Homework Signal 2

Week 2

6733172621 Patthadon Phengpinij
Collaborators. ChatGPT (for LATEX styling and grammar checking)

1 Convolution

Problem 2. Determine the convolution y(t) = h(t) * x(t) using Graphical Interpretation of the pairs of the signals shown

Solution. The convolution y(t) = h(t) * x(t) can be determined graphically by following these steps:

- 1. Flip one of the signals, typically h(t), to get $h(-\tau)$.
- 2. Shift the flipped signal by t to get $h(t-\tau)$.
- 3. For each value of t, calculate the area of overlap between $x(\tau)$ and $h(t-\tau)$.
- 4. The value of the convolution y(t) at each t is the area of overlap calculated in the previous step.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step.

The resulting convolution y(t) is shown in the gif files in my GitHub repository for this homework.

TO SUBMIT

2.1 Solution.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.1 Animation.

The plot of the signal is shown below:

TO SUBMIT

2.3 Solution.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.3 Animation.

The plot of the signal is shown below:

Problem 4. Find the convolution y[n] = h[n] * x[n] of the following signals:

TO SUBMIT

$$4.1 \ x[n] = \begin{cases} -1, -5 \le n \le -1 \\ 1, 0 \le n \le 4 \end{cases}, \ h[n] = 2u[n]$$

Solution. Using the property of convolution with unit step function (Running sum):

$$y[n] = x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

Consider the value of y[n]:

$$y[n] = x[n] * h[n]$$
$$= x[n] * 2u[n]$$
$$y[n] = 2 \sum_{k=-\infty}^{n} x[k]$$

Calculating the convolution for different ranges of n:

• For $-5 \le n < 0$:

$$y[n] = 2 \sum_{k=-\infty}^{n} x[k]$$

$$= 2 \sum_{k=-5}^{n} (-1)$$

$$= 2 \cdot (-1)(n - (-5) + 1)$$

$$= 2(-n - 6)$$

$$y[n] = -2n - 12$$

• For $0 \le n < 5$:

$$y[n] = 2 \sum_{k=-\infty}^{n} x[k]$$

$$= 2 \left[\sum_{k=-5}^{-1} x[k] + \sum_{k=0}^{n} x[k] \right]$$

$$= 2 \left[\sum_{k=-5}^{-1} (-1) + \sum_{k=0}^{n} (1) \right]$$

$$= 2 (-5 + (n+1))$$

$$= 2 (n-4)$$

$$y[n] = 2n - 8$$

Thus, the final result of the convolution is:

$$y[n] = \begin{cases} -2n - 12 & -5 \le n < 0 \\ 2n - 8 & 0 \le n < 5 \\ 0 & \text{otherwise} \end{cases}$$

TO SUBMIT

4.3
$$x[n] = \left(\frac{1}{2}\right)^n u[n], h[n] = \delta[n] + \delta[n-1] + \left(\frac{1}{3}\right)^n u[n]$$

Solution. Using the property of convolution with unit step function (Running sum):

$$y[n] = x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

and the shifting property of convolution:

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

Consider the value of y[n]:

$$\begin{split} y[n] &= x[n] * h[n] \\ &= x[n] * \left[\delta[n] + \delta[n-1] + \left(\frac{1}{3}\right)^n u[n] \right] \\ &= (x[n] * \delta[n]) + (x[n] * \delta[n-1]) + \left(x[n] * \left(\frac{1}{3}\right)^n u[n]\right) \\ y[n] &= \left(\frac{1}{2}\right)^n u[n] + \left(\frac{1}{2}\right)^{n-1} u[n-1] + \sum_{k=-\infty}^n \left(\frac{1}{2}\right)^k u[k] \left(\frac{1}{3}\right)^{n-k} u[n-k] \end{split}$$

Calculating the convolution for different ranges of n:

• For n=0:

$$y[n] = \left(\frac{1}{2}\right)^{0} u[0] + \left(\frac{1}{2}\right)^{0-1} u[0-1] + \sum_{k=-\infty}^{0} \left(\frac{1}{2}\right)^{k} u[k] \left(\frac{1}{3}\right)^{0-k} u[0-k]$$

$$= 1 + 0 + \left(\frac{1}{2}\right)^{0} u[0] \left(\frac{1}{3}\right)^{0} u[0]$$

$$= 1 + 0 + 1$$

$$y[n] = 2$$

• For $n \ge 1$:

$$y[n] = \left(\frac{1}{2}\right)^n u[n] + \left(\frac{1}{2}\right)^{n-1} u[n-1] + \sum_{k=-\infty}^n \left(\frac{1}{2}\right)^k u[k] \left(\frac{1}{3}\right)^{n-k} u[n-k]$$

$$= \left(\frac{1}{2}\right)^n + \left(\frac{1}{2}\right)^{n-1} + \sum_{k=0}^n \left(\frac{1}{2}\right)^k \left(\frac{1}{3}\right)^{n-k}$$

$$= 3\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n \left[\sum_{k=0}^n \left(\frac{3}{2}\right)^k\right]$$

$$= 3\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n \cdot (-2) \left(1 - \left(\frac{3}{2}\right)^{n+1}\right)$$

$$y[n] = 6\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n$$

Thus, the final result of the convolution is:

$$y[n] = \begin{cases} 2 & n = 0\\ 6\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n & n \ge 1\\ 0 & \text{otherwise} \end{cases}$$