Outline

Who is Usain Bolt?

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

What is the *average speed* of Usain Bolt?

- = Change in Distance/Change in Time
- $= \Delta y/\Delta x$
- = 100/9.58
- = 10.43 m/s

Average Speed vs. Instantenous Speed

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

But, this *average speed* is different than *instantenous speed!*

Bolt will not instantly go 100m in 9.58s, but rather start off a little slower, then accelerate, then decelerate a little towards the end

Average Speed vs. Instantenous Speed

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

But, this *average speed* is different than *instantenous speed!*

This way, $\Delta y/\Delta x$!= $\Delta y/\Delta x$ (this is opposite to having a line whereby it does not matter which two points to take on it since the slope will be always the same)

Average Speed vs. Instantenous Speed

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

Consequently, at any given moment in time, a slope on the green function (e.g., $\Delta y/\Delta x$ or $\Delta y/\Delta x$) will be different than the *average slope* on the blue line (i.e., $\Delta y/\Delta x$)

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

So, what is Bolt's instantaneous (i.e., NOT average) speed?

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

We can compute the slope around the steepest point if we are interested about the *fastest* instantaneous speed!

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

But that would be only an approximation because the slope of the curve is *constantly* changing

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

We can achieve a better approximation by measuring the slope with a smaller & smaller change in x, which yields a smaller & smaller change in y

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

Said differently, we can take the limit of $\Delta y/\Delta x$ as Δx approaches zero:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

By doing this, we will approach the instantaneous rate of change (which is the slope of the tangent line – the red line-on the green function)

The Derivative is the Instantaneous Slope

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

This *instantaneous slope* is what mathematicians denote as the *derivative* and write as:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$

This is an infinitely small change in y (*d* stands for *differential*)

The Derivative is the Instantaneous Slope

- Usain Bolt is regarded widely as the greatest sprinter of all time
 - He can run 100meters in 9.58seconds!

This *instantaneous slope* is what mathematicians denote as the *derivative* and write as:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = dy/dx$$

And, this is an infinitely small change in x (*d* stands for *differential*)

Derivative of a Univariate Function

- What is the instantaneous rate of change at a point (say, 2) on a function (say, $f(x) = x^2$)?
 - It is the slope of the tangent line at point 2
 - Which is the derivative at point 2
 - Which is "a super small change in y"/ "a super small change in x" at point 2
 - Which is $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ (2)
 - Which is $\frac{dx}{dy}$ (2)

Derivative of a Multivariate Function

- What is the instantaneous rate of change at a point (say, (1, 3)) on a function that involves multiple variables $(say, f(x, y) = x^2y + \sin(y))$?
 - It is the *partial* derivative at point (1, 3)
 - Which can be computed as:
 - The derivative of f(x, y) with respect to x while y is held constant:

We do not use d with multi-variable functions, but rather ∂

•
$$\frac{\partial f}{\partial x}$$
 (1,3) = $\frac{\partial f}{\partial x}$ (x².3 + sin(3)) = 2x.3 + 0 = 6x = 6

multi-variable • And the derivative of f(x, y) with respect to y while x is held constant:

•
$$\frac{\partial f}{\partial y}$$
 (1,3) = $\frac{\partial f}{\partial y}$ (1². y + sin(y)) = 1 + cos(y) = 1 + cos(3)

Gradient

- **Gradient** is a way of packing together all the partial derivative information of a function
 - Consider $f(x, y) = x^2y + \sin(y)$

 - $\frac{\partial f}{\partial x} = 2xy$ $\frac{\partial f}{\partial y} = x^2 + \cos(y)$
 - Gradient puts these two partial derivatives together in a vector as follows:

$$\nabla f(x,y) = \nabla x^2 y + \sin(y) = \begin{bmatrix} 2xy \\ x^2 + \cos(y) \end{bmatrix}$$

Outline

Outline:

- Have some cost function $J(\theta_0, ..., \theta_{n-1})$
- Start off with some guesses for θ_0 , ..., θ_{n-1}
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Keep changing $\theta_0, \dots, \theta_{n-1}$ to reduce $J(\theta_0, \dots, \theta_{n-1})$ until we hopefully end up at a minimum location
 - When you are at a certain position on the surface of **J**, look around, then take a little step in the direction of *the steepest descent*, then repeat

Outline:

- Have some cost function $J(\theta_0, ..., \theta_{n-1})$
- Start off with some guesses for θ_0 , ..., θ_{n-1}
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until convergence { Partial Derivative } $\theta_j = \theta_j \alpha \frac{\partial J(\theta_0, \dots, \theta_{n-1})}{\partial \theta_i}$

Learing Rate

What do α and ∂ do?

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

 $J(heta_1)$ is the **Cost Function**

 $J(\theta_1)$

 $h_{ heta}(x)$ is the *Hypothesis Function*

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

$$\theta_{1} = \theta_{1} - \alpha \frac{d J(\theta_{1})}{d \theta_{j}}$$

$$= \theta_{1} - \alpha (Positive Number)$$

Decrease θ_1 by a certain value

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

$$\theta_{1} = \theta_{1} - \alpha \frac{d J(\theta_{1})}{d \theta_{j}}$$

$$= \theta_{1} - \alpha (Positive Number)$$

Decrease θ_1 by a certain value

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - \alpha (Negative Number)$$

Increase θ_1 by a certain value

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - \alpha (Negative Number)$$

Increase θ_1 by a certain value

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

$$\theta_1 = \theta_1 - \alpha \frac{dJ(\theta_1)}{d\theta_j}$$
$$= \theta_1 - \alpha (Zero)$$

 $heta_1$ remains the same, hence, gradient descent *converges*

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

 $\begin{array}{c} \text{What} \\ \text{happens if } \alpha \\ \text{is too small?} \end{array}$

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - (Too Small Number) \frac{dJ(\theta_{1})}{d\theta_{j}}$$

 θ_1 changes only a tiny bit on each step, hence, gradient descent will render slow (will take more time to converge)

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - (Too\ Large\ Number) \frac{dJ(\theta_{1})}{d\theta_{j}}$$

 θ_1 changes a lot (and probably faster) on each step, hence, gradient descent will potentially overshoot the minimum and, accordingly, fail to converge (or even diverge)

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

$$\theta_1 = \theta_1 - \alpha \, \frac{d J(\theta_1)}{d \, \theta_j}$$

We can set α between 0 and 1 (say, 0.5, or a little more or less, hence, not very small or very large)

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$ θ_0, θ_1

$$\theta_1 = \theta_1 - \alpha \, \frac{d J(\theta_1)}{d \, \theta_j}$$

We can also $fix \alpha$ because as we approach the (global) minimum, gradient descent will automatically start taking smaller steps (i.e., θ_1 will start changing at a slower pace because the derivative will become less steep)

Outline:

- Have some cost function $J(\theta_0, ..., \theta_{n-1})$
- Start off with some guesses for θ_0 , ..., θ_{n-1}
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until convergence{

Partial derivative

$$\theta_j = \theta_j - \alpha \frac{\partial J(\theta_0, \dots, \theta_{n-1})}{\partial \theta_j}$$

Learing rate, which controls how big a step we take when we update θ_i

Now we understand the intuition behind gradient descent and how α and ∂ act together to make gradient descent work!

- Outline (considering only two varilables θ_0 and θ_1):
 - Have some cost function $J(\theta_0, \theta_1)$
 - Start off with some guesses for θ_0 , θ_1
 - It does not really matter what values you start off with, but a common choice is to set them both initially to zero
 - Repeat until convergence{

$$temp_{0} = \theta_{0} - \alpha \frac{\partial J(\theta_{0}, \theta_{1})}{\partial \theta_{0}} \qquad \frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(x)^{(i)} - y^{(i)})$$

$$temp_{1} = \theta_{1} - \alpha \frac{\partial J(\theta_{0}, \theta_{1})}{\partial \theta_{1}} \qquad \frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(x)^{(i)} - y^{(i)}) .x^{(i)}$$

$$\theta_{0} = temp_{0}$$

$$\theta_{1} = temp_{1}$$

- Outline (considering only two varilables θ_0 and θ_1):
 - Have some cost function $J(\theta_0, \theta_1)$
 - Start off with some guesses for θ_0 , θ_1
 - It does not really matter what values you start off with, but a common choice is to set them both initially to zero
 - Repeat until convergence{

$$temp_{0} = \theta_{0} - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(x)^{(i)} - y^{(i)})$$

$$temp_{1} = \theta_{1} - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(x)^{(i)} - y^{(i)}) . x^{(i)}$$

$$\theta_{0} = temp_{0}$$

$$\theta_{1} = temp_{1}$$

Today's plan: Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

House pricing prediction

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	m = 47
852	178	-m=47
•••	•••	

Notation:

- m = Number of training examples
- x =Input variable / features
- y = Output variable / target variable
- (x, y) = One training example
- $(x^{(i)}, y^{(i)}) = i^{th}$ training example

Examples:

$$x^{(1)} = 2104$$
 $x^{(2)} = 1416$
 $y^{(1)} = 460$

Model representation

Univariate linear regression

Slide credit: Andrew Ng

Outline

Linear Regression

Model representation

- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	-m = 47
852	178	/// - 4/
•••	•••	

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_0 , θ_1 : parameters/weights

How to choose θ_i 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Slide credit: Andrew Ng

Cost function

• Idea: Choose θ_0 , θ_1 so that

 $h_{\theta}(x)$ is close to y for our training example (x, y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Price (\$) in 1000's 400 200 2500
$$\chi$$
 500 1000 1500 2000 2500 Size in feet^2

minimize
$$J(\theta_0, \theta_1)$$
 Cost function θ_0, θ_1

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$h_{\theta}(x) = \theta_1 x \qquad \theta_0 = 0$$

Parameters:

$$\theta_0, \theta_1$$

Cost function:

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \longrightarrow J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Goal: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1 Goal:

minimize
$$J(\theta_1)$$

 θ_0, θ_1

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

• Parameters: θ_0 , θ_1

• Cost function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

• Goal: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1

Cost function

How do we find good θ_0 , θ_1 that minimize $J(\theta_0, \theta_1)$?

Outline

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Gradient descent

```
Have some function J(\theta_0, \theta_1)
Want argmin J(\theta_0, \theta_1)
\theta_0, \theta_1
```

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at minimum

Gradient descent

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

 α : Learning rate (step size)

$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$
: derivative (rate of change)

Gradient descent

Correct: simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$temp1 := \theta_1 - \alpha \frac{\sigma}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \text{temp0}$$

$$\theta_1 \coloneqq \text{temp1}$$

Incorrect:

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \text{temp0}$$

temp1 :=
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 \coloneqq \text{temp1}$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Learning rate

Gradient descent for linear regression

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Computing partial derivative

$$\begin{aligned} \bullet \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) &= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} \\ &= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2} \end{aligned}$$

•
$$j = 0$$
: $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$
• $j = 1$: $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$

Gradient descent for linear regression

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Update θ_0 and θ_1 simultaneously