$\Delta(1930) \; 5/2^-$

$$I(J^P) = \frac{3}{2}(\frac{5}{2})$$
 Status: ***

DPWA Multichannel

Created: 5/30/2017 17:20

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (1930) POLE POSITION

RFAI	PΔ	RT

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1840 to 1960 (≈ 1900) OUR ESTIN	MATE			
$1848 \pm 9 \pm 19$	¹ SVARC	14	L + P	$\pi N \rightarrow \pi N$
2001	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
1850	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1890 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
1882	SHRESTHA	12A	DPWA	Multichannel
1883	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
175 to 360 (≈ 270) OUR ESTIMAT	Έ			
$321 \pm 17 \pm 7$	¹ SVARC	14	L + P	$\pi N \rightarrow \pi N$
387	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
180	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
260 ± 60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	, fits,	limits, e	etc. • • •
187	SHRESTHA	12A	DPWA	Multichannel

△(1930) ELASTIC POLE RESIDUE

VRANA

MODULUS |r|

250

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
8 to 20 (\approx 14) OUR ESTIMATE				
$9\!\pm\!1\!\pm\!1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
7	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
20	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
18 ± 6	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
PHASE θ VALUE (°)	DOCUMENT ID		TECN	COMMENT
-10 to -40 (≈ -30) OUR ESTI	MATE			
$-37\pm \ 3\pm 7$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
-12	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
-20 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

△(1930) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900 to 2000 (≈ 1950) OUR ESTIN	MATE			
2233± 53	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
1940± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1901 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
1930± 12	SHRESTHA	12A	DPWA	Multichannel
1932 ± 100	VRANA	00	DPWA	Multichannel

△(1930) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
220 to 500 (≈ 360) OUR ESTIMAT	E			
773 ± 187	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
320± 60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
195± 60	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
235± 39	SHRESTHA	12A	DPWA	Multichannel
316 ± 237	VRANA	00	DPWA	Multichannel

△(1930) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (I ;/I)
$\overline{\Gamma_1}$	$N\pi$	5–15 %
Γ_2	$N\gamma$	0.0–0.01 %
Γ_3	$N\gamma$, helicity= $1/2$	0.0-0.005 %
Γ_4	$N\gamma$, helicity=3/2	0.0–0.004 %

△(1930) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 15 OUR ESTIMATE					
8.1 ± 1.2	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN	
14 ±4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
4 ±3	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
ullet $ullet$ We do not use the following	data for average	s, fits,	limits, e	etc. • •	
7.9 ± 0.4	SHRESTHA	12A	DPWA	Multichannel	
9 ±8	VRANA	00	DPWA	Multichannel	

Created: 5/30/2017 17:20

Δ (1930) PHOTON DECAY AMPLITUDES AT THE POLE

I

Δ (1930) \rightarrow N γ , helicity-1/2 amplitude A $_{1/2}$

$MODULUS (GeV^{-1/2})$	PHASE (°)	DOCUMENT ID		TECN
$0.130 {}^{+ 0.073}_{- 0.096}$	-50^{+77}_{-26}	ROENCHEN	14	DPWA

$\Delta(1930) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN
$-0.056 ^{+0.003}_{-0.151}$	168^{+72}_{-76}	ROENCHEN	14	DPWA

△(1930) BREIT-WIGNER PHOTON DECAY AMPLITUDES

Δ (1930) \rightarrow N γ , helicity-1/2 amplitude A $_{1/2}$

$VALUE~({ m GeV}^{-1/2})$	DOCUMENT ID		TECN	COMMENT	
-0.007 ± 0.010	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$	
• • • We do not use the follow	ing data for averages	s, fits,	, limits, (etc. • • •	
0.011 ± 0.003	SHRESTHA	12A	DPWA	Multichannel	

Δ (1930) \rightarrow N γ , helicity-3/2 amplitude A_{3/2}

<i>VALUE</i> (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.005 ± 0.010	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following of	lata for averages	, fits,	limits, e	etc. • • •
0.002 ± 0.002	SHRESTHA	12A	DPWA	Multichannel

Δ (1930) FOOTNOTES

△(1930) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

PDG ROENCHEN Also SVARC	14 14 14	CP C38 070001 EPJ A50 101 EPJ A51 63 (errat.) PR C89 045205	K. Olive <i>et al.</i> D. Roenchen <i>et al.</i> D. Roenchen <i>et al.</i> A. Svarc <i>et al.</i>	(PDG Collab.)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	(ĠWU)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H. Lee	(PITT, ANL)
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workman	(VPI)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky <i>et al.</i>	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	` (KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

Created: 5/30/2017 17:20

¹ Fit to the amplitudes of HOEHLER 79.