MTH418 - Homework II

BY DARA VARAM

March 2nd, 2021

Question 1:

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}, A_{2} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

i. For G_1 :

$$\deg(v_1) = 2, \deg(v_2) = 2, \deg(v_3) = 1, \deg(v_4) = 3, \deg(v_5) = 2$$

For G_2 :

$$deg(v_1) = 1, deg(v_2) = 2, deg(v_3) = 2, deg(v_4) = 3, deg(v_5) = 2$$

ii. Drawing G_1 and G_2 :

iii. Construct a mapping from G_1 to G_2 to show isomorphism:

$$f\colon G_1 \longrightarrow G_2$$

$$f(v_1) = w_5$$

$$f(v_2) = w_2$$

$$f(v_3) = w_1$$

$$f(v_4) = w_4$$

$$f(v_5) = w_3$$

iv. Is G_1 or G_2 a $K_{m,n}$ for some $m,n\in\mathbb{Z}^+$? Draw them if so.

Assume G_1 is $K_{m,n}$ for some $m,n,\in\mathbb{Z}^+$. Then it has exactly m+n vertices and $m\times n$ edges. Since we know that G_1 has 5 edges, $m\times n=5$. This means that m=1,n=5 or m=5,n=1. In either case, we have that the total number of <u>vertices</u> is m+n=1+5=6, but G_1 only has 5 vertices. A contradiction. Therefore G_1 is NOT $K_{m,n}$.

Similarly for G_2 , we proceed by contradiction. Assume G_2 is $K_{m,n}$. Then $m \times n = 5 \Longrightarrow m = 1, n = 5$ or m = 5, n = 1. This implies that the number of vertices is m + n = 6, but we only have 6 vertices.

Another argument: Since we showed through the mapping of f that $G_1 \approx G_2$, then if G_1 is not $K_{m,n}$, automatically G_2 is not either.

For G_1 :

We have a bipartite graph (can divide into set $A = \{v_1, v_3\}$ and $B = \{v_2, v_4, v_5\}$), but this is NOT a complete bipartite graph.

For G_2 :

Once again we have a bipartite graph $(A = \{w_1, w_2, w_3\})$ and $B = \{w_4, w_5\}$ but we do not have a complete bipartite graph.

v. Find the permutation matrix p st $p A_1 = A_2 p$

1. Take I_5 :

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

2. $R_1 \mapsto R_5$

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)$$

3. $R_3 \mapsto R_1$

$$\left(\begin{array}{cccc} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{array}\right)$$

4. $R_5 \mapsto R_3$

$$\left(\begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{array}\right)$$

Therefore, the p we obtain that satisfies the equation $p A_1 = A_2 p$ is:

$$\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)$$

vi. We start with A_1 and perform the following operations:

- 1. $R_1 \mapsto R_5$
- 2. $R_3 \mapsto R_1$
- 3. $R_5 \mapsto R_3$

- 4. Take the matrix you obtain here, and call it C. Now, replace the following <u>columns</u> in your new matrix C as follows:
- 5. $C_1 \mapsto C_5$
- 6. $C_3 \mapsto C_1$
- 7. $C_5 \mapsto C_3$

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix} = A_2$$

You will end up with A_2 upon completing all the steps.

Question 2:

$$V = \{3, 5, 6, 9, 10, 12\}$$

Two vertices a, b are connected by an edge iff $a \cdot b = 0 \in \mathbb{Z}_{15}$ (multiplication modulo 15). We proceed with the multiplication table to be able to draw our graph:

\times_{15}	3	5	6	9	10	12
3	9	0	3	12	0	6
5	0	10	0	0	5	0
6	3	0	6	9	0	12
9	12	0	9	6	0	3
10	0	5	0	0	10	0
12	6	0	12	3	0	9

Now we draw the graph:

1. Show that G is a $K_{m,n}$ for some $m, n \in \mathbb{Z}^+$

Choose the sets $A = \{3, 6, 9, 12\}$ and $B = \{5, 10\}$. We can see that this graph is a complete bipartite. This is because each of both 5 and 10 are connected to very vertex in the other set, A. Therefore, we can say that G is $K_{m,n}$ for m = 2 and n = 4. In other words;

$$G = K_{2.4}$$

2. Find the girth of G:

The shortest cycle in the graph: 3 - 5 - 9 - 10 - 3. The other cycles in the graph are also of the same length, which is 4. Therefore;

$$girth(G) = 4$$

Another argument: Since $G = K_{2,4}$ with $2, 4 \ge 2$, we have that the shortest cycle length is always 4 (by result introduced in the lecture).

3. Find the diameter of G:

The maximum distance between two vertices in our graph is 2. That means that each pair of vertices are at most 2 edges apart. Therefore;

$$\dim(G) = 2$$

Another argument: Once again, by previous result introduced in the lecture, we know that for any complete bipartite graph $K_{m,n}$, diam $(K_{m,n}) = 2$.

4. Construct a minimum dominating set of G and determine the dominating number.

Since our graph is $K_{2,4}$, we take one vertex from each subset of vertices, say 10 and 9. Thus we have the dominating set $\{9,10\}$. Every vertex outside of this set is connected to one of the two. Since this set consists of two elements, we have that:

$$\gamma(G) = 2$$

Note that any pair of vertices that from separate vertex subsets can be a dominating set. We could have chosen $\{3,5\}$ to be our dominating set, but $\gamma(G)$ would stay the same.

Question 3:

$$V = \{2, 3, 4, 6, 8, 9, 10\}$$

\times_{12}	2	3	4	6	8	9	10
2	4	6	8	0	4	6	8
3	6	9	0	6	0	3	6
4	4 6 8 0 4 6 8	0	4	0	8	0	4
6	0	6	0	0	0	6	0
8	4	0	8	0	4	0	8
9	6	3	0	6	0	9	6
10	8	6	4	0	8	6	4

We draw the graph:

1. Show that G is NOT $K_{m,n}$ for some $m, n \in \mathbb{Z}^+$

Assume G is $K_{m,n}$ for some $m,n\in\mathbb{Z}^+$. $\Longrightarrow |E|=m\times n=8$ (we know this from the graph drawn above).

We could have m=2, n=4 or m=4, n=2. In either case, we know that m+n=6, but we have 7 edges. A contradiction.

We could also have $m=8,\,n=1$ or $m=1,\,n=8.$ $m+n=9\neq 7.$ Still a contradiction. Therefore it is impossible for us to have a complete bipartite graph. However, since we have no odd cycles, we can still construct a bipartite graph from G:

We have produced a bipartite graph that consists of $A = \{3,6,9\}$ and $B = \{2,4,8,10\}$. This bipartite graph is NOT complete because the vertex 3 is not connected to every vertex in the set B, namely 2 and 10. Similarly, 9 is not connected to 2 and 10.

2. Find the girth of G:

We have two cycles within the graph: 3-4-6-8-3 and 9-4-6-8-9. Both of which are of length 4, and therefore:

$$girth(G) = 4$$

3. Find the diameter of G:

The maximum distance between two vertices in our graph G is between the vertex 2 and 3, or 10 and 3, or 10 and 9 or 2 and 9. They all have the same length. We will use the distance between 2 and 3 as an example. The path is:

The rest of the pairs also follow in similar fashion. In each case, d(a,b) = 3. We do not have any distances longer than that in our graph. Therefore:

$$\dim(G) = 3$$

4. Construct a minimum dominating set and determine the dominating number of G:

Consider the set consisting of $\{4,6\}$. Every vertex outside of this set is either connected to 6 through an edge, or connected to 4 through an edge. We could alternatively go with the dominating set $\{6,8\}$. In both cases, the same principle applies.

$$\gamma(G) = 2$$