Convex Sets

Yuanming Shi

ShanghaiTech University

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Definition of Affine Set

Line: through x_1, x_2 : all points

$$\boldsymbol{x} = \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2 \quad (\theta \in \mathbb{R})$$

- Affine set: contains the line through any two distinct points in the set
- Example: solution set of linear equations $\{x|Ax=b\}$: $\{x|Ax=b\}$:

$$X_1 \in S$$
, $X_2 \in S$, $B \in R$
 $X = \theta X_1 + (1-\theta) X_2 \in S$
 $AX = \theta AX_1 + (1-\theta) AX_2 = b$
 b
 $= \theta b + (1-\theta)b = b$

Definition of Convex Set

Line segment: between x_1 and x_2 : all points

$$\boldsymbol{x} = \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2$$

with
$$0 \le \theta \le 1$$

Convex set: contains line segment between any two points in the set

$$\boldsymbol{x}_1, \boldsymbol{x}_2 \in C, 0 \le \theta \le 1 \implies \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2 \in C$$

Examples (one convex, two nonconvex sets)

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Examples: Hyperplanes and Halfspaces

Hyperplane: set of the form $\{x|a^Tx=b\}(a\neq 0)$

$$a^{7}\chi_{0} = b$$

$$\alpha \perp (\chi - \chi_{0}) = 0$$

$$\alpha \perp (\chi - \chi_{0}) = 0$$

$$\alpha^{7}\chi_{0} = 0$$

** Halfspace: set of the form $\{x|a^Tx \leq b\}(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Example: Polyhedra

Solution set of finitely many linear inequalities and equalities

$$m{Ax} \preceq m{b}, \quad m{Cx} = m{d}$$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

$$AX = \begin{pmatrix} a_1^T X \\ a_v^T X \\ \vdots \\ a_m^q X \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_M \end{pmatrix}$$

polyhedron is intersection of finite number of halfspaces and hyperplanes

 $S = \{X \mid a_i X = b_i, C_i X = d_i\}$ $A = \{X \mid a_i X = b_i, C_i X = d_i\}$ $A = \{X \mid a_i X = b_i, C_i X = d_i\}$ $A = \{X \mid a_i X = b_i, C_i X = d_i\}$

Examples: Euclidean Balls and Ellipsoids

- (Euclidean) Ball with center \boldsymbol{x}_c and radius r: $\mathbf{x}_c + \mathbf{y}_d = \mathbf{y}_c + \mathbf{y}_d = \mathbf$
- **Ellipsoid:** set of the form

$$E(\boldsymbol{x}_c, \boldsymbol{P}) = \{\boldsymbol{x} | (\boldsymbol{x} - \boldsymbol{x}_c)^T \boldsymbol{P}^{-1} (\boldsymbol{x} - \boldsymbol{x}_c) \leq 1\}$$

$$= \{\boldsymbol{x}_c + \boldsymbol{A} \boldsymbol{u} | \|\boldsymbol{u}\|_2 \leq 1\}$$

with $P \in \mathbb{S}^n_{++}$ (i.e., P symmetric positive definite), A square and nonsingular

nonsingular
$$\chi_1 = \chi_1 + \chi_2 = \chi_1 + \chi_2 = \chi_1 + \chi_2 = \chi_1 + \chi_2 = \chi_2 + \chi_2 = \chi_1 + \chi_2 = \chi_2 = \chi_1 + \chi_2 = \chi_2 = \chi_1 + \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_2$$

the lengths of the semi-axes of E are given by Thi: his eigenvalues of P

Convex Combination and Convex Hull

Convex combination of x_1, \dots, x_k : any point x of the form

$$\boldsymbol{x} = \theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2 + \dots + \theta_k \boldsymbol{x}_k$$

with
$$\theta_1 + \dots + \theta_k = 1, \theta_i \ge 0$$

 ${}^{\bullet}$ Convex hull conv S: set of all convex combinations of points in S

$$X = \theta_1 X_1 + \theta_1 X_2$$

$$(\theta_1 + \theta_2 = 1)$$

$$\theta_3 \dots \theta_K = 0$$

Conic Combination and Convex Cone

Conic (nonnegative) combination of x_1 and x_2 : any point of the form

Convex cone: set that contains all conic combinations of points in the set

Convex Cones: Norm Balls and Norm Cones

Norm: a function $\|\cdot\|$ that satisfies

notation: $\|\cdot\|$ general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ a particular norm

- Norm ball with center x_c and radius $r: \{x | ||x x_c|| \le r\}$
- Norm cone: $\{(\boldsymbol{x},t)\in\mathbb{R}^{n+1}|\|\boldsymbol{x}\|\leq t\}$

Euclidean norm cone or second-order cone (aka ice-cream cone)

Positive Semidefinite Cone

Notation

- \mathbb{S}^n is set of symmetric $n \times n$ matrices
- $\mathbb{S}^n_+ = \{ \mathbf{X} \in \mathbb{S}^n | \mathbf{X} \succeq 0 \}$: positive semidefinite $n \times n$ matrices

$$m{X} \in \mathbb{S}^n_+ \quad \Longleftrightarrow \quad m{z}^{ op} m{X} m{z} \geq 0 ext{ for all } m{z}$$

 \mathbb{S}^n_+ is a convex cone $\mathbb{S}^n_{++} = \{ X \in \mathbb{S}^n | X \succ 0 \}$: positive definite $n \times n$ matrices $\mathbb{Z}^n \times \mathbb{Z}^n \times \mathbb{Z}^n$

Example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{S}^2_+$

$$det(A) 7/0 =) \begin{cases} XZ - y^2 7/0 \\ X2/0, 2-7/0 \end{cases}$$

 $M_{1}, M_{2} \in S_{f}^{n},$ $M = \theta_{1}M_{1} + \theta_{2}M_{2} \in S_{f}^{n}, \quad \theta_{1}, \theta_{2} = \theta_{1}$ $\mathcal{I}^{T}M2 = \theta_{1} \mathcal{I}^{T}M_{1}\mathcal{I} + \theta_{2}\mathcal{I}^{T}M_{2}\mathcal{I} \quad \mathcal{I}^{D}$ $\mathcal{I}^{T}M2 = \theta_{1} \mathcal{I}^{T}M_{1}\mathcal{I} + \theta_{2}\mathcal{I}^{T}M_{2}\mathcal{I} \quad \mathcal{I}^{D}$

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Operations that Preserve Convexity

How to establish the convexity of a given set *C*

Apply the definition (can be cumbersome)

$$x_1, x_2 \in C, 0 \leq \theta \leq 1$$
 \Longrightarrow $\theta x_1 + (1 - \theta)x_2 \in C$

- Show that C is obtained from simple convex sets(hyperplanes, halfspaces, norm balls, \cdots) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

- Intersection: if S_1, S_2, \ldots, S_k are convex, then $S_1 \cap S_2 \cap \cdots \cap S_k$ is convex (k can be any positive integer)
- Example 1: a polyhedron is the intersection of halfspaces and hyperplanes
- Example 2:

$$S = \{ \boldsymbol{x} \in \mathbb{R}^m | |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2

Solis convex for any JEA

A Solis GAVEX

JEA

Examples: sufinite number of slabes

fixed ε . St = $\begin{cases} x \\ -1 \\ \leq (\omega st_1 ..., \omega smt)^T x \leq 1 \end{cases}$ $\frac{1}{\alpha(t)} \quad (given + ixed + t)$

S= 15/5 1/5 1/5 3

[a(+), x) =

(alt), x) 7/1

Affine Function

suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is affine $(f(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b} \text{ with } \boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^m)$

 \bullet the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(\boldsymbol{x}) | \boldsymbol{x} \in S\} \text{ convex}$$

the inverse image $f^{-1}(C)$ a convex set under f is convex

$$C \subseteq \mathbb{R}^m \text{ convex} \implies f^{-1}(C) = \{ \boldsymbol{x} \in \mathbb{R}^n | f(\boldsymbol{x}) \in C \} \text{ convex}$$

Examples

- scaling, translation, projection inverse image
- solution set of linear matrix inequality $\{x|x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbb{S}^p$) $\{(x, t) \in \mathbb{R}^{n+1} | ||x|| \leq t\} \text{ is convex, so is}$

$$\{(m{x},t)\in\mathbb{R}^{n+1}|\|m{x}\|\leq t\} ext{ is convex, so is}$$
 $\{m{x}\in\mathbb{R}^n|\|m{A}m{x}+m{b}\|\leq m{c}^Tm{x}+d\}$

$$f(x) \in S$$

$$f(x) = \begin{pmatrix} A \\ C' \end{pmatrix} x + \begin{pmatrix} b \\ d \end{pmatrix}$$

$$\widetilde{A}$$

Perspective and Linear-fractional Function I

$$P(x,t) = x/t$$
, $dom P = \{(x,t)|t>0\}_{\{\overline{\chi_1}, \overline{\chi_2}, \overline{\chi_3}, \overline{\chi_3}$

images and inverse images of convex sets under perspective are convex

Linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f(x) = \frac{Ax + b}{c^Tx + d}, \quad \text{dom} f = \{x | c^Tx + d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex $g(x) = \begin{pmatrix} A \\ C^{T} \end{pmatrix} x + \begin{pmatrix} b \\ d \end{pmatrix}$

1x1, x2, x2)

X3:0

if C is convex, then
$$p^{1}(c) = \begin{cases} (x,t) \middle| \frac{x}{\epsilon} \in C, \epsilon > 0 \end{cases} \text{ is convex}$$

$$p(x,t) \in C$$

$$(x,t) \in p^{1}(c), (y,s) \in p^{1}(c), 0 \leq \theta \leq 1$$

$$\theta(x,t) \in C \text{ if } (r\theta)(y,s) \in p^{1}(c), 0 \leq \theta \leq 1$$

$$\theta(x,t) \in C \text{ if } (r\theta)(y,s) \in p^{1}(c), 0 \leq \theta \leq 1$$

$$\theta(x,t) \in C \text{ if } (r\theta)(y,s) \in p^{1}(c), 0 \leq \theta \leq 1$$

$$\theta(x,t) \in C \text{ if } (r\theta)(y,s) \in p^{1}(c), 0 \leq \theta \leq 1$$

$$\theta(x,t) \in C \text{ if } (r\theta)(x,t) \in C \text{ if }$$

Perspective and Linear-fractional Function II

Examples of a linear-fractional function

$$f(\boldsymbol{x}) = \frac{1}{x_1 + x_2 + 1} \boldsymbol{x}$$

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Generalized Inequalities I

- A convex cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if
 - K is closed (contains its boundary)
 - * K is solid (has nonempty interior)
 - * K is pointed (contains no line)

Examples

nonnegative orthant

$$K = \mathbb{R}^{n}_{+} = \{ \boldsymbol{x} \in \mathbb{R}^{n} | x_{i} \geq 0, i = 1, \dots, n \}$$

positive semidefinite cone

$$K = \mathbb{S}^n_+ = \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} | \boldsymbol{X} = \boldsymbol{X}^T \succeq \boldsymbol{0} \}$$
 $\lambda : 20, i > 0$

nonnegative polynomials on [0, 1]:

$$K = \{ \boldsymbol{x} \in \mathbb{R}^{n} | x_{1} + x_{2}t + x_{3}t^{2} + \dots + x_{n}t^{n-1} \ge 0 \text{ for } \underline{t} \in [0, 1] \}$$

$$\mathcal{Y}(\tau) = (1, t_{1}, \dots, t_{n-1})^{T}, \qquad \chi \mathcal{T} \mathcal{Y}(\tau)$$

Generalized Inequalities II

Generalized inequality defined by a proper cone K:

$$oldsymbol{y} \succeq_K oldsymbol{x} \iff oldsymbol{y} - oldsymbol{x} \succeq_K oldsymbol{0} ext{ or } oldsymbol{y} - oldsymbol{x} \in K$$

Examples

Componentwise inequality $(K = \mathbb{R}^n_+)$

$$\boldsymbol{y} \succeq_{\mathbb{R}^n_+} \boldsymbol{x} \iff y_i \geq x_i, \quad i = 1, \cdots, n$$

Matrix inequality $(K = \mathbb{S}^n_+)$

$$Y \succeq_{\mathbb{S}^n_+} X \iff Y - X ext{ positive semidefinite}$$

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Separating Hyperplane Theorem

If C and D are nonempty disjoint convex sets, there exist $a \neq 0$ and b, such that

$$a^T x \leq b \text{ for } x \in C, \quad a^T x \geq b \text{ for } x \in D$$

the hyperplane $\{x|a^Tx=b\}$ separates C and D

Supporting Hyperplane Theorem

Supporting hyperplane to set C at boundary point x_0 :

$$\{\boldsymbol{x}|\boldsymbol{a}^T\boldsymbol{x}=\boldsymbol{a}^T\boldsymbol{x}_0\}$$

where $\boldsymbol{a} \neq \boldsymbol{0}$ and $\boldsymbol{a}^T \boldsymbol{x} \leq \boldsymbol{a}^T \boldsymbol{x}_0$ for all $\boldsymbol{x} \in C$

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual Cones and Generalized Inequalities

Dual cone of a cone
$$K$$
: $\langle y, X \rangle \leq 90^{\circ}$

$$K^* = \{y | y^T x \geq 0 \text{ for all } x \in K\}$$

Examples

$$K = \mathbb{R}^n_+ \colon K^* = \mathbb{R}^n_+$$

$$K = \mathbb{S}^n_+ \colon K^* = \mathbb{S}^n_+$$

$$K = \{(\boldsymbol{x}, t) | \|\boldsymbol{x}\|_2 \le t\} \colon K^* = \{(\boldsymbol{x}, t) | \|\boldsymbol{x}\|_2 \le t\}$$

$$K = \{(\boldsymbol{x}, t) | \|\boldsymbol{x}\|_1 \le t\} \colon K^* = \{(\boldsymbol{x}, t) | \|\boldsymbol{x}\|_\infty \le t\}$$

First three examples are **self-dual** cones

Dual cones of proper cones are proper, hence define generalized inequalities:

$$\mathbf{y} \succeq_{K^*} \mathbf{0} \iff \mathbf{y}^T \mathbf{x} \geq 0 \text{ for all } \mathbf{x} \succeq_K \mathbf{0}$$

1) monhegative orthourf YTX 20, YX20 E) Y20 2) positive semi-definite come: The PSD come is self-dual, i.e., for $X,Y \in S^n$, Trave (XY) 7,0, 4x70 => Y70 (?) Prost: O Suppose Y & St, there exists QER"

With $q^{\dagger} Y q = \langle 2, Yq \rangle = \text{Trace}(22^{\dagger} I^{\dagger}) \langle 0 \rangle$ Hence, the PSD matrix $\chi = 22^{\dagger} \text{ satisfies}$ trace $(\chi Y^{7}) \langle 0 \rangle$ (based on the definition if follows that $\chi \in (S_n^{\dagger})^{*}$)

2 Now suppose X, TESt we can express x in terms of its eigenvalue de composition as X = = = x: 2:0, i=1,...,n Trace (YX) = Trace (Y \(\frac{1}{1-1}\)\(\lambda: 9:7) This shows that YE (Sit) * (definite of K*)

Second-order cone is self-dual

$$L^{d} = \begin{cases} (X,t) & |IIXI| \le t, t > 0 \end{cases} \\
\text{Proof: The dual cone of } L^{d} \text{ is}$$

$$C = \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq y^{T}X + dt, V(X_{t}) \in L^{d} \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq y^{T}X + dt, V(X_{t}) \in L^{d} \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [y^{T}X + d^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I|X|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I|X|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I|X|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I|X|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \\
= \begin{cases} \begin{cases} y \\ t \end{cases} & |D \subseteq \text{ inf inf } [-I|Y|I + J^{T}] \end{cases} \end{aligned}$$

Pual norm: let 11.11 be a norm on 2". The associated dual morm, 11.11*, is defined as 11211x = sup {2^TX/ 11 X11 = 1} 11X11* = 11X11, XX Example 1: The dual of Enclidean norm is the Eucidean norm, i.e., Sup { 2 X | 11X 112 = | } = 11 2 112 This follows from the Cauchy-Schwarz inequality for non-zero 2, the value of X that maximite $2^{T}X$ } = $X^{*} = \frac{2}{||2||_{2}}$ $X \in \mathbb{R}^{n}$ Subject to $||X||_{2} = ||$ optimal solution optimal objective value: 2 X = 112112

Example 2: The dual of the los-novum is the 4- norm. max: mize $Z^{T}X$ \Rightarrow $X_{i}^{*} = \frac{Z_{i}^{*}}{12:1}$ Subject to $||X||_{\infty} \leq |X_{i}|$ = max { |X1 |, ..., |Xn | } General results: the dual of the lp-norm is the lq-mvm, q gatisfies F + 9 =/

Reference

Chapter 2 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.