《最大价值》参考解答

陈雨昕

1 题目大意

有n个物品,每个物品有两个属性 a_i,b_i .

对于一个方案中,被摆在第 j 个位置(位置从 1 开始标号)的物品为 i,它对这个方案产生的价值贡献为 $a_i \cdot (j-1) + b_i$,一个方案的价值和为它所含的所有物品的贡献之和。

对于所有可能的 k $(1 \le k \le n)$,求在最优的选取以及摆放情况下能得到的方案价值和最大是多少。

2 数据范围

30% 的数据: $n \le 20$; 60% 的数据: $n \le 3000$;

100% 的数据: $n \le 300\,000, 0 \le a_i \le 10^6, 0 \le b_i \le 10^{12}$.

时间限制: 1s 空间限制: 128MB

3 解题过程

3.1 算法一

首先注意到对于选定的一个物品集合,按照 *a* 升序排列价值和最大。(排序不等式) 因此先把物品按照 *a* 升序排序。不难写出背包动态规划:

$$f_{i}(0) = 0, 0 \le i \le n$$

$$f_{i}(j) = \max\{f_{i-1}(j), f_{i-1}(j-1) + a_{i} \cdot (j-1) + b_{i}\}, 1 \le j \le i \le n$$

$$f_{i}(j) = -\infty, j > i$$

时空复杂度 $O(n^2)$, 空间复杂度 O(n), 期望得分 60 分。

3.2 算法二

观察解的形态,发现一条结论: 选定 k 个物品的答案,一定是在选定 k-1 个物品的答案基础上添加一个物品,而不会拿走。

这说明, $f_i(j)$ 当 $j < j_0(i)$ 时取 $f_{i-1}(j)$,当 $j \ge j_0(i)$ 时取 $f_{i-1}(j-1) + a_i \cdot (j-1) + b_i$. 其中, $j_0(i)$ 是最小的 j,使得 $f_{i-1}(j-1) + a_i \cdot (j-1) + b_i > f_{i-1}(j)$.

写成差分的形式,设 $g_i(j) = f_i(j) - f_i(j-1)$, 则 $g_{i-1}(j) < a_i \cdot (j-1) + b_i$.

考虑维护。那么当 $j < j_0(i)$ 时 $g_i(j) = g_{i-1}(j)$, 当 $j = j_0(i)$ 时 $g_i(j) = a_i \cdot (j-1) + b_i$, 当 $j > j_0(i)$ 时 $g_i(j) = g_{i-1}(j-1) + a_i$.

上述操作涉及在序列中插入一项、区间加一个定值和二分,可以使用平衡树来维护。时间复杂度 $O(n \log n)$, 空间复杂度 O(n), 可以通过。

3.3 结论的证明

设已经选好了集合 S, 再选择 $i \notin S$ 对总价值带来的增益为:

$$Q(S, i) = \sum_{j < i, j \in S} a_i + \sum_{j > i, j \in S} a_j + b_i$$

结论可以写为:

引理 **1.** 令 $S_0 = \emptyset$, $c_k \in \arg\max\{Q(S_{k-1}, i) \mid i \notin S_{k-1}\}$, $S_k = S_{k-1} \cup \{c_k\}$, 则 S_k 对应了恰选择了 k个时的最大价值。

证明. 以下把"对应了恰选择了k个时的最大价值的集合"叫做k-最大集。

对任意 $1 \le k \le n$, 对 $0 \le t \le k$ 施归纳证明一个子结论: S_t 是某个 k—最大集的子集。 当 t = 0 时, $S_0 = \emptyset$,子结论显然成立。

假设当 t = m - 1 时成立, 当 $t = m \le k$ 时:

任取一 k-最大集 $T \supset S_{m-1}$. 若 $S_m \subseteq T$, 子结论已经成立。以下假设 $S_m \nsubseteq T$.

方便起见,下记 $A = S_{m-1}$, $B = T \setminus A$, $i = c_m$.

- 1. $\min B < i$, 那么设 $j = \max B \cap (0, i)$. 我们知道 $Q(A, j) \le Q(A, i)$, $a_j \le a_i$. 下面考虑将 $B \setminus \{j\}$ 中的元素依次加入 A. 当加入 x 时,若 x > i, 则它对 Q(A, j) 与 Q(A, i) 的增量均 为 a_x ; 若 x < j, 则它对 Q(A, j) 的增量为 a_j , 对 Q(A, i) 的增量为 a_i ; 根据我们选取的方式,不存在 j < x < i 的情况。因此在加入的过程中,任意时刻均有 $Q(A, j) \le Q(A, i)$. 最后 $A = T \setminus \{j\}$, 因此可以在这时把 j 替换为 i, 即 $(T \setminus \{j\}) \cup \{i\} = S_m \cup (B \setminus \{j\})$ 也是 k—最大集,子结论成立。
- 2. $\min B > i$, 那么设 $j = \min B$. 我们知道 $Q(A, j) \le Q(A, i)$. 下面考虑将 $B \setminus \{j\}$ 中的元素依次加入 A. 当加入 x 时,若 x > j, 则它对 Q(A, j) 与 Q(A, i) 的增量均为 a_x ; 根据我们选

《最大价值》参考解答 陈雨昕

取的方式,不存在 x < j 的情况。因此在加入的过程中,任意时刻均有 $Q(A, j) \le Q(A, i)$. 最后 $A = T \setminus \{j\}$, 因此可以在这时把 j 替换为 i, 即 $(T \setminus \{j\}) \cup \{i\} = S_m \cup (B \setminus \{j\})$ 也是 k—最大集,子结论成立。

综上所述, 当 t = m 时子结论成立。

由上述归纳可得, S_k 是某个 k—最大集的子集。结合 $|S_k|=k$,可知 S_k 就是 k—最大集,结论证毕。

3