Overview of free-electron laser

Tong Zhang

FEL physics group

Shanghai Institute of Applied Physics

Chinese Academy of Sciences

August 18, 2015

- 1 Overview of Free-electron Laser
 - What is free-electron laser
 - FEL facilities around the world
- 2 History of Free-electron Laser
 - FEL development around the world
 - FEL V.S. Optical Laser
- 3 How to learn the physics of FEL
- 4 Conclusions

- 1 Overview of Free-electron Laser
 - What is free-electron laser
 - FEL facilities around the world
- 2 History of Free-electron Laser
- 3 How to learn the physics of FEL
- 4 Conclusions

什么是自由电子激光?

- 同步辐射:加速电子(直线,圆周)释放出的辐射,动能转变为 光能,如第三代同步辐射光源(SSRF...);
- 自由电子激光(Free-electron Laser, FEL):自由电子在周期性变化的磁场中做'蛇形'曲线运动,不断在轨道的切向释放出同步辐射,方向较集中,相干性好,亮度高;
- 关键部件:直线加速器,波荡器,其他束测光测装置。

自由电子激光的本质(micro-bunching)

$$\lambda_{\text{FEL}} = \frac{\lambda_u}{2\gamma^2} \left(1 + K_u^2 / 2 \right)$$

$$K_u = 0.934 \times B_u \left[T \right] \times \lambda_u \left[\text{cm} \right]$$

 $b_n = rac{1}{N} \sum_{j=1}^N e^{-in heta_j}$

Brian W. J. McNeil and Neil R. Thompson, Nat. Photonics 4, 814-821 (2010).

r http://www.xfel.eu/

自由电子激光的主要运行模式 (I)

- 低增益(low-gain):单程增益较小,一般有净增益即可,通过振荡腔来获得FEL增益,一般工作在波段较长的红外或远红外波段 (主要原因之一:合适的反射镜);
- 高增益(high-gain):单程增益很高,利用FEL的非线性效应获得 指数放大,工作波长不受限制,一般工作在常规激光无法触及的 硬X射线等短波段:
 - SASE: Self-Amplified Spontaneous Emission, 初始信号来自于电子相位的噪声涨落在波荡器中产生的辐射;
 - HGHG: High-Gain Harmonic Generation, 初始信号来自于外加的光学激光, FEL辐射波长为其高次谐波;
 - EEHG: Echo-Enabled Harmonic Generation, 外种子驱动,和HGHG 类似,优点在于辐射的谐波次数可以很高;
 - PEHG: Phase-merging Ehanced Harmonic Generation,利用电子相空间的横纵耦合获得更高效率的高次谐波转换;
 - 其他...

自由电子激光的主要运行模式(II)

自由电子激光的主要运行模式(II)

自由电子激光的主要运行模式(II)

自由电子激光的主要运行模式 (II)

Selected references:

```
J.M.J. Madey, J. Appl. Phys. 42, 1906–1913 (1971).
```

[©] D.A.G. Deacon et al., Phys. Rev. Lett. 38, 892-894 (1977).

R. Bonifacio et al., Opt. Commun. 50, 373-378 (1984).

S.V. Milton *et al.*, *Science* **292**, 2037–2041 (2001).

L.H. Yu, *Phys. Rev. A* 44, 5178–5193 (1991).

[№] L.H. Yu et al., *Science* **289**, 932–934 (2000).

G. Stupakov, *Phys. Rev. Lett.* **102**, 074801 (2009).

D. Xiang et al., Phys. Rev. Lett. 105, 114801 (2010).

Z. Zhao *et al.*, *Nat. Photonics.* **6**, 360–363 (2012).

H. Deng et al., Phys. Rev. Lett. 111, 084801 (2013).

[©] C. Feng et al., New Journal of Physics 16, 043021(2014).

Large Free-electron Lasers in the World

LCLS@SLAC (2009)

FERMI@Elettra (2011)

SACLA@Spring-8 (2011)

European XFEL@Germany (2016)

Free-electron Lasers in the World

Facility	Energy (GeV)	λ_{FEL} (nm)	Mode	First lasing
LCLS (美国)	3.5 - 15	0.12 - 2.2	SASE	2009.4
SACLA (日本)	8.5	0.063	SASE	2011.6
European XFEL (德国)	17.5	0.08	SASE	2017
PAL-XFEL (韩国)	10.0	0.1	SASE	2016
SwissFEL (瑞士)	6.0	0.1	SASE	2017
FLASH (徳国)	1.2	4.0	SASE	2006
FERMI (意大利)	1.2	10.8	HGHG (II)	2011
SXFEL (中国上海)	0.84	9.0	HGHG (II)	2017
DCLS (中国大连)	0.3	50 - 150	HGHG	2017

Other FELs . . .

SDUV-FEL&XFEL(China/SINAP), SCSS(Japan/Spring-8), FLASH-II (Germany/DESY), LCLS-II (USA/SLAC) . . .

- 1 Overview of Free-electron Lase
- 2 History of Free-electron Laser
 - FEL development around the world
 - FEL V.S. Optical Laser
- 3 How to learn the physics of FEL
- 4 Conclusions

Timeline of the FEL development

1940s-50s:	Ginzburg, Motz	波荡器辐射理论
-:	Motz	可见及毫米波段非相干波荡器辐射
-:	Phillips	'ubitron'(指出'FEL'能量来源)
1971:	John Madey	量子理论 (低增益)
1976:	Madey	gain @ 10.6 μm
1977:	D.A.G. Deacon, L.R. Elias, John Madey	$3.4\mu\mathrm{m}$ prove oscillator FEL
-:	Colson, Hopf	经典力学描述FEL
2000:	LEUTL	SASE FEL @ 530 nm, 385 nm
-	BNL/ATF (L.H. Yu)	HGHG @ 2nd harmonic
-	DESY/TTF	SASE FEL @ 109 nm
2009:	SLAC/LCLS	SASE FEL @ 0.15 nm
-	SLAC (G. Stupakov)	EEHG principle
2011:	SPring-8/SACLA	SASE FEL @ 0.06 nm
2011:	SDUV-FEL	demonstrate EEHG @ 2nd
-:	SDUV-FEL	first lasing EEHG @ 3rd
2012:	FERMI-FEL	Cascaded HGHG

FFL理论

Bonifacio, Pellegrini, Murphy, Saldin, Schneidmiller, Yukov . . .

FEL V.S. Optical Laser

- 工作原理不同;
- 工作波段;
- 光学特性;

CO2 LASER

000

Commercial Lasers

- 1 Overview of Free-electron Laser
- 2 History of Free-electron Laser
- 3 How to learn the physics of FEL
- 4 Conclusions

How to learn the physics of FEL

- 束流物理;
- FEL物理;
- 程序工具;

- 1 Overview of Free-electron Laser
- 2 History of Free-electron Laser
- 3 How to learn the physics of FEL
- 4 Conclusions

Homework

- 找到有关装置的综述性文献并开始阅读和收集其他相关文献;
- 阅读上文提及的文献;
- 阅读"Ultraviolet and Soft X-Ray Free-Electron Lasers"第一章节的内容。

Thank you for your attention!