문제 해결 프로그래밍 팀 프로젝트: 미세먼지 농도 예측

목차

1

- 변수설정
 - 수집요소
 - 수집지역 & 기간

2

- 전처리
- 분석
 - LSTM소개
 - LSTM분석

3

- 분석결과
- 개선방안

변수 선정

미세먼지 농도와 연관도 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

자근

기후변화에 따른 미세먼지 대기질 변화 추정 및 관련 정책 지원 연구, 이승민

자료

미세먼지 예측을 위한 기계학습 모델 간 성능 비교 연구: 국내 발생 데이터를 중심으로, 성상하

변수

강수량		

변수출처

지역&기간

수집 지역

강릉시, 동해시, 속초시, 영월군, 원주시, 인제군, 정선군, 철원군, 춘천시, 태백시, 홍천군

수집 기간

2019년 1월 ~ 2023년 12월 (일 단위)

전처리 : 데이터 시각화

산점도와 다항 회귀선을 그려본 결과

종속변수인 미세먼지 농도와 비교하여 강수량, 평균/최저 기온, 평균 지면온도, 평균/최대/순간 풍속에서 비선형 관계 형성

전처리:칼럼추가

데이터 셋에서 연도+월 칼럼 생성 후 시간순으로 출력한 결과

19년~23년 전부 비슷한 형태 종속변수(y)에 월 값 또한 유효한 의미와 패턴 보유한 걸로 파악되어 추가

전처리: 칼럼 추가

11개 지역의 데이터를 수집, 각 지역마다의 평균 미세먼지 농도 시각화

결과적으로 +/- 10 정도 차이가 발생 때문에 모델이 지역을 구분하여 학습 가능하도록 지역 숫자로 코드화 후 데이터에 추가

강릉시 => 1 인제군 => 6

동해시 => 2 정선군 => 7

속초시 => 3 철원군 => 8

영월군 => 4 춘천시 => 9

원주시 => 5 태백시 => 10

홍천군 => 11

전처리: 상관관계

Spearman Rank Correlation Coefficient

$$\rho = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2} \sqrt{\sum_{i} (y_i - \overline{y})^2}}$$

데이터의 순위를 사용하므로 비선형이거나 비정규 분포를 가질 때에도 적용 가능한 **스피어만 상관계수**를 이용해서 상관관계 전처리 진행.

평균기온, 평균지면온도 제거

LSTM

Long Short-Term Memory

R N N

LSTM

분석:LSTM

Long Short-Term Memory

data_cleaned = data_cleaned.sort_values(by=['일자'], ascending=True)

	지역	일자	강수량	평균전운량	기압	마황산가스	이산화질소	일산화질소	평균기온	최저기온	 평균지면온도	평균품속	최대풍속	최대풍속풍향	최대순간풍속	최대순간풍석풍향	미세먼지 농도	year	month	adr
14447	동해시	2019-01-01	0.0	2.4	1023.5	0.002	0.016	0.3	0.0	-3.2	 -3.3	2.0	4.9	320.0	8.8	340.0	19.0	2019	01	2
11258	태백시	2019-01-01	0.0	4.3	941.4	0.000	0.007	0.0	-7.1	-11.4	 -7.1	1.6	3.9	360.0	9.6	340.0	0.0	2019	01	10
12372	철원군	2019-01-01	0.0	3.6	1013.8	0.004	0.009	0.6	-9.2	-16.5	 -8.0	1.0	3.6	200.0	6.5	230.0	37.0	2019	01	8
12492	속초시	2019-01-01	0.0	3.5	1026.3	0.005	0.005	0.5	-1.5	-5.8	 -3.1	1.7	5.9	290.0	10.9	290.0	18.0	2019	01	3
14187	홍천군	2019-01-01	0.0	2.6	1015.2	0.000	0.021	0.0	-7.8	-14.4	 -6.3	1.0	4.0	270.0	6.1	290.0	0.0	2019	01	11
12848	철원군	2023-12-31	2.7	3.4	999.8	0.003	0.008	0.4	1.0	-2.8	 0.1	0.9	4.3	340.0	8.4	340.0	17.0	2023	12	8
9883	태백시	2023-12-31	2.5	5.0	940.6	0.002	0.010	0.7	0.3	-1.7	 -0.8	1.3	4.1	20.0	7.1	360.0	20.0	2023	12	10
855	강릉시	2023-12-31	14.7	9.5	1015.0	0.003	0.011	0.5	3.0	2.1	 1.0	2.2	5.5	320.0	10.5	340.0	11.0	2023	12	1
8407	춘천시	2023-12-31	5.3	5.8	1018.1	0.003	0.029	0.7	1.7	-0.2	 -0.1	0.4	1.9	250.0	2.8	110.0	27.0	2023	12	9
10268	원주시	2023-12-31	2.7	4.8	1009.1	0.004	0.023	0.6	2.3	1.5	 -0.1	0.4	1.6	270.0	3.5	250.0	26.0	2023	12	5
18190 rd	ows × 2	1 columns																		

분석:LSTM 설정

Long Short-Term Memory

```
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
# 데이터 로드 (data_cleaned가 정의되어야 함)
# 例本: data_cleaned = pd.read_csv("path_to_your_data.csv")
# 독립 변수와 종속 변수 선택
df = data_cleaned[['adr', '강수량', '평균전운량', '기압', '마황산가스', '미산화질소', '일산화질소', '최저기온', '합계 일조시간(hr)', '평균풍속', '최대풍속', '최대중속풍향', '최대순간풍속','최대순간풍석풍향','month']]
y = data_cleaned['미세먼지 농도']
#독립 변수와 종속 변수 각각에 대해 StandardScaler 적용
X_scaler = StandardScaler() # 독립 변수용 스케일러
y_scaler = StandardScaler() # 종속 변수용 스케일러
scaled_X = X_scaler.fit_transform(df) # 독립 변수 스케일링
scaled_y = y_scaler.fit_transform(y.values.reshape(-1, 1)) # 종속 변수 스케일링
# 시퀀스 데이터 생성 함수
def create_sequences(data, target, seq_length):
   X = []
   y = []
   for i in range(len(data) - seq_length):
       X.append(data[i:i + seq_length])
       y.append(target[i + seq_length])
   return np.array(X), np.array(y)
seq_length = 30 # 시퀀스 길이
X, y = create_sequences(scaled_X, scaled_y, seq_length)
# 학습 데이터와 테스트 데이터 분리
train_size = int(len(X) * 0.75)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]
```

데이터 비율

Test: 25%

Train: 75%

시퀀스 길이:30

모델이 한 번에 처리하는 입력

데이터의 시간 단계

분석:LSTM 설정

Long Short-Term Memory

```
#LSTM 모델 정의
model = Sequential([
   LSTM(64, return_sequences=True, input_shape=(seq_length, X.shape[2]), dropout=0.2, recurrent_dropout=0.2),
   LSTM(128, dropout=0.3, recurrent_dropout=0.2),
   Dense(64, activation='relu'),
    Dense(1)
1)
# 모델 컴파일
model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error')
#모델 학습
history = model.fit(X_train, y_train, epochs=60, batch_size=80, validation_split=0.2, shuffle=False)
# 모델 평가 및 예측
test_loss = model.evaluate(X_test, y_test)
print(f"Test Loss: {test_loss}")
y_pred = model.predict(X_test)
# 정규화 복원
y_test_rescaled = y_scaler.inverse_transform(y_test.reshape(-1, 1))
y_pred_rescaled = y_scaler.inverse_transform(y_pred)
# 시각화
plt.figure(figsize=(12, 6))
plt.plot(y_test_rescaled, label='Actual PM10')
plt.plot(y_pred_rescaled, label='Predicted PM10')
plt.legend()
plt.title("Actual vs Predicted PM10 Concentration")
plt.xlabel("Time Steps")
plt.ylabel("PM10 Concentration")
plt.show()
```

분석:LSTM

Long Short-Term Memory

LSTM(64, return_sequences=True, input_shape=(30, 10)), # 첫 번째 LSTM: 64 유닛 LSTM(128, dropout=0.3), # 두 번째 LSTM: 128 유닛, 30% 확률 Dense(64, activation='relu'), # Dense 레이어: 64 유닛 Dense(1) # 최종 출력

분석결과

학습된 모델에 Test 데이터 적용

극단적인 값은 예측하지 못하지만 일반적인 데이터들의 경우 잘 예측되고 있음.

분석결과

Train 데이터 결과와 Test 데이터 결과를 비교

분석결괴

학습한 모델의 신뢰도

Train RMSE: 1.262

Test RMSE: 1.258

R^2 Score: 0.17

분석 개선방안

• 기간을 더 길게 설정하여 더 많은 데이터로 모델학습

• 유닛 수 최적화 후 모델학습

• LSTM 모델의 복잡도 증사설정

감사합니다.