Game Theory - Problem set 3 Due date: classes on May, 11th

Problem 1 (4p) Consider the following game with two players meeting in a pub. Player A is "Wimpy" with probability 0.2 and "Surly" with probability 0.8. Player A knows its type and decides to order "beer" or "quiche". Then observing A's order B decides to "Concede" or "Fight". B does not know A's type. Payoffs are given by:

Player's A type	Players A action	Players B action	Payoff
Surly	Beer	Fight	(1,0)
Surly	Beer	Concede	(3,1)
Surly	Quiche	Fight	(0,0)
Surly	Quiche	Concede	(2,1)
Wimpy	Beer	Fight	(0,1)
Wimpy	Beer	Concede	(2,0)
Wimpy	Quiche	Fight	(1,1)
Wimpy	Quiche	Concede	(3,0)

- (i) Write the game in its extensive form and find all Bayesian-Nash equilibria.
- (ii) Write a game tree and find all WPBE.

Problem 2 (3p) In the problem you will verify whether the n = 2 players Folk's theorem for repeated games with perfect monitoring presented in class holds for n > 2. For this reason analyze n = 3 players game as depicted below:

	l	r
U	1,1,1	0,0,0
D	0,0,0	0,0,0
•	\overline{L}	

	l	r	
U	0,0,0	0,0,0	
D	0,0,0	1,1,1	
R			

- compute the min max payoffs for all players,
- argue that for any pure action profile in a stage game with 0 payoffs there is at least one player with a profitable deviation. And so there are no combinations of actions that simultaneously minmaxes all of the players,
- by $\alpha_i(1)$ denote players i prob. of choosing the first action (U, l or L for respective players). Argue why for any action profile we must have $a_j(1) \geq 0.5$ and $a_k(1) \geq 0.5$ or $(1-a_j(1)) \geq 0.5$ and $(1-a_k(1)) \geq 0.5$ for some 2 players say j, k,
- as a result the remaining player (say i) can guarantee himself a payoff of 0.25 (at least) in the stage game.
- argue the no matter what the discount factor is, the repeated game's payoff must be ≥ 0.25 ,
- how that observation violates statement of the Folk's theorem?

Problem 3 (3p) Consider an infinitely repeated prisoners dilemma as analyzed in the last class (with work and shirk actions) with imperfect public monitoring. In class we have analyzed a grim trigger strategy. You will now use the tools presented in class to analyze the forgiving strategy (with one period memory). Specifically, let players exert effort after signal \overline{y} and shirk after \underline{y} (in the previous period) and exert effort in the first period.

• write a automaton representation of that strategy,

- write formulas for values (in each state) and compute them,
- verify the set of parameters (p, q, r, δ) for which the described strategy profile constitutes a NE of the normal form game induced by the current payoffs and continuation values,
- show that under the current strategy the value in the good state is higher that in the grim trigger strategy analyzed in class,
- what is the other benefit from using such strategy? (think about absorbing states).