Taller Minería de datos Avanzada Profesor: Dr. Max Chacón Pacheco Ayudante: Mg. Felipe Bello Robles

Causal Protein - Signaling Networks Derived from Multiparameter Single-Cell Data Redes Bayesianas

Profesor: Dr. Max Chacón Pacheco **Ayudante:** Mg. Felipe Bello Robles

Alumnos

Ignacio Ibáñez Aliaga Joaquín Villagra Pacheco

Tabla de contenido

1. Contextualización

- a. Estudio previo basal
- b. Generación del conjunto de datos
- c. Definición de moléculas

2. Estudio realizado

- a. Método
- b. Datos entregados
- c. Red Bayesiana obtenida por aplicación del método estudiado
- d. Resultados
- e. Primera iteración de mejora del método
- f. Segunda iteración de mejora del método
- 3. ¿Aspectos a mejorar o investigar?

Estudio previo basal

- Se basó en la medición de componentes de proteínas y fosfolípidos múltiples en miles de células del sistema inmunológico humano primario.
- Perturbando estas células con intervenciones moleculares condujo a ordenar las conexiones entre componentes de la vía, en los que los métodos computacionales de la red bayesiana dilucidaron la mayoría de las relaciones de señalización tradicionalmente reportadas y prediciendo la red de causalidades, que fueron verificadas experimentalmente.

Generación del conjunto de datos

- ☐ A partir del análisis de las perturbaciones, se generó un modelo genético-proteico.
- Con el modelo anterior se generan 10.000 ejemplos que componen el conjunto de datos estudiado [Conjunto disponibilizado por el equipo de docentes del curso].
- Se miden 11 moléculas en base al estudio literario de la influencia de una molécula proteica sobre otra.

Definición de moléculas

Molécula medida	Especificidad del anticuerpo
Raf	Fosforilación en S259
Erk1 and Erk2	Fosforilación en T202 y Y204
p38	Fosforilación en T180 y Y182
Jnk	Fosforilación en T183 y Y185
Akt	Fosforilación en S473
Mek1 y Mek2	Fosforilación en S217 y S221

Molécula medida	Especificidad del anticuerpo
PKA	Detecta proteínas y péptidos que contienen un residuo phospho-Ser / Thr
PKC	Detecta fosforilación PKCx
PLCg	Fosforilación en Y783
PIP2	Detecta PIP2
PIP3	Detecta PIP3

Connection	Influence path	Citation	
PKC→Raf	PKC→Ras→Raf _{S259}	(12-16)	
PKC→Mek	PKC→Raf _{S497/S499} →Mek	(17)	
PKC→Jnk	$PKC \rightarrow \rightarrow MKKs \rightarrow Jnk$	(18)	
PKC→p38	$PKC \rightarrow \rightarrow MKKs \rightarrow p38$	(18)	
$PKC \rightarrow PKA$	$PKC \rightarrow cAMP \rightarrow PKA$	(19)	
PKA→Raf	$PKA \rightarrow Raf_{S259}$	(20)	
PKA→Mek	PKA→RafS621→Mek	(21)	
PKA→Erk	Unknown		
PKA→Jnk	$PKA \rightarrow \rightarrow MKKs \rightarrow Jnk$	(22)	
PKA→p38	$PKA \rightarrow MKKs \rightarrow p38$	(23)	
Raf→Mek	direct phosphorylation	(24-26)	
PKA→Akt	$PKA \rightarrow CaMKK \rightarrow Akt_{T308} \rightarrow Akt_{S473}$	(27-29)	
Mek→Erk	direct phosphorylation	(30)	
Plcγ→PIP2	direct hydrolysis to IP3	(31, 32)	
Plcγ→PIP3	recruitment leading to phosphorylation (reversed edge)	(33)	
PIP3→PIP2	precursor-product	(33)	
Erk→Akt	direct or indirect	(34)	

Método

El proceso que realizan es inicializar con diferentes grafos aleatorios y repetir el proceso 500 veces, asignando una mejor puntuación a aquellos modelos que están más cerca de la distribución empírica de los datos, con aquellos modelos de mejor puntuación realizar el promedio.

Datos entregados

Corresponden a 10000 simulaciones de la interacción entre las proteínas por medio del modelo presentado antes, de forma discretizada.

- 1 = bajo
- 2 = medio
- 3 = alto

Método y Resultados obtenidos

- Tp: Número de arcos idénticos en el modelo original y el generado.
- Fp: Número de arcos que no están presentes en el modelo original, pero si en el modelo generado.
- Fn: Número de arcos que están presentes en el modelo original y en el modelo generado pero con cambios de sentido.

	tp	fp	fn	BIC
НС	5	13	12	-72605,79
mmhc	6	7	11	-75357,33
mmpc	0	13	17	error

$$TP = 5$$
$$FP = 13$$

FN = 12

Primera mejora

Lang Lemma 2012

Cambio de columnas

- Akt,Erk,Jnk,Mek,P38,PIP2,PIP3,PKA,PKC,Plcg,Raf
- Raf,Mek,Plcg,PIP2,PIP3,Erk,Akt,PKA,PKC,P38,Jnk

	tp	fp	fn	BIC
НС	11	6	6	-72448.71
mmhc	9	6	8	-75009.38
mmpc	0	15	17	error

Modelo original

Modelo generado

$$TP = 11 FN = 6$$

$$FP = 6$$

Segunda mejora

Considerando que el método que se arroja los mejores resultados es HC, se continuó el estudio con su uso variando el valor el **set.seed()** quedando definido en 6 y variando el parámetro **restart=** quedando definido en 35.

Set.seed(6)					
hc(data , restart = 35)					
tp fp fn BIC					
НС	16	1	1	-72448,71	

Modelo original (BIC)
-72448.71

Modelo original

Modelo generado

$$TP = 16 FN = 1$$

$$FP = 1$$

Rendimiento del modelo

Raf	Mek	Plcg	PIP2	PIP3	Erk
71.16%	63.2%	81.4%	88.22%	47.24%	72.24%

Akt	PKA	PKC	P38	Jnk
79.98%	69.6%	49.64%	80%	65.92%

Accuracy 69.86%

Modelo Original

```
Parameters of node Plcg (multinomial distribution)

Conditional probability table:

1 2 3

0.8154 0.0820 0.1026
```

Modelo Generado

```
Parameters of node Plcg (multinomial distribution)

Conditional probability table:

1 2 3

0.8154 0.0820 0.1026
```

```
Conditional probability table:
                                                    Conditional probability table:
. . PKC = 1. Raf = 1
                        Modelo Original
                                                                         Modelo Generado
                                                    , , PKC = 1
  PKA
Mek
                                                       PKA
 1 0.769911504 0.760928962 0.996511628
                                                    Mek
 2 0.230088496 0.239071038 0.003488372
 3 0.000000000 0.000000000 0.000000000
                                                      1 0.329177057 0.668313774 0.997029703
                                                      2 0.037406484 0.323038913 0.002970297
, , PKC = 2, Raf = 1
                                                      3 0.633416459 0.008647313 0.000000000
  PKA
Mek
                                                    , , PKC = 2
 1 0.719696970 0.726674887 0.978723404
 2 0.280303030 0.273325113 0.021276596
                                                       PKA
 3 0.000000000 0.000000000 0.000000000
                                                    Mek
, , PKC = 3, Raf = 1
                                                      1 0.617647059 0.518110236 0.893939394
                                                      2 0.356209150 0.473565804 0.106060606
  PKA
                                                      3 0.026143791 0.008323960 0.0000000000
Mek
 1 0.894736842 0.803526448 0.551724138
 2 0.105263158 0.196473552 0.448275862
                                                    , PKC = 3
 3 0.000000000 0.000000000 0.000000000
, , PKC = 1, Raf = 2
                                                       PKA
                                                    Mek
  PKA
                                                      1 0.894736842 0.720000000 0.516129032
Mek
                                                      2 0.105263158 0.280000000 0.483870968
 1 0.397683398 0.353909465 1.0000000000
 2 0.119691120 0.635802469 0.0000000000
                                                      3 0.000000000 0.000000000 0.000000000
  3 0.482625483 0.010288066 0.0000000000
```

```
, , PKC = 2, Raf = 2
                          Modelo Original
  PKA
Mek
  1 0.283950617 0.261142857 1.0000000000
 2 0.716049383 0.732000000 0.0000000000
  3 0.000000000 0.006857143 0.000000000
, , PKC = 3, Raf = 2
  PKA
Mek 1
  1 0.094339623 0.0000000000
  2 0.905660377 1.000000000
  3 0.000000000 0.000000000
, , PKC = 1, Raf = 3
  PKA
Mek
 1 0.274350649 0.880299252 1.0000000000
 2 0.002435065 0.097256858 0.000000000
  3 0.723214286 0.022443890 0.0000000000
, , PKC = 2, Raf = 3
  PKA
Mek
  1 0.763440860 0.297709924 0.0000000000
 2 0.150537634 0.606870229 1.0000000000
  3 0.086021505 0.095419847 0.0000000000
```

, , PKC = 3, Raf = 3

PKA

Mek 1 2 3

CMOR/LETTIA_COSTO

Método y Resultados obtenidos

```
> cpquery(fittedbn, event = (Jnk == "LOW"),
evidence = (PKA=="HIGH" & PKC=="HIGH"))
[1] 0.2258065
> cpquery(fittedbn, event = (Jnk =="AVG"),
evidence = (PKA=="HIGH" & PKC=="HIGH"))
[1] 0.7741935
> cpquery(fittedbn, event = (PKA=="HIGH" &
PKC=="HIGH"), evidence = (Jnk == "LOW"))
[1] 0.001278072
> cpquery(fittedbn, event = (PKA=="HIGH" &
PKC=="HIGH"), evidence = (Jnk =="AVG"))
[1] 0.006329114
```


Método y Resultados obtenidos

```
>cpquery(fittedbn, event = (Erk=="LOW"), evidence =
(PKC
                                         =="HIGH"))
                                          0.0907173
[1]
> cpquery(fittedbn, event = (Erk=="HIGH"), evidence =
(PKC
                                         =="HIGH"))
                                           0.228903
[1]
> cpquery(fittedbn, event = (Erk=="AVG"), evidence =
                                         =="HIGH"))
(PKC
[1] 0.6803797
> cpquery(fittedbn, event = (PKC =="LOW"), evidence
= ((Erk =="AVG") | (Erk =="LOW") | (Erk =="HIGH")))
[1] 0.424
```


Aspectos a mejorar o investigar

- □ Dado los problemas y la complejidad del método aplicado sobre este conjunto de datos tan particular, ¿utilizamos el modelo generado por nuestro estudio o el original del Estudio basal señalado ?
- ☐ ¿Qué otro aspecto se considera relevante y no hemos tomado en cuenta?

Muchas Gracias!

