Design and Analysis of Algorithms

Heap Sort

Lecture 9-10

Instructor: Dr. G P Gupta

Heapsort

- Combines the better attributes of merge sort and insertion sort.
 - » Like merge sort, but unlike insertion sort, running time is $O(n \lg n)$.
 - » Like insertion sort, but unlike merge sort, sorts in place.
- Introduces an algorithm design technique
 - » Create data structure (heap) to manage information during the execution of an algorithm.
- The heap has other applications beside sorting.
 - » Priority Queues

Binary heap

- A binary tree where the value of a parent is greater than or equal to the value of it's children
- Additional restriction: all levels of the tree are **complete** except the last

Max heap vs. Min heap

Heap Property (Max and Min)

- Max-Heap
 - » For every node excluding the root,

 $A[parent[i]] \ge A[i]$

- Largest element is stored at the root.
- In any subtree, no values are larger than the value stored at subtree
 root
- Min-Heap
 - » For every node excluding the root,

 $A[parent[i]] \le A[i]$

- * Smallest element is stored at the root.
- In any subtree, no values are smaller than the value stored at subtree root

Binary Heap

- Array viewed as a nearly complete binary tree.
 - » Physically linear array.
 - » Logically binary tree, filled on all levels (except lowest.)
- Map from array elements to tree nodes and vice versa
 - » Root A[1]
 - $\gg \ \operatorname{Left}[i] A[2i]$
 - » Right[i] A[2i+1]
 - » Parent $[i] A[\lfloor i/2 \rfloor]$
- length[A] number of elements in array A.
- heap-size[A] number of elements in heap stored in A.
 - \Rightarrow heap-size[A] \leq length[A]

Height

- Height of a node in a tree: the number of edges on the longest simple downward path from the node to a leaf.
- Height of a tree: the height of the root.
- ◆ Height of a heap: Llg n J
 - » Basic operations on a heap run in $O(\lg n)$ time

Binary heap - operations

Maximum(S) - return the largest element in the set

ExtractMax(S) - Return and remove the largest element in the set

Insert(S, val) - insert val into the set

IncreaseElement(S, x, val) - increase the value of element x to val

BuildHeap(A) – build a heap from an array of elements

Heapify

Assume left and right children are heaps, turn current set into a valid heap

```
\begin{aligned} & \text{Heapify}(A,i) \\ & 1 \quad l \leftarrow \text{Left}(i) \\ & 2 \quad r \leftarrow \text{Right}(i) \\ & 3 \quad largest \leftarrow i \\ & 4 \quad \text{if} \quad l \leq heap\text{-}size[A] \text{ and } A[l] > A[i] \\ & 5 \quad \quad largest \leftarrow l \\ & 6 \quad \text{if} \quad r \leq heap\text{-}size[A] \text{ and } A[r] > A[largest] \\ & 7 \quad \quad largest \leftarrow r \\ & 8 \quad \text{if} \quad largest \neq i \\ & 9 \quad \qquad \text{swap} \quad A[i] \text{ and} \quad A[largest] \\ & 10 \quad \qquad \text{Heapify}(A, largest) \end{aligned}
```

Heapify

Assume left and right children are heaps, turn current set into a valid heap

```
\begin{aligned} & \text{Heapify}(A, i) \\ & 1 \quad l \leftarrow \text{Left}(i) \\ & 2 \quad r \leftarrow \text{Right}(i) \\ & 3 \quad largest \leftarrow i \\ & 4 \quad \text{if } l \leq heap\text{-}size[A] \text{ and } A[l] > A[i] \\ & 5 \quad \quad largest \leftarrow l \\ & 6 \quad \text{if } r \leq heap\text{-}size[A] \text{ and } A[r] > A[largest] \\ & 7 \quad \quad \quad largest \leftarrow r \\ & 8 \quad \text{if } largest \neq i \\ & 9 \quad \quad \text{swap } A[i] \text{ and } A[largest] \\ & 10 \quad \quad \text{Heapify}(A, largest) \end{aligned}
```

Heapify

Assume left and right children are heaps, turn current set into a valid heap

```
\begin{aligned} & \text{Heapify}(A, i) \\ & 1 \quad l \leftarrow \text{Left}(i) \\ & 2 \quad r \leftarrow \text{Right}(i) \\ & 3 \quad largest \leftarrow i \\ & 4 \quad \text{if } l \leq heap\text{-}size[A] \text{ and } A[l] > A[i] \\ & 5 \quad \quad largest \leftarrow l \\ & 6 \quad \text{if } r \leq heap\text{-}size[A] \text{ and } A[r] > A[largest] \\ & 7 \quad \quad \quad largest \leftarrow r \\ & 8 \quad \text{if } largest \neq i \\ & 9 \quad \qquad \text{swap } A[i] \text{ and } A[largest] \\ & 10 \quad \quad \text{Heapify}(A, largest) \end{aligned}
```

find out which is largest: current, left of right

Heapify Assume left and right children are heaps, turn current set into a valid heap HEAPIFY(A, i)1 $l \leftarrow \text{Left}(i)$ 2 $r \leftarrow \text{Right}(i)$ $3 \quad largest \leftarrow i$ $4 \quad \text{if } l \leq heap\text{-}size[A] \text{ and } A[l] > A[i]$ 5 $largest \leftarrow l$ 6 if $r \leq heap\text{-}size[A]$ and A[r] > A[largest] $largest \leftarrow r$ 8 if $largest \neq i$ swap A[i] and A[largest]9 10 $\mathsf{Heapify}(A, largest)$

Correctness of Heapify Heapify(A, i)1 $l \leftarrow \text{Left}(i)$ 2 $r \leftarrow Right(i)$ $3 \quad largest \leftarrow i$ $\begin{aligned} & \text{if } l \leq heap\text{-}size[A] \text{ and } A[l] > A[i] \\ & largest \leftarrow l \\ & \text{if } r \leq heap\text{-}size[A] \text{ and } A[r] > A[largest] \\ & largest \leftarrow r \end{aligned}$ $\textbf{if } largest \neq i$ swap A[i] and A[largest]HEAPIFY(A, largest)10

Correctness of Heapify

Base case:

- Heap with a single element
- Trivially a heap

```
Heapify(A, i)
Heapify(A, i)

1 l \leftarrow \text{Leff}(i)

2 r \leftarrow \text{Right}(i)

3 largest \leftarrow i

4 if l \leq hosp\text{-}size[A] and A[l] > A[i]

5 largest \leftarrow l

6 if r \leq hosp\text{-}size[A] and A[r] > A[largest]

7 largest \leftarrow r

8 if largest \neq i

9 swap A[i] and A[largest]
                                                      st \neq i

swap A[i] and A[largest]

HEAPIFY(A, largest)
```

Correctness of Heapify

Both children are valid heaps Three cases:

Case 1: A[i] (current node) is the largest

8 if $largest \neq i$ 9 swap A[i] and A[largest]10 Heapify(A, largest)

- parent is greater than both children
- both children are heaps
- current node is a valid heap

Correctness of Heapify

Case 2: left child is the largest

- 8 if $largest \neq i$ 9 swap A[i] and A[largest]10 Heapify(A, largest)
- When Heapify returns:
 - Left child is a valid heap
 - Right child is unchanged and therefore a valid heap
 - Current node is larger than both children since we selected the largest node of current, left and right
 - current node is a valid heap

Case 3: right child is largest

• similar to above

Running time of Heapify

What is the cost of each individual call to Heapify (not counting recursive calls)?

» Θ(1)

How many calls are made to Heapify?

» O(height of the tree)

What is the height of the tree?

» Complete binary tree, except for the last level

 $2^h \le n$

 $h \le \log_2 n$

O(log n)

 $\begin{aligned} & \text{Reapiry}(A, i) \\ & 1 & \text{I} \leftarrow \text{Lenry}(i) \\ & 2 & \text{I} \leftarrow \text{Right}(i) \\ & 3 & \text{Iargest} + i \\ & 4 & \text{if } i \leq \text{heap-size}[A] \text{ and } A[i] > A[i] \\ & 5 & \text{forgest} = i \\ & 6 & \text{if } i \leq \text{heap-size}[A] \text{ and } A[i] > A[largest] \\ & 8 & M \text{Iargest} \neq i \\ & 9 & \text{woap} A[i] \text{ and } A[largest] \end{aligned}$

Binary heap - operations

Maximum(S) - return the largest element in the set

ExtractMax(S) - Return and remove the largest element in the set

Insert(S, val) - insert val into the set

IncreaseElement(S, x, val) - increase the value of element x to val

BuildHeap(A) - build a heap from an array of elements

Maximum

Return the largest element from the set

Return A[1]

1 2 3 4 5 6 7 8 9 10

ExtractMax

Return and remove the largest element in the set

ExtractMax

Return and remove the largest element in the set

ExtractMax

Return and remove the largest element in the set

HEAP-EXTRACT-MAX(A)

- 1 **if** A.heap-size < 1
- 2 error "heap underflow"
- 3 max = A[1]
- A[1] = A[A.heap-size]
- $5 \quad A.heap\text{-size} = A.heap\text{-size} 1$
- 6 MAX-HEAPIFY (A, 1)
- 7 return max

ExtractMax running time

Constant amount of work plus one call to Heapify - O(log n)

HEAP-EXTRACT-MAX(A)

- 1 **if** A. heap-size < 1
- 2 error "heap underflow"
- 3 max = A[1]
- A[1] = A[A.heap-size]
- 5 A.heap-size = A.heap-size 1
- 6 MAX-HEAPIFY (A, 1)
- 7 return max

IncreaseElement

Increase the value of element *x* to *val*

IncreaseElement

Increase the value of element *x* to *val*

IncreaseElement

Increase the value of element *x* to *val*

IncreaseElement

Increase the value of element *x* to *val*

IncreaseElement

Increase the value of element x to val

IncreaseElement

Increase the value of element x to val

```
\begin{aligned} &\text{Increase-Element}(A,i,val) \\ &1 & \text{if } val < A[i] \\ &2 & \text{error} \\ &3 & A[i] \leftarrow val \\ &4 & \text{while } i > 1 \text{ and } A[\text{Parent}(i)] < A[i] \\ &5 & \text{swap } A[i] \text{ and } A[\text{Parent}(i)] \\ &6 & i \leftarrow \text{Parent}(i) \end{aligned}
```

Correctness of IncreaseElement

Why is it ok to swap values with parent?

```
\begin{aligned} &\text{Increase-Element}(A,i,val) \\ &1 \quad \text{if } val < A[i] \\ &2 \qquad \text{error} \\ &3 \quad A[i] \leftarrow val \\ &4 \quad \text{while } i > 1 \text{ and } A[\text{Parent}(i)] < A[i] \\ &5 \qquad \text{swap } A[i] \text{ and } A[\text{Parent}(i)] \\ &6 \qquad i \leftarrow \text{Parent}(i) \end{aligned}
```

Correctness of IncreaseElement

Stop when heap property is satisfied

```
\begin{split} &\text{Increase-Element}(A,i,val) \\ &1 \quad \text{if} \ val < A[i] \\ &2 \qquad \text{error} \\ &3 \quad A[i] \leftarrow val \\ &4 \quad \text{while} \ i > 1 \ \text{and} \ A[\text{Parent}(i)] < A[i] \\ &5 \qquad \text{swap} \ A[i] \ \text{and} \ A[\text{Parent}(i)] \\ &6 \qquad i \leftarrow \text{Parent}(i) \end{split}
```

Running time of IncreaseElement

Follows a path from a node to the root

Worst case O(height of the tree)

O(log n)

```
\begin{aligned} & \text{Increase-Element}(A,i,val) \\ 1 & \text{ if } val < A[i] \\ 2 & \text{ error} \\ 3 & A[i] \leftarrow val \\ 4 & \text{ while } i > 1 \text{ and } A[\text{Parent}(i)] < A[i] \\ 5 & \text{ swap } A[i] \text{ and } A[\text{Parent}(i)] \\ 6 & i \leftarrow \text{Parent}(i) \end{aligned}
```


Insert Insert val into the set

<u>Insert</u>

Insert(A, val)

- $\begin{array}{ll} 1 & heap\text{-}size[A] \leftarrow heap\text{-}size[A] + 1 \\ 2 & A[heap\text{-}size[A]] \leftarrow -\infty \\ 3 & \text{Increase-Element}(A, heap\text{-}size[A], val) \end{array}$

Running time of Insert

Constant amount of work plus one call to IncreaseElement $- O(\log n)$

Insert(A, val)

- $\begin{array}{ll} 1 & heap\text{-}size[A] \leftarrow heap\text{-}size[A] + 1 \\ 2 & A[heap\text{-}size[A]] \leftarrow -\infty \\ 3 & \text{Increase-Element}(A, heap\text{-}size[A], val) \end{array}$

Building a heap

Can we build a heap using the functions we have

- Maximum(S)
- ●ExtractMax(S)
- ●Insert(S, val)
- \bullet IncreaseElement(S, x, val)

Building a heap

Build-Heap1(A)

- 1 copy A to B
- $2 \quad heap\text{-}size[A] \leftarrow 0$
- 3 for $i \leftarrow 1$ to length[B]
 - INSERT(A, B[i])

Building a heap: take 2 Build-Heap2(A) 1 heap-size[A] \leftarrow (length)[A] 2 for $i \leftarrow$ [(length)[A]/2]to1 3 Heapify(A, i) Start with n/2 "simple" heaps call Heapify on element n/2-1, n/2-2, n/2-3 ... all children have smaller indices building from the bottom up, makes sure that all the children are heaps

Correctness of BuildHeap2

Invariant:

Build-Heap2(A) $\begin{array}{ll} 1 & heap\text{-}size[A] \leftarrow (length)[A] \\ 2 & \textbf{for } i \leftarrow \lfloor (length)[A]/2 \rfloor \textbf{to} 1 \\ 3 & \text{Heapify}(A,i) \end{array}$

Correctness of BuildHeap2

 $\begin{array}{ll} 1 & heap\text{-}size[A] \leftarrow (length)[A] \\ 2 & \textbf{for } i \leftarrow \lfloor (length)[A]/2 \rfloor \textbf{to} \\ 3 & \text{Heapify}(A,i) \end{array}$

Invariant: elements A[i+1...n] are all heaps

Base case: i = floor(n/2). All elements i+1, i+2, ..., n are "simple"

Inductive case: We know i+1, i+2, .., n are all heaps, therefore the call to Heapify(A,i) generates a heap at node i

Termination?

Running time of BuildHeap2

n/2 calls to Heapify – O(n log n)

Can we get a tighter bound?

Build-Heap2(A)

 $\begin{array}{ll} 1 & heap\text{-}size[A] \leftarrow (length)[A] \\ 2 & \textbf{for } i \leftarrow \lfloor (length)[A]/2 \rfloor \textbf{to} 1 \\ 3 & \text{Heapify}(A,i) \end{array}$

Running time of BuildHeap2

How many nodes are at level *d*?

Running time of BuildHeap2

$$T(n) = \sum_{d=0}^{\log n} 2^d O(d)$$

Running time of BuildHeap2

$$\begin{split} T(n) &= \sum_{h=0}^{\log n} \left[\frac{n}{2^{h+1}} \right] O(h) \\ &= O\left(n \sum_{h=0}^{\log n} \left[\frac{1}{2^{h+1}} \right] h \right) \\ &= O\left(n \sum_{h=0}^{\log n} \frac{h}{2^{h}} \right) \\ &= O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}} \right) \\ &= O(n) \\ \hline \sum_{h=0}^{\infty} \frac{h}{2^{h}} &= \frac{1/2}{(1-1/2)^{2}} = 2 \end{split}$$

BuildHeap1 vs. BuildHeap2

```
\begin{array}{lll} \text{Build-Heap1}(A) & \text{Build-Heap2}(A) \\ 1 & \text{copy } A \text{ to } B \\ 2 & \text{heap-size}[A] \leftarrow 0 \\ 3 & \text{for } i \leftarrow 1 \text{ to } length[B] \\ 4 & \text{Insert}(A, B[i]) \end{array}
```

Runtime

O(n) vs. O(n log n)

Memory

- Both O(n)
- BuildHeap1 requires an additional array, i.e. 2n memory

Complexity/Ease of implementation

Heap uses

Could we use a heap to sort?

Heap uses

Heapsort

- Build a heap
- Call ExtractMax for all the elements
- O(n log n) running time

Priority queues

- scheduling tasks: jobs, processes, network traffic
- A* search algorithm

Heaps in Sorting

- Use max-heaps for sorting.
- The array representation of max-heap is not sorted.
- Steps in sorting
 - » Convert the given array of size n to a max-heap (BuildMaxHeap)
 - » Swap the first and last elements of the array.
 - Now, the largest element is in the last position where it belongs.
 - That leaves n-1 elements to be placed in their appropriate locations.
 - However, the array of first n-1 elements is no longer a max-heap.
 - Float the element at the root down one of its subtrees so that the array remains a max-heap (MaxHeapify)
 - Repeat step 2 until the array is sorted.

Heap Characteristics

- Height $= \lfloor \lg n \rfloor$
- No. of leaves $= \lceil n/2 \rceil$
- No. of nodes of

height $h \leq \lceil n/2^{h+1} \rceil$

Maintaining the heap property

 Suppose two subtrees are max-heaps, but the root violates the max-heap property.

- Fix the offending node by exchanging the value at the node with the larger of the values at its children.
 - » May lead to the subtree at the child not being a heap.
- Recursively fix the children until all of them satisfy the max-heap property.

MaxHeapify – Example

Procedure MaxHeapify

MaxHeapify(A, i)

- 1. $l \leftarrow left(i)$
- 2. $r \leftarrow \text{right}(i)$
- 3. **if** $l \le heap\text{-}size[A]$ and A[l] > A[i]
- 4. then $largest \leftarrow l$
- 5. else $largest \leftarrow i$
- 6. if $r \le heap\text{-size}[A]$ and A[r] > A[largest]
- 7. **then** $largest \leftarrow r$
- 8. **if** largest≠ i
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. MaxHeapify(A, largest)

Assumption:

Left(i) and Right(i) are max-heaps.

Running Time for MaxHeapify

MaxHeapify(A, i)

- 1. $l \leftarrow left(i)$
- 2. $r \leftarrow \text{right}(i)$
- 3. **if** $l \le heap\text{-}size[A]$ and A[l] > A[i]
- 4. then $largest \leftarrow l$
- 5. **else** $largest \leftarrow i$
- 6. if $r \le heap\text{-size}[A]$ and A[r] > A[largest]
- 7. **then** $largest \leftarrow r$
- 8. **if** largest≠ i
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. MaxHeapify(A, largest)

Time to fix node i and its children = $\Theta(1)$

PLUS

Time to fix the subtree rooted at one of *i*'s children = T(size of subree at largest)

Running Time for MaxHeapify(A, n)

- $T(n) = T(largest) + \Theta(1)$
- largest ≤ 2n/3 (worst case occurs when the last row of tree is exactly half full)
- $T(n) \le T(2n/3) + \Theta(1) \Rightarrow T(n) = O(\lg n)$
- Alternately, MaxHeapify takes O(h) where h is the height of the node where MaxHeapify is applied

Building a heap

- Use *MaxHeapify* to convert an array *A* into a max-heap.
- How?
- Call MaxHeapify on each element in a bottom-up manner.

BuildMaxHeap(A)

- 1. heap- $size[A] \leftarrow length[A]$
- 2. for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3. **do** MaxHeapify(A, i)

BuildMaxHeap — Example Input Array: 24 | 21 | 23 | 22 | 36 | 29 | 30 | 34 | 28 | 27 Initial Heap: (not max-heap) 21 22 36 | 29 | 30 34 | 28 | 27

Correctness of BuildMaxHeap

- <u>Loop Invariant</u>: At the start of each iteration of the for loop, each node i+1, i+2, ..., n is the root of a max-heap.
- Initialization:
 - » Before first iteration $i = \lfloor n/2 \rfloor$
 - » Nodes $\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, ..., n$ are leaves and hence roots of max-heaps.
- Maintenance:
 - » By LI, subtrees at children of node i are max heaps.
 - » Hence, MaxHeapify(i) renders node i a max heap root (while preserving the max heap root property of higher-numbered nodes).
 - » Decrementing i reestablishes the loop invariant for the next iteration.

Running Time of BuildMaxHeap

- Loose upper bound:
 - » Cost of a *MaxHeapify* call × No. of calls to *MaxHeapify*
 - $O(\lg n) \times O(n) = O(n \lg n)$
- Tighter bound:
 - » Cost of a call to MaxHeapify at a node depends on the height, h, of the node – O(h).
 - » Height of most nodes smaller than n.
 - » Height of nodes h ranges from 0 to $\lfloor \lg n \rfloor$.
 - » No. of nodes of height h is $\lceil n/2^{h+1} \rceil$

Running Time of BuildMaxHeap

Tighter Bound for *T*(*BuildMaxHeap*)

$$T(BuildMaxHeap)$$

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h)$$

$$= O\left(n \sum_{k=0}^{\lfloor \lg n \rfloor} \frac{h}{2^{k}}\right)$$

$$O\left(n\sum_{h=0}^{\lfloor \lg n\rfloor} \frac{h}{2^h}\right) = O\left(n\sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$

$$= O(n)$$

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}$$

$$\leq \sum_{h=0}^{\infty} \frac{h}{2^h} , x = 1/2 \text{ in (A.8)}$$

$$= \frac{1/2}{(1-1/2)^2}$$

Can build a heap from an unordered array in linear time

Heapsort

- Sort by maintaining the as yet unsorted elements as a max-heap.
- Start by building a max-heap on all elements in A.
 - » Maximum element is in the root, A[1].
- Move the maximum element to its correct final position.
 - » Exchange A[1] with A[n].
- Discard A[n] it is now sorted.
 - » Decrement heap-size [A].
- Restore the max-heap property on A[1..n-1].
 - » Call MaxHeapify(A, 1).
- Repeat until heap-size[A] is reduced to 2.

Heapsort(A)

HeapSort(A)

- 1. Build-Max-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap\text{-}size[A] \leftarrow heap\text{-}size[A] 1$
- 5. MaxHeapify(A, 1)

Algorithm Analysis

HeapSort(A)

- 1. Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
 - heap-size $[A] \leftarrow heap$ -size[A] 1
 - MaxHeapify(A, 1)
- Not Stable

• In-place

- Not Stable
- ◆ Build-Max-Heap takes *O*(*n*) and each of the *n-1* calls to Max-Heapify takes time *O*(lg *n*).
- Therefore, $T(n) = O(n \lg n)$

4.

5.

Heap Procedures for Sorting

- MaxHeapify $O(\lg n)$
- BuildMaxHeap O(n)
- HeapSort $O(n \lg n)$

Priority Queue

- Popular & important application of heaps.
- Max and min priority queues.
- Maintains a *dynamic* set *S* of elements.
- Each set element has a key an associated value.
- Goal is to support insertion and extraction efficiently.
- Applications:
 - » Ready list of processes in operating systems by their priorities – the list is highly dynamic
 - » In event-driven simulators to maintain the list of events to be simulated in order of their time of occurrence.

Basic Operations

- Operations on a max-priority queue:
 - » Insert(S, x) inserts the element x into the set S
 - » Maximum(S) returns the element of S with the largest key.
 - » Extract-Max(S) removes and returns the element of S with the largest key.
 - » Increase-Key(S, x, k) increases the value of element x's key to the new value k.
- Min-priority queue supports Insert, Minimum, Extract-Min, and Decrease-Key.
- Heap gives a good compromise between fast insertion but slow extraction and vice versa.

Heap Property (Max and Min)

- Max-Heap
 - » For every node excluding the root, value is at most that of its parent: $A[parent[i]] \ge A[i]$
- Largest element is stored at the root.
- In any subtree, no values are larger than the value stored at subtree root.
- Min-Heap
 - » For every node excluding the root, value is at least that of its parent: $A[parent[i]] \le A[i]$
- Smallest element is stored at the root.
- In any subtree, no values are smaller than the value stored at subtree root

$\underline{\text{Heap-Extract-Max}(A)}$

Implements the Extract-Max operation.

Heap-Extract-Max(A)

- 1. if heap-size[A] < 1
- 2. then error "heap underflow"
- 3. $max \leftarrow A[1]$
- 4. $A[1] \leftarrow A[heap\text{-}size[A]]$
- 5. heap-size[A] $\leftarrow heap$ -size[A] 1
- 6. MaxHeapify(A, 1)
- 7. return max

Running time : Dominated by the running time of MaxHeapify = $O(\lg n)$

Heap-Insert(A, key)

Heap-Insert(A, key)

- 1. heap- $size[A] \leftarrow heap$ -size[A] + 1
- 2. $i \leftarrow heap\text{-}size[A]$
- 4. while i > 1 and A[Parent(i)] < key
- 5. **do** $A[i] \leftarrow A[Parent(i)]$
- 6. $i \leftarrow Parent(i)$
- 7. $A[i] \leftarrow key$

Running time is $O(\lg n)$

The path traced from the new leaf to the root has length $O(\lg n)$

Heap-Increase-Key(A, i, key)

Heap-Increase-Key(A, i, key)

- 1 If key < A[i]
- then error "new key is smaller than the current key"
- $3 \quad A[i] \leftarrow key$
- 4 while i > 1 and A[Parent[i]] < A[i]
- 5 **do** exchange $A[i] \leftrightarrow A[Parent[i]]$
 - $i \leftarrow Parent[i]$

Heap-Insert(A, key)

- $1 \quad heap\text{-}size[A] \leftarrow heap\text{-}size[A] + 1$
- 2 $A[heap-size[A]] \leftarrow -\infty$
- 3 Heap-Increase-Key(A, heap-size[A], key)

