武汉大学计算机学院 《离散数学》第六次练习

§7.1.1 加、减、乘和除是否为下列集合的二元运算:

 $(1) \mathbb{R};$

(2) $\mathbb{R}^* \triangleq \mathbb{R} - \{0\};$

(3) $\mathbb{Z}_+ \triangleq \{ n \mid n \in \mathbb{Z} \land n > 0 \};$

(4) $\mathbb{O}_d \triangleq \{ 2n + 1 \mid n \in \mathbb{Z} \};$

(5) $A = \{ 2^n \mid n \in \mathbb{Z} \};$

(6) $B = \{ a\sqrt{2} + b \mid a, b \in \mathbb{Z} \};$

解:

	运算	(1)	(2)	(3)	(4)	(5)	(6)
ſ	+	√	X	√	X	X	√
ſ	_	√	X	X	X	X	√
ſ	×	√	√	√	√	√	√
	÷	Х	√	Х	Х	√	Х

§7.1.2 设*是集合A上的二元运算,e和0分别是关于*的单位元和零元. 试证明: 若|A| > 1,则 $e \neq 0$.

证明: 反证法: 设e = 0 : $|A| \ge 2$, 则 $\exists a \in A \land a \ne e$. 这样a = a * e = a * 0 = 0. 矛盾.

§7.1.4 定义 \mathbb{Z} 上的运算*: x * y = x + y - xy, 证明: *是可交换的和可结合的, 求出其单位元, 并指出每个可逆元的逆元;

证明:

(1) *是可结合的:

$$(x * y) * z$$

= $(x + y - xy) * z$
= $x + y - xy + z - (x + y - xy)z$
= $x + y + z - xy - yz - zx + xyz$

同理:

٠.

$$x * (y * z) = x + y + z - xy - yz - zx + xyz$$

 $(x * y) * z = x * (y * z)$

- (2) *的幺元是: 0;
- (3) 仅2有逆元, 其逆元是其自身.
- §7.1.7 下述二元运算*是否为可交换的、可结合的?是否有左单位元、 右单位元、单位元?

下述运算定义在实数集聚上:

(1) x * y = x + 2y;

(2)
$$x * y = |x - y|$$
;

(3) $x * y = \frac{x+y}{2}$;

以下运算定义在整数Z+上:

(4) $m * n = m^n$;

(5)
$$m * n = (m, n)$$
.

(6) m * n = [m, n];

其中(m,n), [m,n]分别表示m和n的最大公因子与最小公倍数. 解:

运算	(1)	(2)	(3)	(4)	(5)	(6)
交換律	X	\checkmark	√	X	\checkmark	√
结合律	Х	X	Х	X	√	√
左单位元	Х	Х	Х	Х	1	X
右单位元	0	Х	Х	0	1	X
单位元	Х	X	X	X	1	Х

§7.1.8 设|A| = n, A上有多少个二元运算, 其中有多少个对称运算? 有多少个运算有么元?

解:

- (1) 等于有多少个 $A \times A \longrightarrow A$ 的函数, $\overline{n}|A^{A \times A}| = n^{n^2}$;
- (2) 等价于运算表有多少个对称矩阵,即n阶方正对角线(包括该线)以上选择n个元素有多少不同的可能: $n^{\frac{n(n+1)}{2}}$;
- (3) 设 $a \in A$ 是某运算的幺元,则在运算表中a所对应的行和列唯一确定,因此以a为幺的运算有 $n^{(n-1)^2}$,故有幺的运算共有: $nn^{(n-1)^2} = n^{(n-1)^2+1}$.
- §7.1.9 设*是A上可结合的二元运算,且 $\forall a,b \in A$,若a*b=b*a,则a=b;

- (1) $\forall a \in A, a * a = a,$ 即a是幂等元(idempotent element);
- (2) $\forall a, b \in A, \ a * b * a = a;$
- (3) $\forall a, b, c \in A, \ a * b * c = a * c;$

证明:

(1) :
$$\underbrace{(a*a)}_{b}*a = a*\underbrace{(a*a)}_{b}$$
 :
$$a*a = a$$

(2) ::

$$\underbrace{(a * b * a)}_{\mathcal{B}} * a$$

$$= a * b * (a * a)$$

$$= a * b * a$$

$$= a * a * (b * a)$$

$$= a * \underbrace{(a * b * a)}_{\mathcal{B}}$$

$$a * b * a = a$$

··.

(3) ::

$$(a*b*c)*a*c$$

= $(a*(b*c)*a)*c$
= $a*c$

又

$$a * c * (a * b * c)$$

= $a * (c * (a * b) * c)$
= $a * c$

.: 故

$$= a * c (a * b * c) * a * c = a * c * (a * b * c) a * b * c = a * c$$

§7.2.1 考察代数系统 $A = \langle \mathbb{N}, \cdot \rangle$ 和 $B = \langle \{0,1\}, \cdot \rangle$,其中·为普通乘法运算. 函数 $f : \mathbb{N} \longrightarrow \{0,1\}$ 定义为

$$f(n) = \begin{cases} 1, & 若∃k \in \mathbb{N}$$
使得 $n = 2^k$; 0, 否则.

试证明: f是从A到b的同态.

证明:由于运算满足交换律,所以只需下述三种情况讨论:

(1) $m = 2^p \wedge n = 2^q$:

$$f(m \cdot n) = f(2^p \cdot 2^q) = f(2^{p+q}) = 1 = f(2^p) \cdot f(2^q) = f(x) \cdot f(y)$$

② $m = 2^p \land (\forall q \in \mathbb{N}, n \neq 2^q)$. 即q含有非2的质因子,所以mn也含有非2质音质,这样mn也不具有 2^r 形式,故

$$f(m \cdot n) = 0 = f(m) \cdot f(n)$$

③ *m*和*n*都不是仅有2作为其质因子.则*mn*也不可能仅有2作为其质因子,即不具有2^r形式,则

$$f(m \cdot n) = 0 = f(m) \cdot f(n)$$

故f是同态.

§7.2.3 下述函数f中哪些是 $\langle \mathbb{R}^+, \cdot \rangle$ 的自同态?

- $(1) \ f(x) = |x|; \quad \checkmark$
- (2) $f(x) = x^3$; \checkmark
- (3) f(x) = 2x; **X**
- (4) f(x) = x + 1.

§7.2.4 令 \mathbb{E}_v 为偶数集. 试证明: $\langle \mathbb{Z}, \cdot \rangle$ 与 $\langle \mathbb{E}_v, \cdot \rangle$ 不同构.

证明: 反证法: $\langle \mathbb{Z}, \cdot \rangle$ 有单位元1,设f是 $\langle \mathbb{Z}, \cdot \rangle$ 到 $\langle \mathbb{E}_v, \cdot \rangle$ 上的同构. 则f(1)是 $\langle \mathbb{E}_v, \cdot \rangle$ 上的单位元,但是 $\langle \mathbb{E}_v, \cdot \rangle$ 上没有单位元,矛盾.

§7.2.5 设A为集合. 试证明: $\langle \mathscr{P}(A), \cup \rangle \cong \langle \mathscr{P}(A), \cap \rangle$ 同构.

证明: 定义函数 $h: \mathcal{P}(A) \longrightarrow \mathcal{P}(A), X \longmapsto \overline{X}, \, 则h$ 是双射, 且

$$h(X \cup Y) = \overline{X \cup Y} = \overline{X} \cap \overline{Y} = h(X) \cap h(Y)$$

故h是 $\langle \mathcal{P}(A), \cup \rangle$ 到 $\langle \mathcal{P}(A), \cap \rangle$ 的同构.

§7.2.8 设 $\langle \{1,2,3,4\}, \times_5 \rangle$ 和 $\langle \{0,1,2,3\}, +_4 \rangle$ 是否同构.

答: 同构. 定义函数 $h: \{0,1,2,3\} \longrightarrow \{1,2,3,4\}, n \longmapsto 2^n \mod 5$. 则可验证h是双射,且

$$h(m +_4 n) = 2^{m+n} \mod 5 = 2^m \times_5 2^n = h(m) \times_5 h(n)$$

即h是 $\langle \{0,1,2,3\}, +_4 \rangle$ 到 $\langle \{1,2,3,4\}, \times_5 \rangle$ 上的同构.

§7.2.9 (1) 证明: $\langle \mathbb{N}_m, +_m \rangle$ 的自同态恰好m个;

证明: $\forall k \in \mathbb{N}_m$, 易验证 $h : \mathbb{N}_m \longrightarrow \mathbb{N}_m$, $n \longmapsto nk \mod m$ 是 \mathbb{N}_m 上的自同态.

设h'是 \mathbb{N}_m 上的自同态,则 $\forall n \in \mathbb{N}_m$,

$$h'(n) = h'(\underbrace{1 +_m 1 +_m \dots +_m 1}_{n \uparrow 1}) = nh'(1) \mod m$$

即h'由h'(1)唯一确定. 即 $n \mapsto knk$ 是同态的唯一形式. 而k的可能的取值为 $0,1,\ldots m-1$. 故自同态的个数为m.

(2) 描述从 $\langle \mathbb{N}, + \rangle$ 到 $\langle \mathbb{N}_m, +_m \rangle$ 的所有同态集合;

 $\mathbf{m}: \langle \mathbb{N}, + \rangle \mathfrak{I}(\mathbb{N}_m, +_m)$ 上的同态h只有唯一的形式 $n \mapsto kn \mod m($ 其中k为常数), 故同态集合为 $\{h \mid h : \mathbb{N} \longrightarrow \mathbb{N}_m, n \longmapsto kn \mod m, k \in \mathbb{N}\}$

(3) 描述从 $\langle \mathbb{N}_2, +_2 \rangle$ 到 $\langle \mathbb{N}_3, +_3 \rangle$ 的所有同态集合.

解: 设h是 \mathbb{N}_2 到 \mathbb{N}_3 上的同态,则h(1)的阶数应为2和2公因子,而2和3的公因子为1. 故h(1) = 0, $\therefore \forall n \in \mathbb{N}_2$, $h(n) = nh(1) \mod 3 = 0$. 所以h(n) = 0, 即 \mathbb{N}_2 到 \mathbb{N}_3 只有唯一的同态 $h: \mathbb{N}_2 \longrightarrow \mathbb{N}_3$, $n \longmapsto 0$.

- $\S7.3.1$ 下述关系R是否为 $\langle \mathbb{Z}, + \rangle$ 上的同余关系?
 - (1) iRj 当且仅当 $i \cdot j \ge 0$;

解: 不是. 如 $\langle -1, -3 \rangle \in R \land \langle 2, 2 \rangle \in R$, 但是 $\langle -1 + 2, -3 + 2 \rangle \notin R$.

(2) iRj 当且仅当 $i \leqslant 0 \land j \leqslant 0 \lor i > 0 \land j > 0$;

解: 不是. 如 $\langle -1, -3 \rangle \in R \land \langle 2, 2 \rangle \in R$, 但是 $\langle -1 + 2, -3 + 2 \rangle \notin R$.

(3) iRj 当且仅当 $|i-j| \leq 4$;

解: 不是. 如 $\langle -1, -5 \rangle \in R \land \langle -1, 5 \rangle \in R$, 但是 $\langle -1-1, -5-5 \rangle \notin R$.

(4) iRj 当且仅当 $i \ge j$;

解: 不是. 不是对称关系, 所以不是等价关系.

§7.3.2 设 $m, n \in \mathbb{Z}_+$. \mathbb{Z} 上的一元运算*定义为: $\forall i \in \mathbb{Z}, *(i) = i^n$. 试证明: \equiv_n 是代数系统 $\langle \mathbb{Z}, * \rangle$ 上的同余关系.

证明: 模m关系是等价关系. 设 $i = j \mod m$,则 $\exists p \in \mathbb{Z} \land i - j = pm$, 这样 $i^n - j^n = (i - j)P(i, j)$ (P(i, j)是以i和j为变量的多项式). 即*(i) - *(j)也是m的倍数. 故 $*(i) \equiv_m *(i)$. \equiv_m 是同余关系.

§7.3.4 设R是 \mathbb{N}_3 上的等价关系. 试证明若R对 $+_3$ 有置换性质,则R对 \times_3 也有置换性质. 请举例说明若R对 \times_3 有置换性质,R对 $+_3$ 却未必有置换性质.

证明:根据群论定理,群上的同余关系一定由正规子群所诱导.而 N_3 是交换群,因此其上的同余关系由其子群诱导即可.而 N_3 仅有两个平凡子群 N_3 和 $\{0\}$,其对应的同余关系分别是全域关系和恒等关系.因此它们对运算 \times_3 也是同余关系.而等价类集合 $\{\{0\},\{1,2\}\}$ 所诱导的等价关系R对运算 \times_3 保持置换性,但是对 $+_3$ 没有置换性,如 $\langle 1,1\rangle \in R \land \langle 1,2\rangle \in R$,但 $\langle 1+_3 1,1+_3 1\rangle = \langle 2,0\rangle \notin R$.

§7.3.5 试证明: 同一代数系统上的两个同余关系的交仍为同余关系. 举例说明它们的合成不一定是同余关系.

证明: 设 R_1 和 R_2 是代数系统 $\langle A, * \rangle$ 上的同余关系(*为二元运算). 则根据关系定理有 $R_1 \cap R_2$ 是A上的等价关系. 设a $R_1 \cap R_2$ $b \wedge c$ $R_1 \cap R_2$ d, 则a R_1 $b \wedge c$ R_2 $d \wedge a$ R_2 $b \wedge c$ R_2 d. 即有a * c R_1 $b * d \wedge a * c$ R_2 b * d, \therefore a * c $R_1 \cap R_2$ c * d. 故 $R_1 \cap R_2$ 是同余关系. 而根据习题\$4.4.2得知两个等价关系的合成不一定是等价关系,故更不可能是同余关系.

- $\S7.4.4 \ \overrightarrow{i} \square A_m = \langle N_m, +_m \rangle.$
 - (2) 证明: $A_m \times A_n \cong A_{mn}$ 当且仅当m和n互素.

证明:

定义函数 $h: A_m \times A_n \longrightarrow A_{mn}, \langle p,q \rangle \longmapsto pn+qm \mod mn,$ 则可验证h是群 $A_m \times A_n$ 到群 A_{mn} 上的同态. 又(m,n)=1, 根据Bézout引理存在 $r,s \in \mathbb{Z}$ 使得rn+sm=1. 设 $r'=r \mod m,s'=s \mod n$,则 $\exists i,j \in \mathbb{Z},r=mi+r',s=mj+s',$ $\therefore mni+r'n+mnj+s'm=1$,即 $r'n+s'm\equiv_{mn}1$,所以存在 $\langle r',s' \rangle \in A_m \times A_n, \ h(r',s')=1$. 这样 $\forall k \in A_{mn}, \ k=k1=kh(r',s')=h(kr',ks')$. 故h是满射. 而 $|A_m \times A_n|=mn=|A_{mn}|$, $\therefore h$ 是双射,所以h是同构,即 $h_m \times h_n \cong A_{mn}$.

- §8.1.4 设半群 $\langle S, * \rangle$ 中消去律成立,S是交换半群,iff, $\forall a, b \in S, (a * b)^2 = a^2 * b^2$;

证明:

$$\implies (a*b)^2 = (a*b)*(a*b) = a*a*b*b = a^2*b^2;$$
 $\iff \forall a,b \in S:$

即
 $a*b*a*b = a^2*b^2$
即
 $a*b*a*b = a^2*b^2$
等式两边消去 $a:$

b*a*b=a*b*b

等式两边消去b:

$$b * a = a * b$$

故*满足交换率.

- §8.1.5 设 $\langle \{a,b\},*\rangle$ 是半群,其中a*a=b,证明:
 - (1) a * b = b * a;
 - (2) b * b = b;

证明:

- (1) a * b = a * (a * a) = (a * a) * a = b * a;
- (2) 设a*b=a, 则:b*b=(a*a)*b=a*(a*b)=a*a=b设a*b=b, 则:b*b=(a*a)*b=a*(a*b)=a*b=b故: b*b=b
- §8.1.6 试证明每个有限半群中一定有一个幂等元.

证明:

设 $\langle S, * \rangle$ 是任意的一个有限半群,则 $\{a^i | i \in \mathbb{N}^+ \}$ 是一个有限集

合,根据抽屉原则, $\exists j, k \in \mathbb{N}^+$:

$$a^j = a^{j+k}$$

用归纳法证明: $\forall n \in \mathbb{N}^+$, 有

$$a^{kj} * a^{nk} = a^{jk}$$

(i) n = 1时,if k = 1,then $a^j = a^{j+1}$,而 $a^{kj} * a^k = a^{j+1}$; $a^{jk} = a^j$,∴结论成立;if k > 1

$$\begin{array}{ccc} a^j = a^{j+k} \\ \vdots \\ a^{(k-1)j} * a^j = a^{(k-1)j} * a^{j+k} \\ & a^{jk} = a^{jk+k} \end{array}$$

(ii) 设n-1时有:

$$a^{kj} * a^{(n-1)k} = a^{jk}$$

(iii) 当n时:

当n = k时有:

$$a^{jk} * a^{jk} = a^{jk}$$

这样ajk就是幂等元.

- §8.2.1 下列代数系统中哪些是群,交换群?
 - (1) $\langle \mathcal{M}_{m \times n}, + \rangle$; 交换群.
 - (2) 〈{1,2,3,4,6,12}, gcd〉; 不是群,没有么元.
 - (3) $\langle \{a+b\sqrt{2} \mid a,b \in \mathbb{Q} \}, + \rangle$; 交换群.
 - (4) $\langle \{z \mid z \in \mathbb{C} \land |z| = 1\}, + \rangle$; 不是群,运算不封闭.
 - (5) $\langle \{z \mid z \in \mathbb{C} \land |z| = 1\}, \times \rangle$; 交换群.
 - $(6) \left\langle \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}, \cdot \right\rangle;$ 交换群.

§8.2.7 设
$$\langle G, *, e \rangle$$
为群,试证明: $\forall a, b \in G, n \in \mathbb{Z}$,有 $(a * b * a^{-1})^n = a * b^n * a^{-1}$

证明:

对n用归纳法:

(i)
$$n = 0$$
 H, $(a*b*a^{-1})^0 = e = a*a^{-1} = a*e*a^{-1} = a*b^0*a^{-1}$

(ii) 设 $\forall n \in \mathbb{N}$,有

$$(a*b*a^{-1})^n = a*b^n*a^{-1}$$

(iii) n+1时,有

$$\begin{array}{l} (a*b*a^{-1})^{n+1} \\ = (a*b*a^{-1})^n*(a*b*a^{-1}) \\ = a*b^n*a^{-1}*a*b*a^{-1} \\ = a*b^n*e*b*a^{-1} \\ = a*b^n*b*a^{-1} \\ = a*b^{n+1}*a^{-1} \end{array}$$

而

$$\begin{array}{l} (a*b*a^{-1})^{-(n+1)} \\ = ((a*b*a^{-1})^{-1})^{n+1} \\ = (a*b^{-1}*a^{-1})^{n+1} \\ = a*(b^{-1})^{n+1}*a^{-1} \\ = a*b^{-(n+1)}*a^{-1} \end{array}$$

故对任意的 $n \in \mathbb{Z}$,原式成立.

§8.2.8 设 $\langle G, *, e \rangle$ 为群, $a, b \in G, a \neq e$,并且 $a^4 * b = b * a^5$ 试证明: $a * b \neq b * a$.

证明(反证法):

设a * b = b * a,则:

$$b * a^5 = a^5 * b = a^4 * b$$

由于群满足消去律,等式两边消去а4:

$$a * b = b$$

再消去b:

$$a = e$$

与条件矛盾.

§8.2.9 设 $\langle G, *, e \rangle$ 为群, $\forall a, b \in G$, $a^3 * b^3 = (a * b)^3$, $a^5 * b^5 = (a * b)^5$ 试证明:G是Abelian;

证明:

•

$$a^{3} * b^{3} = (a * b)^{3} = a * b * a * b * a * b$$

$$a^{2} * b^{2} = b * a * b * a = (b * a)^{2}$$
(1)

而

$$a^{5} * b^{5}$$

$$= (a * b)^{5}$$

$$= a * (b * a)^{4} * b$$

$$= a * (a^{2} * b^{2})^{2} * b$$

$$= a * a^{2} * b^{2} * a^{2} * b^{2} * b$$

$$= a^{3} * b^{2} * a^{2} * b^{3}$$

٠.

$$a^5 * b^5 = a^3 * b^2 * a^2 * b^3$$

等式两边消去a3和b3

$$a^2 * b^2 = b^2 * a^2 \tag{2}$$

由(1)和(2)得

$$b^2 * a^2 = b * a * b * a$$

即

$$b * a = a * b$$

故*满足交换率.

§8.2.15 设 $\langle G, *, e \rangle$ 为群, $a, b \in G$,且a * b = b * a,试证明:若(|a|, |b|) = 1,则 $|a * b| = |a| \times |b|$.

证明: 设|a|=m, |b|=n, 设 $\langle a\rangle$ 和 $\langle b\rangle$ 分别是由元素a和b生成的子群,则 $|\langle a\rangle|=m \land |\langle b\rangle=n|$. 则根据讲义例题(设G为有限群, $H\leqslant G\land K\leqslant G$,并且(|H|,|K|) = 1,则 $H\cap K=\{e\}$)有 $\langle a\rangle\cap\langle b\rangle=\{e\}$. 设|a*b|=p. $\because (a*b)^{mn}=a^{mn}*b^{nm}=(a^m)^n*(b^n)^m=e$. 这样 $p\leqslant mn$; 又 $(a*b)^p=e$, 则 $a^p*b^p=e$, 即 $a^p=(b^{-1})^p\in\langle a\rangle\cap\langle b\rangle=\{e\}$. $\therefore a^p=(b^{-1})^p=e$. 即 $m|p\land n|p$, 而(m,n)=1, so mn|p. 即 $mn\leqslant p$. 故mn=p.

§8.2.16 设 $\langle G, *, e \rangle$ 为交换群,a为G中阶数最大的元素,且|a| = n. 试证: 若 $\forall b \in G$,则|b||a|.

证明: 设|b|=m, (n,m)=p, 设p的质因分解为: $p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k},$ 则 $\forall i\in 1,2,\ldots,k, p_i^{r_i}|m\wedge p_i^{r_i}|n,$ 且 $m/p_i^{r_i}$ 和 $n/p_i^{r_i}$ 中一定有一个没有 p_i 因子,定义函数 $f:\{1,2,\ldots,k\}\longrightarrow\{0,1\}$

$$f(i) = \left\{ \begin{array}{ll} 1 & \text{如果} m/p_i^{r_i} \\ 0 & \text{否则} \end{array} \right.$$

定义 $s=(p_1^{r_1})^{f(1)}(p_2^{r_2})^{f(2)}\cdots(p_k^{r_k})^{f(k)}, t=(p_1^{r_1})^{1-f(1)}(p_2^{r_2})^{1-f(2)}\cdots(p_k^{r_k})^{1-f(k)},$ 则(m/s,n/t)=1 且st=p,而 $|a^s|=m/s \wedge |b^t|=n/t$,这样 a^t 和 b^s 的阶数互素. 根据习题§8.2.15有 $|a^s*b^t|=\frac{mn}{st}=\frac{mn}{p}\leqslant n$, $\therefore m\leqslant p$. 而p是n和m的最大公约数,因此 $p\leqslant m$. 即p=m. 故m整除n.

§8.3.1 设 $\langle G, *, e \rangle$ 为群, $H \leq G$, $K \leq G$,试证明: $H \cap K \leq G$, $H \cup K$ 是G的子群吗?

证明:

- (i) 运算的封闭性: $\forall a, b \in H \cap K$, 则 $a, b \in H \wedge a, b \in K$, $\therefore a*b \in H \wedge a*b \in K$, $\therefore a*b \in H \cap K$;
- (ii) 么元在 $H \cap K$ 中: $e \in H \wedge e \in K$, $\therefore e \in H \cap K$;
- (iii) 取逆运算的封闭性: 设 $a \in H \cap K$, 则 $a \in H \wedge a \in K$, $\therefore a^{-1} \in H \wedge a^{-1} \in K$, $\therefore a^{-1} \in H \cap K$;
- (iv) $H \cup K$ 不一定是G的子群: 如: $3\mathbb{Z} \leq \mathbb{Z}$, $4\mathbb{Z} \leq \mathbb{Z}$, $3\mathbb{Z} \cup 4\mathbb{Z}$ 不是 \mathbb{Z} 的子群,因为运算不封闭.
- §8.3.2 设 $\langle G, *, e \rangle$ 为群, $H \leqslant G$, $K \leqslant G$, $HK \triangleq \{h * k | h \in H \land k \in K\}$,试证明: $HK \leqslant G$,iff,HK = KH

证明:

⇒ 证明集合相等:

 $\forall h \in H \land k \in K, \because e \in H \cap K, \therefore h = h * e \in HK \land k = e * k \in HK, \because HK \leqslant G, \therefore k * h \in HK, \text{ so } KH \subseteq HK. \\ \therefore k^{-1} * h^{-1} \in KH \subseteq HK, \text{ So } \exists h' \in H \land k' \in K, k^{-1} * h^{-1} = h' * k', \text{ hence } h * k = (k^{-1} * h^{-1})^{-1} = (h' * k')^{-1} = k'^{-1} * h'^{-1} \in KH, 即 HK \subseteq KH, \\ 故 HK = KH.$

⇒ (i) 运算的封闭性:

 $\forall h, h' \in H \land k, k' \in K$, then $k * h' \in KH = HK$, so $\exists h'' \in H \land k'' \in K$, k * h' = h'' * k'', hence $(h * k) * (h' * k') = h * (k * h') * k' = (h * h'') * (k'' * k') \in HK$.

(ii) $e \in H \cap K$, so $e = e * e \in HK$.

	(iii) 取逆运算的封闭性:	·.
§8.3.3	设 $\langle G,*,e \rangle$ 是群, $a \in G$,令 $H \triangleq \{x \mid x \in G \land a*x = x*a\}$,证明: $H \leqslant G$	ţ
	证明:	
	(i) $e \in H$: $\because a * e = e * a = a$; (ii) 运算封闭性: $\forall x, y \in H, a * (x * y) = x * (a * y) = (x * y) * a$ so $x * y \in H$;	٠,
	(iii) 取逆运算的封闭性: $\because \forall x \in H, a*x = x*a, 则x^{-1}*a*x = a x^{-1}*a = a*x^{-1}.$ 这样 $x^{-1} \in H$. 取逆运算是封闭的.	,,]
§8.3.4	设 $\langle G,*,e\rangle$ 是群, $H\leqslant G$, $a\in G$. 令 $aHa^{-1}\triangleq\{a*x*a^{-1} x\in H\}$,试证明: $aHa^{-1}\leqslant G$	Ē
	证明: 定义函数 $h:G\longrightarrow G,x\longmapsto a*x*a^{-1}$, 根据习题§8.3.8 h 是自同构,则 $h(H)\leqslant G$, 而 $h(H)=aHa^{-1}$,故 $aHa^{-1}\leqslant H$ \Box	
$\S 8.3.5$	证明: $\langle \mathbb{Q}, + \rangle$ 与 $\langle \mathbb{Q}^*, \times \rangle$ 不同构,其中 $\mathbb{Q}^* = \mathbb{Q} - \{0\}$.	
	证明:如果 $\langle \mathbb{Q}, + \rangle$ 与 $\langle \mathbb{Q}^*, \times \rangle$ 同构,则两者之间子群也一一对应但是, $\{1, -1\} \leq \langle \mathbb{Q}^*, \times \rangle$,而 $\langle \mathbb{Q}, + \rangle$ 上没有非平凡的有限子群因为设 H 是 $\langle \mathbb{Q}, + \rangle$ 的一个非平凡子群,则 $\exists x \in H \land x \neq 0$. 这样 $\forall n \in \mathbb{Z}, nx \in H$. 故 H 的阶数无限. 故两个群不同构.	
§8.4.3	求8阶循环群所有的生成于那及所有的子群.	
	解:	
	(i) 8阶循环群同构 $\langle N_8, \mp \rangle$, N_8 的生存元有: 1,3,5,7; (ii) N_8 的子群有: $\{0\}, \{0,4\}, \{0,2,4,6\}$ 和 N_8 .	
§8.4.4	设 G 是没有非平凡子群的有限群,试证明 G 是平凡群或质数阶数的循环群	ì
	证明: $G \neq \{e\}$,则 $ G \geqslant 2$. 设 $a \in G \land a \neq e$,则 $\langle a \rangle \leqslant G$ 且 $\langle a \rangle \neq \{e\}$. 由于 G 仅有平凡子群,这样 $\langle a \rangle = G$, \therefore G 是循环群. 如果 $ G $ 不是质数,即存在 $p > 1 \land q > 1 \land G = pq$ 则 $ a^p = q \neq G $,即 $ \langle a^p \rangle \neq 1 \land \langle a^p \rangle \neq G $. G有一个非平凡的子群. 故 G 的阶数必须是质数.	旨

§8.4.5 设 $G = \langle a \rangle$ 是n阶循环群, $m \in \mathbb{Z}_+$,且(m,n) = d. 试证明: $\langle a^m \rangle = \langle a^d \rangle$.

证明: (m,n) = d, 根据Bezout定理, $m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z}$. 这样 $\forall p \in \mathbb{Z}$, $\exists q \in \mathbb{Z}$, mp = dq, 这样 $(a^m)^p = a^{mp} = a^{mp} = a^{dq} = (a^d)^q$, 即 $\langle a^m \rangle \subseteq \langle a^d \rangle$; 反之, $\forall q \in \mathbb{Z}$, $\exists r, s \in \mathbb{Z}$, dq = mr + ns, 这样, $(a^d)^q = a^{dq} = a^{mr + ns} = a^{mr} * a^{ns} = (a^m)^r * (a^n)^s = (a^m)^r * e = (a^m)^r$, 即 $\langle a^d \rangle \subseteq \langle a^m \rangle$. 故 $\langle a^m \rangle = \langle a^d \rangle$.

 $\S 8.4.6$ 设G是循环群, $G \sim G'$. 试证: G'也是循环群.

证明:根据循环群的定义: G是循环群当且仅当存在满同态h: $\mathbb{Z} \longrightarrow G$. $: G \to G'$ \therefore 3满同态 $f: G \longrightarrow G'$, 这样 $f \circ h: \mathbb{Z} \longrightarrow G'$ 是 \mathbb{Z} 到G'上的满同态,即G'是循环群.

§8.4.7 设G是无限阶循环群,G'是任意的循环群,试证: $G \sim G'$.

证明: 设 $G = \langle a \rangle$, $G' = \langle b \rangle$, 则: G是无限阶循环群, : a为无限阶. 定义函数 $h: G \longrightarrow G'$, $a^n \longmapsto b^n$. 设 $m, n \in \mathbb{Z}, m \neq n$. 则 $a^m \neq a^n$, 否则 $a^{m-n} = e$, 破坏了a的无限阶. 这样h有定义. 则 $\forall a^m, a^n \in G, h(a^m * a^n) = h(a^{m+n}) = b^{m+n} = b^m \cdot b^n$. 即h是同态. $\forall y \in G'$, $\exists p \in \mathbb{Z}, b^p = y$, 则 $h(a^p) = b^p = y$. 即h是满同态, 故 $G \sim G'$.

§8.4.8 试证明: $C_m \times C_n \cong C_{mn}$ 当且仅当(m,n) = 1, 其中 C_m 表示m阶循环群.

证明:

- 必要性 设 $C_m \times C_n \cong C_{mn}$, 则存在同构 $h: C_m \times C_n \longrightarrow C_{mn}$. 而设 $H = C_m \times \{e\}$, $K = \{e\} \times C_n$, 则H和K分别是 $C_m \times C_n$ 的阶数为m和n的子群, 且 $HK = C_m \times C_n$. 这样h(H)和h(K)是 C_{mn} 上的子群,且 $|h(H)| = m \wedge |h(K)| = n \wedge h(H)h(K) = C_{mn}$. 设c是 C_{mn} 的生成元,则 $\langle c^n \rangle$ 是 C_{mn} 的唯一一个阶数为m的子群, $\langle c^m \rangle$ 是 C_{mn} 的唯一一个阶数为n的子群. 这样 $h(H) = \langle c^n \rangle \wedge h(K) = \langle c^m \rangle$,而 $h(H)h(K) = C_{mn}$, $\therefore \exists pq \in \mathbb{Z}c^{nq}c^{mq} = c$,即 $c^{mq+nq} = c$,这样mp+nq=1 mod mn. 根据Bezout定理有(m,n)=1.
- 充分性 设 C_{mn} 的生成元是c. 则 $\langle c^n \rangle$ 和 $\langle c^m \rangle$ 分别是 C_{mn} 的两个阶数为m和n的循环子群. $:: C_{mn}$ 是交换群,这样根据习题 $\S 8.3.2 \overline{a} \langle c^n \rangle \langle c^m \rangle = \langle c^m \rangle \langle c^n \rangle$,即 $\langle c^n \rangle \langle c^m \rangle \leqslant C_{mn}$.根据讲义例题(设G为有限群, $H \leqslant G \land K \leqslant G$,并且(|H|, |K|) = 1,则 $H \cap K = \{e\}$) $\overline{a} \langle c^n \rangle \cap \langle c^m \rangle = \{e\}$.根据Bezout定

理有 $\exists pq \in \mathbb{Z}, pm + qn = 1.$ 即 $\forall x \in C_{mn}, \exists t \in \mathbb{Z}, x = c^t = (c^n)^{qt}(c^m)^{pt} \in \langle c^n \rangle \langle c^m \rangle.$ 这样 $C_{mn} \subseteq \langle c^n \rangle \langle c^m \rangle.$ 即 $\langle c^n \rangle \langle c^m \rangle = C_{mn}.$ 定义函数 $h : \langle c^n \rangle \times \langle c^m \rangle \longrightarrow \langle c^n \rangle \langle c^m \rangle, \langle x, y \rangle \longmapsto xy.$ 则易验证h是同态. 设 $h(\langle x, y \rangle) = h(\langle x', y' \rangle),$ 则xy = x'y', 即 $x'^{-1}x = y'y^{-1} \in \langle c^n \rangle \cap \langle c^m \rangle.$ $\therefore x'^{-1}x = y'y^{-1} = e.$ 即h是单射,而 $|\langle c^n \rangle \times \langle c^m \rangle| = |\langle c^n \rangle \langle c^m \rangle| = mn,$ 故h是满射,即h是同构. 又 $\langle c^n \rangle \cong C_m \wedge \langle c^m \rangle \cong C_m.$ 故 $C_m \times C_n \cong C_{mn}.$

 $\S 8.5.3\ H \leqslant G$, 证明H在G的所有左右陪集中有一个并只有一个是子群.

证明:

- (i) H是一个H诱导的左陪集: :: eH = H;
- (ii) H是唯一的一个成子群的陪集: 设aH是子群,则 $e \in aH$,而 $e \in H$, $\therefore e \in aH \cap H \neq \emptyset$,而陪集是G的划分, $\therefore H = aH$.
- §8.5.6 证明6阶群恰好有一个3阶子群.

证明: 设|G| = 6, $a \in G \land a \neq e$, 则根据Lagrange定理a的阶数 只有下述三种可能:

- (i) |a| = 6, 则G是循环群,则G同构 N_6 ,而 N_6 的唯一一个3阶 子群为 $\{0,2,4\}$.
- (ii) 设|a| = 3,则 $H = \{e, a, a^2\}$ 是G的一个3阶子群. 设 $b \notin H$,则|b| = 2,否则,设|b| = 3,即 $b \neq b^2 \neq e$,这样H,bH和 b^2H 为三个两两交为空的左陪集,且每个都已3为基数,即 $|H \cup bH \cup b^2H| = 9$,而 $H \cup bH \cup b^2H \subseteq G \land |G| = 6$,矛盾. 即H是G的唯一一个阶数为3的子群.
- (iii) G中没有阶数为3的元素,即 $\forall x \in G \{e\}, |x| = 2$,这样根据习题§8.2.11,G是交换群. 设 $a,b \in G \{e\}$,且 $a \neq b$,则 $\{e,a,b,ab\}$ 是G的一个阶数为4的子群,但根据 Lagrange 定理G 的子群的阶数只可能是G阶数的因子,即1、2、3或6. 矛盾. 因此G必定有一个阶数为3的元素.
- §8.5.7 证明10阶交换群一定是循环群.

证明: 设|G| = 10, $a \in G \land a \neq e$, 则根据Lagrange定理a的阶数只有下述3种可能:

(i) |a| = 10, 则G是循环群.

- (ii) 设|a| = 5,则 $H = \{e, a, a^2, a^3, a^4\}$ 是G的一个5阶子群. 设 $b \notin H$,则 $|b| \neq 5$,否则,设|b| = 5,即 $b \neq b^2 \neq b^3 \neq b^4 \neq e$,这样H,bH, b^2H , b^3H 和 b^4H 为5个两两交为空的左陪集,且每个都已5为基数,即 $|H \cup bH \cup b^2H \cup b^3H \cup b^4H| = 25$,而 $H \cup bH \cup b^2H \cup b^3H \cup b^4H \subseteq G \land |G| = 10$,矛盾. 设|b| = 10,则b是G的生成元,即G是循环群. 设|b| = 2,则根据讲义例题(设G是Abelian, $a, b \in G$, |a| = p, |b| = q, (p,q) = 1,则|ab| = |a||b| = pq.)有|ab| = 10,即ab是G的生成元.
- (iii) G中没有阶数为5的元素,即 $\forall x \in G \{e\}, |x| = 2$,设 $a, b \in G \{e\}, \exists a \neq b$,则 $\{e, a, b, ab\}$ 是G的一个阶数为4的子群,但根据Lagrange定理G的子群的阶数只可能是G阶数的因子,即1, 2, 5或10. 矛盾. 因此G必定有一个阶数为5的元素.
- §8.6.1 求出4次交代群 A_4 中 $H = \{(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$ 的 左、右陪集,并验证H是 A_4 的正规子群.

证明: A_4 是有4次对称群 S_4 上的所有偶置换组成的群,因为偶置换的合成还是偶置换,所以对合成运算封闭,恒等变换也是偶置换,所以幺元也是偶置换,偶置换的反函数也是偶置换,所以它构成子群,称为交代群(Alternating Group).

$$A_4 = \{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 3, 2), (2, 3, 4), (1, 3, 4), (1, 4, 3), (1, 2, 4), (1, 4, 3), (1, 4, 2)\}$$

这样

$$(1)H = (1,2)(3,4)H = (1,3)(2,4)H = (1,4)(2,3)H = H$$

$$H(1) = H(1,2)(3,4) = H(1,3)(2,4) = H(1,4)(2,3) = H;$$

$$(1,2,3)H = (1,3,4)H = (1,2,4)H = (1,4,2)H$$

$$= \{(1,2,3),(1,3,4),(1,4,3),(1,4,2)\}$$

$$H(1,2,3) = H(1,3,4) = H(1,2,4) = H(1,4,2)$$

$$= \{(1,2,3),(1,3,4),(1,4,3),(1,4,2)\};$$

$$(1,3,2)H = (2,3,4)H = (1,3,4)H = (1,4,3)H$$

$$= \{(1,3,2), (2,3,4), (1,3,4), (1,4,3)\}$$

$$H(1,3,2) = H(2,3,4) = H(1,3,4) = H(1,4,3)$$

$$= \{(1,3,2), (2,3,4), (1,3,4), (1,4,3)\}.$$

由上可得,左右陪集相等,因此H是 A_4 的正规子群.

§8.6.2 令 $G = \left\{ \begin{pmatrix} r & s \\ 0 & 1 \end{pmatrix} \middle| r, s \in \mathbb{Q}, r \neq 0 \right\}$,则G关于矩阵乘法构成群. 令 $H = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \middle| t \in \mathbb{Q} \right\}$,试证明: H是G的不变子群.

证明:首先证明G是群:

- (i) 单位矩阵 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in G;$
- (ii) 设 $M = \begin{pmatrix} r & s \\ 0 & 1 \end{pmatrix} \in G$,则 $M^{-1} = \begin{pmatrix} 1/r & -s/r \\ 0 & 1 \end{pmatrix} \in G$,即取逆运算封闭:

(iii) 设
$$M = \begin{pmatrix} r & s \\ 0 & 1 \end{pmatrix} \in G, M' = \begin{pmatrix} r' & s' \\ 0 & 1 \end{pmatrix} \in G, MM' = \begin{pmatrix} rr' & rs' + s \\ 0 & 1 \end{pmatrix} \in G(\because rr' \neq 0).$$

由上所述G对矩阵乘法构成群.

再整H是群:

- (i) 单位矩阵 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in H;$
- (ii) 设 $N = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \in H$, 则 $N^{-1} = \begin{pmatrix} 1/ & -t \\ 0 & 1 \end{pmatrix} \in H$, 即取逆运算封闭;

(iii) 设
$$N = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \in H, N' = \begin{pmatrix} 1 & t' \\ 0 & 1 \end{pmatrix} \in H, NN' = \begin{pmatrix} 1 & t+t' \\ 0 & 1 \end{pmatrix} \in H.$$

由上所述H对矩阵乘法构成群. 而 $H \subseteq G$, 故 $H \leqslant G$.

最后证明 $H \triangleleft G$: 设 $M \in G$, $N \in H$ 如上所述,则:

$$\begin{split} MNM^{-1} &= \left(\begin{array}{cc} r & s \\ 0 & 1 \end{array}\right) \times \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array}\right) \times \left(\begin{array}{cc} 1/r & -s/r \\ 0 & 1 \end{array}\right) \\ &= \left(\begin{array}{cc} 1 & -\frac{s(rt+s)}{r} \\ 0 & 1 \end{array}\right) \in H \end{split}$$

这样 $MHM^{-1} \in H$, 即 $H \triangleleft G$.

§8.6.3 群G的中心C(G)定义为 $C(G) = \{ a \mid a \in G \land \forall x \in G, ax = xa \},$ 证明: C是G的不变子群

证明: 首先证明 $C \leq G$. $\because \forall x \in Gex = xe$, $\therefore e \in C$; $\forall c, c' \in C$, $\forall x \in G$, x(cc') = cxc' = (cc')x, 这样 $cc' \in C$, 即C对运算封闭; 而 $x^{-1}c = cx^{-1}$, 这样 $(x^{-1}c)^{-1} = (cx^{-1})^{-1}$, 即 $c^{-1}x = cc^{-1}$, 故 $c^{-1} \in C$, 即取逆运算封闭. $\therefore C \leq G$.

再证 $C \triangleleft G$. 设 $\forall c \in C$, $\forall a \in G$, $\forall x \in G$, 则

$$x(aca^{-1}) = x(aa^{-1})c$$

$$= xc$$

$$= cx$$

$$= aa^{-1}cx$$

$$= (aca^{-1})x$$

 $\therefore aca^{-1} \in C$, 这样 $\forall a \in G, aCa^{-1} \in C$, 即 $C \triangleleft G$.

§8.6.4 $H \leqslant G$, $N(H) \triangleq \{n \mid n \in G, nHn^{-1} = H\}$, 证明: $H \triangleleft N(H)$ 证明:

- (i) $H \subseteq N$: $\forall h \in H, \forall x \in H, x = h * (h^{-1} * x * h) * h^{-1} \in hHh^{-1}$, so $hHh^{-1} \subseteq H \subseteq hHh^{-1}$, hence $hHh^{-1} = H$, $\square h \in N(H)$.
- (ii) $N \leq G$:
 - (1) 运算的封闭性: $\forall a,b \in N(H), bHb^{-1} = H, (a*b)H(a*b)^{-1} = a(bHb^{-1})a^{-1} = aHa^{-1} = H, \text{ so } a*b \in H$
 - $(2) e \in H \subseteq N(H),$
 - (3) 取逆运算的封闭性: 设 $a \in N(H)$, then $aHa^{-1} = H$, so $Ha^{-1} = a^{-1}H$, $\therefore a^{-1}Ha = H$, hence $a^{-1} \in H$

(iii)
$$H \triangleleft N(H)$$

由上有: $H \subseteq N(H) \wedge N(H) \leqslant G$, So $H \leqslant N(H)$.
∵ $\forall n \in N(H), nHn^{-1} = H$, so $H \triangleleft N(H)$.

§8.6.6 设 $H \triangleleft G, K \triangleleft G$, 证明: $H \cap K \triangleleft G \land HK \triangleleft G$

证明:

- (i) $H \cap K \triangleleft G$:
 - (1) $H \cap K \leq G$.
 - (2) $H \cap K \triangleleft G$: $\forall a \in G$,

$$a(H \cap K)a^{-1} \subseteq aHa^{-1} \subseteq H$$
$$a(H \cap K)a^{-1} \subseteq aKa^{-1} \subseteq K$$
so $a(H \cap K)a^{-1} \subseteq H \cap K$, $\mbox{id} H \cap K \lhd G$.

- (ii) $HK \triangleleft G$:
 - (1) $HK \leq G$: $\forall k \in K$, 有Hk = kH, so $HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$

根据习题§8.3.2有: $HK \leq G$

(2) $HK \triangleleft G$: $\forall a \in G$,

$$aHK$$

$$= (aH)K$$

$$= (Ha)K$$

$$= H(aK)$$

$$= HKa$$

so $HK \leq G$.

 $\S 8.6.8$ 设H是循环群G的子群,证明:G/H也是循环群.

证明: G是循环群,则G是可交换群,这样H一定是G的正规子群,G/H有定义,设a是G的生成元,则同态 $h: \mathbb{Z} \longrightarrow G, n \longmapsto a^n$ 是满同态,而函数 $f: G \longrightarrow G/H, x \longmapsto xH$ 也是满同态,这样 $f \circ h$ 是 \mathbb{Z} 到G/H上的满同态,即 $G/H = \{(f(h(1))^n \mid n \in \mathbb{Z}\}, 即<math>G/H$ 是循环群.

§8.6.9 设 $H \lhd G, K \lhd G, \exists G/H, G/K$ 是可交换的,证明: $G/(H \cap K)$ 也是可交换的.

证明: 由习题 $\S 8.6.6$ 得知 $H \cap K \triangleleft G$, $\therefore G/(H \cap K)$ 有定义. $\therefore G/H$, G/K是可交换的, 则 $\forall a,b \in G$:

$$abH = baH$$
$$abK = baK$$

这样

$$(a(H \cap K)) * (b(H \cap K))$$

$$= ab(H \cap K)$$

$$= abH \cap abK$$

$$= baH \cap baK$$

$$= ba(H \cap K)$$

$$= (b(H \cap K)) * (a(H \cap K))$$

故 $G/(H \cap K)$ 是可交换的.

§8.6.10 设f是从群 G_1 到 G_2 上的满同态, $H_2 \triangleleft G_2$. 证明: $G_1/f^{-1}(H_2) \cong G_2/H_2$.

证明: 定义函数 $g: G_2 \longrightarrow G_2/H_2, y \longmapsto yH_2$,则g是满同态. $\ker(g) = H_2$. 证明 $\ker(g \circ f) = f^{-1}(H_2)$: 根据 $\ker(g \circ f)$ 有 $\ker(g \circ f) = \{x \mid x \in G_1 \land g(f(x)) = H_2\} = \{x \mid x \in G_1 \land f(x) \in H_2\} = f^{-1}(H_2)$,由于 $g \circ f$ 是满同态,这样 $G_1/f^{-1}(H_2) \cong G_2/H_2$.

§8.6.11 设 $K \triangleleft G$, $H \leqslant G$. 证明: $H/(H \cap K) \cong HK/K$.

证明: $:: K \triangleleft G$, $:: \forall h \in H$, hK = kH, 这样

$$HK = \bigcup_{h \in H} hK = \bigcup_{h \in H} Kh = KH.$$

由习题§8.3.2有 $HK \leq G$,而 $\forall hk \in HK, hkKk^{-1}h^{-1} = hKh^{-1} = K$,即 $K \triangleleft HK$.这样HK/K有定义.

定义函数 $f: H \longrightarrow HK/K, h \longmapsto hHK,$ 则 $\forall hkK \in HK/K,$ $\therefore kK = K, \therefore hkK = hK,$ 即 $f(H) = \{hK | h \in H\} = HK/K, f$ 是满同态. 而 $\ker(f) = \{h | h \in H \land f(h) = K\} = \{h | hK = K\}, \ mhK = K$ 当且仅当 $h \in K$, 故 $\ker(h) = H \cap K$, 即 $H/(H \cap K) \cong HK/K$.