

DATABASE MANAGEMENT SYSTEM INNOVATIVE ASSIGNMENT

HEALTHCARE MANAGEMENT SYSTEM

SUBMITED BY:

22BCE002

23BCE507

Objective:

Our objective is to develop a Healthcare Management System, that enables patients to book an appointment with a doctor of their choice at a convenient date and time. We will utilize the concepts of Entity-Relationship Diagram, ER to Relational Database conversion, and Normalisation for the database design of our system to make it optimal and consistent.

Features of Our Healthcare Management System:

- The patients can register and login (using email and password).
- Doctors can login using their email and password.
- A patient can book an appointment with any doctor of his/her choice.
- The patient can select the mode of payment (online or cash) and the available appointment date and time.
- The doctor needs to approve an appointment requested by a patient.
- The doctor provides a prescription after each appointment.
- Patient and doctor can view the appointments and prescriptions.
- The patients are allotted rooms in the hospital if necessary.
- The hospital staff manages and maintains the hospital rooms.

ER – DIAGRAM

ER TO RELATIONAL DATABASE:

Patient:

Pid(PK)	Room_no	Fname	Lname	Gender	Email	Contact	Password
	(FK)						

Doctor:

Username	Password	Email(PK)	Specialisation	Fees
----------	----------	-----------	----------------	------

Appointment:

Pid	AppID	Email	Appdate	Apptime	Disease	Prescription	Mode	Status
(FK)	(PK)	(FK)						

Review:

Pid(PK)	Email(PK)	Ratings	Remarks
110(111)	Dillaii(1 1x)	1 tatiligs	TCHIMINS

Rooms:

Room_no	Capacity
(PK)	

Staff:

Sid (PK)	Name	Room_no
		(FK)

NORMALIZATION:

Denoting all the attributes of Relation R,

- Phone no = PN
- Gender = G,
- Password (Patient) = PPW,
- Date of Birth = DOB,
- Email (Patient) = PE,
- Fname = FN,
- Lname = LN,
- AppDate = AD,

- AppTime = AT,
- Email (Doctor) = DE,
- Username = U,
- Specialization = SP,
- Fees = F,
- Password (Doctor) = DPW,
- Remarks = RE,
- Rating = RA,

- Disease = D,
- Prescription = P,
- Mode = M,
- Status = S,
- Capacity = C,
- Room_no = RN,
- Name (Staff) = SN,

Table Patient:

Functional Dependencies: (FDs)

- 1. {PID} -> {FN, LN, PN, PE, G, PPW, DOB}
- 2. $\{PN, FN, LN\} \rightarrow \{PID\}$
- 3. {PE, PPW} -> {PID}
- 4. {DE} -> {U, SP, F, DPW}
- 5. $\{U, DPW\} \rightarrow \{DE\}$
- 6. {PID, DE} -> {RE, RA}
- 7. $\{APPID\} \rightarrow \{AD, AT, D, P, M, S\}$
- 8. $\{RN\} \rightarrow \{C\}$
- 9. $\{SID\} -> \{SN\}$

A possible **Key**: {PID, DE, APPID, RN, SID}

Other possible keys: {PN,FN,LN, DE, APPID, RN, SID}, {PE,PPW, DE, APPID, RN, SID}, {PID, U, DPW, APPID, RN, SID}

Prime Attributes: PID, DE, APPID, RN, SID

Non – Prime Attributes: G, DOB, SP, F, RE, RA, D, P, M, S, C, SN

1NF:

The relation R is in 1st Normal Form (1NF) since it is atomic.

2NF:

For 2NF, offending FDs are the ones with {prime attributes} -> {non-prime attributes}:

Hence all the above listed FDs are offending, so they are separated in to different relations as follows:

R1: {PID, FN, LN, PN, PE, G, PPW, DOB}	F1 : {PID} -> {FN, LN, PN, PE, G, PPW, DOB}, {PN, FN, LN} -> {PID}, {PE, PPW} -> {PID}	K1 : {PID},{PN,FN,LN},
R2: {DE, U, SP, F, DPW}	F2 : {DE} -> {U, SP, F, DPW}, {U, DPW} ->	{PE,PPW}
R3: {PID, DE, RE, RA}	{DE}	K2 : {DE}, {U,DPW}
R4: {APPID, AD, AT, D, P, M,	$F3 : {PID, DE} \rightarrow {RE, RA}$	K3 : {PID,DE}
S}	F4 : {APPID} -> {AD, AT, D,P,M,S}	K4 : {APPID}
R5: {RN, C}	F5 : $\{RN\} \rightarrow \{C\}$	K5 : {RN}
R6: {SID, SN}	F6 : {SID} -> {SN}	K6 : {SID}

The above relations are dependency preserving and lossless. Now all the relations are in 2NF.

3NF:

For 3NF, there are no offending FDs. Hence all the relations are in the 3rd Normal Form.

BCNF:

For BCNF, there are no offending FDs in any relation from R1 to R6, as the LHS is a superkey in all the FDs. Hence, all the relations are in BCNF.