Exemplo de Aplicação de Algoritmos Genéticos

Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br cear.ufpb.br/juan

Estrutura do Algoritmo Genético

```
Algoritmo genético
Inicio
  t = 0
   inicializar P(t)
  avaliar P(t)
  while (não cumpre a condição) fazer
       t = t + 1
       selecionar P(t) de P(t-1)
       reprodução P(t)
       avaliar P(t)
  fim
fim
```

Estrutura do Algoritmo Genético

- Componentes do AG:
 - Representação/Codificação dos indivíduos
 - População inicial
 - Função de avaliação (fitness)
 - Operador de Seleção
 - Reprodução- operadores genéticos
 - Cruzamento
 - Mutação

1. Representação de Indivíduos

 Cada indivíduo "cromossoma" representa um candidato potencial do problema

 Os indivíduos são codificados usando números binários de tamanho fixo.

Indivíduo

1001010101001

"B" bits

2. População Inicial

• A população inicial é um conjunto de indivíduos gerados aleatoriamente.

3. Seleção

- Consiste em escolher alguns indivíduos da população para criar descendentes.
- o objetivo da seleção consiste em privilegiar os indivíduos melhor adaptados, para criar descendentes.

4. Operadores Genéticos

- O processo de reprodução gerará novos indivíduos da população selecionada.
- Os operadores genéticos representam uma fonte de diversidade e variabilidade
 - Cruzamento
 - Mutação

4. Operadores Genéticos

Cruzamento

- Combina dois indivíduos intercambiando suas informações genéticas
- A probabilidade do cruzamento se denomina taxa de cruzamento que varia entre 0,5 a 1.

4. Operadores Genéticos

Mutação

- Introduze novas combinações genéticas nos indivíduos.
- A probabilidade de mutação se denominada taxa de mutação que usualmente são valores pequenos 0.01, 0.02

Exemplo de Implementação do AG

Minimizar a Função f=x² para -10≤x≤10

Exemplo de Implementação do AG

• Em problemas de Optimização, minimizar uma função f, é equivalente a maximizar uma função do tipo:

$$\min f(x) = \max \{C - f(x)\}\$$

• Em que: C é uma constante

Usando AG para resolver o problema

```
Algoritmo genético
Inicio
  t = 0
   inicializar P(t)
  avaliar P(t)
  while (não cumpre a condição) fazer
       t = t + 1
       selecionar P(t) de P(t-1)
       reprodução P(t)
       avaliar P(t)
  fim
fim
```

AG para Problemas de Optimização

- Inicialmente se deve identificar:
 - 1. O intervalo de variação da variável x

$$a \le x \le b$$

2. Construir a função de fitness:

$$\max\{C - f\} = \max\{C - x^2\}$$

$$fitness = C - x^2$$

AG para Problemas de Optimização

3. Se deve definir a precisão com a qual será representada a variável x:

AG para Problemas de Optimização

4. O mapeamento da representação Binaria a Decimal é dada por:

$$x = a + decimal(10101...001).\frac{b-a}{2^{Bits}-1}$$

Representação Decimal

Representação Binaria

Representação dos Indivíduos

Para uma precisão de 3 casas decimais N =3,

$$14.28 \le Bits$$
$$B = 15$$

$$Individuo = [101010011100101]$$

População Inicial

Conjunto de Indivíduos criados Aleatoriamente

$$P = \begin{bmatrix} Individuo 1 \\ Individuo 2 \\ ... \\ Individuo L \end{bmatrix} = \begin{bmatrix} 1010100111100101 \\ 001010101010000 \\ ... \\ 010101000111101 \end{bmatrix}$$
"B=15" bits

População Inicial

Para uma população inicial de tamanho L=10:

3.9854		1	0	1	1	0	0	1	1	0	0	0	0	0	0	1
5.3661		1	1	0	0	0	1	0	0	1	0	1	0	1	1	1
-1.2693		0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
3.3580		1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
7.7960	_	1	1	1	0	0	0	1	1	1	1	0	0	1	0	0
x = -6.0765	P =	0	0	1	1	0	0	1	0	0	0	1	1	1	0	0
-5.7164		0	0	1	1	0	1	1	0	1	1	0	1	0	1	0
5.6804		1	1	0	0	1	0	0	0	1	0	1	1	0	1	0
9.7772		1	1	1	1	1	1	0	1	0	0	1	0	0	1	0
5.6767		1	1	0	0	1	0	0	0	1	0	1	0	1	0	0

População Representação Binaria

Avaliação (fitness)

• Cada indivíduo terá associada sua função de fitness:

$$P = \begin{bmatrix} Individuo 1 \\ Individuo 2 \\ ... \\ Individuo L \end{bmatrix} \qquad \begin{array}{c} fitness 1 \\ fitness 2 \\ ... \\ fitness L \end{array}$$

$$fitness(i) = C - x_i^2$$

Avaliação (fitness)

Indivíduo: x

 $fitness(i) = 100 - x_i^2$

Probabilidade de Seleção

$$Prob(i) = \frac{fitness(i)}{F}$$

$$F = \sum_{i=1}^{L} fitness(i)$$

$$\begin{array}{c} 3.9854 \\ 5.3661 \\ -1.2693 \\ 3.3580 \\ -6.0765 \\ -5.7164 \\ 5.6804 \\ 9.7772 \\ 5.6767 \end{array} \qquad \begin{array}{c} 84.1165 \\ 71.2053 \\ 98.3890 \\ 88.7242 \\ 39.2231 \\ 67.3225 \\ 67.7329 \\ 4.4061 \\ 67.7745 \end{array} \qquad \begin{array}{c} 0.1290 \\ 0.1092 \\ 0.1509 \\ 0.1361 \\ 0.0602 \\ 0.0967 \\ 0.1033 \\ 0.1039 \\ 0.1040 \end{array}$$

Probabilidade Acumulada

		0.1290			0.1290		0.4173							
			0.1092			0.2382		0.0497						
		0.1509		0.3891		0.9027								
		0.1361	0.1361	0.5252		0.9448								
ProbSelecao :	=	0.0602			0.5854	r =	0.4909							
									0.0967		q =	0.6821	- =	0.4893
		0.1033	0.1033	0.7854		0.3377								
		0.1039			0.8893		0.9001							
			0.0068	0.0068	0.8960		0.3692							
		0.1040			1.0000		0.1112							

		0.1290		0.1290	0.4173
		0.1092		0.2382	0.0497
		0.1509		0.3891	0.9027
		0.1361		0.5252	0.9448
DrobCologoo -	ProbSelecao =	0.0602		0.5854	r = 0.4909
	riobbelecao -	0.0967	q =	0.6821	0.4893
		0.1033		0.7854	0.3377
		0.1039	039	0.8893	0.9001
		0.0068		0.8960	0.3692
		0.1040		1.0000	0.1112

ProbSelecao :		0.1290		0.1290	0.4173
		0.1092	0.23	0.2382	0.049)
		0.1509		0.3891	0.9027
		0.1361		0.5252	0.9448
	DrobSologao -	0.0602		0.5854	r = 0.4909
	riobbelecao -	0.0967	q =	0.6821	0.4893
		0.1033		0.7854	0.3377
		0.1039		0.8893	0.9001
		0.0068		0.8960	0.3692
		0.1040		1.0000	0.1112

DrobCologoo		0.1290		0.1290	0.4173
		0.1092		0.2382	0.0497
		0.1509		0.3891	0.9027
		0.1361		0.5252	0.9448
	ProbSelecao =	0.0602		0.5854	0.4909
	riobbelecao -	0.0967	q =	0.6821	0.4893
		0.1033		0.7854	0.3377
		0.1039		0.8893	0.9001
		0.0068		0.8960	0.3692
		0.1040		1.0000	0.1112

Índice dos indivíduos selecionados

4

1

10

10

4

4

3

10

3

1

3.3580

3.9854

5.6767

5.6767

3.3580

3.3580

-1.2693

5.6767

-1.2693

3.9854

Indivíduos Selecionados

88.7242

84.1165

67.7745

67.7745

88.7242

fitness =

88.7242

98.3890

67.7745

98.3890

84.1165

Fitness

3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
x = 3.3580	P = 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

Indivíduos Selecionados

Codificação dos Indivíduos Selecionados

- Se define uma probabilidade de cruzamento Pc=0.7
- Em seguida, se realiza a geração de 10 números aleatórios (r)
- Finalmente, se verifica que posições (índices) atendem a condição r≤Pc, caso satisfeita a condição o individuo poderá ser usado na operação de cruzamento (neste caso os índices 2, 3, 4, 5, 6, 9, 10).

• Selecionando o primeiro par para cruzamento, com índices das linhas 2 e 3

- Determinar aleatoriamente o ponto de cruzamento. Neste caso deverá ser gerado um número aleatório interior no intervalo de 1 a 14.
- Para o ponto de cruzamento igual a 5

Ponto de Cruzamento aleatório

 Após o cruzamento as linhas com índices 2 e 3 intercambiaram informações por meio da troca de bits

Ponto de Cruzamento aleatório

- Este procedimento será repetido para os pares com linhas (4, 5) e (6, 9)
- Finalmente tem-se uma nova população modificada com o operador de cruzamento.

2 2500	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.3580 3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
x = 3.3580	P = 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.8017	1	0	1	1	0	0	0	0	1	0	1	0	1	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
5.8629	1	1	0	0	1	0	1	1	0	0	0	0	1	0	1
x = 3.3555	P = 1	0	1	0	1	0	1	0	1	1	1	1	0	0	1
3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

Operador de Mutação

- Se define uma probabilidade de mutação Pm=0.01
- Em seguida, se realiza a geração uma matriz de 10x15 contendo números aleatórios (r). Este tamanho corresponde ao tamanho da matriz binaria da população P.
- Em seguida, para cada número aleatório se verifica se cumpre a condição r≤Pm, caso satisfeita a condição, o elemento da matriz P é permutado de 0 para 1 ou vice-versa.

0.8034	0.9841	0.7379	0.5391	0.6692	0.4283	0.2653	0.2607	0.4709	0.8200	0.2665	0.9577	0.8444	0.4243	0.1527
0.0605	0.1672	0.2691	0.6981	0.1904	0.4820	0.8244	0.5944	0.6959	0.7184	0.1537	0.2407	0.3445	0.4609	0.3411
0.3993	0.1062	0.4228	0.6665	0.3689	0.1206	0.9827	0.0225	0.6999	0.9686	0.2810	0.6761	0.7805	0.7702	0.6074
0.5269	0.3724	0.5479	0.1781	0.4607	0.5895	0.7302	0.4253	0.6385	0.5313	0.4401	0.2891	0.6753	0.3225	0.1917
r = 0.4168	0.1981	0.9427	0.1280	0.9816	0.2262	0.3439	0.3127	0.0336	0.3251	0.5271	0.6718	0.0067	0.7847	0.7384
0.6569	0.4897	0.4177	0.9991	0.1564	0.3846	0.5841	0.1615	0.0688	0.1056	0.4574	0.6951	0.6022	0.4714	0.2428
0.6280	0.3395	0.9831	0.1711	0.8555	0.5830	0.1078	0.1788	0.3196	0.6110	0.8754	0.0680	0.3868	0.0358	0.9174
0.2920	0.9516	0.3015	0.0326	0.6448	0.2518	0.9063	0.4229	0.5309	0.7788	0.5181	0.2548	0.9160	0.1759	0.2691
0.4317	0.9203	0.7011	0.5612	0.3763	0.2904	0.8797	0.0942	0.6544	0.4235	0.9436	0.2240	0.0012	0.7218	0.7655
0.0155	0.0527	0.6663	0.8819	0.1909	0.6171	0.8178	0.5985	0.4076	0.0908	0.6377	0.6678	0.4624	0.4735	0.1887

Os elementos da matriz r, com índices (5,13) e (9,13) sofrerão mutação

Operador de Mutação

Mutação

	1	0	1	O	1	0	1	O	1	1	1	1	1	0	1
	1	0	1	1	0	0	0	0	1	0	1	0	1	0	0
	1	1	0	0	1	0	0	0	1	0	1	U	1	0	0
	1	1	0	0	1	0	1	1	0	0	0	0	1	0	1
Р	= 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
	0	1	1	0	1	1	1	1	1	1	0	0	1	0	0
	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

Processo de Evolução para 1 geração

	População Inicial	Seleção	Cruzamento	Mutação
	3.9854	3.3580	3.3580	3.3580
	5.3661	3.9854	3.8017	3.8017
	-1.2693	5.6767	5.6767	5.6767
	3.3580	5.6767	5.8629	5.8629
ndivíduos	7.7960	3.3580	3.3555	3.3580
ilaiviaa03	-6.0765	3.3580	3.3580	3.3580
	-5.7164	-1.2693	-1.2693	-1.2693
	5.6804	5.6767	5.6767	5.6767
	9.7772	-1.2693	-1.2693	-1.2668
	5.6767	3.9854	3.9854	3.9854
fitness	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 4.4061	88.7242 84.1165 67.7745 67.7745 88.7242 88.7242 98.3890 67.7745 98.3890		88.7242 85.5471 67.7745 65.6263 88.7242 88.7242 98.3890 67.7745 98.3952
	67.7745	84.1165		84.1165

Comparação do melhor indivíduo na população inicial com o melhor indivíduo após a mutação

	População Inicial	Seleção	Cruzamento	Mutação
Indivíduos	3.9854 5.3661 -1.2693 Melhor 3.3580 7.7960 solução -6.0765 -5.7164 5.6804 9.7772 5.6767	3.3580 3.9854 5.6767 5.6767 3.3580 3.3580 -1.2693 5.6767 -1.2693 3.9854	3.3580 3.8017 5.6767 5.8629 3.3555 3.3580 -1.2693 5.6767 -1.2693 3.9854	3.3580 3.8017 5.6767 5.8629 3.3580 3.3580 -1.2693 5.6767 -1.2668 Melhor 3.9854 solução
fitness	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 4.4061 67.7745	88.7242 84.1165 67.7745 67.7745 88.7242 88.7242 98.3890 67.7745 98.3890 84.1165	Neste passo não é necessário avaliar o fitness	88.7242 85.5471 67.7745 65.6263 88.7242 88.7242 98.3890 67.7745 98.3952 84.1165

Elitismo: Substituição do melhor pelo pior

Elitismo: Substituição do melhor pelo pior

	População		Mutação		Elitismo
	Inicial				
Melhor solução Indivíduos	5.3661 -1.2693 3.3580 7.7960	Elitismo	3.3580 3.8017 5.6767 5.8629 3.3580 3.3580		3.9854 5.3661 -1.2693 3.3580 7.7960
	-6.0765 -5.716 5.6804 9.7772 5.6767	Pior solução	-1.2693 5.6767 -1.2668 3.9854	Melhor solução	-6.0765 -5.7164 5.6804 -1.2668 5.6767
fitness	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 4.4061 67.7745		88.7242 85.5471 67.7745 65.6263 88.7242 88.7242 98.3890 67.7745 98.3952 84.1165		84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 98.3952 67.7745

Elitismo: Substituição do melhor pelo pior

	População Inicial	Mutação	Atualização da População com melhores indivíduos	
Melho solução Indivíduos	3.9854 5.3661 0 -1.2693 3.3580 7.7960 -6.0765 -5.716 5.6804 9.7772 5.6767 Pior soluçã	3.3580 -1.2693 5.6767 -1.2668 Melhor	3.9854 5.3661 -1.2693 3.3580 7.7960 -6.0765 -5.7164 5.6804 -1.2668 5.6767	Geração t+1
fitness	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 4.4061 67.7745	88.7242 85.5471 67.7745 65.6263 88.7242 88.7242 98.3890 67.7745 98.3952 84.1165	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 98.3952 67.7745	

Processo de Evolução vs #Gerações

• Para 40 Gerações:

Solução: x = -9.1556e-04 y = f(x) = 8.3824e-07 fitness=100

Processo de Evolução vs #Gerações

Para 40 Gerações:

Solução: x = 3.0519e-04 y=f(x) = 9.3138-08 fitness=100

Conclusões e Observações

- O processo de evolução de um AG realiza a busca em um espaço de soluções potenciais para o problema (População).
- Os AGs são mais robustos, devido a que existe uma direção ótima no processo de busca da solução.
- Os AGs mantem populações de soluções potenciais intercambiando informações.
- Os AGs não garantem uma solução GLOBAL, entretanto a solução obtida pode se encontrar próxima da global (solução local).

Conclusões e Observações

- A velocidade de convergência do AGs dependerá dos parâmetros de configuração, tais como: Tamanho da população, probabilidade de cruzamento Pc, probabilidade de mutação Pm, e operação de elitismo.
- Para sair de um estagio de estagnação poderia se implementar um operador de mutação com probabilidade Pm aumentando em função ao número de gerações.
- Observa-se que para cada nova execução do AGs a solução obtida tem variações assim como sua curva de convergência.