STAT 2006A Assignment 2 Due Time and Date: 9 p.m., October 26, 2023

Question 1

Let $X_1, ..., X_n$ be independent random variables with densities

$$f_{X_i}(x|\theta) = \begin{cases} e^{i\theta - x}, & x \ge i\theta \\ 0, & x < i\theta. \end{cases}$$

Prove that $T = \min_{i} (X_i/i)$ is a sufficient statistic for θ .

Note that

$$f_{X_i}(x|\theta) = \begin{cases} e^{i\theta - x}, & x \ge i\theta \\ 0, & x < i\theta \end{cases}$$
$$= \begin{cases} e^{i\theta - x}, & x/i \ge \theta \\ 0, & x/i < \theta. \end{cases}$$

Therefore,

$$f(x_1, ..., x_n | \theta) = \prod_{i=1}^n e^{i\theta - x_i} I_{(\theta, \infty)}(x_i / i) = \underbrace{e^{in\theta} I_{(\theta, \infty)} \left(\min_i \left(\frac{x_i}{i} \right) \right)}_{g\left(\min_i \left(\frac{x_i}{i} \right) | \theta \right)} \underbrace{e^{-n\bar{x}}}_{h(\mathbf{x})}.$$

By factorization theorem, $T = \min_{i}(X_i/i)$ is a sufficient statistic for θ .

Question 2

Let $X_1, ..., X_n$ be a random sample from the pdf

$$f(x|\mu,\sigma) = \frac{1}{\sigma}e^{-(x-\mu)/\sigma}, \ \mu < x < \infty, 0 < \sigma < \infty.$$

Find a two-dimensional sufficient statistic for (μ, σ) .

$$f(x_1,\ldots,x_n|\mu,\sigma) = \prod_{i=1}^n \frac{1}{\sigma} e^{-(x-\mu)/\sigma} I_{(\mu,\infty)}(x_i) = \underbrace{\left(\frac{e^{\mu/\sigma}}{\sigma}\right)}_{g(\bar{x},x_{(1)}|\mu,\sigma)} e^{-n\bar{x}/\sigma} I_{(\mu,\infty)}(x_{(1)}) \cdot \underbrace{1}_{h(\bar{x})}$$

By factorization theorem, $(\bar{X}, X_{(1)})$ is a sufficient statistic for (μ, σ) .

Question 3

For each of the following distributions let $X_1, ..., X_n$ be a random sample. Find a minimal sufficient statistic for θ .

(a)
$$f(x|\theta) = \frac{1}{\sqrt{2\pi}} e^{-(x-\theta)^2/2}, -\infty < x < \infty, -\infty < \theta < \infty.$$

(b)
$$f(x|\theta) = e^{-(x-\theta)}$$
, $\theta < x < \infty$, $-\infty < \theta < \infty$.

$$\frac{f(\mathbf{x}|\theta)}{f(\mathbf{y}|\theta)} = \frac{(2\pi)^{-n/2} e^{-\sum_{i}(x_{i}-\theta)^{2}/2}}{(2\pi)^{-n/2} e^{-\sum_{i}(y_{i}-\theta)^{2}/2}}
= \exp\left\{-\frac{\sum_{i=1}^{n} (x_{i}^{2} - 2\theta x_{i} + \theta^{2}) - \sum_{i=1}^{n} (y_{i}^{2} - 2\theta y_{i} + \theta^{2})}{2}\right\}
= \exp\left\{-\frac{\sum_{i=1}^{n} (x_{i}^{2} - y_{i}^{2}) - 2\theta(\bar{x} - \bar{y})}{2}\right\}$$

This is constant as a function of θ if and only if $\bar{y} = \bar{x}$. Therefore, \bar{X} is a minimal sufficient statistic for θ .

$$\frac{f(\mathbf{x}|\theta)}{f(\mathbf{y}|\theta)} = \frac{\prod_{i=1}^{n} e^{-(x_i - \theta)} I_{(\theta, \infty)}(x_i)}{\prod_{i=1}^{n} e^{-(y_i - \theta)} I_{(\theta, \infty)}(y_i)} = \frac{e^{-n\bar{x}} e^{n\theta} I_{(\theta, \infty)}(x_{(1)})}{e^{-n\bar{y}} e^{n\theta} I_{(\theta, \infty)}(y_{(1)})}$$

The ratio is a constant function of θ if and only if $x_{(1)} = y_{(1)}$. Therefore, $X_{(1)}$ is a minimal sufficient statistic.

Question 4

The random variable *X* takes the values 0, 1, 2 according to one of the following distributions:

	P(X=0)	P(X=1)	P(X=2)	
Distribution 1	p	3 <i>p</i>	1 - 4p	0
Distribution 2	p	p^2	$1 - p - p^2$	0

In each case determine whether the family of distributions of *X* is complete.

For Distribution 1,

$$E_p g(X) = \sum_{x=0}^{2} g(x) P(X = x) = pg(0) + 3pg(1) + (1 - 4p)g(2).$$

If $E_p g(X) = 0$, it is possible that g(2) = 0 and $g(0) = -3g(1) \neq 0$. Therefore, Distribution 1 is not complete.

For Distribution 2,

$$E_p g(X) = \sum_{x=0}^{2} g(x) P(X = x) = g(0)p + g(1)p^2 + g(2)(1 - p - p^2)$$
$$= [g(1) - g(2)]p^2 + [g(0) - g(2)]p + g(2).$$

If $E_p g(X) = 0$, we have g(1) - g(2) = g(0) - g(2) = g(2) = 0. This implies g(0) = g(1) = g(2). Hence, Distribution 2 is complete.

Question 5

Let $X_1, ..., X_n$ be a random sample from the pdf $f(x|\mu) = e^{-(x-\mu)}$, where $-\infty < \mu < x < \infty$. Use Basu's Theorem to show that $X_{(1)}$ and S^2 are independent.

First, we show that $X_{(1)}$ is a sufficient statistic:

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} e^{-(x_i - \mu)} I_{(\mu,\infty)}(x_i) = \underbrace{e^{-n\bar{x}}}_{h(\mathbf{x})} \underbrace{e^{n\mu} I_{(\mu,\infty)}(x_{(1)})}_{g(x_{(1)}|\mu)}.$$

Therefore, $X_{(1)}$ is a sufficient statistic.

Second, we show that the distribution of $X_{(1)}$ is complete:

$$f_{X_{(1)}}(t) = nf_X(t) (1 - F_X(t))^{n-1} = ne^{-(t-\mu)} [1 - (1 - e^{-(t-\mu)})]^{n-1} I_{(\mu,\infty)}(t) = ne^{-n(t-\mu)} I_{(\mu,\infty)}(t).$$

$$Eg(X_{(1)}) = \int_{-\infty}^{\infty} g(t) f_{X_{(1)}}(t) dt = \int_{-\infty}^{\infty} g(t) ne^{-n(t-\mu)} I_{(\mu,\infty)}(t) dt = \int_{\mu}^{\infty} g(t) ne^{-n(t-\mu)} dt$$

If $Eg(X_{(1)}) = 0$, we have, for all μ ,

$$\int_{\mu}^{\infty} g(t)ne^{-n(t-\mu)}dt = 0$$

$$\int_{\mu}^{\infty} g(t)e^{-nt}dt = 0$$

$$\frac{d}{d\mu}\int_{\mu}^{\infty} g(t)e^{-nt}dt = 0$$

$$-g(\mu)e^{-n\mu} = 0$$

$$g(\mu) = 0$$

Hence, $g(\cdot) = 0$ and the distribution of $X_{(1)}$ is complete.

Third, we show that S^2 is ancillary statistic.

Note that $f(x|\mu)$ is a location family. Hence, we can write $X=Z+\mu$, where Z does not depend on μ . Now,

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1} = \frac{\sum_{i=1}^{n} (Z_{i} + \mu - \bar{Z} - \mu)^{2}}{n-1} = \frac{\sum_{i=1}^{n} (Z_{i} - \bar{Z})^{2}}{n-1}.$$

Hence, S^2 does not depend on μ , and it is ancillary statistic.

By Basu's theorem, $X_{(1)}$ which is complete and sufficient and is independent of S^2 which is an ancillary statistic.