

USING EARTH OBSERVATIONS TO MONITOR CITY-WIDE AIR QUALITY

AGU FALL

ADVANCING EARTH Washington

Karn Vohra (*kxv745@student.bham.ac.uk*)¹, Eloïse Marais², William Bloss¹, Peter Porter³

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK;

² Department of Physics and Astronomy, University of Leicester, UK; ³ Birmingham City Council, Birmingham, UK

December 2015

5.3.1 Delhi OMI NO₂ (2005-2015)

5.3.2 Delhi OMI NO₂ (2016-2018[#])

Effect of policy in place for Delhi

□ New emission targets announced in

1.4 [-0.2, 3.5] %/year +

30 SECOND SUMMARY

Validation of satellite observations with surface observations

Apply satellite observations to monitor air quality

OMI NO,

INTRODUCTION

- Each year 40,000 early deaths in UK and 620,000 in India are attributed to fine particles, ozone and NO₂ pollution; Associated health cost in UK: £6 billion
- ☐ Dominant NO₂ sources: diesel (UK), industry, coal combustion, vehicles, biomass burning
- Here we choose 4 cities at different stages of development: **London** (developed, PM_{2.5}:**12** μg/m³) and **Birmingham** (urban renewal, PM_{2.5}:**10** μg/m³) in the UK, and **New Delhi** (semideveloped, PM_{2.5}:143 μg/m³) and Kanpur (developing, PM_{2.5}:173 μg/m³) in India
- Space-based instruments provide long-term (2005-2017) observations of NO₂ to assess the effect of rapid development and policy on air quality; we validate and use satellite observations to assess air quality in London and Birmingham

2. METHODOLOGY

- Validate satellite observations of NO₂ from the **Ozone Monitoring Instrument (OMI)** onboard NASA's Aura satellite with DEFRA, Birmingham City Council and London Air Quality Network ground-based observations
- Quantify the long-term (2005-2017) trend in OMI NO₂
- Compare OMI NO₂ levels and trends for select cities in the UK and India

3. SURFACE MONITORING OF NO₂

- ☐ Dense but periodic network of 120 monitoring sites in **Greater London**
- Sparse and periodic network of 8 sites in Birmingham Outlined points are sites with temporal overlap that we use to compare to OMI NO2 tropospheric columns (28 for London and 6 for Birmingham)

4. VALIDATION OF SATELLITE **OBSERVATIONS**

Assess temporal consistency between monthly means of satellite and surface NO₂ for the UK cities

Consistent monthly means of satellite and groundbased NO₂ for London and Birmingham give us confidence to apply satellite observations to monitor air quality for cities in UK

5. TRENDS IN OMI NO₂ IN UK AND IN INDIA

We observe linear trends in monthly means of OMI NO₂ in the target cities

-3.1 [-4, -2.2] %/year ***

5.4 Kanpur OMI NO₂ (2005-2017)

Decline in OMI NO₂ observed from 2016; but trend not significant

-4.2 [-13.4, 12.9] %/year

Legend *** : *p-value* < 0.001

** : *p-value* < 0.01

: *p-value* < 0.1

: *p-value* < 0.5

- Trends plotted till October 2018

OMI NO₂ decreased by 43 % for London and by 40 % for Birmingham (2005-2017)

Significant increase (15 %) in OMI NO₂ levels in Delhi compared to no significant change in Kanpur for 2005-2017

☐ OMI NO₂ levels are similar now over London and Delhi

6. TRENDS IN OMI SO₂ IN DELHI

- SO₂ is a precursor of sulfate, a large and often dominant component of PM_{2.5}
- ☐ OMI SO₂ has low signal-to-noise
- SO₂ is only detected with OMI over Delhi
- Increase in SO₂ is 0.9 % per year, but not significant

DISCUSSION

- Our work shows that NO_2 concentrations and NO_x precursor emissions in UK cities have decreased by 3.1-3.3 % per year. This is less than the UK-wide decrease in NO_x emissions from the national bottom-up emission inventory (3.9 % per year), and, for London, almost double the decline obtained with the surface network (1.8 % per year)
- Annual trends in OMI NO₂ for Delhi and Kanpur from 2005 to 2015 are comparable to Ul-Haq et al., 2015 (2.1 % for Delhi and 0.2 % for Kanpur)

8. NEXT STEPS

- Validate satellite-based NO₂ observations for New Delhi and Kanpur
- Evaluate existing air quality models using satellite observations
- ☐ Interpret NO_x emission trends with a chemical transport model
- Extend analysis to other compounds visible from space: ammonia, aerosol optical depth (AOD) as a proxy for PM_{2.5}, and formaldehyde as a proxy for non-methane volatile organic compounds (NMVOCs)

