Листок $\mathbb{N}^{2}\Gamma^{2}$ 17.08.2019

Арифметическая иерархия

Будем рассматривать арифметику $PA(0, S, =, \leq)$, где $x \leq y \leftrightarrow \exists z \quad x+z=y$. Введём два обозначения

$$\forall x \leqslant t \quad \varphi(x) \stackrel{def}{\Leftrightarrow} \forall x \quad (x \leqslant t \to \varphi(x)),$$
$$\exists x \leqslant t \quad \varphi(x) \stackrel{def}{\Leftrightarrow} \exists x \quad (x \leqslant t \& \varphi(x)),$$

где x не входит в t.

Определение. Класс Δ_0 содержит все *ограниченные формулы*, то есть такие, что все вхождения кванторов в которые ограничены.

Задача Г2.1. Докажите, что если $\varphi(\vec{x}) \in \Delta_0$, то существует алгоритм, который по параметрам \vec{n} проверяет $PA \models \varphi(\vec{n})$.

Определение. Определим Σ_n , Π_n : $\Sigma_0 = \Pi_0 = \Delta_0$, $\Sigma_{n+1} = \{\exists x \quad \varphi(x,y) \mid \varphi \in \Pi_n\}$, $\Pi_{n+1} = \{\forall x \quad \varphi(x,y) \mid \varphi \in \Sigma_n\}$,

Определение. Будем говорить, что предикат $P \subseteq \mathbb{N}^k$ лежит в Σ_n (Π_n), если его можно определить формулой Σ_n (Π_n)-формулой. P принадлежит Δ_n , если он принадлежит и Σ_n , и Π_n .

Задача Г2.2. Докажите, что классы Σ_n - и Π_n -предикатов замкнуты относительно ограниченных кванторов.

Задача Г2.3. Докажите, что Σ_n замкнуты относительно квантора существования, а Π_n — всеобщности.

Задача Г2.4. Докажите, что классы Σ_n - и Π_n -предикатов замкнуты относительно объединения, пересечения и дополнения.

Задача Г2.5. Докажите, что любая арифметическая формула* эквивалентна некоторой формуле из Σ_n .

Теорема Г2.1. Предикат $P \subseteq \mathbb{N}^k$ является Σ_1 -определимым в том и только в том случае, когда P перечислим † .

Задача $\Gamma 2.6$ (*Тогдатость*). Докажите, что Σ_1 -предикаты перечислимы.

Для доказательства обратной стрелки нам понадобится следующий неформальный тезис Чёрча:

Всякая вычислимая функция является частично рекурсивной.

Задача Г2.7. Докажите, что график любой рекурсивной функции Σ_1 -определим.

Задача $\Gamma 2.8$ (*Только тогдатость*). Покажите, что из предыдущей задачи следует обратная стрелка теоремы.

^{*}формула арифметики РА

 $^{^{\}dagger}$ Существует машина Тьюринга, выводящая только элементы P по одному