Análisis Matemático II

Licenciatura en Ciencias de la Computación - 2017

Práctico 6 - Integrales en \mathbb{R}^n

- (1) Calcular las siguientes integrales sobre regiones rectangulares.
 - (a) $\iint_R (x^2 + y^2) dA$, donde R es el rectángulo $0 \le x \le 2$, $0 \le y \le 5$.
 - (b) $\iint_R (\operatorname{sen} x + \operatorname{cos} y) dA$, donde R es el rectángulo $0 \le x \le \pi/2$, $0 \le y \le \pi/2$.
 - (c) $\iint_R x^2 y^2 dA$, donde R es el rectángulo $0 \le x \le a$, $0 \le y \le b$.
- (2) Dibujar el dominio de integración y calcular las siguientes integrales.
 - (a) $\int_0^1 \int_0^y (xy + y^2) dx dy$
 - (b) $\int_0^{\pi} \int_{-x}^x \cos y \, dy \, dx$
 - (c) $\int_0^2 dy \int_0^y y^2 e^{xy} dx$
 - (d) $\iint_T (x-3y) dA$, donde T es el triángulo de vértices (0,0), (a,0) y (0,b).
 - (e) $\iint_R xy^2 dA$, donde R es la región en el primer cuadrante acotada por $y = x^2$ y $x = y^2$.
 - (f) $\iint_D x \cos y \, dx dy$, donde D es la región en el primer cuadrante acotada por $y = 1 x^2$ y los ejes.
 - (g) $\iint_D \ln x \, dx dy$, donde D es la región en el primer cuadrante acotada por 2x + 2y = 5 y xy = 1.
 - (h) $\iint_Q y \, dA$, donde Q es la región acotada por $x^2 + y^2 = 4$.
- (3) Calcular las siguientes integrales.
 - (a) $\iiint_B xyz \, dV$, donde B es la siguiente región: $0 \le x \le 1, -2 \le y \le 0$ y $1 \le z \le 4$.
 - (b) $\iiint_R (1+2x-3y) dV$, donde R es la región: $-a \le x \le a, -b \le y \le b$ y $-c \le z \le c$.
- (4) Calcular las siguientes integrales usando coordenadas polares.
 - (a) $\iint_R y \ dA$, donde R es la región acotada por la circunferencia $x^2 + y^2 = 4$.

- (b) $\iint_R e^{-(x^2+y^2)} dA$, donde R es la región del primer cuadrante acotada por $x^2+y^2=a^2$ y los ejes coordenados.
- (c) $\iint_R \frac{1}{x^2 + y^2} dA$, donde R es la región del primer cuadrante acotada por las circunferencias $x^2 + y^2 = 1$ y $x^2 + y^2 = 4$.
- (d) $\iint_R \frac{x}{\sqrt{x^2 + y^2}} dA$, donde R es la región del primer cuadrante acotada por la circunferencia $x^2 + y^2 = 1$ y los ejes coordenados.
- (e) $\int_0^1 \int_{\sqrt{3}y}^{\sqrt{4-y^2}} \ln(x^2 + y^2) \, dx \, dy$.
- (5) Calcular el volumen debajo de $z=1-x^2$ y arriba de la región: $0 \le x \le 1$ y $0 \le y \le x$.
- (6) Calcular el volumen debajo de $z=1-x^2$ y arriba de la región: $0 \le y \le 1$ y $0 \le x \le y$.
- (7) Calcular el volumen debajo de $z=1-x^2-y^2$ y arriba de: $x\geq 0,\,y\geq 0$ y $x+y\leq 1.$
- (8) Calcular el volumen comprendido entre el plano xy, el cilindro $x^2 + y^2 = 4$ y el plano z = x + y + 4.
- (9) Calcular el área de la región del plano dada por
, $0 \leq x \leq y^3$ y $2 \leq y \leq 4.$
- (10) Calcular el área de la región del primer cuadrante acotada por las parábolas $x^2 = 4y$ y $x^2 = 8 4y$. Integre primero con respecto a x.