

LOCAL: Low-Complex Mapping Algorithm for Spatial DNN Accelerators

Midia Reshadi, David Gregg

School of Computer Science and Statistics, Lero, Trinity College Dublin

Outline

- Introduction
- Motivation
- Problem formulation
- LOCAL mapping algorithm
- Simulation results

Introduction

- DNN applications
 - Self-driving cars
 - Recommendation systems
 - Language translation

Mapping algorithm

Mapping algorithm

Motivation

- Random mapping of Layer 5 of VGG16 to Eyeriss
 - 3,000 random mapping cases
 - 77% difference between the *Random_max* and the *Random_med*

SPA architecture					
SPA	Eyeriss				
On-chip storage	2				
levels	2				
DRAM(width)	64				
L ₁ (depth,width)	(16384, 64)				
L ₀ (depth,width)	(16,16)				
PE array	(12,14)				

Convolutions

Convolutions

$$\begin{aligned} \textit{dimension} &= \{N, M, C, W, H, R, S, P, Q\} \\ W &\in R^{\textit{MCRS}} & I \in R^{\textit{NCHW}} & O \in R^{\textit{NMPQ}} \\ & ct_i \in \textit{CT} \\ \\ & \textit{CT} &= \{ct_1, ct_2, ct_3\} \\ & \textit{CT} &= \{R^{\textit{MCRS}}, R^{\textit{NCHW}}, R^{\textit{NMPQ}}\} \end{aligned}$$

Spatial DNN accelerator

 $SPA = \{Storage[i, j, k], PE[m, n]\}$

$$PE_{m,n} \in R^{x,y}$$

Mapping algorithm

- Assignment $ct_i \in CT$ assign to $s_{i_{j,k}} \in S$
- Bounding

```
ct_i [0, rang) \in CT assign to s_{i_{j,k}} \in S for Q in [0,5) assigned to s_{i=1_{j=0,k=0}} \leftarrow
```

Scheduling

$$ct_i, ct_j, ct_k \in \mathit{CT} \ assign \ to \ L_i$$

Parallelization

Order
$$\begin{cases} ct_i \left[0, rang_i\right) \\ ct_j \left[0, rang_j\right) \\ ct_k \left[0, rang_k\right) \end{cases}$$

Spatial computing $\rightarrow ct_i \ [0, rang) \in CT \ on \ PE_{i \ to \ j \ (x|y)} \in PEs$ $Parallel_for \ S \ in \ [0,7) \ on \ PE_{0-7} \ Spatial \ X \ dimension$

Mapping Problem Formulation

• Given:

- Convolution tensors CT
- Spatial DNN accelerator (SPA)

• Find

- A mapping function *map()*

 $min{Energy}$

 $max\{PE\ utilization\}$

 $utilization of PEs = \frac{number of active PEs}{number of PEs}$

Local Mapping Algorithm

```
Algorithm1: Tensor to memory assignments ct_i to s_{i(j,k)}
Inputs: All ct_i \in CT and all s_{i(i,k)} \in S
        Size of (s_{i_{i,k}})
   PE dimension (PE_{m,n})
Outputs:ct_i \rightarrow s_{i(i,k)} (Assignment & Permutation)
          ct_i \rightarrow PE_{i to j (x|y)} (Parallelization)
      Parallelization:
       \forall s_{i=1,k}:
 3:
        if (k==0) //NVDLA style
4:
            assign: parallel for C in Rang(m) spatial x dimension to s_{i=1}
 5:
            assign: parallel for M in Rang(n) spatially dimension to s_{i=1}
6:
        else //Eyeriss Style
            assign: parallel for in Q in Rang(m) spatial x dimension to s_{i=1}
            assign: parallel for in S in Rang(n) spatial y dimension to to s_{i=1}
       end if
    Assignment:
      \forall all Unassigned tensors: U_{ct},
      for all remaining U_{ct}:
13:
       for (i=0 \rightarrow i \leq n)
14:
        Assign U_{ct_i} to s_i // Assigning with priority from s_{i=0} to s_{i=n}
15:
       end for
      end for
16:
      Scheduling:
      for all Assigned tensors: A_{ct}
19:
       sort high to low range ct_i
        \forall s_i \text{ for } (i=0 \rightarrow i \leq \max \text{ memory level})
20:
21:
          do permutation to allocate higher range tensor to lower s_i
      end for
```

More details

```
Parallelization:
     \forall s_{i=1,k}:
                                                                                          Everiss-style accelerator
      if (k==0) //NVDLA style
          assign: parallel for C in Rang(m) spatial x dimension to s_{i=1}
5:
          assign: parallel for M in Rang(n) spatially dimension to s_{i=1}
      else //Eyeriss Style
6:
7:
          assign: parallel for in Q in Rang(m) spatial x dimension to s_{i=1}
8:
         assign: parallel for in S in Rang(n) spatial y dimension to to s_{i=1}
9:
     end if
                                                                                                                parallel for Q on x dimension
                                                                               parallel for S on Y dimension
                                                   H=
                                                                                                 Weight
                                                                                                                              Output
                                                                 Input
                                                 Q+S-1
                                                               W=P+R-1
                                                                                                          parallel for M on v dimension
                                                          parallel for C on x dimension
```

NVDLA-style accelerator

Evaluation

Simulation Workload

Table 2. Workload categories						
Category	Workload	Number of MAC operation				
High C value	22 nd conv layer of Resnet50	51380224				
	23 nd conv layer of SqueezNet	5537792				
	9 nd conv layer of VGG16	1849688064				
High M value	25 nd conv layer of SqueezNet	24920064				
	24 nd conv layer of ResNet50	51380224				
	8 nd conv layer of VGG16	924844032				
High P and Q values	1st conv layer of SqueezNet	708083712				
	1st conv layer of ResNet50	472055808				
	1st conv layer of VGG16	86704128				

Mapping time

Workload	Convolution	Mapping mechanism based on Eyeriss	Mapping time (sec)	Mapping mechanism based on ShiDianNao	Mapping time (sec)	Mapping mechanism based on NVDLA	Mapping time (sec)
	Resnet50: Conv 22	RS	87	OS	576	WS	127
		LOCAL	16.2	LOCAL	15	LOCAL	6
High C value	VGG16: Conv 9	RS	170	OS	137	WS	68
		LOCAL	10	LOCAL	15	LOCAL	9
	SqueezNet: Conv 23	RS	17	OS	125	WS	21
		LOCAL	16	LOCAL	67	LOCAL	18
High M value	SqueezNet: Conv 25	RS	230	OS	126	WS	996
		LOCAL	6.6	LOCAL	16	LOCAL	31
	Resnet50: Conv 24	RS	74	OS	116	WS	42
		LOCAL	22	LOCAL	28	LOCAL	12
	VGG16: Conv 8	RS	351	OS	98	WS	411
		LOCAL	12	LOCAL	32	LOCAL	24
High P and Q values	SqueezNet: Conv1	RS	60	OS	20	WS	2238
		LOCAL	5.1	LOCAL	7	LOCAL	45
	Resnet50: Conv 1	RS	90	OS	60	WS	140
		LOCAL	6	LOCAL	13	LOCAL	23
	VGG16: Conv 1	RS	81	OS	24	WS	113
		LOCAL	6.6	LOCAL	6	LOCAL	17

Simulation Results

Energy consumption of row stationary and LOCAL mapping in Eyeriss with High C value workload

Energy consumption of row stationary and LOCAL mapping in Eyeriss with High M value workload

Energy consumption of row stationary and LOCAL mapping in Eyeriss with High P and Q values workload

Simulation Results

Energy consumption of output stationary and LOCAL mapping in Shi-diannao with High C value workload

Energy consumption of output stationary and LOCAL mapping in Shi-diannao with High M value workload

Energy consumption of output stationary and LOCAL mapping in Shi-diannao with High P and Q values workload

Simulation Results

Energy consumption of weight stationary and LOCAL mapping in NVDLA with High C values workload

Energy consumption of weight stationary and LOCAL mapping in NVDLA with High M values workload

Energy consumption of weight stationary and LOCAL mapping in NVDLA with High P and Q values workload

Thank you for your attention