Unit 03 – Minimizing Formulas

Peter Bauer

Outline

Propositional Logic Proofs

Disjunctive Normal Form

Minimization of Propositional Logic Formulas KV-Diagrams – Motivation Quine-McCluskey Algorithm

Minimizing and Proofs

The similarities

- ► Given: a propositional formula *P*
- ▶ Wanted: a propositional formula *Q*
- ▶ where $P \equiv Q$

Minimizing and Proofs

The differences

- When minimizing
 - Q should me "minimal"
 - e.g., by number of variables, length of formula, . . .
- When proofing
 - Q is also given
 - We want to show that we can "go" from P to Q
 - Using small steps which are already proven (aka Properties of Compositions)

A First Example

We want to proof that $C \vee \neg (B \wedge C) \equiv \mathbf{T}$

A First Example

We want to proof that $C \vee \neg (B \wedge C) \equiv \mathbf{T}$

$$C \vee \neg (B \wedge C) \equiv \qquad [DeMorgan] \qquad (1)$$

$$C \vee (\neg B \vee \neg C) \equiv \qquad [Commut.] \qquad (2)$$

$$C \vee (\neg C \vee \neg B) \equiv \qquad [Assoc.] \qquad (3)$$

$$(C \vee \neg C) \vee \neg B \equiv \qquad [Taut.] \qquad (4)$$

$$T \vee \neg B \equiv \qquad [Taut.] \qquad (5)$$

$$T \quad \Box \qquad (6)$$

A Second Example

Your Turn

Proof that $(P \vee \neg Q) \Rightarrow Q \equiv (\neg P \vee Q) \wedge Q$

Bring the lines below in the right order and write down the properties used.

Hint: Here a property $A \Rightarrow B \equiv \neg A \lor B$ is used. We call it the Implication Elimination Rule (IER).

$$(P \vee \neg Q) \Rightarrow Q \equiv \tag{1}$$

$$(\neg P \lor Q) \land Q \quad \Box \tag{2}$$

$$(\neg P \lor Q) \land (Q \lor Q) \equiv \tag{3}$$

$$(\neg P \land Q) \lor Q \equiv \tag{4}$$

$$\neg (P \lor \neg Q) \lor Q \equiv \tag{5}$$

A Third Example

Again Your Turn

Proof that
$$A \Rightarrow B \equiv A \land \neg B \Rightarrow \mathbf{F}$$

- ▶ Given the truth table of a propositional formula *P*
- ► Find a logically equivalent formula P'

- ► Given the truth table of a propositional formula *P*
- Find a logically equivalent formula P'
- ► No unambiguous solution

- Given the truth table of a propositional formula P
- ► Find a logically equivalent formula P'
- No unambiguous solution
- Disjunctive normal form is one (and easy to find) solution

- Given the truth table of a propositional formula P
- ► Find a logically equivalent formula P'
- No unambiguous solution
- Disjunctive normal form is one (and easy to find) solution
- Is a basis for several methods of several algorithms for automated formula simplification

Disjunctive Normal Form

Definition

A propositional logic formula of the form

$$(A_{11} \wedge A_{12} \wedge \ldots \wedge A_{1n}) \vee (A_{21} \wedge A_{22} \wedge \ldots \wedge A_{2n}) \vee \cdots \\ (A_{m1} \wedge A_{m2} \wedge \ldots \wedge A_{mn})$$

is called a formula in disjunctive normal form (DNF).

▶ Given a propositional formula $P(A_1, A_2, ... A_n)$ with n propositional variables

- ▶ Given a propositional formula $P(A_1, A_2, ..., A_n)$ with n propositional variables
- Calculate the truth table of P
- For each row j in the truth table, where P=t model a sub-formula Q_j as follows:

- ▶ Given a propositional formula $P(A_1, A_2, ..., A_n)$ with n propositional variables
- Calculate the truth table of P
- For each row j in the truth table, where P=t model a sub-formula Q_j as follows:

$$Q_j = \left(\begin{pmatrix} A_1 \\ \text{or} \\ \neg A_1 \end{pmatrix} \land \begin{pmatrix} A_2 \\ \text{or} \\ \neg A_2 \end{pmatrix} \land \ldots \land \begin{pmatrix} A_n \\ \text{or} \\ \neg A_n \end{pmatrix} \right).$$

► Choose A_i for the i^{th} variable if the truth table holds a t and $\neg A_i$ otherwise.

- ▶ Given a propositional formula $P(A_1, A_2, ... A_n)$ with n propositional variables
- Calculate the truth table of P
- For each row j in the truth table, where P = t model a sub-formula Q_i as follows:

$$Q_j = \left(\begin{pmatrix} A_1 \\ \text{or} \\ \neg A_1 \end{pmatrix} \land \begin{pmatrix} A_2 \\ \text{or} \\ \neg A_2 \end{pmatrix} \land \ldots \land \begin{pmatrix} A_n \\ \text{or} \\ \neg A_n \end{pmatrix} \right).$$

- ► Choose A_i for the i^{th} variable if the truth table holds a t and $\neg A_i$ otherwise.
- The complete formula P' is realized by assembling all the sub-formulas Q_1, Q_2, \ldots, Q_m as follows:

$$P' = Q_1 \vee Q_2 \vee \ldots \vee Q_m$$

Example

$$\begin{array}{c|c|c}
A & B & P(A,B) & Q_j(A,B) \\
\hline
t & t &
\end{array}$$

Example

Example

Α	В	P(A,B)	$Q_j(A,B)$
t	t	t	$A \wedge B$
t	f		

Example

Α	В	P(A,B)	$Q_j(A,B)$
t	t	t	$A \wedge B$
t	f	f	

Example

Α	В	P(A,B)	$Q_j(A,B)$
t	t	t	$A \wedge B$
t	f	f	_
f	t		

Example

Α	В	P(A,B)	$Q_j(A,B)$
t	t	t	$A \wedge B$
t	f	f	_
f	t	t	

Example

Α	В	P(A,B)	$Q_j(A,B)$
t	t	t	$A \wedge B$
t	f	f	_
f	t	t	$\neg A \wedge B$
f	f		

Example

Α	В	P(A,B)	$Q_j(A,B)$
t	t	t	$A \wedge B$
t	f	f	_
f	t	t	$\neg A \wedge B$
f	f	t	

Example

Consider the formula $P(A, B) = A \Rightarrow B$. The truth table would be as follows:

Α	В	P(A,B)	$Q_j(A,B)$
t	t	t	$A \wedge B$
t	f	f	_
f	t	t	$\neg A \wedge B$
f	f	t	$\neg A \wedge \neg B$

Therefore, P could be rewritten in disjunctive normal form as $P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B)$.

Minimizing Formulas – Motivation

- Easier to understand
- ▶ Save money when constructing integrated circuits

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

	$\neg A$	Α
$\neg B$		
В		

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

	$\neg A$	Α
$\neg B$		
В		

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

	$ \neg A$	<i>A</i>
$\neg B$		
В		1

Consider the following formula in DNF

$$P'(A,B) = (A \land B) \lor (\neg A \land B) \lor (\neg A \land \neg B).$$

	$\neg A$	Α
$\neg B$		
В		1

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

	$\neg A$	Α
$\neg B$		
В	1	1

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

	$\neg A$	Α
$\neg B$		
В	1	1

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

	$\neg \not$	$A \mid A$
$\neg B$	1	
В	1	1

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

In the two dimensional case we construct a diagram in the following way:

	$\neg A$	Α
$\neg B$	1	
В	1	1

Now we try to find boxes of size 2 or 4 or 8, etc. These boxes should be as large as possible. The number of boxes should be as small as possible. The boxes may overlap.

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

	$\neg A$	A
$\neg B$	1	
В	1	1

KV-Diagrams

Consider the following formula in DNF

$$P'(A,B) = (A \wedge B) \vee (\neg A \wedge B) \vee (\neg A \wedge \neg B).$$

In the two dimensional case we construct a diagram in the following way:

	$\neg A$	<i>A</i>
$\neg B$	1	
В	1	1

$$\neg A \lor B$$

KV-Diagrams – Another Example

Example

$$(\neg A \land B \land C \land \neg D) \lor (A \land \neg B \land \neg C \land \neg D) \lor (A \land \neg B \land \neg C \land D) \lor (A \land \neg B \land C \land D) \lor (A \land \neg B \land C \land \neg D) \lor (A \land B \land \neg C \land \neg D) \lor (A \land B \land \neg C \land D) \lor (A \land B \land \neg C \land D)$$

Another Example – Sample Solution

Another Example – Sample Solution

	Α	Α	$\neg A$	$\neg A$	
В		1			D
В	1	1		1	$\neg D$
$\neg B$	1	1			$\neg D$
$\neg B$	1	1			D
	С	$\neg C$	$\neg C$	С	

$$(A \land \neg C) \lor (A \land \neg B) \lor (B \land C \land \neg D)$$

KV-Table for Three Variables

	A	A	$\neg A$	$\neg A$	
В					
$\neg B$					
	С	$\neg C$	$\neg C$	С	

Minterm and Literal

Definition

Given a propositional logic formula $P=Q_1\vee Q_2\vee\ldots\vee Q_m$, where all $Q_j(1\leq j\leq m)$ are of the form

$$Q_j = \left(\begin{pmatrix} A_1 \\ or \\ \neg A_1 \end{pmatrix} \land \begin{pmatrix} A_2 \\ or \\ \neg A_2 \end{pmatrix} \land \dots \land \begin{pmatrix} A_n \\ or \\ \neg A_n \end{pmatrix} \right)$$

we call Q_i a minterm. The A_i or $\neg A_i$ $(1 \le i \le n)$ are called *literals*.

Minterm and Literal

Definition

Given a propositional logic formula $P=Q_1\vee Q_2\vee\ldots\vee Q_m$, where all $Q_j(1\leq j\leq m)$ are of the form

$$Q_j = \left(\begin{pmatrix} A_1 \\ \text{or} \\ \neg A_1 \end{pmatrix} \land \begin{pmatrix} A_2 \\ \text{or} \\ \neg A_2 \end{pmatrix} \land \dots \land \begin{pmatrix} A_n \\ \text{or} \\ \neg A_n \end{pmatrix} \right)$$

we call Q_i a minterm. The A_i or $\neg A_i$ $(1 \le i \le n)$ are called *literals*.

Remark

Sometimes we also call a row of a truth table which result is true a minterm.

Minterm and Literal

Definition

Given a propositional logic formula $P=Q_1\vee Q_2\vee\ldots\vee Q_m$, where all $Q_j(1\leq j\leq m)$ are of the form

$$Q_j = \left(\begin{pmatrix} A_1 \\ or \\ \neg A_1 \end{pmatrix} \land \begin{pmatrix} A_2 \\ or \\ \neg A_2 \end{pmatrix} \land \dots \land \begin{pmatrix} A_n \\ or \\ \neg A_n \end{pmatrix} \right)$$

we call Q_i a minterm. The A_i or $\neg A_i$ $(1 \le i \le n)$ are called *literals*.

Remark

Sometimes we also call a row of a truth table which result is true a minterm.

Remark

In case of a multiple appearance of a literal A_i in a Q_j , Q_j is called a product term.

Implicant

Definition

Given a propositional logic formula $P=Q_1\vee\ldots\vee Q_m$ with each minterm Q_i having n literals A_1,A_2,\ldots,A_n . Furthermore we have a product term

$$I = \left(\begin{pmatrix} A_1 \\ or \\ \neg A_1 \end{pmatrix} \land \begin{pmatrix} A_2 \\ or \\ \neg A_2 \end{pmatrix} \land \ldots \land \begin{pmatrix} A_n \\ or \\ \neg A_n \end{pmatrix} \right).$$

Implicant

Definition

Given a propositional logic formula $P = Q_1 \vee ... \vee Q_m$ with each minterm Q_i having n literals $A_1, A_2, ..., A_n$. Furthermore we have a product term

$$I = \left(\begin{pmatrix} A_1 \\ \text{or} \\ \neg A_1 \end{pmatrix} \land \begin{pmatrix} A_2 \\ \text{or} \\ \neg A_2 \end{pmatrix} \land \ldots \land \begin{pmatrix} A_n \\ \text{or} \\ \neg A_n \end{pmatrix} \right).$$

I is called a *prime implicant* of P if $I \Rightarrow P$, i.e., that whenever the evaluation of I with a specific set of truth values for A_1, A_2, \ldots, A_n yields true, the evaluation of P with the same set of truth values also yields true.

Example and Remark

Consider the following propositional logic formula P:

$$P = (A_1 \wedge A_2) \vee (A_2 \wedge A_3) \vee A_4$$

This formula is implied by the formulas $A_1 \wedge A_2$, $A_2 \wedge A_3$, A_4 , $A_1 \wedge A_2 \wedge A_3$, $A_1 \wedge A_2 \wedge A_4$ and many others. These are the implicants of P.

Example and Remark

Consider the following propositional logic formula P:

$$P = (A_1 \wedge A_2) \vee (A_2 \wedge A_3) \vee A_4$$

This formula is implied by the formulas $A_1 \wedge A_2$, $A_2 \wedge A_3$, A_4 , $A_1 \wedge A_2 \wedge A_3$, $A_1 \wedge A_2 \wedge A_4$ and many others. These are the implicants of P.

Remark

Implicants are sometimes called "coverings" of one or more minterms.

Prime Implicant

Definition

Given a propositional logic formula P. An implicant I is called a *prime implicant* if it can't be reduced any further, i.e., any removal of a literal would make it a "non-implicant".

Prime Implicant

Definition

Given a propositional logic formula P. An implicant I is called a *prime implicant* if it can't be reduced any further, i.e., any removal of a literal would make it a "non-implicant".

Example

Let $P=(A_1 \wedge A_2) \vee (A_2 \wedge A_3) \vee A_4$ be a propositional logic formula. The prime implicants of P would be $A_1 \wedge A_2$, $A_2 \wedge A_3$, and A_4 would be the prime implicants of P.

Prime Implicant and Minimal Formulas

Definition

A disjunction of prime implicants covering a complete formula P is called a minimal formula of P.

Remark

There may exist more than one minimal formula.

Example

Given the following truth table M:

<i>x</i> ₁	<i>x</i> ₂	x ₃	y
f	f	<i>x</i> ₃	f
f	f	t	f
f	t	f	f
f	t	t	t
t	f	f	t
t	f	t	t
t	t	f	f
t	t	t	t

Example continued

Example continued

▶ $A_1 \land \neg A_2$ and $A_2 \land A_3$ are prime implicants of M.

Example continued

- ▶ $A_1 \land \neg A_2$ and $A_2 \land A_3$ are prime implicants of M.
- ▶ $A_1 \land \neg A_2 \lor A_2 \land A_3$ is a minimal formula representing M.

Quine-McCluskey Algorithm

- An algorithm to find minimal formulas
- Finds all prime implicants of a given formula S
- Finds a combination of prime implicants which covers S
- Example as given in class