LOGIKA MATEMATIKA

A.Pengertian Logika dan Proposisi

1. LOGIKA

Logika adalah ilmu yang mempelajari secara sistematis kaidah-kaidah penalaran yang abstrak atau valid.

Logika/Penalaran terbagi atas 2:

- a. Penalaran deduktif: penalaran yang didasarkan pada premis-premis yang diandaikan benar untuk menarik suatu kesimpulan dengan mengikuti pola penalaran tertentu.
- b. Penalaran induktif: penalaran yang didasarkan pada premis-premis yang bersifat faktual untuk menarik kesimpulan yang berlaku.

2. PROPOSISI

Proposisi adalah kalimat berita atau pernyataan berupa Kalimat yang mempunyai nilai kebenaran (benar atau salah).

- a. Pernyataan primer: pernyataan yang tidak mengandung kata hubung kalimat (pernyataan tunggal/pernyataan atom).
- b. Penyataan majemuk: pernyataan yang mengandung satu atau lebih kata hubung kalimat.

Penjelasan:

- "689 > 354" = Ini adalah pernyataan dan merupakan proposisi. Nilainya benar.
- "Tembok Berlin ada di Jepang." = Ini adalah pernyataan dan merupakan proposisi. Nilainya salah.
- "100000 < X" =Ini adalah pernyataan tetapi bukan merupakan proposisi.
 Belum ada nilainya karena merupakan kalimat terbuka. Disebut juga sebagai fungsi proposisi.

B. Negasi, Konjungsi, dan Disjungsi

1. NEGASI

Negasi/ ingkaran merupakan operasi logika yang dilambangkan dengan tanda "~" .atau "¬". Ingkaran pernyataan p adalah ~p atau dibaca "tidak benar bahwa p" atau "non p" atau "negasi dari p".

P	~ P	
В	S	
S	В	

Contoh:

p: Kucing makan ikan.

~p: Kucing tidak makan ikan.

~p : Tidak benar bahwa kucing makan ikan.

2. KONJUNGSI

Konjungsi merupakan operasi logika yang dilambangkan " Λ " dan dibaca "dan". Dari pernyataan p dan pernyataan q dapat disusun pernyataan "p Λ q" dibaca "p dan q".

Contoh:

p: Ibu memasak sosis.

q: Ibu mencuci piring.

p^q: Ibu memasak sosis dan mencuci piring.

P	Q	$\mathbf{P} \wedge \mathbf{Q}$
S	S	S
S	В	S
В	S	S
В	В	В

3. DISJUNGSI

Disjungsi merupakan operasi logika yang dilambangkan "V" dan dibaca "atau". Dari pernyataan p dan pernyataan q dapat disusun pernyataan" p V q" dibaca "p atau q".

Disjungsi dibedakan menjadi dua macam yaitu disjungsi inklusif dan disjungsi eksklusif.

a. Disjungsi inklusif

adalah jika p dan q merupakan dua buah per-nyataan maka "p \mathbf{v} q" bernilai benar (B) jika p dan q keduanya bernilai benar, atau salah satu bernilai salah, sebaliknya "p \mathbf{v} q" bernilai salah (S) jika keduanya bernilai salah.

P	Q	PVQ		
В	ВВ			
В	S	В		
S	В	В		
S	S	S		

b. Disjungsi Eksklusif

adalah jika p dan q merupakan dua buah pernyataan maka "p **v** q" bernilai benar (B) jika salahsatu bernilai salah (S) atau salah satu bernilai (B), sebaliknya "p **v** q" bernilai salah (S) jika keduanya bernilai benar (B) atau keduanya bernilai salah (S).

P	Q	PVQ	
В	В	S	
В	S	В	
S	В	В	
S	S	S	

C.Implikasi dan Biimplikasi

1. IMPLIKASI

Implikasi(Conditional) adalah operasi penggabungan dua buah pernyataan yang menggunakan penghubun logika "Jika... Maka..." yang lambangnya "→ " . implikasi dari pernyataan P dan Q ditulis " P → Q" dan dibaca "Jika P maka Q".

P	Q	P → Q		
В	В	В		
В	S	S		
S	В	В		
S	S	В		

2. BIIMPLIKASI

Biimplikasi(bikondisional) adalah pernyataan majemuk yang menggunakan penghubung logika "... Jika dan hanya jika..." dan diberi lambang " ← → ". Biimplikasi dari pernyataan P dan ditulis "P ← → Q" dibaca "P jika dan hanya jika Q.

P	Q	P←→Q		
В	В	В		
В	S	S		
S	В	S		
S	S	В		

D. Varian proposisi bersyarat

Konvers : q à p
 Invers : ~p à ~q

• Kontraposisi : ~q à ~p

Contoh:

Perhatikan contoh kondisional berikut:

- "Jika Pak Ali seorang haji, maka ia seorang muslim"
 - ➤ Konvers : "Jika Pak ali seorang muslim, maka ia seorang haji"
 - ➤ Invers : "Jika Pak Ali bukan seorang haji, maka ia bukan seorang muslim"
 - ➤ Kontrapositif: "Jika Pak Ali bukan seorang muslim, maka ia bukan

seoTaghail. kebenaran dari Konvers, Invers dan Kontrapositif

				Kondisi onal	Konvers	Invers	Kontra positif
р	q	~p	~q	p⇒q	q⇒p	~ p⇒~ q	~ q ⇒~ p
В	В	S	S	В	В	В	В
В	S	S	В	S	В	В	S
S	В	В	S	В	S	S	В
S	S	В	В	В	В	В	В

E. Penarikan Kesimpulan (Inferensi)

Dalam logikamatematika ada beberapa penarikan kesimpulan yang sah, diantaranya adalah :

➤ Modus Ponen

Pernyataan 1 : $p \Rightarrow q$ benar

> Reservatagna: p benar Kesimpulan : q benar

Pernyataan 1 : p ⇒ q benar <u>Pernyataan 2 : ~q benar</u> Kesimpulan : ~p benar

> Silogisme hipotetis

Pernyataan 1 : $p \Rightarrow q$ benar <u>Pernyataan 2 : $q \Rightarrow r$ benar</u> Kesimpulan : $p \Rightarrow r$ benar

➤ Silogisme disjungtif

 $\begin{array}{l} p \ v \ q \\ \sim p \end{array}$

Kesimpulan: q

➤ Simplifikasi

 $p \wedge q$

kesimpulan : p

➤ Penjumlahan

P

 $Kesimpulan: p \ v \ q$

➤ Konjungsi

p

q Kesimpulan : p ∧ q

F. Argumen

Argumen dikatakan valid jika konklusi benar dan semua hipotesisnya benar, jika sebaliknya argumen dikatakan invalid. Argumen Adalah sederetan proposisi yang dituliskan sebagai :

 p_1

 \mathbf{p}_2

.

 \mathbf{p}_n

Kesimpulan q

HIMPUNAN

A.Definisi Himpunan

Himpunan (*set*) adalah kumpulan objek-objek yang *berbeda*. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa. Tiap mahasiswa berbeda satu sama lain.

B. Cara Penyajian Himpunan

1. ENUMERASI

Setiap anggota himpunan didaftarkan secara rinci.

Contoh:

- Himpunan empat bilangan asli pertama: $A = \{1, 2, 3, 4\}$.
- Himpunan lima bilangan genap positif pertama: $B = \{4, 6, 8, 10\}$.
- $C = \{\text{kucing, } a, \text{Amir, } 10, \text{ paku}\}$

```
R = { a, b, {a, b, c}, {a, c} }
C = {a, {a}, {{a}} }
K = { {} }
Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }
Himpunan bilangan bulat ditulis sebagai {..., -2, -1, 0, 1, 2, ...}
```

Keanggotaan

 $x \in A$: x merupakan anggota himpunan A;

 $x \notin A : x$ bukan merupakan anggota himpunan A.

Contoh:

Misalkan:
$$A = \{1, 2, 3, 4\}, R = \{a, b, \{a, b, c\}, \{a, c\}\}\$$

 $K = \{\{\}\}\$

maka

 $3 \in A$

 $\{a,b,c\}\in R$

$$c \notin R$$
, dan, $\{\} \in K$, dan $\{\} \notin R$

2. SIMBOL-SIMBOL BAKU

P = himpunan bilangan bulat positif = { 1, 2, 3, ... }

 $N = \text{himpunan bilangan alami (natural)} = \{1, 2, ...\}$

 $Z = himpunan bilangan bulat = \{ ..., -2, -1, 0, 1, 2, ... \}$

 \mathbf{Q} = himpunan bilangan rasional

R = himpunan bilangan riil

C = himpunan bilangan kompleks

Himpunan yang universal: **semesta**, disimbolkan dengan U.

Contoh: Misalkan U = $\{1, 2, 3, 4, 5\}$ dan A adalah himpunan bagian dari U, dengan $A = \{1, 3, 5\}$.

Notasi: { x | syarat yang harus dipenuhi oleh x }

3. NOTASI PEMBENTUK HIMPUNAN

Contoh

(i) A adalah himpunan bilangan bulat positif kecil dari 5

$$A = \{ x \mid x \text{ bilangan bulat positif lebih kecil dari } 5 \}$$

atau
$$A = \{ x | x | P, x < 5 \}$$

yang ekivalen dengan $A = \{1, 2, 3, 4\}$

(ii) $M = \{ x \mid x \text{ adalah mahasiswa yang mengambil kuliah matematika diskrit} \}$

4. DIAGRAM VENN

Contoh:

Misalkan
$$U = \{1, 2, ..., 7, 8\},$$

 $A = \{1, 2, 3, 5\} \text{ dan } B = \{2, 5, 6, 8\}.$

Diagram Venn:

C. KARDINALITAS

Jumlah elemen di dalam A disebut **kardinal** dari himpunan A. Notasi: n(A) atau |A|

Contoh:

- (i) $B = \{ x \mid x \text{ merupakan bilangan prima lebih kecil dari 20 } \}$, atau $B = \{2, 3, 5, 7, 11, 13, 17, 19 \}$ maka |B| = 8
- (ii) $T = \{\text{kucing, } a, \text{Amir, } 10, \text{ paku}\}, \text{ maka } |T| = 5$
- (iii) $A = \{a, \{a\}, \{\{a\}\}\}, \text{ maka } |A| = 3$

D. HIMPUNAN KOSONG (NULL SET)

Himpunan dengan kardinal = 0 disebut himpunan kosong ($null\ set$). Dengan Notasi : \emptyset atau $\{\}$.

Contoh

(i)
$$E = \{ x \mid x < x \}$$
, maka $n(E) = 0$

- (ii) $P = \{ \text{ orang Indonesia yang pernah ke bulan } \}$, maka n(P) = 0
- (iii) $A = \{x \mid x \text{ adalah akar persamaan kuadrat } x^2 + 1 = 0 \}, n(A) = 0$
- himpunan {{ }} dapat juga ditulis sebagai {∅}
- himpunan $\{\{\}, \{\{\}\}\}\$ dapat juga ditulis sebagai $\{\emptyset, \{\emptyset\}\}$
- {∅} bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong.

E. HIMPUNAN BAGIAN (SUBSET)

Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B. Dalam hal ini, B dikatakan superset dari A. dengan Notasi: $A \subseteq B$.

Diagram Venn:

Contoh:

- (i) $\{1, 2, 3\} \subseteq \{1, 2, 3, 4, 5\}$
- (ii) $\{1, 2, 3\} \subseteq \{1, 2, 3\}$
- (iii) N Z R C
- (iv) Jika $A = \{ (x, y) \mid x + y < 4, x \ge, y \ge 0 \}$ dan $B = \{ (x, y) \mid 2x + y < 4, x \ge 0 \text{ dan } y \ge 0 \}$, maka B A.

Teorema 1

- Untuk sembarang himpunan A berlaku hal-hal sebagai berikut:
- A adalah himpuan bagian dari A itu sendiri (yaitu, *A A*).
- ➤ Himpuan kosong merupakan himpunan bagian dari (A)
- ightharpoonup Jika *A* ⊆ *B* dan *B* ⊆ *C*, maka *A* ⊆ *C*
- \triangleright $A \subseteq B$ berbeda dengan $A \subseteq B$
 - (i) $A \subset B$: A adalah himpunan bagian dari B tetapi $A \neq B$.

A adalah himpunan bagian sebenarnya (proper subset) dari B.

Contoh: {1} dan {2, 3} adalah proper subset dari {1, 2, 3}

- (ii) $A \subseteq B$: digunakan untuk menyatakan bahwa A adalah himpunan bagian (subset) dari B yang memungkinkan A = B
- ➤ *A* dan *A A*, maka dan *A* disebut himpunan bagian tak sebenarnya (*improper subset*) dari himpunan *A*.

Con : $A = \{1, 2, 3\}$, maka $\{1, 2, 3\}$ dan \emptyset adalah *improper subset* dari A.

F. HIMPUNAN YANG SAMA

- \triangleright A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.
- \blacktriangleright A=B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka $A \ne B$.
- ightharpoonup Notasi : $A = B \leftrightarrow A \subseteq B \operatorname{dan} B \subseteq A$.
- ➤ Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut:
 - (a) A = A, B = B, dan C = C
 - (b) jika A = B, maka B = A
 - (c) jika A = B dan B = C, maka A = C

G. HIMPUNAN YANG EKIVALEN

Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama. Notasi : $A \sim B \leftrightarrow |A| = |B|$

H. HIMPUNAN SALING LEPAS

Dua himpunan A dan B dikatakan saling lepas (disjoint) jika keduanya tidak memiliki elemen yang sama. Notasi : $A /\!/ B$

Diagram Venn:

I. HIMPUNAN KUASA

Himpunan kuasa (*power set*) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri. Notasi : P(A) atau 2^A

Jika
$$|A| = m$$
, maka $|P(A)| = 2^m$.

Contoh: Jika $A = \{ 1, 2 \}$, maka $P(A) = \{ , \{ 1 \}, \{ 2 \}, \{ 1, 2 \} \}$

J. OPERASI TERHADAP HIMPUNAN

1. Irisan (intersection)

• Notasi : $A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$

Contoh

- (i) Jika $A = \{2, 4, 6, 8, 10\}$ dan $B = \{4, 10, 14, 18\}$, maka $A \cap B = \{4, 10\}$
- (ii) Jika $A = \{ 3, 5, 9 \}$ dan $B = \{ -2, 6 \}$, maka A B =. Artinya: A // B.

2. Gabungan (union)

• Notasi : $A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$

Contoh:

- (i) Jika $A = \{ 2, 5, 8 \}$ dan $B = \{ 7, 5, 22 \}$, maka $A B = \{ 2, 5, 7, 8, 22 \}$
- (ii) A = A. 3.

3. Komplemen (complement)

Notasi: $\overline{A} = \{ x \mid x \in U, x \notin A \}$

Contoh:

Misalkan $U = \{ 1, 2, 3, ..., 9 \},$

(i) jika
$$A = \{1, 3, 7, 9\}$$
, maka $\overline{A} = \{2, 4, 6, 8\}$

(ii) jika
$$A = \{ x \mid x/2 \mid P, x < 9 \}$$
, maka $\overline{A} = \{ 1, 3, 5, 7, 9 \}$

4. Selisih (difference)

Notasi: $A - B = \{ x \mid x \in A \operatorname{dan} x \notin B \} = A \cap \overline{B}$

Contoh:

- (i) Jika $A = \{ 1, 2, 3, ..., 10 \}$ dan $B = \{ 2, 4, 6, 8, 10 \}$, maka $A B = \{ 1, 3, 5, 7, 9 \}$ dan $B A = \{ 1, 2, 3, ..., 10 \}$
- (ii) $\{1, 3, 5\} \{1, 2, 3\} = \{5\}$, tetapi $\{1, 2, 3\} \{1, 3, 5\} = \{2\}$

5. Beda Setangkup (Symmetric Difference)

Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh:

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A B = \{ 3, 4, 5, 6 \}$

6. Perkalian Kartesian (cartesian product)

Notasi: $A \times B = \{(a, b) \mid a \in A \text{ dan } b \in B \}$

- Contoh:
- (i) Misalkan $C = \{ 1, 2, 3 \}$, dan $D = \{ a, b \}$, maka $C \times D = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$
- (ii) Misalkan A = B = himpunan semua bilangan riil, maka $A \times B = \text{himpunan semua titik di bidang datar.}$

K. PARTISI

Partisi dari sebuah himpunan A adalah sekumpulan himpunan bagian tidak kosong $A_1, A_2, ...$ dari A sedemikian sehingga:

- (a) $A_1 \cup A_2 \cup \ldots = A$, dan
 - (b) $A_i \cap A_j = \emptyset$ untuk $i \neq j$

Contoh: Misalkan $A = \{1, 2, 3, 4, 5, 6, 7, 8\},$

maka { {1}, {2, 3, 4}, {7, 8}, {5, 6} } adalah partisi *A*.