UTILIZING MULTIPLE REGRESSION ANALYSIS TO PREDICT HOUSE PRICES IN KING COUNTY

Business Understanding

Some homeowners are eager to sell, but certain houses are undervalued due to wear and tear. Housing prices can fluctuate based on market trends and buyer preferences. Homeowners aim to increase their property value for higher selling prices, but they lack knowledge and insights on effective strategies to do so.

Our analysis and modelling aimed to help homeowners make informed decisions by assessing how factors like home condition, size, renovations and more can impact their home's estimated value.

Business Questions

- 1. Does the year the house was built and/or renovated affect the sale price of a house?
- 2. Do qualitative features of a house (grade, condition e.tc) affect its sale price?
- 3. Do quantitative features of a house (bedrooms, sqft of spaces) affect it's sale price?

Data Understanding

The dataset provided (kc_house_data.csv) has information on the features of single-family house sales between 2014 and 2015. More information on this features is found in this link Residential Glossary of Terms (https://info.kingcounty.gov/assessor/esales/Glossary.aspx?type=r#g). The file column_names.md contains column descriptions.

- The analysis was based on King County data set.
- It had a total of 21,597 records, containing 20 columns and 21,597 rows.
- Timeframe of the data is 2014 to 2015.
- Each row contains data of an individual house, which is indexed by a unique house id.
- The data has numerical and categorical variables.

Data Preparation, Processing, EDA

Libraries

In [47]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
%matplotlib inline

import statsmodels.api as sm
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

import warnings
```

Import the Data

In [48]:

```
# import and view the first five records
data = pd.read_csv("kc_house_data.csv")
data.head()
```

Out[48]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wate
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

5 rows × 21 columns

In [49]:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 21597 entries, 0 to 21596 Data columns (total 21 columns):

Data	COLUMNIS (COCAL	ZI COIUMIIS).	
#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	object
9	view	21534 non-null	object
10	condition	21597 non-null	object
11	grade	21597 non-null	object
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtype	es: float64(6),	int64(9), object	t(6)
	N 2 F. M	AD.	

memory usage: 3.5+ MB

The data has 21 columns and 21597 rows. The descriptions are in the Residential Glossary of Terms (linked above in the lmportant links section).

In [50]:

data.describe()

Out[50]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot
count	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04
mean	4.580474e+09	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04
std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04
min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02
25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06
4						>

In [51]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	
11496	2025079037	10/1/2014	510000.0	3	2.25	2750	219542	2.0	NO	N
19274	3416600490	7/31/2014	675000.0	3	2.25	1780	4252	2.0	NO	N
19390	9202650040	9/26/2014	401000.0	3	1.00	1120	8321	1.0	NO	N
498	9274202270	8/18/2014	625000.0	2	1.50	1490	5750	1.5	NO	N
4869	3832710680	7/21/2014	215000.0	4	2.00	1540	7575	1.0	NaN	N
18472	1238500978	9/22/2014	365000.0	3	1.00	950	8450	1.0	NO	N
1746	9424400200	5/15/2014	451555.0	2	1.00	1320	4520	1.0	NO	, ,

Create a Copy of the dataFrame

In [52]:

```
data_copy = data.copy()
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596

Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	object
9	view	21534 non-null	object
10	condition	21597 non-null	object
11	grade	21597 non-null	object
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtyp	es: float64(6),	int64(9), object	t(6)

localhost:8889/notebooks/Desktop/Moringa-DSC/phase_2/PHASE2PROJECT/group_6.ipynb

memory usage: 3.5+ MB

2345

4799

0.0

Name: sqft_basement, dtype: float64

610.0

Processing the Data

There are a few issues with the data.

- 1. Missing values in the yr_renovated column.
- 2. The sqft_basement feature has string values instead of numeral values.

Correcting Data Types

There is a problem with the sqft_basement feature. There are values denoted as "?" that need to be replaced with 0.

```
In [53]:
data_copy["sqft_basement"] = data_copy.sqft_basement.replace("?", 0.0)
data_copy.sqft_basement.value_counts()
Out[53]:
0.0
          12826
            454
0.0
            217
600.0
500.0
            209
            208
700.0
              1
1920.0
3480.0
              1
2730.0
              1
2720.0
              1
248.0
Name: sqft_basement, Length: 304, dtype: int64
In [54]:
# check that the data correction was successful
data copy['sqft basement']= data copy.sqft basement.astype('float64')
data_copy["sqft_basement"].sample(12)
Out[54]:
6657
           0.0
7311
           0.0
2332
         790.0
           0.0
10943
           0.0
11150
3000
         980.0
11605
         600.0
         460.0
8366
15644
           0.0
```

Encoding Categorical Variables

1. view

The view feature had only 63 missing values. All were replaced with 0 (houses with no views) while the rest of the elements were graded with numbers.

In [55]:

```
data_copy["view"].replace("FAIR", 1, inplace = True)
data_copy["view"].replace("AVERAGE", 2, inplace = True)
data_copy["view"].replace("GOOD", 3, inplace = True)
data_copy["view"].replace("EXCELLENT", 4, inplace = True)
data_copy["view"].replace("NONE", 0, inplace = True)
data_copy["view"].fillna(value = 0, inplace = True)
```

In [56]:

```
data_copy["view"].head(22)
Out[56]:
```

```
0
       0.0
1
       0.0
2
       0.0
3
       0.0
4
       0.0
5
       0.0
6
       0.0
7
       0.0
       0.0
8
9
       0.0
10
       0.0
11
       0.0
12
       0.0
13
       0.0
14
       0.0
15
       3.0
16
       0.0
17
       0.0
18
       0.0
19
       0.0
20
       0.0
21
       4.0
```

Name: view, dtype: float64

2. `grade``

In [57]:

```
In [58]:
```

```
data_copy["grade_levels"] = data_copy['grade'].str.extract('(\d+)').astype('int64')
print(data_copy.head(10))
```

0 1 2 3 4 5 6 7 8	6414100192 5631500400 2487200875 1954400510 7237550310 1321400060 2008000270 2414600126 3793500160	date 10/13/2014 12/9/2014 2/25/2015 12/9/2014 2/18/2015 5/12/2014 6/27/2014 1/15/2015 4/15/2015 3/12/2015	pri 221900 538000 180000 604000 510000 1230000 257500 291850 229500 323000	0.0 0.0 0.0 0.0 0.0 0.0 0.0		ooms 3 3 2 4 3 4 3 3 3 3	bathr	1.00 2.25 1.00 3.00 2.00 4.50 2.25 1.50 1.00 2.50	2 1 1 5 1 1 1	180 570 770 960 680 420 715 060 780
lt 0	\	oors waterf				SqTT_		sqtt_		-
0 55	5650	1.0		0.0	•••		1180		0.0	19
1 51	7242	2.0		0.0	• • •		2170		400.0	19
2 33	10000	1.0		0.0	•••		770		0.0	19
3 65	5000	1.0	NO 6	0.0	•••		1050		910.0	19
4 87	8080	1.0	NO 6	0.0	• • •		1680		0.0	19
5 01	101930	1.0	NO 6	0.0	• • •		3890		1530.0	20
6 95	6819	2.0	NO 6	0.0	• • •		1715		0.0	19
7 63	9711	1.0	NO 6	0.0	• • •		1060		0.0	19
8 60	7470	1.0	NO 6	0.0	• • •		1050		730.0	19
9 03	6560	2.0	NO 6	0.0	•••		1890		0.0	20
	yr_renovated	zipcode	lat	4.2.2	long	-	t_livi	ing15	. –	
0 1	0.0 1991.0	98178 98125	47.5112 47.7210					1340 1690	56 76	
2	NaN	98028	47.7379					2720	80	
3	0.0	98136	47.5208					1360	50	
4	0.0	98074	47.6168					1800	75	03
5	0.0	98053	47.6561					4760	1019	
6	0.0	98003	47.3097					2238	68	
7 8	0.0 0.0	98198 98146	47.4095 47.5123					1650 1780	97 81	
9	0.0	98038	47.3684					2390	75	
0 1 2 3 4 5 6 7 8	grade_levels 7 7 6 7 8 11 7 7 7									

[10 rows x 22 columns]

3. condition

```
In [59]:

data_copy["condition"].unique()

Out[59]:
    array(['Average', 'Very Good', 'Good', 'Poor', 'Fair'], dtype=object)

In [60]:

condition_mapping = {
    'Average': 0,
    'Very Good': 1,
    'Good': 2,
    'Poor': 3,
    'Fair': 4
}

# Assuming you have a pandas DataFrame named 'kc_data'
data_copy['condition_numeric'] = data_copy['condition'].map(condition_mapping)
```

4. waterfront

The waterfront feature also has NaN values. Since the feature is a string, the elements were replaced with numerical values and the missing values replaced with 0 to denote that the house has no waterfront.

```
In [61]:
```

```
# There was YES, NO or NaN

data_copy['waterfront'].replace("YES", 1, inplace = True)
data_copy['waterfront'].replace("NO", 0, inplace = True)
data_copy['waterfront'].fillna(value = 0, inplace = True)
```

Missing Values

The yr_renovated missing values can be replaced with zero to indicate that renovation has not been done.

```
In [62]:
```

```
data_copy.yr_renovated.fillna(0.0, inplace=True)
```

```
In [63]:
```

```
data_copy.waterfront.isna().sum()
```

Out[63]:

0

In [64]:

```
data_copy.isna().sum()
Out[64]:
id
                       0
date
                       0
price
                       0
bedrooms
                       0
bathrooms
                       0
sqft_living
                       0
sqft_lot
                       0
floors
                       0
waterfront
                       0
view
                       0
condition
                       0
grade
                       0
sqft_above
                       0
sqft_basement
                       0
yr_built
                       0
                       0
yr_renovated
zipcode
                       0
lat
                       0
```

Outliers

• The bedroom feature had some houses with 11 and 33 bedrooms. This may affect the quality of the graph. Hence, the rows will be dropped.

In [65]:

```
data_copy = data_copy[data_copy["bedrooms"] <= 10]</pre>
data_copy.bedrooms.value_counts()
Out[65]:
3
      9824
      6882
4
2
      2760
5
      1601
6
       272
1
       196
7
         38
8
        13
9
          6
10
          3
Name: bedrooms, dtype: int64
```

Dropping Some Columns

In [66]:

We decided to keep specific columns as predictor variables of the price variable. Hence, we dropped the other columns early on in the analysis by creating a dataframe with the selected columns. Our columns of choice were: price, sqft_living, sqft_lot, sqft_basement, sqft_above, yr_built, bedrooms, bathrooms, yr_renovated, grade, condition, waterfront, view, floors.

Henceforth, id , date , zipcode , lat , long , sqft_living15 , sqft_lot15 were dropped as they were not relevant to our modelling.

In [67]:

```
kc_data = data_copy[["price", "bedrooms", "bathrooms", "sqft_living", "sqft_lot", "sqft_b
print(kc_data.dtypes)
price
                      float64
                        int64
bedrooms
bathrooms
                      float64
sqft living
                        int64
sqft lot
                        int64
                      float64
sqft_basement
                        int64
sqft_above
yr built
                        int64
                      float64
yr renovated
grade
                       object
condition
                       object
                      float64
waterfront
                      float64
view
                      float64
floors
grade levels
                        int64
condition numeric
                        int64
dtype: object
```

In [68]:

kc_data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21595 entries, 0 to 21596
Data columns (total 16 columns):

#	Column	Non-Nu	ull Count	Dtype
0	price	21595	non-null	float64
1	bedrooms	21595	non-null	int64
2	bathrooms	21595	non-null	float64
3	sqft_living	21595	non-null	int64
4	sqft_lot	21595	non-null	int64
5	sqft_basement	21595	non-null	float64
6	sqft_above	21595	non-null	int64
7	yr_built	21595	non-null	int64
8	yr_renovated	21595	non-null	float64
9	grade	21595	non-null	object
10	condition	21595	non-null	object
11	waterfront	21595	non-null	float64
12	view	21595	non-null	float64
13	floors	21595	non-null	float64
14	<pre>grade_levels</pre>	21595	non-null	int64
15	condition_numeric	21595	non-null	int64
d+,,,,	a_{0} , f_{1} , a_{0} + f_{1} / f_{1}	(1/7)	object(2)	

dtypes: float64(7), int64(7), object(2)

memory usage: 2.8+ MB

In [69]:

kc_data.head()

Out[69]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	sqft_basement	sqft_above	yr_built
0	221900.0	3	1.00	1180	5650	0.0	1180	1955
1	538000.0	3	2.25	2570	7242	400.0	2170	1951
2	180000.0	2	1.00	770	10000	0.0	770	1933
3	604000.0	4	3.00	1960	5000	910.0	1050	1965
4	510000.0	3	2.00	1680	8080	0.0	1680	1987
4								+

In [70]:

kc_data.describe()

Out[70]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	sqft_basement
count	2.159500e+04	21595.000000	21595.000000	21595.000000	2.159500e+04	21595.000000
mean	5.402929e+05	3.371475	2.115802	2080.300579	1.510030e+04	285.688400
std	3.673845e+05	0.902643	0.768992	918.121966	4.141445e+04	439.830437
min	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	0.000000
25%	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	0.000000
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.620000e+03	0.000000
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068600e+04	550.000000
max	7.700000e+06	10.000000	8.000000	13540.000000	1.651359e+06	4820.000000
4						>

In [71]:

```
#Set plot style
sns.set_style("whitegrid")

# Create distribution plot
sns.displot(kc_data['price'], kde=True)

# Set plot title and labels
plt.title("Distribution of Price")
plt.xlabel("Price")
plt.ylabel("Frequency")

# Show plot
plt.show()
```


Visualizing the Categorical Variables - Grade, Waterfront

Observations

Most houses sold were of average grade and condition.

Most did not have a waterfront.

Majority sold had no view.

Visualizing the Continuous Variables vs price - sqft_living, sqft_lot, sqft_basement

In [72]:

```
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(12,12))

for xcol, ax in zip(["sqft_living", "sqft_lot", "sqft_basement"], axes):
    kc_data.plot(kind = "scatter", x = xcol, y = "price", ax = ax, alpha=0.2)
    ax.set_title(xcol)

fig.tight_layout()
```


Observation

sqft_living and sqft_basement have a linear relationship with the price.

Checking for Collinearity

In [73]:

```
correlation = kc_data.corr()['price'].map(abs).sort_values(ascending = False)
correlation
```

Out[73]:

price	1.000000				
sqft_living	0.701948				
grade_levels	0.667967				
sqft_above	0.605401				
bathrooms	0.525934				
view	0.393502				
sqft_basement	0.321109				
bedrooms	0.316504				
waterfront	0.264308				
floors	0.256828				
yr_renovated	0.117948				
sqft_lot	0.089879				
yr_built	0.053964				
condition_numeric	0.034484				
Name: price, dtype:	float64				

The strongest correlation with price is with sqft_living, bathrooms and sqft_basement. The heatmap below visualizes this information.

In [74]:

```
correlation_matrix = kc_data[correlation.index].corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()
```


Feature Engineering

· Adding some columns to help extract more information.

In [75]:

```
kc_data.columns
```

```
Out[75]:
```

In [76]:

```
kc_data.loc[:, "house_age"] = 2015 - kc_data["yr_built"].values
kc_data.loc[:, "renovation_status"] = kc_data["yr_renovated"].values - kc_data["yr_built"
kc_data.loc[:, "renovation_status"] = np.where(kc_data["renovation_status"].isnull(), 0,
```

C:\Users\hp\AppData\Local\Temp\ipykernel_9412\3523992008.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

kc_data.loc[:, "house_age"] = 2015 - kc_data["yr_built"].values
C:\Users\hp\AppData\Local\Temp\ipykernel_9412\3523992008.py:2: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

kc_data.loc[:, "renovation_status"] = kc_data["yr_renovated"].values - k
c data["yr built"].values

C:\Users\hp\AppData\Local\Temp\ipykernel_9412\3523992008.py:3: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

kc_data.loc[:, "renovation_status"] = np.where(kc_data["renovation_statu
s"].isnull(), 0, kc_data["renovation_status"])

In [77]:

```
print(data copy.head(5))
print(data_copy.columns)
                    date
                                   bedrooms
                                             bathrooms sqft_living
                             price
  7129300520
             10/13/2014
                          221900.0
                                          3
                                                  1.00
                                                               1180
1
  6414100192
               12/9/2014
                         538000.0
                                          3
                                                  2.25
                                                               2570
  5631500400
               2/25/2015
                          180000.0
                                          2
                                                  1.00
                                                                770
2
  2487200875
               12/9/2014
                                          4
                                                  3.00
                                                               1960
3
                          604000.0
4
  1954400510
               2/18/2015
                          510000.0
                                          3
                                                  2.00
                                                               1680
   sqft_lot floors waterfront view ... sqft_basement yr_built \
                           0.0
                                0.0
0
      5650
               1.0
                                                   0.0
                                                           1955
1
      7242
               2.0
                           0.0
                                0.0
                                                 400.0
                                                           1951
                                     . . .
2
               1.0
                           0.0
     10000
                                0.0 ...
                                                   0.0
                                                           1933
3
      5000
               1.0
                           0.0
                                 0.0 ...
                                                 910.0
                                                           1965
4
      8080
               1.0
                           0.0
                                 0.0
                                                   0.0
                                                           1987
  yr_renovated zipcode
                                     long sqft_living15 sqft_lot15
                             lat
                  98178 47.5112 -122.257
                                                   1340
0
           0.0
                                                               5650
1
        1991.0
                  98125 47.7210 -122.319
                                                   1690
                                                               7639
                  98028 47.7379 -122.233
                                                   2720
2
           0.0
                                                               8062
                  98136 47.5208 -122.393
3
           0.0
                                                   1360
                                                               5000
4
           0.0
                  98074 47.6168 -122.045
                                                   1800
                                                               7503
   grade levels condition numeric
0
             7
             7
                                0
1
2
             6
                                0
3
             7
                                1
4
             8
                                0
[5 rows x 23 columns]
'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcod
e',
       'lat', 'long', 'sqft_living15', 'sqft_lot15', 'grade_levels',
       'condition numeric'l,
     dtype='object')
```

Multicollinearity

In [78]:

abs(kc_data.corr()) > .75 Out[78]: bathrooms sqft_living sqft_lot sqft_basement sqft_above yr_built price bedrooms price True False False False False False False False bedrooms False True False False False False False False bathrooms False False False True True False False False False False False sqft_living False True True False True sqft_lot False False False False True False False False False sqft_basement False False False False False True False True False sqft_above False False False True False False yr_built False False False False False False False True False False False False False False False yr_renovated False False False False waterfront False False False False False

In [79]:

```
data = pd.read_csv("kc_house_data.csv")
data_copy = data.copy()
# kc_data = data_copy[["price", "bedrooms", "bathrooms","sqft_living", "sqft_lot", "sqft_
# "condition", "waterfront", "view", "floors", "renovation_status",
```

In [80]:

```
# Creating a new dataframe of the absolute values of the correlations
collinear_pairs = kc_data.corr().abs().stack().reset_index().sort_values(0, ascending=Fal
collinear_pairs['pairs'] = list(zip(collinear_pairs.level_0, collinear_pairs.level_1))
collinear_pairs.set_index(['pairs'], inplace = True)
collinear_pairs.drop(columns=['level_1', 'level_0'], inplace = True)

# cc for correlation coefficient
collinear_pairs.columns = ['cc']
collinear_pairs.drop_duplicates(inplace=True)

# Filter for correlation coefficients less than 1 and greater than 0.76
collinear_pairs[(collinear_pairs.cc>.76) & (collinear_pairs.cc<1)]</pre>
```

Out[80]:

pairs

(house_age, yr_built) 1.000000

(yr_renovated, renovation_status) 0.996987

(sqft_living, sqft_above) 0.876446

(sqft_living, grade_levels) 0.762825

- To ensure that data interpretation accuracy is addressed, sqft_living will be dropped when modelling because it is strongly correlated with two other predictor variables.
- Further, renovation_status and house_age were dropped since they were a result of feature engineering yet they caused a near perfect collinearity.

In [81]:

```
kc_data = kc_data.drop(columns=["sqft_living", "renovation_status", "house_age"])
```

```
In [82]:
```

```
print(kc_data.columns)
print(kc_data.info())
Index(['price', 'bedrooms', 'bathrooms', 'sqft_lot', 'sqft_basement',
       'sqft_above', 'yr_built', 'yr_renovated', 'grade', 'condition',
       'waterfront', 'view', 'floors', 'grade_levels', 'condition_numeri
     dtype='object')
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21595 entries, 0 to 21596
Data columns (total 15 columns):
#
    Column
                       Non-Null Count Dtype
_ _ _
    _____
                       -----
0
    price
                       21595 non-null float64
 1
    bedrooms
                       21595 non-null
                                       int64
 2
    bathrooms
                       21595 non-null float64
    sqft_lot
                       21595 non-null int64
    sqft_basement
 4
                       21595 non-null float64
                       21595 non-null int64
 5
    sqft_above
                       21595 non-null int64
    yr_built
 7
    yr_renovated
                       21595 non-null float64
 8
                       21595 non-null object
    grade
```

Creating the Models

1. Base Model

- The base model takes into consideration the feature with the strongest correlation with price after sqft_living which has auto-correlation with other variables.
- From our analysis, the feature is grade. For the purpose of modelling, the column grade_levels was used.

In [83]:

20e+05

20e+05 Df Model:

Df Residuals:

Covariance Type:

```
# Create our X and y for the baseline model
y = kc_data["price"]
X = kc_data["grade_levels"]
# Add a constant column to the feature matrix for the intercept term
X = sm.add_constant(X)
# Create and fit the linear regression model
model = sm.OLS(y, X).fit()
# Print the summary of the model
print(model.summary())
```

OLS Regression Results ______ Dep. Variable: price R-squared: 0.446 Model: 0LS Adj. R-squared: 0.446 Method: Least Squares F-statistic: 1.7 40e+04 Date: Fri, 02 Jun 2023 Prob (F-statistic): 0.00 Time: 22:19:37 Log-Likelihood: -3.00 98e+05 No. Observations: 21595 AIC: 6.0

BIC:

6.0

21593

nonrobust

1

In [84]:

```
sns.regplot(kc_data['grade_levels'], kc_data['price'])
plt.title("Regression Plot")
print("Grade and price are positively correlated.")
```

C:\Users\hp\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureW arning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Grade and price are positively correlated.

2. Iterating Categorical and Numerical Features

In the cell below, we added one categorical variable after another but the r-squared values were blow 60%, with grade giving us the highest r-squared of 55%.

In [85]:

```
num_cat_features = kc_data[["bedrooms", "bathrooms", "sqft_lot", "sqft_basement", "sqft_a
y = kc_data["price"]
X = num_cat_features

# Add a constant column to the feature matrix for the intercept term
X = sm.add_constant(X)

# Create and fit the linear regression model
model = sm.OLS(y, X).fit()

# Print the summary of the model
print(model.summary())
```

OLS Regression Results

====							
Dep. Variable:	price	R-squared:					
0.511							
Model:		0LS	Adj. R-squared:				
0.511					_		
Method:	Leas ⁻	t Squares	F-statistic		3		
223.			5 / /5 /				
Date:	Fr1, 02	Jun 2023	Prob (F-stat	tistic):			
0.00		20 40 20			2 2254		
Time:		22:19:38	Log-Likelih	ooa:	-2.9964		
e+05		24505	4.7.6		F 003		
No. Observations:		21595	AIC:		5.993		
e+05		24507	DTC		5 004		
Df Residuals:		21587	BIC:		5.994		
e+05		7					
Df Model:		7					
Covariance Type:		nonrobust					
=======================================		======	=======		=======		
	coef	std err	+	P> t	[0.025		
0.975]	COCT	364 611	·	17[0]	[0.023		
const	5.504e+04	8303.369	6.629	0.000	3.88e+04		
7.13e+04							
bedrooms	-6.625e+04	2458.164	-26.953	0.000	-7.11e+04		
-6.14e+04							
bathrooms	1.475e+04	3844.613	3.835	0.000	7210.228		
2.23e+04							
sqft_lot	-0.3731	0.043	-8.587	0.000	-0.458		
-0.288							
sqft_basement	331.5323	4.976	66.629	0.000	321.779		
341.285							
sqft_above	307.0510	3.368	91.174	0.000	300.450		
313.652							
floors	1.578e+04	4370.222	3.610	0.000	7209.573		
2.43e+04							
condition_numeric	2.435e+04	1995.032	12.204	0.000	2.04e+04		
2.83e+04							
=======================================	=======	=======	========	=======	========		
====							
Omnibus:	:	14156.231	Durbin-Watso	on:			
1.988							
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	46468		
8.579							
Skew:		2.673	Prob(JB):				
0.00					_		
Kurtosis:		25.088	Cond. No.		2.20		
e+05							
=======================================		=======	========		=======		
====							

Notes:

- $\cite{black} \cite{black}$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.2e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

```
In [86]:
```

```
num_cat_features = kc_data[["bedrooms", "bathrooms", "sqft_lot", "sqft_basement", "sqft_a
y = kc_data["price"]
X = num_cat_features

# Add a constant column to the feature matrix for the intercept term
X = sm.add_constant(X)

# Create and fit the linear regression model
model = sm.OLS(y, X).fit()

# Print the summary of the model
print(model.summary())
```

```
OLS Regression Results
______
=====
Dep. Variable:
                           price
                                  R-squared:
0.545
Model:
                             OLS
                                  Adj. R-squared:
0.545
Method:
                    Least Squares
                                  F-statistic:
3696.
Date:
                  Fri, 02 Jun 2023
                                  Prob (F-statistic):
0.00
Time:
                         22:19:38
                                  Log-Likelihood:
                                                          -2.98
86e+05
No. Observations:
                           21595
                                  AIC:
                                                           5.9
77e+05
Df Residuals:
                           21587
                                  BIC:
                                                           5.9
78e+05
Df Model:
                               7
Covariance Type:
                       nonrobust
```

In [87]:

```
num_cat_features = kc_data[["bedrooms", "bathrooms", "sqft_lot", "sqft_basement", "sqft_a
y = kc_data["price"]
X = num_cat_features

# Add a constant column to the feature matrix for the intercept term
X = sm.add_constant(X)

# Create and fit the linear regression model
model = sm.OLS(y, X).fit()

# Print the summary of the model
print(model.summary())
```

OLS Regression Results

==========			========	======	========	====
====						
Dep. Variable:		price	R-squared:			
0.550						
Model:		0LS	Adj. R-squared:			
0.550						
Method:	Le	east Squares	F-statistic:			
775.						
Date:	Fri,	02 Jun 2023	Prob (F-st	atistic):	•	
0.00						
Time:			Log-Likeli	-2.	-2.9873	
e+05						
No. Observation	ons:	21595	AIC:		5	.975
e+05						
Df Residuals:		21587	BIC:		5	.975
e+05						
Df Model:		7				
Covariance Typ	oe:	nonrobust				
==========	:=======		========	======	========	====
======						
	coef	std err	t	P> t	[0.025	
0.975]						
const	-5.173e+05	1.53e+04	-33.733	0.000	-5.47e+05	-
4.87e+05						
bedrooms	-4.497e+04	2391.534	-18.802	0.000	-4.97e+04	-
4.03e+04						
bathrooms	-1.748e+04	3721.721	-4.696	0.000	-2.48e+04	-
1.02e+04						
sqft_lot	-0.2875	0.042	-6.898	0.000	-0.369	
-0.206						
sqft_basement	271.1924	4.969	54.582	0.000	261.454	
280.931						
sqft above	203.0235	3.961	51.254	0.000	195.259	
210.788		3770_	5_1_5	0.000		
floors	-1.755e+04	4162.208	-4.218	0.000	-2.57e+04	-9
396.235	21,7550.01	.1021200		0.000	20376.01	
grade_levels	1.092e+05	2412.016	45.269	0.000	1.04e+05	
1.14e+05	1.0020100	2412.010	73.203	0.000	1.040105	
==========						
====						
Omnibus:		16384.104	Durbin-Wat	con:		
1.982		10304.104	Dui Din-wac	3011.		
Prob(Omnibus):	•	0.000	Jarque-Bera (JB):		90	613
2.687	•	0.000	Janque-Ben	a (Jb).	03	013
Skew:		2 152	Dnoh/JD).			
0.00		3.153	Prob(JB):			
		22 022	Cond No			4 AO
Kurtosis:		33.922	Cond. No.		•	4.08
e+05						
====						====

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.08e+05. This might indicate that ther e are
- strong multicollinearity or other numerical problems.

3. Model Using All Features

In [88]:

```
features = kc_data.columns.drop(["price", "grade", "condition", "view"])
# Create the feature matrix X and the target vector y
X = kc data[features]
y = kc_data['price']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create and fit the linear regression model
model = LinearRegression()
model.fit(X, y)
# Add a constant column to the feature matrix for the intercept term
X_train = sm.add_constant(X_train)
X_test = sm.add_constant(X_test)
# Create and fit the linear regression model
model = sm.OLS(y_train, X_train)
results = model.fit()
# Print the summary of the model
print(results.summary())
# Print the coefficients and intercept
print("Coefficients:")
print(results.params.drop('const'))
```

OLS Regression Results

=======================================		:======		=======	========
==== Don			D ======d.		
Dep. Variable: 0.647		price	R-squared:		
Model:		OLS	Adj. R-squa	red:	
0.647 Method:	Loact	: Squares	F-statistic		2
876.	Least	. Squai es	r-statistic	•	2
Date:	Fri, 02	Jun 2023	Prob (F-sta	tistic):	
0.00 Time:		22:19:38	Log-Likelih	ood:	-2.3695
e+05		22.23.30	Log Likelik		2.3033
No. Observations: e+05		17276	AIC:		4.739
Df Residuals:		17264	BIC:		4.740
e+05		4.4			
<pre>Df Model: Covariance Type:</pre>	r	11 nonrobust			
=======================================	=======	:======	========	=======	========
========	cnef	std err	t	P> t	[0.025
0.975]		364 61.	·	. , e	[0.023
const	6.837e+06	1.48e+05	46.223	0.000	6.55e+06
7.13e+06	4 57 .04	2206 574	40 447	0.000	5 04 :04
bedrooms -4.1e+04	-4.57e+04	2386.574	-19.147	0.000	-5.04e+04
bathrooms	5.309e+04	3946.359	13.453	0.000	4.54e+04
6.08e+04 sqft_lot	-0.2289	0.041	-5.571	0.000	-0.309
-0.148					0.303
sqft_basement 201.129	191.1348	5.099	37.486	0.000	181.141
sqft_above	172.8895	3.969	43.557	0.000	165.109
180.670	2004 2005	77 100	FO 472	0.000	4042 514
yr_built -3740.267	-3891.3905	77.100	-50.472	0.000	-4042.514
yr_renovated	9.1697	4.790	1.914	0.056	-0.220
18.559 waterfront	7.074e+05	2.06e+04	34.374	0.000	6.67e+05
7.48e+05	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0,0,0,0
floors 2.99e+04	2.153e+04	4244.557	5.073	0.000	1.32e+04
grade_levels	1.323e+05	2443.224	54.154	0.000	1.28e+05
1.37e+05	7112 1105	1065 022	2 (10	0.000	2250 000
<pre>condition_numeric 1.1e+04</pre>	7112.1185	1965.832	3.618	0.000	3258.889
=======================================	========	:======	========	=======	========
==== Omnibus:	1	.2649.778	Durbin-Watso	on:	
1.989	-	.2043.770	Dai Din Nacs	J	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	78801
9.105 Skew:		2.930	Prob(JB):		
0.00			, ,		
Kurtosis: e+06		35.563	Cond. No.		3.94
===========	=======	:======	========		=======
====					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.94e+06. This might indicate that there are

strong multicollinearity or other numerical problems.

Coefficients:

-45695.877904 bedrooms bathrooms 53091.597730 sqft_lot -0.228944 sqft_basement 191.134756 sqft_above 172.889464 yr_built -3891.390483 yr_renovated waterfront 9.169658 707414.074915 21531.580756 floors dtype: float64

4. Time period: yr_built and yr_renovated

In [89]:

```
y = kc_data["price"]
X = kc_data[["yr_built", "yr_renovated"]]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create and fit the linear regression model
model = LinearRegression()
model.fit(X, y)
# Add a constant column to the feature matrix for the intercept term
X_train = sm.add_constant(X_train)
X_test = sm.add_constant(X_test)
# Create and fit the linear regression model
model = sm.OLS(y_train, X_train)
results = model.fit()
# Add a constant column to the feature matrix for the intercept term
X_train = sm.add_constant(X)
X_test = sm.add_constant(X_test)
# Create and fit the linear regression model
model = sm.OLS(y, X).fit()
# Print the summary of the model
print(model.summary())
```

OLS Regression Results

==========	OLS Regression Results							
======= Dep. Variable:		price	P causno	d (uncontor	and):			
0.689		price	K-Square	R-squared (uncentered):				
Model:		OLS	∆di R-s	Adj. R-squared (uncentered):				
0.689		OLS	Auj. K 3	Auj. N-squareu (uncentereu).				
Method:	1 6	east Squares	F-statis	F-statistic:				
2.394e+04	L,	case squares	i statistic.					
Date:	Fri.	Fri, 02 Jun 2023 Prob (F-statistic):						
0.00	,	111, 02 Juli 2025 1100 (1-3tatistic).						
Time:		22:19:38 Log-Likelihood:						
-3.0718e+05		LL.13.30 LOG LINCILINOUM.						
No. Observations: 2159			AIC:					
6.144e+05								
Df Residuals:		21593	BIC:					
6.144e+05								
Df Model:		2						
Covariance Type	e:	nonrobust						
==========				=======	.=======	====		
=====								
	coef	std err	t	P> t	[0.025			
0.975]								
yr_built	269.9816	1.279	211.079	0.000	267.475	2		
72.489								
yr_renovated	123.3517	6.810	18.113	0.000	110.004	1		
36.700								
==========	=======	========		=======	:=======	====		
====								
Omnibus:		18929.394	Durbin-Watson:					
1.972				7 D (75)				
Prob(Omnibus):		0.000	Jarque-Bera (JB): 1083		358			
1.481		2.076	D L (3D)	_				
Skew:		3.976	Prob(JB)	:				
0.00		26 770	Co					
Kurtosis:		36.779	Cond. No	•				
5.42								
==========	=======			=======		====		

Notes:

====

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

5. Qualitative Features: grade, waterfront, condition, view

In [90]:

```
y = kc_data["price"]
X = kc_data[["grade_levels", "waterfront", "condition_numeric", "view"]]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create and fit the linear regression model
model = LinearRegression()
model.fit(X, y)
# Add a constant column to the feature matrix for the intercept term
X_train = sm.add_constant(X_train)
X_test = sm.add_constant(X_test)
# Create and fit the linear regression model
model = sm.OLS(y_train, X_train)
results = model.fit()
# Add a constant column to the feature matrix for the intercept term
X_train = sm.add_constant(X)
X_test = sm.add_constant(X_test)
# Create and fit the linear regression model
model = sm.OLS(y, X).fit()
# Print the summary of the model
print(model.summary())
```

OLS Regression Results ______ =========== R-squared (uncentered): Dep. Variable: price 0.802 Model: OLS Adj. R-squared (uncentered): 0.802 Method: Least Squares F-statistic: 2.187e+04 Fri, 02 Jun 2023 Prob (F-statistic): Date: 0.00 22:19:39 Time: Log-Likelihood: -3.0231e+05 No. Observations: 21595 AIC: 6.046e+05 Df Residuals: 21591 BIC: 6.047e+05 Df Model: 4 Covariance Type: nonrobust

6. Quantitative Features: bedrooms, bathrooms, sqft_living, sqft_lot, sqft_basement, sqft_above, floors

In [91]:

```
y = kc_data["price"]
X = kc_data[["bedrooms", "bathrooms", "sqft_lot", "sqft_basement", "sqft_above", "floors"
# Split the data into training and testing sets
X_train_num, X_test_num, y_train_num, y_test_num = train_test_split(X, y, test_size=0.2,
# Create and fit the linear regression model
model = LinearRegression()
model.fit(X, y)
# Add a constant column to the feature matrix for the intercept term
X_train_num = sm.add_constant(X_train_num)
X_test_num = sm.add_constant(X_test_num)
# Create and fit the linear regression model
model = sm.OLS(y_train_num, X_train_num)
results = model.fit()
# predict on train and test data
target train pred = results.predict(X train num)
target_test_pred = results.predict(X_test_num)
# Add a constant column to the feature matrix for the intercept term
X_train_num = sm.add_constant(X)
X_test_num = sm.add_constant(X_test_num)
# Create and fit the linear regression model
model = sm.OLS(y, X).fit()
# Print the summary of the model
print(model.summary())
```

OLS Regression Results

```
______
==========
Dep. Variable:
                                  R-squared (uncentered):
                           price
0.843
Model:
                             OLS
                                  Adj. R-squared (uncentered):
0.843
Method:
                    Least Squares
                                  F-statistic:
1.939e+04
                 Fri, 02 Jun 2023
                                  Prob (F-statistic):
Date:
0.00
                         22:19:39
                                  Log-Likelihood:
Time:
-2.9977e+05
No. Observations:
                           21595
                                  AIC:
5.996e+05
                           21589
                                  BIC:
Df Residuals:
5.996e+05
Df Model:
                               6
```

nonrobust

Covariance Type:

Regression Results

In [92]:

```
fig, ax = plt.subplots()
ax.scatter(target_train_pred, y_train_num, label='Training Data')
ax.scatter(target_test_pred, y_test_num, label='Test Data')
ax.plot([0, np.max(y)], [0, np.max(y)], linestyle='--', color='r')
ax.set_xlabel('Predicted Values')
ax.set_ylabel('Actual Values')
ax.set_title('Multiple Linear Regression')
ax.legend()
plt.show()
```


The model is a good fit since the training data and test data do not over fit or underfit.

Observations

The model that incorporated the numerical features, was the most favorable, with an R squared of 0.84. Approximately 84.3% of the variation in the dependent variable (price) can be explained by the numerical independent variables.

Other statistics of the model are:

- F-statistic 0f 2.188e+04 indicating that the regression model is statistically significant
- p-values (below 0.05) indicating statistical significance of the coefficients.

Co-efficiency

- floors: Houses with an additional floor have a predicted price increase of approximately 27,060 (p < 0.001).
- bathrooms: For each additional bathroom, the predicted price increases by approximately 12,640 (p = 0.001).
- sqft_basement: For each additional square foot of basement area, the predicted price increases by

Conclusion

- · In conclusion, home sellers should take in the following:
 - Consider increasing the space of the house, by increasing the number of floors, bathrooms & the size of basement & above ground area
 - Highly graded houses fetch higher prices. Waterfront and views, also increase the value of houses.
 - The newer the house, the higher the price, similarly, the most recently renovated houses fetch higher prices. Therefore, sellers need to renovated their houses.
- Models that incorporate other features such as proximity to amenities, the nature of geographical features and the locality's weather conditions have an impact on a property's sale value.
- Furthermore, it would be interesting to investigate whether certain months and seasons have an impact on the demand for homes.