EPT system durability test procedures-battery parts

EPT system durability test procedures Battery parts

电动力总成温度交变耐久测试程序

电池部分 ES6 项目

Author编写	
Signature 签字	Date 日期
Checker 审核	
Signature 签字	Date 日期
Approval批准	
Signature 签字	Date 日期

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

Revisions 修订信息:

Date	Issue	Revision	Reviser	Note
日期	版本号	修改内容	修改人	备注

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

目录

1.内容和适用范围	4
2.目的	4
3.试验对象	4
4.测试准备	6
5.测试设备	6
6.测试方法	6
6.1 限值条件:	6
6 温度交变实验寿命	8
7 温度交变充放电程序	10
7.1 参考性测试	10
7.2 电池包循环充放实验	10
7.3.数据记录	11
8 试验结果	11
9 比对	12
10 接受标准	12

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

1.内容和适用范围

适用于 ES6 项目 84kWh C 样电池包温度交变耐久测试

2.目的

▶ 参照企标《NEV-STD-EE-0002_Reliability and Lifetime Specification_v1.0_2015-12-10.pdf》的温度交变曲线,验证电池系统外 部组件老化的过程。

3.试验对象

测试样本: 120Ah C Sample(84kwh)

样本编号: 待定

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

序号	参数名称	
1	样品名称	锂离子电池系统
2	电池类型(能量型/功率型)	能量型
3	系统额定电压(V)	346.56
4	系统额定容量(Ah)	234
5	系统额定能量(KWh)	81.095
6	系统充电终止电压(V)	403.2
7	系统放电终止电压(V)	268.8
8	样品外形尺寸(mm)	2062*1539*136
9	样品重量(kg)	510
10	系统组成形式(串并联数)	96S2P
11	系统冷却方式	液冷
12	单体电池额定电压 (V)	3.61
13	单体电池额定容 量(Ah)	117
14	单体电池充电终止电压 (V)	4.2
15	单体电池放电终止电压 (V)	2.8
16	单体电池外形尺寸(mm)	(52±1)×(148±1)×(102.5± 1)
17	单体电池重量(kg)	1.83±0.2

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

4.测试准备

vector 测试设备一套、水冷机、充放电设备、环境舱、直流稳压电源。

5.测试设备

设备名称	设备型号	厂家	设备参数	精度
充放电设备				1/‰
水冷机	LQ10K-D	凌工	(-40-80°C)	±0.5°C

6.测试方法

6.1 限值条件:

6.1.1 电芯保护条件

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

温度(°C)	上图	₹ (V)	下限 (V)		
	持续	脉冲	持续	脉冲	
55	4.2	4.2	2.8	2.8	
45	4.2	4.2	2.8	2.8	
25	4.2	4.2	2.8	2.8	
-30	/	/	2.5	2.5	

6.1.2 报警设置(若设备满足不了如下要求 根据实际情况而定)

信号名称	一级报警限值	消防预警	二级报警限值	消防开启
电池包绝缘阻	<500ΚΩ	声光报警	<50ΚΩ	喷水、电池包落水
电芯电压最小值	<2.5v	声光报警	<2v	喷水、电池包落水
电芯温度最大值	>55°C	声光报警	>65°C	喷水、电池包落水
温升速率	>4°C/2S,△T=2S	声光报警	>8°C/S,△T=1S	喷水、电池包落水
电池包故障等	4	声光报警	5	喷水、电池包落水
电池包表面温度	>60°C	声光报警	>80°C	喷水、电池包落水
电芯压差 SOC50%	>50mv	声光报警	>200mv	静态检查项
电芯温差	>7°C	声光报警	>10°C	喷水、电池包落水

说明:

▶ 二级报警启动条件:二级报警参数限制2个以上超限启用动作

▶ 水冷机设定:温度控制模式

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

6温度交变实验寿命

6.1 温度交变实验曲线

依据企标《NEV-STD-EE-0002_Reliability and Lifetime

Specification_v1.0_2015-12-10.pdf》的温度交变曲线如下:

 T_{max} =60° C, T_{min} =-30° C

6.2 寿命计算方法

根据 Coffin-Manson 模型,计算出温度交变的循环次数

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

$$A_{CM} = \left(\frac{\Delta T_{Test}}{\Delta T_{Field}}\right)^{C}$$
 (3)

where:

Acceleration factor of the Coffin-Manson model A_{CM}

 ΔT_{Test} Temperature difference during a test cycle ($\Delta T_{Test} = T_{max} - T_{min}$) Average temperature difference during service life in the field ΔT_{Field}

Parameter of the Coffin-Manson model In this standard a fixed value of 2,5 is used

for c

The total number of test cycles is calculated according to

$$N_{\text{Test}} \, = \, \frac{N_{\text{TempCycleRield}}}{A_{\text{CM}}} \qquad \text{(4)}$$

where:

NTest Required number of test cycles

Number of temperature cycles during service life in the field N_{TempCyclesField}

Асм Acceleration factor of the Coffin-Manson model according to equation (3)

NTest 计算方法如下:

- $T_{\text{max}}=60^{\circ} \text{ C}$, $T_{\text{min}}=-30^{\circ} \text{ C}$, $\Delta T_{\text{Field}}=25^{\circ} \text{ C}$
- 电池系统设计寿命为10年
 - $N_{\text{TempCyclesField}} = 2 * 365 * 10 \text{ (years)} = 7300 \text{ cycles}$
 - $\Delta T_{\text{Test}} = 60 \, ^{\circ}\text{C} (-30 \, ^{\circ}\text{C}) = 90 \, ^{\circ}\text{C}.$
 - \bullet ACM= $(90/25)^{2.5}$ =24.59
 - \bullet N_{Test} =7300/24.59=296.87 Cycles
 - 电池系统外部组件热平衡时间为20分钟,浸润时间15分钟, 温箱温升速

率1.5°C/min

CONFIDENTIAL

EPT system durability test procedures-battery parts

 $T_{cycle}=2*{90°C/(1.5°C/min)}+35min}=190min$

For 296.87 cycles the total test duration is therefore 40 天.

297.87*190min/60min/24h=40 天

加上台架搭建和标定时间5天,合计45天。

7温度交变充放电程序

7.1 参考性测试

- 静态容量测试,25℃,1/3C 充放电,截至条件(上限 4.2V,下限 2.8V),倍率随老化状态调整;
- 脉冲充放电测试,25°C,5.10.20.30.40.50.60.70.80.90.95%SOC,参照 HPPC 测试;

7.2 电池包循环充放实验

将电池放入 25℃温箱中,静置 30min 后待电池温度稳定在 25±2℃后开始测试,水冷机开启,温箱按照 6.1 温度曲线控制温度,冷却系统跟随整车热管理策略;

- a. 使用 1/3C 电流将电池 SOC 调整到 BMSSOC=50%;
- b. 静置 30min 后开始温度循环;

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

c. 电池包在升温过程中采用如下功率进行实验,如果无法在 60min 内完成温升,则使用水冷机辅助;在 20°C的时候,如果 SOC 偏离 50%±2%,使用 1/3C 将 SOC 调整到 50%;

	Charge/Discharge power @ 50% SOC							
	50°C	40°C	25°C	20°C	10°C	0°C	-10°C	-20°C
Discharge (kW)	28	83	83	57	21	14	4	1
Charge (kW)	-28	-83	-83	-57	-21	-14	-4	-1

d. 参考性测试:参考脉冲放电表格,以后每次放电按照电池容量调整脉冲电流,每 50 次进行一次。

7.3.数据记录

温度、时间、容量、循环次数、电芯温差、电芯压差、SOH;

8 试验结果

循环耐久测试报告

NIO CONFIDENTIAL

EPT system durability test procedures-battery parts

9 比对

试验室内部比对

10 接受标准

温度循环后,电池系统达到 ISO16750 ClassA,电池系统密封测试通过,容量和功率保持率>80%。

NIO CONFIDENTIAL