Calculating Fraud Risk in Credit Card Data

Rhys Carter Metis, Spring 2021

Contents

- 1. Project Background
- 2. Approach
- 3. Modeling Deep-Dive
- 4. Outcomes & Next Steps

Fraud Detection & Classification

- Kaggle: <u>Predict Fraud vs.</u>
 Non-Fraud Transactions
 - E.g. Card owner not present
 - Sponsors: IEEE Computational
 Intelligence Society & Vesta Corporation
- Imbalanced Dataset
 - ~ 600k Transactions, 400+ Attributes
 - Mix of 'Identity' & 'Transaction' Data
 - Masked Personal Info

Scope

Initial analysis focused on the transaction level, with future analysis moving into grouping by card and person

. Approach

Data Deep-Dive

- **Interpret Masked Info**
 - e.g. 'card6' meaning card type, 'addr1' meaning zip or equivalent
- Trim Down Null Columns
- **Encode Categorical Features**
- Remove Transaction Amt. Outliers
- Add New Time & Address Features

isFraud

id 24 99.196157

id 21 99.126390

. Analysis

- Larger model with ~200 features
- W/weighted fraud calculations, some AUC+, but minimal

Non-Fraud Weighted

Fraud Weighted

Feature Importance

- C#: Counts (e.g. shared activity)
- Addr#: Location of the purchaser
- D#: Time Related
- V#: Vesta-designed

Key Takeaways & Next Steps

- Move forward w/weighted XGBoost Model to balance misses and customer impact
- Continue reviewing features for additional interactions
 (i.e. moving into information on the cardholder)
- Identify more duplicative features to further simplify
 (e.g. potentially a number of the created features from Vesta)

- Backup

Logistic Regression

Poor predictor, based on limited (~20 columns) dataset

K Nearest Neighbor (KNN)

 Improved, but still large False Negative and False Positive Rates

Feature Importance (Gain)

