- 5.1. Corrente Eléctrica
- 5.2. Resistência e Lei de Ohm
- 5.3. A resistividade de Diferentes Condutores.
- 5.4. Supercondutores
- 5.5. Um Modelo para a Condução Eléctrica
- 5.6. Energia Eléctrica e Potência Eléctrica.

- Até este ponto, discussão sobre as cargas em repouso → electrostática.
- Agora → situações que envolvem cargas eléctricas em movimento.
- Corrente eléctrica ou corrente → usado para descrever a taxa de passagem de carga eléctrica a través de certa região do espaço.
- A maioria das aplicações práticas da electricidade envolve correntes eléctricas.
- O escoamento de cargas ocorre num condutor (fio de cobre) ou fora dum condutor (feixe de electrões num tubo de TV)

5.1. Corrente Eléctrica

niversidade do Minho

• Há uma *corrente eléctrica* sempre que houver um movimento de cargas do mesmo sinal numa certa direcção ou de sinais diferentes em sentidos opostos.

• Suponhamos que as cargas se movem perpendicularmente a uma superfície

de área A.

A corrente é igual à taxa de passagem da carga através dessa superfície.

 Se ΔQ for a quantidade de carga que passa através desta área, no intervalo de tempo Δt ⇒ a corrente média é:

$$I_{med} = \frac{\Delta Q}{\Delta t}$$

Se a taxa de passagem varia com o tempo ⇒ a corrente varia com o tempo ⇒ define-se a corrente instantânea:

Universidade do Minho

$$I = \frac{dq}{dt}$$
 limite diferencial da expressão anterior

• Unidade $SI \rightarrow ampere (A)$

$$1A = \frac{1C}{1s}$$

• Por convenção escolhe-se a direcção da corrente como a direcção do movimento das cargas positivas.

Num condutor (como o cobre) a corrente é provocada pelo movimento de electrões ⇒ a direcção da corrente é oposta à direcção do movimento dos electrões.

- portadores de carga num metal: e
- semicondutores: portadores (+) e portadores (-)
- Movimento das partículas carregadas e corrente eléctrica

- Volume dum elemento do condutor \rightarrow $V=\Delta x.A$
- Se n é o número de portadores de carga móveis por unidade de volume ⇒ O
 número de portadores de cargas móveis nesse elemento de volume é → n·Δx·A

• A carga △Q nesse elemento de volume →

• Se os portadores de carga se movem com a velocidade $v_d \Rightarrow$ a distância que cobrem, no intervalo de tempo Δt , $\acute{\rm e} \rightarrow \left[\Delta x = v_d \Delta t\right]$

$$\Rightarrow \left[\Delta Q = \left(n \cdot A \cdot \upsilon_d \cdot \Delta t \right) q \right] \longrightarrow \left[I = \frac{\Delta Q}{\Delta t} = n \cdot A \cdot \upsilon_d \cdot q \right]$$

- v_d é, na realidade, uma velocidade média: a *velocidade de migração*.
- Condutor isolado ⇒ os electrões têm um movimento aleatório até atingirem um equilíbrio electrostático.

Quando se aplica uma diferença de potencial (V) num condutor, por exemplo ao ligar-se a uma bateria, há um campo eléctrico no condutor (dado que agora não subsiste o equilíbrio electrostático) que gera uma força eléctrica sobre cada electrão e subsequentemente uma corrente.

- •Representação esquemática do movimento em ziguezague de um portador de carga num condutor, neste caso um electrão. As mudanças de direcção devem-se às colisões com átomos do material do condutor. Observe que o movimento resultante dos electrões está na direcção oposta à do campo eléctrico.
- •A *energia* transferida dos electrões para os átomos do material condutor provoca um aumento da energia de vibração dos átomos e daí um aquecimento no condutor.
- •O campo eléctrico efectua um trabalho sobre os electrões que é maior do que a energia média perdida durante as colisões, assim gerando uma *corrente eléctrica*.

Universidade do Minho

- → Capítulos anteriores: não pode haver campo eléctrico no interior de um condutor em equilíbrio electrostático.
- \rightarrow Objectivo desta secção: descrever o que ocorre quando as cargas se movem num condutor. As cargas deslocam-se sob a acção de um \vec{E} no interior do condutor (situação de não equilíbrio electrostático)
- \rightarrow Condutor de área de secção recta A, com uma corrente I.
- → **Definição:** A *densidade de corrente* (*J*) é a corrente por unidade de área.

$$I = n \cdot q \cdot \upsilon_d \cdot A \implies \left| J \equiv \frac{I}{A} = n \cdot q \cdot \upsilon_d \right| \qquad \left(SI : \frac{A}{m^2} \right)$$

Expressão só válida se J for uniforme e se a superfície for \bot à direcção da corrente.

• Em geral J é uma grandeza vectorial.

- *J*, como a corrente, tem o sentido do movimento dos portadores de carga no caso dos portadores (+), e o sentido oposto no caso dos portadores (-)
- Num condutor, há uma densidade de corrente \vec{J} e um campo eléctrico \vec{E} , quando se mantém uma diferença de potencial V no condutor.
- Se V for constante ⇒ a corrente no condutor também será constante.

• Muitas vezes \vec{J} é proporcional ao \vec{E} no condutor.

- A constante de proporcionalidade σ é a *condutividade* do condutor.
- → Os materiais que obedecem a 1 seguem a Lei de Ohm.

A <u>Lei de Ohm</u> afirma que, em muitos materiais (entre os quais, a maior parte dos metais), a razão entre \vec{J} e \vec{E} é uma constante, σ , que é independente de \vec{E} que provoca a corrente.

• Os materiais que obedecem à Lei de Ohm denominam-se materiais ohmicos.

- → A Lei de Ohm não é uma lei fundamental da natureza, mas uma relação de natureza empírica, válida somente para certos materiais e dentro de certos limites da tensão aplicada.
 - Uma forma da Lei de Ohm com utilidade prática mais directa.

- Segmento dum fio condutor rectilíneo.
 Comprimento l
- Há uma diferença de potencial V_b - V_a no condutor o que provoca um \vec{E} e uma corrente.

• Se \vec{E} for uniforme \Rightarrow V = V_b - V_a = E.*l*

$$\Rightarrow$$
 Módulo de $ec{J}$ \Rightarrow

$$\Rightarrow$$
 Módulo de \vec{J} \rightarrow $J = \sigma \cdot E = \sigma \frac{V}{\ell}$

$$J = \frac{I}{A} \implies V = \frac{\ell}{\sigma} J = \underbrace{\left(\frac{\ell}{\sigma \cdot A}\right)} I$$

$$R = \frac{V}{I} = \frac{\ell}{\sigma A}$$
 é a *resistência*, R, do condutor.

Unidade SI de R:
$$1\Omega = \frac{1V}{1A} \rightarrow Ohm(\Omega)$$

O inverso da *condutividade* do material é a *resistividade* ρ :

$$\rho = \frac{1}{\sigma}$$
 (SI: ohm·metro)
$$(\Omega \cdot m)$$

- → Todo material ohmico tem uma resistividade (p) característica que depende das propriedades do material e da temperatura.
- \rightarrow Por outro lado, R depende de uma geometria simples e da ρ
- \rightarrow Bons condutores eléctricos $\Rightarrow \rho$ muito baixa (ou σ elevada);
- \rightarrow Condutor ideal: $\rho = 0$
- \rightarrow Bons isolantes $\Rightarrow \rho$ muito elevada (σ baixa)
- → Isolante ideal: $\rho = \infty$

$$R = \rho \frac{l}{A}$$

Universidade do Minho

Material	$\rho\left(\Omega.\mathrm{m}\right)$
Prata	1,59×10 ⁻⁸
Cobre	1,7×10 ⁻⁸
Ouro	2,44×10 ⁻⁸
Alumínio	2,82×10 ⁻⁸
Ferro	10×10 ⁻⁸
Nicrome	1,5 10-6
Carbono	3,5×10 ⁻⁵
Germânio	0,46
Silício	640
Vidro	$10^{10} - 10^{14}$
Borracha dura	~ 10 ¹³

$$R = \rho \frac{l}{A}$$

$$R = \rho \frac{l}{A} \longrightarrow \frac{2l \propto 2R}{2A \propto R/2}$$

Universidade do Minh

- Todos os aparelhos eléctricos, semelhantes aos ferros de passar, aquecedores e lâmpadas de incandescência, têm uma resistência fixa.
- A maioria dos circuitos eléctricos usam dispositivos, os resistências, para controlar a corrente em diversas partes do circuito.
- Código de cores:

 $\Rightarrow 36 \times 10^4 \,\Omega$ ou 360 k Ω , com tolerância de 18 k Ω

Código de cores

Universidade do Minho

Cor	Valor
Preto	0
Castanho	1
Vermelho	2
Laranja	3
Amarelo	4
Verde	5
Azul	6
Violeta	7
Cinzento	8
Branco	9

- ¡! Materiais ohmicos: relação linear entre *I* e *V* sobre um grande intervalo de V aplicada .
 - O coeficiente angular da curva (declive) de *I* contra *V*, na região linear, é 1/R
- ¡! Materiais não ohmicos: relação não linear entre *I* e *V* (Ex.: o díodo, transístores, filamentos...) a respectiva operação de muitos dispositivos electrónicos modernos dependem da maneira particular com que "violam" a Lei de Ohm.

- A resistividade (ρ) de um condutor depende de diversos factores, um dos quais é a temperatura.
- Na maioria dos metais, ρ aumenta com a elevação da T
- ρ varia de maneira aproximadamente linear sobre um domínio limitado de T, segundo a lei

$$\rho = \rho_0 \left[1 + \alpha \left(T - T_0 \right) \right]$$

Onde $\rho = \rho(T)$ (T em °C); $\rho_0 = \rho(T_0)$, T_0 : temperatura de referência (usualmente 20 °C); e α é o *coeficiente de temperatura de resistividade*.

$$\alpha = \frac{1}{\rho_0} \frac{\Delta \rho}{\Delta T}$$

$$\Delta \rho = \rho - \rho_0$$

$$\Delta T = T - T_0$$

Exemplos:

 $\alpha(^{\circ}C^{-1})$:

Prata: 3.8×10^{-3} ; Cobre: 3.9×10^{-3} ; Ouro: 3.4×10^{-3} ; Alumínio: 3.9×10^{-3} ;

Ferro: 5.0×10⁻³; Carbono: -0.5×10⁻³; Germânio: -48×10⁻³; Silício: -75×10⁻³

$$\mathbf{R} \propto \rho \Rightarrow \left[\mathbf{R} = \mathbf{R}_0 \left[1 + \boldsymbol{\alpha} \left(\mathbf{T} - \mathbf{T}_0 \right) \right] \right]$$

- •Muitas vezes fazem-se medições precisas da temperatura usando esta propriedade.
- •Na realidade há sempre uma região não-linear, em temperaturas muito baixas, e ρ tende, usualmente para um certo valor mínimo (finito) nas vizinhanças do zero absoluto.

- Essa ρ residual (ρ_R) deve-se, principalmente, às colisões dos electrões com as impurezas e imperfeições do metal.
- A uma temperatura elevada (na região linear), ρ é dominada pelas colisões dos electrões com os átomos metálicos.

- Os *semicondutores* (Si, Ge, ...) têm valores intermédios de ρ .
- Nos semicondutores a ρ, em geral, diminui com a elevação de T ⇒ α < 0
 → deve-se à elevação da densidade de portadores de carga a T altas.
- Os portadores de carga nos *semicondutores* estão, muitas vezes, associados aos átomos de impurezas $\Rightarrow \rho$ é muito sensível ao tipo e à % dessas impurezas.

 O termistor é um termómetro de semicondutor que aproveita as grandes variações da ρ com a T

Universidade do Minho

• Compostos cuja R tende para zero abaixo duma certa temperatura, T_c , a temperatura crítica.

- Fenómeno descoberto em 1911, H. Kamerlingh-Onnes, no Hg.
- A ρ dos SC a baixo de T_c é menor que $4 \times 10^{-25} \Omega$.m \Rightarrow praticamente 10^{17} vezes menor que a ρ do cobre; quase nula!

 São conhecidos vários materiais SC: alumínio, estanho, zinco, índio...

- T_c é sensível à composição química, pressão, estrutura cristalina.
- Uma vez se estabeleça uma corrente num SC, a corrente persiste sem a presença duma V aplicada (pois R=0)
- SC a altas T: Bednorz & Müller, num óxido de bario, lantânio e cobre, $T_c \sim 30k$

$$\rightarrow$$
 T_c= 92 k (YBa₂Cu₂O₇); T_c= 105 k (Bi-Sr-Ca-Cu-O);
T_c= 124 k (Tl-Ba-Ca-Cu-O)

- Não fica excluída SC a temperatura ambiente. Busca de novos materiais SC.
- Aplicações práticas: (mais prováveis e amplas, a medida que T_c é mais elevada.) Imans supercondutores (armazenar energia?), dado que têm uma intensidade de campo magnético mais de 10 vezes superiores aos melhores electro-imans; dispositivos electrónicos → magnetómetros, equipamento microondas...

5.5. Um Modelo para a Condução Eléctrica

- Modelo clássico
- Condutor como uma rede regular de átomos que contém *e*⁻ livres (*e*⁻ de condução) = (número de átomos)
- Na ausência de $\vec{E} \Rightarrow e^-$ movem-se de maneira caótica (velocidade média ~10⁶ m/s)
- O conjunto de *e*⁻ de condução num metal é denominado, muitas vezes, gás de electrões.
- Os e^- "livres" efectuam colisões com o átomo da rede \rightarrow mecanismo predominante da ρ num metal a T ~ ambiente.
- ¡! Não há corrente na ausência de \vec{E} , pois a velocidade média dos e^- é nula \to não há fluxo líquido de carga.

- Se aplica um $\vec{E} \Rightarrow$ além do movimento térmico caótico, os \emph{e}^- migram em direcção oposta a \vec{E}
 - Velocidade media de migração, v_d , é muito menor (~10⁻⁴ m/s) do que a velocidade média entre as colisões (~10⁶ m/s)
- No modelo admitiremos que o excesso de energia adquirido pelos e^- , no \vec{E} , se perde para o condutor no processo de condução. Essa energia, cedida aos átomos nas colisões, aumenta a energia vibracional dos átomos e provoca o aquecimento do condutor.
- O movimento dum *e*⁻, depois da colisão, e independente do seu movimento antes da colisão.

$$\vec{F} = q\vec{E} = m\vec{a} \implies \vec{a} = \frac{q\vec{E}}{m}$$

• \vec{a} nos intervalos de tempo que separam as colisões.

Se t: tempo decorrido a partir de certa colisão,

e v_0 : velocidade inicial \Rightarrow

$$\vec{v} = \vec{v}_0 + \vec{a}t = \vec{v}_0 + \frac{q\vec{E}}{m}t$$

• Agora, tomamos o valor médio de $\upsilon \ \forall t \ e \ \forall \upsilon_0$; υ_0 aleatoriamente distribuídas $\Rightarrow valor \ médio = 0$

Valor médio
$$\left(q\frac{\vec{E}}{m}\right)t = \left(q\frac{\vec{E}}{m}\right)\tau$$
; onde τ é o tempo médio entre colisões sucessivas.

O módulo da densidade de corrente

$$J = nqv_d = \frac{nq^2E}{m}\tau$$

• Comparando com a Lei de Ohm, $J = \sigma . E \implies$

$$\sigma = \frac{nq^2\tau}{m}$$

$$\rho = \frac{1}{\sigma} = \frac{m}{nq^2 \tau}$$

$$\tau = \frac{\ell}{|\vec{v}|}$$

 ℓ : distância media entre colisões.

 \vec{v} : velocidade térmica média, v, de uma partícula em virtude da temperatura do ambiente.

• σ e ρ não dependem do \vec{E} ; característica de um condutor ohmico.

- $\sigma = \sigma(n, q, m, \tau)$
- O modelo clássico não é satisfatório na explicação de alguns fenómenos importantes.
 - \vec{v} (clássico) ~ 10 vezes < \vec{v} (real)
 - ρ (T) \propto T^{1/2} (clássico); ρ (T) linear nos metais puros.

Modelo da mecânica quântica

- Mecânica quântica: os e possuem propriedades ondulatórias.
- Rede de átomos regularmente espaçada (periódica) \Rightarrow o carácter ondulatório permite o movimento dos e^- sem colisão $\Rightarrow \rho = 0$ (condutor ideal,) livre percurso médio ∞ .

- As ondas dos e⁻ só são dispersas quando a disposição espacial dos átomos é irregular (aperiódica) → defeitos estruturais, impurezas.
- T baixas: ρ dominada (nos metais) pela dispersão provocada pelas colisões entre os e⁻ e as impurezas.
- T elevadas: ρ determinada pela dispersão provocada pelas colisões entre os *e* e os átomos do condutor, que se deslocam em virtude da agitação térmica.
 - O movimento térmico dos átomos faz com que a estrutura seja irregular.

5.6. Energia Eléctrica e Potência Eléctrica

- Essa K é dissipada pelas colisões entre os portadores de carga e os iões da rede ⇒ aumento da T do condutor.
- A energia química da bateria transforma-se, continuamente, em energia térmica.

- ΔQ percorre o circuito, a partir de "a", passa através da ε e de R e retorna a "a"
- "a" é um ponto de referência, está ligado à terra e o seu V é considerado nulo.

- $\Delta U = \Delta Q \cdot \Delta V$
- Quando <u>AQ</u> se desloca de "a" até "b", através da bateria, a sua energia potencial eléctrica aumenta de um valor $\Delta Q \cdot V$ (V é o potencial em "b"). A energia química (ΔU) da bateria diminui dessa mesma quantidade.
- Quando se desloca de "c" para "d", através de R, a ΔQ perde essa energia eléctrica potencial, ao efectuar colisões com os átomos da R, o que cria energia térmica.
- Se desprezamos da R dos fios de ligação, não haverá dissipação de energia nos percursos "bc" e "da".
- Quando ΔQ retorna ao "a", deve ter a mesma energia potencial (zero) que ao iniciar o movimento no circuito.
- A taxa de perda da energia potencial de ΔQ ao passar através de R é

$$\frac{\Delta U}{\Delta t} = \frac{\Delta Q}{\Delta t} V = I \cdot V$$

• A taxa de dissipação da energia é igual à potência, P, dissipada em R

<u>Universidade do Minho</u>

$$P = I \cdot V$$

- A P é fornecida a R pela bateria.
- A equação pode ser usada para determinar a P transferida a qualquer dispositivo.
- Com $P = I \cdot V$ e $V = I \cdot R$, para um dado $R \Rightarrow$

$$P = I^2 R = \frac{V^2}{R}$$

(SI) watt (W)

- A dissipação de P* sob a forma de calor num condutor de resistência R chama-se *efeito Joule*; também se diz perda I²R
 - * dimensões de energia por unidade de tempo.
- Uma bateria ou outro dispositivo que proporcione energia eléctrica é uma fonte de força electromotriz, fem (ε) (Não é uma força, mas uma ΔV em volts)

 Desprezando-se a R interna da bateria, a ΔV entre "a" e "b" é igual à fem, ε, da bateria.

$$V = V_b - V_a = \varepsilon$$
 e $I = \frac{V}{R} = \frac{\varepsilon}{R}$

$$\Rightarrow$$
 P = I. ε = I².R

- \Rightarrow A P fornecida pela fonte de fem = P dissipada no R.
- Quilowatt-hora; $1 \text{ kWh} = (10^3 \text{ W}).(3 600 \text{ s}) = 3.6 \times 10^6 \text{ J}$
 - ⇒ energia convertida, ou consumida, em 1h a uma taxa constante de 1 kW.