Nucleate Boiling and Microlayer Formation Numerical Methods for Fluid Mechanics - MEC655

Pedro Morel Rosa Fanshuo Ma

Sorbonne University M2 Fluid Mechanics

January 11, 2022

- Introduction

Introduction

000

- 3 Numerical Implementation
- 4 Simulation and Convergence

Introduction

- The transport of latent heat for bubbles in boiling.
- A primary mode of heat transfer in Boiling Water Reactors (BWR)
- Also active in various domains like: refrigeration and air-conditioning, chemical thermal processing, etc.

Phenomenon

Model

Introduction

000

Figure 1: Microlayer formation in nucleate boiling [1]

References

- 1 Introduction
- 2 Model

Model

Numerical Implementation

- 3 Numerical Implementation
- 4 Simulation and Convergence
- 6 Conclusion

- 1 Introduction
- 2 Model Model
- 3 Numerical Implementation
- 4 Simulation and Convergence
- 6 Conclusion

Introduction

Assumptions and Model

- Thermal effects are neglected.
- We consider the phenomenon to be axisymmetric.
- Microlayer evaporation is ignored ($\tau_2 \approx 1$ 10 ms). The object of study is the microlayer formation ($\tau_1 \approx 10$ - 100 μ s).
- Therefore, this model does not contemplates phase change.
- Modelling is done using a source term S_{ν} in the mass conservation equation; which depends on U_b , the growth rate of the bubble.

$$U_b = \sqrt{\pi h_{fg} \rho_{\nu} \nabla T_{sat} / (7\rho_l T_{sat})}$$
 (1)

Assumptions and Model

Model

In view of this, the equations that govern the phenomenon are:

$$\rho(\partial \overrightarrow{U}/\partial t + \overrightarrow{U} \cdot \nabla \overrightarrow{U}) = -\nabla p + \nabla \cdot (2\mu \overline{D}) + \sigma \kappa \sigma_s \overrightarrow{n} + \overrightarrow{F}_{external} (2)$$

$$\partial \rho / \partial t + \nabla \cdot (\rho \overrightarrow{U}) = S_{v}$$
 (3)

Simulation and Convergence

And for the Volume-Of-Fluid method:

$$\partial C\rho/\partial t + \nabla \cdot (C\rho \overrightarrow{U}) = S_{\nu} \tag{4}$$

Assumptions and Model

Model

Finally, for a constant bubble growth rate, S_v is modelled as:

$$S_{\nu} = \frac{3U_b}{(R_{b,0} + U_b t)} \tag{5}$$

Therefore, the source term only depends on:

- U_b , the bubble's growth rate.
- $R_{b,0}$, the initial bubble radius.
- *t*, the time.

- 1 Introduction
- 2 Model

Model

Nondimensionalization

- 3 Numerical Implementation
- 4 Simulation and Convergence
- 6 Conclusion

Nondimensionalization

Model

For the nondimensionalization, a reference scale for space, r_c ; and time, t_c , are defined:

$$r_{c} = \frac{\mu_{l}}{(\rho_{l}U_{b})}$$

$$t_{c} = \frac{\mu_{l}}{(\rho_{l}U_{b}^{2})}$$
(6)

And applying the Vaschy-Buckingham theorem, we obtain the following dimensionless groups:

$$\Pi_1 = \delta/r_c = \delta^*$$
 $\Pi_4 = r/r_c = r^*$ $\Pi_6 = \theta$ $\Pi_2 = \mu_I/\mu_{\nu} = \mu^*$ $\Pi_5 = t/t_c = t^*$ $\Pi_7 = Ca = \mu_I U_b/\sigma$ $\Pi_3 = \rho_I/\rho_{\nu} = \rho^*$

Nondimensionalization

Finally, applying the reference scales to the conservation equations (2) and (3), we obtain a dimensionless reformulation of the physical parameters:

Table 1: Nondimensional reformulation of the physical parameters.

ρ_1	ρ_2	μ_1	μ_2	σ
1	$\frac{1}{ ho^*}$	1	$\frac{1}{\mu^*}$	<u>1</u> <i>Ca</i>

Numerical Implementation

•00000000

- 1 Introduction
- 3 Numerical Implementation Methods
- 4 Simulation and Convergence
- 6 Conclusion

Numerical Implementation

00000000

- 1 Introduction
- 3 Numerical Implementation Methods
- 4 Simulation and Convergence
- 6 Conclusion

Numerical Methods

- Basilisk will be used for the simulation.
- Incompressible solver navier-stokes/centered.h
- Multiphase nature given by two-phase.h

The projection method¹[2] is used to decouple the computations of pressure and velocity fields:

$$u_f^{n+1} \leftarrow u_f - \Delta t \alpha \nabla p \tag{7}$$

$$\nabla \cdot u_f^{n+1} = 0 \tag{8}$$

$$\nabla \cdot (\alpha \nabla p) = \frac{\nabla \cdot u_f}{\Delta t} \tag{9}$$

¹Chorin et al.

Model

Numerical Methods

However, the projection method is based on a null divergence for velocity. In order to keep this method in accordance with the formulation made with the term source, it is necessary to adjust:

$$u_f^{n+1} \leftarrow u_f - \Delta t \alpha \nabla p \tag{10}$$

Simulation and Convergence

$$\nabla \cdot u_f^{n+1} = \mathsf{S}_{\nu} \tag{11}$$

$$\nabla \cdot (\alpha \nabla p) = \frac{\nabla \cdot u_f - \mathbf{S}_v}{\Delta t} \tag{12}$$

Numerical Implementation

000000000

- 1 Introduction
- 3 Numerical Implementation Methods Implementation
- 4 Simulation and Convergence
- 6 Conclusion

Implementation Framework

poisson.h

Implementation of the source term:

000000000

```
mgstats project (struct Project q)
   {
     (\ldots)
     scalar div[]:
     foreach() {
       div[] = 0;
        foreach_dimension()
          div[] += uf.x[1] - uf.x[];
9
          div[] /= dt*Delta;
10
          div[] -= Sv[]/Delta;
11
12
13
```

boil.c

Setup of physical variables:

Numerical Implementation

000000000

```
int main() {
      size (10);
      init_grid (1 << LEVEL);</pre>
 4
 5
      rho1 = 1.;
      rho2 = 1./RHOR;
      mu1 = 1.;
      mu2 = 1./MUR;
      f.sigma = 1./Ca;
10
11
      run():
12
```

We reformulate the dimensionless physical parameters.

- $\rho_1 = 1$
- $\rho_2 = \frac{1}{\rho^*}$
- $\mu_1 = 1$
- $\mu_2 = \frac{1}{\mu^*}$
- $\sigma = \frac{1}{Ca}$

Update of S_{ν} over time:

```
event boiling (t++) {
  foreach(){
    Sv[] = 3*(1-f[])/(R0 + t);
```

Which is in accordance to equation (5):

$$S_{v} = \frac{3U_b}{(R_{b,0} + U_b t)}$$

- 1 Introduction
- 3 Numerical Implementation
- 4 Simulation and Convergence

- 1 Introduction
- 3 Numerical Implementation
- 4 Simulation and Convergence Simulations

Simulations

Two simulations were proposed for testing the implementation and its results:

- Axisymmetrical bubble growing in the center of a box. Just to test if the source term is working correctly and the bubble is indeed growing.
- Hemispherical axisymmetrical bubble growing attached to a wall. Proposed to test the robustness by comparing it to recent works in microlayer formation.
- $(\rho^* = 100, \mu^* = 10, Ca = 0.1).$

- 1 Introduction
- 3 Numerical Implementation
- 4 Simulation and Convergence Convergence Study

Refinement

Model

Throughout the simulation, many refinement choices can be made:

```
( . . . )
2 | init_grid (1 << LEVEL);</pre>
   (\ldots)
   refine (sq(x) + sq(y) - sq(R0*1.20) < 0
   && level < LEVEL):
   (\ldots)
   event adapt (i++) {
     double uemax = 5e-3;
      adapt_wavelet ({f,u}, (double[]){0.01,uemax,
10
     uemax}, LEVEL, 5);
11
12
    (\ldots)
```

Therefore, different simulations were carried out by varying the LEVEL and collecting relevant data.

Conclusion

References

Cap position with varying levels

Model

References

Model

Conclusion

00

- Introduction
- 3 Numerical Implementation
- 4 Simulation and Convergence
- **6** Conclusion

Conclusion

Model

Introduction

- The source term was successfully implemented, and the physics contributed by it as well.
- The implementation can be considered intrusive, as it directly edits the headers. Implementations that do not go outside the scope of the .c file will be considered.
- From a numerical perspective, the phenomenon of microlayer formation was weakly analyzed. An upcoming presentation will focus more on this aspect.

References

Conclusion

Reference

Model

- [1] Alexandre Guion, Shahriar Afkhami, StÃľphane Zaleski, and Jacopo Buongiorno. Simulations of microlayer formation in nucleate boiling. International Journal of Heat and Mass Transfer, 127:1271-1284, 2018.
- [2] Alexandre Joel Chorin. The numerical solution of the navier-stokes equations for an incompressible fluid. Bulletin of the American Mathematical Society, 73(6):928–931, 1967.

References

Thanks!

References •0

- μ_I, μ_V : Liquid and vapor viscosities, resp.
- ρ_I, ρ_V : Liquid and vapor densities, resp.
- σ : Surface tension.
- U_b: Bubble growth rate, the velocity at which the liquid vapor interface moves into the surrounding liquid.

Simulation and Convergence

- θ_{dx} : Microscopic contact angle at scale dx, between the liquid vapor interface and the wall, and at a given reference length scale dx.
- r : Radial distance from bubble root.
- t : Time
- δ : Unknown local thickness of the liquid microlayer forming at the wall.

