Unilateral Laplace Transform

$$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$$

Theorems

x(t)	X(s)	ROC
$x(t-t_0)$	$e^{-st_0}X(s)$	R
$e^{s_0t}x(t)$	$X(s-s_0)$	$R + Re(s_0)$
x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	aR
$x^*(t)$	$X(s^*)^*$	R
$(x_1 * x_2)(t)$	$X_1(s)X_2(s)$	$R_1 \bigcap R_2$
-tx(t)	$\frac{\mathrm{d}X}{\mathrm{d}s}$	R
$\frac{\mathrm{d}^n x}{\mathrm{d}t^n}$	$s^{n}X(s) - \sum_{i=0}^{n-1} s^{n-i-1} \frac{\mathrm{d}^{i}x}{\mathrm{d}t^{i}} _{t=0}$	R

Transforms

Signal	Transform	ROC
$\delta(t-T)$	e^{-sT}	$\mathbb C$
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	Re(s) > 0
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(s+a)^n}$	Re(s) > a
$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	Re(s) > a
$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0}$	Re(s) > a

Electro-Mechanical Equivalence

Equivalent Quantities

Translational Mechanical System	Rotational Mechanical System	Electrical System
Force (F)	Torque	Voltage (V)
$\mathrm{Mass}\;(M)$	Moment of Inertia (J)	Inductance (L)
Damping Coefficient (B)	Rotational Damping Coefficient (B)	Resistance (R)
Spring Constant (K)	Torsional Spring Constant (K)	Reciprocal of Capacitance $\left(\frac{1}{C}\right)$
Displacement (x)	Angular Displacement (θ)	Charge (Q)
Velocity (v)	Angular Velocity (ω)	Current (I)

Equation Equivalence

Translational Mechanical System	Rotational Mechanical System	Electrical System
$Ms^2X(s)$	$Js^2\Theta(s)$	$Ls^2Q(s)$
BsX(s)	$Bs\Theta(s)$	RsQ(s)
KX(s)	$K\Theta(s)$	$rac{1}{C}Q(s)$

Conversion Rules

- 1. The force at two ends of a damper (or spring) must be equal \Leftrightarrow the voltage across the resistor (or capacitor) must be equal
- 2. Parallel in one domain \implies Series in the other domain
- 3. $\sum F = 0$ at a massless node $\Leftrightarrow \sum V = 0$ at an electrical node

Conversion Procedure

Electrical to Mechanical

- 1. Label all currents such that only one current flows through inductors
- 2. Write loop equations for each loop
- 3. Re-write equations using the analogous quantities. Each loop is replaced by a position
- 4. Draw mechanical system corresponding to equations

Mechanical to Electrical

- 1. Write force equations for each position
- 2. Re-write equations using analogous quantities. Each equation becomes a loop
- 3. Draw loops such that only one current flows through each inductor