Date: June 11, 2020 Time: 6.00pm Venue: Virtual (Zoom)

First Name	Last Name	OSU Student ID #

Instructions:

- The length of time for this exam is **110 minutes** (That is 1hour 50minutes)
- Put your name and work on this paper. Please do not add additional pages. Adding pages would make it difficult to grade.
- Show your work and explain your reasoning when needed. Please write neatly (so that it is easy to read).
- If you could put down your answers on this paper (maintaining the format), that would be great, this would help a lot in grading, albeit if you don't have a printer or an option of writing electronically, you can do otherwise.
- This exam is worth 30% of your total grade. Be sure to show **ALL** your work, as partial credit will be given. Full credit will not be given for answers which are not accompanied with a mathematical justification.
- Be sure to show **ALL** your work, as partial credit will be given. Full credit will not be given for answers which are not accompanied with a mathematical justification.
- Index card or cheat sheet is not allowed for this exam

MULTIPLE CHOICE - TOTAL OF 10POINTS

(1) (10 points: 1 points each) Choose the option that best answers the question. Note that

if a statement is true for a particular case but not others, you should answer false.
(a) Every subset of a ring is a subring
(a) True
(b) False
(b) The multiplicative inverse of 5 in \mathbb{Z}_7 is
(a) 1
(b) 3
(c) 5
(d) 2
(e) 0
(c) The order of $\langle 5 \rangle \in \mathbb{Z}_{12}$ is
(a) 5
(b) 8
(c) 12
(d) 2
(e) 10
(d) Homomorphism must be a bijection
(a) True
(b) False
(e) A group G can have more than 1 identity element depending on the binary operations.
(a) True
(b) False

(f)	If $g(x)$ and $h(x)$ are factors of the polynomial $f(x)$ over a field, then the $\deg(f(x)) < \deg(g(x)) + \deg(h(x))$
	(a) True
	○ (b) False
(g)	If the order of a group is 6, then the index is also 6.
	(a) True
	(b) False
(h)	Ideals of a ring are always prime.
	(a) True
	(b) False
(i)	A zero divisor is a nonzero element a of a commutative ring such that there is a nonzero element $b \in R$ and $ab = 0$
	(a) True
	○ (b) False
(j)	Rings are subsets of Groups
	(a) True
	(b) False

GROUPS AND SUBGROUPS

Answer:		

	consist of the 2	of the form	$\left(\begin{array}{c} \cos\theta \\ \sin\theta \end{array}\right)$	$\begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$	where $\theta \in \mathbb{R}$
Remark: SL_2	a subgroup of S (\mathbb{R}) is a set of m	e determina	nt is equ	nal to 1)	
Answer:					

Answer:		

Answer:	 		

Answer			
Answer:			
l			

RING AND SUBRINGS

(6) (a) $M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{R} \right\}$ is a ring with matrix addition and multiplication. Prove or disprove. (5 Points)

Answer:		

swer:			

(7) ((5 Pts) Let $T := \begin{cases} 5 & \text{Pts} \end{cases}$	$A \in M_2(\mathbb{R}) \mid A = 0$ in $M_2(\mathbb{R})$. Is T a su	$ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} $ bring of	$ \begin{pmatrix} a, b, d \in \mathbb{R} \\ M_2(\mathbb{R}) ? \end{pmatrix} $	be the set	of all	upper
_	Answer:						

FIELDS AND POLYNOMIALS

- (8) Use the division algorithm to find q(x) and r(x) such that a(x) = q(x)b(x) + r(x) with deg $r(x) < \deg b(x)$ for each of the following pairs of polynomials in question (8a) and (8b).
 - (a) (5 Points) $a(x) = x^4 + x^2 + 3x + 4$ and $b(x) = x^2 + 2x + 3$ in $\mathbb{Z}_5[x]$

Answer:		

Answer:			

Answer:			

Theorems

(9)	(a)	(5points)	First	isomorphism	${\it theorem}$	for	groups.
-----	-----	-----------	-------	-------------	-----------------	-----	---------

Answer:		

- (b) Let \mathbb{R} denote the group of real numbers with addition and \mathbb{R}^* denote the group of non-zero real numbers with multiplication. For each part, determine whether the mapping given is a group homomorphism. Justify your answers briefly.
 - (i) (5points) Define $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ by $\phi(x) = 3x$ for all $x \in \mathbb{R}$

COMPUTATION

(10) (2 Pts each)

Let

$$\alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{array}\right)$$

and

$$\beta = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{array}\right)$$

(a) Put α and β in cycle notations

Answer:

(b) Compute α^{-1} in cycle notation

Answer:

(c) Compute $\beta\alpha$ in cycle notation

Answer:

(d) Compute $\alpha\beta$ in cycle notation

Answer:

(e)	Is	$\alpha\beta$	=	$\beta \alpha$?
-----	----	---------------	---	----------------	---

Answer: