

マラング マッカル

वैदिक गणित

लेखक

रामनाथ शर्मा

सेवा निवृत

प्रधानाचार्य

हिमाचल प्रदेश राजकीय सेवा

समर्पण

वैदिक गणित की यह पुस्तक मैं अपने गुस्तेव स्व ० श्री भक्त राम जी की स्मृति में उनको समर्पण करता हूं उन्होंने मुझे इतने परिश्रम एवं लग्न के साथ पाचवीं कक्षा में हमारे ग्राम के स्कूल भगवान चक में पढाया कि उससे जीवन भर के लिए मुझे गणित में रूची हो गई । इसी रूचि के कारण ही सेवा निवृति के बाद भी मैं यह पुस्तक लिख सका ।

रामनाथ क्षर्या बी - 15, सुन्दर नगर पठानकोट - 145001

मूल्य: 16.00 रुपये

मिलने का पता **तारा पुस्तक भण्डार** बैजनाय (हिमाचल प्रदेश) - 176125

> मुद्रक : न्यू टैक लेजर प्रिन्टर्स, H-56B, विजय चौक, लक्ष्मी नगर, दिल्ली-110 092 फोन : 2424003

प्रस्तावना

वेद सब ज्ञान का मूल स्रोत हैं। वेद का अर्थ ही ज्ञान होता है। इसे ऋषियों ने परम पिता परमात्मा से अपनी साधना द्वारा प्राप्त किया। भगवान वेद व्यास जी ने इनको ग्रन्थों का रूप दिया। इसके अनन्तर वेद वेदाङ्गों की रचना हुई। तदनत्तर उन पर भाष्य लिखे गए। स्मृतियों की रचना हुई।

आधुनिक युग में गोवर्धन पीठाधीश्वर जगत्गुरू शंकराचार्य भारती कृष्ण तीर्थ जी ने अपनी योग साधना से वैदिक गणितको पुनः विकसित कर उसे प्रयौगिक रूप दिया।

स्वामी जी का जीवन

उनका बचपन का नाम वैंकट रमण था वे बड़े कुशाय बुद्धि के विद्यार्थी थे । इन्होंने अपने शिक्षा काल में हर कक्षा में हर विषय में प्रथम स्थान ग्रहण किया ।

वे 1903 में अमेरिकन कालिज आफ साईसिस न्यूयार्क के मुम्बई केन्द्र में स्नातकोत्तर परीक्षा में बैठे। और 1904 में एक साथ सात विषयों में एम.ए. की परीक्षा देकर सभी में उच्चतर स्थान प्राप्त किया। यह अभी एक विश्व रिकार्ड बना हुआ है। इन विषयों में संस्कृत, दर्शन शास्त्र, अंग्रेजी, गणित, एवं विज्ञान के विषय थे।

स्वामी जी ने वेदों में से एक सौ बीस अक्षरों पर आधारित 16 सूत्र ढूंढे। इन 16 सूत्रों के आधार पर ही अंक गणित की सब प्रक्रियाएं, बीज गणित, ज्योमिति, त्रिकोणिमिति एवं उच्चतर गणित की सभी शाखाओं की समस्याएं शीघ्र ही हल हो जाती हैं।

छोटी कक्षाओं के विद्यार्थी ही योग, व्यवकलन, गुणा एवं भाग की कई विधियां सीख जाते हैं। जब प्रश्नों के उत्तर शीघ्र मिलने लगते हैं तो गणित उनको खेल मालूम होने लगता है। जब वैदिक पद्धित से वे अपने उत्तरों की शुद्धता की जांच स्वयं करते हैं तो उनको बहुत ही आनन्द आता है। गणित उनके लिए धकाने वाला एक अरुचि कर विषय नहीं रहता। एवं रुचिकर आनन्द वर्द्धक विषय हो जाता है।

मैं डा. नरेन्द्र पुरि जनपद अभियन्त्रिकी विभाग विश्व विद्यालय रुड़की का आभारी हूं जिन्होंने प्राचीन वैदिक गणित की पुष्प मालाएं लिखकर राष्ट्र की सेवा आरम्भ की है। सरकार ने तो धनाभाव के बहाने इस पद्धति का प्रचलन विद्यालयों में करना अस्वीकार कर दिया था। पर पुरि जी ने गोष्ठियों और डाक द्वारा प्रशिक्षण द्वारा इसका प्रचार देश भर में आरम्भ कर दिया है। राष्ट्र सदैव उनका आभारी रहेगा।

इंगलैण्ड में विद्धानों ने प्राचीन वैदिक गणित पर बड़ी- बड़ी पुस्तकें लिखी हैं तथा वहां के विद्यालयों में इसका प्रचलन हो गया है। आशा है भारत सरकार भी शीघ्र ही इसको अपना लेगें।

मैंने विद्यार्थियों के लिए इस पुस्तक को सरल भाषा में लिखा है । आशा है गणित के विद्यार्थी और शिक्षक मेरे इस प्रयास से लाभ उठाएंगे ।

रामनाथ शर्मा

सूचि पत्र

	विषय	पृष्ट
1	प्रथम अध्याय विनकुलम्	1
1.1	विनकुलम की सहायता से एक संख्या को कई प्रकार से लिखना	1
1.2	विनकुलम् में निखल सूत्र का प्रयोग	1
1.3	विनकुलम युक्त संख्या को साघारण संख्या में बदलना	2
2	वैदिक जान्च पद्धति तथा ब्रह्म अंक	3
2.1	किसी संख्या की एक अंकीय संख्या बनाना	3
2.2	योग , व्यवकलना, गुणा एवं भाग की जांच	4
3	योग और शुद्ध का प्रयोग	8
4	व्यवकलन और शुद्ध का प्रयोग	12
4.1	योग और व्यवकलन के मिश्रत प्रश्न	13
5,5.1	गुणा , गुणा में आघार विधि	15
5.2	गुणा में निखलं विधि	32
5-3	गुणा में ऊर्ध्वतिर्थग्म्याम् सूत्रों का प्रयोग	34
6, 6.1, 6.2 भाग, में परावर्त्ययोज्येत सूत्र का प्रयोग		41
6.3	भाग में ध्वजंक सूत्रों का प्रयोग	45
7, 7.1	वर्गीकरण आधार विधि	50
7.2	एकाधिकेन पूर्वेन का प्रयोग	51
7.3	द्वन्द योग	51
7.4	पूर्ण वर्ग संख्यायों की विशेषताएं	55
8, 8.1	घन और आधार पद्धति का प्रयोग	56
8.2	अनुरुप्येन सूत्र का प्रयोग	58
8.3	ऊर्घ्वतिर्यगम्याम् का प्रयोग	60
8.4	घन संख्यायों की विशेषताएं	60
9	वर्गमूल	62
10,10.	1 दो संख्यायों को दस प्रकार से गुणा करना	69
10.2	किसी संख्या को किसी दूसरी संख्या से दस प्रकार	
	से भाग देना	71
11	व्यवहारिक गणित में वैदिक गणित	75
11.6	वीज गणित में वैदिक गणित	81
11.7	ल्युगणित में वैदिक गणित	83

Cirius A The Cir

प्रथम अध्याय

1. संख्याए तथा विनकुलम्

प्रायः संख्याएं लिखते समय जिन अंकों का प्रयोग कया जाता है वे सब धनात्मक होते हैं केवल लघुगणित में ऋणात्मक पूर्णांश पर रेखा खींचकर लिखा जाता है। कम्प्यूटर में ऐसे अंकों का बहुत प्रयोग होता है।

वैदिक गणित में ऐसे प्रयोग को 'विनकुलम्' कहते हैं। इसे ऋणात्मक अंकों पर रेखा खींचकर दर्शाया जाता है। यह वेदों से सीघा कम्प्यूटर में कैसे पहुंचा यह जानने का विषय है इसका प्रयोग किसी संख्या के किसी भी अंक पर हो सकता है। जैसे:-

$$53 = 50-3 = 47$$

 $237 = 200-37 = 163$

इस प्रकार संख्याएं लिखने से संख्याओं का जोड़ना घटाना तो सरल हो ही जाता है। गुणा में 5 से बड़े पहाड़े की आवश्यकता भी नहीं रहती।

1.1 'विनकुलम्' के प्रयोग से एक संख्या को कई प्रकार से लिखा जा सकता है। जैसे

5328 = 6000-672 = 6 6 7 2

5328 = 5400-72 = 5 4 7 2

5328 = 10000-4672 = 5 4 6 7 2

5328 = 5330-2 = 5332

5328 = 6000-700+30-2 = 6 7 3 2

1.2 वैदिक गणित में विनकुलम् का प्रयोग 5 से बड़े अंक को 5 से छोटा बनाने के लिये किया जाता है।

विधियां :-

(1) यदि किसी संख्या में बाई ओर के अंक को छोड़ शेष सभी अंक 5 या 5 से बड़े हों तो ु'निखलं नवतः चरमं दशतः'ेसूत्र का प्रयोग किया जाता है। अर्थात् दाई ओर के आखिरी अंक को दूदस से, शेष का 9 से घटाकर बाई ओर के अंतिम अंक में 1 जोड़ दिया जाता है। जैसे 47896 = 50000-2104 = 52 T 04 357686 =400000-42314 = 44 2 3 T 4

(ii) यदि किसी संख्या में कोई अंक 5 से बड़ा हो तो उसको 10 से घटाकर ऊपर 'विनकुलम्' लगा देते हैं तथा बाई ओर के अंक में 1 बढ़ा देते हैं। जैमे

27482 = 30502-3020= 33522

और 53628337 = 54432343

(iii) यदि बीच बीच एक से अधिक अंक 5 या 5 से बड़े हों तो उन सबमें इस सूत्र का प्रयोग होता है। बाई ओर के पहले बड़े अंक को 10 से तथा शेष को 9 से घटा कर उन पर विनकुलम् लगाकर दाई ओर के छोटे अंक में 1 बढ़ा देते हैं जैसे

4256358 = 434 444 2

(iv) यदि बाईं ओर का अंतिम अंक भी 5 या 5 से बड़ा हो तो उसे भी 9 से घटाकर ऊपर बिलकुल लगा देते हैं और उसके बाईं ओर 1 लिख देते हैं। जैसे 768 = 12 3 2

और 56348 = 14 4352

उद्देश्य यही होता है कि नई संख्या में कोई अंक 5 से बड़ा न रहे।

1.3 'विलकुलम्' युक्त संख्या को साधारण संख्या में बदलना ।

यहाँ फिर 'निखलं नवतः चरमं दशतः सूत्र का ही प्रयोग होता है। विनकुलम् युक्त अंकों के दाईं ओर के पहले अंक को दस से तथा अन्य को 9 से घटा कर लिख देते हैं। और बाईं ओर के साधारण अंक से 1 कम करके लिख देते हैं।

गैसे 5 34 = 466

23435 = 16635

 $15\overline{4}23 = 4617$

14 342 = 5738

323434 = 277366

दूसरा अध्याय

वैदिक जांच पद्धति तथा ब्रह्म अंक

वैदिक पद्धित के योग, घटाने तथा गुणा भाग के प्रश्नों के उत्तर विना दोवारा पूर्व प्रक्रिया को दोहराये ही की जा सकती है। वेदों में 9 के अंक को ब्रह्म अंक कहते हैं। क्योंकि इससे बड़ा अंक कोई नहीं होता। और सभी प्रक्रियाओं में इसी अंक का जादू काम करता है। इसमें कोई अंक जोड़ें योगफल के अंकों का जोड़ इसी अंक के समान होता है।

9 को किसी अंक से गुणा करें। गुणनफल के अंकों का जोड़ 9 ही रहता है।

यदि किसी संख्या को 9 से भाग दें तो शेषफल भाज्य संख्या की एक अंकीय संख्या के बराबर होता है।

2.1 किसी संख्या को 1 अंकीय संख्या में बदलना

वैदिक पद्धति से प्रश्नों के उत्तरों का जान्च सीखने से पूर्व किसी संख्या को एक संख्या में बदलना आना चाहिये।

2.1.2
$$6537 = 6+5 = 11, 1+1=2+3=5, 5+7 = 12, 1+2=3$$

2.1.3 जिस संख्या में कोई अंक 9 या कुछ अंक हो जिनका जोड़ 9 बनता हो तो उन अंकों को छोड़ देते हैं । जैसे यदि 45694 की एक संख्या बनानी हो तो 4,5 का जोड़ 9 होता है और अंक 9 को छोड़ दिया । शेष अंक 6 तथा 4 का जोड़ =10, 1+0 = 1

अर्थात् 45694 की एक अंकीय संख्या = 1 वैसे भी 4+5+6+9+4 = 28; 2+8 = 10, 1+0 = 1

- 2.1.4 57692 में 7 और 2 का जोड़ , और 6 और 3 का जोड़ 9 होता है और अंक 9 को भी छोड़ एक अंकीय संख्या = 5
- 2.1.5 653728 में (6,3), तथा (7,2) को छोड़ने पर शेष अंक 5 और 8 का जोड़ = 13 1+3 = 4 अतः 653728 की एक अंकीय संख्या = 4
- 2.2 योग की क्रिया की जांच
- 2.2.1 5764, 7543, 6873 और 9532 का योगफल ज्ञात करों और उत्तर की जाँच करो।

5 7 6 4 7 5 4 3 6 8 7 3 9 5 3 2

जांच

5764 की एक अंकीय संख्या = 4

7543 की एक अंकीय संख्या = 1

6873 की एक अंकीय संख्या = 6

9532 की एक अंकीय संख्या = 1

सभी एक अंकीय संख्याओं का जोड़ = 12

और 12 की एक संख्या = :

योगफल 29712 की एक संख्या = 3

अतः उत्तर शुद्ध है।

2.2.2 7583, 4958, 7846 और 6754 का योगफल ज्ञात करो। और उत्तर की जांच करो। 7583+4958+7846+6754 = 27141

अभ्यास होने पर सभी संख्याओं की एक अंकीय संख्या इकट्ठे ही बन जाती है जैसे इस* प्रश्न में 7+5=12, 1+2=3, 3+8=11, 1+1=2, 2+3=5, 5+4=9 छोड़ दिया अगला 9 भी छोड़ दिया 5+8=13, 1+3=4, 4+7=11, 1+1=2, 2+8=10, 1+0=1, 1+4=5, 5+6=11, 1+1=2, 2+6=8, 8+7=15, 1+5=6, 6+5=11, 1+1=2, 2+4=6

और उत्तर 27141 की एक संखाया = (2, 7) को छोड़ दिया 1+4+1 = 6 अतः उत्तर शद्ध है।

2.3 व्यवक्तन की जांच

2.3.1 6732 में से 4639 को घटाओ और उत्तर की जाच वैदिक रीति से करो।

6732 की एक अंकीय संख्या = 9

4639 की एक अंकीय संख्या = 4

2093 की एक अंकीय संख्या = 5

और 9-4 = 5 या 5+4 = 9

अतः उत्तर शुद्ध है।

2.3.2 5672 में से 3758 को घटाओ और उत्तर की जाच करो।

जांच :

5672 की एक अंकीय संख्या = 2

3758 की एक अंकीय संख्या = 5

1914 की एक अंकीय संख्या = 6

6+5=11, 1+1=2

या

2 = 9 + 2 = 11 - 5 = 6

अतः उत्तर शुद्ध है।

2.4 गुणा की जांच

2.4.1. 573 को 365 से गुणा करो और उत्तर की जाच करो।

जांच :

573 की एक अंकीय संख्या = 6

365 की एक अंकीय संख्या = 5

$$6 \times 5 = 30, 3+0 = 3$$

209145 की एक अंकीय संख्या = 3

अतः गुणनफल शुद्ध है।

2.4.2 7.46 को 576 से गुणा करो और उत्तर की जाच करो

क्योंकि प्रश्न में 576 की एक संख्या 9 होती है अतः उत्तर की भी एक अंकीय संख्या 9 होनी चाहिए।

क्योंकि 429696 की एक अंकीय संख्या भी 9 है अतः गुणनफल शुद्ध है।

2.5 भाग की जांच

2.5.1 5634 को 52 से भाग दो और उत्तर की जाच करो

जांच

5634 की एक संख्या = 9

108 की एक संख्या = 9

52 की एक संख्या = 7

शेष 18 की एक संख्या = 9

. भाजक × भागफल+शे ष = भाज्य

अतः 7 × 9+9 = 63+9 = 72

72 की एक संख्या = 9 = 5634 की एक अं कीय सं ख्या। अतः उत्तर शु छ है। .5.2 7563 को 64 से भाग दो और उत्तर की जांच करो

64) 7563 (118

 $\begin{array}{r}
 64 \\
 \hline
 116 \\
 \hline
 64 \\
 \hline
 523 \\
 \end{array}$

512

7563 की एक संख्या = 3

64 की एक संख्या = 1

118 की एक संख्या = 1

11 की एक संख्या = 2

और 1× 1+2=3; 7563 की एक अं कीय सं ख्य⊨ 3, अतः उत्तर शु द्ध है ।

अध्याय तीसरा

3 योग

एक ही प्रश्न को कई विधियों से किया जा सकता है।

3.1 बड़े अंकों को विनकुलम् की सहायता से 5 से छोटे बनाकर साधारण रीति से

$$579 = 142T$$
 $678 132Z$
 $765 1245$
 $684 1324$
योग = 3306
विनकुलम् हटाने पर = 2706
प्रक्रिया : पहला स्तम्भ = $(-1)+(-2)+5+4=6$
दूसरा स्तम्भ = $(-2)+(-2)+(-4)+(-2)=-10$
अतः 0 लगा और हासिल = -1
तीसरा स्तम्भ = $(-1)+(-4)+(-3)+(-2)+(-3)$
= -13
अतः $\overline{3}$ लगा और हासिल = -1
चौथा स्तम्भ = $-1+1+1+1+1=3$
वैदिक जांच
 $1+4+2+1=6$
 $6+1+3+2+2=12$
 $12+1+2+4+5=12=1+2=3$
 $3\overline{3}06$ में $(3,6)$ को छोड़ कर शेष अंक = $\overline{3}$
अतः उत्तर शुद्ध है ।

3.2 वैदिक शुद्ध सूत्र.का साधारण प्रयोग

जब दो अंकों का जोड़ 10 या 10 से बड़ा हो जाए तो उनमें से एक अंक पर शुद्ध बिन्दु (.) लगाया जाता है और जोड़ के इकार्ड के अंको को फिर अगले अंक में जोड़ा जाता है। इस प्रकार एक स्तम्भ की शुद्ध संख्या को अगले स्तम्भ के लिए हासिल मान लिया जाता है।

प्रक्रिया : पहला स्तम्भ 9+8 = 17, 8 पर शुद्ध लगा

7+5=12 अतः 5 पर भी शुद्ध लगा 2+4=6

दूसरा स्तम्भ = पहले स्तम्भ की शुद्ध संख्या = 2

अतः 2+7+7 = 16 अतः 7 पर शुद्ध लगा । 6+6 = 12 अतः 6 पर शुद्ध लगा 2+8

= 10 अतः 8 पर शुद्ध लगा ।

तीसरा स्तम्भ = दूसरे स्तम्भ की शुद्ध संख्या = 3

अतः 3+5+6 = 14 अतः 6 पर शुद्ध लगा

4+7 = 11 अतः 7 पर शुद्ध लगा 1+6 = 7

और तीसरे स्तम्भ की शुद्ध संख्या = 2

अतः उत्तर = 2706

3.3 पूर्ण अंकों का वैदिक शुद्ध (.) के साथ प्रयोग ।

6 का पूर्ण अंक = 10-6 = 4

7 का पूर्ण अंक = 10-7 = 3

8 का पूर्ण अंक = 10-8=2

विधि : यदि दो अंकों का जोड़ 10 से बड़ा हो तो छोटे अंक में से बड़े अंक का पूर्ण अंक घटाया जाता है । और एक अंक पर शुद्ध लगा दिया जाता है । शेष की अगले अंक के साथ ही यही प्रक्रिया की जाती है । यदि दो अंकों का जोड़ 10 हो तो केवल एक अंक पर शुद्ध ही लगाया जाता है और यदि 10 से जोड़ छोटा हो तो फिर तीसरे अंक के साथ यही प्रक्रिया की जाती है ।

पहला स्तम्भ = 9-8 का पूर्णांक = 9-2 = 7

8 पर शुद्ध लगा 5-7 का पूर्ण अंक = 5-3=2, 5 पर शुद्ध लगा

2+4 = 6 अतः उत्तर का पहला अंक = 6

दूसरा स्तम्भ = पहले स्तम्भ के शुद्ध = 2+7 = 9

9-7 का पूर्व क = 9-3 = 6, 7 पर शुद्ध लगा

6-6 का पूर्वा कं = 6-4 = 2, 6 पर शुद्ध लगा

2+8 = 10 अतः 8 पर शुद्ध लगा और उत्तर का दूसरा अंक 0 आया

तीसरा स्तम्भ = दूसरे स्तम्भ के शुद्ध 3+5 = 8

8-6 का पूर्व क = 8-4 = 4, 6 पर शुद्ध लगा

4-7 का पूर्व क = 4-3 = 1, 7 पर शुद्ध लगा।

1+6 = 7 अतः उत्तर का तीसरा अंक 7 आया

तीसरे स्तम्भ के शुद्ध = 2 अतः चौथा अंक 2 हुआ

3.4 कुछ अंकों को विनकुलम् में बदल कर और कुछ अंकों को साधारण ही रहने देने पर

$$579 = 142T$$
 $678 = 1322$
 $765 = 845$
 $684 = 684$

2706

पहला स्तम्भ =
$$(-1)+(-2)+5+4=6$$

दूसरा स्तम्भ = $(-2)+(-2)+(-4)=8=0$
तीसरा स्तम्भ = $(-4)+(-3)+8+6=7$

चौथा स्तम्भ = 1+1 = 2

नोटः जैसा कि पहले अध्याय में एक ही संख्या को कई प्रकार से लिखने की विधि वर्ताई गई है। छोटे विद्यार्थी योग के प्रश्नों की संख्याओं को कई प्रकार से लिखकर एक ही प्रश्न को खेल खेल में कई प्रकार से कर सकते हैं। इससे उनकी मस्तिष्क की उन्नित होगी। बड़े प्रश्नों में 3.2 और 3.3 की विधियों का ही प्रयोग कियाजाता है। 3.2 में 18 से बड़ा और 3.3 में 10 से बड़ा जोड़ नहीं करना पड़ता।

चतुर्थ अध्याय

4 व्यवकलन

वैदिक विधि से व्यवकलन में परावर्त्य योज्येत अर्थात् चिन्ह बदल कर जोड़ना सूत्र का प्रयोग। बीज गणित में व्यवकलन में इसी विधि का प्रयोग होता है। इसमें दूसरी विधि (शुद्धं) के प्रयोग की है।

पहला स्तम्भ = 4 + (-6) = -2

दूसरा स्तम्भ = 4+(-2) = 2

तीसरा स्तम्भ =2+(-7) = -5

चौथा स्तम्भ = 6:3 = 3

3 5 2 2 में विनकुलम् हटाने पर

शेष = 2518

वैदिक जांच :- 6244 का एक अंक = 7 3726 का एक अंक = 9 2518 का एक अंक = 7 9+7 = 16, 1+6 = 7

9+7 = 16, 1+6 = 7

अतः उत्तर शुद्ध है।

4.2 शुद्धं का प्रयोग

यदि किसी बड़े अंक से छोटा अंक घटाना हो तो साधारण रीति से घटाया जाता है पर यदि छोटे अंक से बड़ा अंक घटाना हो तो छोटे अंक में बड़े अंक का पूर्त्रांक जोड़ा जाताहै। जोड़ उत्तर में लिखा जाता है और अगले स्तम्भ के निचले अंक पर शुद्ध लगायाजाता है। और इस अंक को फिर 1 अधिक माना जाता है।

प्रक्रिया : पहला स्तम्भ = 4+ 6 का पूर्व्यं क = 4+4 = 8 दूसरा स्तम्भ = 4-3 = 1 तीसरा स्तम्भ = 2+7 का पूर्व्यं क = 2+3 = 5 चौथा स्तम्भ = 6-4 = 2

नोट:- योग में पूर्क्ष क को घटाया जाता है और व्यवकलन में पूर्क्ष क को जोड़ा जाता है।

4.3 योग और व्यवकलन के मिश्रित प्रश्न वैदिक विधि से ऐसे प्रश्नों का हल सीधे ही आ जाता है जब कि साधारणतया हम पहले धनात्मक संख्याओं को जोड़ते हैं , फिर ऋणात्मक संख्याओं को जोड़ते हैं । फिर दोनों योगफलों का अन्तर करते हैं ।

4.3.1 सरल करोः 3754-6587+8476-3622 = 2021 प्रक्रिया :

पहला चरण : इकाई के अंकों में घनात्मक संख्यायों के अंकों का जोड़ा = 4+6 = 10 ऋणात्मक संख्याओं में इकाई के अंकों का जोड़ = 7+2 = 9 और 10-9 = 1 अतः उत्तर का इकाई का अंक = 1

दूसरा चरण : धनात्मक संख्याओं में दहाई के अंकों का जोड़ = 5+7 = 12 और ऋणात्मक संख्यायों में दहाई के अंकों का जोड़ = 8+2 = 10 और 12-10 = 2 अतः उत्तर का दहाई का अंक = 2

तीसरा चरण : धनात्मक संख्यायों में सैंकड़े के अंकों का जोड़ = 7+4 = 11 और ऋणात्मक संख्यायों में सैंकड़े के अंकों का जोड़ 5+6 = 11 और 11-11 = 0 अतः उत्तर का तीसरा अंक = 0 अतः उत्तर का तीसरा अंक = 0

चौथा चरण : धनात्मक संख्यायों मं हजार के अंकों का जोड़ = 3+8=11 और ऋणात्मक संख्यायों में हजार के अंकों का जोड़ 6+3=9 और 11-9=2 अतः उत्तर का चौथा अंक =2

वैदिक जांच :

धनात्मक संख्यायों का एक अंक बनाते हुए 3+7=10, 1+0=1, (5,4) को छोड़ दिया । 1+8 = 9, 9 को छोड़ दिया।

$$4+7=11$$
, $1+1=2$, $2+6=8$

ऋणात्मक संख्यायों की एक अंकीय संख्या बनाते हुए।

$$6+5 = 11$$
, $1+1 = 2$, $2+8 = 10$, $1+0 = 1$, $1+7 = 8$, $8+3 = 11$, $1+1 = 10$

$$2, 2+6 = 8, 8+2 = 10, 1+2 = 3$$

और 8-3 = 5

शेष 2021 की एक अंकीय संख्या = 2+2+1=5

अतः उत्तर शुद्ध है

4.3.2 एक और उदाहरण

सरल करो : 5364-7685+9523-3325

=4T23=3877

पहला चरण : 4-5 = -1, -1+3 = 2-5 = -3

दूसरा चरण: 6-8 = -2, -2+2 = 0, 0-2 = -2

तीसरा चरण: 3-6 = -3, -3+5 = 2, 2-3 = -1

चौथा चरण : 5-7 = -2, -2+9 = 7, 7-3 = 4

4 T 2 3 = 3877 (बिनफुलम् हटाकर)

वैदिक जांच:

धनात्मक संख्यायों का एक अंक = (5,4) और (3,6) को छोड़ दिया, फिर 9 को भी छोड़ दिया और 5+2+3 = 10 इसे 10 ही रहने दिया

ऋणात्मक संख्यायों का एक अंक = 7+6=13, 1+3=4, 4+8=12, 1+2=3, 3+5=8, 8+3=11, 1+1=2, 2+3=5, 5+2=7, 7+5=12, 1+2=310-3=7

3877 का एक अंक = 7 अतः उत्तर शुद्ध है ।

अध्याय पंचम

5 गुणा

वैदों में गुणा को आधार विधि, ऊर्ध्वतिर्यंक् म्याम् सूत्र के प्रयोग की दिधि तथा निखलं सूत्र द्वारा गुणा की कई विधियाँ हैं। जिनके द्वारा गुणा बहुत शीघ्र और सरलता से हो जाती है।

- 5.1 आधार विधि: इसमें 10, 100, 1000 आदि को आधार मान कर गुणा की जाती है इनमें यावदूनं और यावदिधकं सूत्रों का प्रयोग होता है। आधार से अधिकता या न्यूनता को संख्या के ऊपर लिख लिया जाता है।
- 5.1.1 (क) 10 को आधार मान कर गुणा के कुछ उदाहरण । इससे 10× 10 के ऊपर के पहाड़ों को रटने की आवश्यकता नहीं रहती और उतने ही समय में गुणनफल लिखा जा सकता है।
 - (i) $12^{+2} \times 13^{+3} = 13 + 2$ या 12 + 3/6 = 156पहला भाग = अधिकताओं 2 और 3 का गुणनफल = 6

दूसरा भाग = एक संख्या की अधिकता को दूसरी संख्या में जोड़ते हुए ब्रे≪12+3 या 13+2=15

(ii) $14^4 \times 13^{+3} = 13 + 4$ या $14 + 3/_1^2 = 17/_1^2 = 182$ पहला भाग : अधिकतायों का गुणनफल = $4 \times 3 = 12$

क्योंकि आधार दस में एक शून्य होता है अतः पहले भग में एक ही अंक रहेगा और दूसरे को हासिल माना जायेगा।

दूसरा भाग = एक संख्या की अधिकता को दूसरी में जोड़ते हैं

या
$$\frac{14+3}{13+4} = 17$$

तीसरा चरण, 17+1 = 18

अतः गुणन फल = 182

(iii)
$$15^{+5} \times 17^{+7} = 17 + 5$$
 $\forall 15 + 7 /_3^5 = 22 /_3^5 = 22 + 3 /_5 = 255$

(iv)
$$9^{-1} \times 8^{-2} = 72$$

पहला पग = $-1 \times -2 = 2$

दूसरा पग 9-2 या 8-1 = 7

$$(v) 8 \times 7 = 56$$

पहला पग =
$$-2 \times -3 = 6$$

दूसरा पग = 8-3 या 7-2 = 5

5.1.1 (ख) 100 के आधार के उदाहरण

(i) $102^{+2} \times 103^{+3} = 10506$ पहला पग $2 \times 3 = 06$

(क्योंकि यहाँ आधार 100 है अतः उत्तर में पहले भाग में दो अंक अर्थात् 06 आएगा) दूसरा पग = एक संख्या की अधिकता को दूसरी संख्या में जोड़ते हुए

(ii)
$$105^{+5} \times 107^{+7} = 11235$$

पहला पग 5 ×7 = 35

दूसरा पग 105+7 या 107+5 = 112

(iii)
$$111 \times 112 = 123/_1$$
 32

पहला पग = 11 × 12 = 132

दूसरा पग 111+12 या 112+11 = 123

(iv)
$$98^{-2} \times 97^{-3} = 9506$$

$$(v) 89^{-11} \times 94^{-6} = 8366$$

(vi)
$$97^{-3} \times 104^{+4} = 101 \text{ T2} = 10088$$

प्रथम भाग = -3 ×+4 = -12

दूसरा भाग = 97+4 या 104-3 - 101

1000 के आधार के उदाहरण

5.1.1 (ग) क्योंकि हजार में तीन शून्यहोते हैं अतः यहाँ गुणा के प्रथम भाग में तीन अंक आएंगे

(i)
$$1002 \times 1003 = 1005006$$

प्रथम भाग = $2 \times 3 = 006$

दूसरा भाग = 1002+3 या 1003+2 = 1005

(ii) $1005 \times 1007 = 1012035$

प्रथम भाग = $5 \times 7 = 35$

दूसरा भाग = 1005+7 या 1007+5 = 1012

(iii) $1012 \times 1013 = 1025156$

प्रथम भाग = 12 × 13 = 156

दूसरा भाग = 1012+13 या 1013+12 = 1025

(iv) $994^{-6} \times 988^{-12} = 982072$

पहला भाग = $-6 \times -12 = 072$

दूसरा भाग = 994-12 या 988-6 = 982

(v) $989^{-11} \times 1012^{+12} = 1001 \text{ T } 32 = 1000868$

पहला भाग = $-11 \times 12 = -132$

दूसरा भाग = 989+12 या 1012-11 = 1001

5.1.1 (घ) तीन एक ही आधार वाली संख्यायों की इकट्ठी गुणा

विधि : उत्तर का पहला भाग सभी अधिकताओं या न्यूनताओं का गुणनफल होता है दूसरा भाग इन दो दो अधिकतायों या न्यूनताओं के गुणनफल काजोड़ होता है और तीसरा भाग किसी एक संख्या में दूसरी दो अधिकतायों या न्यूनतायों को जोड़ कर आता है।

5.1.1 (घ) (i) 10 के आधार से तीन संख्याओं का इकट्ठा गुणनफल के उदाहरण

(i) $12^{+2} \times 13^{+3} \times 14^{+4} = 19/{_2}^{6}/{_2}^{4} = 2184$ पहला भाग = $2 \times 3 \times 4 = 24$

दूसरा भाग =
$$2 \times 3 + 3 \times 4 + 2 \times 4 = 26$$

तीसरा भाग = 12+3+4 या 13+2+4 या 14+2+3 = 19

क्योंकि आधार 10 है इसलिए पहलेदो भागों में एक एक अंक रहेगा और दूसरा अंक अगले भाग में जोड़ा जायेगा।

(ii)
$$9^{-1} \times 8^{-2} \times 12^{+2} = 9 \, 4 \, 4 = 864$$

पहला भाग = $-1 \times -2 \times 2 = 4$

$$= 2-2-4 = -4$$

तीसरा भाग = 9-2+2 या 8-1+2 या 12-1-2 = 9

5.1.1 (घ) (ii) 100 के आधार की तीन संख्याओं का इकट्ठा गुणनफल

यहाँ क्योंकि 100 में दो शून्य होते हैं अतः पहले दो भागों में दो ही अंक रहते हैं

प्रथम भाग = $5 \times 7 \times 3 = 105$

दूसरा भाग =
$$5 \times 7 + 7 \times 3 + 5 \times 3 = 71$$

तीसरा भाग = 105 + 7 + 3 = 115

(ii)
$$97^{-3} \times 96^{-4} \times 94^{-6} = 875472 = 875328$$

पहला भाग = $-3 \times -4 \times -6 = -72$

दूसरा भाग =
$$(-3) \times (-4) + (-4) \times (-6) + (-6) \times (-3)$$

$$= 12 + 24 + 18 = 54$$

तीसरा भाग = 97-4-6 = 87

(iii)
$$97^{-3} \times 103^{+3} \times 104^{+4} = 1040936 = 1039064$$

प्रथम भाग = $-3 \times 3 \times 4 = -36$

दूसरा भाग =
$$-3 \times 3 + 3 \times 4 + (-3) \times 4$$

तीसरा भाग = 97+3+4 = 104

5.1.1 (घ) (iii) 1000 आधार को तीन तीन संख्यायों के इकट्ठे गुणनफल के उदाहरण

पहला भाग = 2×3×4 = 024

दूसरा भाग = $2 \times 3 + 3 \times 4 + 2 \times 4 = 026$

तीसरा भाग = 1002+3+4 = 1009

(ii)
$$997^{-3} \times 998^{-2} \times 999^{-1} = 994011007 = 994010994$$

प्रथम भाग = $-3 \times -2 \times -1 = -006$

दूसरा भाग = $-3 \times -2 + -2 \times -1 + 7 \times -3$

=6+2+3=011

तीसरा भाग = 997-2-1 = 994

(iii)
$$997^{-3} \times 1004^{+4} \times 1004^{+4}$$

प्रथम भाग = $-3 \times 4 \times 4 = -048$

दूसरा भाग = $-3 \times 4 + 4 \times 4 + (-3) \times 4 = -008$

तीसरा भाग = 997+4+4 = 1005

गुणनफल = $100500\overline{8}0\overline{4}\overline{8} = 1004991952$

5.1.1(इ) चार चार संख्याओं की इकट्ठी गुणा जब आधार 10, 1000 या 1000 आदि हों।

विधि : गुणनफल के प्रथम भाग में सभी न्यूनताओं या अधिकताओं का गुणनफल होता है। दूसरा भाग तीन तीन अधिकताओं या न्यूनताओं के गुणनफल का जोड़ होता है। तीसरा भाग दो दो दो के गुणनफल का जोड़ होता है। और चौथा भाग किसी एक संख्या में अन्य तीन संख्याओं की अधिकताओं या न्यूनताओं को जोड़ कर आता है। पहले तीन भागों में अंकों की संख्या आधर के शून्यों की संख्या के अनुसार होती है।

(i)
$$11 \times 12 \times 13 \times 14 = 20/3^5/5^0/2^4 = 24024$$

पहला भाग = $1 \times 2 \times 3 \times 4 = 24$

दूसरा भाग = $1 \times 2 \times 3 + 1 \times 2 \times 4 + 1 \times 3 \times 4 + 2 \times 3 \times 4$

= 6+8+12+24 = 50

तीसरा भाग = $1 \times 2 + 1 \times 3 + 1 \times 4 + 2 \times 3 + 2 \times 4 + 3 \times 4$

=2+3+4+6+8+12=35

चौथा भाग = 11+2+3+4 = 20

1
 (ii) $102^{+2} \times 98^{-2} \times 97^{-3} \times 104^{+4}$

पहला भाग = $2 \times -2 \times -3 \times 4 = 48$

दूसरा भाग = $2 \times -2 \times -3 + 2 \times -2 \times 4 + 2 \times -3 \times 4 + -2 \times -3 \times 4$

= 12-16-24+24 = 004

तीसरा भाग = $2 \times -2 + 2 \times -3 + 2 \times 4 + -2 \times -3 + -2 \times 4$

$$+(-3) \times 4 = -4-6+8+6-8-12 = 0$$
 T6

चौथा भाग = 1002-2-3+4 = 1001

अतः गुणनफल = 1001016004048

=1000983996048

- 5.1.2 कई संख्याएं ऐसी होती हैं जो 10, 100 या 1000 आदि आधारों के निकट की नहीं होती।
- 5.1.2 (क) जब वे एकही दशक की होती हैं या एक ही दशक के निकट की होती हैं । यहां 10 को ही आधार लिया जाता है ।

उदाहरण (i) 42⁺² × 43⁺³ यहाँ आधार = 10, गुणांक =4

दाईं ओर का पहला भाग अधिकताओं को गुणा करके आता है और दूसरा भाग किसी संख्या में दूसरे की अधिकता को जोड़को गुणक से गुणा करने पर आता है।

अतः पहला भाग = 2 ×3 = 6

दूसरा भाग = (42+3) 4 × या (43+2) × 4 = 45× 4 = 180

अतः गुणनफल = 1806

(ii) 64⁺⁴×63⁺³ आधार = 10, गु णक= 6

क्योंकि आधार 10 है अतः पहले भाग में एक ही अं क आएगा।

अतः पहला भाग = 4 × 3 = 12

दूसरा भाग = $(64+3) \times 6 = 67 \times 6 = 402$

और गुणनफल = 402/1² = 4032

(iii) 124⁺⁴ × 125⁺⁵ आधार = 10, गु णक = 12

पहला भाग = $5 \times 4 = 20$

दूसरा भाग = $(124+5) \times 12 = 129 \times 12 = 1548$

5.1.2(ख) जब दो संख्याएं किसी एक दशक के निकट की हों दोनों न्यूनता लिए हों या एक न्यून एक अधिक हो पहला भाग न्यूनताओं या एक न्यूनता और दूसरी अधिकता का गुणनफल होता है तथा दूसरा भाग किसी एक संख्या में दूसरी की न्यूनता या अधिकता को जोड़ कर गुणक से गुणा करके आता है।

उदाहरण (i)
$$58^{-2} \times 57^{-3}$$
 आधार = 10 , गु णक= 6

क्योंकि दोनों 60 के निकट की हैं,

पहला भाग = $-2 \times -3 = 6$

दूसरा भाग = $(58-3) \times 6 = 55 \times 6 = 330$

अतः गुणनफल = 3306

(ii) 66 × 67 दोनों 70 के निकट की हैं अतः 66⁻⁴ × 67⁻³

आधार =10,गुणांक = 7

पहला भाग = $-4 \times -3 = 12$

दूसरा भाग = $(66-3) \times 7 = 63 \times 7 = 441$

अतः गुणनफल = 441/1² = 4422

(iii) $48^{-2} \times 53^{+3}$ दोनों संख्याएं 50 के निकट हैं

अतः आधार = 10 तथा गुणक = 5

प्रथम भाग = $-2 \times 3 = -6$

दूसरा भाग = $(48+3) \times 5 = 51 \times 5 = 255$

अतः गुणनफल = 2556 = 2544

(iv) 47 × 63 इनको 50 के निकट मान कर भी गुणा कर सकते हैं और 60 के निकट मान कर भी 50 के निकट मानते हुए

$$47^{-3} \times 63^{+13}$$
आधार = 10, गुणक = 5

अतः गुणनफल का पहला भाग = -3 ×13 = -39

और दूसरा भाग = $(47+13) \times 5 = 60 \times 5 = 300$

अतः गुणनफल =300/3 ⁹ = 303 9 = 2961

60 के निकट मानते हुए

$$47^{-13} \times 63^{+3}$$
 आधार = 10 गुणक = 6
पहला भाग = -13 × 3 = -39
दूसरा भाग = $(47+3) \times 6 = 300$
गुणनफल = $300/\overline{3}^{\,\overline{9}} = 30\overline{3}\overline{9} = 2961$

5.1.2 (ग) जब दो संख्याएं किसी भी एक दशक के निकट की न हों ऐसी अवस्था में गुणा की क्रिया दशक संख्यायों के अनुपातों से की जाती है।

विधि: आधर 10 ही माना जाता है। गुणनफल का पहला भग इकाई के अंकों के गुणनफल से बनता है तथा दूसरा किसी एक संख्या तथा दूसरी की दशक संख्या के गुणनफल और दूसरी के इकाई के अंक और पहली की दशक संख्या के गुणनफल के योगफल के समान होता है।

सुविधा के लिये संख्याओं को इस प्रकार लिखना सरल रहता है जैसे 64 = 64+4

$$78 = 78+8, 87 = 87+7$$
 इत्यादि

$$95 \times 67 = 95 + 5$$

67+7

गुणनफल का पहला भाग $= 5 \times 7 = 35$

दूसरा भाग = $95 \times 6 + 9 \times 7$

= 570 + 63 = 633

या = $67 \times 9 + 5 \times 6$

=603+30=633

अतः गुणनफल = 633/3³ = 6365

(ii) $72 \times 35 = 72 + 2$

35+5

पहला भाग $= 2 \times 5 = 10$

दूसरा भाग = $72 \times 3 + 7 \times 5$

= .216 + 35 = 251

या $= 35 \times 7 + 2 \times 3$

= 245+6 = 251

अतः गुणनफल = 251/1⁰ = 2520

(iii) $128 \times 57 = 128 + 8$

पहला भाग =
$$8 \times 7 = 56$$

दूसरा भाग =
$$128 \times 5 + 12 \times 7$$

$$=640+84=724$$

या =
$$57 \times 12 + 8 \times 5$$

$$=684+40=724$$

(iii)
$$87 \times 68 = 87-3$$

$$= 68-2$$

दूसरा भाग =
$$87 \times 7 + (9 \times -2)$$

$$=609-18=591$$

या
$$= 68 \times 9 + (7 \times -3)$$

$$=612-21=591$$

अतः गुणनफल = 5916

(v)
$$72 \times 57 = 72 + 2$$

$$=57-3$$

पहला भाग = 2 ×-3= -6

दूसरा भाग = $72 \times 6 + 7 \times -3$

= 432-21 = 411

या = $57 \times 7 + 2 \times 6$

=399+12=411

अतः गुणनफल = 4116 = 4104

5.1.3 जब दो संख्याएं 10, 100 आदि आधारों वाली तो होती हैं पर वे एक ही आधार वाली नहीं होती.ऐसी अवस्था में आधारों के अनुपात की विधिका प्रयोग होता है।

विधि : पहले संख्यायों को संख्या + आधार की अधिकता की विधि से लिखा जाता है । जैसे

112 = 112 + 12

1009 = 1009+9 इत्यादि । दूसरे चरण में बड़े आधार और छोटे आधार का अनुपात निकाला जाता है।

गुणनफल का पहला भाग दोनों अधिकताओं के गुणनफल के समान होता है पर उसमें उतने ही अंक रखे जाते हैं जितने छोटे आधार के शून्य होते हैं तथा बाई ओर के अधिक अंको को दूसरे भाग में जोड़ दिया जाता है। दूसरे भाग के लिए छोटे आधार वाली संख्या को आधारानुपात से गुणा करके उसमें बड़ी संख्या की अधिकता जोड़ दी जाती है या छोटी संख्या की अधिकता को आधारानुपात से गुणा करके उसमें बड़ी संख्या की संख्या जोड़ दी जाती है।

```
उदाहरण (i)
                    137×15 बड़ा आधार = 100
                                 छोटा आधार = 10
                  = 137 + 37
                                   आधारानुपात = \frac{100}{10} = 10
                     15+5
   गुणनफल की पहला भाग = 37 \times 5 = 185
   दूसरा भाग
                       = 15 \times 10 + 37 = 187
   या
                       = 5 \times 10 + 137 = 187
   अतः गुणनफल = 187/18<sup>-5</sup> = 2055
 (ii) 1012×108
                       बडा आधार= 1000
                        छोटा आधार = 100
   = 1012 + 12
                        आधारानुपात = \frac{1000}{100} = 10
     108+8
   गुणनफल
                = 108 \times 10 + 12
                                  /12 \times 8
                 या 8×10+1012/
                 = 109296
 (iii) 10015 × 1014 बड़ा आधार= 10000
    = 10015+15
                       छोटा आधार = 1000
                       आधारानुपात =\frac{10000}{1000}=10
      1014+14
  गुणनफल = 1014 × 10+15
                             / 15×14
           14×10+10015/
           =10155210
(iv) 1085 \times 112
                बड़ा आधार = 1000
 = 1085 + 85
                     छोटा आधार = 100
```

आधारानुपात = 1000/100 = 10

112+12

5.1.4 जब आधार 100, 1000 आदि न होकर उपाधार 50, 500 आदि हों । दोनों संख्याएं एक ही उपाधार वाली होनी चाहिं । ऐसी संख्याओं के गुणा की दो विधियां हैं ।

प्रथम विधि = प्रथम चरण में आधार तथा उपाधार लिखकर, उपाधार/ आधार = उपगुणाक लिया जाता है दूसरे चरण में संख्याओं को संख्या + उपाधार से अधिकता के रूप में लिखा जाता है।

गुणनफल का पहला भाग अधिकताओं को गुणा करके आता है। पर अंकों की संख्या आधार के शून्यों के बराबर ही रखी जाती है। दूसरा भाग एक संख्या में दूसरी की अधिकता जोड़ कर उसे उपगुणक से गुणा करने पर आता है।

दूसरी विधि : इस के द्वारा 50, 500 के आधार 10, 100 ही लिए जाते हैं 5 को गुणक माना जाता है।

यदि संख्याएं तीन हों तो पहला भाग प्रथम विधि से अधिकताओं का गुणनफल होता है। दूसरा भाग दो दो अधिकताओं के गुणनफल के योगफल को उपगुणक से गुणा करके आता है। और तीसरा भाग किसी एक संख्या में शेष दो की अधिकताएं जोड़कर उसे उपगुणक के वर्ग से गुणा करने से आता है।

और दूसरी विधिःसे पहला भाग तो प्रंथम विधि के समान ही आता है पर अंकों की संख्या यहाँ भी आधार के शून्यों के समान ही होती है।

दूसरा भाग दो दो अधिकताओं के गुणनफल के जोड़ को गुणक से गुणा करने पर आता है। अंकों की संख्या फिर आधार के शून्यों के समान होती है, तथा तीसरा भाग किसी एक संख्या में दूसरी दो अधिकताएं जोड़ कर उसे (गुणाक)² से गुणा करने पर आता है।

52+2

53+3

प्रथम विधि द्वारा उपाधार = 50

आधार = 100

गुणानफल = $\frac{52+3}{2}$ या $\frac{3}{2}$ या $\frac{53+2}{2}$ / 3×2

$$= \frac{55}{2} / 06 = 27.5 / 06$$
$$= 27.56$$

दूसरी विधि से आधार = 10

गुणक = 5

गुणनफल का प्रथम भाग = 2 × 3

दूसरा भाग = $(52+3) \times 5$ या $(53+2) \times 5$

= 275

अतः गुणनफल = 2756

(ii)
$$48^{-2} \times 52^{+2}$$

प्रथम विधि से आधार = 100

उपाधार =
$$50$$

उपगुणाक = $\frac{50}{100} = \frac{1}{2}$

गुणनफल =
$$\frac{48+2}{2}$$
 या $\frac{52-2}{2}/2 \times -2$
= $2504 = 2496$

दूसरी विधि से आधार = 10, गुणक = 5

गुणनफल =
$$(48+2) \times 5$$
 या $(52-2) \times 5/2 \times -2$
= $50 \times 5/4$

$$= 2504 = 2496$$

(iii) 502 × 503 प्रथम विधि से आधर = 1000

उपाधार =
$$500$$

उपगुणक = $\frac{500}{1000} = \frac{1}{2}$

गुणनफल =
$$\frac{502+3}{2}$$
 या $\frac{503+2}{2}$ /2 × 3 = 252.5/006 = 252506

दूसरी विधि से आधार = 100, तथा गुणक = 5

गुणनफल =
$$505 \times 5 /2 \times 3$$

$$= 252506$$
 (iv) $502^{+2} \times 498^{-2}$

प्रथम विधि से आधार = 1000, उपाधार = 500

उपगुणक =
$$\frac{500}{1000} = \frac{1}{2}$$

गुणनफल
$$=\frac{(502-2)}{2}$$
 या $\frac{498+2}{2}/2 \times -2$
= 250/004

$$=250004 = 249996$$

(v)
$$252^{+2} \times 253^{+3}$$

उपगुणक
$$=\frac{250}{1000}=\frac{1}{4}$$

गुणनफल =
$$\frac{252+3}{4}$$
 या $\frac{253+2}{4}$ /2×3 = $\frac{255}{4}$ /006 = 63.75/006 = 63756

दूसरी विधि से आधार = 10, गुणक = 25

$$= 255 \times 25/6$$

$$=63756$$
 (vi) $248^{-2} \times 253^{+3}$

प्रथम विधि से गुणनफल =
$$\frac{248+3}{4}$$
/ -2 × 3

$$=\frac{251}{4}/006$$

$$=62756 = 62744$$

दूसरी विधि से गुणनफल = 251 x 25/6

(vii) $52 \times 53 \times 54$

प्रथम विधि से आधार = 100, उपाधार = 50, उपगुणक = $\frac{50}{100}$ = $\frac{1}{2}$

बीच का भाग =
$$\frac{2 \times 3 + 3 \times 4 + 4 \times 2}{2} = \frac{26}{2} = 13$$

अन्तिम भाग = =
$$\frac{52+3+4}{4}$$
 = $\frac{59}{4}$ = 14.75

दूसरी विधि से प्रथम भाग =
$$2 \times 3 \times 4 = 24$$

$$= 148824$$
(viii) $52^{+2} \times 48^{-2} \times 53^{+3}$

प्रथम विधि से पहला भाग
$$= 2 \times -2 \times 3 = -12$$

बीच का भाग =
$$\frac{(2 \times -2 + -2 \times 3 + 2 \times 3)}{2} = \frac{(0 \ \overline{4})}{2} = 0\overline{2}$$

अन्तिम भाग =
$$\frac{(52-2+3)}{4} = \frac{53}{4} = 13.25$$

$$= 1323T2 = 132288$$

दूसरी विधि से

प्रथम भाग =
$$2 \times -2 \times 3 = -12$$

द सरा भाग =
$$-4 \times 5 = -20$$

$$= 1323T2$$

$$= 132288$$

(ix)
$$503 \times 504 \times 505$$

उपगुणक
$$=\frac{500}{1000}=\frac{1}{2}$$

गुणनफल =
$$\frac{503 + 4 + 5}{4} \frac{3 \times 4 + 3 \times 5 + 4 \times 5}{2} \frac{3 \times 4 \times 5}{2}$$
= $\frac{512}{4} \frac{/047}{2} / 060$
= $128/023.5/060$
= 128023560

दूसरी विषि से आधार = 100 , गुणक = 5
गुणनफल = $512 \times 25/47 \times 5/3 \times 4 \times 5$
= $12800/2$ $\frac{35}{60}$
= 128023560
(x) $498^{-2} \times 497^{-3} \times 495^{-5}$
प्रथम विषि से गुणनफल

$$\frac{498 - 3 - 5}{4} \frac{/-2 \times -3 + -3 \times -5 + -2 \times -5}{2} /-2 \times -3 \times -5$$
= $\frac{490}{4} \frac{/031}{2} / 030$
= $122.5 / 015.5 / 030$
= 122515530
= 122515470
दूसरी विषि से आधार
= 100 , गुणांक = 5
गुणनफल = $490 \times 25/31 \times 5/-2 \times -3 \times -5$
= $12250/1^{55}/30$
= 122515530
= 22515470
(xi) $248^{-2} \times 252^{+2} \times 253^{+3}$
यह केवल प्रथम विषि से हो सकता है
यहाँ आधार = 1000 , जुणांक = 250
जपगुणक = $\frac{250}{16} - \frac{1}{4}$
गुणनफल = $\frac{250}{16} - \frac{1}{4}$

$$=\frac{253}{16}/\frac{4}{4}/012$$

$$=15.8125/00T/0T2$$

$$=158115T2$$

$$=15811488$$
(xii) $32x33x32$
यह दूसरी विषि से हो सकता है
आधार = 10, गुणक = 3
गुणनफल = $(32+3+2)x3^2/(2X3+2x2+2x2)x3/2x3x2$

$$=37x9/16x3/12$$

$$=333/4^8/1^2$$

$$=33792$$
दूसरी विषि के ही कुछ और उदाहरण
(xiii) $32^{+2}x28^{-2}x33^{+3}$
आधार = 10, गुणक = 3
गुणनफल = $9(32-2+3)/3(2x-2+-2x3+3x2)/2x-2x2$

$$=9x33/3x-4/-12$$

$$=297/\frac{7}{2}/\frac{7}{2}$$

$$=2963 2 = 29568$$
(xiv) $302^{+2}x298^{-2}x303^{+3}$
आधार = 100 , गुणक = 3
गुणनफल = $3^2(302-2+3)/3(2x-2+-2x3+2x3)/2x-2x3$

$$=9x303/3x-4/-12$$

$$=2727T 2/T 2$$

$$=27268788$$
(xv) $47^{-3}x48^{-2}x49^{-1}$
आधार = 10 , गुणक = 5
गुणनफल = $5^2(47-2-1)/5(-3x-2+-2x-1+-1x-3)/-3x-2$

$$=25x44/5(+6+2+3)/-6$$

$$=1100/5^{5}/6$$

= 110556 = 110544 (xvi) 398⁻²x402⁺²x397⁻³ आधार = 100, गुणक = 4 गुणनफल = 4²(398+2-3)/4(2x-2+2x-3+-3x-2)/-2x2-3 =16(397)/4(-4)/12 =6352T612 =63518412

5.2 गुणा की निखलं विधि:

निखलं सूत्र से गुणा केवल उन्हीं दो संख्यायों की हो सकती है यहाँ उनमें से एक संख्या के सभी अंक 9 ही हों।

विधि: गुणनफल में बाईं ओर के प्रथम भाग में बिना 9 के सभी अंक वाली संख्या से 1 कम करके लिख देते हैं और दूसरे भाग में पहले भाग को 9 के अंक वाली संक्या से घटाकर लिखते हैं या पहले भाग के प्रत्येक अंक को 9 से घटाकर लिखते हैं या पहले भाग के प्रत्येक अंक को 9 से घटाकर लिखते हैं।

इसमे तीन अवस्थाए हो सकती हैं। पहली जब दोनों संख्याओं में अंकों की संख्या वरावर हो। दूसरी 9 के अंकों वाली संख्या की अंक संख्या दूसरी संख्या की अंक संख्या से अधिक हो। या यह दूसरी अंक संख्या से कम हो।

5.2.1 जब दोनों संख्यायों के अंकों की संख्या समान हो।

उदाहरण (i) 9x8 पहला भाग = 8-1 = 7 दू सरा भाग = 9-7 = 2 अतः गु णनफल = 72

(ii) 99x85

पहला भाग = 85-1 = 84 दूसरा भाग = 99-84 = 15 अतः गुणनफल = 8415

(iii) 9999x5683

गु णनफल = 56824317 5.2.2 जब 9 के सभी अंको वाली संख्या में अंक संख्या दूसरी की अंक संख्या से अधिक हो । ऐसी अवस्था में दूसरी संख्या में बाई ओर शून्य लगा देते हैं और संख्या बराबर कर लेते

(iii) 99999x563 = 56299437

₹1

5.2.3 जब 9 के सभी अंक वाली संख्या की अंक संख्या दूसरी की अंक संख्या से कम हो।

ऐसी अवस्था में 9 के सभी अंक वाली संख्या में वाई ओर शून्य लगा कर अंक संख्या बराबर कर लेते हैं। गुणनफल का पहला भाग तो पहले की तरह ही आता है। दूसरे भाग में उतने अंक ऋणात्मक आ जाते जितने शून्य लगाए गए हों। उत्तर में दूसरे भाग को धनात्मक अंक ही लिए जाते हैं तथा ऋणात्मक अंको को पहले भाग में जोड़ दिया जाता है:-

(ii)
$$999 \times 5632 = 5361 /_5^{368}$$

= 5634368
= 5626368

(iv)
$$999x56789 = 00999x56789$$

= $56788/\overline{5} \overline{6}^{211}$
= 56732211

(v)
$$999x765432 = 000999x765432$$

= $765431/765^{568}$

=765334568

=764666568

नोटः उत्तर के प्रथम भाग में अंकों की संख्या बिना सभी 9 वाली संख्या की अंक संख्या के समान होती है। तथा दूसरे भाग में अंक संख्या सभी 9 के अंक वाली संख्या की अंक संख्या के समान होती है।

5.3 गुणा में वैदिक 'ऊर्ध्वतिर्यग्म्याम्' सूत्र का प्रयोग

ऊर्घ्व का अर्थ है ऊपर सीघा और तिर्यग् का अर्थ है तिर्घा । अर्थात् ऊपर और तिर्घा गुणा करने की रीति । यह विधि हर प्रकार के प्रश्नों में प्रयोग की जा सकती है । और इसके द्वारा गुणा के बड़े बड़े प्रश्न एक ही पंक्ति में किए जा सकते हैं । कुछ मानिसक प्रयत्न ही अधिक होता है । और विनकुत्तम् के प्रयोग से बड़े बड़े प्रश्न भी सरत हो जाते हैं ।

जब गुण्य और गुणक एक ही अंक के हो तो गुणा 'ऊर्घ्व' ही होती है

जैसे :-

x 8

5.3.1 जब गुण्य और गुणक में दो दो अंक हों तो ऊर्ध्व और तिर्यग् दोनों प्रकार की गुणा होती है। या केवल गुणक में दो दो अंक हो, गुण्य में अधिक हों

गुणनफल का पहला अंक = 3x4 = 12

दूसरा अंक = (3,5) और (6,4) की तिर्यक् गुणा का जोड़ = 15+24 = 39

(iv) जब गुण्य में तीन अंक हों और गुणक में दो अंक ही अंक हों

इसी प्रकार गुण्य में और अधिक अंक होने पर क्रिया की जाती है।

5.3.2 जब गुणक के तीन अंक हों

तीसरा चरण = नीचे से पहले और ऊपर से तीसरे अंक और नीचे से तीसरे और ऊपर से पहले अंक की तिर्यक् गुणा और ऊपर नीचे के दूसरे अंकों की ऊर्घ्व गुणा का जोड़

$$= 4x4+5x7+3x7$$
$$= 72$$

चौथा चरण = नीचे से तीसरे और ऊपर से दूसरे तथा नीचे से दूसरे और ऊपर से तीसरे ं अंक की तिर्यक् गुणा का जोड़

$$=4x7+5x3 = 43$$

पांचवा चरण = 4x5 = 20अतः गुणनफल = $20/4^3/7^2/6^1/2^8$ = 250838

यदि हम संकेत के लिए ऊपर के अंकों के साथ उ1, उ2, उ3 आदि प्रयोग करें और नीचे के अंकों के लिये नी1, नी2, नी3 आदि लिखें तो

(ii) 734

562

प्रथम चरण =
$$31x$$
नी $1 = 4x2 = 8$

दूसरा चरण = $31x$ नी $2+32x$ नी 1
= $4x6+3x2=30$
तीसरा चरण = नी $1x33+$ नी $3x31+32x$ नी 2
= $2x7+5x4+6x3=52$
चौथा चरण = नी $2x33+$ नी $3x32$
= $6x7+5x3=57$
अं तिम चरण = $7x5=35$
अतः गुणनफल = $35/5^7/5^2/3^0/8$
= 412508

(iii) 5672

456

प्रथम चरण = 31xनी1 = 6x2 = 12दूसरा चरण = 11x32+12x31= 6X7+5x2 = 52तीसरा चरण = 11x32+13x31+12x32= 6x6+4x2+5x7 = 79चौधा चरण = 11x32+12x32= 6x5+4x7+5x6=88पांचवां चरण = 12x32+13x33=5x5+4x6= 49अंतिम चरण = 4x5 = 20

5.3.3 जब गुणक के चार अंक हों।

(i) 3457

5632

प्रथम तीन चरण तो पहले की तरह होंगे जैसे

$$=2x3+5x7+3x4+6x5=83$$

$$= 3x3+5x5+6x4 = 58$$

$$=6x3+5x4=38$$

(ii) 2342

3453

= 8081926

अभ्यास द्वारा हम सीघे ही कर सकते हैं और यही प्रक्रिया अधिक अंकों वाली सं ख्याओं के साथ बढ़ाई जा सकती है।

5.3.4 गुणा में ऊर्ध्वतिर्यम् म्याम् के साथ विनकुलम् का प्रयोग

1T 12

$$1/3/2 = 132 = 72$$

(ii) $84 \times 78 = 124 \times 122$

124

122

1/4/6/4/8 = 14648 = 6552

(iii) 9987x9992

= 100T3

x 100T2

यहाँ दोनों में पांच अंक हो गए । गुणा इस प्रकार होगी

प्रथम चरण = -11xउ1 = 2x-3 = -6

दूसरा चरण = नी1x32xनी1=2xT+Tx3=1

तीसरा चरण = नी1x33+नी3x31+नी2x32

=2x0+0x3+1x1=1

चौथा चरण = नी1xउ4+नी4xउ1+नी2xउ3+नी3xउ2

= 2x0+0x3+Tx0+0xT = 0

पांचवां चरण = नी1xउ5+नी5xउ1+नी2xउ4+नी4xउ2+नm3xउ3

= 2x1+1x3+Tx0+0xT+0x0 = -1

छटा चरण = -12x35+15x32+12x34+14x32

= Tx1+1xT+0x0+0x0

=2

सातवां चरण = नी3xउ5+नी5xउ3+नी4xउ4

= 0x1+1x0+0x0=0

आठवां चरण = नी4x35+नी5x34

=0x1+1x0=0

नवां चरण = नी5xउ5 = 1x1 = 1

अतः गुणनफल = 100210116

= 99790104

इसमें हमने देखा कि गुणा के चरण कितने सरल हो गए इसी प्रश्न को विनकुलम् में बदलने के पश्चचात् आधार विधि से भी कर सकते हैं। जबकि आधार 10000 होगा। गुणनफल का पहला = 13x12

कर्ध्व तिर्यम् द्वारा = 0116 और

दूसरा भाग = 100T3+12=1002T अतः गु णनफल =1002T0116

= 99790104

5.4 साधारण गुणा की रीति में भी विनकु त्तम् का प्रयोग हो सकता है

जैसे उदाहरण (i) 9999x5764

केवल 9999 में विनकुलम् का प्रयोग करके

5 7 6 4 5764 5764 = 57634236

(ii) 578x98= 578×102 578102TT56 57857856756 = 56644

5.5 11 तथा 12 आदि से गुणा के सरल उदाहरण

(i)11 के साथ गुणा करते समय पहले अंक को दूसरे में दूसरे को तीसरे में जोड़ते जाते हैं

6784 11 6/6+7/7+8/8+4/4 $= 6/1^3/1^5/1^2/4 = 74624$

(ii) 12 के साथ गुणा करने के लिए अंकों को 2 से गुणा करके प्रत्येक से पहला अंक जोड़ते जाते हैं।

9763

12

9/7 + 18/6 + 14/3 + 12/6= $9/2^5/2^{0/1}^5/6 = 117156$

इसी प्रकार यदि 13 से गुणा करना हो 3 से गुणा करके पहला अंक जोड़ते जाते हैं और

अध्याय षष्टम्

भाग

वैदिक गणित में भाग परावर्त्य योज्येत एवं 'ध्वंजक' सूत्रों के साथ की जाती है। इनके साथ कभी सुविधा के लिए निखलं सूत्र एवं विनकुलम् और ऊर्ध्व तिर्यम्भ्याम् का प्रयोग भी किया जाता है।

- 6.1 परावर्त्य येज्येत का प्रयोग करके व्यवकलम में बताया जा चुका है । बीजगणित में भाग करने के लिए इसका प्रयोग बड़ी सरलता से किया जा सकताहै और फिर अंक गणित की भाग भी उसी प्रकार से करने पर आसानी से समझ में आ जाती है ।
- 6.1.1 x2+3x+8 को x-2 से भाग दो

$$x-2: x^2 + 3x + 8$$

भाजकांक $+2 + 2 + 10$
 $1 + 5/ 18$

अतः भागफल = x+5

तथा शेष = 18

यह तो स्पष्ट है कि भागफल में दो पद होंगे और शेष में एक पद होगा

विधि: पहले- 2 का चिस्न बदलकर +2 कर दिया जाता है। फिर भाज्य के नीचे कुछ स्थान छोड़कर रेखा खींच कर उसके नीचे भाज्य के पहले पद का गुणक +1 लिख दिया, फिर 1xभाजकांक 2 = 2 को दूसरे पद के नीचे लिख दिया और इसको दूसरे पद के गुणक के साथ जोड़ कर नीचे लिख दिया।

इस प्रकार जोड़ 5 आया आगे एक तिर्छी रेखा खींच कर 5xभाजकांक 2 = 10, 10 तीसरे पद से जोड़ने पर = 18, यह 18 शेष हुआ। भाज्य के प्रथम पद को भाजक के प्रथम पद से भाग देकर x आया अतः भाग फल 1+5 के स्थान पर x+5 लिख दिया।

 $6.1.2 \quad 3x^2 + 13x + 8$ को x + 2 से भाग दो

$$x+2: 3x^2 + 13x + 8$$
 $-2 - 6 - 14$
 $3 + 7/-6$

विधि : भाजक में +2 को बदल कर -2 बनाया, यह भाजकांक हुआ, x^2 का गुणक 3 रेखा के नीचे लिखा | 3x-2=-6, 13-6=7, इसके आगे तिर्ष्ठी रेखा खींची 7x-2=-14, 9x-14=-6

अतः भागफल = x²-6x +23

शेष = -76

शेष प्रमेय द्वारा जांच

$$f(x) = x^3 - 3x^2 + 5x - 7$$

भाजकांक को x मानकर

शेष =
$$f(-3) = (-3)^3 - 3(-3)^2 + 5(-3)^2 7$$

= $-27-27-15-7$
= -76

अतः उत्तरशुद्ध है।

$$6.1.4 ext{ } ext{x}^4 - 2 ext{x}^3 - 3 ext{x}^2 + 4 ext{x} - 5 ext{ को } ext{x}^2 - 2 ext{x} + 3 ext{ से भाग दो }$$

$$ext{x}^2 - 2 ext{x} + 3 ext{: } ext{x}^4 - 2 ext{x}^3 - 3 ext{x}^2 + 4 ext{x} - 5$$

$$ext{+2 -3} ext{+2 -3} ext{+2 -5}$$

-21+16

 $x^4 + x^2 = x^2$, x की दूसरी घात है अतः भागफल 3 पदों में होगा और शेष दो पदों में।

यहाँ पर -2+3 के चिह्न बदलकर +2-3 भाजकांक बने । फिर उदाहरण के अनुसार क्रिया

भागफल =
$$x^2+0x-6 = x^2-6$$

और शेष = $-8x+13$

6.2 अंक गणित में प्रयोग।

6.2.1 34567 को 102 से भाग दो।

अतः भागफल = 341 = 339

शेष = 29

क्योंकि शेष ऋणात्मक है अतः भागफल से एक कम करके शुद्ध भागफल = 339-1 = 338

क्रिया : स्पष्ट है कि भागफल तीन अंकों का होगा । 02 का चिह्न बदलकर 02 बना दिया । भाज्य के नीचे कुछ स्थान छोड़ कर रेखा खींच ली और उसके नीचे भाज्य का पहला अंक 3 लिख दिया । फिर 02x3 = 06 को भाज्य के अगले दो अंकों के नीचे लिख दिया । फिर 4+0=4, 4 भागफल का दूसरा अंक बना । फिर 02x4 = 08 को 5, 6 वाले स्तम्भों मे नीचे लिखा $5+\overline{6}+0=-1$ और $\overline{1}$ भागफल का तीसरा अंक आया । क्योंकि भागफल में तीन ही अंक होने हैं । अतः इसके आगे एक तिछी रेखा खींची । फिर $02x\overline{1}=02$ को 6, 7 के स्तम्भों के नीचे लिख दिया ।

6+8+0 = 2 और 7+2 = 9 अतः शे ष=29 और भागफल = 34T। इसके आगे की क्रिया ऊपर स्पष्ट है। वैदिक पद्धित से उत्तर की जाञ्च भाज्य 34567 की एक अंकीय संख्या = 7 भजनफल 338 की एक अंकीय संख्या = 5 भाजक 102 की एक अंकीय संख्या = 3 शेष 91 की एक अंकीय संख्या = 1 भाजक x भजनफल + शेष = 3x5+1 = 16= 1+6= 7 अतः उत्तर शु द्ध है। 6.2.2: 235432 को 1003 से भाग दो

क्योंकि शेष 273 ऋणात्मक है

6.2.3: 348956 को 89 से दशमलव के दो स्थानों तक भाग दो। स्पष्ट है कि उत्तर का पूर्णों श चार अर्को में होगा। केवल भाजक को निखलं सूत्र द्वारा विनकुलम् में बदलकर

83

22233

3920.853 = 3920.85

और सरलता के लिए भाज्य के कुछ अंकों को और भाग क्रिया में सुविधानुसार बड़े अंकों को विनकुलम् मे बदलते जाएं तो क्रिया और भी सरल हो जाती है। 348956 = 351156

6.3 'ध्वजंक' सूत्र का प्रयोग

इस सूत्र का प्रयोग जब भाजक मे दो या दो से अधिक अंक हों तो किया जाता है। यदि भाजक में दो ही अंक हों तो इकाई के अंक को ध्वजंक और दहाई के अंक को भाजकांक कहते हैं। यदि भाजक में तीन अंक हों तो यदि इकाई के अंक को छोड़कर दूसरे अंकों से बनी संख्या का पहाडा आ जाता हो तो इकाई के अंक को ध्वजंक और दूसरे दो अकों को भाजकांक मान लेते हैं। और यदि इनका पहाड़ा न आताहो तो 'ध्वजंक' इकाई दहाई के दो अकों का हो जाता है और सेंकड़े का अंक भाजकांक बना लिया जाता है। इस प्रकार 'ध्वजंक' इकाई दहाई के दो अंकों का हो जाताहै। और सैंकड़े का अंक भाजकांक बना लिया जाता है

इस प्रकार 'ध्वजंक' दो, तीन या अधिक अंको का हो जाता है। पर भाजकांक उतने एक या दो अकों का ही होता है जिनका पहाड़ा आ जाए। समस्त क्रिया एक ही पंक्ति में हो जाती है। चाहे भाज्य और भाजक में कितनी बड़ी संख्याएं हों। साथ ही 'ऊर्ध्वतिर्यक' सूत्र भी सहारा लिया जाता है। सारी क्रिया अगले उदाहरणों में स्पष्ट हो जाएगी।

6.3.1 5788 को 63 से भाग दो

यहाँ ध्वजंक = 3 और भाजकांक = 6

क्रिया : 57 ÷ 6= 9-3 , अतः भागफल का प्रथमांक 9 हुआ शेष 3 को भाज्य के अगले अंक

8 से जोड़ा तो 38 हुआ 38 - प्रथम भागफलांक 9xधनांक 3=38-27=11, $11\div 6=1-5$ अतः भागफल का दूसरा अंक 1 आया और शेष 5 को भाज्य के अगले अंक 8 से जोड़ा तो 58 हुआ 58-1x3=55,

भागफल में दो ही अंक होंगे।

अतः भागफल = 91 और शेष = 55

वैदिक पद्धति से जाञ्च

भाज्य 5788 की एक अंकीय संख्या = 1

भाजक 63 की एक अंकीय संख्या = 9

भागफल 9 की एक अंकीय संख्या = 1

शेष 55 की एक अंकीय संख्या = 1

भागफल x भाजक + शेष = 1x9+1 = 10

= 1+0 = 1 = भाज्य की एक अंकीय संख्या।

अतः उत्तर शुद्ध है।

6.3.2 57684 ÷ 48

ध्वजंक = 8 और भाजकांक = 4

प्रथम चरण = 5 ÷ 4= 1-1, अतः भागफल का प्रथमांक । हुआ और शेष 1 का भाज्य के अगले अंक से जोड़ा तो 17 हुआ ।

दूसरा चरण = 17-1x8= 9, 9 ÷ 4= 2-1, अतः भागफल का दूसरा अंक 2 हुआ शेष 1 को भाज्य के अगले अंक 6 से जोड़ा तो 16 हुआ।

तीसरा चरण = 16-2x8=0, 0 ÷ 4= 0-0 अतः भागफल का अगला अंक 0 हुआ और शेष 0 को अगले अंक 8 से जोड़ा तो 8 हुआ। चौथा चरण =0 8 ÷ 4=1-4 अतः भागफल का अगला अंक 1 हुआ और शेष 4 को भाज्य के अं तिम अंक 4 से जोड़ा तो 44 हुआ । 44-1x8=36 अतः शेष = 36 और भागफल = 1201

नोटः चौथे चरण 8 ÷ 4=2-0 नहीं किया क्योंकि ऐसा करने 0 को अगले अंक 4 से जोड़ने पर 4 ही रहना था और 4-2x8 ऋणात्मक शेष आना था।

प्रथम चरण = 35 ÷ 4 = 7-7

दूसरा चरण = 77-9x7= 14, 14 ÷ 4 = 2-6

तीसरा चरण = 66-2x9 = 48, 48 ÷ 4= 9-12

चौथा चरण = 128-9x9 = 47

यहाँ भी प्रथम तीन चरणों में 6.3.2 के अन्त में दिये हुए नोट के अनुसार ही किया गया। भाजक 49 को विनकुलम् में बदलने से क्रिया और भी सरल हो जाती है।

प्रथम चरण = 35 ÷ 5= 7-0

दूसरा चरण = $7-7x\overline{1}=7+7=14$, $14 \div 5=2-4$

तीसरा चरण = 46-2x1= 46+2= 48, 48÷ 5= 9-3

चौथा चरण = 38-9x1 = 47

अतः भागफल = 729, शेष = 47

5 : 7645 : 3

तीसरा चरण = 115-5x6 = 85, 85 ÷ 13= 6-7 चौथा चरण = 73-5x6 = 43

अतः भागफल = 566, शेष = 43

3.5 657894 ÷ 842

6578:94 42: 95 4 8

781-292

प्रथम चरण = 65 ÷ 8= 7-9

दूसरा चरण = 97-7x4 = 69, 69 ÷ 8= 8-5

तीसरा चरण = 58-(4, 2 और 7,8) की तीर्यंक् गुणा का जोड़ $= 58-(4x8+7x2) = 12, 12 \div 8 = 1-4$

चौथा चरणं = 494 - (42x81) में उर्ध्वतिर्यगम्याम्

से पहले दो चरण = 494 - 202 = 292

अतः भागफल = 781, शेष = 292

6489 ÷ 1248 3.6

12

48 : 5764 : 89

98 16

461 - 1161

प्रथम चरण = 57 ÷ 12= 4-9

दूसरा चरण = 96-4x4 = 80, 80 ÷ 12= 6-8

तीसरा चरण = 84-(48x46 में अंकों की तिर्यंक गुणा का जोड़ ।

= 84-(6x4+4x8)=84-56

=28,28 + 12 = 1-16

चौथा चरण = 1689 - (48x61) में ऊर्ध्वतिर्यगृ द्वारा गुणा करते हुए पहले दो चरण

= 1689-528 = 1161

अतः भागफल = 461 शेष = 1161

6754589 ÷ 8563

563:6754:589

11 16 18

788 - 6945

्रे^१ प्रथम चरण = 67-8 = 7-11

दूसरा चरण = 115-7x5 = 80 ÷ 8= 8-16

तीसरा चरण = 164-(56x78) में अंकों की तिर्छी गुणा

का जोड़ = 164-(5x8+7x6) = 82, 82 8= 8-18

चौथा चरण = 18589-(563x788) में ऊर्घ्व तिर्यग् से पहले तीन चरण

= 18589- 11644 = 6945

अतःभागफल = 788

· शेष = 6945

सप्तम अध्याय

7 वर्गीकरण

किसी संख्या के वर्ग करने के लिए गुणा के अध्याय में वर्णित विधियों के साथ साथ 'एकाधिकेन पूर्वेन' तथा इन्द्वयोग सूत्र का प्रयोग विशेषकर होता है।

7.1 आधार विधि से वर्ग करने के लिए 10, 100, 1000 आदि आधारों तथा इनके उपाधारों का प्रयोग किया जाता है।

उदाहरण (i)
$$12^2 = 12 \times 12 = 12 + 2/4 = 144$$

(ii) $18^2 = 18 \times 18$
 $= 18 + 8/6^4 = 26/6^4$
 $= 324$
(iii) $103^2 = 103 \times 103$
 $= 103 + 3/09 = 10609$
(iv) $98^2 = 98^{-2} \times 98^{-2}$
 $= 98 - 2/04 = 9604$
(v) $52^2 = 52 \times 52$
आधार $= 10$, गु णक= 5
 $= (52 + 2) \times 5/2 \times 2$
 $= 2704$
(vi) $63^2 = 63 \times 63$, आधार $= 10$, गुण

या आधार 1000, उपगुणक = 1/2
=
$$\frac{507+7}{2}$$
 / 7x7

(viii)
$$\frac{514}{2}/049 = 257049$$

$$252^{2} = 252x252, \text{ आधार} = 1000, \text{ उपगु जक} = \frac{250}{1000} = \frac{1}{4}$$

$$= \frac{(252+2)}{4}/2x2$$

$$= \frac{254}{4}/004 = 63504$$

7.2 एकाधिकेन पूर्वेन सूत्र का प्रयोग

अर्थात् जो अंक है उससे एक अधिक से गुणा करना । इस सूत्र का प्रयोग उन्हीं संख्याओं के लिये किया जाता है जिनका इकाई का 5 अंक हो ।

विधि : उत्तर का पहला भाग = $5^2 = 25$

और दूसरा भाग = दहाई का अंकX(1+ दहाई का अंक)

(i)
$$45^2 = 4x(4+1)/5^2$$

= 2025

(ii)
$$75^2 = 7(7+1)/5^2$$

= 5625

(iii)
$$105^2 = 10(10+1)/5^2$$

= 11025

नोटः क्योंकि यह 100 के निकट की संख्या है इसे आधार पद्धति से भी कर सकते हैं जैसे

$$105^2 = (105+5)/5x5$$
$$= 11025$$

7.3 द्वन्द्व योग सूत्र का प्रयोग

एक अंकीय संख्या का द्वन्द्व योग उसका वर्ग होता है।

दो अंकों का द्वन्द्व योग, उनके गुणनफल कादुगना होता है।

तीन अंकों का द्वन्द्व योग = (पहला अंक x तीसरा अंक x2+ दूसरे का वर्ग)

पांच अंकों का द्वन्द्व योग = 2(पहला अंक x पांचवां अंक) +2(दूसरा अंकx चौथा अं क) + तीसरे अंक का वर्ग

ष्ठः अंकों का द्वन्द्व योग = 2(पहला अंक x ष्ठटा अंक) +2 (दूसरा अंकx पांचवां अंक)+2(तीसरा अंकx चौथा अंक) इसी प्रकार अधिक अंकों के द्वन्द्व योग भी निकाले जा सकते हैं। तथा वर्ग क्रिया संख्या के चाहे इकाई के अंक से आरम्भ करें चाहे अन्तिम अंक से 1 बड़े अंकों वाली संख्या में विनकुलम् का प्रयोग भी कर लिया जाता है ताकि कोई अंक 5 से बड़ा न रहे। वर्ग करने की प्रक्रिया नीचें दिए गए उदाहरणों से स्पष्ट हो जाएगी।

(i)
$$53^2 = 25/3^0/9 = 2809$$
प्रथम चरण $= 3^2 = 9$
दूसरा चरण $= (3,5)$ का द्वन्द्वयोग $= 2x3x5 = 30$
तीसरा चरण $= 5^2 = 25$
(ii) $567^2 = 25/6^0/10^6/8^4/4^9$
 $= 321489$
दाईं ओर से प्रथम चरण $= 7^2 = 49$
दूसरा चरण $= 2x6x7$, $(6,7)$ का द्वन्द्व योग $= 84$
तीसरा चरण $= (5,6,7)$ का द्वन्द्व योग $= 2x5x7+6^2$
 $= 70+36=106$
चौथा चरण $= (5,6)$ का द्वन्द्व योग $= 2x5x6=60$
अंतिम चरण $= 5^2 = 25$
(iii) $2354^2 = 4/1^2/2^9/4^6/4^9/4^0/1^6$
 $= 5541316$
दाईं ओर से
प्रथम चरण $= 4^2 = 16$
दूसरा चरण $= (5,4)$ का द्वन्द्व योग $= 2x5x4 = 40$
तीसरा चरण $= (3,5,4)$ का द्वन्द्व योग $= 2x3x4+5^2$
 $= 24+25=49$
चौथा चरण $= (2,3,5,4)$ का द्वन्द्व योग $= 2x2x4+2x3x5$

= 16+30 = 46 पांचवां चरण = (2,3,5) का द्वन्द्व योग

 $=2x2x5+3^2=20+9=20$

छटा चरण = (2,3) का द्वन्द्व योग = 2x2x3 = 12सातवां चरण = $2^2 = 4$ (iv) $(23645)^2 = 4/1^2/3^3/5^2/8^0/7^8/7^6/4^0/2^5$ = 559086025

बाई ओर से आरम्भ करते हुए

प्रथम चरण $= 2^2 = 4$

दूसरा चरण = (2,3) का द्वन्द्व योग = 2x2x3 = 12

तीसरा चरण = (2,3,6) का द्वन्द्व योग = $2x2x6+3^2 = 33$

चौथा चरण = (2,3,6,4) का द्वन्द्व योग= 2x2x4+2x3x6 = 52

पांचवां चरण = (2,3,6,4,5) का द्वन्द्व योग = 2x2x5+2x3+4+62

= 80

छटा चरण = (3,6,4,5) का द्वन्द्व योग = 2x3x5+2x6x4 = 78

सातवां चरण = (6,4,5) का द्वन्द्व योग = $2x6x5+4^2 = 76$

आठवां चरण = (4,5) का द्वन्द्व योग = 2x4x5 = 40

नवां चरण $= 5^2 = 25$

(v) $(57643)^2 = (1\overline{42443})^2$

क्योंकि यहाँ बहुत से अंक 5 से बड़े ये अतः संख्या को विनकुलम् में बदल लिया बाई ओर से आरम्भ करते हुए

प्रथम चरण $= 1^2 = 1$

दूसरा चरण = 2x1x4 = 8(1, 4) का दन्द्व योग।

तीसरा चरण = (1,4,2) का द्वन्द्व योग = $2x1x2+(4)^{-2} = 12$

चौथा चरण = (1,4,2,4) का द्वन्द्व योग = 2x1x4+2x4x2

=2(4+8)=8

पांचवा चरण = (1,4,2,4,4) का द्वन्द्व योग = $2x1x4+2x4x4+(2)^2$ = 2(4+16)+4=44

छटा चरण = (1,4,2,4,4,3) का द्वन्द्व योग = 2(1x3)+2(4x4)+2(2x4) =

2(3-16+8) = T0

$$= 2(4x3) + 2(2x4) + (4)^2$$

$$= 2(17+8) + 16 = 40 + 16 = -24$$
आठवां चरण $= (2,4,4,3)$ का बन्द योग $= 2(2x3 + 4x)$

$$= 2(-6-16) = 44$$
नवां चरण $= (4,4)$ का बन्द योग $= 2x4x3 + 4^2 = 8$
दसवां चरण $= (4,3)$ का बन्द योग $= 2x4x3 + 4^2 = 8$
दसवां चरण $= (4,3)$ का बन्द योग $= 2x4x3 = 24$
ग्यारहवां चरण $= 3^2 = 9$
अतः $(57643)^2 = (142743)^2$

$$= 1/8/1^2/8/4^4/1^0/2^4/4^8/8/2^4/9$$

$$= 17323284649$$

$$= 3322715449$$
(vi) $(72564)^2 = (133444)^2$
(1,3) का बन्द योग $= 2x1x3 + 3^2 = 15$
(1,3,3,4) का बन्द योग $= 2x1x3 + 3^2 = 15$
(1,3,3,4) का बन्द योग $= 2x1x3 + 2x3x3$

$$= 2(4+9) = 26$$
(1,3,3,4,4) का बन्द योग $= 2(1x4) + 2(3x4) + 3^2$

$$= 2(4+12) + 9 = 25$$
(1,3,3,4,4) का बन्द योग $= 2(1x4) + 2(3x4) + 2x(3x4)$

$$= 2(4+12-12) = 8$$
(3,3,4,4,4) का बन्द योग $= 2(3x4) + 2(3x4) + (4)^2$

$$= 2(-12-12) + 16 = 32$$
(3,4,4,4) का बन्द योग $= 2x3x4 + 2x4x4 = 56$
(4,4,4) का बन्द योग $= 2x3x4 + 2x4x4 = 56$
(4,4,4) का बन्द योग $= 2x4x4 + (4)^2 = 16$
(4,4) का बन्द योग $= 2x4x4 + (4)^2 = 16$
(4,4) का बन्द योग $= 2x4x4 + (4)^2 = 16$
(5) अतः $= 1/6/1^5/2^5/2^5/8/3^2/5^6/1^5/3^2/1^6$

$$= 15345535916$$

$$= 5265534096$$

7.4 पूर्ण वर्ग संख्याओ की विशेषता

 $1^2 = 1, 1$ की एक अंकीय संख्या = 1

 $2^2 = 4,4$ की एक अंकीय संख्या = 4

 $3^2 = 9,9$ की एक अंकीय संख्या = 9

 $4^2 = 16, 16$ की एक अंकीय संख्या = 7

 $5^2 = 25, 25$ की एक अंकीय संख्या = 7

 $6^2 = 36,36$ की एक अंकीय संख्या = 9

 $7^2 = 49,49$ की एक अंकीय संख्या = 4

 $7^2 = 49,49$ की एक अं कीय सं ख्या= 4

 $8^2 = 64,64$ की एक अंकीय संख्या = 1

 $9^2 = 81,81$ की एक अंकीय संख्या = 1

अतः पूर्ण वर्ग संख्याओं की एक अंकीय संख्याओं की एक अंकीय संख्या 1, 4, 9, 7 ही होती है और ईकाई का अंक 1, 4, 9, 6 या 5 ही होता है।

अष्टम अध्याय

8 धन मालूम करना

धन मालूम करने के लिए गुणा के वे सभी नियम लगते हैं जो गुणा के अध्याय में लिखे गए हैं। इसके अतिरिक्त 'अनुरूप्येन' उपसूत्र का प्रयोग होता है। यहाँ किसी अन्य सरल सूत्र से धन मालू म करना सम्भव न हों वहाँ 'ऊर्ध्व तिर्य मृ म्याम्' का प्रयोग कर लिया जाता है।

8.1 गुणा की आधार पद्धति से धन मालूम करना

आघार = 10

पहला पद $=2^3$

दूसरा पद $= 2^2 x^3 = 12$

तीसरा पद = 12+2x2= 16

अतः 12³ = 16/1²/8 = 1728

विधि पहला पद = अधिकता का धन

दूसरा पद = 3x अधिकता का वर्ग

तीसरा पद = संख्या +2x अधिकता

(ii) 14³ मालूम करो, आधार = 10

पहला पद = 4³ = 64

दूसरा पद $= 3x4^2 = 48$

तीसरा पद = 14+2×4 = 22

अतः 14³ = 22/4⁸/6⁴

= 2744

(iii) $103^3 = (100+3)^3$, आधार = 100

पहला पद = 3³ = 27

दूसरा पद = $3x3^2 = 27$

तीसरा पद = 103+3x2 = 109

अतः 103³ = 1092727

(iv) $98^3 = (100+2)^3$ आधार = 100

पहला पद =
$$(2)^3 = 08$$
 दूसरा पद = $(2)^2x3 = 12$
 तीसरा पद = $(2)^2x3 = 12$
 तीसरा पद = $(2)^3x3 = 12$
 तीसरा पद = $(2)^3x3 = 12$
 श्रिक्ष = $(2)^3x3 = 12$
 श्रिक्ष = $(2)^3x3 = 12$
 श्रिक्ष = $(2)^3x3 = 1000$
 श्रिक्ष पद = $(2)^3x3 = 1000$
 श्रिक्ष पद = $(2)^3x3 = 1012$
 श्रिक्ष पद = $(2)^3x3 = 120$
 श्रिक्ष पद = $(2)^3x3 = 120$

$$= 123$$

या आधार = 100,
या गु णक = 5, आधार = 100
 $498^3 = 5^2 X(49)$

$$^{149} = 5$$
, आधार = 100
 $^{498}^{3} = 5^{2}X(498-2x2)/5x3)(x2)^{2}/(2)^{3}$

(ix)
$$53^{3} = (50+3)^{3}, \text{ आधार} = 100, \text{ उपगुणक} = \frac{50}{100} = \frac{1}{2}$$
$$= (\frac{1}{2})^{2}(53+2x3)/\frac{3\times3^{2}}{2}/3^{3}$$
$$= \frac{59}{4}/\frac{27}{2}/27$$
$$= 14.75/13.5/27$$

(x)
$$47^3 = (50-3)^3$$

 $\frac{47+2\times 3}{4}/\frac{3\times 3^2}{2}/(3)^3$

$$=\frac{41}{4}/\frac{27}{2}/27$$

या =
$$25x41/5 \times 27(3)^3$$

$$= 1025/13^{5}/27 = 103837 = 103823$$

(xi)
$$42^{3} = (40+2)^{3} \text{ supr} = 10, \text{ y one.} = 4$$
$$= 4^{2}x(42+2x2)/4x3x2^{2}/2^{3}$$
$$= 16x46/48/8$$

$$= 736/4^8/8 = 74088$$

8.2 अनुरुप्येन अर्थात् समानानुपात के उप सूत्र का प्रयोग बीज गणित में

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 = b^3$$

को ऐसे भी लिख सकते हैं =
$$a^3 + a^2b + ab^2 + b^3$$

 $a^3 + a^2b + 2ab^2$
जोड़ने पर = $a^3 + 3a^2b + 3ab^2 + b^3$

इसकी सहायता से दो या तीन अंकों की राशियों का धन भी मालूम किया जा सकता है। यहाँ इकाई के अंक को b और दहाई या दहाई और सैंकड़े से बनी संख्या को a माना जाता है। फिर a³, a²b, ab², b³ के मान को खुला खुला लिखा जाता है। इसके पश्चात् दूसरी पंक्ति में पहली पंक्ति के बीच के दो पदों के नीचे उनका दुगना लिखा जाता है। दाई ओर के पहले तीन पदों से एक एक अंक ही लिया जाता है और शेष क्रम से अगले पद में हासिल के रूप में जोड़ दिया जाता है

उदाहरण (i) 113 मालमू करो।

यहां पर a = 1, और b = 1 अत: a^3 , a^2b , ab^2 , b^3 सभी का मान एक एक ही है

(ii) 22³ मालूम करो । यहां a= 2,b=2

= 35937 $= 2^{3} 2^{2}x3 3^{2}x2 3^{3}$ = 8 12 18 27 = 24 36 $= 8 /3^{6}/ 5^{4}/ 2^{7}$

$$(v) 43^{3} = 4^{3} 4^{2}x3 3^{2}x4 3^{3}$$

$$64 48 36 27$$

$$96 72$$

$$64 / 14^{4} / 10^{8} / 2^{7}$$

$$= 79507$$
(vi) $111^{3} = 11^{3} 11^{2}x1 11x1^{2} 13$

$$= 1331 121 11 1$$

$$= 242 22$$

$$= 1367 6 3 1 = 1367631$$
(vii) $121^{3} = 12^{3} 12^{2} 12 1$

$$= 1728 144 12 1$$

$$= 288 24$$

$$= 1771 5 6 1 = 1771561$$

8.3 जिन संख्याओं का धन 8.1 तथा 8.2 के नियमों के अनुसार न निकाला जा सके वहां द्वन्द्व योग से पहले उस संख्या वर्ग करे फिर ऊर्घ्व तिर्यम् के प्रयोग से गुणा करके निकाल लेते हैं।

(i)
$$434^3 = (434)^2 \times 434$$

= 188356
 $\times 434$
= 81746504
(ii) $867^3 = (1133)^3$
= $(1\overline{1}3\overline{3})^2 \times (1\overline{1}3\overline{3})$
= 1251689
= $1352\overline{3}11\times11\overline{3}\overline{3}$
= 1452294363
= 651714363
(iii) $(2342)^3 = (2342)^2 \times 2342$
= $5484964\times2342 \times 2342$
 $= 5484964 \times 2342 \times 2342$
 $= 5525044$
 $\times 2342$
 $= 12845786488 = 12845785688$

8.4 धन संख्याओं की विशेषताएं

 $1^3 = 1, 1$ की एक अंकीय संख्या = 1

 $2^{3} = 8, 8$ की एक अंकीय संख्या = 8

 $3^3 = 27, 27$ की एक अंकीय संख्या = 9

 $4^3 = 64,64$ की एक अं कीय सं ख्या = 1

 $5^3 = 125, 125$ की एक अंकीय संख्या = 8

 $6^3 = 216,216$ की एक अंकीय संख्या = 9

 $7^3 = 343,343$ की एक अंकीय संख्या = 1

 $8^3 = 512,512$ की एक अंकीय संख्या = 8

 $9^3 = 729,729$ की एक अंकीय संख्या = 9 अतः निम्न परिणाम देखने को मिले

(i) धन संख्याओं में इकाई का अंक कोई भी हो सकता है।

(ii) घन संख्याओं की एक अंकीय संख्या 1, 8 या 9 ही होती है और ये इसी प्रकार क्रमागत संख्यायों की क्रम से ही होती है । इनकी सहायता से घन मूल निकालने में आसानी जाती है ।

नवम अध्याय

9 वर्ग मूल

साधारण भाग द्वारा वर्ग मूल निकालने की परम्परागत रीति है। हम जानते हैं कि सम अंक संख्या वाली संख्या वाली संख्या का वर्ग मूल उसके आधे अंकों में तथा विषमांक संख्या वाली संख्या का वर्ग मूल अंकों की संख्या में 1 जोड़कर बनी संख्या के आधे अंकों में आता है।

जैसे यदि किसी संख्या में अंकों की संख्या 6 हो तो वर्ग मूल में अंकों की संख्या 3 होगी और यदि किसी संख्या में अंकों की संख्या 9 हो तो वर्ग मूल में अंकों की संख्या $\frac{9+1}{2}$ =5 होगी

साधारणतया इकाई से आरम्भ करके दो दो के जोड़े बनाते हैं। और यदि अन्त में एक अंक बचे तो उसे भी एक जोड़ा मानते हैं। फिर अंतिम जोड़े से अंक से छोटी वर्ग संख्या लेकर उसका मूल अंक लेते हैं तथा इसके दुगने से, भाग क्रिया आरम्भ की जाती है। जो कई बार काफी लम्बी होती है। परन्तु वैदिक गणित में द्वन्द्व योग की सहायता से क्रिया बहुत सरल हो जाती है और बड़ी बड़ी संख्याओं का वर्ग मूल एक ही पंक्ति में बहुत सरलता और शीघ्रता से निकल जाता है। कई बार बड़ी बड़ी संख्या का वर्ग मूल जब दशमलव के एकाध अंक तक ही मालूम करना हो तो संख्या के पूरे अंकों का प्रयोग किए बिना ही वर्ग मूल निकल जाता है।

9.1 नीचे कुछ पूर्ण वर्ग संख्यायों का वर्ग मूल निकालने के उदाहरण दिए जाते हैं।

(i) 6084 का वर्ग मूल ज्ञात करो।6084

14: 116 78.0

क्रिया : प्रथम चरण = बाईं ओर से अन्तिम जोड़ा $60 \$ है । इससे छोटी वर्ग सं ख्या = 49. जिसका मूल $7 \$ है । अतः वर्ग मूल का प्रथम अंक $7 \$ हुआ और भाजक = 7x2=14

दूसरा चरण = 60-49 = 11, 11 को 8 के साथ रखने पर 118 बना, $118 \div 14 = 8$ -6 अतः दूसरा अंक 8 हुआ।

1. ...

6 को अन्तिम 9 से जोड़ा तो 64 = 78अत: 6084 = 78 नोटः वर्ग मूल में द्वन्द्व योग क्रिया उत्तर क पहले अंक को छोड़कर अगले अं क से आरम्भ की जाती है।

(ii) 36 84 49 का वर्ग मू ल ज्ञात करो 36 84 49 12 080 607

क्रिया - प्रथम चरण = अन्तिम जोड़ा 36 है और $36 = 6^2$ अतः वर्ग मूल का प्रथम अंक = 6 और भाजक संख्या = 6x2 = 12

दूसरा चरण = 36-36=0, 0 का अगले अंक 8 से जोड़ा ता 08 हुआ $08\div12=0-8$, अतः अगला वर्ग मूल का अंक 0 हुआ $|84-0^2=84,84\div12=7$ अतः वर्ग मूल का अगला अंक = 7 हुआ |

तीसरा चरण - 0 को अगले 4 से जोड़ा तो 4 बना

चौथा चरण = $4 \div 12 = 0$ -4 वर्ग मूल 3 अंकों में ही होगा अत: 607 के आगे दशमलव लगा कर अगला अंक 0 हुआ । शेष 4 को 9 से जोड़ा तो 49 हुआ 49- $7^2 = 0$

अतः 368449 = 607

(iii) 2894444 का वर्ग मूल ज्ञात करो।

28 94 44

10 39 5

प्रथम चरण : अन्तिम जोड़े 28 से छोटी वर्ग संख्या = 25, और $25 = 5^2$ अतः वर्ग मूल का प्रथमांक = 5 और भाजक संख्या = 5x2 = 10 और 28-25 = 3 को अगले अंक से जोड़ा तो 39 बना

दूसरा चरण = 39 ÷ 10 = 3-9 अतः वर्ग मूल का दूसरा अंक 3 हुआ। तीसरा चरण = शेष 9 को अगले अंक 4 से जोड़ा तो 94 हुआ। 94-3² = 85, 85 ÷10 = 8-5

अतः वर्ग मूल का तीसरा अंक 8 आया। चौथा चरण: क्योंकि वर्ग मूल 3 अंकों में ही होगा। 5 को अगले शेष से

जोड़ा तो 544 हुआ।

544-38² (में द्वन्द्व योग द्वारा पहले दो पद लेने पर)

$$= 544-544 = 0$$

$$= 38$$

$$= 38$$

$$= 48/6^4 = 544$$

अत: \ 289444 = 538

वैदिक जांच

289444 की एक अंकीय संख्या = 4

538 की एक अंकीय संख्या = 7

 $7^2 = 49$, और 49 की एक अंकीय संख्या = 4

अतः उत्तर शुद्ध है।

(iv) 6017209 का वर्ग मूल ज्ञात करो

6017209

प्रथम चरण = अन्तिम जोड़े 6 से छोटी वर्ग संख्या = 4

और 2² = 4 अतः वर्ग मूल का पहला अंक 4, 6-4 = 2

2 को अगले अंक 0 ले लगाया तो 20 हुआ।

दूसरा चरण = 20 ÷ 4 = 4-4 अतः वर्ग मूल का दूसरा अंक 4 आया शेष 4 को अगले अंक 1 से जोड़ा तो 41 बना।

तीसरा चरण = $41-4^2 = 25$, $25 \div 4 = 5-5$ । अतः उत्तर का तीसरा अंक 5 हुआ। 5 को अगले अंक 7 से जोड़ा तो 57 बना।

क्योंकि दी हुई संख्या 7 अंकों की है अतः वर्ग मूल 4 अंको का होगा। और यदि दी ही संख्या पूर्ण वर्ग संख्या ऐसा ज्ञात हो तो आगे क्रिया करने की आवश्यकता नहीं और अभीष्ट वर्ग मूल = 2453 और पूर्ण वर्ग संख्या न हो तो अगली क्रिया के लिए शेष बचे 5 को अगले अंक 2 से जोड़ा तो 52 हुआ।

पाचंवा चस्ण = 52-(4,5,3) का द्वन्द्व योग = 52-49 = 3, 3 ÷ 4 = 0-3 अतः दशमलव से आगे का अंक 0 आया । और शेष 3 को अगले अंक जोड़ा तो 30 बना। छटा चरण = 30 - (5, 3, 1 का द्वन्द्व योग)

 $= 30-30 = 0, 0 \div 4 = 0-0$

अतः उत्तर में एक और 0 लगा और 0 को अगले अंक 9 से जोड़ा 9 बना

सातवां चरण = $9-(3)^2$ या 3 का द्वन्द्व योग

= 0, 0 4 = 0

अतः दी हुई संख्या पूर्ण वर्ग संख्या ही थी।

या

पाचर्वे चरण के पांच को शेष बची संख्या 2, 9 से जोड़ने पर संख्या = 529 5209-453 के वर्ग में द्वन्द्व योग द्वारा पहले तीन पद

= 5209 - 5209 = 0

अतः संख्या पूर्ण वर्ग है

और इसका वर्ग मूल = 2453

नोट: 453

 $\frac{x}{4^9/3^0/9=5209}$

इस प्रकार क्रिया पांचवे चरण में ही पूरी हो गई

9.2 दशमलव के कुछ स्थानों तक वर मूल करना तथा विनकुलम् का प्रयोग

प्रायः प्रश्नों में दशमलव के 2,3 स्थानों तक वर्ग मूल ज्ञात करना होता है। दशमलव के जितने स्थान तक वर्ग मूल निकालना अभीष्ट हो उससे एक स्थान अधिक तक निकालते हैं। और फिर यदि आखिरी अंक 5 से छोटा हो तो उसे छोड़ देते हैं और यदि 5 या 5 से बड़ा हो तो उसके पहले अंक को 1 से बढ़ा देते हैं। विनकुलम् का प्रयोग भाग की क्रिया को ही सरल करने के लिए किया जाता है।

उदाहरण (i) 517 का वर्ग मूल दशमलव के तीन स्थानों तक निकालो।

क्रिया प्रथम चरण = $2^2 = 4$, 5-4 = 1 अतः वर्ग मूल का प्रथम अंक = 2 और अगला । भाज्य = 11, भाजक = $2 \times 2 = 4$

दूसरा चरण = 11 ÷ 4 = 2-3, अतः वर्ग मूल का

दूसरा अंक = 2 और अगला भाज्य = 37

तीसरा चरण : दी हुई संख्या तीन अंकों की है अतः वर्ग मूल के पूर्णांश में दो अंक होंगे। अत: 22 के आगे दशमलव बिन्दु लगाया।

 $37-2^2=33, 33 \div 4=7-5$ अतः दशमलव के आगे पहला अंक= 7 और अगला भाज्य 50 हुआ।

पांचवा चरण = अगला शुद्ध भाज्य = 50-(2, 7) का द्वंद योग

$$= 50-2x7x2 = 22$$

$$=22 \div 4 = 3-10$$

छटा चरण : अगला शुद्ध भाज्य = 100-(2, 7, 3 का द्वन्द्व योग = 100-(2x2x3+7²) = 39

39 +4= 7-11, अतः वर्ग मूल का अगला अंक 7 हुआ

सातवां चरण : अगला शुद्ध भाज्य = 110- (2, 7,3,7) का द्वन्द्व योग = 110-70 = 40 40 ÷ 4 = 7-12

अतः दशमलव का चौथा अंक भी 7 आया और तीन स्थानों तक उत्तर = 22.738

(ii) 6 का वर्गमूल दशमलव के तीन स्थानों तक निकालो :

चरणश: क्रिया इस प्रकार होगी

(2)
$$20 \div 4 = 4-4$$

(3)
$$40-4^2 = 24$$
, $24 + 4 = 5-4$

(4)
$$40-(2x4x5) = 0,0 \div 4 = 0-0$$

(5)
$$0-(2x4x0+5^2) = -25 = \overline{25} \div 4$$

= $\overline{6}$ -T

अतः वर्ग मूल = 2.4506 = 2.4494 = 2.449 (iii) 435.567 का वर्ग मू ल दशमलव के तीन स्थानों तक निकाला। क्योंकि दी हुई दशमलव संख्या का पूर्णांश 3 अंकों में है। अतः उत्तर का पूर्णांश दो अंकों में हैं।

435.5670

4 03 378 20.8718

चरणशः क्रिया इस प्रकार होगी।

(2)
$$03 \div 4 = 0 - 3$$

(3)
$$35-0^2 = 35 \div 4 = 8-3$$

(4)
$$35 - 2x0x8 = 35, 35 \div 4 = 7-7$$

(5)
$$76-(2x0x7+8^2) = 12,12 \div 4 = 1-8$$

(6)
$$87-(2x0x1+2x8x7) = -25, \overline{25} \div 4 = 8-7$$

अतः वर्ग मूल = 20.8718

$$= 20.8702 = 20.870$$

(iv) 534623574 का वर्ग मूल दशमलव के तीन स्थानों तक निकालो क्योंिक दी हुई संख्या 9 अंकों की है । अतः वर्ग मूल का पूर्णांश $\frac{9+1}{2}$ = 5 का होगा ।

चरणशः क्रिया इस प्रकार रहेगी

(2)
$$13 \div 4 = 3 - 1$$

(3)
$$14-3^2 = 5$$
, $5 \div 4 = 1-1$

(4)
$$16-2x3x1=10$$
, $10 \div 4=2-2$

(5)
$$22-(2\times3\times2+1^2)=9$$
, $9 \div 4=1-5$

(6)
$$53-(2x3x1+2x1x2)=43, 43+4=9-7$$

(7)
$$75-(2x3x9+2x1x1+2^2) = 75-60 = 15,$$

 $15 \div 4 = 2-7$

(8)
$$77-(2x3x2+2x9x1+2x2x1)$$

= $77-(12+18+4) = 77-34 = 43$
 $43 \div 4 = 8-11$

हम देखते हैं कि छोटी संख्याओं का वर्ग मूल तो शीघ्र ही निकल जाता है। और मौखिक भी क्रिया सरलता से हो जाती है। बड़ी संख्याओं में वर्ग मूल निकालने के लिये यदि किसी चरण की क्रिया लिख कर भी करनी पड़े तो भी परम्परागत विधि की अपेक्षा वैदिक विधि से वर्ग मूल बहुत शीघ्र ठीक ठीक निकाला जा सकता है।

दशम अध्याय

10 विविधताएँ

प्रथम अध्याय में एक ही संख्या को विनकुलम् की सहायता से कई प्रकार से लिखना बताया गया है। अगले अध्यायों में योग, व्यवकलन, गुणा और भाग की कई विधियां बताई गई हैं। इस अध्याय में गुणा और भाग के एक ही प्रश्न को दस दस विधियों से किया गया है। सभी विधियां पहले भी बताई गई है। बच्चों को भी योग, व्यवकलन तथा गुणा भाग के प्रश्नों को खेल खेल में कई कई विधियों से करना सिखाने के लिए इस अध्याय को लिखा गया है। पर आम तौर पर तो बच्चों को उनकी विधियों का प्रयोग करना चाहिए जिनसे समय कम से कम लगे। इससे उनमें ठीक विधि की चयन करने क्षमता आएगी और मस्तिष्क का विकास भी होगा।

10.1 97x98 को अधिक से अधिक विधियों से करो।

(i) 97 ऊर्ध्व तिर्य गम्याम् के प्रयोग से

$$\frac{98}{81/135/56} = 9506 (1) 7x8 = 56$$
(2) 9× 8+9x7 = 135
(3) 9x9 = 81

(ii) 100 एक आधार से यावदूनम् के प्रयोग से $98^{-2} \times 97^{-3} = 9506$

(iii) विनकुलम् के प्रयोग से 'यावदिषकम' द्वारा 100 के आधार से 97x98 = 103x102 = 10506 = 9506 पहला पद = 3x2 = 06 दूसरा पद = 103+02= 105

(iv) विनकुलम् बदलकर ऊर्ध्वतिर्यम्भ्याम् द्वारा

10
$$\overline{3}$$
 (1) 2x3 = 6
10 $\overline{2}$ (2) 2x0+0x3 = 0
1/0/ $\overline{5}$ /0/6 (3) $\overline{2}$ x1+1x $\overline{3}$ +0x0 = $\overline{5}$

$$(4) 0x1+1x0 = 0$$

$$(5) 1x1 = 1$$

(v) आधार 10 मानकर, गुणक = 9

$$97x98 = 945/5^6 = 9506$$

(vi) आधार 10, गुणक 10

$$97^{-3}x98^{-2} = 9506$$

- (1) -3x-2 = 6
- (2) (97-2) या (98-3)x10 = 950

(vii) विनकुलम् के प्रयोग के बाद 10 को आधार लेकर गुणक = 10

$$97x98 = 10\overline{3}x10\overline{2} = 10\overline{5}06 = 9506$$

- (1) 3x2 = 6
- $(2)(10\overline{3}+\overline{2})x10 = 10\overline{5}0$

(viii) केवल 9 के अंक को ही विनकुलम् में बदलकर 100 के आधार से

$$97x98 = 1\overline{1}7x1\overline{1}8 = 1\overline{1}506 = 9506$$

- (1) $T7xT8 = 1/1^5/5^6 = 06$
- (2) $1\overline{17}+\overline{18}=1\overline{15}$

(ix) केवल 9 अंक को विनकुलम् में बदलकर ऊर्ध्वतिर्यम् द्वारा

1**T**7

1T8

$$12/1^6/1^5/5^6 = 11506 = 9506$$

- (1) 7x8 = 56
- (2) Tx8+Tx7 = T5
- (3) $8x1+1x7+\overline{1}x\overline{1} = 16$
- $(4) Tx1+1xT = \overline{2}$
- (5) 1x1 = 1
- (x) केवल 98 को विनकुलम् में बदल कर ऊर्ध्वतिर्यम द्वारा।

102

97

$$9/7/1^8/1^4 = 969 \overline{4} = 9506$$

(1)
$$2x7 = \overline{14}$$
, दूसरा पद = $7x0+9x\overline{2} = \overline{18}$
तीसरा पद = $7x1+9x0 = 7$, चौथा पद = $9x1 = 9$

इसी प्रकार केवल 97 को विनकुलम् में बदलकर ऊर्ध्वतिर्यम् के प्रयोग से कर सकते हैं। फिर उनको 10 और 100 के आधार से भी कर सकते हैं। विद्यार्थियों को स्वयं उनका अभ्यास करना चाहिए।

10.2 (i) 57432 को 988 के साथ दस विधियों से भाग दो क्योंकि भागफल दो अंकों में होगा।

अतः ध्वजंक विधि द्वारा

प्रथम चरण = 57 ÷ 9 = 5-12

दूसरा चरण = 124-5x8 = 84, 84 ÷ 9 = 8-12

तीसरा चरण = 1232-(88x58) में ऊर्घ्व तिर्यम गुण के पहले दो पद लने पर

अतः भागफल = 58, शेष = 128

(ii) इसी प्रकार विनकुलम् का प्रयोग करने पर

(iii) भाजक को विनकुलम् में बदल कर

= 58-(132+196)

-58-128

् (;;) भाजक को विनकुलम् में बदल कर तीन अंकों को ध्वजंक बनाते हुए

$$0\overline{12}$$
: 57: 432
1 0 $\overline{1}$
 $\overline{58-(\overline{1432-012}\times58)}$ पहले तीन पग लेने पर
= 58-($\overline{1432-\overline{696}}$)
= 58-($\overline{1432+\overline{696}}$)
= 58- 128

(v) भाजक के इकाई के अंक को विनकुलम् में बदल कर 💎 💮

$$988 = 99\overline{2}$$
 $9\overline{2}$: 574: 32
 9 12 7
 $58_{1}128$

- (1) 57 ÷ 9= 5-12
- (2) 124-9x5 = 79, $79 \div 9 = 8-7$
- (3) 732- (92x58 के पहले दो पग) 732-616 = 732-604 = 128 या भागफल में विनकुलम् प्रयोग करते हुए

92: 574: 32

(vi) भाजक के दहाई के अंक को विनकुलम् में वदलकर 988 = 1028

(vii) दोनों संख्याओं को विनकुलम् में वदल कर और तीन अंकों को ध्वजंक बनाने पर।

$$57432 = 1\overline{43} \ 432$$

 $988 = 10\overline{12}$

012: 143: 432

- (1) $1 \div 1 = 1 0$
- (2) $\overline{4}$ -1x0 = $\overline{4}$, $\overline{4}$ ÷ 1= $\overline{4}$ -0
- (3) 3- (4x0+Tx1) 0, T और 1, 4 की तिर्यंक गुण = 2, 2 ÷ 1= 2-0
- (4) = 432-(012x 142) के पहले तीन पद = 432-304 = 128

(viii) भाजक को विनकुलम् में बदल कर परावर्त्य योज्येत से

1012: 57432

012: 060

0 8 4 57/1 1 1 6

012

1/1 2 8 = 58 - 128

1012: 57 4 3 2

(0 6 .0)

या

भागफल = 58, शेष = 128

ix भाजक और भाज्य दोनों को विनकुलम् में बदल कर

1012: 1 4 3 4 3 2

012 012

048

 $\frac{024}{142/272}$

58/ 128

x भाजक के दहाई अंक और भाज्य को विन्कूलम में बदल कर

1028: 143:432 028 028 ₹32 028 141-940 = 59 - 940

= 58 - (940 + 988)

= 58- 128

केवल 988 को ही विनकुलम् में इस प्रकार बदलकर

 $988 = 10\overline{2}8$ 57432 1028: 028 (060)140 104 58/132 58-128

विद्यार्थी खेल खेल में और कई प्रकार से इसी प्रश्न को कर सकते है। भाग में मुख्यतः दो ही सूत्रों का प्रयोग होता है । ध्वजंक और परावर्त्य योज्येत । अभ्यास से ही विद्यार्थी यह जान सकते हैं कि किस विधि का किन किन अंकों को विनकुलम् में बदलकर प्रयोग कर सकते हैं। इससे मस्तिष्क का विकास होता है और गणित में रूचि बढ़ती है।

ग्याहरवां अध्याय

11. व्यवहारिक गणित में वैदिक गणित का प्रयोग

व्यवहारिक गणित में योग, व्यवक लन, गुणा और भाग तो स्थान स्थान पर करना ही पड़ता है। और उनके ही सरल विधियों से और शीघ्र करना पूर्व अध्यायों मे बताया गया है।

यहाँ पर अंक गणित, व्यवसायिक गणित, क्षेत्रमिति तथा बीजगणित में बैदिक निणत के प्रयोग के उदाहरण दिये जा रहे हैं।

11.1 साधारण भिन्न को दशमलव भिन्न में बदलना

(i) 576489/3274 को दशमलव भिन्न में दशमलव के दो स्थानों तक बदलो।

274. 576489

$$(1) 5 \div 3 = 1-2$$

$$(2) 27-2x1 = 25 \div 3 = 7-4$$

(3)
$$46-(2x7+1x7) = 25 \div 3 = 6-7$$

उत्तर का पूर्णांश तीनांकों में होगा अतः दशमलव लगा कर

(4)
$$74-(6x2+1x4+7x7) = 9, 9 \div 3 = 0-9$$

(5)
$$98-(7x4+0x2+6x7) = 28, 28 + 3=8-4$$

(6)
$$49-(2x8+6x4+7x0)=9 \div 4=0-9$$

अतःउत्तर = 176.08

11.2 प्रतिशत

(1) 78 का 63 कितने % है । उत्तर दशमलव के दो अंकों तक निकालो अभीष्ट प्रतिशत = $\frac{6300}{78}$

8 : 63 00. 00

(1)
$$63 \div 7 = 8-7$$

(2)
$$70 - 8 \times 8 = 6, 6 \div 7 = 0 - 6,$$
 दशमलव लगाकर

(3)
$$60-8x0 = 60, 60 \div 7 = 7 - 11$$

(4)
$$110-8x7 = 54 \div 7 = 6-12$$

(5) $120-6x8 = 72 \div 7 = 9-9$

अतः दो स्थानों तक शुद्ध उत्तर = 80.77%

(ii) 5768 में 469 कितने % दशमलव के दो स्थानों तक उत्तर निकालो ।

अभीष्ठ % =
$$\frac{46900}{5768}$$
 768 : 46900
 5 6810
 8.131

- (1) 46 5÷8-6 पूर्णांश एक अंक का होगा अतः दशमलव लगा कर
- (2) 69-8x7 = 13, $13 \div 5=1-8$
- (3) $80-(1x7+8x6) = 25, 25 \div 5=3-10$
- (4) 100-(3x7+8x8+1x6) = 9, 9 ÷ 5= 1-4 अतः दो स्थानों तक उत्तर = 8.13%

(iii) 76548/327546 दशमलव के दो स्थानों तक % में बदलो।

अभीष्ठ % =
$$\frac{7654800}{327564}$$

27564: 7654800

- (1) $7 \div 3 = 2 1$
- (2) $16-2x^2 = 12$, $12 \div 3 = 3-3$
- (3) 35-(3x2+2x7) = 15, $15 \div 3 = 3-6$
- (4) $64-(2x5+3x2+3x7) = 27 \div 3=6-9$
- (5) 98-(2x4+6x2+3x7+3x5) = 42 $42 \div 3 = 9-15$

अतः उत्तर = 23.369= 23.37%

11.3 असान्त दोहराये जाने वाले दशमलव

यहाँ एकाधिकेन सूत्र का प्रयोग होता है। अर्थात् पहले जो अंक है उससे 1 अधिक से गुणा करने पर।

 $(i)\frac{1}{7}$ को दशमलव भिन्न में बदलो

प्रथम चरण में 1/7 को ऐसी साधारण भित्र में ही बदला ताकि हरों की इकाई का अंक 9 हो

$$\frac{1}{7} = \frac{7}{49}$$

दूसरा चरण :- अंश 7 को उत्तर के दोहराने वाले दशमलव का दाई ओर का प्रथम अंक मानकर उसे हरों में दहाई के अंक 4 में 1 जोड़कर गुणा किया तो 7x5 = 35 आया अतः दशमलव का दूसरा अंक 5 हुआ और हासिल 3 आया । फिर दूसरा अंक 5x5+3=28 अतः तीसरा अंक 8 आया और हासिल 2 आया । फिर 8x5+2=42 अतः चौथा अंक 2 आया और हासिल 4 आया ।

फिर 2x5+4 = 14 अतः पांचवां अंक 4 आया और हासिल 1 आया ।

फिर 4x5+1 = 21 अतः छटा अंक 1 आया और हासिल 2 आया ।

फिर 1x5+2=7 जो दोबारा पहले वाला अर्थात् पहला अंक आ गया और हासिल भी कोई नहीं । इसे आगे गुणा करने पर दूसरा अंक आ जाएगा । अतः 6 अंकों को ही रखते हुए ऊपर बार बार की रेखा खींच कर $\frac{1}{7}=.\overline{124857}$

 $\frac{1}{7}$ को बदलने के पश्चात् $\frac{2}{7}$, $\frac{3}{7}$ आदि भी सरलता से दशमलव में बदले जा सकते हैं। वेदों में अंको को अक्षरों में और अक्षरों को अंकों में बदलने के लिए कोड का प्रयोग किया जाता है।

इस का तो पूरा विवरण यहां नहीं दिया जा रहा पर 1/7 को दशमलव में बदलने का सरल कोड है। यह कोड है - 'केवलैः समकं गुणयात", जिसका अर्थ है 1/7 को दशमलव में बदलने के लिए 143×999 से गुणा करो तो इससे 1/7 के दोहराने वाले दशमलव के सभी अंक आ जाते हैं $= 143 \times 999 = 142857$

अत: 1/7 = .142857

(ii) $\frac{1}{11}$ को दशमलव भिन्न में बदलो

 $\frac{1}{11} = \frac{9}{99}$ अर्थात् दशमलव का दाई ओर का पहला अंक 9 और गुणक दहाई का अंक (9+1) = 10 $9 \times 10 = 90$ अर्थात् दूसरा अंक 0 आया और हासिल 9 आ गया, $0 \times 10 + 9 = 9$ जो फिर 9 आ गया अतः $\frac{1}{11} = .09$

(iii) $\frac{1}{13}$ को दशमलव भिन्न में बदलो

 $\frac{1}{13} = \frac{3}{39}$ अर्थात् दशमलव का प्रथम अंक 3 है। और गुणक = 4

.076923

 $\frac{1}{13}$ के लिये जो वैदिक कोड है। उसका अर्थ है $\frac{1}{13}$ को दशमलव में बदलने के लिए 077x999 अतः $\frac{1}{13}$ = .076923

(iii) $\frac{1}{17}$ को दशमलव भित्र में बदलो । $=\frac{7}{119}$ अतः दशमलव का प्रथम अंक = 7 गुणक =11+1 = 12

अतः $\frac{1}{17} = .0588235294117647$

कोड से भी = 05882353x99999999

(iv) $\frac{527}{899}$ दशमलव के चार अंकों तक ज्ञात करो। 899 = 90T

01: 5 27. 000

11.4 व्यवसायिक गणित में वैदिक गणित का प्रयोग

(i) एक आदमी ने 20000 रूपये की पूंजी से व्यापार आरम्भ किया । उसकी पूंजी में प्रथम **र्च** में 4% तथा दूसरे वर्ष में 5% की वृद्धि हुई 12 वर्षों के अन्त में उसकी पूंजी कितनी हो जायगी।

> वृद्धि दर के सूत्र द्वारा दो वर्ष पश्चात् पूंजी = $20000x \frac{104}{100} \times \frac{105}{100}$ = 2x104x105

> > = 2x10920 = 218402

(ii) एक आदमी ने 30000 रू . की पूंजी व्यापार में लगाई उसकी पूंजी में प्रथम वर्ष 3% तथा दूसरे वर्ष 4% की वृद्धि हुई पर तीसरे वर्ष 2% की कमी हो गई।

तीन वर्षों के अन्त में उसकी पूंजी बताओ।

तीन वर्ष के अन्त में उसकी पूंजी

$$= 30000 \times \frac{103}{100} \times \frac{104}{100} \times \frac{98}{100}$$
$$= \frac{3x103^{+3}x104^{+4}x98^{-2}}{100} = \frac{105\ 02\ \overline{24} \times 3}{100}$$

$$=\frac{3150672}{100} = 31493.28$$

 $=\frac{3150672}{100}=31493.28$ (iii) एक नगर की जनसंख्या पहले वर्ष 2% बढ़ी दूसरे वर्ष 2% की कमी हुई और तौसरे ; वर्ष फिर 3 % की वृद्धि हुई । तीन वर्ष के अन्त में जनसंख्या कितनी हो जाएगी यदि आरम्प में जनसंख्या 1000000 हो

तीन वर्ष पश्चात् जन संख्या =
$$10^6 \times \frac{102}{100} \times \frac{98}{100} \times \frac{103}{100}$$

= $102^{+2} \times 98^{-2} \times 103^{+3}$
= 1030412
= 1029588

(iv) एक पुरुष ने 5000 रुपये 5% की दर से 3 वर्ष के लिए उद्यार लिए। यदि आज 🟦 वर्ष संकलन किया जाए । तो 3 वर्ष पश्च्चात् उसे कितनी राशि वापिस करनी पड़ेगी।

चक्रवृद्धि व्याज के सूत्र से

अभीष्ठ राशि = 5000)
$$(1 + \frac{5}{100})^3$$

= 5000x(1.05)³
= 5000x1.157625
= 1157.625x5
= 5788.125
= 5788 रुपये।

11.5 दोन्नमिति

(i) एक खेत 115 मी . लम्बा और 96 मी . चौड़ा है उसका क्षेत्रफल बताओ ।

क्षेत्रफल = +15 -4

$$115^{15} \times 96^{-4}$$

= $111\overline{60}$
= 11040 व . मी .

(ii) एक घनाम की लम्बाई 5.4 मी . चौड़ाई 5.3 मी . और ऊंचाई 5.2 मी . है। उत्तका आयतन ज्ञात करो।

आयतन = 5.4x5.3x5.2 घ . मी .

वैदिक गणित से

$$54x53x52 = \frac{54+3+2}{4} / \frac{4+3+3\times2+4\times2}{2} / 4 \times 3 \times 2$$
$$= \frac{59}{4} / \frac{26}{2} / 24$$

= 14.75/13/24

=148824

अतः आयतन = 148.824 घ . मी .

(iii) एक वृत का क्षे . फ . ज्ञात करो जिसका अर्द्धव्यास 3.2 से . मी . जबिक $\pi=3.14$

(iv) एक बेलन के आंधार की त्रिज्या 4.2 से . मी . तथा उंचाई 4.5 से . मी . उसका आयतन मालुम करो जबिन 14

आयतन = 3.14x(4.2)²x4.5

वैदिक गणित से

$$4.2x4.2x4.5 = 16(42+7)/4(2x2+2x5+2x5)/20$$

= $784/9^6/2^0$
= 79380 7938
$$\frac{314}{21/3^4/4^6/6^3/2}0/3^2$$

= 2492532
अतः आयतन् = 249.25320

= 249.2532 घ . से . मी .

(v) एक गोले की त्रिज्या 5.2 से . मी . है उसका वक्र पृष्ठ तथा आयतन ज्ञांत करो जबिक $\pi=3.14$

वक्र पृष्ठ = 4π r² = 4x3.14x(5.2)²

= 12.56x27.04

= 339.6224 व . से . मी .

52 x 52
$$= (52+2)x5/4$$

$$= 2704$$

$$\frac{1256}{2/1^{1}/2^{4}/5^{1}/5^{0}/2^{0}/2^{4}}$$

$$= 3396224$$
आयतम
$$= \frac{4}{3}\pi^{3}\pi^{3}$$

$$= \frac{4}{3}x3.14x(5.2)^{3}$$

$$= \frac{12.56}{3} \times \frac{56}{4}/\frac{12}{2}/08 \times 56/12/08$$

$$= \frac{12.56}{3} \times 140.608$$

$$= \frac{1766.03648}{3} = 555.34549 \text{ स} . \text{ सो .}$$

$$140608$$

$$= \frac{1256}{16/1^{3}/3^{2}/3^{6}/3^{8}/5^{2}/4^{0}/4^{8}} = 176603648$$

11.6 बीज गणित

वीज गणित की व्यवकलन में तो परावर्त्य योज्येत का से प्रयोग होता है । गुणा में ऊर्ध्वतिर्यग्म्यात्' तथा भाग में फिर परावर्त्य योज्येत के सूत्रों का प्रयोग होता है ।

(i)
$$5x^2-3x+4$$
 में से $3x^2+4x-5$ घटाओ $5x^2-3x+4$ $\frac{3x^2+4x-5}{2x^2-7x+9}$ चिन्ह बदलकर

(ii) 2a+3b को 3a-2b से गुणा करो

$$2a+3b$$
 फर्च तिर्य ग् द्वारा
$$3a-2b$$

$$6a^{2}+9ab-4ab-4b^{2}=6a^{2}+5ab-4b^{2}$$

ऊर्व्यतियगुम्याम् द्वारा बाएं से आरम्भ करके

$$=6a^{4} + (2a^{2}x - 3a + 3a^{2}x + 3a) + (3a^{2}x - 2 + 2x + 2a^{2}x + 3ax - 3a) + (-2x + 2a^{2}x + 3ax - 3a) + (-2x + 2a^{2}x + 3a^{2}x - 3a^{2}x 3a^{$$

(iv)
$$3x^2-3x+4$$
 को $2x^2-2x-3$

$$3x^{2}-3x+4$$

$$-2x^{2}-2x-3$$

$$= 3x^{2}x2x^{2}+(2x^{2}x-3x+3x^{2}x-2x)+(2x^{2}x4+3x^{2}x-3x+3xx-2x)-2xx4-3xx-3$$

$$+4x-3$$

$$=6x^{4}-6x^{3}-6x^{3}+8x^{2}-9x^{2}f+6x^{2}-8x+9x-12$$

$$=6x^{4}-12x^{2}+5x^{2}+x-12$$

(v) x⁴-3x²+2x-3 को x-3 से भाग दो

अतः नागफल = x³+3x²+6x+20, शेष = 57

(vi) $x^4 + 2x^3 - 3x + 5 \Rightarrow x^2 + 2x + 3$

से नाग दो।

अतः **मा**गफल = x²-3

शेष = 3x+14

(vii)
$$x^3-4x^2+5x-2=0$$
 को हल करो
अनुमान से यदि $x=1$ हो
तो $x^3-4x^2+5x-2=0$

अतः गुणनखण्ड प्रमेय द्वारा x-1 समीकरण के बायें पक्ष का गुणनखण्ड है। अतः x-1 से भाग

$$x-1$$
: x^3-4x^2+5x-2
+1 -3 +2 /0
अत: भागफल $x^2-3x+2=0$

$$(x-2)(x-1)=0$$

x = 2, 1

अत: x=1, 1, 2

11.7 लघु गणित में वैदिक गणित का प्रयोग

लघु गणित में ऋषात्मक पूर्णांश किसी अंक पर रेखा खींच कर लिखते हैं जोकि विनकुलम् का ही खप है। किसी ऋणात्मक संख्या को ऋणात्मक पूर्णांश और घनात्मक अपूर्णांस लिखने में वैदिक निखलं सूत्र का ही प्रयोग होता है।

(i) -3.4235 को इस प्रकार लिखो कि अपूर्णांश घनात्मक हो। प्रायः इसे इस प्रकार किया जाता है

= -4+.5765 = 4:5765

और वैदिक निखलं नवतः चरमं दशतः द्वारा

सीघे -3.4235 = 4.5765

अर्थात् अन्तिम को 10 से शेष को 9 से घटाया और बाई ओर के पूर्णांश को क्योंकि ऋणात्मक ही रखना है उससे एक कम कारक रूप बनाया इसी प्रकार यदि ऋणात्मक पूर्णांश और घनात्मक अपूर्णांश वाली संख्या को यदि पूर्ण ऋणात्मक सं ख्या में बदलना हो तो फिर इसी सूत्र का प्रयोग किया जाता है और अपूर्णांश के ऋणात्मक भाव में 1 जोड़ दिया जाता है

जैसे 5.7634 = -4.2366

(ii) 3.5432 में से 2.7645 घटाओ 'परावर्त्य योज्यित' द्वारा

$$\overline{3.5432}$$
 $\overline{3.5432}$ $\overline{2.7645}$ = $+2.\overline{7645}$ $\overline{645}$

= 2.7787

(iii) 3.6784 में से 4.3589 घटाओ

$$\begin{array}{r}
\overline{3.6784} \\
+ \overline{4.\overline{3589}} \\
\overline{7.3205} = \overline{7.3195}
\end{array}$$

(iv) सरल करो :- 3.5768-4.9765

+5.7648-2.5364

ऋणात्मक संख्याओं में परावर्त्य योज्येत के प्रयोग से

$$= \overline{3.5768} + 4.\overline{9765} + \overline{5.7648} + \overline{2.5364}$$
$$= 7.8287$$

पूर्णाशों का जोड़ = 3+4+5+2=6

दशांशों का जोड़ = $5+9+7+5=\overline{2}$

शतांशों का जोड़ = 7+7+6+3 = 3

सहस्रांशों का जोड़ = $6+\overline{6}+4+\overline{6}=\overline{2}$

दस सहसांशों का जोड़ = $8+\overline{5}+8+\overline{4}=7$

= 6.2327 = 7.8287 अभ्यास से सारी क्रिया एक ही पंक्ति में की जा सकती है।

वैदिक जाञ्च

= 3.5768 की एक अंकीय संख्या = 5
-3+5=2, 2+7= 9, 6+8= 14, 1+4= 5
-4.9765 की एक अंकीय संख्या = 5
-4+7 = 3, 3+6= 9
-5.7648 की एक अंकीय संख्या = 2
-5+7 = 2+6 = 8+4=12, 1+2+8= 11, 1+1= 2
2.5364 की एक अंकीय संख्या = 2

$$3+6=9,5+4=9$$

7.8287 की एक अंकीय संख्या = 9

$$-7+8=1$$
, $1+2=3$, $3+8=11$, $1+1+7=9$

अत: 5-5+2-2= 0

एक अंकीय संख्या 9 = 0

अतः उत्तर शुद्ध है।

अभ्यास से जाञ्च भी इकट्ठी ही हो जाती है।

$$11.8$$
 सरल करो $\frac{988 \times 872}{975}$

$$\frac{988 \times 872}{975} = \frac{10\overline{12} \times 1\overline{132}}{10\overline{3}5}$$

ऊर्घ्व तिर्यक गुणा द्वारा

$$\frac{1\overline{141544}}{10\overline{35}} = \frac{861536}{10\overline{35}}$$

ध्वजंक सूत्र से भाग द्वारा

35. 86153600

10 659296

883.6266 = 883.627

दशमलव के तीन स्थानों तक

इस प्रकार यदि लघु गणित की सारिणियों के प्रयोग से करते तो भी शायद इतना ही समय लगता और उत्तर दशमलव के एक स्थान तक ही निकलता और यह अभ्यास से और भी कम समय में हो जाना था।

समाप्तम्

प्राचीन वैदिक गणित के सूत्र

- 9. एकाधिकेन पूर्वेण
- २. निखलं नवतक्ष्चरमं दशतः
- ३. उर्ध्वतिर्यग्भ्याम्
- ४. परावर्त्ययोज्येत्
- ५. शून्य साम्य समुच्चये
- ६. आनुरूप्ये शून्यमन्यत्
- ७. संकलन व्यवकलनाभ्याम्
- ८. पूरणापूर्णाभ्याम्
- ६. चलन कलनाभ्याम्
- ९०. यावदूनम्
- 99. व्यष्टि समष्टिः
- १२. शेषाण्यड्.केन चरमेण
- १३. सोपान्त्यद्वयमन्त्यम्
- १४. एकन्यूनेन पूर्वेण
- १५. गुणितः समुच्चयः
- %. गुणक समुच्चयः

**+ ++ + = ... 当 × サーナョ÷ · ÷ ÷ × 4 × --+ 181× · = -1+1001 + × × = + = + × ++ マー・キャー・キャー・キャー・キャー・キャー・キャー・キャー・キャー・キャー・ 11+11 + ollo