РСА, извлечение признаков

План

- Понижение размерности изображений через РСА
- Выделение признаков для поиска изображений
- Получение характерных точек на изображении
- Поиск похожих изображений

РСА: метод главных компонент

- Найдем «репрезентативные вектора», которые хорошо описывают наши данные
- Их линейная комбинация будет описывать любой объект

РСА: алгоритм

- Центрируем данные
- Находим собственные значения ковариационной матрицы
- Находим собственные вектора
- #Доска

EigenFaces

• Такой трюк можно проделать с картинками

Сжатие изображений

- Предположим у вас есть большая база картинок
- Как с помощью РСА эффективно их хранить?
- Что для этого требуется?

Программируем!

Гистограммы признаков изображения

Гистограмма цвета

- Разбиваем значения цвета на бины
- Считаем число пискелей для каждого значения

Плюсы гистограммы

- Устойчивы к поворотам, масштабу и искажениям
- Можно контролировать чувствительность к различным компонентам: например яркости

Гистограммы градиентов

Histogram of Oriented Gradients (HOG)

- Представим, что канал картинки функция в трехмерной плоскости
- Найдем градиент в каждой точке (пикселе)

HOGs

2	3	4	4	3	4	2	2
5	11	17	13	7	9	3	4
11	21	23	27	22	17	4	6
23	99	165	135	85	32	26	2
91	155	133	136	144	152	57	28
98	196	76	38	26	60	170	51
165	60	60	27	77	85	43	136
71	13	34	23	108	27	48	110

Gradient Magnitude

80	36	5	10	0	64	90	73
37	9	9	179	78	27	169	166
87	136	173	39	102	163	152	176
76	13	1	168	159	22	125	143
120	70	14	150	145	144	145	143
58	86	119	98	100	101	133	113
30	65	157	75	78	165	145	124
11	170	91	4	110	17	133	110

Gradient Direction

Алгоритм

- Находим градиент
- Переводим в полярные координаты
- Оцениваем гистограмму:
 - Разбиение на бины по углу
 - Норма градиента дает вклад в столбец

Построение гистограммы

Характерные точки

- Уникальная точка на изображении
- Может быть найдена на другом изображении
- На основе окружения точки вычисляется её дискриптор
- Хороший дексриптор должен быть устойчив к изменениям изображения

Характерные точки

Как будем искать?

- Найдем интересные области
- Какие области интересны?
 - Например большая вариативность цвета
 - Небольшие сдвиги из области должны сильно менять локальный рисунок

Алгоритмы поиска

- Большое количество
- Нет серебряной пули
- Difference of Gaussian

SIFT: вычисление дескриптора

- Найдем характерную точку
- Выделим область размера 16х16 около нее
- Оценим вектор градиента и взвесим на основании удаления от центра
- Разобьем область на квадраты 4х4
- Внутри каждого построим HOG
- Получим вектор дескрипторов

SIFT

Матчинг дескрипторов

