离散数学 (2023) 作业 03 - 证明方法

March 14, 2023

Problem 1

证明.

1. ∀	$x(P(x) \vee Q(x))$	premise
$2. \forall x (\neg Q(x) \lor S(x))$		premise
3. $\forall x (R(x) \to \neg S(x))$		premise
$4. \exists x \neg P(x)$		premise
5. <i>u</i>	$P(u) \vee Q(u)$	∀e 1
6.	$\neg Q(u) \lor S(u)$	$\forall e \ 2$
7.	$R(u) \to \neg S(u)$	$\forall e \ 3$
8.	$\neg P(u)$	∃e 4
9.	P(u)	assumption
10.		¬e 8,9
11.	Q(u)	⊥e 10
12. 13.	Q(u) $Q(u)$	assumption 12
14.	Q(u)	\vee e 5,9-11,12-13
15. 16.	$\neg Q(u)$ \bot	assumption $\neg e 14,15$
17.	S(u)	⊥e 16
18.	S(u)	assumption
19.	S(u)	19
20.	S(u)	\vee e 6,15-17,18-19
21.	$\neg R(u)$	MT 7,20
22.	$\exists x \neg R(x)$	∃i 21
$23. \exists x \neg R(x)$		∃i 1-4, 5-22

Problem 2

证明.

1.	$\forall x (P(x) \land R(x))$		premise
2.	∀;	$x(P(x) \to (Q(x) \land S(x)))$	premise
3.	u	$P(u) \to (Q(u) \land S(u))$	$\forall e \ 2$
4.		$P(u) \to (Q(u) \land S(u))$ $P(u) \land R(u)$	∀e 1
5.		P(u)	∧e ₁ 4
6.		$Q(u) \wedge S(u)$	→i 5,3
7.		S(u)	∧e ₂ 6
8.		R(u)	$\wedge e_2 \ 4$
9.		$R(u) \wedge S(u)$	∧i 7,8
10.	į	$\forall (R(x) \land S(x))$	∀i 9
11. $\forall (R(x) \land S(x))$			∀i 1,2,3-10

Problem 3

x 和 y 奇偶性相反,不失一般性,假设 x 为奇数,即 x=2m+1 (m 为整数); y 为偶数,即 y=2n (n 为整数); 那么 $x^2-x\cdot y-y^2=2(2m^2+2m-2mn-n-2n^2)+1$,所以 $x^2-x\cdot y-y^2$ 为奇整数。

Problem 4

分情况讨论:

- 1. a 是三个数中最小的。那么 $\min(a, \min(b, c)) = a$, $\min(\min(a, b), c) = \min(a, c) = a$, 二者相等。
- 2. b 是三个数中最小的。那么 $\min(a,\min(b,c)) = \min(a,b) = b$, $\min(\min(a,b),c) = \min(b,c) = b$, 二者相等。
- 3. c 是三个数中最小的。那么 $\min(a,\min(b,c)) = \min(a,c) = c$, $\min(\min(a,b),c) = c$, 二者相等。 综上得证。

Problem 5

偶数的平方 $(2k)^2 = 4k^2 \equiv 0 \pmod 4$; 奇数的平方 $(2k+1)^2 = 4(k^2+k)+1 \equiv 1 \pmod 4$ 。因此,任意两个整数的平方和模 4 的余数只可能为 0 或 1 或 2,而 $4m+3 \equiv 3 \pmod 4$ 。

Problem 6

证明
$$\sqrt{\frac{1}{2}(x^2+y^2)} \ge \frac{1}{2}(x+y)$$
:

由 $(x-y)^2 \ge 0$,可得 $2x^2+2y^2 \ge x^2+2xy+y^2$,即 $\frac{1}{2}(x^2+y^2) \ge \frac{1}{4}(x+y)^2$ 。显然,不等式两边均为非负数,因此 $\sqrt{\frac{1}{2}(x^2+y^2)} \ge \frac{1}{2}(x+y)$ 得证。

Problem 7

使用反证法证明: 假设方程 ax + b = c 有两个解 x_1 和 x_2 , 且 $x_1 \neq x_2$ 。

将解代入方程得 $ax_1+b=c$ 和 $ax_2+b=c$ 。将两个方程左右两边分别相减,可得 $ax_1+b-(ax_2+b)=0$,即 $a(x_1-x_2)=0$ 。因为 $a\neq 0$,因此 $x_1-x_2=0$,即 $x_1=x_2$,与假设矛盾。

方程 ax + b = c 的解是唯一的得证。

Problem 8

令 $n=\lceil x\rceil$ 且 $\epsilon=n-x$ 。显然,对于任意实数 $x,\ n=\lceil x\rceil$ 是唯一的,因此 $\epsilon=n-x$ 也是唯一的。得证。

Problem 9

分情况讨论:

- 1. 如果 $|y| \ge 2$, 那么 $2x^2 + 5y^2 \ge 2x^2 + 20 \ge 20$, 不满足方程。
- 2. 如果 |y| < 2,即 y = 0,或 y = 1,或 y = -1;当 y = 0 时, $2x^2 = 14$;当 y = 1 或 y = -1 时, $2x^2 = 9$;显然这两个方程没有整数解。

综上, 原始方程没有 x 和 y 的整数解。

Problem 10

设有理数 x=2,无理数 $y=\sqrt{2}$ 。此时 $x^y=2^{\sqrt{2}}$,Gelfond-Schneider Theorem 证明了 $2^{\sqrt{2}}$ 为无理数。即存在一个有理数 x 和无理数 y 令 x^y 是无理数。