Условие

Цепной линией называют кривую, образуемую подвешенной за концы однородной массивной нитью. Пусть погонная плотность нити (масса единицы длины нити) μ , а её натяжение в нижней точке T_0 . Величина $\lambda = T_0/\mu g$ является параметром, определяющим форму цепной линии. Если начало координат поместить в низшей точке цепной линии, то её можно задать уравнением:

$$y = \lambda \left[\frac{1}{2} \left(e^{x/\lambda} + e^{-x/\lambda} \right) - 1 \right].$$

От Вас не требуется вывод зависимости вертикальной координаты y точки нити от горизонтальной координаты x. Вам следует разобраться в связи y и s, где s — длина отрезка нити, отсчитываемая от низшей точки. Теоретическую зависимость Вы должны проверить, проведя измерения с цепочкой из скрепок.

Теоретическая часть:

- 1. Пусть натяжение нити в нижней точке равно T_0 . Для малого отрезка нити длиной Δs получите выражение для разницы сил натяжения ΔT на его концах, выразив его через μ , и разность высот Δy концов отрезка.
- 2. Получите выражение для натяжения T нити на высоте y относительно нижней точки при заданном T_0 ?
- 3. Докажите, что если верхняя точка нити длины s возвышается над низшей точкой на высоту y (рис. 6), то

Экспериментальная часть:

4. Соберите из выданных вам скрепок цепочку. Подвесьте склеенный лист бумаги и цепочку на бруске так, чтобы максимальный провис H составлял $(0,3\div0,5)L$, где L — расстояние между точками подвеса цепочки. Укажите выбранное вами значение H/L, число скрепок n и длину l скрепки (расстояние между точками соприкосновения её с соседними скрепками).

- 5. Отметьте фломастером на листе бумаги положения последовательных точек соприкосновения скрепок, начав с низшей точки (считайте её нулевой). Определите высоты этих точек, и результаты измерений занесите в таблицу.
- 6. Для *каждой* точки рассчитайте по измеренным высотам y_i и номеру n_i значения параметра λ .
- 7. Укажите номера скрепок, для которых проявляется заметное отличие реальной цепочки от идеальной (заметное отличие параметра λ от его среднего значения).
- 8. Вычислите среднее значение λ .

E-11-1

- 9. Вычислите среднее отклонение от среднего значения λ .
- 10. Найдите отношение натяжения в нижней точке к весу одной скрепки:

$$\tau = \frac{T_0}{mg}$$

Указание: на выданном вам листе отметьте и пронумеруйте точки сцепления скрепок, подпишите рядом их высоты, а результаты измерений и их обработки представьте в таблице. Лист подпишите. По окончании тура вложите его в тетрадь с отчетом о проделанной работе и сдайте вместе с нею.

Оборудование. 30–40 скрепок, лист бумаги формата A2, пенополиуретановый плинтус или деревянный брусок длиной 70–100 см (для крепления бумаги и цепочки: он кладётся на край стола, а цепочка и бумага свисают ниже столешницы), фломастер, 4 «силовые» металлопластиковые кнопки, линейка длиной 40 см.

Примерные критерии оценивания

Пункт 1 задания
Пункт 2 задания1
Пункт 3 задания1
Указано H/L , число скрепок n
Длина l измерена с точностью хотя бы $0,1$ мм
Наличие 15 или более отмеченных точек с указанием высот и номера (не
обязательно подряд)1
Выведена формулы для λ через n_i и l_i
Наличие таблицы с данными и обработкой не менее 15 точек
Указано, для каких скрепок имеется заметное отклонение от теоретического
значения1
Попадание в ворота для среднего значения λ
Попадание в ворота по $(\Delta \lambda)_{\rm cp}$
Найдено $ au = T_0/mg = \lambda_{\rm cp}/l$

E-11-1

Возможное решение

1. Для малого отрезка нити длиной Δs с углом наклона α к горизонтали разница сил натяжения на концах $\Delta \vec{T} = -\mu \vec{g} \Delta s$, а изменение величины силы натяжения равно проекции вектора $\Delta \vec{T}$ на направление вектора \vec{T} :

$$\Delta T = |\Delta \vec{T}| \sin \alpha = \mu g \Delta s \sin \alpha = \mu g \Delta y.$$

- 2. На высоте *y* натяжение нити $T = T_0 + \mu gy$.
- 3. Рассмотрим отрезок нити от нижней нулевой точки до точки, находящейся на высоте y при длине отрезка s. Пусть T натяжение в этой точке, а T_x и T_y его проекции на горизонталь и вертикаль. Запишем условие равновесия нити в проекциях на горизонталь и вертикаль: $T_x = T_0$ и $T_y = \mu gs$. Отсюда

$$T^2 = T_0^2 + (\mu g s)^2. (3)$$

После подстановки $T = T_0 + \mu q y$ в уравнение (3) находим

$$\lambda = \frac{T_0}{\mu g} = \frac{s^2 - y^2}{2y}.$$

- 4. Отметим H/L, число скрепок n. Для повышения точности длину одной скрепки l измеряем по длине натянутого отрезка цепочки из 30–40 скрепок.
- 5. Если цепочка скрепок подвешена на небольшом расстоянии от миллиметровой бумаги, то положение точек соприкосновения можно отметить с точностью 0,5–1 мм.
- 6. Рассчитываем λ по формуле:

$$\lambda = \frac{(n_i l)^2 - y_i^2}{2y_i}.$$

Результаты эксперимента приведены в таблице.

Таблица 2: результаты измерений.

№	y (MM)	λ (MM)	$\Delta\lambda$ (MM)	
1	8	39		
2	11	119		H/L = 370/660 = 0.56,
3	18	161	4	n=42 скрепки,
4	31	160	5	l = 25.9 MM,
5	45	166	1	$\lambda_{\rm cp} = 165 \text{ mm}, (\Delta \lambda)_{\rm cp} = 6 \text{ mm}.$
6	60	175	10	$\tau_{\rm cp} = 6.33, \varepsilon_{\tau} = 4\%.$
7	79	172	7	Для первых двух нижних скре- пок заметное отличие λ от тео-
8	99	171	6	
9	120	170	5	ретического значения. Эти значения λ исключены из определения
10	143	168	3	ния λ исключены из определения среднего. Разброс для λ сопоста-
11	163	172	7	1
12	185	172	7	вим с тем, что следует из погрешности измерения y (2%) и «сдви-
13	207	175	10	га» на 1 и 2 скрепки.
14	231	167	2	на т и 2 скрепки. Вывод: цепочка скрепок в целом
15	256	172	7	· · · · · · · · · · · · · · · · · · ·
16	280	167	2	адекватно моделирует цепную линию, за исключением ближней
17	304	172	7	окрестности нижней точки
18	330	170	5	окрестности нижней точки
19	355	149	16	
20	369	156	9	

Условие

Необходимые сведения

Скорость звука в твёрдом теле можно рассчитать по формуле $c=\sqrt{E/\rho}$, где E — модуль Юнга, ρ — плотность вещества. Модуль Юнга характеризует упругие свойства вещества, определяя жесткость различных систем и конструкций. Например, относительная деформация ε стержня сечением S под действием растягивающей (или сжимающей) силы F равна

$$\varepsilon = \frac{\Delta l}{l} = \frac{F}{SE}.$$

Эту формулу можно принять в качестве определения модуля Юнга.

Относительное изменение диаметра D кольца шириной h и толщиной стенки δ под действием двух сосредоточенных сил F, действующих вдоль диаметра (рис. 1), при небольших деформациях x можно найти по формуле:

$$\varepsilon = \frac{x}{D} = \beta F^m E^n D^p h^q \delta^i, \tag{1}$$

где m, n, p, q, i — некоторые целые числа, а β — безразмерный коэффициент.

Задание

- 1. Руководствуясь соображениями размерностей, известными физическими законами и проведя необходимые измерения, определите показатели степеней $m,\ n,\ p,\ q,\ i$ в законе деформации кольца (1). Запишите полученный закон деформации кольца.
- 2. По известной скорости звука $c_0 = 5240$ м/с в алюминии (плотность $\rho_{\rm Al} = 2,70$ г/см³) определите скорость звука c в полиэтилентерефталате ($\rho_{\rm \Pi \ni T} = 1,39$ г/см³).

Оборудование. Тонкостенное алюминиевое кольцо известной массы (указана на внутренней стороне кольца), два тонкостенных кольца из полиэтилентерефталата (ПЭТ) одинаковой ширины и разных диаметров (масса колец также указана на их внутренней стороне), нить, линейка, миллиметровая бумага, скотч и ножницы (по требованию).

Примерные критерии оценивания

Обоснован и получен результат $q=-1$ 1
Обоснован и получен результат $n=-1$ 1
Получено уравнение (2)
Указан способ деформирования колец одинаковой силой
Приведены измерения длин окружности L_1 и L_2
Указано, что толщина колец $\delta=m/(\rho Lh)$
Приведены измерения деформаций x_1 и x_2 при одинаковой силе
Получен результат $p=2$ 1
Найдено значение числа $i=-3\dots 1$
Записан закон деформации кольца (3)1
Указаны способ нахождения скорости звука в ПЭТ (например формула (4))1
Приведены результаты измерений деформаций колец из разных материалов1
Получен ответ для скорости звука c с точностью 20%

Возможное решение

1. Закон деформации колец. Проанализируем уравнение (1). По закону Гука малые деформации пропорциональны силе: $\varepsilon \sim F$, поэтому m=1.

Увеличение ширины кольца в два раза (при прочих равных параметрах кольца) можно представить как два кольца, расположенных рядом. Следовательно, для сохранения относительной деформации потребуется в два раза большая сила. Учитывая, что m=1 получаем $\varepsilon \sim \frac{F}{h}, \, q=-1$.

Размерность модуля Юнга $[E]={
m H/m^2}={
m \kappa r/(m\cdot c)}.$ Для исключения размерности массы и времени (которые присутствуют в силе F и модуле Юнга E) следует считать, что $\varepsilon\sim \frac{F}{E}$, поэтому n=-1.

Поскольку ε – безразмерная величина, должно выполняться равенство:

$$m - n + p + q + i = 0. (2)$$

С учётом найденных ранее коэффициентов получим:

$$p + i = -1$$
.

Для определения показателя степени p проведём эксперимент с двумя кольцами из ПЭТ. Измерим ширину h и длину окружности $L=\pi D$ полиэтилентерефталатовых колец. Зная массу m и плотность ρ этих материалов, вычислим толщину колец $\delta=m/(\rho Lh)$. Получим, что $\delta_2\approx\delta_1$.

Сложим кольца в виде «восьмёрки» и стянем их ниткой. Деформирующая сила для обоих колец будет одинакова. Измеряем абсолютные деформации диаметров колец x_1, x_2 в этом случае.

По условию, ширина колец h одинакова, поэтому для нахождения p используем уравнение:

$$\frac{\varepsilon_2}{\varepsilon_1} = \left(\frac{D_2}{D_1}\right)^p = \left(\frac{L_2}{L_1}\right)^p.$$

В нашем случае получилось уравнение $1,5^p=2,3$. Его корнем является число $p\approx 2,05$. Так как по условию p – целое число, то примем p=2.

Показатель степени i находим из уравнения: i = -p - 1 = -3.

Закон деформации кольца имеет вид:

$$\varepsilon = \frac{x}{D} = \beta \frac{FD^2}{Eh\delta^3}.$$
 (3)

Для справки, точная формула имеет вид:

$$\varepsilon = \frac{x}{D} = \left(\frac{3\pi^2 - 24}{8\pi}\right) \frac{FD^2}{Eh\delta^3}.$$

(Ландау, Лифшиц, т. VII, Теория упругости).

E-11-2

2. **Скорость звука.** Деформацию кольца x выражаем через скорость звука c и массу кольца m:

$$c = \sqrt{\frac{E}{\rho}} = \frac{D^2}{\delta} \sqrt{\frac{\pi \beta F}{mx}}$$

Если кольца деформировать одной и той же силой, то для отношения скоростей звука получаем:

$$c = c_0 \left(\frac{D}{D_0}\right)^2 \left(\frac{\delta_0}{\delta}\right) \sqrt{\frac{m_0 x_0}{mx}}.$$
 (4)

Деформируем кольца одинаковой силой (для этого достаточно расположить их в виде восьмёрки и стянуть одной и той же нитью). Измеряем их деформации (x — для кольца из полиэтилентерефталата и x_0 — для кольца из алюминия. По полученным данным находим скорость звука в полиэтилентерефталате: c=1450 м/с.