Dynamic Programming (4)

By: Aminul Islam

Steps in Dynamic Programming

Steps in Dynamic Programming

- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution, typically in a bottom-up fashion.
- Construct an optimal solution from computed values.

LCS Problem Statement: Given two sequences, the task is to find the longest subsequence (and its length) present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.

LCS Problem Statement: Given two sequences, the task is to find the longest subsequence (and its length) present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.

For example, given a sequence "abcdefg"

LCS Problem Statement: Given two sequences, the task is to find the longest subsequence (and its length) present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.

For example, given a sequence "abcdefg" Some of its subsequences are:

LCS Problem Statement: Given two sequences, the task is to find the longest subsequence (and its length) present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.

For example, given a sequence "abcdefg" Some of its subsequences are: "abc"

LCS Problem Statement: Given two sequences, the task is to find the longest subsequence (and its length) present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.

For example, given a sequence "abcdefg" Some of its subsequences are: "abc", "abg"

LCS Problem Statement: Given two sequences, the task is to find the longest subsequence (and its length) present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.

For example, given a sequence "abcdefg" Some of its subsequences are: "abc", "abg", "bdf"

LCS Problem Statement: Given two sequences, the task is to find the longest subsequence (and its length) present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.

For example, given a sequence "abcdefg" Some of its subsequences are: "abc", "abg", "bdf", "aeg"

LCS Problem Statement: Given two sequences, the task is to find the longest subsequence (and its length) present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.

For example, given a sequence "abcdefg" Some of its subsequences are: "abc", "abg", "bdf", "aeg", "acefg"

■ A classic computer science problem

- A classic computer science problem
- The basis of data comparison programs such as the "diff" utility

- A classic computer science problem
- The basis of data comparison programs such as the "diff" utility
- It is also widely used by many revision control systems such as "Git"

- A classic computer science problem
- The basis of data comparison programs such as the "diff" utility
- It is also widely used by many revision control systems such as "Git"
- Has many applications in bioinformatics

```
int LCS( char *X, char *Y, int m, int n )
{
    if (m == 0 || n == 0)
        return 0;
    if (X[m] == Y[n])
        return 1 + LCS(X, Y, m-1, n-1);
    else
        return max(LCS(X, Y, m, n-1), LCS(X, Y, m-1, n));
}
```

```
int LCS( char *X, char *Y, int m, int n )
{
    if (m == 0 || n == 0)
        return 0;
    if (X[m] == Y[n])
        return 1 + LCS(X, Y, m-1, n-1);
    else
        return max(LCS(X, Y, m, n-1), LCS(X, Y, m-1, n));
}
Time complexity, T(n) =
```

```
int LCS( char *X, char *Y, int m, int n )
{
    if (m == 0 || n == 0)
        return 0;
    if (X[m] == Y[n])
        return 1 + LCS(X, Y, m-1, n-1);
    else
        return max(LCS(X, Y, m, n-1), LCS(X, Y, m-1, n));
}
Time complexity, T(n) = T(n-1) + T(n-1) + 1
```

Algorithm: DP solution to LCS Problem

Algorithm: DP solution to LCS Problem

```
int LCS( char *X, char *Y, int m, int n)
   int L[m+1, n+1];
   int i, j;
   for (i=0; i<=m; i++)
      for (j=0; j<=n; j++)
        if (i == 0 || j == 0)
           L[i, j] = 0;
        else if (X[i] == Y[j])
           L[i, j] = L[i-1, j-1] + 1;
        else
           L[i, j] = max(L[i-1, j], L[i, j-1]);
   return L[m, n];
```

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0						
A 1						
C 2						
B 3						
D 4						
E 5						
A 6						

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1						
C 2						
B 3						
D 4						
E 5						
A 6						

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0					
C 2	0					
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1				
C 2	0					
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1			
C 2	0					
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,	j]	j=0	1 A	2 B	3 C	4 D	5 A
i =	0	0	0	0	0	0	0
Α	1	0	1	1	1		
C :		0					
В:	3	0					
D ·	4	0					
E!	5	0					
А	6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

l[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	
C 2	0					
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0					
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1				
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1			
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2		
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0					
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1				
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2			
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2		
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	
D 4	0					
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

ſ	1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
ĺ	i = 0	0	0	0	0	0	0
Ī	A 1	0	1	1	1	1	1
	C 2	0	1	1	2	2	2
ĺ	B 3	0	1	2	2	2	2
Ī	D 4	0					
Ì	E 5	0					
Ì	A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1				
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i	= 0	0	0	0	0	0	0
-	۱ 1	0	1	1	1	1	1
(2	0	1	1	2	2	2
E	3 3	0	1	2	2	2	2
[) 4	0	1	2			
E	Ξ 5	0					
1	۹ 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2		
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0					
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

ſ	1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
ſ	i = 0	0	0	0	0	0	0
Ī	A 1	0	1	1	1	1	1
ſ	C 2	0	1	1	2	2	2
ſ	B 3	0	1	2	2	2	2
Ī	D 4	0	1	2	2	3	3
Ī	E 5	0	1				
Ī	A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2			
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2		
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0					

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1				

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2			

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

ſ	1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
ĺ	i = 0	0	0	0	0	0	0
Ì	A 1	0	1	1	1	1	1
	C 2	0	1	1	2	2	2
ĺ	B 3	0	1	2	2	2	2
ĺ	D 4	0	1	2	2	3	3
Ì	E 5	0	1	2	2	3	3
Ì	A 6	0	1	2	2		

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
if (X[i] == Y[j])
    L[i, j] = L[i-1, j-1] + 1;
else
    L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

```
X A C B D E A
1 2 3 4 5 6
Y A B C D A
1 2 3 4 5
    if (X[i] == Y[j])
        L[i, j] = L[i-1, j-1] + 1;
    else
        L[i, j] = max(L[i-1, j], L[i, j-1]);

        L[i, j] = max(L[i-1, j], L[i, j-1]);

        L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

```
X A C B D E A

1 2 3 4 5 6

Y A B C D A

1 2 3 4 5

if (X[i] == Y[j])

L[i, j] = L[i-1, j-1] + 1;

else

L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4


```
X A C B D E A

1 2 3 4 5 6

Y A B C D A

1 2 3 4 5

if (X[i] == Y[j])

L[i, j] = L[i-1, j-1] + 1;

else

L[i, j] = max(L[i-1, j], L[i, j-1]);
```

•	length of LCS $=$	=
4		
•	LCS =	
	RDΔ	

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

```
X A C B D E A

1 2 3 4 5 6

Y A B C D A

1 2 3 4 5

if (X[i] == Y[j])

L[i, j] = L[i-1, j-1] + 1;

else

L[i, j] = max(L[i-1, j], L[i, j-1]);
```

•	length of LCS $=$
4	
•	LCS =
۸	R DA

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

```
Ε
                       Α
        if (X[i] == Y[j])
           L[i, j] = L[i-1, j-1] + 1;
        else
           L[i, j] = max(L[i-1, j], L[i,
j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

- length of LCS = 4 • LCS =
- A B DA
- Is "ACDA" another optimal solution?

```
X A C B D E A

1 2 3 4 5 6

Y A B C D A

1 2 3 4 5

if (X[i] == Y[j])

L[i, j] = L[i-1, j-1] + 1;

else

L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

- length of LCS =
- LCS =
- A B DA
- Is "ACDA" another optimal solution?
- Time Complexity
- =

```
X A C B D E A

1 2 3 4 5 6

Y A B C D A

1 2 3 4 5

if (X[i] == Y[j])

L[i, j] = L[i-1, j-1] + 1;

else

L[i, j] = max(L[i-1, j], L[i, j-1]);
```

1[i,j]	j=0	1 A	2 B	3 C	4 D	5 A
i = 0	0	0	0	0	0	0
A 1	0	1	1	1	1	1
C 2	0	1	1	2	2	2
B 3	0	1	2	2	2	2
D 4	0	1	2	2	3	3
E 5	0	1	2	2	3	3
A 6	0	1	2	2	3	4

- length of LCS =
- 4
- LCS =
- A B DA
- Is "ACDA" another optimal solution?
- Time Complexity=O(mn)

■ Start from the lower-right corner cell.

- Start from the lower-right corner cell.
- If the cell directly above or directly to the left contains a value equal to the value in the current cell, then move to that cell (if both are equal to the current one, then chose either one).

- Start from the lower-right corner cell.
- If the cell directly above or directly to the left contains a value equal to the value in the current cell, then move to that cell (if both are equal to the current one, then chose either one).
- If both such cells have values less than the value in the current cell, then output the character that is in the current cell and move diagonally up-left cell.

- Start from the lower-right corner cell.
- If the cell directly above or directly to the left contains a value equal to the value in the current cell, then move to that cell (if both are equal to the current one, then chose either one).
- If both such cells have values less than the value in the current cell, then output the character that is in the current cell and move diagonally up-left cell.
- Stop when in top left cell

- Start from the lower-right corner cell.
- If the cell directly above or directly to the left contains a value equal to the value in the current cell, then move to that cell (if both are equal to the current one, then chose either one).
- If both such cells have values less than the value in the current cell, then output the character that is in the current cell and move diagonally up-left cell.
- Stop when in top left cell

This gives you the characters in reverse order.