

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 40V,141A, $R_{DS(on),max} = 2.8 \text{m}\Omega @V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 40V \\ R_{DS(on),max} @ V_{GS} = 10V & 2.8 m\Omega \\ I_D & 141A \end{array}$

Pin Configuration

TO-263

Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DSS}	40	V	
Continuous drain current (T _C = 25°C)		141	Α	
(T _C = 100°C)	I _D	89	А	
Pulsed drain current ¹⁾	I _{DM}	423	A	
Gate-Source voltage	V _{GSS}	±20	V	
Avalanche energy ²⁾	Eas	36	mJ	
Power Dissipation	P _D	89	W	
Storage Temperature Range	T _{STG}	-55 to +150	°C	
Operating Junction Temperature Range	TJ	-55 to +150	°C	

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	1.4	°C/W
Thermal Resistance Junction-to-Ambient	R _{0JA}	50	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Reel
VST04N028-T3	TO-263	VST04N028-T3	800

Electrical Characteristics T_L = 25°C unless otherwise noted

T _J = 25°C unless otherwise noted						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics		•				
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	40			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.2	1.7	2.5	V
Drain-source leakage current	I _{DSS}	V _{DS} =40 V, V _{GS} =0V			1	μΑ
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	V _{GS} =10 V, I _D =20 A		2.2	2.8	mΩ	
	R _{DS(on)}	V _{GS} =4.5 V, I _D =20 A		2.8	3.8	mΩ
Forward transconductance	g _{fs}	V _{DS} =5V , I _D =20A		55		S
Dynamic characteristics						
Input capacitance	C _{iss}	N 00 N N 0 N		3975		pF
Output capacitance	Coss	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V},$ $F = 1 \text{MHz}$		1123		
Reverse transfer capacitance	Crss	- F - IMINZ		84		
Turn-on delay time	t _{d(on)}			18.7		
Rise time	t _r	V _{DD} = 15V,V _{GS} =10V, I _D = 20A		9.3		ns
Turn-off delay time	t _{d(off)}	R _G =3.3Ω		58.1		
Fall time	t _f			32.5		
Gate resistance	Rg	V _{GS} =0 V,V _{DS} =0 V, F=1MHz		1.1		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}	\/ 45\/ L 00A		12.3		
Gate to drain charge	Q_{gd}	V _{DS} =15V, I _D =20A,		18.2		nC
Gate charge total	Qg	- V _{GS} = 10 V		56		
Drain-Source diode characteristic	s and Maxi	mum Ratings				
Continuous Source Current	Is				74	А
Pulsed Source Current ³⁾	I _{SM}				222	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A, T _J =25℃			1.2	V

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =27A, Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature

Figure 8. V_{GS(th)}-Junction Temperature

Figure 9. On-Resistance vs. Gate-to-Source voltage

Figure 10: Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

