Московский авиационный институт

(национальный исследовательский университет)

Факультет № 8 «Прикладная математика и информатика» Кафедра 806 «Вычислительная математика и программирование»

КУРСОВОЙ ПРОЕКТ

по дисциплине «Вычислительные системы»

1 семестр

на тему "Схема лабораторной вычислительной системы"

Студент:	Соколов Д. В.
Группа:	М8О-107Б-20
Преподаватель:	Найдёнов И. Е.
Подпись:	
Оценка:	

Постановка задачи:

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью є * 10^k, где є - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k – экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное є и обеспечивать корректные размеры генерируемой таблицы.

Вариант 5:

функция: $2(\cos^2 x - 1)$

Ряд Тейлора: $-\frac{4x^2}{2} + \frac{16x^4}{24} + ... + (-1)^n \frac{(2x)^{2n}}{(2n)!}$

отрезок [a;b] \rightarrow [0.0; 0.5]

Теоретическая часть:

<u>Машинный ноль (машинный нуль)</u> — это очень маленькое число , которое воспринимается ЭВМ как ноль (из-за недостатка точности вещественных чисел) <u>Машинный эпсилон</u> — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа.(Эпсилон немного больше машинного нуля , позволяя сравнивать вещественные числа в ЭВМ)

Обычно эпсилон находится по формуле $1 + \epsilon = 1$, поэтому применяя определение предела из математического анализа для двух отличных от нуля переменных , эти числа будут равны в том случаи, если модуль их разности не превосходит эпсилон , где $\epsilon > 0$.

<u>Ряд Тейлора</u> — это разложение функции в бесконечную сумму степенных функций Формула Тейлора используется для приближенного вычисления сложный (даже тригонометрических) функций.

Алгоритм выполнения задачи:

С самого начала нужно найти эпсилон ЭВМ, на которой происходит выполнение программы. Для этого нужно приблизиться к машинному нулю:

```
float eps = 1.0f;
while (1.0f + eps / 2.0f > 1.0f) {
    eps /= 2.0f;
}
```

Цикл while будет выполнять деление эпсилон на 2, пока $1 + \varepsilon/2$ не станет равняться 1, т.е. $\varepsilon/2$ будет считаться машинным нулём , а следовательно ε это и будет число приблежённое ε но немного больше , а значит ε — это машинный эпсилон. Такой поиск эпсилон выполняется за $O(\log(10^{16}))\sim O(1)$. С помощью библиотеки <math.h> будем находить точное значиние от данной функции, а приближенное значение по формуле Тейлора. Чтобы приближенное значение отличалось от точного не больше чем на эпсилон , воспользуемся определением предела , т.е. сумма Тейлора стремится ε точному значению , вычисленной по математическим формулам, и получим $|yt-y|<\varepsilon$, где y=f(x) , а $yt-\varepsilon$ это сумма ряда.

Программа и вывод тестирования:

```
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define N 20

int fact(int n)
{
    if (n == 0) {
        return 1;
    }
    while (n != 0) {
        return fact(n - 1) * n;
    }
}

int main (void)
{
    float y, yt = 0.0f;
    float eps = 1.0f;
    while (1.0f + eps / 2.0f > 1.0f) {
```

```
eps = 2.0f;
 printf("epsilon = \%.8f\n", eps);
 printf("-----\n");
 printf("| x | y = 2(\cos x \wedge 2 - 1)| y = taylor: |n| n");
 printf("-----\n");
 int i, n = 1;
 for (i = 0; i \le N; i++) {
    y = 2 * (cos(x)*cos(x) - 1);
    while (fabs(yt - y) \geq eps) {
      yt = yt + pow(-1, n) * pow((2*x), 2*n) / (fact(2*n));
      n++;
    }
    if (y \ge 0.0) {
      printf("|%.3f|
                    %.8f | %.8f |%d|\n", x, y, yt, n);
    } else {
      printf("|\%.3f| %.8f |\%d|\n", x, y, yt, n);
    }
    n = 1;
   yt = 0.0f;
    x = x + 0.025f;
 printf("-----\n");
 return 0;
}
```

-Вывод тестирования-

epsilon = 0.00000012

```
| x | y = 2(\cos x \wedge 2 - 1) | y = taylor:
                                          |\mathbf{n}|
|0.000|
          0.00000000
                             0.00000000
                                            |\mathbf{1}|
|0.025|
         -0.00124974
                            -0.00124974
                                            |3|
|0.050|
         -0.00499584
                            -0.00499583
                                            |3|
                                            |3|
|0.075|
         -0.01122892
                            -0.01122891
|0.100|
         -0.01993342
                            -0.01993334
                                            |3|
|0.125|
         -0.03108758
                            -0.03108758
                                            |4|
|0.150|
         -0.04466351
                            -0.04466351
                                            |4|
|0.175|
         -0.06062730
                            -0.06062730
                                            |4|
|0.200|
         -0.07893902
                            -0.07893904
                                            |4|
|0.225|
                                            |4|
         -0.09955292
                            -0.09955296
|0.250|
         -0.12241746
                            -0.12241756
                                            |4|
|0.275|
         -0.14747551
                            -0.14747551
                                            |5|
         -0.17466444
|0.300|
                            -0.17466444
                                            |5|
```

0.325	-0.20391627		-0.20391627	5
0.350	-0.23515788		-0.23515788	5
0.375	-0.26831120	Ì	-0.26831120	5
0.400	-0.30329338	İ	-0.30329335	5
0.425	-0.34001696	İ	-0.34001690	5
0.450	-0.37839016	Ì	-0.37839007	5
0.475	-0.41831705	Ĺ	-0.41831708	[6]
0.500	-0.45969778	ĺ	-0.45969778	[6]
		•		

Вывод:

В ходе курсового проекта изучено представление вещественных чисел в ЭВМ, а также приобретины навыки сравнение их на языке Си. Пришлось находить машинный эпсилон для любого ПК, и использовать его в вычислении приближенных значений. С помощью знаний математического анализа находил сумму ряда Тейлора и его предел. В работе составлена программа на языке Си на основе алгоритма, описанного в проекте.

Список литературы:

Машинный ноль [Электронный ресурс] – URL: https://ru.wikipedia.org/wiki/Maшинный ноль
Ряд Тейлора [Электронный ресурс] – URL: https://ru.wikipedia.org/wiki/Pяд Тейлора