ゼミノート #4

Fibered Categories

七条彰紀

2018年11月9日

1 Motivation : Fibered Categories

[1]

2 Definition: Fibered Categories

 $\mathbf{X}, \mathbf{B} :: \text{category}$ と関手 $\pi \colon \mathbf{X} \to \mathbf{B}$ を考える.

- π を projection と呼び,
- $\pi(O) = P$ であるとき O は P の上にある (O is over P) という.

定義 2.1 (Cartesian Arrow, Lifting Arrow, Base Preserving Natural Transformation)

(i) 以下の性質(Triangle Lifting という)を満たす ${\bf X}$ の射 $\phi\colon x\to y$ を cartesian arrow という: (1) にあるような対象と射があるとき,(2) の様に射 $z\to y$ がただ一つ存在し,可換と成る.

(ii) 次の性質 (Arrow Lifting という) をもつ $\pi\colon \mathbf{X}\to \mathbf{B}$ を fibered category という: $y\in \mathbf{X}, u\to \pi(y)\in \mathbf{B}$

が存在する時, $x \in \mathbf{X}$ と cartesian arrow :: $x \to y \in \mathbf{X}$ が存在し、以下の図式を満たす $^{\dagger 1}$.

- (iii) 二つの fibered category :: $\pi: \mathbf{X} \to \mathbf{B}, \pi': \mathbf{X}' \to \mathbf{B}$ について、 $\mathbf{X} \succeq \mathbf{X}'$ の間の射とは、functor :: $g: \mathbf{X} \to \mathbf{X}'$ であって、 π, π' と整合的 $^{\dagger 2}$ であり、cartesian arrow を cartesian arrow に写すもの.
- (iv) 二つの fibered category :: π : $\mathbf{X} \to \mathbf{B}, \pi'$: $\mathbf{X}' \to \mathbf{B}$ の間の 2 つの射 g, g': $\mathbf{X} \to \mathbf{X}'$ と natural transformation :: α : $g \to g'$ を考える.

任意の $x \in \mathbf{X}$ について, $\pi'(\alpha_x): \pi'(g(x)) \to \pi'(g'(x))$ が恒等射になるとき, α を base-preserving natural transformation という.

注意 2.2

ここで定義した性質を階層別にまとめると次のように成る.

1-morphism = 1-cell, arrow	(i) Cartesian Arrow, (ii) Arrow Lifting
2-morphism = 2-cell, functor	(iii) Morphism of Fibered Category
3-morphism = 3-cell, natural transformation	(iv) Base-Preserving Natural Transformation

なお, 圏の対象 (object) はしばしば 0-cell, 圏の射は 1-cell, 等々と呼ばれる.

注意 2.3

少し圏論の言葉を整理しておく. 通常の圏の対象の iso を 1-iso と呼び $\stackrel{1}{\cong}$ と書く. この時、階層ごとの iso/equiv は以下のようなものである.

 $^{^{\}dagger 1}$ すなわち, $\pi(x)=u,\pi(x o y)=u o\pi(y)$ を満たす.

 $[\]dagger^2$ すなわち $\pi' \circ g = \pi$ を満たす.

1-iso.
$$x \stackrel{1}{\cong} y \iff 2 \supset \mathcal{O}$$
 1-morphism $\phi \colon x \rightleftarrows y \colon \psi$ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.

2-iso. $x \stackrel{2}{\cong} y \iff 2 \supset \mathcal{O}$ 2-morphism $\phi \colon x \rightleftarrows y \colon \psi$ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.

2-equiv. $x \stackrel{2}{\cong} y \iff 2 \supset \mathcal{O}$ 2-morphism $\phi \colon x \rightleftarrows y \colon \psi$ が存在し、 $\psi \circ \phi \stackrel{1}{\cong} \mathrm{id}_x, \phi \circ \psi \stackrel{1}{\cong} \mathrm{id}_y$.

3-iso. $x \stackrel{3}{\cong} y \iff 2 \supset \mathcal{O}$ 3-morphism $\phi \colon x \rightleftarrows y \colon \psi$ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.

3-equiv. $x \stackrel{3}{\cong} y \iff 2 \supset \mathcal{O}$ 3-morphism $\phi \colon x \rightleftarrows y \colon \psi$ が存在し、 $\psi \circ \phi \stackrel{2}{\cong} \mathrm{id}_x, \phi \circ \psi \stackrel{2}{\cong} \mathrm{id}_y$.

定義 2.4 (Fibered Category)

- (i) fibered category over **B** が成す圏を **Fib**_B とする.
- (ii) **Fib**_B の部分圏で、2-morphism(natural transformation) が base-preserving natural transformation に限られる圏を **Fib**_B と書く.

注意 2.5

 ${f Fib_B}$, ${f Fib_B^{bp}}$ は 2-category である. 2-category は 2-morphism (${f Fib_B}$ では natural transformation) に "vertical composition"と "horizontal composition"の二種類の合成が定まる圏である. 詳しくはこのノートでは触れない.

定義 2.6 (Equivalence, HOM)

- (i) ${f Fib}^{
 m bp}_{f B}$ における 2-equivalence を単に equivalence of morphism of fibered categories over ${f B}$ と呼ぶ.
- (ii) $\mathbf{X}, \mathbf{Y} \in \mathbf{Fib}_{\mathbf{B}}$ について

$$\mathrm{HOM}_{\mathbf{B}}(\mathbf{X},\mathbf{Y}) := \mathrm{Hom}_{\mathbf{Fib}^\mathrm{bp}_{\mathbf{D}}}(\mathbf{X},\mathbf{Y})$$

と略す.

3 Examples: Fibered Categories

schemes over a scheme $\mathbf{Sch}/X \to \mathbf{Sch}$

4 Propositions : Fibered Categories

2-Yoneda Lemma "a version of the Yoneda lemma for fibered categories," "fully faithfull/equivalence iff fiber locally so"

5 Definition: Fiber of Fibered Categories

定義 **5.1** (Fiber)

注意 5.2

B-rational point 2-Yoneda Lemma

- 6 Proposition: Fiber of Fibered Categories
- 7 Motivation: Category Fibered in Groupoids/Sets
- 8 Definition: Category Fibered in Groupoids/Sets

定義 8.1 (Groupoid, Category fibered in groupoids/sets)

定義 8.2 (Category fibered in groupoid (Another Definition))

9 Propositions: Category Fibered in Groupoids/Sets

参考文献

[1] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.