Ejercicios de complejidad.

Agustín Gutiérrez

Hoy

Habitualmente se enseña el master theorem como la receta magica salvapapas que resuelve todo misticamente. En realidad, hay una formulita mas poderosa (el primer resultado a continuacion), que salva las papas en casos mas generales todavia, y el master theorem no es mas que mirar esa cuentita con valores particulares (muy conveniente por cierto, dado que cuando aplica, master termina siendo una cuentita y una comparacion de dos numeros, es decir, una demostracion en O(1) esencialmente).

Notacion: se asume que el caso base es siempre T(1) = f(1)Probar que:

$$T(n) = aT\left(\frac{n}{c}\right) + \Theta(f(n)) \Rightarrow T(n) = \Theta\left(\sum_{i=0}^{k} a^{i} f\left(\frac{n}{c^{i}}\right)\right) \quad \text{si} \quad n = c^{k}$$

$$(\forall t \in \mathbf{Z}, t \ge 0) T(n) = cT\left(\frac{n}{c}\right) + \Theta\left(n \lg^{t} n\right) \Rightarrow T(n) = \Theta\left(n \lg^{t+1} n\right)$$

$$T(n) = cT\left(\frac{n}{c}\right) + \Theta\left(\frac{n}{\lg n}\right) \Rightarrow T(n) = \Theta(n \lg \lg n)$$

$$(\forall t \in \mathbf{Z}, t \ge 2) T(n) = cT\left(\frac{n}{c}\right) + \Theta\left(\frac{n}{\lg^{t} n}\right) \Rightarrow T(n) = \Theta(n)$$