Лабораторная работа № 2.2

ИЗМЕНЕНИЕ ПРЕДЕЛОВ ИЗМЕРЕНИЯЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Цель работы: изучение метода изменения пределов измерения вольтметра и амперметра.

Оборудование: регулируемый источник питания, вольтметр, миллиамперметр, мультиметр, магазин сопротивлений, соединительные провода.

Общие сведения

1. Изменение предела измерения амперметра

Амперметр — электроизмерительный прибор, предназначенный для измерения силы тока. Всякий амперметр характеризуется своим **пределом измерения** I_m — максимальным значением силы тока, которое он может измерить. Другой характеристикой амперметра является его внутреннее сопротивление $R_{\rm A}$. Чем меньше внутреннее сопротивление, тем меньшее изменение силы тока происходит на том участке цепи, куда включается амперметр. «Идеальным» называется амперметр с нулевым внутренним сопротивлением.

Для увеличения предела измерения амперметра применяется его шунтирование — подключение параллельно амперметру сопротивления $R_{\rm m}$, называемого шунтом (рис. 2.2.1). При этом часть тока $I_{\rm m}$ ответвляется через шунт, а общий измеряемый ток I'_{m} становится больше, чем предел измерения амперметра I_{m} . Такое соединение можно рассматривать как амперметр с новым пределом измерения, равным I'_{m} . Применим для расчета схемы правила Кирхгофа:

$$\begin{cases}
I'_{m} = I_{m} + I_{m}, \\
I_{m}R_{A} - I_{m}R_{m} = 0.
\end{cases}$$
(2.2.1)

Рис. 2.2.1

Решив эту систему уравнений относительно I_m' , получим

$$I'_{m} = I_{m} \left(1 + \frac{R_{A}}{R_{III}} \right).$$
 (2.2.2)

Таким образом, чем меньше будет сопротивление шунта $R_{\rm m}$, тем больше будет новый предел измерения $I'_{\it m}$. Выразим из (2.2.2) сопротивление шунта:

$$R_{\text{III}} = \frac{R_{\text{A}}}{\frac{I'_{m}}{I_{m}} - 1} = \frac{R_{\text{A}}}{n - 1},$$
(2.2.3)

где величину $n = \frac{I_m'}{I_m}$ называют коэффициентом шунтирования.

2. Изменение предела измерения вольтметра

Вольтметр — электроизмерительный прибор, предназначенный для измерения разности потенциалов на участке цепи. Выводы вольтметра подключаются к тем точкам, разность потенциалов которых необходимо измерить. Для однородного участка цепи разность потенциалов равна напряжению на участке. Поэтому обычно говорят, что вольтметр измеряет напряжение на участке. **Пределом измерения вольтметра** U_m называют максимальное значение напряжения, которое может измерить вольтметр. Для того, чтобы при подключении вольтметра токи в схеме изменялись мало, необходимо, чтобы его внутреннее сопротивление $R_{\rm V}$ было бы как можно большим. «Идеальным» называют вольтметр с бесконечным внутренним сопротивлением.

Пределу измерения вольтметра соответствует максимальный ток вольтметра:

$$I_m = \frac{U_m}{R_V}. (2.2.4)$$

Для изменения предела измерения вольтметра последовательно с ним включают добавочное сопротивление $R_{_{\! /\! L}}$ (рис. 2.2.2). При этом измеряемое напряжение $U'_{_{\! /\! L}}$ равно

$$U_m' = U_m + U_{\scriptscriptstyle \rm I\!I},$$

где $U_{_{\rm I\! I}}$ – напряжение на добавочном сопротивлении. Так как ток через вольтметр равен току через добавочное сопротивление, напряжение $U_{_{\rm I\! I}}=I_{_{m}}R_{_{\rm I\! I}}$. Поэтому

$$U'_{m} = U_{m} + I_{m}R_{\pi}, (2.2.5)$$

откуда

$$R_{\rm M} = \frac{U'_{m} - U_{m}}{I_{m}} = \frac{U'_{m} - U_{m}}{U_{m}} R_{\rm V} = \left(\frac{U'_{m}}{U_{m}} - 1\right) R_{\rm V} = (m - 1) R_{\rm V}, \quad (2.2.6)$$

где $m = \frac{U_m'}{U_m}$ — коэффициент изменения предела измерения напряжения

Рис. 2.2.2

Вольтметр с подсоединенным к нему добавочным сопротивлением можно рассматривать как вольтметр с новым пределом измерения, равным U'_m . Рассчитать добавочное сопротивление можно по формуле (2.2.6).

Описание установки и метода измерения

Лабораторная установка (рис. 2.2.3) состоит из следующего:

- регулируемый источник питания постоянного тока 1;
- вольтметр 2 и миллиамперметр 3, пределы измерения которых будут изменяться;
 - многопредельный цифровой мультиметр (тестер) 4;
 - магазин сопротивлений 5.

Для соединения приборов используется комплект из пяти проводов.

Рис. 2.2.3

Источник питания, вольтметр и миллиамперметр расположены в одном общем корпусе 6.

Источник питания 1 имеет выключатель, выходные клеммы и две ручки регулировки напряжения — «грубо» и «точно». Около выходных клемм указана их полярность «+» и «-».

Вольтметр 2 и миллиамперметр 3 являются стрелочными измерительными приборами магнитоэлектрической системы. Они предназначены для измерения постоянных напряжений и токов, соответственно. Поэтому при включении их в электрическую цепь необходимо учитывать полярность их выводов (она указана на корпусе около клемм подключения). Положительный вывод подключается к точке схемы с большим потенциалом, отрицательный – к точке с меньшим потенциалом.

Мультиметр 4 — многопредельный комбинированный цифровой измерительный прибор. В данной работе мы будем использовать его в режимах измерения:

- постоянного напряжения положения переключателя, обозначенные DCV;
- постоянного тока положения переключателя, обозначенные DCA.

Выходные клеммы мультиметра продублированы на корпусе его подставки.

Магазин сопротивлений 5 — это переменный резистор, регулируемый ступенчато с большой точностью. Набор нужного сопротивления производится с помощью шести декадных переключателей. Каждый переключатель имеет десять положений (от 0 до 9), а около них указаны их множители (0,1; 1; 10; 100; 1000; 10000). Полное сопротивление, набранное на магазине, определяется как сумма произведений положений переключателей на их множители.

Для включения магазина сопротивлений в электрическую цепь используются клемма, обозначенная цифрой 0, и одна из клемм, обозначенных как 0.9Ω ; 9.9Ω ; 99999.9Ω (эти обозначения указывают максимальное сопротивление в омах, которое можно получить при использовании данной клеммы).

Лабораторная работа состоит из двух заданий:

- 1) изменение предела измерения миллиамперметра;
- 2) изменение предела измерения вольтметра.

Для выполнения первого задания преподаватель должен указать вам новый предел измерения миллиамперметра I_m' . Используя данные миллиамперметра — его предел измерения I_m и его внутрен-

нее сопротивление $R_{\rm A}$, по формуле (2.2.3) вы должны рассчитать необходимое шунтирующее сопротивление $R_{\rm m\ pacu}$. Затем вы должны собрать электрическую цепь, схема которой показана на рис. 2.2.4. В этой цепи в качестве эталонного амперметра $A_{\rm s}$ используется мультиметр в режиме измерения тока; в качестве шунтирующего сопротивления $R_{\rm m}$ — магазин сопротивлений.

Рис. 2.2.4

После сборки цепи вы должны набрать на магазине сопротивлений расчетное сопротивление шунта и проверить, получился ли тот предел измерения, который был вам задан. Если экспериментально полученный предел измерения не совпадет с заданным, необходимо подобрать на магазине сопротивлений такое сопротивление шунта $R_{\rm m \, эксп}$, при котором предел измерения окажется равным заданному.

Для выполнения второго задания преподаватель задает вам новый предел измерения вольтметра U_m' . По пределу измерения вольтметра U_m и его внутреннему сопротивлению $R_{\rm V}$ вы рассчитываете добавочное сопротивление $R_{\rm драсч}$ по формуле (2.2.6). После этого собираете цепь, схема которой показана на рис. 2.2.5. В качестве эталонного вольтметра $V_{\rm 3}$ используется мультиметр в режиме измерения напряжения, в качестве добавочного сопротивления $R_{\rm д}$ — магазин сопротивлений.

Набрав на магазине сопротивлений расчетное добавочное сопротивление, вы должны проверить, получился ли тот предел измерения, который был вам задан. В случае несовпадения предела измерения с заданным необходимо подобрать $R_{\rm д \, эксп}$, при котором предел измерения окажется равным заданному.

Порядок выполнения измерений

- 1. Получить у преподавателя допуск к выполнению работы и указания по значениям новых пределов измерения миллиамперметра I_m' и вольтметра U_m' . Записать их в рабочую тетрадь.
- 2. Ознакомиться с лабораторной установкой. Записать в рабочую тетрадь:
- предел измерения миллиамперметра I_m , его внутреннее сопротивление $R_{\rm A}$, относительную погрешность $\delta R_{\rm A}$ и класс точности $K_{_{\rm T,A}}$;
- предел измерения вольтметра U_{m} , его внутреннее сопротивление $R_{\rm V}$, относительную погрешность $\delta R_{\rm V}$ и класс точности ${\rm K_{{}_{\scriptscriptstyle {
 m T}}}}{\rm V}}$;
- классы точности мультиметра в режиме измерения тока $K_{_{\mathrm{T}}\mathrm{A}_{9}}$ и режиме измерения напряжения $K_{_{\mathrm{T}}\mathrm{V}_{9}}$;
- 3. Рассчитать сопротивление шунта $R_{\text{ш расч}}$ по формуле (2.2.3) и добавочное сопротивление $R_{\text{д расч}}$ по формуле (2.2.6).

I задание

- 4. При помощи соединительных проводов собрать электрическую цепь для выполнения первого задания (изменение предела измерения миллиамперметра) в соответствии с рис. 2.2.4. На этом рисунке, для наглядности, каждый проводник показан утолщенной линией.
- 5. Набрать на магазине сопротивлений расчетное значение сопротивления шунта $R_{\text{ш расч}}$. Выбрать предел измерения тока на мультиметре (положения, обозначенные как DCA) так, чтобы он превышал заданный вам новый предел измерения I'_{m} , но был близок к нему. Установить регуляторы источника питания в нулевое положение (повернув их против часовой стрелки до упора). Предъявить собранную схему преподавателю для проверки.
- 6. После разрешения преподавателя включить источник питания. Постепенно увеличивая напряжение источника (используя ручки

«Грубо» и «Точно»), установить стрелку миллиамперметра на максимум. Записать силу тока $I'_{m \text{ эксп}}$, регистрируемую при этом мультиметром.

7. Если значение $I'_{m \, _{\rm эксп}}$ не совпадает с заданным пределом измерения I'_{m} , необходимо подобрать такое сопротивление шунта $R_{_{\rm III} \, _{\rm эксп}}$, при котором показания мультиметра будут равны I'_{m} . Записать значение $R_{_{\rm III} \, _{\rm эксп}}$. Выключить источник питания. Показать результаты преподавателю. Разобрать цепь.

II задание

- 8. При помощи соединительных проводов собрать электрическую цепь для выполнения второго задания (изменение предела измерения вольтметра) в соответствии с рис. 2.2.5.
- 9. Набрать на магазине сопротивлений расчетное значение добавочного сопротивления $R_{\rm д \, pac u}$. Выбрать предел измерения напряжения на мультиметре (положения, обозначенные как DCV) так, чтобы он превышал заданный вам новый предел измерения U'_m , но был близок к нему. Установить регуляторы источника питания в нулевое положение (повернув их против часовой стрелки до упора). Предъявить собранную схему преподавателю для проверки.
- 10. После разрешения преподавателя включить источник питания. Постепенно увеличивая напряжение источника (используя ручки «Грубо» и «Точно»), установить стрелку вольтметра на максимум. Записать напряжение $U'_{m \ _{9 \mathrm{KCH}}}$, регистрируемое при этом мультиметром.
- - 12. Предъявить результаты всех измерений преподавателю.
 - 13. Разобрать электрическую цепь.

Обработка результатов измерений

I задание

1. Вычислить относительную погрешность расчетного значения сопротивления шунта по формуле

$$\delta R_{\text{III pact}} = \sqrt{\left(\delta R_{\text{A}}\right)^2 + \frac{n^2}{\left(n-1\right)^2} \left(\left(\delta I'_{m}\right)^2 + \left(\delta I_{m}\right)^2\right)},$$

где $n=\frac{I_m'}{I_m}$ — коэффициент шунтирования; $\delta R_{\rm A}$ — относительная погрешность внутреннего сопротивления миллиамперметра; $\delta I_m'=\frac{{\rm K_{{}_{TA}}}}{100}$ — относительная приборная погрешность измерения силы тока I_m' эталонным амперметром; $\delta I_m=\frac{{\rm K_{{}_{TA}}}}{100}$ — относительная приборная погрешность измерения силы тока I_m миллиамперметром.

- 2. Вычислить абсолютную погрешность расчетного значения сопротивления шунта $\Delta R_{\text{ш расч}} = R_{\text{ш расч}} \cdot \delta R_{\text{ш расч}}$.
- 3. Сравнить значения $\Delta R_{\text{ш расч}}$ и разности $\left|R_{\text{ш расч}}-R_{\text{ш эксп}}\right|$. Сделать вывод.

II задание

4. Вычислить относительную погрешность расчетного значения добавочного сопротивления по формуле

$$\delta R_{\text{д расч}} = \sqrt{\left(\delta R_{\text{V}}\right)^2 + \frac{m^2}{\left(m-1\right)^2} \left(\left(\delta U'_{m}\right)^2 + \left(\delta U_{m}\right)^2\right)},$$

где $m=\frac{U'_m}{U_m}$ — коэффициент изменения предела измерения напряжения; $\delta R_{\rm V}$ — относительная погрешность внутреннего сопротивления вольтметра; $\delta U'_m=\frac{{\rm K_{{}^{\scriptscriptstyle T}}{\rm V}_{{}^{\scriptscriptstyle 9}}}}{100}$ — относительная приборная погрешность измерения напряжения U'_m эталонным вольтметром; $\delta U_m=\frac{{\rm K_{{}^{\scriptscriptstyle T}}{\rm V}}}{100}$ — относительная приборная погрешность измерения напряжения U_m вольтметром.

- 5. Вычислить абсолютную погрешность расчетного значения добавочного сопротивления $\Delta R_{_{\rm д \, pac q}} = R_{_{\rm д \, pac q}} \cdot \delta R_{_{\rm д \, pac q}}$.
- 6. Сравнить значения $\Delta R_{_{\rm д \, pacu}}$ и разности $\left| R_{_{\rm д \, pacu}} R_{_{\rm д \, эксп}} \right|$. Сделать вывод.

Контрольные вопросы

- 1. Дайте определение понятиям ЭДС, напряжение. Какие участки электрической цепи называются однородными и неоднородными?
 - 2. Сформулируйте закон Ома для участка цепи.
- 3. Сформулируйте I и II правила Кирхгофа. Каков порядок применения этих правил при расчете разветвленной электрической цепи? Приведите пример.
- 4. Покажите, что I правило Кирхгофа является следствием закона сохранения заряда, а II правило следствием закона Ома для участка цепи.
- 5. Что такое амперметр? Какими параметрами он характеризуется? Какой амперметр называют «идеальным»?
- 6. Выведите формулу для расчета сопротивления шунта. Как меняется предел измерения при изменении сопротивления шунта?
- 7. Что такое вольтметр? Какими параметрами он характеризуется? Какой вольтметр называют «идеальным»?
- 8. Выведите формулу для расчета добавочного сопротивления. Как меняется предел измерения при изменении добавочного сопротивления?