

Curso DM "Datos II"

Bárbara Poblete

Calidad de los datos

- No poseen la calidad deseada a priori, los algoritmos de DM se enfocan en:
 - Detección y corrección de problemas de calidad
 - 2. Usar algoritmos que toleren datos de poca calidad
- i.e., limpieza de datos

¿Por qué se producen errores?

Tipos de errores:

- Ruido y outliers
- Valores faltantes
- Datos duplicados
- Sesgo (Bias)

¿Qué es el ruido?

- Componente aleatoria
 en la medición
 (distorsión de voz en un teléfono malo)
- Datos espaciales, temporales

Outliers

 Objetos con características considerablemente diferentes a la mayoría

TWICALLI APLICACIÓN QUIENES SOMOS PRENSA CONTACTO

Ordenar ▼ 📵

07:21:59

Tweets

Lady Lolo

La información aquí presentada no es de carácter oficial. Para obtener información acerca de sismos en Chile por favor dirigirse a la página del Centro Sismológico Nacional de la Universidad de Chile.

Información

Pre-procesamiento de datos Creación de atributos

- Selección de un subconjunto de atributos
- Agregación
- Normalización
- Muestreo
- Reducción de dimensionalidad
- Discretización y binarización

Agregación de datos

- Combinar 2 o más atributos (o objetos) en un único atributo (o objeto)
- ¿Propósito?
 - Reducción de datos
 - Cambio de escala

Datos más estables

Average Happiness for Twitter

Agregación

Muestreo

- Principal técnica de selección de datos (investigación preliminar o final)
- Usado en Estadística y DM
- ¿Cuándo es efectivo?

Tipos de Muestreo

Muestreo aleatorio

¿Ventajas?

¿Desventajas?

Tipos de Muestreo

Muestreo estratificado

¿Ventajas?

¿Desventajas?

Tipos de Muestreo

Muestreo aleatorio

Muestreo estratificado

Muchos otros tipos de muestreo

Systematic random sample

 ¿Cómo obtener al menos un objeto de cada uno de los 10 grupos?

CURSE OF DIMENSIONALITY

- Al aumentar
 dimensionalidad, los datos se vuelven más dispersos en el espacio
- Pierden significado las medidas, i.e. densidad y distancia entre puntos (clustering y detección de outliers)

Reducción de Dimensionalidad

• ¿Propósito?

Evitar curse of dimensionality

- Reducir costos asociados a aplicar el algoritmos (tiempo, memoria)
- Mejor visualización de los datos
- Ayuda a quitar atributos irrelevantes o ruidosos

Figura 8: Frecuencia de consulta vs. Palabras.

Agregación

Reducción de Dimensionalidad y Selección de atributos

Sirven para lo mismo:

Selección de atributos

Reducción de dimensionalidad

Selección de atributos

Fuerza bruta: trial and error muchas veces

Missing Values Ratio

Low Variance Filter

High Correlation Filter

http://www.kdnuggets.com/2015/05/7-methods-data-dimensionality-reduction.html

Reducción de Dimensionalidad

Random Forest/Ensemble Trees

- Backwards/Forward Feature
 Elimination/Construction (pocas columnas)
- Técnicas de álgebra lineal: PCA, SVD, ISOMAP (nuevo espacio, pierde interpretabilidad)

Dimensionality Reduction	Reduction Rate		Best Threshold	AuC	
Baseline	0%	73%	-	81%	Baseline models are using all input features
Missing Values Ratio	71%	76%	0.4	82%	
Low Variance Filter	73%	82%	0.03	82%	Only for numerical columns
High Correlation Filter	74%	79%	0.2	82%	No correlation available between numerical and nominal columns
PCA	62%	74%	-	72%	Only for numerical columns
Random Forrest / Ensemble Trees	86%	76%	-	82%	-
Backward Feature Elimination + missing values ratio	99%	94%	_	78%	Backward Feature Elimination and Forward Feature Construction are prohibitively slow on high dimensional data sets. It becomes practical to use them, only if following other dimensionality reduction techniques, like here the one based on the number of missing values.
Forward Feature Construction + missing values ratio	91%	83%	•		

http://www.kdnuggets.com/2015/05/7-methods-data-dimensionality-reduction.html

PCA

- Principal Component Analysis
- Para atributos continuos
- Busca un nuevo set de atributos (componentes principales) que
 - 1. Son combinaciones lineales de los atributos originales
 - 2. Son ortogonales (perpendiculares) entre sí
 - 3. Capturan la máxima variación de los datos

Dar pesos a los atributos

 Se asigna peso a los atributos según su importancia

SVM lo hace automáticamente

Normalización

Crear atributos

Extraer atributos

Mapear atributos a un nuevo espacio

Construir atributos

Mapear a un nuevo espacio

Two Sine Waves

Two Sine Waves + Noise

Frequency

Discretizar

- Decidir cuántas categorías tendremos
- Supervisado (con clases, considerando entropía y pureza)
- y no-supervisado (mismo intervalo, misma cantidad)

Transformación de atributos

 Una función que mapea el set de valores a otro set de datos.

Funciones simples x**k, log(x), e**x, |x|

Estandarización y Normalizacion

Próxima Clase

- Lab Exploración (2 sesiones: 1.1 y 1.2)
- Hito I (conformar grupos, elegir tema):
 - Exploración
 - (Pre-procesamiento)
 - Objetivos/Hipótesis iniciales (¿Por qué?)
 - primeros análisis

Proyectos de años anteriores...

- Análisis transporte en Santiago
- PIB por regiones
- Películas: Predecir ranking de las películas
- Música: Encontrar conjuntos de artistas similares para recomendación
- Recolección y análisis de datos de las elecciones presidenciales en Twitter
- Análisis de foro de u-cursos
- Análisis de datos de galaxias
- Proyecto Redes

www.dcc.uchile.cl

