Piecewise Linear Interpolation

Contents

1 Piecewise Linear Interpolation

2 Analysis

Piecewise Linear Interpolation

Piecewise Linear Interpolation

Assume that $x_1 < x_2 < \cdots < x_n$ are fixed. The function p(x) defined piecewise¹ by

$$p(x) = y_j + \frac{y_{j+1} - y_j}{x_{j+1} - x_j}(x - x_j), \quad \text{for } x \in [x_j, x_{j+1}], 1 \leqslant j \leqslant n - 1$$

- is linear on each interval $[x_j, x_{j+1}]$;
- connects any two consecutive data points (x_j,y_j) and (x_{j+1},y_{j+1}) by a straight line.

 $^{^{1}\}mbox{Note}$ the formula changes depending on which interval x lies in.

Hat Functions

Denote by $H_j(x)$ the *j*th *piecewise linear* cardinal function:

$$H_j(x) = \begin{cases} \frac{x - x_{j-1}}{x_j - x_{j-1}}, & x \in [x_{j-1}, x_j], \\ \frac{x_{j+1} - x}{x_{j+1} - x_j}, & x \in [x_j, x_{j+1}], & j = 1, 2, \dots, n. \\ 0, & \text{otherwise}, \end{cases}$$

- The functions H_1, \ldots, H_n are called **hat functions** or **tent functions**.
- ullet Each H_j is globally continuous and is linear inside each interval $[x_j,x_{j+1}]$

Note: The definitions of $H_1(x)$ and $H_n(x)$ require additional nodes x_0 and x_{n+1} for x outside of $[x_1,x_n]$, which is not relevant in the discussion of interpolation.

Hat Functions (cont')

Hat Functions As Basis

- Any linear combination of hat functions is continuous and is linear inside each interval $[x_j, x_{j+1}]$.
- Conversely, any such function is expressible as a unique linear combination of hat functions, i.e.,

$$\sum_{j=1}^n c_j H_j(x), \quad \text{for some choice of } c_1, \dots, c_n.$$

No smaller set of functions has the same properties.

The hat functions form a **basis** of the set of functions that are continuous and piecewise linear relative to ${\bf x}$ (the vector of nodes).

Cardinality Conditions

 By construction, the hat functions are cardinal functions for piecewise linear (PL) interpolation, i.e., they satisfy

$$H_j(x_k) = \delta_{j,k}$$
. (cardinality condition)

• Key consequence of this property is that the piecewise linear interpolant p(x) for the data values in ${\bf y}$ is trivially expressed by

$$p(x) = \sum_{j=1}^{n} y_j H_j(x).$$

Recipe for PL Interpolant

Piecewise Linear Interpolant

The piecewise linear polynomial

$$p(x) = \sum_{j=1}^{n} y_j H_j(x)$$

is the unique such function which passes through all the data points.

Proof: It is easy to check the interpolating property:

$$p(x_k) = \sum_{j=1}^n y_j H_j(x_k) = \sum_{j=1}^n y_j \delta_{j,k} = y_k \quad \text{for every } k \in \mathbb{N}[1,n].$$

To show uniqueness, suppose \widetilde{p} is another such function in the form

$$\widetilde{p}(x) = \sum_{j=1}^{n} c_j H_j(x).$$

Then $p(x_k)-\widetilde{p}(x_k)=0$ for all $k\in\mathbb{N}[1,n].$ This implies that $c_k=y_k$ for all k

Analysis

Conditioning

Lemma

Let $\mathcal I$ is the piecewise linear interpolation operator and $\mathbf z \in \mathbb R^n.$ Then

$$\|\mathcal{I}(\mathbf{z})\|_{\infty} = \|\mathbf{z}\|_{\infty}$$
.

• It follows from the lemma that the absolute condition number of piecewise linear interpolation in the infinity norm equals one.

Conditioning (cont')

Proof of lemma. Let

$$p(x) = \mathcal{I}(\mathbf{z}) = \sum_{j=1}^{n} z_j H_j(x).$$

Let k be the index corresponding to the element of \mathbf{z} with the largest absolute value, that is, $z_k = \|\mathbf{z}\|_{\infty}$. Since $z_k = p(x_k)$, it follows that $|p(x_k)| = \|\mathbf{z}\|_{\infty}$ and so $\|p\|_{\infty} \ge \|\mathbf{z}\|_{\infty}$.

To show the other inequality, note that

$$|p(x)| = \left| \sum_{j=1}^{n} z_j H_j(x) \right| \le \sum_{j=1}^{n} |z_j| H_j(x) \le ||\mathbf{z}||_{\infty} \sum_{j=1}^{n} H_j(x) = ||\mathbf{z}||_{\infty},$$

where the final step uses the fact² that $\sum_{j=1}^{n} H_j(x) = 1$. It implies that $||p||_{\infty} \leq ||\mathbf{z}||_{\infty}$. Therefore, $||p||_{\infty} = ||\mathbf{z}||_{\infty}$.

²This property is called the *partition of unity*. Confirm it!

Convergence: Error Analysis

Set-up for analysis.

- Generate a set of data points using a "nice" function f on an interval containing all nodes, i.e., $y_j = f(x_j)$. (The *niceness* of a function is described in precise terms below.)
- Then perform PL interpolation of the data to obtain the interpolant p.
- Question. How close is p to f?

Notation (Space of Differentiable Functions)

Let $C^n[a,b]$ denote the set of all functions that are n-times continuously differentiable on [a,b]. That is, if $f \in C^n[a,b]$, then $f^{(n)}$ exists and is continuous on [a,b], where derivatives at the end points are taken to be one-sided derivatives.

Convergence: Error Analysis (cont')

Theorem 1 (Error Theorem for PL Interpolation)

Suppose that $f \in C^2[a,b]$. Let p_n be the piecewise linear interpolant of $(x_j,f(x_j))$ for $j=1,\ldots,n$, where

$$x_j = a + (j-1)h$$
 and $h = \frac{b-a}{n-1}$.

Then

$$||f - p_n||_{\infty} \leqslant ||f''||_{\infty} h^2.$$

- The theorem pertains to the interpolation on equispaced nodes.
- The significance of the theorem is that the error in the interpolant is $O(h^2)$ as $h \to 0$. (We say that PL interpolation is second-order accurate.)
- **Practical implication:** If n is doubled, the PL interpolant becomes about four times more accurate. A log-log graph (loglog) of error against n is a straight line.

Convergence: Error Analysis (cont')

