AArch64 Instructions Index by Encoding

External Registers

ACTLR_EL1, Auxiliary Control Register (EL1)

The ACTLR EL1 characteristics are:

Purpose

Provides implementation defined configuration and control options for execution at EL1 and EL0.

Note

Arm recommends the contents of this register have no effect on the PE when <u>HCR_EL2</u>. {E2H, TGE} is {1, 1}, and instead the configuration and control fields are provided by the <u>ACTLR_EL2</u> register. This avoids the need for software to manage the contents of these register when switching between a Guest OS and a Host OS.

Configuration

AArch64 System register ACTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register <u>ACTLR[31:0]</u>.

AArch64 System register ACTLR_EL1 bits [63:32] are architecturally mapped to AArch32 System register <u>ACTLR2[31:0]</u>.

Attributes

ACTLR_EL1 is a 64-bit register.

Field descriptions

 $63\ 62\ 61\ 60\ 59\ 58\ 57\ 56\ 55\ 54\ 53\ 52\ 51\ 50\ 49\ 48\ 47\ 46\ 45\ 44\ 43\ 42\ 41\ 40\ 39\ 38\ 37\ 36\ 35\ 34\ 33\ 32$

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing ACTLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACTLR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0001	0b0000	0b001

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TACR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        X[t, 64] = NVMem[0x118];
    else
        X[t, 64] = ACTLR_EL1;
elsif PSTATE.EL == EL2 then
        X[t, 64] = ACTLR_EL1;
elsif PSTATE.EL == EL3 then
        X[t, 64] = ACTLR_EL1;
```

MSR ACTLR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0001	0b0000	0b001

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TACR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        NVMem[0x118] = X[t, 64];
else
        ACTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
```

ACTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ACTLR_EL1 = X[t, 64];

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

 $28/03/2023\ 16:02;\ 72747e43966d6b97dcbd230a1b3f0421d1ea3d94$

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.