SOLVED EXERCISE 2.1

1. Find the discriminant of the following given quadratic equations:

(i)
$$2x^2 + 3x - 1 = 0$$

Solution:

Here

$$2x^{2} + 3x - 1 = 0$$
Compare it with
$$ax^{2} + bx + c = 0$$

$$a = 2, b = 3, c = -1$$
Disc.
$$= b^{2} - 4ac$$

$$= (3)^{2} - 4(2)(-1)$$

$$= 9 + 8$$

= 17

(ii)
$$6x^2 - 8x + 3 = 0$$

Solution:

Here

$$6x^{2} - 8x + 3 = 0$$

Compare it with $ax^{2} + bx + c = 0$
 $a = 6, b = -8, c = 3$
Disc. $= b^{2} - 4ac$
 $= (-8)^{2} - 4(6)(3)$
 $= 64 - 72$
 $= -8$

(iii)
$$9x^2 - 30x + 25 = 0$$

Solution:

$$9x^{2} - 30 x + 25 = 0$$
Compare it with
$$ax^{2} + bx + c = 0$$
Here $a = 9, b = -30, c = 25$
Disc. $= b^{2} - 4ac$

$$= (-30)^{2} - 4(4)(25)$$

$$= 900 - 900$$

$$= 0$$

(iv)
$$4x^2 - 7x - 2 = 0$$

Solution:

$$4x^{2} - 7x - 2 = 0$$
Compare it with
$$ax^{2} + bx + c = 0$$
Here
$$a = 4, b = -7, c = -2$$
Disc.
$$= b^{2} - 4ac$$

$$= (-7)^{2} - 4(4)(-2)$$

$$= 49 + 32 = 81$$

Find the nature of the roots of the following given quadratic equations and 2. verify the result by solving the equations:

(i)
$$x^2 + 23x + 120 = 0$$

Solution:

$$x^2 + 23x + 120 = 0$$

Compare it with

$$ax^2 + bx + c = 0$$

Here

$$a = 1, b = -23, c = 120$$

Disc. =
$$b^2 - 4ac$$

= $(-23)^2 - 4(1)(120)$
= $529 - 480$
= 49
= $(7)^2 > 0$

As the disc, is positive and is a perfect square. Therefore the roots are rational (real) and unequal. Verification by solving the equation.

$$x^{2}-23x+120=0$$

$$x^{2}-15x-8x+120=0$$

$$x(x-15)-8(x-15)=0$$

$$(x-8)(x-15)=0$$

Either
$$x - 8 = 0$$
 or $x - 15 = 0$
 $x = 8$ $x = 15$

thus, the roots are rational (real) and unequal.

(ii)
$$2x^2 + 3x + 7 = 0$$

Solution:

$$2x^2 + 3x + 7 = 0$$

Compare it with

$$ax^2 + bx + c = 0 \qquad .$$

Here

a = 2, b = 3. c = 7
Disc. =
$$b^2 - 4ac$$

= $(3)^2 - 4(2)(7)$
= 9 - 56
= -47 < 0

As the Disc. is negative.

Therefore the roots are imaginary and unequal.

Verification by solving the equation

$$2x^2 + 3x + 7 = 0$$

Using quadratic formula

Using quadratic formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-3 \pm \sqrt{(3)^2 - 4(2)(7)}}{2(2)}$$

$$= \frac{-3 \pm \sqrt{9 - 56}}{4}$$
$$= \frac{-3 \pm \sqrt{-47}}{4}$$

Thus, the roots are imaginary and unequal.

(iii)
$$16x^2 - 24x + 9 = 0$$

Solution:

$$16x^2 - 24x + 9 = 0$$
Compare it with
$$ax^2 + bx + c = 0$$

a = 16, b = -24, c = 9
Disc. =
$$b^2 - 4ac$$

= $(-24)^2 - 4(16)(9)$
= $576 - 576$

$$= 0$$

As the Disc. is zero.

Therefore the roots of the equation are real and equal.

Verification by solving the equation $16x^2 - 24x + 9 = 0$

$$16x^2 - 24x + 9 = 0$$

Using quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-24) \pm \sqrt{(-24)^2 - 4(16)(9)}}{2(16)}$$

$$= \frac{24 \pm \sqrt{576 - 576}}{32}$$

$$= \frac{24 \pm \sqrt{0}}{32}$$

$$= \frac{24 \pm \sqrt{0}}{32}$$

$$= \frac{24 \pm \sqrt{0}}{32}$$

Thus, the roots are real and unequal.

(iv)
$$3x^2 + 7x - 13 = 0$$

Solution:

$$3x^2 + 7x - 13 = 0$$

Compare it with

$$ax^2 + bx + c = 0$$

Here

$$a = 3$$
, $b = 7$, $c = -13$

Disc. =
$$b^2 - 4ac$$

= $(7)^2 - 4(3)(-13)$

$$= 49 + 156$$

 $= 205 > 0$

As the Disc. is positive and is not a perfect square.

Therefore the roots are irrational (real) and unequal.

Verification by solving the equation

$$3x^2 + 7x - 13 = 0$$

Using quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-7 \pm \sqrt{(7)^2 - 4(3)(-13)}}{2(3)}$$

$$= \frac{-7 \pm \sqrt{49 + 156}}{6}$$

$$= \frac{-7 \pm \sqrt{205}}{6}$$

Thus, the roots are irrational (real) and unequal.

For what value of A, the expression $k^2 x^2 + 2 (k + 1) x + 4$ is perfect square. 3.

Solution:

Either

$$k^2 x^2 + 2 (k + 1) x + 4 = 0$$

Compare it with

$$ax^2 + bx + c = 0$$

Here
$$a = k^2$$
, $b = 2 (k + 1)$, $c = 4$
Disc. $= b^2 - 4ac$

=
$$[2 (k + 1)]^2 - 4 (k^2) (4)$$

= $4 (k + 1)^2 - 16 k^2$

$$= 4 (k + 1)^2 - 16 k^2$$

$$= 4 (k^2 + 2k + 1) - 16 k^2$$

= 4 k² + 8k + 4 - 16 k²

$$= 4 k^2 + 8k + 4 - 16 k^2$$

$$= -12k^2 + 8k + 4 = 0$$

As the disc of the given expression is a perfect square. Therefore the roots are rational and equal.

So Disc = 0

$$-12K^{2} + 8K + 4 = 0$$

$$-(12K^{2} + 8K + 4) = 0$$

$$\Rightarrow 12K^{2} - 8K - 4 = 0$$

$$12K^{2} - 12K + 4K - 4 = 0$$

$$12K(K - 1) + 4(K - 1) = 0$$

$$(12K + 4)(K - 1) = 0$$

$$12K + 4 = 0 \quad \text{or} \quad K - 1 = 0$$

$$12K = -4$$

$$K = -\frac{4}{12}$$

$$K = -\frac{1}{3}$$

K=1

4. Find the value of k, if the roots of the following equations are equal.

(i)
$$(2k+1) x^2 + 3kx 3 = 0$$

Solution:

$$(2k+1)x^2+3Kx+3=0$$

Here
$$a = 2k + 1$$
, $b = 3k$, $c = 3$

As the roots are equal, So

$$Disc. = 0$$

$$b^2 - 4ac = 0$$

$$(3k)^2 - 4(2k+1)(3) = 0$$

$$9k^2 - 12(2k+1) = 0$$

$$9k^2 - 24k + 12 = 0$$

$$3(3k^2 - 8k + 4) = 0$$

$$\Rightarrow 3k^2 - 8k + 4 = 0$$

$$3k^2 - 6k - 2k + 4 = 0$$

$$(k-2)-2(k-2)=0$$

$$(3k-2)(k-2)=0$$

Either

$$k-2=0$$

$$3k=2$$

$$k=2$$

$$k = \frac{2}{3}$$

(ii)
$$x^2 + 2(k+2)x + (3k+4) = 0$$

Solution:

$$x^2 + 2(k+2)x + (3k+4) = 0$$

Неге

$$a = 1$$
, $b = 2(k + 2)$, $c = 3k + 4$

As the roots are equal, So

Disc. = 0

$$b^{2} - 4ac = 0$$

$$[2(k+2)]^{2} - 4(1)(3k+4) = 0$$

$$4(k+2)^{2} - 4(3k+4) = 0$$

$$4(k^{2} + 4k + 4) - 12k - 16 = 0$$

$$4k^{2} + 16k + 16 - 12k - 16 = 0$$

$$4k^{2} + 4k = 0$$

$$4k(k+1) = 0$$
Either
$$4k = 0 \text{ or } k+1 = 0$$

$$K = 0 \qquad K = -1$$
(iii) $(3k+2) x^{2} - 5(k+1) x + (2k+3) = 0$
Solution:
$$(3k+2) x^{2} - 5(k+1) x + (2k+3) = 0$$
Here $a=3k+2$, $b=-5(k+1)$, $c=(2k+3)$
As the roots are equal, So
$$Disc. = 0$$

$$b^{2} - 4ac = 0$$

$$[-5(k+1)]^{2} - 4(3k+2)(2k+3) = 0$$

$$25(k^{2} + 2k+1) - 4(6k^{2} + 13k+6) = 0$$

$$25k^{2} + 50k = 25 - 24k^{2} - 52k - 24 = 0$$

$$k^{2} - 2k = 1 = 0$$

$$(k-1)^{2} = 0$$

$$k - 1 = 0$$

Show that the equation $x^2 + (mx + c)^2 = a^2$ has equal roots, **5**. $c^2 = a^2 (1 + m^2)$ lf

k = 1

Solution:

 \Rightarrow

$$x^{2} + (mx + c)^{2} = a^{2}$$

$$x^{2} + m^{2}x^{2} + 2mcx + c^{2} = a^{2}$$

$$(1 + m^{2})x^{2} + 2mcx + c^{2} = a^{2}$$

$$(1 + m^{2})x^{2} + 2mcx + c^{2} - a^{2} = 0$$
Here $a = 1 + m^{2}$, $b = 2mc$, $c = c^{2} = a^{2}$
As the roots are equal, so
$$Disc = 0$$

$$b^{2} - 4ac = 0$$

$$(2mc)^{2} - 4(1 + m^{2})(c^{2} - a^{2}) = 0$$

$$4m^{2}c^{2} - 4(c^{2} - a^{2} + m^{2}c^{2} - a^{2}m^{2}) = 0$$

$$4m^{2}c^{2} - 4c^{2} + 4a^{2} - 4mc^{2} + 4a^{2}m^{2} = 0$$

$$-4c^{2} + 4a^{2} + 4ac^{2} + 4a^{2}m^{2} = 0$$

$$-4(c^{2} - a^{2} - a^{2}m^{2}) = 0$$

$$c^{2} - a^{2} - a^{2}m^{2} = 0$$

$$c^{2} = a^{2} + a^{2}m^{2}$$

$$c^{2} = a^{2}(a + m^{2})$$

Hence proved.

6. Find the condition that the roots of the equation $(my + c)^2 - 4ax = 0$ are equal.

Solution:

$$(mx + c)^{2} - 4ax = 0$$

$$m^{2}x^{2} + 2mcx + c^{2} - 4ax = 0$$

$$m^{2}x^{2} + 2mcx - 4ax + c^{2} = 0$$

$$m^{2}x^{2} + 2(mc - 2a)x + c^{2} = 0$$
Here $a = m^{2}$, $b = 2$ (mc - 2a), $c = c^{2}$
As the roots are equal, so
$$Disc = 0$$

$$b^{2} - 4ac = 0$$

$$[2(mc - 2a)]^{2} - 4(m^{2})(c^{2}) = 0$$

$$4(mc - 2a)^{2} - 4m^{2}c^{2} = 0$$

$$4(m^{2}c^{2} - 4amc + 4a^{2}) - 4m^{2}c^{2} = 0$$

$$4(m^{2}c^{2} - 4amc + 4a^{2}) - 4m^{2}c^{2} = 0$$

$$4(m^{2}c^{2} - 4amc + 4a^{2}) - 4m^{2}c^{2} = 0$$

$$4a(a - mc) = 0$$

$$a = mc$$

Which is the required condition.

7. If the roots of the equation $(c^2 - ab) x^2 - 2 (a^2 - bc) x + (b^3 - ac) = 0$ are equal, then a = 0 or $a^3 + b^3 + c^3 = 3abc$.

Solution:

$$(c^{2} - ab)x^{2} - 2(a^{2} - bc)x + (b^{2} - ac) = 0$$
Here $a = c^{2} - ab$, $b = -2(a^{2} - bc)$, $c = b^{2} - ac$
As the roots are equal so
$$Disc = 0$$

$$b^{2} - 4ac = 0$$

$$[-2(a^{2} - bc)]^{2} - 4(c^{2} - ab)(b^{2} - ac) = 0$$

$$[-2(a^{2}-bc)]^{2}-4(c^{2}-ab)(b^{2}-ac)=0$$

$$4(a^{2}-bc)^{2}-4(c^{2}-ab)(b^{2}-ac)=0$$

$$4[(a^{2}-2a^{2}bc+b^{2}c^{2})-(b^{2}c^{2}-ac^{3}-ab^{3}+a^{2}bc)]=0$$

$$a^{4}-2a^{2}bc+b^{2}c^{2}-b^{2}c^{2}+ac^{3}+ab^{3}-a^{2}bc=0$$

$$a^{4}+ab^{3}+ac^{3}-3a^{2}bc=0$$

$$a(a^{3}+b^{3}+c^{3}-3abc)=0$$

Either a = 0 or $a^3 + b^3 + c^3 - 3abc = 0$ $a^3 + b^3 + c^3 = 3abc$ Hence proved.

8. Show that the roots of the following equations are rational.

(i)
$$a(b-c)x^2 + b(c-a)x + c(a-b) = 0$$

Solution:

 \Rightarrow

ب

Here
$$A = a (b - c), B = b (c - a), C = c (a - b)$$

 $Disc$ $= B^2 - 4AC$
 $= [b (c - a)]^2 - 4 [a (b - c)] [c (a - b)]$
 $= b^2 (c - a)^2 - 4ac (b - c) (a - b)$
 $= b^2 (c^2 + a^2 - 2ac) - 4ac (ab - b^2 - ac + bc)$
 $= b^2 c^2 + a^2 b^2 - 2ab^2 c - 4a^2 bc + 4ab^2 c + 4a^2 c^2 - 4abc^2$
 $= a^2 b^2 + b^2 c^2 + 4a^2 c^2 + 2ab^2 c - 4a^2 bc - 4abc^2$
 $= (ab)^2 + (bc)^2 + (-2ac)^2 + 2 (ab) (bc) + 2 (bc) (-2ac) + 2 (-2ac) (ab)$
 $= (ab + bc - 2ac)^2$

Hence the roots are rational.

(ii)
$$(a + 2b) x^2 + 2 (a + b + c) x + (a + 2c) = 0$$

Here $A = a + 2b$, $B = 2 (a + b + c)$, $c = a + 2c$
Disc $= B^2 - 4AC$
 $= [2 (a + b + c)]^2 - 4 (a + 2b) (a + 2c)$
 $= 4 (a + b + c)^2 - 4 (a^2 + 2ac + 2ab + 4bc)$
 $= 4[a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - a^2 - 2ac - 2ab - 4bc]$
 $= 4[b^2 + c^2 - 2bc]$
 $= 4 (b - c)^2$

Hence the roots are rational.

For all values of k, prove that the roots of the equation 9.

$$x^2 - 2 \left(k + \frac{1}{k}\right) x + 3 = 0, k \neq 0$$
 are real.

Solution:

$$x^2 - 2\left(k + \frac{1}{k}\right)x + 3 = 0$$

Here
$$a = 1, b = -2 \left(k + \frac{1}{k} \right), c = 3$$

Here
$$a = 1, b = -2 \left(k + \frac{1}{k} \right), c = 3$$

Disc. $= b^2 - 4ac$
 $= \left[-2 \left(k + \frac{1}{k} \right) \right]^2 - 4 (1) (3)$
 $= 4 \left(k + \frac{1}{k^2} \right)^2 - 12$
 $= 4 \left[\left(k + \frac{1}{k} \right)^2 - 3 \right]$
 $= 4 \left[k^2 + \frac{1}{k^2} + 2 - 3 \right]$
 $= 4 \left[k^2 + \frac{1}{k^2} - 1 \right] > 0$

Hence the roots are real.

Show that the roots of the equation.

$$(b-c) x^2 + (c-a) x + (a-b) = 0$$
 are real.

Solution:

$$(b-c) x^2 + (c-a) x + (a-b) = 0$$

Here
$$A = (b - c)$$
, $B = c - a$, $c = a - b$

Disc. =
$$B^2 - 4AC$$

= $(c - a)^2 - 4(b - c)(a - b)$
= $c^2 + a^2 - 2ac - 4(ab - b^2 - ac + bc)$
= $a^2 + c^2 - 2ac - 4ab + 4b^2 + 4ac - 4bc$
= $a^2 + 4b^2 + c^2 - 4ab - 4bc + 2ac$
= $(a)^2 + (-2b)^2 + (c)^2 + 2(a)(-2b) + 2(-2b)(c) + 2(a)(c)$
= $(a - 2b + c)^2 > 0$

Hence the roots of the equation are real.

Cube roots of unity and their properties.

The cube roots of unity:

Let a number x be the cube root of unity,

i.e.,
$$x = (1)^{1/3}$$

or
$$x^{3} = 1$$

 $\Rightarrow x^{3} - 1 = 0$
 $(x^{3}) - (1)^{3} = 0$
 $(x - 1)(x^{2} + x + 1) = 0$ [using $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}]$
Either $x - 1 = 0$ or $x^{2} + x + 1 = 0$
 $\Rightarrow x = 1$ or $x = \frac{-1 \pm \sqrt{(1)^{2} - 4(1)(1)}}{2(1)}$
 $x = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2}$

Three cube roots of unity are

$$1, \frac{-1+i\sqrt{3}}{2}$$
 and $\frac{-1-i\sqrt{3}}{2}$, where $i = \sqrt{-1}$.

Recognize complex cube roots of unity as ω and ω^2 :

The two complex cube roots of unity are $\frac{-1+\sqrt{-3}}{2}$ and $\frac{-1-\sqrt{-3}}{2}$.

If we name anyone of these as w (pronounced as omega), then the other is ω^2 .

Properties of cube roots of unity:

(a) Prove that each of the complex cube roots of unity is the square of the other.

Proof:

The complex cube roots of unity are $\frac{-1+\sqrt{-3}}{2}$ and $\frac{-1-\sqrt{-3}}{2}$.

We prove that

$$\left(\frac{-1+\sqrt{-3}}{2}\right)^{2} = \frac{-1-\sqrt{-3}}{2}$$
 and
$$\left(\frac{-1+\sqrt{-3}}{2}\right)^{2} = \frac{-1+\sqrt{-3}}{2}$$

$$\left(\frac{-1+\sqrt{-3}}{2}\right)^{2} = \frac{1+(-3)-2\sqrt{-3}}{4}$$

$$= \frac{-2-2\sqrt{-3}}{4}$$

$$= \frac{2(-1-\sqrt{-3})}{4}$$

$$= \frac{2(-1+\sqrt{-3})}{4}$$

$$= \frac{1-1-\sqrt{-3}}{2}$$

$$= \frac{-1+\sqrt{-3}}{4}$$

$$= \frac{-1+\sqrt{-3}}{2}$$

Thus, each of the complex cube root of unity is the square of the other, that is,

If
$$\omega = = \frac{-1 + \sqrt{-3}}{2}$$
, then $\omega^2 = = \frac{-1 - \sqrt{-3}}{2}$ and if $\omega = = \frac{-1 - \sqrt{-3}}{2}$ then

$$\omega^2 = \frac{-1 + \sqrt{-3}}{2} \ .$$

(b) Prove that the product of three cube roots of unity is one.

Proof:

Three cube roots of unity are

$$1, \frac{-1+\sqrt{-3}}{2}$$
 and $\frac{-1-\sqrt{-3}}{2}$

The product of cube roots of unity = $(1)\left(\frac{-1+\sqrt{-3}}{2}\right)\left(\frac{-1-\sqrt{-3}}{2}\right)$ = $\frac{(-1)^2 - (\sqrt{-3})^2}{4} = \frac{-1 - (-3)}{4} = \frac{1+3}{4} = \frac{4}{4} = 1$

i.e.,
$$(1)(\omega)(\omega^2) = 1 \text{ or } \omega^3 = 1$$

(c) Prove that each complex cube root of unity is reciprocal of the other.

Proof:

We know that $\omega^3 = 1$ $\Rightarrow \omega \omega^2 = 1$, so $\omega = \frac{1}{\omega^2}$ or $\omega^2 = \frac{1}{\omega}$

Thus, each complex cube root of unity is reciprocal of the other.

(d) Prove that the sum of all the cube roots of unity is zero.

i.e.,
$$1 + \omega + \omega^2 = 0$$

Proof:

The cube roots of unity are

1,
$$\frac{-1+\sqrt{-3}}{2}$$
 and $\frac{-1-\sqrt{-3}}{2}$
 $\omega = \frac{-1+\sqrt{-3}}{2}$, then $\omega^2 = \frac{-1-\sqrt{-3}}{2}$

The sum of all the roots = $1 + \omega + \omega^2$

$$=1+\frac{-1+\sqrt{-3}}{2}+\frac{-1-\sqrt{-3}}{2}$$
$$=\frac{2-1+\sqrt{-3}-1-\sqrt{-3}}{2}=\frac{0}{2}=0$$

Thus, $1 + \omega + \omega^2 = 0$

We can easily deduce the following results, that is,

(i)
$$1 + \omega^2 = -\omega$$
 (ii) $1 + \omega = -\cos^2$ (iii) $\omega + \omega^2 = -1$