Machine Learning SS2013

Ulrike von Luxburg Assignment 05

Arne Schröder

Falk Oswald

Angel Bakardzhiev

May 12, 2013

Exercise 1

Task

Write the following linear program in the standard form by determining A, b, c.

Answer

Substitute x_3 with $x_3' = -x_3$:

Minimize
$$x_1 - 2x_2 - 4x_3'$$

subject to
 $-x_1 + x_2 \ge 1$
 $3x_1 - 2x_3' \le -1$
 $-2x_1 + 5x_3' + 4 \le 0$
 $x_1, x_2, x_3' \le 0$

Standard form:

Minimize $c^T x$ subject to $Ax \le b$ and $x \le 0$ with

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 3 & 0 & -2 \\ -2 & 0 & 5 \end{bmatrix}, b = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}, c = \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix}$$

Exercise 2

Task 1

Find the derivative of the Lagrangian with respect to the vector x and set it to zero $(\nabla_x L(x, \lambda_1, \lambda_2) = 0)$. Solve it with respect to λ_2 .

Solution

$$\nabla_x L(x, \lambda_1, \lambda_2) = c^T + \lambda_1^T A + \lambda_2^T = 0$$

$$\Leftrightarrow c + A\lambda_1 + \lambda_2 = 0$$

$$\Leftrightarrow \lambda_2 = -c - A\lambda_1$$

Task 2

Replace λ_2 from part 1 in $L(x, \lambda_1, \lambda_2)$ and simplify it.

Solution

$$L(x, \lambda_1, \lambda_2) = c^T x + \lambda_1^T (Ax - b) + \lambda_2^T x$$

= $c^T x + \lambda_1^T (Ax - b) + (-c - A\lambda_1)^T x$
= $c^T x + \lambda_1^T (Ax - b) - c^T x - \lambda_1^T A^T x$
= $\lambda_1^T ((A - A^T)x - b)$

Exercise 3

Task

Derive the dual problem of the hard margin SVM.

Solution

$$f_0(w, b) = \frac{1}{2} ||w||^2$$

$$f_i(w, b) = 1 - y_i(w^T x_i - b)$$

$$\Rightarrow L(w, b, \lambda) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{m} \lambda_i \cdot (1 - y_i(w^T x_i - b))$$

We now define $g(\lambda) := \inf_{(w,b)} L(w,b,\lambda)$, which gives us the dual problem

Exercise 4

Task

For any $\gamma > 0$ the hyperplane defined by the solution (w, b) to (I) $\min_{w, b} \frac{1}{2} ||w||^2$, subject to $y_i \cdot (\langle w, x_i \rangle - b) \ge 1$, is the same as the hyperplane defined by the solution (w', b') defined by (II) $\min_{w', b'} \frac{1}{2} ||w'||^2$, subject to $y_i \cdot (\langle w', x_i \rangle - b') \ge \gamma$.

Answer

For $\gamma' > 0$, minimizing $\frac{1}{2} \|w\|^2$ is equivalent to minimizing $\gamma' \cdot \frac{1}{2} \|w\|^2$. This especially applies for $\gamma' = \frac{1}{2} \gamma^{-2}$.

Given the problem (II) we know that

$$y_{i} \cdot (\langle w', x_{i} \rangle - b) \ge \gamma$$

$$\Leftrightarrow \gamma^{-1} \cdot y_{i} \cdot (\langle w', x_{i} \rangle - b') \ge 1$$

$$\Leftrightarrow y_{i} \cdot (\langle \gamma^{-1} \cdot w', x_{i} \rangle - \gamma^{-1} \cdot b') \ge 1.$$

We also can see that $\frac{1}{2}\|\gamma^{-1}\cdot w\|^2 = \frac{1}{2}\gamma^{-1}\cdot \frac{1}{2}\|w\|^2$. And using the assumption made at the beginning, we can conclude that **(II)** can be solved by the solution $(\gamma \cdot w, \gamma \cdot b)$.

Now we need to show that the two hyperplanes H, H' defined by (w, b) and $(\gamma \cdot w, \gamma \cdot b)$ coincide. Given a point $x \in H$ we know that

$$\langle w, x \rangle + b = 0$$

$$\Leftrightarrow \langle \gamma \cdot w, x \rangle + \gamma \cdot b = \gamma \cdot (\langle w, x \rangle + b) = \gamma \cdot 0 = 0.$$

This means that also $x \in H'$ and because x was arbitrary $H \subset H'$. And because the last implication is an equivalence, we know that H = H'.