CSE 674

Advanced Data Structures and Algorithms

Introduction

- 1. Data Structures + Algorithms = Programs
- 2. Data structures
 - 2.1 Sequential allocation (Arrays)
 - 2.2 Linked allocation (Pointers)

Elementary data structures

- 1. Elementary data structures: stacks, queues, deques, and vectors
- 2. Data structures as abstract data types

Trees, graphs, and hash tables

- 1. Trees as data structures
- 2. Data structures and basic traversal algorithms for graphs
- 3. Hash tables

Algorithm design methods

- 1. Divide and conquer
- 2. Dynamic programming
- 3. Greedy methods

Others

- 1. Data compression algorithms
- 2. Memory management

Elementary Data Structures

Elementary data structures

- 1. Stacks (LIFO), queues (FIFO)
- 2. Generalization: deques
- 3. Vectors and amortized analysis

Discussions on elementary data structures I

Stacks

Discussions on elementary data structures II

Queues

Discussions on elementary data structures III

Vectors

Sorting Methods

Sorting

- 1. Basic sorting methods: Selection sort, insertion sort, bubble sort
- 2. In-place sorting; stable sorting
- 3. Tree-based sorting methods: heap sort and its variants
- 4. Divide-and-conquer based sorting methods: Merge sort, quick sort
- 5. Comparison-based sorting
- 6. Non-comparison-based sorting methods

Discussions on basic methods

Selection Sort Insertion Sort Bubble Sort

Discussions: In-place sorting and stable sorting

In-Place Sorting

Stable Sorting

Discussions on heap sort and related ideas

Heaps and Heap Sort

Priority Queue

Discussions on divide-and-conquer based sorting methods

Quick Sort Merge Sort

Discussions on comparison-based sorting methods

Comparison-Based Sorting

Non-Comparison-Based Sorting

Trees

Trees

- 1. Trees and their general properties
- 2. Trees as data structures
- 3. Traversal methods and threading
- 4. Binary trees and search

Discussions on general properties of trees

Free Trees

Concepts

Discussions: Tree as data structures

Rooted Trees

Key Features

Discussions: Traversal methods

Pre-Order In-Order Post-Order

Discussions: Binary trees and threading

Binary Trees

Key Features

Threading

Key Ideas

Discussions: Binary trees and search

Binary Search Trees Operations Performance

Dictionary

Dictionary

- 1. The dictionary ADT
- 2. Implementations via trees
- 3. Implementation via lists (skip lists) or tables (hash tables)
- 4. External searching via B-trees and their variants
- 5. Trees for higher-dimensional data

Discussions: Dictionary ADT

Possible Implementations

Remarks

Discussions: Implementation via balanced binary search trees

AVL Trees

Splay Trees

Discussions: Implementation via lists or hash tables

Skip Lists

Hash Tables

Discussions: Hash tables: Collision handling

Hash Tables:

Collision Resolving Strategy

Remarks

Discussions: External searching and B-trees

External searching

B-trees and variants

Discussions: Search trees for Higher-dimensional data

KD Trees

Key Features

Graphs and Algorithms I

Graphs and basic algorithms

$$G = (V, E)$$

- 1. Representation: directed and undirected graphs
- 2. Breadth-first search
- 3. Depth-first search

Discussions: Adjacency matrix and adjacency list

Adjacency Matrix

Adjacency List

Discussions: Introduction to graph algorithms

Pseudocode Remarks

Discussions: Breadth-first search

Data Structures Used

Additional Remarks

Discussions: Using breadth-first search

Graph Properties

Discussions: Depth-first search

Data Structures Used

Additional Remarks

Graphs and Algorithms II

Graphs algorithms

- 1. More on depth-first search
- Single-source shortest path algorithm: Dijkstra and Bellman-Ford
- 3. All-pairs shortest-path algorithms: Floyd-Warshall algorithms

Discussions: Using depth-first search I

Graph Properties

Discussions: Using depth-first search II

Graph Properties

Discussions: Dijkstra algorithm I (Ideas)

Key Ideas Remarks

Discussions: Dijkstra algorithm II (Implementation)

Key Ideas Remarks

Discussions: Bellman-Ford algorithms

Key Ideas Remarks

Discussions: Floyd-Warshall algorithm

Key Ideas Re

Algorithms Design Paradigm

Algorithm design paradigm

- 1. Divide-and-conquer
- 2. Dynamic programming
- 3. Greedy methods

Discussions: Divide-and-conquer I

Example Ideas

Discussions: Divide-and-conquer II

Example Ideas

Matrix chain multiplication

Problem Description

Dynamic programming: Matrix chain multiplication as key example

Recipe Formulation

Dynamic programming: Other examples

Example Ideas

Greedy methods: Examples

Example Ideas

Data Compression and Memory Management

Data compression and memory management

- 1. Data compression: Huffman coding; LZ77 and LZW
- 2. Memory management:
 - 2.1 Sequential fit methods
 - 2.2 Buddy system
 - 2.3 Garbage collection; smart pointers

Discussion: Huffman coding I

Problem Description

Discussion: Huffman coding II

Problem Description

Discussion: LZ77 and LZW

Algorithm Remarks

Discussion: Memory management

Algorithm Remarks

Discussion: Garbage collection and smart pointers

Problem Remarks

Question

Question In no more than two pages (11- to12-point font printed on letter-size paper), summarize the main topics as presented in the course review this week (week 10).

SYRACUSE UNIVERSITY ENGINEERING & COMPUTER SCIENCE