Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования

«Сибирский Государственный Университет Телекоммуникаций и Информатики»

Кафедра Прикладной Математики и Кибернетики (ПМиК)

РГР по дисциплине

«Визуальное программирование и человеко-машинное взаимодействие»

Вариант №4

Выполнил: студент 2 курса

группы ИП-016 Егошин А.А.

Проверил: Милешко А.В.

Содержание:

1.	Задание на РГР	3
2.	Ход работы	4
	Исследование предметной области и создание ER диаграммы	
4.	Перевод ER диаграммы в реляционную модель, создание и	
	заполнение БД	8
5.	Проработка визуального интерфейса приложения	10
6.	Создание диаграммы классов приложения	12
7.	Реализация основного окна приложения	13
8.	Реализация менелжера запросов	14

1. Задание на РГР

Создать ПО для отображения и обработки статистических данных для определённого вида спорта. ПО должно включать 2 основных окна: окно, отображающее таблицы БД со статистической информацией и результаты запросов к БД, переключение таблиц и результатов должно быть реализовано через вкладки; и окно для менеджера запросов к БД.

Первое окно должно давать возможность просматривать и изменять все таблицы БД, а также просматривать результаты запросов к БД. Должна иметься возможность удалить вкладки с результатами запросов, но не вкладки с таблицами. Также должна иметься возможность перейти к окну менеджера запросов.

Окно менеджера запросов должно предоставлять интерфейс для создания, сохранения, удаления, редактирования запросов. Созданные запросы должны отображаться в виде списка с названиями запросов, в добавлять просматривать который онжом новые запросы, удалять, Для существующие. редактирования запросов создания предоставляться визуальный интерфейс, а не язык запросов. Редактор запросов должен поддерживать операции выборки, соединения, группирования, подзапросы (в качестве подзапроса используются ранее сохранённые запросы).

В качестве базы данных должна использоваться SQLite. Для работы с БД можно использовать SQLite Studio. Все таблицы должны находиться в третьей нормальной форме.

Приложение и отчёт по работе должны быть размещены на GitHub, ссылка на репозиторий отправляется в качестве ответа на задание.

2. Ход работы

- 1. Исследование предметной области и создание ER диаграммы;
- 2. Перевод ER диаграммы в реляционную модель, создание и заполнение БД;
- 3. Проработка визуального интерфейса приложения;
- 4. Создание диаграммы классов приложения;
- 5. Реализация основного окна приложения;
- 6. Реализация менеджера запросов;
- 7. Тестирование и отладка.

3. Исследование предметной области и создание ER диаграммы

Рисунок 1. ER диаграмма

Имеем 5 сущностей:

1. **Player**, состоящая из полей:

name	ФИО игрока
age	Возраст игрока
position	Позиция игрока на площадке

Таблица 1. Поля сущности Player

2. Country, состоящая из полей:

name	Название страны
------	-----------------

Таблица 2. Поля сущности Country

3. Теат, состоящая из полей:

name	Название команды
G	Количество игр
MP	Количество игрового времени
FG	Количество бросков, попавших в корзину
FGA	Количество всех выполненных бросков
	Процентное соотношение между
FG%	результативными бросками и общим
	количеством выполненных бросков
	Количество результативных бросков из
3P	трёхочковой зоны
	Количество всех выполненных бросков из
3PA	трёхочковой зоны
	Процентное соотношение между
200/	результативными трёхочковыми бросками и
3P%	общим количеством выполненных трёхочковых
	бросков
an.	Количество результативных двухочковых
2P	бросков
2D 4	Количество выполненных двухочковых
2PA	бросков
	Процентное соотношение между
2P%	результативными двухочковыми бросками и
ZP 70	общим количеством выполненных
	двухочковых бросков
FT	Количество результативных штрафных бросков
FTA	Общее количество штрафных бросков
	Процентное соотношение между
FT%	результативными штрафными бросками и
	общим количеством штрафных бросков
ORB	Количество выигранных подборов под
OKD	корзиной соперника
DRB	Количество выигранных подборов под своей
	корзиной
TRB	Полное количество выигранных подборов
AST	Количество передач, после которых был
ASI	выполнен результативный бросок
STL	Количество удачных перехватов мяча

BLK	Количество удачно выполненных блоков
TOV	Количество потерянных мячей
PF	Количество персональных замечаний
PTS	Количество набранных очков

Таблица 3. Поля сущности Теат

4. Leagues, состоящая из полей:

	name	;	На	азвание лиги
_	_			<u> </u>

Таблица 4. Поля сущности Leagues

5. **Result**, состоящая из полей:

position	Позиция в лиге
----------	----------------

Таблица 5. Поля сущности Result

Взаимодействие сущностей между собой:

- Игрок родом только из одной страны. Страна является родиной многих игроков;
- Команда может иметь в своём составе множество игроков. Игрок может состоять только в одной команде;
- В лиге может быть множество результатов. Результаты для каждой лиги только одни;
- Команда занимает определённое место. Результат для команды только один.
- Команда выступает множестве лиг. В лиге только одна такая команда.

4. Перевод ER диаграммы в реляционную модель, создание и заполнение БД

Для перевода из ER диаграммы в реляционную модель достаточно преобразовать все сущности в таблицы.

Каждый простой тип сущности превращается в таблицу. Имя сущности становится именем таблицы. Каждый атрибут становится столбцом таблицы с тем же именем. Выставляются первичный и внешние ключи.

Player		
id_player	INTEGER первичный ключ	
name	STRING	
age	INTEGER	
position	STRING	
id_county	INTEGER внешний ключ	
id_team	INTEGER внешний ключ	

Таблица 6. Таблица БД «Player»

County		
id_county	INTEGER первичный ключ	
name	STRING	

Таблица 7. Таблица БД «County»

Team		
id_team	INTEGER первичный ключ	
name	STRING	
G	INTEGER	
MP	INTEGER	
FG	DOUBLE	
FGA	DOUBLE	
FG%	DOUBLE	
3P	DOUBLE	
3PA	DOUBLE	
3P%	DOUBLE	
2P	DOUBLE	

2PA	DOUBLE
2P%	DOUBLE
FT	DOUBLE
FTA	DOUBLE
FT%	DOUBLE
ORB	DOUBLE
DRB	DOUBLE
TRB	DOUBLE
AST	DOUBLE
STL	DOUBLE
BLK	DOUBLE
TOV	DOUBLE
PF	DOUBLE
PTS	DOUBLE

Таблица 8. Таблица БД «Теат»

League		
id_league	INTEGER первичный ключ	
name	STRING	

Таблица 9. Таблица БД «League»

	Result
id_league	INTEGER внешний ключ
id_team	INTEGER внешний ключ
place	INTEGER

Таблица 10. Таблица БД «Result»

Получившаяся БД находится в 3-ей нормальной форме.

5. Проработка визуального интерфейса приложения

Главное окно приложения содержит в себе основное меню:

File:

- Save (сохранение БД);
- Load (загрузка БД);
- Exit (выход из приложения).

About: кто сделал и как пользоваться.

Request: открывает окно с менеджером запросов.

Table: редактирование БД, удаление и добавление новых строк.

Ниже под меню находятся вкладки с таблицами и результатами запросов.

При смене вкладок меняется содержимое, отображаемое в таблице ниже.

База Данных — Ж 🗙					
File About		ible			
Table 1 Table 2 Table 3 Request 1 Request 2					
TEXT	TEXT	TEXT	TEXT	TEXT	
text_text_text	text_text_text	text_text_text	text_text_text	text_text_text	
text_text_text	text_text_text	text_text_text	text_text_text	text_text_text	
text_text_text	text_text_text	text_text_text	text_text_text	text_text_text	
		text_text_text			
text_text_text	text_text_text	text_text_text	text_text_text	text_text_text	

Рисунок 2. Главное окно

В менеджере запросов слева хранится список запросов. Можно создать новый или удалить. Также можно запустить выполнение запроса.

Справа находится конструктор запроса. Можно ввести имя запроса. Выбрать нужные столбцы таблиц а также выполнить запросы SELECT, JOIN, GROUP BY, WHERE, нажав на соответствующие кнопки.

Рисунок 3. Менеджер запросов

В окошке WHERE editor можно написать условие для работы остальных запросов.

```
Where editor
- ⋈
★

• Table 1:
- atr_1> [*]
- Table 1

• Table 2
- Table 3

• atr_3> []
- Request 1

• Request 2
...
```

Рисунок 4. Where editor

6. Создание диаграммы классов приложения

В своей основе классы из слоя Models повторяют ER диаграмму и составленную базу данных. Также добавлен класс Request, описывающий запрос к БД, созданный в конструкторе.

Рисунок 5. Диаграмма классов

7. Реализация основного окна приложения

8. Реализация менеджера запросов

