AST20105 Data Structures & Algorithms

CHAPTER 9 – SORTING I

Instructed by Garret Lai

Before Start

- Sorting is one of the most important operations performed by computers.
- The efficiency of data handling can often be substantially increased if the data are sorted according to some criteria of order.

Before Start

For example:

- It would be practically impossible to find a name in the telephone directory if the names were not alphabetically ordered.
- The same can be said about dictionaries, book indexes, payrolls, bank accounts, student lists, and other alphabetically organized materials.

 Sorting algorithms refer to algorithms that arrange elements of a list in order

Categories:

- Comparison-based sorting
 - Selection sort
 - Insertion sort
 - ▶ Bubble sort
 - Merge sort
 - Quick sort
- Non comparison-based sorting
 - Counting sort
 - Bucket sort
 - ▶ Radix sort

- The first step is to choose the criteria that will be used to order data.
 - Very often, the sorting criteria are natural, as in the case of numbers.
 - A set of numbers can be sorted in ascending or descending order.
 - □ Ascending: (1, 2, 5, 8, 20)
 - □ Descending: (20, 8, 5, 2, 1)

- Names in the phone book are ordered alphabetically by last name, which is the natural order.
 - For alphabetic and non-alphabetic characters, the American Standard Code for Information Interchange (ASCII) code is commonly used.

Common Terminology for Sorting

In-place sorting

The amount of extra space required to sort the data is constant with the input size

Stable sorting

A stable sorting preserves relative order of equal values

It's the same strategy that you use for sorting your bridge hand.

- You pick up a card,
- Start at the beginning of your hand and find the place to insert the new card,
- Insert it and move all the others up one place.


```
template<class T>
   void insertionsort(T data∏, int n) {
       for (int i = 1, j; i < n; ++i) {
3.
          T tmp = data[i];
           for (j = i; j > 0 \&\& tmp < data[j-1]; --j)
               data[i] = data[i-1];
6.
           data[j] = tmp;
8.
```

Worst Case Analysis of Insertion Sort

- Occurs if the array is sorted in reverse order
 - Inserting the nth element, we need at most n-1 comparisons and n-I element movement Inserting the n-Ith element, we need at most n-2 comparisons and n-2 element movement

Inserting the 2nd element, we need I comparison and one element movement

Total number of operations = 2 * (1 + 2 + 3 + ... + n-1)= 2 * ((I + n - I)(n-I) / 2)= n(n-1) $= O(n^2)$

Best Case Analysis of Insertion Sort

Occurs if the array is already sorted

Inserting the nth element, we need I comparison and 0 element movement Inserting the n-Ith element, we need I comparison and 0 element movement

. . .

Inserting the 2nd element, we need 1 comparison and 0 element movement

Total number of operations

```
= n - I
= O(n)
```

Insertion Sort - Pros and Cons

Pros

- ▶ Efficient for sorting of small data
- Efficient for data that are almost sorted
- In-place sorting as only constant amount of additional memory space is required
- Stable sorting algorithm, since it does not change the relative order of elements with equal keys

Cons

Less efficient for sorting of large data

- Selection sort is an attempt to localize the exchanges of array elements by finding a misplaced element first and putting it in its final place.
 - The element with the lowest value is selected and exchanged with the element in the first position.


```
template<class T>
   void selectionsort(T data[], int n) {
        for (int i = 0, j, least; i < n-1; ++i) {
3.
            for (j = i+1, least = i; j < n; ++j)
                if (data[j] < data[least])</pre>
5.
                    least = j;
6.
            swap(data, least, i);
8.
```

Worst Case Analysis of Selection Sort

Finding the largest element needs n-1 comparisons and 1 element swap
Finding the second largest element needs n-2

comparisons and I element swap

. . .

Finding the n-1th largest element needs I comparison and I element swap

Total number of operations

```
= (n-1) + (1 + 2 + 3 + ... + n-1)
= (n-1) + (1+n-1)(n-1)/2
= (n-1) + n(n-1)/2
= O(n^2)
```

Selection Sort - Pros and Cons

Pros

Easy to implement

Cons

Is no faster on a partially sorted array

- A bubble sort can be best understood if the array to be sorted is envisaged as a vertical column whose smallest elements are at the top and whose largest elements are at the bottom.
 - The array is scanned from the bottom up, and two adjacent elements are interchanged if they are found to be out of order with respect to each other.


```
    template < class T >
    void bubblesort(T data[], int n) {
    for (int i = 0; i < n-1; ++i)</li>
    for (int j = n-1; j > i; --j)
    if (data[j] < data[j - 1])</li>
    swap(data, j, j-1);
    }
```


The divide-and-conquer strategy is used in quicksort.
Below the recursion step is described:

- Choose a pivot value
 - We take the value of the middle element as pivot value,
 - but it can be any value, which is in range of sorted values, even if it doesn't present in the array.

The divide-and-conquer strategy is used in quicksort. Below the recursion step is described:

Partition

- Rearrange elements in such a way,
 - □ that all elements which are lesser than the pivot go to the left part of the array and
 - □ all elements greater than the pivot, go to the right part of the array.
 - □ Values equal to the pivot can stay in any part of the array. Notice, that array may be divided in non-equal parts.

The divide-and-conquer strategy is used in quicksort. Below the recursion step is described:

- Sort both parts
 - Apply quicksort algorithm recursively to the left and the right parts.

Partition algorithm in detail

- There are two indices i and j.
- At the very beginning of the partition algorithm
 - i points to the first element in the array and
 - **j** points to the last one.
- Then algorithm moves i forward, until an element with value greater or equal to the pivot is found.
- Index j is moved backward, until an element with value lesser or equal to the pivot is found.

Partition algorithm in detail

- If i ≤ j then they are swapped and i steps to the next position (i + I), j steps to the previous one (j I).
- Algorithm stops, when i becomes greater than j.
- After partition,
 - all values before i-th element are less or equal than the pivot and
 - ▶ all values after **j-th** element are greater or equal to the pivot.

Example:

▶ Sort {1, 12, 5, 26, 7, 14, 3, 7, 2} using quicksort.

1 | 12 | 5 | 26 | 7 | 14 | 3 | 7 | 2

Unsorted

▶ Pivot value = 7

- 1 2 3 7 5
- 1 2 3 5 7

▶ Pivot value = 5

> 5 >= 5 >= 3. swap

i > j, stop partition

run quicksort recursively

pivot value

Pivot value = 7

i > j, stop partition

run quicksort recursively

Quicksort

pivot value

▶ Pivot value = 26

i > j, stop partition

run quicksort recursively

Quicksort

Quicksort

```
if (i \le j) {
   void quickSort(int arr[], int left, int right)
                                                                 13.
                                                                                     tmp = arr[i];
                                                                 14.
        int i = left, j = right;
2.
                                                                                     arr[i] = arr[j];
                                                                 15.
        int tmp;
3.
                                                                                     arr[j] = tmp;
                                                                 16.
        int pivot = arr[(left + right) / 2];
4.
                                                                                     i++;
                                                                 17.
5.
                                                                 18.
                                                                                     j--;
        /* partition */
6.
                                                                 19.
        while (i \leq j) {
7.
                                                                           };
                                                                 20.
             while (arr[i] < pivot)
8.
                                                                 21.
                  i++;
9.
                                                                           /* recursion */
                                                                 22.
             while (arr[j] > pivot)
10.
                                                                           if (left \leq j)
                                                                 23.
                  j--;
11.
                                                                                quickSort(arr, left, j);
                                                                 24.
12.
                                                                           if (i < right)
                                                                 25.
                                                                                quickSort(arr, i, right);
                                                                 26.
                                                                 27.
```

Quicksort - How to Pick Pivot?

- Use the last element as pivot
 - Fine if the input is random
 - If the input is already sorted in non-decreasing order or the reverse
 - ▶ All elements would be in one sub-array and the other is empty
 - This happens for every recursively calls
 - Resulted in a very bad running time
- Randomly chosen pivot
 - Generally is a good option, but random number generation can be expensive

Quicksort - How to Pick Pivot?

- Use the median as the pivot
 - Partitioning always partitions the input array into two halves of the same size
 - ▶ However, it is difficult to find median
 - Solution: Use median of three
- Median of three
 - Compare three elements, the leftmost, rightmost and the center one

Analysis of Quicksort

Assumptions:

- A random pivot
- No use of insertion sort for small array
- Let T(n) be the running time of quick sort to sort n numbers
- Assume n is a power of 2

Analysis:

- Pivot selection: O(1) time
- Partitioning: O(n) time
- Running time of two recursive calls T(1) = 1T(n) = T(i) + T(n-i-1) + n

Worst Case Analysis of Quick Sort

- Worst case when the chosen pivot is the smallest element, all the time
- Partition is always unbalanced
- ► T(I) = I
 T(n) = T(n-I) + n

```
T(n)=T(n-1)+n
T(n)=T(n-2)+(n-1)+n
T(n)=T(n-3)+(n-2)+(n-1)+n
T(n)=T(n-k)+(n-(k-1))+...+n
n-k = 1
k = n - 1
T(n) = T(1) + (n-(n-1-1)) + ... + n
T(n) = 1 + 2 + ... + n
T(n) = (1+n)(n) / 2
T(n) = O(n^2)
```

Best Case Analysis of Quick Sort

- Best case when the chosen pivot is always the median of the array, all the time
- Partition is always balanced
- ► T(I) = I
 T(n) = 2T(n/2) + n

```
T(n)=2T(n/2)+n
    = 2(2T(n/2^2) + n/2) + n
    = 2^2T(n/2^2) + 2n
    = 2^2(2T(n/2^3) + n/2^2) + 2n
    = 2^3T(n/2^3) + 3n
    = 2^{k}T(n/2^{k}) + kn
n = 2^k
\log_2 n = \log_2 2^k
k = log_2 n
T(n) = nT(1) + nlog_2n
     = n(1) + nlog_2 n
     = nlog_2n + n
     = O(nlogn)
```

Quick Sort - Pros and Cons

On average, the running time is O(nlogn)

- Pros
 - Extremely fast on average
- Cons
 - Fairly tricky to implement
 - Very slow in the worst case (but not likely to occur)

- ▶ The problem with quicksort:
 - Its complexity in the worst case is $O(n^2)$
 - Because it is difficult to control the partitioning process
 - There is no guarantee that partitioning results in arrays of approximately the same size.

- ▶ The problem with quicksort:
 - To overcome this problem, another strategy is to make partitioning as simple as possible and concentrate on merging the two sorted array.
 - This strategy is characteristic of mergesort.

It was one of the first sorting algorithms used on a computer.

Developed by John von Neumann.

- The key process in merge sort is
 - Merging sorted halves of an array into one sorted array.
 - However, these halves have to be sorted first, which is accomplished by merging the already sorted halves of these halves.
 - This process of dividing arrays into two halves stops when the array has fewer than two elements.
 - The algorithm is recursive in nature.

Merge Sort - How to Merge?

- Input: Two sorted array A and B
- Output: An sorted array C
- Three counters: aCurr, bCurr, cCurr
 - Initially set them to the beginning of their respective arrays

- The smallest of A[aCurr] and B[aCurr] is copied to the next entry in C, and the counters are increased by I
- When either count reached the end, the remaining elements in the other list is copied to C

Example - Merge

Original	Α	1	13	24	26	2	15	27	38	В	
		↑aCurr				个bCurr					
	С										
		↑cCurr									
Step I	Α	1	13	24	26	2	15	27	38	В	
			↑aCurr			↑bCurr					
	С	1									
			个cCurr							_	
Step 2	Α	1	13	24	26	2	15	27	38	В	
		↑aCurr				↑bCurr					
	С	1	2								
				↑cCurr						_	

Example - Merge

Step 3	Α	1	13	24	26	2	15	27	38		
	_			↑aCurr			个bCurr	↑bCurr			
	С	1	2	13							
	1				个cCurr						
Step 4	Α	1	13	24	26	2	15	27	38		
	_			↑aCurr		个bCurr					
	С	1	2	13	15						
						↑cCurr					
Step 5	Α	1	13	24	26	2	15	27	38		
	_				↑aCurr	↑bCurr					
	С	1	2	13	15	24					
							个cCurr				

Example - Merge

Step 6	Α	1	13	24	26	2	15	27	38
								个bCurr	
	С	1	2	13	15	24	26		
								个cCurr	
Last step	Α	1	13	24	26	2	15	27	38
Copy all the									
remaining	С	1	2	13	15	24	26	27	28
elements over to C									

Analysis of Merge Operation

- The running of merge takes O(n1 + n2) where n1 and n2 are the sizes of the two sub-arrays, which is O(n)
- Space requirements of merge operation:
 - Merging two sorted lists requires O(n) extra memory
 - Additional work to copy the temporary array back to the original array

Merge Sort - C++ Code

```
1. void mergeSort(int arr[], int left, int right, int size)
2. {
3.    if(left < right)
4.    {
5.       int center = (left + right)/2;
6.       mergeSort(arr, left, center, size);
7.       mergeSort(arr, center + 1, right, size);
8.       merge(arr, left, center, right, size);
9.    }
10.}</pre>
```

```
    void merge(int arr[], int low, int mid,

                           int high, int size)
   {
2.
      int* c = new int[size];
3.
      int l = low;
4.
      int i = low;
5.
      int j = mid+1;
6.
      while((1<=mid) && (j<=high)) {
7.
          if(arr[l] <= arr[j]) { c[i] = arr[l]; l++; }
8.
          else { c[i] = arr[j]; j++; }
9.
          i++;
10.
11.
      if(1 > mid) {
12.
          for(int k=j; k<=high; k++) {</pre>
13.
             c[i] = arr[k]; i++;
14.
          }
15.
      }
16.
      else {
17.
          for(int k=1; k<=mid; k++)</pre>
18.
          {
19.
             c[i] = arr[k]; i++;
20.
          }
21.
      }
22.
      for(int k=low; k<=high; k++)</pre>
23.
            arr[k] = c[k];
24.
      delete [] c;
25.}
```

Analysis of Merge Sort

- Let T(n) be the worst-case running time of merge sort to sort n numbers
- Assume n is a power of 2
- Analysis:
 - Divide: O(1) time
 - Conquer: 2T(n/2) time
 - ▶ Combine step: O(n) time
 - Recurrence equation:

$$T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

```
T(n)=2T(n/2) + n
    = 2(2T(n/2^2) + n/2) + n
    = 2^2T(n/2^2) + 2n
    = 2^2(2T(n/2^3) + n/2^2) + 2n
    = 2^3T(n/2^3) + 3n
    = 2^{k}T(n/2^{k}) + kn
n = 2^k
\log_2 n = \log_2 2^k
k = log_2 n
T(n) = nT(1) + nlog_2n
     = n(1) + nlog_2n
     = nlog_2n + n
     = O(nlogn)
```

Merge Sort - Pros and Cons

Pros

It is a stable sort, i.e. it preserves relative order of equal values

Cons

Requires additional storage proportional to the size of the input array for merge operations

CHAPTER 9 END