Туннелирование на сверхвысоких частотах.

Гончаров Марк

23 марта 2021 г.

1 Теория

Проникновение электромагнитных волн в менее плотную среду при полном внутреннем отражении - явление той же природы, что и проникновение частиц в область, где их полная энергия оказывается меньше потенциальной энергии. Это явление изучается в квантовой физике и носит название туннельного эффекта.

Рис. 1: Схема установки

Исследуем этот эффект - проникновение ЭМВ через воздушный зазор между диэлектрическими призмами при полном внутреннем отражении на границе диэлектрик-воздух. Моделирование интерферометра Майкельсона с использованием этого эффекта и измерение длины волны излучения и показателя преломления фторопласта для радиоволн миллиметрового диапазона.

Для измерения показателя преломления матриала призм мы установим пластину толщины h из того же матриала, что и призмы - фторопласта. Имеем тогда приращение длины "оптического пути"

$$\Delta = 2h(n-1).$$

Однако это приращение можно скомпенсировать, передвинув подвижное зеркало на необходимое расстояние δx :

$$\delta x = h(n-1).$$

2 Туннелирование

Сначала мы настроили генератор на $f=36.36\Gamma\Gamma$ ц. Соответсвующая длина волны $\lambda=\frac{C}{\nu}\approx 8.25\pm 0.01$ мм.

Теперь рассматриваем преломление через фторопласт.

Прелог	иление	Отражение							
MM	A, 10^{-5}	MM	A, 10^{-5}						
9,34	87	15	87						
9,6	85	14,77	85						
9,66	84	14,58	83						
9,85	83	14,45	82						
9,89	81	14,31	81						
9,94	80	14,09	79						
9,97	79	13,59	77						
10,01	78	13,44	74						
10,05	77	13,31	73						
10,08	75	13,09	71						
10,09	74	12,97	68						
10,12	73	12,9	67						
10,14	72	12,69	64						
10,18	70	12,42	62						
10,21	69	12,2	59						
10,25	68	12,11	57						
10,36	66	11,93	56						
10,4	64	11,82	53						
10,49	63	11,59	52						
10,55	60	11,55	50						
10,58	58	11,3	47						
10,63	56	11,22	45						
10,71	55	11,06	44						
10,77	53	10,99	41						
10,82	51	10,93	39						
10,94	48	10,76	36						
10,99	47	10,72	34						
11,02	45	10,65	30						
11,24	42								
11,37	39								
11,51	36								
11,69	34								
11,9	30								

Рис. 2: Измеренные значения

Как видно, соотношение T+R=1 примерно выполняется. Также заметим величину щели 11мм, при которой $T\approx R\approx 0.5$. На этой щели выполним интерференцию Майкельсона.

В задании для определения длины затухания Λ построим график ln(T)=f(z), где z - толщина щели. Из теории мы знаем, что

$$I \propto e^{-\frac{z}{\Lambda}}$$
.

Для нашего случая $\frac{z}{T} = -\Lambda$. Имеем с помощью МНК: $\tan \alpha = -0.57 \pm 0.05$.

Здесь неплохая погрешность получилась при условии неучитывания первых четырёх точек. Они были сделаны некачественно из-за возникшего люфта.

Далее мы знаем, что

$$\Lambda = \frac{1}{4\pi\sqrt{(n\sin\varphi)^2 - 1}}.$$

Тогда

$$n\sin\varphi = \sqrt{1 + \frac{1}{(4\pi\Lambda)^2}} = 1.01 \pm 0.08.$$

Да, последний знак почти ничего не значит, однако оставим пока для конечного результата.

В нашем эксперименте угол падения $\varphi \approx \frac{\pi}{4}$, то есть $\sin \varphi \approx 1.414$. Итог: 1.42 ± 0.1 . Теперь действительно последний знак не имеет значения: $n=1.4 \pm 0.1$.

Табличное значение $n_{\rm tabl}\approx 1.46,$ что неплохо сочетается с полученными результатами! Мы молодцы!

Щель, мм

3 Майкельсон

-1

-1,2

Мы подвигали подвижное зеркало и убедились, что действительно наблюдаем интерференцию

J, 101 MKA	20	25	30	35	40	45	50	55	60	65	66	50	40	20	1	20	33	51	68	49	25	5
X_0	0,14	0,19	0,25	0,3	0,41	0,65	1,01	1,29	2,06	2,49	3,43	3,72	4,82	5,44	6,47	6,79	7,02	7,8	8,19	9,32	9,88	10,31

На втором максимуме поставили пластинку толщины $h\approx 6.2$. Пришлось для того, чтобы опяьт наблюдать второй максимум передвинуть зеркало на $\delta x=1.922\pm 0.001$ мм.

По формуле $\delta x = h(n-1)$ находим показатель преломления фторопласта:

$$n = 1 + \frac{\delta x}{h} = 1.31 \pm 0.01.$$

Явно дальше от правды... Всё равно мне кажется, что виноваты неровности пластинки.

4 Вывод

Мы рассмотрели эффект туннелирования, рассчитывали длину затухания, нашли коэффициент преломеления фторопласта. Повторили опыт Майкельсона, по результатам которого, увы, получили не самый лучший результат.