André Garnier Coutinho

Simulação dinâmica e validação experimental de técnicas de controle para robôs de arquitetura paralela

Plano de pesquisa para o edital de bolsas de estudo do Programa de Pós Graduação em Engenharia Mecânica (PPGEM) da Escola Politécnica da Universidade de São Paulo (EPUSP)

Área de concentração: Engenharia Mecânica

Orientador:

Prof. Dr. Tarcísio A. Hess Coelho

São Paulo 15 de Setembro de 2015 Nome: André Garnier Coutinho

NUSP: 6846085

Curso: Doutorado Direto

Área de concentração: Engenharia Mecânica de Projeto e Fabricação (3151)

Orientador: Professor Doutor Tarcísio Antônio Hess Coelho

Ano de ingresso no PPGEM: 2014

1 Introdução

Os mecanismos de arquitetura paralela são amplamente utilizados em simuladores de voo, simuladores automobilisticos, e tarefas de *pick-and-place*. Além disso, também são empregados em sistemas de posicionamento, sistemas de medição, máquinas de usinagem, entre outras tarefas.

Há uma série de vantagens em utilizar mecanismos paralelos no lugar dos tradicionais seriais. Dentre elas podemos citar sua grande capacidade de carga, alta precisão de posicionamento, alta rigidez estrutural, e uma redução significativa na inércia [5, 9, 10, 17]. Outra característica marcante desse tipo de arquitetura são as altas velocidades e acelerações atingidas, as quais superam muito os valores máximos atingidos utilizando arquitetura serial. Grande parte dessas vantagens se devem à possibilidade de instalação de todos os motores na base imóvel do mecanismo. Como desvantagens podemos citar o menor espaço de trabalho e modelo dinâmico muito mais complexo e de difícil obtenção [1, 5].

Figura 1: Robô industrial Adept Quattro

Levando-se em conta esta dificuldade de obtenção e a complexidade inerente do modelo dinâmico, o controle de mecanismos de arquitetura paralela é uma tarefa desafiadora. A utilização de modelos dinâmicos simplificados limita o desempenho do projeto de controladores baseados no modelo. Porém, mesmo na hipótesez do modelo dinâmico completo estar disponível, o emprego de técnicas de controle não linear pode acarretar um custo computacional muito elevado [3, 7, 12]. Este paradigma, aliado à falta de estratégias de controle apropriadas para esse tipo de mecanismos, resulta na exploração insatisfatória dos potenciais promissores de tais máquinas, como resposta dinâmica rápida e alta precisão [19]. Além disso, observa-se na literatura a escassez de trabalhos publicados com comprovação experimental de técnicas de controle aplicáveis a mecanismos paralelos [1].

Uma alternativa para a superação desta dificuldade seria a combinação de técnicas de controle não linear robusto (por exemplo, controle por modos deslizantes [12, 13]) com modelos dinâmicos completos de mecanismos paralelos, desenvolvidos a partir de novas metodologias de modelagem de sistemas multicorpos [6, 23, 24, 25]. Com esta estratégia, torna-se possível sintetizar leis de controle de alto desempenho e custo computacional mais adequado, viabilizando a exploração do potencial promissor dos mecanismos paralelos.

2 Objetivos

Os principais objetivos do projeto são:

- Desenvolvimento de um algoritmo gerador de modelos dinâmicos completos de mecanismos paralelos, de forma explícita. Pretende-se utilizar a metodologia proposta por Orsino et. al. [25] de acoplamento de subsistemas multicorpos.
- Elaboração de uma metodologia de projeto de controlador não linear robusto, de alto desempenho, baseado na técnica de controle por modos deslizantes [12, 13], aplicável a mecanismos de arquitetura paralela. Para tanto, serão consideradas as incertezas paramétricas e a possibilidade de atuação redundante [17], além da síntese de leis de controle com custo computacional consideralvemente menor do que as tradicionais, que empregam o Controle por Torque Computado [3, 7].
- Realizar a modelagem cinemática e dinâmica do mecanismo 2<u>R</u>SU+<u>P</u>PaP [11], utilizando o algoritmo de modelagem desenvolvido.
- Realizar o projeto de um controlador de trajetória para o mecanismo escolhido, utilizando a metodologia de projeto de controle proposta.
- Realizar simulações dinâmicas das leis de controle sintetizadas.
- Realizar a validação experimental do controlador projetado no protótipo do mecanismo escolhido, que se encontra no laboratório de mecanismos.

É importante ressaltar que os dois primeiros objetivos citados já foram alcançados e que a arquitetura paralela 2RSU+PPaP foi desenvolvida pelo grupo de pesquisa do Prof. Dr. Tarcio Antonio Hess Coelho, havendo ainda poucos estudos na literatura sobre ela. Sendo assim, pode-se afirmar que simulações dinâmicas e validações experimentais de leis de controle não-linear robusto neste mecanismo tem caráter inédito.

3 Metodologia do projeto

O estágio atual de desenvolvimento do presente projeto ocorre basicamente em três áreas: a realização da modelagem e simulação cinemática e dinâmica do mecanismo 2<u>R</u>SU + <u>P</u>PaP [11], o projeto de um controlador não linear robusto de alto desempenho baseado no modelo dinâmico, e a validação experimental das leis de controle sintetizadas.

Os trabalhos no âmbito de modelagem e simulação estão sendo desenvolvidos a partir da aplicação do algoritmo genérico de modelagem cinemática e dinâmica de mecanismos paralelos desenvolvido, baseado na utilização dos parâmetros de Denavit-Hartenberg [3, 15, 16] e no método Orsino de acoplamento de subsistemas [25]. Toda modelagem será feita em Python, utilizando uma biblioteca de manipulação simbólica (SymPy). As simulações da dinâmica direta do mecanismo serão feitas utilizando métodos implícitos de solução de sistemas de EDOs, de modo a garantir estabilidade numérica do método, mesmo utilizando leis de controle descontínuas.

Os trabalhos na área de projeto de controle serão feitos utilizando a metodologia desenvolvida de projeto de controladores robustos multivariáveis para mecanismos paralelos, baseada no modelo dinâmico do mecanismo a ser controlado e na técnica de controle por modos deslizantes [12, 13].

Os trabalhos no âmbito da validação experimental das leis de controle sintetizadas serão realizados no protótipo do mecanismo $2\underline{R}SU + \underline{P}PaP$ que encontra-se no laboratório de mecanismos. A bancada experimental já está funcional e já estão sendo realizados ensaios de leis de controle de trajetória baseadas apenas no modelo cinemático do mecanismo. Para realização da validação experimental, será realizada a identificação dos parâmetros do sistema e suas respectivas incertezas, projeto do controlador baseado nos parâmetros e incertezas identificadas, e implementação das leis de controle e aquisição de dados em ambiente Labview.

Figura 2: Mecanismo 2RSU + PPaP

4 Publicações

A partir dos resultados obtidos no trabalho de formatura realizado na graduação, foi publicado um artigo intitulado "Development of a controller for a 3-DOF robotic platform for user interaction in rehabilitation therapies" [14], o qual foi escrito pelo aluno em coautoria com Eng. Guilherme Martinho Dobrianskyj e seu orientador, Prof. Dr. Tarcísio Antônio Hess Coelho. Este trabalho foi apresentado no BioRob 2014 (IEEE International Conference on Biomedical Robotics and Biomechatronics) na seção de posters, no dia 15 de agosto de 2014. O artigo pode ser acessado por http://dx.doi.org/10.1109/BIOROB.2014.6913880.

Um capítulo de livro, intitulado "Dynamic modelling and control of balanced parallel mechanisms" [24], foi escrito em coautoria com o aluno de doutorado direto Renato M. M. Orsino e com o Prof. Dr. Tarcísio Antonio Hess Coelho, para o livro *Dynamic balancing of mechanisms and synthesizing of parallel robots* (editado pelo Prof. Dr. Dan Zhang da Universidade do Instituto de Tecnologia de Ontario e a ser publicado pela editora Springer). Este capítulo de livro trata do uso de uma metodologia de modelagem modular para o balanceamento adaptativo e desenvolvimento de algoritmos de controle para mecanismos robóticos paralelos. A revisão pelos editores e autores já foi realizada e em breve será feita a publicação.

Um artigo, submetido para o Special Issue on: "Dynamic Balancing of Mechanisms and Parallel Robots" do periódico International Journal of Mechanisms and Robotic Systems, intitulado "A new approach for obtaining the dynamic balancing conditions in serial mechanisms" [26], foi escrito em coautoria com o Prof. Dr. Tarcísio Antonio Hess Coelho. O artigo já foi aceito e está em fase de revisão gramatical e ortográfica, realizada pelos autores.

5 Disciplinas de pós-graduação

Ao longo do programa o aluno já cumpriu 56 créditos, tendo cursado 7 disciplinas de pós-graduação:

- PME-5004 Complementos de Matemática I
- PMR-5010 Elementos Finitos em Sistemas Multifísicos: Fundamentos
- PMR-5215 Otimização Aplicada ao Projeto de Sistemas Mecânicos
- PMR-5238 Análise e Síntese de Mecanismo Planos e Tridimensionais
- PMR–5211 Mecânica dos Sólidos Experimental
- PMR-5234 Técnicas de Ultra-Som e suas aplicações na Indústria e na Medicina
- PMR-5014 Controle Não Linear Aplicado a Sistemas Mecânicos e Mecatrônicos

Ressalta-se que em todas o aluno obteve conceito A, demonstrando bom aproveitamento.

Ainda é necessário cumprir mais 24 créditos de pós-graduação, os quais deverão ser cumpridos realizando a publicação de 3 artigos em periódicos indexados.

6 Cronograma de Atividades do Projeto

Serão realizados as seguintes etapas para a realização da proposta:

- (1) Modelagem cinemática do mecanismo 2RSU + PPaP
- (2) Modelagem dinâmica do mecanismo
- (3) Simulação dinâmica inversa do mecanismo
- (4) Simulação dinâmica direta do mecanismo utilizando leis de Controle por Torque Computado
- (5) Identificação dos parâmetros do sistema e suas respectivas incertezas, utilizando o protótipo
- (6) Projeto de controlador por modos deslizantes
- (7) Simulação do sistema em malha fechada, utilizando o controlador projetado
- (8) Preparo para o exame de qualificação
- (9) Validação experimental do controlador projetado, utilizando o protótipo
- (10) Escrever artigo sobre uma nova abordagem para modelagem dinâmica de mecanismos seriais, utilizando o método Orsino de acoplamento de subsistemas [25], aliado aos parâmetros de Denavit-Hartenberg [3, 15, 16]
- (11) Escrever artigo sobre modelagem dinâmica de mecanismos paralelos, utilizando o método Orsino de acoplamento de subsistemas
- (12) Escrever artigo sobre controle não linear robusto aplicado a mecanismos paralelos
- (13) Avaliação geral dos resultados
- (14) Preparo da tese

Aqui segue um cronograma estimado para realização das atividades propostas:

Tabela 1: Cronograma – Planejamento de Atividades por quadrimestre

Ativ./Quad.	$3^{o}/15$	$1^{o}/16$	$2^{o}/16$	$3^{o}/16$	$1^{o}/17$	$\frac{1}{2^{o}/17}$	$3^{o}/17$
(1)							
(2)							
(3)							
(4)							
(5)							
(6)							
(7)							
(8)							
(9)							
(10)							
(11)							
(12)							
(13)							
(14)							

Referências

- [1] R. Z. H. de Almeida. Modelagem dinâmica e controle e robô manipulador de arquitetura paralela assimétrica de três graus de liberdade. Tese (Doutorado) Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, 2013.
- [2] G. M. Dobriankyj and A. G. Coutinho. Plataforma robótica para reabilitação do membro superior humano. Tese (Trabalho de Conclusão de Curso) Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, 2013.
- [3] J. J. Craig. *Introduction to robotics: mechanics and control*. Addison-Wesley series in electrical and computer engineering: control engineering. Pearson/Prentice Hall, 2005.
- [4] E. Jarzebowska. Quasi-coordinates based dynamics modeling and control design for nonholonomic systems. *Nonlinear Analysis: Theory, Methods and Applications*, 71(12):118 131, 2009.
- [5] J-P. Merlet. Still a long way to go on the road for parallel mechanisms. In ASME DETC Conference, Montreal, 2002, 2002.

- [6] R. M. M. Orsino and T. A. H. Coelho. A contribution for developing more efficient dynamic modelling algorithms of parallel robots. *International Journal of Mechanisms and Robotic Systems*, 1(1):15 34, 2013.
- [7] A. Zubizarreta, I. Cabanes, M. Marcos, C. Pinto, E. Portillo. Extended CTC control for parallel robots. Emerging Technologies and Factory Automation (ETFA), 2010 IEEE Conference on, 2010.
- [8] A.M. Bloch, M. Reyhanoglu, N.H. McClamroch. Control and stabilization of nonholonomic dynamic systems. *Automatic Control, IEEE Transactions on*, 1992.
- [9] W. Khalil and E. Dombre. *Modeling, Identification and Control of Robots*. Taylor & Francis, 2002.
- [10] L. W. Tsai. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons, 1999.
- [11] V. D. Kumazawa, T. A. Hess Coelho, D. Rinaudi, G. Carbone, M. Ceccarelli. Kinematic analysis and operation feasibility of a 3-dof asymmetric parallel mechanism. In 20th COBEM, Gramado, Brazil, 2009.
- [12] J-J. E. Slotine and W. Li. Applied nonlinear control. Prentice Hall, 1991.
- [13] V. Utkin, J. Guldner, J. Shi. *Sliding mode control in electro-mechanical systems*. Vol. 34. CRC press, 2009.
- [14] G. M. Dobrianskyj, A. G. Coutinho, T. A. H. Coelho. Development of a controller for a 3-DOF robotic platform for user interaction in rehabilitation therapies. *Biomedical Robotics and Biomechatronics 2014 5th IEEE RAS EMBS International Conference* on, 819 – 825, 2014.
- [15] J. Denavit and R. S. Hartenberg. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. *Journal of Applied Mechanics*, 215–221, June 1955.
- [16] H. Lipkin. A note on denavit-hartenberg notation in robotics. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 921–926, 2005.
- [17] H. Cheng, Y-K. Yiu, Z. Li. Dynamics and control of redundantly actuated parallel manipulators *Mechatronics*, *IEEE/ASME Transactions on*, 8(4): 483–491, 2003.
- [18] O. Altuzarra, P. M. Eggers, F. J. Campa, C. Roldan-Paraponiaris, C. Pinto. Dynamic Modelling of Lower-Mobility Parallel Manipulators Using the Boltzmann-Hamel Equations *Mechanisms, Transmissions and Applications*, 31: 157–165, 2015.

- [19] H. Abdellatif, B. Heimann, J. Kotlarski, T. Ortmaier. Practical model-based and robust control of parallel manipulators using passivity and sliding mode theory *Robotics* 2010: Current and Future Challenges, InTech, 2010.
- [20] Y. Li and Q. Xu. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine *Robotics and Computer-Integrated Manufacturing*, 25(3): 630–640, 2009.
- [21] O. Linda and M. Manic. Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot *Industrial Informatics, IEEE Transactions on*, 7(4): 661–670, 2011.
- [22] S-L. Chen and Y-C. Tsai. Contouring control of a parallel mechanism based on equivalent errors *American Control Conference*, 2008, 2384–2388, 2008.
- [23] R. M. M. Orsino, T. A. H. Coelho, C. P. Pesce. Analytical mechanics approaches in the dynamic modelling of Delta mechanism *Robotica*, 33(4): 953–973, 2015.
- [24] R. M. M. Orsino, A. G. Coutinho, T. A. H. Coelho. Dynamic modelling and control of balanced parallel mechanisms *Dynamic Balancing of Mechanisms and Synthesizing* of Parallel Robots, Springer, 2016 (in press).
- [25] R. M. M. Orsino and T. A. H. Coelho (2015). A contribution on the modular modelling of multibody systems. Manuscript submitted for publication
- [26] A. G. Coutinho and T. A. H. Coelho (2015). A new approach for obtaining the dynamic balancing conditions in serial mechanisms. Manuscript submitted for publication