University of Waterloo CS240 Fall 2017 Tutorial 3

Monday, October 2

Problem 1

Consider the problem of sorting an array $A = (a_1, a_2, \ldots, a_n)$ of elements with multiplicities (m_1, m_2, \ldots, m_k) . That is, A is made up of k distinct elements (y_1, y_2, \ldots, y_k) , where y_i occurs m_i times in A. Prove that any algorithm in the comparison model requires $\Omega(n \log n - \sum_{i=1}^k m_i \log m_i)$ comparisons to sort A.

Problem 2

Given a set of k sorted arrays $\{A_1, ..., A_k\}$, where the combination of the k arrays has n elements, give an $O(n \log k)$ algorithm that produces a single sorted array containing all n elements. Hint: use a priority queue.

Problem 3

Perform QuickSelect to find the 3rd smallest element in the array A = [8, 17, 10, 1, 6, 20, 2, 9, 7, 13].