Algorithm for Algebraic Puzzle Solver

Input:

• A set of algebraic equations with multiple variables (e.g., x + y = 5, 2*x - y = 0).

Output:

• Solutions for the variables in the equations (e.g., x = 5/3, y = 10/3).

Steps:

1. Start:

Begin the program.

2. Display Welcome Message:

- o Print a welcome message and instructions for the user.
- o Example:

Copy

Welcome to the Algebraic Puzzle Solver!

Enter your equations in the form x + y = 5 or 2*x - y/2 = 3.

Type 'done' when you're finished entering equations.

3. Initialize Data Structures:

- o Create an empty set variables to store all variables in the equations.
- Create an empty list equations to store the symbolic equations.

4. Input Equations:

- o While the user has not entered 'done':
 - Prompt the user to enter an equation.
 - If the input is 'done', exit the loop.
 - Otherwise:
 - Split the equation into the left-hand side (LHS) and right-hand side (RHS) using the = sign.
 - Extract all variables from the equation using symbolic parsing.
 - Add the variables to the variables set.

- Create a symbolic equation using sympy.Eq(LHS, RHS).
- Add the equation to the equations list.

5. Check for Equations:

- o If no equations were provided:
 - Print "No equations provided. Exiting."
 - Stop.

6. Solve the System of Equations:

- o Use sympy.solve(equations, variables) to solve the system of equations.
- o If a solution exists:
 - Print the solutions for each variable.
- o If no solution exists:
 - Print "No solution exists."

7. Handle Errors:

- o If any error occurs during equation parsing or solving:
 - Print an appropriate error message (e.g., "Invalid equation" or "Error solving equations").

8. **Stop**:

o End the program.

