

Functional Dependencies - Part 2

Definition and Identification

Codd and Functional Dependencies

- Functional dependencies (FDs) were introduced by Codd in 1971
- Edgar F. Codd of IBM Research (1923-2003) invented the relational data model for data management in 1970.
- He received the ACM Turing Award in 1981 for his contributions on the theoretical foundations of relational databases:
 - Functional dependencies
 - Normalization
 - Boyce–Codd Normal Form (BCNF)
 - Query languages
 - Relational Calculus
 - Relational Algebra

¹ Further Normalization of the Data Base Relational Model. E. F. Codd, IBM Research Report, San Jose, California, 1971.

Why Functional Dependencies?

- We need some formal way of analysing whether a database schema is well-designed, or why one is better than another.
- FDs are developed to define the goodness and badness of (relational) database design in a formal way.
 - Top down: start with a relation schema and FDs, and produce smaller relation schemas in certain normal form (called normalisation).
 - Bottom up: start with attributes and FDs, and produce relation schemas (not popular in practice).

FDs tell us "relationship between and among attributes"!

Functional Dependencies – Informal Description

We have two FDs on ENROLMENT:

ENROLMENT					
Name	<u>StudentID</u>	DoB	<u>CourseNo</u>	<u>Semester</u>	Unit
Tom	123456	25/01/1988	COMP2400	2010 S2	6
Tom	123456	25/01/1988	COMP8740	2011 S2	12
Michael	123458	21/04/1985	COMP2400	2009 S2	6
Michael	123458	21/04/1985	COMP8740	2011 S2	12
Fran	123457	11/09/1987	COMP2400	2009 S2	6

StudentID functionally determines Name and DoB, i.e.,

$$\{StudentID\} \rightarrow \{Name, DoB\}$$

CourseNo functionally determines Unit, i.e.,

```
\{CourseNo\} \rightarrow \{Unit\}
```

Functional Dependencies – Informal Description

 A FD says that, within a relation, the values of some attributes determine the values of other attributes.

• If attributes A, B, C determine attributes D, E, then we write

$$\{A, B, C\} \rightarrow \{D, E\}$$

- This means, if two tuples have the same values for A, B and C, then they must also have the same values for D and E.
- A, B and C are the determinant, while D and E are the dependent.

Formal Definition

- Let R be a relation schema.
 - A FD on R is an expression $X \to Y$ with attribute sets $X, Y \subseteq R$.
 - A relation r(R) satisfies X → Y on R if, for any two tuples t₁, t₂ ∈ r(R), whenever the tuples t₁ and t₂ coincide on values of X, they also coincide on values of Y.

$$t_1[X] = t_2[X]$$

$$\downarrow \downarrow$$

$$t_1[Y] = t_2[Y]$$

- A FD is trivial if it can always be satisfied, e.g.,
 - $\{A, B, C\} \rightarrow \{C\}$
 - $\bullet \ \{A,B,C\} \rightarrow \{A,B\}$
- Syntactical convention: (1) Instead of {A, B, C}, we may use ABC. (2)
 A, B,... for individual attributes and X, Y,... for sets of attributes.

Exercise - Functional Dependencies on Relations

Consider the following relations with attributes {A,B,C,D,E}. Do they satisfy:
 (1) AB → E; (2) C → DE;

.. (D)

r ₁ (R)				
Α	В	С	D	Е
1	4	1	9	4
1	4	2	8	9
1	4	3	8	9

$r_2(R)$				
Α	В	С	D	Е
1	3	1	3	8
1	3	2	4	8
1	2	2	4	9

Check:

	$r_1(R)$	$r_2(H)$
(1) <i>AB</i> → <i>E</i>	no	yes
(2) <i>C</i> → <i>DE</i>	yes	no

How to Identify FDs in General?

- A functional dependency specifies a constraint on the relation schema that must hold at all times.
- In real-life applications, we often use the following approaches:
 - Analyse data requirements
 Can be provided in the form of discussion with application users and/or data requirement specifications.
 - (2) Analyse sample data Useful when application users are unavailable for consultation and/or the document is incomplete.

(1) Identifying FDs - Analyse Data Requirements

Consider the following relation schema:

```
Rental = \{CustID, CustName, PropertyNo, DateStart, Owner\}.
```

- Data requirements:
 - Each customer can be uniquely identified by his or her customer ID.

```
\{CustID\} \rightarrow \{CustName\}
```

A customer cannot rent two or more properties from the same date.

```
\{CustID, DateStart\} \rightarrow \{PropertyNo\}
```

A customer cannot rent the same property more than once.

```
\{PropertyNo,\,CustID\} \rightarrow \{DateStart\}
```

Each property can be uniquely identified by its owner.

```
\{Owner\} \rightarrow \{PropertyNo\}
```

(2) Identifying FDs - Analyse Sample Data

• Can you find some FDs on ENROLMENT based on the sample data?

ENROLMENT					
Name	StudentID	DoB	<u>CourseNo</u>	Semester	Unit
Tom	123456	25/01/1988	COMP2400	2010 S2	6
Tom	123456	25/01/1988	COMP8740	2011 S2	12
Michael	123458	21/04/1985	COMP2400	2009 S2	6
Michael	123458	21/04/1985	COMP8740	2011 S2	12
Fran	123457	11/09/1987	COMP2400	2009 S2	6

- We may have:
 - {StudentID} → {Name, DoB};
 - {CourseNo} → {Unit};
 - {StudentID, CourseNo, Semester} → {Name, DoB, Unit};
 - $\{Name\} \rightarrow \{StudentID\} \times;$
 - $\{DoB\} \rightarrow \{StudentID\} \times;$
 -

Limitations: Sample data needs to be a true representation of **all possible values** that the database may hold.