1

\vsplit $\langle number \rangle$ to $\langle dimen \rangle$

This command causes T_EX to split the box numbered $\langle number \rangle$, which we'll call B_2 , into two parts. It uses the same algorithm that it would use if B_2 was a page and it was breaking that page; the division point then corresponds to the page break that it would find. The box B_2 must be a vbox, not an hbox. T_EX puts the material preceding the division point into another box B_1 and leaves the material after the division point in B_2 . The \vsplit command then produces B_1 . Normally you'd assign B_1 to a different box register, as in the example below. If the division point is at the end of B_2 , B_2 will be empty after the \vsplit.

T_EX employs its usual page-breaking algorithm for the split. It uses $\langle dimen \rangle$ for \pagegoal, the desired height of B_1 . The vertical extent of B_1 may not be exactly $\langle dimen \rangle$ because T_EX may not be able to achieve its page goal perfectly. T_EX does not consider insertions in calculating the split, so insertions in the original vertical list of B_2 will be retained but won't affect the split point.

Example:

\setbox 20 = \vsplit 30 to 7in
% Split off the first seven inches or so of material from
% box 30 and place that material in box 20.