Algebraic Structures

Ikhan Choi

January 14, 2022

Contents

Ι	Groups	3
1	1.1	5 5
2	Subgroups	6
3	Group actions 3.1 Orbits and stabilizers	7 7 7 7
II	Rings	8
4	Ideals	9
5	Integral domains	10
6	Polynomial rings	11
II	I Modules	12
7	Exact sequences	14
8	Hom functor and tensor products	15
9	Modules over a principal ideal domain	16

IV Vector spaces	17
10 Canonical forms	18
11 Multilinear forms	19
12 Tensor algebras	20

Part I

Groups

cyclic, symmetric, matrix direct sum, direct product free, presentation, generators

- 1.1
- 1.2

Subgroups

 $subgroups\ homomorphisms,\ image,\ kernel,\ inverse\ images\ normality,\ quotient,\ coset\ counting$

Group actions

- 3.1 Orbits and stabilizers
- 3.2 Action by conjugation
- 3.3 Action by left multiplication

Exercises

- **3.1.** Let G be a finite group. If G/Z(G) is cylic, then G is abelian.
- **3.2.** Let *G* be a finite group. If $x \mapsto x^3$ is a surjective endomorhpism, then *G* is abelian.

Part II

Rings

Ideals

Chapter 5 Integral domains

Chapter 6
Polynomial rings

Part III

Modules

exact seq free modules inj, proj hom and duality tensor product modules over pid, abelian groups algebras

Exact sequences

Hom functor and tensor products

Modules over a principal ideal domain

Part IV Vector spaces

Chapter 10 Canonical forms

spectral theorems determinants

Chapter 11 Multilinear forms

Duality Adjoints Inner product

Chapter 12 Tensor algebras

Exterior algebras Symmetric algebras