LOGIC PROGRAMMING

Well Founded Semantics

Properties of SMs

- □ Stable models are minimal models
- Stable models are supported

Importance of Stable Models

- Stable Models were an important contribution:
 - Introduced the notion of default negation (versus negation as failure)
 - Allowed important connections to NMR. Started the area of LP&NMR
 - Allowed for a better understanding of the use of LPs in Knowledge Representation
- It is considered as THE semantics of LPs by a significant part of the community.
- □ However...

Relevance

- □ A directly depends on B if B occurs in the body of some rule with head A. A depends on B if A directly depends on B or there is a C such that A directly depends on C and C depends on B.
- □ A semantics Sem is relevant iff for every program P, $A \in Sem(P)$ iff $A \in Sem(Rel_{\Delta}(P))$.
 - where Rel_A (P) contains all rules of P whose head is A or some B on which A depends on.
- This property is required to allow for the usual topdown execution of logic programs.

Cumulativity

- □ A semantics Sem is cumulative iff for every program P, if $A \in Sem(P)$ and $B \in Sem(P)$ then $B \in Sem(P \cup \{A\})$
 - □ i.e. all derived atoms can be added as facts without changing the program's meaning.
- This property is very important for implementations.
 - Without it, tabling methods cannot be used.

Problems with Stable Models

- The stable models semantics doesn't assign meaning to every program
 - E.g. program $\{a \leftarrow not a\}$ has no stable models.
- The stable models semantics is not cummulative nor relevant. Let P be

```
a—not b. b—not a. c—not a. c—not c. whose unique stable model is \{b,c\}.
```

- Non-cumulative: b is not true in $P \cup \{c\}$.
 - \blacksquare PU{c} has 2 stable models: {b,c} and {a,c}, so only c is true.
- Non-relevant: b is not true in Rel_b(P).
 - the rules in $Rel_b(P)$ are a \leftarrow not b. and b \leftarrow not a.
 - Rel_b(P) has 2 stable models: {b} and {a}, so b and a are not true.

Problems with Stable Models

- The computation of Stable Models is NP-Complete (for normal logic programs)
- The stable models semantics (taken as the intersection of all stable modes) is non-supported.
 - Let P be $a \leftarrow not b$ $b \leftarrow not a$. $c \leftarrow a$. $c \leftarrow b$.
 - P has two stable models: {a,c} and {b,c}, so c is true in P, even though there is no rule whose body is true in P (neither a nor b are true in P).

ASP vs. Prolog like programming

- ASP is adequate for:
 - NP-complete problems
 - situations where the whole program is relevant for the problem at hand
- But if the problem is polynomial, why using such a complex system?
- If only part of the program is relevant for the desired query, why computing the entire model?

ASP vs. Prolog like programming

- For such problems, top-down, goal-driven mechanisms seem more adequate
- This type of mechanisms is used by Prolog
 - Solutions come in variable substitutions rather than in complete models
 - The system is activated by queries
 - No global analysis is made
 - only the relevant part of the program is visited

Problems with Prolog

- Prolog declarative semantics is the completion
 - All the problems of completion are inherited by Prolog
- According to SLDNF, termination is not guaranteed
 - even for Datalog programs (i.e. programs with finite ground version)
- A proper semantics is still needed

Well Founded Semantics

- Defined in [GRS90], generalizes SMs to 3-valued models.
- Note that
 - lacksquare there are programs with no fixpoints of $\Gamma_{ t P}$
 - lacksquare but all programs have fixpoints of $\Gamma_{\!\scriptscriptstyle P}{}^2$
 - \blacksquare recall that $\Gamma_{P}(I) = least(P/I)$
 - \square $P = \{a \leftarrow not a\}$
 - $\Gamma_{P}(\{a\})=\{\}\}$ and $\Gamma_{P}(\{\})=\{a\}$ so there are no Stable Models
 - But $\Gamma_{P}^{2}(\{a\}) = \{a\} \text{ and } \Gamma_{P}^{2}(\{\}) = \{\}$

Partial Stable Models

- □ A three-valued interpretation T ∪ not F is a Partial Stable Model if:
 - $\blacksquare T = \Gamma_P^2(T)$
 - \blacksquare $\mathsf{T}\subseteq\Gamma_{\mathsf{P}}(\mathsf{T})$
 - \blacksquare F=H_P- Γ_{P} (T)

The 2nd condition guarantees that no atom is both true and false: $T \cup F = \emptyset$

- □ P={a← not a}
 - has a unique PSM: {}
- \square $P=\{a\leftarrow not\ b.$ $b\leftarrow not\ a.$ $c\leftarrow not\ a.$ $c\leftarrow not\ c.\}$
 - □ Has three PSMs: {}, {a, not b} and {c, b, not a}
 - The last one ({c, b, not a}) corresponds to the unique SM.

Well Founded Model

- □ Let P be a program. The Well Founded Model of P is the least Partial Stable Model (wrt. knowledge ordering i.e. ⊆).
- □ Given a program P, consider the following transfinite sequence:
 - $T_0 = \{\}$

 - $\Box T_{\delta} = \bigcup_{\alpha < \delta} T_{\alpha}$
 - ...and let T be its least fixpoint.
- □ I = T \cup not (H_P- Γ_P (T)) is the Well-Founded Model of P.

Well Founded Semantics

- □ Let I = T ∪ not F be the Well-Founded Model of P. Then, according to the well founded semantics:
 - \square A is true in P iff A \subseteq I
 - \blacksquare A is false in P iff not A \subseteq I (i.e. if A \subseteq F)
 - \blacksquare A is undefined in P otherwise (i.e. A \notin I and not A \notin I),

Properties of the Well Founded Semantics

- Every program is assigned a meaning
- Every PSM extends one SM
 - If WFM is total it coincides with the single SM
- It is sound wrt to the SMs semantics
 - □ If P has stable models and A is true (resp. false) in the WFM, it is also true (resp. false) in all SMs
- WFM coincides with the perfect model in locally stratified programs
 - and with the least model in definite programs

Properties of the Well Founded Semantics

- The WFM is supported
- WFS is cumulative and relevant
- Its computation is polynomial
 - on the number of instantiated rules of P
- There are top-down proof-procedures, and sound implementations
 - mentioned in the sequel

Logic Programming and Default Theories

 \Box Let Δ_{P} be the default theory obtained by transforming each rule of P

$$H \leftarrow B_1, ..., B_n$$
, not $C_1, ...,$ not C_m

into the default

$$B_1,...,B_n : \neg C_1,..., \neg C_m / H$$

- \blacksquare There is a one-to-one correspondence between the Stable Models of P and the Default Extensions of $\Delta_{\rm P}$
- $\hfill\Box$ If LEWFM(P) then L belongs to every Default Extension of Δ_{\hfill}

Logic Programming and Default Theories

- LPs can be viewed as sets of default rules
- Default literals are the justification:
 - can be assumed if it is consistent to do so
 - are withdrawn if inconsistent
- □ In this reading of LPs, — is not viewed as implication. Instead, LP rules are viewed as inference rules.

Logic Programming and Autoepistemic Logic

 Let T_P be the AEL theory obtained by transforming each rule of P

$$H \leftarrow A_1,...,A_n$$
, not $C_1,...$, not C_m

into the sentence

$$A_1 \wedge ... \wedge A_n \wedge \neg BC_1 \wedge ... \wedge \neg BC_m \supset H$$

- \Box There is a one-to-one correspondence between the Stable Models of P and the (Moore) Expansions of $\Delta_{\rm P}$
- □ If L∈WFM(P) then L belongs to every (Moore) Expansion of $\Delta_{\rm P}$

Logic Programming and Autoepistemic Logic

- LPs can be viewed as theories that refer to their own knowledge
- Default negation not A is interpreted as "A is not believed" (or "A is not known")
- □ In this reading of LPs, is viewed as material implication.

Stable Models Problems Revisited

- The previously mentioned problems of the Stable Models are not necessarily problematic
 - Relevance is not desired when analysing global problems
 - If the SMs correspond to the solutions of a problem, programs without SMs simply correspond to problems without solutions.
 - Some problems are in NP. So using an NP language is not a problem.
 - In case of NP problems, the efficient gains from cumulativity are not really an issue.

Stable Models vs Well Founded Model

- Yield different forms of programming and of representing knowledge, for usage with different purposes
- Well Founded Model:
 - Closer to that of Prolog
 - Local reasoning (and relevance) are important
 - When efficiency is an issue even at the cost of expressivity
- Stable Models
 - For dealing with NP-complete problems
 - Global reasoning
 - Different form of programming, not close to that of Prolog
 - Solutions are models, rather than answer/substitutions

Adding Strong Negation

- In Normal LPs all the negative information is implicit.
- Though that's desired in some cases (e.g. the database with flight connections), sometimes an explicit form of negation, is needed for Knowledge Representation.
- For example, we may want to say that penguins don't fly using the rule:

$$no_fly(X) \leftarrow penguin(X)$$

But if we also have a rule:

$$fly(X) \leftarrow bird(X)$$

- \square We do not have any logical relation between no_fly(X) and fly(X).
- □ We would like to have ¬ (strong negation) to be able to write:

$$\neg fly(X) \leftarrow penguin(X)$$

...and deal with it in a way that fly(X) and ¬fly(X) are related (and inconsistent).

Adding Strong Negation

- Also, in rule bodies one form of negation doesn't seem to be enough...
- For example, it is fine to define innocence in terms of guilt as follows:

$$innocent(X) \leftarrow not guilty(X)$$

But what if we want to define guilt in terms of innocence?
The following rule doesn't seem appropriate:

$$guilty(X) \leftarrow not innocent(X)$$

We should require that someone is (really) not innocent, instead of not innocent by default. The rule should be something like:

$$guilty(X) \leftarrow \neg innocent(X)$$

Adding Strong Negation

- □ The difference between not p and ¬p is essential whenever information about p cannot be assumed.
 - Open vs Closed World Assumption
- ¬ extends the relation to other NMR formalisms:
 - Can represent default rules with negative conclusions and pre-requisites, and positive justifications
 - Can represent normal default rules

Adding Strong Negation to Stable Models

- Historicaly, the addition of Strong Negation to the Stable Model Semantics coincided with the change in name from Stable Models to Answer-Sets.
- The simpler way to extend the Stable Models semantics is to:
 - \blacksquare Extend the herbrand base H_P with the set $\{\neg A \mid A \subseteq H_P\}$
 - Extend every program with the ICs, for every A∈H_P

$$\leftarrow \neg A, A.$$

■ Treat ¬A and A as if they are both unrelated atoms.

Answer-Sets and Default Theories

 $\hfill\Box$ Let $\Delta_{\rm P}$ be the default theory obtained by transforming each rule of P

$$L_0 \leftarrow L_1, ..., L_m$$
, not $L_{m+1}, ...,$ not L_n

into the default

$$L_1,\ldots,L_m:\neg L_{m+1},\ldots,\neg L_n/L_0$$

where $\neg \neg A$ is (always) replaced by A.

 \Box There is a one-to-one correspondence between the Answer-Sets of P and the Default Extensions of Δ_{P}

Answer-Sets and Autoepistemic Logic

 Let T_P be the AEL theory obtained by transforming each rule of P

$$L_0 \leftarrow L_1, ..., L_m$$
, not $L_{m+1}, ...,$ not L_n

into the sentence

$$L_1 \wedge BL_1 \dots \wedge L_m \wedge BL_m \wedge \neg BL_{m+1} \wedge \dots \wedge \neg BL_n \supset (L_0 \wedge BL_0)$$

 \Box There is a one-to-one correspondence between the Answer-Sets of P and the (Moore) Expansions of $\Delta_{\rm P}$

Adding Strong Negation to Well Founded Semantics

Generalising the WFS the same way is not appropriate.
Consider for example the program:

```
pacifist(X) \leftarrow not hawk(X).
hawk(X) \leftarrow not pacifist(X).
¬pacifist(kissinger)
```

- □ Using the same method, the WFS would be {¬pacifist(kissinger)}. Despite the fact that we are explicitly stating that kissinger is not a pacifist, we cannot conclude that he is a hawk!
- \square Coherence needs to be imposed i.e. $\neg L \subseteq T \Rightarrow L \subseteq F$
 - \square For L = A or L = \neg L and $\neg \neg$ A=A

WFSX

- □ The semi-normal version of P, P_S, is obtained by adding not ¬L to every rule of P with head L.
 - So, pacifist(X) \leftarrow not hawk(X). becomes pacifist(X) \leftarrow not hawk(X), not \neg pacifist(X).
- □ A three-valued interpretation T ∪ not F is a Partial Stable Model of P:
 - $\blacksquare T = \Gamma_{P} \Gamma_{P_{S}}(T)$
 - \square $\mathsf{T} \subseteq \Gamma_{\mathsf{P}_{\mathsf{S}}}(\mathsf{T})$
 - $\blacksquare F = H_P \Gamma_{P_S}(T)$
- □ Let P be a program. The WFSX model of P is the least Partial Stable Model (wrt. knowledge ordering i.e. \subseteq).

WFSX Example

```
P:

pacifist(X)←not hawk(X).

hawk(X)←not pacifist(X).

¬pacifist(k).

P<sub>S</sub>:

pacifist(X)←not hawk(X), not ¬pacifist(X).

hawk(X)←not pacifist(X), not ¬ hawk(X).

¬pacifist(k)← not pacifist(k).
```

 $\{\neg pacifist(k), hawk(k), not pacifist(k), not \neg hawk(k), not \neg pacifist(b), not \neg hawk(b)\}$

The well founded model is:

Assume we have another person b. $T_0 = \{\}$ $\Gamma_{P_S}(T_0) = \{\neg p(k), p(k), h(k), p(b), h(b)\}$ $T_1 = \Gamma_P \Gamma_{P_S}(T_0) = \{\neg p(k)\}$ $\Gamma_{P_S}(T_1) = \{\neg p(k), h(k), p(b), h(b)\}$ $T_2 = \Gamma_P \Gamma_{P_S}(T_1) = \{\neg p(k), h(k)\}$ $\Gamma_{P_S}(T_2) = \{\neg p(k), h(k), p(b), h(b)\}$ $T_3 = \Gamma_P \Gamma_{P_S}(T_2) = \{\neg p(k), h(k)\}$ $T_3 = T_2$

Properties of WFSX

- Complies with the coherence principle
- Coincides with WFS for normal programs
- If WFSX is total it coincides with the unique answerset
- It is sound wrt answer-sets
- It is supported, cumulative, and relevant
- Its computation is polynomial
- It has sound implementations

Inconsistent Programs

Some programs have no WFSX model.

```
a \leftarrow \neg a \leftarrow
```

- Three alternatives:
- Explosive approach: everything follows from contradiction
 - like in First Order Logic
 - gives no information in the presence of contradiction
- Belief revision approach: remove contradiction by revising P
 - computationally expensive
- Paraconsistent approach: isolate contradiction
 - efficient
 - allows to reason about the non-contradictory part

WFSXp

- □ A three-valued interpretation T \cup not F is a Paraconsistent Partial Stable Model of P (the condition T $\subseteq \Gamma_{P_S}$ (T) is dropped)
 - $\blacksquare T = \Gamma_P \Gamma_{P_S}(T)$
 - $\blacksquare F = H_P \Gamma_{P_S}(T)$
- Let P be a program. The WFSXp model of P is the least Paraconsistent Partial Stable Model (wrt. knowledge ordering i.e. ⊆).

WFSXp Example

```
c←not b.
b←a.
d←not e.
a←.
¬a←.
P<sub>s</sub>:
c←not b, not ¬c.
b \leftarrow a, not \neg b.
d←not e, not ¬d.
a←not ¬a.
¬a←not a.
```

P:

$$\begin{split} &T_0 = \{\} \\ &\Gamma_{P_S}(T_0) = \{\neg a, a, b, c, d\} \\ &T_1 = \Gamma_P \Gamma_{P_S}(T_0) = \{\neg a, a, b, d\} \\ &\Gamma_{P_S}(T_1) = \{d\} \\ &T_2 = \Gamma_P \Gamma_{P_S}(T_1) = \{\neg a, a, b, c, d\} \\ &\Gamma_{P_S}(T_2) = \{d\} \\ &T_3 = \Gamma_P \Gamma_{P_S}(T_2) = \{\neg a, a, b, c, d\} \\ &T_3 = T_2 \end{split}$$
 The well founded model is
$$\{\neg a, a, b, c, d, \text{not } a, \text{not } \neg a, \text{not } b, \text{not } \neg b, \text{not } c, \text{not } \neg d, \text{not } e\} \end{split}$$

House M.D.

- A patient arrives with: sudden epigastric pain; abdominal tenderness; signs of peritoneal irritation
- The rules for diagnosing are:
- if he has sudden epigastric pain abdominal tenderness, and signs of peritoneal irritation, then he has perforation of a peptic ulcer or an acute pancreatitis
- the former requires major surgery, the latter therapeutic treatment
- if he has high amylase levels, then a perforation of a peptic ulcer can be exonerated
- if he has Jobert's manifestation, then pancreatitis can be exonerated
- In both situations, the patient should not be nourished, but should take H2 antagonists

House M.D.

```
perforation ← pain, abd-tender, per-irrit, not high-amylase
pancreat ← pain, abd-tender, per-irrit, not jobert
\negnourish \leftarrow perforation
                                         h2-ant ← perforation
\negnourish \leftarrow pancreat
                                         h2-ant ← pancreat
surgery \leftarrow perforation
                                         anesthesia ← surgery
¬surgery ← pancreat
                                         ¬high-amylase.
pain.
                    per-irrit.
abd-tender.
                    ¬iobert.
   The WFSXp model is:
   {pain, not ¬pain, abd-tender, not ¬abd-tender, per-irrit, not ¬per-irrit, ¬high-am,
   not high-am, ¬jobert, not jobert, perforation, not ¬perforation, pancreat, not
   ¬pancreat, ¬nourish, not nourish, h2-ant, not ¬h2-ant, surgery, ¬surgery, not
   surgery, not ¬surgery, anesthesia, not anesthesia, not ¬anesthesia}
```

House M.D.

The WFSXp model is:

{pain, not ¬pain, abd-tender, not ¬abd-tender, per-irrit, not ¬per-irrit, ¬high-am, not high-am, ¬jobert, not jobert, perforation, not ¬perforation, pancreat, not ¬pancreat, ¬nourish, not nourish, h2-ant, not ¬h2-ant, surgery, ¬surgery, not surgery, not ¬surgery, anesthesia, not anesthesia, not ¬anesthesia}

- The symptoms are derived and non-contradictory
- Both perforation and pancreatitis are concluded
- □ He should not be fed (¬nourish), but should take H2 antagonists
- The information about surgery is contradictory
- Anesthesia, though not explicitly contradictory (¬anesthesia doesn't belong to WFM) relies on contradiction (both anesthesia and not anesthesia belong to WFM)

Representing Knowledge with WFSX

A methodology for KR

- WFSXp provides mechanisms for representing usual KR problems:
 - logic language
 - non-monotonic mechanisms for defaults
 - forms of explicitly representing negation
 - paraconsistency handling
 - ways of dealing with undefinedness
- In what follows, we propose a methodology for KR using WFSXp

Representation method (1)

Definite rules If A then B:

- \square B \leftarrow A
 - penguins are birds: $bird(X) \leftarrow penguin(X)$

Default rules Normally if A then B:

- B ← A, rule_name, not ¬B
 rule_name ← not ¬rule_name
 - birds normally fly: $fly(X) \leftarrow bird(X), bf(X), not \neg fly(X)$ $bf(X) \leftarrow not \neg bf(X)$

Representation method (2)

Exception to default rules Under conditions COND do not apply rule rule named rule_name:

- □ ¬rule_name ← COND
 - Penguins are an exception to the birds-fly rule $\neg bf(X) \leftarrow penguin(X)$

Preference rules Under conditions COND prefer rule RULE⁺ (named rule_pref) to RULE⁻: named rule_unpref)

- □ ¬rule_unpref ← COND, rule_pref
 - for penguins, prefer the penguins-don' t-fly to the birds-fly rule: $\neg bf(X) \leftarrow penguin(X), pdf(X)$

Representation method (3)

Hypotethical rules "If A then B" may or not apply:

- B ← A, rule_name, not ¬B
 rule_name ← not ¬rule_name
 ¬rule_name ← not rule_name
 - quakers might be pacifists:

```
pacifist(X) \leftarrow quaker(X), qp(X), not \neg pacifist(X)

qp(X) \leftarrow not \neg qp(X)

\neg qp(X) \leftarrow not qp(X)
```

For a quaker, there is a PSM with pacifist, another with not pacifist. In the WFM pacifist is undefined

Taxonomy example

- The taxonomy
 - Mammals are animals
 - Bats are mammals
 - Birds are animals
 - Penguins are birds
 - Dead animals are animals
- The preferences
 - Dead bats don't fly though bats do
 - Dead birds don't fly though birds do
 - Dracula is an exception to the above
 - In general, more specific information is preferred

- Normally animals don't fly
- Normally bats fly
- Normally birds fly
- Normally penguins don't fly
- Normally dead animals don't fly
- The elements
 - Pluto is a mammal
 - Joe is a penguin
 - Tweety is a bird
 - Dracula is a dead bat

The taxonomy

Taxonomy representation

Taxonomy animal(X) \leftarrow mammal(X) mammal(X) \leftarrow bat(X) animal(X) \leftarrow bird(X) bird(X) \leftarrow penguin(X) deadAn(X) \leftarrow dead(X)

```
Default rules

¬flies(X) ← animal(X), adf(X), not flies(X)

adf(X) ← not ¬adf(X)

flies(X) ← bat(X), btf(X), not ¬flies(X)

btf(X) ← not ¬btf(X)

flies(X) ← bird(X), bf(X), not ¬flies(X)

bf(X) ← not ¬bf(X)

¬flies(X) ← penguin(X), pdf(X), not flies(X)

pdf(X) ← not ¬pdf(X)

¬flies(X) ← deadAn(X), ddf(X), not flies(X)

ddf(X) ← not ¬ddf(X)
```

```
Explicit preferences
\neg btf(X) \leftarrow deadAn(X), bat(X), r1(X)
r1(X) \leftarrow not \neg r1(X)
\neg btf(X) \leftarrow deadAn(X), bird(X), r2(X)
r2(X) \leftarrow not \neg r2(X)
¬r2(dracula)
¬r1(dracula)
Implicit preferences
\neg adf(X) \leftarrow bat(X), btf(X)
\neg adf(X) \leftarrow bird(X), bf(X)
\neg bf(X) \leftarrow penguin(X), pdf(X)
```

```
Facts
mammal(pluto).
bird(tweety). deadAn(dracula).
penguin(joe). bat(dracula).
```

Taxonomy semantics

	joe	dracula	pluto	tweety
deadAn	not	\checkmark	not	not
bat	not	√	not	not
penguin	√	not	not	not
mammal	not	\checkmark	√	not
bird	√	not	not	\checkmark
animal	√	\checkmark	√	\checkmark
adf	√	٦	√	٦
btf	√	Г	√	\checkmark
bf	Γ	√	√	\checkmark
pdf	√	√	√	\checkmark
ddf	√	Г	√	\checkmark
r1	√	Г	√	√
r2	√	٦	√	√
flies	Г	√	Г	√