UNIVERSIDAD NACIONAL DEL ALTIPLANO PUNO

FACULTAD DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

ESCUELA PROFESIONAL DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

Metodo Minimizacion con Restricciones CURSO: MÉTODOS DE OPTIMIZACIÓN

DOCENTE:

ING. Fred Torres Cruz

PRESENTADO POR:

Edilfonso Muñoz Anccori Melissa Jessica Macedo Ramos

SEMESTRE: V NIV

PUNO-PERÚ 2025

Problema Dual: Minimización con Restricciones del Problema

Consideremos un problema de minimización en lugar de maximización, como se ilustra a continuación:

Planteamiento del Problema de Minimización

Minimizar:

$$C(y_1, y_2) = 40y_1 + 72y_2 (6.23)$$

Sujeto a:

$$y_1 + 2y_2 \ge 60 \tag{6.24}$$

$$2y_1 + 3y_2 \ge 90 \tag{6.25}$$

$$y_1, y_2 \ge 0 \tag{6.26}$$

Este tipo de problemas pueden ser asociados con un problema de maximización, al que nos referimos como el problema dual.

Formación de la Matriz del Problema Dual

Nuestro primer paso para formar el problema dual es crear una matriz a partir de las restricciones y la función objetivo. La matriz correspondiente a nuestro ejemplo es:

$$A = \begin{pmatrix} 1 & 2 & 60 \\ 2 & 3 & 90 \\ 40 & 72 & 1 \end{pmatrix}$$

Es importante señalar que esta matriz A no es la matriz asociada con el tableau inicial del método Simplex. Ahora consideramos A^T , la transpuesta de la matriz A. En este caso, tenemos:

$$A^T = \begin{pmatrix} 1 & 2 & 40 \\ 2 & 3 & 72 \\ 60 & 90 & 1 \end{pmatrix}$$

Formulación del Problema Dual

Con A^T podemos ahora formular el problema dual, que será un problema de maximización. El problema dual es:

Maximizar
$$P(x_1, x_2) = 60x_1 + 90x_2$$
 (6.27)

Sujeto a:

$$x_1 + 2x_2 < 40 \tag{6.28}$$

$$2x_1 + 3x_2 \le 72 \tag{6.29}$$

$$x_1, x_2 > 0 \tag{6.30}$$

Tableau Inicial del Método Simplex

El tableau inicial del Método Simplex para este problema, utilizando las variables de holgura y_1 y y_2 , es el siguiente:

$$\begin{pmatrix}
x_1 & x_2 & y_1 & y_2 & P & Término constante \\
1 & 2 & 1 & 0 & 0 & 40 \\
2 & 3 & 0 & 1 & 0 & 72 \\
-60 & -90 & 0 & 0 & 1 & 0
\end{pmatrix}$$
(6.31)

Iteración del Método Simplex

El método Simplex nos lleva a un tableau final después de realizar las iteraciones necesarias y los pivoteos. El tableau final es:

$$\begin{pmatrix}
x_1 & x_2 & y_1 & y_2 & P & Término constante \\
0 & 1 & 1 & -32 & 0 & 24 \\
1 & 0 & -3 & 2 & 0 & 24 \\
0 & 0 & 0 & 30 & 1 & 2160
\end{pmatrix}$$
(6.32)

Cálculo de la Solución Óptima

Observamos que la última fila del tableau Simplex nos da la solución al problema de minimización. En particular, tenemos la ecuación:

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot y_1 + 30 \cdot y_2 + 1 \cdot P = 2160$$

Sustituyendo $y_2 = 30$, obtenemos:

$$30 \cdot 30 + P = 2160$$

 $900 + P = 2160$
 $P = 2160 - 900$
 $P = 2160$

Por lo tanto, el valor óptimo de la función objetivo es P=2160, y la solución al problema de minimización es $y_1=0$ y $y_2=30.$

Conclusión

El valor óptimo de la función objetivo es P=2160, lo que representa el valor mínimo de $C(y_1,y_2)=40y_1+72y_2$ bajo las restricciones dadas. La solución se alcanza cuando $y_1=0$ y $y_2=30$.