Math 220 Section 108 Lecture 23

29th November 2022

Sources: https://personal.math.ubc.ca/~PLP/auxiliary.html https://secure.math.ubc.ca/Ugrad/pastExams

Proofs

1. Let $a, b, c \in \mathbb{Z}$. Show that if $a^2 + b^2 = c^2$, then a or b is even.

Proof by contradiction. Assume a & b are both odd.

Then a=2k+1 & b=2m+1, for some $k,m\in\mathbb{Z}$. So if $a^2+b^2=c^2$, we can write

$$(2k+1)^2 + (2m+1)^2 = c^2$$

4k2+4k+1 + 4m+ 4m+1

$$4k^2 + 4k + 4m^2 + 4m + 2 = c^2$$
 (**)

Direction A: Take equation mod4: 0+0+0+0+2=c2(md4).

Since c must be even, c=0 or 2 (mod4). Then c2 = 0 (mod4). Contradiction. I

(Continued)

(Continued) 1. Let $a,b,c\in\mathbb{Z}$. Show that if $a^2+b^2=c^2$, then a or b is even. Direction B : Since the left-hand side of (X) is even, we have $2\left c^2\right $, so $2\left c\right $ (by Euclide
is even, we have 2 c2, sor 2/c (by Euclid)
lemma). Write c = 2l, for some l = Z.
Then (4) becomes 42+4k+4m²+4m+2 = 4l²
and we see that the right is divisible by 4, but the left-hand side is not. Contindiction.

Cardinality

Definition

Two sets have the same **cardinality** if there exists a bijection between them. For example, given sets A, B, if we can find a function $f: A \to B$ that is a bijection, then |A| = |B|.

Definition

If a set S has the same cardinality as \mathbb{N} , we say that it is **denumerable**. If a set T is either finite or denumerable, we say that it is **countable**. If a set is not countable, we simply say that it is **uncountable**.

Cardinality

2. Show that $|(0,1)| = |(0,\infty)|$.

$$f: (0,1) \longrightarrow (1,\infty)$$

$$f(x) = \frac{1}{x}$$

$$g: (1, \infty) \rightarrow (0, \infty)$$

 $g(y) = y - 1$

Then $h = g \circ f: (0,1) \longrightarrow (0,\infty)$

$$h(x) = g \circ f(x) = g(\frac{1}{x}) = \frac{1}{x} - 1$$

We prove that h is bijective:

Injective: Say that $h(z_1) = h(z_2)$ $\Rightarrow z_1 - 1 = z_2 - 1$

(Continued)

(Continued) 2. Show that
$$|(0,1)| = |(0,\infty)|$$
.
Surjective: Given $y \in (0,\infty)$, we want to find $z \le t$. $h(x) = y$.
Scratch: $y = \frac{1}{x} - 1 \implies y + 1 = \frac{1}{x} = 1 \implies x = \frac{1}{y+1}$.
Proof: Given y , let $x = \frac{1}{y+1}$.
Then $y + 1 = \frac{1}{x}$ (note that $x \ne 0$)
$$\Rightarrow y = \frac{1}{x} - 1 \implies y = h(x).$$
So h is surjective. So h is bijective, therefore $|(0,1)| = |(0,\infty)|$.

Math 220 Section 108 Lecture 23

Final Q8 2016 WT2

3. Let S and T be two arbitrary sets. Prove that if the sets S-T and T-Shave the same cardinality, then the sets S and T have the same cardinality.

Define
$$g: S \rightarrow T$$
 s.t. $|Vole: (S^{-1}) \cup (S^{-1}) = S$
for $s \in S - T$, $g(s) = f(s)$ and likewise for T .

& for s & SAT, g(s) = S.

We will show that g is bijective.

and likewise for t.

(Continued)

(Continued) 3. Let S and T be two arbitrary sets. Prove that if the sets S-Tand T - S have the same cardinality, then the sets S and T have the same Case 1: If $s_1, s_2 \in S_n T$, then $g(s_1) = s_1 \& g(s_2) = s_1$,

S J(S1) # J(S2). Case 2: If si, se S-T, then g(si)=f(si) & g(si)=f(si), and since f is injective, we have $f(s_1) + f(s_2)$, so $g(s_1) + g(s_2)$.

Case 3: If exactly one of si, so is in SoT & the other is not, WLOG ("without loss of generality") let si & SoT & Si & S-T.

Then $g(s_1) \neq g(s_2)$ since $g(s_1) \in S_n T & g(s_2) = T - S$.

Surjedix: Given $t \in T$, want to find $s \in S$ s.t. g(s) = t.

Case 1: It $t \in S$ nT, let s = t. Then g(s) = t. VCase 2: It $t \in T - S$, then since f is surjective, f(s) = t. In summary, f(s) = t.