

Feature Engineering - How to Detect and Remove Outliers (with Python Code)

BEGINNER DATA CLEANING STATISTICS STRUCTURED DATA

This article was published as a part of the <u>Data Science Blogathon</u>

Introduction

In my previous article, I talk about the theoretical concepts about outliers and trying to find the answer to the question: "When we have to drop outliers and when to keep outliers?".

To gain a better understanding of this article, firstly you have to read that <u>article</u> and then proceed with this so that you have a clear idea about the outlier analysis in Data Science Projects.

In this article, we will try to give the answer to the following questions along with the **Python** implementation,

- ☐ How to treat outliers?
- □ How to detect outliers?
- What are the techniques for outlier detection and removal?

Let's get started

How to treat outliers?

- ☐ **Trimming:** It excludes the outlier values from our analysis. By applying this technique our data becomes thin when there are more outliers present in the dataset. Its main advantage is its **fastest** nature.
- **Capping:** In this technique, we cap our outliers data and make the limit i.e, above a particular value or less than that value, all the values will be considered as outliers, and the number of outliers in the dataset gives that capping number.

For Example, if you're working on the income feature, you might find that people above a certain income level behave in the same way as those with a lower income. In this case, you can cap the income value at a level that keeps that intact and accordingly treat the outliers.

☐ **Treat outliers as a missing value:** By assuming outliers as the missing observations, treat them accordingly i.e, same as those of missing values.

You can refer to the missing value article <u>here</u>

□ **Discretization:** In this technique, by making the groups we include the outliers in a particular group and force them to behave in the same manner as those of other points in that group. This technique is also

- The data points which fall below Q1 - 1.5 IQR or above Q3 + 1.5 IQR are outliers.

quartile range and given by Q3 - Q1.

where Q1 and Q3 are the 25th and 75th percentile of the dataset respectively, and IQR represents the inter-

	Fig. IQR to detect outliers
	Image Source: <u>link</u>
□For	Other distributions: Use percentile-based approach.
For E	Example, Data points that are far from 99% percentile and less than 1 percentile are considered an er.
	Fig. Percentile representation

Techniques for outlier detection and removal:

□ Z-score treatment :

<u>Assumption</u> – The features are normally or approximately normally distributed.

Step-1: Importing Necessary Dependencies

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Step-2: Read and Load the Dataset

df = pd.read_csv('placement.csv') df.sample(5)

Step-3: Plot the Distribution plots for the features

```
import warnings warnings.filterwarnings('ignore') plt.figure(figsize=(16,5)) plt.subplot(1,2,1) sns.distplot(df['cgpa']) plt.subplot(1,2,2) sns.distplot(df['placement_exam_marks']) plt.show()
```

Step-4: Finding the Boundary Values

```
print("Highest allowed",df['cgpa'].mean() + 3*df['cgpa'].std()) print("Lowest allowed",df['cgpa'].mean() -
3*df['cgpa'].std())
```

Output:

Highest allowed 8.808933625397177 Lowest allowed 5.113546374602842

Step-5: Finding the Outliers

```
df[(df['cgpa'] > 8.80) | (df['cgpa'] < 5.11)]
```

Step-6: Trimming of Outliers

```
new_df = df[(df['cgpa'] < 8.80) & (df['cgpa'] > 5.11)] new_df
```

Step-7: Capping on Outliers

```
upper_limit = df['cgpa'].mean() + 3*df['cgpa'].std() lower_limit = df['cgpa'].mean() - 3*df['cgpa'].std()
```

Step-8: Now, apply the Capping

```
df['cgpa'] = np.where( df['cgpa']>upper_limit, upper_limit, np.where( df['cgpa']<lower_limit, lower_limit,
df['cgpa'] ) )</pre>
```

Step-9: Now see the statistics using "Describe" Function

```
df['cgpa'].describe()
```

Output:

count 1000.000000 mean 6.961499 std 0.612688 min 5.113546 25% 6.550000 50% 6.960000 75% 7.370000 max 8.808934 Name: cgpa, dtype: float64

This completes our Z-score based technique!

IQR based filtering:

Used when our data distribution is skewed.

Step-1: Import necessary dependencies

 $import\ numpy\ as\ np\ import\ pandas\ as\ pd\ import\ matplotlib.pyplot\ as\ plt\ import\ seaborn\ as\ sns$

Step-2: Read and Load the Dataset

```
df = pd.read_csv('placement.csv') df.head()
```

Step-3: Plot the distribution plot for the features

Step-4: Form a Box-plot for the skewed feature

```
sns.boxplot(df['placement_exam_marks'])
```

Step-5: Finding the IQR

Step-6: Finding upper and lower limit

```
upper_limit = percentile75 + 1.5 * iqr lower_limit = percentile25 - 1.5 * iqr
```

Step-7: Finding Outliers

```
\label{limit} $$ df[df['placement_exam_marks'] > upper_limit] $$ df[df['placement_exam_marks'] < lower_limit] $$
```

Step-8: Trimming

```
new_df = df[df['placement_exam_marks'] < upper_limit] new_df.shape</pre>
```

Step-9: Compare the plots after trimming

```
plt.figure(figsize=(16,8))    plt.subplot(2,2,1)    sns.distplot(df['placement_exam_marks'])    plt.subplot(2,2,2)
sns.boxplot(df['placement_exam_marks'])    plt.subplot(2,2,3)    sns.distplot(new_df['placement_exam_marks'])
plt.subplot(2,2,4)    sns.boxplot(new_df['placement_exam_marks'])    plt.show()
```

```
new_df_cap = df.copy() new_df_cap['placement_exam_marks'] = np.where( new_df_cap['placement_exam_marks'] >
upper_limit, upper_limit, np.where( new_df_cap['placement_exam_marks'] < lower_limit, lower_limit,
new_df_cap['placement_exam_marks'] ) )</pre>
```

Step-11: Compare the plots after capping

```
plt.figure(figsize=(16,8))    plt.subplot(2,2,1)    sns.distplot(df['placement_exam_marks'])    plt.subplot(2,2,2)
sns.boxplot(df['placement_exam_marks'])    plt.subplot(2,2,3)    sns.distplot(new_df_cap['placement_exam_marks'])
plt.subplot(2,2,4)    sns.boxplot(new_df_cap['placement_exam_marks'])    plt.show()
```

This completes our IQR based technique!

□ Percentile :

- This technique works by setting a particular threshold value, which decides based on our problem statement.
- While we remove the outliers using capping, then that particular method is known as Winsorization.
- Here we always maintain **symmetry** on both sides means if remove 1% from the right then in the left we also drop by 1%.

Step-1: Import necessary dependencies

import numpy as np import pandas as pd

Step-2: Read and Load the dataset

```
df = pd.read_csv('weight-height.csv') df.sample(5)
```

Step-3: Plot the distribution plot of "height" feature sns.distplot(df['Height']) Step-4: Plot the box-plot of "height" feature sns.boxplot(df['Height']) Step-5: Finding upper and lower limit upper_limit = df['Height'].quantile(0.99) lower_limit = df['Height'].quantile(0.01) Step-7: Apply trimming $new_df = df[(df['Height'] \le 74.78) & (df['Height'] >= 58.13)]$ Step-8: Compare the distribution and box-plot after trimming sns.distplot(new_df['Height']) sns.boxplot(new_df['Height']) Uwinsorization:

 $df['Height'] = np.where(df['Height'] >= upper_limit, upper_limit, np.where(df['Height'] <= lower_limit, limit, limit,$

Step-9: Apply Capping(Winsorization)

lower_limit, df['Height']))

The media shown in this article are not owned by Analytics Vidhya and is used at the Author's discretion.

Article Url - https://www.analyticsvidhya.com/blog/2021/05/feature-engineering-how-to-detect-and-remove-outliers-with-python-code/

chirag676

