Písomná skúška z Matematickej logiky, konaná dňa 7. 6. 2011

Príklad 1. Pre formulu $(q \lor r) \Rightarrow ((p \Rightarrow q) \land (p \Rightarrow r))$ zostrojte (a) syntaktický strom, (b) množinu podformúl a (c) tabuľku pravdivostných hodnôt.

Príklad 2.. Dokážte ekvivalencie:

(a)
$$(p \land q) \equiv (p \downarrow p) \downarrow (q \downarrow q)$$

(b)
$$(p \lor q) \equiv (p \downarrow q) \downarrow (p \downarrow q)$$

(c)
$$(p \land q) \equiv (p \uparrow q) \uparrow (p \uparrow q)$$

(d)
$$(p \lor q) \equiv (p \uparrow p) \uparrow (q \uparrow q)$$

kde operácia ↓ sa nazýva *Peircov symbol* (označuje sa NOR) a operácia ↑ sa nazýva Shefferov symbol (označuje sa NAND).

Príklad 3. Pomocou sémantického tabla zistite, či formula je tautológia $p \land (q \lor r) \Rightarrow (p \land q) \lor (p \land r)$

Príklad 4. Pomocou vhodnej interpretácie dokážte, že sentencie nie sú tautológie (kde P a Q sú vhodne zvolené unárne predikáty).

(a)
$$(\forall x (P(x) \lor Q(x))) \Rightarrow (\forall x P(x) \lor \forall x Q(x))$$
.

(b)
$$(\exists x P(x)) \land (\exists x Q(x)) \Rightarrow (\exists x (P(x) \land Q(x))).$$

(c)
$$(\forall x P(x) \Rightarrow \forall x Q(x)) \Rightarrow (\forall x (P(x) \Rightarrow Q(x)))$$
.

Príklad 5. Rozhodnite pre každú sentenciou, či je tautológia, kontradikcia, alebo či je splniteľná sentencia.

(a)
$$(\exists x P(x)) \lor (\exists x \neg P(x))$$

(b)
$$(\forall x P(x)) \land (\forall x \neg P(x))$$

(c)
$$\forall x (\exists y Q(x, y) \lor \exists z \neg Q(x, z))$$

Príklad 6. Nájdite riešenie sylogizmov pomocou prirodzenej dedukcie (ak je potrebné, uveďte aj nutné vedľajšie podmienky pre existenciu riešenia)

Príklad 7.

Zostrojte tabuľku pravdivostných hodnôt 3-hodnotovej Łukasiewiczovej logiky. Pomocou tabuľky zistite, či formula je tautológia, kontradikcia, alebo splniteľná.

$$\neg (p \lor q) \Rightarrow (\neg p \land \neg q)$$

Príklad 8.

Pomocou prirodzenej dedukcie dokážte

(a)
$$\{p \Rightarrow q, r \Rightarrow q\} \vdash (p \lor r \Rightarrow q)$$

(b)
$$\vdash (p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$$

(c)
$$\vdash (p \Rightarrow q) \land (p \Rightarrow \neg q) \Rightarrow \neg p$$

Príklad 9. Nech $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2\}$ a $Z = \{z_1, z_2\}$, definujme dve fuzzy relácie $P \subseteq X \times Y$ a $Q \subseteq Y \times Z$ pomocou tabuliek ich charakteristických funkcií

$\mu_P(x,y)$	<i>y</i> ₁	<i>y</i> ₂
x_1	0.1	0.5
x_2	0.3	0.8
<i>x</i> ₃	0.8	0.7

$\mu_Q(y,z)$	<i>z</i> ₁	<i>Z</i> ₂
<i>y</i> ₁	0.1	0.5
<i>y</i> ₂	0.3	0.8

Zostrojte relácie $P \circ Q$, P^{-1} , Q^{-1} , $(P \circ Q)^{-1}$ a $Q^{-1} \circ P^{-1}$.

Príklad 10.

Vypočítajte pravdivostné hodnoty podformúl nasledujúcej formuly modálnej logiky

$$p \Rightarrow (\Box(p \land q) \lor (\Diamond q \lor \Diamond r))$$

pre Kripkeovský model špecifikovaný reláciou R znázornenú na obrázku pričom každý vrchol je ohodnotený trojicou pravdivostných hodnôt premenných p, q a r.

kde $\Gamma(w_1)=\{w_2\}$, $\Gamma(w_2)=\{w_3, w_4\}$, $\Gamma(w_3)=\{w_3\}$, $\Gamma(w_4)=\{w_4\}$ a pravdivostné hodnoty premenných napr. vo svete w_1 sú $w_1 \not\models p$, $w_1 \models q$, $w_1 \not\models r$.

Príklad 11. Pomocou sémantického tabla zistite, či formula modálnej logiky $\Box(p \Rightarrow q) \Rightarrow (\Box p \Rightarrow \Box q)$ je tautológia alebo nie.

Poznámka: Každý príklad je hodnotený 5 bodmi, maximálny počet bodov je 55. Nezabudnite na písomku napísať meno a priezvisko a číslo krúžku. Čas na písomku je 90 min.

Riešenie

- **1. príklad.** Pre formulu $(q \lor r) \Rightarrow ((p \Rightarrow q) \land (p \Rightarrow r))$
 - (a) zostrojte syntaktický strom

(b) zostrojte množinu podformúl

$$\{p,q,r,q\vee r,p\Rightarrow q,p\Rightarrow r,(p\Rightarrow q)\land (p\Rightarrow r),(q\vee r)\Rightarrow ((p\Rightarrow q)\land (p\Rightarrow r))\}$$

(c) zostrojte tabuľku pravdivostných hodnôt

$$(q \lor r) \Rightarrow ((p \Rightarrow q) \land (p \Rightarrow r))$$

		(1	,	((1	1) (1	//	
1	2	3	4	5	6	7	8
p	q	r	$q \lor r$	$p \Rightarrow q$	$p \Rightarrow r$	5^6	4⇒7
0	0	0	0	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	1	1	0	0	0
1	1	1	1	1	1	1	1

2. príklad. Dokážte ekvivalencie:

(a)
$$(p \land q) \equiv (p \downarrow p) \downarrow (q \downarrow q)$$

$$(p \downarrow p) \downarrow (q \downarrow q) \equiv (\neg p) \downarrow (\neg q) \equiv \neg (\neg p \lor \neg q) \equiv p \land q$$

(b)
$$(p \lor q) \equiv (p \downarrow q) \downarrow (p \downarrow q)$$

$$(p \downarrow q) \downarrow (p \downarrow q) \equiv \neg (p \lor q) \downarrow \neg (p \lor q) \equiv \neg (\neg (p \lor q) \lor \neg (p \lor q)) \equiv$$

$$\equiv \neg (\neg (p \lor q)) \equiv p \lor q$$

(c)
$$(p \land q) \equiv (p \uparrow q) \uparrow (p \uparrow q)$$

$$(p \uparrow q) \uparrow (p \uparrow q) \equiv \neg (\neg (p \land q) \land \neg (p \land q)) \equiv \neg (\neg (p \land q))$$

$$\equiv p \land q$$

(d)
$$(p \lor q) \equiv (p \uparrow p) \uparrow (q \uparrow q)$$

$$(p \uparrow p) \uparrow (q \uparrow q) \equiv \neg ((\neg p) \land (\neg q)) \equiv p \lor q$$

kde operácia ↓ sa nazýva *Peircov symbol* (označuje sa NOR) a operácia ↑ sa nazýva Shefferov symbol (označuje sa NAND).

3. príklad. Pomocou sémantických tabiel dokážte, že formula jke tautológia

$$p \land (q \lor r) \Rightarrow (p \land q) \lor (p \land r)$$

Všetky vetvy sémantického tabla sú uzavreté, potom formula je tautológia.

Príklad 4. Pomocou vhodne interpretácie dokážte, že sentencie nie sú tautológie (*P* a *Q* sú unárne predikáty).

Nech U je množina prirodzených čísel, $U = \{0,1,2,3,...\}$ a nech predikáty P(x) a Q(x) sú interpretované ako "x je párne číslo" resp. "x je nepárne číslo".

(a)
$$(\forall x (P(x) \lor Q(x))) \Rightarrow (\forall x P(x) \lor \forall x Q(x)).$$

$$\underbrace{\left(\forall x \underbrace{\left(P(x) \lor Q(x)\right)}_{1}\right)}_{0} \Rightarrow \underbrace{\left(\forall x P(x) \lor \forall x Q(x)\right)}_{0}$$

Ľavá strana implikácie má význam "každé x je párne alebo nepárne číslo", čo je evidentne pravdivý výrok. Pravá strana je disjunkcia "každé x je párne" alebo "každé x je nepárne", čo je evidentne nepravdivý výrok, t. j. študovaná formula nie je tautológiou.

(b)
$$(\exists x P(x)) \land (\exists x Q(x)) \Rightarrow (\exists x (P(x) \land Q(x))).$$

$$\underbrace{\left(\exists x \ P(x)\right)}_{1} \land \underbrace{\left(\exists x \ Q(x)\right)}_{1} \Rightarrow \underbrace{\left(\exists x \ \underbrace{\left(P(x) \land Q(x)\right)}_{0}\right)}_{0}$$

Ľavá strana implikácie "existuje také x, ktoré je párne" alebo "existuje také x, ktoré je nepárne" je pravdivá. Pravá strana implikácie "existuje také x, ktoré je súčasne párne a nepárne" je evidentne nepravdivá, potom aj celý výrok je nepravdivý, t. j. formula nie je tautológia.

(c)
$$(\forall x P(x) \Rightarrow \forall x Q(x)) \Rightarrow (\forall x (P(x) \Rightarrow Q(x)))$$
.

$$\underbrace{\left(\underbrace{\forall x \ P(x)}_{0} \Rightarrow \underbrace{\forall x \ Q(x)}_{0}\right)}_{1} \Rightarrow \underbrace{\left(\underbrace{P(x) \Rightarrow Q(x)}_{0}\right)}_{0}$$

Ľavá strana implikácie je pravdivá, "ak každé x je párne, potom každé x je nepárne", jednotlivé časti tejto implikácie sú nepravdivé, ale celá implikácia je pravdivá. Pravá strana implikácie "pre každé x platí, že ak x je párne, potom x je nepárne" je evidentne nepravdivý výrok, čiže aj celá formula je nepravdivá, študovaná formula preto nemôže byť tautológia.

Príklad 5. Rozhodnite pre každú sentenciou, či je tautológia, kontradikcia, alebo či je splniteľná sentencia.

(a)
$$((\exists x P(x)) \lor (\exists x \neg P(x))) \equiv (\exists x) \left(\underbrace{P(x) \lor \neg P(x)}_{1}\right) \equiv 1$$

(b) $(\forall x P(x)) \land (\forall x \neg P(x)) \equiv (\forall x) \left(\underbrace{P(x) \land \neg P(x)}_{0}\right) \equiv 0$
 $\forall x (\exists y Q(x, y) \lor \exists z \neg Q(x, z)) \equiv \forall x (\exists y Q(x, y) \lor \exists y \neg Q(x, y)) \equiv 0$
(c) $\forall x \left(\exists y \underbrace{Q(x, y) \lor \neg Q(x, y)}_{1}\right) \equiv 1$

Príklad 6.

Nájdite riešenie sylogizmov pomocou prirodzenej dedukcie (ak je potrebné, uveď te aj nutné vedľajšie podmienky pre existenciu riešenia)

$$\forall x [S(x) \Rightarrow V(x)]$$

 $\forall x [I(x) \Rightarrow V(x)]$

nie je čo dokazovať **riešenie**: neexistuje

1
$$\forall x [I(x) \Rightarrow \neg S(x)]$$

$$2 \quad \forall x \big[V(x) \Rightarrow S(x) \big]$$

- $I(t) \Rightarrow \neg S(t)$ odstránenie $\forall v(1)$
- $V(t) \Rightarrow S(t)$ odstránenie $\forall v(2)$
- $S(t) \Rightarrow \neg I(t)$ inverzia implikácie v (3)
- $V(t) \Rightarrow \neg I(t)$ hypotetický sylogizmus na (4) a (5)
- $\forall x (V(x) \Rightarrow \neg I(x))$ zavedenie $\forall v (6)$, riešenie

riešenie: žiadny V nie je I.

- J(a) dodatočný predpoklad
- $2 \quad \forall x \Big[J(x) \Rightarrow I(x) \Big]$
- $3 \quad \forall x \Big[J(x) \Rightarrow S(x) \Big]$
- $J(a) \Rightarrow I(a)$ odstránenie $\forall v(2)$
- $J(a) \Rightarrow S(a)$ odstránenie $\forall v(3)$
- I(a) modus ponens na (1) a (4)
- S(a) modus ponens na (1) a (5)
- $I(a) \land S(a)$ introdukcia \land na (6) a (7)
- $\exists x (I(x) \land S(x))$ zavedenie $\exists v (8)$

riešenie: niektorý I je S (za predpokladu, že existuje aspoň jeden objekt s vlastnosťou J).

Príklad 7.

$$\neg (p \lor q) \Rightarrow (\neg p \land \neg q)$$

p	q	p∨q	$\neg(p\lor q)$	¬р	$\neg q$	$\neg p \land \neg q$	$\neg (p \lor q) \Rightarrow (\neg p \land \neg q)$
0	0	0	1	1	1	1	1
0	1/2	1/2	1/2	1	1/2	1/2	1
0	1	1	0	1	0	0	1
1/2	0	1/2	1/2	1/2	1	1/2	1
1/2	1/2	1/2	1/2	1/2	1/2	1/2	1
1/2	1	1	0	1/2	0	0	1
1	0	1	0	0	1	0	1
1	1/2	1	0	0	1/2	0	1
1	1	1	0	0	0	0	1

Formula je tautológia

Príklad 8.

Pomocou prirodzenej dedukcie dokážte

(a)
$$\{p \Rightarrow q, r \Rightarrow q\} \vdash (p \lor r \Rightarrow q)$$

1. $p \Rightarrow q$ (1. predpoklad)
2. $r \Rightarrow q$ (1. predpoklad)
3. $p \lor r$ (aktivácia dodatočného predpokladu)
4. p r (rozklad 3, dve alternatívy)
5. q (modus ponens 4,1 alebo 4,2)
6. $p \lor r \Rightarrow q$ (deaktivácia dodatočného predpokladu)

(b)
$$\vdash (p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$$

1. p (aktivácia 1. dodatočného predpokladu)

2. $p \Rightarrow q$ (aktivácia 2. dodatočného predpokladu)

3. $q \Rightarrow r$ (aktivácia 3. dodatočného predpokladu)

4. q (m. p. na 1. a 2.)

5. r (m. p. na 3. a 4.)

6. $p \Rightarrow r$ (deaktivácia dodatočného predpokladu 1.)

7. $(q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ (deaktivácia dodatočného predpokladu 3.)

8. $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$ (deaktivácia dodatočného predpokladu 2.)

(c)
$$\vdash (p \Rightarrow q) \land (p \Rightarrow \neg q) \Rightarrow \neg p$$

1.
$$(p\Rightarrow q)\land (p\Rightarrow \neg q)$$
 (aktivácia 1. dodatočného predpokladu)

2. $p\Rightarrow q$ (aplikácia eliminácie konjunkcie na 1.)

3. $p\Rightarrow \neg q$ (aplikácia eliminácie konjunkcie na 1.)

4. $q\Rightarrow \neg p$ (aplikácia inverzie implikácie na 3.)

5. $p\Rightarrow \neg p$ (aplikácia hyp. sylogizmu na 2. a 4., pozri pred. príklad)

6. $\neg p\lor \neg p$ (aplikácia disjunktívneho tvaru implikácie na 5.)

7. $\neg p$ (aplikácia idempotentnosti disjunkcie na 6.)

8. $(p\Rightarrow q)\land (p\Rightarrow \neg q)\Rightarrow \neg p$ (deaktivácia dodatočného predpokladu 1.)

Príklad 9. Nech $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2\}$ a $Z = \{z_1, z_2\}$, definujme dve fuzzy relácie $P \subseteq X \times Y$ a $Q \subseteq Y \times Z$ pomocou tabuliek ich charakteristických funkcií

$\mu_P(x,y)$	<i>y</i> ₁	<i>y</i> ₂
x_1	0.1	0.5
x_2	0.3	0.8
<i>x</i> ₃	0.8	0.7

$\mu_Q(y,z)$	<i>z</i> ₁	<i>Z</i> ₂
<i>y</i> ₁	0.1	0.5
<i>y</i> ₂	0.3	0.8

Zostrojte relácie $P \circ Q$, P^{-1} , Q^{-1} , $(P \circ Q)^{-1}$ a $Q^{-1} \circ P^{-1}$

$\mu_{P\circ Q}\left(x,z\right)$	z_1	<i>Z</i> ₂
x_1	0.3	0.5
x_2	0.3	0.8
x_3	0.3	0.7

$\mu_{P^{-1}}(y,x)$	x_1	x_2	<i>x</i> ₃
y_1	0.1	0.3	0.8
<i>y</i> ₂	0.5	0.8	0.7

$\mu_{Q^{-1}}(z,y)$	<i>y</i> ₁	<i>y</i> ₂
z_1	0.1	0.3
<i>Z</i> ₂	0.5	0.8

$\mu_{Q^{-1} \circ P^{-1}}\left(z,x\right)$	x_1	x_2	x_3
<i>z</i> ₁	0.3	0.3	0.3
<i>Z</i> ₂	0.5	0.8	0.7
$\mu_{(P\circ Q)^{-1}}(z,x)$	x_1	x_2	<i>x</i> ₃
<i>z</i> ₁	0.3	0.3	0.3

Príklad 10. Vypočítajte pravdivostné hodnoty podformúl nasledujúcej formuly modálnej logiky

$$p \Rightarrow (\Box (p \land q) \lor (\Diamond q \lor \Diamond r))$$

pre Kripkeovský model špecifikovaný reláciou R znázornenú na obrázku pričom každý vrchol je ohodnotený trojicou pravdivostných hodnôt premenných p, q a r.

kde $\Gamma(w_1)=\{w_2\}$, $\Gamma(w_2)=\{w_3, w_4\}$, $\Gamma(w_3)=\{w_3\}$, $\Gamma(w_4)=\{w_4\}$ a pravdivostné hodnoty premenných napr. vo svete w_1 sú $w_1 \not\vDash p$, $w_1 \vDash q$, $w_1 \not\vDash r$.

	podformula	w_1	w_2	<i>W</i> 3	W_4
1	p	0	0	0	1
2	q	1	1	1	1
3	r	0	0	1	0
4	$p \land q$	0	0	0	1
5	$\Box(p \land q)$	0	0	0	1
6	$\Diamond q$	1	1	1	1
7	<i>◊r</i>	0	1	1	0
8	$\Diamond q \vee \Diamond r$	1	1	1	1
9	$(p \wedge q) \vee (\Diamond q \vee \Diamond r)$	1	1	1	1
10	$p \Rightarrow ((p \land q) \lor (\Diamond p \lor \Diamond q))$	1	1	1	1

Príklad 11. Pomocou sémantického tabla zistite, či formula modálnej logiky $\Box(p \Rightarrow q) \Rightarrow (\Box p \Rightarrow \Box q)$ je tautológia alebo nie.

