2/8/2019 Quiz: Homework 1

# Homework 1

Started: Feb 8 at 2pm

# **Quiz Instructions**

You may want to refer to the material:

https://github.com/wangshusen/CS583A-2019Spring/blob/master/Reading/MatrixCalculus.pdf

**Question 1** 

3 pts

Let  $\mathbf{x} = [3, -10, 9, 0, -2]$  be a 5-dimensional vector.

What is  $\|\mathbf{x}\|_2^2$  (i.e., the squared  $\ell_2$ -norm of  $\mathbf{x}$ )?

**Question 2** 

3 pts

Let  $\mathbf{x} = [3, -10, 9, 0, -2]$  be a 5-dimensional vector.

What is  $\|\mathbf{x}\|_1$  (i.e., the squared  $\ell_1$ -norm of  $\mathbf{x}$ )?



**Question 3** 

3 pts

Let  $\mathbf{x} = [3, -10, 9, 0, -2]$  be a 5-dimensional vector.

What is  $\|\mathbf{x}\|_{0.5}$  (i.e., the squared  $\ell_p$ -norm of  $\mathbf{x}$  with p=0.5)?

#### **Question 4**

3 pts

Let  $\mathbf{x} = [3, -10, 9, 0, -2]$  and  $\mathbf{a} = [0, 9, -3, -2, 1]$  be 5-dimensional vectors.

What is the inner product  $\mathbf{a}^T \mathbf{x}$ ?



#### Question 5

3 pts

Let  $\mathbf{x} = [3, -10, 9, 0, -2]$  be a 5-dimensional vector.

What is  $\|\mathbf{x}\|_{\infty}$  (i.e., the squared  $\boldsymbol{\ell}_{\infty}$ -norm of  $\mathbf{x}$ )?

## **Question 6**

3 pts

Define the matrix  $\mathbf{A} = egin{bmatrix} -1 & 0 & 2 \ 4 & -5 & 3 \end{bmatrix}$  .

The matrix  $\mathbf{A}^T\mathbf{A}$  is symmetric.

True

False

### **Question 7**

3 pts

Define the matrix  $\mathbf{A} = \begin{bmatrix} -1 & 0 & 2 \\ 4 & -5 & 3 \end{bmatrix}$ .

The matrix **A** is symmetric.

- True
- False

**Question 8** 

3 pts

Define the following matrix and vector:

$$\mathbf{A} = egin{bmatrix} -1 & 0 & 2 \ 4 & -5 & 3 \end{bmatrix}$$
 and  $\mathbf{b} = egin{bmatrix} 5 \ 6 \ 7 \end{bmatrix}$ .

What is the first entry of the vector  $\mathbf{Ab}$ ?

**Question 9** 

3 pts

Define the matrix  ${f A}=egin{bmatrix} -1 & 0 & 2 \ 4 & -5 & 3 \end{bmatrix}$  .

What is  $\|\mathbf{A}\|_F^2$  (i.e., the squared Frobenius norm of  $\mathbf{A}$ )?



#### **Question 10**

3 pts

Define the matrix  $\mathbf{A} = \begin{bmatrix} -1 & 0 & 2 \\ 4 & -5 & 3 \end{bmatrix}$ .

What is  $tr(\mathbf{A}^T\mathbf{A})$  (i.e., the trace of  $\mathbf{A}^T\mathbf{A}$ )?



#### **Question 11**

12 pts

Let 
$$\mathbf{x} = [x_1, x_2, x_3]$$
 and  $y = rac{x_1^2}{2} + \log_e(x_2) - rac{x_1}{x_3}$  .

Question: What is the value of  $\frac{\partial y}{\partial \mathbf{x}}$  at  $\mathbf{x} = \left[9, 1, \frac{1}{2}\right]$ ?

Answer: It is the vector [ , , ]

Hint: The value of  $\left. \frac{\partial \log_e(z)}{\partial z} \right.$  at z=1 is  $\left. \frac{\partial \log_e(z)}{\partial z} \right|_{z=1} = \frac{1}{z} \right|_{z=1} = 1$ .

2/8/2019 Quiz: Homework 1

A dataset has 100 positive samples and 100 negative samples. Furthermore,

#True Positive = 63,

#False Negative = 37,

#True Negative = 72,

#False Positive = 28.

What is the False Positive Rate?

| 8 pts |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

Question 14 5 pts

Let x be a scalar variable and  $f(x)=3x^2+36x-8$ . Let  $x^\star$  be the optimal solution to the problem  $\min_x f(x)$ .

What is the value of  $\boldsymbol{x}^{\star}$ ? (Hint:  $\boldsymbol{f}$  is a convex function; use the first-order optimality condition.)

| 1 |
|---|
| 1 |
|   |
| 1 |
|   |
| 1 |
| 1 |
|   |
| J |
|   |

### Question 15

5 pts

Let x be a scalar variable and f(x) = -2x + 10.

What is the value of  $\min_x f(x)$  s.t.  $-2 \le x \le 5$ ?

### **Question 16**

32 pts

Are all of the following statements true?

- On Jan 31, the class will be canceled.
- On Jan 31 and Feb 28, the classes and office hours will be canceled.
- There is a quiz on Feb 28.

(Note: This question is a bonus for paying attention to the schedule.)

- True
- False

2/8/2019 Quiz: Homework 1

Not saved

Submit Quiz