Espaces euclidiens (Corrigé des exercices du chapitre 8)

Transformations de \mathbb{R}^2 et de \mathbb{R}^3

1. ** a) Soit E l'ensemble des $\lambda \in \mathbb{R}$ tels que, pour toutes les matrices $M \in \mathcal{M}_2(\mathbb{R})$, on ait $\det(M) \leq \lambda \operatorname{tr}({}^t M M)$. Calculer inf E.

b) Soit F l'ensemble des $\lambda \in \mathbb{R}$ tels que, pour toutes les matrices $M \in \mathcal{M}_2(\mathbb{R})$, on ait $[\operatorname{tr}(M)]^2 \leq \lambda \operatorname{tr}({}^t M M)$. Calculer inf F.

a) Posons $M=\begin{pmatrix}a&c\\b&d\end{pmatrix}$. lors, $\operatorname{tr}({}^t\!MM)={}^2+b^2+c^2+d^2$ et $\det(M)=ad-bc$. On sait que $ad\leq \frac{1}{2}(a^2+d^2)$ avec égalité pour a=d (on exploite $(a-d)^2$), et que $-bc\leq \frac{1}{2}(b^2+c^2)$ avec égalité pour b=-c. Cela conduit à $\det(M)\leq \frac{1}{2}\operatorname{tr}({}^t\!MM)$, et il y a égalité quand a=d et b=-c, soit $M=\begin{pmatrix}a&-b\\b&a\end{pmatrix}$ (matrice de similitude directe), donc $\inf E=\frac{1}{2}$.

b) De même,

$$[\operatorname{tr}(M)]^2 = (a+d)^2 \le 2(a^2+d^2) \le 2\operatorname{tr}({}^t M M),$$

et il y a égalité lorsque a = d et b = c = 0, soit lorsque M est la matrice d'une homothétie.

2. * Donner la matrice de la symétrie orthogonale s_P par rapport à 2x - y + z = 0 dans une base orthonormale.

Soit $P: 2x - y + z = 0 = (\mathbb{R}\varepsilon)^{\perp}, \ \varepsilon = \frac{1}{\sqrt{6}}(2i - j + k)$. On a $\overrightarrow{u} = u_1 + u_2$ sur $\mathbb{R}^3 = P \oplus P^{\perp}$, et $s_P(\overrightarrow{u}) = u_1 - u_2$. Or $u_2 = p_{\mathbb{R}\varepsilon}(\overrightarrow{u}) = (\overrightarrow{u}|\varepsilon)\varepsilon$. $\overrightarrow{u} = xi + yj + zk$; $s_P(\overrightarrow{u}) = \overrightarrow{u} - \frac{1}{3}(2x - y + z)(2i - j + k) = \frac{1}{3}[(-x + 2y - 2z)i + (2x + 2y + z)j + (-2x + y + 2z)k]$. D'où $M_{(i,j,k)}(s_P) = \frac{1}{3}\begin{pmatrix} -1 & 2 & -2 \\ 2 & 2 & 1 \\ -2 & 1 & 2 \end{pmatrix}$.

3. *** Soit $M = \begin{pmatrix} a & b & c \\ b & x & y \\ c & y & z \end{pmatrix}$. Établir une condition sur a,b,c pour qu'il existe (x,y,z) tel que $M \in \mathcal{O}_3(\mathbb{R})$.

Il faut que $a^2+b^2+c^2=1$ et qu'il existe (x,y,z) avec $\begin{cases} ab+bx+cy=0\\ bc+xy+yz=0\\ ac+by+cz=0 \end{cases}, \begin{cases} b^2+x^2+y^2=1\\ c^2+y^2+z^2=1 \end{cases}.$ Supposons cela vérifié.

$$\bullet \ b = c = 0 \ \text{donc} \ a^2 = 1. \ \text{Il existe} \ (x,y,z) \ \text{tel que} \left\{ \begin{array}{l} y(x+z) = 0 \\ x^2 + y^2 = 1 \end{array} \right. \ \text{Par exemple, } (1,0,1), \ \text{et} \\ y^2 + z^2 = 1 \end{array} \right.$$

$$\left(\begin{array}{l} \epsilon \quad 0 \quad 0 \\ 0 \quad 1 \quad 0 \\ 0 \quad 0 \quad 1 \end{array} \right) \ \text{est orthogonale. Pour les avoir toutes, } \left\{ \begin{array}{l} y = 0 \\ x = \epsilon' \\ z = \epsilon'' \end{array} \right. \ \text{ou bien} \ \left\{ \begin{array}{l} x = -z \\ x^2 + y^2 = 1 \end{array} \right. , \ \text{alors} \\ x = \cos \theta, \ y = \sin \theta, \ \text{et on trouve} \left(\begin{array}{l} \epsilon \quad 0 \quad 0 \\ 0 \quad \cos \theta \quad \sin \theta \\ 0 \quad \sin \theta \quad -\cos \theta \end{array} \right).$$

•
$$b \neq 0$$
 et $c = 0$ donc $a^2 + b^2 = 1$, $(a = \cos \theta, b = \sin \theta)$,
$$\begin{cases} a + x = 0 \\ (x + y)z = 0 \\ by = 0 \end{cases}$$

y = 0. $\begin{cases} b^2 + x^2 + y^2 = 1 \\ y^2 + z^2 = 1 \end{cases}$: la première équation est compatible avec $a^2 + b^2 = 1$ et la deuxième

donne $z = \epsilon$. On trouve les $\begin{pmatrix} \cos \theta & \sin \theta & 0 \\ \sin \theta & -\cos \theta & 0 \\ 0 & 0 & \epsilon \end{pmatrix}$.

•
$$b = 0$$
 et $c \neq 0$ donc $a^2 + c^2 = 1$. On trouve les $\begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & \epsilon & 0 \\ \sin \theta & 0 & -\cos \theta \end{pmatrix}$

•
$$b = 0$$
 et $c \neq 0$ donc $a^2 + c^2 = 1$. On trouve les $\begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & \epsilon & 0 \\ \sin \theta & 0 & -\cos \theta \end{pmatrix}$
• $bc \neq 0$ Soit \mathcal{D} : $\begin{cases} ab + bx + cy = 0 \\ ac + by + cz = 0 \end{cases}$, $\begin{pmatrix} b \\ c \\ 0 \end{pmatrix} \land \begin{pmatrix} 0 \\ b \\ c \end{pmatrix} = \begin{pmatrix} c^2 \\ -bc \\ b^2 \end{pmatrix}$ et \mathcal{D} : $\begin{pmatrix} -a \\ 0 \\ -a \end{pmatrix} + \mathbb{R}\begin{pmatrix} c^2 \\ -bc \\ b^2 \end{pmatrix}$ paramétrée par $\begin{cases} x = -a + c^2 \lambda \\ y = -bc\lambda \\ z = -a + b^2 \lambda \end{cases}$

$$\mathbb{R} \begin{pmatrix} c^2 \\ -bc \\ b^2 \end{pmatrix} \text{ paramétrée par } \begin{cases} x = -a + c^2 \lambda \\ y = -bc\lambda \\ z = -a + b^2 \lambda \end{cases}$$

 \rightarrow Equation de rencontre avec bc+xy+yz=0: $0=bc-bc\lambda(-2a+(b^2+c^2)\lambda)$ soit $0=bc+2abc\lambda-bc(b^2+c^2)\lambda$, donc $1+2a\lambda-(b^2+c^2)\lambda^2=0$. $\Delta=4(a^2+b^2+c^2)=4$, donc il y a 2 racines distinctes λ_1 et λ_2 .

 \rightarrow Equation de rencontre avec $b^2 + x^2 + y^2 = 1$:

$$b^{2} + (-a + c^{2}\lambda)^{2} + b^{2}c^{2}\lambda^{2} = 1 = a^{2} + b^{2} + c^{2}$$
$$b^{2} + a^{2} - 2ac^{2}\lambda + c^{2}(b^{2} + c^{2})\lambda^{2} = a^{2} + b^{2} + c^{2}$$

donc $1 + 2a\lambda - (b^2 + c^2)\lambda^2 = 0$.

 \rightarrow Equation de rencontre avec $b^2 + y^2 + z^2 = 1$: la même.

Donc, si (a, \hat{b}, c) vérifie $a^2 + b^2 + c^2 = 1$ et $bc \neq 0$, il existe (x, y, z) (donné par λ_1 et λ_2) tel que M est orthogonale.

Automorphismes orthogonaux

- **4.** *** Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de E euclidien.
- a) Soit x_1, \ldots, x_n des vecteurs de E tels que $\sum_{i=1}^n ||x_i||^2 < 1$. Si $y_i = x_i + e_i$, montrer que (y_1, \ldots, y_n)
- b) Soit $\varepsilon_1, \ldots, \varepsilon_n$ des vecteurs unitaires de E tels que $\sum_{i=1}^{n} (e_i|\varepsilon_i) > n \frac{1}{2}$. Montrer qu'ils forment une base de E.

a) Partons de $\sum_i \alpha_i = 0$, donc $\sum_i \alpha_i e_i = -\sum_i \alpha_i x_i$. On prend la norme, d'où, avec Cauchy-Schwarz,

$$\sum_{i} |\alpha_{i}|^{2} = \|\sum_{i} \alpha_{i} x_{i}\|^{2} \le \sum_{i} \alpha_{i}^{2} \sum_{i} \|x_{i}\|^{2}.$$

Il faut donc que $\sum_{i} \alpha_i^2 = 0$, donc que $\alpha_i = 0$.

b) Posons $x_i = \varepsilon_i - e_i$. D'où

$$\sum_{i} ||x_{i}||^{2} = \sum_{i} [||\varepsilon_{i}||^{2} + ||e_{i}||^{2} - 2(\varepsilon_{i}|e_{i}) = 2n - 2\sum_{i} (\varepsilon_{i}|e_{i}) < 1,$$

donc on peut appliquer a).

 $\boxed{\mathbf{5.}}$ * Soit A et B symétriques réelles. Montrer que $[\operatorname{tr}(AB+BA)]^2 \leq 4\operatorname{tr}A^2\operatorname{tr}B^2$.

 $(A|B)=\operatorname{tr}(AB)$ est un produit scalaire sur $\mathcal{S}_n(\mathbb{R})$, et, par Cauchy-Schwarz : $.|(A|B)|^2 \leq (\operatorname{tr} A^2)(\operatorname{tr} B^2)$ Or $[\operatorname{tr}(AB+BA)]^2=4(\operatorname{tr} AB)^2=4(A|B)^2$, d'où le résultat.

6. * Soit
$$A = (a_{ij}) \in \mathcal{O}(n)$$
 et $\varphi(A) = \sum_{1 \le i,j \le n} a_{ij}$. Trouver $\min_{A \in \mathcal{O}(n)} \varphi$ et $\max_{A \in \mathcal{O}(n)} \varphi$.

$$J=(1). \text{ On \'ecrit } \varphi(A)=\operatorname{tr}(AJ). \ J=\Omega D \ ^t\!\Omega, \ \Omega\in\mathcal{O}(n), \ D=\begin{pmatrix} n & & & (0) \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{pmatrix}.$$

 $\operatorname{tr}(AJ) = \operatorname{tr}({}^{t}\Omega A\Omega D)$, d'où on est ramené à $\varphi(B) = \operatorname{tr}(BD)$, $B \in \mathcal{O}(n)$. $\Psi(B) = nb_{11}$, donc $-n \leq \Psi(B) \leq n$, et c'est atteint pour I et -I.

7. * Soit E euclidien et $u: E \to E$ avec u(0) = 0 et, $||u(x) - u(y)||^2 = ||x - y||^2$ pour tout $(x, y) \in E^2$. Montrer que $u \in \mathcal{O}(E)$.

||u(x)|| = ||x|| avec y = 0. Si $z = \lambda x + \mu y$,

$$\|u(z) - \lambda u(x) - \mu u(y)\|^2 = \|u(z)\|^2 + \lambda^2 \|u(x)\|^2 + \mu^2 \|u(y)\|^2 - 2\lambda (u(x)|u(z)) - 2\mu (u(y)|u(z)) - 2\lambda \mu (u(x)|u(y))$$

et
$$(u(a)|u(b)) = -\frac{1}{2}(\|u(a) - u(b)\|^2 - \|u(a)\|^2 - \|u(b)\|^2) = (a|b)$$
, d'où

$$||u(\lambda x + \mu y) - \lambda u(x) - \mu u(y)||^2 = ||\lambda x + \mu y - \lambda x - \mu y||^2 = 0$$

et u est linéaire. Dés lors, $u \in \mathcal{O}(E)$.

^{8. **} dim $E = n \ge 1$, E est euclidien.

a) Soit $H \in GL(E)$ qui commute avec tous les éléments de O(E). Montrer que tout $x \neq 0$ est vecteur propre de H, puis que $H \in \mathbb{R}Id_E$.

b) Montrer que ${}^t\!UU\in \mathbb{R}Id_E$ si, et seulement si, pour tout $V\in O(E),\, UVU^{-1}\in O(E).$

- a) $H\Omega = \Omega H$ donc les sous-espaces propres de Ω sont stables par H. Soit $x \in E \setminus \{0\}$, et $\Omega = s_{{\rm I\!R} x}$ la symétrie orthogonale par rapport à ${\rm I\!R} x$. Alors ${\rm I\!R} x$ est stable par h, donc $H(x) = \lambda_x x.$
 - Si dim E = 1, c'est fini ($\mathcal{L}(E) = \mathbb{R}id$).
- Si dim $E \ge 2$, soient $x \ne 0$ et $y \ne 0$. Supposons que $\lambda_x \ne 0$ et $\lambda_y \ne 0$. Alors, (x, y) est libre, car x et y sont associés à des valeurs propres distinctes. Dans ce cas, $h(x+y) = \lambda_{x+y}(x+y) =$ $\lambda_x x + \lambda_y y$ implique $\lambda_x = \lambda_y = \lambda_{x+y}$, d'où une contradition, qui conduit à $\lambda_x = \lambda_y = \lambda$, soit à $H = \lambda I d_E$.
- b) Si ${}^t\!UU = \lambda I_n$, alors $U^{-1} = \frac{1}{\lambda} {}^t\!U$. Donc $UVU^{-1} = \frac{1}{\lambda} UV {}^t\!U$, et ${}^t\!(UVU^{-1}) = \frac{1}{\lambda} U {}^t\!V {}^t\!U$. On a alors $(UVU^{-1})^t(UVU^{-1}) = \frac{1}{\lambda^2}U^tV(\lambda I_n)V^tU = \frac{1}{\lambda}U^tU$. Or ${}^tU = \lambda U^{-1}$, donc c'est I_n . Réciproquement, si pour tout $V \in O(E)$, $UVU^{-1} \in O(E)$, alors UV = WU, avec $W \in O(E)$, ${}^tV^tU = {}^tU^tW$, donc ${}^tU^tWWU = {}^tV^tUUV = {}^tUU = V^{-1}{}^tUUV$, soit ${}^tUUV = V^tUU$, puis,

d'après a), ${}^t\!UU \in \mathbb{R}I_n$.

- **9.** ** Soit $\mathcal{M}_n(\mathbb{R})$ muni du produit scalaire $(A|B) = \operatorname{tr}({}^t AB)$.
- a) Soit $P \in O(n)$. Montrer que les applications $\varphi_P : A \mapsto AP$ et $\psi_P : A \mapsto P^{-1}AP$ sont orthogonales.
- b) Réciproquement, si $P \in GL_n(\mathbb{R})$ et si φ_P ou ψ_P sont orthogonales, est-ce que $P \in O(n)$?
- a) On a $\|\varphi_P(A)\|^2 = \text{tr}({}^tP^tAAP) = \text{tr}({}^tAAP^tP) = \text{tr}({}^tAA) = \|A\|^2$ et $\|\psi_P(A)\|^2 = \operatorname{tr}({}^tP^tAP^tPAP) = \operatorname{tr}({}^tAAP^tP) = \operatorname{tr}({}^tAA) = \|A\|^2.$
- b) Si φ_P est orthogonale, $(\varphi_P(A)|\varphi_P(B)) = (A|B)$ donc $\operatorname{tr}(P^t P^t A B) = \operatorname{tr}(^t A B)$ pour toutes matrices A, B, donc $P^tP^tA - {}^tA \in \mathcal{M}_n(\mathbb{R})^{\perp}$, et cette matrice est nulle pour tout A, donc $P^{t}P = I_{n}$, et P est orthogonale.
- Si ψ_P est orthogonale, on a donc cette fois $P^t P^t A^t (P^{-1}) P^{-1} {}^t A \in \mathcal{M}_n(\mathbb{R})^{\perp}$, donc cette matrice est nulle pour toute matrice A. Cela fait donc que $Q = {}^{t}PP$ commute avec toute matrice A. On sait alors que $Q = \lambda I_n$, donc P est une matrice de similitude.
- **10.** * Soit $u \in E \setminus \{0\}$ (E est préhilbertien réel) et $\lambda \in \mathbb{R}$. On pose $f(x) = x + \lambda(x|u)u$. Déterminer λ pour que $f \in O(E)$, et reconnaître alors f.
- $||f(x)||^2 = ||x||^2 + 2\lambda(x|u)^2 + \lambda^2(x|u)^2 ||u||^2$. Donc, $f \in O(E)$ (f est bien linéaire) si, et seulement si, pour tout $x \in E$, $\lambda(x|u)^2[2 + \lambda||u||^2] = 0$.
 - $\lambda = 0$ donne $f = id_E$.
- Sinon, on prend x = u d'où $\lambda = -\frac{2}{\|u\|^2}$ et alors f est la réflexion par rapport à l'hyperplan $[\mathbb{R}u]^{\perp}$.
- 11. ** a) Soit $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices orthogonales. Montrer que $A + B = I_n$ équivaut à $\begin{array}{l}
 A = {}^{t}B \\
 -1 \notin \operatorname{sp}(A) \\
 A^{3} = -I_{n}
 \end{array}$
 - b) Lorsque n=2,3, trouver les matrices A orthogonales telles que $A^3=-I_n$ et $-1 \notin \operatorname{sp}(A)$.
- a) Si $A + B = I_n$, comme ${}^t\!BB = I_n$ et que ${}^t\!B = I_n {}^t\!A$, on a $I_n = I_n (A + {}^t\!A) + {}^t\!AA = I_n$ $2I_n - (A + {}^tA)$, donc $A + {}^tA = I_n$, soit $B = {}^tA$.

Si AX = -X, BX = 2X, mais, comme B est orthogonale, $\operatorname{sp}(B) \subset \{-1, 1\}$, donc X = 0, et $-1 \notin \operatorname{sp}(A)$.

En multipliant $A + {}^{t}A = I_n$ par A, il vient $A^2 + I_n = A$, puis $A^2 - A + I_n = 0$, que l'on peut à nouveau multiplier par $A + I_n$, ce qui donne bien $A^3 + I_n = 0$.

- Si on a les trois conditions, comme $A^3 + I_n = (A + I_n)(A^2 A + I_n) = 0$, et que $A + I_n$ est inversible, on peut la simplifier en multipliant par son inverse, d'où $A^2 - A + I_n = 0$, que l'on multiplie pr ${}^t\!A$ pour obtenir $A-I_n+{}^t\!A=0$, ce qui donne bien $A+B=I_n$ car $B={}^t\!A$.
- b) Si n=2, alors A n'est pas la matrice d'une réflexion, qui a obligatoirement la valeur propre -1, donc A est la matrice d'une rotation, soit $A = R_{\theta}$, avec $R_{3\theta} = -I_2 = R_{\pi}$, donc $\theta = \frac{\pi}{3} + \frac{2k\pi}{3}$, k = 0, 1, 2. k = 1 donne $\theta = \pi$, ce qui est exclu car $-1 \notin \operatorname{sp}(A)$. Il reste $A = R_{\frac{\pi}{3}}$ ou sa transposée (inverse) $A = R_{5\frac{\pi}{3}}$.

Si n=3, on a alors, comme on l'a vu, $A^2-A+I_n=0$, donc $\operatorname{sp}_{\mathbb{C}}(A)\subset\{-j,-j^2\}$. Cependant, χ_A a obligatoirement une racine réelle car il est réel de degré 3 (on peut par exemple employer le théorème des valeurs intermédiaires en profitant des limites opposées aux infinis), donc il y a une contradiction et ainsi il n'y a pas de solution.

Endomorphismes et matrices symétriques

12. * Soit $A \in \mathcal{M}_n(\mathbb{R})$, nilpotente, et telle que ${}^tAA = A^tA$. Montrer que A est nulle.

On a $A^p = 0$ $(p \ge 1)$. Par commutation, $({}^tAA)^p = {}^tA^pA^p = 0$. Donc, tAA est aussi nilpotente. Mais, par ailleurs, elle est symétrique réelle, donc diagonalisable. Son spectre est réduit à {0}, car elle est annulée par X^p , donc elle est semblable à la matrice nulle, d'où ${}^tAA = 0$. Pour toute X, ${}^t\!AAX = 0$, donc ${}^t\!X^t\!AAX = 0$. Or, c'est $\|u_A(x)\|^2$, dans \mathbb{R}^n euclidien canonique, et cela conduit à A=0.

13. * Soit
$$E$$
 euclidien de base $(\epsilon_1, \dots, \epsilon_n)$. Soit $u: E \to E, x \mapsto \sum_{k=1}^n (\epsilon_k | x) \epsilon_k$.

- a) Montrer que $u \in \mathcal{L}(E)$ est symétrique, et que $\mathrm{sp}(u) \subset \mathrm{I\!R}_+^*$. b) Montrer qu'il existe $v \in \mathcal{L}(E)$ symétrique tel que $v^2 = u^{-1}$.
- c) Montrer que $(v(\epsilon_1), \dots, v(\epsilon_n))$ est une base orthonormée de E.

a)
$$(u(x)|y) = \sum_{k=1}^{n} (\epsilon_k |x|)(\epsilon_k |y|) = (x|u(y))$$
. Si $u(x) = \lambda x$; $(x|u(x)) = \sum_{k=1}^{n} (\epsilon_k |x|)^2 = \lambda ||x||$, donc $\lambda \geq 0$ et $\lambda = 0$ si et seulement si pour tout k , $(\epsilon_k |x|)^2 = 0$ i.e. $x \in E^{\perp} = \{0\}$.

b) Soit
$$\mathcal{B} = (e_1, \dots, e_n)$$
 orthonormée, diagonalisant u . $M_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 & (0) \\ & \ddots & \\ & & (0) & \lambda_n \end{pmatrix}, \lambda_i > 0.$

$$v$$
 tel que $M_{\mathcal{B}}(v) = \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & (0) \\ & \ddots & \\ (0) & \frac{1}{\sqrt{\lambda_n}} \end{pmatrix}$ vérifie $v^2 = u^{-1}$ et v est symétrique car sa matrice

dans une base orthonormale est symétrique.

ns une base orthonormale est symétrique.
c) On a
$$u(u^{-1})(\varepsilon_j) = \varepsilon_j = \sum_{k=1}^n (\varepsilon_k | u^{-1})(\varepsilon_j) \varepsilon_k$$
 donc $(\varepsilon_k | u^{-1})(\varepsilon_j) = \delta_{kj}$ (base).

$$(v(\epsilon_i)|v(\epsilon_j)) = (\epsilon_i|v^2(\epsilon_j)) = (\epsilon_i|u^{-1}(\epsilon_j)) = \delta_{ij} \text{ donc } (v(\epsilon_i)|v(\epsilon_j)) = \delta_{ij}.$$

- **14.** ** Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ de rang r > 0.
- \overline{a}) Dire tout sur tAA , notamment sur ses valeurs propres.
- b) Pour λ valeur propre strictement positive de tAA , on pose $\sigma = \sqrt{\lambda}$. Soit alors Σ la matrice diagonale $\mathrm{Diag}(\sigma_1,\ldots,\sigma_r)$. Montrer que $A=V\left(\begin{array}{cc} \Sigma & 0 \\ 0 & 0 \end{array}\right){}^tU$ avec V et U des matrices orthogonales.
- a) En identifiant matrices et applications linéaires, et matrices colonnes et vecteurs dans la structure euclidienne canonique de \mathbb{R}^n , on a :
 - ${}^t AAX = \lambda X$ implique $||AX||^2 = \lambda ||X||^2$, donc $\lambda \ge 0$.
- $\ker A \subset \ker^t AA$, et, si $^t AAX = 0$, $||AX||^2 = 0$, donc AX = 0, soit $\ker A = \ker^t AA$ et $\operatorname{rg} A = \operatorname{rg}^t AA = r$.
 - ^tAA est de plus symétrique.
- b) Soit (e_1, \ldots, e_n) une base orthonormale propre pour tAA , et telle que (e_{r+1}, \ldots, e_n) soit une base de ker $A = \ker^t AA$. ${}^tAAe_i = \lambda_i e_i$, donc $({}^tAAe_i|e_j) = \lambda_i (e_i|e_j)$ donc $(Ae_i|Ae_j) = \lambda_i \delta_{ij}$, et $(\frac{Ae_1}{\sigma_1}, \ldots, \frac{Ae_r}{\sigma_r})$ est une famille orthonormale.

Analyse. si $A = V\begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}^t U$, alors ${}^tAA = U\begin{pmatrix} \Sigma^2 & 0 \\ 0 & 0 \end{pmatrix}^t U$, donc U diagonalise tAA . Puis $V\begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} = AU$, donc, si (c_1, \ldots, c_n) est la base canonique de \mathbb{R}^n , ayant $Uc_i = e_i$ et $\Sigma e_i = \sigma_i e_i$ si $i \leq r$ et 0 si i > r, on a $V \Sigma c_i = \sigma_i V c_i = AU c_i = Ae_i$.

Synthèse. On complète $(\frac{Ae_1}{\sigma_1}, \dots, \frac{Ae_r}{\sigma_r})$ en une base orthonormale de \mathbb{R}^n , soit (e'_1, \dots, e'_n) . On définit U par $Uc_i = e_i$, donc U diagonalise tAA et V par $Vc_i = e'_i$. On a bien U et V orthogonales, $V\Sigma c_i = \sigma_i Vc_i = Ae_i = AUc_i$ si $i \leq r$ et $AUc_i = 0$ si i > r, donc $V\begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} = AU$.

15. * Réduction et éléments propres de $C = (a_i b_j + a_j b_i) \in \mathcal{M}_n(\mathbb{R})$.

C est symétrique réelle, donc diagonalisable. Par ailleurs,

$$C = A^{t}B + B^{t}A$$
 où $A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$.

Soit $a = (a_1, \dots, a_n)$ et $b = (b_1, \dots, b_n)$.

- \rightarrow Si a=0 ou b=0, alors C=0. On suppose a donc $a\neq 0$ et $b\neq 0$.
- $\rightarrow CX = \lambda X$ s'écrit $A^{t}BX + B^{t}AX = \lambda X$, d'où $(b|x)a + (a|x)b = \lambda x$.

D'autre part, $C_j = b_j A + a_j B$, donc im $u_C \subset \text{Vect}(a, b)$.

i) (a,b) libre. $\operatorname{rg} C = 2$, $\operatorname{car} \ker u_C = (\operatorname{Vect}(a,b))^{\perp}$ ou parce que (b|x)a + (a|x)b = 0 équivaut à (b|x) = (a|x) = 0, et donc $\ker u_C = (\mathbb{R}a)^{\perp} \cap (\mathbb{R}b)^{\perp}$. Si $\lambda \neq 0$ et si $x \in E_{\lambda}(u_C)$, $x \in \operatorname{Vect}(a,b)$: $x = \alpha a + \beta b$ puis $\begin{cases} (b|x) = \alpha(a|b) + \beta ||b||^2 \\ (a|x) = \alpha ||a||^2 + \beta(b|a) \end{cases}$ soit $\begin{cases} \alpha\lambda = \alpha(a|b) + \beta ||b||^2 \\ \beta\lambda = \alpha ||a||^2 + \beta(b|a) \end{cases}$ d'où $\begin{cases} \alpha[(a|b) - \lambda] + \beta ||b||^2 = 0 \\ \alpha||a||^2 + \beta[(b|a) - \lambda] = 0 \end{cases}$. Il y a une solution $\neq (0,0)$, donc $[(a|b) - \lambda]^2 = ||a||^2 ||b||^2$, soit

 $\lambda_{\varepsilon} = (a|b) + \varepsilon ||a|| ||b|| \text{ et alors } \varepsilon \alpha ||a|| = \beta ||b||, \text{ donc } (\alpha, \beta) = \left(\frac{1}{||a||}, \frac{\varepsilon}{||b||}\right). \text{ Ainsi, } E_{\lambda_{\varepsilon}}(u_C) = \mathbb{R}\left(\frac{a}{||a||} + \frac{\varepsilon b}{||b||}\right) \text{ (bissectrices de } (\mathbb{R}a, \mathbb{R}b).$

ii) (a, b) liée : $b = \mu a$ (car $a \neq 0$ et $b \neq 0$). im $u_C = \mathbb{R}a$, ker $u_C = (\mathbb{R}a)^{\perp}$. On a $B = \mu A$, donc $C = 2\mu A^t A$. $u_C(a) = 2\mu \|a\|^2 a$, donc $\lambda = 2\mu \|a\|^2$, avec $E_{\lambda}(u_C) = \mathbb{R}a$.

16. * Soit $A, B \in \mathcal{M}_n(\mathbb{R})$, avec A symétrique positive. On suppose que AB + BA = 0. Montrer que AB = BA = 0. Trouver un exemple où A et B ne sont pas nulles.

On associe u et v à A et B, dans la structure euclidienne canonique de \mathbb{R}^n .

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de réduction de A, avec $u(e_i) = \lambda_i e_i$ où $\lambda_i \geq 0$. Alors, $uv(e_i) = -\lambda_i v(e_i)$. Si $v(e_i) \neq 0$, $-\lambda_i$ se retrouve valeur propre de u, donc elle est positive...comme λ_i , donc $\lambda_i = 0$ et $uv(e_i) = 0$. On a toujours $uv(e_i) = 0$, donc uv = 0. vu = -uv est nul aussi.

Si on prend $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, on a AB = BA = 0 et A est bien symétrique positive.

17. ** Soit E euclidien et $u \in \mathcal{L}(E)$, symétrique, tel que tr(u) = 0.

- a) Montrer qu'il existe $x \neq 0$ tel que (u(x)|x) = 0.
- b) En déduire qu'il existe une base orthonormale (e_1, \ldots, e_n) telle que $(u(e_i)|e_i) = 0$ pour tout i.
- a) Soit $(\varepsilon_1, \dots, \varepsilon_n)$ orthonormale réduisant u avec $u(\varepsilon_i) = \lambda_i \varepsilon_i$. Donc, $(u(x)|x) = \sum_{i=1}^n x_i \lambda_i x_i^2$ si $x = \sum_{i=1}^n x_i \varepsilon_i$. Or, $\sum_{i=1}^n \lambda_i = 0$, donc $x = \sum_{i=1}^n \varepsilon_i$ convient.
- b) Remarquons que la propriété équivaut à construire une base orthonormale où la matrice de u a une diagonale nulle.

La propriété est vraie en dimension 1 car tout endomorphisme est alors une homothétie et seul u=0 a une trace nulle. Supposons la propriété vérifiée et soit u en dimension n. Posons $e_1=\frac{x}{\|x\|}$ et $F=[\mathbb{R}e_1]^{\perp}$, qui est euclidien avec la restriction du produit scalaire de E. Dans

 $\mathcal{B}' = (e_1, e_2', \dots, e_n')$ adaptée à $E = \mathbb{R}e_1 \oplus F$, $A' = \mathcal{M}_{\mathcal{B}'}(u) = \begin{pmatrix} 0 & (*) \\ (*) & B \end{pmatrix}$ avec ${}^tB = B$ car ${}^tA' = A'$ et $\operatorname{tr}(B) = \operatorname{tr}(A') = 0$. Par l'hypothèse de récurrence, il existe $\Omega' \in O(n-1)$ telle que ${}^t\Omega'B\Omega' = C$ ait une diagonale nulle. Posons alors $\Omega = \begin{pmatrix} 1 & (0) \\ (0) & \Omega' \end{pmatrix}$. Elle est orthogonale et il

vient $\Omega A'\Omega = \begin{pmatrix} 0 & (*) \\ (*) & C \end{pmatrix}$, donc cette matrice a ses éléments diagonaux nuls, et Ω détermine une base orthonormale du type cherché.

18. ** Soit E euclidien, h symétrique, $x_0 \in E$ unitaire, p la projection orthogonale de sur $\mathbb{R}x_0$ et u = h + p. On note $\lambda_1 \leq \ldots \leq \lambda_n$ les valeurs propres de h, et $\mu_1 \leq \ldots \leq \mu_n$ celles de u. Montrer que $\lambda_1 \leq \mu_1 \leq \ldots \leq \lambda_n \leq \mu_n$.

Soit (h_i) une base orthonormale de réduction de h avec $h(h_i) = \lambda_i h_i$, ainsi que $H_i = \text{vect}(h_1, \ldots, h_i)$, et de même pour $u: f_i, F_i$.

Pour
$$x \in F_k \cap H_{k-1}^{\perp}$$
, $\lambda_k ||x||^2 + (x|x_0)^2 \le (h(x)|x) + (x|x_0)^2 = (u(x)|x) \le \mu_k ||x||^2$.
Pour $x \in F_k^{\perp} \cap H_{k+1} \cap \mathbb{R} x_0^{\perp}$, $\mu_k ||x||^2 \le (u(x)|x) = (h(x)|x) \le \lambda_{k+1} ||x||^2$.

19. * Résoudre $A^t A A = I_n$ dans $\mathcal{M}_n(\mathbb{R})$.

A est inversible avec $A^{-1} = {}^t AA$ (l'inverse à droite suffit) ou $A^{-1} = A^t A$ (inverse à gauche). Donc, A^{-1} est symétrique, et ainsi A l'est, et elle est diagonalisable. Ainsi, $A^3 = I_n$, donc $X^3 - 1$ annule A, et A n'a que 1 comme valeur propre, soit $A = I_n$.

20. * Soit E euclidien de dimension $n \ge 1$ et $p \in \mathcal{L}(E)$ un projecteur. Montrer qu'il est orthogonal si, et seulement si, pour tout $x \in E$, $||p(x)|| \le ||x||$.

 $\rightarrow p$ est orthogonal : $x = p_F(x) + p_{F^{\perp}}(x)$ et,

$$||x||^2 = ||p_F(x)||^2 + ||p_{F^{\perp}}(x)||^2 \ge ||p_F(x)||^2.$$

 \rightarrow Si, pour tout $x \in E$, $||p(x)|| \le ||x||$ et $p = p_{F,G}$, s'il existe $y \in F$ et $z \in G$, avec $(y|z) \ne 0$, en notant $x_{\lambda} = y + \lambda z$,

$$||x||^2 = ||y||^2 + \lambda^2 ||z||^2 + 2\lambda(y|z) = ||y||^2 + \lambda ||z||^2 \left[\frac{2(y|z)}{||z||^2} + \lambda \right]$$

donc, si
$$\lambda \in \left]0, -\frac{2(y|z)}{\|z\|^2} \right[, \|x_{\lambda}\| < \|y\| = \|p(x_{\lambda})\|.$$

21. ** Soit A et S dans $\mathcal{M}_n(\mathbb{R})$ telles que $A^3 = A^2$ et ${}^tAA = A^tA = S$. Montrer que $S^2 = S$ puis que $A^2 = A$.

La commutation de A et tA fait qu'en général on peut regrouper pour avoir $S^p = {}^tA^pA^p$. Donc, comme $A^3 = A^2$ donc ${}^tA^3 = {}^tA^2$, il vient $S^3 = S^2$.

Par ailleurs, S est symétrique réelle donc diagonalisable, et, comme $X^3 - X^2$ l'annule, ses valeurs propres sont 0 ou 1, donc sa diagonalisabilité fait que $X^2 - X$ l'annule, donc $S^2 = S$.

Mais alors $S = {}^t BB = {}^t AA$ avec $B = A^2$. D'une manière générale, $\ker(M) \subset \ker({}^t MM)$ et, si ${}^t MMX = 0$, il vient ${}^t X^t MMX = 0 = \|MX\|^2$ (norme euclidienne canonique), et finalement, $\ker({}^t MM) = \ker(M)$, donc ici $\ker(S) = \ker(A) = \ker(A^2)$. Mais $A^2(A - I_n) = 0$ donc il vient que $A(A - I_n) = 0$, soit $A^2 = A$.

- **22.** * Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 + {}^tM = I_n$.
- \overline{a} Trouver un polynôme annulateur de M, et montrer que M est diagonalisable.
- b) 0 et 1 sont-elles valeurs propres de M?
- c) Montrer que M est symétrique.

$$P = X^4 - 2X^2 + X = X(X^3 - 2X + 1) = X(X - 1)(X^2 + X - 1),$$

donc M est annulée par un polynôme scindé sur IR, aux racines simples (celles de X^2-X-1 sont $\frac{1}{2}(1\pm\sqrt{5})$) : elle est diagonalisable.

a) En transposant l'égalité, il vient $[{}^tM]^2=I_n-M$. Or, ${}^tM=I_n-M^2$, donc $(I_n-M)^2-I_n+M=0=M^4-2M^2+M=0$.

- b) Elles pourraient être valeurs propres, mais, comme ${}^{t}XM^{2}X + {}^{t}X{}^{t}MX = {}^{t}XX$,
- Si MX = 0, ${}^{t}X^{t}M = 0$ et $M^{2}X = 0$, donc ${}^{t}XX = 0$,

• Si MX = 0, MX = 0 et MX = 0, donc MX = 0, donc MX = 0, et, si MX = X, $tX^tM = tX$ et tX = 0, donc tXX = tX, soit encore tXX = 0, et, si X est une colonne réelle, $tXX = \sum_{i=1}^{n} x_i^2 > 0$ dès que $X \neq 0$, donc ni 0 ni 1 ne sont valeurs

c) M et $M - I_n$ sont inversibles, et, dans $M(M - I_n)(M^2 + M - I_n) = 0$, on peut les simplifier en multipliant par leur inverse, d'où il vient $M^2 + M - I_n = 0$. C'est donc que $M^2 + M = I_n$,

Les matrices M solutions sont donc les ${}^t\!PDP$, avec P orthogonale et D diagonale ayant p $\frac{1}{2}(1+\sqrt{5})$ et n-p $\frac{1}{2}(1-\sqrt{5})$ sur la diagonale.

23. * Soit $X \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{Sp}(X^tX - {}^tXX) \subset \mathbb{R}_+$. Montrer que $X^tX = {}^tXX$.

 $A = X^{t}X - {}^{t}XX$ est symétrique réelle, donc diagonalisable. Dès lors, A est nulle si et seulement si $Sp(A) = \{0\}$, puisqu'alors, elle est semblable à la matrice nulle. A étant de la forme XY - YX, on a $\mathrm{tr}A = 0$. Or, $\mathrm{tr}A = \sum_{\lambda \in \mathrm{Sp}(A)} m_{\lambda}(A)\lambda$ car χ_A est scindé, donc $\mathrm{tr}A$ est

la somme de quantités positives, donc forcément nulles : c'est bien que $Sp(A) = \{0\}$, donc A = 0.

24. * Que dire de $A \in \mathcal{S}_n(\mathbb{R})$ telle que $A^3 - 2A^2 + 3A = 0$?

A est diagonalisable sur IR et ses valeurs propres sont parmi les racines de $X^3 - 2X^2 + 3X =$ $X(X^2-2X+3)$. Or ce polynôme n'a que 0 comme racine réelle donc A est semblable à la matrice nulle et A = 0.

25. * Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{sp}(A + {}^t A) \subset \mathbb{R}_+$. Montrer que $\ker {}^t A = \ker A$.

Notons que $(A(x)|x) = {}^{t}X{}^{t}AX = (x|{}^{t}A(x)) = ({}^{t}A(x)|x).$

 ${}^{t}A + A$ est symétrique. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de réduction de ${}^{t}A + A$,

avec $({}^t\!A + A)(e_i) = \lambda_i e_i$ où $\lambda_i \ge 0$. Si $x = \sum_i x_i e_i$, alors $(({}^t\!A + A)(x)|x) = \sum_i \lambda_i x_i^2$. Plus précisément, on suppose que $\lambda_1 = \ldots = \lambda_p^i = 0$ et $\lambda_i > 0$ ensuite. Si (A(x)|x) = 0, alors $((^tA + A)(x)|x) = 0$, soit forcément $x_i = 0$ pour i > p. Donc, $x = \sum_{i=1}^p x_i e_i \in \ker({}^t A + A)$, et, comme A(x) = 0, on a ${}^{t}A(x) = 0$. Si $({}^{t}A + A)(x) = 0$, on a de même ${}^{t}({}^{t}A)(x) = 0$, soit A(x) = 0.

- **26.** ** Soit, dans E euclidien, u symétrique tel que tous les coefficients de la matrice de u dans une certaine base orthonormale \mathcal{B}_0 soit strictement positifs.
- a) Soit α la plus grande valeur propre de u. Montrer que $(u(x)|x) \leq \alpha ||x||^2$ pour tout x. Pour quels x a-t-on l'égalité?
- b) Si x a pour coordonnées (x_1, \ldots, x_n) dans \mathcal{B}_0 , montrer à l'aide de x' de coordonnées $(|x_1|, \ldots, |x_n|)$ que $|(u(x)|x)| \le \alpha ||x||^2$.
 - c) Montrer que $\alpha > 0$ et que pour tout $\lambda \in \operatorname{sp}(u), |\lambda| \leq \alpha$.
 - d) Montrer que, si $x \in E_{\alpha}(u)$, alors $x' \in E_{\alpha}(u)$, puis que dim $(E_{\alpha}(u)) = 1$.

- a) Soit α la plus grande valeur propre de u. Montrer que $(u(x)|x) \leq \alpha ||x||^2$ pour tout x. Pour quels x a-t-on l'égalité ?
- b) Si x a pour coordonnées (x_1, \ldots, x_n) dans \mathcal{B}_0 , montrer à l'aide de x' de coordonnées $(|x_1|, \ldots, |x_n|)$ que $|(u(x)|x)| \leq \alpha ||x||^2$.
 - c) Montrer que $\alpha > 0$ et que pour tout $\lambda \in \operatorname{sp}(u), |\lambda| \leq \alpha$.
 - d) Montrer que, si $x \in E_{\alpha}(u)$, alors $x' \in E_{\alpha}(u)$, puis que dim $(E_{\alpha}(u)) = 1$.
- a) Soit $C = (\epsilon_1, \dots, \epsilon_n)$ une base orthonormale de E, propre pour u, avec $u(\epsilon_i) = \lambda_i \epsilon_i$. Alors, si $x = \sum_{i=1}^n X_i \epsilon_i$, la base étant orthonormale,

$$(u(x)|x) = (\sum_{i=1}^{n} \lambda_i X_i \epsilon_i | \sum_{i=1}^{n} X_i \epsilon_i) = \sum_{i=1}^{n} \lambda_i X_i^2 \le [\max_{1 \le i \le n} \lambda_i] \sum_{i=1}^{n} X_i^2 = \lambda ||x||^2.$$

L'égalité conduit à $\sum_{i=1}^{n} [\alpha - \lambda_i] X_i^2 = 0$, soit, pour i donné, à $\alpha = \lambda_i$ ou, sinon, à $X_i = 0$, donc l'égalité équivaut à l'appartenance de x à $E_{\alpha}(u)$.

b) La base \mathcal{B}_0 étant orthonormale :

$$(u(x)|x) = (\sum_{i=1}^{n} x_i \sum_{k=1}^{n} a_{ik} e_k | \sum_{j=1}^{n} x_j e_j)$$

$$= (\sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik} x_i e_k | \sum_{j=1}^{n} x_j e_j)$$

$$= \sum_{i=1}^{n} a_{ij} x_i x_j.$$

Donc, si les a_{ij} sont tous positifs pour $i \neq j$:

$$|(u(x)|x)| = |\sum_{i=1}^{n} a_{ii}x_{i}^{2} + \sum_{i \neq j}^{n} a_{ij}x_{i}x_{j}| \le \sum_{i=1}^{n} a_{ii}x_{i}^{2} + \sum_{i \neq j}^{n} a_{ij}|x_{i}||x_{j}| = (u(|x|)||x|).$$

Par a), $(u(|x|)||x|) \le \alpha ||x||^2$ donc $|(u(x)|x)| \le \alpha ||x||^2$.

c) u n'est pas nul car sa matrice du début ne l'est pas. Or si on avait (u(x)|x)=0 pour tout x, $\lambda_i=(u(\varepsilon_i)|\varepsilon_i)=0$ donnerait u=0 car u est diagonalisable. Donc il existe x tel que |(u(x)|x)|>0 d'où $\alpha>0$.

De même, $x = \varepsilon_i$ donne $|\lambda_i| \le \alpha$.

d) Si $u(x) = \alpha x$, avec $x \neq 0$, on a aussi $|x| \neq 0$, et $\alpha ||x||^2 = (u(x)|x) \leq (u(|x|)||x|)$. Comme $||x||^2 = ||x||^2$, on obtient $\alpha ||x||^2 = (u(|x|)||x|)$, et donc, par le cas d'égalité de a), |x| est vecteur propre pour α .

De plus, en reprenant la base d'origine, $\sum_{i,j} a_{ij}[|x_i||x_j|-x_ix_j]=0$ donc, comme somme de termes positifs et avec $a_{ij}>0$, $x_ix_j=|x_ix_j|$. Fixant $x_{i_0}\neq 0$ on voit donc que $x_ix_{i_0}\geq 0$ donc que les x_i sont tous de même signe. De plus, $u(x)=\alpha x$ donne $\sum_{j=1}^n a_{ij}x_j=\alpha x_i$ pour tout i donc $x_i=0$ implique que tous les x_j sont nuls. Si $x\neq 0$, toutes ses coordonnées sont >0 ou sont >0.

Dès lors, si $\dim(E_{\alpha}(u)) \geq 2$, on peut trouver dans ce sous-espace deux vecteurs non nuls et orthogonaux, ce qui est contradictoire avec le fait qu'ils ont tous les deux leurs coordonnées de même signe et non nulles.

27. ** Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$, symétrique, de valeurs propres (distinctes ou non) $\lambda_1, \ldots, \lambda_n$, et de trace nulle. Montrer que $\max(\lambda_1^2, \ldots, \lambda_n^2) \leq \left(1 - \frac{1}{n}\right) \sum_{i,j} a_{ij}^2$.

On a facilement $\sum_{i,j} a_{ij}^2 = \operatorname{tr}(A^2) = \sum_i \lambda_i^2$ après diagonalisation. On a aussi $\sum_i \lambda_i = 0$, donc

$$\lambda_j^2 = \left(\sum_{i \neq j} \lambda_i\right)^2$$
. Par Cauchy-Schwarz, on obtient

$$\lambda_j^2 \le (n-1) \sum_{i \ne j} \lambda_i^2 = (n-1) \sum_i \lambda_i^2 - (n-1) \lambda_j^2.$$

C'est bien que $n\lambda_j^2 \le (n-1)\sum_i \lambda_i^2$.