Transformadas de Fourier e Laplace

Entendendo diferenças e aplicações

Prof. Ana Isabel Castillo Pereda

April 23, 2025

Objetivo da Aula

- Entender o que é a transformada de Fourier
- Compreender a transformada de Laplace
- Comparar suas diferenças principais
- Mostrar aplicações práticas

Transformada de Fourier

Definição:

$$\mathcal{F}\{f(x)\} = \hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-i\xi x} dx$$

Usos principais:

- Análise de frequências de sinais
- Soluções de EDPs em domínios infinitos
- Física, engenharia, processamento de sinais

Transformada de Laplace

Definição:

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty e^{-st} f(t) dt$$

Usos principais:

- Solução de EDOs com condições iniciais
- Sistemas de controle e engenharia
- Análise de estabilidade

Comparação: Fourier vs Laplace

Característica	Fourier	Laplace
Domínio	$(-\infty,\infty)$	$[0,\infty)$
Kernel	$e^{-i\xi x}$	e ^{-st}
Resultado	$\hat{f}(\xi)$ (real)	F(s) (complexo)
Aplicações	EDPs, sinais	EDOs, sistemas
Conexão	_	$\mathcal{L}(f)(i\xi) = \mathcal{F}(f)(\xi)$

Intuições e Complementos

- Fourier analisa a função como soma de senos/cossenos
- Laplace analisa sistemas com entrada e resposta
- Laplace é mais geral: abrange Fourier com $s = i\xi$

"A Fourier transforma em música o que a Laplace resolve em engenharia."

Resumo Final

- Ambas transformadas s\(\tilde{a}\) ferramentas poderosas na matem\(\tilde{a}\) tica aplicada
- Fourier: melhor para análise harmônica e frequência
- Laplace: melhor para resolução de sistemas dinâmicos com C.I.

Dúvidas?

Vamos praticar agora na Lista 3