Лекция 1: Аналитическая геометрия

1 Векторная алгебра

Определение 1. Вектором называется отрезок, с выбранном на нём направлением.

Определение 2. Два вектора называется колинеарными если они лежат на одной прямой или на параллельных прямых.

Определение 3. Три вектора называются компланарными если они лежат на прямых, параллельных некоторой плоскости.

Определение 4. Вектор определяется точкой начала и точкой конца.

 \overrightarrow{AB} .

Определение 5. Вектор, у которого точка начала фиксирована, называется связанным.

Определение 6. Вектор, у которого точка начала не фиксированная, называется свободным.

Замечание. Вектор характеризуется длиной и направлением.

Определение 7. Два вектора называются сонаправленными, если они коллинеарны и имеют одно и то же направление.

Определение 8. Два вектора называются противоположно направленными если они коллинеарны и имеют противоположные направления.

Определение 9. Два векторы называются равными, если:

Они коллинеарны и сонаправлены Их длины равны

Определение 10. Вектор, длина которого равна 1 называется единичным вектором или ортом.

 $\vec{e} \quad |\vec{e}| = 1.$

Определение 11. Вектор, длина которого равна нулю (начало и конец совпадают) называется нулевым вектором. Направление нулевого

вектора произвольное. Нулевой вектор коллинеарен всем векторам.

$$|\vec{0}| = 0.$$

Определение 12. Суммой векторов \vec{a} и \vec{b} называется \vec{c} , который получается по правилу треугольника:

Конец вектора \vec{a} совмещают с началом вектора \vec{b} Тогда вектор, идущий из начала вектора \vec{a} к концу вектора \vec{b} и будет вектором \vec{c} .

Определение 13. Суммой векторов \vec{a} и \vec{b} называется вектор \vec{c} , который получается по правилу параллелограмма следующим образом:

Совмещают начала векторов \vec{a} и \vec{b}

Достраивают фигуры до параллелограмма

Тогда вектор, идущий из начала вектором по диагонали параллограмма и будет исходным вектором \vec{c} .

Замечание. Если два вектора коллинеарны, то их можно сложить только правилу треугольника.

Определение 14. Произведение вектора \vec{a} на число δ называется вектора \vec{c} , который будет коллинеарен вектору \vec{a} , длина которого будет или меньше в $|\lambda|$ раз и будет сонаправлен, если $\delta>0$, и противонаправлен, если $\lambda<0$.

1.1 Свойства векторов

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

$$\forall \vec{a} \exists \vec{0} \qquad \vec{a} + \vec{0} = \vec{a}$$

$$\forall \vec{a} \exists \vec{b} \qquad \vec{a} + \vec{b} = \vec{0} \Rightarrow -\vec{b} = \vec{a}$$

$$\lambda \left(\vec{a} + \vec{b} \right) = \lambda \vec{a} + \lambda \vec{b}$$

$$\lambda (p\vec{a}) = (\lambda p) \vec{a}$$

$$(\lambda + q) \vec{a} = \lambda \vec{a} + q\vec{a}$$

Определение 15. Разностью векторов и называется вектор, который получается следующим образом:

Совмещаем начала вектооров и

Вектор, который идёт из конца вектора $\,$ в начало вектора $\,$ и есть искомый вектор $\,$.

1.2 Ортогональная проекция вектора на направление

Определение 16. Основание точки O_a перпендикуляра, опущенного их точки A на прямую L называется ортогональной проекцией точки A на прямую L.

Определение 17. Пусть имеем вектор \overrightarrow{AB} . Пусть O_a - ортогональная проекция начала вектора \overrightarrow{AB} на прямую L, а O_b - это ортогональная проекция конца вектора \overrightarrow{AB} на прямую L. Тогда вектор $\overrightarrow{O_aO_b}$, соединяющий проекции и лежащий на прямой L, называется ортогональной проекцией вектора \overrightarrow{AB} на прямую L.

Определение 18. Осью называется прямая с выбранным на ней направлением.

Если на прямой L выбрано направление, то длину $\overrightarrow{O_aO_b}$ берут со знаком +, если направление вектора совпадает с выбранным направлением L, и со знаком -, если нет.

Определение 19. Длину вектора $\overrightarrow{O_aO_b}$ со знаком, определяющим направление этого вектора, называют ортогональной проекцией вектора \overrightarrow{AB} на ось \overrightarrow{l} .

$$np_{\vec{l}}\overrightarrow{AB}$$
.

Определение 20. Ортогональную проекцию вектора на ненулевой вектор \vec{l} называеют ортогональной проекцией этого вектора на направление вектора \vec{l} .

Замечание. Важно! Ортогональная проекция вектора на направление - это **число**!

Теорема 1. Ортогональная проекция вектора \vec{a} на направление ненулевого вектора \vec{l} равна произведению длины вектора \vec{l} на $\cos\phi = \hat{\vec{al}}$

Теорема 2. Ортогональная проекция суммы векторов \vec{a} и \vec{b} на направление ненулевого вектора \vec{l} равна сумме ортогональных проекций вектора \vec{a} и \vec{b} на направление ненулевого вектора \vec{l} .

$$np_{\vec{l}}\left(\vec{a}+\vec{b}\right) = np_{\vec{l}}\vec{a} + np_{\vec{l}}\vec{b}.$$

Теорема 3. Ортогональная проекция вектора произведения \vec{a} и числа λ на направление ненулевого вектора \vec{l} равна произведению числа λ на

ортогональную проекцию вектора \vec{a} .

$$np_{\vec{l}}\lambda\vec{a} = \lambda np_{\vec{l}}\vec{a}.$$