¹H(³⁶Ar,d) **2010Le03,2011Le01**

 $J^{\pi}=0^+$ for ³⁶Ar ground state.

2010Le03, 2011Le01: A 36 Ar beam at 33 MeV/u was provided at the National Superconducting Cyclotron Laboratory, MSU. Targets were polyethylene (CH₂)_n. Deuterons were detected using the High-Resolution Array (HiRA) of Si and CsI(Tl) telescope detectors in coincidence with recoil residues identified in the S800 spectrometer by the focal plane ionization chamber and ToF. Measured $\sigma(E_d,\theta)$ in inverse kinematics. Deduced neutron spectroscopic factors from adiabatic distorted wave approximation (ADWA) analysis of the measured $\sigma(\theta)$ using Chapel-Hill global optical potential arameters (CH89) and JLM optical potentials and geometry for transferred neutron constrained by Hartree–Fock calculations (JLM+HF). Comparisons with shell–model calculated spectroscopic factors.

Theoretical studies involving ¹H(³⁶Ar,d)³⁵Ar: 2011Nu01, 2023He15.

³⁵Ar Levels

E(level)	\mathbf{J}^{π}	L^{\ddagger}	C^2S^{\ddagger}	Comments
0	3/2+	2	2.3 2	 C²S: other: 1.6 <i>I</i> from 2011Le01 ADWA (JLM+HF). C²S: 2.29 23 (CH89) and 1.60 <i>I6</i> (JLM+HF) from 2010Le03 ADWA. C²S: 2.10 from large basis-shell model calculations (2010Le03). C²S: 2.21 49 from a reanalysis of the σ(θ) data using finite-range ADWA (2011Nu01), including theoretical uncertainties associated with optical potentials (7%) and the approximate solution of three-body problems (19%). C²S: 2.1 +2-4 from a reanalysis of the σ(θ) data using ADWA within a Bayesian framework (2023He15), including theoretical uncertainties associated with optical potentials.
1180 2980 [†] 3190 [†] 5570		0	1.2 <i>I</i>	

[†] Doublet in measured spectra.

[‡] From 2011Le01 ADWA (CH89).