ASMA Ver.	0.7.0 zvector-e7-0	1 - Mi nMaxAvg	(Zvector	E7 VRR-	c instructions) 25 Jul 2025 16:13:17 Page 1
LOC	OBJECT CODE	ADDR1	ADDR2	STMT	
				2 **	******************
				3 *	
				4 * 5 *	Zvector E7 instruction tests for VRR-c encoded:
				6 *	E7FO VAVGL - VECTOR AVERAGE LOGICAL
				7 * 8 *	E7F2 VAVG - VECTOR AVERAGE E7FC VMNL - VECTOR MINIMUM LOGICAL
				9 *	E7FD VMXL - VECTOR MAXIMUM LOGICAL
				10 * 11 *	E7FE VMN - VECTOR MINIMUM E7FF VMX - VECTOR MAXIMUM
				12 *	
				13 * 14 *	James Wekel July 2024 July 2025 - Vector-enhancements facility 3 update
				15 **	

				18 * 19 *	basic instruction tests
				20 * 21 **	*****************
				22 *	This program tests proper functioning of the z/arch E7 VRR-c vector
				23 * 24 *	average, minimum and maximum instructions. Exceptions are not tested.
				25 *	
				26 * 27 *	PLEASE NOTE that the tests are very SIMPLE TESTS designed to catch obvious coding errors. None of the tests are thorough. They are
				28 *	NOT designed to test all aspects of any of the instructions.
				29 * 30 **	******************
				31 *	THE RESIDENCE OF THE PARTY OF T
				32 * 33 *	*Testcase zvector-e7-01-MinMaxAvg: VECTOR E7 VRR-c instructions
				34 *	* Zvector E7 instruction tests for VRR-c encoded:
				35 * 36 *	* * E7FO VAVGL - VECTOR AVERAGE LOGICAL
				37 *	* E7F2 VAVG - VECTOR AVERAGE
				38 * 39 *	* E7FC VMNL - VECTOR MINIMUM LOGICAL * E7FD VMXL - VECTOR MAXIMUM LOGICAL
				40 * 41 *	* E7FE VMN - VECTOR MINIMUM * E7FF VMX - VECTOR MAXIMUM
				42 *	* E/FF VWA - VECTUR WAXIMUWI *
				43 * 44 *	 * # * # This tests only the basic function of the instruction.
				45 *	* # Exceptions are NOT tested.
				46 * 47 *	* # ⁻ *
				48 *	mainsize 2
				49 * 50 *	numcpu 1 sysclear
				51 *	archl vl z/Arch
				52 * 53 *	loadcore "\$(testpath)/zvector-e7-01-MinMaxAvg.core" 0x0
				54 *	
				55 * 5 6 *	diag8cmd enable # (needed for messages to Hercules console) runtest 2

LOC	OBJECT CODE	ADDR1	ADDR2	STMF	
				57 * diag8cmd disable # (reset 58 * 59 * *Done 60 * 61 ************************************	back to default) ***********************************

ASWA ver.	0. 7. 0 zvector- e7- 0	1- Mi nMaxAvg	g (Zvector	E7 V	RR-c inst	ructi oı	ns)	25 Jul 2025 16: 13: 17 Page	4
LOC	OBJECT CODE	ADDR1	ADDR2	STM					
				119		Low co	ore PSWs	**********	
00000000		00000000 00000000	000031B7		ZVE7TST	START		Low core addressability	
		00000140	0000000		SVOLDPSW	EQU	ZVE7TST+X' 140'	z/Arch Supervisor call old PSW	
	00000001 80000000	0000000	000001A0	126 127		ORG DC	ZVE7TST+X' 1A0' X' 000000018000000	z/Architecure RESTART PSW	
000001A8	00000000 00000200			128		DC	AD(BEGIN)		
	00020001 80000000 0000000 0000DEAD	000001B0	000001D0	130 131 132		ORG DC DC	ZVE7TST+X' 1D0' X' 000200018000000 AD(X' DEAD')	z/Architecure PROGRAM CHECK PSW 00'	
000001E0		000001E0	00000200	134		ORG	ZVE7TST+X' 200'	Start of actual test program	
				137 138 139 140 141	******** * Archit * Regist		The actual "ZVE? *********** e Mode: z/Arch	**************************************	
				142 143 144	* RO	(1	work) work)		
				145 146 147	* R5 * R6- R7	Ťe 7 (v		ble - current test base	
				148 149 150	* R9 * R10	Se Tl	econd base register hird base register TTEST call return	er	
				151 152 153	* R12 * R13	E7 (v	TESTS register work) ubroutine call		
				154 155 156	* R15		econdary Subrouti	ne call or work ***********************************	
00000200 00000200 00000200		00000200 00001200 00002200		158 159 160		USING	BEGIN, R8 BEGIN+4096, R9 BEGIN+8192, R10	FIRST Base Register SECOND Base Register THIRD Base Register	
00000202	0580 0680 0680			162 163 164		BALR BCTR BCTR	R8 , 0	Initalize FIRST base register Initalize FIRST base register Initalize FIRST base register	
	4190 8800		00000800 00000800	166 167 168		LA LA	R9, 2048(, R8) R9, 2048(, R9)	Initalize SECOND base register Initalize SECOND base register	

208+XC0001

000002D0

00000001

EQU

message address

LA

В

BAL

EQU

R2, MSG

EOJ

000002D4

00000458

00000520

0000001

00000380

239+

240+

241+XC0002

4110 80D4

4520 8258

0000037C 47F0 8320

00000374

		2,00001	e7-01-MinMaxAvg	(ZVCCCOI	L' VIVIV C III	Sei deci oi	113)	25 Jul 2025 16: 13: 17 Page
LOC	OBJE	CT CODE	ADDR1	ADDR2	STMT			
					949 *****	*****	* * * * * * * * * * * * * * * * * *	***********
					244 *		Do tests in the	
					245 *****	*****	***********	**************************************
					246			
0000380	58C0 83	4C		0000054C	247	L	R12, = $A(E7TESTS)$	get table of test addresses
					248		,	8
				0000001	249 NEXTE6		*	
0000384	5850 CO	00		0000000	250	L	R5, 0(0, R12)	get test address
0000388	1255	O.E.		00000000	251	LTR	R5, R5	have a test?
000038A	4780 81	CE		000003CE	252	BZ	ENDTEST	done?
000038E			0000000		253 254	UCTNC	E7TEST, R5	
OUUUSOE			0000000		255 255	USING	E/IESI, NJ	
000038E	4800 50	04		0000004	256	LH	RO, TNUM	save current test number
0000392	5000 8E			00001004	257	ST	RO, TESTING	for easy reference
					258		ŕ	J
0000396	E710 8E			00001094	259	VL	V1, V1FUDGE	
000039C	58B0 50	00		0000000	260	L	R11, TSUB	get address of test routine
00003A0	O5BB				261	BALR	R11, R11	do test
000000	E210 50	10 0014		00000016	262	LCE	D1 DEADDD	act address of amounted menult
00003A2 00003A8	E310 50 D50F 50			0000001C 00000000	263 264	LGF	R1, READDR	get address of expected result valid?
00003AE	4770 81			000003BA	265	CLC BNE	V10UTPUT, O(R1) FAILMSG	no, issue failed message
OUUUJAL	4770 01.	UA.		ООООООДА	266	DNE	TALLIDU	no, issue faffed message
00003B2	41C0 C0	04		0000004	267	LA	R12, 4(0, R12)	next test address
00003B6	47F0 81			00000384	268	B	NEXTE6	

ASMA Ver.	0.7.0 zvector-e7-0	1- Mi nMaxAvg	g (Zvector	E7 VRR-c inst	ructio	ons)	25 Jul 2025 16: 13: 17 Page 10
LOC	OBJECT CODE	ADDR1	ADDR2	STMT			
				336 ******* 337 * 338 * 339 ******		HERCULES MESSAGE poin R2 = return address	**************************************
00000458 0000045C	4900 8354 07D2		00000554	341 MSG 342	CH BNHR	RO, =H' O' R2	Do we even HAVE a message? No, ignore
0000045E	9002 8294		00000494	344	STM	RO, R2, MSGSAVE	Save registers
00000462 00000466 0000046A	4900 8356 47D0 826E 4100 005F		00000556 0000046E 0000005F	346 347 348	CH BNH LA	RO, =AL2(L' MSGMSG) MSGOK RO, L' MSGMSG	Message length within limits? Yes, continue No, set to maximum
0000046E 00000470 00000472	1820 0620 4420 82A0		000004A0	350 MSGOK 351 352	LR BCTR EX	R2, R0 R2, 0 R2, MSGMVC	Copy length to work register Minus-1 for execute Copy message to O/P buffer
	4120 200A 4110 82A6		0000000A 000004A6	354 355	LA LA	R2, 1+L' MSGCMD(, R2) R1, MSGCMD	Calculate true command length Point to true command
0000047E 00000482	83120008 4780 828E		0000048E	357 358	DC BZ	X' 83' , X' 12' , X' 0008' MSGRET	Issue Hercules Diagnose X'008' Return if successful
00000486 00000488	1222 4780 828E		0000048E	359 360 361	LTR BZ	R2, R2 MSGRET	Is Diag8 Ry (R2) 0? an error occurred but coninue
0000048C	0000			362 363	DC	Н' О'	CRASH for debugging purposes
0000048E 00000492	9802 8294 07F2		00000494	365 MSGRET 366	LM BR	RO, R2, MSGSAVE R2	Restore registers Return to caller
00000494 000004A0	00000000 00000000 D200 82AF 1000	000004AF	00000000	368 MSGSAVE 369 MSGMVC	DC MVC	3F' 0' MSGMSG(0), 0(R1)	Registers save area Executed instruction
	D4E2C7D5 D6C8405C 40404040 40404040			371 MSGCMD 372 MSGMSG 373	DC DC	C' MSGNOH * ' CL95' '	*** HERCULES MESSAGE COMMAND *** The message text to be displayed

ASMA Ver.	0.7.0 zvector-e7-0	1 - Mi nMaxAv	g (Zvector	E7 VI	RR-c inst	ructio	ons)	25 Jul 2025 16: 13: 17 Page	11
LOC	OBJECT CODE	ADDR1	ADDR2	STM					

20000510	0000001 0000000			070	EO IDCM	D.C.	ODI OL. VI 000000	010000000 AR(0)	
	00020001 80000000				E0JPSW	DC		0180000000', AD(0)	
00000520	B2B2 8310		00000510	381	ЕОЈ	LPSW	E EOJPSW	Normal completion	
00000528	00020001 80000000			383	FAILPSW	DC	OD' O' , X' 000200	018000000', AD(X'BAD')	
00000538	B2B2 8328		00000528	385	FAILTEST	LPSW	E FAILPSW	Abnormal termination	
				388				***************	
0000053C	0000000			391	CTLRO	DS	F	CRO	
0000540	00000000			392		DS	F		
00000544 00000544 00000548 0000054C 00000550 00000554	00000040 00000002 000030D0 00000001 0000 005F			394 395 396 397 398 399 400		LTORO	F; ; =F' 64' =F' 2' =A(E7TESTS) =F' 1' =H' 0' =AL2(L' MSGMSG)	Literals pool	
				401 402 403			constants		
		0000400 00001000 00010000 00100000	00000001 00000001 00000001 00000001		PAGE K64	EQU EQU EQU EQU	1024 (4*K) (64*K) (K*K)	One KB Size of one page 64 KB 1 MB	
		AABBCCDD	0000001	408 409	REG2PATT	EQU	X' AABBCCDD'	Polluted Register pattern	
		00000DD	0000001	410	REG2LOW	EŲU	X' DD'	(last byte above)	

ASMA Ver.	0. 7. 0	zvector-e7-01	- Mi nMaxAvg	(Zvector	E7 V	RR-c insti	ructi o	ns)	25 Jul 2025 16: 13: 17 Page	14
LOC	OBJI	ECT CODE	ADDR1	ADDR2	STM					
					454	******	****** E7TES	**************************************	*************	
00000000 00000004 00000006 00000007 000000010 00000014 00000018 0000001C 00000020 00000028 00000038	0000000 0000000 0000000 0000000	0 40404040 00 00			458 459 460 461 462 463 464 465 466 467 468 470 471	OPNAME V2ADDR V3ADDR RELEN READDR V1OUTPUT	DS	A(0) H'00' X'00' HL1'00' CL8' ' A(0) A(0) A(0) A(0) FD XL16 FD	pointer to test Test Number m4 used E6 name address of v2 source address of v3 source RESULT LENGTH result (expected) address gap V1 Output gap	
			00000000	000031B7	472 473 474 475	*		wed by EXPECTED RESUL	here (from VRR-c macro)	
000010B4					481	* Mac	cros to	n helm build te	**************************************	
					484 485 486 487 488 489	* macro t	MACRO	erate individua &INST, &M4	l test &INST - VRR-c instruction under test	
					490 491 492 493 494 495 496	*		&TNUM &TNUM+1 OFD *, R5	&m4 - m3 field base for test data and test routine	
					497 498 499 500 501 502 503	T&TNUM	DC DC DC DC DC	A(X&TNUM) H' &TNUM X' 00' HL1' &M4' CL8' &INST' A(RE&TNUM+16)	address of test routine test number m4 instruction name address of v2 source	

ASMA Ver.	0. 7. 0 zvector- e7-0	01 - Mi nMaxAv	g (Zvector	E7 VRR-c inst	ructio	ns)	25 Jul 20	25 16: 13: 17	Page	16
LOC	OBJECT CODE	ADDR1	ADDR2	STMI						
							********	******	****	
				553 * 554 ******	*****		*******	*****	****	
				555 556	PRI NT	DATA				
				557 * 558 *		VAVGL - VECTOR AV VAVG - VECTOR AV				
				559 *	E7FC	VMNL - VECTOR MI	NIMUM LOGICAL			
				560 * 561 *	E7FD E7FE	VMXL - VECTOR MA VMN - VECTOR MI				
				562 * 563	E7FF	VMX - VECTOR MA	XI MUM			
				564 * 565 *	VRR- c	instruction, m4				
				566 *		followed by 16 byte expect	ed result (V1)			
				567 * 568 *		16 byte V2 sou 16 byte V3 sou	rce rce			
				569 * 570 * VMX		CTOR MAXIMUM				
				571 *						
00004075				572 * Byte 573		VMX, 0				
000010B8 000010B8		000010B8		574+ 575+	DS USING	OFD *, R5	base for test data an	d test routi	ne	
000010B8 000010BC	000010F8 0001			576+T1 577+	DC DC	A(X1) H' 1'	address of test routi test number	ne		
000010BE 000010BF				578+ 579+	DC DC	X' 00' HL1' 0'	m4			
000010C0	E5D4E740 40404040			580 +	DC	CL8' VMX'	instruction name			
000010CC	00001130 00001140			581+ 582+	DC DC	A(RE1+16) A(RE1+32)	address of v2 source address of v3 source			
	00000010 00001120			583+ 584+REA1	DC DC	A(16) A(RE1)	result length result address			
000010D8 000010E0	0000000 0000000 0000000 0000000			585+ 586+V101	DS DS	FD XL16	gap V1 output			
000010E8	0000000 00000000									
000010F0	0000000 00000000			587+ 588+*	DS	FD	gap			
000010F8 000010F8	E310 5010 0014		00000010	589+X1 590+	DS LGF	OF R1, V2ADDR	load v2 source			
000010FE 00001104	E761 0000 0806 E310 5014 0014		00000000 00000014	591+ 592+	VL LGF	v22, O(R1) R1, V3ADDR	use v22 to test decod load v3 source	er		
0000110A	E771 0000 0806		00000014	593 +	VL	v23, 0(R1)	use v23 to test decod		`	
00001110 00001116	E766 7000 0EFF E760 5028 080E		000010E0	594+ 595+	VMX VST	V22, V22, V23, 0 V22, V101	test instruction (de save v1 output	St 15 a Sour	ce)	
0000111C 00001120	07FB			596+ 597+RE1	BR DC	R11 0F	return xl16 expected result			
00001120 00001120	02030405 09010181			598+ 599	DROP DC	R 5	0181070FFFFE00000020'	expected r	esul +	
00001128	070FFFFE 00000020							•	CSuit	
$00001130 \\ 00001138$	01020304 09800181 070FFFFD 0000001F			600	DC		0181070FFFFD0000001F'	v2		
00001140 00001148	02030405 0001FF80 010AFEFE 00000020			601	DC	XL16' 020304050001	FF80010AFEFE00000020'	v3		
				602 603 * Hal fwo	ord					

ASWA ver.	0. 7. 0 zvector-e/-0)1 - MI NMAXAV	g (Zvector	E/ VKK-C INST	ructio	1S)	25 Jul 202	5 16: 13: 17 Page	17
LOC	OBJECT CODE	ADDR1	ADDR2	STMI					
				604	VRR C	VMX, 1			
00001150				605 +	DS	OFD			
00001150		00001150		606+	USING		base for test data and		
00001150	00001190			607+T2	DC	$\mathbf{A}(\mathbf{X}2)$	address of test routing	e	
00001154	0002			608+	DC	H' 2'	test number		
00001156	00			609+		X' 00'	4		
00001157 00001158	01 E5D4E740 40404040			610+ 611+	DC DC	HL1' 1' CL8' VMX'	m4 instruction name		
00001138	000011C8			612+	DC	A(RE2+16)	address of v2 source		
00001164	000011D8			613+	DC	A(RE2+32)	address of v3 source		
00001168	0000010			614+	DC	A(16)	result length		
0000116C	000011B8			615+REA2	DC	$\underline{\mathbf{A}}(\mathbf{RE2})$	result address		
00001170	00000000 00000000			616+	DS	FD	gap V1 output		
00001178	00000000 00000000 0000000 00000000			617+V102	DS	XL16	VI output		
$00001180 \\ 00001188$	0000000 0000000			618+	DS	FD	dan		
30001100				619+*	טע	I D	gap		
00001190				620+X2	DS	0F			
00001190	E310 5010 0014		0000010	621+	LGF	R1, V2ADDR	load v2 source		
00001196	E761 0000 0806		00000000	622+	VL	v22, 0(R1)	use v22 to test decode	r	
0000119C	E310 5014 0014		00000014	623+	LGF	R1, V3ADDR	load v3 source		
000011A2 000011A8	E771 0000 0806 E766 7000 1EFF		0000000	624+	VL VMX	v23, 0(R1)	use v23 to test decode		
000011A8 000011AE	E760 7000 1EFF E760 5028 080E		00001178	625+ 626+	VIVIA	V22, V22, V23, 1 V22, V102	test instruction (des save v1 output	t is a source)	
000011RE	07FB		00001170	627+	BR	R11	return		
000011B8	3,12			628+RE2	DC	0F	xl16 expected result		
000011B8				629+	DROP	R5	•		
000011B8	00020001 FFFE0001			630	DC	XL16' 00020001FFFE	00017FFF800112340020'	expected result	
000011C0	7FFF8001 12340020			001	D.C.	VI 101 0001 EEEEEED	20007EFF00000100001E	0	
000011C8 000011D0	0001FFFF FFFD8000 7FFF8000 0123001F			631	DC	XL16 UUU1FFFFFFD	80007FFF80000123001F'	v2	
000011D0 000011D8	00020001 FFFE0001			632	DC	XI.16' 00020001FFFF	000100AA800112340020'	v 3	
000011E0	00AA8001 12340020			002	DC	ALIO OCCUONITIE	300100/11000112010020	70	
				633					
				634 * Word					
000011E0				635		VMX, 2			
000011E8 000011E8		000011E8		636+ 637+	DS USING	0FD * D5	base for test data and	tost routino	
000011E8	00001228	UUUUIIEO		638+T3	DC	A(X3)	address of test routing		
000011EC	0003			639+	DC DC	H' 3'	test number	~	
000011EE	00			640 +	DC	X' 00'			
000011EF	02			641+	DC	HL1'2'	m4		
000011F0	E5D4E740 40404040			642+	DC	CL8' VMX'	instruction name		
000011F8 000011FC	00001260 00001270			643+ 644+	DC DC	A(RE3+16) A(RE3+32)	address of v2 source address of v3 source		
000011FC	00001270			645+	DC DC	A(RE3+32) A(16)	result length		
00001200	000010			646+REA3	DC DC	A(RE3)	result address		
00001208	0000000 00000000			647+	DS	FD			
00001210	00000000 00000000			648+V103	DS	XL16	gap V1 output		
00001218	00000000 00000000			0.40	D.C.	TID			
00001220	00000000 00000000			649+ 650+*	DS	FD	gap		
00001228				651+X3	DS	0F			
00001228	E310 5010 0014		00000010	652+	LGF	R1, V2ADDR	load v2 source		
0000122E	E761 0000 0806		00000000	653+	VL	v22, 0(R1)	use v22 to test decode	r	
00001234	E310 5014 0014		0000014	654+	LGF	R1, V3ADDR	load v3 source		

X' 00'

HL1'4

m4

DC DC

702+

703 +

0000131E

0000131F

00

DC

DC

DROP

0F

R5

xl16 expected result

XL16' 0001FFFFFFD80007FFF80000123001F' expected result

752+RE6

753+

754

00001418

00001418

00001418

0001FFFF FFFD8000

ASMA Ver.	0. 7. 0 zvector- e7- 0	1 - Mi nMaxAvg	(Zvector	E7 VRR-c inst	ructi oı	ns)	25 Jul 202	5 16: 13: 17 l	Page 20
LOC	OBJECT CODE	ADDR1	ADDR2	STM					
	7FFF8000 0123001F 0001FFFF FFFD8000			755	DC	XL16' 0001FFFFFFD8	30007FFF80000123001F'	v2	
	7FFF8000 0123001F FFFFFFFF FFFFFFD 00000000 00000020			756	DC	XL16' FFFFFFFFFFF	FFFD0000000000000000000000000000000000	v 3	
				757 758 * quadwo 759		VMX, 4			
00001448 00001448 00001448	00001488	00001448		760+ 761+ 762+T7	DS USING DC	OFD	base for test data and address of test routing		e
0000144C 0000144E	0007 00			763+ 764+	DC DC	H' 7' X' 00'	test number	C	
0000144F 00001450 00001458	04 E5D4E740 40404040 000014C0			765+ 766+ 767+	DC DC DC	HL1' 4' CL8' VMX' A(RE7+16)	instruction name address of v2 source		
0000145C 00001460 00001464	000014D0 00000010 000014B0			768+ 769+ 770+REA7	DC DC DC	A(RE7+32) A(16) A(RE7)	address of v3 source result length result address		
00001468 00001470 00001478	00000000 00000000 00000000 00000000 000000			771+ 772+V107	DS DS	FD XL16	gap V1 output		
00001480	0000000 0000000			773+ 774+*	DS	FD	gap		
00001488 00001488 0000148E	E310 5010 0014 E761 0000 0806		00000010 00000000	775+X7 776+ 777+	DS LGF VL	0F R1, V2ADDR v22, 0(R1)	load v2 source use v22 to test decoder	r	
00001494 0000149A	E310 5014 0014 E771 0000 0806 E766 7000 4EFF		00000014 00000000	778+ 779+	LGF VL	R1, V3ADDR v23, O(R1)	load v3 source use v23 to test decoder	r	
000014A0 000014A6 000014AC	E760 5028 080E		00001470	780+ 781+ 782+	VMX VST BR	V22, V22, V23, 4 V22, V107 R11	test instruction (desisave v1 output return	t is a source	<i>غ)</i>
000014B0 000014B0 000014B0	00020001 FFFE0001			783+RE7 784+ 785	DC DROP DC	R 5	xl16 expected result	expected res	sul t
000014B8 000014C0 000014C8	00AA8001 12340020 0001FFFF FFFD8000 7FFF8000 0123001F			786	DC	XL16' 0001FFFFFFD8	30007FFF80000123001F'	v2	
000014D0	00020001 FFFE0001 00AA8001 12340020			787 788	DC	XL16' 00020001FFFE0	000100AA800112340020'	v3	
				789 * 790 * VMXL	- VEC	TOR MAXIMUM LOGICAI			
000014E0				792 * Byte 793	VRR_C	VMXL, 0			
000014E0 000014E0 000014E0 000014E4	00001520 0008	000014E0		794+ 795+ 796+T8 797+	DS USING DC DC	0FD *, R5 A(X8) H' 8'	base for test data and address of test routing test number		е
000014E6 000014E7	00 00			798+ 799+	DC DC	X' 00' HL1' 0'	m4		
000014F0 000014F4	E5D4E7D3 40404040 00001558 00001568			800+ 801+ 802+	DC DC DC	CL8' VMXL' A(RE8+16) A(RE8+32)	address of v2 source address of v3 source		
000014F8	0000010			803+	DC	A(16)	result length		

ASMA Ver.	0. 7. 0 zvector-e7-0	1 - Mi nMaxAvg	(Zvector	E7 VRR-c inst	ructi oı	ns)	25 Jul 2025	16: 13: 17 Pag	ge 21
LOC	OBJECT CODE	ADDR1	ADDR2	STM					
000014FC	00001548			804+REA8	DC	A(RE8)	result address		
00001500	00000000 00000000			805+	DS				
00001508	0000000 0000000			806+V108	DS	XL16	gap V1 output		
00001510	0000000 0000000			00011100	DO	ALIO	VI oucpue		
00001518	0000000 0000000			807 +	DS	FD	dan		
00001318	0000000 0000000			808+*	טט	T'D	gap		
00001520				809+X8	DS	0 F			
00001520	E310 5010 0014		0000010	810+			load v9 course		
							load v2 source		
00001526	E761 0000 0806		00000000	811+	VL LCE		use v22 to test decoder		
0000152C	E310 5014 0014		00000014	812+	LGF		load v3 source		
00001532	E771 0000 0806		0000000	813+	VL		use v23 to test decoder		
00001538	E766 7000 0EFD		00001700	814+	VMXL	V22, V22, V23, 0	test instruction (dest	is a source)	
0000153E	E760 5028 080E		00001508	815+	VST	V22, V108	save v1 output		
00001544	07FB			816+	BR		return		
00001548				817+RE8	DC		xl16 expected result		
00001548	00000407 00000000			818+	DROP	R5			
00001548	02030405 0980FF81			819	DC	XL16' 020304050980F	FF81070FFFFE00000020'	expected resul	ιt
00001550	070FFFFE 00000020								
00001558	01020304 09800181			820	DC	XL16' 0102030409800	181070FFFFD0000001F'	v2	
00001560	070FFFFD 0000001F								
00001568	02030405 0001FF80			821	DC	XL16' 020304050001F	F80010AFEFE00000020'	v3	
00001570	010AFEFE 00000020								
				822					
				823 * Hal fwo					
				824		VMXL, 1			
00001578				825+	DS	OFD			
00001578		00001578		826+	USING	*, R 5	base for test data and		
00001578	000015B8			827+T9	DC	A(X9)	address of test routine		
0000157C	0009			828+	DC	Н' 9'	test number		
0000157E	00			829+	DC	X' 00'			
0000157F	01			830+	DC	HL1' 1'	m4		
00001580	E5D4E7D3 40404040			831+	DC	CL8' VMXL'	instruction name		
00001588	000015F0			832+	DC	A(RE9+16)	address of v2 source		
0000158C	00001600			833+	DC	A(RE9+32)	address of v3 source		
00001590	0000010			834+	DC	A(16)	result length		
00001594	000015E0			835+REA9	DC	A(RE9)	result address		
00001598	0000000 00000000			836 +	DS	FD	gap		
000015A0	00000000 00000000			837+V109	DS	XL16	gap V1 output		
000015A8	0000000 00000000						•		
000015B0	00000000 00000000			838+	DS	FD	gap		
				839+*					
000015B8				840+X9	DS	0F			
000015B8	E310 5010 0014		0000010	841+	LGF	R1, V2ADDR	load v2 source		
000015BE	E761 0000 0806		0000000	842+	VL	v22, 0(R1)	use v22 to test decoder		
000015C4	E310 5014 0014		0000014	843+	LGF	R1, V3ADDR	load v3 source		
000015CA	E771 0000 0806		0000000	844+	VL	v23, 0(R1)	use v23 to test decoder		
000015D0	E766 7000 1EFD			845+	VMXL	V22, V22, V23, 1	test instruction (dest		
000015D6	E760 5028 080E		000015A0	846+	VST	V22, V109	save v1 output		
000015DC	07FB			847+	BR		return		
000015E0				848+RE9	DC		xl16 expected result		
000015E0				849+	DROP	R5	1		
000015E0	0002FFFF FFFE8000			850	DC		30007FFF800112340020'	expected resul	l t
000015E8	7FFF8001 12340020				-	 		1	
000015F0	0001FFFF FFFD8000			851	DC	XL16' 0001FFFFFFD8	30007FFF80000123001F'	v2	
000015F8	7FFF8000 0123001F								
00001600	00020001 FFFE0001			852	DC	XL16' 00020001FFFE0	00100AA800112340020'	$\mathbf{v3}$	

ASMA Ver.	0. 7. 0 zvector-e7-0	1 - Mi nMaxAvg	g (Zvector	E7 VRR-c inst	ructi o	ns)	25 Jul 2025 16: 13: 17 Page 22
LOC	OBJECT CODE	ADDR1	ADDR2	STMI			
00001608	00AA8001 12340020						
				853 854 * Word			
				855		VMXL, 2	
00001610 00001610		00001610		856+ 857+	DS USING	0FD * D5	base for test data and test routine
00001610	00001650	00001010		858+T10	DC	A(X10)	address of test routine
00001614	000A			859+ 860+	DC	H' 10'	test number
00001616 00001617	00 02			861+	DC DC	X' 00' HL1' 2'	m4
00001618	E5D4E7D3 40404040			862+	DC	CL8' VMXL'	instruction name
00001620 00001624	00001688 00001698			863+ 864+	DC DC	A(RE10+16) A(RE10+32)	address of v2 source address of v3 source
00001628 0000162C	0000010			865+	DC	A(16)	result length
00001620	00001678 00000000 00000000			866+REA10 867+	DC DS	A(RE10) FD	result address gap
00001638	00000000 00000000			868+V1010	DS	XL16	gap V1 output
00001640 00001648	00000000 00000000 0000000 00000000			869+	DS	FD	gap
00001650				870+* 871+X10	DC	OF	
00001650 00001650	E310 5010 0014		0000010	872+	DS LGF	R1, V2ADDR	load v2 source
00001656	E761 0000 0806		00000000	873+	VL	v22, 0(R1)	use v22 to test decoder
0000165C 00001662	E310 5014 0014 E771 0000 0806		00000014 00000000	874+ 875+	LGF VL	R1, V3ADDR v23, O(R1)	load v3 source use v23 to test decoder
00001668 0000166E	E766 7000 2EFD		00001638	876+ 877+	VMXL VST	V22, V22, V23, 2	test instruction (dest is a source)
00001664	E760 5028 080E 07FB		00001038	878+	BR	V22, V1010 R11	save v1 output return
00001678 00001678				879+RE10 880+	DC DROP	OF R5	xl16 expected result
00001678	FFFFFFF 7FFFFFF			881	DC		FFFF1234567800000020' expected result
00001680 00001688	12345678 00000020 FFFFFFF 7FFFFFF			882	DC	XI.16' FFFFFFFF7FFF	FFFF01234567000001F' v2
00001690	01234567 0000001F						
00001698 000016A0	FFFFFFF 0000000A 12345678 00000020			883	DC	XL16' FFFFFFFE0000	0000A1234567800000020' v3
				884			
				885 * Double 886		VMXL, 3	
000016A8		000016A8		887+ 888+	DS USING	OFD	has for test data and test routing
000016A8 000016A8	000016E8	000010A6		889+T11	DC	A(X11)	base for test data and test routine address of test routine
000016AC 000016AE	000B 00			890+ 891+	DC DC	H' 11' X' 00'	test number
000016AF	03			892+	DC	HL1' 3'	m4
000016B0 000016B8	E5D4E7D3 40404040 00001720			893+ 894+	DC DC	CL8' VMXL' A(RE11+16)	instruction name address of v2 source
000016BC	00001730			895+	DC	A(RE11+32)	address of v3 source
000016C0 000016C4	00000010 00001710			896+ 897+REA11	DC DC	A(16) A(RE11)	result length result address
000016C8	0000000 00000000			898+	DS	FD	gap V1 output
000016D0 000016D8	00000000 00000000 0000000 00000000			899+V1011	DS	XL16	V1 output
000016E0	0000000 0000000			900+	DS	FD	gap
000016E8				901+* 902+X11	DS	OF	
00001010				JUN : 1111	20	0-	

L₀C

000016E8

000016EE

000016F4

000016FA

00001700

00001706

0000170C

00001710

00001710

00001710

00001718

00001720

00001728

00001730

00001738

00001740

OBJECT CODE

E310 5010 0014

E310 5014 0014

E771 0000 0806

E766 7000 3EFD

FFFFFFF FFFFFFFF

0000000 00000020

FFFFFFF FFFFFFF

0000000 0000001F

FFFFFFF FFFFFFD

00000000 00000020

E760 5028 080E

07FB

E761 0000 0806

USING *, R5 00001740 00001740 919+ 00001740 00001780 920+T12 DC A(X12) address of test routine DC H' 12' 00001744 **000C** 921+ test number 00001746 00 922 +DC X' 00' HL1' 4' 00001747 04 923 +DC **m4** 924+ DC CL8' VMXL' 00001748 E5D4E7D3 40404040 instruction name 000017B8 925+ DC A(RE12+16)address of v2 source 00001750 A(RE12+32) 00001754 000017C8 926+ DC address of v3 source 00001758 0000010 927+DC A(16) result length 000017A8 928+REA12 DC A(RE12) result address 0000175C 00001760 0000000 00000000 929+ DS FD gap V1 output 0000000 00000000 930+V1012 DS **XL16** 00001768 00001770 0000000 00000000 00001778 0000000 00000000 931+ DS FD gap 932+* DS $\mathbf{0F}$ 933+X12 00001780 R1, V2ADDR 00001780 E310 5010 0014 0000010 934+ LGF load v2 source 00001786 E761 0000 0806 0000000 935+ VL v22, 0(R1)use v22 to test decoder R1, V3ADDR 0000178C E310 5014 0014 0000014 936+ **LGF** load v3 source 937+ v23, 0(R1)00001792 E771 0000 0806 0000000 VL use v23 to test decoder V22, V22, V23, 4 938+ 00001798 E766 7000 4EFD **VMXL** test instruction (dest is a source) 00001768 V22, V1012 save v1 output 0000179E E760 5028 080E 939+**VST** R11 000017A4 07FB 940+ BR return 000017A8 941+RE12 DC 0F xl16 expected result **DROP** 000017A8 942 +**R5** FFFFFFF FFFFFFF XL16' FFFFFFFFFFFFFFFF00000000000001F' expected result 000017A8 943 DC 000017B0 0000000 0000001F FFFFFFF FFFFFFF 000017B8 944 DC XL16' FFFFFFFFFFFFFFFF00000000000001F' $\mathbf{v2}$ 00000000 0000001F 000017C0 000017C8 FFFFFFF FFFFFFD 945 DC $\mathbf{v3}$ 000017D0 0000000 00000020 946 947 * quadword 948 VRR_C VMXL, 4 000017D8 949 +DS **OFD** USING *, R5 000017D8 000017D8 **950**+ base for test data and test routine 00001818 000017D8 951+T13 A(X13)address of test routine

R1, V2ADDR

v22, 0(R1)

R1, V3ADDR

v23, 0(R1)

V22, V1011

R11

0F

R5

VRR_C VMXL, 4

OFD

V22, V22, V23, 3

LGF

VL

LGF

VL

VMXL

VST

BR

DC

DC

DC

DC

DS

DROP

ASMA Ver. 0.7.0 zvector-e7-01-MinMaxAvg (Zvector E7 VRR-c instructions)

ADDR2

00000010

0000000

00000014

0000000

000016D0

STM

903 +

904+

905+

906+

907+

908+

909+

911 +

912

913

914

915

917

918 +

916 * quadword

910+RE11

ADDR1

ASMA Ver.	0. 7. 0 zvector- e7- 0	1 - Mi nMaxAv	g (Zvector	E7 VRR-c inst	ructi oı	ns)	25 Jul 2025 16: 13: 17 Page 24
LOC	OBJECT CODE	ADDR1	ADDR2	STM			
000017DC	000D			952+	DC	H' 13'	test number
000017DE	00			953+	DC	X' 00'	4
000017DF	04 E5D4E7D2 40404040			954+	DC	HL1'4' CL8'VMXL'	m4
000017E0 000017E8	E5D4E7D3 40404040 00001850			955+ 956+	DC DC	A(RE13+16)	instruction name address of v2 source
000017E8	00001860			957+	DC	A(RE13+10) A(RE13+32)	address of v2 source
000017EC	00001000			958+	DC	A(16)	result length
000017F4	00001840			959+REA13	DC	A(RE13)	result address
000017F8	00000000 00000000			960+	DS	FD	
00001800	00000000 00000000			961+V1013	DS	XL16	gap V1 output
00001808	00000000 00000000						-
00001810	00000000 00000000			962+	DS	FD	gap
00001010				963+*	DC	OF	
00001818 00001818	E310 5010 0014		00000010	964+X13 965+	DS LGF	OF R1, V2ADDR	load v2 source
00001818 0000181E	E761 0000 0806		00000010	966+	VL	v22, O(R1)	use v22 to test decoder
00001812	E310 5014 0014		00000000	967+	LGF	R1, V3ADDR	load v3 source
0000182A	E771 0000 0806		00000000	968+	VL	v23, 0(R1)	use v23 to test decoder
00001830	E766 7000 4EFD			969+	VMXL	V22, V22, V23, 4	test instruction (dest is a source)
00001836	E760 5028 080E		00001800	970+	VST	V22, V1013	save v1 output
0000183C	07FB			971+	BR	R11	return
00001840				972+RE13	DC	0F	xl16 expected result
00001840	PERFERE PERFERE			973+	DROP	R5	
00001840	FFFFFFF FFFFFFD			974	DC	XL16 FFFFFFFFFF	FFFD0000000000000000000000000000000000
00001848 00001850	00000000 00000020 0001FFFF FFFD8000			975	DC	YI 16' 0001 FFFFFFF	80007FFF80000123001F' v2
00001858	7FFF8000 0123001F			373	ЪС	ALIO OOOIITITITIDO	50007111000001250011
00001860	FFFFFFF FFFFFFD			976	DC	XL16' FFFFFFFFFFF	FFFD0000000000000000000000000000000000
00001868	0000000 00000020						
				977			
				978 * quadwo	rd VDD C	V/N/M/T A	
00001870				979 980+	DS DS	VMXL, 4 OFD	
00001870		00001870		981+	USI NG		base for test data and test routine
00001870	000018B0	00001070		982+T14	DC	A(X14)	address of test routine
00001874	000E			983+	DC	H' 14'	test number
00001876	00			984+	DC	X' 00'	
00001877	04			985+	DC	HL1' 4'	m4
00001878	E5D4E7D3 40404040			986+	DC	CL8' VMXL'	instruction name
00001880	000018E8			987+	DC	A(RE14+16)	address of v2 source
00001884 00001888	000018F8			988+ 989+	DC DC	A(RE14+32)	address of v3 source
0000188C	00000010 000018D8			989+ 990+REA14	DC DC	A(16) A(RE14)	result length result address
00001880	00001000 000000000			991+	DS	FD	gap
00001898	0000000 0000000			992+V1014	DS	XL16	V1 output
000018A0	00000000 00000000				-		1
000018A8	00000000 00000000			993+	DS	FD	gap
00004070				994+*	DC	OF.	
			00000010	995+X14 996+	DS	OF	load v9 source
000018B0	E210 E010 0014			44n±	LGF	R1, V2ADDR	load v2 source
000018B0	E310 5010 0014 E761 0000 0806		00000010			v22 ((D1)	
000018B0 000018B6	E761 0000 0806		00000000	997+	VL	v22, 0(R1) R1, V3ADDR	use v22 to test decoder
000018B0 000018B6 000018BC	E761 0000 0806 E310 5014 0014		00000000 0000014	997+ 998+	VL LGF	R1, V3ADDR	use v22 to test decoder load v3 source
000018B0 000018B6	E761 0000 0806		00000000	997+	VL LGF VL	R1, V3ADDR v23, O(R1)	use v22 to test decoder
000018B0 000018B6 000018BC 000018C2 000018C8 000018CE	E761 0000 0806 E310 5014 0014 E771 0000 0806 E766 7000 4EFD E760 5028 080E		00000000 0000014	997+ 998+ 999+ 1000+ 1001+	VL LGF VL VMXL VST	R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1014	use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output
000018B0 000018B6 000018BC 000018C2 000018C8	E761 0000 0806 E310 5014 0014 E771 0000 0806 E766 7000 4EFD		0000000 0000014 0000000	997+ 998+ 999+ 1000+	VL LGF VL VMXL	R1, V3ADDR v23, O(R1) V22, V22, V23, 4	use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source)

ASMA Ver.	0. 7. 0 zvector-e7-0	1 - Mi nMaxAvş	g (Zvector	E7 VRR-c inst	ructi oı	ns)	25 Jul 2025	5 16: 13: 17 Page 25
LOC	OBJECT CODE	ADDR1	ADDR2	STMT				
000018D8 000018D8				1003+RE14 1004+	DC DROP	OF R5	xl16 expected result	
000018D8 000018E0	00020001 FFFE0001 00AA8001 12340020			1005	DC		000100AA800112340020'	expected result
000018E8	0001FFFF FFFD8000			1006	DC	XL16' 0001FFFFFFD8	30007FFF80000123001F'	v2
000018F0 000018F8 00001900	7FFF8000 0123001F 00020001 FFFE0001 00AA8001 12340020			1007	DC	XL16' 00020001FFFE0	000100AA800112340020'	v 3
				1008 1009 *				
				1010 * VMN	- VE (CTOR MINIMUM		
				1011 * 1012 * Byte 1013	VRR_C			
00001908				1014+	DS _	OFD		
00001908 00001908	00001948	00001908		1015+ 1016+T15	USI NG DC		base for test data and address of test routine	
0000190C	000F			1017+	DC	H' 15'	test number	
0000190E	00			1018+	DC	X' 00'		
0000190F	00			1019+	DC		m4	
$00001910 \\ 00001918$	E5D4D540 40404040 00001980			1020+ 1021+	DC DC	CL8' VMN' A(RE15+16)	instruction name address of v2 source	
00001318 0000191C	00001980			1021+ 1022+	DC DC		address of v2 source	
00001920	00000010			1023+	DC		result length	
00001924	00001970			1024+REA15	DC		result address	
00001928	0000000 00000000			1025+	DS	FD VI 16	gap	
$00001930 \\ 00001938$	00000000 00000000 00000000 00000000			1026+V1015	DS	XL16	V1 output	
00001940	00000000 00000000			1027+	DS	FD	gap	
00001948				1028+* 1029+X15	DS	0F		
	E310 5010 0014		0000010				load v2 source	
	E761 0000 0806		00000000		VL		use v22 to test decoder	c
	E310 5014 0014		00000014		LGF		load v3 source	
0000195A 00001960	E771 0000 0806 E766 7000 0EFE		0000000	1033+ 1034+	VL VMN	v23, 0(R1) V22, V22, V23, 0	use v23 to test decoder test instruction (dest	
00001966	E760 7000 OEFE E760 5028 080E		00001930	1035+	VST	V22, V1015	save v1 output	is a source)
0000196C	07FB			1036+	BR	R11	return	
00001970				1037+RE15	DC		xl16 expected result	
00001970 00001970	01020304 0080FF80			1038+ 1039	DROP DC	R5	FF80010AFEFD0000001F'	expected result
00001970	01020304 0080FF80 010AFEFD 0000001F			1000	DC	ALIU UIU&UJU4UUOUI	TOUTUATETUUUUUUTT	expected resurt
00001980	01020304 09800181			1040	DC	XL16' 0102030409800	0181070FFFFD0000001F'	v2
00001988 00001990 00001998	070FFFFD 0000001F 02030405 0001FF80 010AFEFE 00000020			1041	DC	XL16' 020304050001F	FF80010AFEFE00000020'	v3
20001000				1042				
				1043 * Hal fwo		**************************************		
00001040				1044	VRR_C			
000019A0 000019A0		000019A0		1045+ 1046+	DS USING	OFD * R5	base for test data and	test routine
000019A0 000019A0	000019E0	JUULIJAU		1040+ 1047+T16	DC		address of test routine	
000019A4	0010			1048+	DC	H'16'	test number	
000019A6	00			1049+	DC	X' 00'	_	
000019A7 000019A8	01 E5D4D540 40404040			1050+ 1051+	DC DC	HL1' 1' CL8' VMN'	m4 instruction name	
OUUUIBAO	LJV4VJ4V 4V4V4V4V			1031+	DC	CLO VIVIN	Thetruction halle	

01234567 0000001F

00001AA8

ASMA Ver.	0. 7. 0 zvector- e7- 0	1- Mi nMaxAvg	(Zvector	E7 VRR-c inst	ruction	ns)	25 Jul 2025	5 16: 13: 17	Page 27
LOC	OBJECT CODE	ADDR1	ADDR2	STMI					
00001AB8	FFFFFFF 7FFFFFF 01234567 0000001F			1102	DC		FFF012345670000001F'	v2	
	FFFFFFF 0000000A 12345678 00000020			1103	DC	XL16' FFFFFFE00000	000A1234567800000020'	v3	
				1104 1105 * Double	vord				
00004470				1106	VRR_C				
00001AD0 00001AD0		00001AD0		1107+ 1108+	DS USING	OFD *, R5	base for test data and	test routin	e
00001AD0 00001AD4	00001B10 0012			1109+T18 1110+	DC DC	A(X18) H' 18'	address of test routine test number	9	
00001AD6 00001AD7	00 03			1111+ 1112+		X' 00'	m4		
00001AD8	E5D4D540 40404040			1113+	DC	CL8' VMN'	instruction name		
00001AE4	00001B48 00001B58			1114+ 1115+	DC DC	A(RE18+16) A(RE18+32)	address of v2 source address of v3 source		
00001AE8 00001AEC	00000010 00001B38			1116+ 1117+REA18	DC DC	A(16) A(RE18)	result length result address		
	00000000 00000000 00000000 00000000			1118+ 1119+V1018	DS DS	FD XL16	gap V1 output		
00001B00	0000000 00000000						_		
	0000000 00000000			1120+ 1121+*	DS	FD	gap		
00001B10 00001B10	E310 5010 0014		00000010	1122+X18 1123+	DS LGF	OF R1, V2ADDR	load v2 source		
00001B16	E761 0000 0806 E310 5014 0014		00000000 00000014	1124+ 1125+	VL LGF		use v22 to test decoder load v3 source	?	
00001B22	E771 0000 0806		00000014	1126+	VL	v23, 0(R1)	use v23 to test decoder		`
00001B2E	E766 7000 3EFE E760 5028 080E		00001AF8	1127+ 1128+	VMN VST	V22, V22, V23, 3 V22, V1018	test instruction (dest save v1 output	t is a sourc	e)
00001B34 00001B38	07FB			1129+ 1130+RE18	BR DC		return xl16 expected result		
00001B38	FFFFFFFF FFFFFFD			1131+ 1132	DROP DC	R5	FFD00000000000001F'	expected re	eul t
00001B40	0000000 0000001F							•	Sui C
00001B50	FFFFFFF FFFFFFF 00000000 0000001F			1133			FFF00000000000001F'	v2	
	FFFFFFF FFFFFFD 00000000 00000020			1134	DC	XL16' FFFFFFFFFFF	FFD00000000000000000000000000000000000	v 3	
				1135 1136					
				1137 * quadwo	rd	VINAT A			
00001B68				1138 1139+	VRR_C DS	OFD			
00001B68 00001B68	00001BA8	00001B68		1140+ 1141+T19	USI NG DC	*, R5 A(X19)	base for test data and address of test routine		e
00001B6C 00001B6E	0013 00			1142+ 1143+	DC		test number		
00001B6F	04			1144+ 1145+	DC	HL1' 4'	m4		
00001B78	E5D4D540 40404040 00001BE0			1146+	DC DC	A(RE19+16)	instruction name address of v2 source		
00001B7C 00001B80	00001BF0 00000010			1147+ 1148+	DC DC		address of v3 source result length		
00001B84	00001BD0 00000000 00000000			1149+REA19 1150+	DC DS	A(RE19)	result address		
	00000000 00000000			1151+V1019	DS	XL16	gap V1 output		

1199 * quadword

00001C90

ASMA Ver.	0. 7. 0 zvector- e7-0)1- Mi nMaxAvş	g (Zvector	E7 VRR-c inst	ructi oı	ns)	25 Jul 202	5 16: 13: 17	Page	29
LOC	OBJECT CODE	ADDR1	ADDR2	STMT						
				1200	VRR C	VMN, 4				
00001C98				1201+	DS DS	OFD				
00001C98		00001C98		1202+	USING		base for test data and	test routin	e	
00001C98	00001CD8			1203+T21	DC	A(X21)	address of test routin	e		
00001C9C	0015			1204+	DC	H' 21'	test number			
00001C9E	00			1205+	DC	X' 00'	4			
00001C9F 00001CA0	04 E5D4D540 40404040			1206+ 1207+	DC DC	HL1'4' CL8'VMN'	m4 instruction name			
00001CA8	00001D10			1208+	DC	A(RE21+16)	address of v2 source			
00001CAC	00001D20			1209+	DC	A(RE21+32)	address of v3 source			
00001CB0	0000010			1210+	DC	A(16)	result length			
00001CB4	00001D00			1211+REA21	DC	A(RE21)	result address			
00001CB8 00001CC0	00000000 00000000 0000000 00000000			1212+ 1213+V1021	DS DS	FD XL16	gap V1 output			
00001CC0 00001CC8	0000000 0000000			1213+11021	אס	ALIO	vi oucpuc			
00001CD0	0000000 00000000			1214+	DS	FD	gap			
				1215+*						
00001CD8	E040 F040 0044		00000010	1216+X21	DS	OF	1 1 0			
00001CD8	E310 5010 0014		00000010	1217+	LGF	R1, V2ADDR	load v2 source	.		
00001CDE 00001CE4	E761 0000 0806 E310 5014 0014		00000000 0000014	1218+ 1219+	VL LGF	v22, 0(R1) R1, V3ADDR	use v22 to test decode load v3 source	1		
00001CE4	E771 0000 0806		00000014	1220+	VL	v23, 0(R1)	use v23 to test decode	r		
00001CF0	E766 7000 4EFE			1221+	VMN	V22, V22, V23, 4	test instruction (des		e)	
00001CF6	E760 5028 080E		00001CC0	1222+	VST	V22, V1021	save v1 output			
00001CFC	07FB			1223+	BR	R11	return			
00001D00 00001D00				1224+RE21 1225+	DC DROP	OF R5	xl16 expected result			
00001D00	0001FFFF FFFD8000			1225+ 1226	DKOP DC		80007FFF80000123001F'	expected re	sul t	
00001D08	7FFF8000 0123001F			1220	DC	ALIO OUUIIIIIII	00007111000001200011	скрессей те	Jul C	
00001D10	0001FFFF FFFD8000			1227	DC	XL16' 0001FFFFFFD	80007FFF80000123001F'	v2		
00001D18	7FFF8000 0123001F			1000	D.C.	VI 101 00000001FFFF	000100440001100400001	0		
00001D20 00001D28	00020001 FFFE0001 00AA8001 12340020			1228	DC	XL16' 00020001FFFE	000100AA800112340020'	v3		
00001028	00AA8001 12340020			1229						
				1230 *						
				1231 * VMNL	- VEC	TOR MINIMUM LOGICA	L			
				1232 *						
				1233 * Byte 1234	VDD C	VMNL, 0				
00001D30				1234 1235+	VKK_C DS	OFD				
00001D30		00001D30		1236+	USING		base for test data and	test routin	e	
00001D30	00001D70			1237+T22	DC	A(X22)	address of test routin			
00001D34	0016			1238+	DC	H' 22'	test number			
00001D36	00			1239+	DC	Х' 00'	····4			
00001D37 00001D38	00 E5D4D5D3 40404040			1240+ 1241+	DC DC	HL1' 0' CL8' VMNL'	m4 instruction name			
00001D38	00001DA8			1241+ 1242+	DC DC	A(RE22+16)	address of v2 source			
00001D44	00001DB8			1243+	DC	A(RE22+32)	address of v3 source			
00001D48	00000010			1244+	DC	A(16)	result length			
00001D4C	00001D98			1245+REA22	DC	A(RE22)	result address			
00001D50 00001D58	$\begin{array}{cccc} 00000000 & 00000000 \\ 00000000 & 00000000$			1246+ 1247+V1022	DS DS	FD XL16	gap V1 output			
00001D38	00000000 00000000			164/ + V 1U&&	טט	ALIU	vi oucput			
00001D68	00000000 00000000			1248+	DS	FD	gap			
				1249+*			-			
				195A. VOO	UC.	/\L'				
00001D70				1250+X22	DS	0F				

DS

OFD

A(X24)

base for test data and test routine

address of test routine

USING *, R5

1297 +

1298+

1299+T24

00001E60

00001E60

00001E60

00001E60

00001EA0

ASMA Ver.	0. 7. 0 zvector- e7- 0	1 - Mi nMaxAvg	g (Zvector	E7 VRR-c inst	ructi oı	ns)	25 Jul 2025 16: 13: 17 Page 3
LOC	OBJECT CODE	ADDR1	ADDR2	STMI			
00001E64	0018			1300+	DC	H' 24'	test number
00001E66	00			1301+	DC	X' 00'	0000
00001E67	02			1302+	DC	HL1' 2'	m4
00001E68	E5D4D5D3 40404040			1303+	DC	CL8' VMNL'	instruction name
00001E70	00001ED8			1304+	DC	A(RE24+16)	address of v2 source
00001E74	00001EE8			1305+	DC	A(RE24+32)	address of v3 source
00001E78	00000010			1306+	DC	A(16)	result length
00001E7C	00001EC8			1307+REA24	DC	A(RE24)	result address
00001E80	0000000 0000000			1308+	DS	FD	
00001E88	0000000 00000000			1309+V1024	DS	XL16	gap V1 output
00001E90	0000000 00000000			1000111021	20	12210	11 ouepue
00001E98	0000000 00000000			1310+	DS	FD	gap
00001200				1311+*			5-r
00001EA0				1312+X24	DS	OF	
00001EA0	E310 5010 0014		00000010	1313+	LGF	R1, V2ADDR	load v2 source
00001EA6	E761 0000 0806		00000000		VL	v22, 0(R1)	use v22 to test decoder
00001EAC	E310 5014 0014		00000014		ĹĠF	R1, V3ADDR	load v3 source
00001EB2	E771 0000 0806			1316+	VL	v23, 0(R1)	use v23 to test decoder
00001EB8	E766 7000 2EFC			1317+		V22, V22, V23, 2	test instruction (dest is a source)
00001EBE	E760 5028 080E		00001E88	1318+	VST	V22, V1024	save v1 output
00001EC4	07FB			1319+	BR	R11	return
00001EC8				1320+RE24	DC	0F	xl16 expected result
00001EC8				1321+	DROP	R5	P
00001EC8	FFFFFFE 000000A			1322	DC		000A012345670000001F' expected result
	01234567 0000001F						1
00001ED8	FFFFFFFF 7FFFFFFF			1323	DC	XL16' FFFFFFFF7FFF	FFFF012345670000001F' v2
	01234567 0000001F						
	FFFFFFE 000000A			1324	DC	XL16' FFFFFFE00000	000A1234567800000020' v3
00001EF0	12345678 00000020			4000			
				1325 1326 * Double	wond		
				1327		VMNL, 3	
00001EF8				1328+	DS	OFD	
00001EF8		00001EF8		1329+	USI NG		base for test data and test routine
00001EF8	00001F38	OUUUIEFO		1329+ 1330+T25	DC	A(X25)	address of test routine
00001EF8	0019			1331+	DC	H' 25'	test number
00001EFC	0019			1332+	DC	X' 00'	test number
	03			1333+	DC	HL1'3'	m4
00001E11	E5D4D5D3 40404040			1334+	DC	CL8' VMNL'	instruction name
00001F08	00001F70			1335+	DC	A(RE25+16)	address of v2 source
00001F0C	00001F80			1336+	DC	A(RE25+32)	address of v3 source
00001F10	00000010			1337+	DC	A(16)	result length
00001F14	00001F60			1338+REA25	DC	A(RE25)	result address
00001F18	0000000 00000000			1339+	DS	FD	
00001F20	00000000 00000000			1340+V1025	DS	XL16	gap V1 output
00001F28	0000000 00000000						•
00001F30	0000000 00000000			1341+	DS	FD	gap
				1342+*			
00001F38				1343+X25	DS	OF	
00001F38	E310 5010 0014		00000010		LGF	R1, V2ADDR	load v2 source
00001F3E	E761 0000 0806		00000000		VL_	v22, O(R1)	use v22 to test decoder
	E310 5014 0014		00000014		LGF	R1, V3ADDR	load v3 source
	E771 0000 0806		00000000	1347+	VL	v23, 0(R1)	use v23 to test decoder
	E766 7000 3EFC		00004500	1348+		V22, V22, V23, 3	test instruction (dest is a source)
00001F56	E760 5028 080E		00001F20	1349+	VST	V22, V1025	save v1 output
00001F5C	U/FB			1350+	BR	R11	return

L_OC **OBJECT CODE** ADDR1 ADDR2 **STM** 00001F60 0F xl16 expected result 1351+RE25 DC **DROP R5** 00001F60 1352+ XL16' FFFFFFFFFFFFFFFD00000000000001F' 00001F60 FFFFFFF FFFFFFD 1353 DC 0000000 0000001F 00001F68 FFFFFFF FFFFFFF 00001F70 1354 DC XL16' FFFFFFFFFFFFFFFF00000000000001F' 00000000 0000001F 00001F78 00001F80 FFFFFFF FFFFFFD 1355 DC 00001F88 0000000 00000020 1356 1357 quadword VRR_C VMNL, 4 1358 00001F90 1359 +**OFD** DS USING *, R5 00001F90 00001F90 1360+ base for test data and test routine 00001FD0 1361+T26 A(X26) 00001F90 DC address of test routine 001A 1362+ DC H' 26' 00001F94 test number 1363+ DC X' 00' 00001F96 00 1364+ DC HL1'4' 00001F97 04 **m4** CL8' VMVL' 00001F98 E5D4D5D3 40404040 1365+ DC instruction name A(RE26+16) 00001FA0 00002008 1366+ DC address of v2 source A(RE26+32) 00002018 DC 1367+ address of v3 source 00001FA4 00001FA8 00000010 1368+ DC A(16) result length 1369+REA26 DC A(RE26) 00001FAC 00001FF8 result address 00001FB0 0000000 00000000 1370 +DS FD gap V1 output 1371+V1026 00001FB8 0000000 00000000 DS **XL16** 0000000 00000000 00001FC0 1372+ FD 0000000 00000000 DS 00001FC8 gap 1373+* 00001FD0 1374+X26 DS $\mathbf{0F}$ R1, V2ADDR E310 5010 0014 **LGF** load v2 source 00001FD0 00000010 1375+ 1376+ v22, 0(R1)E761 0000 0806 00000000 use v22 to test decoder 00001FD6 VL R1, V3ADDR E310 5014 0014 1377+ LGF load v3 source 00001FDC 00000014 v23, 0(R1)00001FE2 E771 0000 0806 00000000 1378+ VL use v23 to test decoder V22, V22, V23, 4 00001FE8 E766 7000 4EFC 1379+ VMNL test instruction (dest is a source) E760 5028 080E 00001FB8 1380 +V22, V1026 00001FEE **VST** save v1 output R11 00001FF4 **07FB** 1381 +BR return 1382+RE26 0F 00001FF8 DC xl16 expected result 00001FF8 1383+ **DROP R5** 00001FF8 FFFFFFF FFFFFFD 1384 0000000 00000020 00002000 FFFFFFF FFFFFFF DC 00002008 1385 XL16' FFFFFFFFFFFFFFFF00000000000001F' 00002010 0000000 0000001F 00002018 FFFFFFF FFFFFFD 1386 DC $\mathbf{v3}$ 00002020 0000000 00000020 1387 1388 * quadword VRR_C VMNL, 4 1389 00002028 1390 +**OFD** DS 00002028 00002028 1391+ USING *, R5 base for test data and test routine A(X27) 00002028 00002068 1392+T27 DC address of test routine 1393+ DC H' 27' 0000202C 001B test number 1394+ X' 00' 0000202E DC 00 1395+ HL1'4' 0000202F 04 DC **m4** 00002030 E5D4D5D3 40404040 1396+ DC CL8' VMNL' instruction name 1397+ A(RE27+16) 00002038 000020A0 DC address of v2 source 000020B0 1398+ DC A(RE27+32)0000203C address of v3 source DC 00002040 00000010 1399 +result length A(16)

ASMA Ver.	0. 7. 0 zvector- e7- 0)1- Mi nMaxAv	g (Zvector	E7 VRR-c inst	ructi o	ns)	25 Jul 2025 16: 13: 17 Page	33
LOC	OBJECT CODE	ADDR1	ADDR2	STMI				
00002044	00002090			1400+REA27	DC	A(RE27)	result address	
00002048	0000000 00000000			1401+	DS	FĎ		
00002050	0000000 00000000			1402+V1027	DS	XL16	gap V1 output	
00002058	0000000 00000000						•	
00002060	0000000 00000000			1403+	DS	FD	gap	
				1404+*				
00002068				1405+X27	DS	OF		
00002068	E310 5010 0014		00000010	1406+	LGF	R1, V2ADDR	load v2 source	
0000206E	E761 0000 0806		00000000	1407+	VL	v22, 0(R1)	use v22 to test decoder	
00002074	E310 5014 0014		00000014	1408+	LGF	R1, V3ADDR	load v3 source	
0000207A	E771 0000 0806		00000000	1409+	VL	v23, 0(R1)	use v23 to test decoder	
00002080	E766 7000 4EFC			1410+	VMNL	V22, V22, V23, 4	test instruction (dest is a source)	
00002086	E760 5028 080E		00002050	1411+	VST	V22, V1027	save v1 output	
0000208C	07FB			1412+	BR	R11	return	
00002090				1413+RE27	DC	OF	xl16 expected result	
00002090	0001 FEEF FEEDOOO			1414+	DROP	R5	00007EEE00000100001E	
00002090	0001FFFF FFFD8000			1415	DC	XL16 OUU1FFFFFFD	80007FFF80000123001F' expected result	
00002098 000020A0	7FFF8000 0123001F			1416	DC	VI 16! 0001EEEEEEN	80007FFF80000123001F' v2	
000020A0	0001FFFF FFFD8000 7FFF8000 0123001F			1410	DC	ALIO UUUIFFFFFD	0000/FFF00000123001F V2	
000020A8	FFFFFFF FFFFFFD			1417	DC	YI 16' FEFFFFFFFF	FFFD0000000000000000000000000000000000	
000020B0 000020B8	00000000 00000020			1417	ЪС	ALIO PITTITITI	TTTD0000000000000000000000000000000000	
OOOOLODO	0000000 00000020			1418				
				1419 * quadwo	rd			
				1420		VMNL, 4		
000020C0				1421+	DS DS	OFD		
000020C0		000020C0		1422+	USING		base for test data and test routine	
UUUUKUUU		UUUUAUUU		17667	USINU	. NJ	base for test data and test foutine	
000020C0	00002100	00002000		1423+T28	DC		address of test routine	
	00002100 001C	00002000				A(X28) H' 28'		
000020C0 000020C4 000020C6	001C 00	00002000		1423+T28 1424+ 1425+	DC DC DC	A(X28) H' 28' X' 00'	address of test routine	
000020C0 000020C4 000020C6 000020C7	001C 00 04	00002000		1423+T28 1424+ 1425+ 1426+	DC DC DC DC	A(X28) H' 28' X' 00' HL1' 4'	address of test routine test number m4	
000020C0 000020C4 000020C6 000020C7 000020C8	001C 00 04 E5D4D5D3 40404040	00002000		1423+T28 1424+ 1425+ 1426+ 1427+	DC DC DC DC DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL'	address of test routine test number m4 instruction name	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0	001C 00 04 E5D4D5D3 40404040 00002138	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+	DC DC DC DC DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16)	address of test routine test number m4 instruction name address of v2 source	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4	001C 00 04 E5D4D5D3 40404040 00002138 00002148	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+	DC DC DC DC DC DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32)	address of test routine test number m4 instruction name address of v2 source address of v3 source	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020D8	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+	DC DC DC DC DC DC DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16)	address of test routine test number m4 instruction name address of v2 source address of v3 source result length	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020D8 000020DC	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28	DC DC DC DC DC DC DC DC DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28)	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020D8 000020DC 000020E0	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+	DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020D8 000020DC 000020E0 000020E8	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28	DC DC DC DC DC DC DC DC DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28)	address of test routine test number m4 instruction name address of v2 source address of v3 source result length	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028	DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020D8 000020DC 000020E0 000020E8	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028	DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address	
000020C0 000020C4 000020C6 000020C7 000020D0 000020D4 000020D8 000020DC 000020E0 000020E0 000020F0 000020F8	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000	00002000		1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028	DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000	00002000	00000010	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28	DC D	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output	
000020C0 000020C4 000020C6 000020C7 000020D0 000020D4 000020D8 000020DC 000020E0 000020E0 000020F0 000020F8	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000	00002000	00000010 00000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028	DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0 000020F0 00002100 00002100 00002106 00002106	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000			1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+	DC D	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0 000020F0 00002100 00002100 0000210C 0000210C 00002110C	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000	00002000	00000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+	DC LGF VL LGF VL	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1)	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0 000020F0 00002100 0000210C 00002112 00002118	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000		0000000 0000014 0000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+	DC LGF VL LGF VL VMNL	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source)	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0 00002100 0000210C 0000211C 00002112 0000211E	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000		00000000 0000014	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+ 1442+	DC LGF VL LGF VL VMNL VST	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1028	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0 00002100 0000210C 0000211C 0000211E 0000211E 00002124	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000		0000000 0000014 0000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+ 1442+ 1443+	DC DS DS DS LGF VL LGF VL VMNL VST BR	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1028 R11	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output return	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0 00002100 0000210C 00002112 0000211E 0000211E 00002124 00002128	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 00000000		0000000 0000014 0000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+ 1442+ 1443+ 1444+RE28	DC DS DS DS LGF VL LGF VL VMNL VST BR DC	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1028 R11 OF	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0 00002100 0000210C 00002112 00002112 00002112 00002124 00002128 00002128	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 000000		0000000 0000014 0000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+ 1442+ 1443+ 1444+RE28 1445+	DC D	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1028 R11 OF R5	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output return xl16 expected result	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D0 000020D0 000020E0 000020E0 000020F0 00002100 00002100 00002100 00002112 00002118 00002118 00002124 00002128 00002128 00002128	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 000000		0000000 0000014 0000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+ 1442+ 1443+ 1444+RE28	DC D	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1028 R11 OF R5	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output return	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D0 000020E0 000020E0 000020F0 000020F0 00002100 00002100 0000210C 00002112 00002118 0000211E 00002124 00002128 00002128 00002128 00002130	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 000000		0000000 0000014 0000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+ 1442+ 1443+ 1444+RE28 1445+ 1446	DC D	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1028 R11 OF R5 XL16' 0001FFFFFFD	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output return xl16 expected result 80007FFF80000123001F' expected result	
000020C0 000020C6 000020C7 000020C8 000020D0 000020D4 000020DC 000020E0 000020E0 000020F0 000020F0 00002100 0000210C 00002112 00002112 0000211E 0000211E 00002128 00002128 00002128 00002130 00002130 00002130	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 000000		0000000 0000014 0000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+ 1442+ 1443+ 1444+RE28 1445+	DC D	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1028 R11 OF R5 XL16' 0001FFFFFFD	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output return xl16 expected result	
000020C0 000020C4 000020C6 000020C7 000020C8 000020D0 000020D0 000020E0 000020E0 000020F0 000020F0 00002100 00002100 0000210C 00002112 00002118 0000211E 00002124 00002128 00002128 00002128 00002130	001C 00 04 E5D4D5D3 40404040 00002138 00002148 00000010 00002128 00000000 00000000 00000000 00000000 000000		0000000 0000014 0000000	1423+T28 1424+ 1425+ 1426+ 1427+ 1428+ 1429+ 1430+ 1431+REA28 1432+ 1433+V1028 1434+ 1435+* 1436+X28 1437+ 1438+ 1439+ 1440+ 1441+ 1442+ 1443+ 1444+RE28 1445+ 1446	DC D	A(X28) H' 28' X' 00' HL1' 4' CL8' VMNL' A(RE28+16) A(RE28+32) A(16) A(RE28) FD XL16 FD OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 4 V22, V1028 R11 OF R5 XL16' 0001FFFFFFD	address of test routine test number m4 instruction name address of v2 source address of v3 source result length result address gap V1 output gap load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest is a source) save v1 output return xl16 expected result 80007FFF80000123001F' expected result	

000021E8	82828282		-
00002120	02020202	0202020	14
			14
			1 4
000021F0			14

000021F0

1486+	DS	OFD
1487+	USING	*, R 5
1488+T30	DC	A(X30)
1489+	DC	H' 30'
1490+	DC	X' 00'
1491+	DC	HL1' 1'
1492+	DC	CL8' VAVG'
1493+	DC	A(RE30+16)
1494+	DC	A(RE30+32)

DC

DC

DS

DS

A(16)

FD

XL16

A(RE30)

1495+

1497+

1496+REA30

1498+V1030

m4 instruction name address of v2 source address of v3 source result length result address gap V1 output

address of test routine

test number

base for test data and test routine

00002210 0000000 00000000 00002218 0000000 00000000 00002220 0000000 00000000

00002230

00002268

00002278

0000010

00002258

001E

00

01

L₀C

00002158

00002158

00002158

0000215C

0000215E

0000215F

00002168 0000216C

00002170

00002174

00002178

00002180

00002188

00002190

00002198

00002198

0000219E

000021A4

000021B0

000021B6

000021BC

000021C0

000021C0

000021C0

000021C8

000021D0

000021D8

000021E0

000021F0

000021F0 000021F4

000021F6

000021F7

000021F8

00002204

00002208

0000220C

00002200

00002160

OBJECT CODE

E5C1E5C7 40404040

0000000 00000000

0000000 00000000

0000000 00000000

0000000 00000000

E310 5010 0014

E761 0000 0806

E310 5014 0014

E766 7000 0EF2

E760 5028 080E

FFFFFFF FFFFFFF

FFFFFFF FFFFFFF

7C7C7C7C 7C7C7C7C

7C7C7C7C 7C7C7C7C

82828282 82828282

E5C1E5C7 40404040

000021AA E771 0000 0806

07FB

00002150 00AA8001 12340020

00002198

000021D0

000021E0

0000010

000021C0

001D

00

00

ADDR1

00002158

ADDR2

00000010

00000000

00000014

00000000

ASIVA VEI.	0. 7. 0 zvector-e/-0	11- WII HIMAXAV	g (Zvector	E/ VRR-C Inst.	ructio	ns)	25 Jul 2023	16: 13: 17	rage	35
LOC	OBJECT CODE	ADDR1	ADDR2	STMI						
00002228	00000000 00000000			1499+ 1500+*	DS	FD	gap			
00002230 00002230 00002236 0000223C 00002242 00002248	E310 5010 0014 E761 0000 0806 E310 5014 0014 E771 0000 0806 E766 7000 1EF2		00000010 00000000 00000014 00000000	1501+X30 1502+ 1503+ 1504+ 1505+ 1506+	DS LGF VL LGF VL VAVG	OF R1, V2ADDR v22, O(R1) R1, V3ADDR v23, O(R1) V22, V22, V23, 1	load v2 source use v22 to test decoder load v3 source use v23 to test decoder test instruction (dest		e)	
0000224E 00002254 00002258	E760 A018 080E 07FB		00002218	1507+ 1508+ 1509+RE30	VST BR DC	V22, V1030 R11 OF	save v1 output return x116 expected result			
00002258 00002258 00002260	FF7FFF7F FF7FFF7F FF7FFF7F FF7FFF7F			1510+ 1511	DROP DC		F7FFF7FFF7FFF7F'	expected res	sul t	
$00002268 \\ 00002270$	7C7C7C7C 7C7C7C7C 7C7C7C7C 7C7C7C7C			1512	DC		⁷ C7C7C7C7C7C7C7C7C7C'	v2		
00002278 00002280	82828282 82828282 82828282 82828282			1513	DC	XL16' 8282828282828	328282828282828282'	v3		
00002288 00002288		00002288		1514 1515 * Word 1516 1517+ 1518+	VRR_C DS USING	VAVG, 2 OFD * D5	base for test data and	tost routin		
00002288 0000228C 0000228E	000022C8 001F 00	00002288		1519+T31 1520+ 1521+	DC DC DC	A(X31) H' 31' X' 00'	address of test routing test number		е	
0000228F 00002290 00002298	02 E5C1E5C7 40404040 00002300			1522+ 1523+ 1524+	DC DC DC	HL1' 2' CL8' VAVG' A(RE31+16)	m4 instruction name address of v2 source			
0000229C 000022A0 000022A4	00002310 00000010 000022F0			1525+ 1526+ 1527+REA31	DC DC DC	A(RE31+32) A(16) A(RE31)	address of v3 source result length result address			
000022A8 000022B0 000022B8	00000000 00000000 00000000 00000000 000000			1528+ 1529+V1031	DS DS	FD XL16	gap V1 output			
000022C0	0000000 00000000			1530+ 1531+*	DS	FD	gap			
000022C8 000022C8 000022CE 000022D4	E310 5010 0014 E761 0000 0806 E310 5014 0014			1532+X31 1533+ 1534+ 1535+	DS LGF VL LGF	OF R1, V2ADDR v22, O(R1) R1, V3ADDR	load v2 source use v22 to test decoder load v3 source			
000022DA 000022E0 000022E6	E771 0000 0806 E766 7000 2EF2 E760 5028 080E		00000000 000022B0	1536+ 1537+ 1538+	VL VAVG VST	v23, 0(R1) V22, V22, V23, 2 V22, V1031	use v23 to test decoder test instruction (dest save v1 output		e)	
000022EC 000022F0 000022F0	07FB			1539+ 1540+RE31 1541+	BR DC DROP	R11 OF R5	return xl16 expected result			
000022F0 000022F8 00002300	FF7F7F7F FF7F7F7F FF7F7F7F FF7F7F7F 7C7C7C7C 7C7C7C7C			1542 1543	DC DC		'F7FFF7F7F7FFF7F7F7F' 'C7C7C7C7C7C7C7C7C7C'	expected res	sul t	
00002308 00002310 00002318	7C7C7C7C 7C7C7C7C 82828282 82828282 82828282 82828282			1544	DC		32828282828282828282'	v3		
				1545 1546 * Double 1547		VAVG, 3				

ASWA Ver.	0. 7. 0 2vector-e7-0	UI-WHIIMAXAV	g (Zvector	E/ VRR-C HISC	Tuccioi	115)	23 Jul 202.	5 10: 15: 17 Pa	ge s
LOC	OBJECT CODE	ADDR1	ADDR2	STMT					
00002320 00002320 00002320	00009960	00002320		1548+ 1549+	DS USING		base for test data and		
0002324 0002326	00002360 0020 00			1550+T32 1551+ 1552+	DC DC DC	A(X32) H' 32' X' 00'	address of test routing test number	e	
0002327 0002328 0002330	03 E5C1E5C7 40404040 00002398			1553+ 1554+ 1555+	DC DC DC	HL1'3' CL8'VAVG' A(RE32+16)	m4 instruction name address of v2 source		
0002334 0002338 000233C	000023A8 00000010 00002388			1556+ 1557+ 1558+REA32	DC DC DC	A(RE32+32) A(16) A(RE32)	address of v3 source result length result address		
0002340 0002348 0002350	00000000 00000000 00000000 00000000 000000			1559+ 1560+V1032	DS DS	FD XL16	gap V1 output		
0002358	00000000 00000000			1561+ 1562+*	DS	FD	gap		
0002360 0002360 0002366	E310 5010 0014 E761 0000 0806		00000010 00000000	1563+X32 1564+ 1565+	VL	0F R1, V2ADDR v22, 0(R1)	load v2 source use v22 to test decoder	r	
000236C 0002372 0002378 000237E	E310 5014 0014 E771 0000 0806 E766 7000 3EF2 E760 5028 080E		00000014 00000000 00002348	1566+ 1567+ 1568+ 1569+	LGF VL VAVG VST	R1, V3ADDR v23, O(R1) V22, V22, V23, 3 V22, V1032	load v3 source use v23 to test decoder test instruction (desi- save v1 output		
0002384 0002388 0002388	07FB		00002010	1570+ 1571+RE32 1572+	BR DC DROP	R11 OF R5	return xl16 expected result		
0002388 0002390 0002398	FF7F7F7F 7F7F7F7F FF7F7F7F 7F7F7F7F 7C7C7C7C 7C7C7C7C			1573 1574	DC DC		7F7FFF7F7F7F7F7F7F7F' 7C7C7C7C7C7C7C7C7C7C7C'	expected result v2	lt
00023A0 00023A8 00023B0	7C7C7C7C 7C7C7C7C 82828282 82828282 82828282 82828282			1575	DC		328282828282828282'	v3	
				1576 1577 * Double 1578		VAVG, 3			
00023B8 00023B8 00023B8	000023F8	000023B8		1579+ 1580+ 1581+T33	DS USING DC	OFD	base for test data and address of test routing		
00023BC 00023BE 00023BF	0021 00 03			1582+ 1583+ 1584+	DC DC DC	H' 33' X' 00' HL1' 3'	test number m4		
00023C0 00023C8 00023CC	E5C1E5C7 40404040 00002430 00002440			1585+ 1586+ 1587+	DC DC DC	CL8' VAVG' A(RE33+16) A(RE33+32)	instruction name address of v2 source address of v3 source		
00023D0 00023D4 00023D8	00000010 00002420 00000000 00000000			1588+ 1589+REA33 1590+	DC DC DS	A(16) A(RE33) FD	result length result address		
00023E0 00023E8 00023F0	00000000 00000000 00000000 00000000 000000			1591+V1033 1592+	DS DS	XL16 FD	gap V1 output gap		
00023F8			0000010	1593+* 1594+X33	DS	OF			
00023F8 00023FE 0002404	E310 5010 0014 E761 0000 0806 E310 5014 0014		00000010 00000000 00000014	1595+ 1596+ 1597+	LGF VL LGF	R1, V2ADDR v22, O(R1) R1, V3ADDR	load v2 source use v22 to test decoder load v3 source		
)00240A	E771 0000 0806		00000000	1598+	VL	v23, 0(R1)	use v23 to test decode	r	

DC

DC

X' 00'

HL1'3'

CL8' VAVG'

m4

instruction name

1645+

1646+

1647 +

000024EE

000024EF

000024F0

00

03

E5C1E5C7 40404040

XL16' 8000000000000028000000000000002'

expected result

1697

000025E8

000025F0

8000000 00000002

ASMA Ver.	0. 7. 0 zvect	tor- e7- 01-	- Mi nMaxAvg	(Zvector	E7 VRR-c insti	ruction	ıs)	25 Jul 202	5 16: 13: 17 l	Page 39
LOC	OBJECT CO	DDE	ADDR1	ADDR2	STMT					
00002600	8000000 000 8000000 000	00002			1698	DC	XL16' 8000000000000	00028000000000000002'	v2	
	8000000 000 8000000 000				1699	DC	XL16' 8000000000000	000280000000000000002'	v3	
					1700	ad				
					1701 * Quadwoi 1702	VRR_C	VAVG, 4			
00002618 00002618			00002618		1703+ 1704+	DS USING	0FD * R5	base for test data and	test routing	a
00002618	00002658	•	00002010		1705+T37	DC	A(X37)	address of test routing		C
	0025 00				1706+ 1707+	DC DC	H' 37' X' 00'	test number		
0000261F	04	104040			1708+	DC	HL1' 4'	m4		
	E5C1E5C7 404 00002690	104040			1709+ 1710+	DC DC	CL8' VAVG' A(RE37+16)	instruction name address of v2 source		
	000026A0 0000010				1711+ 1712+	DC DC	A(RE37+32) A(16)	address of v3 source		
00002634	00002680				1713+REA37	DC	A(RE37)	result length result address		
	00000000 000				1714+ 1715+V1037	DS DS	FD XL16	gap V1 output		
00002648	00000000 000	00000						-		
00002650	0000000 000	00000			1716+ 1717+*	DS	FD	gap		
00002658 00002658	E310 5010 00	114		0000010	1718+X37 1719+	DS LGF	OF R1, V2ADDR	load v2 source		
0000265E	E761 0000 08	306	(0000000	1720+	VL	v22, 0(R1)	use v22 to test decode	r	
	E310 5014 00 E771 0000 08				1721+ 1722+	LGF VL	R1, V3ADDR v23, O(R1)	load v3 source use v23 to test decoder	r	
00002670	E766 7000 4H	EF2			1723+	VAVG	V22, V22, V23, 4	test instruction (des		e)
	E760 5028 08 07FB	SUE	(00002640	1724+ 1725+	VST BR	V22, V1037 R11	save v1 output return		
00002680 00002680					1726+RE37 1727+	DC DROP	OF R5	xl16 expected result		
00002680	7F7F7F7F 7F7				1728	DC		7F7F7F7F7F7F7F7F7F7F	expected res	sul t
	7F7F7F7F 7F7 7C7C7C7C 7C7				1729	DC	XI.16' 7C7C7C7C7C7C7C	7C7C7C7C7C7C7C7C7C7C7C'	v2	
00002698	7C7C7C7C 7C7	7C7C7C								
	82828282 828 82828282 828				1730	DC	XL16 828282828282828	828282828282828282'	v3	
					1731 1732 * Quadwoi	rd				
00000000					1733	VRR_C	VAVG, 4			
000026B0 000026B0			000026B0		1734+ 1735+	DS USING	OFD *, R5	base for test data and	test routing	e
000026B0	000026F0				1736+T38	DC	A(X38)	address of test routing		-
000026B6	0026 00				1737+ 1738+	DC DC	H' 38' X' 00'	test number		
	04 E5C1E5C7 404	104040			1739+ 1740+	DC DC	HL1' 4' CL8' VAVG'	m4 instruction name		
000026C0	00002728	UTUTU			1741+	DC	A(RE38+16)	address of v2 source		
	00002738 00000010				1742+ 1743+	DC DC	A(RE38+32) A(16)	address of v3 source result length		
000026CC	00002718	100000			1744+REA38	DC	A(RE38)	result address		
000026D8	00000000 000 00000000 000	00000			1745+ 1746+V1038	DS DS	FD XL16	gap V1 output		

SWA ver.	0. 7. 0 zvector- e7- 0	UI-WII NWAXAV	g (Zvector	E/ VKK-C INST	ructio	ns)	23 Jul 202	5 16: 13: 17 Page	
LOC	OBJECT CODE	ADDR1	ADDR2	STMT					
00027E0				1796+	DS	OFD			
00027E0		000027E0		1797+	USING	*. R 5	base for test data and	test routine	
00027E0	00002820			1798+T40	DC	A(X40)	address of test routing		
0027E4	0028			1799+	DC	H' 40'	test number		
0027E6	00			1800+	DC	X' 00'	cese number		
00027E7	04			1801+	DC	HL1'4'	m4		
00027E8	E5C1E5C7 40404040			1802+	DC	CL8' VAVG'	instruction name		
00027F0	00002858			1803+	DC	A(RE40+16)	address of v2 source		
0027F4	00002868			1804+	DC	A(RE40+32)	address of v3 source		
00027F8	0000010			1805+	DC	A(16)	result length		
00027FC	00002848			1806+REA40	DC	A(RE40)	result address		
0002800	0000000 00000000			1807+	DS	FD			
0002808	0000000 0000000			1808+V1040	DS	XL16	gap V1 output		
				1000+11040	טע	ALIU	vi oucput		
0002810	00000000 00000000			1000	DC	ED			
0002818	0000000 00000000			1809+	DS	FD	gap		
				1810+*	_				
0002820				1811+X40	DS	OF			
0002820	E310 5010 0014		00000010	1812+	LGF	R1, V2ADDR	load v2 source		
0002826	E761 0000 0806		00000000	1813+	VL	v22, 0(R1)	use v22 to test decode	r	
000282C	E310 5014 0014		00000014	1814+	ĹĠF	R1, V3ADDR	load v3 source	_	
0002832	E771 0000 0806		00000000	1815+	VL	v23, 0(R1)	use v23 to test decode	r	
			0000000						
0002838	E766 7000 4EF2		0000000	1816+	VAVG	V22, V22, V23, 4	test instruction (des	t is a source)	
000283E	E760 5028 080E		00002808	1817+	VST	V22, V1040	save v1 output		
0002844	07FB			1818+	BR	R11	return		
0002848				1819+RE40	DC	0F	xl16 expected result		
0002848				1820+	DROP	R5	-		
0002848	7FFFFFFF FFFFFFFF			1821	DC	XL16' 7FFFFFFFFFF	FFFF7FFFFFFFFFFFF	expected result	
0002850	7FFFFFFF FFFFFFF							1	
0002858	7FFFFFF FFFFFFC			1822	DC	XI 16' 7FFFFFFFFFF	FFFC7FFFFFFFFFFFC'	v2	
0002860	7FFFFFF FFFFFFC			1022	ьс	ALIO /IIIIIIIIIII		₹ ≈	
				1000	DC	VI 16! 900000000000	000000000000000000000000000000000000000	9	
0002868	80000000 00000002			1823	DC	YELO 900000000000	00028000000000000002'	v3	
0002870	8000000 00000002			1004					
				1824	_				
				1825 * Quadwo	rd				
				1826	VRR_C	VAVG, 4			
0002878				1827+	DS	OFD			
0002878		00002878		1828+	USING		base for test data and	test routine	
0002878	000028B8			1829+T41	DC	A(X41)	address of test routing		
000287C	0029			1830+	DC	H' 41'	test number		
000287E	0029			1831+	DC DC	X' 00'	COSC HUMBEL		
							4		
000287F	04			1832+	DC	HL1'4'	m4		
0002880	E5C1E5C7 40404040			1833+	DC	CL8' VAVG'	instruction name		
0002888	000028F0			1834+	DC	A(RE41+16)	address of v2 source		
000288C	00002900			1835+	DC	A(RE41+32)	address of v3 source		
0002890	0000010			1836+	DC	A(16)	result length		
0002894	000028E0			1837+REA41	DC	A(RE41)	result address		
002898	0000000 00000000			1838+	DS DS	FD			
							gap V1 output		
00028A0	00000000 00000000			1839+V1041	DS	XL16	vi ouchuc		
00028A8	00000000 00000000			40.40	.				
00028B0	00000000 00000000			1840+	DS	FD	gap		
				1841+*					
00028B8				1842+X41	DS	OF			
00028B8	E310 5010 0014		0000010	1843+	LGF	R1, V2ADDR	load v2 source		
00028BE	E761 0000 0806		00000010	1844+	VL	v22, 0(R1)	use v22 to test decode	r	
								1	
00028C4	E310 5014 0014		00000014		LGF	R1, V3ADDR	load v3 source		
00028CA	E771 0000 0806		00000000	1840+	VL	v23, 0(R1)	use v23 to test decode	Γ	

DC

A(X43)

H' 43'

address of test routine

test number

1894+T43

1895+

000029A8

000029AC

000029E8

002B

ASMA Ver. 0.7.0 zvector-e7-01-MinMaxAvg (Zvector E7 VRR-c instructions) L_OC **OBJECT CODE** ADDR1 ADDR2 **STM** 000029AE 00 1896+ X' 00' DC HL1' 1' 000029AF 01 1897 +DC **m4** 000029B0 E5C1E5C7 D3404040 1898+ DC CL8' VAVGL' instruction name 000029B8 00002A20 1899+ DC A(RE43+16)address of v2 source 000029BC 00002A30 1900+ DC A(RE43+32)address of v3 source 000029C0 0000010 1901+ DC A(16) result length 1902+REA43 DC A(RE43) 000029C4 00002A10 result address 000029C8 0000000 00000000 1903+ DS FD gap V1 output 0000000 00000000 000029D0 1904+V1043 DS **XL16** 000029D8 0000000 00000000 1905+ DS FD 000029E0 0000000 00000000 gap 1906+* 000029E8 1907+X43 DS 0F **LGF** R1, V2ADDR 000029E8 E310 5010 0014 00000010 1908+ load v2 source 000029EE E761 0000 0806 00000000 1909+ v22, 0(R1)use v22 to test decoder VLR1, V3ADDR 000029F4 E310 5014 0014 0000014 1910+ **LGF** load v3 source E771 0000 0806 v23, 0(R1)use v23 to test decoder 000029FA 00000000 1911+ VL 00002A00 E766 7000 1EF0 1912+ VAVGL V22, V22, V23, 1 test instruction (dest is a source) V22, V1043 00002A06 E760 5028 080E 000029D0 1913+ **VST** save v1 output 00002A0C **R11** 07FB 1914+ BR return 00002A10 1915+RE43 DC 0F xl16 expected result **DROP** 00002A10 1916+ **R5** 00002A10 **7F7F7F7F 7F7F7F7** 1917 DC XL16' 7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F **7F7F7F7F 7F7F7F7F** 00002A18 7C7C7C7C 7C7C7C7C 1918 DC XL16' 7C7C7C7C7C7C7C7C7C7C7C7C7C7C7C7C7C7 00002A20 00002A28 **7C7C7C7C 7C7C7C7C** 82828282 82828282 00002A30 1919 DC XL16' 82828282828282828282828282828282 00002A38 82828282 82828282 1920 1921 * Word 1922 VRR_C VAVGL, 2 00002A40 1923+ DS **OFD** 00002A40 00002A40 1924+ USING *, R5 base for test data and test routine 00002A80 1925+T44 A(X44) address of test routine 00002A40 DC 00002A44 002C 1926+ DC H' 44' test number

X' 00' 00002A46 00 1927+ DC 00002A47 02 1928+ DC HL1'2' **m4** 00002A48 E5C1E5C7 D3404040 1929+ DC CL8' VAVGL' instruction name DC A(RE44+16) address of v2 source 00002A50 00002AB8 1930+ address of v3 source 00002A54 00002AC8 1931+ DC A(RE44+32)00002A58 0000010 1932+ DC A(16) result length 00002A5C 00002AA8 1933+REA44 DC **A(RE44)** result address 00002A60 0000000 00000000 1934+ DS FD gap V1 output 00002A68 0000000 00000000 1935+V1044 DS **XL16** 0000000 00000000 00002A70 00002A78 0000000 00000000 1936+ DS FD gap 1937+*

00002A80 1938+X44 DS 0F 00002A80 E310 5010 0014 00000010 1939+ LGF R1, V2ADDR load v2 source 1940+ v22, 0(R1)00002A86 E761 0000 0806 00000000 VL use v22 to test decoder 00002A8C E310 5014 0014 00000014 1941+ **LGF** R1, V3ADDR load v3 source 00002A92 E771 0000 0806 00000000 1942+ VL v23, 0(R1)use v23 to test decoder VAVGL V22, V22, V23, 2 E766 7000 2EF0 1943+ 00002A98 test instruction (dest is a source) 00002A9E E760 5028 080E 00002A68 1944+ **VST** V22, V1044 save v1 output 00002AA4 **07FB** 1945+ BR **R11** return

1946+RE44

DC

00002AA8

0F

xl16 expected result

DC

A(16)

A(RE46)

result length

result address

1994+

1995+REA46

00002B88

00002B8C

0000010

00002BD8

 $\mathbf{v3}$

2043

00002C90

00002C98

7FFFFFF FFFFFFC

7FFFFFFF FFFFFFC

DS

LGF

0F

R1, V2ADDR

load v2 source

2093+X49

2094+

00000010

00002D78

00002D78 E310 5010 0014

USING *, R5

base for test data and test routine

00002E68

00002E68

2143+

OBJECT CODE

E5C1E5C7 D3404040

7FFFFFF FFFFFFC

E5C1E5C7 D3404040

0000000 00000000

0000000 00000000

0000000 00000000

0000000 00000000

E310 5010 0014

E761 0000 0806

E310 5014 0014

E771 0000 0806

E766 7000 4EF0

E760 5028 080E

00002F40

00002F78

00002F88

00000010

00002F68

0034

00

04

00002EA8

00002EE0

00002EF0

0033

00

04

LOC

00002E68

00002E6C

00002E6E

00002E6F

00002E70

00002E78

00002E7C

00002EF8

00002F00

00002F00

00002F00

00002F04

00002F06

00002F07

00002F08

00002F10

00002F14

00002F18

00002F1C

00002F20

00002F28

00002F30

00002F38

00002F40

00002F40

00002F46

00002F4C

00002F52

00002F58

00002F5E

ASMA Ver. 0.7.0 zvector-e7-01-MinMaxAvg (Zvector E7 VRR-c instructions)

ADDR2

STM

2145+

2146+

2147+

2148 +

2149+

2150+

2179+

2180+

2181+

2182+

2184+

2186+

2190+

2191+

2193+

2194+

00000010 2189+

00000000 2192+

00000000

00000014

00002F28

2187+* 2188+X52

2183+REA52

2185+V1052

2144+T51

DC

DC

DC

DC

DC

DC

DC

DC

DC

DS

DS

DS

DS

LGF

VL

LGF

VL

VST

BR

DC

DC

DC

DROP

A(X51)

CL8' VAVGL'

A(RE51+16)

A(RE51+32)

R1, V2ADDR

v22, 0(R1)

R1, V3ADDR

v23, 0(R1)

V22, V1051

CL8' VAVGL'

A(RE52+16)

A(RE52+32)

R1, V2ADDR

v22, 0(R1)

R1, V3ADDR

v23, 0(R1)

V22, V1052

VAVGL V22, V22, V23, 4

A(16)

FD

FD

0F

XL16

A(RE52)

VAVGL V22, V22, V23, 4

R11

0F

R5

H' 51'

X' 00' HL1'4'

A(16)

FD

FD

0F

XL16

A(RE51)

ADDR1

00002F00

2169 DC 2170 2171 * Quadword 2172 VRR_C VAVGL, 4 2173 +DS **OFD** USING *, R5 2174 +2175+T52 A(X52)DC 2176+ DC H' 52' X' 00' 2177+ DC 2178+ DC HL1' 4'

DC

DC

DC

DC

DC

DS

DS

DS

DS

LGF

VL

LGF

VL

VST

m4 instruction name address of v2 source address of v3 source result length result address

load v2 source

load v3 source

save v1 output

use v22 to test decoder

use v23 to test decoder

test instruction (dest is a source)

gap

m4

gap

A(RE54+32)

address of v3 source

2243+

00003044

000030B8

NH VEI.	0. 7. 0 zvector- e7	- U1- WI NWAXAV	g (Zvecto	r E/ VRR-C	Instructi	OIIS)		25 Jul 2025 1	0: 13: 17	Page	53
LOC	OBJECT CODE	ADDR1	ADDR2	STMI							
		0000016	00000001	2382 V22 2383 V23	EQU	22					
		00000017	00000001	2383 V23 2384 V24	EQU EQU	23 24					
		00000019	00000001	2385 V25	EQU	25					
		0000001A	00000001	2386 V26 2387 V27	EQU FOU	26 27					
		0000001B	00000001	2388 V28	EQU	28					
		0000001D 000001E	00000001	2389 V29 2390 V30	EQU EQU EQU EQU EQU EQU EQU EQU	22 23 24 25 26 27 28 29 30 31					
		0000001E	00000001	2388 V28 2389 V29 2390 V30 2391 V31 2392	EQU	31					
				2392 2393	END						

ASMA Ver. 0.7.0	zvector	- e7- 01- Mi nM	axAvg (Zve	ctor E7	VRR- c	instr	ucti on	s)					25 Jul	2025	16: 13:	17 Pa	ge 60
SYMB0L	TYPE	VALUE	LENGTH	DEFN	REFERE	ENCES											
					1127 1256 1407 1537 1662 1813 1943 2068	873 1000 1128 1283 1410 1538 1689 1816 1944 2095	876 1001 1156 1286 1411 1565 1692 1817 1971 2098	877 1031 1159 1287 1438 1568 1693 1844 1974 2099	904 1034 1160 1314 1441 1569 1720 1847 1975 2128	907 1035 1187 1317 1442 1596 1723 1848 2002 2131	908 1062 1190 1318 1472 1599 1724 1878 2005 2132	935 1065 1191 1345 1475 1600 1751 1881 2006 2159	938 1066 1218 1348 1476 1627 1754 1882 2033 2162	939 1093 1221 1349 1503 1630 1755 1909 2036 2163	966 1096 1222 1376 1506 1631 1782 1912 2037 2190	969 1097 1252 1379 1507 1658 1785 1913 2064 2193	970 1124 1255 1380 1534 1661 1786 1940 2067 2194
V23	U	0000017	1	2383	593 780 999 1190 1409 1599 1815 2005	2224 594 813 1000 1220 1410 1629 1816 2035 2224	2225 624 814 1033 1221 1440 1630 1846 2036 2254	2252 625 844 1034 1254 1441 1660 1847 2066 2255	2255 655 845 1064 1255 1474 1661 1880 2067	2256 656 875 1065 1285 1475 1691 1881 2097	686 876 1095 1286 1505 1692 1911 2098	687 906 1096 1316 1506 1722 1912 2130	717 907 1126 1317 1536 1723 1942 2131	718 937 1127 1347 1537 1753 1943 2161	748 938 1158 1348 1567 1754 1973 2162	749 968 1159 1378 1568 1784 1974 2192	779 969 1189 1379 1598 1785 2004 2193
V24 V25 V26 V27 V28	U U U U	00000018 00000019 0000001A 0000001B 0000001C	1 1 1 1 1	2384 2385 2386 2387 2388													
V29 V2ADDR	U A	000001D 0000010	1 4	2389 464	1812	621 1030 1437 1843	652 1061 1471 1877	683 1092 1502 1908	714 1123 1533 1939	745 1155 1564 1970	776 1186 1595 2001	810 1217 1626 2032	841 1251 1657 2063	872 1282 1688 2094	903 1313 1719 2127	934 1344 1750 2158	965 1375 1781 2189
V3 V30 V31 V3ADDR	U U U A	0000003 0000001E 0000001F 00000014	1 1 1 4	2363 2390 2391 465	592 998 1408	623 1032 1439 1845	654 1063 1473 1879	685 1094 1504 1910	716 1125 1535 1941	747 1157 1566 1972	778 1188 1597 2003	812 1219 1628 2034	843 1253 1659 2065	874 1284 1690 2096	905 1315 1721 2129	936 1346 1752 2160	967 1377 1783 2191
V4 V5 V6 V7 V8	U U U U U	0000004 00000005 00000006 0000007 00000008	1 1 1 1 1	2364 2365 2366 2367 2368	2222	2253											
V9 X0001 X0002 X1 X10 X11	U U U F F	0000009 000002A8 00000358 000010F8 00001650 000016E8	1 1 1 4 4	2369 194 227 589 871 902	182 215 576 858 889	195 228											
X11 X12 X13 X14 X15 X16	F F F F	000010E8 00001780 00001818 000018B0 00001948 000019E0	4 4 4 4 4	933 964 995 1029 1060 1091	920 951 982 1016 1047												

/ACRO		REFEREN)1 - Mi nM:													Page	
CHECK TABLE	74 533	181 2272	214															
R_C	488	573 1106 1640 2172	604 1138 1671 2203	635 1169 1702 2234	666 1200 1733	697 1234 1764	728 1265 1795	759 1296 1826	793 1327 1860	824 1358 1891	855 1389 1922	886 1420 1953	917 1454 1984	948 1485 2015	979 1516 2046	1013 1547 2077	1044 1578 2110	1075 1605 2141

SMA Ver. 0.7.0 z	zvector-e7-01-MinMaxAvg (Zvector E7 VRR-c instructions)	25 Jul 2025 16: 13: 17 Page 64
STM	FILE NAME	
/home/tn529/	/sharedvfp/tests/zvector-e7-01-MinMaxAvg.asm	
NO ERRORS FOUND) **	