Name: ______
Date:

Problem 1. Write the following polynomials in the form $a(x\pm h)^2\pm k$ using the method we covered in class (by completing the square). Show all your work. (The \pm just means that the signs don't have to be a certain way, just do whatever's natural.)

Algebra II

Homework 28

- (a) $x^2 + 2x + 3$
- (b) $2x^2 4x + 1$
- (c) $2x^2 + 3x 2$
- (d) $-3x^2 + 2x + 1$
- (e) $\frac{1}{4}x^2 + x 1$
- (f) $3x^2 \frac{1}{2}x + 3$
- (g) $5x^2 + 7x 2$
- (h) $-5x^2 3x + 7$
- (i) $\frac{1}{2}x^2 + \frac{1}{3}x + \frac{1}{5}$
- (j) $2x^2 \frac{1}{3}x 1$
- (k) $ax^2 + bx + c$

Problem 2. Check your answers from Problem 1 by converting them back into the form $ax^2 \pm bx \pm c$.

Problem 3. Show that both $\frac{-b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a}$ and $\frac{-b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$ solve the equation $ax^2 + bx + c = 0$ by separately plugging each in for x. It may (or may not) be easier to write these as $\frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $\frac{-b - \sqrt{b^2 - 4ac}}{2a}$.