National University of Computer and Emerging Sciences, Lahore Campus

STUNAL UNIVERSIT
ENGES IN
SPILIN & EMERGING SE

Course Name:	Data Science	Course Code:	CS4048
Degree Program:	BS(Computer Science)	Semester:	Spring 2022
Exam Duration:	60 Minutes	Total Marks:	40
Paper Date:	24-Mar-2022	Weight	10%
Section:	ALL	Page(s):	4
Exam Type:	Midterm-I		

Student : Name:	Roll No.	Section:

Instruction/Notes: Attempt all questions. Programmable calculators are not allowed.

Q1. [10 marks]

- 1. Which statement is IN-CORRECT:
 - a. In the interval scale, distances between each value on the scale are equal
 - b. In the ordinal scale, distances between each value on the scale are not equal
 - c. The ratio scale is the most informative measurement scale
 - d. We can calculate mean on the nominal scale
 - e. We can identify outliers in the interval scale
- 2. Which statement is IN-CORRECT:
 - a. Jersey numbers for a football team is a nominal scale
 - b. Military rank is an ordinal scale
 - c. Shoe size is an ratio scale
 - d. Year of birth is an interval scale
 - e. T-shirt size (small, medium, large) is a ordinal scale
- 3. Which of the following is NOT-NECESSARY for valid data collection and analysis:
 - a. Identify sub-groups during data collection
 - b. Precisely define target group for data collection
 - c. Ensure proportional participation by all sub-groups
 - d. Always perform internet surveys for maximum participation
 - e. Identify stigmatized respondents for possible omissions
- 4. What is IN-CORRECT about missing data:
 - a. Missing data at random (MAR) is easier to handle than Missing completely at random (MCAR)
 - b. MNAR can only be identified by considering external factors in addition to the collected data
 - c. MAR can be identified using only the collected data
 - d. Simpler methods like mean substitution or regression can be used with MCAR
 - e. More advanced methods should be used for MAR/MNAR
- 5. Which statement is IN-CORRECT:
 - a. Data scientists spend most of their time applying machine learning algorithms.
 - b. Data science requires good business understanding
 - c. A data scientist is an excellent communicator who is able to work with multi-disciplinary teams
 - d. A data scientist should be well versed in statistical techniques
 - e. Data science requires research aptitude

Q2. [20 marks]

Gradient descent - Linear regression - single variable

Hypothesis:	$h_{\theta}(x) = \theta_0 + \theta_1 x$	
Cost function:	$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$	
Gradient descent algorithm:	repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$	
	$\{ \text{for } j = 0 \text{ and } j = 1 \}$	
Partial derivatives	$egin{aligned} rac{\partial}{\partial heta_0} J(heta_0, heta_1) &= \sum_{i=1}^m (h_ heta(x_i) - y_i) \ rac{\partial}{\partial heta_1} J(heta_0, heta_1) &= \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i) \end{aligned}$	
Parameter updates will be simultaneous	$\begin{aligned} \operatorname{temp0} &:= \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \operatorname{temp1} &:= \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_0 &:= \operatorname{temp0} \\ \theta_1 &:= \operatorname{temp1} \end{aligned}$	

Consider following values of X (predictor variable) and Y (target variable)

Χ	Υ
3	6
6	13

Also consider the following values

$$\begin{array}{ll} \text{m = 2 (number of data points)} \\ \alpha &= 0.001 \text{ (learning rate)} \\ \theta 0 &= 0 \\ \theta 1 &= 1 \end{array}$$

Calculate the following (show working):

1. Calculate the value of Cost Function

$$J(heta_0, heta_1)= egin{array}{c} exttt{14.5} \end{array}$$

2. Perform one iteration of gradient descent algorithm and calculate new values of $heta_0, heta_1$

 $\theta 0 = 0.005 (0.01 \text{ without m})$

 $\theta 1 = 1.0255(1.051 \text{ without m})$

3. Using new values of $heta_0, heta_1$ calculate updated value of the cost function

$$J(heta_0, heta_1) = \ ext{13.83 (13.18 without m)}$$

Have your model learned by reducing error? _____

Q3. [10 marks]

Draw Box-and-Whisker Plot for the following data. Also, identify outliers if there are any.

25,35,42,47,48,49,50,50,52,53,55,56,58,75,81

You are also required to calculate the following values:

Median = 50

Q1 = 47

Q3 = 56

IQR (Q3 - Q1) = 9

Outliers = 25, 81, 75

Minimum: 25

Maximum: 81

