浙江水学

本科实验报告

课程名称:		数字逻辑设计		
姓	名:	王浩雄		
学	院:	竺可桢学院		
	系:	混合班		
专	业:	计算机科学与技术		
学	号:	3230106032		
指导教师:		马德		

2025 年 2 月 27 日

浙江大学实验报告

课程名称:	数字逻辑设计		实验类	实验类型:		
实验项目名称	:	基本开关。	 			
学生姓名:	王浩雄	专业:	混合班	学号:	323010	06032
同组学生姓名	:	无		诗老师:	:马德_	
实验地点:	紫金港东	£ 4–509	实验	公日期:	2025 年 2	月 27 E

一、实验目的和要求

- 1. 掌握逻辑开关电路的基本结构;
- 2. 掌握二极管导通和截止的概念;
- 3. 用二极管、三极管构成简单逻辑门电路;
- 4. 掌握最简单的逻辑门电路构成。

二、实验内容和原理

- 1. 用二极管实现正逻辑与门,并测量输入输出电压参数,分析其逻辑功能;
- 2. 用二极管实现正逻辑或门,并测量输入输出电压参数,分析其逻辑功能;
- 3. 用三极管反向特性实现正逻辑非门,测量输入输出电压参数,分析其逻辑功能;
- 4. 采用前面的与门和非门实现与非门,测量输入输出电压参数,分析其逻辑功能。

三、 主要仪器设备

- 1. 数字示波器 RIGOL-DS162 1 台
- 2. 函数发生器 YB1638 1 台
- 3. 数字万用表 1 只
- 4. 电路设计实验箱 1台
- 5. 常用电子器件(二极管 IN4001、三极管 9013、发光二极管、不同规格电阻、导线) 若干

四、 操作方法与实验步骤

1、用二极管实现正逻辑"与门"

- ① 根据下图在实验箱中通过导线连接电路,检查二极管、电源电压和极性、电阻值等是否连接正确:
- ② Vcc 接实验箱中+5V 直流电源;
- ③ 输入信号的不同电平组合,用万用表或实验箱中的直流电压表测量相应的电压值,判断逻辑关系是否满足"与"关系。

2、用二极管实现正逻辑"或门"

- ① 根据下图在实验箱中通过导线连接电路,检查二极管、电源电压和极性、电阻值等是否连接正确;
- ② 输入信号的不同电平组合,用万用表或实验箱中的直流电压表测量相应的电压值,判断逻辑关系是否满足"或"关系。

3、三极管极性测量

① 将万用表功能量程开关置于"二极管"档,用红黑表笔判断被测三极管类型;

- ② 将万用表功能量程置于"hFE"位置,把三极管插入面板上三极管测试插座;
- ③ 从显示屏上读取 hFE 近似值,若该值较大,说明三极管 c,e 极与插座上的 c,e 极对应;若该值很小,说明这时的三极管 c,e 极插反。

4、用三极管实现正逻辑"非门"

- ① 根据下图在实验箱中通过导线连接电路,检查三极管、电源电压和极性、电阻值等是否连接正确;
- ② Vcc 接实验箱中+5V 直流电源;
- ③ 输入信号的不同电平组合,用万用表或实验箱中的直流电压表测量相应的电压值,判断逻辑关系是否满足"非"关系。

4、用晶体管实现正逻辑"与非门"

- ① 根据下图在实验箱中通过导线连接电路,检查三极管、电源电压和极性、电阻值等是否连接正确;
- ② Vcc 接实验箱中+5V 直流电源;
- ③ 输入信号的不同电平组合,用万用表或实验箱中的直流电压表测量相应的电压值,判断逻辑关系是否满足"与非"关系。

五、 实验数据记录和处理

1、用二极管实现正逻辑"与门"

对应图片编号	V _A /V	V _B /V	V _F /V	F 逻辑值
1-00	0.116	0.116	0.64	L
1-10	4.51	0. 137	0.69	L
1-01	0.138	4. 52	0.69	L
1-11	4. 53	4. 53	4.90	Н

测试照片:

由实验数据可知,只有当 A 与 B 都是高电平时,逻辑值 F 才是高电平,其他情况下逻辑值 F 都是低电平,满足"与"门逻辑。

2、用二极管实现正逻辑"或门"

对应图片编号	V _A /V	V _B /V	V _F /V	F 逻辑值
2-00	0.094	0.106	0.000	L
2-10	3. 26	0.106	2. 723	Н
2-01	0.094	3. 25	2. 720	Н
2-11	3. 76	3. 76	3. 250	Н

测试照片:

由实验数据可知,只有当 A 与 B 都是低电平时,逻辑值 F 才是低电平,其他情况下逻辑值 F 都是高电平,满足"或"门逻辑。

3、三极管极性测量

(1) 判断三极管的类型

将万用表调至"二极管"档,测量三极管的导通方向,得到如图 3-1-1 和 3-1-2 的结果,由此推断出三极管为 NPN 型。

测试照片:

3-1-2

(2) 测量 hFE

对应图片编号	hFE 近似值
3-2-1	223
3-2-2	0

测试照片:

3-2-1

3-2-2

结论:测试一hFE 较大,测试二较小,则测试一中 c, e 极与插座上 c, e 对应,测试二相反。

4、用三极管实现正逻辑"非门"

对应图片编号	V _A /V	V _F /V	F 逻辑值
4-0	0.094	4. 97	Н
4-1	2.71	0.018	L

测试照片:

由实验数据可知,当 A 是低电平时,逻辑值 F 是高电平;当 A 是高电平时,逻辑值 F 是低电平,满足"非"门逻辑。

5、用晶体管实现正逻辑"与非门"

对应图片编号	V _A /V	V _B /V	V _F /V	F 逻辑值
5-00	0.101	0. 107	4.61	Н
5-10	4. 52	0.114	3.65	Н
5-01	0.104	4. 52	4. 08	Н
5-11	4.51	4.51	0.02	L

测试照片:

由实验数据可知,只有当 A 与 B 都是高电平时,逻辑值 F 才是低电平,其他情况下逻辑值 F 都是高电平,满足"与非"门逻辑。

六、 实验结果与分析

(请见上方分析)

七、 讨论、心得

在本次实验中,我通过实地搭建与门、或门、非门、与非门等门电路并进行 其特性测试,对计算机进行算数逻辑运算的物理实现有了更具象的认知。不仅加 深了我对计算机硬件原理的理解,也为我后续学习更复杂的数字电路设计打下了 坚实基础。