Notatki — Matematyka dyskretna (M)

telcontar

14 stycznia 2011

$1 \quad 19.11.2010$

1.1 Zasada włączeń i wyłączeń

Przykład: Mamy k pudełek i n kulek (ponumerowanych).

- 1. Na ile sposobów można te kulki rozłożyć w pudełkach? k^n
- 2. Ile jest takich sposobów M, że żadne pudełko nie jest puste 1 ? Czy $M=k^{n-k}$? NIE. Ω zbiór wszystkich sposobów

 A_i - zbiór sposobów takich, że i-te pudełko jest puste

$$\begin{array}{lcl} M&=&|\Omega|-|A_1\cup A_2\cup\ldots\cup A_k|\\ &&(\text{drugi wyraz: zbiór rozłożeń w których jakieś pudełko jest puste})\\ |A_i|&=&(k-1)^n\\ |A_i\cap A_j|&=&(k-2)^n\\ |A_i\cap A_j\cap A_l|&=&(k-3)^n \end{array}$$

Z zasady włączeń i wyłączeń

$$M = k(k-1)^n - \binom{k}{2}(k-2)^n + \binom{k}{3}(k-3)^n \dots = \sum_{i=0}^k \binom{k}{i}(k-i)^n(-1)^i$$

1.2 Operacje na ciągach

1.2.1 Wstęp do anihilacji

$$\begin{split} \langle a_0,a_1,a_2,\ldots\rangle + \langle b_0,b_1,b_2,\ldots\rangle &= \langle a_0+b_0,a_1+b_1,a_2+b_2,\ldots\rangle \\ c\langle a_0,a_1,a_2,\ldots\rangle &= \langle ca_0,ca_1,ca_2,\ldots\rangle \\ E\langle a_0,a_1,a_2,a_3,\ldots\rangle &= \langle a_1,a_2,a_3,\ldots\rangle \quad \text{(operator przesunięcia)} \\ (E-3)\langle 2^n\rangle &= E\langle 2^n\rangle - 3\langle 2^n\rangle &= \langle 2^{n+1}-3*2^n\rangle = \langle -2^n\rangle \\ (E-2)\langle 2^n\rangle &= \langle 2^{n+1}-2*2^n\rangle &= \langle 0\rangle \end{split}$$

Mówimy, że (E-2) jest anihilatorem ciągu $\langle 2^n \rangle$. Podobnie (E-c) jest anihilatorem ciągu $\langle c^n \rangle$. Jakie ciągi anihiluje operator $(E-2)(E-3)=E^2-5E+6$?

$$(E-2)(E-3)\langle 3^n \rangle = (E-2)\langle 0 \rangle = \langle 0 \rangle$$

$$(E-2)(E-3)\langle 2^n \rangle = (E-3)(E-2)\langle 2^n \rangle = \langle 0 \rangle$$

$$(E-2)(E-3)\langle A*2^n + B*3^n \rangle = (E-2)(E-3)\langle A*2^n \rangle +$$

$$+ (E-2)(E-3)\langle B*3^n \rangle = \langle 0 \rangle$$

Czy są jakieś inne ciągi anihilowane przez (E-2)(E-3)? Nie. Dłaczego?

$$(E^2 - 5E + 6)\langle a_n \rangle = \langle 0 \rangle \Leftrightarrow a_{n+2} - 5a_{n+1} + 6a_n = 0$$

Rozwiązanie tej zależności jest określone przez dwa warunki początkowe a_0 i a_1 . Niech:

 x_n – rozwiązanie zależności rekurencyjnej dla $x_0 = 1, x_1 = 0$

 y_n – rozwiązanie zależności rekurencyjnej dla $y_0 = 0, y_1 = 1$

Jeśli a_n jest rozwiązaniem zależności rekurencyjnej z warunkami początkowymi a_0 i a_1 to

$$\langle a_n \rangle = \langle a_0 x_n + a_1 y_n \rangle$$

Zbiór wszystkich rozwiązań zależności $(E^2 - 5E + 6)\langle a_n \rangle = \langle 0 \rangle$ tworzy przestrzeń liniową wymiaru 2 z wektorami bazowymi $\langle x_n, y_n \rangle$. Okazuje się, że ciągi $\langle 2^n \rangle$ i $\langle 3^n \rangle$ są liniowo niezależne, więc też są bazą.

1.2.2 Pewna znana rekurencja

Rozwiążmy zależność $a_{n+2} = a_{n+1} + a_n$ dla $a_0 = 0, a_1 = 1$.

$$a_{n+2} - a_{n+1} - a_n = 0 \quad \Leftrightarrow \quad (E^2 - E + 1)\langle a_n \rangle = \langle 0 \rangle \Leftrightarrow$$

$$\Leftrightarrow \quad (E - \frac{1 + \sqrt{5}}{2})(E - \frac{1 - \sqrt{5}}{2})\langle a_n \rangle = \langle 0 \rangle$$
bo $\Delta = 1 - (-4) = 5, E_{1,2} = \frac{1 \pm \sqrt{5}}{2}$

Wszystkie ciągi a_n spełniające to równanie mają postać

$$a_n = A \left(\frac{1+\sqrt{5}}{2}\right)^n + B \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$a_0 = 0 = A+B$$

$$a_1 = 1 = A \left(\frac{1+\sqrt{5}}{2}\right) + B \left(\frac{1-\sqrt{5}}{2}\right)$$

$$A = \frac{1}{\sqrt{5}} \quad B = \frac{-1}{\sqrt{5}}$$

$$a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)$$

1.2.3 Ciągniemy temat dalej

Uogólniamy powyższe rozważania na równania rekurencyjne liniowe jednorodne, tj. równania postaci

$$a_{n+k} + \alpha_{k-1} a_{n+k-1} + \dots + \alpha_0 a_n = 0 \text{ dla } \alpha_0 \neq 0$$

$$\left(E^k + \sum_{i=0}^{k-1} \alpha_i E^i \right) \langle a_n \rangle = \langle 0 \rangle$$
(1)

Z zasadniczego twierdzenia algebry równanie (1) można zawsze zapisać jako

$$\left(\prod_{i=1}^{k} (E - c_i)\right) \langle a_n \rangle = \langle 0 \rangle \quad c_i \in \mathbb{C}$$

Jak mamy szczęście to dla $i \neq j$ mamy $c_i \neq c_j$ i wtedy

$$a_n = \sum_{i=1}^k A_i c_i^n \quad A_i \in \mathbb{C}$$

Gdy nie mamy szczęścia to mamy

Lemat: Rozwiązaniami równania $(E-c)^k \langle a_n \rangle = \langle 0 \rangle$ są ciągi $c^n, nc^n, n^2c^n, \dots, n^{k-1}c^n$.

Dowód: indukcja po k.

1°. $a_n = n^i c^n$ dla i < k - 1. Wtedy

$$(E-c)^{k}\langle n^{i}c^{n}\rangle = (E-c)(E-c)^{k-1}\langle n^{i}c^{n}\rangle = (E-c)\langle 0\rangle = \langle 0\rangle$$

 2° . $a_n = n^{k-1}c^n$. Wtedy

$$(E-c)^k \langle n^{k-1}c^n \rangle = (E-c)^{k-1} \langle (n+1)^{k-1}c^{n+1} - n^{k-1}c^{n+1} \rangle = \dots = \langle 0 \rangle$$

W pominiętym przejściu: rozpisujemy korzystając z dwumianu Newtona i korzystamy z założenia indukcyjnego.

1.2.4 Rozwiązanie równania rekurencyjnego liniowego jednorodnego

Dane jest równanie

$$(E^k + \alpha_{k-1}E^{k-1} + \ldots + \alpha_1E + \alpha_0)\langle a_n \rangle = \langle 0 \rangle$$

które można zapisać w postaci

$$\prod_{i=1}^{s} (E - c_i)^{k_i} \langle a_n \rangle = \langle 0 \rangle \quad \text{gdzie: } c_i \in \mathbb{C}, i \neq j \Rightarrow c_i \neq c_j, \sum_{i=1}^{s} k_i = k$$

Ma wszystkie rozwiązania postaci

$$a_n = \sum_{\substack{1 \le i \le s \\ 0 \le j \le k_i - 1}} A_{i,j} n^j c_i^n$$

Przykład:

$$s_n = s_{n-1} + n^2, \quad s_0 = 0$$

$$\langle s_n - s_{n-1} \rangle = \langle n^2 * 1^n \rangle$$

$$(E-1)\langle s_n \rangle = \langle n^2 * 1^n \rangle$$

$$(E-1)^4 \langle s_n \rangle = \langle 0 \rangle \quad \text{bo } (E-1)^3 \langle n^2 1^n \rangle = \langle 0 \rangle$$

$$s_n = A + Bn + Cn^2 + Dn^3$$

$$s_0 = 0 = A$$

$$s_1 = 1 = B + C + D$$

$$s_2 = 5 = 2B + 4C + 8D$$

$$s_3 = 14 = 3B + 9C + 27D$$

$$B = 1/6$$
 $C = 1/2$ $D = 1/3$

Do pełni szczęścia pozostało do pokazania, że:

Lemat: ciągi $n^{j_i}c_i^n$ są liniowo niezależne.

Dowód: Nie wprost: załóżmy, że istnieją różne ciągi $n^{j_i}c_i^n$ i współczynniki $A_i\neq 0$ takie, że

$$\sum_{p=1}^k A_p n^{j_p} c_p^n = 0$$

Bez utraty ogólności możemy założyć, że $n^{j_1}c_1^n$ jest najszybciej rosnącym z tych ciągów tzn.

$$(\forall i)(|c_1| \geqslant |c_i|) \land (\forall i)(|c_1| = |c_i| \Rightarrow j_1 \geqslant j_i)$$

Musi zachodzić

$$A_1 + \sum_{p=2}^{k} A_p \frac{n^{j_p} c_p^n}{n^{j_1} c_1^n} = 0$$

Zdefiniujmy granicę ciągu

$$M(b_n) = \lim_{n \to \infty} \frac{b_0 + b_1 + \ldots + b_n}{n}$$

Fakt z analizy 2 :

$$\lim_{n \to \infty} b_n = g \Rightarrow M(b_n) = g$$

Musimy pokazać, że

$$M\left(\frac{n^{j_i}c_i^n}{n^{j_1}c_1^n}\right) = 0 \quad \text{dla } i \neq 1$$

Rozważmy przypadki:

1.
$$|c_i| < |c_1|$$

$$\lim_{n\to\infty}\frac{n^{j_i}c_i^n}{n^{j_1}c_1^n}=\lim_{n\to\infty}n^{j_i-j_1}\left(\frac{c_i}{c_1}\right)^n=0\quad\Rightarrow M\left(\frac{n^{j_i}c_i^n}{n^{j_1}c_1^n}\right)=0$$

²Pod koniec wykładu było uzasadnienie na życzenie.

2.
$$|c_i| = |c_1|, j_1 > j_i$$

$$\lim_{n \to \infty} \frac{n^{j_i} c_i^n}{n^{j_1} c_1^n} = \lim_{n \to \infty} \frac{1}{n^{j_1 - j_i}} * 1^n = 0 \quad \Rightarrow M\left(\frac{n^{j_i} c_i^n}{n^{j_1} c_1^n}\right) = 0$$

3.
$$j_i = j_1$$

$$\left| M \left(\frac{n^{j_i} c_i^n}{n^{j_1} c_1^n} \right) \right| = \lim_{n \to \infty} \left| \frac{1 + c_i/c_1 + (c_i/c_1)^2 + \dots (c_i/c_1)^{n-1}}{n} \right| =$$

$$= \lim_{n \to \infty} \frac{1}{n} \frac{|1 - (c_i/c_1)^n|}{|1 - (c_i/c_1)|} = 0 \quad \text{(bo pierwszy ułamek dąży do 0, a drugi jest ograniczony)}$$

$2 \quad 26.11.2010$

2.1 Sumowanie

$$S_n = 1 + q + q^2 + \dots + q^n$$

$$S_{n+1} = S_n + q^{n+1} = 1 + qS_n$$

$$S_n = \frac{1 - q^{n+1}}{1 - q}$$

$$T_n = q + 2q^2 + 3q^3 + \dots + nq^n$$

$$T_{n+1} = T_n + (n+1)q^{n+1} = qS_n + qT_n$$

$$T_n(1 - q) = qS_n - (n+1)q^{n+1}$$

$$T_n = \frac{q - (n+1)q^{n+1} - nq^{n+2}}{(1-q)^2}$$

Inna metoda – pochodna

$$S_n(q) = 1 + q + q^2 + \dots + q^n$$

 $S'_n(q) = 1 + 2q + 3q^2 + \dots + nq^{n-1}$
 $T_n(q) = q * S'_n(q)$

$$\sum_{n=a}^{b} n^{\underline{k}} = ?$$

$$(n+1)^{\underline{k+1}} - n^{\underline{k+1}} = ?$$

$$(n+1)^{\underline{k+1}} = (n+1)n^{\underline{k}}$$

$$n^{\underline{k+1}} = n^{\underline{k}}(n-k)$$

$$(n+1)^{\underline{k+1}} - n^{\underline{k+1}} = n^{\underline{k}}(n+1-n+k) = (k+1)n^{\underline{k}}$$

$$n^{\underline{k}} = \frac{(n+1)^{\underline{k+1}}}{k+1} - \frac{n^{\underline{k+1}}}{k+1}$$

$$\sum_{n=1}^{b} n^{\underline{k}} = \frac{(b+1)^{\underline{k+1}} - a^{\underline{k+1}}}{k+1}$$

Przykłady wykorzystania powyższego wzoru:

1.

$$\sum_{n=1}^{N} n(n-1) = \sum_{n=1}^{N} n^{2} = \frac{1}{3}(N-1)N(N+1)$$

2. Możemy zdefiniować ujemne potęgi ubywające:

$$n^{\underline{k}} = \frac{n^{\underline{k+1}}}{n-k}$$

$$n^{\underline{0}} = 1$$

$$n^{-\underline{1}} = \frac{1}{n+1}$$

$$n^{-\underline{2}} = \frac{1}{(n+1)(n+2)}$$
i je wykorzystać
$$\sum_{n=0}^{N} \frac{1}{(n+1)(n+2)} = 1 - \frac{1}{N+2}$$

2.2 Funkcje tworzące

2.2.1 Na dobry początek

Dany jest ciąg $(a_n)_{n=0}^{\infty}$. Funkcja tworząca tego ciągu to

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n$$

Przykłady:

1. $a_n = 1$

$$A(x) = 1 + x + x^{2} + \dots = 1 + xA(x)$$

 $A(x) = \frac{1}{1 - x}$

 $2. \ a_n = q^n$

$$A(x) = \frac{1}{1 - qx}$$

3. $a_n = \binom{m}{n}$ dla ustalonego m

$$A(x) = \sum_{n=0}^{\infty} {m \choose n} x^n = (1+x)^m$$

4. $a_n = \frac{1}{n!}$

$$A(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$

Jest to związane z wykładniczą funkcją tworzącą

$$A_e(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$$

5. $a_n = n$

$$A(x) = x(1 + 2x + 3x^{2} + \dots) = x(1 + x + x^{2} + x^{3} + \dots)' = x\left(\frac{1}{1 - x}\right)' = \frac{x}{(1 - x)^{2}}$$
$$A(x) = (x + x^{2} + x^{3} + \dots) + x(x + 2x^{2} + 3x^{3} + \dots) = \frac{x}{1 - x} + xA(x) \Rightarrow A(x) = \frac{x}{(1 - x)^{2}}$$

5

2.2.2 Iloczyn Cauchy'ego szeregów potęgowych

$$(\sum_{n=0}^{\infty} a_n x^n)(\sum_{n=0}^{\infty} b_n x^n) = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} a_k b_{n-k}) x^n$$

Przykład:

1.

$$(\sum x^n)(\sum x^n) = \sum (n+1)x^n = \frac{1}{(1-x)^2} \sum nx^n = \sum (n+1)x^{n+1} = \frac{x}{(1-x)^2}$$

2. $a_n = \frac{1}{n}$ z wyrazem początkowym $a_0 = 0$

$$A(x) = \sum \frac{x^k}{k} = \int_0^x (1 + t + t^2 + \dots) dt = \int_0^x \frac{dt}{1 - t} = -\ln(1 - t) \Big|_0^x = -\ln(1 - x)$$

2.2.3 Znajdowanie funkcji tworzącej na podstawie zależności rekurencyjnej

 $a_{n+2} = a_{n+1} + a_n$ $a_0 = 0, a_1 = 1$ Dodajemy stronami równania $x^k a_k = x^k a_{k-1} + x^k a_{k-2}$ i dostajemy $A(x) - a_1 x - a_0 = x(A(x) - a_0) + x^2 A(x)$, stąd

$$A(x) = \frac{a_1x + a_0 - a_0x}{1 - x - x^2} = \frac{x}{1 - x - x^2} = \frac{1}{\sqrt{5}}(\frac{1}{1 - \frac{1 + \sqrt{5}}{2}x} - \frac{1}{1 - \frac{1 - \sqrt{5}}{2}x}) = \frac{1}{\sqrt{5}}(\sum(\frac{1 + \sqrt{5}}{2})^nx^n + \sum(\frac{1 - \sqrt{5}}{2})^nx^n)$$

2.3 Liczby Catalana

$$c_0 = 1$$

$$c_n = \sum_{k=0}^{n-1} c_k c_{n-1-k}$$

Początkowe wyrazy ciągu są następujące: $c_1 = 1$, $c_2 = 2$, $c_3 = 5$, $c_4 = 14$. Interpretacja kombinatoryczna: c_n to liczba poprawnych nawiasowań złożonych z n par nawiasów – tj. takich, że każdy prefiks ciągu nawiasowań zawiera co najmniej tyle '(' co ')'. Dłaczego? rozpatrz takie poprawne nawiasowania, że k jest najmniejszą liczbą taką, iż w prefiksie 2k jest tyle samo przedwiasów i zawiasów³.

Obliczmy funkcję tworzącą.

$$C^{2}(x) = \sum (\sum c_{n-k}c_{k})x^{n} = \sum c_{n+1}x^{n}$$

$$xC^{2}(x) = \sum_{n\geqslant 0} c_{n+1}x^{n+1} = \sum_{n>0} c_{n}x^{n} - 1 = C(x) - 1$$

$$xC^{2}(x) - C(x) + 1 = 0$$

$$C(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

Ale czy oba te rozwiązania są dobre?

$$C(0) = c_0$$

$$\lim_{x \to 0} C_1(x) = \infty$$

$$\lim_{x \to 0} C_2(x) = \lim_{x \to 0} \frac{(1 + \sqrt{1 - 4x})(1 - \sqrt{1 - 4x})}{2x(1 - \sqrt{1 - 4x})} = \lim_{x \to 0} \frac{4x}{(1 + \sqrt{1 - 4x})2x} = 1 = c_0$$

Jak dostać wzór bez pierwiastka?

$$(1+x)^{a} = \sum \binom{a}{n} x^{n} = \sum \frac{a^{n}}{n!} x^{n} \text{ dla } a \in \mathbb{R}$$
rozpisujemy
$$(1-4x)^{1/2} = \dots = 1 - \frac{1}{2} \sum_{k>0} \frac{(2k-3)!!}{2^{k}k!} 4^{k} x^{k} = 1 - \frac{1}{2} \sum \frac{(2k-2)!2k}{k!k!} x^{k} = 1 - \sum \frac{2}{k} \binom{2k-2}{k-1} x^{k}$$

$$C(x) = \sum_{k>0} \frac{1}{k} \binom{2k-2}{k-1} x^{k-1} = \sum \frac{1}{k+1} \binom{2k}{k} x^{k} \Rightarrow c_{n} = \frac{1}{n+1} \binom{2n}{n}$$

³Niestety, rozdziału o liczbach Catalana nie ma jeszcze w wersji 2 skryptu J. Marcinkowskiego *Matematyka w dwa tygodnie*.

3 3.12.2010

Dalej o liczbach Catalana 3.1

$$c_0 = 1$$

$$c_n = \sum_{k=0}^{n-1} c_k c_{n-1-k}$$

$$c_n = \frac{1}{n+1} {2n \choose n} (\text{już wiemy})$$

 c_n – liczba ciągów n zer i n jedynek, których każdy prefiks zawiera co najmniej tyle zer co jedynek d_n – liczba ciągów n zer i n jedynek, które nie spełniają warunku na prefiks, tzn. jakiś prefiks zawiera większą liczbę jedynek niż zer.

$$c_n + d_n = \binom{2n}{n}$$

Pokażemy bijekcję między zbiorem ciągów n zer i n jedynek zawierających prefiks z liczbą jedynek większą od liczby zer a wszystkimi ciągami n+1 zer i n-1 jedynek, czyli że $d_n=\binom{2n}{n+1}$

Dla danego ciągu: wybieramy najkrótszy prefiks zawierający więcej jedynek niż zer – ma on o jedną jedynkę więcej. Negujemy ten prefiks. Jest to bijekcja – można wskazać przekształcenie odwrotne.

$$c_n = \binom{2n}{n} - d_n = \binom{2n}{n} - \frac{n(2n)!}{n(n-1)!n!(n+1)} = \binom{2n}{n} - \frac{n}{n+1} \binom{2n}{n}$$

$$c_n = \frac{1}{n+1} \binom{2n}{n}$$

Drugi (trzeci) sposób: Pokażemy, że c_n to liczba rozłożeń n+1 zer i n jedynek na okręgu takich, że dwa rozłożenia przechodzące na siebie przez obrót uważamy za takie same.

Obliczmy tę liczbę wprost. Jeżeli rozróżniamy rozłożenia przechodzące na siebie przez obrót $\binom{2n+1}{n}$.

Po uwzględnieniu utożsamienia rozłożeń przechodzących na siebie przez obrót $\frac{1}{2n+1}\binom{2n+1}{n} = \frac{1}{n+1}\binom{2n}{n}$. Dlaczego to są liczby Catalana? Jeżeli do ciągu n zer i n jedynek spełniających warunek na prefiks dodamy 0 jako pierwszy element, to powstanie ciąg, którego każdy prefiks zawiera więcej zer niż jedynek.

Fakt 1: dla każdego rozłożenia n+1 zer i n jedynek na kole istnieje taki element (będący zerem) że wśród dowolnej liczby kolejnych elementów (poczawszy od tego elementu, wziętych zgodnie z kierunkiem ruchu wskazówek zegara) jest więcej zer niż jedynek.

Dowód: indukcja po n. Istnieją kolejne elementy 01 na kole (licząc zgodnie z ruchem wskazówek zegara). Usuwając je otrzymujemy n zer i n-1 jedynek, w którym istnieje odpowiedni element 0 z założenia indukcyjnego. Łatwo zauważyć, że po ponownym wstawieniu naszej pary 01 ten element dalej spełnia warunek tezy Faktu 1.

Fakt 2: Wyróżniony element z Faktu 1 jest tylko jeden. Dowód (nie wprost): niech będą dane dwa takie elementy. Dzielą one okrąg na dwie części. W każdej z nich liczba zer jest większa od liczby jedynek, tzn. większa lub równa liczbie jedynek powiększonej o 1. Sumując mamy $n+1 \ge \#0 \ge \#1+2=n+2$. Sprzeczność.

3.2 Problem wydawania reszty

W kasie mamy

- 10 1-złotówek
- 8 2-złotówek
- 5 5-złotówek
- 6 10-złotówek

 a_n – liczba sposobów wypłacenia \boldsymbol{n} złotych. Łatwo napisać funkcję tworzącą

$$A(x) = \sum_n a_n x^n = \sum_n \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6 \\ c_1 + 2c_2 + 5c_3 + 10c_4 = n}} x^n = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8 \\ 0 \leqslant c_3 \leqslant 5, 0 \leqslant c_4 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant c_2 \leqslant 8}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant 6}} x^{c_1 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant 6}} x^{c_1 + 2c_2 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant 6}} x^{c_1 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant 6}} x^{c_1 + 2c_2 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant 6}} x^{c_1 + 5c_3 + 10c_4} = \sum_{\substack{0 \leqslant c_1 \leqslant 10, 0 \leqslant 6}}$$

$$= (\sum x^{c_1})(\sum x^{2c_2})(\sum x^{5c_3})(\sum x^{10c_4}) = \frac{1-x^{11}}{1-x}\frac{1-x^{18}}{1-x^2}\frac{1-x^{30}}{1-x^5}\frac{1-x^{70}}{1-x^{10}}$$

7

Gdybyśmy mieli nieograniczoną liczbę monet to

$$A(x) = \frac{1}{(1-x)(1-x^2)(1-x^5)(1-x^{10})}$$

3.3 Podziały liczby

 $n=n_1+n_2+\ldots+n_k$ $n_i\in\mathbb{N}_+$ Podziałów liczby nie rozróżnia się ze względu na kolejność składników, równie dobrze możemy założyć $n_1\geqslant n_2\geqslant\ldots\geqslant n_k$.

Niech p_n – liczba podziałów n. Ten ciąg ma elegancką funkcję tworzącą – mamy wydać liczbę n posiadając nieograniczoną liczbę monet wszystkich nominałów.

$$P(x) = \prod_{i} \frac{1}{1 - x^i}$$

 r_n – liczba podziałów n na różne składniki

$$R(x) = \prod_{i} (1 - x^i)$$

 q_n – liczba podziałów n na składniki nieparzyste

$$Q(x) = \prod_{i} \frac{1}{1 - x^{2i+1}}$$

Okazuje się, że Q(x) = R(x):

$$R(x) = (1+x)(1+x^2)(1+x^3)(1+x^4)\dots = \frac{1-x^2}{1-x}\frac{1-x^4}{1-x^2}\frac{1-x^6}{1-x^3}\dots = \frac{1}{1-x}\frac{1}{1-x^3}\frac{1}{1-x^5}\dots = Q(x)$$

Twierdzenie:

$$Q(x) = R(x) \Leftrightarrow q_n = r_n$$

3.4 Grafy

Graf nieskierowany – para uporządkowana G = (V, E).

 $V = v_1, v_2, \dots$ (wierzchołki)

 $E = e_1, e_2, \dots$ (krawędzie)

Gdy w grafie jest krawędź $e_1=\{v_1,v_6\}$ to mówimy, że v_1,v_6 są sąsiednie, v_1,e_1 są incydentne Stopień wierzchołka $\deg(v)$ – liczba krawędzi incydentnych z v

n = |V| = n(G) (zwyczajowo)

m = |E| = m(G)

Lemat o uściskach dłoni

$$\sum_{v \in V(G)} \deg(v) = 2m(G)$$

 ${f Graf\ prosty}$ to graf bez pętli i krawędzi wielokrotnych. Wtedy E to pewna rodzina 2-elementowych podzbiorów zbioru V.

Grafy moga reprezentować wiele rzeczywistych obiektów:

- sieci drogowe
- sieci kolejowe
- sieci energetyczne, rurociągi
- obwody elektryczne
- cząsteczki związków chemicznych
- struktury danych w algorytmach

Graf skierowany (digraf) – ma krawędzie skierowane (łuki): e = (u, v) (kolejność ma znaczenie) Mówimy, że grafy są **izomorficzne** jeżeli istnieje izomorfizm ...

$$(\exists \phi: V(G_1) \stackrel{\text{izomorfizm}}{\longrightarrow} V(G_2)) \quad \{v,u\} \in E(G_1) \Leftrightarrow \{\phi(v),\phi(u)\} \in E(G_2)$$

Podgraf grafuG to taki graf $G'\subset G$, że $V(G')\subset V(G)\wedge E(G')\subset E(G).$

Grafy puste (bezkrawędziowe) N_n

Grafy pełne (kliki) K_n $m(K_n) = \binom{n}{2}$

Dopełnienie grafu (określany głównie dla grafu nieskierowanego) $V(\overline{G}) = V(G) \wedge E(\overline{G}) = E(K_n) \setminus E(G)$,

łatwo zauważyć że $\overline{\overline{G}} = G$ oraz $E(G) + E(\overline{G}) = E(K_n)$

Grafy regularne $(\forall u, v) \deg(v) = \deg(u)$.

Możemy zdefiniować $deg(G) = \max_{v \in V} deg(v)$

G jest k-regularny – jest regularny i $\deg(G) = k = \deg(v) (\forall v \in E(G))$

Grafy platońskie – siatki wielościanów foremnych

Grafy dwudzielne $\exists V_1, V_2 \subseteq V : V_1 \cap V_2 = \phi \wedge V_1 \cup V_2 = V \ E \subseteq \{\{v_1, v_2\} : v_1 \in V_1, v_2 \in V_2\}$ tj. krawędzie łączą jedynie wierzchołki z V_1 z wierzchołkami z V_2 .

Szczególny przypadek powyższego: graf pełny dwudzielny, oznaczamy $K_{m,n}$ dla $m=|V_1|, n=|V_2|$, mamy $|E(K_{m,n})|=|\{\{v_1,v_2\}: v_1\in V_1, v_2\in V_2\}|=mn$

4 10.12.2010

Graf spójny – to taki, który nie jest niespójny.

Graf niespójny – $(\exists V_1, V_2)V_1 \cap V_2 = \phi, V_1 \cup V_2 \subseteq V, ((\forall e = \{u, v\})u, v \in V_1 \vee u, v \in V_2)$ tj. nie ma krawędzi łaczących V_1 z V_2 .

4.1 Drogi w grafach

Marszruta – ciąg $(v_0, e_1, v_1, e_2, v_2, \dots, e_n, v_n)$ taki, że $v_i \in V$, $e_i \in E$, $\{v_{i-1}, v_i\} = e_i$.

Marszruta w grafie skierowanym – jedynym dodatkowym wymaganiem jest poruszanie się zgodnie z kierunkiem krawędzi, czyli $(v_{i-1}, v_i) = e_i \in E$.

Długość marszruty – liczba krawędzi w marszrucie.

 \mathbf{Droga} – marszruta, w której nie powtarzają się wierzchołki.

Cykl – marszruta zamknięta na której powtarza się tylko pierwszy i ostatni wierzchołek⁴.

Drogowa spójność – graf jest drogowo spójny wtedy i tylko wtedy, gdy dla każdych wierzchołków $u, v \in V$ istnieje droga z u do v.

W grafie skierowanym – najlepiej jest dla każdej pary wierzchołków określić, czy istnieje droga skierowana z u do v czy nie.

Digraf jest silnie spójny, gdy taka droga istnieje między każdą parą wierzchołków w obie strony.

W grafach nieskierowanych:

Most – krawędź, której usunięcie rozspójnia graf.

Graf bez mostów – krawędziowo 2-spójny.

Wierzchołek rozcinający (punkt artykulacji) – jego usunięcie rozspójnia graf.

Graf bez wierzchołków rozcinających – graf (wierzchołkowo) 2-spójny.

Twierdzenie: G jest spójny wtedy i tylko wtedy, gdy G jest drogowo spójny.

Lemat: Jeśli w G istnieje marszruta z u do v, to również istnieje droga z u do v złożona z pewnego podzbioru krawedzi tej marszruty.

Dowód lematu: Niech M' będzie najkrótszą marszrutą zawartą w M łączącą u i v. Jeśli M' nie jest drogą, to istnieje na niej jakiś wierzchołek, który się powtarza. Jeśli wytniemy fragment M' pomiędzy dwoma wystąpieniami tego wierzchołka to dostaniemy krótszą marszrutę – sprzeczność z założeniem o minimalności M'.

Dowód twierdzenia:

 \Rightarrow : Załóżmy, że G nie jest drogowo spójny. Pokażemy, że jest niespójny. Załóżmy, że nie ma drogi z u do v. Niech:

 $V_1 = \{x : \text{istnieje droga z } u \text{ do } x\} \quad u \in V_1 \neq \phi$

 $V_2 = \{y : \text{nie ma drogi z } u \text{ do } y\} \quad v \in V_1 \neq \phi$

Pokażemy, że nie ma krawędzi z V_1 do V_2 . Wynika to z faktu, że krawędź $\{x,y\}$ przedłuża drogę z u do x do drogi z u do y – sprzeczność z $y \in V_2$.

 \Leftarrow : Załóżmy, że G jest drogowo spójny. Niech $u \in V_1, v \in V_2$, rozważmy pierwszy element drogi z u do v, który

 $^{^4}$ W szczególności (v_1,e,v_2,e,v_1) dla $e=v_1,v_2$ nie jest cyklem – powtarza się też krawędź

jest wierzchołkiem ze zbioru V_2 . Krawędź pomiędzy tym a poprzednim wierzchołkiem jest mostem między V_1 a V_2 .⁵

Twierdzenie: Graf jest dwudzielny wtedy i tylko wtedy, gdy każdy cykl w grafie ma długość parzystą.

Lemat: Jeśli każdy cykl w grafie G ma długość parzystą, to każda zamknięta marszruta w G też ma długość parzystą.

Dowód lematu: Weźmy najkrótszą marszrutę zamkniętą M o długości nieparzystej. Istnieje w niej wierzchołek, który się powtarza. Możemy rozbić tą marszrutę na dwie krótsze zamknięte marszruty, jedna ma długość parzystą, a druga nieparzystą, dostaliśmy krótszą marszrutę o długości nieparzystej – sprzeczność z minimalnością M.

Dowód twierdzenia:

 \Rightarrow : Jeśli G jest dwudzielny, to każdy cykl przechodzi na przemian przez zbiory V_1 i V_2 . Jeśli początek cyklu jest w V_1 , to aby wrócić do V_1 potrzebuje on parzystej liczby krawędzi.

⇐: Zauważmy, że nie przeszkadza nam to, że graf może być niespójny – bo wtedy każda jego składowa spójna jest dwudzielna.

Niech G' będzie dowolną składową spójną w G. Pokażemy, że z parzystości długości cykli w G' wynika dwudzielność G'.

Wyróżnijmy dowolny wierzchołek $v \in V(G')$. Niech:

 $V_1 = \{x : z \ v \ do \ x \ można dojść drogą o długości parzystej\}$

 $V_2 = \{y : z \ v \ do \ y \ można dojść drogą o długości nieparzystej\}$ $V_1 \cup V_2 = V(G'), V_1 \cap V_2 = \phi$ bo inaczej istniałby wierzchołek, do którego można dojść drogą długości parzystej i nieparzystej – czyli istniałaby marszruta zamknięta długości nieparzystej, a z lematu taka marszruta nie istnieje.

Krawędzie istnieją jedynie między V_1 a V_2 , bo gdyby istniała krawędź pomiędzy dwoma wierzchołkami z V_i , to dostalibyśmy marszrutę zamkniętą o długości nieparzystej.

4.2 Drzewa

Drzewo – graf spójny bez cykli.

Twierdzenie: Niech T będzie grafem prostym o n wierzchołkach. Następujące warunki są równoważne:

- 1. T jest drzewem
- 2. T nie ma cykli i ma n-1 krawędzi
- 3. T jest spójny i ma n-1 krawędzi
- 4. T jest spójny i każda jego krawędź jest mostem
- 5. dowolne 2 wierzchołki T łączy dokładnie jedna droga
- 6. T nie ma cykli, ale dodanie jakiejkolwiek krawędzi tworzy cykl.

Dowód: Indukcja po n. Dla n=1 oczywiste. Dowód dla n przy założeniu prawdziwości twierdzenia dla n' < n – łatwo pokazać kolejne implikacje $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow {}^{6}(4) \Rightarrow {}^{7}(5) \Rightarrow (6) \Rightarrow {}^{8}(1)$.

Fakt. Każde drzewo zawiera co najmniej dwa wierzchołki wiszące (tj. wierzchołki stopnia 1).

Dowód. Nie wprost $\deg(v_1) \ge 1 \land ((\forall i > 1) \deg(v_i) \ge 2)$ i mamy

$$2(n-1) = 2m = \sum_{i} \deg(v_i) \ge 2n - 1$$

Las – graf, którego wszystkie składowe spójne są drzewami (czyli graf bez cykli).

⁵– A gdzie korzystamy z lematu?

Nigdzie, ale lemat ieszcze sie przyda.

 $^{^6}$ Rozważamy drzewo spinające T grafuG – usuwamy z G wszystkie krawędzie nie będące mostami; krawędzie cyklu nie są mostami

 $^{^7 {\}rm Trzeba}$ pokazać, że jest tylko jedna taka droga – w końcu korzystamy z lematu

⁸Pokazujemy spójność nie wprost

$5 \quad 17.12.2010$

5.1 Dalej drzewa

Ile jest drzew o zbiorze wierzchołków $N = \{1, 2, ..., n\}$?

Tw. Cayley'a: Różnych drzew o zbiorze wierzchołków N jest n^{n-2} .

Dowód: Pokażemy bijekcję między drzewami a ciągami n-2 elementowymi o zbiorze wartości N. Dla danego drzewa ciąg taki nazywamy kodem Prüfera tego drzewa.

Aby go uzyskać dla danego drzewa Wykonujemy n-2 kroków:

W i-tym kroku:

- odrywamy od drzewa liść o najniższej etykiecie
- dopisujemy nr sasiada tego liścia jako a_i

Jak odtworzyć drzewo mając jego kod Prüfera?

Fakt: W kroku i wierzchołek j jest liściem wtedy i tylko wtedy, gdy j nie występuje w ciągu (a_i, \ldots, a_{n-2}) i nie został wcześniej oderwany.

5.2 Sposoby reprezentacji grafów

Macierz sąsiedztwa: kwadratowa macierz $M \in M_{n \times n}(\mathbb{Z}_2)$, gdzie n = |V|.

 $a_{ij} = [\{v_i, v_j\} \in E]^9$ (macierz jest symetryczna)

 $a_{ij} = [(v_i, v_j) \in E]$ dla digrafów

Macierz incydencji: macierz $M \in \mathcal{M}_{n \times m}(\mathbb{Z}_2)$, gdzie m = |E|.

 $a_{ij} = [v_i, e_j \text{ są incydentne}]$

Listy sąsiadów: tablica jednowymiarowa o rozmiarze n, w i-tym polu lista sąsiadów v_i .

Tablica z uporządkowaną leksykograficznie listą krawędzi – można dodać tablicę rozmiaru n ze wskaźnikami.

jak szybko wykonują się typowe operacje na grafach?

3" " J " " J " " J " " J " " T " " T " " J " " T " " T " " T " " T " " T " T			
	Macierz sąsiedztwa	Listy sąsiadów	tablica krawędzi
ilość zajętej pamięci	$O(n^2)$	O(m+n)	O(m+n)
czas wczytywania grafu	$O(n^2)$	O(m+n)	O(m+n)
wypisz sąsiadów v_i	O(n)	$O(\deg(v_i))$	$O(\deg(v_i))$
dodaj krawędź $\{v_i, v_j\}$	O(1)	O(1)	O(m)
$\operatorname{czy} \{v_i, v_j\} \in E?$	O(1)	$O(\deg(v_i))$	$O(\log \deg(v_i))$
usuń $\{v_i, v_j\}$	O(1)	$O(\deg(v_i) + \deg(v_j))$	O(m)

5.3 Grafy eulerowskie

Czy ten rysunek można wykonać bez odrywania ołówka od kartki i rysowania jednej linii wiele razy?

Czy można odbyć spacer po Królewcu przechodząc przez każdy z mostów dokładnie jeden raz? (można dodatkowo wymagać, aby punkt startowy był punktem końcowym).

Cykl Eulera¹⁰ – marszruta zamknięta przechodząca przez każdą krawędź dokładnie raz

Droga Eulera – marszruta przechodząca przez każdą krawędź dokładnie raz

Graf eulerowski – ma cykl Eulera

graf półeulerowski – ma drogę Eulera

Fakt. Jeżeli graf jest eulerowski to:

- wszystkie krawędzie są w jednej składowej spójnej
- wszystkie wierzchołki mają stopień parzysty.

Twierdzenie: Powyższe dwa warunki sa wystarczające do istnienia cyklu Eulera.

Dowód: indukcja po m = |E|.

Niech C – dowolny cykl w G. Po usunięciu krawędzi z C każda składowa spójna ma cykl Eulera. Wszystkie te cykle można połączyć w jeden cykl Eulera w G.

Twierdzenie: Graf jest półeulerowski gdy:

 $^{{}^{9}}$ Notacja jak w $Matematyce\ Konkretnej-[p]=1$ jeślipjest prawdą, wpp. równe 0

 $^{^{10}\}mathrm{Te}$ wszystkie rzeczy działają dla multigrafów

- wszystkie krawędzie są w jednej składowej spójnej
- co najwyżej dwa wierzchołki mają stopień nieparzysty.

Dowód:

- 1° mamy 0 wierzchołków o stopniu nieparzystym jest cykl Eulera
- 2° mamy 1 wierzchołek o stopniu nieparzystym sprzeczność z lematem o uściskach dłoni
- 3° mamy 2 wierzchołki o stopniu nieparzystym v_i, v_j dodajemy krawędź $\{v_i, v_j\}$, dostajemy cykl Eulera, który po usunięciu dodanej krawędzi jest drogą Eulera

Problem chińskiego listonosza¹¹ Istnieje algorytm wielomianowy dla tego problemu.

- % Notatki z trzeciej godziny wykładu dodam kiedyś. Było o
- 1. Drogi, cykle Hamiltona
- 2. Twierdzenie Ore z dowodem
- 3. trochę o problemie komiwojażera
- 4. DFS
- 5. BFS

$6 \quad 7.01.2011$

6.1 Najkrótsze drzewo spinające grafu

Dany jest graf ważony. Szukamy taki spójny podgraf, który ma najmniejszą sumę wag krawędzi - jest to najkrótsze drzewo spinające.

Algorytm 1 (Kruskal)

- 1. Uporządkuj krawędzie w takiej kolejności, by ciąg ich wag był niemalejący
- 2. Dla $i=1,2,3,\ldots,m$ jeśli dodanie do T krawędzi e_i nie tworzy cyklu to $T\leftarrow T\cup\{e_i\}$

Złożoność zależy od implementacji – przy dobrej okazuje się, że najbardziej czasochłonne jest sortowanie. 12 Lemat: każdy algorytm, który w kolejnych n-1 krokach dodaje do T najkrótszą krawędź między niepołą-

czonymi zbiorami wierzchołków S i $V(G) \setminus S$ znajduje najkrótsze drzewo spinające T.

Dowód: Algorytm zwraca drzewo, bo T na końcu nie ma cykli i ma n-1 krawędzi. Załóżmy nie wprost, że T nie jest najkrótszym drzewem spinającym i że T* jest najkrótszym drzewem spinającym zawierającym największy początkowy zbiór krawędzi $\{e_1,e_2,\ldots,e_{i-1}\}$ dodanych przez algorytm do T. Wtedy e_i jest pierwszą krawędzią dodaną przez algorytm, której nie ma w T*; e_i jest najkrótszą krawędzią między S i $V(G) \setminus S$. Graf $T* \cup \{e_i\}$ ma cykl C. Cykl C musi zawierać inną krawędź e' między S i $V(G) \setminus S$. Mamy $c(e') \geqslant c(e)$. Zauważmy, że $T' = T* \setminus \{e'\} \cup \{e\}$ ma wagę nie większą niż T* i jest drzewem. Zatem T' jest najkrótszym drzewem spinającym i zawiera krawędzie $\{e_1,e_2,\ldots,e_i\}$ – sprzeczność z doborem T*.

Algorytm 2 (Prim-Dijkstra)

- 1. $S \leftarrow v_0$
- 2. Dla $v: v \neq v_0$ jeśli $\{v, v_0\} \in E$ to $d[v] = c(v_0, v); p[v] = v_0$ wpp. $d[v] = \infty$
- 3. Dopóki $S \neq V(G)$ wybierz $v \in V(G) \setminus S$ o minimalnym d[v] $S \leftarrow S \cup \{v\}$ Dla $w \colon \{v, w\} \in E$ jeśli d[w] > c(v, w) to $d[w] \leftarrow c(v, w); \ p[w] \leftarrow v$

¹¹Problem chińskiego listonosza na MINI PW

¹²Zakładam, że nie znacie union-find.

6.2 Problem najkrótszych dróg

Dany jest graf ważony skierowany (drogi mogą być jednokierunkowe).

Możemy chcieć znaleźć: - najkrótszą drogę między u i v - najkrótsze drogi z u do innych wierzchołków - najkrótsze drogi między wszystkimi parami wierzchołków

Algorytm Dijkstry (problem 2) – warunkiem jego poprawności są nieujemne wagi wszystkich krawędzi

- 1. $S \leftarrow v_0$
- 2. Dla $v: v \neq v_0$ jeśli $(v, v_0) \in E$ to $d[v] = c(v_0, v); p[v] = v_0$ wpp. $d[v] = \infty$
- 3. Dopóki $S \neq V(G)$ wybierz $v \in V(G) \setminus S$ o minimalnym d[v] $S \leftarrow S \cup \{v\}$ Dla $w: (v, w) \in E$ jeśli d[w] > d[v] + c(v, w) to $d[w] \leftarrow d[v] + c(v, w)$; $p[w] \leftarrow v$

Dowód poprawności: Załóżmy, że algorytm Dijkstry prawidłowo wyznacza d[v] dla wszystkich wierzchołków v które są bliższe v_0 niż w i dla tych, które mają tę samą odległość, ale najkrótsza droga z v_0 do nich ma mniej krawędzi niż do w. Musimy pokazać, że algorytm Dijkstry prawidłowo wyznacza odległość do w. Niech v będzie poprzednikiem w na najkrótszej drodze z v_0 do w. W kroku, w którym dodawane jest v, mamy sprawdzanie d[w] > d[v] + c(v, w). ¹³

Złożoność $O(m+n\log n)$ przy najlepszej implementacji, przy gorszej $O(n^2)$

Algorytm Warshalla (– Floyda) – warunkiem poprawności jest nie
istnienie cykli o wadze ujemnej Na początku tablica c[i,j] zawiera długości c(i,j) krawędzi lub nieskończoność, gdy krawędź z i do j nie
 istnieje.

```
for k = 1 to n do

for i = 1 to n do

for j = 1 to n do

if c[i,j] > c[i,k] + c[k,j]

then c[i,j] := c[i,k] + c[k,j]
```

Złożoność: jak widać $O(n^3)$. Uzasadnienie poprawności: Po k-tej iteracji najbardziej zewnętrznej pętli każde c[i,j] zawiera długość najkrótszej drogi z i do j w której pośrednimi wierzchołkami mogą być $1, 2, \ldots, k$.

6.3 Problem znajdowania przechodniego domknięcia digrafu

Dany jest digraf G. Chcemy znaleźć digraf G* taki, że $(u,v) \in E(G*) \Leftrightarrow w$ G istnieje droga skierowana z u do v. Wiąże się to z przechodnim domknięciem relacji.

Metody znajdowania przechodniego domknięcia

- 1. BFS/DFS
- 2. zmodyfikowany algorytm Warshalla c[i,j] to macierz sąsiedztwa

```
for k = 1 to n do
    for i = 1 to n do
        for j = 1 to n do
        c[i,j] := c[i,j] OR (c[i,k] AND c[k,j])
```

6.4 Przepływy w sieciach

Sieć to digraf z wyróżnionymi dwoma wierzchołkami: s - źródło, t - ujście.

c(u, v) – maksymalny możliwy przepływ łukiem u, v

f(u, v) – przepływ płynący łukiem $u, v; f(u, v) \leq c(u, v)$

dla każdego v różnego od s, t spełniony jest warunek Kirchhoffa – $\forall_v \sum_{e \text{ wchodzące do } v} f(e) = \sum_{e \text{ wychodzące z } v} f(e)$. Szukamy największego przepływu, wartością przepływu jest¹⁴:

$$|f| = \sum_{e \text{ - wychodzące z } s} f(e) = \sum_{e \text{ - wchodzące do } t} f(e)$$

 $^{^{13}\}mathrm{Wykładowca}:$ Wiem, że nie udowodniłem do porządku, ale przejdziemy do następnego algorytmu.

¹⁴Pierwsza równość: definicja, druga z prawa Kirchhoffa

Przekroje w sieciach

Przekrój to podział wierzchołków sieci na dwa spójne zbiory S i T taki, że $s \in S \land t \in T$. Wartość przekroju

$$c(S,T) = \sum_{(u,v): u \in S, v \in T} c(u,v)$$

Przepływ netto przez przekrój S, T

$$f(S,T) = \sum_{(u,v): u \in S, v \in T} f(u,v) - \sum_{(v,u): u \in S, v \in T} f(v,u)$$

Z prawa Kirchhoffa pokazujemy, że

$$f(S,T) = \sum_{ewych.zv \in S} f(e) - \sum_{ewch.dov \in T} = \sum_{ewychzS} f(e) = |f|$$

Fakt. Dla każdego przekroju S, T mamy $c(S, T) \ge f(S, T) = |f|$.

Twierdzenie. ¹⁵ Jeśli f jest maksymalnym przepływem, to istnieje przekrój S, T taki, że |f| = c(S, T). Dowód: Ścieżka powiększająca przepływ to ścieżka przechodząca z s do t po dwóch rodzajach łuków:

- 1. po łukach (u, v) takich, że f(u, v) < c(u, v)
- 2. "pod prad" po łuku, który ma przyporządkowany niezerowy przepływ czyli z v do u jeśli f(u,v)>0

Fakt. Jeśli istnieje ścieżka powiększająca to bieżący przepływ f możemy powiększyć o przepływ na tej ścieżce. Fakt. Jeśli f jest największy to ścieżka powiększająca z s do t nie istnieje.

S – zbiór wierzchołków do których można dojść z s ścieżką powiększającą.

T – pozostałe wierzchołki.

f(S,T) = c(S,T)

Algorytm Forda-Fulkersona

Dopóki istnieje ścieżka powiększająca f

powiększ f o maksymalny przepływ na tej ścieżce

7 14.01.2010

7.1 Planarność

Fakt: K_5 nie może być narysowany na płaszczyźnie bez przecięć krawędzi.

Uzasadnienie: K_5 zawiera cykl długości pięć. Po jego narysowaniu rysujemy kolejne krawędzie – muszą być na przemian w środku i na zewnątrz cyklu, ale okazuje się, że jest ich zbyt dużo. ¹⁶

Graf płaski – rysunek grafu na płaszczyźnie, w którym krawędzie się nie przecinają.

Graf planarny – graf, który da się narysować jako graf płaski (np. K₅ nie jest planarny).

Fakt: $K_{3,3}$ nie jest planarny 17 – uzasadnienie jak powyżej, mamy cykl długości 6.

Graf G' jest homeomorficzny do G jeśli powstaje przez zmianie w G wybranych krawędzi na krawędźwierzchołek-krawędź – na rysunku po prostu dorysowujemy wierzchołek na krawędzi.

Fakt: Podgraf grafu planarnego jest planarny.

Fakt: Jeśli graf zawiera podgraf homeomorficzny z K_5 lub $K_{3,3}$ to nie jest planarny.

Tw. Kuratowskiego: Graf jest planarny wtedy i tylko wtedy, gdy nie zawiera podgrafu homeomorficznego z K_5 lub $K_{3,3}$. 18

7.2 Ściany

Na grafy planarne można spojrzeć też jak na wielościany.

Niech G będzie spójny, płaski i niech ma n wierzchołków, m krawędzi i f ścian. Wtedy zachodzi wzór Eulera¹⁹:

$$n - m + f = 2$$

Dowód: indukcja po m.

¹⁵Patrz: Twierdzenie 26.7 (O maksymalnym przepływie i minimalnym przekroju), CLRS, str. 670

 $^{^{16}\}mathrm{Jeżeli}$ to nie jest przekonujące, patrz7.2

¹⁷Graf pełny dwudzielny o 3+3 wierzchołkach

 $^{^{18} \}mathrm{Wykładowca} :$ Widziałem kiedyś jakiś dowód, ale dowiedzenie tego byłoby dość skomplikowane.

¹⁹też dla multigrafów

- 1. G jest drzewem (baza indukcji), wtedy n m + f = n (n 1) + 1 = 2.
- 2. G nie jest drzewem G ma cykl, możemy wybrać taki cykl C, że C ogranicza pewną ścianę. Niech $e \in C$. Wtedy $m(G \setminus e) = m 1 \land f(G \setminus e) = f 1$. Z założenia indukcyjnego dla $G \setminus e$ mamy

$$2 = n - (m - 1) + (f - 1) = n - m + f$$

.

Wniosek: G prosty, spójny, planarny, n > 2. Wtedy $m \le 3n - 6$.

Dowód: Niech m_i to liczba krawędzi ograniczających ścianę f_i . Wtedy $2m = \sum m_i \ge 3f$. Z wzoru Eulera $6 \le 3n - m$.

Fakt: K_5 nie jest planarny.

Dowód: n = 5, m = 10, gdyby był planarny to $10 \le 9$.

Fakt: Każdy prosty graf planarny ma wierzchołek stopnia co najwyżej 5.

Dowód: Załóżmy nie wprost, że stopnie wszystkich wierzchołków w składowej spójnej G są większe od 5. Wtedy $2m = \sum \deg(v) \ge 6n$, ale $m \le 3n - 6$ – sprzeczność.

Fakt: G prosty, spójny, planarny, n > 2, bez trójkątów. Wtedy $m \leq 2n - 4$.

Dowód: Jak we wniosku wyżej otrzymujemy $2m \ge 4f$. Zatem z wzoru Eulera $4 \le 2n - m$.

Fakt: $K_{3,3}$ jest nieplanarny (bo n = 6, m = 9).

7.3 Kolorowanie grafów planarnych

Twierdzenie o czterech barwach: Każdą mapę można pokolorować czterema kolorami.

Czym mapa jest każdy widział. Kolorujemy mapę tak, że sąsiadujące państwa mają różne kolory²⁰.

Definicja. Graf dualny do grafu planarnego G to taki graf G', że wierzchołki w G' odpowiadają ścianom w G, a krawędzie w G' są pomiędzy wierzchołkami odpowiadającymi sąsiadującym ścianom w G.

Jeżeli weźmiemy graf dualny do wcześniej rozważanego, okazuje się, że problem jest równoważny do kolorowania wierzchołków.

Fakt. Wierzchołki każdego grafu planarnego można tak pokolorować 4 kolorami, żeby każde 2 sąsiadujące wierzchołki miały różne kolory.

Udowodnimy sobie słabsze twierdzenie – o 5 kolorach. Dowód: Możemy założyć, że G jest prosty. Dowód przeprowadzamy indukcyjnie po n. W G istnieje wierzchołek v o stopniu co najwyżej 5.

- 1. $deg(v) \leq 4$. Wtedy z założenia indukcyjnego $G \setminus v$ ma kolorowanie 5 kolorami, dodając v łączymy go z 4 wierzchołkami, więc możemy pokolorować v na piąty z kolorów.
- 2. $\deg(v)=5$. Niech $v_1\dots v_5$ będą sąsiadami v. Wiemy, że $\exists_{i,j}\{v_i,v_j\}\notin E$ (Gdyby nie, mielibyśmy podgraf G będący K_5). Usuwając v z G i sklejając v_i,v_j otrzymujemy graf, który możemy pokolorować 5 kolorami. Okazuje się, że otrzymane kolorowanie jest też prawidłowe na $G\setminus v$ i ma dodatkowo własność kolory v_i,v_j są takie same.

7.4 Kolorowanie grafów

G – bez petli.

Kolorowanie G – przyporządkowanie wierzchołkom kolorów tak, że żadnych dwóch sąsiadów nie ma takiego samego koloru.

G jest k-kolorowalny – można pokolorować G za pomocą k kolorów.

Liczba chromatyczna G (oznaczamy $\chi(G)$) to minimalne k takie, że G jest k-kolorowalny.

Istnieje wiele problemów optymalizacyjnych, które można sprowadzić do problemu kolorowania grafów. Np. planowanie sesji egzaminacyjnej:

- wierzchołki egzaminy
- krawędź dwa egzaminy nie mogą odbyć się w tym samym czasie
- kolory terminy egzaminów

Fakt.

- $\chi(G) = 1 \Leftrightarrow G = N_n \text{ (graf pusty)}$
- $\chi(G) = 2 \Leftrightarrow G$ jest dwudzielny

 $^{^{20}}$ Państwa o tym samym kolorze mogą mieć jeden wspólny wierzchołek – gdyby nie, ograniczenie na liczbę kolorów by nie istniało

- $\chi(G) = 3$ problem NP-zupełny
- $H \subseteq G \Rightarrow \chi(H) \leqslant \chi(G)$
- $K_k \subseteq G \Rightarrow \chi(G) \geqslant k$

Podzbiór $V_1 \subseteq V(G)$ jest niezależny – żadne z wierzchołków w V_1 nie są połączone.

Fakt: W każdym kolorowaniu wierzchołków G podzbiór wierzchołków dowolnego koloru C jest niezależny.

Fakt: jeśli k jest rozmiarem największego podzbioru niezależnego w G to $\chi(G) \geqslant \frac{n}{k}$.

Dowód: jeśli k_C to liczba wierzchołków koloru C to $n = \sum_{i=1}^{\chi(G)} k_i \leqslant k * \chi(G)$

Algorytm sekwencyjny

- 1. Posortuj wierzchołki w kolejności v_1, \ldots, v_n wg. twojej ulubionej heurystyki
- 2. Dla $i=1,2,\ldots,n$ pokoloruj v_i na najniższy możliwy kolor

Możemy użyć np. heurystyki LF – sortowanie nierosnąco po stopniach.

Fakt: $\chi(G) + \chi(\overline{G}) \leq n+1$

Dowód: Pokażemy, że jeśli używając algorytmu sekwencyjnego i kolejności LF dla G otrzymamy k_1 kolorów i używając algorytmu sekwencyjnego dla \overline{G} z kolejnością odwrotną otrzymamy k_2 kolorów to

$$\chi(G) + \chi(\overline{G}) \leqslant k_1 + k_2 \leqslant n + 1$$

Niech k będzie takie, że $k < \deg_G(v_k) \land k + 1 \ge \deg_G(v_{k+1})$. Wtedy ...

Fakt: $\chi(G) \leq deg(G) + 1$

Tw. Brooksa: $\chi(G) = deg(G) + 1 \Leftrightarrow G$ jest kliką lub cyklem długości nieparzystej