

250mA 低压差线性稳压器

概述:

该 XC6206 系列是一款高精度,低功耗,高电压,正电压调整器的芯片,并采用 CMOS 工艺和激光微调技术。在输出电流的情况下,输入输出压也差很小。 XC6206 系列芯片包括一个电流限制电路,一个驱动器三极管,一个高精度参考电压源和一个误差校正电路。 XC6206 系列可使用低FSR 陶瓷电容 该电流限

XC6206 系列可使用低ESR 陶瓷电容.该电流限制器的返回电路可为电流限制器和输出引脚提供短路保护。通过激光微调技术,可设定芯片的输出电压的范围是 1.2V 至 5.0V,间隔为 0.1V。

特点:

- 高精度输出电压: ±2%
- 输出电压: 1.2V~5.0V(步长 0.1V)
- 最大工作电压: 6V
- 极低的静态偏置电流 (Typ. =8.0 µ A)
- 带载能力强: 当 Vin=4.3V 且 Vout=3.3V 时 Iout=300mA
- 极低的输入输出电压差: 0.2V at 90mA and 0.40V at 200mA
- 输入稳定性好
- 低的温度调整系数
- 可以作为调整器和参考电压来使用

应用:

- 电池供电系统
- 无绳电话设备
- 无线控制系统
- 便携/手掌式计算机
- 便携式消费类设备
- 便携式仪器
- 电子设备
- 汽车电子设备
- 电压基准源

典型性能特征:

功能块框图

极限参数

参数	符号	极限值	单位
Vin 脚电压	VIN	6.5	V
Vout 脚电流	lout	250	mA
Vout 脚电压	Vout	Vss-0.3 ~ Vout+0.3	V
允许最大功耗	Pd	250	mW
工作温度	TOpr	-40~ +85	°C
存贮温度	Tstg	-40~ +125	°C

推荐工作条

参数	符号	极限值	单位
输入电压	VIN	6.5	V
工作结温范围	TJ	-40 ~ +125	°C

主要参数及工作特性:

(Vin=Vout+1V,Cin=Cout=1u,Ta=250℃ 除特别指定)

特性	符号	测试条件	最小值	典型值	最大值	单位
松山山田	VOUT(E)	IOUT=10mA,	X 0.98	VOUT(T)	X 1.02	V
输出电压	(Note 2)	VIN=Vout+1V		E-1		V
输入电压	VIN		1.8		6	V
最大输出电流	IOUT (max)	VIN=Vout+1V	E-2			mA
左, ±\; \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	ΔVOUT	Vout>1.8V, 1mA≤IOUT≤100mA			E-3	mV
负载特性 	ΔνΟΟΙ	Vout<1.8V, 1mA≤IOUT≤50mA			E-3	IIIV
	Vdif1	IOUT =30mA		E	-4	mV
漏失电压	7/4:40	Vout>1.8V,IOUT =100mA		_	F	m\/
	Vdif2	Vout<1.8V,IOUT =60mA			-5	mV
电源电流	IDD	VIN=VCE		1	3	μΑ
	ΔVOUT	VOUT(T)<4.5V:VOUT(T)+1.0V ≦ VIN ≤ 6.0V				
电源电压调整率	Δ VIN•VOUT	= 0.0 V VOUT(T)>4.5V:5.5V ≦ VIN ≦ 6.0 V IOUT=30mA		0.05	0.25	%/V
<i>t</i> 公山 由 正 汨 克 吐 尔	ΔVOUT	IOUT=30mA		1.400		ppm/
输出电压温度特征	∆ Vonr•VOUT	-40 °C ≦ Topr ≦ 85 °C		±100		$^{\circ}\mathbb{C}$
短 败 由 法	Ishort	Vin=Vout(T)+1.5V		E-6		mA
短路电流	1511011	Vout=Vss		⊏-0		IIIA
过流保护电流	llimt			250		mA

通知:

*1: VOUT (T)=额定输出电压

*2: VOUT (E)=有效输出电压 (Ie. 当输出电压是 "VOUT(T)+1. OV" i 时提供的 VIN 引脚和 IOUT 的值维持一致时.)

* 3 : VOUT={ VIN 1- VOUT1 }

* 5 : VIN = 输入电压(当VOUT显示逐渐降低时)。

* 6 : 除非另有说明, 否则VIN = VOUT (T) + 1.0V

* 7 : 当 VOUT >1.5V, 精度为±2%.

当 VOUT)<1.5V, 精度最小: VOUT =30mV , 最大: VOUT +30mV

±1% 精度(最小: VOUT x 0.99 , 最大: VOUT x 1.01) 设置在 VOUT >2.0V

电特性图:

2		E-	-1		E-2	E-3	E-₄	4	E-5	5	E-6
参数	车	命出电压			B 1 44 .1. 1.	to the let bet	New all of the		New of the last		te-min 1. vin
设置 电压	2%	精度	1%精	度	最大输出电流	负荷规例	漏失电	压 1	漏失电	太2	短路电流
Vout(t)	Vout	E)(V)	Vout(E) (V)	loutmax (mA)	Vout (mV)	Vdit (m)	100	Vdif (mV		Ishort (mA)
44	最小	最大.	最小.	最大	最小	最大	典型值	最大.	典型值	最大.	TYP.
1.2	1.170	1.230					460	760	700	960	1111
1.3	1.270	1.330	1		60	40	400	650	700	000	180
1.4	1.370	1.430			000 (500)		350	590	580	860	
1.5	1.470	1.530	不提供			7)	300	510	500	000	0.000
1.6	1.568	1.632				45	250	450	450	810	155
1.7	1.666	1.734			80	45	200	410	100.00	1825.73	
1.8	1.764	1.836]				150	390		200	
1.9	1.862	1.938				3				780	130
2.0	1.960	2.040	1.980	2.020	9		-30				130
2.1	2.058	2.042	2.079	2.121	120	50			1		
2.2	2.156	2.244	2.178	2.222	120	50	700,0000	25597334	350		
2.3	2.254	2.346	2.277	2.323			100	370	(8.8.6)		
2.4	2.352	2.448	2.376	2.424	· · · · · · · · · · · · · · · · · · ·	9	20			710	
2.5	2.450	2.550	2.475	2.525	9	8	-36				
2.6	2.548	2.652	2.574	2.626	150	55					
2.7	2.646	2.754	2.673	2.727	150	55					
2.8	2.744	2.856	2.772	2.828							
2.9	2.842	2.958	2.871	2.929		3					
3.0	2.940	3.060	2.970	3.030	(3)	2)					
3.1	3.038	3.162	3.069	3.131		60					
3.2	3.136	3.264	3.168	3.232		60					
3.3	3.234	3.366	3.267	3.333	200		75	250	250	600	
3.4	3.332	3.468	3.366	3.434	200	3	75	350	250	680	100
3.5	3.430	3.570	3.465	3.535		3)	-86				
3.6	3.528	3.672	3.564	3.636		GE.					
3.7	3.626	3.774	3.663	3.737		65					
3.8	3.724	3.876	3.762	3.838							
3.9	3.822	3.978	3.861	3.939	50	25					
4.0	3.920	4.080	3.960	4.040							
4.1	4.018	4.182	4.059	4.141		70					
4.2	4.116	4.284	4.158	4.242		70					
4.3	4.214	4.386	4.257	4.343			60	320	200	630	
4.4	4.312	4.488	4.356	4.444	250	4	00	320	200	030	
4.5	4.410	4.590	4.455	4.545							
4.6	4.508	4.692	4.554	4.646		75					
4.7	4.606	4.794	4.653	4.747		75					
4.8	4.704	4.896	4.752	4.848							
4.9	4.802	4.998	4.851	4.949		25					
5.0	4.900	5.100	4.950	5.050		80	50	290	175	600	

引脚排列图:

管脚描述

管脚号	管脚名称	功能
1	VSS	接地引脚
2	VOUT	输出电压
3	VIN	输入电压

典型应用电路图

Package Dimensions:

Symbol	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E1	1.500	1.700	0.059	0.067
E	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L,	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°