NAME:

NUMBER:

Closed (Book+Notes+All Electronic Devices)
Duration 120 minutes

Question 1 (25 pts)

- (a) (5 pts) Given a non-deterministic finite automaton (NFA) $N = (Q, \Sigma, \delta, Q_0, F)$ specify (i) the domain and range of its extended transition function δE and (ii) define the language $L \subseteq \Sigma^*$ accepted by N in terms of δE and Q_0 and F.
- (b) (8 pts) Consider the language $L \subseteq \{0,1\}^*$ where for every string s in L of length greater or equal to 2, s has a substring '11'. Write down a regular expression E corresponding to this verbally expressed language L.
- (c) (12 pts) Construct an ε -NFA \boldsymbol{A} , an NFA \boldsymbol{B} , a DFA \boldsymbol{C} and a minimal state DFA \boldsymbol{D} that all accept \boldsymbol{L} defined in part (b).

NAME:

NUMBER:

Closed (Book+Notes+All Electronic Devices)
Duration 120 minutes

Question 2 (25 pts)

- (a) (9 pts) State the Pumping Lemma for Regular Languages.
- (b) (8 pts) Consider the language $L_1 = \{0^n 1^m : n.m = even number, n,m \ge 0 \}$

State whether L_1 is a regular language or not. Justify your statement by either constructing an NFA that accepts L_1 or a regular expression corresponding to L_1 ; or by using the pumping lemma.

(c) (8 pts) Repeat part (b) for L_2 where

 $L_2 = \{0^n 1^m \ 0^k; \ n+k=m, \ n,m,k \ge 0\}$

NAME:

NUMBER:

Closed (Book+Notes+All Electronic Devices)
Duration 120 minutes

Question 3 (25 pts)

(a) (7 pts) Define a deterministic push-down automaton (DPDA)

 $P = (Q, \Sigma, \Gamma, \delta, q_{\theta}, Z_{\theta}, F)$

(b) (18 pts) Given the language $L = (\omega \in \{0,1\}^* \mid \omega = 0^k 1^p 0^{2k}; k > 0, p > 0)$

Construct a CFG G in Chomsky Normal Form (CNF) generating the language L.

- (c) (5 pts) Construct a DPDA P to accept L.
- (d) (5 pts) Sketch the parse tree for the string 0100 based on your grammar G in CNF.

IVAIVIE	

NUMBER:

Closed (Book+Notes+All Electronic Devices)
Duration 120 minutes

Question 4 (25 pts)

- (a) (10 pts) Define a non-deterministic Turing Machine (NDTM) M (i) deciding and (ii) semideciding a language $L \subseteq \Sigma_0^*$ -#.
- (b) (15 pts) Construct a DTM M in compositional tabular or a graphical form that **decides** the language: $L:=(\omega \in \Sigma_0^* \mid \omega = \omega^R)$ where ω^R denotes ω in reverse with $\Sigma_0 \subseteq \Sigma$ {#}.