Design of a PID Controller for a Molten Salt Microreactor Master's Plan

Sam J. Root,¹
Major Professor: Michael McKellar,¹
Committee Members: Robert A. Borrelli¹, Dakota Roberson²

University of Idaho · Idaho Falls Center for Higher Education ¹Department of Nuclear Engineering and Industrial Management ²Department of Electrical and Computer Engineering

Outline

- Scope
- 2 Applied Literature Review
- 3 Future Work
- 4 Final Remarks

Scope

Molten Salt Nuclear Battery (MSNB)

• Self-Contained liquid fueled molten salt micro-reactor - 10 year design

Simplified schematic drawing of an MSNB

Molten Salt Nuclear Battery (MSNB)

- Self-Contained liquid fueled molten salt micro-reactor - 10 year design
- 1 MW design using HALEU UF₄dissolved in FLiNaK

Simplified schematic drawing of an MSNB

Molten Salt Nuclear Battery (MSNB)

- Self-Contained liquid fueled molten salt micro-reactor - 10 year design
- 1 MW design using HALEU UF₄dissolved in FLiNaK
- Criticality is manipulated using axial control drums
 - Neutron absorber plate covering cylinders of neutron reflector
 - Drums are rotated to point more absorber towards the core to insert negative control reactivity

MsNB Control Drums

Background on MSNB

Neutronics [1]

- Control drums give a uniform axial and radial flux profile for all reactivity insertions
- Fission product poisoning is the biggest challenge to reach the desired 10-year lifespan
- Control drum vs. reactivity curve is sinusoidal

Thermal Hydraulics [2]

Process Control

[1] Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis. University of Idaho

[2] Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance.

Ph.D. thesis, Univesity of Idaho

Background on MSNB

Neutronics [1]

Thermal Hydraulics [2]

- The counteracting passive feedback effects of temperature reactivity and flow reactivity produce stable autonomous load following for relatively small ramp function power demand transients
- An in-core helix device can be used to manipulate temperature and power profiles in the core, as well as minimize advective loss of delayed-neutron precursors

Process Control

[2] Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance.

Ph.D. thesis, Univesity of Idaho

^[1] Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis. University of Idaho

Background on MSNB

Neutronics [1]

Thermal Hydraulics [2]

Process Control

- Design controller *compliment* the autonomous capabilities provided by the passive feedback mechanisms
- Allow larger faster, more aggressive power changes
- Additional focus on time periods with a high degree of time variance (start-up, shut-down, re-start)

[2] Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics

and system thermal-hydraulic performance.
Ph.D. thesis, Univesity of Idaho

^[1] Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis. University of Idaho

Applied Literature Review

Time-Variance and Non-Linearity

Future Work

Control Drum Characterization

- Use KCODE to develop control drum vs. reactivity curve at various points in the core lifespan
- Use Burn-up routine to study how the core criticality at different conditions effects the control drum vs. reactivity
 - Cold/clean start-up
 - Burnable poison start-up
 - Equilibrium poisoning
 - Long-term depletion of fissile isotopes
- Develop bias/unity point schedule
- Will to use HPC or Falcon

Process Simulation

Python

- 1D+time finite element model that accounts for passive feedback mechanisms during unsteady state subcritical, critical, and supercritical modes to calculate the core power and flow loop temperature profile over time
- Simulate system response to:
 - Control actuation
 - Heat exchanger transients
- Empirical fitting of reactor transfer function
- Studies can be conducted locally or with cluster resources

Controller Tuning

MATLAB-Simulink

- Model control loop in Simulink
- Investigate system stability using frequency response tests
- Use built-in numerical methods to implement a PID controller tuning method
- Repeat for different core conditions to develop gain-schedule and/or look-up table for the controller parameters

Implementation and Testing

Python

- Implement control drum reactivity, pre-filter, and PID controller into the process simulation
- Test autonomous response to heat exchanger power demand transients
- Repeat with controller active
- Quantitatively compare response using settling time, dampening ratio, peak overshoot ratio etc.

Timeline

Table: Timeframe for Execution of Project

Tasks	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
Control Drums	X	X	X				
Process Simulation		X	X	X			
Controller Tuning				X	X		
Implementation					X	X	
Cross-Cutting						X	X
Defend							X

Final Remarks

Other Considerations

- Poison perturbations following power transients [3]
- Melting of in-situ frozen salt
- Decay heat system [4]
- Flow rate control

[3] Al Rashdan, A. et al., 2019. A frequency domain control perspective on xenon resistance for load following of thermal nuclear reactors. IEEE Transactions on Nuclear Science 66(9), 2034.

2022.10.13

17 / 20

doi: 10.1109/TNS.2019.2934171

[4] Wang, S., et al., 2019. A passive decay heat removal system for emergency draining tanks of molten salt reactors. Nuclear Engineering and Design 341, 423.

ISSN 0029-5493.

doi: https://doi.org/10.1016/j.nucengdes.2018.11.021.

URL https://www.sciencedirect.com/science/article/pii/S0029549318309567

Root (Idaho Falls Center) PID Controller Design: MSNB

Discussion

- Non-Linearity vs. Time-Variance
- Control Loop

Acknowledgements

This work and my coursework is being completed under a Graduate Fellowship funded by Nuclear Regulatory Commission (NRC)

References

- 1. Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis, University of Idaho.
- 2. Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance. Ph.D. thesis, University of Idaho.
- 3. Al Rashdan, A. et al., 2019. A frequency domain control perspective on xenon resistance for load following of thermal nuclear reactors. IEEE Transactions on Nuclear Science 66(9), 2034. doi: 10.1109/TNS.2019.2934171.
- 4. Wang, S., et al., 2019. A passive decay heat removal system for emergency draining tanks of molten salt reactors. Nuclear Engineering and Design 341, 423. ISSN 0029-5493. doi: https://doi.org/10.1016/j.nucengdes.2018.11.021.
 - URL https://www.sciencedirect.com/science/article/pii/S0029549318309567