttgtat	ttgagaagtt	agcacaagca	gctataaata	360
tgggaatgga	cttaataaat	gcatatcaga	gtcgagatag	ttttataagg	aaaaatgaac	420
tatgtataaa	tttaaaagaa	gtattaaaag	ttagagatac	tgctatagta	ttttatacct	480
ctgaaatagg	aaaagctaaa	gtaaggaatc	t			511
	erococcus f	aecalis				
<400> 362 ttgcgatttc	tgttgtagga	accattattt	ttgtaatagg	actttatgtt	agtaaaataa	60
aaaaataaat	cacaattaag	gttctggttg	ttattaatct	atctcatgaa	gcattagatg	120
aattagttct	agaagtacct	gttgtactag	ttaaaaatac	tgttaaatca	aattttttgt	180
ttaaaagaat	cattaagttg	gtgcctaact	ataaaatcaa	attgactaaa	atccaataac	240
attgggggat	actctgtaaa	tegtgtgteg	cagtacgtta	gtcttgtaat	aaatagatct	300
taattaggag	gggtttctat	gaaaaatatt	ttactttcta	ttctaggggt	attatctatc	360
gttgtttctt	tggcgttttc	ttcttattct	gtcaacgcag	cttctaatga	gtggtcgtgg	420
ccactgggca	aaccatatgc	gggaagatat	gaagaaggac	aacaattcgg	gaacactgca	480
tttaaccgag	gaggtactta	tttccatgat	gggtttgact	ttggtt		526
<210> 363 <211> 505 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 363	ctgaaaagaa	agaaaaatta	gcaattgtga	caacgaactc	gatettatee	60
		gcaagacaaa				120
		accgttacca				180
		gaacttagaa				240
		tgagaataaa				300

# WO 2007/039319 PCT/EP2006/010132 158/763

ccacaatatt	taacaagtgc	cggtcaagaa	caaacagaag	atccgcatgc	ttggttagac	360
attgaaaatg	gcatcaaata	tgtagaaaac	attcgtgacg	tgttagtaga	aaaagatcca	420
aaaaataaag	atttctatac	agaaaacgcg	aaaaattata	ccgaaaaact	tagcaaacta	480
catgaggaag	ccaaagctaa	atttg				505
	erococcus fa	aecalis				
<400> 364 aaatgggtga	aggaagatta	gcaaattatt	ctgcttcagg	aaatacgttt	caagaaaatc	60
cgggatatac	gaagaattat	aatttctcgg	atttacaatt	caaccctaaa	gcaataactg	120
gtgatgtgtt	acagggaaat	acaattgatt	ttgaggttta	tgggaaacat	aatattgcag	180
cttcaactgc	aaactgggaa	attcgtcttc	aattagatga	acgattggcc	cagtatgttg	240
aaaaaattca	agttgatccg	aagaagggcg	taggaaatag	tagacgaact	tttgtaagaa	300
ttaatgattc	gcttggcaga	cctacaaaca	tttggaaggt	taattacatt	cgagcaaatg	360
atggactatt	tgctggggca	gaaacaactg	atacacaaac	tgctcctaac	ggtgtgatta	420
catttgaaaa	aaatttagat	gaaatttta	aagaaattgg	tgcagataat	cttaaaagcg	480
accgtttaat	gtatcgtatc	tatttggtaa	gtcatcaaga	tgacgataaa	attgtacctg	540
gaatagaaag	cactggt					557
<210> 365 <211> 523 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 365			+ <b>- + - + + + + - +</b>	<b></b>	<b>.</b>	
		gaagttcatg		_		. 60
_	-	gtgaagtttc	_	2 2 33	33 33	120
		aacaatatac				180
		aaaagcaaac 			-	240
		acggtgcagt				300
		ttgatgcaat				360
ttctgataat	ccggaaaata	aagatcttgt	ctttttagct	attgacaaac	gtgtaaataa	420

# WO 2007/039319 PCT/EP2006/010132 159/763

tgaagggcaa	ttattttata	aagtcagagt	aacttcttca	ccaactggtg	accccgtatc	480
attggtttat	aaagtgaacg	ctacagatgg	aacaattatg	gaa		523
<210> 366 <211> 400 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 366 ctggttcaaa	agaagccatt	gatgecegeg	ttcatttaat	taaaaaccaa	atcggcgaaa	60
caacgtctga	ttttgatcgt	gaaaaattac	aagaacgttt	agctaaatta	gctggcgggg	120
ttgctgtcgt	taaagtcggt	gctgcaactg	aaacagaatt	aaaagaatta	aaattacgaa	180
ttgaagatgc	attaaacgca	acacgtgccg	ctgtagaaga	aggcatggtt	tctggtggtg	240
gtaccgcact	tgtcaatgta	attggtaaag	tcgctgcgct	agaagctgaa	ggcgatgtgg	300
caacagggat	caagattgtc	gttcgtgcat	tagaagaacc	aatccgtcaa	atcgctgaaa	360
atgctggtta	tgaaggatca	gtgattgttg	acaaactaaa			400
<210> 367 <211> 264 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 367 gatcgcgtcg	taattagagt	cgcgaaagaa	gaagaaaaaa	ctgttggagg	aattgttctt	60
gcatccgttg	cacaagaaaa	accacaaaca	ggtgaagtta	tcgcagtagg	tgaaggtcgt	120
gtgcttgaaa	atggcacaaa	agttccgatg	gaagtaaaaa	ttggtgacac	agtaatgttt	180
gaaaaatatt	caggaacaga	agtgaaatac	gaaggcgtag	aatacttaat	tgtatcagcc	240
aaagacatta	ttgccactgt	tgaa				264
<210> 368 <211> 505 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 368	acaattagat	agtattcttt	tacaagtcag	tgaagaagat	gaactaatta	60
			tggaaatttt			120
			ggcaaggagt			180
			ttttagcaga			240

# WO 2007/039319 PCT/EP2006/010132 160/763

caaataaagt aacaacagtg acagaatatt ttgaaacgca ccctgacatc caagtggtta	300
ttagtgactt gaaaattgtt gatgcggatt tacaagttac caatccctct tattttaagt	360
ttcgaaaagt caaaccaggg ttttggcgaa atgcgataaa aagtggctat attggggcag	420
gtatggcctt tcgtcaagag atgaaaaacg tcattttacc cattccgcca gaagttccta	480
tgcatgatat gtggattggc ttatt	505
<210> 369 <211> 688 <212> DNA <213> Enterococcus faecalis <400> 369	
tcggctctaa tggtatgttc cattacatta acaagcgtag cgttgccatc cgcagcattt	60
gcagatgaat acgatacaaa gattcaacaa caagatcaaa aaattaatgc gttaactagc	120
caaatgtcag atgcagaagc aaaagttgcc gcgattgaaa atgatatggt tgaaacggcc	180
aaacaaatcg atacattaac agctaaaaag aacaagctat catcagaagt atctaaatta	240
tatagtgaaa tttctgattt gaatgtccgt attcaaaaac gtgaagtaca aatgacaaaa	300
caagcacgcg atgtccaagt gaatggtcaa agtgattcaa ttattgatgc tgtcttagat	360
gcagattcag tagcagatgc aattggtcgc gttcaagcgg tctcaacaat gatgagcgcc	420
aataatgaat tactagaaca acaaaaagaa gacaaagcga ctgttgaaaa gaaaacaaag	480
aatgttgaaa aacaaattgc tgaattagaa gcagcaacaa aagaattaaa tgataaaaca	540
gaatcattaa aaacattgaa gattcaacaa gaagtggcta aaaatgattt agaagcacaa	600
cgttctgaag aacaagggaa aaaagacggc ttcattaaac agaaaaaaga agcggaaaaa	660
cgtttagcag aagaacaagc acgtcaac	688
<210> 370 <211> 500 <212> DNA <213> Enterococcus faecalis	
getteattag cattagaaca ateateaget gaaagtteta aagetggett agaaaaacaa	60
aaagcagctg ctgaagcaga gcaagcacgc ttagctgctg aacaaaaagc tgcagctgaa	120
aaagccaaac aagctgctgc aaaaccagct aaagctgaag tgaaagcaga agcaccagtt	180
gcctcttcat caacaacaga agcacaagca ccagcaagct caagctcagc aactgaatca	240

# WO 2007/039319 PCT/EP2006/010132 161/763

agcacgcaac	aaacaactga	aacaactaca	ccaagtacag	ataatagtgc	aacagaaaat	300
actggctctt	cttcatcaga	acaaccagta	caacctacaa	caccaagcga	taatggaaat	360
aatggtggcc	aaactggtgg	tggaacagtt	acaccaacac	cagaaccaac	accagcgcct	420
tctgctgatc	caacaatcaa	tgcattgaac	gttctacgtc	aatcattagg	tttacgtcca	480
gtagtatggg	atgcaggttt					500
<210> 371 <211> 529 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 371 ttaactgaac	aagaaaagca	agcaatggaa	aaagaagcat	tagcattaaa	taaaqttttt	60
	aagcagatgc			_	_	120
_	agcaacaaat			-		180
	tacaaaagtt					240
	ataatcccaa		-			300
	gttttaaaga					360
	cacaagaagg					420
	gcatgttgat					480
ttagatgcaa	atgaaacaaa	catggcagtt	tctatttcag	gagatttaa		529
<210> 372 <211> 558 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 372	gtgaaagcta	cacaaacaac	adadcaadcc	attactgaaa	aacagcaaca	60
	aaacaagcaa			_	-	120
	accattgatc					180
						240
	gttcaaagtc					300
	gtggatgaag					
	caggctgttg					360
таассаасаа	caagctgttg	ttgatgaaaa	agcaaaagaa	acgactgctg	ctaaagtgca	420

# WO 2007/039319 PCT/EP2006/010132 162/763

aaatgataaa	gatcaacaag	cagtaacagc	tgcaaaacaa	gaacaagtca	agcttgaaga	480
attagcgaaa	aatgcggaag	cggaaaaagt	aaaggcagaa	aaagaacaag	cagcaaaaga	540
agcagaattg	gctaacaa					558
<210> 373 <211> 687 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 373	t-+++++-				********	60
		gtgaattgga	_	_		60
tatggattcc	caagttgtcc	aattgtcaaa	cacgttaagt	acgcagatga	gcaacaaaga	120
tctcgaacgt	agtgacgttg	atgcaaattt	aaaaaaagcg	ttatctgatt	tttcaaatgc	180
agatatttct	gaagcgagaa	ttgtcgatga	taaagggatt	attcgggcaa	ccaatgattt	240
aaatcaacaa	aatattattg	ggaaaaagaa	tgattatcgt	gatttaaatg	actttacgag	300
taaaaaatat	caagctttag	ataatgataa	acgcgtgtat	gtgaatgtcc	agccgattca	360
atcgcctact	ggagaaacag	tgattggcgt	cctttatgtg	aaaagtaatt	tagaaaataa	420
ataccaagaa	attaccaaca	cagcaagtat	ctttttcact	gcttctatta	ttgccgcagc	480
aatctcgatt	attgtgactt	tactgattgc	acgatcaatc	acgaagccga	ttggtgaaat	540
gcgcgagcaa	gccattcgaa	tegetegtgg	tgattacgct	ggaaaagtag	aagtccatgg	600
aaaagatgaa	ttaggccaat	tagcagaaac	atttaatcaa	ttatcagaac	ggattgaaga	660
agcacaagaa	acaatggaag	cagaaag				687
	erococcus fa	aecalis				
<400> 374 tatcttagct	tcgcaaccag	ttactcgttt	taggaatgct	tttttcaatg	aaacggaaga	60
tatccaaacc	aatgaagaca	gtcaagactt	aacctacacg	agtaaagaag	aacgattgtt	120
tgcagaagaa	aaactgggaa	aaattgattt	taaagggacc	ttgccagaag	agaataaacg	180
ggactcaatc	tataatcaaa	gcttttctta	tgtaaaacgt	ttaggaacca	atatggggaa	240
tttgcgttac	tttgatcgaa	cgaaagatag	tgtcaattat	cggacttttg	tggaaggttt	300
cccagtgttc	agtaatgatt	taaaaggcca	agtggatatt	cgcatcacga	acaacgatgg	360

tgctgcacca	agcgtaacca	ttaacacaag	tgtgaatacg	atccaagtgc	cgattccttc	420
agaagaagaa	gtgacgctgg	aaagcacgga	aaaattgatt	aagcgtttag	aaacggctgg	480
tgctaaaaag	gaaaaaattc	aatcggctgt	tatcggttat	acgtggcaga	caat	534
<210> 375 <211> 547 <212> DNA <213> Ente	erococcus fa	aecalis				
<400> 375	L-L-					60
	tcttcttcca					60
catctcgtat	aaagggacac	tttcttcaga	acgattggaa	ggttattatt	taagtggcga	120
acaaaccaat	ttttctgctg	ctttaaaaat	ccaacgtgaa	aagaataaaa	attttttgag	180
aaatgggctg	caaattgcgg	ataatacttt	aacgagtgta	cctagtaaaa	actattttat	240
tgatcctaag	aaaattgata	aagatttaag	taccttttta	aatgaaaaaa	atgctttatt	300
attcggagac	gaatatcaat	acttaccaga	attttctcat	ttaaaagagc	cgacggcaga	360
aattgtggct	gcacaatcgt	ataaaggaat	tccttttaga	gacgacacgg	caaaattaag	420
tattttagca	gattcgtcag	gtgaattatg	gcaaattagt	aaatattcgc	aaacgcacat	480
tgaaaatatt	gaagagttac	gagacaaaac	ggatttatat	tccaatcgtg	atgcgataga	540
cacgctc						547
<210> 376 <211> 224 <212> DNA <213> Ente	erococcus <b>f</b> a	aecalis				
<400> 376						
ttcatcgcaa	taatcgttcc	tttgttgttc	taacggatac	aggttattgt	agcgatcata	60
ttcgtggtac	gattgaaaat	gcagatgctt	atttagtcga	aagcaatcat	gaaattgaaa	120
ttttgcgagc	aggaccttat	ccatggagtc	ttaaacaacg	gattttagga	gataaaggcc	180
atttatccaa	tgatgatggt	gctcttgtga	tggcggatgt	gtta		224
<210> 377 <211> 500 <212> DNA <213> Ente	erococcus fa	aecium				

<400> 377

tcttcatttg	ttgaatatgc	tgttttaagt	attcgatgcg	atattcatca	tgtatgtttt	60
tatcatctgt	caaaacatct	atggcaccta	atccattttc	tgtaattatg	atagggagtc	120
catattttct	ataagtgtaa	ttcagcagat	accgtaaacc	cgtcggatca	atggtccatc	180
cccatttact	agtcacaaga	tacgggtttt	gaagaccgcc	aaataaggca	ctcttttctt	240
cagctgctcc	ttcgtacttc	gcaacagatg	atgcataata	gttcatacca	ataaaatcaa	300
gtgttccttt	agagaacata	tatttatcat	tctctgttat	ggtcaacttt	attccttggt	360
ctgcatattc	attgatttta	tagtctggaa	actttcctgt	gcacatagca	tctatttgat	420
agaaatctcg	atccatttgt	ttaaaagcat	tcatcacatt	tgttggattg	caatctactg	480
gataaacagg	ttcgattcca					500
<210> 378 <211> 665 <212> DNA <213> Ente	erococcus fa	aecium				
attattgtcg	cctctttccg	ctacgcgatt	aacatgaatc	atcaaataag	tgtattcatc	60
ttgagataaa	taggtgttga	actttccttt	tacatatatt	tctatctttt	ctacagetgt	120
atatgcttta	gggtatagtt	tttttacttg	ttcaaataac	tgagattcat	tttcaacgta	180
tgcttgtttt	tttcttaatc	gttcaataaa	atactgtaaa	tgtgtcacta	gcctcatgta	240
gttgatgctc	tcttcgtcaa	tagataaact	aaaatgatat	ttgatgatat	tcaacatgtc	300
tcttagtgtc	tccatatctt	ctatctgttc	atcaaaattg	acctgatttt	cttgaagatt	360
aacaaagtgt	aaggcaattg	aaacagcttc	atctgtggga	aaggaatgat	taaaatattt	420
cttcatcatt	tttaaagctt	ccaaaccgat	tttgtaataa	actggataaa	actttttaac	480
ttcccaaaag	agcggacttc	taagatattg	tcctttttct	gagcgtttca	atgcaaagga	540
gagatgatct	aataaagcta	aataaagata	atcatttgct	tttttaccga	tttccttttc	600
tccataacta	acgagetegt	tgatcataga	gatcagtcta	tcatcagaat	gcgataacaa	660
atagc						665
<210> 379						

<211> 504 <212> DNA <213> Enterococcus faecium

<400> 379

ctcctgatcc	tcttcttgtg	cagggacgcc	taagagataa	gcagctacag	ctgatccagc	60	
aaaactaatc	acgactgccg	ctaacataaa	ccagaagttc	atgaaatctc	cttcacctat	120	
atacgctggg	aggccaaata	aaccccaagc	aacagaataa	gctttaacac	tagtcaaacc	180	
agcaaataat	ccaccaagtc	ctcctccaat	cattactgca	acaaatggtc	gacgatattt	240	
aacaaagaca	ccatagatag	caggttcagt	cacaccaagt	actgcagaaa	gtgttactgt	300	
cccaaataat	tgtttttgtt	ttaaattccg	tgttcttaag	aaatacccaa	gcattgctcc	360	
cccaacagca	atatctgaga	ttgtacatga	agatataaat	gcagggtcat	acccatttgc	420	
tgcaattaga	gaagctacaa	ccggcatgat	aaagtttcct	gcgcccaaca	ttataataaa	480	
tggttgaaga	gcagagtata	acat				504	
<210> 380 <211> 555 <212> DNA <213> Ente	erococcus fa	aecium					
	aagtaaagaa	aagttgtcag	tcgtggctac	caattcgatc	ttggcggaca	60	
tggcaaaaga	agtaggtaca	atagatatcc	acagtatccc	gttcggaaca	gateegeatg	120	
aatatgaacc	attaccagaa	gacatcaaaa	aggcaagtgg	tgcagatgtt	attttataca	180	
acggtttgaa	tcttgaaaca	ggtaacagct	ggttcgataa	cttgatggaa	acggctaaaa	240	
aagaagggaa	agattatttt	gcagttagca	aaaatgtaga	acctctatat	ttaactagcg	300	
gtgaagaaca	tacaaaagca	gatccccacg	catggctaga	cctatctaac	ggaataaaat	360	
atgtggagga	aatcgcacgt	atattctctg	aaaaagatgc	agaaaatgcg	acactctata	420	
aaaaaaatgc	agaagcatat	gtggaaaaac	taaaagaatt	agatacccca	gccaagggaa	480	
cttttgcttc	tatcgaagag	aacaaaaaat	tattagtaac	aagtgaaact	gctttcaagt	540	
atttacgagc	atatg					555	
	erococcus fa	ecium					
<400> 381 aaagcgattt	gttgctgaca	gcactcgtta	gtggaatcgt	cttgatattt	gtctttttct	60	
tttataaaga	attgaagatc	acatctttgg	atccgacaat	ggcaaaggct	ttttggctga	120	

# WO 2007/039319 PCT/EP2006/010132 166/763

acacttggtt	gatccattat	cttttgatgt	tctttttgac	attagtggct	gtagtcagtt	180
tacagacagt	aggaacaatc	ttggtgattg	ccatgttgat	cacaccagcc	gccacggctt	240
acttgctaac	gaaccattta	ctgaaaatga	tcattacagc	tgcaggaatc	ggtatgctaa	300
gtgcagttgt	cggtgtgttt	ttcagtatag	ttacattggc	catcagagct	acgatcgtgt	360
tagcatgtac	cgcattttt	atccttgcta	atttaatttt	С		401
<210> 382 <211> 507 <212> DNA <213> Ente	erococcus fa	aecium				
<400> 382						
agccggtaaa	ctcagtccgt	aaaaaatag	cctacgtgga	acaacgaagt	gaattggatc	60
tttcctttcc	agtgatggta	ataggcgttg	tacttttagg	aacatatcca	tctttacgaa	120
ttggacaaag	acctgggaaa	cctggaaaag	aacgtgcaag	acaagctttg	aaaaaagtag	180
ggttggaaga	atatgccaaa	agacagatca	gcgaactatc	gggtggacag	ctccagagag	240
tttttattgc	aagagctcta	gcccaaggag	cagaatggat	ctttttagat	gaaccattcg	300
tagggattga	tgcgttaagt	gaacgaaaga	tctttgacat	cttgcaggaa	ttgaagaatt	360
caggaaaaac	gattttgatc	gtccatcatt	ttcttcataa	agtagacgaa	tatttcgatg	420
aggttattct	tgtaaataaa	cagctgatcg	cttccggtcc	agtacaagag	tcttttacat	480
cagaagacct	tcaattgcct	tatggtg				507
<210> 383 <211> 456 <212> DNA <213> Ente	erococcus fa	aecium				
<400> 383						
attactcgtt	tcccctgaca	gttggcagga	catgctgatc	gtagacaagg	tttctaaaga	60
cggtatcgaa	gcaaatatgg	cagtcatgtc	gcaaaaagga	ttgattggcc	gagtgatcga	120
ggtcaatacg	gcttcgtcta	aaatcgaatt	actgtcatcc	tctaatgaaa	gctccaatca	180
ttttccagta	cgggtatctt	cggctaatgg	cgaagcgttt	ggtttgctta	aaaactatga	240
tgaaaagctc	catgccttag	tggtgaccca	attaactggt	gatacggata	tcaaagaagg	300
ggatgttgtc	cagacatccg	gtcttggagg	gaattctcca	gctaacttgc	cgatcggtac	360
ggttattaaa	acgaaaccag	atagttatgg	gctggatcgg	gaagtttatg	tgaaacctta	420

### **WO 2**007/039319 PCT/EP2006/010132 167/763

tgcagaaatg ta	tgacgtgt	cagttgtgac	gattgt			456
<210> 384 <211> 500 <212> DNA <213> Entero	coccus fa	aecium				
<400> 384 atgttgaaga aa	gaaacaat	gaagtactat	ctqccaatcq	ttttqttctt	tttgatgttg	60
atagatggtc at						120
gcccactttc tg					-	180
ctgattacca cg						240
atctatgcag ta						300
catgtcaaca tc						360
tttacgatgg tg						420
acaaggtttt ta						480
ccctttaaga aa		3 3 3	,	,		500
-						
<210> 385						
<211> 507						
<211> 507 <212> DNA <213> Entero	coccus fa	ecium				
<212> DNA <213> Entero	coccus fa	ecium				
<212> DNA			aagccggcct	ctcactaaaa	gcttcagtaa	60
<212> DNA <213> Entero <400> 385	ttgacctt	tttcgtaaag				60 120
<212> DNA <213> Entero <400> 385 tcagtcagtt tc	ttgacctt	tttcgtaaag accgcagctg	gattagcctc	ctctgccagc	gggctagctg	
<212> DNA <213> Entero <400> 385 tcagtcagtt tc tcagtcagaa tt	ttgacctt tegttect cttgcaat	tttcgtaaag accgcagctg actgctctta	gattagcctc	ctctgccagc	gggctagctg	120
<212> DNA <213> Entero <400> 385 tcagtcagtt tc tcagtcagaa tt ctttagcagg ag	ttgacctt tcgttcct cttgcaat gcgggtct	tttcgtaaag accgcagctg actgctctta ggttcagctt	gattagcctc agcttggatt gccgaagtat	ctctgccagc agacgatctc tttcggtggt	gggctagctg tctctttcaa ttcgtcgaat	120 180
<212> DNA <213> Entero <400> 385 tcagtcagtt tc tcagtcagaa tt ctttagcagg ag gatttgctcg ac	ttgacctt tcgttcct cttgcaat gcgggtct atgacgac	tttcgtaaag accgcagctg actgctctta ggttcagctt ttaagttctt	gattagcctc agcttggatt gccgaagtat acgctaagcc	ctctgccagc agacgatctc tttcggtggt agtcccttcc	gggctagctg tctctttcaa ttcgtcgaat gattctttcg	120 180 240
<212> DNA <213> Entero <400> 385 tcagtcagtt tc tcagtcagaa tt ctttagcagg ag gatttgctcg ac gggaaaaagg cc	ttgacctt tcgttcct cttgcaat gcgggtct atgacgac caatggtt	tttcgtaaag accgcagctg actgctctta ggttcagctt ttaagttctt ttcgttttga	gattagcctc agcttggatt gccgaagtat acgctaagcc tcaacgacca	ctctgccagc agacgatctc tttcggtggt agtcccttcc gaaaaaagaa	gggctagctg tctctttcaa ttcgtcgaat gattctttcg gtgtccagca	120 180 240 300
<pre>&lt;212&gt; DNA &lt;213&gt; Entero &lt;400&gt; 385 tcagtcagtt tc tcagtcagaa tt ctttagcagg ag gatttgctcg ac gggaaaaaagg cc aagacgattt ag</pre>	ttgacctt tcgttcct cttgcaat gcgggtct atgacgac caatggtt gtcggaca	tttcgtaaag accgcagctg actgctctta ggttcagctt ttaagttctt ttcgttttga gtcgaaacat	gattagcctc agcttggatt gccgaagtat acgctaagcc tcaacgacca ccaattttta	ctctgccagc agacgatctc tttcggtggt agtcccttcc gaaaaaagaa tcaaggctgg	gggctagctg tctctttcaa ttcgtcgaat gattctttcg gtgtccagca ttagattccg	120 180 240 300 360
<pre>&lt;212&gt; DNA &lt;213&gt; Entero &lt;400&gt; 385 tcagtcagtt tc tcagtcagaa tt ctttagcagg ag gatttgctcg ac gggaaaaagg cc aagacgattt ag gaaatgggat gc</pre>	ttgacctt tcgttcct cttgcaat gcgggtct atgacgac caatggtt gtcggaca tatatcaa	tttcgtaaag accgcagctg actgctctta ggttcagctt ttaagttctt ttcgttttga gtcgaaacat ttgaaacaag	gattagcctc agcttggatt gccgaagtat acgctaagcc tcaacgacca ccaattttta	ctctgccagc agacgatctc tttcggtggt agtcccttcc gaaaaaagaa tcaaggctgg	gggctagctg tctctttcaa ttcgtcgaat gattctttcg gtgtccagca ttagattccg	120 180 240 300 360 420

<210> 386 <211> 508 <212> DNA

# WO 2007/039319 PCT/EP2006/010132 168/763

<213> Enterococcus faecium	
<400> 386	
ccaattaggt gaagcagaac ttgtgatagc cggcggaaca gagagtatgt ctcaagcacc 60	
tatgctgaaa ccgtatcagt cagaaacaaa tgaatatggt gaaccaattt ccagtatggt 120	)
caacgacgga ttgactgacg cattttcaaa tgcacatatg ggattaaccg cagagaaggt 180	)
tgcaacacaa ttttctgtga gcagagaaga acaggatcgc tatgccttgt cgtcccagtt 240	)
gaaagcagca catgctgtcg aagccggtgt attttctgag gagatcatcc cagtcaagat 300	)
ttctgatgaa gacgtgttat ctgaggatga agcagttcgt ggaaatagta cattggaaaa 360	)
actgggcacg ttacgtacag tattctcaga agaaggaact gtaacagcag gaaatgcttc 420	)
cccgttgaat gacggtgcct ctgtggtgat ccttgcatcc aaagaatacg cagaaaataa 480	)
taatctgcct tatttagcaa ccatcaaa 508	}
<210> 387 <211> 501	
<212> DNA <213> Enterococcus faecium	
<400> 387	
gattgccttt cctttctatg caacaaaagt caccgcattc cttgaagagc tggatgcaat 60	)
ggacgatcaa ctggtttctt cctactattc aggaaattta gccgaagctc ctcatgcatt 120	)
aaaaaaatatc aaaaaaattat tcattcactt aaaaaaaa	)
gcaactgacc attgaaagca cgattcctgc tgaacgtgga atgggatcaa gcgctgcagt 240	)
cgccacagca gtcactcgtg ctttttatga ttacttagca tttcctttgt ctcgtgaaat 300	)
actattagaa aatgtccagc tttcggaaaa aatcgcccac ggtaatccta gtggaatcga 360	)
tgcagccgct actagcagct tgcagccgat ttattttaca aaagggcatc ctttcgacta 420	)
cttttctttg aacatcgatg cttttttgat tgtcgctgat acaggaatca aaggacaaac 480	)
aagagaagcc gtcaaagatg t 501	
<210> 388 <211> 505	
<212> DNA	
<213> Enterococcus faecium	
<pre>&lt;400&gt; 388 caagaacaag aaactcagca ttctatcagt gagttacttg ccctggattg gccaggtcta 60</pre>	j
tccattgage cattgattge tcctgaagat ttacgtttat tgattggttg gacgggtage 120	j

# WO 2007/039319 PCT/EP2006/010132 169/763

cctgcctcta cttctgattt ggtcgatcaa gttcaccgtt cgagagaaga taaaatggtg	180
gcttatcagc ttttcttaaa aaacagtaca gaatgtgtca atgaaatgat caaagggttt	240
aaagaaaata atgtaacgtt gattcaacag atgattcgaa aaaaccgaca attactgcat	300
gatttatctg caatcactgg ggtcgtcatc gaaacgcctg ctttgaacaa attgtgtaat	360
ttagctgaac agtatgaagg agccgcaaaa tettetggtg caggtggggg cgattgegga	420
atcgtaattg ttgaccagaa atctggcatt cttcctttaa tgagtgcatg ggaaaaagca	480
gaaatcactc cactgccgtt acatg	505
<210> 389 <211> 585 <212> DNA <213> Enterococcus faecium	
<400> 389 aaattcactt actgcaccag agccgtagct gaatagaccg atgcgatctc ctggctgtag	60
tgatttcgaa ttttccagta gagaagttag ccccaggtat aatgaaccag tgtaaagatt	120
accgattcgt cggctgtaac ggatgctttc ttcatagcga gccataagac gttcctgatt	180
atcttcgtct gtttggtcta atacgctttg caatgccttt tttcccatct tagtatacgg	240
aatatggaaa gcaatcgcct gataatcttc gagtcctcga cccgacaatt ctttatgtcg	300
attccaaact ttttggaatg attcgatata cgtagaatta gataaaggac catcaacaac	360
aggaaattcg ctataatctg gacgccagaa atcatagata tettetgtca gaaatacget	420
gtcgtcttca atcgataaaa tacgcgggtt ttgagtgatc atcatcgcaa cagcaccgac	480
accttgcgtc acttcaccac cgcttgccaa gccgtaacga gcaatatcac ttgctatgac	540
tagtactttt cgttctggat gatttttgac atattctttc gccat	585
<210> 390 <211> 300 <212> DNA <213> Enterococcus faecium <400> 390	
gcatatttcg cttgatatat aggttcatac gtggtggaac aacgtatgat gttttaggaa	60
atagttgtga taaatcacgt ggtctactca catttgtaat atcataccgc ttttttgctt	120
caggagaaga agctctaata tcaatcctaa accagtattg tcagcgcgac tcataacaac	180
aagttotgtt gttaatggat caaaatttot ttotatacac togatactog cataaaaagg	240

cttcatgtcg	attagaaaat	aatcatttac	tgattctttc	gaataatcca	gcatgaataa	300
<210> 391 <211> 273 <212> DNA <213> Ente	erococcus fa	aecium				
<400> 391	cccagctctt	tttttactaa	tataccaact	acatttaata	acaaaataac	60
	_					120
-	aatattttta			-	•	
tgtagctatc	aatataaata	cagaacttac	gtattttatt	attttacgga	acattataac	180
ctattacaac	tccgcaaata	gccatagccc	ataccataga	taagattttt	accagcacca	240
ccaccacatg	tttgttttat	ctctttcata	ctt			273
<210> 392 <211> 626 <212> DNA <213> Ente	erococcus fa	aecium				
<400> 392 agcagttccg	gtatctcttt	ttttctcaga	atattatttc	tatgtgcttt	gttacaatcc	60
attttctttc	aaaaaatagc	atcatttata	atatggttct	ccgtatcgcg	agcgaatgtt	120
attggctaat	ctcttggcaa	acaagtgttc	accacaaaat	tcctaactaa	acaaaaaata	180
gcataaatta	atgctcttag	tcacagatca	tactgtaaca	gtatgatctt	attttctgac	240
aaaataagaa	taccaatcat	ttatggtacg	acattctaag	cgtaaatgat	tgatattctt	300
ttgcagaaac	attcttaatt	tgtacctaaa	gattgctgac	taaaaaatag	atagaaaatt	360
ttcttcactc	tatttaatac	gttgcttgaa	gttttatagt	tatctattaa	cattctcgtc	420
ccctattgtc	ggggataggt	ttcgattaga	tgaactcgaa	aacgttgcta	tatcaattat	480
ggaaacatta	ttctctgtcc	agtgatggga	caatccatac	tcttccaatt	agttatttgg	540
tcgattcacg	ggaaaaattt	tatatgcagt	tcattattac	tactcatctt	cagactgtac	600
cgattcaaaa	cattaccctt	tcttca				626
<210> 393 <211> 508						

<211> 508 <212> DNA <213> Enterococcus faecium

<400> 393

# WO 2007/039319 PCT/EP2006/010132 171/763

tgaagtcctt tgtctttgtt gcttagtacg ctcgggattt cttctttttg tcaaggatga	60
aaatgatttt tcaaaggatt ttggattttc attgtatcta ttatccaaaa tgttttgaat	120
gtttaacact aatgtcataa ctaataatgg cttattgcta gcgtctatcg aagtattttt	180
tattteette aatateaatg teatagagat agacatttaa aatetgegae atttteaeeg	240
ggatttagcc catcttttc gtcaattttt ggattctttt ttagtttcta ttggaaagaa	300
tottcaactg acataattca ttttgtattt ttatctgtcc tottaacatt ttagtgtcaa	360
ttttaatagt gcttcacacg agaaaggtat aaacatacca ataaatttgg tatgactaat	420
gaaccttgca ctgcatagta tagccatacg cggatatact atatctctta tgttccttag	480
agtaaaacct ctaaatcggt gtgtattg	508
<210> 394 <211> 321 <212> DNA <213> Enterococcus faecium	
<400> 394 totattaaac agacacaact tatotatggg ggtaccactc atagtggaaa atattatgga	60
aatggagtgt attgcactaa aaataaatgt acggtcgatt gggccaaggc aactacttgt	120
attgcaggaa tgtctatagg tggttttta ggtggagcaa ttccagggaa gtgctaaaat	180
gaaaaaaaat gctaagcaaa ttgttcatga attatataat gatatatcta taagtaaaga	240
tootaaatat totgatatto ttgaggtttt acaaaaggta tatttaaaat tagaaaaaca	300
aaaatatgaa ttagatcccg g	321
<210> 395 <211> 613 <212> DNA <213> Enterococcus faecium <400> 395	
ttcataagga cgatgtgttg gttagattgg attgttcttt aatagagaat gaaaaggctc	60
agatagaaca agaaaaccaa cgtattactc aacaaataaa gatggctcag ctatttattg	120
aaagtataag taaaggaaaa aatttgtttt caacggatga cagttttggc tacagtaatc	180
aattaaagag catgttgtca gaaaaagaat cactccgcta cgctttgaag caaagtgaat	240
taaatgatca aaagcaatta gaagtatacg aaaagacaaa aagacaacta gaaaaacaaa	300
ttgagagttc agatagtaaa ttacaagaat ggcaacaagt acaggtagct tggagtaata	360

# WO 2007/039319 PCT/EP2006/010132 172/763

atcaatcatt	aaaagatttt	tcaaaagaaa	tgatggcaaa	ctatgagaat	tggcaagaac	420
aactaaataa	tgtttctgat	gatcaaaaaa	atcaagtgaa	actgacaatt	tcagcaagca	480
taaatgaaca	aattgagcaa	ctaaaaaaag	aagtagaaca	gtatcagtca	gaaaaagcta	540
aattagttaa	accaactact	tctgagaatg	acagaattag	tcaaacggaa	aaaggaaagc	600
aagagctaga	aca					613
<210> 396 <211> 400 <212> DNA <213> Ente	erococcus fa	aecium				
<400> 396 attatgtgaa	gatcaaatta	tacaattaaa	tcagttagaa	cgaattattg	ataatttcat	60
tcttttcac	gataaagtat	ttaagatagt	attgaaaaca	caaagtccgt	tagaagttaa	120
aaaatacctc	aaacaattcc	gaccaaagca	aggaatatat	ttcttagata	ttgatttaaa	180
tcatgaagtt	aacggtatag	aattagcaga	agtaatcaga	aaatatgatg	ttcaagcaaa	240
aatcattttt	acaactactc	atgatgagat	gttacccgta	acaataaaaa	gaagagttga	300
aacgttagga	tttgtaacaa	aagatcaaac	actagatgag	tatcgaaacg	agattgttga	360
gttattgtta	ttagcgcaag	aaaggataga	tgcaacaaaa			400
	erococcus fa	aecium				
<400> 3.97 atcttgatct	tgccattcca	ttttttcttt	accgaaaaga	ttagcttttc	tagtcaagta	60
attaacaagg	ggttgtttgt	ttttctggat	tgtatcccac	atgacagaca	atgtttcttt	120
cttcaaccga	ttgtactcta	atggtttttg	tagaaaatct	gtgacaccat	gaagttcata	180
gtcagaaagt	ctaaaaccat	ctaaatgatt	caaagtatcc	gtgaagaggg	gtgccttttc	240
tttccaggct	tcttcccatg	ctgcgaaaag	tgtttctctg	acttttggat	ctggatcgcc	300
catcatctta	ttgaaggctt	gtccagcaga	taattcgact	acttgtccat	cttgttcgaa	360
gggaatcgaa	atgctggcta	caatcgtatc	ataatgactg	ctccaagcat	ttagaccatc	420
taaagaaagc	gtatttataa	tgttttcttc	agcttctgat	aataattgtg	agccatcacg	480
acgaatctcg	tttaaacgaa	aagcaattgt	ttcaaacgaa	gattgagaaa	gca	533

# WO 2007/039319 PCT/EP2006/010132 173/763

<211> 1 <212> D	398 171 DNA Ente	erococcus fa	aecium				
	398 cca	gcaacagaag	aatcaacaac	agtgcctgaa	tcttcaacaa	cagaagaatc	60
aacaacac	cct	gcgcctacaa	caccatcaac	agatcaaagt	gttgatacag	gaaacggcac	120
aggaagta	agt	actccggctc	caacgccaac	accaacacct	gaacaaccaa	a	171
<211> 5 <212> D	399 519 DNA Kleb	osiella pneu	umoniae				
	399 :tt	gtctcctacg	gcccgcactg	ggccaacgtc	agcaacgccc	cctacgccaa	60
ttatcaca	aaa	accaccagcg	cccagggcgg	catcaatacc	gactttatga	tctccggtcc	120
cgggatca	acc	cgccacggta	aaatcgacgc	ctcgacgatg	gcggtgtatg	acgtggcgcc	180
gacgctat	tat	gaattcgccg	gcatcgatcc	gaacaagtcg	ctggcgaaaa	agccggtgtt	240
gccgatga	atc	ggcgtcagct	ttaagcgcta	tctcaccggc	gaagtacagg	agccgccgcg	300
cggcaact	cac	ggggttgaac	tgcatcatca	ggcggcctgg	gtcgatggcg	aatggaagct	360
gcgacggc	ctg	gtgccgcgcg	gcctcaccgc	cggcgacgcg	ccgtggcagc	tgtttaatct	420
gcacgacg	gac	ccgctggaga	cgcatgatgt	cgcggccgaa	catcccgatc	gggtcaaagc	480
catgagcg	gag	gcctacgagg	catttgctaa	gcgcaccat			519
<211> 3 <212> D	100 320 DNA Kleb	osiella pneu	umoniae				
	100	acqcatqqtq	ccgactgttc	cacaaacata	gctttattat	cagattaaac	60
			gcaggactac				120
			cattgacctg				180
			gatggcggcc				240
			gcagtttcag				300
		agctcagcgc	J J9	J 55-	2 2 2 2 2 2 2 2 2	JJ - J-J-	320

# WO 2007/039319 PCT/EP2006/010132 174/763

<210> 401 <211> 201 <212> DNA <213> Kleb	bsiella pne	umoniae				
<400> 401 ccgatcgagt	ccattacccc	ggagattgtc	gacaaagtct	acaacatcaa	cgtcaaaggg	60
gtgatctggg	gcatccaggc	ggcggtcgag	gcctttaaga	aagagggtca	cggcgggaaa	120
atcatcaacg	cctgttccca	ggccggccac	gtcggtaacc	cggagctggc	ggtgtatagc	180
tcgagtaaat	tcgccgtacg	С				201
<210> 402 <211> 305 <212> DNA <213> Klel	osiella pne	umoniae				
<400> 402 gcctgcttcg	ttgatagatt	acctaccgcc	ctttcgcaca	acgaatggat	ctcgatcgtg	60
gggaatctac	ttgataacgc	ctacaatgcc	agcctgcgtc	aaccgcaggg	ttcaaaacag	120
atcgaatgcc	tgatcaacag	tgatggccag	gaggtgatca	ttgagatcgc	cgaccaggga	180
tgcggcattg	acgaggcgct	gegegategg	atcttcgagc	gcggcgtcac	cagcagcgcc	240
agcaaagatc	atggtatcgg	actctggcta	gtacgcagct	acgtggaaca	agcaggcggc	300
agtat						305
<210> 403 <211> 608 <212> DNA <213> Klel	osiella pnev	umoniae				
<400> 403 gccaccttta	ttccttccgc	gctggtccac	tatggtctgc	tgcctgacgt	ggttattgaa	60
	aattctataa					120
gtcggcagca	tcatgagtat	gaaccgcacc	acgctgattc	agggctttct	gaagatcttc	180
ttcccgatgc	tgtgcggcga	agtggtcggc	atgctggtgg	gcatcggcgt	cggcacgctg	240
ctgggcatgg	agccgttcca	ggtgttcttc	tttatcgtgc	tgccgattat	ggccggcggc	300
gtgggagagg	gggcgatccc	gctgtcaatg	ggttatgccg	cgctgatgca	tatggagcag	360
ggcgtggccc	tgggccgggt	attgccgatg	gtgatgcttg	gcagcctgac	ggcgatcgtc	420

# WO 2007/039319 PCT/EP2006/010132 175/763

atctccggct	gcctcaacca	gctcggcaag	cgcttcccgc	atctgaccgg	cgaagggcaa	480
ctgatgccga	accgcagcca	tgaaacccgc	agcctcagcg	agagcgaagg	cgtgagcggt	540
aagaccgacg	ttgggaccct	cgcctccggc	gcgctgctgg	cggtactgct	gtatatgatg	600
gggatgct						608
<210> 404 <211> 490 <212> DNA <213> Klei	osiella pne	umoniae				
<400> 404 gtcagcatcg	aggcattgct	ggcggcgaaa	gagcagcgtg	cagecegeca	ggccgactgg	60
ttggcccatt	atcagcagcc	tgttatttcc	ctgaccctgg	tgaccccggg	ggcggtgaag	120
gacagcattc	gctatcgtaa	tatgatgggc	gttgccctcc	aggcctgcga	tcagctgctg	180
tggaagcacc	gctggcaaac	gctggatcgt	caggtgctat	ggctgccgac	cgggccagaa	240
gcgctgtggt	gcgtagcgca	tccggccagc	gaaatcaaag	cgatgtgcag	tacgctggag	300
cagatccatc	cgctgggacg	cctgtgggat	atcgatgtaa	tctgtccgca	gaacgggctg	360
gtgggacgcc	agtcgctggg	cgaatcgcag	cgccgctgcc	tgctgtgcga	tgagccggcg	420
cacgcctgtg	cgcgcagccg	tcgtcacgac	accgatctcg	tcgtcgcccg	cgttgagcag	480
atgattgacg						490
<210> 405 <211> 509 <212> DNA <213> Kleb	osiella pneu	ımoniae				
<400> 405 gttgttctcc	actacccact	ggataaaggt	ctcccccatc	accggcgctt	tgtcatcaat	60
tccggcttgc	gctttgatgc	gggccggcag	ateggeegee	ggacgcgggg	tgatgcggtc	120
caccatggtg	ttcggacagg	tggtattggc	cgccatccag	tcaatcaccg	cctgtttgcc	180
ggtgagctgc	aggaactcga	ccataccgtc	gtggaaacgc	tcgccgttat	ggcgcacgtt	240
atcgcagttg	agcagggtca	gcggcccggc	gttgtcggcc	atgcgctttt	ccaggatccg	300
cgcgagggtg	ccgtaaatgg	ttttgcactc	gccttgcagg	teggeetgea	gatcggggtt	360
gctggtttcc	agccgatggc	gagtgttcag	gtagtacccc	ccttccgtca	cggtaaaggc	420
gataactttg	gtctgcgggt	ttgccccttc	gttaatcagc	ggctgtagcc	cggcctgcca	480

# WO 2007/039319 PCT/EP2006/010132 176/763

cggtagcagt ttctggattg aggtgatct	509
<210> 406 <211> 533 <212> DNA <213> Klebsiella pneumoniae	
<400> 406	
gactteeggt tttteacaca eegeggeaat gggtttgeee geegeeagge aggeeageeg	60
cgccgcgccc agegegeege eggtetetee geetttgtgg gtcaccaeeg geatagegag	120
aatateggee ageagetggg ceeagaaegg getgegggeg ceeeegeeea eeagegagea	180
ctgcgcgatc ggcgtcccgc tctctttcaa tgcctgcagg ccgtcgttga tcccaaagct	240
cacccctcc agcaccgcgt agccgagctg cgcgcgcagg ctggcgtggg tcatgcccca	300
gaagatgccg cgcgcgtcag gatcgttatg cggggttcgt tccccggaga gatagggcag	360
gaagaacgge gegttggett tateeteete gettageteg geaateteeg eeageagege	420
cacetecgtg gtgeeggtea ageggeagaa ceaetgeaaa eagetggegg egeteageat	480
gacgeteate tggtgeeaca ggtteggeag caegtgaeaa aaegeatgta eeg	533
<210> 407 <211> 260	
<212> DNA	
<213> Klebsiella pneumoniae	
100	
<400> 407 ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat	60
	60 120
ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat ggcgcaggga aaccagggca atcacgcccc cggtaaggca gaaggccagc gccagccaca	
ccagctegga aaacttetea egggtggtga gattetgeat atgetgegge gtttgaatat ggegeaggga aaceagggea ateaegeece eggtaaggea gaaggeeage geeageeaca gggtgeecat ttegeeaatg tgaggaatgg taaagetegg aatatagetg eegaagaeee	120 180
ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat ggcgcaggga aaccagggca atcacgcccc cggtaaggca gaaggccagc gccagccaca gggtgcccat ttcgccaatg tgaggaatgg taaagctcgg aatatagctg ccgaagaccc cgatgccgat ggaatacacc gcccagaacc agccgatggc cgagctggcg ttgtcgcttt	120 180 240
ccagctegga aaacttetea egggtggtga gattetgeat atgetgegge gtttgaatat ggegeaggga aaceagggea ateaegeece eggtaaggea gaaggeeage geeageeaca gggtgeecat ttegeeaatg tgaggaatgg taaagetegg aatatagetg eegaagaeee	120 180
ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat ggcgcaggga aaccagggca atcacgccc cggtaaggca gaaggccage gccagccaca gggtgcccat ttcgccaatg tgaggaatgg taaagctcgg aatatagctg ccgaagaccc cgatgccgat ggaatacacc gcccagaacc agccgatggc cgagctggcg ttgtcgcttt tgacgttatg gacaatcgcc <210> 408	120 180 240
ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat ggcgcaggga aaccagggca atcacgccc cggtaaggca gaaggccage gccagccaca gggtgcccat ttcgccaatg tgaggaatgg taaagctcgg aatatagctg ccgaagaccc cgatgccgat ggaatacacc gcccagaacc agccgatggc cgagctggcg ttgtcgcttt tgacgttatg gacaatcgcc  <210> 408 <211> 501	120 180 240
ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat ggcgcaggga aaccagggca atcacgccc cggtaaggca gaaggccage gccagccaca gggtgcccat ttcgccaatg tgaggaatgg taaagctcgg aatatagctg ccgaagaccc cgatgccgat ggaatacacc gcccagaacc agccgatggc cgagctggcg ttgtcgcttt tgacgttatg gacaatcgcc <210> 408	120 180 240
ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat ggcgcaggga aaccagggca atcacgccc cggtaaggca gaaggccagc gccagccaca gggtgcccat ttcgccaatg tgaggaatgg taaagctcgg aatatagctg ccgaagaccc cgatgccgat ggaatacacc gcccagaacc agccgatggc cgagctggcg ttgtcgcttt tgacgttatg gacaatcgcc  <210> 408 <211> 501 <212> DNA	120 180 240
ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat ggcgcaggga aaccagggca atcacgccc cggtaaggca gaaggccagc gccagccaca gggtgcccat ttcgccaatg tgaggaatgg taaagctcgg aatatagctg ccgaagaccc cgatgccgat ggaatacacc gcccagaacc agccgatggc cgagctggcg ttgtcgcttt tgacgttatg gacaatcgcc  <210> 408 <211> 501 <212> DNA <213> Klebsiella pneumoniae	120 180 240
ccagctcgga aaacttctca cgggtggtga gattctgcat atgctgcggc gtttgaatat ggcgcaggga aaccagggca atcacgccc cggtaaggca gaaggccagc gccagccaca gggtgcccat ttcgccaatg tgaggaatgg taaagctcgg aatatagctg ccgaagaccc cgatgccgat ggaatacacc gcccagaacc agccgatggc cgagctggcg ttgtcgcttt tgacgttatg gacaatcgcc  <210> 408 <211> 501 <212> DNA <213> Klebsiella pneumoniae <400> 408	120 180 240 260

ggcgtgatat	cgcccggcgc	gccgctggct	tcggcctgcc	ggcagtgacc	gtcgatggca	240
ccgatttctt	tgccgtttat	gaggcaacct	cagaggcggt	caagcgtgcg	cgagaaggcg	300
gtggcccaag	cgtcattgag	gccaaagcct	tccgctggca	tggtcatttt	gagggcgatc	360
ccgcgctata	tcgtgcggaa	ggtgaagtgc	aacgcctgcg	tgaacaacat	gatccgctga	420
agattttcac	cgctaaggtc	aagcaacata	tcacccagga	agaactggcg	gcgattgacg	480
aggaagtaga	agccctggtc	a				501
	osiella pnev	umoniae				
<400> 409 cctataatat	ctttgccacc	acgcctggac	tgaaggtggt	ggtgccctcg	acgccttatg	60
acgtcaaggg	tctgttaatc	cagtccattc	gcgacgacga	cccggtggta	ttctgcgagc	120
ataaaatgct	gtacgacctc	aagggcgagg	taccggacga	gatctatacc	atcccgctag	180
gtgtagccaa	ctacactcgc	gaaggggagg	acgtcaccat	cattgcgttg	tcggcaatgg	240
tacataaagc	aaaccaggtg	gcggacaaac	tggccagaga	ggggatctcg	gtcgaggtgg	300
tcgacccgcg	aaccatttcg	ccgctggatg	aggaaggtat	tctggaatcg	gtggcgtcca	360
cggggcgggt	cgtgattgtc	gacgaatccg	ctgcacgctt	cggttttgct	catgatgtcg	420
cggcgctgat	tgcgtcccag	gcattccatt	tcctcaaagc	gcccgttctg	ctggtgacgc	480
cgccacacac	gccggtcccg	ttctcccctg	ctctcgaaaa	actctggatc	cctgg	535
<210> 410 <211> 543 <212> DNA <213> Kleb	osiella pnev	umoniae				
<400> 410	ccaaagtggg	ggctttccat	ggaggaaggc	ttactcactc	gatgggcaat	60
		ccagagggca				120
		cctttgccgg				180
		ccgtgctggc				240
		cccgcctggc				300
		cggcacaggc				360
2200200000		- 22	~330300000	- Jugue Loug	99	500

# WO 2007/039319 PCT/EP2006/010132 178/763

gccatccaac	agccccgagc	cccctgttgg	gcagaccgtc	atccccgtca	gtctgcaagg	420
tgtgaccgat	gtgactcagg	ttaatgccac	gccccatgcg	ttacgactgt	ctgcccgctg	480
gggtgtcgac	ctgaaaaaag	tcgcggcagc	gggcgcgggg	atcgtatctc	tgtttctgat	540
ctg						543
<210> 411 <211> 596 <212> DNA <213> Kleb	osiella pnev	umoniae				
<400> 411 cagtcaggaa	cacagcattg	tcgatatcag	catatccgga	tgaatcaggg	cgtgggagag	60
cattatgaga	tccctgtccc	ctggtttctg	ctgacccatc	cggatgggtt	tacgctgatt	120
gacggcggtc	tggctgtcga	aggattgaaa	gateccageg	gttattgggg	aagtactgta	180
gagcagttta	aaccggtgat	gtcagaagaa	cagggttgcg	tggaacaact	taagaggatt	240
ggcattgctc	ctgaggatat	ccgctatgtg	gtcctgtccc	atttgcactc	tgatcatacg	300
ggagcaattg	gtcgcttccc	ccatgctacg	catgttgtcc	agaggcaaga	gtatgaatat	360
gcctttgccc	ctgactggtt	tacttcggga	gcctattgcc	gacgcgattt	cgatcgtccc	420
caacttaact	ggctatttct	gaacgggttg	tccgatgatc	actatgacct	ttacggtgat	480
ggcacgttac	aatgtatttt	caccccaggg	cattcaccgg	gccatcaatc	ttttcttatc	540
cgcttaccgg	gtggtacaaa	ttttacgcta	gcgattgatg	cggcttatac	cttaga	596
<210> 412 <211> 693 <212> DNA <213> Kleb	osiella pnev	umoniae				
<400> 412	+ a+ + a a + + a +	~~~~~~~		~~~t~t~~~	2222t22t2	60
				ggctgtggca		120
			_	ctgccccgc	_	180
				ttgagcggct		240
				acgccgagct		300
				aacgtctcgg		360
				tggtggaatg		
cuggoddddd	garraageg	cacyctgctg	eegegeteae	ccgcaaacgc	actgacggcg	420

# WO 2007/039319 PCT/EP2006/010132 179/763

tttgaacagg	aatgggtaca	agcgattcac	gatcgccagg	tcttcccggt	ttttcaacct	480
atcgtcgata	gtcgctcaca	gctacagggg	gtggagatcc	tgatccgctg	gcgccaccgc	540
ggccaggtac	ttcaccccca	gacctttctg	ccgcacttcc	gcgccgacta	cacctggctg	600
ctgcttacgg	cctttgttct	gcaggaggcc	gtgcagaata	ttaatgagta	tccaggcacc	660
ttctattttt	cggtcaacat	accetectea	ctc			693
<210> 413 <211> 514 <212> DNA <213> Klei	osiella pnev	umoniae				
<400> 413 ccgatcatga	gaacatcagt	attgaactgc	agcgtgagtt	ccttcctgag	gaacgtgaag	60
attacgctca	tgtcttctat	agcggccctc	ttgacgcctt	ctattcgtac	cagtacggtc	120
ggttaggcta	ccgcactctg	gatttcgaaa	aatttaccta	tcaaggtgac	tatcaggggt	180
gcgctgtgat	gaattattgc	tccatcgatg	tgccatatac	acgcatcact	gagcataagt	240
atttttctcc	atgggaaagc	catgaaggtt	cggtctgcta	taaagaatac	agtcgcgctt	300
gcggcgagaa	tgatattcct	tattacccca	ttcgacagat	gggggagatg	gctttactgg	360
aaaaatatct	ttctcttgcc	gaaagtgaaa	aaaatattac	cttcgtcggt	cggttaggta	420
cctatcggta	tcttgatatg	gatgtaacca	ttgcggaagc	gctgaaaaca	gccgatgagt	480
ttttatcttc	ggtggctaac	caggaagaga	tgcc			514
<210> 414 <211> 584 <212> DNA <213> Klel	osiella pnev	umoniae				
<400> 414	tacaaactac	tacaacatac	caccacaaa	ctacatatta	acaataccaa	60
		tgcagcgtac				120
		cccagcagat				180
		tcgcccaggg				240
		cgctgatgat				300
		atcgccctct				360
		cctccccgg				
gcacgttatc	rgcgccactg	aggcctattt	acagcagcac	ggtacgccgt	acacgccgca	420

ggatctgcgc gcgcatag	ct gcattagcct	tggcgaaacg	cccgccgatg	cgcgctggaa	480
gttccgtcgg gaaggcaa	aa cagaaacggt	gcaaacctac	gggcggtacg	ccgccaacca	540
taccgccgta cgcctcga	icg cggtcagaca	gcatttaggg	atcg		584
<210> 415 <211> 281 <212> DNA <213> Klebsiella p	oneumoniae				
<400> 415 acagattaca ttgtcatt	tc ctgccagccg	cgccctgagc	ggccgagcgc	tggcaggagt	60
cgtgggttca ggcgatat	gg aagtacttta	taccgccgca	cagagegeea	cgctcaacgt	120
acagatcacc acctcagt	gg ataacagcca	ggcgcgctgg	caggcgctgt	tcgacaggtt	180
gaacctgatc aacggcct	gc ccgccgggca	gttgattatc	cacgacttcg	gcgccacgcc	240
gggcgtcgcc cgtattcg	ıta ttgaacaggt	ttttgaggag	g		281
<210> 416 <211> 656 <212> DNA					
<213> Klebsiella p	neumoniae				
<213> Klebsiella p <400> 416 atggattttg ccttaccc		agcgcgacgg	tacaaacgcc	gtgggccggg	60
<400> 416	gc cacgctgttt				60 120
<400> 416 atggattttg ccttaccc	gc cacgetgttt	ttgaccggcg	cgatgtggat	cacctatgcc	
<400> 416 atggattttg ccttaccc atcgtcgccc agtcgccc	egc cacgetgttt gct ggtgctggtg eac cagegtgttc	ttgaccggcg aaacgcacgc	cgatgtggat cgcaggatgc	cacctatgcc	120
<400> 416 atggattttg ccttaccc atcgtcgccc agtcgccc gcgatctact tcctcgcc	egc cacgetgttt out ggtgetggtg eac cagegtgtte outcomes	ttgaccggcg aaacgcacgc gcgttaggtc	cgatgtggat cgcaggatgc tgccgatcct	cacctatgcc cgcggtgctg cggcagcgtg	120 180
<pre>&lt;400&gt; 416 atggattttg ccttaccc atcgtcgccc agtcgccc gcgatctact tcctcgcc accctcaccg tcgccctg</pre>	egc cacgetgttt gct ggtgctggtg ac cagegtgttc gcc aaactatgcc ac ctcactgtcg	ttgaccggcg aaacgcacgc gcgttaggtc gtagcggtct	cgatgtggat cgcaggatgc tgccgatcct ctatcgcctg	cacctatgcc cgcggtgctg cggcagcgtg cggctcggta	120 180 240
<pre>&lt;400&gt; 416 atggattttg ccttaccc atcgtcgccc agtcgccc gcgatctact tcctcgcc accetcaccg tcgccctg ctgggtgaag gcgcgtca</pre>	egc cacgetgttt gct ggtgctggtg ac cagegtgttc gcc aaactatgcc ac ctcactgtcg	ttgaccggcg aaacgcacgc gcgttaggtc gtagcggtct gagcgtgaaa	cgatgtggat cgcaggatgc tgccgatcct ctatcgcctg aagcccgcgc	cacctatgcc cgcggtgctg cggcagcgtg cggctcggta cgcgggtgaa	120 180 240 300
<pre>&lt;400&gt; 416 atggattttg ccttaccc atcgtcgccc agtcgccc gcgatctact tcctcgcc accetcaccg tcgccctg ctgggtgaag gcgcgtca ctgatgaccc cgttctgc</pre>	egc cacgetgttt gct ggtgctggtg ac cagegtgttc gcc aaactatgcc ac ctcactgtcg act gctgattctg	ttgaccggcg aaacgcacgc gcgttaggtc gtagcggtct gagcgtgaaa gtgctgatgt	cgatgtggat cgcaggatgc tgccgatcct ctatcgcctg aagcccgcgc ggcgttcggt	cacctatgcc cgcggtgctg cggcagcgtg cggctcggta cgcgggtgaa gaaaaaaccg	120 180 240 300 360
<pre>&lt;400&gt; 416 atggattttg ccttaccc atcgtcgccc agtcgccc gcgatctact tcctcgcc accetcaccg tcgccctg ctgggtgaag gcgcgtca ctgatgaccc cgttctgc aacagcggtt ctacgctg</pre>	egc cacgetgttt pet ggtgetggtg cac cagegtgtte pec aaactatgee ac etcactgteg cet getgattetg ge aatgetgeeg pet tggggtggtg	ttgaccggcg aaacgcacgc gcgttaggtc gtagcggtct gagcgtgaaa gtgctgatgt ctttccgcga	cgatgtggat cgcaggatgc tgccgatcct ctatcgcctg aagcccgcgc ggcgttcggt tcggcattaa	cacctatgcc cgcggtgctg cggcagcgtg cggctcggta cgcgggtgaa gaaaaaccg aatgccggac	120 180 240 300 360 420
<pre>&lt;400&gt; 416 atggattttg ccttaccc atcgtcgccc agtcgccc gcgatctact tcctcgcc accetcaccg tcgccctg ctgggtgaag gcgcgtca ctgatgaccc cgttctgc aacagcggtt ctacgctg atcgtctggg gcccgctg</pre>	ege caegetgttt jet ggtgetggtg eac cagegtgtte jec aaactatgee jac etcaetgteg ject getgattetg jge aatgetgeeg jet tggggtggtg	ttgaccggcg aaacgcacgc gcgttaggtc gtagcggtct gagcgtgaaa gtgctgatgt ctttccgcga ctggccgcca	cgatgtggat cgcaggatgc tgccgatcct ctatcgcctg aagcccgcgc ggcgttcggt tcggcattaa ccgccgccgc	cacctatgcc cgcggtgctg cggcagcgtg cggctcggta cgcgggtgaa gaaaaaaccg aatgccggac gctgttcctc	120 180 240 300 360 420 480

<210> 417 <211> 456

# WO 2007/039319 PCT/EP2006/010132 181/763

<212> DNA <213> Kle	bsiella pne	umoniae				
<400> 417 tatttacctt	tcccggtcag	ggcggccagc	gtcccggcat	gctggcgatg	atccccgatc	60
gcgaggcgat	cctcacccag	gcgcgcgccg	tgctggggga	tgaagtcgat	accctcgata	120
gcgccgatgc	gctacaacac	acccgtgcgg	tccagctctg	tctgctgatc	gccggtgtcg	180
cctgggcgcg	cgagctacag	cgtcagggcg	tggatccgca	gatggtcagc	ggcctctcta	240
tcggcgcgtt	tccggccgcg	gtgattgccg	gcgcgctcga	tttcgccagc	gcgctgcggc	300
tggtagccct	gcgcggggac	ttaatggaac	aggcgtatcc	tgaaggttac	ggactgacgg	360
cgattatggg	cctgacccgc	ccgcgggttg	aggcgctgat	gcagggcaac	gaggtttatc	420
tcgccaatct	gaacgccgaa	acgcagttcg	tgattg			456
<210> 418 <211> 537 <212> DNA <213> Klei	bsiella pne	umoniae				
<400> 418 tgctgctgat	accaatgtag	gcggcggtca	ggttaatttc	ttcggtaaag	ttaccgacgt	60
atcttgtact	gtttccgtaa	acggccaggg	cagcgatgcg	aacgtttatc	tgtcaccagt	120
gactttaacg	gaagttaaag	ctgccgcggc	ggatacctat	ctgaaaccga	aatctttcac	180
catcgatgtt	tctgactgcc	aggcggctga	tggcaccaaa	caggatgatg	tgagcaaact	240
gggtgtgaac	tggaccggcg	gtaacctgct	ggcgggcgca	accgctaaac	agcagggcta	300
cctggctaac	accgaagccg	ccggcgcgca	gaatatccag	ctggttctct	ccaccgataa	360
cgccaccgcg	ctgaccaaca	aaatcatccc	gggcgacagc	acccagccta	aagcggccgg	420
tgatgcctct	gccgttcagg	atggcgcgcg	cttcacttac	tacgtcggct	atgcgaccag	480
caccccgacc	acggttacca	ccggtgtggt	taacagctac	gcgacttacg	aaattac	537
	bsiella pne	umoniae				
<400> 419 cgcaatacca	taccttcacc	gcccacgatg	ccgtggctta	cgcgcaacag	ttcgccggca	60
tcgacaaccc	atctgagctg	gtcagcgcgc	aggaagtggg	cgatggcaac	ctcaatctgg	120

tgtttaaagt	gttcgatcgt	cagggcgtca	gccgggcgat	cgtcaaacag	gccctgccct	180
acgtgcgctg	cgtcggcgaa	teetggeege	tgaccctcga	cegegecegt	ctcgaagcgc	240
agaccctggt	cgcccactat	cagcacagcc	cgcagcacac	ggtaaaaatc	catcactttg	300
atcccgagct	ggcggtgatg	gtgatggaag	atctttccga	ccaccgcatc	tggcgcggag	360
agcttatcgc	taacgtctac	tatccccagg	cggcccgcca	gcttggcgac	tatctggcgc	420
aggtgttgtt	ccacaccagc	gatttctacc	tccatcccca	cgagaaaaag	gcgcaggtgg	480
cgcagtttat	taacccggcg	atgtgcgaga	tcaccgagga	tctgttcttt	aacgacccgt	540
atcagatcca	cgag					554
	osiella pneu	umoniae				
<400> 420 gtgcgtttaa	tctcctcaag	ccagctcgcc	agacgcgctt	cggtctggtc	gaactggtta	60
tcctgatcca	gcaccagccc	aacaaagcgg	tcgccttcca	gcgccgagga	cgcgctgaat	120
tcataaccct	catttggcca	gctgccaatc	atctgcgcgc	cgcgcgcgct	cagggcgtcg	180
aacagcgggc	gcatcccgct	gacgaagttg	tccggatagc			220
<210> 421 <211> 341 <212> DNA <213> Klel	osiella pnev	umoniae				
<400> 421 aaattgccga	agctcaatct	ggtgaccggc	tttgaaacct	atctcggcaa	cttccgcgta	60
ttaaagcgga	tgatggaaca	gatggcggtg	ccgtgcagcc	tgctctccga	tccgtcggaa	120
gttctcgaca	cgcccgccga	cggtcactat	cggatgtatt	ccggcggcac	cacgcagcag	180
gagatgaaag	aggcccctga	cgccatcgat	acgctgctcc	tgcagccgtg	gcagctgctg	240
aagagcaaaa	aagtggtgca	ggagatgtgg	aaccagcccg	ccaccgaggt	cgccattccg	300
ctggggctgg	ccgccaccga	tgaactgctg	atgaccgtca	g		341
<210> 422						

<210> 422 <211> 400 <212> DNA <213> Klebsiella pneumoniae

# WO 2007/039319 PCT/EP2006/010132 183/763

<400> 422 agagagcgtc	attgagcagt	gggtgccgcc	ggcgccgcgc	ccggctcagc	gcaatcgccg	60
ggtcaatctg	ctggtcagcc	atctctgttc	gccgggcgat	atcgagtggc	tgcgccgatg	120
cgtcgaagcc	tttggtctgc	agccgataat	cctgccggac	ctggcgcaat	cgatggacgg	180
ccacctggcg	cagggcgatt	tctcgccgct	gacccagggc	gggacgccgc	tgcgccagat	240
agagcagatg	gggcaaagcc	tgtgcagctt	cgccattggc	gtctcccttc	atcgcgcctc	300
atcgctgctg	gccccgcgct	gccgcggcga	ggttatcgcc	ctgccgcacc	tgatgaccct	360
cgaacgctgc	gacgccttta	ttcatcaact	ggcgaaaatt			400
	osiella pnev	umoniae				
<400> 423 acagggttga	tectegtega	cattacgatg	cgctttcctc	ctggcgccag	ttttcatacc	60
ttcacccatg	ccctgctcgg	acccgctgcc	agcgtaatca	tcggcgtggc	tttctgtttc	120
gtactttatt	tactgaccta	cgcgtacata	tcaggcgcag	catcgatagt	gtgggatctc	180
cttcctcccg	atattgctgg	ccgcagctgg	ctgccgatca	ttttgctgtc	gctgacgacc	240
tcgctgattc	tgtgggccgg	cggcaaattg	cccggttttc	tcctctccgg	ccttatcgcc	300
gccaaattca	ccctttttct	cctgctgttc	gccggtgccg	caggaggcgt	aaaagtactc	360
agattactcg	acttcgccgg	cagcacgccg	ctccagtatt	acctgccgat	cgtaccggtc	420
tgcgttatcg	cttttggatt	tcatggcagc	gtcccctctc	tgacaagaat	gtaccggggg	480
gataatcatc	gtgcggtcct	ccgctctctc	tattacggtt	tcgccgtttc	attaac	536
<210> 424 <211> 282 <212> DNA <213> Kleb	osiella pneu	umoniae				
<400> 424	ctattactat	ttaccgccgc	actaataaca	gagcgtcgcc	taacccacaa	60
		agtccgtggc				120
		cctcgctgat				180
		cggaaatgat				240
		ccgttcacaa				282
,,,,,,	- 5 55	,		,		<del>-</del>

# WO 2007/039319 PCT/EP2006/010132 184/763

<210> 425 <211> 587 <212> DNA <213> Klebsiella pneumoniae	
<400> 425 atttcataaa ctcggattgg tattttgatt tgcattggac cgaccgagca atagccgctc	60
gtgatgctgg ttatgagatt cacatcatta gtcattttgt tgatagtaaa ataaccaata	120
aattcaaatc gttagggttt atctgtcata acgttccgct tgctgcccag tcattcaacg	180
tatttacttt tattcgagca ttctttgatt ctcggaaaat aattaaagaa atagacccgg	240
atctgctgca ctgcatcact ataaaacctt gtctaattgg cgggttcttt gcgaaaaaaa	300
cgcagcgtcc agttattttg agctttgttg gccttggtcg ggtgttttcg gaaaattccg	360
ggcttattaa actactacgg cattttacaa ttaaagcata caaacatatt gcgagtaata	420
aacgcagtat gtatatgttt gagcatgata aagatagaag gaaaattgtt gattttctcg	480
gtattgatat ccagaaaacc attgtcattg atggtgccgg tatcaacccg gaaatatata	540
aatattegtt ggaacaaaag egagatatee etgtagtget gtttgee	587
<210> 426 <211> 320 <212> DNA <213> Klebsiella pneumoniae	
<400> 426 aggttcaggt agctggaaaa acagtaagtc aagtacgaca agatattaca agccgattaa	60
ccacatatat tgaaagccct caagttgatg tcagcatagc tgcattccgg tcacaaaagg	
	120
	120 180
tttatgtaac tggtgaagtt gcaaactctg gaaaacagge tattacaaat attcccctaa	180
tttatgtaac tggtgaagtt gcaaactctg gaaaacagge tattacaaat attcccctaa ctgtgatgga tgctatcaat gcggcaggag ggcttgcggc tgatgctgac tggagaaacg	180 240
tttatgtaac tggtgaagtt gcaaactctg gaaaacagge tattacaaat attcccctaa ctgtgatgga tgctatcaat gcggcaggag ggcttgcgge tgatgctgac tggagaaacg ttgttcttac tcataacggt aaagatacaa agatttcatt atatgcacta atgcagaaag	180 240 300
tttatgtaac tggtgaagtt gcaaactctg gaaaacagge tattacaaat attcccctaa ctgtgatgga tgctatcaat gcggcaggag ggcttgcggc tgatgctgac tggagaaacg	180 240
tttatgtaac tggtgaagtt gcaaactctg gaaaacagge tattacaaat attcccctaa ctgtgatgga tgctatcaat gcggcaggag ggcttgcgge tgatgctgac tggagaaacg ttgttcttac tcataacggt aaagatacaa agatttcatt atatgcacta atgcagaaag	180 240 300
tttatgtaac tggtgaagtt gcaaactctg gaaaacagge tattacaaat attcccctaa ctgtgatgga tgctatcaat gcggcaggag ggcttgcgge tgatgctgac tggagaaacg ttgttcttac tcataacggt aaagatacaa agatttcatt atatgcacta atgcagaaag gagatctaac ccagaatcat  <210> 427 <211> 280 <212> DNA	180 240 300

# WO 2007/039319 PCT/EP2006/010132 185/763

attaagacgg ctattaccaa gcaaaaagat taattccgct ggggttgggg cattggttga	120
teatgeagea gatgaateeg caattegegt egetgaaaaa aatggtettt gteteaaagg	180
ccaccgtggg acaaaattta cctctgcatt agctcgacag tatgatcttt tactcgtgat	240
ggaatattct catctagaac aaattagccg gatagcacct	280
<210> 428 <211> 200 <212> DNA <213> Klebsiella pneumoniae	
<pre>&lt;400&gt; 428 acatgatece ggagaaattt agetggatta ttaettataa eeetetggeg agtatgatae</pre>	60
ttagctggcg tgagctattc atgaatgggg ttttaaacta tgaatatatc tccatactct	120
atattacagg ctttatcctg accatcgtcg gcttggccat ctttaataaa ttaaaatatc	180
	200
gatttgcaga gattttgtaa	200
<210> 429 <211> 387 <212> DNA <213> Klebsiella pneumoniae	
<400> 429 tggaaccagt gatcaatttc agtaacgtta cgaaagaata tcctctttac catcatattg	
	60
	60
gttcaggtat taaagactta gtctttcatc ccaagcgagc ttttcagctg cttaaaggga	120
gttcaggtat taaagactta gtctttcatc ccaagcgagc ttttcagctg cttaaaggga	120
gttcaggtat taaagactta gtctttcatc ccaagcgagc ttttcagctg cttaaaggga ggaagtatct cgcgatcgag gatatctcat ttaccgtcgc caaaggtgag gcagttgcgc	120 180
gttcaggtat taaagactta gtctttcatc ccaagcgagc ttttcagctg cttaaaggga ggaagtatct cgcgatcgag gatatctcat ttaccgtcgc caaaggtgag gcagttgcgc tgattgggcg aaacggcgca ggtaaaagca cttcgttagg actagtcgct ggcgtaataa	120 180 240
gttcaggtat taaagactta gtctttcatc ccaagcgagc ttttcagctg cttaaaggga ggaagtatct cgcgatcgag gatatctcat ttaccgtcgc caaaggtgag gcagttgcgc tgattgggcg aaacggcgca ggtaaaagca cttcgttagg actagtcgct ggcgtaataa agccaacaaa aggctcggtg actactcatg gccgagttgc ttcgatgctg gaactcggcg	120 180 240 300
gttcaggtat taaagactta gtcttcatc ccaagcgagc ttttcagctg cttaaaggga ggaagtatct cgcgatcgag gatatctcat ttaccgtcgc caaaggtgag gcagttgcgc tgattgggcg aaacggcgca ggtaaaagca cttcgttagg actagtcgct ggcgtaataa agccaacaaa aggctcggtg actactcatg gccgagttgc ttcgatgctg gaactcggcg gtggtttca tccagagtta acgggtcgtg aaaatattta tcttaatgcc acccttctcg ggctgcggcg gaaggaagtt cagcagc  <210> 430 <211> 225 <212> DNA <213> Klebsiella pneumoniae	120 180 240 300 360
gttcaggtat taaagactta gtctttcatc ccaagcgagc ttttcagctg cttaaaggga ggaagtatct cgcgatcgag gatatctcat ttaccgtcgc caaaggtgag gcagttgcgc tgattgggcg aaacggcgca ggtaaaagca cttcgttagg actagtcgct ggcgtaataa agccaacaaa aggctcggtg actactcatg gccgagttgc ttcgatgctg gaactcggcg gtggtttca tccagagtta acgggtcgtg aaaatattta tcttaatgcc acccttctcg ggctgcggcg gaaggaagtt cagcagc  <210> 430 <211> 225 <212> DNA	120 180 240 300 360
gttcaggtat taaagactta gtctttcatc ccaagcgagc ttttcagctg cttaaaggga ggaagtatct cgcgatcgag gatatctcat ttaccgtcgc caaaggtgag gcagttgcgc tgattgggcg aaacggcgca ggtaaaagca cttcgttagg actagtcgct ggcgtaataa agccaacaaa aggctcggtg actactcatg gccgagttgc ttcgatgctg gaactcggcg gtggttttca tccagagtta acgggtcgtg aaaatattta tcttaatgcc acccttctcg ggctgcggcg gaaggaagtt cagcagc  <210> 430 <211> 225 <212> DNA <213> Klebsiella pneumoniae <400> 430	120 180 240 300 360 387

cagegeggaa atggttttet getgategae caceaetteg gtace	225
<210> 431 <211> 690 <212> DNA <213> Klebsiella pneumoniae	
<400> 431	
cctgctgcta ttgctgtcgc tggtacgcca ggaaaaccgc caggcgctgg ccggggtgtt	60
acgcgagcag tggcagacct ggacgctgct ggcggctttc tttatctatt acgccctcag	120
taatgtgtgg ggccatacgc cgcagcatat tgactcgccg atcacccacg gcgtgtatct	180
gaccgggtat ctgttgctga tgacgatgct gctcagggac ggacgaaccc gccgactggc	240
gatgctggcg gtggtcggcg ggatcaccgt gctctccctg tggacgctga ttatcgacca	300
tacgctggtt ctcaccgaac gagcggtctc ccccgagaac cccggaccaa cgaacgttat	360
cgaccttgcc ggttactgcg gcatcggcat tttaatctgc ggcatgctac tgaaagaaaa	420
agccagccac tggctctatc tgccggtggt catcatgctg gtgatgctgc tgctcaccca	480
aagccgcggg ccgatcatcg ccctggtgct ggcggtcggc tgtacgctgc acctgcacgt	540
cttcaccege egcaacetge tgategeege ggegetggee gtgetggtag egetgetttt	600
ggtcatgacg ccggtgggcg acatgctgct cgcccgtttc gaggagctgg gcacccaaag	660
cgggctgcgc ctgagcatct ggcaccatac	690
<210> 432 <211> 211 <212> DNA <213> Klebsiella pneumoniae	
<400> 432 aatttaacct ggtttgataa gaaaactgaa gagtttaaag gggaagagta ttctaaagac	60
tttggtgatg atggttctgt cattgaaagt cttgggatgc ctttaaagga taatattaac	120
aatggttgtt ttgatgtgaa aaatgagtgg gtttcattat tgcaacccta ctttaaacat	180
aaaatcaatc tttctgatag ttcatatttt g	211
<210> 433	
<211> 326	
<212> DNA <213> Klebsiella pneumoniae	
<400> 433	

# WO 2007/039319 PCT/EP2006/010132 187/763

ggggagaata	tccttgtctt	taaacgcgcg	ctgggggtga	ccaccgggat	cctgccgtgg	60
aacttcccgt	tctttcttat	cgcccgcaag	ctggcgccgg	ccctgatcac	tggaaatacc	120
atcgtcatta	agcccagcga	atttacgccc	aataatgcca	tegeetttge	cgagattgtc	180
catcaggttg	ggttgccgaa	aggggtcttt	aaccttgtgc	ttggccgcgg	agaaaccgtt	240
ggccaggagc	tagccggcaa	tccgaaggtg	gcgatggtca	gcatgaccgg	cagcgtggcg	300
gcgggagaaa	aaattatggc	cgctgc				326
<210> 434 <211> 465 <212> DNA <213> Klei	bsiella pne	umoniae				
<400> 434 gactcgcggg	tgattaacac	cgggcaggtg	tgtaactgcg	tcgagcgggt	ctatgttcag	60
cagggaatat	acgaccgctt	cgtcaaccgc	ctcggtgagg	cgatgaaggc	cgtccagttt	120
ggcgacccgg	cgacgcgaga	tgacatcgcg	atggggccgc	tgatcaacgc	ggcggcgcgg	180
gaccaggtgg	cgggcaaagt	gcgaagcggt	ggcgcagggg	gcgcgggtgg	cgctggcggt	240
cagccgctgg	agggcaaagg	ctatttttat	ccgccgaccc	tgctgctgga	tgtacgtcag	300
gagatggaca	ttatccatga	ggaaaccttc	ggtccggtgc	tgccggtggt	ggccttttcg	360
accctcgatg	aggcgctggc	gacggccaat	gacagcgatt	atggcctgac	ctcctcaatc	420
tatacccgcg	atctgaacgt	ggcgatgaaa	gcgattaagg	gactg		465
<210> 435 <211> 465 <212> DNA <213> Klei	bsiella pne	umoniae				
<400> 435						60
	ctgattgcat					60
	gcccggagcg					120
	ggatccacca					180
	atgaggaaga					240
	tctggaagct					300
atctgccaca	cttttctcaa	taacaccgag	caggaggttc	gtctgctggt	ggtgggcgag	360
gccaacaaga	aatacaaccg	catctattat	ccgctcaatc	caggctatgc	cgcgacgcgc	420

# WO 2007/039319 PCT/EP2006/010132 188/763

caggatcgtt	gggttgacca	teegeegeaa	ttcttcggtc	cacac		465
<210> 436 <211> 270 <212> DNA <213> Kleb	osiella pneu	umoniae				
<400> 436						
ttgcgtatat	agaagtcata	ccatcgttcg	taagcggcaa	cattgataga	ttcagatgct	60
tccagaagcc	gggggatata	ataaaccagt	tcttcaaagg	caatactgcc	ttgagggata	120
tcagaacggc	tcaggcgaca	aagaaggtta	atcgtggctc	gaaggtgatg	ccactgctgt	180
gccggggagg	atgggagggc	gttcatgctt	atcggaagtt	catgaggaat	taaagcaagg	240
atctgatttc	cactggtaga	cagctcacgc				270
<210> 437 <211> 406 <212> DNA <213> Kleb	osiella pneu	umoniae				
<400> 437	ctaacaacca	ttattttaac	catgaacgta	gagtaacttc	anneacannt	60
		ttgttttaac				
agcctggcat	attgagatag	catgtaggat	agcataaaaa	atattttgcc	cttggatgta	120
aaaacgtttt	ttaaacaaat	cagaatagtt	ctactctcgt	tttattacca	attatagctg	180
gcacgtcagc	tccttgctca	atgcggacct	ttcgctcgat	agcttgtccg	ctccgcgcca	240
gaagcgaaca	gtgttatgag	tggccagtga	taaaacgtca	gcccgttgac	cttgccttac	300
agcacctcaa	ccacttcaaa	ttcttctgcg	atcaactcca	tatcttcaga	aaaatgacct	360
tcagagctga	aaaatctctg	atgctctttc	ttccagtatt	caaggc		406
<210> 438 <211> 401 <212> DNA <213> Kleb	osiella pne	umoniae				
<400> 438	tatotoacca	atcaaaaaat	taaaaaaaa	gaaatogttg	addtcaacaa	60
		gtcggggaat				
tgctgcggat	ctgcagaaac	actgtacgtc	gtgttgcccg	gcggtggtgt	ttctgaatga	120
agactgtttc	gtgcatgatg	atgaaagtaa	tggcattatt	cgccagatca	ttacgcaaaa	180
cccggcgacg	ctgtttgtta	tctttatgtc	gctggcgaac	atccattttg	accgctattt	240
gcgggtacgg	aagaatctgc	taatcagttc	aaaatcgata	accccaaaag	accttgatgt	300

tattctggtt	aattatctta	aatacaaaaa	caccagtgta	gggcagttaa	ctttaccgac	360
attgtcactg	agtaaaacag	aatcaaatat	gctgcaaatg	t		401
<210> 439 <211> 450 <212> DNA <213> Kle	bsiella pnew	umoniae				
<400> 439 cagcagcaag	gtgtttaatg	aggcggtggg	ccgtcaggtg	gaattcgtcc	aggacaacca	60
ttcccagtcc	cagaaacgcg	tattacgcgg	gttgcactat	cagctggatc	cgcacgctca	120
gggcaagctg	gtccgctgtg	tggaaggtga	ggtgtttgac	gtggcagtgg	atatccgtcg	180
ttcatcgcct	acctttggta	aatgggttgg	agcggtgctc	agcgcagaga	ataaacgtca	240
gctgtggatc	ccggaagggt	tegeceaegg	gtttatggcg	ctgagcgaca	cggtgcagtt	300
tgtctataag	ggcacgaact	actacgcgcc	gcagtcagaa	cggagtatca	tttggaacga	360
tccggagata	aggattgact	ggccggcact	gagcgactgc	gtgctgtctc	tgtcggagaa	420
agacctgcgg	gcacatactc	tggccactgc				450
<210> 440 <211> 380 <212> DNA <213> Kle	bsiella pnew	umoniae				
<400> 440 ggggagaaag	agaccctcac	catcattgac	gaccttcttt	gggcgcccac	cggcgctgag	60
	actgcacggc					120
ggcacgtatc	acctggtggc	cagcggcgaa	acagctggtg	cgactatgcc	cgctatgtgt	180
ttgaagtggc	gagagcgcac	ggtgccgagc	ctggcggtgc	aggaagtgaa	gggcattccg	240
aacgacggcc	tatccgacgc	cggcgaagcg	tccgctcaac	tcgcgcctgt	cgaattaaaa	300
atccagcagg	cattcggggt	gactctcccg	gactggcgtc	agggtgtggc	tcgcgtggta	360
acagaagtcc	tgggcaaata					380
<210> 441 <211> 180 <212> DNA <213> Kle	bsiella pnev	umoniae				

<400> 441

# WO 2007/039319 PCT/EP2006/010132 190/763

agtaaattca	ggctggctct	ggtgcggcag	aagtaccgcc	cggacggcgg	cgcagaacgg	60
tttgtctccc	gcgcgctgga	agccctcgac	agcagtcatt	tgcaactgaa	cgtcatcacc	120
cgcgaatggc	aggggccggt	gaaaccggac	tggcagatcc	atatctgtaa	cccacgtaaa	180
<210> 442 <211> 689 <212> DNA <213> Kleb	osiella pneu	umoniae				
<400> 442 tcatttgaag	aacgacacag	aggttcggtt	gaagatatca	agaaccgcct	gagtttttat	60
ttacctttct	tgtctcgtct	gaaggatctt	tatcccgaag	gcgtgattgc	ggatattggc	120
tgtggacgtg	gtgaatggct	ggaaatcctg	actgaaaatg	gtattgcgaa	catcggcgtc	180
gatctcgatg	atggcatgct	ggcacgtgcc	aaggaagccg	ggctgaacgt	gcagaaaatg	240
gattgtctgc	agtttctgca	aaatcaagca	gaccagagtc	tgatagcgtt	gactggtttc	300
catattgctg	agcatttgcc	ctttgaggta	ttgcagcagc	tcgtcatgca	taccttacgg	360
gtgctgaaac	ctggcggttt	gctaatcctc	gaaacgccga	acccggagaa	tgtaagcgtc	420
gggacctgtt	cattttatat	ggatccaacg	cataatcacc	ctttgccgcc	gccattgctt	480
gagtttttac	ctattcatta	tggttttaac	cgggcaatta	ccgttcgtct	acaggaaaaa	540
gaggctctca	aatccccgga	cgcagcggtt	aatctggtcg	atgtgcttaa	aggtgttagc	600
cccgattaca	gcatcattgc	tcagaaagca	gcgcctgcag	atgttcttga	acgctttgaa	660
accctgttta	cccaacaata	tggcctgac				689
<210> 443 <211> 581 <212> DNA <213> Kleb	osiella pnev	umoniae				
<400> 443 tgcctctatt	atccaacctc	tgcatgtcgg	taaagcaaac	tcttataatg	atattggctg	60
tgcaggtgat	gatactggag	ataatatctc	gtttaaaaat	ccattctact	gtgagctgac	120
ggcccattac	tgggtatgga	aaaatgaatc	tctttccgat	tatgtcggct	tcatgcatta	180
tcgtcgacat	ttaaatttct	ccacgcagca	ggatcatgcg	gaagataact	ggggggtggt	240
gaattatccg	ctaataaacc	cggactacga	ggcacagttt	ggattaaccg	atgacgctat	300
tcgtacatgc	gttgagggga	gtgatctttt	actacctaaa	aaatggtcgg	taacatcggc	360

# WO 2007/039319 PCT/EP2006/010132 191/763

tggcagta	aaa	aataatctcg	accactacag	caagggtgag	tttttacata	ttaaagacta	420
caaggcto	gcg	ctagaggttg	ttgaagaact	ttatccagaa	tataagacag	caatacagca	480
gtttaata	aat	gccactgatg	gttattatac	aaacatgttt	gttatgcgca	aagatatgtt	540
cattgatt	tac	tcagagtggt	tgtttagcat	tctggatcgt	С		581
<211> 6 <212> 1	444 649 DNA Kleb	osiella pnev	umoniae				
	444 ggc	aggtagtcag	catatttgtg	atgcgattga	tacggactgg	gttttctttt	60
acgatgat	tga	tgcttttcct	gccagcgata	tactggaaaa	gttttttgct	cttgaaaaaa	120
aggaatgt	tca	ggtctttact	ggtttagtca	aagatcttca	cggccaccct	tgtgcaatga	180
atcttcct	ttt	caggaaagta	ccttcatctt	ttgctgatac	tttacgttat	attcgcaccc	240
cccaacgo	ctt	tgttcctacc	attgacgaga	gtgtcatggt	tgagacagtt	tcgtttgttg	300
gcatgatt	tat	tagcagcaaa	gtattgcaag	agcatattga	tcacatccat	gatgaactgt	360
ttatctat	ttt	tgatgatctt	tattttggct	atgcgttgac	attggacggt	caaaaaatcc	420
tctattca	acc	agaactgatt	tttcatcatg	atgtcagtat	ccaggggaaa	atcatctctc	480
cggaatgg	gaa	ggtatattat	ctgtgccgaa	atttaatttt	ggccaggaaa	ctattccagg	540
aagtaaaa	agt	atttagcaat	ttctctatcc	ttatacgcct	atgtaaatat	ttatccatat	600
tgccatgg	gca	gcgcagaaaa	tcatcatatc	tgtgtttcat	gtatcgtgg		649
<211> 6 <212> 1	445 606 ONA Kleb	osiella pneu	umoniae				
	445	tcattataat	attactatea	ccagagcgat	tattagaaat	aacaatcgac	60
				tgggtgagtc	_		120
				tagtcgtctg			180
				gggagagcgc			240
				tcattacaag			300
							360
acyatyce	Jyc	caccicggia	cacaaattid	gtcgtcagta	caaaytaycc	graciguard	200

# WO 2007/039319 PCT/EP2006/010132 192/763

acgatcttat	tcccctggtg	caggctgaga	cctatctgct	ggatgatgta	ttcaaatcct	420
attatttaca	gaaagtggaa	tggttaaaaa	acgctgacct	tctgctaact	aactccgctt	480
atacggcaca	ggaagcgatt	gagcatctgc	atttgcaggg	cgaccatgtg	cagaatattg	540
cagctgcagc	cgatcctcag	ttttgtatgg	cggaagtgac	agcgagcgag	aaagagtccg	600
tccttg						606
<210> 446 <211> 450 <212> DNA <213> Kleh	osiella pnev	umoniae				
<400> 446 tgacctatca	ctcggatatt	gtgaaacaaa	aacggttaat	gaagttgtac	cagccgctgc	60
aggagcgatt	cctcgccagc	gtagactgca	tcgtcgcctc	gtcgcccaac	tacgtggcct	120
ccagccagac	cctgaaaaaa	tatcaggata	aaaccgtggt	gatcccgttt	ggtctggagc	180
agcatgacgt	gcagcacgat	ccgcagcggg	tggcgcactg	gcgggaaacc	gtcggcgata	240
acttcttcct	cttcgtcggc	gctttccgct	actacaaagg	gctgcacatt	ctgctggatg	300
ccgccgaacg	taaccggctg	ccggtggtga	tcgtcggggg	cgggccgctg	gatgcggaag	360
tgcggcgtga	ggcgccacag	cgcgggctga	gcaatgtggt	gtttaccggc	atgctcaact	420
acgaagataa	atacattctc	ttccagctct				450
<210> 447 <211> 507 <212> DNA <213> Kleb	osiella pnev	umoniae				
<400> 447 ttcaggcgaa	atgctatgct	cgcatcgcgg	acttcaaaaa	gcaggggacc	acgctgctgc	60
tggtttccca	cagcgccggg	gatatcgtca	agcactgcga	ccgcgccatt	ttcctcaaaa	120
atggtgacat	ctgcatggac	ggcaccgccc	gcgacgtaac	caaccgttac	ctggatgagc	180
tgtttggcaa	accggataaa	gacagcgcga	caaaaagcgc	aacggctatc	tcgtcagcca	240
gtggcgaaag	ccagatgtct	ctcgatgaga	ttgaagatgt	gtaccacacg	cgcccaggct	300
accgtccgga	agaatatcgc	tgggggcagg	gtggcgcgaa	aatcatcgat	tatcatatcc	360
agagcgccgg	ggttgatttt	cctccctcac	tgacgggcaa	tcagcagacc	gattttctga	420
tgaaggtcgt	gtttgaatac	gattttgatt	gcgtggtgcc	tggcatcctg	attaagaccc	480

# WO 2007/039319 PCT/EP2006/010132 193/763

tcgatgg	ctt	attcctctac	ggaacca				507
<211> <212>	448 678 DNA Kleh	osiella pnev	umoniae				
	448	ant ont ant a	2222222	00000000000		a+a++a=a=	60
gctatga	act	gatectggtg	aacgatggtt	cgacagacaa	cagcctggcg	grgaregeeg	
aatggca	gga	gcggctgcag	aacgtccagg	tgctggagca	ggaaaaccag	ggcgtctcgg	120
tegegeg	caa	taccggcctc	gccgccgcca	gcggcaaata	tctcgcgttt	ccggatatcg	180
acgacaa	act	ctatccgggc	atgtatcgca	cgctgctgga	gatggccgag	aaagaacatc	240
tcgatat	cgc	cacctgcaac	ggcacctatg	tgtacgaaaa	gcgccgcgag	agccacccga	300
tcttccc	act	ggatcgcctg	ccctcgacgg	gtgtgctgcc	gggccatgtc	tggcttaagc	360
aggccct	gga	ctcgcggaag	tttctgcacg	tcacctggct	taatatttat	cgtcacgact	420
ttatccg	cca	gcatcacttc	catttcgagc	ctggcctgcg	ccatcaggat	atcccatgga	480
ccacaga	agc	cctgctggcc	gcggagcgcg	tgcagtacac	cagtcagcag	ttctatgatt	540
actacat	tca	ctctgagtcg	gtgtcgcata	agccggacaa	cgacgacacg	ctgatgcgtt	600
cggcgcg	cca	ctatatgaag	attctggaga	tgctggaggc	gattaaccag	cgctacccgg	660
ataaagt	acg	ccatatcg					678
<211> <212> 1	449 585 DNA Kleb	osiella oxyt	coca				
	449	attactatta	ctctcacaca	gcccgtacat	+c2+++ac2a	canacantan	60
			_				120
				tgatgaaagt			
tgtaggg	act	tctgttgaat	atgaagataa	ggtaactcgt	ggtttcaata	acacggataa	180
aaaggag	aag	acgattacca	atgaggtttt	caacttttt	tataacaatc	cacaatggaa	240
ttttatg	ggt	ttttactctt	ttaaaataga	aaatagagag	caaaaggagc	ctggttatta	300
tgagaat	gaa	gatggtatta	agcagctttt	ttcattgaat	aaaggtcatg	atcttggtaa	360
cggttgg	gct	actggtttaa	tttatgagct	agaatataca	agaagtaaag	tttattctcc	420
ggatgtta	agt	ggtctacgta	aaaaccttgc	cgagcacagc	attagaccat	atttaaccta	480

### WO 2007/039319 PCT/EP2006/010132 194/763

ctggaataat gattataata t	gggattcta	ttctaatctt	gaataccttt	tgagtaaaga	540
agatcgcaat gcatggggga a	aaaggcaaga	gcagggatat	agtgc		585
<210> 450 <211> 340 <212> DNA <213> Klebsiella oxyto	oca				
<400> 450 tatcgatgcg gatgaaaatt g	gcccaactac	atcgttctct	gaaagaggag	gggcatcctg	60
ctacaatgat ttatgttact c	cacgatcaga	ctgaagcgtt	aactctagga	gatcgcattt	120
gtgttcttaa ccatgggaat a	atcatgcagg	ttgatacacc	tactgatctt	tataattatc	180
ctaataataa gttcgttgcc a	agttttatcg	gttcaccatc	aattaatttg	atagatactg	240
ctatccgtaa gaataatgag a	aggttgtatg	ttgaaattgc	tcctggcgtt	gaaatattaa	300
ttccacatag taagcaagtg t	tgcttgaag	gttatattaa			340
<210> 451 <211> 608 <212> DNA <213> Klebsiella oxyto	oca				
<400> 451 atccaatgac cagaaatgag c	etgegtageg	cccataataa	gaaaagatgc	cggaaatata	60
cgcatgcttt ttccctcaga c	caataacata	gttactcctg	aaatttgatt	tgctcatcaa	120
tgatattacg agcacggtca a	gtgctgctt	ttggcgtttg	gtcattgatc	cacatatcgg	180
taatcgcatt tgccagtggg g	gaccataaat	aacccatttc	cggaatagat	ggcatggcat	240
cagagtgaag cccttgttta a	ataattgcgc	tcgtcgcttc	atttgcagtt	ggtaggattt	300
tgttcatcag attcggtacc g	ggaggtatag	attctgtcat	ctcatagcgt	ttcattaaca	360
tttcatcaga tgagagatag t	cagcgaaaa	gttgtgccgc	cttaggcgat	ttactataag	420
aagagacgac cgccaggcga a	accgtagaaa	acgaacgtgg	ctgttttcct	tcaagagtag	480
gtatgggaac aacgccaaaa t	taattttac	tgttgttata	tccctggatt	gcccatggac	540
cgtcgatgat ggcagctact t	tgccttcag	aaaataagcc	tcgacgcacc	tgtggattac	600
gcatatct					608

<210> 452 <211> 589 <212> DNA

## WO 2007/039319 PCT/EP2006/010132 195/763

<213> Klebsiella oxytoca	
<400> 452 cgtaaatatg ggacaaaggt ataaaccgtt aacgccaaga tcttgcaaat aatcaagttt	60
gttaataatg ccctgcaaat caccgcccat aaagtttttt gaatctggag gcgttcccca	120
cggttgtacg ttttctggcg atatcgatgg atcgccattg caaaatcgtt caggaaagat	180
ctgataccat attgtttttt taacccatte tggcgtagaa agtacateac ctggattgat	240
ataagggaag caaaaaaagt tggacaagtt actcagttct gtctctgcta caggtggttt	300
acttatatca acacagogto gttoaccaaa taataatttt toocogttat ttoogtataa	360
tataaaacca tageggetac gtegtttgca eggagtaaat geggeaaace agtggteata	420
getetegett tgtecetett tttecatgtg aacttegttg eegeegetee atecatgege	480
gtegetgeeg ccaaggttte caccatetag gecacettee teccattgat agggategee	540
gatecacaga gagaettteg egacetegee tttgaetgtg egaaateta	589
<210> 453 <211> 528 <212> DNA <213> Klebsiella oxytoca	
<400> 453 gcaagggtag aggtgtattg cgccttttcc ttattagcca tcgccgcatc ataggcaaaa	60
cgatattctt cataatttaa gcgaattatt tctggtagat aattatttgg acagtgtcgg	120
cttaatacac tttttagact taacggaaag tctgagtgta ttgttgctaa tccactgagc	
	180
actaacaate taggtttaaa aaccattatt ggatcaagta aggetetgge tagttgatee	180 240
actaacaatc taggtttaaa aaccattatt ggatcaagta aggctctggc tagttgatcc atcaacattc ggtagacttt ttgcgcccat gcatcactgc catcaactcc ctgaattatt	
	240
atccacattc ggtagacttt ttgcgcccat gcatcactgc catcaactcc ctgaattatt	240 300
atccacattc ggtagacttt ttgcgcccat gcatcactgc catcaactcc ctgaattatt tctaaggcac tcttccgctg aagagagaac tgaaaatact gtctttcgat cccggatgtc	240 300 360
atccacatto ggtagactti tigogoccat gcatcactgo catcaactoo etgaattati totaaggcac tottoogotg aagagagaac tgaaaatact gtotttogat cooggatgto gaaatgaatt gatgaacgca tootatooog cagcattogo aaaccggaga tataccatca	240 300 360 420
atccacatto ggtagactti tigogoccat gcatcactgo catcaactco otgaattati totaaggcac tottoogotg aagaagaaac tgaaaatact gtottiogat occggatgto gaaatgaatt gatgaacgca tootatoog cagcattogo aaaccggaga tataccatca atgagtggot gataattitt caatgggaga tgagoocagg aaacattiat tgoatggtoa	240 300 360 420 480

## WO 2007/039319 PCT/EP2006/010132 196/763

gcatgaagcg	atgtgatgga	taaatctttt	catctatttc	aaatcgagag	tacaattcga	120
tagattcatg	tggtagcgcg	agtcggttaa	atgagaacac	gataatccga	accccgcgct	180
caacggcatt	aatgagttct	tgagcaatga	gttcaagatg	gaagtcagtg	ttcaggtaaa	240
cttcgatttg	agccagttcg	agcatttctc	tggctttttg	tagtgaatta	tcaaaaccag	300
agacgttata	tatgaactct	ttctcttcct	gtagcatcat	acgtgagagt	tctttttta	360
atacattgat	gttttcaatg	gtttgctttt	ctatgttgct	gaaaataagc	tcgggagatt	420
ttgcttgata	ctctttagta	ttgccatcgg	ccataaaaat	gaagccattt	ttatatagac	480
tatcaattga	tgagtagacg	ctagaacgtg				510
	osiella oxyt	coca				
<400> 455 gccggtaatc	ttgagctgct	ggcccagggc	cgtagcgtgc	gcgtggatgt	ggccgccggc	60
gccgaagcca	tcatgaaagc	ggtcgacggc	tgcggcaggc	tcgataacgt	caccggcgaa	120
tccggcacca	atatcggcgg	catgctggaa	cacgtgcgcc	agaccatggc	cgagctgacc	180
aacaagccga	gcagcgaaat	atttattcag	gacctgctgg	ccgttgatac	ctcggtaccg	240
gtgagcgtta	ccggcggtct	ggccggggag	ttctcgctgg	agcaggccgt	gggcatcgcc	300
tcgatggtga	aatcggatcg	cctgcagatg	gcaatgatcg	cccgcgaaat	cgagcagaag	360
ctcaatatcg	acgtgcagat	cgg				383
	osiella oxyt	coca				
<400> 456 cctgctctat	tccgtcagga	gttttgccgc	cgcgatgctc	gcctattacg	ttgccctggc	60
gattggcctt	gaacgccctc	atgggcactc	atcaccgtct	acatcgtgtc	gcaaacctcg	120
gtgggcgctc	cctgtgcaga	agcctttatc	gcctggccgg	taccgtggcc	adcacadada	180
ccacggtatt	gattgtgccg	acgtttgtga	atacgccaat	tctatgtagc	gtgattctgg	240
ctggctggat	caccttctgc	ctctatttat	ccctgcttga	acgcacgccc	cgcgcctatg	300
cctttgtgct	ggccggttat	accgcaagcc	tgattggttt	tcccgccgtc	gccgatcccg	360

gcacgtgttt	aacatcgccc	tcatccgggt	acaggaaatc			400
<210> 457 <211> 535 <212> DNA <213> Klei	osiella oxy	toca				
<400> 457						
ggctgtctgc	tatggattta	ctctgcctgg	cccgatggcg	gcacggcggt	gtcgattctc	60
ggggtttgct	gcacgctgtt	tggcagtttc	gacacgccgg	ccccgcatat	tgtgaaatat	120
attatcggct	ctgtctgggg	cgtagtgata	agccttatct	atagcttcgc	cctgcttcct	180
ccgctcagcg	atttccccgt	gctggtggcg	gtgcttgccc	cggtctatct	gcttgccgga	240
tegetgeagg	cgcggccccc	cacgaccttt	atggccatgg	ggatcaccct	gacgctgccg	300
gtactgtgcg	agctgggcgc	gcgctacagc	ggcgacttcg	ccgacgcggc	caacaccgcg	360
atcgccctgt	ttttcgcgac	cggctttgcg	gttatcggca	tgagtctgct	gcaaaccgta	420
caggcggacg	cggcgataaa	gcgtctgctg	aaactgtgcc	aacgcgatat	tcgccgcagc	480
gtgagcggcg	tatttaaagg	cgatgaaacg	cactggacca	atctgatgat	cgacc	535
<210> 458 <211> 400 <212> DNA <213> Klei	osiella oxyt	toca				
<400> 458 tggcgtttat	tttctggaaa	cagtatgcgc	agacgccctg	gacgcgcgat	ggccgggttc	60
gggcagatgt	ggtgcagatt	gcgccggatg	tttccgggcc	ggtgagcagc	gtggcggtgc	120
gggataatca	gtgggttaac	cgcggcgatg	tgctttatgc	catcgacccg	cgctggctga	180
agctggcggt	gctcagcgcg	caggccgacg	tcgaagcaaa	acgtcatgaa	atgctgatgc	240
gccaggatgc	cgccccgcca	cgcgcgctca	tcaaaggggt	catttccggc	gaggatatcc	300
agcaaacagg	cagcgcagct	gctgttcgcg	gcggccaatt	atcagggggc	gctggctgcg	360
ctggaactgg	cgcagtgaaa	cttatcccat	gcaacgctac			400
<210> 459 <211> 260 <212> DNA <213> Klel	osiella oxyt	coca				

<213> Klebsiella oxytoca

<400> 459

## WO 2007/039319 PCT/EP2006/010132 198/763

cgttctcccc	tgattcttgc	cggcaccccg	ggaacttaca	gctatgcagg	aaccggtaac	60
gtagtagcga	tegetegega	tctggctaag	atctgggatc	ttcctttagc	agtccacctc	120
gatcaccatg	aagatctggc	cgatatcacg	cgcaaagtac	aggccggtat	ccgctcggtc	180
atgatcgacg	gatcgcattc	gccttttgaa	gaaaacgtcg	cgttagtcaa	gagtgtggtt	240
gaactgagcc	accgctatga					260
<210> 460 <211> 456 <212> DNA <213> Kleb	osiella oxyt	toca				
<400> 460	aaaatatcaa	tcggttgatt	taaatmaamt	gatcacgcat	tcacttcaac	60
						120
		agccgggcaa				
tatgccgcat	ccaggccgat	ccggatcgtt	tgaaacaggt	gctgcttaac	ctttatctca	180
atgctgtcca	tgccattggc	cgcgagggcg	tgattacggt	ggcggtgagg	gagtgcggcg	240
atgggcgagt	caaggtgagc	gttgctgaca	gcggcaaggg	aatgacggcg	gaacagctac	300
aggccatttt	cacaccgtac	tttagtacca	aggccgacgg	caccgggctg	ggcctggcgg	360
tggtgcagaa	catcgttgag	cagcacggcg	ggacaattga	cgccgagagc	gcccccggca	420
agggcgcgct	atttacgttc	tatttgccgg	ttaatg			456
<210> 461 <211> 536 <212> DNA <213> Kleb	osiella oxyt	coca				
<400> 461						60
		acattcgctt	_			60
cgaacgcctg	gccggtttcg	ttaccgctca	gcagtttgtc	gagccggtga	agaccattct	120
cgataacctg	cgcgaagaga	tcgcccagcc	ggcggctggc	gccgaagaac	ttattgctac	180
cctcttcgcc	tttatggatg	aagaccgcaa	atcgaccgcc	ctcaaggcgc	tgcagggcat	240
tatctggcgc	gatggctacg	ttcatggcga	ctttaccggc	cacctgtatc	cggatgttct	300
gccggcgctg	gaaaaatgga	agtcacaggg	tattgattta	tatgtatatt	cctcaggctc	360
cgttgctgcg	cagaaattgt	tatttggcta	cagcgatgaa	ggtgatatta	ctcatctgtt	420
caacggctat	ttcgataccc	tggtaggtgc	caagcgtgaa	gcgcagtcct	accgcaacat	480

## WO 2007/039319 PCT/EP2006/010132 199/763

tgctgagcaa	ctgggacagc	ctcctgccgc	catcctgttc	ctgtccgata	ttcatc	536
<210> 462 <211> 557 <212> DNA <213> Klel	osiella oxyt	coca				
<400> 462						
cctggagtgt	gcataagggc	tggcatcgcg	acggtaaact	gcggatggtg	ccggtcgcgc	60
cgcaacctac	ccgggcgacc	accgatgcgt	tctatccgct	gatcctcaac	agcgggcgga	120
teegegatea	atggcacacc	atgacccgca	ccggcgcggt	gccgcgtctg	atgcagcata	180
ttaacgagcc	ggtggtggag	gtcgcgccgg	cggacgcgca	gcgttatcac	ctgctggaag	240
gtgaactggc	gcgggtccgc	tcaccgaagg	gggtgatggt	cgcaaaagtg	acgatcggcg	300
acgggcaacg	gcccgggtcg	ctgtttgtgc	cgatgcactg	gaataatcag	tttgctcgtc	360
agggacgggt	gaacaacctg	ctggctgcgg	tcaccgaccc	gcactccggg	cagccggaaa	420
gtaaacagac	ggcggtggcg	atagccacct	ggcttcctgc	gtggaaaggc	gagctttttt	480
cgcgccagcc	ggttccgctg	cccgcttcgc	tgcactggcg	gcggcgggcg	gcgcagggca	540
ttatccatct	ttcgctg					557
<210> 463 <211> 231 <212> DNA <213> Kleh	osiella oxyt	coca				
<400> 463	aaaccgcaac	caccaaccsa	caccaataaa	acacccaaca	aaattattac	60
	ctgcaggtgc					120
_	cttctgccgc					180
ggcggcgatg	aacagcaaag	gtttcccgac	gccgctctcc	acgctggatt	C	231
	osiella oxyt	coca				
<400> 464 gcgataagtt	ttcgatttca	cggcgacgtt	tattacagac	gggggcggcg	ctgggcggcg	60
	ccccggcata					120
agaccaccgt	gcgggtgggg	tttattccgc	taaccgactg	cgctccctta	gccattgcct	180

## WO 2007/039319 PCT/EP2006/010132 200/763

ccctgaaggg	gttcgataaa	aagtacggta	tcaccctcgt	gccgagcaaa	gaggccagct	240
gggccgcggt	gcgcgacaag	ctggttgccg	gagagctcga	cgccgcgcac	attttgtacg	300
gcatgctcta	cggcctggag	ctggggatcg	ccagtaaacc	gcaggcgatg	gccaacctga	360
tgacccttaa	ccgcaacggc	caggcgatta	cgctctccag	cgagctgcag	gaacagggcg	420
tcaccgacct	gagcgggctg	aaaaaacgga	tcggtcagc			459
<210> 465 <211> 594 <212> DNA <213> Kleb	osiella oxyt	toca				
<400> 465 atgtcatggt	tccgatactg	tctgccgatg	aaaacagcct	ggtgctggtc	tgggaaaaac	60
		gtggtggact				120
		aaccattttt				180
atcagcggat	cgccagcgac	ggctggcagc	agaaaatcga	tetgegeage	ttcacggcca	240
		gagtatgcct				300
aggaatctcc	ggacagcgcg	gtggttaaag	cgcaaacccg	caaaacgccg	cacgtcatcg	360
		aagggtgacg				420
gggccattga	tagctgtacc	gtcacgcact	atcctcaggg	ctgcaaggtg	ctgatttccg	480
gcggcgaatt	caaaactggc	gcgttgttcc	tgcacagcga	tatgaccctg	gatattgcgg	540
ctggcgccac	cctgctgggt	tcggacgatc	cggcccagta	tccgcttgat	aaag	594
	osiella oxyt	coca				
<400> 466 aagctggaac	gtactaacga	cggatttatt	acctcatggg	cggcaacggg	cagtaatgaa	60
tgggtaagcc	agcgggttcc	tcacgccgat	ctgattgctc	agcaggataa	agaacattac	120
tacgtcggtt	tcttcgcctc	acgtaacgcc	aaaatcaccg	tcagcaatgc	ttccctgacg	180
acctccgcgg	caaatacggt	tccctccgcc	ccgtatgttg	ccaaaagctg	gccgccggtc	240
atgcaaattg	cctcggggac	aaaaagccag	agcaaagagt	atctcctgca	ggcgcgcacg	300
aatagtgacg	gacgcatcac	cgtgcgtcag	gatgaagtgg	tgatcgggca	ggataaagcc	360

# WO 2007/039319 PCT/EP2006/010132 201/763

gtgaaggccg	gagagatgta	tacccagcct	gccgttctga	aagataaaag	cacattcgaa	420
attagcttca	ctccagccac	cggcgcaaac	acgctgaccc	aaacgctgac	ggttgaacag	480
agcgccaatg	tgacaggcaa	tacgctgtac	gccgcgccgg	atgggctgtc	gcaggctaaa	540
gggacgacgg	actcgccgct	ggatttagcc	accgctgtcg	acctcgttcc	ccctggcggg	600
caaattgtat	tagccgcagt	gatta				625
	osiella oxy	toca				
<400> 467 acaggatage	gaacacctcg	atattctacg	ccagcttacc	catgccatga	gcgacgagcg	60
cgtacctgaa	gcgtatcagc	gcacccccag	agctccgcag	gcggtgctgg	agattctggc	120
cgggatatct	ctcctgccga	gggggaagat	atggaccgcc	tccggtgata	cgatgaagag	180
gcgacgttta	ccctacgcga	atccccacgg	actgcacgcg	cggccaagcg	cggtcctggt	240
gaaagcggtg	aagcagtggc	gatcgcaaat	tcgggtggaa	aatctcgaca	cccgttccgc	300
tattgttgac	gccaaaaatc	tgatgcgggt	cgtttctctc	ggcgcaaagc	aggggcatcg	360
gctgcatttt	atggccagcg	gggaagatgc	ccatcaggcg	ctggaggcta	tcggtacggc	420
ctttaatgcc	ggattaggcg	aaattgccgc	acageegeag	caggtcgttc	agccagcaga	480
aaagcctaaa	cggagctggc	ttt				503
<210> 468 <211> 534 <212> DNA <213> Kleb	osiella oxyt	coca				
<400> 468	<b></b>			L L L L	<b>.</b>	60
		tacggcaatc				60
		ccgacacacg				120
		ttatcagcag				180
		ggaagagtta				240
		aattaatatt				300
		aattgatgat				360
caatgcgtcg	cctctggtga	ttatttagcg	atcagcggca	gcctgccccc	ggggattgaa	420

## WO 2007/039319 PCT/EP2006/010132 202/763

agccgatttt	atgctgaaat	tattgaatta	tgccagcaga	aaaggtgtga	agttatcctc	480
gatatcagcc	atccggtcct	gcgccagctg	cttgaattac	ggcctttgtt	gatc	534
<210> 469 <211> 599 <212> DNA <213> Klei	bsiella oxy	toca				
<400> 469						
gcttcaggtg	ttgaaaatgc	gattacgccc	gcggatttaa	aagatattta	tggcgttatt	60
attgccgctg	ataaagacgt	taacgccgag	cgatttaatg	gtctgccggt	cattgaagtt	120
ccggttaaag	aagccattca	ccatccggcc	gacttaatta	ataaatttat	cagcggccag	180
gcggcgcgtc	gtcagggtat	ttctgcctcc	gccgattcaa	cggagaaatc	cgagcgggag	240
tttttcgggc	ccaaggtata	taagcacctg	atgagcggcg	tctctaacat	gctgccgttt	300
gttgtcgccg	gagggatttt	gattgccatc	tccttcctgt	ggggcatcta	ctccgccgat	360
ccaaactcgc	cgcaatataa	cgttatcgcc	gccacgctaa	tgaaggtggg	gtcaacaggg	420
ctttctcaat	tcatggtgcg	gattttcacg	gcttatatgg	cctggtctaa	ttccgggcgt	480
cccggtaatg	gtgcgcgggc	tttgtcggtg	ggctataagc	caaacgcaac	cgcgcgacag	540
gcttttctcg	gcgggattat	cgccgggtct	cgccgccggg	gttattttat	gctgctgct	599
<210> 470 <211> 675 <212> DNA <213> Pset	udomonas aeu	ruginosa				
<400> 470 caagcacaac	aagaaatacg	tegtegeeet	ggaccagggc	accaccagct	cccgcgccat	60
cgtcttcgac	cgcgatgcca	acgtggtcag	ccaggcccag	cgcgagttcg	cccagttcta	120
teegeaggee	ggctgggtcg	agcacgaccc	gatggaaatc	tgggccacgc	agagttcgac	180
cctggtcgag	gccctcgccc	aggccagcat	cgagcgcgac	caggtggccg	ccatcggtat	240
caccaaccag	cgcgagacca	cggtggtctg	ggaccgtcac	agcggtcggc	cgatccacaa	300
cgtcatcgtc	tggcagcgcc	ggcgcagcgc	ggcgatctgc	gcgcagctca	agcgcgacgg	360
gctggaagac	tacatccgcg	aaaccaccgg	gctggtcacc	gatccgtact	tctccgggac	420
caagctgaag	tggatcctcg	acaacgtcga	aggcgcccgc	gaacgcgcgc	gcaacggcga	480
cctgttgttc	ggcaccatcg	acacctggct	gatctggaag	ctcaccgaag	gcaaggtcca	540

## WO 2007/039319 PCT/EP2006/010132 203/763

cgtcaccgac	tacaccaatg	cctcgcggac	catgctgttc	aatatccaca	gccgcgactg	600
ggacgcacgg	atgctcgagg	tgctcgacat	tccccgctcg	atgctacccg	aggtgcgcaa	660
ctcttcggag	gtcta					675
<210> 471 <211> 630						
<212> DNA						
<213> Pseu	udomonas aei	ruginosa				
<400> 471						
gagcgacctt	ggattctcga	agatcctgtt	cggcctgttg	cctaaggaca	gccaggacta	60
cgagaacgcc	ttcatcgtcg	gcaactaccc	ggccgcctgg	cgcgagcatt	acgaccgggc	120
tggctacgcg	cgggtcgacc	cgacggtcag	tcactgtacc	cagagegtae	tgccgatttt	180
ctgggaaccg	tccatctacc	agacgcgaaa	gcagcacgag	ttcttcgagg	aagcctcggc	240
cgccggcctg	gtgtatgggc	tgaccatgcc	gctgcatggt	gctcgcggcg	aactcggcgc	300
gctgagcctc	agcgtggaag	cggaaaaccg	ggccgaggcc	aaccgtttca	tggagtcggt	360
cctgccgacc	ctgtggatgc	tcaaggacta	cgcactgcag	agcggtgccg	gactggcctt	420
cgaacatccg	gtcagcaaac	cggtggttct	gaccagccgg	gagaaggaag	tgttgcagtg	480
gtgcgccatc	ggcaagacca	gttgggagat	atcggttatc	tgcaactgct	cggaagccaa	540
tgtgaacttc	catatgggaa	atattcggcg	gaagttcggt	gtgacctccc	gccgcgtagc	600
ggccattatg	gccgttaatt	tgggtcttat				630
<210> 472 <211> 324						
<212> DNA						
<213> Pse	idomonas aei	ruginosa				
<400> 472				1		60
atggatgete	gggtaetgee	gegegettte	atcgatgaag	gtacgcaggc	gettettetg	60
ccccagcggg	ctgatcccgc	ccaccaggta	gccggtggcc	cgctgcgccg	cctgcggatc	120
ggccatgtcg	gccttcttcg	ccccgccgc	atgggccagg	gccttcaggt	cgagactgcc	180
gatcaccggc	accaccgcca	ccagcaactc	gcccttctcc	gtggcggcga	gcagcgtctt	240
gaacacccgc	tgcgggtcca	ggccgagctt	ttccgcggcc	tccaggccat	aggaaggtgc	300
cttggggtcg	tggctgtagc	tgag				324

## WO 2007/039319 PCT/EP2006/010132 204/763

<210> 473 <211> 669 <212> DNA <213> Pseudomonas aeruginosa	
<400> 473 gatcgtctct gcccagtcca tcaccttgcc caagggcggc gacgtgcacc tggtgccgcc	60
tccgcccaag ccttgcgtga ccatcgtggt gcatggcgtc aacgatctcg cgggttgcta	120
cgaacggatc gagcgagggc tctgccaggg gctcaatgaa cgcctggaca tgccgccgac	180
cttgcccggc gggcaggcca atcccggcta cctgacgccg gcgggctaca gcctgccggc	240
ggacgacgaa ggcaaggcag agaaccccga cgtcgtctac taccggcgca agttcgccag	300
tggcgccggc ggggccgccg tacgcagcgt agtcgtacct ttctactggg gcttccgcga	360
ggaagagcaa tacatcaaca agaccgcggc ccacggcgaa tggctggacc gcaacggcaa	420
ceggetggae aagteeggea ceaaggaagg egggeagtte gteaatgeea eeaceaacet	480
geeggaeatg tggggeeagg gttteaaegg eaagetgtte ggttteatet egetggaetg	540
gttcggcggc accatgaccc atccgctgtt ttcggcggca gggcgcaagt acatggtcct	600
tgcggccatg cgcctggcca tgttgatcaa gatcatccgc aagcgttacc cggacgacac	660
catcaatgt	669
<210> 474	
<211> 810 <212> DNA <213> Pseudomonas aeruginosa	
<212> DNA	60
<212> DNA <213> Pseudomonas aeruginosa <400> 474	60 120
<212> DNA <213> Pseudomonas aeruginosa <400> 474 aggagagaac atgagteget cacceatece tegecacega gegttgetgg ceggtttetg	
<212> DNA <213> Pseudomonas aeruginosa <400> 474 aggagagaac atgagteget cacceatece tegecacega gegttgetgg ceggtttetg cetggetgge gegetgteeg eccaggetge cacceaggaa gaaatecteg atgeggeact	120
<212> DNA <213> Pseudomonas aeruginosa <400> 474 aggagagaac atgagteget cacceatece tegecacega gegttgetgg ceggtttetg cetggetgge gegetgteeg cecaggetge cacceaggaa gaaateeteg atgeggeact ggteageggg gatteetege aactgacega cagceacetg gtegecetge geetgeagea	120 180
<pre>&lt;212&gt; DNA &lt;213&gt; Pseudomonas aeruginosa  &lt;400&gt; 474 aggagagaac atgagteget cacceatece tegecacega gegttgetgg ceggtttetg cetggetgge gegetgteeg cecaggetge cacceaggaa gaaateeteg atgeggeact ggteageggg gatteetege aaetgacega cagceacetg gtegecetge geetgeagea geaggtegag egeateegee agaecegeae ceagttgete gaeggteet accagaacet</pre>	120 180 240
<pre>&lt;212&gt; DNA &lt;213&gt; Pseudomonas aeruginosa  &lt;400&gt; 474 aggagagaac atgagteget cacceatece tegecacega gegttgetgg ceggtttetg cetggetgge gegetgteeg cecaggetge cacceaggaa gaaateeteg atgeggeact ggteageggg gatteetege aactgacega cagecacetg gtegecetge geetgeagea geaggtegag egeateegee agaceegeae ceagttgete gaeggtetet accagaacet cagecaagee tatgateetg gegeegecag catgtgggte etgeeggeaa acceggacaa</pre>	120 180 240 300
<pre>&lt;212&gt; DNA &lt;213&gt; Pseudomonas aeruginosa  &lt;400&gt; 474 aggagagaac atgagteget cacceatece tegecacega gegttgetgg ceggtttetg cetggetgge gegetgteeg cecaggetge cacceaggaa gaaateeteg atgeggeaet ggteageggg gatteetege aactgacega cagecacetg gtegecetge geetgeagea geaggtegag egeateegee agaceegeae ceagttgete gaeggtetet accagaacet cagecaagee tatgateetg gegeegecag catgtgggte etgeeggeea acceggacaa taccetgeee tteeteateg gegacaaggg gegegtgete geeageetga geetggagge</pre>	120 180 240 300 360
<pre>&lt;212&gt; DNA &lt;213&gt; Pseudomonas aeruginosa  &lt;400&gt; 474 aggagagaac atgagteget cacceatece tegecacega gegttgetgg ceggtttetg cetggetgge gegetgteeg cecaggetge cacceaggaa gaaateeteg atgeggeaet ggteageggg gatteetege aactgacega cagecacetg gtegecetge geetgeagea geaggtegag egeateegee agaecegeae ceagttgete gaeggtetet accagaacet cagecaagee tatgateetg gegeegeeag catgtgggte etgeeggeea acceggacaa taccetgeee tteeteateg gegacaaggg gegegtgete geeageetga geetggagge eggeggeege gggetggeet atggeaceaa egtgeteace cagttgageg ggaceaatge</pre>	120 180 240 300 360 420

## WO 2007/039319 PCT/EP2006/010132 205/763

cagttgcgcc	agcaccagca	aattgctggt	actgggcaac	ggcgccagcg	ccgctagcct	660
gagcgccacg	gtgcgcgcac	ggctacaggc	cgggctgccg	atcctcttcg	tgcacaccaa	720
tggctggaac	cagagcagca	ccggccagca	gatcctcgcc	ggcctgggcc	tgcaggaagg	780
cccctacggc	ggtaactact	gggacaagga				810
<210> 475 <211> 524 <212> DNA <213> Pse		ruginosa				
<400> 475 aggagcaact	gaagcgactc	ggcatcgagg	ccagggccgc	gggcgatgcc	tacgctcgac	60
tgggcgagat	gcagcgtggc	ctggatatgc	aggteegegg	cctgcaacgg	ctggagcagg	120
ccagccaggc	aatgccattg	gctagcgcat	tttccggact	ggtcgtggaa	gccagcaaga	180
cggctgccgg	ttatcaagcg	cggttgcgcg	acctgtcgat	ccgcaacggc	ctggacgtcg	240
gccgggagcc	agccttggca	tecetgatee	aggacagege	caaccagagc	ggcctgggac	300
gcacggtgac	gctggacatg	ctggagcact	tgaacgccac	cggcatgggg	ttcgccgccg	360
cgcaaatgaa	tctgggactg	gcgggccgct	tcggctttgg	ccaagggatt	gcttcagccg	420
aggttgcggg	gctggttcga	gcgttgcaac	tggcccaggg	ttcggactcg	ccagagcaat	480
tgtccgccac	cctcgaccgc	ctggtcgtcc	tgggtaaagg	caga		524
<210> 476 <211> 704 <212> DNA <213> Pset	udomonas aei	ruginosa				
<400> 476 aaggttggca	ggatcaacga	tcagaaaatg	cgcgccatgg	aggcgcgcgc	ggaaaaggct	60
ggcaaggcta	tcggcaaaag	cctggacagt	tcggcactga	ttgccagcag	cgtgctggac	120
caggcgctgg	acatgctggg	caggaccagt	cgccaggcgg	gtcaggccaa	gaagcctgtg	180
cagagcgccc	aggacaaggt	actggccgag	tggaagaccc	ggcagaagga	gctgggcgaa	240
gcctggaaga	gctatcgcga	accactccag	gatctgtcca	agctcaacga	agcactactg	300
aagaactctt	ccgacaagct	cgacaaggcg	ctgctcaatc	tcagcgagac	cggcaagctg	360
tcgcttgcca	acgtgggcaa	ggccgcctac	gccgatgctg	cgcgcctcgc	ctcgcggcag	420
atgaccctga	tgctgctgga	cgggctgttt	ggctgggtcg	ccagcgtcgg	taccgagaag	480

## WO 2007/039319 PCT/EP2006/010132 206/763

cccaaggtcg	acgacaaggc	gggcaaggga	caggcgaagg	ctggcgacga	cgagaaggaa	540
cagccgtcgc	tccagtcgca	ggtcttcaag	cagtggctgt	tgcagatgaa	cagtgtctgg	600
ggcgcctacc	gcgcgcccct	gcaggatatc	tccgggatga	ccgacgagct	gttcaggaat	660
gcgtcggaga	agctcgagaa	gtcgctgttc	aatttcgcca	ctag		704
<210> 477 <211> 234 <212> DNA <213> Pset	udomonas ae:	ruginosa				
<400> 477 aggcatccat	cgagctaccg	gcaggcccgc	cgcagaccct	gctggtgccg	ttgcgggcgg	60
tttcgccaga	ggctctgggc	atgcgtgcgg	ggccgccgat	gccacagatg	gtcgaaggcc	120
agcgggtgct	gctggcgcca	cgcgtggagg	gctcgctgga	ccgcgccagg	gtcggagcgc	180
tgagcctgtc	cctgcgctcg	ccgcaagctc	cccagagtat	cctgctcgga	cgtt	234
<210> 478 <211> 349						
	udomonas aei	ruginosa				
<213> Pseu <400> 478	ndomonas aen		tgegegtgge	gatectgetg	aacctggggc	60
<213> Pset <400> 478 gcgaggaggt		ctcctggaga				60 120
<213> Pset <400> 478 gcgaggaggt gcgcggaaca	attcgacagc	ctcctggaga	agatggagga	gaaggtcgag	ggcgcggagt	
<213> Pset <400> 478 gcgaggaggt gcgcggaaca ggaacaacat	attcgacagc ggcgctggcc	ctcctggaga ctgatcggcg cggcgtctgt	agatggagga acaaggccca	gaaggtcgag cggcctggcg	ggcgcggagt ttgctggggc	120
<213> Pset <400> 478 gcgaggaggt gcgcggaaca ggaacaacat gcgacgagga	attcgacagc ggcgctggcc cagccagcca	ctcctggaga ctgatcggcg cggcgtctgt gcgctgctgc	agatggagga acaaggccca cgttctccga	gaaggtcgag cggcctggcg gattgccccg	ggcgcggagt ttgctggggc cgctaccgta	120 180
<213> Pset <400> 478 gcgaggaggt gcgcggaaca ggaacaacat gcgacgagga cgatctggct	attcgacagc ggcgctggcc cagccagcca ggccctggag	ctcctggaga ctgatcggcg cggcgtctgt gcgctgctgc tacctgctgc	agatggagga acaaggccca cgttctccga tgcaacggac	gaaggtcgag cggcctggcg gattgccccg ccctgagcgc	ggcgcggagt ttgctggggc cgctaccgta	120 180 240
<213> Pseudona Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Car	attcgacagc ggcgctggcc cagccagcca ggccctggag gcgcgccgtc	ctcctggaga ctgatcggcg cggcgtctgt gcgctgctgc tacctgctgc cagatgctcg	agatggagga acaaggccca cgttctccga tgcaacggac	gaaggtcgag cggcctggcg gattgccccg ccctgagcgc	ggcgcggagt ttgctggggc cgctaccgta	120 180 240 300
<pre>&lt;213&gt; Pset &lt;400&gt; 478 gcgaggaggt  gcgcggaaca  ggaacaacat gcgacgagga  cgatctggct acttcggcgg  &lt;210&gt; 479 &lt;211&gt; 402 &lt;212&gt; DNA &lt;213&gt; Pset &lt;400&gt; 479</pre>	attcgacagc ggcgctggcc cagccagcca ggccctggag gcgcgccgtc gcgcctgcag	ctcctggaga ctgatcggcg cggcgtctgt gcgctgctgc tacctgctgc cagatgctcg	agatggagga acaaggccca cgttctccga tgcaacggac aacactactc	gaaggtcgag cggcctggcg gattgccccg ccctgagcgc gcagaaggg	ggcgcggagt ttgctggggc cgctaccgta aacacctggg	120 180 240 300
<213> Pseudona Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Carte Car	attcgacage ggcgctggcc cagccagcca ggccctggag gcgcgccgtc gcgcctgcag	ctcctggaga ctgatcggcg cggcgtctgt gcgctgctgc tacctgctgc cagatgctcg	agatggagga acaaggccca cgttctccga tgcaacggac aacactactc	gaaggtcgag cggcctggcg gattgccccg ccctgagcgc gcagaaggg	ggcgcggagt ttgctggggc cgctaccgta aacacctggg ggcgcggatg	120 180 240 300 349

## WO 2007/039319 PCT/EP2006/010132 207/763

aagaacccag	gttccggcat	gcctttcgcg	gtggccgggc	tgagcgacga	cgaatacgcc	240
actttgcaga	agtggctggc	cgcgggcgcc	ccggtcgacc	agcagccgtt	gcggccgacc	300
gccgccgagg	cgcgccaggt	ggccagctgg	gagcgtttcc	tcaaccagcc	tggggccaag	360
cagageetgg	tctcgcgctg	gctctacgag	cacctgttcc	tg		402
	idomonas ae:	ruginosa				
<400> 480 ttccctaacg	aatgctgtca	atcgcctggt	tcagattgct	ggtagtggac	ccggcgcata	60
cgttgccacc	ttcgcggtgc	tgtcgctgta	ttccgaccag	gctggtaaag	acagtgacaa	120
ggttcctgcc	ggcgttcgca	atgcattggc	actggaggcg	tccgctctgg	ggcttcctgg	180
cacggctgat	ttgcaaagcg	tcgccaaggc	aggtggcacg	gttgatatgc	cggtacgact	240
cacgagtgct	gcacaagaga	gcccgagtgg	taaatcgcag	attgccgcga	tgttgaccaa	300
cggtgcaact	gtccccaagg	gegtgeetgt	tegegeegeg	acceteaatg	ctgcgacggg	360
ccggtatgag	gtgacggttc	ccgcaaagtc	caccgtgccg	aatacaccac	cgctgatctt	420
gacctggacc	cctgccaccc	ctccaggaag	ccagaacccc	tcaagcacca	ctccggtcgt	480
accgcagccg	gttccggtgt	atgagggagc	aacg			514
<210> 481 <211> 604 <212> DNA <213> Pse	udomonas ae:	ruginosa				
<400> 481 cgagcaccaa	tatcgaactg	gtttcgacca	agggcgacct	ggacctcgac	ggctcggtga	60
actgggcatc	gggcaaccgg	ctggggctgg	gctccgcggc	cgacctgacg	ctgaatggca	120
ggctgaatgc	cagtggcgcc	aaggctgggc	tggagctgaa	ggccgaaggc	gctatcgata	180
tcaatgacaa	gatcgttctc	ggcggggctg	gcagcgcgct	ggccatggat	gccggcgaag	240
gccaccgggt	gaacggcacg	gcgtcggtct	ccctggccgg	ggccaacgcg	acctacgtct	300
ccggtggcta	ttactacacg	gtggtgcaga	acctggcgca	gttgcaggcg	atcaacaaga	360
acctggacgg	cctgtacgtg	ctcggcggca	atatcctggg	cggcagctat	tactgcacgg	420
cgctgcaatc	catcggcggg	cccgccggcg	tcttcagcgg	caccctggac	ggtctcggca	480

## WO 2007/039319 PCT/EP2006/010132 208/763

acagcategg caateteteg ateagcaaea eegggeegaa tgtegggetg ttegeeeget	540
cctcgggcac cctgagcaac ctgaagctga acaacctgcg ggtatccgat aacacctacg	600
gete	604
<210> 482 <211> 412 <212> DNA <213> Pseudomonas aeruginosa	
<400> 482 gctttacctt gatcgaactg atgatcgtgg ttgcgatcat cggtattctt gctgccgtcg	60
ctttgccggc atatcaggat tacaccattc gtgctcgcgt gacagagggg gttggcctgg	120
ctgccagcgc caagacgctt attggcgata gctctgccac tgccggtgag ctagccgctt	180
cggcaagggt ctggaatgct caagccggta acgccggtgc taccagtaag tatgtgacct	240
ctgtacaaat tgcagaggcg actggtgaaa tcactgttac tttcaatgcc gcaaacgtgg	300
gtaatattcc ggctaactct accetggtat ttactcccta tgtgcagaat gctgccggtg	360
ccccgactca attgggtgcc agttatgctt ccggtgtgac tggctctatt ga	412
<210> 483 <211> 320 <212> DNA <213> Pseudomonas aeruginosa	
<400> 483 tgccgtgagt gaaatcagcg cgttgaagac cgctgcggag tcggcgattc tggaaggcaa	60
gaagettgtt tecaaggata atecegegga tggggaatat gatettggtt ttaccaagte	120
tactttgctt gctggcaacg acggtaaggc acagatcacc atcactggcg aaagcagtgc	180
aaccccgacc attgcgggga ctctgggtaa ctctgctggt aaggccatca gcggtgccgt	240
tatcaccatc aagcgtagtg ctgagggagt ctggacctgc gctaccagtg ggtctccggc	300
caactggaaa gccaactacg	320
<210> 484 <211> 738 <212> DNA <213> Pseudomonas aeruginosa	
<400> 484 ggtatcaacc cactaaaggt ccgcaagaaa ggtatcaccc tgtgggcagg gaagaagatt	60
	60

## WO 2007/039319 PCT/EP2006/010132 209/763

ccggtactgc aatcttttga catcatcggc gaaggattcg aaaatccaaa catgcgcaag	180
ctagtcgatg agatcaagca ggatgttgcc gccggtaaca gcttagccag ttcacttcga	240
aagaaaccca tttacttcga tgatctctac tgcaacctgg tcgatgctgg cgaacagtcc	300
ggtgctttgg agacattatt ggatcgggta gcaacttata aagaaaagac agaatccctg	360
aaagccaaaa ttaaaaaagc catgacttat cccattgcag taattgtagt ggcccttgta	420
gtatcggcga tccttctgat aaaagtggtc ccacagttcc agtccgtatt tgcaaatttt	480
ggtgccgagt tgccggcctt tactcaaatg gtcatcaatc tttccgagat gcttcaagag	540
tggtggctca tagtgcttat tggtcttttt gccgcagctt ttgcatttag ggaagctcat	600
catttgggat cagtagatcg gggcctgctg aaactaccta tcatcggcgg gatactttac	660
aaatcagcta tcgcccgcta cgcccgaacg ctatccacta cctttgcggc tggagtgcct	720
ctggtagaag ctctggac	738
<210> 485 <211> 740 <212> DNA <213> Pseudomonas aeruginosa	
<400> 485 gaagtgaact ccgccaagga tctgaaggcg gcgctgggca tcatcgtgca gcgggtcaag	60
	60 120
gaagtgaact ccgccaagga tetgaaggeg gegetgggea teategtgea gegggteaag	
gaagtgaact ccgccaagga tetgaaggcg gegetgggca teategtgca gegggtcaag gaagceatgg gtacceaggt etgeteggtg tacetgeteg acacegagae eeagegttte	120
gaagtgaact ccgccaagga tetgaaggeg gegetgggea teategtgea gegggteaag gaagecatgg gtacceaggt etgeteggtg tacetgeteg acacegagae ceagegttte gteetgatgg ccaeegaagg ceteaacaag egtteeateg geaaggteag eatggeeeee	120 180
gaagtgaact ccgccaagga tctgaaggcg gcgctgggca tcatcgtgca gcgggtcaag gaagccatgg gtacccaggt ctgctcggtg tacctgctcg acaccgagac ccagcgtttc gtcctgatgg ccaccgaagg cctcaacaag cgttccatcg gcaaggtcag catggccccc agcgaaggcc tggtcggcct ggtcggcacc cgcgaggagc cgctcaacct ggagaacgcc	120 180 240
gaagtgaact ccgccaagga tctgaaggcg gcgctgggca tcatcgtgca gcgggtcaag gaagccatgg gtacccaggt ctgctcggtg tacctgctcg acaccgagac ccagcgtttc gtcctgatgg ccaccgaagg cctcaacaag cgttccatcg gcaaggtcag catggccccc agcgaaggcc tggtcggcct ggtcggcacc cgcgaggagc cgctcaacct ggagaacgcc gccgccacc cgcgctaccg ctatttcgcc gagaccggcg aggagcgcta cgcgtcgttc	120 180 240 300
gaagtgaact ccgccaagga tctgaaggcg gcgctgggca tcatcgtgca gcgggtcaag gaagccatgg gtacccaggt ctgctcggtg tacctgctcg acaccgagac ccagcgtttc gtcctgatgg ccaccgaagg cctcaacaag cgttccatcg gcaaggtcag catggccccc agcgaaggcc tggtcggcct ggtcggcacc cgcgaggagc cgctcaacct ggagaacgcc gccgccacc cgcgctaccg ctatttcgcc gagaccggcg aggagcgcta cgcgtcgttc ctcggcgcc cgatcatcca ccataggcgg gtgatggggg tgctggtggt gcagcagaag	120 180 240 300 360
gaagtgaact ccgccaagga tctgaaggcg gcgctgggca tcatcgtgca gcgggtcaag gaagccatgg gtacccaggt ctgctcggtg tacctgctcg acaccgagac ccagcgttte gtcctgatgg ccaccgaagg cctcaacaag cgttccatcg gcaaggtcag catggcccc agcgaaggce tggtcggcct ggtcggcacc cgcgaggage cgctcaacct ggagaacgcc gccgccacc cgcgctaccg ctatttcgcc gagaccggcg aggagcgcta cgcgtcgttc ctcggcgcc cgatcatcca ccataggcgg gtgatggggg tgctggtggt gcagcagaag gagcgccgc agttcgacga aggcgaggag gccttcctcg tcaccatgag cgcccagctc	120 180 240 300 360 420
gaagtgaact ccgccaagga tctgaaggcg gcgctgggca tcatcgtgca gcgggtcaag gaagccatgg gtacccaggt ctgctcggtg tacctgctcg acaccgagac ccagcgttte gtcctgatgg ccaccgaagg cctcaacaag cgttccatcg gcaaggtcag catggccccc agcgaaggce tggtcggcct ggtcggcacc cgcgaggage cgctcaacct ggagaacgcc gccgcccacc cgcgctaccg ctatttcgcc gagaccggcg aggagcgcta cgcgtcgttc ctcggcgcgc cgatcatcca ccataggcgg gtgatggggg tgctggtggt gcagcagaag gagcgccgcc agttcgacga aggcgaggag gccttcctcg tcaccatgag cgcccagctc gccggggtca tcgcgcatgc cgaggcgacc ggttcgatcc gcggcctggg caagctcggc	120 180 240 300 360 420 480
gaagtgaact ccgccaagga tctgaaggcg gcgctgggca tcatcgtgca gcgggtcaag gaagccatgg gtacccaggt ctgctcggtg tacctgctcg acaccgagac ccagcgtttc gtcctgatgg ccaccgaagg cctcaacaag cgttccatcg gcaaggtcag catggccccc agcgaaggcc tggtcggcct ggtcggcacc cgcgaggagc cgctcaacct ggagaacgcc gccgcccacc cgcgctaccg ctatttcgcc gagaccggcg aggagcgcta cgcgtcgttc ctcggcgcgc cgatcatcca ccataggcgg gtgatggggg tgctggtggt gcagcagaag gagcgccgcc agttcgacga aggcgaggag gccttcctcg tcaccatgag cgcccagctc gccggggtca tcgcgcatgc cgaggcgacc ggttcgatcc gcggcctggg caagctcggc aagggcatcc aggagagccaa gttcgtcggc gtgcccggcg cccccggggt cggggtgggc aagggcatcc aggaagccaa gttcgtcggc gtgcccggcg cccccggggt cggggtgggc	120 180 240 300 360 420 480 540
gaagtgaact ccgccaagga tctgaaggcg gegetgggca tcategtgca gegggtcaag gaagccatgg gtacccaggt ctgctcggtg tacetgctcg acaccgagac ccagcgttte gtcctgatgg ccaccgaagg cctcaacaag cgttccatcg gcaaggtcag catggccccc agcgaaggce tggtcggcct ggtcggcacc cgcgaggage cgctcaacct ggagaacgcc gccgcccacc cgcgctaccg ctatttcgcc gagaccggcg aggagcgcta cgcgtcgttc ctcggcgcgc cgatcatcca ccataggcgg gtgatggggg tgctggtggt gcagcagaag gagcgccgcc agttcgacga aggcgagag gccttcctcg tcaccatgag cgcccagctc gccggggtca tcgcgcatgc cgaggcgacc ggttcgatcc gcgggctgg caagctcggc aagggcatcc aggaagccaa gttcgtcggc gtgcccggcg cccccggggt cggggtgggc aaggcggtgg tggtgttgcc tccggccgac ctggaagtgg tgccggacaa gcaggtcgac aaggcggtgg tggtgttgcc tccggccgac ctggaagtgg tgccggacaa gcaggtcgac	120 180 240 300 360 420 480 540

## WO 2007/039319 PCT/EP2006/010132 210/763

<210> 486 <211> 680 <212> DNA <213> Pseudomonas aeruginosa	
<400> 486 tcgagaagtc gatgttcaag gacctcggca ttcccactcc ggattttgcg gacgtccagt	60
cccaggccga cgttgatgcc gctgcagcag ccataggcgt gccggcggtg ctcaagaccc	120
gcacactggg gtacgacggc aagggccaga aggtcctgcg ccaaccggcc gacgtgcagg	180
gegegtttge egaactggge agegtgeegt geatectega gggettegtg eegtteaceg	240
gggaagtttc gctggtggcg gtgcgcgctc gagatgggga gacgcgttta taccctctgg	300
tgcacaacac ccacgacage ggcatectca ageteteegt ggccageage gegcateegt	360
tgcaggcgct ggccgaggac tacgtcggcc gtgtgctggc ccggctcgac tacgtcggcg	420
tgctggcctt cgagttcttc gaggtggacg gcggcctgaa ggccaacgag atcgccccgc	480
gcgtgcacaa ctccgggcac tggaccatcg aaggcgccga gtgcagccag ttcgagaacc	540
acctgcgcgc cgtcgccggc ctgccgctgg gctcgaccgc caaggtcggc gagagcgcga	600
tgctcaattt catcggcgcg gtgcccccgg tggctcaggt ggtcgccgtc gccgactgcc	660
acctgcatca ctacggcaag	680
<210> 487 <211> 210 <212> DNA <213> Pseudomonas aeruginosa	
<pre>&lt;400&gt; 487 agacctacaa caaggtttcg cgcttcatcc gcgagatccc gccggcgctg atccaggaag</pre>	60
tgcgcctgtc caataccgtc agccgcccct acggcggcac ctcgcgcagt gccggcggca	120
acctetteag eggegeeggg gtgeeggaga egeeettete eeteggeeag egggtgegee	180
acgcgctgtt cggcgaaggg actatcctca	210
<210> 488 <211> 351 <212> DNA <213> Pseudomonas aeruginosa	
<400> 488 attectetet gaategetgg aagggettte egeegeeatg ategeegage tgggaegeta	60
ccggcatcag gtcttcatcg agaagctggg ctgggacgtg gtctccacct ccagggtccg	120

# WO 2007/039319 PCT/EP2006/010132 211/763

cgaccaggag	ttcgaccagt	tcgaccatcc	gcaaacccgc	tacatcgtcg	ccatgggccg	180
ccagggcatc	tgcggttgtg	cccgcctgct	gccgacgacc	gacgcctacc	tgctcaagga	240
agtcttcgcc	tacctgtgca	gcgaaacccc	gccgagcgat	ccgtcggtct	gggagctttc	300
gcgctacgcc	gccagcgcgg	cggacgatcc	gcaactggcg	atgaagatat	t	351
<210> 489 <211> 530 <212> DNA <213> Pseu	udomonas aeu	ruginosa				
<400> 489 aggaatgacg	gaggcttttt	gctgtggtgg	cacggtttgc	gttgcgagat	gcagccgatc	60
cacgacagcc	agggcgtgtt	cgccgtcctg	gaaaaggaag	tgcggcgcct	gggcttcgat	120
tactacgcct	atggcgtgcg	ccacacgatt	cccttcaccc	ggccgaagac	cgaggtccat	180
ggcacctatc	ccaaggcctg	gctggagcga	taccagatgc	agaactacgg	ggccgtggat	240
ccggcgatcc	tcaacggcct	gcgctcctcg	gaaatggtgg	tctggagcga	cagactgttc	300
gaccagagcc	ggatgctctg	gaacgaggct	cgcgattggg	gcctctgtgt	cggcgcgacc	360
ttgccgatcc	gcgcgccgaa	caatttgctc	agcgtgcttt	ccgtggcgcg	cgaccagcag	420
aacatctcca	gcttcgagcg	cgaggaaatc	cgcctgcggc	tgcgttgcat	gatcgagttg	480
ctgacccaga	agctgaccga	cctggagcat	ccgatgctga	tgtccaaccc		530
<210> 490 <211> 569 <212> DNA <213> Pseu	udomonas aeu	ruginosa				
<400> 490	acqqactqqt	gcgcaagcgc	aaggtcaagc	cagastcagt	gaagcagtto	60
		ggggatgaag				120
ctggccgact	ggctcgacgc	cgaccagaat	ccgcagggcg	agcaaggcgc	cgaggacaac	180
cagtacctgc	tggaggcgcc	ggcctaccgc	gccgccaacc	gcagtttcaa	ggacgtgtcc	240
gagctgcgcc	tgctgaaatt	gtcggaagcc	gactatcgac	gcctgctgcc	gttcgtcagc	300
gccttgcccg	aagatgcgcc	gctgaacgtg	aacactgcca	gcgtgccggt	gctggccgcc	360
atgttcgaga	tcgatccggg	acaggcggaa	aacatcgtgg	acgcccgcgg	tcgggaaggt	420
ttccagagca	aggacgattt	caccaagcat	ctgacccagt	tgggttcgaa	gaccggaaac	480

gtcagttatg	ccgtcggcac	ccgctacttc	caggtgatca	gcgaggtcag	cctgggcgac	540
caccaacaaa	tgctggtgag	taccttqca				569
0900990099	-999-9-9					
<210> 491						
<211> 345 <212> DNA						
<213> Pset	udomonas aei	ruginosa				
<400> 491	taataaaaat	acatatacco	2001202022	cttcctccat	acctatacac	60
	tcgtagcgat					
ggggcgggga	cgaattggtc	aatggccatc	cgtcctatac	cgtcgaccag	gcggcggagc	120
agatcctccg	cgaacaggcg	tcttggcaga	aagcgccggg	cgactcggtg	ctgaccctgt	180
cctattcgtt	cctgaccaaa	ccgaacgact	tcttcaatac	gccgtggaag	tatgtcagcg	240
atatctactc	gctgggcaag	ttcagcgcct	tttccgcgca	gcagcaggcc	caggccaagt	300
tgtcgctgca	atcctggtcg	gacgtcacca	atatccactt	cgtcg		345
<210> 492 <211> 576						
<212> DNA						
<213> Pse	udomonas aei	ruginosa				
<400> 492	atcctagtgc	gcgacggcca	gcatgtggag	acaaacaaac	cactaatcca	60
						120
	acccaggccc					
gcggctcaac	caggcgcgcc	tgcaggccga	atacgacggc	cggcggaccc	tggagatgcc	180
cgcggggctg	gccgagcagg	ccccgctgcc	gaccctcggc	gagcgcctgg	agttgcagcg	240
gcagttgctg	cacageegee	agaccgcgct	ggccaacgaa	ctctccgcat	tgcgggcgaa	300
catcgagggg	ctgcgcgccc	agctcgaagg	gttgcgccag	accgagggca	accagcgcct	360
gcaacaacgc	ctgttgaaca	gccagttgag	cggtgcgcgc	gacctcgccg	aggaaggcta	420
catgccgcgc	aaccagttgc	tcgaacagga	gcgccaactg	gccgaggtga	acgcccggct	480
atcggagagc	agcggtcgct	tcgggcagat	ccgccagagc	atcgccgagg	cgcagatgcg	540
catcgcccaa	cgcgaggagg	agtaccgcaa	ggaagt			576
<210> 493						

<211> 581 <212> DNA <213> Pseudomonas aeruginosa

## WO 2007/039319 PCT/EP2006/010132 213/763

<400> 493						
ccgaaggact	tggtttactc	caactttgtg	cagcaggacg	gcggtagcac	cctgttgggg	60
cagtacgaca	tgatcaacga	aggcagccaa	gtgattgaac	ttgccgtcaa	cttgcaacaa	120
gggttagtgg	acaccttcac	ctggagcgtc	actgagcagt	tgaaggtcgg	tgtggaagtc	180
aaggtgaagg	cgaacattcc	cctagtgggc	ggcgctgaga	tcaccagtac	ggtggaattg	240
tcactgtcct	ctacccaagg	ggcgagtacc	agcaagtctt	ccaactatgg	cgcctctacc	300
aaggtgctta	tttccccaca	tagccacggc	tggggagagg	ttgccttgag	ctttactgag	360
ctgcgcactc	agtgggtcgg	taatgtcggg	cttcaaggat	atgtggcaat	ttggttcaac	420
aacaaagtcg	cattgaacaa	cgatggcgat	taccactacc	tgtggttcat	tcccgtggag	480
caggtatttt	gggagtgcgt	ccagcacaac	atagtcaata	cctcgggcta	tgtcgtacaa	540
ggcaatggag	tgttggcgca	agccacaggc	accttccata	g		581
<210> 494 <211> 457 <212> DNA <213> Pseu	ıdomonas aeı	ruginosa				
<400> 494 cactttccgt	tattgcctcg	aagacgaagg	ctacagcgtg	gccaccgcca	gcagcgcgcc	60
gcaggcggag	gccctgttgc	agcgccaggt	attcgacctg	tgcttcctcg	acctgcgcct	120
gggcgaagac	aacgggctcg	acgttctcgc	ccagatgcgc	gtccaggcgc	catggatgcg	180
cgtggtgatc	gtcaccgcgc	attcggcggt	ggataccgcg	gtcgatgcca	tgcaggccgg	240
cgcggtggat	tacctggtca	agccctgcag	cccggaccaa	ctgcgcctgg	ccgccgccaa	300
gcaactggag	gtgcgccaac	tgaccgcgcg	cctggaggcc	ctggaggacg	aaqtqcqccq	360
					, , , ,	
ccagggcgac	ggcctggaat	cgcacagccc	ggccatggcc			420
	ggcctggaat gcgaccgacg					
<pre>&lt;210&gt; 495 &lt;211&gt; 289 &lt;212&gt; DNA &lt;213&gt; Pset</pre>		ccaacatcct				420
<pre>&lt;210&gt; 495 &lt;211&gt; 289 &lt;212&gt; DNA &lt;213&gt; Pset &lt;400&gt; 495</pre>	gcgaccgacg	ccaacatcct	catecte	gcggtactgg	agaccgcgcg	420

# WO 2007/039319 PCT/EP2006/010132 214/763

gcggttcgcg	agcgcctgct	ccagctcgac	ggcgcgcgcc	aggaagtggt	ccgggtcgac	180
gggcgcaccc	agtgcatcag	cggcggcctt	gccgaccaac	tggccgatgc	ccagctgtgg	240
ccggtgcgca	agttcgatcc	ctcccagctg	gcttcctggt	acgacctgc		289
<210> 496 <211> 659 <212> DNA <213> Pset	udomonas ae:	ruginosa				
<400> 496	accaacctct	aacacasasa	cacctaaccc	asttaatsaa	acaactagaa	60
	acgaacctct					
	tcctcgagcc					120
ageetcaage	ccgatatcgt	cctgctggat	atccgcatgc	ccggtctgga	cggcctccag	180
gtcgcggcca	gactctgcga	gcgggaagcg	ccgccggctg	tgatcttctg	cacggcccat	240
gacgaattcg	ccctggaagc	cttccaggtc	agcgccgtgg	gctacctggt	caagccggtg	300
cgcagcgaag	acctggccga	ggcgttgaag	aaagcctcgc	gaccgaaccg	cgtgcaactg	360
gccgcgctga	ccaagccccc	ggcctccggc	ggcagcggtc	cgcgcagcca	catcagtgca	420
cggacccgca	aggggatcga	gctgatcccg	ctggaagagg	tgatcttctt	cattgccgac	480
cacaagtacg	tgaccttgcg	ccatgcgcag	ggcgaggtgc	tgctggacga	gccgttgaag	540
gcgctggaag	acgagttcgg	cgagcgcttc	gtgcgcatcc	accgcaacgc	gctggtcgcc	600
cgcgaacgga	tcgaacgcct	gcagcgtacg	ccgctggggc	atttccagct	ctacctgaa	659
<210> 497 <211> 629 <212> DNA <213> Pseu	idomonas aei	ruginosa				
<400> 497 cgtttgggac	agattgaggc	ccgccaggtc	qccaccccca	gtgaagcgca	gcagttggcc	60
	acgcgccgaa					120
cgtccgttcg	tggcgatcat	ggactggctg	ggcaaactgt	tgggctccca	cgcccgcacc	180
	ccagtcagga					240
	tgcagcaggc					300
ctggcgaccc	tgacaccgga	aggactggcc	cgggagcact	cccgcctggc	cageggagat	360
ggggcgctgc	gttcgctgag	caccgccttg	gccggcattc	gtgccggcag	ccaggtcgag	420

gagtcccgta	tccaggctgg	ccgcctgctc	gaacggagca	tcggcgggat	cgcgctgcag	480
cagtggggca	ccaccggcgg	tgccgcgagt	caactggtgc	tcgacgcaag	cccggaactg	540
cggcgcgaaa	tcaccgacca	gttgcatcag	gtaatgagcg	aggtcgcact	gttgcgccaa	600
gcggtagaga	gcgaggtcag	cagagtatc				629
<210> 498 <211> 332 <212> DNA <213> Psec	udomonas aei	ruginosa				
<400> 498	ccatcagcat	cgccgaggcg	acaacaaca	gcgtcgatct	caacaccacc	60
atgatcacct	ccaaccagtt	gggcaccatc	accgaggaca	geggeteeta	tacgccaggc	120
actatcgcca	cggcgacccg	cctggtcctg	actccgcgcg	agacgcccca	gtcgatcacc	180
gtggtcaccc	gccagaacat	ggacgacttc	ggcctcaaca	acatcgacga	cgtcatgcgc	240
catacgccgg	gcatcaccgt	ctcggcctac	gacactgacc	gcaacaacta	ctatgcccgc	300
ggcttctcga	tcaacaactt	ccagtacgac	gg			332
<210> 499 <211> 456 <212> DNA <213> Pset <400> 499	udomonas aeu	ruginosa				
	agtgtcatcg	acgagatgga	aatcgatggt	tatgacgcac	tcagtcctta	60
ttacatgttg	atccaggaag	atactcctga	agcccaggtt	ttcggttgct	ggcgaattct	120
cgataccact	ggcccctaca	tgctgaagaa	caccttcccg	gagcttctgc	acggcaagga	180
agcgccttgc	tcgccgcaca	tctgggaact	cagccgtttc	gccatcaact	ctggacagaa	240
aggctcgctg	ggcttttccg	actgtacgct	ggaggcgatg	cgcgcgctgg	cccgctacag	300
cctgcagaac	gacatccaga	cgctggtgac	ggtaaccacc	gtaggcgtgg	agaagatgat	360
gatccgtgcc	ggcctggacg	tatcgcgctt	cggtccgcac	ctgaagatcg	gcatcgagcg	420
cgcggtggcc	ttgcgcatcg	aactcaatgc	caagac			456
<210> 500 <211> 275						

<211> 275 <212> DNA <213> Pseudomonas aeruginosa

## WO 2007/039319 PCT/EP2006/010132 216/763

<400> 500 aagaagtctc	tgctcccct	cggcctggcc	atcggtctcg	cctctctcgc	tgccagccct	60
ctgatccagg	ccagcaccta	cacccagacc	aaatacccca	tcgtgctggc	ccacggcatg	120
ctcggcttcg	acaacatcct	cggggtcgac	tactggttcg	gcattcccag	cgccttgcgc	180
cgtgacggtg	cccaggtcta	cgtcaccgaa	gtcagccagt	tggacacctc	ggaagtccgc	240
ggcgagcagt	tgctgcaaca	ggtggaggaa	atcgt			275
	ıdomonas aeı	ruginosa				
<400> 501 atggcagttt	cagtgtcgac	gccagcggca	acctgctgat	cacccgcgac	atccgcaacc	60
tgttcgacta	cttcctcagc	gccgtcggcg	aagagcccct	gcagcaaagc	ctggaccgcc	120
tgcgcgccta	catcgccgcc	gaactccagg	agccggcgcg	cggccaggcg	ttggcgctga	180
tgcagcaata	catcgactac	aagaaggaac	tggtgctgct	cgaacgcgac	ctgccgcgcc	240
tggccgacct	cgacgccctg	cgccagcggg	aagccgcggt	gaaagccctg	cgcgcgcgga	300
tcttcagcaa	cgaagcgcac	gtggcgttct	tcgccgacga	ggaaacctac	aaccagttca	360
ccctggagcg	cctggcgatc	cgccaggacg	gcaagctcag	cgccgaggaa	aaggccgccg	420
ccatcgaccg	cctgcgcgcc	agcctgccgg	aagaccagca	ggaaagcgtg	ctgccgcaac	480
tgcaaagcga	actgcagcag	cagaccgccg	ccctccaggc	cgctggcgcc	ggcccggaag	540
ccatccgcca	gatgcgtcag	caactggtgg	gcgccgaagc	caccacccgc	ctggagcaac	600
tcgatcggca	acgctcggcc	tggaagggcc	ggctggacga	ctatttcg		648
	udomonas aeu	ruginosa				
<400> 502 aatgtcggca	tcattctcgc	caacgaggcg	gggcaggtgc	tgtgggcgcg	gcgtatcaat	60
caggaagcct	ggcagttccc	gcagggaggc	atcaatgatc	gcgaaacgcc	ggaagaggcg	120
ctgtatcgcg	aattgaacga	agaagtcggg	ctggaggccg	gggacgtgcg	catcctggcc	180
tgcacccgcg	gctggctgcg	ctaccgtttg	ccgcagcgcc	tggtgcggac	ccacagccag	240
ccgctgtgca	tcggccagaa	gcagaaatgg	ttcctgctgc	ggctgatgtc	cgacgaggcg	300

## WO 2007/039319 PCT/EP2006/010132 217/763

cgcgtgcgca	tggatatcac	cagcaagccc	gagttcgacg	gctggcgctg	ggtgagttac	360
tggtacccc	tgggacaggt	ggtgaccttc	aagcgcgagg	tctac		405
<210> 503 <211> 542 <212> DNA <213> Pse		ruginosa				
<400> 503	tccagttgct	cggctatctg	gccaagagcg	gegggegggt	qqaqqaqatq	60
	aggcgcgcga					120
cgtgccatcg	cgtccttcgg	caagggcaag	gccggcatcg	cccatctgca	ggcggaggtc	180
gcgcgtctga	agggcgaacg	tgcggaggca	gtattgctcg	cctgctggcg	gatggcctgg	240
gctggcggcg	tgctcagcca	gtcggcgcga	caactggtgt	tgcaatgggg	gcgctggctg	300
ggttggtcgg	cggagcgaac	ggaacgcttg	tcggcgcggg	tcatgccgaa	gcggacgcgc	360
gctgtcgccc	gggatagcta	ccgtgaggcc	ctgctgctgc	tcggcgtgga	ggccggaagc	420
gagccggcgc	tgatcaaacg	cgcctatcgc	aagctgatca	gccagcatca	tccggacaaa	480
ctggcgggag	ccggcgccag	cgtcgagcgc	gtgcgtgcgg	ctaccgagaa	aacccgtgaa	540
tt						542
<210> 504 <211> 427 <212> DNA <213> Pse	udomonas ae:	ruginosa				
<400> 504 cctgctcaac	accttctatc	cgcagttgcc	ggcggtggcg	cgtttcatcg	aactgggccg	60
ccagttgcac	caccggcgcg	gcatecgeca	cctggacgcg	gcctgcgggg	tgcaggtcgg	120
tttcgccacc	ctggacatcc	tcgccgcgtt	gctggagggc	gtcggcccct	ggtcgctgga	180
gtcgccctcg	aacgacctgt	cggcgatgcg	cgggctgtcc	ctggtgttgg	cggaagtgcc	240
gttgagcctg	cacgtgctca	acgaactggc	ggccgccgac	gatgggcgca	tgaccttgtt	300
gcagcgcgtc	agcctgacca	ccgatcgcgg	cacgctgagc	ctgctcagcc	cccatggccc	360
gttgttgtgg	acgcctgcgg	tggcggtacc	ggcagaggat	gacgacggcc	tgttcgcgtt	420
gttcgac						427

# WO 2007/039319 PCT/EP2006/010132 218/763

<211> 4 <212> D	05 17 NA seudomonas ae	ruginosa				
	05 gg tttaccgaca	acctggaatt	geggeggege	aaccgtgcca	cggtcgagca	60
ctacatgc	gc atgaaggggg	ccgaacggtt	gcagcggcac	agcctgttcg	tcgaggacgg	120
ctgcgccg	gc aactggacca	cggaaagcgg	cgaacccctg	gttttccggg	gccatgagag	180
cctcaggc	gg ctcgccgagt	ggctcgagcg	ctgcttcccc	gactgggagt	ggcacaacgt	240
gcggatct	tc gagaccgagg	atccgaacca	cctctgggtc	gagtgcgacg	ggcgcggcaa	300
ggcgctgg	tc ccggggtatc	cgcagggcta	ttgcgagaac	cactacatcc	attecttega	360
actcgaga	ac ggccggataa	aacgcaatcg	cgagttcacg	aacccgatgc	agaaatt	417
<211> 3 <212> D <213> P	06 56 NA seudomonas ae	ruginosa				
	06 ta atgctattcc	ccaaggtttc	gaagacgccg	tggagttgcg	caggaagaat	60
cgcgagac	gg tggtcaagta	tatgaacacc	aaaggccagg	atcgcctgcg	ccgccatgaa	120
cttttcgt	cg aggacggctg	tggcggttta	tggaccaccg	ataccggctc	gcccatcgtc	180
attcgtgg	ca aggacaagct	ggccgagcac	gcggtgtggt	cgctgaaatg	cttcccggat	240
tgggagtg	gt acaacatcaa	ggtcttcgag	accgacgatc	ccaaccactt	ctgggtcgag	300
tgcgacgg	cc acggcaagat	cctcttcccc	gggtatcccg	agggttacta	cgagaa	356
<211> 6 <212> D	07 71 NA seudomonas ae	ruginosa				
11007	07 tg ttcgacttcc	annacacaca	castaccesa	at caccaca	acctgaccaa	60
						120
	ag agcgacgcgc					180
	ac tggtcctacg					
	cg gtgccctacc					240
getgegee:	tg accctgggca	acgacggcat	gageetgeeg	ggcaatccgc	aggacactgc	300

## WO 2007/039319 PCT/EP2006/010132 219/763

cgctgcggta ttccaggtgc agccgcggga agtcggcaat ccgcgcttct ataccgtgac	360
cagctatccg gtggtccagg aaagcggaga ggaactgggc cggaccctca acgacgaact	420
cgacgacctg ctcgacgcca acggccgcta cgccttcgag gtgcacggcc ccaacggctt	480
cttccgcgag ttccacggca acctgcatct cgccgcgcag atggcgcggc ccgaggtatc	540
ggtcacctat caacgcaacg gcaacctgca gttgaacatc cgcaatctcg gccgcctgcc	600
gtgcaggcgt gacggtgacg ccgaacccgg cctatacccg ggaggcagcc gtcgctatga	660
actcgaaccg a	671
<210> 508 <211> 304 <212> DNA <213> Pseudomonas aeruginosa	
<400> 508	60
gtgttccagg tgttcgacct gctcgacagc gagaacccgc cgaaacgcta caccgtcggc	60
gegegeaage geetgeaega eagetteeag ggegaegeea geggegaeta eeacetggaa	120
gtgcacggtc cgaacggttt cetecgggtc tttegeggca acetgeggeg egacetggeg	180
gacggcaagg cgccgctgcc ggaagtgcgg atcgactacg agccgctgtt cggcaacctg	240
cgcgtgcaac tgatcaaccg tggccgccat ccggtcaagc tgacggtcaa ggacaacgtc	300
tatc	304
<210> 509 <211> 302 <212> DNA <213> Pseudomonas aeruginosa	
<400> 509 acaacctgga acagcaactc ggcgagttcg gccgcaacgc cgggcagatg tccgagatcg	60
aacgcaagca ggccgccgaa ggtctgatcg aacagctcaa gcgcgaggtg gcggtcggcg	120
ccgatccgcg ccagacettc gaggagatcc agcgtctgac gccctatgtg gaggccgatg	180
ccaggegeeg egaggegete gaettegaga tetggatgge geteaaggae aacgeeteeg	240
tccagcagca agcgccgacg cctggcgagg aagagcaact gcgcgaatac gcgcaagagt	300
cg	302
<del></del> 2	302
<210> 510 <211> 722 <212> DNA	

## WO 2007/039319 PCT/EP2006/010132 220/763

<213> Pseudomonas aeruginosa	
<400> 510 gtcaagggtg ttgtctgccg tgccctgctg ggcgctggtc gcgaggtgcc ggagtgggac	60
gatatggttg cggaatacgc cgagcaattg ctgcaggagc accccgaagg ggttttcaac	120
ctggcgggat ggtcgctcgg cggcaacctg gcgatggatg tcgcggcccg gctggagcag	180
cgtgggcggc aggtggcttt cgtcggctgg atcgatgcac cggcaccggt cagggtcgaa	240
gcgttctgga acgagatcgg gccgacgccg gaggcagtcc cgaacctatc cgtgggcgag	300
atgcgggtgg aactgctcgg tgtcatgttt ccggagcggg ccgagcatat cgaacgggcc	360
tggtcatcga tctgctccgc cacgacggac gatgagcagc gctggacgag gatgagcgac	420
tgggcggaag cggagatcgg cgccgagttc gcgacactgc gcagcgaaat cgcacagagc	480
aacgaactgg aagtgtcctg ggagttgaaa cagatcctcg acgagcgcct gaaagcgatg	540
gattacccgc gtctgacggc gaaggtcagc ctctggtggg ccgcgcgcag caccaatgcc	600
atccagcgga gcgcggtgga gcgctcgatg gccgaggcga tcggggctga gcgtgtcgaa	660
ccggtgcggg tgctggatac ccggcacgac aagatcatcg accaccctga gtttgtgcag	720
ag	722
<210> 511 <211> 616 <212> DNA <213> Pseudomonas aeruginosa	
<211> 616 <212> DNA	60
<211> 616 <212> DNA <213> Pseudomonas aeruginosa <400> 511	60 120
<211> 616 <212> DNA <213> Pseudomonas aeruginosa <400> 511 aagteggtae tggagteett ggtggaggeg etgaaecaga etgegetggg egatgeetae	
<211> 616 <212> DNA <213> Pseudomonas aeruginosa <400> 511 aagteggtae tggagteett ggtggaggeg etgaaecaga etgegetggg egatgeetae gagetegtgg gegtgateta egaegaegae geggagetge etegegaeca gggaaaaate	120
<211> 616 <212> DNA <213> Pseudomonas aeruginosa <400> 511 aagteggtae tggagteett ggtggaggeg etgaaecaga etgegetggg egatgeetae gagetegtgg gegtgateta egaegaegae geggagetge etegegaeca gggaaaaate aaggaetaeg gtttegeeta tegteeeggg eageaatggt tetateegge agaeetgeag	120 180
<pre>&lt;211&gt; 616 &lt;212&gt; DNA &lt;213&gt; Pseudomonas aeruginosa &lt;400&gt; 511 aagteggtac tggagteett ggtggaggeg etgaaccaga etgegetggg egatgeetac gagetegtgg gegtgateta egacgacgae geggagetge etegegaeca gggaaaaate aaggaetaeg gtttegeeta tegteeeggg eageaatggt tetateegge agaeetgeag gtgeaaggea agaeectgaa egacetettg eteagegtge egteeaceta eegteggtae</pre>	120 180 240
<pre>&lt;211&gt; 616 &lt;212&gt; DNA &lt;213&gt; Pseudomonas aeruginosa </pre> <pre>&lt;400&gt; 511 aagtcggtac tggagtcctt ggtggaggcg ctgaaccaga ctgcgctggg cgatgcctac gagctcgtgg gcgtgatcta cgacgacgac gcggagctgc ctcgcgacca gggaaaaatc aaggactacg gtttcgccta tcgtcccggg cagcaatggt tctatccggc agacctgcag gtgcaaggca agaccctgaa cgacctcttg ctcagcgtgc cgtccaccta ccgtcggtac ccgcggggta cccccgagca tgtggccggc aagagcgatt tcgagcgacg cctgcatgac</pre>	120 180 240 300
<pre>&lt;211&gt; 616 &lt;212&gt; DNA &lt;213&gt; Pseudomonas aeruginosa  &lt;400&gt; 511 aagteggtac tggagteett ggtggaggeg etgaaceaga etgegetggg egatgeetae gagetegtgg gegtgateta egacgacgae geggagetge etegegaeea gggaaaaate aaggaetaeg gtttegeeta tegteeeggg eageaatggt tetateegge agacetgeag gtgeaaggea agaceetgaa egacetettg eteagegtge egteeaceta eegteggtae eegeggggta eeeceegagea tgtggeegge aagagegatt tegagegaeg eetgeatgae accetggtgg agetgggege egatgtggtg gtattggaeg ggeteetggt eateetegat</pre>	120 180 240 300 360
<pre>&lt;211&gt; 616 &lt;212&gt; DNA &lt;213&gt; Pseudomonas aeruginosa  &lt;400&gt; 511 aagtcggtac tggagtcctt ggtggaggcg ctgaaccaga ctgcgctggg cgatgcctac gagctcgtgg gcgtgatcta cgacgacgac gcggagctgc ctcgcgacca gggaaaaatc aaggactacg gtttcgccta tcgtcccggg cagcaatggt tctatccggc agacctgcag gtgcaaggca agaccctgaa cgacctcttg ctcagcgtgc cgtccaccta ccgtcggtac ccgcggggta cccccgagca tgtggccgc aagagcgatt tcgagcgacg cctgcatgac accctggtgg agctgggcgc cgatgtggtg gtattggacg ggctcctggt catcctcgat gagctggtac gcccgggcgc tccgttcgca cggcggatca tgaatatcca tcctggcgtg</pre>	120 180 240 300 360 420

## WO 2007/039319 PCT/EP2006/010132 221/763

ttccatgatg tgctga	616
<210> 512 <211> 741 <212> DNA <213> Pseudomonas aeruginosa	
<400> 512	
cttcagttcc gagatgccga gaaaaaactt gaggcgtcgg tacaagccga gctggataag	60
gctgatgccg ctcttggtcc ggcaaagaat cttgcaccat tggacgtcat caaccgcagt	120
ctgaccatcg ttggaaacgc cctccagcaa aagaatcaaa aactactgct gaatcagaag	180
aagattacca gcctgggtgc aaagaatttc cttacccgta cggcggaaga gatcggtgaa	240
caageggtge gagaaggeaa tattaaeggg eetgaageet atatgegett eetegaeagg	300
gaaatggaag gtctcacggc agcttataac gtaaaactct tcaccgaagc gatcagtagt	360
ctccagatcc gcatgaatac gttgaccgcc gccaaagcaa gtattgaggc ggccgcagca	420
aacaaggege gtgaacaage ageggetgag gecaaaegea aageegaaga geaggeeege	480
cagcaagcgg cgataagagc tgccaatacc tatgccatgc cggccaatgg cagcgttgtc	540
gccaccgccg caggccgggg tctgatccag gtcgcacaag gcgccgcatc ccttgctcaa	600
gegateteeg atgegattge egteetggge egggteetgg etteageace eteggtgatg	660
gccgtgggct ttgccagtct gacctactcc tcccggactg ccgagcaatg gcaggaccaa	720
acgcccgata gcgttcgtta c	741
<210> 513 <211> 211 <212> DNA <213> Pseudomonas aeruginosa	
<400> 513	
atatacggaa aaagagtttc ttgagtttgt tgaagacata tacacaaaca ataagaaaaa	60
gttccctacc gaggagtete atattcaage egtgettgaa tttaaaaaac taaeggaaca	120
cccaagegge teagacette tttactaece caaegaaaat agagaagata geecagetgg	180
agttgtaaag gaagttaaag aatggcgtgc t	211
<210> 514 <211> 589 <212> DNA <213> Pseudomonas aeruginosa	

<400> 514	
tatacggctt cagactttcc tcagaagtca gagtcgatgt accagagtca gttgctggcc	60
agccgaaaat tctatggaga gttcctggat cgccatatga gtgagctggc caaagcgtac	120
agcgccgata tctataaggc gcaaatcgct atcttgaaac aaacgtctca agagctggag	180
aataaagccc ggtcattgga agcagaagcc cagcgagccg ctgctgaggt ggaggcggac	240
tacaaggcca ggaaggcaaa tgtcgagaaa aaagtgcagt ccgagcttga ccaggctggg	300
aatgetttge etcaactgae caatecaaeg ecagageagt ggettgaaeg egetaeteaa	360
ctggttacgc aggcgatcgc caataagaag aaattgcaga ctgcaaacaa tgccttgatt	420
gccaaggcac ccaatgcact ggagaaacaa aaggcaacct acaacgccga tctcctagtg	480
gatgaaatcg ccagcctgca agcacggctg gacaagctga acgccgaaac ggcaaggcgc	540
aaggaaatcg ctcgtcaagc ggcgatcagg gctgccaata cttatgcca	589
<210> 515 <211> 710 <212> DNA <213> Pseudomonas aeruginosa	
<400> 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca	60
<400> 515	60 120
<400> 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca	
<400> 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag	120
<pre>&lt;400&gt; 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag tcccattcag aactcaagaa aaacctgaaa aatgaaaccc tgaaggaggt tgatgaactc</pre>	120 180
<pre>&lt;400&gt; 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag tcccattcag aactcaagaa aaacctgaaa aatgaaaccc tgaaggaggt tgatgaactc aagagtgaag cggggttgcc aggtaaagcg gtcagtgcca atgacatccg cgatgaaaag</pre>	120 180 240
<pre>&lt;400&gt; 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag tcccattcag aactcaagaa aaacctgaaa aatgaaaccc tgaaggaggt tgatgaactc aagagtgaag cggggttgcc aggtaaagcg gtcagtgcca atgacatccg cgatgaaaag agtatcgttg atgcactcat ggatgccaaa gcaaaatcgc taaaggccat tgaggatcgc</pre>	120 180 240 300
<pre>&lt;400&gt; 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag tcccattcag aactcaagaa aaacctgaaa aatgaaaccc tgaaggaggt tgatgaactc aagagtgaag cggggttgcc aggtaaagcg gtcagtgcca atgacatccg cgatgaaaag agtatcgttg atgcactcat ggatgccaaa gcaaaatcgc taaaggccat tgaggatcgc ccggccaatc tttatacggc ttcagacttt cctcagaagt cagagtcgat gtaccagagt</pre>	120 180 240 300 360
<pre>&lt;400&gt; 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag tcccattcag aactcaagaa aaacctgaaa aatgaaaccc tgaaggaggt tgatgaactc aagagtgaag cggggttgcc aggtaaagcg gtcagtgcca atgacatccg cgatgaaaag agtatcgttg atgcactcat ggatgccaaa gcaaaatcgc taaaggccat tgaggatcgc ccggccaatc tttatacggc ttcagacttt cctcagaagt cagagtcgat gtaccagagt cagttgctgg ccagccgaaa attctatgga gagttcctgg atcgccatat gagtgagctg</pre>	120 180 240 300 360 420
<pre>&lt;400&gt; 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag tcccattcag aactcaagaa aaacctgaaa aatgaaaccc tgaaggaggt tgatgaactc aagagtgaag cggggttgcc aggtaaagcg gtcagtgcca atgacatccg cgatgaaaag agtatcgttg atgcactcat ggatgccaaa gcaaaatcgc taaaggccat tgaggatcgc ccggccaatc tttatacggc ttcagacttt cctcagaagt cagagtcgat gtaccagagt cagttgctgg ccagccgaaa attctatgga gagttcctgg atcgccatat gagtgagctg gccaaagcgt acagcgcga tatctataag gcgcaaatcg ctatcttgaa acaaacgtct</pre>	120 180 240 300 360 420 480
<pre>&lt;400&gt; 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag tcccattcag aactcaagaa aaacctgaaa aatgaaaccc tgaaggaggt tgatgaactc aagagtgaag cggggttgcc aggtaaagcg gtcagtgcca atgacatccg cgatgaaaag agtatcgttg atgcactcat ggatgccaaa gcaaaatcgc taaaggccat tgaggatcgc ccggccaatc tttatacggc ttcagacttt cctcagaagt cagagtcgat gtaccagagt cagttgctgg ccagccgaaa attctatgga gagttcctgg atcgccatat gagtgagctg gccaaagcgt acagcgcga tatctataag gcgcaaatcg ctatcttgaa acaaacgtct caagagctgg agaataaagc ccggtcattg gaagcagaag cccagcgagc cgctgctgag</pre>	120 180 240 300 360 420 480 540
<pre>&lt;400&gt; 515 atccagtata ttcctgctcg atcaagctac ggtactccac catttgtccc accaggacca agtccgtatg tcggtactgg aatgcaggag tacaggaagc taagaagtac gcttgataag tcccattcag aactcaagaa aaacctgaaa aatgaaaccc tgaaggaggt tgatgaactc aagagtgaag cggggttgcc aggtaaagcg gtcagtgcca atgacatccg cgatgaaaag agtatcgttg atgcactcat ggatgccaaa gcaaaatcgc taaaggccat tgaggatcgc ccggccaatc tttatacggc ttcagacttt cctcagaagt cagagtcgat gtaccagagt cagttgctgg ccagccgaaa attctatgga gagttcctgg atcgccatat gagtgagctg gccaaagcgt acagcgcga tatctataag gcgcaaatcg ctatcttgaa acaaacgtct caagagctgg agaataaagc ccggtcattg gaagcagaag cccagcgagc cgctgctgag gtggaggcgg actacaaggc caggaaggca aatgtcgaga aaaaagtgca gtccgagctt</pre>	120 180 240 300 360 420 480 540

<210> 516 <211> 752

<212> DNA

## WO 2007/039319 PCT/EP2006/010132 223/763

<213> Pset	udomonas ae:	ruginosa				
<400> 516	gaagaaattg	cagactgcaa	acaatocott	gattgccaag	acacccaata	60
cegecaacaa	gaagaaaccg	cagactgcaa	acaacycccc	gactgccaag	gcacccaacg	00
cactggagaa	acaaaaggca	acctacaacg	ccgatctcct	agtggatgaa	atcgccagcc	120
tgcaagcacg	gctggacaag	ctgaacgccg	aaacggcaag	gcgcaaggaa	atcgctcgtc	180
aagcggcgat	cagggctgcc	aatacttatg	ccatgccagc	caatggcagc	gttgtcgcca	240
ccgccgcagg	ccggggtctg	atccaggtcg	cacaaggcgc	cgcatccctt	gctcaagcga	300
tctccgatgc	gattgccgtc	ctgggccggg	tcctggcttc	agcaccctcg	gtgatggccg	360
tgggctttgc	cagtctgacc	tactcctccc	ggactgccga	gcaatggcag	gaccaaacgc	420
ccgatagcgt	tcgttacgcc	ctgggcatgg	atgccgctaa	attggggctt	cccccaagcg	480
taaacctgaa	cgcggttgca	aaagccagcg	gtaccgtcga	tctgccgatg	cgcctgacca	540
acgaggcacg	aggcaacacg	acgacccttt	cggtggtcag	caccgatggt	gtgagcgttc	600
cgaaagccgt	tccggtccgg	atggcggcct	acaatgccac	gacaggcctg	tacgaggtta	660
cggttccctc	tacgaccgca	gaagcgccgc	cactgatect	gacctggacg	ccggcgagtc	720
ctccaggaaa	ccagaaccct	tcgagtacca	ct			752
	udomonas aeu	ruginosa				
<400> 517 atcgttctgg	tcttccttgc	agcgttggtg	tggatgctga	gtgcaggcag	tatctccggc	60
ggctgggggg	gggcgatgct	gggtgcaggt	tctggcgtgg	cactgttagg	gttcctggat	120
gaccatgggc	acattgctgc	gcgttggcgg	ctgctcggcc	atttctcagc	agcgatatgg	180
atcttgctgt	ggacgggtgg	tttcccgccg	ctggatgtgg	ttgggcatgc	tgtcgactta	240
ggatggctgg	gccacgtatt	ggcagttttc	tatttggtat	gggtgctgaa	cctttataac	300
ttcatggatg	gcattgatgg	tattgccagt	gtcgaggcca	ttggtgtctg	tgtaggaggg	360
gccctgatct	actggcttac	agggcatgtc	gcgatggttg	gtatccctct	gttgctggcg	420
tgcgcggtcg	ccggcttcct	gatctggaac	ttccctccag	ctcgaatctt	catgggtgat	480
gcggggagtg	gttttcttgg	tatggttatt	ggtgcactag	ctattcaggc	tgcatggacc	540
gccccctcgc	tgttctggtg	ctggttgata	ttgctgggag	tgttcatcgt	tgatgcaacc	600

## WO 2007/039319 PCT/EP2006/010132 224/763

tatactctga	tccgccggat	cgccagaggg	gagaaattct	atgaggcgca	tcgcagccac	660
gcttatcagt	ttgcctcgcg	tcgttatgct	agccatctgc	gggttacctt	gggtgttctg	720
gctatcaaca	ctctttggt					739
<210> 518 <211> 756 <212> DNA <213> Pset	udomonas aei	ruginosa				
<400> 518	tatoggtttg	caagggggtg	caaatacata	tegagegest	taggaggat	60
		caagggcctg				
cccgggcgca	gcacggtgat	gctggtcaac	ggcgcgatgg	cgaccaccge	ctcgttcgcc	120
cggacctgca	agtgcctggc	cgaacatttc	aacgtggtgc	tgttcgacct	gcccttcgcc	180
gggcagtcgc	gtcagcacaa	cccgcagcgg	gggttgatca	ccaaggacga	cgaggtggaa	240
atcctcctgg	cgctgatcga	gcgcttcgag	gtcaatcacc	tggtctccgc	gtcctggggc	300
ggtatctcca	cgctgctggc	gctgtcgcgc	aatccgcgcg	gcatccgcag	ctcggtggtg	360
atggcattcg	cccctggact	gaaccaggcg	atgctcgact	acgtcgggcg	ggcgcaggcg	420
ctgatcgagc	tggacgacaa	gtcggcgatc	ggccatctgc	tcaacgagac	cgtcggcaaa	480
tacctgccgc	cgcgcctgaa	agccagcaac	catcagcaca	tggcttcgct	ggccaccggc	540
gaatacgagc	aggcgcgctt	tcacatcgac	caggtgctgg	cgctcaacga	tcggggctac	600
ctggcttgcc	tggagcggat	ccagagccac	gtgcatttca	tcaacggcag	ctgggacgaa	660
tacaccaccg	ccgaggacgc	ccgccagttc	cgcgactacc	tgccgcactg	cagtttctcg	720
cgggtggagg	gcaccgggca	tttcctcgac	ctggag			756
	udomonas aei	ruginosa				
<400> 519 aacgctttct	cgatcagggc	agccggccgc	tggtgttcac	ccagggctcg	accgaacacc	60
tgcagggcga	cttctacgcc	atggccctgc	gcgcgctgga	acgcctcggc	gcgcgtggga	120
tcttcctcac	cggcgccggc	caggaaccgc	tgcgcggctt	gccgaaccac	gtgctgcagc	180
gcgcctacgc	gccactggga	gccttgctgc	catcgtgcgc	cgggctggtc	catccgggcg	240
gtatcggcgc	catgagcctg	gccttggcgg	cgggggtgcc	gcaggtgctg	ctgccctgcg	300

cccacaacca	gttcgacaat	accasscaac	taatecaact	caactacaaa	atacacctaa	360
_						
gcgtgccatt	gcgcgagcag	gagttgcgcg	gggcgctgtg	gcgcttgctc	gaggacccgg	420
ccatggcggc	ggcctgtcgg	cgtttcatgg	aattgtcaca	accgcacagt	atc	473
<210> 520 <211> 459 <212> DNA <213> Pse	udomonas <b>a</b> e	ruginosa				
<400> 520						
ttcgattact	acgcctatgg	cgtgcgccac	acgattccct	tcacccggcc	gaagaccgag	60
gtccatggca	cctatcccaa	ggcctggctg	gagcgatacc	agatgcagaa	ctacggggcc	120
gtggatccgg	cgatcctcaa	cggcctgcgc	tcctcggaaa	tggtggtctg	gagcgacagc	180
ctgttcgacc	agagccggat	gctctggaac	gaggctcgcg	attggggcct	ctgtgtcggc	240
gcgaccttgc	cgatccgcgc	gccgaacaat	ttgctcagcg	tgctttccgt	ggcgcgcgac	300
cagcagaaca	tctccagctt	cgagcgcgag	gaaatccgcc	tgcggctgcg	ttgcatgatc	360
gagttgctga	cccagaagct	gaccgacctg	gagcatccga	tgctgatgtc	caacccggtc	420
tgcctgagcc	atcgcgaacg	cgagatcctg	caatggacc			459
<210> 521 <211> 519 <212> DNA <213> Pse	udomonas ae:	ruginosa				
<400> 521	2+200+200	tatateggg	at aggregat	e22+222++	ant at tact a	60
	ataccttacc					
aaggggcgaa	aatcaaggat	ctgattaagc	gctatcagta	tattggttcg	caaatcccgg	120
cagcaatcat	gattcgtggt	gtgcaggaag	agatcaaaaa	atccacgaac	actgccttgg	180
ccaatgtggg	ggcaattgtc	gatggcgaac	tggcgtatct	tgctagccag	aaaaaggaaa	240
aattaaatcc	tgccgaggcg	acacccttgc	agatggcctc	tgctgaaaag	gccgcggcgg	300
tggaactgct	tgcgtccaaa	cagaaggaac	tggctgacgc	acgaaccatt	gcaaatgcat	360
tctttggcta	tgaccctctc	acggtcaatt	atgttaatgt	aatgaatgaa	atctacggcc	420
gccgcgaaga	taaagatttc	agtttcgaca	actggtcgaa	gtcttattca	gccgcacaaa	480
agatccgctt	gatcgaagcg	aaaatcagcg	tcctcaata			519

## WO 2007/039319 PCT/EP2006/010132 226/763

<211> 417 <212> DNA <213> Pseudomonas aeruginosa	
<400> 522 gtgcgctaca gctacacgcg ccaggcgcgc ggcagttggt cgctgaactg gctggtgccg	60
atcggccacg agaagcette gaacatcaag gtgttcatce acgaactgaa cgccggtaac	120
cageteagee acatgtegee gatetacace ategagatgg gegaegagtt getggegaag	180
ctggcgcgcg atgccacctt cttcgtcagg gcgcacgaga gcaacgagat gcagccgacg	240
ctcgccatca gccatgccgg ggtcagcgtg gtcatggccc aggcccagcc gcgccgggaa	300
aagcgctgga gcgaatgggc cagcggcaag gtgttgtgcc tgctcgaccc gctggacggg	360
gtctacaact acctcgccca gcagcgctgc aacctcgacg atacctggga aggcaag	417
<210> 523 <211> 573 <212> DNA <213> Streptococcus pneumoniae	
<400> 523 actettgget tgattttggg tgaetetaag etgataeetg ggteaggagt gaacattgaa	60
aagtateetg tgeaacagta teeaaatggt ggaaatggaa tteaaggaga aacaategtt	120
tttaatttta ttggtaggat attaaaagaa aaaggtatag atacttatct ggctgctgcc	180
caaattatta agagtcgata tcccaaaaca gagtttaata ttattggctt tatagaaccg	240
acagagagta attatgaact taaaatttgt gacttagaaa aaaaaggaat cgtttattat	300
ttgggacaac aaaaagatgc gatacctcat attacccgtt cccatgcaat tatccatccc	360
agtgtgtatg gtgaaggaat gagcaatgta ttactagaaa acgctagttc aggacgtgtt	420
ttaattacga cagataatcc aggttgcaaa gaaattgtta aagatagaga gacaggctat	480
atatttcaag ggggaaatgt tgaggaacta gtctctatat tggaagtttt tttaggtcta	540
gaaaatgaaa aacgaaaaga gatgggactt caa	573
<210> 524 <211> 535 <212> DNA <213> Streptococcus pneumoniae <400> 524	
aaatattgtt ggtttacttc gtgcaaatat ttgcttgata ttattaaaag tgtgtcgaaa	60
caaggatett actttteatt attttttaaa atttggaaag aatgtaaetg tegaacagga	120

## WO 2007/039319 PCT/EP2006/010132 227/763

atctaatgct aaattaatct taggaaaaaa gattagagta aacgccgggg gagtattgaa	180
agttagaaaa ggagcaaaac tcaagatttc tgatgatgta tttttgagta ataattgtat	240
gatagcttgt cgtaaataca tagatattaa atctggagta aaatgtggtc ctggagtact	300
tatatatgat catgactatg atgttagtgt tccaggtgga ttgaaagcaa aaaaatttaa	360
gacggcccca gttatgattg gagaaaatgt ttggattgga	420
gggagtgagt attggtgaga atagtgtggt tgcagcagga agtgttgtaa caaaggatat	480
tccagctgat actatattta ttcagaaacg tttatcaagg gagatgaaat tatga	535
<210> 525 <211> 691 <212> DNA <213> Streptococcus pneumoniae <400> 525	
<400> 525 ctaaagcatt tggagagatt gtactatgta gtcgttatga gaaggtggaa tcataccctg	60
aaggatatca taaagcgaac tttattaata aatttatccc tatagaaggt ctacatcagg	120
ttctatttgg tcaaaataaa aataagatta ttgaaggaat gattgatagc gacttaatag	180
ttgttcgtat tccgtctata attggatcaa aaactgcaga ctacgcattg aagataggta	240
agccgtatct gacagaaata atgggggatg cttgggattc ttactggtat catagtttaa	300
agggaaaatt attageteea tatatataeg eeaaaaetaa ateaattgta aaaaaegeta	360
attattgcat atacgtgaca gaaaaatatt tacaagatag atatcctaat attaaatcta	420
atategttge ttcaaatgtt aatattaeet etgtagagaa tagatetttg aagageegte	480
tttataagtt gaaaaaattt aatcctcaaa aaatttcaat aatgacaaca gcatctgtga	540
atgtacgagc caagggccat agatttgtat tggaagcaat gaagagatta gaaatacaag	600
gtattttgtt ggattattat ttagcaggtg atggtgatca aagtttctta aaaaagaaag	660
cagaggaatt gggagtagcg aatagaatcc a	691
<210> 526 <211> 509 <212> DNA <213> Streptococcus pneumoniae <400> 526	
tgtaggaact gatttggatg attctgagtt aacaaaaaga gcatggcagt ttgcagatct	60
acttaaaggt ggagctatta aggaagaggt teegatactg gttgttgett ttaatgaage	120

## WO 2007/039319 PCT/EP2006/010132 228/763

agaggttgca	aaattgttta	gtaacactta	cttggcaact	cgcgtacgtt	attttaatga	180
gatagataca	tatagcgagg	taaaagggct	taatcccaag	acaattattg	atattgtttg	240
ttatgatcct	agaattggat	catactataa	taaccctagc	tttggttacg	gagggtattg	300
cttaccaaaa	gacacaaagc	aattgaaagc	aagttttagg	gatgttcctg	aaaatctgat	360
tacagctgtg	gtgcaatcta	ataaaacaag	aaaagattat	atagctggag	ctattctagc	420
taaacaacct	agtgttgtag	gtatttatag	attaattatg	aaatctgatt	ctgataattt	480
tcgttctagt	gctgttaagg	gagttatgg				509
	eptococcus p	oneumoniae				
	taaaccatcc	gaaattattg	tggttattaa	cggcccaaaa	aacgagagac	60
ttgtaaaact	ttgtcatgat	tttaatgaaa	aattagaaaa	taatatgact	ccaattcaat	120
gttattacac	tcctgttcct	ggcaagagaa	atgctatcct	ctttgggctg	gagcatgtgg	180
attcgcagag	tgatattaca	gttctagtag	atagtgatac	agtatggacg	cctagaacct	240
tgagtgagtt	gctgaagcct	tttgtttgcg	ataaaaaaat	aggtggggta	acgacaagac	300
aaaaaattct	tgaccctgag	cgtaatctcg	tgacaatgtt	tgctaacttg	ttagaggaaa	360
ttagggcaga	aggaactatg	aaagcaatga	gtgtgactgg	taaagtaggg	tgcttacctg	420
gtcgaacaat	tgcttttaga	acagagattc	tcagagagtg	tatacatgag	tttatgaatg	480
agactttcat	gggatttcat	aaggaagttt	ctgatgatag	aagtcttaca	aatttgactt	540
taaaaaaagg	ctataaaact	gttatgcagg	atacttctgt	tgtgtataca	gatgctccta	600
caagttggaa	aaagttcatt	agacagcaac	taaggtgggc	agaaggttct	cagtataaca	660
atctaaagat	gactccttgg	atgattagaa	atgcc			695
	eptococcus p	oneumoniae				
<400> 528 tcgtcatctg	tactggtctg	ggcttgcttg	taggaggatt	tttcctgcta	aaaccagctc	60
cacaaacacc	tgtcaaagag	acgaatttgc	aggctgaagt	cgcagctgtt	tccaaggatt	120

## WO 2007/039319 PCT/EP2006/010132 229/763

tggtatccga aaaggaagtg aacaaggaag aaaaggaaga accccttgaa caagatctaa	180
tcacagtaga tgtcaaaggt gctgtcaaat cgccagggat ttatgacttg cctgtaggta	240
gtcgaatcaa tgatgctgtt cagaaggctg gtggcttgac agagcaagca gacagcaagt	300
cgctcaatct agctcagaaa gttagtgatg aggctctggt ttacgttcct actaagggag	360
aagaagcagt tagccaacag actggtttgg ggacagcttc ttcaataagc aaggaaaaga	420
aggtcaatct caacaaggcc agtctggaag aactcaagca ggtcaaggga ctgggaggaa	480
aacgagctca ggacattatc gaccatcgtg aggcaaatgg caagttcaag tcagtagacg	540
ag	542
<210> 529 <211> 545 <212> DNA <213> Streptococcus pneumoniae	
<400> 529 gtggaaatct gctggtaaag ttctaataat ttgcggaatc tttggatttt ggtttgtttt	60
tcaaaattgg caacagagtc aagcgagtca aaatctggcg gattctgttg aaagggtacg	120
gattotgoot gacactgtta aggtoaatgg tgatagtotg tootttogog gcaaggotga	180
tggacgcatt tttcaagtct attataaact ccagtccgag gaggagaaag aagcctttca	240
agetttaace gacetgeatg agataggact agaagggaag ettteggage cagaagggea	300
gagaaatttt ggtggcttta attaccaagc ctatctgaag actcagggaa tttaccagac	360
totcaatato aaaaaaatoo agtoaottoa aaagattggo agttgggata taggagaaaa	420
cttgtccagt ttacgtcgaa aggctgtggt ttggattaag acgcactttc cagaccctat	480
gcgcaattac atgacaggac tettgetggg acatetggac acegaetttg aggagatgaa	540
tgagc	545
<210> 530 <211> 402	
<212> DNA	
<400> 530 gattatogga gaaattogtg acagogagao ggogogtgoa gtggtoagag otagtttgao	60
aggtgcgaca gtcttttcaa ccattcacgc caagagtatc cgaggtgttt atgagcgtct	120
gctggagttg ggtgtgagtg aagaagaatt ggcagttgtt ctgcaaggag tctgctacca	180

gagattaatc	gggggaggag	gaatcgttga	ctttgcaagc	agagattatc	aagaacacca	240
agcagccaag	tggaatgagc	aaattgacca	gcttcttaaa	gatggacata	tcacaagtct	300
tcaggctgag	acggaaaaaa	ttagctacag	gctaagcaaa	aaaatatcat	caccctattt	360
aacaatctct	tttctagcgg	ttttcatctg	gtggagacta	tc		402
<210> 531 <211> 463 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 531 tggacaagca	gtgtgtgacc	cagatgcgtg	tgggcttgtc	tcaggggaaa	tcattctcag	60
aaatgatgga	aagtttggga	tgttcaagtg	ctattgtcac	tcagttatcc	ctagctgaag	120
ttcatggcaa	tctccacctg	agtttgggaa	agatagaaga	atatctggac	aatctggcta	180
aggtcaagaa	aaaattgatt	gaagtagcga	cctatccctt	gattttgctg	ggttttcttc	240
tcttaattat	gctggggcta	cggaattacc	tgctcccaca	actggatagt	agcaatattg	300
ccacccaaat	catcggtaat	ctgccccaaa	tttttctagg	catggtaggg	cttgtttccg	360
tgcttgccct	tttagcactc	actttttata	aaagaagttc	taagatgagt	gtcttttcta	420
tcttagcacg	ccttcccttt	attggaatct	ttgtgcagac	cta		463
<210> 532 <211> 322 <212> DNA <213> Stree	eptococcus p	oneumoniae				
aaaaatgatg	acattcttga	aaaaagctaa	ggttaaagct	tttacattgg	tggagatgtt	60
ggtggtcttg	ctgattatca	gcgtgctttt	cttgctcttt	gtacctaatc	tgaccaagca	120
aaaagaagca	gtcaatgaca	aaggaaaagc	agctgttgtt	aaggtggtgg	aaagccaggc	180
agaactttat	agcttagaaa	agaatgaaga	tgctagccta	agaaagttac	aagcagatgg	240
acgcatcacg	gaagaacagg	ctaaagctta	taaagaatac	catgataaaa	atggaggagc	300
aaatcgtaaa	gtcaatgatt	aa				322
<210> 533 <211> 380 <212> DNA <213> Stre	eptococcus p	oneumoniae				

# WO 2007/039319 PCT/EP2006/010132 231/763

<400> 533 atgctggaaa gtctcttggt tttgggactt gtgagtatcc ttgccttggg cttgtccggc	60
totgtocagt coactttttc agoggtagag gaacagattt totttatgga gtttgaagaa	120
ctctatcggg aaacccaaaa acgcagtgta gctagtcaac aaaagactag titgaacttg	180
gatgggcaga tgattagcaa tggcagtcaa aagttgacag ttcctaaagg aattcaggca	240
	300
ccatcaggcc aaagtattac atttgaccga gctgggggca attcgtccct ggctaaggtt	
gaatttcaga ccagtaaagg agcgattcgc tatcaattat atctaggaaa tggaaaaatt	360
aaacgcatta aggaaacaaa	380
<210> 534 <211> 547 <212> DNA <213> Streptococcus pneumoniae	
<400> 534 ggctgtagga gacaatgaag ttcgtctctt gtctttgctt gagattgcca gtcaacgtag	60
cagtctggtg attttgacag gcggtttggg ggcaactgag gacgacctaa ccaaacaaac	120
cctagctaaa tttttaggga aagcattagt ctttgatcct caggctcagg agaagttgga	180
tatetttttt geeetgegae cagaetatge eegaacaeeg aataaegaaa gacaagetea	240
aattgtagaa ggagcgattc cactgccaaa cgaaacagga ctggctgttg gaggaaaatt	300
agaagtagac ggagtgacct atgtcgtcct tccaggtccg ccaagtgaat tgaaacccat	360
ggtcttaaac caacttctac ccaagttgat gacagggagc aagctgtatt cccgagttct	420
tcgtttcttt gggattggcg agagccagtt ggttacgalt ttggctgatt taattgataa	480
tcagatcgat cctaccttgg ccccttatgc caagacagga gaagtcactc tacgtctgtc	540
aacaaag	547
<210> 535 <211> 520 <212> DNA <213> Streptococcus pneumoniae <400> 535	
ttgttagaga gacagaactt gaacgttctt cgatggttat actatacctt ctccactttt	60
ttgtattcta ttttagttcc tatggtaaca aatttttaa aagagggtac ctagttgagt	120
ttaatagtac tataagatat attttttct ttgcaatagc tataagtgta ttaaactttt	180

# WO 2007/039319 PCT/EP2006/010132 232/763

ttatagegga aeggtttagt atetetagaa gaggaatggt ataettetta aetttagaag	240
gaatateett ataettgtta aatttettag taaagaaata ttggaageat gtgttttta	300
atccaaaaaa tagcaagaaa attttactgt taacagtaac ggaaaatata gaaaaagttc	360
ttgataaatt gctagaatct gatgaacttt catggaaact ggtagcagta agtgttttgg	420
ataaatctga ttttcaacat gataaaatac ctgtaattga aaaggaaaaa attattgaat	480
ttgcaacgca tgaagttgtg gatgaggtgt ttgtcgatct	520
<210> 536 <211> 210 <212> DNA <213> Streptococcus pneumoniae	
<400> 536 aatattttat ccatgttatt atcctactaa tcgtaatcta aaaaatctta ttaaaaatac	60
gattettget ttcaaaattt tgagaaagga acgeeetgat attategtet cateagggge	120
agctgtagca gttcctttct tttatctagg gaaaatattt ggtgctaaga cagtctatat	180
agaagtattt gatagaattg atgctccgac	210
<210> 537 <211> 405 <212> DNA <213> Streptococcus pneumoniae	
tgagggattt attcaggatg atgttttat tcaaacagga tactctaatt atgttccaaa	60
attttgtaaa tgggaaaaat taatatctta tgaaaaaatg aatcaattga ttaaggaatc	120
agatattate attacceatg geggtecage tacgtttatg geagttattg etaaaggtaa	180
aaatccaata attgttccgc ggctaaaaaa atttggtgag catgtaaatg atcaccagat	240
gcaatttgta aaaataacga aagaaatata caatttaata gttatagatg atatttcaga	300
cttacattta attcttcata attttaagga caaacatttt gaaacttatt tgaataacga	360
gagatttaat gtacgtttca atgtggaaat cagtaacctt tttaa	405
<210> 538 <211> 622 <212> DNA <213> Streptococcus pneumoniae	
<400> 538	

## WO 2007/039319 PCT/EP2006/010132 233/763

acggcgccac	ggaccaccac	acaccccaca	cccacaacac	ctaaccccc	120
ttggctgttc	aagtgttatt	ttcagatttg	agtaaagcat	ttaattggct	180
ttttttata	attattattt	gaaaatgcca	atcaatattg	acaggataaa	240
tattataatt	ttactatctt	agttgtttt	gtcggtttat	tctatataca	300
aatgtaattt	tgtttggaag	aagtttgtta	gactgggacg	gatttacatt	360
tatggtgtaa	gatatacagg	ttttttagaa	tacgcaactt	taaatggtca	420
tttttattac	cgttaattag	attgtttaga	tttagatttt	ttacacaaac	480
gcttttcttc	tagaggtttt	ggtactaagc	aaatctagaa	tagcgattgt	540
atatatatag	catttgcagt	agtcaatgag	attaattcaa	acaataaatg	600
attttctgtc	ca				622
	oneumoniae				
caatacaaag	cagatcgtta	ttattgataa	tttttctaat	aacggtacgg	60
acaagagctg	tatgagtcag	attcagagat	tgatgtcttg	attaaccatg	120
tttcgctcga	ggtaataatg	tagcatatca	gtttgctaag	gaaaagtaca	180
tatggttatc	atgaataatg	atattgagat	agaaacagaa	gagtttgaaa	240
agatatctat	cggaaggaaa	aattccattt	gttaggacca	gatatctttt	300
tcagcttcac	caaaacccaa	aacggttgac	gcattatact	tatgaagagg	360
caatgaaaaa	tttaagaaag	ggagccaagt	tagtctagca	ttaaaaatta	420
gaagtctagt	aaagttcttc	ggacagcaat	ctatcaaaat	aggcgtaaaa	480
agactataga	aaacaggtag	aaaacccaat	tcttcatggt	tcgtttattg	540
agatttaatt	gagaaagagg	agtatgcttt	taatcccaat	accttcttct	600
agagatatta	gattatgaag	ctgagttaaa	aggatataag	agaatttata	660
taaggtcttg	caccatc				687
	ttggctgttc ttttttata tattataatt aatgtaattt tatggtgtaa tttttattac gcttttcttc atatatatag atttctgtc  eptococcus g caatacaaag acaagagctg tttcgctcga tatggttatc agatatctat tcagcttcac caatgaaaaa gaagtctagt agactataga agatttaatt agagatatta	ttggctgttc aagtgttatt ttttttata attattattt tattataatt ttactatctt aatgtaattt tgtttggaag tatggtgtaa gatatacagg tttttattac cgttaattag gctttcttc tagaggttt atatatatag catttgcagt atttctgtc ca  eptococcus pneumoniae  caatacaaag cagatcgtta acaagagctg tatgagtcag tttcgctcga ggtaataatg tatggttatc atgaataatg tatggttatc atgaataatg agatatctat cggaaggaaa tcagcttcac caaaacccaa caatgaaaaa tttaagaaag gaagtctagt aaagttcttc agactataga aaacaggtag agatttaatt gagaaagagg	tttggctgttc aagtgttatt ttcagatttg tttttttata attattattt gaaaatgcca tattataatt ttactatctt agttgtttt aatgtaattt tgtttggaag aagtttgtta tatggtgtaa gatatacagg ttttttagaa tttttattac cgttaattag attgttaga gcttttcttc tagaggtttt ggtactaagc atatatatag catttgcagt agtcaatgag attttctgtc ca  eptococcus pneumoniae  caatacaaag cagatcgtta ttattgataa acaagagctg tatgagtcag attcagagat tttcgctcga ggtaataatg tagcatatca tatggttatc atgaataatg atattgagat agatatctat cggaaggaaa aattccattt tcagcttcac caaaacccaa aacggttgac caatgaaaaa tttaagaaag ggagccaagt gaagtctagt aaagttcttc ggacagcaat agactataga aaacaggtag agtatgcttt agagatatta gattatgaag ctgagttaaa	ttggctgttc aagtgttatt ttcagatttg agtaaagcat tttttttata attattatt gaaaatgcca atcaatattg tattataatt ttactatctt agttgtttt gtcggtttat aatggtgtaa gatatacagg ttttttagaa tacgcaactt tttttattac cgttaattag attgttaga tttagatttt gctttcttc tagaggtttt ggtactaagc aaatctagaa atttcttgtc ca  eptococcus pneumoniae  caatacaaag cagatcgtta ttattgataa tttttctaat acaagagctg tatgagtcag attcagaga ttttcgctga ggtactaagc gtttcttg tttcgctga ggtactaagc gttttcttg tagagtcag attcagaga ttttcgctga ggtactaagc attcagaga ttttcgctga ggtactaagc attcagagat tgatgcttg tttcgctcga ggtaataatg tagcatatca gtttgctaag tatggttatc atgaataatg atattgagat agaaacagaa agatatctat cggaaggaaa aattccattt gttaggacca tcagcttcac caaaacccaa aacggttgac gcattatact caatgaaaa tttaagaaag ggagccaagt tagtctagca gaagtctagt aaagttcttc ggacagcaat ctatcaaaat agactataga aaacaggtag agaacccaat tcttcatggt agatttaatt gagaaaagagg agtatgcttt taatcccaat agagatatta gattatgaag ctgagttaaa aggatataag	eptococcus pneumoniae  caatacaaag cagatcgtta ttattgataa tttttctaat aacggtacgg acaagagctg tatgagtcag attcagagat tgatgtcttg attaaccatg tttcgctcga ggtaataatg tagcatatca gtttgctaag gaaaagtaca tatggttatc atgaataatg atattgagat agaaacagaa gagtttgaaa agatatctat cggaaggaaa aattccattt gttaggacca gatatcttt tcagcttcac caaaacccaa aacggttgac gcattatact tatgaagagg caatgaaaaa tttaagaaag ggagccaagt tagtctagca ttaaaaatta gaagtctagt aaagttcttc ggacagcaat ctatcaaaat aggcgtaaaa agactataga aaacaggtag aaaacccaat tcttcatggt tcgtttattg agatttaatt gagaaagagg agtatgcttt taatcccaat accttcttct agagatatta gattatgaag ctgagttaaa aggatataag agaatttata

gtctttttgt atggtgctat ggactattat atattctata tctataatat ttaattctct

<210> 540 <211> 534 <212> DNA

# WO 2007/039319 PCT/EP2006/010132 234/763

<213> Stre	eptococcus p	oneumoniae				
<400> 540	tetettaget	cttaattcgc	ctantctaaa	taccaagatt	aaagtgacgg	60
_		_	_			
	-	ttctggaaaa	_			120
ttctatatct	ttataggaga	gagattcata	atcttgcact	tagccatggt	tatacgggtt	180
caaattttca	gtggttcttt	agaaatgcta	ccagttatga	aggtgagcta	acagtgcgaa	240
cttcgattcg	ggtcctcatt	cgtatcattg	acgtatctgc	ttatattttt	ggatatactt	300
ttattaataa	tttcttcatt	tatagtcata	aacgctctaa	agatttactg	ctcttagttc	360
cattcttgat	ttttatttct	aaaaccttat	tatctggggg	tagattggat	attataaaaa	420
ttttaattgc	gtatgttgta	atggcctata	ttcagcaaaa	acgaaaagtt	ggctgggata	480
aggtcatctc	ccataaatat	atgagacttg	gttttgtagg	cttgatagct	ggga	534
<210> 541 <211> 450						
<212> DNA <213> Stre	eptococcus p	neumoniae				
	.peococcus p	one amonitae				
<400> 541 tccattagtc	aatgagttga	aaaaacacga	agatatggaa	acaattgtgt	gtgttactgg	60
acaacacaaa	gagatggtta	gtcctgtttt	agatttattt	ggtgttgtac	cagattatga	120
tttagaaatt	atgaaggcta	accaaacctt	gttctctatc	acaactagta	tcttggaaaa	180
gataaaacca	gttttagaga	aggaacaacc	agatattgtc	ctagttcacg	gtgacactac	240
gacaacttat	gcagcagcct	tggcagcatt	ctatttggga	attaaagtag	gacatgttga	300
agctggtttg	cgaacgtaca	atttacaaag	tccatttcct	gaagaattta	acaggcaatc	360
gacatcaatc	attgcaactt	accattttgc	tccaactgag	ttggctaaag	aaaatctctt	420
aaaagaaggt	agagagaatg	tttatgtgac				450
<210> 542 <211> 565						
<212> DNA						
<213> Stre	eptococcus p	oneumoniae				
<400> 542				<u> </u>		60
gaagcatacg	acaaacttcc	aagtgttttc	aaagatagaa	ttatcgctgg	gaaatatcag	60
gttcttactt	atcaatactg	tgatacgttg	cattgctact	ttcctcgact	attcctttta	120
gcagatgaaa	gaaaacgttt	gggcttgcca	cgaaatacca	atctaggatt	gcatttgatt	180

# WO 2007/039319 PCT/EP2006/010132 235/763

gatatcattc ctttagatgg agcaccaaat cattcggttt taagaaagat ttacttttgt	240
aaagtatact ggtatcgttt tttagcaagc ttaggaacaa cttatgttgg cgaccatgtg	300
gatatgcatt ccactaagca aaaactaatt attggtttct ttaaaaaact aggatttgca	360
aaactattte etcaaaatte tgtatacaga egettggata atetetatag aaagtatgat	420
tggaaaaagc agaagtatgc ggggactatc aatgcttctt tatttgctaa agaagttatg	480
ccagtagaga tttggggaga aggagtagag aagccttttg aggatacctt ctttaaagtt	540
ccaacggagt atgatcgcta cctga	565
<210> 543 <211> 662 <212> DNA <213> Streptococcus pneumoniae	
<400> 543 gtgatagtga acttgggatt gtctagtatt attcagtaca tttcttattt tatgttgatg	60
ttgtgtgtat ttttaacatt aattaagaat actctcaacg tgtttgcaaa tagaatcata	120
tattttttga ttatttcatt tttgtttatt attgggatta atttacaaaa tcttccatta	180
tcaagaaaga tttatttatc attctctatg ttaattattt ctagcttatc caccttaccg	240
ataaagctaa taaataatct cagtgattta agaaggatat catattactt attgcacagc	300
atatttttat ctgtattttt aggtttggtt tttaaaatat ctttagtaac agttgctgta	360
gagggaattg gcttttcata tggttttaat ggaggtttga ctcataaaaa tttttatgca	420
attacaattt tagtttccta tattctacta tatgtcagca gaaaatatga cgctaaacat	480
cagattgata gttttgtatt atggttagat ctttttttac ttttaatatc taatacgcga	540
acagtttata taatactagt tgttttttgg attattatta atagaaattt tataaataa	600
attaaaaaag agcatagact ggtagtgaca gcaacgacaa tagtcatctc tttactggcg	660
tt	662
<210> 544 <211> 380 <212> DNA <213> Streptococcus pneumoniae <400> 544	
agagcaaaaa cgctggtttc tcaacaggtc aaccttggtt ggcggttaat ccaaattacg	60
agatgatcaa cgtacaagaa gcgctggcaa atccagattc tattttctat acctatcaga	120

# WO 2007/039319 PCT/EP2006/010132 236/763

180

aaccygcoca	aaccogcaag	gagaacagec	ggccaaccog	agocgaoccc	gaaccgcccg	
atacggctga	taaggtcttt	gcttatatac	gtaaggatgg	cgaccgtcgc	ttcctagttg	240
tggctaactt	gtccaatgaa	gagcaagact	tgacagtaga	aggaaaagtc	aaatctgtct	300
tgattgaaaa	caccctagct	caagaagtct	ttgaaaaaca	aatcttagtt	ccatgggatg	360
ctttctgtgt	ggaattacta					380
<210> 545 <211> 610 <212> DNA <213> Streen	eptococcus p	oneumoniae				
<400> 545 acgaacagtg	gacctgatac	atggtccgat	tcttccctcg	ctcttaagct	tcacctttcc	60
aatcttgcta	tcaaatattt	ttcaacagct	ctataacact	gctgatgtct	tgattgttgg	120
acgatttctt	ggtcaagaat	ccttggctgc	agtaggagcg	acgacagcga	tttttgacct	180
gattgtaggc	tttacacttg	gtgttggcaa	tggcatgggg	attgtcattg	ctcgttatta	240
tggggctcgg	aatttcacta	aaatcaagga	agcagtagca	gccacctgga	ttttaggtgc	300
tcttttgagc	attctagtta	tgttgctggg	ctttcttggc	ttgtatcctc	tcttgcaata	360
cttagatact	cctgcagaaa	ttcttcctca	atcttatcaa	tatatttcta	tgattgtgac	420
ctgtgtaggt	gtcagctttg	cttataatct	ttttgcaggc	ttgttgcggt	ctattggtga	480
cagtctagca	gccctgggat	ttctgatttt	ctctgccttg	gttaatgtgg	ttctggatct	540
ctattttatt	acgcaattgc	atctgggagt	tcaatccgca	ggacttgcta	ccattatttc	600
gcaaggttta						610
<210> 546 <211> 546 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 546	taattatatc	aatgtcgata	aaaccacagg	tcagccaaca	ggatttattt	60
				cttcgctact		120
				gcgcttgatt		180
				aaagatgaac		240
				tactcaagaa		300
5 3 <b>5 ~</b>	J : = = = = = = = = = = = = = = = = = =	y - y 3 <b>00</b>	9 9 9		J	

aactggtcca aattcgcaag gagaatagct ggctaattcg agctgacttt gaattgcttg

# WO 2007/039319 PCT/EP2006/010132 237/763

aagcccaaca	agctctcttt	gctgctcaaa	aagagcacgg	tatcagcatg	tttggcggtg	360
taggatgttt	ccctatcctc	cttcaaatgc	ctttcttctc	tgctatctac	tttgctgccc	420
aacatactga	aggggttgct	caagcaagct	acctaggcat	tcctctaggt	tctccaagta	480
tgattttggt	tgcctgtgct	ggtgtccttt	actatcttca	atcgctcctt	tcacttcacg	540
gagtag						546
	eptococcus p	pneumoniae				
<400> 547 tgcaaaaggt	tagaatgatt	gcccaaggta	gggtacaggg	agtcggcttt	cgttggggtg	60
tttacagctt	ggcacttgaa	attggtggca	tcacaggtcg	agtatggaat	aacgacgatg	120
gcacagtgga	aatcttagcc	caagcagact	catctgctat	catggcaaaa	tttatccaag	180
aaatccgaaa	aggaccgaca	cctttttcaa	aagtaagcta	cttagatgtc	aaactaagca	240
actttcctcc	ctactctgac	tt				262
	eptococcus [	oneumoniae				
<400> 548 gttcggtaat	ccagttgaag	tcccttttga	acattgggaa	ctagaacatt	gaattccaat	60
tctccatccg	aagacttggc	ttcaatctgt	gaagctgagg	gaactaaatc	ctcgtttgaa	120
gcgtagtaaa	gggttacacg	gtaacggaca	cgcttgtttt	ggtccaaggc	tttacgcacc	180
ttgctttcat	agtagttttg	accagtcgaa	tactcggctt	gtgcctgatt	tgcccaggct	240
gtctgaacag	caatgttttt	aggattgctt	gttgaggcat	caaaaccatc	caaaccaccg	300
attaaggcat	agcctaacaa	atgacctcta	tcgactgcat	gggtataaga	gccctttaga	360
ttcttgacct	gatgccaacc	tggaggagtc	caagaagttg	aaccattccc	agtttcttta	420
cgattcttgt	actgacgagt	ggccttagac	aagagggcat	tagctacggt	tggaacagtt	480
tccttgccca	ctgtctttgt	tttattgtca	gcgtagggct	tacttgaaac	cttggcatct	540
agatttgttt	tattaccatt	gacgataaaa	gcacctgagc	cattccactc	cagactcccc	600
tttatttgac	tcttgactgc	gtctgttaa				629

# WO 2007/039319 PCT/EP2006/010132 238/763

<211> 3 <212> I	549 323 DNA Stre	eptococcus p	oneumoniae				
	549 att	ttagaagaac	tcttcccagg	ctacgaaaac	acgtggcgtt	cttcccaaga	60
gcctgcc	cgt	aaaggctatg	ctggaaccat	gttcctttat	aagaaagaac	ttacacctac	120
tatcagct	ttc	ccagaaatcg	gtgccccttc	taccatggac	ttggaaggtc	gtatcatcac	180
tctagaat	ttt	gatgcatttt	tcgtaaccca	agtttacact	ccaaacgctg	gtgacggtct	240
caaacgct	ttg	gaagaacgcc	aagtctggga	tgccaaatat	gctgagtatt	tggctgaact	300
agacaaaq	gaa	aaaccagtcc	ttg				323
<211> 2 <212> I	550 206 DNA Stre	eptococcus p	oneumoniae				
	999 550	ggattcagtt	agctgcaatt	aaaaaaattg	gtgttttgag	ggaagaacgt	60
ataagcc	cca	atcagctttg	gcatgcactg	gaaacagatt	atgccggaga	agaaggtaag	120
gtcattca	aag	aaatgttgat	tcatgatgca	cctaagtatg	gtaatgatga	tgattatgct	180
gacaaatt	tgg	ttactgctgc	ttatga				206
<211> 5 <212> 0	551 510 DNA Stre	eptococcus p	oneumoniae				
	551	tatgatggaa	aagattgctg	ttgctaagtc	aaggacggta	caacaacatc	60
	_			atgttctatg			120
							180
	-			atcctataac			240
				tagacctagt			
				caccagcatg			300
				aagatattaa			360
gtgaaaag	gat	gtatgaaacg	ttgttgacta	ctgaagaatg	tacgaatgcc	attgatttag	420

# WO 2007/039319 PCT/EP2006/010132 239/763

gcggctttta	tcgtgtgcct	agcgataatc	gagatcttaa	ctatgataag	tatttcaacg	480
aaggggatgc	caaacgcaat	cccttaatag				510
<210> 552 <211> 589 <212> DNA <213> Str	eptococcus )	oneumoniae				
<400> 552	acqaqataqq	actcgtccta	atttagagat	tggagagatt	tttcagtatg	60
		ttattagatg				120
	_	ccacagaatc	_		-	180
		attttagaaa				240
		ttagaaggcc				300
		ttctttgaat				360
		tatgggaagt				420
		gctcacgatt				480
		gatgatttga			ccggaaggaa	540
acceteateg	tiglaatela	gatggattac	aaatcttacc	tageceate		589
<210> 553 <211> 545 <212> DNA <213> Stre	eptococcus ]	oneumoniae				
<400> 553	ctattaasas	tastattaat	actactataa	ggaatattat	taatacttca	60
		tgatcttggt				
		taaaccagat				120
		caagcgttta				180
		cctgccggaa				240
tcagatgtta	acttagcata	ctctgaacat	gcacgtaagt	atttacatga	gtgtggttta	300
cctaaagagc	gcacatatgt	aacaggttct	cctatggcag	aagtgttaca	taaaaattta	360
tctgccattg	agtcttcaga	tatccatgaa	cgtttgggat	tgaaaaaagg	aggttatatc	420
ttactttcag	ctcaccgtga	ggaaaatatt	gatacagata	aaaattttat	ttctctcttt	480
acagcaatta	atcaattagc	tgaaaagtat	aatatgccaa	tcttatattc	ttgccatcct	540

agatc	545
<210> 554 <211> 250 <212> DNA <213> Streptococcus pneumoniae	
<400> 554 catatggtac atttgattta ttgcattatg gtcatatcaa tcttttgaaa cgtgctaaac	60
agctaggtga ttatttgatt gtagttgttt caagtgatga gtttaattta aaagaaaaga	120
ataaagtatg ttactttaac tacgaacaca gaaaaaattt agtagaagct attcgatatg	180
tcgatttagt aatccctgaa actagttggg aacagaaaaa gtcagatgtt aaagactacc	240
atattgacac	250
<210> 555 <211> 283 <212> DNA <213> Streptococcus pneumoniae	
<400> 555 ctcctagtgc cctatatctt tgaatttcct gcggatgatg ccctgcgtct caaggaaaga	60
	120
atgeetetet tagaggaagt gggegtettt etageagagt aeggagaaaa teaatttatt	
ctacgtgaac atcctatttg gatggcagaa gaagagattg aatcaggcat ctatgagatg	180
tgcgacatgc tccttttgac caaggaagtt tctatcaaga aataccgagc agagctggct	240
atcatgatgt cttgcaagcg atctatcaag gccaatcatc gta	283
<210> 556 <211> 284 <212> DNA <213> Streptococcus pneumoniae	
<400> 556 cttggtgcac agagtcctca aaaatcaatt tcagaacaaa cagcttatga aattgatgaa	60
gaggttcgtt cattattaaa tgaggcacga aataaagctg ctgaaattat tcagtcaaat	120
cgtgaaactc acaagttaat tgcagaagca ttattgaaat acgaaacatt ggatagtaca	180
caaattaaag ctctttacga aacaggaaag atgcctgaag cagtagaaga ggaatctcat	240
gcactatcct atgatgaagt aaagtcaaaa atgaatgacg aaaa	284
<210> 557	

<210> 557 <211> 627

# WO 2007/039319 PCT/EP2006/010132 241/763

<212> DNA <213> Str	eptococcus p	pneumoniae				
<400> 557	tggttatgtc	tttgaggaga	atggagtttc	tcgttatatc	ccagccaagg	60
	agaaacagca					120
ctcataagct	aggaactaag	aaaactgacc	tcccatctag	tgatcgagaa	ttttacaata	180
aggcttatga	cttactagca	agaattcacc	aagatttact	tgataataaa	ggtcgacaag	240
ttgattttga	ggctttggat	aacctgttgg	aacgactcaa	ggatgtctca	agtgataaag	300
tcaagttagt	ggaagatatt	cttgccttct	tagctccgat	tcgtcatcca	gaacgtttag	360
gaaaaccaaa	tgcgcaaatt	acctacactg	atgatgagat	tcaagtagcc	aagttggcag	420
gcaagtacac	agcagaagac	ggttatatct	ttgatcctcg	tgatataacc	agtgatgagg	480
gggatgccta	tgtaactcca	catatgaccc	atagccactg	gattaaaaaa	gatagtttgt	540
ctgaagctga	gagagcggca	gcccaggctt	atgctaaaga	gaaaggtttg	acccctcctt	600
cgacagacca	tcaggattca	ggaaata				627
<210> 558 <211> 784 <212> DNA <213> Str	eptococcus	oneumoniae				
<400> 558 gcatctctcg	ttatgtcttt	gcgaaagatt	taccatctga	aactgttaaa	aatcttgaaa	60
gcaagttatc	aaaacaagag	agtgtttcac	acactttaac	tgctaaaaaa	gaaaatgttg	120
ctcctcgtga	ccaagaattt	tatgataaag	catataatct	gttaactgag	gctcataaag	180
ccttgtttga	aaataagggt	cgtaattctg	atttccaagc	cttagacaaa	ttattagaac	240
gcttgaatga	tgaatcgact	aataaagaaa	aattggtaga	tgatttattg	gcattcctag	300
caccaattac	ccatccagag	cgacttggca	aaccaaattc	tcaaattgag	tatactgaag	360
acgaagttcg	tattgctcaa	ttagctgata	agtatacaac	gtcagatggt	tacatttttg	420
atgaacatga	tataatcagt	gatgaaggag	atgcatatgt	aacgcctcat	atgggccata	480
gtcactggat	tggaaaagat	agcctttctg	ataaggaaaa	agttgcagct	caagcctata	540
ctaaagaaaa	aggtatccta	cctccatctc	cagacgcaga	tgttaaagca	aatccaactg	600
gagatagtgc	agcagctatt	tacaatcgtg	tgaaagggga	aaaacgaatt	ccactcgttc	660

# WO 2007/039319 PCT/EP2006/010132 242/763

ataaggatca	ttaccataat	attaaatttg	cttggtttga	tgatcacaca	tacaaagctc	780
caaa						784
<210> 559 <211> 502 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 559 gaccattacc	actttattcc	ttacagcaag	ctttctgcct	tagaagaaaa	gattgccaga	60
atggtgccta	tcagtggaac	tggttctaca	gtttctacaa	atgcaaaacc	taatgaagta	120
gtgtctagtc	taggcagtct	ttcaagcaat	ccttcttctt	taacgacaag	taaggagctc	180
tcttcagcat	ctgatggtta	tatttttaat	ccaaaagata	tcgttgaaga	aacggctaca	240
gcttatattg	taagacatgg	tgatcatttc	cattacattc	caaaatcaaa	tcaaattggg	300
caaccgactc	ttccaaacaa	tagtctagca	acaccttctc	catctcttcc	aatcaatcca	360
ggaacttcac	atgagaaaca	tgaagaagat	ggatacggat	ttgatgctaa	tcgtattatc	420
gctgaagatg	aatcaggttt	tgtcatgagt	cacggagacc	acaatcatta	tttcttcaag	480
aaggacttga	cagaagagca	aa				502
<210> 560 <211> 462 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 560 tttcatttct	tatttcctcc	aaaatactct	cgggaacata	gcaggcaata	tcctgaccaa	60
acttcaaaag	ctctctaacg	cctgatgaac	tgatatagag	atgttcaggt	cgactatgta	120
aataaatagt	ctctatatca	gaagacagct	gatgattgta	gtaatcaaaa	ctggcttcat	180
attgcaaatc	cgacgcattc	ctcaaaccac	gcactagaca	agtagcaccc	aatctttttg	240
caacatcgac	caccaattca	tcatgagaag	ccacgacttc	aacattttcc	agatgtccca	300
aagccttttc	tagcccccgt	ttacgatttt	cgataggaag	aaatccttgt	ttgtggggat	360
taaaaaaaat	acccacataa	agcttatcaa	aaagtctgct	cgcccgttca	atgatatcca	420
gatgcccatt	tgtcatcgga	tcaaatgagc	ctgtgaataa	gc		462

<210> 561 <211> 508

<212> DNA <213> Streptococcus pneumoniae	
<400> 561 qatttctgta tgaggcagtt cgcgattgac tgcaaattta tcattgtttt cacagagtga	60
accaaccaca totaccgctt cagctggtcc atctggatgg gtcacgttgc taatatgatg	120
gtaageteeg tacatagetg gaegeatgag gttgaetget gaggeateea cacetagata	180
ggtacggtag gtttccttct tatgagtgac tcttgtgact agagcaccgt gaggtgccag	240
cataaaacga cccaattcgg tgaaaatctt gacctgacca agacctgctg acgtaagaac	300
ttcttcatac accttacgaa ctccctcacc aatcaaggcg atatcgttcg gctcctggtc	360
tggacgataa ttaacaccaa taccgccaga aagattgata aagtctagcc aaatgcccaa	420
cttttccttg atttcaacag ccagttcaaa gagctgacga gccaactctg gataatagag	480
atgggtcacg gtattggacg ctaggaag	508
<210> 562 <211> 652 <212> DNA <213> Streptococcus pneumoniae	
<400> 562 ggctgttagt ccaagtcaag aactatttgg aaagatcaaa gtaaaggaag ttcgttattt	60
gaaggaattt agaaatttaa attctaagga tgcaagggaa tatgacttgg ctttattaat	120
tctagaaaag cccattggtg caaaattagg gactttgggt cttcctacta gtcaaaaaaa	180
tttgacagga ataactgtga ctatcacagg ctatccatca tataatttta aaattcatca	240
aatgtataca gataaaaaac aagttttaag tgatgatggc atgttcttgg attaccaagt	30.0
tgatacttta gaggggtcta gtggatctac agtttatagt gctagtcacc gtgtagtagg	360
agtgcatact ttaggagatg gagctaatca aattaacagt gcagttaaat taaatgaagc	420
aaattgccat ttacttattt attcggttct taaaggttac tctcttgaag gatggaagaa	480
aataaatggt agttggtact attatagaca acatgataaa caaacgggtt ggcaggagat	540
aaatgatact tggtattatt tagacagttc cggtaagatg cttacagatt ggcaaaaagt	600
aaatggaaac tggtattatc tcaattcaaa tggagcaatg gttacaggta gc	652
<210> 563 <211> 250	

<211> 250 <211> 250 <212> DNA <213> Streptococcus pneumoniae

# WO 2007/039319 PCT/EP2006/010132 244/763

<400> FC3						
<400> 563 cttgtgctgt	tcttcgttga	tttccttgat	atccaaaaga	accaagtcag	tgacagccat	60
gagtttgtca	aacttctcaa	ggtaacgcgg	tttattacgg	aaaggaagag	cacaggtgtc	120
caaggtacag	tggattcctt	gttccttagc	cttggtgaag	agagcaatca	ggaaatcaat	180
ctgcaagaga	gcttctcctc	cactgactgt	aatcccaccc	ttatttcccc	agaaaccacg	240
gtagcgcaag						250
	eptococcus	pneumoniae	·			
<400> 564 ttgatatcca	acaactacaa	aaagacgaag	taaacaatat	tacatatttt	gctgaaaatg	60
ctgctggcga	agactgggat	ttatcagata	atgtcggttg	gggtccagac	tttgccgatc	120
catcaaccta	ccttgatatc	atcaaaccat	ctgtaggaga	aagtactaaa	acatatttag	180
ggtttgactc	aggggaagat	aatgtagctg	ctaaaaaagt	aggtctatat	gactacgaaa	240
aattggttac	tgaggctggt	gatgaggcta	cagatgttgc	taaacgctat	gataaatacg	300
ctgcagccca	agcttggttg	acagatagtg	ctttgattat	tccaactaca	tctcgtacag	360
ggcgtccaat	cttgtctaag	atggtaccat	ttacaatacc	atttgcattg	tcaggaaata	420
aaggtacaag	tgaaccaatc	ttatataaat	acttggaact	tcaagacaag	gcagtcactg	4.80
tagatgaata	ccaaaaagct					500
<210> 565 <211> 525 <212> DNA <213> Stre <400> 565	eptococcus p	oneumoniae				
	aaataaagag	aaacataaag	atattcataa	tgctatagaa	acttcaaagg	60
atactgaaga	aaagaaaaca	acaattattg	aggaaaaaga	agttgttagt	aaaaatcctg	120
taatagacac	taaaactagc	aatgaagaag	caaaaatcaa	agaagaaaat	tccaatcaat	180
cccaaggaga	tcatacggac	tcatttgtga	ataaaaacac	agaaaatccc	aaaaaagaag	240
ataaagttgt	ctatattgct	gaatttaaag	ataaagaatc	tggagaaaaa	gcaatcaagg	300
gactatcaaa	tcttaagaat	acaaaagttt	tatatactta	tgatagaatt	tttaacggta	360

# WO 2007/039319 PCT/EP2006/010132 245/763

gtgccataga aacaactccg gataacttgg acaaaattaa acaaatagaa ggtatttcat	420
cgattgaaag ggcacaaaaa gtccaaccca tgatgaatca tgccagaaag gaaattggag	480
ttgaggaagc tattgattac ctaaagtcta tcaatgctcc gtttg	525
<210> 566 <211> 250 <212> DNA <213> Streptococcus pneumoniae	
<400> 566	60
cattgaaacc aggagaaaag gtagcagaag ctaagaagaa ggttgaagaa gctaagaaaa	
aageegagga teaaaaagaa gaagategte gtaaetaeee aaceaataet tacaaaaege	120
ttgaacttga aattgctgag ttcgatgtga aagttaaaga agcggagctt gaactagtaa	180
aagaggaagc taaagaatct cgaaacgagg gcacaattaa gcaagcaaaa gagaaagttg	240
agagtaaaaa	250
<210> 567 <211> 280 <212> DNA <213> Streptococcus pneumoniae	
<400> 567 aaaaagcgaaa gttaagagtg aacaagctga ggctacaagg ttaaaaaaaa tcaagacaga	60
tcgtgaacaa gctgaggcta caaggttaga aaacatcaag acagatcgtg aaaaagcaga	120
agaagctaaa cgaaaagcag aagcagaaga agttaaagat aaactaaaga ggcggacaaa	180
acgagcagtt cctggagagc cagcaacacc tgataaaaaa gaaaatgatg cgaagtcttc	240
agattctagc gtaggtgaag aaactcttcc aagcccatcc	280
<210> 568 <211> 414 <212> DNA <213> Streptococcus pneumoniae	
<pre>&lt;400&gt; 568 aagatattgc caaceteaac ategatgget tggttettga cateaatatt agttacette</pre>	60
aagagtgact tgtagtcaaa ctgcttttca cgttcttctt gggcattgtc cgcaaagacc	120
gctacacctg ccagttctga gtcgaactcg cgcaagagac taatcatacc gttgaccgtt	180
ccgccacctt tcaagaagtc atccacaatc aagacacggc tgcctgcctt aagactacgt	240
tttgaaagga acattttctc gatacggtca ccacttgaac ctgaaacata gttgacgcta	300

acagttgaac	cttcggtaat	tttcaggtca	cggcgcacaa	tgacaaaaga	gacattgagg	360
acattggcaa	ctgcatttgc	aagtggcaca	cccttagttg	ctacggtcat	aacc	414
<210> 569 <211> 312 <212> DNA <213> Str		oneumoniae				
<400> 569	castsasaas	attagaaga	atassasat	c2acaac2aa	2200111011	60
	cgatagagga					
actaagacag	cgaccttgga	cttccgtcag	gggaatcctg	agccacgcta	ccaagatgtt	120
ccacttggtt	ccatcaactc	tatgggcttg	ccaaataatg	gcttagacta	ttatttggat	180
tatcttttgg	atttgcagga	aaaagagtcg	aaccgaactt	tcttcttatc	tctggtcggc	240
atgtctccag	aggaaaccca	tactattttg	aaaaaagtcc	aagagagtga	ttttcgtggt	300
ctgactgagc	ta					312
	eptococcus p	pneumoniae				
<400> 570 ttgtagggct	aggaacaggt	tctactgcct	attattttgt	cgaagaaatc	ggtcgtcgaa	60
tcaaggaaga	aggcttgcag	attacagctg	tgacgacttc	tagtgtgacc	agtaaacagg	120
ctgaagggct	caatatcccg	ctcaagtcta	ttgaccaagt	agactttgtc	gatgtgacag	180
tcgacggggc	ggatgaagtg	gatagtcagt	ttaatggaat	caaaggcggt	ggtggtgccc	240
ttctcatgga	aaaggtggtc	gcaacaccat	caaaagaata	catttgggtg	gtggatgaaa	300
gcaagctggt	cgaaaaacta	ggtgctttta	aattgccagt	agaagtggtt	cagtatggtg	360
cagagcaggt	ctttcgtcat	tttgaacgag	ctggctacaa	accaagtttc	cgtgaaaaag	420
acggccaacg	ttttgtgacc	gatatgcaga	attttatcat	tgacctcgcc	ttggatgtca	480
ttgaaaatcc	aattgctttt	ggacaagaat	tggaccatgt	cgttggtgtt	gtggagcatg	540
gtttattcaa	ccaaatggtg	gataaggtaa	tcgttgctgg	acgagatgga	gttcagatt	599
<210> 571 <211> 450 <212> DNA						

<212> DNA <213> Streptococcus pneumoniae

# WO 2007/039319 PCT/EP2006/010132 247/763

<400> 571 atgacgcgct	atgctttgct	ggtgagaggt	atcaatgttg	gtggtaagaa	taaggtcgtc	60
atggcggagc	ttcgtcaaga	attgacaaac	ttgggactgg	aaaaggttga	gagctacatc	120
aatagtggca	atattttctt	tacttcgata	gattccaaag	cccaattggt	tgaaaagcta	180
gagactttct	ttgcagtcca	ttatccattt	attcagagct	tttctttact	gagtctagag	240
gactttgagg	cggaacttga	aaatctacca	gcttggtgga	gcagagactt	ggcacgaaaa	300
gattttctct	tttacactga	gggtttggat	gtggaccaag	tcatcgcgac	agttgaaagt	360
ttagagctga	aagatgaagt	gctttatttt	ggaaaacttg	ggattttctg	ggggaaattt	420
tctgaagaat	cctattctaa	gactgcctat				450
<210> 572 <211> 527 <212> DNA <213> Stree <400> 572	eptococcus p	oneumoniae				
	tgaggaaagt	gacaactttc	agtgctccta	aagtgattac	ttccagaact	60
gtttggaatg	ctaagaatgg	tttctgggat	gttggtttgg	aaagtcgtaa	attagctgtt	120
agtggaaaaa	ttaagcatta	tgtggttgat	aatgacaatg	ttgtgactcc	cttgattcat	180
aataatcgtg	atattgttac	atttacaggt	aattcacgct	ttaaacaccg	ttctcgtggc	240
tattttgaaa	gtccaatgaa	tgatattcct	aactttaata	ttggtaaaca	agctaccttg	300
gataaacatg	gttatcgtga	tccgaaattg	gataaagtgc	gattctttaa	gaaacaggct	360
ctgcctcgat	cttctagtca	accaagcgct	gaaccaatgg	aaaatattgc	ctcaggaaaa	420
caggttactc	aaagttcgac	agctttcgga	ggagatgcta	gaagagctgt	ggatggcaaa	480
gtcgatggta	actatggtca	caattctgtc	actcatacaa	acttcca		527
<210> 573 <211> 561 <212> DNA <213> Stre <400> 573	eptococcus p	oneumoniae				
	ttcttatcca	gaaattgatc	tagctctctc	tgatttcgaa	gaatagtgac	60
tttatgtgaa	tattcttggc	aaagtttttg	gtaattttct	ttttgagttt	tgctacgccc	120
atcccaaaga	atccatctga	taaactccca	ctcaaagcgt	tcagggcaat	ctaccgccat	180

# WO 2007/039319 PCT/EP2006/010132 248/763

actttctctg	acttttccac	ggtatttaag	ataacgctta	aaggctctaa	agagacaggt	240
caatggcgaa	aaattgagaa	agatgatttg	gtcagcttct	tgcattcgtt	cttggtagta	300
gcaccaagaa	taattaccat	cgatgaccca	agctttatgc	ttggtgagaa	agttttttat	360
ctcggttaac	atccattcgc	agtcactgtc	ttgccaacca	ggttgaaatt	ggagtgtgtc	420
catgtgcagt	tttggaatgg	agtagtagtt	agataacttt	tctgctatag	ttgacttacc	480
agaaccagaa	tatccgataa	ttgcgatttt	cattttctac	cttttcctat	ttggagacaa	540
aaaaacagcc	tctatggact	g				561
	eptococcus p	oneumoniae				
<400> 574 tttgcagatt	tgtgagattg	atactgatcc	agacctgatg	ggcaaaggac	tccacttccc	60
caatcggcat	ctgagtaaaa	cgataatagt	agctatcagg	gtcgttttgg	gctagactca	120
gcattttcaa	gaaacggtcc	agataccaac	tttcaatatc	atccactcca	gcatctacat	180
agatggaaaa	gtcaaagaag	tcagtgatat	agagacgatc	gttttgtgga	ttttgaaaga	240
cattgattcc	ctcaacaatt	acaaaatcag	cagctttgac	actttgtttc	tcttcgggta	300
cgatgtcgta	aacttcatga	gaatagacag	gaatatctac	atcttgtcca	tttttgatgc	360
ggtccaagaa	gttgagaaga	gcttccatat	catagctttc	aggaaatcct	ttacgattta	420
aaatcccctg	ctcaatcaag	gtttgattgg	gatagagaaa	accatcagtt	gtaaccaact	480
caaccgtagc	atctgtaaac	gta				503
<210> 575 <211> 501 <212> DNA <213> Stree <400> 575	eptococcus p	oneumoniae				
	gcagggacag	gttatgtggg	tttatctatt	gcaattctat	tagcgcaata	60
tcataaggtt	atagcggtag	atgttattcc	tgaaaaagta	gagcttatca	atcgtcgcca	120
atctcccatt	aaggatgatg	atattgaaac	ttatttagtg	gaaaaggaat	tagacttagt	180
tgcaacatta	gatggtaatg	aagcttatcg	agatgctgac	tttgtcataa	ttgctgtccc	240
aactaactat	gacagtaaaa	aaaattattt	tgatacatct	gttgtggaag	cagttattga	300

# WO 2007/039319 PCT/EP2006/010132 249/763

gcagattatt	gcggttaatt	tgaaggcaac	aattgtcata	aaatccacaa	ttcctgtggg	360
atatacagaa	agtctccgaa	cacgttttgg	gcaatttaag	attctcttta	gtcctgaatt	420
tttacgggag	tctaaagcac	tttatgataa	tctctatcct	agtcgaatca	tcgttggagc	480
agatttgaga	gatacggagc	a				501
<210> 576 <211> 200 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 576 atgaatttaa	catttttagg	cttatgtatt	gcctgtatgg	acatatctat	caataaaaat	60
			gcacgccaac			120
		igitacciti	attgaaggaa	citicitigi	aactcttgtc	180
ttctcattta	ttatcaaata					200
<210> 577 <211> 300 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 577	+2999+++22	2+202#2++	tt.2000t000	attaaaataa		60
			ttagcgtcgg			
tatctggaaa	cctcaaaaaa	gaagctttta	gtagatgcag	gcttgtctgg	caagaaaatt	120
accagtctgc	tagctgaaat	taaccgtaag	ccagaagacc	tggatgccat	cttgattacc	180
catgagcatt	cagatcatat	ccatggagta	ggcgttttgg	ctcgcaagta	tggtatggat	240
ctttatgcca	atgaaaagac	ctggcaagct	atggaaaata	gtaaatatct	tggcaaggtg	300
<210> 578						
<211> 550 <212> DNA	eptococcus p	oneumoniae				
<211> 550 <212> DNA <213> Street <400> 578	-		tttatatcac	tgattatgga	caggatttct	60
<211> 550 <212> DNA <213> Stre <400> 578 ttgcacttta	tatcctccat	tattttgtct	tttatatcag			60
<211> 550 <212> DNA <213> Street <400> 578 ttgcacttta ttaaaagggg	tatcctccat	tattttgtct gaacttgtcc	agacattgaa	atatatccta	ttctttgcac	120
<211> 550 <212> DNA <213> Street <400> 578 ttgcacttta ttaaaagggg	tatcctccat	tattttgtct gaacttgtcc	-	atatatccta	ttctttgcac	
<211> 550 <212> DNA <213> Stree <400> 578 ttgcacttta ttaaaagggg tagcgattag	tatcctccat atatttgatt tatttctaat	tattttgtct gaacttgtcc tttttcttag	agacattgaa	atatatccta tagtatttcc	ttctttgcac agacgaggca	120

caacttctcg	tgtcgaaaag	gtactggata	gattaataga	atcaaatgag	gttgttgggg	360
agttggtagc	cgtcagtgtc	ttagataaac	cagattttca	gcatgattgt	ttaaaggtag	420
tagcagaggg	ggagatagta	aactttgcga	ctcatgaggt	ggtcgatgaa	gtctttatca	480
atcttccaag	taaaaaatac	aatattggag	agcttgtctc	tcagtttgaa	acgatgggaa	540
ttgatgtaac						550
	eptococcus	pneumoniae				
<400> 579 aagtaggggc	tttcttgcga	aaaacatctt	tggatgaact	accacaattg	tttaatattc	60
ttgttggtaa	tatgagtatt	gtaggtccta	gaccagcggg	tataaatgaa	ctagatttga	120
ttgcagagag	agataagtat	ggagcaaatg	atatcttgcc	agggttaact	ggatgggcac	180
aaattaacgg	gcgtgatact	ttgtctgttg	agatgaagac	ggagttagat	ggctactatg	240
ttaaacatct	gtctttgata	atggatatta	gatgtatagt	taagacaata	ccttacgtac	300
tgaaacgaaa	aggtattgta	gagggtagtg	gtaagaaaga	aagtt		345
	eptococcus p	pneumoniae				
<400> 580 taacgagatt	attacaaaac	aaaactacta	tcgtatttct	ttttctggta	aaggaaaatt	60
aagtaagata	ttaggttatg	taaaattcag	aaaagaaatt	aaaaagaagc	taaaagaaaa	. 120
tgattatgat	atgatattgc	cgttacatag	tattgtgtct	ttcattttag	tagattttct	180
tctcttttca	tttaaaaata	gatatattta	tgatattcgt	gattacagtt	atgaaaaatt	240
tttggtttat	cgtttggttc	agaaacaatt	ggtgaaaaat	tctttaatga	atatcgtttc	300
ttcagacggc	tataaatttt	ttttaccaat	gggagagtat	tttactaccc	ataacctacc	360
caatatgata	gaattaaacg	aggtaaagca	gttaaaaaat	aatagtacgt	ttccaattca	420
actttcctac	attggtttaa	ttcgttttca	agaacaaaat	aaaaaaataa	tcgatttttt	480
tgcaaatgac	agtcgatttc	agttgaattt	tataggtact	aatgcaggag	aattaaggga	540
attttgtcaa	gaaaaaaata	tcagcaatgt	taacttggtg	gacacattcc	agcctaaaga	600

# WO 2007/039319 PCT/EP2006/010132 251/763

<210> 581 <211> 561 <212> DNA <213> Streptococcus pneumoniae	
<400> 581 gaaagaattg ggtgcaaagg tttatcatgt gcctctatta aggaaaaagc ctctacatca	60
gtttctctct cttgctagaa taataaagaa aggagattat gatatagttc attgccatgg	120
ctataaatct gcaattggtc tgatcttatc taaaataatt ggttgtaaaa ttagaattat	180
tcatagtcat atggcttatg taacagaaaa cagttttcaa aaagtattgc gtaaattagt	240
aacaattttg gtaaaaatct tagcaactca ttggtttgca tgtggggaag attcggctaa	300
gtggttatat ggagagaaag cgtataaaga cggaaaaatt gaaattattt ttaatgcaat	360
tgatttgaaa aagtatcaat ttttgtcaga tgttagagaa aaatgtcgta gagaattaga	420
tgtgtcaaat aagttcgtat taggaaatat agctcgccta tcagatcaaa aaaaccaaag	480
ttatttattt aacgttttaa aagaactcat tttaatcaaa ccaaatgtta ttttactcct	540
agttggtaat ggtgaggatg a	561
<210> 582 <211> 736	
<212> DNA <213> Streptococcus pneumoniae	
	60
<213> Streptococcus pneumoniae <400> 582	60 120
<213> Streptococcus pneumoniae  <400> 582 gcttccatca aatcacttta cactactaat tcagatttgg atttaaattt atggattatt	
<213> Streptococcus pneumoniae <400> 582 gcttccatca aatcacttta cactactaat tcagatttgg atttaaattt atggattatt gctgataaag tttcggatag aaataaagaa aagataaata gattatcaaa acaatttgcg	120
<213> Streptococcus pneumoniae <400> 582 gcttccatca aatcacttta cactactaat tcagatttgg atttaaattt atggattatt gctgataaag tttcggatag aaataaagaa aagataaata gattatcaaa acaatttgcg cagagagaaa ttaattggat agagaacgtt gagatcccat ttaaattaca tttagatagg	120 180
<213> Streptococcus pneumoniae <400> 582 gcttccatca aatcacttta cactactaat tcagatttgg atttaaattt atggattatt gctgataaag tttcggatag aaataaagaa aagataaata gattatcaaa acaatttgcg cagagagaaa ttaattggat agagaacgtt gagatcccat ttaaattaca tttagatagg ggatcaatta gttcatttag cagattattt ctgggaagtg ttcttccatc ttcaatgagt	120 180 240
<213> Streptococcus pneumoniae <400> 582 gcttccatca aatcacttta cactactaat tcagatttgg atttaaattt atggattatt gctgataaag tttcggatag aaataaagaa aagataaata gattatcaaa acaatttgcg cagagagaaa ttaattggat agagaacgtt gagatcccat ttaaattaca tttagatagg ggatcaatta gttcatttag cagattattt ctgggaagtg ttcttccatc ttcaatgagt aaagttcttt atcttgacag tgatattatt gttatggatt ctttacgaag tatttttgat	120 180 240 300
<213> Streptococcus pneumoniae <400> 582 gcttccatca aatcacttta cactactaat tcagatttgg atttaaattt atggattatt gctgataaag tttcggatag aaataaagaa aagataaata gattatcaaa acaatttgcg cagagagaaa ttaattggat agagaacgtt gagatcccat ttaaattaca tttagatagg ggatcaatta gttcatttag cagattattt ctgggaagtg ttcttccatc ttcaatgagt aaagttcttt atcttgacag tgatattatt gttatggatt ctttacgaag tatttttgat attgattta agggtaaaat tctctatggg gtgaatgata cttttaataa agaatacaag	120 180 240 300 360
<pre>&lt;213&gt; Streptococcus pneumoniae &lt;400&gt; 582 gcttccatca aatcacttta cactactaat tcagatttgg atttaaattt atggattatt gctgataaag tttcggatag aaataaagaa aagataaata gattatcaaa acaatttgcg cagagagaaa ttaattggat agagaacgtt gagatcccat ttaaattaca tttagatagg ggatcaatta gttcatttag cagattattt ctgggaagtg ttcttccatc ttcaatgagt aaagttcttt atcttgacag tgatattatt gttatggatt ctttacgaag tatttttgat attgattta agggtaaaat tctctatggg gtgaatgata cttttaataa agaatacaag caggtgttgg gtataccaat tgacaagcca atgtttaatg ctggagttat gcttattaat</pre>	120 180 240 300 360 420
<213> Streptococcus pneumoniae  <400> 582 gcttccatca aatcacttta cactactaat tcagatttgg atttaaattt atggattatt gctgataaag tttcggatag aaataaagaa aagataaata gattatcaaa acaatttgcg cagagagaaa ttaattggat agagaacgtt gagatcccat ttaaattaca tttagatagg ggatcaatta gttcatttag cagattattt ctgggaagtg ttcttccatc ttcaatgagt aaagttcttt atcttgacag tgatattatt gttatggatt ctttacgaag tattttgat attgattta agggtaaaat tctctatggg gtgaatgata cttttaataa agaatacaag caggtgttgg gtataccaat tgacaagcca atgtttaatg ctggagttat gcttattaat ttagagttat ggagaaataa taacgtcgaa gaaagatttt tgcaagtaat tcaaaagttt	120 180 240 300 360 420 480

# WO 2007/039319 PCT/EP2006/010132 252/763

gaacgtatag	tcttacgaca	tttcacaact	agtttttat	caaaaagacc	ttggcaagaa	720
ggcagtaatg	ttgcac					736
<210> 583 <211> 525						
<212> DNA <213> Str	eptococcus p	oneumoniae				
<400> 583						
tggaagacct	ttatcctgtc	ttttaacagt	tcctttcgtg	aaaacaaata	ttactcccaa	60
tcaaatatct	tatttatcta	taattccttt	gattgttgga	tttataataa	tgatatttac	120
aactgatttc	gttgtattat	tactggcatg	gtttctattt	tttttatgga	acttactaga	180
tggagtagat	gggaacttag	ccagatatcg	ggagcaatac	tcgaaggatg	gaagtgtagt	240
agatgcaatg	gctggctatg	tagccatggt	gttgacgtat	ttcggtgcag	gaatagtagc	300
tgctcattta	aacgactcag	atatctatat	aattttgggt	gcattatctg	ggatttcatt	360
gatttttcca	aggttagtga	tgcataagta	tatcaataca	gtagctcaag	atgagtctgt	420
gagtagcatt	aaagataaat	ctgattttaa	tactataaaa	atactggctc	taaacatgac	480
atcaattaca	ggaattccgc	aggttttact	gctattaact	atttt		525
-010: 504						
<210> 584 <211> 596						
<212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 584						
ctataatggt	gagcgata:tt	tgtcacaaca	gattgatagt	attaggtctc	aaacattcac	60
taattggacg	ctttttatta	gggatgatgg	atcaaaagat	aaaacaatag	aagtaataca	120
gaggtattct	aagatagatg	atagaattag	attcgttgaa	aatccctcaa	agtttcatgg	180
agcttattac	aatttttta	atctaattga	atacgttaaa	aacaattatc	aatttgatta	240
ttacttttt	tgtgatcaag	atgatatttg	gaaagagcac	aagttagaaa	tacagctgtt	300
aagattttct	aaagatgaca	tgccagagat	ggtttactct	gatatgtcaa	cgattgatgc	360
cagtaataat	ttgatagata	ttagtataaa	taaaataatg	gggattgaat	taccgaacat	420
aaataatttg	tattttattc	atgcctatat	ctgggggtgt	actgcaggtt	ttaatcatgc	480
attgctagag	atggttcctt	cagttgatat	tgataaagat	tatttatata	tagaaaaact	540
gtctcatgat	aattattttg	caaagtttgc	actagagtat	gggaaggtgt	tgttct	596

<210> 585 <211> 530 <212> DNA <213> Streptococcus pneumoniae	
<400> 585 cgtatcaagt cggcattttc aaactttggg tatgcaaaat aatttttggc tggcagagaa	60
tgtggaattt ctggaatttg gattacctcg aaatgatgat ttttttaaaa gtgaaaaaat	120
caaaaccaca aatataaaat ttagaacatt atttgatatc gatttagacg aactggtagt	180
tttgtatatg ccgacgttca gagatgatgg atcgttgaat gcctataatt tagattactc	240
gaaactaata catgtttttc aaaataaatt tagaaaaaat gtaaaaatat tagttcgttt	300
tcatccaaat gttgattcta gttttataaa tttacaggat acagactgta taaatgtgtc	360
gacctattca aatcctcagg atctgatgat gagtgcagat gtgatgatta cggattattc	420
atcggcttct attgatttta tgttattaaa tcgtccagta tttctgtatt taccagatta	480
tcaaagttat gtgaatgata gaccattgga tgataacttt gataaattgc	530
<pre>&lt;210&gt; 586 &lt;211&gt; 380 &lt;212&gt; DNA &lt;213&gt; Streptococcus pneumoniae</pre>	
<400> 586 ggatatgcca gcaaaaacgt tagccagcaa agttcaagtg gctgtaccag ctgacactcg	60
tatogtotoa atototgtoa aggataaaca gooagaggaa gooagtogta togotaatto	120
totacgagaa gttgctgcag aaaagatcgt cgctgtaacg cgagtatctg atgtaacgac	180
acttgaagaa gcgcgaccag ctacgactcc ctcttctcca aatgttcgac gcaattcctt	240
gtttggtttt cttggaggag cagtcgtaac agtaattgct gttcttttga ttgagttgct	300
cgacacccgt gtgaaacgte ctgaagatat tgaagatgta ctgaaaatte cacttttagg	360
gctcgttcca gattttgaca	380
<210> 587 <211> 290 <212> DNA <213> Streptococcus pneumoniae <400> 587	
atcaacgact tecaecaata tegettggge ttttgegegt geaggttaca aaaegttget	60

# WO 2007/039319 PCT/EP2006/010132 254/763

gattgatgga	gatattcgca	attctgttat	gttaggtgtc	tttaaagcaa	gggataagat	120
tacaggcctg	acagaatttt	tatcaggaac	tacagaccta	tcacaagggc	tttgtgatac	180
caatatcgaa	aatctctttg	taattcaggc	tggctctgtg	tcaccgaatc	cgacagctct	240
tcttcaaagt	aagaatttca	gtacaatgct	tgaaaccttg	cgtaaatatt		290
	eptococcus ¡	pneumoniae				
<400> 588 agattacact	tttacagcta	tctccctcag	ctacttaacc	agtattattg	ttgcctttag	60
gcagggagga	cttagtcaat	ttatcttgat	actaacagat	gatagtttca	atggttcggt	120
actagaaatg	catgaagttg	cacctattac	agctctcttt	attctgtact	atttgtacaa	180
atattttata	aaagaaaata	gtttttcttc	agtattttat	aatatcttaa	tagctctcat	240
tattcttttt	ttaagcctta	aacgaatcgt	tcttttgagt	gtattaatta	tcataccagt	300
atttttggta	atttattggt	atgataaaaa	agtaagtaaa	ctagggaaag	aacgaaaaat	360
tttaagttta	ttaaatatct	tttccttaat	atttataaca	ggaatattcc	tttatgttta	420
tagtgtaaaa	tctgatttta	tatatacatt	tattcaagaa	cataatatta	attcgatggc	480
tagaacagat	ttatggaagg	gagttga				507
<210> 589 <211> 558 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 589	cgataattgg	aataatggtt	ttcttatatc	taattatott	ccgtctatat	60
	-		aaattactgg	_	_	120
333	2		ttttatctta		,	180
-	_	-	ctctgctgtg	_		240
			ttataatttg			300
			aggtacatta	-	-	360
			atgcgggtag	_		420
		-	cagtactagc			480

attcagcata ttcagaggca gctagttcag gaataataga tgatttagga gtacttatgc	540
ttcctggtgt gttctcct	558
<210> 590 <211> 516 <212> DNA <213> Streptococcus pneumoniae	
<400> 590	
acatttgtta tagtttcctt gttgacaaaa ttgtcgtaca ggcctaaagt ggagggaatt	60
tcgcatgaag aattgaaaga aataaatcct tcaaagataa tctatgtcat tcttctgact	120
ctaaatcttg ttatgttatt tctttatatc cgtgaaattc agaaagtagt attgttttca	180
ggtagaagtt tttctaatat tacagatttg ataagtaact ataggtacct atcttattat	240
tcaaatgaag tagaaaatcg tgtaagtgga atgattaatc aactatctaa aattattcca	300
gcgactacac ttatttcttt atatatattt atgaataatt attttataac taaacaaata	360
aagaaaaatt tcatttattt gattccaata gctatattct ttgtctatgc aatcattagt	420
ggtggtagat tgccccttat aaggttagtt gttggagctc tgttgatatt gtatatatac	480
tctgtgtacg ggagtcctaa atctcaactt accaaa	516
<210> 591 <211> 383 <212> DNA <213> Streptococcus pneumoniae	
<400> 591 ttttaaccca ccaagttgac tttagcttga tgcgagagat tggtaaggtt tttgcggaaa	60
aatttgctgc tactggcatt accaaggtcg taaccattga agcgtcgggt attgccccag	120
ccgtttttac agctgaagcc ttaaacgttc ccatgatttt cgccaaaaaa gctaagaaca	180
tcaccatgaa cgaagacatc ttaactgctc aagtctactc ctttaccaag caggtgacca	240
gcaccgtttc tatcgctgga aaattcctct caccagagga caaggttttg attatcgacg	300
attteettge taatggeeaa getgetaaag gettgattea aateategaa eaggeeggtg	360
ccacagtcca agctatcggt atc	383
<210> 592 <211> 723 <212> DNA <213> Streptococcus pneumoniae	

<pre>&lt;400&gt; 592 gtggatgctc aagaaactgc gggagttcac tataaatatg tggcagattc agagctatca</pre>	
3-33-3	60
tcagaagaaa agaagcagct tgtctatgat attccgacat acgtggagaa tgatgatgaa	120
acttattatc ttgtttataa gttaaattct caaaatcaac tggcggaatt accaaatact	180
ggaagcaaga atgagaggca agccctagtt gctggtgcta gcttagctgc tctgggaatt	240
ttaatttttg ctgtttccaa gaaaaaggtt aagaataaaa cggtattaca tttagtattg	300
gttgcgggaa taggaaatgg tgtcttagtt tcagtccatg ctttagaaaa tcatcttttg	360
ctaaattaca atacggacta tgaattgacc tctggagaaa aattacctct tcctaaagag	420
atttcaggtt acacttatat tggatatatc aaagagggaa aaacgacttc tgattttgaa	480
gtaagtaatc aagaaaaatc agcagccact cctacaaaac aacaaaaggt ggattataat	540
gttacaccaa attttgtaga ccatccatca acagtacaag ctattcagga acaaacacct	600
gtttcttcaa ctaagccgac agaagttcaa gtagttgaaa aacctttctc tactgaatta	660
atcaatccaa gaaaagaaga gaaacaatct tcagattctc aagaacaatt agccgaacat	720
aag	723
<210> 593 <211> 465 <212> DNA	
<213> Streptococcus pneumoniae	
	60
<213> Streptococcus pneumoniae <400> 593	60 120
<213> Streptococcus pneumoniae <400> 593 attatcactg gcggaaagac ccataattag gtttttctc gcacattgtt gggaacggtt	
<213> Streptococcus pneumoniae  <400> 593 attatcactg gcggaaagac ccataattag gtttttctc gcacattgtt gggaacggtt gcatcatgca ggtaggacct gttgataatg gtgcctggga cgttgggagc ggttggaatg	120
<213> Streptococcus pneumoniae  <400> 593 attatcactg gcggaaagac ccataattag gtttttctc gcacattgtt gggaacggtt gcatcatgca ggtaggacct gttgataatg gtgcctggga cgttgggggc ggttggaatg ctgagaccaa tgcagcggtt gaactgattg aaagccattc aactaaagaa gagttcatga	120 180
<213> Streptococcus pneumoniae  <400> 593 attatcactg gcggaaagac ccataattag gtttttctc gcacattgtt gggaacggtt gcatcatgca ggtaggacct gttgataatg gtgcctggga cgttgggggc ggttggaatg ctgagaccaa tgcagcggtt gaactgattg aaagccattc aactaaagaa gagttcatga cggactaccg cctttatatc gaactcttac gcaatctagc agatgaagca ggtttgccga	120 180 240
<213> Streptococcus pneumoniae  <400> 593 attatcactg gcggaaagac ccataattag gtttttctc gcacattgtt gggaacggtt gcatcatgca ggtaggacct gttgataatg gtgcctggga cgttgggggc ggttggaatg ctgagaccaa tgcagcggtt gaactgattg aaagccattc aactaaagaa gagttcatga cggactaccg cctttatatc gaactcttac gcaatctagc agatgaagca ggtttgccga aaacgcttga tacagggagt ttagctggaa ttaaaacgca cgagtattgc acgaataacc	120 180 240 300
<213> Streptococcus pneumoniae <400> 593 attatcactg gcggaaagac ccataattag gtttttctc gcacattgtt gggaacggtt gcatcatgca ggtaggacct gttgataatg gtgcctggga cgttgggggc ggttggaatg ctgagaccaa tgcagcggtt gaactgattg aaagccattc aactaaagaa gagttcatga cggactaccg cctttatatc gaactcttac gcaatctagc agatgaagca ggtttgccga aaacgcttga tacagggagt ttagctggaa ttaaaacgca cgagtattgc acgaataacc aaccaaacaa ccactcagac catgtggatc cataccctta cttggcaaaa tggggcatta	120 180 240 300 360

# WO 2007/039319 PCT/EP2006/010132 257/763

<400> 594 aatggaatga	acggaagtga	agctgctgtt	catgaagtgc	cagaatacac	aggcccatta	60
gggacatccg	gcgaagagcc	agctccaaca	gtcgagaagc	cagaatacac	aggcccacta	120
gggacatccg	gcgaagagcc	agccccgaca	gtcgagaagc	cagaatacac	aggcccacta	180
gggacagctg	gtgaagaagc	agctccaaca	gtcgagaagc	cagaatttac	agggggagtt	240
aatggtacag	agccagctgt	tcatgaaatc	gcagagtata	agggatctga	ttcgcttgta	300
actcttacta	caaaagaaga	ttatacttac	aaagctcctc	ttgctcagca	ggcacttcct	360
gaaacaggaa	acaaggagag	tgacctccta	gcttcactag	gactaacagc	tttcttcctt	420
ggtctgttta	cgctagggaa	aaagagagaa	ca			452
<210> 595 <211> 526 <212> DNA <213> Stree	eptococcus p	oneumoniae				
	ccatatctcc	tatttttcaa	ggaggttcat	atcaactgaa	caataagagt	60
atagatatca	gctctttgtt	attagataaa	ttgtctggag	agagtcagac	agtagtaatg	120
aaatttaaag	cagataaacc	aaactctctt	caagctttgt	ttggcctatc	taatagtaaa	180
gcaggcttta	aaaataatta	cttttcaatt	ttcatgagag	attctggtga	gataggtgta	240
gaaataagag	acgcccaaga	gggaataaat	tatttatttt	ctagaccagc	ttcattatgg	300
ggaaagcata	aaggacaggc	agttgaaaat	acactagtat	ttgtatctga	ttctaaagat	360
aaaacataca	caatgtatgt	taatggaata	gaagtgttct	ctgaaacagt	tgatacattt	420
ttgccaattt	caaatataaa	tggtatagat	aaggcaacac	taggagctgt	taatcgtgaa	480
ggtaaggaac	attacctcgc	aaaaggaagt	attggtgaaa	tcagtc		526
<210> 596 <211> 506 <212> DNA <213> Street	eptococcus p	oneumoniae				
	gccacatttt	tcttcggttt	gctagggacc	agtacagtat	ttgcagatga	60
ttctgaagga	tggcagtttg	tccaagaaaa	tggtagaacc	tactacaaaa	agggggctct	120
aaaagaaacc	tactggagag	tgatagatgg	gaagtactat	tattttgatc	ctttatccgg	180
agagatggtt	gtcggctggc	aatatatacc	tgctccacac	aagggggtta	cgatcggtcc	240

# WO 2007/039319 PCT/EP2006/010132 258/763

ctctccaaga	atagagattg	ctcttagacc	agattggttt	tattttggtc	aagatggtgt	300
cttacaagaa	tttgttggca	agcaagtttt	agaagcaaaa	actgctacga	ataccaacaa	360
acatcatggg	gaagaatatg	atagccaagc	agagaaacga	gtctattatt	ttgaagatca	420
gcgtagttat	catactttaa	aaactggttg	gatttatgaa	gagggttatt	ggtattattt	480
acagaaggat	ggtggctttg	attctc				506
<210> 597 <211> 518 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 597 atttcgagtg	ttgcttatgg	gcgccaagtc	tatctcaagt	tggaaaccac	gagtaagagt	60
gatgaagtag	aggctgcttt	tgaagctttg	ataaaaggag	tcaaggtagc	tcctcagaca	120
gagtggaagc	agattttgga	caatacagaa	gtgaaggcgg	ttattttagg	gggcgaccca	180
agttcgggtg	cccgagttgt	aacaggcaag	gtggatatgg	tagaggactt	gattcaagaa	240
ggcagtcgct	ttacagcaga	tcatccaggc	ttgccgattt	cctatacaac	ttctttttta	300
cgtgacaatg	tagttgcgac	ctttcaaaac	agtacagact	atgttgagac	taaggttaca	360
gcttacagaa	acggagattt	actgctggat	catagtggtg	cctatgttgc	ccaatattat	420
attacttggg	atgaattatc	ctatgatcat	caaggtaagg	aagtcttgac	tcctaaggct	480
tgggacagaa	atgggcagga	tttgacggct	cactttac			518
<210> 598 <211> 534 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 598	acaacttota	cttcaaattc	ttastagast	ttagtaggaa	ataatoatot	60
		cttcaagttc				120
		atgtaacacg cagttgagtt				180
						240
		cctttttcga				
_		taaaatttgt				300 360
		gcaaaattgc				
aaaaaatgct	tttaaaaaag	ctatggataa	gggtgcacgc	gccattatgg	Ligiaaatac	420

# WO 2007/039319 PCT/EP2006/010132 259/763

tgtaaattac	tacaatagag	ataattggac	agagcttcca	gctatgggat	atgaagcgga	480
tgaaggtact	aaaagtcaag	tgttttcaat	ttcaggagat	gatggtgtaa	agct	534
<210> 599 <211> 604 <212> DNA <213> Stro	eptococcus ¡	pneumoniae				
<400> 599						
gatcaacaag	ctgaagaaga	ctatgctcgt	agatcagaag	aagaatataa	tcgcttgact	60
caacagcaac	cgccaaaagc	tgaaaaacca	gctcctgcac	caaaaacagg	ctggaaacaa	120
gaaaacggta	tgtggtactt	ctacaatact	gatggttcaa	tggcgacagg	atggctccaa	180
aacaacggtt	catggtacta	cctcaacágc	aatggtgcta	tggctacagg	ttggctccaa	240
tacaatggtt	catggtatta	cctcaacgct	aacggcgcta	tggcaacagg	ttgggctaaa	300
gtcaacggtt	catggtacta	cctcaacgct	aatggtgcta	tggctacagg	ttggctccaa	360
tacaacggtt	catggtatta	cctcaacgct	aacggcgcta	tggcaacagg	ttgggctaaa	420
gtcaacggtt	catggtacta	cctcaacgct	aatggtgcta	tggctacagg	ttggctccaa	480
tacaacggtt	catggtacta	cctcaacgct	aacggtgcta	tggctacagg	ttgggctaaa	540
gtcaacggtt	catggtacta	cctcaacgct	aatggtgcta	tggcaacagg	ttgggtgaaa	600
gatg						604
<210> 600 <211> 500 <212> DNA <213> Stre	eptococcus p	oneumoniae				
<400> 600	aaattacgat	taaccataaa	aaagcgcgct	atgttcggat	tgagctagaa	60
	ccctcagtct					120
	cacaagtttc					180
	caattcaaca					240
	tagataaaga					300
ggtcgcaacc	agactgcagg	ttttgtcctc	aacctcccaa	tcaaagaaaa	tatgagaaat	360
ctgcgagtta	agattgagaa	aaagacgggc	ctactatgga	atagatggca	aacaatctat	420
gaaaacagac	caattttagc	tcaaccccac	cgtaaaatta	cccattgggg	tacgacattg	480

# WO 2007/039319 PCT/EP2006/010132 260/763

aattccaagg tgagtgacga	500
<210> 601 <211> 419 <212> DNA <213> Streptococcus pneumoniae	
<400> 601 tgttcggatt gagctagaag gctataatgc cctcagtctt gcagaagttg aagttttctg	60
	120
ctttatagct acgaatgctg aaacggcgac acaagtttet aagccagtte aaccaatcag	
tcagactcct gtgaaggata aaacattgac aattcaacac agtggagctt acattgcccg	180
ctactccata acttgggaag aagttccagt agataaagat ggaaaccaag ttgttcgtag	240
tcattcttgg gaaggaageg gtegeaacea gaetgeaggt tttgtcetea aceteeeaat	300
caaagaaaat atgagaaatc tgcgagttaa gattgagaaa aagacgggcc tactatggaa	360
tagatggcaa acaatctatg aaaacagacc aattttagct caaccccacc gtaaaatta	419
<210> 602 <211> 401 <212> DNA <213> Streptococcus pneumoniae <400> 602	
atctgtagaa ggtcttggtt tcgcaattcc tgcaaatgat gctatcaata ttattgaaca	60
gttagaaaaa aacggaaaag tgacgcgtcc agctttggga atccagatgg ttaatttatc	120
gttagaaaaa aacggaaaag tgacgcgtcc agctttggga atccagatgg ttaatttatc taatgtgagt acaagcgaca tcagaagact caatattcca agtaatgtta catctggtgt	120 180
taatgtgagt acaagcgaca tcagaagact caatattcca agtaatgtta catctggtgt	180
taatgtgagt acaagcgaca tcagaagact caatattcca agtaatgtta catctggtgt aattgttcgt tcggtacaaa gtaatatgcc tgccaatggt caccttgaaa aatacgatgt	180 240
taatgtgagt acaagcgaca tcagaagact caatattcca agtaatgtta catctggtgt aattgttcgt tcggtacaaa gtaatatgcc tgccaatggt caccttgaaa aatacgatgt aattacaaaa gtagatgaca aagagattgc ttcatcaaca gacttacaaa gtgctcttta	180 240 300
taatgtgagt acaagcgaca tcagaagact caatattcca agtaatgtta catctggtgt aattgttcgt tcggtacaaa gtaatatgcc tgccaatggt caccttgaaa aatacgatgt aattacaaaa gtagatgaca aagagattgc ttcatcaaca gacttacaaa gtgctcttta caaccattct atcggagaca ccattaagat aacctactat cgtaacggga aagaagaaac tacctctatc aaacttaaca agagttcagg tgatttagaa t  <210> 603 <211> 690 <212> DNA <213> Streptococcus pneumoniae	180 240 300 360
taatgtgagt acaagcgaca tcagaagact caatattcca agtaatgtta catctggtgt aattgttcgt tcggtacaaa gtaatatgcc tgccaatggt caccttgaaa aatacgatgt aattacaaaa gtagatgaca aagagattgc ttcatcaaca gacttacaaa gtgctcttta caaccattct atcggagaca ccattaagat aacctactat cgtaacggga aagaagaaac tacctctatc aaacttaaca agagttcagg tgatttagaa t  <210> 603 <211> 690 <212> DNA	180 240 300 360

gaaggagtta	ctgtttttcg	ttcctataca	attccaaggg	gaaaaagtac	tttacatagg	180
atattaaatt	attttagttt	tgctatcagt	tcctcgatag	gggttctact	gggacagtat	240
aaagcaaaag	atggatcaga	atttgattgt	atttttgtaa	atcaatcgtc	tccagttatg	300
atggcatggg	ctgctatggc	ttataaaaat	aaatataaga	aacctatgtt	tctgtattgt	360
atggatgttt	ggccagatag	tttaactgta	ggtggagtga	aacaagatgg	cttgattttc	420
aagttgttta	aatttatatc	gaaaaaagtt	tatcgagcta	gtgattatat	atttgttact	480
agtccatcat	ttaagaatta	ttttgtgaac	caatttgaca	taacagaaca	aaagattact	540
tatttgccac	aatatgcaga	agatctttt	atccctgatg	aatctagagt	taataaagaa	600
agtgttgacc	taacttttgc	tggtaatatt	ggcaaagcac	aaaatttgga	aactattttg	660
aaagctgcca	gtttgataga	gaagaatacc				690
	eptococcus p	oneumoniae				
<400> 604 caacttctga	ttatgccttt	gtggatcctg	ttgggagtag	tgtctatttt	ttctagaatt	60
gacatggaac	gatcattcct	attttttta	ttaacaatag	gttgtttaat	tagcactatt	120
gctttgttag	atatagttac	gggagtatct	tatgtcttta	atggtttgtc	tcagcaactc	180
tatttggctg	tgggaattct	agttttaggc	tactggaatg	ctgatgtgat	tgttcattat	240
tggaaaatca	tcaccatgac	ttttttggga	gcatgtttgc	tgatttcagt	ggatatttat	300
tttcactact	ttcaaggaca	tactttttca	aatattgatt	atgtttatcg	agctaagaat	360
tcagcggcat	ctatcttttt	atcggcagtt	attctcaact	tgtctctata	taatcgcaag	420
tgggcactgt	ggagaaaagt	attgttatta	gctagtagcg	gattgctgat	ttacatgtgc	480
atccttatgc	ggtcacgagc	agttctgtta	gcagctgcag	tacttccgct	agtttatata	540
tggtttcagg	agacgtcttt	ggggcataag	attggacgga	cattagga		588
<400> 605	eptococcus p					
agtggaacta	tgtgtttaat	cttgccaata	aactattttc	tctaactatt	ccacttattg	60

ttactcccta tgtcactcga gtcttttctt cagatcattt tgggatttat acttatacca	120
atacagttgc ttcttacttt gttaccttta cattgatggg gataagtatg tatggaagta	180
agaaaatttc tcttaaaaga catgatgaga tagcagtcaa tgatgaatat gcttccttac	240
tgactgtcca gctgcttaat gtaggtctag ccacgttaac ttactttctc tatgtgacct	300
tttttgtcaa taataatcaa gttatttatt ggatccagat gttgtatgtg atttctgctg	360
ttttgatatg acttggtttt tatcaggatt ggaacgtttt cgtgaaattg ctgttcgaaa	420
tatcattgta aatgtettat cageceteat gatttttte tttgtgeata eggaggetga	480
tttggctatc tataccttaa taaaggtagg gacgattttt atcagtcaga ttgttatttt	540
tttaccagtt gttcggatgc aacggtttta tcttgcagga gctgaacata ttcgacgtac	600
ctatcgaggc ttgcttttgt tgtttatccc tgttttggca gacacccttt ttcaaactat	660
ggataagatc atgctaggta tctatgcatc ctatactgct gtgggtttgt attactcaag	720
taggatggtt gctgacatc	739
<210> 606 <211> 533 <212> DNA <213> Streptococcus agalactiae	
<400> 606 aaagaaacac tcacatacac ctctacgggt gattaattta tttcttttgg tgatttttat	60
tttgttaagt gtagteteat tatttettat gtategteae eattttttgg eatttagaea	120
cttgaacgtc atttatggag ttgtaattat tttaatcatt ttagcaagtt tatttctttg	180
tattaagaat aaagctagaa tttttacaac tataatttta gtactatcct ctattttcgt	240
tgctactact ttatatggat ttaagtcaac cattgatttg acaaataatc taaataaaac	300
tgcttcatac tctgaaattg agatgagtgt agttgtacca aaagattcta aaataaccaa	360
tatagaagct gtcagcaaat tagccgcacc agttaaaaac gatacttcaa atattactga	420
tttgatagaa catataaaat cagaaaaagg aatctctatt acaccacaaa aaacagattc	480
ttaccaggat gcatacaata gaattaaaaa tggtgatagt caagctatgg ttt	533

<400> 607