COMP9414: Artificial Intelligence Lecture 5a: Uncertainty

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW ©W. Wobcke et al. 2019

COMP9414 Uncertainty

Reasoning with Uncertainty

- An agent can not always ascertain the truth of all propositions, so may not only have "flat out" beliefs $(P \text{ or } \neg P)$
- Some environments themselves generate uncertainty for the agent, due to unpredictability or non-determinism, so propositions inadequately model those environments
- Rational decisions for an agent require tradeoffs between the importance of goals and the likelihood of achieving them, and the cost of acting and not achieving them

COMP9414 Uncertainty

This Lecture

- Uncertainty
- Probability Theory
- Conditional Probability and Bayes' Rule
- Bayesian Networks
 - ► Semantics of Bayesian Networks
 - ► Inference in Bayesian Networks

UNSW © W. Wobcke et al. 2019

COMP9414 Uncertainty 3

Problems with Logical Approach

Consider trying to formalize a medical diagnosis system

■ This rule is not correct since patients with abdominal pain may be suffering from other diseases

 $\forall p(Symptom(p, AbdominalPain) \rightarrow$

 $Disease(p, Appendicitis) \lor Disease(p, Ulcer) \lor Disease(p, Indig) \cdots)$

■ How about a causal rule?

 $\forall p(Disease(p, Ulcer) \rightarrow Symptom(p, AbdominalPain))$

COMP9414 Uncertainty 4 COMP9414 Uncertainty 6

Sources of Uncertainty

- Difficulties arise with the logical approach due to
 incompleteness agent may not have complete theory for domain
 ignorance agent may not have enough information about domain
 noise information agent does have may be unreliable
 non-determinism environment itself may be stochastic
 unpredictability environment may be inherently unpredictable
- Probability gives a way of summarizing this uncertainty
 - ▶ e.g. may believe that there is a probability of 0.75 that patient suffers from appendicitis if they have abdominal pains

UNSW © W. Wobcke et al. 2019

COMP9414 Uncertainty 5

What Do the Numbers Mean?

Statistical/Frequentist View

Long-range frequency of a set of "events" e.g. probability of the event of "heads" appearing on the toss of a coin = long-range frequency of heads that appear on coin toss

Objective View

Probabilities are real aspects of the world — objective

Personal/Subjective/Bayesian View

Measure of belief in proposition based on agent's knowledge, e.g. probability of heads is a degree of belief that coin will land heads based on beliefs about the coin or could be just a guess; different agents may assign a different probability — subjective

Sample Space and Events

- Flip a coin three times
- The possible outcomes are

TTT TTH THT THH

Set of all possible outcomes

 $S = \{\text{TTT}, \text{TTH}, \text{THT}, \text{THH}, \text{HTT}, \text{HTH}, \text{HHT}, \text{HHH}\}$

- Any subset of the sample space is known as an event
- Any singleton subset of the sample space is known as a simple event

UNSW © W. Wobcke et al. 2019

COMP9414 Uncertainty 7

Sample Space and Events

UNSW

© W. Wobcke et al. 2019

Prior Probability

 \blacksquare P(A) is the prior or unconditional probability that an event A occurs

Uncertainty

- For example, P(Appendicitis) = 0.3
- In the absence of any other information, agent believes there is a probability of 0.3 (30%) that the patient suffers from appendicitis
- To account for the effect of new information on probabilities, the agent must reason with conditional probabilities

UNSW © W. Wobcke et al. 2019

COMP9414 Uncertainty

Random Variables

Propositions are random variables that can take on several values

$$P(Weather = Sunny) = 0.8$$

$$P(Weather = Rain) = 0.1$$

$$P(Weather = Cloudy) = 0.09$$

$$P(Weather = Snow) = 0.01$$

- Every random variable X has a domain of possible values $\langle x_1, x_2, \dots x_n \rangle$
- Probabilities of all possible values $P(Weather) = \langle 0.8, 0.1, 0.09, 0.01 \rangle$ is a probability distribution

© W. Wobcke et al. 2019

■ **P**(*Weather*, *Appendicitis*) is a combination of random variables represented by cross product (can also use logical connectives $P(A \land B)$ to represent compound events)

Axioms of Probability

- 1. $0 \le P(A) \le 1$
 - All probabilities are between 0 and 1
- 2. P(True) = 1 P(False) = 0
 - Valid propositions have probability 1
 - Unsatisfiable propositions have probability 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$
- Can determine probabilities of all other propositions
- For example, $P(A \lor \neg A) = P(A) + P(\neg A) P(A \land \neg A)$ $P(True) = P(A) + P(\neg A) - P(False)$ $1 = P(A) + P(\neg A) - 0$ Therefore $P(\neg A) = 1 - P(A)$

COMP9414 Uncertainty 11

Conditional Probability

- Need to update probabilities based on new information
- Use conditional or posterior probability P(A|B) is the probability of A given that all we know is B
 - \triangleright e.g. P(Appendicitis|AbdominalPain) = 0.75
- Definition: $P(A|B) = \frac{P(A \land B)}{P(B)}$ provided P(B) > 0
- Product Rule: $P(A \wedge B) = P(A|B).P(B)$
- $\mathbf{P}(X|Y) = P(X = x_i|Y = y_j)$ for all i, j $\mathbf{P}(X, Y) = \mathbf{P}(X|Y).\mathbf{P}(Y)$ — a set of equations

COMP9414

UNSW

Normalization

Uncertainty

Conditional probability distribution given that first coin is H

UNSW

© W. Wobcke et al. 2019

COMP9414 Uncertainty 13

Joint Probability Distribution

- Complete specification of probabilities to all events in domain
- Suppose random variables X_1, X_2, \dots, X_n
- An atomic (simple) event is an assignment of values to all variables
- Joint probability distribution $P(X_1, X_2, \dots, X_n)$ assigns probabilities to all possible atomic events
- Simple medical domain with two Boolean random variables

	AbdominalPain	¬AbdominalPain
Appendicitis	0.04	0.06
¬Appendicitis	0.01	0.89

Joint Probability Distribution

- Simple events are mutually exclusive and jointly exhaustive
- Probability of complex event is sum of probabilities of compatible simple events

$$P(Appendicitis) = 0.04 + 0.06 = 0.10$$

 $P(Appendicitis \lor AbdominalPain) = 0.04 + 0.06 + 0.01 = 0.11$
 $P(Appendicitis | AbdominalPain)$

$$= \frac{P(Appendicitis \land Abdominal Pain)}{P(Abdominal Pain)} = \frac{0.04}{0.04 + 0.01} = 0.8$$

■ Problem: With many variables, the number of probabilities is vast

COMP9414 Uncertainty 15

Joint Probability Distribution

Assume there is some underlying joint probability distribution over three random variables *toothache*, *cavity* and *catch*, which we can write in the form of a table

	toothache		¬ too	othache
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Note that the sum of the entries in the table is 1.0.

For any proposition, sum the atomic events where it is true

© W. Wobcke et al. 2019

Inference by Enumeration Example

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition, sum the atomic events where it is true

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

UNSW © W. Wobcke et al. 2019

COMP9414 Uncertainty 17

Inference by Enumeration Example

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition, sum the atomic events where it is true

$$P(cavity \lor toothache)$$

= 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

Conditional Probability by Enumeration

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

© W. Wobcke et al. 2019

COMP9414 Uncertainty 19

Bayes' Rule

UNSW

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- AI systems abandon joint probabilities and work directly with conditional probabilities using Bayes' Rule
- Deriving Bayes' Rule:

$$\begin{array}{ll} P(A \wedge B) = P(A|B)P(B) & \text{(Definition)} \\ P(B \wedge A) = P(B|A)P(A) & \text{(Definition)} \\ \text{So } P(A|B)P(B) = P(B|A)P(A) \text{ since } P(A \wedge B) = P(B \wedge A) \\ \text{Hence } P(B|A) = \frac{P(A|B)P(B)}{P(A)} \text{ if } P(A) \neq 0 \end{array}$$

Note: If P(A) = 0, P(B|A) is undefined

Applying Bayes' Rule

- Example (Russell & Norvig, 1995)
- Doctor knows that
 - meningitis causes a stiff neck 50% of the time
 - chance of patient having meningitis is $\frac{1}{50000}$
 - chance of patient having a stiff neck is $\frac{1}{20}$

■ P(StiffNeck|Meningitis) = 0.5 $P(Meningitis) = \frac{1}{50000}$ $P(StiffNeck) = \frac{1}{20} P(Meningitis|StiffNeck) = 0.5 \frac{1}{50000} \frac{1}{10000} = 0.0002$

©W. Wobcke et al 2019

© W. Wobcke et al. 2019

UNSW

COMP9414 Uncertainty 21

Normalization

Avoiding assessment of symptoms

 $P(\textit{Meningitis}|\textit{StiffNeck}) = \frac{P(\textit{StiffNeck}|\textit{Meningitis}).P(\textit{Meningitis})}{P(\textit{StiffNeck})}$

 $P(\neg \textit{Meningitis}|\textit{StiffNeck}) = \frac{P(\textit{StiffNeck}|\neg \textit{Meningitis}).P(\neg \textit{Meningitis})}{P(\textit{StiffNeck})}$

- P(StiffNeck) = P(StiffNeck|Meningitis).P(Meningitis)+ $P(StiffNeck|\neg Meningitis).P(\neg Meningitis)$ since $P(Meningitis|StiffNeck) + P(\neg Meningitis|StiffNeck) = 1$
- So P(Meningitis|StiffNeck) = P(StiffNeck|Meningitis).P(Meningitis) P(Meningitis) P(StiffNeck|Meningitis).P(Meningitis).P(StiffNeck|Meningitis).P(Meningitis) P(StiffNeck|Meningitis).P(Meningitis) StiffNeck)
- Therefore, from both $P(StiffNeck|\cdots)$ can derive P(StiffNeck) and the denominator is a normalization factor

Using Bayes' Rule

- Suppose there are two conditional probabilities for appendicitis P(Appendicitis|AbdominalPain) = 0.8P(Appendicitis|Nausea) = 0.1
- \blacksquare $P(Appendicitis|AbdominalPain \land Nausea)$
 - $= \frac{P(AbdominalPain \land Nausea | Appendicitis).P(Appendicitis)}{P(AbdominalPain \land Nausea)}$
- Need to know $P(AbdominalPain \land Nausea | Appendicitis)$
- With many symptoms that is a daunting task . . .

UNSW © W. Wobcke et al. 2019

COMP9414 Uncertainty 23

Conditional Independence

- Appendicitis is direct cause of both abdominal pain and nausea
- If we know a patient is suffering from appendicitis, the probability of nausea should not depend on the presence of abdominal pain; likewise probability of abdominal pain should not depend on nausea
- Nausea and abdominal pain are conditionally independent given appendicitis
- An event *X* is independent of event *Y*, conditional on background knowledge *K*, if knowing *Y* does not affect the conditional probability of *X* given *K*

$$P(X|K) = P(X|Y,K)$$

UNSW

22

UNSW

Bayesian Networks

■ A Bayesian network (also Bayesian Belief Network, probabilistic network, causal network, knowledge map) is a directed acyclic graph (DAG) where

Uncertainty

- ► Each node corresponds to a random variable
- ▶ Directed links connect pairs of nodes a directed link from node X to node Y means that X has a direct influence on Y
- ▶ Each node has a conditional probability table quantifying effect of parents on node
- Independence assumption of Bayesian networks: Each random variable is (conditionally) independent of its nondescendants given its parents

UNSW

HNSW

© W. Wobcke et al. 2019

COMP9414 Uncertainty 25

Bayesian Networks

- Example (Pearl, 1988)
- You have a new burglar alarm at home that is quite reliable at detecting burglars but may also respond at times to an earthquake. You also have two neighbours, John and Mary, who promise to call you at work when they hear the alarm. John always calls when he hears the alarm but sometimes confuses the telephone ringing with the alarm and calls then, also Mary likes loud music and sometimes misses the alarm. Given the evidence of who has or has not called, we would like to estimate the probability of a burglary.

Bayesian Networks

Example (Pearl, 1988)

Probabilities summarize potentially infinite set of possible circumstances

COMP9414 Uncertainty 27

Conditional Probability Table

Row contains conditional probability of each node value for a conditioning case (possible combination of values for parent node)

		$\mathbf{P}(Alarm Burglary \land Earthquake)$	
Burglary	Earthquake	True	False
True	True	0.950	0.050
True	False	0.940	0.060
False	True	0.290	0.710
False	False	0.001	0.999

© W. Wobcke et al. 2019

Semantics of Bayesian Networks

- Bayesian network provides a complete description of the domain
- Joint probability distribution can be determined from the network $P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$
- For example, $P(J \land M \land A \land \neg B \land \neg E) = P(J|A).P(M|A).P(A|\neg B \land \neg E).P(\neg B).P(\neg E) = 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.000628$
- Bayesian network is a complete and non-redundant representation of domain (and can be far more compact than joint probability distribution)

UNSW © W. Wobcke et al. 2019

COMP9414 Uncertainty 29 COMP9414 Uncertainty

Semantics of Bayesian Networks

- Factorization of joint probability distribution
- Chain Rule: Use conditional probabilities to decompose conjunctions $P(X_1 \wedge X_2 \wedge \cdots \wedge X_n) = P(X_1).P(X_2|X_1).P(X_3|X_1 \wedge X_2)......P(X_n|X_1 \wedge X_2 \wedge \cdots \wedge X_{n-1})$
- Now, order the variables X_1, X_2, \dots, X_n in a Bayesian network so that a variable comes after its parents let π_{X_i} be the tuple of parents of variable X_i (this is a complex random variable)

 Using the chain rule, $P(X_1 \wedge X_2 \wedge \dots \wedge X_n) = P(X_1).P(X_2|X_1).$ $P(X_3|X_1 \wedge X_2). \dots .P(X_n|X_1 \wedge X_2 \wedge \dots \wedge X_{n-1})$

Semantics of Bayesian Networks

- Each $P(X_i|X_1 \land X_2 \land \cdots \land X_{i-1})$ has the property that it is not conditioned on a descendant of X_i (given ordering of variables in Bayesian network)
- Therefore, by conditional independence
 - $P(X_i|X_1 \wedge X_2 \wedge \cdots \wedge X_{i-1}) = P(X_i|\pi_{X_i})$
- Rewriting gives the chain rule
 - $P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | \pi_{X_i})$

Calculation using Bayesian Networks

Fact 1: Consider random variable *X* with parents Y_1, Y_2, \dots, Y_n

$$P(X|Y_1 \wedge \cdots \wedge Y_n \wedge Z) = P(X|Y_1 \wedge \cdots \wedge Y_n)$$

if Z doesn't involve a descendant of X (including X itself)

Fact 2 If Y_1, \dots, Y_n are pairwise disjoint and exhaust all possibilities

$$P(X) = \Sigma P(X \wedge Y_i) = \Sigma P(X|Y_i).P(Y_i)$$

$$P(X|Z) = \Sigma P(X \land Y_i|Z)$$

$$P(X|Z) = \sum_{P(J \land B)} P(X|Z) = \sum_{P(J$$

UNSW

© W. Wobcke et al. 2019

31

Calculation using Bayesian Networks

- $P(J \land B \land E \land A \land M) = P(J|A).P(B).P(E).P(A|B \land E).P(M|A) = 0.90 \times 0.001 \times 0.002 \times 0.95 \times 0.70 = 0.00000197$
- $P(J \wedge B \wedge \neg E \wedge A \wedge M) = 0.00591016$
- $P(J \land B \land E \land \neg A \land M) = 5 \times 10^{-11}$
- $P(J \land B \land \neg E \land \neg A \land M) = 2.99 \times 10^{-8}$
- $P(J \land B \land E \land A \land \neg M) = 0.000000513$
- $P(J \land B \land \neg E \land A \land \neg M) = 0.000253292$
- $P(J \land B \land E \land \neg A \land \neg M) = 4.95 \times 10^{-9}$
- $P(J \land B \land \neg E \land \neg A \land \neg M) = 2.96406 \times 10^{-6}$

UNSW

© W. Wobcke et al. 2019

COMP9414

Uncertainty 33

Calculation using Bayesian Networks

- $P(\neg J \land B \land E \land A \land M) = 0.000000133$
- $P(\neg J \land B \land \neg E \land A \land M) = 6.56684 \times 10^{-5}$
- $P(\neg J \land B \land E \land \neg A \land M) = 9.5 \times 10^{-10}$
- $P(\neg J \land B \land \neg E \land \neg A \land M) = 5.6886 \times 10^{-7}$
- $P(\neg J \land B \land E \land A \land \neg M) = 0.000000057$
- $P(\neg J \land B \land \neg E \land A \land \neg M) = 2.81436 \times 10^{-5}$
- $P(\neg J \land B \land E \land \neg A \land \neg M) = 9.405 \times 10^{-8}$
- $P(\neg J \land B \land \neg E \land \neg A \land \neg M) = 5.63171 \times 10^{-5}$

Calculation using Bayesian Networks

- Therefore $P(J|B) = \frac{P(J \land B)}{P(B)} = \frac{\sum P(J \land B \land e \land a \land m)}{\sum P(J \land B \land e \land a \land m)} = \frac{0.00849017}{0.001}$
- P(J|B) = 0.849017

COMP9414

IINSW

COMP9414

 Can often simplify calculation without using full joint probabilities – but not always

Uncertainty

Inference in Bayesian Networks

Diagnostic Inference From effects to causes

P(Burglary|JohnCalls) = 0.016

Causal Inference From causes to effects

P(JohnCalls|Burglary) = 0.85; P(MaryCalls|Burglary) = 0.67

Intercausal Inference Explaining away

P(Burglary|Alarm) = 0.3736 but adding evidence, $P(Burglary|Alarm \land Earthquake) = 0.003$; despite the fact that burglaries and earthquakes are independent, the presence of one makes the other **much** less likely

Mixed Inference Combinations of the patterns above

Diagnostic + Causal: $P(Alarm|JohnCalls \land \neg Earthquake)$

Intercausal + Diagnostic: $P(Burglary|JohnCalls \land \neg Earthquake)$

© W. Wobcke et al. 2019

35

Inference in Bayesian Networks

Uncertainty

Q = query; E = evidence

UNSW

COMP9414 Uncertainty 37

Example – Causal Inference

- \blacksquare P(JohnCalls|Burglary)
- $P(J|B) = P(J|A \land B).P(A|B) + P(J|\neg A \land B).P(\neg A|B)$ = $P(J|A).P(A|B) + P(J|\neg A).P(\neg A|B)$ = $P(J|A).P(A|B) + P(J|\neg A).(1 - P(A|B))$
- Now $P(A|B) = P(A|B \land E).P(E|B) + P(A|B \land \neg E).P(\neg E|B)$ = $P(A|B \land E).P(E) + P(A|B \land \neg E).P(\neg E)$ = $0.95 \times 0.002 + 0.94 \times 0.998 = 0.94002$
- Therefore $P(J|B) = 0.90 \times 0.94002 + 0.05 \times 0.05998 = 0.849017$
- Fact 3: $P(X|Z) = P(X|Y \land Z).P(Y|Z) + P(X|\neg Y \land Z).P(\neg Y|Z)$, since $X \land Z \equiv (X \land Y \land Z) \lor (X \land \neg Y \land Z)$ (conditional version of Fact 2)

Example – Diagnostic Inference

- \blacksquare P(Earthquake|Alarm)
- $P(E|A) = \frac{P(A|E).P(E)}{P(A)}$ $= \frac{P(A|B \land E).P(B).P(E) + P(A| \neg B \land E).P(\neg B).P(E)}{P(A)}$ $= \frac{0.95 \times 0.001 \times 0.002 + 0.29 \times 0.999 \times 0.002}{P(A)} = \frac{5.8132 \times 10^{-4}}{P(A)}$
- Now $P(A) = P(A|B \land E).P(B).P(E) + P(A|\neg B \land E).P(\neg B).P(E) + P(A|B \land \neg E).P(B).P(\neg E) + P(A|\neg B \land \neg E).P(\neg B).P(\neg E)$ And $P(A|B \land \neg E).P(B).P(\neg E) + P(A|\neg B \land \neg E).P(\neg B).P(\neg E)$ $= 0.94 \times 0.001 \times 0.998 + 0.001 \times 0.999 \times 0.998 = 0.001935122$ So $P(A) = 5.8132 \times 10^{-4} + 0.001935122 = 0.002516442$
- Therefore $P(E|A) = \frac{5.8132 \times 10^{-4}}{0.002516442} = 0.2310087$
- **Fact 4**: $P(X \wedge Y) = P(X).P(Y)$ if X, Y are conditionally independent

UNSW ©W. Wobcke et al. 2019

COMP9414 Uncertainty 39

Conclusion

- Due to noise or uncertainty it is useful to reason with probabilities
- Calculating with joint probability distribution difficult due to the large number of values
- Use of Bayes' Rule and independence assumptions simplifies reasoning
- Bayesian networks allow compact representation of probabilities and efficient reasoning with probabilities
- Elegant recursive algorithms can be given to automate the process of inference in Bayesian networks

© W. Wobcke et al. 2019