Deep Learning Seminar

7. Segmentation

Contents

- 1. Overview
- 2. Classification
- 3. Semantic Segmentation

1. Overview

가

Object Detection 1
Semantic Segmentation 2 - 3
Instance Segmentation 3 - 4

Object Detection

Object Detection

Semantic Segmentation

Instance Segmentation

FPS (Frame Per Second) , 1 Frame 가

. 1 8

 FPS가
 가
 .
 기

 FPS가
 1
 1

Object Detection Example

가 . layer가

가 Computation Cost가 가 .

> ... , 가 Forwarding

가 - Low And Model

High And Model

Trade - Off

Semantic Segmentation Example

Instance Segmentation Example

2. Classification

Classification

Classification

- Fully Connected Network (FCN)

1) 1

28x28

784 pixels

- 1) Disappear spatial information
- 2) Computationally Expensive

Input

Fully Connected Network

Convolutional Neural Network

Classification

- Popular Model

- 1) VGG
- 2) GoogLeNet (Inception)
- 3) ResNet
- 4) DenseNet

3-1. Overview of semantic segmentation

Object Detection Low And Model

FPS

- 3-2. Upsampling & Convolutions
- 3-3. U-Net
- 3-4. Evaluation Matrix

Label each pixel in the image with category label

CNN Semantic Segmentation 가 Classification Design a network as a bunch of convolutional layers to make predictions for pixels all at once! С Conv Conv Conv Conv argmax 512 Input: Predictions: Scores: $3 \times H \times W$ HxW CxHxWConvolutions: DxHxWstride=1, padding=1 ConV . filter 3x3 (CNN)

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Predictions: H x W

Input:

3xHxW

가

: convolution

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

2. max pooling

. (down sampling) 1. stride = 2

D₁ x H/2 x W/2

Upsampling: ???

: DeConvolution

11

Predictions: H x W

Χ.

D₁ x H/2 x W/2

Batch Normalization . batch size

w, b

Upsampling

Transposed Convolution
Up-sampling
(ex. Deconv)

Down-sampling

(ex. Conv)

Input: 2 x 2

Output: 4 x 4

Unpooling (Upsampling)

1. 0 .

- Train

- 0

가

1	2
3	4

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Input: 2 x 2

Output: 4 x 4

Not Trainable

Unpooling (Upsampling)

Max Pooling

Remember which element was max!

Max Unpooling

Use positions from pooling layer

1	2	
3	4	

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Interpolation

(Upsampling)

가 .

ex) 1, 2 1 1 2 2 ex) 1, 2 1 1.5 2 2.5

Garbage **Nearest Neighbor** 2 2 3. Not Trainable filter 4 3 3 4 backward가 3 4 Output: 4 x 4 Input: 2 x 2 Filter

W

Not Trainable

(Upsampling)

= Deconvolution

Upsampling

Transpose Filter

Weight

Input: 2 x 2 Output: 4 x 4

(Upsampling)

= Deconvolution

Interpolation VS Deconvolution

√ "Trainable" | Hot

"deconvolution checker border"

 \downarrow

Recall: Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4

Output: 4 x 4

Interpolation

(Upsampling)

Recall: Normal 3 x 3 convolution, stride 1 pad 1

(Upsampling)

Recall: Normal 3 x 3 convolution, stride 1 pad 1

(Upsampling)

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Output: 2 x 2

(Upsampling)

Recall: Normal 3 x 3 convolution, stride 2 pad 1

(Upsampling)

(Upsampling)

Recall: Normal 3 x 3 convolution, stride 2 pad 1

(Upsampling)

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

(Upsampling)

3 x 3 transpose convolution, stride 2 pad 1

(Upsampling)

Transpose Convolution

(Upsampling)

Transpose Convolution

(Upsampling)

Semantic Segmentation

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling: Unpooling or strided transpose convolution

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

- 1) Convolution
 2) Transpose Convolution
 3) Atrous Convolution
- 4) Separable Convolution 가 가 가 .

ex) mobileNet - 100

가 main.py - 가 train.py - github + Object Detection - Apple AI

- 2) Transpose Convolution
 - Up-sampling
 - Checker boarder Issue

3) Atrous Convolution

- Down-sampling
- Wider Field of view at the same computational cost
- Use it when you need a wide field of view (Not good if field of view is too small)

3) Atrous Convolution

다양한 Dilated rate를 이용하여 병렬적으로 사용해서 더 많은 특징 추출가능 (ex. Deeplab v3+)

Atrous Convolution. 왼쪽부터 dilation rate: 1, 2, 3

4) Separable Convolution

기존의 Convolution와 다르게 공간과 관련된 Convolution와 채널과 관련된 Convolution을 따로 적용하여 기존 Convolution을 표현할 수 있으면서도 파라미터 수를 낮추는 Convolution

(Guo et al. Network Decoupling: From Regular to Depthwise Separable Convolutions)

Simple Convolution

Spatial Separable Convolution

4) Separable Convolution

- Normal Convolution

Image 4: A normal convolution with 8x8x1 output

Image 5: A normal convolution with 8x8x256 output

U-Net

• IOU (Intersection over union)

U-Net

• Checkerboard Artifacts on deconvolution

U-Net

• Deconv vs. Interpolation

Using deconvolution.

Heavy checkerboard artifacts.

deconvolution

Using resize-convolution.

No checkerboard artifacts.

Interpolation

• IOU (Intersection over union)

DCE = 2A / (A+B)

가

IOU

mIOU (Mean intersection over union)

Segmentation 7

• Dice Coefficient

$$DSC = \frac{2|X \cap Y|}{|X| + |Y|}$$

$$DSC = rac{2TP}{2TP + FP + FN}.$$

+ : mIOU + : DCE

• Dice Coefficient

$$DSC = \frac{2TP}{2TP + FP + FN}.$$

Very Effective to train Imbalanced dataset

Uncertainty Quantification

Uncertainty Quantification

Let's try it!

(code)