Table of Laplace Transforms for Vibrations

This is a partial lists of important Laplace transforms for vibrations that assumes zero initial conditions, 0 < t, and $\zeta < 1$.

f(t)	$\mathcal{L}[f(t)] = F(s)$		f(t)	$\mathscr{L}[f(t)] = F(s)$	
$\overline{\delta(t)}$	1	(1)	$\frac{1}{\omega^3}(\omega t - \sin(\omega t))$	$\frac{1}{s^2(s^2+\boldsymbol{\omega}^2)}$	(17)
$\delta(t-t_0)$	e^{-st_0}	(2)	1	,	
1	$\frac{1}{s}$	(3)	$\frac{1}{2\omega^3}\big(\sin(\omega t)-\omega t\cos$	$\frac{1}{(s^2+\omega^2)^2}$	(18)
e ^{at}	$\frac{1}{s-a}$	(4)	$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2 + \boldsymbol{\omega}^2)^2}$	(19)
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	(5)	$t\sin(\omega t)$	$\frac{2\omega s}{(s^2+\omega^2)^2}$	(20)
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	(6)	4.000(04)	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	(21)
$sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2}$	(7)	$t\cos(\omega t)$,	(21)
$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2}$	(8)	$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}$	(22)
$\frac{1}{\omega^2} \big(1 - \cos(\omega t) \big)$	$\frac{1}{s(s^2+\boldsymbol{\omega}^2)}$	(9)	$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$	(23)
$\frac{1}{\omega_d}e^{-\zeta\omega t}\sin(\omega_d t)$	$\frac{1}{s^2 + 2\zeta \omega s + \omega^2}$	(10)	$e^{at}\sinh(\omega t)$	$\frac{\omega}{(s-a)^2-\omega^2}$	(24)
$1 - \frac{\omega}{\omega_d} e^{-\zeta \omega t} \sin(\omega_d t +$. 3		$e^{at}\cosh(\omega t)$	$\frac{s-a}{(s-a)^2-\omega^2}$	(25)
ω_d	$\frac{\omega^2}{s(s^2+2\zeta\omega s+\omega^2)}$	(11)	$\frac{1}{\omega_2}\sin(\omega_2 t) - \frac{1}{\omega_1}\sin(\alpha_2 t)$		
$\frac{t^{n-1}}{(n-1)!}, n = 1, 2, \dots$	$\frac{1}{s^n}$	(12)		$\frac{\omega_1^2 - \omega_2^2}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$	(26)
$t^n, n = 1, 2, \dots$	$\frac{n!}{s^{n+1}}$	(13)	$\cos(\omega_2 t) - \cos(\omega_1 t)$	$\frac{s(\omega_1^2 - \omega_2^2)}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$	(27)
$t^n e^{\omega t}, n = 1, 2, \dots$	n!	(14)	$e^{at}f(t)$	F(s-a)	(28)
$i \in , n-1, 2, \dots$	$\frac{n!}{(s-\boldsymbol{\omega})^{n+1}}$	(14)	$f(t-a)\Phi(t-a)$	$e^{-as}F(s)$	(29)
$\frac{1}{\omega}(1-e^{-\omega t})$	$\frac{1}{s(s+\omega)}$	(15)	$\Phi(t-a)$	$\frac{e^{-as}}{s}$	(30)

(16)

f'(t)

sF(s) - f(0)

(31)

 $\frac{1}{\omega^2}(e^{-\omega t} + \omega t - 1) \qquad \frac{1}{s^2(s+\omega)}$