Regresión lineal simple

El método de los mínimos cuadrados proporciona los coeficientes que minimizan el error SSE

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} (x_{i} - \hat{y}_{i})^{2}} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \sum_{i=1}^{n} [y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i})]^{2}$$

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}.$$

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$$

1.
$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$
, donde $S_{xy} = \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})$ y $S_{xx} = \sum_{i=1}^n (x_i - \overline{x})^2$
2. $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$.

$$2. \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}.$$

Propiedades de los estimadores de mínimos cuadrados

- 1. Los estimadores $\hat{\beta}_0$ y $\hat{\beta}_1$ son insesgados, es decir, $E(\hat{\beta}_i) = \beta_i$, para i = 0, 1.
- 2. $V(\hat{\beta}_0) = c_{00}\sigma^2$, donde $c_{00} = \sum x_i^2/(nS_{xx})$.
- 3. $V(\hat{\beta}_1) = c_{11}\sigma^2$, donde $c_{11} = \frac{1}{S_{xx}}$.
- 4. $Cov(\hat{\beta}_0, \hat{\beta}_1) = c_{01}\sigma^2$, donde $c_{01} = \frac{-\overline{x}}{S_{xx}}$.
- 5. Un estimador insesgado de σ^2 es $S^2 = SSE/(n-2)$, donde $SSE = S_{yy} \hat{\beta}_1 S_{xy}$ y $S_{yy} = \sum (y_i \overline{y})^2$.

Si, además, el ε_i , para $i=1,2,\ldots,n$ está distribuido normalmente,

- 6. $\hat{\beta}_0$ y $\hat{\beta}_1$ están distribuidas normalmente.
- 7. La variable aleatoria $\frac{(n-2)S^2}{\sigma^2}$ tiene una distribución χ^2 con n-2 grados de libertad.
- 8. El estadístico S^2 es independiente de $\hat{\beta}_0$ y $\hat{\beta}_1$.

Inferencias respecto a los parámetros eta_i

$$H_0: \beta_i = \beta_{i0}.$$
 (región de rechazo de cola superior), $H_a: \begin{cases} \beta_i > \beta_{i0} & \text{(región de rechazo de cola inferior),} \\ \beta_i < \beta_{i0} & \text{(región de rechazo de dos colas).} \end{cases}$

Estadístico de prueba:

$$T = \frac{\hat{\beta}_i - \beta_{i0}}{S\sqrt{c_{ii}}}$$

$$c_{00} = \frac{\sum x_i^2}{nS_{xx}} \quad c_{11} = \frac{1}{S_{xx}}$$

Región de rechazo:
$$\begin{cases} t > t_{\alpha} & \text{(alternativa de cola superior),} \\ t < -t_{\alpha} & \text{(alternativa de cola inferior),} \\ |t| > t_{\alpha/2} & \text{(alternativa de dos colas),} \end{cases}$$
 t_{α} está basada en $(n-2)$ grados de libertad

Un intervalo de confianza 100(1 – α)% para β_i $\hat{\beta}_i \pm t_{\alpha/2} S \sqrt{c_{ii}}$

Inferencias respecto a funciones lineales de los parámetros del modelo: regresión lineal simple

Una prueba para $\theta = a_0 \beta_0 + a_1 \beta_1$

$$H_0: \theta = \theta_0,$$
 $\theta > \theta_0,$ $\theta < \theta_0,$ $\theta \neq \theta_0.$

Estadístico de prueba:
$$T = \frac{\theta - \theta_0}{S_{xx}}$$

$$S \left(\frac{a_0^2 \frac{\sum x_i^2}{n} + a_1^2 - 2a_0 a_1 \overline{x}}{S_{xx}} \right)$$

Región de rechazo:
$$\begin{cases} t > t_{\alpha}, \\ t < -t_{\alpha}, \\ |t| > t_{\alpha/2}. \end{cases}$$

Aquí, t_{α} y $t_{\alpha/2}$ están basados en n-2 grados de libertad.

Un intervalo de confianza $100(1 - \alpha)\%$ para $\theta = a_0\beta_0 + a_1\beta_1$

$$\hat{\theta} \pm t_{\alpha/2} S \sqrt{\left(\frac{a_0^2 \frac{\sum x_i^2}{n} + a_1^2 - 2a_0 a_1 \overline{x}}{S_{xx}}\right)},$$

Un intervalo de confianza $100(1 - \alpha)\%$ para $E(Y) = \beta_0 + \beta_1 x^*$

$$\hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\alpha/2} S_{\sqrt{\frac{1}{n}}} + \frac{(x^* - \overline{x})^2}{S_{xx}},$$

donde la $t_{\alpha/2}$ tabulada está basada en n-2 grados de libertad.

Predicción de un valor particular de Y

Intervalo de predicción de 100(1 – α)% para Y cuando $x = x^*$

$$\hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\alpha/2} S_{\sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}}}.$$

Coeficiente de correlación r, y de determinación r^2

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \hat{\beta}_1 \sqrt{\frac{S_{xx}}{S_{yy}}}$$

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \hat{\beta}_1 \sqrt{\frac{S_{xx}}{S_{yy}}}$$

$$r^2 = \left(\frac{\hat{\beta}_1 S_{xy}}{S_{yy}}\right) = \frac{S_{yy} - SSE}{S_{yy}} = 1 - \frac{SSE}{S_{yy}}$$

Es la proporción de la variación total en las y_i que es explicada por la variable x en un modelo de regresión lineal simple

Pruebas de hipótesis del coeficiente de correlación para muestras grandes

$$t = \frac{\hat{\beta}_1 - 0}{S/\sqrt{S_{xx}}} \longleftrightarrow t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

distribución t con n – 2 grados de libertad

Probar H_0 : $\rho=0$ contra H_a : $\rho>0$ es equivalente a probar H_0 : $\beta_1=0$ contra H_a : $\beta_1>0$. Del mismo modo, H_a : $\rho<0$ es equivalente a H_a : $\beta_1<0$ y H_a : $\rho\neq0$ es equivalente a H_a : $\beta_1\neq0$.

$$Z = \frac{\left(\frac{1}{2}\right)\ln\left(\frac{1+r}{1-r}\right) - \left(\frac{1}{2}\right)\ln\left(\frac{1+\rho_0}{1-\rho_0}\right)}{\frac{1}{\sqrt{n-3}}}$$

$$H_a: \rho > \rho_0, \qquad RR: z > z_\alpha,$$

$$H_a: \rho < \rho_0, \qquad RR: z < -z_\alpha,$$

$$H_a: \rho \neq \rho_0, \qquad \text{RR}: |z| > z_{\alpha/2}$$

lpha es la probabilidad de cometer un error tipo I