

Development of a Human-Multi-Al Agent Experimental Framework

Leah Kelley, Michael Ouimet, Luis Martinez, Eric Gustafson, James Jen

Autonomous agents interact with the world through planning. For a human to team with an autonomous agent, the human will influence how that agent makes decisions, and vice versa.

OBJECTIVES

Develop a collaborative human-autonomy teaming capability for the US Navy.

- Determine which Artificial Intelligence planning algorithms are most appropriate for naval-relevant scenarios
- Investigate how human operators can influence the planning of an autonomous swarm

RESEARCH APPROACH

- Analyze and evaluate state of the art planning algorithms, modeling methods
- Assess how algorithms perform in Navy-relevant scenario
- Remove an assumption and reevaluate algorithms

Increasing algorithmic complexity

Domain Model Realism

RESEARCH CONTRIBUTIONS

- Methods of feeding human decisions back into autonomous planning
- Empirical results on applicability of algorithms to naval-relevant scenarios
- Dynamic, adaptive planning under intermittent and denied communication

HUMAN-ASSISTED HIERARCHICAL PLANNING

Monitoring several agents requires human-machine interactions at higher planning levels

- Humans set mission goals, no-go zones, and provide augmented situational awareness
- Agents plan their own motions without human help

MULTI-AGENT PLANNING ALGORITHMS

- Each agent uses a Markov Decision Process (MDP) for navigation
- Agents are assigned search regions using Voronoi partitioning based on human-defined goals
- Replanning is triggered by human injection of new information such as revised goals and no-go zones, as well as when agents complete tasks and become available for new tasks

HUMAN SUBJECT EXPERIMENT

A human commander and fleet of UxVs search for a moving target on the water surface

- UxV Fleet consists of the following machine agents
 - Unmanned surface vehicles (USVs) with MDP motion planning
 - Unmanned Air Vehicle (UAV) charging ship
 - UAVs with MDP motion planning and finite power
 - Virtual Tasking Assistant that uses Voronoi Partitioning
- Human interacts with agents using a GUI
 - Human sets search goals by clicking on map
 - Situational awareness for human commander provided in event timeline
 - Human can assign tasks to agents, and Tasking Agent will assign tasks to remaining agents
- Experiment Objectives
 - Quantify improvements in performance when humans team with agents
 - Determine effective mechanisms for translating human user intent and knowledge into forms planning agents understand
 - Gather information on human perceptions and interpretations of machine agent behavior
 - Collect human subject perceptions of difficulty of collaborating with AI agents

Screenshot of stand-alone human subject experiment Graphical User Interface