MCAL/MT - Indécidabilité - Complétez les preuves (0.5 TD)

Exercice 1 : Indécidabilité : premier exemple, preuve directe

Proposition 1 (Le langage universel n'est pas décidable) Le langage universel L_U est l'ensemble défini par

$$L_U = \{ (m, \omega) \in \mathcal{M} \times \{0, 1\}^* \mid m = [M]_2, \ M(\omega) = \mathbb{V} \}$$

C'est l'ensemble des couples (m, ω) tels que la m accepte le ω .

- (i) L_U est, ie. reconnaissable par une MT
- (ii) L_U n'est pas -récursivement énumérable, ie. $\overline{L_U}$ n'est pas reconnaissable par une MT
- (iii) L_U n'est pas décidable.

Preuve:

- (i) On doit montrer qu'il existe une MT qui reconnaît L_U : la MT cherchée c'est U. En effet, $\mathscr{L}(U) \stackrel{\mathrm{def}}{=} \{(m,\omega) \mid \dots (m,\omega) = \mathbb{V} \} \text{ par définition du langage reconnu par une MT.}$ or $U(m,\omega) = U(m)(\omega) = M(\omega)$ avec $m = [M]_2$ par définition de la U donc $\mathscr{L}(U) = \{(m,\omega) \mid M(\omega) = \dots, \ m = \dots \} \stackrel{\mathrm{def}}{=} L_U$ d'après la définition de L_U .
 - **Conclusion :** $\mathscr{L}(U) = L_U$ ce qui signifie que la machine U reconnaît le langage L_U .

Que représente $\overline{L_U} \stackrel{\textit{def}}{=} (\mathcal{M} \times \{0,1\}^*) \setminus L_U$? Les éléments de $\overline{L_U}$ sont les couples (m,ω) que la machine universelle U n'accepte pas.

$$\overline{L_U} = \{ (m, \omega) \in \mathcal{M} \times \{0, 1\}^* \mid U(m)(\omega) \neq \mathbb{V} \}$$

Preuve de (ii) par contradiction : Supposons qu'il une MT $M_{\overline{L}\overline{U}}$ qui reconnaisse $\overline{L}\overline{U}$. On peut l'utiliser pour construire une MT $M_C(\omega) \stackrel{\text{def}}{=} M_{\overline{L}\overline{U}}(\omega,\omega)$ qui duplique le mot binaire ω pour en faire un couple et exécute $M_{\overline{L}\overline{U}}$ sur ce couple.

 $\mathscr{L}(M_C)$ est donc l'ensemble des mots binaires de \mathcal{M} qui correspondent à des MT qui n'ac-cepte pas, en tant que , leur binaire, ie. $M(m) \to^* \bigotimes \vee M(m) \to^\infty$.

 $\pmb{Exhibons\ la\ contradiction}:$ Considérons maintenant m_c le codage binaire de la MT M_C que l'on vient de

On peut alors se demander si m_c appartient à $\mathcal{L}(M_C)$?

 $\begin{array}{ll} m_c \in \mathscr{L}(M_C) & \Longleftrightarrow & m_c \in \{m \in \mathcal{M} \mid m = [M]_2, \ M(m) \neq \mathbb{V} \ \} \ \textit{par d\'efinition de} \ \mathscr{L}(M_C) \\ & \Longleftrightarrow & M_c(m_c) \neq \mathbb{V} \ \ \textit{puisque} \ \ m_c = [M_c]_2 \end{array}$

Ainsi,

(†)
$$m_c \in \mathcal{L}(M_C) \iff M_C(m_c) \neq \mathbb{V}$$

Par ailleurs,

 $(\ddagger) \quad m_c \in \mathscr{L}(M_C) \Longleftrightarrow M_C(m_c) = \mathbb{V} \quad \text{ par d\'efinition du langage } \dots \qquad \text{par une } \text{MT}$

Les équivalences (†) et (‡) donnent la CONTRADICTION cherchée.

Conclusion : En supposant qu'il existait une MT qui reconnaît $\overline{L_U}$ nous aboutissons à une contradiction. Donc $\overline{L_U}$ est indécidable, ce qui termine la preuve de (ii).

(iii) D'après la propostion $\ref{eq:Lappa-prop}$ un langage L est décidable si et seulement si L et \overline{L} sont reconnu par une MT. $\overline{L_U}$ n'étant pas reconnaissable par une MT, cf. (ii). L_U n'est pas décidable.

Exercice 2 : Indécidabilité : second exemple, preuve directe

Proposition 2 (Le langage des exécutions finies n'est pas décidable) Le langage des exécutions finies L_{EF} est l'ensemble défini par

$$L_{EF} = \{ (m, \omega) \in \mathcal{M} \times \{0, 1\}^* \mid U(m)(\omega) \not\to \infty \}$$

C'est l'ensemble des (m,ω) tels que l'..... de la machine m termine quand on le ω .

- (i) L_{EF} est récursivement énumérable, ie. reconnaissable
- (ii) L_{EF} n'est pas co-récursivement énumérable, ie. n'est pas reconnaissable.

Preuve :

.

(i) Montrons L_{EF} reconnaissable : Montrons qu'il existe une MT M_{EF} qui reconnaît L_{EF} , ie. $\mathscr{L}(M_{EF}) = \ldots$, ie. $M_{EF}(m,\omega) = \ldots \iff (m,\omega) \in L_{EF}$, ie. $M_{EF}(m,\omega) = \ldots \iff U(m)(\omega) \not\to \ldots$.

La MT M_{EF} doit s'arrêter dans un état accepteur pour tout couple (m,ω) de L_{EF} , c'est-à-dire pour les couples qui correspondent à des finies. M_{EF} consiste à exécuter $U(m)(\omega)$ – le résultat nous importe peu – puis à passer dans l'état accepteur \bigcirc . Puisque les couples de L_{EF} sont précisement les couples pour lesquels l'exécution de U, on

a la garantie que la MT M_{EF} ci-dessous \dots dans l'état \bigcirc pour les couples de

$$M_{EF}(m,\omega) \stackrel{\text{def}}{=} [U(m)(\omega) ; \rightarrow \bigcirc]$$

Que représente $\overline{L_{EF}} \stackrel{\textit{def}}{=} (\mathcal{M} \times \{0,1\}^*) \setminus L_{EF}$? Les éléments de $\overline{L_{EF}}$ sont les couples (m,ω) sur lesquels que la machine universelle U ne pas.

$$\overline{L_{EF}} \stackrel{\mathsf{def}}{=} (\mathcal{M} \times \{0,1\}^*) \setminus L_{EF} = \{(m,\omega) \in \mathcal{M} \times \{0,1\}^* \mid U(m)(\omega) \dots \dots \}$$

M.Périn

Preuve de (ii) par contradiction : Supposons qu'..... une MT $M_{\overline{EF}}$ qui

le mot binaire ω pour en faire un couple et $M_{\overline{EF}}$ sur ce couple.

$$= \{ m \in \mathcal{M} \mid U(m)(m) \ldots \}$$
 par définition de $\overline{L_{EF}}$

$$\mathscr{L}(M_C) = \{m \in \mathcal{M} \mid m = \dots, M(m) \to \infty\}$$
 par définition de la

 $\mathscr{L}(M_C)$ est donc l'ensemble des mots binaires de \mathcal{M} qui correspondent à des MT qui ne s'arrête pas lorsqu'on les exécute sur leur binaire.

Exhibons la contradiction : Considérons maintenant m_c le codage binaire de la MT M_C que l'on vient de construire. **On peut alors se demander si** m_c appartient à $\mathcal{L}(M_C)$?

$$m_c \in \mathscr{L}(M_C) \iff m_c \in \{m \in \mathcal{M} \mid m = [M]_2, \ M(m) \to \infty\}$$
 par définition de $\mathscr{L}(M_C)$ $\iff \ldots \ldots \to \infty$ puisque $m_c = [M_c]_2$

Ainsi, (†)
$$m_c \in \mathcal{L}(M_C) \Longleftrightarrow M_C(m_c) \to \infty$$

Par ailleurs, par définition du langage par une MT, on a aussi l'équivalence :

$$(\ddagger) \quad m_c \in \mathscr{L}(M_C) \Longleftrightarrow M_C(m_c) = \mathbb{V} \Longleftrightarrow M_C(m_c) \to^* \bigcirc$$

Les équivalences (†) et (‡) donnent la CONTRADICTION cherchée puisque l'exécution $M_C(m_c)$ est censée terminer (dans l'état \bigcirc) d'après (‡), et ne pas terminer d'après (‡).

Conclusion: En supposant qu'il existait une MT qui reconnaît $\overline{L_{EF}}$ nous aboutissons à une contradiction. Donc $\overline{L_{EF}}$ est indécidable, ce qui termine la preuve de (ii).