

Supervised by:

Dr. Esraa Elhariri Dr. Asmaa Hashem

-¦-

TABLE OF CONTENTS Care

01.

04.

Introduction

Related Work

02.

Problem Definition

٥٥.

Project Planning

03.

Objective and Motivation

٥٦.

Proposed System

٥٥.

Our team

00.

Conclusion

Alzheimer:

A slowly progressing, but devastating disease.

01. Introduction

INTRODUCTION

0

- Dementia results from a variety of diseases and injuries that primarily or secondarily affect the brain.
 - A person diagnosed with Alzheimer's could suffer from various syndromes including memory efficiency decreases, speaking difficulties, lack of attention, and a decline in the quality of lifestyle.

÷ C

O

02.Problem Definition

Problem Definition

03. Project objective

0

Project objective

-¦-

Developing an automated helpful system.

Diagnose Alzheimer's disease in its early stages Accurately using:

Deep learning would give us the ability to

- Slow the disease progression with medicine and exercises.
- Maintain mental function

Make it easier for caregivers to take care of the patient

04. Related Work

Accuracy 66.7%

propose a framework that can diagnose AD. Using MRI, FDG-PET, CSF, & genetic features, with Hybrid (CNN & RNN).

Weiming Lin.2021

predict an early diagnosis of Alzheimer's Disease using sMRI & fMRI data with Using ShulffleNet & PCANet.

Yu Wang et al.2021

0

Shangran Qiu.2022

Differential diagnosis of Alzheimer's disease and other dementia etiologies. Using MRI, FDG-PET, CSF, & genetic features, with CNN.

May D. Wang.2021

Distinguish between Tstages of AD (CN, MRI, AD) using MRI, SNPs & HER with 3D-CNN, SDAE & Sallow Models(ANN, DT, RF, KNN).

0.78 for Accuracy

Zhou, P. et al. 2020

predict AD using PET and MRI images and distinguish between severity using CNN and SVM

Accuracy 69.2%

Accuracy of 87%

-:-

Accuracy of 91 %

early detection of Alzheimer's Disease using MRI, PET & CSF data with Using SAE,DBM & SVM

fnagi.2019

predict an early diagnosis of Alzheimer's

Disease using MRI data with Using
autoencoder Accuracy of 91 %

0

Ju et al.2017

Shen et al.2019

Hybrid model of DBN & CNN is better than traditional approaches for lassification 4-stages of AD. Using MRI EGG with(DBN & CNN), SVM & MLP

-:-

Shen et al.2019

distinguish AD From mild cognitive impairment using PET data Using Deep Belief Network

Accuracy of 86%

05 P

Project planing

06.

Proposed System

-¦-

-Context Diagram

-Use Cases Diagram

OUR Team

- **X** Yasmeen Saad
- *** Mohamed Ashraf**
- *** Shrouk Nasser**
- *** Sameul Adel**
- *** Mohamed Yasser**

0

 $\overline{}$

THANKS!

