pcdl, pandas, and anndata data analysis plots

Elmar Bucher
PhD Student 2013-09-17

PhysiCell Project

PhysiCell data analysis with one lines

- PhysiCell sample project 2D: interaction.
- PhysiCell sample project 3D: cancer-immune.
- Tutorial: https://github.com/elmbeech/physicelldataloader/blob/master/man/TUTORIAL.md
- Jupyter notebook:
 https://github.com/elmbeech/physicelldataloader/blob/master/man/jupyter/pcdl_repl_programming.ipynb

pcdl dataset fetching functions

core python:

- mcdsts.get_cell_df_states() # python dictionary with feature to states or state count mapping.
- mcdsts.get_conc_df_states() # python dictionary with feature to states or state count mapping.

pandas:

- mcds.get_cell_df() # pandas DataFrame with cell agent to categorical and numerical data mapping.
- mcds.get_conc_df() # pandas DataFrame with **voxel to substrate concentration** mapping.
- mcds.get_unit_se() # pandas Series with parameter to unit mapping.

scverse:

- mcds.get_anndata() # transform PhysiCell **TimeStep into anndata** object.
- mcdsts.get_anndata() # transform PhysiCell TimeSeries into anndata object.

<u>TimeStep</u> pcdl: get_scatter() & get_contour()

pcdl TimeSeries plotting functions

- mcdsts.make imgcell()
- mcdsts.make_imgconc()
- mcdsts.make_gif()
- mcdsts.make movie()

TimeStep pandas: bar & barh

TimeStep pandas: pie

cell_type fraction

TimeStep pandas: histogram

TimeStep pandas: kernel density estimation

TimeStep pandas: box

TimeStep pandas: scatter & hexbin

TimeSeries pandas: line

TimeSeris pandas: area

matplib

matplotlib embedding

scanpy: pca & pca_variance_ratio

scanpy: pca_loadings

scanpy: leiden nearest neigbour clustering

sc.pp.neighbors(ann, n_neighbors=15) # compute the neighborhood graph. sc.tl.leiden(ann, resolution=0.01) # cluster the neighborhood graph.

sns scanpy: confusion matrix

scanpy: umap

scanpy: tSNE

scanpy: other dimensional reduction

- fa: ForceAtlas2 force-directed graph.
- fr: Fruchterman Reingold.
- grid_fr: Grid Fruchterman Reingold.
- kk: Kamadi Kawai.
- Igl: Large Graph Layout.
- drl: Distributed Recursive Layout.
- rt: Reingold Tilford tree layout.
- rt_circular: Reingold Tilford circular layout.

TimeStep scanpy: embedding_density

scanpy: dendrogram

scanpy: matrixplot

scanpy: dotplot

scanpy: stacked_violin

scanpy: heatmap

scanpy: clustermap

scanpy: trackplot

scanpy: spatial

scanpy: global autocorrelation statistic Moran's I and Geary's C

	bacteria_attack_rates	bacteria_live_phagocytosis_rates	$cell_cell_adhesion_strength$	cell_cell_repulsion_strength	cell_count_voxel	cell_density_micron3	chemotaxis_index
gc	0.000000	0.000000	0.000000	0.000000	0.295582	0.295582	0.00000
mi	0.941978	0.938326	0.959807	0.959389	0.617114	0.617114	0.96043

anndata & scanpy & timeseries

scanpy: "irrelevant" functions

- pp.calculate_qc_metric # scRNAseq related
- pp.filter_cells # scRNAseq related
- pp.filter genes # scRNAseq related
- pp.highly variable genes # scRNAseq related
- pp.log1p # scRNAseg related
- pp.normalize total # scRNAseq related
- pp.regress out # scRNAseq related
- pp.scale # get_anndata takes care of this.
- pp.subsample # maybe useful.
- pp.downsample counts # scRNAseq related
- pp.combat # batch effect.
- tl.diffmap # we have time series data, we don't need to infer.
- tl.dpt # we have time series data, we don't need to infer.
- tl.ingest # map labels and embedding from reference to new data.
- tl.rank gene groups # scRNAseq related
- tl.filter rank genes groups # scRNAseq related
- tl.mark gene overlap # scRNAseq related
- tl.score_gene # scRNAseq related
- tl.score_gene_cell_cycle # scRNAseq related
- tl.sim # simulate dynamic gene expression data

squidpy: spatial_scatter

squidpy: spatial_neighbours

squidpy: nhood_enrichment

squidpy: co_occurrence

squidpy: centrality_scores

squidpy: interaction_matrix

squidpy: Ripley's statistics for point processes

squidpy: global autocorrelation statistic Moran's I and Geary's C

	I	pval_norm	var_norm	pval_norm_fdr_bh				
position_vectorlength	0.992993	0.0	0.000273	0.0				
quorum	0.934202	0.0	0.000273		С	pval_norm	var_norm	pval_norm_fdr_bh
debris	0.927604	0.0	0.000273	position_vectorlengt	h 0.009540	0.0	0.000273	0.0
pro-inflammatory	0.870561	0.0	0.000273	quorur	n 0.030820	0.0	0.000273	0.0
toxin	0.853246	0.0	0.000273	debri	s 0.062550	0.0	0.000273	0.0
damage_halfmax	0.603295	0.0	0.000273	toxi	n 0.080504	0.0	0.000273	0.0
cell_cell_repulsion_strength	0.603295	0.0	0.000273	pro-inflammator	y 0.128708	0.0	0.000273	0.0
relative_max_damage_death	0.603295	0.0	0.000273	cell_cell_repulsion_strengt	h 0.340886	0.0	0.000273	0.0
resource_chemotactic_sensitivities	0.603295	0.0	0.000273	relative_max_damage_deat	h 0.340886	0.0	0.000273	0.0
migration_speed	0.595514	0.0	0.000273	resource_chemotactic_sensitivitie	s 0.340886	0.0	0.000273	0.0
				damage_halfma	x 0.340886	0.0	0.000273	0.0
				migration_spee	d 0.346057	0.0	0.000273	0.0

squidpy: var_by_distance

anndata & squidpy & 3D

anndata & squidpy & 3D

squidpy: "irrelevant" functions

- gr.ligrec # ligand receptor related
- gr.sepal # to identify spatially variable genes, but works only on square and hex matrices.
- im.process # h&e and microscopy image related
- im.segment # h&e and microscopy image related
- im.calculate_image_features # h&e and microscopy image related
- pl.spatial_segment # h&e and microscopy image related
- sq.pl.extract # make a temporary anndata object for plotting

- deep learning.
- scvi-tools: single-cell variational inference tools.
- probabilistic models for single-cell omics data.
- publication: https://doi.org/10.1038/s41587-021-01206-w
- manual: https://docs.scvi-tools.org/en/stable/index.html
- pytorch: https://pytorch.org/
- pytorch lighnting: https://lightning.ai/
- pyro: https://pyro.ai/

homepage

https://scverse.org/

data analysis

- muon: multimodal omics analysis.
- scirpy: T cell receptor (TCR) or B cell receptor (BCR) repertoires analysisfrom scRNA-seq data.
- scverse **ecosystem**: https://scverse.org/packages/#ecosystem

data formats

- anndata: https://anndata.readthedocs.io/en/latest/
- spatialdata: https://spatialdata.scverse.org/en/latest/
- mudata: https://mudata.readthedocs.io/en/latest/

muon

scirpy