1 A função polinomial

Um polinômio (função polinomial) com coeficientes reais na variável x é uma função matemática $f: \mathbb{R} \to \mathbb{R}$ definida por:

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n,$$

onde $a_0, a_1, a_2, \ldots, a_n$ são números reais, denominados coeficientes do polinômio. O coeficiente a_0 é o termo constante.

Se os coeficientes são números inteiros, o polinômio é denominado polinômio inteiro em x.

O valor numérico de um polinômio p = p(x) em x = a é obtido pela substituição de x pelo número a, para obter p(a).

Exemplo: O valor numérico de $p(x) = 2x^2 + 7x - 12$ para x = 3 é dado por:

$$p(3) = 2 \cdot (3)^{2} + 7 \cdot 3 - 12$$
$$= 2 \cdot 9 + 21 - 12$$
$$= 18 + 9$$
$$= 27.$$

2 Sistemas de equações lineares

Um sistema de equações lineares ou sistema linear é um conjunto formado por duas ou mais equações lineares. Um sistema linear pode ser representado na forma:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n
\end{cases} \tag{1}$$

onde x_1, x_2, \ldots, x_n são as incógnitas, $a_{11}, a_{12}, \ldots, a_{mn}$ são os coeficientes e b_1, b_2, \ldots, b_m são os termos independentes.

Uma sequência de números (r_1, r_2, \dots, r_n) é solução de (1) se satisfaz identicamente a todas as equações desse sistema linear.

3 Trigonometria no triângulo retângulo

Um triângulo é uma figura geométrica plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos numa unidade de medida, denominada grau e, cada um deles tem medida entre 0^{o} e 180^{o} , de modo que, em qualquer triângulo, a soma dessas medidas é 180^{o} .

Num triângulo retângulo definimos as chamadas razões trigonométricas que são relações entre os lados do triângulo e que têm a propriedade de determinar a medida dos ângulos do triângulo, uma vez que seus lados sejam conhecidos.

No triângulo retângulo ABC, consideremos, por exemplo, o ângulo que tem vértice em B, cuja medida α , em graus, é um número real que está no intervalo $0, \pi/2$. Entre os lados do triângulo podemos estabelecer as seguintes razões:

seno é a razão entre o comprimento do cateto oposto ao ângulo \hat{B} e o comprimento da hipotenusa do triângulo. Indicando o seno de α por $\sin(\alpha)$, temos $\sin(\alpha) = \overline{AB}/\overline{BC}$.

cosseno é a razão entre o comprimento do cateto adjacente ao ângulo e o comprimento da hipotenusa do triângulo. Indicando o cosseno de α por $\cos(\alpha)$, temos $\cos(\alpha) = \overline{AB}/\overline{BC}$.

tangente é a razão entre os comprimentos do cateto oposto e do cateto adjacente ao ângulo \hat{B} . Indicando a tangente de α por $\tan(\alpha)$, temos $\tan(\alpha) = \overline{AC}/\overline{AB}$.

Referências

- [1] Emanuelle L. Vicente and Ulysses Sodré. Ensino médio: Sistemas lineares. http://pessoal.sercomtel.com.br/matematica/medio/matrizes/sistemas.htm.
- [2] Ulysses Sodré. Ensino médio: Polinômios e equações algébricas. http://pessoal.sercomtel.com.br/matematica/medio/polinom/polinom.htm.
- [3] USP. Trigonometria no triângulo retângulo. http://ecalculo.if.usp.br/funcoes/trigonometricas/rz_trigo_triret.htm/rz_trigo_triret.htm.