Vectors, Tensors and Fields

Lecture 1: Review of Vectors (D Chapters 1 & 2; RHB 6.1-6.6)

1. 1. Definitions (Physicist's)

Scalar: quantity specified by a single number;

Vector: quantity specified by a number (magnitude) and a **direction**;

e.g. speed is a scalar, velocity is a vector

1. 2. Geometrical Approach

A vector is *represented* by a 'directed line segment' with a length and direction proportional to the magnitude and direction of the vector (in appropriate units). A vector can be considered as a class of equivalent directed line segments

Both displacements from P to Q and from R to S are represented by the same vector

Also different quantities can be represented by the same vector e.g. a displacement of A cm, or a velocity of A m/s or ..., where A is the magnitude or **length** of vector \underline{A}

Notation: Textbooks often denote vectors by boldface (A); here we use underline. Denote a vector by \underline{A} and its magnitude by $|\underline{A}|$ or A. Always underline a vector to distinguish from its magnitude.

A unit vector is often denoted by a hat $\underline{\hat{A}} = \underline{A} / A$ and represents a direction.

Addition of vectors—parallelogram law

i.e.

Multiplication by scalars,

A vector may be multiplied by a scalar to give a new vector e.g.

$$\underline{\underline{A}}$$
 $\alpha \underline{\underline{A}}$ (for $\alpha > 0$) $\alpha \underline{\underline{A}}$ (for $\alpha < 0$)

Also

$$|\alpha \underline{A}| = |\alpha||\underline{A}|$$

$$\alpha(\underline{A} + \underline{B}) = \alpha \underline{A} + \alpha \underline{B} \quad \text{distributive}$$

$$\alpha(\beta \underline{A}) = (\alpha \beta) \underline{A} \quad \text{associative}$$

$$(\alpha + \beta) \underline{A} = \alpha \underline{A} + \beta \underline{A} .$$

1. 3. Scalar or dot product

The scalar product (also known as the dot product) between two vectors is defined as

 $(\underline{A} \cdot \underline{B}) \stackrel{\text{def}}{=} AB \cos \theta$, where θ is the angle between \underline{A} and \underline{B}

Notes on scalar product

(i)
$$\underline{A} \cdot \underline{B} = \underline{B} \cdot \underline{A}$$
 ; $\underline{A} \cdot (\underline{B} + \underline{C}) = \underline{A} \cdot \underline{B} + \underline{A} \cdot \underline{C}$

- (ii) $\underline{\hat{n}} \cdot \underline{A}$ = the scalar projection of \underline{A} onto $\underline{\hat{n}}$
 - $(\hat{\underline{n}} \cdot \underline{A}) \, \hat{\underline{n}}$ = the vector projection of \underline{A} onto $\hat{\underline{n}}$
- (iii) A vector may be resolved with respect to some direction $\underline{\hat{n}}$ into a parallel component $\underline{A}_{\parallel} = (\underline{\hat{n}} \cdot \underline{A})\underline{\hat{n}}$ and a perpendicular component $\underline{A}_{\perp} = \underline{A} \underline{A}_{\parallel}$. You should check that $\underline{A}_{\perp} \cdot \underline{\hat{n}} = 0$
- (iv) $A \cdot \underline{A} = |\underline{A}|^2$ which defines the magnitude of a vector. For a unit vector $\underline{\hat{A}} \cdot \underline{\hat{A}} = 1$
- 1. 4. The vector or 'cross' product

$$(\underline{A} \times \underline{B}) \stackrel{\text{def}}{=} AB \sin \theta \ \hat{\underline{n}}$$
, where $\hat{\underline{n}}$ in the 'right-hand screw direction'

i.e. $\underline{\hat{n}}$ is a unit vector normal to the plane of \underline{A} and \underline{B} , in the direction of a right-handed screw for rotation of \underline{A} to \underline{B} (through $<\pi$ radians).

[It is also called the **cross** or **wedge** product — and in the latter case denoted by $\underline{A} \wedge \underline{B}$.]

Notes on vector product

- (i) $\underline{A} \times \underline{B} = -\underline{B} \times \underline{A}$
- (ii) $\underline{A} \times \underline{B} = 0$ if $\underline{A}, \underline{B}$ are parallel

(iii)
$$\underline{A} \times (\underline{B} + \underline{C}) = \underline{A} \times \underline{B} + \underline{A} \times \underline{C}$$

(iv)
$$A \times (\alpha B) = \alpha A \times B$$

1. 5. The Scalar Triple Product

The scalar triple product is defined as follows

$$(\underline{A}, \underline{B}, \underline{C}) \stackrel{\text{def}}{=} \underline{A} \cdot (\underline{B} \times \underline{C})$$

Notes

(i) Let \underline{A} , \underline{B} and \underline{C} be three concurrent edges of a parallelepiped then the volume of the parallelepiped = $(\underline{A}, \underline{B}, \underline{C})$. To see this note that

$$(\underline{B} \times \underline{C}) \downarrow a \downarrow d$$

$$\hat{\underline{n}} \uparrow Q \qquad \underline{C} \qquad b$$

area of the base = Area of parallelogram
$$Obdc$$

= $|B| |C| \sin \theta = |\underline{B} \times \underline{C}|$
height = $A \cos \phi = \underline{\hat{n}} \cdot \underline{A}$
volume = Area of base × height
= $|B| |C| \sin \theta \ \underline{A} \cdot \underline{\hat{n}}$
= $A \cdot (B \times C)$

(ii) If we choose $\underline{A}, \underline{B}$ to define the base then a similar calculation gives volume $=\underline{C} \cdot (\underline{A} \times \underline{B})$ Therefore there is a cyclic symmetry

$$(\underline{A},\underline{B},\underline{C})=(\underline{B},\underline{C},\underline{A})=(\underline{C},\underline{A},\underline{B})=-(\underline{A},\underline{C},\underline{B})=-(\underline{B},\underline{A},\underline{C})=-(\underline{C},\underline{B},\underline{A})$$

(iii) If
$$\underline{A}, \underline{B}$$
 and \underline{C} are **coplanar** (i.e. all three vectors lie in the same plane) then $V = (\underline{A}, \underline{B}, \underline{C}) = 0$, and vice-versa.

1. 6. The Vector Triple Product

There are *several* ways of combining 3 vectors to form a new vector.

$$\textit{e.g. } \underline{A} \times (\underline{B} \times \underline{C}); \, (\underline{A} \times \underline{B}) \times \underline{C}, \, \text{etc.}$$

Note carefully that brackets are important, since

$$\underline{A} \times (\underline{B} \times \underline{C}) \neq (\underline{A} \times \underline{B}) \times \underline{C}$$
.

Expressions involving two (or more) vector products can be simplified by using the identity:-

3

$$\underline{A} \times (\underline{B} \times \underline{C}) = \underline{B}(\underline{A} \cdot \underline{C}) - \underline{C}(\underline{A} \cdot \underline{B})$$

This is a result you must memorise. We will prove it later in the course.

1. 7. Some examples in Physics

(i) Torque

The **torque** or **moment** of a force about the origin $= \underline{r} \times \underline{F}$ where \underline{r} is the position vector of the point where the force is acting and \underline{F} is the force vector. Thus torque about the origin is a vector quantity

The magnitude of the torque about an axis through the origin in direction $\underline{\hat{n}}$ is given by $\underline{\hat{n}} \cdot (\underline{r} \times \underline{F})$. Note that this is a scalar quantity formed by a scalar triple product

(ii) Angular velocity and angular momentum

Consider a point \underline{r} in a rigid body rotating with **angular velocity** $\underline{\omega}$ defined through: $\underline{\hat{\omega}}$ is the axis about which the body rotates; $|\underline{\omega}|$ is the angular speed of rotation measured in radians per second.

You should convince yourself that $\underline{v} = \underline{\omega} \times \underline{r}$ by checking: that this gives the right direction for \underline{v} ; that it is perpendicular to the plane of $\underline{\omega}$ and \underline{r} ; that the magnitude $|\underline{v}| = \omega r \sin \theta = \omega \times \text{ radius of circle in which the point is travelling}$

Now consider the **angular momentum** of the particle defined by $\underline{L} = \underline{r} \times (m\underline{v})$ where m is the mass of the particle.

Using the above expression for v we obtain

$$\underline{L} = m\underline{r} \times (\underline{\omega} \times \underline{r}) = m \left[\underline{\omega} r^2 - \underline{r}(\underline{r} \cdot \underline{\omega}) \right]$$

where we have used the identity for the vector triple product. Note that only if \underline{r} is perpendicular to $\underline{\omega}$ do we obtain $\underline{L} = m\underline{\omega}r^2$, which means that only then are \underline{L} and $\underline{\omega}$ in the same direction. Also check that $\underline{L} = 0$ if $\underline{\omega}$ and \underline{r} are parallel.

4