캡스톤디자인 중간보고서

H 0	국문		AI를 활용한 열화상 데이터 분석 및 IoT 기반 홈서버 쿨링 시스템			
제 목	영문		Al-Based Th System	AI-Based Thermal Imaging Data Analysis and IoT-Based Computer Cooling System		
진 행 상 황	2. 3. 4. 5. 6. 7. 8.	열화상 촬 데이터 수 YOLO 기(학회 논문 BMC 연동 MOSFET 사용자 UI	영 시스템 집 - 수집현 반 부품 탐자 제출 - 캡 온도 데이 기반 팬 제 - 프로토E	한 데이터 정상/비정성 지 - 모델 설계서 및 스톤 주제 관련 연구 터 수집 - 클래스 [와 열화상 이미지 저장 시스템 상 라벨링 학습 코드 작성 그 결과 논문 작성 나이어그램 및 구현 및 제어 소프트웨어 작성 작성	
	진 행 상 황	1. 열화상 카메라 연동 - 라즈베리파이 GPIO 포트와 카메라 모듈을 사용하여 화상 촬영 시스템 구축 완료 2. 다양한 상황(gpu-burn, 고사양 프로그램, stress-ng 등)에서 정상/비정상 여지 데이터를 약 3600장 수집하여 라벨링 완료 3. YOLO모델 학습 및 평가 4. 논문 작성 진행 중		ł, stress-ng 등)에서 정상/비정상 이미		
산출물	요구사형	항 정의서(별첨 1), 중 ⁻	간보고서(별첨 2)		
	학년	학	번	이 름	연락처(전화번호/이메일)	
FI	4	202	01793	홍 수 민	010-2737-8034	
팀 구성원	4	202	01755	지 원 근	010-2774-8730	
	4	202	01859	길 기 훈	010-4607-4653	
	4	202	02689	오 민 석	010-8455-2379	

컴퓨터공학과의 프로젝트 관리규정에 따라 다음과 같이 요구사항 정의서와 중간보고서를 제출합니다

2025년 05월 02일

책임자 : 홍 수 민 🕏 (인) 🖰

지도교수 : 이 상 금

프로젝트명 : AI를 활용한 열화상 데이터 분석 및

IoT 기반 홈서버 쿨링 시스템

소프트웨어 요구사항 정의서

Version 1.0

개발 팀원 명(팀리더):홍수민

지원근

길기훈

오민석

대표 연락처:010-2737-8034

e-mail: 20201793@edu.hanbat.ac.kr

목차

- 1. 개요
- 2. 시스템 장비 구성요구사항
- 3. 기능 요구사항
- 4. 성능 요구사항
- 5. 인터페이스 요구사항
- 6. 데이터 요구사항
- 7. 테스트 요구사항
- 8. 보안 요구사항
- 9. 품질 요구사항
- 10. 제약 사항
- 11. 프로젝트 관리 요구사항

요구사항 정의서에 사용되는 양식 설명

요구사항 고유번호(ID): 제안요청서에 정의된 요구사항에 대해 계약, 사업수행, 사업완료 및 검수까지 변경, 삭제, 수정 여부에 대한 추적관리를 위해 고유의 번호를 부여하도록 한다.

요구사항 구분 및 ID부여 규칙

요구시	요구사항 구분		
시스템 장비 구성 요구사항	Equipment Composition Requirement	ECR-000	
기능 요구사항	System Function Requirement	SFR-000	
성능 요구사항	Performance Requirement	PER-000	
인터페이스 요구사항	System Interface Requirement	SIR-000	
데이터 요구사항	Data Requirement	DAR-000	
테스트 요구사항	Test Requirement	TER-000	
보안 요구사항	Security Requirement	SER-000	
품질요구사항	Quality Requirement	QUR-000	
제약사항	Constraint Requirement	COR-000	
프로젝트 관리 요구사항	Project Mgmt. Requirement	PMR-000	
프로젝트 지원 요구사항	Project Support Requirement	PSR-000	

요구사항 세부내용 작성표 양식 및 항목설명

요구사항 고유번호		(설명) 요구사항 추적관리를 위해 독립적인 고유번호(ID) 부여
요구사항 명칭		(설명) 요구사항 명칭을 작성함
요구사항 분류		(설명) 요구사항 분류기준에 따른 분류를 기입
요구사항	정의	(설명) 요구사항 정의
상세 설명	세부 내용	(설명) 요구사항 구체적인 세부 내용을 설명
산출정보		(설명) 해당기능을 통해 산출되는 결과물 혹은 정보를 표기
관련 요구사항		(설명) 정의된 요구사항과 관련된 요구사항에 대해 기술
요구사항 출처		(설명) 기능 도출내용에 대한 출처(source) 표기

1. 시스템 개요

(작성요령) 사업의 목표, 추진 범위 등을 서술하며, 전체적인 시스템 범위를 제시하기 위해 시스템 구성도를 제시한다. 시스템 구성도의 예시는 다음과 같다.

2. 시스템 장비 구성요구사항

요구사항 고유번호		ECR-001			
요구사항 명칭		FLIR Lepton 3.5 열화상 카메라 모듈 및 장착 보드 [수량: 각 1개]			
요구사	항 분류	시스템 장비구성 요구사항	응락수준	필수	
	정의	장비 설치			
요구사항 상세설명	세부 내 용	 대상 장비: 열화상 촬영에 도입되는 라즈베리파이 모듈형 열화상 카메라 및 카메라 장작 보드 장비 설치 요구사항: 본 장비는 수업 시간이 아닌 14:00~ 20:00 사이에 설치하며, 도입 이전에 테스트 환경에서 하드웨어 정비 및 소프트웨어 최적화가 필요함 			
요구사항	고유번호	ECR-002			
요구사	항 명칭	라즈베리파이 4 Model B, 4GB RAM, microSD 16GB [수량: 2개]			
요구사	항 분류	시스템 장비구성 요구사항	응락수준	필수	
요구사항	정의	열화상 카메라 촬영 및 쿨링 시스템 제어			
상세설명	세부 내용	• 용도 : 열화상 카메라 및 센서 데이터 수집, 제어 소프트웨어 구동 • 장비 설치 요구사항: 네트워크 연결 필수, 5V/3A 전원 어댑터 사용			
요구사항	고유번호	ECR-003			
요구사	항 명칭	MOSFET 기반 팬 제어 희로 [수량: MOSFET 1개, 12V FAN 3개]			
요구사	항 분류	시스템 장비구성 요구사항	응락수준	필수	
소그가장	정의	온도 변화에 따른 서버 쿨링 팬을 자동	등으로 제어하기 위한	: 회로 구성	
요구사항 상세설명	세부 내용	용도 : 컴퓨터 쿨링 시스템 장비 설치 요구사항: 장비에 안전하게 고정한뒤, 실제 적용전 희로 테스트 후, MOSFET을 이용하여 12V의 FAN 구동			

요구사항 고유번호		ECR-004				
요구사항 명칭		서버 내부 온도 데이터 실시간 수집 BMC 구성				
요구사항 분류		시스템 장비구성 요구사항 응락수준 필수		필수		
요구사항	정의	서버 내부 온도 데이터를 실시간으로	수집, 전송하기 위한	BMC 시스템 구축		
상세설명	세부 내용	 용도 : 서버 주요 부품 온도 모니터링 및 데이터 수집 장비 설치 요구사항: 실시간 데이터 송수신을 해야하며, 네트워크 연동을 통해 DB와 연동되야 함 				
요구사항 고유번호		ECR-005				
요구사	항 명칭	데이터저장용 InfluxDB 서버 구축				
요구사항 분류		시스템 장비구성 요구사항	웅락수준	필수		
요구사항	정의	수집된 데이터를 저장 관리하기 위한 DB서버 구축				
상세설명	세부 내용	 용도 : 실시간 데이터 저장, 조회, 분석 원지 장비 설치 요구사항: InfluxDB 설치, 네트워크 연결, 데이터 백업 및 보인 설정 				

3. 기능 요구사항

요구사항 고유번호		SFR-FA-001			
요구사	항 명칭	서버 상태 분류			
요구사	항 분류	기능	응락수준	필수	
	정의	• 서버 상태 데이터를 바탕으로 서버 류하는 기능	온도가 정상인지 비	정상인지를 이진 분	
요구사항 상세설명	세부 내용	① 서버 상태는 열화상 이미지로 분석되며 이를 통해 서버가 정상 상태인지 비정상 상태인지 구분 ② 모델은 YOLO기반의 딥러닝 모델을 사용하며 열화상 이미지에서 서버의 온 도 패턴을 인식하고 분석한다 ③ 이진 분류는 정상과 비정상으로 구분되며 비정상 상태는 과열 상태 등을 포함해야 함			
요구사항	고유번호	SFR-FA-002			
요구사	항 명칭	쿨링 세기 조절			
요구사	항 분류	기능	응락수준	필수	
	정의	• BMC 측정 데이터를 바탕으로 서버 기능	의 온도에 맞춰 쿨	링 세기를 조절하는	
요구사항 상세설명	세부 내용	① BMC 측정 데이터를 통해 실시간으로 서버의 온도를 모니터링 한다. ② 온도가 낮으면 쿨링 세기는 약하게 설정되고 온도가 높으면 쿨링 세기는 강하게 설정됨 ③ 쿨링 세기는 서버의 온도에 비례하여 자동으로 조정되며 온도에 따라 적절한 쿨링 효과를 제공함 ④ 쿨링 조절은 서버의 온도 변화에 빠르게 반응하여 서버가 과열 상태가 되지 않도록 함			

요구사항	고유번호	SFR-FA-003			
요구사항 명칭 서버 상태 모니터링 대시보드					
요구사학	항 분류	분류 기능 응락수준 필수			
	정의	• 서버 상태 및 쿨링 시스템을 실시킨 능	<u>-</u> 으로 모니터링할 수	있는 대시보드 기	
요구사항 청세설명	세부 내용	① 대시보드에서 실시간으로 서버의 상태(정상/비정상), 온도, 쿨링 세기 등을 모니터링할 수 있어야 함 ② 서버 상태가 비정상인 경우 대시보드에 경고 메시지나 알림이 표시됨			

4. 성능 요구사항

요구사항 고유번호		PER-001				
요구사항 명칭		데이터 처리 속도 및 반응시간				
요구사	항 분류	성능	응락수준	필수		
A 7 11 21	정의	- 처리속도 및 시간				
요구사항 상세설명	세부 내용	 열화상 데이터 수집은 최소 2초의 1번의 속도로 처리해야 함 AI 모델의 이상 온도 탐지는 1초 이내에 처리되어야 함 냉각 제어 시스템은 이상 온도 탐지 후 2초 이내에 작동해야 함 				
요구사항	고유번호	PER-002				
요구사항 명칭		시스템 처리량 및 온도 관리				
요구사	항 분류	성능	응락수준	필수		
	정의	- 처리량				
요구사항 상세설명	세부 내용	 데이터베이스의 데이터들은 실시간으로 Grafana로 표현 가능해야 함 테스트벤치 부품의 온도는 CPU 30~45°C, GPU 35~50°C 범위 내로 유지되어야 함 				
요구사항	고유번호	PER-003				
요구사	항 명칭	자원 효율성 및 전력 관리				
요구사	항 분류	성능	응락수준	필수		
	정의	- 자원 사용량				
요구사항 상세설명	세부 내용	 전력 소비는 기존 냉각 시스템 대비 10% 이상 절감되도록 함 시스템의 CPU 사용률은 최대 80% 이내로 유지되어야 함 메모리 사용량은 전체 가용 메모리의 80%를 초과하지 않아야 함 				

5. 인터페이스 요구사항

1) 사용자 인터페이스 요구사항 분석 및 도출

요구사항 고유번호 SIR-001					
요구사항 명칭 서버 상태 대시보드					
요구사항 분류		사용자 인터페이스	응락수준	필수	
	정의	서버 상태를 실시간으로 확인할 수 있는 웹 기반 대시보드 제공			
요구사항 상세설명	세부 내용	 대시보드는 웹 브라우저에서 접근 가능하다. InfluxDB와 데이터 분석 시스템 간 RESTful API 연동이 가능해야 한다. 서버 상태(정상/비정상), 현재 온도, 과거 온도 기록, 쿨링 세기 등 주요 표가 실시간으로 표시된다. 서버 상태가 비정상인 경우 대시보드에 경고 메시지나 알림이 표시된다. 			

2) 시스템 인터페이스 요구사항 분석 및 도출

요구사항 고유번호 SIR-004				
요구사항 명칭 BMC 데이터 수집 및 저장 인터페이스				
요구사항 분류 시스템		시스템 인터페이스	응락수준	필수
	정의	파이썬 기반 BMC 시스템과 데이터베이	이스 서버 간의 데이	터 전송 인터페이스
요구사항 상세설명	세부 내용	 파이썬으로 구현된 BMC는 CPU, R 를 수집해야 한다. 수집된 데이터는 InfluxDB 프로토콜 야 한다 데이터 전송은 HTTP/HTTPS REST 	'을 통해 시계열 데ㅇ	터베이스에 저장해

요구사항	고유번호	SIR-005		
요구사항 명칭 AI 분석 및 제어 시스템 연동 인터페이스				
요구사	요구사항 분류 시스템 인터페이스 응락수준 필수			필수
	정의	AI 서버와 제어 서버 간 이상 발연 감 인터페이스	지 및 제어 신호 전	날을 위한
요구사항 상세설명	세부 내용	 YOLOv11 기반 열화상 이미지에서 시스템의 정상/비정상을 구분하고, BMC 기반으로 해당 부분의 위치를 알아내어 열처리를 함 이상 발열 감지 시 RESTful API를 통해 제어 서버에 JSON형식으로 이벤트를 전송해야 함 제어 서버는 이상 발열 푸붐의 위치, 온도 값 등의 메타데아터를 수신할 수 있어야 함 		

요구사항	고유번호	호 SIR-006			
요구사항 명칭 라즈베리파이 팬 제어					
요구사	항 분류	시스템 인터페이스	응락수준	필수	
	정의	제어 서버와 라즈베리파이 간의 냉각	팬 제어를 위한 인터	페이스	
요구사항 상세설명	세부 내용	 GPIO 18핀을 사용하여 팬 속도를 제어해야 함 MOSFET을 이용한 PWM 제어 회로를 구현하여 팬의 속도를 0~100% 범위에서 조절할 수 있어야 함 제어 서버는 RESTful API를 통해 라즈베리파이에 팬 속도 제어 명령을 전송해야 함 			

요구사항 고유번호 SIR-007					
요구사항 명칭		열화상 카메라 스트리밍 인터페이스			
요구사	요구사항 분류 시스템 인터페이스 응락수준 필수		필수		
	정의	열화상 카메라와 AI 서버 간 실시간 영상 전송을 위한 인터페이스			
요구사항 상세설명	세부 내용	 GStreamer 기반의 RTP/UDP 프로토콜을 사용하여 열화상 카메라 영상을 실시간으로 스트리밍해야 함 스트리밍 데이터는 초당 최소 5프레임 이상의 속도로 전송되어야 함 AI서버 측에서 받는 데이터를 최소 2초당 1번은 받아내야 			

6. 데이터 요구사항

요구사항 고유번호	DAR-001					
요구사항 명칭	분석에 사용되는 열화상 이미지 데이터 품질 보장 저장					
요구사항 분류	데이터 응락수준 선택					
요구사항 상세설명	 분석에 사용되는 열화상 이미지 데이터는 분석 정확도를 유지할 수 있는 업스케일링 된 해상도와 품질로 원본형태로 저장되어야 함 데이터 손실, 압축, 변환없이 저장하여 AI 분석 및 통계 처리 시 신뢰성 보확 					
요구사항 고유번호	DAR-002					
요구사항 명칭	CPU, RAM, GPU 온도 데이터 시간별 기록					
요구사항 분류	데이터 응락수준 필수					
요구사항 상세설명	 CPU, RAM, GPU의 온도 데이터는 실시간(2초이내)으로 기록 시간별 데이터는 InfluxDB에 저장 온도 변화 추이 분석 및 이상 감지에 활용 					
요구사항 고유번호	DAR-003					
요구사항 명칭	팬 속도 제어 이벤트 로그 기록					
요구사항 분류	데이터	응락수준	필수			
요구사항 상세설명	 팬 속도 변경, 제어 명령 발생 시마다 이벤트 로그 자동 저장 상세설명 로그에는 발생 시각, 제어명령, 이전/ 변경속도 등 포함 로그를 이용하여 장애 분석 및 유지보수 지원 					

요구사항 고유번호	DAR-004			
요구사항 명칭	InfluxDB 시계열 데이터베이스 저장			
요구사항 분류	데이터	응락수준	필수	
요구사항 상세설명	 온도, 팬 속도, 이벤트 등 모든 데이 시계열 데이터 구조로 저장하여 뻐른 데이터 백업 및 보안 설정 적용 			
요구사항 고유번호	DAR-005			
요구사항 명칭	데이터 일일 단위 백업			
요구사항 분류	데이터	응락수준	선택	
요구사항 상세설명	 매일 정해진 시간에 전체 데이터 자동 백업 백업 데이터는 별도의 저장소에 보관 백업 성공 모니터링 및 장애 시 알림 			
요구사항 고유번호	DAR-006			
요구사항 명칭	통계 분석용 구조화 데이터 저장			
요구사항 분류	데이터	응락수준	필수	
요구사항 상세설명	 온도 데이터는 분석에 용이하도록 필드별로 구조화하여 저장 통계, 시각화 AI 분석 등에 활용 가능 명확한 시스템 운영에 필요한, 데이터 정합성 및 일광성 유지 필요 			

7. 테스트 요구사항

	I				
요구사항 고유번호	TER-001				
요구사항 명칭	AI 모델 성능 및 정확도 테스트				
요구사항 분류	테스트	응락수준	필수		
요구사항 세부내용	 AI 모델의 이상 발열 탐지 정확도는 90%이상이어야 함 다양한 부하 상황에서 AI 모델의 탐지 정확도를 검증해야 함 오탐지(Fasle Positive)와 미탐지(False Negative) 비율을 측정하고 분석 해야함 				
요구사항 고유번호	TER-002				
요구사항 명칭	냉각 시스템 성능 테스트				
요구사항 분류	테스트 응락수준 필수				
요구사항 세부내용	 냉각 시스템의 반응 시간은 이상 발열 탐지 후 2초 이내여야 함 인공적 발열 상황에서의 냉각 시스템 검증을 테스트해야 함 제어된 환경에서 팬 속도 조절의 정확성을 검증해야 함 냉각 시스템이 온도 변화에 따라 적절히 대응하는지 검증해야 함 				
요구사항 고유번호	TER-003				
요구사항 명칭	시스템 안정성 및 효율성 테스트				
요구사항 분류	테스트	응락수준	필수		
요구사항 세부내용	 다양한 서버 부하 상황에서 시스템의 동작을 테스트해야 함 전력 소비 효율성 테스트를 진행해야 함 시스템은 12시간 연속 작동 테스트를 통과해야 함 장기간 운영 시 시스템 안정성 및 데이터 무결성을 검증해야 함 				

8. 보안 요구사항

요구사항 고유번호	SER-001					
요구사항 명칭	데이터 보안					
요구사항 분류	보안 응락수준 필수					
요구사항 상세설명	 촬영된 이미지에는 민감한 정보가 포함될 수 있으므로, 저장 시 암호화하거나 접근을 제한 학습 데이터가 변조되지 않도록 정기적인 검증이 필요 					
요구사항 고유번호	SER-002					
요구사항 명칭	모델/결과 보안					
요구사항 분류	보안 응락수준 필수					
요구사항 상세설명	 학습된 모델(가중치 파일 등)을 외부에 유출되지 않도록 관리 비정상 감지 결과를 악의적으로 조작할 수 없도록 결과 저장 및 전송 과정에서 서명이나 암호화를 적용 					
요구사항 고유번호	SER-003					
요구사항 명칭	시스템 보안					
요구사항 분류	보안	응락수준	필수			
요구사항 상세설명	관리자 권한이 있는 사람만 서버 상태를 확인하고 조치할 수 있도록 설계 · 누가 시스템에 접근했는지 어떤 결과를 확인했는지 로그를 기록하고 이상 행위가 감지되면 알림을 받을 수 있도록 설계					

9. 품질 요구사항

요구사항 고유번호		QUR-001				
요구사항 명칭 정확한 서버 상태 분류						
요구사	항 분류	품질 응락수준 필수				
4705	정의	품질관리(정확성 및 신뢰성 관점)				
요구사항 상세설명	세부 내용	 열화상 이미지를 기반으로 서버의 2 로 분류할 수 있어야 함 동일 입력에 대하여 예측 결과가 95 				
요구사항 고유번호 QUR-002						
요구사항 명칭		빠른 응답시간 확보				
요구사	항 분류	품질 응락수준 필수				
	정의	품질관리(효율성 관점)				
요구사항 상세설명	 하나의 열화상 이미지를 입력받아 2. 해야 함 모델 경량화 및 최적화를 통해 실시조 					
요구사항	요구사항 고유번호 QUR-003					
요구사	항 명칭	사용성과 유지보수성				
요구사	항 분류	품질	응락수준	필수		
	정의 품질관리(사용성 및 유지보수성		점)			
요구사항 상세설명	세부 내용	 서버 상태 분류 결과를 사용자가 적 태로 제공해야 함 코드와 모델 구조는 모듈화하여 추고 야 함 				

10. 제약 사항

요구사항 고유번호	CON-001						
요구사항 명칭	열화상 카메라 거리 제한						
요구사항 분류	제약사항 응락수준 필수						
요구사항 상세설명	• FLIR Lepton 3.5 카메라 특성상 서버와 카메라 간 거리는 1.5m 이내로 설치						
요구사항 고유번호	CON-002						
요구사항 명칭	데이터 수집 및 활용제약						
요구사항 분류	제약사항 응락수준 필수						
요구사항 상세설명	• 프로젝트에서는 직접 수집한 열화상 데이터만 사용						
요구사항 고유번호	CON-003						
요구사항 명칭	모델 사용 제약						
요구사항 분류	제약사항 응락수준 필수						
요구사항 상세설명	사항 상세설명 • 서버 상태 분류 모델은 YOLO 모델을 사용						

11. 프로젝트 관리 요구사항

요구사항 고유번호	PMR-001					
요구사항 명칭	일정관리					
요구사항 분류	프로젝트 관리 응락수준 필수					
요구사항 상세설명	 프로젝트 수행 기간 동안 주요 마일스톤(데이터 수집 완료, 모델학습 오나료, 데스트 완료 등)을 설정하고 일정에 따라 진행 상황을 주기적으로 점검 일정 지연 발생 시 즉시 원인 분석 및 대응 방안을 수립 					
요구사항 고유번호	PMR-002					
요구사항 명칭	산출물 관리					
요구사항 분류	프로젝트 관리 응락수준 필수					
요구사항 상세설명	 데이터셋, 모델 학습 결과, 코드, 보고서 등 모든 산출물은 팀 공유 저장소를 통해 관리함 파일 버전 관리를 실시하여 작업 이력을 명확히 남겨야 함 					
요구사항 고유번호	PMR-003					
요구사항 명칭	품질 관리					
요구사항 분류	프로젝트 관리	응락수준	필수			
요구사항 상세설명	 데이터셋 변경, 모델 아키텍처 변경 등 주요 변경 사항 발생 시 사전 팀원합의를 통해 변경 내용을 기록하고 관리해야 함 품질 요구사항에 따라 모델 정확도, 응답 속도 등을 체크리스트로 관리하고기준에 미달하는 경우 보완 작업을 진행함 					

[별첨2]

중간보고서

- 1. 요구사항 정의서에 명세된 기능에 대하여 현재까지 분석, 설계, 구현(소스코드 작성) 및 테스팅한 내용을 기술하시오.
 - 시스템(하드웨어, 시스템)구성도, 또는 소프트웨어 아키텍처
 - 기능별 상세 요구사항(또는 유스케이스)
 - 설계 모델(클래스 다이어그램, 클래스 및 모듈 명세서)
 - UI 분석/설계 모델/프로토타입
 - E-R 다이어그램/DB 설계 모델(테이블 구조)
 - 테스트 계획서, 테스트 케이스 기술서 등등.

<<시스템 구성도>>

<<열화상 데이터셋 수집 코드>>

```
import numpy as np
                        from pylepton.Lepton3 import Lepton3
                        from datetime import datetime
                        import time
                       import math
                      MIN_TEMP = 10 + 273.15
                       MAX_TEMP = 60 + 273.15
11
                                                                                                                                                                                                                                                                                                                                             (options, args) = parser.parse args()
12 v def capture(flip_v = False, device = "/dev/spidev0.0"):
13
14
                                    #1.set agc enable(0)
                                    a,_ = 1.capture()
                                                                                                                                                                                                                                                                                                                                             unic (a < int(arg10)):

Image, min_temp, max_temp - conture(file_v = options.file_v), device = options.device)

Image = col.optiolorine(image, cv2.CLOSMAP_IET)

Image max = datation.neu().strtime(Tw-Ne-Nd NeiNeiNST) + "min_" + str(round(min_temp, 2)) + "max_" + str(round(max_temp, 2)) + "pog"

v2.limartic(max_max_temp, 1)) + "min_" + str(round(min_temp, 2)) + "max_" + str(round(max_temp, 2)) + "pog"

v2.limartic(max_max_temp, 1)) + "min_" + str(round(min_temp, 2)) + "min_" + str(round(min_temp, 2)) + "min_" + str(round(min_temp, 2)) + "min_temp.

min_temp.

min_temp.

min_temp.

min_temp.

min_temp.

min_temp.

min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_temp.
min_tem
                                    #np.right_shift(a, 8, scaled)
min_adc = MIN_TEMP * 100
 16
 17
                                     max_adc = MAX_TEMP * 100
19
                                    temp k = a / 100.0
                                    temp_c = temp_k - 273.15
                                    a[a<=min_adc] = min_adc + 1
21
                                    a[a>=max_adc] = max_adc - 1
23
                                    scaled = np.clip((a - min_adc) / (max_adc - min_adc), 0, 1)
24
26
                                    cv2.flin(a.0.a)
                               cv2.normalize(scaled, None, alpha = 0, beta = 65535, norm_type = cv2.NORM_MINMAX)
                               #np.right_shift(a, 8, a)
                              scaled = scaled * 256
 29
 31
                              print(f" 최소 온도: {np.min(temp_c):.2f} C / {np.min(temp_k): .2f} K")
print(f" 최대 온도: {np.max(temp_c):.2f} C / {np.max(temp_k): .2f} K")
 33
                              return np.uint8(scaled), np.min(temp_c), np.max(temp_c)
```

<<오토 라벨링 코드>>

```
import os
           import re
           import glob
                                                                                                                                          if max_value is not None:
# 만행 파일 경로 성성 (이미지와 같은 이름, 확장자만 .txt로)
label_filename = os.path.splitext(filename)[0] + '.txt'
label_path = os.path.join(output_dir, label_filename)
          import argparse
 7 ∨ def extract_max_value(filename):
                                                                                                                                              = 임계값 이상이면 지정된 클래스로 라벨링
if max_value >= threshold:
    create_volo_label(label_path, 0, bbox)
    abnormal_count += 1
                 """파일 이름에서 max_ 다음에 오는 숫자 값을 추출합니다."""
                 match = re.search(r'max_(\d+\.\d+)', filename)
                if match:
11
                      return float(match.group(1))
12
                return None
14 \vee def create_yolo_label(output_path, class_id, bbox):
                                                                                                                                       print(**라벨링 완료: 홈 (len(image_files))게 이미지 중 (abnormal_count)개가 '비정상' 클래스로, (normal_count)개가 '정상' 클래스로 라벨링되었습니다.")
return len(image_files)
15
                """YOLO 형식의 라벨 파일을 생성합니다."""
                with open(output path, 'w') as f:
16
                     x_center, y_center, width, height = bbox
                       f.write(f"{class\_id} ~\{x\_center\} ~\{y\_center\} ~\{width\} ~\{height\} \backslash n")
19
# 메인 실행 부분
if __name__ = "__main__":
# 명령형 인자를 먼저 확인
                """이미지 파일을 자동으로 라벨링합니다."""
21
                # 출력 디렉토리가 없으면 생성
23
                os.makedirs(output_dir, exist_ok=True)
                                                                                                                                      parser = argparse.ArgumentParser(description='YOLO 오토라벨링 도구')
24
                                                                                                                                     parser.add_argument('--image_dir', type-str, help='OUNTA' 있는 다독트리 경로')
parser.add_argument('--output_dir', type-str, help='라벨 파일을 저경할 다독트리 경로')
parser.add_argument('--class_id', type-float, help='max_ 간의 일제간')
parser.add_argument('--class_id', type-str, default-0, help='클래스 IO (귀르값: 0)')
parser.add_argument('--v_center', type-float, default-0, help='클래스 IO 를 (거르값: A)')
parser.add_argument('--v_center', type-float, default-0, help='Help 박스 중심 자료 (0-1)')
parser.add_argument('--v_center', type-float, default-0.5, help='Help 박스 중심 가료 (0-1)')
parser.add_argument('--width', type-float, default-0.8, help='Help 박스 동리 (0-1)')
25
                # 이미지 파일 검색 (jpg, png 확장자)
                image_extensions = ['*.jpg', '*.jpeg', '*.png']
27
                image_files = []
28
                for ext in image_extensions:
                      image_files.extend(glob.glob(os.path.join(image_dir, ext)))
29
31
                abnormal_count = 0
32
                normal_count = 0
                                                                                                                                      args = parser.parse_args()
33
                                                                                                                                      bbox = (args.x_center, args.y_center, args.width, args.height)
auto_labeling(args.image_dir, args.output_dir, args.threshold, bbox, args.class_id, args.class_name)
```

<<BMC 코드>>

```
35
                                                                                                                             elif os type == 'Darwin': # macOS
          import psutil
import cpuinfo
                                                                                                                                      import subprocess
                                                                                                              37
                                                                                                                                       result = subprocess.run(['sudo', 'powermetrics', '--samplers', 'smc', '-n', '1'],
          import GPUtil
                                                                                                                                      capture_output=True, text=True)
for line in result.stdout.split('\n'):
                                                                                                               39
           import platform
          import os
                                                                                                                                         if 'CPU die temperature' in line:
    return float(line.split(':')[1].strip().rstrip(' C'))
                                                                                                               41
                                                                                                               42
                                                                                                                                      return "macos 온도 정보를 찾을 수 없습니다."
   8 V def get cou info():
                                                                                                                                 except:
                                                                                                                                      return "macos 온도 정보 접근 실패"
                                                                                                               45
               if os_type == 'Linux';
                                                                                                               46
                                                                                                                             return "지원되지 않는 운영체제입니다."
                    try:
    temps = []
    base_dir = '/sys/class/thermal/'
    for zone in os.listdir(base_dir):
  13
14
                                                                                                               48
                                                                                                                        # RAM 사용량
  15
                                                                                                              50 v def get_ram_info():
                              if zone.startswith('thermal_zone'):
    with open(f'{base_dir}{zone}/temp', 'r') as f:
                                                                                                                             ram = psutil.virtual_memory()
                                                                                                               50
                                                                                                                             return {
                                       temp = float(f.read().strip()) / 1000.0 # 밀리섭씨 -> temps.append(temp)
                                                                                                                                  "총 메모리": f"{ram.total / (1024**3):.2f} GB",
                                                                                                                                  "사용 중인 메모리": f"{ram.used / (1024*"3):.2f} GB",
"사용 가능한 메모리": f"{ram.available / (1024*"3):.2f} GB",
                        if temps:
                        return round(sum(temps) / len(temps) ,2) # 평균 온도 반환
return "온도 정보를 찾을 수 없습니다."
                                                                                                                                  "사용률": f"{ram.percent}%"
  22
                                                                                                               57
                   except:
return "Linux 온도 정보 접근 실패"
                                                                                                               59
                                                                                                                      # GPU 정보
  25
26
                                                                                                               60 v def get_gpu_info():
               elif os_type == 'Windows':
                                                                                                               61
                                                                                                                            try:
                                                                                                                                 gpus = GPUtil.getGPUs()
                                                                                                               63
                                                                                                                                  gpu_info = []
                         w = wmi.WMI(namespace="root\\wmi")
  29
                        temperature_info = w.Win32_TemperatureProbe()[0]
return temperature_info.CurrentReading
                                                                                                                                 for i, gpu in enumerate(gpus):
                 except Exception as e:
return "Windows 온도 정보 접근 실패: " + str(e)
                                                                                                                                      gpu info.append({
                                                                                                                                           "GPU ID": i,
"이름": gpu.name,
                                                                                                                                            "부하용": f"{gpu.load * 100:.2f)%",
"배모리 사용": f"{gpu.memoryUsed} MB / {gpu.memoryTotal} MB",
"매모리 사용률": f"{gpu.memoryUtil * 100:.2f}%",
                                                                                                               72
                                                                                                                                            "名도": f"{gpu.temperature}°C"
               if not gpu_info:
return "GPU를 찾은 수 없습니다."
                                                                                                                               112
                 return gpu_info
                                                                                                                                                            print("\n" + "=" * 50)
                                                                                                                              113
            except:
return "GPU 정보 접근 실패"
                                                                                                                               114
        # 모든 정보 충력
                                                                                                                              115
                                                                                                                                                  if __name__ == "__main__":
                                                                                                                              116
                                                                                                                                                             print_system_info()
            # cru 정보
print("A[cru 정보]")
print("FCPU 전함: (cpulnfo.get_cpu_info()['brand_raw'])")
print("TBU 수: (sputtl.cpu_count(logical=false)) (물리적), {psutll.cpu_count(logical=True)} (본리적)")
print("FCPU 신문함: (psuttl.cpu_percent())%")
print("FCPU 신문함: (get_cpu_info())*C")
                                                                                                                              117
            ram (SY)

ram_info = get_ram_info()

for key, value in ram_info.items():

print(f"{key}: {value}")
99
100
101
102
103
104
105
106
107
108
109
             # GPU 정보
print("\n[GPU 정보]")
gpu_info = get_gpu_info()
if isinstance(gpu_info, list):
                111
112
                print(gpu_info)
```

<<Train // Test 분류 코드>>

```
from glob import glob
        dataset = "C:/Users/82102/OneDrive/사진/바탕 화면/zip/"
        img_list_co = glob(dataset + 'dataset_idle/*.png')[:1500]
        print(len(img_list_co))
        from sklearn.model selection import train test split
        # resize 이미지를 test(20%)/train(80%) dataset으로 나누기
        train_img_list_co, val_img_list_co = train_test_split(img_list_co, test_size=0.2, random_state=2000)
        # 각각의 test(20%)/train(80%) dataset 이미지 수 출력
print(len(train_img_list_co), len(val_img_list_co))
        train_img_dir = os.path.join(dataset, 'train', 'image')
train_label_dir = os.path.join(dataset, 'train', 'labels')
        val_img_dir = os.path.join(dataset, 'test', 'image')
val_label_dir = os.path.join(dataset, 'test', 'labels')
        # 디렉토리 생성
        os.makedirs(train_img_dir, exist_ok=True)
        os.makedirs(train_label_dir, exist_ok=True)
        os.makedirs(val_img_dir, exist_ok=True)
os.makedirs(val_label_dir, exist_ok=True)
        # 이미지 이동 함수
 # UNIAN 이로 본다

31 V def nove_images(image_list, img_dst_dir, label_dst_dir):

52 for img_path in image_list:

53 # 이미지 파일 이름
                 filename = os.path.basename(img_path)
                print(img_path)
# 간접 경로 추정 (예: .tif + .png)
label_path = img_path.replace('dataset_idle', 'idleoutput').replace('.png', '.txt')
                # 이미지와 라벨 이동
                shutil.copy(img_path, os.path.join(img_dst_dir, filename))
shutil.copy(label_path, os.path.join(label_dst_dir, os.path.basename(label_path)))
               # 미미지와 라벨 각각 미동
43
               move_images(train_img_list_co, train_img_dir, train_label_dir)
44
45
               move_images(val_img_list_co, val_img_dir, val_label_dir)
46
               print("데이터 분할 및 복사가 완료되었습니다.")
47
```

<<Y0L011 학습 코드>>

```
#pip install ultralytics
from ultralytics import YOLO

from google.colab import drive
import os

drive.mount('/content/drive')

print("절재 작업 장로: ", os.getcwd())
os.chdir("/content/drive/MyDrive")
print("변경된 작업 장로: ", os.getcwd())

model = YOLO("yolo11s.pt")

train_results = model.train(
    data = "/content/drive/MyDrive/yolo11_test/capstone_dataset/data.yaml",
    epochs=50,
    imgsz=160,
    batch=32,
    device=0,
)
```

```
metrics = model.val()

results = model("/content/drive/MyDrive/yolo11_test/capstone_dataset/valid/images/2025-04-28 11_38_43 min_20.31 max_37.39.png")
results[0].show()

path = model.export(format="onnx")
```

2. 프로젝트 수행을 위해 적용된 추진전략, 수행 방법의 결과를 작성하고, 만일 적용과정에서 문제점이 도출되었다면 그 문제를 분석하고 해결방안을 기술하시오.

애자일 방법론 적용 및 추진 전략

본 프로젝트는 애자일 방법론을 기반으로, 유연한 계획 수립과 반복적인 피드백을 통해 목표를 달성하는 전략을 적용하였습니다. 프로젝트 초기에는 팀원별 역할 분담, 실험 환경(장소, 테스트 벤치) 구축, 관련 논문과 자료확보, AI 학습(데이터 전처리 및 모델 학습) 등 기초 역량을 강화하는 데 집중하였습니다. 캡스톤 지원금 확보 전, 필요한 장비와 리소스를 사전에 준비하여 프로젝트의 원활한 시작을 도모하였습니다.

주요 수행 방법 및 결과

- 3월 말, 프로젝트의 핵심 재료인 열화상 카메라 모듈과 보드를 구입하고, 데이터 수집 및 실험을 본격적으로 시작하였습니다.
- 데이터 수집 및 전처리 과정에서 예상보다 많은 시간이 소요되어, 당초 1주 예정이었던 데이터 수집 기간을 2주로 연장하였습니다.
- 열화상 카메라의 AGC(Automatic Gain Control) 설정이 AI 학습에 적합하지 않아, 직접 Min-Max 값을 지정하고, 이상치(outlier)에 대한 별도 처리를 통해 데이터 품질을 최적화하였습니다.
- 전처리된 열화상 데이터를 기반으로 정상/비정상 상태를 라벨링하고, YOLOv11 모델에 학습시켜 테스트벤치의 CPU, GPU, RAM의 이상 여부를 효과적으로 판별할 수 있게 하였습니다.

문제점 도출 및 해결방안

- 1. 데이터 수집 및 전처리 과정의 문제점과 해결방안
 - 문제점: 열화상 카메라의 AGC 설정으로 인해, 환경 변화에 따라 데이터의 일관성이 떨어졌고, AI 학습에 적합하지 않은 데이터가 발생하였습니다.
 - 해결방안: 측정된 데이터를 기반으로 Min-Max 값을 직접 지정하고, Min-Max 범위 밖의 이 상치는 각각 Min, Max값으로 치환하여 데이터의 일관성과 품질을 확보하였습니다. 반복적 인 실험과 피드백을 통해 데이터 전처리 절차를 표준화하였습니다.
- 2. 팀원 역할 및 책임 수행 결과, 문제점과 해결방안
 - 결과: 각 팀원은 역할에 따라 실험 환경 구축, 데이터 수집, 전처리, 모델 학습 등 세부 업무를 분담하여 책임감을 가지고 수행하였습니다.
 - 문제점: 초기에는 역할 분담이 명확하지 않아 일부 업무가 중복되거나 누락되는 등 혼선이 있었습니다.
 - 해결방안: 정기적인 스크럼 미팅을 통해 업무 진행 상황을 공유하고, 역할과 책임을 구체적으로 재정의함으로써 효율적인 협업 구조를 마련하였습니다.

- 3. 프로젝트 일정 지연 문제점과 해결방안
 - 문제점: 열화상 카메라의 구조적 한계(물리적으로 작은 크기와 연약한 배선 구조)와 데이터 전처리의 난이도로 인해 데이터 수집 및 처리 일정이 1주에서 2주로 지연되었습니다.
 - 해결방안: 일정 지연의 원인을 분석하여 우선순위가 높은 핵심 업무에 리소스를 집중하였고, 병렬 작업이 가능한 부분은 동시 진행하여 전체 일정에 미치는 영향을 최소화하였습니다.

종합 평가 및 향후 계획

애자일 방법론을 적용한 덕분에 반복적인 피드백과 개선을 통해 문제를 신속히 파악하고 해결할 수 있었습니다. 앞으로도 정기적인 회고와 소통을 통해 프로젝트의 완성도를 높이고, 남은 과업(데이터 전처리 보완(업스케일링), 모델 성능 개선, 실시간 모니터링 시스템 구축 등)에 집중할 계획입니다.

캡스톤 디자인 | 중간보고서 채점표

평가도구	평 가 항 목		평 가 점 수				
る기エエ			2	3	4	5	
중간	1. 요구사항 정의서(기능, 성능, 인터페이스 등)가 구체적으로 작성되었는가?						
보고서 및 실행	2. 요구분석, 설계 산출물(모델, 프로토타입 등)의 내용이 충실한 가?						
결과	3. 설계 및 구현 문제를 위해 적용한 이론, 문제해결 방법이 제시 되었으며 그 적용이 적합한가?						
	4. 구현된 소프트웨어(또는 이와 동등한 하드웨어 시스템)가 버그 없이 실행되었는가?						
	5. 구현된 소프트웨어(또는 이와 동등한 하드웨어 시스템)의 성능 요구사항은 충족되었는가?						
도구활용	6. 설계 및 구현을 위해 도구가 적절히 활용되었는가?						
	7. 도구의 활용수준(능숙도)은 프로젝트 수행에 적합한가?						
팀원의 업무 및 역할	8. 팀원의 업무분담에 따른 역할 및 협력이 충실히 이루어졌는 가? (평가자에 의한 질의)						
	9. 프로젝트 중간 진척상황에 대해 팀원이 충분히 인지하고 있는 가?(평가자에 의한 질의)						
	합계						
*검토 의견(최종완료 때까지 보완해야할 점에 대해 작성 요망)							
	심사위원(소속): (이름)					(인)	