# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-119620

(43)Date of publication of application: 27.04.2001

(51)Int.CI.

HO4N 5/225 GO3B 15/00 GO3B 35/00 GO6T 7/00 HO4N 5/907 HO4N 13/02

(21)Application number: 11-299691

(71)Applicant : MINOLTA CO LTD

(22)Date of filing:

21.10.1999

(72)Inventor: ARIOKA MAKOTO

KARASAKI TOSHIHIKO

# (54) THREE-DIMENSIONAL INFORMATION INPUT CAMERA (57) Abstract:

PROBLEM TO BE SOLVED: To provide a three-dimensional information input camera, that can accurately record three-dimensional image information by preventing image data, from which an accurate three-dimensional image cannot be obtained, from being recorded as image data for generating the three-dimensional image.

SOLUTION: An image-pickup means photographs a projection pattern formed on an object in a photographing area by a pattern light projected by a projection means and photographs the object, in a state such that the projection means does not project the pattern light onto the object. A monitor display means 10 has an image storage means, that stores a photographed image when the projection means projects the pattern light. The monitor display means 10 displays the photographed image stored in the image storage means, after the end of two photographing actions.



# **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公閑番号 特開2001-119620 (P2001-119620A)

(43)公開日 平成13年4月27日(2001.4.27)

| (51) Int.Cl.7 |       | 酸別記号                    | FI      |                   |                     | テーマコート*(参考)      |           |  |
|---------------|-------|-------------------------|---------|-------------------|---------------------|------------------|-----------|--|
| H04N          | 5/225 |                         | H04N    | 5/225             |                     | . <b>Z</b>       | 2H059     |  |
| G 0 3 B       | 15/00 | •                       | G03B    | 15/00             |                     | Н                | 5B057     |  |
|               | 35/00 |                         | •       | 35/00             |                     | Z                | 5 C O 2 2 |  |
| GOGT          | 7/00  |                         | H04N    | 5/907             |                     | В                | 5 C O 5 2 |  |
| H04N          | 5/907 |                         |         | 13/02             |                     |                  | 5 C O 6 1 |  |
|               |       | 審査請求                    | 未請求 韻求  | 項の致5              | OL.                 | (全 19 頁)         | 最終頁に続く    |  |
| (21) 出願番号     |       | 特顯平11-299691            | (71)出願人 | )79               |                     |                  |           |  |
|               |       |                         |         | ミノル:              | タ株式                 | 会社               |           |  |
| (22)出頭日       |       | 平成11年10月21日(1999.10.21) |         | 大阪府               | 大阪市                 | 中央区安土町           | 二丁目3番13号  |  |
|               |       |                         |         | 大阪                | 国際ビ                 | ル                |           |  |
|               |       |                         | (72)発明者 | 有岡 :              | 真                   |                  |           |  |
|               |       |                         |         | 大阪府:              | 阪府大阪市中央区安土町二丁目3番13号 |                  |           |  |
|               |       |                         |         | 大阪国               | 国際ピル ミノルタ株式会社内      |                  |           |  |
|               |       |                         | (72)発明者 | <b>唐崎</b>         | 敏彦                  |                  |           |  |
|               |       |                         |         | 大阪府               | 大阪市                 | 阪市中央区安土町二丁目3番13号 |           |  |
|               |       |                         |         | 大阪国               | 際ピル                 | ミノルタ棋            | 式会社内      |  |
|               |       |                         | (74)代理人 | (74)代理人 100062144 |                     |                  |           |  |
| ,             |       |                         | •       | 弁理士               | 青山                  | 葆 (外1            | 名)        |  |
|               |       |                         |         |                   |                     |                  | 最終頁に続く    |  |

# (54) 【発明の名称】 3次元情報入力カメラ

# (57)【要約】

【課題】 正確な3次元画像を得ることができない画像 データを、3次元画像作成用の画像データとして記録す ることを防止し、正確な3次元画像情報の記録が可能な 3次元入力カメラを提供する。

【解決手段】 撮像手段は、投影手段が投影したパターン光により撮影領域内の被写体に形成された投影パターンの撮影と、投影手段がパターン光を投影しない状態で行う被写体の撮影とを行う。モニタ表示手段10は、投影手段がパターン光を投影したときの撮影画像を記憶する画像記憶手段を有する。モニタ表示手段10は、2回の撮影終了後、画像記憶手段が記憶した撮影画像を表示する。



る。

#### 【特許請求の範囲】

【請求項1】 撮影領域にパターン光を投影する投影手段と、

1

上記投影手段が投影したパターン光により撮影領域内の 被写体に形成された投影パターンの撮影と、上記投影手 段がパターン光を投影しない状態で行う被写体の撮影 と、の2回の撮影を行う撮像手段と、

上記撮像手段が撮影した撮影画像を確認するために表示するモニタ表示手段と、を備えた3次元情報入力カメラにおいて.

上記モニタ表示手段は、上記投影手段がパターン光を投影したときの撮影画像を記憶する画像記憶手段を有し、2回目の撮影終了後には、上記画像記憶手段が記憶した撮影画像を表示することを特徴とする、3次元情報入力カメラ。

【請求項2】 上記撮影手段は、1回目に上記投影手段が投影したパターン光により撮影領域内の被写体に形成された投影パターンの撮影を行い、2回目に上記投影手段がパターン光を投影しない状態で被写体の撮影を行い、

1回目の撮影終了時点で、上記画像記録手段が記録した 撮影画像を上記モニタ表示手段に表示することを特徴と する、請求項1記載の3次元情報入力カメラ。

【請求項3】 上記撮影手段は、1回目に上記投影手段がパターン光を投影しない状態で被写体の撮影を行い、2回目に上記投影手段が投影したパターン光により撮影領域内の被写体に形成された投影パターンの撮影を行い

1回目の撮影終了時点で、上記投影手段がパターン光を 投影しない状態での撮影画像を上記モニタ手段に表示す ることを特徴とする、請求項1記載の3次元情報入力カ メラ。

【請求項4】 2回の撮影の画像データを3次元情報として記録する記録媒体手段を有し、

2回目の撮影終了後の上記表示は、画像データの上記記 録媒体手段への記録が終了するまで行われることを特徴 とする、請求項1又は2記載の3次元情報入力カメラ。

【請求項5】 2回目の撮影終了後の上記表示は、設定された所定時間行われることを特徴とする、請求項1又は2記載の3次元情報入力カメラ。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、3次元情報入力カメラに関する。

### [0002]

【従来の技術】従来、3次元情報入力としては、複数の 撮影レンズを通過した2像から3次元情報を得る方法 や、図24に示すように、光を物体に投影し三角測量法 の原理によって距離分布を検出する方法が知られてい る。

【0003】また、例えば特開平6-249624号公報に開示されたのように、フリンジパターンを投影し、別カメラでパターンを入力して、いわゆる三角測量により距離分布を検知する方法がある。また、格子パターンを物体に投影し、異なる角度方向から観察すると、投影された格子パターンが物体の起伏に応じた変形データを得ることにより、物体の起伏を求める方法も提案されている。(精密工学会誌、55,10,85(1989))。また、図25に示すように、格子パターン投影の代わりに、グレイコードパターンを投影し、光学的分布をCCDカメラで測定する方法である。

布をCCDカメラで測定する方法である。 【0004】これらの方法により3次元情報を得るに は、複数画像の撮影が必要となったり画像情報の処理が 面倒であったりするので、撮影時、もしくは後の処理に

時間を要する。そのため、計測機器としては問題ない

が、カメラに使用するには適さないと考えられる。 【0005】短時間の撮影および後演算で3次元情報を 精度よく得られる方法として、以下のような提案があ

【0006】例えば図26(出典:「光三次元計測」吉 澤徹編、新技術コミュニケーションズ、第89頁、図 5.2.12(a)) のように、縞パターンを投影し、投 影した縞パターンに対し、設計的に決まる角度で被写体 からの縞パターンを受光し、被写体の凹凸による縞の変 形画像から被写体の距離分布を検出する。すなわち、各 画像ポイントで測定される画像の位相に対して、オリジ ナル縞との位相のずれを演算する。この位相のずれには 被写体の高さの情報も含まれている。そこで位相情報と 三角測量による情報とによって、被写体の距離分布を求 める。しかし、検出には高い精度が必要となる。縞パタ ーンの濃度分布や光度には限界があるため、縞パターン の位置を少しずつずらした複数の撮影画像によって、被 写体の距離分布を求まる方法がとられてきた。例えば、 0°、90°、180°、270°の4つの位相のずれ た縞パターンを投影する。

【0007】また、計測機器として、スリット光をスキャンするものが製品化されているが、3次元情報入力するためのスキャンを含む3次元情報入力時間が数百msもかかっている。また、従来のデジタルカメラにおい

40 て、連写モードであれば、複数枚連続撮影をするが、メ モリカードへの記録は撮影後行うカメラがあったが、3 次元情報入力カメラではなかった。

# [0008]

【発明が解決しようとする課題】しかし、上記編パターン投影法には1周期しかない編パターンでは濃度分布が荒くなり精度がでない。この点を解消するために、数周期の編パターンを投影することが多いが、この場合、距離分布が深い被写体であれば、どの編パターンによる情報かが区別できない。何番目からの編かによって、いわりる三角測量の角度が異なったものとして解釈し、間違

えた距離分布を得ることになる。

【0009】例えば図29で示すように、手前の面P1上の点Aは3番目の縞による情報となるが、奥の面P2上の点Bは4番目の縞による情報となる。しかし、何本目の縞であるかが分からないと、受光部で得られた画像情報だけでは点A、Bの区別ができない。

【0010】距離分布精度を上げようと縞パターンの縞数を増やし、検出点を多くしても、縞が何本目かを誤ると、かえって、3次元情報を誤検出する確率が増すことにもなりかねない。

【0011】そこで、本願出願人は、投影する縞パターンの改良を試みた。そして、例えば、周波数を複数もつパターンや、コードと縞をもつパターン、そして色の付いたパターン光を投影し、グラデーションのある縞だけでなく、位置を特定できるマーカを置き、何本目の縞かを特定する精度を上げることを提案している(例えば、特願平11-87124号、未公開)。一方、撮像機器においては、撮影する画像を確認するためのモニタ手段を有することが多い。

【0012】しかし、前記のように、縞パターンの位量を特定するために、投影するパターンとして色付きのパターンを投影する場合、被写体色や被写体を照明する光源の色によっては縞パターンのコントラストが低下し、縞の位置を特定できない場合が生じる。このような縞の位置特定ができないような画像を用いては、正確な3次元画像を得ることができないこととなる。

【0013】撮影後に3次元画像を作成した段階になって、正しく3次元画像作成用の画像データが記録されていないことが分かった場合には、再度データを取り直す(再撮影する)必要があるが、常にそれが可能な状態とは限らないため、それができない場合には、結局、正確な3次元画像を得ることができないことになっていた。

【0014】そのため、適切な3次元画像作成用の画像 データを得るために、3次元画像形成時に縞の位置が特 定できないような画像は、できるだけ記録されないよう にすることが望まれる。

【0015】したがって、本発明において解決すべき技術的課題は、被写体や照明光の影響を受けた場合など、正確な3次元画像を得ることができない画像データを、3次元画像作成用の画像データとして記録することを防止し、正確な3次元画像情報の記録が可能な3次元入力カメラを提供することである。

#### [0016]

【課題を解決するための手段】上記技術的課題を解決するために、本発明は以下の構成の3次元情報入力カメラを提供する。

【0017】3次元情報入力カメラは、撮影領域にパターン光を投影する投影手段と、上記投影手段が投影したパターン光により撮影領域内の被写体に形成された投影パターンの撮影と、上記投影手段がパターン光を投影し

ない状態で行う被写体の撮影と、の2回の撮影を行う撮像手段と、上記撮像手段が撮影した撮影画像を確認するために表示するモニタ表示手段と、を備えたタイプのものである。上記モニタ表示手段は、上記投影手段がパターン光を投影したときの撮影画像を記憶する画像記憶手段を有する。上記モニタ表示手段は、2回目の撮影終了後には、上記画像記憶手段が記憶した撮影画像を表示する。

【0018】上記構成によれば、まず、2回の撮影、す 10 なわち、パターン光を投影して行う投影パターンの撮影 と、パターン光を投影しないで行う被写体の撮影とを行う。この2回の撮影終了後には、パターン光を投影して 撮影したときのパターン付き画像が、モニタ表示手段に 表示される。この表示を見て、撮影者は、撮影した画像 データを記録するか否かを判断することができる。

【0019】上記構成によれば、2回の撮影で得た3次元情報の記録時には、常に、パターン光を投影した撮影したパターン付き画像が表示されており、撮影者は表示されたパターン付き画像を見ることで、被写体色や被写20 体を照明する光源の色によって、投影したパターン光のコントラストが低下してパターン位置を特定できないなど、正確な3次元情報が得られない不良画像であるかをどうかを、その場で確かめることができる。

【0020】したがって、正確な3次元画像を得ることができない画像データを、3次元画像作成用の画像データとして記録することを防止し、正確な3次元画像情報の記録が可能である。

【0021】上記構成において、1回目の撮影終了後に モニタ表示手段に何も表示しないと、撮影者に不安感を 30 与えるので、1回目の撮影が終了したら、その撮影画像 を表示することが好ましい。その場合、以下の2態様が 考えられる。

【0022】第1の態様としては、上記撮影手段は、1回目に上記投影手段が投影したパターン光により撮影領域内の被写体に形成された投影パターンの撮影を行い、2回目に上記投影手段がパターン光を投影しない状態で被写体の撮影を行う。1回目の撮影終了時点で、上記画像記録手段が記録した撮影画像を上記モニタ表示手段に表示する。

40 【0023】この場合、1回目の撮影終了後に、パターン付き画像が表示されるので、パターンのコントラスト等により正確な3次元情報の記録が可能かどうかを、早い段階で判断することができ、無駄に2回目の撮影を行わないようにすることができる。

【0024】第2の態様としては、上記撮影手段は、1回目に上記投影手段がパターン光を投影しない状態で被写体の撮影を行い、2回目に上記投影手段が投影したパターン光により撮影領域内の被写体に形成された投影パターンの撮影を行う。1回目の撮影終了時点で、上記投50影手段がパターン光を投影しない状態での撮影画像を上

【0025】この場合、1回目の撮影終了後に、パターンなし画像が表示されるので、3次元情報を得ることができる範囲と、合成画像に貼り付けるための通常の自然

な画像とを容易に確認することができる。

【0026】好ましくは、2回の撮影の画像データを3 次元情報として記録する記録媒体手段を有する。2回目 の撮影終了後の上記表示は、画像データの上記記録媒体 手段への記録が終了するまで行われる。

【0027】上記構成によれば、記録媒体への記録が終 了するまでは、パターン付き画像が表示されるので、パ ターン付き画像を見て、記録を取りやめることができ る。記録媒体への記録が終了した後にはパターン付き画 像は表示されないので、パターン付き画像により不快感 を与える可能性がない。

【0028】また、好ましくは、2回目の撮影終了後の上記表示は、設定された所定時間行われる。

【0029】上記構成によれば、撮影者は、2回目の撮影終了後にパターン付き画像が表示される所定時間内に、正確な3次元画像情報の記録が可能かどうかを判断できる。パターン付き画像の表示を所定時間で終了することにより、不快感を与える可能性があるパターン付き画像を、必要以上に長く表示しないようにすることができる。

# [0030]

【発明の実施の形態】以下、本発明の一実施形態に係る 3次元情報入力カメラ(以下3Dカメラという)につい て、図面を参照しながら説明する。

【0031】3Dカメラは、図1の正面図に示すように、縞パターン投影ユニット1と、箱型のカメラ本体部2と、直方体状の撮像部3(太線で図示)とから構成されている。撮像部3は、正面から見てカメラ本体部2の右側面に着脱可能である。

【0032】撮像部3は撮影レンズであるマクロ機能付きズームレンズ301の後方位置の適所にCCDカラーエリアセンサ303(図5参照)を備えた撮像回路が設けられている。また、銀塩レンズシャッターカメラと同様に、撮像部3内の適所にフラッシュ光の被写体からの反射光を受光する調光センサ305を備えた調光回路304(図5参照)が、また、被写体の距離を測定するための測距センサAF、光学ファインダー31が設けられている。

【0033】一方、撮像部本体3の内部には、上記ズームレンズ301のズーム比の変更と収容位置、撮影位置間のレンズ移動を行うためのズームモータM1(図5参照)および合焦を行うためのモータM2(図5参照)とが設けられている。

【0034】カメラ本体部2の前面には、左端部の適所 にグリップ部4が設けられ、右端部の上部適所に内蔵フ ラッシュ5が、さらに、3Dカメラと外部機器(例え ば、他の3Dカメラやパーソナルコンピュータ)と赤外 線通信をを行うためのIRDAポート設けられている。 また、カメラ本体部2の上面にはシャッタボタン9が設 けられている。

【0035】縞パターン投影ユニット1は、カメラ本体部2と撮像部本体3の間に位置し、縞パターン投影部501が配置されている。投影部501は撮影レンズ301の光軸中心とほぼ同じ高さに縞パターン中心を置く配置としている。そして縞パターンのパターン方向が光軸から離れる方向に対し垂直方向になるように配置している。これらは、三角測量の原理から3次元情報を得ることが基本であるため、いわゆる基線長を長くとり、精度を確保する目的と、オフセットを持たせたり、垂直以外の角度による配置に比べて相対的に小さな縞パターンで被写体をカバーすることを目的としている。

【0036】縞パターンの投影は、ここではフラッシュ 光を用いている。別の実施例で説明するが、投影はフラッシュ光以外にランプ光でもよい。

【0037】縞パターンはフィルムを用いる。縞パター 20 ンは、フィルムだけでなく、ガラス基板に顔料や染料な どのパターンをつけたものでもよい。

【0038】図2の背面図に示したように、カメラ本体部2の背面には、撮影画像のモニタ表示(ビューファインダーに相当)および記録画像の再生表示等を行うためのLCD表示部10が設けられている。また、LCD表示部10の下方位置に、3Dカメラの操作を行うキースイッチ群521~526、カメラ本体の電源スイッチPSとが設けられている。また、電源スイッチPSの左側には、電源ON状態で点灯するLED1、メモリカードでフセス中や撮影準備に必要なためカメラへの入力を受け付けない状態を表示するBUSY表示LED2が設けられている。

【0039】さらに、カメラ本体部2の背面には、「撮影モード」と「再生モード」とを切換設定する撮影/再生モード設定スイッチ14が設けられている。撮影モードは、写真撮影を行うモードであり、再生モードは、メモリカード8(図5参照)に記録された撮影画像をLCD表示部10に再生表示するモードである。撮影/再生モード設定スイッチ14も2接点のスライドスイッチからなり、例えば下にスライドすると、再生モードが設定され、上にスライドすると、撮影モードが設定され、上にスライドすると、撮影モードが設定され、上にスライドすると、撮影モードが設定され、上にスライドすると、撮影モードが設定され、エスティドすると、撮影モードが設定され、エスティドすると、撮影モードが設定される。【0040】また、カメラ背面右上方には、4連スイッチZが設けられており、ボタンZ1~Z2を押すことにより、ズームモータM1(図5参照)を駆動してズーミングを行い、ボタンZ3、Z4を押すことによって露出補正を行う。

【0041】撮像部3の背面側には、LCD表示をオン・オフさせるためのLCDボタンが設けられており、このボタンを押す毎にLCD表示のオンオフ状態が切り換りる。例えば、専ら、光学ファインダー31のみを用い

て撮影するときには、節電の目的で、LCD表示をオフするようにする。マクロ撮影時には、MACROボタンを押すことにより、フォーカスモータM2が駆動され撮影レンズ301がマクロ撮影可能な状態になる。

【0042】縞パターン投影ユニット1の背面側には、 縞パターン投影をするためのフラッシュ電源、すなわち 3Dフラッシュ電源スイッチ25を配置している。

【0043】図3の側面図に示すように、3Dカメラの本体部2の側面には、DC入力端子と、液晶表示されている内容を外部のビデオモニターに出力するためのVideo出力端子が設けられている。

【0044】図4の底面に示すように、カメラ本体部2の底面には、電池装填室18とメモリカード8のカード装填室17とが設けられ、装填口は、クラムシェルタイプの蓋15により閉塞されるようになっている。本実施の形態における3Dカメラは、4本の単三形乾電池を直列接続してなる電源電池を駆動源としている。また、底面には、コネクタおよび鉤状の接続具によって接続されている撮像部3と本体部2との係合を解くための解除レバーRelが設けられている。

【0045】縞パターン投影ユニット1の底面には、カメラ本体部2と同様に電池装填室518および蓋515を設け、カメラ本体部2とは別のフラッシュ用電池を用いる。また、縞パターン投影ユニット1の底面には三脚ねじ502を設けている。三脚ねじ502は、カメラのバランスから、比較的中央に位置する縞パターン投影ユニット1に設けている。

【0046】次に、図5のブロックを参照しながら、撮像部3の内部ブロックについて説明する。

【0047】CCD303は、マクロズームレンズ30 1により結像された被写体の光像を、R(赤), G

(緑), B (青) の色成分の画像信号(各画素で受光された画素信号の信号列からなる信号)に光電変換して出力する。タイミングジェネレータ314は、CCD303の駆動を制御するための各種のタイミングパルスを生成するものである。

【0048】撮像部3における露出制御は、絞りが固定 絞りとなっているので、CCD303の露光量、すなわ ち、シャッタスピードに相当するCCD303の電荷蓄 積時間を調節して行われる。被写体輝度が低輝度時に適 切なシャッタスピードが設定できない場合は、CCD3 03から出力される画像信号のレベル調整を行うことに より露光不足による不適正露出が補正される。すなわ ち、低輝度時は、シャッタスピードとゲイン調整とを組 み合わせて露出制御が行われる。画像信号のレベル調整 は、信号処理回路313内の後述するAGC回路のゲイ ン調整において行われる。

【0049】タイミングジェネレータ314は、本体部2のタイミング制御回路202から送信される基準クロックに基づきCCD303の駆動制御信号を生成するも

のである。タイミングジェネレータ314は、例えば積分開始/終了(露出開始/終了)のタイミング信号、各画素の受光信号の読出制御信号(水平同期信号、垂直同期信号、転送信号等)等のクロック信号を生成し、CCD303に出力する。

【0050】信号処理回路313は、CCD303から出力される画像信号(アナログ信号)に所定のアナログ信号処理を施すものである。信号処理回路313は、CDS(相関二重サンプリング)回路とAGC(オートゲインコントロール)回路とを有し、CDS回路により画像信号のノイズの低減を行ない、AGC回路のゲインを調整することにより画像信号のレベル調整を行う。

【0051】調光回路304は、フラッシュ撮影における内蔵フラッシュ5の発光量を本体部2の全体制御部211により設定された所定の発光量に制御するものである。フラッシュ撮影においては、露出開始と同時に被写体からのフラッシュ光の反射光が調光センサ305により受光され、この受光量が所定の発光量に達すると、調光回路304から制御部211内に設けられたFL制御回路発光停止信号が出力される。FL制御回路は、この発光停止信号に応答して内蔵フラッシュ5の発光を強制的に停止し、これにより内蔵フラッシュ5の発光量が所定の発光量に制御される。

【0052】3D情報入力には後述のシーケンスで説明するが、2枚のフラッシュ撮影画像から得る。1枚が縞パターン投影付き画像でもう1枚が縞パターンを投影しない画像である。2枚の画像では、基本光度(図28参照)が一定であることが理想である。縞パターン情報から位相情報を取り出す場合、基本光度情報は除去されなければならない。よって、2枚の撮影では、別々の調光制御を行わずにフラッシュ発光時間を一定にすることとする。なお、フラッシュへの調光制御そのものはカメラ本体部2の全体制御部211から制御される。

【0053】以上述べた、撮像部3と本体部2とは、撮像部3の装着面334に設けられた、334a~334gからなる7グループの接続端子群と、本体2の接続面233に設けられた234a~234gからなる7グループの接続端子群によって、撮像部3と本体部2とが縞パターン投影ユニット1を通って電気的に接続される。

40 また、縞パターン投影ユニット1と本体部2とは、23 4hの接続端子によって電気的に接続される。

【0054】次にカメラ本体部2の内部ブロックに関して説明する。

【0055】カメラ本体部2内において、A/D変換器205は、画像信号の各画素信号を10ビットのデジタル信号に変換するものである。

【0056】カメラ本体部2内には、基準クロック、タイミングジェネレータ314、A/D変換器205に対するクロックを生成するタイミング制御回路202が設50 けられている。タイミング制御回路202は、制御部2

11により制御される。

【0057】黒レベル補正回路206は、A/D変換された画素信号(以下、画素データという。)の黒レベルを基準の黒レベルに補正するものである。また、WB回路207は、γ補正後にホワイトバランスも合わせて調整されるように、R,G,Bの各色成分の画素データのレベル変換を行うものである。WB回路207は、全体制御部211から入力される、レベル変換テーブルを用いてR,G,Bの各色成分の画素データのレベルを変換する。なお、レベル変換テーブルの各色成分の変換係数(特性の傾き)は全体制御部211により撮影画像ごとに設定される。

【0058】γ補正回路208は、画素データのγ特性 を補正するものである。

【0059】画像メモリ209は、γ補正回路208から出力される画素データを記憶するメモリである。画像メモリ209は、1フレーム分の記憶容量を有している。すなわち、画像メモリ209は、CCD303がn行m列の画素を有している場合、n×m画素分の画素データの記憶容量を有し、各画素データが対応する画素位置に記憶されるようになっている。

【0060】VRAM210は、LCD表示部10に再生表示される画像データのバッファメモリである。VRAM210は、LCD表示部10の画素数に対応した画像データの記憶容量を有している。

【0061】撮影待機状態においては、撮像部3により 1/30 (秒) ごとに撮像された画像の各画素データが A/D変換器 $205\sim\gamma$  補正回路208により所定の信号処理を施された後、画像メモリ209に記憶されるとともに、全体制御部211を介してVRAM210に転送され、LCD表示部10に表示される(ライブビュー表示)。これにより撮影者はLCD表示部10に表示された画像により被写体像を視認することができる。また、再生モードにおいては、メモリカード8から読み出された画像が全体制御部211で所定の信号処理が施された後、VRAM210に転送され、LCD表示部10に再生表示される。

【0062】カードI/F212は、メモリカード8への画像データの書込みおよび画像データの読出しを行うためのインターフィースである。

【0063】フラッシュ制御回路216は、内蔵フラッシュ5の発光を制御する回路である。フラッシュ制御回路216は、全体制御部211の制御信号に基づき内蔵フラッシュ5の発光の有無、発光量および発光タイミング等を制御し、調光回路304から入力される発光停止信号STPに基づき内蔵フラッシュ5の発光量を制御する

【0064】RTC219は、撮影日時を管理するする ための時計回路である。図示しない別の電源で駆動され る。 【0065】操作部250には、上述した、各種スイッチ、ボタンが設けられている。

【0066】シャッタボタン9は銀塩カメラで採用されているような半押し状態(S1)と押し込んだ状態(S2)とが検出可能な2段階スイッチになっている。待機状態でシャッターボタンをS1状態にすると、測距センサAFからの測距情報によって距離情報を全体制御部211へ入力する。全体制御部211の指示によって、AFモータM2を駆動し、合焦位置へ撮影レンズ301を10移動させる。

【0067】全体制御部211は、マイクロコンピュータからなり、上述した撮像部3内およびカメラ本体部2内の各部材の駆動を有機的に制御して3Dカメラ1の撮影動作を統括制御するものである。図6のブロック図を参照しながら説明する。

【0068】また、全体制御部211は、露出制御値 (シャッタスピード(SS))を設定するための輝度判 定部211aとシャッタスピード設定部(SS設定部2 11b)とを備えている。

20 【0069】輝度判定部211aは、撮影待機状態において、CCD303により1/30(秒)ごとに取り込まれる画像を利用して被写体の明るさを判定するものである。すなわち、輝度判定部211aは、画像メモリ209に更新的に記憶される画像データを用いて被写体の明るさを判定するものである。

【0070】シャッタスピード設定部211bは、輝度 判定部による被写体の明るさの判定結果に基づいてシャッタスピード(CCD303の積分時間)を設定するものである。

30 【0071】さらに、全体制御部211は、上記撮影画像の記録処理を行うために、フィルタリング処理を行うフィルタ部211fとサムネイル画像および圧縮画像を生成する記録画像生成部211gとを備え、メモリカード8に記録された画像をLCD表示部10に再生するために、再生画像を生成する再生画像生成部211hを備えている。

【0072】フィルタ部211.fは、デジタルフィルタにより記録すべき画像の高周波成分を補正して輪郭に関する画質の補正を行うものである。

0 【0073】記録画像生成部211fは、画像メモリ2 09から画素データを読み出してメモリカード8に記録 すべきサムネイル画像と圧縮画像とを生成する。記録画 像生成部211hは、画像メモリ209からラスタ走査 方向に走査しつつ、横方向と縦方向の両方向でそれぞれ 8画素ごとに画素データを読み出し、順次、メモリカー ド8に転送することで、サムネイル画像を生成しつつメ モリカード8に記録する。

【0074】また、記録画像生成部211fは、画像メモリ209から全画素データを読み出し、これらの画素 50 データに2次元DCT変換、ハフマン符号化等のJPE

o Nava ametrija - 😁

備える。

G方式による所定の圧縮処理を施して圧縮画像の画像データを生成し、この圧縮画像データをメモリカード8の本画像エリアに記録する。

【0075】なお、3D情報入力モードの場合は、JPEG圧縮を行わないことが望ましいので、記録画像生成部211fを通過する場合、1/1圧縮という扱いにする。

【0076】全体制御部211は、撮影モードにおいて、シャッタボタン9により撮影が指示されると、撮影指示後に画像メモリ209に取り込まれた画像のサムネイル画像と圧縮率設定スイッチ12で設定された圧縮率によりJPEG方式により圧縮された圧縮画像とを生成し、撮影画像に関するタグ情報(コマ番号、露出値、シャッタスピード、圧縮率、撮影日、撮影時のフラッシュオンオフのデータ、シーン情報、画像の判定結果等)等の情報とともに両画像をメモリカード8に記憶する。

【0077】3D情報入力モードの場合は、図7に示すように、1コマ目と2コマ目の2枚で初めて1つの被写体の3D情報となる。すなわち、1枚目がaとし、縞パターン付き画像、2枚目がbで縞パターンなしの通常画像である。通常40枚撮影できるカードであれば、20シーンの3D画像ということになる。

【0078】 3 Dカメラによって記録された画像の各コマはタグの部分と J P E G 形式で圧縮された高解像度の画像データ( $(1600 \times 1200)$  画素)とサムネイル表示用の画像データ( $(80 \times 60)$  画素)が記録されている。

【0079】撮影/再生モード設定スイッチ14を再生モードに設定したときには、メモリカード8内のコマ番号の最も大きな画像データが読み出され、再生画像生成部211hにて、データ伸張され、これがVRAM210に転送されることにより、表示部10には、コマ番号の最も大きな画像、すなわち直近に撮影された画像が表示される。UPスイッチZ3を操作することにより、コマ番号の大きな画像が表示され、DOWNスイッチZ4を押すことによりコマ番号の小さな画像が表示される。しかし、3Dモードで撮影した場合、3Dモード情報が記録されていれば、3D撮影画像であるので2枚セット画像の2枚目すなわち、図7のb画像を出力するようにする。これは縞パターン付き画像を表示しないようにするためである。

【0080】次に、縞パターン投影ユニット1の部分を説明する。縞パターン投影ユニット1内部回路は3Dフラッシュ電源スイッチ25のスイッチがONの場合動作する。ONである場合、カメラ本体のフラッシュ制御回路216および内蔵フラッシュ5は不動作状態に入る。縞パターン投影ユニット1の制御回路514は、縞パターン投影部501のフラッシュ505を動作させる回路および縞パターンの切り換えを行う回路を含む。マスク切り換えには、マスクモータM3に信号を送り、マスク

ユニット530を動作させる。縞パターン投影ユニット1には他に不図示の電源回路および電池が配置される。 【0081】縞パターン投影ユニット1の内部は、図8のようになっている。図8(a)は、正面透視図、

(b) は平面透視図である。縞パターン投影ユニット1 の内部には、フラッシュ光を発光するキセノンチューブ 531と、パターンを被写体にむけてワイドに投影する ための凹レンズ532と、2枚のマスクがL字状に結合したマスクユニット530と、マスクユニット530を 10 軸534と、軸534を回転させる不図示のモータとを

【0082】マスクユニット530が図8(a)において実線で示した位置にあるとき、一方のマスクが投影窓533から投影される。マスクユニット530が実線位置から図において反時計方向に90度回転すると、他方のマスクが投影窓533から投影される。マスクユニット530が実線位置から図において時計方向に90度回転すると、投影窓533から両方のマスクが完全に退避する。

20 【0083】制御回路514には、フラッシュ光用の電 気エネルギーをためるコンデンサや、調光センサ305 の信号を受けフラッシュ発光を打ち切るスイッチIGB Tなどがあるが、従来のフラッシュ回路と同様の構成で あるので、説明は省略する。

【0084】マスクユニット53002つのマスクは、図11において(s)、(t)で示すように、周波数の異なるパターンを有する。各マスクのパターンは、グラデーション状態である。

【0085】パターンの詳細分布は図12(a)(b) ようになっている。編パターン数は、例えば10から30周期(図12(a)では14本ある)であり、各編は、図12(b)に示すような濃度分布を持っている。各濃度は、例えば20%から70%の分布で、三角波を示す。つまり、グラデーション状態である。この濃度分布により、受光したときの位相シフトを検知し、位相画像すなわち距離分布画像(3次元画像)を得ることができる。原理的には、単調増加部と単調減少部の組み合わせであればよいので、各々が正弦波でもガウス分布でもよい。また、マスクのパターンは、グラデーション状態 以外に、段階的に濃度が変化している状態でもよい。

【0086】図12(a), (b)では、どの周波分か (何本目の縞か)を特定するため色を変化させた部分K を持つ。図12(a)の中央の濃度が異なる部分Kが、 色を持つところである。

【0087】図12(c)は、図12(a)のパターンを中心に配置し、両端にグレイコードを配置したものである。縞パターンの端(縞パターン部の下、または上、または上下)にグレーコードパターンをつける。コードは、例えば3ラインのコードを持ち、3本のデータの組み合わせで位置を特定することができる。さらに、色情

報や、濃度の変化した縞パターンを設けることで位置特定の確度を上げることができる。

【0088】図13に別の実施例を示す。図13(a)では1枚の投影縞パターン、周辺部に縞パターン位置の特定のしやすい低周波を置き、中央部に精度を上げるために高周波を置く。低周波縞パターンからもしくは低周波、高周波の両方で縞パターン位置の特定をすることができる。周波数は、例えば1つがfであれば、他は1.4f、2fと設定する。各縞パターンは正弦波、または、三角波の濃度を持ち、グラデーション状態になっている。また、グラデーション状態以外に、段階的に濃度が変化している状態でもよい。図13(b)が正弦波の場合、図13(c)が三角波の場合である。

【0089】さらに、位置特定の精度を上げるために、例えば中央部分には、色の付いたパターンを置き、グラデーションのある縞だけでなく、色情報を利用したマーカを置き位置情報の精度を上げることもできる。ここでは、濃度を30%から80%のものを使用している。そして、色の付いている部分の濃度は50%となっている。全体の濃度分布は50%程度のコントラストを必要とする。検出能力から(SN)5%の変化をCCDセンサがとらえることができれば、ここでは10段階の濃度は区別できることになる。コントラストは大きいほど分解能が上がり、3D情報を得る場合の精度が向上する。

【0090】これらを一例として、それぞれの周波数を低く設定したパターンが t である。図8で示すように、s によるパターン投影と t によるパターン投影、およびパターンのないフラッシュ光だけの投影を切り換えることができる。これは、被写体の空間周波数が高い場合や、投影縞パターンと同じような周波数である場合、縞位置の特定が難しい場合があるので、そのような場合には、縞パターンの周波数を切り換えることで誤検出を防ぐためである。

【0091】この切り換えの条件は、撮影画像の周波数に基づく。すなわち、撮像された画像を入力したとき、周波数チェックを行い、縞パターンと同じ周波数が多く含まれていれば、その画像をメモリしないで、縞パターンを切り換えて縞パターン付きの被写体画像を再撮像する。これによって、被写体の空間周波数が縞パターンのような繰り返しであっても、縞パターンの位置特定の精度を下げないで、3次元情報入力を正しく行うことができる。

【0092】マスクユニットの別の例を示す。それぞれは図14がsパターンである。図15および図16がtパターンである。

【0093】図14は、図12(a)と同じようなパターンであるが、色の付いた部分が複数あるが、ここではシアン色(C)を用いている。単色を利用しているのはマスクの制作が用意であるからである。すなわち低コストでできる。シアン色は投影した場合、肌色に対し感度

よく情報が得られ、マーカとして適する。

【0094】しかし、被写体の色や被写体を照明する光源の色によって位置を特定できない場合が生じ、縞位置の特定が難しい。そこで、被写体の色や被写体を照明する光源の色が特定の色に偏っていても縞パターンの位置特定の精度を下げないで、3次元情報入力を正しく行うために、縞パターンを切り換える。ここでは、図15のパターンのように、シアン色をマゼンタ色(M)にする。

10 【0095】この切り換えの条件は、撮影画像の色に基づく。すなわち、撮像された画像を入力したとき、色チェックを行い、縞パターンと同じ色が多く含まれていれば、その画像をメモりしないで、縞パターンを切り換えて縞パターン付きの被写体画像を再撮像する。これによって、被写体の色または光源色が縞パターンのような繰り返しであっても、縞パターンの位置特定の精度を下げないで、3次元情報入力を正しく行うことができる。

【0096】別の切り換え例として、図16のようなパターンもあり得る。これは、パターンにR(赤)、G(緑)、B(青)、C(シアン)、M(マゼンタ)、Y(黄)の色を持つものである。色付きパターンが低コストで作成できる場合は、図16のようなパターンを利用すると誤差確率が減る。

【0097】ここで、縞パターン投影の別の実施例を示す。

【0098】縞パターン投影時の被写体像の撮像とパターン投影しない時の撮像の切り換えを、メカ的切り換えを行わず可動部なしに電気的にのみ切り換える方法である。この目的はパターン投影時の被写体像の撮像と、パターン投影しない時の撮像との間の時間を短くし、手ぶれによる像の移動や、被写体の移動による像の移動の影響を小さくし3次元情報入力精度を上げることである。パターンあり、なしの画像では被写体とカメラが同じ位置関係にないと位相画像が正しく求めることができないのである。電磁気的変化可能な空間変調素子を利用したマスクパターン切り換えであれば、マスクパターンをメカ的切り換えよりも、短時間で切り換え可能となり3次元情報入力精度が上がる。

【0099】図9は、電磁気的変化可能な空間変調素子 0 として液晶素子を用いた実施例である。

【0100】図9(a)は、縞パターン投影ユニット1の正面透視図、(b)は平面透視図であり、541はキセノンチューブ、540が液晶パネル(LCD)、542はパターン投影のためのレンズ、543はパターン投影窓である。この場合、図5における回路で、マスクモータM3は不要となる。

【0101】LCD540の液晶自体は、図11~図1 3のマスクパターンの場合には、例えば白と黒のような 単色で構成可能であり、図14~図16の場合には、多 50 色となる。液晶はいろいろなタイプがあり、偏光板を使 用するタイプとゲストホストのようにしないタイプ、また有機液晶タイプなどがあるが、LCD540にいずれを使用してもよい。LCD540は、単に表示と非表示とを2値的に切り換える一般的なLCDとは異なり、中間調の表示が可能であり、これによってグラデーション状態のパターンを形成でき、単に2値的な表示しかできない一般的なLCDにするよりも、3次元情報入力精度が上がる。

【0102】また、液晶パネル540の透過光によってパターンを投影する代わりに、例えば図9(c)の平面透視図に示したように、液晶パネル545の反射光によってパターンを投影する構成も可能である。すなわち、キセノンチューブ541の光をクロスプリズム544で液晶パネル545に照射し、その反射光をパターン投影窓543から投影する。

【0103】また、液晶以外に、透明タイプにしたエレクトロクロミック素子やエレクトロルミネッセンス素子を、背面からフラッシュ光を投影し、エレクトロクロミック素子やエレクトロルミネッセンス素子を透過した光で、被写体に縞パターンおよび色マーカをつけることは可能である。

【0104】ここで図10に、発光ダイオードを用いたさらに別の実施例を示す。この目的もパターン投影時の被写体像の撮像と、パターン投影しない時の撮像との間の時間を短くし、手ぶれによる像の移動や、被写体の移動による像の移動の影響を小さくし3次元情報入力精度を上げることである。構成は、フラッシュ光源を使用せず、代わりに発光ダイオード(LED)を使用する。

【0105】発光ダイオードの発光と非発光によるパターン有無の切り換えであれば、マスクパターンをメカ的切り換えよりも、短時間で切り換え可能となる。この場合は、フラッシュ光源なしに、発光ダイオードのパターン付き被写体画像と定常光だけの被写体画像とから3次元情報を得る。

【0106】図10(a)は縞パターン投影ユニット1の正面透視図、(b)は平面透視図である。発光ダイオードアレイ560は、R(赤)、G(緑)、B(青)の発光要素が列になっており、各発光要素にはそれぞれマイクロレンズが配置されている。この発光要素の列と周期が合うように、発光ダイオードアレイ560の前には縞パターンを形成するマスク550が配置されている。マスク550は、図12のような構成で単色(白と黒)の透過タイプでよく、また、縞の濃度が変化する部分Kはなくてもよい。発光ダイオードアレイ560の各発光要素からの光は、マスク550を透過して、パターン投影窓553から投影される。したがって、R(赤)、G(緑)、B(青)の縞が繰り返すパターン光が投影される

【0107】発光ダイオードアレイ560の発光要素は、図10(c)のようにW(白)、R(赤)、W

(白)、G(緑)、W(白)、B(青)、W(白)の列のようにしてもよい。白がある分色補正が容易となる。【0108】図10(a)(b)(c)のような構成の場合には、縞パターン投影ユニット1の投影窓からは縞が付いたパターン光しか投影できないので、縞パターンなしの画像を得るには、フラッシュなどの補助光なしの自然光状態で撮影するか、カメラ本体部2の内蔵フラッシュ5を用いることになる。

【0109】マスク550を使用せずに、発光ダイオードアレイ560から直接パターン光を投影することも可能である。特にこの場合には、図10(d)に示すように、1つのマイクロレンズに対応して2つの発光要素を1組として配置され、色の切り換えができる発光ダイオードアレイ570を用いれば、各組の発光要素のうちー方(図においては左側のR,W,G,W,B)を発光させて縞付きのパターン光を投影したときに、パターン付き画像の撮影を行い、各組の発光要素のうち他方(図においては右側のW,W,W,W)を発光させて縞のないフラットな白色光を発光したときに、この白色光を20補助光として、パターンなし画像の撮影を行うことができる。

【0110】次に、3Dカメラを使用した動作を、図19、図20を参照しながら説明する。

【0111】まず、カメラのメインスイッチPSをONした後、3DフラッシュスイッチZ5をONする(U1)。次に3Dモードをセットする(U2)。ここではスイッチキー521~526を使用してモード設定する。これはZ5ONで同時に自動設定としてもよい。また、回路形式および電源形式がカメラ本体だけからの供30 給であれば、スイッチキー521~526だけで設定するようにしてもよい。

【0112】モード設定されれば、3D入力領域がLCDモニタ10に表示され(U3)、BUSY表示(LED2)がつき(U4)、縞パターンtがセットされる。(U5)。LCD表示10に被写体のライブ画像が表示される(U6)。そして3Dフラッシュのコンデンサ(不図示)への充電が開始される(U7)。充電終了を待ち(U8)、終了すればBUSY表示が消える(U9)。そして、U11でレリーズ信号(シャッターボタン9のオン)を待つ。

【0113】3D撮影には、2枚の連写を必要とする。 1枚が縞パターン付き画像、1枚が縞パターンなしの画 像を得る。レリーズ信号が入れば、1枚目の撮影に入り 撮像センサの積分が始まる(U12)。この積分中に縞 パターン付きフラッシュが発光し、縞パターン画像を得 る(U13)。なお、U13では、縞パターン付き画像 を1枚目としているが、逆に2枚目にしてもよい。この 場合の変形については、後述する。

【0114】入力した画像をメモリする前に、被写体画 50 像の周波数チェックを行う(U14)。周波数が縞パタ ーン周波数と異なったもので3次元情報入力可能である場合は、U17およびU19へ進む。しかし、3次元情報入力不可と判断した場合は、縞パターンをtパターンからsパターンに切り換える(U16)。そして再撮像のためにU12に戻る。

【0115】周波数変更は、メカ切り換え方式だけでなく、LCDパターン切り換え方式も可能である。

【0116】次に、カメラ本体部2では画像データa (縞パターン付き画像) をメモリする (U17)。この時撮像は、縞パターンであるため、LCDモニタ10には縞パターン付き画像データaの画像を表示する (U18)。

【0117】一方、縞パターン投影ユニット1では、一般のフラッシュとは異なり、フラッシュ発光後の追い充電に入るのを禁止し(U19)、パターンの退避を行う(U20)。

【0118】マスクは、図10で示したようにマスクモータM3で退避させる。退避時間は短くし、2枚の撮影間隔をできるだけ短くする。被写体が動いても画像のずれを無視できる程度にする。例えばマスクのバウンドを含め100ms以内を目標とする。この退避をモータで行う場合、大きな消費電流を必要とする。よって、ここで同時にフラッシュ充電に入ると、双方大電流を必要とするため、モータが動かない場合がでて、退避できなくなり、2枚目撮影で縞パターンなし画像を得られなくなる。そこで、フラッシュコンデンサ充電とモータ通電の同時動作を避けている。

【0119】パターンが切り換わった後、2枚目の撮像に入る(U21)。同様にフラッシュ発光し(U22)、縞パターンなし画像を得る。

【0120】そして、U23で縞パターンなし画像の画像データbをメモリするが、U24で縞パターン付きの被写体画像データaをLCDモニタ10に引き続き表示する。ここでは改めて、VRAMにデータaを入れるようにしているが、U18での表示をそのまま継続させても同様である。

【0121】一方、これと並行して、縞パターン投影ユニット1では、退避したパターンを復帰する(U25)。そして、ここで初めて3Dフラッシュの充電を再開する(U26)。再びBUSY表示を点灯する(U27)。

【0122】U24およびU27の終了後、U28で、 縞パターン付き画像の画像データaと縞パターンなし画 像の画像データbをメモリカード8に書き込む。ここで まとめて書き込むのは、2枚の撮影時間間隔を短くする ためである。1枚ごとに書き込むと時間がかかるためで ある。すなわち3Dモードになれば、2枚ずつメモリカード8に書き込むモードになる。この期間は、書き込み 時間に依存するが、例えば10秒程度であり、この間に 撮影者はパターン画像のできを確認することができる。 また、確認を促すために、決められた所定時間(例えば 15秒)表示し続けるように設定してもよい。以下、3 Dフラッシュスイッチ Z5のオンが続いていれば、U3 0でライブ画像表示に切りかえて、U8に戻る。

【0123】図21および図22は、上記とは逆に、最初にパターンなし画像をとり、2枚目にパターンあり画像をとる変形のフローチャートである。この変形例では、簡略化のために、パターンの切り換えはなくしている。

【0124】まず、図19のU1~U4と同様に、カメラのメインスイッチPSをONした後、3DフラッシュスイッチZ5をONする(U1')。次に3Dモードをセットする(U2')。モード設定されれば、3D入力領域がLCDモニタ10に表示され(U3')、BUSY表示(LED2)がつく(U4')。

【0125】次に、U5'では、1枚目でパターンなし画像をとるために、U5とは逆に、まず縞パターンtが退避する。

【0126】次に、図19のU6~U13と同様に、L CD表示10に被写体のライブ画像が表示される(U 6')。そして3Dフラッシュのコンデンサ(不図示)への充電が開始される(U7')。充電終了を待ち(U 8')、終了すればBUSY表示が消える(U9')。そして、U11'でレリーズ信号(シャッターボタン9のオン)を待つ。レリーズ信号が入れば、1枚目の撮影に入り撮像センサの積分が始まる(U12')。この積分中に、フラッシュが発光する(U13')。

【0127】次に、カメラ本体部2では、画像データ a' (縞パターンなし画像) をメモリする (U1

0 7')。この時、撮像は縞パターンなしであり、パターン付き画像は表示できないため、パターンなし画像を表示する(U18')。

【0128】一方、縞パターン投影ユニット1では、一般のフラッシュとは異なり、フラッシュ発光後の追い充電に入るのを禁止し(U19')、次のパターンあり画像用に、パターンの復帰を行う(U20')。

【0129】パターンが切り換わった後、2枚目の撮像に入る(U21')。同様にフラッシュ発光し(U22')、縞パターンあり画像を得る。

40 【0130】そして、U23'で縞パターンあり画像の画像データb'をメモリするが、U24'では、U24'では、C4'では、パターンあり画像を表示する。U24'~U30'の間は、パターンあり画像が表示される。

【0131】そして、ここで初めて3Dフラッシュの充電を再開し(U26')、再びBUSY表示を点灯する(U27')。

【0132】U24'およびU27'の終了後、U28'で、縞パターンなし画像の画像データa'と縞パターン付き画像の画像データb'をメモリカード8に書き50込む。以下、3Dフラッシュスイッチ25のオンが続い

or the service of the con-

ていれば(U29'でYES)、U30'でライブ画像 表示に切りかえて、U8'に戻る。

【0133】ここで、縞パターン投影にLCDを用いる場合のシーケンスを示す。

【0134】この場合は、図19からU14、U15、U16を省略する。そして、U5では、「縞パターン t セット」に代えて「LCDの縞パターンをオン」にする。U20では、「パターンを退避」する代わりに「LCDの縞パターンをオフ」にする。そして、U25では、「パターンを復帰」する代わりに「LCDの縞パターンをオン」にする。以上で、LCDタイプのシーケンスとなる。

【0135】LEDタイプのシーケンスの場合は、図23のようになる。カメラのメインスイッチPSをONした後、3Dモードをセットする(V1)。ここでは、スイッチキー521~526を使用してモード設定する。これは、Z5のONで、同時に自動設定としてもよい。また、回路形式および電源形式が、カメラ本体2だけからの供給であれば、スイッチキー521~526だけで設定するようにしてもよい。

【0136】モード設定されれば、3D入力領域がLC Dモニタ10に表示され(V2)、LCD表示10に被 写体のライブ画像が表示される(V3)。そしてV4で レリーズ信号(シャッターボタン9のオン)を待つ。

【0137】レリーズ信号が入れば、縞パターンがLEDによって投光され(V5)、1枚目の撮影に入り撮像センサの積分が始まり(V6)、縞パターン画像を得る。なお、V6では縞パターン付き画像を1枚目としているが、逆に2枚目にしてもよい。

【0138】次に、カメラ本体部2では画像データa (縞パターン付き画像)をメモリする(V7)。この時、撮像は縞パターンであるため、LCDモニタ10には縞パターン付き画像データaの画像を表示する(V8)。

【0139】次に、LEDのパターンをオフにした状態で(V9)、次の撮像センサの積分に入る(V10)。LEDのオンとオフだけなので、2枚の撮影間隔は短い。被写体が動いても画像のずれを無視できる程度になる。2枚目の撮像によって、縞パターンなし画像を得る。この時、LEDのタイプが図10の(d)であれば、白色LEDのみを発光してパターンのない照明を行い、パターンなし画像を得る。そして、V11で縞パターンなし画像の画像データbをメモリするが、V12で縞パターン付き被写体画像データaをLCDモニタ10に引き続き表示する。

【0140】V13で、縞パターン付き画像の画像データaと縞パターンなし画像の画像データbをメモリカード8に書き込む。ここでまとめて書き込むのは、2枚の撮影時間間隔を短くするためである。1枚ごとに書き込むと時間がかかるためである。すなわち3Dモードにな

れば、2枚ずつメモリカード8に書き込むモードなる。 【0141】以下、3Dモードが続いていればV3に戻って(V14)、ライブ画像表示に切り換える。

【0142】以上が、カメラでの動作である。3D情報を得るためのデータは、メモリカード8にある。3D画像に再現するには、このデータをパソコン等のコンピュータで後処理を行う。この処理は、図18に示す手順で行う。

【0143】すなわち、メモリカード8をパソコンにセットした後(不図示)、メモリカード8から縞パターン付き画像の画像aおよび縞パターンなし画像bのデータを入力する(D1, D2)。画像aから基本光度情報を抽出し、画像bに対する基本光度倍率nを求める(D3)。基本光度は、図28で示したように縞パターンに依存しない画像データである。

【0144】次に、画像 a と画像 b の基本光度レベルを合わせ、縞パターン情報 c のみを得る(D 4)。そして、縞パターン情報 c に基づいて、ゲインを規準化した位相画像を抽出する(D 5)。

20 【0145】そして、D6で位相画像から被写体の距離 分布を演算する。このときに、縞パターンの位置を区別 することができるようにしてあるため、位相位置が何番 目の縞に対応するのを正確に特定できる。つまり、投影 パターンと被写体からの反射パターンの位置のマッチン グが正確に行える。このようにして被写体までの距離、 および距離分布が正確な情報として得ることができる。 3次元画像を得る場合は、距離分布だけの情報を利用す るだけでもよい。

【0146】以上説明した3Dカメラは、被写体や照明 30 光の影響を受けた場合など、正確な3次元画像を得ることができない画像データを、3次元画像作成用の画像データとして記録することを防止し、正確な3次元画像情報の記録が可能である。

【0147】なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施可能である。

【0148】例えば、デジタルカメラの実施形態を説明したが、銀塩カメラでも同様に縞パターン付き画像と縞パターンなし画像の2枚を銀塩フィルムに撮影し、後処理によって3D画像を作成することは可能である。この場合、フィルムは現像後、フィルムスキャナでデジタイズし、パソコンなどコンピュターに取り込めば、後処理は同様になる。また、液晶パネル540,545に代えて、エレクトロクロミック素子やエレクトロルミネッセ

# 【図面の簡単な説明】

ンス素子などを用いてもよい。

【図1】 本発明の一実施形態に係る3次元情報入力カメラの正面図である。

【図2】 図1のカメラの背面図である。

【図3】 図1のカメラの左側面図である。

50 【図4】 図1のカメラの底面図である。

to get an income.

- 【図5】 図1のカメラの回路ブロック図である。
- 【図6】 図5の要部詳細ブロック図である。
- 【図7】 データ配列の説明図である。
- 【図8】 フラッシュ部の要部構成図である。
- 【図9】 LCDを用いたフラッシュ部の要部構成図である。
- 【図10】 LEDを用いたフラッシュ部の要部構成図である。
- 【図11】 縞パターンの説明図である。
- 【図12】 縞パターンの説明図である。
- 【図13】 縞パターンの説明図である。
- 【図14】 縞パターンの説明図である。
- 【図15】 縞パターンの説明図である。
- 【図16】 縞パターンの説明図である。
- 【図17】 縞パターン投影の説明図である。
- 【図18】 撮影画像の後処理のフローチャートである。
- 【図19】 撮影動作のフローチャートである。画像周波数をチェックする場合を示す。
- 【図20】 図19の続きのフローチャートである。
- 【図21】 図19の変形例のフローチャートである。
- 【図22】 図21の続きのフローチャートである。
- 【図23】 LEDでパターン投影する場合の撮影動作のフローチャートである。
- 【図24】 従来例の説明図である。
- 【図25】 従来例の説明図である。
- 【図26】 従来例の説明図である。
- 【図27】 従来例の説明図である。
- 【図28】 従来例の説明図である。
- 【図29】 従来例の説明図である。

#### 【符号の説明】

- 1 縞パターン投影ユニット
- 2 カメラ本体部
- 3 撮像部
- 4 グリップぶ
- 5 内蔵フラッシュ
- 8 メモリカード
- 9 シャッタボタン
- 10 LCD表示部 (モニタ表示手段)
- 14 モード設定スイッチ

- 15 蓋
- 17 カード装填室
- 18 電池装填室
- 31 光学ファインダー
- 210 VRAM (モニタ表示手段、画像記憶手段)
- 211 全体制御部 (モニタ表示手段)
- 301 ズームレンズ
- 302 撮像回路
- 303 CCDカラーエリアセンサ (撮像手段)
- 10 304 調光回路
  - 305 調光センサ
  - 501 縞パターン投影部(投影手段)
  - 502 三脚ねじ
  - 515 蓋
  - 518 電池装填室
  - 521~526 キースイッチ
  - 530 マスクユニット
  - 531 キセノンチューブ
  - 532 凹レンズ
- 20 533 投影窓
  - 534 軸
  - 540 液晶パネル
  - 541 キセノンチューブ
  - 542 レンズ
  - 543 パターン投影窓
  - 544 クロスプリズム
  - 545 液晶パネル
  - 550 マスク
  - 553 パターン投影窓
- 30 560, 570 発光ダイオードアレイ
  - AF 測距センサ
  - M1 ズームモータ
  - M2 フォーカスモータ
  - M3 マスクモータ
  - PS 電源スイッチ
  - Rel 解除レバー
  - Ζ 4連スイッチ
  - Z1~Z4 ボタン
  - Z5 3Dフラッシュ電源スイッチ

40

【図24】



【図26】

コントラ

【図28】











【図18】



【図16】



【図19】



# 142 BM + 9 F. 4 . 1



is the new many makes.

【図23】



【図27】



【図29】



フロントページの続き

(51) Int. Cl. <sup>7</sup>

識別記号

FI.

テーマコート'(参考)

H O 4 N 13/02

G 0 6 F 15/62

415

Fターム(参考) 2H059 AC01

5B057 BA12 BA15 CH11 DA04 DA07

DB03

5C022 AA13 AB15 AC03 AC31 AC78

5C052 GA02 GB06 GC05 GE08

5C061 AA29 AB02 AB08