Análisis de Datos para la Toma de Decisiones

CLASE 5

CHRISTIAN ARAYA

INSTITUTO DE ESTADÍSTICA PUCV

CRITERIO DEL VALOR-P O P-VALUE

Definición

- Escoger de antemano el nivel α para decidir la prueba de hipótesis tiene origen en lo conversado previamente: la creencia histórica de que el error tipo I debe ser controlado puesto que es el peor tipo de error en que una prueba de hipótesis puede incurrir.
- En las aplicaciones de Estadística en diversas áreas, el criterio del valor-p es la forma más común para decidir un test de hipótesis.
- Sobre el valor-p: mientras menor sea el valor-p de la prueba, mayor es la evidencia de que debería rechazarse la hipótesis nula.
- Comparamos el valor-p con el nivel de significancia que exigimos al test (típicamente $\alpha=$ 0,05).

CÓMO EJECUTAR UNA PRUEBA DE HIPÓTESIS

 \blacksquare Si se quiere adoptar el criterio de fijar α de antemano:

Forma 1

- 1. Definir H_0 y H_1 .
- 2. Elegir un nivel α fijo.
- 3. Seleccionar un estadístico de prueba y encontrar la región crítica.
- 4. Rechazar Ho si el estadístico de prueba está en la región crítica.
- 5. Concluir o interpretar en el contexto del problema.

CÓMO EJECUTAR UNA PRUEBA DE HIPÓTESIS

■ Si se quiere adoptar el criterio de calcular el valor-p:

Forma 2

- 1. Definir Ho y H₁.
- 2. Seleccionar un estadístico de prueba.
- 3. Calcular el valor-p, poniendo atención si la prueba es de 1 o 2 colas.
- 4. Concluir en base al valor-p, comparándolo con el nivel α deseado para la prueba. Si es inferior, se rechaza H_0 .

NORMALIDAD

PRUEBAS DE HIPÓTESIS PARA VERIFI-

CAR NORMALIDAD

SHAPIRO-WILK VERSUS KOLMOGOROV-SMIRNOV

- Hasta el momento, hemos asumido Normalidad en los datos.
- Para comprobar la hipótesis de Normalidad para una muestra, se puede iniciar el Análisis Exploratorio graficando un histograma o un boxplot.
- Se pueden efectuar gráficos más complejos como un QQ-Plot (típicamente empleado para estudiar la Normalidad de los residuos en una Regresión Lineal).
- Se pueden calcular el coeficiente de Asimetría y de Curtosis, pero ninguna de estas herramientas tiene la fuerza de un test de hipótesis propiamente tal.

SHAPIRO-WILK VERSUS KOLMOGOROV-SMIRNOV

KS

- La prueba de KS se utiliza para diagnosticar si un set de datos proviene de una población Normal.
- Su uso se recomienda para muestras grandes: $n \ge 50$
- En la Hipótesis Nula, se establece que los datos provienen de una distribución Normal.
- KS utiliza un estadístico de prueba que representa la máxima diferencia, en valor absoluto, entre la distribución muestral y la distribución (acumulada) teórica.

SHAPIRO-WILK VERSUS KOLMOGOROV-SMIRNOV

Shapiro

- La prueba de Shapiro tiene el mismo fin.
- Su uso se recomienda para muestras pequeñas: n < 50
- Shapiro utiliza un estadístico de prueba que se construye ordenando los datos de menor a mayor y se calculan las diferencias desde los extremos hacia el centro. Luego se aplican coeficientes definidos por los autores y se realiza una suma de las diferencias.
- Se dice que Shapiro puede ser utilizado en muestras grandes, pero su mejor desempeño es evidente en muestras pequeñas. Por otro lado, Kolmogorov Smirnov es más robusto frente a distorsiones en las colas de la distribución que determinan los datos.

PRUEBA DE INDEPENDENCIA (DATOS

		ı
		L
		7

PKL	JEDA	UE	
CAT	EGÓR	RICO:	s)

χ^2 PARA DATOS CATEGÓRICOS

Definición

- La prueba de bondad de ajuste de Chi Cuadrado, tiene una versión para estudiar la hipótesis de independencia entre dos variables categóricas.
- Por ejemplo: se desea investigar si en una organización, existe alguna relación entre el género y nivel de ingreso de sus trabajadores, siendo esta variable expresada en términos de niveles (bajo, medio, alto).
- Se ha recogido una muestra aleatoria de 1000 personas, cuya información fue resumida en la siguiente tabla:

	Nivel	de	Ingresos
Género	Bajo	Medio	Alto
Masculino	182	213	203
Femenino	154	138	110

χ^2 PARA DATOS CATEGÓRICOS

Ejemplo

 La información presentada de este modo es una tabla de doble entrada, tabla cruzada o de contingencia.

	Nivel	de	Ingresos
Género	Bajo	Medio	Alto
Masculino	182	213	203
Femenino	154	138	110

Estadístico:

χ^2 PARA DATOS CATEGÓRICOS

	Nivel	de	Ingresos
Género	Bajo	Medio	Alto
Masculino	182	213	203
Femenino	154	138	110

Regla:

■ La regla indica: se rechaza la hipótesis nula para valores grandes del estadístico, esto es, superiores al valor crítico: χ^2_{α} con (filas-1)*(columnas-1) grados de libertad.