Aménagement Hydraulique 1

Résumé de cours

Maxime Fourquaux maxime.fourquaux@heig-vd.ch 6 octobre 2022

HEIG-VD | EC+G Orientation GGT

Table des matières

- 1. Introduction
- 2. Séries annuelles des débits maximaux
- 3. Séries gonflées
- 4. Séries tronquées

Introduction

Introduction

Étiage ou basse eau 15 L/s

Débit normal ou morphogène 0.7 m³/s

10 m³/s

 $\Lambda 1 \text{ m}^3 = 1'000 \text{ L}$

Veille hydrologique

Figure 1: Capture d'écran du site internet http://www.vhv.ch/

Une veille hydrologique est faite avec des stations pluviométriques, des stations sur les rivières (mesure débit et niveau), piézomètres, . . .

Critères de dimensionnement

Figure 2: Recommandations fédérales en matière de protection contre les crues. Selon les cas (communes, agglomérations, ...), on peut choisit le temps de retours et ainsi adapter les protections.

Séries annuelles des débits

maximaux

Bases et principes

Principes

L'étude et la marche à suivre conviennent pour des séries statistiques avec un débit maximal annuel!

- \triangleright Crues moyennes : $T \in [2;5]$ années
- \triangleright Crues rares : $T \in \{10, 30, 100, 300\}$ années et même plus selon les objectifs de protection
- Utilisation des données statistiques issues de la veille hydrologique
 - ⇒ Nous utilisons des données sur un certain temps et cela nous permettra d'extrapoler les débits pour des temps de retour de 30 à 300 ans.

Séparation des crues

Séparation des crues.

Lorsque le Q dépasse un Q seuil = début de la crue Lorsque le Q redevient inférieur au Q seuil et que le Q reste inférieur à ce Q seuil pendant un certain temps alors on sépare les deux crues T seuil.

Marche à suivre pour calculer des temps de retour

- 1 Vérification de la stationnarité des données statistiques
- 2 Vérification de l'homogénéité des données statistiques
- 3 Calcul des temps de retours T
- 4 Calcul des paramètres de la **loi de Gumbel** et de son débit Q

1. Stationnarité

Année	Q _{max}		
1965	350		
1966	175		
1967	320		
1968	220		

Nota

- → Vérification que cela ne varie pas en fonction des années (courbe de tendance)
- → Visualiser l'évolution des crues de pointe en fonction des années donne un bon aperçu d'une dérive quelconque

2. Homogénéité

Année	Jan	Fev	Mar	 Nov	Dec
1965	11.3	9.7	14.0	 	
1966	16.6	18.5	16.6	 	
1967	16.7	18.8	20.0	 	

3. Temps de retour

4. Loi de Gumbel

Séries gonflées

Séries tronquées