TEORIJA GRAFOV

Osnovni pojmi

- graf G je urejen par (V(G), E(G)) množice vozlišč (vertex) in povezav (edge) med njimi.
- krajišči povezave sta vozlišči $\{u,v\} \in E(G)$ (krajši zapis $uv = \{u,v\}$)
- soseščina vozlišča v v je $N_G(v) = \{u \in V(G) : uv \in E(G)\}$
- u sosed v, če velja $uv \in E(G)$. (u in v sta sosednji vozlišči, pišemo $u \sim v$)
- $\bullet \;$ stopnja vozlišča v je $\deg_G(v) = |N_G(v)|$
- maksimalna stopnja vozlišč $\Delta(G)$
- r-regularen graf je tak graf, da imajo vsa vozlišča stopnjo r.
- izolirano vozlišče je vozlišče stopnje 0.
- matrika sosednosti grafa G z $V(G) = \{v_1, ..., v_n\}$ je matrika $A(G) \in \mathbb{R}^{n \times n}$ za katero velja:

$$A(G)_{i,j} = \begin{cases} 1; & v_i v_j \in E(G) \\ 0; & \text{sicer} \end{cases}$$

• incidenčna matrika grafa G z $V(G) = \{v_1,...,v_n\}$ in $E(G) = \{e_1,...,e_m\}$ je matrika $B(G) \in \mathbb{R}^{n \times m}$ za katero velja:

$$B(G)_{i,j} = \begin{cases} 1; & v_i \in e_j \\ 0; & \text{sicer} \end{cases}$$

Lema o rokovanju

Za vsak graf G velja:

$$\sum_{v \in V(G)} deg(v) = 2|E(G)|$$

Posledica: Število vozlišč lihe stopnje v grafu je sodo.

Podgrafi

- Graf H podgraf grafa G, če je $V(H) \subseteq E(G)$ in $V(H) \subseteq E(G)$. Pišemo $H \subseteq G$.
- Graf H vpeti podgraf grafa G, če se razlikuje samo v množici povezav: V(H) = V(G) in $E(H) \subseteq E(G)$.
- inducirani ali porojeni podgraf H grafa G dobimo tako da iz G odstranimo le nekatera vozlišča (in dotične povezave).

Družine grafov

$$[n] = \{1, 2, ..., n\}$$

$$\mathbb{Z}_n = \{0, 1, ..., n - 1\}$$

- polni grafi $K_n: V(K_n) = [n]$ $E(K_n) = \{ij \mid i \neq j; i, j \in [n]\} \text{ (vsa vozlišča so sosednja)}$
- $\begin{array}{l} \bullet \ \ \mathbf{pot} \ P_n \, : \, V(P_n) = \mathbb{Z}_n \\ E(P_n) = \{ i(i+1) \mid i \in \{0,...,n-1\} \} \end{array}$
- cikel $C_n:V(C_n)=\mathbb{Z}_n$ $E(C_n)=\{i(i+1)\mid i\in\mathbb{Z}_n\}$ $(\mathbb{Z}_n$ je grupa: (n-1)+1=0)
- $\begin{array}{l} \bullet \ \ \text{polni dvodelni graf} \ K_{m,n}; m,n \geq 1: \\ V(k_{m,n}) = \{v_1,...,v_m\} \cup \{u_1,...,u_n\} \\ E(k_{m,n}) = \{v_iu_j \mid i \in [m], j \in [n]\} \end{array}$
- $\{(b_1,...,b_d)(p_1,...,p_d) \mid p_1=b_1,...,p_i \neq b_i,...,p_d = ... \ vozlišči \ sta \ sosednji, \ če \ se \ razlikujeta \ le \ v \ enem \\ bitu.$
- Q_d je d-regularen graf.

• posplošeni petersonovi grafi

$$\begin{split} P_{n,k}; & n \geq 3; \; 2k < n \\ V(P_{n,k}) &= \left\{ v_0, \dots, v_{n-1} \right\} \cup \left\{ u_0, \dots, u_{n-1} \right\} \\ E(P_{n,k}) &= \left\{ v_i v_{i+1} \mid i \in \mathbb{Z}_n \right\} \cup \\ & \left\{ v_i u_i \mid i \in \mathbb{Z}_n \right\} \cup \\ \left\{ u_i u_{i+k} \mid i \in \mathbb{Z}_n \right\} \end{split}$$

• Petersenov graf $P = P_{5,2}$

Razširjene definicije grafov

- dopuščamo zanke (povezave iz vozlišča v isto vozlišče)
- dovolimo večkratne povezave
- digrafi ali grafi usmerjenih povezav (povezave so urejeni pari, vozlišča imajo lahko različno vhodno in izhodno stopnjo)
- uteženi grafi (omrežje) G=(V(G),E(G)) skupaj s funkcijo $W_V:V(G)\to\mathbb{R}$ in/ali $W_E:E(G)\to\mathbb{R}$

Poti in cikli

- sprehod je zaporedje vozlišč, ki so zaporedno sosednja
- dolžina sprehoda je število povezav v sprehodu.
- sprehod je enostaven, če so vse povezave različne.
- $\bullet\,$ pot v grafu Gje sprehod v katerem so vsa vozlišča različna.
- sprehod je sklenjen, če $v_0 = v_n$.
- cikel v grafu G je sklenjen sprehod, kjer so vsa vozlišča razen prvega in zadnjega različna.
- notranje disjunktne uv-poti so take uv-poti, ki imajo skupni le vozlišči u in v

Vozliščiu in vsta v relaciji $u\approx v,$ če med njima obstaja uv-pot (sprehod).

≈ je ekvivalenčna relacija in razdeli graf na ekvivalenčne razrede. Podgrafom, ki jih inducirajo ti ekvivalenčni razredi, rečemo **komponente** grafa.

Število komponent grafa G označimo z $\Omega(G)$

- graf je povezan, če ima samo eno komponento.
- razdalja $d_G(u, v)$ je dolžina najkrajše uv-poti. Če taka pot ne obstaja je razdalja ∞ .
- premer grafa diam(G) je največja razdalja med vozlišči.
 (G je povezan ⇔ diam(G) < ∞)
- notranji premer ali ožina grafa je dolžina najkrajšega cikla.

Dvodelni grafi

Graf G je **dvodelen**, če obstaja razdelitev množice V(G) v množici A in B, tako, da ima vsaka povezava iz E(G) en krajišče v A in drugo v B.

$$V(G) = A \cup B$$
 in $A \cap B = \emptyset$

Graf je dvodelen ⇔ ne vsebuje lihih ciklov.

Morfizmi grafov

• homomorfizem iz G v H je preslikava $f: V(G) \rightarrow V(H)$, ki ohranja povezave:

$$u \sim_G v \Rightarrow f(u) \sim_H f(v)$$

- epimorfizem je funkcija, ki je surjektivena na vozliščih in povezavah.
- monomorfizem ali vložitev je funkcija, ki je injektivna na vozliščih (posledično na povezavah).
- Vložitev $f:G\to H$ je **izometrija**, če ohranja razdalje:

$$\forall u,v \in V(G): d_H(f(u),f(v)) = d_G(u,v)$$

- Če je $f: V(G) \to V(H)$ bijekcija in sta f in f^{-1} homomorfizma, je f izomorfizem.
- Grafa G in H sta izomorfna (G ≅ H), če med njima obstaja izomorfizem. Izomorfnost grafov pomeni, da se razlikujeta le v poimenovanju vozlišč.
- avtomorfizem je izomorfizem $f:G\to G$. Množico avtomorfizmov grafa G označimo $\operatorname{Aut}(G)$. Če dodamo še operacijo komponiranja, dobimo grupo avtomorfizmov grafa G.

Operacije na grafih Komplementarni graf

Komplementarni graf \overline{G} grafaGje graf z $V(\overline{G})=V(G)$ in

$$uv \in E(\overline{G}) \Leftrightarrow uv \notin E(G)$$

$$\overline{\overline{G}} = G$$

$$Aut(\overline{G}) \cong Aut(G)$$

Odstranjevanje vozlišč in povezav

Če je $X\subseteq V(G)$, je graf G-X podgraf grafa G induciran z vozlišči $V(G)\smallsetminus X$

Če je $F\subseteq E(G)$ potem je G-F upet podgraf z množico povezav $E(G)\smallsetminus F$.

. Poljuben podgraf H grafa G lahko zapišemo kot H = (G - X) - F.

Skrčitev ali minor

Če je $e \in E(G)$, graf G/e dobimo tako, da identificiramo (združimo) krajišči povezave e, odstranimo zanko in morebitne večkratne povezave. (če delamo z multigrafi, pustimo večkratne povezave)

Če je $F \subseteq E(G)$, graf G/F dobimo tako, da zaporedno skrčimo vse povezave iz F.

Graf H je **minor** grafa G, če obstaja $G' \subseteq G$ in $F' \subseteq E(G')$, da je $H \equiv G'/F'$.

Subdivizije povezav

 $G^+(e)$ je graf, ki ga dobimo tako, da povezavo e nadomestimo s potjo dolžine 2 (povezavo e subdividiramo). Graf H je subdivizija grafa G, če ga lahko dobimo tako, da subdiviziramo povezave v G.

Glajenje povezav

 $G^-\left(u\right)$ je graf, ki ga dobimo tako, da odstranimo vozlišče u (mora biti stopnje 2) in dodamo povezavo med u-jevimi sosedi.

Kartezični produkt grafov $G\square H$

 $E(G\square H) = \{(q,h)(q',h') \mid$

$$V(G\Box H) = V(G) \times V(H)$$

$$(a = a' \wedge hh' \in E(H)) \vee (h = h' \wedge aa' \in E(G))\}$$

Lastnosti

- komutativnost $G \square H \cong H \square G$
- enota $G \square K_1 \cong K_1 \square G \cong G$
- asociativnost $(G_1 \square G_2) \square G_3 \cong G_1 \square (G_2 \square G_3)$

k-povezanost grafa

- ullet vozlišče v je **prerezno**, če ima graf G-v več komponent kot G
- povezava e je prerezna ali most, če ima G e več komponent kot G.
- množica vozlišč $S\subseteq V(G)$ je **prerez** grafa G, če je $\Omega(G-S)>\Omega(G)$
- množica povezav $F \subseteq E(G)$ je **povezavni prerez** grafa G, če je $\Omega(G F) > \Omega(G)$
- Graf G je k-povezan, če ima vsaj k+1 vozlišč in nobena podmnozica z manj kot k vozlišči ni prerezna.
- povezanost grafa κ(G) je največji k za katerega je graf k-povezan. Najmanjše stevilo vozlišč, ki jih moramo odstraniti, da graf postane nepovezan

globalna inačica: Graf G s k+1 vozlišči je k-povezan \Leftrightarrow za vsak par vozlišč obstaja k notranjih disjunktnih poti. lokalna inačica: Če sta u in v nesosednji vozlišči, je maksimalno število notranjih disjunktnih uv-poti enako moči minimalne prerezne množice, ki graf razdeli tako, da sta u in v v različnih komponentah.

Drevesa

- gozd je graf brez ciklov
- drevo je povezan graf brez ciklov
- list je vozlišče stopnje 1

Vsako drevo z vsaj 2 vozliščema vsebuje vsaj dva lista. Za poljuben graf T so ekvivalentne naslednje trditve:

- T ie drevo
- za vsak par vozlišč obstaja enolična pot
- T je povezan in vsaka povezava je most
- |E(T)| = |V(T)| 1

Za povezane grafe velja $|E(T)| \ge |V(T)| - 1$

Vpeta drevesa

Vpeto drevo grafa G je vpet podgraf, ki je drevo. Graf je **povezan** \Leftrightarrow vsebuje vpeto drevo. Število vpetih dreves v grafu G označimo $T\tau G$). Če je ε povezava multighafa G je

$$\tau(G) = \underbrace{\tau(G-e)}_{\text{odstranitev}} + \underbrace{\tau(G/e)}_{\text{skrčitev}}$$

$$\tau(G) = \tau(G_1) \cdot \tau(G_2)$$

 $G_1,G_2\subset G$ nimata nobene skupne povezave in le eno skupno vozlišče

Laplaceova matrika L(G) multigrafa G je kvadratna matrika, katere vrstice in stolpci predstavljajo vozlišča.

$$L(G)_{i,j} = \begin{cases} deg(v_i); & i = j \\ -(\mathsf{\check{s}t. \ povezav \ med} \ v_i \ \mathsf{in} \ v_j); & i \neq j \end{cases}$$

Število vpetih dreves grafa G lahko izračunamo z determinanoto matrike L(G), ki ji odstranimo vrstico in stolpec poljubnega vozlišča.

Prüferjeva koda

Tje drevo z vozlišči $1,\dots,n.$ Po vrsti odstranjujemo liste z najmanjšo oznako in v kodo postavimo oznako soseda ravnokar odstranjenega lista.

Eulerjevi grafi

- eulerjev sprehod je sprehod, ki prehodi vsako povezavo grafa natanko enkrat.
- eulerjev obhod je sklenjen eulerjev sprehod.
- eulerjev graf je graf v katerem obstaja eulerjev obhod.
 - Povezan graf je eulerjev ⇔ vsa njegova vozlišča so sode stopnje

Eulerjev obhod poiščemo z eulerjevim algoritmom.

- Začnemo v poljubnem vozlišču
- Premaknemo se po poljubni povezavi (most izberemo le, če ne gre drugače), ki jo za sabo pobrišemo
- Postopek ponavljamo dokler ne pridemo naokrog

Hamiltonovi grafi

- hamiltonova pot P v grafu G je taka, da velja
 V(P) = V(G)
 (= vpeta pot)
- hamiltonov cikel C v grafu G je tak, da velja
 V(C) = V(G)
 (= vpet cikel)
- hamiltonov graf je graf v katerem obstaja hamiltonov cikel.
 - Če je $S \subseteq G$ in $\Omega(G S) > |S| G$ ni hamiltonov

— Naj bo G graf z $|V(G)| \ge 3$. Če za vsak par nesosednjih vozlišč u in v grafa G velja:

$$deg_G(u) + deg_G(v) \ge |V(G)|$$

je G hamiltonov.

– Naj bo G graf z $|V(G) \ge 3$. Če za vsako vozlišče u velja

$$deg(u) \geq \frac{|V(G)|}{2}$$

je G hamiltonov.

Ravninski grafi

Ranvinski graf, je tak graf, ki ga lahko narišemo tako, da se nobeni povezavi ne sekata. Taki risbi rečemo **ravninska risba grafa**. Rečemo, da je graf **vložen v ravnino**. Če iz ravninske risbe izrežemo vse črte in točke, dobimo nekaj ločenih območji, ki jim pravimo **lica**. Množico lic označimo z F(G).

Če graf lahko vložimo v ravnino, ga lahko tudi na sfero. **Dolžina lica** l(f) je število povezav, ki jih prehodimo, ko obbodimo lice

Če obhodimo vsa lica v grafu vloženem v ravnino, smo vsako povezavo prehodili dvakrat:

$$\sum_{f \in F(G)} l(f) = 2|E(G)|$$

Ožina grafa g(G) je dolžina najkrajšega cikla. Če graf nima cikla je $g(G)=\infty$ Očitno je $f(G)\geq g(G)$.

Če je G povezan ravninski graf vložen v ravnino, velja:

$$2|E(G)| = \sum_{f \in F(G)} l(f) \geq \sum_{f \in F(G)} g(G) = |F(G)| \cdot g(G)$$

$$|E(G)| \ge \frac{g(G)}{2}|F(G)|$$

Naj bo G ravninski graf vložen v ravnino:

$$|V(G)| - |E(G)| + |F(G)| = 1 + |\Omega(G)|$$

Če je G povezan ravninski graf, ki ni drevo $(g(G) \neq \infty)$, \Rightarrow

$$|E(G)| \le \frac{g(G)}{g(G) - 2}(|V(G)| - 2)$$

Če to ne velja graf ni ravninski, obratno pa ni nujno res. Ker je $g(G) \geq 3$, velja

$$|E(G)| \le 3|V(G)| - 6$$

Če G nima trikotnikov $(g(G) \ge 4)$, velja

$$|E(G)| \le 2|V(G)| - 4$$

Kuratowski~izrek:Graf je ravninski \Leftrightarrow ne vsebuje podgrafa izomorfnega subdiviziji K_5 ali $K_{3,3}.$

Wagnerjev izrek: Graf je ravninski \Leftrightarrow nima minorja izomorfnega K_5 ali $K_{3,3}$.

Barvanje vozlišč

Naj bo K množica baru. Tedaj je preslikava $c:V(G)\to K$ barvanje grafa G. Barvanje je dobro, če velja:

$$\forall u, v \in V(G) : uv \in E(G) \Rightarrow c(u) \neq c(v)$$

Če je k=|K| govorimo o k-barvanju. Najmanjši k za katerega obstaja doboro barvanje grafa G, imanujemo **kromatično število** grafa G; oznaka $\chi(G)$.

Če je
$$H \subseteq G$$
 je $\chi(H) \leq \chi(G)$.

Požrešni algoritem

Barve označimo z \mathbb{N} . Vzamemo poljubni vrstni red vozlišč grafa G. Po vrsti barvamo tako, da vozlišče v_i pobarvamo z najmanjšo možno barvo. Obstaja tak vrstni red, da požrešni algoritem porabi le $\chi(G)$ baru.

Če je G graf, je $\chi(G) \leq \Delta(G) + 1.$

Če je G povezan graf in ni C_{2n+1} ali K_n , je $\chi(G) \leq \Delta(G)$. Za vsak ravninski graf velja $\chi(G) < 4$.

Barvanje povezav

Ko barvamo povezave, zahtevamo, da vse povezave s skupnim krajiščem prejmejo različne barve. Najmanjše število baru za barvanje povezav grafa G je **kromatični index** grafa; oznaka $\chi'(G)$.

Vse povezave vozlišča v dobijo različne barve, zato je $\chi'(G) \geq \Delta(G).$

$$\chi'(G) \in \{ \underbrace{\Delta(G)}_{\text{razred 1}}, \underbrace{\Delta(G)+1}_{\text{razred 2}} \}$$

 K_{2n} je iz razreda 1, K_{2n+1} pa iz razreda 2. Vsi dvodelni grafi so iz rezreda 1.

Algebrske struktre

- grupoid (M,·) urejen par z neprazno množico M in zaprto opreacijo ·.
- **polgrupa** grupoid z asociativno operacijo $\forall x, y, z \in M : (x \cdot y) \cdot z = x \cdot (y \cdot z).$
- monoid polgrupa z enoto $\exists e \in M \ \forall x \in M : e \cdot x = x \cdot e = x.$
- grupa polgrupa v kateri ima vsak element inverz $\forall x \in M \ \exists x^{-1} \in M : x \cdot x^{-1} = x^{-1} \cdot x = e.$
- abelova grupa grupa s komutativno operacijo $\forall x,y \in M: x \cdot y = y \cdot x.$

Potence elementov

Naj bo (A,\cdot) polgrupa in $a\in A.$ Potem je potenca $a^n,$ $n\in\mathbb{N}$ induktivno definirana z:

$$a^0 = e$$
 in $a^n = a^{n-1} \cdot a$

$$a = e$$
 in $a = a$

Iz definicije sledi:

$$a^n a^m = a^{n+m} \qquad (a^n)^m = a^{nm}$$

Recimo, da je a obrnljiv:

$$(a^{-1})^n = (a^n)^{-1}$$

Množica Z.,

$$\mathbb{Z}_m = \{0, 1, ..., m-1\}$$

Vpeljemo seštevanje $+_m$ po modulu m in množenje \cdot_m po modulu m. Dobimo grupo $(\mathbb{Z}_m,+_m)$ in monoid (\mathbb{Z}_m,\cdot_m) . Red elementa $x\in\mathbb{Z}_m$ je $\frac{m}{\gcd(m,x)}$

Množica \mathbb{Z}_m^*

To je množica vseh obrn
ljivih elementov v \mathbb{Z}_m (operacija: množenje).

$$|\mathbb{Z}_m^*| = \varphi(m)$$

Element $x \in \mathbb{Z}_m$ je obrn
ljiv če se da rešiti diofantsko enačbo:

$$xy + km = 1$$

za neznanki y (inverz od x) in k.

Cayleyjeva tabela

Za vsak element množice imamo en stolpec in eno vrstico. V vsakem polju je produkt elementa vrstice in elementa stolpca. (Presek vrstice a in stolpca b je ab)

Red elementa

Naj bo (G,\cdot) grupa. Red elemneta a je najmanjše naravno število $n\in\mathbb{N},$ da velja

$$a^n = e$$

Če je grupa končna, tak eksponent vedno obstaja (red elementa deli moč grupe).

Pri neskončnih grupah pa je red $\infty,$ če taknne obstaja. Red enote je 1. Enota je tudi edini element grupe, ki ima red 1

Podgurpe

Naj bo (G,\cdot) grupa. Tedaj je $H\subseteq G$ podgrupa, ko je (H,\cdot) grupa.

Če je H podgrupa G in $H \neq G$ pišemo $H \subset G$ (prava podgrupa).

 $\{e\}$ je vedno podgrupa G (**trivialna grupa**). Naj bo (G,\cdot) grupa in $\emptyset \neq H \subseteq G$. Tedaj je

$$(H,\cdot) \subset (G,\cdot) \Leftrightarrow \forall x,y \in H: x^{-1}y \in H$$

Naj bo (G,\cdot) končna grupa in $\emptyset \neq H \subset G$. Tedaj je

$$(H,\cdot)\subset (G,\cdot)\Leftrightarrow \cdot$$
 je notranja operacija

Ciklična podgrupa

Naj bo (G, \cdot) grupa in $a \in G$. Potem je $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$

$$(\langle a \rangle, \cdot) \subseteq (G, \cdot)$$

Podgrupa $(\langle a \rangle, \cdot)$ je **ciklična** podgrupa v G generirana z a. Če je G grupa ina $a \in G$ tak element, da je $\langle a \rangle = G$, je G **ciklična grupa**, element a pa **generator** grupe G. Če ima $a \in G$ neskončen red, so vse potence a paroma različni elementi grupe G.

Če ima $a \in G$ končen red, velja

$$\forall i, j \in \mathbb{Z} : a^i = a^j \Leftrightarrow n | (i - j)]$$

 $a^n = e \wedge a^k = e \Rightarrow n | k$

Naj bo $G = \langle a \rangle$ ciklična grupa reda n. Potem je

$$G = \langle a^k \rangle \Leftrightarrow \gcd(n, k) = 1$$

in

OSNOVE ALGEBRE

$$|\langle a \rangle| = n$$

Če je v $\langle \rangle$ več elemnetov, je to množica vseh njihovih potenc in produktov teh potenc.

$$\langle a, b \rangle = \{ xy \text{ in } yx : x \in \langle a \rangle; y \in \langle b \rangle \}$$

Center grupe

Naj bo (G,\cdot) grupa. Potem je **center** grupe Z(G) podmnožica elementov, ki komutirajo z vsemi elementi v

$$Z(G) = \{ a \in G : ax = xa \ \forall x \in G \}$$

Center grupe G je tudi podgrupa G:

$$(Z(G),\cdot)\subseteq (G,\cdot)$$

Permutacijske grupe

- Permutacija množice A je bijektivna funkcija π : A → A.
- Permutacijska grupa na množici A je množica premutaciji množice A, ki tvorijo grupo za komponiranje funkciji.
- Simetrična grupa S_n je permutacijska grupa na [n], ki vsebuje vse permutacije množice [n] $(|S_n| = n!)$.
- Red permutacije je lcm(dolžine disjunktnih ciklov).
- Disjunktni cikli permutaciej komutirajo.
- Vsako permutacijo lahko zapišemo kot produkt transpozicij.

 Če je število transpozicij sodo je permutacija soda, drugače je liha.

• Alternirajoča grupa A_n je grupa vseh sodih permutaciji množice [n]

$$A_n \subset S_n$$

$$\forall n > 1 : |A_n| \frac{n!}{2}$$

Izomorfizmi grup

Naj bosta (G, \cdot) in (H, *) grupi. Preslikava $\alpha : G \to H$ je homomorfizem, če velja:

$$\forall a, b \in G : \alpha(a \cdot b) = \alpha(a) * \alpha(b)$$

Če je α še bijektivna, je **izomorfizem**. Če je G=H, je α **avtomorfizem**.

Grupi sta **izomorfni**, če med njima obstaja izomorfizem. Pišemo $G \approx H$.

Cayleyev izrek: Vsaka grupa je izomorfna neki permutacijski grupi.

Izomorfizem grup pomeni, da imamo isti grupi, le da sta definirani na različna načina.

Grupi G in H z izpmorfizmom $\alpha:G\to H$ imata lastnosti: $\bullet \ \alpha \ \text{preslika enoto} \ G \ \text{v enoto} \ H.$

- $\forall a \in G, n \in \mathbb{Z} : \alpha(a^n) = (\alpha(a))^n$
- $\forall a, b \in G : a \text{ in } b \text{ komutirata} \Leftrightarrow \alpha(a) \text{ in } \alpha(b) \text{ komutirata}$
- G je abelova $\Leftrightarrow H$ je abelova
- G je ciklična $\Leftrightarrow H$ je ciklična
- K ⊂ G ⇒ α(K) ⊂ H

:

Odseki grupe

Naj bo G grupa in $H \subseteq G$ ter $a \in G$.

 $aH = \{ah : h \in H\}$... levi odsek grupe G po podgrupi H $Ha = \{ha : h \in H\} \dots$ desni odsek grupe G po podgrupi H

Lastnosti odseka:

- $a \in aH$
- $aH = H \Leftrightarrow a \in H$
- bodisi velia aH = bH bodisi $aH \cap bH = \emptyset$
- $aH = bH \Leftrightarrow a^{-1}b \in H$
- |aH| = |bH|
- $aH = Ha \Leftrightarrow H = aHa^{-1}$
- $aH \subset \Leftrightarrow a \in H$

Lagrange: Če je G končna grupa in $H \subseteq G$, potem |H| deli

Število različnih levih (desnih) odsekov po H je $\frac{|G|}{|H|}$ ((index podgurpe)).

Red elementa končne grupe deli moč grupe.

Grupa praštevilske moči je ciklična.

Če je G končna grupa je $a^{|G|} = e$.

Mali Fermantov izrek:

 $\forall a \in \mathbb{Z}, p \in \mathbb{P} : a^p \mod p = a \mod p.$

Podgrupe edinke

Podgrupa $H \subseteq G$ je **edinka** $(H \triangleleft G)$, če velja:

$$\forall a \in G \ : \ aH = Ha$$

ekvivalnten pogoi:

$$\forall a \in G : aHa^{-1} = H$$

Če sta $\{e\} \triangleleft G$ in $G \triangleleft G$ edini edinki v G, je G enostavna

Odseki po podgrupi edinki tvorijo grupo. Naj bo G grupa in $H \subseteq G$:

 $G/H = \{aH : a \in G\} \dots$ faktorska grupa grupe GVpeljimo operacijo v G/H:

$$(aH)(bH) = abH$$

Če je $H \triangleleft G$, je G/H grupa.

Če je G grupa in G/Z(G) ciklična grupa, je G abelova.

Kolobarii

Kolobar je množica R skupaj z dvema operacijama (oznaka: +,·) tako, da velja:

- (R, +) je abelova grupa
- $\forall a, b \in R : ab \in R \text{ (zaprtost)}$
- $\forall a, b, c \in R : (ab)c = a(bc)$ (asociativnost)
- $\forall a, b, c \in R$: a(b+c) = ab + ac (distributivnost)

• $\forall a, b, c \in R$: (a+b)c = ac + bc (distributivnost)

Kolobar je komutativven, če $\forall a, b \in R : ab = ba$. Kolobar je kolobar z enoto, če

 $\exists 1 \ \forall a \in R : \in R : 1a = a1 = a \text{ element } 1 \text{ ie enota}$ kolobaria

Če sta R in S kolobarja, je njuna **direktna vsota** $R \oplus S$ kartezični produkt $R \times S$ opremljena z operacijama

$$(r,s)+(r',s')=(r+r',s+s')$$
 in $(r,s)(r',s')=(rr',ss')$

Direktna vsota kolobariev je tudi kolobar.

Direktna vsota komutativnih kolobarjev je komutativen

Direktna vsota kolobarjev z enoto je kolobar z enoto.

Lastnosti kolobarjev

- Enota 0 kolobaria za seštevanje je enolična.
- Če ima R enoto 1 za množenje, je enolična.
- Za kolobar R in $a, b \in R$ velja:

$$-0a = a0 = 0$$

$$-(-a)b = a(-b) = -(ab)$$

- -(-a)(-b) = ab
- Če ima R enoto 1, (-1)a = -(1a) = -a

Podkolobarji

Naj boR kolobar in $S \subseteq R.$ Če je S kolobar za isti operaciji kot R, je S podkolobar kolobarja R. Ekvivalentna definicija: S je podkolobar R natanko tedaj,

- 0 ∈ S
- $\forall a, b \in S : a b \in S$
- $\forall a, b \in S : ab \in S$

Center kolobarja

Center kolobarja R je

$$\{x \in R : ax = xa \quad \forall a \in R\}$$

Center kolobarja R je tudi njegov podkolobar.

Delitelji niča in celi kolobarii

Naj bo R komutativen koloboar. Tedaj je $a \in R$, $a \neq 0$ delitelj niča, če

$$\exists b \in R, b \neq 0 : ab = 0$$

Cel kolobar je komutativen kolobar z enoto $(1 \neq 0)$, ki nima deliteliev niča.

Pravilo krajšanja: Če je R cel kolobar, potem velja $ab = ac, \ a \neq 0 \Rightarrow b = c.$

Polja in obsegi

Komutaiteven obseg z enoto $(1 \neq 0)$ je **polje**, če je vsak element različen od 0 obrnljiv.

Poliu, ki pa ni komutativno, pravimo obseg.

Polje je cel kolobar (obratno pa ni nujno). Če je R končen cel kolobar, je R polje.

Naslednje trditve so ekvivalentne:

- \mathbb{Z}_n je cel kolobar
- \mathbb{Z}_n je polje
- n je prašetevilo

Podpolia

Če je Fpolje, je $K\subseteq F$ podpolje vFnatoanko tedaj, ko:

- $\forall a, b \in K : a b \in K$
- $\forall a, b \in K, b \neq 0 : ab^{-1} \in K$

Karakteristika kolobarja

Če je R kolobar, $a \in R$ in $n \in \mathbb{N},$ pišemo

$$na = \underbrace{a + a + \dots + a}_{n-\text{krat}}$$

Karakteristika kolobarja R je najmanjši $n \in \mathbb{N}$, tako da velja

$$\forall a \in R : na = 0$$

Če tak n ne obstaja je karakteristika enaka 0. Oznaka:

Naj bo R kolobar ze enoto. Tedaj velja:

- Če je red 1 v grupi (R, +) enak $n < \infty$, je char R = n.
- Če pa ima 1 v grupi (R, +) neskončen red, je char R = 0.

Če je R cel kolobar, je char $R \in 0 \cup \mathbb{P}$.

Ideali

imajo pri kolobarjih podobno vlogo kot podgrupe edinke pri grupah.

Podkolobar I kolobarja R je ideal, če

$$\forall i \in I; \forall r \in R : ir \in I \land ri \in I$$

Če je R kolobar in $I \subseteq R$, je I ideal natanko tedaj, ko

- 0 ∈ I
- $\forall i, j \in I : i j \in I$
- $\bullet \ \, \forall i \in I; \forall r \in R \ \, : \ \, ir \in I \ \, \wedge \, ri \in I$

Če je R kolobar z enoto in ideal I vsebuje obrnljiv element, je I = R. Če je F polje, sta njegova edina ideala F in $\{0\}$. Naj bosta I in J ideala v kolobarju R. Definirajmo

- $I + J = \{i + j : i \in I, j \in J\}$
- $IJ = \{i_1 j_1 + ... + i_n j_n : i_k \in I, j_k \in J, n \in \mathbb{N}\}$

Če sta I in J ideala v R, potem je

- I + J ideala v R
- \bullet IJ ideala v R

Naj bo I ideal kolobarja R. Tedaj je množica levih

$$R/I = \{a + I : a \in R\}$$

skupaj z operacijama

$$(a + I) + (b + I) = a + b + I$$

 $(a + I)(b + I) = ab + I$

faktorski kolobar.

Kolobarji polinomov

Naj bo R komutativen kolobar. Tedaj je

$$R[x] = \{a_n x^n + \dots + a_1 x + a_0 : a_i \in R, n \in \mathbb{N}_0\}$$

kolobar polinomov nad R.

Stopnja polinoma $f(x) \in R[x]$ je m, če $a_m \neq 0$ in $a_i = 0$ za vse i > m.

 a_m je tedaj vodilni koeficient, $a_m x^m$ pa vodilni člen. Ničelni polinom 0 nima niti stopnje, niti vodilnega člena

Konstantni polinom $f(x) = a_0$ je bodisi ničelni, bodisi ima

Množenje in seštevanje polinomov je definirano:

Minozenje in sestevanje polinom je denimano.
$$f(x) = a_n x^n + \ldots + a_0$$

$$g(x) = b_n x^n + \ldots + b_0$$

$$f(x) + g(x) = (a_n + b_n) x^n + \ldots + (a_1 + b_1) x + (a_0 + b_0)$$

$$f(x)g(x) = c_{n+n} x^{n+n} + \ldots + c_1 x + c_0$$

$$c_i = a_0 b_i + a_1 + b_{i-1} + a_2 b_{i-2} + \ldots + a_i b_0$$

- \bullet Če je R komutaitven kolobar, je tudi R[x]komutativen kolobar.
- Če je R cel kolobar, je tudi R[x] cel kolobar.
- Naj bo R[x] cel kolobar in $f(x), g(x) \in R[x]$ neničelna polinoma stopenj n in m.

-
$$\deg(f(x) + g(x)) \le \max\{n, m\}$$
 (ali pa je $f(x) + g(x) = 0$)
- $\deg(f(x)g(x)) = n + m$.

Izrek o deljenju polinomov: Naj bo F polje in $f(x), g(x) \in F[x]; g(x) \neq 0$, potem obstajata enolična polinoma $q(x), r(x) \in F[x]$, da velja

$$f(x) = g(x) \cdot \underbrace{q(x)}_{\text{količnik}} + \underbrace{r(x)}_{\text{ostanek}}$$

Kjer je bodisi r(x) = 0, bodisi deg(r(x)) < deg(g(x)).

Ničle polinomov in nerazcepni polinomi

Naj bo F polje. Tedaj je $f(x) \in F[x]$ nerazcepen polinom, če

$$\forall f(x), g(x) \in F[x] : f(x) = g(x)h(x) \Rightarrow g(x) \in F \lor h(x) \in F$$

sicer, je f(x) razcepen polinom.

Naj bo $f(x) \in F[x]$ in $b \in F$. Tedaj lahko izračunamo $f(x) \ v \ b$: $f(b) = a_n b^n + ... + a_0$.

Naj bo F polje, $f(x) \in F[x]$ in $a \in F$. Potem obstaja $q(x) \in F[x]$, da

$$f(x) = (x - a)q(x) + f(a)$$

Naj boFpolje in $f(x) \in F.$ Če je $a \in F$ in velja f(a) = 0,je a ničla polinoma.

$$a$$
 je ničla $f(x) \Leftrightarrow (x-a)|f(x)$

- Če ima f(x) ničlo, je razcepen (ni pa nujno obratno).
- Naj bo F polje in $f(x) \in F[x]$; $\deg(f(x)) \in \{2, 3\}$. Potem je f(x) nerazcepen natanko tedaj, ko nima
- Neničeln polinom stopnie n ima največ n ničel iz F.

Euljerjeva funkcija

Euljerjeva funkcija nam pove koliko je obrnlivih elementov v \mathbb{Z}_m . Za $n \in \mathbb{N}$ s paraštevilskim razcepom $n = p_1^{\alpha_1} \cdot \ldots \cdot p_m^{\alpha_m}$ velja:

$$\varphi(n) = \varphi(p_1^{\alpha_1}) \cdot \ldots \cdot \varphi(p_m^{\alpha_m}) = n \prod_{p_k \in \mathbb{P}} \left(1 - \frac{1}{p_k}\right)$$

Linearne diofantske enačbe

Diofantska enačba ax + by = c ima rešitev $\Leftrightarrow qcd(a, b)|c$.

Če ima eno rešitev $(x_0, y_0) \in \mathbb{Z}^2$ ima neskončno množico

$$\{(x_k, y_k) : k \in \mathbb{Z}\}$$

$$x_k = x_0 - k \frac{b}{\gcd(\mathbf{a}, \mathbf{b})}$$

$$y_k = y_0 + k \frac{a}{\gcd(\mathbf{a}, \mathbf{b})}$$

Razširjen evklidov algoritem

$$\begin{array}{l} dokler \ \ r_i \neq 0: \\ i = i+1 \\ k_i = r_{i-2}//r_{i-1} \\ (r_i, x_i, y_i) = (r_{i-2}, x_{i-2}, y_{i-2}) - k_i(r_{i-1}, x_{i-1}, y_{i-1}) \\ konec \ \ zanke \\ vrni: \ (r_{i-1}, x_{i-1}, y_{i-1}) \end{array}$$

Naj bosta $a, b \in \mathbb{Z}$. Tedaj trojica (d, x, y), ki jo vrne razširjen evklidov algoritem z vhodnim podatkomk (a, b), zadošča:

$$ax + by = d$$
 in $d = \gcd(a, b)$