PTSI 1 : mathématiques année 2019-2020

Nom et prénom:

Note:

$\begin{array}{c} \textbf{Pr\'eparation} \ n^{\circ}2 \\ \text{8 novembre 2019} \end{array}$

1. Développer $(k+1)^3 - k^3$ pour $k \in \mathbb{N}$.

2. Calculer de deux manières différentes

$$\sum_{k=0}^{n} \left[(k+1)^3 - k^3 \right],$$

pour tout entier naturel $n \in \mathbb{N}$.

3. En déduire une expression explicite de $\sum_{k=0}^{n} k^2$.

Exercice 2. Donner une expression simple de

$$\sum_{k=1}^{n} (z + w^k)^n,$$

où $n \in \mathbb{N}, z \in \mathbb{C}$ et $w = e^{\frac{2i\pi}{n}}$.

Exercice 3. Résoudre l'équation différenteille $y' - \frac{1}{2}sin(2x)y = \frac{\arctan(x)}{1+x^2}\exp(-\sin(x)^2)$.

Exercice 4. Résoudre sur \mathbb{R} l'équation xy' + xy = x.

Exercice 5. Soit $a: \mathbb{R} \to \mathbb{R}$ une fonction continue et 1-périodique. Soit y une solution de (E): y' - ay = 0.

- Donner une condition nécessaire et suffisante pour que y(1) = y(-1).
 Montrer que ∀x ∈ ℝ, ∫_x^{x+1} a(t)dt = ∫₀¹ a(t)dt.
 Donner une condition nécessaire et suffisante sur a pour que y soit 1-périodique.
- 4. Si y est solution de l'équation y' ay = a, peut-on affirmer que y est 1-périodique?