Protein Family Classification Using Profile HMMs

By: Levi Cavagnetto, Daniel Chang, and Garrett Abou-Zeid

- Why is protein family classification important?
 - If you know the family of a novel protein, you know its function!
- Why are profile HMMs useful for protein family classification?
 - A sequence that is a "distance cousin" of a family may lack strong pairwise similarities with any singular sequence within the family, but may have subtle/weak pairwise similarities with many sequences in the family
 - Thus, for diverse protein families, pairwise similarity is not a sufficient criteria for determining if a novel sequence is a family member
- Profile HMMs are more efficient to use than constructing an entirely new MSA whenever testing a novel sequence for family membership

Profile HMM

- Profile HMMs generate a probabilistic representation of a given multiple sequence alignment
- Profile HMMs are "trained" by using each aligned sequence and computing their path through the HMM.
 - After all paths have been computed, transmission and emission probabilities are estimated
- Profile HMMs can then estimate ("testing") how likely a novel sequence belongs to the family described by the MSA used for training
 - Using the viterbi algorithm, the most likely path (and subsequent log likelihood) is estimated

Profile HMM (our implementation)

```
. . .
sequences = np.array([
      ["A", "-", "-", "E", "F", "D", "-", "F", "D", "C",],
      ["A", "C", "A", "E", "F", "-", "-", "A", "-", "C",],
      ["A", "D", "D", "E", "F", "A", "A", "A", "D", "F",],
THETA = 0.35
match_state = (sequences == "-").mean(axis=0) < THETA</pre>
transition counts = defaultdict(int)
for sea in sequences:
    emission_counts[(new_state, char)] += 1
    new_state = get_new_state(last_state, char)
    transition counts[(last state, new state)] += 1
```


Methodology

- We focused on building profile HMMs for two genes: alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ACDH).
- ~300 Fasta files of the two genes were downloaded from Uniprot
 - To avoid outliers, sequences were limited to those of length 200-400
 - We created a hold out set for testing purposes
- SeaView MSA tool was used to generate MSAs
 - Obviously mismatching sequences were discarded
- Created a profile HMM implementation using python, and used an online implementation of profile HMMs for comparison
- Generated log likelihoods of the trained HMMs when run on the holdout sequences

SeaView MSA

Results: our implementation

- Using our profile HMM implementation, we trained a profile HMM for both genes
- Log likelihood scores of the test set were generated using the two trained profile HMMs
- The pHMM was able to stratify the two genes fairly well
 - Alcohol dehydrogenase seems to have more heterogeneity
- Performance was highly dependent on smoothing factor (LaPlace) and the maximum proportion of insertions per column for match states

Results: online implementation

- A profile HMM was trained using acetaldehyde dehydrogenase (ACDH) MSAs
- Log odds scores of the hold out genes are displayed

```
MATAGKVIKCKAAVAWEAGKPLSIEEVEVA -191.74138103529987
        MATAGKVIKCKAAVAWEAGKPLSIEEVEVA
                                         -200.24654603683547
        MSATEGKVITCKAAVAWEAKKPLVIEDIEV
                                        -184.21142449837228
        TTEGKVIKCKAAIAWEAGKPLSVEEIEVSP
                                         -185.36134780220146
        MATAGKVIKCKAAVAWEAGKPLSIEEVEVA
                                         -200.57626981995304
        MATAGKVIKCKAAVAWEAAKPLVIEEVEVA
                                         -194.90953334809186
        MATAGKVIKCKAAVAWEAGKPLSIEEVEVA
                                         -200.57626981995304
        MSTEGKVITCKAAVAWEAKKPLVIEDIEV0
        MATAGKVIKCKAAVAWEAAKPLVIEEVEVA
                                         -194.90953334809186
        MATQGQVITCKAAVAYEPNKPLVIEDVQVA
                                         -188.65981017479942
10
        MGTKGKVIKCKAAIAWEAGKPLCIEEVEVA
        MSNTVGQIIKCRAAVAWEAGKPLVIEEVEV
                                         -191.52278618887982
12
        MSNTAGOVIKCRAAVAWEAGKPLVIEEVEV
13
        MSTTVG0VIRCKAAVAWEAGKPLVMEEVDV
                                         -185.069118573035
        MSTTTGQVIRCKAAVAWEAGKPLVMEEVDV
                                         -189.7213136573164
15
                                         -189.7213136573164
        MSSTEGKVICCRAAVAWEAGKPLVIEEVEV
                                         -195.5461755532964
        MSTTVGQVIRCKAAVAWEAGKPLVMEEVDV
                                         -184.7099548880505
18
19
        METOGKVITCKAAVAWGAGEPLVMEDVKVD
                                         -184.59546228816103
20
        MASSTOGQVITCKAAVAWEANKPMTIEDVQ
21
        MASPTOGOVITCKAAVAYEPNKPLVIEDVO
                                         -186.0073224298608
22
        MASSTOGOVITCKAAVAWEANRPMTIEDVO
                                         -180.84736008861822
23
24
        MSSNTAGOVIRCKAAVAWEAGKPLVIEEVE
                                         -192.1800374588703
25
26
        MSSTAGOVINCKAAVAWSAKAPLSIETIOV
                                         -186.96653470817841
                                         -191.29418603145658
27
        MDKASITEGKPIRCKAAILRKAGEPLVIEE
                                         -182.3293992774402
28
        MDKTEESSNEGKPTTCKAATCRKAGEALVT
                                         -182, 25215390712972
29
30
        MEKTSMFSIHEGKPIRCKAAVSRKPGEALV
        MENGNSSSDNKSSHKPIRCKAAVSRKAGEP
                                         -196.33006768374068
        MAETOGKVITCKAAVVWGPKVPLVIOEICV -178.81120103748324
```

0	MSHSKVAVIGSGNIGTDLVVKLKKLATNVE	543.4842755325732
1	MTRKVKAAIIGSGNIGTDLMIKILRHGQHI	586.4949212801075
2	MRKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.310923089954
3	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
4	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
5	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
6	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
7	MRKRKVAIIGSGNIGTDLMIKILRHGQHLE	581.7552812520287
8	MSKRKVAIIGSGNIGTDLMIKILRHDQHLE	581.1317339375908
9	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
10	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
11	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
12	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	576.4114509445021
13	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	581.2942528670885
14	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	581.2942528670885
15	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
16	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
17	MTRRLKAAIIGSGNIGTDLMIKILRHGKHI	605.9625345696593
18	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	580.5450162198775
19	MSKRKVAIIGSGNIGTDLMIKILRHDQHLE	581.1317339375908
20	MSDDRLSVAIIGSGNIGTDLMIKIMRNSKL	563.3628354344008
21	MTRKLKAAIIGSGNIGTDLMIKILRHGKNI	600.04354376467
22	MRKVAIIGSGNIGTDLMIKVLRVSDLLEVA	553.2273480547145
23	MDRTSSRCKVAIIGSGNIGTDLMIKVLRHG	593.2625793977177
24	MKSKAKVAIIGPGNIGTDLMIKVMRHGTHI	551.8731246925739
25	MNDRVKVAIIGPGNIGTDLMIKIMRNGRHL	546.3932641436909
26	MTDKINVAIIGSGNIGTDLMIKVLRNSDIL	569.6443644322399
27	MATATSGTGKTKVAVIGSGNIGTDLMIKIL	587.0435469291253
28	MSENTRKVTVAVIGSGNIGTDLMIKVIRHS	557.6470988700174
29	MSENTRKVTVAVIGSGNIGTDLMIKVIRHS	556.2895058872352
30	MNHMSDPTTVKVAVIGSGNIGTDLMIKVIR	574.2684346191445
31	MSLGAADVGAGAGPPGQHAGAVDNWPVAII	309.3463573164789
32	MSLGAADVGAGAGPPGQHAGAVDNWPVAII	301.84401611015033

ADH Test ACDH Test

Results: online implementation

- A profile HMM was trained using alcohol dehydrogenase (ADH) MSAs
- Log odds scores of the hold out genes are displayed

0	MATAGKVIKCKAAVAWEAGKPLSIEEVEVA	478.818853741423
1	MATAGKVIKCKAAVAWEAGKPLSIEEVEVA	490.8484632774329
2	MSATEGKVITCKAAVAWEAKKPLVIEDIEV	546.2810551949098
3	TTEGKVIKCKAAIAWEAGKPLSVEEIEVSP	568.3065540815164
4	MATAGKVIKCKAAVAWEAGKPLSIEEVEVA	487.4983897995848
5	MATAGKVIKCKAAVAWEAAKPLVIEEVEVA	484.6195909288161
6	MATAGKVIKCKAAVAWEAGKPLSIEEVEVA	487.4983897995848
7	MSTEGKVITCKAAVAWEAKKPLVIEDIEVQ	491.442949759439
8	MATAGKVIKCKAAVAWEAAKPLVIEEVEVA	484.6195909288161
9	MATQGQVITCKAAVAYEPNKPLVIEDVQVA	526.3830144594805
10	MGTKGKVIKCKAAIAWEAGKPLCIEEVEVA	533.7247404047625
11	MSNTVGQIIKCRAAVAWEAGKPLVIEEVEV	471.26339122870314
12	MSNTAGQVIKCRAAVAWEAGKPLVIEEVEV	469.8018775994024
13	MSTTVGQVIRCKAAVAWEAGKPLVMEEVDV	473.675686898728
14	MSTTTGQVIRCKAAVAWEAGKPLVMEEVDV	473.8298375785552
15	MSTTVGQVIRCKAAVAWEAGKPLVMEEVDV	473.8298375785552
16	MSSTEGKVICCRAAVAWEAGKPLVIEEVEV	466.516643812072
17	MSTTVGQVIRCKAAVAWEAGKPLVMEEVDV	473.3067241239956
18	MSNTAGQVIRCRAAVAWEAGKPLVIEEVEV	478.39413628271825
19	METQGKVITCKAAVAWGAGEPLVMEDVKVD	355.56219531948983
20	MASSTQGQVITCKAAVAWEANKPMTIEDVQ	514.4797828644893
21	MASPTQGQVITCKAAVAYEPNKPLVIEDVQ	503.79797236171163
22	MASSTQGQVITCKAAVAWEANRPMTIEDVQ	511.7229424992175
23	MSASSSSFEQPQVITCNAAVAWRAGEPLVM	375.46055758279937
24	MSSNTAGQVIRCKAAVAWEAGKPLVIEEVE	463.41933535785637
25	MSSTAGQVINCKAAVAWSAKAPLSIETIQV	499.52521824926663
26	MFAEIQIQDKDRMGTAGKVIKCKAAVLWEQ	571.1506621115769
27	MDKASITEGKPIRCKAAILRKAGEPLVIEE	338.5345091179148
28	MDKTFFSSNEGKPITCKAAICRKAGEALVI	349.756889855887
29	MEKTSMFSIHEGKPIRCKAAVSRKPGEALV	340.32367684883894
30	MENGNSSSDNKSSHKPIRCKAAVSRKAGEP	340.4838027186682
31	MAETQGKVITCKAAVVWGPKVPLVIQEICV	373.40201974639984

0	MSHSKVAVIGSGNIGTDLVVKLKKLATNVE	-114.54210114752266
1	MTRKVKAAIIGSGNIGTDLMIKILRHGQHI	-123.2791509120198
2	MRKRKVAIIGSGNIGTDLMIKILRHGQHLE	-126.9511654405846
	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
4	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
5	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
6	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
7	MRKRKVAIIGSGNIGTDLMIKILRHGQHLE	-129.51674729079977
8	MSKRKVAIIGSGNIGTDLMIKILRHDQHLE	-129.02167414177245
9	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
10	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
11	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
12	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-130.86750083227076
13	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-130.86750083227076
14	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-130.86750083227076
15	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
16	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
17	MTRRLKAAIIGSGNIGTDLMIKILRHGKHI	-116.87714709190435
18	MSKRKVAIIGSGNIGTDLMIKILRHGQHLE	-132.08021960016677
19	MSKRKVAIIGSGNIGTDLMIKILRHDQHLE	-129.02167414177245
20	MSDDRLSVAIIGSGNIGTDLMIKIMRNSKL	-131.47465261290097
21	MTRKLKAAIIGSGNIGTDLMIKILRHGKNI	-121.65327998314505
22	MRKVAIIGSGNIGTDLMIKVLRVSDLLEVA	-121.70814792599077
23	MDRTSSRCKVAIIGSGNIGTDLMIKVLRHG	-115.25655740732564
24	MKSKAKVAIIGPGNIGTDLMIKVMRHGTHI	-126.66988578402925
25	MNDRVKVAIIGPGNIGTDLMIKIMRNGRHL	-129.63671680462468
26	MTDKINVAIIGSGNIGTDLMIKVLRNSDIL	-124.64171966059004
27	MATATSGTGKTKVAVIGSGNIGTDLMIKIL	-130.15249128202166
28	MSENTRKVTVAVIGSGNIGTDLMIKVIRHS	-130.59001029040527
29	MSENTRKVTVAVIGSGNIGTDLMIKVIRHS	-141.80082761797138
30	MNHMSDPTTVKVAVIGSGNIGTDLMIKVIR	-138.44692114863025
31	MSLGAADVGAGAGPPGQHAGAVDNWPVAII	-138.63717525948815
32	MSLGAADVGAGAGPPGQHAGAVDNWPVAII	-140.27102349892778

Questions?

Our implementation: https://github.com/danielchang2002/5481_final