Project Euler #87: Prime power triples

The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is 28. In fact, there are exactly four numbers below fifty that can be expressed in such a way:

$$$28 = 2^{2} + 2^{3} + 2^{4}$$$

 $$33 = 3^{2} + 2^{3} + 2^{4}$$
 $$49 = 5^{2} + 2^{3} + 2^{4}$$
 $$47 = 2^{2} + 3^{3} + 2^{4}$$

Given an integer \$N\$, Find out how many numbers *less than or equal* to \$N\$ are there that can be expressed as a sum of a prime square, prime cube and prime fourth power.

Input Format

First line contains an integer \$T\$ denoting the number of testcases.

The next \$T\$ lines contain integer \$N\$.

Constraints

\$1 \le T \le 10^{5}\$ \$1 \le N \le 10^{7}\$

Output Format

The i^{th} line containing the answer for the i^{th} testcase.

Sample Input

1 50

Sample Output

4