TOP PROC DISC III: OTIMIZAÇÃO VIA SIMULAÇÃO

Prof. Luiz Ricardo Pinto

Escola de Engenharia da UFMG Departamento de Engenharia de Produção

INTRODUÇÃO ÀS HEURÍSTICAS Metaheurísticas utilizadas para Otimização via Simulação

Prof. Luiz Ricardo Pinto /DEP/EE/UFMG

Desenvolvimento de Modelos de Otimização

- Introdução às heurísticas
- Otimização via simulação
- Metaheurísticas a serem utilizadas nesse curso
- Tarefas a executar

Heurística e Metaheurística

- Heurística:
 - Métodos exploratórios que pretendem resolver um problema
 - Algoritmos usados para explorar o espaço de soluções
 - Não utilizam, necessariamente, um conhecimento especializado do problema
 - Podem ser denominados como algoritmos de busca
- Metaheurística:
 - Métodos heurísticos que podem ser usados para a busca de soluções de uma ampla quantidade de problemas de otimização
 - Não estão ligados a um tipo específico de problemas

Solução ótima X Boas soluções viáveis

- Não podem ser classificados como métodos exatos
- Normalmente, buscam por boas soluções viáveis e não pela solução ótima
- De certa forma, "imitam" a forma da inteligência humana e usam de processos que podem não ser estritamente precisos ou exatos
- A melhor solução viável encontrada é adotada e nem sempre é a solução ótima
- Métodos de busca empíricos, repleto de ótimos locais
- Alguns problemas combinatórios podem ser impraticáveis para aplicação de métodos exatos

Alguns tipos de metaheurísticas

- Relaxação (simplificação do problema)
 - Relaxação Lagrangeana
 - **...**
- Busca por entornos (foco na vizinhança da solução)
 - Simulated Annealing
 - Busca Tabu
 - **...**
- Construtivas (foco nos componentes da solução)
 - GRASP (Greedy Randomized Adaptive Search Procedure)
 - ...
- Evolutivas (foco em uma população de soluções)
 - Algoritmos Genéticos
 - •

Ótimos locais e ótimos globais

Otimização via simulação (OvS)

Problemas de otimização nos quais uma ou mais restrições e/ou a função objetivo (FO) não pode ser avaliada analiticamente

A avaliação dessa(s) restrição(ções) e/ou da função objetivo é feita via simulação

Deve ser construído um ou mais modelos de simulação para avaliar essas restrições e/ou a FO

A proposição de soluções é feita usando uma metaheurística

Essas soluções serão avaliadas pelo modelo de simulação

Estabelecemos um critério de parada e a melhor solução encontrada é considerada a solução "ótima" do problema. Não se trata de ótimo no sentido estrito da palavra, por não se tratar de um método exato.

Otimização via simulação (OvS)

Esquema simplificado de funcionamento de um modelo de otimização via simulação

 θ_i = Vetor de Inputs

 ω_i = Vetor de Outputs

 θ_0 = Vetor de Inputs Inicial

 θ_i = Vetor de Inputs subsequentes (i>0) proposto pela heurística

 θ^* = Melhor vetor de Inputs

 ω^* = Melhores vetor de resultados

OvS: Exemplo do problema de estoque

No caso do problema de estoque descrito na aula anterior, os vetores de INPUT e OUTPUT seriam:

Vetor de Inputs:

S = Tamanho do estoque

S = Ponto de reposição

I = Regra de entrega

r = Regra de reposição

$$\omega =$$
 Ch Cs Cr

Vetor de Outputs:

Ch = Custo médio diário de armazenagem

Cs = Custo médio diário de falta

Cr = Custo médio diário de ordem de reposição

 θ_0 = Vetor de Inputs Inicial: Valores arbitrados para S, s, I e r θ_i = Vetor de Inputs subsequentes (i>0): Valores propostos pela heurística

Otimização via simulação: Uso de softwares integrados

Normalmente, os pacotes de simulação trazem junto um software integrado que permite fazer a otimização do modelo simulado, visando encontrar as melhores configurações do sistema.

Arena → Optquest

Promodel → Simrunner

O uso desses pacotes de "otimização" integrao=dos aos softwares de simulação facilita a implementação, mas podem ser limitados e sua execução pode ser demorada, dependendo do problema.

Uma boa alternativa é o desenvolvimento e implementação de modelos próprios, usando uma linguagem de programação geral para implementação da heurística e um software de simulação para o modelo de simulação.

Metaheurísticas a serem utilizadas nesse curso

Simulated Annealing:

lmita o recozimento de uma peça metálica

A aceitação de soluções de piora decresce á medida que o tempo passa

Algoritmos Genéticos:

lmita a evolução dos seres vivos

Cada indivíduo da população representa uma solução

A interação entre os indivíduos gera novas soluções

Operações: cruzamento, mutação, elitismo

Tarefas a realizar

Implementar o modelo de simulação do trabalho de controle de estoque em software de simulação

Ler o manual do software de otimização integrado ao pacote de simulação escolhido

Pesquisar na internet tutoriais sobre Simulated Annealing