

Group Name: SKYBLIVION

- Group Members:
 - Takitazwar Parthib
 - Fariaz Haque
 - o Isra Zaman
 - Sabikunnahar Talukder Pyaasa
 - Nila Maitra Chaity

Churn: Inactivity of a player leading to quitting the game

GOAL: To predict whether a player will churn from a freemium mobile game based on their in-game behavior during an initial observation period

Assignment Tasks:

- Structuring the Dataset
- Building a Supervised Dataset (using the training set), Defining time periods & Labeling each player
- Feature Extraction
- Training 3 Classifiers
- Creating a new dataset (using the test set) & Performing Feature Extraction
- Model Evaluation (Best Classifier & Best Features)
- LLM evaluation and comparison

Task 1: Dataset Overview and Splitting:

GAME 1 (.csv)

Json Object

{ Device ID: Player ID (unique) Records: [List of {Score,Time} entries (dictionaries) for each ID] }

Game 2 (json)

{ User ID: Player ID (Unique)
Records: [List of game event entries where each
item in the list is a dictionary containing time,
date, event type, properties {price, build,
balance}, ...] }

The datasets are then split into:

80% → For Training

20% → For Testing/Evaluation

Task 2: Building a labelled dataset using train_set

Defining the time windows

Anchoring
Player Timelines

Filtering & Labeling Churn

Defining the time windows:

Each Player's Activity is split into:

- Observation Period: Day 0 to Day 5
- Churning/Prediction Period: Following 10 days

Sorting & Anchoring Player Timelines

For Each player:

Sorting the events chronologically by timestamp

Identifying the 1st event and converting all absolute times to relative times

```
Eg.
abs_ts_scores = [(time1, score1), (time2, score2), ..., (timeN, scoreN)]
t1_abs = abs_ts_scores[0][0]
# absolute timestamp of first play of a player
rel_ts_scores = [(t_abs - t1_abs, score) for t_abs, score in abs_ts_scores]
#converting each timestamp to relative time
```

Filtering and Labelling:

Filtering : Only keeping players with at least one play/event in the observation period

Labeling:

Churned = 0 : Player has been active in the prediction window

Churned = 1 : No activity in the prediction window

Task 3: Feature Extraction (DS1)

List of Features (Game 1):

- Play_count
- Active_duration_s
- Best_sub_mean_ratio
- Sd score
- first_day_play_count
- play_frequency_per_day
- avg_time_between_plays
- Best_score_index
-

List of Features (Game 2):

- Play_count
- Active duration s
- Recency_last_purchase
- Purchase_rate
- consecutive_play_ratio
- first day play count
- play_frequency_per_day
- total_soft_spent
- O

Intuition behind feature selection

Game 1:

- Play_count = Higher numbers → more engagement
- Active_duration_s = Longer sessions → higher interest
- Sd_score → Low sd_score could mean difficulty
- First_day_play_count → Interest before release
- Play_frequency_per_day → Returns to game often
- Sd_gap → small gap between returns

Game 2:

- Active_duration_s → Longer sessions → higher interest
- Recency_last_purchase → made a recent purchase
- Purchase_rate → buys items quite often
- Consecutive_play_ratio → back-to-back sessions within a defined period
- Total_soft_spent → more investment

Feature Extraction (Code Snippet Game 1)

```
# Computing features & label (from OP DAYS only)
play count
                   = len(obs recs) # number of plays in the observation period
active duration s = obs recs[-1][0] if play count > 1 else 0 #Duration between first and last play in the observation window.
                   = 1 if len(pred recs) == 0 else 0 # labelling 1 if no activity in prediction window, otherwise 0.
churn
                   = [s for t, s in obs recs] #extracting the scores from the plays in the observation period
scores
                   = float(np.mean(scores))
                                                         # meanScore
mean score
                   = float(np.std(scores, ddof=0)) # standard deviation of score
sd score
best score
                 = float(max(scores))
                                                       # bestScore
                 = float(min(scores))
worst score
                                                       # worstScore
best idx
                  = scores.index(best score)
                                                      # index (position) of the first occurrence of the best score
best score index
                   = best idx / (play count - 1) if play count > 1 else 0 # Normalizing the best idx to a value between 0 and 1 by dividing
# bestSubMeanCount = (bestScore - meanScore) / n
best sub mean count = (best score - mean score) / play count if play count else 0 #How much better was the best score than average, per play
# bestSubMeanRatio = (bestScore - meanScore) / meanScore
best sub mean ratio = (best score - mean score) / mean score if mean score else 0 #relative difference between best score and mean score, as
    = 3600 # threshold in seconds for defining consecutive plays
gaps = [obs_recs[i+1][0] - obs_recs[i][0] for i in range(play_count - 1)] #list of time gaps (in seconds) between consecutive plays.
consec count
                       = sum(1 for g in gaps if g <= C) #no. of time gaps <=3600s ie number of back-to-back plays that happened within one o
consecutive play ratio = consec count / (play count - 1) if play count > 1 else 0 # ratio (percentage) of gaps less than 1 hour (C)
                       = float(np.median(gaps)) if gaps else 0 # median time between plays
median gap
                       = np.std(gaps) if len(gaps)>0 else 0
gap sd
```

Feature Extraction (Code Snippet Game 2)

```
#Scores
scores = [r for ( , , , , r) in obs plays if r is not None] # non-null rewards
mean score = float(np.mean(scores)) if scores else 0.0
sd score = float(np.std(scores, ddof=0)) if scores else 0.0
best score = float(max(scores)) if scores else 0.0
worst score= float(min(scores)) if scores else 0.0
best idx = scores.index(best score) if len(scores) > 1 else 0
best score index = best idx / (len(scores)-1) if len(scores) > 1 else 0.0
best sub mean count = (best score - mean score) / len(scores) if scores else 0.0
best sub mean ratio = (best score - mean score) / mean score if mean score else 0.0
#Gap between plays
gaps = [obs plays[i+1][0] - obs plays[i][0]
       for i in range(play count - 1)]
                      = sum(1 for g in gaps if g <= 3600) # plays within 1 hour
consec count
consecutive play ratio = consec count / (play count - 1) if play count > 1 else 0.0
                      = float(np.median(gaps)) if gaps else 0.0
median gap
# Failure stats
failure count = sum(1 for ( , ,action,fs, ) in obs plays
                  if action in ("fail", "quit") and fs is not None)
failure ratio = failure count / play count if play count else 0.0
# Queue duration
qd_list = [qd for (_,qd,_,_,) in obs_plays] + [qd for (t_rel,qd,_) in rel_buys if t_rel <= OP_S]
avg queue duration = float(np.mean(qd list)) if qd list else 0.0
```

Task 4: Model Training (Game 1)

Decision Tree

Random Forest

Sklearn library

XGBoost

Task 4: Model Training (Game 2)

Decision Tree


```
#
base_tree2 = DecisionTreeClassifier(random_state=30) #base decision tree model
param_grid2 = {
    'max_depth' : [None, 5, 10, 20], #max depth of tree
    'min_samples_split': [2, 10, 20], #Minimum samples to split
    'min_samples_leaf' : [1, 5, 10], #Minimum samples in a leaf
    'ccp_alpha' : [0.0, 0.005, 0.01] #Pruning parameter
}
```

Random Forest

Sklearn library

XGBoost

Task 5: Creating DS2 (Game 1 and 2)

Task 1 – Task 3 (Till feature extraction)

Evaluation Metrics

- Accuracy
- Precision
- Recall
- F1 Score
- Area Under ROC Curve

Task 6: Model Evaluation (Scores)

Game 1	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Decision Tree	0.930842	0.937930	0.991075	0.963770	0.802746
Random Forest	0.930071	0.939262	0.988584	0.963293	0.768450
XGBoost	0.930264	0.939795	0.988169	0.963375	0.757327

Game 2	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Decision Tree	0.815824	0.867206	0.812040	0.838717	0.858952
Random Forest	0.816265	0.870434	0.808838	0.838506	0.858836
XGBoost	0.815195	0.860877	0.818977	0.839405	0.863707

Task 6: Model Evaluation (ROC Curve & Best Performing Model - Game 1)

Best Performing Model: **Decision Tree (Based on AUC)**

Task 6: Model Evaluation (ROC Curve & Best Performing Model - Game 2)

Best Performing Model: XGBoost (Based on AUC)

Task 6: Model Evaluation (Single Feature Ranking)

- 1. Absolute Pearson Correlation with churn
- 2. Single-feature AUC (Decision Tree): 10-fold Cross validation AUC when the feature is used alone with the chosen Decision Tree model
- 3. Single-feature AUC (Random Forest): 10-fold Cross validation AUC when the feature is used alone with the chosen Random Forest model
- 4. Single-feature AUC (XGBoost): 10-fold Cross validation AUC when the feature is used alone with the chosen XGBoost model
- 5. XGBoost Feature Importance : Individual importance score for each feature calculated by XGBoost after training on all features together

Task 6: Model Evaluation (Single Feature Ranking Charts - Game 1)

Task 6: Model Evaluation (Single Feature Ranking Charts - Game 1)

Task 6: Model Evaluation (Single Feature Ranking Charts - Game 2)

Task 6: Model Evaluation (Single Feature Ranking Charts - Game 2)

Task 6: Model Evaluation (Combined Feature Ranking – Game 1)

```
### Combined Feature Ranking: Absolute Scores (all features) ###
                       pearson abs auc dt auc rf auc gbm
play count
                            0.4161 0.7742 0.5927
                                                             0.2123
active duration s
                                                    0.7649
                            0.2650 0.7523 0.5818
                                                             0.1435
                                                    0.7429
consecutive play ratio
                                   0.7428 0.7391
                                                    0.7446
                                                             0.0481
avgTimeBetweenPlavs
                            0.1735 0.7573 0.5416
                                                    0.7481
                                                             0.0459
play frequency per day
                            0.2249 0.7375 0.7327
                                                    0.7419
                                                             0.0409
best sub mean ratio
                            0.2656 0.7327 0.5227
                                                    0.7195
                                                             0.0425
best score index
                            0.1209 0.7061 0.6870
                                                    0.7065
                                                             0.0440
firstDavPlavCount
                            0.2304 0.7140 0.7090
                                                    0.7125
                                                             0.0351
scoreDeltaStd
                            0.1470 0.7298 0.5094
                                                    0.7169
                                                             0.0441
                           0.1188 0.7177 0.5068
sd score
                                                    0.7086
                                                             0.0471
                            0.1087 0.6873 0.5896
                                                    0.6800
                                                             0.0416
median gap
best sub mean count
                                   0.6658 0.5070
                                                             0.0424
                                                    0.6791
best score
                                                    0.6457
                                                             0.0400
                                   0.6641
                                           0.5332
worst score
                            0.0415 0.6119 0.5874
                                                    0.6012
                                                             0.0407
mean score
                           0.0138 0.6008 0.5057
                                                    0.5756
                                                             0.0385
### Combined Feature Ranking: Ranks + avg rank (all features) ###
                       pearson abs rank auc dt rank auc rf rank auc gbm rank imp gbm rank
                                                                                              avg rank
                                 2.0000
                                              2.0000
                                                           1.0000
                                                                        2.0000
                                                                                      3.0000
                                                                                                2.0000
play count
                                                                                                2.0000
active duration s
                                1.0000
                                             1.0000
                                                          6.0000
                                                                        1.0000
                                                                                      1.0000
                                 4.0000
                                              4 9999
                                                          9 9999
                                                                        5 0000
sd gap
                                                                                      2 9999
                                                                                                4.8000
                                13.0000
                                              5 9999
                                                          2 9999
                                                                        4 9999
                                                                                      4 9999
consecutive play ratio
                                                                                                5.6000
avgTimeBetweenPlavs
                                 7 9999
                                              3 9999
                                                         10.0000
                                                                        3 0000
                                                                                      6 9999
                                                                                                5 8000
                                 6.0000
                                              6 9999
                                                          3.0000
                                                                        6.0000
                                                                                     12.0000
play_frequency_per_day
                                                                                                6.6000
best sub mean ratio
                                 3.0000
                                              7.0000
                                                         12,0000
                                                                        7.0000
                                                                                      9.0000
                                                                                                7 6000
best score index
                                 9.0000
                                             11.0000
                                                          5.0000
                                                                       11,0000
                                                                                      8.0000
                                                                                                8.8000
firstDavPlavCount
                                 5.0000
                                             10.0000
                                                          4.0000
                                                                        9.0000
                                                                                     16.0000
                                                                                                8.8000
scoreDeltaStd
                                 8.0000
                                              8.0000
                                                         13,0000
                                                                        8.0000
                                                                                      7.0000
                                                                                                8.8000
sd score
                                10.0000
                                              9.0000
                                                         15,0000
                                                                       10.0000
                                                                                      5.0000
                                                                                                9.8000
median gap
                                11.0000
                                             12.0000
                                                          7.0000
                                                                       12.0000
                                                                                     11.0000
                                                                                               10,6000
best sub mean count
                                14.0000
                                             13.0000
                                                         14.0000
                                                                       13.0000
                                                                                     10.0000
                                                                                               12.8000
best score
                                12,0000
                                             14.0000
                                                         11,0000
                                                                       14.0000
                                                                                     14.0000
                                                                                               13.0000
                                15.0000
                                             15.0000
                                                          8.0000
                                                                       15.0000
                                                                                               13.2000
worst score
mean score
                                16.0000
                                             16.0000
                                                         16.0000
                                                                       16.0000
                                                                                     15.0000
                                                                                               15.8000
```

Task 6: Model Evaluation (Combined Feature Ranking – Game 2)

### Gam	e 2	Combined	Feature	Ranking:	Absolute	Scores	(all	features) #	##
---------	-----	----------	---------	----------	----------	--------	------	-------------	----

	pearson abs	auc dt	auc rf	auc gbm	imp gbm	
active duration s	0.5924	0.8437	0.7860	0.8440	0.5109	
recency_last_purchase	0.4863	0.7703	0.6715	0.7702	0.0618	
play_count	0.3385	0.7516	0.7514	0.7515	0.0215	
play freq per day	0.3880	0.7568	0.7569	0.7568	0.0151	
std gap	0.4204	0.7565	0.6779	0.7546	0.0175	
consecutive play ratio	0.2403	0.7044	0.7263	0.7267	0.0168	
purchase rate	0.1039	0.6919	0.7248	0.7187	0.0197	
unique_items_purchased	0.3049	0.7000	0.6997	0.6996	0.0162	
total_soft_spent	0.1147	0.7034	0.6947	0.7060	0.0176	
purchase_count	0.3024	0.7001	0.7001	0.7000	0.0138	
upgrade purchase freq	0.2987	0.6935	0.6934	0.6935	0.0173	
purchase ratio	0.2150	0.6872	0.7221	0.7159	0.0161	
best sub mean ratio	0.1721	0.6797	0.6192	0.6820	0.0205	
best sub mean count	0.0026	0.6993	0.6686	0.6995	0.0189	
worst_score	0.2682	0.6577	0.6545	0.6627	0.0183	
highest_price	0.1472	0.6768	0.6765	0.6767	0.0172	
mean_gap	0.2093	0.6332	0.5550	0.6335	0.0241	
avg queue duration	0.0625	0.6257	0.6689	0.6564	0.0194	
best score index	0.0029	0.6467	0.6481	0.6482	0.0216	
sd score	0.0029	0.6894	0.6247	0.6879	0.0173	
failure ratio	0.1244	0.6297	0.6316	0.6324	0.0177	
failure_count	0.1741	0.6134	0.6132	0.6132	0.0189	
mean_score	0.0010	0.6697	0.6579	0.6808	0.0164	
median_gap	0.1296	0.5751	0.5149	0.5719	0.0205	
best score	0.0033	0.6506	0.6485	0.6548	0.0168	
unique days	0.0117	0.5009	0.5009	0.5009	0.0080	

Game 2 Combined Feature Ranking: Ranks + avg rank (all features)

	pearson_abs_rank	auc_dt_rank	auc_rf_rank	auc_gbm_rank	imp_gbm_rank	avg_rank
active_duration_s	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
recency_last_purchase	2.0000	2.0000	13.0000	2.0000	2.0000	4.2000
play_count	5.0000	5.0000	3.0000	5.0000	5.0000	4.6000
play_freq_per_day	4.0000	3.0000	2.0000	3.0000	24.0000	7.2000
std_gap	3.0000	4.0000	11.0000	4.0000	15.0000	7.4000
consecutive_play_ratio	10.0000	6.0000	4.0000	6.0000	20.0000	9.2000
purchase_rate	19.0000	12.0000	5.0000	7.0000	8.0000	10.2000
unique_items_purchased	6.0000	9.0000	8.0000	11.0000	22.0000	11.2000
total_soft_spent	18.0000	7.0000	9.0000	9.0000	14.0000	11.4000
purchase_count	7.0000	8.0000	7.0000	10.0000	25.0000	11.4000
upgrade_purchase_freq	8.0000	11.0000	10.0000	13.0000	16.0000	11.6000
purchase_ratio	11.0000	14.0000	6.0000	8.0000	23.0000	12.4000
best_sub_mean_ratio	14.0000	15.0000	22.0000	15.0000	6.0000	14.4000
best_sub_mean_count	25.0000	10.0000	15.0000	12.0000	10.0000	14.4000
worst_score	9.0000	18.0000	17.0000	18.0000	12.0000	14.8000
highest_price	15.0000	16.0000	12.0000	17.0000	18.0000	15.6000
mean_gap	12.0000	21.0000	24.0000	22.0000	3.0000	16.4000
avg_queue_duration	20.0000	23.0000	14.0000	19.0000	9.0000	17.0000
best_score_index	24.0000	20.0000	19.0000	21.0000	4.0000	17.6000
sd_score	23.0000	13.0000	21.0000	14.0000	17.0000	17.6000
failure_ratio	17.0000	22.0000	20.0000	23.0000	13.0000	19.0000
failure_count	13.0000	24.0000	23.0000	24.0000	11.0000	19.0000
mean_score	26.0000	17.0000	16.0000	16.0000	21.0000	19.2000
median_gap	16.0000	25.0000	25.0000	25.0000	7.0000	19.6000
best_score	22.0000	19.0000	18.0000	20.0000	19.0000	19.6000
unique_days	21.0000	26.0000	26.0000	26.0000	26.0000	25.0000

Task 6: Model Evaluation (Combined Feature Ranking – Game 1)

Top 5 Features: active_duration_s, play_count, sd_gap, consecutive_play_ratio and avgTimeBetweenPlays.

Task 6: Model Evaluation (Combined Feature Ranking – Game 2)

Top 5 Features: active_duration_s, recency_last_purchase, play_count, play_freq_per_day and std_gap.

Task 6: LLM (Game 1)

Choice of LLM: Bart-Large-MNLI

```
Prompt: "These are the player stats from the first 5 days. You are to predict if a player will churn or not Number of plays: ...

Total active duration (seconds): ....

Average score: ....

Score standard deviation: ...

Highest score: ...

Median time gap between plays (seconds):...

...

Std. deviation of score change: ... "
```

Task 6: LLM (Game 2)

Choice of LLM: Distilbart-MNLI-12-1

Prompt: "These are the player stats from the first 5 days. You are to predict if a player will churn or not. This is a racing game.

Task 6: LLM Results Using DS2

Game 1(Bart-Large-MNLI)

Metrics	Scores
Accuracy	0.9281
Precision	0.9281
Recall	1.000
F1-Score	0.9627
ROC-AUC	0.5389

Game 2 (Distilbart-MNLI-12-1)

Metrics	Scores
Accuracy	0.4684
Precision	0.6454
Recall	0.2186
F1-Score	0.3266
ROC-AUC	0.5130

Conclusion: Scores are considerably lower than trained models since LLMS do not have game-specific context.

References

• Seungwook Kim, Daeyoung Choi, Eunjung Lee, and Wonjong Rhee. Churn prediction of mobile and online casual games using play log data. PloS one, 12(7):e0180735, 2017.

Thank You!