#### Stateful Transformation

Transformation applied across multiple stream entities



#### Accumulate data

entire stream

window

per key, per operator

#### Stateful Transformation

Transformation applied across multiple stream entities



#### Accumulate data

entire stream

window

per key, per operator

#### Window



A subset of the stream

time

count

interval between entities

#### Window



Aggregate data within the window

sum

min

reduce

# Types of Windows 0 000 000 000

Built-in

Based on time, count etc

#### Custom

Use the window
API to define
windows

Tumbling

Sliding

Count

Session

Global

Tumbling

Sliding

Count

Session

Global

Based on time

Tumbling

Sliding

Count

Session

Global

Based on count of entities

Tumbling

Sliding

Count

Session

Global

Based on time interval between entities

Tumbling

Sliding

Count

Session

Global

All entities in one window

Tumbling

Sliding

Count

Session

Global





Fixed window size based on time



Fixed window size based on time

Non-overlapping



Fixed window size based on time

Non-overlapping

Different #entities per window







Tumbling

Sliding

Count

Session

Global



Fixed window size based on time



Fixed window size based on time

Overlapping time



Window size 5



Window size 5



Window size 5



Window size 5

Tumbling

Sliding

Count

Session

Global



Count of entities in the window is constant



Count window is applied on keyed streams

## Count Window Keyed streams

$$key = "a" key = "b"$$









## Built-in Window types

Tumbling

Sliding

Count

Session

Global

#### Session Window



Trigger new window based on gap between entities

#### Session Window



Gaps not enough to start a new window

## Built-in Window types

Tumbling

Sliding

Count

Session

Global

#### Global Window



All entities in a single window

#### Applying Windows on Streams



Non-Keyed

Window defined over the whole stream

windowAll()

Keyed

Window applied on each group in a keyed stream

window()

# Types of Windows 0 000 000 000

Built-in

Based on time, count etc

#### Custom

Use the window
API to define
windows



window



Decides when a new window starts

Ex: Start new window when you see an even number













window

Window Assigner

Current Window



Evaluation Function













Window Assigner

Trigger

Evictor (Optional)

Evaluation Function

Customize

any of these

components

## Tumbling and Sliding Windows



Windows based on time

Source Flink Entry Flink Task

O 2 4

1 2 3

Event time

When the event occurred

Ingestion time When the event is first seen

Processing time When the event is processed

Event time

Ingestion time

Processing time The default choice

Event time

Ingestion time

Processing time

## Event time

When the event occurred at the source

Embedded within records

Useful when events are out of order/late

## Event time

Add a timestamp to events

TimeStampExtractor

Event time

Ingestion time

Processing time

## Ingestion time

When the event is first seen by Flink

Timestamp given by Flink

chronologically after the event time

Cannot handle out of order events

Event time

Ingestion time

Processing time

# Processing time

System time of the machine processing entities

Chronologically after the event time and ingestion time

No co-ordination required

#### Iterate

