一. 选择填空(每空1分,共30分)

1. 在保持 E_b/N_0 不变的条件下提高进制数 M,则 MQAM 的错误概率(1),频带利用率(2); MFSK 的错误概率(3),频带利用率(4)。

(1)(2)(3)(4)	A. 增大	B. 减小	C. 不变

2. 考虑用 OOK、2FSK 发送"1"、"0"等概、速率为 R_b 的信息。若接收信号的平均功率相同,则(5)。若接收信号的峰值功率相同,则(6)。

	A. 2FSK 的误码率大于 OOK 的误码率
(5)(6)	B. 2FSK 的误码率小于 OOK 的误码率
	C. 2FSK 的误码率与 OOK 相同

3. 在 M 进制调制中,星座点数加倍则每符号携带的比特数(7)。保持符号速率不变,如欲传输速率加倍则需进制数变成(8)。

(7)	A. 不变	B. 增加一倍	C. 增加 2 比特	D. 增加 1 比特
(8)	A. $M+1$	B. 2 <i>M</i>	C. M ²	D. $M + 2$

4. 下图是某系统在接收端无噪声情况下测量出的眼图,图中 ab 是判决门限, cd 是最佳采样时刻。从眼图可以看出,这是一个(9)传输系统,其系统总体响应(10)奈奎斯特准则。如果噪声样值的绝对值小于(11),判决不会出错。

(9)	A. 单极性二进制	B. 双极性二进制	C. 三进制	D. 四进制
(10)	A. 满足	B. 不满足	C. 可能满足也	可能不满足
(11)	A. X	В. У	C. <i>X</i> + <i>Y</i>	D. $min(X,Y)$

5. 部分响应系统有意引入了可控的码间干扰,是为了(12)

(12)	A. 便于使用超前-滞后同步器	B. 便于使用科斯塔斯环
(12)	C. 提高信号功率	D. 提高系统频谱利用率

6. 数字通信中采用时域均衡技术的目的是为了 (13) 。

(13)	A. 使相频特性近似为常数	B. 使群时延特性近似为常数
(13)	C. 减小码间干扰	D. 减小非线性失真

7. 下图是包括平方环在内的 BPSK 解调器框图。图中"?"处应当是(14)。为克服相位模糊,发端可在调制之前先对信息进行(15)编码,从而构成 (16)调制。

8. 考虑限带传输,下列中包络起伏最小的调制方式是(17)。

(17)	A. 16QAM	B. 8PSK	C. OQPSK	D. QPSK
(1/)	11. 10 Q11.11	B : 01 811	e. e Q1 511	B. Q1511

9. 令 S 表示 M 进制调制各个可能的发送信号 $\{s_i(t), i=1,2,...,M\}$ 所张成的信号空间, s_i 为 $s_i(t)$ 的向量表示,r 为发送某个 $s_i(t)$,叠加了白高斯噪声后的接收信号 r(t)投影到 S 后的向量表示,则__(18)_。用 r 进行判决时,若判决结果始终取条件概率 $Pr(s_i|r)$ 最大者,称为__(19)_ 准则;若判决结果始终取条件概率密度 $f(r|s_i)$ 最大者,称为__(20)_ 准则。当各个 s_i _(21)_ 时,这两种准则等价。

(19)	A. r 与	A. <i>r</i> 与 <i>S</i> 正交		B. r 与某一个 s_i , $i=1,,M$ 相等		
C. $r = s_i$		S_i , $i=1,,M$ 线性无关		D.r 是判决的充分统计量		
			B. MAP		C. ML	D. 最大相关
(21)	A. 线性无关	B. 等能量	L L	C. 两两正交	D. 先验等概

10. 若 4 电平序列 $\{a_n\}$ 是平稳序列,基带成形脉冲 g(t)为矩形脉冲,则对应的 4ASK 信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n g(t-nT_s) \cos(2\pi f_c t)$ 是(22)过程。

(22)	A. 高斯	B. 平稳	C. 循环平稳	D. 限带随机
\ /	2 2 1/4/91	20, 1 1/6,	O. 1/H 1 1 1/L	2. 14.14.200

11. 某 16 进制调制系统的平均发送功率是 2 瓦,信息速率是 1Mbps,其符号间隔是 $T_s=(23)$ 微秒,比特间隔是 $T_b=(24)$ 微秒,平均符号能量是 $E_s=(25)$ 微焦耳,平均比特能量是 $E_b=(26)$ 微焦耳。

(23)(24)(25)(26)	A. 1	B. 2	C. 4	D. 8
------------------	------	------	------	------

12. A 律十三折线编码器属于<u>(27)</u>量化。设量化器最大幅度为 1.8V, 若输入为 +1.5V,则编码结果的极性码是<u>(28)</u>,段落码是<u>(29)</u>,段内码是<u>(30)</u>。

(27)	A. 均匀	B. 对数	C. 指数	D. Lloyd
(28)	A. 1	B. 0	C. 11	D. 00
(29)	A. 111	B. 110	C. 101	D. 100
(30)	A. 0001	B. 0011	C. 0101	D. 1010

二(14分)下图示出了某 MQAM 系统的发送框图及发送功率谱。

- (1) 根据发送功率谱确定出该系统的滚降系数 α 、符号速率 R_s 、以波特/Hz 为单位的频谱利用率。
- (2) 若已知信息速率是 40Mbps, 试确定出调制进制数 M, 并求相应的以 bps/Hz 为单位的频谱利用率。如欲将信息速率提升至 50Mbps, 同时保持进制数和 占用带宽不变,滚降系数 α 应如何调整?
- (3) 画出对应的接收框图。

 Ξ (11分)下图中的输入是速率为 R_b 、取值于 ± 1 的独立等概二进制序列。

- (1) s_B(t)是何种调制方式? 写出其带宽及载波频率。
- (2) 画出 $s_A(t)$ 、 $s_B(t)$ 、 $s_C(t)$ 的功率谱图 (标出主要频率坐标值)。
- (3) 写出 $s_D(t)$ 与 $s_B(t)$ 的关系。

四(12 分)某系统在 $[0,T_b]$ 时间内等概发送 $s_1(t) = A\cos(2\pi f_c t)$ 或 $s_2(t) = -s_1(t)$ 。接收框图如下所示,图中 $n_w(t)$ 是双边功率谱密度为 $N_0/2$ 的零均值加性白高斯噪声,判决门限为 0。假设 f_c 充分大。

- (1) 求发送 $s_1(t)$ 条件下,判决量 z 的均值、方差。
- (2) 写出最佳判决门限。
- (3) 求发送 $s_1(t)$ 条件下判决出现错误的概率。

A卷第5页 共8页

五(9分)考虑下图所示的星座图, $f_1(t)$ 和 $f_2(t)$ 是归一化的正交基函数。各星座点等概出现。求该星座图的平均符号能量 $E_{\rm s}$ 、最小星座点距离 $d_{\rm min}$ 及比值 $\rho=d_{\rm min}^2/E_{\rm s}$,并按格雷映射规则写出(1,3)和(3,1)对应的二进制比特。

六(12 分)已知模拟信号的采样值 X 的概率密度如下图所示。将 X 通过 2 电平量化器成为 Y,量化关系是 $Y=Q(X)=\begin{cases} 0.5 & 0 \leq X < 1 \\ 1.5 & 1 \leq X \leq 2 \end{cases}$,求 X 的功率 $S=\mathsf{E}[X^2]$, Y 的功率 $S_q=\mathsf{E}[Y^2]$, 并求量化噪声功率 $N_q=\mathsf{E}\Big[\big(Y-X\big)^2\Big]$ 。

七(12 分)有 10 路最高频率分量均为 f_H 的模拟信号。分别对这 10 路信号按 奈奎斯特速率采样,然后进行 A 律十三折线 PCM 编码,再将输出数据时分复 用为 1 路后通过限带信道传输。假设滚降因子为 α =2/3。

- (1) 写出信道传输的总数据速率 Rb与fa的关系式。
- (2) 若信道的频带范围是 0~480kHz, 传输方式为 4PAM, 求最大可允许的 f_H。
- (3) 若信道的频带范围是 2000kHz~2480kHz,传输方式为 8PSK,求最大可允许的 $f_{\rm H}$ 。