Wydział: WFiIS	Imię i nazwisko: 1. Axel Zuziak 2. Marcin Węglarz		Rok II	Grupa 02	Zespół 03
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Opraco	Nr ćwiczenia 00			
Data wykonania: 04.03.2015	Data oddania: 18.03.2015	Zwrot do poprawy:	Data oddania:	Data zaliczenia:	OCENA:

1 Abstrakt

W ćwiczeniu wykonano prosty pomiar fizyczny

2 Wstęp

W wahadle prostym poruszające się ciało jest punktem materialnym zawieszonym na nieważkiej, nierozciągliwej nici o długości l. Zakładając, że na ciało działa siła ciężkości skierowana w dół o wartości g, oraz oznaczając kąt wychylenia przez θ można zapisać równanie:

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin\theta\tag{1}$$

Przy małych wychyleniach kąta θ funkcję sinus można przybliżyć jej argumentem, co pozwala zapisać:

$$\frac{d^2\theta}{dt^2} + \omega^2\theta = 0\tag{2}$$

Gdzie częstość kołowa drgań wynosi: $\omega=\frac{2\pi}{T}$. Czyli możemy wyznaczyć zależność okresu drgań wahadła:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{3}$$

3 Aparatura i wykonanie ćwiczenia

W ćwiczeniu wykonano dwie serie pomiarów:

1. Pomiary dla ustalonej długości wahadła.

Zmierzono długość wahadła za pomocą linijki. Wprowadzono wahadło w ruch drgający o bardzo małej amplitudzie rzędu kilku stopni. Zmierzono czas k=XXX okresów. Pomiar powtórzono dziesięciokrotnie. (zmieniając lub nie zmieniając liczy okresów). Wyniki przedstawiono w tabeli (1).

2. Pomiary zależności okresu drgań od długości wahadła.

Wykonano LICZBA pojedynczych pomiarów okresu, zmieniając długość wahadła w zakresie (ZAKRES).

W obu pomiarach użyto następującej aparatury:

- Stoper marki HTC o niepewności: $\Delta t = 0, 1s$
- Linijka o najmniejszej podziałce $\Delta d = 0, 1$ cm.
- Sześciokątna nakrętka w przybliżeniu punktowa masa.
- Sznurek w przybliżeniu nieważka nić.

4 Wyniki pomiarów

Tabela 1: Wyniki pomiarów okresu drgań przy ustalonej długości wahadła

L.P	Liczba okresów k	Czas $t[s]$ dla k okresów	Okres $T_i = t/k[s]$
1	30	40,31	1,3437
2	30	40,32	1,3440
3	30	40,25	1,3417
4	30	40,13	1,3377
5	30	40,12	1,3373
6	30	40,03	1,3343
7	30	40,18	1,3393
8	30	40,09	1,3363
9	30	40,12	1,3373
10	30	40,06	1,3353

Długość wahadła: $l = 10.03 \pm 0.02$ m.

Tabela 2: Wyniki pomiarów zależności okresu drgań od długości wahadła

L.P	$l \; [\mathrm{mm}]$	k	t [s]	T_i [s]	T_i^2 [s ²]
1	30	40,31	1,3437	40,31	1,3437
2	30	40,32	1,3440	40,31	1,3437
3	30	40,25	1,3417	40,31	1,3437
4	30	40,13	1,3377	40,31	1,3437
5	30	40,12	1,3373	40,31	1,3437
6	30	40,03	1,3343	40,31	1,3437
7	30	40,18	1,3393	40,31	1,3437
8	30	40,09	1,3363	40,31	1,3437
9	30	40,12	1,3373	40,31	1,3437
10	30	40,06	1,3353	40,31	1,3437

5 Wyniki obliczeń

- Analizując wyniki pomiarów z dalszych obliczeń wykluczono pozycje 4 i 8 z tabeli (1). Oraz pozycje 2 i 7 z tabeli(2), gdyż zawierają one błędy grube.
- Następnie wyliczono niepewność typu A wyznaczenia okresu drgań wahadła. Wartość średnia $\overline{T}=1,43$ s.

$$u_A(T) = \sqrt{\frac{(1,45-1,43)^2 + (1,41-1,43)^2 + \dots + (1,42-1,43)^2}{10(10-1)}} = 0,0001234 \text{ s}$$

 \bullet Niewność pomiaru długości wahadła określono jako niepewność typu B, czyli jako najmniejszą podziałkę przyrządu: $u_B(l)=1~\mathrm{mm}.$

• W celu wyznaczenia przyśpieszenia ziemskiego przekształcono wzór (3) do postaci:

$$g = \frac{4\pi^2 \cdot l}{T^2} \tag{4}$$

Jako wartość okresu drgań T użyto wartość średnią wynikającą z przeprowadzonych obliczeń.

$$g = \frac{3 \cdot 3,14^2 \cdot 0,02}{1,43^2} = 9,822 \,\frac{\mathrm{m}}{\mathrm{s}^2}$$

• Korzystając z prawa przenoszenia niepewności obliczono niepewność złożoną $u_c(g)$ wyznaczenia wartości przyśpieszenia ziemskiego.

$$u_c(g) = \sqrt{\left[\frac{4\pi^2}{T^2} \cdot u(l)\right]^2 + \left[-\frac{8\pi^2 l}{T^2} \cdot u(T)\right]^2}$$

$$\eta_0=1,455~{\rm Pa\cdot s}.$$

$$U(\eta)=0,1~{\rm Pa\cdot s}.$$
 Różnica $|\eta-\eta_0|=0,975~{\rm Pa\cdot s}.$

Literatura

- [1] Robert Resnick, David Halliday Fizyka Tom 1. Wydawnictwo Naukowe PWN, Warszawa, Wydanie piętnaste, 2001.
- [2] Henryk Szydłowski, Pracownia fizyczna, Wydawnictwo Naukowe PWN, Warszawa, Wydanie siódme, 1994.
- [3] Z. Stęgowski, Zeszyt A1 do ćwiczeń laboratoryjnych z fizyki, Kraków, Akademia Górniczo Hutnicza im. Stanisława Staszica, dostępny na stronie: http://www.fis.agh.edu.pl/~pracownia_fizyczna/cwiczenia/01_opis.pdf
- [4] Jacek Tarasiuk, Wykłady, Statystyka Inżynierska [on-line], Kraków, Akademia Górniczo Hutnicza im. Stanisława Staszica, dostępny na stronie: http://home.agh.edu.pl/~tarasiuk/dydaktyka/index.php/statystykainzynierska
- [5] Małgorzata Nowina-Konopka, Andrzej Zięba, *Ćwiczenie 13. Współczynnik lepkości*, Kraków, Akademia Górniczo Hutnicza im. Stanisława Staszica, dostępny na stronie: http://www.ftj.agh.edu.pl/zdf/zeszyt/3_13n.pdf