SI PREFIX	SI SYMBOL	SI UNIT CONVERSION FACTOR (STANDARD FORM)	FACTOR (POWER)	FACTOR LANGUAGE	
yotta	Υ	1 yottametre = 1 000 000 000 000 000 000 000 000 metres	10 ²⁴	septillion	
zetta	Z	1 zettametre = 1 000 000 000 000 000 000 000 metres	10 ²¹	sextillion	
exa	E	1 exametre = 1 000 000 000 000 000 000 metres	10 ¹⁸	quintillion	
peta	Р	1 petametre = 1 000 000 000 000 000 metres	10 ¹⁵ quadrillion		
tera	Т	1 terametre = 1 000 000 000 000 metres	10 ¹²	trillion	
giga	G	1 gigametre = 1 000 000 000 metres	10 ⁹	billion	
mega	М	1 megametre = 1 000 000 metres	10 ⁶	million	
kilo	k	1 kilometre = 1 000 metres	10 ³	thousand	
hecto	h	1 hectometre = 100 metres	10 ²	hundred	
deca	da	1 decametre = 10 metres	10 ¹	ten	
		1 metre = 1 metre	10 ⁰	one	
deci	d	1 decimetre = 0.1 metres	10 ⁻¹	tenth	
centi	С	1 centimetre = 0.01 metres	10 ⁻²		
milli	m	1 millimetre = 0.001 metres	10 ⁻³	thousandth	
micro	μ	1 micrometre = 0.000 001 metres	10 ⁻⁶	millionth	
nano	n	1 nanometre = 0.000 000 001 metres	10 ⁻⁹	billionth	
pico	р	1 picometre = 0.000 000 000 001 metres	10 ⁻¹²	trillionth	
femto	f	1 femtometre = 0.000 000 000 001 metres	10 ⁻¹⁵	quadrillionth	
atto	а	1 attometre = 0.000 000 000 000 001 metres	10 ⁻¹⁸		
zepto	z	1 zeptometre = 0.000 000 000 000 000 001 metres	10 ⁻²¹	sextillionth	
yocto	у	1 yoctometre = 0.000 000 000 000 000 000 001 metres	10 ⁻²⁴	septillionth	

Magnitude and Direction of a vector

$$|ec{A}| = \sqrt{A_x^2 + A_y^2} \qquad heta = Tan^{-1}\left(rac{A_y}{A_x}
ight)$$

Forces

$$egin{aligned} \sum ec{F} = mec{a} & f_k = \mu_k F_N & f_s = \mu_s F_N \ F_g = mg & ec{F}_g = G rac{m_1 m_2}{r^2} \hat{r} & G = 6.67 imes 10^{-11} N rac{m^2}{k g^2} \end{aligned}$$

Uniform Circular Motion

$$ec{R} = (RCos heta)\hat{i} + (RSin heta)\hat{j} \qquad ec{v} = (-R\omega Sin heta)\hat{i} + (R\omega Cos heta)\hat{j} \qquad ec{a} = (-R\omega^2 Cos heta)\hat{i} + (-R\omega^2 Sin heta)\hat{j} \ \omega = rac{d heta}{dt} \qquad a_c = rac{v^2}{R}$$

Kinematic Relationships

$$ec{r}-ec{r}_o=\intec{v}dt \qquad ec{v}-ec{v}_o=\intec{a}dt \qquad ec{a}=rac{dec{v}}{dt} \qquad ec{v}=rac{dec{r}}{dt}$$

Constant Acceleration Equations

$$egin{aligned} x &= x_o + v_{ox}t + rac{1}{2}a_xt^2 & v_x &= v_{ox} + a_xt & v_x^2 &= v_{ox}^2 + 2a_x\Delta x \ y &= y_o + v_{oy}t + rac{1}{2}a_yt^2 & v_y &= v_{oy} + a_yt & v_y^2 &= v_{oy}^2 + 2a_y\Delta y \end{aligned}$$

Basic Integral and Derivative Forms

$$\int x^n dx = rac{1}{n+1} x^{n+1} \qquad rac{dx^n}{dx} = n x^{n-1}$$

Dot Product

$$ec{A} \cdot ec{B} = ABCos heta \ ec{A} \cdot ec{B} = A_xB_x + A_yB_y + A_zB_z$$

Energy and Momentum

$$egin{align} P.\,E._{grav.} &= mgh \quad P.\,E._{elast.} = rac{1}{2}kx^2 \quad K.\,E. = rac{1}{2}mv^2 \ E_{sys} &= P.\,E. + K.\,E. \quad W = \int ec{F} \cdot dec{r} \ ec{p} &= mec{v} \quad ec{p}_f = ec{p}_i \ & \Delta ec{p} = \int ec{F}dt \ v_{1f} &= \left(rac{-2m_2}{m_1 + m_2}
ight) v_{2i} + \left(rac{m_1 - m_2}{m_1 + m_2}
ight) v_{1i} \ v_{2f} &= \left(rac{2m_1}{m_1 + m_2}
ight) v_{1i} + \left(rac{m_2 - m_1}{m_1 + m_2}
ight) v_{2i} \ & \end{array}$$

Rotational Kinematics

$$ec{ heta}-ec{ heta}_o=\intec{\omega}dt \qquad ec{\omega}-ec{\omega}_o=\intec{lpha}dt \qquad ec{\omega}=rac{dec{ heta}}{dt} \qquad ec{lpha}=rac{dec{\omega}}{dt}$$

Constant Angular Acceleration Equations

$$ec{ heta} = ec{ heta}_o + ec{\omega} t + rac{1}{2} ec{lpha} t^2 \qquad ec{\omega} = ec{\omega}_o + ec{lpha} t \qquad \omega^2 = \omega_o^2 + 2lpha \Delta heta$$

Cross Product

$$ec{A} imesec{B}=(A_yB_z-A_zB_y)\hat{i}-(A_xB_z-A_zB_x)\hat{j}+(A_xB_y-A_yB_x)\hat{k}$$

Torque

$$ec{ au} = ec{r} imes ec{F} \qquad |ec{ au}| = rFSin heta \qquad \sum ec{ au} = Iec{lpha}$$

Rotational Energy

$$W = ec{ au} \cdot ec{ heta} \qquad K.\, E._{rot} = rac{1}{2} I \omega^2$$

Moment of Inertia and Center of Mass

$$egin{align} I &= \sum_i m_i r_i^2 & I &= \int r^2 dm \ & x_{cm} &= \sum_i rac{m_i x_i}{M} & y_{cm} &= \sum_i rac{m_i y_i}{M} & x_{cm} &= rac{1}{M} \int x dm & y_{cm} &= rac{1}{M} \int y dm \ & \end{array}$$

Moment of Inertia for Select Objects

TABLE 12.2 Moments of inertia of objects with uniform density

Object and axis	Picture	I	Object and axis	Picture	I
Thin rod, about center	L	$\frac{1}{12}ML^2$	Cylinder or disk, about center	R	$\frac{1}{2}MR^2$
Thin rod, about end	L	$\frac{1}{3}ML^2$	Cylindrical hoop, about center	R	MR^2
Plane or slab, about center		$\frac{1}{12}Ma^2$	Solid sphere, about diameter	R	$\frac{2}{5}MR^2$
Plane or slab, about edge	a b	$\frac{1}{3}Ma^2$	Spherical shell, about diameter	N N N N N N N N N N N N N N N N N N N	$\frac{2}{3}MR^2$

Mechanical Oscillations and Waves

$$f=rac{1}{T} \qquad 2\pi f=\omega$$

Spring-mass oscillator

$$v_{max} = \sqrt{rac{k}{m}} A \qquad \omega = \sqrt{rac{k}{m}}$$

Simple Pendulum

$$\omega = \sqrt{rac{g}{L}}$$

Waves on a String

$$egin{aligned} \lambda_m &= rac{2L}{m} & m = 1,2,3,4,\dots \ f_m &= rac{v}{\lambda_m} &= mrac{v}{2L} & m = 1,2,3,4,\dots \ v &= \sqrt{rac{T}{\mu}} & \mu &= rac{mass}{Length} \end{aligned}$$

Air Columns

Open - Open and Closed - Closed

$$egin{aligned} \lambda_m &= rac{2L}{m} & m=1,2,3,4,\dots \ f_m &= rac{v_s}{\lambda_m} &= mrac{v_s}{2L} & m=1,2,3,4,\dots \end{aligned}$$

Open - Closed

$$\lambda_m=rac{4L}{m} \quad m=1,3,5,7,\ldots \ f_m=rac{v}{\lambda_m}=mrac{v}{4L} \quad m=1,3,5,7,\ldots$$