1 (a) Let S be the gran set of madeces:

To prove: S forms a group ender mation multiplication.

Then for given a, b, c,d, ac = ±1, bd=±1.

a closure property satisfied.

The Let, C = set of complex numbers.

To prove: & forms a group under multiplication

Let x1 = 2+16 } 21, 22, 23 & C 22 = C+10! a16, e, ol, p12 & IR. 23 = p+19.

Then x, z = (a+16) (c+id).

(ac-bd) + ab (ad+be) : E C

(ac-bd), (ad+be) E R.

> mo Hiplication satisfies closure property. for C.

2. (x2 23) = (a+ib) ((c+id) {p+q))

a (a+ib) (c+id) · (p+iq)

a (a+ib) · (c+id) 7. (e+iq)

a (x1 · x2) · x3 · E (

a associating satisfied

 $2(.1. (a+ib).1. (a+ib) = 24 & 1 \in \mathbb{C}$.

5 moth pheative redentity exists $\forall z \in \mathbb{C}$.

 $x_1 \cdot \frac{1}{x_1} = 1$ owhere $\frac{1}{x_1} = (x_1) \Rightarrow \text{modd: please}$ inverse

 $(\infty_1)^{-1} = \frac{a-ib}{a+b^2} = \alpha$ as $\left(\frac{a}{a+b^2}\right)$, $\left(\frac{-b}{a+b^2}\right) \in \mathbb{R}$.

and a,b both not smotheredly 0 1-c. $\alpha_1 \neq 0+0i$.

as Multiplicative mucice exists

V ≈ € C - 203.

Since all condutes an satisfied for C- 203,

C-203 froms a group under moltiplication.

Checking for commutativity,
2.x = 6+16) ec+14) = (ac-60) + (ad + 60)
xa. zq , (c+id) catib) = ac (a-db) + (dateb) i & C.
= ~ . x = x, x, \(\forall \) \(\chi_1 \), \(\chi_2 \) \(\chi_1 \)
a librolicator salshas communitativity. If aci, ke
[C-{0} forms an Abelian groupe under moth-phicution:
(c) Let synce
f: A-> A is by-che if f is both one to one and onto function.
Given binary operation: fcg(20).
· fegcxi), fore, how ∈ symcx
gcm) fong.
Juan maps 40
This belongs to the set of by relive functions as another bijecture function can exist in sym (ox) which maps
another bijathe
de derectly to 25 me (celo (21)).
To prove: f[g(b)] on) = f(g)) h on)
Frace: f(g(b)) on = f(g)) how frace: f(g(baxo)) = dr(f(gcxvb)
the Shifting of brackets
Shifting of brackets (2) (24) (25) (24) (25) (26
f[8ch)7on = fca) hons

Let f a unique function $T(x_0) = x_0$, $x_1 \in X$ and $T(x_0) \in Sym(x_0)$ which is by echican it maps every element of X to itself,

If $f \in sym(x)$ sie. f is by eacher function $f: x \longrightarrow x$. Then $f^{-1} \in x$ is $f: x \longrightarrow x$. $g: f = f(x_1) = x_1 \implies f'(x_2) = x_1$. $f^{-1}(f(x_1)) = T(x_1) = x_1$.

Thus. Sym CX) forms a group

· Commotablity:

form need not be the same as goes as each function maps in an unique way to some element in X.

9 Not an Abelian group

2 car False.

Reason: mater multiplication a not commetative. if xi, xx & R, to be a commutative may, it must Salsfy 2, 2 2 2 21.21.

Take for example 21 = [= 3], 22 = [= 9].

Than 21 x = [8 33] and 21 x = [5 15].

Thus 424 + 2421

(b) False

Reason: Closure property ender addition is violated. & it cannot form a group and hence not a ring. For example, Let same I and 3 be the odd integers. Then

143=4 15 not our odd integer & closur proposty violated.

(c) True

Leason: - under addition:

· Closure :- fig & R= KCF, R),

Thus (fig cas = front good = how do do de sa forches.

from R to R. Thus has ER. Closure salished.

Association (figures for + goes

· goes + for Com merlah to 2 (8+ f) Crs. - Assess hay satisfied.

Identity element . Take kon = 0 . ER.

This for + kows = four

Thus keep to an identify element

. Invose existence: For few eR, we can also have for a -form eR. such that for + for + for - for = 0 = k cry. Thes whome raists. Associativity (frg) con : Connectatively , (f+(g+ h)) cres = fcm + (gcos + 600) = few + gen + hay = (for + 900) + how . ((f+9)+6) Ory - Associativity sahshed. Thus (R, +) forms an Aubelian group. Ully onder multiplication, (f.g) on - fors.gos & R. => closure . (f.(g.h)) con = fero, (goon, hors) = (for, gas). here) = (fg)h)on = associative (f.k)on = fors.k'ons = forg for kons =1. o rdentty exists · (Chica sakers more constan Thus (G,) satisfies closure, associations and exospense of · Distribution | acus: (a) (f. (g+b)) on = (fra + b) · fores. (g +h) cres . for gen does + for hors. = (fg) (w) + (f. 6) (r) . (f.g+f.h)co. (6) ((f+9).h) cm = (f+9) cm. hon) . (for + g ous] hors = forshows + gors hors. forms a ringer.

⇒ (ア,カッ

3)

To prove , a set of complex numbers forms a field.

Proof. From the definition of a field:

Field is an integral domain such that where exists for every a E CG-0).

To show that (t) forms an integral donain, one must show that that the forms a commutate my which satisfies a content for, a, b, c ∈ t.

Checked if C forms an Abelian group ander address:

· Closure:

Let a = 2, + i 9, b = xx + i yx g a, b e C, x, y, x2, yz e R. From The definition of complex addition and is Fi.

ath = (x14 x29+ (Cy14/2)

real numbers under addition forms a group, real addition is observed.

. (x1+x1), (y, + y1) ER and.

a+6 € 4.

Associatinty:

Let a=(x1, y1), b= (x1, y2), c= (x1, y3)

5. x a,b, c ∈ C x

2, 22, 823, 41, 42, 43 GR.

Ther a + (6+0)

= (21+141) + (xx+142 + xx+143)

= (x1+131) + ((22+25) + ((42+3))

= (Eld xet 23) + 1 (yet yet 43)

~ (21 + x2) + x, + 1 (y, 492) + 143.

= (\(\alpha_1 + iy_1 \) + (\(\alpha_2 + iy_1 \)) + (\(\alpha_2 + iy_3 \))

= (a+6)+c

· Existence of identity element: For the complex pumbers 0+01, x+19; (setis) + (s+0;) = (x+0) + i(y+0) Similary (0+01) = (0+x) +1(0+y) = x+19 Hence 0 = 0 + 6; is the identity element Existen of overecelement. lovere of an arbitrary complex number of the E, th is as kny + (-2-iy)

as
$$(x+0y) + (-x-1y)$$

$$= (x-x) + i(y-y)$$

$$= 0 + 0;$$
Simplify $(-x-1y) + (x+1y)$

$$= (-x+x) + i(-y+y)$$

$$= 0 + 0;$$
Commutablety:

-2-19 etc.

Let a, bell, a = xx Hy, b= xx Hy. Then a+6 = (21 tigs) + Quetiges = (21+x2) + i(y,+y2) = (xx+x1) + 1(yx+y1) = (xxxiyx)+ (xxxiy) line commetative under addition is blance (C, +) is an Abelian group.

· Checking if (C, .) forms sales his closer, associativity and 39existence of identity elements:

Closure:

Then a.b = 60, y,). (x2, y2)

- Associa huty.

. B wastnes of identity element: Let a = x+14 e C. Also (+6i) e C. Thes (2+ 17). (1+01) = (>e. 1 = - y.0) + f (y.1 +0.2) = (x + iy) Similary, (1+0i) · (n+14) = (1.x - 0.4) +1(0.2+14) =(x+i4) Hence 140i is an a identity element for Condon multiplication, Distibution laws: Let a = xitiyi, be = x2+142, & c = x31iy3 & C. Then a. (6+0) = (x, +iy). (x, +iy, + 23+ 1/3) = (21+141). (22+23 + 1(42+43)) = [x1. (22+23) - 4. (32+33)] + E [[. y. (xe+25) + xe- (ye+43)] [x1 x2 + x1 x3 - y1 y2 - y1 y3] + [x2 y1 + x3 y1 + x1 y2 + x1 y3] (x1 x2 - 41 y2 + 21 23 - 41 43.) + 1 [xcy + 24 42 + 234 + 234 + 24 43.] [x123-414x + i6a4+2142)] +[2123-4145 + i(2341 + 2145)]

= max (sen+ 141). (ren+142) + (c)+141). (ren+143)

arth a.b + a.c

· (a+6)· c = (21+14, + 21+142) · (23+143)

= (x1+ x2, y1+ y2). (25, y3)

= (21 x3 + x2 x3 - 414, -4243, x143 + x243 + 2341 + 2342)

= (x1 23 - y1 y3 + x2 x3 - y2 y3, x1 y3 + x3 y1 + x2 y3 + x3 y2)

= (x1x3-y1y3, x1y3+x3y1) + (x2x3-y2y3, x1y3+x3y2)

= (Sei, y1) + · (23, y3) + (x24 y2) · (se3, y3)

a actbe

(t, +) forms on Abelian group, (¢;) sake had closen, associately and existence of identity element and (t,) sakether disdubution laws,

(t, +, ·) & a ring.

· Checking for a committatue ring:

Let a, but & C & acception

Then ab & (x, +141) Crestiye)

= (x1 22 - 4, 42) + 1(x14 + 722 41)

= (2,2,-9,3,) + 1 (2,y, + 2,92)

= (x, x, +; x, y,) + - 4y, +; x,y2.

= 10, (2+141) + i (2/2(21+141))

= (2x + 191) (x1+191)

e ba

This ails bia

Checking if a.c. b.c. a=6

a.c. (2, +iy1) · (2, +i 3).
- (2, +iy1) · (2, +i 3).
- (2, +iy1) · (3, 2, +i 3).

6. C > (x2 +iy2) · (23 + i 43) = (x2x3 - 8233) + i (42x3+ 43x2)

a.c = 6.c

7. 2123-4133 = x223-230 and.

From O.

(29- 2) 23 = (9- 92) 3,

From (8, - 8, 2 = -(c, + x2) ys.

7 (x1-x2) 2 (y1-4) (y1-y2) - (x1-x2) 9 (21-x2) + (y1-y2) 2 0.

But This is only possible when xi= xx = y= 92 = 0 or

of (ki-ke) 20 and (y-ye) = 0.

In both scenarios; 24 , 24 and 4 = 42.

⇒ a=6 if ga.c. b.c.

Thus (t, +, .) forms an integral domain.

For & to be a field, an invent must exist for Yat (G-07. For a = xtiy & C it was already proven that addition muse a! = -2-iy exists, such that atal=a!+a=0+0i.

For multiplicative inverse,

$$a'' = \frac{(x-iy)(1+\sigma i)}{x^2+y^2}$$

$$= \frac{(x-iy)}{x^2+y^2}$$

$$= \frac{x-iy}{x^2+y^2}$$

$$= \frac{x}{x^2+y^2}$$

$$= \frac{x}{x^2+y^2}$$

$$\frac{g}{g} \left(\frac{1}{24} \frac{1}{3} \right) a_{1} = \frac{g}{g} \frac{1}{3} \frac{1}{$$

For all mon zono complex numbers, there exist all such that a a" - a"a - Itoi, where Itoi to the multiplicative identity.

$$\frac{y_{2} = -\frac{y_{1}}{y_{1}}}{(2x_{1}^{2}+y_{1}^{2})}$$

$$= \frac{y_{1}}{y_{1}} = \frac{y_{1} \cdot x_{1}}{(2x_{1}^{2}+y_{1}^{2}) \cdot y_{1}}$$

$$= \frac{x_{1}}{(2x_{1}^{2}+y_{1}^{2})} \Rightarrow \alpha^{11} = \frac{x_{1}}{2x_{1}^{2}+y_{1}^{2}} = \frac{y_{1}^{2}}{2x_{1}^{2}+y_{1}^{2}}$$

Winy ana=1+0;

> (x2 +iy2) (x1+iy1) = 1+0i

(x2 21 - 42 y) + i (/2 x1 + 31 x2) = 1+0i

x 21- 329 =1

1/2 + 4/2 = 0 => 1/2 = - 1/2 ×2.

×2 ×1 - (-31 ×) 31 = 51

x 22 - 46

9 x = x1 21+42

y = -41 x = -41 x1 = -41 x1

2-91-

Thus an a"= xx+1/2 = x1 - 141 - 22+4pm

=> Inverse exists and a = a' = \(\frac{\chi}{2i^{+}yi^{+}} = \frac{1yi}{2i^{+}yi^{+}} \)

Thus set of ample non bon forms a field.

4) Let N be the set of all NXN symmetric matrices. Let A, B & M men.

" = ai = ai, bu-hi. Mainiach 1 = i,j = N. theyer

Also A + A , B + B D.

Let C= A+B.

(A+B) T - BULAT + BT.

But from O,

= A+B.

Thus (A+ B) = (A. +B)

3 ut C - A+B = (A+B), we have

CEM and Cy = Cy; for 15 inj & N.

= closure order addition

Let JGR.

> Lavi = Lavi

= dij = dii 1 1 i i s N , where di note is (bi) " i. D. LAE Man.

closure under scalar multiplication.

[000000] Le The NAM & ZOYO MODER.

Then Q: = Q: = 0, ISIN SN.

.. Q is a symmetic matrix.

or of emnin

Since next anchor follow modelabuty, accordably. NEXAL symmetre matices form a vector space. # Let M'^{nxn} be the set of all and-symmetric matrices of size NWI. Let $A, B \in M'^{nxn}$. Then $A^T = -A$, $B^T = -B$ and $a_0 = -a_0$, $a_0 = -a_0$, $a_0 = -b_0$, $a_0 = -b_0$, $a_0 = -b_0$, $a_0 = -b_0$

Let C = A + B.

Then $C^{T} = (A + B)^{T}$ $= A^{T} + B^{T}$ = -A - B = -(A + B) = -(A + B) = -(A + B)

 $C^{T_{a}-C}$ and $C_{ij} = -C_{ji}$, $1 \le i, i \le N_{j}$ $C \in M^{l}$ and

Then de D= dC still implies

di= -di:

De Minum = dC e Minum.

The NEXN ZOO MODER & also satisfies of = -0.

. Set of all onti-symmetric matrix of size NKM forms a vector space

Generodny set: Zy, vz, vs, ... v 3

To prove: Span { V, , Va, ... Yes @ 15 a subspace of V of

{ V, , Va, ... Va} @ EV.

0 = & di Vi

e Closure onder adolden ?

U, + U2 = \(\int \alpha \cdot \varphi \cdot

One can that u, tux is sall a linear combination of U, here the salshis closur proporty

· Closure ander scalar multiplication:

lu = l € «vi => Ed xi)vi € Vi

For x=0, U=0 EV.

· For 03, - x, v = - \(\frac{\x}{1-1} \x, \v; \eq \v.

9 span & vi, vi... veg is a sobspace of V.

e N= ∩ ⊕ N, it N= ∩+ N and U1 e 203.

Gives U= span { (0,1,1) }. W2 span {(1,01), C1, 111)}.

Let of U.

Then U= & (0,1,1), where LER.

Taking d = 0,

are bare U= (0,0,0)

> 60,00 € U

Let we W,

This w = LiChoid + La Chi, D, where li, de & R.

Take 1,= 1, = 0

Then wo (0,0,0)

→ er (0,0,0) € W.

Representing each element of UKW as column vectors,

V. } span { [] } W. span { []] }

Angle blu [] and []

 $\theta = \cos^{\frac{1}{2}} \left(\frac{1 \cdot 1 + 0 \cdot 1 + 1 \cdot 1}{\sqrt{3}} \right) = \cos^{\frac{1}{2}} \left(\frac{e\sqrt{2}}{\sqrt{3}} \right)$ as $\cos \left(\frac{e\sqrt{2}}{\sqrt{3}} \right)$.

Hence [] and [] are basis vectors for w, which & geometricity

form on the plane in R3.

Summary [i] being the only basis vector for U, forms -a

whose demak gammehically from a line in R3.

To cheek whether This line lies on the 20 plane, one must

determine The angle between the plane and The line.

If wa, w, are the bans vectors for w, The waxwe gives The direction of normal to the plane spanned by & Suppose Va is The boss vector for U. This if Un. anguly =0, The implies Us posmat to a. wax we = post furtino, a buy The angle between 1 0 1 = -1 + 00+ 16 = (-1,0,1) Va- (wax 606) = (0,1,1) . (-1,0,1) = 1 +0. U line & atorongle f The wplane. A line can intersect a plane at only a point. (0,0,0) € U and (,0,0) € W. =) (0,0,0) is the only intersection point. > Una = 60,0,0). ... O Also , Since U isnt coplanor work W,. U+W spans The endre R3. et in other words R3: spon { [i], [i], [i]} ... @

=) [V=UOW] from Dand O.

7) Given:

Schwarz isequalty 10. VI = 11011 11VII. ... D.

To prove;

Proof :-

110+712 = 20+7, 0+77, from Redefishon of norm, 121=1<27.

こくじ、ロフィくで、マフャくび、マント

IT, UT, whom follows from the addidute property of minor products

((2+ 1), 27 2 2, 27 + (3, 27), 27, 28 W)

= < v, v7 + < v, v7 + 2Re < v, v2

€ 11 20° + 11 71 + 2 1 < 0, 771

≤ Non' + non' + 2 nou nou , from .

= (NUI + NVII)2

= 10+V1 = 6(1011 + 1V1)

or 110+ v11 4 1101 + 1111.

* Given: 10+ VI = 101 + 11VII. , 0, 0, 0 6 VI"

Prove: 1211 4 1211

where 2, 7, 2 EV°
forms The sides of a
might drangle with.

To being the
hypotonue e

From Pythagorus! theorem. Lx, y7 = 2 Lx y7 = 0 1211 - 121 + 11y12 -- 3, as x x y are at night. 12+ yn a nxn + 1412 + 20 x 1 vy 1 from 0. = 112+71 m unit + 1171 (...9) 211 211 11411 30) From Bank 1). as Rand Fare green of the right リズナダル カ ロズル mangle 1121, 49 1,42 cannot be D. Taking square roots, 1 = q 1 = uzi ... (5)

From A.

12+311 4 121-131

on Using H in 10,

11 71 < 11 7 11 + 11 74.

Hence proved!

Takey warped

mner product?

dot product)

to be The

8) Grahm - Schmodt algorithm sayer

given a linearly undependent set $\{x_i, x_i, \dots x_p\}$ us W, Then

Three exists as orthogonal hist $\{v_i, v_1, \dots v_p\}$ of vectors as WSpan $\{x_i, x_1, \dots x_p\}$ = Span $\{v_i, v_1, \dots v_p\}$ for $(j-1, 1, \dots p)$.

More specifically,

Vi = 21

V2 = α2 - <22, V, 7 V,

V3 = 23 - <25, V1 7 V1 - < 23, V2 7 V2.

Vp= xp - ∠xp, V17 V1 - ∠xp, V27 V2 - ∠xp, V27 Vp+.

∠ν1, V17 ∠ν2, V47 ∠ν2, V47

Normable such of VI, Var ... Vp to get the orthopormal set. Using the desinden for the given problems.

(i) {4,0, Ring

Here x, = (4,0), x= (2,0).

Then Vi = 4 = (4,0)

= (311) = (410), (410)7 (4.0) 2(6,0), (410)7

> (B1), (4197 = 2.4 + 1.0 = 8 (4197, (4197 = 4.4 + 0.0 = 16

 $V_{4} = (211) - \frac{8}{16} (410)$ = (211) - (210) = (011)

Normalizing both Vi and Ve ,.

Thus The required orth-moomal set is [(40), (e)) }

(1) Hore.

$$= \left(\frac{2}{43}, \frac{143}{43}, \frac{-52}{43}, \frac{18}{43}, \frac{188}{43}\right)$$

Mormalizing,

V. - V. = [9.0481103, 0.6467, -0.2578, 0.06784, 0.9146]

Thos is and it are Evi, vis one The required or thonormal set.

1) Given,

storing basis: { 1, 2, 28}

broom product definition: (fors, 900s) = forsegors de.

To find: get of orthogonal polynomole: shout from the given bases. { V., V. N. 3.

tone of the source of the source

Take $x : cos \phi$. { : $x - 1 \le x \le 1$ }. Then standing basis becomes { 1, cos ϕ , cos ϕ }

Then < p, q > 0 = $\int \frac{p(x) \cdot q(x)}{\sqrt{1 - x^2}} dx$ $= -\int \frac{p(x) \cdot q(x)}{\sqrt{1 - x^2}} \cos \phi d\phi$ $= \int \frac{p(x) \cdot q(x)}{\sqrt{1 - cos^2} \phi} \cos \phi d\phi$ $= \int \frac{p(x) \cdot q(x)}{\sqrt{1 - cos^2} \phi} \cos \phi d\phi$

Take V1= 21 =1.

Ve = 22 - < 20, Ve 7 V1.

$$\begin{array}{lll}
\langle x_1, v_1 \rangle &=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \sin(x) - \sin(x) = 0 \\
\langle v_1, v_1 \rangle &=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \sin(x) - \sin(x) = 0 \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\
&=& \int \cos \phi \cdot i \, d\phi \\$$

$$\langle v_1, v_2 \rangle = \int \cos^2 \phi \cdot \cos \phi \, d\phi$$

$$= \int \sin(\pi x) - \sin(\pi x) - \sin^2(\pi x) - \sin^2(\pi x) - \sin^2(\pi x) = 0$$

$$= 0$$

$$\langle v_3, v_1 \rangle = \int \cos^2 \phi \cdot i \, d\phi$$

 $\langle V_{1}, V_{1}7 = \frac{\pi}{x}$ $\langle V_{1}, V_{1}7 = \frac{\pi}{3} \rangle = \frac{3}{8} \times \frac{1}{4} (0) + \frac{1}{32} = \frac{1}{32} \times \frac{1}$

$$V_3 = x^2 - \frac{0}{(3\pi/8)}x - \frac{(\pi/8)}{\pi}$$

polynomials.

If one were & scale 3rd polynomial by 2, we get the first three Chebyshar polynomials:

To 21, Ti = x, Ti = 2x -1