

Present by Sangmin Bae

Contents

K-Means

3 DBSCAN

5 Hierarchical Clustering

Mean Shift

4 Gaussian Mixture Model

Part One

K-Means

Clustering (1)

군집화 (clustering)

- 비지도 학습 상황에서, 데이터 샘플들을 별개의 군집(cluster)으로 그룹화 하는 것
- 비지도 학습에서의 **분류 알고리즘**
- 데이터의 특징에 따라 세분화하는데 사용
- 이상 검출 (anomaly detection)에 사용

Clustering (2)

군집화 (clustering)

- 유사성이 높은 데이터를 동일한 그룹으로 분류
- 서로 다른 군집은 특성이 상이하도록 군집화함
- 클러스터 내부의 분산(within 분산) 최소화, 클러스터 간의 분산(between 분산) 최대화

Parametric vs Non-Parametric

모수적 추정 vs 비모수적 추정

- 모수적(parametric) 추정:
 - 주어진 데이터가 특정 데이터 분포를 따른다고 가정
 - Gaussian Mixture Model(GMM)이 대표적
- 비모수적(non-parametric) 추정:
 - 데이터가 특정 분포를 따르지 않는다는 가정 하에서 확률 밀도를 추정
 - K-means, Mean Shift, DBSCAN 등의 알고리즘이 있음

K-means Clustering (1)

K-means

- 군집의 중심점(centroid) 기반 클러스터링
- 샘플은 가장 가까운 중심점을 가진 군집으로 할당됨
- K-means 알고리즘은 사전에 **군집의 수에 대한 하이퍼파라미터 k**를 정해야 사용 가능

$$X = C_1 \cup C_2 \cdots \cup C_k, \qquad C_i \cap C_j = \emptyset$$

$$\arg\min_{C} \sum_{j=1}^{k} \sum_{x_i \in C_j} ||x_i - c_j||^2$$

• EM 알고리즘을 통해 최적의 군집에 수렴할 때까지 학습함

K-means Clustering (2)

기댓값 최대화 알고리즘 (EM algorithm)

- 최대가능도(maximum likelihood)나 최대사후확률(maximum a posteriori)을 갖는 모수의 추정값을 찾는 반복적인 알고리즘
- EM 알고리즘은 Expectation 단계와 Maximization 단계로 나뉨
 - 1. Expectation(기댓값) 단계:

현재의 추정된 모수를 통해 샘플을 군집에 할당하는 단계

2. Maximization(최대화) 단계:

로그 가능도(likelihood)의 기댓값을 최대화하는 모수를 추정하는 단계

K-means Clustering (3)

기댓값 최대화 알고리즘 (EM algorithm)

- 특정 분포에 대한 가정이 없는 Non-parametric 추정에서는 가능도의 개념이 없음
- Mean Shift나 DBSCAN은 밀도 추정의 방법으로 학습
- K-means 군집화에서의 EM 알고리즘은,
 - Expectation 단계: **추정하고자 하는 모수는 중심점(centroid)**이므로, 샘플을 군집으로 할당하는 단계
 - Maximization 단계: 가능도를 샘플이 군집에 속할 확률로 해석하여, 군집에 할당된 샘플을 바탕으로 새로운 중심점을 계산

Examples of K-means Clustering (1)

EM algorithm in K-means

• 군집 수 k가 2인 상황

 \circ \circ \circ

Examples of K-means Clustering (2)

EM algorithm in K-means

• 처음 군집의 centroid는 **랜덤하게 설정**함

Examples of K-means Clustering (3)

EM algorithm in K-means

• 샘플들을 가장 가까운 Centroid에 할당해 군집을 생성 (Expectation 단계)

Examples of K-means Clustering (4)

EM algorithm in K-means

• 군집의 새로운 centroid를 계산 (Maximization 단계)

Examples of K-means Clustering (5)

EM algorithm in K-means

• 샘플들을 가장 가까운 Centroid에 할당해 군집을 생성 (Expectation 단계)

Examples of K-means Clustering (6)

EM algorithm in K-means

• 군집의 새로운 centroid를 계산 (Maximization 단계)

Evaluation Metrics of Clustering (1)

실루엣 분석 (silhouette analysis)

- 군집들이 얼마나 효율적으로 분리되어 있는지를 보여줌
- 각 샘플들이 가지고 있는 실루엣 계수(silhouette coefficient)를 기반으로 함
- 전체 실루엣 계수의 평균값이 클수록, 개별 군집의 평균값의 편차가 작을수록 좋음

Evaluation Metrics of Clustering (2)

실루엣 계수 (silhouette coefficient)

- 가장 가까운 타 군집 하나와의 거리를 통해 계산
- 실루엣 계수는 -1 ~ 1 사이의 값을 가지며, 1에 가까울수록 더 좋은 군집을 의미

$$s(\mathbf{i}) = \frac{\overline{b}_i - \overline{a}_i}{\max(\overline{a}_i, \overline{b}_i)}$$

Evaluation Metrics of Clustering (3)

실루엣 분석 (silhouette analysis)

• 실루엣 계수의 평균값이 크고 편차가 작도록, K-means 알고리즘의 군집 개수(k)를 결정함

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py

Evaluation Metrics of Clustering (4)

실루엣 분석 (silhouette analysis)

• 실루엣 계수의 평균값이 크고 편차가 작도록, K-means 알고리즘의 군집 개수(k)를 결정함

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py

Evaluation Metrics of Clustering (5)

실루엣 분석 (silhouette analysis)

• 실루엣 계수의 평균값이 크고 편차가 작도록, K-means 알고리즘의 군집 개수(k)를 결정함

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py

Limitation of K-means Clustering

K-means 한계점

- 군집의 개수, centroid에 대한 초기 설정값에 따라 성능 편차가 심함
- 군집 크기나 밀도가 다를 경우, 학습이 잘 안될 수가 있음
- 데이터 분포가 특이할 경우에도 군집 학습이 어려움

Part Two

Mean Shift

Mean Shift (1)

평균 이동 (mean shift)

- 각 샘플을 기점으로 주변에 데이터가 가장 밀집된 곳으로 이동하는 것을 수렴할 때까지 반복
- 모든 데이터에 대해 수렴 지점을 계산하여, 군집의 개수를 결정
- 각 샘플들을 가장 가까운 중심점을 가진 군집으로 할당

Mean Shift (2)

평균 이동 (mean shift)

- K-means 알고리즘과 다르게 군집 개수에 대한 하이퍼파라미터가 불필요
- Sliding window의 크기를 조절해 주변 어느 정도까지 볼 지 결정해야함

Mean Shift (3)

평균 이동 (mean shift)

- 비모수(non-parametric) 방법의 모델
- KDE(kernel density estimation)를 통해 밀도가 가장 높은 곳을 찾아냄

Histogram

히스토그램 (histogram)

- 비모수적 밀도 추정을 위해 간단하게 <mark>히스토그램</mark>을 사용할 수 있음
- 하지만, Bin의 경계때문에 불연속적인 특징이 있음

Kernel Density Estimation (1)

- 커널 함수를 통해 어떤 변수의 **확률 밀도 함수를 추정**하는 방법
- 개별 샘플들에 커널 함수를 적용한 값을 모두 합한 뒤, 데이터 개수로 나누어 확률 밀도 함수를 추정
- $KDE = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right)$
- h는 커널 함수의 bandwidth 파라미터로, 뾰족한 형태 혹은 완만한 형태일지 결정

Kernel Density Estimation (2)

KDE (kernel density estimation)

•
$$KDE = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right)$$

• 대표적인 커널 함수로 Gaussian 분포 함수가 사용됨

$$KDE = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi}h} e^{\left(-\frac{1}{2}\left(\frac{x-x_i}{h}\right)^2\right)}$$

• 평균은 관측값 x_i 로, 표준편차는 h로 설정

Kernel Density Estimation (3)

KDE (kernel density estimation)

 개별 샘플들에 커널 함수를 적용한 값을 모두 합한 뒤, 데이터 개수로 나누어 확률 밀도 함수를 추정

Kernel Density Estimation (4)

KDE (kernel density estimation)

 개별 샘플들에 커널 함수를 적용한 값을 모두 합한 뒤, 데이터 개수로 나누어 확률 밀도 함수를 추정

Kernel Density Estimation (5)

- h 값이 작을수록 뾰족한 Gaussian 커널 함수가 생성
 - -> overfitting 문제 (군집 개수 ↑)
- h 값이 크면 편차가 큰 완만한 커널 함수가 생성
 - -> underfitting 문제 (군집 개수 ↓)

Kernel Density Estimation (6)

- h 하이퍼파라미터에 대한 최적의 값을 찾아야 함
- 가우시안 커널 함수를 사용할 때의 최적의 bandwidth는 다음과 같음

$$h = \left(\frac{4\sigma^5}{3n}\right)^{\frac{1}{5}} \approx 1.06\sigma n^{-\frac{1}{5}}$$

Kernel Density Estimation (7)

- 2차원 데이터에 커널 함수는 어떻게 적용할까?
- 각 차원으로 데이터를 투영시켜, 커널 함수를 적용해 밀도가 가장 높은 좌표 계산

Limitation of Mean Shift

Mean Shift 한계점

- Sliding window의 크기와 bandwidth h에 대한 선택이 필요함
- 여전히 데이터 분포가 특이할 경우에 군집 학습이 어려움

Part Three

DBSCAN

DBSCAN (1)

DBSCAN (density-based spatial clustering of applications with noise)

- DBSCAN 또한 **밀도가 높은 부분을 중심으로 군집화**를 하는 방법론
- 어떤 점을 기준으로 반경 ε 내에 샘플이 minpoints보다 많으면 같은 군집으로 할당

DBSCAN(2)

DBSCAN (density-based spatial clustering of applications with noise)

• 어떤 점을 기준으로 반경 ε 내에 샘플이 minpoints = 3보다 많으면 같은 군집으로 할당

DBSCAN(3)

- 어떤 점을 기준으로 반경 ε 내에 샘플이 minpoints = 3보다 많으면 같은 군집으로 할당
- 군집으로 할당된 샘플들을 해당 군집의 corepoint로 설정해 계속 반복

DBSCAN (4)

- 어떤 점을 기준으로 반경 ε 내에 샘플이 minpoints = 3보다 많으면 같은 군집으로 할당
- minpoints 개수를 만족 못하는 borderpoint 샘플(군집으로 할당은 됐지만,
 corepoint가 될 수 없는 샘플)이 나올 경우 멈춤

DBSCAN (5)

- 어떤 점을 기준으로 반경 ε 내에 샘플이 minpoints = 3보다 많으면 같은 군집으로 할당
- 이를 모든 데이터 샘플에 대해 진행하여 cluster point와 noise point를 구분

DBSCAN (6)

- 어떤 점을 기준으로 반경 ε 내에 샘플이 minpoints = 3보다 많으면 같은 군집으로 할당
- 이를 모든 데이터 샘플에 대해 진행하여 cluster point와 noise point를 구분

Pros and Cons of DBSCAN

DBSCAN 장점과 단점

- (장점) 다양한 형태의 군집 유형을 구분할 수 있음
- (**상점**) 아웃라이어(noise point)를 찾아낼 수 있음
- (단점) 군집의 개수 설정에선 자유롭지만, ε 과 minpoints에 대한 설정이 필요
- (단점) 연산량이 크기 때문에 시간이 오래 걸림

Part Four

Gaussian Mixture Model

Gaussian Mixture Model (1)

GMM (gaussian mixture model)

- 모수적 추정의 방법론으로, 주어진 데이터를 K개의 Gaussian 분포의 혼합으로 가정
- EM 알고리즘을 통해 모델을 학습함

Gaussian Mixture Model (2)

GMM (gaussian mixture model)

- LDA에서의 **베이즈 분류기**와 매우 비슷
- 다만, 비지도 학습이기 때문에 Y 라벨을 Z 클러스터 군집으로 대체하여 표현

$$P(Z = k | X = x) = \frac{P(X = x | Z = k)P(Z = k)}{\sum_{j=1}^{K} P(X = x | Z = j)P(Z = j)}$$

$$= \frac{\pi_k f_k(x)}{\sum_{j=1}^K \pi_j f_j(x)} = \frac{\pi_k N(x | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x | \mu_j, \Sigma_j)}$$

Gaussian Mixture Model (3)

GMM (gaussian mixture model)

- 비지도 학습이기 때문에 LDA와 다르게 μ_k, Σ_k 뿐만 아니라, π_k 에 대한 모수 추정 필요
- EM 알고리즘은 Expectation 단계와 Maximization 단계로 나뉨
 - 1. Expectation(기댓값) 단계:

현재의 추정된 모수를 통해 샘플을 군집에 할당하는 단계

2. Maximization(최대화) 단계:

로그 가능도(likelihood)의 기댓값을 최대화하는 모수를 추정하는 단계

Expectation in GMM

Expectation in GMM

- 현재 추정된 모수를 통해 샘플을 군집에 할당하는 단계
- Responsibility(책임값)를 계산하여, 샘플마다 가장 큰 값을 도출하는 군집으로 할당

$$\arg\max_{k} \gamma(z_{ik}) = \arg\max_{k} p(z_k = 1|x_i) = \frac{\pi_k N(x_i|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x_i|\mu_j, \Sigma_j)}$$

Maximization in GMM (1)

Maximization in GMM

- 로그 가능도(likelihood)의 기댓값을 최대화하는 모수를 추정하는 단계
- 먼저 GMM의 **우도 확률(가능도)**을 $p(X|\pi,\mu,\Sigma)$ 로 정의
- 단조 증가 함수의 로그 함수를 사용해 **로그 가능도 함수**를 정의

$$\ln p(X|\pi,\mu,\Sigma) = \ln\{\prod_{i=1}^{N} p(x_i|\pi,\mu,\Sigma)\} = \sum_{i=1}^{N} \ln p(x_i|\pi,\mu,\Sigma)$$

Maximization in GMM (2)

Maximization in GMM

• 클러스터 변수 Z_k 와 marginal 확률을 이용해 로그 가능도 정의

$$\sum_{i=1}^{N} \ln p(x_i|\pi,\mu,\Sigma) = \sum_{i=1}^{N} \ln \sum_{k=1}^{K} p(x_i,z_k|\pi,\mu,\Sigma)$$

• p(x,z) = p(z) p(x|z)의 성질을 이용해, 다음과 같이 도출

$$\sum_{i=1}^{N} \ln \sum_{k=1}^{K} p(z_k | \pi, \mu, \Sigma) \ p(x_i | z_k, \pi, \mu, \Sigma) = \sum_{i=1}^{N} \ln \sum_{k=1}^{K} \pi_k \ N(x_i | \mu_k, \Sigma_k)$$

Maximization in GMM (3)

Maximization in GMM

$$L = \sum_{i=1}^{N} ln \sum_{k=1}^{K} \pi_k N(x_i | \mu_k, \Sigma_k)$$

$$= \sum_{i=1}^{N} \ln \sum_{k=1}^{K} \pi_k \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1} (x-\mu_k)}$$

Maximization in GMM (4)

Maximization in GMM

$$\frac{\partial L}{\partial \mu_k} = \sum_{i=1}^{N} \frac{\pi_k N(x_i | \mu_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k N(x_i | \mu_k, \Sigma_k)} \Sigma_k^{-1}(x_i - \mu_k) = 0$$

$$\Rightarrow \sum_{i=1}^{N} \gamma(z_{ik})(x_i - \mu_k) = 0$$

$$\Rightarrow \mu_k = \frac{\sum_{i=1}^N \gamma(z_{ik}) x_i}{\sum_{i=1}^N \gamma(z_{ik})}$$

Maximization in GMM (5)

Maximization in GMM

$$\frac{\partial L}{\partial \Sigma_k} = \sum_{i=1}^N \frac{\pi_k N(x_i | \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k N(x_i | \mu_k, \Sigma_k)} \{ \frac{1}{2} \Sigma_k^{-1} (x_i - \mu_k) (x_i - \mu_k)^T \Sigma_k^{-1} - \frac{1}{2} \Sigma_k^{-1} \} = 0$$

$$\Rightarrow \sum_{i=1}^{N} \gamma(z_{ik}) (\Sigma_k^{-1} (x_i - \mu_k) (x_i - \mu_k)^T - 1) = 0$$

$$\Rightarrow \Sigma_k = \frac{\sum_{i=1}^N \gamma(z_{ik})(x_i - \mu_k)(x_i - \mu_k)^T}{\sum_{i=1}^N \gamma(z_{ik})}$$

Maximization in GMM (5)

Maximization in GMM

- 각 파라미터에 대해 편미분했을 때 0이 되는 지점을 찾음
- π_k 파라미터는 클러스터 k에 속할 확률로, $\sum_{k=1}^K \pi_k = 1$ 의 조건식 필요
- 따라서, 제약조건을 라그랑주 승수 벡터로 대체

$$L_{\lambda} = \sum_{i=1}^{N} \ln \sum_{k=1}^{K} \pi_{k} N(x_{i} | \mu_{k}, \Sigma_{k}) + \lambda (1 - \sum_{k=1}^{K} \pi_{k})$$

Maximization in GMM (6)

Maximization in GMM

$$\frac{\partial L_{\lambda}}{\partial \pi_k} = \sum_{i=1}^{N} \frac{N(x_i | \mu_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k N(x_i | \mu_k, \Sigma_k)} - \lambda = 0$$

$$\Rightarrow \sum_{k=1}^{K} \sum_{i=1}^{N} \frac{\pi_{k} N(x_{i} | \mu_{k}, \Sigma_{k})}{\sum_{k=1}^{K} \pi_{k} N(x_{i} | \mu_{k}, \Sigma_{k})} - \lambda \sum_{k=1}^{K} \pi_{k} = 0$$

$$\Rightarrow \sum_{k=1}^{K} \sum_{i=1}^{N} \gamma(z_{ik}) - \lambda = 0 \Rightarrow \lambda = N$$

Maximization in GMM (7)

Maximization in GMM

$$\frac{\partial L_{\lambda}}{\partial \pi_k} = \sum_{i=1}^{N} \frac{N(x_i | \mu_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k N(x_i | \mu_k, \Sigma_k)} - N = 0$$

$$\Rightarrow \sum_{i=1}^{N} \frac{\pi_k N(x_i | \mu_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k N(x_i | \mu_k, \Sigma_k)} - N\pi_k = 0$$

$$\Rightarrow \pi_k = \frac{1}{N} \sum_{i=1}^N \gamma(z_{ik})$$

Pros and Cons of GMM

GMM 장점과 단점

- (장점) 각 유형별 데이터의 밀도가 일정하지 않거나, 경계가 모호해도 군집화가 잘됨
- (단점) 클러스터 개수 K에 대한 설정이 필요
- (단점) 데이터가 정규 분포의 조합으로 표현된다는 가정이 어긋나면, 성능이 떨어짐
- (단점) 연산량이 크기 때문에 대량의 데이터에 사용하기 어려움

Part Five

Hierarchical Clustering

Hierarchical Clustering (1)

계층적 군집화 (hierarchical clustering)

- 계층적 군집화는 두 가지 방법으로 나눌 수 있음
- 하나의 클러스터로부터 시작해서 모든 클러스터가 하나의 원소를 가질 때까지 쪼개는 Divisive(top-down approach) 방법
- 각각의 샘플을 원소로 가지는 클러스터들로부터 전체를 포함하는 하나의 클러스터가 될 때까지 합쳐가는 Agglomerative(bottom-up approach) 방법

Hierarchical Clustering (2)

계층적 군집화 (hierarchical clustering)

• 군집-군집 간 거리 계산을 통해 합치거나 나눔

Hierarchical Clustering (3)

계층적 군집화 (hierarchical clustering)

• 군집-군집 간 거리 계산을 통해 합치거나 나눔

Hierarchical Clustering (4)

계층적 군집화 (hierarchical clustering)

- 데이터 **세분화**에 보다 적합한 방법론
- 사전에 클러스터의 수를 정하지 않아도 학습이 가능함
- 덴드로그램(dendrogram)으로 개체들이 결합되는 순서를 시각화함

https://www.sciencedirect.com/science/article/pii/S2211467X1930029X

Thank you

Clustering