Seminarnotater

Fredrik Meyer

April 29, 2015

1 Innledning

Vi husker litt notasjon.

- Γ er en gruppe som virker på \mathbb{H} , det øvre halvplanet.
- Vanligste eksemplene er $\Gamma(1) = \mathrm{SL}_2(\mathbb{Z})$, og kongruensundergruppene av denne: $\Gamma(N)$.

HUSK

- 1. **Modular functions**: modulære funksjoner er funksjoner invariant under Γ . Det er ikke nødvendigvis spesielt mange av disse. $f(\gamma z) = f(\gamma)$ for alle $\gamma \in \Gamma$. Vi krever at de er meromorfe på \mathbb{H} og på "køspene".
- 2. **Modular forms**: modulære former er som "brøker", evt. som homogene polynomer på \mathbb{P}^N . Så gitt en gruppe Γ , så er en modulær form for Γ av vekt 2k gitt ved en funksjon på \mathbb{H} slik at 1) $f(\gamma z) = (cz+d)^{2k} f(z)$

for
$$z\in\mathbb{H}$$
 og $\gamma=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\Gamma.$ Vi krever at f er holomorf på \mathbb{H} og på køspene.

3. Litt notasjon: $\mathcal{M}_k(\Gamma)$ er vektorrommet av modulære former av vekt 2k for Γ . $\mathcal{S}_k(\Gamma)$ er underrommet av køspformer (=null på køspene). Ved multiplikasjon av modulære former ser vi at

$$\mathcal{M}(\Gamma) = \bigoplus_{k \ge 0} \mathcal{M}_k(\Gamma)$$

er en gradert ring. Kristian nevnte sist at

$$\dim \mathcal{M}_k(\Gamma) = \begin{cases} 0 & k \le -1\\ 1 & k = 0\\ (2k-1)(g-1) + \nu_{\infty}k + \sum_P k \left[1 - \frac{1}{e_P}\right] & k \ge 1 \end{cases}$$

Her er ν_{∞} antall ikke-ekvivalente køsper. Summen går over representanter for elliptiske punkter P av Γ . e_P er orden til en eller annen stabilisator...

4. Det viste seg at

$$\mathcal{M}(\Gamma(1)) \simeq \mathbb{C}[T^2, T^3].$$

(hehe, køsp på nytt)

På dette tidspunktet regner Milne ut Fourier-koffesientene for Eisensteinserien til $\Gamma(1)$. Jeg tror vi hopper over dette.

Vi kan vel nevne resultatet og **betrakte** sammenhengen med tallteori. La

$$\sigma_k(n) = \sum_{d|n} d^k.$$

Da er (PROPOSISJON!!)

$$G_k(z) = 2\zeta(2k) + 2\frac{(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

(trommevirvel)

2 Modulære former som seksjoner av linjebunter

TERMINOLOGI:

La X være en kompleks mangfoldighet. Da er en **linjebunt** på X gitt ved en avbildning $\pi: L \to X$ slik at for en overdekning $\{U_i\}$ av X, har vi at $\pi^{-1}(U_i) \simeq U_i \times \mathbb{C}$.

For $U \subset X$, la $\Gamma(U, L)$ betegne mengden av seksjoner av π over U. For den trivielle linjebunten er dette bare holomorfe funksjoner.

Betrakt f
ølgende situasjon:

La Γ være en diskret gruppe som virker fritt og "ekte diskontinuerlig" på en Riemann-flate H. La $X = \Gamma \backslash H$.

La $\pi: L \to X$ være en linjebunt på X. Da er

$$p^*(L) = \{(h,l) \subset H \times L \mid p(h) = \pi(l)\}$$

en linjebunt på H (pullback).

$$p^*(L) \longrightarrow H$$

$$\downarrow \qquad \qquad \downarrow p$$

$$L \xrightarrow{\pi} X$$

Dette kan sjekkes lokalt på en overdekning som trivialiserer både π og p (finnes det en mer kategorisk metode???).

Anta gitt en isomorfi $i: H \times \mathbb{C} \to p^*(L)$. Da kan vi overføre virkningen av Γ på p*(L) til en virkning av Γ på $H \times \mathbb{C}$ over H. La $(t,z) \in H \times \mathbb{C}$. Vi skriver:

$$\gamma \cdot (t, z) = (\gamma t, j_{\gamma}(t)z)$$

hvor $j_{\gamma}(t) \in \mathbb{C}^x$.

Da er

$$\gamma \gamma'(t,z) = \gamma(\gamma't, j_{\gamma'}(t)z) = (\gamma \gamma't, j_{\gamma}(\gamma't)j_{\gamma'}(t)z).$$

Så

$$j_{\gamma\gamma'}(t) = j_{\gamma}(\gamma't)j_{\gamma'}(t).$$

En funksjon $j:\Gamma\times\mathbb{H}\to\mathbb{C}^x$ som dette som er holomorf kalles for en "automorfisk faktor".

Example 2.1. Enhver åpen delmengde av \mathbb{C} med en gruppevirkning fra Γ kommer med en kanonisk automorfisk faktor $j_{\gamma}(t)$, nemlig:

$$\Gamma \times H \to \mathbb{C}, (\gamma, t) \mapsto (d\gamma)_t.$$

I ord: γ induserer en avbildning. Tangentrommet til $\mathbb C$ er $\mathbb C$ selv, så differensialen er bare gitt ved å multiplisere med et komplekst tall.

At dette er en automorfisk faktor følger fra kjerneregelen! Prøv selv :)

EKSEMPEL: Se på $\Gamma(1)$ som virker på $\mathbb H$. Om γ sender z til $\frac{az+b}{cz+d}$ følger det at

$$d\gamma = \frac{1}{(cz+d)^2}dz,$$

så
$$j_{\gamma}(t) = (cz+d)^{-2} \text{ og } j_{\gamma}(t)^k = (cz+d)^{-2k}.$$

Vi har følgende:

Proposition 2.2. Det er en 1-1-korrespondanse mellom par (L,i) hvor L er en linjebunt på $\Gamma \backslash H$ og i er en isomorfi $H \times \mathbb{C} \simeq p^*L$ og mengden av automorfiske faktorer.

Proof. Vi har sett hvordan vi går fra $(L,i)\mapsto j_{\gamma}(t)$.

Gitt en automorfisk faktor j, bruk denne til å definere en virkning av Γ på $H \times \mathbb{C}$, og la L være gitt ved $\Gamma \backslash H \times \mathbb{C}$.

Siden alle linjebunter på $\mathbb H$ er trivielle, har vi en "klassifikasjon" av linjebunter på $\Gamma \backslash \mathbb H$. Den trivielle linjebunten svarer til j=1.

[[Korrespondanse mellom seksjoner av ${\cal L}_k$ og modulære former av vekt 2k.]]

2.1 Poincaré-rekker

...

- 2.2 Litt om geometrien til H
- 2.3 Indreprodukt + utspenning