Т. А. Боровских *МПГУ*

ГРУППОВАЯ ТЕХНОЛОГИЯ

на уроках развивающего дифференцированного обучения

При использовании интегральной образовательной технологии [1−3] минимальная единица учебного процесса — блок уроков, в структуре которого условно выделяют постоянную и переменную части. Уроки постоянной части определяются в основном содержанием учебного материала, уроки же переменной части полностью зависят от течения процесса обучения и требуют установления обратной связи. Переменная часть блока включает в себя уроки развивающего дифференцированного обучения — семинары-практикумы. Они обеспечивают «предметное и личностное развитие учеников через коммуникативную активность и групповую динамику на основе кооперативной мотивации» [2, с. 33−34].

Обучение в малых группах переменного состава оптимально для организации семинара-практикума. Во-первых, работа в группе предполагает совместную деятельность и общение учащихся, а именно общение отвечает мотивации и ведущей деятельности подростков, совместная же деятельность стимулирует их развитие. Во-вторых, при формировании групп можно максимально учесть индивидуальные особенности учащихся. При использовании интегральной технологии каждый школьник занимает в уроке своё место, отсутствие конкретного ученика на конкретном уроке заставляет учителя перестраивать план, иначе организовывать коммуникацию и взаимодействия учащихся.

Группы формируются на основе уровней планируемых результатов обучения. По этому показателю всех учащихся класса можно условно (так как уровень достижений — явление временное) разделить на четыре категории: некомпетентные (H) — не умеющие пока решать шаблонные задачи; учащиеся, достигшие минимального уровня (M), общего уровня (O) и перешедшие на продвинутый уровень (П).

К первому типу групп (*группы выравнивания*) можно отнести все группы, в состав которых включены некомпетентные

учащиеся (НМ, НО, НП и т. п.). Назначение таких групп очевидно — подтянуть некомпетентных до минимального уровня. Учащиеся, достигшие более высокого уровня, могут оказать помощь некомпетентным учащимся в зоне их ближайшего развития.

Группы второго типа — группы поддерж- κu — состоят из учащихся, достигших одного уровня (ММ, ОО, ПП). Учитель создаёт такую группу для организации работы в поддержку достигнутого уровня: работая над более трудными заданиями того же уровня, ученики закрепляют свой успех.

Группы третьего типа включают в себя учеников различных типов (кроме некомпетентных). В этих группах обучение учеников более низкого уровня происходит в зоне их ближайшего развития под влиянием более продвинутых одноклассников. Отсюда и название самого типа групп — группы развития.

Уровневые характеристики учащихся становятся известны учителю только после первых контрольных работ. Кроме того, по мере изучения темы они могут быстро и резко меняться, таким образом, состав групп никогда не бывает постоянным.

Для организации семинара-практикума требуется не только постоянная диагностика уровня достижений, но и динамическое управление процессом обучения — учитель отслеживает и регламентирует движение учащихся в группах. Непременное условие урока — создание ситуации успеха при работе в группах. Таким образом, слабо подготовленные учащиеся не чувствуют дискомфорта, поскольку понимают, что все оценки состояния уровня достижений имеют временноситуационный характер и не оглашаются.

Принципы организации групповой работы на уроке

• Состав групп определяется дидактическими, психологическими и управленческими целями учителя и зависит от результатов предварительного контроля, социометрических зависимостей и психологических особенностей учащихся.

- Каждая группа существует столько времени, сколько ей отводится для решения предложенной задачи.
- Группа получает задачу на строго ограниченное время и по истечении этого времени отчитывается о результатах. При этом не всегда важно, решена ли задача. На данном этапе процесс важнее результата.
- Представителя группы для отчёта учитель назначает в момент отчёта.
- Всем членам группы учитель выставляет одну и ту же отметку за работу.

Учёт результатов обучения учащихся в интегральной технологии также имеет свою специфику. Результаты каждого среза, представленные отметками 1/0, заносят в табл. 1. Отметка «1» означает, что работа выполнена успешно, отметка «0» — неуспешно, пустая клетка соответствует неучастию в работе.

Таблица 1 Учёт результатов обучения в блоке уроков

Nº	Список учащихся	Срез 1 (минимум)				Срез 2 (общий)			Срез 3 (продвинутый)				
		1	2	3	4	5	2	3	4	5	3	4	5
1	Α	1					1				1		
2	Б		1					0	1				1
3	В	0	0	1					1				1
4	Г	0	0	0									
5	Д	1					0	1				1	

Например, учащиеся A и Д выполнили задания первого среза с первого раза, Б отсутствовал, а В и Γ потерпели неудачу — результаты учитель заносит в первую колонку. На втором срезе ученики A и Д получают задания общего уровня, а Б, В и Γ — минимального. Результаты срезов заносятся в следующую колонку соответствующих столбцов. Так же заполняется таблица в зависимости от результатов третьего среза.

Общие правила контроля

• Учащийся получает на срезе задания того уровня, над достижением которого он уже работал.

- Показав на одном из срезов результат того или иного уровня, ученик до конца этого блока уроков уже не получит на уроках задания более низкого уровня, а на срезе только следующего, более высокого уровня.
- Учащийся, показавший на срезе достижение продвинутого уровня, до конца работы в блоке в срезах не участвует [4].

Информация об уровнях достижений учащихся, представленная графически, позволяет планировать состав групп и их работу во время семинара-практикума. Так, в нашем примере (см. табл. 1) по результатам первого среза в классе имеются школьники, освоившие минимальный уровень (А и Д) и оставшиеся некомпетентными (Б, В и Г). Так как большую часть класса составляют некомпетентные учащиеся, учитель работает с ними фронтально, решая задачи минимального уровня. Учащиеся, освоившие данный уровень, объединяются в группу поддержки и решают комплект более трудных задач данного уровня. Поскольку уровень группы выше уровня класса, публичной защиты не будет: группа отчитывается учителю. Возможная структура урока представлена в табл. 2.

Таблица 2 Структура семинара-практикума 1

Время, мин	Содержание работы				
1–2	Инициализация урока, организация работы				
3-10 11-16 17-22 23-28 29-35	Задача 1 (M) Задача 2 (M) Задача 3 (M) Задача 4 (M) Задача 5 (M)	Группа 1 (М) Самостоятельная работа поддерживаю- щего повторения			
36-43	Срезовая работа уровня М	Разбор задач само- стоятельной работы			
44-45	Подведение итогов урока				

Приведём примеры заданий для данного урока по теме «Основные классы неорганических соединений».

Задания минимального уровня

1. А. Определите валентность кислотных остатков по формулам кислот: ${\rm H_2SO_4},\ {\rm H_2CO_3}$ и т. п.

- Б. Составьте формулы кислот по известным кислотным остаткам: Cl (I), S (II) и т. п.
- В. Определите валентность металлов по формулам гидроксидов: $Mn(OH)_2$, $Cr(OH)_3$ и т. п.
- **2.** Составьте формулы гидроксидов, соответствующих следующим оксидам: Na_2O , CaO, SO_3 , Cr_2O_3 , CO_2 , P_2O_5 и т. п.
- **3.** Распределите по группам (основания, кислоты, соли, оксиды) вещества, формулы которых Na₂O, Mn(OH)₂, K₃PO₄, HBr и т. п.
- **4.** Составьте уравнения реакций, напишите названия образующихся веществ:

```
Na + HCl \longrightarrow;

Al + H<sub>2</sub>SO<sub>4</sub> \longrightarrow;

HCl + NaOH \longrightarrow;

HNO<sub>3</sub> + Ca(OH)<sub>2</sub> \longrightarrow;

Fe(OH)<sub>2</sub> \xrightarrow{t};

Cr(OH)<sub>3</sub> \xrightarrow{t};

KOH + SO<sub>2</sub> \longrightarrow;

Ca(OH)<sub>2</sub> + SO<sub>2</sub> \longrightarrow.
```

Составьте уравнения возможных реакций между металлами и растворами кислот:

```
Ca + HBr \longrightarrow;

Au + HBr \longrightarrow;

Ag + HCl \longrightarrow;

Zn + HI \longrightarrow;

Al + HI \longrightarrow;

Hg + HCl \longrightarrow.
```

Задания для работы в группе поддержки

- **1.** Составьте уравнения реакций по следующим данным:
- а) водород, выделившийся при взаимодействии алюминия с соляной кислотой, вступил в реакцию замещения с оксидом меди(II), при этом образовалась медь;
- б) смесь цинка и оксида цинка растворили в соляной кислоте, а образовавшийся газ пропустили над раскалённым оксидом железа (III), в результате чего выделилась вода.
- 2. Медную проволоку прокалили в пламени горелки на воздухе, при этом она покрылась тонким налётом вещества чёрного цвета. Затем её поместили в раствор серной кислоты и нагрели. Какое вещество можно выде-

лить из раствора, выпарив воду? Напишите уравнения реакций.

3. Определите формулу гидроксида, имеющего следующий состав (в % по массе): 61,8% марганца, 36,0% кислорода и 2,2% водорода.

После второго среза в классе (см. табл. 1) есть учащиеся трёх типологических групп: некомпетентные (В и Γ), достигшие минимального (Б и Д) и общего уровней (A).

Некомпетентных учащихся объединим с учеником Б в группу выравнивания типа

НМ, а учеников A и Д — в группу развития типа МО. Группа развития получает задание общего уровня. Возможная структура урока представлена в табл. 3.

Аналогично можно рассмотреть и другие уроки. На них следует учесть появление отсутствовавших и учащихся, вышедших на продвинутый уровень.

Приведём пример организационной схемы (табл. 4) и методического комплекта для обобщающего семинара-практикума к блоку уроков по теме «Основные классы неорганических соединений».

Таблица 3

Структура семинара-практикума 2

Время, мин	Содержание работы						
1–2	Инициализация урока, организация работы						
3–15	Группа 1 (НМ) Задачи 1–4 (М)	Группа 2 (MO) Задачи 5-9 (O)					
16–20	Отчёт группы принимает учащийся, назн	Обсуждение задач 5–9 в ходе защиты с участием учителя					
21–30	Некомпетентные ученики Самостоятельная работа над задачами минимального уровня	Группа 3 (М) (из групп 1 и 2) Задачи 10-11 (О)	Учитель с учащимся А работает над задачами 12–13 (П)				
31–40	Разбор самостоятельной работы с учителем	Срез общего уровня					
41-44	Срез минимального уровня (тест)						
45	Подведение итогов урока	•					

Таблица 4 Организационная схема обобщающего семинара-практикума по теме «Основные классы неорганических соединений»

Время, мин	Содержание работы								
1–2	Объявление темы, планируемых результатов, состава групп, выдача индивидуальных заданий. Пересадка членов групп. Запись даты и темы урока в тетрадях								
3–10	Решение задач 1-4 на местах с комментированием								
	Группа 1 (НМ) Задача 1	Группа 2 (МО) Задача 2	Группа 3 (О) Задача 3						
11–15	Решение задачи 5 самостоятельно с постконтролем. Формирование групп 5 (HM), 6(M), 7 и 8 (MO), 9 (ОП). Пересадка членов групп								
16–30	Группа 5 (НМ) Задача 6	Группа 6 (М) Задача 7	Группа 9 (ОП) Задача 9						
	Группы 5 и 6 отчитываются индивидуально учителю		Конкурентные групг задачу. Проводится предложенных реш работу по развитик сравнения, анализа	Собеседование, конструируется и решается аналогичная задача					
31–44	Группы 5 и 6 Срезовая работа на карточках (в письменном виде)		Группы 7 и 8 Срезовая работа на (в письменном виде						
45	Подведение итогов. Задание на повторение по опорным конспектам								

В течение первых 7 мин группа 1 (НМ) решает задачу 1, группа 2 (МО) — задачу 2, группа 3 (О) — задачу 3, группа 4 (ОП) — задачу 4. Группы 1 и 2 предъявляют результаты на местах. Контролёры — специально подготовленные учащиеся. Группы 3 и 4 предъявляют результаты учителю в письменном виде.

- 1. Подчеркните разным цветом формулы оксидов (синим), оснований (красным), кислот (зелёным), солей (чёрным): Na_2O , NaOH, SO_3 , $MgCl_2$, $Cu(OH)_2$, H_2CO_3 , H_2S и т. п. Отметьте буквами «р» и «н» щёлочи и нерастворимые основания, буквами «к» и «о» кислотные и основные оксиды. Дайте характеристику кислот по плану: 1) основность; 2) наличие или отсутствие кислорода.
- 2. Заполните табл. 5 (впишите в соответствующие клеточки свои примеры).

Таблица 5

Оксиды	Основания	Кислоты	Соли

- **3.** Ответьте на вопросы теста, выбор каждого ответа обоснуйте.
 - 1. ФОРМУЛА КИСЛОТЫ
 - a) HNO₃ б) SO₃ в) NaNO₃ г) NaOH
 - 2. ФОРМУЛЫ ЩЕЛОЧЕЙ ЗАПИСАНЫ В РЯДУ
 - a) Cu(OH)₂, Cu(OH)₂, Ca(OH)₂
 - б) NaOH, LiOH, Ca(OH)₂
 - B) Fe(OH)₃, NaOH, Fe(OH)₂
 - г) КОН, Ba(OH)₂, Al(OH)₃
 - 3. ФОРМУЛА ОСНОВНОГО ОКСИДА
 - a) SO₃ б) CrO в) Cu(OH)₂ г) CrO₃
- 4. ФОРМУЛЫ НЕРАСТВОРИМЫХ ОСНОВАНИЙ ЗАПИСАНЫ В РЯДУ
 - a) Cu(OH)₂, NaOH, Ca(OH)₂
 - б) NaOH, LiOH, Ca(OH)₂
 - в) $Fe(OH)_3$, $Fe(OH)_2$, $Cu(OH)_2$
 - r) KOH, $Ba(OH)_2$, $Al(OH)_3$
 - 5. ФОРМУЛА КИСЛОТНОГО ОКСИДА
 - a) H_2S 6) CO_2 B) KNO_3 r) KOH
- 4. Установите соответствие между формулой вещества и принадлежностью его к определённому классу соединений (ответ запиши-

те в виде сочетания букв и цифр, например А2, Б4, В5 и т. п.).

ФОРМУЛЫ НАЗВАНИЯ ОСНОВНЫХ КЛАССОВ СОЕДИНЕНИЙ

A. Na₂O
 D. NaOH
 Ochoвные оксиды
 Кислотные оксиды

В. MgCl₂ 3. Нерастворимые основания

Г. HNO₃ 4. Щёлочи Д. Cu(OH)₂ 5. Кислоты

E. CuO 6. Соли

Ж. SO₃

3. H₂CO₃

И. Н₂S

Затем одновременно все учащиеся решают самостоятельно задачу 5 с последующей самопроверкой (4 мин).

5. Определите формулу гидроксида, имеющего следующий состав (в % по массе): 52,3% железа, 44,9% кислорода и 2,8% водорода.

Учитель формирует группы 5 (НМ), 6 (М), 7 и 8 (МО), 9 (ОП). В течение последующих 14 мин группа 5 (НМ) решает задачу 6, группа 6 (МО) — задачу 7. Результаты предъявляют учителю. В это время группы 7, 8 (МО) решают задачу 8. Результаты предъявляют у доски, по одному человеку от группы. Учащиеся, составляющие группу 9 (ОП), самостоятельно решают задачу 9, результаты предъявляют учителю в письменном виде, затем составляют и решают аналогичную задачу.

6. Составьте уравнения реакций, напишите названия продуктов:

HNO₃ + NaOH
$$\longrightarrow$$
;
NaOH + SO₂ \longrightarrow ;
H₂SO₄ + Fe(OH)₂ \longrightarrow ;
CaO + HCl \longrightarrow ;
Fe(OH)₃ $\stackrel{t}{\longrightarrow}$;
CaO + CO₂ \longrightarrow .

7. Составьте уравнения реакций, напишите названия продуктов:

$$H_3PO_4 + NaOH \longrightarrow;$$

 $Ca(OH)_2 + P_2O_5 \longrightarrow;$
 $Al(OH)_3 \stackrel{t}{\longrightarrow};$
 $H_3PO_4 \stackrel{t}{\longrightarrow};$

$$P_2O_5 + CaO \longrightarrow ;$$

 $H_2SO_4 + Al(OH)_3 \longrightarrow .$

8. Составьте уравнения возможных реакций, напишите названия продуктов:

Au + HBr
$$\longrightarrow$$
;
CuSO₄ + Zn \longrightarrow ;
H₂SO₄ + Cu(OH)₂ \longrightarrow ;
CuO + HNO₃ \longrightarrow ;
N₂O₅ + CaO \longrightarrow ;
CuCl₂ + H₂S \longrightarrow ;
Zn + HI \longrightarrow ;
Na₂SiO₃ + HCl \longrightarrow ;
FeSO₄ + Cu \longrightarrow .

9. Как можно получить: а) нитрат кальция; б) сульфат меди(II)? Приведите уравнения возможных реакций.

Контрольный срез (5 мин)

Для групп 5, 6 (HM, M)

1. В СХЕМЕ ПРЕВРАЩЕНИЙ

$$Fe_2O_3 \xrightarrow{+3H_2} A \xrightarrow{+HCl} B$$

вещества А и В соответственно

- a) Fe₃O₄, FeCl₃
- в) FeO, FeCl₃
- б) Fe, FeCl₂
- г) FeCl₂, Fe
- **2.** КИСЛОТА, КОТОРАЯ МОЖЕТ БЫТЬ ПОЛУЧЕНА ВЗАИМОДЕЙСТВИЕМ СООТВЕТСТВУЮЩЕГО ОКСИДА С ВОДОЙ
 - a) HCl
- б) H_3PO_4 в) H_2SiO_3 г) HI
- **3.** ОСНОВАНИЕ, КОТОРОЕ *НЕ МОЖЕТ* БЫТЬ ПО-ЛУЧЕНО ВЗАИМОДЕЙСТВИЕМ СООТВЕТСТВУЮЩЕГО ОКСИДА С ВОДОЙ
 - a) $Ca(OH)_2$
- в) Cu(OH)₂
- б) Ba(OH)₂
- г) КОН
- **4.** СУММА КОЭФФИЦИЕНТОВ В УРАВНЕНИИ РЕАКЦИИ СОЛЯНОЙ КИСЛОТЫ С ГИДРОКСИДОМ ЖЕЛЕЗА(III) РАВНА
 - a) 4
- б) 6
- B) 8
- г) 10
- **5.** СУММА КОЭФФИЦИЕНТОВ ПРАВОЙ ЧАСТИ УРАВНЕНИЯ РЕАКЦИИ МЕЖДУ ОКСИДОМ АЛЮМИНИЯ И СЕРНОЙ КИСЛОТОЙ РАВНА
 - a) 2
- б) 4
- в) 5
- r) 10

Для групп 7, 8 (MO)

1. В СХЕМЕ ПРЕВРАЩЕНИЙ

$$Si \xrightarrow{+X} SiO_2 \xrightarrow{+Y} Na_2SiO_3$$

БУКВАМИ X И Y СООТВЕТСТВЕННО ОБОЗНАЧЕНЫ ВЕШЕСТВА

- a) O₂, NaOH
- в) O₂, CO₂
- б) O₂, Na₂SO₄
- г) O₂, NaCl

2. В СХЕМЕ ПРЕВРАШЕНИЙ

$$Cu \xrightarrow{+X} CuO \xrightarrow{+Y} CuSO_4$$

БУКВАМИ X И Y СООТВЕТСТВЕННО ОБОЗНАЧЕНЫ ВЕШЕСТВА

- a) O_2 , Na_2SO_4
- B) O_2 , H_2SO_4
- б) H₂O, BaSO₄
- г) CO₂, H₂SO₄
- **3.** ОСНОВАНИЕ, КОТОРОЕ МОЖЕТ БЫТЬ ПО-ЛУЧЕНО ВЗАИМОДЕЙСТВИЕМ СООТВЕТСТВУЮЩЕГО ОКСИЛА С ВОДОЙ
 - a) $Cu(OH)_2$
- B) $Zn(OH)_2$
- б) КОН
- Γ) Al(OH)₃
- **4.** КИСЛОТА, КОТОРАЯ *НЕ МОЖЕТ* БЫТЬ ПОЛУЧЕНА ВЗАИМОДЕЙСТВИЕМ СООТВЕТСТВУЮЩЕГО ОКСИЛА С ВОДОЙ
 - a) H₂CO₃ б) H₂SO₃ в) H₂SO₄ г) H₂SiO₃

Как видно, структура семинаров-практикумов постепенно усложняется. Последний из них фактически не предусматривает работы с основным составом класса, так как все школьники работают в группах, а многие из них успевают поработать в разных группах.

Необходимость постоянного учёта индивидуальных достижений учащихся делает интегральную технологию трудной для учителя, но в этом же и причина её эффективности. Именно такая деятельность учителя обеспечивает личностно ориентированное обучение не на словах, а на деле.

ЛИТЕРАТУРА

- 1. **Гузеев В. В.** Интегральная образовательная технология. М.: Знание, 1999. С. 34–65.
- 2. **Гузеев В. В.** Эффективные образовательные технологии: интегральная и ТОГИС. М.: НИИ школьных технологий, 2006.
- 3. **Гузеев В. В.** Поколения образовательных технологий: интегральные технологии // Химия в школе. 2003. № 10. С. 16–24.
- 4. **Кудрявцева Ю. А.** Интегральная технология. Разработка уроков химии. [Электрон. ресурс] / Издательский дом «Первое сентября». Газета «Химия». Режим доступа: http://him.1september.ru/articlef.php?ID=200403504.