Satellite imagery — Part 2

DSIER [/d] 'za] ər/] — Summer 2024

Julian Hinz

Bielefeld University

Data models

- vector data
- raster data

```
pacman::p_load(sf) # classes and functions for vector data
pacman::p_load(terra) # classes and functions for raster data
```

sf — simple features

low level libraries for geocomputation

- GDAL, for reading, writing and manipulating a wide range of geographic data formats
- PROJ, a powerful library for coordinate system transformations
- GEOS, a planar geometry engine for operations such as calculating buffers and centroids on data with a projected CRS
- S2, a spherical geometry engine written in C++ developed by Google

sf — simple features

- sf objects can be treated as data frames in most operations
- sf function names are relatively consistent and intuitive (all begin with st_)
- sf functions can be combined using %>% operator and works well with the tidyverse

sf classes

terra

- terra is a reboot of the raster package
- very fast for what it's doing
- lots of interfaces between terra and sf
- alternative: stars

Raster

A. Cell IDs

B. Cell values

C. Colored values

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

92	55	48	21
58	70	NA	37
NA	12	94	11
36	83	4	88

Raster

2,500

B. Categorical data

