

Detect Loan Defaulters and Track them in Digital Ecosystem

TEAM NAME: BARELY MADE IT

PRANJAL SONI | KAHAAN SONI | UTKARSH SHARMA PULKIT GARG | AKASH IYER | LAKSHITA AGARWALLA

UNDERSTANDING THE PROBLEM STATEMENT

THE CURRENT SCENARIO

SMA-2 ACCOUNTS ARE THE QUIET PRECURSORS TO NPAS

RBI reports a drop in gross NPAs to 2.5% as of September 2024, but industry analysis reveals that many future NPAs originate from undetected SMA-2 accounts. These accounts mimic normalcy but may be on the verge of default. Without advanced early-warning mechanisms, banks miss the chance to intervene before the damage is done.

POST-DEFAULT TRACEABILITY REMAINS A CRITICAL BOTTLENECK

According to industry reports, over 60% of defaulters become unreachable within 90 days of default. With no PII or updated contact data, institutions face operational challenges in recovery. A data-driven approach using digital breadcrumbs (ex. device-tower logs, online presence) is crucial to improving defaulter traceability and enforcement outcomes.

FRAUDULENT BEHAVIOR CAMOUFLAGED IN DATA NOISE

Modern fraud schemes increasingly exploit behavioral mimicry spreading out transaction amounts, timing payments strategically to resemble legitimate activity. Additionally, financial datasets are inherently sparse and noisy, with missing values and obfuscated identifiers. This necessitates the use of resilient, explainable Al models capable of detecting patterns hidden beneath adversarial noise.

SMA-2 Accounts

Mimics normalcy, on verge of default

Defaulters

Unreachable within 90 days of default

Fraud Schemes

Camouflaged in data noise, mimics legitimate activity

PROBLEM IDENTIFICATION

Develop a supervised classification model to predict customers likely to become NPAs (SMA-2) using six months of behavioral, loan, and credit data.

Identify high-risk accounts across four loan types and infer default risk with accuracy and interpretability.

Simulate digital traceability of defaulters using anonymized identifiers, without accessing any PII, to explore their online footprint ethically.

APPLICATION OVERVIEW

Task 1 - FRAUD DETECTION

- Identify anomalous transactions and accounts by modeling typical financial behavior patterns.
- Handle class imbalance due to fewer fraud cases compared to normal ones.
- Account for adversarial scenarios where fraudsters may try to evade detection.
- Ensure model interpretability to understand and explain predictions.

Task 2 - DEFAULTER LOCALIZATION

- Develop ML models to estimate the last known location of loan defaulters.
- Use Layered Behavioral Signal Fusion combining data from social media activity, ATM, transaction IPs, to estimate defaulters' last known locations.
- Apply spatio-temporal clustering to identify habitual movement patterns of individuals.
- Build a probabilistic model to rank potential last-seen locations based on data reliability and recency.

TASK 2: DEFAULTER LOCALIZATION

TASK 1: FRAUD

DETECTION

LAYERED BEHAVIORAL SIGNAL FUSION

ML MODEL

LOCATION ESTIMATION & JUSTIFICATION

PREDICTION & ML MODEL INTERPRETATION

DEFAULTER CAUGHT

OVERVIEW OF THE DATASET

	DATA COLUMNS	COLUMN NAME	DESCRIPTION	DATA COLUMNS ADDED
۰۱۹۰۰	Customer Demographics & Profile	 AGE: KYC_SCR: KYC_FLG, EKYC_FLG, UID_FLG, INB_FLG: LOCKER_HLDR_IND: SI_FLG: 	Age of the customer KYC Score (Verification/Trustworthiness) KYC-related flags Whether the customer has a locker Standing Instruction flag (autopay indicator)	BANK PERSONAL DATA
LOAN	Account & Loan Metadata	 ACCT_AGE: LIMIT: LOAN_TENURE: ACCT_RESIDUAL_TENURE: INSTALAMT: VINTAGE: NO_LONS: ALL_LON_LIMIT: 	Age of the loan account Sanctioned credit/loan limit Total loan duration in months Remaining loan tenure Monthly EMI/instalment amount Time since first borrowing relationship Number of active loans Combined credit limit across all loans	NAME EMAIL PHONE
CREDIT		ALL_LON_OUTS:ALL_LON_MAX_IRAC:OUTS:	Combined outstanding balance across loans Highest IRAC (NPA classification) Current outstanding amount for the loan	···· IMAGE
PPROVED	Outstanding Balances & Repayments	• ONEMNTHOUTSTANGBA etc	Columns ending in OUTSTANGBAL across months	ADDRESS
%	Credit and Debit Activity	 Columns ending in SCR ONEMNTHCR, TWOMNTHSCR etc Columns ending in SDR ONEMNTHSDR, TWOMNTHSDR etc 	Credit inflow	GEOTAG DATA
	Account Utilization & Trends (Averages)	 Columns ending in: AVGMTD: AVGQTD: AVGYTD: 	Average Monthly Turnover Daily Average Quarterly Turnover Daily Average Yearly Turnover Daily	DEVICE FINGERPRINT
L. L	Flags & Indicators	 KYC_FLG, EKYC_FLG, INB_FLG, UID_FLG, LOCKER_HLDR_IND, SI_FLG 	Binary flags indicating customer behaviors:	TRANSACTION DATA

AI MODEL USED FOR TRAINING

STEP-1 DATA CLEANING

Type Inspection

Checked column types and unique values.

Object Conversion

Transformed object columns into numeric format.

Regex Parsing

Parsed columns using regular expressions.

Ordinal Mapping

Mapped income bands to ordinal integers.

OVERVIEW 1: DATA TYPE CONVERSION

Converted textual durations like "2yrs 3mon" into numeric months. Mapped categorical income bands (A-H, EX01-EX05) to ordinal integers. Transformed all object and boolean columns into numeric format.

OVERVIEW 2: MISSING VALUE HANDLING

Imputed key columns with median values (e.g., account age, bureau data). Filled transactional columns with zeroes. Dropped rows with missing critical flags (e.g., UID, KYC).

Ensured complete and clean numeric dataset for modeling.

STEP-2 HANDLING MISSING **VALUES (NANS)**

AI MODEL USED FOR TRAINING

STEP 3: OUTLIER DETECTION & TREATMENT

- Selected all numeric columns excluding flags, tenure, KYC etc.
- Clipped values to the 1st and 99th percentile range for each numeric feature

STEP 4: CONVERTED BOOLEAN COLUMNS (LIKE FLAGS) TO INTEGERS

One-hot encoded:
 AGREG_GROUP, PRODUCT_TYPE, and

TIME_PERIOD

STEP 5: TRAIN-TEST SPLIT

Used train_test_split with:
 test_size = 0.2
 stratify = y to preserve class distribution

STEP 6: CLASS IMBALANCE HANDLING

- Used compute_class_weight() to generate
- class_weight_dict for training

STEP 7: NEURAL NETWORK MODEL (KERAS)

• Architecture:

Dense (128 units) + ReLU

 \rightarrow Dropout (0.3)

Dense (64 units) + ReLU

 \rightarrow Dropout (0.2)

Dense (32 units) + ReLU

Output:

- Dense (1 unit) + Sigmoid
- Loss: Binary Crossentropy
- Optimizer: Adam

AI MODEL USED FOR TRAINING

STEP 8: TRAINING ANOTHER BASE MODEL

- Trained a lightgbm (Light **Gradient Boosting Machine)** Model as a base model
- LightGBM supports class weight='balanced', which automatically adjusts weights to handle imbalance in the data.

STEP 9: ENSEMBLING VIA MANUAL STACKING

- Manual stacking guarantees true out-offold predictions so the meta-model never sees data the base models were trained on.
- Perform a two-fold stratified split of X_train_scaled/y_train, training fresh NN and LightGBM models on each fold and predicting probabilities on its hold-out slice

STEP 10: IMPLEMENTING THE META MODEL

• Logistic Regression offers an interpretable linear blend of the NN and LightGBM scores. Its sigmoid output gives calibrated probabilities, and built-in regularization handles imbalance and prevents overfitting.

CLASSIFICATION REPORT

RECALL F1 SCORE

NON DEFAULTER DEFAULTER

0.98

0.37

0.91

PRECISION

0.83 0.85 0.90

0.52

0.83

ACCURACY

Base Learner 2

Base Learner 1

Base Learner

Final Prediction Meta Learner

Base Learner N

BLENDED ROC AUC

SOLUTION APPROACH

MODEL ÖVERVIEW

DETECTING THE LAST TRANSACTIONAL LOCATION

FAST TAG TRACKING

Using FAS Tag transaction logs to construct travel patterns and pinpoint the most recent verified location of a defaulter.

UNIQUE ID: 98312

Vehicle linked: MH12AB1234 Last TOLL FEE: 25 May 2025, 17:32 Toll Plaza: NH 48, Mumbai-Pune

Expressway, Khalapur

Inferred Last Location: Entering Pune,

Maharashtra

POP CODE CLUSTERING

Assuming pop_code(from dataset) to be regional indicators.

clustering pop codes to aggregate defaulters helps to prioritize field investigation and recovery teams by high density zones

FOR OUR DATASET ASSUMING

1 = TIER 1

2 = TIER 2

3 = TIER 3

4 = TIER 4

HOW CAN IT BE USED?

- Pair it with account activity or timestamps (ONTMNTHSCR, LATEST_LON_TAKEN) for time alignment
- Change in pop codes of transactions indicate a change in location of the defaulter.

USING K-MEANS CLUSTERING ON BEHAVIORAL FEATURES LIKE CREDIT ACTIVITY, KYC SCORE, ACCOUNT AGE AND VISUALIZE USING T-SNE

X['CLUSTER'] = KMEANS(N_CLUSTERS=4,
RANDOM_STATE=42).FIT_PREDICT(X_SCALED)

X['POP_CODE'] = DF.LOC[X.INDEX, 'POP_CODE'].ASTYPE(STR)

tsne = TSNE(n_components=2, perplexity=30, random_state=42)
X['TSNE1'], X['TSNE2'] = TSNE.FIT_TRANSFORM(X_SCALED).T

UNIFIED TRANSACTIONAL LOGS

ATM/UPI/NET BANKING IDS are statically mapped to branch locations, helping us infer a precise and verified physical location for defaulters — especially useful when digital footprints are cold.

Defaulter ID: 2033

Last ATM Txn: ₹4,000

withdrawn

Date: 22 May 2025

ATM ID: SBI_ATM_823 (mapped to Connaught

Place Branch, Delhi)

Inferred Last Location:

Connaught Place, Delhi

Defaulter ID: 2033

Last ATM Txn: ₹1260

Date: 2025-04-24 09:05 IP Address: 103.21.112.41

IP-BASED LOCATION:

bandra, mumbai

merchant Location:

flipkart mumbai hub

- Extracting the IP address/ terminal ID
- We use the ip geolocation API to fetch the latitude or longitude
- Using the merchant terminal registry to pinpoint ATM's or physical stores.

DETECTING DEFAULTERS IN THE DIGITAL ECOSYSTEM

We use a responsible, OSINT-driven framework — leveraging only public and ethically accessible sources — to trace defaulters' digital footprints and verify recent social presence or movement.:

TRUECALLER API PHONE NUMBER RAMESH VERMA, PROFILE PHOTO: ③, LOCATION: NOIDA, OPERATOR: AIRTEL SHERLOCK/MA IGRET INSTAGRAM USERNAME LAST POST:@SODABOTTLEOPENERWALA CP, DELHI - 4 DAYS AGO" FACEBOOK NAME+PH ONE NAME + COMPANY GURGAON TELEGRAM USERNAME RAMESH VERMA, BRANCH OPS, HDFC BANK, GURGAON MEMBER OF "DELHI CARPOOL DEALS", ACTIVE 3 DAYS AGO GOOGLE REVIEWS/MAPS EMAIL REPUTATION: ESTABLISHED, FIRST SEEN: 2016 PIPL (PAID) NAME+ PHONE RAMESH VERMA, DOB: 1990, ASSOCIATED ADDRESSES: DELHI, NOIDA					
TRUECALLER API NUMBER LOCATION: NOIDA, OPERATOR: AIRTEL SHERLOCK/MA USERNAME/EM FOUND ON INSTAGRAM, FACEBOOK, IGRET INSTAGRAM USERNAME LAST POST:@SODABOTTLEOPENERWALA CP, DELHI - 4 DAYS AGO" FACEBOOK NAME+PH ONE "VISITED LUCKNOW LAST WEEK" LINKEDIN NAME + COMPANY GURGAON TELEGRAM USERNAME MEMBER OF "DELHI CARPOOL DEALS", ACTIVE 3 DAYS AGO GOOGLE REVIEWS/MAPS EMAIL LEFT A 5 ** REVIEW FOR "SBI ATM MG ROAD BANGALORE" ON MAY 10 EMAILREP.IO EMAIL REPUTATION: ESTABLISHED, FIRST SEEN: 2016 PIPL (PAID) NAME+ RAMESH VERMA, DOB: 1990, ASSOCIATED	TOOL	METHOD	IN	NPUT	OUTPUT EXAMPLE
INSTAGRAM USERNAME LAST POST:@SODABOTTLEOPENERWALA CP, DELHI - 4 DAYS AGO" FACEBOOK NAME+PH ONE PROFILE WITH SAME PHOTO; CHECK-IN: "VISITED LUCKNOW LAST WEEK" LINKEDIN NAME + COMPANY GURGAON TELEGRAM USERNAME MEMBER OF "DELHI CARPOOL DEALS", ACTIVE 3 DAYS AGO GOOGLE REVIEWS/MAPS EMAIL LEFT A 5★ REVIEW FOR "SBI ATM MG ROAD BANGALORE" ON MAY 10 EMAILREP.IO EMAIL REPUTATION: ESTABLISHED, FIRST SEEN: 2016 PIPL (PAID) NAME+ RAMESH VERMA, DOB: 1990, ASSOCIATED	TRUE	CALLER AP			
INSTAGRAM USERNAME 4 DAYS AGO" FACEBOOK NAME+PH ONE "VISITED LUCKNOW LAST WEEK" LINKEDIN NAME + COMPANY GURGAON TELEGRAM USERNAME MEMBER OF "DELHI CARPOOL DEALS", ACTIVE 3 DAYS AGO GOOGLE REVIEWS/MAPS EMAIL EMAIL EMAIL REPUTATION: ESTABLISHED, FIRST SEEN: 2016 PIPL (PAID) NAME+ RAMESH VERMA, DOB: 1990, ASSOCIATED			USER		
TELEGRAM GOGLE REVIEWS/MAPS EMAIL EMAIL RAMESH VERMA, BRANCH OPS, HDFC BANK, GURGAON MEMBER OF "DELHI CARPOOL DEALS", ACTIVE 3 DAYS AGO LEFT A 5★ REVIEW FOR "SBI ATM MG ROAD BANGALORE" ON MAY 10 EMAIL REPUTATION: ESTABLISHED, FIRST SEEN: 2016 PIPL (PAID) NAME+ RAMESH VERMA, DOB: 1990, ASSOCIATED	INSTA	AGRAM	US	ERNAME	
TELEGRAM USERNAME MEMBER OF "DELHI CARPOOL DEALS", ACTIVE 3 DAYS AGO GOOGLE REVIEWS/MAPS EMAIL EMAIL REPUTATION: ESTABLISHED, FIRST SEEN: 2016 PIPL (PAID) NAME+ RAMESH VERMA, DOB: 1990, ASSOCIATED	FACEI	воок	NΑ	–	
TELEGRAM DAYS AGO GOOGLE REVIEWS/MAPS EMAIL EMAIL EMAIL REPUTATION: ESTABLISHED, FIRST SEEN: 2016 PIPL (PAID) NAME+ RAMESH VERMA, DOB: 1990, ASSOCIATED	LINKE	EDIN			
REVIEWS/MAPS EMAIL BANGALORE" ON MAY 10 EMAILREP.IO EMAIL REPUTATION: ESTABLISHED, FIRST SEEN: 2016 PIPL (PAID) NAME+ RAMESH VERMA, DOB: 1990, ASSOCIATED	TELEC	GRAM	US	ERNAME	
PIPL (PAID) NAME+ RAMESH VERMA, DOB: 1990, ASSOCIATED			E	EMAIL	
THE (TAID)	EMAII	LREP.IO	E	EMAIL	REPUTATION: ESTABLISHED, FIRST SEEN: 2016
	PIPL ((PAID)			

OSINT

Defaulters often leave public traces online, post on social media, comment or tag locations.

banks leverage this ecosystem to confirm if defaulter is active, estimate their location or movement and detect patterns of evasion and collusion

HOW IT HELPS THE BANK

- Validate identity → Same name + profile picture on Truecaller & social = match.
- Confirm Phone Activity → Truecaller shows reachable number.
- Infer Location → Instagram/Facebook/Telegram tags show recent movement.
- Understand Digital Habits → YouTube, Reddit, LinkedIn show real engagement.
- Build Confidence Score → More matches = higher traceability likelihood.
- Non intrusive and legal → uses public info only.

DETECTING DEFAULTERS IN THE DIGITAL ECOSYSTEM 7 SB

HOW WILL OUR MODEL WORK?

TECHNIQUE SIGNAL IT GIVES Negativity = stress or frustration **Sentiment Analysis** Mentions of "loan", "settlement", "EMI" Topic Modeling (LDA) Sadness, anxiety, anger in language **Emotion Detection** Keywords like "credit card dues", "debt Financial Lexicon Matching trap", "no job"

CAN BE DONE USING OPEN SOURCE PRE TRAINED MODEL-FINBERT

Sherlock - Checks a username across 300+ platforms.

Maigret - Advanced version of Sherlock with deeper profiling.

SpiderFoot - Full OSINT automation including social, domains, emails.

Recon-ng - Framework for OSINT with social media modules.

NLP models on sentiment deterioration

Complex social media analysis using NLP models.

Text mining for financial stress

Complex financial analysis using text mining techniques.

3

Linkedin scraping for employment changes

Simple social media analysis via LinkedIn scraping.

Cross-platform behavior vs credit profile

Simple financial analysis comparing behavior and credit.

THIS TOOLS TO AUTOMATE

APPENDIX

GEO-BEHAVIORAL SIGNALS

IMAGE-BASED OSINT (VISUAL CLUES)

OTHER METHODS BESIDES BASIC OSINT SCRAPING

			OSINI (VISOAL CLOLS)			1 SCRAI III S	
METHOD		WHAT IT ADDS	METHOD	WHAT IT ADDS	METHOD	WHAT IT ADDS	
Moved from urban to rural		Possible income/job loss	Image OCR (text in photos	Tesseract OCR	Enrichment APIs	Deep profile from minimal	
Pos	ts tagged in different states	Might be hiding from lenders	Facial verification	Face++, Amazon		data (email/phone) Emotional & financial stress detection	
Me	entions cheap rental/move	Financial downscaling	Location from image	Google Vision, EXIF metadata	Time-based Behavior Shift	Anomaly detection over time	
	Use location tags + reverse geocoding (e.g., Google Maps API).		Luxury pattern detection	Custom CNN model	Network Risk Detection	Community-level fraud rings	
				Claims unemployment but posts from luxury hotels → flag inconsistency.		Visual fraud or inconsistency spotting	
					Location Pattern Mining	Geo-risk correlation	

Link to the collab note book: https://colab.research.google.com/drive/1LuouMzGiB0|WvDhvloxSnlfgN-Rt9DhZ?

<u>usp=drive_link</u>

Thank You.