MATH 189 Warm-up: Matrix Algebra

Wenxin Zhou UCSD

Time: 2:00-3:20 & 3:30-4:50pm TueThur

Location: CENTR 115

Multivariate Data in Matrix Form

• In multivariate analysis, we are interested in jointly analyzing multiple dependent variables.

These variables can be represented using matrices and vectors.

- The benefits of matrix form:
 - 1. Simplicity in notation
 - 2. Expressing important formulas in readable format

Example 1: Multivariate Data

Suppose a dataset records the characteristics of a person by three variables: $x_1 = height(ft)$, $x_2 = weight(lb)$ and $x_3 = age(year)$.

Then, for every individual in the dataset, his/her characteristics can be recorded in the following *column vector*:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$$

Example 1: Multivariate Data

Suppose the *i*-th individual in the dataset has height = 5'8 (78 inches), weight = 155 lbs and age = 40.

In vector notation, these observed data can be expressed as:

$$\mathbf{x_i} = \begin{pmatrix} x_{i1} \\ x_{i2} \\ x_{i3} \end{pmatrix} = \begin{pmatrix} 78 \\ 155 \\ 40 \end{pmatrix}$$

Example 1: Multivariate Data

The collection of information from multiple individuals naturally forms a matrix.

For example, the observed data of 3 individuals in the dataset can be expressed as the matrix:

$$\mathbf{X} = \begin{pmatrix} 75 & 83 & 69 \\ 155 & 198 & 150 \\ 40 & 25 & 51 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

Each column is the observed data for one individual.

Definition of Matrix and Vector

- A matrix is a two-dimensional array of numbers, symbols, or expressions, arranged in rows and columns.
- A vector is a matrix with either one row or one column.
- The dimension of a matrix is expressed as number of rows × number of columns. For instance, the matrix in the previous example with 3 rows and 3 columns is said to be a 3 × 3 matrix. The vectors in the previous example are 3 × 1 matrices.
- A square matrix is one for which the numbers of rows and columns are equal. For instance, a 4×4 matrix is a square matrix.

Notations of Matrix and Vector

 Most of the time in this course, we only consider matrices and vectors whose entries are real numbers.

• A real-valued matrix **M** of size $n \times m$ can be denoted as $\mathbf{M} \in \mathbb{R}^{n \times m}$.

• A real vector \mathbf{v} of size $n \times 1$ or $1 \times n$ can be denoted as $\mathbf{v} \in \mathbb{R}^{n \times 1}$ or $\mathbf{v} \in \mathbb{R}^{1 \times n}$. By default, every vector \mathbf{v} is implicitly assumed to be a column vector, i.e., $\mathbf{v} \in \mathbb{R}^n$.

Transpose of a Matrix

- **Definition**: The transpose of a matrix **A** is a matrix whose rows are the transpose of the columns of **A**.
- The transpose of A is denoted as A' or A^T .

Example 2: For a
$$3\times2$$
 matrix $\mathbf{A}=\begin{pmatrix}3&7\\4&6\\2&8\end{pmatrix}$, its transpose is a 2×3 matrix $\mathbf{A}'=\begin{pmatrix}3&4&2\\7&6&8\end{pmatrix}$.

Symmetric Matrices

• **Definition**: A squared matrix A is symmetric if A = A'.

• For a symmetric matrix, the element in the i-th row and j-th column equals the element in the j-th row and i-th column, i.e.,

$$a_{ij}=a_{ji}.$$

• Important examples of symmetric matrices in multivariate statistics include the variance-covariance matrix and the correlation matrix.

Linear Combination of Two Matrices

 Two matrices may be added if and only if they have the same dimensions. To add two matrices, add corresponding elements.

• Example 3:
$$\begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 3 & 7 \\ 11 & 15 \end{pmatrix}$$

• Example 4: If A and B are two $n \times n$ matrices, α and β are two scalars, then $C = \alpha A + \beta B$ is also an $n \times n$ matrix whose (i, j)th element is $c_{ij} = \alpha a_{ij} + \beta b_{ij}$

Multiplication of Two Matrices

• To be able to perform the matrix multiplication $\mathbf{C} = \mathbf{A}\mathbf{B}$, the number of columns in matrix \mathbf{A} must equal the number of rows in matrix \mathbf{B} .

• The (i, j)-th entry of the answer matrix \mathbf{C} , is the cross-product sum of the i-th row of the matrix \mathbf{A} and the j-th column of the matrix \mathbf{B} .

• If **A** is of size $n \times m$ and **B** is of size $m \times k$, then $\mathbf{C} = \mathbf{AB}$ is of size $n \times k$.

Identity Matrix

• **Definition**: An identity matrix is a square matrix that has 1's on its diagonal (from upper left to bottom right) and has 0's elsewhere.

• Example 5: The 3×3 identity matrix is
$$\mathbf{I} = \mathbf{I_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

• I is called the identity matrix because IA = AI = A for any squared matrix A (of the same size as I).

Matrix Inverse and Trace

• **Definition**: The inverse of a square matrix **A**, if it exists, is denoted by A^{-1} , such that $AA^{-1} = A^{-1}A = I$.

• **Definition**: The trace of an $n \times n$ matrix $\mathbf{A} = (a_{ij})$ is the sum of its diagonal elements:

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}.$$

For two matrices **A** of size $m \times k$ and **B** of size $k \times m$,

$$tr(AB) = tr(BA).$$

Eigenvalues and Eigenvectors

• Given a symmetric matrix ${\bf A}$, a scalar λ and a vector ${\bf v}$, which satisfy the following linear equation

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$$

then λ is an eigenvalue of **A** and \boldsymbol{v} is the corresponding eigenvector.

- A symmetric matrix of size $n \times n$ has no more than n eigenvalues.
- If **A** has n eigenvalues $\lambda_1, \dots, \lambda_n$, then $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i$.

Positive Definite Matrix

• A symmetric matrix **A** of size $n \times n$ is said to be positive definite, if $\mathbf{z}^{\mathrm{T}} \mathbf{A} \mathbf{z} > 0$ for every non-zero vector **z** of size n. In short, $\mathbf{A} > 0$.

• Positive Semi-Definite: if $z^T A z \ge 0$. In short, $A \ge 0$.

• A symmetric matrix of size $n \times n$ is positive definite if and only if all of its eigenvalues are positive.

• A positive definite matrix is invertible.