Linear Regression Worksheet

Work through this individually.

Question 1: Explain what $x_1, x_2, ..., y$ represent.

Question 2: Explain what $\boldsymbol{x}_1^{(i)}, \boldsymbol{x}_2^{(i)}, ..., \boldsymbol{y}^{(i)}$ represent.

Question 3: Using mathematical notation, explain the goal of supervised learning.

Question 4: What do we call the different functional forms in supervised learning and what are some different examples?

Question 5: Explain what parameters are? How does the choice of parameters affect the model performance?

Question 6: Explain the following assumption we might make about the relationship between our feature and target.

$$y = \alpha + \beta x_1$$

Question 7: We might model this assumed relationship with the following model. Why is it different to the above?

$$y^{(i)} = lpha + eta x_1^{(i)} + arepsilon^{(i)}$$

Question 8: If $\alpha=0.4$ and $\beta=2$, draw a rough graph which includes 20 points and the linear regression we would hope to fit through this.

Question 9: [You may use a calculator or the internet to help solve this]. If $\alpha=0.4$ and $\beta=2$, answer the following questions.

- What is my predicted y (\hat{y}) when $x_1 = 14$?
- Describe the relationship between x_1 and y?
- When $x_1 = 0$, what is the predicted y?

Linear Regression Worksheet

Question 9: A student uses a linear regression model to estimate the effects of education (edu_i) and work experience (exp_i) on future wages $(wage_i)$. They train their model on 100,000 people and get the following function. Note that wages are measures in thousands of US dollars (\$), education is measured in years and work experience also in years.

$$\hat{\text{wage}}^{(i)} = 10 + 1.2 \text{edu}^{(i)} + 0.8 \text{exp}^{(i)}$$

Assuming that the relationship is casual, answer the following questions.

- 1. What wage would our model predict for someone with 10 years eduction and 20 years work experience? (2 marks)
- 2. How should we interpret the 1.2 in front of the edu_i variable? (2 marks)
- 3. How should we interpret the 10? (1 mark)

Question 10 [Extension]: Consider the following fitted linear regression which details the relationship between education and wages.

$$\hat{\mathrm{wage}}^{(i)} = 10 + 1.2\mathrm{edu}^{(i)} - 0.2\mathrm{edu}^{(i)^2}$$

- 1. What do you notice about this regression which is different to the regression before?
- 2. What does this imply about the assumed relationship between education and wage
- 3. If the education is 1, what is the predicted wage?
- 4. If the education is 10, what is the predicted wage?
- 5. Plot a graph showing the implied relationship between education and wages.