

MAJOR EXAMINATION 2017 - 2018

Subject Name: : Engineering Mathematics-I

Note: Attempt all questions. Each question carry equal marks.

Max. Marks: 50

Attempt any four parts of the following:

(a) If $y = x \log \frac{x-1}{x+1}$, show that $y_n = (-1)^{n-2} (n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right]$. (b) If $\frac{x^2}{a^2+u} + \frac{y^2}{b^2+u} + \frac{z^2}{c^2+u} = 1$, prove that $\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 = 2 \left(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} \right)$.

If u is the homogeneous function of degree n then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$. Using this find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ if $u = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log x - \log y}{x^2 + y^2}$.

Find the rank of the matrix A by applying elementary transformation

 $A = \begin{bmatrix} 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ 1 & 2 & 0 & 1 \end{bmatrix}.$

Find the values of k for which the following system of equations has non-trivial solutions.

(k-1)x + (3k+1)y + 2kz = 0, (k-1)x + (4k-2)y + (k+3)z = 0, 2x + (3k+1)y + 3(k-1)z = 0.

If $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, use Cayley-Hamilton theorem to find A^{-1} and $B = A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$.

Attempt any two parts of the following:

Evaluate $\int_0^\infty \int_0^x xe^{-x^2/y} dxdy$ by changing the order of integration. Evaluate $\iint xy \, dxdy$ over the positive quadrant of $x^2 + y^2 = a^2$.

Find the volume and mass contained in the solid region of the positive octant of the (کامی surface $\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r = 1$, where p, q & r > 0, density point $\rho(x, y, z) = k\sqrt{xyz}$.

(i) $\int_0^2 x(8-x^3)^{1/3} dx$ (ii) $\int_{-\infty}^{\infty} \cos \frac{\pi}{2} x^2 dx$. (c) Evaluate

Attempt any two parts of the following:

 $(2 \times 5 = 10)$

Find the area enclosed between the parabolas $y^2 = 4a(a - x)$ and $y^2 = 4a(x + a)$. (a)

Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dx dy dz$.

Let D be the region in the first quadrant bounded by x = 0, y = 0 and x + y = 1. Change the **(b)** variables x, y to u, v, where x + y = u, y = uv and evaluate $\iint_D xy(1-x-y)^{1/2}dxdy$.

Prove that $\beta(p,q) = \int_0^1 \frac{x^{p-1} + x^{q-1}}{(1+x)^{p+q}} dx = \beta(p+1, q) + \beta(p, q+1).$

Attempt any two parts of the following:

 $(2 \times 5 = 10)$

- - Show that $\operatorname{div}(\operatorname{curl} \overline{V}') = 0$, for any vector point function \overline{V}' . Show that $\operatorname{div}(\operatorname{grad} f(r)) = \frac{d^2}{dr^2} f(r) + \frac{2}{r} \frac{d}{dr} f(r)$, where $r = \sqrt{x^2 + y^2 + z^2}$. (ii)
- Verify stokes theorem for the field for the vector field $\vec{F} = (2x y)\hat{\imath} yz^2\hat{\jmath} y^2z\hat{k}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the x - y plane.
- Find the constant a, b and c so that vector function $\vec{A} = (x + 10y + 8az)\hat{\imath} + (bx 3y 3y 3z)\hat{\imath} + (bx 3y 3z)\hat{\imath} + (bx$ $(5z)\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational. Then show that \vec{A} can be expressed as the gradient of a scalar function ϕ and hence find ϕ .

Attempt any two parts of the following: 5.

- Find the direction in which the directional derivative of $\phi(x,y) = \frac{x^2 + y^2}{xy}$ at (1, 1) is
 - Find the constant a and b such that the surface $3x^2 2y^2 3z^2 + 8 = 0$ is orthogonal (ii) to $ax^2 + 9y^2 = bz$ at P = (-1, 2, 1).
- Verify Gauss's divergence theorem for $\vec{F} = (x^2 yz)\hat{\imath} + (y^2 zx)\hat{\jmath} + (z^2 xy)\hat{k}$ taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$ and $0 \le z \le c$.
- Apply Green's theorem to evaluate $\int_C (y \sin x) dx + \cos x dy$ where C is the plane triangle enclosed lines y = 0, $x = \frac{\pi}{2}$ and $y = \frac{2x}{\pi}$.