MT5823 Semigroup theory: Solutions 2 (James D. Mitchell)

Rectangular bands, cancellative semigroups, subsemigroups, monogenic semigroups, and idempotents

Rectangular bands

- **2-1.** Let $(i, \lambda) \in S$ be arbitrary. Then $(i, \lambda)^2 = (i, \lambda)(i, \lambda) = (i, \lambda)$ and so (i, λ) is an idempotent. Let $(i, \lambda), (j, \mu), (k, \nu) \in S$. Then $[(i, \lambda)(j, \mu)](k, \nu) = (i, \mu)(k, \nu) = (i, \nu) = (i, \lambda)(k, \nu)$.
- **2-2.** Assume that $(i, \lambda) \in S$ is a left zero. Then for all $(j, \mu) \in S$ we have $(i, \lambda) = (i, \lambda)(j, \mu) = (i, \mu)$. It follows that $\lambda = \mu$ and since (j, μ) was arbitrary $|\Lambda| = 1$.

To prove the additional statement let (i, λ) and $(j, \lambda) \in S$. Then $(j, \lambda)(i, \lambda) = (j, \lambda)$ and so (j, λ) is a left zero. \square

Cancellative semigroups

2-3. Since ea = a, it follows that e(ea) = ea and cancelling a, we obtain $e^2 = e$ and e is an idempotent. Let $b \in S$ be arbitrary. Then since e is an idempotent e(eb) = eb and so cancelling e, eb = b, and e is a left identity. On the other hand, (be)e = be and so be = b. Therefore e is the identity of S.

2-4. The free semigroup A^+ is cancellative but has no identity.

Subsemigroups

2-5. Applying the algorithm from lectures:

$$t_1 = x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & - & - \end{pmatrix} \text{ (new)} \qquad t_2 = y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 4 & 5 & 4 \end{pmatrix} \text{ (new)}$$

$$t_1 x = x^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & - & - \end{pmatrix} = t_3 \text{ (new)} \qquad t_1 y = x y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 4 & - & - \end{pmatrix} = t_4 \text{ (new)}$$

$$t_2 x = y x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ - & - & - & - & - \end{pmatrix} = t_5 \text{ (new)} \qquad t_2 y = y^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 5 & 4 & 5 \end{pmatrix} = t_6 \text{ (new)}$$

$$t_3 x = x^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & - & - \end{pmatrix} = t_7 \text{ (new)} \qquad t_3 y = x^2 y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 5 & - & - \end{pmatrix} = t_8 \text{ (new)}$$

$$t_4 x = x y x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ - & - & - & - & - \end{pmatrix} = t_5 \text{ (old)} \qquad t_4 y = x y^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 5 & - & - \end{pmatrix} = t_9 \text{ (new)}$$

$$t_5 x = y x^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ - & - & - & - & - \end{pmatrix} = t_5 \text{ (old)} \qquad t_5 y = y x y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ - & - & - & - & - \end{pmatrix} = t_5 \text{ (old)}$$

$$t_6 x = y^2 x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ - & - & - & - & - \end{pmatrix} = t_5 \text{ (old)} \qquad t_6 y = y^3 = y = t_2 \text{ (old)}$$

$$t_7 x = x^4 = x = t_1 \text{ (old)} \qquad t_7 y = x^3 y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 4 & - & - \end{pmatrix} = t_{10} \text{ (new)}$$

$$t_8 x = x^2 y x = t_5 \text{ (old)} \qquad t_8 y = x^2 y^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 5 & 4 & - & - \end{pmatrix} = t_{11} \text{ (new)}$$

$$t_9 x = x y^2 x = t_5 \text{ (old)} \qquad t_9 y = x y^3 = x y = t_4 \text{ (old)}$$

$$t_{10} x = x^3 y x = t_5 \text{ (old)} \qquad t_{10} y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 5 & - & - \end{pmatrix} = t_{12} \text{ (new)}$$

$$t_{11} x = x^2 y^2 x = t_5 \text{ (old)} \qquad t_{11} y = x^2 y^3 = x^2 y = t_8 \text{ (old)}$$

Figure 1: The right Cayley graph of the semigroup in Problem 2-5 (red is for x and blue is for y, loops are omitted).

$$t_{12}x = x^3y^2x = t_5$$
 (old) $t_{12}y = x^3y^3 = x^3y = t_{10}$ (old).

The semigroup S has 12 elements:

$$x, y, x^2, xy, yx, y^2, x^3, x^2y, xy^2, x^3y, x^2y^2, x^3y^2.$$

The right Cayley graph of S can be seen in Figure 1.

2-6. Let S be a semigroup of right zeros and let $T \subseteq S$. Then xy = y for all $x, y \in T$ and so T is a subsemigroup. Adjoining an identity or a zero to S gives another semigroup with the same property.

Let $U = \{1, 2, ..., n\}$ and define multiplication by

$$x \cdot y = \min(x, y).$$

Then U has the same property as S.

A subset X of a zero semigroup S is a subsemigroup if and only if $0 \in X$. There are 2^{n-1} such subsets of an n-element set.

2-7. Let S be any subsemigroup of a finite group G. It suffices to show that if $x \in S$, then $x^{-1} \in S$. Since G is finite, there exists $n \in \mathbb{N}$ such that $x^n = 1_G$ where 1_G is the identity of G. Hence $x^{-1} = x^{n-1} \in S$.

If $G = \mathbb{Z}$ under addition, then \mathbb{N} is a subsemigroup of \mathbb{Z} that is not a subgroup.

Monogenic semigroups and idempotents

2-8. The fact that S is finite implies that not all the powers of a are distinct. Hence $a^m = a^n$ for some $m \le n$. It follows that n = m + r for some r and so $a^{m+r} = a^m$.

To prove that some power of a is an idempotent, let $i \in \mathbb{N}$, i > 0, be any number such that $ir \geq m$. Then $2ir \geq ir + m \geq m + r$ and so repeatedly applying the equality $a^{m+r} = a^m$ a total of i times, we obtain

$$(a^{ir})^2 = a^{2ir} = a^{2ir-r} = \dots = a^{2ir-ir} = a^{ir}$$

and so a^{ir} is an idempotent.

- **2-9**. Every finite semigroup contains at least one element a. The monogenic (sub)semigroup generated by a contains an idempotent by Problem **2-8**.
- **2-10**. Every group has exactly one idempotent. The semigroup of non-zero natural numbers $\mathbb{N} \setminus \{0\}$ under addition has no idempotents.

Further problems

2-11. Showing that $\mathbb{N} \times \mathbb{N}$ is a semigroup is trivial.

Suppose that $X \subseteq \mathbb{N} \times \mathbb{N}$ is a generating set for $\mathbb{N} \times \mathbb{N}$. If $(1, m) \notin X$ for some $m \in \mathbb{N}$, then there exits $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \in X$, for some $n \in \mathbb{N}$, n > 1, such that

$$(1,m) = (x_1,y_1) + (x_2,y_2) + \cdots + (x_n,y_n)$$

and so $1 = x_1 + x_2 + \cdots + x_n$, which is a contradiction. Therefore $(1, m) \in X$ for all $m \in \mathbb{N}$ and so X is infinite. We have shown that $\mathbb{N} \times \mathbb{N}$ is not finitely generated.

2-12. Suppose that $\max\{|I|, |\Lambda|\} = |I|$ and let J be any subset of I such that $|J| = |\Lambda|$. Let $\phi: J \longrightarrow \Lambda$ be any bijection, and let $\lambda_0 \in \Lambda$ be arbitrary. Then we will show that

$$X = \{ (j, (j)\phi) : j \in J \} \cup \{ (i, \lambda_0) : i \in I \setminus J \}$$

is a generating set for $I \times \Lambda$.

Let $(i, \lambda) \in I \times \Lambda$ be arbitrary. Since ϕ is a bijection, there exists $j \in J$ such that $(j)\phi = \lambda$. If $i \in J$, then

$$(i, \lambda) = (i, (i)\phi)(j, (j)\phi) \in \langle X \rangle.$$

If $i \in I \setminus J$, then

$$(i, \lambda) = (i, \lambda_0)(j, (j)\phi) \in \langle X \rangle.$$

Since,

$$|X| = |J| + |I \setminus J| = |I| = \max\{|I|, |\Lambda|\}$$

the result follows.

2-13. It suffices to prove that S is 1-generated as every infinite 1-generated semigroup is isomorphic to the natural numbers without zero under addition. Seeking a contradiction assume that S is not 1-generated. Let $s_0 \in S$ be arbitrary. Then $\langle s_0 \rangle \neq S$ and so there exists $u \in S$ such that $u \notin \langle s_0 \rangle$. But every countable subset of S is contained in a monogenic semigroup and so there exists $s_1 \in S$ such that $\langle s_0 \rangle \lneq \langle s_0, u \rangle \leq \langle s_1 \rangle$. Continuing in this way there exist $s_0, s_1, \ldots \in S$ such that

$$\langle s_0 \rangle \leq \langle s_1 \rangle \leq \cdots$$
.

Since every countable subset of S is contained in a monogenic subsemigroup, there exists $t \in S$ such that $s_0, s_1, \ldots \in \langle t \rangle$. In particular, for all $i \in \mathbb{N}$ there exists $m_i > 0$ such that $t^{m_i} = s_i$. Hence for all $i \in \mathbb{N}$

$$\{t^{qm_i}: q \ge 1\} = \langle s_i \rangle \le \langle s_{i+1} \rangle = \{t^{qm_{i+1}}: q \ge 1\}.$$

Thus for all $i \in \mathbb{N}$ we have that m_{i+1} divides m_i and $m_{i+1} \neq m_i$. It follows that $m_0 > m_1 > \cdots$, a contradiction.