

Cálculo de expressão de transcritos

Leandro Costa do Nascimento 25/07/2015

l.costa.nascimento@gmail.com

Conceitos

- Read:
- Fragmento:
- Read count: número de reads/fragmentos que alinharam com um transcrito/gene em uma amostra.

Transcriptômica

- Identificação e anotação de novos transcritos (Montagem).
- Comparar a expressão de transcritos diferentes em uma amostra.
- Comparar a expressão de um mesmo transcrito entre amostras diferentes.
- Mas, após montar os transcritos, como calculo a expressão deles em cada uma das minhas amostras?

- Os valores de expressão em RNA-Seq são baseados no número de reads que mapeiam/alinham em um gene/transcrito.
- Dois tipos de alinhamento:
 - Alinhamento padrão
 - Alinhamento com splicing

Alinhamento padrão

- Utilizado para alinhamento de reads contra o transcrito montados.
- Exemplos: Bowtie, SOAP, RSEM.

Alinhamento com splicing

- Utilizado para alinhamento de reads contra o genoma.
- Exemplo: TopHat

Expressão – nível de gene

 Considera todos os reads alinhados no lócus "Gene 1" para calcular a expressão.

Gene	Read count
Gene 1	85

Expressão – nível de isoforma

 Dividir os reads entre todas as isoformas do lócus "Gene 1" e calcular a expressão de cada.

Gene	Isoforma	Read count
Cono V	Isoforma A	24
Gene X	Isoforma B	61

 Comparar a expressão de transcritos diferentes

 Importante: genes ou transcritos tem tamanhos diferentes

 Comparar a expressão do mesmo transcrito em amostras diferentes.

Transcrito 1 - Controle

Transcrito 1 - Tratado

 Importante: número de reads sequenciados em cada biblioteca é diferente.

Amostra	Total reads
Amostra A	15 milhões
Amostra B	20 milhões

Gene	Amostra A	Amostra B
Gene Y	36	36

RPKM/FPKM

 Reads/Fragmentos por Kilobase de exon por Milhão de reads mapeados.

$$RPKM = [R/(T * N)] * 10^9$$

- R nº de reads/fragmentos que alinharam com o transcrito/gene.
- T tamanho efetivo do transcrito/gene (em bp).
- N total de reads mapeado na amostra.

Média de expressão relativa

- Em duas amostras, a média de expressão relativa dos transcritos é a mesma.
- Exemplo: amostra X com 100 transcritos e amostra Y com 500 transcritos no total (5 diferentes).

Amostra	#Total transcritos	A	В	С	D	Е
X	100	80	10	6	3	1
Υ	500	20	20	10	50	400

Média de expressão relativa

- Se calcularmos a expressão relativa de cada transcrito em cada amostra, teremos:
 - Média da expressão relativa amostra X: (0,8

$$+0.1 + 0.06 + 0.03 + 0.01)/5 = 0.2$$

- Média da expressão relativa amostra Y: (0,04

$$+0.04 + 0.02 + 0.1 + 0.8)/5 = 0.2$$

Amostra	A	В	С	D	E
X	0,8	0,1	0,06	0,03	0,01
Υ	0,04	0,04	0,02	0,1	0,8

Incosistência do FPKM

- Se calcularmos o FPKM de cada transcrito em cada amostra, teremos:
 - Média do FPKM amostra X: (8.000 + 2.000 +
 - 2.400 + 6.000 + 10.000)/5 = 5.680
 - Média do FPKM amostra Y: (400 + 800 + 800
 - +20.000 + 800.000)/5 = 164.400

Amostra	#Total reads	FPKM A	FPKM B	FPKM C	FPKM D	FPKM E
X	100	8.000	2.000	2.400	6.000	10.000
Υ	500	400	800	800	20.000	800.000

TPM

Transcripts per million.

$$\mathrm{TPM}_i = \left(\frac{\mathrm{FPKM}_i}{\sum_j \mathrm{FPKM}_j}\right) \cdot 10^6$$

Amostra	#Total reads	ТРМ А	ТРМ В	трм с	TPM D	TPM E
X	100	281690,14	70422,53	84507,04	211267,60	352112,67
Υ	500	486,61	973,23	973,23	24330,90	973236,00

A média do TPM para as duas amostras é ~200.000

RSEM

- Utiliza o bowtie.
- Calcula a expressão a nível de gene e de transcrito.
- Retorna valores de read count, FPKM, TPM.
- Utiliza reads com alinhamento único para tentar separar os com alinhamento múltiplo.

Expressão – nível de isoforma

 Dividir os reads entre todas as isoformas do lócus "Gene 1" e calcular a expressão de cada.

Gene	Isoforma	Read count
Cono V	Isoforma A	24
Gene X	Isoforma B	61

RSEM – Preparando a referência

```
NAME
rsem-prepare-reference

SYNOPSIS
rsem-prepare-reference [options] reference_fasta_file(s) reference_name
```

- reference_fasta_file: arquivo FASTA contendo os transcritos de referência.
- reference_name: nome que você quer dar para o seu banco de dados.
- --transcript-to-gene-map: arquivo texto que informa de qual lócus é cada transcrito.

Ligando os transcritos aos genes

TR1	TR1	CΘ	g1	i 1
TR2	TR2	cΘ	g1	i1
TR2	TR2	cΘ	g1	i2
TR3	TR3	CΘ	g1	i 1
TR3	TR3	cΘ	g2	
TR4	TR4	cΘ	g1	i1
TR4	TR4	cΘ		i1
TR4	TR4	cΘ		i2
TR4	TR4	cΘ	g2	i3
TR4	TR4			
TR5	TR5	CΘ	g1	il
TR5	TR5	cΘ	g1	i2
TR5	TR5	cΘ	g1	
TR5	TR5	CΘ	g1	i4
TR6	TR6	cΘ	g1	i1
TR6	TR6	cΘ		i2
TR7	TR7	CΘ	g1	i 1
TR7	TR7	CΘ	g2	i1
TR7	TR7	cl	g1	il
TR8	TR8	CΘ	g1	i 1
TR9	TR9	CΘ	g1	i1
TR9	TR9	cΘ	g2	i1
TR10	TRIG) c 6	g1	L il
TR10	TRIG) ce	g2	2_i1
TR11	TR1	L ce	_g1	L il

- Arquivo tabular com duas colunas:
 - Nome do lócus
 - Nome do transcrito
- Um transcrito por linha.

RSEM – Quantificando a expressão

rsem-calculate-expression [opções] FASTQ-files [index] [output]

- paired—end: trabalha com reads paired—end.
- p: número de processadores.
- Index: nome do índice.
- Output: prefixo dos arquivos de saída.

Kallisto – Preparando a referência

Kallisto index [opções] FASTA-file

- –i: Nome do indíce
- -k: Tamanho de k mer (Default: 31; Máximo: 31)

Kallisto – Quantificando a expressão

Kallisto quant [opções] [FASTQ—files]

- i: Nome do indíce (obrigatório)
- o: Nome do diretório de saída (obrigatório)
- single: single –end reads
- bias: parâmetro correção

Genes	Amostra A Rep 1	Amostra A Rep 2	Amostra B Rep 1	Amostra B Rep 2	Média geométrica
Gene A	15	13	17	14	14.68
Gene B	452	430	420	444	436.32
Gene C	1024	1053	1002	987	1016.20
Gene D	120	132	523	582	263.51
Gene E	74	62	55	63	63.14

Calcula a média geométrica dos read counts de cada gene/transcrito

Genes	Amostra A Rep 1	Amostra A Rep 2	Amostra B Rep 1	Amostra B Rep 2
Gene A	1.02	0.89	1.16	0.95
Gene B	1.04	0.99	0.96	1.02
Gene C	1.01	1.04	0.99	0.97
Gene D	0.46	0.50	1.98	2.21
Gene E	1.17	0.98	0.87	1.00

Divide cada read count pela média geométrica do transcrito.

Genes	Amostra A Rep 1	Amostra A Rep 2	Amostra B Rep 1	Amostra B Rep 2
Gene A	1.02	0.89	1.16	0.95
Gene B	1.04	0.99	0.96	1.02
Gene C	1.01	1.04	0.99	0.97
Gene D	0.46	0.50	1.98	2.21
Gene E	1.17	0.98	0.87	1.00
Mediana	1.02	0.98	0.99	1.00

Calcula a mediana dos novos valores para cada amostra.

Genes	Amostra A Rep 1	Amostra A Rep 2	Amostra B Rep 1	Amostra B Rep 2
Gene A	15.33	12.76	16.76	13.97
Gene B	461.93	422.21	414.13	442.99
Gene C	1046.50	1033.92	988.00	984.75
Gene D	122.64	129.61	515.69	580.67
Gene E	75.63	60.88	54.23	62.86

Multiplica os reads counts originais pela mediana de cada amostra.