Sales Analysis for Carrefour

Wangechi Mungai

01/04/2022

1. Defining the Question

- a) Specifying the Question Reducing your dataset to a low dimensional dataset using the t-SNE algorithm or PCA.
- b) Defining the Metric for Success The model will be appraised successful if it will be able to reduce the dataset to a low dimensional dataset. c) Understanding the context

You are a Data analyst at Carrefour Kenya and are currently undertaking a project that will inform the marketing department on the most relevant marketing strategies that will result in the highest no. of sales (total price including tax).

d) Recording the Experimental Design

The following are the experimental design i took in order to complete this project:

- 1.Importing all the necessary libraries
- 2.Loading the dataset
- 3. Reading, cleaning the dataset
- 4. Performing data reduction techniques using PCA.

e)Reading the Data

```
sell <- read.csv("http://bit.ly/CarreFourDataset")
head(sell)</pre>
```

```
##
      Invoice.ID Branch Customer.type Gender
                                                        Product.line Unit.price
## 1 750-67-8428
                      Α
                               Member Female
                                                   Health and beauty
                                                                          74.69
## 2 226-31-3081
                      C
                               Normal Female Electronic accessories
                                                                          15.28
## 3 631-41-3108
                      Α
                               Normal
                                        Male
                                                  Home and lifestyle
                                                                          46.33
## 4 123-19-1176
                      Α
                               Member
                                        Male
                                                   Health and beauty
                                                                          58.22
## 5 373-73-7910
                               Normal
                                                   Sports and travel
                                                                          86.31
                      Α
## 6 699-14-3026
                      C
                               Normal
                                        Male Electronic accessories
                                                                          85.39
     Quantity
##
                  Tax
                           Date Time
                                          Payment
                                                     cogs gross.margin.percentage
## 1
            7 26.1415 1/5/2019 13:08
                                          Ewallet 522.83
                                                                         4.761905
## 2
            5 3.8200
                      3/8/2019 10:29
                                              Cash 76.40
                                                                         4.761905
## 3
            7 16.2155 3/3/2019 13:23 Credit card 324.31
                                                                         4.761905
            8 23.2880 1/27/2019 20:33
                                          Ewallet 465.76
## 4
                                                                         4.761905
## 5
            7 30.2085 2/8/2019 10:37
                                          Ewallet 604.17
                                                                         4.761905
            7 29.8865 3/25/2019 18:30
                                          Ewallet 597.73
                                                                         4.761905
     gross.income Rating
##
                            Total
## 1
          26.1415
                     9.1 548.9715
## 2
           3.8200
                     9.6 80.2200
```

```
## 3 16.2155 7.4 340.5255
## 4 23.2880 8.4 489.0480
## 5 30.2085 5.3 634.3785
## 6 29.8865 4.1 627.6165
```

f) Checking the Data

```
#previewing tail of dataset
tail(sell)
```

```
##
        Invoice.ID Branch Customer.type Gender
                                                        Product.line Unit.price
## 995
       652-49-6720
                       C
                                Member Female Electronic accessories
                                                                          60.95
## 996
       233-67-5758
                        C
                                 Normal
                                         Male
                                                  Health and beauty
                                                                          40.35
## 997
       303-96-2227
                       В
                                 Normal Female
                                                  Home and lifestyle
                                                                          97.38
## 998
       727-02-1313
                      Α
                                 Member
                                         Male Food and beverages
                                                                          31.84
## 999 347-56-2442
                       Α
                                 Normal Male
                                                Home and lifestyle
                                                                          65.82
## 1000 849-09-3807
                        Α
                                 Member Female
                                                 Fashion accessories
                                                                          88.34
##
       Quantity
                    Tax
                             Date Time Payment cogs gross.margin.percentage
## 995
          1 3.0475 2/18/2019 11:40 Ewallet 60.95
                                                                     4.761905
              1 2.0175 1/29/2019 13:46 Ewallet 40.35
## 996
                                                                     4.761905
## 997
             10 48.6900 3/2/2019 17:16 Ewallet 973.80
                                                                     4.761905
## 998
              1 1.5920 2/9/2019 13:22
                                         Cash 31.84
                                                                     4.761905
              1 3.2910 2/22/2019 15:33
                                          Cash 65.82
## 999
                                                                     4.761905
## 1000
              7 30.9190 2/18/2019 13:28
                                          Cash 618.38
                                                                     4.761905
       gross.income Rating
##
                               Total
## 995
             3.0475
                       5.9
                             63.9975
## 996
             2.0175
                       6.2
                             42.3675
## 997
                       4.4 1022.4900
            48.6900
## 998
             1.5920
                       7.7
                             33.4320
## 999
             3.2910
                       4.1
                             69.1110
## 1000
            30.9190
                       6.6 649.2990
```

#previewing the shape of the dataset
dim(sell)

[1] 1000 16

The dataset contains 1000 rows and 16 columns

#previewing the descriptive statistics of dataset summary(sell)

```
##
     Invoice.ID
                         Branch
                                          Customer.type
                                                                Gender
## Length:1000
                                         Length: 1000
                                                            Length: 1000
                      Length: 1000
   Class : character
                      Class : character
                                          Class : character
                                                             Class : character
## Mode :character
                      Mode :character
                                         Mode : character
                                                            Mode : character
##
##
##
## Product.line
                        Unit.price
                                          Quantity
                                                            Tax
                      Min. :10.08
                                      Min. : 1.00
## Length:1000
                                                      Min.
                                                             : 0.5085
                                      1st Qu.: 3.00
## Class:character 1st Qu.:32.88
                                                      1st Qu.: 5.9249
```

```
Median: 55.23 Median: 5.00 Median: 12.0880
## Mode :character
##
                      Mean :55.67 Mean : 5.51 Mean
                                                          :15.3794
##
                      3rd Qu.:77.94
                                     3rd Qu.: 8.00
                                                    3rd Qu.: 22.4453
##
                           :99.96 Max. :10.00 Max.
                                                           :49.6500
##
       Date
                         Time
                                          Payment
                                                               cogs
##
  Length: 1000
                      Length: 1000
                                        Length: 1000
                                                          Min. : 10.17
                                        Class : character
   Class : character
                      Class : character
                                                          1st Qu.:118.50
                      Mode :character
                                        Mode :character
  Mode :character
                                                          Median :241.76
##
                                                          Mean :307.59
##
                                                          3rd Qu.:448.90
##
                                                          Max.
                                                                :993.00
##
   gross.margin.percentage gross.income
                                                                Total
                                                Rating
                                            Min. : 4.000
## Min. :4.762
                          Min. : 0.5085
                                                            Min. : 10.68
## 1st Qu.:4.762
                          1st Qu.: 5.9249
                                            1st Qu.: 5.500
                                                          1st Qu.: 124.42
## Median :4.762
                          Median :12.0880
                                            Median : 7.000
                                                            Median: 253.85
## Mean :4.762
                          Mean :15.3794
                                            Mean : 6.973
                                                            Mean : 322.97
## 3rd Qu.:4.762
                          3rd Qu.:22.4453
                                            3rd Qu.: 8.500
                                                            3rd Qu.: 471.35
## Max. :4.762
                          Max. :49.6500
                                            Max. :10.000
                                                            Max.
                                                                   :1042.65
#checking the datatypes of the columns
sapply(sell, class)
                                                          Customer.type
##
               Invoice. ID
                                          Branch
##
              "character"
                                     "character"
                                                             "character"
##
                   Gender
                                    Product.line
                                                             Unit.price
##
              "character"
                                     "character"
                                                              "numeric"
##
                                                                   Date
                 Quantity
                                            Tax
                "integer"
                                       "numeric"
##
                                                             "character"
##
                     Time
                                         Payment
                                                                   cogs
##
              "character"
                                     "character"
                                                              "numeric"
## gross.margin.percentage
                                    gross.income
                                                                 Rating
##
                "numeric"
                                       "numeric"
                                                              "numeric"
##
                    Total
##
                "numeric"
# information about the dataset
str(sell)
## 'data.frame':
                   1000 obs. of 16 variables:
                                  "750-67-8428" "226-31-3081" "631-41-3108" "123-19-1176" ...
## $ Invoice.ID
                          : chr
## $ Branch
                                  "A" "C" "A" "A" ...
                            : chr
## $ Customer.type
                                  "Member" "Normal" "Member" ...
                           : chr
## $ Gender
                                  "Female" "Female" "Male" ...
                           : chr
## $ Product.line
                           : chr
                                  "Health and beauty" "Electronic accessories" "Home and lifestyle" "
## $ Unit.price
                                  74.7 15.3 46.3 58.2 86.3 ...
                           : num
## $ Quantity
                           : int
                                  7 5 7 8 7 7 6 10 2 3 ...
## $ Tax
                           : num
                                  26.14 3.82 16.22 23.29 30.21 ...
                                  "1/5/2019" "3/8/2019" "3/3/2019" "1/27/2019" ...
## $ Date
                           : chr
## $ Time
                                  "13:08" "10:29" "13:23" "20:33" ...
                           : chr
##
   $ Payment
                                  "Ewallet" "Cash" "Credit card" "Ewallet" ...
                           : chr
##
   $ cogs
                           : num 522.8 76.4 324.3 465.8 604.2 ...
## $ gross.margin.percentage: num 4.76 4.76 4.76 4.76 4.76 ...
                          : num 26.14 3.82 16.22 23.29 30.21 ...
## $ gross.income
```

```
## $ Rating : num 9.1 9.6 7.4 8.4 5.3 4.1 5.8 8 7.2 5.9 ... 
## $ Total : num 549 80.2 340.5 489 634.4 ...
```

#checking for percentage of any null values colMeans(is.na(sell)) *100

##	Invoice.ID	Branch	Customer.type
##	0	0	0
##	Gender	Product.line	Unit.price
##	0	0	0
##	Quantity	Tax	Date
##	0	0	0
##	Time	Payment	cogs
##	0	0	0
##	gross.margin.percentage	gross.income	Rating
##	0	0	0
##	Total		
##	0		

There are no null values in the dataset

```
#checking for duplicate values
anyDuplicated(sell)
```

[1] 0

There are no duplicates values in the dataset

g)Data Cleaning

```
#checking numerical cols
num_cols <- unlist(lapply(sell, is.numeric))
num_cols</pre>
```

```
Invoice.ID
##
                                             Branch
                                                              Customer.type
##
                     FALSE
                                              FALSE
                                                                       FALSE
##
                    Gender
                                      Product.line
                                                                 Unit.price
##
                     FALSE
                                              FALSE
                                                                       TRUE
##
                                                Tax
                                                                       Date
                  Quantity
                                               TRUE
##
                      TRUE
                                                                      FALSE
##
                      Time
                                            Payment
                                                                        cogs
##
                     FALSE
                                              FALSE
                                                                       TRUE
## gross.margin.percentage
                                      gross.income
                                                                     Rating
##
                      TRUE
                                               TRUE
                                                                        TRUE
##
                     Total
                      TRUE
##
```

```
#displayig the numerical columns
df_num <- sell[ , num_cols]
head(df_num, 5)</pre>
```

```
##
     Unit.price Quantity
                              Tax cogs gross.margin.percentage gross.income
## 1
          74.69
                        7 26.1415 522.83
                                                         4.761905
                                                                       26.1415
## 2
          15.28
                        5 3.8200 76.40
                                                         4.761905
                                                                        3.8200
## 3
          46.33
                        7 16.2155 324.31
                                                         4.761905
                                                                       16.2155
## 4
          58.22
                        8 23.2880 465.76
                                                         4.761905
                                                                       23.2880
## 5
          86.31
                        7 30.2085 604.17
                                                         4.761905
                                                                       30.2085
##
     Rating
               Total
        9.1 548.9715
## 1
## 2
        9.6 80.2200
## 3
        7.4 340.5255
## 4
        8.4 489.0480
        5.3 634.3785
## 5
#checking outliers
outlier <- function(x){</pre>
  out <- boxplot.stats(x)$out
  return((length(out)/ 1000)*100)
}
 #visualizing the outliers
   boxplot(df_num)
```


there are a number of outliers in the i Tax,cogs,gross income, and Total columns but will not be removed since they are neccesary for our analysis

```
# removing columns with zero variance
num <- df_num[ , which(apply(df_num, 2, var) != 0)]</pre>
head(num)
##
    Unit.price Quantity
                            Tax cogs gross.income Rating
                                                              Total
         74.69
                     7 26.1415 522.83
                                            26.1415
                                                       9.1 548.9715
## 2
         15.28
                      5 3.8200 76.40
                                             3.8200 9.6 80.2200
## 3
         46.33
                      7 16.2155 324.31
                                            16.2155
                                                       7.4 340.5255
## 4
         58.22
                      8 23.2880 465.76
                                            23.2880
                                                       8.4 489.0480
## 5
         86.31
                      7 30.2085 604.17
                                            30.2085
                                                       5.3 634.3785
                      7 29.8865 597.73
## 6
         85.39
                                            29.8865
                                                       4.1 627.6165
h) Implementing solution
# We then pass of to the prcomp(). We also set two arguments, center and scale,
# to be TRUE then preview our object with summary
sell_pca <- prcomp(num,scale=TRUE)</pre>
summary(sell_pca)
## Importance of components:
                            PC1
                                   PC2
                                          PC3
                                                  PC4
## Standard deviation
                          2.2185 1.0002 0.9939 0.30001 2.981e-16 1.493e-16
## Proportion of Variance 0.7031 0.1429 0.1411 0.01286 0.000e+00 0.000e+00
## Cumulative Proportion 0.7031 0.8460 0.9871 1.00000 1.000e+00 1.000e+00
                               PC7
##
## Standard deviation
                          9.831e-17
## Proportion of Variance 0.000e+00
## Cumulative Proportion 1.000e+00
#visualizing the principle components
```

plot(sell_pca,type = '1')

sell_pca

the propotion of variance decreases as principle components increases

library(ggbiplot)

```
# Calling str() to have a look at your PCA object
# ---
#
str(sell_pca)
## List of 5
   $ sdev
              : num [1:7] 2.22 1.00 9.94e-01 3.00e-01 2.98e-16 ...
   $ rotation: num [1:7, 1:7] -0.292 -0.325 -0.45 -0.45 -0.45 ...
     ..- attr(*, "dimnames")=List of 2
##
     .. ..$ : chr [1:7] "Unit.price" "Quantity" "Tax" "cogs" ...
     .. ..$ : chr [1:7] "PC1" "PC2" "PC3" "PC4" ...
##
##
    $ center : Named num [1:7] 55.67 5.51 15.38 307.59 15.38 ...
    ..- attr(*, "names")= chr [1:7] "Unit.price" "Quantity" "Tax" "cogs" ...
##
##
             : Named num [1:7] 26.49 2.92 11.71 234.18 11.71 ...
     ..- attr(*, "names")= chr [1:7] "Unit.price" "Quantity" "Tax" "cogs" ...
##
              : num [1:1000, 1:7] -2.005 2.306 -0.186 -1.504 -2.8 ...
##
     ..- attr(*, "dimnames")=List of 2
##
     .. ..$ : NULL
##
    ....$ : chr [1:7] "PC1" "PC2" "PC3" "PC4" ...
   - attr(*, "class")= chr "prcomp"
# Installing our ggbiplot visualisation package
```

```
## Loading required package: ggplot2
## Loading required package: plyr
## Loading required package: scales
## Loading required package: grid
library(devtools)
## Loading required package: usethis
library(ggplot2)
library(plyr)
library(scales)
library(grid)
library(ggbiplot)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::arrange() masks plyr::arrange()
## x readr::col_factor() masks scales::col_factor()
## x purrr::compact() masks plyr::compact()
## x dplyr::count() masks plyr::count()
## x purrr::discard() masks scales::discard()
## x dplyr::failwith() masks plyr::failwith()
## x dplyr::filter() masks stats::filter()
## x dplyr::id() masks plyr::id()
## x dplyr::lag() masks stats::lag()
## x dplyr::mutate() masks plyr::mutate()
## x dplyr::rename() masks plyr::rename()
## x dplyr::summarise() masks plyr::summarise()
## x dplyr::summarize() masks plyr::summarize()
#visualizing pca
ggbiplot(sell_pca, scale =0.4)
```


the data points are distributed everywhere

Part 2: Feature Selection

```
wrap <- df_num
head(wrap)
                                   cogs gross.margin.percentage gross.income
##
     Unit.price Quantity
                             Tax
## 1
          74.69
                       7 26.1415 522.83
                                                       4.761905
                                                                     26.1415
## 2
          15.28
                       5 3.8200 76.40
                                                       4.761905
                                                                      3.8200
## 3
         46.33
                      7 16.2155 324.31
                                                       4.761905
                                                                     16.2155
## 4
          58.22
                       8 23.2880 465.76
                                                       4.761905
                                                                     23.2880
## 5
          86.31
                       7 30.2085 604.17
                                                       4.761905
                                                                     30.2085
## 6
          85.39
                       7 29.8865 597.73
                                                       4.761905
                                                                     29.8865
##
     Rating
               Total
       9.1 548.9715
## 1
## 2
       9.6 80.2200
       7.4 340.5255
## 3
## 4
       8.4 489.0480
## 5
       5.3 634.3785
## 6
       4.1 627.6165
```

Loading required package: lattice

#loading libraries
library(caret)

```
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
library(corrplot)
## corrplot 0.92 loaded
elim <- c("gross.margin.percentage")</pre>
#dropping the column
wrap <- wrap[, !names(wrap) %in% elim]</pre>
head(wrap)
##
     Unit.price Quantity
                             Tax
                                   cogs gross.income Rating
                                                               Total
## 1
         74.69
                      7 26.1415 522.83
                                             26.1415
                                                        9.1 548.9715
## 2
         15.28
                      5 3.8200 76.40
                                              3.8200
                                                        9.6 80.2200
## 3
         46.33
                      7 16.2155 324.31
                                             16.2155
                                                        7.4 340.5255
## 4
         58.22
                       8 23.2880 465.76
                                             23.2880
                                                        8.4 489.0480
## 5
          86.31
                      7 30.2085 604.17
                                             30.2085
                                                        5.3 634.3785
## 6
          85.39
                       7 29.8865 597.73
                                             29.8865
                                                        4.1 627.6165
# Checking correlation using corr matrix
cm <- cor(wrap)
# Find attributes that are highly correlated
highcorr<- findCorrelation(cm, cutoff=0.75)
highcorr
## [1] 4 7 3
# Removing the high correlated variables
final <- cm [-highcorr]
# scaling the dataset
library(dplyr)
scaling <- as.data.frame(scale(wrap))</pre>
head(wrap)
##
     Unit.price Quantity
                             Tax
                                   cogs gross.income Rating
                                                               Total
## 1
         74.69
                      7 26.1415 522.83
                                             26.1415
                                                        9.1 548.9715
## 2
         15.28
                       5 3.8200 76.40
                                              3.8200
                                                        9.6 80.2200
## 3
         46.33
                      7 16.2155 324.31
                                                        7.4 340.5255
                                             16.2155
## 4
         58.22
                      8 23.2880 465.76
                                             23.2880
                                                        8.4 489.0480
## 5
         86.31
                      7 30.2085 604.17
                                             30.2085
                                                        5.3 634.3785
## 6
         85.39
                       7 29.8865 597.73
                                             29.8865
                                                        4.1 627.6165
```


Feature Ranking

```
library(FSelector)
colnames(scaling)
                      "Quantity"
                                      "Tax"
## [1] "Unit.price"
                                                      "cogs"
                                                                     "gross.income"
                      "Total"
## [6] "Rating"
result <- linear.correlation(Unit.price~., scaling)
result
##
                attr_importance
                    0.010777564
## Quantity
## Tax
                    0.633962089
## cogs
                    0.633962089
## gross.income
                    0.633962089
## Rating
                    0.008777507
## Total
                    0.633962089
Subset <- cutoff.k(result, 5)
as.data.frame(Subset)
```

```
##
           Subset
## 1
              Tax
## 2
             cogs
## 3 gross.income
## 4
            Total
## 5
         Quantity
Subset1 <-cutoff.k.percent(result, 0.4)
as.data.frame(Subset1)
##
    Subset1
## 1
         Tax
## 2
        cogs
# we will use an entropy - based approach as shown below;
#
res <- information.gain(Unit.price~., scaling)
# Choosing Variables by cutoffSubset <- cutoff.k(Scores2, 5)
Subset2 <- cutoff.k(res, 5)
as.data.frame(Subset2)
##
          Subset2
## 1
              Tax
## 2
             cogs
## 3 gross.income
## 4
            Total
## 5
         Quantity
using Wrapper Methods
# Installing and loading our clustvarsel package
suppressWarnings(
    suppressMessages(if
                     (!require(clustvarsel, quietly=TRUE))
        install.packages("clustvarsel")))
library(clustvarsel)
# Installing and loading our mclust package
# ---
#
suppressWarnings(
    suppressMessages(if
                     (!require(mclust, quietly=TRUE))
        install.packages("mclust")))
library(mclust)
head(wrap)
```

```
Unit.price Quantity Tax cogs gross.income Rating
## 1
        74.69 7 26.1415 522.83
                                       26.1415 9.1 548.9715
## 2
        15.28
                  5 3.8200 76.40
                                              9.6 80.2200
                                      3.8200
## 3
       46.33
                  7 16.2155 324.31
                                     16.2155 7.4 340.5255
                  7 30.2085 604.17
7 29.8865 597.73
                                              8.4 489.0480
       58.22
## 4
                                       23.2880
     86.31
## 5
                                      30.2085 5.3 634.3785
## 6
      85.39
                                      29.8865 4.1 627.6165
# Sequential forward greedy search (default)
gr = clustvarsel(scaling, G = 1:5)
gr
## Variable selection for Gaussian model-based clustering
## Stepwise (forward/backward) greedy search
## -----
##
## Variable proposed Type of step BICclust Model G BICdiff Decision
                       Add -2460.877 V 4 389.8147 Accepted
##
               Tax
           Quantity
                       Add -3799.377 VEV 5 830.4539 Accepted
Add -2804.291 EVV 5 2339.8019 Accepted
##
##
         Unit.price
         Unit.price Remove -3799.377 VEV 5 2339.8019 Rejected
##
                        Add -5778.207 EVV 5 -123.2240 Rejected
##
             Rating
##
         Unit.price
                      Remove -3799.377 VEV 5 2339.8019 Rejected
##
## Selected subset: Tax, Quantity, Unit.price
# building the clustering model:
sub = wrap[gr$subset]
mod = Mclust(sub, G = 1:5)
summary(mod)
## -----
## Gaussian finite mixture model fitted by EM algorithm
## -----
##
## Mclust EVV (ellipsoidal, equal volume) model with 5 components:
##
## log-likelihood
                  n df
                            BIC
                                     ICL
##
       -7991.262 1000 45 -16293.37 -16407.49
##
## Clustering table:
## 1 2 3 4 5
## 220 190 186 190 214
plot(mod,c("classification"))
```


there is presence of 4 cluster

plot(mod,c("classification"))

Using Embedded Method

```
library(wskm)
```

```
## Loading required package: latticeExtra
##
## Attaching package: 'latticeExtra'
## The following object is masked from 'package:ggplot2':
##
##
       layer
## Loading required package: fpc
model <- ewkm(scaling[1:4], 3, lambda=2, maxiter=1000)</pre>
## K-means clustering with 3 clusters of sizes 263, 488, 249
##
## Cluster means:
##
      Unit.price
                    Quantity
                                    Tax
## 1 0.05406789 1.04553189 0.7655679 0.7655679
## 2 -0.54976884 -0.60273337 -0.7691850 -0.7691850
```

```
## 3 1.02035075 0.07694377 0.6988672 0.6988672
##
## Clustering vector:
  ##
##
 [38] 1 1 1 3 2 3 1 2 3 1 1 2 3 3 2 2 2 2 3 2 1 3 2 2 1 1 2 3 2 2 3 3 2 3 1 2 3
##
 ##
[149] \ 1 \ 1 \ 3 \ 2 \ 3 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \ 1 \ 2 \ 1 \ 3 \ 1 \ 2 \ 3 \ 3 \ 3 \ 2 \ 2 \ 2 \ 1 \ 1 \ 2 \ 3 \ 3 \ 1 \ 1 \ 2 \ 1 \ 2
##
 ##
[445] 2 2 1 2 2 2 3 2 3 2 2 2 1 3 1 2 2 3 3 2 2 1 1 2 2 2 3 2 1 1 3 2 2 3 1 2 1
##
##
 [593] 2 3 3 2 2 1 2 2 3 2 3 2 1 2 1 2 2 2 2 1 3 3 1 1 3 3 3 2 2 2 3 3 2 2 2 3 2
## [1000] 3
##
## Within cluster sum of squares by cluster:
## [1] 636.4580 774.8489 581.9746
 (between SS / total SS = 50.1 %)
##
## Available components:
##
## [1] "cluster"
                      "withinss"
         "centers"
               "totss"
 [5] "tot.withinss"
##
         "betweenss"
               "size"
                      "iterations"
 [9] "total.iterations" "restarts"
               "weights"
# Cluster Plot against first 2 principal components
library("cluster")
clusplot(wrap[1:4], model$cluster, color=TRUE, shade=TRUE,
   labels=2, lines=3, main='Cluster Analysis Sales')
```

Cluster Analysis Sales

These two components explain 98.11 % of the point variability.

There are 4 clusters present where 2 components have 98.11 variability

```
#checking weights
round(model$weights*100,4)
```

```
## Unit.price Quantity Tax cogs
## 1 0.0025 99.9925 0.0025 0.0025
## 2 0.0025 0.0025 49.9975 49.9975
## 3 99.9925 0.0025 0.0025 0.0025
```