Termin zajęć		
Wtorek NP	Układy cyfrowe i s	systemy
7:30 – 11:00	wbudowane	9
Osoby wykonujące ćwiczer	nie:	Grupa:
Jakub Suski 26402	D	
Tytuł ćwiczenia:		Laboratorium nr:
Układy	3	
Data wykonania ćwiczenia	24.10.2023	Ocena:
Data oddania sprawozdania	7.11.2023	

Na zajęciach laboratoryjnych na płytce CPLD ZL-9572 zaimplementowano układy sekwencyjne: licznik synchroniczny mod 9 negatywny w kodzie +3 oraz detektor sekwencji "11100" w postaci automatu Mealy-ego.

1. Licznik synchroniczny mod 9 negatywny w kodzie +3

Proces syntezy:

Zdecydowano się na implementację na przerzutnikach typu "D".

n	Q_3	Q_2	Q_1	Q_0	${Q_3}'$	$Q_2{}'$	$Q_1{}'$	$Q_0{'}$	D_3	D_2	D_1	D_0
0	0	0	1	1	1	0	1	1	1	0	1	1
1	0	1	0	0	0	0	1	1	0	0	1	1
2	0	1	0	1	0	1	0	0	0	1	0	0
3	0	1	1	0	0	1	0	1	0	1	0	1
4	0	1	1	1	0	1	1	0	0	1	1	0
5	1	0	0	0	0	1	1	1	0	1	1	1
6	1	0	0	1	1	0	0	0	1	0	0	0
7	1	0	1	0	1	0	0	1	1	0	0	1
8	1	0	1	1	1	0	1	0	1	0	1	0
9	1	1	0	0	-	-	-	-	1	-	-	-
10	1	1	0	1	-	-	-	-	-	-	-	-
11	1	1	1	0	-	-	-	-	-	-	-	-
12	1	1	1	1	-	-	-	-	1	-	-	-
13	-	-	-	-	-	-	-	-	1	-	-	-
14	-	-	-	-	-	-	-	-	1	-	-	-
15	-	-	-	-	-	-	-	-	-	-	-	-

Minimalizacja metodą Karnaugh:

Q_1Q_0	00	01	11	10
Q_3Q_2				
00	1	•	1	•
01	0	0	0	0
11	-	-	-	-
10	0	1	1	1

Q_1Q_0	00	01	11	10
$0_{2}0_{2}$				
00	-	-	1	-
01	0	0	0	0
11	-	-	-	-
10	0	1	1	1

Q_1Q_0	00	01	11	10
Q_3Q_2				
Q_3Q_2 00	1	1	1	1
01	0	0	0	0
11	-	-	-	-
10	0	1	1	1

$$D_3 = \overline{Q_3} \, \overline{Q_2} + Q_3 Q_0 + Q_3 Q_1$$

Q_1Q_0	00	01	11	10
Q_3Q_2				
00	-	1	0	1
01	0	1	1	1
11	-	-	-	-
10	1	0	0	0

Q_1Q_0	00	01	11	10
Q_3Q_2				
00	-	-	0	-
01	0	1	1	1
11	-	-	-	-
10	1	0	0	0

	00	01	11	10
Q_3Q_2				
00	•	-	0	-
01	0	1	1	1
11	-	-	-	-
10	1	0	0	0

$$D_2 = Q_3 \overline{Q_1} \, \overline{Q_0} + Q_2 Q_0 + Q_2 Q_1$$

Q_1Q_0	00	01	11	10
Q_3Q_2				
00	-	-	1	-
01	1	0	1	0
11	-	-	-	-
10	1	0	1	0

Q_1Q_0	00	01	11	10
Q_3Q_2				
00	-	-	1	-
01	1	0	1	0
11	-	-	-	-
10	1	0	1	0

$$D_1 = \overline{Q_1} \, \overline{Q_0} + Q_1 Q_0$$

Q_1Q_0	00	01	11	10
Q_3Q_2				
Q_3Q_2 00	-	-	1	-
01	1	0	0	1
11	-	-	-	-
10	1	0	0	1

Q_1Q_0	00	01	11	10
Q_3Q_2 00				
00	-	-	1	-
01	1	0	0	1
11	-	-	-	-
10	1	0	0	1

Q_1Q_0	00	01	11	10
00	-	-	1	-
01	1	0	0	1
11	-	-	-	-
10	1	0	0	1

$$D_0 = \overline{Q_0} + \overline{Q_3} \, \overline{Q_2}$$

Rysunek 1-1 Układ licznika synchronicznego mod 9 negatywnego w kodzie +3

		0.000 ns					
Name	Value	0 ns	 200 ns	 400 ns	 600 ns	 800 ns	
V _{dt} q3	0						
¼ q2	0						
l <u>ka</u> q1	0						
Te qo	0						
∏a clock	0						
The reset	0						

Name	Value	1,000 ns	1,200 ns	1,400 ns	1,600 ns	1,800 ns
16 q3	0					
14 q 2	0					
l@ q1	0					
\(\begin{align*} \text{\text{\$\delta}} \\ \q \\ \end{align*} \end{align*}	0					
le dock	0					
le reset	0					

Rysunek 1-2 Przebiegi czasowe w symulatorze ISim

```
15 LIBRARY ieee;
16
     USE ieee.std logic 1164.ALL;
17
    USE ieee.numeric_std.ALL;
18
     LIBRARY UNISIM;
19
     USE UNISIM.Vcomponents.ALL;
20
    ENTITY zadlsch zadlsch sch tb IS
    END zadlsch zadlsch sch tb;
21
22
    ARCHITECTURE behavioral OF zadlsch zadlsch sch tb IS
23
24
         COMPONENT zadlsch
25
         PORT ( Q2 : OUT STD LOGIC;
26
                Q3
                     :
                       OUT STD LOGIC;
27
                Q1
                    : OUT STD LOGIC;
28
               Q0 : OUT STD LOGIC;
29
                clock : IN STD LOGIC;
30
               reset : IN STD LOGIC);
31
        END COMPONENT;
32
                    : STD LOGIC;
33
         SIGNAL Q2
34
         SIGNAL Q3 : STD LOGIC;
35
         SIGNAL Q1
                    : STD LOGIC;
         SIGNAL Q0 : STD LOGIC;
36
37
         SIGNAL clock : STD LOGIC :='0';
38
        SIGNAL reset : STD LOGIC;
39
40
    BEGIN
41
42
        UUT: zadlsch PORT MAP (
43
             Q2 => Q2,
             Q3 => Q3,
44
45
             Q1 \Rightarrow Q1,
46
             Q0 \Rightarrow Q0,
47
             clock => clock,
48
             reset => reset
49
        );
50
51
      -- *** Test Bench - User Defined Section ***
52
        clock <= not clock after 100 ns;</pre>
53
         reset <= '0', '1' after 1800 ns;
54
      -- *** End Test Bench - User Defined Section ***
55
56
    LEND;
```

Rysunek 1-3 Kod w języku VHDL wraz z wektorami pobudzeń

W pliku testowym, aby wygenerować falę prostokątną o wypełnieniu 50% i stałym okresie, dopisano inicjalizację wartości początkowej sygnału "clock" w części deklaracyjnej architektury, a w treści architektury zastosowano przypisanie sygnału, negując wejście zegarowe co 100 ns.

```
#-----
 2 # ZL-9572 CPLD board, J.Sugier 2009
 3 #-----
 4
 5
    # Clocks
   NET "clock" LOC = "P7" | BUFG = CLK;
 6
   NET "clock" PERIOD = 5ms HIGH 50%;
 7
8
9
   #NET "Clk XT" LOC = "P5" | BUFG = CLK;
   #NET "Clk XT" PERIOD = 500ns HIGH 50%;
10
11
12
    # Keys
   NET "reset" LOC = "P42";
13
14 #NET "Key<1>" LOC = "P40";
15 #NET "Key<2>" LOC = "P43";
16 #NET "Key<3>" LOC = "P38";
17 #NET "Key<4>" LOC = "P37";
18 #NET "Key<5>" LOC = "P36"; # shared with ROT A
19 #NET "Key<6>" LOC = "P24"; # shared with ROT_B
20 #NET "Key<7>" LOC = "P39"; # GSR
21
22
   # LEDS
23 NET "Q0" LOC = "P35";
   NET "Q1" LOC = "P29";
24
25
   NET "Q2" LOC = "P33";
   NET "Q3" LOC = "P34";
26
27
   #NET "LED<4>" LOC = "P28";
28 #NET "LED<5>" LOC = "P27";
29 #NET "LED<6>" LOC = "P26";
30 #NET "LED<7>" LOC = "P25";
```

Rysunek 1-4 Fragment pliku .ucf z przypisanymi wyjściami i wejściami do wyprowadzeń

Natomiast w pliku .ucf dodatkowo odkomentowano linijkę 6 i 7 i przypisano wejście "clock"

Licznik zlicza impulsy zegarowe generowane w przystawce, przez co na płytce można zobaczyć całą sekwencję licznika. Zgaszona dioda oznacza "1" na wyjściu, zapalona natomiast "0" na wyjściu.

2. Detektor sekwencji "11100" w postaci automatu Mealy-ego

Proces syntezy:

Wykonano na przerzutnikach JK.

	n	Q2	Q1	Q0	Х	Q2'	Q1'	Q0'	Υ	J2	K2	J1	K1	JO	KO
1	0	0	0	0	0	0	0	0	0	0	\	0	\	0	\
2	0	0	0	0	1	0	0	1	0	0	\	0	\	1	\
3	1	0	0	1	0	0	0	0	0	0	\	0	\	\	1
4	1	0	0	1	1	0	1	0	0	0	\	1	\	\	1
5	2	0	1	0	0	0	0	0	0	0	\	\	1	0	\
6	2	0	1	0	1	0	1	1	0	0	\	\	0	1	\
7	3	0	1	1	0	1	0	0	0	1	\	\	1	\	1
8	3	0	1	1	1	0	1	1	0	0	\	\	0	/	0
9	4	1	0	0	0	1	0	1	1	\	0	0	\	1	\
10	4	1	0	0	1	0	0	1	0	\	1	0	\	1	\
11	5	1	0	1	0	0	0	0	0	\	1	0	\	/	1
12	5	1	0	1	1	0	0	1	0	\	1	0	\	\	0
13	6	1	1	0	0	\	\	\	\	\	\	\	\	\	\
14	6	1	1	0	1	\	\	\	_	\	\	\	\	\	\
15	7	1	1	1	0	\	\	\	\	\	\	\	\	\	\
16	7	1	1	1	1	\	\	\	\	\	\	\	\	\	\

Minimalizacja metodą siatek Karnaugha:

Q_0X				
Q_2Q_1	00	01	11	10
00	0	0	0	0
01	0	0	0	1
11	\	\	\	\
10	\	\	\	\

$$J_2 = Q_1 Q_0 \overline{X}$$

Q_0X				
Q_2Q_1	00	01	11	10
00	\	\	\	\
01	\	\	\	\
11	\	\	\	\
10	0	1	1	1

$$K_2 = X + Q_0$$

Q_0X				
Q_2Q_1	00	01	11	10
00	0	0	1	0
01	\	\	\	\
11	\	\	\	\
10	0	0	0	0

$$J_1 = \overline{Q_2} Q_0 X$$

Q_0X				
Q_2Q_1	00	01	11	10
Q_2Q_1		\	\	\
01	1	0	0	1
11	/	\	\	/
10	/	\	\	/

$$K_1 = \bar{X}$$

Q_0X				
Q_2Q_1	00	01	11	10
00	0	1	\	\
01	0	1	\	\
11	\	\	\	/
10	1	1	\	/

$$J_0 = Q_2 + X$$

Q_0X				
Q_2Q_1	00	01	11	10
00	\		1	1
01	/	\	0	1
11	/	\	\	\
10	\	\	0	1

$$K_0 = \overline{X} + \overline{Q_2} \, \overline{Q_1}$$

Q_0X				
Q_2Q_1	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	\	\	\	\
10	1	0	0	0

$$Y = Q_2 \overline{Q_0} \, \overline{X}$$

Proces implementacji:

Rysunek 2-1 Układ detektora sekwencji: "11100" w postaci automatu Mealy-ego

Rysunek 2-2 Przebiegi czasowe w symulatorze ISim

Kod:

```
USE ieee.numeric std.ALL;
 LIBRARY UNISIM;
 USE UNISIM. Vcomponents. ALL;
ENTITY zad2sch zad2sch sch tb IS
END zad2sch zad2sch sch tb;
ARCHITECTURE behavioral OF zad2sch zad2sch sch tb IS
    COMPONENT zad2sch
    PORT ( CLK : IN STD LOGIC;
            wej : IN STD LOGIC;
            Q0
                 : OUT STD LOGIC;
            Q1
                 : OUT STD LOGIC;
           Q2
                 : OUT STD LOGIC;
            RST :
                    IN STD LOGIC;
            wyj : OUT STD LOGIC);
    END COMPONENT;
     SIGNAL CLK : STD LOGIC :='0';
    SIGNAL wej : STD_LOGIC;
    SIGNAL Q0 : STD_LOGIC;
SIGNAL Q1 : STD_LOGIC;
SIGNAL Q2 : STD_LOGIC;
    SIGNAL RST : STD LOGIC;
     SIGNAL wyj : STD LOGIC;
 BEGIN
    UUT: zad2sch PORT MAP (
         CLK => CLK,
         wej => wej,
          Q0 \Rightarrow Q0,
          Q1 => Q1,
          Q2 \Rightarrow Q2
         RST => RST,
         wyj => wyj
     );
 -- *** Test Bench - User Defined Section ***
    CLK <= not CLK after 100 ns;
     RST <= '0', '1' after 1800 ns;
     wej <= '0', '1' after 100 ns, '0' after 800 ns;
  -- *** End Test Bench - User Defined Section ***
END;
```

Wprowadzamy sekwencję "0111111100000000000", zmieniając zbocze zegara co 100 ns i sczytując jeden bit co 100 ns z portu *wej*. Analizując przebiegi czasowe symulatora ISim, można zauważyć, że po 400. nanosekundzie sekwencja "01111" nie została wykryta, a także: po 500., 600. i 700. nanosekundzie sekwencja "11111" ani sekwencja "11110" po 800. nanosekundzie. Dopiero po 900. nanosekundzie y zmienia wartość na 1, gdy wykryta zostaje pożądana sekwencja "11100".

```
# Clocks
NET "CLOCK" LOC = "P7" | BUFG = CLK;
NET "CLOCK" PERIOD = 5ms HIGH 50%;
#NET "Clk XT" LOC = "P5" | BUFG = CLK;
#NET "Clk XT" PERIOD = 500ns HIGH 50%;
# Keys
NET "wej" LOC = "P42";
#NET "Key<1>" LOC = "P40";
#NET "Key<2>" LOC = "P43";
#NET "Key<3>" LOC = "P38";
\#NET "Key<4>" LOC = "P37";
#NET "Key<5>" LOC = "P36"; # shared with ROT A
#NET "Key<6>" LOC = "P24"; # shared with ROT B
NET "RST" LOC = "P39"; # GSR
# LEDS
NET "wyj" LOC = "P35";
#NET "wej" LOC = "P29";
#NET "LED<2>" LOC = "P33";
#NET "LED<3>" LOC = "P34";
NET "Q0" LOC = "P28";
NET "Q1" LOC = "P27";
NET "Q2" LOC = "P26";
#NET "Q3" LOC = "P25";
```

Rysunek 2-4 Fragment pliku .ucf z przypisanymi wyjściami i wejściami do wyprowadzeń

Układ gdy wykryje sekwencję "11100", zgasza diodę P35, która symbolizuje jej detekcję.

3. Wnioski

Układ licznika i detektora sekwencji działały poprawnie. Niestety, z powodu "drobnych" problemów ze środowiskiem Xilinx w czasie implementacji drugiego układu, nie udało się zaimplementować "ulepszonej" wersji układu z Rotary Encoderem i wyświetlaczem 7-segmentowym.