Expected Improvement Exploration Heuristic for PILCO

Rowan McAllister

July 10, 2015

Let the parameterisation of the previous rollout be r, and the cumulativecost distribution given the previous rollout be:

$$\mathcal{C}^{r} \sim \mathcal{N}(\mu_{r}, \sigma_{r}^{2})$$
 (1)

We would like to choose a new parameterisation, θ , in such a way that it optimises the expected improvement (E.I.) of the cumulative-cost. Since we care about low costs, 'improvement' means a decrease in cost. For arbitrary θ we have cumulative-cost distribution $\mathfrak{C}^{\theta} \sim \mathfrak{N}(\mu_{\theta}, \sigma_{\theta}^2)$. What is the probability $P(\mathcal{C}^{\theta} < \mathcal{C}^{r})$? Let $\Delta \mathcal{C} \doteq \mathcal{C}^{\theta} - \mathcal{C}^{r}$. Note:

$$\Delta \mathcal{C} \sim \mathcal{N}(\mu_{\theta} - \mu_{r}, \sigma_{\theta}^{2} + \sigma_{r}^{2} - 2c)$$
 (2)

where c is the covariance between \mathcal{C}^{θ} and \mathcal{C}^{r} . Let's assume (approximate) that c = 0, to make life simpler. So now the expected improvement, by changing parameterisation from r to θ is:

E.I.
$$= \int_{-\infty}^{0} x \, \mathcal{N}(x; \mu_{\theta} - \mu_{r}, \sigma_{\theta}^{2} + \sigma_{r}^{2}) \, dx$$
 (3)

$$= \Phi(-z)(\mu_{\theta} - \mu_{r}) - \phi(z)\sqrt{\sigma_{\theta}^{2} + \sigma_{r}^{2}}$$
 (4)

where $\phi(\cdot)$ is the standard normal distribution, $\Phi(\cdot)$ its cumulative standard normal function, and $z = \frac{\mu_{\theta} - \mu_{r}}{\sqrt{\sigma_{\theta}^{2} + \sigma_{r}^{2}}}$. In this case the E.I. is our loss function.

$$L = \Phi(-z)(\mu_{\theta} - \mu_{r}) - \phi(z)\sqrt{\sigma_{\theta}^{2} + \sigma_{r}^{2}}$$
 (5)

With gradients:

$$\frac{dL}{d\mu_{\theta}} \quad = \quad -\frac{\partial z}{\partial \mu_{\theta}} \varphi(z) (\mu_{\theta} - \mu_{r}) + \Phi(-z) + \frac{\partial z}{\partial \mu_{\theta}} z \varphi(z) \sqrt{\sigma_{\theta}^{2} + \sigma_{r}^{2}} \eqno(6)$$

$$= \Phi(-z) \tag{7}$$

$$\frac{dL}{d\sigma_{\theta}^{2}} = -\frac{\partial z}{\partial \sigma_{\theta}^{2}} \phi(z) (\mu_{\theta} - \mu_{r}) + \frac{\partial z}{\partial \sigma_{\theta}^{2}} z \phi(z) \sqrt{\sigma_{\theta}^{2} + \sigma_{r}^{2}} - \frac{\phi(z)}{2\sqrt{\sigma_{\theta}^{2} + \sigma_{r}^{2}}}$$

$$= -\frac{\phi(z)}{2\sqrt{\sigma_{\theta}^{2} + \sigma_{r}^{2}}} \tag{8}$$