

Congruent Triangles Ex 10.2 Q2

Answer:

It is given that

BC = AD

 $BC \parallel AD$

We have to prove that the lines AB and CD bisect at O.

If we prove that $\triangle AOD \cong \triangle BOC$, then

We can prove AB and CD bisects at O.

Now in $\triangle AOD$ and $\triangle BOC$

AD = BC (Given)

 $\angle OBC = \angle OAD$ (Since $AD \parallel BC$ and AB is transversal)

And $\angle OCB = \angle ODA$ (since $AD \parallel BC$ and CD is transversal)

So by ASA congruence criterion we have,

 $\Delta AOD \cong \Delta BOC$, so

OA = OB

OD = OC

Hence AB and CD bisect each other at O.

Congruent Triangles Ex 10.2 Q3

Answer:

It is given that

BD Is bisector of $\angle B$ and CE is bisector of $\angle C$.

And $\triangle ABC$ is isosceles with AB = AC

We have to prove that

$$BD = CE$$

If will be sufficient to prove $\triangle BEC \cong \triangle CDB$ to show that BD = CE

Now in these two triangles $\Delta BEC \& \Delta CDB$

Since AB = AC, so

$$\angle B = \angle C$$

Now as BD and CE are bisector of the $\angle B$ and $\angle C$ respectively, so

$$\angle DBC = \angle ECB$$
, and

BC=BC

So by ASA congruence criterion we have

 $\Delta BEC \cong \Delta CDB$

Hence EC = BD Proved.