- 1. Put $x = r \cos \theta$ and $y = r \sin \theta$.
- 2. Hint:
 - (a) Take path $x^2 = my$.
 - (b) Take path $y = x mx^3$.
- 3. Value of $f_x(x,y)$ and $f_y(x,y)$:

(a)
$$f_x(x,y) = 2x$$
 and $f_y(x,y) = 2y$

(b)
$$f_x(x,y) = 3\cos(3x+4y)$$
 and $f_y(x,y) = 4\cos(3x+4y)$

(c)
$$f_x(x,y) = -ye^{-x} + y$$
 and $f_y(x,y) = e^{-x} + x$

(d)
$$f_x(x,y) = 2x + y$$
 and $f_y(x,y) = x + 3y^2$

(e)
$$f_x(x,y) = \sin y + 2x$$
 and $f_y(x,y) = x \cos y$

(f)
$$f_x(x,y) = ye^{xy} + \frac{1}{y}$$
 and $f_y(x,y) = xe^{xy} - \frac{x}{y^2}$

4. Value of $f_x(0,0)$, $f_y(0,0)$, $f_x(0,y)$ and $f_y(x,0)$:

(a)
$$f_x(0,0) = 0$$
, $f_y(0,0) = 0$, $f_x(0,y) = 1$ and $f_y(x,0) = 1$

(b)
$$f_x(0,0) = 0$$
, $f_y(0,0) = 0$, $f_x(0,y) = y$ and $f_y(x,0) = x$

(c) $f_x(0,0) = 0$, $f_y(0,0) = 0$, $f_x(0,y)$ does not exist and $f_y(x,0)$ does not exist.

(d)
$$f_x(0,0) = 2$$
, $f_y(0,0) = -2$, $f_x(0,y) = e^y + e^{-y}$ and $f_y(x,0) = -e^x - e^{-x}$

(e)
$$f_x(0,0) = 0$$
, $f_y(0,0) = 0$, $f_x(0,y) = y$ and $f_y(x,0) = -x$

- 5. Ans:
 - (a) Differentiable
 - (b) Not differentiable
- 6. Take $x = r \cos \theta, y = r \sin \theta$
- 7. Use definition.
- 8. Differentiability of the function at (0,0):
 - (a) Differentiable
 - (b) Not differentiable
- 9. $f_{xx}(0,0) = 0$, $f_{xy}(0,0)$ does not exist, $f_{yx}(0,0) = 0$ and $f_{yy}(0,0) = 0$. Not differentiable.
- 10. Differentiable
- 11. Value of $f_{yxx}(x,y)$ and $f_{xyx}(x,y)$:

(a)
$$f_{yxx}(x,y) = 36x^2 \cos 3y$$
 and $f_{xyx}(x,y) = 36x^2 \cos 3y$

(b)
$$f_{yxx}(x,y) = 60x^3y^2$$
 and $f_{xyx}(x,y) = 60x^3y^2$

- (c) $f_{yxx}(x,y) = 2xe^{xy}\sec^2 x \tan x + 2e^{xy}\sec^2 x + 2xye^{xy}\sec^2 x + 2ye^{xy}\tan x + xy^2e^{xy}\tan x + 12xy$ and $f_{xyx}(x,y) = 2xe^{xy}sec^2xtanx + 2e^{xy}sec^2x + 2xye^{xy}sec^2x + 2ye^{xy}tanx + xy^2e^{xy}tanx + 12xy$
- (d) $f_{yxx}(x,y) = 6x \cos y 3y^2 \cos x$ and $f_{xyx}(x,y) = 6x \cos y 3y^2 \cos x$

(e)
$$f_{yxx}(x,y) = e^x \frac{1}{y} + \frac{1}{x^2} \sin y$$
 and $f_{xyx}(x,y) = e^x \frac{1}{y} + \frac{1}{x^2} \sin y$

(f)
$$f_{yxx}(x,y) = 12xy - 4y^3\cos(xy^2) + 2xy^5\sin(xy^2)$$
 and $f_{xyx}(x,y) = 12xy - 4y^3\cos(xy^2) + 2xy^5\sin(xy^2)$

12. Total differential

(a)
$$dw = (2x + y^2 + y^2z^3)dx + (2xy + 2xyz^3)dy + 3xy^2z^2dz$$

(b)
$$dz = \frac{y}{x^2 + y^2} dx - \frac{x}{x^2 + y^2} dy$$

(c)
$$du = 2e^{(x^2 + y^2 + z^2)}(xdx + ydy + zdz)$$

(d)
$$dw = 3\cos(3x+4y)dx + 4\cos(3x+4y)dy + 5e^z dz$$

(e)
$$dw = yzdx + (\frac{z}{y} + \ln z + xz)dy + (\ln y + \frac{y}{z} + xy)dz$$

(f)
$$du = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (xdx + ydy + zdz),$$

(g)
$$dw = [e^x \sin(y + 2z) - 2xy^2]dx + [e^x \cos(y + 2z) - 2x^2y]dy + 2e^x \cos(y + 2z)dz$$

(h)
$$dw = \frac{1}{y}e^{\frac{x}{y}}dx - \frac{1}{y^2}(xe^{\frac{x}{y}} + ze^{\frac{z}{y}})dy + \frac{1}{y}e^{\frac{z}{y}}dz.$$