Teoría de Autómatas y Lenguajes Formales

Prueba de Evaluación de Lenguajes Regulares, Autómatas a Pila y Máquinas de Turing.

Autores:

Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

UNIVERSIDAD CARLOS III DE MADRID TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES. GRADO EN INGENIERÍA INFORMÁTICA. EVALUACIÓN CONTINUA

Apellidos:	
Nombre:	
NIA:	_
Firma:	

Tiempo de examen: 55 minutos

Tipo de Examen: A

1. Indica si las siguientes afirmaciones son Verdaderas o Falsas marcando con una X la casilla correspondiente.

Calificación:

Respuesta correcta: **+0,2ptos**. Respuesta incorrecta: **-0.1 ptos**. Sin respuesta: 0 ptos.

Calificación máxima: 2 ptos. Calificación mínima: 0 ptos.

	Verdadero	Falso
1. Las ecuaciones X=XA + B y X=A*B expresan el		X
mismo conjunto de palabras.		
2. $(\alpha \cdot \beta) = \lambda + (\alpha + \beta) \cdot \beta$.	X	
3. $(a+b)^* = \lambda + (a+b) \cdot (a+b)^*$	X	
4. La expresión regular $E1 = \alpha \cdot \Phi$ es equivalente a $E2 =$		X
$\Phi \cdot \alpha$ y por lo tanto equivalente a E3 = α .		
5. El AF correspondiente a la expresión regular a=b*	X	
puede definirse con un solo estado.		
6. (1+0)* sólo expresa números binarios que acaban en		X
cero.		
7. Si la ecuación característica correspondiente a un AF	X	
es $X_1=1$ X_1+0 X_2+0+1 X_0 , entonces el autómata es		
no determinista.		
8. si $\alpha = 0*10*$, entonces las palabras de L(α)		X
comienzan por cero y acaban en cero.		
9. α* es la unión de todas las potencias de α,	X	
incluyendo λ		
10. Para conseguir un AF a partir de una expresión		X
regular debemos necesariamente plantear y resolver		
las ecuaciones características del AF.		

2. Indica si las siguientes afirmaciones son Verdaderas o Falsas marcando con una X la casilla correspondiente.

Calificación:

Respuesta correcta: +0,2ptos. Respuesta incorrecta: -0.1 ptos. Sin respuesta: 0 ptos.

Calificación máxima: 2 ptos. Calificación mínima: 0 ptos.

		Verdadero	Falso
1.	Sea $\Sigma = \{a,b\}$ y R=ab entonces $D_a(R) = b$	X	
2.	Dab(R) = Da(Db(R))		X
3.	El teorema de síntesis nos asegura que para todo	X	
	lenguaje regular existe un autómata finito		
	correspondiente.		
		Verdadero	Falso
4.	$f(q,\lambda,A)=\{(q,\lambda)\}$, es una transición independiente de la entrada.	X	
5.	El alfabeto de pila y el alfabeto de entrada de un		X
	autómata de pila son conjuntos disjuntos.		
6.	Un autómata de pila puede aceptar una palabra sin	X	
	estar en estado final.		
7.	Existe un algoritmo para transformar autómatas de		X
	pila no deterministas en autómatas de pila		
	deterministas.		
8.	Las máquinas de Turing necesitan una estructura de		X
	pila para realizar transiciones.		
9.	En una máquina de Turing, después de leer un		X
	símbolo la cabeza lectora puede avanzar varias		
	posiciones hacia la izquierda.		
10.	En una máquina de Turing el movimiento de la	X	
	cabeza lectora depende del estado en el que se		
	encuentra la máquina.		

3. Diseñar una Máquina de Turing transductora que tome como entrada una serie de unos (palabras formadas por el símbolo del alfabeto {1}) y añada al final de dicha entrada tantos símbolos X como unos tiene dicha palabra.

Por ejemplo, dada la entrada: □111□ Se deberá devolver en la cinta: □111XXX□ donde □ representa la celda de la cinta vacía.

Calificación Máxima: 3 ptos.

SOLUCIÓN:

Los estados q3 y q4 son opcionales. El estado final tampoco es imprescindible, pero se recomienda incluirlo para que quede clara en qué situación termine el proceso.

La MT diseñada procesa cadenas de entrada del tipo 1(1+X)* cosa que consideramos un defecto secundario. Pera evitarlo haría falta incluir dos estados previos a q0 que recorriesen la cinta en busca de símbolos distintos de 1.

4. Construya el Autómata a Pila que acepta (por vaciado de pila) el lenguaje generado por la gramática $G=(\{1,0,e\},\{C,F,X,P\},F,P)$

Describa, mediante movimientos, la aceptación de la palabra 10e1 Calificación Máxima: 3 ptos.

SOLUCIÓN:

El APv se obtiene de forma inmediata dado que la gramática ya está en FNG. Para cada producción obtenemos la transición correspondiente.

$F \rightarrow 1X$	$(q, X) \in f(q, 1, F)$
$F \rightarrow 1CX$	$(q, CX) \in f(q, 1, F)$
$X \rightarrow ePX$	$(q, PX) \in f(q, e, X)$
$X \rightarrow eP$	$(q, P) \in f(q, e, X)$
F → 1	$(q, \lambda) \in f(q, 1, F)$
F → 1C	$(q, C) \in f(q, 1, F)$
P →1	$(q,\lambda) \in f(q,1,P)$
P →1C	$(q, C) \in f(q, 1, P)$
C →0	$(q,\lambda) \in f(q,0,C)$
C → 0C	$(q, C) \in f(q, 0, C)$

Sólo hace falta un estado. Se ha renombrado el símbolo del Axioma (F) por Z que es el que se emplea JFLAP como símbolo inicial de pila.

También es válida la solución con un estado previo y otro posterior para gestionar el símbolo de pila (apilar F sobre Z, borrar Z).

