Търсене и извличане на информация. Приложение на дълбоко машинно обучение

Стоян Михов

Лекция 7: Клъстеризация във векторно пространство. Вероятно приблизително коректно обучение (РАС-обучение).

План на лекцията

1. Формалности за курса (5 мин)

- 2. Клъстеризация (10 мин)
- 3. k-means (15 мин)
- 4. Варианти и подобрения на K-means (15 мин)
- 5. РАС-обучение (20 мин)
- 6. Пример за РАС-обучение (25 мин)

Формалности

- Засега ще провеждаме занятията онлайн всяка сряда от 8:15 до 12:00 часа.
- Засега ще използваме платформата Google meet: meet.google.com/hue-frfx-axb
- Днес ще използваме едновременно слайдове и бяла дъска. Моля следете съответния екран.
- В Moodle на 19.11.2021 г. ще бъде публикувано домашно задание, което следва да бъде предадено до края на деня на 28.11.2021 г.
- Седмата лекция се базира на глава 16 от първия учебник и секция 10.4 от втория учебник.

План на лекцията

1. Формалности за курса (5 мин)

2. Клъстеризация (10 мин)

- 3. k-means (15 мин)
- 4. Варианти и подобрения на K-means (15 мин)
- 5. РАС-обучение (20 мин)
- 6. Пример за РАС-обучение (25 мин)

Семантично пространствени релации

Клъстеризация

- Задачата на клъстеризацията е да намерим "естествено" групиране на обектите в "клъстери"
- Целта е:
 - В рамките на един клъстер обектите да са близки
 - Обектите от различни клъстери да са далеч един от друг

Приложение на клъстеризацията в търсенето на информация

- При търсене в Интернет често се връщат много хиляди резултати, като потребителя може да разгледа едва няколко от тях.
- Поради многозначността на езика резултатите могат да бъдат от различни области.
- Чрез клъстеризиране на резултатите от заявката на първата страница се връщат по няколко резултата от всеки от клъстерите.

Класификация 👄 клъстеризация

- При класификацията имаме предварително зададени класове и база от класифицирани документи
 ⇔ при клъстеризацията нямаме нито зададени класове, нито техния брой, нито класифицирани документи.
- При класификацията се стремим да намерим функция (класификатор), която да определя класа на даден документ по подобие на класифицираните документи ⇔ при клъстеризацията се търси разбиване на базата на имплицитните закономерности в базата от документи.

Класификация ⇔ клъстеризация

Класове от документи

Класификация 👄 клъстеризация

Други приложения на клъстеризацията

- Групиране на резултатите от търсене
- Групиране на поток от документи новини, мейлове, съобщения, ...
- Ускоряване на търсене по подобие
- Търсене чрез разбиване-събиране (gather-scatter)

План на лекцията

- 1. Формалности за курса (5 мин)
- 2. Клъстеризация (10 мин)
- 3. k-means (15 мин)
- 4. Варианти и подобрения на K-means (15 мин)
- 5. РАС-обучение (20 мин)
- 6. Пример за РАС-обучение (25 мин)

K-means

- Дадено е множество от вектори $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_S\} \subset \mathbb{R}^N$, и число $K \in \mathbb{N}$
- Търсим разбиване на ${\bf X}$ в K клъстера $W_1, W_2, ..., W_K \subset {\bf X},$ $W_1 \cup W_2 \cup ... \cup W_K = {\bf X},$ така че:

$$\mathbf{RSS}(W_1, W_2, ..., W_k) = \sum_{k=1}^{\mathbf{\Lambda}} \sum_{\mathbf{x} \in W_k} \|\mathbf{x} - \mu_k\|^2$$
 е минимално,

където
$$\mu_k = \frac{1}{|W_k|} \sum_{\mathbf{x} \in W_k}^{k=1} \mathbf{x} \in W_k$$
 ха $k = 1, 2, ..., K$.

• μ_k е центроида (центъра на тежестта) на W_k

Алгоритъм K-means

- 1. Започваме с първоначални центроиди $\mu_1, \mu_2, ..., \mu_K$.
- 2. За всеки от центроидите μ_k намираме клъстера W_k $W_k = \{\mathbf{x} \in \mathbf{X} \mid \arg\min_i \|\mathbf{x} \mu_i\|^2 = k\}.$
- 3. Намираме новите стойности на центроидите:

$$\mu_k = \frac{1}{|W_k|} \sum_{\mathbf{x} \in W_k} \mathbf{x}$$

4. Докато не се изпълни условие за край повтаряме стъпките 2-4

Алгоритъм K-means

```
K-means ( \{x[1],...,x[S] \} , K )
     (\mu[1],...,\mu[K]) < - SelectSeeds({x[1],...,x[S]}, K)
     while stopping criterion has not been met do
         for k < -1 to K do
             \omega[k] \leftarrow \{\}
5
         for i <- 1 to S do
             k \leftarrow argmin_j | \mu[j] - x[i] |
6
             \omega[k] \leftarrow \omega[k] \cup \{x[i]\}
         for k < -1 to K do
8
             \mu[k] < -1/|\omega[k]| \sum_{x \in \omega[k]} x
9
10
      return{\mu[1],...,\mu[K]}
```

Коректност

Твърдение: Нека са дадени вектори $\mu_1, \mu_2, ..., \mu_K \in \mathbb{R}^N$ и $W_1, W_2, ..., W_K \subset \mathbf{X}$ са дефинирани като $W_k = \{\mathbf{x} \in \mathbf{X} \mid \arg\min_i \|\mathbf{x} - \mu_i\|^2 = k\}$, за k = 1, 2, ..., K. Нека $W_1', W_2', ..., W_K' \subset \mathbf{X}$ е произволно разбиване на \mathbf{X} . Тогава: $\mathrm{RSS}(W_1, W_2, ..., W_k) \leq \mathrm{RSS}(W_1', W_2', ..., W_k')$.

Доказателство:

Нека $k(\mathbf{x}) = \arg\min_i \|\mathbf{x} - \mu_i\|^2$ и $l(\mathbf{x}) = l \leftrightarrow \mathbf{x} \in W_l'$. Тогава:

$$\begin{aligned} \text{RSS}(W_1', W_2', \dots, W_k') &= \sum_{k=1}^K \sum_{\mathbf{x} \in W_k'} \|\mathbf{x} - \mu_k\|^2 = \sum_{\mathbf{x} \in \mathbf{X}} \|\mathbf{x} - \mu_{l(\mathbf{x})}\|^2 \ge \sum_{\mathbf{x} \in \mathbf{X}} \|\mathbf{x} - \mu_{k(\mathbf{x})}\|^2 \\ &= \sum_{k=1}^K \sum_{\mathbf{x} \in W_k} \|\mathbf{x} - \mu_k\|^2 = \text{RSS}(W_1, W_2, \dots, W_k) \end{aligned}$$

Твърдение: Нека е дадено множество $W \subset \mathbb{R}^N$. Тогава:

$$\arg\min_{\mathbf{y}\in\mathbb{R}^N}\sum_{\mathbf{x}\in W}\|\mathbf{x}-\mathbf{y}\|^2 = \frac{1}{\|W\|}\sum_{\mathbf{x}\in W}\mathbf{x}$$

Доказателство:

$$\frac{\partial}{\partial \mathbf{y}} \sum_{\mathbf{x} \in W} ||\mathbf{x} - \mathbf{y}||^2 = 2 |W| \mathbf{y} - 2 \sum_{\mathbf{x} \in W} \mathbf{x} = 0$$

Следствие: На всяка стъпка от алгоритъма RSS намалява.

План на лекцията

- 1. Формалности за курса (5 мин)
- 2. Клъстеризация (10 мин)
- 3. k-means (15 мин)
- 4. Варианти и подобрения на K-means (15 мин)
- 5. РАС-обучение (20 мин)
- 6. Пример за РАС-обучение (25 мин)

Условия за край

- Функцията RSS не е изпъкнала. Намирането на глобален екстремум е NP пълен проблем.
- Евристично решение:
 - Когато RSS спре да се подобрява
 - Когато подобрението на RSS е под определен праг
 - След извършване на предварително фиксиран брой итерации

Начални центроиди

Оказва се, че резултатът от клъстеризирането с k-means силно зависи от началните центроиди.

Варианти:

- 1. Избираме първите K вектора от \mathbf{X} и изпълняваме алгоритъма k-means най-просто, но наивно.
- 2. Избираме с равномерно случайно разпределение K вектора от ${f X}$ и изпълняваме алгоритъма k-means.
- 3. Повтаряме няколко пъти точка 2 и избираме резултата с най-добър RSS.
- 4. Избираме началните центроиди, така че да ги раздалечим виж kmeans++

K-means++

- 1. Избираме първия центроид μ_1 с равномерно случайно разпределение от ${f X}$.
- 2. Нека сме избрали центроиди $\mu_1, \mu_2, ..., \mu_l$. Нека $D(\mathbf{x}) = \min_{i=1}^l \|\mathbf{x} \mu_i\|$. Дефинираме случайно разпределение върху \mathbf{X} като за всеки вектор $\mathbf{x} \in \mathbf{X}$ дефинираме $\Pr_l[\mathbf{x}] = \frac{D(\mathbf{x})^2}{\sum_{\mathbf{x}' \in \mathbf{X}} D(\mathbf{x}')^2}$. Избираме центроида μ_{l+1} от \mathbf{X} със случайно разпределение $\Pr_l[\mathbf{x}]$.
- 3. Повтаряме стъпки 2-3, докато изберем K центроида.
- 4. С избраните центроиди изпълняваме алгоритъма k-means

Доказва се, че очакваното за RSS при k-means++ е по малко от $O(\log K)$ по глобалния минимум за RSS:

Arthur, D.; Vassilvitskii, S. (2007). "<u>k-means++: the advantages of careful seeding</u>". Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035.

План на лекцията

- 1. Формалности за курса (5 мин)
- 2. Клъстеризация (10 мин)
- 3. k-means (15 мин)
- 4. Варианти и подобрения на K-means (15 мин)
- 5. РАС-обучение (20 мин)
- 6. Пример за РАС-обучение (25 мин)

Какво ще разбираме под "машинно обучение"

- Съществуват различни подходи (алгоритми), за машинно обучение: вероятностни, градиентни, алгебрични, комбинаторни, ...
- Машинното обучение може да се разглежда като "с учител" и "без учител"
- За формалното изследване на различните алгоритми е целесъобразно въвеждането на формална рамка, която да ни позволява да сравняваме и оценяваме свойствата на различните алгоритми за машинно обучение.
- Ще разгледаме един от разпространените подходи за формализиране на понятието машинно обучение — рамката "Вероятно приблизително коректно" обучение (Probably Approximately Correct PAC-обучение)

Формализиране на задачата за машинно обучение

- Нека с ${\mathscr X}$ означим множеството от всички възможни **наблюдения** (примери) и ще наричаме входно пространство или домейн.
- Нека с \mathcal{Y} означим множеството от възможни **класове**. Ще разглеждаме само крайни множества от класове.
- Функция $c: \mathcal{X} \to \mathcal{Y}$ ще наричаме **класификатор (концепт)**. Когато $\mathcal{Y} = \{0,1\}$ ни е даден бинарен класификатор, който може да разглеждаме като подмножеството \mathcal{X} , за което c, връща стойност 1.
- Под **клас от класификатори** ще разбираме конкретно множество от класификатори, които ще искаме да научим и ще означаваме с \mathscr{C} . Например, ако \mathscr{X} е двумерното пространство и разглеждаме бинарни класификатори, то класът от класификатори би могъл да бъде множеството от всички триъгълници в равнината.
- Предполагаме, че ни е дадено фиксирано, но неизвестно вероятностно разпределение \mathscr{D} върху \mathscr{X} , и че всички наблюдения от \mathscr{X} , които правим са независими и еднакво разпределени с разпределение \mathscr{D} .

Задачата на машинното обучение

- Обучаемият получава извадка $S=(x_1,x_2,...,x_m)$ от независими и идентично разпределени с разпределение $\mathscr D$ наблюдения, заедно със съответни етикети $(c(x_1),c(x_2),...,c(x_m))$ относно конкретен класификатор $c\in\mathscr C$, който следва да се научи.
- Задачата на обучаемият е въз основа на наблюденията S класификатор да избере h_S , с минимална грешка при обобщение спрямо целевия класификатор $c \in \mathscr{C}$.
- Грешка при обобщение R(h) или истинска грешка между класификатор $h \in \mathcal{H}$ и целевия класификатор $c \in \mathcal{C}$ дефинираме: $R(h) = \Pr_{x \sim \mathcal{D}}[\{x \mid h(x) \neq c(x)\}].$

Дефиниция на РАС-обучение

Казваме, че класът от класификатори \mathscr{C} е **РАС-обучаем** ако:

- · съществува алгоритъм \mathscr{A} , връщащ на извадка от наблюдения S класификатор $h_S=\mathscr{A}(S)$, и
- полиномиална функция $poly: \mathbb{R}^2 \to \mathbb{R}$,

така че за всяко $\varepsilon>0$ и всяко $\delta>0$ ако $m>poly(1/\varepsilon,1/\delta)$ и S е извадка с поне m наблюдения, то:

$$\Pr_{S \sim \mathcal{D}^m}[\{S \mid R(h_S) \leq \varepsilon\}] \geq 1 - \delta.$$

Т.е. Клас от класификатори $\mathscr C$ е РАС-обучаем, ако хипотезата, върната от алгоритъма след извадка от наблюдения, чийто брой е полиномиален спрямо $1/\varepsilon$ и $1/\delta$, е приблизително правилна (грешка най-много ε) с голяма вероятност (поне $1-\delta$) , което оправдава терминологията "Вероятно приблизително коректно".

План на лекцията

- 1. Формалности за курса (5 мин)
- 2. Клъстеризация (10 мин)
- 3. k-means (15 мин)
- 4. Варианти и подобрения на K-means (15 мин)
- 5. РАС-обучение (20 мин)
- 6. Пример за РАС-обучение (25 мин)

Пример за РАС-обучаем класификатор

- Нека $\mathcal{X} = \mathbb{R}^2$ пространството от всички точки в равнината.
- Нека $\mathscr C$ множеството на всички правоъгълници, чиито страни са успоредни на координатните оси. Т.е. всеки класификатор $c\in\mathscr C$ е множеството от влизащи в правоъгълник със страни успоредни на осите.
- Задачата на обучаемия е по извадка от наблюдения с техните етикети да избере правоъгълник, който е максимално близък до целевия.

Решение

• Нека за дадена наблюдения $S=(x_1,x_2,...,x_m)$ връщаме най-малкия правоъгълник от $\mathscr C$, който съдържа всички положителни наблюдения. Т.е. ако

$$P=\{x\in S\mid c(x)=1\}\text{ то}$$
 $Q_S=[\min\operatorname{Proj}_1(P),\max\operatorname{Proj}_1(P)]\times[\min\operatorname{Proj}_2(P),\max\operatorname{Proj}_2(P)]$ т.е. $h_S(x)=\delta_{x\in O_S}$

- · Ясно е, че ако $Q = \{x \in \mathbb{R}^2 \mid c(x) = 1\}$ то $Q \supset Q_S$.
- Следователно: $c(x) \neq h_S(x) \Longrightarrow x \in Q \backslash Q_S$. Т.е. всички грешки ще са вътре в Q.

- За да докажем, че нашия алгоритъм удовлетворява условието за РАС-обучаемост, нека е дадено $\varepsilon > 0$. Нека за търсения класификатор Q, вероятността дадена точка да влезе в Q спрямо разпрелението \mathscr{D} бележим с $\Pr[Q] = \Pr[\{x \mid x \in Q\}]$. Ако $\varepsilon \geq \Pr[Q]$ то вероятността за грешка $R(h_S) = \Pr[\{x \mid h_S(x) \neq c(x)\}] = \Pr[Q \setminus Q_S] \leq \Pr[Q] \leq \varepsilon$. Т.е. винаги (с вероятност 1) грешката ще е по-малка от ε и твърдението е изпълнено.
- Нека сега $\varepsilon < \Pr[Q]$. Нека $Q = [l,r] \times [b,t]$. Дефинираме правоъгълниците: $r_1 = [l,r] \times [b',t], b' = \sup\{s \mid \Pr[[l,r] \times [s,t]] \geq \varepsilon/4\}$ $r_2 = [l',r] \times [b,t], l' = \sup\{s \mid \Pr[[s,r] \times [b,t]] \geq \varepsilon/4\}$ $r_3 = [l,r] \times [b,t'], t' = \inf\{s \mid \Pr[[l,r] \times [b,s]] \geq \varepsilon/4\}$ $r_4 = [l,r'] \times [b,t], r' = \inf\{s \mid \Pr[[l,s] \times [b,t]] \geq \varepsilon/4\}$

• Ако допуснем, че Q_S има непразно сечение с всеки от правоъгълниците r_1, r_2, r_3, r_4 , то за грешката получаваме:

$$R(h_S) = \Pr[Q \setminus Q_S] \le \Pr[\bigcup_{i=1}^4 r_i] \le \sum_{i=1}^4 \Pr[r_i] = \varepsilon.$$

• Ако допуснем, че Q_S има празно сечение с поне един от правоъгълниците r_1, r_2, r_3, r_4 , то за грешката получаваме: $\Pr_{S \sim \mathcal{D}^m}[\{S \mid R(h_S) > \varepsilon\}] \leq \Pr_{S \sim \mathcal{D}^m}[\; \cup_{i=1}^4 \; \{S \mid Q_S \cap r_i = \varnothing\}]$

$$\leq \sum_{i=1}^{4} \Pr_{S \sim \mathcal{D}^m} [\{S \mid Q_S \cap r_i = \emptyset\}]$$

$$\leq 4(1 - \varepsilon/4)^m$$

• Помощно неравенство: $1-x \le e^{-x}$. Разглеждаме $f(x)=e^{-x}+x-1, \ f'(x)=1-e^{-x}, f''(x)=e^{-x}.$ Следователно функцията е изпъкнала и има единствен минимум при x=0. Но f(0)=0 откъдето следва неравенството.

$$Pr_{S \sim \mathcal{D}^m}[\{S \mid R(h_S) > \varepsilon\}] \le 4(1 - \varepsilon/4)^m \le 4e^{-m\varepsilon/4}.$$

. Следователно, за дадено $\delta>0$, ако изберем $m>\frac{4}{\varepsilon}\log\frac{4}{\delta}$ получаваме: $\delta>4e^{-m\varepsilon/4}\geq \Pr_{S\sim \mathscr{D}^m}[\{S\mid R(h_S)>\varepsilon\}],$ откъдето следва $\Pr_{S\sim \mathscr{D}^m}[\{S\mid R(h_S)\leq\varepsilon\}]\geq 1-\delta$, което трябваше да се покаже. Освен това m е в порядък от $O\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$.

Заключение

- Понятието "Вероятно приблизително коректно" РАС-обучение е рамка за математически анализ на алгоритмите за машинното обучение.
- Чрез това и свързаните с него понятия става възможно теоретичното изследване на свойствата и ограниченията на методите за машинно обучение.
- По-задълбочено този подход се разглежда в курса "Теория на машинното обучение и някои нейни приложения в невронните мрежи"
- Няма много практически приложения на този подход, поради което няма да го разглеждаме по-нататък в курса.