Risk Analytics Risk and regulation

Dr. Paul Larsen

November 1, 2017

Table of contents

Financial crises and regulatory reactions

Mathematics of the Lehman Brothers collapse

Capital ratios

A brief history of financial disaster

TABLE Timeline

1929	Stock market crash/Great Depression
1995	Collapse of Barings Bank
1998	Collapse of LTCM (Merton, Scholes on board)
2007	Subprime mortgage crisis/Lehman Brothers falls
2008	European sovereign debt crisis
2010	Slovenian credit crisis

Risk types

Risk of losing money due to

- · Credit: counterparty default
- Market: market movements
- Operational: something going wrong that shouldn't
- Liquidity: funding mismatches
- Insurance: unexpected loss of premiums or increase of claims

A brief history of financial disaster, II

TABLE Timeline

1929	Stock market crash/Great Depression
1995	Collapse of Barings Bank
1998	Collapse of LTCM (Merton, Scholes on board)
2007	Subprime mortgage crisis/Lehman Brothers falls
2008	European sovereign debt crisis
2010	Slovenian credit crisis

A brief history of financial disaster, II

TABLE Timeline

1929	Stock market crash/Great Depression MR, CR, LR
1995	Collapse of Barings Bank MR, OR
1998	Collapse of LTCM (Merton, Scholes on board) MR
2007	Subprime mortgage crisis/Lehman Brothers falls MR, CR, OR, LR
2008	European sovereign debt crisis CR
2010	Slovenian credit crisis CR

Regulatory responses

TABLE Timeline

```
Banking Act (FDIC/Glass-Steagall, USA)

1988 Basel I (G10)

2004 Basel II (Europe)

2010 Dodd-Frank (USA)

2016 Solvency II (Europe)

2019 Basel III (Europe, USA)
```

Lehman Brothers collapse

Image: [3, 7]

Three quantitative criminals

- Collateralized debt obligation (CDO)
- Gaussian copula
- Credit default swap (CDS)

Collateralized debt obligation

Intuition: bundle products together and distribute according to high risk (higher returns) and low risk (lower returns)

Question

How do you measure risk of bundled products?

Gaussian copulas

Let Φ_R be the k-dimensional normal distribution $N(\mathbf{0}, R)$, and let Φ be the 1-dimensional standard normal distribution N(0,1).

Definition (Gaussian copula)

The Gaussian copula is the distribution on the unit cube $[0,1]^k$ with cumulative distribution function

$$C_R(\mathbf{u}) = \Phi_R(\Phi^{-1}(u_1), ..., \Phi^{-1}(u_k))$$

- If $\mathbf{u} = (\Phi(x_1), \dots, \Phi(x_k)), \mathbf{x} \in \mathbb{R}^k$, then $C_B \circ (\Phi(x_1), \dots, \Phi(x_k)) = \Phi_B(x)$
- Intuition: the marginal distributions can be arbitrary, but the interaction among marginals is normal

defaults . Default A and B . Default A only . Default B only . No Default

10

Gaussian copulas and tail events

A defaults $\leftrightarrow a \le 0.1$ B defaults $\leftrightarrow b \le 0.05$

. Default A and B . Default A only . Default B only . No Default

Gaussian copulas and tail events

detaults • Default A and B • Default A only • Default B only • No Default

Table: Default counts

	0	1	2
Gaussian copula	4382	526	92
t-copula	4388	502	110

Credit default swaps

Images: [2, 4, 8]

CDS on a CDO

Balance sheets and capital ratios

Assets	Liabilities
House	Mortgage
	Equity

Example: Mortgage on house valued 300,000 €

Own capital: 60,000 €

Mortgage: 240,000 €

• "Leverage ratio"= $\frac{\text{Equity}}{\text{Assets}} = 20\%$

Balance sheets and equity ratios, II¹

Assets	Liabilities
Reserves Short-term loans Long-term loans Infrastructure	Deposits Short-term debt Long-term debt
Investments	Equity Shareholder equity Retained earnings

Example: Deutsche Bank, 2011

Total assets: 2.2 tn €

Shareholder equity: 55 bn €

• Leverage ratio: 2.5 %

55 bn

¹[6],[1], pp. 48, 176

55 bn

15

Balance sheets and capital ratios, III

Risk Weighted Assets	Liabilities
Reserves, $w = 0$ Govt Bonds, $w = 0$ Loans, w by internal model Operational	Deposits Short-term debt Long-term debt
Market Credit	Equity Shareholder equity Retained earnings

Example: Deutsche Bank, 2011, cont'd

• Risk-weighted assets: 380 bn €

· Shareholder equity: 55 bn €

Core Tier 1 ratio: 14 %

380 bn

Solvency II Capital Requirements

Article 101 of SII: The Solvency Capital Requirement (SCR) "shall correspond to the Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking subject to a confidence level of 99.5% over a one-year period." Let N_t be the net value of assets minus liabilities at time t, and let v(0,t) be a discount factor for the time period [0,t]. Then SCR is

- $VaR_{99.5}(N_0 v(0,1)N_1)$ or
- inf $N_0 \in \mathbb{R}$: $(N_\epsilon \ge 0, \epsilon \in [0, 1]) \ge 0.995$

or some other definition? [5]

R in risk management

Why R?

- Extensive packages, development
- Graphics capabilities
- Reproducible research with knitr / Sweave
- R in industry: UniCredit OpRisk, Allianz OpRisk, Sava Zavarovalnica Risk, Deutsche Bank

knitr example

Bibliography I

Anat Admati and Martin Hellwig. *The bankers' new clothes: What's wrong with banking and what to do about it.* Princeton University Press, 2014.

J Barta. By American International Group SVG version by jbarta (http://www.aig.com) [public domain], via wikimedia commons.

via Wikimedia Commons By Photo: Andreas Praefcke (Own work) [Public domain]. https://commons.wikimedia.org/wiki/File{

https://en.wikipedia.org/w/index.php?curid=53456490 By Source (WP:NFCC 4), Fair use. **Vw logo**.

Marcus C Christiansen and Andreas Niemeyer. Fundamental definition of the solvency capital requirement in Solvency II. *ASTIN Bulletin: The Journal of the IAA*, 44(3):501–533, 2014.

Basel Committee. Base III leverage ratio framework and disclosure requirements. Technical report, Bank of International Settlements, January 2014.

User: Whyer3612. http://flickr.com/photos/wricontest/369118382/.

Bibliography II

https://de.wikipedia.org/w/index.php?curid=7969580 Von unbekannt Aus Unicredit-PDF, Logo. Unicredit logo.