# A ALE Finite Element Method for Vorticity-Streamfunction Formulation with Species Transport Equation

Student Researcher: Leandro Marques Advisors: Gustavo Anjos and Jose Pontes

State University of Rio de Janeiro June, 22th 2020



### Outline



- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

### Introduction



#### Motivation:

► Ischaemic heart disease and stroke have remained the leading death causes globally in the last 15 years [1]

#### Aims:

- ► To develop a Finite Element code for stream-vorticity formulation with species transport equation using the Arbitrary Lagrangian-Eulerian (ALE) approach
- ► To create new drug-eluting design patent





- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

# Arbitrary Lagrangian-Eulerian (ALE)



The Arbitrary Lagrangian-Eulerian combines the classical motion descriptions, while it provides [2]:

# Lagrangian description

#### Advantages:

► Simulations in fluid-structure and moving boundary problems

# Eulerian description

#### Disadvantages:

► The computational mesh requires an extensive topological treatment



node

ALE description

[2] Donea, J., Huerta, A., Ponthot, J.-P. and Rodríguez-Ferran, A. (2004). Arbitrary Lagrangian–Eulerian Methods. In Encyclopedia of Computational Mechanics doi:10.1002/0470091355.ecm009

# Governing Equations



#### Assumptions [3]:

- 1. Continuum hypothesis
  - 2. Homogeneous and Isotropic
  - 3. Incompressible
  - 4. Newtonian
  - 5. Constant Mass Difusivity
  - 6. Single-phase Flow
  - 7. Two-dimensional flow

$$\frac{D\omega}{Dt} = \frac{1}{Re} \nabla^2 \omega$$

$$\nabla^2 \psi = -\omega$$

$$\frac{Dc}{Dt} = \frac{1}{ReSc} \nabla^2 c$$

where,  $D(\cdot)/Dt$  is substantive derivative and the material velocity field is calculated by:  $v_x = \partial \psi/\partial y$  and  $v_y = -\partial \psi/\partial x$ 

## Semi-Lagrangian Method



The implicit semi-Lagrangian time discretization provides [4]:

#### Advantages:

- ► Symmetric linear systems
- ► Unconditionnal stability

#### Disadvantages:

- ► Numerical Diffusion
- Searching procedure may lead to excessive computational cost if it is not well designed



$$\nabla^2 \psi = -\omega$$

$$\frac{c_i^{n+1} - c_d^n}{\Delta t} = \frac{1}{ReSc} \nabla^2 c^{n+1}$$



## Galerkin FE Method





$$\begin{bmatrix} \frac{\mathsf{M}}{\Delta t} + \frac{\mathsf{K}}{Re} \end{bmatrix} \omega_i^{n+1} = \frac{\mathsf{M}}{\Delta t} \omega_d^n$$
 
$$\mathsf{K} \psi = \mathsf{M} \omega$$

$$\left[\frac{\mathsf{M}}{\Delta t} + \frac{\mathsf{K}}{\mathsf{ReSc}}\right] c_i^{n+1} = \frac{\mathsf{M}}{\Delta t} c_d^n$$

The material velocity field is calculated by:  $\mathbf{M} v_{\mathbf{x}} = \mathbf{G}_{\mathbf{y}} \psi$  and  $\mathbf{M} v_{\mathbf{y}} = -\mathbf{G}_{\mathbf{x}} \psi$ 

## Laplacian Smoothing



To avoid the fast degradation of the computational elements due to ALE description, it was used the Laplacian Smoothing Method [5]



with Laplacian Smoothing

The new node position  $x_i$  can be approximated by:

$$\mathbf{\hat{x}_i} = \sum_{i \in \mathcal{N}_1} e_{ij}^{-1} (\mathbf{x}_j - \mathbf{x}_i)$$

where,  $e_{ij}^{-1}$  is the distance between the node and each neighbor in 1-ring  $N_1$ 



no Laplacian Smoothing

<sup>[5]</sup> Desbrun, M. Meyer, P. Schröder, A. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, in: Proceedingsof Siggraph, 1999, pp. 317–324

## Solution Algorithm







- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

## Validation - Poiseuille Flow



Boundaries Conditions:

Inflow condition: u = 1, v = 0 e  $\psi = y$ 

Outflow condition:  $\psi = y$ 

Top plate: u= 0, v= 0,  $\psi=$  1

Bottom plate: u= 0, v= 0,  $\psi=$  0







(a) comparison of Poiseuille Flow velocity profile and (b) log scale graph of convergence order.

# Validation - Lid Driven Cavity Flow



Boundaries Conditions:

Bottom and side plates:  $\it u=0$ ,  $\it v=0$  e  $\it \psi=0$ 

Top plate: u=1, v=0 e  $\psi=0$ 







Centerline velocity profile in a lid-driven cavity for Re = 100: (a) u-velocity and (b) v-velocity.





# Coming Soon

## Validation - Pulsation Flow



# Coming Soon



- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Results



# Coming Soon



- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

#### Conclusion



- 1. Was observed that the species transport in blood flow is directly influenced by drug used in stent production
- 2. The streamfunction-vorticity formulation showed an useful approach for to calculate the velocity and concentration fields since the variables are scalars allowing a smooth implementation
- 3. Due to generalized construction of the code, the simulator is able to describe drug-eluting stent problem in coronary artery as well as flows of Newtonian fluids with scalar transport (concentration or temperature)



# Thank you!

marquesleandro67@gmail.com gustavo.rabello@mecanica.coppe.ufrj.br jose.pontes@uerj.br

The authors thank the FAPERJ (Research Support Foundation of the State of Rio de Janeiro) for its financial support

