Webgraph

- A webgraph is a way of representing how internet sites are connected on the web
- In general, a webgraph is a directed multigraph
 - Nodes represent sites and edges represent links between sites
 - Two sites can have multiple links pointing to each other and can have loops (i.e., links pointing to themselves)

Signed Graph

• When weights are binary (0/1, -1/1, +/-) we have a signed graph

- It is used to represent friends or foes
- It is also used to represent social status

Connectivity in Graphs

Adjacent nodes/Edges,
 Walk/Path/Trail/Tour/Cycle

Adjacent nodes and Incident Edges

Two *nodes* are adjacent if they are connected via an edge

Two edges are incident, if they share one end-node

An edge in a graph can be **traversed** when one starts at one of its end-nodes, moves along the edge, and stops at its other end-node

Walk, Trail, Tour, Path, and Cycle

Walk: A walk is a sequence of *incident* edges visited one after another

- Open walk: A walk does not end where it starts
- Close walk: A walk returns to where it starts
- Representing a walk:
 - A sequence of edges: e₁, e₂, ..., e_n
 - A sequence of nodes: $v_1, v_2, ..., v_n$
- Length of a walk: the number of visited edges

Length of walk=

Trail and Tour

- A *trail* is a walk where **no edge is visited more than once** and all walk edges are distinct
- A closed trail (one that ends where it starts) is called a tour or circuit

Path

- A walk where **nodes and edges are distinct** is called a **path** and a closed path is called a **cycle**
- The length of a *path* or cycle is the number of edges visited in the path or cycle

Length of path= 4

Examples

Eulerian Tour

- All edges are traversed only once
- Konigsberg bridges

Hamiltonian Cycle

A cycle that visits all nodes

Random walk

- A walk that the next node in each step is selected randomly among the neighbors
 - The weight of an edge can be used to define the probability of visiting it
 - For all edges that start at v_i the following equation holds

$$\sum_{x} w_{i,x} = 1, \forall i, j \ w_{i,j} \geq 0$$

Random Walk: Example

- Mark a spot on the ground
 - Stand on the spot and flip the coin (or more than one coin depending on the number of choices such as left, right, forward, and backward)
 - If the coin comes up heads, turn to the right and take a step
 - If the coin comes up tails, turn to the left and take a step
 - Keep doing this many times and see where you end up

Connectivity

- A node v_i is connected to another node v_j (or reachable from v_j) if it is adjacent to it or there exists a path from v_i to v_j .
- A graph is connected if there exists a path between any pair of nodes in it
 - In a directed graph, a graph is strongly connected if there exists a directed path between any pair of nodes
 - In a directed graph, a graph is weakly connected if there exists a path between any pair of nodes, without following the edge directions
- A graph is **disconnected** if it is not connected.

Connectivity: Example

Components

• A **component** in an undirected graph is a connected **subgraph**, i.e., there is a path between every pair of nodes inside the component

- In directed graphs, we have a **strongly connected** components when there is a path from u to v and one from v to u for every pair (u,v).
- The component is **weakly connected** if replacing directed edges with undirected edges results in a connected component

Component Examples

3 components

3 Strongly-connected components

Shortest Path

- **Shortest Path** is the path between **two** nodes that has the shortest length.
 - We denote the length of the shortest path between nodes v_i and v_j as $l_{i,j}$
- The concept of the neighborhood of a node can be generalized using shortest paths. An **n-hop neighborhood** of a node is the set of nodes that are within *n* hops distance from the node.

Diameter

• The diameter of a graph is the length of the *longest* shortest path between *any* pairs of nodes in the graph

$$diameter_G = \max_{(v_i, v_j) \in V \times V} l_{i,j}.$$

Special Graphs and Subgraphs

Trees and Forests

- **Trees** are special cases of undirected graphs
- A tree is a graph structure that has no cycle in it
- In a tree, there is *exactly one path* between any pair of nodes
- In a tree:

$$|V| = |E| + 1$$

 A set of disconnected trees is called a **forest**

A forest containing 3 trees

Spanning Trees

- For any connected graph, the spanning tree is a subgraph and a tree that includes *all* the nodes of the graph
- There may exist *multiple* spanning trees for a graph.
- For a weighted graph and one of its spanning tree, the weight of that spanning tree is the summation of the edge weights in the tree.
- Among the many spanning trees found for a weighted graph, the one with the minimum weight is called the

minimum spanning tree (MST)

Steiner Trees

Given a weighted graph G: (V, E, W) and a
 subset of nodes V' ⊆ V (terminal nodes), the
 Steiner tree problem is to find a tree such that it
 spans all the V' nodes and the weight of this tree
 is minimized

Complete Graphs

- A complete graph is a graph where for a set of nodes *V*, all possible edges exist in the graph
- In a complete graph, any pair of nodes are connected via an edge

$$E = \begin{pmatrix} |V| \\ 2 \end{pmatrix}$$

Planar Graphs

 A graph that can be drawn in such a way that no two edges cross each other (other than the endpoints) is called planar

Bipartite Graphs

• A bipartite graph G(V; E) is a graph where the node set can be partitioned into **two sets** such that, for all edges, one end-point is in one set and the other end-point is in the other set.

$$\begin{cases} V = V_L \cup V_R, \\ V_L \cap V_R = \emptyset, \\ E \subset V_L \times V_R. \end{cases}$$

Examples: Affiliation Networks

• An affiliation network is a bipartite graph. If an individual is associated with an affiliation, an edge connects the corresponding nodes.

Affiliation Networks: Membership

Affiliation of people on corporate boards of directors

Social-Affiliation Networks

• A social-Affiliation network is a combination of a social network and an affiliation network

Regular Graphs

- A regular graph is one in which all nodes have the same degree
- Regular graphs can be connected or disconnected
- In a **k**-regular graph, all nodes have degree k
- · Complete graphs are examples of regular graphs

Egocentric Networks

- An egocentric network consists of a focal actor (ego), and a set of alters who have ties with the ego
- In an egocentric network, usually there are limitations for nodes to connect to other nodes or have relation with other nodes
 - For example, in a network of mothers and their children, each mother only holds mother-children relations with her own children
- Additional examples of egocentric networks are Teacher-Student or Husband-Wife

Bridges (cut-edges)

• Bridges are edges whose **removal** will **increase** the number of connected components

Graph/Network Traversal Algorithms

Graph/Tree Traversal

- Consider a social media site that has many users and we are interested in surveying the site and computing the average age of its users. The traversal technique should guarantee that
- 1. All users are visited; and
- 2. No user is visited more than once
- There are two main techniques:
 - Depth-First Search (DFS)
 - Breadth-First Search (BFS)

Depth-First Search (DFS)

- Depth-First Search (DFS) starts from a node v_i, selects one of its neighbors v_j form N(v_i) and performs Depth-First Search on v_j before visiting other neighbors in N(v_i)
- The algorithm can be used both for trees and graphs
- The algorithm can be implemented using a <u>stack</u> <u>structure</u>

DFS Algorithm

Algorithm 2.2 Depth-First Search (DFS)

```
Require: Initial node v, graph/tree G:(V, E), stack S
 1: return An ordering on how nodes in G are visited
 2: Push v into S:
 3: visitOrder = 0;
 4: while S not empty do
     node = pop from S;
 5:
     if node not visited then
 6:
        visitOrder = visitOrder +1;
 7:
        Mark node as visited with order visitOrder; //or print node
 8:
        Push all neighbors/children of node into S;
 9:
      end if
10:
11: end while
12: Return all nodes with their visit order.
```

Depth-First Search (DFS): An Example

Breadth-First Search (BFS)

- BFS starts from a node, visits all its **immediate** neighbors first, and then moves to the second level by traversing their neighbors.
- The algorithm can be used both for trees and graphs
 - The algorithm can be implemented using a queue structure

BFS Algorithm

```
Algorithm 2.3 Breadth-First Search (BFS)
Require: Initial node v, graph/tree G(V, E), queue Q
 1: return An ordering on how nodes are visited
 2: Enqueue v into queue Q;
 3: visitOrder = 0;
 4: while Q not empty do
     node = dequeue from Q;
     if node not visited then
        visitOrder = visitOrder +1;
        Mark node as visited with order visitOrder; //or print node
 8:
        Enqueue all neighbors/children of node into Q;
 9:
      end if
10:
11: end while
```

Breadth-First Search (BFS)

Shortest Path

When a graph is connected, there is a chance that multiple paths exist between any pair of nodes

 In many scenarios, we want the shortest path between two nodes in a graph

• Dijkstra's Algorithm

- It is designed for weighted graphs with non-negative edges
- It finds shortest paths that start from <u>a provided node s</u>
 to <u>all other nodes</u>
- It finds both shortest paths and their respective lengths

Dijkstra's Algorithm: Finding the shortest path

1. Initiation:

- Assign zero to the source node and infinity to all other nodes
- Mark all nodes unvisited
- Set the source node as current
- 2. For the current node, consider all of its unvisited neighbors and calculate their *tentative* distances
 - If tentative distance (current node's distance + edge weight) is smaller than neighbor's distance, then Neighbor's distance = tentative distance
- 3. After considering all of the neighbors of the current node, mark the current node as visited and remove it from the *unvisited set*
 - A visited node will never be checked again and its distance recorded now is final and minimal
- 4. If the destination node has been marked visited or if the smallest tentative distance among the nodes in the *unvisited* set is infinity, then stop
- 5. Set the unvisited node marked with the smallest tentative distance as the next "current node" and go to step 2

Dijkstra's Algorithm Execution Example

Prim's Algorithm: Finding Minimum Spanning Tree

- Find minimal spanning trees in a weighted graph
 - Start by selecting a random node and adding it to the spanning tree
 - Grow the spanning tree by selecting edges which have one endpoint in the existing spanning tree and one endpoint among the nodes that are not selected yet.
 - Among the possible edges, the one with the minimum weight is added to the set (along with its end-point)
 - Iterate until the graph is fully spanned

Prim's Algorithm Execution Example

