GPS

Embedded computatio

OscImpDigital CPU-FPGA co-design framework in the context of satellite communication

Goavec-Merou, Jean-Michel Friedt FEMTO-ST Time & Frequency department, Besançon, France Contact: {gwenhael.goavec,jmfriedt}@femto-st.fr

References at http://jmfriedt.free.fr

November 21, 2019

GPS

Embedded computation

OscimpDigit

Why SDR-based GNSS decoding?

- 1 Flexibility of adding new features without updating hardware
- 2 Beyond timing & positioning: access to the raw I/Q stream
 - basic physics (reflectometry)
 - security (phased array for spoofing detection)
 - 1575.42 MHz within range of the PlutoSDR (AD9363 + Zynq SoC)

GPS

Embedded computation OscimpDigita

Basics on GPS encoding

- ① CDMA (Code Division Multiple Access): all satellites transmit on the same frequency and their messages are encoded with individual orthogonal codes (Gold Codes)
- Satellite identification: xcorr(signal, code)
- **3** Code orthogonality: $xcorr(code_i, code_j) = \delta_{i,j}$
- 4 Doppler shift: need to compensate for remote clock frequency wrt ground clock & local clock offset wrt remote atomic clocks

Basics on GPS encoding

- 1 CDMA (Code Division Multiple Access): all satellites transmit on the same frequency and their messages are encoded with individual orthogonal codes (Gold Codes)
- Satellite identification: xcorr(signal, code)
- **3** Code orthogonality: $xcorr(code_i, code_j) = \delta_{i,j}$
- Opppler shift: need to compensate for remote clock frequency wrt ground clock & local clock offset wrt remote atomic clocks

Intensive use of correlations ¹ $xcorr(x,y)(\tau) = \int x(t)y(t+\tau)dt$ or through the convolution theorem: $FFT(xcorr(x,y)(\tau)) = FFT(x) \cdot FFT(y^*)$

 $^{^{1}}$ Time-domain implementation on FPGA allows for pipelined computation as samples are collected

```
G. Goeavec-
Merou & al.
```

Embedded computation

Basics on GPS encoding

GPS acquisition in 10 lines of Matlab program ² (two nested loops – satellite number and frequency)

```
OscimpDigital 1
               pkg load signal
            2 x=read_complex_binary(filename,1024*128); fs=1.023; % sampling rate in MHz
            3 x=x-mean(x);
            4 freq0=[-10.5e3:500:10.5e3];
                                                                    % Doppler range
               time=[0:1/fs/1e6:length(x)/fs/1e6]';time=time(1:end-1);
               for m=[1:31]
                                                                    % loop on all satellites
                  a=cacode(m,fs/1.023); a=a-mean(a);
            8
                  1=1:
                  for freq=freq0
                                                                    % loop on all frequency offsets
                    mysine=exp(j*2*pi*(-freq)*time);
           10
                                                                    % frequency shift the signal
                    xx=x.*mysine;
           12
                    [u(1,m),v(1,m)]=max(abs(xcorr(a,xx,'none'))); % check for cross correlation max.
           13
                    1=1+1:
           14
                  end
           15
               end
```

- Orbital mechanics: Doppler ∈ [-5000, 5000] Hz
- Map xcorr max as a function of space vehicle number and frequency shift
- When a satellite is visible, sharp xcorr peak when frequency offset is compensated for

² using the C/A code generator https://www.mathworks.com/matlabcentral/fileexchange/14670-gps-c-a-code-generator

Basics on GPS encoding

Embedded computation

GPS

GPS acquisition in 10 lines of Matlab program (single loop on space vehicle number)

```
OscimpDigital 1
               pkg load signal
            2 x=read_complex_binary(filename,1024*128); fs=1.023; % sampling rate in MHz
            3 x=x-mean(x);
            4 freq0=[-10.5e3:500:10.5e3];
                                                                   % Doppler range
            5 time=[0:1/fs/1e6:length(x)/fs/1e6]';time=time(1:end-1);
            6 % doppler frequency shift matrix whose FFT is computed
               doppler=exp(j*2*pi*freq0'*time');
                                                                   % 43x131072 matrix
            8 data=ones(43,1)*x';
               all=doppler.*data;
                                                                   % Doppler-shifted data
           10 allf=fft(all');
           11 for m=[1:31]
                                                                   % loop on all satellites
           12
                 a=cacode(m,fs/1.023);
                                                                   % CA code of satellite m
           13
                 a=[a zeros(1,length(all)-length(a))];
                                                                   % zero padding
           14
                 a=a-mean(a):
           15
                 pattern=ones(43,1)*a;
                                                                   % 43x131072 matrix
                 af=fft(pattern');
           16
```

 Replace loops (inefficient) with matrix multiplication

correlation=ifft(af.*conj(allf))';

 Parallelizing the frequency operations halves the computation time

PRN number (no unit)

17

18 end

GPS

Embedded computation OscimpDigita

Using the embedded FGPA

- GNU/Octave implementation: 1 to 2 second/satellite $\Rightarrow \simeq 1$ min for acquisition depending on frequency steps
- The PlutoSDR Zynq is only used for data collection and transfer to the PC (bandwidth limited by USB)
- Preprocessing on the Zynq FPGA removes the communication bandwidth bottleneck
- Making best use of the available resources on the embedded FPGA (PL)
- Possible additional pre-processing on the embedded CPU (PS) running GNU Radio before sending over USB

Principle

- PL: collect data from AD9363, frequency transposition (NCO), Gold Code generation & correlation
- PS: loop frequency, loop space vehicle number, fetch correlation, control AD9363 (libiio)

Complex interaction between FPGA processing blocks and processor userspace through Linux drivers (modules)

CPS

Embedded

OscimpDigital

The OscimpDigital framework

The OscimpDigital framework

GPS

Embedded

OscimpDigital

28 Nov 2019, Swiss Aeropole, Payerne (CH)