

Faculdade de Ciências Exatas e da Engenharia

PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR

MATEMÁTICA - 15/06/2016

Atenção:

Não é permitido o uso de <u>calculadora</u> nem de <u>telemóvel</u>.

<u>Justifique</u> os raciocínios utilizados na resolução das questões.

<u>Esta prova</u> tem a duração de **120m**.

	Questões:	1.(a)	1.(b)	2.(a)	2.(b)	2.(c)	2.(d)	3.(a)	3.(b)	4.(a)	4.(b)	5.	6.
I	Cotações:	1,5	2,0	2,0	2,0	1,0	1,5	1,5	1,5	1,5	1,5	2,0	2, 0

1. Considere a seguinte função:

$$g(x) = \frac{\sqrt{9 - x^2}}{e^3 \ln(x - 1)}$$

- (a) Determine o domínio da função g;
- (b) Calcule, caso existam, as assíntotas verticais de g.
- 2. Considere a seguinte função real de variável real:

$$f(x) = \begin{cases} \cos(\ln x), & \text{se } x \ge 1\\ x - 1, & \text{se } x < 1 \end{cases}$$

- (a) Verifique se a função f é contínua em x = 1;
- (b) Prove que a função f tem, pelo menos, um zero no intervalo $|e^{\pi}, e^{2\pi}|$;
- (c) Justifique que a função f não é diferenciável no ponto x = 1;
- (d) Determine a função derivada de f.
- 3. Considere a função:

$$h\left(x\right) = xe^{1-x}$$

- (a) Estude a monotonia e a existência de extremos de h;
- (b) Estude o sentido da **concavidade** da função h e determine, caso exitam, os seus **pontos de inflexão**.

V.S.F.F.

4. Considere as seguintes sucessões reais:

$$u_n = e\left(\frac{7n+3}{7n}\right)^n; \quad v_n = \frac{2n+1}{n} \quad ; \quad w_n = \begin{cases} u_n, & \text{se } n > 2^3 \\ v_n, & \text{se } n \le 2^3 \end{cases}$$

- (a) Estude a monotonia da sucessão $(v_n)_{n\in\mathbb{N}}$;
- (b) Calcule, caso exista, o $\lim_{n\to+\infty} w_n$.
- 5. Resolva, em \mathbb{C} , a seguinte equação:

$$z^2 + \left[-4\operatorname{cis}\left(\frac{\pi}{4}\right) + 2\sqrt{2}i \right]z = -3.$$

6. Represente no plano d' Argand o seguinte conjunto:

$$\left\{ z \in \mathbb{C} : |z - 2| \le 2 \land |z - 1| \ge 1 \land -\frac{\pi}{2} \le \arg z \le -\frac{\pi}{4} \right\}.$$

Faculdade de Ciências Exatas e da Engenharia

PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR

MATEMÁTICA - 15/06/2016

RESOLUÇÃO

1.

$$g(x) = \frac{\sqrt{9 - x^2}}{e^3 \ln(x - 1)}$$

(a) Domínio de q

$$D_g = \left\{ x \in \mathbb{R} : 9 - x^2 \ge 0 \land x - 1 > 0 \land \ln(x - 1) \ne 0 \right\}$$

Cálculos Auxiliares

$$9 - x^2 = 0 \Leftrightarrow x = -3 \lor x = 3$$
, $\log 9 - x^2 \ge 0 \Leftrightarrow -3 \le x \le 3$
 $x - 1 > 0 \Leftrightarrow x > 1$

$$\ln(x-1) \neq 0 \Leftrightarrow x-1 \neq e^0 \Leftrightarrow x-1 \neq 1 \Leftrightarrow x \neq 2$$

Logo

$$D_g =]1,3] \setminus \{2\}$$

(b) Assíntotas verticais (A.V.) de g

Temos que q é contínua no seu domínio.

Estudo da existência de A.V. de g.

$$\lim_{x \to 1^{+}} g\left(x\right) = \lim_{x \to 1^{+}} \frac{\sqrt{9 - x^{2}}}{e^{3} \ln\left(x - 1\right)} = \frac{\sqrt{8}}{e^{3} \ln\left(0^{+}\right)} = \frac{\sqrt{8}}{e^{3} \left(-\infty\right)} = 0 \in \mathbb{R},$$

 $\log x \not\equiv A.V. \text{ em } x = 1^+.$

$$\lim_{x \to 2^{-}} g\left(x\right) = \lim_{x \to 2^{-}} \frac{\sqrt{9 - x^{2}}}{e^{3} \ln\left(x - 1\right)} = \frac{\sqrt{5}}{e^{3} \ln\left(1^{-}\right)} = \frac{\sqrt{5}}{e^{3} \left(0^{-}\right)} = -\infty \notin \mathbb{R},$$

logo \exists A.V. em $x = 2^-$.

$$\lim_{x \to 2^{+}} g\left(x\right) = \lim_{x \to 2^{+}} \frac{\sqrt{9 - x^{2}}}{e^{3} \ln\left(x - 1\right)} = \frac{\sqrt{5}}{e^{3} \ln\left(1^{+}\right)} = \frac{\sqrt{5}}{e^{3} \left(0^{+}\right)} = +\infty \notin \mathbb{R},$$

 $\log \exists A.V. \text{ em } x = 2^+.$

Assim: x = 2 é uma assíntota vertical ao gráfico de g.

2.

$$f(x) = \begin{cases} \cos(\ln x), & \text{se } x \ge 1\\ x - 1, & \text{se } x < 1 \end{cases}$$

(a) f é contínua em x = 1 se, e só se,

$$\exists \lim_{x \to 1^{-}} f\left(x\right), \exists \lim_{x \to 1^{+}} f\left(x\right) \wedge \lim_{x \to 1^{-}} f\left(x\right) = \lim_{x \to 1^{+}} f\left(x\right) = f\left(1\right) = \cos\left(\ln 1\right) = \cos 0 = 1$$

Temos

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x - 1) = 0$$

е

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \cos(\ln x) = \cos(\ln 1) = \cos 0 = 1$$

Assim

$$\lim_{x \to 1^{-}} f(x) = 0 \neq 1 = \lim_{x \to 1^{+}} f(x),$$

donde f não é contínua em x = 1.

(b) Para $x \in [e^{\pi}, e^{2\pi}]$, $f(x) = \cos(\ln x)$, temos que f é contínua em $[e^{\pi}, e^{2\pi}]$, por ser a composta de duas funções contínuas. Uma vez que

$$f(e^{\pi}) = \cos(\ln e^{\pi}) = \cos(\pi) = -1 < 0$$

e

$$f(e^{2\pi}) = \cos(\ln e^{2\pi}) = \cos(2\pi) = 1 > 0$$

Então, pelo Teorema de Bolzano, existe um zero da função f no intervalo $]e^{\pi}, e^{2\pi}[.$

- (c) Como a função f não é contínua no ponto x=1 (pela alínea (a)), então f não é diferenciável em x=1, ou seja, $\nexists f'(1)$.
- (d) Função derivada de f

Para x < 1 temos

$$f'(x) = (x - 1)' = 1$$

Para x > 1 temos

$$f'(x) = (\cos(\ln x))' = -\frac{1}{x}\sin(\ln x)$$

Pela alínea (c) vimos que $\nexists f'(1)$, logo a função derivada de f é:

$$f'(x) = \begin{cases} -\frac{1}{x}\sin(\ln x), & \text{se } x > 1\\ 1, & \text{se } x < 1 \end{cases}$$

3.

$$h\left(x\right) = xe^{1-x}$$

(a) Monotonia e a existência de extremos de h:

Derivada de h:

$$h'(x) = e^{1-x} - xe^{1-x} = e^{1-x} (1-x)$$

Zeros da 1^a derivada:

$$h'(x) = 0 \Leftrightarrow e^{1-x} (1-x) = 0$$

$$\Leftrightarrow e^{1-x} = 0 \lor 1 - x = 0$$

$$\Leftrightarrow x = 1$$

		1	
1-x	+	0	_
e^{1-x}	+	+	+
h'(x)	+	0	_
$h\left(x\right)$	7	$\max_{(1,1)}$	/

... h é crescente no intervalo $]-\infty,1[$ e decrescente no intervalo $]1,+\infty[$; h tem um máximo em x=1 e o valor do máximo é: $h(1)=e^{1-1}=e^0=1$

(b) Concavidade e pontos de inflexão da função h :

 2^a derivada de h:

$$h''(x) = [e^{1-x}(1-x)]' = -(1-x)e^{1-x} - e^{1-x} = e^{1-x}(x-2)$$

Zeros da 2^a derivada:

$$h''(x) = 0 \Leftrightarrow e^{1-x}(x-2) = 0$$

$$\Leftrightarrow e^{1-x} = 0 \lor x - 2 = 0$$

$$\Leftrightarrow x = 2$$

		2	
x-2	_	0	+
e^{1-x}	+	+	+
h''(x)	_	0	+
$h\left(x\right)$	\cap	ponto inflexão	U
		$(2,2e^{-1})$	

 $\therefore h$ tem a concavidade voltada para baixo no intervalo $\left]-\infty,2\right[;$

h tem a concavidade voltada para cima no intervalo $]2, +\infty[$; h tem um ponto de inflexão em x=2 e a sua imagem é:

$$h(2) = 2e^{1-2} = 2e^{-1} = \frac{2}{e}$$

4.

$$u_n = e\left(\frac{7n+3}{7n}\right)^n; \quad v_n = \frac{2n+1}{n} \quad ; \quad w_n = \begin{cases} u_n, & \text{se } n > 2^3 \\ v_n, & \text{se } n \le 2^3 \end{cases}$$

(a) Monotonia da sucessão $(v_n)_{n\in\mathbb{N}}$;

$$v_{n+1} - v_n = \frac{2(n+1)+1}{n+1} - \frac{2n+1}{n} = \frac{2n+3}{n+1} - \frac{2n+1}{n}$$
$$= \frac{2n^2 + 3n - 2n^2 - 2n - n - 1}{n(n+1)} = -\frac{1}{n(n+1)} < 0$$

Logo, a sucessão $(v_n)_{n\in\mathbb{N}}$ é monótona decrescente.

(b) Como

$$w_n = \begin{cases} e\left(\frac{7n+3}{7n}\right)^n, & \text{se } n > 2^3\\ \frac{2n+1}{n}, & \text{se } n \le 2^3 \end{cases}$$

Então:

$$\lim_{n \to +\infty} w_n = \lim_{n \to +\infty} e \left(\frac{7n+3}{7n}\right)^n = e \lim_{n \to +\infty} \left(1 + \frac{3}{7n}\right)^n$$
$$= e \lim_{n \to +\infty} \left(1 + \frac{\frac{3}{7}}{n}\right)^n = e \cdot e^{\frac{3}{7}} = e^{\frac{10}{7}}$$

$$\therefore \lim_{n \to +\infty} w_n = e^{\frac{10}{7}}$$

5. Temos:

$$z^{2} + \left[-4\operatorname{cis}\left(\frac{\pi}{4}\right) + 2\sqrt{2}i \right] z = -3$$

$$\Leftrightarrow z^{2} + \left[-4\left(\operatorname{cos}\left(\frac{\pi}{4}\right) + i\operatorname{sin}\left(\frac{\pi}{4}\right)\right) + 2\sqrt{2}i \right] z = -3$$

$$\Leftrightarrow z^{2} + \left[-4\left(\frac{\sqrt{2}}{2}\right) - 4i\left(\frac{\sqrt{2}}{2}\right) + 2\sqrt{2}i \right] z = -3$$

$$\Leftrightarrow z^{2} + \left(-2\sqrt{2} - 2\sqrt{2}i + 2\sqrt{2}i \right) z + 3 = 0$$

$$\Leftrightarrow z^{2} + \left(-2\sqrt{2} - 2\sqrt{2}i + 2\sqrt{2}i \right) z + 3 = 0$$

$$\Leftrightarrow z^{2} - 2\sqrt{2}z + 3 = 0$$

$$\Leftrightarrow z = \frac{2\sqrt{2} \pm \sqrt{8} - 12}{2}$$

$$\Leftrightarrow z = \frac{2\sqrt{2} \pm \sqrt{-4}}{2}$$

$$\Leftrightarrow z = \frac{2\sqrt{2} \pm 2i}{2}$$

$$\Leftrightarrow z = \sqrt{2} + i \lor z = \sqrt{2} - i$$

6.

 $\left\{z \in \mathbb{C} : |z - 2| \le 2 \land |z - 1| \ge 1 \land -\frac{\pi}{2} \le \arg z \le -\frac{\pi}{4}\right\}.$

Temos

$$|z-2| \le 2$$
 é o círculo de centro $(2,0)$ e raio 2, pois $\Leftrightarrow |z-2| \le 2 \Leftrightarrow |x+yi-2| \le 2 \Leftrightarrow (x-2)^2 + y^2 \le 4$

 \mathbf{e}

$$|z-1| \ge 1$$
 é o exterior do círculo de centro $(1,0)$ e raio 1, pois $\Leftrightarrow |x+yi-1| \ge 1 \Leftrightarrow (x-1)^2 + y^2 \ge 1$

Representação no plano d' Argand

