THE UNIVERSITY OF WARWICK

SECOND YEAR EXAMINATION: SUMMER 2018

Algebra - II: Groups and Rings

Time Allowed: 2 hours

Read carefully the instructions on the answer book and make sure that the particulars required

Calculators are not needed and are not permitted in this exam.

ANSWER 4 QUESTIONS.

If you have answered more than the required 4 questions in this examination, you will only be given credit for your 4 best answers. Each question is worth 25 marks.

The numbers in the margin indicate approximately how many marks are available for each part of a

- a) Let R be a ring. Explain what it means for a pair of ideals of R to be comaximal. 1. [2]
 - b) Are the ideals (27) and (10) of $\mathbb Z$ comaximal? Justify your answer. [3]
 - c) State and prove the Chinese Remainder Theorem in the abstract form: for a ring Rand a finite collection of ideals $I_1, I_2, \dots I_n$. [9]
 - d) Let A be a commutative ring, I, J comaximal ideals in A.
 - (i) Define the power I^n of the ideal I and the product ideal IJ.
 - (ii) Prove that I^n and J^m are comaximal for all positive integers n and m. [2] (iii) Prove that $I \cap J = IJ$. [5]
 - [4]
- 2. There exists a group G of order 20, generated by two elements x and y such that $x^4 = y^5 = 1$ and $xyx^{-1} = y^2$. In this problem you will need to answer questions about
 - a) Prove that every element of G can be uniquely written as y^bx^a with $a\in\mathbb{Z}_4,b\in\mathbb{Z}_5$. [4]
 - b) Compute the multiplication table of G. (Hint: dont fill a 20×20 table, do a 4×4 table instead with $y^b, y^bx, y^bx^2, y^bx^3$.)
 - c) Compute the conjugation table for G: keep the same columns as for the multiplica-[5] tion table and use two rows for conjugations by x and y.
 - d) Compute the conjugacy classes, the centraliser of an element in each conjugacy class, [5] and the centre of G. Justify your answer. [6]
 - e) Is G isomorphic to D_{20} ? Justify your answer. [5]

2	a) Define the order of an element in a group.	[3]
3.	b) We consider the additive group of the rational numbers \mathbb{Q}^+ . The integers \mathbb{Z} form a subgroup. Prove that the quotient group $G = \mathbb{Q}^+/\mathbb{Z}$ is an infinite group.	[4]
	$\mathcal{L}_{\alpha}: \operatorname{dor} x = \frac{17}{6} + \mathbb{Z} \in G$. Compute the order of x, explaining what you are doing.	[3]
	 c) Consider x = a/b + Z ∈ G where a, b are some integers, b ≠ 0. Compute the order of y (in terms of a an b), explaining what you are doing. 	[5]
	From what you have already proved it follows that G is an infinite group, every element of which has a finite order.	
	e) Prove that any finite number of elements of G are contained in a cyclic subgroup.	[5]
	f) Prove that any subgroup of G generated by finitely many elements is cyclic.	[5]
4.	a) Explain what is meant by a domain, a principal ideal domain (PID) and a unique factorisation domain (UFD).	[4]
	b) Let $A = \mathbb{C}[z^6, z^9, z^{20}]$ be the McNuggets ring.	
	4 a domain? Justify your answer.	[2]
	1 A a unique factorisation domain (UFD)? Justify your answer.	[2]
	(:::) Is A a principal ideal domain (PID)? Justity your answer.	[2]
	c) State and prove Eisenstein's Criterion for the irreducibility of a polynomial.	[8]
	d) Is the polynomial $f(x,y) = x^2y^4 + 6x^3y^3 - 12$ irreducible in $\mathbb{Z}[x,y]$? Justify your	U
	e) Is the polynomial $h(x,y) = xy^4 + x^3y^3 - 12$ irreducible in $\mathbb{Q}[x,y]$? Justify your answer.	[4]
5	5. Compute the following. You will receive the full mark for a correct answer without any explanation. However, if your answer is incorrect, a partial credit will be given only if a satisfactory explanation is given so that I can see that it is just a computational mistake.	
	a) The smallest natural number that is 6 modulo 7, 8 modulo 11 and 5 modulo 13.	[5]
	The maximal possible order of an element in the symmetric group S_7 .	[5]
	c) The number of distinct group homomorphisms from the cyclic group C_2 to the dihedral group D_{2018} of symmetries of a regular 1009-gon.	[5]
	d) The number of elements in the ring $M_2\Big(\mathbb{Z}[i]/(1+3i)\Big)$.	[5]
	· · · · · · · · · · · · · · · · · · ·	[5]

2

END