Prologue

GB21802 - Programming Challenges Week 1 - Basic Problem Solving

Claus Aranha

caranha@cs.tsukuba.ac.jp

College of Information Science

2015-04-13

Last updated April 11, 2015

Please check your "Programming Challenge" username!

Some people submitted me invalid usernames:

• "Oda"

Prologue

Everyone else, please don't forget to send your usernames!

Early submissions

We already had some early submissions – fantastic! Any problems or questions regarding the submission process?

Summary for Last Class

Prologue

How the course works

- · Monday Class: Theme exposition;
- Friday Class: Example problem and Q&A;
- Problems: Solve 4 problems every week;

How to submit the problems

- Make an account at www.programming-challenges.com
- Send your username to the professor (manaba or e-mail)
- Write the program in C, C++, Java or Pascal

How evaluation works

- Grade = number of problems submitted
- Try to submit one problem per week
- Comments and Participation counts

Summary for This Class

Prologue

General Problem Solving:

A very important skill which is hard to teach formally;

Closing Points

Friday

Data Structures and Programming Challenges:

How to think of data structures outside of the classroom;

Problem Discussion :

Let's introduce last week's problems;

Relax, and ask questions!

No topic here is really new. Listen carefully!

Ask questions any time!

What is problem solving skill?

Steps to solve a problem

Don't know where to begin? Don't panic, keep calm, and try to follow these steps.

- 1 Read the input and output
- 2 Summarize the problem
- 3 Check for traps
- Write the program
- 5 Test/Debug
- 6 Submit!

Problem Traps

Programming Challenges are (in)famous for including traps or "gotcha's" in their design.

Graphs: Connected? Directed? Redundant

Edges? Negative weights?

Geometry: Overlapping? Concave?

Negative coordinates? Collinear?

Maximum number of entries:

NOW you can start to code

You should have done all of the previous steps in writing only! Programming distracts from understanding the problem.

Steps for writing the solution

- Write the input/output first
- Make the program
- Release often philosophy
- Testing/Debugging

Speed and Memory Limits

Defining speed and memory limits Algorithmic efficiency, Memory Efficiency, Programmer efficiency

Let's apply these steps to a simple problem

Data Structures

Data Structures

Data structures are the heart of a program

- Using the correct data type can make a problem much easier;
- Using the incorrect data type can make a problem much harder;

The towers of Hanoi

QUIZ: How do you represent the data in this problem?

An easy way to visualize the Towers of Hanoi

Image created by nonenmac

Explaining the Tower of Hanoi Data Structure

- Each node identifies an state in the problem;
- Each character in the string represents one disk and its position;
- We can have at most 3 state transitions at each state (can you prove it?)
- To solve the Towers of Hanoi problem, we find the path between the start and end states.
- (just beware of state explosion)

Know your data structures!

Let's talk about libraries

This week's problems

List of Problems

- The 3n+1 Problem
- Check the Check
- Erdos Numbers
- Contest Scoreboard

Let's give a quick look on each problem

For the rest of the week:

Next class: Bring your solutions and questions!

Submission deadline is 04-19 23:59:59 (Sunday)

Have a nice week!

Welcome to Friday Class!

Current Solving Stats

- The 3n+1 Problem Solved:
- Check the Check Solved:
- Erdos Numbers Solved:
- Contest Scoreboard Solved:

Question and hint time!

• The 3n+1 Problem

Question and hint time!

• Check the Check

Question and hint time!

Erdos Numbers

Question and hint time!

Contest Scoreboard

Let's solve some different problems