Neural Networks: III. Regularization (Part 4)

Jan Bauer

jan.bauer@dhbw-mannheim.de

21.05.19

Example (Motivation): Underfitting

Let
$$x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $y^* = 1$, $w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $w_2 = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}$

$$\Rightarrow w_1'x = w_2'x = y^*$$

Which weight is better?

Example (Motivation): Underfitting

 $\rightsquigarrow w_2$, since it is more general

Example (Motivation): Underfitting

- How to solve underfitting?
- One solution can be: Use more training data
- → underfitting is easy to fix in this case

Example (Motivation): Overfitting

Example (Motivation): Overfitting

How to solve overfitting?

 $\rightarrow \, \mathsf{Regularization}$

Regularization

- good performance training data ⇒ good performance (unseen) test data
- gap between training and test data is large when
 - models are complex
 - training data is small
- increasing number of training instances improves generalization power (→ popularity of NN in the present)
- model complexity $\nearrow \Rightarrow$ generalization \searrow

Most common regularization: \mathcal{L}_2 norm

• i.e. "elementwise" \mathcal{L}_2

$$R(W) \equiv \frac{1}{2} ||W||_2^2 \equiv \frac{1}{2} \sum_i \sum_j \sum_{N_{i-1}} \sum_{N_i} \left(W_{i,j}^{(N_{i-1},N_i)} \right)^2$$

(don't learn this by heart!)

- rather above's expression than $R(W) \equiv ||W||_2$
- \mathcal{L}_1 is trivial
- \mathcal{L}_1 is less 'hard'

Loss

To punish non-generalization, regularization is implemented in the loss:

$$L(W) \equiv L \equiv \frac{1}{D} \sum_{d=1}^{D} L_d(y_{[d]}, X, W) + \lambda \frac{1}{2} ||W||_2^2$$

where we used the \mathcal{L}_2 norm as an Example. In short:

$$L \equiv \underbrace{\hat{E}L_d}_{\text{Data loss}} + \underbrace{\lambda R(W)}_{\text{Reg. loss}}$$

Example: $||w_1||_2^2 > ||w_2||_2^2$

Question Time:

$$L \equiv \hat{\mathsf{E}} L_d + \lambda R(W), \ R(W) \equiv \frac{1}{2} ||W||_2^2$$

- What does $\lambda = 0$ mean?
- Why $||\cdot||_2^2$?
- Why $\frac{1}{2}$?
- Why is $\frac{1}{2}$ and $||\cdot||_2^2$ "allowed"?
- Is L = 0 still a thing? (Is it possible and/or meaningful?)

Recap from Part 2:

SVM Loss:

$$L_d \equiv \sum_{k \neq k^*} \max \left(0, y_{[d]}^{(k)} - y_{[d]}^{(k^*)} + \Delta \right)$$

Setting $\Delta=1$ is fine, because it is connected to (and therefore can be controlled by) λ

- \bullet the score values are connected to the weights (higher weights \rightarrow higher scores)
- if we want the correct score to be way larger than the wrong ones, we could easily increase the weights by some $\mu>0$ to get $\mu\cdot W$ as weights.
 - Example: Whiteboard
- but higher values for the weights get punished by R(W). And the larger λ , the more punishes R(W) the loss

Regularization in the bigger picture

- Aim: Reduce test error
 - increasing training error is fine
- How: Improve generalization
- How: Punish input dimensions with large influence on the score
- **How:** Extend the loss by a regularization penalty R(W)