Mining Massive Data Sets Midterm Report

1st 522H0036 - Luong Canh Phong Faculty of Information Technology Ton Duc Thang University Ho Chi Minh City, Vietnam 522H0036@student.tdtu.edu.com 2nd 522H0092 - Cao Nguyen Thai Thuan

Faculty of Information Technology

Ton Duc Thang University

Ho Chi Minh City, Vietnam
522H0092@student.tdtu.edu.com

3rd 522H0075 - Tang Minh Thien An
Faculty of Information Technology
Ton Duc Thang University
Ho Chi Minh City, Vietnam
522H0075@student.tdtu.edu.com

4th 522H0167 - Truong Tri Phong Faculty of Information Technology
Ton Duc Thang University
Ho Chi Minh City, Vietnam
522H0167@student.tdtu.edu.com

5th Instructor: Nguyen Thanh An Faculty of Information Technology
Ton Duc Thang University
Ho Chi Minh City, Vietnam
nguyenthanhan@tdtu.edu.com

Abstract—This project implements and evaluates key techniques in mining massive datasets. It covers hierarchical agglomerative clustering of string shingles using Jaccard distance; PySpark-based linear regression for gold price prediction; CUR decomposition for feature dimensionality reduction on gold price data; and PageRank analysis of the it.tdtu.edu.vn web graph using PySpark. The work demonstrates practical applications and provides insights into processing large-scale data.

I. INTRODUCTION

The increasing volume of data requires efficient mining techniques. This project implements and analyzes four core algorithms: (1) hierarchical agglomerative clustering for non-Euclidean text data, using 4-shingles and Jaccard distance on alphabetical strings; (2) PySpark-based linear regression to predict Vietnamese gold prices from historical data; (3) CUR decomposition to reduce the dimensionality of gold price features (from 10 to 5) and assess its impact on regression; and (4) PageRank, implemented in PySpark, to identify influential pages within the it.tdtu.edu.vn web graph. Python and PySpark are utilized throughout. This report details the methodologies, implementations, and experimental results for each task.

- II. FIRST TASK: HIERARCHICAL CLUSTERING IN NON-EUCLIDEAN SPACES
- III. SECOND TASK: LINEAR REGRESSION GOLD PRICE PREDICTION

IV. CONTRIBUTION

The following table represents the contribution of each member, note that whichever member handles whichever task will also write the report for that task.

V. SELF-EVALUATION

The following table is our self-evaluation on our tasks:

VI. CONCLUSION REFERENCES

TABLE I MEMBER CONTRIBUTIONS

ID	Member	Contribution	Progress
522H0036	Luong Canh Phong	Task 1 and Handling Report	100%
522H0092	Cao Nguyen Thai Thuan	Overseer and Report Support	100%
522H0075		Task 3	100%
522H0167	Truong Tri Phong	Task 2	100%

TABLE II SELF-EVALUATION

Task	Task Requirements	Completion Ratio
Task 1	A-Priori Algorithm for Frequent Customers	100%
Task 2	PCY Algorithm for Frequent Items	95%
Task 3	MinHashLSH for Similar Dates	90%
Task 4	Report	100%