

FACULTÉ DES SCIENCES ET DE GÉNIE
DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE

GEL-19962 Analyse de signaux Jérôme Genest

Examen Final

Date: Lundi le 15 décembre 2008

Durée: de 8h30 à 10h20

Salle: PLT-2351

Cet examen vaut 45% de la note finale.

Remarques:

- i) L'utilisation d'une calculatrice est permise.
- ii) Aucun document n'est permis durant l'examen.
- iii) Seule la liste des formules fournie à la fin du questionnaire est permise.
- iv) Votre carte d'identité doit être placée sur votre bureau en conformité avec le règlement de la Faculté.

Problème 1 (15 points)

- a) Calculez la transformation de Fourier du signal f(t) illustrée au graphique ci-haut.
- b) Est-ce que f(t) est à énergie ou à puissance finie, pour quoi ?
- c) Quel est le taux de décroissance asymptotique des lobes de $F(\omega)$?

Problème 2 (15 points)

On échantillonne le signal $x(t) = \cos(\omega_o t)$ avec une fréquence d'échantillonage telle que $\omega_s = 4\omega_o$.

- a) Tracez le signal x(t).
- b) Tracez sur le même graphique la version échantillonnée du signal que nous nommerons $x_e(t)$.
- c) Tracez le spectre $X(\omega)$ de x(t).
- d) Sur un autre graphique, tracez la transformation de Fourier $X_e(\omega)$ de $x_e(t)$.
- e) En supposant que le signal x(t) est mesuré à travers une fenêtre d'observation rectangulaire d'une durée $400T_s$, tracez les spectre du signal mesuré $x_m(t) = x(t)Rect(t/400T_s)$ et du spectre correspondant au signal mesuré et échantillonné $x_{me}(t) = x_e(t)Rect(t/400T_s)$.
- f) On désire reconstruire le signal $x_e(t)$ a l'aide d'un bloqueur d'ordre zéro causal. Tracez le signal reconstruit $x_r(t)$. Que pouvez vous dire au sujet de la phase du signal reconstruit par rapport à celle du signal initial

Problème 3 (15 points)

Modulation d'intensité dans les systèmes de télécommunications optiques

Un laser émet un champ électromagnétique $E(t) = A(t) \cos(\omega_o t)$. En changeant le courant $i_{tx}(t)$ envoyé au laser on module la quatité de lumière émise via un changement de l'amplitude du champ tel que $A(t) = \sqrt{i_{tx}(t)}$.

Comme la fréquence $f_o = \omega_o/2\pi = 100$ THz est trop rapide pour être suivie par l'électronique, le photodétecteur produit plutôt un courant proportionnel à l'intensité du champ $i_{rx}(t) = RI(t)$ où R est la responsivité du détecteur et l'intensité est $I(t) = \frac{|E(t)|^2}{\eta}$ en $[W/m^2]$. (η est l'impédance du milieu de propagation de l'onde).

a) Tracez le signal E(t) transmis dans la fibre et son spectre $E(\omega)$ (bien indiquer la position et l'amplitude des impulsions) si le signal $i_{tx}(t)$ est une onde carrée telle que:

- b) Où s'effectue le redressement pour la détection d'enveloppe?
- c) Calculez le spectre obtenu pour $i_{rx}(t)$ à la sortie du détecteur en fonction du spectre de $i_{tx}(t)$. Conservez l'expression générale, i.e ne pas remplacer pour une forme particulière de $i_{tx}(t)$.
- d) Si le détecteur n'est pas assez rapide pour suivre la porteuse à ω_o , qu'advient-il du terme à $2\omega_o$?

Pour occuper moins de bande, au lieu de moduler le courant du laser avec une onde carrée, nous utiliserons plutôt $i_{tx}(t) = (1 + \cos(\omega_m t))/2$ pour transmettre une séquence alternante de "1" et de "0", avec $\omega_m/(2\pi) = 5 \text{GHz}$. Il est alors toujours possible de déduire si un "1" ou si un "0" a été transmis, en observant au milieu de chaque bit, comme la figure ci-bas le montre:

- e) Calculez alors le spectre $E(\omega)$ de E(t).
- f) Que pouvez-vous conclure sur votre capacité à multiplexer les signaux en fréquence dans la fibre ?

Indice: Utilisez seulement les 3 premiers termes de la série de Taylor : $\sqrt{(1+x)} = 1 + x/2 - x^2/8 + x^3/16 - 5x^4/128 + 7x^5/256 - \dots$