Tutorial

WEEK 12

1. The co-tangent space

Let $X = \mathcal{Z}(f_i)$ recall that in the lecture we defined $T_0(X) = \mathcal{Z}\{f_{i,1}\}$ the zeros locus of the linear part of $f_i \in I$. Notice that this indeed is a linear subspace since $\mathcal{Z}\{f_{i,1}\} = \bigcap_i \mathcal{Z}\{f_{i,1}\}$ is intersection of hypersurfaces defined by degree 1 homogeneous polynomial thus are linear sub spaces.

Let $m_0 \triangleleft \mathcal{O}(X) = \mathbb{C}[x_1, ..., x_n]/I$ be the ideal of functions vanishing at the point 0 these are all regular functions of degree greater than 0. This is a maximal ideal (NSS)

The quotient ideal $m_0/(m_0)^2$ is a \mathbb{C} module as well, notice that m_0^2 are all functions of degree greater than 1 so the this quotient identifies regular functions on X which have the same linear part.

Lemma 1.0.1. $T_0X^* \cong m_0/m_0^2$

Proof. We have that $T_0X \cong \mathbb{C}^k$ is a linear subspace of \mathbb{C}^n so functional on this space is a restriction of a functional on \mathbb{C}^n which is given by a linear function $\mathbb{C}^n \to \mathbb{C}$ i.e. be a homogeneous degree 1 polynomial. We therefore get a \mathbb{C} module map $\Psi: m_0 \to (T_0X)^* \ \Psi(g) = g_1$ taking the linear part of the polynomial. This is a \mathbb{C} linear map and is clearly surjective, we show $\ker(\Psi) = m_0^2$ it is easy to check that if $g \in m_0^2$ then $\Psi(g) = 0$. In the other direction assume $\Psi(g) = g_1 = 0$ this means that $g_1 \in f_{i,1} > \text{thus } g_1 = \sum a_i f_{i,1}$ so as a regular function g is equivalent to $g - \sum a_i f_i$ which has degree larger that 1.

Definition 1.0.1. For a general point $x \in X$ define the tangent space $T_x X = (m_x/m_x^2)^*$

1.1. The differential map. Given a map $\psi: X \to Y$ we get a map $\psi^*: \mathcal{O}(Y) \to \mathcal{O}(X)$ this map restricts to map $\psi^*: m_{\psi(x)} \to m_x$ since if $h \in m_{f(x)}$ then $\psi * h(x) = h(\psi(x)) = 0$, we can compose the map

$$m_{\psi(x)} \xrightarrow{\psi^*} m_x \xrightarrow{\pi} m_x/m_x^2$$

Notice that $m_{\psi(x)}^2 \mapsto m_x^2$ thus we get an induced map

$$d\psi^* \colon m_{\psi(x)}/m_{\psi(x)}^2 \to m_x/m_x^2$$

2 WEEK 12

This map gives a dual map $d\psi: T_xX \to T_{\psi(x)}Y$.

2. A NICE FINITE MAP WITH INVERSE

We saw in previous tutorial that given this lemma we can embed any curve into P^3

Lemma 2.0.1. (Local condition for isomorphism)

Let $f: X \to Y$ be a finite map. f is isomorphism iff f is bijection and $T(f): T_x(X) \to T_{f(x)}Y$ is injective for all $x \in X$.

We will need the following Fact do to Nakayama from commutative algebra

Fact 2.0.1 (Nakayama). Let M be a f.g. A-Module and $I \triangleleft A$ s.t. $I \subset J(A)$, if IM = M then M = 0 ($J(A) = \bigcap_{m \triangleleft A} m$ intersection of maximal ideals)

Proof. (Of Isomorphism Lemma.) First by finitness we may assume X any Y to be affine and therefore get that f induces $f^*: \mathcal{O}(Y) \to \mathcal{O}(X)$ since f is surjective f^* is injective and we denote $\mathcal{O}(Y) = A \subset B = \mathcal{O}(X)$ to be the integral extension. We need to show f^* is isomorphism. The fact that f is bijection gives us bijection between maximal ideals in A to maximal ideals in A to maximal ideals ontaining B, and for $A \subseteq B$ we get $B \cap A \subseteq A$ maximal.

Claim: enough to show for localization at maximal ideal

We will how this claim later- these locallizations are exactly the local rings $\mathcal{O}_{X,x}$

So assume now that A and B are local with maximal ideals m and n.

Since $d\psi: T_x X \to T_{f(x)} Y$ is injection we get a surjection $m/m^2 \to n/n^2$ thus $mB + n^2 = n$ as ideals in B (As B-modules).

Now apply Nakayama lemma applied to the B-mod n/(mB)

(Take n/mB to be the module and n to be the ideal)

we get that mB = n. Since the map is finite B is a finitely generated A-module and since mB = n we get that $B/mB = B/n = \mathbb{C} = A/m$ as A module thus $A/m = A/(A \cap n) = (A+n)/n = \mathbb{C} = B/n$ thus n+A=mB+A=B and we get by Nakayama on B/A observing $m \cdot B/A = mB/A = B/A$ that A=B.

Remarks:

Remark 2.0.1. FACT: If X and Y are projective, finite fibers imply finite map, so the condition on the map being isomorphism is redundant.

WEEK 12 3

Why is it enough to show for local rings?

We want to show B = A, so we show B/A = 0 as a A module. We do this by showing that $B_m/A_m = 0$ as A_m module. Following 2 lemmas:

Lemma 2.0.2. Let $N \to M \to L$ be exact sequence of A modules then $S^{-1}N \to S^{-1}M \to S^{-1}L$ is an exact $S^{-1}A$ module.

Corollary 2.0.1.
$$S^{-1}(M/N) \cong S^{-1}M/S^{-1}N$$

we get the conclusion by:

Exercise 2.0.1. If $M_p = 0$ for any $p \triangleleft A$ maximal, then M = 0.

Proof. Indeed, assume $M \neq 0$ and $x \in M$ then $Ann(x) \subset q \lhd A$ for some maximal q, then since $M_q = 0$ we get that x/1 = 0 thus $\exists t \notin q$ s.t. tq = 0 hence $t \in Ann(x) \subset q$ in contradiction.