STAT 41600/41700

Project # 05

Task 1: --

The purpose of this task is to introduce you to the term **Sampling Distribution** of a statistic. We consider a random sample of n independent $x_1, x_1, ..., x_n$ observations drawn from a large population with (population) mean $E(X) = \mu$ and (population) variance $V(X) = \sigma^2$. Usually, these two (population) parameters μ and σ^2 are unknown to us and we use the n observations in the sample to **estimate** these parameters. A natural **estimator** for the population mean μ is the sample mean

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i$$

and a natural *estimator* of the population variance σ^2 is the sample variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}_n)^2$$
.

However, since the values of these two statistics \bar{x}_n , and S_n^2 depend upon the observed in values in the sample, these sample statistics are actually, also random variables. The distribution of their values (varying from one sample to another) is called **Sampling Distribution**.

- A. You will now use R to generate (simulate), the sampling distribution of the statistic \bar{x}_n (the sample average) when sampling from the *Exponential distribution*.
 - Generate M = 10000 different random samples, each with n = 16 observations, from the Exponential distribution, $X \sim Exp(\lambda = 0.1)$, which has mean $\mu = 10$ and a standard deviation $\sigma = 10$);
 - a) Create a table to record the Mxn sample values
 - ➤ M<-10000
 - > n<-16
 - > XSamples<-matrix(rep(0,n*M), M, n)
 - **b)** Generate a different random sample in each row of the matrix
 - \rightarrow for(j in 1:M){XSamples[j,]<- rexp(n, rate=0.1)}

- c) Calculate the sample mean of each sample (row)
 - Xbars<-apply(XSamples, 1, mean)</p>
- **d)** The question however is what are the mean and the standard deviation of this (sampling) distribution? Get some summary statistics about this distribution.
 - mean(Xbars)
 - var(Xbars)
 - ➤ sd(Xbars)
 - summary(Xbars)
- e) Let us use denote by $\mu_{\overline{x}}$ and $\sigma_{\overline{x}}$ the men and the standard deviation of the sampling distribution of \overline{x}_n , by part e) above, for a sample of size n = 16;

$$\mu_{\overline{x}} \approx \underline{\hspace{1cm}}$$
 and $\sigma_{\overline{x}} \approx \underline{\hspace{1cm}}$

- f) To study the overall shape of this **sampling distribution** of \overline{x}_n , obtain the histogram of all these M = 10000 sample averages \overline{x}_n you simulated in each one of the previous step. For example, when $\lambda = 0.1$, and n = 16
- ➤ hist(Xbars, nclass=30, freq=F, main="Sampling Distribution of Xbar when n=16 and la mbda=0.1")
- g) From this histogram you can see that this sampling distribution is relatively symmetric, almost 'bell-shaped'. Add 'an approximated' density curve to the histogram above.
 - dens<-density(Xbars)</pre>
 - ➤ lines(dens\$x, dens\$y, col=4)
- **h)** Add to the histogram the density curve of the Normal distribution with mean $\mu \equiv \mu_{\bar{x}}$ and standard deviation $\sigma \equiv \sigma_{\bar{x}}$
 - start<-mean(Xbars)-4*sd(Xbars)</p>
 - end<-mean(Xbars)+4*sd(Xbars)</p>
 - xx<-seq(start, end, length=200)
 - ➤ lines(xx, dnorm(xx, mean(Xbars), sd(Xbars), col=2, lwd=2)

Complete and Submit the next page

STAT 41600/41700

Results of Project 4 NAME:

i) Repeat a)-h) above for n = 32, 64, 128, and $\lambda = 0.1$, 1, obtain the 6 histogram plots (nicely labeled and graphed) and summarize the results in the table below.

Sampling Distribution of \overline{x}_n when sampling from the Exponential Distribution $Exp(\lambda)$

$\lambda =$	$\mu =$	σ =	n =	$\mu_{\overline{x}} =$	$\sigma_{\overline{x}} =$
0.1	10	10	32		
			64		
			128		
1	1	1	32		
			64		
			128		

Can you conclude that Sampling Distribution of \bar{x}_n is approximately the

$$N(\mu_{\overline{x}}, \sigma_{\overline{x}}^2)$$
 distribution with $\mu_{\overline{x}} = \mu$ and $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$

Answer:			