KW: la logica della dimostrabilità

Giorgia Dal Prà

Alma Mater Studiorum – Univesità di Bologna

6 Maggio 2024

INDICE

- STORIA DI KW
- PROPRIETÀ DI KW
- 3 L'ARITMETICA DI PEANO
- **1** Teor_{PA}(x) E KW
- 5 Il secondo teorema di incompletezza

- 1 Storia di KW
- 2 Proprietà di KW
- 3 L'ARITMETICA DI PEANO
- 1 Teor_{PA}(x) E KW
- 5 Il secondo teorema di incompletezza

Storia di KW

Gödel, K., 1933, "Eine Interpretation des intuitionistischen Aussagenkalküls," *Ergebnisse eines Mathematischen Kolloquiums*, 4: 39–40; translation "An Interpretation of the Intuitionistic Propositional Calculus," in K. Gödel, *Collected Works*

Gödel 1933 suggerisce *en passant* di interpretare l'essere dimostrabile come un operatore modale.

KW è una logica modale che ben rappresenta la dimostrabilità nell'aritmetica di Peano (PA).

- 1 Storia di KW
- 2 Proprietà di KW
- 3 L'ARITMETICA DI PEANO
- 1 Teor_{PA}(x) E KW
- 5 Il secondo teorema di incompletezza

Il sistema assiomatico di KW

La logica KW è definita dagli assiomi:

• Tutte le tautologie
 (
$$Taut$$
)

 • $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
 (K)

 • $\Box(\Box A \rightarrow A) \rightarrow \Box A$
 (W)

 • $\Diamond A \leftrightarrow \neg \Box \neg A$
 (def_{\Diamond})

e dalle regole di inferenza:

$$\frac{A \to B \qquad A}{B} MP$$

$$\frac{A}{\Box A} N$$

Corrispondenza e validità

Teorema (ordine dualmente ben fondato)

Lo schema W è valido su una struttura se e solo se essa ha una relazione d'accessibilità dualmente ben fondata e transitiva:

$$\mathcal{F} \models \Box(\Box A \rightarrow A) \rightarrow \Box A$$
 sse $\mathcal{F} \triangleright$ dualmente ben fondato

DEFINIZIONE

Una relazione \mathcal{R} è un *ordine dualmente ben fondato* sse \mathcal{R} è irriflessiva, transitiva e non esistono catene infinite ascendenti, ovvero non esistono \mathcal{R} -successioni infinite: $x_0\mathcal{R}x_1\mathcal{R}x_2\mathcal{R}x_3\mathcal{R}...$

Validità

Dal Teorema 1 segue:

Teorema

KW è valida sulla classe delle strutture irriflesive, transitive e prive di \mathcal{R} -catene infinite ascendenti. In particolare KW è valida rispetto alla classe degli ordini parziali stretti finiti.

Teorema $\vdash_{KW} \Box B \rightarrow \Box \Box B$

Proof.

$$\bullet \vdash_{\mathit{KW}} B \to ((\Box B \land \Box \Box B) \to (B \land \Box B))$$

Taut

K(1), Taut [1]

RM [2]

$$\bullet \vdash_{\mathit{KW}} \Box (\Box (B \land \Box B) \to (B \land \Box B)) \to \Box (B \land \Box B))$$

W Taut [3,4]

$$\bullet \vdash_{KW} \Box B \to \Box (B \land \Box B)$$

K(1), Taut [5]

$$\bullet \vdash_{KW} \Box B \to \Box B \land \Box \Box B$$

$$\bullet \vdash_{KW} \Box B \rightarrow \Box \Box B$$

Teoremi e non teoremi di KW

Sono teoremi di KW:

- $((\Box A \to A) \land \Box(\Box A \to A)) \to A$
- $\bullet \Box (\Box \bot \to \bot) \to \Box \bot$
- $\bullet \ \lozenge \top \to \neg \Box \lozenge \top$
- $\bullet \lozenge \top \to \lozenge \Box \bot$
- \bullet $\Box \bot \leftrightarrow \Box \Diamond \top$

Non sono teoremi di KW:

- $\bullet \Box A \leftrightarrow A$
- ◇T
- ¬□⊥
- □◊⊤

Completezza di KW

TEOREMA

La logica KW è completa rispetto agli ordini parziali stretti finiti.

Teorema

La logica KW non è fortemente completa, ovvero non vale che:

$$\Gamma \vdash_{KW} B$$
 sse $\Gamma \models_{KW} B$

Teorema

La logica KW non è canonica.

- 1 Storia di KW
- 2 Proprietà di KW
- 3 L'ARITMETICA DI PEANO
- 1 Teor_{PA}(x) E KW
- 5 IL SECONDO TEOREMA DI INCOMPLETEZZA

Aritmetica di Peano

(PA1)
$$\forall x \neg (S(x) = 0)$$

(PA2) $\forall x \forall y (S(x) = S(y) \rightarrow x = y)$
(PA3) $\forall x (x + 0 = x)$
(PA4) $\forall x \forall y (x + S(y) = S(x + y))$
(PA5) $\forall x (x \cdot 0 = 0)$
(PA6) $\forall x (x \cdot S(y) = (x \cdot y) + x)$
(PA7) $\forall \vec{x} [(A(0, \vec{x}) \land \forall y (A(y, \vec{x}) \rightarrow A(S(y), \vec{x}))) \rightarrow \forall y A(y, \vec{x})]$

GÖDELIZZAZIONE

Deriviamo il numero di Gödel della formula $\forall x(x=x)$:

FIGURE: Esempio di calcolo del numero di Gödel

- 1 Storia di KW
- 2 Proprietà di KW
- 3 L'ARITMETICA DI PEANO
- **1** Teor_{PA}(x) E KW
- 5 Il secondo teorema di incompletezza

IL PREDICATO $Teor_{PA}(x)$

Sia prova(n, m) la relazione che intercorre tra due numeri naturali n e m quando n è il numero di Gödel di una dimostrazione di una formula di numero di Gödel m. Si dimostra che tale relazione è fortemente rappresentabile nell'aritmetica (formale) PA, ovvero che esiste una formula Dim(x, y) di PA tale che per ogni n ed m:

$$PA \vdash Dim(\overline{n}, \overline{m})$$
 se vale $prova(n, m)$
 $PA \vdash \neg Dim(\overline{n}, \overline{m})$ se vale $non \ prova(n, m)$

DEFINIZIONE

$$Teor_{PA}(x)$$
 sse $PA \vdash \exists yDim(y,x)$

Proprietà di $Teor_{PA}(x)$

Il predicato unario $Teor_{PA}(x)$ gode delle seguenti proprietà:

T1
$$PA \vdash A$$
 solo se $PA \vdash Teor_{PA}(\overline{A})$;

T2
$$PA \vdash Teor_{PA}(\overline{A}) \land Teor_{PA}(\overline{A \rightarrow B}) \rightarrow Teor_{PA}(\overline{B});$$

T3
$$PA \vdash Teor_{PA}(\overline{A}) \rightarrow Teor_{PA}(Teor_{PA}(\overline{A})).$$

Teorema di Löb

Nel 1952 Leon Henkin pose una questione relativamente agli enunciati che esprimono la propria dimostrabilità, ovverro tali che $PA \vdash Teor_{PA}(\overline{A}) \leftrightarrow A$. Come sappiamo dal primo teorema di incompletezza gli enunciati che esprimono la propria indimostrabilità, ovverto tali che $PA \vdash \neg Teor_{PA}(\overline{A}) \leftrightarrow A$, non sono dimostrabili, ma sono veri.

Löb dimostra che il predicato $Teor_{PA}(x)$ gode della sequente properietà:

$$T4 PA \vdash Teor_{PA}(\overline{A}) \rightarrow A \text{ solo se } PA \vdash A$$

Una versione formalizzata:

$$PA \vdash Teor_{PA}(\overline{Teor_{PA}(\overline{A})} \rightarrow A) \rightarrow Teor_{PA}(\overline{A})$$

Realizzazione e teorema di Solovay

Sia τ una funzione di traduzione dall'insieme delle variabili enunciative Φ a enunciati di PA, tale che:

- $\tau(\bot) = \bot$;
- $\tau(A \to B) = \tau(A) \to \tau(B)$
- $\tau(\Box A) = Teor_{PA}(\tau(A))$

TEOREMA (TEOREMA DI SOLOVAY, 1976)

 $\vdash_{KW} A$ sse per ogni traduzione τ , $PA \vdash \tau(A)$

- STORIA DI KW
- 2 Proprietà di KW
- 3 L'ARITMETICA DI PEANO
- 1 Teor_{PA}(x) E KW
- 5 Il secondo teorema di incompletezza

2° TEOREMA DI GÖDEL VIA TEOREMA DI LÖB

Se T è gödeliana e consistente, allora $\not\vdash CON_T$.

Proof.

Supponiamo per assurdo che CON_T , allora

•
$$T \vdash \neg Teor_{PA}(\overline{\perp})$$

$$T \vdash Teor_{PA}(\overline{\perp}) \rightarrow \bot$$

Duns Scoto

teorema di Löb

Quindi T è inconsistente, contrariamente all'ipotesi.

ALCUNE PROPRIETÀ METATEORICHE DI PA

- $\neg Teor_{PA}(\overline{\perp})$
- $Teor_{PA}(\neg Teor_{PA}(\overline{\perp}))$
- $\bullet \neg \textit{Teor}_{\textit{PA}}(\overline{\bot}) \rightarrow \neg \textit{Teor}_{\textit{PA}}(\neg \textit{Teor}_{\textit{PA}}(\overline{\bot}))$
- $Teor_{PA}(\neg Teor_{PA}(\overline{\bot}) \rightarrow \neg Teor_{PA}(\neg Teor_{PA}(\overline{\bot})))$