Analysis of Variance

One-way ANOVA Maverick Smith <u>mavericks@wustl.edu</u> he/him

Daily Review

- What analysis would we run in each scenario?
 - Intervention targeting parental awareness of adolescent mental health issues. Parents took a knowledge quiz (A) before and after (B) an intervention (Deitz, Cook, Billings, & Hendrickson, 2009)
 Paired samples t-test
 - Elementary school students got either a physical fitness intervention or no intervention. Researchers examined physical performance 4 months later (Matvienko & Ahrabi-Farb, 2010)

Independent samples *t*-test

Remember *t*-tests?

- Used to compare two groups
 - Independent variable: Nominal or ordinal with 2 levels/categories
 - Dependent variable: Ratio or interval scale response variable

2 groups is rare

Analysis of Variance (ANOVA)

- . Used to compare more than two means
 - Independent variable: Nominal or ordinal with > 2 levels
 - Dependent variable: Ratio or interval scale response variable

Give me an example

- . Give me an example when you may compare 3 independent groups
 - What is the IV/Factor?
 - What are the 3 levels of the independent variable?
 - What is the dependent variable?

- . Alpha: .05
- Probability of finding at least one sig. differences increases as we increase # of tests

p(1 or more) =
$$1-((1 - .05)^m)$$

p(1 or more) = $1-((1 - .05)^3)$
p(1 or more) = .14

Probability that at least one test is significant even though the null is true

This is too high!! We only want a 5% chance of a Type I error.

m = # of tests

What if there were 6 groups?

- . How many *t*-tests would you run?
 - 15 tests

```
p(1 or more) = 1-((1 - .05)<sup>15</sup>)
p(1 or more) = .54 \leftarrow Family-wise error rate
```

A 54% chance of finding one significant difference when there really is no difference is too high!

One-Way ANOVA hypotheses

- . H_{Null} : $\mu_{Group1} = \mu_{Group2} = \mu_{Group3}$; All the means are equal.
- H_{Alternative}: At least one of the means is different.
 - \circ $\mu_{Group1} \neq \mu_{Group2}$
 - \circ $\mu_{Group2} \neq \mu_{Group3}$
 - \circ $\mu_{Group1} \neq \mu_{Group3}$
 - \circ $\mu_{Group1} \neq \mu_{Group2} \neq \mu_{Group3}$

Normal Distribution

$$\frac{\sum (y_i - \bar{y})^2}{N - 1}$$

Rationale of ANOVA

Variability in your data can be divided into two sources:

$$y - \bar{y}_{Grand}$$

Between Group Variability

$$y - \bar{y}_{Grand} = \bar{y}_{Group} - \bar{y}_{Grand} + y - \bar{y}_{Group}$$

Within Group Variability

$$y - \bar{y}_{Group}$$

Total Variability

Total Variability

$$\frac{\sum (y_i - \bar{y})^2}{N}$$

$$SS_{tot} = \sum (y_i - \bar{y}_{Grand})^2$$

Between Group Variability

The null hypothesis is that all the group means are the same, i.e., the same as the grand mean

Group 1 Group 2 Group 3

Between Group Variability

But each group varies around the grand mean

Between Group Variability

Sums of Squares Between Groups

$$SS_{BG} = \sum n_{group} (\bar{y}_{Group} - \bar{y}_{Grand})^2$$

Oľ

$$SS_{BG} = n_{group1} (\bar{y}_{group1} - \bar{y}_{Grand})^2 + n_{group2} (\bar{y}_{group2} - \bar{y}_{Grand})^2 + n_{group3} (\bar{y}_{group3} - y_{Grand})^2$$

The more different the groups are = The larger the Between Group Variability

Within Group Variability

- . We also have variability within each group
- . This variability represents "error" or variability that is not due to the IV

Within Group Variability

Sums of Squares Within Groups

$$SS_{WG} = \sum_{k=1}^{Num} \sum_{i=1}^{n} (y_i - \bar{y}_{Group})^2$$

n = number of participants within group

But there is an easier way. . .

Within Group Variability

Sums of Squares Within Groups

$$SS_{tot} = SS_{BG} + SS_{WG}$$

$$SS_{tot} - SS_{BG} = SS_{WG}$$

<u>Source</u>	<u>SS</u>	<u>df</u>	MS	<u>E</u>
Between Groups	$\sum n_{group}ig(ar{y}_{Group} - ar{y}_{Grand}ig)^2$			
Within Groups	$\sum_{k=1}^{Num} \sum_{i=1}^{n} (y_i - \bar{y}_{Group})^2$			
Total	$\sum (y_i - \bar{y}_{Grand})^2$			

From Sums of Squares to the F-ratio

To convert SS to an F-ratio, we need to calculate the degrees of freedom

- $_{\circ}$ SS_{BG} and SS_{WG} are dependent on the number of observations and the number of groups
- DF = Number of unique data points that contribute to the calculation minus the number of constraints

Degrees of Freedom

- . Between group variability
 - Number of Groups 1
- . Within group variability
 - Number of participants Number of Groups
- . Total variability
 - Number of participants 1

<u>Source</u>	<u>SS</u>	<u>df</u>	MS	<u>F</u>
Between Groups	127.20	N _{groups} - 1		
Within Groups	208.50	N _{participants} - N _{groups}		
Total	335.70	N _{participants} - 1		•

<u>Source</u>	<u>SS</u>	<u>df</u>	MS	<u>F</u>
Between Groups	127.20	2		
Within Groups	208.50	27		
Total	335.70	29		

Source	<u>SS</u>	<u>df</u>	MS	<u>E</u>
Between Groups	127.20	2	$\frac{SS_{BG}}{DF_{BG}}$	
Within Groups	208.50	27	SS _{WG} DF _{WG}	
Total	335.70	29		1

<u>Source</u>	<u>SS</u>	<u>df</u>	MS	<u>F</u>
Between Groups	127.20	2	$\frac{127.20}{2}$	
Within Groups	208.50	27	$\frac{208.50}{27}$	
Total	335.70	29		•

<u>Source</u>	<u>SS</u>	<u>df</u>	MS	<u>F</u>
Between Groups	127.20	2	63.60	$\frac{MS_{BG}}{MS_{WG}}$
Within Groups	208.50	27	7.72	
Total	335.70	29		•

<u>Source</u>	<u>SS</u>	<u>df</u>	MS	<u>F</u>
Between Groups	127.20	2	63.60	8.23
Within Groups	208.50	27	7.72	
Total	335.70	29		•

The Big Picture

$$F_{obt} = \frac{MS_{BG}}{MS_{WG}}$$

. What happens to the F value if between group variability is **larger** than the within group variability?

. What happens to the F value if the between group variability is **smaller** than the within group variability

Jamovi

Rationale for ANOVA

If the independent variable has an effect

- Creates more between group variability than within group variability
- F ratio would be larger than 1

Rationale for ANOVA

If the independent variable has **no** effect

- No variability between groups
- F ratio would be close to 1

Effect Size

$$\eta^2 = \frac{SS_{BG}}{SS_{tot}}$$

- . Eta squared
 - Proportion of variance accounted for by the independent variable
- . Rule of thumb
 - $_{\circ} \approx .10 \text{ is small}$
 - $_{\circ} \approx .30$ is medium
 - $\approx .50$ is large

One-Way ANOVA hypotheses

- . H_{Null} : $\mu_{Group1} = \mu_{Group2} = \mu_{Group3}$; All the means are equal.
- . H_{Alternative}: At least one of the means is different.
 - \circ $\mu_{Group1} \neq \mu_{Group2}$
 - \circ $\mu_{Group2} \neq \mu_{Group3}$
 - \circ $\mu_{Group1} \neq \mu_{Group3}$
 - \circ $\mu_{Group1} \neq \mu_{Group2} \neq \mu_{Group3}$

But which groups?

Post Hoc Comparisons

- Determine which groups differ from each other
- Conduct after you find a significant F ratio
- There are several different variants and a lot of debate in the

literature

- Fisher's Least Squared Difference (LSD)
- Dunnett's
- Tukey's Honest Significant Difference (HSD)
- Bonferroni
- Holm

Tukey's Honest Significant Difference

$$t_{HSD} = \frac{\left| \bar{y}_{groupA} - \bar{y}_{groupB} \right|}{\sqrt{\frac{MS_{WG}}{\tilde{n}}}}$$

Best estimate we have for the population variance

$$\widetilde{n} = \frac{\kappa}{\sum \left(\frac{1}{n_i}\right)}$$
 When the group sizes are unequal, it is:

Additional Resources

- . What is the probability of making a Type 1 error? Follow this <u>link</u>.
 - Another great resource <u>here</u>.
- . Want to learn more about Analysis of Variance? Follow this link.

Questions?