

IUT GEII – Outils Mathématiques et Logiciels I (OML1)

Fonctions numériques à variable réelle et usuelles du GEII (partie I)

Andrés F. López-Lopera Laboratoire de Mathématiques pour l'Ingénieur (LMI) Université Polytechnique Hauts-de-France (UPHF)

Thèmes

- 1. Domaine de définition
- 2. Domaine d'étude
- 3. Étude aux limites
- 4. Comportements asymptotiques
- 5. Transformations
- 6. Sens de variation

Fonctions numériques à variable réelle et usuelles du GEII (partie I)

- \cdot Tous les domaines de l'économie, des sciences et des techniques utilisent des fonctions qui ont pour objectif de représenter l'évolution d'une donnée par rapport à une autre
- \cdot Par exemple, un signal électrique est une fonction qui représente l'évolution d'une quantité physique par rapport à la variable temps

· Ici, on considère de manière générale des fonctions :

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) \end{cases}$$

· Le domaine de définition D d'une fonction est l'ensemble des valeurs $x \in \mathbb{R}$ qui ont un sens pour la fonction ; on écarte donc du domaine de définition toutes les valeurs de x interdites.

Exemple.

$$f(x) = \frac{3}{x-2}, \qquad D = \mathbb{R} - \{2\}$$

3

Exercice. Écrire les domaines de définition des fonctions suivantes :

1.
$$f(x) = ax^2 + bx + c$$

2.
$$f(x) = \sqrt{x+2}$$

$$3. f(x) = \frac{x}{x-3}$$

4.
$$f(x) = \frac{x}{x^2 - 3x + 2}$$

$$5. f(x) = \sin(x)$$

6.
$$f(x) = \frac{1}{1 - \sin(x)}$$

7.
$$f(x) = \tan(x)$$

Solution.

1.
$$f(x) = ax^2 + bx + c : D = \mathbb{R}$$

2.
$$f(x) = \sqrt{x+2}$$
: $D = [-2, \infty[$

3.
$$f(x) = \frac{x}{x-3}$$
: $D = \mathbb{R} - \{3\}$

4.
$$f(x) = \frac{x}{x^2 - 3x + 2} = \frac{x}{(x - 1)(x - 2)}$$
: $D = \mathbb{R} - \{1, 2\}$

$$5. f(x) = \sin(x) : D = \mathbb{R}$$

6.
$$f(x) = \frac{1}{1 - \cos(x)}$$
: $D = \mathbb{R} - \{2k\pi\}$ avec $k \in \mathbb{Z}$

7.
$$f(x) = \tan(x) : D = \mathbb{R} - \{\pi/2 + k\pi\} \text{ avec } k \in \mathbb{Z}$$

- \cdot Il n'est pas toujours nécessaire d'étudier une fonction sur la totalité des valeurs de D
- · La fonction peut présenter une périodicité ou une parité qui permet de restreindre le domaine d'étude
- · Ainsi le domaine d'étude est un sous-ensemble du domaine de définition

Périodicité

Une fonction f(x) est dite *périodique* si et seulement si, pour toute valeur de $x \in \mathbb{R}$, il existe un même réel T tel que :

$$f(x+T)=f(x)$$

· Ce qui s'écrit en termes ensemblistes :

$$\forall x \in \mathbb{R} : \exists T! / f(x+T) = f(x)$$

Exemple. $f(x) = \sin(x)$ est une fonction périodique avec période $T = 2\pi$

 \cdot L'existence d'une périodicité autorise de limiter l'étude à une période donnée ; il suffit ensuite de dupliquer le tracé avec une récurrence de la période

Parité

· Une fonction f(x) est paire si elle vérifie

$$f(-x) = f(x)$$

· Une fonction f(x) est *impaire* si elle vérifie

$$f(-x) = -f(x)$$

· Dans les deux cas, l'étude de la fonction peut se limiter à l'intervalle

8

 \cdot Toute fonction polynomiale ne comportant que des éléments de degré pair est paire

 \cdot Toute fonction polynomiale ne comportant que des éléments de degré impair est impaire

 $f(x) = x^5 + x^3 + x$

Propriétés.

- La somme des deux fonctions paires est paire
- La somme des deux fonctions impaires est impaire
- Le produit ou le quotient deux fonctions paires est pair
- Le produit ou le quotient deux fonctions paires est pair
- Le produit ou le quotient deux fonctions impaires est pair
- Le produit ou le quotient d'une fonction impaire par une fonction paire est impair

Démonstration.

· Soient *f* et *g* deux fonction paires :

$$h(x) = f(x) + g(x) = f(-x) + g(-x) = h(-x)$$

$$h(x) = f(x)g(x) = f(-x)g(-x) = h(-x)$$

$$h(x) = \frac{f(x)}{g(x)} = \frac{f(-x)}{g(-x)} = h(-x)$$

· Soient *f* et *g* deux fonction impaires :

$$h(x) = f(x) + g(x) = -f(-x) - g(-x) = -h(-x)$$

$$h(x) = f(x)g(x) = [-f(-x)][-g(-x)] = h(-x)$$

$$h(x) = \frac{f(x)}{g(x)} = \frac{-f(-x)}{-g(-x)} = h(-x)$$

· Soient f paire et g impaire :

$$h(x) = f(x)g(x) = f(-x)[-g(-x)] = -h(-x)$$

$$h(x) = \frac{f(x)}{g(x)} = \frac{f(-x)}{-g(-x)} = -h(-x)$$

- \cdot Il est nécessaire de déterminer le comportement de f quand $x \to \pm \infty$
- · De même pour toute valeur de x pour laquelle $f(x) \to \pm \infty$

Présentation

On dit que f(x) a pour limite ℓ (ou tend vers ℓ) lorsque x tend vers a si, en choisissant x de plus en plus proche de a, f(x) devient aussi proche de ℓ que l'on veut. On note :

$$\lim_{x\to a} f(x) = \ell$$

· On distingue la limite à gauche et la limite à droite :

$$\lim_{x \to a^{-}} f(x), \qquad \lim_{x \to a^{+}} f(x)$$

· On peut avoir:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = \ell,$$

ce qui signifie que lq fonction tend vers la même limite pour les valeurs de x tendant vers a par la valeur inférieur ou supérieur à α

 χ

$$\lim_{x \to 0^-} f(x) = 0$$

$$\lim_{x \to 0^+} f(x) = 0$$

· Si on a:

$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x),$$

alors la f est discontinue (ou non continue) en a

$$\lim_{x\to 2^-} f(x) = -\infty$$

$$\lim_{x\to 2^+} f(x) = \infty$$

Cas possibles en un point d'abscisse a

· La limite de f(x) est finie quand x tend vers a

· La limite de f(x) est infinie quand x tend vers a

$$\lim_{x\to 1^-}\frac{1}{x-1}=-\infty, \qquad \lim_{x\to 1^+}\frac{1}{x-1}=+\infty$$

· La limite de f(x) n'existe pas quand x tend vers a:

$$\lim_{x \to 1} \sin\left(\frac{1}{x - 1}\right) = ?$$

$\lim f(x)$	ℓ	$\ell < 0$				$\ell > 0$			
$\lim g(x)$	ℓ'	0_{+}	0-	∞	$-\infty$	0_{+}	0-	∞	$-\infty$
$\lim[h(x)+g(x)]$	$\ell + \ell'$	ℓ	ℓ	∞	$-\infty$	ℓ	ℓ	∞	$-\infty$
$\lim[h(x)\cdot g(x)]$	$\ell \cdot \ell'$	0^{-}	0^{+}	$-\infty$	∞	0^{+}	0-	∞	$-\infty$
$\lim[h(x)/g(x)]$	ℓ/ℓ'	$-\infty$	∞	0-	0^{+}	∞	$-\infty$	0^{+}	0-

$\lim f(x)$	0	∞	$-\infty$	$-\infty$	∞
$\lim g(x)$	0	∞	$-\infty$	∞	$-\infty$
$\lim[h(x) + g(x)]$	0	∞	$-\infty$	fi	fi
$\lim[h(x)\cdot g(x)]$	0	∞	∞	$-\infty$	$-\infty$
$\lim[h(x)/g(x)]$	fi	fi	fi	fi	fi

Étude des indéterminations

· La limite à l'infini d'une fonction polynomiale est donnée par le comportement de son terme de plus haut degré

$$\lim_{x \to \infty} x^2 - x = \lim_{x \to \infty} x^2 = \infty$$

 \cdot La limite à l'infini d'un quotient de deux polynôme est donnée par la limite du quotient de leurs termes de plus haut degré

$$\lim_{x \to \infty} \frac{3x^3 - 5x^2 + x + 1}{2x^3 - 5x + 2} = \lim_{x \to \infty} \frac{3x^3}{2x^3} = \frac{3}{2}$$

Étude des indéterminations

· La fonction x^a croît toujours plus vite que la fonction logarithme, quelle que soit la valeur de a>0

$$\lim_{x \to \infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to \infty} \frac{x}{\ln x} = \infty$$

· La fonction b^x croît toujours plus vite que la fonction x^a , quelle que soit la valeur de a>0 et la valeur de la base b de l'exponentielle

$$\lim_{x \to \infty} \frac{e^x}{x} = \infty$$

$$\lim_{x \to \infty} \frac{x}{e^x} = 0$$

 \cdot Une fonction possède une asymptote horizontale d'équation y=a s'il est vérifié

$$\lim_{x \to -\infty} f(x) = a, \quad \text{ou} \quad \lim_{x \to -\infty} f(x) = a$$

Exemple 1.

$$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$$

$$\lim_{x \to \infty} \arctan x = \frac{\pi}{2}$$

Exemple 2.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x}{x - 3} = \lim_{x \to \infty} \frac{2x}{x} = 2$$

· Une fonction possède une asymptote verticale d'équation x = a s'il est vérifié :

$$\lim_{x \to a} f(x) = \infty$$
, ou $\lim_{x \to a} f(x) = -\infty$

Exemple.

$$\lim_{x \to 2^{-}} \frac{3}{x - 2} = -\infty$$

$$\lim_{x \to 2^{+}} \frac{3}{x - 2} = \infty$$

· Si une fonction f peut se mettre sous la forme f(x) = ax + b + g(x) avec :

$$\lim_{x \to -\infty} g(x) = 0, \quad \text{ou} \quad \lim_{x \to \infty} g(x) = 0,$$

alors la droite d'équation y=ax+b est une *asymptote oblique* de f en $\pm\infty$ **Exemple.**

· Si une fonction f peut se mettre sous la forme f(x) = k(x) + g(x) avec :

$$\lim_{x \to -\infty} g(x) = 0, \quad \text{ou} \quad \lim_{x \to \infty} g(x) = 0,$$

alors la fonction k(x) est une *courbe asymptote* de f en $\pm \infty$

Exemple.

$$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2} = \frac{e^x}{2} + \frac{e^{-x}}{2}$$

- · On dit que:
 - $g(x) = \frac{e^x}{2}$ est asymptote à f(x) à $+\infty$
 - $h(x) = \frac{e^{-x}}{2}$ est asymptote à f(x) à $-\infty$

x

Dilatation horizontale

 \cdot On appelle g(x) une fonction dilatée horizontalement de f(x) si

$$g(x) = f(ax),$$

si a < 1. Si a > 1, il s'agit d'une contraction

Dilatation verticale

· On appelle g(x) une fonction dilatée verticalement de f(x) si

$$g(x) = af(x)$$

Si a > 1, il s'agit d'une amplification. Si a < 1, il s'agit d'une atténuation

Translation horizontale

 \cdot On appelle g(x) une fonction translatée horizontalement de f(x) si

$$g(x) = f(x - a)$$

Si a > 0, il s'agit d'une translation vers la droite. Si a < 0, il s'agit d'une translation vers la gauche

Translation verticale

 \cdot On appelle g(x) une fonction translatée verticalement de f(x) si

$$g(x) = f(x) + a$$

Si a > 0, il s'agit d'une translation vers le haut. Si a < 0, il s'agit d'une translation vers le bas

[animation]

Exercice. Soit
$$f(x) = e^{-x^2}$$
. Dessiner $g(x) = \frac{1}{2}f(2[x-1])$

Exercise. Soit
$$f(x) = e^{-x^2}$$
. Dessiner $g(x) = \frac{1}{2}f(2[x-1])$ Solution.

$$f(x) = e^{-x^2}$$

$$f(x-1) = e^{-(x-1)^2}$$

$$f(2[x-1]) = e^{-(2[x-1]^2)}$$

$$\frac{1}{2}f(2[x-1]) = \frac{1}{2}e^{-(2[x-1]^2)}$$

· Une fonction est dite *croissante* sur un intervalle *I* si

$$\forall x_1, x_2 \in I/x_1 < x_2$$
 on a $f(x_1) \le f(x_2)$

· Une fonction est dite *strictement croissante* sur un intervalle *I* si

$$\forall x_1, x_2 \in I/x_1 < x_2$$
 on a $f(x_1) < f(x_2)$

· Une fonction est dite décroissante sur un intervalle I si

$$\forall x_1, x_2 \in I/x_1 < x_2$$
 on a $f(x_1) \ge f(x_2)$

· Une fonction est dite *strictement décroissante* sur un intervalle *I* si

$$\forall x_1, x_2 \in I/x_1 < x_2$$
 on a $f(x_1) > f(x_2)$

· Une fonction est dite *monotone* (resp. *strictement monotone*) si et seulement si elle est, soit croissante (resp. strictement croissante) ou soit décroissante (resp. strictement décroissante)

Remarque. Le sens de variation d'une fonction est étudié grâce à sa dérivée

