מבוא למערכות לומדות תרגיל 2

2017 באפריל 2017

1 מסווג Bayes

 $f_{\mathcal{D}}\left(x
ight)=egin{cases} 1 & ext{if }\mathbb{P}\left[y=1|x
ight]\geq ^{1/2} \\ 0 & ext{otherwise} \end{cases}$ כמתואר בשאלה, כלומר $f_{\mathcal{D}}\left(x
ight)=(0,1)$ ותהי $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ותהי $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ות $\mathcal{X} imes\{0,1\}$ ות $\mathcal{$

$$L_{\mathcal{D}}\left(f_{\mathcal{D}}\right) \leq L_{\mathcal{D}}\left(g\right)$$

מתקיים:

$$L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[l^{0-1}\left(h,(x,y)\right)\right] = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[1_{h(x)\neq y}\right]$$
$$= \mathbb{P}_{(x,y)\sim\mathcal{D}}\left[h\left(x\right)\neq y\right] = \mathcal{D}\left(\left\{(x,y)\in\mathcal{X}\times\left\{0,1\right\}\mid h\left(x\right)\neq y\right\}\right)$$

מחסם האיחוד:

$$\mathbb{P}\left[h\left(x\right) \neq y\right] \leq \sum_{\substack{(x,y) \in \mathcal{X} \times \{0,1\}\\h(x) \neq y}} \mathcal{D}\left(x,y\right)$$

לכן:

$$L_{\mathcal{D}}(f_{\mathcal{D}}) = \mathbb{P}\left[f_{\mathcal{D}}(x) \neq y\right] = \mathbb{P}\left[f_{\mathcal{D}}(x) \neq y | y = 0\right] \mathbb{P}\left[y = 0\right] + \mathbb{P}\left[f_{\mathcal{D}}(x) = 0 | y = 1\right] \mathbb{P}\left[y = 1\right]$$
$$= \mathbb{P}\left[f_{\mathcal{D}}(x) = 1 | y = 0\right] \mathbb{P}\left[y = 0\right]$$

$$\mathbb{P}\left[y=1|x\right] = \mathbb{P}\left[y=1\right]$$

VC Dimension 2

2.1 פונקציית הזוגיות

C מעון $P([n]) = P([n]) = 2^n$. נטען ש־C כאשר C כאשר ערכו C כאשר C נשים לב: C נשים לב: C נשים לב: C כאשר C כאשר C כאשר C כאשר C פוניסה ה־C בניסה ה־C בניסה ה־C בוניסר C בוניסר

$$h_{I}\left(e_{i}\right) = \left(\sum_{j \in I}\left(e_{i}\right)_{j}\right) \mod 2 = \left(\sum_{j \in I}\delta_{ij}\right) \mod 2 = \begin{cases}1, & i \in I\\0, & i \notin I\end{cases} = \begin{cases}1, & x_{i} = 1\\0, & x_{i} = 0\end{cases}$$

לכל ז, ולכן $|\mathcal{H}_C| \leq 2^{|C|}$. ברור ש־ $|\mathcal{H}_C| \leq 2^{|C|}$ כלומר $|\mathcal{H}_C| \geq 2^{|C|} = 2^n$ מכאן ש־ $|\mathcal{H}_C| \leq 2^{|C|}$ מכאן ש־ $|\mathcal{H}_C| \leq 2^{|C|}$. ברור ש־ $|\mathcal{H}_C| \leq 2^{|C|}$ ולכן $|\mathcal{H}_C| \leq 2^{|C|}$ מנתצת את $|\mathcal{H}_C| \leq 2^{|C|}$ מכאן: $|\mathcal{H}_C| \leq 2^{|C|}$ אבל ראינו בתרגול 3 ש־ $|\mathcal{H}_C| \leq 2^{|C|}$ מכאן: $|\mathcal{H}_C| \leq 2^{|C|}$ אבל קבוצת היפותזות סופית, לכן $|\mathcal{H}_C| \leq 2^{|C|}$ כנדרש.

2.2 איחוד סופי של קטעים

יהי C מנתצת את $\mathcal{H}_{k-intervals}$ נראה ש־ $C=\{1,2,\ldots,2k\}$ נגדיר על זיר ענדער אר $\mathcal{H}_{k-intervals}$ נגדיר פאר אר $\mathcal{H}_{k-intervals}$ נגדיר סדרת קטעים $\mathcal{H}_{k-intervals}$ כך שההיפותאה $\mathcal{H}_{k-intervals}$ מניח עתה ש $\mathcal{H}_{k-intervals}$ כך שההיפותאה אוניקח סדרת קטעים כלשהי על המספרים השליליים בולכן $\mathcal{H}_{k-intervals}$ ולכן $\mathcal{H}_{k-intervals}$ נניח עתה ש- $\mathcal{H}_{k-intervals}$ נניח עתה ש- $\mathcal{H}_{k-intervals}$ ולכן \mathcal{H}_{k-inte

$$a_1 = \min \{i \in [2k] : x_i = 1\} - \frac{1}{2}$$

$$b_1 = \min \{i \in [2k] : i > a_1 \text{ and } x_i = 0\} - \frac{1}{2}$$

 i^{-1} ולכל $1 < j \le k$ נגדיר

$$a_j = \min \{ i \in [2k] : i > b_{j-1} \text{ and } x_i = 1 \} - \frac{1}{2}$$

 $b_j = \min \{ i \in [2k] : i > a_j \text{ and } x_i = 0 \} - \frac{1}{2}$

הסבר: כל קטע מכסה רצף שלם של 1ים ב־x הקל לראות שישנם לכל היותר k רצפים של 1ים המופרדים ב־0ים (כאשר k מתקבל למשל מכך: כל קטע מכסה רצף שלם של 1ים ב־x ובמקרה זה הקטע הראשון הפני שהוגדר לעיל הוא $x=(1,0,1,0,\ldots,1,0)$ כי $x=(1,0,1,0,\ldots,1,0)$ כי $x=(1,0,1,0,\ldots,1,0)$ כי $x=(1,0,1,0,\ldots,1,0)$ כי $x=(1,0,1,0,\ldots,1,0)$ כי $x=(1,0,1,0,\ldots,1,0)$ מוכל בו וכו'). רצף של $x=(1,0,1,0,\ldots,1,0)$ מתאים לתיוג ב־ $x=(1,0,1,0,\ldots,1,0)$ כי $x=(1,0,1,0,\ldots,1,0)$ מותם (ולכן לא צריך $x=(1,0,1,0,\ldots,1,0)$ השינם לראות שינם לראות שינם ווער שכולו $x=(1,0,1,0,\ldots,1,0)$

 \mathcal{H} ב כ' אפשרי על אפשרי בגודל בגודל מנתצת את מנתצת מנתצת אם כך $\mathcal{H}_{k-intervals}$

כעת נניח ש־k אינו חסום, כלומר $\mathcal H$ היא קבוצת ההיפותזות המוגדרת על ידי איחוד סופי כלשהו של קטעים ממשיים. תהי x_i המכיל רק x_i קבוצה כלשהי. יהי $y_i \in [n]$ לכל $y_i \in [n]$ כך ש־ $i \in [n]$ נגדיר את הקטע x_i קבוצה כלשהי. יהי $y_i \in [n]$ לכל $y_i \in [n]$ נגדיר את הקטעים הנ"ל. נשים לב שלכל את x_i את את x_i נקבל אוסף סופי של קטעים $y_i = 1$ (נעוב בהיפותזה $y_i \in [n]$). מאידך, לפי הגדרה, לכל $y_i \in [n]$ קיים קטע בסדרה הנ"ל המכיל את x_i ולכן $y_i \in [n]$ מנתצת כל קבוצה סופית לכן $y_i \in [n]$ מנתצת כל קבוצה סופית לכן $y_i \in [n]$ מנתצת כל קבוצה סופית לכן $y_i \in [n]$ מנתצת לבו מוצר לבו מו

2.3 חצאי מרחב לא הומוגניים

$$(x_i, y_i) = (y_i, \dots, y_{d-1})^T$$
 נגדיר $(x_i, y_i) = (y_i, \dots, y_d)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, \dots, y_d)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, \dots, y_d)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, \dots, y_d)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ יהי $(x_i, y_i) = (y_i, y_i)^T \in \{\pm 1\}^{d+1}$ $(x_i, y_i) = (y_i, y_i)$ $(x_i, y_i) = (y_i, y_i)$

^{[1,2}k] אם עבור כלשהו מימין לקטע לקטע מינימום מינימום מינימו עליה עליה הקבוצה עליה אם עבור ו

 $\operatorname{VCdim}\left(HS_{d}\right)\geq d+1$ כלומר HS_{d} מנתצת את HS_{d}

 $h:=h_{\mathbf{w},b}$ נניח בשלילה שקבוצה $\mathbf{w}\in\mathbb{R}^d$ פך ש־ $b\in\mathbb{R}^d$. יהי $y\in\{\pm 1\}^{d+2}$. יהי HS_d ידי מנותצת על ידי $C=\{x_1,\ldots,x_{d+2}\}$ ו־ $\mathbf{w}\in\mathbb{R}^d$ בעלילה שקבוצה $\mathbf{w}'=(x_1,\ldots,x_d,1)^T\in\mathbb{R}^{d+1}$: נגדיר $i\in[d+2]$ ולכל $\mathbf{w}'=(w_1,\ldots,w_d,b)^T\in\mathbb{R}^{d+1}$: נגדיר $(h(x_1),\ldots,h(x_{d+2}))^T=y$ מתקיים:

$$\langle \mathbf{w}', \mathbf{x}'_i \rangle = (w_1, \dots, w_d, b) \begin{pmatrix} x_1 \\ \vdots \\ x_d \\ 1 \end{pmatrix} = \langle \mathbf{w}, \mathbf{x}_i \rangle + b$$

$$\implies \operatorname{sgn}(\langle \mathbf{w}', \mathbf{x}_i' \rangle) = \operatorname{sgn}(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) = h_{\mathbf{w}, b}(x_i) = y_i$$

 $h'(\mathbf{x}_i')=y_i$ פרש ב־1 מכאן קיימת היפותזה $h':=h'_{\mathbf{w}'}\in HHS_{d+1}$ מימדים) כך ש־ $i\in[d+2]$ לכל $i\in[d+2]$ מכאן קיימת היפותזה HHS_{d+1} מנתצת קבוצה בגודל $i\in[d+2]$, וזו סתירה לכך ש־ $i\in[d+2]$ אלכל $i\in[d+2]$ מנתצת קבוצה בגודל $i\in[d+2]$ מנתצת קבוצה בגודל $i\in[d+2]$ וזו סתירה לכך ש־ $i\in[d+2]$ ולכן מתקיים שוויון.

- PAC למידות
- פונקציות במספר משתנים
 - חלק תכנותי