PML Theory:

(a)
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

A $\in \mathbb{R}^{P\times p}$

A $\in \mathbb{R}^{P\times p}$

Consider the system:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^{p}$$

Consider the system:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} \notin \mathbb{R}^{p}$$

Consider the system:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} \notin \mathbb{R}^{p}$$

Consider the system:

$$\begin{bmatrix} A & B \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} \notin \mathbb{R}^{p}$$

Consider the system:

$$\begin{bmatrix} A & B \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} \notin \mathbb{R}^{p}$$

Consider the system:

$$\begin{bmatrix} A & B \\ 3 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3$$

We see that:

$$X = (A^{-1} + A^{-1}BQ^{-1}CA^{-1}) \prec \Rightarrow (A^{-1}BQ^{-1})\beta$$

 $y = -Q^{-1}CA^{-1} \prec + Q^{-1}\beta$
 $= > (X) = (A^{-1} + A^{-1}BQ^{-1}CA^{-1} - A^{-1}BQ^{-1}) (X)\beta$

BRUNNEN IL

b) botenhave We make use of our result from part (a) if M = LU then M-1 = W-1 L-1 ve compute N'I' and show it equils 14-1 W-1 1-1 K $= \left(\begin{pmatrix} A^{\frac{1}{2}} \end{pmatrix}^{T} \begin{pmatrix} A^{\frac{1}{2}} \end{pmatrix} B \right)^{-1} \begin{pmatrix} A^{\frac{1}{2}} & O \\ O & \left(Q^{\frac{1}{2}} \right)^{T} \end{pmatrix} \begin{pmatrix} A^{\frac{1}{2}} & O \\ C \left(A^{\frac{1}{2}} \right)^{T} & Q^{\frac{1}{2}} \end{pmatrix}$ $= ((A^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}} A^{\frac{1}{2}} B (Q^{\frac{1}{2}})^{\frac{1}{2}} A (Q^{\frac{1}{2}}$ $= (A^{-\frac{1}{2}})^{T} - (A^{-\frac{1}{2}})^{T} A^{-\frac{1}{2}} B (Q^{\frac{1}{2}})^{T} A^{-\frac{1}{2}} | 1 - (A^{-\frac{1}{2}})^{T} A^{-\frac{1}{2}} B Q^{\frac{1}{2}}$ (*) we observe that $A^{\frac{1}{2}}(A^{\frac{1}{2}})^{\frac{1}{2}} = A$ => (A-1)TA-1 = A-1
and similar for Q

 $= (A^{\frac{1}{2}})^{T} A^{\frac{1}{2}} - (A^{\frac{1}{2}})^{T} A^{\frac{1}{2}} B (Q^{\frac{1}{2}})^{T} A^{-\frac{1}{2}} [-(A^{\frac{1}{2}})^{T} A^{\frac{1}{2}} B Q^{\frac{1}{2}} Q^{\frac{1}{2}}]$ $-Q^{\frac{1}{2}} Q^{\frac{1}{2}} C (A^{-\frac{1}{2}})^{T} A^{\frac{1}{2}}$ $Q^{\frac{1}{2}} C (A^{-\frac{1}{2}})^{T} A^{\frac{1}{2}}$ Thus $M^{-1} = \mathcal{U}^{-1}\mathcal{L}^{-1} = \mathcal{M} = \mathcal{L}\mathcal{U}$ is such in $\mathcal{L}\mathcal{M}$ lecomposition of \mathcal{M}

BRUNNEN I

