

Future Directions for European Impact Assessments (PESETA)

Juan-Carlos Ciscar, European Commission Snowmass, July 28th 2015

Outline

- 1. EU Adaptation Policy
- 2. Experience and Lessons The PESETA projects
- 3. Current Research
 PESETA III project
 Other studies
- 4. Conclusions

1. EU Adaptation Policy

The EU Adaptation Strategy

2013. The objective of the EU adaptation strategy is to contribute to a more climate-resilient Europe

Action 4 of the strategy aims at bridging the knowledge gaps; one of them is 'information on damage and adaptation costs and benefits'.

"In particular, the Commission will promote EU-wide vulnerability assessments, notably by supporting the Joint Research Centre in its work on estimating the economic implications of climate change, and will undertake a comprehensive review of what global climate change will mean for the EU"

2017. Report on implementation

2. Experience and Lessons
The PESETA projects

The PESETA Approach

What, why? Building climate impact modeling capabilities within JRC to support the EC services on adaptation policy

- Existing data and models within JRC
- Learning-by-doing within JRC

How? 3 steps in granular, consistent modelling

- 1. Start with high space-time resolution of climate data, common to all impacts
- 2. Use of bottom-up biophysical impact models
- 3. Integration of market impact results under an economic model

PESETA II Framework

Welfare change (%GDP), Reference and 2°C EU and regional breakdown

Some lessons

Framework and methodology

- Limited modelling of (private) adaptation
- Static CGE economic analysis

Scope

- 2080s focus, but also interest in next few decades
- Extreme events not broadly captured
- Absence of cross-impact effects
- Only one non-market impact
- Catastrophes, tipping points out of the analysis

Results

- Focus on aggregated economic results
- Do not refer to 'benefits of mitigation'

The GAP-PESETA project

Complements the PESETA II project by the analysis of:

- Drought impacts
- Coastal impacts
- Impacts on ecosystem services
- Impacts in the EU due to climate impacts in rest of the world, through:
 - Agriculture
 - Coasts
 - Energy
 - Labour productivity
 - Might consider other sectors (e.g. migration)

Ends in September 2015

3. Current Research

PESETA III project Other studies

JRC PESETA III

Questions of interest

- Modelling of costs/impacts due to extreme events and adaptation is a priority
- Assessment of non-monetary damages
- Impacts on vulnerable groups
- 2030s time horizon

JRC PESETA III

- Project focus
 - Adaptation policies and measures
 - Extreme events
 - 2030s
- 15 teams
- 10 impact areas
- Impacts on vulnerable groups
- October 2015 + 18 months

4. Future research

FP7 HELIX Project

High-End cLimate Impacts and eXtremes (HELIX), 4 years (to October 2017)

What do 4°C and 6°C worlds look like compared to 2°C? What are the consequences of different adaptation choices?

Global impacts and adaptation at 2, 4, 6 °C Global, and Europe, Sub-Saharan Africa and the South Asia

16 partners, coordinated by MetOffice, UK

Selection of SSPs-RCPs matches, close coordination with IMPRESSIONS and RISES AM FP7 projects

Use of macroeconometric model output (MaGE, from CEPII)

Global-scale Impacts (JRC leads)

- Objective: Perform a comprehensive global-scale socio-economic assessment of climate impacts of 2°C, 4°C and 6°C scenarios, related to key sectors
- Impacts coverage (CGE GEM-E3 and FUND models)
 - River floods
 - Water availability
 - Agriculture
 - Ecosystems
 - Coastal flooding
 - Energy
 - Transport
 - Human health
 - Food security
 - Migration (tipping points)

Other research

- Global assessment of human health impacts (outsourced)
 - Temperature (heat and cold) related mortality
 - Diarrhoeal disease (related to temperature exposure)
 - Extended list of impacts in 2nd study
- Improve empirical foundation of climate damage functions (Forum, series of workshops)

Further research in Ag, Energy

Agriculture

- Validation of the bottom-up models (ISI MIP)
- Connection with the water sector
- Need of cost-benefit analysis of adaptation; better understanding the effects of climate extremes; climate change, adaptation and the CAP

Energy

- Clear connection with water and infrastructures
- Better understanding of the relationship power plant efficiencies and climate change

Further research in Water

Water

- Validation of the bottom-up models (ISI MIP)
- Few studies have actually looked at the related socio-economic impacts
- Clear connection with energy (water availability for hydro, cooling in thermal power plants)
- Need of cost-benefit analysis of adaptation
- Extrapolations of water use (and quality) in the future are highly uncertain

4. Conclusions

Some items for the long view

- Ecosystem services
- Climate catastrophes, tipping points
- Risk, stochastic, integrated approach
- Economic modeling

Thanks for your attention!

juan-carlos.ciscar@ec.europa.eu

http://peseta.jrc.ec.europa.eu/

Damage functions?

A tool to integrate knowledge from different disciplines

- Based on literature review, but inconsistency problems
- From historical observations (statistical analysis), but extrapolation beyond sample, instability of the function
- From process model simulations, but can be complex functions