Limits and Derivatives

 $\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{\sqrt{2}x}$ is

[2002]

(a) 1

- (b) -1
- (c) zero

2. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 2} \right)^x$

[2002]

- (a) e^4
- (b) e^2
- (c) e^{3}

- (c) -4
- $\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$ is
 - (a) $\frac{1}{p+1}$ (b) $\frac{1}{1-p}$
 - (c) $\frac{1}{p} \frac{1}{p-1}$ (d) $\frac{1}{p+2}$
- $\lim_{x \to 0} \frac{\log x^n [x]}{[x]}, n \in \mathbb{N}, \ ([x] \text{ denotes greatest})$

integer less than or equal to x)

- (a) has value -1
- (b) has value 0
- (c) has value 1
- (d) does not exist
- If f(1) = 1, f'(1) = 2, then $\lim_{x \to 1} \frac{\sqrt{f(x)} 1}{\sqrt{x} 1}$ is

[2002]

(a) 2

(b) 4

- (d) does not exist 7. If $\lim_{\substack{x \to 0 \\ k \text{ is}}} \frac{\log(3+x) \log(3-x)}{x} = k$, the value of

(c)
$$e^{s}$$
 (d) 1
Let $f(x) = 4$ and $f'(x) = 4$. Then
$$\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} \text{ is given by} \quad \text{[2002]} \quad 8. \quad \lim_{x \to \frac{\pi}{2}} \frac{\left[1 - \tan\left(\frac{x}{2}\right)\right][1 - \sin x]}{\left[1 + \tan\left(\frac{x}{2}\right)\right][\pi - 2x]^3} \text{ is} \quad \text{[2003]}$$

(c) 0

9. If
$$\lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} \right)^{2x} = e^2$$
, then the values of

a and b, are

- (a) a = 1 and b = 2 (b) $a = 1, b \in \mathbb{R}$
- (c) $a \in \mathbb{R}, b = 2$ (d) $a \in \mathbb{R}, b \in \mathbb{R}$

10. Let
$$\alpha$$
 and β be the distinct roots of $ax^2 + bx + c = 0$, then $\lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}$ is equal to [2005]

is equal to

- (a) $\frac{a^2}{2}(\alpha \beta)^2$ (b) 0
- (c) $\frac{-a^2}{2}(\alpha \beta)^2$ (d) $\frac{1}{2}(\alpha \beta)^2$

www.crackjee.xyz

Limits and Derivatives

- м-75

- 11. Let $f: R \to R$ be a positive increasing function
 - with $\lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1$ then $\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$

- 12. $\lim_{x \to 2} \left(\frac{\sqrt{1 \cos\{2(x-2)\}}}{x-2} \right)$

- (a) equals $\sqrt{2}$ (b) equals $-\sqrt{2}$
- (c) equals $\frac{1}{\sqrt{2}}$ (d) does not exist
- 13. Let $f: R \to [0, \infty)$ be such that $\lim_{x \to 5} f(x)$ exists

and
$$\lim_{x \to 5} \frac{(f(x))^2 - 9}{\sqrt{|x - 5|}} = 0$$

Then $\lim_{x\to 5} f(x)$ equals:

(a) 0

(b) 1

(c) 2

- (d) 3
- 14. $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to [2013]
- (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (c) 1 (d) 2

- [2011] 15. $\lim_{x\to 0} \frac{\sin(\pi\cos^2 x)}{x^2}$ is equal to: [2014]
- (c) $\frac{\pi}{2}$ (d) 1
- 16. $\lim_{x \to \frac{\pi}{2}} \frac{\cot x \cos x}{(\pi 2x)^3} \text{ equals}:$ [2017]
- [2011RS] (a) $\frac{1}{4}$ (b) $\frac{1}{24}$

 - (c) $\frac{1}{16}$

	Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
(d)	(a)	(c)	(a)	(d)	(a)	(d)	(d)	(b)	(a)	(d)	(d)	(d)	(d)	(b)	
16															
(c)															

SOLUTIONS

1. (d)

$$\lim \frac{\sqrt{1 - \cos 2x}}{\sqrt{2}x} \Rightarrow \lim \frac{\sqrt{1 - (1 - 2\sin^2 x)}}{\sqrt{2}x}; \qquad \textbf{2.} \qquad \textbf{(a)} \quad \lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 2}\right)^x$$

$$\lim_{x \to 0} \frac{\sqrt{2\sin^2 x}}{\sqrt{2}x} \Rightarrow \lim_{x \to 0} \frac{|\sin x|}{x}$$

The limit of above does not exist as $LHS = -1 \neq RHL = 1$

(a)
$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 2} \right)^{-1}$$

$$= \lim_{x \to \infty} \left(1 + \frac{4x+1}{x^2 + x + 2} \right)^x$$

$$= \lim_{x \to \infty} \left[\left(1 + \frac{4x+1}{x^2 + x + 2} \right)^{\frac{x^2 + x + 2}{4x + 1}} \right]^{\frac{(4x+1)x}{x^2 + x + 2}}$$

www.crackjee.xyz

M-76 — Mathematics

$$= e^{\lim_{x \to \infty} \frac{4x^2 + x}{x^2 + x + 2}} \left[\because \lim_{x \to \infty} (1 + \lambda x) \frac{1}{x} = e^{\lambda} \right]$$

$$\lim_{x \to \infty} \frac{4 + \frac{1}{x}}{1 + \frac{1}{x} + \frac{2}{x^2}} = e^4$$

3. (c) Apply L H Rule

We have,
$$\lim_{x\to 2} \frac{xf(2) - 2f(x)}{x - 2}$$
 $\left(\frac{0}{0}\right)$

$$= \lim_{x \to 2} f(2) - 2f'(x) = f(2) - 2f'(2)$$

= 4 - 2 \times 4 = -4.

4. (a) We have
$$\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$
;

$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^{p}}{n^{p} \cdot n} = \int_{0}^{1} x^{p} dx = \left[\frac{x^{p+1}}{p+1} \right]_{0}^{1} = \frac{1}{p+1}$$

5. **(d)** Since $\lim_{x\to 0} [x]$ does not exist, hence the required limit does not exist.

6. (a)
$$\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$$
 $\left(\frac{0}{0}\right)$ form using L'

Hospital's rule =
$$\lim_{x \to 1} \frac{\frac{1}{2\sqrt{f(x)}} f'(x)}{\frac{1}{2\sqrt{x}}}$$

$$=\frac{f'(1)}{\sqrt{f(1)}}=\frac{2}{1}=2.$$

7. **(d)**
$$\lim_{x \to 0} \frac{\log(3+x) - \log(3-x)}{x} = k$$

(by L'Hospital rule)

$$\Rightarrow \lim_{x \to 0} \frac{\frac{1}{3+x} - \frac{-1}{3-x}}{1} = k \quad \therefore \frac{2}{3} = k$$

8. **(d)**
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \cdot (1 - \sin x)}{(\pi - 2x)^3}$$

$$Let \ x = \frac{\pi}{2} + y; y \to 0$$

$$= \lim_{y \to 0} \frac{\tan\left(-\frac{y}{2}\right) \cdot (1 - \cos y)}{(-2y)^3}$$

$$= \lim_{y \to 0} \frac{-\tan\frac{y}{2} \cdot 2\sin^2\frac{y}{2}}{(-8) \cdot \frac{y^3}{8} \cdot 8}$$

$$= \lim_{y \to 0} \frac{1}{32} \frac{\tan \frac{y}{2}}{\left(\frac{y}{2}\right)} \cdot \left[\frac{\sin y/2}{y/2}\right]^2 = \frac{1}{32}$$

9. **(b)** We know that $\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = e^{-x}$

$$\therefore \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} \right)^{2x} = e^2$$

$$\Rightarrow \lim_{x \to \infty} \left[\left(1 + \frac{a}{x} + \frac{b}{x^2} \right) \left(\frac{\frac{1}{a} + \frac{b}{x^2}}{x + \frac{b}{x^2}} \right) \right]^{2x} \left(\frac{a}{x} + \frac{b}{x^2} \right) = e^2$$

$$\Rightarrow e^{x \to \infty} \left[\frac{a + \frac{b}{x}}{x} \right] = e^2 \Rightarrow e^{2a} = e^2$$

$$\Rightarrow a = 1 \text{ and } b \in R$$

ALTERNATE SOLUTION

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} \right)^{2x} = e^2$$

$$\Rightarrow e^{\lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} - 1 \right) 2x} = e^2$$

$$\Rightarrow \lim_{x \to \infty} \left(2a + \frac{2b}{x} \right) = 2$$

$$\Rightarrow 2a + 0 = 2b \in \mathbb{R} \Rightarrow a = 1, b \in \mathbb{R}$$

$$\Rightarrow 2a + 0 = 2, b \in \mathbb{R} \Rightarrow a = 1, b \in \mathbb{R}$$

10. (a) Given limit=

$$\lim_{x \to \alpha} \frac{1 - \cos a(x - \alpha)(x - \beta)}{(x - \alpha)^2}$$

$$= \lim_{x \to \alpha} \frac{2\sin^2\left(a\frac{(x-\alpha)(x-\beta)}{2}\right)}{(x-\alpha)^2}$$

www.crackjee.xyz

Limits and Derivatives

M-77

$$\lim_{x \to \alpha} \frac{2}{(x-\alpha)^2} \times \frac{\sin^2\left(a\frac{(x-\alpha)(x-\beta)}{2}\right)}{\frac{a^2(x-\alpha)^2(x-\beta)^2}{4}}$$
$$\times \frac{a^2(x-\alpha)^2(x-\beta)^2}{4}$$
$$= \frac{a^2(\alpha-\beta)^2}{2}.$$

11. (d) f(x) is a positive increasing function.

$$\therefore 0 < f(x) < f(2x) < f(3x)$$

$$\Rightarrow 0 < 1 < \frac{f(2x)}{f(x)} < \frac{f(3x)}{f(x)}$$

$$\Rightarrow \lim_{x \to \infty} 1 \le \lim_{x \to \infty} \frac{f(2x)}{f(x)} \le \lim_{x \to \infty} \frac{f(3x)}{f(x)}$$

By Sandwich Theorem.

$$\Rightarrow \lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$$

12. **(d)** $\lim_{x \to 2} \frac{\sqrt{1 - \cos\{2(x - 2)\}}}{x - 2}$ $= \lim_{x \to 2} \frac{\sqrt{2} |\sin(x - 2)|}{x - 2}$

L.H.L
$$_{(at x=2)} = -\lim_{x \to 2} \frac{\sqrt{2} \sin(x-2)}{(x-2)} = -1$$

$$R.H.L_{(at x=2)} = \lim_{x \to 2} \frac{\sqrt{2} \sin(x-2)}{(x-2)} = 1$$

Thus
$$L.H.L$$
 $\neq R.H.L$ $(at x=2)$

Hence, $\lim_{x\to 2} \frac{\sqrt{1-\cos\{2(x-2)\}}}{x-2}$ does not exist.

13. **(d)**
$$\lim_{x \to 5} \frac{\left(f(x)\right)^2 - 9}{\sqrt{|x - 5|}} = 0$$
$$\lim_{x \to 5} \left[(f(x))^2 - 9 \right] = 0 \Rightarrow \lim_{x \to 5} f(x) = 3$$

14. (d) Multiply and divide by *x* in the given expression, we get

$$\lim_{x \to 0} \frac{(1 - \cos 2x)}{x^2} \frac{(3 + \cos x)}{1} \cdot \frac{x}{\tan 4x}$$

$$= \lim_{x \to 0} \frac{2\sin^2 x}{x^2} \cdot \frac{3 + \cos x}{1} \cdot \frac{x}{\tan 4x}$$

$$= 2 \lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \lim_{x \to 0} 3 + \cos x \cdot \lim_{x \to 0} \frac{x}{\tan 4x}$$

$$= 2.4 \frac{1}{4} \lim_{x \to 0} \frac{4x}{\tan 4x} = 2.4 \cdot \frac{1}{4} = 2$$

15. **(b)** Consider $\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$ $= \lim_{x \to 0} \frac{\sin\left[\pi(1-\sin^2 x)\right]}{x^2}$ $= \lim_{x \to 0} \sin\frac{(\pi-\pi\sin^2 x)}{x^2} \quad [\because \sin(\pi-\theta) = \sin\theta]$ $= \lim_{x \to 0} \sin\frac{(\pi\sin^2 x)}{\pi\sin^2 x} \times \frac{\pi\sin^2 x}{x^2}$ $= \lim_{x \to 0} 1 \times \pi \left(\frac{\sin x}{x}\right)^2 = \pi$

6. (c)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cot x (1 - \sin x)}{-8 \left(x - \frac{\pi}{2}\right)^3}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\cot x (1 - \sin x)}{8 \left(\frac{\pi}{2} - x\right)^3}$$
Put $\frac{\pi}{2} - x = t \Rightarrow \text{as } x \to \frac{\pi}{2} \Rightarrow t \to 0$

$$= \lim_{t \to 0} \frac{\cot \left(\frac{\pi}{2} - t\right) \left(1 - \sin\left(\frac{\pi}{2} - t\right)\right)}{8t^3}$$

$$= \lim_{t \to 0} \frac{\tan t (1 - \cos t)}{8t^3}$$

$$= \lim_{t \to 0} \frac{\tan t}{8t} \cdot \frac{1 - \cos t}{t^2}$$

$$= \frac{1}{8} \cdot 1 \cdot \frac{1}{2} = \frac{1}{16}$$