

5229-2-12-4-09-sequence-listing.txt
SEQUENCE LISTING

<110> The University of York

Milner, Anne J

<120> Induction of Apoptosis by Inhibition of Sirtuin SIRT1 Expression

<130> 5229-2

<140> PCT/GB2005/000459

<141> 2005-02-11

<150> GB 0403041.7

<151> 2004-02-11

<160> 17

<170> PatentIn version 3.1

<210> 1

<211> 2241

<212> DNA

<213> Homo sapiens

<400> 1		
atggcgacg aggccgcct cgccttcag cccggcggt cccctcggc ggcggggcc		60
gacaggagg ccgcgtcgtc cccgcggg gagccgtcc gcaagaggcc gcggagagat		120
ggtcccgcc tcgagcggag cccggcgag cccgggtggg cggccccaga gcgtgaggtg		180
ccggcgccgg ccaggggctg cccgggtgcg gcggcgccgg cgctgtggcg ggaggcggag		240
gcagaggcgg cggcggcagg cggggagcaa gaggcccagg cgactgcggc ggctgggaa		300
ggagacaatg ggccgggcct gcagggccca tctcgggagc caccgctggc cgacaacttg		360
tacgacgaag acgacgacga cgagggcgag gaggaggaag aggcggcgcc ggcggcgatt		420

5229-2-12-4-09-sequence-listing.txt

gggtaccgag ataaccttct gttcggtgat gaaattatca ctaatggtt tcattcctgt	480
gaaagtgatg aggaggatag agcctcacat gcaagctcta gtgactggac tccaaggcca	540
cggataggtc catatacttt tgttcagcaa catcttatga ttggcacaga tcctcgaaca	600
attcttaaag atttattgcc ggaaacaata cctccacctg agtggatga tatgacactg	660
tggcagattg ttattaatat ccttcagaa ccaccaaaaa ggaaaaaaaag aaaagatatt	720
aatacaattg aagatgctgt gaaattactg caagagtgc aaaaaattat agttctaact	780
ggagctgggg tgtctgttgc atgtggaata cctgacttca ggtcaaggga tggtatttat	840
gctcgcccttg ctgtagactt cccagatctt ccagatcctc aagcgatgtt tgatattgaa	900
tatccagaa aagatccaag accattcttc aagttgcaa agggaaatata tcctggacaa	960
ttccagccat ctctctgtca caaattcata gccttgtcag ataaggaagg aaaaactactt	1020
cgcaactata cccagaacat agacacgctg gaacaggttg cggaatcca aaggataatt	1080
cagtgtcatg gttcccttgc aacagcatct tgcctgattt gtaaatacaa agttgactgt	1140
gaagctgtac gaggagatat tttaatcag gtagttcctc gatgtcctag gtgcccagct	1200
gatgaaccgc ttgctatcat gaaaccagag attgtgttt ttggtaaaaa tttaccagaa	1260
cagttcata gagccatgaa gtatgacaaa gatgaagttg acctcctcat tgttattggg	1320
tctccctca aagtaagacc agtagcacta attccaagtt ccataccccca tgaagtgcct	1380
cagatattaa ttaatagaga acctttgcct catctgcatt ttgatgtaga gcttcttgaa	1440
gactgtgatg tcataattaa tgaattgtgt cataggttag gtggtaata tgccaaactt	1500
tgctgttaacc ctgtaaagct ttcagaaatt actgaaaaac ctccacgaac aaaaaagaa	1560
ttggcttatt tgtcagagtt gccacccaca cctcttcatg tttcagaaga ctcagttca	1620
ccagaaaagaa cttcaccacc agattctca gtgattgtca cacttttaga ccaagcagct	1680
aagagtaatg atgattttaga tgtgtctgaa tcaaaaggtt gtatggaaga aaaaccacag	1740
gaagtacaaa cttcttaggaa tggtaaaagt attgctgaac agatggaaaa tccggatttg	1800
aagaatgttgc ttcttagtac tggggagaaaa aatgaaagaa cttcagtgcc tggAACAGTG	1860
agaaaaatgct ggcctaatacg agtggcaaag gagcagatta gtggcggct tgatggtaat	1920
cagtatctgt ttttgccacc aaatcggtac attttccatg gcgtgaggt atattcagac	1980
tctgaagatg acgtcttatac ctctagttct tgtggcagta acagtgatag tggacatgc	2040
cagagtccaa gtttagaaga acccatggag gatgaaagtg aaattgaaga attctacaat	2100
ggcttagaag atgagcctga tggccagag agagctggag gagctggatt tggactgat	2160
ggagatgatc aagaggcaat taatgaagct atatctgtga aacaggaagt aacagacatg	2220
aactatccat caaacaaatc a	2241

5229-2-12-4-09-sequence-listing.txt

<210> 2

<211> 747

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Asp Glu Ala Ala Leu Ala Leu Gln Pro Gly Gly Ser Pro Ser
1 5 10 15

Ala Ala Gly Ala Asp Arg Glu Ala Ala Ser Ser Pro Ala Gly Glu Pro
20 25 30

Leu Arg Lys Arg Pro Arg Arg Asp Gly Pro Gly Leu Glu Arg Ser Pro
35 40 45

Gly Glu Pro Gly Gly Ala Ala Pro Glu Arg Glu Val Pro Ala Ala Ala
50 55 60

Arg Gly Cys Pro Gly Ala Ala Ala Ala Leu Trp Arg Glu Ala Glu
65 70 75 80

Ala Glu Ala Ala Ala Ala Gly Gly Glu Gln Glu Ala Gln Ala Thr Ala
85 90 95

Ala Ala Gly Glu Gly Asp Asn Gly Pro Gly Leu Gln Gly Pro Ser Arg
100 105 110

Glu Pro Pro Leu Ala Asp Asn Leu Tyr Asp Glu Asp Asp Asp Asp Glu
115 120 125

Gly Glu Glu Glu Glu Glu Ala Ala Ala Ala Ile Gly Tyr Arg Asp
130 135 140

Asn Leu Leu Phe Gly Asp Glu Ile Ile Thr Asn Gly Phe His Ser Cys
145 150 155 160

Glu Ser Asp Glu Glu Asp Arg Ala Ser His Ala Ser Ser Ser Asp Trp
165 170 175

Thr Pro Arg Pro Arg Ile Gly Pro Tyr Thr Phe Val Gln Gln His Leu
180 185 190

Met Ile Gly Thr Asp Pro Arg Thr Ile Leu Lys Asp Leu Leu Pro Glu
195 200 205

5229-2-12-4-09-sequence-listing.txt

Thr Ile Pro Pro Pro Glu Leu Asp Asp Met Thr Leu Trp Gln Ile Val
210 215 220

Ile Asn Ile Leu Ser Glu Pro Pro Lys Arg Lys Lys Arg Lys Asp Ile
225 230 235 240

Asn Thr Ile Glu Asp Ala Val Lys Leu Leu Gln Glu Cys Lys Lys Ile
245 250 255

Ile Val Leu Thr Gly Ala Gly Val Ser Val Ser Cys Gly Ile Pro Asp
260 265 270

Phe Arg Ser Arg Asp Gly Ile Tyr Ala Arg Leu Ala Val Asp Phe Pro
275 280 285

Asp Leu Pro Asp Pro Gln Ala Met Phe Asp Ile Glu Tyr Phe Arg Lys
290 295 300

Asp Pro Arg Pro Phe Phe Lys Phe Ala Lys Glu Ile Tyr Pro Gly Gln
305 310 315 320

Phe Gln Pro Ser Leu Cys His Lys Phe Ile Ala Leu Ser Asp Lys Glu
325 330 335

Gly Lys Leu Leu Arg Asn Tyr Thr Gln Asn Ile Asp Thr Leu Glu Gln
340 345 350

Val Ala Gly Ile Gln Arg Ile Ile Gln Cys His Gly Ser Phe Ala Thr
355 360 365

Ala Ser Cys Leu Ile Cys Lys Tyr Lys Val Asp Cys Glu Ala Val Arg
370 375 380

Gly Asp Ile Phe Asn Gln Val Val Pro Arg Cys Pro Arg Cys Pro Ala
385 390 395 400

Asp Glu Pro Leu Ala Ile Met Lys Pro Glu Ile Val Phe Phe Gly Glu
405 410 415

Asn Leu Pro Glu Gln Phe His Arg Ala Met Lys Tyr Asp Lys Asp Glu
420 425 430

Val Asp Leu Leu Ile Val Ile Gly Ser Ser Leu Lys Val Arg Pro Val
435 440 445

Ala Leu Ile Pro Ser Ser Ile Pro His Glu Val Pro Gln Ile Leu Ile
450 455 460

5229-2-12-4-09-sequence-listing.txt

Asn Arg Glu Pro Leu Pro His Leu His Phe Asp Val Glu Leu Leu Gly
465 470 475 480

Asp Cys Asp Val Ile Ile Asn Glu Leu Cys His Arg Leu Gly Gly Glu
485 490 495

Tyr Ala Lys Leu Cys Cys Asn Pro Val Lys Leu Ser Glu Ile Thr Glu
500 505 510

Lys Pro Pro Arg Thr Gln Lys Glu Leu Ala Tyr Leu Ser Glu Leu Pro
515 520 525

Pro Thr Pro Leu His Val Ser Glu Asp Ser Ser Ser Pro Glu Arg Thr
530 535 540

Ser Pro Pro Asp Ser Ser Val Ile Val Thr Leu Leu Asp Gln Ala Ala
545 550 555 560

Lys Ser Asn Asp Asp Leu Asp Val Ser Glu Ser Lys Gly Cys Met Glu
565 570 575

Glu Lys Pro Gln Glu Val Gln Thr Ser Arg Asn Val Glu Ser Ile Ala
580 585 590

Glu Gln Met Glu Asn Pro Asp Leu Lys Asn Val Gly Ser Ser Thr Gly
595 600 605

Glu Lys Asn Glu Arg Thr Ser Val Ala Gly Thr Val Arg Lys Cys Trp
610 615 620

Pro Asn Arg Val Ala Lys Glu Gln Ile Ser Arg Arg Leu Asp Gly Asn
625 630 635 640

Gln Tyr Leu Phe Leu Pro Pro Asn Arg Tyr Ile Phe His Gly Ala Glu
645 650 655

Val Tyr Ser Asp Ser Glu Asp Asp Val Leu Ser Ser Ser Cys Gly
660 665 670

Ser Asn Ser Asp Ser Gly Thr Cys Gln Ser Pro Ser Leu Glu Glu Pro
675 680 685

Met Glu Asp Glu Ser Glu Ile Glu Glu Phe Tyr Asn Gly Leu Glu Asp
690 695 700

Glu Pro Asp Val Pro Glu Arg Ala Gly Gly Ala Gly Phe Gly Thr Asp

705 5229-2-12-4-09-sequence-listing.txt
710 715 720

Gly Asp Asp Gln Glu Ala Ile Asn Glu Ala Ile Ser Val Lys Gln Glu
725 730 735

Val Thr Asp Met Asn Tyr Pro Ser Asn Lys Ser
740 745

<210> 3

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> SIRT1 sense primer

<400> 3
tcagtgtcat ggttccttgc c 21

<210> 4

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> SIRT1 antisense primer

<400> 4
aatctgctcc tttgccactc t 21

<210> 5

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Lamin A sense primer

<400> 5
aagcagcggtg agtttgagag c 21

5229-2-12-4-09-sequence-listing.txt

<210> 6
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Lamin A antisense primer
<400> 6
agggtgaact ttgggtggaa c

21

<210> 7
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> GAPDH sense primer
<400> 7
cggagtcaac ggatttggtc gtat

24

<210> 8
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> GAPDH antisense primer
<400> 8
agccttctcc atgggtggta agac

24

<210> 9
<211> 21
<212> DNA
<213> Artificial sequence

5229-2-12-4-09-sequence-listing.txt

<220>

<223> Vimentin sense primer

<400> 9

gccaactaca tcgacaaggt g

21

<210> 10

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Vimentin antisense primer

<400> 10

gaggcaggctc tggtattcac g

21

<210> 11

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> SIRT1 siRNA sequence

<400> 11

acuuugcugu aacccuguat t

21

<210> 12

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> SIRT1 siRNA sequence

<400> 12

uacaggguua cagcaaagut t

21

5229-2-12-4-09-sequence-listing.txt

<210> 13

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Lamin A/C siRNA sequence

<400> 13

cuggacuucc agaagaacat t

21

<210> 14

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Lamin A/C siRNA sequence

<400> 14

uguucuucug gaaguccagt t

21

<210> 15

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> BRC-ABL siRNA sequence

<400> 15

agaguucaaaa agcccuucat t

21

<210> 16

<211> 21

<212> DNA

<213> Artificial sequence

5229-2-12-4-09-sequence-listing.txt

<220>

<223> BRC-ABL siRNA sequence

<400> 16

ugaaggccuu uugaacucut t

21

<210> 17

<211> 2241

<212> DNA

<213> Homo sapiens

<400> 17

tgatttgttt gatggatagt tcatgtctgt tacttcctgt ttcacagata tagttcatt 60
aattgcctct tgatcatctc catcagtccc aaatccagct cctccagctc tctctggaac 120
atcaggctca tcttctaagc cattgttagaa ttcttcaatt tcactttcat cctccatgg 180
ttcttctaaa cttggactct ggcatgtccc actatcactg ttactgccac aagaactaga 240
ggataagacg tcatcttcag agtctgaata tacctcagcg ccatggaaaa tgtaacgatt 300
tggtgccaaa aacagatact gattaccatc aagccgccta ctaatctgct cctttgccac 360
tctattaggc cagcatttc tcactgttcc agccactgaa gttcttcat ttttctccc 420
agtactagaa ccaacattct tcaaattccgg atttccatc tgttcagcaa tactttcaac 480
attcctagaa gtttgactt cctgtggttt ttcttccata caacctttt attcagacac 540
atctaaatca tcattactct tagctgcttg gtctaaaagt gtgacaatca ctgaagaatc 600
tggtggtgaa gttcttctg gtgaacttga gtcttctgaa acatgaagag gtgtgggtgg 660
caactctgac aaataagcca attcttttg tgttcgtgga ggttttcag taatttctga 720
aagcttaca gggttacagc aaagtttggc atattcacca cctaacctat gacacaattc 780
attaattatg acatcacagt ctccaagaag ctctacatca aaatgcagat gaggcaaagg 840
ttctctatta attaatatct gaggcacttc atggggatag gaacttggaa ttagtgcac 900
tggtcttact ttgagggaaag acccaataac aatgaggagg tcaacttcat ctttgcata 960
cttcatggct ctatgaaact gttctggtaa atttcacca aaaaacacaa tctctggtt 1020
catgatagca agcggttcat cagctggca cctaggacat cgaggaacta cctgattaaa 1080
aatatctcct cgtacagctt cacagtcaac tttgtattta caaatcaggc aagatgctgt 1140
tgcaaaggaa ccatgacact gaattatcct ttggattccc gcaacctgtt ccagcgtgtc 1200
tatgttctgg gtatagttgc gaagtagttt tccttcctta tctgacaagg ctatgaattt 1260

5229-2-12-4-09-sequence-listing.txt

gtgacagaga gatggctgga attgtccagg atatatttc tttgcaaact tgaagaatgg	1320
tcttggatct tttctgaaat attcaatatc aaacatcgct tgaggatctg gaagatctgg	1380
gaagtctaca gcaaggcgag cataaatacc atcccttgac ctgaagtcag gtattccaca	1440
tgaaacagac accccagctc cagttagaac tataatttt ttgcactctt gcagtaattt	1500
cacagcatct tcaattgtat taatatctt tcttttttc cttttggtg gttctgaaag	1560
gatattaata acaatctgcc acagtgtcat atcatccaac tcaggtggag gtattgttc	1620
cgccaataaa tcttaagaa ttgttcgagg atctgtgcc atcataagat gttgctgaaac	1680
aaaagtatat ggacctatcc gtggccttgg agtccagtca ctagagctt catgtgaggc	1740
tctatccctcc tcatacactt cacaggaatg aaaaccatta gtgataattt catcaccgaa	1800
cagaaggtta tctcggtacc caatcgccgc cgccgcccgc tcttcctcct cctcgccctc	1860
gtcgtcgtcg tcttcgtcgt acaagttgtc ggccagcggt ggctcccgag atgggccccgt	1920
caggccccggc ccattgtctc cttccccagc cgccgcagtc gcctgggcct cttgctcccc	1980
gcctgcccgc gccgcctctg cctccgcctc ccgcccacagc gcccgcgcg ccgcacccgg	2040
gcagccccctg gccgcgcgcg gcacccctacg ctctggggcc gccccaccgg gctcgcccg	2100
gctccgctcg aggccgggac catctctccg cggcctctt cggagcggct ccccgccgg	2160
ggacgacgacg gcctccctgt cggccccgc cgccgagggg gagccgcgg gctgaagggc	2220
gagggccgc tcgccgc t	2241