TD1-Études de suites

1 Suites du type $u_{n+1} = f(u_n)$

Exercice 1

1. Commencer par étudier les variations de f sur [0,1] et en déduire que

$$\forall x \in]0,1[, f(x) \in]0,1[(*)$$

puis faire une récurrence.

2.

3. Pour déterminer la limite étudier les points fixes de f.

Exercice 2

- 2. Étudier le signe de $g: x \mapsto f(x) x$.
- 3. Utiliser le signe de g ou procéder par récurrence.
- 4. Quelles sont les limites finies possibles? La suite $(u_n)_{n\in\mathbb{N}}$ peut-elle réellement converger vers l'une d'elle?

Exercice 4 (Ecricome 2013)

- 2. Utiliser le théorème de la bijection. Regarder le signe de $\varphi(1)$ et $\varphi(e)$.
- 3. Par récurrence, en utilisant la croissance de φ .
- 4. Étudier les points fixes de $x \mapsto \varphi(x) + x \operatorname{sur}]0, +\infty[$.

5

6. Comme pour l'exercice 2.

Exercice 5 (EML 2018)

- 3. Calculer f(2) et f(4) et comparer avec 2.
- 4. Pour l'hérédité, utiliser la croissance de ln après avoir remarqué que $b \ln(b) = 2$.
- 5. Idem que dans l'exercice 1.
- 6. (a) Inégalité des accroissements finis.

Exercice 7

- 2. Utiliser le théorème de la bijection ou le corollaire du TVI.
- 3.
- 4.
- 5. Idem que dans l'exercice précédent.

Exercice 8 (EML 2014)

- 5. Méthode 1 : intégrer l'inégalité précédente. Méthode 2 : étudier la fonction $x \mapsto \varphi(x) - ex$.
- 6. Récurrence.
- 9. Utiliser la question 6 pour montrer que la suite des sommes partielles est croissante et majorée.

2 Suites définies implicitement

Exercice 9

- 1. et 2. Utiliser le théorème de la bijection.
- 3. Soit $n \in \mathbb{N}$. Que valent $f(x_n)$ et $f(x_{n+1})$? En utilisant la croissance de f et en raisonnant par l'absurde ou en utilisant la croissance de f^{-1} , en déduire que $x_n < x_{n+1}$.
- 4. Utiliser le théorème de la limite monotone. En utilisant la relation : $\forall n \in \mathbb{N} \ f(x_n) = n$ montrer que la suite ne converge pas et conclure.

Exercice 10

- 2. Utiliser le corollaire du TVI ou le théorème de la bijection sur [0,1] et $[1,+\infty[$.
- 4. Sur chacun des intervalles [0,1] et $[1,+\infty[$ procéder comme pour la question 3 de l'exercice 9.
- 5. Montrer que $(u_n)_{n\geq 3}$ converge et utiliser la relation $f(u_n)=\frac{1}{n}$ pour trouver sa limite.

Utiliser la relation $f(v_n) = \frac{1}{n}$ et la question 3 pour montrer par l'absurde que $(v_n)_{n\geq 3}$ ne converge pas.

Exercice 11

- 1. Étudier les variations de f_n sur $]-\infty,0]$.
- 2. En utilisant la relation $f_{n+1}(x_{n+1}) = 0$, montrer que $f_n(x_{n+1}) < f_n(x_n) = 0$ puis raisonner comme pour la question 3 de l'exercice 9.
 - Pour la convergence, calculer $f_n(-1)$ et en déduire que la suite est minorée.
- 3. Passer à la limite dans la relation $x_n + 1 \frac{e^{x_n}}{n} = 0$.