Mathematics and Multivariate Statistics

Prof. Dr. Stephan Doerfel

MADS-MMS WiSe 24/25

Powers and Logarithms Exercises

Exercise 1. (Computing Powers, Roots, Logarithms)

Solve the following problems:

- 1. 1.6^5
- $2. \log_2 2048$
- 3. $\log_3 243$
- 4. $\sqrt[4]{81}$
- 5. $\log_{\frac{8}{5}} 10.48576$

Exercise 2. (Power and Logarithm Computation Rules)

Express the following terms using $\log x$, $\log y$, and $\log z$.

Note: In situations like this, we do not specifically denote the base. It is implicitly assumed, that all logarithms have the same base.

- 1. $\log xyz$
- 2. $\log \sqrt[5]{x^4y^{-2}}$

Exercise 3. (Equations with Logarithms)

Solve for x!

- 1. $2^{2x-1} = 512$
- 2. $\log_a \frac{1}{a} = x$
- 3. $\log_9 x = -\frac{1}{2}$
- 4. $\log_3(x+25) \log_3(x-1) = 3$

Exercise 4. (Equation with Logarithms)

Solve for x, analytically and by plotting the solution in Python: $2 \log x = \log 2 + \log(3x - 4)$ For plotting the functions, use the numpy command arrange to create a list of x-values.

Exercise 5. (Epidemic Spreading Model)

Consider the following simplified model of epidemic spreading:

- ullet For a disease, the value R determines the number of persons, a sick person will infect on average.
- In every new step, each currently infected person infects R further persons and then stops being contagious.
- Assume that the disease is discovered, when 100 patients are in their contagious state.
- 1. Create a mathematical model for the above spreading process a function for the number of new infections in each step.
- 2. Plot the number of new infections with every step for different values of R.
- 3. Describe three qualitatively different behaviors depending on the value for R.
- 4. Describe the influence of small modifications to R, e.g. 1.7 vs. 1.75.