Simple Sparsification Improves Sparse Denoising Autoencoders in Denoising Highly Noisy Images

KyungHyun Cho KyungHyun.Cho@aalto.fi

Aalto University School of Science, Department of Information and Computer Science

June 11, 2013

Sparse Denoising Autoencoder for Denoising

Sparse Denoising Autoencoder

Minimizes

- $\sum_{n=1}^{N} \|\mathbf{x}^{(n)} g\left(f(\kappa(\mathbf{x}^{(n)}))\right)\|_{2}^{2} + \lambda\Omega(\mathbf{W}, \{\mathbf{x}^{(n)}\})$
- ightharpoonup $\kappa(\mathbf{x})$ explicitly corrupts \mathbf{x}
- $\Omega(\mathbf{W}, \{\mathbf{x}^{(n)}\})$ controls sparsity of \mathbf{h}

Encoder/Decoder

Maps between

- 1. Data space $\mathbb{P} = \left\{ \mathbf{x} \in \mathbb{R}^p \left| \exists \mathbf{x}^{(n)} \in D, \|\mathbf{x} \mathbf{x}^{(n)}\|_2^2 \le \epsilon \right. \right\}$
- $\begin{aligned} \text{2. Latent space } \mathbb{Q} \approx \\ \left\{ \mathbf{h} = f(\mathbf{x}) \left| \mathbf{x} \in \mathbb{P}, \left\| \mathbb{E}_{\mathbf{x} \in \mathbb{P}} \left[h_j \right] \rho \right\|_2^2 = 0 \right. \right\} \end{aligned}$

What if test samples were highly noisy?

Problems

Out-of-domain Sample $\tilde{\mathbf{x}}$

- 1. f maps from \mathbb{P} , but $\tilde{\mathbf{x}} \notin \mathbb{P}$
- 2. g maps from $\mathbb Q$ to $\mathbb P$, but $\mathbf h \notin \mathbb Q$

Explicit Sparsification R

Sparsification R:

- 1. R brings $\tilde{\mathbf{h}} \notin \mathbb{Q}$ into \mathbb{Q}
- 2. Simple Sparsification (Shrinkage): $\max (\mathbf{h} \max (\|\mathbf{h}\|_1 / q \rho, 0), 0)$