ADDITIONS AND CORRECTIONS

1998, Volume 102B

G. E. Folkmann, K. M. Eriksen, R. Fehrmann,* M. Gaune-Escard, G. Hatem, O. B. Lapina, and V. Terskikh: Conductivity, NMR Measurements, and Phase Diagram of the $K_2SO_7-V_2O_5$ System

Page 27. The correct Table 2 is as follows:

TABLE 2. Coefficients for Emperical Equations^a for the Specific Conductivity for Different Composition, $X_{V_2O_5}$, of the Molten $K_2S_2O_7-V_2O_5$ System^b

X _{V₂O₅} mole fracn	$A(X)$, Ω^{-1} cm ⁻¹	$10^{3}B(X),$ $\Omega^{-1} \text{ cm}^{-1}$ deg^{-1}	$10^{6}C(X),$ $\Omega^{-1} \text{ cm}^{-1}$ deg^{-2}	$10^{8}D(X),$ $\Omega^{-1} \text{ cm}^{-1}$ deg^{-3}	SD, Ω^{-1} cm $^{-1}$
0.0000 0.0307 0.0615 0.0803 0.1030 0.1254 0.1500 0.1738 0.2001 0.2647 0.3000	0.2942 0.2903 0.2679 0.2548 0.2411 0.2212 0.2130 0.1892 0.1795 0.1348 0.1068	2.1161 2.0403 2.1456 1.9717 1.8875 1.7678 2.0212 1.7647 1.7252 1.4666 1.3205	1.0445 0.4254 -1.4191 2.9939 1.0680 0.7006 5.3292 2.3879 3.7472 1.6162 5.6227	-6.7150 4.4838 -12.7073 -0.4442 -2.0411 -1.3644 0.4639 -1.2016 -0.0065 -1.6665 2.6802	0.00070 0.00106 0.00136 0.00316 0.00056 0.00058 0.00048 0.00102 0.00071 0.00204 0.00186
0.3704 0.3852	0.1068 0.0795 0.0710	1.3203 1.1915 0.9672	4.7068 -1.0620	0.0657 -4.7959	0.00186 0.00077 0.00102

 $[^]a\kappa=A(X)+B(X)(t-450)+C(X)(t-450)^2+D(X)(t-450)^3.$ For the measured temperature ranges consult Table 1 and Figures 1 and 2.

10.1021/jp983760t Published on Web 11/19/98

1998, Volume 102B

Marek Sierka, Uwe Eichler, Jerzy Datka, and Joachim Sauer*: Heterogeneity of Brønsted Acidic Sites in Faujasite Type Zeolites due to Aluminum Content and Framework Structure

Page 6401. During the printing process, an incorrect value was introduced in Table 3. In column 10, the value directly under the heading 4T-2Al should be 23.0, not 3.0. The correct version of Table 3 is given below.

TABLE 3: Deprotonation Energies, ΔE_{DP} (kJ/mol), OH Vibrational Frequencies, ν_{OH} (cm $^{-1}$) and ^{1}H NMR Chemical Shifts, $^{1}\delta_{H}$ (ppm), of $O_{1}H$ Groups for Different Clusters nT-mAl and Different Si/Al Ratios

		HF, for given Si/Al of lattice				DFT, for given Si/Al of lattice					
		4T-1Al		4T-2Al		4T-1Al	14T-1Al	4T-1Al	4T-2A1	14T-2A1	4T-2A1
		47.0^{a}	3.0	23.0	3.0	47.0^{a}	47.0	3.0	23.0	23.0	3.0
$\Delta E_{ m DP}$	QM/QM-Pot. LR//QM-Pot. QM-Pot//QM-Pot.	1348 -98 1250	1329 -87 1242	1371 -104 1267	1378 -112 1266	1319 -121 1198	1290 -94 1196	1299 -103 1196	1341 -126 1215	1301 -89 1212	1345 -121 1224
	final $\Delta E^{C}_{DP} + \Delta NME^{b}$	1169	1161	1186	1185	1163	1161	1161	1180	1177	1189
$^{ u_{ m OH}}_{^{ m l}}\delta_{ m H}$	QM//QM-Pot. QM//QM-Pot.	3596 4.3	3621 3.8	3605 3.9	3604 3.9	3623 4.2		3634 3.8	3625 4.0		3637 3.8

^a ΔE_{DP} and ν_{OH} data from refs 24 (HF result) and 34 (DFT result). ^b Nuclear motion energy. Zero point energy makes the dominant contribution.