Теоретические языки запросов

Теоретические языки запросов, предложенные Э. Коддом

- Реляционная алгебра, процедурный язык
- Реляционное исчисление, непроцедурный (декларативный) язык

Замкнутость реляционной алгебры

Реляционный оператор *f* выглядит как функция с отношениями в качестве аргументов:

$$R = f(R_1, R_2, \dots, R_n)$$

Реляционная алгебра является замкнутой, т.к. в качестве аргументов в реляционные операторы можно подставлять другие реляционные операторы, подходящие по типу:

$$R = f(f_1(R_{11}, R_{12}, ...), f_2(R_{21}, R_{22}, ...), ...)$$

Реляционные операторы

Теоретико-множественные операторы:

- 1. Объединение
- 2. Пересечение
- 3. Вычитание
- 4. Декартово произведение

Специальные реляционные операторы:

- 1. Выборка
- 2. Проекция
- 3. Соединение
- 4. Деление

Отношения, совместимые по типу

Отношения являюися *совместимыми по типу*, если они имеют идентичные заголовки, а именно:

- Отношения имеют одно и то же множество имен атрибутов, т.е. для любого атрибута в одном отношении найдется атрибут с таким же наименованием в другом отношении,
- Атрибуты с одинаковыми именами определены на одних и тех же доменах.

Оператор переименования атрибутов

R RENAME Atr_1 , Atr_2 ,... AS $NewAtr_1$, $NewAtr_2$,...

Объединение

Объединением двух совместимых по типу отношений А и В называется отношение с тем же заголовком, что и у отношений А и В, и телом, состоящим из кортежей, принадлежащих или А, или В, или обоим отношениям.

A UNION B

Объединение

Пусть даны два отношения А и В с информацией о сотрудниках:

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Петров	2000
3	Сидоров	3000

Таблица 1 Отношение А

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Пушников	2500
4	Сидоров	3000

Таблица 2 Отношение В

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Петров	2000
3	Сидоров	3000
2	Пушников	2500
4	Сидоров	3000

Таблица 3 Отношение A UNION B

Пересечение

Пересечением двух совместимых по типу отношений A и B называется отношение с тем же заголовком, что и у отношений A и B, и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям A и B.

A INTERSECT B

Пересечение

Пусть даны два отношения А и В с информацией о сотрудниках:

Табельный номер	Фамилия	Зарплата
I	Иванов	1000
2	Петров	2000
3	Сидоров	3000

Таблица 1 Отношение А

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Пушников	2500
4	Сидоров	3000

Таблица 2 Отношение В

Табельный номер	Фамилия	Зарплата
1	Иванов	1000

Таблица 4 Отношение A INTERSECT В

Вычитание

Вычитанием двух совместимых по типу отношений А и В называется отношение с тем же заголовком, что и у отношений А и В, и телом, состоящим из кортежей, принадлежащих отношению А и не принадлежащих отношению В.

A MINUS B

Вычитание

Пусть даны два отношения А и В с информацией о сотрудниках:

Табельный номер	Фамилия	Зарплата
I	Иванов	1000
2	Петров	2000
3	Сидоров	3000

Таблица 1 Отношение А

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Пушников	2500
4	Сидоров	3000

Таблица 2 Отношение В

Табельный номер	Фамилия	Зарплата
2	Петров	2000
3	Сидоров	3000

Таблица 5 Отношение A MINUS B

Декартово произведение

Декартовым произведением двух отношений $A(A_1,A_2,...A_n)$ и $B(B_1,B_2,...B_m)$ называется отношение, заголовок которого является **сцеплением** заголовков отношений A и B:

$$(A_1,A_2,...A_n,B_1,B_2,...B_m),$$

а тело состоит из кортежей, являющихся **сцеплением кортежей** отношений A и B:

$$(a_1,a_2,...a_n,b_1,b_2,...b_m)$$

A TIMES B

Декартово произведение

Номер поставщика	и Наименование поставщик	
1	Иванов	
2	Петров	
3	Сидоров	

Таблица 6 Отношение А (Поставщики)

Номер детали	Наименование детали	
I	Болт	
2	Гайка	
3	Винт	

Таблица 7 Отношение В (Детали)

Номер поставщика	Наименование поставщика	Номер детали	Наименование детали
1	Иванов	1	Болт
1	Иванов	2	Гайка
1	Иванов	3	Винт
2	Петров	1	Болт
2	Петров	2	Гайка
2	Петров	3	Винт
3	Сидоров	1	Болт
3	Сидоров	2	Гайка
3	Сидоров	3	Винт

Таблица 8 Отношение A TIMES B

Выборка (ограничение, селекция)

Выборкой (ограничением, селекцией) на отношении A с условием с называется отношение с тем же заголовком, что и у отношения A, и телом, состоящим из кортежей, значения атрибутов которых при подстановке в условие с дают значение ИСТИНА.

"с" представляет собой логическое выражение, в которое могут входить атрибуты отношения А и (или) скалярные выражения.

A WHERE c

Выборка (ограничение, селекция)

Пусть дано отношение Ас информацией о сотрудниках:

Табельный номер	Фамилия	Зарплата
1	Иванов	1000
2	Петров	2000
3	Сидоров	3000

Таблица 9 Отношение А

Пример:

А WHERE Зарплата<3000

Проекция

Проекцией отношения A по атрибутам X,Y,...,Z, где каждый из атрибутов принадлежит отношению А, называется отношение с заголовком (Х,Ү,..,Z) и телом, содержащим множество кортежей вида (х,у,..,z), таких, для которых в отношении А найдутся кортежи со значением атрибута X, равным x, значением атрибута Y, равным y, ..., значением атрибута Z, равным z.

A[X,Y,...,Z] или PROJECT $A\{x, y,..., z\}$

Проекция

Номер поставщика	Наименование поставщика	Город поставщика
1	Иванов	Уфа
2	Петров	Москва
3	Сидоров	Москва
4	Сидоров	Челябинск

Таблица 11 Отношение А (Поставщики)

Город поставщика		
Уфа		
Москва		
Челябинск		

Таблица 12 Отношение А[Город поставщика]

Общая операция соединения

Соединением отношений **A** и **B** по условию **c** называется отношение

(A TIMES B) WHERE c

Тэта-соединение

Номер поставщика	Наименование поставщика	X
		(Статус поставщика)
1	Иванов	4
2	Петров	1
3	Сидоров	2

Таблица 13 Отношение А (Поставщики)

Номер	Наименование	Y
детали	детали	(Статус детали)
1	Болт	3
2	Гайка	2
3	Винт	1

Таблица 14 Отношение В (Детали)

Ответ на вопрос "какие поставщики имеют право поставлять какие детали?" дает Θ -соединение $A[X \ge Y]B$:

Номер поставщика	Наименование поставщика	Х (Статус поставщика)	Номер детали	Наименование детали	Ү (Статус детали)
1	Иванов	4	1	Болт	3
1	Иванов	4	2	Гайка	2
1	Иванов	4	3	Винт	1
2	Петров	1	3	Винт	1
3	Сидоров	2	2	Гайка	2
3	Сидоров	2	3	Винт	1

Таблица 15 Отношение "Какие поставщики поставляют какие детали"

Экви-соединение

P[PNUM = PNUM]PD

(P RENAMEPNUM AS PNUM 1)[PNUM 1 = | PNUM 2](PD RENAMEPNUM AS PNUM 2)|

Номер поставщика	Наименование поставщика
PNUM	PNAME
1	Иванов
2	Петров
3	Сидоров

Таблица 16 Отношение Р (Поставщики)

Номер детали	Наименование детали
DNUM	DNAME
1	Болт
2	Гайка
3	Винт

Таблица 17 Отношение D (Детали)

Номер поставщика	Номер детали	Поставляемое количество
PNUM	DNUM	VOLUME
1	1	100
1	2	200
1	3	300
2	1	150
2	2	250
3	1	1000

Таблица 18 Отношение РD (Поставки)

Экви-соединение

Номер поставщика	Наименование поставщика	Номер поставщика	Номер детали	Поставляемое количество
PNUM1	PNAME	PNUM2	DNUM	VOLUME
1	Иванов	1	1	100
1	Иванов	1	2	200
1	Иванов	1	3	300
2	Петров	2	1	150
2	Петров	2	2	250
3	Сидоров	3	1	1000

Таблица 19 Отношение "Какие детали поставляются какими поставщиками"

Естественное соединение

Естественным соединением называется соедине ние по эквивалентности двух отношений А и В, выполненное по всем общим атрибутам, из результатов которого исключается по одному экземпляру каждого общего атрибута.

A JOIN B

Деление

Отношение с заголовком $(X_1, X_2, ..., X_n)$ и телом, содержащим множество кортежей $(x_1, x_2, ..., x_n)$, таких, что для всех кортежей $(y_1, y_2, ..., y_m) \in B$ в отношении $A(X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_m)$ найдется кортеж $(x_1, x_2, ..., x_n, y_1, y_2, ..., y_m)$.

A DIVIDEBY B

Деление

Номер поставщика	Номер детали
PNUM	DNUM
1	1
1	2
1	3
2	1
2	2
3	1

Таблица 21 Проекция X=PD[PNUM,DNUM]

Номер детали

DNUM

1

2

3

Таблица 22 Проекция Y=D[DNUM]

Номер поставщика PNUM

1

Таблица 23 Отношение X DEVIDEBY Y

Запросы, невыразимые средствами реляционной алгебры

🎱 Плохая нормализация отношений

Наименование вещества	Водород	Гелий	 105 элемент
Дезоксирибону-клеиновая кислота	5	3	 0.01
Бензин	50	0	 0

Таблица 24 Отношение ХИМИЧЕСКИЙ_СОСТАВ_ВЕЩЕСТВ

ном_вещества	ВЕЩЕСТВО	
1	Дезоксирибонуклеиновая кислота	
2	Бензин	

Таблица 25 Отношение ВЕЩЕСТВО

ном_элемента	элемент	
1	Водород	
2	Гелий	
105		

Таблица 26 Отношение ЭЛЕМЕНТЫ

ном_вещества	ном_элемента	ПРОЦЕНТ
1	1	5
1	2	3
1	105	0.01
2	1	50

Таблица 27 Отношение ХИМИЧЕСКИЙ_СОСТАВ_ВЕЩЕСТВ

- 1. R1(HOMEP_BEЩЕСТВА,HOM_ЭЛЕМЕНТА,ПРО ЦЕНТ)=

 ХИМИЧЕСКИЙ_СОСТАВ_ВЕЩЕСТВ[ПРОЦЕНТ> 90]. (Выборка из отношения).
- 2. R2(HOM_ЭЛЕМЕНТА) = R1[HOM_ЭЛЕМЕНТА]. (Проекция отношения).
- 3. R3(HOM_ЭЛЕМЕНТА,ЭЛЕМЕНТ)=
 R2[HOM_ЭЛЕМЕНТА=HOM_ЭЛЕМЕНТА]ЭЛЕМ
 ЕНТЫ. (Естественное соединение)
- 4. OTBET(ЭЛЕМЕНТ) = R3[ЭЛЕМЕНТ]. (Проекция таблицы).

Запросы, невыразимые средствами реляционной алгебры

Невыразимость транзитивного замыкания реляционными операторами, например, «перечислить всех руководителей (прямых и непрямых) данного сотрудника».

ТАБ_НОМ	ФАМИЛИЯ	должность	ТАБ_НОМ_РУК
1	Иванов	Директор	1
2	Петров	Глав.бухгалтер	1
3	Сидоров	Бухгалтер	2
4	Васильев	Начальник цеха	1
5	Сухов	Мастер	4
6	Шарипов	Рабочий	5

Таблица 28 Отношение СОТРУДНИКИ

Запросы, невыразимые средствами реляционной алгебры

- Транзитивное замыкание бинарного отношения R на множестве X есть наименьшее транзитивное отношение на множестве X, включающее R.
- Бинарное отношение R
 на множестве X называется транзитивным,
 если для любых трёх элементов
 множества a,b,c выполнение
 отношений aRb и bRc влечёт выполнение
 отношения aRc.

 Пусть множество А представляет собой следующее множество деталей и конструкций: А = {Болт, Гайка, Двигатель, Автомобиль, Колесо, Ось}

Отношение R

Конструкция	Где используется
Болт	Двигатель
Болт	Колесо
Гайка	Двигатель
Гайка	Колесо
Двигатель	Автомобиль
Колесо	Автомобиль
Ось	Колесо

Транзитивное замыкание R

Конструкция	Где используется
Болт	Двигатель
Болт	Колесо
Гайка	Двигатель
Гайка	Колесо
Двигатель	Автомобиль
Колесо	Автомобиль
Ось	Колесо
Болт	Автомобиль
Гайка	Автомобиль
Ось	Автомобиль

Запросы, невыразимые средствами реляционной алгебры

🥙 Кросс-таблицы

Товар	Месяц	Количество
Компьютеры	Январь	100
Принтеры	Январь	200
Сканеры	Январь	300
Компьютеры	Февраль	150
Принтеры	Февраль	250
Сканеры	Февраль	350

Таблица 29 Данные о продажах

Товар	Январь	Февраль	
Компьютеры	100	150	
Принтеры	200	250	
Сканеры	300	350	

Таблица 30 Кросс-таблица