Image Fundamentals

Digital image

Image Matrix

Image

Digital Image

- An image is a 2D array of pixels
 - N pixels wide (columns)
 - M pixels high (row)
- Each **pixel** is a small square on the screen
- For gray image, each pixel has intensity associated with it (3rd Dimension)
- For color image each pixel has a **color** associated with it
- Image requires 3D representation (row, column and pixel value)
- Digital image requires sampling and quantization of Camera Image

Image Resolution

- Gives the degree of distinguishable details of image
- Depends on sampling and quantization
- Broadly classified into
 - (i) spatial resolution
 - smallest discernible detail in an image
 - depends on the number of pixels
 - (ii) gray-level resolution
 - refers to the smallest discernible change in the gray level of pixels
 - depends on the number of gray levels

Image Sampling and Quantization

- Formation of digital image involves two processes:
 - sampling
 - quantisation
- Digitizing coordinates is called sampling
- Digitizing the amplitude values is called quantization

Image Sampling and Quantization

(a) Continuous image sampled in coordinates

Image Sampling and Quantization

- (a) Continuous image to be sampled in coordinates
- (b) Result of image sampling (14×12)

Intensity is assumed to be constant within each pixel (quantization)

Intensity Resolution of Image (n-bit image)

- Also called Gray level Resolution
- Represents value of each pixel
- Binary image (1-bit)
- Monochrome images (8 bit grey scale)
- Colour images (24 bit colour scale)

Binary Image (1bit/pixel)

- One bit to represent each pixel
- Pixel values are o or 255 ('o' or '1' if normalized)

Image matrix (normalized)

1	0	•••	1
0	1	•••	1
:	•	•••	•
1	1	•••	1

A part of single row of image

Binary Image (1 bit/pixel)

- Example: width 800 pixels (columns) height 600 pixels (rows)
- Size = 800*600 bits = 60,000 bytes

Pixel Intensity of Grey Image

For 8-bit image, intensity range is 0-255

Pixel brightness

Pixel value

Digital Image and Image Matrix

O	255	O	O	255
О	255	O	O	255
О	255	0	0	255
О	255	О	О	255
O	255	O	O	255

Image matrix

255	255	255	255	255
100	100	100	100	100
50	50	50	50	50
О	О	О	О	О
50	50	50	50	50

Image matrix

Grey-scale 8-bit image

Image matrix (m×n)

10	0	•••	86
22	33	•••	75
•	•	•••	•
255	51		100

Intensity range is 0-255

Grey-scale image (8 bits/pixel)

Gray Image (8 bits/pixel)

- Example: width 800 pixels (columns) height 600 pixels (rows)
- Size = $800 \times 600 \times 8$ bits = 480,000 bytes

Compare binary and grey image

Size of image: 800×600

1 pixel = 8 bits

Image size= 480,000 bytes

1 pixel = 1 bit Image size = 60,000 bytes

Color Image Representation

- Each pixel is a combination of Red, Blue and Green color
- Each pixel is a combination of 3 colors (Red, Green, Blue)
- Therefore there are 3 values for each pixel
- Ex: at location (6,75), pixel value is (100, 20, 234)

rgb(0,0,0)

```
rgb(0,0,0)
rgb(255,0,0)
```


rgb(0,0,0)
rgb(255,0,0)
rgb(0,255,0)
rgb(0,0,255)
rgb(255,255,0)
rgb(0,255,255)
rgb(255,0,255)
rgb(192,192,192)
rgb(255,255,255)

Color Image Representation

- Three planes (R, G and B) for each image
- Each plane uses 8 bits for each pixel
- Therefore each pixel is represented by 24 bits

Digital Color Image and Image Matrix

Size for grey (M x N) Image

- If k bits are is used to represent gray levels
- Then number of intensity levels

$$L = 2^k$$
 where $k = 1, 2, ..., 8$

Number of bits required to store a digitised image

$$= M \times N \times k$$

• It is a common practice to refer to the image as a "k-bit image"

Change 8-bit Image to b-bit Image

- 8 bits have 256 values with the range, {0, 1, 2,...,255}
 step size, S = 1 (=difference between 2 consecutive values)
 S = 255/(2^b-1) = 255/(2⁸-1) =1
- For 8-bit (256 values) to 1 bit (2 values),
- S = 255/ (2^1-1) = 255 256 values are converted to two values, $\{0, 255\} \rightarrow '0', '1'$
- For 8-bit (256 values) to 2 bits
- S = 255/ (2²-1) = 85
 256 values are converted to four values,
 {0, 85, 170, 255} → '00', '01', '10', '11'
- b bits have 2^b values, {0, S, 2S, ..., 255},
 S = 255/(2^b-1)

Ex: Change 8-bit Image to 3-bit Image

- Number of intensity levels for original 8-bit image= 256 = 28
- Number of intensity levels for new 3-bit image= 2³
 - $S = 255/(2^3-1) = integer(255/7) = 36$
 - New intensity values are {0, 36, 72, 108, 144, 180, 216, 252(or 255)}
 - Pixels in original image are mapped to new pixel value
 - Choose middle value for each range (for 0 to 36, middle value is 18)
 - First and last range has difference of 18

Pixel value in 8-bit image	0-18	19 -54	55-90	91-126	127-162	163-198	199-234	235-255
Mapped values for 3-bit image	0	36	72	108	144	180	216	255

Change 8-bit Image to 3-bit Image

Intensity values of 3-bit image {0, 36, 72, 108, 144, 180, 216, 252}

Pixel value in 8-bit image	0-18	19 -54	55-90	91-126	127-162	163-198	199-234	235-255
Mapped values for 3-bit image	0	36	72	108	144	180	216	255
Mapped to Binary	000	001	010	011	100	101	110	111

10	29	0	230
236	35	12	37
200	21	38	240
235	255	16	15

\sim 1		•
\mathbf{v}	hit	$1m \alpha \alpha \alpha$
α		image
_		111145
		_

0	36	0	255
255	36	0	36
216	36	36	255
255	255	0	0

Mapped values for 3-bit image

Change 8-bit Image to 3-bit Image

Intensity values of 3-bit image {0, 36, 72, 108, 144, 180, 216, 252}

Pixel value in 8-bit image	0-18	19 -54	55-90	91-126	127-162	163-198	199-234	235-255
Mapped values for 3-bit image	0	36	72	108	144	180	216	255
Mapped to Binary	000	001	010	011	100	101	110	111

0	36	0	255
252	36	0	36
216	36	36	252
255	255	0	0

000	001	000	111
111	001	000	001
110	001	001	111
111	111	0	0

Mapped values for 3-bit image

3-bit image

Various Grey Levels of monochrome/grey images

2 levels 1 bit/pixel

Various Grey Levels of monochrome images

2 levels 1 bit/pixel 4 levels
2 bits/pixel

Various Grey Levels of monochrome images

2 levels 1 bit/pixel 4 levels
2 bits/pixel

256 levels 8 bits/pixel

Intensity Resolution (number of bits/pixel)

- Good resolution
- useful for reading number plate

Intensity Resolution (number of bits/pixel)

- Good resolution
- Useful for reading number plate

- Poor resolution
- Useful for counting number of cars

File Size for color image (800 x 600)

- 1 pixel = 24 bits = 3 bytes
- Image requires 800×600×3= 1,440,000 bytes
- Therefore files for colour images are large
- Since 24 bits are used to represent each pixel
- $2^{24} = 16$ million colours are possible
- However, human eye can only perceive 10 million colors
- Therefore some levels can be avoided to compress image

Spatial Resolution (M x N)

Spatial Resolution (M x N)

Spatial Resolution (M x N)

8x8 image

32x**32** image

Spatial Resolution (M x N)

8x8 image

32x32 image

64x64 image

Spatial Resolution

- Depends on the number of pixels in an image
- It depends on the rows and columns
- An image can be either down sampled to reduce resolution or
- upsampled to increase resolution in spatial domain

Down sampling

2	1	O	2	2	5
О	1	6	1	1	6
4	О	6	О	6	4
6	2	5	1	7	6
7	5	7	0	4	О
1	3	3	О	5	7

Original Image Matrix

2	1	0	2	2	5
O	1	6	1	1	6
4	О	6	О	6	4
6	2	5	1	7	6
7	5	7	O	4	O
1	3	3	0	5	7

Delete highlighted rows/columns for sampling rate 2

2	0	2
4	6	6
7	7	4

Down sampled Image Matrix

For color image, each plane is sampled

Up sampling

2	О	2
4	6	6
7	7	4

Original Image Matrix

2	0	0	0	2	O
3	О	3	O	4	O
4	О	6	O	6	O
6	О	6	O	5	O
7	O	7	O	4	O
O	О	O	O	O	O

Up sampled Image Matrix using averaging Method on columns

2	0	0	0	2	0
O	O	O	O	O	О
4	O	6	О	6	O
O	O	O	O	O	О
7	O	7	O	4	О
O	O	0	O	O	О

To be up sampled with sampling rate 2

2	1	0	1	2	0
3	3	3	3	4	0
4	5	6	6	6	O
6	6	6	5	5	O
7	7	7	5	4	O
O	O	O	0	O	0

Up sampled Image Matrix using averaging Method on rows

Image file Formats

- Raster image files
 - Images are constructed by a series of pixels
 - or individual blocks, to form an image
- Vector image files
 - Far more flexible
 - Constructed using proportional formulas rather than pixels

Raster Image Files

- JPEG, GIF, and PNG
- Photo available online or in print is a raster image
- Pixels have a defined proportion based on their resolution (high or low)
- Cannot resize raster images without compromising their resolution

Vector image files

- EPS, AI and PDF are useful for creating graphics that require frequent resizing
- Logo and brand graphics are created as a vector image
- Can be resized as small as a postage stamp, or large enough to fit a large screen

Common file formats

- Numerous image file types are available
- Difficult to know which file type best suits the application
- Some image types such a TIFF are useful for printing
- Others, like JPG or PNG, are best for web graphics

Common file formats

- JPEG (or JPG) Joint Photographic Experts Group
- Most common file type on the web
- known for their "lossy" compression,
 quality of the image decreases as the file size decreases
- There is no difference between the .jpg and .jpeg filename extensions
- Two extensions exist for the same format
- .jpeg was shortened to .jpg to accommodate the three-character limit in early versions of Windows
- .jpg remains the standard and default on many image software programs

PNG - Portable Network Graphics

- Useful for interactive documents such as web pages but are not suitable for print
- Lossless format
- can edit images and do not lose quality
- Used in most web projects because
- you can save image with more colors
- This makes for a much sharper, web-quality image

GIF - Graphics Interchange Format

- Most common in their animated form
- Formed from up to 256 colors in the RGB colorspace
- Due to the limited number of colors, the file size is drastically reduced
- Useful when an image needs to load very quickly with lower level of quality

TIFF - Tagged Image File

- Large raster file that doesn't lose quality
- lossless compression
- original image data is maintained regardless of how it is copied, re-saved, or compress the original file

PDF - Portable Document Format

- Invented by Adobe with the goal of capturing and reviewing rich information from any application on any computer, with anyone, anywhere
- This is by far the best universal tool for sharing graphics

