Vietnamese Mathematical Olympiad for High School- & College Students Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc (VMC)

Nguyễn Quản Bá Hồng*

Ngày 9 tháng 1 năm 2025

Tóm tắt nội dung

This text is a part of the series $Some\ Topics\ in\ Advanced\ STEM\ \ensuremath{\mathfrak{G}}\ Beyond:$ URL: https://nqbh.github.io/advanced_STEM/.

Latest version:

• Vietnamese Mathematical Olympiad for High School- & College Students (VMC) – Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc.

Mục lục

1	Preliminaries – Kiến thức chuẩn bị	
	Algebra – Đại Số 2.1 Matrix – Ma trận 2.2 Vector space – Không gian vector	
	Analysis – Giải Tích 3.1 Sequence – Dãy số 3.2 Integral – Tích phân	
4	Miscellaneous	
Tài liêu		

1 Preliminaries – Kiến thức chuẩn bị

Resources - Tài nguyên.

- [Khả09]. PHAN HUY KHảI. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số.
- 2. VMS HỘI TOÁN HỌC VIỆT NAM. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần 28.
- 3. VMS HỘI TOÁN HỌC VIỆT NAM. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần 29. Huế, 2-8.4.2023.

2 Algebra – Đai Số

Resources - Tài nguyên.

- 1. LÊ TUẨN HOA. Đại Số Tuyến Tính Qua Các Ví Du & Bài Tâp.
- 2. [Hưn22]. NGUYỄN HỮU VIỆT HƯNG. Đại Số Tuyến Tính.
- 3. NGÔ VIỆT TRUNG. Giáo Trình Đại Số Tuyến Tính.

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com. Bến Tre City, Việt Nam.

2.1 Matrix – Ma trận

2.2 Vector space – Không gian vector

- 1 (VMC2023A1). Ký hiệu $\mathbb{R}[X]_{2023}$ là \mathbb{R} -không gian vector các đa thức 1 biến với bậc ≤ 2023 . Cho f là ánh xạ đặt tương ứng mỗi đa thức với đạo hàm cấp 2 của nó: $f: \mathbb{R}[X]_{2023} \to \mathbb{R}[X]_{2023}$, $p(X) \mapsto p''(X)$. Đặt $g = f \circ f \circ \cdots \circ f$ (870 lần) là ánh xạ hợp của 870 lần ánh xạ f. (a) Chứng minh g là 1 ánh xạ tuyến tính từ $\mathbb{R}[X]_{2023}$ vào chính nó. (b) Tìm số chiều \mathcal{E} 1 cơ sở của không gian ảnh Im g \mathcal{E} của không gian hạt nhân Ker g.
- 2 (VMC2023A2). Cho $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ thỏa $x^4 2x^3 1 = (x \alpha)(x \beta)(x \gamma)(x \delta)$. (a) Chứng minh $\alpha, \beta, \gamma, \delta$ đôi một khác nhau. (b) Chứng minh $\alpha^3, \beta^3, \gamma^3, \delta^3$ đôi một khác nhau. (c) Tính $\alpha^3 + \beta^3 + \gamma^3 + \delta^3$. (d)* Mở rộng bài toán cho các đa thức khác.

Lemma 1 (Điều kiện cần & đủ của nghiệm bội của đa thức). Cho $m, n \in \mathbb{R}, m \le n, P(x) \in \mathbb{R}[x], \deg P = n.$ $x = x_0 \in \mathbb{R}$ là 1 nghiệm bội m của P(x) khi & chỉ khi $P(x_0) = P'(x_0) = P''(x_0) = \cdots = P^{(m)}(x_0) = 0.$

Chứng minh. Giả sử $x=x_0\in\mathbb{R}$ là 1 nghiệm bội m của P(x), thì P(x) sẽ có dạng $P(x)=(x-x_0)^mg(x)$ với $g(x)\in\mathbb{R}[x]$, deg $g=\deg P-m=n-m\geq 0$. Tính các đạo hàm $P'(x),P''(x),\ldots,P^{(m)}(x)$ (có thể sử dụng quy tắc Leibniz tổng quát để tính đạo hàm, see, e.g., Wikipedia/general Leibniz rule) để suy ra kết luận.

Hint. (a) Đặt $P(x) = x^4 - 2x^3 - 1$, có $P'(x) = 4x^3 - 6x^2 = 2x^2(2x - 3$ chỉ có 2 nghiệm x = 0 (bội 2) & $x = \frac{3}{2}$ (bội 1), mà $P(0) = -1 \neq 0, P(\frac{3}{2}) = -\frac{43}{16} \neq 0$ nên $0, \frac{3}{2}$ đều không phải là nghiệm của P(x), suy ra các nghiệm $\alpha, \beta, \gamma, \delta$ của P(x) là phân biệt. (b)

3 Analysis – Giải Tích

3.1 Sequence – Dãy số

Resources - Tài nguyên.

- 1. [Khả09]. Phan Huy Khải. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số
- **3** (General recursive sequences Dãy truy hồi tổng quát). Cho dãy số $(u_n)_{n=1}^{\infty}$ được xác định bởi công thức truy hồi

$$u_n = f(u_{n-1}, u_{n-2}, \dots, u_{n-m}), \ \forall m, n \in \mathbb{N}^*, \ m < n.$$
 (1)

Tim các tính chất tổng quát của dãy theo 1 số dạng đặc biệt của hàm f để lập thành các mệnh đề \mathcal{E} định lý, rồi chứng minh chúng.

Vài phương pháp phổ biến để giải bài toán dãy số.

- Tìm cách xác định công thức số hạng tổng quát của dãy số: Thử vài trường hợp đầu để dự đoán công thức chính xác rồi chứng minh bằng quy nạp toán học.
- Sử dụng phương trình đặc trung của lý thuyết dãy số.
- 4 (VMC2023B). Cho $(u_n)_{n=1}^{\infty}$ là dãy số được xác định bởi $u_n = \prod_{k=1}^n \left(1 + \frac{1}{4^k}\right)$, $\forall n \in \mathbb{N}^*$. (a) Tìm tất cả $n \in \mathbb{N}^*$ thỏa $u_n > \frac{5}{4}$. (b) Chứng minh $u_n \leq 2023$, $\forall n \in \mathbb{N}^*$. (c) Chứng minh dãy số $(u_n)_{n=1}^{\infty}$ hội tự.

Chứng minh. (a) $u_{n+1} = \left(1 + \frac{1}{4^{n+1}}\right) u_n > u_n$, $\forall n \in \mathbb{N}^*$, suy ra (u_n) đơn điệu tăng, mà $u_1 = \frac{5}{4}$ nên $u_n > \frac{5}{4} \Leftrightarrow n \geq 2$. (b)

Remark 1. Gặp phải dãy số $(u_n)_{n=1}^{\infty}$ có công thức mỗi số hạng là 1 tích thì thử tính $\frac{u_{n+1}}{u_n}$ xem có đơn giản hóa được không. Gặp phải dãy số $(u_n)_{n=1}^{\infty}$ có công thức mỗi số hạng là 1 tổng thì thử tính $u_{n+1} - u_n$ xem có đơn giản hóa được không.

5 (Recursive sequence vs. ANN). Tìm mối liên hệ giữa các dãy số cho bởi công thức truy hồi (recursive sequences) & mạng lưới nơ-ron nhân tạo (artificial neural networks, abbr., ANNs).

3.2 Integral – Tích phân

4 Miscellaneous

Tài liệu

- [Hưn22] Nguyễn Hữu Việt Hưng. Đại Số Tuyến Tính. Tái bản lần thứ 4. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2022, p. 335.
- [Khả09] Phan Huy Khải. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số. Nhà Xuất Bản Giáo Duc, 2009, p. 260.