Paper Review - Auto-FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labelled Examples

Peng Li, Xiang Cheng, Xu Chu, Yeye He, Surajit Chaudhuri

Carmel Gafa

April 3, 2025

Fuzzy-join (or similarity join)

id Isem id	
id iselli	Isem
l1 Peppi Azzopardi r1 Ka	rmnu Vassallo
l2 Annetto Depasquale r2 Ġu	eppi Azzopardi
l3 Karmenu Vassallo r3 Anno	etto De Pasquale

Left Table					Right Table			
L-id	L-name	L-director	L-description				R-director	R-description
l1	Carrie	Brian De Palma	Carrie White is shy and outcast	←──	r1	Carrie	Brian DePalma	This classic horror movie based
12	Vibes	Ken Kwapis	Psychics hired to find lost temple		r2	Vibes	Ken Kwapis	Two hapless psychics unwittingly

- Fuzzy join takes two tables as inputs and identify record pairs that refer to the same entity
- As an example, I1 and r2 refer to the same person
- The concept can be extended to rows consisting of multiple columns

Fuzzy-join configuration

- Fuzzy-join has been integrated many commercial applications
- These systems are normally not easy to use as they have a big number of configuration parameters
- The extension in Microsoft Excel has 19 options that span across 3 dialog boxes
 - 11 are binary, thus resulting in 2048 possible configuration scenarios
 - 8 continuous, such as thresholds and biases
- In order to execute quality Fuzzy-joins, these configurations must be set up properly by the user

Theoretical foundation: fuzzy join

Given a **reference table** L and a table R containing records that may be **imprecise** or noisy, a **fuzzy join** J establishes approximate matches between them.

- J connects elements of R to similar elements in L based on a chosen similarity measure (e.g., Levenshtein distance, cosine similarity, Jaccard similarity).
- Each record $r \in R$ is mapped to at most one record $l \in L$, or **no match at all** (denoted by \perp).
- The join is many-to-one because multiple records in R can be associated with the same record in L, but each r∈ R has only one possible match.

Formally:

$$J: R \rightarrow L \cup \bot$$

Theoretical foundation: fuzzy join configuration space

A fuzzy join f compares two strings, r and l, by computing a distance score that reflects their similarity. The computation of this score is governed by a variety of parameters, forming a parameter space.

Definition: Each unique combination of these parameters defines a specific **join function** $f \in \mathcal{F}$, where \mathcal{F} is the space of all possible join functions.

Example: Fuzzy Join Distance Score Computation

Join Function: f = (L, SP, EW, JD)

- L: Lower-casing (Preprocessing)
- SP: Space Tokenization
- EW: Equal Weights
- JD: Jaccard Distance

Inputs:

- / = "2012 tigers lsu baseball team"
- r = "2012 lsu baseball team"

Tokenization (SP):

- $I \rightarrow \{2012, tigers, lsu, baseball, team\}$
- $r \rightarrow \{2012, lsu, baseball, team\}$

Jaccard Distance:

- $A \cap B = \{2012, lsu, baseball, team\} \rightarrow |A \cap B| = 4$
- $A \cup B = \{2012, tigers, lsu, baseball, team\} \rightarrow |A \cup B| = 5$
- Jaccard Similarity = $\frac{4}{5}$ = 0.8
- Jaccard Distance = 1 0.8 = 0.2

Theoretical foundation: threshold and join configuration

- Once the distance f(I, r) is computed:
 - It is compared to a threshold**compared to a threshold** θ to decide whether to join the string pair I and r.
 - If $f(I, r) \le \theta$, the pair is considered a match.
- Together, the function f and the threshold θ define what the authors call a **join** configuration:

$$C = (f, \theta)$$

- This configuration encapsulates both:
 - How distance is computed.
 - When two strings are considered similar enough to be joined.

Definition: A join configuration C is a 2-tuple $C = \langle f, \theta \rangle$, where $f \in \mathcal{F}$ is a join function, and θ is a threshold.

We use $S = \{ \langle f, \theta \rangle \mid f \in \mathcal{F}, \theta \in \mathbb{R} \}$ to denote the space of join configurations.

Theoretical foundation: fuzzy join mapping

Given two tables L and R , a join configuration $C \in S$ induces a **fuzzy join mapping** J_C , defined as:

$$J_C(r) = \operatorname*{arg\,min}_{l \in L, \ f(l,r) \le \theta} f(l,r), \ \forall r \in R$$

That is

- For each record $r \in R$, find $l \in L$ that minimizes the distance f(l, r), only if that distance is less than or equal to the threshold θ .
- If no such $l \in L$ exists such that $f(l,r) \leq \theta$, then $J_C(r)$ is **empty** i.e., no match for that record.

Theoretical foundation: the problem with single join configurations

Real-world data can exhibit multiple types of variations simultaneously, such as:

- Typos
- Missing tokens
- Extraneous information

As a result, relying on a **single join configuration** often fails to capture all valid matches, particularly when high **recall** is required.

To handle this diversity, the algorithm uses a **set** of join configurations:

$$U = \{C_1, C_2, \dots, C_K\}$$

Instead of relying on a single configuration, the system computes join results from each one. This approach allows the system to:

- Accommodate diverse types of variations.
- Improve overall recall by combining multiple perspectives on similarity.

- A Jaccard distance with threshold 0.2 works well for pairs like (I₁, r₁), which differ by only one or two tokens.
- However, for pairs like (I₃, r₃) with spelling variations, Jaccard similarity is not enough:
 - Jaccard distance $\approx 0.5 \rightarrow$ too high to match under the 0.2 threshold
 - A more suitable metric is Edit
 Distance, which can better align such
 pairs.

Theoretical foundation: fuzzy join via multiple configurations

• To handle this diversity, the algorithm uses a set of join configurations:

$$U = \{C_1, C_2, \ldots, C_K\}$$

- Instead of relying on a single configuration, the system computes join results from each.
- This approach allows the system to:
 - Accommodate diverse types of variations.
 - Improve overall recall by combining multiple perspectives on similarity.

Given L and R, a set of join configurations $U = \{C_1, C_2, \dots, C_K\}$ induces a **fuzzy join mapping** J_U , defined as:

$$J_U(r) = \bigcup_{C_i \in U} J_{C_i}(r), \ \forall r \in R$$

This means that the overall result of the fuzzy join using configuration set U is the **union** of results from all individual configurations $C_i \in U$.

Each configuration $C_i \in U$ is designed to capture a **specific type of string variation** (e.g., typos, missing tokens, extra tokens).

Two records are considered joined by the set U if and only if they are joined by at least one configuration $C_i \in U$.

- Each configuration contributes high-quality joins targeted at particular data challenges.
- The overall join is more robust and comprehensive.

Evaluating Join Quality: Precision

Given two tables R and L, and a space of join configurations S, the objective is to find a subset $U \subseteq S$ that produces good fuzzy join results. Let:

- J_U be the fuzzy join mapping induced by configuration set U
- J_G be the ground truth join mapping the ideal join result

Precision measures how many of the predicted joins are correct:

$$\mathsf{precision}(U) = \frac{\underbrace{|\{r \in R \mid J_U(r) \neq \emptyset, \ J_U(r) = J_G(r)\}|}_{\mathsf{True\ Positives\ (TP)}}}{\underbrace{|\{r \in R \mid J_U(r) \neq \emptyset\}|}_{\mathsf{TP} + \mathsf{FP}\ (\mathsf{all\ predicted\ ioins})}$$

- Numerator (TP): Records where a join was predicted and it matched the ground truth.
- Denominator (TP + FP): All records where a join was predicted (correct or not).

Evaluating Join Quality: Recall

Recall measures how many of the correct (ground truth) joins were successfully predicted:

$$recall(U) = \underbrace{|\{r \in R \mid J_U(r) \neq \emptyset, \ J_U(r) = J_G(r)\}|}_{True \ Positives \ (TP)}$$

- This is the absolute count of True Positives, i.e., records for which:
 - A join was predicted $(J_{ij}(r) \neq \emptyset)$, and
 - It matches the ground truth $(J_U(r) = J_G(r))$

False Negatives (FN) — cases where a correct join was missed — are defined as:

$$\mathsf{FN} = |\{r \in R \mid J_G(r) \neq \emptyset, \ J_U(r) = \emptyset\}|$$

Note: The denominator TP + FN is constant across all U for a fixed dataset, so it is omitted in comparisons.

Estimating Precision/Recall for a Single Join Configuration

Given:

- A single join configuration $C = \langle f, \theta \rangle$
- Two tables:
 - I · reference table
 - R: query table

Assumption: Complete Reference Table L

- L is assumed to contain all possible true matches for records in R.
- Ensures that for each $r \in R$, there exists a correct match $l \in L$.
- Simplifies analysis by reducing the chance of missing true positives due to an incomplete reference.

Geometric View of the Distance Function f

- Join function f embeds records into a metric space.
- Records are modeled as points on a unit grid.
- Each $l \in L$ is surrounded by **close variants** (differing by a token, character, etc.).

Analogy: Stars and Planets

- Reference records $I \in L$ are like stars on a grid.
- Query records $r \in R$ are like **planets** that orbit these stars.
- Identifying the best join $J_C(r)$ is like determining which star a planet orbits.

Safe Joins and the Geometry of Fuzzy Matching

Safe Joins with a Complete L

- Define the grid width w: typical distance between a record I and its closest neighbors in L.
- A join is considered safe if the distance d = f(I, r) satisfies:

$$d<\frac{w}{2}$$

• This guarantees that r lies closer to its true match I than to any other reference point.

Why This Matters:

- Ensures high precision avoiding false positives caused by ambiguous joins.
- Avoids joining r to an incorrect l' that lies at a similar distance.

Analogy: Stars and Planets

- A planet that lies equidistant between two stars (at w/2 each) cannot be confidently claimed by either.
- In fuzzy joining, such cases are inherently ambiguous and risky to resolve.

Estimating Join Precision (Local Heuristic)

Given a query record $r \in R$ and its closest match $l \in L$, with distance d = f(l, r), we can estimate how **precise** this join is — i.e., how likely it is that (l, r) is a **correct match**.

- The more candidate records in *L* that are close to *r*, the less confident we are about any one being the true match.
- So we count how many other records
 I' ∈ L fall within the 2d-ball centered
 at I:

$$\mathsf{precision}(\mathit{I},\mathit{r}) = \underbrace{\frac{1}{[\mathit{I}' \in \mathit{L} \mid \mathit{f}(\mathit{I},\mathit{I}') \leq 2\mathit{f}(\mathit{I},\mathit{r})]|}}_{\mathsf{TP} + \mathsf{FP} \; (\mathsf{local} \; \mathsf{competitors})}$$

- A small 2*d*-ball → high precision (few competitors)
- A large 2d-ball → low precision (many competitors)

This provides a data-driven estimate of join quality without needing ground truth.

- To join r_1 , we find the closest $l \in L$, say l_1
- Compute the distance: $d = f(I_1, r_1)$
- Draw a ball of radius 2d centered at l_1
 - If no other L records fall in the ball → high confidence
- In this case, the 2d-ball contains only l₁:

$$\mathsf{precision}(\mathit{I}_1,\mathit{r}_1) = \frac{1}{1} = 1$$

High confidence join

When L is Incomplete

Problem: When L is incomplete (i.e., some records are missing):

- Missing records in L result in missing stars in the grid.
- A record r may join to the wrong I, causing false positives and reducing precision.
- Example: If r₂ should match with I₂ (but I₂ is missing), it might instead match I₁ using d = f(r₂, I₁).

Note:

- Even if some records in L are missing, safe decisions can still be made.
- In 2D figure, can tolerate up to 7 out of 11 missing.

Precision estimation:

- r₂ should match l₂ (missing), so l₁ becomes the fallback.
- The 2d'-ball around l₁ contains 5 records.
- Precision:

$$\mathsf{precision}(\mathit{I}_1,\mathit{r}_2) = \frac{1}{5}$$

⇒ Low confidence join

(b) l_1 is the closest left record to r_2 , since l_2 is missing from L. We can infer that (l_1, r_2) is not a "safe" join, because we find many L records in the ball of 2d'.

- r_2 should join with l_2 , but l_2 is **missing**
- I₁ becomes the closest available record
- Compute distance $d' = f(l_1, r_2)$
- Draw a 2d'-ball around I_1
 - If the ball includes many other L records ⇒ d' is too lax
 - Join becomes unreliable

Estimating Precision and Recall for a Configuration

A configuration $C = \langle f, \theta \rangle$ includes:

- A join function f
- A threshold θ
- 1. Local Precision for a Join

$$precision(r, C) = \frac{1}{|\{l' \in L \mid f(l, l') \le 2f(l, r)\}|}$$

- $J_C(r) = I$: join match for $r \in R$
- Denominator = number of plausible alternatives
- 2. Expected True Positives

$$TP(C) = \sum_{r \in R, J_C(r) \neq \emptyset} \operatorname{precision}(r, C)$$

3. Expected False Positives

$$FP(C) = \sum_{r \in R, J_C(r) \neq \emptyset} (1 - \operatorname{precision}(r, C))$$

4. Overall Precision and Recall

$$precision(C) = \frac{TP(C)}{TP(C) + FP(C)} \qquad recall(C) = TP(C)$$

Note: Recall is estimated absolutely since ground truth is unavailable.

Precision and Recall Estimation: Example

Setup: Assume 3 records in R, joined to L using configuration $C = \langle f, \theta \rangle$. **Join Results:**

- $J_C(r_1) = I_1$, $f(I_1, r_1) = 0.1$, 5 plausible matches \Rightarrow precision $(r_1, C) = \frac{1}{5} = 0.20$
- $J_C(r_2) = I_2$, $f(I_2, r_2) = 0.05$, 2 plausible matches \Rightarrow precision $(r_2, C) = \frac{1}{2} = 0.50$
- $J_C(r_3) = I_3$, $f(I_3, r_3) = 0.2$, 4 plausible matches \Rightarrow precision $(r_3, C) = \frac{1}{4} = 0.25$

Estimated TP and FP:

$$TP(C) = 0.20 + 0.50 + 0.25 = 0.95$$

 $FP(C) = (1 - 0.20) + (1 - 0.50) + (1 - 0.25) = 2.05$

Estimated Precision and Recall:

precision(
$$C$$
) = $\frac{0.95}{0.95 + 2.05} = \frac{0.95}{3.00} \approx 0.317$
recall(C) = $TP(C) = 0.95$

Note: This example assumes no ground truth; hence recall is based on expected TP count.

Precision and Recall for a Set of Configurations

Let $U = \{C_1, C_2, \dots, C_K\}$ be a set of configurations.

Case 1: No Conflicts in U

• Each record $r \in R$ is matched by at most one configuration:

$$\forall r \in R, \quad |J_U(r)| \leq 1$$

• Then:

$$TP(U) = \sum_{C \in U} TP(C), \quad FP(U) = \sum_{C \in U} FP(C)$$

Case 2: Conflicting Assignments in U

- Multiple configurations suggest different joins for the same r
- Resolve conflicts by:
 - **1** Compare precision scores: precision (r, C_i) vs. precision (r, C_j)
 - 2 Choose the match with higher precision
 - **3** Assign that join to $J_{U}(r)$
 - 4 Recompute TP(U) and FP(U)

Final Estimates:

$$precision(U) = \frac{TP(U)}{TP(U) + FP(U)} \qquad recall(U) = TP(U)$$

Example: Resolving Conflicting Joins from Multiple Configurations

Context: Two configurations propose different joins for the same record $r \in R$ using different string similarity methods.

Configurations:

- $C_1 = \langle f_1, \theta_1 \rangle$, where f_1 uses Jaccard distance over space-tokenized lowercase strings with equal weights.
- $C_2 = \langle f_2, \theta_2 \rangle$, where f_2 uses Cosine similarity over character trigrams with TF-IDF weighting.

Join Proposals for r:

- C_1 : $J_{C_1}(r) = I_1$ with precision $(r, C_1) = \frac{1}{4} = 0.25$
- C_2 : $J_{C_2}(r) = I_2$ with precision $(r, C_2) = \frac{1}{2} = 0.50$

Conflict Resolution Strategy:

Compare estimated precision:

$$precision(r, C_1) = 0.25 < precision(r, C_2) = 0.50$$

2 Assign $J_U(r) = I_2$ (higher-confidence match from C_2)

Effect:

- TP(U) and FP(U) incorporate only the winning match.
- · Competing matches are discarded.

Auto-FuzzyJoin Algorithm: Single Column Case

Problem: Recall-Maximizing Fuzzy Join (RM-FJ) is

NP-hard.

Solution: Use a greedy approximation algorithm called

AutoFJ.

Objective:

- Maximize recall: TP(U)
- Subject to: maintain precision(U) $\geq au$

Greedy Strategy:

- Select configurations that:
 - Increase true positives (recall)
 - Minimize false positives (preserve precision)
- Guided by the Profit Metric:

$$profit(U) = \frac{TP(U)}{FP(U)}$$

Blocking Heuristic:

· Apply 3-gram-based blocking:

```
LL, LR \leftarrow \text{apply blocking on } L-L, L-R
```

Algorithm 1 AUTOFJ for single column

```
Require: Tables L and R, precision target \tau, search space S
1: LL, LR \leftarrow apply blocking with L - L and L - R
2: LR ← Learn negative-rules from LL and apply rules on LR (Alg. 2)

 Compute distance with different join functions f ∈ S.

 Pre-compute precision estimation for each configuration C ∈ S

 5: U ← Ø
 6: while S \ U ≠ Ø do
       max profit \leftarrow 0
       for all C \in S \setminus U do
           if profit(U \cup \{C\}) > max_profit then
              C^* \leftarrow C. max profit \leftarrow profit(U \cup \{C\})
       if precision(U \cup \{C^*\}) > \tau then
12:
          U \leftarrow U \cup \{C^*\}
       else
13:
          break
15: return U
```

Blocking Example: 3-Grams and TF-IDF

Query Record r_1 : "jon smyth" Step 1: Preprocessing (P)

- Lowercasing (already lowercase)
- Add padding for 3-grams: e.g., "jon" → "##jon#"

Step 2: Tokenization (T)

- r_1 : ##j, #jo, jon, on , n s, sm, smy, myt, yth, th#
- l₁, l₂: similar 3-gram sequences

Step 3: Token Weighting (W)

- Use TF-IDF to emphasize rare, meaningful trigrams (e.g., smy, yth)
- r_1-l_2 : High score, r_1-l_1 : Medium, r_1-l_3 : Zero

Blocking Result:

• Only compare r_1 with l_1 , $l_2 \rightarrow$ prune l_3

Optimization: Filtering with Negative Rules

Assumption: Although 3-gram blocking may have pruned l_3 , we assume here it was retained due to weak overlap, allowing us to illustrate negative-rule filtering.

Goal: Use obvious non-matches in L-L to learn rules that help filter unlikely L-R pairs before costly distance computations.

Step 1: Generate LL — Self-Join on L using 3-gram blocking

Pair	Shared 3-grams	Interpretation
l_1 vs l_2	sm, smy, th	Possibly similar
I_1 vs I_3	jo, on	Clearly different
l ₂ vs l ₃	Weak overlap	Probably different

Learn Negative Rule:

"If 3-gram overlap \leq 2, treat as a non-match."

	Pair	Overlap	Apply Rule?	Keep?
Step 2: Apply Rule on LR Candidate Pairs	r_1 , l_1	\sim 4	No	Yes
Step 2. Apply Rule on LA Candidate Fairs	r_1, l_2	\sim 5	No	Yes
	r_1 , l_3	~ 1	Yes	No

Effect: Filter out clearly irrelevant pairs early — no need to compute Jaccard or Edit Distance!

Compute Distances: Apply Join Functions

Once candidate pairs are identified (via blocking and optional negative rules), we compute the actual similarity using multiple join functions $f \in \mathcal{S}$.

Each join function is defined by:

- Preprocessing (e.g., lowercasing, punctuation removal)
- Tokenization (e.g., char 3-grams, word tokens)
- Token weights (e.g., TF-IDF)
- Distance function (e.g., Jaccard, Cosine, Edit)

	r (query)	I (reference)
Example Candidate Pairs (after blocking):	"jon smyth"	"john smith"
	"jon smyth"	"jane smythe"

Join Functions in \mathcal{S} :	Function <i>f f</i> ₁ <i>f</i> ₂ <i>f</i> ₃	Tokenizer char 3-grams char 3-grams raw string			Distance Jaccard Cosine (TF-IDF) Levenshtein	Overlap in token sets Weighted similarity Edit distance
	Pair	f_1	f_2	f_3		
Computed Scores:	jon vs john	0.4	0.5	2	_	
	jon vs jane	0.6	0.7	3		

Note: Distances may follow different scales — lower often means more similar.

Start of Greedy Algorithm

Initialize: $U \leftarrow \emptyset$

U will hold the selected join configurations:

$$C = \langle f, \theta \rangle$$

Each configuration includes:

- A join function $f \in \mathcal{F}$ (defined by P, T, W, D)
- A distance threshold θ (max allowed distance for a match)

Goal:

- Select a subset $U \subseteq \mathcal{S}$ from all candidate configurations
- Maximize recall: TP(U)
- Maintain precision: precision(U) $\geq \tau$

	Config C	Description
Example: Precomputed Configuration Set <i>S</i>	$C_1 = \langle f_1, 0.37 \rangle$	Jaccard distance with $\theta = 0.37$
Example. Precomputed Comiguration Set 3	$C_2 = \langle f_2, 0.42 \rangle$	Cosine distance with $\theta = 0.42$
	$C_3 = \langle f_3, 2 \rangle$	Edit distance with $\theta = 2$

These θ values were selected based on prior precision–recall evaluation for each f .

Main Greedy Loop

Main Loop: while $S \setminus U \neq \emptyset$ do

We continue as long as there are still unused configurations to consider.

Notation:

- S: full set of candidate configurations, each $C = \langle f, \theta \rangle$
- U: set of selected configurations
- $S \setminus U$: unused configurations

At each iteration:

- Evaluate each $C \in S \setminus U$
- 2 Compute profit: how many true positives vs. false positives it contributes
- Select the best configuration C*
- 4 If precision($U \cup \{C^*\}$) $\geq \tau$:

$$U \leftarrow U \cup \{C^*\}$$

Example State:

- $S = \{ \langle f_1, 0.37 \rangle, \langle f_2, 0.42 \rangle, \langle f_3, 2 \rangle \}$
- U = ∅

Loop continues while there are remaining candidates and precision can be preserved.