CS 320L – Applied Discrete Mathematics – Spring 2017 Instructor: Marc Pomplun

Assignment #5

Posted on April 18 – due by April 27, 5:30pm

Question 1: Family Issues

Mary has two kids, Peter and Robert. Robert has a daughter named Elena, Peter is the father of Christine and John, and Christine is the mother of Daniel.

- a) Write down the relation $R = \{(a, b) \mid a \text{ is a parent of } b\}$ defined on the set P of the seven people, so that it reflects the family structure specified above. Use the set notation and the matrix notation.
- b) Use the matrix notation as your starting point for computing the transitive closure of *R*. Apply the Boolean power method we discussed in class. Once you have derived the matrix representing the transitive closure of *R*, also translate it into set notation.
- c) What does the transitive closure of R specify? What name could you give it?

Question 2: Count the Relations

For the following questions, list the different relations or orderings and count how many of them there are.

- a) How many different equivalence relations can we define on the set $A = \{x, y, z\}$?
- b) How many different partial orderings can we define on the set $A = \{a, b\}$?
- c) How many different total orderings can we define on the set $A = \{p, q\}$?

Question 3: Relations

Determine whether the following relations are reflexive, irreflexive, symmetric, asymmetric, antisymmetric, and/or transitive (no proof necessary):

- a) The empty relation $R = \emptyset$ defined on the natural numbers.
- b) The complete relation $R = N \times N$ defined on the natural numbers.
- c) The relation R on the positive integers where aRb means a | b (i.e., a divides b).
- d) The relation R on the positive integers where aRb means a < b.
- e) The relation R on the positive integers where aRb means $a \ge b$.
- f) The relation R on $\{w, x, y, z\}$ where $R = \{(w, w), (w, x), (x, w), (x, x), (x, z), (y, y), (z, y), (z, z)\}.$
- g) The relation R on the integers where aRb means $a^2 = b^2$.

Question 4: Possible and Impossible Graphs

Do the following graphs exist? If so, draw an example. If not, give a reason for it.

- a) A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.
- b) A simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.
- c) A simple graph with 4 vertices, whose degrees are 1, 2, 3, 3.
- d) A simple graph with 5 vertices, whose degrees are 2, 3, 4, 4, 4.
- e) A simple graph with 4 vertices, whose degrees are 1, 1, 2, 4.
- f) A simple digraph with 3 vertices with in-degrees 0, 1, 2 and out-degrees 0, 1, 2.
- g) A simple digraph with 3 vertices with in-degrees 1, 1, 1 and out-degrees 1, 1, 1.
- h) A simple digraph with 4 vertices with in-degrees 0, 1, 2, 2 and out-degrees 0, 1, 1, 3.
- i) A simple digraph with 5 vertices with in-degrees 0, 1, 2, 4, 5 and out-degrees 0, 3, 3, 3, 3.
- j) A simple digraph with 4 vertices with in-degrees 0, 1, 1, 2 and out-degrees 0, 1, 1, 1.

Question 5 (Bonus): Equivalent Integers

Let us define the following equivalence relation R on the set $S = \{2, 3, 4, ... 21\}$: $R = \{(a, b) \mid a \text{ and } b \text{ have the same number of unique prime factors}\}$. For example, 15 and 18 are related under R, because both of them have two unique prime factors $(15 = 3.5, 18 = 2.3^2)$.

- a) As you know, any equivalence relation partitions the set on which it is defined into equivalence classes. Write down the partitioning of S by the equivalence relation R.
- b) Define an equivalence relation Q on the same set S that partitions it into exactly 10 equivalence classes. Write down the definition of Q and the resulting partitioning of S.