Unbiased Optimal Stopping via the MUSE

Guanyang Wang (Rutgers Stats)

joint work with

Zhengqing Zhou Stanford Math/SIG

Jose Blanchet Stanford MS&E

Peter Glynn Stanford MS&E

Department Seminar University of Minnesota Department of Statistics October 7, 2021

Outline

Introduction: Dice, Option, and Optimal Stopping

Unbiased Optimal Stopping: connections with debiasing techniques

Multilevel Unbiased Stopping Estimator (MUSE)

Numerical Experiments

Informal: Choose a time to take an action, in the hopes of maximizing the utility/minimizing the cost.

Informal: Choose a time to take an action, in the hopes to maximizing the utility/minimizing the cost.

Example (Dice Game):

▶ You are playing a dice gambling game. You can roll the dice up to twice and the reward will be the last roll.

Informal: Choose a time to take an action, in the hopes to maximizing the utility/minimizing the cost.

- ➤ You are playing a dice gambling game. You can roll the dice up to twice and the reward will be the last roll.
- ▶ Question: What is the optimal strategy?

Informal: Choose a time to take an action, in the hopes to maximizing the utility/minimizing the cost.

- You are playing a dice gambling game. You can roll the dice up to twice and the reward will be the last roll.
- ▶ Question: What is the optimal strategy?
 - If the first roll ends up with 6. Then \dots

Informal: Choose a time to take an action, in the hopes to maximizing the utility/minimizing the cost.

- You are playing a dice gambling game. You can roll the dice up to twice and the reward will be the last roll.
- ▶ Question: What is the optimal strategy?
 - If the first roll ends up with 6. Then ... you want to stop.
 - If the first roll ends up with 2. Then ...

Informal: Choose a time to take an action, in the hopes to maximizing the utility/minimizing the cost.

- You are playing a dice gambling game. You can roll the dice up to twice and the reward will be the last roll.
- ▶ Question: What is the optimal strategy?
 - If the first roll ends up with 6. Then ... you want to stop.
 - If the first roll ends up with 2. Then ... you want to continue.

Informal: Choose a time to take an action, in the hopes to maximizing the utility/minimizing the cost.

- You are playing a dice gambling game. You can roll the dice up to twice and the reward will be the last roll.
- ▶ Question: What is the optimal strategy?
 - If the first roll ends up with 6. Then ... you want to stop.
 - If the first roll ends up with 2. Then ... you want to continue.
- Quick calculation:
 - Expectation of tossing a dice once equals $\sum_{k=1}^{6} k/6 = 3.5$
 - The optimal stopping rule will be: stop when you get 4,5,6, continue when you get 1,2,3.
 - The expected utility of the optimal strategy is $U_2 = 4.25$.

Informal: Choose a time to take an action, in the hopes to maximizing the utility/minimizing the cost.

- ▶ You are playing a dice gambling game. You can roll the dice up to twice and the reward will be the last roll.
- ▶ Question: What is the optimal strategy?
 - If the first roll ends up with 6. Then ... you want to stop.
 - If the first roll ends up with 2. Then ... you want to continue.
- Quick calculation:
 - Expectation of tossing a dice once equals $\sum_{k=1}^{6} k/6 = 3.5$
 - The optimal stopping rule will be: stop when you get 4,5,6, continue when you get 1,2,3.
 - The expected utility of the optimal strategy is $U_2 = 4.25$.
- Follow up question: What if you can roll T times?
 - Dynamic programming solution: $U_T = \mathbb{E}[\max\{X_1, U_{T-1}\}].$

Example (American put option):

- Suppose there is a stock which price X_t follows a Geometric Brownion motion, i.e., $\mathrm{d}X_t = \mu X_t \, \mathrm{d}t + \sigma X_t \, \mathrm{d}W_t, t \in [0,T].$
- ▶ Buying a put option at strike price K means you earn money when the stock price is lower than K. The utility function is $f(x) := \max\{K x, 0\}$

Example (American put option): Suppose there is a stock which price X_t follows a Geometric Brownion motion, i.e., $\mathrm{d}X_t = \mu X_t \, \mathrm{d}t + \sigma X_t \, \mathrm{d}W_t, t \in [0,T]$. Buying a put option at strike price K means you earn money when the stock price is lower than K. The

► American option allows 'early

exercise'.

utility function is $f(x) := \max\{K - x, 0\}$

Example (American put option): Suppose there is a stock which price X_t follows a Geometric Brownion motion, i.e.,

 $\mathrm{d}X_t = \mu X_t\,\mathrm{d}t + \sigma X_t\,\mathrm{d}W_t, t \in [0,T].$ Buying a put option at strike price K means you earn money when the stock price is lower than K. The utility function is $f(x) := \max\{K-x,0\}.$

- American option allows 'early exercise'.
- The expected utility is: $U_T = \sup_{\tau} \mathbb{E}[f(X_{\tau})].$
- Can still be solved using the dynamic programming idea numerically.

Finite-horizon optimal stopping problem

Given an underlying process $(X_1,\cdots,X_T)\sim\pi$ and a reward function f. We are interested in computing the expected utility of the optimal strategy:

$$U_T := \sup_{\tau \in \mathcal{T}_T} \mathbb{E}\left[f\left(X_{\tau}\right)\right],\tag{1}$$

where \mathcal{T}_T is the set of all stopping times taking values in $\{1,2,\cdots,T\}$. A stopping time is a random variable τ with $\{\tau \leq k\} \in \sigma(X_1,\cdots,X_k)$ for every k.

Finite-horizon optimal stopping problem

Given an underlying process $(X_1,\cdots,X_T)\sim\pi$ and a reward function f. We are interested in computing the expected utility of the optimal strategy:

$$U_{T} := \sup_{\tau \in \mathcal{T}_{T}} \mathbb{E}\left[f\left(X_{\tau}\right)\right],\tag{2}$$

where \mathcal{T}_T is the set of all stopping times taking values in $\{1,2,\cdots,T\}$. A stopping time is a random variable τ with $\{\tau \leq k\} \in \sigma(X_1,\cdots,X_k)$ for every k.

- lacktriangle Each $X_i \in \mathbb{R}^d$ is assumed to be a multivariate random variable.
- ▶ The utility function can be generalized to f(x,t) such as $e^{-\gamma t}x$ to include penalties on late decisions.
- Can be viewed as a special bandit problem.
- ightharpoonup We are interested in estimating U_T , assuming we can simulate the underlying process.

Outline

Introduction: Dice, Option, and Optimal Stopping

Unbiased Optimal Stopping: connections with debiasing techniques

Multilevel Unbiased Stopping Estimator (MUSE)

Numerical Experiments

Solving the optimal stopping problem

Definition (One more notation)

▶ $U_{T-k}(x_1, \dots, x_k)$: The utility if one starts the (T-k)-stage optimal stopping problem after observing the first k outcomes.

Then the dynamical programming can be written as:

$$\begin{cases} U_1 = \mathbb{E}\left[f\left(X_T\right) \mid \{x_i\}_{i=1}^{T-1}\right], \\ U_{T-k} = \mathbb{E}\left[\max\left\{f(X_{k+1}), U_{T-(k+1)}\right\} \mid \{x_i\}_{i=1}^k\right], \quad k = 0, \dots, T-1. \end{cases}$$

Solving the optimal stopping problem

Definition (One more notation: conditional utility)

▶ $U_{T-k}(x_1, \dots, x_k)$: The utility if one starts the (T-k)-stage optimal stopping problem after observing the first k outcomes.

Then the dynamical programming can be written as:

$$\begin{cases} U_{1}(x_{1}, \cdots, x_{T-1}) = \mathbb{E}\left[f\left(X_{T}\right) \mid \left\{x_{i}\right\}_{i=1}^{T-1}\right], \\ U_{T-k}(x_{1}, \cdots, x_{k}) = \mathbb{E}\left[\max\left\{f(X_{k+1}), U_{T-(k+1)}\right\} \mid \left\{x_{i}\right\}_{i=1}^{k}\right], \quad k \leq T-1. \end{cases}$$

Main idea: Solve U_1, U_2, \cdots in a backward recursively way, and finally solve U_T .

Consider the two stage optimal stopping problem:

$$U_2 = \mathbb{E}[\max\{U_1(X_1), f(X_1)\}] = \int \max\{U_1(x_1), f(x_1)\}\pi_1(dx_1).$$

The plug-in estimator works as follows:

Consider the two stage optimal stopping problem:

$$U_2 = \mathbb{E}[\max\{U_1(X_1), f(X_1)\}] = \int \max\{U_1(x_1), f(x_1)\}\pi_1(dx_1).$$

The plug-in estimator works as follows:

- ▶ Simulate $x_1 \sim \pi_1$.
- ▶ Estimate $U_1(x_1)$ by an unbiased estimator $\hat{U}_1(x_1)$.
- Estimate U_2 by $\hat{U}_2 := \max\{\hat{U}_1(x_1), f(x_1)\}.$

Consider the two stage optimal stopping problem:

$$U_2 = \mathbb{E}[\max\{U_1(X_1), f(X_1)\}] = \int \max\{U_1(x_1), f(x_1)\}\pi_1(dx_1).$$

The plug-in estimator works as follows:

- ▶ Simulate $x_1 \sim \pi_1$.
- ▶ Estimate $U_1(x_1)$ by an unbiased estimator $\hat{U}_1(x_1)$.
- ▶ Estimate U_2 by $\max\{\hat{U}_1(x_1), f(x_1)\}.$

However... this estimator has systematic bias

Consider the two stage optimal stopping problem:

$$U_2 = \mathbb{E}[\max\{U_1(X_1), f(X_1)\}] = \int \max\{U_1(x_1), f(x_1)\}\pi_1(dx_1).$$

The plug-in estimator works as follows:

- ▶ Simulate $x_1 \sim \pi_1$.
- ▶ Estimate $U_1(x_1)$ by an unbiased estimator $\hat{U}_1(x_1, x_2)$.
- ▶ Estimate U_2 by $\hat{U}_2 := \max\{\hat{U}_1(x_1), f(x_1)\}.$

However... this estimator has systematic bias We can calculate:

$$\mathbb{E}[\hat{U}_2] = \int \int \max\{\hat{U}_1(x_1, x_2), f(x_1)\} \pi_1(dx_1) \pi(dx_2 | x_1)$$

$$\geq \int \pi_1(dx_1) \max\{\mathbb{E}_{x_2 | x_1}[\hat{U}_1], f(x_1)\} = \mathbb{E}[\max\{U_1(X_1), f(X_1)\}] = U_2.$$

Bias analysis, and debiasing techniques

- Essentially, the bias comes from the following fact: If X is unbiased for μ , then g(X) is biased for $g(\mu)$ in general.
- Examples include:
 - $-g(x)=x^2$, then $\mathbb{E}[X^2]\geq (\mathbb{E}[X])^2$,
 - $g(x) = \max\{x, c\},\$
 - -g(x) convex/concave.
- ▶ Why we need unbiasedness?

Bias analysis, and debiasing techniques

- Essentially, the bias comes from the following fact: If X is unbiased for μ , then g(X) is biased for $g(\mu)$ in general.
- Examples include:
 - $-g(x)=x^2$, then $\mathbb{E}[X^2]\geq (\mathbb{E}[X])^2$,
 - $g(x) = \max\{x, c\},\$
 - -g(x) convex/concave.
- ► Why we need unbiasedness?
 - Easily implemented on parallel processors!
 - Uncertainty quantification.

Why unbiasedness?

Unbiased estimators

Why unbiasedness?

Unbiased estimators

Bias = 0, Variance = 1

Biased estimators

Short history of debiasing techniques

- ► (Applied probability) Generating new coins from old:
 - von Neumann gave an algorithm for generating fair coins from biased coins in 1951.
 - The general 'Bernoulli factory' problem is mathematically solved by Keane and O'Brien [10] in 1994.
 - Recent works connect 'Bernoulli factory' with MCMC. [11].

Short history of debiasing techniques

- (Applied probability) Generating new coins from old:
 - von Neumann gave an algorithm for generating fair coins from biased coins in 1951.
 - The general 'Bernoulli factory' problem is mathematically solved by Keane and O'Brien [10] in 1994.
 - Recent works connect 'Bernoulli factory' with MCMC. [11].
- ► (Stats) The unbiased MCMC by Jacob, O'Leary, and Atchadé [8].
 - Remove the bias in MCMC estimators. Applications include Bayesian inference, convergence diagnosis [3], asymptotic variance estimation.

Short history of debiasing techniques

- ► (Applied probability) Generating new coins from old:
 - von Neumann gave an algorithm for generating fair coins from biased coins in 1951.
 - The general 'Bernoulli factory' problem is mathematically solved by Keane and O'Brien [10] in 1994.
 - Recent works connect 'Bernoulli factory' with MCMC. [11].
- ► (Stats) The unbiased MCMC by Jacob, O'Leary, and Atchadé [8].
 - Remove the bias in MCMC estimators. Applications include Bayesian inference, convergence diagnosis [3], asymptotic variance estimation.
- (Operation research) The Randomized Multilevel Monte Carlo (MLMC) framework proposed by Glynn, Rhee, Blanchet et al.
 - The MLMC framework is developed by Heinrich and Giles [7, 5, 6] for SDE related problems.
 - Remove the bias in estimating $g(\mu)$ where μ is an expectation.
 - $\,-\,$ Applications include gradient estimation, robust optimization, PDEs.

The main idea: telescoping sum expression

- ► Target: Unbiased estimators of $g(\mu) = g(\mathbb{E}_{\pi}(X))$ given a simulator of $X_1, X_2, \dots \sim \pi$.
- ▶ Idea: Write the expectation as telescoping sums. Let k_n be a sequence going to infinity with $n \to \infty$.

The main idea: telescoping sum expression

- ► Target: Unbiased estimators of $g(\mu) = g(\mathbb{E}_{\pi}(X))$ given a simulator of $X_1, X_2, \dots \sim \pi$.
- ▶ Idea: Write the expectation as telescoping sums. Let k_n be a sequence going to infinity with $n \to \infty$.

$$\begin{split} g(\mu) &= \lim_{n \to \infty} \mathbb{E}\left[g\left(\frac{S_{k_n}}{k_n}\right)\right] & \text{(by LLN)} \\ &= \sum_{n=1}^{\infty} \mathbb{E}\left[g\left(\frac{S_{k_n}}{k_n}\right) - g\left(\frac{S_{k_{n-1}}}{k_{n-1}}\right)\right] & (S_0/0 := 0) \\ &= \sum_{n=1}^{\infty} \mathbb{E}\left[\Delta_n\right] & (\Delta_n := g\left(\frac{S_{k_n}}{k_n}\right) - g\left(\frac{S_{k_{n-1}}}{k_{n-1}}\right)) \end{split}$$

The main idea: telescoping sum expression

Now we have $g(\mu)=\sum_{n=1}^{\infty}\mathbb{E}[\Delta_n]$. The unbiased MLMC algorithm samples N with $\mathbb{P}(N=n)=p_n$, and samples i.i.d. random variables $X_1,...,X_{k_N}$. The 'final' estimator is:

$$\widehat{g(\mu)} := \frac{\Delta_N}{p_N}.$$

The MLMC estimator: Δ_N/p_N

Now we have $g(\mu) = \mathbb{E}[\sum_{n=1}^{\infty} \Delta_n]$. The unbiased MLMC algorithm samples N with $\mathbb{P}(N=n) = p_n$, and samples i.i.d. random variables $X_1,...,X_{k_N}$. The 'final' estimator is:

$$\widehat{g(\mu)} := \frac{\Delta_N}{p_N}.$$

Quick validity proof:

$$\begin{split} \mathbb{E}[\Delta_N/p_N] &= \mathbb{E}[\mathbb{E}[\Delta_N/p_N \mid N]] \quad \text{(law of iterated expectation)} \\ &= \sum_{n=1}^\infty \frac{\mathbb{E}[\Delta_n]}{p_n} \cdot p_n = \sum_{n=1}^\infty \mathbb{E}[\Delta_n] = g(\mu). \end{split}$$

The MLMC estimator: Δ_N/p_N

▶ There are still technical details such as the variance of the estimator, the computational cost that need to be addressed. The final estimator by Blanchet and Glynn [4] uses: $k_n=2^n, N \sim \text{Geo}(p)$, and

$$\Delta_n := g(S_{2^n}/2^n) - \frac{g(S_{2^n}^{\mathsf{L}}/2^{n-1}) + g(S_{2^n}^{\mathsf{U}}/2^{n-1})}{2}$$

where $S_{2^n}^{\mathsf{E}}, S_{2^n}^{\mathsf{O}}$ sums up the even and odd terms in X_1, \dots, X_{2^n} respectively.

The MLMC estimator: Δ_N/p_N

There are still technical details such as the variance of the estimator, the computational cost that need to be addressed. The final estimator by Blanchet and Glynn [4] uses: $k_n=2^n, N \sim \text{Geo}(p)$, and

$$\Delta_n := g(S_{2^n}/2^n) - \frac{g(S_{2^n}^{\mathsf{E}}/2^{n-1}) + g(S_{2^n}^{\mathsf{O}}/2^{n-1})}{2}$$

where $S_{2^n}^{\mathsf{E}}, S_{2^n}^{\mathsf{O}}$ sums up the even and odd terms in X_1, \cdots, X_{2^n} respectively.

- Intuition behind this construction: Cancel out both the constant and linear terms when doing Taylor expansion around $\mu = \mathbb{E}[X]$.
- The resulting estimator is unbiased, has finite variance and finite computational complexity when certain technical assumptions are satisfied.

Outline

Introduction: Dice, Option, and Optimal Stopping

Unbiased Optimal Stopping: connections with debiasing techniques

Multilevel Unbiased Stopping Estimator (MUSE)

Numerical Experiments

Go back to optimal stopping

However, the unbiased MLMC framework cannot be directly applied even for the two-stage optimal stopping problem. Since

- ightharpoonup All the previous results require g to be continuously differentiable.
- ► The two-stage problem is a 'nested Monte Carlo' problem, i.e.,

$$U_2 = \mathbb{E}_{x_1 \sim \pi_1} [g_{x_1} (\mathbb{E}_{x_2 \sim \pi(\cdot | x_1)} [U_1(x_1)])]$$

where $g_{x_1}(s) = \max\{f(x_1), s\}$ with x_1 fixed.

► The general multi-stage problem is more complicated, which requires a backward recursion.

Our contribution

- We construct an unbiased estimator MUSE (multilevel unbiased stopping estimator) for the utility U_T of the multi-stage optimal stopping problem.
- We relax the technical assumptions in the MLMC framework, and show MUSE has both finite variance and finite computational complexity.
- ▶ The computational cost to achieve ε -accuracy is $O(1/\varepsilon^2)$, which matches the optimal rate from the Central Limit Theorem (CLT).
- As by-products, we construct CLT and bootstrap-based confidence intervals for U_T . We also design an algorithm for finding the optimal stopping time.
- We test the behavior of MUSE on option pricing problems.

The two-stage MUSE

Algorithm 1 Two-stage MUSE

- 1: **Input:** A simulator S of the two-stage process (X_1, X_2) , parameter $r \in (1/2, 1)$.
- 2: **Output:** An unbiased estimator of U_2 .
- 3: **Step 1**. Sample $N \sim \text{Geo}(r)$.
- 4: **Step 2**. Sample $X_1(1)$, and $X_2(1), \dots X_2(2^N)$ given $X_1(1)$.
- 5: Step 3. Calculate $S_{2^N}=f(X_2(1))+\cdots f(X_2(2^N))$, and $S_{2^N}^{\sf E},S_{2^N}^{\sf O}$ respectively.
- 6: Step 4. Calculate

$$\begin{split} \Delta_{N} = & \max \left\{ f\left(X_{1}(1)\right), \frac{S_{2^{N}}}{2^{N}} \right\} \\ & - \frac{1}{2} \left[\max \left\{ f\left(X_{1}(1)\right), \frac{S_{2^{N-1}}^{\mathsf{O}}}{2^{N-1}} \right\} + \max \left\{ f\left(X_{1}(1)\right), \frac{S_{2^{N-1}}^{\mathsf{E}}}{2^{N-1}} \right\} \right]. \end{split}$$

7: Step 5. Return: $Y := \Delta_N/p_r(N)$.

The two-stage MUSE, theoretical guarantees

Theorem (Theoretical properties of the two-stage MUSE)

Consider a two-stage process (X_1,X_2) . Suppose $\mathbb{E}[\|X_i\|^{2+\delta}]<\infty$ for i=1,2 and $\delta>0$. Suppose f is at most linear growth, i.e., $|f(x)|\leq L\,(1+\|x\|)$ for some L>0. Moreover,

$$\mathbb{P}\left(\left|\mathbb{E}[f(X_2) \mid X_1] - f(X_1)\right| \le \varepsilon\right) < C\varepsilon \tag{3}$$

for all $\varepsilon > 0$. Let $r = 1 - 2^{-\frac{2+9\delta/(80+40\delta)}{2+\delta/10}} \in (1/2,1)$ in Algorithm 1. Then, the resulting estimator Y in Algorithm 1 has the following properties:

- (1) $\mathbb{E}[Y] = U_2$.
- (2) The expected computational complexity of Y is finite.
- (3) $\mathbb{E}\left[|Y|^{2+\frac{\delta}{10}}\right] \leq \widetilde{C} \cdot L^{2+\delta}\left[1+\mathbb{E}\left[\|X_2\|^{2+\delta}\right]\right]$, where \widetilde{C} is a constant independent of (X_1,X_2) .

Going to the general case

- ▶ The last property guarantees Y has $(2+\frac{\delta}{10})$ -th moment, provided that the original random variables has $(2+\delta)$ -th moment. This is stronger than Y has finite variance.
- ► Moreover, this property is crucial for algorithm design for the general optimal stopping problem.

Going to the general case

- ▶ The last property guarantees Y has $(2+\frac{\delta}{10})$ -th moment, provided that the original random variables has $(2+\delta)$ -th moment. This is stronger than Y has finite variance.
- Moreover, this property is crucial for algorithm design for the general optimal stopping problem.
- ▶ When designing the general MUSE, we will use Algorithm 1 recursively. In the end, the estimator will have $(2+\delta/10^{T-1})$ -th moment.
- Main idea: construct unbiased estimators for U_1,U_2,\cdots until U_T . The problem for U_1 is straightforward, for U_2 it is solved by Algorithm 1. For U_3 we need to call Algorithm 1 for 2^N times and then construct the unbiased estimator by the MLMC approach ...

The Multi-stage MUSE

Algorithm 2 Multi-stage MUSE

- 1: Input: Time index k. Trajectory history $H=\{x_1,\cdots,x_k\}$ or \varnothing . A simulator $\mathcal S$, parameters $r_{k+1},\cdots,r_{T-1}\in(1/2,1)$.
- 2: **Output:** An unbiased estimator of $U_{T-k}(H)$.
- 3: **if** k = T 1 **then**
- 4: Sample one x_T . Return: $Y := f(x_T)$.
- 5: **else**
- 6: Sample x_{k+1} , add x_{k+1} to H. Sample $N_{k+1} \sim \text{Geo}(r_{k+1})$.
- 7: Call Algorithm 2 for $2^{N_{k+1}}$ times with $(k+1;H;\mathcal{S};r_{k+2}\cdots,r_{T-1})$, label the outputs by $Y_{k+1}(1),\cdots,Y_{k+1}(2^{N_{k+1}})$.
- 8: Calculate $S_{2^{N_{k+1}}}, S_{2^{N_{k+1}}}^{\mathsf{E}}, S_{2^{N_{k+1}}}^{\mathsf{O}}$ respectively.
- 9: Calculate $\Delta_{N_{k+1}}$.
- 10: **Return**: $Y := \Delta_{N_{k+1}}/p_{r_{k+1}}(N_{k+1})$.
- 11: end if

The multi-stage MUSE, theoretical guarantees

Theorem (Theoretical properties of the MUSE, informal)

With the same assumption as above, consider the input

$$(0;\varnothing;\mathcal{S},r_1,\cdots,r_{T-1})$$

in Algorithm 2 for $1 \le i \le T-1$. Then, the resulting estimator Y in Algorithm 2 has the following properties:

- (1) $\mathbb{E}[Y] = U_T$.
- (2) The expected computational complexity is finite.
- (3) $Var(Y) < \infty$.

Outline

Introduction: Dice, Option, and Optimal Stopping

Unbiased Optimal Stopping: connections with debiasing techniques

Multilevel Unbiased Stopping Estimator (MUSE)

Numerical Experiments

Optimal Stopping of Independent Random Variables

▶ Consider the case where X_i are i.i.d. $\mathcal{N}(0,1)$ random variables with reward f(x) = x. The utility can be solved numerically. With each fixed time horizon $T \in \{2, \cdots, 7\}$, three estimators – MUSE and two vanilla Monte Carlo estimators MC1 and MC2 are implemented.

Figure: Left: Comparison between the errors of the MUSE (blue), MC1(red), and MC2(green) for estimating the utility for *i.i.d.* standard Gaussian random variables. Blue error bars stands for the 95% confidence intervals of the MUSE. Black dotted line stands for the ground truth Numeri(errorperio)en Right: The traceplot of the running averages of the MUSE with different horizons. Black dotted line stands for the ground truth.

Pricing the Bermudan options with high-dimensional inputs on a computer cluster

- ▶ The underlying process is a $X(t) := (X^{(1)}(t), \cdots, X^{(d)}(t))$ is a d-dimensional geometric Brownian motion with drift $r \delta$ and volatility σ .
- ▶ Utility: $f(t, X_t) = e^{-rt} \max\{0, K \sum_{i=1}^d X_t^{(i)}/d\}$ at each t, where K is the strike price and e^{-r} is often referred to as the discounting factor.
- ▶ Bermudan option is only exercisable in a discrete set of times, which transforms the pricing problem to solving the optimal stopping problem: $U_T := \sup_{\tau \in \{T_1, \cdots T_k\}} \mathbb{E}\left[f\left(\tau, X_{\tau}\right)\right]$, where $0 \leq T_1 \leq \cdots \leq T_k \leq T$ are all the exercisable dates.
- Existing experiments on Bermudan options often assumes $d \le 20$, though it can be as large as 5000 in practice [1].

Pricing the Bermudan options

- In our experiment we adopt the standard parameters where T=3 (years), $\sigma=0.2, r=0.05, \delta=0, K=X_0^{(i)}=100$ for every i.
- We first benchmark our result with existing results when d=5, next we present our results for $d\in\{10,20,100,1000\}$. For each d, we use 10^7 MUSEs generated by a 500-core CPU-based computer cluster, where the parameters r_i are set to be 0.6 for each stage. The results when d=5 is presented in Table 1, the MUSE matches the results from other methods while preserving unbiasedness and having a relatively small standard error.

Method	LSM	SGM direct	SGM LB	BKS	MUSE
	(s.e.)	(s.e.)	(s.e.)	(95% CI)	(s.e.)
d=5	2.163(0.001)	2.141(0.008)	2.134(0.012)	[2.154, 2.164]	2.161(0.004)

Table: Comparison between different methods when d=5. SGM and BKS stands for results reported by [9] and [2] respectively. LSM stands for Longstaff–Schwartz method, reported by [9].

Pricing the Bermudan options

The table below records the estimates and the standard errors of the MUSE when d is increasing. The plot shows the histogram of the computing time among 500 processors when d=100.

d	MUSE	Average Time (s)	
	(s.e.)	per processor	
5	2.161	15.922	
'	(0.004)		
10	0.985	14.787	
10	(0.002)		
20	0.355	16.004	
	(0.001)	10.004	
100	0.0043	18.271	
100	$(<10^{-4})$	10.271	
1000	0(0)	32.191	

Pricing the Bermudan options

d	MUSE	Average Time (s)	
u	(s.e.)	per processor	
5	2.161	15.922	
9	(0.004)		
10	0.985	14.787	
10	(0.002)		
20	0.355	16.004	
20	(0.001)		
100	0.0043	18.271	
100	$(<10^{-4})$		
1000	0(0)	32.191	

- Comparing with other competitors, MUSE is the only unbiased estimator.
- ▶ The MUSE scales well with the dimensionality d. \bigcirc

► The average computing cost is OK, but variance can be high.

 \blacktriangleright It does not scale well with the number of horizon T.

Thanks!

► Check out the paper on arxiv https://arxiv.org/abs/2106.02263 "Unbiased Optimal Stopping via the MUSE"

References I

Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Timo Welti.

Solving high-dimensional optimal stopping problems using deep learning. arXiv preprint arXiv:1908.01602, 2019.

Christian Bender, Anastasia Kolodko, and John Schoenmakers.

Policy iteration for American options: Overview.

Monte Carlo Methods and Applications, 2006.

Niloy Biswas, Pierre E Jacob, and Paul Vanetti.

Estimating convergence of markov chains with I-lag couplings.

Advances in neural information processing systems, 32, 2019.

Jose H. Blanchet and Peter W. Glynn.

Unbiased Monte Carlo for optimization and functions of expectations via multi-level randomization.

2015 Winter Simulation Conference (WSC), pages 3656–3667, 2015.

Michael B Giles.

Multilevel Monte Carlo path simulation.

Operations Research, 56(3):607-617, 2008.

Michael B Giles.

Multilevel Monte Carlo methods.

Acta Numer., 24:259-328, 2015

Stefan Heinrich.

Multilevel Monte Carlo methods.

In International Conference on Large-Scale Scientific Computing, pages 58-67. Springer, 2001.

References II

Pierre E Jacob, John O'Leary, and Yves F Atchadé.

Unbiased Markov chain Monte Carlo methods with couplings.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(3):543–600, 2020.

Shashi Jain and Cornelis W Oosterlee.

Pricing high-dimensional Bermudan options using the stochastic grid method. International Journal of Computer Mathematics, 89(9):1186–1211, 2012.

MS Keane and George L O'Brien.

A Bernoulli factory.

ACM Transactions on Modeling and Computer Simulation (TOMACS), 4(2):213-219, 1994.

Dootika Vats, Flávio Gonçalves, Krzysztof Łatuszyński, and Gareth O Roberts.

Efficient bernoulli factory mcmc for intractable posteriors.

arXiv preprint arXiv:2004.07471, 2020.