9/9: Homework #2 (due Wed 16 Sept, in class)

Graders: The graders for this course are John Stout (jes554@cornell.edu) and Simon Löwe (skl89@cornell.edu).

1. Lorentz Invariant Measure (5 points)

a) Show that

$$\int \frac{d^4k}{(2\pi)^4} \, \delta(k^2 - m^2) \, \theta(k^0) \, f(k) = \int \frac{d^3\mathbf{k}}{(2\pi)^3 2\omega_{\mathbf{k}}} \, f(k)|_{k^0 = \omega_{\mathbf{k}}}$$
(1.1)

where $\omega_{\mathbf{k}} \equiv \sqrt{\mathbf{k}^2 + m^2}$.

b) As discussed in class, d^4k is Lorentz invariant. Assuming this, why is

$$\int \frac{d^3 \mathbf{k}}{(2\pi)^3 2\omega_{\mathbf{k}}} \tag{1.2}$$

Lorentz invariant?

2. Spontaneous Symmetry Breaking (15 points)

First do parts (a)–(c) of Problem 3.5 (p. 43) in Schwartz. Then add part (d) below.

d) Now consider the analogous theory where $\psi(x)$ is complex:

$$\mathcal{L} = \partial \psi^* \cdot \partial \psi + m^2 \psi^* \psi - \frac{\lambda}{2} (\psi^* \psi)^2. \tag{2.1}$$

Show that there are infinitely many solutions of the equations of motion for which $\psi = c$ is a (complex) constant. What symmetry is broken spontaneously in this case? Choose c to be real, and re-express \mathcal{L} in terms of fields $\eta(x)$ and $\theta(x)$ where

$$\psi(x) \equiv (c + \eta(x)) e^{i\theta(x)}. \tag{2.2}$$

Keep only terms that are linear or quadratic in η and θ and their derivatives (that is, ignore interactions). What are the masses corresponding to the η and θ fields. Why should we not be surprised by the appearance of a massless field?

3. Classical Approximation and Measurement (30 points)

Our starting point for quantizing a field was to assume that the field has a classical limit. The canonical quantization procedure is a recipe that gives a quantum theory whose solutions include ones resembling the classical theory. Here we examine what those solutions look like, starting first with a single harmonic oscillator.

Consider a single harmonic oscillator with Hamiltonian $H=\frac{1}{2}p^2+\frac{1}{2}\omega^2q^2$ where [q,p]=i, and

$$q = \frac{1}{\sqrt{2\omega}} \left(a + a^{\dagger} \right) \quad p = -i\sqrt{\frac{\omega}{2}} \left(a - a^{\dagger} \right) \tag{3.1}$$

with $[a, a^{\dagger}] = 1$. The n^{th} excited state of this system is $|n\rangle \equiv (a^{\dagger})^n |0\rangle / \sqrt{n!}$, where $|0\rangle$ is the ground state. The commutation relation implies that $a|n\rangle = \sqrt{n}|n-1\rangle$ and $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$.

A state $|\psi\rangle$ is classical if the uncertainties in q and p are small compared with their mean values:

$$\Delta q \ll q_{\rm cl} \equiv \langle \psi | q | \psi \rangle$$
 $\Delta p \ll p_{\rm cl} \equiv \langle \psi | p | \psi \rangle.$ (3.2)

That is, we want approximate eigenstates where

$$q |\psi\rangle \approx q_{\rm cl} |\psi\rangle \quad p |\psi\rangle \approx p_{\rm cl} |\psi\rangle.$$
 (3.3)

 $q_{\rm cl}$ and $p_{\rm cl}$ are the classical coordinate and momentum of the oscillator correponding to $|\psi\rangle$.

a) Consider a state

$$|\psi\rangle \equiv \sum_{n} \psi(n) e^{i\theta n} |n\rangle$$
 (3.4)

where real function $\psi(n)$ is sharply peaked around $n = n_0$, and the peak's width Δn is much larger than 1 but much smaller than n_0 :

Show that

$$q |\psi\rangle \approx q_{\rm cl} |\psi\rangle \qquad p |\psi\rangle \approx p_{\rm cl} |\psi\rangle$$
 (3.5)

and find approximate expressions for $q_{\rm cl}$ and $p_{\rm cl}$ in terms of just n_0 , ω , and θ .

- **b)** What goes wrong with your analysis if $\Delta n \approx 1$? Or $\Delta n \approx n_0$?
- c) Calculate the (approximate) energy of this state from $q_{\rm cl}$ and $p_{\rm cl}$. Does the energy make sense? How do $q_{\rm cl}$ and $p_{\rm cl}$ vary with time? Does this behavior make sense?
- d) (Optional part: Try it if you have time; otherwise skip to part e) on Field Theory.) Show that the *coherent state* defined by $|z\rangle \equiv Ae^{za^{\dagger}}|0\rangle$, where z is a complex number and A is a chosen so $\langle z|z\rangle = 1$, is an example of a classical state provided |z| is large. Do this by estimating n_0 and Δn for this state. What are $q_{\rm cl}$ and $p_{\rm cl}$ for this state?
- e) Field Theory: We now carry this analysis over to a field theory with $\mathcal{L} \equiv \frac{1}{2}(\partial\phi)^2 \frac{1}{2}m^2\phi^2$. To simplify matters we consider the field confined to a cavity of size L with periodic boundary conditions in each direction. This restricts the momentum in each direction to be an integer multiple of $\Delta p = 2\pi/L$. The quantum field then is a sum over the allowed momenta:

$$\phi(\mathbf{x}) = \sum_{\mathbf{p}} \frac{1}{\sqrt{2E_{\mathbf{p}}V}} \left(a_{\mathbf{p}} + a_{-\mathbf{p}}^{\dagger} \right) e^{i\mathbf{p}\cdot\mathbf{x}}, \tag{3.6}$$

$$\dot{\phi}(\mathbf{x}) = -i \sum_{\mathbf{p}} \sqrt{\frac{E_{\mathbf{p}}}{2V}} \left(a_{\mathbf{p}} - a_{-\mathbf{p}}^{\dagger} \right) e^{i\mathbf{p} \cdot \mathbf{x}}, \tag{3.7}$$

where $V=L^3$ is the volume of the cavity, and the creation and annihilation operators have commutation relations

$$[a_{\mathbf{p}}, a_{\mathbf{q}}^{\dagger}] = \delta_{\mathbf{p}, \mathbf{q}} \quad [a_{\mathbf{p}}, a_{\mathbf{q}}] = [a_{\mathbf{p}}^{\dagger}, a_{\mathbf{q}}^{\dagger}] = 0 \tag{3.8}$$

with Kronecker deltas instead of delta functions (so that $[\phi(\mathbf{x}), \dot{\phi}(\mathbf{y})] = i\delta^{(3)}(\mathbf{x} - \mathbf{y})$). A state with n particles in a single mode is then $|n\mathbf{p}\rangle = (a_{\mathbf{p}}^{\dagger})^n |0\rangle/\sqrt{n!}$.

Focusing on a single cavity mode with $\mathbf{p} = \mathbf{p}_0$, an analogue of our classical harmonic oscillator state is

$$|\psi_{\mathbf{p}_0}\rangle \equiv \sum_n \psi(n) |n\mathbf{p}_0\rangle$$
 (3.9)

where, again, $\psi(n)$ is sharply peaked about $n_0 \gg \Delta n \gg 1$. What are the classical fields $\phi_{\rm cl}(\mathbf{x})$ and $\dot{\phi}_{\rm cl}(\mathbf{x})$ associated with this state? How do they depend upon time? Do they satisfy the classical equations of motion?

f) Show that the uncertainty in the field is

$$(\Delta \phi(\mathbf{x}))^2 \equiv \langle \psi_{\mathbf{p}_0} | \phi^2(\mathbf{x}) | \psi_{\mathbf{p}_0} \rangle - \langle \psi_{\mathbf{p}_0} | \phi(\mathbf{x}) | \psi_{\mathbf{p}_0} \rangle^2$$

= \infty. (3.10)

(Hint: try writing $\phi(\mathbf{x})|\psi_{\mathbf{p}_0}\rangle \approx \phi_{\mathrm{cl}}(\mathbf{x})|\psi_{\mathbf{p}_0}\rangle + |\delta\psi\rangle$ where $|\delta\psi\rangle$ comes from $\mathbf{p} \neq \mathbf{p}_0$.) The infinity is decidely non-classical. What has gone wrong?

g) Our formulation of the classical limit of a field theory is unrealistic in one important respect. Any realistic apparatus or probe of the ϕ field would have a finite spatial resultion. Call this $\Delta x \approx \sigma$. An example of an operator whose expectation values might correspond to field measurements by such a probe is (at $x^0 = 0$)

$$\phi^{(\sigma)}(\mathbf{x}) \equiv \int \frac{d^3 \mathbf{y}}{(\sigma \sqrt{2\pi})^3} e^{-(\mathbf{x} - \mathbf{y})^2 / 2\sigma^2} \phi(\mathbf{y}), \tag{3.11}$$

where we smear operator ϕ over a region of size σ . Show that the expectation values of $\phi^{(\sigma)}(\mathbf{x})$ and $\dot{\phi}^{(\sigma)}(\mathbf{x})$ in $|\psi_{\mathbf{p}_0}\rangle$ agree with the results you obtained above for $\phi_{\rm cl}$ and $\dot{\phi}_{\rm cl}$ provided σ is sufficiently small. How small does σ need to be?

h) Show that the uncertainty $\Delta\phi^{(\sigma)}(x)$ in $\phi^{(\sigma)}(x)$ is finite for state $|\psi_{\mathbf{p}_0}\rangle$. For what range of σ is the uncertainty small compared with $\phi_{\rm cl}$? Under what conditions will there be a range of σ s such that the classical value is (approximately) unaffected by σ , while at the same time the uncertainty is small compared with the classical value? Ignore the mass compared with $|\mathbf{p}_0|$ when making this estimate. This is the condition under which the system is well described by classical equations.