Graafien automorfismiryhmä

Juuso Valli

24. 9. 2017

Tiivistelmä

Sisältö

1	Määritelmiä ja merkintöjä	2
2	Automorfismiryhmä	3
3	Fruchtin teoreema	4

1 Määritelmiä ja merkintöjä

Olkoon V äärellinen joukko. Olkoon $E(V)=\{\{u,v\}|u,v\in V,u\neq v\}$ joukon V alijoukkojen joukko, jonka jäsenet sisältävät täsmälleen kaksi eri solmua. Olkoon $graafi\ G=(V,E), E\subseteq E(V)$. Joukkoa V kutsutaan graafin G solmuiksi, ja joukkoa E kutsutaan kaariksi. Annetun graafin solmujoukosta kätetään merkintää G_V , ja kaarijoukosta merkintää G_E . Kaaresta $\{u,v\}$ käytetään merkintää uv. Huomaa että näillä merkinnöillä uv=vu. Yksinkertaisuuden vuoksi solmuista käytetään myös merkintää $v\in G$ merkinnän $v\in G_V$ sijaan.

Olkoon G ja H graafeja. Graafit G ja H ovat isomorfiset $G\cong H$ mikäli on olemassa bijektio $f:V_G\to V_H$ siten, että

$$uv \in E_G \iff f(u)f(v) \in E_H$$

kaikilla $u, v \in G$.

Tällaisia bijektioita kutsutaan isomorfismeiksi.

Graafin *G automorfismit* ovat sen isomorfismeja itsensä kanssa. Triviaalisti nähdään että identiteettikuvaus on kaikkien graafien automorfismi, mutta graafeilla voi olla myös muita automorfismeja.

Esimerkki 1. Olkoon graafi $G = (\{v_1, v_2, v_3, v_4\}, \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}).$

Olkoon kuvaus $f: V_G \to V_G$, $f(v_1) = v_2$, $f(v_2) = v_3$, $f(v_3) = v_4$, $f(v_4) = v_1$. Kuvaus f on selvästi bijektio. Se, että kuvaus f on automorfismi voidaan tarkistaa suoraan määritelmästä.

G_E	f(u)f(v)	$f^{-1}(u)f^{-1}(v)$
v_1v_2	v_2v_3	v_4v_1
v_2v_3	v_3v_4	v_1v_2
v_3v_4	v_4v_1	v_2v_3
v_4v_1	v_1v_2	v_3v_4

2 Automorfismiryhmä

Olkoon G_S graafin G automorfismien joukko.

Lemma 1. Kuvausten kompositio on binäärirelaatio $\circ: G_S \times G_S \to G_S$.

Todistus. Olkoon $u, v \in G$. Olkoon $f, g \in G_S$.

$$uv \in E_G \stackrel{g \in G_S}{\Longleftrightarrow} g(u)g(v) \in E_G \stackrel{f \in G_S}{\Longleftrightarrow} f(g(u))f(g(v)) \in E_G$$
 joten $f \circ g \in G_S$.

Lemma 2. Jokaisella graafilla on identiteettikuvaus, joka on automorfismi.

Todistus. Olkoon $u, v \in G$. Olkoon $id: G_V \to G_V, id(x) = x \forall x \in G_V$.

$$uv \in E_G \stackrel{id(x)=x}{\longleftrightarrow} id(u)id(v) \in E_G$$

joten $id \in G_S$.

Lemma 3. Automorfismin f käänteiskuvaus f^{-1} on automorfismi.

Todistus. Olkoon $u, v \in G$.

$$f^{-1}(u)f^{-1}(v) \in E_G \stackrel{f \in G_S}{\longleftrightarrow} f(f^{-1}(u))f(f^{-1}(v)) \in E_G \Leftrightarrow uv \in E_G$$
 joten $f^{-1} \in G_S$.

Lause 2. $Pari(G_S, \circ)$ on $ryhm\ddot{a}$.

Todistus. Lemman 1 mukaan \circ on G_S :n binäärirelaatio. Assosiatiivisuus on selvä kuvausten komposition assosiatiivisuuden perusteella. Lemman 2 mukaan jokainen G_S sisältää identiteettikuvauksen id, joka on ryhmän neutraalialkio. Lemman 3 mukaan jokaisella automorfismilla f on käänteiskuvaus $f^{-1} \in G_S$.

Graafin automorfismiryhmää kutsutaan myös graafin symmetriaryhmäksi.

Huomautus 1. Graafien automorfismiryhmät eivät yleisesti ole kommutatiivisia.

Tämä nähdään helposti vastaesimerkin kautta. Tarkastellaan esimerkin 1 mukaista graafia. Olkoon f esimerkissä esitetty automorfismi. Olkoon kuvaus $g: V_G \to V_G, g(v_1) = v_1, g(v_2) = v_4, g(v_3) = v_3, g(v_4) = v_2$. Kuvaus g on selvästi myös graafin G automorfismi. Mikäli automorfismiryhmä olisi kommutatiiviinen, olisi $f \circ g = g \circ f$. Kirjoittamalla kuvaukset auki nähdään että

 $f\circ g(v_1)=f(g(v_1))=f(v_1)=v_2$, mutta toisaalta $g\circ f(v_1)=g(f(v_1))=g(v_2)=v_4$, mistä seuraa ristiriita.

Esimerkki 3. Esimerkin 1 mukaisen graafin symmetriaryhmä on isomorfinen diedriryhmän D_4 kanssa.

Esimerkki 4. Suoran graafin symmetriaryhmä on C_2

Esimerkki 5. Puugraafin symmetriaryhmä on C_2

3 Fruchtin teoreema