Universidade de Aveiro Departamento de Matemática

Cálculo I— Agrupamento 4

2019/2020

FICHA DE EXERCÍCIOS 2 Primitivação (Integração indefinida)

Exercícios propostos

1. Calcule os seguintes integrais indefinidos:

(a)
$$\int (3x^2 + 5x + 7) dx$$
 (b) $\int \sqrt[3]{x} dx$ (c) $\int (x^3 + 1)^2 dx$ (d) $\int \frac{\arctan x}{1 + x^2} dx$ (e) $\int \frac{3x^2}{1 + x^3} dx$ (f) $\int \frac{1}{x^7} dx$ (g) $\int \frac{x + 1}{2 + 4x^2} dx$ (h) $\int 4x^3 \cos x^4 dx$ (i) $\int \frac{x}{\sqrt{1 - x^2}} dx$ (j) $\int \sec x \cos^5 x dx$ (k) $\int \tan x dx$ (l) $\int \frac{\ln x}{x} dx$ (m) $\int e^{\tan x} \sec^2 x dx$ (n) $\int x^{2x^2} dx$ (o) $\int \sec (\sqrt{2}x) dx$ (p) $\int \frac{x^2 + 1}{x} dx$ (q) $\int \frac{x}{(7 + 5x^2)^{\frac{3}{2}}} dx$ (r) $\int \frac{x^3}{1 + x^8} dx$ (s) $\int \frac{5x^2}{\sqrt{1 - x^6}} dx$ (t) $\int \frac{1}{x^2 + 7} dx$

- 2. Determine a primitiva F para a função $f(x) = \frac{2}{x} + \frac{3}{x^2}$, no intervalo $]-\infty,0[$, tal que F(-1)=1.
- 3. Sabendo que a função f satisfaz a igualdade $\int f(x) dx = \sin x x \cos x \frac{1}{2}x^2 + c$, com $c \in \mathbb{R}$, determinar $f(\frac{\pi}{4})$.
- **4.** Seja f a função de domínio \mathbb{R}^+ tal que $f(x) = \frac{1}{x^2} + 1$. Determine a primitiva de f que se anula em x = 2.
- **5.** Determine a função g que verifica as seguintes condições:

$$g'(x) = \frac{1}{(1 + \operatorname{arctg}^2(x))(1 + x^2)}$$
 e $\lim_{x \to +\infty} g(x) = 0$.

6. Calcule, usando a técnica de integração por partes, os seguintes integrais indefinidos:

(a)
$$\int x \cos x \, dx$$
 (b) $\int x^2 \cos x \, dx$ (c) $\int e^{-3x} (2x+3) \, dx$ (d) $\int \ln^2 x \, dx$ (e) $\int e^{2x} \operatorname{sen}(x) \, dx$ (f) $\int \operatorname{sen}(\ln x) \, dx$ (g) $\int \operatorname{arcsen} x \, dx$ (h) $\int x \operatorname{arcsen} x^2 \, dx$ (i) $\int \operatorname{arctg} x \, dx$ (j) $\int \operatorname{arctg} \frac{1}{x} \, dx$ (k) $\int \sqrt{x} \ln x \, dx$ (l) $\int \sin x \cos x \, dx$

7. Usando integração quase-imediata e/ou integração por partes, determine:

(a)
$$\int \csc x \, dx$$
 (b) $\int \frac{\operatorname{tg}^3 x}{\cos^2 x} \, dx$ (c) $\int \cot g^2 x \, dx$ (d) $\int \cos^2 \theta \, d\theta$
(e) $\int \sin^2 x \, dx$ (f) $\int \sin^3 t \, dt$ (g) $\int \operatorname{tg}^4 x \, dx$ (h) $\int \sin(3x) + \cos(5x) \, dx$
(i) $\int \operatorname{tg} x \sec^2 x \, dx$ (j) $\int \sin^5 x \cos^2 x \, dx$ (k) $\int \sin^2 x \cos^4 x \, dx$ (l) $\int \cos x \cos(5x) \, dx$

- (m) $\int \frac{1}{x} \cos(\ln x) dx$ (n) $\int x^5 \sin(x^6) dx$ (o) $\int \frac{\arccos x x}{\sqrt{1 x^2}} dx$ (p) $\int \frac{\cos(\ln(x^2))}{x} dx$
- 8. Calcule os seguintes integrais indefinidos:

(a)
$$\int \frac{x+2}{x^2+5x-6} dx$$
 (b) $\int \frac{1}{(x-1)(x+1)^3} dx$ (c) $\int \frac{1}{x^3+8} dx$ (d) $\int \frac{x^4-4x^2+3}{x^2-9} dx$ (e) $\int \frac{x^3+3x-1}{x^4-4x^2} dx$ (f) $\int \frac{x^4}{x^4-1} dx$ (g) $\int \frac{1}{x(x^2+1)^2} dx$ (h) $\int \frac{x+1}{x^2+4x+5} dx$

9. Calcule, usando a técnica de integração por substituição, os seguintes integrais indefinidos:

(a)
$$\int x^2 \sqrt{1-x} \, dx$$
 (b) $\int \frac{\sqrt{x}}{1+\sqrt[3]{x}} \, dx$ (c) $\int x(2x+5)^{10} \, dx$ (d) $\int \frac{1}{x^2 \sqrt{9-x^2}} \, dx$ (e) $\int \frac{1}{x\sqrt{x^2-1}} \, dx$ (f) $\int \frac{1}{x\sqrt{x^2+4}} \, dx$ (g) $\int \sqrt{3-2x^2} \, dx$ (h) $\int \frac{x^2}{\sqrt{1-2x-x^2}} \, dx$ (i) $\int \frac{1}{x^2 \sqrt{x^2-7}} \, dx$ (j) $\int \frac{1}{\sqrt{2x+3}+\sqrt[3]{(2x+3)^2}} \, dx$ (k) $\int e^{\sqrt{x}} \, dx$ (l) $\int \frac{\ln x}{x \cdot \sqrt{1+\ln x}} \, dx$

10. Calcule

(a)
$$\int \frac{x+1}{\sqrt{3-x^2}} dx$$
 (b) $\int \sin^4 x \, dx$ (c) $\int \frac{1}{x^2+2x+5} \, dx$ (d) $\int \frac{1}{\sqrt{2+x^2}} \, dx$ (e) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} \, dx$ (f) $\int \frac{x}{x^2-5x+6} \, dx$ (g) $\int \frac{1}{\sqrt{2x-x^2}} \, dx$ (h) $\int x\sqrt{(1+x^2)^3} \, dx$ (i) $\int \frac{\sqrt{x}}{1+\sqrt{x}} \, dx$ (j) $\int x \ln x \, dx$ (k) $\int \frac{1+e^x}{e^{2x}+4} \, dx$ (l) $\int x \arctan x \, dx$ (m) $\int \frac{\sin x}{(1-\cos x)^3} \, dx$ (n) $\int (2x^2+3) \arctan x \, dx$ (o) $\int \frac{1}{\sqrt{x^2+2x-3}} \, dx$ (p) $\int \sqrt{1+e^x} \, dx$ (q) $\int \frac{1}{\sqrt{e^x-1}} \, dx$ (r) $\int \frac{\sin^3 x}{\sqrt{\cos x}} \, dx$ (s) $\int \frac{\ln x}{x(\ln^2 x+1)} \, dx$ (t) $\int x^3 e^{x^2} \, dx$ (u) $\int \frac{2x-1}{(x-2)(x-3)(x+1)} \, dx$ (v) $\int \frac{1+\operatorname{tg}^2 x}{\sqrt{\operatorname{tg} x-1}} \, dx$ (w) $\int \frac{x^8}{1+x^2} \, dx$ (x) $\int \frac{x+1}{x^3-1} \, dx$

- 11. Usando a substituição $x = 2 \operatorname{tg} t$, $t \in]0, \frac{\pi}{2}[$, calcule $\int \frac{3x+7}{(x^2+4)^2} dx$.
- 12. ¹ Calcule os seguintes integrais indefinidos:

(a)
$$\int \frac{x^2}{\sqrt{1+x^3}} dx$$
 (b) $\int \frac{1}{x^2\sqrt{1+x^2}} dx$ (c) $\int \frac{3x-1}{x^3+x} dx$

(d) $\int \frac{1}{e^{2x} + 2} dx$, usando a mudança de variável $e^x = t$.

(e)
$$\int \frac{-\cos x}{(1+\sin x)^2} dx$$
 (f)
$$\int x \cdot \ln(1+x^2) dx$$
 (g)
$$\int \cos x \cdot \ln(\sin x) dx$$

- 13. Determine a função $f: \mathbb{R} \to \mathbb{R}$ tal que f(0) = 1, f'(0) = 2 e f''(x) = 12x, para todo o $x \in \mathbb{R}$.
- 14. Determine a função $f: \mathbb{R} \to \mathbb{R}$ tal que $f'(x) = \frac{2e^x}{3+e^x}$ e $f(0) = \ln 4$.
- 15. Determine a função f, de domínio \mathbb{R}^+ , tal que $f'(x) = \frac{5x 4}{x(x^2 2x + 2)}$ e $\lim_{x \to +\infty} f(x) = 0$.

¹A partir daqui os exercícios propostos foram retirados de provas de avaliação de anos anteriores.

Exercícios Resolvidos

1. Considere a função g definida em \mathbb{R}^+ por $g(x) = \frac{(\ln x)^2}{x}$.

(a) Determine a família de todas as primitivas de g.

(b) Indique a primitiva da função g que se anula para x = e.

Resolução:

(a)
$$\int \frac{(\ln x)^2}{x} dx = \frac{(\ln x)^3}{3} + c, \quad c \in \mathbb{R}.$$

(b) Para cada $c \in \mathbb{R}$, $G(x) = \frac{(\ln x)^3}{3} + c$ é uma primitiva de g. Pretendemos então determinar $c \in \mathbb{R}$ tal que G(e) = 0.

$$G(e) = 0 \Leftrightarrow \frac{1}{3} + c = 0 \Leftrightarrow c = -\frac{1}{3}$$

Assim, $G(x) = \frac{(\ln x)^3}{3} - \frac{1}{3}$ é a primitiva de g que se anula para x = e.

2. Calcule $\int (x+1) \sin x \, dx$, usando primitivação por partes.

Resolução: Fazendo

$$f'(x) = \operatorname{sen} x$$
 temos $f(x) = -\operatorname{cos} x$
 $g(x) = x + 1$ temos $g'(x) = 1$

Assim,

$$\int (x+1)\sin x \, dx = -(x+1)\cos x + \int \cos x \, dx$$
$$= -(x+1)\cos x + \sin x + c, \quad c \in \mathbb{R}$$

3. Calcule $\int x\sqrt{x+1}\,dx$

Resolução:

Consideremos a substituição $x+1=t^2$, com $t\geq 0$. Definindo $\varphi(t)=t^2-1,\,t\geq 0$, temos que φ é invertível, diferenciável e $\varphi'(t)=2t$. Então

$$\int x\sqrt{x+1} \, dx = \int (t^2 - 1) \cdot t \cdot 2t \, dt$$
$$= \frac{2t^5}{5} - \frac{2t^3}{3} + c \, .$$

3

Atendendo a que $x+1=t^2,$ com $t\geq 0,$ vem que $t=\sqrt{x+1}.$ Assim,

$$\int x\sqrt{x+1} \, dx = \frac{2(x+1)^2\sqrt{x+1}}{5} - \frac{2(x+1)\sqrt{x+1}}{3} + c, \text{ com } c \in \mathbb{R}.$$

4. Calcule
$$\int \frac{x+2}{(x-1)^2(x^2+4)} dx$$

Resolução:

O cálculo deste integral indefinido passa por decompor em frações simples a fração

$$\frac{x+2}{(x-1)^2(x^2+4)}$$

Isto é, passa por escrever a dita fração na seguinte forma

$$\frac{x+2}{(x-1)^2(x^2+4)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+4} \quad (*)$$

com A, B, C e D constantes reais a determinar.

Temos então que

$$\frac{x+2}{(x-1)^2(x^2+4)} = \frac{(A+C)x^3 + (-A+B-2C+D)x^2 + (4A+C-2D)x - 4A + 4B + D}{(x-1)^2(x^2+4)}$$

donde resulta a igualdade de polinómios

$$x + 2 = (A + C)x^{3} + (-A + B - 2C + D)x^{2} + (4A + C - 2D)x - 4A + 4B + D.$$

Atendendo à condição de igualdade de polinómios resulta que

$$\begin{cases} A+C=0\\ -A+B-2C+D=0\\ 4A+C-2D=1\\ -4A+4B+D=2 \end{cases} \Leftrightarrow \begin{cases} A=-\frac{1}{25}\\ B=\frac{15}{25}\\ C=\frac{1}{25}\\ D=-\frac{14}{25} \end{cases}$$

Voltando a (*), podemos escrever

$$\frac{x+2}{(x-1)^2(x^2+4)} = \frac{-\frac{1}{25}}{x-1} + \frac{\frac{15}{25}}{(x-1)^2} + \frac{\frac{1}{25}x - \frac{14}{25}}{x^2+4}$$

Assim

$$\int \frac{x+2}{(x-1)^2(x^2+4)} dx = -\frac{1}{25} \int \frac{1}{x-1} dx + \frac{15}{25} \int (x-1)^{-2} dx + \frac{1}{25} \int \frac{x-14}{x^2+4} dx$$

$$= -\frac{1}{25} \ln|x-1| - \frac{3}{5(x-1)} + \frac{1}{25} \int \frac{x}{x^2+4} dx - \frac{14}{25} \int \frac{1}{x^2+4} dx$$

$$= -\frac{1}{25} \ln|x-1| - \frac{3}{5(x-1)} + \frac{1}{50} \int \frac{2x}{x^2+4} dx - \frac{7}{25} \int \frac{\frac{1}{2}}{1+\left(\frac{x}{2}\right)^2} dx$$

$$= -\frac{1}{25} \ln|x-1| - \frac{3}{5(x-1)} + \frac{1}{50} \ln(x^2+4) - \frac{7}{25} \operatorname{arctg} \frac{x}{2} + c, \quad c \in \mathbb{R}$$