Practical Machine Learning

Reinforcement Learning

https://bit.ly/2USYqjZ

Today we cover

Reinforcement learning

Open Al Gym

Building an agent

Reinforcement Learning

Learning to act in complex environments

Reinforcement learning (RL) is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward.

observation

Why is it difficult?

- No immediate label
- Reward could be from a combination of actions
- I need to explore the space
- I need to find what was useful from my actions

Key concepts

- Environment
- Agent
- State / observation
- Action
- Reward
- Discount factor
- Policy

Environment

Agent

Action

Left / Right / Up / Down

State

State = 8

Reward

0 if falls

1 if goal reached

Discount rate expresses my preference for immediate rewards.

Policy

$$\pi: S imes A o [0,1] \ \pi(a|s) = Pr(a_t = a|s_t = s)$$

Value of a policy

$$V_{\pi}(s) = E[R] = E[\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s],$$

Optimal policy

The optimal policy guarantees the best expected returns

Q-Value

 $Q:S imes A o \mathbb{R}$.

 $Q^{\pi}(s,a) = E[R|s,a,\pi],$

Q-learning (SARSA Max)

Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S';$

until S is terminal

Code

- Gym API
 - o Env
 - Step
 - Observation
 - Reward
 - o IsDone

```
[ ] !pip install gym
[ ] import gym
    env = gym.make('FrozenLake-v0')
    obs = env.reset()
     for _ in range(10):
        env.render()
        obs, rewaerd, is_done, info = env.step(0)
     env.close()
```