Ported Parametrized Tutte Functions: Old and New Applications

Seth Chaiken
CS Department
Univ. at Albany
State Univ. of New York¹, USA
sdc@cs.albany.edu
http://www.cs.albany.edu/~sdc

March 26, 2009
St. Michael's College and Univ. Vermont
Combinatorics Seminar

¹Governor David Paterson

Generalizing Tutte Functions

Problems...

Solution

Proof Ideas

Tutte (Computation) Trees and Internal/External Activities

Electricity in Graphs

Correlation in Forests

Our Ported Parametrized separator-strong Tutte Equations

- ► $T(G) = x_e T(G/e) + y_e T(G \setminus e)$ if e is a non-separator and $e \notin P$.
- ▶ $T(G) = X_e T(G/e)$ if e is a coloop (isthmus) and $e \notin P$.
- ▶ $T(G) = Y_e T(G \setminus e)$ if e is a loop and $e \notin P$.

Zaslavsky, Bollobas-Riordan, Ellis-Monaghan-Traldi; $P \neq \emptyset$ (sdc).

The Famous Tutte Polynomial

Take $P=\emptyset$, $x_e=y_e=1$, $X_e=X$ and $Y_e=Y$ for all e, define $T(\emptyset)=1$:

T(G)(X,Y) is then a well-defined polynomial in X,Y.

Theorem (Tutte, Brylawski)

$$T(X,Y) = \sum_{Bases\ B \subseteq E} X^{Internal\ Activity(B)} Y^{External\ Activity(B)}$$

independently of E's order used to define the activities.

Reminder about Activities

Given a linear order on E, Given a basis B (spanning tree if G is connected):

- ▶ $e \notin B$ is externally active if e is the smallest element of the (unique) circuit in $B \cup \{e\}$.
- ▶ $e \in B$ is internally active if e is the smallest element of the (unique) cocircuit in $E \setminus B \cup \{e\}$.
- ► Internal (External) Activity(*B*) is the number of internally (externally) active elements.

Huh?? We will get intuition for this and extend it with $P \neq \emptyset$ with a Tutte (Computation) Tree (Gordon-MacMahon) view.

H. Crapo also proved the well-definedness of the Tutte polynomial from its corank-nullity polynomial expression. But that doesn't fully generalize to parametrized Tutte functions (Zaslavsky).

T(2 - circuit) is **not** defined unless...

These are Tutte (computation) trees, defined formally and used by Gordon-MacMahon to study Tutte polynomials of greedoids, where sometimes, the same element order cannot be used under each branch.

A Detail

 $T(\text{loop matroid on } e) = Y_e T(\emptyset(\text{empty matroid}))$, etc. so the real ZBR condition is

$$T(\emptyset)(x_eY_f + y_eX_f) = T(\emptyset)(x_fY_e + y_fX_e)$$

Problems: 2nd ZBR-type and 1st for $P \neq \emptyset$

More Problems..., 2nd for $P \neq \emptyset$

Solution—Setup

When do recursive equations have a solution?

"Have a solution" here means "Every calculation of $\mathcal{T}(G)$ using the Tutte equations and initial values on members of \mathcal{F} gives the same answer.

Definition (Sep. Strong Ported Parametrized Tutte Function)

Let P be a set and $\mathcal F$ be a family of graphs, oriented matroids or matroids that is closed under deletion and contraction of elements not in P. Deletion of loops and contraction of coloops is allowed. Let ring R elements X_e, Y_e, x_e and y_e (for each $e \notin P$) and R—module elements I(Q) for every $Q \in \mathcal F$ with Q over elements of P only also be given.

This structure has a Tutte function if and only if the Ported Parametrized Tutte Equations have (a necessarilly unique) solution over all of \mathcal{F} .

The X_e, Y_e, x_e, y_e and I(Q) are called parameters and initial values.

Solution—Theorem

Theorem (After Zaslavsky, Bollobas-Riordan, Ellis-Monaghan-Traldi)

 \mathcal{F} and values as above has a Tutte function iff the following equations are satisfied whenever they arise from a member $G \in \mathcal{F}$:

- 1. Suppose $G = Q \oplus G'$ where $S(Q) \subseteq P$.
 - 1.1 With G' a 2-circuit $\{e, f\}$ (and so 2-cocircuit too), $I(Q)(x_eY_f + y_eX_f) = I(Q)(x_fY_e + y_fX_e)$.
 - 1.2 With G' a 3-circuit $\{e, f, g\}$, $I(Q)X_g(x_ey_f + y_eX_f) = I(Q)X_g(x_fy_e + y_fX_e)$.
 - 1.3 With G' a 3-cocircuit $\{e, f, g\}$, $I(Q)Y_g(x_eY_f + y_ex_f) = I(Q)Y_g(x_fY_e + y_fx_e)$.

These generalize the 3 ZBR equations merely by replacing $I(\emptyset)$ with I(Q).

- 2. With $\{e, f\} = E$ in series and not isolated (from P), $I(G/e \setminus f)(x_ey_f + y_eX_f) = I(G/e \setminus f)(x_fy_e + y_fX_e)$.
- 3. With $\{e, f\} = E$ in parallel and not isolated, $I(G/e \setminus f)(x_e Y_f + y_e x_f) = I(G/e \setminus f)(x_f Y_e + y_f x_e)$.

Proof Outline

Ported ZBR equations are necessary

Consider the 1+4 matroid/graph classes with $E(G)=\{e,f\}$ or $E(G)=\{e,f,g\}$, where $E(G)=S(G)\setminus P$, corresponding to the 5 ZBR conditions.

For each, show (as I illustrated before) that assuming certain pairs of computations of T(G) give equal results implies the condition.

Ported ZBR equations are sufficient

Induction: Assume G is a minimum |E(G)| counter example, where $E(G) = S(G) \setminus P$. So: T(G/e) and $T(G \setminus e)$ are well-defined from the Tutte Equations for every $e \in E(G)$. Lemma (Zaslavsky) shows all of E(G) is a series class or a parallel class.

The relevent Tutte equations (Is E isolated? Or is E connected to some of P?) show there's a smaller E counterexample.

Some Details

- ▶ $|E| \ge 2$.
- ▶ No $e \in E$ is a separator in G.
- ▶ For no $e, f \in E(G)$ is this a Tutte tree:

The Tutte Tree formalism here means e is a non-separator in G and f is a non-separator in both G/e and $G \setminus e$.

- ▶ Lemmas: Each $e \in E(G)$, $f \in E(G)$, $e \neq f$, is series pair or a parallel pair.
 - e, f parallel and f, g series is impossible.
 - So all of E is a series class or is a parallel class.

Tutte (Computation) Trees and Internal/External Activities

A P-subbasis $T \subseteq E(G)$ ("contracting set" [Diao-Hetyei]) is an independent set (forest) for which $T \cup P$ is spanning.

$$G \\ \text{path } \pi \text{ contributes} \\ [G'|P]x^{IP(T)}y^{EP(T)}X^{IA(T)}Y^{EA(T)} \\ \text{only non-seps. del.} \text{ or contr.} \\ G' = G/IP(T) \setminus EP(T)$$

E is partitioned: $T = IP(T) \cup IA(T)$, $E \setminus T = EP(T) \cup EA(T)$. $IP(T) = \{\text{elements contracted along } \pi\}$. $EP(T) = \{\text{elements deleted along } \pi\}$. In G', IA(T) is all coloops, EA(T) is all loops. 2^E is partitioned into intervals $\{[X_T, Y_T]|P - \text{subbasis } T\}$, $X_T = IP(T) \subseteq (T = IP(T) \cup IA(T)) \subseteq (T \cup EA(T)) = Y_T$.

All is determined by the Tutte tree, NOT an element order!

Tutte Polynomials and Activities

- When the conditions in our P-ported ZBR theorem are satisfied, all Tutte trees yield the same value in the R-module, called THE Tutte polynomial (because trees → computations.) This value has multiple polynomial expressions.
- 2. The P-quotient [G/IP(T)|P] in the term contributed by P-subbasis T is determined by the internally passive elements of T.

P-subbasis (Spanning Tree) Polynomial

$$\mathcal{T}_{P}(G) = \sum_{T: P-\text{subbasis}} [G/T|P] x^{T} y^{E \setminus T} = \sum_{T: P-\text{subbasis}} [G/IP(T)|P] x^{T} y^{E \setminus T}$$

with notation:
$$z^S = \prod_{e \in S} z_e (z = x \text{ or } y).$$

Remark: If G is a tree, then E is the one P-subbasis, $IP(E) = \emptyset$ and IA(E) = E.

$$\mathcal{T}(G) = x_e \mathcal{T}(G/e) + y_e \mathcal{T}(G \setminus e)$$
 if $e \not\in P$ is a non-separator.

$$\mathcal{T}(G) = y_e \mathcal{T}(G \setminus e)$$
 if $e \notin P$ is a loop.

$$\mathcal{T}(G) = x_e \mathcal{T}(G/e)$$
 if e is an isthmus.

To enumerate the spanning trees in E, set

[all loops]
$$\leftarrow 1$$
 and [other *P*-quotients] $\leftarrow 0$

P-ported Forest Polynomial

$$\mathcal{F}(G) = \sum_{F \subseteq E: F \text{ is a forest}} [G/F|P] x^F$$

The $\sum x^F$ coefficient of each [Q] variable enumerates a class of forests. Examples: $[pQqQ] \to F$ spans both p and q; $[pQq] \to F$ spans neither p nor q.

$$\mathcal{F}(G) = \sum_{T:P-\text{subbasis}} [G/T|P] x^{IP(T)} (1+x)^{IA(T)}$$

$$= \sum_{T:P-\text{subbasis}} [G/IP(T)|P] x^{IP(T)} \sum_{F\subseteq IA(T)} x^F$$
where $(1+x)^S = \prod_{e\in S} (1+x_e)$

$$\mathcal{F}(G) = x_e \mathcal{F}(G/e) + \mathcal{F}(G\setminus e) \text{ if } e \not\in P \text{ is a non-separator.}$$

$$\mathcal{F}(G) = \mathcal{F}(G\setminus e) \text{ if } e \not\in P \text{ is a loop.}$$

$$\mathcal{F}(G) = (1+x_e) \mathcal{F}(G/e) \text{ if } e \not\in P \text{ is an isthmus.}$$

Spanning Tree polys solve Equations of Kirchhoff and Ohm

Variables

For each $e \in E(G)$ v_e or v_p is the voltage drop across e or p; or $p \in P$, i_e or i_p is the current flow through e or p.

Equations

For some (unimodular) basis for the cocycle space (k_e^j) , $j = 1, \ldots, \text{rank}(G)$, 0 net flow across cuts:

$$\sum_{e \in E} k_e^j i_e + \sum_{p \in P} k_p^j i_p = 0 \text{ for } j = 1, \dots, \mathsf{rank}(G).$$

For some (unimodular) basis for the cycle space $(c_{e \text{ or } p}^h)$, $h = 1, \ldots, \text{nullity}(G)$, 0 sum of diffs. of potential around cycles:

$$\sum_{e \in E} c_e^h v_e + \sum_{p \in P} c_p^h v_p = 0 \text{ for } h = 1, \dots, \text{nullity}(G).$$

For each $e \in E$: $x_e v_e - y_e i_e = 0$

Physical Conductance = x_e : y_e , Resistance = y_e : x_e

Matrix M:Flow, Potential Eqs. (Kirchhoff's) and Ohm's

Solution using Determinants

Let us apply current i_{p_β} through port edge p_β , leave the other ports "open" (means $i_{p_\gamma}=0,\ \gamma\neq\beta$) and determine what is voltage drop v_{p_α} across port p_α .

$$v_{p_{\alpha}} = -\frac{M[I_{e_1}, ..., I_{e_n}, V_{e_1}, ..., V_{e_n}, V_{p_1} ..., \frac{I_{p_{\beta}}}{p_{\beta}}, ..., V_{p_k}]}{M[I_{e_1}, ..., I_{e_n}, V_{e_1}, ..., V_{e_n}, V_{p_1} ..., \frac{I_{p_{\alpha}}}{p_{\beta}}, ..., V_{p_k}]} \cdot i_{p_{\beta}}$$

In short: Coefficients in the linear relationships among port voltage and current variables are ratios of full-rowed minors of M, all with

- \blacktriangleright k = |P| of the 2k column labels $I_{p_1}, \ldots, I_{p_k}, V_{p_1}, \ldots, V_{p_k}$.
- ▶ All 2n = 2|E| column labels $I_{e_1}, \ldots, I_{e_n}, V_{e_1}, \ldots, V_{e_n}$.

Theorem

Each of these minors (with carefully defined sign) satisfies the P-ported parametrized Tutte equations.

Remark: Ratios of these minors with numerator gotten by replacing more than one denominator label are higher order minors of a square matrix relating some k port variables with some k port variables.

Why the Tutte equations? Sketch

The last row is $(0 \cdots 0 y_{e_n} 0 \cdots - x_{e_n} 0 \cdots 0)$. So, each minor can be written

$$-x_{e_n}(a (2n + k - 1) \text{ by } (2n + k - 1) \text{ minor})$$

 $+y_{e_n}(a (2n + 2k - 1) \text{ by } (2n + k - 1) \text{ minor})$

In the first minor, the column for e_n of the cycle matrix was deleted.

Do row operations so the column for e_n of the cocycle matrix becomes $(1,0,\cdots,0)^t$.

The resulting matrix corresponds to G/e_n . The other minor corresponds to $G \setminus e_n$.

Application: Rayleigh Identity, "Neg. Spanning Tree Correlation"

$$\Gamma_e(G)$$
 is equivalent conductance across e . Rayleigh: $0 \leq \frac{\partial \Gamma_p}{\partial g_f} = \frac{\partial \frac{\Gamma_G}{\Gamma_{G/e}}}{\partial g_f}$

is equivalent to

$$0 \le \frac{\partial T_G}{\partial g_f} T_{G/e} - T_G \frac{\partial T_{G/e}}{\partial g_f} = T_{G/f} T_{G/e} - T_G T_{G/e/f}$$

In fact,

$$T_{G/f}T_{G/e} - T_{G}T_{G/e/f} = \left(T_{G/e \& G/f}^{+} - T_{G/e \& G/f}^{-}\right)^{2}$$

 $T^{\pm}_{G/e~\&~G/f}$ enumerate the \pm common spanning trees.

Known Partial and Full Combinatorial Proofs

$$T_{G/f}T_{G/e} - T_{G}T_{G/e/f} = \left(T_{G/e \& G/f}^{+} - T_{G/e \& G/f}^{-}\right)^{2}$$

 $T^{\pm}_{G/e~\&~G/f}$ enumerate the \pm common spanning trees.

Choe (2004) proved essentially this using the vertex-based all-minors matrix tree theorem, combinatorial cases and Jacobi's theorem relating the minors of a matrix to the minors of its inverse..

Cibulka, Hladky, Lacroix and Wagner (2008) gave a completely bijective proof that utilizes some natural 2:2 and 2:1 correspondances.

Difficulty: Some terms on the left cancel and some reduce to terms with coefficients ± 2 .

Linear Alg./Oriented Matroid Proof of Rayleigh's Identity

Let R be the transfer resistance matrix for 2 ports across e and f. Our result implies that

$$\det R = \left| \begin{array}{cc} R_{\text{ee}} & R_{\text{ef}} \\ R_{\text{fe}} & R_{\text{ff}} \end{array} \right| = + \frac{T_{G/e/f}}{T_G}$$

It and better-known results tell us

$$R_{ee} = \frac{T_{G/e}}{T_G}; R_{ff} = \frac{T_{G/f}}{T_G}; R_{ef} = R_{fe} = \frac{T_{G/e \& G/f}^+ - T_{G/e \& G/f}^-}{T_G}$$

$$T_{G/f}T_{G/e} - T_GT_{G/e/f} = \left(T_{G/e \& G/f}^+ - T_{G/e \& G/f}^-\right)^2$$
 is immediate after substituting these into

$$\det R = R_{ee}R_{ff} - (R_{ef})^2$$

The + follows from physical grounds if the $g_e, r_e \ge 0$. Our characterization and proof are combinatorial.

New Rayleigh's Identities!

The same method generates identities from

$$\left|\begin{array}{ccc} R_{ee} & R_{ef} & R_{eg} \\ R_{fe} & R_{ff} & R_{fg} \\ R_{ge} & R_{gf} & R_{gg} \end{array}\right| = + \frac{T_{G/e/f/g}}{T_{G}}$$

ETC...

(Applications???)

Might the same methods address a much harder problem: The same inequality for forests instead of spanning trees?

Negative Correlation in Forests Conjecture

Conjecture[Grimmett-Winker, Kahn and Pemantle]: For every pair of edges p,q in a graph, let F_p (F_q) enumerate all forests with p (F_q) enumerate those with both F_q and F_q enumerate all forests.

$$F_pF_q - FF_{pq} \ge 0$$
 if $x_e, x_p, x_q \ge 0$ for all $e \in E$ and p, q .

Consider random forests, take for e, p, q: $x_e = Pr(e)/(1 - Pr(e))$.

$$\mathsf{Corr}(p \in \mathit{RF}, q \in \mathit{RF}) = \frac{-1}{\sigma^2} \left(\frac{F_p}{F} \frac{F_q}{F} - \frac{F_{pq}}{F} \right).$$

By calculation:
$$W(G) = \mathcal{F}_{p_1^{\bullet}}\mathcal{F}_{q_1^{\bullet}} - \mathcal{F}_{all}\mathcal{F}_{p_1^{\bullet}q_1^{\bullet}} = \frac{F_pF_q - FF_{pq}}{x_px_q}$$

Example where the conjecture is true: If p and q are in series, then $\mathcal{F}_{p\uparrow} = \mathcal{F}_{q\uparrow} = \mathcal{F}_{all}$ and $\mathcal{F}_{p\uparrow q\uparrow} = \mathcal{F}_{all} - \mathcal{F}_{p\uparrow q}$, so

$$W(G) = \mathcal{F}_{\mathsf{all}} \mathcal{F}_{\mathsf{all}} - \mathcal{F}_{\mathsf{all}} (\mathcal{F}_{\mathsf{all}} - \mathcal{F}_{\rho igcap q}) = \mathcal{F}_{\mathsf{all}} \mathcal{F}_{\rho igcap q} \geq 0$$

Wagner's Conjectured Formula

$$W(G) = \mathcal{F}_{p_{\downarrow}} \mathcal{F}_{q_{\downarrow}} - \mathcal{F}_{all} \mathcal{F}_{p_{\downarrow}q_{\downarrow}} = ? \sum_{A \subseteq E} x^{A} \left((\sum \pm x^{L})^{2} \right)$$

For each $A\subseteq E$, the sum is over (some?) forests L, $L\cap A=\emptyset$, for which there is some $B\subseteq L$, $A\cup B\cup \{p,q\}$ is a circuit. We call $A\cup B\cup \{p,q\}$ a linking circuit. The signs are related to the relative orientations of p and q in the linking circuit. $W^?(G)$ denotes Wagner's formula. Since $L\cap A=\emptyset$, any x_e^2 can only come from one or more $(\sum\cdots)^2$ expressions. We sketch a P-ported Tutte decomposition approach to the conjecture. (It remains unproven.)

Towards Tutte Decompositions for p, q-in-Forest Correlation

$$W(G) = \mathcal{F}_{p[\![q]\!]} \mathcal{F}_{q[\![q]\!]} - \mathcal{F}_{\mathsf{all}} \mathcal{F}_{p[\![q]\!]}$$

Each of the four \mathcal{F}_R satisfy separator-strong P-ported Tutte equations with $P = \{p, q\}$:

$$\mathcal{F}_R(G) = x_e \mathcal{F}_R(G/e) + \mathcal{F}_R(G \setminus e)$$
 for non-sep. $e \in E$.

$$\mathcal{F}_R(G) = x_e \mathcal{F}_R(G/e)$$
 for isthmus e $\mathcal{F}_R(G) = \mathcal{F}_R(G \setminus e)$ for loop e .

Therefore;

$$W(G) = W(G \setminus e) + x_e^2 W(G/e) + x_e B(G/e, G \setminus e)$$

Where:

$$\begin{split} B(\textit{G}_{1},\textit{G}_{2}) = \; \mathcal{F}_{\!\rho^{\bullet}_{\!\!\boldsymbol{0}}\!\!\boldsymbol{0}}(\textit{G}_{1})\mathcal{F}_{\!q^{\bullet}_{\!\!\boldsymbol{0}}\!\!\boldsymbol{0}}(\textit{G}_{2}) + \mathcal{F}_{\!q^{\bullet}_{\!\!\boldsymbol{0}}\!\!\boldsymbol{0}}(\textit{G}_{1})\mathcal{F}_{\!\rho^{\bullet}_{\!\!\boldsymbol{0}}\!\!\boldsymbol{0}}(\textit{G}_{2}) \\ - \mathcal{F}_{\mathsf{all}}(\textit{G}_{1})\mathcal{F}_{\!\rho^{\bullet}_{\!\!\boldsymbol{0}}\!\!\boldsymbol{0}}(\textit{G}_{2}) - \mathcal{F}_{\!\rho^{\bullet}_{\!\!\boldsymbol{0}}\!\!\boldsymbol{0}}(\textit{G}_{1})\mathcal{F}_{\mathsf{all}}(\textit{G}_{2}) \end{split}$$

Towards Tutte Decompositions...

$$W(G) = W(G \setminus e) + x_e^2 W(G/e) + x_e B(G/e, G \setminus e)$$
Where $B(G_1, G_2) = \mathcal{F}_{p_1^*}(G_1) \mathcal{F}_{q_1^*}(G_2) + \mathcal{F}_{q_1^*}(G_1) \mathcal{F}_{p_1^*}(G_2)$

$$- \mathcal{F}_{all}(G_1) \mathcal{F}_{p_1^*q_1^*}(G_2) - \mathcal{F}_{p_1^*q_1^*}(G_1) \mathcal{F}_{all}(G_2)$$
 $B(G_1, G_2) = x_e B(G_1/e, G_2) + B(G_1 \setminus e, G_2)$ if $e \notin \{p, q\}$ is non-sep. in G_1 .
$$B(G_1, G_2) = (x_e + 1) B(G_1/e, G_2) \text{ if } e \notin \{p, q\} \text{ is an isthmus in } G_1.$$

$$B(G_1, G_2) = B(G_1 \setminus e, G_2) \text{ if } e \notin \{p, q\} \text{ is a loop in } G_1.$$

And similarly for G_2 .

Values on indecomposibles: $W(p \mathbb{Q}^q) = 1$, W(4 others) = 0. Values of B on pairs of indecomposibles are expressed in a symmetric 5x5 table.

An Approach to an Inductive Proof

Verify $W(G) = W^{?}(G)$ for small cases. Use induction to verify $W(G) = W^{?}(G)$ for separable G.

$$W(G) = x_e^2 W(G/e) + W(G \setminus e) + x_e B(G/e, G \setminus e)$$

= (by induction)
$$x_e^2 W^?(G/e) + W^?(G \setminus e) + x_e B(G/e, G \setminus e)$$

From a combinatorial definition (of $\sigma(A, L_1, L_2) = \sigma_G$)

$$W^{?}(G) = \sum_{A \subseteq E} x^{A} (\sum_{L} \pm x^{L})^{2} = \sum_{A \subseteq E} x^{A} (\sum_{L_{1}, L_{2} \subseteq E \setminus A} (\sigma(A, L_{1}, L_{2}) x^{L_{1}} x^{L_{2}}))$$

extract a combinatorial description of the terms with degree 1 in x_e . There are 3 kinds: x_e in x^A , x_e in x^{L_1} , x_e in x^{L_2} . This will be completed to a proof if we verify (combinatorially) that all non-separable G:

$$B(G/e, G \setminus e) = \frac{\partial W^{?}(G)}{\partial x_{e}}|_{x_{e}=0}$$

Bi-Tutte Decomposition for B

Remember, B is well defined and

$$B(G/e,G\backslash e)=\sum_{F_1,F_2: \text{ forests in } E}x^{F_1}x^{F_2}B(G/e/F_1|P,G\backslash e/F_2|P).$$

Since $B(G/e/F_1|P, G\backslash e/F_2|P) = B(G/F_1/e|P, G/F_2\backslash e|P) = B((G/F_1|P\cup e)/e, (G/F_2|P\cup e)\backslash e)$, we can use ONE $\{p,q,e\}$ -ported Tutte tree, and then at each leaf labelled by Q, append at most two branches, "Left" for Q/e and "Right" for $Q \backslash e$.

The monomials have the form $c_{A,B}x^{2A}x^{B}$. There are at most $2^{|B|}$ Left/Right pairs of new leaves $(Q_{L}/e, Q_{R} \setminus e)$; the pair contributes $B(Q_{L}/e, Q_{R} \setminus e)$ to $c_{A,B}$.

This at least helps us extract the coefficients of particular terms, and how various partitions of B contribute....