

Projeto Final da Fase 2: Etapa 1 – Definição de Requisitos e Lista de Materiais

Estação Meteorológica Compacta

Aluno: Antonio Carlos Ferreira de Almeida

Data: 17/07/2025

Sumário

a) Escopo do projeto	3
1 – Apresentação do projeto (Problema a ser resolvido).	3
2 – Objetivos do projeto.	4
3 – Principais requisitos funcionais e não funcionais.	4
4 – Descrição do funcionamento.	4
5 – Justificativa.	4
6 – Originalidade.	4
b) Especificação do hardware.	5
1 – Diagrama em blocos.	5
2 – Função de cada bloco.	5
3 – Configuração de cada bloco.	5
4 – Especificações.	8
5 – Lista de materiais.	8
6 – Descrição da pinagem.	9
7 – Circuito completo do hardware.	9
c) Especificação do firmware/software.	10
1 – Blocos funcionais.	10
2 – Descrição das funcionalidades.	10
3 – Definição das Variáveis e Constantes do Sistema.	10
4 – Fluxograma.	11
5 – Inicialização.	11
6 – Configurações dos registros.	12
7 – Estrutura e formato dos dados.	12
8 – Organização da memória.	12
9 – Protocolo de comunicação.	12
10 – Formato do pacote de dados.	12
d) Execução do projeto	12
1 – Metodologia.	12
2 – Testes de validação.	12
3 – Discussão dos Resultados.	13
4 – Link do Vídeo do projeto funcionando.	13
e) Referência Bibliográficas	13

1 - https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html#pico-1 family	
2 - https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf1	3
3 - https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf1	3
4- https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf1	3
5 - https://datasheets.raspberrypi.com/picow/connecting-to-the-internet-with-pico-w.pdf	3
Índice de figuras	
Figura 3: Diagrama de Blocos.	
Figura 5: Alimentação, GND e Controle na Bitdoglab.	
Figura 6: Sensor Interno RP2040	
Figura 8: Hardware Relativo à.	
Figura 9: Hardware relativo	
Figura 10: Conexões de Hardware	
Figura 11: Fontes de Alimentação.	
Figura 13: Circuito completo.	0
Figura 14: Blocos Funcionais1	0
Figura 15: Descrição das Funcionalidades	
Figura 16: Fluxograma Eclo-Piu-Piu	
Figura 17: Inicialização do Software	
Figura 18: Configurações dos Registros	
Figura 19: Exemplo de Pacote de dados	2
Índice de Tabelas	
Tabela 1: Lista de Materiais	9
Tabela 2: Pinagem	9
Tabela 3: Alimentação.	
Tabela 4: Variáveis do Sistema	
Tabela 5: Constantes do Sistema	1
a) Escopo do projeto	

1 – Apresentação do projeto (Problema a ser resolvido).

Medições ambientais manuais são ineficientes e imprecisas. Há necessidade de uma solução de baixo custo, contínua, confiável e local para monitoramento de temperatura, umidade e pressão. Este projeto visa disponibilizar dados de um dispositivo embarcado de forma segura na nuvem, sem expor diretamente o dispositivo, usando tunelamento seguro (Cloudflare Tunnel ou AWS IoT). O projeto se propõe a solucionar este problema.

 \triangleright

Título do projeto: - ???.

Link da versão final do algoritmo do projeto:

2 – Objetivos do projeto.

configuração de temperatura via Wi-Fi e ajustes via aplicativo.

3 - Principais requisitos funcionais e não funcionais.

• Funcionais:

- Medir temperatura, umidade, pressão atmosférica em tempo real
- Exibir as informações em um display LCD (ou OLED).
- o Gravar dados em cartão SD (opcional).
- Enviar dados via **UART ou USB serial** para análise externa (opcional)..
- Configurar um servidor HTTP local
- o Instalar e configurar Cloudflare Tunnel (cloudflared) ou AWS IoT.
- Expor de forma segura o serviço local sem abrir portas no roteador.

Não Funcionais:

- o Baixo consumo de energia.
- o Código modular e fácil de manter.
- Interface amigável.
- Precisa funcionar de forma autônoma (sem computador ligado) (opcional).
- o Alta confiabilidade nas leituras.
- Segurança reforçada (HTTPS, tunelamento).
- o Alta disponibilidade (rede local pode cair e reconectar).
- o Escalável para vários sensores ou controladores.

4 – Descrição do funcionamento.

O sistema é baseado em ...:

1. .

5 - Justificativa.

O projeto

.

6 - Originalidade.

0

_

b) Especificação do hardware.

1 – Diagrama em blocos.

Figura 1: Diagrama de Blocos.

2 – Função de cada bloco.

- Sistema de Controle (Raspberry Pi Pico W) Bitdoglab: é um projeto
 - ο.
- Sensores
 - o O sensor de temperatura
 - 0
- Atuadores
 - ο.
- Interface do Usuário
 - OLED 128x64:
- Fontes de Alimentação
 - No processo de prova de amostra do projeto foram
- 3 Configuração de cada bloco.

Sistema de Controle (Raspberry Pi Pico W) Bitdoglab

Configurado para orquestrar toda a aplicação,

 A seguir é apresentada as conexões que saíram do IDC – 14PIN, como demonstrado na figura abaixo:

Figura 2: Alimentação, GND e Controle na Bitdoglab.

Sensores

• Sensor de temperatura:

Figura 3: Sensor Interno RP2040.

- Sensor
 - o Para usar

Figura 4: Sensor.

Atuadores

• A configuração ...:

Figura 5: Hardware Relativo à.

• A configuração ...:

Figura 6: Hardware relativo

Interface do Usuário

• Conexões:

SDA: Conectado a.

o **SCL:** Conectado a.

o **VCC:** Alimentado com 3.3Vcc.

o **GND:** Conectado ao GND.

Fontes de Alimentação

• O sistema pode...

Figura 8: Fontes de Alimentação.

4 – Es	specificações.
•	Capacidade:
	o
•	Tamanho:
	o
•	Confiabilidade na Temperatura:
	o O sistema de controle
•	Demais:
	。 A

• Consumo de Energia:

o A...

o O sistema opera ...

Monitoramento e Interface:

- Durabilidade e Material:
 - o A estrutura ...
- Segurança:
 - o O controle de ...
- Preço e Garantia:
 - o O projeto foi ...

5 - Lista de materiais.

Quantidade	Descrição
------------	-----------

01	Raspberry Pi Pico W - Bitdoglab
01	OLED 128×64 0.96" I2C SSD1306 - Bitdoglab
01	Sensor BME280
01	Conector IDC Macho 2×7 180° - Bitdoglab
02	Led's 1W - BDL
01	Protoboard ou PCB
01	Fonte 5Vcc (USB)
01	Opcional - Cartão microSD + Módulo Leitor
0,5 m	Fios d 2 mm

Tabela 1: Lista de Materiais.

Evolução Possível:

Quantidade	Descrição
01	Adicionar interface web
01	Logar dados em nuvem via MQTT
01	Incorporar bateria recarregável e painel solar
01	Aplicar filtragem (ex: Kalman) para melhorar precisão
02	Embutir alertas por e-mail em eventos críticos

6 - Descrição da pinagem.

IDC-14PIN	Bitdoglab	Descrição
VCC - 3	3.3V	Alimentação do circuito da lâmpada
GND - 1	GND	GND - Ambos atuadores

Tabela 2: Pinagem.

Alimentação	Origem	Descrição

Tabela 3: Alimentação.

7 - Circuito completo do hardware.

• Todas as referências com relação a pinagem...

Figura 9: Circuito completo.

c) Especificação do firmware/software.

1 - Blocos funcionais.

Figura 10: Blocos Funcionais.

2 - Descrição das funcionalidades.

Figura 11: Descrição das Funcionalidades.

3 - Definição das Variáveis e Constantes do Sistema.

Variável	Tipo	Descrição

Tabela 4: Variáveis do Sistema.

Constantes	Tipo	Descrição

Tabela 5: Constantes do Sistema.

4 – Fluxograma.

• ...

Figura 12: Fluxograma Eclo-Piu-Piu.

5 – Inicialização.

Figura 13: Inicialização do Software.

6 - Configurações dos registros.

Figura 14: Configurações dos Registros

7 – Estrutura e formato dos dados.

✓ *I2C (OLED SSD1306):*

....

✓ ADC:

✓ OLED:

...

✓ GPIO:

. . .

8 – Organização da memória.

- > Endereços de memória utilizados indiretamente:
 - ...

•

9 - Protocolo de comunicação.

• I2C (Inter-Integrated Circuit) é um ...

10 - Formato do pacote de dados.

• Pacote I2C ...

Figura 15: Exemplo de Pacote de dados.

d) Execução do projeto

1 - Metodologia.

> Basicamente, ...

2 - Testes de validação.

Abaixo encontram-se os testes e validações de software...

3 - Discussão dos Resultados.

- Objetivos alcançados:
 - ✓ A Bitdoglab foi configurada para controlar ...

4 - Link do Vídeo do projeto funcionando.

Link do YouTube, não listado:

e) Referência Bibliográficas

- 1 https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html#pico-1-family
- 2 https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
- 3 https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
- 4- https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf
- 5 https://datasheets.raspberrypi.com/picow/connecting-to-the-internet-with-pico-w.pdf