Obstructions to deforming curves lying on a K3 surface

Hirokazu Nasu

Tokai University

June 11, 2025 KAIST seminar

Today's slide

Plan of Talk

- Hilbert schemes and Mumford's example (Motivation)
- Deformation of curves lying on a K3 surface
- **3** An example of non-reduced components of $\mathbf{Hilb}^{sc} \mathbb{P}^5$

§1 Hilbert schemes and Mumford's example (Motivation)

Hilbert schemes

Today, we work over a field $k = \overline{k}$ of char k = 0.

Theorem 1 (Grothendieck'60)

Given a closed subscheme $X \subset \mathbb{P}^n$ and a closed subscheme $C \subset X$ with Hilbert polynomial P(C) = P, there exists a projective scheme $\operatorname{Hilb}_P X$, parametrizing all closed subschemes C' of X with (the same) Hilbert polynomial P.

 $\operatorname{Hilb} X := \coprod_P \operatorname{Hilb}_P X$ is called the Hilbert scheme of X. Today we consider the open and closed subscheme

 $\operatorname{Hilb}^{sc} X := \{ \text{smooth connected curves } C \subset X \} \subset \operatorname{Hilb} X,$

that is, the Hilbert scheme of curves in X.

Infinitesimal property of Hilbert schemes

- The tangent space of Hilb X at [C] is isomorphic to $H^0(C, N_{C/X})$.
- $C \subset X$: a locally complete intersection \Longrightarrow every obstruction to deforming C in X is contained in $H^1(C, N_{C/X})$ ($\subset \operatorname{Ext}^1(I_C, O_C)$) and

$$\underbrace{h^0(C,N_{C/X})-h^1(C,N_{C/X})}_{\text{exp.dim.}(=\chi(N_{C/X})\text{ if C is a curve})} \leq \dim_{[C]} \text{Hilb $X \leq $\underbrace{h^0(C,N_{C/X})}_{\text{tangential dimension}}.$$

- We say $C \subset X$ is unobstructed if Hilb X is nonsingular at [C].
- $H^1(C, N_{C/X}) = 0 \Longrightarrow C$ is unobstructed. The converse is not true (e.g. c.i. curves $C \subset \mathbb{P}^3$ may have large $H^1(N_{C/\mathbb{P}^3})$ but unobstructed.).

Purpose 2

Determine $\dim_{[C]} \operatorname{Hilb} X$ at a singular point [C] of $\operatorname{Hilb} X$.

Mumford's example (pathology)

The following example appeared in a famous paper "Further pathologies in algebraic geometry [Mumford'62]".

Example 1 (Mumford)

 $\mathbf{Hilb}^{sc} \mathbb{P}^3$ contains a generically non-reduced irreducible component W of dimension 56, whose general member C satisfies

- C is contained in a smooth cubic surface $S \subset \mathbb{P}^3$.
- ② There exists a line E on S such that C belongs to a complete linear system $\Lambda := |-4K_S + 2E|$ ($\simeq \mathbb{P}^{37}$) on S.

Remark 3

- C and \mathbb{P}^3 are innocent-looking (a pathology).
- ullet C is of degree 14 and genus 24, and $h^1(N_{C/\mathbb{P}^3})=1$ and

$$\chi(N_{C/\mathbb{P}^3}) = 56 = \dim_{[C]} \operatorname{Hilb}^{sc} \mathbb{P}^3 < h^0(N_{C/\mathbb{P}^3}) = 57.$$

Generalization of Mumford's example

- Later many non-reduced components of $Hilb^{sc} \mathbb{P}^3$ were found by e.g. Gruson-Peskine'82, Kleppe'87, Ellia'87, N'05, Kleppe-Ottem'15, etc. and also those of $Hilb^{sc} \mathbb{P}^n$ (n > 3) have been more recently found by Choi-Iliev-Kim'24-1, and '24-2.
- Curves C corresponding to the generic point of the non-reduced components were contained in some surface $S \subset \mathbb{P}^n$, e.g.,

	a surface S containing C		
Mumford['62]	smooth cubic		
Gruson-Peskine'82	non-normal cubic		
Kleppe'87	smooth cubic		
Kleppe-Ottem'15	smooth quartic		
Choi-Iliev-Kim'24-1, '24-2	ruled surface		

Vakil's result ['06] on Murphy's law in AG: unless there is some a
priori reason otherwise, the deformation space may be as bad as
possible.

Another generalization (with Mukai)

We found that in Mumford's example, (-1)-curves $E \simeq \mathbb{P}^1$ (on smooth cubics) play an important role.

Theorem 4 (Mukai-N'09, char $k \ge 0$)

Let *X* be a smooth projective 3-fold satisfying the following:

- there exists a smooth rational curve E on X s.t. $N_{E/X}$ is globally generated, and
- ② there exists a smooth surface S s.t. $E \subset S \subset X$, $E^2 = -1$ on S, and $H^1(S, N_{S/X}) = p_g(S) = 0$.

Then the Hilbert scheme $\mathbf{Hilb}^{sc} X$ has infinitely many generically non-reduced components (GNRC).

Remark 5

In Mumford's ex., $X = \mathbb{P}^3$, S is a smooth cubic, E is a line.

Hilbert scheme of Fano 3-folds

- A Fano manifold is a smooth projective variety X with ample $-K_X$.
- The index r of a Fano manifold X is the maximal integer r such that $-K_X \sim rH$ with some $H \in \operatorname{Pic} X$.

Let X be a smooth Fano 3-fold of index r.

- $X \simeq \mathbb{P}^3$ if r = 4 and $X \simeq Q^3 \subset \mathbb{P}^4$ if r = 3, and X is called del Pezzo if r = 2, and prime if r = 1 and $\rho = 1$.
- If we restrict X with $\rho = 1$, then there exist 17 deformation equivalence classes of X (Fujita, Iskovskikh'77,'78):

r	4	3	2	1
the number of cls.	1	1	5	10
variety / cls.	\mathbb{P}^3	$Q^3 \subset \mathbb{P}^4$	del Pezzo	prime Fano

Table: the number of deformation equivalence classes of X

Applying Theorem 4, we obtain

Example 2 (N'10)

If r > 1 (and of any $\rho(X)$), then $\operatorname{Hilb}^{sc} X$ contains a a generically non-reduced component W satisfying:

- every general member C of W is contained in a smooth del Pezzo surface S ($\sim -\frac{r-1}{r}K_X$), and
- ② there exists a (good) line E on S and $C \sim -K_X|_S + 2E$ in Pic S.

Here

- A curve $E \subset X$ is a line $\stackrel{\text{def}}{\Longleftrightarrow} E \simeq \mathbb{P}^1$ and $-\frac{1}{r}K_X.E = 1$.
- A line $E \subset X$ is good $\stackrel{\text{def}}{\Longleftrightarrow} N_{E/X} \simeq O_E^{\oplus 2}$ (for r=2,3).
- dim W = 56, 42 and $(-K_X)^3/2 + 4$ for r = 4, 3, 2, respectively.

Question 6

What about the case for $Hilb^{sc} X$ of prime Fano 3-fold X?

If *X* is prime (r = 1), then there exists NO del Pezzo surface $S \subset X$.

- §2.1 Motivation
- §2.2 Hilbert-flag schemes (main tool)
- §2.3 A criterion for obstructedness

§2 Deformation of curves lying on a K3 surface

- §2.1 Motivation
- §2.2 Hilbert-flag schemes (main tool)
 - criterion for obstructedness

Setting

In this section, we recall my previous results on the deformations of smooth curves C on a smooth Fano 3-fold X with the assumption that C is contained in a smooth K3 surface $S \subset X$, i.e., we have

$$C \subset S_{K3} \subset X_{Fano}$$
.

Definition 7

A smooth projective surface S is a K3 surface, if $K_S \sim 0$ and $H^1(S, O_S) = 0$.

We will see that

- (-2)-curves $E \simeq \mathbb{P}^1$, and
- elliptic curves F

on S control the deformations C in X. They play a role very similar to that of (-1)-curve $E \simeq \mathbb{P}^1$ on the smooth cubic $S_3 \subset \mathbb{P}^3$ in Mumford's example!

2.1 Motivation

§2.2 Hilbert-flag schemes (main tool)

Hilbert-flag scheme

The Hilbert-flag scheme $\mathbf{HF}\ X$ of X parametrises all pairs (C,S) of closed subschemes C and S of X satisfying $C\subset S$. If $C\hookrightarrow S\hookrightarrow X$ is regular embeddings, then $H^0(N_{(C,S)/X})$ and $H^1(N_{(C,S)/X})$ respectively represents the tangent sp. and the obstruction sp. of $\mathbf{HF}\ X$ at (C,S), where the normal sheaf $N_{(C,S)/X}$ of (C,S) in X is defined by the Cartesian diagram

$$\begin{array}{c|c} N_{(C,S)/X} & \xrightarrow{\pi_2} & N_{S/X} \\ \hline \pi_1 & & & |c| \\ \hline N_{C/X} & \xrightarrow{\pi_{C/S}} & N_{S/X}|_C. \end{array}$$

Here $|_C$ is the restriction of sheaves, and $\pi_{C/S}:N_{C/X}\to N_{S/X}|_C$ is the natural projection. As in the case of Hilbert schemes, we have

$$h^0(X, N_{(C,S)/X}) - h^1(X, N_{(C,S)/X}) \le \dim_{(C,S)} HF X \le h^0(X, N_{(C,S)/X}).$$

2.1 Motivation

§2.2 Hilbert-flag schemes (main tool)

\$3 An example of non-reduced components of $\mathrm{Hilb}^{sc}\ \mathbb{P}^5$

Lemma 8

Under our setting, the following are equivalent:

- $H^1(N_{(C,S)/X}) = 0$, namely HF X is nonsingular at (C,S) of expected dimension $\chi(N_{(C,S)/X})$.
- ② There exists a first order deformation \tilde{S} of S in X, to which C does not lift.

Proof.

By adjunction, $N_{S/X} \simeq -K_X\big|_S$ and $N_{C/S} \simeq K_C$, which implies $H^i(N_{S/X}) = \mathbf{0}$ for $i > \mathbf{0}$ and $H^1(N_{C/S}) \simeq k$. There exists an exact sequence $\mathbf{0} \to N_{C/S} \to N_{(C,S)/X} \to N_{S/X} \to \mathbf{0}$, inducing

$$H^0(N_{(C,S)/X}) \xrightarrow{p_2} H^0(N_{S/X}) \longrightarrow \underbrace{H^1(N_{C/S})}_{\cong k} \longrightarrow H^1(N_{(C,S)/X}) \longrightarrow 0.$$

 $H^1(N_{(C,S)/X}) = 0$ iff p_2 is not surjective, which is equivalent to the second condition.

Example 9

Let X be a prime Fano 3-fold, E a line on X. Then E is of type, either (0,-1) (good) or (1,-2) (bad). If E is contained in a smooth K3 surface S in X, then

HF X is nonsingular at (E, S) (of exp. dim.) \iff E is good.

In fact, **Hilb** X is nonsingular at [E] if and only if E is good, and the first projection $pr_1:(E,S)\to [E]$ is a smooth morphism at (E,S).

Lemma 10

If X is prime, and E is a good line or a good conic on X contained in a smooth $S \in [-K_X]$, then $H^1(X, N_{(E,S)/X}) = 0$.

- 2.1 Motivation
- §2.2 Hilbert-flag schemes (main tool)

A key lemma

Lemma 11 (char k = 0)

Let $i: S \hookrightarrow X$ denote the closed embedding, and let E be an effective Cartier div on S with $H^1(S, O_S(E)) = 0$. If $H^1(X, N_{(E,S)/X}) = 0$ and if $C - bE \in i^* \operatorname{Pic} X$ with $b \neq 0$, then $H^1(X, N_{(C,S)/X}) = 0$.

Proof.

Since $H^1(X,N_{(E,S)/X})=\mathbf{0}$, by Lem. 8, there exists a first order deformation \tilde{S} of S in X, to which E does not lift. Let $\alpha\in H^0(S,N_{S/X})$ and and $\tau\in H^1(S,T_S)$ (abstract def.) correspond to \tilde{S} . Then $\tau\cup c(O_S(E))\neq \mathbf{0}$ in $H^2(O_S)$, where $c(*)\in H^1(S,\Omega_S^1)$ denotes the Atiyah-ext. class of *. Since $c(O_S(C))=c(O_S(C-bE))+bc(O_S(E))$, and $C-bE\in i^*\operatorname{Pic} X$, we have $\tau\cup c(O_S(C))\neq \mathbf{0}$, hence $O_S(C)$ does not lift to \tilde{S} , hence neither does C as a closed subscheme of S, and $H^1(X,N_{(C,S)/X})=\mathbf{0}$.

- 2.1 Motivation
- \$2.2 A criterion for obstructedness
- §2.3 A criterion for obstructedness

π -map

Let E be a curve on S ($\subset X$), and $\pi_{E/S}: N_{E/X} \longrightarrow N_{S/X}|_E$ the projection.

Definition 12 (π -map)

The homomorphism $\pi_{E/S}(E) = \pi_{E/S} \otimes O_E(E)$ of sheaves on E induces a map

$$\pi_{E/S}(E): H^0(E, N_{E/X}(E)) \longrightarrow H^0(E, N_{S/X}(E)|_E),$$

on the global sections. We call this map the π -map for (E, S).

Example 13

Let E be a conic on a prime Fano 3-fold X, contained in a smooth $S \in |-K_X|$. Then $O_E(E) \simeq O(-2)$, and $N_{S/X}\big|_E \simeq O(2)$. If E is good, then the π -map

$$\pi_{E/S}(E): H^0(E, O(-2)^2) \longrightarrow H^0(E, O)$$

for (E, S) is zero (hence not surjective).

- .1 Motivation
- 20.0 A mitarian for abote the discount
- §2.3 A criterion for obstructedness

Obstructedness of curves in a K3 surface

Let X be a smooth Fano 3-fold, $C \subset X$ a smooth curve contained in a smooth K3 surface $S \subset X$. Let D be a divisor on S defined by

$$D:=C+K_X|_{S}.$$

Theorem 14 (N'17)

If $H^1(N_{(C,S)/X}) = 0$ and $D \ge 0$, then

- If there exist no (-2)-curves and no elliptic curves on S, or if $H^1(S, D) = 0$, then C is unobstructed.
- ② If $D^2 \ge 0$ and there exists a (-2)-curve E on S such that E.D = -2 and $H^1(S, D 3E) = 0$, then we have $h^1(S, D) = 1$. If moreover, the π -map $\pi_{E/S}(E)$ is not surjective, then C is obstructed.
- ③ If there exists an elliptic curve F on S such that $D \sim mF$ for $m \ge 2$, then we have $h^1(S, D) = m 1$. If moreover, $\pi_{F/S}(F)$ is not surjective, then C is obstructed.

- .1 Motivation
- 2.2 A exitarian for abatruatedness
- §2.3 A criterion for obstructedness

Analogy of Mumford's ex. in the case r = 1

Applying Theorem 14 to a K3 surfaces $S \subset X$ and a good conic $E \simeq \mathbb{P}^1$ on S, we can prove the following.

Theorem 15 (N'19)

Let X be a prime Fano 3-fold of genus $g := (-K_X)^3/2 + 1$. Then $Hilb^{sc} X$ contains a generically non-reduced component W with the following properties:

- Every general member C of W is contained in a K3 surface S $(\sim -K_X)$.
- ② There exists a good conic $E \simeq \mathbb{P}^1$ on S such that $C \sim -2K_X|_S + 2E$.
- **3** dim W = 5g + 1, $h^0(C, N_{C/X}) = 5g + 2$, and C is of degree 4g and genus 4g + 1.

Here a conic E on X is called good if $N_{E/X} \simeq O_E^{\oplus 2}$.

- 2.1 Motivation
- 2.2 Hilbert-flag schemes (main to
- §2.3 A criterion for obstructedness

Some remarks

We used the following facts:

- The prime Fano 3-fold $X = X_{2g-2}$ contains a conic $E \subset V$ (cf. [Shokurov'79], [Reid'80]).
- If E ⊂ X is general, then E is a good conic (cf. [Iskovskih'78]) if char k = 0.
- For every conic E, there is a smooth K3 surface $S \in |-K_V|$ containing E (cf. [Iskovskih]).

- 2.1 Motivation
- §2.2 Hilbert-flag schemes (main tool
- §2.3 A criterion for obstructedness

Corollary 16

If X is a smooth Fano 3-fold and $\rho(X) = 1$, then $\operatorname{Hilb}^{sc} X$ contains a generically non-reduced component.

3-fold X	surface S	$[C] \in \operatorname{Pic} S$	E	
\mathbb{P}^3				Mumford['62]
$Q^3 \subset \mathbb{P}^4$	del Pezzo	$-K_X _S + 2E$	line	Mukai-N['09]
del Pezzo				Mukai-N['09], N['10]
prime Fano	К3	$-2K_X _S + 2E$	conic	N['19]

Table: Generically non-reduced component of Mumford type

1 Main result 2 Key lemma 3 Proof

\$3 An example of non-reduced components of Hilb sc \mathbb{P}^5

§3.1 Main result §3.2 Key lemma

Main result

Toward a further generazation, we compute the obstruction to deforming curves lying on a complete intersection K3 surface in P^5 .

Theorem 17 (Main)

The Hilbert scheme $\operatorname{Hilb}^{sc} \mathbb{P}^5$ contains a generically non-reduced components W_n $(n \geq 2)$ with the following properties:

• every general C of W_n is a smooth connected curve contained in a smooth complete intersection K3 surface

$$S=S_{2,2,2}=Q_1\cap Q_2\cap Q_3\subset \mathbb{P}^5.$$

- ② C is linearly equivalent to n(2h + E), where $h = [O_S(1)]$ in Pic S, and E is a line on S.
- **3** C is of degree 17n and genus $17n^2 + 1$.
- **4** dim $W=17n^2+54~(=g+53)$, while $h^0(N_{C/\mathbb{P}^5})=17n^2+57$, thus $h^0(N_{C/\mathbb{P}^5})-\dim W=3$.

§3.1 Main result §3.2 Key lemma

Construction

We see
$$h^0(\mathbb{P}^5,O(2))={5+2\choose 2}=21$$
 and
$$h^0(\mathbb{P}^5,I_E(2))=21-h^0(E,O_E(2))=18.$$

Then

where
$$g + 53 = 17n^2 + 54$$
 and $V = H^0(\mathbb{P}^5, O(2))$

§3.1 Main result §3.2 Key lemma

Hilbert-flag scheme and Key Lemma

Let X be a projective scheme. Then there exists a projective scheme (Hilbert-flag scheme)

$$\mathbf{HF} X := \left\{ (C, S) \mid C \subset S \subset X \right\} \subset \mathbf{Hilb} \ X \times \mathbf{Hilb} \ X.$$

Let

$$N_{(C,S)/X} := N_{C/X} \times_{N_{S/X}|_C} N_{S/X}$$

be the normal sheaf of $(C, S) \in HF X$.

There exists a projection

$$pr_1: \operatorname{HF} X \to \operatorname{Hilb} X, \quad (C,S) \mapsto [C],$$

which induces the tangent map $p_1: H^0(X, N_{(C,S)/X}) \to H^0(C, N_{C/X})$.

Lemma 18 (Key Lemma, N['23], Lem. 2.17)

We have $\dim_{(C,S)} HF X = \dim_{[C]} Hilb X$ if we have

$$\bullet$$
 $H^1(X, N_{(C,S)/X}) = H^0(S, I_{C/S} \otimes_S N_{S/X}) = 0$, and

②
$$\operatorname{ob}(\alpha) \neq 0$$
 for any $\alpha \in H^0(C, N_{C/X}) \setminus \operatorname{im} p_1$.

Primary obstructions

Let X be a projective scheme over k, C a loc. c. i. closed subscheme of X, and $k[\varepsilon] := k[t]/(t^2)$ (the ring of dual numbers).

- A first order (infinitesimal) deformation of C is a deformation \tilde{C} ($\subset X \times \operatorname{Spec} k[\varepsilon]$) of C in X over $k[\varepsilon]$.
- \tilde{C} naturally corresponds to $\alpha \in H^0(C, N_{C/X}) (\simeq \operatorname{Hom}(I_C, O_C))$.
- There is an element $\operatorname{ob}(\alpha)$ in $H^1(C, N_{C/X})$ (called the primary obstruction of α) such that

$$\operatorname{ob}(\alpha) = 0 \iff \tilde{C}$$
 is liftable to some $\tilde{\tilde{C}}$ over $k[t]/(t^3)$.

• $ob(\alpha)$ can be expressed as a cup product, and

$$ob(\alpha) = \alpha \cup e \cup \alpha$$
 in $Ext^1(I_C, O_C)$

where
$$e := [0 \rightarrow I_C \rightarrow O_X \rightarrow O_C \rightarrow 0].$$

ob(α) ≠ 0 for some α implies that Hilb X is singular at [C] by infinitesimal lifting property of smoothness.

Sketch of Proof of Main thm.

Let $C \subset \mathbb{P}^5$ be a smooth connected curve lying on a complete intersection K3 surface $S_{2,2,2} \subset \mathbb{P}^5$, and such that $C \sim 2n\mathbf{h} + nE$ in $\mathbf{Pic}\,S$ for $n \geq 2$, where E is a line on S

- Since $d = 17n > 16 = 2h^2$, S is uniquely determined by C.
- Then for all i > 0, $H^i(N_{S/\mathbb{P}^5}(-E)) = 0$ by proj. normality and $H^i(N_{E/\mathbb{P}^5}) = 0$ by ampleness. Then it follows from

$$0 \longrightarrow N_{S/\mathbb{P}^5}(-E) \longrightarrow N_{(E,S)/\mathbb{P}^5} \stackrel{\pi_1}{\longrightarrow} N_{E/\mathbb{P}^5} \longrightarrow 0$$

that $H^i(N_{(E,S)/\mathbb{P}^s}) = 0$, which implies there exists a first order deformation of \tilde{S} of S, to which E (and hence C) does not lift.

• Then $H^i(N_{(C,S)/\mathbb{P}^5}) = 0$ for i > 0 and

$$H^0(N_{(C,S)/\mathbb{P}^5}) \xrightarrow{p_1} H^0(N_{C/\mathbb{P}^5}) \longrightarrow H^1(N_{S/\mathbb{P}^5}(-C)) \longrightarrow 0$$

is exact. Here p_1 is the tangent map of $pr_1: \operatorname{HF} \mathbb{P}^5 \to \operatorname{Hilb} \mathbb{P}^5$ at (C,S) and its cokernel is of dimension 3 by

$$H^1(N_{S/\mathbb{P}^5}(-C)) \simeq H^1(O_S(2\mathbf{h}-C))^{\oplus 3} \simeq k^3.$$

Sketch of Proof of Main thm.

• We note that $H^1(N_{S/\mathbb{P}^5}(E-C))=H^1(-L^{\oplus 3})=0$, where

$$L = C - 2h - E = (n - 1)(2h + E)$$

is nef and big.

- Then for every $\alpha \in H^0(N_{C/\mathbb{P}^5}) \setminus \operatorname{im} p_1$, its exterior component $\pi_{C/S}(\alpha)$, i.e., the image of α in $H^0(N_{S/\mathbb{P}^5}(E)|_C)$, lifts to a global section β of $N_{S/\mathbb{P}^5}(E)$. (Here β is called an infinitesimal deformation with poles.)
- Applying a "modification" of the obstructedness criterion [Mukai-N'09] to β , we obtain $ob(\alpha) \neq 0$. This implies

$$\dim_{[C]} \operatorname{Hilb}^{sc} \mathbb{P}^5 = \dim_{(C,S)} \operatorname{HF} \mathbb{P}^5$$

by the key lemma. Therefore C is obstructed and parametrised by an open dense subset of a component of $Hilb^{sc} \mathbb{P}^5$.

Obstructedness Criterion (with Mukai)

[Mukai-N'09] gave a sufficient condition for $ob(\alpha) \neq 0$ when dim X = 3. Let C be an irreducible curve on a 3-fold X.

Assumption 1

- there exists an intermediate surface $C \subset S \subset X$ s.t. $C \hookrightarrow S$ and $S \hookrightarrow X$ are regular embeddings.
- there exists an irreducible curve $E \neq C$ on S s.t. $[O_S \hookrightarrow O_S(E)] \otimes O_S(mE)$ induces the injection

$$H^1(S, O_S(mE)) \hookrightarrow H^1(S, O_S((m+1)E))$$

for all m > 0. (e.g. $E = (-1) \cdot \mathbb{P}^1$ on S)

§3.1 Main result §3.2 Key lemma §3.3 Proof

Obstructedness Criterion (Continued)

Let $\alpha \in H^0(N_{C/X})$ be a first order deformation of C in X and $\operatorname{ob}(\alpha) \in H^1(N_{C/X})$ its primary obstruction. We consider the "exterior" components

$$\pi_{C/S}(\alpha) := H^0(\pi_{C/S})(\alpha), \qquad \operatorname{ob}_S(\alpha) := H^1(\pi_{C/S})(\operatorname{ob}(\alpha)).$$

by the projection

$$\pi_{C/S}:N_{C/X}\to N_{S/X}\big|_{C}.$$

Assumption 2 -

• Suppose $\pi_{C/S}(\alpha)$ lifts to a global section β of $N_{S/X}(E)$.

$$H^0(N_{S/X}) \subset H^0(N_{S/X}(\underline{E})) \ni E$$

$$\alpha \in H^0(N_{C/X}) \xrightarrow{\pi_{C/S}} H^0(N_{S/X}|_C) \subset H^0(N_{S/X}(\underline{E})|_C)$$

Here β is called an infinitesimal deformation with pole:

§3.1 Main result §3.2 Key lemma §3.3 Proof

Obstructedness Criterion (Continued)

Theorem 19 (Mukai-N'09)

 $ob_S(\alpha)$ is nonzero if

- ② Let $\beta|_E$ be the principal part of β along E. Then $\beta|_E \cup k_E \neq 0$ in $H^1(E, O_E(2E))$, where

$$\mathbf{k}_{E} := [\mathbf{0} \longrightarrow N_{E/S} \longrightarrow N_{E/X} \xrightarrow{\pi_{E/S}} N_{S/X} \Big|_{E} \longrightarrow \mathbf{0}]$$

$$\in \operatorname{Ext}_{E}^{1}(N_{S/X} \Big|_{E}, N_{E/S}).$$

① the restriction map $H^0(S, \Delta) \to H^0(E, \Delta|_E)$ is surjective,

§3.1 Main resu §3.2 Key lemm §3.3 Proof

References

D. Mumford.

Further pathologies in algebraic geometry.

Amer. J. Math., 84:642-648, 1962.

S. Mukai and H. Nasu.

Obstructions to deforming curves on a 3-fold, I: A generalization of Mumford's example and an application to Hom schemes.

J. Algebraic Geom., 18(4):691-709, 2009.

H. Nasu.

Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold,

Annales de L'Institut Fourier, 60(2010), no. 4, 1289-1316.

H. Nasu.

Obstructions to deforming curves on a 3-fold, III: Deformations of curves lying on a K3 surface. Internat. J. Math., 28(13):1750099, 30, 2017.

H. Nasu.

Obstructions to deforming curves on a prime Fano 3-fold, *Mathematische Nachrichten*, **292**(2019), no. 8, 1777–1790.

H. Nasu.

Obstructions to deforming curves on an Enriques-Fano 3-fold.

J. Pure Appl. Algebra, 225(9):106677, 15, 2021.