Cálculo para Ciências

04.01.2023 ----

Justifique todas as respostas.

Mostre que, para todo o $x \in \mathbb{R}$ se tem $\operatorname{ch}^2(x) = \frac{\operatorname{ch}(2x) + 1}{2}$. Exercício 1. [1,0 valor]

Exercício 2. [14,0 valores] Calcule os seguintes integrais:

a)
$$\int \frac{e^x}{(2e^x - 4)^{\frac{3}{2}}} dx;$$

b)
$$\int x^3 \ln(x+1) \, dx;$$

c)
$$\int x^3 (1+2x^2)^6 dx;$$

d)
$$\int \frac{x^2}{2(x-1)(x+1)^2} dx;$$

e)
$$\int \frac{x^3}{\sqrt[4]{1+x^2}} dx$$
, fazendo a mudança de variável $x = \sqrt{u^4-1}$;

f)
$$\int_0^{\frac{\pi}{4}} \frac{\cos(x)}{\sin^2(x) + 1} \, dx$$
, fazendo a mudança de variável $\sin(x) = t$.
Exercício 3. [2,5 valores] Considere a região $R = \left\{ (x,y) \in \mathbb{R}^2 : |x| - 1 \le y \le 1 - x^2 \right\}$.

- a) Faça um esboço de R.
- b) Calcule a área de R,

Exercício 4. [2,5 valores]

a) Utilize integração por partes para mostrar que

$$\forall n \in \mathbb{N} \qquad \int \operatorname{sen}^{n}(x) \, dx = -\operatorname{sen}^{n-1}(x) \, \cos(x) + (n-1) \, \int \operatorname{sen}^{n-2}(x) \, \cos^{2}(x) \, dx.$$

b) Denotando $I_n = \int \operatorname{sen}^n(x) dx$, mostre que

$$\forall n \in \mathbb{N} \setminus \{1\}$$
 $I_n = -\frac{1}{n} \operatorname{sen}^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}.$

FIM

BOA SORTE