Prediction and overfitting

Data Science in a Box datasciencebox.org

Modified by Tyler George

Prediction

Goal: Building a spam filter

- Data: Set of emails and we know if each email is spam/not and other features
- Use logistic regression to predict the probability that an incoming email is spam
- Use model selection to pick the model with the best predictive performance

Goal: Building a spam filter

- Data: Set of emails and we know if each email is spam/not and other features
- Use logistic regression to predict the probability that an incoming email is spam
- Use model selection to pick the model with the best predictive performance
- Building a model to predict the probability that an email is spam is only half of the battle!
 We also need a decision rule about which emails get flagged as spam (e.g. what probability should we use as out cutoff?)

Goal: Building a spam filter

- Data: Set of emails and we know if each email is spam/not and other features
- Use logistic regression to predict the probability that an incoming email is spam
- Use model selection to pick the model with the best predictive performance
- Building a model to predict the probability that an email is spam is only half of the battle!
 We also need a decision rule about which emails get flagged as spam (e.g. what probability should we use as out cutoff?)
- A simple approach: choose a single threshold probability and any email that exceeds that probability is flagged as spam

A multiple regression approach

Output Code

```
## # A tibble: 22 x 5
      term
                   estimate std.error statistic p.value
      <chr>>
                      <db1>
                                <dh1>
                                          <dbl>
                                                   <db1>
   1 (Intercept)
                                       -0.00928 9.93e- 1
                  -9.09e+1
                              9.80e+3
   2 to multiple1 -2.68e+0
                              3.27e-1 -8.21
                                                2.25e-16
##
   3 from1
                   -2.19e+1
                              9.80e+3
                                       -0.00224 9.98e- 1
   4 cc
                    1.88e-2
                              2.20e-2
                                        0.855
##
                                                3.93e- 1
   5 sent email1
                  -2.07e+1
                              3.87e+2
                                      -0.0536 9.57e- 1
   6 time
                    8.48e-8
                              2.85e-8
                                        2.98
                                                2.92e- 3
   7 image
                   -1.78e+0
                              5.95e-1
                                      -3.00
                                                2.73e- 3
   8 attach
                    7.35e-1
                              1.44e - 1
                                        5.09
                                                3.61e- 7
## 9 dollar
                   -6.85e-2
                              2.64e-2
                                       -2.59
                                                9.64e- 3
                    2.07e+0
## 10 winnerves
                              3.65e-1
                                        5.67
                                                1.41e- 8
## 11 inherit
                    3.15e-1
                              1.56e-1
                                        2.02
                                                4.32e- 2
## 12 viagra
                   2.84e+0
                              2.22e+3
                                        0.00128 9.99e- 1
## 13 password
                   -8.54e-1
                              2.97e-1 -2.88
                                                4.03e-3
## 14 num char
                    5.06e-2
                              2.38e-2
                                        2.13
                                                3.35e- 2
## 15 line breaks -5.49e-3
                              1.35e-3
                                       -4.06
                                                4.91e-5
## 16 format1
                   -6.14e-1
                              1.49e-1
                                       -4.14
                                                3.53e-5
                              3.86e-1 -4.25
## 17 re subj1
                   -1.64e+0
                                                2.16e-5
## 18 exclaim subj
                   1.42e-1
                              2.43e-1
                                        0.585
                                                5.58e- 1
## 19 urgent subj1 3.88e+0
                              1.32e+0
                                        2.95
                                                3.18e- 3
## 20 exclaim mess 1.08e-2
                              1.81e-3
                                        5.98
                                                2.23e-9
## 21 numbersmall -1.19e+0
                              1.54e-1 -7.74
                                                9.62e-15
## 22 numberbig
                   -2.95e-1
                              2.20e-1 -1.34
                                                1.79e- 1
```

A multiple regression approach

Output

Code

```
logistic_reg() %>%
  set_engine("glm") %>%
  fit(spam ~ ., data = email, family = "binomial") %>%
  tidy() %>%
  print(n = 22)
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Prediction

- The mechanics of prediction is **easy**:
 - Plug in values of predictors to the model equation
 - lacktriangle Calculate the predicted value of the response variable, \hat{y}

Prediction

- The mechanics of prediction is **easy**:
 - Plug in values of predictors to the model equation
 - Calculate the predicted value of the response variable, \hat{y}
- Getting it right is **hard**!
 - There is no guarantee the model estimates you have are correct
 - Or that your model will perform as well with new data as it did with your sample data

Underfitting and overfitting

Spending our data

- Several steps to create a useful model: parameter estimation, model selection, performance assessment, etc.
- Doing all of this on the entire data we have available can lead to overfitting
- Allocate specific subsets of data for different tasks, as opposed to allocating the largest possible amount to the model parameter estimation only (which is what we've done so far)

Splitting data

Splitting data

Training set:

- Sandbox for model building
- Spend most of your time using the training set to develop the model
- Majority of the data (usually 80%)

Testing set:

- Held in reserve to determine efficacy of one or two chosen models
- Critical to look at it once, otherwise it becomes part of the modeling process
- Remainder of the data (usually 20%)

Performing the split

```
# Fix random numbers by setting the seed
# Enables analysis to be reproducible when random numbers are used
set.seed(1116)

# Put 80% of the data into the training set
email_split <- initial_split(email, prop = 0.80)

# Create data frames for the two sets:
train_data <- training(email_split)
test_data <- testing(email_split)</pre>
```

Peek at the split

glimpse(train_data)

```
## Rows: 3,136
## Columns: 21
## $ spam
              <fct> 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, ~
## $ to multiple <fct> 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, ~
## $ from
              <int> 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35,~
## $ cc
              <fct> 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ sent email
              <dttm> 2012-01-25 16:46:55, 2012-01-02 23:28:28,~
## $ time
## $ image
              <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ~
## $ attach
              <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ~
## $ dollar
              <dbl> 10, 0, 0, 0, 0, 0, 13, 0, 0, 0, 2, 0, 0, 0~
## $ winner
              <fct> no, no, no, no, no, no, yes, no, no, n~
              <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ inherit
## $ viagra
              ## $ password
              ## $ num char
              <dbl> 23.308, 1.162, 4.732, 42.238, 1.228, 25.59~
## $ line breaks
              <int> 477, 2, 127, 712, 30, 674, 367, 226, 98, 6~
## $ format
              <fct> 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, ~
## $ re subj
              <fct> 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ~
## $ exclaim subj <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, ~
## $ exclaim mess <dbl> 12, 0, 2, 2, 31, 2, 0, 0, 1, 0, 1, 2, 0~
## $ number
              <fct> small, none, big, big, small, small~
```

glimpse(test_data)

```
## Rows: 785
## Columns: 21
## $ spam
             ## $ to multiple
             <fct> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, ~
## $ from
             <int> 0, 1, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ cc
## $ sent email
             <fct> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
             <dttm> 2012-01-01 11:55:06, 2012-01-01 13:38:32,~
## $ time
             ## $ image
             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ~
## $ attach
## $ dollar
             <dbl> 0, 0, 5, 0, 0, 0, 0, 5, 4, 0, 0, 0, 21, 0,~
             ## $ winner
## $ inherit
             <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ~
## $ viagra
             ## $ password
             <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ~
## $ num char
             <dbl> 4.837, 15.075, 18.037, 45.842, 11.438, 1.4~
## $ line breaks
             <int> 193, 354, 345, 881, 125, 24, 296, 13, 192,~
## $ format
             <fct> 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, ~
             <fct> 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, ~
## $ re subj
## $ exclaim subj <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ exclaim mess <dbl> 1, 10, 20, 5, 2, 0, 0, 0, 6, 0, 0, 1, 3, 0~
## $ number
             <fct> big, small, small, big, small, none, small~
```

Modeling workflow

Fit a model to the training dataset

```
email_fit <- logistic_reg() %>%
  set_engine("glm") %>%
  fit(spam ~ ., data = train_data, family = "binomial")
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Categorical predictors

from and sent_email

 from: Whether the message was listed as from anyone (this is usually set by default for regular outgoing email)

```
train_data %>%
  count(spam, from)
```

```
## # A tibble: 3 x 3
## spam from n
## <fct> <fct> <int>
## 1 0 1 2837
## 2 1 0 3
## 3 1 1 296
```

sent_email: Indicator for whether the sender had been sent an email in the last 30 days

```
train_data %>%
  count(spam, sent_email)
```

```
## # A tibble: 3 x 3
## spam sent_email n
## <fct> <fct> <int>
## 1 0 0 1972
## 2 0 1 865
## 3 1 0 299
```

Numerical predictors

##										
		ric								
## # A tibble: 22	x 11									
## skim_variabl	e spam	<pre>n_missing comple</pre>	te_rate				p25			
## * <chr></chr>	<fct></fct>	<int></int>	<dbl></dbl>			<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
## 1 cc	0	0	1	0.393	2.62	0	0	0	0	68
## 2 cc	1	0	1	0.388	3.25	0	0	0	0	50
## 3 image	0	0	1	0.0536	0.503	0	0	0	0	20
## 4 image	1	0	1	0.00334	0.0578	0	0	0	0	1
## 5 attach	0	0	1	0.124	0.775		0	0	0	21
## 6 attach	1	0	1	0.227	0.620	0	0	0	0	2
## 7 dollar	0	0	1	1.56	5.33	0	0	0	0	64
## 8 dollar	1	0	1	0.779	3.01	0	0	0	0	36
## 9 inherit										
## 10 inherit										
## 11 viagra	0	0	1	0	0	0	0	0	0	0
## 12 viagra	1	0	1	0.0268	0.463	0	0	0	0	8
## 13 password	0	0	1	0.112	0.938	0	0	0	0	22
## 14 password	1	0	1	0.0201	0.182	0	0	0	0	2
## 15 num_char	0	0	1	11.4	14.9	0.003	1.97	6.83	15.7	190.
## 16 num_char	1	0	1	5.63	15.7	0.001	0.468	0.999	3.55	174.
## 17 line_breaks	0	0	1	247.	326.	2	42	138	318	4022
## 18 line_breaks	1	0	1	108.	321.	1	14	23	66.5	3729
## 19 exclaim_subj	0	0	1	0.0783	0.269	0	0	0	0	1
## 20 exclaim_subj		0	1	0.0769	0.267	0	0	0	0	1
## 21 exclaim_mess		0	1	6.68	50.2	0	0	1	5	1236
## 22 exclaim_mess		0	1	8.75	88.4	0	0	0	1	1209

Fit a model to the training dataset

```
email_fit <- logistic_reg() %>%
  set_engine("glm") %>%
  fit(spam ~ . - from - sent_email - viagra, data = train_data, family = "binomial")
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

email_fit

```
## parsnip model object
## Fit time: 31ms
## Call: stats::glm(formula = spam ~ . - from - sent email - viagra, family = stats::binomial,
      data = data)
##
## Coefficients:
                                                                                           dollar
   (Intercept) to multiple1
                                                                image
                                        СC
                                                    time
                                                                             attach
    -9.867e+01
                 -2.505e+00
                                 1.944e-02
                                               7.396e-08
                                                            -2.854e+00
                                                                          5.070e-01
                                                                                       -6.440e-02
     winneryes
                   inherit
                                             num char
                                                          line breaks
                                                                            format1
                                  password
                                                                                         re subj1
                                                           -5.420e-03
                                -7.065e-01
                                              5.870e-02
     2.170e+00
                   4.499e-01
                                                                         -9.017e-01
                                                                                       -2.995e+00
## exclaim_subj urgent_subj1 exclaim_mess
                                             numbersmall
                                                          numberbig
     1.002e-01
                   3.572e+00
                                 1.009e-02
                                              -8.518e-01
                                                           -1.329e-01
## Degrees of Freedom: 3135 Total (i.e. Null); 3117 Residual
## Null Deviance:
                        1974
## Residual Deviance: 1447
                              AIC: 1485
```


Predict outcome on the testing dataset

```
predict(email fit, test data)
```

```
## # A tibble: 785 x 1
## .pred_class
## <fct>
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
## # ... with 779 more rows
```

Predict probabilities on the testing dataset

```
email_pred <- predict(email_fit, test_data, type = "prob") %>%
  bind_cols(test_data %>% select(spam, time))
email_pred
```

```
## # A tibble: 785 x 4
##
     .pred 0 .pred 1 spam time
     <dbl> <dbl> <fct> <dttm>
##
## 1 0.993 0.00709 0
                          2012-01-01 11:55:06
## 2
     0.998 0.00181 0
                          2012-01-01 13:38:32
## 3
     0.981 0.0191 0
                          2012-01-01 23:42:16
## 4
     0.999 0.00124 0
                          2012-01-02 09:12:51
## 5 0.988 0.0121 0
                          2012-01-02 10:45:36
## 6 0.830 0.170
                          2012-01-02 15:55:03
## # ... with 779 more rows
```

A closer look at predictions

```
email pred %>%
  arrange(desc(.pred 1)) %>%
  print(n = 10)
  # A tibble: 785 x 4
##
      .pred 0 .pred 1 spam
                           time
##
       <dbl> <dbl> <fct> <dttm>
   1 0.0972 0.903 1
                           2012-02-13 06:15:00
##
##
   2 0.167
               0.833 0
                           2012-01-27 14:05:06
   4 0.267
               0.733 1
                           2012-03-17 05:13:27
   5 0.317
               0.683 1
                           2012-03-21 07:33:12
   6 0.374
               0.626 1
                           2012-02-08 02:00:05
##
##
   8 0.403
               0.597 1
                           2012-01-07 10:11:49
##
   9 0.462
              0.538 1
                           2012-03-06 05:46:20
## 10 0.463
               0.537 0
                           2012-02-17 16:54:16
  # ... with 775 more rows
```

Evaluate the performance

Receiver operating characteristic (ROC) curve⁺ which plot true positive rate vs. false positive rate (1 - specificity)

```
email_pred %>%
  roc_curve(
    truth = spam,
    .pred_1,
    event_level = "second"
) %>%
  autoplot()
```


⁺Originally developed for operators of military radar receivers, hence the name.

Evaluate the performance

Find the area under the curve:

```
email_pred %>%
  roc_auc(
    truth = spam,
    .pred_1,
    event_level = "second"
)
```

