Register file structure : regfile_xgs_athena.pdf Created by imaval on 2020/04/28 15:28:35

Register file CRC32 : 0x3C6068D1

1. Main Parameters

Register file endianness: little endian

Address bus width: 12 bits Data bus width: 32 bits

2. Memory Map

Section name	Address(es) / Address Ranges	Register name	Access Type
SYSTEM	0x000	TAG	R
	0x004	VERSION	R
	0x008	CAPABILITY	R
	0x00C	scratchpad	RW
DMA	0x070	GRAB_INIT_ADDR	RW
	0x074	GRAB_INIT_ADDR_H I	RW
	0x078	GRAB_GREEN_ADDR	RW
	0x07C	GRAB_GREEN_ADDR _HI	RW
	0x080	GRAB_RED_ADDR	RW
	0x084	GRAB_RED_ADDR_H I	RW
	0x088	GRAB_LINE_PITCH	RW
	0x08C	HOST_LINE_SIZE	RW
	0x090	GRAB_CSC	RW
	0x0A0	GRAB_MAX_ADD	RW
ACQ	0x100	GRAB_CTRL	RW
	0x108	GRAB_STAT	R
	0x110	READOUT_CFG1	R
	0x118	READOUT_CFG2	RW
	0x120	READOUT_CFG3	R
	0x128	EXP_CTRL1	RW
	0x130	EXP_CTRL2	RW
	0x138	EXP_CTRL3	RW
	0x140	TRIGGER_DELAY	RW
	0x148	STROBE_CTRL1	RW
	0x150	STROBE_CTRL2	RW
	0x158	ACQ_SER_CTRL	RW
	0x160	ACQ_SER_ADDATA	RW
	0x168	ACQ_SER_STAT	R
	0x170	LVDS_CTRL	RW
	0x178	LVDS_CTRL2	RW

Section name	Address(es) / Address Ranges	Register name	Access Type
	0x180	LVDS_TRAINING	RW
	0x188	LVDS_STAT	R
	0x18C	LVDS_STAT2	R
	0x190	SENSOR_CTRL	RW
	0x198	SENSOR_STAT	R
	0x1A0	SENSOR_GEN_CFG	RW
	0x1A8	SENSOR_INT_CTL	RW
	0x1B0	SENSOR_GAIN_ANA	RW
	0x1B8	SENSOR_BLACK_CA L	RW
	0x1C0	SENSOR_ROI_CONF0	RW
	0x1C4	SENSOR_ROI2_CONF	RW
	0x1C8	SENSOR_ROI_CONF1	RW
	0x1CC	SENSOR_ROI2_CONF	RW
	0x1D0	SENSOR_ROI_CONF2	RW
	0x1D4	SENSOR_ROI2_CONF 2	RW
	0x1D8	CRC	RW
	0x1E0	DEBUG_PINS	RW
	0x1E8	TRIGGER_MISSED	RW
	0x1F0	SENSOR_FPS	R
	0x220	DEBUG	RW
	0x228	DEBUG_CNTR1	R
	0x230	DEBUG_CNTR2	R
	0x234	DEBUG_CNTR3	R
	0x23C	EXP_FOT	RW
	0x244	ACQ_SFNC	W
	0x254	NOPEL	RW
DATA	0x300	LUT_CTRL	RW
	0x308	LUT_RB	R
	0x310	WB_MULT1	RW
	0x318	WB_MULT2	RW
	0x320	WB_B_ACC	R
	0x328	WB_G_ACC	R
	0x330	WB_R_ACC	R
	0x338	FPN_ADD	RW
	0x33C	FPN_READ_REG	RW
	0x340, 0x344, ,0x35C	FPN_DATA (7:0)	RW
	0x360	FPN_CONTRAST	RW
	0x368	FPN_ACC_ADD	RW
	0x370	FPN_ACC_DATA	R
	0x380	DPC_LIST_CTRL	RW
	0x384	DPC_LIST_DATA	RW
	0x388	DPC_LIST_DATA_RD	R
HISPI	0x030	CTRL	RW
	0x034	STATUS	R

3. Registers definition

Section: SYSTEM

Address Range: [0x000 - 0x00C]

TAG

Address: section "SYSTEM" base address + 0x000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	VALUE(23:16)								
15	14	13	12	11	10	9	8		
	VALUE(15:8)								
7	6	5	4	3	2	1	0		
	VALUE(7:0)								

VALUE (23:0)	Tag identifier				
STATIC					
Value at Reset:	0x58544d				
Possible Values:	0x58544D	MTX ASCII string			

Description:

Revisions

1.3.x : First functionnal revision with a single list of multiple Ethernet frames

1.4.x : Second revision. Implements multiple list of frames

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	MAJOR(7:0)								
15	14	13	12	11	10	9	8		
	MINOR(7:0)								
7	6	5	4	3	2	1	0		
	HW(7:0)								

MAJOR (7:0)	
STATIC	
Value at Reset:	0x1

MINOR (7:0)	
STATIC	
Value at Reset:	0x5

HW (7:0)	
RO	

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	VALUE(7:0)								

VALUE (7:0)	
STATIC	
Value at Reset:	0x0

Address: section "SYSTEM" base address + 0x00C

31	30	29	28	27	26	25	24		
	value(31:24)								
23	22	21	20	19	18	17	16		
	value(23:16)								
15	14	13	12	11	10	9	8		
			value	(15:8)					
7	6	5	4	3	2	1	0		
	value(7:0)								

value (31:0)		
RW		
Value at Reset:	0x0	

Address Range: [0x070 - 0x0A0]

GRAB_INIT_ADDR

Initial Grab Address Register

Address: section "DMA" base address + 0x000

Description:

Initial Grab Address LOW 32 bits

31	30	29	28	27	26	25	24
			INIT_GRAB_	ADDR(31:24)			
23	22	21	20	19	18	17	16
			INIT_GRAB_	ADDR(23:16)			
15	14	13	12	11	10	9	8
			INIT_GRAB_	_ADDR(15:8)			
7	6	5	4	3	2	1	0
	INIT_GRAB_ADDR(7:0)						

INIT_GRAB_ADDR (31:0)	INitial GRAb ADDRess Register				
RW	This is the address in the host ram where the grab engine will start writing pixel data.				
Value at Reset:	N/A (Non-resettable flip-flops used)				
Possible Values:	Any Value				

Description:

Initial Grab Address HI 32 bits

31	30	29	28	27	26	25	24
			reserved	d(27:20)			
23	22	21	20	19	18	17	16
			reserved	d(19:12)			
15	14	13	12	11	10	9	8
			reserve	ed(11:4)			
7	6	5	4	3	2	1	0
	reserved(3:0)				INIT_GRAB	_ADDR(3:0)	

reserved (27:0)	
STATIC	This hardcodes to 0 the highest part of the memory address, thereby limiting the highest memory location where the DMA can write. This reserved field must be present to lock the highest bit to 0 because the DMA code uses the whole 32 bit of the register.
Value at Reset:	0x0

INIT_GRAB_ADDR (3:0)	INitial GRAb ADDRess Register High			
RW	This is the high 32 bits of the 64-bit addresses in the host ram where the grab engine will start writing pixel data.			
Value at Reset:	N/A (Non-resettable flip-flops used)			
Possible Values:	Any Value			

Description:

Grab Address LOW 32 bits for the Green plane. Only used when grabbing in Planar mode.

31	30	29	28	27	26	25	24
			GRAB_AD	DR(31:24)			
23	22	21	20	19	18	17	16
			GRAB_AD	DR(23:16)			
15	14	13	12	11	10	9	8
			GRAB_AI	DDR(15:8)			
7	6	5	4	3	2	1	0
	GRAB_ADDR(7:0)						

GRAB_ADDR (31:0)	GRAb ADDRess Register				
RW	This is the address in the host ram where the grab engine will start writing pixel data.				
Value at Reset:	N/A (Non-resettable flip-flops used)				
Possible Values:	Any Value				

Description:

Green Grab Address HIGH 32 bits

31	30	29	28	27	26	25	24
			reserved	d(27:20)			
23	22	21	20	19	18	17	16
			reserved	d(19:12)			
15	14	13	12	11	10	9	8
			reserve	d(11:4)			
7	6	5	4	3	2	1	0
	reserved(3:0)				GRAB_A	DDR(3:0)	

reserved (27:0)	
STATIC	This hardcodes to 0 the highest part of the memory address, thereby limiting the highest memory location where the DMA can write. This reserved field must be present to lock the highest bit to 0 because the DMA code uses the whole 32 bit of the register.
Value at Reset:	0x0

GRAB_ADDR (3:0) RW	GRAb ADDRess Registe This is the high part of th writing pixel data.	r High e 64-bit addresess in the host ram where the grab engine will start		
Value at Reset:	N/A (Non-resettable flip-flops used)			
Possible Values:	Any Value	Any value		

Description:

Grab Address LOW 32 bits for the Red plane. Only used when grabbing in Planar mode.

31	30	29	28	27	26	25	24
			GRAB_AD	DDR(31:24)			
23	22	21	20	19	18	17	16
			GRAB_AD	DDR(23:16)			
15	14	13	12	11	10	9	8
			GRAB_AI	DDR(15:8)			
7	6	5	4	3	2	1	0
	GRAB_ADDR(7:0)						

GRAB_ADDR (31:0)	GRAb ADDRess Reg	GRAb ADDRess Register			
RW	This is the address in t	This is the address in the host ram where the grab engine will start writing pixel data.			
Value at Reset:	N/A (Non-resettable f	N/A (Non-resettable flip-flops used)			
Possible Values:	Any Value	Any value			

Description:

Red Grab Address HIGH 32 bits

31	30	29	28	27	26	25	24
			reserved	d(27:20)			
23	22	21	20	19	18	17	16
			reserved	d(19:12)			
15	14	13	12	11	10	9	8
			reserve	d(11:4)			
7	6	5	4	3	2	1	0
reserved(3:0) GRAB_ADDR(3:0)							

reserved (27:0)	
STATIC	This hardcodes to 0 the highest part of the memory address, thereby limiting the highest memory location where the DMA can write. This reserved field must be present to lock the highest bit to 0 because the DMA code uses the whole 32 bit of the register.
Value at Reset:	0x0

GRAB_ADDR (3:0) RW	GRAb ADDRess Register High This is the high part of the 64-bit addresess in the host ram where the grab engine will start writing pixel data.			
Value at Reset:	N/A (Non-resettable flip-flops used)			
Possible Values:	Any Value Any value			

Description:

Grab Line Pitch Register

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			GRAB_LINE	_PITCH(15:8)			
7	6	5	4	3	2	1	0
			GRAB_LINE	E_PITCH(7:0)			

GRAB_LINE_PITCH (15:0)	Grab LinePitch
RW	This is the line pitch when writing in ram. It is measured in bytes, not pixels.
Value at Reset:	N/A (Non-resettable flip-flops used)

Description:

Host Line Size Register.

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Rese	erved		HOST_LINE_SIZE(13:8)				
7	6	5	4	3	2	1	0
			HOST_LIN	E_SIZE(7:0)			

HOST_LINE_SIZE (13:0)	Host Line size	Host Line size			
RW	This is the line size when writing in host ram. It is measured in bytes, not pixels. If this register is higher than the actual data provided by the sensor, stray data will be written into host memory. If this register is lower than the data provided by the sensor, image data will be cropped at the end of the line. For backward compatibility, the value of 0 indicates that the FPGA should auto-compute the line sized based on data provided by the sensor interface.				
Value at Reset:	0x0				
Possible Values:	0x1 - 0x3FFF Written line size in host frame.				
	0x0 Auto-compute line size from sensor data.				

31	30	29	28	27	26	25	24
	Reserved					OLOR_SPACE(2	2:0)
23	22	21	20	19	18	17	16
DUP_LAST_ LINE				Reserved			
15	14	13	12	11	10	9	8
		Rese	rved			REVERSE_Y	REVERSE_X
7	6	5	4	3	2	1	0
			Rese	erved			

COLOR_SPACE (2:0)						
RW	Output color s	Output color space used to transfer data to the DMA engine.				
Value at Reset:	0x0					
Possible Values:	0x0	Reserved for Mono sensor operation				
	0x1	BGR32				
	0x2	YUV 4:2:2 in full range				
	0x3	Planar 8-bits				
	0x4	Reserved for Y only with color sensor				
	0x5	RAW color pixels (8bpp or 10bpp selected with MONO10 regsiter)				

DUP_LAST_LINE					
RW	regenerate the	This field is used to enable the duplicate last line feature. When turned on, the datapath will regenerate the last line when it receives the end of frame marker from the acquisition section. The goal of this feature is to compensate for the lost line during the Bayer demosaic processing			
Value at Reset:	0x0				
Possible Values:	0x0	normal processing			
	0x1	last line is duplicated			

REVERSE_Y	REVERSE Y	REVERSE Y			
RW	Reverse readout				
Value at Reset:	0x0				
Possible Values:	0x0	Bottom to top readout			
	0x1	Top to bottom readout			

REVERSE_X	
RW	
Value at Reset:	0x0

GRAB_MAX_ADD

Address: section "DMA" base address + 0x030

Description:

FOR DEBUG

31	30	29	28	27	26	25	24
			GRAB_MAX	_ADD(29:22)			
23	22	21	20	19	18	17	16
			GRAB_MAX	_ADD(21:14)			
15	14	13	12	11	10	9	8
			GRAB_MAX	X_ADD(13:6)			
7	6	5	4	3	2	. 1	0
		GRAB_MA	AX_ADD(5:0)			OUT_OF_ME	OUT_OF_ME
						MORY_CLE AR	MORY_STAT

GRAB_MAX_ADD (29:0)	
RW	
Value at Reset:	0x3fffffff

OUT_OF_MEMORY_CLEA	
WO/AutoClr	

OUT_OF_MEMORY_STAT	
RO	

Address Range: [0x100 - 0x254]

GRAB_CTRL

GRAB ConTRoL Register

Address: section "ACQ" base address + 0x000

Description:

Grag Control Register

31	30	29	28	27	26	25	24
RESET_GRA B	Reserved	GRAB_ROI2_ EN	ABORT_GRA B	Res	served	SLOPE_0	CFG(1:0)
23	22	21	20	19	18	17	16
			Reserved				TRIGGER_O VERLAP_BU FFn
15	14	13	12	11	10	9	8
TRIGGER_O VERLAP				Res	served	TRIGGER	_SRC(1:0)
7	6	5	4	3	2	1	0
	Reserved		GRAB_SS	Res	served	BUFFER_ID	GRAB_CMD
RESET_GRAB							

RESET_GRAB				
RW	This register re	This register resets the entire python_ctrl.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Reset not active		
	0x1	Reset active		

GRAB_ROI2_EN			
RW	1) No Y overla 2) Xsize must 3) EOF and SO	Enable the second ROI on the frame (KNS). This register is not DB. 1) No Y overlap is allowed 2) Xsize must be the same for the two ROI for the moment(DMA constraint). 3) EOF and SOF in between the two in-frame ROIs will be masked to the DMA. The DMA will see one frame, with the two ROI inside.	
Value at Reset:	0x0		
Possible Values:	0x0	Dual ROI disable	
	0x1	Dual ROI enable	

ABORT_GRAB	ABORT GRAB	
WO/AutoClr	This is the grab reset, it will reset all the grab queued.	
Possible Values:	0x0	Normal operation
	0x1	Reset Grab

SLOPE_CFG (1:0)	Multiple SLO	Multiple SLOPE integration ConFiGuration		
RW	buffered in the If a single slop programmed. If a dual slope EXP_CTRL2. If a tripple slo	This field is the multiple SLOPE integration configuration register. This register is not double buffered in the FPGA. If a single slope mode is selected, register EXP_CTRL1.EXPOSURE_SS must be programmed. If a dual slope mode is selected, registers EXP_CTRL1.EXPOSURE_SS and EXP_CTRL2.EXPOSURE_DS must be programmed. If a tripple slope mode is selected registers EXP_CTRL1.EXPOSURE_SS, EXP_CTRL2.EXPOSURE_DS and EXP_CTRL2.EXPOSURE_TS must be programmed.		
Value at Reset:	0x1			
Possible Values:	0x0	RESERVED		
	0x1	Single slope mode (default mode)		
	0x2	Dual slope mode		
	0x3	Triple slope mode		

TRIGGER_OVERLAP_BUF Fn			
RW	NOT FULLY VALIDATED. DON'T USE. SET IT TO '0'.		
Value at Reset:	0x0		
Possible Values:	0x0	Buffer the trigger received during the dead window in PET mode and execute	
	0x1	The trigger will be ignored during dead window in PET mode.	

TRIGGER_OVERLAP			
RW	This field enables the trigger overlap. In this mode the exposure and the readout of the sensor can be done in parallel for higher framerates.		
Value at Reset:	0x1		
Possible Values:	0x0	Trigger Overlap disable	
	0x1	Trigger Overlap enable (default)	

TRIGGER_ACT (2:0)	TRIGGER AC	Tivation		
RW	source is set to	This is the trigger activation. This register selects the activation of the trigger when the trigger source is set to Hardware Snapshop mode. This register is Double Buffered, so the trigger activation may change from one grab command to another.		
	In activation Level HI/LO with EXPOSURE_MODE register set to Timed, the camera will be triggered in continuous way if the level of the external trigger remains at the LEVEL programmed in this register.			
	In activation Level HI/LO with EXPOSURE_MODE register set to Trigger Width, the Exposure time will be set by the level of the trigger input. The FPGA exposure regsiter be ignored. The Dual and Triple slope are not supported in the mode.			
Value at Reset:	0x0			
Possible Values:	0x0	Rising edge		
	0x1	Falling edge		
	0x2	Rising or Falling edge		
	0x3	Level HI		
	0x4	Level LO		
	0x5	RESERVED		
	0x6	RESERVED		
	0x7	RESERVED		

TRIGGER_SRC (1:0)	TRIGGER Sou	IRCe
RW	Double Buffere	ger source. This register selects the source of the grab trigger. This register is ed, so the trigger source may change from one grab command to another. C(1) may be seen as a TRIGGER_STATE by the software driver.
Value at Reset:	0x0	
Possible Values:	0x0	RESERVED
	0x1	Immediate mode (Continuous)
	0x2	Hardware Snapshop mode
	0x3	Software Snapshot mode

GRAB_SS	GRAB Software Snapsho	ot
WO/AutoClr	This is the software snaps mode.	shot register when the trigger source selected is Software Snapshot
Possible Values:	0x0	Idle
	0x1	Start a grab

BUFFER_ID	
RW	This is the ID of the DMA parameters to associate with this grab command.
Value at Reset:	0x0

GRAB_CMD	GRAB CoMmanD	
WO/AutoClr	automatically executed. Hardware Snapshop mod	is set to Immediate mode(Continuous), an exposure sequence will be When the trigger source is set to Software Snapshop mode or le, GRAB_CMD will act as an ARM. ake around 13 clks to reccord the grab parametters to the SPI fifo. The gister may be readed to avoid fifo corruption before sending another on.
Possible Values:	0x0	Idle
	0x1	Start grab command

31	30	29	28	27	26	25	24
GRAB_CMD_ DONE	ABORT_PET	ABORT_DEL AI	ABORT_DON E		Reserved		TRIGGER_R DY
23	22	21	20	19	18	17	16
Reserved	ABOR	T_MNGR_STA	T(2:0)		TRIG_MNGI	R_STAT(3:0)	
15	14	13	12	11	10	9	8
Reserved	TIME	R_MNGR_STA	T(2:0)		GRAB_MNG	R_STAT(3:0)	
7	6	5	4	3	2	1	0
Reserved	GRAB_FOT	GRAB_READ OUT	GRAB_EXPO SURE	Reserved	GRAB_PEND ING	GRAB_ACTI VE	GRAB_IDLE

GRAB_CMD_DONE	GRAB CoMmanD DONI	3
	The GRAB_CMD will ta register may be readed to instruction.	ke around 13 clks to reccord the grab parametters to the SPI fifo. This avoid fifo corruption before sending another Grab command
Possible Values:	0x0	Grab Command in process
	0x1	Grab command idle

ABORT_PET	ABORT during PET	
		flag. It is set to '1' when an abort is detected in the PETengin phase of o '0' when ABORT_DONE is set to '1'.
Possible Values:	0x0	Abort in PET Phase idle
	0x1	Abort in PET Phase active

ABORT_DELAI		
		AI flag. It is set to '1' when an abort is detected in the delai phase of o '0' when ABORT_DONE is set to '1'.
Possible Values:	0x0	Abort in Delai Phase idle
	0x1	Abort in Delai Phase active

ABORT_DONE	ABORT is DONE	
RO	This read-only field indic executing.	ates the RESET_GRAB command status. If 0, an abort sequence is
Possible Values:	0x0	Abort sequence not finished yet
	0x1	Abort DONE, or not started (reset value)

TRIGGER_RDY	
RO	

ABORT_MNGR_STAT (2:0)	
RO	DEBUG ABORT MANAGER STATE MACHINE

TRIG_MNGR_STAT (3:0)				
RO	DEBUG TRIG	GER MANAGER STATE MACHINE		
no .	DEBCG TRIC	OEK MALVIOLK STATE MATERIAL		
TIMER_MNGR_STAT (2:0)				
RO	DEBUG TIME	ER MANAGER STATE MACHINE		
GRAB_MNGR_STAT (3:0)				
RO	DEBUG GRAI	B MANAGER STATE MACHINE		
GRAB_FOT	GRAB Field O	verhead Time		
RO		sor FOT (Field Overhead Time).		
Possible Values:	0x0	Not in FOT		
	0x1	In FOT		
		·		
GRAB_READOUT				
	This is the sensor readout status. It goes to '1' on the SO_FOT and goes to '0' when the			
RO	datapath decoder decodes the end of frame.			
	datapath decod	er decodes the end of frame.		
GRAB_EXPOSURE RO	datapath decod	sor integration status		
GRAB_EXPOSURE RO	This is the sens	sor integration status Idle		
GRAB_EXPOSURE RO	datapath decod	sor integration status		
GRAB_EXPOSURE RO	This is the sens	sor integration status Idle		
GRAB_EXPOSURE RO Possible Values:	This is the sens	sor integration status Idle		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING	This is the sens 0x0 0x1 Grab pending s	sor integration status Idle		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO	This is the sens 0x0 0x1 Grab pending s fpga.	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO	This is the sense 0x0 0x1 Grab pending s fpga. 0x0	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO	This is the sens 0x0 0x1 Grab pending s fpga.	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values:	This is the sense 0x0 0x1 Grab pending s fpga. 0x0	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values: GRAB_ACTIVE	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending Grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values:	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending Grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values: GRAB_ACTIVE RO	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1 Grab active starreceived.	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending Grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values: GRAB_ACTIVE RO GRAB_IDLE	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1 Grab active starreceived.	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending Grab pending tus. When this register is set to one, at least one grab command has been		

READOUT_CFG1

31	30	29	28	27	26	25	24	
	Reserved						NGTH(9:8)	
23	22	21	20	19	18	17	16	
	ROT_LENGTH(7:0)							
15	14	13	12	11	10	9	8	
	FOT_LENGTH(15:8)							
7	6	5	4	3	2	1	0	
	FOT_LENGTH(7:0)							

ROT_LENGTH (9:0)	Row Overhead Ti	Row Overhead Time LENGTH				
STATIC	This is the length	This is the length of the Row Overhead Time.				
	R THE MOMENT- FOR FUTURE USE]					
Value at Reset:	0x0	0x0				
Possible Values:	Any Value	Any 8 bits value				

FOT_LENGTH (15:0)	Frame Overhead Time LENGTH					
STATIC	This is the length of the Frame Overhead Time.					
	[NOT USED FOR THE MOMENT- FOR FUTURE USE]					
Value at Reset:	0x0					
Possible Values:	Any Value	Any 16 bit value				

READOUT_CFG2

31	30	29	28	27	26	25	24		
	Reserved		READOUT_E N		Rese	rved			
23	22	21	20	19	18	17	16		
	READOUT_LENGTH(23:16)								
15	14	13	12	11	10	9	8		
	READOUT_LENGTH(15:8)								
7	6	5	4	3	2	1	0		
	READOUT_LENGTH(7:0)								

READOUT_EN	T_EN READOUT ENable					
RW	datapath by m mask a readou	This is the readout enable register. This register can be used to mask a readout in the sensor datapath by masking the "Arm datapath" signal generated by the controller. It can be used to mask a readout if a dummy grab is needed. This register is double buffered.				
Value at Reset:	0x0					
Possible Values:	0x0	Disable readout				
	0x1	Enable readout				

READOUT_LENGTH (23:0)		
	readout lenght to the grab	register. This register is a register software calculated that gives the engin. This register will depend on the ROI, Subsampling, Binning. It is used in the PET engin calculations. In Sys_Clock domain.
Value at Reset:	0x0	
Possible Values:	Any Value	Any 24 bits value

READOUT_CFG3

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
	BL_LINES(7:0)							

BL_LINES (7:0)	BLack LINES				
STATIC	This is thenumber of	This is thenumber of black lines programmed in the sensor needed for PET engin calculations.			
	[NOT USED FOR T	HE MOMENT- FOR FUTURE USE]			
Value at Reset:	0x2	0x2			
Possible Values:	Any Value	Any Value between 1 and 255			

EXP_CTRL1

31	30	29	28	27	26	25	24	
	Reserved		EXPOSURE_ LEV_MODE					
23	22	21	20	19	18	17	16	
	EXPOSURE_SS(23:16)							
15	14	13	12	11	10	9	8	
	EXPOSURE_SS(15:8)							
7	6	5	4	3	2	1	0	
	EXPOSURE_SS(7:0)							

EXPOSURE_LEV_MODE	EXPOSURE LEVel MODE					
RW	This is the exposure level mode selector. When selecting the TRIGGER ACTIVATION = Level Mode, this register selects the exposure method used. When this register is set to '0' the timed mode is selected; Register EXPOSURE_SS is used for the exposure time. When this register is set to '1' the external trigger width is used for the exposure time.					
Value at Reset:	0x0					
Possible Values:	0x0 Timed Mode					
	0x1 Trigger Width					

EXPOSURE_SS (27:0)	EXPOSURE Single Slope				
RW	This is the total exposure time in single/dual/triple slope mode.				
	This register is double buffered.				
Value at Reset:	0x0				
Possible Values:	Any Value	Any 28 bits value			

EXP_CTRL2

31	30	29	28	27	26	25	24	
	Reserved			EXPOSURE_DS(27:24)				
23	22	21	20	19	18	17	16	
	EXPOSURE_DS(23:16)							
15	14	13	12	11	10	9	8	
	EXPOSURE_DS(15:8)							
7	6	5	4	3	2	1	0	
	EXPOSURE_DS(7:0)							

EXPOSURE_DS (27:0)	EXPOSURE Dual Slope			
RW	During the total exposure time defined in register EXPOSURE_SS, the register EXPOSURE_DS define time of the 'kneepoint 1'. The value of EXPOSURE_DS is always lower than EXPOSURE_SS and EXPOSURE_TS. This register is double buffered.			
Value at Reset:	0x0			
Possible Values:	Any Value	Any 28 bits value		

EXP_CTRL3

31	30	29	28	27	26	25	24
	Rese	erved			EXPOSURE	E_TS(27:24)	
23	22	21	20	19	18	17	16
			EXPOSURE	_TS(23:16)			
15	14	13	12	11	10	9	8
			EXPOSURE	E_TS(15:8)			
7	6	5	4	3	2	1	0
			EXPOSUR	E_TS(7:0)			

EXPOSURE_TS (27:0)	EXPOSURE Tripple Slope			
RW	During the total exposure time defined in register EXPOSURE_SS, the register EXPOSURE_TS define time of the 'kneepoint2'. The value of EXPOSURE_TS is always lower than EXPOSURE_SS and higher than EXPOSURE_DS. This register is double buffered.			
Value at Reset:	0x0			
Possible Values:	Any Value	Any 28 bits value		

TRIGGER_DELAY

31	30	29	28	27	26	25	24
	Reserved			TRIGGER_DELAY(27:24)			
23	22	21	20	19	18	17	16
			TRIGGER_DI	ELAY(23:16)			
15	14	13	12	11	10	9	8
			TRIGGER_D	ELAY(15:8)			
7	6	5	4	3	2	1	0
			TRIGGER_D	DELAY(7:0)			

TRIGGER_DELAY (27:0)	TRIGGER DELAY			
RW	This is the trigger delay. This trigger delay can be applied to HW(Only edge mode), SW and Continuous mode.			
	In HW level mode, the trigger cannot be delayed, since the level time represents the exposure time.			
	This register is double buffered			
Value at Reset:	0x0			
Possible Values:	Any Value	Any 28 bits value		

STROBE_CTRL1

31	30	29	28	27	26	25	24
STROBE_E	Rese	erved	STROBE_PO L		STROBE_ST	'ART(27:24)	
23	22	21	20	19	18	17	16
			STROBE_ST	ART(23:16)			
15	14	13	12	11	10	9	8
			STROBE_ST	CART(15:8)			
7	6	5	4	3	2	1	0
			STROBE_S	ΓART(7:0)			

STROBE_E	STROBE Ena	STROBE Enable		
RW	This register e	This register enables the strobe logic		
	This register i	This register is double buffered		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Strobe disabled		
	0x1	Strobe enabled		

STROBE_POL	STROBE POI	STROBE POLarity		
RW	This is the stro	This is the strobe polarity at the pin of the FPGA.		
	This register i	This register is not double buffered.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Active high strobe		
	0x1	Active low strobe		

STROBE_START (27:0)	STROBE START				
RW	This is the strobe start location. This location depends on the Strobe Mode used.				
	In Strobe Mode='0', the start of the strobe is situated during the exposure time. In Strobe Mode='1', the start of the strobe is situated during the trigger delay. This register is double buffered				
Value at Reset:	0x0				
Possible Values:	Any Value	Any 28 bits value			

STROBE_CTRL2

31	30	29	28	27	26	25	24
STROBE_MO DE	Reserved	STROBE_B_ EN	STROBE_A_ EN		STROBE_E	ND(27:24)	
23	22	21	20	19	18	17	16
	STROBE_END(23:16)						
15	14	13	12	11	10	9	8
	STROBE_END(15:8)						
7	6	5	4	3	2	1	0
			STROBE_	END(7:0)			

STROBE_MODE	STROBE MODE	STROBE MODE				
RW	This register selec	This register selects the location of the Strobe Start.				
	When this register timer.	is set to 0, the STROBE_START register is located during the exposure				
	When this register delay timer.	When this register is set to 1, the STROBE_START register is located during the trigger delay timer.				
	In HW level mode be delayed.	e the strobe mode must be set to STROBE MODE=0 since the trigger cannot				
	This register is do	uble buffered				
Value at Reset:	0x0					
Possible Values:	0x0	Strobe start during exposure				
	0x1	Strobe start during trigger delay				

STROBE_B_EN	STROBE phase B ENable		
STATIC	The field enables the generation of STROBE_B signal, for a NEXIS system. This register is double buffered to support back2back mode in nexis systems. NOT USED IN GTR IMPLEMENTATION		
Value at Reset:	0x0		
Possible Values:	0x0	Enable Strobe B	
	0x1	Disable Strobe B	

STROBE_A_EN	STROBE pha	STROBE phase A ENable				
STATIC	The field enab	The field enables the generation of STROBE_A signal(Default strobe), for a NEXIS system.				
		This register is double buffered to support back2back mode in nexis systems. NOT USED IN GTR IMPLEMENTATION				
Value at Reset:	0x1	0x1				
Possible Values:	0x0	0x0 Enable Strobe A (default strobe)				
	0x1	0x1 Disable Strobe A				

STROBE_END (27:0)	STROBE END	STROBE END				
RW	This is the strobe	This is the strobe end location. This location does not depend on the Strobe Mode used.				
	This register is do	This register is double buffered				
Value at Reset:	0xfffffff	0xfffffff				
Possible Values:	Any Value	Any Value Any 28 bits value				

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved			SER_BLACK CAL_UPDAT E		SER_SUBBIN _UPDATE	SER_WRn	
15	14	13	12	11	10	9	8	
	Reserved SER_CMD(MD(1:0)		
7	6	5	4	3	2	1	0	
	Reserved SER_RF_SS Reserved SER_WF_SS					SER_WF_SS		

SER_ROI_UPDATE	
RW	**FEATURE NOT IMPLEMENTED YET** This register disable the ROI preprogrammation of the sensor to avoid reprogrammation latencies, if frame to frame changes is not needed in the application.
Value at Reset:	0x0

SER_BLACKCAL_UPDATE	
= = · ·	**FEATURE NOT IMPLEMENTED YET** This register disable the Blackcal preprogrammation of the sensor to avoid reprogrammation
	latencies, if frame to frame changes is not needed in the application.
Value at Reset:	0x0

SER_GAIN_UPDATE	
	FEATURE NOT IMPLEMENTED YET
	This register disable the Gain preprogrammation of the sensor to avoid reprogrammation
	latencies, if frame to frame changes is not needed in the application.
Value at Reset:	0x0

SER_SUBBIN_UPDATE	
RW	**FEATURE NOT IMPLEMENTED YET** This register disable the SUBsmapling/BINing preprogrammation of the sensor to avoid reprogrammation latencies, if frame to frame changes is not needed in the application.
Value at Reset:	0x0

SER_WRn	SERial Write/Readn				
RW	This register configures the type of the serial access to the CMOS sensor				
Value at Reset:	0x1				
Possible Values:	0x0	Read access			
	0x1	Write access			

SER_CMD (1:0)	SERial CoMm	SERial CoMmand				
RW	This is the type	This is the type of command sent to the serial fifo.				
		Sensor, write SER_WF_SS=1 with SER_CMD=0x0, with the parameters: ER_ADD(8:0) and SER_DAT(15:0).				
	the parametter following form	To insert a timer between fifo commands, write SER_WF_SS=1 with SER_CMD=0x1, with the parametter: SER_DAT(15:0). The value of the timer inserted is calculated with the following formula: Timer= SER_DAT(15:0)*1024*SYS_PERIOD, SYS_PERIOD is 1/62.5mhz. The granularity of the timer is 16.384us				
	To insert a Storead logic encoreceived.	To insert a Stop separator command, write SER_WF_SS=1 with SER_CMD=0x3. When the read logic encounter this command, it will stop read from the fifo until a new SER_RF_SS is received.				
Value at Reset:	0x0					
Possible Values:	0x0	CMOS sensor access COMMAND				
	0x1	Insert timer COMMAND				
	0x2	STOP separator COMMAND				
	0x3 RESERVED					

SER_RF_SS	not					
WO/AutoClr	This is the read fifo snapshot. When the read fifo logic receives this snapshot, it will read all the fifo comands until a STOP separator command is read or Empty fifo is detected.					
Possible Values:	0x0 Idle					
	0x1 Start Read FIFO					

SER_WF_SS	SERial Write Fifo SnapShot When the system toggle this bit, the address, data and command are wrote to the command fifo. This fifo can contain the entire dcf, so the driver will not need to pool the status bit. This is a auto reset bit register, so after the driver write one, the bit will be auto reset to 0. To start the FIFO read logic write '1' to regsiter SER_RF_SS.			
Possible Values:	0x0	Idle		
	0x1 Write a command to the FIFO			

31	30	29	28	27	26	25	24	
	SER_DAT(15:8)							
23	22	21	20	19	18	17	16	
	SER_DAT(7:0)							
15	14	13	12	11	10	9	8	
	Reserved SE						SER_ADD(8)	
7	6	5	4	3	2	1	0	
SER_ADD(7:0)								

SER_DAT (15:0)	SERial interface D	SERial interface DATa		
RW		This is the write data to be send to the CMOS sensor by the serial interface, or the config data to a TIMER command or to a POWER sequence command. See register SER_CMD.		
Value at Reset:	0x0	0x0		
Possible Values:	Any Value	Any 16 bits value		

SER_ADD (8:0) RW	SERial interface ADDress This is the read/write address of the register in the CMOS sensor.		
Value at Reset:	0x0		
Possible Values:	Any Value	Any 9 bits value	

31	30	29	28	27	26	25	24
			Reserved				SER_FIFO_E MPTY
23	22	21	20	19	18	17	16
			Reserved				SER_BUSY
15	14	13	12	11	10	9	8
			SER_DA	T_R(15:8)			
7	6	5	4	3	2	1	0
	SER_DAT_R(7:0)						

SER_FIFO_EMPTY	SERial FIFO EMPTY
RO	This is the EMPTY flag of the xilinx fifo, when '1' there are no pending operations in the fifo.

SER_BUSY	SERial BUSY	SERial BUSY		
RO	SER_RF_SS	This is the BUSY status of the FIFO read logic. The flag will be set to '1' when the SER_RF_SS is set to '1'. It will be reseted to '0' when the read logic will decode a STOP separator command or when the FIFO will be empty.		
Possible Values:	0x0	0x0 FIFO read logic is idle		
	0x1	FIFO read logic is runnning		

SER_DAT_R (15:0)	SERial interface DATa Read		
RO	This is the data read from CMOS sensor.		
Possible Values:	Any Value	Any 16 bits value	

31	30	29	28	27	26	25	24
	LVDS_BIT_RATE(15:8)						
23	22	21	20	19	18	17	16
			LVDS_BIT_	_RATE(7:0)			
15	14	13	12	11	10	9	8
	Reserved		LVDS_MODE		LVDS_SER_	FACTOR(3:0)	
7	6	5	4	3	2	1	0
	LVDS_C	H(3:0)		Rese	erved	LVDS_STAR T_CALIB	LVDS_SYS_ RESET

LVDS_BIT_RATE (15:0)	LVDS BIT RATE selector	
RW	This is the LVDS interface bit rate selector.	
	Program 0x720 when the LVDS channel is set to 10bits. Program 0x576 when the LVDS channel is set to 8bits.	
Value at Reset:	0x720	

LVDS_MODE			
RO	This is the LVDS Mode implemented in the fpga.		
	LVDS10 is 720Mbps per LVDS channel LVDS8 is 576Mbps per LVDS channel		
Possible Values:	0x0	LVDS10	
	0x1	LVDS8	

LVDS_SER_FACTOR (3:0)	
RW	Pour l'instant il est statique dans le generique, car le BUFR ne nous permet pas de reconfigurer live le facteur de division de 5 a 4 !!!!!
Value at Reset:	0xa

LVDS_CH (3:0)	LVDS CHanne	LVDS CHannels		
RW	This regsiters d	This regsiters defines the number of LVDS channels used.		
	Set this register Set this register	Set this register to 1, when only 1 LVDS channel is used. Set this register to 2, when 2 LVDS channels are used. Set this register to 4, when 4 LVDS channels are used. Set this register to 8, when 8 LVDS channels are used.		
Value at Reset:	0x4	0x4		
Possible Values:	0x1 1 LVDS channel			
	0x2	2 LVDS channels		
	0x4 4 LVDS Channels			
	8 LVDS Channels			
	Others RESERVED			

LVDS_START_CALIB	LVDS START CALIBration			
WO/AutoClr	This register starts the LVDS CALIBRATION. A phase detect calibration is first performed. After the phase detect calibration, a bitslip calibration is performed. A LVDS calibration is always performed at the Start Of FOT			
Possible Values:	0x0	Idle		
	0x1 Perform a LVDS calibration			

LVDS_SYS_RESET	LVDS SYStem LVDS RESET				
RW	This is the LVDS reset register. After deassert this register, a LVDS calibration is needed.				
Value at Reset:	0x1				
Possible Values:	0x0 LVDS not in reset state				
	0x1	LVDS module reset			

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			REMAP_MOD	DE_SUPP(7:0)			
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
	Reserved		LVDS_DECO D EN	Reserved	LVDS_DEC	COD_REMAP_	MODE(2:0)

REMAP_MODE_SUPP (7:0)	REMAPer MODE SUPI	REMAPer MODE SUPPorted				
RO	Each bit in this field is a If a value 0x41 is read, the	Each bit in this field is a remap mode supported in the fpga. If a value 0x41 is read, then only P1300x4 and P1300x2 are supported by the fpga.				
Possible Values:	0x1	P1300 x4 supported				
	0x2	P1300 x1 supported				
	0x4	P5000 x4 supported				
	0x8	P5000 x1 supported				
	0x10	P5000 x8 supported				
	0x20 P5000 x2 supported 0x40 P1300 x2 supported					
	0x80	Not implemented yet				

LVDS_DECOD_EN		
RW		
Value at Reset:	0x0	
Possible Values:	0x0	Decoder Disable
	0x1	Decoder Enable

LVDS_DECOD_REMAP_M ODE (2:0)					
RW	This is the configuration	on for the decoder and remapper logic in the datapath.			
	This register also configures the Sensor SPI frequency.				
Value at Reset:	0x0				
Possible Values:	0x0	Python 1300, 4x LVDS			
	0x1	Python 1300, 1x LVDS			
	0x2	Python 5000, 4x LVDS			
	0x3	Python 5000, 1x LVDS			
	0x4	Python 5000, 8x LVDS			
	0x5	Python 5000, 2x LVDS			
	0x6	Python 1300, 2x LVDS			

LVDS_TRAINING

31	30	29	28	27	26	25	24
		Rese	erved			DATA_TRA	AINING(9:8)
23	22	21	20	19	18	17	16
	DATA_TRAINING(7:0)						
15	14	13	12	11	10	9	8
	Reserved CRTL_TRAINING(9:8)						AINING(9:8)
7	6	5	4	3	2	1	0
	CRTL_TRAINING(7:0)						

DATA_TRAINING (9:0)					
RW	This is the training pattern for LVDS DATA CHANNELS.				
	This register must match the training pattern register of the Python sensor.				
Value at Reset:	0x3a6				
Possible Values:	Any Value	Any 10 bits value			

CRTL_TRAINING (9:0)					
RW	This is the training pattern for the LVDS CONTROL CHANNEL. This register must match the training pattern register of the Python sensor.				
Value at Reset:	0x3a6				
Possible Values:	Any Value	Any 10 bits value			

31	30	29	28	27	26	25	24
Re	served	IDELAY_RD Y	LVDS_RDY	Reser	rved	LVDS_CALI B_OK	LVDS_CALI B_ACT
23	22	21	20	19	18	17	16
Re	served	BS_DONE_S TAT		BS_CI	H_LOCK_STA	Γ(8:4)	
15	14	13	12	11	10	9	8
	BS_CH_LOC	K_STAT(3:0)		Reser	rved	PD_DONE_S TAT	PD_CH_LOC K_STAT(8)
7	6	5	4	3	2	1	0
	PD_CH_LOCK_STAT(7:0)						

IDELAY_RDY	Input DELAY ReaDY	Input DELAY ReaDY			
RO	TheInput DELAY ReaDY (RDY) signal indicates when the IDELAYE2 and ODELAYE2 modules in the specific region are calibrated, after receiving the REFCLOCK(200Mhz) and SYS RESET deaserted.				
Possible Values:	0x0 IDELAYE2 module not calibrated				
	0x1	IDELAYE2 module calibrated			

LVDS_RDY	LVDS ReaDY				
RO	This register goes to '1' when the LVDS_SYS_RESET register is deaserted and that the LVDS				
	logic is ready to start the calibration sequence.				
Possible Values:	0x0 LVDS module not ready to calibration				
	0x1	LVDS module ready to calibration			

LVDS_CALIB_OK	LVDS CALIBration OK		
RO	This register register is the LVDS calibration result.		
Possible Values:	0x0 Calibration sequence fail		
	0x1 Calibration sequence success		

LVDS_CALIB_ACT	LVDS CALIBration ACTivate		
RO	This register informs that the calibration sequence is calibrating the LVDS interface. Read register CALIB_OK when CALIB_ACT goes to '0' to see the result of the calibration sequence.		
Possible Values:	0x0 Calibration is idle		
	Ox1 Calibration is active		

BS_DONE_STAT	BitSlip DONE STATus		
RO	This is the bitslip done status. It informs that the BitSlips sequence is finish. See BS_CH_LOCK_STAT for individual channel lock status.		
Possible Values:	0x0 BitSlip sequence in progress		
	0x1 BitSlip sequence finish		

BS_CH_LOCK_STAT (8:0)	BitSlip CHannel LOCK STATus	
RO	This is the bitslip channel lock status. It informs wich channel is locked after the BitSlip calibration sequence.	

PD_DONE_STAT	
	This is thephase detect done status. It informs that the PhaseDetect sequence is finish. See PD_CH_LOCK_STAT for individual channel lock status.

PD_CH_LOCK_STAT (8:0)	Phase Detect LOCK STATus	
1	This is the Phase Detect channel lock status. It informs wich channel is locked after the Phase Detect calibration sequence.	

LVDS_STAT2

31	30	29	28	27	26	25	24
	WORD_ALIGN(31:24)						
23	22	21	20	19	18	17	16
	WORD_ALIGN(23:16)						
15	14	13	12	11	10	9	8
	WORD_ALIGN(15:8)						
7	6	5	4	3	2	1	0
	WORD_ALIGN(7:0)						

WORD_ALIGN (31:0)	Word ALIGnement	
	This register indicates the Word Alignement Status. (1 byte per channel). When the data channel is aligned with the sync a value of '2' is read. When the Data changes one clk before the sync a value of '1' is read. When the Data changes one clk after the sync a value of '3' is read.	

31	30	29	28	27	26	25	24
			Reserved				SENSOR_RE FRESH_TEM P
23	22	21	20	19	18	17	16
			Reserved				SENSOR_PO WERDOWN
15	14	13	12	11	10	9	8
Rese	erved	SENSOR_RE	MAP_CFG(1:0)		Reserved		SENSOR_CO LOR
7	6	5	4	3	2	1	0
	Reserved		SENSOR_RE G_UPTATE	Res	erved	SENSOR_RE SETN	SENSOR_PO WERUP

SENSOR_REFRESH_TEMP	SENSOR REFRESH TEMPerature		
	This register starts a sensor temperature read on the serial interface of the Python sensor. The temperature value readed will be available on field SENSOR_TEMP when field SENSOR TEMP VALID is set to '1'.		
Possible Values:	0x0 Idle		
	Ox1 Starts a Temperature read on Python SPI interface		

SENSOR_POWERDOWN	
WO/AutoClr	After a PowerUp sequence(SESOR_POWERUP_DONE=1), successfull or not, this register can reset the power state machine to idle state(All power disable, oscillator disable and reset).
	This power down don't do power sequencing.

SENSOR_REMAP_CFG (1:0)	SENSOR REMAPing ConFiGuration		
RW	This is the configuration for the remapper logic bloc. Bit(0) enables the image valid data Bit(1) enables the black calibration data valid data		
Value at Reset:	0x1		
Possible Values:	0x0		
	0x1 Black data disabled, Valid data enabled		
	0x2		
	0x3		

SENSOR_COLOR	SENSOR COLOR	SENSOR COLOR	
RW	This register informs the datapath logic that a color sensor is used. This information is needed for the remapper logic.		
Value at Reset:	0x0		
Possible Values:	0x0	Monochrone sensor	
	0x1	Color sensor	

SENSOR_REG_UPTATE	SENSOR REGister UP	DATE	
RW	By setting this bit to 1, the SENSOR CONTROLLER WILL UPDATE the programed CMOS sensor registers at the beginning of each grab.		
Value at Reset:	0x1		
Possible Values:	0x0	Do not update registers	
	0x1	Update registers	

SENSOR_RESETN	SENSOR RES	SENSOR RESET Not		
RW	After a success	After a successfull PowerUP sequence, writing this field to '0' reset the Python CMOS sensor.		
Value at Reset:	0x1			
Possible Values:	0x0	Reset the sensor after a successfull powerUP		
	0x1	Nothing		

SENSOR_POWERUP		
WO/AutoClr	This register p sensor.	powerup the supply of the sensor, enable the sensor clock and do a reset to the
Possible Values:	0x0	idle
	0x1	Start the power sequence

31	30	29	28	27	26	25	24
			SENSOR_TEMP(7:0)				
23	22	21	20	19	18	17	16
SENSOR_TE MP_VALID				Reserved			SENSOR_PO WERDOWN
15	14	13	12	11	10	9	8
Rese	erved	SENSOR_RE SETN	SENSOR_ C_EN	OS Reserv	ed SENSOR_VC CPIX_PG	SENSOR_VC C33_PG	SENSOR_VC C18_PG
7	6	5	4	3	2	1	0
Reserved	SENSOR_VC CPIX_EN	SENSOR_VC C33_EN	SENSOR_ C18_EN		Reserved	SENSOR_PO WERUP_STA T	SENSOR_PO WERUP_DO NE
				·		•	
SENSOR_TEN	MP (7:0)						
RO		This register gives the Temperature of the Python sensor after a SENSOR_REFRESH_TEMP snapshot. The field SENSOR_TEMP_VALID indicates when the SENSOR_TEMP value is valid.					
Possible Values	3:	Any Value					

SENSOR_TEMP_VALID	SENSOR TEMPerature VALID		
RO	This field indicates that the field SENSOR_TEMP have valid temperature after a SENSOR_REFRESH_TEMP snapshot.		
Possible Values:	0x0	SENSOR_TEMPERATURE register is not valid	
	0x1	SENSOR_TEMPERATURE register is valid	

SENSOR_POWERDOWN		
RO	This field indicates that the	he sensor is in powerdown state.
Possible Values:	0x0	Not in powerdown state
	0x1	Powerdown

SENSOR_RESETN	SENSOR RESET N	
RO	This is the sensor RESETN status.	
Possible Values:	0x0 In reset state	
	0x1	Not in reset

SENSOR_OSC_EN	SENSOR OSCILLATOR ENable		
RO	This is the sensor oscillator enable status.		
Possible Values:	0x0 Disable		
	0x1	Enable	

SENSOR_VCCPIX_PG	SENSOR supply PIX VCC Power Good	
RO	This is the PIX VCC Power Good status.	
Possible Values:	0x0 Disable	
	0x1	Enable

SENSOR_VCC33_PG	SENSOR supply 3.3 VCC Power Good		
RO	This is the 3.3V VCC Power Good status.		
Possible Values:	0x0 Disable		
	0x1 Enable		

SENSOR_VCC18_PG	SENSOR sup	SENSOR supply 1.8 VCC Power Good		
RO	This is the 1.8	This is the 1.8V VCC Power Good status.		
Possible Values:	0x0	0x0 Disable		
	0x1	Ox1 Enable		

SENSOR_VCCPIX_EN	SENSOR supply PIX VCC ENable		
RO	This is the PIX VCC enable status.		
Possible Values:	0x0 Disable		
	0x1	Enable	

SENSOR_VCC33_EN	SENSOR supply 3.3 VCC ENable	
RO	This is the 3.3V VCC enable status.	
Possible Values:	0x0 Disable	
	0x1	Enable

SENSOR_VCC18_EN	SENSOR supply 1.8 VCC ENable		
RO	This is the 1.8V VCC enable status.		
Possible Values:	0x0 Disable		
	0x1	Enable	

SENSOR_POWERUP_STAT			
RO	When a powerup sequence is finish, this register indicates the result of the POWERUP		
	sequence.	T	
Possible Values:	0x0	PowerUp sequence fail	
	0x1	PowerUp sequence success	

SENSOR_POWERUP_DONE		
	This register indicates that the POWERUP sequence is finish. Read register SENSOR_POWERUP_STAT to see the result.	
Possible Values:	0x0	PowerUp sequence not started
	0x1	PowerUp sequence finish

SENSOR_GEN_CFG

Address: section "ACQ" base address + 0x0A0

0x4

Description:

Value at Reset:

SENSOR ADDRESS 192 DEC

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	reserved_1(6:0)			BINNING			
7	6	5	4	3	2	1	0
SUBSAMPLI NG	NZROT_XSM _DELAY_EN ABLE	SLAVE_MOD E	TRIGGERED _MODE	XLAG_ENAB LE	ZERO_ROT_ ENABLE	ROLLING_S HUTTER	ENABLE
reserved_1 (6:0	reserved_1 (6:0)						
RW		(13:11) Monitor pin mode = $0x1$					

BINNING	BINNING ena	BINNING enable		
RW	Binning mode	Binning mode selection		
		and Binning cannot operate at the same time. The sensor will choose Binning if ected. This situation must be avoid in driver.		
	If using a ROI	with BINNING OR SUBSAMPLING, follow this constraints:		
	start kernel M 2) XEnd with end kernel and 3) YStart with start line MUS	1) XStart with Subsampling OR Binning: if a ROI is used with Subsampling or Binning, the start kernel MUST be EVEN. 2) XEnd with Subsampling OR Binning: if a ROI is used with Subsampling or Binning, the end kernel and the start line MUST be ODD. 3) YStart with Subsampling OR Binning: if a ROI is used with Subsampling or Binning, the start line MUST be EVEN. 4) YEnd with Subsampling OR Binning: If a ROI is used with Subsampling, the end line		
Value at Reset:	0x0			
Possible Values:	0x0	No binning		
	0x1	Binning		

SUBSAMPLING	SUBSAMPLIN	SUBSAMPLING enable		
RW	Subsampling n	Subsampling mode selection.		
		nd Binning cannot operate at the same time. The sensor will choose Binning if ected. This situation must be avoid in driver.		
	If using a ROI	with BINNING OR SUBSAMPLING, follow this constraints:		
	start kernel MU 2) XEnd with S end kernel and 3) YStart with start line MUS	1) XStart with Subsampling OR Binning: if a ROI is used with Subsampling or Binning, the start kernel MUST be EVEN. 2) XEnd with Subsampling OR Binning: if a ROI is used with Subsampling or Binning, the end kernel and the start line MUST be ODD. 3) YStart with Subsampling OR Binning: if a ROI is used with Subsampling or Binning, the start line MUST be EVEN. 4) YEnd with Subsampling OR Binning: If a ROI is used with Subsampling, the end line MUST be ODD.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	No subsampling		
	0x1	Subsampling		

NZROT_XSM_DELAY_ENA BLE	NZROT XSM DELAY ENABLE		
RW	Insert delay between end of ROT and start of readout in NonZero ROT readout mode if '1'. ROT delay is defined by register xsm delay		
Value at Reset:	0x0		
Possible Values:	0x0 Don't insert delai		
	0x1 Insert delay defined by register nzrot_xsm_delay		

SLAVE_MODE	SLAVE MODE		
RW	Master/Slave Selection		
Value at Reset:	0x1		
Possible Values:	0x0	Master	
	0x1	Slave	

TRIGGERED_MODE	TRIGGERED MODE		
RW	Triggered mode Selection		
Value at Reset:	0x1		
Possible Values:	0x0	Normal mode	
	0x1	Triggered mode	

XLAG_ENABLE		
RW	Xlag	
Value at Reset:	0x0	
Possible Values:	0x0	Xlag OFF
	0x1	Xlag ON

ZERO_ROT_ENABLE	ZERO ROT ENABLE	ZERO ROT ENABLE		
RW	ZERO ROT mode ENABLE			
Value at Reset:	0x0			
Possible Values:	0x0 Idle			
	0x1	Enable		

ROLLING_SHUTTER	ROLLING SHUTTER	ROLLING SHUTTER		
RW	Rolling shutter mode	Rolling shutter mode		
Value at Reset:	0x0			
Possible Values:	0x0	Rolling shutter disable		
	0x1	Rolling shutter enable(non supported)		

ENABLE	Sequencer EN	Sequencer ENABLE		
RW	Sequencer EN	Sequencer ENABLE		
Value at Reset:	0x1			
Possible Values:	0x0	Idle		
	0x1	Enable		

SENSOR_INT_CTL

Address: section "ACQ" base address + 0x0A8

Description:

SENSOR ADDRESS 194 DEC

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Res	served				
15	14	13	12	. 11	10	9	8	
reserved	d_2(1:0)	BINNING_	MODE(1:0)	SUBSAMPLIN	NG_MODE(1:0)	reserved1	Reserved	
7	6	5	4	3	2	1	0	
			reserv	red0(7:0)				
reserved_2 (1:	0)							
RW	•							
Value at Reset:		0x0						

BINNING_MODE (1:0)	BINNING MODE	BINNING MODE		
RW	Binning mode selector	Binning mode selector		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	0x0 Binning in x and y (VITA compatible)		
	0x1	Binning in x, not y		
	0x2	Binning in y, not x		
	0x3	Binning in x and y		

SUBSAMPLING_MODE (1:0)	SUBSAMPLING MODE			
RW	Subsampling mode selec	Subsampling mode selector		
Value at Reset:	0x0			
Possible Values:	0x0 Subsampling in x and y (VITA compatible)			
	0x1	Subsampling in x, not y		
	0x2	Subsampling in y, not in x		
	0x3	Subsampling in x and y		

reserved1	
RW	
Value at Reset:	0x0

reserved0 (7:0)	
RW	 (2) fr_mode = 0x0 : reset length (4) int_priority =0x0 : frame readout has priority over integration (5) halt_mode =0x0 : the sensor stops immediately when disabled, without finishing the current frame. (6) fss_enable =0 : No generation of FSS (7) fse_enable =0 : No generation of FSE
Value at Reset:	0x0

SENSOR_GAIN_ANA

Address: section "ACQ" base address + 0x0B0

Description:

SENSOR ADDRESS 204 DEC

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	reserved(2:0)			A	AFE_GAIN0(7:3)	
7	6	5	4	3	2	1	0
	AFE_GAIN0(2:0) MUX_GAINSW0(4:0)						

reserved (2:0)	
RW	
Value at Reset:	0x0

AFE_GAIN0 (7:0)	AFE GAIN	
RW	GAIN STAGE 2 : AFE Programmable Gain Setting	
Value at Reset:	0xf	

MUX_GAINSW0 (4:0)	Column MUX GAIN	
RW	GAIN STAGE 1 : Column Gain Setting	
Value at Reset:	0x3	

SENSOR_BLACK_CAL

Address: section "ACQ" base address + 0x0B8

Description:

SENSOR ADDRESS 128 DEC

P1300: 0x470f P5000: 0x4714

31	30	29	28	27	26	25	24
			Res	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
CRC_SEED		reserve	ed(3:0)		BLA	CK_SAMPLES	(2:0)
7	6	5	4	3	2	1	0
			BLACK_C	OFFSET(7:0)			
CRC_SEED							
RW							
Value at Reset:		0x0					
reserved (3:0)							
RW							
Value at Reset:		0x8					

BLACK_SAMPLES (2:0)	
STATIC	
Value at Reset:	0x7

BLACK_OFFSET (7:0)	BLACK OFFSET
RW	Desired black level at output
Value at Reset:	0xf

SENSOR_ROI_CONF0

Address: section "ACQ" base address + 0x0C0

Description:

SENSOR ADDRESS 256 or 259 DEC

31	30	29	28	27	26	25	24
			Reserved				X_END_MSB
23	22	21	20	19	18	17	16
			Reserved				X_START_M SB
15	14	13	12	11	10	9	8
			X_EN	D(7:0)			
7	6	5	4	3	2	1	0
			X_STA	RT(7:0)			

X_END_MSB	X END
RW	X End Configuration, in kernels for P480
Value at Reset:	0x1

X_START_MSB	X START MSB
RW	X Start Configuration, in kernels for P480
Value at Reset:	0x0

X_END (7:0)	X END
RW	X End Configuration, in kernels
Value at Reset:	0x9f

X_START (7:0)	X START
RW	X Start Configuration, in kernels
Value at Reset:	0x0

SENSOR_ROI2_CONF0

Address: section "ACQ" base address + 0x0C4

Description:

SENSOR ADDRESS 256 or 259 DEC

31	30	29	28	27	26	25	24
			Reserved				X_END_MSB
23	22	21	20	19	18	17	16
			Reserved				X_START_M SB
15	14	13	12	11	10	9	8
			X_EN	D(7:0)			
7	6	5	4	3	2	1	0
			X_STA	RT(7:0)			

X_END_MSB	X END
RW	X End Configuration, in kernels for P480
Value at Reset:	0x1

X_START_MSB X START MSB	
RW	X Start Configuration, in kernels for P480
Value at Reset:	0x0

X_END (7:0)	X END
RW	X End Configuration, in kernels
Value at Reset:	0x9f

X_START (7:0)	X START			
RW	X Start Configuration, in kernels			
Value at Reset:	0x0			

SENSOR_ROI_CONF1

Address: section "ACQ" base address + 0x0C8

Description:

SENSOR ADDRESS 257 or 260 DEC

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	reserved(2:0)				Y_START(12:8))		
7	6	5	4	3	2	1	0	
	Y_START(7:0)							
	·	·			·			

reserved (2:0)	
STATIC	
Value at Reset:	0x0

Y_START (12:0)	Y START
RW	Y Start Configuration
Value at Reset:	0x0

SENSOR_ROI2_CONF1

Address: section "ACQ" base address + 0x0CC

Description:

SENSOR ADDRESS 257 or 260 DEC

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	reserved(2:0)				Y_START(12:8)			
7	6	5	4	3	2	1	0	
			Y_STA	ART(7:0)				
<u> </u>			•			•	<u> </u>	

reserved (2:0)	
STATIC	
Value at Reset:	0x0

Y_START (12:0)	Y START			
RW	Y Start Configuration			
Value at Reset:	0x0			

SENSOR_ROI_CONF2

Address: section "ACQ" base address + 0x0D0

Description:

SENSOR ADDRESS 258 or 261 DEC

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	reserved(2:0) Y_END(12:8)							
7	6	5	4	3	2	1	0	
	Y_END(7:0)							

reserved (2:0)	
STATIC	
Value at Reset:	0x0

Y_END (12:0)	Y END
RW	Y End Configuration
Value at Reset:	0x3ff

SENSOR_ROI2_CONF2

Address: section "ACQ" base address + 0x0D4

Description:

SENSOR ADDRESS 258 or 261 DEC

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	reserved(2:0) Y_END(12:8)							
7	6	5	4	3	2	1	0	
	Y_END(7:0)							

reserved (2:0)	
STATIC	
Value at Reset:	0x0

Y_END (12:0)	Y END			
RW	Y End Configuration			
Value at Reset:	0x3ff			

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
		Reserved			CRC_InitValu	CRC_Reset	CRC_EN		
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	CRC_STATUS(7:0)								

CRC_InitValue	
RW	
Value at Reset:	0x0

CRC_Reset	
WO/AutoClr	Reset CRC state if error is detected

CRC_EN	CRC ENable
RW	
Value at Reset:	0x1

CRC_STATUS (7:0)		
RO		
Possible Values:	0x0	NO ERROR
	0x1	CRC ERROR

DEBUG_PINS

31	30	29	28	27	26	25	24	
Reserved				Debug3_sel(4:0)				
23	23 22 21			19	18	17	16	
Reserved			Debug2_sel(4:0)					
15	14	13	12	11	10	9	8	
Reserved					Debug1_sel(4:0)			
7	6	5	4	3	2	1	0	
	Reserved				Debug0_sel(4:0)			

Debug3_sel (4:0)	
RW	debug_vector16(0) <= python_monitor0; debug_vector16(1) <= python_monitor1; debug_vector16(2) <= grab_mngr_trig_rdy; debug_vector16(3) <= curr_trig0; debug_vector16(4) <= strobe; debug_vector16(5) <= python_exposure; debug_vector16(6) <= FOT; debug_vector16(7) <= readout; debug_vector16(8) <= readout_stateD; debug_vector16(9) <= ext_trig; debug_vector16(10) <= REGFILE.ACQ.GRAB_CTRL.GRAB_CMD; debug_vector16(11) <= REGFILE.ACQ.GRAB_CTRL.GRAB_SS; debug_vector16(12) <= grab_mngr_trig; debug_vector16(13) <= grab_mngr_trig_rdy; debug_vector16(14) <= grab_pending; debug_vector16(15) <= grab_active;
Value at Reset:	0x1f

Debug2_sel (4:0)	
RW	debug_vector16(0) <= python_monitor0; debug_vector16(1) <= python_monitor1; debug_vector16(2) <= grab_mngr_trig_rdy; debug_vector16(3) <= curr_trig0; debug_vector16(4) <= strobe; debug_vector16(5) <= python_exposure; debug_vector16(6) <= FOT; debug_vector16(7) <= readout; debug_vector16(8) <= readout_stateD; debug_vector16(9) <= ext_trig; debug_vector16(10) <= REGFILE.ACQ.GRAB_CTRL.GRAB_CMD; debug_vector16(11) <= REGFILE.ACQ.GRAB_CTRL.GRAB_SS; debug_vector16(12) <= grab_mngr_trig; debug_vector16(13) <= grab_mngr_trig_rdy; debug_vector16(14) <= grab_pending; debug_vector16(15) <= grab_active;
Value at Reset:	0x1f

Debug1_sel (4:0)						
RW	debug_vector16(0) <= python_monitor0;					
	debug_vector16(1) <= python_monitor1;					
debug_vector16(2) <= grab_mngr_trig_rdy;						
	debug_vector16(3) <= curr_trig0;					
debug vector16(4) <= strobe;						
	debug_vector16(5) <= python_exposure;					
	debug_vector16(6) <= FOT;					
	debug_vector16(7) <= readout;					
	debug vector16(8) <= readout stateD;					
	debug_vector16(9) <= ext_trig;					
	debug_vector16(10) <= REGFILE.ACQ.GRAB_CTRL.GRAB_CMD;					
	debug_vector16(11) <= REGFILE.ACQ.GRAB_CTRL.GRAB_SS;					
	debug_vector16(12) <= grab_mngr_trig;					
	debug_vector16(13) <= grab_mngr_trig_rdy;					
	debug_vector16(14) <= grab_pending;					
	debug vector16(15) <= grab active;					
Value at Reset:	0x1f					

Debug0_sel (4:0)	
RW	debug_vector16(0) <= python_monitor0; debug_vector16(1) <= python_monitor1; debug_vector16(2) <= grab_mngr_trig_rdy; debug_vector16(3) <= curr_trig0; debug_vector16(4) <= strobe; debug_vector16(5) <= python_exposure; debug_vector16(6) <= FOT; debug_vector16(7) <= readout; debug_vector16(8) <= readout_stateD; debug_vector16(9) <= ext_trig; debug_vector16(10) <= REGFILE.ACQ.GRAB_CTRL.GRAB_CMD; debug_vector16(11) <= REGFILE.ACQ.GRAB_CTRL.GRAB_SS; debug_vector16(12) <= grab_mngr_trig; debug_vector16(13) <= grab_mngr_trig_rdy; debug_vector16(14) <= grab_pending; debug_vector16(15) <= grab_active;
Value at Reset:	0x1f

TRIGGER_MISSED

31	30	29	28	27	26	25	24	
	Reserved TRIGGER_MI SSED_RST				Reserved			
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	TRIGGER_MISSED_CNTR(15:8)							
7	6	5	4	3	2	1	0	
	TRIGGER_MISSED_CNTR(7:0)							

TRIGGER_MISSED_RST	TRIGGER MISSED ReSeT				
WO/AutoClr	This is the trigger missed reset.				
Possible Values:	0x1 Reset the Trigger counter reset				

TRIGGER_MISSED_CNTR (15:0)	TRIGGER MISSED CouNTeR		
RO	This is the number of trigg	ger missed detected.	
Possible Values:	Any Value		

SENSOR_FPS

31	30	29	28	27	26	25	24						
	Reserved												
23	22	21	20	19	18	17	16						
	Reserved												
15	14	13	12	11	10	9	8						
SENSOR_FPS(15:8)													
7	6	5	4	3	2	1	0						
			SENSOR	_FPS(7:0)			SENSOR_FPS(7:0)						

SENSOR_FPS (15:0) SENSOR Frame Per Second	
	This is the number of frames received in 1 second interval. This register can count up to 64k frame/s.

DEBUG

31	30	29	28	27	26	25	24
	Reserved D		DEBUG_RST _CNTR	Reserved		TEST_MODE_PIX_START(9:8)	
23	22	21	20	19	18	17	16
	TEST_MODE_PIX_START(7:0)						
15	14	13	12	11	10	9	8
		Res	served			TEST_MOVE	TEST_MODE
7	6	5	4	3	2	1	0
		Reserved			LED_TEST	_COLOR(1:0)	LED_TEST

DEBUG_RST_CNTR		
RW	This register clears the	e debug entrs
Value at Reset:	0x1	
Possible Values:	0x0	
	0x1	Reset counters

TEST_MODE_PIX_START (9:0)	
RW	This register defines the value of the first pixel in the frame when the TEST_MODE is activated. In 8 bits mode only 8-MSB bits of the register is used.
Value at Reset:	0x0

TEST_MOVE						
RW		This field when in TEST_MODE=1, makes the ramp move. The first pixel of the frame is incremented by one each frame.				
Value at Reset:	0x0					
Possible Values:	0x0	Static test ramp				
	0x1	The test ramp moves				

TEST_MODE					
RW	This field set the FPGA in test mode. The fpga will send a programmable ramp to the host using the syncs receveived from the sensor. The generated ramp can move when set with the field TEST_MOVE. In color mode (LVDSx1), the ramp pixel is repeated 3 times to generate a B&W ramp in				
	RGB24 mode.				
Value at Reset:	0x0				
Possible Values:	0x0 Normal acquisition data from sensor				
	0x1 Test mode, a ramp is generated.				

LED_TEST_COLOR (1:0)		
RW		
Value at Reset:	0x0	
Possible Values:	0x0	The LED is OFF
	0x1	The LED is GREEN
	0x2	The LED is RED
	0x3	The LED is ORANGE

LED_TEST RW		This register will put the LED status in test mode. The test mode is controlled by LED TEST COLOR			
Value at Reset:	0x0				
Possible Values:	0x0	The LED is in user mode.			
	0x1	The LED is in test mode.			

DEBUG_CNTR1

31	30	29	28	27	26	25	24	
	EOF_CNTR(31:24)							
23	22	21	20	19	18	17	16	
	EOF_CNTR(23:16)							
15	14	13	12	11	10	9	8	
	EOF_CNTR(15:8)							
7	6	5	4	3	2	1	0	
	EOF_CNTR(7:0)							

EOF_CNTR (31:0)	
RO	This is the EOF CNTR

DEBUG_CNTR2

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved				EOL_CN	TR(11:8)	
7	6	5	4	3	2	1	0
	EOL_CNTR(7:0)						

EOL_CNTR (11:0)	
RO	This is the EOL CNTR

DEBUG_CNTR3

31	30	29	28	27	26	25	24
	Reserved			SENSOR_FRAME_DURATION(27:24)			
23	22	21	20	19	18	17	16
SENSOR_FRAME_DURATION(23:16)							
15	14	13	12	11	10	9	8
	SENSOR_FRAME_DURATION(15:8)						
7	6	5	4	3	2	1	0
	SENSOR_FRAME_DURATION(7:0)						

SENSOR_FRAME_DURATI ON (27:0)					
	This is the time between the last 2 EOF received (in sys clock domain). This register can count up to 4.29 seconds. It can be used to predict sensor framerate or to verify sync between 3D profiler heads. This feature is enabled by setting register regfile.ACQ.DEBUG.DEBUG_RST_CNTR to 0.				
Possible Values:	Any Value	Any 28 bit value			

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Reserved				EXP_FOT
15	14	13	12	11	10	9	8
	Reserved				EXP_FOT_	ΓΙΜΕ(11:8)	
7	6	5	4	3	2	1	0
	EXP_FOT_TIME(7:0)						

EXP_FOT	EXPosure duri	EXPosure during FOT		
RW	exposure in the EXP_FOT_TI	When set to '1' this register, the output exposure and strobe signals will take into account the exposure in the FOT of the frame. This timing must be programmed in register EXP_FOT_TIME. This timing must be calculated from the OnSemi setting files.		
Value at Reset:	0x0	0x 0		
Possible Values:	0x0	Disable exposure during FOT in output exposure signal and Strobe		
	0x1	Enable exposure during FOT in output exposure signal and Strobe		

EXP_FOT_TIME (11:0)	EXPosure during FOT TIME
RW	This is the time of the exposure during the FOT. This timing must be calculated from the OnSemi setting files.
	From DCF v1.2, for all LVDS modes :
	P5000 & P2000 EXP_FOT=40.666us, program value 0x9e9
	P1300 & P500 & P300 EXP_FOT=27.333us, program value 0x6ac
Value at Reset:	0x0

ACQ_SFNC

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
			Reserved				RELOAD_GR AB_PARAMS

RELOAD_GRAB_PARAMS		
WO/AutoClr		
Possible Values:	0x0	
	0x1	

Address: section "ACQ" base address + 0x154

Description:

A noise peak elimination filter iteratively replaces the central pixel in a 3x3 neighborhood, if the pixel is a minimum or maximum within that neighborhood. It is replaced with the next lowest or highest value (respectively) in the neigborhood. If the central pixel is not a minimum or maximum, it is left unchanged.

Threshold register controls the sharpness of replacement as follow:

CurrPixel - Threshold > MaxNeighborhood, and CurrPixel - threshold >= 0 : Replace by MaxNeighborhood9

CurrPixel + Threshold < MaxNeighborhood, and CurrPixel + threshold <= 1023 : Replace by MinNeighborhood9

31	30	29	28	27	26	25	24
		Re	served				NOPEL_FIFO _OVERRUN
23	22	21	20	19	18	17	16
	Reserved		NOPEL_FIFO _RST	Rese	erved	NOPEL_BYP ASS	NOPEL_ENA BLE
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
	NOPEL_THRESHOLD(7:0)						

NOPEL_FIFO_UNDERRUN	NOPEL FIFO UNDERR	NOPEL FIFO UNDERRUN			
RO		This is the fifo underrun status of the 2 linebuffers in the NOPEL macro. Write '1' then '0' to field NOPEL FIFO RST to reset this flag and reset the Fifo logic.			
Possible Values:	Ox0 Underrun not detected				
	0x1	x1 Underrun detected			

NOPEL_FIFO_OVERRUN		
	This is the fifo overrun status of the 2 linebuffers in the NOPEL macro. Write '1' then '0' to field NOPEL_FIFO_RST to reset this flag and reset the Fifo logic.	
Possible Values:	0x0	Overrun not detected
	0x1	Overrun detected

NOPEL_FIFO_RST	NOPEL FIFO	NOPEL FIFO RESET		
RW		Write '1' then '0' to field NOPEL_FIFO_RST to reset overrun/underrun flags of the linebuffers and reset the Fifo logic.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Fifo in normal operation		
	0x1	Fifo in reset State		

NOPEL_BYPASS	NOPEL BYPASS	
RW	The Nopel bypass serves to send the current pixels instead the new calculated pixel, but using all the Nopel core logic.	
Value at Reset:	0x0	
Possible Values:	0x0	Nopel MIN-MAX used
	0x1	Nopel MIN-MAX bypass, send current pixel

NOPEL_ENABLE				
RW	Enable Nopel	Enable Nopel filter to correct cold/hot pixels.		
	The grab mus	The grab must be idle when changing this register.		
Value at Reset:	0x1			
Possible Values:	0x0	Nopel filter bypassed		
	0x1	Nopel filter used		

NOPEL_THRESHOLD (7:0)	NOPEL THRESHOLD	
RW	Nopel Threshold register controls the sharpness of replacement in the Nopel filter logic. Up to 8 bits can be programmed (255 LSB 10)	
Value at Reset:	0x10	
Possible Values:	Any Value	This is a LSB10 value

Section: DATA

Address Range: [0x300 - 0x388]

LUT_CTRL

31	30	29	28	27	26	25	24
LUT_BYPAS S	Reserved	LUT_PALET TE_USE	LUT_PALET TE_W	Rese	rved	LUT_DAT	CA_W(9:8)
23	22	21	20	19	18	17	16
			LUT_DAT	CA_W(7:0)			
15	14	13	12	11	10	9	8
Reserved		LUT_SEL(2:0)		LUT_WRN	LUT_SS	LUT_Al	DD(9:8)
7	6	5	4	3	2	1	0
	LUT_ADD(7:0)						

LUT_BYPASS	LUT BYPASS	LUT BYPASS	
RW	When set this register to '1', the LUT logic will not be used, and the 10 bits data will en send to the DMA. This register is used for optical test usage since the Perceptron/N3 have only 10 to 8 bits LUT only. The DMA must be configured in synthesys to be able to transfert 10bpp images.		
Value at Reset:	0x0		
Possible Values:	0x0	Use LUT logic.	
	0x1	LUT logic bypass.	

LUT_PALETTE_USE	LUT PALETTE to USE		
RW	This register selects the LUT palette to be use in the grab path.		
Value at Reset:	0x0		
Possible Values:	0x0	Palette 0 is used	
	0x1	Palette 1 is used	

LUT_PALETTE_W	LUT PALETT	E to Write	
RW		This register selects the palette to be write into the LUT. This register must be set to 0 when programming the Palette 0 and to 1 when programming the Palette 1.	
Value at Reset:	0x0		
Possible Values:	0x0	Write Palette 0	
	0x1	Write Palette 1	

LUT_DATA_W (9:0)	LUT DATA to Write
RW	Data to write in the LUT
Value at Reset:	0x0

LUT_SEL (2:0)	LUT SELection	LUT SELection	
RW	LUT programm	nation selector.	
	The Color and	Mono shares the same 4 physical LUT.	
Value at Reset:	0x0		
Possible Values:	0x0	Read or Write to Gamma / Mono0 LUT	
	0x1	Read or write to Blue / Mono1 LUT	
	0x2	Read or write to Green / Mono2 LUT	
	0x3	Read or write to Red / Mono3 LUT	
	0x4	Write ALL LUT with same data.	
	0x5		
	0x6		
	0x7		

LUT_WRN	LUT Write ReadNot	LUT Write ReadNot	
RW	LUT Write mode	LUT Write mode	
Value at Reset:	0x0		
Possible Values:	0x0	Read operation	
	0x1	Write operation	

LUT_SS	LUT SnapShot
WO/AutoClr	Start the LUT OPERATION (R/W)

LUT_ADD (9:0)	
RW	
Value at Reset:	0x0

LUT_RB

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved LUT_RB(9:8)						RB(9:8)			
7	6	5	4	3	2	1	0		
	LUT_RB(7:0)								

LUT_RB (9:0)	
RO	LUT ReadBack

WB_MULT1

31	30	29	28	27	26	25	24			
	WB_MULT_G(15:8)									
23	22	21	20	19	18	17	16			
	WB_MULT_G(7:0)									
15	14	13	12	11	10	9	8			
	WB_MULT_B(15:8)									
7	6	5	4	3	2	1	0			
			WB_MU	LT_B(7:0)						

WB_MULT_G (15:0)	
RW	
Value at Reset:	0x1000

WB_MULT_B (15:0)	
RW	
Value at Reset:	0x1000

WB_MULT2

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
WB_MULT_R(15:8)								
7	6	5	4	3	2	1	0	
			WB_MUI	LT_R(7:0)				

WB_MULT_R (15:0)	
RW	
Value at Reset:	0x1000

WB_B_ACC

31	30	29	28	27	26	25	24	
Reserved				B_ACC(30:24)				
23	22	21	20	19	18	17	16	
	B_ACC(23:16)							
15	14	13	12	11	10	9	8	
	B_ACC(15:8)							
7	6	5	4	3	2	1	0	
	B_ACC(7:0)							

B_ACC (30:0)	
RO	ACQuisition Blue ACCumulator

WB_G_ACC

31	30	29	28	27	26	25	24			
	G_ACC(31:24)									
23	22	21	20	19	18	17	16			
	G_ACC(23:16)									
15	14	13	12	11	10	9	8			
	G_ACC(15:8)									
7	6	5	4	3	2	1	0			
	G_ACC(7:0)									

G_ACC (31:0)	
RO	ACQuisition Green ACCumulator

WB_R_ACC

31	30	29	28	27	26	25	24	
Reserved				R_ACC(30:24)				
23	22	21	20	19	18	17	16	
R_ACC(23:16)								
15	14	13	12	11	10	9	8	
	R_ACC(15:8)							
7	6	5	4	3	2	1	0	
	R_ACC(7:0)							

R_ACC (30:0)	
RO	ACQuisition Red ACCumulator

31	30	29	28	27	26	25	24
FPN_73	Reserved		FPN_WE		Reserved		FPN_EN
23	22	21	20	19	18	17	16
	Reserved						FPN_SS
15	14	13	12	11	10	9	8
	Reserved					FPN_A	DD(9:8)
7	6	5	4	3	2	1	0
FPN_ADD(7:0)							

FPN_73					
RW	Use [7].[3] fpi	Use [7].[3] fpn correction instead old [5].[3].			
	This 7.3 mode	This 7.3 mode is not implemented in the released FPGA.			
Value at Reset:	0x0	0x0			
Possible Values:	0x0	Use normal fpn mode 5.3			
	0x1	Use advanced fpn mode 7.3			

FPN_WE	FPN Write En	FPN Write Enable				
RW	This register is	This register is the coefficient RAM WRITE ENABLE				
Value at Reset:	0x1	0x1				
Possible Values:	0x0	0x0 Read operation				
	0x1	F				

FPN_EN	FPN ENable				
RW	This field enables the HV	This field enables the HW FPN and PRNU correction			
Value at Reset:	0x0	0x0			
Possible Values:	0x0 HW correction disable				
	0x1	HW correction enable			

FPN_SS	FPN SnapShot			
WO/AutoClr	This register is the snapshot for read/write to the coefficient RAM.			
Possible Values:	0x0 Nothing			
	0x1 Snapshot			

FPN_ADD (9:0)	FPN ADDress
	This register is the address to be write/read in the coefficient RAM. The first 512(144bits) locations are correction factors to not SUBsampled image(palette 0). The second 512 locations(144bits) are correction factors to SUBsampled image(palette 1).
Value at Reset:	0x0

FPN_READ_REG

31	30	29	28	27	26	25	24
Reserved	FPN_	READ_PIX_SE	EL(2:0)		Reserved		FPN_READ_ PRNU(8)
23	22	21	20	19	18	17	16
			FPN_READ	PRNU(7:0)			
15	14	13	12	11	10	9	8
	Reserved				FPN	_READ_FPN((10:8)
7	6	5	4	3	2	1	0
	FPN_READ_FPN(7:0)						

FPN_READ_PIX_SEL (2:0)	
	This is the pixel number to be read (0 to 7) in the RAM. Each RAM location contains corrections for 8 pixels per address(FPN_ADD). This field selects the PIXel correction to be readed.
Value at Reset:	0x0
Possible Values:	0x0 - 0x7

FPN_READ_PRNU (8:0)	
RO	This is the PRNU coefficient readed in RAM.

FPN_READ_FPN (10:0)	
RO	This is the FPN coefficient readed in RAM.

Address: section "DATA" base address + 0x040 + (index * 0x4)

31	30	29	28	27	26	25	24
			Reserved				FPN_DATA_ PRNU(8)
23	22	21	20	19	18	17	16
	FPN_DATA_PRNU(7:0)						
15	14	13	12	11	10	9	8
	Reserved				FPN	_DATA_FPN(10:8)
7	6	5	4	3	2	1	0
	FPN_DATA_FPN(7:0)						

FPN_DATA_PRNU (8:0)	FPN DATA PRNU				
RW	This is the PRNU coefficient be written in RAM.				
	PRNU factor is signed 9 bits [0].[00][+/-][8]				
	From the DoubleValue calculated in SW, program this field as:				
	FPN_DATA_PRNU = int(DoubleVal*2048.0)				
	Clip correction to implement in the driver is :				
	if(DoubleVal > (255.0 / 2048.0)) DoubleVal = (255.0 / 2048.0) (0.124511718) if(DoubleVal < -(255.0 / 2048.0)) DoubleVal = -(255.0 / 2048.0) (0.124511718)				
Value at Reset:	0x0				

FPN_DATA_FPN (10:0)	FPN DATA FPN				
RW	This is the FPN coefficient be written in RAM.				
	If FPN 5.3 is implemented(default) factor is signed 9 bits [+/-][5].[3] If FPN 7.3 is implemented(default) factor is signed 11 bits [+/-][7].[3]				
	In 5.3 configuration, from the DoubleValue alculated in SW, program this field as: program this field as:				
	$FPN_DATA_FPN = int((DoubleVal/32.0)*256.0)$				
	Clip correction to implement in the driver is :				
	if(DoubleValue > 255.0/8.0) DoubleValue= 255.0/8.0 (31.875) if(DoubleValue < -255.0/8.0) DoubleValue= -255.0/8.0 (-31.875)				
Value at Reset:	0x0				

FPN_CONTRAST

31	30	29	28	27	26	25	24
	Reserved				CONTRAST	_GAIN(11:8)	
23	22	21	20	19	18	17	16
			CONTRAST	_GAIN(7:0)			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	CONTRAST_OFFSET(7:0)						

CONTRAST_GAIN (11:0)	
RW	This is a digital gain [4].[8] applied after the EXIT_CP3 substractor. This register MUST be set to 1 or greater.
Value at Reset:	0x100

CONTRAST_OFFSET (7:0)	CONTRAST OFFSET
	This is the constant substracted to the 10 bit pixel FPN and PRNU corrected. The value is a 8 bits integer value [8].[0]. This register is aligned with the LSB of the 10 bit pixel value.
Value at Reset:	0x0

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
Res	erved	FPN_ACC_M ODE_SEL	FPN_ACC_M ODE_EN		Reserved		FPN_ACC_R_ SS
15	14	13	12	11	10	9	8
	Reserved				FPN_ACC_A	ADD(11:8)	
7	6	5	4	3	2	1	0
	FPN_ACC_ADD(7:0)						

FPN_ACC_MODE_SEL				
RW	This register selects if the Contrast Gain and Offset is used for compute the pixel accumulators.			
	If FPN_ACC_MODE_SEL =0 then the module will use CONTRAST_GAIN=1 and CONTRAST_OFFSET=0 for the accumulators.			
	If FPN_ACC_MODE_SEL =1 then the module will use Gain and Offset from registers CONTRAST GAIN and CONTRAST OFFSET.			
Value at Reset:	0x0			
Possible Values:	0x0 Don't use Contrast Gain and Offset 0x1 Use Contrast Gain and Offset			

FPN_ACC_MODE_EN	FPN ACCum	FPN ACCumulator MODE ENable		
RW		This field defines the accumulator mode. When this register is set to '1', the accumulators will start count and no frame will be sent to the host memory.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	0x0 Normal DMA transfert mode		
	0x1	Accumulator mode		

FPN_ACC_R_SS	FPN ACCumulator Read Snapshot
WO/AutoClr	This is the column read accumulator snapshot.

FPN_ACC_ADD (11:0)	FPN ACCumulator ADDress			
RW	This is the column accumulator adress to read.			
Value at Reset:	0x0			

FPN_ACC_DATA

31	30	29	28	27	26	25	24
			Reserved				FPN_ACC_R_ WORKING
23	22	21	20	19	18	17	16
	FPN_ACC_DATA(23:16)						
15	14	13	12	11	10	9	8
	FPN_ACC_DATA(15:8)						
7	6	5	4	3	2	1	0
	FPN_ACC_DATA(7:0)						

FPN_ACC_R_WORKING	FPN ACCumulator Read WORKING		
RO	This field is the working status of the read-to-column accumulator. The data in the field FPN_ACC_DATA will be valid when FPN_ACC_R_WORKING is set to '0'		
Possible Values:	0x0 The data in the field FPN_ACC_DATA is valid		
	0x1	The data in the field FPN_ACC_DATA is invalid	

FPN_ACC_DATA (23:0)	FPN ACCumulator DATA		
RO	This is the column accumulator.		
Possible Values:	Any 24 bits value		

DPC_LIST_CTRL

31	30	29	28	27	26	25	24
dpc_fifo_unde rrun	dpc_fifo_overr un	Reserved	dpc_fifo_reset	Reserved	dpc_firstlast_li ne_rem	dpc_pattern0_ cfg	dpc_enable
23	22	21	20	19	18	17	16
Rese	erved			dpc_list_o	count(5:0)		
15	14	13	12	11	10	9	8
	Reserved		dpc_list_WRn		Reserved		dpc_list_ss
7	6	5	4	3	2	1	0
Rese	erved			dpc_list_	_add(5:0)		

dpc_fifo_underrun			
	This is the fifo underrun status of the 2 linebuffers in the dpc macro. Write '1' then '0' to field dpc_FIFO_RST to reset this flag and reset the Fifo logic.		
Possible Values:	0x0	Underrun not detected	
	0x1	Underrun detected	

dpc_fifo_overrun		
RO		verrun status of the 2 linebuffers in the DPC macro. to field dpc_FIFO_RST to reset this flag and reset the Fifo logic.
Possible Values:	0x0	Overrun not detected
	0x1	Overrun detected

dpc_fifo_reset			
RW	Write '1' then '0' to field dpcL_FIFO_RST to reset overrun/underrun flags of the line buffers and reset the Fifo logic.		
	The DPC dual port ram is not SW reset.		
	The fifo in each processing DPC unit is HW reset at each SOF.		
Value at Reset:	0x0		
Possible Values:	0x0	Fifo in normal operation	
	0x1	Fifo in reset State	

dpc_firstlast_line_rem		
RW	When this register is set to 1, the DPC macro will remove the first and last line of the image corrected. This can be usefull if we want to correct the 4 pixels in the corners of the image. The SW can program two more lines in the frame so the DPC macro can have enough pixels to correct the 4 pixel coners.	
Value at Reset:	0x0	
Possible Values:	0x0	Do not remove any lines of the image received
	0x1	Remove first and last line of the image received

dpc_pattern0_cfg			
RW	the current pix	This field configures the behabieur of the correction pattern 0x0. If this field is set to 0x0 then the current pixel will not be corrected. If this field is set to 0x1 then the current pixel will be replaced by the value 0x3ff (white pixel)	
Value at Reset:	0x0		
Possible Values:	0x0	Do not correct current pixel	
	0x1	Replace current pixel by a white pixel (0x3ff)	

dpc_enable			
RW	the dead pixel	Dead Pixel Correction core Enable, when this field is set to 1, the DPC logic will correct all the dead pixels that are listed in the DPC list. The grab must be idle when changing this register.	
Value at Reset:	0x0		
Possible Values:	0x0	DPC logic is bypassed	
	0x1	PDC logic is enable	

dpc_list_count (5:0) RW		r of entries in the DPC list. The driver need to set the dcp_list_count in order ge. Up to 63 pixels can be corrected. The value 0 is allowed and when set to corrected.
Value at Reset:	0x0	
Possible Values:	Any Value	Any value from 0 to 63

dpc_list_WRn				
RW	with the dpc_l	This is the Write/ReadN flag. To write to the DPC list set this bit to 1 and start the transaction with the dpc_list_ss field. To read from the DPC list set this bit to 0 and start the transaction with the dpc_list_ss field.		
Value at Reset:	0x0			
Possible Values:	0x0	Read list operation		
	0x1	Write list operation		

dpc_list_ss		
WO/AutoClr	This is the DPC snapshot writen to '1'. This bit is a	. In order to start a write or read transaction the snapsot needs to be auto clear regsiter.
Possible Values:	0x0	Do nothing
	0x1	Start the READ/WRITE transaction

dpc_list_add (5:0)	
	This is the address of the DPC list to be access by the read/write operation. Pixel 0 to correct is located at address b000000. Since the dpc_list_count field is also 6 bit wide, address 0 to 62 of the list can be used.
Value at Reset:	0x0

DPC_LIST_DATA

31	30	29	28	27	26	25	24	
dpc_list_corr_pattern(7:0)								
23	22	21	20	19	18	17	16	
	dpc_list_corr_y(11:4)							
15	14	13	12	11	10	9	8	
	dpc_list_corr_y(3:0) dpc_list_corr_x(11:8)							
7	6	5	4	3	2	1	0	
dpc_list_corr_x(7:0)								

dpc_list_corr_pattern (7:0)	
RW	This is pattern of the pixel to be corrected when executing a write to the DPC list.
	2 bit correction: 34, 17, 136, 68 4 bit correction: 170, 153, 51, 204, 85, 102 6 bit correction: 187,238 (mapped to 170), 119,221 (mapped to 85) 8 bit correction: 255 Set pixel to 255 (white), debug: 0
Value at Reset:	0x0

dpc_list_corr_y (11:0)	
RW	This is Y location of the pixel to be corrected when executing a write to the DPC list.
Value at Reset:	0x0

dpc_list_corr_x (11:0)	
RW	This is X location of the pixel to be corrected when executing a write to the DPC list.
Value at Reset:	0x0

DPC_LIST_DATA_RD

31	30	29	28	27	26	25	24	
dpc_list_corr_pattern(7:0)								
23	22	21	20	19	18	17	16	
	dpc_list_corr_y(11:4)							
15	14	13	12	11	10	9	8	
	dpc_list_corr_y(3:0) dpc_list_corr_x(11:8)							
7	6	5	4	3	2	1	0	
dpc_list_corr_x(7:0)								

dpc_list_corr_pattern (7:0)	
RO	This is pattern of the pixel read from DPC list.
	2 Bit correction: 34, 17, 136, 68 4 Bit correction: 170, 153, 51, 204, 85, 102 6 bit correction: 187,238 (mapped to 170), 119,221 (mapped to 85) 8 bit correction: 255 Set pixel to 255 (white), debug: 0

dpc_list_corr_y (11:0)	
RO	This is Y location of the pixel read from the DPC list.

dpc_list_corr_x (11:0)	
RO	This is X location of the pixel read from the DPC list.

Section: HISPI

Address Range: [0x030 - 0x034]

CTRL

Address: section "HISPI" base address + 0x000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved					CLR	RESET_IDEL AYCTRL		

CLR	
RW	
Value at Reset:	0x0

RESET_IDELAYCTRL	Reset the xilinx macro IDELAYCTRL
RW	
Value at Reset:	0x0

STATUS

Address: section "HISPI" base address + 0x004

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved						PLL_LOCKE		
							ע		

PLL_LOCKED	
RO	