Trabalho'Hw | {

Relatório a ser entregue (última semana de novembro – dois alunos por equipe) deverá conter a descrição e o entendimento das regras fornecidas pelo especialista;

O passo-a-passo das simulações no matlab (apresentado pelos membros da equipe) em transparências ou no próprio ambiente matlab;

Cada equipe deve estabelecer mais de um critério inicial para o processo de estacionar o veículo;

Criar novas regras se for o caso para melhorar o desempenho do processo de simulação do estacionamento;

Apresentar suas conclusões e limitações (ou não) observadas na execução da proposta.

Não é necessário dizer para utilizarem o tutorial do matlab disponibilizado.

A base de regras, que constitui a estratégia de estacionamento do veículo, é dada em "forma matricial ":

$\setminus x$					
ϕ	TE	LC	CE	RC	RI
RB	PS	PM	PM	PB	PB
RU	NS	PS	PM	PB	PB
RV	NM	NS	PS	PM	PB
VE	NM	NM	ZE	PM	PM
LV	NB	NM	NS	PS	PM
LU	NB	NB	NM	NS	PS
LB	NB	NB	NM	NM	NS

A leitura das regras a partir desta matriz é exemplificada para a célula sombreada (PS):

se (x é LE) e (
$$\phi$$
 é RB) então (θ é PS),

onde RB, LE e PS são os rótulos atribuídos aos conjuntos fuzzy que representam os valores linguísticos de cada variável (sete para as variáveis ϕ e θ , e cinco para a variável x).

Os conjuntos fuzzy correspondentes a cada uma das variáveis estão representados por suas funções de pertinência nas figuras a seguir. Os valores de x e ϕ em um determinado instante (ou situação) são: x' = 65 m; $\phi' = 113^\circ$.

As regras ativadas são aquelas com os seguintes antecedentes (com os graus de pertinência – aproximados – de x' e ϕ' nos conjuntos assinalados entre parênteses):

- para a variável *x*: RI (0,2) e RC (0,7)
- para a variável *φ*: LV (0,9) e VE (0,5)

Da base de regras, verifica-se que as regras concernentes a esta situação são as sombreadas:

$\setminus x$					
ϕ^{λ}	LE	LC	CE	RC	RI
RB	PS	PM	PM	PB	PB
RU	NS	PS	PM	PB	PB
RV	NM	NS	PS	PM	PB
VE	NM	NM	ZE	PM	PM
LV	NB	NM	NS	PS	PM
LU	NB	NB	NM	NS	PS
LB	NB	NB	NM	NM	NS

De forma explícita:

se
$$(x \in RC)$$
 e $(\phi \in VE)$ $então$ $(\theta \in PM)$ ou se $(x \in RC)$ e $(\phi \in LV)$ $então$ $(\theta \in PS)$ ou se $(x \in RI)$ e $(\phi \in VE)$ $então$ $(\theta \in PM)$ ou se $(x \in RI)$ e $(\phi \in LV)$ $então$ $(\theta \in PM)$