Lecture 1: Introduction

Amos Ron

University of Wisconsin - Madison

January 25, 2021

Outline

- Linear Maps
 - Column maps, row maps
 - Invertibility and orthogonality
 - Application: working with a basis
- e-vectors, e-values

Column maps, row maps Invertibility and orthogonality Application: working with a basis

Outline

- Linear Maps
 - Column maps, row maps
 - Invertibility and orthogonality
 - Application: working with a basis
- 2 e-vectors, e-values

Column maps - synthesis

- We are given a matrix $A m \times n$. All matrices in our course are real valued.
- A matrix is a linear map: $A : \mathbb{R}^n \to \mathbb{R}^m, v \mapsto Av$.
- There are two ways to view the linear map A. Those are are mathematically equivalent, but conceptually very different.
- The synthesis/column map view of A partitions it into its columns: $\{a_1, \ldots, a_n\} \subset R^m$. Then:

$$Av = \sum_{i=1}^{n} v(i)a_i.$$

Column maps - analysis

Reminder: transposition: $A': \mathbb{R}^m \to \mathbb{R}^n$, with

$$A'(i,j) = A(j,i).$$

Reminder: inner product. For $v, w \in \mathbb{R}^n$,

$$(v, w) := v'w = \sum_{i=1}^{n} v(i)w(i).$$

Reminder: The most important property of A': if $v \in \mathbb{R}^n$, $w \in \mathbb{R}^m$, then

$$(Av, w) = (v, A'w).$$

Column maps - analysis

- The alternative is to slice the matrix into its rows $\{b'_1, \ldots, b'_m\} \subset \mathbb{R}^n$.
- Then $(Av)(i) = (b_i, v)$.

Rank

Definition: Rank

Let A is $m \times n$. Known: ranA is a subspace of \mathbb{R}^m .

rankA := dim(ranA).

Theorem

rankA = rankA'

Column maps, row maps Invertibility and orthogonality Application: working with a basis

Invertibility

Now, A is square, $m \times m$.

Invertibility

Now, A is square, $m \times m$.

Definition: invertibility

A is invertible if there exists A^{-1} $m \times m$ such that

$$A^{-1}A = I,$$

with *I* the $m \times m$ identity matrix.

Invertibility

Theorem: Equivalent conditions to invertibility

- $A m \times m$ is invertible
- $\det A \neq 0$.
- \bullet rankA = m.
- $\ker A = \{0\}.$
- The columns of A are l.i.
- \bullet 0 is not an eigenvalue of A.
- add your own here.

Representing a vector with a basis

Standard Problem: (w_1, \ldots, w_m) is a basis for \mathbb{R}^m . $v \in \mathbb{R}^m$. How to find $c \in \mathbb{R}^m$ such that:

$$v = \sum_{i=1}^{m} c(i)w_i?$$

Representing a vector with a basis

Standard Problem: (w_1, \ldots, w_m) is a basis for \mathbb{R}^m . $v \in \mathbb{R}^m$. How to find $c \in \mathbb{R}^m$ such that:

$$v = \sum_{i=1}^{m} c(i)w_i?$$

Solution: *A* is $m \times m$ with columns w_1, \ldots, w_m . Then:

$$v = Iv = (AA^{-1})v = A(A^{-1}v).$$

Since our basis comprises the columns of A,

$$c = A^{-1}v,$$

so that

$$c(i) = (v, b_i),$$

with b'_i the *i*'th row of A^{-1} .

Column maps, row maps Invertibility and orthogonality Application: working with a basis

Orthgonality

Definition

 $Q m \times m$ is orthogonal is $Q' = Q^{-1}$.

Orthgonality

Definition

 $Q m \times m$ is orthogonal is $Q' = Q^{-1}$.

Note: The relation Q'Q = I, implies that, with q_1, \ldots, q_m the columns of Q,

$$(q_i, q_j) = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Note: q_1, \ldots, q_m are the rows of Q^{-1} , hence

$$v = \sum_{i=1}^{m} (q_i, v)q_i, \quad \forall v \in \mathbb{R}^m.$$

Orthgonality

Definition

 $Q m \times m$ is orthogonal is $Q' = Q^{-1}$.

Theorem

Q is orthogonal, $v, w \in \mathbb{R}^m$. Then:

$$(Qv, Qw) = (v, w).$$

Outline

- Linear Maps
 - Column maps, row maps
 - Invertibility and orthogonality
 - Application: working with a basis
- 2 e-vectors, e-values

Eigenpairs

Definition

 $A m \times m$. (λ, v) , $\lambda \in C$, $v \in R^m \setminus 0$, is eigenpair of A, if

$$Av = \lambda v$$
.