Scalar control of PM machines

- 1. Why V/f control cannot be used for PM machine?
- 2. I/f controller proposed
- 3. Identification of machine parameters in practice
- 4. Practice

We need to place the current vector correctly with respect to the rotor position, in order to produce torque.

$$u_{q} = Ri_{q} + p\lambda_{q} + \omega_{r}\lambda_{d}$$

$$\lambda_{q} = (L_{ls} + L_{mq})i_{q} = L_{q}i_{q}$$

$$u_{d} = Ri_{d} + p\lambda_{d} + \omega_{r}\lambda_{q}$$

$$\lambda_{d} = (L_{ls} + L_{md})i_{d} + \lambda_{mpm} = L_{d}i_{d} + \lambda_{mpm}$$
Mech. rotor speed x number of pole pairs

Peak value

Torque

$$T_{e} = \frac{3}{2} p \left(\lambda_{d} i_{q} - \lambda_{q} i_{d} \right) \qquad \Rightarrow T_{e} = \frac{3}{2} p \left[\lambda_{mpn} i_{q} + \left(L_{d} - L_{q} \right) i_{d} i_{q} \right]$$

$$If d and q axes inductances are equal$$

$$T_{e} = \frac{3}{2} p \left(\lambda_{mpn} i_{q} \right)$$

The desired current vector will be

$$T_e = \frac{3}{2} p \left(\lambda_{mpn} i_q \right)$$

When use V/f control the, the resultant current vector location is depending on the machine parameters and the speed.

Situation will be worse when considering load torque change!

$$u_{q} = Ri_{q} + p\lambda_{q} + \omega_{r}\lambda_{d}$$

$$u_{d} = Ri_{d} + p\lambda_{d} - \omega_{r}\lambda_{q}$$

$$u_{q} = Ri_{q} + \omega_{r}\lambda_{d}$$
$$u_{d} = Ri_{d} - \omega_{r}\lambda_{q}$$

$$u_d = Ri_d - \omega_r \lambda_q$$

$$\lambda_{q} = (L_{ls} + L_{mq})i_{q} = L_{q}i_{q}$$

$$\lambda_{d} = (L_{ls} + L_{md})i_{d} + \lambda_{mpm} = L_{d}i_{d} + \lambda_{mpm}$$
In S. S.

Current and flux linkage will be DC

In vector form
$$u_{dq} = u_d + ju_q$$

$$\bar{u}_{dq} = \bar{Ri}_{dq} + j\omega_r \bar{\lambda}_{dq}$$

Consider $L_d = L_q = L_s$, we have

$$\bar{u}_{dq} = R\bar{i}_{dq} + j\omega_r \bar{\lambda}_{dq} \implies \bar{u}_{dq} = R\bar{i}_{dq} + j\omega_r L_s \bar{i}_{dq} + j\omega_r \lambda_{mpm}$$

So we may use I/f control

Similar to V/f control for IM, now

- The frequency command is still ramping up (to change the speed)
- In the meantime, we keep the <u>amplitude</u> of machine current vector to be <u>CONSTANT</u>.
- Use PI controllers to make sure the real machine current follows the reference current.

I/f control structure

I/f control – during startup

- The useful torque production q-axis current will be determined automatically by the load.
- Self-stabilization mechanism may be observed

$$T_e - T_{load} = J \frac{d\omega_{r,mec}}{dt}$$
 $T_{load} \longrightarrow \omega_{r,med} \longrightarrow \theta_L \longrightarrow i_q \longrightarrow T_e$

Some observations

- It has self-stabilization mechanism.
- Large positive d-axis current may be present causing the d, q-axes inductance to vary and estimated rotor position may be affected.
- Due to this large positive d-axis current, estimated rotor position may have a large error (e.g. 25 degrees position error for the test motor) even at a medium speed.
- When switched to sensorless FOC, large transient current may occur.

Regulate the transient current

(b) Transient behavior of angle θ_L .

Measure machine parameters in practice d-axis inductance

$$i = i_a = -2i_b = -2i_c$$

$$V = V_a = -2V_b = -2V_c \implies V_{ab} = V_a - V_b = \frac{3}{2}V$$

At rotor position angle $\theta_r = 0$

$$\begin{bmatrix} f_d \\ f_q \\ f_0 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

$$i_d = i$$
 $V_d = V = \frac{2}{3}V_{ab}$ q component is zero

$$V_{ab} = \frac{3}{2}V_d = (\frac{3}{2}r)i_d + (\frac{3}{2}L_d)\frac{di_d}{dt} = (\frac{3}{2}r)i + (\frac{3}{2}L_d)\frac{di}{dt}$$

12

Measure machine parameters in practice q-axis inductance

$$\begin{split} i &= i_a = -2i_b = -2i_c \\ V &= V_a = -2V_b = -2V_c \implies V_{ab} = V_a - V_b = \frac{3}{2}V \end{split}$$

At rotor position angle $\theta_r = 90^\circ$

$$\begin{bmatrix} f_d \\ f_q \\ f_0 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ -1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

$$i_q=-i$$
 $V_q=-V=-\frac{2}{3}V_{ab}$ d component is zero

$$V_{ab} = \left(-\frac{3}{2}\right)V_q = \left(-\frac{3}{2}r\right)i_q + \left(-\frac{3}{2}L_q\right)\frac{di_q}{dt} = \left(\frac{3}{2}r\right)i + \left(\frac{3}{2}L_q\right)\frac{di}{dt}$$

Measure machine parameters in practice If Ld=Lq

$$i = i_a = -i_b$$
, $i_c = 0$
 $V = V_a = -V_b$, $V_c = 0 \implies V_{ab} = V_a - V_b = 2V$

At rotor position angle $\theta_r = 0^\circ$

$$\begin{bmatrix} f_d \\ f_q \\ f_0 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix}$$

Measure machine parameters in practice If Ld=Lq

$$i_d = i V_d = V$$

$$i_q = -\frac{\sqrt{3}}{3}i V_q = -\frac{\sqrt{3}}{3}V$$

$$V_d = V = ri + L\frac{di}{dt}$$

$$V_{q} = \left(-\frac{\sqrt{3}}{3}\right)V = ri_{q} + L\frac{di_{q}}{dt} = \left(-\frac{\sqrt{3}}{3}r\right)i + \left(-\frac{\sqrt{3}}{3}L\right)\frac{di}{dt}$$

$$V_{ab} = 2V = (2r)i + (2L)\frac{di}{dt}$$

Measure machine parameters in practice

How the inductance is determined?

- Step voltage injection measuring the transient current response
- Sinusoidal voltage injection measuring the static reactance
- The equivalent circuit is always:

Measure machine parameters in practice

When it is not easy to lock the rotor position,

Another method → 'quasi-static' measurement

i.e. rotor rotates at e.g. 1000 rpm (in electrical meaning), the stator synchronous frequency rotates at 1006 rpm, then what happens?

Mathematics behind this

The machine equation may finally be expressed as

$$\overline{v}_{\alpha\beta} = R\overline{i}_{\alpha\beta} + L_1 \frac{d\overline{i}_{\alpha\beta}}{dt} + L_2 \frac{d\overline{i}_{\alpha\beta}^*}{dt} \cdot e^{j2\theta_r} + j2\omega_r L_2 \overline{i}_{\alpha\beta}^* e^{j2\theta_r} + j\omega_r \lambda_{mpm} e^{j\theta_r}$$

$$\overline{v}_{\alpha\beta} = V_m e^{j\theta_e}, \qquad \theta_e = \omega_e t$$

$$\overline{i}_{\alpha\beta} = I_m e^{j\theta_e} e^{-j\varphi}$$

$$\bar{i}_{\alpha\beta} = I_m e^{j\theta_e} e^{-j\varphi}$$

Valid in a small time period

$$\lambda_{mpm} = 0$$

$$L_1 = \frac{L_d + L_q}{2}$$

$$L_2 = \frac{L_d - L_q}{2}$$

$$L_d = L_1 + L_2$$

$$L_q = L_1 - L_2$$

$$V_{m}e^{j\theta_{e}} = RI_{m}e^{j\theta_{e}}e^{-j\varphi} + j\omega_{e}L_{1}I_{m}e^{j\theta_{e}}e^{-j\varphi} - j\omega_{e}L_{2}I_{m}e^{j(2\theta_{r}-\theta_{e}+\varphi)} + 2j\omega_{r}L_{2}I_{m}e^{j(2\theta_{r}-\theta_{e}+\varphi)}$$

Continuous ...

$$V_{m}e^{j\theta_{e}} = RI_{m}e^{j\theta_{e}}e^{-j\varphi} + j\omega_{e}L_{1}I_{m}e^{j\theta_{e}}e^{-j\varphi} - j\omega_{e}L_{2}I_{m}e^{j(2\theta_{r}-\theta_{e}+\varphi)} + 2j\omega_{r}L_{2}I_{m}e^{j(2\theta_{r}-\theta_{e}+\varphi)}$$

Now we have the equations in 'phasors' → taking the current phasor as the reference.

Finally

$$V_m e^{j\varphi} = RI_m + j\omega_e L_1 I_m + j\omega_e L_2 I_m e^{2j(\theta_r - \theta_e + \varphi)}$$

$$L_d = L_1 + L_2$$

$$L_q = L_1 - L_2$$

When
$$2(\theta_r - \theta_e + \varphi) = 0$$
 \Longrightarrow $V_m e^{j\varphi} = RI_m + j\omega_e(L_1 + L_2)I_m$ \Longrightarrow $I_m = \max$ When $2(\theta_r - \theta_e + \varphi) = \pi$ \Longrightarrow $V_m e^{j\varphi} = RI_m + j\omega_e(L_1 - L_2)I_m$ \Longrightarrow $I_m = \min$

This may be observed from the Simulink model.