

Noah Baumann

Supervisors:

Enrico Mion Bhavya Sukhija Jin Cheng Prof. Raffaello D'Andrea

Content

- 1. Comparing python & MATLAB RNGs
- 2. Extended Kalman Filter (EKF)
 - 1. 2021 Exercise plots
 - 2. 2022 Exercise plots
 - 3. 2021 vs 2022 performance & accuracy comparison
- 3. Particle Filter (PF)
- 4. Evaluation function
- 5. Conclusion
- 6. End

Extended Kalman Filter (EKF) Exercise

- The EKF exercise consists of keeping track of all the five states of the boat: x- & y-position, x-& y-velocity and the rotation
- 2021 version:
 - Distance sensors A,B are availbla at constant time steps
 - Distance sensor C is given at random
- 2022 version:
 - Distance sensor A,B & C are all given at the same random time step
- Problem: implementing Simulator.p python will not be the same as for the MATLAB version, due to python & MATLAB different RNGs

Comparing python & MATLAB RNGs

- Python & MATLAB use the same kind of uniform distribution
- But different Type of normal distr. RNGs:
 - NumPy: Box-Muller algorithm
 - **MATLAB**: Ziggurat algorithm
- This meant no side-to-side comparison
- But we can compare them over multiple runs and take the mean & var
- **Simulator.p** from the EKF 2021 & 2022 exercise accuracy over 1000 runs ->

		python		MATLAB	
		mean	variance	mean	variance
	p_x	16.174	6.883	17.149	6.610
	p_y	3.033	14.583	2.939	11.523
state means	s_x	0.436	9.025e-3	0.479	0.010
	s_y	8.735e-4	0.027	-0.006	0.019
	φ	-2.148e-3	2.772	-0.093	2.982
	p_x	51.612	288.530	61.497	396.562
	p_y	7.242	5.659	5.362	39.039
state vars	s_x	0.025	1.385e-4	0.029	3e-4
	s_y	0.014	1.341e-4	0.015	2e-4
	φ	0.953	0.4137	1.424	0.529
wind means	ho	-0.006	0.180	-0.007	0.179
wind vars	ρ	0.082	0.005	0.083	0.005
drift means		-0.006	0.150	-0.007	0.164
drift vars		0.082	0.005	0.081	0.006
input moons	u_t	0.050	2.423e-5	0.050	0.000
input means	u_r	-7.501e-5	1.128e-3	-0.002	0.001
innut vore	u_t	8e-4	1.646e-8	8.050e-4	1.570e-8
input vars	u_r	5e-4	1.242e-8	5.280e-4	1.210e-8
sense means	z_a	1.427e3	9.758	1.424e3	8.496
	$z_{m{b}}$	1.984e3	6.908	1.983e3	6.665
	z_c	1.997e3	15.061	1.997e3	11.853
	$z_{m{g}}$	-8.254e-3	2.938	-0.100	3.049
	z_n	-4.190e-3	2.779	-0.100	2.995
sense vars	z_a	49.697	342.056	54.859	357.930
	$z_{m{b}}$	71.241	296.411	81.405	413.755
	z_c	12.250	62.927	10.529	45.475
	$z_{m{g}}$	1.048	0.605	1.469	0.800
	z_n	1.445	0.415	1.918	0.534

EKF Exercise 2021 plots

EKF Exercise 2022 plots

EKF Exercise 2021 vs 2022

Exercise 2021

- 1. Performance & accuracy run of the 2021 & 2022 implementation.
- 2. Each 1000 runs on a R9 5950x CPU 3.4Ghz
- 3. Both 2021 & 2022 use the same default set of SimulationConst.m & EstimatorConst.m parameters

	python		MATLAB	
	mean	variance	mean	variance
trackErrorNorm	1.336	0.128	1.096	0.060
${\it angular Error Norm}$	0.240	0.003	0.063	7.400e-4
${\it velocity} {\it Error} {\it Norm}$	0.140	0.002	0.100	0.002
${\bf wind Error Norm}$	0.440	0.031	0.399	0.023
${\bf bias Error Norm}$	0.242	0.003	0.081	4.762e-4
Avg. exec time [s]	1.572	0.337	0.502	0.005

Exercise 2022

	python		MATLAB	
	mean	variance	mean	variance
trackErrorNorm	2.288	0.372	1.923	0.207
${\it angular Error Norm}$	0.238	0.003	0.061	7.281e-4
${\it velocity} {\it Error} {\it Norm}$	0.172	0.005	0.103	0.004
${\bf wind Error Norm}$	0.430	0.030	0.209	0.005
${\bf bias Error Norm}$	0.240	0.003	0.080	4.702e-4
Avg. exec time [s]	1.524	0.318	0.524	0.005

Particle Filter (PF)

- Tracking the movement of a Robot in a closed room
- PF exercise 2021: One wall depth is not known and has to be estimated
- PF exercise 2022: Two walls are not known
- The Simulator.p only consists of uniform RNGs, hence no need for comparing the outputs of python & MATLAB

PF Exercise animation

Comparing the 2021 & 2022 python animation

Python exercise 2021 animation

Python exercise 2022 animation

PF Exercise

- 1. 1000 runs on R9 5950x 3.4Ghz
- Exercise 2021 & Exercise 2022 have different set of SimulationConst.m & EstimatorConst.m parameters
- 3. Exercise 2022 python only 200 runs were made. No time to do more

Exercise 2021

	python		MATLAB	
	mean	variance	mean	variance
trackErrorNorm	1.122	0.116	0.928	0.132
Avg. exec time [s]	48.480	76.811	5.446	1.163

Exercise 2022

	python		MATLAB	
	mean	variance	mean	variance
trackErrorNorm	0.987	0.196	0.664	0.226
Avg. exec time [s]	34.891	0.285	5.255	0.017

Evaluation function 2022

Show git reposetory...

Conclusion

- EKF 2021 & 2022 are working
- PF 2021 & 2022 are working
- Evaluation Function improved
- Still open problems:
 - All of the python implementations are not as accurate as the MATLAB versions
 - All the python codes have no code coverage

Thank you for your attention and have a nice summer!

