Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher

Go to next item

1.		1/1 point
	You are using reinforcement learning to control a four legged robot. The position of the robot would be its	
	(iii) state	
	O reward	
	O return	
	O action	
	⊙ Correct Great!	
2.		1/1 point
	You are controlling a Mars rover. You will be very very happy if it gets to state 1 (significant scientific discovery), slightly happy if it gets to state 2 (small scientific discovery), and unhappy if it gets to state 3 (rover is permanently damaged). To reflect this, choose a reward function so that:	
	igotimes R(1) > R(2) > R(3), where R(1) and R(2) are positive and R(3) is negative.	
	\bigcap R(1) > R(2) > R(3), where R(1), R(2) and R(3) are positive.	
	$ \bigcirc \ \ R(1) < R(2) < R(3), where \ R(1) \ and \ R(2) \ are negative \ and \ R(3) \ is \ positive. $	
	\bigcirc R(1) > R(2) > R(3), where R(1), R(2) and R(3) are negative.	
	⊙ Correct Good job!	
3.		1/1 point
	You are using reinforcement learning to fly a helicopter. Using a discount factor of 0.75, your helicopter starts in some state and receives rewards -100 on the first step, -100 on the second step, and 1000 on the third and final step (where it has reached a terminal state). What is the return?	
	O-0.75*100-0.75^2*100+0.75^3*1000	
	-100 - 0.75*100 + 0.75^2*1000	
	O-0.25*100 - 0.25^2*100 + 0.25^3*1000	
	O -100 - 0.25*100 + 0.25*2*1000	
	⊙ Correct Awesome!	
4.		1/1 point

Given the rewards and actions below, compute the return from state 3 with a discount factor of $\gamma=0.25$.

- 0
- 0.39
- O 25
- 6.25
- \bigodot correct if starting from state 3, the rewards are in states 3, 2, and 1. The return is $0+(0.25)\times 0+(0.25)^2\times 100=6.25.$