Mesure de risque

Jérémie Barde* sous la supervision de Prof. Hélène Cossette et de Prof. Etienne Marceau École d'actuariat, Université Laval, Québec, Canada

14 août 2024

Résumé

Ce document résume les propriétés respectées par certaines mesures de risque étudiées dans le cours. Pour certaines d'entre elles, les preuves de ces propriétés sont également fournies.

^{*}Corresponding author, jeremie.barde.1@ulaval.ca

1 Mesure de risque

		Mesure de risque					
	$\rho(x)$	$(1+\theta)E[X]$	$E[X] + \theta Var(X)$	$E[X] + \theta \sigma_X$	$VaR_{\kappa}(X)$	$TVaR_{\kappa}(X)$	$\frac{1}{\rho} \ln \left(E \left[e^{\rho X} \right] \right)$
1	$\leq F^{-1}(x) = \sup\{x\}$	Ø	Ø	Ø	✓	✓	✓
2	$\geq E[X]$	\checkmark	\checkmark	\checkmark	Ø	\checkmark	\checkmark
3	$\rho(x+c) = \rho(x) + c$	Ø	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
4	$ \rho(c) = c $	Ø	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5	$\rho(x+y) = \rho(x) + \rho(y)$	\checkmark	Ø	\checkmark	Ø	\checkmark	Ø
6	$\rho(x+y) \le \rho(x) + \rho(y)$	\checkmark	Ø	\checkmark	Ø	\checkmark	Ø
7	$\rho(cx) = c\rho(x)$	✓	Ø	✓	\checkmark	\checkmark	Ø
8	$P(x \le y) = 1 \to \rho(x) \le \rho(y)$	✓	Ø	Ø	✓	✓	\checkmark

1.1 Principe de la valeur espéré

1.

$$si \quad X = c \to (1+\theta)c \nleq \sup\{x\}$$

1.2 Principe de la variance

1. Trouver contre exemple

$$X = \begin{cases} 4 & , p = 0.5 \\ 12 & , p = 0.5 \end{cases} \longrightarrow E[X] = 8, \quad Var(X) = 16, \quad \theta = 1 \longrightarrow \rho(X) = 4 + 16 = 20 \ge 12$$
$$\rho(X) \nleq \sup\{x\}$$

5. Elle peut être additive si X et Y sont indépendant.

$$\begin{split} \rho(X+Y) &= E[X+Y] + \theta Var(X+Y) \\ &= E[X] + E[Y] + \theta (Var(X) + Var(Y) + \underbrace{Cov(X,Y)}_{=0 \text{ si ind.}}) \\ &= E[X] + E[Y] + \theta (Var(X) + Var(Y)) \\ &= \rho(X) + \rho(Y) \end{split}$$

8. Trouver contre exemple

$$X = \begin{cases} 4, & p = 0.5 \\ 12, & p = 0.5 \end{cases}, \quad Y = 13, \quad \theta = 1 \longrightarrow \rho(X) = 20 \nleq \rho(Y) = 13$$

1.3 Principe de l'écart-type

- 1. Trouver contre exemple
- 6. Utiliser l'inégalité de Cauchy-Schartz

$$\begin{split} \rho(X+Y) &= E[X+Y] + \theta \sqrt{Var(X+Y)} \\ &= E[X] + E[Y] + \theta \sqrt{Var(X) + Var(Y) + 2Cov(X,Y)} \qquad (Cov(X,Y) \leq \sigma_X \sigma_Y) \\ &\leq E[X] + E[Y] + \theta \sqrt{Var(X) + Var(Y) + 2\sigma_X \sigma_Y} \qquad \text{(completer le carré)} \\ &\leq E[X] + E[Y] + \theta \sqrt{(\sigma_X + \sigma_Y)^2} \\ &\leq E[X] + E[Y] + \theta \sigma_X + \theta \sigma_Y \\ &< \rho(X) + \rho(Y) \end{split}$$

8. Trouver un contre exemple

1.4 Principe de la VaR

1.

$$VaR_p(X) = F_X^{-1}(p) \le F_X^{-1}(0) = \sup\{x\}$$

- 2. Ne marche pas pour les petite valeurs de p mais en général on utilise des valeurs élevé.
- 3. Utiliser la propriété $VaR_p(\varphi(X)) = \varphi(VaR_p(X))$

$$VaR_p(X+c) = VaR_p(\varphi(X)) = \varphi(VaR_p(X)) = VaR_p(X) + c$$
, avec $\varphi(X) = X + t$

1.5 Principe de la TVaR

1. Utiliser la définition de la TVaR

$$\frac{1}{1-p} \int_{p}^{1} \sup\{x\} ds = \frac{1-p}{1-p} \sup\{x\} = \sup\{x\}$$

Donc au maximum la TVaR va prendre la valeur maximal possible de X.

2. La TVaR est non-décroissante par rapport à p donc,

$$\operatorname{tr}\{p\}X \ge \operatorname{tr}\{0\}X = E[X]$$

3. Utilisé la définition de la TVar.

$$\operatorname{tr}\{p\}X + c = \frac{1}{1-p} \int_{p}^{1} VaR_{s}(X+c)ds = \frac{1}{1-p} \int_{p}^{1} (VaR_{s}(X) + c)ds = \operatorname{tr}\{p\}X + c$$

4.

$$\operatorname{tr}\{p\}c = \frac{1}{1-p} \int_{p}^{1} c ds = c$$

* Remarque : elle est très conservatrice donc la prime sera plus élevé

1.6 Mesure enthropique

1.

$$x \le \sup\{x\} \to e^{ax} \le e^{a\sup\{x\}} \to E\left[e^{aX}\right] \le e^{a\sup\{x\}} \to \frac{1}{a}\ln\left(E\left[e^{aX}\right]\right) \le \frac{1}{a}\ln\left(e^{a\sup\{x\}}\right)$$
$$\frac{1}{a}\ln\left(E\left[e^{aX}\right]\right) \le \sup\{x\}$$

2. Utilisé l'inégalité de Jensen et le fait que la fonction ln est concave. On a donc, $E[g(x)] \leq g\left(E[x]\right)$ et $g(t) = \ln(t)$

$$\frac{1}{a}E[g(e^{aX})] \le \frac{1}{a}g(E[e^{aX}]) \to \frac{1}{a}E[\ln(e^{aX})] \le \frac{1}{a}\ln(E[e^{aX}]) \to$$

$$\frac{1}{a}E[aX] \le \frac{1}{a}\ln\left(E[e^{aX}]\right) \to E[X] \le \frac{1}{a}\ln\left(E[e^{aX}]\right)$$

3.

$$\rho(X+c) = \frac{1}{a} \ln \left(E[e^{a(X+c)}] \right) = \frac{1}{a} \ln \left(E[e^{aX}e^{ac}] \right) = \frac{1}{a} \ln \left(e^{ac}E[e^{aX}] \right)$$
$$= \frac{1}{a} \left(\ln(e^{ac}) + \ln(E[e^{X}]) \right) = \frac{1}{a} \left(ac + \ln(E[e^{X}]) \right)$$
$$= c + \rho(X)$$

5. Si X et Y sont indépendant alors elle est additive (sous-additive).

$$\begin{split} \rho(X+Y) &= \frac{1}{a} \ln \underbrace{\left(E\left[e^{aX}e^{aY}\right] \right)}_{\text{si ind.}} = \frac{1}{a} \ln \left(E\left[e^{aX}\right] \left[e^{aY}\right] \right) \\ &= \frac{1}{a} \left(\ln E[e^{aX}] + \ln E[e^{aY}] \right) = \frac{1}{a} \ln E[e^{aX}] + \frac{1}{a} \ln E[e^{aY}] \\ &= \rho(X) + \rho(Y) \end{split}$$

8.

$$P(X \leq Y) = 1 \longrightarrow P(e^{ax} \leq e^{ay}) = 1 \longrightarrow \frac{1}{a} \ln \left(E\left[e^{aX}\right] \right) \leq \frac{1}{a} \ln \left(E\left[e^{aY}\right] \right)$$