4.10, 4.11 TEST MS

1. (a) (i)

$$H_3C - C$$
 \parallel
O or RCOCH₃;

1

(or description in words) (ignore trailing bonds)

(ii) H₃C—O or ROCH₃;

1

(allow 1 if both (i) and (ii) give CH₃- or H₃C- only)

(iii) CH₂CH₂ or two adjacent methylene groups;

1

(iv)

$$\begin{array}{c} CH_3\text{-}C \ CH_2\text{-}CH_2\text{-}OCH_3 \\ \parallel \\ O \end{array}$$

OR

1

(b) (i) OH in acids or (carboxylic) acid present

(ii)

$$CH_3 - C - COOH$$

$$CH_3 - C - COOH$$

$$CH_3$$

(c)

reagent	$K_2Cr_2O_7/H^+$	KMnO ₄ /H ⁺
Y	no reaction	no reaction
Z	orange to green or turns green	purple to colourless or turns colourless

5

[9]

2. (a) Pentan-2-one

1

(b) (i) $1680 - 1750 \,(\text{cm}^{-1})$

1

(ii) $3230 - 3550 \text{ or } 1000 - 1300 \text{ (cm}^{-1})$

1

(iii) 4

1

1

1 1

(c)

Reagent	K ₂ Cr ₂ O ₇ /H	KMnO ₄ /H ⁺	Na	CH ₃ COOH/ H ₂ SO ₄
with C	no reaction	no reaction	no reaction	no reaction
with D	goes green	goes colourless	effervescence	smell

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or

$$Cr_2O_7^{2-}/H^+$$
 then mark on)

_1	١,
а	
	٠,
	d

Reagent	Tollens	Fehlings or Benedicts
with E	silver (mirror)	red ppt or goes red (not red solution)

[9]

1

1

1

1

1

1

1

1

3. (a) \mathbf{A} any \mathbf{C}_5 alkene

В

penalise

$$H_2$$
 H_2
 H_2

(b) **(**

$$H_3C-C$$
OH or $H-C$
O— CH_3

or CH₃COOH

D

or HOCH₂CHO

(c) **E**

 \mathbf{F}

$$CH_3CH_2$$
— C
 O — CH_2CH_3 (allow C_2H_5)

(d) **G**

$$H_3C$$
— C — CH_2Cl

Η

$$H_3C$$
— C — $CHCl_2$ or ClH_2C — C — CH_2Cl or H_3C — C — CH_3

(e) I
$$H_3C$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_3 CH

5. (a) (i)

Reagent	Tollens	Fehlings or Benedicts	K ₂ Cr ₂ O ₇ /H ⁺ or acidified	KMnO ₄ /H ⁺	I ₂ /Na0H
Propanal		red ppt or goes red (not red solution)	goes green	goes colourless	No reaction
Propanone	no reaction	no reaction	no reaction	no reaction	Yellow (ppt)

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^{2-}/H^+$ then mark on)

(ii) propanal 3 peaks ignore splitting even if wrong propanone 1 peak 1

(b)	X is CH ₃ CH ₂ COOH or propanoic aci	if both name and formula given, both must be correct, but		1		
	Y is CH ₃ CH(OH)CH ₃ or propan-2-ol formula	allow propanol with	ow propanol with correct			
	k the type of reaction and reagent/co reagent must be correct or close to so					
Step	1 Oxidation	Oxidation				
	K ₂ Cr ₂ O ₇ /H ⁺ or other oxidation allow Cr ₂ O ₇ ²⁻ H ⁺ if penalised a reflux (not Tollens/Fehlings) or	bove (ecf)				
Step 2	2 reduction or nucleophilic addition	reduction or nucleophilic addition	reduction or hydrogenation	1		
	NaBH ₄	LiAlH ₄	H ₂	1		
	in (m)ethanol or water or ether or dry	ether or dry	Ni / Pt etc	1		
Step	esterification or (nucleophilic) (conc) H ₂ SO ₄ or HCl warm (allow without acid reagor reflux or heat			1 1 1 1 5]		