FIRST STEP TO PRACTICAL MACHINE LEARNING

KNOWLEDGE SHARING FOR CPE/SKE STUDENTS

SIRAKORN LAMYAI

STUDENT, KASETSART U.

OCTOBER 30, 2018

BEFORE WE START...

Make sure these are installed on your computer.

This page is a guide for installing on Windows

- Python 3.6: Download and install at https://www.python.org
- NumPy, Scipy, Matplotlib, Scikit-learn, MLxtend: Run pip install numpy scipy matplotlib sklearn mlxtend

OUTLINE

- 1 Introduction to Machine Learning
 - What is Machine Learning? Traditional programming approach Machine learning approach
- 2 Machine Learning Problems
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- 3 Model
- 4 Machine Learning Process
- 5 Problems for Machine Learning
 - Handwriting recognition

2 | 21

INTRODUCTION TO MACHINE LEARNING

■ This is Recaptcha.

- This is Recaptcha.
 - ► Recaptcha helps stop millions of spam a day.

- This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.
 - ▶ In some old days, we have to type Captcha texts to distinguish ourself from bots.

- This is Recaptcha.
 - ► Recaptcha helps stop millions of spam a day.
 - ▶ In some old days, we have to type Captcha texts to distinguish ourself from bots.
 - ► How is it possible that with a single click, an automated system can distinguish bots from humans?

TRADITIONAL PROGRAMMING APPROACH

MACHINE LEARNING APPROACH

IN OTHER WORDS...

Machine Learning

Machine Learning

= Data + Data analysis algorithm

Machine Learning

Data + Data analysis algorithmAdapt to change

MACHINE LEARNING PROBLEMS

Types of Machine Learning Problems

Types of Machine Learning problems

1. Supervised learning

Types of Machine Learning Problems

- 1. Supervised learning
- 2. Unsupervised learning

Types of Machine Learning problems

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

■ Given a **training set** for the data, find a **model** to **generalise** well to **unseen** data.

- Given a **training set** for the data, find a **model** to **generalise** well to **unseen** data.
- Two main supervised learning problems

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems
 - ► Classification: On the discrete data

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems
 - ► Classification: On the discrete data
 - ► Regression: On the continuous data

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems
 - ► Classification: On the discrete data
 - ► Regression: On the continuous data
- Example problems: Spam E-mail detection, Facial recognition

Unsupervised Learning

■ Discover hidden structure in non-labelled data.

- Discover **hidden** structure in **non-labelled** data.
- Example: Clustering, Generative models

REINFORCEMENT LEARNING

MODEL

■ A result of the combination between...

- A result of the combination between...
 - ► a **method** to recognise the data, and

MODEL

- A result of the combination between...
 - ► a **method** to recognise the data, and
 - ► sample datas for such the method

- A result of the combination between...
 - ▶ a **method** to recognise the data, and
 - ► sample datas for such the method

Data

MODEL

- A result of the combination between...
 - a method to recognise the data, and
 - sample datas for such the method

Determine which group should the purple dot be in (red/green/blue) by checking the colour of its nearest dot.

Data Method

■ We're going to write our **first own** machine learning algorithm called **k-Nearest Neighbour** (k-NN)

- We're going to write our **first own** machine learning algorithm called **k-Nearest Neighbour** (k-NN)
 - ► k-NN is known to be very simple, with its concept as

- We're going to write our **first own** machine learning algorithm called **k-Nearest Neighbour** (k-NN)
 - \blacktriangleright k-NN is known to be very simple, with its concept as

k-NN algorithm

To classify label of a data point, get *k* nearest data points to the data point, and select the major label among those data points.

Coding time!

MACHINE LEARNING PROCESS

MACHINE LEARNING PROCESS

- Train
- Test

(There'll be more of this, trust me.)

CHOOSING THE PARAMETER FOR k-NN ALGORITHM

What is the bad way to choose *k*?

- What if we choose k = # of all points?
 - ► What will happen if our dataset's got 3 labels of A, B, C with 10, 20, and 30 data points of each?
 - Answer: Our model will always answer the labels with the highest data point count.
- What if we choose k = 1?
 - ► Let's try!

Coding time!

■ We separate our dataset into 2 parts: the **training set** and **testing set**

- We separate our dataset into 2 parts: the training set and testing set
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset

- We separate our dataset into 2 parts: the training set and testing set
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset
 - ► What will happen if we train on the testing set?

- We separate our dataset into 2 parts: the training set and testing set
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset
 - ▶ What will happen if we train on the testing set?
 - ► What will happen if we test on the training set?

- We separate our dataset into 2 parts: the **training set** and **testing set**
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset
 - What will happen if we train on the testing set?
 - ► What will happen if we test on the training set?
 - **Cheating!** Like letting the model *remembers* the answer instead of **generalising** the data pattern.

- We separate our dataset into 2 parts: the **training set** and **testing set**
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset
 - ► What will happen if we train on the testing set?
 - ► What will happen if we test on the training set?
 - Cheating! Like letting the model *remembers* the answer instead of **generalising** the data pattern.
 - ► In other words, don't test and train model on the same set of data.

Choosing the best k

- **Train** with the training set, to let our model know how will the data looks like.
- **Test** with the testing set, to see on how our model performs.

Warning! This is a simplified Machine Learning model training process, there are more to concerns!

OVERFITTING AND UNDERFITTING

Which decision region is good?

Underfit: The model fails to recognise data pattern

Good fit: The model recognises data pattern **generally**

Overfit: The model **remembers** data pattern instead of generalising.

OVERFITTING AND UNDERFITTING

Good model must generalise