

Elementare Zahlentheorie

gelesen von Prof. Dr. Falko Lorenz

Zusammenfassung von Phil Steinhorst

Wintersemester 2014/2015

http://wwwmath.uni-muenster.de/u/karin.halupczok/elZTWiSe14/

Vorwort

Der vorliegende Text ist eine Zusammenfassung zur Vorlesung Elementare Zahlentheorie, gelesen von Prof. Dr. Falko Lorenz an der WWU Münster im Wintersemester 2014/2015. Der Inhalt entspricht weitestgehend dem Skript, welches auf der Vorlesungswebsite bereitsgestellt wird, jedoch wird auf Beweise weitestgehend verzichtet. Für die Korrektheit des Inhalts wird keinerlei Garantie übernommen. Bemerkungen, Korrekturen und Ergänzungen kann man folgenderweise loswerden:

- persönlich durch Überreichen von Notizen oder per E-Mail
- durch Abändern der entsprechenden TeX-Dateien und Versand per E-Mail an mich
- direktes Mitarbeiten via GitHub. Dieses Skript befindet sich im latex-wwu-Repository von Jannes Bantje:

https://github.com/JaMeZ-B/latex-wwu

Themenübersicht

Im Sommersemester 2013 wurden folgende Themen behandelt:

- Ein paar algebraische Grundlagen (Gruppen- und Ringtheorie, Ideale)
- Fundamentalsatz der Arithmetik (Satz von der eindeutigen Primfaktorzerlegung)
- Euklidischer Algorithmus, Kettenbruchdarstellung
- · Simultane Kongruenzen, Satz von Euler-Fermat, chinesischer Restsatz
- Restklassengruppen, Hauptsatz über endliche abelsche Gruppen
- Gaußscher Zahlenring ℤ[i]
- · Quadratische Reste, Quadratisches Reziprozitätsgesetz
- Fermat- und Mersenne-Primzahlen
- Zahlentheoretische Funktionen $\varphi \colon \mathbb{N} \longrightarrow \mathbb{C}$
- Satz von Lagrange ("Vier-Quadrate-Satz")

Literatur

- F. Ischebeck: Einladung zur Zahlentheorie
- R. Remmert, P. Ullrich: Elementare Zahlentheorie
- A. Scholz, B. Schöneberg: Einführung in die Zahlentheorie
- K. Halupczok: Skript zur Elementaren Zahlentheorie

Vorlesungswebsite

http://wwwmath.uni-muenster.de/u/karin.halupczok/elZTWiSe14/

Phil Steinhorst p.st@wwu.de

Inhaltsverzeichnis

1	Fundamentalsatz der elementaren Arithmetik	4
2	Der euklidische Algorithmus	10
3	Kongruenzrechnung	19
	3.1 Simultane Kongruenzen	22
4	Die prime Restklassengruppe $\operatorname{mod} m$	24
	4.1 Gruppentheoretische Vorbereitungen	24
	4.2 Restklassengruppen	25
5	Summen von zwei Quadraten in $\mathbb Z$ und der Gaußsche Zahlring $\mathbb Z[i]$	29
6	Quadratische Reste	31
ı	ndev	33

1 Fundamentalsatz der elementaren Arithmetik

Terminologie

14.10. Sei R ein kommutativer Ring mit $1 \neq 0$. R heißt **Integritätsring** bzw. **nullteilerfrei**, wenn gilt:

$$a \cdot b = 0 \quad \Rightarrow \quad a = 0 \text{ oder } b = 0.$$

Beispiel 1.1

- Z
- $\mathbb{Z}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Z}\} \subseteq \mathbb{R}$ $\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ $\mathbb{Z}[\sqrt{-5}] := \dots$
- K[X] für K Körper $\mathbb{Z}[X]$
- ullet Körper
- $\mathbb{C}\langle z \rangle := \{ \text{konvergente Potenzreihen } \sum_{n=0}^{\infty} a_n z^n \}$
- Nicht nullteilerfrei ist z.B. $\mathcal{C}[0,1]:=\{f\colon [0,1]\to\mathbb{R} \text{ stetig}\}$

Definition 1.1 (Teilbarkeit)

Seien $a, b \in R$. a heißt ein **Teiler** von b, wenn ein $q \in R$ existiert mit b = qa, und schreiben:

a|b

Ist R nullteilerfrei und $a \neq 0$, so ist q eindeutig bestimmt.

F1.1 (Triviale Teilbarkeitsregeln)

- (i) a|0,1|a,a|a
- (ii) $a|b,b|c \Rightarrow a|c$
- (iii) $a|b,a|c \Rightarrow a|b+c,a|b-c$
- (iv) $a_1|b_1, a_2|b_2 \implies a_1a_2|b_1b_2$
- (v) $ac|bc \Rightarrow a|b$, falls $c \neq 0$ und R nullteilerfrei.

Definition 1.2 (Einheit, assoziiert)

- (i) $e \in R$ heißt eine **Einheit** in R, falls e|1 gilt, d.h. falls ein $f \in R$ existiert mit ef = 1. f ist eindeutig bestimmt. Wir setzen $e^{-1} := f$ und schreiben auch $\frac{1}{e}$ für e^{-1} . Wir bezeichnen die **Einheitengruppe** von R mit $R^{\times} := \{x \in R : x \text{ ist Einheit in } R\}$.
- (ii) $a \in R$ heißt **assoziiert** zu $b \in R$, falls a|b und b|a gilt. Schreibe: a = b.

Beispiel 1.2

1) Sei K ein Körper, dann ist $K^\times = K \setminus \{0\}$. $\mathbb{Z}^\times = \{1, -1\}$, $K[X]^\times = K^\times$, $\mathcal{C}[0, 1]^\times = \{f \in \mathcal{C}[0, 1] : f(x) \neq 0 \text{ für alle } x \in [0, 1]\}$, $\mathbb{Z}[\sqrt{2}]^\times = \{\pm (1 + \sqrt{2})^k : k \in \mathbb{Z}\}$ $\mathbb{Z}[X]^\times = \{1, -1\}$ $\mathbb{C}\langle z \rangle^\times = \{\sum a_n z^n \in \mathbb{C}\langle z \rangle : a_0 \neq 0\}$

2) $e \in R^{\times} \Leftrightarrow e|a \text{ für jedes } a \in R.$

F1.2

Sei R ein Integritätsring, $a, b \in R$ und $b \neq 0$. Dann gilt:

$$a \stackrel{.}{=} b \quad \Leftrightarrow \quad \exists e \in R^{\times} \text{ mit } b = ea$$

Beweis

"
$$\Leftarrow$$
": $a|b, e^{-1}b = a, b|a$

" \Rightarrow ": Da a|b und b|a, existieren $e,f\in R$, sodass b=ea und a=fb. $\Rightarrow b=efb\Rightarrow ef=1$, da $b\neq 0$ und R nullteilerfrei

Ab jetzt ist, wenn nichts anderes gesagt, ${\it R}$ ein Integritätsring!

Definition 1.3 (unzerlegbar, irreduzibel, zusammengesetzt)

Sei $a \in R \setminus R^{\times}$. a heißt unzerlegbar oder irreduzibel in R, wenn gilt:

$$a = bc \text{ in } R \implies b \in R^{\times} \text{ oder } c \in R^{\times}.$$

Andernfalls heißt a zerlegbar, zusammengesetzt oder reduzibel.

Bemerkung

a unzerlegbar \Leftrightarrow jeder Teiler von a ist Einheit oder assoziiert zu a a zerlegbar \Leftrightarrow a hat echten Teiler, d.h. einen Teiler, der weder eine Einheit ist noch assoziiert zu a

Definition 1.3 (Primzahl)

Ein $p \in \mathbb{Z}$ heißt **Primzahl**, wenn $p \in \mathbb{N}$ und p unzerlegbar in \mathbb{Z} . Wir beziechnen mit \mathbb{P} die Menge der Primzahlen von \mathbb{Z} . a unzerlegbar in $\mathbb{Z} \Leftrightarrow a = p$ oder a = -p mit $p \in \mathbb{P}$.

Bemerkung

 $a \in \mathbb{Z}$ sei zerlegbar, $a \neq 0$. Dann gibt es eine Primzahl p mit p|a und $p \leq \sqrt{|a|}$.

Definition 1.4 (Zerlegung in unzerlegbare Faktoren)

Wir sagen, $a \in R$ besitzt in R eine **Zerlegung in unzerlegbare Faktoren**, wenn

$$a = ep_1p_2 \dots p_r \text{ mit } e \in R^{\times} \text{ und } p_1, \dots, p_r \text{ unzerlegbar}$$
 (1.1)

(1.1) heißt eine Zerlegung von a in unzerlegbare Faktoren. Auch r=0 ist erlaubt.

F1.3

In $\mathbb Z$ besitzt jedes $a\neq 0$ eine Zerlegung in unzerlegbare Faktoren.

F1.3

Jede natürliche Zahl a>1 besitzt eine Zerlegung $a=p_1p_2\dots p_r$ mit Primzahlen p_1,\dots,p_r und $r\geq 1$.

Bemerkung

1) Die Aussage F1.3 gilt auch für die Beispiele zu Beginn, mit Ausnahme von $\mathcal{C}[0,1].$

- 2) Sei R ein Integritätsring, der die **Teilbarkeitsbedingung für Hauptideale** erfüllt, so besitzt jedes $a \neq 0$ aus R eine Zerlegung in unzerlegbare Faktoren.
- 3) Primzahlen sind die multiplikativen Bausteine (Atome) von \mathbb{N} .
- 4) Im Beispiel $\mathbb{C}\langle z\rangle$ von oben gibt es (bis auf Assoziiertheit) nur das einzige unzerlegbare Element z. Dieses ist ein **Primelement** (der Begriff folgt weiter unten).

Satz 1.1 (Existenz unendlich vieler Primzahlen)

Es gibt unendlich viele Primzahlen.

Bemerkungen

Es sei p_1, p_2, \ldots die aufsteigend sortierte Folge der Primzahlen.

- 1) $a_n := p_1 p_2 \dots p_n + 1$ ist Primzahl für $n \le 5$, aber z.B. nicht für n = 6. Unklar ist, ob unendlich viele a_n Primzahlen oder keine Primzahlen sind.
- 2) Für $x \in \mathbb{R}_{>0}$ definieren wir:

$$\pi(x) := \#\{p \in \mathbb{P} : p \le x\}$$

Primzahlsatz (Gauß, Legendre)

$$\pi(x) \sim \frac{x}{\log x}, \text{ d.h. } \lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$$

$$\pi(x) \sim \int_2^x \frac{1}{\log t} dt =: \operatorname{li}(x)$$

$$\pi(x) > \frac{x}{\log x} \text{ für alle } x \geq 17$$

$$\pi(n) > \frac{n}{\log n} \text{ für alle } n \in \mathbb{N}, n \geq 11$$

Definition 1.5 (eindeutige Zerlegung)

Sei R ein kommutativer Ring mit $1 \neq 0$. Wir sagen, $a \in R \setminus \{0\}$ hat eine **eindeutige Zerlegung in unzerlegbare** Faktoren, wenn a eine Zerlegung

$$a = ep_1p_2 \dots p_r$$

in unzerlegbare Faktoren besitzt und eine solche im folgendem Sinne eindeutig ist: Ist auch

$$a = e'p_1'p_2' \dots p_{r'}'$$

eine solche Zerlegung, so gilt r=r' und nach Umnummerierung $p_i' \stackrel{.}{=} p_i$ für alle $1 \leq i \leq r$.

F1.4

In dem Integritätsring R besitze jedes Element $a \neq 0$ eine Zerlegung in unzerlegbare Faktoren. Dann sind äquivalent:

- (i) Jedes $a \neq 0$ aus R hat eindeutige Zerlegung in unzerlegbare Faktoren.
- (ii) Ist p unzerlegbar, so gilt: $p|ab \Rightarrow p|a$ oder p|b.

Definition 1.6 (Primelement)

Sei R ein kommutativer Ring mit $1 \neq 0$. Ein $p \in R \setminus R^{\times}$ heißt **Primelement** von R, wenn für alle $a, b \in R$ gilt:

$$p|ab \Leftrightarrow p|a \text{ oder } p|b$$
 (1.2)

Bemerkung

- 1) 0 ist Primelement in $R \Leftrightarrow R$ ist Integritätsring
- 2) In einem Integritätsring R gilt: Jedes Primelement $p \neq 0$ ist unzerlegbar.

Lemma 1.1

Seien $a,b\in\mathbb{N}$. Sei $m=\mathrm{kgV}(a,b)\in\mathbb{N}$. Dann gilt:

$$a|c \text{ und } b|c \Rightarrow m|c$$

m ist also auch minimal bzgl. der Teilbarkeitsrelation |.

F1.5 (Satz von Euklid)

17.10. Jede Primzahl p ist ein Primelement von \mathbb{Z} , d.h. es gilt stets (1.2). (Das gleiche gilt für -p, also für jedes unzerlegbare Element von \mathbb{Z} .)

Fundamentalsatz der elementaren Arithmetik

In \mathbb{Z} hat jedes $a \neq 0$ eine eindeutige Zerlegung in unzerlegbare Faktoren.

Bemerkung

Eindeutige Zerlegung in unzerlegbare Faktoren hat man zum Beispiel auch für die Ringe $\mathbb{Z}[\sqrt{2}], \mathbb{Z}[i], K[X]$ und Kfür K Körper, $\mathbb{Z}[X]$ und $\mathbb{C}\langle z\rangle$, nicht aber für $\mathbb{Z}[\sqrt{-5}]$:

$$3 \cdot 3 = 9 = (2 + \sqrt{-5})(2 - \sqrt{-5})$$

Dies sind zwei wesentlich verschiedene Zerlegungen in unzerlegbare Faktoren.

Definition 1.7 (Exponent)

Sei p eine Primzahl und $a \in \mathbb{Z} \setminus \{0\}$. Dann heißt

$$w_p(a) := \max\{k \in \mathbb{N}_0 : p^k | a\}$$

der **Exponent** von p in a. Wir setzen $w_p(0) := \infty$.

F1.6 (Eigenschaften der Exponentfunktion)

Die Funktion $w_p \colon \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ hat folgende Eigenschaften:

- (i) $w_p(a+b) \ge \min(w_p(a), w_p(b))$ und Gleichheit, falls $w_p(a) \ne w_p(b)$.
- (ii) $w_p(ab) = w_p(a) + w_p(b)$

Satz 1.2 (Fundamentalsatz der elementaren Arithmetik)

Für jedes $a \in \mathbb{Z} \setminus \{0\}$ gilt $w_p(a) > 0$ nur für endlich viele p. Es ist

$$a = \operatorname{sgn}(a) \cdot \prod_{p} p^{w_p(a)} \tag{1.3}$$

Bemerkung

1) w_p lässt sich eindeutig zu einer Abbildung $w_p \colon \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ fortsetzen, sodass (ii) für alle $a,b \in \mathbb{Q}$ gilt. Es gilt dann auch (i). Für $a \in \mathbb{Q} \setminus \{0\}$ ist $w_p(a) \neq 0$ nur für endlich viele p, und die Formel (1.3) gilt entsprechend. Ferner gilt: $a \in \mathbb{Z} \Leftrightarrow w_p(a) \geq 0$ für alle p.

[2]

2) Sei

$$\mathbb{N}_0^{(\mathbb{P})} := \{(e_p)_{p \in \mathbb{P}} : e_p \in \mathbb{N}_0, e_p = 0 \text{ für fast alle } p\}.$$

Nach Satz 1.2 sind (\mathbb{N},\cdot) und $(\mathbb{N}_0^{(\mathbb{P})},+)$ zwei zueinander isomorphe Halbgruppen. Nach Bemerkung 1) sind \mathbb{Q}^\times und $\{1,-1\}\times\mathbb{Z}^{(\mathbb{P})}$ sogar zwei zueinander isomorphe Gruppen.

Definition 1.8 (faktorieller Ring, Vertretersystem für Primelemente)

Ein Integritätsring R heißt **faktoriell**, wenn jedes $a \in R \setminus \{0\}$ eine eindeutige Zerlegung in unzerlegbare Faktoren hat. Man spricht dann auch von eindeutiger Primfaktorzerlegung in R.

P heißt Vertretersystem für die Primelemente $\neq 0$ von R, wenn:

- (1) Zu jedem Primelement $q \neq 0$ von R gibt es ein $p \in P$ mit $q \triangleq p$.
- (2) Für $p,p'\in P$ mit $p\triangleq p'$ gilt p=p', d.h. p in (1) ist eindeutig bestimmt durch q.

 $\text{Für } R = \mathbb{Z} \text{ nehme man stets } P = \mathbb{P}. \text{ Für } K \text{ K\"orper und } R = K[X] \text{ nimmt man } P = \{p \in K[X] : p \text{ irreduzibel und normiert}\}.$

F1.7

Sei R faktoriell und P ein Vertretersystem für Primelemente. Es gibt zu jedem $p \in P$ eine Funktion $w_p \colon R \to \mathbb{N}_0 \cup \{\infty\}$ mit den Eigenschaften (i) und (ii) aus F1.6, sodass gilt:

- a) Für jedes $a \in R \setminus \{0\}$ ist $w_p(a) > 0$ nur für endlich viele $p \in P$.
- b) Für jedes $a \in R \setminus \{0\}$ gilt

$$a = e \prod_{p \in P} p^{w_p(a)}$$

mit eindeutigem $e \in \mathbb{R}^{\times}$.

Definition 1.9 (ggT und kgV)

Sei R ein kommutativer Ring mit $1 \neq 0$. Gegeben $a_1, \ldots, a_n \in R$.

- a) Ein $d \in R$ heißt ein **größter gemeinsamer Teiler** (ggT) von a_1, \ldots, a_n , falls:
 - 1. $d|a_i$ für alle i

- 2. $t|a_i$ für alle $i \Rightarrow t|d$
- b) Ein $m \in R$ heißt ein kleinstes gemeinsames Vielfaches (kgV) von a_1, \ldots, a_n , falls:
 - 1. $a_i|m$ für alle i

2. $a_i|c$ für alle $i \Rightarrow m|c$

Bemerkung

- 1) $d, d' \text{ ggT von } a_1, \dots, a_n \Rightarrow d = d' \text{ und } m, m' \text{ kgV von } a_1, \dots, a_n \Rightarrow m = m'$
- 2) Im Allgemeinen ist die Existenz eines ggT und kgV nicht gesichert. In faktoriellen Ringen existieren sie aber immer, siehe dazu folgende Feststellung.

F1.8

 $^{21.10.}$ $\,$ Sei R faktoriell, P wie oben. Es gelten: $_{\left[3\right]}$

(i) $a|b \Leftrightarrow w_p(a) \leq w_p(b)$ für alle $p \in P$.

(ii) Für $a_1, \ldots, a_n \in R$ setze:

$$d := \prod_{p \in P} p^{\min(w_p(a_1), \dots, w_p(a_n))} =: (a_1, \dots, a_n)$$

$$m := \prod_{p \in P} p^{\max(w_p(a_1), \dots, w_p(a_n))} =: [a_1, \dots, a_n]$$

Hierbei setze $p^{\infty}=0$. Dann ist d ein ggT von a_1,\dots,a_n und m ein kgV von a_1,\dots,a_n .

- (iii) $a,b\in R$. Dann ist $a,b = [a,b]\cdot (a,b)$ und $m = \frac{ab}{(a,b)}$, wenn a,b nicht beide 0.
- (iv) a_1,\ldots,a_n paarweise teilerfremd, d.h. $(a_i,a_j)=1$ für $i\neq j\Leftrightarrow [a_1,\ldots,a_n]\simeq a_1a_2\ldots a_n$.
- (v) $(a_i, b) = 1$ für $1 \le i \le n \Rightarrow (a_1 a_2 \dots a_n, b) = 1$
- (vi) $(a_1 f, \dots, a_n f) \simeq (a_1, \dots, a_n) f, [a_1 f, \dots, a_n f] \simeq [a_1, \dots, a_n] f$
- (vii) $((a_1,\ldots,a_n),a_{n+1})=(a_1,\ldots,a_n,a_{n+1}),[[a_1,\ldots,a_n],a_{n+1}]=[a_1,\ldots,a_n,a_{n+1}]$

Bemerkung (Verallgemeinerung von (iii)

Seien $a_1,\ldots,a_n\in R$ gegeben. Wähle q_1,\ldots,q_n und c aus R mit

$$a_1q_1 = a_2q_2 = \ldots = a_nq_n = c$$

(z.B.
$$c=a_1a_2\dots a_n, q_i=\prod\limits_{j
eq i}a_j$$
). Dann gilt

$$c \triangleq (a_1, \dots, a_n)[q_1, \dots, q_n]$$

F1.9

Sei $n \in \mathbb{N}, a \in \mathbb{Z}$. Ist $X^n = a$ lösbar in \mathbb{Q} , so ist $X^n = a$ auch lösbar in \mathbb{Z} . Anders ausgedrückt: Ist $a \in \mathbb{Z}$ keine n-te Potenz in \mathbb{Z} , so ist a auch keine n-te Potenz in \mathbb{Q} .

Anwendung

 $\sqrt{2}$ ist irrational, denn 2 ist kein Quadrat in $\mathbb Z$ aus Größengründen, also ist 2 nach F1.9 auch kein Quadrat in $\mathbb Q$, d.h. $\sqrt{2} \in \mathbb Q$.

Korollar

Sei $n \in \mathbb{N}$, $a \in \mathbb{N}$. Dann sind äquivalent:

- (i) a ist n-te Potenz in \mathbb{Z} .
- (ii) $n|w_p(a)$ für alle p.
- (iii) a ist n-te Potenz in \mathbb{Q} .

F1.10 (Verallgemeinerung von F1.9)

Gegeben sei ein normiertes Polynom $f(X) \in \mathbb{Z}[X]$. Ist dann b eine Nullstelle von f mit $b \in \mathbb{Q}$, so ist notwendigerweise $b \in \mathbb{Z}$ und außerdem ist b ein Teiler des Absolutkoeffizienten a_0 von f.

2 Der euklidische Algorithmus

Sei R kommutativer Ring mit $1 \neq 0$. Für beliebiges $a \in R$ betrachte man die Menge der Vielfachen von $a \in R$, also

$$Ra := xa : x \in R = b \in R : a|b$$

Die Teilmenge I=Ra hat folgende Eigenschaften:

- (i) $0 \in I$
- (ii) $b_1, b_2 \in I \Rightarrow b_1 + b_2 \in I$
- (iii) $c \in R, b \in I \Rightarrow cb \in I$

Definition 2.1 (Ideal, Hauptideal)

Eine Teilmenge I von R heißt ein **Ideal** in R, falls die Eigenschaften (i), (ii), (iii) erfüllt sind. I heißt **Hauptideal**, wenn es ein $a \in R$ gibt mit I = Ra. Wir verwenden die Bezeichnung

$$(a) := Ra$$

und nennen (a) das von $a \in R$ erzeugte Hauptideal.

Bemerkung

- (1) $(b) \subseteq (a) \Leftrightarrow a|b$
- (2) $a = b \Leftrightarrow (a) = (b)$
- (3) c ist gemeinsames Vielfaches von $a_1, \ldots, a_n \Leftrightarrow (c) \subseteq (a_1) \cap \ldots \cap (a_n)$
- (4) m ist ein kgV von $a_1, \ldots, a_n \Leftrightarrow (a_1) \cap \ldots \cap (a_n) = (m)$
- (5) d ist ein gemeinsamer Teiler von $a_1, \ldots, a_n \Leftrightarrow (a_i) \subseteq (d)$ für $1 \leq i \leq n$
- (6) d ist ein gemeinsamer Teiler von $a_1, \ldots, a_n \Leftrightarrow Ra_1 + Ra_2 + \ldots + Ra_n \subseteq (d)$
- (7) d ist ein ggT von $a_1, \ldots, a_n \Leftrightarrow (d)$ ist das kleinste Hauptideal mit $Ra_1 + \ldots Ra_n \subseteq (d)$.

Ein ggT lässt sich also idealtheoretisch nicht so einfach charakterisieren wie oben ein kgV durch (4). Am schönsten wäre es, wenn $Ra_1 + \ldots + Ra_n$ ein Hauptideal wäre, dann würde (7) übergehen in:

$$d$$
 ist ein ggT von $a_1, \ldots, a_n \Leftrightarrow Ra_1 + Ra_2 + \ldots + Ra_n = (d)$

Definition 2.2 (Hauptidealring)

Ein Integritätsring R heißt ein ${\bf Hauptidealring}$, wenn jedes Ideal I von R ein ${\bf Hauptideal}$ ist.

Bezeichnung

Für Elemente a_1,\ldots,a_n in einem beliebigen kommutativen Ring R mit $1 \neq 0$ setze

$$(a_1,\ldots,a_n):=Ra_1+\ldots+Ra_n$$

Man nennt (a_1, \ldots, a_n) das von a_1, \ldots, a_n erzeugte Ideal in R.

[4]

F2.1 (Satz vom größten gemeinsamen Teiler)

Sei R ein Hauptidealring. Dann gilt: Zu jedem System a_1, \ldots, a_n von Elementen aus R existiert ein ggT d von a_1, \ldots, a_n und jedes solche d besitzt eine Darstellung der Gestalt

$$d = x_1 a_1 + \ldots + x_n a_n \quad \text{mit } x_i \in R \tag{2.1}$$

Wir sagen, in R gelte der Satz vom größten gemeinsamen Teiler.

Bemerkung

Sei R ein beliebiger Integritätsring. Ist d ein gemeinsamer Teiler von a_1, \ldots, a_n aus R und gibt es eine Darstellung der Form (2.1), so ist d ein ggT von a_1, \ldots, a_n .

Satz 2.1

 \mathbb{Z} ist ein Hauptidealring.

Definition (Gaußklammer)

Für $x \in \mathbb{R}$ setze

$$[x] = \max\{g \in \mathbb{Z} : g \le x\} \in \mathbb{Z}$$

- [x] ist charakterisiert durch folgende zwei Eigenschaften:
 - (1) $[x] \in \mathbb{Z}$
 - (2) $[x] \le x < [x] + 1$

F2.2 (Division mit Rest in \mathbb{Z})

Gegeben $a,b\in\mathbb{Z}$, $a\neq 0$. Dann gibt es eine Darstellung

$$b=qa+r \quad \text{mit } 0 \leq r < |a| \text{ und } q,r \in \mathbb{Z} \tag{2.2}$$

Bemerkung

- 1) Die Darstellung (2.2) ist eindeutig.
- 2) Es gibt eine Darstellung

$$b = qa + r \quad \text{mit } |r| < |a|; q, r \in \mathbb{Z},$$

doch diese ist nicht mehr eindeutig, z.B. $27 = 4 \cdot 6 + 3 = 5 \cdot 6 - 3$.

3) Es gibt eine Darstellung

$$b=qa+r \quad \text{mit } -\frac{|a|}{2} < r \leq \frac{|a|}{2}; q,r \in \mathbb{Z},$$

und diese ist eindeutig.

4) Es gibt eine Darstellung

$$b=qa+r \quad \text{mit } |r| \leq \frac{|a|}{2}; q,r \in \mathbb{Z},$$

doch diese ist nicht eindeutig, falls \boldsymbol{a} gerade.

Definition 2.3 (euklidischer Ring)

Ein Integritätsring R heißt ein **euklidischer Ring**, falls eine Funktion $\nu \colon R \to \mathbb{N}_0$ mit $\nu(0) = 0$ existiert, sodass gilt: Zu $a,b \in R$ mit $a \neq 0$ existieren $q,r \in R$ mit

$$b=qa+r \text{ und } \nu(r)=\nu(a)$$

Beispiele

- (1) $R = \mathbb{Z} \text{ mit } \nu(a) = |a|.$
- (2) R = K[X], K Körper, mit $\nu(g) = \deg(g) + 1$ für $g \neq 0$, $\nu(0) = 0$.
- (3) $R = \mathbb{Z}[i] \text{ mit } \nu(z) = N(z) = z\overline{z} = |z|^2$.

F 2 3

Jeder euklidische Ring ist ein Hauptidealring.

F2.4

Jeder Hauptidealring ist faktoriell.

Im Folgenden sei R ein euklidischer Ring mit euklidischer Normfunktion ν . Allgemein gilt folgende elementare Umformung:

$$(a_1, a_2, \dots, a_n) = (a_1, a_2 - y_2 a_1, \dots, a_n - y_n a_1)$$
 für bel. $y_i \in R$ (2.3)

Euklidischer Algorithmus

Gegeben $a_1, \ldots, a_n \in R$. Wir wollen $d \in R$ bestimmen mit

$$(a_1,\ldots,a_n)=(d)$$

Sind alle $a_i=0$, so ist d=0 und wir sind fertig. Sei daher ohne Einschränkung

$$a_1 \neq 0$$
 und $\nu(a_1) \leq \nu(a_i)$, falls $a_i \neq 0$

Sei $a_i = q_i a_1 + r_i$ mit $\nu(r_i) < \nu(a_1)$ für $i \geq 2$. Dann ist

$$(a_1,\ldots,a_n) \stackrel{\text{(2.3)}}{=} (a_1,r_2,\ldots,r_n)$$

Fortsetzung des Verfahrens liefert

$$(d, 0, 0, \dots, 0) = (d)$$

Beispiel

Falls $r_1 = 0$, dann Schluss. Sonst weiter:

Beispiel im Fall n=2

 $\mathop{\rm Sei}_{[5]} \ \ \mathrm{Sei}\ a,b \in R \setminus \{0\}.$

$$\begin{split} b &= q_0 a + r_1 & \nu(r_1) < \nu(a) \\ a &= q_1 r_1 + r_2 & \nu(r_2) < \nu(r_1) \\ r_1 &= q_2 r_2 + r_3 & \nu(r_3) < \nu(r_2) \\ \vdots & & \\ r_{n-2} &= q_{n-1} r_{n-1} + r_n & \nu(r_n) < \nu(r_{n-1}) \\ r_{n-1} &= q_n r_n + 0 \end{split}$$

Also:

$$(a,b) = (a,r_1) = (r_1,r_2) = \ldots = (r_{n-1},r_n) = (r_n)$$

F2.5

 r_n ist ein größter gemeinsamer Teiler von a und b. Es ist

$$r_n = xa + yb \text{ mit } x, y \in R,$$

wobei x und y aus obiger Rechnung rekursiv bestimmbar sind.

Bemerkung

- 1) Von neuem erhalten wir für jeden euklidischen Ring also den Satz vom größten gemeinsamen Teiler. (Satz 2.1)
- 2) Sei $R=\mathbb{Z}$. Verlangen wir $0\leq r_i$ in obiger Rechnung, so sind q_0,q_1,\ldots,q_n sowie die r_1,\ldots,r_n eindeutig bestimmt.

Beispiel

Sei a = 84, b = 133.

$$133 = 1 \cdot 84 + 49$$

$$84 = 1 \cdot 49 + 35$$

$$49 = 1 \cdot 35 + 14$$

$$35 = 2 \cdot 14 + 7$$

$$14 = 2 \cdot 7 \Rightarrow n = 4, r_4 = 7$$

Also ist (133, 84) = (7).

Wir können den euklidischen Algorithmus für a,b auch wie folgt aufschreiben:

$$\begin{array}{ll} \frac{b}{a} = q_0 + \frac{r_1}{a} & q_0 = \left[\frac{b}{a}\right] & 0 < \frac{r_1}{a} < 1, \text{ falls } r_1 \neq 0 \\ \frac{a}{r_1} = q_1 + \frac{r_2}{r_1} & q_1 = \left[\frac{a}{r_1}\right] & \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{r_{n-2}}{r_{n-1}} = q_{n-1} + \frac{r_n}{r_{n-1}} & \vdots & \vdots & \vdots \\ \frac{r_{n-1}}{r_n} = q_n & & \vdots & \vdots & \vdots \\ \end{array}$$

Zusammengefasst erhalten wir die **Kettenbruchentwicklung** von $\frac{b}{a}$:

Statt einer rationalen Zahl sei jetzt α allgemeiner eine beliebige reelle Zahl.

Es ist $\alpha = [\alpha] + \varepsilon$ mit $0 \le \varepsilon < 1$. Falls $\alpha \notin \mathbb{Z}$, d.h. $\varepsilon > 0$, setze $q_0 := [\alpha]$ und $\rho_1 := \frac{1}{\varepsilon}$. Dann:

$$\begin{split} \alpha &= q_0 + \frac{1}{\rho_1} & \text{mit } \rho_1 > 1. & \text{Falls } \rho_1 \notin \mathbb{Z}, \text{ so setze } [\rho_1] =: q_1 \\ \rho_1 &= q_1 + \frac{1}{\rho_2} & \text{mit } \rho_2 > 1. & \text{usw.} \\ &\vdots \\ \rho_k &= q_k + \frac{1}{\rho_{k+1}} & \text{mit } \rho_{k+1} > 1. \end{split}$$

Abbrechen, wenn $\rho_{n+1} \in \mathbb{Z}$, sonst weiter. Jedenfalls:

$$\alpha = \frac{b}{a} = q_0 + \cfrac{1}{q_1 + \cfrac{1}{\qquad \qquad \ddots}}$$

$$+ \cfrac{1}{q_k + \cfrac{1}{\rho_{k+1}}}$$

Definition 2.4 (Kettenbruch, k-ter Rest)

1) q_0, q_1, \ldots, q_n seien reelle Zahlen mit $q_1, \ldots, q_n > 0$. Unter dem **endlichen Kettenbruch**

$$[q_0; q_1, \dots, q_n] \tag{2.4}$$

mit den Teilquotienten q_i verstehen wir sowohl das (n+1)-Tupel (q_0, q_1, \dots, q_n) , als auch seinen wie folgt definierten Wert:

$$[q_0; q_1, \dots, q_n] = q_0 + \frac{1}{q_1 + \frac{1}{\cdots}} + \frac{1}{q_n}$$

$$(2.5)$$

Für $0 \le k \le n$ nennen wir den Kettenbruch

$$\rho_k := [q_k; q_{k+1}, \dots, q_n] \tag{2.6}$$

den k-ten Rest des Kettenbruchs (2.4). Für den Wert (2.4) des Kettenbruchs (2.4) gilt:

$$[q_0; q_1, \dots, q_n] = [q_0; q_1, \dots, q_{k-1}, \rho_k] \text{ für } 0 \le k \le n$$
 (2.7)

Man kann den Wert (2.5) des Kettenbruchs (2.4) durch (2.7) mit (2.6) rekursiv definieren: Es ist $[q_0]=q_0,[q_0;q_1]=q_0+\frac{1}{q_1}$, also:

$$[q_0; q_1, \dots, q_n] = [q_0; \rho_1] = q_0 + \frac{1}{\rho_1} \text{ für } n \ge 1$$

2) Gegeben sei eine Folge $(q_k)_{k\geq 0}$ in $\mathbb R$ mit $q_k>0$ für $k\geq 1$. Unter dem **unendlichen Kettenbruch**

$$[q_0; q_1, q_2, \ldots]$$
 (2.8)

verstehen wir die Folge der

$$[q_0; q_1, \dots, q_n]$$
 $n = 0, 1, 2, \dots$

Falls diese Folge in $\mathbb R$ konvergiert, so bezeichnen wir auch deren Limes mit $[q_0;q_1,q_2,\ldots]$. Der unendliche Kettenbruch

$$\rho_k := [q_k; q_{k+1}, \ldots] \qquad k = 0, 1, 2, \ldots$$
(2.9)

heißt der k-te Rest von (2.8). Formal gilt:

$$[q_0; q_1, q_2, \ldots] = [q_0; q_1, \ldots, q_{k-1}, \rho_k]$$
 (2.10)

Später werden wir sehen, dass (2.10) auch für die Werte der entsprechenden Kettenbrüche gilt, wenn (2.9) konvergiert.

Definition 2.5 (Näherungsbruch)

Jedem endlichen Kettenbruch $[q_0;q_1,\ldots,q_k]$ ordnen wir rekursiv ein Paar $\binom{c}{d}\in\mathbb{R}\times\mathbb{R}_{>0}$ reeller Zahlen zu mit

$$[q_0; q_1, \dots, q_k] = \frac{c}{d} \tag{2.11}$$

k=0: Für $[q_0]$ sei ${c\choose d}={q_0\choose 1}$. Es gilt dann in der Tat $[q_0]=q_0={q_0\over 1}$.

 $k \geq 1$: Zuerst Motivation (Heuristik):

$$[q_0; q_1, \dots, q_k] = [q_0; \rho_1] = q_0 + \frac{1}{\rho_1}$$

mit $ho_1=[q_1;q_2,\ldots,q_k]$. Gehöre ${c'\choose d'}$ zu ho_1 . Dann gilt

$$[q_0; q_1, \dots, q_k] = q_0 + \frac{d'}{c'} = \frac{q_0 c' + d'}{c'}$$

Wir ordnen nun also $[q_0;q_1,\ldots,q_k]$ das Tupel

$$\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} q_0 c' + d' \\ c' \end{pmatrix} = \underbrace{\begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix}}_{=:M_1} \begin{pmatrix} c' \\ d' \end{pmatrix}$$

zu. Dann gilt (2.11). Sei jetzt

$$[q_0; q_1, \ldots]$$
 (2.12)

ein endlicher oder unendlicher Kettenbruch. Das dem k-ten Abschnitt

$$[q_0; q_1, \dots, q_k]$$
 (2.13)

von (2.12) zugeordnete 2-Tupel

$$\begin{pmatrix} c_k \\ d_k \end{pmatrix}$$

heißt der k-te Näherungsbruch von (2.12). Auch $\frac{c_k}{d_k}$ heißt k-ter Näherungsbruch von (2.12). Ist (2.12) der endliche Kettenbruch $[q_0,q_1,\ldots,q_n]$, so ist der n-te Näherungsbruch $\frac{c_n}{d_n}$ gleich dem Wert dieses Kettenbruchs. Allgemein ist $\frac{c_k}{d_k}$ der Wert des Kettenbruchs (2.13). Aus formalen Gründen definieren wir noch

$$\begin{pmatrix} c_{-1} \\ d_{-1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} c_{-2} \\ d_{-2} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

F2.6 (Rekursionsformeln für Näherungsbrüche)

Mit den Bezeichnungen wie oben gilt:

$$c_k = q_k c_{k-1} + c_{k-1}$$

$$d_k = q_k d_{k-1} + d_{k-2}$$
(2.14)

Dies schreiben wir auch in Matrizenform:

$$\begin{pmatrix} c_k \\ d_k \end{pmatrix} = \underbrace{\begin{pmatrix} c_{k-1} & c_{k-2} \\ d_{k-1} & d_{k-2} \end{pmatrix}}_{-:M} \begin{pmatrix} q_k \\ 1 \end{pmatrix}$$

Bemerkung

 $d_k > 0$ für $k \ge 0$ (vgl. Definition 2.5, oder auch (2.14)).

F2.7

31.10. Mit den obigen Bezeichnungen gilt:

(i)
$$M_{k+1} = M_k \cdot \frac{q_k}{1} = \frac{1}{0}$$
, also:

(ii)
$$M_{k+1} = \begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \dots \begin{pmatrix} q_k & 1 \\ 1 & 0 \end{pmatrix}$$

(iii)
$$d_k c_{k-1} - c_k d_{k-1} = (-1)^k$$
 für $k \ge -1$

(iv)
$$\frac{c_{k-1}}{d_{k-1}} - \frac{c_k}{d_k} = \frac{(-1)^k}{d_k d_{k-1}}$$
 für $k \ge 1$ $d_{-1} = 0$

(v)
$$d_k c_{k-2} - c_k d_{k-2} = (-1)^{k-1} q_k$$
 für $k \ge 0$

(vi)
$$rac{c_{k-2}}{d_{k-2}}-rac{c_k}{d_k}=rac{(-1)^{k-1}q_k}{d_kd_{k-1}}$$
 für $k\geq 0$, aber $k
eq 1$

F2.8

- (i) $\left(\frac{c_{2m}}{d_{2m}}\right)_{m>0}$ ist streng monoton steigend
- (ii) $\left(\frac{c_{2m+1}}{d_{2m+1}}\right)_{m\geq 0}$ ist streng monoton fallend

(iii)
$$\frac{c_{2m}}{d_{2m}} < \frac{c_{2n+1}}{d_{2n+1}}$$
 für alle $m \geq 0, n \geq 0$

F2.9

(i)
$$[q_0; q_1, \dots, q_n] = \frac{\rho_k c_{k-1} + c_{k-2}}{\rho_k d_{k-1} + d_{k-2}}$$
 für $1 \le k \le n$.

(ii)
$$[q_k;q_{k-1},\ldots,q_1]=rac{d_k}{d_{k-1}}$$
 für $k\geq 1$

F2.10

Gegeben sei ein unendlicher Kettenbruch

$$\alpha = [q_0; q_1, \ldots]$$

Dann gelten:

- (i) α konvergent \Rightarrow jeder Rest $\rho_n = [q_n; q_{n+1}, \ldots]$ ist konvergent.
- (ii) ρ_n konvergent für ein $n \Rightarrow \alpha$ ist konvergent
- (iii) Ist α konvergent, so gilt für die Werte

$$\alpha = \frac{c_{n-1}\rho_n + c_{n-2}}{d_{n-1}\rho_n + d_{n-2}} \quad n \ge 1$$

d.h.
$$[q_0; q_1, \ldots] = [q_0; q_1, \ldots, q_{n-1}, \rho_0].$$

(iv) Ist α konvergent, so gilt $\frac{c_{2n}}{d_{2n}}<\alpha<\frac{c_{2m+1}}{d_{2m+1}}$ für alle $n,m\geq 0.$

F2.11

Der Wert α eines konvergenten unendlichen Kettenbruchs genügt den Ungleichungen

$$|\alpha - \frac{c_k}{d_k}| < \frac{1}{d_k d_{k+1}} \text{ für jedes } k \geq 0$$

Definition 2.6 (natürlicher Kettenbruch)

Ein Kettenbruch $[q_0; q_1, \ldots]$ – endlich oder unendlich – heißt **natürlicher Kettenbruch**, wenn $q_k \in \mathbb{Z}$ für alle $k \ge 0$. Nach wie vor setzen wir $q_k > 0$ für $k \ge 1$ voraus!

Im weiteren betrachten wir nur natürliche Kettenbrüche und sprechen dann schlechthin von Kettenbrüchen. Nach F2.6 ist dann

$$c_k, d_k \in \mathbb{Z}$$
 für alle $k \ge -2$, $d_k \in \mathbb{N}$ für $k \ge 0$, $d_k = q_k d_{k-1} + d_{k-2} \ge d_{k+1} + 1 > d_{k-1}$ für $k \ge 1$

$$d_k > d_{k-1} \text{ für } k \ge 2, \quad d_k \ge k \text{ für } k \ge 1$$
 (2.15)

(2.15) gilt im Allgemeinen nicht für k=1. Denn $d_0=1$, und es ist $d_1=1$ möglich.

Bemerkung

Induktiv folgt leicht $d_k > 2^{\frac{k-1}{2}}$ für $k \geq 2$.

F2.12

Jeder unendliche natürliche Kettenbruch ist konvergent.

F2.13

Die Näherungsbrüche eines natürlichen Kettenbruchs lassen sich nicht kürzen, d.h. c_k und d_k sind teilerfremd für jedes $k \ge -2$.

Wir können also wirklich $\binom{c_k}{d_k}$ mit $\frac{c_k}{d_k}$ identifizieren.

F2.14

Jede rationale Zahl ist durch einen endlichen natürlichen Kettenbruch darstellbar.

F2.15

Jede irrationale Zahl α ist auf genau eine Weise als natürlicher Kettenbruch darstellbar, und dieser Kettenbruch ist notwendigermaßen unendlich.

Bemerkung

Ist $\alpha \in \mathbb{Q}$, so hat α eine Darstellung als endlicher Kettenbruch

$$\alpha = [q_0; q_1, \dots, q_n],$$

 $\text{der - falls } n \geq 1 \text{ ist - mit einem } q_n \geq 2 \text{ endet.}$

Definition 2.7 (normierter Kettenbruch)

Ein (natürlicher) Kettenbruch, der nicht mit 1 endet, falls er nicht von der Form $[q_0]$ ist, heißt ein **normierter Kettenbruch**. Unendliche Kettenbrüche sind alle normiert.

Bemerkung

Sind $[q_0; q_1, \dots, q_n]$ und $[q'_0; q_1, \dots, q'_m]$ mit $n \ge m$ beide normiert vom selben Wert α , so folgt m = n und $q_i = q'_i$ für alle i.

04.11.

[7]

Satz 2.2

(i) Ordnet man jeder reellen Zahl ihre Kettenbruchentwicklung zu, so erhält man eine Bijektion zwischen $\mathbb R$ und der Menge aller normierten Kettenbrüche:

$$\mathbb{R} \ni \alpha \longleftrightarrow [q_0; q_1, \ldots]$$

Die Umkehrabbildung ordnet jedem normierten Kettenbruch dessen Wert zu:

$$\alpha = [q_0; q_1, \ldots]$$

- (ii) α rational \Leftrightarrow Kettenbruchentwicklung von α ist endlich.
- (iii) Für die Näherungsbrüche $rac{c_k}{d_k}$ des zu lpha gehörigen Kettenbruchs gilt $^{ extsf{1}}$

$$\frac{1}{d_k(d_k+d_{k+1})} < \left|\alpha - \frac{c_k}{d_k}\right| \stackrel{(*)}{\leq} \frac{1}{d_k d_{k+1}} \qquad (k \ge 0),$$

anders geschrieben:

$$\frac{1}{d_k + d_{k+1}} < |d_k - \alpha - c_k| \stackrel{(*)}{\leq} \frac{1}{d_{k+1}} \qquad (k \ge 0)$$

Zusatz

Die Ungleichungen (*) gelten mit < bis auf den Fall $\alpha = [q_0; q_1, \dots, q_n]$ und k = n - 1.

Bemerkung

Aus (iii) folgt:

$$\left| \alpha - \frac{c_{k-1}}{d_{k-1}} \right| < \alpha - \frac{c_k}{d_k}$$

F2.16

[8]

Für die Folge der Fibonacci-Zahlen $(u_n)_{n\in\mathbb{Z}}$ mit $u_0=0,u_1=1$ und $u_{n+1}=u_n+u_{n-1}$ gilt:

(i) $\frac{u_{n+2}}{u_{n+1}}$ ist der n-te Näherungsbruch von $\alpha=[1;1,1,\ldots]$, $n\geq 2$.

(ii)
$$\alpha = \frac{1}{2} + \frac{1}{2}\sqrt{5}$$

(iii)
$$u_n=rac{lpha^n-eta^n}{\sqrt{5}}$$
 mit $eta=rac{1}{2}-rac{1}{2}\sqrt{5}$, $n\in\mathbb{Z}$.

(iv) $u_{m+n} = u_m u_{n+1} + u_{m-1} u_n$ mit $m, n \in \mathbb{Z}$, sowie für m = n+1: $u_{2m-1} = u_m^2 + u_{m-1}^2$.

(v)
$$u_{n+1}u_{n-1}-u_n^2=(-1)^n$$
, bzw. $u_n^2=u_{n-1}u_{n+1}+(-1)^{n+1}$, etc.

Bemerkung

 u_n ist die zu $rac{lpha^n}{\sqrt{5}}$ nächstgelegene ganze Zahl für $n\geq 0$.

F2.17

Für $a, b \in \mathbb{Z}$ gilt $(u_a, u_b) = u_{(a,b)}$, insbesondere $a|b \Rightarrow u_a|u_b$.

Bemerkung

 u_n Primzahl $\stackrel{\mathtt{F2.17}}{\Longrightarrow} n$ Primzahl ≥ 3 , mit Ausnahme von $u_4=3$. Die Umkehrung gilt nicht.

 $^{^{} extsf{1}}$ nur sinnvoll, falls es überhaupt noch ein d_{k+1} gibt.

3 Kongruenzrechnung

Zur Motivation:

Satz 3.1 (Fermats kleiner Satz)

Sei p Primzahl. Für jede ganze Zahl mit $p \not\mid a$ gilt dann:

$$p|a^{p-1}-1,$$

d.h. a^{p-1} lässt bei der Division durch p stets den Rest 1.

Definition 3.1 (Kongruenz in \mathbb{Z})

Sei $m \in \mathbb{N}$ fest. Für $x \in \mathbb{Z}$ sei $r_m(x)$ der eindeutige nichtnegative Rest von x bei der Division von x bei Division durch m.

11.11. [9]

$$x = qm + r_m \quad 0 \le r < m$$

Wir definieren eine Relation

$$x \underset{m}{\sim} x' \qquad :\Leftrightarrow \qquad r_m(x) = r_m(x')$$

Gleichheit bzgl. m

Statt $x \sim x'$ schreibt man nach Gauß:

$$x \equiv x' \operatorname{mod} m$$

und sagt: x ist kongruent zu x' modulo m.

F3.1

$$x \equiv x' \mod m \quad \Leftrightarrow \quad m|x - x'|$$

Definition 3.1 (Kongruenz allgemeiner)

Sei R ein kommutativer Ring und $m \in R$. Definiere:

$$x \equiv y \mod m :\Leftrightarrow m|x-y|$$

 $x \equiv y \mod 0 \Rightarrow x = y$

 $x \equiv y \operatorname{mod} 1$ gilt für alle $x, y \in R$.

 $x\equiv 0\operatorname{mod} m\Leftrightarrow m|x$

F3.2

- (i) $x \equiv x \mod m$, $x \equiv y \mod y \Rightarrow y \equiv x \mod m$, $x \equiv y \mod m, y \equiv z \mod m \Rightarrow x \equiv z \mod m$, d.h. $\cdot \equiv \cdot \mod m$ ist eine Äquivalenzrelation auf R. Diese ist verträglich mit Addition und Multiplikation:
- (ii) $x \equiv x' \mod m, y \equiv y' \mod m \implies x + y \equiv x' + y' \mod m, xy \equiv x'y' \mod m$
- (iii) $x \equiv y \mod m, m' | m \implies x \equiv y \mod m'$
- (iv) Für $R = \mathbb{Z}$: $x \equiv y \mod m_i, 1 \le i \le r \iff x \equiv y \mod \ker(m_1, \dots, m_r)$
- (v) $x \equiv y \mod m \quad \Rightarrow \quad cx \simeq cy \mod xm \quad \Rightarrow \quad cx \equiv cy \mod m$
- (vi) Für einen Integritätsring R gilt: $x \equiv y \mod m$ und $l|x, l|m, l \neq 0 \implies l|y$ und $\frac{x}{l} \equiv \frac{y}{l} \mod \frac{m}{l}$
- $\text{(viii)} \ \ m|ac-bc \quad \Rightarrow \quad m|c(a-b) \quad \Rightarrow \quad \frac{m}{d}|\frac{c}{d}(a-b) \quad \xrightarrow{\left(\frac{m}{d},\frac{c}{d}\right)=1} \quad \frac{m}{d}|a-b|$

Definition 3.2 (Restklasse)

Ein $m \in R$ teilt R in disjunkte Mengen ein, die den zugehörigen Äquivalenzklassen entsprechen. Diese heißen die **Restklassen** modulo m.

F3.3

Sei $n \in \mathbb{N}$ ungerade. Dann:

$$(n-1)! \equiv 1^2 \cdot 2^2 \dots \left(\frac{n-1}{2}\right)^2 \cdot (-1)^{\frac{n-1}{2}} \mod n$$

F3.4

 $a,b,c\in\mathbb{Z}$, d:=(a,b). Die Gleichung

$$aX + bY = c (3.1)$$

ist genau dann lösbar über \mathbb{Z} , wenn d|c. Sei $d \neq 0$. Ist (x_0, y_0) eine Lösung von (3.1), so gehört zu jeder Lösung (x, y) von (3.1) genau ein $t \in \mathbb{Z}$ mit

$$x = x_0 + t\frac{b}{d}$$
 $y = y_0 - t\frac{a}{d}$, (3.2)

und jedes (x, y) wie in (3.2) ist eine Lösung von (3.1).

F3.5

Die Kongruenz

$$aX \equiv c \operatorname{mod} m \tag{3.3}$$

ist genau dann lösbar über \mathbb{Z} , wenn

$$(a,m)|c. (3.4)$$

Sei $d:=(a,m)\neq 0$, und es gelte (3.4). Die Lösungsmenge von (3.3) ist dann eine Restklasse modulo $\frac{m}{d}$. Die Kongruenz (3.3) besitzt genau d=(a,m) viele Lösungen modulo m. Insbesondere gilt: Ist (a,m)=1, so ist (3.3) für jedes c lösbar und die Lösungen sind modulo m eindeutig.

Definition 3.2 (Restklassen allgemein)

Sei R ein kommutativer Ring, $m \in R$. Die **Restklasse** modulo m, in der $a \in R$ liegt, hat die Gestalt

$$\{x\in R: x\equiv a\operatorname{mod} m\}=a+mR=\{a+ym: y\in R\}.$$

Die Menge aller Restklassen modulo m bezeichnen wir mit R/mR, aber auch R/m. Der für uns wichtigste Fall ist $R=\mathbb{Z}$ und $m\in\mathbb{N}$.

Beispiel

Sei $m \in \mathbb{N}$. Betrachte

$$R = \mathbb{Z}_{(m)} := \left\{ \frac{b}{a} : a, b \in \mathbb{Z}, (a, m) = 1 \right\} \subseteq \mathbb{Q}$$

Die Inklusionsabbildung $\mathbb{Z} o \mathbb{Z}_{(m)}$ vermittelt einen Ringisomorphismus

$$\mathbb{Z}/m\mathbb{Z} \longrightarrow \mathbb{Z}_{(m)}/m\mathbb{Z}_{(m)}$$

Bemerkung

Sei (a, m) = 1. Wohlverstanden darf man also sagen:

Die Kongruenz $aX \equiv c \mod m$ besitzt die Lösung $\frac{c}{a} \mod m$. Es gibt ein $x \in \mathbb{Z}$ mit $x \equiv \frac{c}{a} \mod m$, und für dieses ist $ax \equiv c \mod m$.

Beispiel

Die Kongruenz $7X \equiv 1 \mod 123$ ist "eindeutig" lösbar:

$$7x \equiv 1 \mod{123} \quad \Rightarrow \quad x \equiv \frac{1}{7} = \frac{4}{28} \equiv \frac{-119}{28} = \frac{-17}{4} \equiv \frac{-140}{4} \equiv -35 \mod{123}$$

Das funktioniert nicht immer so gut, aber allgemein kann man folgendes sagen:

Bemerkung

Zur Lösung der Kongruenz

$$aX \equiv 1 \mod m \quad \mathsf{mit}\ (a, m) = 1 \ \mathsf{und}\ a \in \mathbb{N}$$
 (3.5)

Betrachte $\alpha = \frac{m}{a} \in \mathbb{Q}$ und führe die Kettenbruchentwicklung durch. Diese endet mit $\frac{m}{a} = \frac{c_n}{d_n}$. Dann gilt (vgl. Beispiel nach Satz 2.2):

$$(-1)^n c_{n-1} a - (-1)^n d_{n-1} m = 1 \quad \Rightarrow \quad a(-1)^n c_{n-1} \equiv 1 \mod m$$

Somit ist

$$x = (-1)^n c_{n-1}$$

eine Lösung von (3.5).

F3.6

Sei $m \in \mathbb{N}$.

(i) $\mathbb{Z}/m\mathbb{Z}$ ist auf natürliche Weise ein kommutativer Ring mit Eins $(\neq 0$, falls m > 1). Die Restklassenprojektion

$$\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z}$$
$$a \longmapsto \overline{a} = a + m\mathbb{Z} =: a \mod m$$

ist ein Ringhomomorphismus. Für m>1 ist $\mathbb{Z}/m\mathbb{Z}\to\mathbb{Z}_{(m)}/m\mathbb{Z}_{(m)}$ ein Ringisomorphismus, sodass man $\mathbb{Z}_{(m)}/m\mathbb{Z}_{(m)}$ mit $\mathbb{Z}/m\mathbb{Z}$.

- (ii) $\mathbb{Z}/m\mathbb{Z}$ hat genau m Elemente.
- (iii) Für beliebige $c \in \mathbb{Z}$ ist $c, c+1, \ldots, c+(m-1)$ ein **Vertretersystem** modulo m. $S \subseteq \mathbb{Z}$ heißt ein Vertretersystem modulo m bzw. von $\mathbb{Z}/m\mathbb{Z}$, wenn gilt: Zu jedem $x \in \mathbb{Z}$ existiert genau ein $a \in S$ mit $x \equiv a \mod m$. Anders ausgedrückt: Die Einschränkung der Restklassenabbildung $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ auf S ist eine Bijektion. Äquivalent dazu ist, dass die Einschränkung injektiv oder surjektiv ist und |S| = m.
- (iv) $\mathbb{Z}/m\mathbb{Z}$ Integritätsring $\Leftrightarrow \mathbb{Z}/m\mathbb{Z}$ Körper $\Leftrightarrow m$ Primzahl. Für eine Primzahl p heißt $\mathbb{Z}/p\mathbb{Z}$ der **Restklassenkörper** modulo p.
- (v) $(a, m) = d, x \equiv a \mod m \quad \Rightarrow \quad (x, m) = d$
- (vi) $\overline{a} \in (\mathbb{Z}/m\mathbb{Z})^{\times} \quad \Leftrightarrow \quad (a,m)=1.$ Die Elemente \overline{a} von $(\mathbb{Z}/m\mathbb{Z})^{\times}$ heißen prime Restklassen modulo m.

Lemma 3.1

Sei ${\cal R}$ ein endlicher kommutativer Ring mit Eins. Dann ist

$$R^{\times} = \{ a \in R : a \text{ ist kein Nullteiler von } R \}$$

F3.7 (Satz von Wilson)

Für $n \in \mathbb{N}$ gilt:

$$n \text{ Primzahl} \quad \Leftrightarrow \quad (n-1)! \equiv -1 \operatorname{mod} n$$

F3.8

Sei $p \neq 2$ Primzahl. Dann ist die Kongruenz

$$X^2 \equiv -1 \mod p$$

genau dann lösbar in \mathbb{Z} , wenn $p \equiv 1 \mod 4$, d.h. p = 1 + 4k für ein $k \in \mathbb{N}$.

Bemerkungen

1) 3.8 anders formuliert. Setze $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ Körper.

$$\sqrt{-1} \in \mathbb{F}_p \quad \Leftrightarrow \quad p \equiv 1 \operatorname{mod} 4 \operatorname{oder} p = 2$$

2) Sei $p \neq 2$ Primzahl. Dann:

$$\left(\frac{p-1}{2}\right)!^2 \equiv \begin{cases} -1 \operatorname{mod} p & \text{für } p \equiv 1 \operatorname{mod} 4\\ 1 \operatorname{mod} p & \text{für } p \equiv 3 \operatorname{mod} 4 \end{cases}$$

Für $p\equiv 3 \operatorname{mod} 4$ gilt also $\left(\frac{p-1}{2}\right)!^2\equiv \pm 1 \operatorname{mod} p$. Mehr dazu in Abschnitt 6.

Definition 3.3 (Eulersche φ -Funktion)

Für jede natürliche Zahl m definiere

$$\varphi(1)=1$$

Nach F3.6 gilt $\varphi(m)=\#\{a\in\{0,1,2,\ldots,m-1\}:a \text{ teilerfremd zu } m\}$. Für eine Primzahl p ist daher $\varphi(p)=p-1$. φ heißt **Eulersche** φ -**Funktion**.

 $\varphi(m) := \#(\mathbb{Z}/m\mathbb{Z})^{\times}$

Satz 3.1 (Satz von Euler-Fermat)

Aus (a, m) = 1 folgt $a^{\varphi(m)} \equiv 1 \mod m$.

Lemma 3.2

Sei G eine abelsche Gruppe der Ordnung n. Dann gilt $x^n = 1$ für alle $x \in G$.

3.1 Simultane Kongruenzen

Satz 3.2 (Chinesischer Restsatz)

Ist $m=m_1m_2\cdot m_r$ mit paarweise teilerfremden natürlichen Zahlen $m_1,\ldots,m_r>1$, so ist die Abbildung

$$\mathbb{Z}/m \longrightarrow \mathbb{Z}/m_1 \times \mathbb{Z}/m_2 \times \cdots \times \mathbb{Z}/m_r$$

$$a \mod m \longmapsto (a \mod m_1, a \mod m_2, \dots, a \mod m_r)$$
(3.6)

ein Isomorphismus von Ringen. Ist insbesondere $m=p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}$ die Primfaktorzerlegung einer natürlichen Zahl m>1, so gilt

$$\mathbb{Z}/m\mathbb{Z} \simeq \mathbb{Z}/p_1^{e_1} \times \cdots \times \mathbb{Z}/p_r^{e_r}$$

mit kanonischer Isomorphie. Der Isomorphismus (3.6) vermittelt einen Isomorphismus

$$(\mathbb{Z}/m)^{\times} \simeq (\mathbb{Z}/m_1)^{\times} \times \ldots \times (\mathbb{Z}/m_r)^{\times}$$

der primen Restklassengruppen; insbesondere gilt

$$\varphi(m) = \varphi(m_1) \cdot \varphi(m_2) \cdots \varphi(m_r)$$

Satz 3.2 (Chinesischer Restsatz für simultane Kongruenzen)

Sei $m=m_1m_2\cdots m_r$ mit paarweise teilerfremden natürlichen Zahlen $m_1,\ldots,m_r>1$. Sind dann a_1,\ldots,a_r beliebige ganze Zahlen, so gibt es eine ganze Zahl x mit

$$x \equiv a_1 \mod m_1$$
 $x \equiv a_2 \mod m_2$
 \vdots
 $x \equiv a_r \mod m_r$

$$(3.7)$$

Durch (3.7) ist x modulo m eindeutig bestimmt, ferner gilt:

x prim zu $m \Leftrightarrow a_i$ prim zu m_i für alle i

Bemerkung

Es genügt, sich x_i zu verschaffen mit

$$x_1q_1 + x_2q_2 + \ldots + x_rq_r \equiv 1 \mod m$$
 (3.8) $q_i = \frac{m}{m_i}$

Dann wird (3.7) erfüllt von

$$x = a_1(x_1q_1) + \ldots + a_r(x_rq_r)$$

Für jedes $1 \leq i \leq r$ bestimme (notfalls mit Kettenbruchentwicklung) ein $x_i \in \mathbb{Z}$ mit

$$q_i x_i \equiv 1 \mod m_i \tag{q_i, m_i} = 1$$

Dann ist

$$x_1q_1 + \ldots + x_rq_r \equiv 1 \mod m_i$$

für alle $1 \le i \le r$, und es folgt (3.8).

Korollar

Sei $f \in \mathbb{Z}[X]$, $m = m_1 \cdot m_2 \cdot \ldots \cdot m_r$ mit paarweise teilerfremden $m_i > 1$. Dann:

18.11. [11]

$$f(X) \equiv 0 \operatorname{mod} m \text{ l\"osbar in } \mathbb{Z} \quad \Leftrightarrow \quad f(X) \equiv 0 \operatorname{mod} m_i \text{ l\"osbar in } \mathbb{Z} \text{ f\"ur jedes } 1 \leq i \leq r$$

Die natürliche Abbildung $\mathbb{Z}/m \to \prod_{i=1}^r \mathbb{Z}/m_i$ vermittelt eine Bijektion

$$\{\alpha \in \mathbb{Z}/m : f(\alpha) = 0\} \to \prod_{i=1}^r \{\alpha_i \in \mathbb{Z}/m_i : f(\alpha_i) = 0\}$$

Für die Lösungsanzahlen $N_f(n) := \#\{\alpha \in \mathbb{Z}/n : f(\alpha) = 0\}$ gilt also:

$$N_f(m_1m_2\dots m_r) = N_f(m_1)N_f(m_2)\dots N_f(m_r)$$

4 Die prime Restklassengruppe $\operatorname{mod} m$

Definition 4.1 (prime Restklassengruppe)

Sei $m \in \mathbb{N}$, m > 1. Dann heißt $(\mathbb{Z}/m\mathbb{Z})^{\times}$ die **prime Restklassengruppe** $\operatorname{mod} m$. Wir wissen:

- (1) $\overline{a} \in (\mathbb{Z}/m\mathbb{Z})^{\times} \Leftrightarrow (a,m) = 1$
- (2) $M := \{k \in \mathbb{Z} : 0 \le k < m, (k, m) = 1\}$ ist ein Vertretersystem von $(\mathbb{Z}/m\mathbb{Z})^{\times}$. $(\mathbb{Z}/m\mathbb{Z})^{\times}$ hat $\varphi(m) = \#M$ Elemente und ist eine abelsche Gruppe der Ordnung $\varphi(m)$.
- (3) $\overline{a} = \alpha \in (\mathbb{Z}/m\mathbb{Z})^{\times} \Rightarrow \alpha^{\varphi(m)} = 1 \Leftrightarrow a^{\varphi(m)} \equiv 1 \mod m$ (Satz von Euler-Fermat)

Definition 4.2 (Primitivwurzel)

Ein $\omega \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ heißt eine **Primitivwurzel** von $(\mathbb{Z}/m\mathbb{Z})^{\times}$, wenn sich jedes Element $\alpha \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ in der Form

$$\alpha = \omega^i$$
 für ein $i \in \mathbb{N}_0$

schreiben lässt; jedes $g \in \mathbb{Z}$ mit $\omega = \overline{g} = g \mod m$ heißt dann eine Primitivwurzel $\mod m$.

Satz 4.1 (Satz von Gauß)

Ist p eine Primzahl, so besitzt $(\mathbb{Z}/p\mathbb{Z})^{\times}$ eine Primitivwurzel. Es gibt also ein $\omega \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, sodass sich jedes $\alpha \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ darstellen lässt in der Form

$$\alpha = \omega^i \text{ mit } 0 \le i$$

Die Darstellung (4.1) ist unter der Bedingung $0 \le i < p-1$ eindeutig; $i = i(\alpha) = i_{\omega}(\alpha)$ heißt der **Index** von α bezüglich ω .

Wählt man ein $g \in \mathbb{Z}$ mit $\omega = g \mod m$, so gilt also: Zu jedem $a \in \mathbb{Z}$ mit $p \not| a$ gibt es genau ein $i \in \mathbb{Z}$ mit

$$a \equiv g \mod p, 0 \le i$$

 $i = i(a) = i_g(a)$ heißt der Index von a bzgl. g.

Zusatz

Es gibt genau $\varphi(p-1)$ verschiedene Primitivwurzeln von $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

4.1 Gruppentheoretische Vorbereitungen

Definition 4.3 (Ordnung eines Gruppenelements)

Sei G eine (abelsche) Gruppe der Ordnung n, d.h. #G=n. Sei $\alpha\in G$. Wir wissen: $\alpha^n=1$. Unter allen $m\in\mathbb{N}$ mit $\alpha^m=1$ sei nun k das kleinste. Setze dann

$$\operatorname{ord}(\alpha) := k,$$

die **Ordnung** von α . $\langle \alpha \rangle := \{ \alpha^j : j \in \mathbb{Z} \}$ ist offenbar eine Untergruppe von G.

Lemma 4.1

In der Situation von Definition 4.3 gelten:

- (1) $\langle \alpha \rangle = \{1, \alpha, \alpha^2, \dots, \alpha^{k-1}\}$, insbesondere $\operatorname{ord}(\alpha) = \operatorname{ord}(\langle \alpha \rangle)$.
- (2) $\alpha^m = 1 \text{ für } m \in \mathbb{Z} \Rightarrow \operatorname{ord}(\alpha)|m$

(3) Sei $\operatorname{ord}(\alpha) = k$ wie oben, dann vermittelt der Gruppenhomomorphismus

$$\mathbb{Z} \longrightarrow \langle \alpha \rangle$$
$$j \longmapsto \alpha^j$$

einen Gruppenisomorphismus $\mathbb{Z}/k\mathbb{Z} \to \langle \alpha \rangle$, also $\langle \alpha \rangle \simeq \mathbb{Z}/k\mathbb{Z}$.

(4) G zyklisch $\Leftrightarrow \exists \alpha \in G$ mit $\operatorname{ord}(\alpha) = \operatorname{ord}(G)$. Eine Gruppe G heißt **zyklisch**, wenn es ein $\alpha \in G$ gibt mit $G = \langle \alpha \rangle$. α heißt dann ein **Erzeuger** von G.

Bemerkung

Definitionsgemäß gilt:

$$(\mathbb{Z}/m\mathbb{Z})^{\times}$$
 besitzt Primitivwurzel \Leftrightarrow $(Z/m\mathbb{Z})^{\times}$ ist zyklisch,

und nach dem zuvor Gesagten:

$$\omega$$
 ist Primitivwurzel von $(\mathbb{Z}/m\mathbb{Z})^{\times}$ \Leftrightarrow $\operatorname{ord}(\omega) = \varphi(m)$

Definition 4.4 (Gruppenexponent)

Sei G eine endliche Gruppe. Das kgV aller $\operatorname{ord}(\alpha), \alpha \in G$ heißt der **Exponent** e = e(G) der Gruppe G.

Bemerkung

Ist
$$n = \operatorname{ord}(G), e = e(G)$$
, so gilt stets $e|n$, denn für jedes $\alpha \in G$ gilt $\alpha^n = 1 \Rightarrow \operatorname{ord}(\alpha)|n \Rightarrow e|n$.

F4.1

Sei G eine endliche abelsche Gruppe und sei e ihr Exponent. Dann gibt es ein Element $\omega \in G$ mit $\operatorname{ord}(\omega) = e$.

Satz 4.1

Sei K ein Körper und G eine endliche Untergruppe von K^{\times} . Dann ist G zyklisch.

4.2 Restklassengruppen

Definition 4.5 (Restklassen, Restklassenabbildung)

Sei G eine Gruppe und $H\subseteq G$ eine Untergruppe. Für $x,y\in G$ definiere eine Relation:

21.11. [12]

$$x \stackrel{H}{\sim} y : \Leftrightarrow yx^{-1} \in H (\Leftrightarrow y \in Hx),$$

oder für eine abelsche Gruppe mit + statt \cdot als Verknüpfungssymbol:

$$x \stackrel{H}{\sim} y :\Leftrightarrow y - x \in H (\Leftrightarrow y \in H + x),$$

 $\stackrel{H}{\sim}$ ist eine Äquivalenzrelation. Mit G/H bezeichnen wir die Menge der zugehörigen Äquivalenzklassen (**Restklassen**). Die Abbildung

$$G \longrightarrow G/H$$

$$x \longmapsto \overline{x} := Hx$$

heißt Restklassenabbildung.

Bemerkung

Die Relation $\stackrel{H}{\sim}$ ist verträglich mit der Multiplikation, falls G abelsch ist. In diesem Fall ist G/H eine Gruppe und die Restklassenabbildung ein Homomorphismus.

Ist G eine beliebige Gruppe, so gilt gleiches für G/H genau dann, wenn für jedes $x \in G$ gilt: Hx = xH.

F4.2

Sei G eine abelsche Gruppe der Ordnung n und $n=p_1^{\nu_1}p_2^{\nu_2}\dots p_r^{\nu_r}$ die Primfaktorzerlegung von n. Für $1\leq i\leq r$ sei

$$G_{p_i} := \{ \alpha \in G : \alpha^{p_i^{\nu_i}} = 1 \} \le G$$

Dann ist die Abbildung

$$f \colon \prod_{i=1}^r G_{p_i} \longrightarrow G$$
$$(\alpha_1, \dots, \alpha_r) \longmapsto \alpha_1 \alpha_2 \cdots \alpha_r$$

ein Isomorphismus von Gruppen. Ferner gilt $\#G_{p_i}=p_i^{\nu_i}$ für $1\leq i\leq r.$

Bemerkung 1

G endliche Gruppe, $\alpha \in G$, $j \in \mathbb{Z}$. Dann gilt:

$$\operatorname{ord}(\alpha^j) = \frac{\operatorname{ord}(\alpha)}{(\operatorname{ord}(\alpha), j)}$$

Bemerkung 2

Eine zyklische Gruppe der Ordnung n hat genau $\varphi(n)$ Elemente der Ordnung n, also $\varphi(n)$ Erzeuger.

 $^{25.11.}$ Wir werden jetzt die Struktur der primen Restklassengruppe modulo $p^{
u}$

$$G = G_{\nu} = (\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}, p \text{ Primzahl}, \nu \in \mathbb{N}, \nu > 1$$

untersuchen. Es ist

$$\operatorname{ord}(G) = \varphi(p^{\nu}) = \#\{0 \leq a < p^{\nu} : p \not\mid a\} = p^{\nu} - \#\{0 \leq a < p^{\nu} : p|a\} = p^{\nu} - p^{\nu-1} = (p-1)p^{\nu-1} = (p-1)p^$$

Damit gilt für jedes $n \in \mathbb{N}$:

$$\varphi(n) = \varphi\left(\prod_{p|n} p^{w_p(n)}\right) = \prod_{p|n} \varphi\left(p^{w_p(n)}\right) = \prod_{p|n} \left(p^{w_p(n)} - p^{w_p(n)-1}\right) = \prod_{p|n} p^{w_p(n)} (1 - \frac{1}{p}) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

F4.3

Für jedes $n \in \mathbb{N}$ gilt:

$$\varphi(n) = \prod_{p|n} \left(p^{w_p(n)} - p^{w_p(n)-1} \right) = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$$

Definition 4.6 (1-Einheit und 1-Einheitengruppe)

Sei $G_{\nu}=(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$. Der Kern $G_{\nu}^{(1)}$ des Homomorphismus

$$(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times} \longrightarrow (\mathbb{Z}/p\mathbb{Z})^{\times}$$
$$a \bmod p^{\nu} \longmapsto a \bmod p$$

heißt die **Gruppe der 1-Einheiten** von $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$. Sie besteht aus den Elementen $a \mod p^{\nu}$ von $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ mit $a \equiv 1 \mod p$. Es ist $\operatorname{ord}(G_{\nu}^{(1)}) = p^{\nu-1}$.

Lemma 4.2

Sei p Primzahl, $j \in \mathbb{N}$, $a \in \mathbb{Z}$. Es gelte

$$a \equiv 1 \mod p^j$$
, aber $a \not\equiv 1 \mod p^{j+1}$

Dann folgt – außer für p=2 und j=1 –

$$a^p \equiv 1 \mod p^{j+1}$$
, aber $a^p \not\equiv 1 \mod p^{j+2}$

F4.4

Sei $\nu > 1$.

- (i) Im Fall $p \neq 2$ ist für jedes a der Gestalt a = 1 + cp mit $p \not | c$ die Restklasse $a \mod p^{\nu}$ ein Element der Ordnung $p^{\nu-1}$ in der 1-Einheitengruppe von $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$. Insbesondere gilt dies für a = 1 + p. Die 1-Einheitengruppe von $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ ist also für $p \neq 2$ zyklisch mit kanonischem Erzeuger $1 + p \mod p^{\nu}$.
- (ii) Im Falle p=2 gilt: Für $\nu\geq 3$ ist $5 \operatorname{mod} 2^{\nu}$ ein Element der Ordnung $2^{\nu-2}$ in $(\mathbb{Z}/2^{\nu}\mathbb{Z})^{\times}$. Für $\nu=2$: $(\mathbb{Z}/4\mathbb{Z})^{\times}$ ist zyklisch mit $-1 \operatorname{mod} 4$ als Erzeuger.

Satz 4.2

Sei $p \neq 2$. Auch für $\nu \geq 2$ ist dann $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ zyklisch. Mit anderen Worten: $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ besitzt eine Primitivwurzel. Es existiert also ein $g \in \mathbb{Z}$, sodass es zu jedem $a \in \mathbb{Z}$ mit (a,p)=1 genau ein $i \in \mathbb{Z}$ gibt mit

$$a \equiv g^i \operatorname{mod} p^{\nu} \quad \text{und} \quad 0 \le i < \varphi(p^{\nu})$$

Es gibt genau $\varphi(\varphi(p^{\nu}))=\varphi((p-1)p^{\nu-1})=\varphi(p-1)\varphi(p^{\nu-1})$ Primitivwurzeln von $(\mathbb{Z}/p^{\nu})^{\times}$.

Zusatz

Ist schon eine Primitivwurzel $g_0 \mod p$ bekannt, so findet man eine Primitivwurzel $\mod p^{\nu}$ wie folgt: Ist $g_0^{p-1} \not\equiv 1 \mod p^2$, so ist $g = g_0 + p$ eine Primitivwurzel $\mod p^{\nu}$. Ist $g_0^{p-1} \equiv 1 \mod p^2$, so ist $g = g_0 + p$ eine Primitivwurzel $\mod p^{\nu}$.

Bemerkung

Folgende Aussagen sind für $p \neq 2$ und $g \in \mathbb{Z}$ äquivalent:

- (i) g ist Primitivwurzel $\operatorname{mod} p$ und $g^{p-1} \not\equiv 1 \operatorname{mod} p^2$.
- (ii) g ist Primitivwurzel $\operatorname{mod} p^n$ für alle $n \in \mathbb{N}$.
- (iii) g ist Primitivwurzel $\text{mod } p^2$.

Satz 4.3

Sei $\nu \in \mathbb{N}, \nu \geq 3$. Zu jeder ungeraden Zahl $a \in \mathbb{Z}$ gibt es eindeutig bestimmte $k \in \{0,1\}$ und $j \in \{0,1,\dots,2^{\nu-2}-1\}$ mit

$$a \equiv (-1)^k 5^j \bmod 2^{\nu}$$

Mit anderen Worten: Die Abbildung

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{\nu-2}\mathbb{Z} \longrightarrow (\mathbb{Z}/2^{\nu}\mathbb{Z})^{\times}$$
$$(k \bmod 2, j \bmod 2^{\nu-2}) \longmapsto (-1 \bmod 2^{\nu})^{k} \cdot (5 \bmod 2^{\nu})^{j}$$

ist ein Isomorphismus von Gruppen. Es ist also

$$(\mathbb{Z}/2^{\nu}\mathbb{Z})^{\times} = \langle -1 \operatorname{mod} 2^{\nu} \rangle \times \langle 5 \operatorname{mod} 2^{\nu} \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{\nu-2}\mathbb{Z}$$

Insbesondere ist $(\mathbb{Z}/2^{\nu}\mathbb{Z})^{\times}$ nicht zyklisch.

Satz 4.3

Sei p Primzahl mit $p \neq 2$, $\nu \in \mathbb{N}$, $\nu \geq 2$. Dann existiert eine Primitivwurzel $g \mod p$, sodass die Abbildung

$$\mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^{\nu-1}\mathbb{Z} \longrightarrow (\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$$
$$(i \operatorname{mod}(p-1), j \operatorname{mod} p^{\nu-1}) \longmapsto g^{i}(1+p)^{j} \operatorname{mod} p^{\nu}$$

wohldefiniert und ein Isomorphismus von Gruppen ist. Insbesondere ist $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ zyklisch.

Bemerkung

Das direkte Produkt $G_1 \times G_2 \times \ldots \times G_r$ zyklischer Gruppen G_i mit paarweise teilerfremden Ordnungen m_i ist zyklisch von der Ordnung $m_1 m_2 \cdots m_r$.

F4.5

Seien G_1, G_2, \ldots, G_r endliche abelsche Gruppen der Ordnungen m_1, m_2, \ldots, m_r . Wenn $G := G_1 \times \ldots \times G_r$ zyklisch ist, so sind die m_1, \ldots, m_r paarweise teilerfremd und die G_i sind zyklisch.

F4.6

Sei G eine zyklische Gruppe der Ordnung n. Dann ist jede Untergruppe H von G zyklisch mit $\operatorname{ord}(H)|n$. Die Abbildung $H\mapsto\operatorname{ord}(H)$ ist eine Bijektion zwischen der Menge aller Untergruppen H von G und der Menge aller natürlichen Teiler d von n, und zwar ist $H_d:=\{x\in G:x^d=1\}$ die Untergruppe der Ordnung d von G. Es ist

$$H_{\frac{n}{d}} = \{x \in G : x^{\frac{n}{d}} = 1\} \stackrel{!}{=} \{y^d; y \in G\}$$

 $\ \, {\rm die} \,\, {\rm Untergruppe} \,\, {\rm der} \,\, d\text{-}{\rm ten} \,\, {\rm Potenzen} \,\, {\rm in} \,\, G.$

Korollar

Für beliebige $n \in \mathbb{N}$ gilt:

$$\sum_{d|n} \varphi(d) = n$$

Bemerkung

Sei G eine beliebige endliche Gruppe der Ordnung n. Für jedes $d|n,d\in\mathbb{N}$ habe G höchstens d Elemente x mit $x^d=1$. Dann ist G zyklisch.

Satz 4.4

Sei $m \in \mathbb{N}, m > 1$. Genau dann besitzt $(\mathbb{Z}/m\mathbb{Z})^{\times}$ eine Primitivwurzel, wenn m eine der Zahlen folgender Gestalt ist (mit einer Primzahl $p \neq 2$ und $\nu \geq 1$):

$$2, 4, p^{\nu}, 2p^{\nu}$$

5 Summen von zwei Quadraten in $\mathbb Z$ und der Gaußsche Zahlring $\mathbb Z[i]$

Ausgangspunkt ist F3.8: 02.12. [15]

$$p \equiv 1 \mod 4 \quad \Rightarrow \quad \exists c \in \mathbb{Z} \text{ mit } c^2 \equiv -1 \mod p,$$

d.h. $c^2 + 1 = kp$ mit einem $k \in \mathbb{Z}$.

Satz 5.1 (Fermat, Euler)

Sei p eine Primzahl. Ist $p \equiv 1 \mod 4$, so gibt es $x, y \in \mathbb{Z}$ mit

$$p = x^2 + y^2 (5.1)$$

Ist umgekehrt p in der Gestalt (5.1) darstellbar, so ist $p \equiv 1 \mod 4$ oder p = 2.

Definition 5.1 (Gaußscher Zahlring)

$$\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\}\$$

heißt Gaußscher Zahlring. Es ist $\mathbb{Z}[i]^{\times} = \{1, -1, i, -i\}$ und $(a + bi)(a - bi) = a^2 + b^2$.

Satz 5.2 (Gaußscher Zahlring ist euklidisch)

 $\mathbb{Z}[i]$ ist ein euklidischer Ring mit euklidischer Normfunktion u definiert durch

$$\nu(z) = z \cdot \overline{z} =: N(z), z \in \mathbb{Z}[i]$$

F5.1

Sei π ein Primelement $\neq 0$ von $\mathbb{Z}[i]$. Dann gibt es genau eine Primzahl p mit $\pi|p$ in $\mathbb{Z}[i]$. Es gilt entweder $N(\pi)=p$ oder $N(\pi)=p^2$. Im ersten Fall nennen wir π vom Grad 1, im zweiten Fall vom Grad 2.

Um alle Primelemente π von $\mathbb{Z}[i]$ zu finden, haben wir also die Primfaktorzerlegung aller $p \in \mathbb{Z}[i]$ zu untersuchen. Die p heißen **rationale Primzahlen**, die π **Gaußsche Primzahlen**.

Satz 5.3

Sei p Primzahl sowie π ein Primfaktor von p in $\mathbb{Z}[i]$. Dann gibt es drei Fälle:

- (i) $p = \pi^2$ (p ist verzweigt in $\mathbb{Z}[i]$)
- (ii) $p = \pi$ (p ist **träge** in $\mathbb{Z}[i]$, d.h. p bleibt Primelement in $\mathbb{Z}[i]$)
- (iii) $p = \pi \overline{\pi} \text{ mit } pi \not= \overline{\pi}$ ($p \text{ zerfällt in } \mathbb{Z}[i]$)

Und zwar gilt:

(i)
$$\Leftrightarrow$$
 $p=2$

(ii)
$$\Leftrightarrow$$
 $N(\pi) = p^2 \Leftrightarrow p \equiv 3 \mod 4$

(iii)
$$\Leftrightarrow N(\pi) = p \Leftrightarrow p \equiv 1 \mod 4$$

Also ist z.B. 7 auch in $\mathbb{Z}[i]$ ein Primelement, aber 5 = (2+i)(2-i) nicht.

Korollar

Ist p eine Primzahl mit $p \equiv 1 \mod 4$, so ist p in der Gestalt $p = a^2 + b^2$ mit $a, b \in \mathbb{N}$ darstellbar. Bis auf Vertauschung von a und b ist diese Darstellung eindeutig. Ferner ist notwendigerweise (a, b) = 1.

Satz 5.4

Sei $n \in \mathbb{N}$.

- (i) Genau dann ist n eine Summe von zwei Quadraten in \mathbb{Z} , wenn für jede Primzahl $p \equiv 3 \mod 4$ der Exponent $w_p(n)$ gerade ist.
- (ii) Besitzt n eine primitive Darstellung als Summe von zwei Quadraten, d.h.

$$n = a^2 + b^2$$
 mit teilerfremden $a, b \in \mathbb{Z}$,

so folgt:

$$n$$
 hat keine Primteiler $p \equiv 3 \mod 4$, und es ist $4 \not\mid n$. (5.2)

(iii) Umgekehrt: Gelte (5.2), und bezeichne s die Anzahl der ungeraden Primteiler von n. Für n>2 hat dann n genau 2^{s-1} primitive Darstellungen als Summe von zwei Quadraten, wenn nur wesentlich verschiedene Darstellungen gezählt werden.

(Beachte: n kann außerdem noch nicht-primitive Darstellungen haben, z.B. $50 = 7^2 + 1^2 = 5^2 + 5^2$.)

Korollar

Es sei n eine ungerade natürliche Zahl, n > 1. Besitzt n im Wesentlichen nur eine einzige Darstellung als Summe von zwei Quadraten und ist diese Darstellung primitiv, so ist n eine Primzahl (Umkehrung des Korollars von Satz 5.3).

Bemerkung

 $45=6^2+3^2$ ist die einzige Darstellung von 45 als Summe von zwei Quadraten, doch diese ist nicht primitiv. Im Übrigen ist die Voraussetzung, dass n ungerade ist, wesentlich: Für n=10 ist $10=3^2+1^2$ die im Wesentlichen einzige Darstellung von 10 als Summe von zwei Quadraten und diese ist auch primitiv.

6 Quadratische Reste

Vorbemerkungen

Sei $m \in \mathbb{N}$, m > 1. Wir untersuchen Kongruenzen über \mathbb{Z} der Gestalt

$$aX^{2} + bX + c \equiv 0 \mod m, \quad a \neq 0$$

$$\Leftrightarrow 4a^{2}X^{2} + 4abX + 4ac \equiv 0 \mod 4am$$

$$\Leftrightarrow (2aX + b)^{2} \equiv b^{2} - 4ac \mod 4am$$

$$\Leftrightarrow \begin{cases} Y^{2} \equiv D := b^{2} - 4ac \mod 4am \\ Y \equiv b \mod 2a \end{cases}$$

Bemerkung

- 1) Für (a, m) = 1: (6.1) ist äquivalent zu $X^2 + \frac{b}{a}X + \frac{c}{a} \equiv 0 \mod m$.
- 2) Für m,a ungerade: (6.1) ist äquivalent zu $(aX + \frac{b}{2})^2 \left(\left(\frac{b}{2}\right)^2 ac\right) \equiv 0 \mod am$.

F6.1

Die Kongruenz

$$X^2 \equiv D \mod m \text{ mit } (D,m) = d = d_1^2 d_0 \text{ und } d_0 \text{ quadratfrei}$$

ist genau dann lösbar, wenn $\left(\frac{m}{d},d_0\right)=1$ und

$$X^2 \equiv d_0 \frac{D}{d} \bmod \frac{m}{d}$$

lösbar ist. Hier sind $d_0 \frac{D}{d}$ und $\frac{m}{d}$ teilerfremd! (Denn $\frac{m}{d}$ prim zu $\frac{D}{d}$ und wegen $\left(\frac{m}{d}, d_0\right) = 1$ auch zu d_0 .)

Damit ist alles reduziert auf eine Kongruenz der Gestalt

$$X^2 \equiv a \bmod m \text{ mit } (a, m) = 1 \tag{6.2}$$

Definition 6.1 (Quadratischer Rest)

Ist (6.2) lösbar, d.h. existiert ein $b \in \mathbb{Z}$ mit $b^2 \equiv a \mod m$, so heißt a ein **Quadratischer Rest** (QR) modulo m, andernfalls heißt a ein **quadratischer Nichtrest** modulo m.

Probleme

- 1) Sei m gegeben. Man verschaffe sich eine Übersicht über die sämtlichen quadratischen Reste modulo m.
- 2) Sei a gegeben. Für welche (zu a teilerfremden) natürlichen Zahlen m>1 ist a quadratischer Rest modulo m?

Problem 2) ist schwieriger und tiefer. Eine Antwort liefert das **quadratische Reziprozitätsgesetz**. Zuerst Problem 1):

F6.2

a ist quadratischer Rest modulo m genau dann, wenn gilt:

1) a ist quadratischer Rest modulo p für jeden ungeraden Primteiler p von m.

2)
$$\begin{cases} a \equiv 1 \mod 4, & \text{falls } 4|m, 8 \not\mid m \\ a \equiv 1 \mod 8, & \text{falls } 8|m \end{cases}$$

Ist a quadratischer Rest modulo m, so hat (6.2) genau 2^{s+t} Lösungen modulo m; dabei ist s die Anzahl der ungeraden Primteiler von m und

$$t=2$$
 für $w_2(m)\geq 3$

$$t=1$$
 für $w_2(m)=2$

$$t=0$$
 für $w_2(m) \leq 1$.

Index

k-ter Rest, 14 1-Einheit, 26

assoziiert, 4

Chinesischer Restsatz, 22, 23

Einheit, 4

Einheitengruppe, 4 Erzeuger, 25

Euklidischer Algorithmus, 12 euklidischer Ring, 11, 29 Eulersche φ -Funktion, 22

Exponent, 7, 25

faktoriell, 8

Fermats kleiner Satz, 19

Fundamentalsatz der elementaren Arithmetik, 7

Gaußsche Primzahl, 29 Gaußscher Zahlring, 29 größter gemeinsamer Teiler, 8

Hauptideal, 10 Hauptidealring, 10

Ideal, 10 Index, 24 Integritätsring, 4 irreduzibel, 5

Kettenbruch, 14

Kettenbruchentwicklung, 13

kleinstes gemeinsames Vielfaches, 8

Kongruenz, 19

natürlicher Kettenbruch, 17 normierter Kettenbruch, 17

Nullteiler, 4

Ordnung, 24

prime Restklassengruppe, 24 Primelement, 6, 8 Primitivwurzel, 24 Primzahl, 5

Quadratischer Rest, 31

quadratisches Reziprozitätsgesetz, 31

rationale Primzahl, 29 Restklasse, 20 Restklassen, 25

Restklassenabbildung, 25 Restklassenkörper, 21

Satz vom größten gemeinsamen Teiler, 11

Satz von Euklid, 7

Satz von Euler-Fermat, 22 Satz von Wilson, 21 simultane Kongruenz, 23

Teilbarkeitsbedingung für Hauptideale, 6

Teiler, 4 Trägheit, 29

unzerlegbar, 5

Vertretersystem, 8, 21 Verzweigtheit, 29

Zerlegung in unzerlegbare Faktoren, 5, 6 zyklisch, 25

Liste der Sätze und Definitionen

Definition 1.1	Teilbarkeit	4
F1.1	Triviale Teilbarkeitsregeln	4
Definition 1.2	Einheit, assoziiert	4
F1.2		5
Definition 1.3	unzerlegbar, irreduzibel, zusammengesetzt	5
Definition 1.3	Primzahl	5
Definition 1.4	Zerlegung in unzerlegbare Faktoren	5
F1.3		5
F1.3		5
Satz 1.1	Existenz unendlich vieler Primzahlen	6
Definition 1.5	eindeutige Zerlegung	6
F1.4		6
Definition 1.6	Primelement	6
Lemma 1.1		7
F1.5	Satz von Euklid	7
Definition 1.7	Exponent	7
F1.6	Eigenschaften der Exponentfunktion	7
Satz 1.2	Fundamentalsatz der elementaren Arithmetik	7
Definition 1.8	faktorieller Ring, Vertretersystem für Primelemente	8
F1.7		8
Definition 1.9	ggT und kgV	8
F1.8		8
F1.9		ç
F1.10	Verallgemeinerung von F1.9	ç
Definition 2.1	Ideal, Hauptideal	10
Definition 2.2	·	10
F2.1		11
Satz 2.1		11
F2.2	Division mit Rest in $\mathbb Z$	11
Definition 2.3	euklidischer Ring	11
F2.3	-	12
F2.4		12
F2.5		13
Definition 2.4		14
Definition 2.5	Näherungsbruch	15
F2.6		15
F2.7	-	16
F2.8		16
F2.9		16
F2.10		16
F2.11		16
Definition 2.6		17
F2.12		17
F2.13		17
F2.14		17
F2 15		17

Definition 2.7	normierter Kettenbruch	17
Satz 2.2		17
F2.16		18
F2.17		18
Satz 3.1	Fermats kleiner Satz	19
Definition 3.1	Kongruenz in $\mathbb Z$	19
F3.1		19
Definition 3.1	Kongruenz allgemeiner	19
F3.2		19
Definition 3.2	Restklasse	20
F3.3		20
F3.4		20
F3.5		20
Definition 3.2	Restklassen allgemein	20
F3.6		21
Lemma 3.1		21
F3.7	Satz von Wilson	21
F3.8		22
Definition 3.3	Eulersche $arphi$ -Funktion	22
Satz 3.1	Satz von Euler-Fermat	22
Lemma 3.2		22
Satz 3.2	Chinesischer Restsatz	22
Satz 3.2	Chinesischer Restsatz für simultane Kongruenzen	23
Definition 4.1	prime Restklassengruppe	24
Definition 4.2	Primitivwurzel	24
Satz 4.1	Satz von Gauß	24
Definition 4.3	Ordnung eines Gruppenelements	24
Lemma 4.1		24
Definition 4.4	Gruppenexponent	25
F4.1		25
Satz 4.1		25
Definition 4.5	Restklassen, Restklassenabbildung	25
F4.2		26
F4.3		26
Definition 4.6	1-Einheit und 1-Einheitengruppe	26
Lemma 4.2		26
F4.4		27
Satz 4.2		27
Satz 4.3		27
Satz 4.3		28
F4.5		28
F4.6		28
Satz 4.4		28
Satz 5.1	Fermat, Euler	29
Definition 5.1	Gaußscher Zahlring	29
Satz 5.2	Gaußscher Zahlring ist euklidisch	29
F5.1		29

Satz 5.3		29
Satz 5.4		30
F6.1		31
Definition 6.1	Quadratischer Rest	31
F6.2		31