

Example

Assume an annual interest rate of 5%.

1. If you have \$100 today, how much will it be worth in one year?

$$100 \times (1+0.05) = 105$$

2. If you need \$100 in one year, how much should you save today?

$$\frac{100}{1+0.05} = 95.24$$

Some questions to think about:

- What if you save \$100 today, how much will it be worth in 10 years?
- What if you need \$100 in 10 years, how much should you save today?

Interest Rate

- Interest rate: 5% pa
 - 5%: the interest is 5% of principal
 - o pa (per annum): the interest is paid annually

Interest Rate Example

An investor deposits \$10,000 in a bank account that pays interest at a rate of 5% pa.

• After 1 year, the interest earned by the investor is:

$$$10,000 \times 0.05 = $500$$

The investor's bank balance after 1 year is:

$$\$10,000 + \$500 = \$10,500$$

Interest Rate Example

Year	Principal	Interest	Total
0	\$10,000	\$0	\$10,000
1	\$10,000	\$500	\$10,500

What happens after 2 years?

- Simple interest: Interest does not earn interest
 - Interest is calculated on the principal amount only
- Compound interest: Interest itself earns interest
 - Interest is calculated on the current total amount (principal + interest)

Simple Interest

• Simple interest: interest does not earn interest

An investor deposits C in a bank account that pays simple interest at a rate of i% pa

• After *n* years, the interest earned by the investor is:

$$\underbrace{C \times i + C \times i + \dots + C \times i}_{n} = nCi$$

• Accumulated value of C today at time n is:

$$AV = C + nCi = C(1 + ni)$$

• *n* can be a non-integer

Compound Interest

• Compound interest: interest itself earns interest

An investor deposits 10,000 in a bank account that pays compound interest at a rate of 5% pa.

• After 1 year, the investor's bank balance is:

$$10,000 \times (1+0.05) = 10,500$$

• After 2 years, the investor's bank balance is:

$$egin{aligned} 10,500 imes (1+0.05) &= 11,025 \ &= 10,000 imes (1+0.05) imes (1+0.05) \ &= 10,000 imes 1.05^2 \end{aligned}$$

Compound Interest

ullet After 3 years, the investor's bank balance is: $10,000 imes (1+0.05)^2 imes (1+0.05) = 11,576.25$

Year	Principal	Interest	Total
0	\$10,000	\$0	\$10,000
1	\$10,000	\$500	\$10,500
2	\$10,500	\$525	\$11,025
3	\$11,025	\$551.25	\$11,576.25
•••	•••	•••	•••

Compound Interest

An investor deposits C in a bank account that pays compound interest at a rate of i% pa

• After *n* years, the investor's bank balance is:

$$AV = C \underbrace{\times (1+i) \times (1+i) \times \cdots \times (1+i)}_{n} = C \times (1+i)^{n}$$

• After *n* years, the interest earned by the investor is:

$$AV - C = C \times (1+i)^n - C$$

• *n* can be a non-integer

Simple vs. Compound Interests

• Accumulated value of C with simple interest rate i pa after n years:

$$C(1+ni)$$

• Accumulated value with compound interest rate i pa after n years:

$$C(1+i)^n$$

Actively reinvest interest yields a higher accumulated deposit!

Simple vs. Compound Interests

For the same principal, interest rate, and time period:

- Simple interest follows a straight line
- Compound interest follows an exponential curve

Compound interest grows faster **after the first period** (Why?).

Account Value as a Function of Time

Let A(t) be the account value at time t for a deposit at time t. Here:

- *t* is the time in years
- A(t) is a value that depends on t

Note: Usually we write y = f(x) to indicate

- ullet y is a dependent variable that depends on x
- f is a function, or a relationship to get y from x
- x is a independent variable

ullet For $t_1 < t_2$, we define $A(t_1,t_2)$ to be the value at time t_2 of an investment of 1 at time t_1

$$egin{aligned} t_1 &
ightarrow t_2 \ 1 &
ightarrow A(t_1,t_2) \end{aligned}$$

ullet By proportion, the accumulated value of deposit C from time t_1 to time t_2 is $C \cdot A(t_1,t_2)$

$$egin{aligned} t_1
ightarrow t_2 \ C
ightarrow C \cdot A(t_1,t_2) \end{aligned}$$

• $A(t_1, t_2)$ is a function of two variables: t_1 and t_2 , that is, its value depends on the two times, t_1 (the starting time) and t_2 (the ending time).

In other words,

$$A(t_1,t_2)=rac{A(t_2)}{A(t_1)}$$

Where:

- $A(t_1,t_2)$ is the accumulation factor
- $A(t_1)$ is the amount at time t_1
- $A(t_2)$ is the amount at time t_2

The accumulation factor is a "black box" to calculate the money received by customers:

$$C ext{ at } t_1 \xrightarrow{A(t_1,t_2)} CA(t_1,t_2) ext{ at } t_2$$

- As an mortgage expert, we should design the "black box"
- What is the functional form of $A(t_1, t_2)$ and A(n) using Simple interest?
- What is the functional form of $A(t_1, t_2)$ and A(n) using **Compound interest**?

Accumulation Factor - Simple Interest

Time:

$$t_1
ightarrow t_2$$

Account Value:

$$1
ightarrow 1 + (t_2-t_1)i$$

The accumulation factor from time t_1 to time t_2 for simple interest:

$$A(t_1, t_2) = 1 + (t_2 - t_1)i$$

Be careful!

The accumulation of $(1+t_1i)$ at t_1 with simple interest is not $(1+t_2i)$ at time t_2 .

Accumulation Factor - Compound Interest

Time:

$$t_1
ightarrow t_2$$

Account Value:

$$1 \rightarrow (1+i)^{t_2-t_1}$$

The accumulation factor from time t_1 to time t_2 for compound interest:

$$A(t_1,t_2)=(1+i)^{t_2-t_1}$$

- The abbreviated notation A(n) is used for A(0,n)
- The accumulation factor from time 0 to time n for simple interest:

$$A(n)=rac{1+ni}{1}=1+ni$$

• The accumulation factor from time 0 to time n for compound interest:

$$A(n) = rac{(1+i)^n}{1} = (1+i)^n$$

Example

The accumulation factor A(5)=2.5. Calculate the accumulated value of an investment of 1,000 at time 0 after 5 years.

- $t_1 = 0$ and $t_2 = 5$
- A(5) = 2.5
- Amount at time 0 = 1,000

Answer

Amount at time $5 = A(5) \times \text{Amount}$ at time $0 = 2.5 \times 1,000 = 2,500$

Example

An investment of 1,000 accumulates to 2,500 after 5 years. Calculate the accumulation factor A(5).

Answer

$$A(5) = rac{ ext{Amount at time 5}}{ ext{Amount at time 0}} = rac{2,500}{1,000} = 2.5$$

Python Implementation

We will use Python functions to implement the accumulation factor.

Fill in the blanks:

```
def acc_factor(t1, t2, i, simple=True):
    if simple:
       return
    else:
       return ___
```

Python Implementation

We will use Python functions to implement the accumulation factor.

```
def acc_factor(t1, t2, i, simple=True):
    if simple:
        return 1 + (t2 - t1) * i
    else:
        return (1 + i) ** (t2 - t1)
```

Practice Problems

Basic

- 1. Using the accumulation factor, calculate the accumulated value of an investment of 1,000 at time 0 after 5 years using simple interest of 5% pa.
- 2. Using the accumulation factor, calculate the accumulated value of an investment of 1,000 at time 0 after 5 years using compound interest of 5% pa.

Intermediate

- 3. Using the accumulation factor, calculate the accumulated value at 5.5 years of an investment of 1,000 at year 3 using simple interest of 1.5% pa.
- 4. Using the accumulation factor, calculate the accumulated value at 5.5 years of an investment of 1,000 at year 3 using compound interest of 1.5% pa.

Advanced

- 5. If you need 1,000 at time 5, how much should you deposit at time 0 using simple interest of 5% pa?
- 6. If you need 1,000 at time 5, how much should you deposit at time 0 using compound interest of 5% pa?