Devoir Surveillé, 9 novembre 2016 Durée 2h00, documents interdits

Exercice 1 -

- 1) À l'aide de la factorisation de $X^9 X$ dans $\mathbb{F}_3[X]$, calculer le nombre de polynômes unitaires irréductibles de degré 2 de $\mathbb{F}_3[X]$.
- 2) Les déterminer explicitement.
- 3) On considère l'anneau $A = \frac{\mathbb{F}_3[X]}{\langle X^4 + 1 \rangle}$. Montrer que A n'est pas un corps.
- 4) Comme à l'accoutumée on note A^{\times} le groupe multiplicatif des inversibles de A. Déterminer $|A^{\times}|$.
- 5) Soit α la classe de X dans A. Montrer que $\alpha \in A^{\times}$ et déterminer son ordre dans ce groupe.
- **6)** Montrer que pour tout $x \in A$ on a $x^9 = x$.
- 7) Le groupe A^{\times} est-il cyclique?

Exercice 2 -

- 1) Montrer que $\frac{\mathbb{F}_5[X]}{\langle X^3+X+1\rangle}$ est un corps que l'on identifiera à \mathbb{F}_{125} .
- **2)** Soit $x \in \mathbb{F}_{125} \setminus \mathbb{F}_5$. Quel est le degré de x sur \mathbb{F}_5 ?
- 3) Combien y a-t-il dans \mathbb{F}_{125} d'éléments primitifs?
- 4) On note α la classe de X dans \mathbb{F}_{125} . L'élément α est-il primitif? *Indication*: on pourra calculer successivement α^3 , α^4 , α^5 , α^{15} , α^{30} et α^{31} .
- 5) Montrer que $\beta = 2\alpha$ est un élément primitif de \mathbb{F}_{125} .
- 6) En déduire un polynôme unitaire irréductible primitif de degré 3 de $\mathbb{F}_5[X]$.
- 7) Exprimer les racines de $X^3 + X + 1$ dans \mathbb{F}_{125} comme polynômes en α de degré ≤ 2 .
- 8) Quel est le polynôme minimal de $\alpha + 1$ sur \mathbb{F}_5 ?

Exercice 3 – Figure ci-dessous le schéma des sous-corps de $\mathbb{F}_{2^{30}}$. Dans ce schéma $A \longrightarrow B$ signifie que A et B sont des sous-corps de $\mathbb{F}_{2^{30}}$ vérifiant $A \subsetneq B$ et qu'il n'y a pas de sous-corps C de $\mathbb{F}_{2^{30}}$ vérifiant $A \subsetneq C \subsetneq B$.

- 1) Quels sont les corps K, L, M, N?
- 2) Quels sont les degrés des extensions N/L et $\mathbb{F}_{2^{30}}/K$?
- 3) On admettra ici que $X^{10}+X^3+1$ est irréductible primitif dans $\mathbb{F}_2[X]$. On identifie $\mathbb{F}_{2^{10}}$ à $\mathbb{F}_2[X]/\langle X^{10}+X^3+1\rangle$. On note α la classe de X dans $\mathbb{F}_{2^{10}}$ et on pose $\beta=\alpha^7+\alpha^6+\alpha^5+\alpha^3+\alpha^2$. Montrer que β appartient à un sous-corps strict de $\mathbb{F}_{2^{10}}$ distinct de \mathbb{F}_2 que l'on précisera.
- 4) Trouver un élément appartenant à l'autre sous-corps strict de $\mathbb{F}_{2^{10}}$ distinct de \mathbb{F}_2 , et l'exprimer comme polynôme en α de degré ≤ 9 .
- **5)** Quelle est la forme de la décomposition en produit d'irréductibles (leur nombre et leurs degrés respectifs) de $P(X) = X^8 + X^7 + X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$ dans $\mathbb{F}_2[X]$?
- 6) Montrer que P(X) est scindé à racines simples dans M.

Exercice 4 -

- 1) Montrer que $P(X) = X^5 + X^3 + 1 \in \mathbb{F}_2[X]$ est irréductible dans $\mathbb{F}_2[X]$.
- 2) En remarquant que 31 est premier, prouver que P(X) est primitif.
- 3) On considère la suite $(s_i)_{i\geqslant 0}$ définie par $s_0=s_1=s_2=s_3=s_4=1$ et la relation $s_{i+5}=s_{i+3}+s_i$ pour tout $i\geqslant 0$. Montrer que $(s_i)_{i\geqslant 0}$ est périodique et déterminer sans calcul sa période.
- 4) Soit α la classe de X dans $\mathbb{F}_2[X]/\langle P(X)\rangle$ que l'on identifie à \mathbb{F}_{32} . Si $x \in \mathbb{F}_{32}$, on note $\operatorname{Tr}(x)$ la trace de x dans \mathbb{F}_{32} . Calculer $\operatorname{Tr}(1)$, $\operatorname{Tr}(\alpha)$, $\operatorname{Tr}(\alpha^2)$, $\operatorname{Tr}(\alpha^3)$ et $\operatorname{Tr}(\alpha^4)$.
- 5) Calculer les premiers termes de $(s_i)_{i\geqslant 0}$ et en déduire un entier $k\geqslant 0$ tel que $s_i=\operatorname{Tr}(\alpha^{i+k})$ pour tout $i\geqslant 0$.