PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-249859

(43) Date of publication of application: 14.09.2000

(51)Int.Cl.

GO2B 6/13

(21)Application number: 11-049555

(71)Applicant: JAPAN SCIENCE & TECHNOLOGY

CORP

KONDO HIROMI NOUCHI KENTARO

(22)Date of filing:

26.02.1999

(72)Inventor: KONDO HIROMI

NOUCHI KENTARO HIRAO KAZUYUKI

(54) MANUFACTURE OF OPTICAL WAVEGUIDE WITH GRATING

PROBLEM TO BE SOLVED: To provide an optical waveguide

(57)Abstract:

with grating by converging/irradiating a pulse laser beam and increasing a refractive index of a selection part. SOLUTION: A convergent point F is adjusted in the inside of the optical waveguide W, and the pulse laser beam 2 of a wavelength region of the absorption coefficient 5 cm-1 or below of the optical waveguide W is converged / irradiated. and a refractive index increase region G is formed on the convergent point F. When the convergence/irradiation of the pulse laser beam 2 is repeated while teletively and intermittently moving the convergent point F in the longitudinal direction in the inside of the optical waveguide W, plural refractive index change regions G are formed in the longitudinal direction of the optical waveguide W. The grating period is adjusted by the relative moving distance of the convergent point F. When the peak power density of the pulse laser beam 2 is changed, the grating that the refractive index change is different at very convergent point F is added also.

JP02000249859A

DOCUMENT-IDENTIFIER:

JP 2000249859 A

TITLE:

MANUFACTURE OF OPTICAL WAVEGUIDE WITH CRATING

PUBN-DATE:

September 14, 2000

INVENTOR-INFORMATION:

NAME

COUNTRY

KONDO, HIROMI

N/A:

MOUCHI, KENTARO

N/A

HIRAO, KAZUYUKI

N/A

ASSIGNEE-INFORMATION:

NAME

JAPAN SCIENCE & TECHNOLOGY CORP

KONDO HIROMI

N/A

NOUCHI KENTARO

N/A

APPL-NO:

JP11049555

APPL-DATE: February 26, 1999

INT-CL (IPC): G02B006/13

ABSTRACT:

SPORTEN TO BE SOLVED: To provide an optical waveguide with grating by converging/ irradiating a pulse laser beam and increasing a retractive index of a selection part.

SOLUTION: A convergent point F is adjusted in the inside of the optical waveguide W. and the pulse laser beam 2 of a wavelength region of the absorption coefficient 5 cm-1 or below of the optical waveguide W is converged/ itradiated, and a refractive index increase region G is formed on the convergent point F. When the convergence/irradiation of the pulse lacer beam 2 is repeated while teletively and intermittently moving the convergent point F in the longitudinal direction in the inside of the optical waveguide W, plural refractive index change regions Grare formed in the tongitudinal direction of the optical waveguide W. The grating period is adjusted by the relative moving distance of the convergent point E. When the peak power density of the pulse laser beam 2 is changed, the grating that the refractive index change is different at very convergent point is added also.

COPYRIGHT: (C)2000, JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000—249859 (P2000—249859A) (43)公開日 平成12年9月14日(2000, 9.14)

(51) Int.Cl.7 G 0 2 B 6/13 識別記号

FI G02B 6/12 テーマコート*(参考) M 2H047

審査請求 未請求 請求項の数3 OL (全 4 頁)

(21)出廢番号

特廢平11-49555

(22)出願日

平成11年2月26日(1999, 2, 26)

(71) 出願人 396020800

科学技術振興事業団

埼玉県川口市本町4丁目1番8号

(71)出願人 597118636

近藤 裕己

奈良県奈良市鶴舞西町二丁目28番303号

(71)出願人 598103613

野内 健太郎

京都府相楽郡木津町相楽台八丁目6番24号

(72)発明者 近藤 裕己

奈良県奈良市鶴舞西町二丁目28番303号

(74)代理人 100092392

弁理士 小倉 亘

最終頁に続く

(54) 【発明の名称】 グレーティング付き光導波路の製造方法

(57)【要約】

【目的】 パルスレーザ光の集光照射により選択部分の 屈折率を増加させ、グレーティング付き光導波路を得る。

【構成】 光導波路Wの内部に集光点Fを調節し、光導波路Wの吸収係数が5cm⁻¹以下の波長領域のバルスレーザ光2を集光照射し、集光点Fに開折率増加域Gを形成する。光導波路Wの内部で長さ方向に集光点Fを間歇的に相対移動させながらバルスレーザ光2の集光照射を繰り返すとき、複数の屈折率変化域Gが光導波路Wの長さ方向に形成される。グレーティング周期は、集光点Fの相対移動距離によって調節できる。パルスレーザ光2のビークバワー密度を変化させるとき、集光点Fごとに屈折率変化が異なるグレーティングをつけることもできる。

【特許請求の範囲】

【請求項1】 光導波路の内部に集光点を調節し、光導 波路の吸収係数が5cm⁻¹以下の波長領域のパルスレー ザ光を集光照射し、集光点における屈折率を選択的に増 加させることを特徴とするグレーティング付き光導波路 の製造方法。

【請求項2】 光導波路の内部で長さ方向に集光点を間 歇的に相対移動させながらパルスレーザ光の集光照射を 繰り返す請求項1記載のグレーティング付き光導波路の 製造方法。

【請求項3】 パルス幅が10⁻¹⁰ 秒以下のパルスレーザ光を使用する請求項1又は2記載のグレーティング付き光導波路の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、集光照射により屈折率 変調のグレーティングを付けた光導波路を製造する方法 に関する。

100021

【従来の技術】光導波路は、光が閉じ込められる屈折率 の高いコア及びコアを取り囲む扇折率の低いクラッドを 基板上に設けることにより形成されている。基板にはシ リコン、石英ガラス等、コアガラスにはGeドープ石英 系ガラス、クラッドには石英系ガラスが使用されてい る。紫外線を照射すると、Geドープ石英系ガラスが紫 外線を吸収し、紫外線照射部分の屈折率が増加する。屈 折率が周期的に変化した領域を光導波路のコア中に形成 することによりブラッググレーティングが付けられる。 紫外線の露光には、2光束干渉露光法,位相マスク法, ポイント露光法等が採用されている。光導波路内部にグ レーティングが形成されると、ブラッグの反射条件を満 足する光のみが反射されるため、光通信分野等で波長選 択デバイスとして利用できる。屈折率が変化する原因は 一律でないが、主として紫外線照射によりGcドープ石 英系ガラス中に生成する原子間結合欠陥に依るものと考 えられている。ガラス中の原子間結合欠陥を形成させる 紫外光源には、KrFエキシマレーザ(波長248n m), Arイオンレーザの第2高調波(波長244 n m) 等がある。

[0003]

【発明が解決しようとする課題】Geドープ石英系ガラスでは、紫外線照射による光誘起屈折率変化が小さいため、高圧水素処理、Geの高濃度化、Sn等の感光性物質の添加等により紫外線照射に対する屈折率変化の感度を高めている。しかし、高圧水素処理では工数の増加により生産性が低下し、Geの高濃度化ではコアクラッドの屈折率調整が困難になる。感光性物質を添加する方法では、光損失が増大する虞れがある。紫外線照射で誘起された屈折率変化が長期にわたって安定していることも光導波路に要求される特性である。しかし、ガラス中の50

原子間結合欠陥を起因とする屈折率変化は、室温においても緩和してしまう可能性がある。更には、パルスレーザ光の集光照射で光ファイバに屈折率変化を生じさせようとすると、ファイバ周囲が円形状であるため、平面に集光する場合と集光点が異なり、パルスレーザ光をファイバコアに絞る際に集光点をファイバコアに合致させる工夫が必要になる。

[0004]

【課題を解決するための手段】木発明は、このような問 題を解消すべく案出されたものであり、吸収係数が特定 された波長領域のバルスレーザ光で光導波路内部を集光 照射することにより、選択された部位の屈折率を増加さ せ、簡単な方法で安定性に優れたグレーティングを付け た光導波路を提供することを目的とする。本発明の製造 方法は、その目的を達成するため、光導波路の内部に集 光点を調節し、光導波路の吸収係数が5 c m-1以下の波 長領域のバルスレーザ光を集光照射し、集光点における 屈折率を選択的に増加させることを特徴とする。光導波 路の内部で長さ方向に集光点を間歇的に相対移動させな がらバルスレーザ光の集光照射を繰り返すとき、複数の 属折率変化部を光導波路の長さ方向に形成することがで きる。グレーティング周期は、集光点の相対移動距離に よって調節できる。また、バルスレーザ光のピークパワ 一密度を変化させるとき、集光点ごとに屈折率変化が異 なるグレーティングをつけることもできる。パルスレー ザ光としては、パルス幅が10-10 秒以下のパルスレー ザ光が好ましい。

[0005]

【作用】基板上に形成されている光導波路は、光が閉じ 込められる屈折率の高いコアガラスを屈折率の低いクラ ッドガラスで取り囲んだ構造をもっている。基板にはシ リコン、石英ガラス等が使用され、コアガラス及びクラ ッドガラスには石英ガラス、Geドープ石英系ガラス、 フッ化物ガラス,酸化物ガラス,硫化物ガラス,カルコ ゲナイドガラス等が使用される。酸化物ガラスには、ケ イ酸塩ガラス、ホウ酸塩ガラス、リン酸塩ガラス、弗リ ン酸塩ガラス、酸化ビスマス系ガラス等がある。本発明 で使用するガラスは、パルスレーザ光の集光照射により 屈折率変化を生じる限り、材質的な制約を受けるもので 40 はない。光導波路は、火炎堆積法、プラズマCVD法、 スパッタ法等で基板上に形成される。木発明では、基板 上に形成された平坦な表面形状をもつ光導波路にパルス レーザ光を集光照射して屈折率変化を誘起させているの で、光ファイバを集光照射する場合のように特別な工夫 を必要とすることなく、コアガラスの内部に集光点を容 易に調節できる。

【0006】コアガラスは、パルスレーザ光の集光照射により構造、ひいては屈折率が変化する。本発明では、 屈折率変化に及ぼすパルスレーザ光の作用を利用し、集 光点が光導波路の内部に位置するように調節して光導波

30

路を集光照射する。パルスレーザ光の集光照射による屈 折率変化は、Geドープ石英系ガラスに限らず、他の石 英ガラス, フッ化物ガラス, 酸化物ガラス, 硫化物ガラ ス、カルコゲナイドガラス等でも生じる。そのため、紫 外線照射による従来のグレーティングと異なり、グレー ティング可能な材質に関する制約が大幅に緩和される。 また、紫外線照射に比較して屈折率変化量が大きいた め、別途の問題が派生しがちな高感度化処理を省略でき る。パルスレーザ光としては、光導波路の内部に光誘起 屈折率変化を生じさせるエネルギ量を持ち、光導波路の 吸収係数が5cm~1以下の波長領域のパルスレーザ光が 使用される。光導波路の吸収係数は、光導波路のコア及 びクラッドを形成しているガラス材料の吸収係数から求 められる。光導波路を構成しているガラス材料の固有吸 収は紫外領域にあるので、固有吸収のない5 c m⁻¹以下 の長波長側にパルスレーザ光の波長を設定するとき、屈 折率変化が集光点のみで生じ、集光点以外の屈折率変化 が抑えられる。

【0007】光導波路の内部に屈折率変化を生じさせる パルスレーザ光のエネルギ量は、ガラスの種類によって も異なるが、1パルス当りの出力エネルギ(J)をパル ス幅(砂)で割ったピークパワー(W)の単位面積当り の密度(W/cm²)で表わされるピークパワー密度が 集光点で $10^5 \sim 10^{15} \text{W/cm}^2$ の範囲にあることが 好ましい。ピークパワー密度が105 W/cm2 に達し ないと、集光照射によっても集光点の屈折率増加が十分 でない。逆に1015W/cm2を超えるピークパワー密 度では、過剰量のエネルギ量が投入されるため、集光点 以外の部分でも屈折率が増加する虞れがある。パルスレ ーザ光の繰返し周期は、特に制約されるものではない が、1~250kHzの範囲が好ましい。250kHz を超える繰返し周期では、集光点における屈折率変化量 の制御が困難になる。逆に1 Hz未満の繰返し周期で は、グレーティングの形成に長時間がかかる。

【0008】パルスレーザ光は、レンズ等の集光装置で 集光でき、集光点をガラス材料の内部に設定できる。集 光点を相対移動させることにより、光導波路の内部に屈 折率変調のグレーティングが形成される。具体的には、 パルスレーザ光の集光点に対して光導波路を移動させ、 光導波路内部でパルスレーザ光の集光点を移動させ、或 40いは光導波路及び集光点の双方を移動させることによ り、集光点を相対移動させる。このとき集光点の相対移 動量によってグレーティングの周期が調整されるため、 周期の異なるグレーティングも容易に書き込まれる。ま た、パルスレーザ光の強度及びパルス数に対する屈折率 変化量の依存性を活用し、集光点ごとにパルスレーザ光 の強度及び/又はパルス数を変えるとき、屈折率変化量 が異なるグレーティングを書き込むこともできる。

【0009】バルスレーザ光の集光照射で屈折率増加を 誘起させて屈折率変調のグレーティングを形成している 50

とき、グレーティングの透過特性を同時観察することにより所望のグレーティングが作製できる。同時観察には、グレーティング作製中の光導波路の一端から白色光を入射させ、他端に接続した光スペクトラムアナライザで光の透過スペクトルを測定する方法が採用される。光スペクトラムアナライザで測定される特性は、屈折率増加域を透過してきた光の強度の波長依存性である。そこで、パルスレーザ光の集光照射及び光導波路の相対移動を繰り返しながら複数の屈折率増加域を形成していく過程で透過光強度の波長依存性をモニタリングすると、ある波長を中心として透過光強度が減衰し始める。したがって、目標とするフィルタ特性を示した時点でパルスレーザ光の集光照射を中止することにより、必要特性をもつグレーティング付き光導波路が得られる。

[0010]

【実施例】火炎堆積法で作成した石英系の光導波路をバ ルスレーザ光で集光照射することによりグレーティング を付けた。光導波路Wは、図1に示すように石英基板S 上に堆積させた膜厚8μmのコア層0をドライエッチン グして導液路パターンを形成した後、クラッド層しで埋 め込むことにより作製した。コア層Cには96.5重量 %SiO₂ -3.5重量%GeO₂ のガラス、クラッド 層しには純SiO2を使用した。波長1.55μmでニ アフィールドバターンを観察することにより、コア層C を伝播する光がシングルモードであることを確認した。 レーザ光源1としてTiサファイアレーザを用い、波長 800nm, パルス幅1.2×10-13 秒, 繰返し周波 数200kHzで吸収係数5cm-1以下の波長領域をも つパルスレーザ光2を出射させた。光導波路の内部に集 光点Fが位置するようにパルスレーザ光2を集光レンズ 3で集光した。集光点Fでは、パルスレーザ光2のピー クパワー密度が3×1018W/cm² に高められ、集光 点Fに当たる部分に屈折率増加域Gが形成された。

【0011】次いで、グレーティング周期分だけ光導波路Wを移動させた。移動後の光導波路Wに同じ条件下でバルスレーザ光2を集光照射し、次の屈折率増加域Gを形成した。以下、必要とするグレーティング長に応じてバルスレーザ光2の集光照射及び光導波路Wの移動を繰り返し、複数の屈折率増加域Gが形成されたグレーティング付き光導波路を作製した。屈折率の変化度は、パルスレーザ光2の強度及びパルス数に依存する。パルスレーザ光2の強度又はバルス数を増加させると、屈折率の変化量が大きくなる。強度一定の条件下では、照射時間の延長又は繰返し周期の増加により、必要な屈折率変化を生じさせることができる。本実施例では、一つの屈折率増加域Gごとにバルスレーザ光2の集光照射に光導波路Wを5秒間曝した。

【0012】屈折率変化の周期が数百μmと比較的長い場合、光導波路Wのコア層Cを伝播する光のうち、一部の光はコア層Cを伝播する導波モードからクラッド層し

5

を伝播するクラッドモードに結合する。導波モードに対 する実効的屈折率をng , クラッドモードに対する実効 的屈折率をnc1,グレーティング周期をAとするとき、 $\lambda = (n_g - n_{e1}) \Lambda$ の条件を満足する波長 λ の光が導 波モードからクラッドモードに結合する。波長入を1. 3~1.6 µmにするためには、およそ100~200 Oμmのグレーティング周期Λが必要になる。クラッド モードに結合する光は、10~数十 nmと比較的広い帯 域の光であり、コア層Cの外に漏れ出ることにより減衰 する (A.M. Vengsarkar et al., J. Lightwave Technol 10 ogy, Vol.14, 1996, p.58) . 結果的に長周期型グレー ティングは、波長入近傍の比較的広帯域の光に損失を与 えるフィルタとして機能する。そこで、本実施例では、 グレーティング周期を460μm, グレーティング長を 30mmに設定した。作製されたグレーティング付き光 導波路の透過光強度の波長依存性を調査したところ、図 2に示すように、ほぼ20 n mの帯域幅にわたって透過 率が緩やかに減衰していた。透過率が減衰したピーク波 長では、ほぼ12dBの損失であった。

[0013]

【発明の効果】以上に説明したように、木発明においては、光導波路の吸収係数が5cm-1以下の波長領域のバルスレーザ光を光導波路内部に集光点を調節して集光照

射することにより、屈折率が増加した領域を集光点に形成させ、屈折率変調のグレーティングを光導波路に付けている。この方法によるとき、従来の紫外線照射によるグレーティングの形成に比較して、光損失の増加を生じ易い高圧水素処理、感光性イオン添加などの工程を必要としないため、必要なグレーティング特性をもつグレーティングが光導波路に付けられる。しかも、投入エネルギ量に応じて屈折率変化量が容易に制御され、グレーティングの周期及び長さが自由に変えられるため、要求特性に応じたグレーティング付き光導波路が得られる。更に、光ファイバに比較して平坦な表面をもつ光導波路にパルスレーザ光を集光照射するため、集光点の調節を始めとして照射作業も容易になる。

【図面の簡単な説明】

【図1】 本発明に従ったグレーティング付き光導波路 を作製する方法を説明する図

【図2】 実施例で得られたグレーティング付き光導波路の透過強度の波長依存性を示すグラフ

【符号の説明】

20 1:レーザ光源 2:パルスレーザ光 3:集光レンズ

W:光導波路 S:石英基板 C:コア層 L: クラッド層 F:集光点 G:屈折率変化域

[図1]

【図2】

フロントページの続き

(72)発明者 野内 健太郎

京都府相楽郡木津町相楽台八丁目6番24号

(72) 発明者 平尾 一之

京都府相梁郡木津町木津川台三] 目 5番8号

Fターム(参考) 2H047 KA04 LA02 PA01 PA21 PA24 PA30 QA04 TA43