Лабораторная 4-5

Логические функции и устройства

Цель занятия: закрепление понятий, связанных с логической базой конструирования микросхем и представления целых чисел в дополнительном коде.

Пример.

Таблица истинности:

A	В	F
0	0	1
0	1	0
1	0	1
1	1	1

Представление таблицы истинности логической функцией: $F = \overline{A}\overline{B} + A\overline{B} + AB$. Упрощение логического выражения: $F = \overline{A}\overline{B} + A\overline{B} + AB = \overline{B}(A + \overline{A}) + AB = \overline{B} + AB$. Схема соответствующего абстрактного устройства:

- 1. Записать таблицы истинности для логических функций, заданных следующими выражениями:
 - a. F=not (a and b),
 - b. F=(not a or not b) and a,
 - c. F=not (a or b) xor (not a and not b).
- 2. Выразить операцию **хог** через базовые логические операции.
- 3. Записать таблицу истинности для схемы абстрактных устройств:

4. Изобразить схему абстрактных устройств, реализующих логическую функцию:

F=(not a and b) or b

5. Записать логическую функцию, соответствующую схеме абстрактных устройств:

Представление целых чисел в дополнительном коде

- 1. Процессоры семейства 80x86 трактуют отрицательные числа, как двоичные дополнения (которые содержат единичный бит в старшем разряде). Чтобы получить отрицательное число надо инвертировать все биты и добавить единицу.
 - а. определите какие из нижеперечисленных чисел являются отрицательными:
 - i. 0x8000
 - ii. 0x100
 - iii. 0x7fff
 - iv. 0x0fffff
 - v. 0x0fff
- 2. Из представления отрицательных чисел в виде двоичного дополнения следует, что если мы копируем отрицательное число в слово (переходим от 8-битового представления к 16-битовому), то старший байт надо заполнить единицами (если число положительное, то, очевидно, нулями).
 - а. перейдите от 8- к 16-битовому представлению
 - i. 0x80
 - ii. 0x28
 - iii. 0x9a
 - iv. 0x7f
 - b. перейдите от 16- к 8-битовому представлению (это не всегда возможно!)
 - i. 160
 - ii. 416
 - iii. -448
- 3. Выполните следующие операции не переходя к десятичному представлению
 - a. 0x1234+0x9876
 - b. 0xfff-0f34
 - c. 0x100-0x1
 - d. 0x0ffe-1
- 4. Перейдите к двоичному представлению
 - a. 0xDEAD
 - b. 0xADD
 - c. 0x1024
 - d. 0xFFFF