TD Chapitre 9 : Suites réelles

Questions de cours : must-know

- 1) Qu'est-ce qu'une suite convergente ? et qu'est-ce qu'une suite divergente ?
- 2) Est-ce que toute suite réelle convergente est bornée ? et le contraire ?
- 3) Enoncer le théorème de Bolzano-Weirstrass.
- 4) Donner, après démonstration, la formule de la somme des termes d'une suite arithmétique du rang 0 au rang n.
- 5) Donner, après démonstration, la formule de la somme des termes d'une suite géométrique du rang 0 au rang n.
- 6) Donner, après démonstration, la formule de la somme des termes d'une suite arithméticogéométrique du rang 0 au rang n.
- 7) Donner la limite de chacune de ces suites.
- 8) Enoncer le théorème de convergence des suites réelles (4 cas).
- 9) Donner la définition de suites adjacentes.
- 10) Enoncer le théorème de convergence des suites adjacentes.
- 11) Soit (u_n) une suite réelle. Donner la définition d'une suite extraite de la suite (u_n) .
- 12) Si les suites (u_{2n}) et (u_{2n+1}) tendent vers une même limite, que peut-on dire de (u_n) ?
- 13) Si les suites (u_{2n}) et (u_{2n+1}) ne tendent pas vers la même limite, que peut-on dire de (u_n) ?
- 14) Donner la définition d'une suite récurrente.
- 15) Soit (u_n) une suite récurrente de fonction f, énoncer la proposition du cours pour une fonction f croissante.
- 16) Même chose pour *f* croissante.
- 17) Donner le théorème sur les suites récurrentes exploitant l'IAF.

Remarque: vous pouvez, en vous aidant de cette liste de questions et en la complétant, vous faire un petit résumé du cours sur les suites.

Limites:

Exercice 1:

a) Calculer les limites suivantes :

$$\lim_{n \to +\infty} 2 + \frac{(-1)^n}{1 + n + n^2}; \qquad \lim_{n \to +\infty} \frac{e^n}{\ln(n)}; \qquad \lim_{n \to +\infty} e^n - \ln(n)$$

$$\lim_{n \to +\infty} n - n^2; \qquad \lim_{n \to +\infty} \sqrt{n + 1} - \sqrt{n}$$

b) Calculer les limites des suites définies par :

$$u_n = n^{1/n}$$
; $u_n = \left(1 + \frac{1}{n}\right)^n$; $u_n = \frac{(-1)^n}{n}$; $u_n = \frac{\cos(n)}{\sinh(n) + \ln(n)}$; $u_n = \frac{\cos(n)}{\sinh(n) + \ln(n)}$

Exercice 2:

 $\forall n \geq 0$, $u_n = \frac{E(nx+1)}{n+1}$ (*E* étant la fonction partie entière). Soit $x \in \mathbb{R}$ et la suite définie par :

Calculer la limite de cette suite.

Exercice 3:

Calculer les limites des suites suivantes :

$$u_n = \sum_{k=1}^n \frac{\sin(k)}{n^2 + k}$$
; $v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$; $w_n = \sum_{k=1}^n \frac{1}{n + \sqrt{k}}$

$$v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

$$w_n = \sum_{k=1}^n \frac{1}{n + \sqrt{k}}$$

Généralités & Théorème de convergence :

Exercice 4:

- a) La suite $\left(\frac{n}{n+1}\right)_{n>0}$ est-elle monotone ? bornée ?
- b) La suite $\left(\frac{n.\sin(n!)}{1+n^2}\right)_{n>0}$ est-elle bornée ?

Exercice 5:

Soit x > 0.

- a) Montrer que la suite $\left(\frac{x^n}{n!}\right)_{n\in\mathbb{N}}$ est décroissante à partir d'un certain rang.
- b) Calculer ce rang.

Exercice 6:

Soit une suite (u_n) qui converge vers une limite $l \in \mathbb{R}^+$. Montrer qu'à partir d'un certain rang, $u_n > 0$.

Exercice 7:

Soient (u_n) et (v_n) deux suites, avec $v_n \to +\infty$.

- a) Montrer que si (u_n) est minorée, alors $\lim_{n \to +\infty} u_n + v_n = +\infty$.
- b) Montrer que si (u_n) est minorée par $\lambda > 0$, alors $\lim_{n \to +\infty} u_n$. $v_n = +\infty$.

Exercice 8:

Soient (u_n) et (v_n) deux suites réelles, avec (u_n) une suite croissante, (v_n) convergente et $u_n \leq v_n$ à partir d'un certain rang.

Montrer que (u_n) converge.

Exercice 9:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\geq 1$, $u_n=\sqrt{2+u_{n-1}}$

- a) Montrer que cette suite est croissante et majorée par 2.
- b) Que peut-on en conclure?

Exercice 10:

Soit $(u_n)_{n\geq 1}$ définie par : $u_n=1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}$

- a) Ecrire u_n sous la forme d'une somme (une série) en utilisant le symbole Σ
- b) Montrer que $\forall n \geq 1, u_n \leq 2 \frac{1}{n}$
- c) En déduire que (u_n) est convergente.

Exercice 11: Suite harmonique

Soit $(u_n)_{n\geq 1}$ définie par : $u_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$

- a) Ecrire u_n sous la forme d'une somme (une série) en utilisant le symbole Σ
- b) Montrer que la suite (u_n) est croissante.
- c) Montrer que $\forall p \in \mathbb{N}^*$, $u_{2^p} u_{2^{p-1}} \ge \frac{1}{2}$
- d) En déduire que $\forall p \in \mathbb{N}^*, \ u_{2^p} 1 \ge \frac{p}{2}$
- e) En déduire que (u_n) n'est pas bornée.
- f) En déduire la limite de $\lim u_n = +\infty$.

Exercice 12:

Déterminer le terme général (u_n) définie par $u_0=1$ et $u_{n+1}=3u_n-1$ pour tout $n\in\mathbb{N}$.

Exercice 13:

- a) La suite $(u_n)_{n\in\mathbb{N}}$ de terme général $(-1)^n$. e^n admet-elle une limite ?
- b) Et la suite de terme général $\frac{1}{u_n}$?

Suites Adjacentes:

Exercice 14:

Soit :
$$S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$$

- a) Montrer que les deux suites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- b) Que dire de la convergence de la suite (S_n) ?

Exercice 15:

a) Montrer que les suites de terme général $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot (n!)}$ sont adjacentes.

3

b) Que peut-on en déduire?

Exercice 16:

[Moyenne arithmético-géométrique]

a) Pour $(a,b) \in \mathbb{R}^{+2}$, établir :

$$2\sqrt{ab} \leqslant a + b$$

b) On considère les suites de réels positifs (u_n) et (v_n) définies par

$$u_0=a,v_0=b$$
 et $\forall n\in\mathbb{N},u_{n+1}=\sqrt{u_nv_n},v_{n+1}=\frac{u_n+v_n}{2}$

Montrer que, pour tout $n \ge 1$, $u_n \le v_n$, $u_n \le u_{n+1}$ et $v_{n+1} \le v_n$.

- c) Etablir que (u_n) et (v_n) convergent vers une même limite.
- c) Etablir que (u_n) et (v_n) convergent vers une même limite. Cette limite commune est appelée moyenne arithmético-géométrique de a et b et est notée M(a,b).
- d) Calculer M(a, a) et M(a, 0) pour $a \in \mathbb{R}^+$.
- e) Exprimer $M(\lambda a, \lambda b)$ en fonction de M(a, b) pour $\lambda \in \mathbb{R}^+$.

Suites récurrentes :

Exercice 17:

Soit la suite (u_n) définie par :

$$\begin{cases} u_0 = 2 \\ u_{n+1} = f(u_n), \forall n \in \mathbb{N} \end{cases} \text{ avec } f(x) = 1 + \sqrt{x}$$

- a) Montrer que f est croissante sur son domaine de définition.
- b) Montrer que f([1,3]) ⊂ [1,3].
- c) Montrer que (u_n) converge et calculer sa limite.

Exercice 18:

Soit la suite (u_n) définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = f(u_n), \forall n \in \mathbb{N} \end{cases} \quad \text{avec} \quad f(x) = \frac{1}{9}x^3 + 1$$

a) Etudier suffisamment les fonctions f et $g: x \mapsto f(x) - x$ pour tracer correctement le graphique de la fonction f et sa position par rapport à la première bissectrice (y = x).

4

- b) Montrer que f admet sur \mathbb{R}^+ deux points fixes l et l' tels que 0 < l < l'.
- c) Choisir le bon segment [a, b] tel que $u_0 \in [a, b]$ et $f([a, b]) \subset [a, b]$.
- d) Montrer que (u_n) converge vers l.
- e) Montrer que $l \in [1, \sqrt{3}]$.

Exercice 19:

Soit la suite (u_n) définie par :

$$\begin{cases} u_0 = 4 \\ u_{n+1} = f(u_n), \forall n \in \mathbb{N} \end{cases} \text{ avec } f(x) = \frac{4}{x+2}$$

Etudier la suite (u_n) .

Exercice 20:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\geq 1$, $u_n=\sqrt{2+u_{n-1}}$

Etudier la suite (u_n) .

Exercice 21:

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in[0,1]$ et $u_{n+1}=u_n-u_n^2$.

Etudier en détail la suite (u_n) .

Exercice 22:

Soit $n\geqslant 2$ un entier fixé et $f:\mathbb{R}^+=[0,+\infty[\longrightarrow\mathbb{R}]$ la fonction définie par la formule suivante :

$$f(x) = \frac{1+x^n}{(1+x)^n}, \ x \geqslant 0.$$

- 1. (a) Montrer que f est dérivable sur \mathbb{R}^+ et calculer f'(x) pour $x \ge 0$.
 - (b) En étudiant le signe de f'(x) sur \mathbb{R}^+ , montrer que f atteint un minimum sur \mathbb{R}^+ que l'on déterminera.
- 2. (a) En déduire l'inégalité suivante :

$$(1+x)^n \leqslant 2^{n-1}(1+x^n), \ \forall x \in \mathbb{R}^+.$$

(b) Montrer que si $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$ alors on a

$$(x+y)^n \leqslant 2^{n-1}(x^n + y^n).$$