AMENDMENTS TO THE CLAIMS

Claim 1 (Currently amended): A compound of the general formula

including the optical isomers thereof and mixtures of such isomers, wherein

Ar₁ and Ar₂ independently of each other stand for an optionally substituted <u>phenyl</u> aryl or heteroaryl group,

 R_1 and R_2 stand independently of each other for hydrogen, optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

R₃ designates hydrogen, C₃-C₅alkenyl, C₃-C₅alkynyl or optionally substituted C₁-C₅alkyl;

 R_4 is optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

 R_5 and R_6 are independently of each other hydrogen or optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

 R_7 and R_8 are independently of each other hydrogen or optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

W designates a bridge selected from $-O_{-}$, $-S(O)_{m}$ or $-NR_{3}$;

X designates a direct bond or a bridge selected from -O-, $-S(O)_m$ - or $-NR_3$ -; a and b independently of each other stand for a number 1, 2 or 3; and c and m independently of each other stand for a number zero, 1 or 2.

Claim 2 (Currently amended): A compound according to claim 1 wherein

Ar₁ stands for <u>a phenyl</u> an aryl group which is optionally substituted with n radicals independently selected from R₉; or stands for a 5-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R₄₁; or stands for a 6-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R₄₄; Ar₂ stands for <u>a phenyl</u> an aryl group which is optionally substituted with n radicals independently selected from R'₁₉; and from one radical R₁₀; or stands for a 5-ring-membered heteroaryl group comprising as ring members 1 to

70070: Amendment Eberle, et al Page 2 of 13 4 heteroatems selected from nitrogen, exygen or sulfur and being optionally substituted with n radicals independently selected from R₄₁; or stands for a 6-ring- membered heteroaryl group comprising as ring members 1 to 4 heteroatems selected from nitrogen, exygen or sulfur, and being optionally substituted with n radicals independently selected from R₄₁; or stands for a fused bicyclic heteroaryl group comprising as ring members 1 to 4 heteroatems selected from nitrogen, exygen or sulfur, and being composed from the 5-ring- or 6-ring-membered heteroaryl groups as defined for Ar₂- with an annellated phenyl ring or with an annellated second 6-ring-membered heteroaryl, each ring and the bicyclic heteroaryl being optionally substituted with n radicals independently selected from R₄₁.;

 R_1 and R_2 stand independently of each other for hydrogen or C_1 - C_5 alkyl optionally substituted by halogen, C_1 - C_3 alkoxy or -NR₁₂R₁₃; or stand for C_2 - C_5 alkenyl optionally substituted by halogen or C_1 - C_3 alkoxy; or stand for C_2 - C_5 alkynyl; or stand for C_3 - C_6 cycloalkyl optionally substituted by halogen, C_1 - C_3 alkoxy; C_1 - C_3 alkyl or -NR₁₂R₁₃;

R₃ designates hydrogen, C₃-C₅alkenyl, C₃-C₅alkynyl or C₁-C₃alkyl optionally substituted by C₁-C₃alkoxy; C₃-C₅alkenyloxy or C₃-C₅alkynyloxy;

 R_4 is C_1 - C_5 -alkyl optionally substituted by halogen, C_1 - C_3 alkoxy or -NR₁₂R₁₃; or is C_2 - C_5 alkenyl optionally substituted by halogen or C_1 - C_3 alkoxy; or is C_2 - C_5 alkynyl; or is C_3 - C_6 cycloalkyl optionally substituted by halogen, C_1 - C_3 alkoxy or C_1 - C_3 alkyl;

 R_5 and R_6 are independently of each other hydrogen or C_1 - C_5 alkyl optionally substituted by halogen, C_1 - C_3 alkoxy or -NR₁₂R₁₃; or are C_2 - C_5 alkenyl optionally substituted by halogen or C_1 - C_3 alkoxy; or are C_2 - C_5 alkynyl; or are C_3 - C_6 cycloalkyl optionally substituted by halogen, C_1 - C_3 alkoxy; C_1 - C_3 alkyl or -NR₁₂R₁₃;

 R_7 and R_8 are independently of each other hydrogen or C_1 - C_5 alkyl optionally substituted by halogen, C_1 - C_3 alkoxy or -NR₁₂R₁₃; or are C_2 - C_5 alkenyl optionally substituted by halogen or C_1 - C_3 alkoxy; or are C_2 - C_5 alkynyl; or are C_3 - C_6 cycloalkyl optionally substituted by halogen, C_1 - C_3 alkoxy; C_1 - C_3 alkyl or -NR₁₂R₁₃;

 R_9 and R'_9 independently of each other stand for C_1 - C_5 alkyl optionally substituted by halogen, C_1 - C_4 alkoxy, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄, by a -X-aryl which is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; by a -X-linked-5- or 6-ring-membered heteroaryl group optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stand for C_3 - C_6 cycloalkyl, optionally substituted by halogen, hydroxy, =O, C_1 - C_4 alkoxy, NR₁₂R₁₃; or

70070: Amendment Eberle, et al Page 3 of 13 stand for C_1 – C_4 alkoxy optionally substituted by halogen, C_1 - C_4 alkoxy, by -X-aryl which is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; by a X-linked-5- or 6-ring-membered heteroaryl group optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stand for C_2 - C_5 alkenyl optionally substituted by halogen or aryl; or stand for C_2 - C_5 alkynyl optionally substituted by halogen, tri-alkyl-silyl or aryl; or stand for C_2 - C_5 alkynyloxy optionally substituted by halogen, tri-alkyl-silyl or aryl; or stand for C_2 - C_5 alkynyloxy optionally substituted by halogen or C_1 - C_4 alkoxy; or stand for C_2 - C_5 alkynyloxy optionally substituted by C_1 - C_3 alkyl, halogen or C_1 - C_4 alkoxy; or stand for halogen; or stand for -NR₁₂R₁₃, or stand for -NR₂-CO-R₁₂; or stand for -NR₂-CO-OR₁₂; or stand for -NR₂-CO-NR₈R₉; or stand for -NR₂-CS-SR₁₂; or stand for -NR₂-CS-SR₁₂; or stand for -NR₂-CS-NR₈R₉; or stand for -NR₂-CS-SR₁₂; or stand for -NR₂-CS-NR₈R₉; or stand for nitro, for cyano or for -NR₂-CS-NR₂;

 R_{10} stands for hydrogen; or stands for -X-aryl which is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alcoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stands for a X-linked 5-membered aromatic or non-aromatic heterocyclic ring comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stands for a X-linked 6-membered aromatic or non-aromatic heterocyclic ring comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stands for -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stands for -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stands for -C(=N-O-R₁₂)-R₁₄; R_{10} and one R_{19} together form a 3- or 4-membered non-aromatic bridge forming an annellated ring which may contain a carbonyl function or nitrogen, oxygen or sulfur as ring members and is optionally substituted by C_1 - C_3 alkyl;

R₄₄—is hydrogen, halogen, C₄-C₄alkyl, C₄-C₄haloalkyl, C₄-C₄alkoxy, NR₄₂R₄₃, NO₂, CN, CO-R₄₄-or the acyclic or cyclic ketals and acetals of CO-R₄₄-;

```
W designates a bridge selected from -O_{-}, -S(O)_{m} or -NR_{3};
```

X designates a direct bond or a bridge selected from -O-, -S(O)_m- or -NR₃-;

a stands for a number 1, 2 or 3;

```
b stands for a number 1, 2 or 3;
```

- c stands for a number zero, 1 or 2;
- m stands for a number zero, 1 or 2;
- n stands for a number 1 or 2;
- p stands for a number 0, 1 or 2;

 R_{12} and R_{13} independently of each other stand for hydrogen; C_1 – C_5 alkyl optionally substituted by halogen, C_1 - C_4 alkoxy, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or -CN; or stand for C_3 - C_5 alkenyl optionally substituted by halogen, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy or -CN; or stand for C_3 - C_5 alkynyl optionally substituted by halogen, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or -CN; or together form a 5-ring-membered non-aromatic carbocyclic ring; or together form a 6-ring-membered non-aromatic carbocyclic ring which is interrupted by -O- or -N(C_1 - C_4 alkyl)-;

 R_{14} stands for C₁-C₅alkyl optionally substituted by halogen, C₁-C₄alkoxy, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino; aryl which in turn is optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino or C₁-C₄alkylcarbonyl, C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylaminocarbonyl or di(C_1-C_4 alkyl)aminocarbonyl; or by a 5- or 6-ring hetero-aromatic ring which in turn is optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di-(C₁-C₄alkyl)aminocarbonyl; or stands for C₃-C₆cycloalkyl optionally substituted by halogen, hydroxy, =O, C₁-C₄alkoxy or C₁-C₄alkylamino, di(C₁- C_4 alkyl)amino; or stands for C_1 – C_4 alkoxy optionally substituted by halogen, C_1 – C_4 alkoxy; C₁-C₄alkylamino, di(C₁-C₄alkyl)amino; or stands for phenyl which is optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄al-kylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di-(C₁-C₄alkyl)aminocarbonyl; or stands for a 5- or 6-ring membered heteroaryl comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl; C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di-(C₁-C₄alkyl)aminocarbonyl.

70070: Amendment Eberle, et al Page 5 of 13 Claim 3 (Previously presented): A compound according to claim 1, wherein Ar_1 and Ar_2 independently of each other stand for optionally substituted phenyl; and the optional substituents R_9 of Ar_1 are preferably selected from the group comprising halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkoxy, C_3 - C_6 cycloalkyl, -CN and -CO- R_{14} ; and the optional substituents R'_9 of Ar_2 are preferably selected from the group comprising halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_3 - C_6 cycloalkyl, -CN, -CO- R_{14} , -N $R_{12}R_{13}$, -N R_2 -CO- R_{12} , -N R_3 -CO-OR $_{12}$, -N R_2 -CO-NR $_8$ R $_9$, -N R_2 -CO-SR $_{12}$, -N R_2 -CS-OR $_{12}$, -N R_2 -CS-NR $_8$ R $_9$, -N R_2 -CS-SR $_{12}$, -S(O) $_p$ -C1- C_4 alkyl, -S(O) $_p$ -C1- C_4 haloalkyl, -N R_2 -SO $_2$ -NR $_8$ R $_9$, nitro, cyano and -CS-NH $_2$; and the optional substituent R_{10} on Ar_2 is selected from optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyl, optionally substituted pyrazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted pyrazolyl, optionally substituted pyrazolyl, optionally substituted pyrazolyl, optionally substituted pyrazolyloxy.

Claim 4 (Original): A compound of formula I according to claim 1 wherein Ar_1 and Ar_2 independently stand for optionally substituted phenyl aryl groups; and the optional substituents R_9 of Ar_1 are preferably selected from the group comprising halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_3 - C_6 cycloalkyl, -CN and -CO- R_{14} ; and the optional substituents R'_9 of Ar_2 are preferably selected from the group comprising halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, C_3 - C_6 cycloalkyl, -CN, -CO- R_{14} , -NR $_{12}$ R $_{13}$, -NR $_2$ -CO- R_{12} , -NR $_3$ -CO-OR $_{12}$, -NR $_2$ -CO-NR $_8$ R $_9$, -NR $_2$ -CO-SR $_{12}$, -NR $_2$ -CS-OR $_{12}$, -NR $_2$ -CS-NR $_8$ R $_9$, -NR $_2$ -CS-SR $_{12}$, -S(O) $_p$ -C1-C4alkyl, -S(O) $_p$ -C1-C4haloalkyl, -NR $_2$ -SO $_2$ -NR $_8$ R $_9$, nitro, cyano and -CS-NH $_2$; and

the optional substituent R_{10} on Ar_2 is selected from halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, $-NO_2$, $-NR_{12}R_{13}$, -CO- R_{14} and the acyclic or cyclic ketals and acetals of -CO- R_{14} ; -O-CO- R_{14} , optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy; and

 R_1 , R_2 , R_5 , R_6 , R_7 and R_8 independently of each other are hydrogen or methyl; and R_3 is hydrogen or C_1 - C_4 alkyl optionally substituted with C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, or

70070: Amendment Eberle, et al Page 6 of 13 C₃-C₄alkynyloxy; and

 $R_4 \ is \ hydrogen \ or \ C_1-C_4 alkyl \ optionally \ substituted \ with \ halogen, \ C_1-C_3 alkoxy \ , \ C_1-C_3 alkylamino \ or \ constraints \ for \ constrain$

di-C₁-C₃alkylamino; and

W is –O-; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1; and

the suffix (c) stands for the number zero.

Claim 5 (Original): A compound of formula I according to claim 1 wherein

Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and

the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising C₁-

C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy and C₃-C₆cycloalkyl; and

the optional substituent R₁₀ on Ar₂ is selected from -CO-C₁-C₄alkyl , -CO-C₁-C₄alkoxy,

-O-CO-C₁-C₄alkyl, optionally substituted phenyl, optionally substituted phenoxy, optionally sub-

stituted imidazolyl, optionally substituted imidazolyloxy, optionally substituted thiazolyloxy, optionally

substituted thiazolyl, optionally substituted thiadiazolyloxy, optionally substituted thiadiazolyl,

optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy,

optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted

oxadiazolyloxy, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted

triazolyloxy and optionally substituted pyrazolyloxy; and

 R_1 and R_5 are independently C_1 - C_4 alkyl and R_2 and R_6 are hydrogen; and

R₃ is hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy-C₁-C₄alkyl; and

 R_4 is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl; and

W is -O-; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1; and

the suffix (c) stands for the number zero.

Claim 6 (Previously presented): A compound of formula I according to claim 1, wherein Ar₁ and Ar₂

independently of each other stand for optionally substituted phenyl; and the optional substituents R₉

and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, iodo, cyano,

hydroxy, amino, nitro, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy,

allyloxy, propargyloxy, benzyloxy, trifluoromethyl, trifluoromethoxy, 2-cyano-2-methyl-butyloxy,

70070: Amendment Eberle, et al

Page 7 of 13

- 7 -

methylsulfonyl, methylsulfinyl, methylthio, cyclopentyl, cyclohexyl, aminocarbonylmethyl, methoximinoethyl, aminocarbonyl, butylcarbonylamino, tert-butylcarbonylamino, triazol-1-ylmethyl, 1,2,4-triazol-1-ylmethyl, N-morpholinocarbonylamino, aminocarbonyloxy-ethoxy, morpholinocarbonyloxyethoxy and cyanopyridyloxyethoxy; and the optional substituent R₁₀ on Ar₂ is selected from aminocarbonyl, dimethylaminocarbonyl, acetyl, propionyl, acetoxy, methoxycarbonyl, ethoxycarbonyl, benzoyl, methoximinoethyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidinyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyl-oxadazolyl), 2-(5-ethyl-oxadiazolyl), 1-triazolyl, 1-pyrazolyl, 1-(3,4-dimethylpyrazolyl), 4-(2-methylthiazolyl), 2-

 R_1 and R_5 are independently C_1 - C_4 alkyl and R_2 and R_6 are hydrogen; and R_3 is hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy- C_1 - C_4 alkyl; and

(1,3,4-oxydiazolyl), N-pyrrolidin-2-onyl, and 2-quinoxalinyl, and

R₄ is C₁-C₄alkyl or C₁-C₄haloalkyl; and

W is -O-; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1; and

the suffix (c) stands for the number zero.

Claim 7 (Original): A compound according to claim 1, wherein

 Ar_1 and Ar_2 independently of each other stand for optionally substituted phenyl; and the optional substituents R_9 and R'_9 of Ar_1 and Ar_2 are selected from the group comprising bromo, chloro, fluoro, methyl, ethyl, methoxy, ethoxy, trifluoromethyl and trifluoromethoxy; and the optional substituent R_{10} on Ar_2 is selected from aminocarbonyl, acetyl, methoxycarbonyl, ethoxycarbonyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidinyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyloxadiazolyl), 1-triazolyl, 1-pyrazolyl, 4-(2-methylthiazolyl), 2-(1,3,4-oxydiazolyl), and N-pyrrolidin-2-onyl, and

 R_1 and R_5 are methyl and R_2 and R_6 are hydrogen; and R_3 is hydrogen , methyl , ethyl, propyl, ethoxymethyl or methoxymethyl, and R_4 is methyl , ethyl, propyl or fluoromethyl; and

W is -O-; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1; and

70070: Amendment Eberle, et al Page 8 of 13 the suffix (c) stands for the number zero.

Claim 8 (Original): A compound of formula I according to claim 1 selected from the group comprising

- 2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-chlorophenoxy)-methyl]-2-[(2-chlorophenyl)-methyl]-sulfonylamino-propionitrile,
- 2-[(4-chlorophenoxy)-methyl]-2-[(2-fluorophenyl)-methyl]-sulfonylamino-propionitrile,
- 2-[(4-trifluoromethoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-chloro-3-methylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-butryronitrile,
- 2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-3-methoxy-propionitrile,
- 2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-methoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- (-)-2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-propionylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-imidazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-[1,3,4]oxadiazol-4-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-methoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- (-)2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-methoxycarbonylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-propionylphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-3-fluoro-propionitrile,
- 2-{[4-(2-methyl-thiazol-4-yl)-phenoxy]-methyl}-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-pyrazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-(5-oxo-5,6,7,8-tetrahydronaphth-2-yloxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-chloro-phenoxy)-methyl]-2-benzylsulfonylamino-3-methyl-butyronitrile,

2-[(4-iso-propyl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,

2-[(4-nitro-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,

2-[(4-cyano-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,

2-[(3-fluoro-4-propionyl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,

(-) -2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile, and

(-)-2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile.

Claim 9 (Currently amended): A process for the preparation of a compound of formula I according to claim 1.

$$Ar_{1} = X = \begin{bmatrix} R_{1} & O & R_{3} & R_{4} & \begin{bmatrix} R_{5} \\ I & I \end{bmatrix} & W & \begin{bmatrix} R_{7} \\ I & I \end{bmatrix} & R_{2} & CN & \begin{bmatrix} R_{6} \\ B \end{bmatrix} & \begin{bmatrix} R_{8} \\ R_{8} \end{bmatrix} & C & (1)$$

including the optical isomers thereof and mixtures of such isomers, wherein

Ar₁ and Ar₂ independently of each other stand for an optionally substituted phenyl group,

 R_1 and R_2 stand independently of each other for hydrogen, optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

 R_3 designates hydrogen, C_3 - C_5 alkenyl, C_3 - C_5 alkynyl or optionally substituted C_1 - C_5 alkyl;

 R_4 is optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

 R_5 and R_6 are independently of each other hydrogen or optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

 R_7 and R_8 are independently of each other hydrogen or optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

<u>W</u> designates a bridge selected from -O-, $-S(O)_{\underline{m}}$ or $-NR_{\underline{3}}$ -;

X designates a direct bond or a bridge selected from $-O_{-}$, $-S(O)_{m^{-}}$ or $-NR_{3^{-}}$; a and b independently of each other stand for a number 1, 2 or 3; and c and m independently of each other stand for a number zero, 1 or 2; which comprises reacting

a) reacting the sulfonylating agent of formula II

$$Ar_{1} - X - \begin{vmatrix} R_{1} & O \\ & | \\ & | \\ & R_{2} \end{vmatrix} = A \qquad (| | |)$$

wherein A_{f4}, a, X and R₄ to R₂, are defined as under formula I, and A stands for a leaving group like an anhydride, i.e. O-SO₂ (CR₄R₂)_e X-A_{f4} or O-CO-C₄-C₄alkyl, but preferably for halogen, especially bromine or more preferably chlorine, with an amino-acetonitrile of formula III

wherein Ar₂, b, c, W and R₂ to R₂, are defined as under formula I, or

b) coupling the reacting the compound of formula XIII

wherein A_{f_4} , A_{f_2} , a, b, c, W and R_4 to R_8 are defined as under formula I and L is a leaving group such as e.g. halogen, preferably chlorine, bromine or iodine or a sulfonyloxy group such as e.g. methylsulfonyloxy-, toluylsulfonyloxy- or trifluoromethylsulfonyloxy- group, is coupled with a compound of formula XIV

$$Ar_{1}X'$$
 (XIV)

wherein Ar_4 —is defined as under formula Land X' is either an anionic radical species of X such as Θ —, S—, S—, S(Θ)_m—combined with an alkaline- or earthalkaline- metal cation as counterion or is defined as X-H such as OH, OH, OH if at the same time the reaction is generally carried out in the presence of a base such as alkaline-, earthalkaline-carbonates or hydrogenearbonates such—e.g. sedium or potassium—carbonate, sedium—hydrogen-carbonate, cesium—carbonate or an agent capable of scavenging the formed acid.

Claim 10 (Original): A composition for controlling and protecting against phytopathogenic microorganisms, comprising a compound of formula I according to claim 1 as active ingredient together with a suitable carrier.

Claim 11 (Canceled)

70070: Amendment Eberle, et al Page 11 of 13 Claim 12 (Original): A method of controlling and preventing an infestation of crop plants by phytopathogenic <u>fungi</u> <u>microorganisms</u>, which comprises the application of a compound of formula I according to claim 1 as active ingredient to the plant, to parts of plants or to the locus thereof.

Claim 13 (Canceled)

70070: Amendment Eberle, et al Page 12 of 13