$10_{72} \ (K10a_4)$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle u^{37} - 2u^{36} + \dots + 2b + 1, -u^{12} + 5u^{10} + 2u^9 - 9u^8 - 8u^7 + 4u^6 + 10u^5 + 6u^4 - 2u^3 - 5u^2 + a - 2u - 1, u^{38} - 3u^{37} + \dots + 2u - 1 \rangle$$

$$I_2^u = \langle b^2 - b + 1, a + 1, u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{37} - 2u^{36} + \dots + 2b + 1, -u^{12} + 5u^{10} + \dots + a - 1, u^{38} - 3u^{37} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} - 5u^{10} - 2u^{9} + 9u^{8} + 8u^{7} - 4u^{6} - 10u^{5} - 6u^{4} + 2u^{3} + 5u^{2} + 2u + 1 \\ -\frac{1}{2}u^{37} + u^{36} + \dots + \frac{5}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{37} + u^{36} + \dots + \frac{5}{2}u + \frac{1}{3} \\ \frac{5}{2}u^{37} - 4u^{36} + \dots - \frac{5}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u^{37} - 3u^{36} + \dots + 10u^{2} + 2 \\ \frac{5}{2}u^{37} - 4u^{36} + \dots - \frac{5}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3u^{37} + 5u^{36} + \dots + 5u - 2 \\ \frac{3}{2}u^{37} - 2u^{36} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

 $\begin{array}{l} -2u^{37} - u^{36} + 35u^{35} + 21u^{34} - 270u^{33} - 205u^{32} + 1194u^{31} + 1182u^{30} - 3222u^{29} - 4364u^{28} + \\ 4873u^{27} + 10507u^{26} - 1460u^{25} - 15693u^{24} - 9964u^{23} + 11016u^{22} + 21182u^{21} + 5747u^{20} - \\ 16959u^{19} - 19349u^{18} - 2018u^{17} + 13493u^{16} + 13726u^{15} + 2674u^{14} - 6790u^{13} - 7586u^{12} - \\ 3020u^{11} + 1300u^{10} + 2786u^9 + 1852u^8 + 442u^7 - 314u^6 - 448u^5 - 263u^4 - 91u^3 - 25u^2 + 4u - 5 \end{array}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{38} + 2u^{37} + \dots + 5u + 1$
c_2, c_3, c_6	$u^{38} - 3u^{37} + \dots + 2u - 1$
c_4, c_9	$u^{38} - u^{37} + \dots - 4u - 4$
<i>C</i> ₅	$u^{38} + 15u^{37} + \dots + 72u + 16$
c ₇	$u^{38} - 2u^{37} + \dots - 37u + 17$
c_{10}	$u^{38} + 18u^{37} + \dots - 5u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{38} + 18y^{37} + \dots - 5y + 1$
c_2, c_3, c_6	$y^{38} - 33y^{37} + \dots - 8y + 1$
c_4, c_9	$y^{38} - 15y^{37} + \dots - 72y + 16$
<i>C</i> ₅	$y^{38} + 13y^{37} + \dots - 2848y + 256$
	$y^{38} - 6y^{37} + \dots - 6333y + 289$
c_{10}	$y^{38} + 6y^{37} + \dots - 61y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.000620 + 0.466336I		
a = 0.694761 - 0.337574I	-2.40471 - 3.95746I	-10.27520 + 4.57056I
b = -0.527298 + 1.065360I		
u = -1.000620 - 0.466336I		
a = 0.694761 + 0.337574I	-2.40471 + 3.95746I	-10.27520 - 4.57056I
b = -0.527298 - 1.065360I		
u = -1.062270 + 0.332916I		
a = 1.252160 - 0.030949I	-0.568983 + 0.479860I	-6.06539 + 0.48126I
b = -0.570085 - 0.447308I		
u = -1.062270 - 0.332916I		
a = 1.252160 + 0.030949I	-0.568983 - 0.479860I	-6.06539 - 0.48126I
b = -0.570085 + 0.447308I		
u = -0.719303 + 0.499357I		
a = 1.44677 - 0.15075I	-3.54227 + 2.75914I	-13.19764 - 4.35912I
b = -0.362704 - 1.048010I		
u = -0.719303 - 0.499357I		
a = 1.44677 + 0.15075I	-3.54227 - 2.75914I	-13.19764 + 4.35912I
b = -0.362704 + 1.048010I		
u = -0.214521 + 0.842165I		
a = 2.14112 + 0.49356I	0.00579 + 8.62980I	-6.60829 - 7.80256I
b = -0.573770 - 1.100590I		
u = -0.214521 - 0.842165I		
a = 2.14112 - 0.49356I	0.00579 - 8.62980I	-6.60829 + 7.80256I
b = -0.573770 + 1.100590I		
u = -0.174468 + 0.788088I		
a = 1.39685 - 0.95450I	2.09675 + 3.65224I	-3.04639 - 3.74887I
b = -0.731729 + 0.388434I		
u = -0.174468 - 0.788088I		
a = 1.39685 + 0.95450I	2.09675 - 3.65224I	-3.04639 + 3.74887I
b = -0.731729 - 0.388434I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.317784 + 0.691757I		
a = 0.058360 - 0.565761I	-2.35641 + 1.43399I	-10.35352 - 2.88902I
b = -0.214760 + 1.058960I		
u = -0.317784 - 0.691757I		
a = 0.058360 + 0.565761I	-2.35641 - 1.43399I	-10.35352 + 2.88902I
b = -0.214760 - 1.058960I		
u = 1.251800 + 0.201783I		
a = -0.999363 - 0.281232I	-2.15443 + 0.39089I	-9.84825 + 1.14697I
b = 0.652278 + 0.954226I		
u = 1.251800 - 0.201783I		
a = -0.999363 + 0.281232I	-2.15443 - 0.39089I	-9.84825 - 1.14697I
b = 0.652278 - 0.954226I		
u = -1.260340 + 0.253559I		
a = -0.003037 + 0.946509I	-1.02515 + 1.90334I	-5.81979 - 1.07076I
b = 0.662945 - 0.361405I		
u = -1.260340 - 0.253559I		
a = -0.003037 - 0.946509I	-1.02515 - 1.90334I	-5.81979 + 1.07076I
b = 0.662945 + 0.361405I		
u = 1.284790 + 0.261207I		
a = -1.278000 + 0.104536I	-1.23963 - 4.86305I	-7.46881 + 6.13263I
b = 0.731652 - 0.644131I		
u = 1.284790 - 0.261207I		
a = -1.278000 - 0.104536I	-1.23963 + 4.86305I	-7.46881 - 6.13263I
b = 0.731652 + 0.644131I		
u = -0.016707 + 0.678781I		
a = -1.38023 - 1.35662I	2.80379 + 1.46931I	-1.12935 - 3.08473I
b = 0.666801 + 0.530991I		
u = -0.016707 - 0.678781I		
a = -1.38023 + 1.35662I	2.80379 - 1.46931I	-1.12935 + 3.08473I
b = 0.666801 - 0.530991I		
•	· · · · · · · · · · · · · · · · · · ·	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.315510 + 0.121395I		
a = 0.61655 - 1.44009I	-4.89567 - 0.49664I	-12.27278 + 1.11503I
b = 0.291142 - 1.061280I		
u = -1.315510 - 0.121395I		
a = 0.61655 + 1.44009I	-4.89567 + 0.49664I	-12.27278 - 1.11503I
b = 0.291142 + 1.061280I		
u = -1.329280 + 0.259672I		
a = -1.99856 + 1.39234I	-3.13917 + 6.61979I	-9.45062 - 5.39938I
b = 0.547737 + 1.093970I		
u = -1.329280 - 0.259672I		
a = -1.99856 - 1.39234I	-3.13917 - 6.61979I	-9.45062 + 5.39938I
b = 0.547737 - 1.093970I		
u = 0.091958 + 0.636482I		
a = -2.64958 + 0.37806I	1.34864 - 3.34557I	-3.46602 + 2.94107I
b = 0.571517 - 1.023410I		
u = 0.091958 - 0.636482I		
a = -2.64958 - 0.37806I	1.34864 + 3.34557I	-3.46602 - 2.94107I
b = 0.571517 + 1.023410I		
u = 1.372870 + 0.330158I		
a = 0.451776 + 0.876637I	-2.79986 - 7.69321I	0
b = -0.811572 - 0.358412I		
u = 1.372870 - 0.330158I		
a = 0.451776 - 0.876637I	-2.79986 + 7.69321I	0
b = -0.811572 + 0.358412I		
u = -0.582954		
a = 0.891810	-0.970134	-9.92360
b = -0.340706		
u = 1.42045		
a = 0.242047	-7.33419	-11.4900
b = -0.758415		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.40646 + 0.27352I		
a = -0.517124 - 0.625628I	-7.80695 - 4.93169I	0
b = -0.183991 - 1.166970I		
u = 1.40646 - 0.27352I		
a = -0.517124 + 0.625628I	-7.80695 + 4.93169I	0
b = -0.183991 + 1.166970I		
u = 1.39814 + 0.35135I		
a = 1.96262 + 0.82883I	-5.10692 - 12.92960I	0
b = -0.591496 + 1.133850I		
u = 1.39814 - 0.35135I		
a = 1.96262 - 0.82883I	-5.10692 + 12.92960I	0
b = -0.591496 - 1.133850I		
u = 1.47061 + 0.05198I		
a = 0.671770 + 1.172880I	-10.78740 - 4.17106I	0
b = -0.422515 + 1.169490I		
u = 1.47061 - 0.05198I		
a = 0.671770 - 1.172880I	-10.78740 + 4.17106I	0
b = -0.422515 - 1.169490I		
u = 0.215436 + 0.157466I		
a = 1.56623 + 0.67273I	-0.33342 + 1.74546I	-2.32569 - 3.49934I
b = 0.415410 + 0.878457I		
u = 0.215436 - 0.157466I		
a = 1.56623 - 0.67273I	-0.33342 - 1.74546I	-2.32569 + 3.49934I
b = 0.415410 - 0.878457I		

II.
$$I_2^u = \langle b^2 - b + 1, \ a + 1, \ u - 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -b+1 \\ b-1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ b-1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ b-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4b 7

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_{10}	$u^2 - u + 1$
c_2, c_3	$(u-1)^2$
c_4, c_5, c_9	u^2
<i>C</i> ₆	$(u+1)^2$
c ₈	$u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_8 c_{10}	$y^2 + y + 1$
c_2, c_3, c_6	$(y-1)^2$
c_4, c_5, c_9	y^2

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-1.64493 + 2.02988I	-9.00000 - 3.46410I
b = 0.500000 + 0.866025I		
u = 1.00000		
a = -1.00000	-1.64493 - 2.02988I	-9.00000 + 3.46410I
b = 0.500000 - 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - u + 1)(u^{38} + 2u^{37} + \dots + 5u + 1)$
c_2, c_3	$((u-1)^2)(u^{38} - 3u^{37} + \dots + 2u - 1)$
c_4,c_9	$u^2(u^{38} - u^{37} + \dots - 4u - 4)$
<i>C</i> ₅	$u^2(u^{38} + 15u^{37} + \dots + 72u + 16)$
<i>C</i> ₆	$((u+1)^2)(u^{38} - 3u^{37} + \dots + 2u - 1)$
	$(u^2 - u + 1)(u^{38} - 2u^{37} + \dots - 37u + 17)$
c ₈	$(u^2 + u + 1)(u^{38} + 2u^{37} + \dots + 5u + 1)$
c_{10}	$(u^2 - u + 1)(u^{38} + 18u^{37} + \dots - 5u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y^2 + y + 1)(y^{38} + 18y^{37} + \dots - 5y + 1)$
c_2, c_3, c_6	$((y-1)^2)(y^{38} - 33y^{37} + \dots - 8y + 1)$
c_4, c_9	$y^2(y^{38} - 15y^{37} + \dots - 72y + 16)$
c_5	$y^2(y^{38} + 13y^{37} + \dots - 2848y + 256)$
c ₇	$(y^2 + y + 1)(y^{38} - 6y^{37} + \dots - 6333y + 289)$
c_{10}	$(y^2 + y + 1)(y^{38} + 6y^{37} + \dots - 61y + 1)$