MTH719

Assignment 2

Saumitra Mazumder 500720916 Ryerson University May 22, 2018

I hereby declare that I am the sole author of this work.

1.a

To show $\frac{A+A^T}{2}$ is symmetric, we need to show: $\frac{A+A^T}{2}=\left(\frac{A+A^T}{2}\right)^T$

Now,
$$\left(\frac{A+A^T}{2}\right)^T = \frac{A^T + (A^T)^T}{2} = \frac{A^T + A}{2} = \frac{A+A^T}{2}$$
 Hence,
$$\frac{A+A^T}{2} = \left(\frac{A+A^T}{2}\right)^T$$

Now, we want to show:

$$X^{T} \left(\frac{A + A^{T}}{2} \right) X = X^{T} A X$$
We know,
$$\frac{A + A^{T}}{2} = \left(\frac{A + A^{T}}{2} \right)^{T}$$

Then, $X^T \left(\frac{A + A^T}{2} \right) X = X^T \left(\frac{A + A^T}{2} \right)^T X$ by left and right matrix multiplication $= \left[\left(\frac{A + A^T}{2} \right) X \right]^T X$ by properties of transpose $= \left(\frac{AX + A^TX}{2} \right)^T X$ by distributive property $= \left(\frac{X^TA^T + X^TA}{2} \right) X$ by properties of transpose $= \frac{X^TA^TX + X^TAX}{2}$ by distributive property

Now, if $A = A^T$ then:

$$\begin{split} \frac{X^TA^TX + X^TAX}{2} &= \frac{X^TA^TX + X^TA^TX}{2} \\ &= \frac{2X^TA^TX}{2} = X^TA^TX \end{split}$$

1.b

Suppose A is a positive definite matrix, then:

$$X^TAX = X^TLDUX = X^TLDL^TX = X^TU^TDUX$$
 by definition of positive definite LDU factorization
$$= (UX)^TD(UX)$$

So, if the diagonal elements of D are positive numbers X^TAX is positive definite $\forall X$, since X^TAX also has a positive definite LDU factorization.

1.c

Using Taylor's theorem in \mathbb{R}^n we know that $f(x) = f(x_0) + (x - x_0)^T g(x_0) + (x - x_0)^T$