PROCESAMIENTO DEL LENGUAJE NATURAL EN NOTICIAS DE PERIODICOS ESPAÑOLES

VERÓNICA RUIZ MÉNDEZ

<u>vruiz@afi.es</u> https://www.linkedin.com/in/veronica-ruiz-mendez/

Grupos de Usuarios de R de Madrid 28 de Julio de 2021

Descripción del problema

Descripción del problema

WEB SCRAPPING NOTICIAS PERIODICOS

Indicadores temporales para informar de la evolución de éstos a lo largo del tiempo gracias a la información extraída de las noticias scrapeadas.

Extraer el **sentimiento de las noticias** scrappeadas haciendo uso de algoritmos de Machine Learning.

Estado del arte

Estado del arte

API The New York Times

headline	date	doc_type	material_type
Couture Creations for Dancing Bodies	2020-01-01 10:00:21	article	News
100 Years Ago, the Booziest January Suddenly Dried Up	2020-01-01 10:00:22	article	News
Elizabeth Warren Isn't Talking Much About â€~Medicare for All' Anymore	2020-01-01 10:00:22	article	News
Living In Bedminster, N.J.	2020-01-01 10:00:22	multimedia	Slideshow
In a Homecoming Video Meant to Unite Campus, Almost Everyone Was White	2020-01-01 10:00:25	article	News
Bedminster, N.J.: Horses, Golf and Presidential Visits	2020-01-01 10:01:24	article	News
China Moves to Steady Its Slowing Economic Growth	2020-01-01 10:12:44	article	News
Pete Buttigieg's Campaign Says It Raised \$24.7 Million in the Fourth Quarter	2020-01-01 10:53:14	article	News

Análisis de Sentimientos en Noticias

Dashboard noticias – cotización IBEX

Extracción de datos: Web Scrapping

PERIÓDICO ECONÓMICO

- Años 2012 2020
- 169.899 noticias
- Fecha, Título, Subtítulo

PERIÓDICO NACIONAL

- Años 2012 2020
- 753.752 noticias
- Fecha, Categoría, Autor, Título,
 Subtítulo

Preparación de datos

```
df$texto <- pasteO(df$titulo, " ", df$subtitulo)</pre>
```

Limpieza de textos

Nuevos emails falsos suplantan a Netflix e intentar robar nuestros datos.

-> emails falsos suplantan netflix intentan robar datos

Convertir a minúsculas y eliminar tildes

```
df$texto <- chartr("ÁÉÍÓÚ", "AEIOU", tolower(df$texto))
df$texto <- chartr("áéíóú", "aeiou", tolower(df$texto))</pre>
```

Eliminar signos de puntuación

```
df$texto <- removePunctuation(df$texto)</pre>
```


Preparación de datos

Tokenización

Nuevos emails falsos suplantan a Netflix e intentar robar nuestros datos.

->['Nuevos', 'emails', 'falsos', 'suplantan', 'a', 'Netflix', 'e', 'intentan', 'robar', 'nuestros', 'datos', '.']

df_tokens <- df %>%
 unnest_tokens(word, texto)

fecha	titulo	subtitulo	texto	word
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	arrancan
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	las
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	rebajas
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	en
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	madrid
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	con
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	agresivos
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	descuentos
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	para
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	sortear
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	la
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	crisis
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	las
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	rebajas
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	de
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	invierno
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	arrancan

Preparación de datos

Tokenización - stopwords

Nuevos emails falsos suplantan a Netflix e intentar robar nuestros datos.

->['Nuevos', 'emails', 'falsos', 'suplantan', 'Netflix', 'intentan', 'robar', 'datos', '.']

```
df_tokens <- df %>%
  unnest_tokens(word, texto)%>%
  anti_join(stopwords, by = 'word')
```

fecha [‡]	titulo	subtitulo	texto	word [‡]
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	arrancan
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	rebajas
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	madrid
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	agresivos
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	descuentos
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	sortear
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	crisis
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	rebajas
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	invierno
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	arrancan
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	madrid
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	cambio
2012-01-01	Arrancan las rebajas en Madrid con agresivos descuentos p	Las rebajas de invierno arrancan en Madrid con el cambio d	arrancan las rebajas en madrid con agresivos descuentos pa	importantes

Verónica Ruiz Méndez

.../

Análisis de indicadores temporales

Análisis de indicadores temporales

Análisis por periodos

Análisis de indicadores temporales

Análisis temporal

Análisis de indicadores temporales

<u>~</u>

Análisis de grafos

Objetivo

CLASIFICACIÓN: predecir una categoría

Objetivo

Preparación de datos – preparación de datos para modelos

Lematización

Seremos -> Lema: ser

Amigos -> Lema: amigo

N-gramas

Preparación de datos

Clasificación de noticias

Preparación de datos

Transformación de datos - balanceo

Regresión Logística

$$\Pi(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}}$$

- ✓ Adaptar threshold
- √ Simplicidad
- √ Facilidad de interpretación

Árbol de Decisión

- ✓ Fácil de entender
- √ Fácil de interpretar

- × No garantizamos óptimo
- × Aprendizaje términos

Random Forest

 ✓ Combinación de árboles de decisión

- Pequeños cambios en train generan árboles muy distintos
- Pierde interpretabilidad respecto árbol decisión

Naive Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- ✓ Útil en detección de spam, análisis de sentimientos
- ✓ Fácil y rápido de implementar

 Puede fallar ante características raras

Descenso del Gradiente Estocástico

- ✓ Utilizado en problemas de clasificación de texto y procesamiento del lenguaje natural
- ✓ Eficiencia
- ✓ Facilidad de implementación

× Sensible a hiperparámetros y número de iteraciones

Máquinas de Vectores soporte

- ✓ Robusto frente a ruido
- ✓ Útil en clasificación de texto

- × Difícil de interpretar
- × Gran tiempo de cómputo

Estrategias seguidas

ESTRATEGIA I

Datos originales

ESTRATEGIA II

Datos originales + Balanceo

ESTRATEGIA III

Lematización

ESTRATEGIA IV

Lematización + Balanceo

ESTRATEGIA V

N-gramas

ESTRATEGIA VI

N-gramas + Balanceo

ESTRATEGIA VII

N-gramas + Lematización

ESTRATEGIA VIII

N-gramas + Lematización + Balanceo

Métrica

ACCURACY

Métrica

ACCURACY

Métrica

ACCURACY

KAPPA

$$K = \frac{P_0 - P_e}{1 - P_e}$$

Resultados

ESTRATEGIA I

SGD

Kappa train	0.60
Kappa test	0.42
Accuracy train	0.74
Accuracy test	0.62
Tiempo	20.05

ESTRATEGIA II

SGD

Kappa train	0.62
Kappa test	0.38
Accuracy train	0.75
Accuracy test	0.59
Tiempo	16.23

ESTRATEGIA III

SGD

Kappa train	0.31
Kappa test	0.28
Accuracy train	0.57
Accuracy test	0.55
Tiempo	12.59

ESTRATEGIA IV

SGD

Kappa train	0.46
Kappa test	0.30
Accuracy train	0.64
Accuracy test	0.53
Tiempo	13.67

ESTRATEGIA V

SGD

Kappa train	0.65
Kappa test	0.50
Accuracy train	0.79
Accuracy test	0.74
Tiempo	11.60

ESTRATEGIA VI

SVM

Accuracy train 0.83 0.83 Accuracy			
Kappa test 0.51 0.5 Accuracy train 0.83 0.83 Accuracy		SGD	SVM
Accuracy train 0.83 0.83 Accuracy	Kappa train	0.63	0.61
train 0.83 0.83 Accuracy	Kappa test	0.51	0.5
Accuracy	Accuracy		
•	train	0.83	0.83
test 0.45 0.8	Accuracy		
	test	0.45	0.8
Tiempo 7.57 0.55	Tiempo	7.57	0.55

ESTRATEGIA VII

REGRESIÓN LOGISTICA

LOCISITOR	
Kappa train	0.67
Kappa test	0.48
Accuracy train	0.81
Accuracy test	0.74
Tiempo	19.19

ESTRATEGIA VIII

REGRESIÓN LOGISTICA

LOGISTICA		
Kappa train	0.66	
Kappa test	0.47	
Accuracy train	0.85	
Accuracy test	0.81	
Tiempo	13.88	

Dificultades encontradas

32

Dificultades encontradas

- Clasificación de noticias para obtener un set de datos grande.
- Número de palabras elegido como columnas de la matriz es muy influyente.
- Mucho trabajo manual de lectura y decisión que influye en los resultados.
- Gran cantidad de overfitting.
- En español hay muchas menos librerías y técnicas que en inglés.

Conclusiones

Conclusiones

- No obtenemos muy buenos resultados.
- Hay bastante overfitting en los modelos.
- Combinar las técnicas ha sido una buena idea, por lo que se podrían probar más técnicas tratando de conseguir mejores resultados.
- Los resultados pueden estar condicionados por los datos utilizados.
- Shiny es una buena herramienta para estudiar la evolución de los indicadores teniendo una visión sobre el número de noticias publicadas y el sentimiento asociado como complemento.

iMUCHAS GRACIAS!

© 2021 Afi. Todos los derechos reservados.