## 285 HW1

### Charles Xu

## September 2023

#### Question 1 1

## Question 1.1

Let  $E_i$  be the event that the policy  $\pi_{\theta}$  makes a mistake and the of a mistake is bounded by  $\epsilon$  Then the probability of making at least 1 mistake over t steps is  $Pr\left[\bigcup_{i=1}^{t} E_i\right].$  Using the union bound,

$$Pr\left[\bigcup_{i=1}^{t} E_{i}\right] \leq \sum_{i=1}^{t} Pr\left[E_{i}\right] \leq t\epsilon$$

We can write the probably of being at state  $s_t$  as

$$p_{\theta}\left(s_{t}\right) = \left(1 - Pr\left[\bigcup_{i=1}^{t} E_{i}\right]\right) p_{\pi^{*}}\left(s_{t}\right) + Pr\left[\bigcup_{i=1}^{t} E_{i}\right] p_{mistake}\left(s_{t}\right)$$

where  $p_{\pi^*}(s_t)$  is the probably of being at state  $s_t$  following the optimal policy, and  $p_{mistake}$  is the probably of being at state  $s_t$  given some mistake

Following similar step as in lecture, we can rearrange and get

$$\left|p_{\theta}\left(s_{t}\right)-p_{\pi^{*}}\left(s_{t}\right)\right|=Pr\left[\bigcup_{i=1}^{t}E_{i}\right]\left|p_{mistake}\left(s_{t}\right)-p_{\pi^{*}}\left(s_{t}\right)\right|\leq2Pr\left[\bigcup_{i=1}^{t}E_{i}\right]=2t\epsilon$$

$$\Sigma_{s_t} \left| p_{\theta} \left( s_t \right) - p_{\pi^*} \left( s_t \right) \right| \le 2T\epsilon$$

#### 1.2 Question 1.2

#### 1.2.1Question 1.2a

$$J\left(\pi^{*}\right) = E_{p_{\pi^{*}}\left(s_{T}\right)}\left[r\left(s_{T}\right)\right]$$

$$J\left(\pi_{\theta}\right) = E_{p_{\pi_{\theta}}\left(s_{T}\right)}\left[r\left(s_{T}\right)\right]$$

Difference in reward:

$$J\left(\pi^{*}\right)-J\left(\pi_{\theta}\right)=E_{p_{\pi^{*}}\left(s_{T}\right)}\left[r\left(s_{T}\right)\right]-E_{p_{\pi_{\theta}}\left(s_{T}\right)}\left[r\left(s_{T}\right)\right]$$

If the reward only depends on the last state, we can use the probably  $p_{\theta}(s_T) \leq 2T\epsilon$ . So in the worst case, the policy makes a mistake along the trajectory and ends in a state resulting in no reward with probably at most  $2T\epsilon$ .

$$J(\pi^*) - J(\pi_{\theta}) \le J(\pi^*) - ((1 - (2T\epsilon))J(\pi^*) = 2T\epsilon J(\pi^*) \le 2T\epsilon R_{max}$$
$$J(\pi^*) - J(\pi_{\theta}) = \mathcal{O}(T\epsilon)$$

#### 1.2.2 Question 1.2b

For an arbitrary reward, the difference in reward is the sum of difference in reward from timestep 1 to T, given by:

$$J(\pi^*) - J(\pi_{\theta}) = \sum_{t=1}^{T} \left( E_{p_{\pi^*}(s_t)} r(s_t) - E_{p_{\pi_{\theta}}(s_t)} r(s_t) \right)$$
$$J(\pi^*) - J(\pi_{\theta}) \le \sum_{t=1}^{T} 2t \epsilon R_{max}$$
$$J(\pi^*) - J(\pi_{\theta}) \le 2T^2 \epsilon R_{max}$$
$$J(\pi^*) - J(\pi_{\theta}) = \mathcal{O}(T^2 \epsilon)$$

# 2 BC

# 2.1 Question 3.1

Table 1: BC Evaluation ResultsEnvironmentEval Average ReturnEval Std ReturnAnt-v41019190Hopper-V4214169

Table 2: Hidden size [64, 64]. 1e6 training iterations.

# 2.2 Question 3.2



Figure 1: Effect of learning rate on average return in teh Ant-v4 task. I chose to sweep the learning rate because I found that this was a big factor on how well my model trained. With the default value, the loss quickly diverges. With too small learning rate, it takes more steps to converge.

# 3 Dagger



Figure 2: Dagger average return compared to the expert and flat BC policies across iterations on the Ant-v4 task.

# 4 Discussion

- 1. I spend 6 hours on this assignment
- 2. No