Feuille d'exercices 10

30 novembre 2019

Les exercices avec une \star sont des exercices plus difficiles.

Sur cette matière, vous serez aussi évalués sur la qualité de votre rédaction. Pratiquez-vous dès maintenant à bien rédiqer!

Exercice 1.

- 1. Soit $\mathcal{B}_1 = \{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ un sous-ensemble de vecteurs de \mathbb{R}^3 . Est-ce une base de \mathbb{R}^3 ?
- 2. Soit $\mathcal{B}_2 = \{\vec{v_1}, \vec{v_2}\}$ une famille libre de \mathbb{R}^3 . Est-ce une base?
- 3. Soit $\mathcal{B}_3 = \{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$, un famille génératrice de \mathbb{R}^4 . Est-ce nécessairement une base de \mathbb{R}^4 ?

Exercice 2. Parmi les transformations suivantes, lesquelles sont des transformations linéaires? (Justifier)

- 1. $T_1: \mathbb{R}^2 \to \mathbb{R}^4$ tel que $(x, y) \mapsto (x + 2y, 3x y, 5x y, x y)$
- 2. $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ tel que $(x, y, z) \mapsto (0, x + y + z)$
- 3. $T_3: \mathbb{R}^3 \to \mathbb{R}^2$ tel que $(x, y, z) \mapsto (1, x + y + z)$
- 4. $T_4: \mathbb{R}^2 \to \mathbb{R}^3$ tel que $(x,y) \mapsto (x-2y+z, x+z^2)$
- 5. $T_5: \mathcal{M}_2 \to \mathcal{M}_2$ tel que $T_5(A) = A + A^T$ (On rappelle que \mathcal{M}_2 est l'ensemble des matrices carrées de taille 2.)

Exercice 3. Dans l'exercice précédent, pour les transformations qui sont linéaires, déterminer leur noyau.

Exercice 4. Soit $T:U\to V$ une transformation linéaire d'un espace vectoriel U vers un espace vectoriel V. On note T(U) le sous-ensemble de V des images des éléments de U par T:

$$T(U) = \{T(u); u \in U\}$$

Montrer que T(U) est un sous-espace vectoriel de V.

Exercice 5. On considère plusieurs bases de \mathbb{R}^3 .

$$\mathcal{B}_1 = \{\vec{u_1}, \vec{u_2}, \vec{u_3}\}, \text{ où } \vec{u_1} = (-1, 1, -1), \vec{u_2} = (0, 2, -1) \text{ et } \vec{u_3} = (-1, 0, -2);$$

$$\mathcal{B}_2 = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}, \text{ où } \vec{v_1} = (2, -1, 1), \vec{v_2} = (1, -1, 0) \text{ et } \vec{v_3} = (1, 1, 1);$$
et la base standard $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}, \text{ où } \vec{e_1} = (1, 0, 0), \vec{e_2} = (0, 1, 0) \text{ et } \vec{e_3} = (0, 0, 1).$
Vous pouvez prendre pour acquis qu'il s'agit bien de trois bases de \mathbb{R}^3 .

- 1. Déterminer la matrice de passage $P_{\mathbb{B}\leftarrow\mathbb{B}_1}$ de la base \mathbb{B}_1 à la base \mathbb{B} .
- 2. Déterminer la matrice de passage $P_{\mathcal{B}_2\leftarrow\mathcal{B}}$ de la base \mathcal{B} à la base \mathcal{B}_2 .
- 3. Déterminer la matrice de passage $P_{\mathcal{B}_2 \leftarrow \mathcal{B}_1}$ de la base \mathcal{B}_1 à la base \mathcal{B}_2 .
- 4. Soit le vecteur $\vec{u} = (3, -1, 4)$ dont les coordonnées sont données dans la base \mathcal{B} . Déterminer les matrices de coordonnées $[\vec{u}]_{\mathcal{B}_1}$ et $[\vec{u}]_{\mathcal{B}_2}$ de \vec{u} dans la \mathcal{B}_1 et \mathcal{B}_2 respectivement.