九十四學年度台灣大學電資學院電機系電子學(一)期中考

- 1. Fig. 1 shows an initial approach for instrumentation amplifier.

 (a) Find an expression for output voltage v₀. (5%)

 P3+P4

 P3+P4
 - (b) Let all resistors be $R\pm\Delta R$. Give the common mode gain for the worst case. (5%)
 - (c) Remove the connection between node X and ground, recalculate the common mode gain. Compare the results of (b) and (c), and give an explanation briefly. (5%)

Fig. 1

- 2. Fig. 2 shows a noninverting amplifier. It is fed with a sine-wave signal of peak voltage V_p and is connected to a load resistor R_L . The OP amp is specified to have output saturation voltages of $\pm 13V$ and output current limits of $\pm 20mA$. The unity-gain bandwidth and slew rate are $f_t = 2MHz$ and $SR = 1V/\mu s$.
 - (a) For $R_L = 1k\Omega$ and f = 10kHz, what is the highest value of V_p for which an undistorted sine-wave output is obtained? (5%)
 - (b) For the V_p you found in (a), what is the highest frequency for the input signal without output distortion? (5%)

Fig. 2

- Consider the circuit in Fig. 3. Assuming that n=1 for all the diodes and C₁-C₃ are large coupling capacitors.
 - (a) For R=4 k Ω , find v_o/v_i . (10%)
 - (b) For R=1 k Ω , find v_0/v_i . (15%)

[Hint: the diode can be treated as a constant voltage drop of 0.7 V at forward bias.]

- 4 For the circuit shown in Fig. 4, the input is given by $v_i = 10 \sin \omega t$ (assuming constant-voltage-drop model for the diodes, turn-on voltage $V_D = 0.7 \text{ V}$).
 - (a) Analyze the circuit and sketch v_o versus time. (9%)
 - (b) What is the peak inverse voltage (PIV) of each diode? (4%)
 - (c) What is the peak power dissipation of each diode during the positive-half cycle? (4%)

Fig. 4

- For the circuit shown in Fig. 5, the zener diode is specified to have $V_z = 5$ V at $I_z = 4$ mA, $I_z = 25$ Ω , and $I_{zk} = 0.2$ mA. The input voltage, v_i , is a ramp function as also shown in the Figure.
 - (a) If the output is opened (R_L is disconnected), sketch v_o versus time. (4%)
 - (b) If R_L (= 1 k Ω) is connected to the output, sketch v_o versus time. (4%)

Fig. 5

000 to to to 100 to 100

6 Assuming that the diodes in the circuits of Fig. P6 can be treated as a constant voltage drop of 0.7 V, find the values of the labeled voltages and currents. (12%)

457+0.046 Vi = Vo

Fig. 6

chieved

In the circuit shown in Fig. 7, I is a dc current and V_i is a sinusoidal signal with small amplitude (less then 10 mV) and a frequency of 100 kHz. Representing the diode by its small-signal resistance r_d , which is a function of I, sketch the circuit for determining the sinusoidal output voltage V_o , and thus find the phase shift between V_i and V_o . Find the value of I that will provide a phase shift of -45°, and find the range of phase shift achieved as I is varied over the range of 0.1 to 10 times this value. Assume n=1.

Fig. 7

711: LEONG - 1120.