METODE DOUBLE EXPONENTIAL SMOOTHING DALAM

Natalia Medya Lifa Ir Seno*, Isti Kamila

PERAMALAN JUMLAH PEMOHON PASPOR

Program Studi Matematika, Universitas Pakuan e-mail: nataliamedya16@gmail.com

Diterima: 31 Januari 2022, disetujui: 1 Maret 2022, dipublikasi: 22 April 2022

Abstract: The Immigration Office of Class II Non-TPI Depok City is an institution that provides services engaged in the field of immigration, one of which is providing passport processing services. This increase in the number of passport applicants will have an impact on the availability of facilities, infrastructure, and passport management services which often reach 2000 - 3000 passports per month in 2018. From the problems above, the author offers a solution, namely by predicting the number of passport applicants. There are several methods used to solve this problem, including the double exponential smoothing method as the method that will be tested in this study This method uses parameter values obtained from trial and error calculations to produce accurate values because the data is fluctuating so it requires smoothing parameters. If the data used a lot in the calculation of forecasting then MAPE (Mean Absolute Percentage Error) forecasting will be smaller and vice versa. The results of the forecasting of passport creation applications produced by the Double Exponential Smoothing Method with a parameter of $\alpha = 0.4$ (selection of the best alpha between 0 to 1) obtained a MAPE value of 14.28%, MAPE criteria that are worth 14.28% belong to the category of GOOD in forecasting the application for passport creation in the period to be obtained.

Keywords: Forecasting, Double Exponential Smoothing, Mean Absolute Percentage Error

(MAPE)

E-ISSN: 2809-3755

P-ISSN: 2809-3526

Abstrak: Kantor imigrasi kelas II Non-TPI Kota Depok merupakan lembaga yang memberikan pelayanan yang bergerak dalam bidang keimigrasian, salah satunya memberikan pelayanan pengurusan paspor. Peningkatan jumlah pemohon paspor ini akan berdampak pada kesediaan sarana, prasarana, maupun pelayanan pengurusan paspor yang sering mencapai 2000 – 3000 buah paspor setiap bulannya di tahun 2018. Dari permasalahan di atas, penulis menawarkan solusi yaitu dengan meramalkan jumlah pemohon paspor. Ada beberapa metode yang digunakan untuk menyelesaikan masalah ini, diantaranya adalah metode double exponential smoothing sebagai metode yang akan diuji dalam penelitian ini. Metode ini menggunakan nilai parameter yang didapat dari perhitungan secara trial dan error untuk menghasilkan nilai akurat karena data bersifat fluktuatif sehingga memerlukan parameter pemulusan. Apabila data yang peramalannya digunakan banyak dalam perhitungan maka MAPE (Mean Absolute Percentage Error) peramalannya akan semakin kecil begitu juga sebaliknya. Hasil peramalan permohonan pembuatan paspor yang dihasilkan dengan Metode Double Exponential Smoothing dengan parameter $\alpha = 0.4$ (pemilihan alpha terbaik antara 0 sampai 1) memperoleh nilai MAPE 14,28 %. Kriteria MAPE yang bernilai 14,28 % termasuk kategori BAIK dalam meramalkan permohonan pembuatan paspor di periode yang akan datang.

Kata Kunci: Peramalan, Double Exponential Smoothing, Mean Absolute Percentage Error (MAPE)

PENDAHULUAN

Paspor merupakan dokumen mutlak yang harus dimiliki oleh setiap warga negara yang ingin bepergian antar negara. Didalam paspor harus memuat data diri, foto pemegang paspor, lembar – lembar untuk pencatatan dan tanda keberangkatan atau kedatangan oleh petugas keimigrasian dari asal keberangkatan dan negara yang dikunjunginya.

Kantor imigrasi kelas II Non-TPI Kota Depok merupakan lembaga yang memberikan pelayanan yang bergerak dalam bidang keimigrasian, salah satunya memberikan pelayanan pengurusan paspor. Peningkatan jumlah pemohon paspor ini akan berdampak pada kesediaan sarana, prasarana, maupun pelayanan pengurusan paspor, yang sering mencapai 2000 – 3000 buah paspor setiap bulannya di tahun 2018.

Usaha untuk memperkirakan pengaruh situasi dan kondisi yang berlaku terhadap perkembangan dimasa yang akan datang yang disebut dengan peramalan (forecasting) (Alfarisi, 2017).[9] Terdapat 3 Tipe Peramalan dalam merencanakan operasional untuk masa mendatang (Heizer & Rendeer, 2015) yaitu Peramalan Ekonomi (Economic Forecast), Peramalan Teknologi (Technological Forecast), dan Peramalan Permintaan (Demand Forecast).[10] Metode kuantitatif dikelompokan menjadi dua jenis yaitu analisis sebab akibat (Causal Methods) dan analisa deret berkala (Time Series). Ada 3 teknik untuk menghitung deret berkala terdiri dari metode rata-rata bergerak (Moving Average), rata-rata bergerak tertimbang (Weight Average) dan penghalusan eksponensial (Exponential Smoothing).[11]

Dari permasalahan di atas, penulis menawarkan solusi yaitu dengan meramalkan jumlah pemohon paspor. Metode yang digunakan untuk menyelesaikan masalah ini, diantaranya adalah metode double exponential smoothing sebagai metode yang akan diuji dalam penelitian ini. Metode ini digunakan karena melihat dari data aktual permohonan jumlah paspor yang memiliki pola data trend naik dan turun sehingga dapat dianalisis menggunakan metode Double Exponential Smoothing. Dasar metode exponential smoothing tunggal maupun ganda adalah pemikiran dari bahwa nilai pemulusan akan terdapat pada waktu sebelum data sebenarnya apabila pada data tersebut terdapat komponen trend. Oleh karena itu untuk nilai-nilai pemulusan tunggal perlu ditambahkan nilai pemulusan ganda untuk menyesuaikan trend.[14] Metode Double Exponential Smoothing merupakan metode peramalan yang cukup baik untuk peramalan jangka panjang, jangka menengah maupun jangka pendek, terutama pada tingkat operasional suatu bentuk usaha, dalam perkembangan dasar matematis dari metode Double Exponential Smoothing.[6] Metode ini menggunakan nilai parameter yang didapat dari perhitungan secara trial dan error untuk menghasilkan nilai akurat karena data bersifat fluktuatif sehingga memerlukan parameter pemulusan. Apabila data yang digunakan banyak dalam peramalannya maka MAPE (Mean Absolute Percentage Error) peramalannya akan semakin kecil begitu juga sebaliknya. [1] [2] [3] Peramalan tidak memberikan jawaban pasti tentang apa yang akan terjadi, melainkan berusaha mencari pendekatan tentang apa yang terjadi sehingga dapat memberikan kontribusi dalam menentukan keputusan yang terbaik. [13]

Penelitian tentang estimasi dengan menggunakan metode double exponential smoothing brown sudah pernah dilakukan oleh para peneliti. Penelitian tersebut diantaranya dilakukan oleh Siahaan et al, 2016 dalam penelitiannya yang berjudul

"Peramalan Tingkat Sampah Plastik Yang 4 Akan Di Daur Ulang Dengan Metode Double Exponential Smoothing Dari Brown" dimana pada penelitian tersebut diperoleh nilai parameter terbaik untuk estimasi adalah 0,3 dengan nilai MAPE 4,2% dan untuk penelitian yang berpola trend naik tersebut, menggunakan metode double exponential smoothingl dari brown memiliki akurasi yang baik. [7] Penelitian lain oleh Teguh Andriyanto 2017 berjudul "Sistem Peramalan Harga Emas Antam Menggunakan Double Exponential Smoothing".[15] Penelitian Aden et al, 2019 yang berjudul "Prediksi Jumlah Siswa Baru yang Mendaftar Menggunakan Exponensial Ganda Satu-Parameter Dari Brown" pada penelitian ini metode satu parameter dari Brown adalah metode yang tepat karena dengan $\alpha = 0,2$ diperoleh F_{t+m} (besarnya forecast) 38,89. [8] Penelitian Hudiyanti et al, 2019 yang berjudul "Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai". [12]

Berdasarkan uraian diatas, penulis melakukan penelitian tugas akhir ini dengan judul "METODE *DOUBLE EXPONENTIAL SMOOTHING* DALAM PERAMALAN JUMLAH PEMOHON PASPOR" pada Kantor Imigrasi Kelas II Non-TPI Depok.

METODOLOGI PENELITIAN

Sumber Data

Tabel 1 adalah data jumlah pemohon paspor yang ada di Kantor Imigrasi Kelas II Non-TPI Depok di tahun 2018 sampai tahun 2020:

Tabel 1. Data Pemohon Paspor

Periode	2018	2019	2020	
Jan	3872	3930	3572	
Feb	3612	3024	3197	
Mar	3651	3918	2361	
Apr	3591	3137	2196	
Mei	3678	3897	1874	
Jun	4523	4673	1566	
Jul	4399	4199	1290	
Agu	3719	3290	1194	
Sep	3681	3572	1327	
Okt	3710	3788	1736	
Nov	4479	4309	1821	
Des	4592	4122	1504	

Metode Analisis

Langkah-langkah peramalan yang dilakukan dengan menggunakan metode *double exponential smoothing* adalah sebagai berikut:

1. Menentukan nilai Single Exponential Smoothing (S 't)

$$S'_{t} = \alpha X_{t} + (1-\alpha)S'_{t-1}$$
 (1)

Dimana, keterangan sebagai berikut:

S't : Single Exponential Smoothing

a : Alpha (parameter antara 0 dan 1)

 $X_t + (1-\alpha)$: Nilai aktual *time series*

 S'_{t-1} : Peramalan pada waktu t-1 (waktu sebelumnya).

2. Menentukan nilai *Double Exponential Smoothing* (S"_t)

$$S''_{t} = \alpha S'_{t} + (1-\alpha)S''_{t-1}$$
 (2)

Dimana, keterangan sebagai berikut:

S"_t : *Double Exponential Smoothing*

a : Alpha (parameter antara 0 dan 1)

 $X_t + (1-\alpha)$: Nilai aktual *time series*

 S''_{t-1} : Peramalan pada waktu t-1 (waktu sebelumnya)

3. Menentukan nilai at

$$\alpha_{t} = 2 S'_{t} - S''_{t} \tag{3}$$

Dimana, keterangan sebagai berikut:

 α_t : Konstanta

S 't : Single Exponential Smoothing

S"_t : *Double Exponential Smoothing*

4. Menentukan nilai β_t

$$\beta_{t} = \frac{\alpha}{1-\alpha} S'_{t} - S''_{t}$$
 (4)

Dimana, keterangan sebagai berikut :

 $\beta_t \hspace{1.5cm} : Konstanta$

a : Alpha (parameter antara 0 dan 1)

S't : Single Exponential Smoothing

S"_t : *Double Exponential Smoothing*

5. Menentukan Hasil Peramalan

Dimana, keterangan sebagai berikut:

 S_{t+m} : Hasil peramalan ke – m

m : Jumlah periode kemuka yang akan diramalkan

 a_t : Konstanta

 β_t : Koefisien *trend*

6. Menentukan Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE) merupakan suatu perhitungan evaluasi, MAPE digunakan untuk mengukur seberapa tepat atau akurat suatu prediksi yang ring digunakan [4]. Berikut ini adalah rumus perhitungan MAPE dan kriteria MAPE ada pada Tabel 2.

$$MAPE = \frac{100}{n} \sum_{i=0}^{n} \left| \frac{\hat{y}i - yi}{yi} \right| \tag{6}$$

Dimana, keterangan sebagai berikut:

ŷ*i* : Hasil peramalan

yi : Nilai aktual

n : Banyaknya data yang diuji

Tabel 2. Kriteria MAPE

MAPE	Kategori Kemampuan Peramalan			
< 10 %	Sangat Baik			
10 % - 20 %	Baik			
20 % - 50 %	Cukup			
> 50 %	Buruk			

HASIL DAN PEMBAHASAN

Langkah-langkah perhitungan peramalan jumlah pemohon paspor menggunakan metode *Double Exponential Smoothing* dengan parameter Alpha $(\alpha) = 0,4$ antara lain dijelaskan sebagai berikut dan ringkasan hasil ada pada Tabel 3.

1. Menghitung Single Exponential Smoothing

 S_1 ' = 3872

 $S_2' = (0.4)3612 + (0.6)3872 = 3768$

 S_3 ' = (0,4)3651 + (0,6)3768 = 3721,2

 S_4 ' = (0,4)3591 + (0,6)3721,2 = 3669,12

$$S_5$$
' = $(0,4)3678 + (0,6)3669,12 = 3672,672$

2. Menghitung Double Exponential Smoothing

$$S_1$$
" = 3872

$$S_2$$
'' = $(0,4)3768 + (0,6)3872$ = $3830,4$

$$S_3$$
" = $(0,4)3721,2 + (0,6)3830,4$ = $3786,72$

$$S_4$$
" = $(0,4)3669,12 + (0,6)3721,2$ = 3739,68

$$S_5$$
" = $(0,4)3672,672 + (0,6)3669,12$ = $3712,8768$

3. Menentukan besarnya nilai konstanta (a_t)

$$a_1 = 3872$$

$$a_2 = 2 \times 3768 - 3830,4 = 3705,6$$

$$a_3 = 2 \times 3721, 2 - 3786, 72 = 3655, 68$$

$$\alpha_4 = 2 \times 3669, 12 - 3739, 68 = 3598, 56$$

$$a_5 = 2 \times 3672,672 - 3712,8768 = 3632,4672$$

4. Menentukan besarnya koefisien trend (β_t)

$$\beta_1 = 0$$

$$\beta_2 = \frac{0.4}{0.6} (3768 - 3830,4) = -41,6$$

$$\beta_3 = \frac{0.4}{0.6} (3721, 2 - 3786, 72) = -43,68$$

$$\beta_4 = \frac{0.4}{0.6} (3669,12 - 3739,68) = -47,04$$

$$\beta_5 = \frac{0.4}{0.6} (3672,672 - 3712,8768) = -26,803$$

5. Menentukan besar nilai peramalan

$$S_{t,1} = 3872$$

$$S_{t2} = 3705,6 + (-41,6) = 3664$$

$$S_{t3} = 3655,68 + (-43,68) = 3612$$

$$S_{t4} = 3598,56 + (-47,04) = 3551,52$$

$$S_{t\,5} = 3632,4672 + (-26,803) = 3605,6642$$

6. Menentukan Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{100}{36} \sum_{i=0}^{n} \left| \frac{\hat{y}i - yi}{vi} \right|$$

$$MAPE = \frac{100}{36} |5,142106036|$$

= 0,142836279 \approx 14,28 %

Tabel 3. Perhitungan Data Pemohon Paspor

Tabel 3. Perhitungan Data Pemohon Paspor									
Bulan	Jumlah Pemohon Paspor	Single Exponential Smoothing	Double Exponential Smoothing	Konstant a (a_t)	Koefisien Trend (β_t)	Peramala n	Mape		
2018									
Januari	3872	3872	3872	3872	0				
Februari	3612	3768	3830,4	3705,6	-41,6	3872	0,071982281		
Maret	3651	3721,2	3786,72	3655,68	-43,68	3664	0,003560668		
April	3591	3669,12	3739,68	3598,56	-47,04	3612	0,005847953		
Mei	3678	3672,672	3712,877	3632,467	-26,8032	3551,52	0,034388254		
Juni	4523	4012,8032	3832,847	4192,759	119,9706	3605,664	0,20281583		
Juli	4399	4167,28192	3966,621	4367,943	133,7738	4312,73	0,019611366		
Agustus	3719	3987,969152	3975,16	4000,778	8,539187	4501,716	0,210464232		
September	3681	3865,181491	3931,169	3799,194	-43,9916	4009,317	0,089192372		
Oktober	3710	3803,108895	3879,945	3726,273	-51,224	3755,203	0,012183992		
Nopember	4479	4073,465337	3957,353	4189,578	77,40819	3675,049	0,17949342		
Desember	4592	4280,879202	4086,764	4474,995	129,4105	4266,986	0,070778348		
		•	2019)					
Januari	3930	4140,527521	4108,269	4172,786	21,50561	4604,405	0,171604417		
Februari	3024	3693,916513	3942,528	3445,305	-165,741	4194,292	0,387001169		
Maret	3918	3783,549908	3878,937	3688,163	-63,5913	3279,564	0,162949486		
April	3137	3524,929945	3737,334	3312,526	-141,603	3624,572	0,155426121		
Mei	3897	3673,757967	3711,904	3635,612	-25,4304	3170,923	0,186316889		
Juni	4673	4073,45478	3856,524	4290,385	144,6205	3610,182	0,227438076		
Juli	4199	4123,672868	3963,384	4283,962	106,8595	4435,006	0,056205272		
Agustus	3290	3790,203721	3894,112	3686,296	-69,272	4390,822	0,334596246		
September	3572	3702,922232	3817,636	3588,209	-76,4758	3617,024	0,012604659		
Oktober	3788	3736,953339	3785,363	3688,544	-32,273	3511,733	0,072932202		
Nopember	4309	3965,772004	3857,527	4074,017	72,16366	3656,271	0,151480437		
Desember	4122	4028,263202	3925,821	4130,705	68,29467	4146,181	0,005866362		
			2020)					
Januari	3572	3845,757921	3893,796	3797,72	-32,0253	4199	0,175531882		
Februari	3197	3586,254753	3770,779	3401,73	-123,016	3765,695	0,177883844		
Maret	2361	3096,152852	3500,929	2691,377	-269,851	3278,714	0,388697002		
April	2196	2736,091711	3194,994	2277,189	-305,935	2421,526	0,102698666		
Mei	1874	2391,255027	2873,498	1909,012	-321,496	1971,255	0,05189681		
Juni	1566	2061,153016	2548,56	1573,746	-324,938	1587,516	0,01373952		
Juli	1290	1752,69181	2230,213	1275,171	-318,347	1248,808	0,03193206		
Agustus	1194	1529,215086	1949,814	1108,616	-280,399	956,8234	0,198640386		
September	1327	1448,329051	1749,22	1147,438	-200,594	828,2173	0,375872416		
Oktober	1736	1563,397431	1674,891	1451,904	-74,329	946,8443	0,454582749		
Nopember	1821	1666,438459	1671,51	1661,367	-3,38098	1377,575	0,243506322		
Desember	1504	1601,463075	1643,491	1559,435	-28,0187	1657,986	0,102384322		
			Total			•	5,142106036		
							1		

Berdasarkan perhitungan dan pembahasan beberapa data dengan Metode *Double Exponential Smoothing* diperoleh hasil peramalan permohonan pembuatan paspor dengan parameter $\alpha=0.4$ memperoleh nilai MAPE 14,28 % sebagaimana yang diketahui pada Tabel.2 Kriteria MAPE bahwa 14,28 % termasuk kategori BAIK dalam meramalkan permohonan pembuatan paspor di periode yang akan datang. Pemilihan alpha dilakukan secara *trial* dan *error* untuk menghasilkan nilai MAPE yang menyebabkan kategori peramalannya baik.[5]

KESIMPULAN

Hasil peramalan permohonan pembuatan paspor dengan Metode *Double Exponential Smoothing* dengan parameter α = 0.4 (pemilihan alpha menggunakan *trial* dan *error*) memperoleh nilai MAPE 14,28 % dan termasuk kategori BAIK dalam meramalkan permohonan pembuatan paspor di periode yang akan datang. Sehingga metode ini bisa digunakan Kantor Imigrasi Kelas II Non-TPI Depok dalam memprediksi jumlah pemohon paspor pada tahun 2021 sebagai dasar acuan dalam menentukan strategi pelayanan guna pencapaian kinerja prima tahun 2021.

DAFTAR PUSTAKA

- [1] Ariyanto R., Puspitasari D., Ericawati, F. (2017). Penerapan Metode *Double Exponential Smoothing* Pada Peramalan Produksi Tanaman Pangan. *Jurnal Informatika Polinema*. **4(1)**:57-62. https://doi.org/10.33795/jip
- [2] Habsari, H.D.P., Purnamasari I., Yuniarti D. (2020). Peramalan Menggunakan Metode *Double Exponential Smoothing* dan Verifikasi Hasil Peramalan Menggunakan Grafik Pengendali *Tracking Signal. Barekeng Jurnal Ilmu Matematika dan Terapan.* **14(1)**:13-22. https://doi.org/10.30598/barekengvol14iss1pp013-022
- [3] Selasakmida, A. D., Tarno, T., Wuryandari, T. (2021). Perbandingan Metode *Double Exponential Smoothing Holt* dan *Fuzzy Time Series Chen* Untuk Peramalan Harga Paladium . *Jurnal Gaussian*. **10**(3):325-336. https://doi.org/10.14710/j.gauss.v10i3.32782
- [4] Kim S., Kim H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting. 32(3):669-679. https://doi.org/10.1016/j.ijforecast.2015.12.003
- [5] Pujiati, E., Yuniarti D., Goejantoro, R. (2016). Peramalan Dengan Menggunakan Metode *Double Exponential Smoothing* Dari Brown (Studi Kasus: Indeks Harga Konsumen (IHK) Kota Samarinda). *Jurnal Eksponensial*. **7(1)**:33-40. https://doi.org/10.30872/eksponensial.v12i2
- [6] Hariri, F. R., Mashuri, C. (2022). Sistem Informasi Peramalan Penjualan dengan Menerapkan Metode Double Exponential Smoothing Berbasis Web. *Generation Journal.* **6(1)**:68-77.
- [7] Siahaan, Wijaya, M. D., & Khairani, N. (2016). Peramalan Tingkat Sampah Plastik Yang Akan Di Daur Ulang Dengan Metode *Double Exponential*

- Smoothing Dari Brown. KARISMATIKA. **2(1)**:89-98. https://doi.org/10.24114/jmk.v2i1.8819
- [8] Aden, dan Ahmad Labib Al Jauzi. 2019.Prediksi Jumlah Siswa Baru Yang Mendaftar Menggunakan Eksponensial Ganda Satu-Parameter dari Brown. STATMAT, 1(2):17-27. http://dx.doi.org/10.32493/sm.v1i2.2944
- [9] Alfarisi, S. (2017). Sistem Prediksi Penjualan Gamis Toko Qitaz Menggunakan Metode Single Exponential Smoothing. JABE (Journal of Applied Business and Economic). **4(1)**:80-95.
- [10] Heizer, J., & Render, B. (2015). Manajemen Operasi: Manajemen Keberlangsungan dan Rantai Pasokan Edisi 11. Jakarta: Salemba Empat.
- [11] Hayuningtyas, R. Y. (2017). Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average Dan Metode Double Exponential Smoothing. Jurnal PILAR Nusa Mandiri. 12(2):217-222.
- [12] Hudiyanti, C. V., Bachtiar, F. A., Setiawan, B. D. (2019). Perbandingan *Double Moving Average* dan *Double Exponential Smoothing* untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai. *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer.* **3(3)**:2667-2672.
- [13] Fajri, R., Johan, T. M. (2017). Implementasi *Peramalan Double Exponential Smoothing* Pada Kasus Kekerasan Anak Di Pusat Pelayanan Terpadu Pemberdayaan Perempuan Dan Anak *Jurnal Ecotipe*. **4(2)**:6-13. https://doi.org/10.33019/ecotipe.v4i2.6
- [14] Baktiar, C., Wibowo, A., & Adipranata, R. (2015). Pembuatan Sistem Peramalan Penjualan Dengan Metode *Weighted Moving Average* dan *Double Exponential Smoothing* Pada UD Y. *Jurnal Infra.* **3(1)**:1-5.
- [15] Andriyanto, T. (2017). Sistem Peramalan Harga Emas Antam Menggunakan *Double Exponential Smoothing*. Jurnal INTENSIF. **1(1)**:1-9. https://doi.org/10.29407/intensif.v1i1.531

