Automated Knowledge Graph Embedding

Yongqi ZHANG

Researcher@4Paradigm

Joint work with Quanming YAO

> Introduction and Background

> AutoSF: Automated Scoring Function

> NRASE: NAS for Relational Path

> Summary

Knowledge graph

• Graph representation: G = (E, R, S).

• **Entities** *E*: real world objects or abstract concepts.

• **Relations** *R*: interactions between/among entities.

• Fact/triples S: the basic unit in form of (head entity, relation, tail entity), (h, r, t).

- Types/attributes of entities/relations.
- Text descriptions on entities and relations.
- Ontologies: concept level description.
- Logic rules: regular expressions.

Important properties

Semantic information

Symmetric, inverse, asymmetric, composition...

- $(A, spouse, B) \Leftrightarrow (B, spouse, A)$
- $(A, older, B) \iff (B, younger, A)$
- (A, location, USA)
- (A, isBrotherOf, B) \land (B, isFatherOf, C) \Rightarrow (A, isUncleOf, C)

Attribute information

• Indicate location, time, label, area, id, salary, ...

Graph property

• A kind of heterogeneous information network.

Important applications

KGQA:

natural language -> query language

-> concise answer in KG.

Medical diagnostic:

Get disease related suggestions.

Recommendation:

Improve accuracy and interpretability.

Anti-fraud:

When fraud happens, who is the most

KG for recommendation

- User-user connections:
 - Social relationships
 - (Tom, isFriendof, Bob)
- User-item interactions:
 - (user, clicks, item)
 - (user, prefers, item)
- Item-item interactions:
 - Attributes, additional information
 - (Robert, isDirectorOf, ForrestGump)
- Benefits:
 - Rich semantic, structural information on items.
 - Explore user interests reasonably and offer explanations.

Learning KG embeddings

increase score

Encode entities and relations in KG into low-dimensional vector spaces \mathbb{R}^{d_1} and \mathbb{R}^{d_2} , while capturing nodes' and edges' connection properties.

 $f(\pmb{v}_{user}, \pmb{v}_{prefers}, \pmb{v}_{item})$

7

decrease score

- > Introduction and Background
- > AutoSF: Automated Scoring Function
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > NRASE: NAS for Relational Path

> Summary

Scoring functions

- \triangleright A large amount of scoring functions (SFs) $f(\mathbf{h}, \mathbf{r}, \mathbf{t})$ are defined to measure the plausibility of triplets $\{(h, r, t)\}$ in KG.
- > A branch focuses on single triplet, another on relational path.

Method	P	45.1	V - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0 1 1 1 1 1 1	W 2007 - 100	-8
200000	Ent. embeddi			(i,f) Constraints/Regularization	- 2	
TransE [14]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$		Si	ummary of Semantic Ma	atching Models (See Section 3.2 for Deta	ils)
TransH [15]	$h, t \in \mathbb{R}^d$	Trans.		n	* * * * * *	and the second second
TransR [16]	$h,t\in\mathbb{R}^d$	Method	Ent. embedding	Rel. embedding	Scoring function $f_r(h, t)$	Constraints/Regularization
Transic (10)	n.tex	RESCAL [13]	$h, t \in \mathbb{R}^d$	$\mathbf{M}_{\epsilon} \in \mathbb{R}^{d \times d}$	$\mathbf{h}^{T}\mathbf{M}_{\bullet}\mathbf{t}$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{M}_r\ _F \le 1$
TransD [50]	$h,w_h\in\mathbb{R}^d$		THE PER		Company of the Compan	$\mathbf{M}_r = \sum_i \pi_r^i \mathbf{u}_i \mathbf{v}_i^T$ (required in [17]
	$\mathbf{t}, \mathbf{w}_t \in \mathbb{R}^d$	TATEC [64]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$, $\mathbf{M}_r \in \mathbb{R}^{d \times d}$	$\mathbf{h}^{T}\mathbf{M}.\mathbf{t} + \mathbf{h}^{T}\mathbf{r} + \mathbf{t}^{T}\mathbf{r} + \mathbf{h}^{T}\mathbf{D}\mathbf{t}$	$\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1$
		TATEC [04]	n.tex	1 e z . m, e z	n m,t+n f+t f+n Dt	$\ \mathbf{M}_{\mathbf{r}}\ _F \leq 1$
TranSparse [51]	$h, t \in \mathbb{R}^d$	DistMult [65]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\mathbf{h}^{T} \operatorname{diag}(\mathbf{r})\mathbf{t}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1, \ \mathbf{r}\ _2 \le 1$
		HolE [62]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$r^{\top}(h * t)$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$
TransM [52]	$h, t \in \mathbb{R}^d$	ComplEx [66]	$h, t \in \mathbb{C}^d$	r e C ^d	$Re(\mathbf{h}^{T}\operatorname{diag}(\mathbf{r})\mathbf{\bar{t}})$	$\ \mathbf{h}\ _2 \le 1$, $\ \mathbf{t}\ _2 \le 1$, $\ \mathbf{r}\ _2 \le 1$
ManifoldE [53]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$					$\ \mathbf{h}\ _{2} \le 1$, $\ \mathbf{t}\ _{2} \le 1$, $\ \mathbf{M}_{r}\ _{F} \le 1$
TransF [54]	$nnsF[54]$ $h, t \in \mathbb{R}^d$ ANALO		$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{M}_r \in \mathbb{R}^{d \times d}$	h ^T M,t	$\mathbf{M}_r \mathbf{M}_r^{T} = \mathbf{M}_r^{T} \mathbf{M}_r$
TransA [55]	$h,t\in\mathbb{R}^d$					$\mathbf{M}_r \mathbf{M}_{r'} = \mathbf{M}_{r'} \mathbf{M}_r$
KG2E [45]	$\mathbf{h} \sim \mathcal{N}(\mu_b, \Sigma_b)$ $\mathbf{t} \sim \mathcal{N}(\mu_s, \Sigma_t)$	SME [18]	$h,t\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\begin{split} &(\mathbf{M}_{u}^{1}\mathbf{h}+\mathbf{M}_{u}^{2}\mathbf{r}+\mathbf{b}_{u})^{T}(\mathbf{M}_{u}^{1}\mathbf{t}+\mathbf{M}_{u}^{2}\mathbf{r}+\mathbf{b}_{u})\\ &\left((\mathbf{M}_{u}^{1}\mathbf{h})\circ(\mathbf{M}_{u}^{2}\mathbf{r})+\mathbf{b}_{u}\right)^{T}((\mathbf{M}_{i}^{1}\mathbf{r})\circ(\mathbf{M}_{v}^{2}\mathbf{r})+\mathbf{b}_{i}) \end{split}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$
	$\mu_k, \mu_i \in \mathbb{R}^d$ $\Sigma_k, \Sigma_i \in \mathbb{R}^{d \times d}$	NTN [19]	$h, t \in \mathbb{R}^d$	$r, b, \in \mathbb{R}^k, \underline{M}_r \in \mathbb{R}^{d \times d \times k}$	$\mathbf{r}^{T} \tanh(\mathbf{h}^{T} \mathbf{M}, \mathbf{t} + \mathbf{M}^{L} \mathbf{h} + \mathbf{M}^{L} \mathbf{t} + \mathbf{b}_{r})$	$\ \mathbf{h}\ _2 \le 1$, $\ \mathbf{t}\ _2 \le 1$, $\ \mathbf{r}\ _2 \le 1$ $\ \mathbf{b}_r\ _2 \le 1$, $\ \mathbf{M}_r^{[r,i]}\ _F \le 1$
TransG [46]	$\mathbf{h} \sim \mathcal{N}(\mu_h, \sigma_h^2)$	2000		$\mathbf{M}_{r}^{1}, \mathbf{M}_{r}^{2} \in \mathbb{R}^{k \times d}$	i minut Mat + Mat + Mat + Mat	$\ \mathbf{M}_{r}^{1}\ _{F} \le 1$, $\ \mathbf{M}_{r}^{2}\ _{F} \le 1$
	$\mathbf{t} \sim \mathcal{N}(\mu_t, \sigma_t^2 \mathbf{I})$ $\mu_k, \mu_t \in \mathbb{R}^d$	SLM [19]	h.t∈ ℝ ^d	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}^1_*, \mathbf{M}^2_* \in \mathbb{R}^{k \times d}$	$\mathbf{r}^T \tanh(\mathbf{M}^1 \mathbf{h} + \mathbf{M}^2 \mathbf{t})$	$\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1$
UM [56]	$h, t \in \mathbb{R}^d$	SCM [15]	n.tem	1 e.s., m, , m, e.s.	$V = \operatorname{conin}(M_{p}H + M_{p}C)$	$\ \mathbf{M}_{\tau}^{1}\ _{F} \leq 1$, $\ \mathbf{M}_{\tau}^{2}\ _{F} \leq 1$
SE [57]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	MLP [69]	$h,t\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$w^T\tanh(M^1h+M^2r+M^3t)$	$\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1$
		NAM [63]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$f_r(h, t) = \mathbf{t}^T \mathbf{z}^{(L)}$ $\mathbf{z}^{(\ell)} = \text{ReLU}(\mathbf{a}^{(\ell)}), \mathbf{a}^{(\ell)} = \mathbf{M}^{(\ell)} \mathbf{z}^{(\ell-1)} + \mathbf{b}^{(\ell)}$ $\mathbf{z}^{(\ell)} = [\mathbf{h}, \mathbf{r}]$	_

Summary of Translational Distance Models (See Section 3.1 for Details)

[Wang et. al. TKDE 2017]

Important properties

Given (h, r, t), the reversed triplet is (t, r, h).

Common relations	Requirements on f	Examples
symmetric	$f(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t}) = f(\boldsymbol{t}, \boldsymbol{r}, \boldsymbol{h})$	IsSimilarTo, Spouse
anti-symmetric	$f(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t}) = -f(\boldsymbol{t}, \boldsymbol{r}, \boldsymbol{h})$	LargerThan, Hypernym
general asymmetric	$f(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t}) \neq f(\boldsymbol{t}, \boldsymbol{r}, \boldsymbol{h})$	LocatedIn, Profession
inverse	$f(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t}) = f(\boldsymbol{t}, \boldsymbol{r}', \boldsymbol{h})$	(Hypernym, Hyponym)
composition	-	Father ∘ Spouse → Mother

- > Introduction and Background
- > AutoSF: Automated Scoring Function
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > NRASE: NAS for Relational Path
- > Summary

General types

- ➤ Translation Distance Models (TDMs)
 - TransE, TransH, RotatE, etc.
 - less expressive. [Wang et. al. AAAI 2017]

- ➤ Neural Network Models (NNMs)
 - MLP, ConvE, RSN, etc.
 - complex and difficult to train.
 [Wang et. al. TKDE 2017]

- ➤ BiLinear Models (BLMs)
 - DistMult, ComplEx, Analogy, SimplE, etc.
 - state-of-the-art and fully expressive. [Wang et. al. AAAI 2017], [Lacroix et. al. ICML 2018]

Graphical illustration of BLMs

The BLMs can be written as $f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \mathbf{h}^T \mathbf{R} \mathbf{t}$, with different form of \mathbf{R} , a square matrix of \mathbf{r} . For unified representation, we evenly split the embedding into 4 parts, e.g. $\mathbf{r} = [\mathbf{r}_1; \mathbf{r}_2; \mathbf{r}_3; \mathbf{r}_4]$. Denote $\mathbf{D}_i^r = \operatorname{diag}(\mathbf{r}_i)$ as the corresponding diagonal matrix.

DistMult: $f(h, r, t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle$

Analogy: $f(h, r, t) = \langle \hat{\mathbf{h}}, \hat{\mathbf{r}}, \hat{\mathbf{t}} \rangle + \text{Re}(\langle \check{\mathbf{h}}, \check{\mathbf{r}}, \text{conj}(\check{\mathbf{t}}) \rangle)$

ComplEx: $f(h, r, t) = \text{Re}(\langle \mathbf{h}, \mathbf{r}, \text{conj}(\mathbf{t}) \rangle)$

SimplE: $f(h, r, t) = \langle \hat{\mathbf{h}}, \hat{\mathbf{r}}, \check{\mathbf{t}} \rangle + \langle \check{\mathbf{h}}, \check{\mathbf{r}}, \hat{\mathbf{t}} \rangle$

Key problems

- I. There is no absolute winner among them since KGs exhibit distinct patterns. Even the fully expressive models do not definitely perform the best.
- 2. KG is sparse, thus regularization is important.
- 3. Designing novel and universal SFs becomes harder.

Our solutions:

- Adaptively search how to regularize the BLMs for different KG tasks.
- Design novel and task-aware scoring functions.

AutoSF

Definition 1 (AutoSF). Let F(g) be a KGE model (with indexed embeddings h, r, t and structure g), $\mathcal{M}(F(g), \mathcal{S})$ measures the performance (the higher the better) of a KGE model F with on a set of triplets \mathcal{S} . The problem of searching the SF is formulated as:

$$g^* \in \arg\max_{g \in \mathcal{G}} \mathcal{M}\left(F^*(g), \mathcal{S}_{val}\right)$$
 (1)

s.t.
$$F^*(g) = \arg\max_{F} \mathcal{M}(F(g), \mathcal{S}_{tra}),$$
 (2)

where G contains all possible choices of g, S_{tra} and S_{val} denote training and validation sets.

Search space:

What to be searched

Search algorithm:

How to search efficiently

Search space

Definition 2 (Search space). Let $g(\mathbf{r})$ return a 4×4 block matrix, of which the elements in each block is given by $[g(\mathbf{r})]_{ij} = diag(\mathbf{a}_{ij})$ where $\mathbf{a}_{ij} \in \{\mathbf{0}, \pm \mathbf{r}_1, \pm \mathbf{r}_2, \pm \mathbf{r}_3, \pm \mathbf{r}_4\}$ for $i, j \in \{1, 2, 3, 4\}$. Then, SFs can be represented by $f_{unified}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \sum_{i,j} \langle \mathbf{h}_i, \mathbf{a}_{ij}, \mathbf{t}_j \rangle = \mathbf{h}^\top g(\mathbf{r}) \mathbf{t}$.

The location of a block matrix \mathbf{D}_i^r represents a multiplicative term.

9¹⁶ candidates!

Search algorithm

>Greedy search: progressively evaluate from few blocks to more blocks.

For f^6 , reduces from 2×10^9 to 3×10^4 .

Filter: remove bad and equivalent SFs.

- For f^4 , reduces from 9216 to 5.
- ➤ Predictor: select promising SFs based on matrix structures.
 - The predictor learns a mapping from structure to performance.

Select
$$K_2 = 8$$
 from $N = 256$.

Key idea: select better SFs based on matrix structure to train and evaluate.

- > Introduction and Background
- > AutoSF: Automated Scoring Function
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > NRASE: NAS for Relational Path

> Summary

Effectiveness

		W	N18	FI	315k	WN	18RR	FB1	5k237	YAC	O3-10
type	model	MRR	Hit@10	MRR	Hit@10	MRR	Hit@10	MRR	Hit@10	MRR	Hit@10
TDM	TransE [51]	0.500	94.1	0.495	77.4	0.178	45.1	0.256	41.9	_	_
	TransH [51]	0.521	94.5	0.452	76.6	0.186	45.1	0.233	40.1		
	RotatE [34]	0.949	95.9	0.797	88.4	<u>0.476</u>	57.1	0.338	53.3	<u> </u>	
NNM	NTN [46]	0.53	66.1	0.25	41.4	_	_	_	_	_	
	Neural LP [47]	0.94	94.5	0.76	83.7	<u> </u>		0.24	36.2		
	ConvE [6]	0.94	95.6	0.745	87.3	0.46	48	0.325	50.1	0.52	66.0
BLM	TuckER [1]	0.953	95.8	0.795	89.2	0.470	52.6	0.358	54.4	_	
	HolEX [45]	0.938	94.9	0.800	88.6	<u> </u>		<u> </u>		<u> </u>	
	DistMult	0.821	95.2	0.817	89.5	0.443	50.7	0.349	53.7	0.552	69.4
	ComplEx	0.951	95.7	0.831	<u>90.5</u>	0.471	55.1	0.347	54.1	<u>0.566</u>	70.9
	Analogy	0.950	95.7	0.829	<u>90.5</u>	0.472	55.8	0.348	<u>54.7</u>	0.565	<u>71.3</u>
	SimplE/CP	0.950	<u>95.9</u>	0.830	90.3	0.468	55.2	0.350	54.4	0.565	71.0
	AutoSF	0.952	96.1	0.861	91.4	0.490	<u>56.7</u>	0.365	55.5	0.582	71.7

- BLMs are better than the other types.
- There is no absolute winner among the BLMs.
- Compared with human-designed ones, the SFs searched by AutoSF always lead the performance.

Distinctiveness

Table 4: MRRs of applying SF searched from one dataset (indicated by each row) on another dataset (indicated by each column).

-10,	WN18	FB15k	W-RR	F-237	YA-10
WN18	0.952	0.852	0.483	0.349	0.572
FB15k	0.950	0.861	0.481	0.350	0.574
WN18RR	0.951	0.849	0.490	0.345	0.574
FB15k237	0.894	0.781	0.471	0.365	0.571
YAGO3-10	0.885	0.844	0.476	0.352	0.582

The searched SFs are KG dependent and novel to the literature.

Efficiency

- Gen-Approx: a universal approximator MLP as the search space.
- Random: totally random for SF generation.
- Bayes: Tree Parzen Estimator (TPE) algorithm.
- AutoSF: domain-specific search algorithm.

- > Introduction and Background
- > AutoSF: Automated Scoring Function
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > NRASE: NAS for Relational Path

> Summary

Summary of AutoSF

Challenges:

- Designing new and universal SFs are non-trivial.
- Different KG has distinct properties.

Contributions:

- The first AutoML work in SF design.
- Well-defined search space and search algorithm with domain knowledge.
- Task-aware SFs are searched efficiently.

- > Introduction and Background
- > AutoSF: Automated Scoring Function
- > NRASE: NAS for Relational Path
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > Summary

Relational path & Path distiller

DEFINITION 1 (RELATIONAL PATH [17, 20]). A path (of length L) is formed by a set of triplets $(s_1, r_1, o_1), (s_2, r_2, o_2), \ldots, (s_L, r_L, o_L)$ where $o_i = s_{i+1}$ for all $i = 1 \ldots L - 1$.

$$S_1 \xrightarrow{r_1} S_2 \xrightarrow{r_2} \cdots \xrightarrow{S_t} \xrightarrow{r_t} \cdots \xrightarrow{r_L} O_L$$

DEFINITION 2 (PATH DISTILLER). A path distiller processes the embeddings of \mathbf{s}_1 , \mathbf{r}_1 to \mathbf{s}_L , \mathbf{r}_L recurrently. In each recurrent step t, the distiller combines embeddings of \mathbf{s}_t , \mathbf{r}_t and a distillation of preceding information \mathbf{h}_{t-1} to get an output \mathbf{v}_t . The distiller is formulated as a recurrent function

$$[\mathbf{v}_t, \mathbf{h}_t] = f(\mathbf{s}_t, \mathbf{r}_t, \mathbf{h}_{t-1}), \quad t = 1 \dots L, \tag{1}$$

where \mathbf{h}_t 's are hidden state of recurrent steps and $\mathbf{h}_0 = \mathbf{s}_1$. The output \mathbf{v}_t should approach object entity \mathbf{o}_t .

Semantic information:

- Preserved in the triplets. Structural information:
- Preserved along the path.

Meanings	Notations
head/subject entity	s_t
relation	r_t
tail/object entity	o_t
hidden state	\mathbf{h}_t

- > Introduction and Background
- > AutoSF: Automated Scoring Function
- > NRASE: NAS for Relational Path
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > Summary

Existing models

model		path-based	semantic	structural	
TransE [7]		×	$\mathbf{v}_t = \mathbf{s}_t + \mathbf{r}_t$	×	
ComplEx [45]	×	$\mathbf{v}_t = \mathbf{s}_t \otimes \mathbf{r}_t$	×		
	add	√	$\mathbf{v}_t = \mathbf{h}_t$	$\mathbf{h}_t = \mathbf{h}_{t-1} + \mathbf{r}_t$	
PTransE [25], TransE-Comp[19]	multiply	√	$\mathbf{v}_t = \mathbf{h}_t$	$\mathbf{h}_t = \mathbf{h}_{t-1} \odot \mathbf{r}_t$	
	RNN	√	$\mathbf{v}_t = \mathbf{h}_t$	$\mathbf{h}_t = \sigma \left(\mathbf{W}_1 \mathbf{r}_t + \mathbf{W}_2 \mathbf{h}_{t-1} + \mathbf{b} \right)$	
ChainR [11]	√	$\mathbf{v}_t = \mathbf{h}_t$	$\mathbf{h}_t = \sigma \left(\mathbf{W}_1 \mathbf{h}_{t-1} + \mathbf{W}_2 \mathbf{s}_t + \mathbf{W}_3 \mathbf{r}_t + \mathbf{b} \right)$		
RSN [17]	√	$\mathbf{v}_t = \mathbf{W}_5 \mathbf{s}_t + \mathbf{W}_6 \mathbf{h}_t \qquad \mathbf{h}_t = \sigma(\mathbf{W}_3 \sigma(\mathbf{W}_1 \mathbf{h}_{t-1} + \mathbf{W}_2 \mathbf{s}_t + \mathbf{b}_1) + \mathbf{W}_5 \mathbf{s}_t + \mathbf{w}_5 \mathbf{s}_t + \mathbf{w}_6 \mathbf{h}_t $			
NRASE	√	a recurrent network searched by natural gradient descent			

Key challenges

- I. Different model performs differently on tasks.
 - Single triplet based models are expressive in link prediction tasks.
 - Composition patterns can be learned only when the path have strong semantic meaning.
 - Long-term information in entity alignment tasks.
- 2. Structural and semantic information are complex among different KGs.
- ➤ How to distill the structural information from relational path and combine it with semantic information?
- Our solution:
 - Design a specific recurrent search space to cover existing methods;
 - Adaptively search the model for specific tasks.

Case study

 data
 tasks

 S1
 neighbor ∧ locatedin → locatedin

 S2
 neighbor ∧ locatedin → locatedin ∧ locatedin

 S3
 neighbor ∧ locatedin ∧ locatedin → locatedin

Table 5: Performance in Countries datasets.

	S1	S2	S3
P1	0.998±0.001	0.997±0.002	0.933±0.031
P2	1.000±0.000	0.999±0.001	0.952±0.023
P3	0.992±0.001	1.000±0.000	0.961±0.016
P4	0.977±0.028	0.984±0.010	0.964±0.015
NRASE	1.000±0.000	1.000±0.000	0.968± 0.007

Search space

Distiller:
$$[\mathbf{v}_t, \mathbf{h}_t] = f(\mathbf{s}_t, \mathbf{r}_t, \mathbf{h}_{t-1})$$

DEFINITION 3 (NAS PROBLEM). Let the training set be G_{tra} and validation set be G_{val} . $F(\alpha)$ returns the embeddings trained on G_{tra} with f, of which the architecture is α . $M(F(\alpha), G_{val})$ measure the performance of embeddings on G_{val} . The problem is to find an architecture α for the path distiller such that validation performance is maximized, i.e.,

$$\boldsymbol{\alpha}^* = \arg \max_{\boldsymbol{\alpha} \in \mathcal{A}} \mathcal{M}\left(F(\boldsymbol{\alpha}), \mathcal{G}_{val}\right), \tag{2}$$

where \mathcal{A} is the search space of α (i.e., containing all possible architectures of f).

combinator	+, ⊙, ⊗, gate
activation	identity, tanh, sigmoid, relu

Neural architecture search

Evaluation problem (feedback signal)

- I. Stand-alone: separately train and evaluate (reliable).
- 2. One-shot: supernet with parameter sharing (efficient).

[Bender et. al. ICML 2018]

Gradient problem (optimization direction)

- Gradient information should be obtained from validation measurement.
- But evaluation metric of KGE is non-differentiable.

Search algorithm

• Evaluation problem: for one-shot search, correlations is weak with

parameter sharing.

We use stand-alone instead.

- Gradient problem: refer to derivative-free methods.
 - Natural gradient (NG) descent a second order method.
 - Stable and have convergence guarantee.

- > Introduction and Background
- > AutoSF: Automated Scoring Function
- > NRASE: NAS for Relational Path
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > Summary

Effectiveness – entity alignment

	nodels	DBP-WD			DBP-YG			EN-FR			EN-DE		
11	lodels	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR
semantic	TransE	28.4	51.4	0.36	27.0	57.4	0.37	16.2	39.0	0.24	40.3	60.9	0.47
	TransD*	27.7	57.2	0.37	17.3	41.6	0.26	21.1	47.9	0.30	24.4	50.0	0.33
	PTransE	16.7	40.2	0.25	7.4	14.7	0.10	7.3	19.7	0.12	27.0	51.8	0.35
structural	BootEA*	32.3	63.1	0.42	31.3	62.5	0.42	31.3	62.9	0.42	44.2	70.1	0.53
	IPTransE*	23.1	51.7	0.33	22.7	50.0	0.32	25.5	55.7	0.36	31.3	59.2	0.41
	GCN-Align*	17.7	27.8	0.25	19.3	41.5	0.27	15.5	34.5	0.22	25.3	46.4	0.33
	ChainR	32.2	60.0	0.42	35.3	64.0	0.45	31.4	60.1	0.41	41.3	68.9	0.51
	RSN*	38.8	65.7	0.49	40.0	67.5	0.50	34.7	63.1	0.44	48.7	72.0	0.57
NRASE	E (proposed)	40.7	71.2	0.51	40.2	72.0	0.51	35.5	67.9	0.46	50.2	74.9	0.59

Effectiveness – link prediction

Table 8: Performance comparison on link prediction tasks.

models	V	VN18-RI	3	FB15k-237			
models	H@1	H@10	MRR	H@1	H@10	MRR	
TransE	12.5	44.5	0.18	17.3	37.9	0.24	
ComplEx	41.4	49.0	0.44	22.7	49.5	0.31	
RotatE	43.6	54.2	0.47	23.3	50.4	0.32	
PTransE	27.2	46.4	0.34	20.3	45.1	0.29	
ChainR	28.1	37.9	0.32	21.9	44.4	0.29	
RSN	38.0	44.8	0.40	19.2	41.8	0.27	
NRASE	44.0	54.8	0.48	23.3	50.8	0.32	

Table 12: Percentage of the *n*-hop triplets in validation and testing datasets.

Doto	note	Hops						
Datasets		≤ 1	2	3	≥ 4			
WN18-RR	validation	35.5%	8.8%	22.2%	33.5%			
	testing	35.0%	9.3%	21.4%	34.3%			
FB15k-237	validation	0%	73.2%	26.1%	0.7%			
	testing	0%	73.4%	26.8%	0.8%			

FB15k-237

Efficiency of the hybrid search algorithm

- > Introduction and Background
- > AutoSF: Automated Scoring Function
- > NRASE: NAS for Relational Path
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > Summary

Summary of NRASE

Challenges:

• When and how to leverage structural information is task and data dependent.

Ours:

• Explored the difficulty and importance of processing structural and semantic information in KG.

• Proposed a domain-specific search space for RNN and use Natural Gradient based search

algorithm to search efficiently.

- > Introduction and Background
- > AutoSF: Automated Scoring Function
- > NRASE: NAS for Relational Path
 - Preliminaries
 - Proposed method
 - Empirical results
 - Short summary
- > Summary

Summary

AutoKGE

KGE Problems	Our work	Key idea	AutoML Techniques
Scoring function	AutoSF	Task-aware scoring function	Greedy Search + Domain Property
Relational path	NRASE	Design network to process paths	Hybrid Neural Architecture Search

Thank you!

Q&A

Code is available in https://github.com/AutoML-4Paradigm