Example: Slater but primal optimal not achieved

Sunday, February 28, 2021 11:21 AM

From Freund

Example of a "nice" convex problem (it's a SDP, and so objective is likear, constraints are convex, feasible and closed) for which Stater's Condition holds (=> strong duality, existence of dual optimal) but which has no primal optimal (ie., the "min" needs to really be an "inf")

(P) $\underset{X \in S^{2}}{\text{min}} \langle \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, X \rangle$ s.t. $X \succcurlyeq 0$ $\langle \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, X \rangle = 2$

Does Stater hold? Only nonlinear constraint is "X > 0"

so need $\exists X > 0$. Yes, since $X = \begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix} > 0$ is feasible

Now, analyze (P): parameterize $X = \begin{bmatrix} \alpha & c \\ c & b \end{bmatrix}$ since symmetrize.

So $X = \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix}$. Let eigenvalues be λ_1, λ_2 ⇒ 2·c = 2 | c = 1

X70 means 2,, 2, 20

Recall $fr(X) = \lambda_1 + \lambda_2 = \alpha + b \Rightarrow a = b \text{ is } \Rightarrow 0 \text{ (or both)}$

Recall det(X) = $\lambda_1 \lambda_2 = ab - 1 \Rightarrow ab > 1$ $\Rightarrow both a > 0, b > 0$

So our SDP is equivalent to

a.b>1

by taking $a \rightarrow 0$, $b = \frac{1}{4} \rightarrow \infty$

<[:3] X7=2

... but a = 0 isn't feasible (since then we can't sorts fy ab > 1)

and there is no optimal solution (a, b), though optimal value p*=0

Note: this means Slater's Conditions cannot hold for the dual problem, since that would imply primal optimal solution exists

The dual is

(a) $\max_{y \in \mathbb{R}} 2 \cdot y = 1 \cdot \left[\frac{1 - y}{-y} \right] \neq 0$

 $\lambda_1, \lambda_2 = det(...) = -y^2$ $\lambda_1, \lambda_2 > 0$ by PSD but if $y \neq 0$, this means $\lambda_1, \lambda_2 < 0$ $\lambda_1, \lambda_2 > 0$... so, y = 0 is the only impossible! feasible point

- \Rightarrow (1) $d^{*}=0$, confirming $p^{*}=d^{*}$
 - @ Slater's conditions for the dual do not hold since there's no strictly feasible point.