09 Naive Bayes

- Naive Bayes is a simple yet powerful probabilistic classifier based on Bayes' Theorem
- It is particularly useful for tasks like text classification, spam detection, sentiment analysis, and more

Key Concepts of Naive Bayes

1. Bayes' Theorem

 Bayes' Theorem describes the probability of an event based on prior knowledge of conditions related to the event

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

- (P(A|B)) is the posterior probability: the probability of event (A) occurring given that (B) is true
- (P(B|A)) is the likelihood: the probability of event (B) occurring given that (A) is true
- (P(A)) is the prior probability of event (A)
- (P(B)) is the prior probability of event (B)

2. Naive Assumption

- The "naive" part of Naive Bayes comes from the assumption that all features are independent of each other given the class label
- This simplifies the computation since you can calculate the probability of each feature independently

3. Classification

 For a given set of features X and a set of possible classes C Naive Bayes assigns the class C to X that maximizes the posterior probability

$$C = rg \max_{C_k} P(C_k) \prod_{i=1}^n P(x_i|C_k)$$

Types of Naive Bayes Classifiers

1. Gaussian Naive Bayes

- Used when the features are continuous and are assumed to follow a normal (Gaussian) distribution
- It calculates the probability using the probability density function of a Gaussian distribution

2. Multinomial Naive Bayes

- Used for discrete data, especially in text classification, where the features are word counts or term frequencies
- It models the probability of features (words) based on a multinomial distribution

3. Bernoulli Naive Bayes

- Used for binary/boolean features, where each feature is either present or absent
- It is particularly useful for binary text classification (e.g., spam vs. non-spam)

Advantages

- Simple to implement
- Works well with high-dimensional data (e.g., text)
- Fast and efficient for both training and prediction

Disadvantages

- The strong independence assumption rarely holds true in real-world data, which can reduce accuracy
- It assumes all features contribute equally to the prediction, which might not be the case

01 Multinomial Naive Bayes

- Multinomial Naive Bayes assumes that the data (features) follow a multinomial distribution, which is a generalization of the binomial distribution
- In the context of text classification, the classifier computes the probability of a
 document belonging to a particular class (e.g., spam or not spam) by considering the
 frequency of words (features) within the document

For a given document ($d = (x_1, x_2, \cdot x_n)$), where (x_i) represents the frequency of word (i), the probability that the document belongs to class (C_k) is given by:

$$P(C_k|d) \propto P(C_k) \prod_{i=1}^n P(x_i|C_k)^{x_i}$$

- (P(C_k)) is the prior probability of class (C_k)
- ($P(x_i \mid C_k)$) is the probability of word (x_i) occurring in class (C_k)
- (x_i) is the count of word (i) in the document

02 Laplace Smoothing

 Laplace Smoothing is a technique used to handle the issue of zero probabilities in Naive Bayes classifiers

- This problem arises when a word in the test data hasn't appeared in the training data for a particular class, leading to a zero probability for the entire expression
- Laplace smoothing adds a small value (typically 1) to each word count, ensuring that no probability is ever zero
- If (n) is the total number of words in the vocabulary, and (\alpha) is the smoothing parameter (usually (\alpha = 1)), the smoothed probability of a word (x_i) in class (C_k) is calculated as:

$$P(x_i|C_k) = rac{count(x_i,C_k) + lpha}{\sum_{j=1}^n (count(x_j,C_k) + lpha)}$$

03 Bernoulli Naive Bayes

- In Bernoulli Naive Bayes, each feature is a binary value indicating whether a particular word or feature is present in the document
- The classifier calculates the probability of a document belonging to a class based on whether the words/features appear in the document

For a document ($d = (x_1, x_2, dots, x_n)$) where (x_i) is binary:

$$P(C_k|d) \propto P(C_k) \prod_{i=1}^{n} P(x_i|C_k)^{x_i} \times (1 - P(x_i|C_k))^{(1-x_i)}$$

- ($P(x_i \mid C_k)$) is the probability that word (x_i) appears in documents of class (C_k).
- ((1 P(x_i | C_k))) accounts for the absence of the word (x_i).

04 Gaussian Naive Bayes

- Gaussian Naive Bayes is used when the features are continuous rather than discrete
- It assumes that the features follow a normal (Gaussian) distribution
- The classifier assumes that the continuous features associated with each class are distributed according to a Gaussian distribution
- For a feature (x_i), given a class (C_k), the probability (P(x_i | C_k)) is calculated using the Gaussian probability density function:

$$P(x_i|C_k) = rac{1}{\sqrt{2\pi\sigma_k^2}} \mathrm{exp}\left(-rac{(x_i-\mu_k)^2}{2\sigma_k^2}
ight)$$