Proiect Sisteme Incorporate

Sistem de alarma cu Raspberry Pi bazat pe senzor PIR

Andrei Buruntia, grupa 1.2 Dacian Buda, grupa 1.2

Enunt

- Proiectul doreste implementarea unui sistem de alarma, bazat in principal pe un senzor PIR, care sa detecteze miscare
- Creierul sistemului este un Raspberry Pi din generatia a 3-a, cu procesorul ARM Cortex A-53 pe 64 bits, cu 4 nuclee la 1.2 Ghz si 512 kB L2 cache
- Se doreste ca sistemul sa fie modular si usor de extins, fie prin adaugarea de senzori sau hardware nou, fie prin implementarea altor functionalitati software
- Software-ul se va scrie in Python 3 si interogarea si comanda senzorilor si led-urilor se va face prin pinii GPIO ai placii RPi
- Se urmareste detectarea miscarii prin intermediul senzorului PIR si implementarea alertei de intruzie
- Ulterior, dorim sa adaugam si o camera web generica USB, care sa porneasca inregistrarea atunci cand senzorul PIR este declansat, apoi sa stocheze filmarile undeva in cloud si sa notifice administratorul prin email

Placa Raspberry Pi 3

Placa are urmatoarele specificatii:

- Quad Core CPU
- 1GB RAM
- 1.2GHz Board Clock Speed Broadcom BCM2837 64bit CPU
- 40 GPIO Pins
- 4 x USB 2 Ports
- 4 Pole Stereo Output
- HDMI Port
- 10/100 Ethernet
- Micro SD Card Slot
- BCM43143 WiFi si Bluetooth Low Energy (BLE) pe placa

Particularitati ale procesorului ARM Cortex-A53:

- Implementare completa a arhitecturii ARMv8-A si a setului ei de instructiuni
- Pipeline in-order cu symmetric dual-issue pentru majoritatea instructiunilor
- Sistem de memorie Harvard Level 1 (L1) cu MMU
- Sistem de memorie L2 care furnizeaza cluster memory coherency

• Interfete:

- o Memory interface that implements either an ACE or CHI interface.
- Optional Accelerator Coherency Port (ACP) that implements an AXI slave interface.
- Debug interface that implements an APB slave interface.
- Trace interface that implements an ATB interface.
- o CTI.
- Design for Test (DFT).
- Memory Built-In Self-Test (MBIST).
- o Q-channel, for power management.

S-a folosit General Purpose I/O (GPIO) al placii pentru comunicarea cu senzorul si furnizarea tensiunii necesare (5V). Pinout-ul GPIO:

	Raspberry F	Pi 3 G	PIO Header	
Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	0	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40
. 2 02/2016	www.elemer	nt14.com	/RaspberryPi	

Raspbian, un distro de Linux bazat pe Deabian, ruleaza nativ pe procesorul ARM, iar programarea s-a facut efectiv in mediul sistemului de operare, folosind interpretorul implicit de Python al Raspbian.

Module folosite

- Senzorul PIR HC-SR501 are nevoie de VCC de 5V, tensiune furnizata de Pin #2 al GPIO-ului placii, GND furnizat de unul dintre pinii GND ai placii, iar iesirea este citita printr-un pin GPIO generic
- Senzorul infrarosu pasiv este unul dintre cele mai utilizate detectoare de miscare, in special datorita consumului redus de energie si adaptabilitatii facile la mediu
- Camera web pe care urmarim sa o folosim este un Microsoft HD3000 si inregistreaza 30 de cadre pe secunda la 720p; aceasta se conecteaza la RPi prin unul din porturile USB ale placii si dorim sa folosim Motion pentru inregistrare
- Clipurile se vor salva local pe cardul SD de pe care ruleaza si sistemul de operare al placii, urmand ca acestea sa fie urcate in cloud storage si sterse local
- Folosim led-uri de diferite culori si rezistente de diferite dimensiuni (1k, 2k, 10k), iar conectarea lor se realizeaza cu ajutorul unu breadboard