TRIGONOMETRY **CHAPTER 14**

RAZONES TRIGONOMÉTRICAS DE UN **ÁNGULO EN POSICIÓN NORMAL II**

@ SACO OLIVEROS

MOTIVATING | STRATEGY

¿ CÓMO UBICAMOS UN PUNTO EN EL PLANO CARTESIANO?

¿En qué cuadrante se encuentra el punto (-7, 7) ubicado?

<u>SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS</u>

El radio vector (\mathbf{r}) es siempre positivo y cabe resaltar que los signos de las razones trigonométricas en cada cuadrante, dependen de los signos de la abscisa (\mathbf{x}) y de la ordenada (\mathbf{y}).

$$\triangleright$$
 Si α ∈ II C

$$\cos\alpha = \frac{\mathbf{x}}{\mathbf{r}} = \frac{(-)}{(+)} = (-)$$

$$\triangleright$$
 Si $\alpha \in III C$

$$\tan \alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+)$$

$$\triangleright$$
 Si $\alpha \in IVC$

$$\csc\alpha = \frac{\mathbf{r}}{\mathbf{y}} = \frac{(+)}{(-)} = (-)$$

SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Así tenemos:

Esquema Práctico:

Ejemplos:

$$sen 48^{\circ} = (+)$$

$$\tan 120^\circ = (-)$$

$$\cos 250^{\circ} = (-)$$
III C

HELICO PRACTICE

1) Del gráfico, determine el signo

$$de E = \frac{sen\alpha \cdot tan\theta}{cos\beta}$$

RESOLUCIÓN

Se observa que:

$$\alpha \in \Pi C$$

$$\theta \in IV C$$

Recordamos que:

Luego: Signo(E) =
$$\frac{(+)(-)}{(-)}$$

2) Determine el signo de P y Q si $\alpha \in IIC$ y $\theta \in IV$ C.

$$P = sen\theta . tan\alpha ; Q = \frac{sec\theta}{cot\alpha}$$

RESOLUCIÓN

Recordamos que:

$$\begin{array}{c|c}
 & \text{IIC} & \text{IC} \\
 & \text{sen} \\
 & \text{csc} \\
\end{array} \\
(+) & \text{Todas las} \\
 & \text{RT son (+)} \\
\hline
 & \text{IIIC} & \text{IVC} \\
\hline
 & \text{tan} \\
 & \text{cot} \\
\end{array} \\
(+) & \text{cos} \\
\hline
 & \text{sec} \\
\end{array} \\
(+) \\
\end{array}$$

Luego:

Signo(
$$P$$
) = ($-$)($-$)

Signo(Q) =
$$\frac{(+)}{(-)}$$

$$\therefore$$
 Signo(Q) = -

3) Determine el signo de:

$$A = sen100^{\circ}.cos220^{\circ}$$
 y

$$B = \frac{\tan 40^{\circ} \cdot \cos 340^{\circ}}{\sin 210^{\circ}}$$

RESOLUCIÓN

Recordamos que:

$$\begin{array}{c|c}
 & \text{IIC} & \text{IC} \\
 & \text{sen} \\
 & \text{csc} \\
\end{array} \\
(+) & \text{Todas las} \\
 & \text{RT son (+)} \\
\end{array}$$

$$\begin{array}{c|c}
 & \text{IVC} \\
\hline
 & \text{360}^{\circ} \\
\hline
 & \text{tan} \\
 & \text{cot} \\
\end{array} \\
(+) & \text{sec} \\
\end{array} \\
(+) & \text{sec} \\
\end{array}$$

$$A = sen100^{\circ}.cos220^{\circ}$$

$$Signo(A) = (+)(-)$$

$$\therefore$$
 Signo(A) = -

$$B = \frac{\frac{I C}{sen210^{\circ} \cdot cos340^{\circ}}}{\frac{sen210^{\circ}}{III C}}$$

Signo(B) =
$$\frac{(+)(+)}{(-)}$$

$$\therefore$$
 Signo(B) = -

4) Carlita ha pedido permiso a sus padres para asistir a una fiesta, por lo que su papá (un matemático), le pide que resuelva el siguiente ejercicio:

$$A = \frac{sec320^{\circ} \cdot sen^{3}145^{\circ}}{cos^{2}100^{\circ}}$$

Si el resultado tiene signo positivo tendrá permiso y si el resultado tiene signo negativo no tendrá permiso. ¿Cuál será la decisión del padre de Carlita?

RESOLUCIÓN

01

Recordamos :

Luego:
$$A = \frac{IV C}{\sec 320^{\circ} \cdot \sec^{3}145^{\circ}}$$
II C

Signo(A) =
$$\frac{(+)(+)^3}{(-)^2} = \frac{(+)(+)}{(+)} = +$$

Carlita tendrá permiso

5) Si $sen \alpha > 0$ y $cos \alpha < 0$; determine a qué cuadrante pertenece α .

RESOLUCIÓN

Recordamos que:

Luego analizamos signos:

$$sen\alpha > 0 \qquad \qquad \alpha \in IC \quad \forall \quad \alpha \in IIC$$
(+)

$$\cos \alpha < 0$$
 $\alpha \in \text{II C} \lor \alpha \in \text{III C}$

Marcamos cuadrante repetido:

$$\alpha \in IIC$$

6) Determinar a qué cuadrante pertenece θ , si sen θ . csc140° > 0 cos200°. tan θ < 0

RESOLUCIÓN

Recordamos que:

$$\cos 200^{\circ}$$
. $\tan \theta < 0$

$$(-) \qquad (+) = (-)$$

$$\theta \in IC \qquad \forall \quad \theta \in III C$$

Marcamos cuadrante repetido:

7) Si sen $\theta = -\frac{1}{3}$ y $\theta \in III C$, calcule tan θ .

RESOLUCIÓN

Recordamos que:

$$\theta \in III C$$
 $x < 0$; $y < 0$

Luego:
$$x^2 + y^2 = r^2$$

 $x^2 + (-1)^2 = 3^2$
 $x^2 + 1 = 9$
 $x^2 = 8$
 $x = -2\sqrt{2}$

Nos piden:
$$\tan \theta = \frac{y}{x}$$

$$\tan \theta = \frac{\cancel{-1}}{\cancel{-2}\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2(2)}$$

$$\therefore \tan\theta = \frac{\sqrt{2}}{4}$$

8) Si $tan \varphi = 2, 4$ y $\varphi \in III C$, halle el valor de $K = csc \varphi + cot \varphi$

RESOLUCIÓN

Recordamos que:

$$\theta \in III C$$
 $x < 0$; $y < 0$

Dato:
$$\tan \theta = \frac{24}{10} = \frac{-12}{-5} = \frac{y}{x}$$

Luego:
$$r^2 = x^2 + y^2$$

$$r^2 = (-5)^2 + (-12)^2$$

$$r^2 = 25 + 144$$

$$r = \sqrt{169}$$

$$r = 13$$

Nos piden : $K = \csc \phi + \cot \phi$

$$K = \frac{r}{y} + \frac{x}{y} = \frac{13}{-12} + \frac{-5}{-12} = \frac{8}{-12}$$

$$\therefore K = -\frac{2}{3}$$