Übungsblatt 6

Entwickeln Sie in MPI eine funktionierende Lösung zur Berechnung von π via Monte-Carlo-Simulation.

 π kann man via Monte-Carlo-Simulation approximieren. Dafür wird ein Kreis in ein Quadrat einbeschrieben.

$$A_Q = (2r)^2 = 4r^2$$

$$A_K = \pi r^2 \Longrightarrow \ \pi = \frac{A_K}{r^2}$$

 π kann man nun approximieren indem man zufällig Punkte im Quadrat erzeugt. Die Anzahl der Punkte auf A_K zur Anzahl der Punkte auf A_Q ist gleich dem Flächenverhältnis.

$$\frac{A_K}{A_Q} = \frac{\pi r^2}{4r^2} \Longrightarrow \frac{A_K}{A_Q} = \frac{\pi}{4}$$

Das zufällige Erzeugen der Punkte kann durch die Worker parallelisiert werden. Der Master erhält die Punkte und berechnet π .

Aufgabe: Erstellen Sie einen verständlich kommentierten Quellcode. Demonstrieren Sie Ihre Lösung in der Übungsstunde.