

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2020

PRÁCTICA 5 - Introducción al Cálculo Integral

PRIMITIVAS DE FUNCIONES ELEMENTALES.

1. Hallar las primitivas de las siguientes funciones:

(a)
$$f_1(x) = 3x - 5$$

(d)
$$f_4(x) = \frac{e^x}{2} + 3\cos x$$

(d)
$$f_4(x) = \frac{e^x}{2} + 3\cos x$$

 (g) $f_7(x) = 2\sin\frac{x}{2}\cos\frac{x}{2}$
 (e) $f_5(x) = 1 - \tan^2 x$
 (f) $f_8(x) = 2e^x - 2^x - x^2$

(b)
$$f_2(x) = x^3 + 4x - 2$$

(e)
$$f_5(x) = 1 - \tan^2 x$$

(h)
$$f_8(x) = 2e^x - 2^x - x^2$$

(c)
$$f_3(x) = \frac{x^2 - 1}{1 + x^2}$$

(f)
$$f_6(x) = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$
 (i) $f_9(x) = \frac{3}{\sin^2 x}$

(i)
$$f_9(x) = \frac{3}{\sin^2 x}$$

REGLA DE SUSTITUCIÓN.

2. Hallar las primitivas de las siguientes funciones:

(a)
$$\frac{1}{3-5x}$$

(e)
$$x^2 \cos(x^3)$$

(i)
$$\frac{3}{1+9x^2}$$

(b)
$$(4-7x)^2$$

(i)
$$\frac{3}{1+9x^2}$$

(c)
$$\frac{1}{x^2 - 2x + 1}$$

(f)
$$\tan x$$

(g) $(x+1)\sqrt{x^2+2x+1}$

(j)
$$\frac{2}{\sqrt{1-(2x)^2}}$$

(d)
$$e^{3x} + \cos 2x$$

(h)
$$\frac{2x-7}{(x^2-7x+4)^3}$$

3. Probar que integrales de la forma $\int R(e^x) dx$, mediante la sustitución $u=e^x$, se reducen a integrales de la forma $\int \frac{R(u)}{u} du$. Hallar las primitivas de las siguientes funciones:

(a)
$$\frac{e^{2x}}{e^{2x}-1}$$

(b)
$$(1+e^x)^{-1}$$

(c)
$$\frac{e^x \sqrt{e^x - 1}}{e^x - 1}$$

INTEGRACIÓN POR PARTES.

4. Calcular las siguientes integrales:

(a)
$$\int \frac{-2x}{e^x} \, dx$$

(e)
$$\int x^2 \cos 5x \, dx$$

 (i) $\int \sin(\ln x) \, dx$
 (f) $\int e^{-x} \sin 3x \, dx$
 (j) $\int \cos(\ln x) \, dx$

(i)
$$\int \sin(\ln x) \, dx$$

(b)
$$\int 3x^2 \ln x \, dx$$

(f)
$$\int e^{-x} \sin 3x \, dx$$

(j)
$$\int \cos(\ln x) dx$$

(c)
$$\int x \sin x \, dx$$

(g)
$$\int (x^2 + 5x - 3)e^x dx$$
 (k) $\int x(2 + \ln x) dx$

(k)
$$\int x(2+\ln x)\,dx$$

(d)
$$\int e^{2x} \cos x \, dx$$

(h)
$$\int \frac{x^2 + 5x - 3}{e^x} dx$$

PRIMITIVAS DE FUNCIONES RACIONALES.

5. Halle las primitivas de las siguientes funciones racionales usando el método de fracciones simples.

(a)
$$\frac{1}{7-8x}$$

(d)
$$\frac{1}{(x+1)(2x+1)^2}$$
 (f) $\frac{1}{x^3-x}$

(f)
$$\frac{1}{x^3 - x}$$

(h)
$$\frac{2x+1}{(x^3-x)}$$

(b)
$$\frac{1}{(3x-4)^2}$$

(c)
$$\frac{1}{x^2-1}$$
 (e) $\frac{8x^3+7}{(x+1)(2x+1)^2}$ (g) $\frac{1}{(x^3-x)^2}$

(i)
$$\frac{1+\sinh x}{1+\cosh x}$$

LA REGLA DE BARROW.

6. Aplicando la regla de Barrow calcular las siguientes integrales:

(a)
$$\int_0^1 2x(\sqrt{x} + \sqrt[5]{x}) dx$$

(e)
$$\int_{-2}^{2} (4-x^2) dx + \int_{2}^{4} (x-2) dx$$

(b)
$$\int_{1}^{\sqrt{3}} \frac{\sqrt{x} - 2x^2 + 5}{x^2} dx$$

(f)
$$\int_{-1}^{0} \frac{dx}{3-5x}$$

(c)
$$\int_{1}^{\sqrt{3}} \frac{x^2}{x^2 + 1} dx$$

(g)
$$\int_{-1}^{0} \frac{dx}{(4-7x)^2}$$

(d)
$$\int_{-1}^{2} |x - x^2| dx$$

(h)
$$\int_{2}^{4} \frac{1}{x^2 + 2x + 1} dx$$

7. Dada la función f(x)=-3x, se pide calcular:

(a)
$$\int_{-2}^{3} f(x) dx$$

(b)
$$\int_{-2}^{3} |f(x)| dx$$

MÉTODO DE SUSTITUCIÓN EN INTEGRALES DEFINIDAS.

8. Calcular las siguientes integrales:

(a)
$$\int_{1}^{2} \frac{8x^3 - 1}{(2x^4 - x)^2} \, dx$$

(a)
$$\int_{1}^{2} \frac{8x^3 - 1}{(2x^4 - x)^2} dx$$
 (b) $\int_{0}^{\pi/4} \sin x \cos x dx$ (c) $\int_{2}^{e^3} \frac{\ln^2 x}{x} dx$

(c)
$$\int_{2}^{e^{3}} \frac{\ln^{2} x}{x} dx$$

9. Si m y n son números positivos, demostrar que:

$$\int_0^1 x^m (1-x)^n dx = \int_0^1 x^n (1-x)^m dx$$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2020

10. Probar que $\forall m, n \in \mathbb{N}$ valen las siguientes igualdades:

(a)
$$\int_{-\pi}^{\pi} \sin(mx) \cos(nx) dx = 0$$

(b)
$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} \pi & \text{si } m = n \\ 0 & \text{si } m \neq n \end{cases}$$

(c)
$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \begin{cases} \pi & \text{si } m = n \\ 0 & \text{si } m \neq n \end{cases}$$

MÉTODO DE INTEGRACIÓN POR PARTES EN INTEGRALES DEFINIDAS.

11. Calcular las siguientes integrales, en caso de que existan:

(a)
$$\int_0^1 \frac{-2x}{e^x} dx$$

(a)
$$\int_0^1 \frac{-2x}{e^x} dx$$
 (b) $\int_1^3 3x^2 \ln x dx$ (c) $\int_0^\pi x \sin x dx$ (d) $\int_0^1 x^2 e^x dx$

(c)
$$\int_0^{\pi} x \sin x \, dx$$

(d)
$$\int_0^1 x^2 e^x \, dx$$

12. Verificar las siguientes igualdades:

(a)
$$\int_0^{\pi/2} \sin^2 x \, dx = \frac{\pi}{4}$$

(a)
$$\int_0^{\pi/2} \sin^2 x \, dx = \frac{\pi}{4}$$
 (b) $\int_{\pi}^{3\pi/2} \cos^2 x \, dx = \frac{\pi}{4}$ (c) $\int_0^{\pi/2} \sin^3 x \, dx = \frac{2}{3}$

(c)
$$\int_0^{\pi/2} \sin^3 x \, dx = \frac{2}{3}$$