Computer Structure

DRAM

Lihu Rappoport And Adi Yoaz

DRAM – Dynamic Random Access Memory

Radom Access Memory

- The data access time is independent of the access sequence
- E.g., unlike a tape (serial access) or disk (direct access)
- We will see that DRAM is not 100% a RAM

Dynamic – requires periodic refresh

- A DRAM cell consists of transistor + capacitor
 - > The capacitor keeps the state, the transistor guards access to the state
 - Charging and draining a capacitor takes time
 - Leakage current from the transistor drains the capacitor even when transistor is closed
 - The DRAM cell must be periodically refreshed (every 64ms)
- SRAM (static RAM) is faster and does not require refersh
 - ▶ But each cell is comprised of a few transistors it is bigger and requires higher power
 - > For main memory, memory capacity and low power are the prime factors, making DRAM the right choice

Basic DRAM chip

DRAM access sequence

- Put Row on addr. bus
- Assert RAS# (Row Addr. Strobe) to latch Row
- Put Column on addr. bus
- Wait RAS# to CAS# delay and assert CAS# (Column Addr. Strobe) to latch Col
- Get data on address bus after CL (CAS latency)

Page Mode DRAM

- Allows Multiple accesses to different columns within the same row
 - Saves RAS, RAS to CAS delay, and Row pre-charge

- CAS-to-CAS delay: delay between two CASs within the same row
- tRP: Row pre-charge time: the time to close current row, and open a new row

DRAM is not true random access memory

- A random access memory provides a constant access time regardless of the sequence of memory locations accessed
- Accessing multiple columns within the same row is much faster than accessing addresses from different rows

Synchronous DRAM - SDRAM

- All signals are referenced to an external clock (100MHz-200MHz)
 - Makes timing more precise with other system devices
- 4 banks multiple pages (rows) open simultaneously (one per bank)
 - Accessing columns within each one of the 4 open rows is fast
- Command driven functionality instead of signal driven
 - ACTIVE: selects both the bank and the row to be activated
 - > ACTIVE to a new bank can be issued while accessing current bank
 - READ/WRITE: select column
- Burst oriented read and write accesses
 - Successive column locations accessed in the given row
 - Burst length is programmable: 1, 2, 4, 8, full-page (may end by burst terminate)
- A user programmable Mode Register
 - CAS latency, burst length, burst type
- Auto pre-charge: may close row at last read/write in burst
- Auto refresh: internal counters generate refresh address

SDRAM Timing

- t_{RCD}: ACTIVE to READ/WRITE gap = \[t_{RCD}(MIN) / clock period \]
- t_{RC}: successive ACTIVE to a different row in the same bank
- t_{RRD}: successive ACTIVE commands to different banks

DDR-SDRAM

2n-prefetch architecture

- DRAM cells are clocked at the same speed as SDR SDRAM cells
- Internal data bus is twice the width of the external data bus
- Data capture occurs twice per clock cycle
 - Lower half of the bus sampled at clock rise
 - Upper half of the bus sampled at clock fall

- Uses 2.5V (vs. 3.3V in SDRAM)
 - Reduced power consumption

DDR SDRAM Timing

DDR2

DDR2 doubles the bandwidth

- 4n pre-fetch: internally read/write 4×
 the amount of data as the external bus
- DDR2-533 cell works at the same freq. as a DDR266 cell or a PC133 cell
- Prefetching increases latency
- Smaller page size: 1KB vs. 2KB
 - Reduces activation power ACTIVATE command reads all bits in the page
- 8 banks in 1Gb densities and above
 - Increases random accesses
- 1.8V (vs 2.5V) operation voltage
 - Significantly lower power

DDR3

• 30% power consumption reduction compared to DDR2

- 1.5V supply voltage (vs. 1.8V in DDR2)
- 90 nanometer fabrication technology

Higher bandwidth

 8 bit deep prefetch buffer (vs. 4 bit in DDR2)

2x transfer data rate vs DDR2

- Effective clock rate of 800–1600 MHz
 - using both rising and falling edges of a 400–800 MHz I/O clock
 - DDR2: 400–800 MHz using a 200–400 MHz I/O clock

DDR3 DIMMs

- 240 pins, the same number as DDR2, and are the same size
- Electrically incompatible, and have a different key notch location

DDR4 - 4th Gen. DDR SDRAM

Released to the market in 2014

- Higher module density: up to 64GB DIMMs vs. 16GB in DDR3
- Lower voltage requirements: 1.2V and 1.4V vs. 1.5V and 1.65V in DDR3
- Higher data rate transfer speeds

Prefetch has not been increased above the 8n used in DDR3

- The basic burst size is eight words
- Higher bandwidth achieved by more read/write commands per sec
 - > To allow this, DRAM banks are divided into two or four selectable bank groups, where transfers to different bank groups may be done more rapidly

• The reduced power allows higher operation speeds

- Without going to expensive power and cooling requirements
- Power consumption increases with speed

Frequency: 800 to 2133 MHz (DDR4-1600 through DDR4-4167)

compared 400 to 1067 MHz in DDR3

Speeds are typically advertised as doubles of these numbers

- DDR3-1600 and DDR4-2400 are common
- DDR3-3200 and DDR4-4800 available at high cost

DDR4 Standards

- Standard name vs. module name
 - DDR4-xxxx denotes per-bit data transfer rate in MT/sec
 - PC4-xxxxx denotes overall module (DIMM) transfer rate in MByte/sec
 - DDR4 modules transfer data on a 8byte data bus
 ⇒ module peak transfer rate in MByte/sec = transfer rate x 8
- Memory clock frequency, I/O bus clock frequency, Data rate
 - 8 wide prefetch ⇒ Data rate = Memory clock freq x 8
 - Data transferred on both clock edges ⇒ Data rate = I/O bus clock freq x 2
- DRAM timing, measure in I/O bus cycles, specifies 3 numbers
 - CAS Latency RAS-to-CAS Delay RAS Pre-charge Time
- CAS latency (latency to get data in an open page) in nsec
 - CAS Latency \times I/O bus cycle time in the example: $[11/(800\times10^6)]\times10^9=13.75$

Standard name	Memory clock (MHz)	I/O bus clock (MHz)	Data rate (MT/s)	Module name	Peak transfer rate (MB/s)	Timings CL-tRCD- tRP	CAS latency (ns)
DDR4-1600K	200	800	1600	PC4-12800	12800	11-11-11	13.75

DDR4 Standards

Standard name	Memory clock (MHz)	I/O bus clock (MHz)	Data rate (<u>MT/s</u>)	Module name	Peak trans- fer rate (MB/s)	Timings CL-tRCD-tRP	CAS latency (ns)
DDR4-1600J* DDR4-1600K DDR4-1600L	200	800	1600	PC4-12800	12800	10-10-10 11-11-11 12-12-12	12.5 13.75 15
DDR4-1866L* DDR4-1866M DDR4-1866N	233.33	933.33	1866.67	PC4-14900	14933.33	12-12-12 13-13-13 14-14-14	12.857 13.929 15
DDR4-2133N* DDR4-2133P DDR4-2133R	266.67	1066.67	2133.33	PC4-17000	17066.67	14-14-14 15-15-15 16-16-16	13.125 14.063 15
DDR4-2400P* DDR4-2400R DDR4-2400T DDR4-2400U	300	1200	2400	PC4-19200	19200	15-15-15 16-16-16 17-17-17 18-18-18	12.5 13.32 14.16 15
DDR4-2666T DDR4-2666U DDR4-2666V DDR4-2666W	325	1333	2666	PC4-21333	21333	17-17-17 18-18-18 19-19-19 20-20-20	12.75 13.50 14.25 15
DDR4-2933V DDR4-2933W DDR4-2933Y DDR4-2933AA	366.6	1466.5	2933	PC4-23466	23466	19-19-19 20-20-20 21-21-21 22-22-22	12.96 13.64 14.32 15
DDR4-3200W DDR4-3200AA DDR4-3200AC	400	1600	3200	PC4-25600	25600	20-20-20 22-22-22 24-24-24	12.50 13.75 15

DIMMs

DIMM: Dual In-line Memory Module

A small circuit board that holds memory chips

64-bit wide data path (72 bit with parity)

- Single sided: 9 chips, each with 8 bit data bus
- Dual sided: 18 chips, each with 4 bit data bus
- Data BW: 64 bits on each rising and falling edge of the clock

Other pins

Address – 14, RAS, CAS, chip select – 4, VDC – 17, Gnd – 18, clock – 4, serial address – 3, ...

The DRAM Controller

- DRAM controller gets address and command
 - Splits address to Row and Column
 - Generates DRAM control signals at the proper timing

- DRAM data must be periodically refreshed
 - The DRAM controller performs DRAM refresh, using refresh counter

The DRAM Controller (cont.)

A typical DRAM controller supports two channels of DDR4

• Each channel has its own resources

- Handles memory requests independently
- Contains a 32 cache-line write-data-buffer
- Supports 8 bytes per cycle

A hash function distributes addresses between channels

- Attempts to balance the load between the channels in order to achieve maximum bandwidth and minimum hotspot collisions
- An out-of-order scheduler maximizes BW and minimize latency
 - Writes to the memory controller are considered completed when they are written to the write-data-buffer
 - The write-data-buffer is flushed out to main memory at a later time, not impacting write latency

Partial Memory Writes

- Memory reads and writes are done at full Cache Line granularity
- Partial Write transactions are writes to a subset of a Cache Line
 - Non-cacheable writes, e.g., write requests driven by IO devices
 - Would require adding more pins to indicate to memory which bytes to write
 - Not supported with ECC
- Partial writes are not common enough to justify the extra cost
 - The MC supports a partial write, by a RMW operation
 - > Reads the current value of the full CL
 - Replaces the bytes that have to be modified
 - Writes back the full CL to memory
- Software should avoid creating partial write transactions whenever possible
 - E.g., buffer the partial writes into full cache line writes

How to get the most of Memory?

For best performance

- Populate both channels with equal amounts of memory
 - Preferably the exact same types of DIMMs
- Use highest supported speed DRAM, with the best DRAM timings

Each DIMM supports 4 open pages simultaneously

- The more open pages, the more random access
- It is better to have more DIMMs: n DIMMs $\Rightarrow 4n$ open pages
- Dual sided DIMMs may have separate CS of each side
 - Support 8 open pages
 - Dual sided DIMMs may also have a common CS

Motherboard Layout

DRAM Access Latency

- 1. Delay in LLC request buffer
- 2. Request sent from LLC to IMC
- 3. IMC delay
- IMC sends command to DRAM
- 5. Row pre-charge
- 6. RAS-to-CAS
- CAS latency
- 8. Data returns to IMC
- 9. IMC delay
- 10. Data sent from IMC to LLC
- 11. Delay in LLC fill buffer

DRAM Access Latency

- Assume CPU clock cycle of 4GHz = 250ps = 0.25ns
- Single access to a new page
 - In the DRAM
 - Row pre-charge 13ns
 - > RAS-to-CAS 13ns
 - CAS latency
 13ns
 - Rest of the system 25ns
 - Total64ns = 256 CPU clock cycles
- Single access to a an open page
 - In the DRAM
 - CAS-to-CAS 6ns
 - CAS latency
 13ns
 - Rest of the system 25ns
 - Total 44ns = 176 CPU clock cycles

DDR5 vs. DDR4

	DDR4	DDR5	DDR5 Advantage
Speed	1.6 – 3.2 GT/s 0.8 – 1.6 GHz clock	4.8 – 8.4 GT/s 1.6 – 4.2 GHz clock	Higher bandwidth
Voltage	1.2V	1.1V	Lower power
Power management	On motherboard	On DIMM PMIC	Better power efficiency Better scalability
Channels	64bit data + 8bit ECC 1 channels / DIMM	32bit data + 8bit ECC 2 channels / DIMM	Higher memory efficiency Lower latency
Burst Length	BC4, BL8	BC8, BL16	Higher memory efficiency
Max memory / chip	16 Gbit	64 Gbit	Higher capacity DIMMs

Backup

DRAM Access Sequence Timing

- Put row address on address bus and assert RAS#
- Wait for RAS# to CAS# delay (tRCD) between asserting RAS and CAS
- Put column address on address bus and assert CAS#
- Wait for CAS latency (CL) between time CAS# asserted and data ready
- Row pre-charge time: time to close current row, and open a new row

SRAM vs. DRAM

• Random Access: access time is the same for all locations

	DRAM - Dynamic RAM	SRAM — Static RAM	
Refresh	Refresh needed	No refresh needed	
Address	Address muxed: row+ column	Address not multiplexed	
Access	Not true "Random Access"	True "Random Access"	
density	High (1 Transistor/bit)	Low (6 Transistor/bit)	
Power	low	high	
Speed slow		fast	
Price/bit	low	high	
Typical usage	Main memory	cache	

DDR4 vs DDR3

eature/Option	DDR3	DDR4	DDR4 Advantage
Voltage (core and I/O)	1.5V	1.2V	Reduces memory power demand
VREF inputs	2 – DQs and CMD/ADDR	1 – CMD/ADDR	VREFDQ now internal
Low voltage standard	Yes (DDR3L at 1.35V)	No	Memory power reductions
Data rate (Mb/s)	800, 1066, 1333, 1600, 1866, 2133	1600, 1866, 2133, 2400, 2666, 3200	Migration to higher-speed I/O
Densities	512Mb-8Gb	2Gb-16Gb	Better enablement for large-capacity memory systems
Internal banks	8	16	More banks
Bank groups (BG)	0	4	Faster burst accesses
^t CK – DLL enabled	300 MHz to 800 MHz	667 MHz to 1.6 GHz	Higher data rates
^t CK – DLL disabled	10 MHz to 125 MHz (optional)	Undefined to 125 MHz	DLL-off now fully supported
Read latency	AL + CL	AL + CL	Expanded values
Write latency	AL + CWL	AL + CWL	Expanded values
DQ driver (ALT)	40Ω	48Ω	Optimized for PtP (point-to-point) applications
DQ bus	SSTL15	POD12	Mitigate I/O noise and power
$R \tau \tau$ values (in Ω)	120, 60, 40, 30, 20	240, 120, 80, 60, 48, 40, 34	Support higher data rates
R⊤ not allowed	READ bursts	Disables during READ bursts	Ease-of-use
ODT modes	Nominal, dynamic	Nominal, dynamic, park	Additional control mode; supports OTF value change
ODT control	ODT signaling required	ODT signaling not required	Ease of ODT control, allows non-ODT routing on PtP applications
Multipurpose register (MPR)	Four registers – 1 defined, 3 RFU	Four registers – 3 defined, 1 RFU	Provides additional specialty readout

DDR Comparison

	DDR	DDR2	DDR3	DDR4
Prefetch depth	2	4	8	8
Memory Clock (MHz)	100-200	100-200	100-266 ² / ₃	200-400
I/O bus clock (MHz)	100-200	200-400	400-1066 ² / ₃	800-1600
Data rate (MT/s)	200-400	400-800	800-2133	1600-3200
Module rate (GB/s)	1.6-3.2	3.2-6.4	6.4-17.1	12.8-25.6
CAS latency (ns)	9.4-12.5	11.2-15	11-15	12.5-15
DRAM timing (lowest)	2.5-3-3	3-3-3 5-5-5		10-10-10
Voltage (standard/low)	2.5V / 1.8V	1.8V	1.5V / 1.35V	1.2V / 1.05V
Power (mW)	399	217		
Max DIMM size	1GB	4GB	16GB	64GB
Internal banks	4	4/8 8		16
Banks Groups	n.a.	n.a.	n.a.	4
Year released	2000	2003	2007	2014

DDR5

- Higher bandwidth, improved power consumption, higher capacity per memory module
- Supports up to 64-gigabit memory chips, or 128GB/DIMM (DDR4: 16-gigabit)
 - Initial DDR5 memory modules use 16-gigabit memory chips, i.e. 32GB per module
- Supports die stacking with up to eight dies on a chip 2TB per module
- Data rate: 3200 6400 MT/s (DDR4: 1600 3200 MT/s)
 - Actual mainstream starts at 4800 MT/s (DDR4: 2133 MT/s)
- DDR5 memory modules support two independent 32-bit channels (40-bit with ECC)
 - DDR4: single 64-bit channel per module (72-bit with ECC)
 - For a dual DIMM: 4×32 -bit (vs. 2×64 -bit on DDR4)
- Double burst length: from eight bytes (BL8) to 16 bytes (BL16)
- 1.1V (vs 1.2V for DDR4)
- DDR5 memory modules include a power management IC (PMIC)
 - Reduces motherboard cost and design complexity, but adds cost to the memory modules
- 32-bank structure divided into eight groups (16-bank / 4 groups)
 - Enables more pages to be open consecutively