COMPUTER ARCHITECTURE

Chapter 3: Computer arithmetic

Outline

- Integer operations
 - Addition and subtraction
 - Multiplication and division
- Floating-point numbers
 - Representation
 - Operations and instructions

INTEGER OPERATIONS

Integer addition

- Example: $7_{10} + 6_{10} = 0111_2 + 0101_2$
- Overflow: result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer subtraction

- Add negation (2's complement) of the second operand
- Example: $7 6 = 7 + (-6) = 0111_2 + 1010_2 = 0001_2$
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from -ve operand: -7 6
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand: 7 (-6)
 - Overflow if result sign is 1

5

Deal with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler (hardware)
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfcO (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Hardware for multiplication

Length of product is the sum of operand lengths

Hardware operation

Example

• Using 4-bit numbers, calculate $2_{10} \times 3_{10} = 0010_2 \times 0011_2$

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Optimized hardware

Optimized in hardware usage; not in performance

MIPS multiplication instructions

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - ONLY least-significant 32 bits of product → rd

Division

- Long division approach
 - if divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit

- Restoring divisor
 - Do the subtract, and if remainder goes <
 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Hardware for division

Example

• Using 4-bit numbers, calculate $7_{10} \div 2_{10} = 0111_2 \div 0010_2$

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	① 110 0111
	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	1111 0111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	①111 1111
	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	0000 0011
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	0000 0001
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Optimized hardware

MIPS division instructions

Use HI/LO registers for result

— HI: 32-bit remainder

– LO: 32-bit quotient

- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - What are values in HI/LO if divisor is 0?
- Software must perform checks if required
 - Use mfhi, mflo to access result

16

FLOATING POINT NUMBERS

Floating point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - Normalized: -2.54×10^{56}
 - Not normalized: 0.002×10^{-4} ; 987.6×10^{3}
- In binary
 - $=\pm 1.xxxx_2 \times 2^{yyyy}$
- In ANSI: float or double

Floating point standard

- Defined by IEEE Std 754-1985 (IEEE-754)
 - Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit): float (C)
 - Double precision (64-bit): double (C)

IEEE-754 format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$X_{10} = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored: 0 ≤ |Fraction| < 1.0</p>
- Exponent = actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Example

 Question: What is the decimal value of the floating point number 0x414C0000?

Answer:

- 0x414C0000 \Rightarrow single precision
 - S = 0;
 - Exponent = $1000_0010_2 = 130$;

•
$$F = 100_1100_0000_1..._0000_2 = 2^{-1} + 2^{-4} + 2^{-5} = 0.59375$$

$$X = (-1)^0 \times (1 + 0.59375) \times 2^{130-127} = 12.75$$

Single precision range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 − 127 = −126
 - Fraction: 000...00 \Rightarrow significand = 1.0
 - $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110 \Rightarrow actual exponent = 254 − 127 = +127
 - Fraction: 111...11 \Rightarrow significand ≈ 2.0
 - $-\pm 2.0 \times 2^{127} \approx \pm 3.4 \times 10^{38}$

Double precision range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - = Exponent: 0000000001 ⇒ actual exponent = 1 1023 = -1022
 - Fraction: 000...00 \Rightarrow significand = 1.0
 - $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - = Exponent: 111111111110 \Rightarrow actual exponent = 2046 − 1023 = +1023
 - Fraction: 111...11 \Rightarrow significand ≈ 2.0
 - $-\pm 2.0 \times 2^{1023} \approx \pm 1.8 \times 10^{308}$

Convert to IEEE-754

- Step 1: Decide S (1: negative; 0: positive)
- Step 2: Decide Fraction
 - Convert the integer part to Binary
 - Convert the fractional part to Binary
 - Adjust the integer and fractional parts according the Significand format (1.xxx)
- **Step 3**: Decide exponent

Example

- Question: what is the IEEE-754 representation of 12.75?
- Answer:
 - S = 0;
 - $-12.75 = 1100.11_2 = 1.10011 \times 2^3$
 - Exponent = 3 + 127 = 130
 - Fraction: 100_1100_0000_0000_0000_0000_
 - $-12.75 = 0x414C0000_{IEEE-754}$

Floating point addition

• Question: how to add two 4-digit decimal floating point numbers:

$$9.999 \times 10^{1} + 1.610 \times 10^{-1}$$

- Answer: do the following step
- 1. Align decimal points
 - Shift number with smaller exponent

$$-9.999 \times 10^{1} + 0.016 \times 10^{1}$$

2. Add significands

$$-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$$

- 3. Normalize result & check for over/underflow
 - -1.0015×10^2
- 4. Round and renormalize if necessary
 - -1.002×10^2

Floating point addition

Now consider a 4-digit binary example

$$1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}(0.5 + -0.4375)$$

- 1. Align binary points
 - Shift number with smaller exponent

$$-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$$

2. Add significands

$$-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

- 3. Normalize result & check for over/underflow
 - $-1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary

$$-1.000_2 \times 2^{-4}$$
 (no change) = 0.0625

Floating pointer adder hardware

Floating point multiplication

• Question: how to multiply two 4-digit decimal numbers:

$$1.110 \times 10^{10} \times 9.200 \times 10^{-5}$$

- Answer: do the following steps
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands

$$-1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$$

- 3. Normalize result & check for over/underflow
 - -1.0212×10^6
- 4. Round and renormalize if necessary
 - -1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating point multiplication

Now consider a 4-digit binary example

$$1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} = (0.5 \times -0.4375)$$

- Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- Multiply significands

$$-1.000_2 \times 1.110_2 = 1.110_2 \Rightarrow 1.110_2 \times 2^{-3}$$

- Normalize result & check for over/underflow
 - $-1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- Round and renormalize if necessary
 - $-1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: $+ve \times -ve \Rightarrow -ve$
 - $-1.1102 \times 2^{-3} = -0.21875$

FP instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3,...
 - Odd-number registers: right half of 64-bit floating-point numbers
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, lt, le,...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

Example: °F to °C

C code:

```
float f2c (float fahr){
return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
lwc1 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra
```


FP machine instructions

Name	Format	Example				Comments			
add.s	R	17	16	6	4	2	0	add.s	\$f2,\$f4,\$f6
sub.s	R	17	16	6	4	2	1	sub.s	\$f2,\$f4,\$f6
mul.s	R	17	16	6	4	2	2	mul.s	\$f2,\$f4,\$f6
div.s	R	17	16	6	4	2	3	div.s	\$f2,\$f4,\$f6
add.d	R	17	17	6	4	2	0	add.d	\$f2,\$f4,\$f6
sub.d	R	17	17	6	4	2	1	sub.d	\$f2,\$f4,\$f6
mul.d	R	17	17	6	4	2	2	mul.d	\$f2,\$f4,\$f6
div.d	R	17	17	6	4	2	3	div.d	\$f2,\$f4,\$f6
lwc1	1	49	20	2	100			lwc1	\$f2,100(\$s4)
swc1	1	57	20	2	100			swc1	\$f2,100(\$s4)
bc1t	1	17	8	1	25		bc1t	25	
bc1f	1	17	8	0	25		bc1f	25	
c.lt.s	R	17	16	4	2	0	60	c.lt.s	\$f2,\$f4
c.lt.d	R	17	17	4	2	0	60	c.lt.d	\$f2,\$f4
Field size		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS	instructions 32 bits

Accurate arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements
- Who Cares About FP Accuracy?

Concluding remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
- Need to account for this in programs

The end

