ALGORITHMS AND DATA STRUCTURES

SORTING ALGORITHMS

THE PROBLEM OF SORTING

The problem of sorting is a computational problem that can be solved using so-called *sorting algorithms*

THE PROBLEM OF SORTING

- The problem of sorting is a computational problem that can be solved using so-called *sorting algorithms*
- More formally, consider the problem of sorting stated as follows
 - Input: A sequence of n numbers $A = \{a_1, ..., a_n\}$
 - Output: A permutation (reordering) $A' = \{a'_1, ..., a'_n\}$ of the input sequence such that $a'_1 <= a'_2 <= ... <= a'_n$

TYPES OF SORTING ALGORITHMS

A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most frequently used orders are numerical order and lexicographical order

TYPES OF SORTING ALGORITHMS

- A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most frequently used orders are numerical order and lexicographical order
- Sorting algorithms can be classified by:
 - Computational complexity (worst, average and best behavior) in terms of the size of the list (N)
 - Computational complexity of swaps (for "in-place" algorithms)

TYPES OF SORTING ALGORITHMS

- Memory usage and use of other computer resources
- Stability: stable sorting algorithms maintain the relative order of records with equal keys (i.e. values).
- Whether the algorithm is serial [this course] or parallel
- Among other criteria...
- Here we're going to only focus on serial algorithms.
 Although we will explore the other types of algorithms

(SLOWEST) SORTING ALGORITHMS

- Average-case performance $O(N_P)$, p > 2
 - ▶ Bogosort O((N+1)!)
 - ▶ Stooge sort *O*(*N*^{2.7095}...)
- Not-so-worst-but-still-bad average-case performance $O(N^2)$
 - \triangleright Selection sort $O(N^2)$
 - ightharpoonup Bubble sort $O(N^2)$
 - Insertion sort $O(N^2)$

BOGOSORT

- Highly ineffective
- Use for pedagogical purposes mainly
- Two versions
 - deterministic: enumerates all permutations
 - randomized: randomly permutes its input

BOGOSORT

- Highly ineffective
- Use for pedagogical purposes mainly
- Two versions
 - deterministic: enumerates all permutations
 - randomized: randomly permutes its input
- Best-case performance: O(N)
- Worst-case performance: O((N+1)!)

BOGOSORT

Pseudocode for bogosort:

```
FUNCTION bogoSort:
    INPUT: integer array A[n]
    OUTPUT: none
    USAGE: bogoSort(A)
BEGIN
    WHILE NOT sorted(A)
        shuffle(A)
    END
END // bogoSort
```

```
FUNCTION sorted:
    INPUT: integer array A[n]
    OUTPUT: boolean
    USAGE: flag = sorted(A)
BEGIN
    FOR i: 1, n-1
        IF A[i] > A[i+1] THEN
            RETURN FALSE
        END
        END
        RETURN TRUE
END // sorted
```

STOOGE SORT

- Recursive algorithm that goes like this...
 - 1. If key at start is larger than that at the end, swap them
 - 2. If there are 3 or more elements in the list, then:
 - 1. Stooge sort the initial 2/3 of the list
 - 2. Stooge sort the final 2/3 of the list
 - 3. Stooge sort the initial 2/3 of the list again

STOOGE SORT

- Recursive algorithm that goes like this...
 - 1. If key at start is larger than that at the end, swap them
 - 2. If there are 3 or more elements in the list, then:
 - 1. Stooge sort the initial 2/3 of the list
 - 2. Stooge sort the final 2/3 of the list
 - 3. Stooge sort the initial 2/3 of the list again
- Worst-case time complexity: O(Nlg(3)/lg(3/2))

STOOGE SORT

Pseudocode for stooge sort:

```
FUNCTION stoogeSort:
  INPUT: integer array A[n], integer i, j
  OUTPUT: none
  USAGE: stoogeSort(A, i, j)
BEGIN
  IF A[i] > A[j] THEN
     swap(A[i], A[j])
  END
  IF j - i + 1 > 2 THEN
    t = (j - i + 1) / 3
    stoogeSort(A, i, j - t)
    stoogeSort(A, i + t, j)
     stoogeSort(A, i, j - t)
   END
END // stoogeSort
```

SELECTION SORT

- Simple and intuitive to understand
- Divides input into
 - Sorted array built from left to right
 - Remaining array to be sorted
- Algorithm finds smallest element and swaps it with leftmost unsorted key, moving unsorted array to the right
- \triangleright Best-case and worst-case execution times: $O(N^2)$

SELECTION SORT

Pseudocode for selection sort:

```
FUNCTION selectionSort:
  INPUT: integer array A[n]
  OUTPUT: none
  USAGE: selectionSort(A)
BEGIN
  FOR i: 1, n
    minIndex = i
    FOR j: i+1, n
       IF A[j] < A[minIndex] THEN</pre>
         minIndex = j
       END
    END
    swap(A[i], A[minIndex])
  END
END // selectionSort
```

BUBBLE SORT

- Compares adjacent elements and swaps them if necessary
- The array is read until no swaps are needed
- Large elements in array surface or "bubble" to the top
- Slow in practical problems compared to insertion sort
- Easily optimizable but not great improvement achieved
- Best-case and worst-case performance (simplest algorithm): $O(N^2)$

BUBBLE SORT

Pseudocode for bubble sort:

```
FUNCTION bubbleSort:
  INPUT: integer array A[n]
  OUTPUT: none
  USAGE: bubbleSort(A)
BEGIN
  FOR i: 1, n-1
    FOR j: 1, n-1
       IF A[j] > A[j+1] THEN
         swap(A[j], A[j+1])
       END
    END
  END
END // bubbleSort
```

BUBBLE SORT

(Slightly better) pseudocode for bubble sort:

```
FUNCTION bubbleSort:
  INPUT: integer array A[n]
  OUTPUT: none
  USAGE: bubbleSort(A)
BEGIN
  swapped = TRUE
  WHILE swapped
    FOR j: 1, n-1
       IF A[j] > A[j+1] THEN
         swap(A[j], A[j+1])
         swapped = FALSE
       END
     END
  END
END // bubbleSort
```

There is an error in this pseudocode.
Can you detect it?

INSERTION SORT

- Easy to implement, stable and online algorithm
- Generally fastest among slow (bubble and selection) sorting algorithms using comparisons
- Sorts array by sorting an increasingly larger subarray
- Efficient for quasi-sorted arrays
- Best-case time complexity: O(N)
- \blacktriangleright Wort-case and average-case time complexity: $O(N^2)$

INSERTION SORT

Pseudocode for insertion sort:

```
FUNCTION insertionSort:
 INPUT: integer array A[n]
 OUTPUT: none
 USAGE: insertionSort(A)
BEGIN
 FOR i: 2, n
   b \leftarrow A[i]
  j \leftarrow i - 1
  WHILE j > 0 AND A[j] > b DO
   A[j+1] \leftarrow A[j]
   j ← j - 1
   END
   A[j+1] \leftarrow b
 END
END // insertionSort
```

INSERTION SORT

Example:

Original	34	8	64			21	Pos.
1							4
After $p = 1$	ŏ	34	64	51	32	21	Τ
After $p = 2$	8	34	64	51	32	21	0
After $p = 3$	8	34	51	64	32	21	1
After $p = 4$	8	32	34	51	64	21	3
After $p = 5$	8	21	32	34	51	64	4

We'll prove a couple of theorems that are useful when discussing simple or slow comparison sorts. For that, we need to define what an inversion is

- We'll prove a couple of theorems that are useful when discussing simple or slow comparison sorts. For that, we need to define what an inversion is
 - ♣ Inversion: Let A be an array of N numbers labeled by indices running from 0 to N-1. An inversion, in the array A, is any ordered pair (i,j) having the property that i < j but A[i] > A[j]
- Example: (34,8), (34,32), (34,21), (64,51), (64,32), (64,21), (51,32), (51,21), and (32,21)

- This is exactly the number of swaps needed to be performed by insertion sort
- Swapping two adjacent items removes exactly one inversion
- If the input is ordered, there's O(N) work in the algorithm; hence, the running time of insertion sort is O(N + I), where I is the number of inversions in the original array
- Thus insertion sort runs in linear time if the number of insertions is O(N)

Eliminating all inversions in an array implies that it is sorted

- Eliminating all inversions in an array implies that it is sorted
- A sorted array does not have inversions

- Eliminating all inversions in an array implies that it is sorted
- A sorted array does not have inversions
- Assumptions:
 - 1. No duplicate items
 - 2. Input is some permutation of the first N elements (only relative order is important)
 - 3. All elements in the array are equally likely

Lemma:

The average number of inversions in an array of N distinct elements is N(N - 1)/4

How to prove it? What elements are needed?

Lemma:

The average number of inversions in an array of N distinct elements is N(N - 1)/4

How to prove it? What elements are needed?

- Provides a very strong lower bound about any algorithm that only exchanges adjacent elements
- Implies that insertion sort is quadratic on average

Theorem:

Any algorithm that sorts by exchanging adjacent elements requires $\Omega(N^2)$ time on average

How to prove it? What elements are needed?

- Valid over an entire class of sorting algorithms, including those undiscovered, that perform only adjacent exchanges
- Including bubble sort, selection sort, and insertion sort

The lower bound shows that in order for a sorting algorithm to run in $o(N^2)$ time, it must do comparisons and, in particular, exchanges between elements that are far apart