Predicting Readmission of Diabetic Patients

Michael Gat

General Assembly Santa Monica, DSI Summer 2016

@michaelgat

http://github.com/michaelgat/DSI_Classwork/Capstone/DSI_Capstone_Final.pdf

Predicting Readmission of Diabetic Patients

- Problem statement
- Data
- Approach
 - Unique challenges
- Results
 - Good
 - Bad
 - Ugly
 - Top features
- Lessons learned
- Acknowledgements

The Problem

- Diabetes
 - Direct cause of ~9% of U.S. healthcare costs
 - Affects ~10% of the population
- Hospital Readmissions (patient has to come back)
 - < 30 day readmission rate is a key measure of quality of care</p>
 - A big driver of costs, over \$20b for Medicare program alone
 - There are significant penalties for high readmission rates
 - Often preventable!
- Develop model to predict patients most likely to be readmitted.

Where data science fits in

- Preventing re-admission of patients has been a major focus
- Predictive analytics and machine learning have already had a major impact
 - Public models like LACE exist and are used widely
 - Health care organizations are investing in custom models to address specific concerns:
 http://www.healthcareitnews.com/blog/predictive-analytics-drive-down-hospital-readmissions
- More and better data is becoming available
- More and better tools are being deployed
 - Text analysis
 - Radiology/imaging analysis
 - Better algorithms for structured data

The Dataset

- 100,000 records of patients with a diabetic condition
- 62 useful features
- Classified into readmit/non-readmit
- Concerns
 - Lack any information that could compromise confidentiality
 - Location
 - Physician notes
 - Most personal characteristics
 - Many features are extremely sparsely populated
- Limitation
 - No cost data, so will be difficult to determine what measures to focus on.

The Dataset: Key variables

< Show plots of key variable value distributions in Capstone_1A notebook >

Approach

- Consult research literature
- Clean/reorganize data
- Develop simple baseline model
 - Subset of features
 - Simple feature selection
 - Test different classifiers
- Improve model in stages
 - Optimize feature selection
 - Optimize classifier
 - Over/under sampling of data
- Finalize model
 - o Include all 62 available features.

Challenges: Sampling test data

- Over/under sampling to address an imbalanced dataset
- Chose under-sampling of '0' (non-readmit) records
- Started writing my own routines to do this.
- Found (naturally) there is a package out there that will do it for me.
- Used Random Under Sampling (The simplest approach)
- Was critical to developing the model.
- http://contrib.scikit-learn.org/imbalanced-lea rn/auto_examples/index.html

Challenges: Feature selection

- 62 available features (potentially more!)
 - Many of these are related or associated with a common condition
- Identified Chi Squared as a likely feature selection mechanism
 - Cited frequently in related studies
 - A test of feature independence
- Widely used in health care
- Supported in scikit-learn
- Handles sparse data very well
 - Also used in some NLP situations for this reason
- Achieved better results than other tests
- https://en.wikipedia.org/wiki/Chi-squared_test

Results: Phase 1

- Selected 6 features using Chi Squared
- Best result with Naive Bayes:

	Non-Readmit (0)	Readmit (1)
Non-Readmit (0)	64797	2999
Readmit (1)	7421	1108

• Precision: 12.99%

Specificity: 95.58%

AUC: 0.5428

This sucks! Maybe that river guide job in New Zealand wouldn't be a bad idea?

Results: Phase 2 - Better feature selection

- Best result with 8 features selected, using Chi Squared
- Best result with Naive Bayes:

	Non-Readmit (0)	Readmit (1)
Non-Readmit (0)	64285	3590
Readmit (1)	7254	1196

• Precision: 14.15%

• Specificity: 94.71%

• AUC: 0.5443

• This still sucks! Maybe I should find another project?

Results: Phase 3 - Add undersampling

- Best result with 8 features selected, using Chi Squared
- Best result with Naive Bayes:

	Non-Readmit (0)	Readmit (1)
Non-Readmit (0)	58383	9504
Readmit (1)	5988	2450

- Precision: 29.04%
- Specificity: 86.00%
- AUC: 0.5751
- Getting better. A doctor I know said it's almost useful.

Results: Phase 4 - Use full feature set

- Best result with 14 features selected, using Chi Squared
- Best result with Naive Bayes:

	Non-Readmit (0)	Readmit (1)
Non-Readmit (0)	54810	13035
Readmit (1)	5557	2923

• Precision: 34.47%

Specificity: 80.79%

• AUC: 0.5762

• Feeling OK. Approaches results I've seen in peer-reviewed research

Results: Top features

- Discharge Disposition: Anything but "home"
- 2. Days in hospital: More is worse
- 3. Number of lab procedures
- 4. Number of medications given
- 5. Number of outpatient visits in prior year
- 6. Number of emergency visits in prior year
- 7. Number of inpatient visits in prior year

- 8. Number of distinct diagnoses
- 9. Received metformin (Glucophage)
- 10. Received insulin
- 11. IDC-9 diagnosis: 428 (Heart Failure)
- 12. IDC-9 diagnosis: 401 (Hypertension)
- 13. IDC-9 diagnosis: 403 (Hypertensive CRF)
- 14. IDC-9 diagnosis: 786 (Symptoms involving respiratory system and other chest symptoms)

Lessons learned

- In the real world, getting results is hard; small improvements take a lot of work
- Feature selection is huge when dealing with complex data
- Dealing with unbalanced data in an interesting wrinkle
- Not everything visualizes well
- Don't reinvent the wheel; remember to use the basic tools we've all got

Acknowledgements

- Dataset: https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
- Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records http://www.hindawi.com/journals/bmri/2014/781670/
- Predictive risk modelling for early hospital readmission of patients with diabetes in India http://link.springer.com/article/10.1007/s13410-016-0511-8
- Big Data Solutions for Predicting Risk-of-Readmission for Congestive Heart Failure Patients
 https://cwds.uw.edu/sites/default/files/publications/Big%20Data%20Solutions%20for%20Predicting%20Risk-of-Readmission%20for%20Congestive%20Heart%20Failure.pdf
- @thepracticaldev (O'RLY parodies)
- Everybody in the class
- John, Pauline, Mike

Questions?

http://github.com/michaelgat/DSI_Classwork/DSI_Capstone_Final.pdf
@michaelgat