

Ŋ,

₩

<u>Página inicial</u> <u>Cursos</u> <u>QXD0116 - ÁLGEBRA LINEAR - 01A - 2025.1</u> <u>Frequência</u>

(17/06/2025) - Mudança de Base - Aplicação

Iniciado em	sexta, 27 jun 2025, 01:49
Estado	Finalizada
Concluída em	sexta, 27 jun 2025, 01:52
Tempo empregado	2 minutos 54 segundos
Notas	3,00/3,00
Avaliar	10,00 de um máximo de 10,00(100%)

 \bigcirc

₩

Em um jogo de video game, a direção de um projétil é representada por um vetor na base canônica de \mathbb{R}^2 . Se um projétil aponta inicialmente na direção do vetor $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (direção positiva do eixo x), e o jogador o faz girar 45^{o} no sentido anti-horário em torno da origem, qual será o novo vetor de direção \mathbf{v}' após a rotação? Considere a $egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$ como a matriz de mudança matriz de rotação ${f A}=$ de base que transforma as coordenadas do vetor original para as coordenadas rotacionadas na mesma base canônica.

Escolha uma opção:

$$\bigcirc$$
 a. $\mathbf{v}'=egin{bmatrix}1\\0\end{bmatrix}$

$$lackbox{0}$$
 b. $\mathbf{v}'=egin{bmatrix} rac{\sqrt{2}}{2} \ rac{\sqrt{2}}{2} \end{bmatrix}$

$$egin{aligned} oldsymbol{\circ} & \mathsf{c.}\,\mathbf{v}' = egin{bmatrix} rac{-\sqrt{2}}{2} \ rac{\sqrt{2}}{2} \end{bmatrix} \end{aligned}$$

$$igcup_{}^{}$$
 d. $\mathbf{v}'=\left[egin{array}{c}0\1\end{array}
ight]$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} rac{1}{2} \ rac{\sqrt{3}}{2} \end{aligned} \end{bmatrix}$$

Sua resposta está correta.

A resposta correta é:
$$\mathbf{v}' = \left[egin{array}{c} rac{\sqrt{2}}{2} \\ rac{\sqrt{2}}{2} \end{array}
ight]$$

Histórico de respostas

	'			
Passo	Hora	Ação	Estado	Pc
1	27/06/2025 01:49	Iniciada	Ainda não respondida	
2	27/06/2025 01:50	Salvou: [\mathbf{v}=\left[\begin{matrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{matrix}\right]]	Resposta salva	
3	27/06/2025 01:52	Tentativa finalizada	Correto	1,0

 $\mathcal{\vec{U}}$

 $\stackrel{\sim}{\sim}$

分

(?)

☆

₹<u>}</u>

Atingiu 1,00 de

Considere um triângulo com vértices A=(1,0), B=(0,1) e C=(0,0) na base canônica de \mathbb{R}^2 . Para rotacionar este triângulo em 180^o em torno da origem, qual seria o novo vértice A^\prime após a rotação? Utilize a matriz de rotação como uma matriz de mudança de base rotacionada para a base canônica.

Escolha uma opção:

$$igcup a.$$
 $A'=(-1,-1)$

$$igcup$$
 b. $A'=(0,1)$

$$left$$
 c. $A'=(-1,0)$

$$igcup d. \, A' = (1,0)$$

$$igcup e. A' = (0,-1)$$

Sua resposta está correta.

As respostas corretas são:
$$A^\prime=(-1,0)$$

,
$$A^\prime=(0,-1)$$

Histórico de respostas

historico de respostas						
Passo	Hora	Ação	Estado	Pontos		
1	27/06/2025 01:49	Iniciada	Ainda não respondida			
2	27/06/2025 01:52	Salvou: [A= (-1,0)]	Resposta salva			
3	27/06/2025 01:52	Tentativa finalizada	Correto	1,00		

 $\vec{\mathcal{U}}$

 $\stackrel{\wedge}{\Box}$

 $\hat{\omega}$

(~)

 \bigcirc

£033

Um ponto P no plano cartesiano tem coordenadas (3,4) na base canônica (\mathbb{B}_1) . Se este ponto for rotacionado em 90^o (sentido antihorário) em torno da origem, qual das seguintes matrizes de mudança de base representa a transformação que leva as coordenadas originais na base canônica para as coordendas rotacionadas, também na base canônica?

Escolha uma opção:

$$\circ$$
 a. $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

$$\bigcirc$$
 b. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\circ c. \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$lacksquare$$
 d. $egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}$

$$egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} 0 & 1 \ -1 & 0 \end{array} \end{array}$$

Sua resposta está correta.

A resposta correta é:
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Histórico de respostas						
Passo	Hora	Ação	Estado	Pontos		
1	27/06/2025 01:49	Iniciada	Ainda não respondida			
2	27/06/2025 01:51	Salvou: [\left[\begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix}\right]]	Resposta salva			
3	27/06/2025 01:52	Tentativa finalizada	Correto	1,00		

©2020 - Universidade Federal do Ceará - Campus Quixadá. Todos os direitos reservados. Av. José de Freitas Queiroz, 5003

Cedro - Quixadá - Ceará CEP: 63902-580 Secretaria do Campus: (88) 3411-9422

🗓 Baixar o aplicativo móvel.