

3 Statistical Processing of Natural Language

Introduction

Markov Models and Hidden Markov Models

нмм **Fundamental** Questions

References

Hidden Markov Models

DMKM - Universitat Politècnica de Catalunya

Markov Models and Hidden Markov Models

HMM Fundamental Questions

References

1 Introduction

- 2 Markov Models and Hidden Markov Models
- **3** HMM Fundamental Questions
 - 1. Observation Probability
 - 2. Best State Sequence
 - 3. Parameter Estimation
- 4 References

Graphical Models

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

References

Generative models:

- Bayes rule \Rightarrow independence assumptions.
- Able to *generate* data.

Conditional models:

- No independence assumptions.
- Unable to generate data.

Most algorithms of both kinds make assumptions about the nature of the data-generating process, predefining a fixed model structure and only acquiring from data the distributional information.

Usual Statistical Models in NLP

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

References

Generative models:

- Graphical: HMM (Rabiner 1990), IOHMM (Bengio 1996). Automata-learning algorithms: No assumptions about model structure. VLMM (Rissanen 1983), Suffix Trees (Galil & Giancarlo 1988), CSSR (Shalizi & Shalizi 2004).
- Non-graphical: Stochastic Grammars (Lary & Young 1990)

Conditional models:

- Graphical: discriminative MM (Bottou 1991), MEMM (McCallum et al. 2000), CRF (Lafferty et al. 2001).
- Non-graphical: Maximum Entropy Models (Berger et al 1996).

Markov Models and Hidden Markov Models

HMM Fundamental Questions

- 1 Introduction
- 2 Markov Models and Hidden Markov Models
- 3 HMM Fundamental Questions
 - 1. Observation Probability
 - 2. Best State Sequence
 - 3. Parameter Estimation
- 4 References

(Wisible) Markov Models

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

References

 $X = (X_1, \dots, X_T)$ sequence of random variables taking values in $S = \{s_1, \ldots, s_N\}$

- Markov Properties
 - I imited Horizon: $P(X_{t+1} = s_k \mid X_1, \dots, X_t) = P(X_{t+1} = s_k \mid X_t)$
 - Time Invariant (Stationary): $P(X_{t+1} = s_k \mid X_t) = P(X_2 = s_k \mid X_1)$
- Transition matrix: $a_{ii} = P(X_{t+1} = s_i \mid X_t = s_i); \quad a_{ii} \ge 0, \ \forall i, j; \ \sum_{i=1}^{N} a_{ij} = 1, \ \forall i$
- Initial probabilities (or extra state s_0): $\pi_i = P(X_1 = s_i); \quad \sum_{i=1}^N \pi_i = 1$

\bigcirc MM Example

Markov Models and Hidden Markov Models

нмм **Fundamental** Questions

References

Sequence probability:

$$P(X_1, ..., X_T) = = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1X_2) ... P(X_T \mid X_1...X_{T-1}) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2) ... P(X_T \mid X_{T-1}) = \pi_{X_1} \prod_{t=1}^{T-1} a_{X_tX_{t+1}}$$

Hidden Markov Models (HMM)

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

References

States and Observations

■ Emission Probability:

$$b_{ik} = P(O_t = k \mid X_t = s_i)$$

- Used when underlying events probabilistically generate surface events:
 - PoS tagging (hidden states: PoS tags, observations: words)
 - ASR (hidden states: phonemes, observations: sound)
 - **...**
- Trainable with unannotated data. Expectation Maximization (EM) algorithm.
- arc-emission vs state-emission

m d**m**² Example: PoS Tagging

Introduction

Markov Models and Hidden Markov Models

нмм **Fundamental** Questions

References

Emission probabilities . the this cat kid eats runs fish fresh little big <FF> 1.0 Dt 0.6 0.4 Ν 0.6 0.1 0.3 0.7 0.3 Adi 0.3 0.3 0.4

Markov Models and Hidden Markov Models

HMM Fundamental Questions

References

1 Introduction

- 2 Markov Models and Hidden Markov Models
- 3 HMM Fundamental Questions
 - 1. Observation Probability
 - 2. Best State Sequence
 - 3. Parameter Estimation
- 4 References

HMM Fundamental Questions

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

- **1 Observation probability (decoding):** Given a model $\mu = (A, B, \pi)$, how we do efficiently compute how likely is a certain observation? That is, $P_{\mu}(O)$
- **2 Classification:** Given an observed sequence O and a model μ , how do we choose the state sequence (X_1, \ldots, X_T) that best explains the observations?
- **3** Parameter estimation: Given an observed sequence O and a space of possible models, each with different parameters (A, B, π) , how do we find the model that best explains the observed data?

Markov Models and Hidden Markov Models

HMM Fundamental Questions

1. Observation Probability

- 1 Introduction
- 2 Markov Models and Hidden Markov Models
- 3 HMM Fundamental Questions
 - 1. Observation Probability
 - 2. Best State Sequence
 - 3. Parameter Estimation
- 4 References

Question 1. Observation probability

Introduction

Markov Models and Hidden Markov Models

нмм Fundamental Questions

1. Observation Probability

References

- Let $O = (o_1, \ldots, o_T)$ observation sequence.
- For any state sequence $X = (X_1, ..., X_T)$, we have:

$$P_{\mu}(O \mid X) = \prod_{t=1}^{T} P_{\mu}(o_{t} \mid X_{t})$$

= $b_{X_{1}o_{1}} b_{X_{2}o_{2}} \dots b_{X_{T}o_{T}}$

 $P_{u}(X) = \pi_{X_1} a_{X_1} \chi_2 a_{X_2} \chi_3 \dots a_{X_{\tau-1}} \chi_{\tau}$

$$P_{\mu}(O) = \sum_{X} P_{\mu}(O, X) = \sum_{X} P_{\mu}(O \mid X) P_{\mu}(X)$$

$$= \sum_{X_{1}...X_{T}} \pi_{X_{1}} b_{X_{1}o_{1}} \prod_{t=2}^{T} a_{X_{t-1}X_{t}} b_{X_{t}o_{t}}$$

- Complexity: $\mathcal{O}(TN^T)$
- Dynammic Programming: Trellis/lattice. $\mathcal{O}(TN^2)$

Markov Models and Hidden Markov Models

нмм **Fundamental** Questions

1. Observation Probability

References

Fully connected HMM where one can move from any state to any other at each step. A node $\{s_i, t\}$ of the trellis stores information about state sequences which include $X_t = i$.

B d**m**² Forward & Backward computation

Introduction

Markov Models and Hidden Markov Models

нмм Fundamental Questions

1. Observation Probability

References

Forward procedure $\mathcal{O}(TN^2)$

We store $\alpha_i(t)$ at each trellis node $\{s_i, t\}$.

$$lpha_i(t) = P_\mu(o_1 \dots o_t, X_t = i)$$
 Probability of emmiting $o_1 \dots o_t$ and reach state s_i at time t .

- 1 Inicialization: $\alpha_i(1) = \pi_i b_{i\alpha_i}$; $\forall i = 1...N$
- 2 Induction: $\forall t : 1 \leq t < T$

$$\alpha_j(t+1) = \sum_{i=1}^N \alpha_i(t) a_{ij} b_{jo_{t+1}}; \quad \forall j = 1 \dots N$$

3 Total:
$$P_{\mu}(O) = \sum_{i=1}^{N} \alpha_i(T)$$

m dm² Forward computation

Introduction

Markov Models and Hidden Markov Models

нмм **Fundamental** Questions

1. Observation Probability

References

Closeup of the computation of forward probabilities at one node. The forward probability $\alpha_i(t+1)$ is calculated by summing the product of the probabilities on each incoming arc with the forward probability of the originating node.

B d**m**² Forward & Backward computation

Introduction

Markov Models and Hidden Markov Models

нмм Fundamental Questions

1. Observation Probability

References

Backward procedure $\mathcal{O}(TN^2)$

We store $\beta_i(t)$ at each trellis node $\{s_i, t\}$.

$$eta_i(t) = P_{\mu}(o_{t+1} \dots o_T \mid X_t = i)$$
 Probability of emmiting $o_{t+1} \dots o_T$ given we are in state s_i at time t .

- **1** Inicialization: $\beta_i(T) = 1 \quad \forall i = 1...N$
- **2** Induction: $\forall t : 1 \leq t < T$

$$eta_i(t) = \sum_{j=1}^N a_{ij} b_{jo_{t+1}} eta_j(t+1) \qquad orall i=1\dots N$$

3 Total:
$$P_{\mu}(O) = \sum_{i=1}^{N} \pi_{i} b_{io_{1}} \beta_{i}(1)$$

B d**m**² Forward & Backward computation

Introduction

Markov Models and Hidden Markov Models

нмм **Fundamental** Questions

1. Observation Probability

References

Combination

$$P_{\mu}(O, X_t = i) = P_{\mu}(o_1 \dots o_{t-1}, X_t = i, o_t \dots o_T)$$

= $\alpha_i(t)\beta_i(t)$

$$P_{\mu}(O) = \sum_{i=1}^{N} \alpha_i(t) \beta_i(t) \quad \forall t : 1 \leq t \leq T$$

Forward and Backward procedures are particular cases of this equation when t = 1 and t = Trespectively.

Markov Models and Hidden Markov Models

HMM Fundamental Questions

2. Best State Sequence

- 1 Introduction
- 2 Markov Models and Hidden Markov Models
- 3 HMM Fundamental Questions
 - 1. Observation Probability
 - 2. Best State Sequence
 - 3. Parameter Estimation
- 4 References

Question 2. Best state sequence

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions 2. Best State

Sequence References ■ Most likely path for a given observation *O*:

- Compute the best sequence with the same recursive approach than in FB: Viterbi algorithm, $\mathcal{O}(TN^2)$.
- $\psi_j(t) = last(argmax P_\mu(X_1 \dots X_{t-1}s_j, o_1 \dots o_t))$ $X_1 \dots X_{t-1}$ Last state (X_{t-1}) in highest probability sequence reaching state s_i at time t after emmitting $o_1 \dots o_t$

l d**m**² Viterbi algorithm

Introduction

Markov Models and Hidden Markov Models

нмм Fundamental Questions

2. Best State Sequence

References

1 Initialization: $\forall i = 1 \dots N$ $\delta_i(1) = \pi_i b_{i\alpha_1}$ $\psi_{i}(1) = 0$

2 Induction:
$$\forall t: 1 \leq t < T$$

$$\delta_j(t+1) = \max_{1 \leq i \leq N} \delta_i(t) a_{ij} b_{jo_{t+1}} \quad \forall j = 1 \dots N$$

$$\psi_j(t+1) = \operatorname*{argmax}_{1 \leq i \leq N} \delta_i(t) a_{ij} \quad \forall j = 1 \dots N$$

- 3 Termination: backwards path readout.
 - $\hat{X}_T = \operatorname{argmax} \delta_i(T)$ $1 \leq i \leq N$
 - $\hat{X}_t = \psi_{\hat{X}_{t+1}}(t+1)$
 - $P(\hat{X}) = \max_{1 \le i \le N} \delta_i(T)$

Markov Models and Hidden Markov Models

HMM Fundamental Questions

3. Parameter Estimation

- 1 Introduction
- 2 Markov Models and Hidden Markov Models
- 3 HMM Fundamental Questions
 - 1. Observation Probability
 - 2. Best State Sequence
 - 3. Parameter Estimation
- 4 References

Question 3. Parameter Estimation

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

3. Parameter Estimation

References

Obtain model parameters (A, B, π) for the model μ that maximizes the probability of given observation O:

$$(A,B,\pi) = \operatorname*{argmax}_{\mu} P_{\mu}(O)$$

Baum-Welch algorithm

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

3. Parameter Estimation

- Baum-Welch algorithm (aka Forward-Backward):
 - **1** Start with an initial model μ_0 (uniform, random, MLE...)
 - 2 Compute observation probability (F&B computation) using current model μ .
 - 3 Use obtained probabilities as data to reestimate the model, computing $\hat{\mu}$
 - 4 Let $\mu = \hat{\mu}$ and repeat until no significant improvement.
- Iterative hill-climbing: Local maxima.
- Particular application of Expectation Maximization (EM) algorithm.
- EM Property: $P_{\hat{\mu}}(O) \geq P_{\mu}(O)$

Definitions

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

3. Parameter Estimation

References

 $\gamma_i(t) = P_{\mu}(X_t = i \mid O) = \frac{P_{\mu}(X_t = i, O)}{P_{\mu}(O)} = \frac{\alpha_i(t)\beta_i(t)}{\sum_{k=1}^{N} \alpha_k(t)\beta_k(t)}$ Probability of being at state s:

Probability of being at state s_i at time t given observation O.

$$=\frac{\alpha_i(t)a_{ij}b_{jo_{t+1}}\beta_j(t+1)}{\sum_{k=1}^N\alpha_k(t)\beta_k(t)}$$

probability of moving from state s_i at time t to state s_j at time t+1, given observation sequence O. Note that $\gamma_i(t) = \sum_{j=1}^N \varphi_t(i,j)$

 $\sum_{t=1}^{T-1} \gamma_i(t)$ Expected number of transitions from state s_i in O.

$$\sum_{t=1}^{T-1} \varphi_t(i,j) \quad \begin{array}{ll} \text{Expected number} \\ \text{of transitions from} \\ \text{state } s_i \text{ to } s_j \text{ in } O. \end{array}$$

Arc probability

Introduction

Markov Models and Hidden Markov Models

нмм **Fundamental** Questions

3. Parameter Estimation

References

Given an observation O, the model μ Probability $\varphi_t(i,j)$ of moving from state s_i at time t to state s_i at time t+1 given observation O.

Reestimation

Iterative reestimation

$$\hat{\pi}_i = \frac{\text{Expected frequency in state } s_i \text{ at time } (t=1)}{s_i} = \gamma_i(1)$$

$$\hat{\mathbf{a}}_{ij} = \frac{\underset{\mathsf{transitions from } s_i \text{ to } s_j}{\mathsf{Expected number of}}}{\underset{\mathsf{transitions from } s_i \text{ to } s_j}{\mathsf{Expected number of}} = \frac{\sum\limits_{t=1}^{t-1} \varphi_t(i,j)}{\sum\limits_{t=1}^{t-1} \gamma_i(t)}$$

$$\hat{b}_{jk} = \frac{\underset{\text{emissions of } k \text{ from } s_j}{\text{Expected number of of visits to } s_j}}{\underset{\text{of visits to } s_j}{\text{Expected number}}} = \frac{\sum\limits_{\{t: \ 1 \leq t \leq T, \\ o_t = k\}} \gamma_t(j)}{\sum\limits_{t=1}^T \gamma_t(j)}$$

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

3. Parameter Estimation

Markov Models and Hidden Markov Models

HMM Fundamental Questions

References

1 Introduction

- 2 Markov Models and Hidden Markov Models
- 3 HMM Fundamental Questions
 - 1. Observation Probability
 - 2. Best State Sequence
 - 3. Parameter Estimation
- 4 References

References

Introduction

Markov Models and Hidden Markov Models

HMM Fundamental Questions

- C. Manning & H. Schütze, Foundations of Statistical Natural Language Processing. The MIT Press. Cambridge, MA. May 1999.
- S.L. Lauritzen, Graphical Models. Oxford University Press, 1996
- L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, Vol. 77, num. 2, pg 257-286, 1989.