## Лабораторная работа 2.1.2

# Определение $C_p/C_v$ методом изобарического расширения

Шерхалов Денис Б02-204

19 февраля 2023 г.

**Цель работы:** определение отношения  $C_p/C_v$  воздуха по измерения давления в стеклянном сосуде. Измерения проводятся сначала после адиабатического расширения газа, а затем после изохорического нагревания сосуда и газа до комнатной температуры.

**В работе используются:** стеклянный сосуд: U-образный жидкостный манометр; резиновая груша; газгольдер с воздухом, секундомер.

**Экспериментальная установка.** Экспериментальная установка состоит из стеклянного сосуда A (объёмом около 20 л), снабжённого краном K, и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на Рис. 1.



Рис. 1: Установка для определения  $C_p/C_v$  методом адиабатического расширения газа

### 1. Введение

Избыточное давление создаётся с помощью резиновой груши, соединённой с сосудом трубкой с краном  $K_1$ , в сосуде создаётся заданное избыточное давление  $p_1$ . При этом газ становится перегретым.

Мысленно выделим в сосуде некоторый объём  $\Delta V$ . Будем следить за изменением его состояния. Вследствие теплообмена со стенками сосуда через некоторое время газ остынет

до комнатной температуры  $T_0$  (изохорное охлаждение). При этом давление понизится до  $p_0 + \Delta p_1$ , где

$$\Delta p_1 = \rho g \Delta h_1 \tag{1}$$

Откроем кран  $K_1$ . За время  $\Delta t$  порядка 0.5с произойдёт адиабатическое расширение газа, и его температура окажется ниже комнатной. Далее газ будет изобарически нагреваться. Зададим время  $\tau$ , В течение которого кран K остаётся открытым, таким, чтобы можно было пренебречь временем  $\Delta t$  адиабатического расширения воздуха. После закрытия крана K газ станет изохорически нагреваться до комнатной температуры, причём давление внутри сосуда возрастёт до  $p_0 + \Delta p_2$ , где

$$\Delta p_2 = \rho q \Delta h_2 \tag{2}$$

Наибольший интерес представляет исследование зависимости отношения перепадов давления  $\frac{\Delta p_1}{\Delta p_2}$  от времени  $\tau$ .

С хорошей точностью мы можем считать воздух в газгольдере идеальным газом. Рассмотрим изобарическое расширение воздуха. Для этого запишем уравнение теплового баланса для изменяющейся со временем массы  $m=\frac{p_0V_0}{RT}\mu$ :

$$c_p m dT = -\alpha (T - T_0) dt$$

где  $c_p$  — удельная теплоёмкость воздуха при постоянном давлении,  $\alpha$  — положительный постоянный коэффициент, характеризующий теплообмен,  $V_0$  — объём газгольдера.

$$\frac{dT}{T(T-T_0)} = \frac{-\alpha dt}{c_p \frac{p_0 V_0}{R} \mu} \Rightarrow \frac{1}{T_0} \left( \frac{1}{T} - \frac{1}{T-T_0} \right) dT = \frac{\alpha dt}{c_p m_0 T_0} \Rightarrow 
\Rightarrow \int_{T_1}^{T_2} \left( \frac{1}{T} - \frac{1}{T-T_0} \right) dT = \frac{\alpha}{c_p m_0} \int_0^{\tau} dt \Rightarrow \ln \left( \frac{T_2}{T_1} \right) - \ln \left( \frac{T_2 - T_0}{T_1 - T_0} \right) = \frac{\alpha}{c_p m_0} \tau \Rightarrow 
\Rightarrow \ln \left( \frac{T_2}{T_1} \frac{\Delta T_1}{\Delta T_2} \right) = \frac{\alpha}{c_p m_0} \tau \Rightarrow \frac{\Delta T_1}{T_1} = \frac{\Delta T_2}{T_2} \exp \left( \frac{\alpha}{c_p m_0} \tau \right) \tag{3}$$

Для адиабатического расширение справедливо соотношение  $T^{\gamma}=\mathrm{const}\;p^{\gamma-1},$  где  $\gamma=\frac{c_p}{c_v}$ 

$$\gamma \frac{dT}{T} = (\gamma - 1) \frac{dp}{p} \quad \Rightarrow \quad \frac{dT}{T} = \frac{(\gamma - 1)}{\gamma} \frac{dp}{p} \quad \Rightarrow \quad \frac{\Delta T_1}{T_1} = \frac{(\gamma - 1)}{\gamma} \frac{dp_1}{p_0} \tag{4}$$

При изохорическом нагреве газа выполняется соотношение

$$\frac{p}{T} = \text{const} \quad \Rightarrow \quad \frac{dp}{p} = \frac{dT}{T} \quad \Rightarrow \quad \frac{\Delta p_2}{p_0} = \frac{\Delta T_2}{T_2}$$
 (5)

После подстановки (4) и (5) в (3) получим:

$$\frac{(\gamma - 1)}{\gamma} \frac{\Delta p_1}{p_0} = \frac{\Delta p_2}{p_0} \exp\left(\frac{\alpha}{c_p m_0} \tau\right) \quad \Rightarrow \quad \frac{(\gamma - 1)}{\gamma} \Delta h_1 = \Delta h_2 \exp\left(\frac{\alpha}{c_p m_0} \tau\right) \quad \Rightarrow \\
\Rightarrow \quad \frac{\Delta h_1}{\Delta h_2} = \frac{\gamma}{\gamma - 1} \exp\left(\frac{\alpha}{c_p m_0} \tau\right) \quad \Rightarrow \quad \ln\left(\frac{\Delta h_1}{\Delta h_2}\right) = \ln\left(\frac{\gamma}{\gamma - 1}\right) + \left(\frac{\alpha}{c_p m_0}\right) \tau \tag{6}$$

#### 2. Выполнение

- 1. Проверим исправность установки. Убедимся, что уровни жидкости в манометре одинаковы. Закачаем с помощью груши газ и подождём выравнивания температур. Запишем разность уровней жидкости  $\Delta h_1$ . Откроем кран К на короткое время ( $\tau \approx 0.5c$ ) и закроем его снова. Подождём, пока уровень жидкости в манометре перестанет изменяться, т.е. когда температура газа в сосуде сравняется с комнатной. Запишем разность уровней жидкости в манометре  $\Delta h_2$ . Далее проведём серию из 6 измерений сначала для других времён открытия крана  $\tau$ . По полученным данным построим график зависимости  $\ln\left(\frac{\Delta h_1}{\Delta h_2}\right)$  от  $\tau$  (График №1), а далее найдём из него  $\gamma$  используя формулу (6).
  - 2. Рассчитаем погрешность для графика:

$$\Delta \tau = \pm 0.5 c, \qquad \Delta \left( \ln \left( \frac{\Delta h_1}{\Delta h_2} \right) \right) = \pm 2 \, \delta h \frac{\Delta h_2}{\Delta h_1}$$

Таблица 1: Результаты эксперимента,  $\Delta \tau = \pm 0.5$ с,  $\delta h = \pm 0.1$ см

| No॒ | $\tau$ , c | $\Delta h_1$ , cm | $\Delta h_2$ , cm |
|-----|------------|-------------------|-------------------|
| 1   | 0,5        | 16.0              | 4.4               |
| 2   | 5          | 15.3              | 3.4               |
| 3   | 10         | 13.2              | 2.4               |
| 4   | 15         | 12.3              | 1.8               |
| 5   | 20         | 12.0              | 1.4               |
| 6   | 25         | 12.6              | 1.2               |
| 7   | 30         | 12.1              | 0.9               |

Используя библиотеки NumPy и Matplotlib на Python построим график по МНК и получим погрешность.

$$b = \ln\left(\frac{\gamma}{\gamma - 1}\right) = 1.272 \pm 0.041 \quad \Rightarrow \quad \sigma_b = 3.22\%$$

Далее найдем  $\gamma$ . Приравняем  $\sigma_b = \sigma_\gamma \approx 3.22\%$ 

$$\gamma = \frac{e^b}{e^b - 1} = 1.389 \pm 0.045$$

## 3. Вывод

В ходе эксперимента при использовании знаний полученных в ходе курса термодинамики было получено значение показателя адиабаты для воздуха. Полученное значение  $\gamma = \frac{c_p}{c_v} = 1.389 \pm 0.045$  в пределах погрешности ( $\sigma_{\gamma} = 3.22\%$ ) совпало с табличным  $\gamma^* = 1.4$ . Неполное совпадение результата вызвано, во-первых, погрешностью в определении времени  $\tau$ , а во-вторых с тем, что снятая мной разница уровней воды в трубке не всегда была окончательной, т.к. установление идеального равновесия требует слишком большого времени ожидания.



Рис. 2: График №1