744

Name	Pfd	Mean	Variance	mgf
Bernoulli distribution	$f(x,p) = \begin{cases} p, & x = 1\\ 1-p, & x = 0 0$	p	p(1-p)	$q+pe^t$, $q=1-p$
Binomial	$f(x,n,p) = {n \choose x} p^x q^{n-x}, x = 0,1,,n$	np	npq	$(q+pe^t)^n$
Geometric	$f(x,p)=q^{x-1}p, x=1,2,0$	$\frac{1}{p}$	$\frac{q}{\rho^2}$	$\frac{pe^t}{1-qe^t}$
Hyper-geometric	$f(x, N, m, n) = \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{n}}, N = 0, 1, 2,, m = 0, 1,, N,$	$\frac{nm}{N}$	$\frac{n\binom{m}{N}(1-\frac{m}{N})(N-n)}{N-1}$	
Negative binomial	$n = 0, 1,, N$ $f(x, r, p) = {\binom{x+r-1}{x}} p^r q^x$ $x = 0, 1, 2,$	$r\frac{q}{p}$	$r\frac{q}{\rho^2}$	$\left(\frac{p}{1-qe^t}\right)^r$
Poisson	$f(x,\lambda) = \frac{\lambda^x e^{-\lambda}}{x!},$	λ	λ	$\exp(\lambda(e^t-1))$
Beta	$x = 0, 1, 2,$ $f(x, \alpha, \beta) = \left(\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right) x^{\alpha - 1} (1 - x)^{\beta - 1},$ $0 < x < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Chi-square	$f(x, v) = \frac{2^{v/2} x^{v-1} e^{-x^2/2}}{\Gamma(x/2)},$	$\sqrt{2} \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)}$	$v-\mu^2$	
Exponential	$x \ge 0, v > 0 \text{ (degrees of freedom)}$ $f(x, \lambda) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & \text{otherwise,} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\left(1-\frac{t}{\lambda}\right)^{-1}$
Gamma	$\begin{cases} x > 0 \\ f(x, \alpha, \beta) = x^{\alpha - 1} \frac{\beta^{\alpha} e^{-\beta_{x}}}{\Gamma(\alpha)}, \\ x > 0, \alpha > 0, \beta > 0 \end{cases}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$ \left(1 - \frac{t}{\beta} \right)^{-\alpha}, $ $ t < \beta. $
Laplace	$f(x, \mu, \sigma) = \frac{1}{2\sigma} \exp\left(-\frac{ x - \mu }{\sigma}\right),$	μ	$2\sigma^2$	$\iota < \rho$.
Normal	$\int_{-\infty}^{-\infty} \langle x, \mu \rangle = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{(x-\mu)^2}{2\sigma^2}\right),$	μ	σ^2	$\exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$
Uniform	$-\infty < x, \ \mu < \infty, \sigma > 0$ $f(x, a, b) = \frac{1}{b - a},$ $a \le x \le b$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$