

Tutorial for SimuQ a DSL for Quantum Simulation with Analog Compilation

Presenter: Yuxiang Peng, Pengyu Liu, and Jiaqi Leng 09/20/2023

A joint work with Jacob Young and Xiaodi Wu

Thanks to contributors: Cedric Lin, Cody Wang, Joseph Li

GitHub repo: https://github.com/PicksPeng/SimuQ

arXiv: 2303.02775

Project website: https://pickspeng.github.io/SimuQ/

SimuQ: SIMUlation language for Quantum

A software tool for Hamiltonian-oriented quantum computing!

First session

- Motivation & introduction (~40 min)
- Installation guide (~10 min)
- Notebook session 1: basics (~40 min)

Break

Second session

- Notebook session 2: applications (~50 min)
- Advanced discussion (~30 min)
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
- Open discussion (~10 min)

First session

- Motivation & introduction (~40 min) Presenter: Yuxiang Peng
- Installation guide (~10 min)
- Notebook session 1: basics (~40 min)

Break

Second session

- Notebook session 2: applications (~50 min)
- Advanced discussion (~30 min)
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
- Open discussion (~10 min)

Quantum Hamiltonian Simulation

Hard to control

Classically hard to compute: Exponential dimension

Quantumly "easy" to simulate: Map to a controllable quantum system

Towards Quantum Applications

Goal: Deliver quantum applications on modern quantum devices

Hamiltonian-oriented algorithm designs and programming!

Hamiltonian-Oriented Quantum Computing

Why Hamiltonian-Oriented?

Digital Quantum Computing Paradigm

[1]: Childs et al., Toward the first quantum simulation with quantum speedup, PNAS, 2018.

100

System size

30

300

Why Hamiltonian-Oriented?

Analog (Hamiltonian-oriented) Quantum Computing Paradigm

Ready for modern quantum devices!

A New Trend in Scientific Researches

|QuEra>

COMPUTING INC.

Condensed Quantum Chemistry Matter High Energy Optimization Physics **Domain Problems** Hamiltonian Simulation Programmable **Quantum Systems**

>20 papers published since 2020 in Physics Review & Nature series

Quantum Simulation for Everyone

Reality:

Lack of software supports

SimuQ breaks barriers!

Domain-specific knowledges

- Analog or digital devices?
- Device physics and specifications?
- Quantum algorithms?
- Programming languages?
-

SimuQ: SIMUlation language for Quantum

TARGET **QUANTUM** SYSTEM Analog Compilation EXECUTABLE PULSES

- Analog instruction sets
- Hardware-efficient compilation
- Supports analog simulators

Example: Quantum Walk

$$L = \begin{bmatrix} -1 & 1 & & & & \\ 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & \\ & & 1 & -2 & 1 \\ & & & 1 & -1 \end{bmatrix}$$

Simulate $U(t) = e^{-iLt}$

Circuit-based implementation

- 1. Decompose *L* into Pauli tensors
- 2. Apply Trotterization
- 3. Decompose into CNOT-based circuits⇒ ~50 CNOT gates per step

Close to the limits of modern devices

Hamiltonian-Oriented Algorithm Design

Hamiltonian embedding [1]
$$(n = N - 1)$$
:
 $H = g(\sum_{j=1}^{n-1} Z_j Z_{j+1} + Z_1 + (-1)^n Z_n)$ Penalty
 $+ \hat{n}_1 + (-1)^n \hat{n}_n - \sum_{j=1}^n X_j$ Perturbation

Perturbation theory:
$$e^{-iHt}|_{\mathcal{H}} \approx e^{-iLt}$$

 $\mathcal{H} = \text{span}(\{|5\rangle, |13\rangle, |9\rangle, |11\rangle, |10\rangle\})$:

Can be deployed on Rydberg devices (up to 256 atoms)

Example: Quantum Walk

```
walk = QSystem()
                                                                              0.04
                                                                              0.02
n = N - 1
q = [qubit(walk) for _ in range (n)]
                                                                              0.00
nhat = [(q[j].I - q[j].Z) / 2 \text{ for } j \text{ in } range(n)]
sgnn = -1 if n \% 2 == 1 else 1
                                                                              -0.02
                                                       Compile
Hpen = q[0].Z + sgnn * q[n - 1].Z
                                                                              -0.04
for i in range(n - 1):
    Hpen += q[j].Z * q[j + 1].Z
                                                                                      0.5 1.0 1.5 2.0
Q = nhat[0] + sgnn * nhat[n - 1]
for j in range(n):
    Q = q[j].X
H = g * Hpen + Q
walk.add evolution(H, T)
```


Results

Programming

Automated by SimuQ

Visualization

1.5

2.0

0.5

More details in Notebook session 2

Abstraction for Analog Quantum Simulators

Different devices are vastly different

A unifying description

ABSTRACT

Device Hamiltonian:

$$H(t) = H_0(t) + \sum_i H_i(s_i, t)$$

Device evolution:

$$U = \mathcal{T}\exp(-i\int H(t)dt)$$

Parameterized Hamiltonians

Schedule

Example: Rydberg AAIS

Configurable Parameters:

- 1. Atom position $\{\tilde{x}_j\}_{j=1}^N$.
- 2. Local laser configurations $\left\{\left(\widetilde{\Delta}_{j}(t),\widetilde{\Omega}_{j}(t),\widetilde{\phi}_{j}(t)\right)\right\}_{i=1}^{N}$

Device Hamiltonian:

$$H(t) = \sum_{j < k} H_{\text{aa}}^{(jk)} + \sum_{j} H_{\text{laser}}^{(j)}(t)$$

$$H_{\text{aa}}^{(jk)} = \frac{c_6}{|\tilde{x}_j - \tilde{x}_k|^6} \hat{n}_j \hat{n}_k$$

$$H_{\text{laser}}^{(j)}(t) = \tilde{\Delta}_j(t) \hat{n}_j + \frac{\tilde{\Omega}_j(t)}{2} H_{\text{phase}}^{(j)} \left(\tilde{\phi}_j(t)\right)$$

$$H_{\text{phase}}^{(j)}(\varphi) = \cos(\varphi) X_j - \sin(\varphi) Y_j$$

ABSTRACT

$$H_{\mathrm{phase}}^{(j)}(\varphi) = \cos(\varphi) X_j - \sin(\varphi) Y_j$$

Laser emitters

AAIS

More details in Advanced discussion

Abstract Analog Instruction Set (AAIS)

Physics

Engineered Signals

Signal Effects

Device Evolution

Abstraction

Signal Lines

Instructions

Ham.

Ham.

- Exposes programmability of analog quantum simulators.
- Can be programmed via AAIS-SL.
- Enables automatic analog compilation.
- A new computational model.

Generalize circuit-based quantum devices

More details of the compiler in Advanced Discussion

First session

- Motivation & introduction (~40 min)
- Installation guide (~10 min) Presenter: Yuxiang Peng
- Notebook session 1: basics (~40 min)

Break

Second session

- Notebook session 2: applications (~50 min)
- Advanced discussion (~30 min)
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
- Open discussion (~10 min)

Installation Guide

As easy as: pip install simuq

Providers	Backends	Cloud Pricing	
QuTiP [qutip]	Ideal simulators	0	
Amazon Braket [braket]	Ideal (& noisy) simulators QuEra's Rydberg arrays (Aquila) IonQ's ion traps (Hamorny) IonQ's ion traps (Aria-1/2)	0 \$(0.3+0.01*s) per job \$(0.3+0.01*s) per job \$(0.3+0.03*s) per job	
IonQ Quantum Cloud [ionq]	IonQ's ion traps (Hamorny, Aria-1/2) Ideal & noisy simulators	Consult IonQ O	
IBM Q-Experience [ibm]	IBM's transmons Ideal & noisy simulators	0/\$1.6 per second 0	

Claim your AWS credits for SimuQ trials:

Send requests to aws-qce23-credits@amazon.com with name & affiliation!

First session

Find notebooks at QR or in SimuQ repo

notebooks/tutorials/

- Motivation & introduction (~40 min)
- Installation guide (~10 min)
- Notebook session 1: basics (~40 min) Presenter: Pengyu Liu

Break

Second session

- Notebook session 2: applications (~50 min)
- Advanced discussion (~30 min)
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
- Open discussion (~10 min)

First session

- Motivation & introduction (~40 min)
- Installation guide (~10 min)
- Notebook session 1: basics (~40 min)

Break

Second session

- Notebook session 2: applications (~50 min)
- Advanced discussion (~30 min)
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
- Open discussion (~10 min)

SimuQ: SIMUlation language for Quantum

Claim your AWS credits for SimuQ trials:

Send requests to aws-qce23-credits@amazon.com with name & affiliation!

• First session in SimuQ repo

notebooks/tutorials/

Find notebooks at QR or

- Motivation & introduction (~40 min)
- Installation guide (~10 min)
- Notebook session 1: basics (~40 min)

Break

Second session

- Notebook session 2: applications (~50 min) Presenter 1: Jiaqi Leng
- Advanced discussion (~30 min)
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
- Open discussion (~10 min)

• First session Find notebooks at QR or in SimuQ repo

notebooks/tutorials/

- Motivation & introduction (~40 min)
- Installation guide (~10 min)
- Notebook session 1: basics (~40 min)

Break

Second session

- Notebook session 2: applications (~50 min) Presenter 2: Yuxiang Peng
- Advanced discussion (~30 min)
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
- Open discussion (~10 min)

Quantum Simulation in High-Energy Physics

Lattice gauge theory (LGT)

Simulate LGT with quantum simulation? Simulation your efforts!

Reproduce demonstration of HEP simulation

• Dynamics of quantum fluctuation [2]

$$\hat{H}_{lat} = -iw \sum_{n=1}^{N-1} \left[\hat{\Phi}_{n}^{\dagger} e^{i\hat{\theta}_{n}} \hat{\Phi}_{n+1} - h. c. \right] + J \sum_{n=1}^{N-1} \hat{L}_{n}^{2} + m \sum_{n=1}^{N} (-1)^{n} \hat{\Phi}_{n}^{\dagger} \hat{\Phi}_{n}.$$

- Encoding of electrons and positrons
 - Odd-even occupation:
 - $|0101\rangle = |vac, vac, vac, vac\rangle$
 - $|1010\rangle = |e^-, e^+, e^-, e^+\rangle$

Easy experiment reproduction in SimuQ!

Source of figures: [2]

- First session
 - Motivation & introduction (~40 min)
 - Installation guide (~10 min)
 - Notebook session 1: basics (~40 min)
- Break
- Second session
 - Notebook session 2: applications (~50 min)
 - Advanced discussion (~30 min) Presenter: Yuxiang Peng
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
 - Open discussion (~10 min)

- First session
 - Motivation & introduction (~40 min)
 - Installation guide (~10 min)
 - Notebook session 1: basics (~40 min)
- Break
- Second session
 - Notebook session 2: applications (~50 min)
 - Advanced discussion (~30 min) Presenter: Yuxiang Peng
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
 - Open discussion (~10 min)

AAIS Design Details

AAIS Specification Language

AAIS

$$\eta_{\text{system}}(\vec{x}) \Rightarrow \sum_{j < k} H_{\text{aa}}^{(jk)}$$

$$\eta_{\text{laser}}^{(j)}(\Delta, \Omega, \phi) \Rightarrow \Delta \hat{n}_j + \frac{\Omega}{2} H_{\text{phase}}^{(j)}(\phi)$$

AAIS-SL Program

```
rydberg = QMachine()
q = [Qubit(rydberg) for _ in range(n)]
x = [0] + [rydberg.add global variable() for _ in range(n - 1)]
noper = [(q[i].I - q[i].Z) / 2 \text{ for } i \text{ in } range(n)]
h = 0
for i in range(n):
    for j in range(i):
        h += (C_6 / (x[i] - x[j]) ** 6) * noper[i] * noper[j]
rydberg.set_sys_ham(h)
for i in range(n):
    L = rydberg.add signal line()
    ins = L.add instruction()
    d = ins.add local variable()
    o = ins.add local variable()
    p = ins.add local variable()
    XY = \cos(p) * q[i].X - \sin(p) * q[i].Y
    ins.set ham(-d * noper[i] + o / 2 * XY)
```

QuEra Devices

Ideal Rydberg machines

Configurable Parameters:

- 1. 1D Atom position $\{\tilde{x}_j\}_{j=1}^N$.
- 2. Local laser configurations $\left\{ \left(\widetilde{\Delta}_{j}(t), \widetilde{\Omega}_{j}(t), \widetilde{\phi}_{j}(t) \right) \right\}_{j=1}^{N}$

QuEra machines

Configurable Parameters:

- 1. 2D atom position $\{(\tilde{x}_j, \tilde{y}_j)\}_{j=1}^N$
- 2. Global laser configurations $\widetilde{\Delta}(t), \widetilde{\Omega}(t), \widetilde{\phi}(t)$

Rydberg AAIS for QuEra

Capable of simulating Ising-type systems

AAIS

$$\vec{x} = \{x_j\}_{j=1}^N, H_{aa}^{(jk)} = \frac{c_6}{|x_j - x_k|^6} \hat{n}_j \hat{n}_k$$

2D-variant

$$\vec{x} = \{(x_j, y_j)\}_{j=1}^N, H_{aa}^{(jk)} = \frac{c_6}{((x_j - x_k)^2 + (y_j - y_k)^2)^3} \hat{n}_j \hat{n}_k$$

QuEra machines

Configurable Parameters:

- 1. 2D atom position $\{(\tilde{x}_j, \tilde{y}_j)\}_{j=1}^N$
- 2. Global laser configurations $\widetilde{\Delta}(t), \widetilde{\Omega}(t), \widetilde{\phi}(t)$

IBM Devices

Fixed-frequency transmon systems

- Rotating frame:
 - $H_{\text{coup}}^{(jk)} \Rightarrow \omega_{ZX} Z_j X_k + \omega_{ZZ} Z_j Z_k + \cdots$
- Native Ham. is not so useful!
 - Few systems can be mapped natively
 - It requires frequent calibration

Heisenberg AAIS

An AAIS for Heisenberg-type systems.

- Instructions:
 - 1-q: $\{|\eta_{j,P}|\}(a) = aP_j$
 - 2-q: $\{|\eta_{jk,PP}|\}(a) = aP_jP_k$
 - $P \in \{X, Y, Z\}$
 - Implementation: pulse-efficient gates

 - Shorter duration compared to CNOT-based implementation.

Variants: 2-Pauli AAIS

lonQ Devices

Trapped ion arrays

Native Hamiltonian is complicated

- Employ Heisenberg AAIS
 - Full connectivity
 - Implementation:
 - Arbitrary angle Mølmer-Sørensen gates

$$H_{\text{int.}}^{(j)}(t) = \Omega_L \left(\sum_P \alpha_P P_j \right) e^{-i\Delta\omega_L t + i\Delta\varphi_L + i\sum_\mu \eta_{j\mu} \left(a_\mu^{\dagger} + a_\mu \right)} + h.c.$$

Tutorial Outline

- First session
 - Motivation & introduction (~40 min)
 - Installation guide (~10 min)
 - Notebook session 1: basics (~40 min)
- Break
- Second session
 - Notebook session 2: applications (~50 min)
 - Advanced discussion (~30 min) Presenter: Yuxiang Peng
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
 - Open discussion (~10 min)

SimuQ Compiler

Hamiltonian Synthesizer

Difference to circuit model:

No SWAP gates for many devices

Brute-force search with heuristics

Rydberg, ion trap: Easy (perfect symmetry) Superconducting: Hard (specific topology)

May be overloaded by manual assignments

Hamiltonian Synthesizer

Synthesize
$$H_{\text{tar}} = Z_1 X_2$$
 from
$$\eta_1(\alpha) : \alpha Z_1 X_2 + Z_1) \quad \eta_2(\beta) : \beta Z_1$$

$$\begin{cases} Z_1 X_2 : & \alpha + 0 = 1 \\ Z_1 : & 1 + \beta = 0 \end{cases}$$

Build equation for each product-Hamiltonian *P*

$$\tau \cdot \sum_{j=1}^{m} \{ |\eta_j| \} [P](\mathbf{v}) \cdot s_j = t \cdot \mathcal{M}(H_{\text{tar}})[P]$$

Coefficient of P Valuation Indicator Coefficient of P in in instruction ι_j of variables in $\{0,1\}$ H_{tar} in layout \mathcal{M}

Conflict Resolver

Activated Instructions

$$\begin{pmatrix} \eta_1(1) \colon & Z_1 X_2 + Z_1 \end{pmatrix}$$

$$(\eta_2(-1): -Z_1)$$

$$\eta_1(1) + \eta_2(-1) = H_{\text{tar}}$$

Conflicting Instructions:

 $\eta_1(\alpha)$ and $\eta_2(\beta)$ cannot be executed simultaneously on IBM

Resolve conflicts by Trotterization

Conflict relation graph

Scheduler and Transpiler

Tutorial Outline

- First session
 - Motivation & introduction (~40 min)
 - Installation guide (~10 min)
 - Notebook session 1: basics (~40 min)
- Break
- Second session
 - Notebook session 2: applications (~50 min)
 - Advanced discussion (~30 min) Presenter: Yuxiang Peng
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
 - Open discussion (~10 min)

As a user: What to explore now

Front-end User Perspective

- Quantum mechanics researchers
 - Simulate interesting systems
- Quantum hardware investigators
 - Evaluate devices in applications
 - Cross-platform performance evaluation

A quantum simulation benchmark

System	LoC	# of	Compilation time (s)			IBM Duration (ms)		IonQ
name		sites	QuEra	IBM	IonQ	SimuQ	Qiskit	#2q-gate
ising_chain	13	6	0.177	0.224	0.155	2.06	8.69	20
		32	39.3	54.6	47.2	3.24	39.2	124
		64	663	257	N.S.	3.15	81.2	
		96	2298	1086	N.S.	3.26	450	
ising_cycle	13	6	0.585	N.S.	0.13			24
		12	3.47	1.49	1.37	2.05	37.8	48
		32	114	483	53.8	3.35	144	128
		64	3454	T.O.	N.S.			
heis_chain	15	32	N.S.	143	138	10.1	119	372
qaoa_cycle	19	12	N.S.	0.503	1.50	0.83	37.6	36
qhd	16	16	N.S.	N.S.	66.3			480
mis_chain	22	12	5.45	19.1	25.2	18.9	94.0	440
		24	53.1	328	278	18.9	162	920
mis_grid	29	16	28.4	N.S.	85.4			960
		25	141	N.S.	489			1600
kitaev	13	18	4.67	15.6	8.74	2.12	21.2	68
schwinger	18	10	N.S.	N.S.	1.09			28
o 3 nl σ m	19	30	N.S.	N.S.	77.7			588

Algorithm Designer Perspective

- Domain experts
 - 1. Investigate domain problems
 - I.e., non-convex optimization [3].
 - 2. Design Hamiltonian-based algorithms
 - 3. Deploy on devices for testing

- Potential new directions
 - Hybrid digital-analog algorithms
 - Error reduction algorithms
 - Characterization of analog simulators

As a developer: What to investigate in the future

PL Developer Perspective

- Domain PL experts
 - Design higher-level DSL
 - Interfaces for common domain users
 - Compilation to SimuQ
- Pulse/VQE PL developers
 - A meta language with variables
 - Auto-differentiation [3]
- Formally verify the suite of SimuQ

Hardware Developer Perspective

- Quantum architecture researchers
 - Hamiltonian-based layout synthesis
 - Pulse-aware compilations
 - Better Trotterization strategies
- Quantum technology developers
 - Integrate error mitigation techniques
 - Robustness analysis of AHS
- Hardware providers
 - Design and implement AAIS for existing devices
 - Develop novel devices realizing powerful AAIS

Tutorial Outline

First session

- Motivation & introduction (~40 min)
- Installation guide (~10 min)
- Notebook session 1: basics (~40 min)

Break

Second session

- Notebook session 2: applications (~50 min)
- Advanced discussion (~30 min)
 - AAIS design for multiple devices
 - SimuQ compilation
 - Potential usages of SimuQ
- Open discussion (~10 min)

Recap of SimuQ

End-to-end Framework

TARGET
QUANTUM
SYSTEM

Analog Compilation

EXECUTABLE PULSES

Enhance your capability of harnessing the power of quantum devices

arXiv: 2303.02775

Project website:

Try SimuQ!

Contributions welcome!

Claim your AWS credits for trials!
Send requests to aws-qce23-credits@amazon.com
with name & affiliation!