Time Series (732A62) Lab1

Anubhav Dikshit(anudi287) and Maximilian Pfundstein(maxpf364)
05 September, 2019

Contents

Assignment 1. Computations with simulated data	2
Appendix	5

Assignment 1. Computations with simulated data

a) Generate two time series $x_t = -0.8x_{t-2} + w_t$, where $x_0 = x_1 = 0$ and $x_t = \cos(\frac{2\pi t}{5})$ with 100 observations each. Apply a smoothing filter $v_t = 0.2(x_t + x_{t-1} + x_{t-2} + x_{t-3} + x_{t-4})$ to these two series and compare how the filter has affected them.

```
set.seed(12345)
n = 100
x <- vector(length = n)
x2 <- vector(length = n)</pre>
x[1] <- 0
x[2] < 0
#first series generation
for(i in 3:n){
 x[i] \leftarrow -0.8 * x[i-2] + rnorm(1,0,1)
#second series generation
for(i in 1:n){
 x2[i] <- cos(0.4*pi*i)
# smoothing filter function
smoothing_filter <- function(x){</pre>
v <- vector(length = length(x))</pre>
for(i in 5:length(x)){
 v[i] = 0.2 * (x[i] + x[i-1] + x[i-2] + x[i-3] + x[i-4])
}
return(v)
}
#generate smoothed series
smooth_x <- smoothing_filter(x)</pre>
smooth_x2 <- smoothing_filter(x2)</pre>
#adding everything to a dataframe
df <- cbind(x,x2,smooth x,smooth x2) %>% as.data.frame() %>% mutate(index=1:100)
ggplot(df, aes(x=index)) +
  geom_line(aes(y=x, color="Original Time Series")) +
  geom_line(aes(y=smooth_x, color="Smoothened Time Series")) +
  ggtitle("Plot of 1st time series and its smoothened version") +
    scale_colour_manual("", breaks = c("Original Time Series", "Smoothened Time Series"),
                         values = c("#CC79A7", "#000000"))
```

Plot of 1st time series and its smoothened version

Plot of 2nd time series and its smoothened version

b) Consider time series $x_t - 4x_{t-1} + 2x_{t-2} + x_{t-5} = w_t + 3w_{t-2} + w_{t-4} - 4w_{t-6}$. Write an appropriate R code to investigate whether this time series is casual and invertible.

A linear process X_t is causal (strictly, a causal function of w_t) if there is a

$$\psi(B) = \psi_0 + \psi_1 B + \psi_2 B^2 + \dots$$

with

$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

and

$$X_t = \psi(B)w_t$$

```
set.seed(12345)
w <- rnorm(100,0,1)
x <- rep(0,100)

for(i in 7:100){
x[i] = w[i] + 3 * w[i-2] + w[i-4] - 4 * w[i-6] + 4 * x[i-1] - 2 * x[i-2] - x[i-5]
}
plot(x)</pre>
```


c) Use built-in R functions to simulate 100 observations from the process $x_t + \frac{3}{4}x_{t-1} = w_t - \frac{1}{9}w_{t-2}$, compute sample ACF and theoretical ACF, use seed 54321. Compare the ACF plots.

```
set.seed(54321)
```

Appendix

```
x <- vector(length = n)</pre>
x2 <- vector(length = n)</pre>
x[1] < 0
x[2] <- 0
#first series generation
for(i in 3:n){
 x[i] \leftarrow -0.8 * x[i-2] + rnorm(1,0,1)
#second series generation
for(i in 1:n){
  x2[i] <- cos(0.4*pi*i)
# smoothing filter function
smoothing_filter <- function(x){</pre>
v <- vector(length = length(x))</pre>
for(i in 5:length(x)){
  v[i] = 0.2 * (x[i] + x[i-1] + x[i-2] + x[i-3] + x[i-4])
return(v)
}
#generate smoothed series
smooth_x <- smoothing_filter(x)</pre>
smooth_x2 <- smoothing_filter(x2)</pre>
#adding everything to a dataframe
df <- cbind(x,x2,smooth_x,smooth_x2) %>% as.data.frame() %>% mutate(index=1:100)
ggplot(df, aes(x=index)) +
  geom_line(aes(y=x, color="Original Time Series")) +
  geom_line(aes(y=smooth_x, color="Smoothened Time Series")) +
  ggtitle("Plot of 1st time series and its smoothened version") +
    scale_colour_manual("", breaks = c("Original Time Series", "Smoothened Time Series"),
                         values = c("#CC79A7", "#000000"))
ggplot(df, aes(x=index)) +
  geom_line(aes(y=x2, color="Original Time Series")) +
  geom_line(aes(y=smooth_x2, color="Smoothened Time Series")) +
  ggtitle("Plot of 2nd time series and its smoothened version") +
    scale_colour_manual("", breaks = c("Original Time Series", "Smoothened Time Series"),
                         values = c("#CC79A7", "#000000"))
set.seed(12345)
w \leftarrow rnorm(100,0,1)
x \leftarrow rep(0,100)
for(i in 7:100){
x[i] = w[i] + 3 * w[i-2] + w[i-4] - 4 * w[i-6] + 4 * x[i-1] - 2 * x[i-2] - x[i-5]
```

plot(x)

set.seed(54321)