





NASA's Vision for the Lunar Surface Mark McDonald



# Objective: Develop the technologies for <u>global lunar utilization</u> and <u>enable continuous</u> <u>lunar human and robotic operations</u>.





## **Regolith to Rebar: Multifaceted Problem**





### **NASA's Envisioned Future Priority Packages**



### Thrusts Develop nuclear technologies enabling fast in-space transits. Rapid, Safe, and

**Ensuring American** 

Space Technology

innovation and

space economy

global leadership in

Advance US space technology

competitiveness in a global Encourage technology driven economic growth with an

emphasis on the expanding

Inspire and develop a diverse

and powerful US aerospace

technology community

- Develop cryogenic storage, transport, and fluid management technologies for surface and in-space applications.
- Develop advanced propulsion technologies that enable future science/exploration missions.

Land Expanded Access to

Efficient Space ansportation

Enable Lunar/Mars global access with ~20t payloads to support human missions

- · Enable science missions entering/transiting planetary atmospheres and landing on planetary bodies.
- Develop technologies to land payloads within 50 meters accuracy and avoid landing hazards.

Sustainable Living and Working Farther from

- Diverse Surface Destinations
- Develop exploration technologies and enable a vibrant space economy with supporting utilities and commodities
- · Sustainable power sources and other surface utilities to enable continuous lunar and Mars surface operations.
- · Scalable ISRU production/utilization capabilities including sustainable commodities on the lunar & Mars surface
- Technologies that enable surviving the extreme lunar and Mars environments.
- Autonomous excavation, construction & outfitting capabilities targeting landing pads/structures/habitable build
- Enable long duration human exploration missions with Advanced Habitation System technologies. [Low TRL STMD



Explore Transformative

- Develop next generation high performance computing, communications, and navigation.
- Develop advanced robotics and spacecraft autonomy technologies to enable and augment science/exploration mis
- Develop technologies supporting emerging space industries including: Satellite Servicing & Assembly, In Space/Sur Spacecraft technologies

### LAND: Technologies to Precisely Land Payloads and Avoid Landing Hazards

Developing entry, descent and landing technology to enhance and enable small spacecraft to Flagship-class missions across the solar system





- Capabilities evolvable for many solar-

Enable anytime landings in treacherous terrains and independent of lighting Reduce the risk of the landing for human and robotic missions to many destinations Reduce operations time for a rover or human to reach an interesting site Aggregate resources in one surface region for missions requiring multiple landings

- NASA's Envisioned Future for each Strategic Outcome
- NASA's understanding of the State of the Art
- NASA's near-term high priorities relative to each outcome



## Request For Information (RFI) Release Plan



| Target Release<br>Timeframe                    | Thrust<br>Category | Likely Topic Areas                                                                                                                                                                                                                                                                      |
|------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q1-Q2<br>(~March → May)                        | GO                 | <ul> <li>Cryogenic fluid storage, transport, management</li> <li>Advanced (non-nuclear) propulsion</li> </ul>                                                                                                                                                                           |
| Q2-Q3<br>(~June → August)                      | LIVE               | <ul> <li>Sustainable power sources for continuous lunar surface operations</li> <li>Scalable In-Situ Resource Utilization (ISRU) for lunar</li> <li>Autonomous excavation, construction and outfitting leveraging ISRU</li> <li>Long duration human exploration technologies</li> </ul> |
| Q3-Q4<br>(~September <del>&gt;</del> December) | EXPLORE            | <ul> <li>Next generation high performance computing</li> <li>Advanced robotics and spacecraft autonomy</li> <li>Satellite servicing and assembly, surface assembly, in space/surface manufacturing</li> </ul>                                                                           |
| Q3-Q4<br>(~September → December)               | LAND               | <ul> <li>Lunar global access for ~20t payloads for human missions</li> <li>Precision landing, 50m accuracy or better while avoiding hazards</li> </ul>                                                                                                                                  |

## **NASA's Envisioned Future Priority Packages**



| Lead                                                                                                                                                                                                                                                                                                                     | Thrusts                                                     | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensuring American global leadership in Space Technology  • Advance US space technology innovation and competitiveness in a global context  • Encourage technology driven economic growth with an emphasis on the expanding space economy  • Inspire and develop a diverse and powerful US aerospace technology community | Go<br>Rapid, Safe, and<br>Efficient Space<br>Transportation | <ul> <li>Develop nuclear technologies enabling fast in-space transits.</li> <li>Develop cryogenic storage, transport, and fluid management technologies for surface and in-space applications.</li> <li>Develop advanced propulsion technologies that enable future science/exploration missions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                          | Expanded Access to Diverse Surface Destinations             | <ul> <li>Enable Lunar/Mars global access with ~20t payloads to support human missions.</li> <li>Enable science missions entering/transiting planetary atmospheres and landing on planetary bodies.</li> <li>Develop technologies to land payloads within 50 meters accuracy and avoid landing hazards.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                          | Live Sustainable Living and Working Farther from Earth      | <ul> <li>Develop exploration technologies and enable a vibrant space economy with supporting utilities and commodities</li> <li>Sustainable power sources and other surface utilities to enable continuous lunar and Mars surface operations.</li> <li>Scalable ISRU production/utilization capabilities including sustainable commodities on the lunar &amp; Mars surface.</li> <li>Technologies that enable surviving the extreme lunar and Mars environments.</li> <li>Autonomous excavation, construction &amp; outfitting capabilities targeting landing pads/structures/habitable buildings utilizing in situ resources.</li> <li>Enable long duration human exploration missions with Advanced Habitation System technologies. [Low TRL STMD; Mid-High TRL SOMD/ESDMD]</li> </ul>    |
|                                                                                                                                                                                                                                                                                                                          | Explore Transformative Missions and Discoveries             | <ul> <li>Develop next generation high performance computing, communications, and navigation.</li> <li>Develop advanced robotics and spacecraft autonomy technologies to enable and augment science/exploration missions.</li> <li>Develop technologies supporting emerging space industries including: Satellite Servicing &amp; Assembly, In Space/Surface Manufacturing, and Small Spacecraft technologies.</li> <li>Develop vehicle platform technologies supporting new discoveries.</li> <li>Develop technologies for science instrumentation supporting new discoveries. [Low TRL STMD/Mid-High TRL SMD. SMD funds mission specific instrumentation (TRL 1-9)]</li> <li>Develop transformative technologies that enable future NASA or commercial missions and discoveries</li> </ul> |