Examples of (non-split) reductive gps

- 1. forms
- 2 torus case
- 3. other cases

Setting. We work over conn red gp over F. (G/F conn red)

 $H^1(W,A) = Z^1(W,A)/A.$

Borel = maximal (Zar-closed) conn sol alg subgp = minimal parabolic subgp Parabolic = $H \leq G$ closed subgp s.t G/H is projective = closed subgp containing a Borel.

Ref:

[ECII] Silverman, The Arithmetic of Elliptic Curves

[Buzzard] Kevin Buzzard, Forms of reductive algebraic groups. https://www.ma.imperial.ac.uk/~buzzard/maths/research/notes/forms_of_reductive_algebraic_groups.pdf

[KP] Tasho Kaletha and Gopal Prasad, Bruhat{Tits theory: a new approach. version from May 27, 2022.

[DRo9] Stephen DeBacker and Mark Reeder, Depth-zero supercuspidal L-packets and their stability https://annals.math.princeton.edu/wp-content/uploads/annals-v169-n3-po3.pdf

https://mathoverflow.net/questions/121959/classification-of-tori-of-gl2-up-to-conjugation

I make no claim to originality.

1. forms.

Def.
$$G_{1}, G_{2}/F$$
 are called forms, if $\exists \lambda : G_{2}, F \xrightarrow{\sim} G_{1}, F$ as gps not as $F_{F}-gps!$ λ is considered as the information of forms.

Thm.
$$\{F - forms \ of \ G \} \iff H'(\Gamma_F, Aut \ (G_{\bar{F}}))$$

$$[G_2, \lambda, G_2, \bar{F} \to G_{\bar{F}}] \longmapsto \qquad \forall \lambda = \lambda \sigma \lambda^{-1} \sigma^{-1} \longrightarrow G_{\bar{F}}$$

$$G_1(F) := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_2, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_3, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_4, K] := \{g \in G(\bar{F}) \mid (\gamma(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_F \}$$

Functorial on F. (Inflation - Restriction seq, [ECII, Appendix B, Prop 1.3])

Let E/F be finite Galois.

Rmk. We have the classification of connected reductive gps.

Split red gp/F
$$\} \longleftrightarrow (X^*, \Delta, X_*, \Delta^{\vee}) \Rightarrow \mathbb{I}(G,B,T)$$

 $\{ qs \text{ red gp/F }\} \longleftrightarrow (X^*, \Delta, X_*, \Delta^{\vee}) + \Gamma_{F}\text{-action}$
 $= (X^*, \Delta, X_*, \Delta^{\vee}) + H'(\Gamma_{F}, Out(G_{F}))$
 $\{ red gp/F \} \longleftrightarrow (X^*, \Delta, X_*, \Delta^{\vee}) + H'(\Gamma_{F}, Aut(G_{F})) \}$

To understand the result, the following isos are needed:

$$Aut(G_{\bar{F}}) \cong Inn(G_{\bar{F}}) \times Aut(G_{,B},T_{,fu_{\bar{a}}})$$

Out
$$(G_{\overline{F}}) \cong Aut (G,B,T, \{u_a\})$$
 for embedding $\cong Aut (\mathcal{L}(G,B,T))$ for combinatorics

Also, by the Hilbert 90, one has $H'(\Gamma_F, Aut(G,B,T, iud)) \cong H'(\Gamma_F, Aut(G,B,T))$

2. torus case

Let us try to find all the forms of the split torus and. They're called (non-split) torus.

We know

$$Aut(G_m^n) \subseteq End(G_m^n) \qquad Hom(G_m,G_m) \cong \mathbb{Z}$$
 $II \qquad \qquad II \qquad \qquad (-)^n \iff n$
 $GL_n(\mathbb{Z}) \subseteq M^{n \times n}(\mathbb{Z})$

Therefore,

$$H'(\Gamma_F, Aut(G_{m,F}^n)) = H'(\Gamma_F, GL_n(Z))$$

$$= Hom_{Grp}(\Gamma_F, GL_n(Z))/GL_n(Z)-conj$$

$$\underset{\text{when } F=R}{==R} g \in GL_n(Z) \mid g^2 = Id \int/GL_n(Z)-conj$$

$$\begin{bmatrix}
\Gamma_{F} \text{ acts on } Aut (G_{m,F}^{n}) \subseteq End (G_{m,F}^{n}) \text{ trivially:} \\
\text{See } \overline{F} \text{-pts, } n = 1: \\
F^{\times} \xrightarrow{d} \overline{F}^{\times} \\
\downarrow \qquad \qquad \downarrow \sigma \\
F^{\times} \xrightarrow{\sigma_{d}} \overline{F}^{\times}$$

$$\Rightarrow \sigma_{(x)} \qquad \sigma_{(x^{n})} = \sigma_{(x)}^{n}$$

$$\Rightarrow \sigma_{(x)} = \sigma_{(x)}^{n}$$

$$H'(\Gamma_F, Aut(G_{m,F})) \cong \{1, -1\}$$

$$G_m \quad G = ?SO_{27R}$$

$$G(IR) = \{g \in G_{m}(\mathbb{C}) \mid (\varphi(\sigma) \circ \sigma) g = g \}$$

$$= \{g \in \mathbb{C}^{\times} \mid (\overline{g})^{-1} = g\}$$

$$= \{g \in \mathbb{C}^{\times} \mid (gl = 1)\}$$

$$= S'$$

$$G(\mathbb{C}) = G_{m}(\mathbb{C}) = \mathbb{C}^{\times}$$

$$\Rightarrow G = \{Spec \mid R[x,y]/(x^{2}+y^{2}-1) = SQ_{2},R\}$$

$$Check: G(\mathbb{C}) = \{(x,y) \in \mathbb{C} \times \mathbb{C} \mid x^{2}+y^{2}-1 = 0\}$$

$$= \{(x,y) \in \mathbb{C} \times \mathbb{C} \mid (x+iy)(x-iy) = 1\}$$

$$= \{(x,y,t) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{\times} \mid x+iy = t\}$$

$$\Rightarrow \mathbb{C}^{\times}$$

$$SQ_{2}(K) = \{(x,y,y) \mid x,y \in K, x^{2}+y^{2} = 1\}$$

$$H'(\Gamma_{F}, Aut(G_{m,\overline{F}}^{2})) \cong \{('_{1}), ('_{-1}), (^{-1}_{-1}), (_{1}^{-1})\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Fact. Any (conn) IR-torus is product of
$$G_m$$
, $SO_{2,IR}$. Rescur G_m
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

Rmk, Using the same argument, one can show that $\{T/IF_p : T \in G_n, IF_p \} = products of Gm, ($\frac{a}{\epsilon}b^a), Res_{IF_p} G_m$

The torus
$$G$$
 cyspol to -1 : Assume $S \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$, $S^2 = \varepsilon \in \mathbb{F}_p$, $\binom{\varepsilon}{p} = -1$

$$G(\mathbb{F}_p) = g \in G_m(\mathbb{F}_{p^2}) \mid (\varphi(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_k$$

$$= g + b \in \mathbb{F}_p^2 \mid \varphi(\sigma) (a - b \circ b) = a + b \circ g$$

$$= a + b \in \mathbb{F}_p^2 \mid a^2 - b^2 \varepsilon = 1$$

$$\cong \binom{a + b}{\varepsilon b a} \subseteq GL_2(\mathbb{F}_p)$$

3. other cases.

By using the same methods introduced in last section, we can compute the (inner) forms of reductive gps.

	inner forms	outer forms	[
(C _m) ² (C _m) ²	, Ø	SO2 SO2×Gm, (SO2), Resc/1R Gm product of lower rank torus	
GL2,1R SL2,1R PGL2,1R	H* = GL, (IH 8/R-) H= SUz, G/R		
GLn,IR SLn,IR PGLn,IR	? GLn/2 (IH Ø _{IR} -) when n even ?	? SU(a,n-a) ep. SU(2,1) «	-need clarification
(SL ₂) ² /IR (SL ₂) ³ /IR	SL,×SU, (SU,), . ^{6,?} (8-1) possibilities	Res _{CUR} SL ₂	

?: I have no time to compute /don't know any symbol to represent : quasi-split gp

Compute Aut (GF)
Lemma. We understand Aut (GF) quite well.

	$G(\overline{F})/_{Z(G(\overline{F}))} = G^{ad}(\overline{F})$		Aut(↓₀)	
G	$I \longrightarrow I_{nn}(G_{\overline{F}}) \longrightarrow$	\rightarrow Aut($G_{\bar{r}}$) \rightarrow	Out (GF) -	→ 1
Trkn	1	$GL_n(\mathbb{Z})$	$GL_n(\mathbb{Z})$	
GL2,1R	PGL ₂ (C)	PGL2(C) x [±1]	8±1}	
SL2, IR	PGL2(C)	PGL2(C)	1	
PGLz, IR	PGLL(C)	PGLL(C)	1	
n≥3		612	Δ.	
GLn,IR	PGLn(C)	PGLn(C) x [t]	β±1} ^{Φ2}	
SLnir	PGLn(C)	PGLn(C) X [±1]	8±1}	
PGLn.IR	PGLn(C)	PGLn(C) X [±1]	8±1}	
(SL)2/1R	PGLn(C) ²	PGLn(C) > [t]	8±1}	
Resalir SLz	PGLn(C)	PGLn(C) X [±1]	8±1}	with different PiR-action
(SL.) "/IR	PGLn(C)	PGLn(C)"> S"	2,	11

Compute $H'(\Gamma_F, -)$

Method 1: Hilbert 90 + LES

Method 2: Use black box

p-adic field: Kottwitz's isomorphism

Theorem 12.7.7 There is a functorial isomorphism $H^1(k,G) \to \pi_1(G)_{\Theta,\text{tor}}$.

COROLLARY 2.4.3. The composition

$$[\bar{X}/(1-\vartheta)\bar{X}]_{\mathrm{tor}} \xrightarrow{\sim} H^{1}(\mathcal{F},\Omega_{C}) \xrightarrow{a_{*}^{-1}} H^{1}(\mathcal{F},N_{C}) \xrightarrow{b_{*}} H^{1}(\mathcal{F},G)$$

is a bijection.

$$[\bar{X}/(1-\vartheta)\bar{X}]_{\mathrm{tor}} = \mathrm{Irr}[\pi_0(\hat{Z}^{\hat{\vartheta}})].$$

real field:

Mikhail Borovoi, Galois cohomology of reductive algebraic groups over the field of real numbers https://arxiv.org/abs/1401.5913

3.1. Theorem. Let G, T_0 , T, and W_0 be as above. The map

$$H^1(\mathbb{R},T)/W_0(\mathbb{R}) \to H^1(\mathbb{R},G)$$

induced by the map $H^1(\mathbb{R},T) \to H^1(\mathbb{R},G)$ is a bijection.

global field:

 $\label{lem:mikhail Borovoi, Tasho Kaletha, Galois cohomology of reductive groups over global fields $$ $$ $$ https://arxiv.org/pdf/2303.04120.pdf$

Q. Do we have

$$2H'(\Gamma_{F}, Inn(G_{\overline{F}})) \longrightarrow H'(\Gamma_{F}, Aut(G_{\overline{F}})) \longrightarrow H'(\Gamma_{F}, Out(G_{\overline{F}}))$$

$$1 \longrightarrow Inn(G_{\overline{F}})^{F} \longrightarrow Aut(G_{\overline{F}})^{\Gamma_{F}} \longrightarrow Out(G_{\overline{F}})^{\Gamma_{F}}$$

$$Inn'(G_{F}) \longrightarrow Aut'(G_{F}) \longrightarrow Out(G_{F})$$

Give one example s.t. $H'(\Gamma_{\bar{F}}, Inn(G_{\bar{F}})) \longrightarrow H'(\Gamma_{\bar{F}}, Aut(G_{\bar{F}}))$ is not inj?