

INVAR: Inversion Aware Resource Provisioning and Workload Scheduling for Edge Computing

Bin Wang, David Irwin, Prashant Shenoy and Don Towsley

Manning College of Information and Computer Sciences, UMass Amherst, USA

作者团队背景

Research Interests

- Cloud Computing & Cloud Platform
- Data Center & Edge Server
- Queueing System & Response Time
- Resource Allocation
- Amazon Web Services

https://people.cs.umass.edu/~binwang/

目录

- > Introduction
- > Background
- > Design
- > Evaluation
- > Conclusion

边缘计算 => 云计算:

高实时性高并发的应用场景

更低的传输延时

边缘性能倒置现象:

边缘优先响应时间 > 云计算响应时间

响应时间 = 传输延迟 + 排队延迟 +服务时间

常见的解决方法:

- 1. 增加服务器资源
- 2. 重定向至其他数据中心

概率调度方法:

用户请求概率地指向某个数据中心

绿色:用户地址

红色:数据中心(中间为云,四周为边缘)

有向线段:请求发送给某个数据中心的概率

Background

单个数据中心的M/M/c队列

L个用户位置(顾客)

K个数据中心

每个数据中心j有 c_i 个服务器(服务台)

用户i平均请求达到率为γ_i

数据中心j平均服务率为 μ_i

数据中心j开销为 $c_j\omega_i$

概率调度M/M/c队列

数据中心j的有效到达率:

$$\lambda_{j} = \sum_{i=1}^{L} \gamma_{i} * p_{ij}$$

在数据中心的平均花费时间 = 等待时间 + 服务时间:

$$T_j^D = rac{C(c_j,\lambda_j/\mu_j)}{c_j\mu_j-\lambda_j} + rac{1}{\mu_j}$$

其中:

$$C(c,\lambda/\mu) = rac{(rac{(c
ho)^c}{c!})(rac{1}{1-
ho})}{\sum_{k=0}^{c-1}rac{(c
ho)^k}{k!}+rac{(c
ho)^c}{c!}rac{1}{(1-
ho)}} \quad
ho = rac{\lambda}{c\mu}$$

所有用户的平均响应时间:

$$T(c,p) = \sum_{i=1}^{L} rac{\gamma_i}{||\gamma||_1} \sum_{j=1}^{K} p_{ij} (T_{ij}^N + T_j^D)$$

$$\begin{aligned} & \underset{c,P}{\min} \quad T(c,P) \\ & \text{s.t.} \quad 0 \leq p_{i,j} \leq 1 \quad \forall i \in 1 \dots L, \forall j \in 1 \dots K \\ & 0 \leq c_j \leq C_j \qquad \forall j \in 1 \dots K \\ & \sum_{j=1}^K p_{i,j} = 1 \qquad \forall i \in 1 \dots L \\ & \lambda_j < c_j \mu_j \qquad \forall j \in 1 \dots K \\ & \sum_{j=1}^K c_j w_j \leq W \end{aligned}$$

NP难!

$$egin{align} C(c,\lambda/\mu) &\leq [rac{\lambda}{c\mu} + \eta(rac{\Phi(lpha)}{\phi(lpha)} + rac{2}{3}rac{1}{\sqrt{c}})]^{[1]} \ \phi(lpha) &= rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}lpha^2} \qquad \Phi(lpha) &= rac{1}{2}[1 + erf(rac{lpha}{\sqrt{2}})] \ erf(x) &= rac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt \ lpha &= \sqrt{-2c(1-
ho + ln
ho)} \qquad \eta = (c-\lambda/\mu)/\sqrt{c} \qquad
ho &= rac{\lambda}{c\mu} \ . \end{align}$$

$$\min_{c,P} \quad T'(c,P) + \tau \left(\sum_{j=1}^{K} c_j w_j - W \right)^2$$
s.t. $0 \le p_{i,j} \le 1 \quad \forall i \in 1 \dots L, \forall j \in 1 \dots K$

$$0 \le c_j \le C_j \qquad \forall j \in 1 \dots K$$

$$\sum_{j=1}^{K} p_{i,j} = 1 \qquad \forall i \in 1 \dots L$$

$$\lambda_j < c_j \mu_j \qquad \forall j \in 1 \dots K$$

PERT-OPT

$$\begin{aligned} & \underset{P}{\min} \quad T(c,P) \\ & \text{s.t.} \quad 0 \leq p_{i,j} \leq 1 \quad \forall i \in 1 \dots L, \forall j \in 1 \dots K \\ & \sum_{j=1}^{K} p_{i,j} = 1 & \forall i \in 1 \dots L \\ & \lambda_j < c_j \mu_j & \forall j \in 1 \dots K \end{aligned}$$

FLOW-OPT

Algorithm 1 Inversion Aware Deployment Plan Search Algorithm

```
Input: L, \gamma, K, C, \mu, w, T^N, T^{cloud}, \delta, W, \epsilon
Output: c, P
 1: T^{target} \leftarrow T^{cloud} - \delta
 2: W^l \leftarrow 0
 3: W^u \leftarrow W
    while W^u - W^l > \epsilon do
        W^m \leftarrow \frac{W^l + W^u}{2}
        status, c, P \leftarrow \text{PERF\_OPT}(L, \gamma, K, C, \mu, w, W^m)
        if status = solved and T'(c, P) \leq T^{target} then
           W^u \leftarrow W^m
        else
           W^l \leftarrow W^m
 10:
        end if
11:
12: end while
13: status, c, P \leftarrow \text{PERF\_OPT}(L, \gamma, K, C, \mu, w, W^u)
14: if T'(c, P) \leq T^{Target} then
        c \leftarrow \text{round}(c)
 15:
        P \leftarrow \text{FLOW\_OPT}(L, \gamma, \mu, c)
 16:
        return c, P
 17:
18: else
        return "NO SOLUTION FOUND"
20: end if
```

STEP1: 二分查找得出最小成本

利用PERT-OPT得出分配向量

STEP2: 分数解转为整数解

STEP3: 通过FLOW-OPT得出分配概率

Julia + JuMP

PERT-OPT: Artelys Knitro + 多起点

FLOW-OPT: Ipopt + 内点法

数值模拟: 离散事件模拟器DES

模拟场景

绿色:用户地址[$\gamma_i = 15$]

红色:数据中心(中间为云,四周为边缘)

 $[\mu_j = 10, \omega_j = 1]$

云数据中心容量上限为50,边缘数据中心为10

概率调度部署计划 (服务器数量 16 => 24)

2013 年 8 月 Akamai

美国东北部 (请求主要分布四大城)

欧洲地区(请求分布更为均匀)

出现了边缘性能倒置

Algorithm 1 Inversion Aware Deployment Plan Search Algorithm

```
Input: L, \gamma, K, C, \mu, w, T^N, T^{cloud}, \delta, W, \epsilon
Output: c, P
 1: T^{target} \leftarrow T^{cloud} - \delta
 2: W^l \leftarrow 0
 3: W^u \leftarrow W
 4: while W^u - W^l > \epsilon do
        W^m \leftarrow \frac{W^l + W^u}{2}
        status, c, P \leftarrow \text{PERF\_OPT}(L, \gamma, K, C, \mu, w, W^m)
        if status = solved and T'(c, P) \leq T^{target} then
         W^u \leftarrow W^m
        else
           W^l \leftarrow W^m
 10:
        end if
 11:
12: end while
 13: status, c, P \leftarrow \text{PERF\_OPT}(L, \gamma, K, C, \mu, w, W^u)
 14: if T'(c, P) \leq T^{Target} then
        c \leftarrow \text{round}(c)
        P \leftarrow \text{FLOW\_OPT}(L, \gamma, \mu, c)
        return c, P
17:
18: else
        return "NO SOLUTION FOUND"
20: end if
```

必然的延时降低

28			· ·
	95% CI	mean	Method — Distribution
•	_	0.0229955	Numerical Analysis — $E(\gamma)$
	(0.0229797, 0.0230415)	0.0230106	Simulation — $E(\gamma)$
到达时间	(0.0227214, 0.0227574)	0.0227394	Simulation — $U(0, 2/\gamma)$
	(0.022672, 0.0227097)	0.0226909	Simulation — $\Gamma(3, 3\gamma)$
	(0.0226449, 0.0226702)	0.0226576	Simulation — $\Gamma(5,5\gamma)$
·			
	95% CI	mean	Method — Distribution
-	_	0.0229955	Numerical Analysis — $E(\mu)$
	(0.0229797, 0.0230415)	0.0230106	Simulation — $E(\mu)$
服务时间	(0.0228825, 0.0229017)	0.0228921	Simulation — $U(0, 2/\mu)$
	(0.022865, 0.0228911)	0.0228781	Simulation — $\Gamma(3,3\mu)$
	(0.0228469, 0.0228679)	0.0228574	Simulation — $\Gamma(5, 5\mu)$

Conclusion

边缘性能倒置问题:

引入概率调度方法降低高请求边缘数据中心排队延迟

存在逻辑问题,可以改进!

IDEAS

- 1.在同一个成本下进行INVAR相关实验
- 2. 云数据中心 + 边缘数据中心协同调度
- 3. 一个请求可能需要n个服务器共同处理
- 4. 分配概率动态调整

Thanks for listening 请老师同学们批评指正

汇报人: 黄 凯 2024年11月10日