Module 9.4: Better initialization strategies

Deep Learning has evolved

- Better optimization algorithms
- Better regularization methods
- Better activation functions
- Better weight initialization strategies

$$a_{11} = w_{11}x_1 + w_{12}x_2$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

$$h_{11} = h_{12}$$

- What happens if we initialize all weights to 0?
- All neurons in layer 1 will get the same activation

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

$$\nabla w_{11} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

$$\nabla w_{11} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$
$$\nabla w_{21} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

$$\nabla w_{11} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$

$$\nabla w_{21} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$

$$but \quad h_{11} = h_{12}$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

$$\nabla w_{11} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$

$$\nabla w_{21} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$

$$but \quad h_{11} = h_{12}$$

$$and \quad a_{12} = a_{12}$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

$$a_{12} = w_{21}x_1 + w_{22}x_2$$

 $a_{11} = a_{12} = 0$

$$\nabla w_{11} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$

$$\nabla w_{21} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$

$$but \quad h_{11} = h_{12}$$

$$and \quad a_{12} = a_{12}$$

$$\therefore \nabla w_{11} = \nabla w_{21}$$

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

• Hence both the weights will get the same update and remain equal

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

- Hence both the weights will get the same update and remain equal
- Infact this symmetry will never break during training

$$a_{11} = w_{11}x_1 + w_{12}x_2$$

$$a_{12} = w_{21}x_1 + w_{22}x_2$$

$$\therefore a_{11} = a_{12} = 0$$

$$h_{11} = h_{12}$$

- Hence both the weights will get the same update and remain equal
- Infact this symmetry will never break during training
- The same is true for w_{12} and w_{22}

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

- Hence both the weights will get the same update and remain equal
- Infact this symmetry will never break during training
- The same is true for w_{12} and w_{22}
- And for all weights in layer 2 (infact, work out the math and convince yourself that all the weights in this layer will remain equal)

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

• The same is true for w_{12} and w_{22}

same update and remain equal

• Hence both the weights will get the

- And for all weights in layer 2 (infact, work out the math and convince yourself that all the weights in this layer will remain equal)
- This is known as the **symmetry** breaking problem

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$

- Infact this symmetry will never break during training
- The same is true for w_{12} and w_{22}
- And for all weights in layer 2 (infact, work out the math and convince yourself that all the weights in this layer will remain equal)
- This is known as the **symmetry** breaking problem
- This will happen if all the weights in a network are initialized to the **same** value

• input: 1000 points, each $\in R^{500}$

- input: 1000 points, each $\in R^{500}$
- input data is drawn from unit Gaussian

- input: 1000 points, each $\in R^{500}$
- input data is drawn from unit Gaussian

• the network has 5 layers

- input: 1000 points, each $\in R^{500}$
- input data is drawn from unit Gaussian

- the network has 5 layers
- each layer has 500 neurons

- input: 1000 points, each $\in R^{500}$
- input data is drawn from unit Gaussian

- the network has 5 layers
- each layer has 500 neurons
- we will run forward propagation on this network with different weight initializations

W = np.random.randn(fan in, fan out) * 0.01

• Let's try to initialize the weights to small random numbers

tanh activation functions

- Let's try to initialize the weights to small random numbers
- We will see what happens to the activation across different layers

sigmoid activation functions

- Let's try to initialize the weights to small random numbers
- We will see what happens to the activation across different layers

- What will happen during back propagation?
- Recall that ∇w_1 is proportional to the activation passing through it

- What will happen during back propagation?
- Recall that ∇w_1 is proportional to the activation passing through it
- If all the activations in a layer are very close to 0, what will happen to the gradient of the weights connecting this layer to the next layer?

- What will happen during back propagation?
- Recall that ∇w_1 is proportional to the activation passing through it
- If all the activations in a layer are very close to 0, what will happen to the gradient of the weights connecting this layer to the next layer?

- What will happen during back propagation?
- Recall that ∇w_1 is proportional to the activation passing through it
- If all the activations in a layer are very close to 0, what will happen to the gradient of the weights connecting this layer to the next layer?
- They will all be close to 0 (vanishing gradient problem)

W = np.random.randn(fan in, fan out)

• Let us try to initialize the weights to large random numbers

W = np.random.randn(fan_in, fan_out)

• Let us try to initialize the weights to large random numbers

tanh activation with large weights

W = np.random.randn(fan_in, fan_out)

• Let us try to initialize the weights to large random numbers

sigmoid activations with large weights

W = np.random.randn(fan_in, fan_out)

sigmoid activations with large weights

- Let us try to initialize the weights to large random numbers
- Most activations have saturated

W = np.random.randn(fan_in, fan_out)

sigmoid activations with large weights

- Let us try to initialize the weights to large random numbers
- Most activations have saturated
- What happens to the gradients at saturation?

W = np.random.randn(fan_in, fan_out)

sigmoid activations with large weights

- Let us try to initialize the weights to large random numbers
- Most activations have saturated
- What happens to the gradients at saturation?
- They will all be close to 0 (vanishing gradient problem)

$$s_{11}$$
 r_2
 r_3
 r_4
 r_5
 r_7
 r_8
 r_8

$$s_{11} = \sum_{i=1}^{n} w_{1i} x_i$$

$$s_{1n} \qquad s_{11} = \sum_{i=1}^{n} w_{1i} x_i$$

$$\bigcup_{x_n}$$

$$Var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_i) = \sum_{i=1}^{n} Var(w_{1i}x_i)$$

$$= \sum_{i=1}^{n} \left[(E[w_{1i}])^2 Var(x_i) + (E[x_i])^2 Var(w_{1i}) + Var(x_i) Var(w_{1i}) \right]$$

• [Assuming 0 Mean inputs and weights]

$$Var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_i) = \sum_{i=1}^{n} Var(w_{1i}x_i)$$

$$= \sum_{i=1}^{n} \left[(E[w_{1i}])^2 Var(x_i) + (E[x_i])^2 Var(w_{1i}) + Var(x_i) Var(w_{1i}) \right]$$
and

$$s_{11}$$
 x_1
 x_2
 x_3
 s_1
 x_n

$$s_{1n} \qquad s_{11} = \sum_{i=1}^{n} w_{1i} x_i$$

$$var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_i) = \sum_{i=1}^{n} Var(w_{1i}x_i)$$

$$= \sum_{i=1}^{n} \left[(E[w_{1i}])^2 Var(x_i) + (E[x_i])^2 Var(w_{1i}) + Var(x_i) Var(w_{1i}) \right]$$
and

- [Assuming 0 Mean inputs and weights]
- [Assuming $Var(x_i) = Var(x) \forall i$]

$$s_{1n}$$
 $s_{11} = \sum_{i=1}^{n} w_{1i} x_i$

$$Var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_i) = \sum_{i=1}^{n} Var(w_{1i}x_i)$$

$$= \sum_{i=1}^{n} \left[(E[w_{1i}])^2 Var(x_i) + (E[x_i])^2 Var(w_{1i}) + Var(x_i) Var(w_{1i}) \right]$$

$$= \sum_{i=1}^{n} Var(x_i) Var(w_{1i})$$

- [Assuming 0 Mean inputs and weights]
- [Assuming $Var(x_i) = Var(x) \forall i$]

 $s_{1n} \qquad s_{11} = \sum_{i=1}^{n} w_{1i} x_i$

$$Var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_i) = \sum_{i=1}^{n} Var(w_{1i}x_i)$$

$$= \sum_{i=1}^{n} \left[(E[w_{1i}])^2 Var(x_i) + (E[x_i])^2 Var(w_{1i}) + Var(x_i) Var(w_{1i}) \right]$$

$$= \sum_{i=1}^{n} Var(x_i) Var(w_{1i})$$

- [Assuming 0 Mean inputs and weights]
- [Assuming $Var(x_i) = Var(x) \forall i$]
- [Assuming $Var(w_{1i}) = Var(w) \forall i$]

- - $\sum_{x_{in}}$
- $s_{1n} \qquad s_{11} = \sum_{i=1}^{n} w_{1i} x_i$

$$Var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_i) = \sum_{i=1}^{n} Var(w_{1i}x_i)$$

$$= \sum_{i=1}^{n} \left[(E[w_{1i}])^2 Var(x_i) + (E[x_i])^2 Var(w_{1i}) + Var(x_i) Var(w_{1i}) \right]$$

$$= \sum_{i=1}^{n} Var(x_i) Var(w_{1i})$$

$$= (nVar(w))(Var(x))$$

- [Assuming 0 Mean inputs and weights]
- [Assuming $Var(x_i) = Var(x) \forall i$]
- [Assuming $Var(w_{1i}) = Var(w) \forall i$]

$$s_{11}$$
 x_1
 x_2
 x_3
 x_n
 s_{1n}

$$Var(S_{1i}) = (nVar(w))(Var(x))$$

$$Var(S_{1i}) = (nVar(w))(Var(x))$$

• What would happen if $nVar(w) \gg 1$?

$$Var(S_{1i}) = (nVar(w))(Var(x))$$

- What would happen if $nVar(w) \gg 1$?
- The variance of S_{1i} will be large

$$Var(S_{1i}) = (nVar(w))(Var(x))$$

- What would happen if $nVar(w) \gg 1$?
- The variance of S_{1i} will be large
- What would happen if $nVar(w) \to 0$?

$$Var(S_{1i}) = (nVar(w))(Var(x))$$

- What would happen if $nVar(w) \gg 1$?
- The variance of S_{1i} will be large
- What would happen if $nVar(w) \to 0$?
- The variance of S_{1i} will be small

• Let us see what happens if we add one more layer

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i})Var(w_{2i})$$
$$= nVar(s_{1i})Var(w_{2})$$

$$Var(S_{i1}) = nVar(w_1)Var(x)$$

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i})Var(w_{2i})$$
$$= nVar(s_{1i})Var(w_{2})$$

$$Var(S_{i1}) = nVar(w_1)Var(x)$$

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$
$$= nVar(s_{1i}) Var(w_2)$$

$$Var(s_{21}) \propto [nVar(w_2)][nVar(w_1)]Var(x)$$

$$Var(S_{i1}) = nVar(w_1)Var(x)$$

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$
$$= nVar(s_{1i}) Var(w_2)$$

$$Var(s_{21}) \propto [nVar(w_2)][nVar(w_1)]Var(x)$$

$$\propto [nVar(w)]^2 Var(x)$$

$$Var(S_{i1}) = nVar(w_1)Var(x)$$

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$
$$= nVar(s_{1i}) Var(w_2)$$

$$Var(s_{21}) \propto [nVar(w_2)][nVar(w_1)]Var(x)$$

$$\propto [nVar(w)]^2 Var(x)$$

Assuming weights across all layers have the same variance

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

$$n Var(w) = 1$$

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

$$n Var(w) = 1$$

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

$$n Var(w) = 1$$

$$= n Var(\frac{w}{\sqrt{n}})$$

$$Var(aw) = a^2(Var(w))$$

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

$$n Var(w) = 1$$

$$= n Var(\frac{w}{\sqrt{n}})$$

$$=n*\frac{1}{n} Var(w)=1$$

$$Var(aw) = a^2(Var(w))$$

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

$$n Var(w) = 1$$

$$= n Var(\frac{w}{\sqrt{n}})$$

$$= n * \frac{1}{n} Var(w) = 1 \leftarrow (\underbrace{Unit Gaussian}_{11/14})$$

W = np.random.randn(fan_in, fan_out) / sqrt(fan_in)

• Let's see what happens if we use this initialization

W = np.random.randn(fan_in, fan_out) / sqrt(fan_in)

• Let's see what happens if we use this initialization

tanh activation

• Let's see what happens if we use this initialization

sigmoid activations

• However this does not work for ReLU neurons

- However this does not work for ReLU neurons
- Why ?

- However this does not work for ReLU neurons
- Why ?
- Intuition: *He et.al.* argue that a factor of 2 is needed when dealing with ReLU Neurons

- However this does not work for ReLU neurons
- Why ?
- Intuition: *He et.al.* argue that a factor of 2 is needed when dealing with ReLU Neurons
- Intuitively this happens because the range of ReLU neurons is restricted only to the positive half of the space

W = np.random.randn(fan in, fan out) / sqrt(fan in/2)

• Indeed when we account for this factor of 2 we see better performance

W = np.random.randn(fan_in, fan_out) / sqrt(fan_in/2)

• Indeed when we account for this factor of 2 we see better performance