МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г.Шухова)

Лабораторная работа №3 дисциплина «Теория цифровых автоматов» по теме «Синтез и анализ комбинационных схем с одним выходом с учетом неопределенности»

Выполнил: студент группы ВТ-31 Макаров Д.С.

Проверил: Рязанов Ю.Д.

Лабораторная работа №3

«Синтез и анализ комбинационных схем с одним выходом с учетом неопределенности»

Цель работы: научиться строить эффективные по быстродействию и затратам оборудования комбинационные схемы с учетом неопределенностей.

Вариант 9

Задание:

- 1. Составить таблицу истинности заданной частично определенной булевой функции (см. варианты заданий в таблице 2). Булева функция здесь задана двумя условиями (условие 1 и условие 2), зависящими от значений аргументов. Если на наборе аргументов условие 2 истинно, то значение функции на этом наборе не определено. Если же на наборе аргументов условие 2 ложно, то значение функции на этом наборе равно значению условия 1 на этом наборе аргументов. В условии значение аргумента отождествляется с двоичной цифрой, а последовательность аргументов с двоичным числом. Для составления таблицы истинности рекомендуется написать программу.
- 2. Решить задачу минимизации частично определенной булевой функции в классе дизъюнктивных нормальных форм.
- 3. Написать программу, строящую таблицу истинности булевой функции, полученной при выполнении п. 2 Сравнить полученную таблицу с таблицей истинности исходной частично определенной булевой функции.
- 4. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по полученной при выполнении п. 2 минимальной дизъюнктивной нормальной форме булевой функции.
- 5. Решить задачу минимизации частично определенной булевой функции в классе конъюнктивных нормальных форм.
- 6. Написать программу, строящую таблицу истинности булевой функции, полученной при выполнении п. 5 Сравнить полученную таблицу с таблицей истинности исходной частично определенной булевой функции.
- 7. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по полученной при выполнении п. 5 минимальной конъюнктивной нормальной форме булевой функции.

Ход работы

Дана функция

$$3 < (x_4 x_5 + x_1 x_2 x_3) < 8$$

Условие неопределенности

$$(x_1x_2x_3) = 1$$

Построем таблицу истинности.

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	f	Функция определена?
1	00000	0	True
2	00001	0	True
3	00010	0	True
4	00011	0	True
5	00100	-	False
6	00101	-	False
7	00110	-	False
8	00111	-	False
9	01000	0	True
10	01001	0	True
11	01010	1	True
12	01011	1	True
13	01100	0	True
14	01101	1	True
15	01110	1	True
16	01111	1	True
17	10000	1	True
18	10001	1	True
19	10010	1	True
20	10011	1	True
21	10100	1	True
22	10101	1	True
23	10110	1	True
24	10111	0	True
25	11000	1	True
26	11001	1	True
27	11010	0	True
28	11011	0	True
29	11100	1	True
30	11101	0	True
31	11110	0	True
32	11111	0	True

Получение минимальной дизъюнктивной нормальной формы бу-

левой функции. СДНФ

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[5]	00100	
[6]	00101	
[7]	00110	
[8]	00111	
[11]	01010	
[12]	01011	
[14]	01101	
[15]	01110	
[16]	01111	
[17]	10000	
[18]	10001	
[19]	10010	
[20]	10011	
[21]	10100	
[22]	10101	
[23]	10110	
[25]	11000	
[26]	11001	
[29]	11100	

Импликанты первого порядка

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	Простая импликанта?
[5, 6]	0010-	
[5, 7]	001-0	
[5, 21]	-0100	
[6, 8]	001-1	
[6, 14]	0-101	
[6, 22]	-0101	
[7, 8]	0011-	
[7, 15]	0-110	
[7, 23]	-0110	
[8, 16]	0-111	
[11, 12]	0101-	
[11, 15]	01-10	
[12, 16]	01-11	
[14, 16]	011-1	
[15, 16]	0111-	

$\mathcal{N}_{\overline{0}}$	$x_1x_2x_3x_4x_5$	Простая	импликанта?
[17, 18]	1000-		
[17, 19]	100-0		
[17, 21]	10-00		
[17, 25]	1-000		
[18, 20]	100-1		
[18, 22]	10-01		
[18, 26]	1-001		
[19, 20]	1001-		
[19, 23]	10-10		
[21, 22]	1010-		
[21, 23]	101-0		
[21, 29]	1-100		
[25, 26]	1100-		
[25, 29]	11-00		

Импликанты второго порядка

$\mathcal{N}_{ar{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[5, 6, 7, 8]	001-	*
[5, 6, 21, 22]	-010-	*
[5, 7, 21, 23]	-01-0	*
[6, 8, 14, 16]	0-1-1	*
[7, 8, 15, 16]	0-11-	*
[11, 12, 15, 16]	01-1-	*
[17, 18, 19, 20]	100-	*
[17, 18, 21, 22]	10-0-	*
[17, 18, 25, 26]	1-00-	*
[17, 19, 21, 23]	10-0	*
[17, 21, 25, 29]	1-00	*

Таблица простых импликант

$$(\overline{x}_1x_2x_5) \vee (\overline{x}_1x_2x_4) \vee (x_1\overline{x}_2\overline{x}_3) \vee (x_1\overline{x}_2\overline{x}_4) \vee (x_1\overline{x}_3\overline{x}_4) \vee (x_1\overline{x}_2\overline{x}_5) \vee (x_1\overline{x}_4\overline{x}_5)$$

	x_1	\overline{x}_1	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	\overline{x}_4	x_5	\overline{x}_5	z_1	z_2	z_3	z_4	z_5
0-		-			-				*				*		
1-															
1															
01-		*	-				-							*	
1-															
100-				-		*					*				

	x_1	\overline{x}_1	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	\overline{x}_4	x_5	\overline{x}_5	z_1	z_2	z_3	z_4	z_5
10-	-			-				*			*				
0-															
1-	*					-		-							*
00-															
10-	-			*						-		*			
0															
1-	-							*		-		*			
00															
z_1	*			*											
z_2	*									*					
z_3		*			*										
z_4			*				*								
z_5						*		*							

	0-1-1	01-1-	100-	10-0-	1-00-	10-0	1-00	v_1	v_2	v_3	v_4	v_5
\overline{f}	+ *	+ *	+	+	+	+	+	-	-	-	*	*
$v_1 \\ v_2$	^	*	*	*								
v_3					*	*						
v_4							*	*	.1.	.1.		
v_5									*	*		

Простая импликанта	11	12	14	15	16	17	18	19	20	21	22	23	25	26	29
001-															
-010-										*	*				
-01-0										*		*			
0-1-1			*		*										
0-11-				*	*										
01-1-	*	*		*	*										
100-						*	*	*	*						
10-0-						*	*			*	*				
1-00-						*	*						*	*	
10-0						*		*		*		*			
1–00						*				*			*		*

Получение минимальной конъюнктивной нормальной формы булевой функции.

В СКН Φ все конституенты определены

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[1]	00000	
[2]	00001	
[3]	00010	

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[4]	00011	
[9]	01000	
[10]	01001	
[13]	01100	
[24]	10111	
[27]	11010	
[28]	11011	
[30]	11101	
[31]	11110	
[32]	11111	

Импликанты 1 порядка

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	Простая импликанта?
[1, 2]	0000-	
[1, 3]	000-0	
[1, 9]	0-000	
[2, 4]	000-1	
[2, 10]	0-001	
[3, 4]	0001-	
[9, 10]	0100-	
[9, 13]	01-00	*
[24, 32]	1-111	*
[27, 28]	1101-	
[27, 31]	11-10	
[28, 32]	11-11	
[30, 32]	111-1	*
[31, 32]	1111-	

Импликанты 2 порядка

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[1, 2, 3, 4]	000-	*
[1, 2, 9, 10]	0-00-	*
[27, 28, 31, 32]	11-1-	*

Таблица простых импликант

Простая импликанта	1	2	3	4	9	10	13	24	27	28	30	31	32
01-00					*		*						
1-111								*					*
111-1											*		*
000-	*	*	*	*									
0-00-	*	*			*	*							
11-1-									*	*		*	*

x_1	\overline{x}_1	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	\overline{x}_4	x_5	\overline{x}_5	$\overline{z_1}$	z_2	$\overline{z_3}$	$\overline{z_4}$	$\overline{z_5}$	$\overline{z_6}$
1-	-				_		*		-	*					
111															
111-	-		*		-				-	*					
1															
000-		*		-							*				
0				-		*					*				
00-															
0.1												*			*
01			-			-		-				不			不
00							*						*		
11-	-		-				4,						11		
1-															
~.									*					*	
z_1	_			*	_										
z_2 * z_3 *			*												
z_3	*		*												
z_4	*				*										
z_6						*		*							

	1-111	111-1	000-	0-00-	01-00	11-1-	v_1	v_2	v_3	v_4	v_5
-			+	+	+	+	-	-	-	-	*
$v_1 \\ v_2$	*	*	*	*							
v_3					*	*					
v_4							*	*	s la	s la	
v_5									*	*	

Приложение

Содержимое файла funcTest.py

```
from binVectors import gen_bin_vector_5 as gen_bin_vector
from tabulate import tabulate
def truth_table(vector,f,f1):
    result = []
    for i in range(0,len(vector)):
        if(f1(vector[i][0])):
             def_flag = False
             def_flag = True
        if def_flag:
             f_result = int(f(vector[i][0]))
             f_result = int(True)
        result.append([
            i+1,
             vector[i][0],
             def_flag,
             f_result,
             int(sdnf_function_min(vector[i][0])),
             int(sknf_function_min(vector[i][0]))
        ])
    return result
def sdnf_function_min(str_val):
    x1 = bool(int(str_val[0]))
    x2 = bool(int(str_val[1]))
    x3 = bool(int(str_val[2]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
    print(x1, x2, x3, x4, x5)
    z1 = x1 and (not x2)
    z2 = x1 and (not x5)
    z3 = (not x1) and x3
    z4 = x2 and x4
    z5 = (not x3) and (not x4)
    u1 = z3 and x5
    u2 = z4 and (not x1)
    u7 = z2 and (not x4)
    u4 = z1 and (not x4)
    u5 = z5 and x1
    u6 = z2 and (not x2)
    u3 = z1 and (not x3)
    v1 = u1 \text{ or } u2
    v2 = u3 \text{ or } u4
    v3 = u5 or u6
    v4 = v1 \text{ or } u7
    v5 = v2 \text{ or } v3
    f = v4 \text{ or } v5
    return f
def sknf_function_min(str_val):
    x1 = bool(int(str_val[0]))
```

```
x2 = bool(int(str_val[1]))
    x3 = bool(int(str_val[2]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
    z5 = (not x1) or (not x3)
    z1 = z5 or (not x5)
    z2 = x1 \text{ or } x3
    z3 = x1 \text{ or (not } x2)
    z6 = x4 \text{ or } x5
    z4 = (not x1) or (not x2)
    u1 = z1 \text{ or } (not x4)
    u2 = z1 \text{ or } (not x2)
    u3 = z2 \text{ or } x2
    u4 = z2 \text{ or } x4
    u5 = z3 \text{ or } z6
    u6 = z4 \text{ or (not } x4)
    v1 = u1 and u2
    v2 = u3 and u4
    v3 = u5 and u6
    v4 = v1 and v2
    v5 = v4 and v3
    return v5
def function(str_val):
    x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        3 < (int(str_val[3] + str_val[4],2) + int(str_val[0] + str_val[1] + str_val[2],2)) < 8
def def_func(str_val):
    x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        int(x1+x2+x3) == 1
table_head = ["","$x_1x_2x_3x_4x_5$","f определена?","f","ДНФ","КНФ"]
table = truth_table(gen_bin_vector(),function,def_func)
print(tabulate(table,table_head,tablefmt="simple"))
```