Contents

1. Category theory basics	1
1.1. Definition	
1.2. Examples	1
1.3. Definition	
1.4. Definition	2
1.5. Examples	2

1. Category theory basics

1.1. Definition

a Category is a collection of arrows called **morphisms** and dots called **objects** with these conditions:

- 1. $f:A\to B\land g:B\to C$ then there exist $g\circ f:A\to C$ called the composition of f with g
 - composition is associative
- 2. for all object A in a category there is a morphism id : $A \longrightarrow A$ such that id $g \circ f = f$ and $g \circ id_A = g$ its the identity morphism

1.2. Examples

- 1. the empty category: no objects and no morphisms
- 2. a one object category with only identity morphisms
- 3. multiple objects only identity morphisms
- 4. **Set:** sets as objects and functions as morphisms
- 5. **Vect:** vector spaces as objects and linear maps as morphisms
- 6. Hask: haskell types as objects and fuctions as morphisms

1.3. Definition

a morphism $f:A\to B$ is an isomorphism if there exists $g:B\to A$ such that $f\circ g=\mathrm{id}_B\wedge g\circ f=\mathrm{id}_A$

1.4. Definition

an object O in a category C is terminal iff $\forall A \in C, \exists ! f: A \rightarrow O$

1.5. Examples

- 1. the set with 1 element in **Set**
- 2. the Unit type in **Hask**