

Contrast Data Mining: Methods Aនាក្រៅការប្រទៃឲ្យដែល Seam Help

https://tutorcs.com

WeChat: cstutoomp90073
Security Analytics

Sarah Erfani, CIS

Semester 2, 2021

Outline

- Introduction to Contrast Data Mining
- **Apriori**
- Assignment Project Exam Help **FP-Growth**
- https://tutorcs.com Applications of contrast mining in network traffic analysis and anomaly

WeChat: cstutorcs

Contrast Data Mining - What is it? [1]

Contrast – "To compare or appraise in respect to differences" (Merriam Webster Dictionary)

Contrast data mining i-githen continuo joatte in and hode is contrasting two or more datasets/conditions.

https://tutorcs.com

"Sometimes it's good to contrast what you like with something else. It makes you appreciate it even more"

Darby Conley, Get Fuzzy, 2001

What can be Contrasted?

- Objects at different time periods
 - "Compare traffic patterns from yesterday with today's"
- Objects for different spatial locations
 - "Find the distinguishing features of location x for human DNA, versus location x for human DNA, v
- Object positions in a ranking https://tutorcs.com
 - "Find the differences between high- and low-income earners"
- Objects across different asset: cstutorcs
 - "Find the differences between people with brown hair, versus those with blonde hair"
- Objects within a class
 - "Within the academic profession, there are no rich people"
 - "Within computer science, most scientific articles come from USA or Europe"

Characteristics of Contrast Data Mining

- Applied to multivariate data
- Objects may be relational, sequential, graphs, models, classifiers, combinations of these
- · Representation of contrasts is important theeds to be
 - Interpretable, non redundant, potentially actionable https://tutorcs.com
 - Tractable to compute WeChat: cstutorcs
- Quality of contrasts is also important. Need
 - Statistical significance, which can be measured in multiple ways
 - Ability to rank contrasts is desirable, especially for classification

How is Contrast Data Mining Used? [1]

- Reporting significant changes/differences
 - "Young children with diabetes have a greater risk of hospital admission, compared to the rest of the population"
- Alerting, notification and monitoring .
 Assignment Project Exam Help
 - "Tell me when the dissimilarity index falls below 0.3"
 - https://tutorcs.com
 Building one/multi-class classifiers
 - Many different te Wright: cstutorcs
 - Also used for weighting and ranking instances
- Constructing synthetic instances
 - Good for rare classes

Example – Network Traffic Analysis

- Extracting knowledge from the massive volumes of network traffic is an important task in network and security management
- Network flows that are ranked by anomaly detection systems often contain thousands of records. Analysts often check only the first few pages
 Assignment Project Exam Help
- Having a concise and meaningful report of petwork traffic is more desirable
- An appropriate report can help managers to reduce the time and cost of security analysis and make smart decisions

Example – Network Traffic Analysis

• **Summarization:** A good summarization is trade-off between two metrics: Compaction gain and information loss

Table1: Dataset of network flows

	src IP	sPort	des IP	dPort	pro	flags	packets	bytes
T1	12.190.84.122	32178	J99119294	P ₈₀ oj	ectep F. X	APRS	[2,20]	[504,1200]
T2	88.34.224.2	51989	₹00.10.20.4°	80	tcp	APRS	[2,20]	[220,500]
T3	12.190.19.23	2234	100.10.20.4	80	tcp	APRS	[2,20]	[220,500]
T4	98.198.66.23	27643	1100-10-20.4	11691	es temm	APRS	[2,20]	[42,200]
T5	192.168.22.4	5002	100.10.20.4 1100.10.20.3 100.10.20.3	21	cs.teom	A-RSF	[2,20]	[42,200]
T6	192.168.22.4	5001	100.10.20.3	21	tcp	A-RSF	[40,68]	[220,500]
T7	67.118.25.23	44532	W020.2431	t • 24 st	utorcs	A-RS	[40,68]	[42,200]
T8	192.168.22.4	2765	100.10.20.4	113	tcp	APRS	[2,20]	[504,1200]
T9	98.198.66.23	5003	100.10.20.5	21	tcp	A-RSF	[2,20]	[220,500]

Example – Network Traffic Analysis

Summarization: A good summarization is trade-off between two metrics:
 Compaction gain and information loss

Table1: Dataset of network flows

	src IP	sPort	des IP	dPort	pro	flags	packets	bytes
T1	12.190.84.122	32178	299119 2 911	Proj	ectep F x	APRS APRS	[2,20]	[504,1200]
T2	88.34.224.2	51989	\$00.10.20.4°	80	tcp	APRS	[2,20]	[220,500]
T3	12.190.19.23	2234	100.10.20.4	80	tcp	APRS	[2,20]	[220,500]
T <mark>4</mark>	98.198.66.23	27643	1100-10-20.4	1881	og tenn	APRS	[2,20]	[42,200]
T5 J	192.168.22.4	5002	100.10.20.3	21	tcp	A-RSF	[2,20]	[42,200]
T6	192.168.22.4	5001	100.10.20.3	21	tcp	A-RSF	[40,68]	[220,500]
T <mark>7 </mark>	67.118.25.23	44532	V0040.20.31	· 21 c1	uttorcs	A-RS	[40,68]	[42,200]
T <mark>8→[</mark>	192.168.22.4	2765	100.10.20.4	113	tcp	APRS	[2.20]	[504.1200]
Т9	98.198.66.23	5003	100.10.20.5	21	tcp	A-RSF	[2,20]	[220,500]

Table 2: Summarization by clustering

	size	src IP	sPort	des IP	dPort	pro	flags	packets	bytes
S1	5	***	***	100.10.20.4	***	tcp	APRS	[2,20]	***
S2	3	***	***	100.10.20.3	21	tcp	***	***	***

Example – Reporting Significant Differences Between Multiple Datasets

Day1:

	src IP	sPort	des IP	dPort	pro	flags	packets	bytes
T1	12.190.84.122	32178	100.10.20.4	80	tcp	APRS	[2,20]	[504,1200]
T2	88.34.224.2	51989	100.10.20.4	80	tcp	APRS	[2,20]	[220,500]
T3	12.190.19.23	2234	100.10.20.4	80	tcp	APRS	[2,20]	[220,500]
	98.198.66,23				tcp	APRS	[2,20]	[42,200]
T5	192.168. 22.8 \$	31 5002 1	neon to de 2003	eet L	Exam	ARED	[2,20]	[42,200]
T6	192.168.22.4	5001	100.10.20.3	21	tcp	A-RSF	[40,68]	[220,500]
T7	67.118.25.23	44532	100/10.20.3	221	tcp	A-RSF	[40,68]	[42,200]
T8	98.198.66.23	5003	\$100,10,20,3 100,10,20,5	210	tcp	A-RSF	[2,20]	[220,500]

Day2:

WeChat: cstutorcs

	src IP	sPort	des IP	dPort	pro	flags	packets	bytes
T1	12.190.84.122	32178	100.10.20.4	80	tcp	APRS	[2,20]	[504,1200]
T2	88.34.224.2	51989	100.10.20.4	80	tcp	APRS	[2,20]	[220,500]
T	12.190.19.23	2234	100.10.20.4	80	tcp	APRS	[2,20]	[220,500]
T∠	98.198.66.23	27643	100.10.20.10	90	udp		[2,20]	[42,200]
T!	192.168.22.4	5002	100.10.20.10	90	udp		[2,20]	[42,200]
Te	192.168.22.4	5001	100.10.20.3	21	tcp	A-RSF	[40,68]	[220,500]
	67.118.25.23	44532	100.10.20.3	21	tcp	A-RSF	[40,68]	[42.200]
T	98.198.99.23	5003	100.10.20.20	21	tcp	APRS	[40,68]	[1200,1500]

Example – Reporting Significant Differences Between Multiple Datasets

Output:

	src IP	sPort	des IP	dPort	pro	flags	packets	bytes
C1	98.198.66.23	27643	100.10.20.10	90	udp		[2,20]	[42,200]
C2	192.168.22.4	5002	100.10.20.10	90	udp		[2,20]	[42,200]
C3	98.198.99.23	5003	100.10.20.20	21	tep_	APRS	[40,68]	[1200,1500]
		ASSI	giiment P	Tojeci	LEX	ШПП	eip	-

https://tutorcs.com

• We can use contrast pattern mining for finding important changes.

WeChat: cstutorcs

 Contrast pattern mining finds patterns whose support differs significantly from one dataset to another.

Definitions

- **Itemset:** A collection of one or more items
 - k-itemset: An itemset that contains k items
- Count (X, D): The number of transactions in dataset D containing pattern X

 Assignment Project Exam Help
- Support (X, D): The perturble of the sections in dataset D containing pattern X

WeChat: cstutores(
$$X, D$$
)
$$support(X, D) = \frac{|D|}{|D|}$$

• Frequent Itemset: An itemset whose support is greater than or equal to a *minsup* threshold

$$support(X, D) \ge minsup$$

Apriori Algorithm – Revision

Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Prune candate semsets corraining subsets breength k that are infrequent
 - Count the support of each candidate by scanning the database
 - Eliminate candidates that are infrequent, leaving only those that are frequent
 - Generate length (k+1) candidate itemsets from length k frequent itemsets

Apriori Principle:

If an itemset is infrequent, then all of its superset must also be infrequent

Illustrating Apriori Principle – Revision

Bottleneck of Apriori

- It is costly to handle a huge number of candidate sets
- If there are 10⁴ frequent *1-itemsts*, the Apriori algorithm will need to generate more than 10⁷ *2-itemsets* and test their frequencies.
- Mining long patterns needs many passes of scanning and generates lots of candidates.
- It may need to repeatedly scan the whole database and check a large set of candidates by pattern matching.

 We Chat: cstutorcs
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

Overview of FP-Growth [2]

- Find frequent single items, and partition the database based on each such item
- To facilitate efficient processing, compress a large database into a compact, Frequent-Patters tree (FIFE) Structure
 - Highly compacted templete the form of the compact of
 - Avoid candidate generation
 - Avoid costly repeated database scans

FP-Tree Definition

- FP-tree is a frequent pattern tree, and defined as below:
- One root labeled as "null", a set of item prefix sub-trees as the children of the root, and a frequent-item header table.
- Each node in the item prefix sub-trees has three fields:
 - Item-name: Registers which item this node represents,
 - Count: The number of transactions represented by the portion of the path reaching this node,
 - Node-link: Links to the next node in the FP-tree carrying the same item-name, or null if there is none.

FP-Tree Definition

- Each entry in the frequent-item header table has two fields,
 - Item-name,
 - Item support count, and
 - Head of node-link: Points to the first node in the FP-tree carrying the item-name.
 Assignment Project Exam Help

https://tutorcs.com

STEP 1: Scan the transaction database for the first time, find frequent items (single item patterns) and order them into a list in frequency descending order. In the format of (item-name, support).

		<u> </u>
TID	List of item _IDs	https://tutorcs.com
T100	11, 12, 15	
T200	12, 14	WeChat: cstutorcs
T300	12, 13	
T400	11, 12, 14	
T500	I1, I3	
T600	12, 13, 16	
T700	I1, I3	
T800	11, 12, 13, 15	
T900	11, 12, 13	

STEP 1: Scan the transaction database for the first time, find frequent items (single item patterns) and order them into a list in frequency descending order. In the format of (item-name, support).

TID	List of item _IDs	ht	tps://tu	torcs.com
T100	11, 12, 15		Itemset	Count
T200	12, 14	W	eChat:	Count CStutores
T300	12, 13		{I1}	
T400	11, 12, 14		{I2}	
T500	I1, I3		{13}	
T600	12, 13, 16		{I4}	
T700	I1, I3		{15}	
T800	11, 12, 13, 15			
T900	11, 12, 13		{16}	

STEP 1: Scan the transaction database for the first time, find frequent items (single item patterns) and order them into a list in frequency descending order. In the format of (item-name, support).

TID	List of item _IDs	ht	tps://tu	torcs.com
T100	11, 12, 15		Itemset	Count
T200	12, 14	W	eChat:	Count CSTUTORCS
T300	12, 13		{I1}	6
T400	11, 12, 14		{I2}	7
T500	I1, I3		{I3}	6
T600	12, 13, 16		{ 4}	2
T700	I1, I3		{15}	2
T800	11, 12, 13, 15		, ,	۷
T900	11, 12, 13		{I6}	1

STEP 1: Scan the transaction database for the first time, find frequent items (single item patterns) and order them into a list in frequency descending order. In the format of (item-name, support).

TID	List of item _IDs	https://tutorcs.com			1		
T100	I1, I2, I5		Itemset	Count		L	_
T200	12, 14	W	'eChat:	cstutores		Itemset	Count
T300	I2, I3		{I1}	6		{I2}	7
T400	11, 12, 14		{I2}	7			6
T500	I1, I3		{I3}	6	Minsup= 2	{ 1}	
T600	12, 13, 16		{14}	2		{I3}	6
T700	I1, I3					{I4}	2
T800	11, 12, 13, 15		{I5}	2		{I5}	2
T900	I1, I2, I3		{16}	1		, ,	

- **STEP 1:** Scan the transaction database for the first time, find frequent items (single item patterns) and order them into a list in frequency descending order. In the format of (item-name, support).
- STEP 2: For each transaction, order its frequent items according to the order; Scan database the second time, construct FP-tree by putting each frequency ignimentral soje of Entain Help

TID	List of Item	_IDs h Cordsred Frequent Stone m
T100	I1, I2, I5	12, 11, 15
T200	12, 14	WeChat: cstutorcs
T300	12, 13	12, 13
T400	11, 12, 14	12, 11, 14
T500	I1, I3	I1, I3
T600	12, 13, <mark>16</mark>	12, 13
T700	I1, I3	I1, I3
T800	11, 12, 13, 15	12, 11, 13, 15
T900	11, 12, 13	12, 11, 13

l

Itemset	Count
{I2}	7
{I1}	6
{I3}	6
{I4}	2
{I5}	2

STEP 2: Construct FP-tree

Ordered Frequent Items	
12, 11, 15	
12, 14	A
12, 13	
12, 11, 14	
I1, I3	
12, 13	
I1, I3	
12, 11, 13, 15	
12, 11, 13	

Null

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	
12, 11, 14	https://tutorcs.com
I1, I3	
12, 13	WeChat: cstutorcs
I1, I3	15:1
12, 11, 13, 15	
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	12:20
12, 11, 14	https://tutorcs.com
I1, I3	11:1 14:1
12, 13	WeChat: cstutorcs
I1, I3	I5:1
12, 11, 13, 15	
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	
12, 11, 14	https://tutorcs.com
I1, I3	I1:1 14:1 13:1
12, 13	WeChat: cstutorcs
I1, I3	I5:1
12, 11, 13, 15	
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	
12, 11, 14	https://tutorcs.com
I1, I3	11:2
12, 13	WeChat: cstutorcs
I1, I3	I5:1 14:1
12, 11, 13, 15	
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	12:4
12, 11, 14	https://tutorcs.com
11, 13	11:2 14:1 13:1 13:1
12, 13	WeChat: cstutorcs
11, 13	I5:1 14:1
12, 11, 13, 15	
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	I2: 5
12, 11, 14	https://tutorcs.com
I1, I3	11:2() 4:1() 3·2() 3:1()
12, 13	WeChat: cstutorcs
I1, I3	15:1 () 4:1 ()
12, 11, 13, 15	
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	12:5 I1:2 I
12, 11, 14	https://tutorcs.com
I1, I3	11:2() 14:1() 13:2() 13:2()
12, 13	WeChat: cstutorcs
I1, I3	I5:1 () I4:1
12, 11, 13, 15	
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	
12, 11, 14	https://tutorcs.com 1:30 4:10 3:20 3:20
I1, I3	11:3 14:1 13:2 13:2
12, 13	WeChat: cstutorcs
I1, I3	15:1 () 14:1 () 13:1 ()
12, 11, 13, 15	I5:1 O
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	12:7 11:2
12, 11, 14	https://tutorcs.com
I1, I3	11:4 14:1 13:2 13:2
12, 13	WeChat: cstutorcs
I1, I3	15:1 () 14:1() 13:2()
12, 11, 13, 15	I5:1)
12, 11, 13	

Ordered Frequent Items	Null
12, 11, 15	
12, 14	Assignment Project Exam Help
12, 13	12:7 11:2
12, 11, 14	https://tutorcs.com
I1, I3	11:4 14:1 13:2 13:2
12, 13	WeChat: cstutorcs
I1, I3	15:1 () 14:1() 13:2()
12, 11, 13, 15	I5:1
12, 11, 13	

Mining Frequent Patterns Using FP-tree

Starting the processing from the end of list L:

Step 1:

Construct conditional pattern base for each item in L

Assignment Project Exam Help

Step 2:

https://tutorcs.com Construct conditional FP-tree from each conditional pattern base

Step 3: WeChat: cstutorcs

Recursively mine conditional FP-trees and grow frequent patterns obtained so far.

 If the conditional FP-tree contains a single path, simply enumerate all the patterns

- Starting at the bottom of frequent-item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item

Accumulate all of transformed utor prefix paths of that item to form a conditional pattern hat: cst base

()
Support Item ID count Node-link I2:7
11:4 11:4 13:2 14:1 13:2
Project Exam Help
itores.com
: cstutorcs

O null{}

ltem	Conditional Pattern Base	
<u>I5</u>	{{I2, I1: 1}, {I2, I1, I3: 1}}	

- Starting at the bottom of frequent-item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item

Accumulate all of transformed utores.
 prefix paths of that item to form a conditional pattern hat: cstuto base

mun()
Support Item ID count Node-link I2:7
Project Exam Help 13:2 14:1 13:2
tutores.com 13:2 14:1
at: cstutorcs

O null()

Item	Conditional Pattern Base	
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	
I 4	{{I2, I1: 1}, {I2: 1}}	

- Starting at the bottom of frequent-item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item

Accumulate all of transformed utore prefix paths of that item to form a conditional pattern hat: cstubase

null{}
Support I2:7
Item ID count Node-link 12:7
12 7
Project Exam Help 13:2 14:1 13:2
I4 2 \ I5:1
itores.com
: cstutorcs

Item	Conditional Pattern Base	
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	
I 4	{{I2, I1: 1}, {I2: 1}}	
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	

- Starting at the bottom of frequent-item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item

Accumulate all of transformed utores.
 prefix paths of that item to form a conditional pattern hat: cstute base

_
Support Item ID count Node-link I2:7 I1:2
12 7
t Project Exam Help (13:2)
tutores.com
at: estutores

Ollun

Item	Conditional Pattern Base	
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	
I 4	{{I2, I1: 1}, {I2: 1}}	
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	
I1	{{I2: 4}}	

- For each pattern base
 - Accumulate the count for each item in the base
 - Construct the signment Proceeditional FP-tree for the frequent items of the pattern base
- Minsup=2

Support Count Node-link I2:7
Project Exam Help 13:2 14:1 13:2
tores.com
cstutores

null{}

Item	Conditional Pattern Base	Conditional FP-tree
I 5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)
I4	{{I2, I1: 1}, {I2: 1}}	
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	
I 1	{{I2: 4}}	

WeChat:

- For each pattern base
 - Accumulate the count for each item in the base
 - Construct the signment Proceeditional FP-tree for the frequent items of the pattern base
- Minsup=2

Support Count Node-link I2:7
Project Exam Help 13:2 14:1 13:2
tores.com
cstutores

null{}

Item	Conditional Pattern Base	Conditional FP-tree
I 5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)
I4	{{I2, I1: 1}, {I2: 1}}	
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	
I 1	{{I2: 4}}	

WeChat:

Support count

Item ID

Node-link

- For each pattern base
 - Accumulate the count for each item in the base
 - Construct the signment P conditional FP-tree for the frequent items of the pattern base
- Minsup=2

ignment Project Exam Help 13:2 14:1 13:2 ee for 14:1 15:1 15:1 13:2 14:1	
WeChat: cstutorcs	

null{}

Item	Conditional Pattern Base	Conditional FP-tree	
I 5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	
I 4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)	
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}		
I 1	{{I2: 4}}		

Support

- For each pattern base
 - Accumulate the count for each item in the base
 - Construct the signment Proceeditional FP-tree for the frequent items of the pattern base
- Minsup=2

null{}

Item	Conditional Pattern Base	Conditional FP-tree
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)
I4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)
I1	{{I2: 4}}	

WeChat:

- For each pattern base
 - Accumulate the count for each item in the base
 - Construct the signment Proceeditional FP-tree for the frequent items of the pattern base
- Minsup=2

Support
Item ID count Node-link I2:7
Project Exam Help 13:2 14:1 13:2
tores.com
cstutores 15:1

null{}

Item	Conditional Pattern Base	Conditional FP-tree
I 5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)
I 4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)
I1	{{I2: 4}}	⟨I2: 4⟩

WeChat:

Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I 4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)	
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)	
I1	{{I2: 4}}	⟨I2: 4⟩	

Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)	{I2, I4: 2}
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)	
I1	{{I2: 4}}	⟨I2: 4⟩	

Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I 4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)	{I2, I4: 2}
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1	{{I2: 4}}	⟨I2: 4⟩	

Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I 5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I 4	{{I2, I1: 1}, {I2: 1}}	⟨I2: 2⟩	{I2, I4: 2}
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1	{{I2: 4}}	⟨I2: 4⟩	{I2, I1: 4}

Properties of the FP-tree Structure

Advantages

- Only needs to read the file twice, as opposed to Apriori who reads it once for every iteration.
- Removes the need to galculate the pairs to be sound which is very processing heavy, because it uses the FP-Tree. This makes it O(n) (which is much faster than Apriori orcs.com
- Stores a compact ver politique: database in memory.

Bottlenecks

 The interdependency problem is that for the parallelization of the algorithm some that still needs to be shared, which creates a bottleneck in the shared memory.

Definitions

Growth Rate: Given a pair of dataset D_p (positive/target dataset) and D_n (negative/source dataset):

$$gr(X, D_p) = \frac{supp(X, D_p)}{supp(X, D_n)}$$

• Emerging Patterns (EPs). Platterns who sexampled is ignificantly different from one dataset to another. If $gr(X, D_p) \ge \rho$, pattern X is an emerging pattern for dataset D_p .

WeChat: cstutorcs

- Emerging patterns also known as Contrast patterns (CP), and
 Discriminative patterns.
- Jumping Emerging Pattern (JEP): An emerging pattern whose support is non-zero in the positive dataset but zero in the negative dataset is called a, and $gr(X, D_p) = \infty$.

Example – Emerging and Jumping Emerging Patterns

_		_	_
D a	eitiva	a Dai	taset
Гυ	SILIV	5 Dai	Lasti

	Src IP	des IP	pro	packets
T1	192.168.22.1	10.10.10.1	udp	[2,20]
T2	192.168.55.2	10.10.10.4	udp	[40,68]
Т3	192.168.22.1	10.10.10.1	tcp	[2,20]
si 54 m	e1921068,202t I	x19110.11021	tcp	[2,20]

Negative Dataset

4	Src IP	des IP	pro	packets
http	S:4/dziteggs.co	m 10.10.10.2	tcp	[40,68]
T2	192.168.20.1 C <mark>haչ:₁₆₈.եկ</mark> էրrc	10.10.10.2	tcp	[2,20]
y y e	Chat: 168 tutoro	S 10.10.10.2	tcp	[2,20]
T4	192.168.22.1	10.10.10.1	udp	[2,20]

• Find an EP and JEP given $\rho = 1$

Example – Emerging and Jumping Emerging Patterns

Positive Dataset

	Src IP	des IP	pro	packets
T1	192.168.22.1	10.10.10.1	udp	[2,20]
T2	192.168.55.2	10.10.10.4	udp	40,68]
T3	192.168.22.1	10.10.10.1	tcp	[2,20]
si T4 n	0e1921068,20dt I	7 v10 110 110 2 n	tcp	[2,20]

4	Src IP	des IP	pro	packets
https	s:4/dutegas.com	10.10.10.2	tcp	[40,68]
T2	192.168.20.1	10.10.10.2	tcp	[2,20]
yye C	Chat: 168 tutores	10.10.10.2	tcp	[2,20]
T4	192.168.22.1	10.10.10.1	udp	[2,20]

Negative Dataset

	Growth rate	
C1	{srcIP=192.168.22.1, destIP=10.10.10.1, Pkt=[2,20]}	2
C2	{srcIP=192.168.55.2, destIP=10.10.10.4, pro=udp, Pkt=[2,20]}	∞
i		

Case Study – Goodness of Contrast Data Mining for Network Traffic Analysis [2]

- Objective: Provide a concise and meaningful report of significant changes in multiple datasets.
 - Evaluate the quality of generated patterns.
 - Select the best set of patterns perfer ging patterns belong to either an attack class or a normal class. https://tutorcs.com
 - Emerging patterns can efficiently distinguish between attack and normal traffic. WeChat: cstutorcs
- Extracting contrast patterns:
 - GC-Growth algorithm

Case Study – Goodness of Contrast Data **Mining for Network Traffic Analysis**

Attack ratio: Measures the probability that a given contrast pattern X belongs to the attack class

$$Attack \ Ratio = \frac{Count(X, D_{pos}(att))}{Assign(M, D_{pos})} Proj$$

—AttackRatio

GrowthRate

- All contrast patterns with a highes.com growth rate are attack patterns
- Most of the pure paternsatiecstutorcs patterns belong to either an attack class or a normal class) correspond to attacks
- The proportion of attack patterns increases significantly with an increase of the growth rate threshold

Application: One-class Classification [1]

- OCLEP: Build some CP length statistics
 - Uses the training data to derive the length statistics
 - For each new test case, compare the length statistics for the test case and the length statistics of the training data.

Assignment Project Exam Help

• Property: Provided that all transactions of T comenion tuto one class, length statistic S tends to contain long the hat: when test X' and train X come from the same class, and it tends to contain short EPs when test and train come from different classes.

Figure: ROC curves for OCLEP and OCSVM.

Application: Comparing Anomaly Detection Models

Anomaly detection model:

- Learns a model of normal behaviours from historic dataset
- Applies the learned model to the current data Assignment Project Exam Help
- Detects anomalies

Anomaly detection model

CPM technique:

Compares two current datasets tutores and historic dataset

- Extracts significant changes
- Presents a succinct report

Contrast mining model

Summary

- Why contrast data mining is important and when it can be used?
- What algorithms can be used for contrast data mining?
- How it can be used for network traffic analysis and unsupervised

learning? https://tutorcs.com

Next: Adversarial Machine Learning

References

- Guozhu Dong and James Bailey. "Contrast data mining: concepts, algorithms, and applications". CRC Press, 2012.
- 2. Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining: Concepts and Techniques", 2011, Chapter 6.2.4.
- 3. Elaheh Alipour Chavary Baran Erfarli, Christopher Leckle, Bummarizing Significant Changes in Network Traffic Using Contrast Pattern Mining", ACM International Conferendetophylothation and Smowledge Management (CIKM), 2017.

WeChat: cstutorcs