Your Name:		
Names of pe	ople you worked with:	

Task: Sticking with the chocolate melting context, consider a different dataset.

1. Fill out the following table indicating at risk observations (n_i) and events (d_i) .

2. Fill out the following table estimating S(t) using the Kaplan-Meier estimates.

```
time interval \hat{S}(t)_{KM} [0, 35) [35, 42) [42, 45) [45, 48) [48, 55) [55, 64) [64, 72) [72, \infty)
```

3. Sketch the Kaplan-Meier curve using the values in #2 above. Note that t= time is on the x-axis, and $\hat{S}(t)_{KM}$ is on the y-axis.

Solution:

1. Counting the number of at risk observations and events:

2. Estimating the survival curve:

time interval	$\hat{S}(t)_{KM}$
[0, 35)	1
[35, 42)	0.857
[42, 45)	$0.857 \cdot 0.833 = 0.714$
[45, 48)	$0.714 \cdot 1 = 0.714$
[48, 55)	$0.714 \cdot 0.75 = 0.536$
[55, 64)	$0.536 \cdot 1 = 0.536$
[64, 72)	$0.536 \cdot 1 = 0.536$
$[72,\infty)$	$0.536 \cdot 0 = 0$

3. Sketching the survival curve:

