Ejercicio Semanal 8

Diego Méndez Medina

Decide si los siguientes argumentos lógicos son correctos o exhibe un contraejemplo mostrando paso a paso la prueba o la construcción del contraejemplo.

1. $\exists x (P(x) \land Q(x)), \exists x (P(x) \land R(x)) / \therefore \exists x (P(x) \land Q(x) \land R(x))$

El argumento es incorrecto si existe un modelo \mathcal{M} tal que:

$$\mathcal{M} \models \exists x (P(x) \land Q(x))$$
$$\mathcal{M} \models \exists x (P(x) \land R(x))$$
$$\mathcal{M} \not\models \exists x (P(x) \land Q(x) \land R(x))$$

Lo que ocurre si $\{\exists x(P(x) \land Q(x)), \ \exists x(P(x) \land R(x)), \ \neg \exists x(P(x) \land Q(x) \land R(x))\}$ tiene un modelo. Construyamos ese modelo:

Sea $\mathcal{M} = \langle M, \mathcal{I} \rangle$, tal que:

$$M = \{a, b\}$$

$$P^{\mathcal{I}} = \{a, b\}$$

$$Q^{\mathcal{I}} = \{a\}$$

$$R^{\mathcal{I}} = \{b\}$$

Antes de continuar hagamos una observación:

$$\neg \exists x (P(x) \land Q(x) \land R(x)) \equiv \forall x (\neg P(x) \lor \neg Q(x) \lor \neg R(x))$$

Ahora, veremos que en efecto $\mathcal M$ es modelo de

$$\{\exists x (P(x) \land Q(x)), \ \exists x (P(x) \land R(x)), \ \forall x (\neg P(x) \lor \neg Q(x) \lor \neg R(x))\}$$

Dada nuestra \mathcal{M} antes descrita, tenemos:

1.
$$\mathcal{I}(\exists x (P(x) \land Q(x))) = 1 \qquad \text{Pues } a \in P^{\mathcal{I}} y \ a \in Q^{\mathcal{I}}$$
2.
$$\mathcal{I}(\exists x (P(x) \land R(x))) = 1 \qquad \text{Pues } b \in P^{\mathcal{I}} y \ b \in R^{\mathcal{I}}$$
3.
$$\mathcal{I}_{[x/a]}(\neg P(x) \lor \neg Q(x) \lor \neg R(x))) = 1 \qquad \text{Pues } a \notin R^{\mathcal{I}}$$
4.
$$\mathcal{I}_{[x/b]}(\neg P(x) \lor \neg Q(x) \lor \neg R(x))) = 1 \qquad \text{Pues } b \notin Q^{\mathcal{I}}$$
5.
$$\mathcal{I}(\forall x (\neg P(x) \lor \neg Q(x) \lor \neg R(x))) = 1 \qquad \text{Por 3 y 4}$$

Así existe un modelo, \mathcal{M} , de las premisas unión la conclusión negada. Con lo que el argumento dado no es correcto.

2.
$$\forall x (G(x) \to H(x)), \forall x (H(x) \to F(x)), G(a) / \therefore \exists x (G(x) \land F(x))$$

Sea \mathcal{M} un modelo de $\{\forall x(G(x) \to H(x)), \ \forall x(H(x) \to F(x)), \ G(a)\}$, entonces:

$$\mathcal{M} \models \forall x (G(x) \to H(x))$$

 $\mathcal{M} \models \forall (x) (H(x) \to F(x))$
 $\mathcal{M} \models G(a)$

Queremos ver que $\mathcal{M} \models \exists x (G(x) \land F(x)).$

Sea χ un estado cualquiera. tenemos:

1.	$\mathcal{I}_{\chi}(\forall x(G(x) \to H(x))) = 1$	Por hipótesis
2.	$\mathcal{I}_{\chi}(\forall x(H(x) \to F(x))) = 1$	Por hipótesis
3.	$\mathcal{I}_{\chi}(G(a)) = 1$	Por hipótesis
4.	$\mathcal{I}_{\chi[x/a]}(G(x) \to H(x)) = 1$	Por 1
5.	$\mathcal{I}_{\chi}(H(a)) = 1$	Por $3 y 4$
6.	$\mathcal{I}_{\chi[x/a]}(H(x) \to F(x)) = 1$	Por 2
7.	$\mathcal{I}_{\chi}(F(a)) = 1$	Por 5 y 6
8.	$\mathcal{I}_{\chi}(G(a) \wedge F(a)) = 1$	Por $3 y 7$
9.	$\mathcal{I}_{\chi[x/a]}(G(x) \wedge F(x)) = 1$	Por 8
10.	$\mathcal{I}_{\chi}(\exists x(G(x) \land F(x))) = 1$	Por 9

Como χ era arbitrario, concluimos que $\mathcal{M} \models \exists x (G(x) \land F(x))$, así el argumento es correcto.

3. Los violinistas que tocan bien son músicos de alcurnia. Hay algunos violinistas en la orquesta. Entonces algunos músicos son de alcurnia. $(V^{(1)}, T^{(1)}, A^{(1)}, M^{(1)}, O^{(1)})$

Definimos los predicados:

$$V(x)=x$$
 es violinista
$$T(x)=x \ {
m toca\ bien}$$
 $A(x)=x$ es de alcurnia
$$M(x)=x \ {
m es\ músico}$$
 $O(x)=x \ {
m est\'a}$ en la orquesta

Dados los predicados tenemos el siguiente argumento:

$$\forall x(V(x) \land T(x) \to M(x) \land A(x))$$

$$\exists x(V(x) \land O(x))$$

$$\vdots \exists x(M(x) \to A(x))$$

Observación:

$$\neg \exists x (M(x) \to A(x)) \equiv \forall x (\neg (\neg M(x) \lor A(x)))$$
$$\equiv \forall x (M(x) \land \neg A(x))$$

Veremos que el argumento es incorrecto mostrando un modelo para

$$\Sigma = \{ \forall x (V(x) \land T(x) \to M(x) \land A(x)), \ \exists x (V(x) \land O(x)), \ \forall x (M(x) \land \neg A(x)) \}$$

Sea $\mathcal{M} = \langle Mundo, \mathcal{I} \rangle$, tal que:

$$\begin{aligned} Mundo &= \{Ziggy, Leo\} & V &= \{Ziggy\} & O &= \{Ziggy, Leo\} \\ T &= \emptyset & A &= \emptyset & M &= \{Ziggy, Leo\} \end{aligned}$$

Veamos que si satisfase a Σ :

$$\mathcal{I}(\forall x(V(x) \land T(x) \rightarrow M(x) \land A(x))) = 1 \qquad \text{Por vacuidad, pues ninguno toca bien}$$

$$\mathcal{I}(\exists x(V(x) \land O(x))) = 1 \qquad \text{Pues } Ziggy \in V \text{ y } Ziggy \in O$$

$$\mathcal{I}(\forall x(M(x) \land \neg A(x))) = 1 \qquad \text{Pues } Ziggy, Leo \in M \text{ y } Ziggy, Leo \notin A$$

Mostramos un modelo que satisface a las premisas y a la conclusión negada, con lo que el argumento es incorrecto.