第二章 同余 2015 年03月24 日

信息安全数学基础

陈恭亮 教授 博士生导师

上海交通大学信息安全工程学院

chengl@sjtu.edu.cn

标题页

目 录 页

第 1 页 共 31 页

返回

全屏显示

关 闭

2.1 同余的概念及基本性质

思考题

- 1. 如何对信息分类? 如何对信息数字化?
- 2. 什么是等价关系?
- 3. 什么是等价分类? 整数的等价分类是什么?
- 4. 如何判断一个整数属于某一个等价类?
- 5. 如何从整数集合构造一个由有限元素组成的新集合,使得该集合能保持整数集合中的一些运算? 哪些运算性质保持不变? 哪些运算性质会 发生变化? 如何变化?
- 6. 同余是等价关系吗?
- 7. 设m 为正整数. 对于整数r, $0 \le r <$, 记余数为r 的所有整数所组成的集合为 C_r , $\{C_r \mid r, 0 \le r < m\}$ 是整数集合**Z** 的等价分类吗? 相对应的等价关系是什么?
- 8. 由 C_r 所组成的新集合 $\mathbf{Z}/R = \{C_r \mid r, \ 0 \le r < m\}$, 如何定义 \mathbf{Z}/R 中的加法运算? 如何定义 \mathbf{Z}/R 中的乘法运算?

访问主页

标题页

目 录 页

第2页共31页

返回

全屏显示

关 闭

本章主要讲述如下问题:

- 1. 同余的基本概念
- 2. 模同余的判断: 等价关系和模运算等
- 3. 模同余的基本性质
- 4. 剩余类与完全剩余系
- 5. 简化剩余类与简化剩余系
- 6. 模逆元素 乘法表
- 7. 欧拉函数及其计算
- 8. 欧拉定理 费马小定理
- 9. RSA 解密证明
- 10. 模重复平方法

访问主页

标 题 页

目 录 页

第3页共31页

返回

全屏显示

关 闭

2.1.1 同余的概念

前面讨论了整数的整除性质,现在讨论整数的同余性质,以对整数进行恰当的分类.同余是数论中的一个十分重要的概念,同余理论在密码学,特别是公钥密码学中有着非常重要的应用.

生活中常问某月某日是否有空?是否有课?通常的决定过程是看该天是星期几?

设有 26 个英文字符, 将它们作移位变换 (左移 3 位) 有.

字符	a	b	c	d	e	f	g	h	i	j	k	1	m	n	o	p	q	r	s	t	u	V	W	X	y	Z
1																										
字符	d	e	f	g	h	i	j	k	1	m	n	o	p	q	r	S	t	u	V	W	X	y	Z	a	b	c

访问主页

标 题 页

目 录 页

第4页共31页

返回

全屏显示

关 闭

将符号数字化

则相应的移位变换为

数字	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
\uparrow																										
数字	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	0	1	2

现在, 问能否用一个数学函数来表示上述变换. $a \leftrightarrow a + 3 \mod 26$ 我们还可以构造变换

数字	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
\uparrow																										
数字	0	7	14	21	2	9	16	23	4	11	18	25	6	13	20	1	8	15	22	3	10	17	24	5	12	19

现在, 问能否用一个数学函数来表示上述变换. $a \leftrightarrow 7 \cdot a \mod 26$

访问主页

标 题 页

目 录 页

第5页共31页

返回

全屏显示

关 闭

类似地, 我们可以构造一个数字变换

现在, 问能否用一个数学函数来表示上述变换.

 $a \leftrightarrow 4^a \mod 53$

同样,构造一个数字变换

数字	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
																										

现在, 问能否用一个数学函数来表示上述变换.

$$a \leftrightarrow 7 * 4^a \mod 53$$

访问主页

标 题 页

目 录 页

第6页共31页

返回

全屏显示

关 闭

定义2.1.1 给定正整数 m. 两个整数 a, b 叫做模 m 同余, 如果 a-b 被 m 整除, 或

$$m \mid a - b$$
,

记作

$$a \equiv b \pmod{m}$$
.

否则, 叫做模 m 不同余. 记作

$$a \not\equiv b \pmod{m}$$
.

注 模 m 是正整数, 在同余性质的讨论中为固定整数.

例2.1.1 我们有 $29 \equiv 1 \pmod{7}$, 因为 $7 \mid 29 - 1$.

同样, $27 \equiv 6 \pmod{7}$ 和 $23 \equiv -5 \pmod{7}$.

同余的概念常常出现于日常生活中. 例如, 时针是模 12 或 24 小时. 分针和秒针是模 60.

访问主页

标 题 页

目 录 页

第7页共31页

返回

全屏显示

关 闭

2.1.2 同余的判断

如何判断两个整数 a, b 模 m 同余呢?

直接运用同余的定义, 就必须作欧几里得除法, 即计算 a-b 被模m 除的余数. 但这是一项冗长的工作. 因此, 我们引进一些等价的判别法, 以便更快捷地判断两个整数 a, b 模 m 是否同余.

首先, 通过整数 a, b 的表达形式来判断整数 a, b 模 m 是否同余. 通过整数 a, b 之间的关系式 $a = b + q \cdot m$ 来判断它们模 m 是否同余.

访问主页

标题页

目 录 页

第8页共31页

返回

全屏显示

关 闭

由整数表达式来判断同余

定理2.1.1 设 m 是正整数, 设 a, b 是整数, 则 $a \equiv b \pmod{m}$ 的充要条件是存在一个整数 q 使得

$$a = b + q \cdot m$$
.

证 如果 $a \equiv b \pmod{m}$,则根据同余的定义,有 $m \mid a - b$.又根据整除的定义,存在整数 q 使得 $a - b = q \cdot m$.故

$$a = b + q \cdot m.$$

反过来, 如果存在整数 q 使得 $a = b + q \cdot m$, 则有

$$a - b = q \cdot m.$$

根据整除的定义, 有 $m \mid a - b$. 再根据同余的定义, 得到 $a \equiv b \pmod{m}$.

例2.1.2 我们有 $39 \equiv 4 \pmod{7}$, 因为 $39 = 5 \cdot 7 + 4$.

访问主页

标 题 页

目 录 页

第9页共31页

返回

全屏显示

关 闭

由等价关系来判断同余

其次, 模同余具有一种叫做等价关系 的性质.

定理2.1.2 设m是一个正整数,则模m同余是等价关系,即

- i). (自反性) 对任一整数 $a, a \equiv a \pmod{m}$;
- ii). (对称性) 若 $a \equiv b \pmod{m}$, 则 $b \equiv a \pmod{m}$;
- iii). (传递性) 若 $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$,

则 $a \equiv c \pmod{m}$.

证 运用定理2.1.1 来给出证明.

1. (自反性) 对任一整数 a, 有 $a = a + 0 \cdot m$, 所以

$$a \equiv a \pmod{m};$$

2. (对称性) 若 $a \equiv b \pmod{m}$, 则存在整数 q 使得

$$a = b + q \cdot m$$
,

从而有 b = a + (-q)m. 因此, $b \equiv a \pmod{m}$;

访问主页

标 题 页

目 录 页

第 10 页 共 31 页

返回

全屏显示

关 闭

3. (传递性) 若 $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$, 则分别存在整数 q_1, q_2 使得

$$a = b + q_1 m, \qquad b = c + q_2 m,$$

从而

$$a = c + (q_1 + q_2)m.$$

因为 $q_1 + q_2$ 是整数, 所以 $a \equiv c \pmod{m}$.

例2.1.3 因为 $39 \equiv 32 \pmod{7}$, $32 \equiv 25 \pmod{7}$, 所以

39 ≡ 25 (mod 7). 传递性

同时,我们有

 $39 \equiv 39 \pmod{7}$, $25 \equiv 25 \pmod{7}$, 自反性

以及

 $32 \equiv 39 \pmod{7}$, $25 \equiv 32 \pmod{7}$. 对称性

第三, 运用整数 a, b 模 m 的余数, 可以判断 a, b 模 m 是否同余.

访问主页

标 题 页

目 录 页

第 11 页 共 31 页

返回

全屏显示

关 闭

由最小非负余数来判断同余

定理2.1.3 设 m 是一个正整数, 则整数 a, b 模 m 同余的充分必要条件是 a, b 被 m 除的余数相同.

证 根据欧几里得除法, 分别存在整数 q, r 和 q', r' 使得

$$a = q \cdot m + r, \quad b = q' \cdot m + r', \quad 0 \le r, \ r' < m.$$

两式相减, 得到 a-b=(q-q')m+(r-r'),

或者 $(r-r') = a - b - (q-q') \cdot m.$

因此, m|a-b 的充分必要条件是 m|r-r'. 但因为

$$0 \le |r - r'| < m,$$

且 $m \mid r - r'$ 的充分必要条件是 r - r' = 0, 所以 $m \mid a - b$ 的充分必要条件是 r - r' = 0. 这就是定理的结论, 证毕.

例2.1.4 我们有 $39 \equiv 25 \pmod{7}$, 因为 $39 = 5 \cdot 7 + 4$, $25 = 3 \cdot 7 + 4$.

访问主页

标 题 页

目 录 页

第 12 页 共 31 页

返回

全屏显示

关 闭

由加法和乘法运算来判断同余

第四, 因为模同余是等价关系, 所以有整数 a, b 模 m 的加法运算和乘法运算性质, 并可运用这个性质来判断 a, b 模 m 是否同余. **定理2.1.4** 设 m 是正整数, 设 a_1 , a_2 , b_1 , b_2 是整数. 如果

$$a_1 \equiv b_1 \pmod{m}, \qquad a_2 \equiv b_2 \pmod{m},$$

则 (i)
$$a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$$
;

(ii)
$$a_1 \cdot a_2 \equiv b_1 \cdot b_2 \pmod{m}$$
.

证 依题设, 根据定理2.1.1, 分别存在整数 q_1 , q_2 使得

$$a_1 = b_1 + q_1 \cdot m, \quad a_2 = b_2 + q_2 \cdot m,$$

(i) 我们有 $a_1 + a_2 = b_1 + b_2 + (q_1 + q_2) \cdot m$. 因为 $q_1 + q_2$ 是整数, 所以有

$$a_1 + a_2 \equiv b_1 + b_2 \pmod{m}.$$

访问主页

标 题 页

目 录 页

第 13 页 共 31 页

返回

全屏显示

关 闭

(ii) 我们有

$$a_1 \cdot a_2 = (b_1 + q_1 \cdot m)(b_2 + q_2 \cdot m)$$

$$= b_1 \cdot b_2 + q_1 \cdot m \cdot b_2 + b_1 \cdot q_2 \cdot m + q_1 \cdot m \cdot q_2 \cdot m$$

$$= b_1 \cdot b_2 + q_1 \cdot b_2 \cdot m + b_1 \cdot q_2 \cdot m + q_1 \cdot m \cdot q_2 \cdot m$$

$$= b_1 \cdot b_2 + (q_1 \cdot b_2 + b_1 \cdot q_2 + q_1 \cdot m \cdot q_2)m \qquad (交換性)$$

因为 $q_1 \cdot b_2 + b_1 \cdot q_2 + q_1 \cdot m \cdot q_2$ 是整数, 所以有

$$a_1 \cdot a_2 \equiv b_1 \cdot b_2 \pmod{m}$$
.

即定理成立.

例2.1.5 已知
$$39 \equiv 4 \pmod{7}$$
, $22 \equiv 1 \pmod{7}$, 所以

$$61 = 39 + 22 \equiv 4 + 1 \equiv 5 \pmod{7},$$

 $17 = 39 - 22 \equiv 4 - 1 \equiv 3 \pmod{7},$
 $858 = 39 \cdot 22 \equiv 4 \cdot 1 \equiv 4 \pmod{7},$
 $1521 = 39^2 \equiv 4^2 \equiv 2 \pmod{7},$
 $484 = 22^2 \equiv 1^2 \equiv 1 \pmod{7}.$

例2.1.6 2003 年 5 月 9 日是星期五, 问第 2^{2003} 天是星期几?

解 因为 $2^1 \equiv 2$, $2^2 \equiv 4$, $2^3 = 8 \equiv 1 \pmod{7}$,

又 $2003 = 667 \cdot 3 + 2$. 所以

$$2^{2003} = (2^3)^{667} \cdot 2^2 \equiv 1 \cdot 4 \equiv 4 \pmod{7}.$$

故第 22003 天是星期二.

例2.1.6' 2014 年05 月05日是星期一, 问第 $2^{20140505}$ 天是星期几?

解 因为 $2^1 \equiv 2$, $2^2 \equiv 4$, $2^3 = 8 \equiv 1 \pmod{7}$,

又 $20140505 = 6713501 \cdot 3 + 2$. 所以

$$2^{20140505} = (2^3)^{6713501} \cdot 2^2 \equiv 1 \cdot 4 \equiv 4 \pmod{7}.$$

故第 2²⁰¹⁴⁰⁵⁰⁵ 天是星期五.

访问主页

标 题 页

目 录 页

第 15 页 共 31 页

返回

全屏显示

关 闭

定理2.1.5 若 $x \equiv y \pmod{m}$, $a_i \equiv b_i \pmod{m}$, $0 \le i \le k$, 则

$$a_0 + a_1 x + \dots + a_k x^k \equiv b_0 + b_1 y + \dots + b_k y^k \pmod{m}.$$

证设 $x \equiv y \pmod{m}$,由定理2.1.4,有

$$x^i \equiv y^i \pmod{m}, \quad 0 \le i \le k.$$

又 $a_i \equiv b_i \pmod{m}$,有

$$a_i x^i \equiv b_i y^i \pmod{m}$$
.

最后,得到

$$a_0 + a_1 x + \dots + a_k x^k \equiv b_0 + b_1 y + \dots + b_k y^k \pmod{m}$$
.

访问主页

标 题 页

目 录 页

第 16 页 共 31 页

返回

全屏显示

关 闭

定理2.1.6 设 $n = a_k 10^k + \cdots + a_1 10 + a_0, \ 0 \le a_i < 10.$ 则

$$3 \mid n \Leftrightarrow 3 \mid a_k + \cdots + a_0;$$

$$9 \mid n \Leftrightarrow 9 \mid a_k + \cdots + a_0$$
.

证 因为 $10 \equiv 1 \pmod{3}$, 又 $1^i = 1$, $0 \le i \le k$. 所以,

$$a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0 \equiv a_k + \dots + a_0 \pmod{3}.$$

因此,

$$a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0 \equiv 0 \pmod{3}$$

的充分必要条件是

$$a_k + \dots + a_0 \equiv 0 \pmod{3}$$
.

结论对于 m=3 成立.

访问主页

标题页

目 录 页

第 17 页 共 31 页

返回

全屏显示

关 闭

例2.1.7 设 n = 5874192, 则 $3 \mid n$, $9 \mid n$. 解 因为

$$a_k + \dots + a_0 = 5 + 8 + 7 + 4 + 1 + 9 + 2 = 36,$$

又 3 | 36, 9 | 36, 故 3 | n, 9 | n.

例2.1.8 设 n = 637693, 则 n 被 3 整除, 但不被 9 整除. 解 因为

$$a_k + \dots + a_0 = 6 + 3 + 7 + 6 + 9 + 3 = 30 = 3 \cdot 10,$$

又 $3 \mid 3 \cdot 10, 9 \not\mid 3 \cdot 10,$ 故 $3 \mid n, 9 \not\mid n$.

访问主页

标 题 页

目 录 页

第 18 页 共 31 页

返回

全屏显示

关 闭

定理2.1.7 设 $n = a_k 1000^k + \cdots + a_1 1000 + a_0, 0 \le a_i < 1000.$ 则

$$7 \mid n \Leftrightarrow 7 \mid (a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots).$$
 $11 \mid n \Leftrightarrow 11 \mid (a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots).$
 $13 \mid n \Leftrightarrow 13 \mid (a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots).$

证 因为 $1000 = 7 \cdot 11 \cdot 13 - 1 \equiv -1 \pmod{7}$, 所以有

$$1000 \equiv 1000^3 \equiv \dots \equiv -1 \pmod{7},$$

$$1000^2 \equiv 1000^4 \equiv \cdots \equiv 1 \pmod{7}.$$

进而,

$$a_k 1000^k + a_{k-1} 1000^{k-1} + \dots + a_1 1000 + a_0$$

$$\equiv (a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots) \pmod{7}.$$

因此,
$$7 \mid n \Leftrightarrow 7 \mid (a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots)$$
.

即结论对于 m=7 成立.

同理, 结论对于 m = 11 或 m = 13 也成立.

访问主页

标 题 页

目 录 页

第 19 页 共 31 页

返回

全屏显示

关 闭

例2.1.9 设 n = 637693, 则 n 被 7 整除, 但不被 11, 13 整除.

解因为 $n = 637 \cdot 1000 + 693$,又

$$(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots) = 693 - 637 = 56 = 7 \cdot 8.$$

所以n被7整除,但不被11,13整除.

例2.1.10 设 n = 75312289, 则 n 被 13 整除, 但不被 7, 11 整除.

解 因为 $n = 75 \cdot 1000^2 + 312 \cdot 1000 + 289$,又

$$(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots) = (289 + 75) - 312 = 52 = 13 \cdot 4.$$

所以 n 被 13 整除, 但不被 7, 11 整除.

访问主页

标 题 页

目 录 页

第 20 页 共 31 页

返回

全屏显示

关 闭

2.1.3 同余的性质

下面,我们进一步讨论同余的性质.

定理2.1.8 设 $d \cdot a \equiv d \cdot b \pmod{m}$. 若 (d, m) = 1, 则

$$a \equiv b \pmod{m}$$
.

证 若 $d \cdot a \equiv d \cdot b \pmod{m}$, 则 $m \mid d \cdot a - d \cdot b$, 或 $m \mid d \cdot (a - b)$.

因为 (d, m) = 1, 所以 $m \mid a - b$. 结论成立. 证毕.

例2.1.11 因为 $95 \equiv 25 \pmod{7}$, (5,7) = 1, 所以

$$19 \equiv 5 \pmod{7}.$$

访问主页

标 题 页

目 录 页

第21页共31页

返回

全屏显示

关 闭

定理2.1.9 设m 是一个正整数, 设 $a \equiv b \pmod{m}$, d > 0, 则

$$d \cdot a \equiv d \cdot b \pmod{d \cdot m}$$
.

证 设 $a \equiv b \pmod{m}$, 由定理2.1.1, 存在整数q, 使得

$$a = b + q \cdot m$$

进而,

$$d \cdot a = d \cdot b + q \cdot (d \cdot m)$$

因此,

$$d \cdot a \equiv d \cdot b \pmod{d \cdot m}$$
.

证毕

例2.1.12 因为 $19 \equiv 5 \pmod{7}$, d = 4 > 0, 所以 $76 \equiv 20 \pmod{28}$.

访问主页

标 题 页

目 录 页

第 22 页 共 31 页

返回

全屏显示

关 闭

定理2.1.10 设 $a \equiv b \pmod{m}$. 若 $d \mid (a, b, m)$, 则

$$\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}.$$

证设 $d \mid (a, b, m)$,则 $a = a' \cdot d$, $b = b' \cdot d$, $m = m' \cdot d$.

又 $a \equiv b \pmod{m}$, 有整数q 使得 $a = b + q \cdot m$, 即

$$a' \cdot d = b' \cdot d + q \cdot m' \cdot d.$$

故 $a' = b' + q \cdot m'$. 或 $a' \equiv b' \pmod{m'}$ 或者

$$\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}.$$

例2.1.13 因为 $190 \equiv 50 \pmod{70}$, 所以取 d = 10, 得到

$$19 \equiv 5 \pmod{7}.$$

访问主页

标 题 页

目 录 页

第 23 页 共 31 页

返回

全屏显示

关 闭

定理2.1.11 设 $a \equiv b \pmod{m}$. 如果 $d \mid m$, 则

$$a \equiv b \pmod{d}$$
.

证 因为 $d \mid m$, 所以存在整数 q_1 使得 $m = q_1 \cdot d$. 又因为 $a \equiv b \pmod{m}$, 所以存在整数 q_2 使得

$$a = b + q_2 \cdot m.$$

该式又可写成

$$a = b + (q_2 \cdot q_1) \cdot d.$$

故

$$a \equiv b \pmod{d}$$
.

例2.1.14 因为 $190 \equiv 50 \pmod{70}$, 所以取d = 7, 得到

$$190 \equiv 50 \pmod{7}.$$

访问主页

标 题 页

目 录 页

第 24 页 共 31 页

返回

全屏显示

关 闭

定理2.1.12 设 $a \equiv b \pmod{m_i}, i = 1, \dots, k, 则$

$$a \equiv b \pmod{[m_1, \dots, m_k]}$$
.

证设 $a \equiv b \pmod{m_i}$,则

$$m_i \mid a-b$$
.

进而

$$[m_1,\ldots,m_k] \mid a-b.$$

即

$$a \equiv b \pmod{[m_1,\ldots,m_k]}$$
.

例2.1.15 因 $190 \equiv 50 \pmod{7}$, $190 \equiv 50 \pmod{10}$, 故

$$190 \equiv 50 \pmod{70}.$$

访问主页

标 题 页

目 录 页

第 25 页 共 31 页

返回

全屏显示

关 闭

例2.1.16 设 p, q 是不同素数. 若 a, b 满足 $\begin{cases} a \equiv b \pmod{p}, \\ a \equiv b \pmod{q}, \end{cases}$

则 $a \equiv b \pmod{p \cdot q}$.

证设

$$\begin{cases} a \equiv b \pmod{p}, \\ a \equiv b \pmod{q}, \end{cases}$$

则 $p \mid a - b$, $q \mid a - b$. 因此,

$$[p,q] \mid a-b.$$

因为 p, q 是不同的素数, 所以 $p \cdot q \mid a - b$. 即 $a \equiv b \pmod{p \cdot q}$.

访问主页

标 题 页

目 录 页

第 26 页 共 31 页

返回

全屏显示

关 闭

定理2.1.13 设 $a \equiv b \pmod{m}$, 则

$$(a,m) = (b,m).$$

证 设 $a \equiv b \pmod{m}$, 则存在整数 q 使得

$$a = b + q \cdot m$$
.

根据定理1.3.3, 我们有(a, m) = (b, m).

访问主页

标题页

目 录 页

第27页共31页

返回

全屏显示

关 闭

例2.1.17 设 m, n, a 都是正整数. 如果

$$n^a \not\equiv 0, 1 \pmod{m},$$

则存在 n 的一个素因数 p 使得

$$p^a \not\equiv 0, 1 \pmod{m},$$

证 反证法. 如果存在 n 的一个素因数 p, 使得 $p^a \equiv 0 \pmod{m}$, 则 $m \mid p^a$. 但 $p^a \mid n^a$, 故 $m \mid n^a$. 即 $n^a \equiv 0 \pmod{m}$. 这与假设矛盾. 如果对 n 的每个素因数 p, 都有

$$p^a \equiv 1 \pmod{m}$$
.

根据定理2.1.4 ii), 我们有

$$n^a \equiv 1 \pmod{m}$$
.

这也与假设矛盾. 因此, 结论成立. 证毕

访问主页

标 题 页

目 录 页

第 28 页 共 31 页

返回

全屏显示

关 闭

