

Course: B.Tech. Semester: 6

Prerequisite: Data structure, automata and language theory, Mathematics and Python programming. |

Rationale: This course provides a broad introduction to Artificial Intelligence. Al techniques for search and knowledge representation also apply knowledge of Al planning and machine learning techniques to real-world problems.

Teaching and Examination Scheme

Teaching Scheme				Examination Scheme								
Lecture	Tutorial	Lab		Credit	Int	ernal Ma	rks	Externa	l Marks	Total		
Hrs/Week	Hrs/Week	Hrs/Week	Hrs/Week	Credit	Т	CE	Р	Т	Р			
3	0	0	-	3	20	20	-	60	-	100		

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Course Content		W - Weightage (%) , T - Teaching				
Sr.	Topics		w	Т		
1		to Machine Learning: to Machine Learning – Learning Paradigms – PAC learning – Basics of Probability – Version Spaces,	20	9		
	Data collection	rning in Practice: on – Preprocessing (Missing values, Normalization, Adopting to chosen algorithm etc.,) – Outlier core) - Model selection & evaluation – Optimization of tuning parameters – Setting the environment – of results				
2		earning – I: on-Linear examples – Multi–Class & Multi-Label classification – Linear Regression Regression – Naïve Bayes Classifier – Decision Trees – ID3 – CART – Error bounds	15	6		
3		earning - II: er – Logistic regression – Perceptrons – Single layer & Multi-layer – Support Vector Machines – Linear & emi-Supervised Learning.	25	9		
4		sics (Partitioned, Hierarchical and Density based) - K-Means clustering – K-Mode Self organizing maps – Expectation maximization – Principal Component Analysis,	20	8		
5		Metrics: ROC Curves, Evaluation Metrics, Significance tests – Error correction in Perceptrons, arning: Bagging and Boosting (Random forests, Adaboost, XG boost inclusive)	20	11		

Reference Books

1.	Ethem Alpaydin, "Introduction to Machine Learning , MIT Press, Prentice Hall of India, Third Edition 2014. (TextBook)
2.	Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning , MIT Press, 2012
3.	Tom Mitchell, —Machine Learning , McGraw Hill, 3rd Edition,1997.
4.	Charu C. Aggarwal, —Data Classification Algorithms and Applications , CRC Press, 2014.
5.	Christopher M. Bishop, —Pattern Recognition and Machine Learning , Springer 2011 Edition.

Printed on: 30-04-2024 12:27 PM

Course Outcome

After Learning the Course the students shall be able to:

Expected Course Outcome:

At the end of the course, students will be able to

- 1. Understand, visualize, analyze and preprocess the data from a real-time source.
- 2. Apply appropriate algorithm to the data.
- 3. Analyze the results of algorithm and convert to appropriate information required for the real time application.
- 4. Evaluate the performance of various algorithms that could be applied to the data and to suggest most relevant algorithm according to the environment.

Printed on: 30-04-2024 12:27 PM Page 2 of 2