

Certificate in DATA SCIENCE & AI

From Zero to Hero 40-Week Training Program

LIVE ONLINE TRAINING PROGRAM BATCH 22

40 WEEKS
22 | FEBRUARY 2025

- **U**+1 (678) 209 9780
- ₩www.innovatics.ai
- ☑register@innovatics.ai

PROGRA OVERVIEW

To maintain a competitive edge, organizations today must acquire practical expertise in Data Science, Machine Learning, Deep Learning, NLP, Gen-AI, and Artificial Intelligence. Careers in fields such as engineering, data science, and technical management increasingly rely on the advanced analytical and programming skills that these areas provide.

The Data Science & AI "Zero to Hero" program, an executive education course led by InnovatiCS, offers an immersive learning experience in the core methods of Data Science, Machine Learning, Deep Learning, NLP, Gen-AI, and Artificial Intelligence. This program emphasizes the hands-on skills needed to work effectively with machine learning models, including classification, regression, clustering, and optimization techniques.

Throughout the course, you will apply these methods to real-world problems, gaining the practical expertise needed to thrive in machine learning-focused roles. What sets our program apart is its practical, applied approach, addressing both the "how" and the "why" of machine learning, and equipping you with the technical skills to succeed in any field that uses these technologies.

You will leave this program with.....

- Key insights for leveraging analytics to drive growth, enhance efficiency, and boost productivity.
- The language and intuition needed to collaborate effectively with data scientists.
- The tools and techniques required to apply analytics practically and solve specific business challenges.

Benefits of Developing a Data-Driven Organization

LEARNING JOURNEY

Data Science Foundations

- · Programming Foundation
- Statistics Foundation
- **Business Understanding**
- **Decision Management**

Machine Learning

- Classification | Regression
- Clusting | A/B Testing | Association Rules
- ML Explainability & Interpretability
- Time Series Analysis | Recommended Sys.

NLP & Gen AI

- Gen AI -Chat GPT
- Prompt Engineering
- Cloud Computing

- · Data Understanding
- Data Visualization
- Data Preparation & Processing
- Data Transformation
- · Factor Analysis

- Advanced Python for Deep Learning
 ANN –CNN –RNN GANs
- Self-Organizing Maps –Boltzmann Machine
 Autoencoder –Sequence Learning
- Deployment -Flask
- Capstone Project
 Soft-skills –Resume Preparation
- Interview Preparation
- Job Placement assistance

TOOLS IN THE PROGRAM

DATA SCIENCE AND AI PROGRAM

InnovatiCS Certified/Verified Certificate

A certified and verified Certificate in Data Science and Al from InnovatiCS upon completing the program, participants will also obtain and will be trained to get the following 4 Certificates

CPD-UK

350 Hours of Accreditation from Continuing Professional Development (CPD-UK)

IABAC

Certificate in Data Science and AI from International Association of Business Analytics Certifications (IABAC) Candidate must take an exam and pay a fee

HLACT

500 Hours of Accreditation from Higher Learning Accreditation Consultant and Training (HLACT) with a Certificate . Candidate must take an exam and pay a fee

CAP

Certified Analytics Professional (CAP) from INFORMS. Candidate must qualify, take an exam, and pay a fee

PROGRAM IS FOR...

InnovatiCS' 40-Week Training Program in Data Science & AI is designed for individuals looking to launch a career in Data Science and AI or advance their existing technology careers, with extensive support provided throughout the program.

Graduates will be equipped with the skills to tackle real-world challenges in Data Science and AI across various industries, positioning them for new career opportunities.

Additionally, the program helps participants build a robust Data Science portfolio, enhance their online presence, and effectively showcase their skills to prospective employers

Engineers / Associates / IT Professionals: Software engineers in IT/ITES Startup teams building ML products/services Data Analysts/Scientists & Business Analysts: Who want to transition to or progress into data science/ analytical roles and become more efficient and effective in data-driven decision-making.

Managers: Product managers, Program managers, General Managers, etc. interested in improving their analytical skills and effectively managing analytics, data science and machine learning projects Consultants: Who are driving client projects and looking for acquiring and honing cutting edge analytical and data science skills for a career transition or progress

PROGRAM SCHEDULE

3 TIMES A WEEK

9:00
AM EST
8:00
PM EST

40 WEEKS

10-15 HOURS PER WEEK 9:00
AM EST
12:00
PM EST

PROGRAM INSTRUCTORS

Mo Medwani Ph. D.

Adjunct - Chief Data Scientist

The founder of InnovatiCS, Dr. Mo Medwani, holds a PhD in Artificial Intelligence and is a highly skilled data scientist with a passion for transforming data into actionable products. With over 22 years of experience in service delivery management, he also holds four master's degrees in Data Science, IT, Machine Learning, and Business Administration. Dr. Medwani brings over 11 years of expertise in AI specializing in Data Science, ML, DL, Gen-AI, NLP, and IT service delivery management

Muhammed Mujeeb

Data Engineering

BS in Computer Science and a Master of Business Administration (MBA). Microsoft Microsoft Certified SQL Server Specialist. Azure Cloud Fundamentals Certified. Computer Programming and Database Development Over 24 years of experience in Software Development, Database Development, and Cyber Security, and a strong background in all varieties of Application Development and Application Security and 10 years of training experience Currently working as Manager, Security Business Intelligence at LexisNexis.

Muhammed Rafique

MLOPs

Holding an M. Tech and an MS, Mohammed Rafique has amassed vast experience in cutting-edge technologies throughout his distinguished career. He has architected comprehensive end-to-end large enterprise platforms for some of the most prominent Fortune 50 clients, demonstrating his exceptional ability to handle complex technological challenges. His expertise spans a wide array of modern technologies, including Big Data, Cloud computing, DevOps practices, Artificial Intelligence.

Azhar Usmani Ph.D.

Cloud Computing

Seasoned technology leader, holds a PhD, and is an AWS expert with two decades of experience. He excels in software development, architecture, and security, emphasizing simplicity and automation in system design. Azhar's achievements include migrating legacy platforms to cloud-native infrastructure and promoting public cloud adoption. His skill set covers programming languages, Kubernetes, and AWS, while his commitment to learning and mentoring remains unwavering. Azhar's career showcases his adaptability, innovation, and infectious passion.

Talha Saleem Ahmed

Python | AI

Professor of Computer Science at Gloucestershire College - UK with MSc in Applied Schience and MSc in Biotechnology. Professionally adept in Data Science, Artificial Intelligence, Machine Learning, Web Technology, Software Engineering, Biostatistics, Bioinformatics, Business Development, programming, and computing. Skilled in data analysis, software application development, predictive modeling, data processing, advanced data mining algorithms, strategic enterprise architecture, and proficient in various programming languages.

PROGRAM ADVISORS

Salwa Smaoui

Digital Transformation Leader

Salwa Smaoui is a digital transformation leader with over three decades of experience in the world of technology, marketing, and business development, with most of her career spent at some of the world's finest global companies. A successful 15-year career at Microsoft saw Salwa lead many key initiatives starting in her native country Tunisia leading the country to unprecedented business growth through building and executing an impactful capacity-building, community reach and citizenship plan. Further a field, Salwa was then commissioned to lead the Microsoft Western Europe Windows and Surface business, with responsibility to 14 Western European countries, after which Salwa became the Government and Smart City Industry leader at Microsoft Middle East and Africa. A role that propelled her to lead revenue growth, digital transformation, and smart city strategy for governments across 79 countries. This opened an opportunity to join Core42, a G42 Group Company in Abu-Dhabi, as Chief Commercial and Marketing Officer She is world's most dynamic and inspirational digital transformation strategies. Salwa launched Baobab Campus an Education Platform that curates and validates content for AI skills and Mental health.

Dr. Amnah Alazzah

Influential Technology and Leadership Expert in the Middle East

Dr. AmnahAlazzahis a distinguished trainer and coach specializing in technology and leadership, with over 15 years of experience in the Middle East. She is renowned for her ability to deliver impactful training programs to both international and local audiences. As the founder of a specialized firm providing cutting-edge technology solutions and training, Dr. Alazzahis a pivotal figure in the industry, frequently speaking at regional and international conferences and serving as a panelist.Dr. Alazzah'seducational background is extensive and impressive. She holds a bachelor's degree in computer science, a master's in media studies, and an MBA. Additionally, she has completed numerous courses in business administration, project management, leadership, and human resources. This diverse education underpins her expertise and enables her to deliver comprehensive training programs. Throughout her career, Dr. Alazzahhas been a staunch advocate for integrating technology into education. She has trained university faculties and professionals, helping them transition from traditional methods to modern, technology-enhanced learning approaches. Her efforts have significantly impacted the adoption of advanced tools in educational settings, promoting a more effective and engaging learning environment.

Nadin Ouahid

Influential Marketing Strategist -North Africa

Nadin Ouahid holds a prestigious Master of Science degree in Marketing and Communication, which has provided her with a solid foundation in understanding market dynamics and effective communication strategies. With a robust background in real estate, Nadin has excelled as a sales and marketing representative, where she specialized in client relations and market analysis. Her keen ability to understand client needs and analyze market trends has significantly contributed to her success in the industry. Currently, Nadin serves as an operations associate for a federal contractor company, where she focuses on enhancing operational efficiency and streamlining processes. In this role, she applies her expertise in marketing and communication to improve internal workflows and ensure that the company meets its operational goals. Her innovative approach to problem-solving and process optimization has led to notable improvements in the company's operational performance. Nadin's diverse experience in both real estate and federal contracting highlights her versatility and adaptability in various professional environments. Her commitment to excellence and continuous improvement is evident in her work, making her a valuable asset to any organization.

Antony Marshal Pereira

Pioneering Leader and Innovator in Digital Transformation

Antony Marshal Pereira, Founder & Managing Director of Digitabia and Chief Digital Officer at InnovatiCS US, is a distinguished leader with over two decades of experience in digital innovation. He has an extensive background in the telecom sector, having worked with leadingbrands such as BPL Mobile, Hutchinson Telecom, Vodafone Idea (VI), and Ooredoo in India & Kuwait. Since launching Digitabia in Kuwait in 2016. His visionary approach was recognized in 2022 when he received the "Internet 2.0 -Outstanding Leadership Award" in Dubai, honoring his exceptional contributions to the field of technology. Marshal has also taken on a pivotal role at Innovatics US as Chief Digital Officer, where he is tasked with revamping the company's entire digital strategy. He is spearheading a complete overhaul of the company's online presence, enhancing digital sales and marketing performance with a focus on data science, AI, cloud computing, and cybersecurity training. In addition to leading Digitabia. He is dedicated to helping businesses increase their customer base, sales, and revenue through strategic consulting and coaching, covering areas such as digital marketing, ad tech, mar tech, and data-driven AI marketing.

PROGRAM MODULES

DATA SCIENCE FOUNDATIONS

01
MODULE

		K	

Program Orientation

Learning Objectives: The program kicks off with a lecture titled 'Why Learning Data Science & AI is an Absolute Must!' In this session, you'll be introduced to the data science process, explore the key components of a data science portfolio, and gain insights into the various types of analytics. You'll also learn about the daily responsibilities of a data scientist, essential quantitative and statistical techniques, and discover the career path to help you start your journey in data science.

Session 1	Program Orientation
	Program Orientation (Agenda – Curriculum). InnovatiCS Website Canvas Slack walkthrough.
Session 2	Why should you become a Data Scientist?
	 Data Explosion Why Data Science? What is Data Science? Type of Analytics. Data Science Portfolio Data Science Process Career in Data Science.
Session 3	Introduction to Data Science & AI
	 Introduction to Data Science. Introduction to Data Analytics. Introduction to Business Intelligence. Certified Analytics Professional (CAP).
Session 4	Projects, Teams & Team Leads
	 Introduction to Data Science Project. Projects Discussion (Milestone Projects Assignment). Projects List Project Templates Project Team.
Session 5	Program Tools & Installation
	• Jupyter Notebook MySQL: Installation Tableau: Installation RapidMiner: Installation
Week 2	Business Understanding (Strategy Literacy Problem Framing)

Learning Objectives: The basic workflow is now in place. You will dive into the first stage of the Cross-Industry Standard Process for Data Mining (CRISP-DM), which focuses on understanding analytical project objectives from a business perspective. Customers often have competing objectives and constraints that must be properly identified and balanced. The goal is to uncover important factors that could influence the outcome of analytical projects. Neglecting this step can result in a great deal of effort being put into producing the right answers to the wrong questions. This section will also provide an overview of the importance of data strategy as a tool for enabling organizations to make better-informed decisions, improve business processes, and gain new revenue streams. Data literacy involves articulating a problem that can potentially be solved using data.

• Introduction to Machine Learning from different perspectives. • Understand the Need for Machine Learning & Learning major elements

- Understand the Need for Machine Learning & Learning major elements.
- Understand Machine Learning tasks & types of Machine Learning.
- Understand Types of Algorithms, Algorithms Performance & types of Analysis.

Session 2	Introduction to Artificial Intelligence (DL & GenAI)	
	Deep Learning Explained.Biological Neural Network.Understand Gen AI & LLMs.	
Session 3	Introduction to CRISP-DM	
	Solutions Methodologies (Macro vs. Micro). Scientific Research Method. Operations Research Method Water Fall Method CRISP-DM. Exploration & Discovery. Osolutions are Dependent on Data Solutions are Independent on Data. CRISP-DM Process. Business Understanding Data Understanding Data Preparation Modeling Evaluation Deployment.	
Session 4	Decisions Management & Problem Framing	
	 Quantifying Business Problem. Converting Business Problems into Analytics Solutions. Defining the objectives, assumptions, contains, and analytical approaches. Designing the Analytics Base Table & Implementing Features. Identifying Y variable & Measures of Success. Stakeholders & Analytical team. 	
Session 5	Introduction to Big Data (self-paced)	
	 The job market around Big Data. What is Big Data? Big Data use cases & Big Data Ecosystem. HDFS What is MapReduce Pig, Hive etc. NoSQL Databases. 	
Week 3	Python for Data Science & ML (Self-paced)	

Learning Objectives: This week, students will be introduced to the Python programming language, which is commonly used in data science. Students will work with the tools that professional data scientists use, such as Jupyter Notebooks, integrated development environments (IDEs), and others. They will learn about the purpose of each tool, the types of code they can execute, and their features and limitations.

Session 1	Basic Python Programming
	 Introduction to Python & Jupyter Notebook Data Structure: Sting Lists Tuples Sets Dictionaries. Conditional Statements Python built-in data types Basic operators in Python. Loop and control statements like a break, if, for, continue, else, range (), and more. Functions, Assignment & Operations. Conditions & Loops.
Session 2	Python: NumPy Library
	 Introducing arrays. Your first NumPy array Creating arrays from scratch. A range array Array dimensionality. 3D array creation The fourth dimension Flattening and reshaping. NumPy data types The dtype argument Anticipating data types.

Session 3	Python: Pandas Library		
	 Introducing DataFrames Inspecting a DataFrame. Parts of a DataFrame Sorting and sub-setting. Sorting rows Sub-setting columns Sub-setting rows. Sub-setting rows by categorical variables New columns Adding new columns. 		
Session 4	Python: Matplotlib		
	 Introduction to data visualization with Matplotlib. Using the matplotlib.pyplot interface. Adding data to an Axes object Customizing your plots. Customizing data appearance Customizing axis labels and adding titles. Small multiples Creating a grid of subplots. Creating small multiples with plt.subplots Small multiples with shared y-axis. 		
Session 5	Python: Regex		
	 Extracting data from the web using JSON, Google API, and XML. Data Extraction - Getting Data from the Internet. Introduction to string manipulation Palindromes String operations. Normalizing reviews Split lines or split the line? Finding and replacing Finding a substring Replacing negations. 		
Week 4	Statistics - Probability – SQL for Data Science		

Learning Objectives: This week, students will build a solid foundation in statistics for data science, learning about probability, distributions, hypothesis testing, and SQL. Statistics is the science of assigning a probability to an event based on experiments and the application of quantitative principles to the collection, analysis, and presentation of numerical data. This course will help students master the fundamentals of data science, statistics, and machine learning. Students will learn to define statistics and essential related terms, explain measures of central tendency and dispersion, and comprehend skewness, correlation, regression, and distribution. They will also be able to make data-driven predictions through statistical inference. Additionally, students will learn about creating and working with tables, databases, Data Definition Language (DDL), and Data Manipulation Language (DML), including SELECT, INSERT, UPDATE, and DELETE statements in SQL.

Session 1	Introduction to Statistics
	 Understanding Data. Levels of Measurement Measures of Dispersion. Population and Sample. Measures of Central Tendency Quartiles and IQR.
Session 2	Advanced Statistics / Probability & Information Theory
	 Introduction to Distribution. Uniform Distribution Binomial Distribution Poisson Distribution Normal Distribution. Skewness Standardization and Z Score. Central Limit Theorem Hypothesis Testing. ANOVA - Analysis of Variance Chi-Square Analysis.
Session 3	Crash Course in SQL (Tables and Constraints) (Self-paced)
	 Creating, and Working with Tables. Default Constraints. Cascading referential integrity. Check Constraint Identity column Unique key constraint. Get the last generated id in the SQL server.

Session 4	SQL Statements Group by Clause (Self-paced)
	 SQL Statements (Select, Insert, Delete, Update) Group by Clause. Difference between where and having in SQL server. Basic Joins Advance Joins Self Joins. Different ways to replace NULL Coalesce function. Union and Union All.
Session 5	Team Projects 1st Presentation (Framing Business Problem)
	Team Projects (Business Understanding) Team Leads' First Presentation

DATA MANIPULATION & ANALYTICS

Week 5

Data Understanding | EDA & Statistical Analysis

Learning Objectives: In this week, students will be introduced to the second phase of the Cross-Industry Standard Process for Data Mining (CRISP-DM) model. Students will obtain data and verify its appropriateness for their needs. They will learn to identify issues that may require returning to the 'Business Understanding' phase of the project to revise the plan. Students may even discover flaws in the 'Business Understanding,' prompting a reconsideration of goals and plans. The Data Understanding phase includes four tasks: gathering data, describing data, exploring data, and verifying data quality.

Session 1	Introduction to Data Literacy and Biases
	 Understanding Bias in Data. Types of Data Bias (e.g., Sampling Bias, Selection Bias, Confirmation Bias). Identifying and Mitigating Bias in Data Collection. Recognizing Bias in Data Analysis and Interpretation. Impact of Bias on Decision Making. What Exactly is Data Literacy? Why We Need Data Literacy. Data-driven Decision Making. Benefits of Data Literacy and How to Get Started.
Session 2	Data Loading & Manipulation
	 Read data from different sources. Identifying Categorical Data: Nominal, Ordinal and Continuous. Univariate Bivariate Multivariate Analysis. Types of Data Type of Central Tendency Data distribution Data Density.
Session 3	Data Types- Measure of Shape - Position - Dispersion
43	Measures of the Spread: Range – IQR – Variance – Standard Deviation
Session 4	Data Visualization (Numerical Data)
4	Data Visualizatio Histograms Bar Plot

Scatter PlotBox Plot

Session 5	Data Visualization (Graphical Descriptive Statistics)	
	Data Quality Report Develop the Code Book	
Week 6	Data Science Foundations (Visual Data Sensemaking)	

Learning Objectives: Before you can present information to others, you must understand its story. In this week, students will learn the concepts, principles, and practices of visual data sense-making. The skills taught rely primarily on vision, enabling students to interactively use graphs to find and examine meaningful patterns and relationships in quantitative data.

Session 1	Building a Framework for Visual Data Sensemaking
	 History of Data Visualization Prerequisites for Data Sensemaking Thinking with our eyes Visual Data Sensemaking Interaction and Navigation
Session 2	Data fitness, Variation, and Relationships (Categorical Variables)
	 Variation within Categorical Variables Relationships among Categorical Variables Variation across space Variation through time
Session 3	Data fitness, Variation, and Relationships (Quantitative Variables)
	Variation within Quantitative Variables Relationships among Quantitative Variables
Session 4	Data fitness, Variation, and Relationships (Multiple Variables)
	 Relationships among multiple Variables and Perspectives Multi-Perspective View Multivariate Relationships
Session 5	Interactive Dashboards (Tableau)
	Tableau Interactive dashboards
Week 7	Data Preparation & Preprocessing

Learning Objectives: In the Data Preparation phase, students learn the process of cleaning and transforming raw data before processing and analysis. This important step often involves reformatting data, making corrections, and combining data sets to enrich the data. Students will also learn how to fix data quality issues discovered through exploratory data analysis (EDA) and data visualization from the Data Understanding phase.

Session 1	Data Preparation & Processing (Categorical Attributes)
	 Encoding Categorical Data: Replacing values Creating Dummy Variables Encoding labels One -Hot encoding Binary encoding Backward difference encoding Miscellaneous Features Data Quality Report Develop the Code Book: Summary of Data Type of variable Ranges of variables Missing fields Identify the primary list of variables to solve the business problem.
Session 2	Data Preparation & Processing (Numeric Attributes & Transformation)
	Statistical Analysis (John T. 5 Numbers Summary) Variance & Covariance

Correlation Analysis

Session 3	Data Preparation & Processing (Missing Values)
	Dealing with Skewness & Kurtosis Missing Values Variable Conversion: Discretization Binning
Session 4	Data Preparation & Processing (Outliers Duplicates)
1.16	 Dealing with Outliers & Duplicates & redundant Variable Conversion: Discretization Binning Variable Transformation: Normalization Standardization Factorizations Binarization Box-Cox Transformation Data Partitioning
Session 5	Data Prep with RapidMiner
	• RapidMiner:
Week 8	Factor Analysis & Dimensionality Reduction
addressing redund performing feature	ves: Data preprocessing includes imputing missing values, handling outliers, removing duplicates, and data, analyzing skewness and kurtosis, examining distributions, assessing correlation, e selection and extraction, conducting generic wrangling and data manipulation, scaling data, ization, applying transformations (such as Box-Cox), normalization, and many more techniques.
Session 1	Principal Component Analysis
	 Goals of Feature Selection Classes of Feature Selection Methodologies Correlation Method Machine Learning Method Feature Importance Regularization & Embedded Feature Selection Feature Subset Selection Feature Creation Factor Analysis: PCA KPCA. • Aggregation Sampling Dimensionality Reduction Feature Subset Selection Feature Creation

Session 2

Singular Value Decomposition & Linear Discriminant Analysis

• Discretization & Binarization | Variable Transformation | Data Partitioning

- Factor Analysis: LDA & SVD
- Aggregation | Sampling | Dimensionality Reduction

Session 3

ISOMAP | Locally Linear | Modified Locally Linear Embedding

- Introduction to Manifold Learning (t-SNE, LLE, Isomap)
- Local Linear Embedding (LLE)
 - o Intuition | Least squares problem
- Eigenvalue problem

Session 4

Data Prep with RapidMiner

• RapidMiner:

- o Data Cleansing | Merging Data
- o Data Pivoting | Data Preparation | Connecting to Databases

• Table au:

- o Maps, Scatterplots, and Your First Dashboard | Relationships vs Joins (v00update)
- o Joining Data in Tableau | Creating a Map, Working with Hierarchies
- o Creating a Scatter Plot, Applying Filters to Multiple Worksheets | Creating a Dashboard | Adding an Interactive Action Filter | Adding an Interactive Action Highlighting

Session 5

Team Projects 2nd Presentation (Data Understanding & Data Viz)

- Team Projects (Data Understanding & Data Visualization)
- Team Leads' Second Presentation

MACHINE LEARNING

Week 9

Supervised Learning - Classification

Learning Objectives: This week broadens the concepts learned in Data Understanding, Data Preparation, and Exploratory Data Analysis (EDA) by extending into Machine Learning. You will learn about the models and methods used in machine learning and apply them to a real-world scenario. Supervised machine learning aims to build a model that makes predictions based on evidence in the presence of uncertainty. In this session, you will learn about different algorithms of supervised learning, such as Decision Trees, Rule-Based Classifiers, Naive Bayes, Logistic Regression, Support Vector Machines, and Nearest Neighbor Classifiers. You will also explore deeper use of sci-kit-learn functionality, automated methods of feature selection, options for estimation including stochastic gradient descent, and advanced metrics for model evaluation.

Session 1	Decision Tree & Rule-Based Classifiers
	 Algorithm for Decision Tree Induction Measures for Selecting an Attribute Test Condition Characteristics of Decision Tree Classifiers How a Rule-Based Classifier Works Characteristics of Rule-Based Classifiers
Session 2	Naïve Bayes Classifiers
	 Naïve Bayes motivation Naïve Bayes Mathematical foundation Basics of Probability Theory Naïve Bayes Assumption
Session 3	Logistic Regression Classifiers
	 Logistic Regression motivation Mathematical foundation Logistic Regression as a Generalized Linear Model Characteristics of Logistic Regression
Session 4	Support Vector Machine SVM & KSVM Classifiers
	 SVM motivation Characteristics of SVM SVM Mathematical foundation Margin of a Separating Hyperplane Linear SVM Nonlinear SVM Soft-margin SVM
Session 5	Neighbor Classifiers (KNN)
	 KNN motivation KNN Mathematical Foundation KNN Algorithm Characteristics of Nearest Neighbor Classifiers

Week 10

Supervised Learning - Regression

Learning Objectives: This week focuses on Regression Analysis, a form of supervised learning with a continuous target variable. Regression analysis is a predictive modeling technique that investigates the relationship between a dependent (target) variable and independent (predictor) variables. This technique is used for forecasting, time series modeling, and identifying causal relationships between variables. The machine learning topics covered include linear regression algorithms (Simple Linear Regression, Multiple Linear Regression, Polynomial Linear Regression), Decision Trees, Support Vector Machines, and regularization techniques (Lasso, Ridge, Elastic Net, and Least Squares) with in-depth use of scikit-learn functionality.

Session 1	Simple Linear Regression & Polynomial Regression
	 Preparing Data for Linear Regression Making Predictions with Linear Regression Polynomial Algorithm Why use polynomial regression? Polynomial Features
Session 2	Multiple Linear Regression
	 Multiple Linear Regression The F-Statistic Interpreting results of Categorical variables Heteroscedasticity Backward Elimination Backward Elimination Automatic Backward Elimination
Session 3	Least Square/Lasso/Ridge/Elastic Net Regression
	 OLS Regression- Theory Implementation Confidence Interval and OLS Regressions Ridge Regression LASSO Regression Implement ANOVA on OLS Regression Identify Multicollinearity Partial Least Square Regression
Session 4	Decision Tree Regression
	 Algorithm for Decision Tree Induction Characteristics of Decision Tree Regression Methods for Expressing Attribute Test Conditions Measures for Selecting an Attribute Test Condition
Session 5	Support Vector Machine SVR
	Margin of a Separating Hyperplane Linear SVM Soft-margin SVM Nonlinear SVM Characteristics of SVM
Wook 11	Freemble Methods (Ragging & Roosting & Stacking)

Week 11 Ensemble Methods (Bagging & Boosting & Stacking)

Learning Objectives: Ensemble methods help to improve the predictive performance of machine learning models. This week, you will learn about different ensemble methods that combine several machine-learning techniques into one predictive model to decrease variance, reduce bias, or improve predictions. You will learn about selecting one model over another, the concept of boosting, and its importance in machine learning. Additionally, you will learn how to convert weaker algorithms into stronger ones.

Random Forest Voting & Averaging Random Forests (RF). Out of Bag Evaluation |OOB Score vs Test Set Score. Train an RF Classifier/Regressor. Evaluate the RF Classifier/Regressor. Visualizing features importance.

Session 2	Bagging Boosting Gradient Boosting Ada-Boost Stacking
	 Define the bagging classifier How do Boosting Algorithms work? What is the Model Selection? Evaluate Bagging performance. Methods for Constructing an Ensemble Classifier. Types of Boosting Algorithms.
Session 3	Gradient Boosting Ada-Boost Stacking
	 What is Boosting? Gradient Boosting Vs. AdaBoost. Cross-Validation. Prediction with Stacking.
Session 4	Class Imbalanced Problem
	 Building Classifiers - Class Imbalance. Data-based Approaches & Algorithmic approach Evaluating Performance - Class Imbalance Finding an Optimal Score Threshold Aggregate Evaluation of Performance
Session 5	ML with RapidMiner
	• RapidMiner: • Applying the Model Testing a Model Validating a Model Finding the Right Model Optimization of the Model Parameters • Tableau: • Joining, Blending and Relationships Dual Axis Charts Joins with Duplicate Values Joining on Multiple Fields The Showdown: Joining Data vs. Blending Data in Tableau • Creating Calculated Fields in a Blend (Advanced Topic) Working with Relationships
Week 12	Model Evaluation & Optimization

Learning Objectives: Model building is an iterative process. Employing feature engineering techniques along with careful model selection helps to improve the model. Additionally, tuning the model is an important step to achieve the best possible results. This week covers the steps and processes involved in this approach. You will learn how to analyze the performance of each algorithm and dive deep into core machine learning concepts such as cost function, objective function, model optimization, model tuning, regularization, gradient boosting, and grid and random search.

objective function, i	model optimization, model tuning, regularization, gradient boosting, and grid and random search.
Session 1	Model generalization: Assessing Predictive Accuracy for New Data
	 CM, ROC, Rank-Ordered Approach R2, MSE, MAE, Median Error, Median Absolute error, Correlation Reasons for Model Overfitting Model Selection Using a Validation Set Incorporating Model Complexity Estimating Statistical Bounds Model Selection for Decision Trees
Session 2	Evaluation of Classification Models & Regression Models
W.A	 Holdout Method & Cross-Validation Presence of Hyper-parameters & Hyper-parameter Selection Nested Cross-Validation Pitfalls of Model Selection & Evaluation Overlap between Training & Test Sets Use of Validation Error as Generalization Error Cluster Evaluation
Session 3	Model Optimization & Extreme Gradient Boosting
111	 Estimating the Confidence Interval for Accuracy Introducing XGBoost XGBoost: Fit/Predict Comparing the Performance of Two Models Measuring accuracy Measuring AUC

• When should I use XGBoost?

Session 4	Model Explainability/Interpretability
	 Comparing Explainability and Interpretability What is Explainability in Machine Learning? Different Types of Explanations Approaches to Explainability in Machine Learning What is Interpretability in Machine Learning? Mechanistic Interpretability: A New Frontier Why are Interpretability and Explainability Important? Final Thoughts on Interpretability vs. Explainability
Session 5	Team Projects 3rd Presentation (Data Preparation)
	Team Projects (Analytical Approach) Team Leads' Third Presentation
Week 13	Unsupervised Learning - Clustering Analysis

Learning Objectives: This week, we will shift to unsupervised learning techniques, where the target variable is unknown. Unsupervised learning finds hidden patterns or intrinsic structures in data. The end goal is less clear-cut than predicting an output based on a corresponding input. You will learn about commonly used clustering techniques such as K-Means Clustering and Hierarchical Clustering, along with anomaly detection algorithms, with deeper use of scikit-learn functionality.

Session 1	K-Mean Clustering
	 The Basic K-means Algorithm Bisecting K-means K-means & Different Types of Clusters K-means as an Optimization Problem
Session 2	Agglomerative Hierarchical Clustering
	 Basic Agglomerative Hierarchical Clustering Algorithm AHC Specific Techniques The Lance-Williams Formula for Cluster Proximity Key Issues in Hierarchical Clustering AHC Outliers
Session 3	DBSCAN Mean Shift Clustering
	BIRCH DBSCAN Mini-Batch K-Means Mean Shift OPTICS Spectral Clustering Gaussian Mixture Model
Session 4	Gaussian Mixed Models Fuzzy C Means Clustering
	BIRCH DBSCAN Mini-Batch K-Means Mean Shift OPTICS Spectral Clustering Gaussian Mixture Model
Session 5	ML with RapidMiner
	 RapidMiner: Logistic Regression Times Series Clusters Anomaly detection Association Discoveries Tableau: Table Calculations, Advanced Dashboards Storytelling Mapping: How to Set Geographical Roles Creating Table Calculations for Gender Creating Bins and Distributions for Age Leveraging the Power of Parameters How to Create a Tree Map Chart Creating a Customer Segmentation Dashboard Advanced Dashboard Interactivity Analyzing the Customer Segmentation Dashboard

Week 14

Anomalies Detection & A/B Testing/ Association Rules/R-Systems

Learning Objectives: This week is a continuation of the unsupervised machine learning algorithms from the previous week. We will delve deeper into Association Rule Mining, which has numerous applications, such as discovering sales correlations in transactional data and insights into medical datasets. Additionally, we will cover A/B Testing (also known as split tests), focusing on using Python to analyze customer behavior and business trends. You will learn how to create, run, and analyze A/B tests to make proactive, data-driven business decisions. Furthermore, we will explore recommender systems, which are software tools that select products to recommend to individual customers. You will learn how to produce successful recommender systems using past product purchase and satisfaction data to make high-quality personalized recommendations.

Session 1	Anomalies Detections
	 Characteristics of Anomaly Detection Problems Anomaly Detection Methods Classification based Models for Anomaly Detection Nearest-Neighbor based algorithms. k-NN Global Anomaly Score Local Outlier Factor (LOF) Connectivity based Outlier Factor (COF) Local Outlier Probability (LoOP) Influenced Outlierness (INFLO) Local Correlation Integral (LOCI) Clustering Based Algorithms: Cluster-based Local Outlier Factor (CBLOF) Local Density Cluster-based Outlier Factor (LDCOF) Clustering-based algorithms: Cluster-based Local Outlier Factor (CBLOF) Local Density Cluster-based Outlier Factor (LDCOF)
Session 2	A/B Testing
	 Overview of A B Testing? How A B Testing Works Policy and Ethics Characterizing Metrics Designing an Experiment: A B Testing Process Analyzing Results Alternatives to A B Testing
Session 3	Association Rules - Apriori Eclat FP-Growth
	 Strength of an association rule The Apriori Principle Frequent Itemset Generation in the Apriori Algorithm Candidate Generation & Pruning Computational Complexity Horizontal vs Vertical Data Format The Intuition of ECLAT Algorithm Advantages of Eclat & Eclat vs Apriori
Session 4	Recommender Systems: Generations 1/2/3/4
	 Matrix Factorization Model (Object recommendation) Content Filtering Collaborating Filtering (CF) CF Neighborhood-Based Approach CF Location-Based Approach
Session 5	Recommender Systems: Generations 5/6/7/8
	Popularity Based Content-Based Collaborative filtering Matrix Factorization (MF)

Week 15

Time Series Analysis

Learning Objectives: This week, you will learn about Time Series Analysis to forecast dependent variables based on time. Time series analysis is a statistical technique that deals with data collected at different periods or intervals, known as time-series data or trend analysis. You will explore various models for time series modeling to analyze real-time dependent data for forecasting. By the end of the week, you will have a comprehensive understanding of time series analysis and be equipped with the skills to build and evaluate time series models for various applications.

Session 1	Time Series Processing & Assumptions
	 What is Time Series Analysis? Importance of TSA Components of TSA TSA Assumptions & Processing
Session 2	AR - MA & EST Models
	 Single Exponential Smoothing Forecasting with Single Exponential Smoothing Double Exponential Smoothing Forecasting with Double Exponential Smoothing Triple Exponential Smoothing
Session 3	ARMA & ARIMA Models
	Forecasting Relation between time series: Causality & time lags Distinction between short & long run Study of agent's expectations Stationarity ACF & PACF Trend removal Seasonal adjustment
Session 4	SARIMAX Model
	The limitations of ARIMA The SARIMA extension of ARIMA Implementing SARIMA method using the Statmodels library
Session 5	Time Series with Prophet
	 Introduction to Prophet Advantages of Prophet Installation of Prophet Time Series Forecasting with Prophet Plotted the forecasted components Adding ChangePoints to Prophet Adjusting Trend

DEEP LEARNING

04
MODULE

Week 16

Advanced Python for Deep Learning (Self-paced)

Learning Objectives: This week, we dive into Advanced Python for Deep Learning and GenAI Because the code is concise and readable, it makes it a perfect match for deep learning applications. Its simple syntax also enables applications to be developed faster when compared to other programming languages. Another major reason for using Python for deep learning is that the language can be integrated with other systems coded in different programming languages. This makes it easier to blend it with AI projects written in other languages.

Session 1	Python: BeautifulSoup Library
	 Installing Beautiful Soup Data extraction with Beautiful Soup BeautifulSoup Usage Filtering BeautifulSoup Object Extracting all the URLs found within a page 'a' tag Extracting text from a page.
Session 2	Python: SciPy
	 Introduction to SciPy, building on top of NumPy. What are the characteristics of SciPy? Various sub-packages for SciPy like Signal, Integrate, Fatback, Cluster, Optimize, Stats and more, Bayes Theorem with SciPy.
Session 3	Python: TensorFlow Keras
	 Overview of TensorFlow and TensorFlow libraries Use cases for a machine learning service. Using and applying your model Training your model Testing your model Using TensorBoard to visualize model performance
Session 4	Python: Pytorch
	 Using User-Defined Triton Kernels with torch.compile Large Scale Transformer model training with Tensor Parallel (TP) Accelerating BERT with semi-structured (2:4) sparsity torch.export Tutorial with torch.export.Dim Extension points in nn.Module for load_state_dict and tensor subclasses
Session 5	Lang Chain
	 Foundations of LangChain and Large Language Models (LLMs) Advanced Techniques in LLMs and LangChain Integration Data Management Vector stores, Indices, and Prompts Constructing and Deploying LangChain Applications
Week 17	Deep Learning: ANN CNN GANs

Learning Objectives: This week, we dive into Deep Learning, an artificial intelligence function that mimics the workings of the human brain in processing data and creating patterns for use in decision-making. Deep Learning uses an artificial neural network, composed of multiple levels arranged in a hierarchy, to carry out the machine learning process. In this session, you will learn about the basic building blocks of artificial neural networks. You will explore how deep learning networks can be successfully applied to data for knowledge discovery, knowledge application, and knowledge-based prediction.

Session 1	Introduction to Deep Learning
	Deep Learning Explained
	Biological Neural Network
	• Perceptron
	Gradient Decent
F . 12 1	Scholastic Gradient Descent
Session 2	Artificial Neural Network (ANN)
	ANN Explained
	Multi-layer Neural Network
	Characteristics of ANN

Session 3	Convolutional Neural Network (CNN)
	 CNN Explained Synergistic Loss Functions Responsive Activation Functions Regularization Initialization of Model Parameters Characteristics of Deep Learning
Session 4	Generative Adversarial Networks (GANs)
	 Challenge of GAN Loss Standard GAN Loss Functions Alternate GAN Loss Functions Effect of Different GAN Loss Functions
Session 5	Team Projects 4th Presentation (Analytical Approach Implementation)
	 Team Projects (Analytical Approach Implementation) Team Leads' Fourth Presentation
Week 18	Self-Organizing Maps Boltzmann Machines Autoencoders

Learning Objectives: This week is a continuation of week 19. You will learn about three additional deep learning models: Self-Organizing Maps (SOMs), Boltzmann Machines (BM), and Autoencoders. In SOMs, you will learn how to detect specific features, such as fraud, and how to create a hybrid deep learning model. For Boltzmann Machines, you will explore the energy-based model perspective and, in practical lectures, focus on the probabilistic graphical model perspective. Finally, you will learn how to build an autoencoder from scratch using PyTorch, including how to manipulate classes and objects to improve and tune your autoencoder.

Introduction to SOMs
Introduction to Self-Organizing Maps
• How Do SOMs Work?
• Users of SOMs
• SOMs Architecture
• Pros & Cons of SOMs
Self-Organizing Maps
How do Self-Organizing Maps work?
How Self-Organizing Maps Learn?
• Live SOM example
• Energy-based Models (EBMs)
• Restricted Boltzmann Machines (RBM)
Deep Boltzmann Machines (DBM)
Introduction to BMN & AutoEncoders
Introduction to Boltzmann Machine
Users & BMNs Architecture
• Pros & Cons of BMNs
• Introduction to Auto Encoder
Users of Auto Encoder s
Auto Encoder's Architecture
Auto Encoder's ArchitecturePros & Cons of Auto Encoder s
• Pros & Cons of Auto Encoder s
• Pros & Cons of Auto Encoder s Boltzmann Machines

• Deep Boltzmann Machine

Session 5	AutoEncoders
	How Do Auto Encoders Work?
	Training an Auto Encoder
	Overcomplete hidden layers
	Sparse Autoencoders
	Denoising Autoencoders
	Contractive Autoencoders
	Stacked Autoencoders
	Deep Autoencoders
Week 19	Sequence Learning & GANs

Learning Objectives: This week, we explore another fascinating application of neural networks: equipping computers to understand human language. You will learn to work with text data and sequential data, delving into the world of Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs).

RNNs are designed to recognize patterns in sequences of data, making them ideal for tasks involving time series, language modeling, and more. LSTMs, a type of RNN, are particularly effective at learning long-term dependencies, which are crucial for understanding context in text and speech.

Session 1	Recurrent Neural Networks (RNN)
	 RNN Explained Characteristics of RNN Backpropagation Gradient problem Vanishing vs. Exploding
Session 2	Long Short-Term Memory Networks (LSTM)
	 Long Short-Term Memory Networks A Quick Look into LSTM Architecture Why does LSTM outperform RNN? Deep Learning about LSTM gates
Session 3	Deep RNN - Bidirectional RNN - GRU
	 Introduction to Gated Feedback Recurrent Neural Networks (GRU) Bidirectional RNN • Deep Recurrent Networks Vanishing and Exploding gradients. Methods to prevent the vanishing(exploding) gradient
Session 4	RNN vs LSTM with Google Stock Price
11/	 Transform Data for Time Series MLP & CNN for Time Series Forecasting LSTM & CNN-LSTM for Time Series Forecasting Encoder-Decoder LSTM Multi-step Forecasting
Session 5	Sentiment Analysis with LSTM
	 From logistic regression to neural networks Word representations Unsupervised word vector learning Backpropagation Training Learning word-level classifiers: POS & NER

NATURAL LANGUAGE PROCESSING

05
MODULE

Week 20

Text Analysis & Natural Language Processing (NLP)

Learning Objectives: This week, we dive into Natural Language Processing (NLP), a technology that is deeply and widely penetrating the market across various industries and domains. NLP is extensively applied in businesses today and has become a buzzword in every engineer's life. Its applications range from customer service automation to sophisticated data analysis, making it an indispensable skill in the modern tech landscape. As NLP continues to evolve, it is transforming the way we interact with machines and manage information.

Session 1	Introduction to Natural Language Processing
	 What is Natural Language Processing? History of Natural Language Processing NLP Applications Levels Components NLU vs NLG NLP Pipeline and Tasks NLP Toolkits and Libraries NLP Challenges
Session 2	Essentials of Natural Language Processing 1
	 Basic Text Analysis Tokenization POS Tagging Stop Word Removal Text Normalization Spelling Correction
Session 3	Essentials of Natural Language Processing 2
	 Stemming Lemmatization Named Entity Recognition (NER) Word Sense Disambiguation Sentence Boundary Detection
Session 4	NLP Feature Extractions
	 Data Structures NLP Pre Processing The Bag of Words Frequency Vector (Count of Vectorization) One-Hot Encoding • Term Frequency – Inverse Term Frequency Distributed Representation Word Embedding
Session 5	NLP with TextBlob & spaCy (NER)
	 Introduction to TextBlob Language Detection POS Word Inflection Sentiment Analysis Introduction to spaCy Library Objects of spaCy Library The Statistical Modeling Processing Pipelines

Week 21

Advanced Natural Language Processing (NLP)

Learning Objectives: This week, we dive into advanced Natural Language Processing (NLP) modeling. As NLP continues to evolve, it is transforming the way we interact with machines and manage information. Advanced NLP techniques, such as deep learning-based models, are pushing the boundaries of what machines can understand and generate. Models like BERT, GPT-3, and Transformer networks are revolutionizing tasks like language translation, text generation, and question answering. Mastering these advanced techniques will enable you to tackle complex NLP challenges and create state-of-the-art solutions.

Session 1	Text Classification
	 Text Data Preparation Data Vectorization Text Classification
Session 2	Text Summarization
	 What is Text Summarization? Text Summarization Categories Stages of Text Summarization
Session 3	Topic Modeling
	 What is Topic Modeling? Topic Modeling Use cases Topic Modeling Libraries Latent Semantic Analysis (LSA) Latent Dirichlet Allocation (LDA) Hierarchical Dirichlet Process (HDP)
Session 4	Sentiment Analysis
	 What is Sentiment Analysis? Types of Sentiment Analysis Benefits of Sentiment Analysis Examples of Sentiment Analysis Challenges of Sentiment Analysis
Session 5	Team Projects 5th Presentation (Action Plan)
	 Team Projects (Action Plan) Lesson Learned Team Leads' Fourth Presentation

GENERATIVE AI

Week 22

GenAI - LLMs - sLLMs

Learning Objectives: This week, we dive into Generative AI, a cutting-edge field that focuses on creating models capable of generating new content, such as text, images, and music. Generative AI leverages advanced techniques like generative adversarial networks (GANs) and transformer models to produce highly realistic and creative outputs. By mastering these technologies, you will be able to develop applications that can autonomously generate content, offering immense value across various industries.

Session 1

Language Models and Transformer-based Generative Models

- What are LLMs? Why LLMs (such as GPT and Bard) is so special?
- The Power of Attention Mechanisms | Encoder-Decoder Architectures
- Demystifying Transformers | Learn and Understand Transformers

	 Scaled Dot Product Attention Multi-Headed Attention Exploring the GPT Architecture: Foundations Innovations Practical Applications of Masked Multi-Head Attention GPT Pre-Training Strategies and Techniques Optimizing GPT Pre-Training for Performance
Session 2	Generative AI with LLMs
	 LLMs and Generative AI Project Lifecycle LLM Pre-Training and Scaling Fine-tuning LLMs with Specific Instructions Efficient Fine-Tuning of Parameters Reinforcement Learning from Human Response
Session 3	LLMs for Search, Prediction, and Generation
	 Search Query Completion Next Word Prediction Word Embeddings Transformers Generating Text Stacking Attention Layers
Session 4	Interacting with Data Using LangChain and RAG
	 LangChain Foundations Benefits of using LangChain Using LangChain to Develop LLM Applications Value Propositions of LangChain Components of LangChain Off-the-Shelf Chains in LangChain Build and Deploy LLM powered applications using LangChain
Session 5	LangChain for LLM Application Development
	 Understanding Retrieval-Augmented Generation (RAG) Document Loading and Splitting Vector Stores and Embeddings Retrieval Question Answering with Chatbots Building RAG Models using LangChain
Week 23	Chatbots - ChatGPT & Prompt Engineering

Learning Objectives: This week, we dive into Chatbots, focusing on ChatGPT and Prompt Engineering, which are revolutionizing human-computer interactions. You will explore how ChatGPT leverages advanced natural language processing to generate human-like responses and how prompt engineering can enhance the performance and accuracy of these chatbots. By understanding and applying these techniques, you'll be able to design and implement sophisticated chatbots that can effectively communicate and assist users in various applications.

Session 1 Unveiling ChatGPT: Conversing with Superintelligence • Introduction to Generative AI • Introduction to ChatGPT and OpenAI • Unleashing the Power of ChatGPT • The Applications of ChatGPT • Human-AI Collaboration and the Future • Engaging with ChatGPT Wrapping Up and Looking Ahead

Session 2	ChatGPT: Pre-processing and Fine-tuning
	 Overview of language models Understanding the architecture of the GPT model GPT models: advantages and disadvantages Overview of the pre-trained GPT models available for fine-tuning Training of ChatGPT Data preparation Model architecture Hyperparameter tuning Training process
Session 3	Prompt Engineering and ChatGPT Plugins
	 Introduction to Prompt Engineering Why Prompt Engineering? What is Prompt Engineering? Applications of Prompt Engineering Types of Prompting Priming Prompts Prompt Decomposition How to Get Better Responses from ChatGPT ChatGPT Plugins
Session 4	Building an AI AI-powered chatbot
136	 Creating a Chatbot using Chatterbot Building an Interactive Chatbot using Rasa Developing your own Chatbot using ChatGPT API
Session 5	Popular Generative AI Tools
	 Dall-E 2 Midjourney Bard Hugging Face NLG Cloud Copy.ai Tome Codeium WriteSonic
Week 24	GenAI - Tools & Applications

Learning Objectives: This week, we learn Generative AI, focusing on the tools and applications that are transforming industries. You will explore various generative AI models and tools, such as GANs, VAEs, and diffusion models, and understand how they are used to create innovative applications in fields like art, entertainment, and data augmentation. By mastering these tools, you will be equipped to develop cutting-edge solutions that leverage the power of generative AI to produce creative and practical outcomes.

Session 1	Leveraging Generative AI for Fraud Detection
	 Overview of Gen AI in Fraud Detection Email Fraud Detection using the GAN model. Best Practices
Session 2	Using Midjourney for Generative AI Art
	 Artistic Exploration with Gen AI Midjourney Getting Started with Midjourney Midjourney User Interface Crafting Visuals using Midjourney
Session 3	GitHub Copilot for Developers
	 GitHub Copilot: Introduction, Installation, and Configuration GitHub Copilot: Improving Developer Efficiency Application Scenarios, Problem-Solving, and Summary
Session 4	Generative AI: Privacy and Protection Perspectives
	 Introduction to Data Privacy Privacy Challenges and Regulations in Generative AI Safeguarding Data Privacy at Your Workplace Legal and Ethical Considerations

Session 5	Generative Privacy and Protection Perspectives & Cyber Security
	Introduction to Data Privacy
	Privacy Challenges and Regulations in Generative AI
	Safeguarding Data Privacy at Your Workplace
	• Legal and Ethical Considerations
	Overview of Cybersecurity - Essentials of Cybersecurity
	Gen AI Applications in Cybersecurity - Intrusion Detection Systems
	Automating Security Operations using Gen AI
	• Enhancing Network and Endpoint Security with Gen AI
	Anticipated Trends and Challenges in the Future
	Components, Strongly Connected Components, Label Propagation
Week 25	GenAI in Cloud

Learning Objectives: This week, we dive into Machine Learning, Deep Learning, and Generative AI in the Cloud, focusing on how cloud platforms are revolutionizing these technologies. You will explore cloud-based tools and services, such as AWS SageMaker, Google AI Platform, and Azure Machine Learning, that enable scalable and efficient deployment of machine learning and deep learning models. By leveraging these cloud solutions, you will be able to build, train, and deploy sophisticated AI models, including generative AI, with enhanced performance and accessibility.

ecssionity.	
Session 1	Generative AI on the Cloud
	 Overview of generative AI - key concepts like prompting and few-shot learning. Demo generative models like GPT-3, DALL-E, and others. Discuss business use cases and implications of generative AI. Introduction to Amazon AI Services Overview of AWS AI services like SageMaker, Comprehend, Lex, Polly etc.
Session 2	Amazon SageMaker DeepComposer
	 Amazon SageMaker Managed service to build, train, and deploy ML models quickly. Build models with built-in algorithms or bring your own. AWS Deep Composer ML service to create original music. Learn generative AI for music composition.
Session 3	LLMs Vis APIs
	 Intro to LLMs like GPT-3 and Codex How they are trained and optimized for few-shot learning Using LLMs in Python with HuggingFace Transformers Fine-tuning and prompting LLMs for custom applications. Hosting LLMs on SageMaker and accessing via APIs
Session 4	Amazon Comprehend Transcribe
	 Amazon Comprehend Natural language processing (NLP) service for text analysis Amazon Transcribe Automatic speech-to-text transcription service using ML. Amazon recognition Image and video analysis service for object and scene detection, facial analysis etc.
Session 5	AWS DeepLens AWS DeepRacer
	 Monitoring and optimizing generative model performance. Bias detection and mitigation in generative models Explainability and interpretability of generative AI MLOps - automating deployment, monitoring, and governance of generative models

• Course conclusion and next steps for applying generative AI.

- Amazon Lex Build conversational chatbots with the same technology as Alexa.
- Amazon Polly Turn text into lifelike speech with ML.
- Amazon Forecast Time series forecasting using ML.
- AWS DeepLens ML-enabled video camera for object detection and more.
- AWS DeepRacer Autonomous 1/18th scale race car to test RL models.

MLOps

07
MODULE

Week 26

General Deployment Considerations & MLOps

Learning Objectives: This week, you will learn every aspect of how to put your models into production. You will cover all the steps and infrastructure required to deploy machine learning models professionally, and you will have at your fingertips a sequence of steps to follow for deploying a machine learning model. Additionally, you will receive a project template with full code that you can adapt to deploy your models.

Session 1	Avoiding False Discoveries MLOps Introduction
	 Avoiding False Discoveries Preliminaries: Statistical Testing Modeling Null & Alternative Distributions Champion Models Vs. Challenge Models Machine learning industrialization challenges
Session 2	Model Deployment with Flask/Postman
	 What is MLOps? MLOps Motivation: High-level view MLOps challenges MLOps Components Machine Learning Life Cycle Machine Learning Deployment with Flask Machine Learning Deployment with Postman
Session 3	Introduction to ML and MLOps stages
	 How does it relate to DevOps, AIOps, ModelOps, and GitOps? Major Phases - what it takes to master MLOps. CI/CD in Production Case Study MLOps Maturity Model Detailed MLOps and stages Versioning Testing Automation (CI/CD) Reproducibility Deployment Monitoring
Session 4	MLOps Architectures
	 MLOps Architectures Architectures - Open-Source tools - Kubeflow, Apache Airflow, MLFlow, Metaflow, Kedro, ZenML, MLRun, CML Architectures - Cloud Native tools - AWS, GCP and Azure List of tools involved in each stage (MLOps tool ecosystem) Different Roles involved in MLOps (ML Engineering + Operations)
Session 5	Introduction to CI/CD
4	 Introduction to CI and CD CI/CD challenges in Machine Learning Steps involved in the CI/CD implementation in ML lifecycle and workflow.

• A glimpse of popular Tools used in the DevOps ecosystem on the Cloud.

MINI PROJECTS & CAPSTONE PROJECT

08
MODULE

Week 27-30

Individual Capstone Project (1 Month)

Learning Objectives: During the final week, you will be transitioned into a full-time focus on your final, passion individual capstone assignment that will require you to apply the tools you have learned in the program.

Duration: The capstone will run for ONE month starting from the 8th of August 2025 till the 8th of September 2025

Grading: The capstone project is a program requirement. To complete the capstone project and receive the certificate, students must achieve "Meets Expectations" OR "Exceeds Expectations"

Data Science Interview Questions & Answers

The program includes real Data Science interview questions designed to prepare you for landing your dream job. These questions span various topics, including understanding the big picture, model optimization, data pre-processing, sampling, and splitting, supervised and unsupervised learning, model evaluation, ensemble learning, and practical business applications. This comprehensive approach ensures you are well-equipped to tackle the challenges in a data science interview:

• 1- The Big Picture

| 2 - Optimization

• 3 - Data Pre-processing

| 4 - Sampling & Splitting

5- Supervised Learning

| 6 - Unsupervised Learning

7 - Model Evaluation

| 8 - Ensemble Learning |

9 - Business Applications

Data Science Interview Real Challenges

To prepare you for landing your dream job, the program includes 48 hours of take-home, real industry challenges. These challenges range from understanding the big picture and optimizing models to data pre-processing, sampling, and splitting. Key areas covered include mastering supervised and unsupervised learning, evaluating models, leveraging ensemble techniques, and applying insights to real-world business applications:

- o Capgemini Challenge
- o SDSC Challenge
- o Foot Locker Challenge
- o Fatality Crashes Challenge
- o PayPal Challenge

Week 31-40 Certified Analytics Professional Training Bonus (Self-paced)

End the program with a self-paced and supported training Certified Analytics Professional (CAP) certification. CAP is a globally recognized credential that validates your expertise in the entire analytics process, from problem framing to data analysis and model deployment. Earning the CAP certification demonstrates your proficiency in transforming data into valuable insights and your commitment to the analytics profession. The program will help you master.

- o Domain 1: Business Problem Framing
- o Domain 2: Analytics Problem Framing
- o Domain 3: Data
- o Domain 4: Methodology (Approach) Selection
- o Domain 5: Model Building
- o Domain 6: Deployment

CAREER SERVICES

Resume Preparation

Interview Preparation

Preparation Employment Assistance

Certificate Analytics Professional Training (Free)

ATC Innovation Center

CERTIFICATION & ACCREDITATION

Upon successful completion of the program, InnovatiCS grants a verified/certified digital certificate in Data Science and AI to participants. This program is graded as pass or fail; participants must receive 80% to pass and obtain the certificates and the accreditations.

This program has been certified by 3 International body knowledge: The International Association of Business Analytics Certification (IABAC), Continuing Professional Development (CPD) and Higher Learning Accreditation Consultant and Training (HLACT) as conforming to continuing professional development principles. After successful completion of the program, you will get up to 4 international certificates in Data Science and AI. Your verified digital certificate will be email to you in the name you used when registering for the program. All certificate images are for illustrative purpose only and may be subject to change at the direction of InnovatiCS

ABOUT US

We are InnovatiCS, a comprehensive up-skilling platform driven by our unique, integrated "Learn-Apply-Solve" framework. This innovative approach offers an application-focused, immersive learning experience, featuring real-world industry courses, case studies, datasets, and projects. Our program fosters a seamless blend of industry and academic knowledge through simulations and conceptualization.

InnovatiCS regularly presents at leading conferences and workshops, and until recently, hosted monthly meetups featuring industry experts as speakers. Our live, multi-week, multi-session courses, which are recorded for flexibility, have received high praise from participants, who benefit from our nearly unlimited one-on-one and group support sessions.

OUR OFFICES

U+1 (678) 209 9780

925 North Point Pkwy Suite 130, Alpharetta, GA 30005