CS21 Decidability and Tractability

Lecture 6 January 16, 2015

January 15, 2014

CS21 Lecture 6

Outline

- · Context-Free Grammars and Languages
 - parse trees
 - ambiguity
 - normal form
- equivalence of NPDAs and CFGs
- · non context-free languages

January 15, 2014

CS21 Lecture 6

Context-Free Grammars

CFG example

Arithmetic expressions over {+,*,(,),a}

· A CFG generating this language:

$$<$$
expr> \rightarrow $<$ expr> $*$ $<$ expr> $<$ expr> \rightarrow $<$ expr> \rightarrow $<$ expr> \rightarrow $(<$ expr>) $|$ a

January 15, 2014 CS21 Lecture 6

CFG example

<expr $> \rightarrow <$ expr> * <expr> <expr $> \rightarrow <$ expr> + <expr $> \rightarrow (<$ expr>) | a

A derivation of the string: a+a*a

```
<expr> ⇒ <expr> * <expr>
 ⇒ <expr> + <expr> * <expr>
 ⇒ a + <expr> * <expr>
 ⇒ a + a * <expr>
 ⇒ a + a * a
```

January 15, 2014 CS21 Lecture 6

Parse Trees

· Easier way to picture derivation: parse tree

 grammar encodes grouping information; this is captured in the parse tree.

January 15, 2014

CS21 Lecture 6

CFGs and parse trees

```
\langle expr \rangle \rightarrow \langle expr \rangle^* \langle expr \rangle
\langle expr \rangle \rightarrow \langle expr \rangle + \langle expr \rangle
\langle expr \rangle \rightarrow \langle (expr \rangle) \mid a
```

- Is this a good grammar for arithmetic expressions?
 - can group wrong way (+ precedence over *)
 - can also group correct way (ambiguous)

January 15, 2014

CS21 Lecture 6

Solution to first problem

```
<expr> \rightarrow <expr> + <term> | <term> <<term> \rightarrow <term> * <factor> | <factor> \rightarrow <term> * <factor> <factor> \rightarrow (<expr> ) | a
```

- forces correct precedence in parse tree grouping
 - within parentheses, * cannot occur as ancestor of + in the parse tree.

January 15, 2014

CS21 Lecture 6

Parse Trees

parse tree for a + a * a in new grammar:

Ambiguity

- · Second problem: ambiguous grammar
- · Definitions:
 - a string is derived ambiguously if it has two different parse trees
 - a grammar is ambiguous if its language contains an ambiguously derived string
- · ambiguity sometimes undesirable
- some CFLS are inherently ambiguous

January 15, 2014

CS21 Lecture 6

10

12

Ambiguity

- Definition in terms of derivations (rather than parse trees):
 - order in which we replace terminals in shouldn't matter (often several orders possible)
 - define leftmost derivation to be one in which the leftmost non-terminal is always the one replaced
 - a string is ambiguously derived if it has 2 leftmost derivations

January 15, 2014

CS21 Lecture 6

Chomsky Normal Form

- Useful to deal only with CFGs in a simple normal form
- Most common: Chomsky Normal Form (CNF)
- · Definition: every production has form

$$A \rightarrow BC$$
 or $S \rightarrow \epsilon$ or $A \rightarrow a$

where A, B, C are any non-terminals (and B, C are not S) and a is any terminal.

January 15, 2014

11

CS21 Lecture 6

2

Chomsky Normal Form

Theorem: Every CFL is generated by a CFG in Chomsky Normal Form.

Proof: Transform any CFG into an equivalent CFG in CNF. Four steps:

- add a new start symbol
- remove "ε-productions"
- $A \to \epsilon$

13

- $A \rightarrow B$ – eliminate "unit productions"
- convert remaining rules into proper form

January 15, 2014 CS21 Lecture 6

Chomsky Normal Form

- add a new start symbol
- add production $S_0 \rightarrow S$
- remove "ε-productions"
 - for each production with A on rhs, add production with A's removed: e.g. for each rule $R \rightarrow uAv$, add $R \rightarrow uv$
- eliminate "unit productions" A → B
 - for each production with B on lhs: $B \rightarrow u$, add rule $A \rightarrow u$

January 15, 2014 CS21 Lecture 6 14

Chomsky Normal Form

- convert remaining rules into proper form
 - replace production of form:

$$A \to u_1 U_2 u_3^{} ... u_k^{}$$

with:

January 15, 2014

$$\begin{array}{ccc} A \rightarrow U_1 A_1 & U_1 \rightarrow u_1 \\ A_1 \rightarrow U_2 A_2 & \end{array}$$

 $A_2 \rightarrow U_3 A_3$

U2 already a non-terminal

15

17

 $A_{k\text{-}2}\!\rightarrow U_{k\text{-}1}U_k \qquad U_{k\text{-}1}\!\rightarrow u_{k\text{-}1}$

 $U_k \rightarrow u_k$

Some facts about CFLs

- · CFLs are closed under
 - union

- star

(proof?)

- concatenation

(proof?) (proof?)

· Every regular language is a CFL

- proof?

January 15, 2014

CS21 Lecture 6 16

NPDA, CFG equivalence

CS21 Lecture 6

Theorem: a language L is recognized by a NPDA iff L is described by a CFG.

Must prove two directions:

- (⇒) L is recognized by a NPDA implies L is described by a CFG.
- (⇐) L is described by a CFG implies L is recognized by a NPDA.

January 15, 2014

CS21 Lecture 6

NPDA, CFG equivalence Proof of (⇐): L is described by a CFG implies L is recognized by a NPDA.

NPDA, CFG equivalence

- we'd like to non-deterministically guess the derivation, forming it on the stack
- 2. then scan the input, popping matching symbol off the stack at each step
- accept if we get to the bottom of the stack at the end of the input.

what is wrong with this approach?

January 15, 2014

CS21 Lecture 6

19

21

23

NPDA, CFG equivalence

- informal description of construction:
 - place \$ and start symbol S on the stack
 - repeat:
 - if the top of the stack is a non-terminal A, pick a production with A on the lhs and substitute the rhs for A on the stack
 - if the top of the stack is a terminal b, read b from the tape, and pop b from the stack.
 - if the top of the stack is \$, enter the accept state.

January 15, 2014 CS21 Lecture 6

NPDA, CFG equivalence one transition for each production $A \to W$ shorthand for: $\epsilon, \xi \to SS$ shorthand for: $\epsilon, \xi \to SS$ shorthand for: $\epsilon, \xi \to W_k$ one transition q_2 one transition q_2 one transition q_2 or q_k $\epsilon, \epsilon \to W_1$ and q_1 and q_2 or q_2 or q_2 or q_3 denote the first production q_2 or q_3 and q_4 or q_4 and q_4 or q_4 and q_4 or q_4 o

NPDA, CFG equivalence

<u>Proof of (⇒):</u> L is recognized by a NPDA implies L is described by a CFG.

- harder direction
- first step: convert NPDA into "normal form":
 - · single accept state
 - · empties stack before accepting
 - each transition either pushes or pops a symbol

January 15, 2014 CS21 Lecture 6

NPDA, CFG equivalence

- main idea: non-terminal A_{p,q} generates exactly the strings that take the NPDA from state p (w/ empty stack) to state q (w/ empty stack)
- then A_{start, accept} generates all of the strings in the language recognized by the NPDA.

January 15, 2014 CS21 Lecture 6 24

NPDA, CFG equivalence $\begin{tabular}{ll} NPDA P = (Q, \Sigma, \Gamma, \delta, start, \{accept\}) \\ \hline \bullet CFG G: \\ \hline - non-terminals V = \{A_{p,q}: p, q \in Q\} \\ \hline - start variable $A_{start, accept}$ \\ \hline - productions: \\ \hline for every p, r, q \in Q, add the rule \\ \hline $A_{p,q} \rightarrow A_{p,r}A_{r,q}$ \\ \hline \end{tabular}$


```
NPDA, CFG equivalence

• NPDA P = (Q, \Sigma, \Gamma, \delta, start, {accept})

• CFG G:

- non-terminals V = {A<sub>p,q</sub>: p, q ∈ Q}

- start variable A<sub>start, accept</sub>

- productions:

for every p ∈ Q, add the rule

A_{p,p} \rightarrow \epsilon

January 15, 2014

CS21 Lecture 6 29
```