BRAC UNIVERSITY

Department of Computer Science and Engineering

Examination: Final
Duration: 90 Minutes
No. of Questions: 3

Semester: Summer 2022
Full Marks: 30
No. of Pages: 3

Name:	ID:	Section:
(Please write in CAPITAL LETTERS)		

✓ Use the back **part** of the answer script for rough work. **No washroom breaks.**

Question 1: CO4 [10 Points]

Design the **Monster** class with necessary properties so that the given output is produced. [Hint:

- 1. Let's say there are 2 monsters: A and B.
 - -A can attack B if A is alive.
 - -If A is alive, it can only attack B if B is alive.
 - -If A's power is greater than that of B, only then A can defeat B; Otherwise, A will be defeated by B.
 - Once a monster gets defeated, it is considered to be dead.
- 2. The variable "monsterCount" keeps track of the number of monsters alive. So, update it accordingly.]

#Write your code hore	Output
#Write your code here	Output: Number of monsters alive:3
(10 131 40)	1
<pre>monster1 = Monster('Godzilla', 40)</pre>	1 -
monster2 = Monster('Hydra', 30)	Name:Godzilla
<pre>monster3 = Monster('KingKong', 50)</pre>	Power:40
print(f"Number of monsters	Alive:True
alive:{Monster.monsterCount}")	-
print('1')	Name:Hydra Power:30
1.	Alive:True
<pre>print(monster1.get_details())</pre>	3
print('2')	
<pre>print(monster2.get_details())</pre>	Name:KingKong Power:50
print('3')	Alive:True
<pre>print(monster3.get_details())</pre>	Δ
print('4')	No monsters to attack
monster1.attack()	5
print('5')	Attack successful.Godzilla defeated
	Hydra.
monster1.attack(monster2)	6
print('6')	Cannot attack Hydra. It's not alive.
monster1.attack(monster2, monster3)	Attack unsuccessful. Godzilla was
print('7')	defeated by KingKong.
print(f"Number of monsters	7
alive:{Monster.monsterCount}")	Number of monsters alive:1
print('8')	8
<pre>print(o</pre>	Name:Hydra
1	Power:30
print('9')	Alive:False
monster2.attack(monster1)	9
	Hydra is not alive to attack.

[✓] At the end of the exam, put the question **paper** inside the answer script and **return both**.

Question 2: CO5 [10 Points]

Implement the **BracbookUser** class that is derived from the **User** class with necessary properties so that the given output is produced.

[You are not allowed to change the given code under any circumstances.]

```
class User:
                                         Output:
 activities = ["Post", "Like", "Comment"]
                                         1==========
 def init (self, name,email):
                                         User Detail:
   self.name = name
                                         Name: Rakait
   self.email = email
                                         Email: xyz@gmail.com
 def UserActivity(self, activityType):
                                         Phone: Not set
   if activityType in User.activities:
                                         Activity Log: No recent activity.
     return True
                                         3============
   else:
                                         User Detail:
     return False
                                         Name: Sazzad
 def userDetail(self):
                                         Email: abc@gmail.com
   return f"User Detail:\nName:{self.name}
                                         Phone: 01727xxxxxx
            \nEmail: {self.email}"
                                         Activity Log: No recent activity.
                                         4============
#Write your code here
                                         Rakait has Like(d/ed) successfully.
user1 = BracbookUser("Rakait","xyz@gmail.com")
                                         5===========
print("1======="")
                                         Rakait has Comment(d/ed) successfully.
print(user1.userDetail())
                                         6===========
print("2=======")
                                         User Detail:
user2 = BracbookUser("Sazzad","abc@gmail.com",
                                         Name: Rakait
"01727xxxxxx")
                                         Email: xyz@gmail.com
print("3======="")
                                         Phone: Not set
print(user2.userDetail())
                                         Activity Log: Like, Comment
print("4======="")
                                         7============
user1.UserActivity("Like")
                                         No activities found like Share
print("5======="")
                                         8==========
user1.UserActivity("Comment")
                                         Sazzad has Comment(d/ed) successfully.
                                         9===========
print("6======"")
print(user1.userDetail())
                                         User Detail:
                                         Name: Sazzad
print("7======="")
                                         Email: abc@gmail.com
user2.UserActivity("Share")
                                         Phone: 01727xxxxxx
print("8======"")
                                         Activity Log: Comment
user2.UserActivity("Comment")
print("9======"")
print(user2.userDetail())
```

Question - 3: CO4 [10 Points]

1	class A:		
2	temp = 5		
3	definit(self):		
4	self.y = A.temp - 2		
5	self.sum = A.temp + 1		
6	A.temp += 3		
7	<pre>def methodA(self, m, n):</pre>		
8	x = 0		
9	self.y = self.y + m + (A.temp)		
10	x = x + 2 + n		
11	<pre>print(x, self.y, self.sum)</pre>		
12	self.methodB(-2, 6)		
13	self.sum = self.sum + x + A.temp		
14	self.methodB(-4, self.sum, 3)		
15	<pre>def methodB(self, m, n):</pre>		
16	y = 5		
17	y = y + self.y		
18	self.sum = B.x + y + n		
19	<pre>print(B.x, y, self.sum)</pre>		
20	class B(A):		
21	x = 1		
22	<pre>definit(self, obj=None):</pre>		
23	<pre>super()init()</pre>		
24	if obj != None:		
25	obj.sum = 11		
26	self.y = A.temp + 4		
27	self.sum = 3 + A.temp + B.x		
28	<pre>def methodB(self, m, n, y=0):</pre>		
29	y = y + self.y + n		
30	B.x = m + self.y + n		
31	self.sum = B.x + y + A.temp		
32	<pre>print(B.x, y, self.sum)</pre>		

Illustrate the output of the following statements:

Output:

X	y	sum