2.AdvExps 进阶性实验

本文件夹中的所有实验均为本讲中进阶的实验,基于 0.ApiExps、1.BasicExps 文件夹中的实验,用户在已经熟悉基于 RflySim 平台开发本章中的实验,该文件夹中的实验均为本讲的进阶例程。

序号	实验名称	简介	文件地址	版本
1	进阶接口实验	本文件夹中的所有实验均为本讲中	e0_AdvApiExps\Readme.pdf	个人版
		进阶接口类实验,基于 0.ApiExps、		
		1.BasicExps 文件夹中的实验,本文		
		件夹中均为针对本章的进阶性接口		
		类实验。		
2	单台电脑控制 8 飞	通过平台提供的 RflyUdpFast 传输	e1_RflyUdpSwarmAdvExp\Readme.pdf	个人集
	机仿真实验	模块,接收无人机的状态信息,然		合版
		后进行对单个无人机的局部位置运		
		动控制进行 Simulink 建模发送控制		
		指令到该模块,然后进行仿真。		
3	通信接口的	通过平台提供的 RflyUdpFast 传输	e1_RflyUdpSwarmAdvExp\1.RflyUdpUltraSimpleEight_Mat\Readme.pdf	个人集
	UltraSimple 模式八	模块,接收无人机的状态信息,然		合版
	机画圆实验	后进行对单个无人机的局部位置运		
		动控制进行 Simulink 建模发送控制		
		指令到该模块,然后进行仿真。		
4	8 机 SITL 仿真实验	通过利用 RflySim 平台 UDP 通信函	e1_RflyUdpSwarmAdvExp\2.UDPSimple8Swarm_Py\Readme.pdf	个人集
		数接口进行无人机飞机起飞,然后		合版

		飞同心圆。		
5	分布式局域网点对		e1_RflyUdpSwarmAdvExp\3.UDPSimple16Swarm2PC_Py\Readme.pdf	个人集
	点通信 16 机仿真实			合版
	验	再局域网内指定电脑之间进行联合		
		仿真, 只需要知道局域网中电脑的		
		IP 地址,通过在程序中进行设置就		
		可实现仿真。本实验可实现在局域		
		网内指定的两台电脑(如下统称为		
		电脑 A、电脑 B)联合进行 8 架飞机		
		画圆飞行。		
6	多机质点集群实验	从模型精度的角度,使用高精度	e2_NoPX4SITLSwarm\Readme.pdf	个人集
		6DOF 模型(CopterSim)+真实飞		合版
		控系统(PX4)的软/硬件在环仿真		
		闭环的方式,能够有效提高模型可		
		信度,从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平台实现		
		多架质点模型的四旋翼飞机起飞和		
		画圆飞行。		
7	12 机质点集群实验	从模型精度的角度,使用高精度	e2_NoPX4SITLSwarm\1.NoPX4SITL12Swarm\Readme.pdf	个人集
		6DOF 模型(CopterSim)+真实飞		合版
		控系统(PX4)的软/硬件在环仿真		
		闭环的方式,能够有效提高模型可		
		信度,从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平台实现		
		12 架质点模型的四旋翼飞机起飞		
		和画圆飞行。		

8	30 机质点集群实验	从模型精度的角度,使用高精度	e2_NoPX4SITLSwarm\2.NoPX4SITL30Swarm\Readme.pdf	个人集
		6DOF 模型(CopterSim)+真实飞		合版
		控系统(PX4)的软/硬件在环仿真		
		闭环的方式,能够有效提高模型可		
		信度,从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平台实现		
		30 架质点模型的四旋翼飞机起飞		
		和画圆飞行。		
9	100 机质点集群实验	从模型精度的角度,使用高精度	e2_NoPX4SITLSwarm\3.NoPX4SITL100Swarm\Readme.pdf	个人集
		6DOF 模型(CopterSim)+真实飞		合版
		控系统(PX4)的软/硬件在环仿真		
		闭环的方式,能够有效提高模型可		
		信度,从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平台实现		
		100 架质点模型的四旋翼飞机起飞		
		和画圆飞行。		
10	200 机质点集群实验	从模型精度的角度,使用高精度	e2_NoPX4SITLSwarm\4.NoPX4SITL200Swarm2PC\Readme.pdf	个人集
		6DOF 模型(CopterSim)+真实飞		合版
		控系统(PX4)的软/硬件在环仿真		
		闭环的方式,能够有效提高模型可		
		信度,从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平台实现		
		在局域网内两台电脑 200 架质点模		
		型的四旋翼飞机起飞和画圆飞行。		
11	分布式局域网通信8	单台电脑得性能毕竟是有限的,	e3_DistributedLANSwarm\Readme.pdf	个人集
	机仿真实验	RflySim 平台的集群仿真功能提供		合版

		两种支持再局域网内联合仿真的模式。本实验可实现在局域网内两台电脑(如下统称为电脑 A、电脑 B)联		
	<i>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </i>	合进行8架飞机画圆飞行。		A 1 45
12	分布式局域网广播	单台电脑得性能毕竟是有限的,	e3_DistributedLANSwarm\1.BroadNetSwarm_Mat\Readme.pdf	个人集
	通信8机仿真实验	RflySim 平台的集群仿真功能支持		合版
		再局域网内联合仿真,且配置较为		
		简单,不需要查看局域网中电脑的		
		地址,可以直接运行,理论上可以		
		实现局域网内多机联合仿真。本实		
		验可实现在局域网内两台电脑(如		
		下统称为电脑 A、电脑 B)联合进行		
		8架飞机画圆飞行。		
13	分布式局域网点对	单台电脑得性能毕竟是有限的,	e3_DistributedLANSwarm\2.UseIPNetSwarm_Mat\Readme.pdf	个人集
	点通信 8 机仿真实	RflySim 平台的集群仿真功能支持		合版
	验	再局域网内指定电脑之间进行联合		
		仿真,只需要知道局域网中电脑的		
		IP 地址,通过在程序中进行设置就		
		可实现仿真。本实验可实现在局域		
		网内指定的两台电脑(如下统称为		
		电脑 A、电脑 B)联合进行 8 架飞机		
		画圆飞行。		
14	自动防撞下控制进	本文件夹中的实验中通过软、硬件	e4_SwarmFormCollCtrl\Readme.pdf	个人集
	行集群编队仿真实	在环仿真分别演示了无人机不同队		合版
	验	, 形的变换以及编队功能。		
15	自动防撞下控制机	本实验中通过软、硬件在环仿真分	e4_SwarmFormCollCtrl\2.SwarmBodyVelCtrlColl_Mat\Readme.pdf	个人集

	体速度进行集群编	别演示了无人机不同队形的变换以		合版
	队仿真实验	及编队功能。		
16	自动防撞下控制地	本实验中通过软、硬件在环仿真分	e4_SwarmFormCollCtrl\3.SwarmEarthVelCtrlColl_Mat\Readme.pdf	个人集
	球速度(NED 坐标系)	别演示了无人机不同队形的变换以		合版
	进行集群编队仿真	及编队功能。		
	实验			
17	自动防撞下控制地	本实验中通过软、硬件在环仿真分	$\underline{e4_SwarmFormCollCtrl\-4.SwarmEarth\-VelCtrl\-CollUdp_Mat\-Readme.pdf}$	个人集
	球速度(NED 坐标系)	别演示了无人机不同队形的变换以		合版
	的集群编队仿真实	及编队功能。		
	验(UDP 模式)			
18	8 机绕"8"字编队飞	通过平台提供的 RflyUdpFast 传输	e4_SwarmFormCollCtrl\1.UAV8Swarm3D_Mat\Readme.pdf	个人集
	行仿真实验	模块,基于 MATLAB/Simulink 实现		合版
		控制8架四旋翼无人机的绕8字编		
		队飞行控制实验,同时,本算法可		
		以用于 1~10 个飞机的编队控制,		
		可自行阅读内部实现。		
19	集群智能例程	本文件夹中的实验使用了智能算法	e5_AlSwarmCtrlExp\Readme.pdf	个人集
		来实现集群控制,包括在路径规划,		合版
		避障,避碰以及深度强化学习训练		
		无人机防守模型等。		
20	蚂蚁算法多无人机	通过蚂蚁算法规划出一条可行且较	e5_AlSwarmCtrlExp\1.AntAlgorithmMutUAVPathPlan\Readme.pdf	个人集
	路径规划实验	优的路径,这条路径需要符合避障		合版
		以及避碰的要求。		
21	Olfati-Saber 集群算	采用 Olfati-Saber 算法实现多无人	e5_AlSwarmCtrlExp\2.Olfati_SaberSwarmUAVObsAvoid\Readme.pdf	个人集
	法	机的避障、避碰、向目标点聚集。		合版
22	无人机区域防守	采用深度强化学习训练无人机防守	e5_AlSwarmCtrlExp\3.MultiUAVRegionDefense\Readme.pdf	个人集

模型,使得能够采用更少的无人机	合版
抵御攻击型无人机,能够取得很好	
的防守效果。	

所有文件列表

序号	实验名称	简介	文件地址	版本
1	进阶性实验	本文件夹中的所有实验均为	2.AdvExps\Readme.pdf	个 人
		本讲中进阶的实验,基于		集合
		0.ApiExps、1.BasicExps 文件		版
		夹中的实验,用户在已经熟		
		悉基于 RflySim 平台开发本章		
		中的实验,该文件夹中的实		
		验均为本讲的进阶例程。		
2	进阶接口实验	本文件夹中的所有实验均为	2.AdvExps\e0_AdvApiExps\Readme.pdf	个 人
		本讲中进阶接口类实验,基		版
		于 0.ApiExps、1.BasicExps 文		
		件夹中的实验,本文件夹中		
		均为针对本章的进阶性接口		
		类实验。		
3	飞机碰撞实验	实验通过使用飞机间的不同	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\Readme.pdf	个 人
		通信模式实现飞机碰撞的实		版
		验。演示了通过调用 RflySim		
		平台的碰撞 API 接口,		
		来实现无人机在三维引擎中		
		的碰撞效果。		
4	RflySim3D 碰撞	本实验中演示了通过调用	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\1.CrashMonitorAPI\Readme.pdf	个 人
	接口实验	RflySim平台的碰撞API接口,		版

		来实现无人机在三维引擎中		
		的碰撞效果。		
5	MAVLink 模式 2	RflySim 平台的三维场景仿真	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\2.CollMAVLinkAPI_Py\Readme.pdf	个 人
	机碰撞实验	软件 RflySim3D 是基于 UE 进		版
		行开发而成的,在进行开发		
		过程中,使其具有碰撞引擎		
		模式,本例程中详细展示了		
		两个飞机从起飞到碰撞的详		
		细过程。		
6	UDP 模式 2 机碰	RflySim 平台的三维场景仿真	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\3.CollUDPModeAPI_Py\Readme.pdf	个 人
	撞实验	软件 RflySim3D 是基于 UE 进		版
		行开发而成的,在进行开发		
		过程中,使其具有碰撞引擎		
		模式,本例程中详细展示了		
		两个飞机从起飞到碰撞的详		
		细过程。		
7	UDP 模式 2 机碰	RflySim 平台的三维场景仿真	2.AdvExps\e0_AdvApiExps\1.CollisionExpAPI\4.CollUDPModeAPI_Mat\Readme.pdf	个 人
	撞(Simulink)实验	软件 RflySim3D 是基于 UE 进		版
		行开发而成的,在进行开发		
		过程中,使其具有碰撞引擎		
		模式,本例程中详细展示了		
		两个飞机从起飞到碰撞的详		
		细过程。		
8	单台电脑控制 8	通过平台提供的 RflyUdpFast	2.AdvExps\e1_RflyUdpSwarmAdvExp\Readme.pdf	个 人
	飞机仿真实验	传输模块,接收无人机的状		集合
		态信息,然后进行对单个无		版

		人机的局部位置运动控制进 行 Simulink 建模发送控制指 令到该模块,然后进行仿真。			
9	通信接口的	通过平台提供的 RflyUdpFast	2.AdvExps\e1_RflyUdpSwarmAdvExp\1.RflyUdpUltraSimpleEight_Mat\Readme.pdf	个	
	UltraSimple 模式	传输模块,接收无人机的状		集	合
	八机画圆实验	态信息,然后进行对单个无		版	
		人机的局部位置运动控制进			
		行 Simulink 建模发送控制指			
		令到该模块,然后进行仿真。			
10	8 机 SITL 仿真实	通过利用 RflySim 平台 UDP	2.AdvExps\e1_RflyUdpSwarmAdvExp\2.UDPSimple8Swarm_Py\Readme.pdf	个	人
	验	通信函数接口进行无人机飞		集	合
		机起飞,然后飞同心圆。		版	
11	分布式局域网点	单台电脑得性能毕竟是有限	2.AdvExps\e1_RflyUdpSwarmAdvExp\3.UDPSimple16Swarm2PC_Py\Readme.pdf	个	人
	对点通信16机仿	的,RflySim 平台的集群仿真		集	合
	真实验	功能支持再局域网内指定电		版	
		脑之间进行联合仿真,只需			
		要知道局域网中电脑的 IP 地			
		址,通过在程序中进行设置			
		就可实现仿真。本实验可实			
		现在局域网内指定的两台电			
		脑(如下统称为电脑 A、电脑			
		B)联合进行 8 架飞机画圆飞			
12	通信接口的	通过平台提供的 RflyUdpFast	2.AdvExps\e1_RflyUdpSwarmAdvExp\1.RflyUdpUltraSimpleEight_Mat\Readme.pdf	个	人
	UltraSimple 模式	 传输模块,接收无人机的状		集	合
	八机画圆实验	态信息,然后进行对单个无		版	

		人机的局部位置运动控制进 行 Simulink 建模发送控制指 令到该模块,然后进行仿真。			
13	8 机 SITL 仿真实 验	通过利用 RflySim 平台 UDP 通信函数接口进行无人机飞 机起飞,然后飞同心圆。	2.AdvExps\e1_RflyUdpSwarmAdvExp\2.UDPSimple8Swarm_Py\Readme.pdf	个集版	人 合
14	分布式局域网点 对点通信16机仿 真实验	单台电脑得性能毕竟是有限的,RflySim平台的集群仿真功能支持再局域网内指定电脑之间进行联合仿真,只需要知道局域网中电脑的IP地址,通过在程序中进行设置就可实现仿真。本实验可实现仿真。本实验可实现方真。本实验可电脑(如下统称为电脑A、电脑B)联合进行 8 架飞机画圆飞行。	2.AdvExps\e1_RflyUdpSwarmAdvExp\3.UDPSimple16Swarm2PC_Py\Readme.pdf	个集版	人合
15	多机质点集群实验	从模型精度的角度,使用高精度 6DOF 模型(CopterSim)+真实飞控系统(PX4)的软/硬件在环仿真闭环的方式,能够有效提高模型可信度,从而减小仿真与真机实验的差距。本实验基于 RflySim 平台实现多架质点模型的四旋翼飞机起飞和画圆飞行。	2.AdvExps\e2_NoPX4SITLSwarm\Readme.pdf	个集版	人合

16	12 机质点集群实	从模型精度的角度,使用高	2.AdvExps\e2_NoPX4SITLSwarm\1.NoPX4SITL12Swarm\Readme.pdf	个	人
	验	精度 6DOF 模型(CopterSim)		集	合
		+真实飞控系统(PX4)的软/		版	
		硬件在环仿真闭环的方式,			
		能够有效提高模型可信度,			
		从而减小仿真与真机实验的			
		差距。本实验基于 RflySim 平			
		台实现 12 架质点模型的四旋			
		翼飞机起飞和画圆飞行。			
17	30 机质点集群实	从模型精度的角度, 使用高	2.AdvExps\e2_NoPX4SITLSwarm\2.NoPX4SITL30Swarm\Readme.pdf	个	人
	验	精度 6DOF 模型(CopterSim)		集	合
		+真实飞控系统(PX4)的软/		版	
		硬件在环仿真闭环的方式,			
		能够有效提高模型可信度,			
		从而减小仿真与真机实验的			
		差距。本实验基于 RflySim 平			
		台实现 30 架质点模型的四旋			
		翼飞机起飞和画圆飞行。			
18	100 机质点集群	从模型精度的角度,使用高	2.AdvExps\e2_NoPX4SITLSwarm\3.NoPX4SITL100Swarm\Readme.pdf		人
	实验	精度 6DOF 模型(CopterSim)			合
		+真实飞控系统(PX4)的软/		版	
		硬件在环仿真闭环的方式,			
		能够有效提高模型可信度,			
		从而减小仿真与真机实验的			
		差距。本实验基于 RflySim 平			
		台实现 100 架质点模型的四			

		旋翼飞机起飞和画圆飞行。		
19	200 机质点集群	从模型精度的角度, 使用高	2.AdvExps\e2_NoPX4SITLSwarm\4.NoPX4SITL200Swarm2PC\Readme.pdf	个 人
	实验	精度 6DOF 模型(CopterSim)		集合
		+真实飞控系统(PX4)的软/		版
		硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现在局域网内两台电脑		
		200 架质点模型的四旋翼飞		
		机起飞和画圆飞行。		
20	12 机质点集群实	从模型精度的角度, 使用高	2.AdvExps\e2_NoPX4SITLSwarm\1.NoPX4SITL12Swarm\Readme.pdf	个 人
	验	精度 6DOF 模型(CopterSim)		集合
		+真实飞控系统(PX4)的软/		版
		硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		
		差距。本实验基于 RflySim 平		
		台实现 12 架质点模型的四旋		
		翼飞机起飞和画圆飞行。		
21	30 机质点集群实	从模型精度的角度,使用高	2.AdvExps\e2_NoPX4SITLSwarm\2.NoPX4SITL30Swarm\Readme.pdf	个 人
	验	精度 6DOF 模型(CopterSim)		集合
		+真实飞控系统(PX4)的软/		版
		硬件在环仿真闭环的方式,		
		能够有效提高模型可信度,		
		从而减小仿真与真机实验的		

		差距。本实验基于 RflySim 平台实现 30 架质点模型的四旋翼飞机起飞和画圆飞行。		
22	100 机质点集群实验	从模型精度的角度,使用高精度 6DOF 模型(CopterSim)+真实飞控系统 (PX4)的软/硬件在环仿真闭环的方式,能够有效提高模型可信度,从而减小仿真与真机实验的差距。本实验基于 RflySim 平台实现 100 架质点模型的四	2.AdvExps\e2_NoPX4SITLSwarm\3.NoPX4SITL100Swarm\Readme.pdf	人 合 版
23	200 机质点集群实验	旋翼飞机起飞和画圆飞行。 从模型精度的角度,使用高精度 6DOF模型(CopterSim) +真实飞控系统 (PX4)的软/硬件在环仿真闭环的方式,能够有效提高模型可信度,从而减小仿真与真机实验的差距。本实验基于 RflySim 平台实现在局域网内两台电脑200 架质点模型的四旋翼飞机起飞和画圆飞行。	2.AdvExps\e2_NoPX4SITLSwarm\4.NoPX4SITL200Swarm2PC\Readme.pdf	个 集 版
24	分布式局域网通 信8机仿真实验	单台电脑得性能毕竟是有限的,RflySim平台的集群仿真功能提供两种支持再局域网内联合仿真的模式。本实验	2.AdvExps\e3_DistributedLANSwarm\Readme.pdf	个集品版

		可实现在局域网内两台电脑			
		(如下统称为电脑 A、电脑 B)			
		联合进行8架飞机画圆飞行。			
25	分布式局域网广	单台电脑得性能毕竟是有限	2.AdvExps\e3 DistributedLANSwarm\1.BroadNetSwarm Mat\Readme.pdf	个.	人
	播通信 8 机仿真	的,RflySim 平台的集群仿真		I -	合
	实验	功能支持再局域网内联合仿		版	
		真, 且配置较为简单, 不需要			
		查看局域网中电脑的地址,			
		可以直接运行,理论上可以			
		实现局域网内多机联合仿			
		真。本实验可实现在局域网			
		内两台电脑(如下统称为电脑			
		A、电脑 B)联合进行 8 架飞机			
		画圆飞行。			
26	分布式局域网点	单台电脑得性能毕竟是有限	2.AdvExps\e3_DistributedLANSwarm\2.UseIPNetSwarm_Mat\Readme.pdf	个.	人
	对点通信 8 机仿	的,RflySim 平台的集群仿真		集	合
	真实验	功能支持再局域网内指定电		版	
		脑之间进行联合仿真,只需			
		要知道局域网中电脑的 IP 地			
		址,通过在程序中进行设置			
		就可实现仿真。本实验可实			
		现在局域网内指定的两台电			
		脑(如下统称为电脑 A、电脑			
		B)联合进行 8 架飞机画圆飞			
		行。			
27	分布式局域网广	单台电脑得性能毕竟是有限	2.AdvExps\e3_DistributedLANSwarm\1.BroadNetSwarm_Mat\Readme.pdf	个.	人

28	播通信 8 机仿真实验	的,RflySim 平台的集群仿真 功能支持再局域网内联合仿 真, 且配置较为简单, 不需要 查看局域网中电脑的地址, 可以直接运行, 理论上可以 实现局域 网内多机联合仿 真。本实验可实现在局域网内两台电脑(如下统称为电脑 A、电脑 B)联合进行 8 架飞机 画圆飞行。	2.AdvExps\e3 DistributedLANSwarm\2.UseIPNetSwarm Mat\Readme.pdf	集版	合
20	对点通信 8 机仿	的,RflySim 平台的集群仿真	Z.AdvExps\es_DistributedEANSwafff\z.oserFNetSwafff_iviat\keadffe.pdf	集	合
	真实验	功能支持再局域网内指定电		版	
		脑之间进行联合仿真,只需			
		要知道局域网中电脑的 IP 地			
		址,通过在程序中进行设置			
		就可实现仿真。本实验可实			
		现在局域网内指定的两台电			
		脑(如下统称为电脑 A、电脑			
		B)联合进行 8 架飞机画圆飞			
		行。			
29	自动防撞下控制	本文件夹中的实验中通过	2.AdvExps\e4_SwarmFormCollCtrl\Readme.pdf	个	人
	进行集群编队仿	软、硬件在环仿真分别演示		集	合
	真实验	了无人机不同队形的变换以		版	
		及编队功能。			
30	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\2.SwarmBodyVelCtrlColl_Mat\Readme.pdf	个	人

	机体速度进行集	仿真分别演示了无人机不同		集	合
	群编队仿真实验	队形的变换以及编队功能。		版	
31	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\3.SwarmEarthVelCtrlColl_Mat\Readme.pdf	个	人
	地球速度(NED 坐	仿真分别演示了无人机不同		集	合
	标系)进行集群编	队形的变换以及编队功能。		版	
	队仿真实验				
32	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\4.SwarmEarthVelCtrlCollUdp_Mat\Readme.pdf	个	人
	地球速度(NED 坐	仿真分别演示了无人机不同		集	合
	标系)的集群编队			版	
	仿真实验(UDP模				
	式)				
33	8 机绕"8"字编队	通过平台提供的 RflyUdpFast	2.AdvExps\e4_SwarmFormCollCtrl\1.UAV8Swarm3D_Mat\Readme.pdf	个	人
	飞行仿真实验	传输模块,基于		集	合
	0131337777	MATLAB/Simulink 实现控制 8		版	
		架四旋翼无人机的绕 8 字编		712	
		法可以用于 1~10 个飞机的			
		编队控制,可自行阅读内部			
	- 17 /k// 2 1 - 1 - 1 - 1 - 1	实现。			
34	8 机绕"8"字编队	通过平台提供的 RflyUdpFast	2.AdvExps\e4_SwarmFormCollCtrl\1.UAV8Swarm3D_Mat\Readme.pdf	个	人
	飞行仿真实验	传输模块,基于		集	合
		MATLAB/Simulink实现控制8		版	
		架四旋翼无人机的绕 8 字编			
		队飞行控制实验,同时,本算			
		法可以用于 1~10 个飞机的			
		编队控制,可自行阅读内部			

		实现。		
35	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\2.SwarmBodyVelCtrlColl_Mat\Readme.pdf	个 人
	机体速度进行集	仿真分别演示了无人机不同		集合
	群编队仿真实验	队形的变换以及编队功能。		版
36	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\3.SwarmEarthVelCtrlColl_Mat\Readme.pdf	个 人
	地球速度(NED 坐	仿真分别演示了无人机不同		集合
	标系)进行集群编	队形的变换以及编队功能。		版
	队仿真实验			
37	自动防撞下控制	本实验中通过软、硬件在环	2.AdvExps\e4_SwarmFormCollCtrl\4.SwarmEarthVelCtrlCollUdp_Mat\Readme.pdf	个 人
	地球速度(NED 坐	仿真分别演示了无人机不同		集合
	标系)的集群编队	队形的变换以及编队功能。		版
	仿真实验(UDP 模			
	式)			
38	集群智能例程	本文件夹中的实验使用了智	2.AdvExps\e5_AlSwarmCtrlExp\Readme.pdf	个 人
		能算法来实现集群控制,包		集合
		括在路径规划,避障,避碰以		版
		及深度强化学习训练无人机		
		防守模型等。		
39	蚂蚁算法多无人	通过蚂蚁算法规划出一条可	2.AdvExps\e5_AlSwarmCtrlExp\1.AntAlgorithmMutUAVPathPlan\Readme.pdf	个 人
	机路径规划实验	行且较优的路径, 这条路径		集合
		需要符合避障以及避碰的要		版
		求。		
40	Olfati-Saber 集群	采用 Olfati-Saber 算法实现	2.AdvExps\e5_AlSwarmCtrlExp\2.Olfati_SaberSwarmUAVObsAvoid\Readme.pdf	个 人
	算法	多无人机的避障、避碰、向目		集合
		标点聚集。		版
41	无人机区域防守	采用深度强化学习训练无人	2.AdvExps\e5_AlSwarmCtrlExp\3.MultiUAVRegionDefense\Readme.pdf	个 人

		机防守模型,使得能够采用		集	合
		更少的无人机抵御攻击型无		版	
		人机, 能够取得很好的防守			
		效果。			
42	蚂蚁算法多无人	通过蚂蚁算法规划出一条可	2.AdvExps\e5_AlSwarmCtrlExp\1.AntAlgorithmMutUAVPathPlan\Readme.pdf	个	人
	机路径规划实验	行且较优的路径,这条路径		集	合
		需要符合避障以及避碰的要		版	
		求。			
43	Olfati-Saber集群	采用 Olfati-Saber 算法实现	2.AdvExps\e5_AlSwarmCtrlExp\2.Olfati_SaberSwarmUAVObsAvoid\Readme.pdf	个	人
	算法	多无人机的避障、避碰、向目		集	合
		标点聚集。		版	
44	无人机区域防守	采用深度强化学习训练无人	2.AdvExps\e5_AlSwarmCtrlExp\3.MultiUAVRegionDefense\Readme.pdf	个	人
		机防守模型,使得能够采用		集	合
		更少的无人机抵御攻击型无		版	
		人机,能够取得很好的防守			
		效果。			

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。