Senior Design Project Proposal for Year 2023

Pothole Detector using Machine Learning

Braeden Kurz (Computer Engineering)

Faculty advisor: Aline Lopes

1. Introduction

Potholes are a common problem on roads and highways, they can cause significant damage to vehicles, lead to accidents, and increase maintenance costs. Potholes are often difficult to detect, especially at high speeds or in poor lighting conditions. Drivers may not see potholes until it is too late, which can cause a safety hazard for drivers, passengers, and pedestrians. Potholes can also be inadvertently costly for cities and municipalities due to possible significant damage to roadways and infrastructure caused by traffic accidents if left untreated.

To address these issues, I am proposing a pothole detection system to help identify and locate potholes in real-time. This system uses the YOLOv4-Tiny machine learning repository combined with a Raspberry Pi 3 and Raspberry Pi Camera Module to detect and track potholes, alert drivers to their presence and record the coordinates of the detected pothole into a ThingSpeak cloud database. By detecting potholes early, this system can help reduce the risk of accidents and damage to vehicles, as well as reduce the overall cost of city maintenance.

2. Proposed Design

Function description and breakdown

I propose to design the Pothole Detection System (PDS) utilizing a Raspberry Pi 3 Model B+, an Arducam 5MP camera. The YOLOv4-Tiny object detection library is chosen to operate on the Raspberry Pi 4 due to its high detection accuracy of 90% at a length of 10 meters and a high Frames Per Second (FPS) of 31.92 [1]. The camera is connected to the Raspberry Pi 3 o\Model B+ to record the video stream while the device remains on. If a pothole is detected by the camera within 10 meters the device alerts the driver and uploads the coordinates of the pothole to the cloud. Below are the base line and upgraded functions, as well as diagrams of the PDS.

PDS Functionalities

Baseline/ Fundamental Functions	 Detect potholes and alert driver. Allow night-time detection capabilities. Update travel route on pothole detection. Upload pothole data to Cloud database
Upgraded Functions (optional)	Detect other possible hazards (object collision detection, flash floods, fires, etc.)

For this project the required skills include electrical and computer engineering concepts such as machine learning for utilizing the pre-trained model for detecting potholes, circuit analysis, embedded systems and IoT design.

Specification and design constraints

Purpose: A pothole detection system that alerts the driver when an upcoming pothole has been detected using a night vision camera and Raspberry Pi 3 Model B+ and uploads GPS location data of the pothole to a cloud database for reference and data visualization.

Behavior: PDS should begin scanning for potholes once powered on. The system is pre-trained with images of various potholes to accurately detect and alert the driver. PDS estimates the size of detected potholes (roughly 1ft-5ft wide) in every frame it records.

System Management Requirement: The system should provide object detection, GPS, GSM, and cloud-based functionality.

Data Analysis Requirement: The system should perform cloud-based analysis of the pothole coordinate data using ThingSpeak.

System and Module Specifications

Pothole Detection Device (Local)	Input: User credentials, video camera recording, battery power supply w/switch (USB-C) Output: Data uploading to cloud, alarm notification Power Requirements: 5V, 2.5A DC Data Transmission Protocol: WebSocket Protocol, RS232 and TTL UART, 802.11 b/g/n/ac Wireless LAN Pothole Detection Range: Roughly 10 meters Weight: 9.814 ounces Dimensions: Constraints: There should be enough light to detect the pothole and the vehicle should be moving below 45mph for the system to get a good quality video of the road.
Pothole Detection Database (Cloud)	Input: Coordinates of identified potholes Output: Visual representation of pothole data Power Requirements: N/A Data Transmission Protocol: WebSocket Protocol Measurement Range: N/A Constraints: Data should be transmitted in intervals of 30 seconds to prevent data congestion.
Raspberry Pi 3 Model B+	Processor: Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.4GHz Memory: 1GB LPDDR2 SDRAM Connectivity: 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless, LAN, Bluetooth 4.2, BLE, Gigabit Ethernet over USB 2.0 (maximum throughput 300Mbps), 4 × USB 2.0 ports Access: Extended 40-pin GPIO header Video & Sound: 1 × full size HDMI, MIPI DSI display port, MIPI CSI camera port, 4 pole stereo output and composite video port Multimedia: H.264, MPEG-4 decode (1080p30); H.264 encode (1080p30); OpenGL ES 1.1, 2.0 graphics SD Card Support: Micro SD format for loading operating system and data storage Input Power: 5V/2.5A DC via micro USB connector, 5V DC via GPIO header, Power over Ethernet (PoE)—enabled (requires separate PoE HAT) Dimensions: 85 x 56 x 17 millimeters Weight: 7.1 ounces Operating Temperature: 0 to +50 °C
Arducam 5MP Camera Module	Input Power: 1.5V to 3.0V DC Peak Current: 300mA Sensor: OV5647

	Connection: 15 cm flat ribbon cable to 15-pin MIPI Camera Serial Interface (CSI) connector Lens: Fixed Focus Lens Angle of View: 54° Horizontal x 41° Vertical Field of View: 2.0 x 1.33m @ 2m Resolution: 5 Megapixels, 2592 x 1944 Frame Rates: 30fps@1080P, 60fps@720P, 90fps@480P Fixed Focus: 1m to Infinity Dimensions: 4.7 inches x 0.2 inches x 0.1 inches Weight: 0.32 ounces Operating Temperature: -30 to+70 °C
GSM Module	Input: 3.3V to 5.0V @ 45.0mA DC Data Transmission Protocol: GSM, TCP/IP, SMS, Bluetooth Operating Temperature: -40°C to 85°C Dimensions: 30.2mm x 65.0mm Weight: 4.6 ounces
System Power Supply Unit	Output Voltage: 5.0V DC Dimensions: 3.66 x 2.28 x 1.54 inches Weight: 2.394 ounces Input: 6 x 1.5V AA Batteries (9V)
6-AA 9V Battery Pack	Input: 6-AA Batteries Output: ~9.0V DC Dimensions: 3.625 inches x 2.25 inches x 0.625 inches Weight: 0.634 ounces
LM2596 DC/DC Buck Converter	Input Voltage: 3.0V to 40.0V DC (must be higher than 1.5V DC) Output Voltage: 1.5V to 35.0V w/ 3.0A DC Dimensions: 45.0 inches x 20.0 inches x 14.0 inches Weight: 1.76 ounces Operating Temperature: -40°C ~ 85°C

Table of employed standards:

Standard	Link or References
IEEE Standard for Sensor Performance	https://standards.ieee.org/ieee/2700/6770/

Parameter Definitions	
Standard for Harmonization of Internet of Things (IoT) Devices and Systems	https://standards.ieee.org/ieee/1451.99/10355/
IEEE Draft Standard for Automotive System Image Quality	https://standards.ieee.org/ieee/2020/6765/

Table of Open Source Codes/APIs:

Open-Source Code/API	Link or References
Raspberry Pi Tensorflow Package	https://github.com/tensorflow/build/tree/master/raspberry_pi_builds
Picamera Python Package	https://github.com/waveform80/picamera/tree/release-1.13
Darkflow Repository	https://github.com/thtrieu/darkflow/

3. Major Components/Parts

Part Description	Function	Amount Needed / Unit Price	Subtotal	Purchase Link	Datasheet Link
Raspberry Pi 3 Model B+	Central controller for reading sensor data, alerting the driver and passengers of an upcoming pothole, and uploads the	1/\$35.00	\$35.00	https://ww w.adafruit. com/produ ct/3775?sr c=raspberr ypi	https://data sheets.ras pberrypi.co m/rpi3/rasp berry-pi-3- b-plus- product- brief.pdf

	data to a cloud database for future reference and data visualization.				
Arducam 5MP Camera Module OV5647	Camera module for scanning the road and detecting potholes in low-light conditions	1/\$9.99	\$9.99	https://ww w.amazon. com/Arduc am- Megapixels -Sensor- OV5647- Raspberry/ dp/B012V1 HEP4?ref_ =ast_sto_d p&th=1&ps c=1	https://docs .arducam.c om/Raspbe rry-Pi- Camera/Na tive- camera/so urce/OV56 47DS.pdf
Coolwell Raspberry Pi GSM HAT GSM/GPRS /GNSS/Blue tooth Module	GSM module with GPS support used to send pothole coordinates to the ThingSpeak cloud when a pothole is detected. The module also receives a confirmation message when the data is received by the cloud.	1/\$37.20	\$37.20	https://ww w.amazon. com/Coolw ell- Raspberry- Bluetooth- Module- Supports/d p/B0BS42 WPGQ/ref =sr_1_8?k eywords=r aspberry+p i+gsm+mo dule&qid=1 677371035 &sprefix=ra spberry+pi +gsm+mo %2Caps% 2C323&sr= 8-8	https://ww w.wavesha re.com/w/u pload/4/4a/ GSM_GPR S_GNSS_ HAT_User _Manual_E N.pdf

Jumper Wires (4in and 8in pack)	Connecting the modules to their appropriate pins to perform pothole detection and data uploading.	1/\$6.49	\$6.49	https://ww w.amazon. com/dp/B0 1L5ULRUA ?ref_=dp_a tch_dss_b ase_image	N/A
Cylewet 10Pcs 5V Active Buzzer	Buzzer component for alerting the driver of upcoming pothole	1/\$6.98	\$0.14	https://ww w.amazon. com/gp/pro duct/B01N 7NHSY6/re f=ewc_pr_i mg_1?smi d=A2O4FZ XIRZDLHA &psc=1	N/A
6-AA 9V Battery Pack	Power supply of the system	1/\$6.99	\$6.99	https://ww w.amazon. com/Batter y-Holder- Enclosure- Connector- Cable/dp/B 01N2INSB R/ref=sr_1 _8?crid=1L M4N7NY5 TJD2&key words=6+a a+battery+ pack+hold er&qid=16 79283954 &sprefix=a a+battery+ pack+hold er%2Caps %2C203&s r=8-8	N/A

to DC Buck system with 5V w.amazon. com/LM25 ds/s	s://ww com/lit/
Converter to meet com/LM25 ds/s	
	ymlink/
	96.pdf
Model B+ Converter- ?ts=	16792
	71627&
	url=http
	53A%
B08NV3JC 252F	-%252
BC/ref=sxi Fww	w.ti.co
n_17_ac_d m%2	252Fpr
_rm?ac_m oduc	t%252
d=1-1- FLM	2596
YnVjayBjb	
252ZXJ0Z	
XI%3D-	
ac_d_rm_r	
m_rm&con	
tent-	
id=amzn1.	
sym.b0991	
3c7-88ee-	
4b06-	
b977-	
3fd4ebd29 a25%3Aa	
mzn1.sym.	
b09913c7-	
88ee-	
4b06-	
b977-	
3fd4ebd29	
a25&cv_ct	
_cx=LM25	
96&keywor	
ds=LM259	
6&pd_rd_i	
=B08NV3J	
CBC&pd_r	
d_r=490c4f	
97-64fd-	
4551-	
90e5-	

	15f0c8ce5
	4dc&pd_rd
	_w=jCDOL
	&pd_rd_wg
	=n9uE5&pf
	_rd_p=b09
	913c7-
	88ee-
	4b06-
	b977-
	3fd4ebd29
	a25&pf_rd
	_r=HF0CN
	3367T2QG
	G7SZCZ9
	&qid=1679
	291674&sb
	o=RZvfv%
	2F%2FHx
	DF%2BO5
	021pAnSA
	%3D%3D&
	sr=1-2-
	7d9bfb42-
	6e38-
	4445-
	b604-
	42cab39e1
	91b&th=1

4. Responsibilities of Team Members

My responsibilities for the PDS project will consist of purchasing the necessary components and equipment, writing progress reports, system design, debugging, training the system to detect potholes, and programming the hardware to alert the driver and send data to the ThingSpeak cloud.

5. Timeline and Milestones

Team member 1's tasks

Week 5-6 (02/12-02/25)	Submit Full Proposal.
Week 7-8 (02/26-03/11)	Receive feedback and purchase the following items: Raspberry Pi 3 Model B+ Raspberry Pi GSM Raspberry Pi Night Vision Camera Battery Pack/Power Supply Begin Progress Report I
Week 9-10 (03/12-03/25)	Download the YOLOv4-Tiny library and construct training dataset for detecting potholes (~300 images). Finish and submit Progress Report I.
Week 11-12 (03/26-04/08)	Begin end of semester report and presentation. Upload training data to Raspberry Pi 3, connect the night vision camera module and conduct detection accuracy tests.
Week 13-14 (04/09-04/22)	Connect GSM module and buzzer component and test for data transmission and alarm module. Finish End of Semester Report and Presentation.
Week 33-34 (08/27-09/09)	Finish prototype on breadboard. Begin Progress Report II
Week 35-36 (09/10-09/23)	Perform finalized breadboard tests and finish Progress Report II
Week 35-36 (09/10-09/23)	Design PCB and design 3D case for system. Begin Progress Report III
Week 37-38 (09/24-10/07)	Fabricate PCB, print and assemble PBC components and 3D printed case for system. Begin Poster and record demonstration videos.
Week 39-40 (10/08-10/21)	Perform system tests (Cloud database and data visualization, solder components, finalize mobile application). Finish Progress Report III
Week 41-42 (10/22-11/04)	Test pothole detection and with PCB components and 3D printed case design for portable usage. Test with cyclist point-of-view.
Week 43-44 (11/05-11/18)	Test system and finalize design
Week 45-46 (11/19-11/02)	Finish presentation slides and final report

6. References

[1] M. H. Asad, S. Khaliq, M. H. Yousaf, M. O. Ullah, and A. Ahmad, "Pothole Detection Using Deep Learning: A Real-Time and Al-on-the-Edge Perspective," Advances in Civil Engineering, vol. 2022, p. e9221211, Apr. 2022, doi: https://doi.org/10.1155/2022/9221211