Intervalo de Confianza

Análisis Estadístico de Datos

- 1. Considerar una variable aleatoria X que sigue una distribución normal con parámetro μ desconocido y $\sigma=5.9$. En un experimento se miden los siguiente valores de X:(67.6,57.4,63.0,68.0,63.1). Estimar el valor del parámetro μ y su intervalo con un nivel de confianza del 90%.
- 2. Considerar una muestra de 10 variables aleatorias (X_1, \ldots, X_{10}) que siguen una distribución normal con paramétro μ desconocido y $\sigma = 1.8$. Graficar el cinturón de confianza 1σ . Calcular el intervalo de μ en términos de la media muestral \bar{X} y la desviación estándar σ . En un experimento se miden los 10 valores (16.2, 12.4, 19.4, 17.3, 16.8, 24.4, 10.7, 18.1, 14.2, 14.8). A partir de los datos, estimar μ y su intervalo de confianza 1σ .
- 3. Simular una muestra de dos variables normales estándar. Calcular el intervalo de confianza 1σ del parámetro μ asumiendo que la desviación estándar $\sigma=1$ es conocida. Verificar si el parámetro μ está contenido dentro del intervalo. Repetir la simulación 1000 veces para estimar la probabilidad de cobertura del intervalo. Comparar la probabilidad de cobertura con el nivel de confianza del intervalo.
- 4. En un experimento se miden los valores (13.4, 8.52, 12.7, 9.9, 12.8). Asumiendo que los datos siguen una distribución normal con parámetros μ y σ desconocidos, calcular el intervalo de Student al 90% de nivel de confianza en términos de la media muestral \bar{X} y la desviación estándar muestral s.
- 5. Simular dos variables normales X_1 y X_2 con parámetros $\mu_1 = 10.7$, $\mu_2 = 8.3$, $\sigma_1 = 1.7$, $\sigma_2 = 2.4$, y correlación $\rho = 0.78$. Considerar la elipse de 95% de confianza del parámetro $\boldsymbol{\mu} = (\mu_1, \mu_2)$. Simular varios valores de X_1 y X_2 y verificar si las elipses correspondientes contienen a $\boldsymbol{\mu}$. Repetir la simulación 10.00 veces para estimar la probabilidad de cobertura y comparar con el nivel de confianza.