This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(à n'utiliser que pour les commandes do reproduction)

2 716 198

21 N° d'enregistrement national :

94 01946

(51) Int CI": C 07 K 14/47, C 12 N 5/02, A 61 K 38/17

12	DEMANDE DE BREVET D'INVENTION		A 1
22 Date de dépô 30 Priorité :	it : 15.02.94.	71) Demandeur(s) : Société Anonyme dite: BIO MERIEUX — FR.	
demande : 18	Date de la mise à disposition du public de la demande : 18.08.95 Bulletin 95/33.	72 Inventeur(s): Perron Hervé, Dobransky Tomas, Rieger François et Mandrand Bernard.	
recherche pro	cuments cités dans le rapport de éliminaire : <i>Se reporter à la fin du sule.</i> d'autres documents nationaux	73 Titulaire(s):	
		74 Mandataire : Cabinet Germain & Maureau.	

- 54 Facteur cytotoxique tel qu'associé à la sciérose en plaques, sa détection et sa quantification.
- 57 Facteur gliotoxique caractérisé en ce qu'il possède, une activité toxique vis-à-vis des cellules astrocytaires humaines ou animales, ayant pour effet une désorganisation cytomorphologique de leur réseau de filaments intermédiaires, et/ou une dégradation des protéines desdits filaments intermédiaires, et/ou une mort cellulaire notamment, par apoptose.

La présente invention a pour objet un facteur cytotoxique associé à la sclérose en plaques caractérisé par son activité cytotoxique vis à vis des cellules gliales notamment des astrocytes, ainsi que la mise en 5 évidence de cette activité cytotoxique dans un test biologique de détection et de suivi de cette maladie dans des fluides biologiques de patients atteints notamment de sclérose en plaques.

cellules gliales (astrocytes, Les 10 oligodendrocytes, microgliocytes) sont la cible primaire ou secondaire de processus pathologiques dans différentes maladies du système nerveux notamment, chez l'homme, dans les leucodystrophies, leucoencéphalites, d'encéphalopathie, certaines maladies formes sclérose latérale neurodégénératives la 15 comme amyotrophique où co-existe une gliose astrocytaire avec neuronale et, enfin, des l'atteinte inflammatoires comme la sclérose en plaques ou la maladie de Schilder.

La sclérose en plaques (SEP) est une maladie 20 chronique du système nerveux central de l'homme, évoluant par succession de phases de rémission et de poussée ou régulière, et la progression selon une consiste anatomopathologique en la caractéristique formation de zones de démyélinisation bien délimitées dans 25 la substance blanche du cerveau et de la moelle épinière (Prineas J.W. The neuropathology of multiple sclerosis "Handbook of Clinical Neurology: Demyelinating Diseases", volume 3 n°47, Koetsier J.C. éditeur, pp213-30 257. Elsevier, Amsterdam 1985). Au niveau histologique, au stade précoce du processus zones présentent, lésionnel, une dégradation de la myéline péri-axonale associée à une atteinte des cellules gliales responsables de cette myélinisation, les oligodendrocytes (Prineas J.W., Barnard R.O., Kwon E.E., Sharer L.R. and Cho E.S. 35 Multiple sclerosis: remyelination of nascent lesions. Ann.

Neurol. 1993; 33, 137-151). Une activation macrophagique inflammatoire impliquant les cellules microgliales (macrophages tissulaires résidants du système nerveux central) ainsi que, vraisemblablement, des macrophages provenant de monocytes sanguins infiltrés, est associée à démyélinisation processus de et contribue destruction des feuillets myélinisés (Boyle E.A. and McGeer P.L. Cellular immune response in multiple sclerosis plaques. American Journal of Pathology 1993; 137, 10 584). Au centre de la zone démyélinisée, une déplétion relative en cellules gliales est retrouvée alors qu'une prolifération d'astrocytes, ou gliose astrocytaire, développe à la périphérie et peut tardivement envahir la plaque démyélinisée pour générer une plaque fibreuse ou gliotique, telle que l'on en trouve sur le site de lésions 15 anciennes (Prineas J.W. The neuropathology of multiple sclerosis dans "Handbook of Clinical Neurology: Demyelinating Diseases", volume 3 n°47, Koetsier J.C. Elsevier, Amsterdam 1985). éditeur. pp213-257. 20 structures sclérotiques sont à l'origine du nom donné à la maladie, la "sclérose" en plaques (Charcot J.M. Histologie de la sclérose en plaques. Gaz. Hop. (Paris) 1868; 41, 554-566).

Une autre caractéristique de ces plaques est leur association quasi systématique avec un élément vasculaire 25 autour duquel elles semblent se développer (Hauw J.J. and Escourolle R. Aspects anatomo-pathologiques de la sclérose en plaques. dans "La sclérose en plaques", Rascol A., Bés A. et Guiraud-Chaumeil B. pp9-47. Masson, Paris, 1980 / Prineas J.W. The neuropathology of multiple sclerosis dans "Handbook of Clinical Neurology: Demyelinating Diseases", volume 3 n°47, Koetsier J.C. editeur, pp213-257. Elsevier, Amsterdam 1985). Au niveau histologique, on y observe une altération fréquente de la barrière hémato-encéphalique (BHE) constituée par l'endothélium capillaire (Poirier J., Fleury J., and Ghérardi R. La barrière

encéphalique. Données morphologiques. La Revue de Médecine En effet, l'endothélium 1983: 4, 131-144). interne. vasculaire des structures capillaires est normalement jointif dans le système nerveux central, à l'exception des 5 capillaires fenestrés associés aux plexus choroïdes, structures périventriculaires assurant la production du liquide céphalo-rachidien (Netsky M.G., Shuangshoti S. The choroid plexus in health and disease. University Press of Virginia, 1975). Cette altération de la BHE, marquée 10 par une disjonction des cellules endothéliales et par le passage non régulé d'un flux de liquide plasmatique et de cellules d'origine sanquine dans le parenchyme neuroglial, peut être visualisée au niveau des plaques "actives" par la technique d'imagerie par résonance magnétique (IRM) 15 associée à l'injection intraveineuse, chez le patient examiné, d'une solution de gadolinium. Ce composé permét d'obtenir un signal de résonance magnétique contrasté au liquide plasmatique et rend détectable niveau du passage anormal de plasma dans le parenchyme nerveux avec 20 l'oedème qui en résulte. On a pu montrer une corrélation entre l'activité lésionnelle des plaques et la présence de cet oedème au même niveau, ainsi qu'entre l'apparition et la résorption de cet oedème et le décours de poussées cliniques de la maladie (Gonzales-Scarano F., Grossman 25 R.I., Galetta S. Atlas S.W. and Silberberg D.H. Multiple disease activity correlates with gadolinium enhancement magnetic resonance imaging. Ann. Neurol. 1987; 21, 300-306).

Un des éléments déterminants dans le maintien jointive de l'endothélium capillaire structure 30 d'une cérébral, et donc dans celui de la BHE, est constitué par la présence sous-jacente d'extensions cytoplasmiques des astrocytes, appelées pieds astrocytaires (Poirier J., R. La barrière hémato-Ghérardi Fleury J., and 35 encéphalique. Données morphologiques. La Revue de Médecine interne, 1983; 4, 131-144). Vraisemblablement, ces pieds

astrocytaires induisent la formation ou permettent maintien des structures de jonction étanches (de type zonula occludens) qui assurent la cohésion de la barrière capillaire endothéliale concrétisant la BHE. or, 5 différents modèles pathologiques font état de l'altération de la BHE associée à une déplétion des pieds astrocytaires (Rapport s.I. Blood-brain barrier in physiology medicine. Raven Press. 1976 / Kent T.A. and McKendall R.R., Cerebral blood flow, cerebral metabolism and blood-McKendall Ed., barrier. In, R.R. Handbook Clinical Neurology, Vol. 12, n°56: Viral disease. Elsevier, Amsterdam, 1989).

Par ailleurs, dans le processus lésionnel de la l'altération de la BHE contribue à amplifier 15 réponse inflammatoire associée, par l'afflux rendu "libre" cellules lymphoïdes provenant de la circulation and Wright R.G. (Prineas Macrophages, sanguine J.W., lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Laboratory 20 Investigation, 1978; 38, 409-421).

La contribution de l'inflammation associée aux cellules immunitaires est importante dans la participe au processus lésionnel, notamment par le biais de lymphocytes et d'anticorps autoréactifs (Bergamini L, 25 Durell L. Multiple sclerosis. I. The immune pathogenetic hypothesis. Riv. Neurol. 1989; 59, 176-90 / Calder V, Owen S, Watson C, Feldmann M, Davidson A. MS: a localized immune disease of central nervous system. Immunol Today 1989; 10, 99-103). Cependant, contrairement au modèle auto-immun de l'encéphalite allergique 30 animal expérimentale où l'atteinte de la BHE et l'invasion du parenchyme nerveux par des cellules lymphoides du sang initient le processus lésionnel neuroglial circulant (Jervis G.A., Koprowski H. Chronic experimental allergic 35 encephalomyelitis. J. Neuropathol. Exp. Neurol. 1948; 7, 309-320), on observe dans la SEP que des processus

lésionnels précoces associés à une réaction macrophagique dans le parenchyme nerveux semblent précéder l'invasion du tissu par les cellules lymphoïdes du sang (Prineas JW. Pathology of early lesion circulant 5 multiple sclerosis. Human pathology 1975; 6, 23-7 / Boyle E.A. and McGeer P.L. Cellular immune response in multiple sclerosis plaques. American Journal of Pathology 1993; 137, 575-584). Il apparait ainsi, que les cellules lymphoïdes, et plus particulièrement les lymphocytes, ne sont pas l'apanage des plaques récentes (Escourolle R., ο. Principales J.J. and Lyon-Caen physiopathologiques morphologiques, approches étiologiques de la sclérose en plaques. La Revue du 2047-2053). Praticien (Paris) 1980; 30, De plus, l'infiltration lymphocytaire est 15 densité de surtout marquée dans les zones péri-vasculaires et à la périphérie des plaques de démyélinisation actives (Prineas J.W., and Wright R.G. Macrophages, lymphocytes, and plasma cells in compartment chronic perivascular in multiple 20 sclerosis. Laboratory Investigation, 1978; 38, 409-421 / Boyle E.A. and McGeer P.L. Cellular immune response in multiple sclerosis plaques. American Journal of Pathology 1993; 137, 575-584.).

Le stimulus initial à l'origine de la SEP est au coeur du débat sur l'étiologie de la SEP (Mc Donald W.I. The mystery of the origin of multiple sclerosis. J. Neurol. Neurosurg. Psych. 1986; 49, 113-123). Tour à tour, des arguments ont été mis en avant, en faveur d'une hypothèse virale (Carp R.I., Warner H.B. and Merz G.S. Viral etiology of multiple sclerosis. Prog. Med. Virol., 1978; 24, 158-177), bactérienne (Marie P. Sclérose en plaques et maladies infectieuses. Le progrès médical. 1884; 12, 287-289 / Gay D, Dick G, Upson G. Multiple sclerosis caused by an oral spirochete? Lancet; 1986, 2, 815-9), autoimmune (De Keyser J. Autoimmunity in multiple sclerosis. Neurology; 1988 Mar, 38, 371-4./ Calder V,

Owen S, Watson C, Feldmann M, Davidson A. MS: a localized immune disease of central nervous system. Immunol Today; 1989 Mar, 10, 99-103.), toxique (Juntunen J, Kinnunen E, M, Koskenvuo M. Multiple sclerosis Anti-Poika 5 occupational exposure to chemicals : a co-twin control study of a nationwide series of twins. Br. J. Int. Med. ; génétique (Ebers G.C, Bulman 1989 417-9.) ou distribution of MS reflects genetic geographic susceptibilty. Neurology 1986; 36, S1-108 / Haegert DG, 10 Michaud M, Schwab C, Tansey C, Secary F, Francis G. HLA-DR beta, -DQ alpha and -DQ beta restriction fragment length polymorphisms in multiple sclerosis. J. Neurosci. Res. 1989; 23, 46-54.). En fait, il semble qu'une combinaison d'une prédisposition génétique à l'action d'un agent pathogène primaire puisse déboucher sur un processus 15 (Waksman B.H. inflammatoire et auto-immun dévastateur Mechanisms in multiple sclerosis. Nature 1985; 318, 104-105).

Différentes séquences d'évènements peuvent ainsi 20 expliquer la démyélinisation et l'atteinte neurologique fonctionnelle dans la SEP, sans qu'il ait été possible à ce jour d'identifier un facteur déterminant qui puisse les initier et donner une explication cohérente à la multitude des données parcellaires accumulées au sujet de cette 25 maladie.

Des molécules d'origine bactérienne ou virale, voire rétrovirale endogène, sont connues pour posséder des propriétés dites superantigèniques (Acha-Orbea H. and Palmer E., Mls - a retrovirus exploits the immune system.

30 Immunology today 1991;12, 356-361 / Cole B.C and Atkin C.L. The mycoplasma arthritidis T-cell mitogen, MAM: a model superantigen. Immunology Today 1991; 12, 271-276). Leurs propriétés particulières de stimulation directe des lymphocytes T, spécifiques d'antigènes différents, par liaison avec la région VB de certains récepteurs "T", ont fait évoquer l'hypothèse que de telles molécules soient

intimement associées au processus étiopathogénique de la SEP (Rudge P. Does a retrovirally encoded superantigen ? multiple sclerosis Journal of Neurology, cause Neurosurgery and Psychiatry 1991; 54, 853-855). Or, un des 5 effets caractéristiques de ces superantigènes cellules T est l'induction prématurée, dans certaines conditions, d'une mort cellulaire programmée ou apoptose (Woodland D.L., Happ M.P., Gollob K.J. & Palmer E. An endogenous retrovirus mediating deletion of aB T cells ? 10 Nature (London) 1991; 349, 529-530). Les superantigènes ont aussi pour propriétés de se lier aux molécules HLA de classe II à la surface des cellules présentant l'antigène (Cole B.C and Atkin C.L. The mycoplasma arthritidis T-cell mitogen, MAM: a model superantigen. Immunology Today 1991; 15 12, 271-276). Rappelons ainsi que les astrocytes possèdent la capacité d'exprimer les antigènes HLA de classe II au notamment, niveau de leur membrane plasmique et, réponse à certaines cytokines pro-inflammatoires comme l'interféron gamma ou le facteur alpha nécrosant Multiple (TNF-alpha) (Traugott U. sclerosis: 20 tumeurs relevance of class I and class II MHC-expressing cells to lesion development. Journal of Neuroimmunology 1987; 16, 283-302). Cependant, aucun superantigène n'a encore été mis en évidence dans la sclérose en plaques.

Par ailleurs, de nombreux processus apoptotiques 25 "intempestifs", par opposition aux processus apoptotiques normaux liés, par exemple, au développement du sytème c. nerveux (Williams G.T. and A. Smith Molecular regulation of apoptosis: genetic controls on cell death 30 Cell 1993; 74, 777-779), peuvent intervenir en l'absence qu'il s'agisse d'infection superantigène, (Levine B., Huang Q., Isaacs J.T., Reed J.C., Griffin D.E. and Hardwick J.M. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. 739-742) ou qu'il s'agisse 361, 35 Nature, 1993; stimulation d'un récepteur cellulaire (Newell

VanderWall J., Beard K.S. and Freed J.H. Ligation of major histocompatibility complex class II molecules mediates apoptotic cell death in resting B lymphocytes. P.N.A.S. 1993; 90, 10459-10463). Il est intéressant de noter aussi qu'une apoptose peut être induite par la stimulation in vitro d'un récepteur membranaire au TNF-alpha (Williams G.T. and C. A. Smith Molecular regulation of apoptosis: genetic controls on cell death Cell 1993; 74, 777-779), mais qu'un tel phénomène n'a pas été étudié dans le système nerveux et a fortiori avec les astrocytes.

Certaines cytokines peuvent donc déclencher processus pathogène et être produites, notamment par les cytotoxique macrophages, et ont un effet oligodendrocytes (Selmaj. K.W. and Raine C.S. 15 necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 1988; 23, 339-346.). Il est à noter TNF alpha, ainsi que l'interleukine-1-alpha, l'interleukine-1-béta, l'interleukine-2, l'interleukine-6 l'interféron gamma, n'ont priori pas a 20 cytolytique sur les astrocytes, mais induisent plutôt une prolifération astrocytaire (Barna B.P., Estes M.L, Jacobs Hudson s. and Ransohoff R.M. Human astrocytes proliferate in response to tumor necrosis factor alpha. J. 239-243). Neuroimmunol. 1990; 30, Cependant, 25 astrocytes peuvent eux-mêmes être soumis stimulations à l'origine d'une sécrétion de TNF alpha. Ceci peut s'observer, par exemple, en réponse bactériennes lipopolysaccharidiques ionophores calciques (Robbins D.S., Shirazi Y., Drysdale 30 B.E., Lieberman A., Shin H.S. and Shin M.L. Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. The Journal of Immunology 1987; 139, 2597). Ainsi, une atteinte des oligodendrocytes, et donc destruction des feuillets myéliniques, peut 35 produire indirectement par le biais du TNF alpha produit par des astrocytes. Toute molécule induisant une telle

production de cytokine par les astrocytes, quel qu'en soit l'effet propre sur ces derniers (prolifération, différenciation ou effet cytopathogène), est donc potentiellement démyélinisante. Le TNF-alpha induit un 5 mécanisme cytotoxique oligodendrocytaire dont les premiers effets sont marqués par un gonflement des structures myéliniques, évoquant une action médiée par les canaux ioniques (Selmaj. K.W. and Raine C.S. Tumor necrosis factor mediates myelin and oligodendrocyte damage 10 vitro. Ann. Neurol. 1988; 23, 339-346). Une corrélation entre la production de TNF-alpha in vivo et les poussées de SEP semble d'ailleurs exister (Beck J., Rondot P., Catinot L., Falcoff E., Kirchner H. and Wietzerbin J. Increased production of interferon gamma and necrosis factor precedes clinical manifestation multiple sclerosis: do cytokine trigger off exacerbations ? Acta Neurol. Scand. 1988; 78, 318-323). Le rôle des astrocytes dans une telle production de TNF-alpha chez les patients atteints de SEP est cependant méconnu.

20 tout état de cause, les astrocytes étant susceptibles de produire du TNF-alpha et de co-présenter un antigène-cible avec des antigènes HLA de classe II aux cellules immunocompétentes, elles-mêmes recrutées par un cytopathique et/ou inflammatoire, ils processus se 25 trouvent fait carrefour des interactions au immunopathologiques telles qu'on peut en observer dans le processus lésionnel démyélinisant qui caractérise la SEP.

Un autre type de molécule susceptible de jouer un rôle dans le processus pathogénique conduisant à la formation d'une plaque de démyélinisation, puis à une gliose astrocytaire, est constitué par les protéines dites de choc thermique (HSP) ou protéines de stress. Ces protéines constituent une famille phylogénétique relativement conservée et sont retrouvées tant chez les procaryotes que chez les vertébrés supérieurs (Heat shock proteins and immune response. Kaufmann S.H.E., Current

30

35

Topics in Microbiology and Immunology, vol. 167. Springer-Verlag, Berlin, 1991). Leur synthèse est inductible dans les cellules eucaryotes par différents stress, notamment infectieux ou thermiques, et leur communauté antigénique interespèces a fait évoquer une induction d'autoimmunité chez l'homme par des bactéries infectieuses portant des HSP, comme mycobacterium tuberculosis (Wienfield J.B. and Jarjour W.N. Stress proteins, autoimmune disease. autoimmunity, and In "Heat shock immune response, Kaufmann S.H.E. 10 proteins and Topics in Microbiology and Immunology, vol. 167, pp161-189. Springer-Verlag, Berlin, 1991).

antigènes bactériens pouvant posséder des Des propriétés superantigèniques ou être des protéines de choc thermique, ont été incriminés dans l'induction de poussées 15 de SEP, sans qu'il soit clairement établi à ce jour s'ils s'agit de co-facteurs de pathogénicité occasionnels ou d'agents étiologiques, ou encore de pathogènes partageant des propriétés communes responsables d'une pathogénicité identique (Brocke S., Gaur A., Piercy C., Gautam A., 20 Fathman C.G. and Steinman L. Induction of Gijbels K., paralysis in experimental autoimmune relapsing encephalomyelitis by bacterial superantigen. Nature 1993; 365, 642-644 / Birnbaum G., Kotilinek L. and Albrecht L. 25 Spinal fluid lymphocytes from a subgroup of multiple sclerosis patients respond to mycobacterial antigens. Ann. Neurol. 1993; 34, 18-24).

Ce type de mécanisme fait intervenir, d'une part la présence d'HSP exogènes (bactériennes, par exemple) 30 lesquelles les cellules immunocompétentes contre d'autre part, l'expression d'HSP sensibilisent, et l'organisme infecté) à la surface (de cellules exprimant les antigènes HLA de classe II. Si les HSP cellulaires partagent des épitopes communs avec les elles peuvent être exogènes, reconnues comme "infectieuses" par les lymphocytes sensibilisés. Leur rôle

a aussi áté évoqué dans la SEP (Ransohoff R.M. and Rudick R.A. Heat-shock proteins and autoimmunity: implications for multiple sclerosis. Annals of Neurology 1993; 34, 7). La "gliotoxicité" de telles molécules peut passer par immunitaire et, éventuellement, réponse astrocytaires ou les microgliocytes cellules (autres macrophagiques pouvant présenter cellules gliales cytopathiques spécifique), mais les effets antigène propres de certaines HSP sur les cellules gliales sont 10 méconnus au vu de l'absence d'études exhaustives dans ce domaine.

Des travaux effectués ont apportés des arguments en faveur d'une étiologie virale de la SEP (voir notamment Perron H. Geny C., Laurent A., et al. Leptomeningeal cell 15 line from multiple sclerosis with reverse transcriptase activity and viral particles. Res. Virol. 1989; 140, 551-561 / Perron H. , Geny C., Gratacap B., et Coll. Isolation of an unknown retrovirus from CSF, blood and brain from patients with multiple sclerosis, in "Current concepts in pp.111-116. sclerosis", Wiethölter et al., 20 multiple Elsevier, Amsterdam, 1991; Perron H., Lalande B., Gratacap B., et al. Isolation of retrovirus from patients with multiple sclerosis . Lancet 1991; 337, 862-863 ; et WO-93/20188 dont le contenu est incorporé à titre 25 référence).

A la suite des travaux précités, les présents inventeurs ont été conduits à rechercher un ou des facteurs effecteurs du processus pathogénique aboutissant à la formation typique de plaques de démyélinisation et à une gliose astrocytaire.

30

35

Bien que les cultures de monocytes/macrophages sanguins de sclérose en plaques aient contribué à étayer une hypothèse virale au cours des travaux précités, d'autres aspects du rôle des cellules macrophagiques dans la pathogénie de cette maladie, qui n'impliquent pas nécessairement un agent viral, doivent être pris en

considération ; à cet égard, une hypothèse a donc été vérifiée selon émise laquelle un ou plusieurs facteur(s) toxique(s) pour les cellules macrogliales (astrocytes, oligodendrocytes) pourrait(ent) produit(s) par les monocytes de patients atteints de SEP.

Bien que les facteurs moléculaires en cause soient méconnus, un facteur toxique provenant soit des cellules immunitaires ou inflammatoires, soit d'un agent viral ou bactérien, soit encore, induit par ces derniers dans les cellules environnantes, est susceptible d'initier un processus aboutissant à une réponse inflammatoire aigüe ou chronique.

Pour bâtir cette hypothèse, on s'est notamment intéressé aux travaux effectués sur le rétrovirus de l'immunodéficience humaine, HIV-1.

15

En effet, les monocytes infectés par le HIV-1 et non les monocytes sains ni les lymphocytes, qu'ils soient infectés ou non par le HIV-1, produisent in vitro une cytotoxine encore mal caractérisée mais dont le tropisme 20 auteurs, neuronal. selon les l'a faite neurotoxine (Giulian D., Vaca K. and Noonan C.A. Secretion of neurotoxins by mononuclear phagocytes infected with Science 1990; 250, 1593-1596). Il a été par la suite montré que certaines protéines isolées du HIV-1 25 pouvaient à elles seules, en l'absence de particules production ce infectantes, induire la de neurotoxique les macrophages cultivés in par (Giulian D., Wendt E., Vaca K. and Noonan C.A. The envelope glycoprotein of human immunodeficiency virus type stimulates release of neurotoxins from monocytes. 30 P.N.A.S. 1993; 90, 2769-2773). Il a aussi été montré que certains mycoplasmes parfois associés au HIV-1 en culture pouvaient exhiber ou induire cette activité neurotoxique (Bernton E.W., Bryant H.U., Decoster M.A., Orenstein J.M., Ribas J.L., Meltzer M.S. and Gendelman H.E. No direct 35 neuronotoxicity by HIV-1 virions from HIV-1 infected T

cells or monocytes. AIDS Research and Human Retroviruses 1992; 8, 495-503). Cependant, dans ce dernier cas, contribution relative du HIV-1 et d'éventuels mycoplasmes est à peser au regard des résultats d'études suggérant que 5 les mycoplasmes pourraient jouer un rôle de co-facteur de pathogénicité dans la maladie induite par le HIV-1, syndrome d'immunodéficience acquise ou SIDA (Lo S.C., Hayes M.M., Wang R. YH, Pierce P.F., Kotani H., and Shih J. WK. Newly discovered mycoplasmas isolated from patients infected with HIV. The Lancet 1991; 338, 1415-1418). la présence de superantigènes associés aux vraisemblable mycoplasmes rendent une synergie pathogénique occasionnelle avec une infection rétrovirale (Cole B.C and Atkin C.L. The mycoplasma arthritidis T-cell mitogen, MAM: a model superantigen. Immunology Today 1991; 15 12, 271-276).

Bien que des neurotoxines particulières puissent avoir effets sur certains récepteurs neuromédiateurs présents non seulement sur des cellules 20 neuronales mais aussi sur les cellules gliales, ce qui est prouvé pour la protéine gp 120 du HIV1, (Levi G., Patrizio M., Bernardo A., Petrucci T.M. and Agresti C. inhibits the immunodeficiency coat protein gp120 regulation of astroglial and microglial adrenergic 25 functions. P.N.A.S. 1993; 90, 1541-1545), la propriété de neurotoxicité n'entraîne pas nécessairement une propriété de gliotoxicité.

La double interrogation sur l'origine rétrovirale éventuelle de la SEP (Dalgleish A.G., Fazakerley J.K. and Do human T-lymphotropic viruses (HTLVs) and 30 Webb H.E. other enveloped viruses induce autoimmunity in multiple sclerosis ? Neuropath. Appl. Neurobiol., 1987; 13, contribution éventuelle d'un sur la 250.) bactérien à sa pathogénie (Brocke S., Gaur A., Piercy C., Gautam A., Gijbels K., Fathman C.G. and Steinman L. 35 relapsing paralysis experimental Induction of in

autoimmune encephalomyelitis by bacterial superantigen. Nature 1993; 365, 642-644 / Birnbaum G., Kotilinek L. and Albrecht L. Spinal fluid lymphocytes from a subgroup of multiple sclerosis patients respond to mycobacterial 1993; 34, 18-24), conforte les 5 antigens. Ann. Neurol. inventeurs dans leur recherche d'éléments cytotoxiques pour les cellules macrogliables chez les malades atteints de SEP. En effet, si les neurones sont principalement l'objet d'altération pathologique dans les 10 d'encéphalopathies à HIV-1 (Shaw G.M., Harper M.E., Hahn Epstein L.G., Carleton Gajdusek D., Price R.W., Navia B.A., Petito C.K., O'Hara C.J., Groopman J.E., Cho E.S., Oleske J.M., Wong-Staal F., Gallo R.C. HTLV-III Infection in brains of children and adults with AIDS encephalopathy. Science, 1985; 227, 177-182.), ce sont les cellules gliales qui constituent la cible principale du processus neuropathologique dans la SEP.

On entend par glycoprotéine, une protéine à laquelle est associée par liaison covalente, au moins un 20 groupement glucidique.

Par échantillon biologique, on comprend notamment un prélèvement, du type fluide, tissu ou fragment tissu, mucosité, organe ou fragment d'organe, ou cultures obtenu à l'aide d'un des surnageant de 25 prélèvements précités.

pour objet un facteur L'invention a ainsi gliotoxique qui possède une activité toxique vis-à-vis des humaines ou animales, ladite cellules astrocytaires désorganisation effet une activité ayant pour 30 cytomorphologique de leur réseau de filaments intermédiaires et/ou une dégradation des protéines desdits intermédiaires et/ou une mort cellulaire filaments notamment par apoptose.

Par facteur gliotoxique, on entend, une molécule 35 particulière, ou un facteur représenté par un ensemble de molécules pouvant être définies, présentant une activité biologique pouvant être mise en évidence par un effet cytotoxique sur des cellules gliales.

Les inventeurs ont pu mettre en évidence que l'activité toxique du facteur précité était associé à au moins une glycoprotéine globulaire.

caractérisé Ils ont en outre un facteur selon l'invention. gliotoxique qui s'avère après une traitement successivement, sur résine échangeuse d'ions puis sur une colonne de séparation par exclusion, majoritairement, par une fraction 10 constitué, centrée sur un poids moléculaire apparent d'environ 17 kD, et minoritairement, par une fraction lourde, centrée sur un poids moléculaire apparent d'environ 21 kD, au moins étant résistante, dans fraction légère ladite conditions non dénaturantes, à l'action hydrolytique de la 15 pronase, de la trypsine ou de la protéinase K, et chacune des deux dites fractions présentant une forte affinité pour les lectines et notamment la concanavaline A.

Selon l'invention, un facteur gliotoxique est susceptible d'être obtenu à partir du procédé comprenant les étapes suivantes:

20

- on part d'un échantillon biologique prélevé par exemple sur un patient atteint de sclérose en plaques cliniquement active,
- on traite successivement ledit échantillon sur 25 une résine échangeuse d'ions puis sur une colonne de exclusion, pour obtenir un facteur séparation par gliotoxique constitué majoritairement, par une fraction poids moléculaire apparent centrée sur un 30 d'environ 17 kD, et minoritairement, une fraction lourde, centrée sur un poids moléculaire apparent d'environ 21 kD, activité desdites fractions possédant une chacune gliotoxique et ayant en outre les propriétés de résistance et/ou d'affinité mentionnées ci-dessus.
- 35 Un autre objet de l'invention est un procédé pour détecter et/ou suivre l'activité et/ou pronostiquer une

pathologie telle que la sclérose en plaques, consistant à détecter, dans un échantillon biologique, la présence et/ou la quantité d'un facteur gliotoxique tel que défini par l'invention.

De préférence, l'échantillon biologique contenant le facteur gliotoxique subit un procédé de prétraitement, caractérisé en ce que, pour éliminer des contaminants susceptibles de produire une activité cytotoxique parasite et non spécifique du facteur gliotoxique de l'invention, 10 on effectue un traitement dudit échantillon avec l'un au moins des traitements suivants:

5

- on met ledit échantillon en contact avec de la protéine A.
- on met ledit échantillon en contact avec une 15 résine échangeuse d'ions,
 - on met ledit échantillon en contact avec une lectine et notamment la concanavaline-A.

La présente invention concerne aussi un procédé détecter et/ou quantifier, dans un échantillon l'activité toxique du facteur 20 biologique, gliotoxique décrit précédemment consistant à incuber ledit échantillon dans milieu de culture approprié biologique, un astrocytes notamment immortalisés, contenant des permettant leur culture, et à détecter et/ou quantifier 25 les astrocytes morts et/ou les astrocytes vivants.

Pour détecter et/ou quantifier les astrocytes morts et/ou les astrocytes vivants, on peut mettre en oeuvre différentes techniques de dosage et en particulier, les suivantes :

- 30 un dosage colorimétrique mettant en respectivement la calcéine-AM et l'éthidium homodimère
 - * un dosage colorimétrique mettant en oeuvre le bromure de méthyltétrazolium
 - * un dosage radioactif mettant en oeuvre le 51Cr.
- Selon l'invention, un autre procédé pour détecter 35 un échantillon biologique, quantifier, dans et/ou

l'activité toxique d'un facteur gliotoxique comprend une étape d'incubation dudit échantillon dans un milieu de culture approprié, contenant des astrocytes, notamment immortalisés, permettant leur culture, et une étape de détection et/ou de quantification de la fragmentation de l'ADN des astrocytes, et/ou de la désorganisation cytomorphologique du réseau des filaments intermédiaires et/ou de la dégradation des protéines desdits filaments intermédiaires.

Dans un procédé de l'invention pour détecter, dans un échantillon biologique, la présence d'un facteur gliotoxique, on utilise les propriétés de ce dernier en réalisant une étape de capture dudit facteur par une lectine et notamment la concanavaline-A, et/ou une étape de détection basée sur l'affinité dudit facteur pour une dite lectine.

10

Enfin, les derniers objets de l'invention sont des compositions diagnostiques, et/ou thérapeutiques, et/ou prophylactiques, comprenant tout ou partie d'un facteur 20 gliotoxique de l'invention, naturel ou de synthèse ou obtenu par génie génétique, et/ou un ligand spécifique audit facteur.

Plus généralement, la présente invention peut être appliquée à un dispositif pour mettre en oeuvre un test biologique utilisant par exemple une technique ELISA, possédant un support, ou un substrat, susceptible de se lier au facteur de l'invention.

Dans tout le texte, les exemples, tableaux et diagnostic le de annexées, quand figures 30 mentionné, il s'entend comme un diagnostic de SEP certaine définie par les critères de Poser et collaborateurs (Poser New diagnostic criteria for multiple coll. sclerosis : guidelines for research protocols, dans "The diagnosis of multiple sclerosis", Poser C.M., Paty D.W., 35 Scheinberg L., Mac Donald W.I., Ebers G.C. pp.225-229. 1984. Thieme Stratton Inc., New-York).

La présente invention sera mieux comprise à la lecture de la description détaillée qui va suivre, faite en référence aux figures annexées dans lesquelles:

La figure 1 illustre l'effet cytotoxique, observé 5 au microscope optique à contrast de phase, dans des cultures d'explants de cerveau embryonnaire de rat.

Les figures 2 et 3 montrent l'effet cytotoxique observé sur différent types de cellules présents dans les cultures d'explants embryonnaires, par analyse immunocytologique au microscope à fluorescence à une longueur d'onde appropriée pour la détection d'un signal émis par un anticorps secondaire utilisé dans une procédure d'immunofluorescence indirecte et marqué à la fluorescéine.

15 La figure 4 illustre la coincidence, dans quelques cultures de monocytes/macrophages de sclérose en plaques, entre les activités transcriptase inverse et cytotoxique. L'activité transcriptase inverse est donnée (désintégrations par minute) en fonction du nombre de 20 jours de culture. La courbe en pointillés représente une culture de monocytes/macrophages d'un patient présentant une forme chronique fortement progressive de courbe continue avec des losanges noirs représente une culture de monocytes/macrophages d'un patient présentant 25 une forme rémittante de SEP en poussée aigüe et la courbe continue avec des ronds blancs représente une culture de monocytes/macrophages d'un patient présentant une forme rémittante de SEP en période de rémission. L'activité cytotoxique est représentée par un nombre de croix allant 30 de un à quatre (effet cytotoxique positif allant de très faible à très fort) ou un signe négatif (absence de cytotoxicité), en regard du point porté sur la courbe représentant l'activité transcriptase inverse surnageant correspondant.

35 La figure 5 illustre en fonction des jours de culture la cinétique de l'expression de l'activité

cytotoxique à partir de surnageants de cultures provenant de patients atteints de SEP et de témoins. graphique, les trois courbes en trait plein ou pointillé représentent les cinétiques de gliotoxicité dans 5 surnageants de culture de monocytes/macrophages de trois cas de SEP différents et les points alignés sur l'axe des abcisses (triangle noir, losange et rectangle blancs) les cinétiques négatives de culture de monocytes/macrophages de trois témoins atteints d'autres maladies neurologiques.

La figure 6 représente une visualisation de cellules astrocytaires vivantes et/ou mortes système optique.

10

25

La figure 7 montre les effets cytologiques liés à la cytotoxicité sur les astrocytes.

15 La figure 8 illustre le nombre moyen de cellules mortes (Fig 8A) ou vivantes (Fig 8B) astrocytaires après mélange à un surnageant de culture monocytes/macrophages à différentes dilutions. Les moyennes des comptages des cellules mortes et vivantes en fonction de la dilution de 20 l'échantillon gliotoxique sont représentées par des carrés noirs sur deux graphiques séparés. Les intervalles de confiance correspondant à chaque moyenne sont représentés supérieure et une valeur inférieure par une valeur distantes de deux écart-types.

Les figures 9A et 9B représentent l'électrophorèse sur gel d'acrylamide respectivement en une puis deux dimensions d'une fraction gliotoxique obtenue à partir de filtres utilisés pour la filtration in vivo de liquide céphalorachidien (LCR) de patients atteints de sclérose en 30 plaques. Préalablement à l'électrophorèse les molécules adsorbées sur le filtre ont été éluées puis passées sur une résine échangeuse d'ions.

Les figures 10A et 10B représentent l'élution dans un tampon Tris-HCl 50 mM, pH 6,8 sur colonne d'exclusion 35 superose 12 d'une fraction gliotoxique obtenue après passage sur résine DEAE sépharose et provenant d'un

mélange de surnageants de culture de monocytes/macrophages de SEP prélevés à J_6 , J_9 , J_{12} , J_{16} selon Figure 10A et prélevés à J₆, J₉, J₁₃, J₁₆ selon Figure 10B ; le trait épais représente l'absorption des composants protéiques à 5 280 nm avec un coefficient de sensibilité R = 1,2; trait en pointillé représente l'activité gliotoxique mesurée sur des fractions successives selon le protocole loin dans la description. décrit plus Les moléculaires apparents correspondant aux volumes d'élution 10 (Ve) des pics de gliotoxicité sont indiqués au sommet de ces pics.

Selon la figure 10A, l'élution est faite en l'absence d'urée et selon figure 10B, l'élution est faite en présence d'urée 8M.

Dans la figure 11, est présenté un gel à une dimension, d'électrophorèse SDS-polyacrylamide, montrant dans les puits successifs, la réalisation d'une purification protéique du facteur gliotoxique partant d'un surnageant brut de cultures de monocytes/macrophages de 20 SEP et aboutissant après passage sur colonne DEAE puis concanavaline-A à l'isolement de bandes protéiques de 17 et 21 kD portant la quasi-totalité de l'activité de l'échantillon.

Dans les figures 12 et 13 sont présentées les élutions, sur colonne superose 12 dans un tampon contenant 50 mM Tris-HCl, pH 6,8, avec de l'urée 8M, de fractions préalablement obtenues dans l'éluat en tampon glycine pH 3 de colonne Con-A-sépharose. Ces éluats ont été incubés en présence de protéinase K avant passage sur superose 12.

La figure 12 représente une fraction issue d'un surnageant gliotoxique de culture ou monocytes de SEP et la figure 13 représente une fraction issue d'un surnageant de culture témoin non gliotoxique.

30

La courbe représente à chaque fois l'absorption à 280 nm des composants peptidiques avec une sensibilité de détection R = 0,02.

Le niveau d'élution de protéine standard de 17 kD est indiqué par une flèche.

La figure 14 représente l'effet dose-réponse dans un test de cytotoxicité au 51Cr après 72 h d'incubation, 5 la courbe en pointillé correspondant aux valeurs obtenues pour un surnageant de culture de monocytes de SEP, et la courbe en trait plein correspondant aux valeurs obtenues pour une fraction purifiée sur Con-A provenant du même surnageant de culture.

La figure 15 représente l'effet dose-réponse dans un test de cytotoxicité au méthyltétrazolium, après 72 h la courbe en pointillé correspondant aux d'incubation, valeurs obtenues, en trois mesures, pour un surnageant de culture de monocytes de SEP, et la courbe en trait plein 15 correspondant aux valeurs obtenues pour une fraction purifiée sur Con-A provenant du même surnageant de culture.

Les premiers travaux ont utilisé comme fluides biologiques à analyser, les surnageants de culture 20 vitro de monocytes/macrophages de patients atteints SEP, de témoins sains ou atteints d'autres neurologiques, et, comme support de détection d'un effet cytotoxique, des cultures in vitro d'explants de cortex cérébral embryonnaire de rat.

25

10

Exemple 1:

Culture de monocytes/macrophages sanguins

Le milieu de culture comprend đu **RPMI1640** 30 (Boehringer), pénicilline-streptomycine de la (bioMérieux), de la L-glutamine (bioMérieux), du pyruvate de sodium (Boehringer), des acides aminés non-essentiels 100x (Boehringer), du sérum humain AB prélevé chez des donneurs sains et séronégatifs pour tous les virus 35 transmissibles par les dérivés sanguins connus.

Les cellules lymphoïdes sont cultivées dans des flacons de culture de 75 cm² Primaria (Falcon) après avoir été séparées du plasma et des autres éléments figurés sanquins par centrifugation sur gradient de Ficoll (Lymphoprep®, 5 Flow). Pour obtenir ces cellules lymphoïdes, 50 ml de sang sont prélevés par ponction veineuse sur tube hépariné (lithium héparine). Le sang et l'héparine sont bien mélangés aussitôt le sang prélevé. Alternativement, le sang peut être prélevé dans des tubes contenant de important 10 l'EDTA. 11 est ensuite, de transporter immédiatement les tubes maintenus à +4°C au laboratoire. où ceux-ci seront manipulés sous hotte de culture a flux laminaire "biohazard" dans des conditions stériles. Par prélèvement, on prépare un milieu "RPMI" qui avantageusement comprendre 100-150 ml de milieu RPMI 1640, un mélange de pénicilline et streptomycine, 4% de Lglutamine, 1% de pyruvate de sodium, 1% d'acides aminés non-essentiels Boehringer (100X), ainsi que stériles à fond conique de 50 ml (Falcon) contenant 10 ml 20 du milieu "RPMI" sus-décrit, et 4 tubes stériles de 50 ml avec 20 ml de Ficoll au fond. Les tubes héparinés sont ouverts pour pipeter le sang, le déposer dans les tubes contenant du milieu et le mélanger doucement au milieu sus-décrit. On prélève 5 ml de milieu "RPMI" et l'on rince la paroi des tubes héparinés. Il faut accompagner ce 25 rinçage d'un grattage léger à l'aide du bout de la pipette afin décoller des cellules plastique de éventuellement adhéré aux parois du tube, et le déposer dans les tubes contenant le sang dilué dans le milieu 30 "RPMI", mélangeant doucement le contenu en aspirations/refoulements successifs. Il faut répèter ces opérations jusqu'à ce que les tubes héparinés soient propres. Il faut ensuite déposer très doucement (sans remous) le sang dilué dans le milieu "RPMI", à la surface 35 du Ficoll dans les tubes de 50ml puis utiliser du milieu "RPMI" pour rincer le reste de sang dilué et le récupèrer

comme précédemment pour le déposer délicatement à surface des tubes avec le Ficoll. Ensuite, et sans secouer le Ficoll, il faut placer les tubes dans des godets pour centrifugeuse, équilibrer à l'aide de tubes remplis d'eau, 5 et centrifuger à +15°C pendant 20 minutes à 1800 tr/min, avec un mode de décélération lente. Après centrifugation, on récupère les tubes dans lesquels on enfonce doucement une pipette jusqu'à hauteur de l'interface supérieure "Ficoll/plasma" et l'on aspire doucement la 10 blanchâtre située au dessus du Ficoll en décrivant des cercles concentriques depuis les parois, puis en décrivant "zig-zags" d'un côté à l'autre de la surface du Ficoll. On place le milieu aspiré dans des tubes de 50 ml. on le dilue dans au moins 3 fois le volume de milieu RPMI 15 et l'on mélange doucement par inversion des tubes bouchés stérilement. On centrifuge ensuite les tubes pendant 10 minutes à 1800 tpm, avec un mode de décélération lente. Après centrifugation, on jette en versant lentement mais régulièrement le surnageant de ces 20 tubes, tout en en veillant à ce que le culot blanchâtre de cellules ne se détâche pas. On resuspend le culot dans 10 aspirations/refoulements milieu "RPMI" par successifs et on centrifuge la suspension à +15°C pendant 10 minutes à 1800 tpm, avec un mode de décélération lente. 25 Par prélèvement ou par 50 ml de sang prélevé, on prépare deux petits flacons de culture en plastique electropositif (Falcon "PRIMARIA") de 75 cm² et 10 ml de milieu "RPMI" auquel on aura ajouté 15% de sérum humain "AB" (SH) susdécrit. Après centrifugation, on élimine le surnageant 30 comme précédemment, on resuspend doucement le culot dans 5ml de milieu "RPMI" avec 15% de SH et l'on répartit les cellules resuspendues dans les flacons placés à plat et à peine soulevés. La suspension est aussitôt répartie en remuant chaque flacon à plat. Les tubes de centrifugation sont rincés avec 5ml de milieu "RPMI" à 15% SH, et la suspension est ajoutée et répartie dans les deux flacons,

comme précédemment. Avantageusement, tous les milieux utilisés pour ces étapes sont à 37°C (réchauffés au bain marie). Une fois les flacons refermés, ils sont tenus à plat dans une étuve humide à 37°C avec 5% de CO2 jusqu'au 5 lendemain matin. Le lendemain matin, il convient de bien tout le surnageant les aspirer avec cellules suspension, de rincer les flacons deux fois avec 4ml de RPMI seul, en laissant "tremper" 5 minutes à chaque fois et en relevant lentement le flacon avant d'aspirer tout le 10 milieu restant, afin d'éliminer les cellules adhérentes. On remplit ensuite les flacons de 5 ml de milieu RPMI à 15% de SH, on les replace à l'étuve et l'on veille à ne pas les bouger pendant 48h. Dès cette étape, il convient de toujours remplir les flacons places debout 15 en dirigeant le jet sur la paroi superieure afin de ne pas détâcher les cellules en cours d'adhésion, puis, par la suite, affectées par un effet cytopathogène éventuel. Les suspensions cellulaires ainsi recueillies 24 h après la mise en culture, sont centrifugées à +15° C pendant 10 20 minutes à 1800 tr/min, avec un mode de décélération lente. Eventuellement, le culot de cellules peut être repris dans sérum de veau foetal avec 10% de DMSO Sulfoxide) pour être congelé à -80°C ou dans l'azote liquide selon une procédure de maintien de cellules correspondant 25 viables. Le surnageant est centrifugé à 3000 tr/min pendant 30 min. afin d'éliminer les débris cellulaires, et le surnageant clarifié est aliquoté, répertorié comme échantillon à 24h de culture, soit J1, puis stocké au congélateur à -80°C. Après 48h 30 dans l'étuve, on sort les flacons, le surnageant est aspiré délicatement, et, comme précédemment centrifugé à 3000 tr/min pendant 30 minutes afin d'éliminer les débris cellulaires. Le surnageant clarifié est répertorié comme échantillon à 3 jours de culture, soit 35 J3, puis stocké au congélateur à -80°C. Les flacons sont aussitôt remplis avec 5ml de milieu RPMI à 5% SH et

replacés dans l'étuve. A partir de ce moment, le milieu de culture ne contient plus que 5% de SH et cette proportion sera utilisée pour tous les renouvellements de milieu. Les milieux des flacons sont ensuite prélevés, stockés sous aliquots de milieu clarifié des débris cellulaires, à -80°C comme précédemment, et remplacés par du milieu "RPMI" à 5% de SH, tous les trois ou quatre jours, jusqu'à ce que ne persiste plus aucune cellule adhérente et réfringente à l'observation microscopique dans le flacon.

10 Exemple 2:

Test de cytotoxicité sur cultures d'explants de cortex cérébral embryonnaire de rat et d'explants de moelle épinière embryonnaire de rat.

cultures d'explants de cortex cérébral 15 embryonnaire de rat, sont obtenues à partir de cerveaux d'embryons de rats prélevés sur ratte gestante, au quatorzième jour de vie embryonnaire. Après dissection. les cerveaux sont rincés trois fois dans "Dulbecco-Phosphate Buffer Saline (D-PBS: KH2PO4 0,2g/1, 20 Na₂HPO₄-7H₂O 1,15g/l, NaCl 8g/l, KCl 0,2g/l) puis dans du milieu F12 (Boehringer). Après avoir ôté délicatement les le cortex, celui-ci est méninges et isolé mécaniquement à l'aide de ciseaux dans un milieu F12. Parallèlement, des explants de moelle épinière ont été 25 réalisés et mis en culture selon le même principe. Le volume est ensuite ajusté à 30 ml milieu de supplémenté avec 7,5% de sérum de veau fétal et 7,5% de sérum de cheval. Après 10 minutes de décantation, surnageant est centrifugé 5 minutes à 4000 tpm. Le culot 30 obtenu est suspendu dans 10 ml de milieu complet. Les cellules sont étalées à une densité de 106 cellules par boîte stérile de 35 mm de diamètre (Falcon) et maintenues 37°C 7.5% 95% sous de CO2 et à d'humidité. Alternativement, des lames avec alvéoles de culture de 35 type Labtek peuvent être utilisées, notamment pour une étude immunohistochimique ultérieure, après fixation de la

culture au temps voulu. Le milieu de culture est changé tous les trois jours. Habituellement après 3 à 7 jours, lorsqu'une bonne différenciation des neurones corticaux est obtenue avec une organisation harmonieuse du tapis sous-jacent de cellules gliales et leptoméningées (un peu de pie-mère reste associée à l'échantillon de tissu cérébral utilisé), les cultures sont utilisées pour les tests de cytotoxicité vis-à-vis des cellules du système nerveux central.

10 Les échantillons à tester sont chauffés 30 min à 56°C, afin d'inactiver les protéines du complément et un éventuel virus enveloppé, puis centrifugés 10 minutes à 1500 tpm. Eventuellement, le surnageant récupéré est dialysé à 4°C dans 2 fois 20 volumes de tampon D-PBS une 15 première fois pendant 2h, et une deuxième fois durant la nuit. L'échantillon à tester est aliquoté et conservé à Un aliquot est décongelé pour les tests cytotoxicité, mélangé selon la dilution voulue au milieu de culture des cellules cibles et le tout est replacé dans 20 l'incubateur. Ici, les cellules cibles sont constituées de l'ensemble des cellules présentes dans la culture l'explant de tissu cérébral.

Un effet cytotoxique important a été observé dans ces conditions avec des surnageants dilués au 1/4, dans le 25 milieu de culture des explants sus-décrits, et prélevés entre le troisième et le dixième jour de culture de monocytes sanguins de patients atteints de SEP en poussée aigüe. Cet effet était observable au microscope optique utilisé pour l'examen des cellules en culture, l'introduction de l'échantillon 30 sixième heure suivant L'effet était tout dilué dans le milieu de culture. notable niveau des cellules d'abord au identifiées par leur morphologie tout à fait typique lors d'une observation régulière de la culture. On a ainsi 35 observé un gonflement des oligodendrocytes qui finissaient par s'arrondir et se détâcher du support de culture, ainsi

qu'une vacuolisation des astrocytes accompagnée d'une régression importante de leurs extensions cytoplasmiques. A ce stade les neurones présents dans la culture étaient relativement conservés et ne présentent pas d'altération notable. Par la suite, après 24 heures environ dans ces conditions, le tapis glial étant complètement détruit, les neurones finissaient par dégénèrer et se détâchaient à de la culture. Après 48 heures dans ces leur tour restait quasiment plus conditions il ne de cellules 10 viables dans les puits de culture mis en présence des surnageants allant de J3 à J12, alors que l'effet des surnageants des mêmes cultures de monocytes de SEP en poussée aigüe prélevés à J1, J18 ou J21 présentaient un effet moindre, voire inexistant. Les surnageants 15 cultures de monocytes/macrophages sanguins de quelques témoins non-atteints de SEP n'ont, parallèlement, induit aucun effet cytotoxique dans les mêmes conditions.

Exemple 3:

25

20 Test de cytotoxicité sur cultures d'explants de cerveau embryonnaire de rat.

surnageants de cultures de Des monocytes/macrophages de SEP en poussée aigüe ou de témoin sain, ont été dilués au 1/4 dans le milieu de culture des explants de cerveau d'embryons de rat parvenus à un stade de différenciation avancée des neurones, puis incubés à 37°C comme décrit précédemment. Un exemple de l'effet cytotoxique sus-décrit observé au microscope optique dans les cultures d'explants embryonnaires est montré à 30 figure 1. La photographie A représente une culture de incubée 48h avec cellules de cerveau un échantillon prélevé à J6 provenant d'un témoin sain. Les photographies B et C représentent deux cultures de cellules de cerveau échantillons incubées 24h avec deux 35 respectivement à J18 et à J6, provenant de la même culture de monocytes/macrophages de SEP en poussée aigüe.

photographie D représente une culture de cellules de cerveau incubée 48h avec un échantillon prélevé à J6, provenant de la même culture de monocytes/macrophages de SEP en poussée aigüe que pour la photographie C.

5 Par ailleurs, un exemple de l'effet observé sur types de cellules présents différents dans cultures d'explants embryonnaires, par immunocytologique au microscope à fluorescence, est montré aux figures annexées 2 et 3. Dans cet exemple, 10 surnageants de cultures de monocytes/macrophages de SEP en poussée aigüe ou de témoin sain, ont été dilués au 1/4 dans le milieu de culture d'explants de cerveau ou de moelle épinière d'embryons de rat cultivés sur lames Labtek® comme décrit précédemment. Les lames ont été 15 fixées en temps voulu, après deux lavages en PBS, par incubation de 10 minutes dans un mélange volume à volume d'acétone et de méthanol à -20°C, puis incubées une nuit à +4°C avec la dilution adéquate d'un premier anticorps spécifique du type cellulaire à marquer. soit. 20 anticorps anti-neurofilaments (anticorps Boehringer) pour les neurones, un anticorps anti-protéine gliale fibrillaire acide (anticorps anti-GFAP Boehringer) pour les astrocytes, et un anticorps anti-protéine basique de la myéline (anticorps anti-MBP Boehringer) pour 25 oligodendrocytes. Après deux lavages de 10 minutes en PBS suivis d'un lavage de 5 minutes en eau distillée, lames ont été incubées une heure à température ambiante dilution adéquate d'un second spécifique des immunoglobulines de l'espèce ayant servi à couplé 30 produire le premier anticorps, et fluorochrome. Après lavage des lames comme précédemment, celles-ci ont été montées pour être examinées à fluorescence la longueur d'onde microscope avec adéquate. Dans la figure 2, les photographies A et B 35 représentent, grossi 40 fois, le marquage par un anticorps anti-neurofilaments d'un explant de moelle épinière incubé

avec un surnageant de culture de monocyte/macrophage de SEP en poussée aigüe prélevé à J9, pendant respectivement 12 et 48 heures. Dans la figure 2, les photographies Cat D représentent, grossi 40 fois, un explant de moelle 5 épinière incubé pendant 24 heures avec un surnageant de culture de monocyte/macrophage de SEP en poussée aigüe prélevé à J9, et marqué respectivement, avec un anticorps anti-neurofilaments et un anticorps anti-GFAP. figure 3, les photographies A et B représentent, grossi 40 10 fois, un explant de moelle épinière incubé pendant avec un surnageant đe culture de monocyte/macrophage de SEP en poussée aigüe prélevé à J6, et marqué respectivement, avec un anticorps anti-MBP et un anticorps anti-GFAP.

L'effet cytotoxique le plus précoce et le plus important dans ces cultures primaires de cellules du système nerveux central concerne donc à l'évidence les cellules macrogliales, à savoir les astrocytes et les oligodendrocytes.

20

15

Exemple 4:

Activités cytotoxique et transcriptase inverse

Le protocole de culture de monocytes/macrophages d'abord été mis au point pour l'étude d'une expression rétrovirale dans la SEP (Perron H., Lalande B., Gratacap B., Laurent A., Genoulaz O., Geny C., Mallaret Schuller E., Stoebner P., Seigneurin J.M.1991. Isolation of retrovirus from patient with multiple 30 sclerosis. The Lancet 337; 862-863), on a testé dans quelques surnageants, l'activité transcriptase inverse selon les conditions auparavant déterminées pour l'étude ayant fait l'objet des travaux de Perron H., Geny C., C., Laurent A., Mouriquand Pellat J., Perret J., 35 Seigneurin J.M. Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral

particles. Res. Virol. 1989. 140; 551-561), parallèlement à leur activité cytotoxique sur les cellules de cerveau cultivées en explants, comme décrit précédemment. quelques surnageants de cultures de monocytes/macrophages prélevés entre J1 et J22, on observe coïncidence relative entre le maximum d'activité gliotoxique retrouvée dans les surnageants de culture et le pic d'activité transcriptase inverse. Cependant, comme chauffage pendant 30 minutes 56°C, à ni la 10 congélation-décongélation à deux reprises, l'élimination du culot sédimenté par ultracentrifugation 100 000g pendant 2 heures, n'ont altéré cytotoxique des surnageants analysés, un effet direct dû à l'infection des cellules explantées par un rétrovirus 15 présent dans les surnageants de cultures de monocytes/macrophages de SEP est invraisemblable.

La relative coincidence, dans quelques cultures de monocytes/macrophages de SEP, entre les activités transcriptase inverse et cytotoxique est montrée à 20 figure 4. Des surnageants de cultures de monocytes/macrophages de SEP, ont été dilués au 1/4 dans le milieu de culture d'explants de cerveau et incubés 24 heures selon le protocole sus-décrit avant estimation de l'effet cytotoxique par quantification microscopique de la 25 déplétion cellulaire. Ces résultats montrent une relative coincidence entre l'activité transcriptase l'activité cytotoxique observée.

Exemple 5:

30

Tests de cytotoxicité/gliotoxicité

les résultats sus-décrits, Etant donnés recherché système un standardisé d'étude et de quantification de l'effet cytotoxique observé. **Après** plusieurs évaluations, on a trouvé que les continues d'astrocytes immortalisés (Galiana E., Borde I.,

Marin P., Rassoulzadegan M., Cuzin F., Gros F., Rouget P., Evrard C. Establishment of permanent astroglial cell lines, able to differentiate in vitro, from transgenic polyoma the virus mice carrying large-T approach to alternative brain cell immortalization. Journal of Neuroscience Research 1990. 26; constituent un matériel adéquat pour la détection et quantification, sur des cellules gliales pures homogènes, d'une activité cytotoxique telle que décrite précédemment.

10

35

lignée continue d'astrocytes la maintenue dans un milieu DMEM-F12 (1/1), supplémenté avec 10% de SVF (sérum de veau foetal), dans un incubateur à 7,5% de CO2, à 37°C et à 95% d'humidité. Les cellules sont 15 mises en culture dans des plaques ou flacons de culture préalablement recouvertes de poly L-lysine à 5 μ g/ml dans le PBS. La densité de passage est, en général, de 2.10³ cellules/cm². Dans ces conditions, les cellules sont cultivées deux jours, ou jusqu'à obtention d'un tapis 20 cellulaire monocouche homogène, avant d'être utilisées tests de cytotoxicité. les Elles avantageusement être cultivées sur des plaques de cultures à 24 puits, permettant ainsi un travail en série sur de nombreux tests à effectuer. Pour les études ultérieures sur lame, elles peuvent être cultivées sur des lames de 25 culture alvéolées de type Labtek®. De manière générale, les échantillons provenant de fluides biologiques à tester 30 min à 56°C, afin d'inactiver sont chauffés protéines du complément et un éventuel virus enveloppé, 30 puis centrifugés 10 minutes à 1500 tpm et le surnageant récupéré.

Chaque échantillon est ensuite dilué en proportion voulue dans le milieu de culture DMEM-F12 (1/1) à 10% de SVF des astrocytes sus-mentionnés, le milieu homogénéisé par pipettage ou agitation douce est déposé dans le flacon ou le puits de culture en remplacement du milieu de

maintien. Les replacées cellules sont ensuite l'incubateur dans les conditions sus-décrites. L'effet cytotoxique vis-à-vis des cellules gliales que sont les astrocytes est ainsi apprécié en terme d'activité 5 gliotoxique.

L'effet gliotoxique des dilutions des échantillons testés a été mesuré par trois techniques différentes qui se sont avèrées concordantes.

La première technique, appelée "L/D test" (test 10 cellules vivantes / cellules mortes), est un dosage colorimétrique rapide, semi-quantitatif, permettant détermination simultanée de cellules vivantes et mortes. Les cellules vivantes se distinguent par la présence d'une activité estérase intracellulaire. L'activité estérase est 15 détectée par une fluorescence verte générée par l'hydrolyse enzymatique d'un substrat, la calcéine-AM. Les cellules mortes se distinguent par un marquage au niveau des acides nucléiques, par l'éthidium homodimère et seuls les noyaux des cellules dont les membranes nucléaires sont 20 endommagées fluorescent en rouge. Après 72 h d'incubation à 37°C, les cellules sont rincées dans un tampon D-PBS et incubées 15 minutes à température ambiante et à l'abri de la lumière, en présence de 200 μ l d'une solution de PBS de calcéine-AM contenant 2 μМ et 4 μM d'éthidium 25 homodimère. Une observation des cultures au microscope à fluorescence est ensuite effectuée dans un court délai. Les cellules vertes (vivantes) et rouges (mortes) comptées simultanément sur le même champ d'observation. Plusieurs champs sont observés (au moins trois) et moyenne des comptages pour les cellules mortes et pour les 30 cellules vivantes est prise comme résultat. L'activité généralement, cytotoxique) gliotoxique (ou, plus exprimée selon la formule : % de cytotoxicité = (nombre cellules mortes/nombre moyen de cellules moyen de 35 vivantes) x 100.

La seconde technique consiste en un colorimétrique au méthyltétrazolium des cellules vivantes. Le bromure de méthyltétrazolium (MTT) est un sel utilisé pour un dosage colorimétrique quantitatif (Mosmann Rapid colorimetric assay of cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth.1983; 65, 55-63.). Le MTT est un substrat des déshydrogénases mitochondriales qui, après réduction au niveau des cellules métaboliquement actives, donne un 10 produit coloré, le formazan (violet). Il permet ainsi un cellules vivantes. Les cellules marquage des cellules/cm²) sont exposées 72 heures, dilutions de fractions purifiées (3 puits ou boîtes pour une dilution à tester). Elles sont ensuite rincées dans un 15 tampon D-PBS puis incubées 3h à 37°C dans 3 ml d'une 0,5 mg/ml dans du DMEM-F12 (1/1).solution MTT surnageant est éliminé et de l'isopropanol acide (4.10⁻² M HCl) est déposé sur les cellules afin de solubiliser les cristaux de formazan. Le lysat résultant est centrifugé 2 20 min/6500 tpm afin d'éliminer les débris cellulaires. Une lecture de densité optique est ensuite effectuée à 570 -630 nm.

La troisième technique utilise un dosage radioactif au 51Cr qui permet la quantification des 25 cellules mortes. Le 51Cr est un élément radioactif capable de pénétrer dans les cellules vivantes et qui relarqué dans le milieu extracellulaire que lors de radioactivité cellules. La mesure de la des incorporée, après lavage des cellules mises en présence 30 d'un milieu contenant du 51Cr, ainsi que de celle qui est relarquée par les cellules dans le milieu va permettre une quantification des cellules vivantes et astrocytes (2.103 cellules/cm2) sont incubés 2h à 37°C dans un milieu DMEM-F12 (1/1) contenant 20 μ Ci de ⁵¹Cr. 35 Les cellules sont ensuite rincées 3 fois dans un milieu DMEM-F12, exposées à différentes dilutions de fractions

purifiées (3 puits ou boîtes pour une dilution à tester) et incubées 72 h à 37°C. Le surnageant est récupéré et les cellules lysées avec une solution de NaOH 1M. On effectue ensuite un comptage en coups par minute (cpm) 5 radioactivité (Compteur Gamma) présente dans le surnageant et dans le lysat, et on détermine un pourcentage cytotoxicité calculé de la manière suivante cytotoxicité = [(cpm surnageant - cpm spontanée) / (cpm total - cpm spontanée)] X100. La radioactivité spontanée 10 en cpm correspond au bruit de fond mesuré par le compteur sur un échantillon provenant d'une culture incubée avec un même fluide (LCR, sérum ou surnageant de culture de monocytes/macrophages) non gliotoxique et avec du 51Cr, dans les mêmes conditions que l'échantillon à tester.

Pour les études de reproductibilité fiabilité, plusieurs puits ont été incubés avec la même dilution du même échantillon gliotoxique et l'écart type obtenu a été pris en compte pour le caractère significatif des résultats des séries d'analyses ultérieures. Ce type de vérification peut être effectué à chaque changement de lot de cellules atrocytaires (décongélation d'une nouvelle ampoule) ou à chaque changement de lot de milieu de culture (lot de SVF, surtout). Dans les expériences pourcentage de mentionnées ici, un cellules 25 supérieur à 5% s'avère significatif d'un effet cytotoxique absent dans les conditions normales de culture.

Exemple 6:

Cinétique de l'activité cytotoxique

30

15

20

Des surnageants de cultures monocytes/macrophages de SEP cytotoxiques sur des cultures primaires d'explants de cerveau embryonnaire, ainsi que des surnageants contrôles non-cytotoxiques, ont été testés 35 sur des cultures de la lignée astrocytaire sus-mentionnée. présence d'activité gliotoxique détectée par

astrocytes et visualisée par le "L/D test" a été retrouvée dans les surnageants préalablement cytotoxiques pour les cultures primaires et non dans ceux qui n'avaient pas eu cette propriété. On a ainsi pu étudier la cinétique, au 5 cours du maintien en culture des mononocytes/macrophages, l'expression de l'activité gliotoxique surnageants de cultures provenant de patients atteints de SEP et de témoins. On a ainsi pu vérifier que cette activité n'était pas détectée tout au long des cultures 10 provenant de témoins sains et, aussi, que son intensité fluctuait au cours des cultures "positives" provenant de effet, plusieurs pics atteints de SEP. En patients d'activité on pu être observés dans les quelques cas étudiés. Ces pics se situaient en général, entre le 6ème 15 et le 9^{ème} puis entre le 15^{ème} et le le 18^{ème} jour de culture (J6 à J9 et J15 à J18), indiquant ainsi une synthèse active dans la culture, puisque le surnageant y est entièrement prélevé deux fois par semaine à chaque changement du milieu de culture.

Un exemple d'une telle observation réalisée grâce à l'utilisation du test biologique mis au point montré dans la figure 5. Dans cet exemple, surnageants de cultures de monocytes/macrophages de SEP, ont été traités et utilisés comme décrit précédemment pour 25 les tests de cytotoxicité/gliotoxicité sur d'astrocytes sus-citée avec une dilution au 1/10ème dans le milieu de culture et incubés 72 heures selon protocole sus-décrit avant mesure de l'effet gliotoxique par la méthode du "L/D test".

30

20

Exemple 7:

Mise en évidence d'une activité gliotoxique dans des fluides biologiques de patients atteints de SEP.

Par la suite, ce test biologique a été utilisé 35 pour rechercher une éventuelle activité gliotoxique dans le liquide céphalorachidien (LCR) et le sérum. Ainsi, les

pu mettre en évidence une inventeurs ont activité gliotoxique significative dans les LCR de patients atteints de SEP et non dans des LCR de témoins atteints, par exemple, d'hydrocéphalie à pression normale (HPN). La même constatation été effectuée a avec les correspondants, cependant avec un activité gliotoxique relative plus faible que dans les LCR, ce qui est en faveur d'une production intrathécale du facteur portant cette activité.

Un exemple de l'utilisation du "L/D test", pour 10 visualiser la détection par les cibles astrocytaires d'un gliotoxique dans les échantillons mélangés milieu de culture, est montré dans la figure annexée n°6. Dans cet exemple, un LCR de SEP rémittante en poussée a été dilué au 1/10 dans le milieu de culture, incubé 72 15 heures et examiné au microscope à fluorescence, le tout selon le protocole sus-décrit pour le "L/D test". photographie A, représente une visualisation des cellules un système optique adéquat vivantes avec 20 émissions lumineuses de la fluorescéine (la représente 25 micronmètres). La photographie B, représente une visualisation des cellules mortes avec un système optique adéquat; la barre représente 25 micronmètres. La photographie C, représente une visualisation simultanée 25 des cellules vivantes et mortes avec un système optique adéguat les émissions lumineuses des deux pour (485-500nm); représente 25 fluorophores la barre micronmètres.

Une fois ce test de quantification mis au point,

30 les inventeurs ont analysé des filtres préparés par la
firme Pall et utilisés dans des essais thérapeutiques sur
des patients atteints de SEP (Wollinsky K.H. Hülser P.J.,
Mauch E., Mehrkens H.H. et Kornhuber H.H. Liquorpherese
bei 10 Patienten mit Multipler sklerose dans verhandlungen

35 der Deutschen Gesellschaft für Neurologie, Grundmann M et
al, vol 7 (1992) Saarbrücken). Ces essais consistent à

filtrer le liquide céphalorachidien au travers de filtres ayant notamment une affinité pour les glycoprotéines et sélectionnés par la Société Pall. On a obtenu des filtres après filtration du LCR de quelques cas de SEP et remis en 5 solution les protéines adsorbées sur les filtres à l'aide d'une solution à 1% de SDS. Après mise en conditions physiologiques des échantillons, il a pu être montré qu'une forte activité gliotoxique évaluée par le présent test biologique sur lignée astrocytaire, est associée aux 10 protéines préalablement retenues sur ces filtres.

Un exemple de l'utilisation du test biologique pour détecter et quantifier une activité gliotoxique dans les fluides biologiques, notamment dans les LCR de patients atteints de SEP, est présenté dans le tableau la annexé n°1 où sont montrés les effets de la filtration du LCR sur le filtre fourni par la Société PALL.

Dans ce tableau, les LCR ont été filtrés sur filtre PALL ayant le même type de support filtrant que ceux utilisés in vivo dans des essais thérapeutiques. 20 L'activité gliotoxique de chaque filtrat mesurée selon le test biologique sur astrocytes et le résultat comparé à l'activité gliotoxique du LCR natif d'avant filtration, caractère significatif statistique le différence observée sur une série de 10 mesures, y sont 25 présentés. Dans cet exemple, les LCR ont été dilués au 1/10 dans le milieu de culture et incubés 72 heures selon le protocole sus-décrit pour le "L/D test". La valeur moyenne du pourcentage de cellules mortes a été obtenue, pour chaque échantillon, sur 5 champs choisis au hasard parallèle 30 puits incubés en avec le échantillon. Une différence statistiquement significative existe entre les LCR de SEP et les filtrats obtenus après filtration. Les diagnostics de SEP, sont, sauf précision contraire, des diagnostics de SEP certaines selon les 35 critères de Poser (Poser C.M. et coll. New diagnostic criteria for multiple sclerosis : guidelines for research

protocols, dar.s "The diagnosis of multiple sclerosis", Poser C.M., Paty D.W., Scheinberg L., Mac Donald W.I., Ebers G.C. pp.225-229. 1984. Thieme Stratton Inc., New-York).

5 exemple montre qu'il existe des moyens physicochimiques d'éliminer une partie au moins dudit facteur gliotoxique des fluides biologiques de patients atteints de SEP, ou d'autres maladies dans lesquelles ledit facteur gliotoxique ou encore ladite 10 gliotoxique serait détectée in vivo. Ces résultats confirment aussi la réalité moléculaire de ladite activité ainsi gliotoxique, que l'intérêt des techniques détection et de dosage qui sont des objets de la présente invention.

15 exemple de l'utilisation autre du test biologique mis au point par les inventeurs, pour détecter et quantifier une activité gliotoxique dans les fluides biologiques, notamment dans les LCR de patients atteints de SEP, est présenté dans le tableau annexé n°2. Dans cet 20 exemple, les LCR ont été dilués au 1/20 dans le milieu de selon le protocole sus-décrit pour colorimètrique au MTT et incubés 96 heures. Chaque deux resultat représente la moyenne de expériences séparées et représentant chacune une série de 5 puits 25 indépendants, soit, finalement, une moyenne de 10 valeurs par LCR testé.

Les échantillons de LCR provenant de patients atteints de forme rémittante de SEP, on été prélevés au moment de poussées cliniques. La différence des moyennes de cytotoxicité dans les deux sous-populations de SEP, 30 rémittantes versus chroniques progressives, statistiquement significative, ce qui indique a priori que la quantification de l'activité gliotoxique du LCR permet de corréler l'activité clinique de la maladie. 35 diagnostics de SEP, sont, sauf précision contraire, des diagnostics de SEP certaines selon les critères de Poser

(Poser C.M. et coll. New diagnostic criteria for multiple sclerosis: guidelines for research protocols, dans "The diagnosis of multiple sclerosis", Poser C.M., Paty D.W., Scheinberg L., Mac Donald W.I., Ebers G.C. pp.225-229.
5 1984. Thieme Stratton Inc., New-York).

Les résultats présentés dans les tableaux 1 et 2 ainsi que d'autres similaires, ont ainsi permis aux mettre évidence l'existence inventeurs de en activité gliotoxique très significative dans les LCR de patients atteints de SEP et une variation de son intensité en fonction du stade clinique et/ou de la forme évolutive. Ces résultats confirment l'intérêt du test biologique mis au point sur lignée astrocytaire, en combinaison avec une technique de quantification pouvant être par exemple, des trois techniques sus-décrites ("L/D dosage colorimètrique au MTT et dosage du ⁵¹Cr relargué) études pronostiques et/ou les thérapeutiques de pathologies dans lesquels une telle activité cytotoxique, et notamment, gliotoxique peut être 20 détectée, voire dans le diagnostic d'une maladie telle que la SEP.

Exemple 8:

Activité cytotoxique observée sur d'autres types 25 cellulaires.

Par ailleurs, la spécificité de l'activité cytotoxique observée a aussi été évaluée, et quantifiée par le "L/D test", sur des cultures de différents autres types cellulaires. Avec des échantillons s'étant préalablement 30 révélés cytotoxiques vis-à-vis des cellules gliales, soit en culture d'explants de cerveau embryonnaire de rat, soit sur lignée astrocytaire, aucune cytotoxicité directe n'a fibroblastes, myoblastes, détectée sur cellules musculaires de pattes de souris et sur cellules 35 endothéliales. Une cytotoxicité nettement plus faible, d'environ 10% relativement aux astrocytes sus-cités, a été

observée sur les cellules de Schwann de nerf sciatique. Il est intéressant de noter ici que les cellules de Schwann responsables de la myélinisation des périphériques, au même titre que les oligodendrocytes sont 5 responsables de la myélinisation normale dans le système nerveux central. Dans les cultures d'explants de cerveau quelques cellules embryonnaire. les leptoméningées présentes ne semblent pas affectées directement, de même neurones ne semblent affectés qui qu'après les 10 modification importante du tapis nourricier de cellules monocytes sanguins mis Les en culture différenciés en macrophages après adhésion au support de culture, ne semblent pas affectés non plus puisqu'ils persistent en culture et cela, même en présence plusieurs pics successifs d'activité gliotoxique relarguée dans le surnageant au cours des cultures macrophagiques (voir figure 5). Quant aux lymphocytes, des résultats contradictoires ont été obtenus avec des cultures cellules exprimant l'antigène CD4, à savoir qu'avec le 20 même échantillon gliotoxique comparé au même échantillon gliotoxique, une mort témoin non significativement accrue a été observée dans certaines prolifération cellulaire était alors qu'une observée dans des cultures provenant d'autres individus 25 donneurs de lymphocytes.

Ces observations sur les lymphocytes s'apparentent aux effets décrits pour des molécules aux propriétés superantigèniques (Acha-Orbea H. and Palmer E., Mls - a retrovirus exploits the immune system. Immunology today 1991;12, 356-361 / Cole B.C and Atkin C.L. The mycoplasma arthritidis T-cell mitogen, MAM: a model superantigen. Immunology Today 1991; 12, 271-276).

Exemple 9:

35 Caractérisation cytologique des effets cytotoxiques

Ces donr.ées obtenues avec les lymphocytes ont conduit les inventeurs à préciser au préalable les effets cytologiques liés à la cytotoxicité, sur les astrocytes utilisés dans les tests biologiques de gliotoxicité. Une 5 étude des filaments intermédiaires des astrocytes susmentionnés а révèlé un effet important des l'organisation gliotoxiques sur du cytosquelette astrocytaire, après incubation des cellules selon décrit précédemment pour les tests de protocole 10 gliotoxicité. En effet, alors qu'aucune modification n'est observée avec les fluides témoins non-gliotoxiques testés en parallèle, une désorganisation drastique des filaments de vimentine et de GFAP est observée dans les cultures d'astrocytes mises en présence d'une activité gliotoxique 15 significative provenant de fluides biologiques de patients atteints de SEP (culture de monocytes/macrophages ou LCR). Ce phénomène avait aussi été observé sur les cultures primaires d'explants de système nerveux embryonnaire, dans lesquels les astrocytes étaient spécifiquement marqués par 20 un anticorps anti-GFAP.

Un exemple de cette désorganisation des filaments intermédiaires de vimentine et de GFAP sur les astrocytes en cultures mis en présence de fluides gliotoxiques issus de patients atteints de SEP, est présenté dans la figure Dans cet exemple, la détection de la GFAP a été effectuée sur culture primaire de cellules cultivées sur lames de type Labtek®. Après incubation d'une heure et de 24 heures avec le mileu de culture contenant une dilution d'un surnageant gliotoxique de culture au 1/20 30 monocytes/macrophages de SEP, les cellules adhérentes sur la lame sont rincées 2 fois dans PBS puis fixées dans du paraformaldéhyde 4%, 20 min à 37°C. Après 2 rinçages dans du PBS, elles sont incubées 2 fois 5 minutes dans une solution de blocage PBS/1% lait. Le premier anticorps est 35 polyclonal, développé chez le lapin. L'anticorps est dilué au 1/50e dans la solution de blocage. L'incubation dure 1h

25

à 37°C. Après la première incubation , on effectue une série de rinçages de 5 minutes dans du PBS puis dans la solution de blocage, afin d'éliminer les anticorps non fixés. Le système révélateur utilise la fluorescéine 5 couplée à une immunoglobuline anti-lapin diluée au 1/100e dans la solution de blocage. L'incubation dure 1h à 37°C. Le montage des préparations est fait avec du moviol pour éviter la décroissance de la fluorescence au moment de l'observation. Les lames sont conservées à l'obscurité à microscope observations sont faites au Les fluorescence. La détection de la vimentine a été effectuée lignée astrocytaire cultivée sur lames đe Labtek[®], après incubation de 24 heures avec, soit une dilution au 1/50 d'un surnageant gliotoxique de culture de 15 monocytes/macrophages de SEP, soit un milieu de culture normal. Après 24 heures d'incubation, les cellules (1.103 cellules/cm2) sont rincées 2 fois dans du PBS, fixées 10 min à -20 °C avec de l'acétone. Après 3 rinçages dans du PBS, elles sont incubées 3 fois 5 minutes dans une 20 solution de blocage PBS/5% SVF à température ambiante. Le est polyclonal, développé premier anticorps chèvre. L'anticorps est dilué au 1/50e dans la solution de blocage. L'incubation est de 2h à 37°C. Après 3 rinçages de 5 minutes dans PBS puis dans la solution de blocage, les cellules sont incubées 1h à 37°C avec un deuxième anticorps dirigé contre les IgGs de chèvre, couplé à la fluorescéine et dilué au 1/200e dans la solution blocage. Les photographie A et B représentent un marquage après, respectivement, 24 de la GFAP 1 et présence de l'échantillon 30 d'incubation en gliotoxique dilué. Les photographies C et D représentent un marquage de la vimentine des astrocytes en lignée incubés 24 heures respectivement, un milieu normal et un contenant l'échantillon gliotoxique dilué.

De plus, les inventeurs ont étudié l'aspect de l'ADN cellulaire extrait de cultures d'astrocytes cultivés

en milieu normal et cultivés pendant des temps croissants en présence d'échantillons gliotoxiques issus de SEP. Il a alors été constaté que l'ADN issu de cultures soumises à une activité gliotoxique présentaient une fragmentation de 5 l'ADN cellulaire dont l'intensité augmentait en fonction de la durée d'incubation des cellules, alors que l'ADN des cellules incubées en milieu sans activité gliotoxique restait homogène à un très haut poids moléculaire.

Ces observations sont compatibles avec un 10 processus d'apoptose tel que peuvent en induire des superantigènes, sur des cellules lymphoïdes notamment.

Exemple 10:

Effet dose-réponse

15 Par la suite, afin d'évaluer la possibilité que cette soit activité gliotoxique détectée portée molécule, par un facteur dont la représentation ou moléculaire pourrait s'avèrer plus complexe, présent dans les fluides testés, les inventeurs ont d'abord évalué, à 20 l'aide des tests biologiques mis au point et décrits précédemment, la réalité d'un effet dose-réponse sur la cytotoxicité induite par des échantillons de référence. Un effet dose-réponse compatible avec une proportionalité directe de la mort cellulaire par rapport à la dilution, 25 et avec un effet de saturation du système de détection astrocytaire aux fortes concentrations, a été observé après visualisation de l'effet par le "L/D test".

Un exemple de cet effet dose réponse observé avec un fluide biologique gliotoxique est présenté dans la 30 figure 8. Dans cet exemple, un surnageant de culture de monocyte/macrophage de SEP a été mélangé, en dilutions successives, au milieu de culture des astrocytes selon le protocole sus-décrit pour le "L/D test".

Les inventeurs ont ainsi caractérisé une activité 35 cytotoxique et plus particulièrement gliotoxique dans les cultures de monocytes/macrophages sanguins, le LCR et le sérum de patients atteints de SEP, parallèlement à la mise au point d'un procédé de détection de ladite activité cytotoxique sur cultures primaires d'explants de cerveau ou de moelle épinière d'embryons de rat, et de ladite activité gliotoxique sur lignées astrocytaires en culture, ainsi encore que la mise au point d'un procédé de quantification de ladite activité gliotoxique couplé au procédé de détection sur astrocytes en culture.

S'étant d'abord attaché à la mise en évidence de 10 cette activité gliotoxique in vivo chez les patients atteints de SEP et aux moyens de son dosage systèmatique et standardisé, les inventeurs se sont attachés ensuite à tenter de relier cette activité avec une molécule particulière, ou un facteur représenté par un ensemble de 15 molécules définies, dans les fluides testés.

Exemple 11:

Caractérisation du facteur cytotoxique/gliotoxique inventeurs ont d'abord Les observé que 20 biologique définie en tant qu'activité gliotoxique par les décrits plus haut, procédés persistait dans échantillons gliotoxiques placés dans un bain-marie +56°C pendant une demi-heure mais était abolie lorsque la température était de +100°C pendant 15 minutes, persistait après la congélation jusqu'à -80°C de l'échantillon suivie de sa décongélation jusqu'à +37°C. Après centrifugation à 100 000g pendant 2 heures et élimination du culot de d'échantillons matériel sédimenté, l'activité préalablement reconnus gliotoxiques selon les procédés décrits dans la présente invention, était toujours présente dans le surnageant et s'apparente donc à une facteur soluble non particulaire. De même, l'incubation d'échantillons gliotoxiques dont la quantité totale de protéine a été préalablement déterminée par la technique de Bradford (Bradford M.M. A rapid sensitive method for 35 quantitation of microgram quantities of

utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72, 248-254) en présence de trypsine, de pronase, de protéinase K, ou d'un mélange de N-glycosidase F et de neuraminidase, dans des conditions suffisantes pour une hydrolyse enzymatique complète des liaisons peptidiques ou des N-glycosylations présentes dans l'échantillon, n'abolit pas leur activité gliotoxique telle que décrite précédemment.

la suite, les inventeurs ont réalisé la 10 séparation et le fractionnement des différents composés d'échantillons préalablement avérés gliotoxiques par les procédés décrits dans la présente invention. échantillons l'ensemble de ces travaux, les sont préalablement chauffés 30 min à 56°C et centrifugés 10 min surnageant est 15 1500 tpm, puis le récupéré éventuellement, dialysé à 4°C dans 2 fois 20 volumes de tampon D-PBS, une première fois pendant 2h, deuxième durant la nuit. Le surnageant ainsi recueilli l'échantillon sur lequel les différentes constitue 20 opérations sont effectuées. De plus, les fractions issues des échantillons dont les composantes moléculaires ont été séparées par différents procédés sont traitées de manière à éliminer les éventuelles molécules toxiques introduites dans les milieux recueillis par les procédés utilisés, et 25 de manière à replacer les molécules organiques en solution dans des conditions physiologiques compatibles avec les procédés de détection et de quantification de l'activité biologique gliotoxique tels que décrits dans la présente invention. Pour ce, les échantillons sont lyophilisés, 30 resuspendus dans 2,5 ml d'eau distillée stérile, déposés colonne de chromatographie de type préalablement lavée dans 10 volumes de tampon (Pharmacia) D-PBS, puis élués avec 3,5 ml de tampon D-PBS et utilisés comme tels pour les test d'activité gliotoxique.

Ainsi, pour étudier la charge ionique du facteur gliotoxique tel que précédemment défini, des échantillons

gliotoxiques selon les critères sus-définis et issus de surnageants de culture de monocytes/macrophages et de LCR de SEP, ont été passés avec un débit de 60 ml/heure sur colonne de chromatographie FPLC de type DEAE-sépharose CL-5 6B (Pharmacia) équilibrée dans un tampon A (50mM Tris-HCl la fraction 8,8.) Dans ces conditions gliotoxique présente dans l'échantillon l'activité d'origine est éluée avec une force ionique entre 0,12 M et 0,2 M de NaCl de tampon A.

étudier une éventuelle analogie physico-10 Pour chimique avec certaines sérine-protéases qui ont une forte affinité pour des supports de chromatographie liquide de des échantillons Blue-sépharose (Pharmacia), gliotoxiques selon les critères sus-définis, issus de 15 surnageants de culture de monocytes/macrophages et de LCR de SEP et préalablement dialysés à 4°C dans 2 fois 20 volumes de tampon B (50 mm tris, pH 7.2) et contenant 5 mg de proteines par ml, ont été déposés sur colonne FPLC de type Blue-sépharose CL-6B (Pharmacia). Après élution avec 20 0,1 M de KCl dans le tampon B, aucune activité gliotoxique n'a été retrouvée dans l'éluat, alors que la fraction portant l'activité gliotoxique a été recupérée avec un rendement d'activité proche de 70%, par élution avec 1,5 M de KCl dans le tampon B. L'analyse a aussi révèlé que la 25 sérumalbumine était aussi éluée dans cette même fraction. Cependant, l'activité protéasique de l'éluat a été testée par incubation de celui-ci avec de l'"azocaséin" (Sigma) ou de l'"azocoll" (Sigma), dans un tampon D-PBS pH 7,5 à 2 heures, sans qu'aucune 37°C pendant 30 protéolytique de l'échantillon ainsi préparé et élué ne puisse être mise en évidence.

Pour étudier l'association éventuelle d'un tel facteur gliotoxique avec les immunoglobulines de type IgG, des échantillons gliotoxiques selon les critères sus35 définis et issus de surnageants de culture de monocytes/macrophages et de LCR de SEP, ont été déposés

sur colonne FPLC de type protéine A-sépharose CL-4B (Pharmacia) préalablement lavée avec avec 5 volumes de D-PBS. La teneur en protéine A du gel gonflé était égale à 2 mg/ml et la capacité de fixation d'IgG humaines était de 5 l'ordre de 20 mg d'IgG/ml de gel (volume du gel 1,5 ml). La fraction dépourvue d'IgG a été récupérée par élution avec du D-PBS et contenait l'activité gliotoxique, alors que la fraction enrichie en IgG éluée avec un tampon glycine-HCl 50 mm à pH 3,0 ne contenait pas d'activité 10 gliotoxique telle que définie précédemment échantillons provenaient de LCR ou de surnageants cultures de monocytes-macrophages effectuées dans les conditions décrites précédemment. Dans le cas d'échantillons provenant de sérums humains, une faible 15 activité gliotoxique a été retrouvée dans la fraction enrichie en IgG, et ce, aussi bien pour des sérums de SEP en poussée prélevés en même temps qu'un LCR s'avèrant gliotoxique, que pour des sérums de témoins atteints par exemple, d'hydrocéphalie à pression normale (HPN), dont le 20 LCR prélevé en même temps ne présentait aucune activité gliotoxique. Cependant, l'étude des sérums d'HPN ou de témoins sains n'a révélé aucune activité gliotoxique dans la fraction dépourvue d'IgG éluée par le D-PBS alors que la quasi-totalité de l'activité gliotoxique importante des 25 sérums de patient atteints de SEP en poussée a été retrouvée dans cette fraction dépourvue d'IgG éluée par le D-PBS. Ceci, suggère qu'il existe un ou des composants gliotoxiques dans le sérum de personnes saines qui sont différents du facteur gliotoxique qui été a mis 30 évidence par les inventeurs de la présente invention. d'activité nettement plus faible et que l'on retrouve élués dans la fraction enrichie en IgG après passage sur colonne de protéine A-Sépharose dans les conditions susdécrites. Ceci s'apparente vraisemblablement gliotoxicité non spécifique liée à des protéines actives du sérum tel que cela a déjà été rapporté (Silberberg D.

et coll. Tissue culture demyelination by normal human serum. Annals of Neurology 1984: 15, 575-580). Pourtant, la faible quantité de sérum humain provenant de donneurs sains ayant un groupe sanguin AB positif, présent dans les 5 cultures de monocytes/macrophages ne semble pas produire, dans ces conditions d'analyse, cette gliotoxicité additive ainsi recueillie avec l'élution des IgG. Ceci provenir de l'effet de dilution qui, du fait de la faible activité de cette composante, la rend indétectable par nos procédés, ou bien, d'un effet d'inactivation de cette 10 composante au cours de la culture de monocytes/macrophages dans les conditions sus-décrites. Si l'on ajoute à ce gliotoxicité détectable dans fait. l'absence de ces après une même analyse d'échantillons conditions 15 gliotoxiques provenant de LCR de témoins atteints d'HPN ou de surnageants de cultures monocytes/macrophages de personnes saines, ces résultats confirment l'originalité de l'activité gliotoxique et, par là du facteur gliotoxique associé, constituant des objets 20 la présente invention, au regard des activités gliotoxiques pouvant être retrouvées en l'absence processus pathologique dans les fluides biologiques d'individus apparemment sains.

Pour étudier le poids moléculaire dudit facteur 25 gliotoxique, inventeurs ont parallèlement les successivement analysé des échantillons gliotoxiques selon sus-définis et issus de surnageants les critères culture de monocytes/macrophages, de filtres Pall ayant servi à filtrer in vivo le LCR de patients SEP et de LCR 30 de SEP, sur colonne FPLC de type superose 12 (Pharmacia) et sur électrophorèse en gel de polyacrylamide en présence de SDS (SDS-PAGE). Après analyse sur colonne superose 12, les fractions contenant l'activité gliotoxique ont été éluées après un volume d'élution correspondant à un poids 35 moléculaire d'environ 17 KD, par correspondance avec la courbe de référence des volumes d'élution de protéines

globulaires standard. Plus précisément, après recueil de fractions plus rapprochées dans cette zone d'élution, il a observé pu être deux pics d'activité gliotoxique dissociés, à des volumes d'élution correspondant à un 5 poids moléculaire d'environ 21 KD et d'environ 16,8 KD. Une élution similaire d'un même échantillon dans un tampon auquel de l'urée 8M a été ajoutée donne des résultats identiques indiquant qu'il n'y a pas d'associations multimériques des composants élués dans des conditions de 10 tampons physiologiques.

Après analyse par SDS-PAGE en une dimension, les bandes protéiques contenant l'activité gliotoxique, après élution du gel et remise en conditions physiologiques, ont été retrouvées dans une portion de gel correspondant à un 15 poids moléculaire d'environ 17 KD, et dans certaines conditions d'analyse et de richesse en matériel biologique analysé, dans une portion supplémentaire d'environ 21 KD. les autres bandes protéiques ainsi En parallèle, différentes régions du gel sans protéines ont été testées 20 sans qu'aucune activité gliotoxique significative puisse y être décelée. L'analyse en deux dimensions de la bande protéique gliotoxique extraite du gel vers 17 KD, a montré l'existence de deux tâches majeures à présentant, entre environ un pH 6 et un pH 7, un point 25 isoélectrique différent, et d'une tâche mineure à 18 KD ayant un point isoélectrique légèrement plus basique, supérieur à un pH d'environ 7.

Un exemple d'analyse par électrophorèse à une et deux dimensions sur gel, des composants protéiques d'une 30 fraction gliotoxique obtenue après passage sur colonne DEAE est présenté dans les figures 9A et 9B. Dans la figure 9A, on peut voir la photographie d'un gel d'acrylamide à une dimension coloré au bleu de Coomassie provenant d'un mélange d'échantillons gliotoxiques élués à partir d'une dizaine de filtres Pall ayant servi à la filtration in vivo du LCR d'une série de patients atteints

de SEP. Ces filtres sont ouverts mécaniquement et les filtres lavés en présence de SDS 1%, puis les éluats remis en tampon physiologique à l'aide, notamment, d'un passage sur colonne NAP-25 ainsi que décrit précédemment. 5 filtrats ainsi traités sont testés pour leur activité gliotoxique sur un aliquot et passés en mélange sur colonne DEAE-sépharose. La fraction contenant l'activité gliotoxique est dessalée sur colonne NAP-25 et concentrée par évaporation avant d'être déposée en deux parties, l'une sur un gel SDS-PAGE une dimension (figure 9A) l'autre sur un gel SDS-PAGE à deux dimensions. photographie d'un tel gel à deux dimensions est présentée dans la figure annexée 9B. La bande visualisée avec un poids moléculaire apparent de 17KD en une dimension s'avère être la seule bande protéique visualisée portant 15 une activité gliotoxique sur le gel montré en 9A et l'on peut voir, sur le gel en deux dimensions (9B) que cette bande de 17KD environ se sépare en trois taches de points troisième isoélectriques différents, la tache 20 droite ayant un poids moléculaire apparent légèrement supérieur aux deux taches de gauche.

Un exemple d'analyse avec une colonne **FPLC** superose 12 est présenté dans les figures 10A et 10B. Dans surnageants cet exemple, des de culture de monocytes/macrophages d'un patient atteint de SEP prélevés entre le 6^{éme} et le 16^{ème} jour de culture, représentant un volume de 20ml et 140 mg de protéines, ont d'abord été passés avec un débit de 60 ml/heure sur colonne chromatographie FPLC de type DEAE-sépharose (Pharmacia) équilibrée dans un tampon A (50mM Tris-HCl à pH 8,8). Parallèlement, une colonne superose 12 a été équilibrée avec un tampon C, Tris HCl 50 mM pH 6.8, et calibrée en éluant un mélange de protéines globulaires de poids moléculaire connu dans ce même tampon C. La fraction portant théoriquement l'activité gliotoxique présente dans l'échantillon d'origine a été éluée de la colonne DEAE-

25

30

35

sépharose avec une force ionique entre 0,12 M et 0,2 M de NaCl de tampon A, dans un volume de 15 ml contenant 39 mg de protéines. Un tiers de cette fraction, contenant 13 mg protéines, a été ensuite déposée sur la superose 12 dans un tampon sans urée (Fig 10A) et un autre tiers sur une colonne identique, en tampon 8M (Fig 10B). Pendant élution dans le tampon C, 40 fractions ont été recueillies et une mesure continue de l'absorption à 280 nm, pour doser les protéines dans l'éluat, a été 10 enregistrée avec une forte sensiblité de (R=1,2). L'activité gliotoxique des différentes fractions recueillies a été testée notre selon biologique sur lignée astrocytaire et quantifiée, après 72h d'incubation, par la technique du "L/D test". Pour ce 15 faire, les fractions ont été lyophilisées, resuspendues dans 2,5 ml d'eau distillée stérile, déposées sur colonne chromatographie de NAP-25 (Pharmacia) type préalablement lavée dans 10 volumes de tampon D-PBS, puis élués avec 3,5 ml de tampon D-PBS et utilisées comme tels 20 pour les test d'activité gliotoxique. Dans les figures 10A la courbe en trait noir continu représente la densité optique à 280 nm et la courbe en trait pointillé représente l'activité gliotoxique. Les correspondances entre le volume d'élution (Ve) et le poids moléculaire apparent, ont été calculées en fonction de la calibration préalablement réalisée avec des protéines de référence et est mentionnée au sommet des pics d'activité gliotoxique. Il est à noter qu'une activité gliotoxique faible est retrouvée dans une fraction correspondant à 30 moléculaire d'environ 110 KD. Cependant la similitude des profils d'élution en présence et absence d'urée 8M est en faveur d'une composition monomérique du facteur élué au niveau de ces différents poids moléculaires. Ainsi donc dans cet exemple, l'activité gliotoxique spécifique aux 35 facteurs de poids moléculaires apparents d'environ 21 kD

et d'environ 17 kD peut être mise en évidence et individualisée.

Les résultats obtenus par chromatographie FPLC sur colonne superose 12 et par analyse électrophorétique, 5 montrent que le facteur gliotoxique est au moins constitué d'une protéine ou molécule associée de poids moléculaire de 17 KD et, d'une protéine ou molécule associée de poids moléculaire de 21 KD. Le fait que les poids moléculaires apparents où est retrouvée l'activité gliotoxique soient 10 identiques dans les deux types de techniques (FPLC et suggère qu'il s'agit électrophorèse) de globulaires. De plus une étude comparative de gels SDS-PAGE en présence ou en l'absence de ß-mercaptoéthanol profils ailleurs donné des de migration ayant par 15 identiques. il s'agit vraisemblablement d'homomères. fait que l'activité gliotoxique soit retrouvée, parmi toutes les fractions de chromatographie et toutes portions de gel analysées, à deux poids moléculaires différents d'environ 17 KD et d'environ 21 KD, peut deux molécules homologie 20 s'expliquer par sans significative, ou par l'existence de glycosylations ou de toutes modifications post-traductionnelles différentes sur un même support protéique, ou encore par l'existence d'un pro-peptide ou d'une partie peptidique quelconque qui, après clivage d'une protéine de 21 KD environ, génère une 25 protéine d'environ 17 KD.

Aussi, pour étudier la glycosylation éventuelle dudit facteur gliotoxique, des échantillons gliotoxiques selon les critères sus-définis et issus de surnageants de 30 culture de monocytes/macrophages, de sérums, de LCR de SEP, et de filtres ayant servi à filtrer in vivo le LCR de patients SEP, ont été analysés sur colonne FPLC de type Concanavaline A-sépharose (Con A-sépharose, Pharmacia). échantillons Pour cette étude, les biologiques 35 gliotoxiques ont été préalablement passés sur colonne FPLC de type DEAE-sépharose ou de type protéine A-sépharose.

Les fractions contenant l'activité gliotoxique respectivement, une fraction éluée vers 0,2 M de NaCl et une fraction éluée avec du D-PBS, sont ensuite utilisées pour la chromatographie FPLC sur colonne de type ConA-5 sépharose. Dans ces conditions, les fractions éluées de la colonne ConA-sépharose, soit avec du D-PBS contenant jusqu'à 500 mM de NaCl, soit ensuite avec 200 mM de Dglucopyranoside qui présente une affinité compétitive pour ConA, n'ont présenté aucune activité gliotoxique. 10 L'activité gliotoxique présente dans l'échantillon d'origine a été retrouvée concentrée dans la fraction éluée, après les deux élutions pré-cités, avec un tampon glycine-HCl 50mM pH 3,0 avec du Ca++ 1mM et du Mn++ 1mM. Cette fraction correspond à des molécules ayant une haute 15 affinité pour la ConA, ce qui correspond en général à des fortement glycosylées. L'analyse fraction en SDS-PAGE une dimension révèle que l'activité gliotoxique est retrouvée associée à deux protéiques de 17 KD et de 21 KD, respectivement.

20 Un exemple d'analyse en gel SDS-PAGE unidimensionnel d'une purification utilisant une colonne FPLC de type DEAE-sépharose Con A-sépharose est présenté dans la figure 11. Dans cet exemple, 27ml de surnageant, contenant 100mg de protéines, de culture 25 monocyte/macrophage d'un patient atteint de SEP ont été passés sur colonne DEAE-sépharose. et l'éluat obtenu avec une force ionique entre 0,12 et 0,20 M de NaCl a été recueilli dans un volume de 10ml contenant protéines. Cette fraction a été passée ensuite sur colonne 30 de type ConA-sépharose. Une première élution réalisée avec du D-PBS 500 mM, une deuxième élution a été réalisée avec un tampon D-PBS contenant 200 mM de glucopyranoside, une troisième élution a été réalisée avec un tampon glycine HCl 50mM pH 3,0 avec du Ca++ 1mM et du 35 Mn++ 1 mM et un éluat de 6,4ml contenant 0,17mg de protéines a été recueilli.

Après cette série de purifications où la gliotoxicité de tous les échantillons intermédiaires a été dosée, 79% de la gliotoxicité du surnageant d'origine a été retrouvée dans la fraction éluée en tampon glycine à 5 pH 3 de la colonne ConA-sépharose, avec un rendement de purification protéique de 465 fois.

qel SDS à 10% d'acrylamide, Sur un étape ont été déposés échantillons de chaque successivement dans des puits parallèles, correspondant à 10 une quantité protéique de 2,2mg pour la troisième fraction ConA-sépharose. Il est à noter sur rendements encore meilleurs ont pu être obtenus pour les mêmes étapes avec du LCR de patients atteints de SEP.

De plus, à partir de la troisième fraction éluée 15 sur ConA-sépharose, une électrophorèse préparative SDS-PAGE a été effectuée en parallèle, différentes bandes ont été découpées dans le gel non coloré à la hauteur de toutes les bandes protéiques colorées au bleu de Coomassie quelques dans un puits de référence, ainsi que dans 20 régions sans protéine. Pour analyser la gliotoxicité de chaque bande ainsi découpée, les morceaux de gel ont été écrasés et homogénéisés dans du D-PBS à 0,2% de SDS, incubés à 37°C pendant 30 minutes puis centrifugés à 100 000 g pendant 6 minutes. L'opération est répétée deux 25 fois et les surnageants des deux centrifugations sont mélangés et passés sur colonne DEAE-sépharose. L'éluat obtenu par élution avec un tampon D-PBS 200mM NaCl est recueilli et utilisé pour les tests de gliotoxicité. Dans le SDS est retenu sur la colonne et ces conditions. 30 l'éluat est physiologiquement compatible avec les cultures cellulaires. Dans ces extraits de gel d'électrophorèse, une activité gliotoxique significative n'a été retrouvée que dans les bandes découpées dans des zones de poids moléculaire d'environ 17 KD et 21 KD. Afin de vérifier le 35 profil protéique de ces deux extraits, ils ont été déposés sur le gel analytique en parallèle avec les fractions de

chromatographie précédentes. Sur la figure 11 présentant les résultats de la révélation des protéines migrées après électrophorèse, en partant de la gauche, la première colonne représente une série de protéines standard de 5 poids moléculaires connus et indiqués sur la gauche, "S" deuxième colonne surmontée d'un représente surnageant de départ, la troisième colonne surmontée d'un "I" représente la fraction éluée entre 0,12 et 0,2 M de DEAE-sépharose, les quatrième, cinquième sur 10 sixièmes colonnes surmontée d'un "II" représentent trois élutions successives effectuées sur colonne ConAsépharose et sont surnotées respectivement par les numéros d'ordre 1, 2 et 3, dans l'ordre de la description qui précède. Les deux dernières colonnes correspondent deux bandes gliotoxiques séparées et extraites d'un gel SDS-PAGE préparatif.

15

De ces résultats, il ressort que, comme dans l'analyse effectuée sur fluides biologiques de SEP sur colonne superose 12 et en SDS-PAGE unidimensionnelle à 20 partir d'éluats de filtres utilisés pour la filtration in vivo du LCR de SEP, l'activité gliotoxique est retrouvée associée à des protéines de poids moléculaire apparent d'environ 17 KD et 21 KD, avec une concentration nettement molécule à 21 KD. Cependant, moindre pour la contrairement aux observations effectuées précédemment, 25 témoins non-gliotoxiques passés sur des échantillons ConA-sépharose dans les mêmes conditions ont présenté ces bandes à 17 KD et 21 KD sur gel SDS-PAGE dans la fraction éluée en tampon glycine HCl. L'évaluation dans décrites ci-dessus, de l'activité 30 les conditions qliotoxique de ces échantillons témoins ne révèle pourtant aucun effet cytotoxique significatif à aucune étape de purification et pas plus au niveau des bandes protéiques à environ 17 KD et environ 21 KD. De plus, l'élution "à blanc" de colonne ConA-sépharose avec le tampon glycine HCl pH 3 précité, permet de visualiser les mêmes bandes

non-gliotoxiques. L'éventualité d'un décrochage de sousunités ou de fragments protéiques de Con A à partir du support de chromatographie par le tampon glycine pH3 a été vérifiée. Cependant, afin de vérifier la réalité d'un co-5 migration d'une molécule originale portant gliotoxique retrouvée dans les bandes d'environ 17 et 21 provenant d'échantillons de SEP élués sur sépharose dans les conditions précitées, les inventeurs à ont procédé une digestion, dans les conditions 10 adéquates, par la protéinase K de la fraction issue d'un échantillon gliotoxique et d'un échantillon témoin nongliotoxique éluée dans les mêmes conditions sur ConAsépharose par le tampon glycine HCl. Les deux produits de digestion ont ensuite été élués en parallèle sur colonne 15 FPLC superose 12 dans les conditions précédemment citées. Ces analyses ont permis de mettre en évidence que dans dans l'éluat provenant de l'échantillon "SEP" protéique non-digéré, associé à une activité gliotoxique et exempt d'activité protéasique était toujours présent, 20 alors que tout le matériel protéique était dégradé dans fractions d'échantillons isssues témoins gliotoxiques contenant préalablement des protéines en 17 et 21 KD.

Un exemple de cette analyse est présenté dans les et 13. Dans cet exemple, 25 figures 12 un mélange surnageants de monocytes/macrophages de SEP présentant une activité gliotoxique significative et contenant 3 g de protéines et un échantillon équivalent provenant d'une culture témoin sans activité gliotoxique significative ont 30 été passés en parallèle sur colonne FPLC DEAE-sépharose, les fractions éluées entre 0,12 et 0,2 M NaCl récupèrées l'équivalent de 2 mq de protéines pour échantillon passés sur colonne FPLC ConA-Sépharose. Les fractions éluées dans le tampon glycine HCl 50 mM pH 3 35 avec 1mM de Ca++ et 1mM de Mn++, ont été d'abord remises en solution dans un tampon adéquat. Pour ce faire, les

échantillons ont été lyophilisés, resuspendus dans 2,5 ml distillée stérile, déposés sur une colonne chromatographie de type NAP-25 (Pharmacia) préalablement lavée dans 10 volumes de tampon 20mM Tris-HCl, pH 8.0, 1mM 0.1% SDS, puis élués avec le même tampon et utilisés comme tels pour l'incubation avec la protéinase K. L'enzyme utilisée est immobilisée (Proteinase K-Acrylic beads, Sigma ref. P0803) et utilisée sous un rapport de 20 mU / 50-100 μg de protéine, dans le tampon 20mM Tris-HCl à 10 pH 8,0 avec1mM Ca++ et 0,1% SDS. Les échantillons à digèrer ont été incubés au moins 16 heures à 37°C. Les après centrifugation récupèrés surnageants sédimentation des billes couplées à la protéinase K ont été ensuite passés sur colonne FPLC superose 12 dans les 15 conditions décrites précédemment et éluées avec un tampon Tris-HCl pH 6, 8 contenant 8 M d'urée notamment, de dissocier toute protéine multimérique. l'élution 12 représente en superose après de SEP l'échantillon gliotoxique provenant 20 traitement par la protéinase K. La figure 13 représente l'élution en superose 12 de l'échantillon non gliotoxique provenant de témoins non-atteints de SEP après traitement par la protéinase K. Les courbes en trait noir continu représentent l'absorption à 280nm de l'éluat, avec une 25 mesure de densité optique de sensibilité R=0.02, indiquant la concentration relative en protéine. Le point de courbe correspondant à l'élution de protéines globulaires d'environ 17 KD est indiqué par une flèche. protéique d'environ 17 KD est visible seulement dans la figure 12, et est associé à une activité gliotoxique cytotoxicité sur évaluée à 75% de une dilution l'échantillon au 1/10, selon le test biologique selon l'invention, après 72h d'incubation et quantification de la mort cellulaire relative par le L/D test. Par ailleurs, 35 afin de détecter toute trace de protéinase K contaminante, un test d'activité protéasique sur azocoll (Sigma ref.

A9409) a été effectué et n'a pas permis de déceler de protéase contaminante à ce niveau. Par contre, un pic similaire d'absorption à 280 nm est décelé dans les deux échantillons en dessous de 5 KD, et correspond 5 produits de dégradation par la protéinase K des protéines digestibles.

Les résultats présentés dans l'exemple illustré par les figures 12 et 13, montrent qu'il existe bien un spécifique, présent facteur gliotoxique de manière 10 originale dans les fluides biologiques issus de patients associé à une ou deux molécule(s) atteints de SEP, polypeptidiques dont au moins une (ou des) région(s) de 17 KD est (sont) à indigestible(s) par la protéinase K. Cependant, le mode de purification utilisant des colonnes 15 ConA-sépharose, s'il a permis de mettre en évidence une forte affinité du facteur gliotoxique pour la concanavaline A, ne permet pas d'obtenir des échantillons adéquats pour une analyse peptidique ultérieure du fait d'une contamination par des composants de la concanavaline 20 A provenant des colonnes dans les conditions d'élution requises pour éluer ledit facteur gliotoxique. Dans ces il semble qu'un protocole de purification associant successivement une colonne DEAE-sépharose et une colonne superose 12, soit le mieux adapté à une stratégie molécules l'activité purification de portant spécifique caractérisée dans la présente gliotoxique invention.

Un exemple d'analyse du rendement de purification par différentes colonnes FPLC est présenté dans le tableau 3.

25

30

35

Dans cet exemple, la cytotoxicité est exprimée en quantité de protéines (mg) nécessaire pour avoir 50 % de mort cellulaire, d'après une quantification par un dosage colorimétrique au méthyltétrazolium après incubation à 37°C pendant 72 h, de l'échantillon à tester dilué au 1/10 dans le milieu de culture. Les fractions testées sont,

pour chaque type de colonne, celles qui sont éluées dans les conditions préalablement décrites pour contenir l'activité gliotoxique. Le rendement est calculé selon la formule suivante :

5

protéines totales (avp) / cytotoxicité (avp)

rendement % = ----- * 100

protéines totales (app) / cytotoxicité (app)

10 avp: avant purification; app: après purification.

Dans cet exemple, il apparait que les colonnes protéine A-sépaharose pourraient aussi être utilisées à bon escient, préalablement à une autre méthode de séparation excluant les colonnes ConA-sépharose, dans une 15 stratégie de purification du facteur gliotoxique.

Enfin, après avoir étudié différentes techniques purification et de préparation de đе moléculaires associées à l'activité gliotoxique mise en évidence dans les fluides biologiques issus de patients 20 atteints de SEP, les inventeurs ont vérifié dans l'étude présidant à la présente invention que la purification, même partielle, de molécules constituant le fondement moléculaire de l'activité gliotoxique présente un effet dose-réponse encore plus clairement définissable que sur 25 les fluides bruts précédemment testés, ceci, notamment, afin de vérifier la réalité bio-pharmacologique de purification dudit facteur gliotoxique.

Les deux exemples qui suivent illustrent la réalité d'une purification d'une activité bio30 pharmacologique parallèlement à la purification moléculaire effectuée.

Dans l'exemple illustré par la figure annexée N°14, dont les courbes ont été tracées d'après les données présentées dans le tableau annexé N°4, on a réalisé une 35 série de dilutions dans du tampon PBS avec un surnageant de culture de monocyte/macrophage de patient atteint de

SEP (SEP 1) et lesdites dilutions ont été incubées 72 heures avec une dilution finale allant du 1/20ème au 1/5000ème dans le milieu de culture de puits comprenant une monocouche de cellules astrocytaires provenant de la 5 lignée astrocytaire décrite précédemment. Une fraction du même surnageant de culture de monocyte de SEP obtenue après purification de la fraction gliotoxique par passage sur colonne ConA-sépharose, a été diluée et incubée en selon le même protocole. Les cellules parallèle, astrocytaires ont été incubées juste avant l'introduction 10 des dilutions gliotoxiques, avec du Chrome 51 et lavées afin d'éliminer les isotopes radioactifs non incorporés dans les cellules vivantes. Après 72 heures d'incubation d'échantillons dilués. la avec les deux gammes radioactivité relarguée dans le surnageant est mesurée avec un compteur gamma et comparée à celle mesurée dans les cellules restant en culture au fond des puits. Le ainsi de cytotoxicité, qu'expliqué pourcentage précédemment, représente la proportion de radioactivité 20 relarquée dans le surnageant par les cellules mortes. On peut ainsi voir sur la figure 14, qu'il existe un effet dose-réponse marqué par une diminution progressive de la cytotoxicité mesurée en fonction des dilutions croissantes de l'échantillon. Il faut cependant remarquer que la pente de la courbe est nettement accrue, sur les mêmes écarts de facteur purifié. Ceci dilution, avec le confirme purification réalité de la et de la concentration moléculaire du facteur associé à l'activité biologique mesurée par notre test de gliotoxicité.

Dans l'exemple illustré par la figure annexée N°15 dont les courbes ont été tracées d'après les données présentées dans le tableau annexé N°5, on a réalisé une série de dilutions dans du tampon PBS avec un surnageant de culture de monocyte/macrophage de patient atteint de SEP (SEP 1) et lesdites dilutions ont été incubées 72 heures avec une dilution finale allant du 1/20ème au

1/5000ème dans le milieu de culture de puits comprenant une monocouche de cellules astrocytaires provenant de la lignée astrocytaire décrite précédemment. Une fraction du même surnageant de culture de monocyte de SEP obtenue 5 après purification de la fraction gliotoxique par passage sur colonne ConA-sépharose, a été diluée et incubée en parallèle, selon le même protocole. Après 72 d'incubation avec les deux gammes d'échantillons dilués, les cellules restant viables dans les puits de culture 10 sont détectées par le test au méthyltétrazolium (MTT) décrit précédemment et le produit coloré généré par les enzymes mitochondriales fonctionnelles de ces cellules est dosé par une mesure de la densité optique du surnageant entre 570 et 630 nm. La densité optique, ainsi qu'expliqué précédemment, représente la quantité de cellules vivantes restant dans chaque puits préalablement ensemencé avec le nombre de cellules maintenues en confluente au fond du puits de culture, dans un milieu de survie. On peut ainsi voir sur la figure 15, qu'il existe 20 bien un effet dose-réponse marqué par une augmentation progressive de la survie cellulaire mesurée en fonction l'échantillon. dilutions croissantes de que la pente de la courbe cependant remarquer nettement accrue, sur les mêmes écarts de dilution, avec Ceci confirme encore, 25 le facteur purifié. par technique de quantification des cellules vivantes, purification concentration réalité de la et de la moléculaire du facteur associé à l'activité biologique mesurée par notre test de gliotoxicité.

30 Dans les deux derniers exemples illustrés par les figures 14 et 15, deux techniques de dosages mesurant des paramètres opposés tels que la survie cellulaire et mortalité cellulaire relative, procurent des résultats à fait convergeants et, tout en permettant 35 démontrer la réalité d'une purification de l'activité même temps que du facteur gliotoxique détectée en

gliotoxique, montrent clairement la résolutivité et la fiabilité du test biologique faisant, ainsi que le facteur gliotoxique caractérisé par les travaux des auteurs, objet de la présente invention.

5 Ainsi, sur la base de la découverte d'une activité cytotoxique pouvant être mise en évidence in vivo chez des personnes atteintes de SEP et ciblant préférentiellement les cellules gliales, un procédé de détection et de quantification l'activité cytotoxique de particulièrement, gliotoxique associée à ce facteur a été 10 et validé point dans différentes mis conditions d'utilisation. De plus, ledit procédé a permis d'étudier et de caractériser le fondement moléculaire de cette activité gliotoxique, sous la forme de fractions 15 protéiques présentant deux poids moléculaires apparents d'environ 17 KD et d'environ 21 KD, dans les liquides biologiques provenant, notamment, de patients atteints de SEP. Le fait qu'il existe une partie indigestible par la protéinase K dans des conditions non-dénaturantes, qui est 20 retrouvée associée à l'activité gliotoxique à 17 kD par élution sur colonne FPLC superose 12 suggère peptide additionnel digestible éventuellement qu'un (propeptide par exemple) différencie la forme de 21 KD de celle de 17 KD. Ces deux facteurs apparamment protéiques 25 d'environ 17 et d'environ 21 KD sont vraisemblablement globulaires, sans ponts disulfures associant des chaînes indépendantes, plutôt hydrophiles, peptidiques négativement à pH neutre, et apparemment glycosylés sans pour autant que l'incubation en présence de N-glycosidase n'abolisse leur activité 30 F neuraminidase et de présentent une très haute gliotoxique. De plus, ils affinité pour au moins une lectine, la concanavaline A, ou Con A. Ces facteurs protéiques ont une activité biologique qui résiste à l'incubation à 56°C pendant une demi-heure 100°C pendant et qui disparait après chauffage à 35 minutes. Cette activité biologique, autant que la forme à 17 KD résistent à l'action des protéases telles que la pronase, la trypsine et la protéinase K.

La description détaillée, précédemment exposée, a finalement permis de mettre en évidence un facteur 5 gliotoxique possédant les caractéristiques suivantes prises indépendamment :

- il possède une activité cytotoxique sur les cellules gliales,
- cette activité cytotoxique sur les cellules 10 gliales est associée à au moins une glycoprotéine globulaire,
- son activité est liée à au moins deux fractions protéiques, associées ou non, ayant un poids moléculaire apparent respectivement de 17kD et de 21kD, chacune de ces fractions possédant une activité gliotoxique, la fraction de 17kD étant indigestible par la pronase, ou la trypsine ou la protéinase K, et chacune des deux fractions présentant une forte affinité pour les lectines telles que la concanavaline-A,
- 20 l'activité gliotoxique du facteur présent dans un échantillon persiste après un traitement thermique de l'échantillon à +56°C de 30 minutes, ou après congélation de l'échantillon à -80°C puis décongélation jusqu'à +37°C,
- le facteur est soluble dans l'eau et non 25 particulaire,
 - l'activité gliotoxique du facteur présent dans un échantillon persiste après traitement de l'échantillon avec la trypsine, ou la pronase ou la protéinase K, ou un mélange de N-glycosidase F et de neuraminidase, dans des conditions non dénaturantes,
 - le facteur caractérisé par électrophorèse sur gel de SDS-polyacrylamide à une dimension peut présenter deux bandes, de 17kD et 21kD,
- le facteur gliotoxique est retenu avec une forte 35 affinité sur des supports de lectine,

30

- le facteur est élué à pH 7,5 dans un tampon de 100mM NaCl sur résine DEAE,
- il n'est pas retenu par la protéine A couplée à un support, donc il est différentiable des IgG,
- il est retrouvé dans les surnageants de cultures de monocytes/macrophages de SEP, les LCR et sérums de SEP,

5

- il provoque un effet cytotoxique quantifiable sur les cellules astrocytaires en culture et caractérisable par un effet précoce de désorganisation du 10 réseau de filaments intermédiaires suivie habituellement par la mort cellulaire.

TABLEAU 1
EXEMPLE D'APPLICATION DU TEST BIOLOGIQUE DE GLIOTOXICITE:

Filtration des liquides céphalo rachidiens de patients atteints de SEP avec les filtres PALL

Pourcentage de cellules mortes (L/D test)

		Avant Après Signifi				
N° Patient	stade clinique	Avant filtration	Après filtration	-cativité (t-test)		
1	Poussée	14.4±1.7	1.4±1.7	249-10		
2	Poussée	35.6±4.55	9.7±3.6	1.38-11		
3	Poussée	20.3±3.59	3.2±2.2	1.93-6		
4	Poussée	29.9±3.28	9.7±2.0	4.13 ⁻⁹		
5	Poussée	45.0±3.46	4.2±2.7	4.16 ⁻⁹		
6	Chronique	20.8±4.13	19.6±2.41	5.15 ⁻¹ NS		
7	Chronique	15.5±2.55	0.1±0.32	9.62 ⁻⁹		
8	Clinprobable	24.1±3.67	0.6±0.84	5.55 ⁻⁹		
9	Poussée	30.4±4.97	4.1±2.38	1.46 ⁻⁸		
10	Chronique	24.3±2.31	0.6±0.7	3.87-9		
11	Chronique	16.0±2.49	3.3±2.91	9.00-9		
12	Poussée	34.9±3.75	0.3±0.68	4.20-9		
13	Poussée	10.5±2.55	0	3.86 ⁻⁷		
14	Poussée	0.6±0.84	0	5.10 ⁻² NS		
15	Chronique	19.7±2.21	0.4±0.97	3.40 ⁻⁸		
16	Chronique stable	34.5±1.72	4.8±2.1	3.72 ⁻⁹		
17	Chronique	23.7±2.44	0	4.66 ⁻⁵		
18	Poussée	37.9±1.88	2.77±1.55	3.98-8		
19	Poussée	33.7±2.76	1.34±1.98	8.76 ⁻⁶		
20	Poussée	29.5±2.98	2.76±2.21	7.45-5		
21	Chronique	24.8±3.76	3.21±1.55	2.66 ⁻⁷		
22	Chronique	24.9±2.88	254±212	3.11 ⁻⁸		

^{*} Moyenne des cellules dans 5 champs d'examination microscopiques choisis au hasard dans 2 puits dupliqués. Les cultures contrôles montrent une mort cellulaire de fréquence non significative

^{*} test "t" de student. NS=non significatif

TABLEAU 2.

CYTOTOXICITE DU LCR DE PATIENTS ATTEINTS DE SEP OU D'AUTRE MALADIE NEUROLOGIQUE DETECTEE A L'AIDE DU TEST BIOLOGIQUE SUR LIGNEE D'ASTROCYTES IMMORTALISES ET QUANTIFIEE PAR LA METHODE COLORIMETRIQUE AU MTT.

PATIENT n*		CYTOTOXICITE (% cellules mortes)
SEP	FORME EVOLUTIVE	
1 2 3 4 5 6 13 14 15 16	Rémittante en poussée Rémittante en poussée Rémittante en poussée Rémittante en poussée Rémittante en poussée Rémittante en poussée Chronique Chronique Chronique Chronique	48.8±4.5 54.6±3.9 44.0±6.5 39.8±3.8 52.5±2.9 68.5±7.7 7.2±2.2 8.2±1.9 4.1±3.0 0 5.4±1.7
18	Chronique	6.8±0.8
HPN	(TEMOINS NON SEP)	
19 20 21 22 23 24	•	0 0 0 0

LCR: Liquide Céphale-rachidien; MTT: méthy ltétrazolium; SEP: Sclérese en plaques; HPN: Hydrocéphalie à pression normale.

La cytotexicité a été mesurée avec la technique colorimétrique utilisant le MTT après 96 h d'incubation. Les échantillors de LCR ent été ditués au 1:20 dans le milieu de culture utilisé pour les astrocytes immortalisés. Chaque resultat représente la moyenne de deux expériences séparées et représentant chacune une série de 5 puits indépendants, soit, finalement, une moyenne de 10 valeurs par LCR testé.

Les échantillors de LCR provenant de patients atteints de forme rémittante de SEP, en été prélevés eu moment

de poussées cliniques.

Le différence des moyennes de cytotexicité dans les deux sous-populations de SEP, rémittantes versus chroniques, est statistiquement significative (p<0,0001, Mann-Withney U test), la différence entre les résultats des LCR de SEP et de témoins atteints d'HPN est elle-même statistiquement significative (p<0.0001, Mann-Withney U test).

1,08

93 %

Tableau 3:

cytotoxicité (mg)

rendement (%)

Exemple de rendement de purification du facteur gliotoxique à partir de surnageants de cultures de monocytes de malades SEP

surnageant	•
volume (ml)	10,00
protéines (mg)	42,00
•	1,0
purification	1.2
cytotoxicité (mg) rendement (%)	100 %
protéine A-sépharose	
volume (mt)	8,00
protéines (mg)	35,30
-	1.1
purification	1.00

concanavaline A-sépharose + NAP-25

volume (ml)	3,50
protéines (mg)	0,32
purification	100
cytotoxicité (mg)	0,012
	76 %
rendement (%)	

TABLEAU 4:

EFFET DOSE-REPONSE: QUANTIFICATION DE L'ACTIVITE GLIOTOXIQUE PAR LE TEST DE RELARGAGE DU 51-Cr

ECHANTILLON	DILUTION	AVANT PURIFICATION % de cytotoxicité		APRES PURIFICATION % de cytotoxicité			
		(en trois mesures)			(en troi	STESURE	s)
Milieu de culture	1/1	7.200			11.400	8.200	7.400
Patient contrôle	1/20	11,400	10.800	10.200			
SEP 1	1/20	47,400	42.800	39.900	94.400	90.800	
SEP 1	1/200	39.000	40.400	43.100	78.800		79.400
SEP 1	1/1000	36.200	32.400	33.300	72100		70.000
SEP 1	1/5000	28,100	26.600	26.400	51.200	48.400	46.200

TABLEAU 5:

EFFET DOSE-REPONSE: QUANTIFICATION DE L'ACTIVITE GLIOTOXIQUE PAR LE TEST COLORIMETRIQUE AU MTT

ECHANTILLON	INTILLON DILUTION		AVANT PURIFICATION D.O. 570-630 nm (en trois mesures)			APRES PURIFICATION D.O. 570-630 nm (en trois mesures)			
Mitieu de culture	1/1	1.904	1.870	1.884	1.922	1.910	1.934 1.890		
Patient contrôle	1/20	1.912	1.892	1.897	1.882 0.948	0.990	0.960		
SEP 1	1/20	1.604	1.572 1.794	1.608 1.800	1.310		1.322		
SEP 1	1/200	1.812	1.914	1.888		1.784	1.762		
SEP 1	1/1000	1.902	1.896	1.890	1.890	1.824	1.818		

REVENDICATIONS

- 1. Facteur gliotoxique caractérisé en ce qu'il possède, une activité toxique vis-à-vis des cellules astrocytaires humaines ou animales, ayant pour effet une 5 désorganisation cytomorphologique de leur réseau filaments intermédiaires, et/ou une dégradation des protéines desdits filaments intermédiaires, et/ou une mort cellulaire notamment, par apoptose.
- 2. Facteur selon la revendication 1, caractérisé 10 en ce que son activité est associé à au moins une glycoprotéine globulaire.
- 3. Facteur gliotoxique caractérisé en ce que, après traitement successivement, sur une colonne échangeuse d'ions puis sur une résine de séparation par facteur gliotoxique est constitué, 15 exclusion. ledit majoritairement, par une fraction légère, centrée sur un moléculaire apparent d'environ minoritairement, par une fraction lourde, centrée sur un poids moléculaire apparent d'environ 21 kD, légère étant résistante, dans 20 ladite fraction conditions non dénaturantes, à l'action hydrolytique de la pronase, ou de la trypsine, ou de la protéinase K, chacune des deux dites fractions présentant une forte affinité pour les lectines et notamment la concanavaline-25 A.
 - 4. Facteur gliotoxique caractérisé en ce qu'il est susceptible d'être obtenu à partir du procédé comprenant les étapes suivantes:
- on part d'un échantillon biologique prélevé par 30 exemple sur un patient atteint de sclérose en plaques cliniquement active,
- on traite successivement ledit échantillon sur une résine échangeuse d'ions puis sur une colonne de séparation par exclusion, pour obtenir un facteur
 35 gliotoxique constitué majoritairement, par une fraction légère, centrée sur un poids moléculaire apparent

d'environ 17 kD, et minoritairement, une fraction lourde, centrée sur un poids moléculaire apparent d'environ 21 kD, au moins ladite fraction légère étant résistante, dans des conditions non dénaturantes, à l'action hydrolytique de la pronase, de la trypsine, ou de la protéinase K, et chacune des deux dites fractions présentant une forte affinité pour les lectines et notamment la concanavaline A.

- 5. Procédé pour détecter et/ou suivre et/ou pronostiquer l'activité d'une pathologie telle que la 10 sclérose en plaques, caractérisé en ce qu'on détecte, dans un échantillon biologique, la présence et/ou la quantité d'un facteur gliotoxique selon l'une quelconque des revendications précédentes.
- 6. Procédé de prétraitement d'un échantillon biologique contenant un facteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on effectue un traitement dudit échantillon avec l'un au moins des traitements suivants:
- on met ledit échantillon en contact avec de la 20 protéine A,
 - on met ledit échantillon en contact avec une résine échangeuse d'ions,
 - on met ledit échantillon en contact avec une lectine et notamment la concanavaline-A.
- 7. Procédé pour détecter et/ou quantifier, dans un 25 l'activité toxique échantillon biologique, gliotoxique selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on incube ledit échantillon culture biologique dans un milieu de approprié astrocytes, notamment immortalisés, 30 contenant des permettant leur culture, et en ce qu'on détecte et/ou astrocytes morts et/ou les astrocytes quantifie les vivants.
- 8. Procédé selon la revendication 7, caractérisé 35 en ce que, pour détecter et/ou quantifier les astrocytes morts et/ou les astrocytes vivants, on utilise un dosage

colorimétrique mettant en oeuvre respectivement la calcéine-AM et l'éthidium homodimère.

- 9. Procédé selon la revendication 7, caractérisé en ce que, pour détecter et/ou quantifier les astrocytes
 5 vivants, on utilise un dosage colorimétrique mettant en oeuvre le bromure de méthyltétrazolium.
- 10. Procédé selon la revendication 7, caractérisé en ce que, pour détecter et/ou quantifier les astrocytes morts, on utilise un dosage radioactif mettant en oeuvre 10 le ⁵¹Cr.
- 11. Procédé pour détecter et/ou quantifier, dans un échantillon biologique, l'activité toxique d'un facteur gliotoxique selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on incube ledit échantillon dans 15 un milieu de culture approprié, contenant des astrocytes, notamment immortalisés, et permettant leur culture, et en ce qu'on détecte et/ou quantifie la fragmentation de l'ADN des astrocytes, et/ou la désorganisation cytomorphologique du des filaments intermédiaires et/ou réseau desdits filaments 20 dégradation des protéines intermédiaires.
- 12. Procédé pour détecter, dans un échantillon biologique, la présence d'un facteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on réalise une étape de capture dudit facteur par une lectine et notamment la concanavaline-A, et/ou une étape de détection basée sur l'affinité dudit facteur pour unedite lectine.
- 13. Composition diagnostique, et/ou thérapeutique, 30 et/ou prophylactique, caractérisée en ce qu'elle comprend tout ou une partie d'un facteur naturel, ou de synthèse ou obtenu par génie génétique, selon l'une quelconque des revendications 1 à 4.
- 14. Composition diagnostique, et/ou thérapeutique, 35 et/ou prophylactique, caractérisée en ce qu'elle comprend

un ligand, notamment anticorps, spécifique à un facteur selon l'une quelconque des revendications 1 à 4.

B

EIGURE 4

Figure 7

FIG 8A

FIG 8A

2716198

17K-

В

17 K —

FIGURE 14

FIGURE 15

.-110

•

INSTITUT NATIONAL

RAPPORT DE RECHERCHE PRELIMINAIRE

N° d'enregistrement mutional

de la

1

RPO FORM 15th that (POICL)

PROPRIETE INDUSTRIELLE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FA 495612 FR 9401946

atégorie	UMENTS CONSIDERES CO	III. CO coe de berrie	de la demande	
, A	ADVANCES IN EXPERIMENTAL BIOLOGY, vol.100, 1978, NEW YORK, pages 19 - 25 A.N. DAVISON ET AL. 'BIOMYELIN AND NEUROTOXIC FAOTH MULTIPLE SCLEROSIS PAOT 10 PAULTIPLE SCLEROSIS PAOT 10 PAULTIPLE SCLEROSIS PAOT 10 PAOT 1	L MEDICINE AND N.Y., US DSYNTHESIS OF ACTORS IN THE SERUM ATIENTS.' O, LANCASTER, PA TION OF AR PHAGOCYTES ONDON GB	1	DOMAINES TECHNIQUES RECHERCHES (Int.Cl.5) CO7K G01N A61K
particulió particulió autre doc particult ou arrido		7 schleement de la recherche 27 Octobre 1994 T: théorie ou principe à E: document de heveut b à la date de dépôt et de dépôt et de dépôt ou qu'à sine D: cité dans la demande L: cité pour d'autres rais	la base de l'inven énéficiant d'une é qui n'a été publié date postérieure.	DOSCH, A stice late antirioure qu'à cette date