

Figure S1. Overview of the sown field margin with the winter mixture (WM), during plant growth and flowering.

Figure S2. Overview of the natural vegetation at the two sites (NV1 and NV2), separately and in relation to the sown margin and the crop, at different dates.

Figure S3. Climatic conditions (temperature, precipitation, wind) in the experimentation area for the year 2015, during the sampling period. The sampling dates are indicated in the x-axis.

Figure S4. Suction sampling device: A modified leaf-blower (Echo ES-2400) operating in reverse mode (suction) and fitted with a mesh bag to collect the insects.

Table S1. Mean percentage of flower cover (±s.e.m.) in the winter mixture (WM), the summer mixture (SM) or natural vegetation NV1 and NV2 sites, at the field margins of a processing tomato crop in five sampling dates (May-July 2015).

			Me	an flower cover	(%)		
			WT				
Mean WST/date WT 2-way ANOVA				W	/ST	Mean WT/margin	Mean WST/margin
	6/5	21/5	3/6	17/6	15/7	(6/5-15/7)	(17/6 & 15/7)
WM	81,5 ±4,2 <i>Aa</i>	86 ±3,9 Aa	77 ±4,4 Aa	41,7 ±1,2 Ab	39 ±2,6 Ab	65 ±3,3	40,4 ±1,4 B
NV1	5,0 ±0,1 <i>Bb</i>	20,0 ±2,9 Ba	3,7 ±1,8 Bb	5,7 ±0,3 <i>Bb</i>	8,3 ±1,7 Bb	8,3 ±1,7	6,5 ±1,2 C
NV2	63,3 ±4,4 Aa	20,0 ±5,0 <i>Bb</i>	2,0 ±0,1 <i>Bb</i>	4,7 ±0,9 <i>Bb</i>	16,7±9,3 <i>Bb</i>	21,5 ±6,2	11,2 ±4,8 C
SM				74 ±17,7	55 ±10,8		78,3 ±6,5 A
Mean WT/date	63,8 ±4,3	61,3 ±6,9	49,2 ±27,3	28 ±7,6	29,1 ±7,2		
Mean WST/date				38,1±3 a	34,7 ±2,3 b		
WT	NA: 1 5	454.42 0.0	004 Data 5	44.40 0.000	M M *D	. 5 40.60	0 0001
2-way ANOVA	Mixture: F _{2,52} =	= 151.12, p < 0.0	001; Date: F _{3,52} =	44.49, p < 0.000	ii; Mixture*Dat	e: F _{6,52} = 10.60,	p < 0.0001
WST	N4: 1 5	24.40	04 Data 5		N4: 1*D.:	5 4 30	0.2702
2-way ANOVA	Mixture: F _{3,20} =	= 21.10, p < 0.00	01; Date: F _{1,20} = 5	5.73, p = 0.0266;	Mixture*Date:	F _{3,20} = 1.38, p =	0.2782

Two-way ANOVA (treatment and sampling date) on transformed data (arcsin). Capital letters indicate significant differences between treatments while small letters indicate significant differences between assessment dates. Comparison between main effects is depicted with normal letters, while comparisons among simple effects with italics (Tukey HSD).

WM: winter mixture; NV1: natural vegetation at site 1; NV2: natural vegetation at site 2; SM: summer mixture; WT: winter treatments (WM, NV1 & NV2, from 6/5 to 15/7); WST: winter and summer treatments (WM, SM, NV1 & NV2 for 23/6 & 15/7).

Table S2. Mean number (±s.e.m.) of Hymenoptera pollinator visits/plot/4' in the winter mixture (WM), the summer mixture (SM) or natural vegetation NV1 and NV2 sites, at the field margins of a processing tomato crop in five sampling dates (May-July 2015).

			7	otal p	ollinator	s	Wild bees											
			WT			Mean	Mean			W	Т		Mean	Mean				
Field				٧	VST	WT/margin	n WST/margin (17/6 &	1			,	WST	WT/margin	WST/margin				
margin	6/5	21/5	3/6	17/6	15/7	(6/5-15/7)	15/7)	6/5	21/5	3/6	17/6	15/7	(6/5-15/7)	15/7)				
WM	11,8 ±2,4 Aab	19,6 ±3,8 Aa	11,4 ±2,1 Aab	5,4 ±1,3 <i>Abc</i>	3,6 ±1,2 <i>Ac</i>	10,4 ±1.5	4.5 ±0.9 B		16.2 ±2.3	10.8 ±1.9	5.4 ±1.3	3.6 ±1.2 A	8.1 ±1.2 A	4.5 ±0.9 B				
NV1	0.0 ±0.0 Ba	4.0 ±3,1 Ba	5.0 ±3,2 <i>ABa</i>	0,3 ±0,3 <i>Aa</i>	1.0 ±0,6 <i>ABa</i>	2,1 ±0,9	0.3 ±0.2 C	0.0 ±0.0	4.0 ±3.0	5.0 ±3.2	0.3 ±0.3	1.0 ±0.6 B	2.1 ±0.9 B	0.3 ±0.2 C				
NV2	12,3 ±3,8 <i>Aa</i>	3,3 ±0,3 Bab	0.0 ±0.0 <i>Bb</i>	3,7 ±2,7 Aab	0,3 ±0,3 Bb	3.9 ±1.4	2.3 ±1.4 BC	0.0 ±0.0	3.0 ±0.0	0.0 ±0.0	3.7 ±2.7	0.3 ±0.3 B	1.4 ±0.6 B	2.3 ±1.4 BC				
SM				34.0 ±6.3	8.0 ±1.1		21.0 ±6.5 A				33.7 ±6.6	8.0 ±1.1		20.8 ±6.4 A				
Mean WT/date	87 ±2.2	10.9 ±3.1	6.5 ±1.9	3.5 ±1.1	2.0 ±0.7			2.0 ±0.7E	9.3 3 ±2.3 a	6. 3±1.8 ab	3.5 ±1.1 ab	2.2±0.7ab						
Mean WST/date				10.9 ±3.3 a	3.3 ±0.9 b						10.8 ±3.3 a	3.3 ±0.9 b						
WT	Mix	ture: F _{2,4}	₁₀ = 32.42,	p < 0.0	01; Date	: F _{4,40} = 5.52,	p=0.0012;	М				•	01; Date: F _{4,4}					
2-way ANOVA			Mixture*	Date: F	_{8,40} = 4.4	6, p=0.0006			=0.0	004; N	/lixture	e*Date: F ₈	_{i,40} = 1.69, p =	= 0.132				
WST	Mixt	ure: F _{3,20}	= 21.10, ;	0.00	001; Date	e: F _{1,20} = 5.73	, p = 0.0266;	N	lixture	: F _{3,20}	= 20.9			₂₀ = 5.64, p =				
2-way ANOVA		١	vixture*۱	oate: F₃	s, ₂₀ = 1.38	s, p = 0.2782				Mixtu	ıre*Da	0.0277 te: F _{3,20} =	7; 1.38, p = 0.2	893				

Two-way ANOVA (treatment and sampling date) on transformed data (ln(x+1)). Capital letters indicate significant differences between treatments while small letters indicate significant differences between assessment dates. Comparisons between main effects are depicted with normal letters, while comparisons among simple main effects with italics (Tukey HSD). WM: winter mixture; NV1: natural vegetation at site 1; NV2: natural vegetation at site 2; SM: summer mixture; WT: winter treatments (WM, NV1 & NV2, from 6/5 to 15/7); WST: winter and summer treatments (WM, SM, NV1 & NV2 for 23/6 & 15/7).

Table S3. Pollinator genera and associated flowering in the sown mixtures and natural vegetation at the field margins of processing tomato crop.

Family	Genus	Associated flowering plants*	Number of specimens**
Andrenidae	Andrena spp., at least 5 morphospecies	Calendula sp., Capsella sp., Asteraceae, Fagopyrum esculentum, WM, SM, NV	18 (6 ♂, 12 ♀); net (11); suction (7)
Apidae	Apis mellifera	WM, SM	$1(\stackrel{\bigcirc}{+})$; suction
	Eucera sp.	Lathyrus sativus	$4(\stackrel{\bigcirc}{+})$; net
Colletidae	Colletes sp.	WM, SM	$4 (2 \circlearrowleft, 2 \circlearrowleft)$; net (1); suction (3)
	Hylaeus spp., 5 morphospecies	WM, SM	$5 (\stackrel{\bigcirc}{\hookrightarrow});$ net (1); suction (4)
	Hylaeus cornutus	na	1 (♀); net
Halictidae	Halictus spp., at least 3 morphospecies	WM, Coriandrum sativum, Fagopyrum esculentum	4 (♀); net
	Lasioglossum spp., at least 5 morphospecies	Asteraceae, Glebionis coronaria, Coriandrum sativum, Sinapis sp., Anethum graveolens, Picris echioides, WM, SM	28 (3 ♂, 25 ♀); net (11); suction (17)
	Pseudapis sp.	WM	2 (♂); suction
	Sphecodes spp., at least 3 morphospecies	Coriandrum sativum, WM, SM	5 (2 ♂, 3 ♀); net (2); suction (3)

^{*} WM= winter mixture; SM= summer mixture; NV= natural vegetation; na: not available; sp. in parenthesis indicates the pollinator morphospecies.

Table S4. Arthropod taxa recorded in 1' suction samples/plot from the sown winter mixture (WM), summer mixture (SM) or natural vegetation NV1 and NV2 sites, at the field margins of a processing tomato crop in four sampling dates (May-July 2015).

CLASS	Order	Family, Genus,	21	/05/20	015	03	/06/2	015		23/0	6/2015	;		15/0	7/2015	;
CLASS	Oruei	Species	WM	NV1	NV2	WM	NV1	NV2	WM	SM	NV1	NV2	WM	SM	NV1	NV2
INSECTA	Coleoptera	Cantharidae	4	0	0	0	0	0	0	0	0	0	0	0	0	0
		Coccinellidae	2	1	3	0	4	4	8	3	1	1	1	5	2	1
		Other	39	3	37	16	3	4	15	18	20	4	14	21	3	5
	Dermapter a		0	0	0	0	0	0	0	0	22	0	0	0	0	0
	Diptera	Syrphidae	5	0	0	3	1	1	1	3	0	0	3	3	1	0
		Other beneficials	12	0	5	2	0	0	3	0	3	0	2	1	1	0
		Flies and other	57 7	15 4	12 1	16 0	57	28	52	53	83	44	48	9	10	9
	Hemiptera	Anthocoridae	9	0	0	16	0	1	12	9	3	0	8	6	2	0
		Aphididae	67	3	5	51	15	43	29	2	43	10	8	1	4	7
		Cicadellidae	14	13	12	1	6	5	34	10	13	15	14	49	6	10

^{**} net= net sampling, suction = suction sampling

		Lygaeidae	5	0	0	0	0	0	96	18	16	4	90	8	11	12
		Miridae	24	0	0	2	1	0	55	2	1	0	5	9	0	0
		Nabidae	1	0	3	0	0	0	0	1	0	3	0	1	0	0
		Reduviidae	0	0	0	0	0	0	0	0	1	0	0	0	0	0
		Pentatomidae	2	2	2	5	1	7	25	2	4	7	62	15	5	10
		Psyllidae	1	5	12	0	3	0	0	1	0	0	0	0	0	0
		Tingidae	0	0	0	0	1	0	0	0	0	0	0	0	0	0
		Other	2	1	4	8	3	8	18	2	11	8	63	5	5	6
	Hymenopte	Total parasitoids	15	31	29	26	3	12	22	20	66	38	27	14	36	59
	ra		0						5				8			
		Total pollinators	13	0	1	19	1	1	2	7	0	0	1	0	0	0
		Formicidae	12	20	15 2	1	23	27	21	1	23	51	20	0	72	88
		Vespididae	0	0	0	3	0	0	1	0	0	1	1	0	0	0
	Lepidopter a		2	0	1	0	0	1	3	0	9	8	4	2	0	2
	Neuroptera	Chrysopidae	28	1	2	2	0	0	3	2	1	2	1	0	0	1
	Odonata		2	0	1	0	0	0	1	0	0	0	0	1	0	0
	Orthoptera		0	0	0	0	0	1	0	0	0	0	0	0	0	3
	Psocoptera		2	0	0	0	0	0	0	0	0	0	0	0	0	0
	Thysanopte	Aelothrips sp.	12	0	2	49	1	1	15	37	8	3	5	5	0	0
	ra		6													
		Other	29	2	7	14	1	28	18	10	40	2	43	2	6	1
ARACHN IDA	Araneae		15	8	5	23	6	7	70	11	28	31	83	8	21	27

Table S5. Mean number (±s.e.m.) of Hymenoptera parasitoids and predators in 1' suction samples/plot from the winter mixture (WM), the summer mixture (SM) or natural vegetation NV1 and NV2 sites, at the field margins of a processing tomato crop in four sampling dates (May-July 2015).

			Hymen	optera p	arasitoids		Predators										
		W	/T	ICT.	Mean ·WT/margin	Mean		W		ICT.	Mean –WT/margin	Mean					
Field			W	ST	/24 /5	WST/margir	1		W	ST	/24 /5	WST/margin					
margin	21/5	3/6	23/6	15/7	(21/5- 15/7)	(17/6 & 15/7)	21/5	3/6	23/6	15/7	_ (21/5- 15/7)	(17/6 & 15/7)					
WM	33.8 ±6.7	5.8 ±3.1	44.6 ±8.1	56.4 ±6.8	35.1 ±5.2 A	50.5 ±5.3 A	41.8 ±8.3	13.8 ±3.2	47.2 ±8.5	59.6 ±5.8	40.6 ±4.9 A	53.4 ±5.3 A					
NV1	10.3 ±3.2	1.0 ±0.6	23.0 ±7.0	12.7 ±2.0	11.7 ±2.9 B	17.8 ±4.0 B	9.0 ±2.1	4.0 ±2.3	28.3 ±3.8	13.7 ±6.4	13.6 ±3.2 B	20.7 ±4.8 B					
NV2	9.7 ±3.2	4.3 ±1.2	12.7 ±2.3	19.7 ±2.9	11.6 ±2.0 B	16.1 ±2.3 B	12.0 ±0.6	7.3 ±2.7	23.3 ±5.5	16.0 ±1.1	14.7 ±2.2 B	19.7 ±3.0 B					
SM			7.3 ±4.3	4.7 ±2.2		6.0 ±2.2 C			16.7 ±3.4	12.0 ±2.1		14.3 ±2.1 B					
Mean	20.8	4.1 ±1.5	30.0	34.4			24.7	9.4 ±2.1	35.5	35.0							
WT/date	±4.8 a	b	±5.8 a	±7.0a			±6.1 a	b	±5.2 a	±7.7a							
Mean WST/date	!		25.0 ±5.3	28.1 ±6.5					31.5 ±4.6	30.1 ±6.5							
WT 2-way ANOVA		,-			3; Date: F _{3,32} 37, p = 0.256			,-			1; Date: F _{3,32} = 05, p = 0.4113						
WST 2-way	Mixture 0.8187;		17.72, p	< 0.0001	L; Date: F _{1,20}	= 0.05, p =	Mixture 0.0699;		.4.00, p	< 0.0003	1; Date: F _{1,20} =	= 3.66, p =					
ANOVA	Mixture	e*Date: I	$F_{6,20} = 0.$	66, p = 0	.5887		Mixture	*Date: F	6,20 = 2.6	64, p = 0	.0778						

Two-way ANOVA (treatment and sampling date) on transformed data (ln(x+1)). Capital letters indicate significant differences between treatments while small letters indicate significant differences between assessment dates. WM: winter mixture; NV1: natural vegetation at site 1; NV2: natural vegetation at site 2; SM: summer mixture WT: winter treatments (WM, NV1 & NV2, from 21/5 to 15/7); WST: winter and summer treatments (WM, SM, NV1 & NV2 for 23/6 & 15/7).

Table S6. Parasitoid taxa (mean number (M) and Relative Abundance %) recorded in 1' suction samples/m² from the sown winter mixture (WM), summer mixture (SM) or natural vegetation NV1 and NV2 sites, at the field margins of a processing tomato crop in four sampling dates (May-July 2015).

				21	/5					3/	6						23	/6				15/7							
		W	/M	N	V1	N	V2	W	M	N۱	/1	N	/2	W	M	N	V1	N	V2	SI	M	W	М	N	/1	N۱	/2	SI	М
Superfamil Y	Family	М	%	М	%	М	%	М	%	М	%	М	%	М	%	М	%	М	%	М	%	М	%	М	%	М	%	М	%
Ceraphron	Ceraphronida	1	2	0	0	0	0	0	0	0	0	0	0	1	3	2	11	1	11	0	0	0	0	0	3	0	0	0	0
oidea	Megaspilidae	0	0	1	7	0	3	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
	Aphelinidae	0	0	0	0	0	0	0	0	0	0	2	42	1	2	1	3	1	11	0	5	0	0	0	0	0	0	0	0
	Encyrtidae	0	0	0	0	0	0	0	0	0	0	0	0	3	6	0	0	1	8	0	5	12	22	1	8	2	12	1	14
	Eulophidae	13	44	4	36	3	35	1	15	0	0	1	17	11	24	5	24	4	29	1	10	13	23	1	11	3	14	1	28
	Eupelmidae	0	0	0	0	0	0	0	4	0	0	0	0	1	2	0	0	0	0	0	0	3	5	0	0	0	0	0	0
Chalcidoid	Eurytomidae	0	1	0	0	0	0	2	39	0	0	0	0	12	27	0	0	0	0	1	20	5	9	0	3	1	3	0	0
	Mymaridae	0	1	0	0	0	3	0	0	0	0	0	0	0	0	2	11	0	3	1	10	2	3	1	8	0	2	1	14
	Pteromalidae	4	12	0	0	0	0	1	12	0	0	0	8	1	2	1	5	0	0	1	10	1	1	0	0	0	0	0	0
	Tetracampida	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Torymidae	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	0
	Trichogramm idae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5	0	0	0	0	0	0	0	0	0	0
Cynipoidea		1	3	0	3	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
Diaprodoid ea	Diapriidae	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ichneumon	Braconidae	2	5	1	7	1	7	0	8	0	33	0	0	1	2	2	9	1	5	0	0	3	5	0	0	0	0	1	21
oidea	Ichneumonida	2	7	0	0	1	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Platygastro	Platygastridae	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	3	0	3	0	0	0	0	0	0	0	0	0	0
idea	Scelionidae	6	21	5	45	4	41	1	23	1	67	1	33	14	31	7	33	3	26	2	35	16	29	8	67	13	68	1	21
Total mean	1	30		10		10		5		1		4		45		22		13		7		56		12		20		5	