Sistema de Detección de Fraude con Tarjetas de Crédito usando Machine Learning

Diplomatura en Ciencia de Datos y Análisis Avanzado

Autores: Arenas, Diego; Díaz, Augusto; Galermes, Joaquín; Palazón, Agustina; Telis, Mónica; Vidable, Ignacio

Fecha: Octubre 2025

Resumen Ejecutivo

Problema Crítico

El fraude con tarjetas de crédito representa pérdidas millonarias anuales y erosiona sistemáticamente la confianza de los usuarios en los sistemas financieros modernos.

Solución Implementada

Desarrollamos un sistema
avanzado de Machine Learning que
detecta fraudes con un recall del
88% y AUC-PR de 0.878,
optimizando la precisión
predictiva.

Impacto Esperado

Reducción significativa de pérdidas económicas, mejora de la eficiencia operativa y fortalecimiento de la confianza de los clientes en el ecosistema financiero.

Definición del Problema

Escasez de Fraudes

Menos del 0,2% de las transacciones son fraudulentas, creando un desafío de desbalance extremo en los datos que requiere técnicas especializadas de tratamiento.

Desafío Técnico

Necesidad de alta precisión en la detección sin generar exceso de falsos positivos que afecten la experiencia del usuario legítimo.

Objetivo Central

Desarrollar un modelo predictivo robusto y confiable que prevenga pérdidas económicas mediante la identificación temprana de patrones fraudulentos.

Relevancia Estratégica para el Negocio

Impacto Financiero Global

Las pérdidas anuales por fraude con tarjetas de crédito alcanzan miles de millones de dólares a nivel mundial, representando un costo operativo crítico para la industria financiera.

Prioridad Estratégica

La detección de fraudes constituye una prioridad estratégica fundamental para bancos, fintechs y procesadores de pagos en el ecosistema financiero actual.

Enfoque Operativo

La estrategia óptima consiste en minimizar los fraudes no detectados (falsos negativos) aceptando un nivel controlado de falsos positivos para maximizar la protección.

Conjunto de Datos Utilizado

284.807

31

0,17%

Transacciones

Registros totales analizados del dataset europeo de 2013 obtenido de Kaggle

Variables

28 componentes PCA + Amount + Time + Class para análisis integral

Fraudes

Porcentaje de transacciones fraudulentas en el dataset

El principal desafío identificado fue el **fuerte desbalance de clases**, requiriendo técnicas especializadas de balanceo para optimizar el rendimiento del modelo predictivo.

Análisis Exploratorio de Datos (EDA)

Patrones de Montos

Los montos bajos predominan en las transacciones, con los fraudes mostrando distribuciones específicas que permiten identificar patrones distintivos de comportamiento.

Valores Atípicos

Se identificaron 31.904 outliers (~11% del dataset) que requieren tratamiento especializado para no comprometer la calidad del modelo.

Temporalidad

Los fraudes son significativamente más frecuentes durante las horas de madrugada, revelando patrones temporales críticos para la detección.

El dataset presenta alta calidad sin valores faltantes, facilitando el procesamiento y análisis posterior.

Preparación de Datos y Metodología

01

Limpieza de Datos

Identificación y tratamiento de valores atípicos, normalización de formatos y validación de integridad de los datos.

02

Escalado de Variables

Aplicación de técnicas de normalización para homogeneizar las escalas de las variables y optimizar el rendimiento de los algoritmos.

03

Balanceo de Clases

Implementación de SMOTE y técnicas de undersampling para abordar el desbalance extremo entre transacciones legítimas y fraudulentas.

04

Ingeniería de Features

Creación de la variable "Hour" a partir del timestamp para capturar patrones temporales relevantes en el comportamiento fraudulento.

Marco Metodológico: CRISP-DM para garantizar un enfoque estructurado y reproducible en todo el proceso de desarrollo.

Modelos de Machine Learning Evaluados

1

Regresión Logística

Modelo base lineal para establecer benchmark de rendimiento y interpretabilidad de resultados. 2

Árbol de Decisión

Algoritmo interpretable que permite comprender las reglas de decisión del modelo de forma transparente. 3

Random Forest

Ensemble de árboles que mejora la robustez y reduce el overfitting mediante agregación de múltiples predictores.

4

XGBoost

Algoritmo de gradient boosting optimizado que demostró el mejor rendimiento en métricas críticas.

5

LightGBM

Implementación eficiente de gradient boosting con ventajas en velocidad de entrenamiento y memoria.

Resultados Comparativos de Modelos

XGBoost emergió como el modelo superior con AUC-ROC=0.983, AUC-PR=0.878 y Recall=0.888, demostrando la mejor capacidad de detección de fraudes.

Métricas

	AUC_ROC	AUC_PR	RECALL	PRECISION	F1	TN	FP	FN	TP
LOGISTIC REGRESSION	0.970952	0.712809	0.908163	0.055452	0.104521	55348	1516	9	89
DECISION TREE	0.856949	0.543970	0.714286	0.760870	0.736842	56842	22	28	70
XGBOOST	0.983255	0.877673	0.846939	0.864583	0.855670	56851	13	15	83
RANDOM FOREST	0.967009	0.864970	0.765306	0.949367	0.847458	56860	4	23	75
LIGHTGBM	0.768613	0.004236	0.846939	0.004691	0.009330	39253	17611	15	83

Optimización de Umbral y Valor de Negocio

Se realizó un análisis exhaustivo para determinar el umbral de clasificación óptimo del modelo de detección de fraude.

Metodología y Costos

La optimización se basó en un barrido de thresholds, calculando el costo total esperado con la siguiente matriz:

- Costo de Falso Negativo (FN): 100 unidades (fraude no detectado)
- Costo de Falso Positivo (FP): 1 unidad (transacción legítima marcada como fraude)

El umbral óptimo de 0,065 minimiza el costo esperado a 1.144 unidades, equilibrando la detección de fraude y la minimización de falsos

Métrica	Baseline (0,5)	Óptimo (0,065)
Costo Esperado	Más alto	1.144
Falsos Negativos (FN)	Mayor	11
Recall	0,834	0,888
F1-score	0,724	0,760

Impacto Operativo Clave

Priorización de Detección

El umbral de 0,065 prioriza la detección de fraudes (FN), capturando ~9 de cada 10 fraudes debido al alto costo de no detectarlos (100x FP).

Reducción de Pérdidas y Eficiencia

Permite una **reducción significativa de pérdidas económicas** y una **mayor eficiencia** al concentrar recursos en el fraude real, con falsos positivos manejables para revisión.

Próximos Pasos

Mantenimiento del Modelo

- Reentrenamiento periódico: Semestralmente o cuando el rendimiento del modelo en producción (AUC-ROC, F1-score) caiga por debajo de umbrales predefinidos.
- Monitoreo continuo de data drift: Detección de cambios significativos en la distribución de los datos de entrada o etiquetas para activar reentrenamientos urgentes.

Implementación Técnica

- Arquitectura de APIs: Desarrollo de una API RESTful de baja latencia para predicciones en tiempo real, utilizando un enfoque *stateless*.
- Infraestructura: Despliegue en contenedores (Docker) orquestados por Kubernetes para asegurar escalabilidad horizontal y alta disponibilidad.

Monitoreo y Alertas

- Dashboards en tiempo real: Visualización de KPIs clave como costo esperado, tasa de Falsos Negativos/Positivos por umbral, y rendimiento histórico del modelo.
- **KPIs operativos:** Seguimiento del tiempo de respuesta de la API, tasa de éxito de llamadas, utilización de recursos (CPU, memoria).

Escalabilidad y Resiliencia

- Capacidad de procesamiento: Diseño del sistema para autoescalado automático basado en la carga de trabajo y el volumen de transacciones procesadas.
- Optimización de recursos: Implementación de técnicas de optimización para el uso eficiente de CPU/GPU y gestión de memoria.