DT-11-1962

DAS 1139 138 KL 17g 3

INTERNAT.KL. F 25 j

OT 1139138 : 8. NOVEMBER 1962 NOV 1962

(f)

* (1.1

AVAILABLE COPY

DAS 1139138 KL 17g 3 INTERNAT. KL. F 25j

F16.4

1,139,138 High-pressure container with wall produced in a winding operation from a band comprising a number of continuous wires embedded in a binding agent. The wires are disposed adjacent to one another and are in the same position over the entire length of the band. 6. 7. 60. (9. 7. 59. U.S.A) BENDIX CORP.

This Page Blank (uspto)

ZEICHNUNGEN BLATT 1

AUSGABETAG: 8. NOVEMBER 1962

DAS 1139138 KL 17g 3 INTERNAT. KL. F 25j

Tis.6

Fig.7

Tig-8

This Page Blank (uspto)

.56-170

UNDESREPUBLIK DEUTSCHLA ...

кь. 17 д 3

DEUTSCHES

INTERNAT.KL. F 25 i

GERMANY /6

AUSLEGESCHRIFT 1139 138

B 58492 Ia/17g

6. JULI 1960

ANMELDETAG: BEKANNTMACHUNG

DER ANMELDUNG UND AUSGABE DER

AUSLEGESCHRIFT: 8. NOVEMBER 1962

1

Die Erfindung betrifft ein Band zur Herstellung gewickelter Wände von Hochdruckbehältern, bestehend aus einer Vielzahl von durchlaufenden Drähten, welche in einem Bindemittel eingebettet sind.

Bei Raketen wird der Schub von brennenden 5 Gasen hervorgerufen, die aus einem unter hohen Drücken und Temperaturen stehenden Gehäuse ausströmen. Um diesen Drücken und Temperaturen widerstehen zu können, hielt man es für notwendig, das Gehäuse mit dicken Wänden auszuführen. Da- 10 durch ergab sich der Nachteil eines hohen Gewichtes, wodurch die zulässige Ladung an Brennstoff beschränkt wurde, so daß die Wirksamkeit der Rakete entsprechend verringert wurde. Auch wo die äußeren Abmessungen des Gehäuses festgesetzt sind, ver- 15 ringert die für das Gehäuse vorgesehene dicke Wandung den Nutzbetrag an in dem Gehäuse enthaltenem Brennstoff.

In dem Bestreben, leichteres Konstruktionsmaterial und dünnere Wände vorzusehen, die den hohen inne- 20 ren Drücken und Temperaturen widerstehen können. hat man sich lamellierten und geschichteten Strukturen aus Schnur- oder Strangmaterial, beispielsweise Fiberglas, zugewendet. Diese Stänge in Fadenform haben eine beachtliche Zugfestigkeit und bringen bei 25 einer entsprechenden Ausführung als geschichtete Gehäusewandung einen erheblichen Widerstand gegenüber einem inneren Druck mit sich. Die geschichtete Wandung ist damit mit Abstand die aussichtsreißfestigkeit, die sowohl leicht als auch dünn im Querschnitt sind.

Es ist bekannt, Fäden aus einer Mehrzahl von Glasfasern herzustellen, diese Fäden fortlaufend um einen Kern zu wickeln und die einzelnen Schichten 35 des bestehen die Drähte aus dehnbaren, kaltverfestigdann mit einem Bindemittel, beispielsweise wärmehärtendem Harz, auszugießen und damit die Zwischenräume zwischen den Fäden und Schichten auszufüllen. Infolge der Drehung und der Kreuzungsstellen ergibt sich eine ungleichförmige Bean- 40 Querschnittsbreite der Drähte ist. Ferner können die spruchung, wodurch bei hohen Spannungen ein Brechen der Fäden an diesen Stellen erfolgen kann.

Der Zweck der Erfindung besteht darin, aus einem Band hergestellte gewickelte Wände von Hochdruckbehältern zu schaffen, welche eine hohe und gleich- 45 auf ein Raketengehäuse dargestellt. Es zeigt mäßige, vorausberechenbare Festigkeit haben und ohne jede Veränderung und Schwankung diese vorherbestimmbaren Festigkeitseigenschaften

Dies wird gemäß der Erfindung dadurch erreicht, 50 art eines flachen Bandes, daß die Drähte nebeneinander angeordnet sind und jeder Draht in der gleichen Lage über dem Ouer-

Band zur Herstellung gewickelter Wände von Hochdruckbehältern

Anmelder:

The Bendix Corporation, New York, N. Y. (V. St. A.)

Vertreter: Dipl.-Ing. H. Begrich, Patentanwalt, Regensburg, Lessingstr. 10

Beanspruchte Priorität: V. St. v. Amerika vom 9. Juli 1959 (Nr. 825 958)

Wendell Erskine Eldred, South Bend, Ind. (V. St. A.), ist als Erfinder genannt worden

schnitt des Bandes auf der ganzen Bandlänge liegt. reichste Ausführungsform für Gefäße von hoher Zer- 30 Dadurch werden unterschiedliche Beanspruchungen vermieden, so daß also jedes Band und jeder Draht in dem Band einer gleichmäßigen Beansprung ausgesetzt ist.

> Bei einer bevorzugten Ausführungsform des Banten Metalldrähten. Auch soll das Band einen rechteckigen Querschnitt haben, wobei die Drähte in einer Reihe nebeneinander angeordnet sind und die Breite des Bandes im wesentlichen gleich der Summe der Drähte in einer Mehrzahl von Reihen übereinander angeordnet sein. Die Drähte können dabei einen kreisförmigen oder rechteckigen Querschnitt haben.

> In der Zeichnung ist die Erfindung in Anwendung

Fig. 1 in schaubildlicher Ansicht ein Raketengehäuse mit einer lamellierten oder geschichteten Wandausführung,

Fig. 2 in schaubildlicher Ansicht die Herstellungs-

Fig. 3 einen Querschnitt durch den Gegenstand der Erfindung,

Fig. 4 einen Querschnitt durch eine zweischichtige Ausführungsform mit im Querschnitt kreisförmigen Drähten.

Fig. 5 einen Querschnitt durch ein dreischichtiges

Fig. 6 und 7 einen Querschnitt durch eine schnurartige Ausführungsform und

Fig. 8 eine schaubildliche Ansicht eines Gehäuses mit einer lamellierten Ausführungsform.

Neben Raketengehäusen läßt sich die Erfindung 10 auch auf andere Gegenstände anwenden. Sie ist insbesondere dann verwendbar, wenn ein leichter Druckbehälter hergestellt werden soll, der einem hohen Druck ausgesetzt ist. Die Erfindung ist weiterhin auf Flugzeugbauteile, wie beispielsweise Flügel, Steuer- 15 flächen usw., anwendbar.

Bei einer Ausführungsform der Erfindung ist das zur Herstellung von gewickelten Wänden zu verwendende Band 10 (Fig. 3 bis 7) entweder flach (Fig. 3 bis 5) oder rund (Fig. 6 und 7). Das flache Band kann 20 aus einer Schicht von Drähten 16 (Fig. 3) oder aus zwei Schichten (Fig. 4) bestehen. Die einzelnen Drähte 16 können entweder rund (Fig. 3 und 4) oder rechteckig (Fig. 5) sein.

Bandes nach Fig. 3 werden die einzelnen Drähte 16 von kreisförmigem Querschnitt von im Abstand voneinander angeordneten Spulen 18 abgezogen, die sich frei drehen können. Die Drähte 16 können im Durchmesser verschieden sein, wobei ein geeigneter Durch- 30 messer 0,01 cm ist. Drähte von kleinerem Durchmesser sind vorteilhaft, da sich die Zugfestigkeit des Drahtes mit dem Abnehmen der Größe wegen des Kaltstreckens des Metalls vergrößert, was während des Ziehens zu einem kleinen Durchmesser ein- 35

Die Drähte 16 werden durch eine Sammelform 20 mit einer Schlitzöffnung 22 geführt, deren Länge nur ein klein wenig größer als die zusammengefaßten Durchmesser aller Drähte ist.

Beispielsweise hat der Schlitz für ein aus neunundvierzig Drähten mit einem Durchmesser von 0,01 cm bestehendes Band eine Breite von 0,5 cm. Die Breite des Schlitzes beträgt etwa 0,014 cm, so daß alle Drähte in einer Ebene nebeneinanderliegen und sich 45 nicht überkreuzen können. Beim Austreten aus der Sammelform 20 liegen alle Drähte in einer geraden Linie und dicht entsprechend der Breite des Bandes nebeneinander. Die Drähte werden dann durch einen Reinigungsbehälter 21 mit Trichloräthylen geführt, 50 soll so klein wie möglich gehalten werden. welcher Verunreinigungen, wie Schmiere, Öl und Das Band wird dann über sich entge Schmutz, entfernt. Die Einlaß- und Auslaßöffnungen in dem Behälter 21 sind in der Größe auf die Dimensionen der Drähte abgestimmt, so daß kein Draht in Unordnung kommen kann.

Auf den Reinigungsbehälter 21 folgt eine Führung 24 mit einem Schlitz entsprechend den genauen Abmessungen des Bandes, so daß die ständig laufenden Drähte ihre relative Lage zueinander behalten.

Die Drähte werden dann durch einen Behandlungs- 60 tank 26 mit einem flüssigen Harzmaterial hindurchgeführt, welches an den Drähten haftenbleibt. Die Ausgangsöffnung in dem Behandlungstank 26 ist in der Größe auf die endgültigen Abmessungen des Tank 26 zurückgehalten wird und die Drähte in dem genauen gegenseitigen Abstand gehalten werden, ohne daß sie sich gegenseitig überkreuzen können.

Das Band muß auf seiner ganzen Breite immer flach gehalten werden, andernfalls werden die einzelnen Drähte nicht gleichmäßig beansprucht, wenn sie über einen Spanndorn zur Bildung der gewickelten Wand gewickelt werden. Um diese flache Ausrichtung durchzuführen, werden die Drähte immer in der beschriebenen Lage nebeneinander gehalten. Auch wird die Gesamtspannung des Bandes gleichmäßig auf jeden Draht verteilt, wenn es durch den Reinigungsbehälter 21, die Führungen 20, 24 und den Behandlungstank 26 läuft. Ein typisches Harz, welches sich für die Herstellung des Bandes als zufriedenstellend erwiesen hat, hat folgende Zusammensetzung in Gewichtsanteilen:

- 30 Teile eines Reaktionsproduktes von Bisphenyl A und Epichlorohydrin,
- 60 Teile eines gleichen Reaktionsproduktes mit einem höheren Molekulargewicht,
- 10 Teile Epoxyharz mit zugesetztem Nierenbaumöl (ein Elastizitätsmittel) und
- 1 Teil Bor-Trifluorid-Monoäthylen-Amin (Härtungsmittel).

Diese Verbindung schmilzt bei ungefähr 100° C Bei dem Verfahren zur Herstellung eines flachen 25 und wird bei dieser Temperatur für das Band verwendet. Dieses plastische Material stellt nur eines von vielen geeigneten plastischen Bindemitteln dar.

Das Harz oder Bindemittel 27 in den Fig. 3 bis 7 besteht im allgemeinen aus einem hitzebeständigen Material. Es haben sich gute Ergebnisse mit der Kombination Phenol-Epoxy-Elastomer-Materialien ergeben. Bei der Auswahl eines geeigneten Harzes ist zu bedenken, daß das Harz bei einer Temperatur unter 300 bis 310° C ausgehärtet sein soll. Wird diese Temperatur überschritten, verringern sich die Festigkeitseigenschaften des Drahtes. Die erwähnten Bindemittel erfordern zu einem Polymerisieren des Harzbindemittels ungefähr 200° C. Diese Temperatur liegt genügend unter der Recktemperatur der Drähte. Das Harz wird nicht voll ausgehärtet, bis die Gehäuseschichtung fertig geformt ist.

Wenn das Band aus dem Behandlungstank 26 herauskommt, kann es durch einen Ventilator 29 gekühlt werden, so daß seine Temperatur schnell auf Zimmertemperatur (ungefähr 20°C) absinkt. Das Band wird auf einer Länge von 60 cm vom Behandlungstank aus vollständig gekühlt, wenn es sich mit einer Geschwindigkeit von ungefähr 4,80 m pro Minute bewegt. Diese Länge während des Abkühlens

Das Band wird dann über sich entgegengesetzt drehende, mit Teflon beschichtete Walzen oder Rollen 28 geführt. Eine Bandzwischenlage 30 aus Polyäthylen-Terephthalaten wird von einer Zuführungs-55 rolle 32 zugeführt, so daß das Band 10 beim Aufwickeln auf eine Vorratsrolle 34 durch eine Zwischenlage aus diesem Papier oder einem anderen Material getrennt wird, wodurch ein Zusammenkleben und damit eine Störung bei der Verwendung verhindert wird.

Das fertiggestellte Band 10 wird dann über einen Spanndorn in Korbform (Fig. 1) unter einem Winkel von ungefähr 55° mit der waagerechten mittleren Drehachse des Dornes gewickelt. Der Zweck der korbförmigen Aufwicklung besteht darin, das Band Bandes abgestellt, so daß überflüssiges Harz in dem 65 in Ausrichtung auf die Hauptbeanspruchungen anzuordnen. Beispielsweise sind in einem Zylinder die Umfangsbeanspruchungen größer als die Längskräfte, so daß sich das Band mehr in Ausrichtung

mit dem Zylinderumfang befindet. Die gleiche Wirkung kann durch Vergrößern der Wirkungszahl in Umfangsrichtung im Verhältnis zu den Längswicklungen erhalten werden. Im allgemeinen wird das Band über den Dorn gewickelt, bis jeder Abschnitt, der einen Teil der Gehäusewandung bilden soll, durch wenigstens zwei Bandstärken bedeckt wird, die diagonal zueinander verlaufen. Das Verfahren kann so fortgesetzt werden, daß die Wanddicke aus zwei, vier, sechs oder jeder geraden Anzahl von Band- 10 stärken besteht.

Die Erfindung ist nicht auf ein besonderes Muster der Bandwicklung, wie beispielsweise Korbwicklung, Längs- oder Querwicklung, beschränkt. Sie ist ebenfalls nicht auf eine besondere Bandbreite beschränkt. 15 Das Band kann in verschiedenen Breiten hergestellt und für einen künftigen Gebrauch aufbewahrt werden. Es wird dann auf die entsprechende Breite für eine besondere Verwendung aufgeschlitzt. In manchen Fällen wird keine Vorratsspule 34 verwen- 20 det, sondern anstatt dessen das hergestellte Band unmittelbar auf einen nicht dargestellten Körper oder Dorn aufgebracht.

Die in Fig. 1 mit 40 gezeichnete Umhüllung hat eine Wanddicke von etwa 0,16 cm und soll einer 25 Sprengwirkung von ungefähr 200 kg/cm² widerstehen. An den Enden 42, 44 des Gehäuses sind halbkugelförmige Stahlglieder 46 vorgesehen, die Paßstücke zur Anordnung von Düsen aufnehmen sollen. Bei manchen Gehäusen werden diese Glieder 46 aus- 30 gelassen, und das Band wird über den Dorn an den Enden anter Bildung einer besonderen Form gewickelt. Nachdem das Band zu einer bestimmten Gehäusewanddicke aufgewickelt worden ist, wird es zum Aushärten oder Polymerisieren des Harzbinders heiß 35 behandelt. Gehäuse und Umhüllung haben bei einer Prüfung eine Festigkeit von etwa 35 000 kg/cm² aufgewiesen, das bedeutet eine Verbesserung von 50% gegenüber gleichwertigen hochqualifizierten Stahl-

bemerkenswerte Festigkeitserhöhung entsprechend der Erfindung wird mehreren Faktoren zugeschrieben. Ein wichtiger Faktor besteht darin, daß die Drähte durchlaufende Längen von der Bandlänge ganzen Bandlänge keine Unterbrechungen. Drähte haben eine gleiche Festigkeit über die ganze Breite des Bandes wegen des Nichtvorhandenseins von Verlagerungen und Überkreuzungen, die bei den bisherigen geschichteten Ausführungsformen vor- 50 kommen. Ein weiterer Faktor für die erhöhte Festigkeit ergibt sich aus dem Querschnitt des Bandes nach Fig. 3. Jeder einzelne Draht 16, gleichgültig ob das Band aus einer oder zwei Reihen von Drähten von ungefähr 0,0025 cm.

Obgleich der Harzbinder 12, 14 nur wenige tausendstel Zentimeter dick ist, kann er die kleinen Kräfte aufnehmen, während die viel höheren Spannkräfte ausschließlich von den in der Längsrichtung 60 des Bandes verlaufenden Drähten 16 aufgenommen werden. Das Harzbindemittel nimmt ferner bei nur 5 bis 7% vom Gewicht des Bandes ungefähr 30 bis 35 % des Bandvolumens ein. Ein wesentlicher Vorteil ergibt sich dadurch, daß das Harz fest an den metal- 65 lischen Drähten anhaftet. Infolgedessen neigt die plastische Masse nicht zum Reißen, und das einmal ausgehärtete Harz ergibt ein Produkt mit einer größeren Stabilität wegen der verbesserten Bindeeigenschaften.

Die kaltverfestigten Drähte haben insofern noch einen weiteren Vorteil, als die Dauerfestigkeit gegenüber Fiberglas-Streifengefügen erhöht ist. Gewickelte Gehäuse oder Umhüllungen eignen sich für solche Fälle, wo ein Wiederauffüllen beispielsweise mit Gasen und flüssigen Brennstoffen unter Druck erforderlich ist.

Der Querschnitt der Drähte kann sich von einem kreisförmigen zu einem rechteckigen ändern, so daß ein weiter Bereich von Schichtungsdicken gleicher Festigkeit zur Verfügung steht. Beispielsweise sind Drähte mit rechteckigem Querschnitt nach Fig. 5 wie auch mit kreisförmigem nach Fig. 3 verwendbar. Eine aus Bändern mit Drähten von rechteckigem Querschnitt hergestellte Wand hat die gleiche Schlichtungsfestigkeit wie bei Verwendung von runden Drähten, sie hat aber eine geringere Schichtungsdicke. Weiterhin ist zu überlegen, daß das Verhältnis der äußeren Fläche zum Volumen sich erhöht, wenn sich der Querschnitt von kreisförmig in rechteckig ändert, und damit ist die Harzbindung über eine größere Fläche wirksam.

Sehr oft schreibt ein Entwurf für das Gehäuse eine äußere Abmessung vor, wobei die Dicke der Gehäusewandung die aufgenommene Brennstoffmenge bestimmt. Es ist deshalb wichtig, die erforderliche Gehäusewandfestigkeit mit einem Minimum an Wanddicke zu erreichen. Bei der Erfindung ergibt sich der Vorteil, die erforderliche Festigkeit mit einer geringen Wandstärke zu erreichen.

Wenn das Gehäuse einmal gewickelt ist, wird es bei zufälligen Behandlungsfehlern nicht gleich unbrauchbar. Leichte Unebenheiten der Oberfläche des Gehäuses geben wie bei festen Metallgehäusen noch keinen Anlaß zu strukturellen Fehlern.

Die Drähte können aus Stahl, Titan, Wolfram, Molybdän oder gleichwertigen Metallen bestehen. Das einzige Erfordernis besteht darin, daß sich die Metalle zu einem dünnen Draht durch Kaltverfestigung so verformen lassen, daß die notwendige Zugfestigkeit erreicht wird. Es können auch andere als organische Bindemittel verwendet werden. Beispielsselbst haben. Infolgedessen haben die Drähte auf der 45 weise können niedrigschmelzende Legierungen wie auch keramische Stoffe und Kombinationen von diesen Materialien verwendet werden.

Der beschriebene lamellierte Wandaufbau behält seine Festigkeit weit besser als Fiberglas bei hohen Temperaturen, und diese Eigenschaft kann noch weiterhin durch Auswahl von Metalldrähten von größerer Hitzebeständigkeit erhöht werden, ohne daß die Gehäusefestigkeit herabgesetzt wird.

Bei unregelmäßig gekrümmten Oberflächen, wie besteht, liegt neben dem anderen mit einem Abstand 55 beispielsweise trichterförmigen Teilen, wie sie bei Raketendüsen allgemein vorkommen, soll die Wandung aus einzelnen Seilen 36 nach Fig. 6 und 7 hergestellt werden, die aus einer Vielzahl von Drähten 16 mit kreisförmigem Querschnitt bestehen. Ein Seil 36 wird winkelig über die Oberfläche eines Dornes zur Bildung der Wandung geführt, welche dann zur Aushärtung des Harzbindemittels erhitzt wird. Bei dem fertigen Gehäuse wird im wesentlichen die gesamte Wandung durch wenigstens zwei Schichten von über Kreuz liegenden Fäden gebildet, wodurch die notwendige Festigkeit erzeugt wird.

> Als allgemeine Regel gilt, zur Herstellung der Wandung das Band über den Spanndorn auf dem

kürzesten Weg zu wickeln, so daß es gleichmäßig über seine ganze Breite beansprucht wird. Bei dem einzelnen Seil nach den Fig. 6 und 7 ist ein solches Wickeln nicht erforderlich.

PATENTANSPRÜCHE:

1. Band zur Herstellung gewickelter Wände von Hochdruckbehältern, bestehend aus einer Vielzahl von durchlaufenden Drähten, welche in 10 einem Bindemittel eingebettet sind, dadurch gekennzeichnet, daß die Drähte (16) nebeneinander angeordnet sind und jeder Draht in der gleichen Lage über dem Querschnitt des Bandes (10) auf der ganzen Bandlänge liegt.

2. Band nach Anspruch 1, dadurch gekennzeichnet, daß die Drähte (16) dehnbare, kaltver-

festigte Metalldrähte sind.

3. Band nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Drähte (16) in einer Reihe 20 nebeneinander angeordnet sind und die Breite des Bandes (10) im wesentlichen gleich der Summe der Querschnittsbreite der Drähte ist.

4. Band nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Drähte (16) in einer Mehrzahl von Reihen übereinander angeordnet sind.

5. Band nach Anspruch 1 oder 2, dadurch gezeichnet, daß die Drähte (16) so angeordnet sind, daß sie ein im Querschnitt kreisförmiges Band (10) bilden.

6. Band nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jeder Draht

(16) kreisförmigen Querschnitt hat.

7. Band nach einem dem vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jeder Draht (16) rechteckigen Querschnitt hat.

In Betracht gezogene Druckschriften: Französische Patentschrift Nr. 817 151; USA.-Patentschrift Nr. 2 744 043.

Hierzu 1 Blatt Zeichnungen