AMD - Ejercicios de aplicaciones afines - Curso 2020/21

- 1. a) Calcula los vértices de una PIRÁMIDE $C\subseteq \mathcal{A}^3(\mathbb{R})$ de altura 5 cuya base sea un pentágono regular de lado 1 que esté contenido en el plano Π de ecuación x-y+z=2.
 - b) Dibuja Π y C.
- 2. a) Calcula los vértices de una TORRE $C \subseteq \mathcal{A}^3(\mathbb{R})$ de altura 3 cuya base sea un hexágono regular de lado 1 que esté contenido en el plano Π de ecuación 2x y + z = 1.
 - b) Dibuja Π y C.
- 3. a) Calcula la matriz de la aplicación afín $f:\mathcal{A}^2(\mathbb{R})\to\mathcal{A}^2(\mathbb{R})$ correspondiente al GIRO de 45° alrededor del punto $\begin{bmatrix}2\\-1\end{bmatrix}$.
 - b) Sea $C\subseteq \mathcal{A}^2(\mathbb{R})$ el hexágono regular centrado en el punto $\begin{bmatrix} 4\\4 \end{bmatrix}$ tal que uno de sus vértices es el punto $\begin{bmatrix} 5\\4 \end{bmatrix}$. Calcula todos los vértices de C y f(C). Dibuja C y f(C).
- $\text{4. Sea } \ell \subseteq \mathcal{A}^2(\mathbb{R}) \text{ la recta que pasa por los puntos } \begin{bmatrix} -1 \\ 0 \end{bmatrix} \text{y } \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$
 - a) Calcula las matrices de las aplicaciones afines $p,s:\mathcal{A}^2(\mathbb{R})\to\mathcal{A}^2(\mathbb{R})$ correspondientes a la PROYECCIÓN y a la SIMETRÍA respecto de ℓ .
 - $b) \ \ \text{Sea} \ C \subseteq \mathcal{A}^2(\mathbb{R}) \ \text{el cuadrado centrado en el punto} \ \begin{bmatrix} 3 \\ -3 \end{bmatrix} \ \text{y con uno de sus vértices en} \ \begin{bmatrix} 5 \\ -2 \end{bmatrix}.$
 - Calcula todos los vértices de C y s(C).
 - Dibuja ℓ , C, s(C) y el segmento p(C).
- 5. a) Calcula la matriz de la aplicación afín $f: \mathcal{A}^2(\mathbb{R}) \to \mathcal{A}^2(\mathbb{R})$ correspondiente a la HOMOTECIA con factor 3 y con centro en el punto $P = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
 - b) Sea $C\subseteq \mathcal{A}^2(\mathbb{R})$ el triángulo isósceles contenido en el segundo cuadrante que tiene altura 2 y cuya base es el segmento con extremos $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ y $\begin{bmatrix} -3 \\ 2 \end{bmatrix}$.
 - Calcula todos los vértices de C y f(C).
 - Dibuja P, C y f(C).

- 6. Sea $\Pi\subseteq\mathcal{A}^3(\mathbb{R})$ el plano que pasa por los puntos $\begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}$ y $\begin{bmatrix} 2\\0\\0 \end{bmatrix}$.
 - a) Calcula las matrices de las aplicaciones afines $p,s:\mathcal{A}^3(\mathbb{R})\to\mathcal{A}^3(\mathbb{R})$ correspondientes a la PROYECCIÓN y a la SIMETRÍA respecto de Π .
 - b) Sea $t:\mathcal{A}^3(\mathbb{R})\to\mathcal{A}^3(\mathbb{R})$ la TRASLACIÓN con vector de desplazamiento $\begin{bmatrix}1\\1\\3\end{bmatrix}$. Encuentra los
 - vértices de un cubo $C\subseteq \mathcal{A}^3(\mathbb{R})$ de manera que una de sus caras esté en el plano $\Pi_1=t(\Pi)$ y la cara opuesta esté en el plano $\Pi_2=t(\Pi_1)$. Además:
 - Calcula todos los vértices de p(C) y s(C).
 - Dibuja Π , C, p(C) y s(C).
- 7. Sea $\ell \subseteq \mathcal{A}^3(\mathbb{R})$ la recta que pasa por los puntos $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ y $\begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}$.
 - a) Calcula la matriz de la aplicación afín $f:\mathcal{A}^3(\mathbb{R})\to\mathcal{A}^3(\mathbb{R})$ correspondiente al GIRO de 120° alrededor de ℓ .
 - b) Sea Π el plano ortogonal a ℓ que pasa por el punto $P = \begin{bmatrix} 0 \\ 0 \\ 7 \end{bmatrix}$.
 - Calcula los vértices de un triángulo equilátero $T\subseteq \Pi$ de lado 1 centrado en P.
 - Sea $C \subseteq \mathcal{A}^3(\mathbb{R})$ la pirámide de base T y vértice $\begin{bmatrix} 1 \\ -2 \\ 6 \end{bmatrix}$. Calcula los vértices de f(C) y dibuja ℓ , C y f(C).