Coupling from the Past: Introduction

Aidan Jameson

University of Utah

May 19, 2020

Notation

• $(X_t) \cong \mathcal{P} \implies (X_t)$ is a Markov chain with transition matrix \mathcal{P}

- $(X,Y) \propto (\mu,\nu) \implies (X,Y)$ is a coupling of (μ,ν)
- $(X_t, Y_t) \propto \mathcal{P} \implies (X_t, Y_t)$ is a coupling of Markov chains with transition matrix \mathcal{P}

- Generally, unless otherwise stated, the state space of any Markov chains will be denoted Ω (finite)
- Markov chains will also occasionally only be referred to by their transition matrix

Markov Chain Convergence Theorem

Theorem

Given any $\mathfrak P$ ergodic Markov Chain transition matrix with stationary distribution π . Then there exists $\alpha \in (0,1)$ and C>0 such that

$$\max_{\mathbf{x} \in \Omega} \left\| \mathcal{P}^t(\mathbf{x}, \cdot) - \pi \right\|_{TV} \le C\alpha^t$$

As such, from here on out we will assume all Markov chains are ergodic unless explicitly stated

Metropolis Chains

Proposition

For any probability distribution π on Ω , given any irreducible transition matrix Φ the Markov chain with transition matrix

$$\mathcal{P}(x,y) = \begin{cases} \Phi(x,y)a(x,y) & y \neq x \\ 1 - \sum_{z \in \Omega \setminus \{x\}} \Phi(x,z)a(x,z) & y = x \end{cases}$$

where
$$a(x, y) = \min \left(1, \frac{\pi(y)\Phi(y, x)}{\pi(x)\Phi(x, y)}\right)$$

has stationary distribution π .

In practice a(x, y) is known as the acceptance probability so the chain can be simulated by running the initial chain and accepting transitions with probability according to a(x, y).

Coupling

Proposition

For any μ and ν probability distributions on state space Ω (finite):

$$\|\mu - \nu\|_{TV} = \inf \{ \mathbb{P}\{X \neq Y\} : (X, Y) \propto (\mu, \nu) \}$$

Proposition

Further $\exists (X^*,Y^*) \propto (\mu,\nu)$ such that

$$\|\mu - \nu\|_{TV} = \mathbb{P}\{X^* \neq Y^*\}$$

Coupling

Theorem

Let $(X_t, Y_t) \propto \mathcal{P}$ such that $X_0 = x$ and $Y_0 = y$ (we may assume that $X_t = Y_t \implies X_{t+1} = Y_{t+1}$ as any coupling may be modified to do so). Let $\tau_{couple} = \min\{t : X_t = Y_t\}$. Then

$$\|\mathcal{P}^{t}(x,\cdot) - \mathcal{P}^{t}(y,\cdot)\|_{TV} \leq \mathbb{P}_{x,y}\{\tau_{couple} > t\}$$

Random Mapping Representation

Theorem

For any Markov chain on states space Ω with transition matrix $\mathbb P$ there exists $f:\Omega\times\Lambda\to\Omega$ and a random variable Z on Λ such that

$$\mathbb{P}\{f(x,Z)=y\}=\mathbb{P}(x,y)$$

Observation

With f and Z as above let Z_1, Z_2, \ldots be i.i.d. with the same distribution as Z. For any $x \in \Omega$ define inductively the Markov chain $(X_t^x) \cong \mathcal{P}$ by $X_0^x = x$ and $X_t = f(X_{t-1}^x, Z_t)$. Then $(X_t^x : x \in \Omega)$ is a grand coupling over Ω and \mathcal{P}

Coupling From The Past

Given an ergodic Markov chain on Ω with transition matrix \mathcal{P} and stationary distribution π .

- Let $\mathbb P$ be a probability measure on the space of functions from Ω to itself (Ω^{Ω}) such that $\mathbb P\{f(x)=y\}=\mathcal P(x,y)$.
- We operate under the assumption that the chain has been run long enough to reach its stationary distribution and declare this time t=0.
- Starting at some time -T in the past we create a grand coupling on Ω beginning at -T via inductively defining $X_{t+1}^{\times} = f_t(X_t^{\times})$ $(X_{-T}^{\times} = x) \ \forall x \in \Omega$ where f_{-T}, \ldots, f_{-1} is an i.i.d sequence of random maps from Ω to itself distributed according to \mathbb{P}

Sample one such i.i.d. sequence f_{-T}, \ldots, f_{-1} according to \mathbb{P} .

Coupling From The Past

Theorem

If $(f_{-1} \circ f_{-2} \circ \cdots \circ f_{-T})(\Omega) = \{x\}$ (for some $x \in \Omega$). Then x is a sample from the stationary distribution π

Coupling From The Past

Theorem

If $(f_{-1} \circ f_{-2} \circ \cdots \circ f_{-T_0})(\Omega) = \{x\}$ (for some $x \in \Omega$). Then x is a sample from the stationary distribution π

Proof.

Take $(f_t \in \Omega^\Omega: t \in \mathbb{Z})$ to be an i.i.d. sequence of random maps with distribution \mathbb{P} . For any $T_1 < T_2$ let $F_{T_1}^{T_2} = f_{T_2-1} \circ f_{T_2-2} \circ \cdots \circ f_{T_1}$. By construction and the Markov Chain Convergence Theorem $\lim_{T \to \infty} \mathbb{P}\{F_{-T}^0(x) = y\} = \lim_{T \to \infty} \mathcal{P}^T(x,y) = \pi(y)$. Let $T_0 = \inf\{t > 0: |F_{-t}^0(\Omega)| = 1\}$ (Unless f and \mathbb{P} are poorly chosen, $T_0 < \infty$ a.s. although this needs to be checked). Now since $F_{-T_1}^0 = F_{-T_2}^0 \circ F_{-T_1}^{-T_2}$ for T large enough $F_{-T}^0 = F_{-T_0}^0 \circ F_{-T}^{-T_0} = F_{-T_0}^0$ and thus $\mathbb{P}\{F_{-T_0}^0(x) = y\} = \lim_{T \to \infty} \mathbb{P}\{F_{-T}^0(x) = y\} = \pi(y)$

Monotone Coupling From The Past

Corollary

If Ω is equipped with partial order \leq such that there exists $\hat{1},\hat{0}\in\Omega:\hat{0}\leq x\leq \hat{1}\ \forall x\in\Omega$. Then given that the coupling preserves the partial order (ie. $f_t(x)\leq f_t(y)\ \forall t$ whenever $x\leq y$) it suffices to find $-T_0$ such that $(f_{-1}\circ f_{-2}\circ\cdots\circ f_{-T_0})$ $(\hat{1})=(f_{-1}\circ f_{-2}\circ\cdots\circ f_{-T_0})$ $(\hat{0})=x$ for some $x\in\Omega$.

Applications

- Determining the stationary distribution when it is not known
- Perfectly sampling from the stationary distribution

The Ising Model

- Equipped with a partial order
- Glaubner dynamics has the Gibbs stationary distribution
- $\bullet \ \mathbb{E}[T_0] = O(t_{\mathsf{mix}}(\frac{1}{4}) \ln |V|)$