INF1050: Systemutvikling

22. januar 2013

Systemutviklingsprosessen – hvordan jobbe smartere

UNIVERSITETET I OSLO

Professor Dag Sjøberg

Plan

- Prosessbegreper
- · Beskrivelse og data fra en konkret utviklingsprosess
- Prosessmodeller
 - Fossefallsmodellen
 - Inkrementell og iterativ utvikling
 - Spiralmodellen
 - Rational Unified Process (RUP)
- · Gjenbruksbasert utvikling

INF1050/ 22.1.2013 / © Dag Sjøberg

Overordnet mål:

Hvordan utvikle, videreutvikle og vedlikeholde ITsystemer av bedre kvalitet på kortere tid og med lavere kostnader (enn i dag)?

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 3

Systemutviklingsprosess

- En systemutviklingsprosess er de aktivitetene som utføres for å utvikle et datasystem
- · Aktivitetene varierer, men vil alltid ha elementer av
 - spesifisering av kravene, dvs. hva systemet skal gjøre
 - design av systemet (for eksempel lage en datamodell)
 - implementering av koden (programmering)
 - validering av at systemet gjør det kunden ønsker
 - endringer av systemet i forhold til nye og endrede krav hos kunden

INF1050/ 22.1.2013 / © Dag Sjøberg

Prosess-egenskaper

- Hvilke aktiviteter inngår i prosessen?
- Hvor mye av hver aktivitet (absolutt og relativt i forhold til hverandre)?
- Når i utviklingsfasen gjøres (hvor mye) av hver aktivitet?
- Prosessbeskrivelser vil også kunne inneholde
 - delprodukter/resultater av en aktivitet
 - før- og etterbetingelser (pre- and post-conditions), dvs. betingelser som er sanne før og etter en fase eller et delprodukt er levert
 - rollene til dem som er involvert i prosessen
 - hvordan teamene organiseres(man jobber sjelden alene)
 - metoder, verktøy og teknikker som brukes

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 5

Eksempel på roller

- Utvikler
- Vedlikeholder
- · Arkitekt/system designer
- · Grafisk designer
- Tester
- · Prosjektleder
- · Bruker-/kunderepresentant

Ikke trivielt å besette et prosjekt med den riktige kompetansen!

INF1050/ 22.1.2013 / © Dag Sjøberg

Eksempel på verktøy

Verktøy for:

- Utvikling (IDE)
- · Konfigurasjonsstyring/endringshåndtering
- Testing
- Diagramkonstruksjon
- Prosjektstyring
- Feil- og problemhåndtering (bug & issue tracking)

Valg av verktøy er heller ikke trivielt!

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 7

Prosessen påvirker resultatet

- Systemutviklingsprosessen, dvs. måten man jobber på, i et utviklingsprosjekt vil påvirke kvaliteten både på prosjektet selv og systemet som utvikles
- Måten man jobber på påvirker også arbeidsmiljøet (trivsel, motivasjon, kompetanseutvikling etc.) som igjen påvirker prosjekt- og produktkvalitet generelt

Prosess påvirker Prosjektkvalitet

Produktkvalitet

INF1050/ 22.1.2013 / © Dag Sjøberg

Plan

- Prosessbegreper
- · Beskrivelse og data fra en konkret utviklingsprosess
- · Prosessmodeller
 - Fossefallsmodellen
 - Inkrementell og iterativ utvikling
 - Spiralmodellen
 - Rational Unified Process (RUP)
- · Gjenbruksbasert utvikling

INF1050/ 22.1.2013 / © Dag Sjøberg

Hva var utviklingsprosessene og konteksten til de ulike firmaene?

Slide 12

INF1050/ 22.1.2013 / © Dag Sjøberg

Aktivitet	Del-aktivitet	Timer	Aktivitet	Del-aktivitet	Timer
Analysis and Design	Unspecified	100	Project Management	Unspecified	163
, ,	Class diagrams (and other		Project Management	Project Management	59
Analysis and Design	diagrams)	89		Communication/Internal	
Analysis and Design	Functional design	56	Project Management	Management	48
Analysis and Design	Technical design	33	Project Management	Project initiation and planning	21
Analysis and Design	Logical architecture	18		Communication/External	
Analysis and Design	Graphical design	15	Project Management	Management	14
Analysis and Design	Data model	9	Project Management	Project meetings	9
Analysis and Design	Web site model	5	Project Management	Initial meeting	6
Analysis and Design	Navigation and page flow	4	Project Management	Preparations	4
Analysis and Design	Sequence diagrams	4	Requirements	Unspecified	16
Analysis and Design	Log on integration	3	Requirements	Use case diagrams	4
Analysis and Design	Class diagrams	2	Research Contribution	Unspecified	111
Analysis and Design	Design meeting with user	2	Research Contribution	Logging of activities	31
rmaryoro ana Deorgii	Integration analysis and	_	Research Contribution	Interviews	14
Analysis and Design	specification of formats	1	Research Contribution	Copy documents and code	10
Analysis and Design	Architectural overview	0	Research Contribution	Wrap up activities	1
Analysis and Design	Prototype development	0	Technical		
Deployment	Unspecified	23	Documentation	Unspecified	73
Deployment	Installer løsning	6	Technical Environmen	t Unspecified	74
Deployment	Acceptance Test	5		Establish development	
Deployment	Deployment	2	Technical Environmen		41
Deployment	empty	0	Technical Environmen	t Establish web environment	17
Error Correction	Unspecified	204	Technical Environmen	t Establishment	9
Error Correction	Error Correction after Test	97	Technical Environmen	t Establish test environment	3
Implementation	Develop use cases/functionality		Technical Environmen		2
Implementation	Unspecified	375	Test	Unspecified	47
Implementation	Script (JSP/PHP)	3/3 117	Test	Accomplishment of test	19
Implementation	Unit Test	107	Test	Functional test	17
Implementation	HTML/structure	15	Test	Documentation	6
Implementation Implementation	Database Development	15 14	Test	Planning test	4
	Establish database		Test	Testdata	1
Implementation		9	Training	Unspecified	6
Implementation	Establish web environment	3	User Documentation	Unspecified	19

Prosessvariable – eksempler

		Company			
Dimension	Variable	A	В	С	D
Work hours	Regular hours	No	Yes	No	Yes
CM T 1	Commits	Small	Large	Large	Small
CM Tool	Login	Same	Different	Different	Same
Language	JSP usage	High	Low	Low	Low
	Project management	Low	High	Medium	Low
Issues with	Functional clarifications	Low	Medium	High	Medium
customer before	Graphical design	Low	Medium	Low	High
acceptance test	Technical issues	Medium	Medium	Medium	Medium
	Overall	Low	High	High	High
D 1	Deleted/Added	Low	High	High	Medium
Rework	Bugs in acceptance test	Many	Medium	Medium	Few
Emphasis on Activity and Phase	Analysis & Design	Low	High	High	High
	Error correction	Medium	High	Medium	Medium
	Test	Low	Medium	Medium	High
	Tail heavy	No	No	Yes	No

INF1050/ 22.1.2013 / © Dag Sjøberg

Kontekstvariable

Unit	Variable	Company A	Company B	Company C	Company D
Company	Nationality	Domestic	Domestic	Domestic	International
	Ownership	By employees	Private	By employees	Listed on exchanges
	Location	Bergen	Oslo	Oslo	Oslo + 20 countries
	Size (#	Appr. 8	Appr. 100	Appr. 25	Appr. 13,000
	employees)				worldwide
	Formal	Light	Intermediate	Intermediate	Heavy
	process				
Project	Firm price	€8,750	€20,000	€45,380	€56,000
	Agreed time	41 days	55 days	73 days	62 days
	schedule				
	Estimated effort	100 hours	220 hours	341 hours	650 hours
	Emphasis on	Low	Low	Low	High
	project management				
	Planned	7%	28%	20%	23%
	effort on				
	A&D				
Team	Allocation	Part-time	Part-time	Part-time	Full-time
	Co-location	No	No	No	Yes
	Turn-over	No	Change of	No	No
			developer		

INF1050/ 22.1.2013 / © Dag Sjøberg

Kontekst og prosess har stor betydning

- Finnes mange ulike kriterier for prosjekt- og systemkvalitet
- Ulike kontekst- og prosessparametre vil påvirke prosjektog systemkvaliteten
- Valg av parametre vil avhenge av hvilke kvalitetsaspekter man ønsker å vektlegge
- Studien viser at selv for små prosjekter og systemer er det mange aspekter ved kontekst og prosess som påvirker resultatet

INF1050/ 22.1.2013 / © Dag Sjøberg

Plan

- Prosessbegreper
- Beskrivelse og data fra en konkret utviklingsprosess
- Prosessmodeller
 - Fossefallsmodellen
 - Inkrementell og iterativ utvikling
 - Spiralmodellen
 - Rational Unified Process (RUP)
- · Gjenbruksbasert utvikling

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 19

Prosess og kontekst har stor betydning

- Finnes mange ulike kriterier for prosjekt- og systemkvalitet
- Ulike prosess- og kontekstparametre vil påvirke prosjektog systemkvaliteten
- Valg av parametre vil avhenge av hvilke kvalitetsaspekter man ønsker å vektlegge
- Studien viser at selv for små prosjekter og systemer er det mange aspekter ved prosess og kontekst som påvirker resultatet

INF1050/ 22.1.2013 / © Dag Sjøberg

Reell prosess versus modell av prosess

- Systemutviklingsprosess (= faktisk, reell prosess):
 - de aktivitetene som utføres i et utviklingsprosjekt
- Prosessmodell (=formell prosess)
 - En abstrakt, forenklet representasjon av en prosess
 - Deskriptiv
 - beskriver en prosess slik vi mener vi utfører den
 - Normativ (preskriptiv)
 - beskriver en prosess slik noen mener den bør være (vanligste betydning)

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 21

Modell versus virkelighet

INF1050/ 22.1.2013 / © Dag Sjøberg

Hvordan tilpasse prosesser?

- Prosesser må tilpasses ingen prosjekter er like
 - Mange faktorer påvirker prosessen
- Hva kan tilpasses?
 - Antall faser/aktiviteter, roller, ansvarsforhold, dokumentformater, formalitet/frekvens på rapporter og gjennomganger
- Hvordan tilpasse?
 - 1. Identifiser prosjektomgivelser utviklingsstrategi, risiko, krav, applikasjonsområde, type kunde etc.
 - 2. Innhent synspunkter fra utviklere, brukere, kunder
 - 3. Definer prosesser, aktiviteter og roller
 - 4. Dokumenter og begrunn tilpasningene

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 25

Myndighetene anbefaler felles prosjektmodell

- For å sikre kvalitet anbefaler myndighetene at offentlige virksomheter skal bruke en felles prosjektmodell. Er det lurt?
- Ulempe
 - Sjelden at samme modell passer for alle type virksomheter
- Fordel
 - Læring på tvers av etater

Se artikkel i Aftenposten:

http://www.aftenposten.no/digital/nyheter/Haper-klare-rad-skal-fa-fart-pa-digitaliseringen-7073514.html

INF1050/ 22.1.2013 / © Dag Sjøberg

Kjennetegn ved fossefallsmodellen

- Plandrevet. Separate faser
- · Vanskelig å tilpasse endringer i brukerkrav underveis
- Best ved godt forståtte krav og når det er lite sannsynlig med mye endringer underveis
 - Men få systemer har stabile krav ...
- Brukes mest i store prosjekter som gjerne utvikles på ulike steder. Plandreven utvikling gjør det enklere å koordinere arbeidet
- Men brukes også i små, godt forståtte prosjekter (jfr. de 4 bedriftene)

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 29

Overgang til smidige metoder

- Erfaringer viser at den klassiske ingeniørtilnærmingen med fokus på planlegging og dokumenter ofte ikke er egnet
- Derfor er "smidige" metoder blitt vanlige, med hyppige iterasjoner, leveranser og økt kundekontakt

INF1050/ 22.1.2013 / © Dag Sjøberg

Plandrevne (tunge) prosesser

- Prosessaktivitetene planlagt på forhånd. Progresjon måles i henhold til planen
- En tung prosess inkluderer mange aktiviteter og ofte roller. Krever formelle, detaljerte og konsistente prosjektdokumenter
- Ofte "for-tunge", dvs. vektlegger aktiviteter som gjøres tidlig i prosessen (planlegging, analyse & design)

Smidige (lette) prosesser

- Planleggingen gjøres litt etter litt (inkrementelt)
- Enklere å endre prosessen for å tilpasse endrede krav fra kunden
- Fokuserer mer på fundamentale prinsipper (f.eks. "kontinuerlig testing"). Har færre formelle dokumenter og er ofte mer iterative

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 31

Inkrementer og iterasjoner i systemutvikling

- Et inkrement er et tillegg i funksjonaliteten et aspekt ved systemet
- En iterasjon er en syklus i utviklingen et aspekt ved prosessen
 - Et nytt inkrement utvikles gjennom en ny iterasjon
 - En ny iterasjon kan også forbedre kvaliteten på samme funksjonalitet, dvs. man lager ikke noe nytt inkrement, men bare forbedrer det eksisterende systemet

INF1050/ 22.1.2013 / © Dag Sjøberg

Inkrementell utvikling

- Systemet utvikles gradvis i form av nye inkrementer som blir lagt til. Hvert inkrement evalueres før utviklingen av neste inkrement starter
- Vanlig tilnærming i smidige metoder
- Evalueringen gjøres av en bruker- eller kunderepresentant ("product owner")

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 33

Inkrementell installering

- Istedenfor at hele systemet leveres til kunden på en gang, leveres ett inkrement av gangen som tilsvarer deler av den totale funksjonaliteten
- De viktigste kravene implementeres i de første inkrementene
- Når utviklingen av et inkrement er startet, så fryses kravene til det inkrementet, men kravene til senere inkrementer kan fortsatt endres

INF1050/ 22.1.2013 / © Dag Sjøberg

Fordeler ved inkrementell utvikling og installering

- Kostnadene ved endrede brukerkrav reduseres sammenlignet med fossefallsmodellen da delene som må endres, er mindre
- Enklere å få tilbakemeldinger fra kunden på det som har blitt utviklet
- Lettere å se hvor mye som er utviklet så langt
- Raskere levering av deler av systemet gir verdi for kunden raskere enn ved fossefallsmodellen
- Den prioriterte funksjonaliteten blir testet mest
- Lavere risiko for total prosjektfiasko

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 35

Utfordringer ved inkrementell utvikling og installering

- Store prosjekter/systemer krever en relativt stabil arkitektur som inkrementene og teamene må forholde seg til, dvs. arkitekturen kan ikke utvikles i inkrementer
- Strukturen til systemet har en tendens til å bli stadig verre etter hvert som inkrementer legges til
- Derfor stadig vanskeligere å foreta endringer hvis ikke ressurser brukes på re-faktorering (re-strukturering)

INF1050/ 22.1.2013 / © Dag Sjøberg

Spiralmodellen – en evolusjonær modell

- Utviklingsprosessen er representert som en spiral istedenfor en sekvens med aktiviteter der man evt. går tilbake til tidligere aktiviteter
- Hver runde i spiralen representerer en fase i prosessen, f. eks. kravspesifisering eller design
- · Løkkene i spiralen velges etter behov
- Risikoanalyse: hva som kan gå galt, og med hvilken sannsynlighet og konsekvens, er vurdert og håndtert eksplisitt gjennom prosessen

INF1050/ 22.1.2013 / © Dag Sjøberg

Bruk av spiralmodellen

- Blant de mest kjente, klassiske modeller
- hatt stor betydning i utviklingen av tankegangen rundt iterasjoner og risikovurderinger i systemutviklingsprosessen
- · Men brukes sjelden i konkret systemutvikling

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 39

Rational Unified Process (RUP)

- Rammeverk for å bygge arkitektur/UML-modeller
- Ikke en konkret prosessmodell, men mer et rammeverk som programvarebedrifter eller team kan ta utgangspunkt i for å skreddersy en modell for sin utvikling
- Benytter seg av prinsipper fra prosessmodellene beskrevet tidligere i forelesningen
- Vanligvis beskrevet med fokus på faser, disipliner (aktiviteter) og anbefalt god praksis

INF1050/ 22.1.2013 / © Dag Sjøberg

6 ingeniørdisipliner

Workflow	Description	
Business modelling	The business processes are modelled using business use cases.	
Requirements	Actors who interact with the system are identified and use cases are developed to model the system requirements.	
Analysis and design	A design model is created and documented using architectural models, component models, object models and sequence models.	
Implementation	The components in the system are implemented and structured into implementation sub-systems. Automatic code generation from design models helps accelerate this process.	
Testing	Testing is an iterative process that is carried out in conjunction with implementation. System testing follows the completion of the implementation.	
Deployment	A product release is created, distributed to users and installed in their workplace.	

3 støttedisipliner

Workflow	Description
Configuration and change management	This supporting workflow managed changes to the system
Project management	This supporting workflow manages the system development (see Chapters 22 and 23)
Environment	This workflow is concerned with making appropriate software tools available to the software development team.

Jfr. Technical Environment, jfr. Lysark 15

INF1050/ 22.1.2013 / Fra Ian Sommerville

Slide 43

Anbefalte praksiser i RUP

- · Utvikle systemet i iterasjoner
 - I hver iterasjon, legg til et nytt inkrement. Først lag de inkrementene som kunden har prioritert høyest
- Sørg for god håndtering av krav
 - Dokumenter kundekrav nøye og sørg for dokumentasjon av endringer i kravene
- · Bruk komponent-basert arkitektur
 - Organiser systemets arkitektur som en mengde gjenbrukbare komponenter
- · Lag visuelle modeller av programvaren
 - Bruk grafiske UML-modeller for å presentere statiske og dynamiske sider ved systemet
- · Verifiser kvaliteten
 - Sjekk at programvaren tilfredsstiller organisasjonens kvalitetsstandarder
- Kontroller endringer i programvaren
 - Bruk endringshåndteringsverktøy og konfigurasjonsstyringsverktøy

INF1050/ 22.1.2013 / © Dag Sjøberg

Plan

- Prosessbegreper
- Beskrivelse og data fra en konkret utviklingsprosess
- Prosessmodeller
 - Fossefallsmodellen
 - Inkrementell og iterativ utvikling
 - Spiralmodellen
 - Rational Unified Process (RUP)
- Gjenbruksbasert utvikling

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 45

Systemutvikling med gjenbruk

- Eksisterende programvare gjenbrukes i større eller mindre grad utviklingen av nye systemer
- Komponentbasert utvikling
 - Samling av komponenter i en pakke som del av komponentrammeverk som .NET eller J2EE eller andre typer komponent-biblioteker
 - Selvstendige software-systemer som er utviklet for bruk i et spesielt miljø
- Service-orientert (tjenesteorientert) utvikling
 - Web-services som er utviklet i henhold til en standard og som kan kalles fra andre steder

INF1050/ 22.1.2013 / © Dag Sjøberg

Service-orientert arkitektur (SOA)

- Brukes for å utvikle distribuerte systemer der komponentene er selvstendige tjenester
- Tjenestene vil kunne utføres på ulike maskiner fra ulike tjenesteleverandører
- Standard protokoller har blitt utviklet for å støtte kommunikasjon og utveksling av informasjon

INF1050/ 22.1.2013 / © Dag Sjøberg

Slide 47

Aktiviteter i en gjenbruksprosess

INF1050/ 22.1.2013 / Fra Ian Sommerville

Til slutt

- Sommerville skriver: "There are no right or wrong software processes"
- Ikke eksakt fagfelt, men opplagt at noen prosesser er bedre enn andre avhengig av hva slags system som skal utvikles og i hvilken kontekst det skal foregå
- Mangler fortsatt sikker kunnskap om hvordan ulike prosesser fungerer i ulike situasjoner

INF1050/ 22.1.2013 / © Dag Sjøberg